	Lecture 7: Model Evaluation
	ed to be precise about what is random.
Ccr	nsider training data (Zn, Yn) ~p
	So $T = \{(\chi_n, y_n)\}_{n=1}^N$
	So $T = \{(x_n, y_n)\}_{n=1}^N$ is random
Use	this to fit $\hat{f} = \hat{f}$ random
	f = f en randon
	, , , ,
() +	Xo, Yo be an independent (from trains dute
	Xo, Yo be an independet (from trains dute sample from p.
ad	let M be my perf. metric
	e.j. M(A,B)=(A-B)
J	
γN	en let Err_ = E[M(Yo, f, (20)) T]
	ably what err. on now duta
Droh	ably what err. on now duta
	estimate
Han	rever, in practice often difficult to estimate.
1 10 0	estimate.

Instead, easier to estimate Err = ET [ErrT] $= \mathbb{E}\left[M(Y_{o}, \hat{f}(X_{o}))\right]$ = expected gln. perf. across
all possible T Also define err = training error = \frac{1}{N} \text{m} (\frac{1}{N}, \frac{1}{N}) Typically Err < Erry b/c we over-fit both eval fer fixed T Part of the problem: (1) Xo is different the train Xn 2) Yo is different than trainy you (even if $\chi_0 = \chi_n$)

Then if I fit a lin- regression w/ P variables, then $\omega = \frac{2P}{N} 6^2$ In practice abot we can do is estimate 6^2 as $\hat{6}^2$ and then calc. Errin = err + 2/ 62. 1 mallow's Cp generally AIC. reither estimating Tuning model complexity (1) CV estimates Err (2) estimate Errin

Can decompose: $(Y_0 - \mathbb{E}[f(x_0)] + \mathbb{E}[f(x_0) - f(x_0)]^2$ $(a+b)^2 = a^2 + b^2 + 2ab$ E[(Yo-E[Î(Xo)])2] + E[(Î(Xo) - E[Î(Xo)])] + 2 E[(Yo-E[f(Xo)])(f(Xo) - E[f(Xo)])] Claim E[a2]= Bias(x)2+62 E[b] = Var(f) i.l. $Err(\chi_0) = Bias^2 + Var + 6$ Bias = E[f(x₀)-f(x₀)] = expected diff btun est: $Var = Var(\hat{f}(x_0)) = amt_n$ and truth my \hat{f} changes due to changing T

Typically. low flex (>) low var, high bias high flex \ighthat high var, low bias In laymens terms bas = err incurred b/c approx. compliated
real life of simple model
lin-approx. hours studied varionce = sensitivity of fit hot sens,