### Линейные операторы в *n*-мерном пространстве

*Верещагин Антон Сергеевич* д-р. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

QR-код презентации



20 февраля 2024 г.

#### Аннотация

Линейные операторы в *n*-мерном пространстве. Подобные матрицы. Определитель оператора. Обратный оператор. Характеристические числа и собственные векторы линейного оператора. Две теоремы о собственных векторах. Линейные операторы простой структуры.

#### Определение

Линейный оператор  $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ , отображающий п-мерное векторное пространство  $\mathbb{R}^n$  само в себя, называется линейным оператором в  $\mathbb{R}^n$ .

#### Определение

Линейный оператор  $\mathcal{A}:\mathbb{R}^n\to\mathbb{R}^n$ , отображающий п-мерное векторное пространство  $\mathbb{R}^n$  само в себя, называется линейным оператором в  $\mathbb{R}^n$ .

Особенности линейных операторов над  $R^n$ 

#### Определение

Линейный оператор  $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ , отображающий п-мерное векторное пространство  $\mathbb{R}^n$  само в себя, называется линейным оператором в  $\mathbb{R}^n$ .

#### Особенности линейных операторов над $R^n$

1) Существует оператор  $\mathcal{E}$  (называемый единичным) такой, что для любого вектора  $\vec{x}$  из  $R^n$ 

$$\mathcal{E}\vec{x} = \vec{x}$$
.

#### Определение

Линейный оператор  $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$ , отображающий п-мерное векторное пространство  $\mathbb{R}^n$  само в себя, называется линейным оператором в  $\mathbb{R}^n$ .

#### Особенности линейных операторов над $R^n$

1) Существует оператор  $\mathcal{E}$  (называемый единичным) такой, что для любого вектора  $\vec{x}$  из  $R^n$ 

$$\mathcal{E}\vec{x} = \vec{x}$$
.

2) Для любого оператора  $\mathcal{A}$  из  $\mathbb{R}^n$  справедливо соотношение

$$AE = EA = A$$
.

Выберем базис в  $R^n$ :  $\vec{e_1}$ , ...,  $\vec{e_n}$ .

Выберем базис в  $\mathbb{R}^n$ :  $\vec{e_1}$ , ...,  $\vec{e_n}$ . В этом базисе оператору  $\mathcal{A}$  соответствует квадратная  $n \times n$  матрица A.

Выберем базис в  $\mathbf{R}^n$ :  $\vec{e_1}$ , ...,  $\vec{e_n}$ . В этом базисе оператору  $\mathcal A$  соответствует квадратная  $n \times n$  матрица A. Столбцы этой матрицы составлены из координат вектора  $\mathcal A \vec{e_i}$  в базисе  $\vec{e_i}$   $i,j=\overline{1,n}$ .

Выберем базис в  $\mathbf{R}^n$ :  $\vec{e_1}$ , ...,  $\vec{e_n}$ . В этом базисе оператору  $\mathcal{A}$  соответствует квадратная  $n \times n$  матрица A. Столбцы этой матрицы составлены из координат вектора  $\mathcal{A}\vec{e_i}$  в базисе  $\vec{e_i}$   $i,j=\overline{1,n}$ .

$$A = ( \mathcal{A}\vec{e}_1 \mid \mathcal{A}\vec{e}_2 \mid \dots \mid \mathcal{A}\vec{e}_n ) = \left( egin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{array} 
ight)$$

Теорема

Пусть  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$  – линейные операторы в  $\mathbb{R}^n$ .

#### Теорема

Пусть A, B, C – линейные операторы в  $R^n$ . Пусть A, B, C –  $n \times n$  матрицы соответствующие линейным операторам A, B, C,

#### Теорема

Пусть  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$  – линейные операторы в  $\mathbb{R}^n$ . Пусть A, B, C –  $n \times n$  матрицы соответствующие линейным операторам  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$ , а x – вектор столбец из координат вектора  $\vec{x}$ , в базисе  $\vec{e_i}$  ( $i=\overline{1,n}$ ) и  $\alpha \in \mathbb{R}$ , тогда

#### Теорема

Пусть  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$  – линейные операторы в  $\mathbb{R}^n$ . Пусть A, B, C –  $n \times n$  матрицы соответствующие линейным операторам  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$ , а x – вектор столбец из координат вектора  $\vec{x}$ , в базисе  $\vec{e_i}$  ( $i=\overline{1,n}$ ) и  $\alpha \in \mathbb{R}$ , тогда

$$C = A + B \Leftrightarrow C = A + B;$$

#### Теорема

Пусть  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$  – линейные операторы в  $\mathbb{R}^n$ . Пусть A, B, C –  $n \times n$  матрицы соответствующие линейным операторам  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$ , а x – вектор столбец из координат вектора  $\vec{x}$ , в базисе  $\vec{e_i}$  ( $i=\overline{1,n}$ ) и  $\alpha \in \mathbb{R}$ , тогда

$$C = A + B \Leftrightarrow C = A + B;$$
  
 $C = AB \Leftrightarrow C = AB;$ 

#### Теорема

Пусть  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$  – линейные операторы в  $\mathbb{R}^n$ . Пусть A, B, C –  $n \times n$  матрицы соответствующие линейным операторам  $\mathcal{A}$ ,  $\mathcal{B}$ ,  $\mathcal{C}$ , а x – вектор столбец из координат вектора  $\vec{x}$ , в базисе  $\vec{e_i}$  ( $i=\overline{1,n}$ ) и  $\alpha \in \mathbb{R}$ , тогда

$$C = A + B \Leftrightarrow C = A + B;$$
  
 $C = AB \Leftrightarrow C = AB;$   
 $C = \alpha A \Leftrightarrow C = \alpha A$ 

(Доказательство вытекает из определения операций).

#### Следствие

Множество линейных операторов линейно относительно сложения и умножения на число.

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbb{R}^n$ ,

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbb{R}^n$ , т.е.  $\forall \vec{x} \in \mathbb{R}^n$   $\mathcal{E}\vec{x} = \vec{x}$ .

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbb{R}^n$ , т.е.  $\forall \vec{x} \in \mathbb{R}^n$   $\mathcal{E}\vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$ 

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbf{R}^n$ , т.е.  $\forall \vec{x} \in \mathbf{R}^n$   $\mathcal{E}\vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$  – разложение вектора  $\vec{x}$  по базису пространства  $\mathbf{R}^n$   $\vec{e}_i$   $i = \overline{1,n}$ .

