Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P 2208 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

<u>ПОЛУЧЕНИЕ И СВОЙСТВА НЕКОТОРЫХ ДВОЙНЫХ</u> ФТОРИДОВ ЧЕТЫРЕХВАЛЕНТНОГО ПЛУТОНИЯ.

М.Ф.Аленчикова, Л.Л.Зайцева, Л.В.Липис, В.В.Фомин, Н.Т.Чеботарев.

Приготовление двойных фторидов плутония (\overline{N}) и щелочных металлов было описано Андерсеном (I), осаждавшим двойные фториды добавлением раствора нитрата плутония (\overline{N}) к раствору фторида щелочного металла, взятого в избытке в плавиковой кислоте. Для проверки общей формулы $MPuF_5 \cdot XH_2O$, где M-Na, K, Rb, предложенной Захариазеном на основании рентгенографического исследования (2), Андерсен определил процентное содержание плутония в двойном фториде плутония и натрия, а также процентное содержание плутония и щелочных металлов в остальных двух фторидах. Химический состав двойных фторидов лития и плутония и аммония и плутония ния не определялся, а был установлен по методу их получения.

В случае цезия было установлено, что выпадает розовое соединение, состав которого соответствует формуле $C_S Pu_2 F_g \cdot 3H_2O$.

Нами было обнаружено, что при добавлении к растворам солей плутония (ІУ) растворов Na Fu NH4 F выпадают зеленые осадки, которые при стоянии под маточником превращаются в розовые. В связи с этим было произведено более подробное исследование этих осадков, а для сравнения определен состав соединений, выпадающих при добавлении к растворам солей плутония (ІУ) КГ, RbF и

25 YEAR RE-REVIEW

I. <u>Приготовление и изучение двойных фторидов</u> плутония (IУ) и натрия.

Двойной фторид плутония и натрия готовился добавлением избытка No F к азотнокислому раствору нитрата плутония (IУ). Вначале всегда выпадал зеленый осадок, который при стоянии под маточ ником постепенно приобретал розовую окраску. Подобное же явление
наблюдалось и при осаждении двойного фторида плутония и натрия
из сернокислых и солянокислых растворов соответствующих солей плутония (IУ), однако в случае сернокислого раствора превращение зеленого осадка в розовый происходило значительно быстрее.

Оба двойных фторида плутония и натрия, зеленый и розовый, от - деляли от маточника, тщательно промывали той же разбавленной кислотой, из которой производилось осаждение, и доводили до постоянного веса сначала при комнатной температуре над P_2O_5 , затем при $85-90^{\circ}$.

Для определения состава и кристаллической структуры зеленого и розового осадков полученные соединения подвергались рентгеноструктурному и химическому анализу и были сняты их спектры поглощения.

Съемка рентгенограмм производилась на кобальтовом излучении в камере РКУ-86 Рентгенограммы зеленого и розового препаратов приведены на рис I (а и в).

Из сопоставления рентгенограмм видно, что структура зеленого двойного фторида натрия и плутония резко отличается от структуры розового. Препарат зеленого цвета имеет псевдокуби - ческую структуру с периодом решетки, равным $5,66 \pm 0,0$ А. Структура этого соединения аналогична структура $NaPuF_5$ которая была исследована Захариазеном (2).

Расчет рентгенограммы розового двойного фторида натрия и плутония (IV) приведен в табл. I.

