# UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

# FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS



# Maestría en Ciencia de Datos

# Proyecto Final

Materia: Métodos Estadísticos Básicos

**Profesor: MET. Alejandra Guadalupe Cerda Ruiz** 

Alumno: Leobardo García Reyes

**Matrícula: 1616825** 





# **TABLA DE CONTENIDO**

| INTRODUCCIÓN                                         | 0   |
|------------------------------------------------------|-----|
| ANÁLISIS EXPLORATORIO DE LOS DATOS                   | 4   |
| ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE                | 24  |
| MATRIZ DE DISPERSIÓN                                 | 24  |
| MATRIZ DE CORRELACIÓN                                |     |
| MULTICOLINEALIDAD                                    | 26  |
| MODELO COMPLETO                                      |     |
| AJUSTE DEL MODELO LINEAL MÚLTIPLE                    | 28  |
| PRUEBA DE SIGNIFICANCIA                              | 29  |
| PRUEBA DEL ORIGEN                                    | 29  |
| INTERVALOS DE CONFIANZA                              |     |
| SUBCONJUNTOS DEL MODELO COMPLETO                     | 30  |
| LIBRERÍA "olsrr"                                     | 31  |
| LIBRERÍA "leaps"                                     | 33  |
| SUPUESTOS DEL MODELO                                 | 34  |
| BONDAD DE AJUSTE                                     | 39  |
| DISTRIBUCIONES ASOCIADAS                             | 39  |
| ESTIMACIONES DE LOS PARÁMETROS                       | 39  |
| VARIABLE CON SU DISTRIBUCIÓN TEÓRICA ASOCIADA        | 46  |
| PRUEBAS DE BONDAD DE AJUSTE                          | 51  |
| PRUEBAS DE HIPÓTESIS                                 | 64  |
| EL PESO ENTRE HOMBRES Y MUJERES                      |     |
| EL PESO EN LA RAZA                                   | 64  |
| RAZA CON MAYOR PESO                                  | 65  |
| PROPORCIÓN DE LA RAZA2                               | 66  |
| LA ALTURA ENTRE HOMBRE Y MUJER                       | 67  |
| INDEPENDENCIA ENTRE ESTADO NUTRICIONAL IMC Y CINTURA | 67  |
| CONCLUSIÓN                                           | 71  |
| BIBLIOGRAFÍA                                         | 72  |
| PROGRAMA DE R STUDIO                                 | 72  |
| ι ι∖ΟΟιν ((V), \ DL I\ ΟΙ ΟΡΙΟ                       | / 3 |





# INTRODUCCIÓN

La obesidad es una enfermedad compleja que consiste en tener una cantidad excesiva de grasa corporal. La obesidad no es solo un problema estético. Es un problema médico que aumenta tu riesgo de enfermedades y problemas de salud, tales como enfermedad cardíaca, diabetes, presión arterial alta y ciertos tipos de cáncer.

Hay muchas razones por las que algunas personas tienen dificultad para evitar la obesidad. Por lo general, la obesidad es el resultado de una combinación de factores hereditarios con el entorno, la dieta personal y las opciones de ejercicio.

En el presente trabajo, se hará uso de una recopilación de datos de Estados Unidos en el año 2015-2016 obtenidos por NHANES (National Health and Nutrition Examination Survey). Los datos de medidas corporales de NHANES se utilizan para monitorear las tendencias en el crecimiento de bebés y niños, para estimar la prevalencia de sobrepeso y obesidad en niños, adolescentes y adultos de Estados Unidos, y para examinar las asociaciones entre el peso corporal y el estado de salud y nutricional de la población de Estados Unidos.

Se seleccionará ciertas variables con las que se trabajará para establecer relación con el peso de una persona. Las variables para considerar son las siguientes:

| Variable                          | Nemónico    | Tipo de variable        | Medición de dato |
|-----------------------------------|-------------|-------------------------|------------------|
| Peso (kg)                         | peso        | Cuantitativa – Continua | Razón            |
| Sexo                              | sexo        | Cualitativa – Discreta  | Nominal          |
| Edad                              | edad        | Cuantitativa – Continua | Razón            |
| Altura (cm)                       | altura      | Cuantitativa – Continua | Razón            |
| IMC (kg/m^2)                      | imc         | Cuantitativa – Continua | Razón            |
| Longitud de la pierna (cm)        | long_pier   | Cuantitativa – Continua | Razón            |
| Longitud del brazo (cm)           | long_bra    | Cuantitativa – Continua | Razón            |
| Circunferencia del brazo (cm)     | circu_brazo | Cuantitativa – Continua | Razón            |
| Circunferencia de la cintura (cm) | circu_cin   | Cuantitativa – Continua | Razón            |
| Raza                              | raza        | Cualitativa – Discreta  | Nominal          |





### Vista previa de la base de datos:

| ID ▼  | peso 🔻 | edad 🔻 | sexo 🔻 | altura 🔻 | imc 🔻 | long_pier 🔻 | long_bra 🔻 | circu_bra ▼ | circu_cin ▼ | raza 🔻 |
|-------|--------|--------|--------|----------|-------|-------------|------------|-------------|-------------|--------|
| 83732 | 94.8   | 62     | 0      | 184.5    | 27.8  | 43.3        | 43.6       | 35.9        | 101.1       | 3      |
| 83733 | 90.4   | 53     | 0      | 171.4    | 30.8  | 38          | 40         | 33.2        | 107.9       | 3      |
| 83734 | 83.4   | 78     | 0      | 170.1    | 28.8  | 35.6        | 37         | 31          | 116.5       | 3      |
| 83735 | 109.8  | 56     | 1      | 160.9    | 42.4  | 38.5        | 37.7       | 38.3        | 110.1       | 3      |
| 83736 | 55.2   | 42     | 1      | 164.9    | 20.3  | 37.4        | 36         | 27.2        | 80.4        | 4      |
| 83737 | 64.4   | 72     | 1      | 150      | 28.6  | 34.4        | 33.5       | 31.4        | 92.9        | 1      |
| 83738 | 37.2   | 11     | 1      | 143.5    | 18.1  | 32.2        | 30.5       | 21.7        | 67.5        | 1      |
| 83741 | 76.6   | 22     | 0      | 165.4    | 28    | 38.8        | 38         | 34          | 86.6        | 4      |
| 83742 | 64.5   | 32     | 1      | 151.3    | 28.2  | 34.1        | 33.1       | 31.5        | 93.3        | 1      |
| 83744 | 108.3  | 56     | 0      | 179.4    | 33.6  | 46          | 44.1       | 38.5        | 116         | 4      |
| 83745 | 71.7   | 15     | 1      | 169.2    | 25    | 42.4        | 37         | 29.1        | 88.3        | 3      |
| 83747 | 86.2   | 46     | 0      | 176.7    | 27.6  | 41          | 38         | 33.6        | 104.3       | 3      |
| 83749 | 75.9   | 17     | 1      | 161.7    | 29    | 38.4        | 33.4       | 32.5        | 98.3        | 3      |
| 83750 | 76.2   | 45     | 0      | 177.8    | 24.1  | 43.9        | 37.8       | 33          | 90.1        | 7      |

Se cuenta con 7053 registros y 10 variables a considerar para la investigación. En donde, de acuerdo con las variables edad, sexo, altura, IMC, longitud de la pierna, longitud del brazo, circunferencia del brazo, circunferencia de la cintura y la raza, se estimará el peso haciendo uso de herramientas estadísticas para ajustarlo a un modelo de regresión múltiple.

También, se analizará variables por separado para saber si ¿El peso es diferente por sexo y raza?, ¿La altura es diferente por sexo?, ¿Existe una relación entre el estado nutricional IMC y la circunferencia de la cintura?, ¿Qué raza tiene el mayor peso?

Al final del documento se agregará el script para saber de dónde se obtuvo cada resultado o gráfica que se empleó en esta investigación.





# **ANÁLISIS EXPLORATORIO DE LOS DATOS**

A continuación se hará un detallado análisis estadístico descriptivo sobre cada tipo de variable que se están utilizando para establecer dicha relación.

# Variable Peso (kg)

|                | Estadística Peso |
|----------------|------------------|
| n              | 7053             |
| Mínimo         | 17.7             |
| Máximo         | 198.9            |
| Rango          | 181.2            |
| Núm. Clases    | 20               |
| Ancho Clase    | 9.06             |
| Moda           | 78.2             |
| Media          | 73.97            |
| Varianza       | 595.89           |
| Desv. Estándar | 24.41            |
| C.V.           | 33.00%           |
| Coef. Sesgo    | 0.50             |
| Q1             | 58.20            |
| Q2 (Mediana)   | 72.30            |
| Q3             | 88.20            |
| IQR            | 30.00            |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos en la parte superior del gráfico que se relacionan con el histograma, ya que este tiene un sesgo hacia la derecha, en donde la media es mayor a la mediana. Incluso el coeficiente de sesgo, tiene un resultado de 0.50 que nos confirma las suposiciones que se hicieron observando los gráficos.

Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 33% de variación entre sus datos.

|       | Tabla de Frecuencia de Peso (kg) |               |               |                |                           |                 |              |                      |
|-------|----------------------------------|---------------|---------------|----------------|---------------------------|-----------------|--------------|----------------------|
| Clase | Intervalo                        | Intervalo     |               | Marca do claso | Marca de clase Frecuencia |                 | Eroc Acum    | Eroc Pola Acum       |
| Clase | intervalo                        | Lím. Inferior | Lím. Superior | Marca de Clase | Trecuencia                | i iec. Kelativa | i iec. Acum. | i iec. Keia. Acuiii. |
| 1     | [17.7, 26.8)                     | 17.7          | 26.8          | 22.23          | 101                       | 1.43%           | 101          | 1.43%                |
| 2     | [26.8, 35.8)                     | 26.8          | 35.8          | 31.29          | 325                       | 4.61%           | 426          | 6.04%                |
| 3     | [35.8, 44.9)                     | 35.8          | 44.9          | 40.35          | 314                       | 4.45%           | 740          | 10.49%               |
| 4     | [44.9, 53.9)                     | 44.9          | 53.9          | 49.41          | 634                       | 8.99%           | 1374         | 19.48%               |
| 5     | [53.9, 63.0)                     | 53.9          | 63.0          | 58.47          | 946                       | 13.41%          | 2320         | 32.89%               |
| 6     | [63.0, 72.1)                     | 63.0          | 72.1          | 67.53          | 1168                      | 16.56%          | 3488         | 49.45%               |
| 7     | [72.1, 81.1)                     | 72.1          | 81.1          | 76.59          | 1091                      | 15.47%          | 4579         | 64.92%               |
| 8     | [81.1, 90.2)                     | 81.1          | 90.2          | 85.65          | 880                       | 12.48%          | 5459         | 77.40%               |
| 9     | [90.2, 99.2)                     | 90.2          | 99.2          | 94.71          | 620                       | 8.79%           | 6079         | 86.19%               |
| 10    | [99.2, 108.3)                    | 99.2          | 108.3         | 103.77         | 392                       | 5.56%           | 6471         | 91.75%               |
| 11    | [108.3, 117.4)                   | 108.3         | 117.4         | 112.83         | 234                       | 3.32%           | 6705         | 95.07%               |
| 12    | [117.4, 126.4)                   | 117.4         | 126.4         | 121.89         | 145                       | 2.06%           | 6850         | 97.12%               |
| 13    | [126.4, 135.5)                   | 126.4         | 135.5         | 130.95         | 82                        | 1.16%           | 6932         | 98.28%               |
| 14    | [135.5, 144.5)                   | 135.5         | 144.5         | 140.01         | 58                        | 0.82%           | 6990         | 99.11%               |
| 15    | [144.5, 153.6)                   | 144.5         | 153.6         | 149.07         | 30                        | 0.43%           | 7020         | 99.53%               |
| 16    | [153.6, 162.7)                   | 153.6         | 162.7         | 158.13         | 21                        | 0.30%           | 7041         | 99.83%               |
| 17    | [162.7, 171.7)                   | 162.7         | 171.7         | 167.19         | 7                         | 0.10%           | 7048         | 99.93%               |
| 18    | [171.7, 180.8)                   | 171.7         | 180.8         | 176.25         | 3                         | 0.04%           | 7051         | 99.97%               |
| 19    | [180.8, 189.8)                   | 180.8         | 189.8         | 185.31         | 1                         | 0.01%           | 7052         | 99.99%               |
| 20    | [189.8, 198.9]                   | 189.8         | 198.9         | 194.37         | 1                         | 0.01%           | 7053         | 100.00%              |
|       | •                                |               | •             | •              | 7053                      |                 | •            |                      |

En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [63, 72.1) y de ahí empieza a decaer. En el histograma y la tabla de





frecuencia se puede ver, que al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

# Variable Edad

|                | Estadística Edad |
|----------------|------------------|
| n              | 7053             |
| Mínimo         | 8                |
| Máximo         | 80               |
| Rango          | 72               |
| Núm. Clases    | 20               |
| Ancho Clase    | 3.60             |
| Moda           | 80.0             |
| Media          | 38.66            |
| Varianza       | 483.99           |
| Desv. Estándar | 22.00            |
| C.V.           | 56.91%           |
| Coef. Sesgo    | 0.27             |
| Q1             | 18.00            |
| Q2 (Mediana)   | 36.00            |
| Q3             | 57.00            |
| IQR            | 39.00            |









En el histograma se puede ver como los valores van decayendo, pero a su vez se mantienen casi constantes a partir de la marca de clase 20.60 y saber esto nos ayudará a sospechar de una distribución.