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbf{R}^n$ , т.е.  $\forall \vec{x} \in \mathbf{R}^n$   $\mathcal{E} \vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$  – разложение вектора  $\vec{x}$  по базису пространства  $\mathbf{R}^n$   $\vec{e}_i$   $i = \overline{1,n}$ . Тогда

$$\mathcal{E}\vec{e}_1 = 1 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \ldots + 0 \cdot \vec{e}_n$$

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbf{R}^n$ , т.е.  $\forall \vec{x} \in \mathbf{R}^n$   $\mathcal{E} \vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$  – разложение вектора  $\vec{x}$  по базису пространства  $\mathbf{R}^n$   $\vec{e}_i$   $i = \overline{1,n}$ . Тогда

$$\begin{array}{lll} \mathcal{E}\vec{e}_1 & = & 1 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \ldots + 0 \cdot \vec{e}_n \\ \mathcal{E}\vec{e}_2 & = & 0 \cdot \vec{e}_1 + 1 \cdot \vec{e}_2 + \ldots + 0 \cdot \vec{e}_n \\ \vdots \end{array}$$

Пусть  $\mathcal{E}$  — единичный оператор в  $\mathbf{R}^n$ , т.е.  $\forall \vec{x} \in \mathbf{R}^n$   $\mathcal{E} \vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$  — разложение вектора  $\vec{x}$  по базису пространства  $\mathbf{R}^n$   $\vec{e}_i$   $i = \overline{1,n}$ . Тогда

$$\mathcal{E}\vec{e}_1 = 1 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \dots + 0 \cdot \vec{e}_n 
\mathcal{E}\vec{e}_2 = 0 \cdot \vec{e}_1 + 1 \cdot \vec{e}_2 + \dots + 0 \cdot \vec{e}_n 
\vdots 
\mathcal{E}\vec{e}_n = 0 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \dots + 1 \cdot \vec{e}_n$$

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbf{R}^n$ , т.е.  $\forall \vec{x} \in \mathbf{R}^n$   $\mathcal{E} \vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$  – разложение вектора  $\vec{x}$  по базису пространства  $\mathbf{R}^n$   $\vec{e}_i$   $i = \overline{1,n}$ . Тогда

$$\mathcal{E}\vec{e}_{1} = 1 \cdot \vec{e}_{1} + 0 \cdot \vec{e}_{2} + \dots + 0 \cdot \vec{e}_{n} 
\mathcal{E}\vec{e}_{2} = 0 \cdot \vec{e}_{1} + 1 \cdot \vec{e}_{2} + \dots + 0 \cdot \vec{e}_{n} 
\vdots 
\mathcal{E}\vec{e}_{n} = 0 \cdot \vec{e}_{1} + 0 \cdot \vec{e}_{2} + \dots + 1 \cdot \vec{e}_{n}$$

Следовательно оператору  $\mathcal E$  соответствует единичная матрица:

Пусть  $\mathcal{E}$  – единичный оператор в  $\mathbf{R}^n$ , т.е.  $\forall \vec{x} \in \mathbf{R}^n$   $\mathcal{E} \vec{x} = \vec{x}$ . Пусть  $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n$  – разложение вектора  $\vec{x}$  по базису пространства  $\mathbf{R}^n$   $\vec{e}_i$   $i = \overline{1,n}$ .

Тогда

$$\mathcal{E}\vec{e}_1 = 1 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \dots + 0 \cdot \vec{e}_n 
\mathcal{E}\vec{e}_2 = 0 \cdot \vec{e}_1 + 1 \cdot \vec{e}_2 + \dots + 0 \cdot \vec{e}_n 
\vdots 
\mathcal{E}\vec{e}_n = 0 \cdot \vec{e}_1 + 0 \cdot \vec{e}_2 + \dots + 1 \cdot \vec{e}_n$$

Следовательно оператору  ${\mathcal E}$  соответствует единичная матрица:

$$E = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right).$$

Определение Две матрицы A и B,

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ ,

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными,

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Теорема

Пусть A – линейный оператор в  $\mathbb{R}^n$ ,

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Теорема

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , A – матрица, соответствующая оператору  $\mathcal{A}$ 

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Теорема

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , A – матрица, соответствующая оператору  $\mathcal{A}$  в базисе  $\vec{e_i}$  ( $i=\overline{1,n}$ ),

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Теорема

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , A – матрица, соответствующая оператору  $\mathcal{A}$  в базисе  $\vec{e}_i$  ( $i=\overline{1,n}$ ), а A' – матрица, соответствующая оператору  $\mathcal{A}$ 

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Теорема

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , A – матрица, соответствующая оператору  $\mathcal{A}$  в базисе  $\vec{e}_i$  ( $i=\overline{1,n}$ ), а A' – матрица, соответствующая оператору  $\mathcal{A}$  в базисе  $\vec{g}_i$  ( $i=\overline{1,n}$ ).

#### Определение

Две матрицы A и B, связанные соотношением  $B = TAT^{-1}$ , называются подобными, где T – неособенная матрица.

#### Теорема

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , A – матрица, соответствующая оператору  $\mathcal{A}$  в базисе  $\vec{e}_i$  ( $i=\overline{1,n}$ ), а A' – матрица, соответствующая оператору  $\mathcal{A}$  в базисе  $\vec{g}_i$  ( $i=\overline{1,n}$ ). Тогда матрицы A и A' подобны.

Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода

#### Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n}).$ 

#### Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ .

#### Доказательство.

Пусть  $T^{\mathfrak{t}}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ . Пусть x и x' – координаты вектора  $\vec{x}\in\mathbb{R}^{n}$ ,

#### Доказательство.

Пусть  $T^{\mathfrak{t}}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ . Пусть x и x' – координаты вектора  $\vec{x}\in\mathbb{R}^{n}$ , а y и y' – координаты вектора  $\vec{y}\in\mathbb{R}^{n}$  в заданных базисах.

#### Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ . Пусть x и x' – координаты вектора  $\vec{x}\in\mathbb{R}^{n}$ , а y и y' – координаты вектора  $\vec{y}\in\mathbb{R}^{n}$  в заданных базисах. Тогда

$$y = Ax$$
,  $y' = A'x'$ .

#### Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ . Пусть x и x' – координаты вектора  $\vec{x}\in\mathbb{R}^{n}$ , а y и y' – координаты вектора  $\vec{y}\in\mathbb{R}^{n}$  в заданных базисах. Тогда

$$y = Ax$$
,  $y' = A'x'$ .

