

the Fibonacci sequence


```
// F_0 = 0

// F_1 = 1

// F_2 = F_1 + F_0 = 1 + 0 = 1

// F_3 = F_2 + F_1 = 1 + 1 = 2

// F_4 = F_3 + F_2 = 2 + 1 = 3

// F_5 = F_4 + F_3 = 3 + 2 = 5

// F_6 = F_5 + F_4 = 5 + 3 = 8

// F_7 = F_6 + F_5 = 8 + 5 = 13

// ...
```

recursion

review: recursion basics

```
recursion

- a recursive function is a function that calls itself

- each call must make progress towards a base case
(when the function finally returns without calling itself)

- → when in doubt, try something like zero for your base case

class Main {
    static int digitsum(int n) {
        if (n == 0) {
            return 0;
        }
        return digitsum(n / 10) + (n % 10);
    }

public static void main(String[] arguments) {
    PRINT(digitSum(256)); // 13
    }
}
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
} return digitSum(n / 10) + (n % 10);
}

return digitSum(0) + 2;

return digitSum(2) + 5;

return digitSum(25) + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return digitSum(0) + 2;

return digitSum(2) + 5;

return digitSum(25) + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return digitSum(2) + 5;

return digitSum(2) + 5;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return digitSum(2) + 5;

return digitSum(25) + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return digitSum(2) + 5;

return digitSum(25) + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return 2 + 5;

return digitSum(25) + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return digitSum(25) + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return 7;

return 7;

int a = digitSum(250);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return 7 + 6;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return 13;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

return 13;

int a = digitSum(256);
```

```
static int digitSum(int n) {
    if (n == 0) {
        return 0;
    }
    return digitSum(n / 10) + (n % 10);
}

int a = 13;
```


A recursion hazard 1
repeated computation

```
example: slow very slow fibonnaci

(couldn't we just use a for loop...?)

// F_0 = 0

// F_1 = 1

// F_2 = F_1 + F_0 = 1 + 0 = 1

// F_3 = F_2 + F_1 = 1 + 1 = 2

// F_4 = F_3 + F_2 = 2 + 1 = 3

// F_5 = F_4 + F_3 = 3 + 2 = 5

// ...

static long fib(long k) {

    if (k == 0) { return 0; }

    if (k == 1) { return 1; }

    return fib(k - 1) + fib(k - 2); }
```

```
fib(4)
```

```
(fib(3) + fib(2))
```

((fib(2) + fib(1)) + (fib(1) + fib(0)))(((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0)))(((1 + 0) + 1) + (1 + 0))((1 + 1) + 1)(2 + 1)

we computed fib(2) from scratch two seperate times

we are **repeating computation!**(what a waste 😓)

and for bigger n... there is (much) more repetition

[fib(5), fib(36), fib(77) demo]


```
dangerous slow \sum_{i=1}^n i=1+\cdots+n \sum_{i=1}^{n} i=1+\cdots+n static int sum(int n) { if (n == 0) return 0; return n + sum(n - 1); }
```

```
sum(100000)
```



```
sum(0)

... what about this picture does NOT spark joy?

sum(99999)

sum(100000)
```


[sum(100000) demo]

our depth-first binary (search) tree traversals were recursive...
...should we be worried about them overflowing the callstack?

*additionally, some languages/compilers** have "tail-call optimization," which would prevent a stack overflow for sum(100000)

**Java is not one of these languages (as our demo showed)

dynamic programming

dynamic programming is when you use the result of previous computation

(this is a squishy definition)