Con el IQR observar que hay mucha variabilidad entre los datos y es porque la caja es grande con un 56.91% de variación entre sus datos.

|       |              |               | Т             | cia de Edad       |            |                |             |                     |
|-------|--------------|---------------|---------------|-------------------|------------|----------------|-------------|---------------------|
| Clase | Intervalo    | Intervalo     |               | Marca de clase    | Erocuonoia | Eroc Bolativa  | Free Assum  | Free Dala Access    |
| Clase | intervalo    | Lím. Inferior | Lím. Superior | iviai ca de ciase | riecuencia | Fiec. Relativa | Fiec. Acum. | riec. Reia. Acuili. |
| 1     | [8.0, 11.6)  | 8.0           | 11.6          | 9.80              | 806        | 11.43%         | 806         | 11.43%              |
| 2     | [11.6, 15.2) | 11.6          | 15.2          | 13.40             | 644        | 9.13%          | 1450        | 20.56%              |
| 3     | [15.2, 18.8) | 15.2          | 18.8          | 17.00             | 439        | 6.22%          | 1889        | 26.78%              |
| 4     | [18.8, 22.4) | 18.8          | 22.4          | 20.60             | 342        | 4.85%          | 2231        | 31.63%              |
| 5     | [22.4, 26.0) | 22.4          | 26.0          | 24.20             | 279        | 3.96%          | 2510        | 35.59%              |
| 6     | [26.0, 29.6) | 26.0          | 29.6          | 27.80             | 385        | 5.46%          | 2895        | 41.05%              |
| 7     | [29.6, 33.2) | 29.6          | 33.2          | 31.40             | 356        | 5.05%          | 3251        | 46.09%              |
| 8     | [33.2, 36.8) | 33.2          | 36.8          | 35.00             | 282        | 4.00%          | 3533        | 50.09%              |
| 9     | [36.8, 40.4) | 36.8          | 40.4          | 38.60             | 316        | 4.48%          | 3849        | 54.57%              |
| 10    | [40.4, 44.0) | 40.4          | 44.0          | 42.20             | 262        | 3.71%          | 4111        | 58.29%              |
| 11    | [44.0, 47.6) | 44.0          | 47.6          | 45.80             | 340        | 4.82%          | 4451        | 63.11%              |
| 12    | [47.6, 51.2) | 47.6          | 51.2          | 49.40             | 339        | 4.81%          | 4790        | 67.91%              |
| 13    | [51.2, 54.8) | 51.2          | 54.8          | 53.00             | 270        | 3.83%          | 5060        | 71.74%              |
| 14    | [54.8, 58.4) | 54.8          | 58.4          | 56.60             | 309        | 4.38%          | 5369        | 76.12%              |
| 15    | [58.4, 62.0) | 58.4          | 62.0          | 60.20             | 308        | 4.37%          | 5677        | 80.49%              |
| 16    | [62.0, 65.6) | 62.0          | 65.6          | 63.80             | 337        | 4.78%          | 6014        | 85.27%              |
| 17    | [65.6, 69.2) | 65.6          | 69.2          | 67.40             | 289        | 4.10%          | 6303        | 89.37%              |
| 18    | [69.2, 72.8) | 69.2          | 72.8          | 71.00             | 187        | 2.65%          | 6490        | 92.02%              |
| 19    | [72.8, 76.4) | 72.8          | 76.4          | 74.60             | 187        | 2.65%          | 6677        | 94.67%              |
| 20    | [76.4, 80.0] | 76.4          | 80.0          | 78.20             | 376        | 5.33%          | 7053        | 100.00%             |
|       |              |               | •             |                   | 7053       |                | •           | •                   |

En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [8, 11.6) y de ahí empieza a decaer para al final casi mantenerse constante justo como en el histograma.





# Variable Altura (cm)

|                | Estadística Altura |
|----------------|--------------------|
| n              | 7053               |
| Mínimo         | 111.8              |
| Máximo         | 202.7              |
| Rango          | 90.9               |
| Núm. Clases    | 20                 |
| Ancho Clase    | 4.545              |
| Moda           | 161.2              |
| Media          | 162.94             |
| Varianza       | 168.31             |
| Desv. Estándar | 12.97              |
| C.V.           | 7.96%              |
| Coef. Sesgo    | -0.57              |
| Q1             | 155.60             |
| Q2 (Mediana)   | 163.80             |
| Q3             | 171.90             |
| IQR            | 16.30              |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos, tanto en la parte superior como en la parte inferior del gráfico que se relacionan con el histograma, ya que este tiene un sesgo hacia la izquierda, siendo donde hay más valores atípicos del diagrama de caja de la parte inferior. Incluso el coeficiente de sesgo, tiene un resultado de -0.57 que nos confirma las suposiciones que hicimos observando los gráficos y la mediana es mayor a la media.

