多元函数微分学

Eliauk

2024年8月14日

目录

1	微分	1
2	偏导数和方向导数·····	3
3	高阶导数 · · · · · · · · · · · · · · · · · · ·	8
4	压缩映射原理 · · · · · · · · · · · · · · · · · · ·	9
5	反函数定理 · · · · · · · · · · · · · · · · · · ·	10
6	隐函数定理 · · · · · · · · · · · · · · · · · · ·	13
7	秩定理 · · · · · · · · · · · · · · · · · · ·	16

1 微分

令 $E \in \mathbb{R}^n$ 中的开集, 函数 $f: E \to \mathbb{R}^m, x_0 \in E$, 如果存在线性映射 $L: \mathbb{R}^n \to \mathbb{R}^m$ 使得

$$\lim_{x \to x_0} \frac{|f(x) - (f(x_0) + L(x - x_0))|}{|x - x_0|} = 0,$$

那么我们说 f 在 x_0 处**可微**, 线性映射 L 被称为 f 在 x_0 处的**微分**. 若 f 在任意 $x_0 \in E$ 处都可微, 那么我们说 f 在 E 中**可微**.

定理 1.1 (微分的唯一性). 沿用上面的记号,设 $L_1: \mathbb{R}^n \to \mathbb{R}^m$ 和 $L_2: \mathbb{R}^n \to \mathbb{R}^m$ 都是线性映射且都为 f 在 x_0 处的微分,那么 $L_1 = L_2$.

Proof. 假设 $L_1 \neq L_2$, 那么存在非零向量 v 使得 $L_1(v) \neq L_2(v)$, 令 $x = x_0 + tv$, 那么 $t \to 0$ 的 时候 $x \to x_0$. 又因为

$$|L_1(tv) - L_2(tv)| = |(f(x) - f(x_0) - L_2(tv)) - (f(x) - f(x_0) - L_1(tv))|$$

$$\leq |f(x) - f(x_0) - L_2(tv)| + |f(x) - f(x_0) - L_1(tv)|,$$

所以

$$\lim_{t \to 0} \frac{|L_1(tv) - L_2(tv)|}{|tv|} = 0,$$

 L_1, L_2 是线性映射表明

$$\lim_{t \to 0} \frac{|t| |L_1(v) - L_2(v)|}{|t| |v|} = \frac{|L_1(v) - L_2(v)|}{|v|} = 0,$$

这与 $L_1(v) \neq L_2(v)$ 矛盾, 所以 $L_1 = L_2$.

我们一般把微分 L 记为 $f'(x_0)$. 有时我们也会用余项的形式叙述微分, 即 f 在 x_0 处可微当且仅当存在线性映射 $L: \mathbb{R}^n \to \mathbb{R}^m$ 使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x),$$

其中 r(x) 满足

$$\lim_{x \to x_0} \frac{|r(x)|}{|x - x_0|} = 0.$$

此时 $f'(x_0)$ 通常被称为 f 在 x_0 处的**全导数**. 若 f 在 E 中可微, 那么我们可以把 f' 视为映射 $f': E \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$,其将 $x \in E$ 送到线性映射 f'(x). 此外,我们会用到矩阵范数,即 $f'(x_0)$ 可以视为 $m \times n$ 矩阵,那么我们用 $\|f'(x_0)\|$ 表示 $f'(x_0)$ 的算子 2-范数,即其最大的奇异值. 根据定义,一个显然的结果是可微必连续.

命题 1.2. $E \subseteq \mathbb{R}^n$ 是开集, 若 $f: E \to \mathbb{R}^m$ 在 $x_0 \in E$ 处可微, 那么 f 在 x_0 处连续.

Proof. f 在 x_0 处可微表明

$$|f(x) - f(x_0)| \le ||f'(x_0)|| |x - x_0| + |r(x)|,$$

于是在 $x \to x_0$ 的时候 $f(x) \to f(x_0)$, 即 f 在 x_0 处连续.

定理 1.3 (链式法则). 设 $E \subseteq \mathbb{R}^n$ 是开集,函数 $f: E \to \mathbb{R}^m$ 在 $x_0 \in E$ 处可微. $F \subseteq \mathbb{R}^m$ 是开集且包含 f(E),函数 $g: F \to \mathbb{R}^k$ 在 $f(x_0)$ 处可微,那么复合函数 $g \circ f: E \to \mathbb{R}^k$ 在 x_0 处可微,并且

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Proof. 根据定义, 我们有

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + r_1(x),$$

$$g(f(x)) - g(f(x_0)) = g'(f(x_0))(f(x) - f(x_0)) + r_2(f(x)),$$

f 在 x_0 处连续表明 $x \to x_0$ 时 $f(x) \to f(x_0)$,所以 $x \to x_0$ 时有 $r_1(x) = o(|x - x_0|)$ 以及 $r_2(f(x)) = o(|f(x) - f(x_0)|)$. 因此

$$g(f(x)) - g(f(x_0)) = g'(f(x_0))(f(x) - f(x_0)) + r_2(f(x))$$

= $g'(f(x_0))f'(x_0)(x - x_0) + r_2(f(x)) + g'(f(x_0))r_1(x),$

记 $r(x) = r_2(f(x)) + g'(f(x_0))r_1(x)$, 那么

$$|r(x)| \le |r_2(f(x))| + ||g'(f(x_0))|| |r_1(x)|,$$

所以

$$\lim_{x \to x_0} \frac{|r(x)|}{|x - x_0|} = 0,$$

这就表明 $g \circ f$ 在 x_0 处可微并且 $(g \circ f)'(x_0) = g'(f(x_0)) f'(x_0)$.