memoization

memoization means storing the results of previous functions calls, so we don't have to repeat work when the function is called again

```
static HashMap-Long, Long> table = new HashMap⇒();

static long memoizedFib(long k) { // NOTE: long is an integer type that can store larger numbers than int if (k = 0) { return 0; }

long Fkml; if (table.containsKey(k - 1); { Fkml = table.pet(k - 1); }

long Fkml; if (table.containsKey(k - 1); table.put(k - 1, Fkml); }

long Fkml; if (table.containsKey(k - 2); { Fkml = memoizedFib(k - 2); }

long Fkml; if (table.containsKey(k - 2)) { fkml = memoizedFib(k - 2); }

long a = memoizedFib(n); long a = memoizedFib(n); long b = memoizedFib(n - 1); long c = memoizedFib(n + 1); }

return Fkml + Fkml;

}
```

```
int n = ...;
long a = memoizedFib(n);  // O(n)
long b = memoizedFib(n - 1); // O(1)
long c = memoizedFib(n + 1); // O(1)
```

```
closed form fibonacci
```

```
Computation by rounding [\operatorname{edit}] Since \frac{|\psi|^n}{\sqrt{5}} < \frac{1}{2} for all n \ge 0, the number F_n is the closest integer to \frac{\varphi^n}{\sqrt{5}}. Therefore it can be found by rounding, or in terms of the floor function: F_n = \left[\frac{\varphi^n}{\sqrt{5}} + \frac{1}{2}\right], \ n \ge 0. Or the nearest integer function: F_n = \left[\frac{\varphi^n}{\sqrt{5}} + \frac{1}{2}\right], \ n \ge 0. Similarly, if was already from that the number F > 1 is a Fibonacci number, we can determine its index within the sequence by n(F) = \left\lfloor \log_{\varphi} \left(F \cdot \sqrt{5} + \frac{1}{2}\right) \right\rfloor
```

```
approximate closed-form fibonnaci

// NOTE: Because of floating point error, this does not work for big n.

// (On my computer, returns wrong result for n > 70.)

static long closedFormFib(long n) {

final double goldenRatio = (1.0 + Math.sqrt(5.0)) / 2.0;

return Math.round(Math.pow(goldenRatio, n) / Math.sqrt(5.0));
}
```

exponentiation by squaring

note: there is actually a log(n) algorithm using matrices and "exponentiation by squaring"

this algorithm does NOT have floating point problems (all numbers are integers)

```
N=1
                             N=8
1
  1
         2 1
                   5 3
                            34 21
                     2
1
   0
         1
            1
                   3
                            21 13
           2
                     4
 1
                              8
Times matrix is multiplied with itself
```

Week11b - Fibonacci wrapup - recursion example Your goal is to compute 3^n ("3 to the n-th power") using only the multiplication operator (*) Give an O(n) algorithm Give an O(log n) algorithm

recursive fibonacci wrapup

review:
bad bad very bad
recursive O(2^n) fibonacci

```
recursive O(2^n) fibonacci

static long fib(long k) {
    if (k == 0) { return 0; }
    if (k == 1) { return 1; }
    return fib(k - 1) + fib(k - 2);
}
```

review: recursive memoized O(n) fibonacci

```
memoized recursive O(n) fibonacci

// NOTE: Could also have used an array, with, for example, value 0 meaning "not yet computed." static HashMapcinteger, Long- table = new HashMapco(); static long fib(int k) {
    if (k = 0) { return 0; }
    if (k = 1) { return 1; }

    long Fkml;
    if (table.containsKey(k - 1)) {
        Fkml = table.get(k - 1); }
    } else {
        Fkm2 = fib(k - 1, Fkm1); }

long Fkm2;
    if (table.containsKey(k - 2)) {
        Fkm2 = table.get(k - 2); }
    } else {
        Fkm2 = fib(k - 2); }
    table.put(k - 2, Fkm2); }

return Fkm1 + Fkm2; }
```

can we get the best of both worlds?

(easy to read, fast)

[add a helper function]

```
recursive O(n) fibonnaci

static HashMap<Integer, Long> table = new HashMap⇔();

static long fibHelper(int k) {
  long result;
  if (table.containsKey(k)) {
    result = table.get(k);
  } else {
    result = fib(k);
    table.put(k, result);
  }
  return result;
}

static long fib(int k) {
  if (k = 0) { return 0; }
  if (k = 1) { return 1; }
  return fibHelper(k - 1) + fibHelper(k - 2);
}
```

alternate fibonacci approaches iterative (not-recursive) O(n) fibonacci

```
iterative O(n) fibonnaci

static long fib(int n) {
    long Fi = 1;
    long fib = 2;
    long fib =
```