| 2         [116.345, 120.89]         118.62         14         0.20%         16         0.23%           3         [120.89, 125.435]         123.16         26         0.37%         42         0.60%           4         [125.435, 129.98]         127.71         84         1.19%         126         1.79%           5         [129.98, 134.525]         132.25         137         1.94%         263         3.73%           6         [134.525, 139.07)         136.80         146         2.07%         409         5.80%           7         [139.07, 143.615)         141.34         161         2.28%         570         8.08%           8         [143.615, 148.16)         145.89         247         3.50%         817         11.58%           9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%                                                                                                                                |       | Tabla de Frecuencia de Altura (cm) |                |            |                |             |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------|----------------|------------|----------------|-------------|-------------------|
| 2       [116.345, 120.89]       118.62       14       0.20%       16       0.23%         3       [120.89, 125.435]       123.16       26       0.37%       42       0.60%         4       [125.435, 129.98]       127.71       84       1.19%       126       1.79%         5       [129.98, 134.525]       132.25       137       1.94%       263       3.73%         6       [134.525, 139.07)       136.80       146       2.07%       409       5.80%         7       [139.07, 143.615]       141.34       161       2.28%       570       8.08%         8       [143.615, 148.16]       145.89       247       3.50%       817       11.58%         9       [148.16, 152.705)       150.43       481       6.82%       1298       18.40%         10       [152.705, 157.25)       154.98       780       11.06%       2078       29.46%         11       [157.25, 161.795)       159.52       991       14.05%       3069       43.51%         12       [161.795, 166.34)       164.07       976       13.84%       4045       57.35%         13       [166.34, 170.885)       168.61       1038       14.72%       5083                                                                                                                                                                                                     | Clase | Intervalo                          | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 3         [120.89, 125.435)         123.16         26         0.37%         42         0.60%           4         [125.435, 129.98)         127.71         84         1.19%         126         1.79%           5         [129.98, 134.525)         132.25         137         1.94%         263         3.73%           6         [134.525, 139.07)         136.80         146         2.07%         409         5.80%           7         [139.07, 143.615)         141.34         161         2.28%         570         8.08%           8         [143.615, 148.16)         145.89         247         3.50%         817         11.58%           9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%                                                                                                                         | 1     | [111.8, 116.345)                   | 114.07         | 2          | 0.03%          | 2           | 0.03%             |
| 4         [125.435, 129.98]         127.71         84         1.19%         126         1.79%           5         [129.98, 134.525)         132.25         137         1.94%         263         3.73%           6         [134.525, 139.07)         136.80         146         2.07%         409         5.80%           7         [139.07, 143.615)         141.34         161         2.28%         570         8.08%           8         [143.615, 148.16)         145.89         247         3.50%         817         11.58%           9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%           14         [170.885, 175.43)         173.16         805         11.41%         5888         83.48% </td <td>2</td> <td>[116.345, 120.89)</td> <td>118.62</td> <td>14</td> <td>0.20%</td> <td>16</td> <td>0.23%</td>  | 2     | [116.345, 120.89)                  | 118.62         | 14         | 0.20%          | 16          | 0.23%             |
| 5         [129.98, 134.525)         132.25         137         1.94%         263         3.73%           6         [134.525, 139.07)         136.80         146         2.07%         409         5.80%           7         [139.07, 143.615)         141.34         161         2.28%         570         8.08%           8         [143.615, 148.16)         145.89         247         3.50%         817         11.58%           9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%           14         [170.885, 175.43)         173.16         805         11.41%         5888         83.48%           15         [175.43, 179.975)         177.70         623         8.83%         6511         92.3                                                                                                                 | 3     | [120.89, 125.435)                  | 123.16         | 26         | 0.37%          | 42          | 0.60%             |
| 6         [134.525, 139.07)         136.80         146         2.07%         409         5.80%           7         [139.07, 143.615)         141.34         161         2.28%         570         8.08%           8         [143.615, 148.16)         145.89         247         3.50%         817         11.58%           9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%           14         [170.885, 175.43)         173.16         805         11.41%         5888         83.48%           15         [175.43, 179.975)         177.70         623         8.83%         6511         92.32%           16         [179.975, 184.52)         182.25         361         5.12%         6872         9                                                                                                                 | 4     | [125.435, 129.98)                  | 127.71         | 84         | 1.19%          | 126         | 1.79%             |
| 7         [139.07, 143.615)         141.34         161         2.28%         570         8.08%           8         [143.615, 148.16)         145.89         247         3.50%         817         11.58%           9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%           14         [170.885, 175.43)         173.16         805         11.41%         5888         83.48%           15         [175.43, 179.975)         177.70         623         8.83%         6511         92.32%           16         [179.975, 184.52)         182.25         361         5.12%         6872         97.43%           17         [184.52, 189.065)         186.79         134         1.90%         7006 <t< td=""><td>5</td><td>[129.98, 134.525)</td><td>132.25</td><td>137</td><td>1.94%</td><td>263</td><td>3.73%</td></t<> | 5     | [129.98, 134.525)                  | 132.25         | 137        | 1.94%          | 263         | 3.73%             |
| 8       [143.615, 148.16)       145.89       247       3.50%       817       11.58%         9       [148.16, 152.705)       150.43       481       6.82%       1298       18.40%         10       [152.705, 157.25)       154.98       780       11.06%       2078       29.46%         11       [157.25, 161.795)       159.52       991       14.05%       3069       43.51%         12       [161.795, 166.34)       164.07       976       13.84%       4045       57.35%         13       [166.34, 170.885)       168.61       1038       14.72%       5083       72.07%         14       [170.885, 175.43)       173.16       805       11.41%       5888       83.48%         15       [175.43, 179.975)       177.70       623       8.83%       6511       92.32%         16       [179.975, 184.52)       182.25       361       5.12%       6872       97.43%         17       [184.52, 189.065)       186.79       134       1.90%       7006       99.33%         18       [189.065, 193.61)       191.34       37       0.52%       7043       99.86%         19       [193.61, 198.155)       195.88       6       0.09% <td>6</td> <td>[134.525, 139.07)</td> <td>136.80</td> <td>146</td> <td>2.07%</td> <td>409</td> <td>5.80%</td>                                                                             | 6     | [134.525, 139.07)                  | 136.80         | 146        | 2.07%          | 409         | 5.80%             |
| 9         [148.16, 152.705)         150.43         481         6.82%         1298         18.40%           10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%           14         [170.885, 175.43)         173.16         805         11.41%         5888         83.48%           15         [175.43, 179.975)         177.70         623         8.83%         6511         92.32%           16         [179.975, 184.52)         182.25         361         5.12%         6872         97.43%           17         [184.52, 189.065)         186.79         134         1.90%         7006         99.33%           18         [189.065, 193.61)         191.34         37         0.52%         7043         99.86%           19         [193.61, 198.155)         195.88         6         0.09%         7049                                                                                                                      | 7     | [139.07, 143.615)                  | 141.34         | 161        | 2.28%          | 570         | 8.08%             |
| 10         [152.705, 157.25)         154.98         780         11.06%         2078         29.46%           11         [157.25, 161.795)         159.52         991         14.05%         3069         43.51%           12         [161.795, 166.34)         164.07         976         13.84%         4045         57.35%           13         [166.34, 170.885)         168.61         1038         14.72%         5083         72.07%           14         [170.885, 175.43)         173.16         805         11.41%         5888         83.48%           15         [175.43, 179.975)         177.70         623         8.83%         6511         92.32%           16         [179.975, 184.52)         182.25         361         5.12%         6872         97.43%           17         [184.52, 189.065)         186.79         134         1.90%         7006         99.33%           18         [189.065, 193.61)         191.34         37         0.52%         7043         99.86%           19         [193.61, 198.155)         195.88         6         0.09%         7049         99.94%                                                                                                                                                                                                                  | 8     | [143.615, 148.16)                  | 145.89         | 247        | 3.50%          | 817         | 11.58%            |
| 11     [157.25, 161.795)     159.52     991     14.05%     3069     43.51%       12     [161.795, 166.34)     164.07     976     13.84%     4045     57.35%       13     [166.34, 170.885)     168.61     1038     14.72%     5083     72.07%       14     [170.885, 175.43)     173.16     805     11.41%     5888     83.48%       15     [175.43, 179.975)     177.70     623     8.83%     6511     92.32%       16     [179.975, 184.52)     182.25     361     5.12%     6872     97.43%       17     [184.52, 189.065)     186.79     134     1.90%     7006     99.33%       18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9     | [148.16, 152.705)                  | 150.43         | 481        | 6.82%          | 1298        | 18.40%            |
| 12       [161.795, 166.34)       164.07       976       13.84%       4045       57.35%         13       [166.34, 170.885)       168.61       1038       14.72%       5083       72.07%         14       [170.885, 175.43)       173.16       805       11.41%       5888       83.48%         15       [175.43, 179.975)       177.70       623       8.83%       6511       92.32%         16       [179.975, 184.52)       182.25       361       5.12%       6872       97.43%         17       [184.52, 189.065)       186.79       134       1.90%       7006       99.33%         18       [189.065, 193.61)       191.34       37       0.52%       7043       99.86%         19       [193.61, 198.155)       195.88       6       0.09%       7049       99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10    | [152.705, 157.25)                  | 154.98         | 780        | 11.06%         | 2078        | 29.46%            |
| 13     [166.34, 170.885)     168.61     1038     14.72%     5083     72.07%       14     [170.885, 175.43)     173.16     805     11.41%     5888     83.48%       15     [175.43, 179.975)     177.70     623     8.83%     6511     92.32%       16     [179.975, 184.52)     182.25     361     5.12%     6872     97.43%       17     [184.52, 189.065)     186.79     134     1.90%     7006     99.33%       18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11    | [157.25, 161.795)                  | 159.52         | 991        | 14.05%         | 3069        | 43.51%            |
| 14     [170.885, 175.43)     173.16     805     11.41%     5888     83.48%       15     [175.43, 179.975)     177.70     623     8.83%     6511     92.32%       16     [179.975, 184.52)     182.25     361     5.12%     6872     97.43%       17     [184.52, 189.065)     186.79     134     1.90%     7006     99.33%       18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12    | [161.795, 166.34)                  | 164.07         | 976        | 13.84%         | 4045        | 57.35%            |
| 15     [175.43, 179.975)     177.70     623     8.83%     6511     92.32%       16     [179.975, 184.52)     182.25     361     5.12%     6872     97.43%       17     [184.52, 189.065)     186.79     134     1.90%     7006     99.33%       18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13    | [166.34, 170.885)                  | 168.61         | 1038       | 14.72%         | 5083        | 72.07%            |
| 16     [179.975, 184.52)     182.25     361     5.12%     6872     97.43%       17     [184.52, 189.065)     186.79     134     1.90%     7006     99.33%       18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14    | [170.885, 175.43)                  | 173.16         | 805        | 11.41%         | 5888        | 83.48%            |
| 17     [184.52, 189.065)     186.79     134     1.90%     7006     99.33%       18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15    | [175.43, 179.975)                  | 177.70         | 623        | 8.83%          | 6511        | 92.32%            |
| 18     [189.065, 193.61)     191.34     37     0.52%     7043     99.86%       19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16    | [179.975, 184.52)                  | 182.25         | 361        | 5.12%          | 6872        | 97.43%            |
| 19     [193.61, 198.155)     195.88     6     0.09%     7049     99.94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17    | [184.52, 189.065)                  | 186.79         | 134        | 1.90%          | 7006        | 99.33%            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18    | [189.065, 193.61)                  | 191.34         | 37         | 0.52%          | 7043        | 99.86%            |
| 20 [198.155, 202.7] 200.43 4 0.06% 7053 100.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19    | [193.61, 198.155)                  | 195.88         | 6          | 0.09%          | 7049        | 99.94%            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20    | [198.155, 202.7]                   | 200.43         | 4          | 0.06%          | 7053        | 100.00%           |

7053





Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 7.96% de variación entre sus datos.

En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [166.34, 170.885) y de ahí empieza a decaer. En el histograma y la tabla de frecuencia se puede ver, que al principio y al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

### Variable IMC

|                | Estadística IMC |      |
|----------------|-----------------|------|
| n              | 7053            |      |
| Mínimo         | 12.3            |      |
| Máximo         | 64.6            |      |
| Rango          | 52.3            |      |
| Núm. Clases    | 20              |      |
| Ancho Clase    | 2.615           |      |
| Moda           | 29.1            | 26.5 |
| Media          | 27.37           |      |
| Varianza       | 53.44           |      |
| Desv. Estándar | 7.31            |      |
| C.V.           | 26.71%          |      |
| Coef. Sesgo    | 0.82            |      |
| Q1             | 22.10           |      |
| Q2 (Mediana)   | 26.60           |      |
| Q3             | 31.50           |      |
| IQR            | 9.40            |      |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos en la parte superior del gráfico que se relacionan con el histograma, ya que este tiene un sesgo hacia la derecha, en donde la media es mayor a la mediana. Incluso el coeficiente de sesgo, tiene un resultado de 0.82 que nos confirma las suposiciones que hicimos observando los gráficos.

Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 26.71% de variación entre sus datos.

|       | Tabla de Frecuencia de IMC |                |            |                |             |                   |  |
|-------|----------------------------|----------------|------------|----------------|-------------|-------------------|--|
| Clase | Intervalo                  | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |  |
| 1     | [12.3, 14.915)             | 13.61          | 78         | 1.11%          | 78          | 1.11%             |  |
| 2     | [14.915, 17.53)            | 16.22          | 382        | 5.42%          | 460         | 6.52%             |  |
| 3     | [17.53, 20.145)            | 18.84          | 622        | 8.82%          | 1082        | 15.34%            |  |
| 4     | [20.145, 22.76)            | 21.45          | 934        | 13.24%         | 2016        | 28.58%            |  |
| 5     | [22.76, 25.375)            | 24.07          | 1028       | 14.58%         | 3044        | 43.16%            |  |
| 6     | [25.375, 27.99)            | 26.68          | 1045       | 14.82%         | 4089        | 57.98%            |  |
| 7     | [27.99, 30.605)            | 29.30          | 943        | 13.37%         | 5032        | 71.35%            |  |
| 8     | [30.605, 33.22)            | 31.91          | 683        | 9.68%          | 5715        | 81.03%            |  |
| 9     | [33.22, 35.835)            | 34.53          | 498        | 7.06%          | 6213        | 88.09%            |  |
| 10    | [35.835, 38.45)            | 37.14          | 311        | 4.41%          | 6524        | 92.50%            |  |
| 11    | [38.45, 41.065)            | 39.76          | 192        | 2.72%          | 6716        | 95.22%            |  |
| 12    | [41.065, 43.68)            | 42.37          | 129        | 1.83%          | 6845        | 97.05%            |  |
| 13    | [43.68, 46.295)            | 44.99          | 83         | 1.18%          | 6928        | 98.23%            |  |
| 14    | [46.295, 48.91)            | 47.60          | 49         | 0.69%          | 6977        | 98.92%            |  |
| 15    | [48.91, 51.525)            | 50.22          | 37         | 0.52%          | 7014        | 99.45%            |  |
| 16    | [51.525, 54.14)            | 52.83          | 13         | 0.18%          | 7027        | 99.63%            |  |
| 17    | [54.14, 56.755)            | 55.45          | 13         | 0.18%          | 7040        | 99.82%            |  |
| 18    | [56.755, 59.37)            | 58.06          | 7          | 0.10%          | 7047        | 99.91%            |  |
| 19    | [59.37, 61.985)            | 60.68          | 4          | 0.06%          | 7051        | 99.97%            |  |
| 20    | [61.985, 64.6]             | 63.29          | 2          | 0.03%          | 7053        | 100.00%           |  |
|       |                            |                | 7053       |                |             | _                 |  |





Algo importante a destacar, es que en esta variable hay presencia bimodal, siendo estos 29.1 y 26.5. En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [25.375, 27.99) y de ahí empieza a decaer. En el histograma y la tabla de frecuencia se puede ver, que al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

# Variable Longitud de la pierna (cm)

|                | Estadística Longitud Pierna |
|----------------|-----------------------------|
| n              | 7053                        |
| Mínimo         | 24                          |
| Máximo         | 51.1                        |
| Rango          | 27.1                        |
| Núm. Clases    | 20                          |
| Ancho Clase    | 1.355                       |
| Moda           | 38.0                        |
| Media          | 38.10                       |
| Varianza       | 17.33                       |
| Desv. Estándar | 4.16                        |
| C.V.           | 10.93%                      |
| Coef. Sesgo    | -0.14                       |
| Q1             | 35.30                       |
| Q2 (Mediana)   | 38.20                       |
| Q3             | 41.00                       |
| IQR            | 5.70                        |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos, tanto en la parte superior como en la parte inferior del gráfico que se relacionan con el histograma, ya que tiene un ligero sesgo hacia la izquierda, siendo donde hay más valores atípicos del diagrama de caja de la parte inferior. Incluso el coeficiente de sesgo, tiene un resultado de -0.14 que nos confirma las suposiciones que hicimos observando los gráficos y la mediana es mayor a la media.

