Numerical Methods in Finance Problem Set 2

Dr. Hong Lan, PhD School of Finance, UIBE

December 18, 2017

Instructions: All the questions can be answered in either English or Chinese. This problem set is due on January 03, 2018.

1. Projection Method with Chebyshev Polynomials [70 points]

We have shown in the section that, the Lucas (1978) model is characterized by the following asset pricing equation

$$p_t = \beta \mathbb{E}_t \left[\left(\frac{d_{t+1}}{d_t} \right)^{-\gamma} (p_{t+1} + d_{t+1}) \right]$$
 (1)

$$d_t = \mu_d + \rho d_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$
 (2)

Now consider to solve the above asset pricing equation by projecting p_t onto a set of the Chebyshev polynomials, i.e., let

$$p_t = T_n(d_t; a_n) \tag{3}$$

and to approximate the expectation using as usual the Gauss-Hermite quadratures. The domain of the Chebyshev polynomials is [-1,1], and we will choose the roots (nodes) of the Chebyshev polynomials that lie in [-1,1] as our grid points of d_t .

To construct such a grid, first choose the order n of the Chebyshev polynomials we would like to use as the projection basis, then choose n+1 roots to ensure uniqueness. The function chebnode.m generates the roots once n is chosen. We also need choose the lower and upper bounds of d_t , denoted as d_{min} and d_{max} . The function scalup.m maps the chosen roots that lie in [-1,1] to the points within $[d_{min},d_{max}]$. The function scaldown.m reverses that mapping by translating the points in $[d_{min},d_{max}]$ back into the domain [-1,1].

The Chebyshev polynomials can be generated via the following recursion

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}, \quad n = 1, 2, \dots$$
 (4)

The first few Chebyshev polynomials writes

$$T_0(x) = 1 (5)$$

$$T_1(x) = x \tag{6}$$

$$T_2(x) = 2x^2 - 1 (7)$$

$$T_3(x) = 4x^3 - 3x (8)$$

For example, if we decide to use Chebyshev polynomials up to the second order to approximate p_t , then we need use chebnode.m to generate three roots \tilde{d}_1, \tilde{d}_2 and $\tilde{d}_3 \in [-1, 1]$, the corresponding value of p_t at the three roots, denoted by p_1, p_2 and p_3 are

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \tilde{d}_1^2 & 2\tilde{d}_1^2 - 1 \\ 1 & \tilde{d}_2^2 & 2\tilde{d}_2^2 - 1 \\ 1 & \tilde{d}_3^2 & 2\tilde{d}_3^2 - 1 \end{bmatrix}}_{T} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \tag{9}$$

where the T matrix collects the Chebysheve polynomials up to the second order, evaluated at \tilde{d}_1, \tilde{d}_2 and \tilde{d}_3 , and the function chebpol.m generates this T matrix once the roots are provided. The coefficients a_1, a_2 and a_3 are determined by minimizing the sum of the squared difference between the LHS and RHS of the asset pricing equation.

What do you need to do are as follows

- (a) [25 points] Fill out lines 16 and 19 in errfunc.m with your code, so the program can compute the coefficients of the Chebyshev polynomials for p_t . Then fill out line 67 in main_projection.m with your code, so the program can plot p_t .
- (b) [20 points] Fill out lines 14 and 17 in erpfunc.m with your code, so the program can compute the value of x_t , i.e., the risk premium. Then fill out line 75 in main_projection.m with your code, so the program can compute the coefficients of the Chebyshev polynomials for x_t .
- (c) [20 points] Fill out line 93 in main_projection.m with your code, so the program can compute the simulations of x_t .
- (d) [5 points] Comment on the role of parameter γ in your solution.

2. Importance Sampling in Computing Bayesian Inferences [30 points]

In Bayesian estimation, we often need to compute the expected value of a function with respect to a probability density, e.g.,

$$\mathbb{E}[g(\theta)|y] = \int g(\theta)p(\theta|y)d\theta \tag{10}$$

where y is the dataset that follows a certain distribution with parameters of that distribution collected in θ . For example, if $y \sim N(\mu, \sigma^2)$, then $\theta = \{\mu, \sigma^2\}$ is the set collecting the mean and variance of the normal distribution. The difficulty that arises in computing (10) is we cannot sample directly from the density $p(\theta|y)$. To solve this problem, we invoke the Bayes' law

$$p(\theta|y) = \frac{p(\theta)p(y|\theta)}{p(y)} \tag{11}$$

where $p(\theta|y)$ is the posterior we want to compute, $p(\theta)$ the prior representing our initial belief of the distribution of θ and $p(y|\theta)$ is, given θ , the likelihood of observing y. p(y) is a marginal density and is a constant with respect to θ . Therefore, we often write

$$p(\theta|y) \propto p(\theta)p(y|\theta) = \tilde{p}(\theta|y)$$
 (12)

where $\tilde{p}(\theta|y)$ is a kernel of the posterior, i.e., $\tilde{p}(\theta|y)$ is proportional to the posterior up to a multiplicative constant

$$p(\theta|y) = \frac{1}{c_p}\tilde{p}(\theta|y) \tag{13}$$

As $p(\theta|y)$ integrates to one, it follows that

$$c_p = \int \tilde{p}(\theta|y)d\theta \tag{14}$$

The problem (10) now rewrites

$$\mathbb{E}[g(\theta)|y] = \int g(\theta)p(\theta|y)d\theta = \frac{\int g(\theta)\tilde{p}(\theta|y)d\theta}{c_p} = \frac{\int g(\theta)\tilde{p}(\theta|y)d\theta}{\int \tilde{p}(\theta|y)d\theta}$$
(15)