closed form fibonacci

```
Computation by rounding \sup_{\text{Since}} \frac{\|\psi^{\|n}\|}{\sqrt{5}} < \frac{1}{2} for all n \ge 0, the number F_{\sigma} is the closest integer to \frac{\varphi^n}{\sqrt{5}}. Therefore it can be found by rounding, \sigma in terms of the floor function: F_n = \left\lfloor \frac{\varphi^n}{\sqrt{5}} \cdot \frac{1}{2} \right\rfloor, \ n \ge 0. Or the reservating function: F_n = \left\lceil \frac{\varphi^n}{\sqrt{5}} \cdot \frac{1}{2} \right\rceil, \ n \ge 0. Similarly, if was already brown that the number F > 1 is a Fibonacci number, we can determine its index within the sequence by n(F) = \left\lfloor \log_{\varphi} \left( F \cdot \sqrt{5} + \frac{1}{2} \right) \right\rfloor
```

approximate closed-form fibonnaci

// NOTE: Because of floating point error, this does not work for big n.

// (On my computer, returns wrong result for n > 70.)

static long closedform#ib(long n) {
 final double goldenRatio = (1.0 + Math.sqrt(5.0)) / 2.0;
 return Math.round(Math.pow(goldenRatio, n) / Math.sqrt(5.0));
}

O(log n)
matrix exponentiation by
squaring (oh no)

problem: calculate fib(64)
observation: 64 = 2 * 2 * 2 * 2 * 2 * 2

[matrix multiplication review]

[update rule as a matrix multiplication]

[matrix exponentiation by squaring]

recursion example subset sum

problem overview

given a finite set of numbers $\{a, b, c, \dots\}$, no. --Mark is there **any** subset that sums to target *T*? examples - is there any subset of { 1, 3, 5 } that sums to 4? $\begin{array}{ll} -\ \ \mbox{yes}; \{\,1,\,3\,\} \\ \mbox{is there any subset of} \,\{\,1,\,3,\,5\,\} \,\mbox{that sums to 9?} \\ \mbox{-\ \ yes}; \,\{\,1,\,3,\,5\,\} \end{array}$ solution method is there any subset of { 1, 3, 5 } that sums to 0? is there any subset of { 1, 3, 5 } that sums to 7? given a finite set of numbers $\{a, b, c, \dots\}$, is there **any** subset that sums to target *T*? any

what are the subsets of { 1, 2, 3, 4, 5, 6, 7, 8, 9 }?

there are 29 of them

each of the 9 elements is either included or not included (excluded) in the subset

9 include/exclude decisions => 29

what are the subsets of $\{3, 4, 5\}$?

hint

Question: "can any subset of $\{a, b, c, ...\}$ sum to T?"

key insight

Considering just a, we have **two cases**:

1) exclude a in this case, **Equivalent Question**: "can any subset of $\{b,c,...\}$ sum to T?" 2) include a

in this case, **Equivalent Question:** "can any subset of $\{b, c, ...\}$ sum to T - a?"

okay cool good luck

final project

final project

You may do your final project on whatever you like, provided you can answer the following questions.

- 1. What is the **title** of my project?
- 2. What data structures will I use?
- Note: Arrays count.
- 3. What is the game/app that I am proposing? What does it do?
- How does it *feel*?

 4. Will the viewer/player **interact** with my project?
- How so?
- 5. Does Jim think my project is doable? What is my fallback plan if my project ends up being harder than I expect? What extensions can I do if my project ends up being easier than I expect?
- 6. What is the very **first thing I will implement?** (Drawing "the data" is usually a good first step.)

do your final project on whatever you like answer the following questions

- 1. title
- data structures
- 3. What
- 4. interact
- 5. doable
- 6. first thing I will implement

example

- Woo!-doku
- 2D array to represent the board.
- A colorful sudoku board, that does a happy dance when you solve it.
- Click to select cells. Type numbers on the keyboard to fill in numbers.
- Yes! And you can write a sudoku solver or automatic board generation if you have extra time!
- Store a board I found on the internet as a 2D array (0's for empty cells) and draw it to the Terminal using print statements (or...just skip straight to Cow)

how are we feeling?

why am i making you make a thing

how to make a thing

how not to make a thing

note: this advice is like...just advice feel free to ignore (at your own peril) ©

project selection

who (doesn't) have a final project idea?

discuss amongst each other

focus (just make sudoku)

then again, sometimes you just gotta go for it.

who (doesn't) know what they're going to implement first?

discuss amongst each other

final thoughts

final thoughts

- don't be afraid to write code
- don't be afraid to delete code
- don't be (too) afraid to fail
- you will be graded primarily on effort

how are we feeling?