2 偏导数和方向导数

令 $E \subseteq \mathbb{R}^n$ 是开集, 函数 $f: E \to \mathbb{R}^m$, $x_0 \in E$. 任取向量 $v \in \mathbb{R}^n$, 如果极限

$$\lim_{t \to 0^+} \frac{f(x_0 + tv) - f(x_0)}{t}$$

存在, 那么我们说 f 在 x_0 处**沿着** v **方向可微**, 此时我们将上述极限记为 $D_v f(x_0)$, 称为 f 在 x_0 处沿 v 方向的**方向导数**. 注意, 上述极限中 t 为正向趋于 0, 并且 $D_v f(x_0) \in \mathbb{R}^m$.

引理 2.1. 沿用上面的记号,如果 f 在 x_0 处可微,那么对于任意 $v \in \mathbb{R}^n$,都有 f 在 x_0 处沿着 v 方向可微,并且

$$D_v f(x_0) = f'(x_0)(v).$$

Proof. f 在 x_0 处可微表明

$$f(x_0 + tv) - f(x_0) = f'(x_0)(tv) + r(x_0 + tv),$$

其中 $t \to 0^+$ 时有 $r(x_0 + tv) = o(|tv|) = o(t)$, 那么

$$D_v f(x_0) = \lim_{t \to 0^+} \frac{t f'(x_0)(v) + r(x_0 + tv)}{t} = f'(x_0)(v).$$

引理 2.1 告诉我们全导数 $f'(x_0)$ 可以通过方向导数来表示,即考虑 \mathbb{R}^n 的标准基 e_1,\ldots,e_n ,那么

$$f'(x_0)(e_i) = D_{e_i} f(x_0),$$

于是对于任意 $v = v_1 e_1 + \cdots + v_n e_n \in \mathbb{R}^n$, 有

$$D_v f(x_0) = f'(x_0)(v) = \sum_{i=1}^n v_i f'(x_0)(e_i) = \sum_{i=1}^n v_i D_{e_i} f(x_0),$$

所以我们只要知道了基向量方向的方向导数 $D_{e_i} f(x_0)$, 就相当于知道了任意方向的方向导数, 这引出了偏导数的定义.

令 $E \subseteq \mathbb{R}^n$ 是开集,函数 $f: E \to \mathbb{R}^m$, $x_0 \in E$. e_1, \ldots, e_n 是 \mathbb{R}^n 的标准基. 定义 f 在 x_0 处相对于变量 x_i $(1 \le i \le n)$ 的偏导数为

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t} = \left. \frac{d}{dt} \right|_{t=0} f(x_0 + te_i),$$

注意, 在偏导数的定义中是 $t \to 0$ 而不是 $t \to 0^+$. 当 n = 2 的时候, 我们一般用 (x, y) 表示 \mathbb{R}^2 中的点, 所以此时偏导数一般记为 $\partial f/\partial x$ 和 $\partial f/\partial y$.

如果 $f \in X_0 \in E$ 处可微, 引理 2.1 告诉我们

$$D_{e_i} f(x_0) = f'(x_0)(e_i) = -f'(x_0)(-e_i) = -D_{-e_i} f(x_0),$$

所以此时偏导数存在且

$$\frac{\partial f}{\partial x_i}(x_0) = D_{e_i} f(x_0) = -D_{-e_i} f(x_0) = f'(x_0)e_i,$$

此时沿v方向的方向导数可以表示为

$$D_v f(x_0) = \sum_{i=1}^n v_i \frac{\partial f}{\partial x_i}(x_0).$$

我们也可以写出 $f'(x_0)$ 在标准基下的表示矩阵, 记 $f = (f_1, ..., f_m)$, 其中 $f_i : E \to \mathbb{R}$ 是实值函数, 那么按定义可知

$$\frac{\partial f}{\partial x_i}(x_0) = \left(\frac{\partial f_1}{\partial x_i}(x_0), \dots \frac{\partial f_m}{\partial x_i}(x_0)\right),\,$$

所以 $f'(x_0)$ 在标准基下的表示矩阵为

$$Jf(x_0) = \left(\frac{\partial f_i}{\partial x_j}(x_0)\right) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \frac{\partial f_1}{\partial x_2}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \frac{\partial f_2}{\partial x_1}(x_0) & \frac{\partial f_2}{\partial x_2}(x_0) & \cdots & \frac{\partial f_2}{\partial x_n}(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \frac{\partial f_m}{\partial x_2}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix} \in M_{m,n}(\mathbb{R}).$$

矩阵 $Jf(x_0)$ 被称为 f 在 x_0 处的 **Jacobi 矩阵**.

对于实值函数 $f: \mathbb{R}^n \to \mathbb{R}$, 我们也把它的 Jacobi 矩阵称作 **梯度**, 记为

$$\nabla f(x) = Jf(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_0) & \frac{\partial f}{\partial x_2}(x_0) & \cdots & \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix},$$

此时 f 在 x 处沿 $v = v_1 e_1 + \cdots + v_n e_n$ 方向的方向导数为

$$D_{v} f(x) = \sum_{i=1}^{n} v_{i} \frac{\partial f}{\partial x_{i}}(x) = v \cdot \nabla f(x).$$

例 2.2. 引理 2.1 的逆命题不成立, 即若 f 在 x_0 的任意方向上都可微, 也不能说明 f 在 x_0 处可微. 考虑 $f: \mathbb{R}^2 \to \mathbb{R}$ 为

$$f(x,y) = \begin{cases} x^3/(x^2 + y^2) & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

任取 $v = (v_1, v_2) \in \mathbb{R}^2$, 那么

$$D_{v}f(0,0) = \lim_{t \to 0^{+}} \frac{f(tv_{1}, tv_{2}) - f(0,0)}{t} = \lim_{t \to 0^{+}} \frac{v_{1}^{3}}{v_{1}^{2} + v_{2}^{2}} = \frac{v_{1}^{3}}{v_{1}^{2} + v_{2}^{2}},$$

