In [124]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

Out[125]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	O_3	PM10	
0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39.990002	25.86
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950001	
2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49.480000	
3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31.070000	
4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54.080002	
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.900000	14.86
245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37.689999	
245493	2004 - 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22.840000	12.04
245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45.630001	
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.389999	17.95

245496 rows × 17 columns

In [126]: a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 245496 entries, 0 to 245495 Data columns (total 17 columns): Column Non-Null Count Dtype --------------0 date 245496 non-null object BEN float64 1 65158 non-null 2 CO 226043 non-null float64 3 EBE 56781 non-null float64 4 MXY 39867 non-null float64 5 NMHC 107630 non-null float64 6 NO 2 243280 non-null float64 7 NOx 243283 non-null float64 8 OXY 39882 non-null float64 9 0 3 233811 non-null float64 PM10 234655 non-null float64 10 11 PM25 58145 non-null float64 12 PXY 39891 non-null float64 243402 non-null float64 13 SO_2 14 TCH 107650 non-null float64 TOL 64914 non-null float64 15 16 station 245496 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 31.8+ MB

```
In [133]: b=a.fillna(value=102)
b
```

Out[133]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	F
0	2004- 08-01 01:00:00	102.00	0.66	102.00	102.00	102.00	89.550003	118.900002	102.00	40.020000	39.99
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.95
2	2004- 08-01 01:00:00	102.00	1.02	102.00	102.00	102.00	93,389999	138.600006	102.00	20.860001	49.48
3	2004- 08-01 01:00:00	102.00	0.53	102.00	102.00	102.00	87.290001	105.000000	102.00	36.730000	31.07
4	2004- 08-01 01:00:00	102.00	0.17	102.00	102.00	102.00	34.910000	35.349998	102.00	86.269997	54.08
245491	2004 - 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30.90
245492	2004 - 06-01 00:00:00	2.49	0.75	2.44	4.57	102.00	97.139999	146.899994	2.34	7.740000	37.68
245493	2004 - 06-01 00:00:00	102.00	102.00	102.00	102.00	0.13	102.699997	132.600006	102.00	17.809999	22.84
245494	2004 - 06-01 00:00:00	102.00	102.00	102.00	102.00	0.09	82.599998	102.599998	102.00	102.000000	45.63
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24.38

245496 rows × 17 columns

```
In [134]: b.columns
Out[134]: Index(['date', 'BEN', 'CO', 'ERE', 'MXY', 'NMHC', 'NO 2', 'NOX', 'OXY', 'O 3',
```

In [135]: c=b.head(10) c

Out[135]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	
0	2004- 08-01 01:00:00	102.00	0.66	102.00	102.00	102.00	89.550003	118.900002	102.00	40.020000	39.990002	2:
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950001	10:
2	2004- 08-01 01:00:00	102.00	1.02	102.00	102.00	102.00	93.389999	138.600006	102.00	20.860001	49.480000	10:
3	2004- 08-01 01:00:00	102.00	0.53	102.00	102.00	102.00	87.290001	105.000000	102.00	36.730000	31.070000	10:
4	2004- 08-01 01:00:00	102.00	0.17	102.00	102.00	102.00	34.910000	35.349998	102.00	86.269997	54.080002	10:
5	2004- 08-01 01:00:00	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000	59.110001	3
6	2004- 08-01 01:00:00	102.00	0.43	102.00	102.00	0.17	54.270000	64.279999	102.00	66.589996	54.270000	10:
7	2004- 08-01 01:00:00	1.41	0.47	2.35	102.00	0.02	71.730003	87.519997	102.00	53.270000	45.180000	10:
8	2004- 08-01 01:00:00	102.00	1.28	102.00	102.00	102.00	147.699997	202.500000	102.00	10.280000	52.430000	10:
9	2004- 08-01 01:00:00	102.00	0.43	102.00	102.00	0.27	54.290001	68.099998	102.00	66.709999	54.700001	10:
4 (•