По теореме о связи векторов в различных базисах

$$y' = Ty, \quad x' = Tx.$$

#### Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ . Пусть x и x' – координаты вектора  $\vec{x}\in\mathbb{R}^{n}$ , а y и y' – координаты вектора  $\vec{y}\in\mathbb{R}^{n}$  в заданных базисах. Тогда

$$y = Ax$$
,  $y' = A'x'$ .

По теореме о связи векторов в различных базисах

$$y' = Ty, \quad x' = Tx.$$

Подставляя выражение для y' и x' в предыдущие соотношения, получаем

$$y = \left(T^{-1}A'T\right)x.$$

#### Доказательство.

Пусть  $T^{t}$  – неособенная матрица перехода между базисами  $\vec{e}_{i}$  и  $\vec{g}_{j}$   $(i,j=\overline{1,n})$ . Пусть  $\vec{y}=\mathcal{A}\vec{x}$  – образ вектора  $\vec{x}\in\mathbb{R}^{n}$ . Пусть x и x' – координаты вектора  $\vec{x}\in\mathbb{R}^{n}$ , а y и y' – координаты вектора  $\vec{y}\in\mathbb{R}^{n}$  в заданных базисах. Тогда

$$y = Ax$$
,  $y' = A'x'$ .

По теореме о связи векторов в различных базисах

$$y' = Ty$$
,  $x' = Tx$ .

Подставляя выражение для y' и x' в предыдущие соотношения, получаем

$$y = \left(T^{-1}A'T\right)x.$$

Т.к. y = Ax, то в силу произвольности  $\vec{x}$ :  $A = T^{-1}A'T$ .

Пусть A и B – подобные матрицы.

Пусть A и B — подобные матрицы. Тогда  $A = TBT^{-1}$  для некоторой неособой T

Пусть A и B — подобные матрицы. Тогда  $A = TBT^{-1}$  для некоторой неособой T и

$$|A| = |TBT^{-1}| = |T||B||T^{-1}| = |T||B|/|T| = |B|.$$

Пусть A и B — подобные матрицы. Тогда  $A = TBT^{-1}$  для некоторой неособой T и

$$|A| = |TBT^{-1}| = |T||B||T^{-1}| = |T||B|/|T| = |B|.$$

Определение

Oпределителем оператора  $\mathcal{A}: R^n \to R^n$ 

Пусть A и B — подобные матрицы. Тогда  $A = TBT^{-1}$  для некоторой неособой T и

$$|A| = |TBT^{-1}| = |T||B||T^{-1}| = |T||B|/|T| = |B|.$$

#### Определение

Определителем оператора  $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n$  называется определитель матрицы преобразования этого оператора в любом базисе.

# Определитель линейного оператора в $R^n$

Пусть A и B — подобные матрицы. Тогда  $A = TBT^{-1}$  для некоторой неособой T и

$$|A| = |TBT^{-1}| = |T||B||T^{-1}| = |T||B|/|T| = |B|.$$

#### Определение

Определителем оператора  $\mathcal{A}: R^n \to R^n$  называется определитель матрицы преобразования этого оператора в любом базисе. Eсли  $|\mathcal{A}|=0$ , то оператор называется особенным,

Пусть A и B — подобные матрицы. Тогда  $A = TBT^{-1}$  для некоторой неособой T и

$$|A| = |TBT^{-1}| = |T||B||T^{-1}| = |T||B|/|T| = |B|.$$

#### Определение

Определителем оператора  $\mathcal{A}: R^n \to R^n$  называется определитель матрицы преобразования этого оператора в любом базисе. Если  $|\mathcal{A}|=0$ , то оператор называется особенным, в противном случае  $|\mathcal{A}|\neq 0$ , оператор – неособенный.

Свойство Для особенного оператора  ${\cal A}$ 

Свойство Для особенного оператора  ${\cal A}$  существует такой вектор  $\vec x \neq 0$  из  ${\bf R}^n$ ,

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbf R^n$ , что  $\mathcal A \vec x = 0$ .

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbf R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i$  ( $i = \overline{1,n}$ ).

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbf R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $R^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal A$  в этом базисе.

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbb R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i$  ( $i = \overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Тогда операторное уравнение  $\mathcal{A}\vec{x} = 0$ 

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbb R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $R^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal A$  в этом базисе. Тогда операторное уравнение  $\mathcal A \vec{x}=0$  равнозначно матричному

$$Ax = 0.$$

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbb R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $\mathbf{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Тогда операторное уравнение  $\mathcal{A}\vec{x}=0$  равнозначно матричному

$$Ax = 0$$
.

Оператор  $\mathcal{A}$  особенный, значит |A|=0.

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbb R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $R^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal A$  в этом базисе. Тогда операторное уравнение  $\mathcal A\vec x=0$  равнозначно матричному

$$Ax = 0$$
.

Оператор  ${\cal A}$  особенный, значит |A|=0. Следовательно матричное уравнение имеет нетривиальное решение  $x\neq 0$ .

Свойство Для особенного оператора  $\mathcal A$  существует такой вектор  $\vec x \neq 0$  из  $\mathbf R^n$ , что  $\mathcal A \vec x = 0$ .

#### Доказательство.

Выберем базис пространства  $\mathbf{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Тогда операторное уравнение  $\mathcal{A}\vec{x}=0$  равнозначно матричному

$$Ax = 0$$
.

Оператор  ${\cal A}$  особенный, значит |A|=0. Следовательно матричное уравнение имеет нетривиальное решение  $x\neq 0$ .

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i \neq 0$$
 — решение операторного уравнения.

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет следующие свойства:

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет следующие свойства:

1) Из равенства  $\mathcal{A}\vec{x} = 0$  всегда следует, что  $\vec{x} = 0$ .

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет следующие свойства:

- 1) Из равенства  $\mathcal{A}\vec{x} = 0$  всегда следует, что  $\vec{x} = 0$ .
- 2)  $AR^n = R^n$  (полнота).

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет следующие свойства:

- 1) Из равенства  $\mathcal{A}\vec{x} = 0$  всегда следует, что  $\vec{x} = 0$ .
- 2)  $AR^n = R^n$  (полнота).
- 3)  $\mathcal{A}\vec{x} = \mathcal{A}\vec{y}$   $\Leftrightarrow$   $\vec{x} = \vec{y}$  (взаимнооднозначность).

$$1. \mathcal{A}\vec{x} = 0 \quad \Rightarrow \quad \vec{x} = 0$$

Выберем базис пространства  $R^n \vec{e}_i$   $(i = \overline{1,n})$ .