所以 $D_v f(0,0)$ 都存在. 另一方面, 我们有

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{t^2}{t^2} = 1,$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0,$$

如果 f 在 (0,0) 处可微, 那么

$$Jf(0,0) = \begin{pmatrix} \frac{\partial f}{\partial x}(0,0) & \frac{\partial f}{\partial y}(0,0) \end{pmatrix} = \begin{pmatrix} 1 & 0 \end{pmatrix}.$$

此时

$$\lim_{(x,y)\to(0,0)} \frac{\left| f(x,y) - f(0,0) - Jf(0,0)(x,y)^T \right|}{\left| (x,y) \right|}$$

$$= \lim_{(x,y)\to(0,0)} \frac{x^3/(x^2 + y^2) - x}{\sqrt{x^2 + y^2}} = \lim_{(x,y)\to(0,0)} \frac{-xy^2}{(x^2 + y^2)^{3/2}},$$

当 y = x 的时候极限值为 $-\sqrt{2}/4$, 当 y = 0 的时候极限值为 0, 所以上述极限不存在, 这与 f 在 (0,0) 处可微矛盾. 此外, 该例也告诉我们, 若 $f: E \to \mathbb{R}^m$ 在 $x_0 \in E$ 处偏导数都存在, 也不意味着 f 在 x_0 处可微.

令开集 $E \subseteq \mathbb{R}^n$, 函数 $f: E \to \mathbb{R}^m$, 如果 f 在 E 中可微, 并且 $f': E \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ 是连续映射, 那么我们说 f 在 E 中**连续可微**, 记为 $f \in C^1$. 更准确地说, $f \in C^1$ 当且仅当对于每个 $x \in E$, 任取 $\varepsilon > 0$, 都存在 $\delta > 0$, 使得 $|y - x| < \delta$ 的时候有

$$||f'(y) - f'(x)|| < \varepsilon.$$

定理 2.3. $f \in C^1$ 当且仅当对于任意 $1 \le i \le m, 1 \le j \le n$,偏导数 $\partial f_i/\partial x_j : E \to \mathbb{R}$ 都存在且在 E 上连续.

Proof. (⇒) 若 $f \in C^1$, 那么任取 $x \in E$, 有

$$\frac{\partial f}{\partial x_i}(x) = f'(x)(e_i),$$

其中 $e_i \in \mathbb{R}^n$ 是标准基向量. 那么

$$\left| \frac{\partial f}{\partial x_j}(y) - \frac{\partial f}{\partial x_j}(x) \right| = \left| f'(y)(e_j) - f'(x)(e_j) \right| = \left| \left(f'(y) - f'(x) \right)(e_j) \right|$$

$$\leq \left\| f'(y) - f'(x) \right\| \left| e_j \right| = \left\| f'(y) - f'(x) \right\|,$$

而 f' 连续, 所以 $\partial f/\partial x_i: E \to \mathbb{R}^m$ 连续, 故每个分量 $\partial f_i/\partial x_i$ 连续.

(\leftarrow) 只需证明 m=1 的情况即可. 因为如果 m=1 的时候结论成立,那么对于 $1 \leq i \leq m$, $\partial f_i/\partial x_j$ 都连续表明 $f_i': E \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R})$ 连续,进而 $f': E \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m) = \operatorname{Hom}(\mathbb{R}^n, \mathbb{R})^m$ 连续. 故下面假设 m=1. 任取 $x \in E$,我们先说明 f 在 x 处可微,此时 Jacobi 矩阵必须为

$$Jf(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) & \cdots & \frac{\partial f}{\partial x_n}(x) \end{pmatrix},$$

故需要证明任取 ε , 都存在 $\delta > 0$, 使得 $|y - x| < \delta$ 的时候有

$$|f(y) - f(x) - Jf(x)(y - x)^T| < \varepsilon |y - x|.$$

 $\partial f/\partial x_j(x)$ 连续表明存在 $\delta_j > 0$ 使得 $|y-x| < \delta_j$ 的时候有

$$\left| \frac{\partial f}{\partial x_j}(y) - \frac{\partial f}{\partial x_j}(x) \right| < \varepsilon,$$

取 $\delta = \min\{\delta_1, \ldots, \delta_n\}$. 设 $y - x = (v_1, \ldots, v_n) = v_1 e_1 + \cdots + v_n e_n \in \mathbb{R}^n$, 那么 $|y - x| < \delta$ 表明

 $|v_i| < \delta$. 此时

$$|f(y) - f(x) - Jf(x)(y - x)^{T}| = \left| f(x + v_{1}e_{1} + \dots + v_{n}e_{n}) - f(x) - \sum_{j=1}^{n} v_{j} \frac{\partial f}{\partial x_{j}}(x) \right|$$

$$= \left| \sum_{j=1}^{n} [f(x + w_{j}) - f(x + w_{j-1})] - \sum_{j=1}^{n} v_{j} \frac{\partial f}{\partial x_{j}}(x) \right|$$

$$\leq \sum_{j=1}^{n} \left| f(x + w_{j}) - f(x + w_{j-1}) - v_{j} \frac{\partial f}{\partial x_{j}}(x) \right|,$$

其中 $w_0 = 0$, $w_j = v_1 e_1 + \cdots + v_j e_j$. 记函数 $g_j : [0, v_j] \to \mathbb{R}$ 为

$$g_i(t) = f(x + w_{i-1} + te_i),$$

那么 g_j 在 $[0, v_j]$ 中连续且在 $(0, v_j)$ 中可微, 根据中值定理, 存在 $\theta_j \in (0, v_j)$ 使得

$$g_{j}(v_{j}) - g_{j}(0) = g'_{j}(\theta_{j})v_{j} = v_{j}\frac{\partial f}{\partial x_{j}}(x + w_{j-1} + \theta_{j}e_{j}),$$

