Exercise 2.1 Let (X,T) be a topological space. Prove that $x \in X$ is an isolated point if and only if $\{x\} \in T$.

Exercise 2.2 (Example 4.I) Let (X, T_X) and (Y, T_Y) be topological spaces and let $y \in Y$. Prove that the constant function f(x) = y for all $x \in X$ is continuous.

Exercise 2.3 (Example 4.II) Let $X = Y = \{0\} \cup [1, 2]$. Let T_X be the topology induced from the Euclidean space \mathbb{R} and let T_Y be the discrete topology. Let $f: X \to Y$ be given by the formula f(x) = x. Prove that $C(f) = \{0\}$ (i.e., that f is continuous only at the point x = 0).

Exercise 2.4 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be as in Exercise 2.3. Find the set of points of continuity $\mathcal{C}(g)$ of the function $g: Y \to X$, given by the formula g(s) = s for $s \in Y$.

Exercise 2.5 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let \mathcal{B} be a base of the space (Y, \mathcal{T}_Y) . Let $f: X \to Y$. Prove that f is continuous if and only if the pre-image of every set from \mathcal{B} is open.

Exercise 2.6 Let $X_i = (\mathbb{R}, \mathcal{T}_i)$, where \mathcal{T}_1 - the natural topology (of the Euclidean space), $T_2 = 2^{\mathbb{R}}$, $\mathcal{T}_3 = \{\emptyset, \mathbb{R}\}$, $\mathcal{T}_4 = \{(a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ and let $f_1 = 0$ for all $x \in \mathbb{R}$, $f_2 = x$ for all $x \in \mathbb{R}$, $f_3 = -x$ for all $x \in \mathbb{R}$,

$$f_4(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x \le 0. \end{cases} \qquad f_5(x) = \begin{cases} 1 & \text{for } x \in \mathbb{Q} \\ 0 & \text{for } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Consider the above functions $f_k: X_i \to X_j$ for all $k \in \{1, ..., 5\}$ and $i, j \in \{1, ..., 4\}$. Check which of these functions are continuous and where (i.e., find the sets of their points of continuity)

Exercise 2.7 (Example 4. III) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let P be an equivalence relation in X. Let $f: X|P \to Y$. Show that f is continuous if and only if $f \circ \xi: X \to Y$ is continuous.

Exercise 2.8 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let $f: X \to Y$ be continuous, one-to-one function. Let $A \in \mathcal{T}_X$ and $f(A) \in \mathcal{T}_Y$. Prove that then $f|A: (A, \mathcal{T}_X^{ind}) \to (f(A), \mathcal{T}_Y^{ind})$ is continuous. (i.e., restriction of continuous function is continuous in the induced topology)

Exercise 2.9 (Example 4.IX) Let X = (a, b) and Y = (c, d), where $-\infty \le a < b \le +\infty$ i $-\infty \le c < d \le +\infty$. Let \mathcal{T}_X and \mathcal{T}_Y be the topologies on X, Y induced from \mathbb{R} (with its natural topology of Euclidean space). Prove that X and Y are homeomorphic.

Exercise 2.10 Let $X = \mathbb{R}$ and \mathcal{T} be the topology of Sorgenfrey line. Let f(x) = -2x for all $x \in \mathbb{R}$. Is f a homeomorphism from X onto X? Explain, why.

Exercise 2.11 Let X be an infinite set and let \mathcal{J} be the ideal of all finite subsets of X. Show that in the topological space $(X, \mathcal{T}_{\mathcal{J}})$, where $\mathcal{T}_{\mathcal{J}} = \{X \setminus A : A \in \mathcal{J}\} \cup \{\emptyset\}$, every infinite set is dense in X. Let $A \subset X$ be an infinite set. Find the set A^d .

Exercise 2.12 Let X be an infinite set, $x_0 \in X$ and let \mathcal{J} be the ideal of all finite subsets of X. Show that in the topological space (X, \mathcal{T}) , where $\mathcal{T} = \{X \setminus A : A \in \mathcal{J}\} \cup \{A \subset X : x_0 \notin A\}$, the set $\{x_0\}$ is the only nowhere dense set.

Exercise 2.13 Let X be an infinite set, $x_0 \in X$ and let \mathcal{J} be the ideal of all finite subsets of X. Show that in the topological space (X, \mathcal{T}) , where $\mathcal{T} = \{X \setminus A : A \in \mathcal{J}\} \cup \{A \subset X : x_0 \notin A\}$, the set $\{x_0\}$ is the only first category set. (it actually immediately follows from the previous Exercise)

Exercise 2.14 (Exanole 5.III) Let X be an infinite set and let \mathcal{J} be the ideal of all finite subsets of X. Show that the topological space (X, \mathcal{T}) , where $\mathcal{T} = \{X \setminus A : A \in \mathcal{J}\} \cup \{\emptyset\}$, is a T_1 -space, but not a T_2 -space.