1. 
$$\mathcal{A}\vec{x} = 0 \implies \vec{x} = 0$$

Выберем базис пространства  $R^n \vec{e}_i$  ( $i = \overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе.

1. 
$$\mathcal{A}\vec{x} = 0 \quad \Rightarrow \quad \vec{x} = 0$$

Выберем базис пространства  $R^n \vec{e}_i$  ( $i = \overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Тогда операторное уравнение  $\mathcal{A}\vec{x} = 0$  равнозначно матричному

$$Ax = 0$$
.

1. 
$$\mathcal{A}\vec{x} = 0 \quad \Rightarrow \quad \vec{x} = 0$$

Выберем базис пространства  $R^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Тогда операторное уравнение  $\mathcal{A}\vec{x}=0$  равнозначно матричному

$$Ax = 0$$
.

Оператор  $\mathcal{A}$  неособенный, значит  $|A| \neq 0$ .

#### 1. $\mathcal{A}\vec{x} = 0 \quad \Rightarrow \quad \vec{x} = 0$

#### Доказательство.

Выберем базис пространства  $R^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal A$  в этом базисе. Тогда операторное уравнение  $\mathcal A\vec x=0$  равнозначно матричному

$$Ax = 0$$
.

Оператор  ${\cal A}$  неособенный, значит  $|{\cal A}| \neq 0$ . Следовательно матричное уравнение имеет только одно решение x=0 и, следовательно,  $\vec x=0$ .

### 2. $AR^n = R^n$ (полнота)

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ .

### 2. $AR^n = R^n$ (полнота)

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ).

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе.

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Нужно показать, что операторное уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет решение для любого вектора  $\vec{y}\in\mathbb{R}^n$ .

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Нужно показать, что операторное уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет решение для любого вектора  $\vec{y}\in\mathbb{R}^n$ . Пусть x,y – вектор-столбцы координат векторов  $\vec{x},\vec{y}$  в выбранном базисе соответственно.

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Нужно показать, что операторное уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет решение для любого вектора  $\vec{y}\in\mathbb{R}^n$ . Пусть x,y – вектор-столбцы координат векторов  $\vec{x},\vec{y}$  в выбранном базисе соответственно. В матричном виде уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет вид

$$Ax = y$$
.

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Нужно показать, что операторное уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет решение для любого вектора  $\vec{y}\in\mathbb{R}^n$ . Пусть x,y – вектор-столбцы координат векторов  $\vec{x},\vec{y}$  в выбранном базисе соответственно. В матричном виде уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет вид

$$Ax = y$$
.

Оператор  $\mathcal{A}$  неособенный, значит  $|A| \neq 0$ .

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Нужно показать, что операторное уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет решение для любого вектора  $\vec{y}\in\mathbb{R}^n$ . Пусть x,y – вектор-столбцы координат векторов  $\vec{x},\vec{y}$  в выбранном базисе соответственно. В матричном виде уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет вид

$$Ax = y$$
.

Оператор  ${\cal A}$  неособенный, значит  $|A| \neq 0$ . Следовательно матричное уравнение имеет решение вида  $x = A^{-1}y$ .

#### Доказательство.

Нужно показать, что областью определения линейного неособенного оператора является всё  $\mathbb{R}^n$ . Выберем базис пространства  $\mathbb{R}^n$   $\vec{e}_i$  ( $i=\overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе. Нужно показать, что операторное уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет решение для любого вектора  $\vec{y}\in\mathbb{R}^n$ . Пусть x,y – вектор-столбцы координат векторов  $\vec{x},\vec{y}$  в выбранном базисе соответственно. В матричном виде уравнение  $\mathcal{A}\vec{x}=\vec{y}$  имеет вид

$$Ax = y$$
.

Оператор  $\mathcal{A}$  неособенный, значит  $|A| \neq 0$ . Следовательно матричное уравнение имеет решение вида  $x = A^{-1}y$ .

$$\vec{x} = \sum_{i=1}^{n} x_i \vec{e}_i \neq 0$$
 — решение операторного уравнения.

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i$   $(i = \overline{1,n})$ .

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i$  ( $i = \overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе.

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i$  ( $i = \overline{1,n}$ ). Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе.

Пусть 
$$\mathcal{A}\vec{x} = \mathcal{A}\vec{y}$$
, т.е.  $\mathcal{A}(\vec{x} - \vec{y}) = 0$ .

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i \ (i = \overline{1,n})$ . Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе.

Пусть  $\mathcal{A}\vec{x}=\mathcal{A}\vec{y}$ , т.е.  $\mathcal{A}(\vec{x}-\vec{y})=0$ . Тогда из пункта 1 для неособенного оператора следует, что  $\vec{x}-\vec{y}=0$  или  $\vec{x}=\vec{y}$ .

#### Доказательство.

Выберем базис пространства  $R^n \vec{e}_i \ (i = \overline{1,n})$ . Пусть A – матрица оператора  $\mathcal{A}$  в этом базисе.

Пусть  $\mathcal{A}\vec{x} = \mathcal{A}\vec{y}$ , т.е.  $\mathcal{A}(\vec{x} - \vec{y}) = 0$ . Тогда из пункта 1 для неособенного оператора следует, что  $\vec{x} - \vec{y} = 0$  или  $\vec{x} = \vec{y}$ .

Оператор  $\mathcal{A}$  является однозначной функцией и не может принимать различные значения.

Курс «Спецглавы математики», ФЛА НГТУ

### Обратный оператор

Из доказанных свойств вытекает следующая теорема

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет обратный оператор такой, что:

$$\mathcal{A}^{-1}(\mathcal{A}\vec{x}) = \vec{x},$$

## Обратный оператор

Из доказанных свойств вытекает следующая теорема

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет обратный оператор такой, что:

$$\mathcal{A}^{-1}(\mathcal{A}\vec{x}) = \vec{x},$$

т.е.

$$\mathcal{A}\mathcal{A}^{-1} = \mathcal{A}^{-1}\mathcal{A} = \mathcal{E}.$$

Оператор  $\mathcal{A}^{-1}$  является линейным оператором.