此时 $|x + w_{j-1} + \theta_j e_j - x| < |y - x| < \delta$, 所以

$$\left| f(x+w_j) - f(x+w_{j-1}) - v_j \frac{\partial f}{\partial x_j}(x) \right| = \left| v_j \frac{\partial f}{\partial x_j}(x+w_{j-1} + \theta_j e_j) - v_j \frac{\partial f}{\partial x_j}(x) \right| < \varepsilon \left| v_j \right| \le \varepsilon \left| y - x \right|,$$

因此

$$|f(y) - f(x) - Jf(x)(y - x)^T| < n\varepsilon |y - x|,$$

这就表明 f 在 $x \in E$ 处可微.

然后我们说明 $f': E \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R})$ 连续. 由于

$$f'(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) & \cdots & \frac{\partial f}{\partial x_n}(x) \end{pmatrix},$$

所以

$$||f'(y) - f'(x)|| \le \sum_{j=1}^{n} \left| \frac{\partial f}{\partial x_j}(y) - \frac{\partial f}{\partial x_j}(x) \right|,$$

所以 f' 连续.

3 高阶导数

令 $E \subseteq \mathbb{R}^n$ 是开集, 函数 $f: E \to \mathbb{R}^m$, 偏导数 $\partial f/\partial x_i: E \to \mathbb{R}^m$ 在 E 中可微, 那么我们定义 f 的二**阶偏导数**为

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right).$$

如果所有的 $\partial f/\partial x_i \in C^1$,即所有的二阶偏导数 $\partial^2 f/\partial x_i \partial x_j$ 都连续,那么我们说 f 二**阶连续可** 微,记为 $f \in C^2$. 类似的,我们可以定义高阶偏导数和 C^n .

例 3.1. 一般而言, $\partial^2 f/\partial x_i \partial x_i \neq \partial^2 f/\partial x_i \partial x_i$. 考虑 $f: \mathbb{R}^2 \to \mathbb{R}$ 为

$$f(x,y) = \begin{cases} xy^3/(x^2 + y^2) & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

容易算得

$$\frac{\partial f}{\partial x} = \begin{cases} \frac{y^3(y^2 - x^2)}{(x^2 + y^2)^2} & (x, y) \neq (0, 0), \\ 0 & (x, y) = (0, 0), \end{cases} \quad \frac{\partial f}{\partial y} = \begin{cases} \frac{x(y^4 + 3x^2y^2)}{(x^2 + y^2)^2} & (x, y) \neq (0, 0), \\ 0 & (x, y) = (0, 0), \end{cases}$$

故

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{t \to 0} \frac{\partial f/\partial y(t,0) - \partial f/\partial y(0,0)}{t} = 0,$$
$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{t \to 0} \frac{\partial f/\partial x(0,t) - \partial f/\partial x(0,0)}{t} = 1,$$

此时 $\partial^2 f/\partial x \partial y(0,0) \neq \partial^2 f/\partial y \partial x(0,0)$.

定理 3.2. 令 $E \subseteq \mathbb{R}^n$ 是开集, $f: E \to \mathbb{R}^m$ 在 E 中二阶连续可微,那么对于任意 $1 \le i, j \le n$,有

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Proof. 任取 $x = x_1e_1 + \cdots + x_ne_n \in E$, 考虑

$$\Delta = f(x + te_i + se_j) - f(x + te_i) - f(x + se_j) + f(x),$$

由于 E 是开集, 我们总是可以令 t,s 足够小使得 Δ 有意义. 令

$$g(u) = f(x + ue_i + se_j) - f(x + ue_i),$$

对 $g:[0,t] \to \mathbb{R}$ 使用中值定理, 存在 $\theta \in (0,t)$ 使得

$$\Delta = g(t) - g(0) = g'(\theta)t$$

$$= t \left[\frac{\partial f}{\partial x_i} (x + \theta e_i + s e_j) - \frac{\partial f}{\partial x_i} (x + \theta e_i) \right],$$

令

$$h(u) = \frac{\partial f}{\partial x_i}(x + \theta e_i + u e_j),$$

 $f \in C^2$ 保证了 $h: [0,s] \to \mathbb{R}$ 在 (0,s) 中可微, 再次使用中值定理, 存在 $\eta \in (0,s)$ 使得

$$\Delta = tsh'(\eta) = ts \frac{\partial^2 f}{\partial x_i \partial x_i} (x + \theta e_i + \eta e_j).$$

固定 t, 令 $s \rightarrow 0$, 有

$$\frac{\partial f}{\partial x_i}(x + te_i) - \frac{\partial f}{\partial x_i}(x) = \lim_{s \to 0} \frac{\Delta}{s} = t \frac{\partial^2 f}{\partial x_i \partial x_i}(x + \theta e_i),$$

然后令 $t \to 0$, 就得到了

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \lim_{t \to 0} \frac{\partial f/\partial x_j(x + te_i) - \partial f/\partial x_i(x)}{t} = \frac{\partial^2 f}{\partial x_j \partial x_i}(x).$$

4 压缩映射原理

令 (X,d) 是度量空间, $f:X\to X$ 是映射, 如果存在 $c\in(0,1)$, 使得对于任意 $x,y\in X$ 都有

$$d(f(x), f(y)) \le cd(x, y),$$

那么我们说 f 是一个**压缩映射**. 显然压缩映射一定是连续映射, 并且压缩映射与自身的复合也是压缩映射.

定理 4.1 (压缩映射原理). (X,d) 是度量空间, $f:X\to X$ 是压缩映射,那么 f 最多只有一个不动点. 此外,如果 (X,d) 是完备度量空间,那么 f 有唯一的不动点.