|       | Tabla de Frecuencia de Longitud de la pierna (cm) |                |            |                |             |                   |
|-------|---------------------------------------------------|----------------|------------|----------------|-------------|-------------------|
| Clase | Intervalo                                         | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 1     | [24, 25.355)                                      | 24.68          | 4          | 0.06%          | 4           | 0.06%             |
| 2     | [25.355, 26.71)                                   | 26.03          | 13         | 0.18%          | 17          | 0.24%             |
| 3     | [26.71, 28.065)                                   | 27.39          | 40         | 0.57%          | 57          | 0.81%             |
| 4     | [28.065, 29.42)                                   | 28.74          | 96         | 1.36%          | 153         | 2.17%             |
| 5     | [29.42, 30.775)                                   | 30.10          | 184        | 2.61%          | 337         | 4.78%             |
| 6     | [30.775, 32.13)                                   | 31.45          | 279        | 3.96%          | 616         | 8.73%             |
| 7     | [32.13, 33.485)                                   | 32.81          | 338        | 4.79%          | 954         | 13.53%            |
| 8     | [33.485, 34.84)                                   | 34.16          | 568        | 8.05%          | 1522        | 21.58%            |
| 9     | [34.84, 36.195)                                   | 35.52          | 698        | 9.90%          | 2220        | 31.48%            |
| 10    | [36.195, 37.55)                                   | 36.87          | 886        | 12.56%         | 3106        | 44.04%            |
| 11    | [37.55, 38.905)                                   | 38.23          | 848        | 12.02%         | 3954        | 56.06%            |
| 12    | [38.905, 40.26)                                   | 39.58          | 863        | 12.24%         | 4817        | 68.30%            |
| 13    | [40.26, 41.615)                                   | 40.94          | 822        | 11.65%         | 5639        | 79.95%            |
| 14    | [41.615, 42.97)                                   | 42.29          | 544        | 7.71%          | 6183        | 87.66%            |
| 15    | [42.97, 44.325)                                   | 43.65          | 433        | 6.14%          | 6616        | 93.80%            |
| 16    | [44.325, 45.68)                                   | 45.00          | 234        | 3.32%          | 6850        | 97.12%            |
| 17    | [45.68, 47.035)                                   | 46.36          | 124        | 1.76%          | 6974        | 98.88%            |
| 18    | [47.035, 48.39)                                   | 47.71          | 50         | 0.71%          | 7024        | 99.59%            |
| 19    | [48.39, 49.745)                                   | 49.07          | 23         | 0.33%          | 7047        | 99.91%            |
| 20    | [49.745, 51.1]                                    | 50.42          | 6          | 0.09%          | 7053        | 100.00%           |
|       |                                                   |                | 7052       | I              |             |                   |

7053





Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 10.93% de variación entre sus datos.

En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [36.195, 37.55) y de ahí empieza a decaer. En el histograma y la tabla de frecuencia se puede ver, que al principio y al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

### Variable Longitud del brazo (cm)

|                | Estadística Longitud Brazo |
|----------------|----------------------------|
| n              | 7053                       |
| Mínimo         | 22.5                       |
| Máximo         | 47.4                       |
| Rango          | 24.9                       |
| Núm. Clases    | 20                         |
| Ancho Clase    | 1.245                      |
| Moda           | 36.0                       |
| Media          | 36.15                      |
| Varianza       | 12.76                      |
| Desv. Estándar | 3.57                       |
| C.V.           | 9.88%                      |
| Coef. Sesgo    | -0.48                      |
| Q1             | 34.00                      |
| Q2 (Mediana)   | 36.50                      |
| Q3             | 38.60                      |
| IQR            | 4.60                       |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos, tanto en la parte superior como en la parte inferior del gráfico que se relacionan con el histograma, ya que tiene un sesgo hacia la izquierda, siendo donde hay más valores atípicos del diagrama de caja de la parte inferior. Incluso el coeficiente de sesgo, tiene un resultado de -0.48 que nos confirma las suposiciones que hicimos observando los gráficos y la mediana es mayor a la media.

Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 9.88% de variación entre sus datos.

|       | Tabla de Frecuencia de Longitud del brazo (cm) |                |            |                |             |                   |
|-------|------------------------------------------------|----------------|------------|----------------|-------------|-------------------|
| Clase | Intervalo                                      | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 1     | [22.5, 23.745)                                 | 23.12          | 4          | 0.06%          | 4           | 0.06%             |
| 2     | [23.745, 24.99)                                | 24.37          | 7          | 0.10%          | 11          | 0.16%             |
| 3     | [24.99, 26.235)                                | 25.61          | 45         | 0.64%          | 56          | 0.79%             |
| 4     | [26.235, 27.48)                                | 26.86          | 74         | 1.05%          | 130         | 1.84%             |
| 5     | [27.48, 28.725)                                | 28.10          | 138        | 1.96%          | 268         | 3.80%             |
| 6     | [28.725, 29.97)                                | 29.35          | 160        | 2.27%          | 428         | 6.07%             |
| 7     | [29.97, 31.215)                                | 30.59          | 257        | 3.64%          | 685         | 9.71%             |
| 8     | [31.215, 32.46)                                | 31.84          | 286        | 4.06%          | 971         | 13.77%            |
| 9     | [32.46, 33.705)                                | 33.08          | 603        | 8.55%          | 1574        | 22.32%            |
| 10    | [33.705, 34.95)                                | 34.33          | 687        | 9.74%          | 2261        | 32.06%            |
| 11    | [34.95, 36.195)                                | 35.57          | 1060       | 15.03%         | 3321        | 47.09%            |
| 12    | [36.195, 37.44)                                | 36.82          | 1019       | 14.45%         | 4340        | 61.53%            |
| 13    | [37.44, 38.685)                                | 38.06          | 1010       | 14.32%         | 5350        | 75.85%            |
| 14    | [38.685, 39.93)                                | 39.31          | 736        | 10.44%         | 6086        | 86.29%            |
| 15    | [39.93, 41.175)                                | 40.55          | 522        | 7.40%          | 6608        | 93.69%            |
| 16    | [41.175, 42.42)                                | 41.80          | 281        | 3.98%          | 6889        | 97.67%            |
| 17    | [42.42, 43.665)                                | 43.04          | 113        | 1.60%          | 7002        | 99.28%            |
| 18    | [43.665, 44.91)                                | 44.29          | 35         | 0.50%          | 7037        | 99.77%            |
| 19    | [44.91, 46.155)                                | 45.53          | 11         | 0.16%          | 7048        | 99.93%            |
| 20    | [46.155, 47.4]                                 | 46.78          | 5          | 0.07%          | 7053        | 100.00%           |
|       |                                                |                | 7052       | I              |             |                   |

7053





En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [34.95, 36.195) y de ahí empieza a decaer. En el histograma y la tabla de frecuencia se puede ver, que al principio y al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

## • Variable Circunferencia del brazo (cm)

|                | Estadística Circunferencia Brazo |
|----------------|----------------------------------|
| n              | 7053                             |
| Mínimo         | 13.8                             |
| Máximo         | 54.4                             |
| Rango          | 40.6                             |
| Núm. Clases    | 20                               |
| Ancho Clase    | 2.04                             |
| Moda           | 34.0                             |
| Media          | 31.24                            |
| Varianza       | 37.10                            |
| Desv. Estándar | 6.09                             |
| C.V.           | 19.50%                           |
| Coef. Sesgo    | 0.16                             |
| Q1             | 27.20                            |
| Q2 (Mediana)   | 31.20                            |
| Q3             | 35.30                            |
| IQR            | 8.10                             |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos, tanto en la parte superior como en la parte inferior del gráfico que se relacionan con el histograma, ya que tiene un sesgo hacia la derecha, siendo donde hay más valores atípicos del diagrama de caja de la parte superior. Incluso el coeficiente de sesgo, tiene un resultado de 0.16 que nos confirma las suposiciones que hicimos observando los gráficos y la media es mayor a la mediana.

|       | Tabla de Frecuencia de Circunferencia del brazo (cm) |                |            |                |             |                   |
|-------|------------------------------------------------------|----------------|------------|----------------|-------------|-------------------|
| Clase | Intervalo                                            | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 1     | [13.8, 15.84)                                        | 14.82          | 4          | 0.06%          | 4           | 0.06%             |
| 2     | [15.84, 17.88)                                       | 16.86          | 44         | 0.62%          | 48          | 0.68%             |
| 3     | [17.88, 19.92)                                       | 18.90          | 176        | 2.50%          | 224         | 3.18%             |
| 4     | [19.92, 21.96)                                       | 20.94          | 269        | 3.81%          | 493         | 6.99%             |
| 5     | [21.96, 24)                                          | 22.98          | 337        | 4.78%          | 830         | 11.77%            |
| 6     | [24, 26.04)                                          | 25.02          | 581        | 8.24%          | 1411        | 20.01%            |
| 7     | [26.04, 28.08)                                       | 27.06          | 694        | 9.84%          | 2105        | 29.85%            |
| 8     | [28.08, 30.12)                                       | 29.10          | 893        | 12.66%         | 2998        | 42.51%            |
| 9     | [30.12, 32.16)                                       | 31.14          | 977        | 13.85%         | 3975        | 56.36%            |
| 10    | [32.16, 34.2)                                        | 33.18          | 905        | 12.83%         | 4880        | 69.19%            |
| 11    | [34.2, 36.24)                                        | 35.22          | 797        | 11.30%         | 5677        | 80.49%            |
| 12    | [36.24, 38.28)                                       | 37.26          | 545        | 7.73%          | 6222        | 88.22%            |
| 13    | [38.28, 40.32)                                       | 39.30          | 352        | 4.99%          | 6574        | 93.21%            |
| 14    | [40.32, 42.36)                                       | 41.34          | 199        | 2.82%          | 6773        | 96.03%            |
| 15    | [42.36, 44.4)                                        | 43.38          | 125        | 1.77%          | 6898        | 97.80%            |
| 16    | [44.4, 46.44)                                        | 45.42          | 88         | 1.25%          | 6986        | 99.05%            |
| 17    | [46.44, 48.48)                                       | 47.46          | 38         | 0.54%          | 7024        | 99.59%            |
| 18    | [48.48, 50.52)                                       | 49.50          | 17         | 0.24%          | 7041        | 99.83%            |
| 19    | [50.52, 52.56)                                       | 51.54          | 9          | 0.13%          | 7050        | 99.96%            |
| 20    | [52.56, 54.6]                                        | 53.58          | 3          | 0.04%          | 7053        | 100.00%           |

7053





Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 19.50% de variación entre sus datos.

En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [30.12, 32.16) y de ahí empieza a decaer. En el histograma y la tabla de frecuencia se puede ver, que al principio y al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

### • Variable Circunferencia de la cintura (cm)

|                | Estadística Circunferencia Cintura |
|----------------|------------------------------------|
| n              | 7053                               |
| Mínimo         | 45.2                               |
| Máximo         | 171.6                              |
| Rango          | 126.4                              |
| Núm. Clases    | 20                                 |
| Ancho Clase    | 6.32                               |
| Moda           | 97.0                               |
| Media          | 93.30                              |
| Varianza       | 374.38                             |
| Desv. Estándar | 19.35                              |
| C.V.           | 20.74%                             |
| Coef. Sesgo    | 0.30                               |
| Q1             | 79.30                              |
| Q2 (Mediana)   | 93.20                              |
| Q3             | 105.80                             |
| IQR            | 26.50                              |









De acuerdo con el diagrama de caja, se puede observar que hay presencia de valores atípicos en la parte superior del gráfico que se relacionan con el histograma, ya que este tiene un sesgo hacia la derecha, en donde la media es mayor a la mediana. Incluso el coeficiente de sesgo, tiene un resultado de 0.30 que nos confirma las suposiciones que hicimos observando los gráficos.