## Обратный оператор

Из доказанных свойств вытекает следующая теорема

#### Теорема

Неособенный оператор  $\mathcal{A}$  в  $\mathbb{R}^n$  имеет обратный оператор такой, что:

$$\mathcal{A}^{-1}(\mathcal{A}\vec{x}) = \vec{x},$$

т.е.

$$\mathcal{A}\mathcal{A}^{-1} = \mathcal{A}^{-1}\mathcal{A} = \mathcal{E}.$$

Оператор  $\mathcal{A}^{-1}$  является линейным оператором.

Доказательство. Пусть  $\vec{y} = \mathcal{A}\vec{x}$ ,  $\vec{u} = \mathcal{A}\vec{w}$ ,

Доказательство.

#### Доказательство.

$$\alpha \vec{y} + \beta \vec{u} =$$

#### Доказательство.

$$\alpha \vec{y} + \beta \vec{u} = \alpha A \vec{x} + \beta A \vec{w} =$$

#### Доказательство.

$$\alpha \vec{y} + \beta \vec{u} = \alpha A \vec{x} + \beta A \vec{w} = A(\alpha \vec{x} + \beta \vec{w})$$

#### Доказательство.

$$\alpha \vec{y} + \beta \vec{u} = \alpha \mathcal{A} \vec{x} + \beta \mathcal{A} \vec{w} = \mathcal{A}(\alpha \vec{x} + \beta \vec{w})$$

$$\downarrow \downarrow$$

$$\mathcal{A}^{-1}(\alpha \vec{y} + \beta \vec{u}) = \alpha \vec{x} + \beta \vec{w} =$$

#### Доказательство.

$$\alpha \vec{y} + \beta \vec{u} = \alpha A \vec{x} + \beta A \vec{w} = A(\alpha \vec{x} + \beta \vec{w})$$

$$\downarrow \downarrow$$

$$A^{-1}(\alpha \vec{y} + \beta \vec{u}) = \alpha \vec{x} + \beta \vec{w} = \alpha A^{-1} \vec{y} + \beta A^{-1} \vec{u}.$$

#### Теорема

Если в некотором базисе оператору  $\mathcal{A}$  отвечает матрица A,

#### Теорема

Если в некотором базисе оператору  $\mathcal{A}$  отвечает матрица A, тогда в этом же базисе оператору  $\mathcal{A}^{-1}$  будет отвечать матрица  $A^{-1}$ .

#### Доказательство.

Пусть  $\mathcal{A}$  неособенный оператор в  $\mathbb{R}^n$ .

#### Доказательство.

Пусть  $\mathcal{A}$  неособенный оператор в  $\mathbb{R}^n$ . Пусть  $\mathcal{A}^{-1}$  – обратный оператор к  $\mathcal{A}$ .

#### Доказательство.

Пусть  $\mathcal{A}$  неособенный оператор в  $\mathbb{R}^n$ . Пусть  $\mathcal{A}^{-1}$  – обратный оператор к  $\mathcal{A}$ . Пусть A – матрица оператора  $\mathcal{A}, B$  – матрица оператора  $\mathcal{A}^{-1}$  в некотором базисе,

#### Доказательство.

Пусть  $\mathcal{A}$  неособенный оператор в  $\mathbb{R}^n$ . Пусть  $\mathcal{A}^{-1}$  – обратный оператор к  $\mathcal{A}$ . Пусть A – матрица оператора  $\mathcal{A}$ , B – матрица оператора  $\mathcal{A}^{-1}$  в некотором базисе, тогда

$$\mathcal{A}^{-1}(\mathcal{A}\vec{x}) = \vec{x} = \mathcal{E}\vec{x}.$$

#### Доказательство.

Пусть  $\mathcal{A}$  неособенный оператор в  $\mathbb{R}^n$ . Пусть  $\mathcal{A}^{-1}$  – обратный оператор к  $\mathcal{A}$ . Пусть A – матрица оператора  $\mathcal{A}$ , B – матрица оператора  $\mathcal{A}^{-1}$  в некотором базисе, тогда

$$\mathcal{A}^{-1}(\mathcal{A}\vec{x}) = \vec{x} = \mathcal{E}\vec{x}.$$

Таким образом,  $\mathcal{A}^{-1}\mathcal{A}=\mathcal{E}$ , и, в матричном виде

$$BA = E$$
,

т.е.

$$B = A^{-1}$$
.

#### Определение

Пусть A – линейный оператор в  $R^n$ ,

#### Определение

Пусть A – линейный оператор в  $\mathbb{R}^n$ , тогда числа  $\lambda$  и векторы  $\vec{x}$ ,

#### Определение

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , тогда числа  $\lambda$  и векторы  $\vec{x}$ , удовлетворяющие равенству

$$\mathcal{A}\vec{x} = \lambda \vec{x} \quad (\vec{x} \neq \vec{0}),$$

#### Определение

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , тогда числа  $\lambda$  и векторы  $\vec{x}$ , удовлетворяющие равенству

$$\mathcal{A}\vec{x} = \lambda \vec{x} \quad (\vec{x} \neq \vec{0}),$$

называются собственными (характеристическими) числами

#### Определение

Пусть  $\mathcal{A}$  – линейный оператор в  $\mathbb{R}^n$ , тогда числа  $\lambda$  и векторы  $\vec{x}$ , удовлетворяющие равенству

$$\mathcal{A}\vec{x} = \lambda \vec{x} \quad (\vec{x} \neq \vec{0}),$$

называются собственными (характеристическими) числами и соответствующие им векторы — собственными векторами линейного оператора A.

# Харастеристический многочлен

$$\mathcal{A}\vec{x} = \lambda\vec{x}$$

# Харастеристический многочлен

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x}$$

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует,

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует, когда  $|\mathcal{A} - \lambda \mathcal{E}|$ =0,

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует, когда  $|\mathcal{A} - \lambda \mathcal{E}|$ =0, или в некотором базисе

$$\chi(\lambda) =$$

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует, когда  $|\mathcal{A} - \lambda \mathcal{E}|$ =0, или в некотором базисе

$$\chi(\lambda) = |A - \lambda E| =$$

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует, когда  $|\mathcal{A} - \lambda \mathcal{E}|$ =0, или в некотором базисе

$$\chi(\lambda) = |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует, когда  $|\mathcal{A} - \lambda \mathcal{E}|$ =0, или в некотором базисе

$$\chi(\lambda) = |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

### Определение

 $\Phi$ ункция  $\chi(\lambda)$ , приведенного вида,

$$\mathcal{A}\vec{x} = \lambda \vec{x} \Leftrightarrow \mathcal{A}\vec{x} = (\lambda \mathcal{E})\vec{x} \Leftrightarrow (\mathcal{A} - \lambda \mathcal{E})\vec{x} = 0.$$

Вектор  $\vec{x} \neq 0$  и число  $\lambda$  существует, когда  $|\mathcal{A} - \lambda \mathcal{E}|$ =0, или в некотором базисе

$$\chi(\lambda) = |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

### Определение

Функция  $\chi(\lambda)$ , приведенного вида, называется характеристическим многочленом (характеристической функцией) оператора A.

