COMP20007 Workshop Week 12

Preparation:

- have draft papers and pen ready, or ready to work on whiteboard
- 1. String Search & Horspool's Algorithm: Q 12.1, 12.2, 12.3
- 2. Huffman Coding: Questions 12.4, 12.5

Revision:

LAB

12.8: Quicksort & Mergesort

12.6: Complexity

12.7: Solving Recurrences

OR Sample Exam Papers?

String Searching

Input:

```
A (long) text T[0..n-1]. Example: T= "SHE SELLS SEA SHELLS", with n=20
A (short) pattern P[0..m-1]. Example: P="HELL", m=4.

Output: index i such that T[i..i+m-1]=P[0..m-1], or NOTFOUND

(Naïve) Brute-Force Algorithm:

complexity O(nm) (max= (n-m+1)*m character comparison)

• shift pattern from left to right on the text, exactly 1 position each time
```

compare pattern with text character-by-character from left to right (stopping at first mis-match)

String Searching: Horspool's Algorithm

Horspool's Algorithm:

Complexity: O(nm) (worst-case, like brute-force), but often faster in practice. Key Ideas:

- Compare the pattern with the text by scanning from right to left.
- Shift the pattern to the right as far as possible with each step.
- Preprocess the pattern to determine shift lengths.

a

b

C

a

b

How to shift Pattern?

- Use the last character in text as the pivot
- Shift the pattern at least one position.
- Shift until the pivot character matches its first occurrence in the pattern, or until the pattern completely passes the pivot if no match is found.

Note: here, we use "last character in text" to refers to "text character aligned with the pattern's last character"

The Horspool's Algorithm

The task: Searching for a pattern P (such as "abcab" that has length m=5) in a text T (such as "ababyayb aabacca", having length n=16).

Searching for pattern P in text T

Stage 1: building SHIFT[x] for all x, by:

- 1. set SHIFT[x]= length(P) for all x, then
- 2. for each x in P, except for the last one: SHIFT(x)= distance from the last appearance of x to the end of P

Stage 2: searching

- 1. align P to the left of T
- 2. compare characters *backwardly* from the last character of P until the start or until finding a mismatch:
- 3. if no mismatch found: return solution
- 4. otherwise, let **e** be the last character in **T**, shift pattern SHIFT[**e**] positions, then back to step 2

Peer Activity: Horspool's Algorithm

Using Horspool's algorithm, how many character comparisons are needed to search for the pattern SHRIKE in the text BURMESE-SHRIKE ?

- A) 3
 - B) 8
 - C) 11
 - D) 9

Other class exercises with Horspool's Algorithm

- 1. Search for HAT in BIRDWATCHER
- 2. Build the shift dictionary for patterns:
 - a) ABCD
 - b) ABBA

Horspool's Algorithm: [group/individual] exercies

Q12.1: Use Horspool's algorithm to search for the pattern GORE in the string ALGORITHM

ALGORITHM

GORE

Q12.2: How many character comparisons will be made by Hor-spool's algorithm in searching for each of the following patterns it the binary text of one million zeros?

T = 00000000..0

- a) P = 01001
- b) P = 00010
- b) P= 01111

Q12.3: Using Horspool's method to search in a text of length n for a pattern of length m, what does a worst-case example look like?

[Check soln] Exercises with Horspool's Algorithm

Q12.1: Use Horspool's algorithm to search for the pattern GORE in the string ALGORITHM

```
ALGORITHM SHIFT value: R:1 0:2 G:3 others:4

GORE 1 comparison, shift 2

GORE 1 comparison, shift 4

done, NOTFOUND
```

Q12.2: How many character comparisons will be made by Horspool's algorithm in searching for each of the following patterns it the binary text of one million zeros?

```
(a) 01001 (b) 00010 (c) 01111

T = 000000000..0

a) 999,996 (1 comparison, shift 1)

b) 999,996 (2 comparison, shift 2)

c) 249,999 (1 comparison, shift 4)
```

Q12.3: Using Horspool's method to search in a text of length n for a pattern of length m, what does a worst-case example look like?

```
text: 1111111111....1111111
pattern: 0111
```

Coding: used for storage, communication, compression, ...

Compression: the encoded message normally has smaller size (in bits)

Encoding/Compressing: each symbol of the message is replaced with a bit pattern called its codeword Decoding/De-compressing: encoded message is converted to the original message using codeword table

Symbol	ASCII codeword		
Α	01000001		
В	01000010		
С	01000011		
D	01000100		
E	01000101		
F	01000110		
G	01000111		
Н	01001000		

fixed-length encoding AB \rightarrow 0100000101000010

variable-length encoding
AB →

codeword length	same bit-length for all codewords	shorter codewords for more-frequent symbols		
space-efficient?	No (unless uniform distribution)	Yes, space-efficient		
random access to k-th symbol	Yes	No, need to decode previous k-1 symbols first		

Encoding (Compressing)

The task:

Input: a message T such as that cat, that bat, that hat over some alphabet Output: an encoded message T' with the guarantee that T can be reproduced from T'. For example

T'= 11100011110100010111...