Con el IQR observar que no hay tanta variabilidad entre los datos y es porque la caja es pequeña con un 20.74% de variación entre sus datos.

|       | Tabla de Frecuencia de Circunferencia de la cintura (cm) |                |            |                |             |                   |
|-------|----------------------------------------------------------|----------------|------------|----------------|-------------|-------------------|
| Clase | Intervalo                                                | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 1     | [45.2, 51.52)                                            | 48.36          | 14         | 0.20%          | 14          | 0.20%             |
| 2     | [51.52, 57.84)                                           | 54.68          | 154        | 2.18%          | 168         | 2.38%             |
| 3     | [57.84, 64.16)                                           | 61.00          | 281        | 3.98%          | 449         | 6.37%             |
| 4     | [64.16, 70.48)                                           | 67.32          | 399        | 5.66%          | 848         | 12.02%            |
| 5     | [70.48, 76.8)                                            | 73.64          | 627        | 8.89%          | 1475        | 20.91%            |
| 6     | [76.8, 83.12)                                            | 79.96          | 756        | 10.72%         | 2231        | 31.63%            |
| 7     | [83.12, 89.44)                                           | 86.28          | 814        | 11.54%         | 3045        | 43.17%            |
| 8     | [89.44, 95.76)                                           | 92.60          | 863        | 12.24%         | 3908        | 55.41%            |
| 9     | [95.76, 102.08)                                          | 98.92          | 897        | 12.72%         | 4805        | 68.13%            |
| 10    | [102.08, 108.4)                                          | 105.24         | 787        | 11.16%         | 5592        | 79.29%            |
| 11    | [108.4, 114.72)                                          | 111.56         | 571        | 8.10%          | 6163        | 87.38%            |
| 12    | [114.72, 121.04)                                         | 117.88         | 354        | 5.02%          | 6517        | 92.40%            |
| 13    | [121.04, 127.36)                                         | 124.20         | 196        | 2.78%          | 6713        | 95.18%            |
| 14    | [127.36, 133.68)                                         | 130.52         | 147        | 2.08%          | 6860        | 97.26%            |
| 15    | [133.68, 140)                                            | 136.84         | 87         | 1.23%          | 6947        | 98.50%            |
| 16    | [140, 146.32)                                            | 143.16         | 55         | 0.78%          | 7002        | 99.28%            |
| 17    | [146.32, 152.64)                                         | 149.48         | 33         | 0.47%          | 7035        | 99.74%            |
| 18    | [152.64, 158.96)                                         | 155.80         | 7          | 0.10%          | 7042        | 99.84%            |
| 19    | [158.96, 165.28)                                         | 162.12         | 9          | 0.13%          | 7051        | 99.97%            |
| 20    | [165.28, 171.6]                                          | 168.44         | 2          | 0.03%          | 7053        | 100.00%           |
|       |                                                          |                | 7053       |                |             | •                 |

7053





En la tabla de frecuencia se puede ver como la mayor parte de los datos está en el intervalo [95.76, 102.08) y de ahí empieza a decaer. En el histograma y la tabla de frecuencia se puede ver, que al final está la presencia de valores muy alejados de la media, lo que quiere decir que hay datos atípicos.

### Variable Sexo

|      | Estadística Sexo |
|------|------------------|
| n    | 7053             |
| Moda | 1 - Mujer        |









De acuerdo con la moda que se obtuvo y con los gráficos presentes, el total de mujeres es mayor al total de hombres, teniendo un 51% y 49% respectivamente.

|       | Tabla de Frecuencia de Sexo |                |            |                |             |                   |
|-------|-----------------------------|----------------|------------|----------------|-------------|-------------------|
| Clase | Intervalo                   | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 1     | 0                           | Hombre         | 3461       | 49.07%         | 3461        | 49.07%            |
| 2     | 1                           | Mujer          | 3592       | 50.93%         | 7053        | 100.00%           |
|       | •                           |                | 7053       |                |             |                   |

### Variable Raza

|      | Estadística Raza      |
|------|-----------------------|
| n    | 7053                  |
| Moda | 3 – Blanco no hispano |









La raza con mayor conteo, es la de "Blanco no hispano" con un porcentaje de 31%, que también le corresponde la moda. Y la raza con menor conteo, es la de "Otras razas: incluidas las multirraciales" con un porcentaje de 4%.

|       | Tabla de Frecuencia de Raza |                                           |            |                |             |                   |
|-------|-----------------------------|-------------------------------------------|------------|----------------|-------------|-------------------|
| Clase | Intervalo                   | Marca de clase                            | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |
| 1     | 1                           | Mexicano americano                        | 1310       | 18.57%         | 1310        | 18.57%            |
| 2     | 2                           | Otro hispano                              | 941        | 13.34%         | 2251        | 31.92%            |
| 3     | 3                           | Blanco no hispano                         | 2206       | 31.28%         | 4457        | 63.19%            |
| 4     | 4                           | Negro no hispano                          | 1513       | 21.45%         | 5970        | 84.64%            |
| 5     | 6                           | Asiático no hispano                       | 785        | 11.13%         | 6755        | 95.77%            |
| 6     | 7                           | Otras razas: incluidas las multirraciales | 298        | 4.23%          | 7053        | 100.00%           |
|       |                             |                                           | 7053       |                |             |                   |

Para asociarle una distribución a esta variable categórica, supondremos que se distribuye de manera binomial, pero antes, primero agruparemos las 6 respuestas en 2 grupos, "OMO" (Otro hispano, mexicano americano y Otras razas) y "NBA" (Negro hispano, Blanco no hispano y asiático no hispano). Teniendo ahora:

|      | Estadística Raza2 |
|------|-------------------|
| n    | 7053              |
| Moda | 9 - No hispano    |









De acuerdo con la moda que se obtuvo y con los gráficos presentes, el total de no hispanos es mayor al total de hispanos, teniendo un 64% y 36% respectivamente.

|       | Tabla de Frecuencia de Raza2 |                |            |                |             |                   |  |  |
|-------|------------------------------|----------------|------------|----------------|-------------|-------------------|--|--|
| Clase | Intervalo                    | Marca de clase | Frecuencia | Frec. Relativa | Frec. Acum. | Frec. Rela. Acum. |  |  |
| 1     | 0                            | OMO            | 2549       | 36.14%         | 2549        | 36.14%            |  |  |
| 2     | 1                            | NBA            | 4504       | 63.86%         | 7053        | 100.00%           |  |  |
|       |                              |                | 7053       |                |             |                   |  |  |





# **ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE**

Como se estuvo mencionado anteriormente, se realizará un modelo lineal múltiple para estimar el Peso de una persona, tomando en cuenta como variables predictivas la Edad, Sexo, Altura, IMC, Longitud de la pierna, Longitud del brazo, Circunferencia del brazo, Circunferencia de la cintura y la Raza. Para fines prácticos que se verán más adelante, se manejará la variable Sexo como Mujer y la variable Raza2 como Raza.

En este apartado, se buscará qué modelo se ajusta mejor para poder estimar el Peso tomando en cuenta, la dispersión de los datos, correlación, multicolinealidad, coeficientes de determinación, prueba de significancia e intervalos de confianza.

## MATRIZ DE DISPERSIÓN



Al visualizar la matriz de dispersión del conjunto de datos, se distingue que todas las variables cuantitativas tienen una tendencia positiva contra la variable de respuesta Peso, excepto una variable predictora Edad, que al parecer al principio crece para al final mantenerse constante entre una cierta cantidad de valores. También, se puede observar como las variables predictoras IMC, Circunferencia del brazo, Circunferencia de la cintura, siguen una dispersión lineal más concentrada.





En cambio, las variables predictoras Altura, Longitud de la pierna, Longitud del brazo, al principio siguen una linea recta, pero se terminan expandiendo. Todo esto se toma en cuenta, observando la primera fila.

Será de suma importancia ver si la variable Edad terminará siendo significativa para el modelo lineal múltiple. También, las variables Circunferencia del brazo y Circunferencia de la cintura, tienen una dispersión lineal más concentrada hacia la variable IMC como respuesta. Esto hace suponer que al hacer el análisis de multicolinealidad implacará una dependencia lineal entre ellos. Gráfico generado con R Studio.

## MATRIZ DE CORRELACIÓN



En la matriz de correlación, se puede observar y reforzar las conclusiones que se hicieron en la matriz de dispersión. Las variables predictoras IMC, Circunferencia del brazo, Circunferencia de la cintura, se dijo que seguian una linea recta más concentrada, son las que tienen mayor grado de asociación lineal con la variable Peso. En cambio, las variables predictoras Altura, Longitud de la pierna, Longitud del brazo, no tienen un buen grado de asociación lineal con la variable Peso, que se puede deber a esa variabilidad o expanción de los datos que tienen casi al final.

De igual forma en la matriz de dispersión, será de suma importancia no solo ver si la variable Edad terminará siendo significativa para el modelo lineal múltiple, ya que





las dos variables cualitativas Mujer y Raza, muestran un grado de asociación muy bajo. También, las variables Circunferencia del brazo y Circunferencia de la cintura, muestran un buen grado de asociación lineal con la variable IMC como respuesta. Lo que confirma aun más, la presencia de multicolinealdiad. Gráfico generado con R Studio.

Tomando en cuenta las conclusiones en la matriz de dispersión y correlación, se puede considerar que todas las variables deberán ser incluidas en nuestro modelo lineal múltiple, exceptuando la variable IMC, por motivos de multicolinealidad con otras variables. Las variables Mujer y Raza, mostraron una correlación muy baja, lo que puede suponer que no serán incluidas en el modelo lineal múltiple.

#### **MULTICOLINEALIDAD**

El problema de multicolinealidad consiste en la existencia de relaciones lineales entre dos o más variables independientes del modelo lineal múltiple. Entonces, antes de construir un modelo de regresión lineal múltiple, primero hay que ver, si existe dependencia entre las variables Edad, Mujer, Altura, IMC, Longitud de pierna, Longitud del brazo, Circunferencia del brazo, Circunferencia de la cintura y Raza. Usaremos la fórmula del  $VIF_j$  (Variance Inflation Factors) para determinar dicha multicolinealidad y lo obtendremos con ayuda de R Studio.

$$VIF_j = \frac{1}{1 - R_j^2}$$

| Variables                    | $VIF_j$ |
|------------------------------|---------|
| Edad                         | 1.8847  |
| Mujer                        | 1.3536  |
| Altura                       | 8.5317  |
| IMC                          | 21.1395 |
| Longitud de la pierna        | 3.9693  |
| Longitud del brazo           | 6.1870  |
| Circunferencia del brazo     | 10.8269 |
| Circunferencia de la cintura | 14.7497 |
| Raza                         | 1.0801  |

En este caso, hay la aparición de multicolinealidad en 3 variables predictoras: IMC, Circunferencia del brazo, Circunferencia de la cintura, ya que la condición para que no exista tal caso, se requiere que  $VIF_j < 10$ , justo como se había supuesto en el análisis de correlación y dispersión. Se empezará primero por eliminar la variable IMC, que fue el que mayor  $VIF_j$  presentó, para ver si mejoran las otras dos variables que también lo superan.





| Variables                    | $VIF_{j}$ |
|------------------------------|-----------|
| Edad                         | 1.7419    |
| Mujer                        | 1.2855    |
| Altura                       | 7.4067    |
| Longitud de la pierna        | 3.9261    |
| Longitud del brazo           | 6.1768    |
| Circunferencia del brazo     | 5.7308    |
| Circunferencia de la cintura | 5.9013    |
| Raza                         | 1.0801    |

Como se puede ver, al eliminar la variable IMC, el  $VIF_j$  bajó considerablemente al grado de que ya no sobrepasaran el 10.

#### **MODELO COMPLETO**

El modelo lineal múltiple, permite generar un modelo lineal en el que el valor de la variable dependiente o respuesta se determina a partir de un conjunto de variables independientes llamadas predictores. Es una extensión de la regresión lineal simple. El modelo lineal múltiple puede emplearse para predecir el valor de la variable dependiente o para evaluar la influencia que tienen los predictores sobre ella.

El modelo lineal múltiple sigue la siguiente ecuación:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$ . En nuestro estudio, al haber hecho lo de multicolinealidad nos quedaron 8 variables predictoras (Edad, Mujer, Altura, Longitud de pierna, Longitud del brazo, Circunferencia del brazo, Circunferencia de la cintura y Raza) y una variable de respuesta (Peso). El modelo lineal múltiple que se realizará seguirá la siguiente ecuación:  $y = \beta_0 + \beta_1 x_{Edad} + \beta_2 x_{Mujer} + \beta_3 x_{Altura} + \beta_4 x_{Long\_pierna} + \beta_5 x_{Long\_brazo} + \beta_6 x_{Cir\_brazo} + \beta_7 x_{Cir\_cintura} + \beta_8 x_{Raza}$ .