Out[136]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	so_
0	102.00	0.66	102.00	102.00	102.00	89.550003	118.900002	102.00	40.020000	39.990002	102.00	12.2
1	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950001	3.38	6.1
2	102.00	1.02	102.00	102.00	102.00	93.389999	138.600006	102.00	20.860001	49.480000	102.00	8.9
3	102.00	0.53	102.00	102.00	102.00	87.290001	105.000000	102.00	36.730000	31.070000	102.00	8.8
4	102.00	0.17	102.00	102.00	102.00	34.910000	35.349998	102.00	86.269997	54.080002	102.00	8.7
5	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000	59.110001	4.16	14.2
6	102.00	0.43	102.00	102.00	0.17	54.270000	64.279999	102.00	66.589996	54.270000	102.00	8.6
7	1.41	0.47	2.35	102.00	0.02	71.730003	87.519997	102.00	53.270000	45.180000	102.00	7.0
8	102.00	1.28	102.00	102.00	102.00	147.699997	202.500000	102.00	10.280000	52.430000	102.00	15.4
9	102.00	0.43	102.00	102.00	0.27	54.290001	68.099998	102.00	66.709999	54.700001	102.00	9.8
4												

In [137]: sns.pairplot(d)

Out[137]: <seaborn.axisgrid.PairGrid at 0x1b6568facd0>


```
In [138]: sns.distplot(a['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[138]: <AxesSubplot:xlabel='NOx', ylabel='Density'>

In [139]: sns.heatmap(d.corr())

Out[139]: <AxesSubplot:>


```
In [140]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

```
In [141]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[142]: LinearRegression()

```
In [143]: |print(lr.intercept_)
           1.3901233022162884
In [144]: | coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
           coeff
Out[144]:
                    Co-efficient
             BEN -2.247606e-03
              CO 2.445718e+00
             EBE -2.226602e-03
             MXY -1.720846e-15
            NMHC
                  9.883873e-01
            NO_2 3.875085e-02
             NOx -4.239689e-02
             OXY 0.000000e+00
In [145]: | prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[145]: <matplotlib.collections.PathCollection at 0x1b66dd24be0>
            100
             80
             60
             40
             20
                        20
                                 40
                                         60
                                                  80
                                                         100
In [146]: print(lr.score(x_test,y_test))
           0.9997659171680979
In [147]: | from sklearn.linear_model import Ridge,Lasso
In [148]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[148]: Ridge(alpha=10)
In [149]: rr.score(x_test,y_test)
Out[149]: 0.9999918783284977
```

```
In [150]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[150]: Lasso(alpha=10)

In [151]: la.score(x_test,y_test)

Out[151]: 0.9999852321555398

In [152]: a1=b.head(7000)
a1

Out[152]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10
0	2004- 08-01 01:00:00	102.00	0.66	102.00	102.00	102.00	89.550003	118.900002	102.00	40.020000	39.990002
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22.950001
2	2004- 08-01 01:00:00	102.00	1.02	102.00	102.00	102.00	93.389999	138.600006	102.00	20.860001	49.480000
3	2004- 08-01 01:00:00	102.00	0.53	102.00	102.00	102.00	87.290001	105.000000	102.00	36.730000	31.070000
4	2004- 08-01 01:00:00	102.00	0.17	102.00	102.00	102.00	34.910000	35.349998	102.00	86.269997	54.080002
•••											
6995	2004- 08-11 11:00:00	102.00	0.35	102.00	102.00	102.00	38.959999	60.660000	102.00	28.830000	30.510000
6996	2004- 08-11 11:00:00	102.00	0.44	102.00	102.00	102.00	48.400002	99.690002	102.00	24.700001	38.259998
6997	2004- 08-11 11:00:00	0.20	0.20	102.00	102.00	102.00	32.580002	50.669998	102.00	6.940000	19.370001
6998	2004- 08-11 11:00:00	102.00	0.38	102.00	102.00	0.10	54.660000	83.279999	102.00	23.760000	36.930000
6999	2004- 08-11 11:00:00	0.66	0.20	1.03	1.88	0.02	16.709999	22.690001	1.05	50.040001	24.410000