ASCII code: each letter is replaced by a 8-bit codeword \rightarrow need 224 bits for the above T

Principle of Data Compression: Use less number of bits (shorter codeword) for symbol that appears more frequently → variable-length encoding

Encoding (Compressing)

Input message: that cat, that bat, that hat

1. Gather Statistics: build table of frequencies, aka weight table:

<mark>a</mark>	b	C	<mark>h</mark>	t	<mark>,</mark>	
6	1	1	4	9	2	5

- 2. Coding: build the *code table*
 - various methods, such as Huffman coding
- 3. Encoding: replace each symbol of the message by its codeword

Building Huffman code = building a binary tree in bottom-up manner:

- Create a node for each weight.
- Repeatedly join the two smallest weights, forming a parent node with their summed weight, until only a single root remains.
- Assign a zero-bit to one edge and a one-bit to the other for each node.

9

- Create a node for each weight.
- Repeatedly join the two smallest weights, forming a parent node with their summed weight, until only a single root remains.
- Assign a zero-bit to one edge and a one-bit to the other for each node.

- Create a node for each weight.
- Repeatedly join the two smallest weights, forming a parent node with their summed weight, until only a single root remains.
- Assign a zero-bit to one edge and a one-bit to the other for each node.

- Create a node for each weight.
- Repeatedly join the two smallest weights, forming a parent node with their summed weight, until only a single root remains.
- Assign a zero-bit to one edge and a one-bit to the other for each node.

- Create a node for each weight.
- Repeatedly join the two smallest weights, forming a parent node with their summed weight, until only a single root remains.
- Assign a zero-bit to one edge and a one-bit to the other for each node.

- Create a node for each weight.
- Repeatedly join the two smallest weights, forming a parent node with their summed weight, until only a single root remains.
- Assign a zero-bit to one edge and a one-bit to the other for each node.

that cat, that bat, that hat is encoded as: $01\ 001\ 11\ 01\ 10\ 00001\ 11\ 01\ 00001\$ Total encoded length= 1*5+1*5+2*4+4*3+9*2+5*2+6*2=70 bits

Canonical Huffman Coding

→ There are different versions of Huffman code for a same weight table, all we need to do is to choose a way and keep consistency.

example rules for canonical Huffman's coding:

- when joining 2 weights into one, always make the smaller weight be the left child (hence, need to always keeps current roots in weight ordering)
- is same weight: simpler trees first + use alphabetical order
- when assigning code, always set 0 to the left edge, 1 to the right edge

[group/individual]Q 12.4 & Q12.5: Huffman Coding

Q12.4: Using Huffman coding to generate two code trees based on for the message: losslesscodes

What is the total length of the compressed message using the Huffman code?

Q12.5: The code tree was generated using Huffman's algorithm, and converted into a Canonical Huffman code tree.

Note: denotes space.

Assign codewords to the symbols in the tree, such that left branches are denoted 0 and right branches are denoted 1.

Check Q 12.4: Huffman Code Generation

losslesscodes

Your solution: one tree could be

Hence, the encoded version of losslesscodes is:

101 111 0 0 101 100 0 0 1100 111 1101 100 0

Note:

- give another tree
- other solutions are possible, but message length is always 31
- a need for a standard: canonical Huffman code

Check Q 12.5: Canonical Huffman decoding

The code tree was generated using Huffman's algorithm, and converted into a Canonical Huffman code tree. Note: _ denotes space.

Assign codewords to the symbols in the tree, such that left branches are denoted 0 and right branches are denoted 1.
Use the resulting code to decompress the following message:

	symbol	codeword	length	
•	A	0000	4	-
	N	0001	4	
	P	0010	4	
	_	0011	4	
	L	01	2	
	E	10	2	
	S	11	2	(L) (E) (S)
				(A) (N) (P) $(-)$

Your soln:

PLEASE LESS SLEEPLESSNESS

Subject Feedback

- There are two FEIT Subject Surveys available via your email:
 - One addresses workshops.
 - One addresses subject content.
- Please take some time now to provide honest, constructive feedback so that we can improve.

LAB: Revision exercises OR programming exercises

Q 12.8: Quicksort & Mergesort

Given the array:

[3, 8, 5, 2, 1, 3, 5, 4, 8]

a.Perform a single *Hoare Partition* on the array, taking the first element as the pivot

b.Perform Quicksort on the array. You may use whatever partitioning strategy you like (*i.e.*, you don't need to follow a particular algorithm).

c.Perform Mergesort on the array

Q 12.6: For each of the following cases, indicate whether f(n) is O(g(n)), or

 $\Omega(g(n))$, or both (that is, P(g(n)))

(a)
$$f(n) = (n^3 + 1)^6$$
 and $g(n) = (n^6 + 1)^3$,

(b)
$$f(n) = 3^{3n}$$
 and $g(n) = 3^{2n}$,

(c)
$$f(n) = \sqrt{n}$$
 and $g(n) = 10n^{0.4}$,

(d)
$$f(n) = 2\log_2\{(n+50)^5\}$$
 and $g(n) = (\log_e(n))^3$,

(e)
$$f(n) = (n^2 + 3)!$$
 and $g(n) = (2n + 3)!$,

(f)
$$f(n) = \sqrt{n^5}$$
 and $g(n) = n^3 + 20n^2$.

Q 12.7: Solve the following recurrence relations. Give both a closed form expression in terms of n and a Big-Theta bound.

a)
$$T(n) = T(n/2) + 1$$
, $T(1) = 1$

b)
$$T(n)=T(n-1)+n/5$$
, $T(0)=0$

Algorithms are fun!

Thank You! & Good Luck!