Para poder encontrar las estimaciones de las betas usaríamos la Estimación por Mínimos Cuadrados, pero el cálculo sería más tardado, por lo que haremos uso de R Studio para poder calcular dichas estimaciones.

| β                                | Coeficiente |
|----------------------------------|-------------|
| Intercepto (0)                   | -101.5947   |
| Edad (1)                         | -0.1162     |
| Mujer (2)                        | -0.2602     |
| Altura (3)                       | 0.3900      |
| Longitud de la pierna (4)        | 0.2313      |
| Longitud del brazo (5)           | -0.1200     |
| Circunferencia del brazo (6)     | 1.4278      |
| Circunferencia de la cintura (7) | 0.7186      |
| Raza (8)                         | 0.7949      |





Sustituyendo dichas estimaciones en el modelo:  $\hat{y} = -101.5947 - 0.1162x_{Edad} - 0.2602x_{Mujer} + 0.3900x_{Altura} + 0.2313x_{Long\_pierna} - 0.1200x_{Long\_brazo} + 1.4278x_{Cir\ brazo} + 0.7186x_{Cir\ cintura} + 0.7949x_{Raza}$ .

Las variables que influyen de manera positiva sobre el modelo es la Altura, Longitud de la pierna, Circunferencia del brazo, Circunferencia de la cintura. Por ejemplo, si el resto de las variables no varían, por cada unidad de Altura que aumente, el peso se incrementa en promedio 0.3900. De la misma forma para las variables que influyen de manera negativa sobre el modelo, son la Edad, Longitud del brazo. Por ejemplo, si el resto de las variables no varían, por cada unidad de Edad que aumente, el peso se disminuye en promedio -0.1162. Eso es en caso de ser variables cuantitativas.

En este caso se tiene dos variables cualitativas, la variable Mujer y Raza. Cuando un predictor es cualitativo, uno de sus niveles se considera de referencia y se le asigna el valor de 0. El valor de la pendiente de cada nivel de un predictor cualitativo se define como el promedio de unidades que dicho nivel está por encima o debajo del nivel de referencia. Por ejemplo, la variable Mujer es de dos niveles, el nivel de referencia es Hombre, por lo que si el peso de una persona es Hombre se le da a la variable el valor 0 y si es Mujer el valor 1. Acorde al modelo, las Mujeres son en promedio 0.2602 unidades de peso inferior a los Hombres.

# AJUSTE DEL MODELO LINEAL MÚLTIPLE

El coeficiente de determinación, es la proporción de la varianza total de la variable explicada por la regresión, es decir, refleja la bondad del ajuste de un modelo a la variable que pretender explicar. Y esta es su fórmula:

$$R^{2} = \frac{Var(\hat{y})}{Var(y)} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Por otro lado, el coeficiente de determinación ajustado, es la medida que define el porcentaje explicado por la varianza de la regresión en relación con la varianza de la variable explicada. Es decir, lo mismo que el R cuadrado, pero con una diferencia: el coeficiente de determinación ajustado penaliza la inclusión de variables. Y esta es su fórmula:

$$R^2$$
 ajustada =  $1 - \frac{n-1}{n-k-1}(1-R^2)$ 

Donde: n es el tamaño de la muestra.

k es el número de variables explicativas.





Como siempre, se usará R Studio para calcular dichos procedimientos y al final del documento se mostrará el código y los resultados de cómo se obtuvieron.

| $R^2$                   | 0.9617742 |
|-------------------------|-----------|
| R <sup>2</sup> ajustada | 0.9617308 |

En cuestión del  $R^2$  ajustada, se puede decir que un **96.17%** de los datos es explicada por el modelo lineal múltiple. Lo que le corresponde un muy buen desempeño.

#### PRUEBA DE SIGNIFICANCIA

Se determinará si hay una relación lineal entre la variable de respuesta y cualquiera de las variables predictoras con la siguiente hipótesis, en el cual  $H_0$  indica si todas las variables involucras son igual a 0 y la  $H_1$  indica si algún predictor contribuye de manera significativa a la regresión lineal múltiple (al menos una es diferente de 0):

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = \beta_7 = \beta_8 = 0$$
  
 $H_1: Al \ menos \ un \ \beta_i \neq 0$ 

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un  $p-valor \approx 0.000$ , se cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que al menos un regresor contribuye de manera significativa al modelo de regresión lineal múltiple con una confianza del 95%.

#### PRUEBA DEL ORIGEN

Se probará si la regresión pasa por el origen (en este caso que  $\hat{\beta}_0 = 0$ ) con la siguiente hipótesis:

$$H_0: \beta_0 = 0$$
  
$$H_1: \beta_0 \neq 0$$

Se calculará el p-valor con R Studio y haremos uso del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un  $p-valor \approx 0.000$ , se cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que la regresión no pasa por el origen, es decir, que  $\beta_0$  es diferente de 0 con una confianza del 95%.





#### INTERVALOS DE CONFIANZA

Una estimación puntual, por el hecho de ser un solo número no proporciona información sobre la precisión y confiabilidad de la estimación, por lo tanto, se usará el intervalo de confianza para que brinde información de un rango de valores factibles para los parámetros de las betas bajo una confianza del 95% y haciendo uso de R Studio:

| β                                | Inferior  | Superior |
|----------------------------------|-----------|----------|
| Intercepto (0)                   | -103.2962 | -99.8931 |
| Edad (1)                         | -0.1229   | -0.1095  |
| Mujer (2)                        | -0.5130   | -0.0074  |
| Altura (3)                       | 0.3667    | 0.4134   |
| Longitud de la pierna (4)        | 0.1782    | 0.2843   |
| Longitud del brazo (5)           | -0.1976   | -0.0424  |
| Circunferencia del brazo (6)     | 1.3840    | 1.4716   |
| Circunferencia de la cintura (7) | 0.7046    | 0.7326   |
| Raza (8)                         | 0.5538    | 1.0361   |

Como se observar, en ninguno de los intervalos de confianza para cada beta está contenido el número 0, y esto nos dice tres cosas:

- 1. Ninguna variable predictora se hace 0, y concuerda con la prueba de significancia.
- 2. El intercepto, también es diferente de 0, y concuerda con la prueba del origen.
- 3. El intervalo nos está diciendo de qué manera está influyendo las variables predictoras (positiva o negativamente), y concuerda con lo que especificamos de cada variable.

Para realizar las pruebas de hipótesis usamos un  $\alpha=0.05$ , ya que al momento de usar un  $\alpha=0.01$ , resultaba que en los intervalos de confianza para la variable Mujer contenía el valor 0, lo que se concluye que no es significativa para el modelo. Entonces, para poder rescatar esa variable, tuvimos que aumentar el valor del error.

### SUBCONJUNTOS DEL MODELO COMPLETO

Si un modelo lineal múltiple tiene inicialmente k variables predictoras, entonces se puede construir  $2^k$  modelos diferentes con subconjuntos de las variables originales. En este caso, se tiene  $2^8 = 256$  subconjuntos que se pueden construir, pero como es proceso muy largo, se hará uso de paquetes estadísticos que nos ayuden a evaluar y elegir los mejores subconjuntos haciendo uso de 2 librerías.





### LIBRERÍA "olsrr"

Primero, se trabajará con la librería "olsrr" para generar solo los mejores subconjuntos para una variable, dos variables y así sucesivamente hasta llegar a las 8 variables predictoras con las que se cuenta. A continuación se muestras una tabla de resultados y una impresión de R Studio.

| Variables | Variables predictoras                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| 1         | $x_{Cir\_brazo}$                                                                                                        |
| 2         | $x_{Long\_pierna} + x_{Cir\_cintura}$                                                                                   |
| 3         | $x_{Altura} + x_{Cir\_brazo} + x_{Cir\_cintura}$                                                                        |
| 4         | $x_{Edad} + x_{Altura} + x_{Cir\_brazo} + x_{Cir\_cintura}$                                                             |
| 5         | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Cir\_brazo} + x_{Cir\_cintura}$                                          |
| 6         | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$                               |
| 7         | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Long\_brazo} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$             |
| 8         | $x_{Edad} + x_{Mujer} + x_{Altura} + x_{Long\_pierna} + x_{Long\_brazo} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$ |

```
Best Subsets Regression

Model Index Predictors

1 base2$circu_bra
2 base2$long_pier base2$circu_cin
3 base2$altura base2$circu_bra base2$circu_cin
4 base2$edad base2$altura base2$circu_bra base2$circu_bra base2$circu_cin
5 base2$edad base2$altura base2$long_pier base2$circu_bra base2$circu_cin
6 base2$edad base2$altura base2$long_pier base2$circu_bra base2$circu_cin
7 base2$edad base2$altura base2$long_pier base2$circu_bra base2$circu_cin base2$circu_cin base2$edad base2$altura base2$long_pier base2$circu_bra base2$circu_bra base2$circu_cin base2$raza2
8 base2$edad base2$mujer base2$altura base2$long_pier base2$long_pier base2$circu_bra base2$circu_bra base2$circu_cin base2$raza2
```

Incluso, no solo se puede ver el mejor subconjunto, sino todos los subconjuntos posibles ordenados de mayor a menor de acuerdo con su  $R^2ajustada$ . Aquí una pequeña impresión de la tabla.

| mindex | n | <b>‡</b> | predictors                        | rsquare ‡    | adjr ‡       | predrsq ‡     | ф ‡          | aic ‡    | sbic ‡   | sbc ‡    | msep ÷    | fpe ‡     | apc ‡      | hsp ‡       |
|--------|---|----------|-----------------------------------|--------------|--------------|---------------|--------------|----------|----------|----------|-----------|-----------|------------|-------------|
|        |   |          | base2\$circu_bra                  | 0.8754156657 | 0.8753979966 | 8.753244e-01  | 15908.57275  | 50399.77 | 30380.50 | 50420.36 | 523675.4  | 74.26966  | 0.12465501 |             |
| :      |   |          | base2\$circu_cin                  | 0.8508242778 | 0.8508031211 | 8.507320e-01  | 20440.11019  | 51670.32 | 31650.69 | 51690.90 | 627042.4  | 88.92956  | 0.14926035 | 0.012610546 |
|        |   |          | base2\$long_bra                   | 0.5164742704 | 0.5164056949 | 5.162208e-01  | 82051.90641  | 59964.50 | 39943.57 | 59985.08 | 2032442.9 | 288.24886 | 0.48380003 | 0.040874772 |
|        | 4 |          | base2\$altura                     | 0.4152723310 | 0.4151894027 | 4.149753e-01  | 100700.72689 | 61304.86 | 41283.83 | 61325.45 | 2457833.2 | 348.57935 | 0.58505938 | 0.049429862 |
|        |   |          | base2\$long_pier                  | 0.2203994543 | 0.2202888884 | 2.199129e-01  | 136610.60487 | 63333.56 | 43312.40 | 63354.14 | 3276958.1 | 464.75080 | 0.78004281 | 0.065903411 |
|        | 5 |          | base2\$edad                       | 0.1299418469 | 0.1298184519 | 1.294579e-01  | 153279.53130 | 64107.82 | 44086.62 | 64128.41 | 3657185.9 | 518.67616 | 0.87055173 | 0.073550230 |
|        |   |          | base2\$mujer                      | 0.0286123423 | 0.0284745763 | 2.806004e-02  | 171951.85866 | 64884.82 | 44863.59 | 64905.40 | 4083112.4 | 579.08270 | 0.97193872 | 0.082116104 |
|        | 8 |          | base2\$raza2                      | 0.0004924126 | 0.0003506586 | -7.165921e-05 | 177133.61233 | 65086.09 | 45064.85 | 65106.68 | 4201311.2 | 595.84610 | 1.00007460 | 0.084493218 |
|        |   |          | base2\$long_pier base2\$circu_cin | 0.9192231520 | 0.9192002366 | 9.191398e-01  | 7838.02046   | 47345.76 | 27326.50 |          | 339584.0  | 48.16794  | 0.08084559 | 0.006830396 |
| 1      |   |          | base2\$circu_bra base2\$circu_cin | 0.9180562235 | 0.9180329770 | 9.179611e-01  | 8053.05428   | 47446.92 | 27427.61 | 47474.37 | 344489.8  | 48.86379  | 0.08201352 | 0.006929070 |
| 1      |   |          | base2\$altura base2\$circu_cin    | 0.9170272794 | 0.9170037410 | 9.169401e-01  | 8242.66126   | 47534.93 |          | 47562.38 | 348815.4  | 49.47736  | 0.08304334 | 0.007016076 |
| 1.     |   |          | base2\$altura base2\$circu_bra    | 0.9062862892 | 0.9062597038 | 9.061828e-01  | 10221.93951  | 48393.51 | 28373.72 | 48420.96 | 393970.3  | 55.88230  | 0.09379347 | 0.007924322 |
| 1      |   |          | base2\$long_bra base2\$circu_cin  | 0.9025306499 | 0.9025029990 | 9.024312e-01  | 10914.00375  | 48670.65 | 28650.72 | 48698.09 | 409758.9  | 58.12182  | 0.09755230 | 0.008241894 |
| 1      | 4 |          | base2\$long_bra base2\$circu_bra  | 0.8976479131 | 0.8976188770 | 8.975342e-01  | 11813.76202  | 49015.41 | 28995.32 | 49042.85 | 430285.9  | 61.03344  | 0.10243920 | 0.008654773 |
| 1      | 5 | 2        | base2\$long_pier base2\$circu_bra | 0.8918880538 | 0.8918573838 | 8.917689e-01  | 12875.15059  | 49401.55 | 29381.29 | 49428.99 | 454500.2  | 64.46810  | 0.10820396 | 0.009141820 |