Ме по порядку	ℓ измер	. J	Sin² 8 эксперим.	S in²0 тесретич.	hke
I	30,0	средн.	0,0282	0,0290	I00.
2	52,0	сил.	0,0863	0,0872	IIO
3	58,7	СИЛ	0,092I	0,0918	IOI
4	60 , 7	сл.	0,II75	0,1163	200.
5,	68 , 4	сл.	0,I48I	0,1499	III
6	75,7	сил	0 , I797	0,1790	201
7	0,I8	0Ч•СЛ∤	0,2046	0,2034	210
8	90,7	оч.сл.	0,2523	0,2507	002
9	92,7	сл.	0,2626	0,2616	300
IO	93,6	оч.сил	0,2672	C,266I	2II
II ·	95 , 9	СЛ	0,2792	0,2798	I02
I2	I06,9	cp.	0,3394	0,3379	II2
I3	I24,6	cp.	0,4408	0,4406	BII
I4	I36,8	cp.	0,5I27	0,5123	302
I5	I54 , 5	СИЛ	0,6162	0,6149	32I
I6	I66,3	cp.	0,6826	0,6804	203
I7	I83,0	СИЛ	0,770I	0,7675	213
18	I87,I	cp.	0,7904	0,7893	50I
19	203,2	сил	0,8617	0,86II	4I2
20	207,0	cp.	0,8772	0,8766	42I
2I	226,5	cp.	0,9417	0,9417	313
22	235,3	сил	0,9635	0,9635	511

Из приведенных данных следует, что система линий на рентгенограмме розового препарата достаточно хорошо удовлетворяет генсагональной решетне с периодами $a=6.055\pm0.005A$, $c=3.57I\pm0.003~A^{\circ}$.

Исходя из характера отражений $h \mathcal{R} \ell$ на рентгенограмме и значений периодов решетки, можно сделать заключение, что рассматриваемое соединение изоструктурно с β_2 — формой Na_2UF_6 (3).

Таким образом, розовый двойной фторид плутония (ІУ) и натрия должен отвечать формуле $Na_2 Pu F_6$ с рентгенографической плотностью 5,84 г/см 3 .

Производилось исследование электронных спектров поглощения кристаллов зеленого и розового препаратов двойного фторида натрия и плутония (ІУ). Эти спектры фотографировались на спектрографе ИСП-5I (камера с фокусным расстоянием — 270 мм) и охватывают область от 4200 до 9800 %.

Кристаллы охлаждались до температуры жидкого азота, что позволило лучше выявить структуру спектров.

На рис 2. (а и в) приведены спектры поглощения кристаллов зеленого и розового осадков двойного фторида натрия и плутония.

Как видно из рис 2, спектры поглощения этих фторидов заметно отличаются друг от друга. Отличия эти заключаются не только в структуре отдельных полос, но и в расположении основных полос, что свидетельствует о сильной перестройке окружения иона ρ_{u} 4+ при переходе от зеленой к розовой форме кристаллов двойных фторидов. Такая перестройка возможна как за счет второго катиона (N_{o}), так и за счет изменения числа и расположения ионов F

Чтобы установить химический состав зеленого и розового двойных фторидов натрия и плутония, полученные соединения анализировались на содержание плутония, натрия, фтора и воды. Плутоний определялся по α -счету или прокаливанием до двуокиси после осаждения аммиаком, натрий - в виде сульфата (после отделения ρ_u)

Для определения фтора был применен колориметрический метод, основанный на обесцвечивании ионами фтора комплекса тория с то - роном [I - (о-арсоно-фенил-азо) - нафтол - 3,6 дисульфоновая кислота] (4).

 Φ тор отгонялся в виде кремнефтористоводородной кислоты в кварцевом перегонном аппарате (рис 3).

Перегонная колба (3), в которую помещалась навеска анали - зируемого соединения, измельченный кварц и концентрированная серная кислота, нагревалась до I45° с помощью глицериновой бани. Перегонка велась с водяным паром. Колориметрирование производилось на фотоэлектроколориметре типа ФЭК-М с зеленым светофильтром (550-510 m/м) в интервале 0,0I-I мг фтор мона с точностью + 2%.

Вода в препаратах определялась с помощью реактива Фишера (5). Наблюдение конечной точки титрования производилось электрометрически. Установка для титрования состояла из стеклянной ячейки, сухого гальванического элемента СУ-30 на I,66V, реостата, которым регулировался ток в цепи в пределах 0,07-0,12 МА, и миллиамперметра. Установка была собрана так, чтобы исключить попадание влаги из атмосферы в растворы и ячейку во время работы.

