Architecture des ordinateurs : TD2

Université de Tours

Département informatique de Blois

Logique booléenne et circuits combinatoires

* *

Problème 1

On veut concevoir un circuit combinatoire permettant de comparer deux nombres A et B de 4 bits, $A = \langle a_3 a_2 a_1 a_0 \rangle_2$ et $B = \langle b_3 b_2 b_1 b_0 \rangle_2$.

Le circuit possède deux sorties :

$$G(A,B) = \begin{cases} 1 & \text{Si } A > B \\ 0 & \text{Sinon} \end{cases} \quad \text{et} \quad E(A,B) = \begin{cases} 1 & \text{Si } A = B \\ 0 & \text{Sinon} \end{cases}$$

1. Soient a et b deux bits. Soit un circuit à deux sorties :

$$g(a,b) = \begin{cases} 1 & \text{Si } a > b \\ 0 & \text{Sinon} \end{cases} \quad \text{et} \quad e(a,b) = \begin{cases} 1 & \text{Si } a = b \\ 0 & \text{Sinon} \end{cases}.$$

Donner l'expression logique de g et e puis dessiner le circuit correspondant à un comparateur 1 bit.

2. En utilisant le circuit de la question précédente ainsi que des portes logiques ∨, ∧ (éventuellement à entrées ≥ 3) et ¬, proposer un circuit permettant de comparer deux nombres de 4 bits.

Problème 2

On cherche à représenter la fonction implémentant un hidden bit.

Cette fonction prend en entrée k valeurs booléennes et retourne une valeur booléenne. Soient k entrées binaires $a_1, a_2, ..., a_k$ et soit $s = \text{card}(\{i | a_i = 1\})$.

La sortie S est alors égale à 0 si s = 0 et elle est égale à a_s si $s \in [1, k]$.

- 1. Dresser la table de vérité de S pour k=3.
- 2. Simplifier S à l'aide des tableaux de Karnaugh.
- 3. Dessiner le circuit combinatoire correspondant. À quel autre circuit celui-ci correspond-il?

Problème 3

L'opérateur N and noté \uparrow est un opérateur très utilisé en électronique et dans la réalisation des microprocesseurs car il forme un système complet de connecteurs à lui seul.

1. Montrer que $x \oplus y = [(x \uparrow y) \uparrow x] \uparrow [y \uparrow (x \uparrow y)]$. On rappelle que l'opérateur \oplus désigne le OU exclusif (ou Xor).

- 2. Sur la modélisation de \oplus :
 - (a) Proposer un circuit bien modélisé de l'opérateur \oplus à l'aide du système d'opérateurs $\{\lor,\land,\lnot\}$.
 - (b) Expliquer pourquoi la modélisation 2.(a) n'est pas satisfaisante. Proposer un circuit logique à l'aide de l'opérateur Nand. Pourquoi cette modélisation est meilleure?

Problème 4

Soit la fonction booléenne P de n variables booléennes définie telle que :

$$P(x_1, ..., x_n) = \bigoplus_{i=1}^n x_i$$

Où \oplus désigne l'opérateur Ou exclusif (XOR). On rappelle que l'opérateur \oplus est associatif et commutatif, ainsi P s'écrit aussi comme $P(x_1, ..., x_n) = x_1 \oplus x_2 \oplus ... \oplus x_n$.

Cette fonction est appelée fonction de clé de parité.

- 1. Montrer que la valeur de la fonction P est 1 si et seulement s'il y'a, parmi $x_1, ..., x_n$, un nombre impair de variables valant 1.
- 2. On considère x, un vecteur binaire tel que $x = \langle x_1, ..., x_n \rangle$. Par simplicité, on supposera que $n = 2^k$.
 - (a) Écrire une fonction cle_parite en C ou en Java utilisant les opérateurs $\hat{}$ (ou exclusif) et \gg (décalage à droite) qui implémente la fonction P(x).
 - (b) Écrire une fonction cle_parite_log en C ou en Java, plus efficace, permettant de calculer P(x) s'appuyant sur l'exemple ci-dessous.

Exemple : pour 8 bits stockés dans la donnée x, on calcule :

y = 4 forts \oplus 4 faibles de $x = \langle x_7 \oplus x_3, x_6 \oplus x_2, x_5 \oplus x_1, x_4 \oplus x_0 \rangle$

z=2 forts \oplus 2 faibles de $y=\langle y_3\oplus y_1,y_2\oplus y_0\rangle$

 $t = z_1 \oplus z_0$ puis on retourne t.

- 3. Combien d'étapes de calcul sont nécessaires pour calculer P(x) avec la méthode 2.b si x est codé sur 16 bits? Sur 2^k bits? Combien d'étapes avec la méthode 2.a? Pourquoi qualifie t-on la méthode 2.b de logarithmique?
- 4. Appliquer la méthode de la question 2.b pour les valeurs $x = 2^8 1$ et x = -15.
- 5. Traduire sur papier les méthodes 2.a et 2.b du calcul de la clé de parité P(x) sous forme de circuits logiques à 8 entrée et 1 sortie, avec des portes XOR.

Problème 5

On dit qu'une fonction booléenne est sous forme minimale si elle se réduit au système de connecteurs $\{\Rightarrow,0\}$. Où 0 représente la valeur FAUX d'arité 0.

On veut montrer que toute formule $f \in \mathcal{B}$ admet une forme minimale équivalente.

- 1. Montrer que les opérateurs \neg et \lor peuvent être exprimés à l'aide du système $\{\Rightarrow,0\}$.
- 2. Donner la table de vérité de la formule $(p \Rightarrow (q \Rightarrow 0)) \Rightarrow 0$ et la comparer à $p \land q$.
- 3. Que pouvez-vous déduire à l'aide des questions précédentes ?
- 4. Déduire des questions précédentes une fonction \min qui transforme toute fonction f de la logique booléenne en une fonction équivalente sous forme minimale.

Problème 6

Démontrer les assertions vraies. Donner un contre-exemple ou justifier soigneusement les assertions fausses.

- 1. L'unique connecteur unaire existant en logique booléenne est la négation \neg .
- 2. Le système de connecteurs $\{\oplus, \vee, 1\}$ est complet. On précise que 1 est la constante VRAI d'arité 0.
- 3. Il est vrai que $x \uparrow y = [(x \downarrow x) \downarrow (y \downarrow y)] \downarrow [(x \downarrow x) \downarrow (y \downarrow y)].$
- 4. La fonction logique $f(x, y, z) = \neg x \land y$ est identique au circuit logique ci-dessous.

- 5. Soient x_3, x_2, x_1 et x_0 quatre variables booléennes. On note $x = \langle x_3 x_2 x_1 x_0 \rangle_2$. On pose la fonction booléenne $\varphi(x) = \begin{cases} 1 & \text{si } x < \langle 1001 \rangle_2 \\ 0 & \text{sinon} \end{cases}$.
 - Il est vrai que $\varphi(x) = \neg x_3 \lor (\neg x_2 \land \neg x_1)$.