Exercise 2.15 (Example 5.IV) Let X be an infinite set, $x_0 \in X$ and let \mathcal{J} be the ideal of all finite subsets of X. Show that the topological space (X, \mathcal{T}) , where $\mathcal{T} = \{X \setminus A : A \in \mathcal{J}\} \cup \{A \subset X : x_0 \notin A\}$ is a Hausdorff space.

Exercise 2.16 (Example 5.VI) Let X be an infinite set, $x_0 \in X$ and let \mathcal{J} be the ideal of all finite subsets of X. Show that the topological space (X, \mathcal{T}) , where $\mathcal{T} = \{X \setminus A : A \in \mathcal{J}\} \cup \{A \subset X : x_0 \notin A\}$, is a regular space.

Exercise 2.17 Let $X = \mathbb{R}$ and $\mathcal{T} = \{(a, +\infty) : a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}$. Which separation axiom does the space (X, \mathcal{T}) satisfy?

Exercise 2.18 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let (Y, \mathcal{T}_Y) be a Hausdorff space. Let $f, g: X \to Y$ be continuous functions. Show that the set $\{x \in X: f(x) = g(x)\}$ is closed. (note: this exercise is actually useful sometimes!)

Exercise 2.19 Show that the Sorgenfrey line is a regular space.

Exercise 2.20 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be homeomorphic topological spaces. Prove that if (Y, \mathcal{T}_Y) is a T_3 -space then (X, \mathcal{T}_X) is also a T_3 -space.

Exercise 2.21 Prove that a closed subset of a normal topological space is a normal space (in the induced topology).

Exercise 2.22 Prove that if $f_1: X \to Y$ and $f_2: X \to Y$ are continuous functions from a topological space (X, \mathcal{T}_X) to a Hausdorff space (Y, \mathcal{T}_Y) , and the set $A = \{x \in X : f_1(x) = f_2(x)\}$ is dense in X, then $f_1 = f_2$ on X.

Exercise 2.23 Let $X_i = (\mathbb{R}, \mathcal{T}_i)$, where \mathcal{T}_1 - the natural topology (of the Euclidean space), $T_2 = 2^{\mathbb{R}}, \mathcal{T}_3 = \{\emptyset, \mathbb{R}\}, \mathcal{T}_4 = \{(a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ and let

 $A_1 = \{(x, y) \in \mathbb{R}^2 : x = 0\}$

 $A_2 = \{(x, y) \in \mathbb{R}^2 : x > 0\}$

 $A_3 = \{(x, y) \in \mathbb{R}^2 : x = y\}$

 $A_4 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$

 $A_5 = \{(0,0)\}$

Check which sets A_k are open, and which are closed in spaces $X_i \times X_j$ for all k = 1, 2, ..., 5 and all $i, j \in \{1, ..., 4\}$ (with the topology of Cartesian product).

Exercise 2.24 (see Theorem 6.3) For topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) and their Cartesian product $X \times Y$, prove that each projection $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ is continuous.

2. Show that a finite T₁-space is discrete.

Exercise 2.1 Let (X,T) be a topological space. Prove that $x \in X$ is an isolated point if and only if $\{x\} \in T$.

Exercise 2.3 (Example 4.II) Let $X = Y = \{0\} \cup [1,2]$. Let T_X be the topology induced from the Euclidean space \mathbb{R} and let T_Y be the discrete topology. Let $f: X \to Y$ be given by the formula f(x) = x. Prove that $C(f) = \{0\}$ (i.e., that f is continuous only at the point x = 0).

· x + 0 => x = [1,7] = Ty

Let U = Ty / U is coultable => 8.1(U) = U & Tx, since XVE Tx/ V = U

Exercise 2.5 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let \mathcal{B} be a base of the space (Y, \mathcal{T}_Y) . Let $f: X \to Y$. Prove that f is continuous if and only if the pre-image of every set from \mathcal{B} is open.

Wt
$$B = \{B_s \mid ses\} \subseteq \Upsilon_t, Ue\Upsilon_t \Rightarrow \exists T \subseteq S \mid U = UB_t \}$$
 $\emptyset \text{ out.} \iff We\Upsilon_t, J^{-1}(U) \in \Upsilon_x$
 $\Rightarrow \emptyset \text{ out.} \Rightarrow \emptyset^{-1}(B_t) \in \Upsilon_x \text{ VIES.}$
 $\Rightarrow \emptyset \text{ out.} \Rightarrow \emptyset^{-1}(B_t) \in \Upsilon_x \text{ VIES.}$
 $\Rightarrow \emptyset \text{ out.}$