Результаты химического анализа помещены в табл. 2.

Анализ зеленого и розового двоиных фторидов натрия и плутония (IУ)

	% Pu	% Na ×)	% F	%He0
Найдено в зеле- ном препарате	65 , 5	8,2	26,4	_
	65,2	8,0	26,2	
Расс ч. для NaPuF6	67,0	6,4	26,6	-
Найдено в розовом препарате	58,8	I3,6	27,5	_
	,.	-0,0	2190	_
Расс ч. для Na₂Pu F 6	59,8	II,6	28,6	~

х) несколько повышенное содержание натрия, повидимому, выз-

Таким образом, химический анализ зеленого и розового фторидов подтверждает вывод, сделанный на основании рентгенографических исследований.

Необходимо указать, что в таблице 2 приведены результаты анализов зеленого и розового двойных фторидов, доведенных до постоянного веса при $85-90^{\circ}$.

Препараты, высущенные при комнатной температуре, всегда содержали от одной до трех молекул воды на молекулу соли. Были сняты спектры поглощения и рентгенограммы зеленого и розового двойных фторидов, доведенных по постоянного веса при ком - натной температуре и при 85°. Никаких различий в рентгенограм - мах и электронном спектре поглощения кристалло обнаружено не было, что позволяет сделать предположение о наличии адсорбционной воды в препаратах двойных фторидов, доведенных до постоян - ного веса при комнатной температуре.

П. Получение и некоторые свойства двойных оторидов аммония и плутония (ТУ).

Синтез двойных фторидов аммония и плутония (ІУ) осуществ - лялся аналогично синтезу двойного фторида плутония и натрия. При этом происходило выпадение смеси зеленого и розового осад - ков, очень быстро превращающейся в розовый продукт.

Зеленый осадок двойного фторида аммония и плутония (IУ) в чистом виде удалось выделить с большим трудом.

Электронные спектры поглощения кристаллов двойных фторидов аммония и плутония отличаются большим количеством резких и уз-ких "линий", расположенных во всей исследованной области (9800-4200 Å).

У розового препарата (рис 4a) в коротковолновой части (вблизи 4400 A) расположены две широких и диффузных полосы.

Спектр поглощения зеленого препарата состоит из более резких и узких полос с лучше выраженной структурой. Существенная разница в структуре полос поглощения кристаллов розового и зеленого препаратов свидетельствует о том, что структура кристаллов зеленого препарата двойного фторида плутония и аммония резко отличается от структуры кристаллов розового.

Рентгенографическое исследование розового и зеленого двой – ных фторидов аммония и плутония показало, что эти продукты имеют различную кристаллическую структуру, отличную от структуры остальных двойных фторидов плутония и целочных элементов ($N\alpha$, K, R6, Cs). Рентгенограммы розового и зеленого двойных фторидов аммония и плутония приведены на рис 5 (a,6,), а в табл. З и 4 приведены значения межплоскостных расстояний, рассчитанных для ряда характерных линий этих продуктов.

С целью установления химической формулы розового двойного фторида аммонии и плутония производился его анализ на плутоний, фтор, аммоний и воду. Для анализа на аммоний навеска препарата переводилась в сульфат, при разложении которого щелочью в перегонном аппарате отгонялся аммиак, определявшийся далее титрованием раствором *Na OH* избытка кислоты, применявшейся для поглощения, и колориметрированием с помощью реактива Несслера на приборе ФЭК-М с синим светофильтром (480-450*my*). Результаты анализа двойного фторида, высушенного до постоянного веса при 90°, помещены в табл.5.

Из таблицы 5 видно, что химический состав розового двойного фторида аммония и четырехвалентного плутония соответствует формуле $(NH4)_2$ Pu F_6 .