Proof. 我们先说明 f 如果有不动点, 那么一定唯一. 若 $x, y \in X$ 使得 f(x) = x 以及 f(y) = y, 那么

$$d(x, y) = d(f(x), f(y)) \le cd(x, y),$$

这就表明 d(x, y) = 0, 故 x = y.

现在假设 X 是完备度量空间. 任取 $x_0 \in X$, 令序列 $x_n = f(x_{n-1})$, 那么

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) \le c d(x_n, x_{n-1})$$

$$\le c^2 d(x_{n-1}, x_{n-2}) \le \dots \le c^n d(x_1, x_0),$$

所以对于m > n,有

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_n)$$

$$\le (c^{m-1} + c^{m-2} + \dots + c^n) d(x_1, x_0)$$

$$< \frac{c^n}{1 - c} d(x_1, x_0) \to 0,$$

故 $\{x_n\}$ 是 Cauchy 列, 从而收敛, 设 $x_n \to x$. 又因为 f 是连续映射, 所以

$$f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x,$$

即 x 是 f 唯一的不动点.

5 反函数定理

我们先介绍两个中值定理.

定理 5.1 (实值函数的微分中值定理). 设 $E \subseteq \mathbb{R}^n$ 为凸开集, $f : E \to \mathbb{R}$ 是可微函数,那么任给 $x, y \in E$,存在 $\xi = x + \theta(y - x) \in E$, $\theta \in (0, 1)$ 使得

$$f(y) - f(x) = f'(\xi)(y - x).$$

Proof. 考虑曲线 $\gamma:[0,1]\to E$ 为 $\gamma(t)=x+t(y-x)$. 那么复合映射 $f\circ\gamma:[0,1]\to\mathbb{R}$ 可微, 且

$$(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t) = f'(\gamma(t))(y - x).$$

根据中值定理, 存在 $\theta \in (0,1)$ 使得

$$f \circ \gamma(1) - f \circ \gamma(0) = (f \circ \gamma)'(\theta),$$

即

$$f(y) - f(x) = f'(\xi)(y - x).$$

对于向量值函数而言,没有这么好的结果,但是下述结论依旧是有用的.

定理 5.2 (拟微分中值定理). 设 $E \subseteq \mathbb{R}^n$ 是凸开集, $f: E \to \mathbb{R}^m$ 可微,那么任取 $x, y \in E$,存在 $\xi = x + \theta(y - x) \in E$, $\theta \in (0, 1)$ 使得

$$|f(y) - f(x)| \le ||f'(\xi)|| |y - x|.$$

Proof. 令曲线 $\gamma:[0,1] \to E$ 为 $\gamma(t)=x+t(y-x)$. 考虑函数 $\varphi:[0,1] \to \mathbb{R}$ 为

$$\varphi(t) = f(\gamma(t)) \cdot (f(y) - f(x)),$$

这里·表示向量的点乘. 那么 φ 在 (0,1) 中可微, 根据中值定理, 存在 $\theta \in (0,1)$ 使得

$$|f(y) - f(x)|^2 = \varphi(1) - \varphi(0) = \varphi'(\theta) = (f'(\gamma(\theta))(y - x)) \cdot (f(y) - f(x)),$$

所以

$$|f(y) - f(x)|^2 \le |\varphi'(\theta)| \le |f'(\gamma(\theta))(y - x)| |f(y) - f(x)|,$$

故

$$|f(y) - f(x)| \le ||f'(\xi)|| |y - x|.$$

推论 5.3. $E \subseteq \mathbb{R}^n$ 是凸开集,如果 $f: E \to \mathbb{R}^m$ 在任意 $x \in E$ 处的微分 $f'(x) \equiv 0$,那么 f 是常值映射,即存在 $y_0 \in \mathbb{R}^m$ 使得 $f(x) \equiv y_0$.

定理 5.4 (反函数定理). 令 $E \subseteq \mathbb{R}^n$ 是开集,函数 $f: E \to \mathbb{R}^n$ 且 $f \in C^1$,对于某个 $x_0 \in E$,记 $y_0 = f(x_0)$,如果 $f'(x_0)$ 可逆,那么

- (1) 存在包含 x_0 的开集 U 和包含 y_0 的开集 V,使得 f(U) = V 并且 $f: U \to V$ 是双射.
- (2) 设 $g:V\to U$ 是 $f:U\to V$ 的逆映射,那么 $g\in C^1$ 并且对于任意 $y\in V$ 有

$$g'(y) = (f'(g(y)))^{-1}.$$

Proof. (1) 令 $\lambda = 1/(2 \|f'(x_0)\|)$, f' 连续表明存在开球 $U \subseteq E$ 使得 $x \in U$ 时有

$$||f'(x) - f'(x_0)|| \le \lambda.$$

令 V = f(U), 我们先说明 $f: U \to V$ 是双射, 再说明 V 是开集. 对于任意 $y \in \mathbb{R}^n$, 定义函数 $\varphi_v: E \to \mathbb{R}^n$ 为

$$\varphi_{y}(x) = x + f'(x_{0})^{-1}(y - f(x)),$$

这样定义是因为 y = f(x) 当且仅当 $\varphi_y(x) = x$,即 φ_y 有不动点,那么 x 的唯一性便可以由压缩映射原理保证. 下面先说明 φ_y 是 $U \to \mathbb{R}^n$ 的压缩映射. 由于

$$\varphi_{\nu}'(x) = I - f'(x_0)^{-1} f'(x) = f'(x_0)^{-1} (f'(x_0) - f'(x)),$$

所以

$$\|\varphi'_{\nu}(x)\| \le \|f'(x_0)^{-1}\| \|f'(x_0) - f'(x)\|,$$

所以 $x \in U$ 时有

$$\|\varphi_y'(x)\| \le \lambda \|f'(x_0)^{-1}\| = \frac{1}{2},$$

根据 定理 5.2, 所以对于任意 $x, x' \in U$, 有

$$\left|\varphi_{y}(x') - \varphi_{y}(x)\right| \le \frac{1}{2} \left|x' - x\right|,\tag{1}$$

故 $\varphi_y: U \to \mathbb{R}^n$ 是压缩映射. 回到函数 $f: U \to V$,任取 $y \in V = f(U)$,设 y = f(x),那么 $\varphi_y(x) = x$,即 $x \in \varphi_y$ 的不动点,根据压缩映射原理,这样的 x 是唯一的,所以 $f: U \to V$ 是双射.