Let $q(\theta)$ be the proposal density (the density from which we sample θ 's), then (15) rewrites

$$\mathbb{E}[g(\theta)|y] = \frac{\int g(\theta)\tilde{p}(\theta|y)d\theta}{\int \tilde{p}(\theta|y)d\theta} = \frac{\int g(\theta)\frac{\tilde{p}(\theta|y)}{q(\theta)}q(\theta)d\theta}{\int \frac{\tilde{p}(\theta|y)}{q(\theta)}q(\theta)d\theta} = \frac{\int g(\theta)w(\theta)q(\theta)d\theta}{\int w(\theta)q(\theta)d\theta}$$
(16)

where

$$w(\theta) = \frac{\tilde{p}(\theta|y)}{q(\theta)} \tag{17}$$

denotes the importance weights. The Monte Carlo estimation of (16) writes

$$I_g = \frac{\frac{1}{n} \sum_{i=1}^n g(\theta_i) w(\theta_i)}{\frac{1}{n} \sum_{i=1}^n w(\theta_i)} = \frac{\sum_{i=1}^n g(\theta_i) w(\theta_i)}{\sum_{i=1}^n w(\theta_i)}$$
(18)

where θ_i 's are sampled from the proposal density $q(\theta)$. Often in practice, we define the standardized weights as follows

$$\omega_i = \frac{w(\theta_i)}{\sum_{i=1}^n w(\theta_i)} \tag{19}$$

then the estimator (18) rewrites

$$I_g = \sum_{i=1}^n g(\theta_i)\omega_i \tag{20}$$

Given (20), the posterior moments (Bayesian inferences) can be calculated given the functional form of $g(\theta)$. For example, if we want to compute the posterior mean of θ , we can let

$$g(\theta_i) = \theta_i \tag{21}$$

and the posterior mean estimator writes

$$\mu_{\theta} = \sum_{i=1}^{n} \theta_{i} \omega_{i} \tag{22}$$

given (22), the estimator of posterior variance of θ writes

$$\sigma_{\theta}^2 = \sum_{i=1}^n (\theta_i - \mu_{\theta})^2 \omega_i \tag{23}$$

and the higher moments can be likewise calculated.

Now we have a dataset y that follows the t distribution, i.e., $y \sim t(\mu, \sigma^2, \nu)$ with μ being the mean, σ^2 variance and ν the degree of freedom. In this case, θ is the set collecting all the three distribution parameters, i.e., $\theta = \{\mu, \sigma^2, \nu\}$. For simplicity, we only compute the posterior mean and variance of μ . For that purpose, we need to build the likelihood function, to choose a prior of μ , to construct the proposal density and to compute the weights. Questions below will guide you through the whole procedure. What you need do is to fill out several lines in main_bayesian.m with your code.

- (a) [5 points] Evaluate the proposal density of μ :
 - 1. Line 30: Use the maximum likelihood estimation to get the estimate of the t distribution parameters, call them μ_{mle} , σ_{mle}^2 and ν_{mle} and report their values;(Hint: function llt.m computes the log likelihood of the t distribution.)
 - 2. Line 47: The previous step would also give you the standard error of μ_{mle} , call it s_{μ} and report its value (Hint: one way to compute s_{μ} is to make use of the Hessian matrix from your maximum likelihood estimation!);
 - 3. Line 57: Consider to use a normal proposal density with μ_{mle} and $(3s_{\mu})^2$ as its mean and variance, i.e., μ that sampled from this proposal density, call it μ_{prop} , follows the normal distribution $\mu_{prop} \sim N(\mu_{mle}, (3s_{\mu})^2)$. Sample a sequence of $\mu_{prop,i}$'s from this proposal density.
 - 4. Line 60: Use the $\mu_{prop,i}$'s you just sampled to compute the (log) proposal density. (Hint: function lpdfn.m computes the log density of a normal distribution.)
- (b) [5 points] Line 68: Evaluate the prior density: consider to use a *normal* prior with mean μ_0 and variance σ_0^2 , i.e., we initially believe that $\mu \sim N(\mu_0, \sigma_0^2)$. Use μ_0 , σ_0^2 and the $\mu_{prop,i}$'s you just sampled, compute the (log) prior density.
- (c) [5 points] Line 82: Evaluate the likelihood $p(y|\theta)$, note this is the likelihood of the t distribution: as we only want to compute the posterior mean and variance of μ , the likelihood reduces to $p(y, \sigma^2, \nu|\mu)$. Compute the likelihood with y and the $\mu_{prop,i}$'s, using σ_{mle}^2 and ν_{mle} as the variance and degree of freedom for your computation.
- (d) [5 points] Line 85: With the prior and the likelihood, following (12) to compute your kernel of the posterior with the $\mu_{prop,i}$'s.
- (e) [5 points] Line 91: With the proposal density and the kernel you just computed, following (17) and (19) to compute the weights and the standardized weights.
- (f) [5 points] By far the weights and the $\mu_{prop,i}$'s are readily computed, the program will then compute the posterior mean and variance of μ using (22) and (23), and will plot the prior and the posterior kernel. Interpret the plot.

References

Lucas, R. (1978): "Asset Prices in an Exchange Economy," $\underline{\text{Econometrica}},\ 46(6),\ 1429-45.$