Производилось определение воды в розовом двойном фториде аммония и плутония, высушенном до постоянного веса при комнатной температуре. Вода определялась по разности и с помощью реактива Фишера.

В препарате, доведенном до постоянного веса при комнатной температуре, было обнаружено наличие 2,5-3-х молекул H_2O По аналогии с розовым двойным фторидом плутония (ІУ) и натрия, можно предположить, что эта вода носит адсорбционный характер.

Таблица 3.

Межплоскостные расстояния для ряда линий рентгенограммы розового двойного фторида аммсиия и плутония (Со - излучение).

ПП.	2 l измерен.	ÿ	Sin 0	d, A°
1	4I , O	оч.сил.	0,2334	3,83
2	5 2, 8	СИЛ	0,300I	2, 98
3	7 I, 5	cp.	0,4035	2,22
4	73 , 9	СИЛ	0,4I63	2 , I5
5	76 , I	СИЛ	0,428I	2, 09
6	87,2	СИЛ	0,486I	I,84
7	II7 , 8	cp.	0,6354	I,40
8	I20 , 0	cp.	0,64,52	I,39
9	I22,8	оч.сил	0,6578	I,38
IO	126,6	сил	0,6745	I,33

Таблица 4.

Межплоскостные расстояния для ряда линий рентгенограммы зеленого двойного фторида аммония и плутония (Со - излучение).

\ <u>@</u> ∏∏.	2 l изм.	J	Sin O	d, A °
I	24,7	cp.	0,1300	6,49
2	27,0	СИЛ	0,1513	5 , 92
3	48,0	СИЛ	0,2717	3,29
4	бІ , 5	ср	0,3464	2 , 58
.5	66 , 5	cp.	0,3738	2,39
6	80 , 6	СИЛ	0,4493	I,99
7	83,0	СИЛ	0,4617	I , 94
8	85 , 3	СИЛ	0,4736	I.89
9	90,9	ср	0,5028	I,78
IO	94 , I	ср	0,5I88	I,72
II	98,8	ср	0,5420	I,65
I2	IIO,O	ср	0,5962	I,50
IS	128,7	ср	0,6803	I,32

Таблица 5.

Анализ розового двойного фторида аммония и плутония (ІУ) (высущенного при 90°)

62,I 7,7 29,2 Найдено 59,8 8,0 30,0 - 60,3 - 3I,0 Рассчитано для (NH4)2 Ри F6 6I,4 9,3 29,3 -		% Pu	% NH4×)	% F	% H20
60,3 - 31,0		62 , I	7,7	29,2	
Рассчитано	Найдено	59,8	8,0	30, 0	-
		60,3	-	0, IE	
		6I , 4	9,3	29,3	-

х) Анализ на аммоний производился из препарата, содержа — щего примесь зеленого продукта, чем объясняются по — ниженные результаты.

Химический анализ зеленого двойного фторида аммония и плутония не производился. Повидимому, этот продукт имеет сос - тав. NH4 Pu F5.

Ш. <u>Исследование двойных оторидов плутония (ІУ)</u> с калием и рубидием.

При добавлении избытка **КF** и **R6F** к азотнокислому или сернокислому растворам плутония (ІУ) осаждались зеленые осадки двойных фторидов калия и плутония и рубидия и плутония.

Розовые осадки этих двойных фторидов образуются при длительном выдерживании полученных соединений под маточником. Так, в результате трехнедельного стояния под маточником зеленого осадка двойного фторида калия и плутония розовая окраска появилась лишь по краям этого осадка.

Проводилось рентгенографическое, спектральное и химическое исследование зеленых осадков двойных фторидов.