接下来说明 V = f(U) 是开集. 任取 $y = f(x) \in V$,由于 U 是开集,所以存在 r > 0 使得开球 $B_r(x) \subseteq U$,我们可以让 r 足够小使得闭球 $\bar{B}_r(x) \subseteq U$. 下面我们说明 $B_{\lambda r}(y) \subseteq V$,从而表明 V 是开集. 对于 $y' \in B_{\lambda r}(y)$,即 $|y' - y| < \lambda r$. $y \in V$ 当且仅当存在 $x' \in U$ 使得 y' = f(x'),这 启发我们构造 $\varphi_{y'}$ 的压缩映射. 注意到

$$|\varphi_{y'}(x) - x| = |f'(x_0)^{-1}(y' - f(x))| < ||f'(x_0)^{-1}|| \lambda r = \frac{r}{2},$$

所以对于任意 $x' \in \bar{B}_r(x) \subseteq U$, 有

$$\left| \varphi_{y'}(x') - x \right| \le \left| \varphi_{y'}(x') - \varphi_{y'}(x) \right| + \left| \varphi_{y'}(x) - x \right|$$

$$< \frac{1}{2} \left| x' - x \right| + \frac{r}{2} \le r,$$

这表明 $\varphi_{y'}(x') \in B_r(x)$,也即 $\varphi_{y'}(\bar{B}_r(x)) \subseteq B_r(x)$. $\bar{B}_r(x)$ 作为 \mathbb{R}^n 的闭子集是完备的,所以 $\varphi_{y'}: \bar{B}_r(x) \to B_r(x)$ 是压缩映射,故存在唯一的不动点 $x' \in \bar{B}_r(x)$,因此 $y' = f(x') \in f(\bar{B}_r(x)) \subseteq f(U) = V$. 这就证明了 V 是开集.

(2) 任取 $y = f(x) \in V$, 我们需要说明 g 在 y 处可微. 注意到 $f'(x_0)[I - \varphi'_y(x)] = f'(x)$, 由于 $\|\varphi'_y(x)\| \le 1/2$, 所以 $I - \varphi'_y(x)$ 可逆, 所以 f'(x) 可逆. 对于 $y' = f(x') \in V$, 有

$$g(y') - g(y) - f'(x)^{-1}(y' - y) = x' - x - f'(x)^{-1}(f(x') - f(x))$$

= $-f'(x)^{-1}[f(x') - f(x) - f'(x)(x' - x)].$ (2)

根据 (1) 式, 我们有

$$|\varphi_{y}(x') - \varphi_{y}(x)| = |x' - x - f'(x_{0})^{-1}(y' - y)| \le \frac{1}{2} |x' - x|,$$

所以

$$||f'(x_0)^{-1}|| |y' - y| \ge |f'(x_0)^{-1}(y' - y)| \ge \frac{1}{2} |x' - x|,$$
 (3)

结合 (2) 式, 得到

$$\frac{\left|g(y') - g(y) - f'(x)^{-1}(y' - y)\right|}{|y' - y|} \le \frac{\left\|f'(x)^{-1}\right\|}{\lambda} \frac{|f(x') - f(x) - f'(x)(x' - x)|}{|x' - x|},$$

当 $y' \rightarrow y$ 的时候, (3) 表明 $x' \rightarrow x$, 而 f 在 x 处可微, 所以上式表明 g 在 y 处可微, 并且

$$g'(y) = f'(x)^{-1} = f'(g(y))^{-1}.$$

由于 f',g 以及矩阵求逆映射是连续的, 所以 $g'(y) = f'(g(y))^{-1}$ 是连续映射, 故 $g \in C^1$.

推论 5.5. 令 $E \subseteq \mathbb{R}^n$ 是开集, $f: E \to \mathbb{R}^n$ 连续可微,如果对于任意 $x \in E$,f'(x) 都可逆,那么 f 是开映射,即对于任意开集 $W \subseteq E$,f(W) 也是开集.

Proof. 任取 $f(x) \in f(W)$,那么 f 在 x 的某个邻域 $U \subseteq W$ 上是 $U \to f(U)$ 的双射,且 $f(U) \subseteq f(W)$ 是开集,所以 f(W) 是开集。

反函数定理告诉我们,对于方程组

$$f_i(x_1,\ldots,x_n)=y_i\quad (1\leq i\leq n),$$

如果 f 连续可微且 $f'(x_0)$ 可逆, 那么只要将 $(y_1, ..., y_n)$ 和 $(x_1, ..., x_n)$ 分别限制在 $f(x_0)$ 和 x_0 的足够小的邻域中, 这个方程组总是有唯一解, 并且解连续可微.