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

### Доказательство.

Пусть A и A' – матрицы,

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

### Доказательство.

Пусть A и A' – матрицы, соответствующие оператору  $\mathcal{A}$  в различных базисах пространства  $\mathbb{R}^n$ .

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

#### Доказательство.

Пусть A и A' – матрицы, соответствующие оператору  $\mathcal{A}$  в различных базисах пространства  $\mathbb{R}^n$ . По свойству они подобны,

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

#### Доказательство.

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

### Доказательство.

$$|A - \lambda E| =$$

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

#### Доказательство.

$$|A - \lambda E| = |TA'T^{-1} - T\lambda ET^{-1}| =$$

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

#### Доказательство.

$$|A - \lambda E| = |TA'T^{-1} - T\lambda ET^{-1}| = |T(A' - \lambda E)T^{-1}| =$$

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

### Доказательство.

$$|A - \lambda E| = |TA'T^{-1} - T\lambda ET^{-1}| = |T(A' - \lambda E)T^{-1}| =$$
  
=  $|T||A' - \lambda E||T^{-1}| =$ 

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

#### Доказательство.

$$|A - \lambda E| = |TA'T^{-1} - T\lambda ET^{-1}| = |T(A' - \lambda E)T^{-1}| =$$
  
=  $|T||A' - \lambda E||T^{-1}| = |T||A' - \lambda E|/|T| =$ 

### Теорема

Вид характеристического многочлена линейного оператора  $\mathcal{A}$  в  $\mathbb{R}^n$  не зависит от выбора базиса.

#### Доказательство.

$$|A - \lambda E| = |TA'T^{-1} - T\lambda ET^{-1}| = |T(A' - \lambda E)T^{-1}| =$$

$$= |T||A' - \lambda E||T^{-1}| = |T||A' - \lambda E|/|T| = |A' - \lambda E|.$$

1) Выбирается базис в  $\mathbb{R}^n$ .

- 1) Выбирается базис в  $\mathbb{R}^n$ .
- 2) Находим матрицу A, соответствующую  $\mathcal A$  в выбранном базисе.

- 1) Выбирается базис в  $\mathbb{R}^n$ .
- 2) Находим матрицу A, соответствующую  $\mathcal A$  в выбранном базисе
- 3) Находим собственные значения из решения уравнения

$$\chi(\lambda) = 0.$$

- 1) Выбирается базис в  $\mathbb{R}^n$ .
- 2) Находим матрицу A, соответствующую  $\mathcal A$  в выбранном базисе
- 3) Находим собственные значения из решения уравнения

$$\chi(\lambda) = 0.$$

4) Для каждого найденного  $\lambda$  находим пространство решений x из соотношения

$$(A - \lambda E)x = 0.$$

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  – собственные векторы оператора  $\mathcal{A}$ ,

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  – собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ ,

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

 $\vec{H}$ з условия теоремы  $\mathcal{A}\vec{x}=\lambda\vec{x},\,\mathcal{A}\vec{y}=\lambda\vec{y}.$ 

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

Из условия теоремы  $\mathcal{A}\vec{x} = \lambda\vec{x}$ ,  $\mathcal{A}\vec{y} = \lambda\vec{y}$ . Умножим первое соотношение на  $\alpha$ , второе на  $\beta$ , сложим,

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

$$\alpha A \vec{x} + \beta A \vec{y} =$$

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

$$\alpha A \vec{x} + \beta A \vec{y} = \alpha \lambda \vec{x} + \beta \lambda \vec{y}$$

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

$$\alpha A \vec{x} + \beta A \vec{y} = \alpha \lambda \vec{x} + \beta \lambda \vec{y}$$
$$A(\alpha \vec{x} + \beta \vec{y}) =$$

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

$$\alpha A \vec{x} + \beta A \vec{y} = \alpha \lambda \vec{x} + \beta \lambda \vec{y}$$
$$A(\alpha \vec{x} + \beta \vec{y}) = \lambda(\alpha \vec{x} + \beta \vec{y}).$$

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

Из условия теоремы  $\mathcal{A}\vec{x}=\lambda\vec{x}$ ,  $\mathcal{A}\vec{y}=\lambda\vec{y}$ . Умножим первое соотношение на  $\alpha$ , второе на  $\beta$ , сложим, и, пользуясь линейностью, произведем преобразования

$$\alpha A \vec{x} + \beta A \vec{y} = \alpha \lambda \vec{x} + \beta \lambda \vec{y}$$
$$A(\alpha \vec{x} + \beta \vec{y}) = \lambda(\alpha \vec{x} + \beta \vec{y}).$$

Следовательно вектор  $\alpha \vec{x} + \beta \vec{y}$  для любых  $\alpha, \beta \in \mathbf{R}$ 

### Теорема

Если  $\vec{x}$ ,  $\vec{y}$  — собственные векторы оператора  $\mathcal{A}$ , соответствующие одному и тому же собственному числу  $\lambda$ , то их линейная комбинация также является собственным вектором для этого же числа  $\lambda$ .

#### Доказательство.

Из условия теоремы  $\mathcal{A}\vec{x}=\lambda\vec{x}$ ,  $\mathcal{A}\vec{y}=\lambda\vec{y}$ . Умножим первое соотношение на  $\alpha$ , второе на  $\beta$ , сложим, и, пользуясь линейностью, произведем преобразования

$$\alpha A \vec{x} + \beta A \vec{y} = \alpha \lambda \vec{x} + \beta \lambda \vec{y}$$
$$A(\alpha \vec{x} + \beta \vec{y}) = \lambda(\alpha \vec{x} + \beta \vec{y}).$$

Следовательно вектор  $\alpha \vec{x} + \beta \vec{y}$  для любых  $\alpha, \beta \in \mathbf{R}$  также является собственным вектором  $\mathcal{A}$ , соответствующим собственному числу  $\lambda$ 

### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

#### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

#### Доказательство.

Пусть  $\vec{x}_1$ , ...,  $\vec{x}_k$  – собственные векторы,

#### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

#### Доказательство.

Пусть  $\vec{x}_1, ..., \vec{x}_k$  – собственные векторы, соответствующие собственным числам  $\lambda_1, ..., \lambda_k$ ,

### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

#### Доказательство.

Пусть  $\vec{x}_1, ..., \vec{x}_k$  – собственные векторы, соответствующие собственным числам  $\lambda_1,...,\lambda_k$ , причем  $\lambda_i \neq \lambda_i$   $(i \neq j)$ .

#### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

#### Доказательство.

Пусть  $\vec{x}_1, ..., \vec{x}_k$  – собственные векторы, соответствующие собственным числам  $\lambda_1,...,\lambda_k$ , причем  $\lambda_i \neq \lambda_j$   $(i \neq j)$ .

Предположим, что существует линейная комбинация

$$\vec{l}(\alpha_i, \vec{x}_j) = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k = 0 \quad (\alpha_k \neq 0).$$

### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

### Доказательство.

Пусть  $\vec{x}_1, ..., \vec{x}_k$  – собственные векторы, соответствующие собственным числам  $\lambda_1,...,\lambda_k$ , причем  $\lambda_i \neq \lambda_j$   $(i \neq j)$ .

Предположим, что существует линейная комбинация

$$\vec{l}(\alpha_i, \vec{x}_j) = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k = 0 \quad (\alpha_k \neq 0).$$

Подействуем линейными операторами  $\mathcal{A}-\lambda_j\mathcal{E}$   $(j=\overline{1,k-1})$  на  $\vec{l}(lpha_i,\vec{x_j})$ :

#### Теорема

Собственные векторы соответствующие различным собственным числам являются линейно независимыми.

### Доказательство.

Пусть  $\vec{x}_1, ..., \vec{x}_k$  – собственные векторы, соответствующие собственным числам  $\lambda_1,...,\lambda_k$ , причем  $\lambda_i \neq \lambda_i$   $(i \neq j)$ .

Предположим, что существует линейная комбинация

$$\vec{l}(\alpha_i, \vec{x}_j) = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k = 0 \quad (\alpha_k \neq 0).$$

Подействуем линейными операторами  $\mathcal{A}-\lambda_j\mathcal{E}$   $(j=\overline{1,k-1})$  на  $\vec{l}(lpha_i,\vec{x_j})$ :

$$(\mathcal{A} - \lambda_{k-1}\mathcal{E}) \dots (\mathcal{A} - \lambda_2\mathcal{E})(\mathcal{A} - \lambda_1\mathcal{E})\vec{l}(\alpha_i, \vec{x_i}).$$



$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k) =$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k) =$$
  
=  $\alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 +$ 

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k) =$$
  
=  $\alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \ldots +$ 

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \ldots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \ldots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 +$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 +$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \ldots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \ldots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \ldots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 +$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$\vdots$$

$$\alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \dots (\lambda_k - \lambda_{k-1}) \vec{x}_k = 0$$

#### Доказательство.

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$\vdots$$

$$\alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \dots (\lambda_k - \lambda_{k-1}) \vec{x}_k = 0$$

Последнее равенство невозможно в силу того,

#### Доказательство.

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$\vdots$$

$$\alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \dots (\lambda_k - \lambda_{k-1}) \vec{x}_k = 0$$

Последнее равенство невозможно в силу того, что  $\alpha_k \neq 0$  (из предположения от противного);

#### Доказательство.

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$\vdots$$

$$\alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \dots (\lambda_k - \lambda_{k-1}) \vec{x}_k = 0$$

Последнее равенство невозможно в силу того, что  $\alpha_k \neq 0$  (из предположения от противного);  $\lambda_k - \lambda_i \neq 0$ , т.к.  $\lambda_i \neq \lambda_i$  ( $i \neq j$ );

#### Доказательство.

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$\vdots$$

$$\alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \dots (\lambda_k - \lambda_{k-1}) \vec{x}_k = 0$$

Последнее равенство невозможно в силу того, что  $\alpha_k \neq 0$  (из предположения от противного);  $\lambda_k - \lambda_i \neq 0$ , т.к.  $\lambda_i \neq \lambda_j$  ( $i \neq j$ );  $\vec{x_k} \neq 0$  по определению собственного вектора.

#### Доказательство.

$$(\mathcal{A} - \lambda_1 \mathcal{E})(\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_k \vec{x}_k) =$$

$$= \alpha_1 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_1 + \alpha_2 (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_2 + \dots + \alpha_k (\mathcal{A} - \lambda_1 \mathcal{E}) \vec{x}_k =$$

$$= \alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k = 0$$

$$(\mathcal{A} - \lambda_2 \mathcal{E})(\alpha_2 (\lambda_2 - \lambda_1) \vec{x}_2 + \alpha_3 (\lambda_3 - \lambda_1) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1) \vec{x}_k) =$$

$$= \alpha_3 (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \vec{x}_3 + \dots + \alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \vec{x}_k) = 0$$

$$\vdots$$

$$\alpha_k (\lambda_k - \lambda_1)(\lambda_k - \lambda_2) \dots (\lambda_k - \lambda_{k-1}) \vec{x}_k = 0$$

Последнее равенство невозможно в силу того, что  $\alpha_k \neq 0$  (из предположения от противного);  $\lambda_k - \lambda_i \neq 0$ , т.к.  $\lambda_i \neq \lambda_j$  ( $i \neq j$ );  $\vec{x_k} \neq 0$  по определению собственного вектора.

Следовательно векторы  $\vec{x}_1, ..., \vec{x}_k$  линейно независимы.

## Определение

Линейный оператор  $\mathcal{A}$  в пространстве  $\mathbb{R}^n$ 

### Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры,

### Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

## Определение

Линейный оператор  $\mathcal{A}$  в пространстве  $\mathbb{R}^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

Вид оператора простой структуры

### Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

Вид оператора простой структуры Пусть линейный оператор  $\mathcal{A}$  в пространстве  $\mathbb{R}^n$ 

## Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

Вид оператора простой структуры Пусть линейный оператор  $\mathcal{A}$  в пространстве  $\mathbb{R}^n$  имеет n различных собственных векторов  $\vec{x_i}$ ,

## Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

## Вид оператора простой структуры

Пусть линейный оператор  $\hat{\mathcal{A}}$  в пространстве  $\mathbb{R}^n$  имеет n различных собственных векторов  $\vec{x_i}$ , соответствующие различным собственным числам  $\lambda_i$  ( $i=\overline{1,n}$ ).

## Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

## Вид оператора простой структуры

Пусть линейный оператор  $\bar{\mathcal{A}}$  в пространстве  $\mathbb{R}^n$  имеет n различных собственных векторов  $\vec{x_i}$ , соответствующие различным собственным числам  $\lambda_i$  ( $i=\overline{1,n}$ ). По только что доказанной теореме система из n векторов  $\vec{x_i}$  ( $i=\overline{1,n}$ ) линейно независима,

## Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

## Вид оператора простой структуры

Пусть линейный оператор  $\hat{\mathcal{A}}$  в пространстве  $\mathbb{R}^n$  имеет n различных собственных векторов  $\vec{x_i}$ , соответствующие различным собственным числам  $\lambda_i$   $(i=\overline{1,n})$ . По только что доказанной теореме система из n векторов  $\vec{x_i}$   $(i=\overline{1,n})$  линейно независима, а значит является базисом.

## Определение

Линейный оператор A в пространстве  $R^n$  называется оператором простой структуры, если он имеет n различных собственных чисел.

## Вид оператора простой структуры

Пусть линейный оператор  $\hat{\mathcal{A}}$  в пространстве  $\mathbb{R}^n$  имеет n различных собственных векторов  $\vec{x_i}$ , соответствующие различным собственным числам  $\lambda_i$  ( $i=\overline{1,n}$ ). По только что доказанной теореме система из n векторов  $\vec{x_i}$  ( $i=\overline{1,n}$ ) линейно независима, а значит является базисом. Получим вид матрицы A в этом базисе.

$$\mathcal{A}\vec{x}_1 = \lambda_1 \cdot \vec{x}_1 + 0 \cdot \vec{x}_2 + \ldots + 0 \cdot \vec{x}_n,$$

$$\mathcal{A}\vec{x}_1 = \lambda_1 \cdot \vec{x}_1 + 0 \cdot \vec{x}_2 + \dots + 0 \cdot \vec{x}_n, 
\mathcal{A}\vec{x}_2 = 0 \cdot \vec{x}_1 + \lambda_2 \cdot \vec{x}_2 + \dots + 0 \cdot \vec{x}_n, 
\vdots$$

$$\mathcal{A}\vec{x}_1 = \lambda_1 \cdot \vec{x}_1 + 0 \cdot \vec{x}_2 + \ldots + 0 \cdot \vec{x}_n, 
\mathcal{A}\vec{x}_2 = 0 \cdot \vec{x}_1 + \lambda_2 \cdot \vec{x}_2 + \ldots + 0 \cdot \vec{x}_n, 
\vdots 
\mathcal{A}\vec{x}_n = 0 \cdot \vec{x}_1 + 0 \cdot \vec{x}_2 + \ldots + \lambda_n \cdot \vec{x}_n.$$

Разложение образов базисных векторов по базису пространства  $\mathbb{R}^n$ 

$$\mathcal{A}\vec{x}_{1} = \lambda_{1} \cdot \vec{x}_{1} + 0 \cdot \vec{x}_{2} + \dots + 0 \cdot \vec{x}_{n}, 
\mathcal{A}\vec{x}_{2} = 0 \cdot \vec{x}_{1} + \lambda_{2} \cdot \vec{x}_{2} + \dots + 0 \cdot \vec{x}_{n}, 
\vdots 
\mathcal{A}\vec{x}_{n} = 0 \cdot \vec{x}_{1} + 0 \cdot \vec{x}_{2} + \dots + \lambda_{n} \cdot \vec{x}_{n}.$$

Матрица оператора  $\mathcal{A}$  в базисе  $\vec{x_i}$   $(i=\overline{1,n})$ 

Разложение образов базисных векторов по базису пространства  $\mathbb{R}^n$ 

$$\mathcal{A}\vec{x}_{1} = \lambda_{1} \cdot \vec{x}_{1} + 0 \cdot \vec{x}_{2} + \dots + 0 \cdot \vec{x}_{n}, 
\mathcal{A}\vec{x}_{2} = 0 \cdot \vec{x}_{1} + \lambda_{2} \cdot \vec{x}_{2} + \dots + 0 \cdot \vec{x}_{n}, 
\vdots 
\mathcal{A}\vec{x}_{n} = 0 \cdot \vec{x}_{1} + 0 \cdot \vec{x}_{2} + \dots + \lambda_{n} \cdot \vec{x}_{n}.$$

Матрица оператора  $\mathcal{A}$  в базисе  $\vec{x_i}$   $(i=\overline{1,n})$ 

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

## Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны,

### Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

### Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$

## Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$

$$\chi(\lambda) = \left| \begin{array}{cc} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{array} \right| =$$

### Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$

$$\chi(\lambda) = \begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 4 = 0$$

## Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$

$$\chi(\lambda) = \begin{vmatrix} 1-\lambda & 2\\ 2 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 4 = 0 \Leftrightarrow \lambda_1 = 3, \quad \lambda_2 = -1.$$

### Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

$$\chi(\lambda) = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = 0 \Leftrightarrow \lambda_1 = 3, \quad \lambda_2 = -1.$$

$$\vec{g}_1 = (1/\sqrt{2}, 1/\sqrt{2}),$$

## Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

$$\chi(\lambda) = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = 0 \Leftrightarrow \lambda_1 = 3, \quad \lambda_2 = -1.$$

$$\vec{g}_1 = (1/\sqrt{2}, \quad 1/\sqrt{2}),$$

$$\vec{g}_2 = (-1/\sqrt{2}, \quad 1/\sqrt{2}).$$

## Теорема (без доказательства)

Все характеристические числа вещественной симметричной матрицы вещественны, и существует базис из ортонормированных собственных векторов.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

$$\chi(\lambda) = \begin{vmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - 4 = 0 \Leftrightarrow \lambda_1 = 3, \quad \lambda_2 = -1.$$

$$\vec{g}_1 = (1/\sqrt{2}, \quad 1/\sqrt{2}),$$

$$\vec{g}_2 = (-1/\sqrt{2}, \quad 1/\sqrt{2}).$$

$$\vec{g}_1 \cdot \vec{g}_2 = 0, \quad \vec{g}_1 \cdot \vec{g}_1 = 1, \quad \vec{g}_2 \cdot \vec{g}_2 = 1.$$