7000 rows × 17 columns

```
In [154]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [155]: h=StandardScaler().fit transform(f)
In [156]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[156]: LogisticRegression(max_iter=10000)
In [157]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [158]: | i=[[10,20,30,40,50,60,15,26,37,47,58,58,29,78]]
In [159]: | prediction=logr.predict(i)
          print(prediction)
          [28079004]
In [160]: |logr.classes_
Out[160]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                 28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                 28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
                 28079024, 28079025, 28079026, 28079027, 28079035, 28079036,
                 28079038, 28079039, 28079040, 28079099], dtype=int64)
In [161]: logr.predict proba(i)[0][0]
Out[161]: 1.1422813089665742e-98
In [162]: logr.predict proba(i)[0][1]
Out[162]: 3.829242017369329e-300
In [163]: logr.score(h test,g test)
Out[163]: 0.5804761904761905
In [164]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
Out[164]: ElasticNet()
In [165]: print(en.coef_)
          [-2.18878465e-03 0.00000000e+00 -0.00000000e+00 0.00000000e+00
            9.86667759e-01 0.00000000e+00 6.09039771e-05 0.00000000e+00]
In [166]: print(en.intercept_)
          1.5579420704456908
```

```
In [167]: prediction=en.predict(x test)
          print(en.score(x test,y test))
          0.9999950770974989
In [168]: | from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[168]: RandomForestClassifier()
In [169]: parameters={'max depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n estimators':[10,20,30,40,50]
In [170]: from sklearn.model selection import GridSearchCV
          grid search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
          grid search.fit(h train,g train)
Out[170]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [171]: |grid_search.best_score_
Out[171]: 0.6204081632653061
In [172]: rfc best=grid search.best estimator
In [173]: | from sklearn.tree import plot_tree
          plt.figure(figsize=(80,50))
          plot_tree(rfc_best.estimators_[2],filled=True)
           Text(3529.6744186046512, 226.5, 'gini = 0.286\nsamples = 66\nvalue = [0, 0, 0, 0, 0, 0]
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 18, 86, 0, 0, 0, 0, 0, 0]'),
           Text(4048.7441860465115, 1132.5, 'X[8] <= 0.116\ngini = 0.92\nsamples = 1208\nvalu
          e = [149, 75, 102, 6, 0, 0, 184, 0, 178, 194, 0, 203 \n170, 3, 144, 152, 9, 0, 0, 1]
          4, 0, 0, 0, 40\n164, 149, 18, 0]'),
           Text(3841.1162790697676, 679.5, 'X[9] <= -0.46\ngini = 0.913\nsamples = 683\nvalue
          = [138, 56, 49, 0, 0, 0, 121, 0, 127, 118, 0, 93\n67, 3, 76, 81, 9, 0, 0, 0, 0, 0,
          0, 19, 69\n60, 6, 0]'),
           Text(3737.3023255813955, 226.5, 'gini = 0.898\nsamples = 219\nvalue = [22, 10, 18,
          0, 0, 0, 57, 0, 42, 41, 0, 42, 15 \setminus n0, 18, 46, 0, 0, 0, 0, 0, 0, 0, 0, 32, 16, 2 \setminus n0
          0]'),
           Text(3944.9302325581393, 226.5, 'gini = 0.911\nsamples = 464\nvalue = [116, 46, 3
          1, 0, 0, 0, 64, 0, 85, 77, 0, 51, 52\n3, 58, 35, 9, 0, 0, 0, 0, 0, 0, 19, 37, 44\n
          4, 0]'),
           Text(4256.372093023256, 679.5, X[1] <= -0.305  ngini = 0.911  nsamples = 525  nvalue
          0, 21, 95\n89, 12, 0]'),
           Text(4152.558139534884, 226.5, 'gini = 0.724\nsamples = 124\nvalue = [0, 0, 2, 0,
          0, 0, 0, 0, 18, 0, 0, 83, 0, 0\n0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 12, 60, 5, 0]'),
           Tayt/\Lambda360 1860\Lambda6511628 226 5 'gini = 0 906\nsamnlas = \Lambda01\nvalue = [11 19 51
```

Conclusion: from this data set i observed that the ELASTICNET has the highest accuracy of 0.9999950770974989

T. F. 7.	
In 1 ·	