6 隐函数定理

我们先规定一些记号. 若点 $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ 和 $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$, 记

$$(x, y) = (x_1, \dots, x_n, y_1, \dots, y_m) \in \mathbb{R}^{n+m}.$$

任意线性映射 $L: \mathbb{R}^{n+m} \to \mathbb{R}^m$ 可以分成两个部分 $L_1: \mathbb{R}^n \to \mathbb{R}^m$ 和 $L_2: \mathbb{R}^m \to \mathbb{R}^m$, 定义为

$$L_1(x) = L(x, 0), \quad L_2(y) = L(0, y).$$

于是

$$L(x, y) = L_1(x) + L_2(y)$$
.

引理 6.1. 如果 $L: \mathbb{R}^{n+m} \to \mathbb{R}^m$ 是线性映射, L_2 可逆. 那么对于每个 $x \in \mathbb{R}^n$, 存在唯一的 $y \in \mathbb{R}^m$ 使得 L(x,y) = 0. 并且

$$y = -L_2^{-1}(L_1(x)).$$

Proof. L(x,y) = 0 表明 $L_1(x) + L_2(y) = 0$, 所以 L_2 可逆表明 $y = -L_2^{-1}(L_1(x))$ 是唯一解. \square

定理 6.2 (隐函数定理). 令 $E \subseteq \mathbb{R}^{n+m}$ 是开集, $f : E \to \mathbb{R}^m$ 是连续可微映射,如果某个点 $(x_0, y_0) \in E$ 使得 $f(x_0, y_0) = 0$ 且 $f'_2(x_0, y_0) : \mathbb{R}^m \to \mathbb{R}^m$ 可逆,那么存在 (x_0, y_0) 的邻域 $U \subseteq \mathbb{R}^{n+m}$ 和 x_0 的邻域 $W \subseteq \mathbb{R}^n$,使得:

- (1) 对于每个 $x \in W$,存在唯一的 y 满足 $(x, y) \in U$ 以及 f(x, y) = 0.
- (2) 记上述 y = g(x),那么函数 $g: W \to \mathbb{R}^m$ 是连续可微映射,并且使得

$$f(x,g(x)) = 0,$$

g 在 $x \in W$ 处的微分为

$$g'(x) = -(f_2'(x, g(x)))^{-1} f_1'(x, g(x)).$$

我们把 g 称为 f 定义的**隐函数**.

Proof. 定义 $F: E \to \mathbb{R}^{n+m}$ 为

$$F(x, y) = (x, f(x, y)).$$

那么 F 是连续可微映射. 其在 (x_0, y_0) 处的 Jacobi 矩阵为

$$JF(x_0, y_0) = \begin{pmatrix} I_n \\ Jf_1(x_0, y_0) & Jf_2(x_0, y_0) \end{pmatrix},$$

其中 Jf_1, Jf_2 分别表示微分 $f_1'(x_0, y_0), f_2'(x_0, y_0)$ 的表示矩阵. $f_2'(x_0, y_0)$ 可逆表明矩阵 $Jf_2(x_0, y_0)$ 可逆,所以 $JF(x_0, y_0)$ 可逆.对 F 应用反函数定理,存在包含 (x_0, y_0) 的开集 $U \subseteq \mathbb{R}^{n+m}$,包含 $(x_0, 0) = (x_0, f(x_0, y_0))$ 的开集 $V \subseteq \mathbb{R}^{n+m}$,使得 $F: U \to V$ 是双射.令

$$W = \{ x \in \mathbb{R}^n \mid (x, 0) \in V \},$$

那么 $x_0 \in W$, 且 V 是开集表明 W 是开集.

- (1) 对于每个 $x \in W$, $(x,0) \in V$, 所以存在唯一的 $(x',y) \in U$ 使得 (x,0) = F(x',y) = (x', f(x',y)), 这表明 x' = x, f(x',y) = 0, 故 f(x,y) = 0, 这就证明了 (1).
- (2) 任取 $x \in W$, 那么 f(x, g(x)) = 0, 所以 F(x, g(x)) = (x, 0). 记 $G: V \to U$ 是 F 的逆映射, 于是

$$(x,g(x)) = G(x,0),$$

由于 G 连续可微, 所以 g 连续可微.

记 $\Phi(x) = (x, g(x))$, 那么 $f(\Phi(x)) = 0$, 求 x 处的微分, 根据链式法则, 所以

$$f'(x, g(x))\Phi'(x) = f'(\Phi(x))\Phi'(x) = 0,$$

任取 $v \in \mathbb{R}^n$, 有

$$\Phi'(x)(v) = (v, g'(x)(v)),$$

所以

$$f'(x,g(x))\big(v,g'(x)(v)\big) = 0,$$

根据 引理 6.1, 就有

$$g'(x)(v) = -(f_2'(x, y))^{-1} f_1'(x, y)(v).$$

例 6.3. 取 n=3, m=2. 考虑映射 $f: \mathbb{R}^{3+2} \to \mathbb{R}^2$ 为

$$f(x_1, x_2, x_3, y_1, y_2) = (2e^{y_1} + x_1y_2 - 4x_2 + 3, y_2 \cos y_1 - 6y_1 + 2x_1 - x_3),$$

取 $(x_0, y_0) = (3, 2, 7, 0, 1)$, 那么 $f(x_0, y_0) = 0$. Jacobi 矩阵为

$$Jf(x_0, y_0) = \begin{pmatrix} 1 & -4 & 0 & 2 & 3 \\ 2 & 0 & -1 & -6 & 1 \end{pmatrix},$$

所以 $f_1'(x_0, y_0)$ 和 $f_2'(x_0, y_0)$ 的表示矩阵分别为

$$Jf_1(x_0, y_0) = \begin{pmatrix} 1 & -4 & 0 \\ 2 & 0 & -1 \end{pmatrix}, \quad Jf_2(x_0, y_0) = \begin{pmatrix} 2 & 3 \\ -6 & 1 \end{pmatrix}.$$

