As described in Lecture 17, multi-armed bandits (MAB) a classic formulation for capturing exploration and exploitation trade-off in online machine learning. Let's briefly describe the MAB setting as follows:

- Consider the stochastic K-armed bandit problem, where each arm i is characterized by its reward distribution \mathcal{D}_i with mean θ_i .
- At each time $t = 1, \dots, T$, the decision maker chooses an arm denoted by $\pi_t \in \{1, \dots, K\}$ and observes the corresponding random reward X_t , which is independently drawn from the distribution \mathcal{D}_{π_t} .
- Let $N_i(t)$ and $S_i(t)$ be the total number of plays of arm i and the total reward collected from pulling arm i up to time t, respectively. We define $p_i(t) := S_i(t)/N_i(t)$ as the empirical mean reward up to t.
- Based on the multi-armed bandit convention, our objective is to minimize the regret defined as

$$\mathcal{R}(T) := T \cdot \max_{i \in \{1, \cdots, K\}} \theta_i - \mathbb{E}\Big[\sum_{t=1}^T X_t\Big],$$

where the expectation is taken with respect to the randomness of the rewards and the employed strategy of the decision maker.

Each arm has a reward distribution with unknown mean $\{\theta_i\}_{i=1}^K$

Figure 1: An illustration of the standard MAB problems.

To build an MAB environment as described above, we leverage the popular MAB package **SMPyBandits** (available at https://github.com/SMPyBandits/SMPyBandits and can be installed via pip).

In this homework problem, you will implement one classic and useful algorithm called Epsilon-Greedy algorithm and compare it with a naive $Empirical\ Means$ algorithm (also known as the Greedy algorithm). Under the Epsilon-Greedy method, at each time t, the decision maker chooses an exploration parameter $\epsilon \in [0, 1]$ and enforces some exploration by:

- The decision maker first creates a Bernoulli random variable Z_t with success probability 1ϵ .
- (Exploitation) If $Z_t = 1$, then the decision maker chooses the arm with the largest empirical mean at time t 1, i.e., $p_i(t 1)$.
- (Exploration) If $Z_t = 0$, then the decision maker simply selects one of the K arms uniformly at random.

You will do this Python programming task on Jupyter Notebook as in HW2. Please take a look at the notebook "MAB.ipynb" and finish the tasks therein (normally you need no more than 20 lines of code in total).

- (a) Please finish the remaining parts of "MAB.ipynb". What are the mean regrets of your Epsilon Greedy algorithm under the three MAB problem instances provided in "MAB.ipynb" and under $\epsilon = 0.01, 0.03, 0.1, 0.3$? Please also compare the performance of Epsilon Greedy algorithm with that of the EmpiricalMeans algorithm.
- (b) Suppose we use a diminishing exploration rate in the Epsilon Greedy algorithm, i.e., $\epsilon(t) = t^{-\alpha}$ with $\alpha > 0$? Then, what are the mean regrets under $\alpha = 0.1, 0.5, 1.0$, and 2.0? Can you point out some interesting things from your experimental results?

(a)	mean	regrets

	Environment #1 (easy)	Environment #2 (3 groups)	Environment #3 chard)
6=0.01	1643.8	5748.2	866.43
€=0.03	7288.4	3441.9	852.06
E=0.1	5944.5	1693.\	118.56
£=0.3	3751.3	1994	615.63
Empirical Means	369.39	75.48	423
UCB	321.68	233.56	486.21
E-greedy (E=0.1)	5477	1503.2	754.93

E-greedy algorithm's regrets are amazingly high (but maybe just my implementation is wrong). 但差距在 hard problem 诚心了。 色對於 此 algorithm 很関 銀,因為 色超小,就 等同於 脂 好 在 exploitation,除 非很 算 在一開始就有好的 aim, 不知 基本上應該都在限盤。

(b) $(\varepsilon = \bar{t}^{\alpha})$

	Environment #1 (easy)	Environment #2 (3 groups)	Environment #3 (hard)
Q =0.1	2831.3	2106.2	476.3
X=0.5	3592.2	2104.3	688.42
Q=1.0	3658.7	1981.1	828.94
CX = 2.0	sp 59. 6	4520.2	811.98

從實驗稅果來看, 以太大, 太快 decay 會造成 沒有足夠多時間去 exploration, 導致 regret 過大.