| 240 | 6 | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9067933782 | 0.9067140084 | 9.065684e-01 | 10136.49652 | 48363.25 | 28338.75 | 48418.14 | 392061.0  | 55.64300  | 0.09339182 | 0.007890395 |
|-----|---|-------------------------------------------------------------|--------------|--------------|--------------|-------------|----------|----------|----------|-----------|-----------|------------|-------------|
| 241 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9067929781 | 0.9067136079 | 9.065698e-01 | 10136.57025 | 48363.28 | 28338.78 | 48418.17 | 392062.7  | 55.64324  | 0.09339222 | 0.007890428 |
| 242 |   | base2\$mujer base2\$altura base2\$long_pier base2\$long_bra | 0.9067137702 | 0.9066343326 | 9.064881e-01 | 10151.16615 | 48369.27 | 28344.77 | 48424.16 | 392395.9  | 55.69052  | 0.09347158 | 0.007897134 |
| 243 |   | base2\$edad base2\$mujer base2\$altura base2\$long_bra bas  | 0.9066928221 | 0.9066133666 | 9.064807e-01 | 10155.02633 | 48370.85 | 28346.35 | 48425.74 | 392484.0  | 55.70303  | 0.09349257 | 0.007898907 |
| 244 |   | base2\$edad base2\$altura base2\$long_pier base2\$long_bra  | 0.9066699370 | 0.9065904621 | 9.064410e-01 | 10159.24344 | 48372.58 | 28348.08 | 48427.47 | 392580.2  | 55.71669  | 0.09351550 | 0.007900844 |
| 245 |   | base2\$edad base2\$mujer base2\$long_pier base2\$long_bra   | 0.8997806540 | 0.8996953125 | 8.995451e-01 | 11428.75471 | 48874.89 | 28849.92 | 48929.78 | 421559.1  | 59.82949  | 0.10041848 | 0.008484056 |
| 246 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.5424706193 | 0.5420810116 | 5.415303e-01 | 77271.47209 | 59584.73 | 39554.67 | 59639.62 | 1924535.2 | 273.13840 | 0.45843847 | 0.038732091 |
| 247 |   | base2\$edad base2\$altura base2\$long_pier base2\$long_bra  | 0.9617520793 | 0.9617140757 | 9.616317e-01 |             | 42082.93 | 22067.39 | 42144.68 | 160907.5  | 22.83993  | 0.03833479 | 0.003238792 |
| 248 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9617242220 | 0.9616861907 | 9.616038e-01 | 16.20588    | 42088.06 | 22072.52 | 42149.82 | 161024.7  | 22.85656  | 0.03836271 | 0.003241151 |
| 249 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9615475173 | 0.9615093104 | 9.614263e-01 | 48.76784    | 42120.55 | 22104.93 | 42182.30 | 161768.1  | 22.96208  | 0.03853981 | 0.003256114 |
| 250 |   | base2\$edad base2\$mujer base2\$altura base2\$long_bra bas  | 0.9613777341 | 0.9613393585 | 9.612597e-01 | 80.05435    | 42151.62 | 22135.93 | 42213.38 | 162482.4  | 23.06347  | 0.03870998 | 0.003270491 |
| 251 |   | base2\$edad base2\$mujer base2\$long_pier base2\$long_bra   | 0.9559711011 | 0.9559273534 | 9.558391e-01 | 1076.35274  | 43075.69 | 23058.02 | 43137.44 | 185227.9  | 26.29207  | 0.04412889 | 0.003728319 |
| 252 |   | base2\$mujer base2\$altura base2\$long_pier base2\$long_bra | 0.9554765747 | 0.9554323356 | 9.553371e-01 | 1167.48078  | 43154.47 | 23136.63 | 43216.22 | 187308.3  | 26.58738  | 0.04462454 | 0.003770195 |
| 253 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9396220260 | 0.9395620337 | 9.394646e-01 | 4089.05159  | 45302.87 | 25281.20 | 45364.62 | 254007.8  | 36.05500  | 0.06051510 | 0.005112741 |
| 254 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9067935535 | 0.9067009424 | 9.065408e-01 | 10138.46422 | 48365.23 | 28339.56 | 48426.98 | 392115.9  | 55.65868  | 0.09341813 | 0.007892620 |
| 255 |   | base2\$edad base2\$mujer base2\$altura base2\$long_pier bas | 0.9617741797 | 0.9617307659 | 9.616424e-01 | 9.00000     | 42080.85 | 22065.33 | 42149.47 | 160837.4  | 22.83321  | 0.03832350 | 0.003237840 |

Hay un resumen de los mejores subconjuntos de cada variable para tener una mejor decisión para elegir una. Se hará enfoque en la  $R^2ajustada$ , pero también, se podría basar las respuestas en otros resultados como MSEP y AIC.

| Variables      | R <sup>2</sup> ajustada |
|----------------|-------------------------|
| 1 <sup>1</sup> | 0.875415                |
| 2              | 0.919200                |
| 3              | 0.952203                |
| 4              | 0.961007                |
| 5              | 0.961455                |
| 6              | 0.961670                |
| 7              | 0.961714                |
| 8              | 0.961730                |

|              |                            | Adj.     | Pred     |            |            |            |            |             |         |
|--------------|----------------------------|----------|----------|------------|------------|------------|------------|-------------|---------|
| Model<br>HSP | R-Square<br>APC            | R-Square | R-Square | C(p)       | AIC        | SBIC       | SBC        | MSEP        | FPE     |
| 1<br>0.0105  | 0.8754<br>0.1247           | 0.8754   | 0.8753   | 15908.5728 | 50399.7730 | 30380.4950 | 50420.3566 | 523675.4248 | 74.2697 |
| 2            | 0.9192<br>0.0808           | 0.9192   | 0.9191   | 7838.0205  | 47345.7611 | 27326.5035 | 47373.2060 | 339584.0368 | 48.1679 |
| 3<br>0.0040  | 0.0606<br>0.9522<br>0.0478 | 0.9522   | 0.9521   | 1758.9086  | 43643.8106 | 23626.5935 | 43678.1166 | 200879.2009 | 28.4975 |
| 4            | 0.9610<br>0.0390           | 0.9610   | 0.9609   | 138.1420   | 42208.8510 | 22193.1250 | 42250.0183 | 163875.7104 | 23.2514 |
| 5            | 0.9615<br>0.0386           | 0.9615   | 0.9614   | 56.7735    | 42128.4911 | 22112.8683 | 42176.5195 | 161996.2034 | 22.9879 |
| 6<br>0.0032  | 0.9617<br>0.0384           | 0.9617   | 0.9616   | 18.0376    | 42089.8956 | 22074.3407 | 42144.7853 | 161089.3311 | 22.8625 |
| 7<br>0.0032  | 0.9618<br>0.0383           | 0.9617   | 0.9616   | 11.0725    | 42082.9299 | 22067.3941 | 42144.6808 | 160907.5260 | 22.8399 |
| 8<br>0.0032  | 0.0383<br>0.9618<br>0.0383 | 0.9617   | 0.9616   | 9.0000     | 42080.8534 | 22065.3294 | 42149.4655 | 160837.3838 | 22.8332 |

 $<sup>^{1}</sup>$  Aquí se uso  $\mathbb{R}^{2}$ , porque solo es una variable predictora.







Como se puede ver, a partir de 4 variables el  $R^2ajustada$  tiene un muy buen desempeño de 96.173%. Entonces, como el que tiene mayor  $R^2ajustada$  es el modelo que se propuso al principio, se elegirá ese. Y algo muy interesante a destacar, es que con una sola variable existe una buena  $R^2$  del 87.5415%.

# LIBRERÍA "leaps"

La librería "leaps" es muy parecida a la anterior, entonces intentaremos confirmar los resultados que se obtuvo con la anterior librería y solo se seleccionará primer mejor conjunto. A continuación se muestras una tabla de resultados y una impresión de R Studio.

| Variables | Variables predictoras                                                                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| 1         | $x_{Cir\ brazo}$                                                                                                        |
| 2         | $x_{Cir\ brazo} + x_{Cir\ cintura}$                                                                                     |
| 3         | $x_{Altura} + x_{Cir\_brazo} + x_{Cir\_cintura}$                                                                        |
| 4         | $x_{Edad} + x_{Altura} + x_{Cir\_brazo} + x_{Cir\_cintura}$                                                             |
| 5         | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Cir\_brazo} + x_{Cir\_cintura}$                                          |
| 6         | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$                               |
| 7         | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Long\_brazo} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$             |
| 8         | $x_{Edad} + x_{Mujer} + x_{Altura} + x_{Long\_pierna} + x_{Long\_brazo} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$ |

```
1 subsets of each size up to 8
Selection Algorithm: forward
           edad mujer altura long_pier long_bra circu_bra circu_cin raza2
                          .....
                                   . .
                                                . .
                                                                          пķп
                                                                                               .. ..
                                                            пұп
                          11 × 11
                                                             11 × 11
                                                                          11 ½ 11
6
                          пұп
                                                 11 🗴 11
                                                             пұп
                                   11 🛠 11
                                                                          11 🛧 11
                                                                                       11 🛧 11
                                                 11 × 11
                                                             11 × 11
                                                                                       11 🛧 11
```





El único conjunto que cambia es el de dos variables. Entonces, compramos si son las mismas  $R^2$  ajustada.

| Variables      | R <sup>2</sup> ajustada |
|----------------|-------------------------|
| 1 <sup>2</sup> | 0.875415                |
| 2              | 0.918033                |
| 3              | 0.952203                |
| 4              | 0.961007                |
| 5              | 0.961455                |
| 6              | 0.961670                |
| 7              | 0.961714                |
| 8              | 0.961730                |

Por lo tanto, se concluye que el modelo completo, es el mejor modelo lineal múltiple que mejor se ajusta para la variable de respuesta Peso.

### **SUPUESTOS DEL MODELO**

### Varianza constante



La gráfica Residuos vs Estimaciones, se podría decir que tiene un patrón de curva, podría indicar que se necesitan otras variables regresoras en el modelo o es un modelo polinómico.

-

<sup>&</sup>lt;sup>2</sup> Aquí se uso  $R^2$ , porque solo es una variable predictora.





### Independencia



El autocorrelograma mide la relación entre las variables y lo que nos está diciendo el grafico, es el grado de asociación con las variables y como cada uno de estas no pasa los intervalos, se puede decir que, son independientes.