故 $f_2'(x_0, y_0)$ 可逆. 这表明在 (3, 2, 7) 的某个邻域 W 上存在连续可微函数 $g: W \to \mathbb{R}^2$,其满足 g(3, 2, 7) = (0, 1) 以及 f(x, g(x)) = 0,并且

$$Jg(x_0) = -(Jf_2(x_0, y_0))^{-1}Jf_1(x_0, y_0) = -\frac{1}{20} \begin{pmatrix} 1 & -3 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & -4 & 0 \\ 2 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{5} & -\frac{3}{20} \\ -\frac{1}{2} & \frac{6}{5} & \frac{1}{10} \end{pmatrix}.$$

例 6.4 (隐式曲面). 设 $f: \mathbb{R}^3 \to \mathbb{R}$ 连续可微, 对于 $c \in \mathbb{R}$, 记

$$S = f^{-1}(c) = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = c\},\$$

S 称为 f 在 c 处的水平集. 如果对于任意 $(x,y,z) \in S$, 均有 $\nabla f(x,y,z) \neq 0$, 那么 S 称为 f 确定的**隐式曲面**.

设 $(x_0, y_0, z_0) \in S$, 不妨设 $\partial f/\partial z(x_0, y_0, z_0) \neq 0$, 根据隐函数定理, 在 (x_0, y_0, z_0) 附近, 存在连续可微函数 g 使得

$$f(x, y, g(x, y)) = c,$$

此时 S 可以用 z = g(x, y) 表示, 并且

$$\frac{\partial g}{\partial x}(x,y) = -\frac{\partial f/\partial x(x,y,z)}{\partial f/\partial z(x,y,z)}, \quad \frac{\partial g}{\partial y}(x,y) = -\frac{\partial f/\partial y(x,y,z)}{\partial f/\partial z(x,y,z)}.$$

7 秩定理

秩定理可以视为反函数定理的进一步推广, 秩定理表明一个连续可微映射 f 在点 x 附近的行为类似于线性映射 f'(x).

首先我们简单介绍一下线性代数中的投影映射. 设 $P:V\to V$ 是线性变换, 如果 $P^2=P$, 那么我们说 P 是**投影变换**. 假设 V 是有限维向量空间, 我们有 $V=\ker P+\operatorname{im} P$. 任取 $P(x)\in\ker P\cap\operatorname{im} P$, 那么 $P(x)=P^2(x)=0$, 所以 $\ker P\cap\operatorname{im} P=0$, 因此 $V=\ker P\oplus\operatorname{im} P$. 给定 V 的一个子空间 U, 设子空间 W 使得 $V=U\oplus W$, 那么任意 $x\in V$ 可以唯一写为 $x=x_1+x_2$, 其中 $x_1\in U$, $x_2\in W$. 定义 $P_U:V\to V$ 为 $P_U(x)=x_1$, 显然 P 是线性变换并且 $\operatorname{im} P_U=U$, 并且 $P_U^2(x)=P_U(x_1)=x_1=P_U(x)$, 所以此时 P_U 称为 V 在 U 上的投影.

定理 7.1 (秩定理). 设 $E \subseteq \mathbb{R}^n$ 是开集, $f: E \to \mathbb{R}^m$ 是连续可微映射,并且对于任意 $x \in E$,线性映射 f'(x) 的秩恒为 r,此时 $0 \le r \le \min(m,n)$. 给定 $x_0 \in E$,记 $S = \operatorname{im} f'(x_0)$, P_S 表示 \mathbb{R}^m 在 S 上的投影. 那么存在连续可微的双射 $G: U \to V$ (并且逆映射也连续可微),其中 U 是包含 x_0 的开集,V 是 \mathbb{R}^n 的开集,使得 $x \in V$ 时有

$$f(G^{-1}(x)) = f'(x_0)(x) + \varphi(f'(x_0)(x)),$$

其中 φ 是 S 的开集 $f'(x_0)(V)$ 到 ker $P_S = S^{\perp}$ 的连续可微映射.

Proof. 如果 r = 0, 根据 推论 5.3, 可以取 U 为 x_0 处的一个开球, V = U, G(x) = x, $\varphi(0) = f(x_0)$, 那么 f 在 U 上为常值映射,故 $f(G^{-1}(x)) = x_0 = f'(x_0)(x) + \varphi(f'(x_0)(x))$.

下面假设 r > 0. 定义 $G: E \to \mathbb{R}^n$ 为

$$G(x) = x + f'(x_0)^{\dagger} (f(x) - f'(x_0)x),$$

 $f'(x_0)^{\dagger}$ 表示 $f'(x_0)$ 的 Moore-Penrose 广义逆, 其满足 $f'(x_0)f'(x_0)^{\dagger} = P_S$ 以及 $f'(x_0)^{\dagger}f'(x_0) = P_W$, $W = \ker f'(x_0)^{\perp}$. 此时 $G'(x_0) = I_n$ 为 \mathbb{R}^n 上的恒等映射. 根据反函数定理, 存在包含 x_0 的 开集 U 和 \mathbb{R}^n 的开集 V 使得 $G: U \to V$ 是连续可微的双射. 此外, 通过缩小 U, V, 我们可以使得 V 是凸开集.

任取 $x \in V$, 那么

$$x = G(G^{-1}(x)) = G^{-1}(x) + f'(x_0)^{\dagger} f(G^{-1}(x)) - f'(x_0)^{\dagger} f'(x_0) (G^{-1}(x)),$$

将 $f'(x_0)$ 作用于上式两边, 所以

$$P_S f(G^{-1}(x)) = f'(x_0)(x) - f'(x_0)(G^{-1}(x)) + f'(x_0)(G^{-1}(x)) = f'(x_0)(x).$$

参考文献

[1] Axler S. Linear Algebra Done Right. Springer Nature; 2024.