Рентгенографическое исследование зеленых двойных фторидов калия и плутония (ІУ) и рубидия и плутония (ІУ) показало, что они изоструктурны зеленому двойному фториду Na Pu F_5 и обла – дают псевдокубической решеткой с периодами соответственно 5,88 \pm 0,01 и 5,98 \pm 0,02 Λ

Таким образом, полученные соединения отвечают формулам $\mathit{KPuF_5}$ и $\mathit{RBPuF_5}$:

Надежность выводов о сходстве зеленых осадков двойных фто – ридов калия и плутония (ІУ) и рубидия и плутония (ІУ) с зеленым осадком $NaPuF_5$ подтверждается также совпадением спектров поглощения этих кристаллов, которые весьма чувствительны даже к сравнительно малым перестройкам структуры кристаллов, содержащих ион Pu^{+4} . Ниже приведены репродукции этих спектров (рис ба,в, с,), свидетельствующие о сказанном.

Химическому анализу подвергались зеленые осадки двойных фторидов калия и плутония (ІУ) и рубидия и плутония (ІУ), дове - денные до постоянного веса при температуре 90° С. Препараты, высущенные при комнатной температуре, не анализировались.

Результаты анализа помецены в табл. 6.

Таблица 6. Анализ зеленых двойных фторидов плутония (IУ) с налием и рубидием.

	% Pu	% R	% F	% H2O
Найдено в двой- ном фториде <i>Ри</i> (IĴ) и <i>K</i>	62,8 62,4	II,9 I2,2	25,8 25,6	-
Рассч.для КРиF5	64,1	IO,5	25,4	-
Найдено в двой- ном фториде Ри (Т) и RB	55 , 6 56 , 4	22 , 2 20 , 03	22 , 9 23 , 6	-
Рассч. для КвР и Г 5	57,0	20,4	22,6	-

Что касается розовых осадков двойных фторидов P_u (ІУ) и P_u (ІУ) и P_u , то их состав, повидимому, должен — 10 —

соответствовать формулам К2 Ри F6 и R82 Ри F6

ІУ. Приготовление и анализ двойного оторида плутония (ІУ) и цезия.

Добавление избытка CsF к сернокислому, солянокислому и азотнокислому растворам плутония (ІУ) всегда приводило к выпадению однофазного красно-коричневого осадка двойного фторида плутония и цезия.

Снимался спектр поглощения кристаллов полученного соединения (рис 7). В то время как в спектрах остальных двойных фторидов плутония (ГУ) и щелочных элементов (рис ба,в,с,) расположение основных групп полос сходно между собой, а структуры каждой из полос близки друг другу, строение спектра кристаллов двойного фторида цезия и плутония (ГУ) имеет резко отличимые особенности (рис 7). Число основных групп полос, их структура, а также расположение отдельных узких и резких полос, характеризующих строение кристаллов у двойного фторида плутония и цезия, свидетельствуют о том, что кристаллы этого соединения имеют иное строение, а ионы

 ρ_{U}^{+4} в этом кристалле иную ближнюю сферу, чем другие двойные фториды илутония (ІУ) и щелочных металлов.

На основании рентгенографического исследования двойного фторида плутония и цезия было установлено, что это соединение не изоструктурно с остальными двойными фторидами плутония (IV) и щелочных металлов.

Рентгенограмма двойного фторида цезия и плутония (IУ) приведена на рис 8, а в табл.7 приведены межплоскостные расстояния, рассчитанные для ряда линий рентгенограммы.

Таким образом, спектр поглощения и рентгеновская картина полученного соединения оказались резко отличными от рентгенограмм и электронных спектров поглощения двойных фторидов плутония (ІУ), описанных выше.

на основании результатов рентгеноструктурного и спектрального анализов можно было сделать предположение об ином химическом составе двойного фторида цезия и плутония (IУ).

Межплоскостные расстояния для ряда характерных линий двойного фторида плутония и цезия.