Exercise 2.8 Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let $f: X \to Y$ be continuous, one-to-one function. Let $A \in \mathcal{T}_X$ and $f(A) \in \mathcal{T}_Y$. Prove that then $f|A: (A, \mathcal{T}_X^{ind}) \to (f(A), \mathcal{T}_Y^{ind})$ is continuous. (i.e., restriction of continuous function is continuous in the induced topology)

& cont > Wety, 3-1(U) ety

& | A cont > V U () () ety

We have
$$f(x) = g|_{A}(x) \forall x \in A \implies g'(B) = g|_{A}(B) \forall B \subseteq X$$
 $g|_{A}(u) g(A) = g|_{A}(x) \forall x \in A \implies g'(B) = g|_{A}(B) \forall B \subseteq X$
 $g|_{A}(u) g(A) = g'(u) g($

Exercise 2.10 Let $X = \mathbb{R}$ and \mathcal{T} be the topology of Sorgenfrey line. Let f(x) = -2x for all $x \in \mathbb{R}$. Is f a homeomorphism from X onto X? Explain, why.

Exercise 2.15 (Example 5.IV) Let X be an infinite set, $x_0 \in X$ and let \mathcal{J} be the ideal of all finite subsets of X. Show that the topological space (X, \mathcal{T}) , where $\mathcal{T} = \{X \setminus A : A \in \mathcal{J}\} \cup \{A \subset X : x_0 \notin A\}$ is a Hausdorff space.

Exercise 2.19 Show that the Sorgenfrey line is a regular space.

Let (RIT) be our sorgenfrey line.

T is given by the base B= { Caib[/aib e]]

(R,T) regular () it's t. , yxeR, yveT/ xeV, JueT/ xeu edlusev

· Let x11x2 e F 1 E= | x1-x1, U= Cx1x1+EC => x1EU xx2 => (P(7) is T1.

· W U= Cx, x1 & C = c1(U) = V= Cx, x1 & C 48>0

* In this topology open sets are also closed:

12/Cx,x+EC=J-20,xEUCx+E,4000 = UC-8,xCUCx+E,8C ex

As a result, (IRIT) is a T3-space.

Exercise 2.23 Let $X_i = (\mathbb{R}, \mathcal{T}_i)$, where \mathcal{T}_1 - the natural topology (of the Euclidean space),

 $T_2 = 2^{\mathbb{R}}, \, \mathcal{T}_3 = \{\emptyset, \mathbb{R}\}, \, \mathcal{T}_4 = \{(a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\} \text{ and let}$

$$A_1 = \{(x, y) \in \mathbb{R}^2 : x = 0\}$$

$$A_2 = \{(x, y) \in \mathbb{R}^2 : x > 0\}$$

$$A_3 = \{(x, y) \in \mathbb{R}^2 : x = y\}$$

$$A_4 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

$$A_5 = \{(0,0)\}$$

Check which sets A_k are open, and which are closed in spaces $X_i \times X_i$ for all $k = 1, 2, \ldots, 5$ and all $i, j \in \{1, \dots, 4\}$ (with the topology of Cartesian product).

· 7, x7, -Open?

A3 open (=> V(x) e A3, 3Ue T2xT1/(x1x) eUE A3. However, YV= R, E>O, Vx]x=E, x+EC & A3 =) A3 & T2x7,

- Clocay S

$$\text{cut } \mathcal{S}: (\mathbb{R}, \mathcal{T}_{i}) \to (\mathbb{R}, \mathcal{T}_{i}) \mid \mathcal{S}(x) = x.$$

It's clearly orthunous and surjective Besides, (B, T,) is Is Is [(8) = A3 is closed in (18:17,27,1)

· T, x T2

-0 per ?

Clearly Azisa't open, as 7(x, x) E Az/ YUET, (x, x) EU, U\$A2 Let XER, ASRI XEA => (MX) EAXRY AZ

-closed ?

Ut (xix) e R')A3, AxR e Tx T3/xeA, y eR

(norly AXR & R2/A3, since J(2,2) eAXR/ (2,2)& 182/A3 => R/A3 & To x T3 => A3 isn't closed

· T3 x T4 - Open? Y ne R, Ex, R x 3 a-E, + ∞ (\$ A3 => A3 & 73 x T4 - (10200)? Let (x1-8) ∈ R')A3, RxB ∈ T3 x T4/x ∈ R, y ∈ B= 73 - E, + ∞ (, E > 0). Closely RxB & R² \A3, Since J(2,2) ∈ RxB ((2,2) & R²\A3 => R²\A3 & T3 x T4 => A3 isn't closed

2. Show that a finite T₁-space is discrete.

Let (X,T) be a finite T_n space. Let's show T=P(X) (X,T) T_n by $Y_{X_n,X_2} \in X_n$, $T_n \neq X_n$, $T_n \neq X_n \neq X_n$