M⊇Nº IIII.	С измер.	ゴ	Sin 0	d, Å
I	4I,I	сил.	0,2337	3,83
2	45,5	сил	0,2588	3,46
3	49,8	сил	0,2829	3 , I6
4	6I , 2	ср	0,3467	2, 58
5	75,0	cp.	0,4218	2,12
6	77,6	cp.	0,4357	2,05
7	80,0	cp.	0,4483	2,00
8	84,7	cp.	0,4733	I,89
9	89, 0	сл	0,4952	I,8I
IO	103,0	сл	9,5650	I,58
II	IIO ,8	ср	0,6027	I,48

Для проверки этого предположения производился химический анализ красно-коричневого продукта, результаты которого приведены в табл. о.

<u>Таблица 8.</u> <u>Анализ двойного фторида цезия и плутония (ІУ).</u>

	%Pu	% Cs	%F	% H20
Найдено	57 , 5	_	20,6	6 , I
Рассч. для <i>Сърцъъд. 3 Н20</i> Найдено	56,9 57,I	· 16	20,6 20,2 20,4	6 , 5
наидено Андерсеном	58 , I	15 , I		6,3

Как видно из таблицы, состав двойного фторида плутония (ІУ) и цезия соответствует формуле *Cs Рид (з . 3HgO* и совпадает с данными Андерсена (I).

вы воды.

- I. Осуществлен синтез двойных фторидов плутония (ІУ) с элементами первой аналитической группы (Na, NH4, K, RbuCs) добавлением избытка осадителя к азотнокислому, сернокислому и солянокислому растворам плутония (ІУ).
- З. Произведено рентгенографическое и спектральное исследование розового и зеленого двойных фторидов аммония и плутония (ІУ), а также определен химический состав розового продукта, выражающийся формулой (NH4), PuF6.
- 4. Установлено, что зеленые осадки двойных фторидов плутония (ІУ) с калием и рубидием изоструктурны зеленому *NaPuFs* и имеют сходные с ним спектры поглощения.

Химический анализ этих фторидов показал, что их состав соответствует формулам: $\mathcal{KP}\mathcal{UF}_5$ \mathcal{U} \mathcal{R}_5 \mathcal{U} \mathcal{R}_5 \mathcal{L}

5. В результате рентгенографического и спектрального исследования было обнаружено резкое отличие красно-коричневого осадка двойного фторида цезия и плутония (ІУ) от остальных двойных фторидов плутония (ІУ). Его состав соответствует формуле $CsPu_2Fg \cdot 3H_2O$.

JUTEPATYPA

- 1.H.H.Anderson.Paper 6.9 of the Transuranium Elements.
 Nat.Nucl.En.Ser.Div.IV,14B,Mc Graw-Hill Book Company,
 Inc.New-York,1949.
- 2.W.H.Zachariasen.Paper 20.5 of the Transuranium Elements. N.N.E.S.Div.IV,14B:
 - 3.J.J.Katz, E.Rabinowitch. The Chemistry of Uranium. Nat. Nucl. An. Ser. Div. VIII, p. 379.
- 4.H.F.Thomason, J.K.Miller.Anal.Chem. 24,548, (1952).
- 5. Дж. Митчел, Д.Смит, Акваметрия, И.Л. Москва 1952 г.

PEHMZEHOZPOMMOI KPUCMONNOB NAPUÍS (A) U NOZPUÍB (B)

Puc. 1.

()

Электронные спектры поелощения кристаллов $NaPuF_5(a)uNa_2PuF_6(b)$

Puc. 2

Электронные спектры поглощения кристаплов (NH4) $_2$ Ри \mathcal{F}_6 (a) и NH4 Ри \mathcal{F}_5 (в)

-16-

7- Mpuemnuk

Схема установки для отгонки фтора Рис. 3

Электронные спектры поглощения кристаллов $KPuF_5(a)$, $RBPuF_5(b)$ и $NaPuF_5(c)$ Puc.6.

Электронный спектр поглощения кристаплов $CsPu_2F_g \cdot 3H_2O$

PUC. 7.

Рентгенограмма нристаплов СsPuz Fg·3H20

DUC. B

3() 7