Otra manera, es hacer una prueba de independencia con la siguiente hipótesis:

 $H_0$ : Los residuales son independientes  $H_1$ : Los residuales no son independientes

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=1e-13$  y un p-valor=0.6004, se no cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, no se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que los residuales son independientes con una confianza del 99.99999999999%.

## Media cero y Normalidad con media cero







Aquí se espera observar que los residuos sigan una distribución normal, pero al parecer al final, los residuos se desprenden de la línea recta lo que puede indicar asimetría en los datos.

Al obtener la media de los residuales nos da que es -5.9248e-17. Se probará si los datos siguen una distribución  $N\sim(0,\sigma^2)$  con la siguiente hipótesis:

 $H_0$ : Los datos provienen de una dist. Normal  $H_1$ : Los datos provienen de otra dist.

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=1e-13$  y un p-valor=3.6692e-12, no se cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, no se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que los residuales son normales con una confianza del 99.99999999999%.

Se propuso un modelo polinómico de 7 variables y grado 7, el modelo tiene un muy buen  $R^2ajustada$ , la varianza constante. Un breve resumen de lo obtenido.

| R <sup>2</sup> ajustada | 0.9803                                                                                                      |
|-------------------------|-------------------------------------------------------------------------------------------------------------|
| P-valor                 | 2.2e-16                                                                                                     |
| Variables               | $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Long\_brazo} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$ |

## Varianza constante del modelo polinomial



La gráfica Residuos vs Estimaciones, se podría decir que tiene un patrón de cono, pero usaremos una prueba de hipótesis:

 $H_0$ : Los residuos tienen una varianza constante  $H_1$ : Los residuos no tienen una varianza constante

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \le \alpha$  para





rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un p-valor=1, no se cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, no se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que la varianza es constante con una confianza del 95%.

## • Independencia



El autocorrelograma mide la relación entre las variables y lo que nos está diciendo el grafico, es el grado de asociación con las variables y como cada uno de estas no pasa los intervalos, se puede decir que, son independientes.

Otra manera, es hacer una prueba de independencia con la siguiente hipótesis:

 $H_0$ : Los residuales son independientes  $H_1$ : Los residuales no son independientes

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un p-valor=0.3872, se no cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, no se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que los residuales son independientes con una confianza del 95%.





## Media cero y Normalidad con media cero



Aquí se espera observar que los residuos sigan una distribución normal, pero al parecer al principio y al final, los residuos se desprenden de la línea recta lo que puede indicar asimetría en los datos.

Al obtener la media de los residuales nos da que es 1.8971e-17. Se probará si los datos siguen una distribución  $N\sim(0,\sigma^2)$  con la siguiente hipótesis:

 $H_0$ : Los datos provienen de una dist. Normal  $H_1$ : Los datos provienen de otra dist.

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=1e-13$  y un p-valor=1.9662e-13, no se cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, no se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que los residuales son normales con una confianza del 99.999999999999.





## **BONDAD DE AJUSTE**

La estimación de parámetros tiene por finalidad asignar valores a los parámetros poblacionales a partir de los estadísticos obtenidos en las muestras. Dicho de otra manera, la finalidad de la estimación de parámetros es caracterizar las poblaciones a partir de la información de las muestras.

Entonces, a partir de la muestra que tenemos para cada una de las variables, se le asociará una distribución teórica a la cual se le estimarán sus parámetros con el fin de determinar si dicha variable sigue esa distribución teórica asociada.

#### **DISTRIBUCIONES ASOCIADAS**

De acuerdo con los resultados que obtuvimos en Análisis exploratorio de los datos, se puede asociar a cada una de las variables una distribución teórica en especifica.

| Distribución                 | Variable                                                                                                              |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| • Normal                     | Peso, Altura, IMC, Longitud de la pierna, Longitud del brazo, Circunferencia del brazo, Circunferencia de la cintura. |
| <ul> <li>Uniforme</li> </ul> | Edad.                                                                                                                 |
| <ul> <li>Binomial</li> </ul> | Sexo, Raza2.                                                                                                          |

## **ESTIMACIONES DE LOS PARÁMETROS**

En este apartado, se encontrará las estimaciones de los parámetros de las distribuciones que se propusieron en las distribuciones asociadas, las cuales son la Normal, Uniforme y Binomial.

#### Normal

Considerando una muestra aleatoria de tamaño n con una función de densidad de probabilidad:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}para - \infty \le x \le \infty$$
 (1)

Calcular la función de verosimilitud, a partir de la ecuación (1).

$$L(\mu, \sigma^2) = \prod_{i=1}^n f(x_i) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$
(2)





$$L(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_1 - \mu)^2}{2\sigma^2}} * \dots * \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x_n - \mu)^2}{2\sigma^2}}$$
(3)

$$L(\mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}$$
(4)

Aplicar logaritmo natural a la misma a la ecuación (4).

$$ln(L(\mu,\sigma^2)) = ln\left[\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2}\right]$$
(5)

$$ln(L(\mu,\sigma^2)) = ln\left[\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n\right] + ln\left[e^{\frac{-1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2}\right]$$
(6)

$$ln(L(\mu, \sigma^2)) = ln(1) - nln(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$
 (7)

• Buscar el máximo y derivar parcialmente con respecto a  $\mu$  de la ecuación (7).

$$\frac{d}{d\mu}\ln(L(\mu,\sigma^2)) = \frac{d}{d\mu}\left[-n\ln(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i - \mu)^2\right]$$
 (8)

$$\frac{d}{d\mu}\ln(L(\mu,\sigma^2)) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = \frac{1}{\sigma^2} \left[ \sum_{i=1}^{n} (x_i) - n\mu \right]$$
 (9)

Igualar a 0 la ecuación (9) y despejar μ.

$$\frac{1}{\sigma^2} \left[ \sum_{i=1}^n (x_i) - n\mu \right] = 0 \tag{10}$$

$$\frac{n\mu}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i) \tag{11}$$

$$\widehat{\mu}_{MLE} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x} \tag{12}$$

∴ Candidato a máximo para  $\mu$ .





Buscar el otro máximo, derivar parcialmente con respecto a σ² de la ecuación
 (7).

$$\frac{d}{d\sigma^2}ln(L(\mu,\sigma^2)) = \frac{d}{d\sigma^2}\left[-nln\left(\sqrt{2\pi}\sqrt{\sigma^2}\right) - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i - \mu)^2\right]$$
(13)

$$\frac{d}{d\sigma^2} ln(L(\mu, \sigma^2)) = \frac{\frac{-n\sqrt{2\pi}}{2\sqrt{\sigma^2}}}{\sqrt{2\pi}\sqrt{\sigma^2}} + \frac{2}{4(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = \frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2$$
(14)

Igualar a 0 la ecuación (14) y despejar σ².

$$\frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0$$
 (15)

$$\frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = \frac{-n}{2\sigma^2}$$
 (16)

$$\widehat{\sigma}^{2}_{MLE} = \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{n}$$
 (17)

# ∴ Candidato a máximo para $\sigma^2$ .

Comprobar si son un máximo obteniendo la matriz Hessiana.

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$
(18)

$$H(f) = \begin{pmatrix} \frac{\partial^2}{\partial \mu^2} & \frac{\partial^2}{\partial \mu \partial \sigma^2} \\ \frac{\partial^2}{\partial \sigma^2 \partial \mu} & \frac{\partial^2}{\partial \sigma^2} \end{pmatrix}$$
(19)

 Además, el teorema de Schwarz dice que no importa el orden de derivación, es decir, derivar parcialmente primero respecto la variable x<sub>1</sub> y después





respecto la variable  $x_2$  es lo mismo que derivar parcialmente primero respecto  $x_2$  y luego respecto  $x_1$ .

 Hallar la segunda derivada parcial de la ecuación (7) respecto a cada parámetro, pero como ya se había derivado parcialmente, de la ecuación (9) y (14) se vuelve a derivar.

$$\frac{\partial^2}{\partial \mu^2} ln(L(\mu, \sigma^2)) = -\frac{n}{\sigma^2}$$
 (20)

$$\frac{\partial^2}{\partial \sigma^{2^2}} ln(L(\mu, \sigma^2)) = \frac{2n}{4\sigma^{2^2}} - \frac{4\sigma^2}{4\sigma^{2^4}} \sum_{i=1}^n (x_i - \mu)^2 = \frac{n}{2\sigma^{2^2}} - \frac{1}{\sigma^{2^3}} \sum_{i=1}^n (x_i - \mu)^2$$
(21)

$$\frac{\partial^2}{\partial \mu \partial \sigma^2} ln(L(\mu, \sigma^2)) = \frac{\partial^2}{\partial \sigma^2 \partial \mu} ln(L(\mu, \sigma^2)) = -\frac{1}{\sigma^2} \left[ \sum_{i=1}^n (x_i) - n\mu \right]$$
(22)

Calcular la determinante Hessiano.

$$|H| = \begin{vmatrix} -\frac{n}{\sigma^2} & -\frac{1}{\sigma^2} \left[ \sum_{i=1}^n (x_i) - n\mu \right] \\ -\frac{1}{\sigma^2} \left[ \sum_{i=1}^n (x_i) - n\mu \right] & \frac{n}{2\sigma^2} - \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \end{vmatrix}$$
(23)

Sustituir los candidatos a máximos.

$$|H| = \begin{vmatrix} -\frac{n}{\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n}} & -\frac{1}{\left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n}\right]^{2}} \left[\sum_{i=1}^{n}(x_{i}) - n\bar{x}\right] \\ -\frac{1}{\left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n}\right]^{2}} \left[\sum_{i=1}^{n}(x_{i}) - n\bar{x}\right] & \frac{n}{2\left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n}\right]^{2}} - \frac{1}{\left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n}\right]^{3}} \sum_{i=1}^{n}(x_{i}-\bar{x})^{2} \end{vmatrix}$$

$$(24)$$

 $\therefore$  Como  $\frac{\partial^2}{\partial \mu^2} < 0$  o  $H_{11} < 0$ , los estimadores para  $\mu, \sigma^2$ , son máximos.

#### Uniforme

Considerando una muestra aleatoria de tamaño n con una función de densidad de probabilidad:





$$f(x) = \frac{1}{b-a} para \ a \le x \le b$$
 (25)

Calcular la función de verosimilitud, a partir de la ecuación (25).

$$L(a,b) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} \frac{1}{b-a}$$
 (26)

$$L(a,b) = \frac{1}{b-a} * \dots * \frac{1}{b-a}$$
 (27)

$$L(a,b) = \left(\frac{1}{b-a}\right)^n \tag{28}$$

Aplicar logaritmo natural a la misma a la ecuación (28).

$$ln(L(a,b)) = ln\left[\left(\frac{1}{b-a}\right)^n\right]$$
 (29)

$$ln(L(a,b)) = ln(1) - nln(b-a) = -nln(b-a)$$
 (30)

 Buscar el máximo y derivar parcialmente con respecto a a de la ecuación (30).

$$\frac{d}{da}ln(L(a,b)) = \frac{d}{da}[-nln(b-a)]$$
(31)

$$\frac{d}{da}\ln(L(a,b)) = -\frac{n(-1)}{b-a} = \frac{n}{b-a}$$
(32)

 Ahora, buscar el máximo y derivar parcialmente con respecto a b de la ecuación (30).

$$\frac{d}{db}ln(L(a,b)) = \frac{d}{db}[-nln(b-a)]$$
(33)





$$\frac{d}{db}ln(L(a,b)) = -\frac{n(1)}{b-a} = -\frac{n}{b-a}$$
(34)

Podemos ver que la derivada respecto a a está aumentando monótonamente, por lo que tomamos el menor de a posible:  $\widehat{a}_{MLE} = min\{x_1, x_2, ..., x_n\}$ .

Pasa algo similar con la derivada respecto a b está aumentando monótonamente, por lo que tomamos el menor de b posible:  $\hat{b}_{MLE} = max\{x_1, x_2, ..., x_n\}$ .

#### Binomial

Considerando una muestra aleatoria de tamaño n con una función de densidad de probabilidad:

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x} para x = 0,1,2,...$$
 (35)

Calcular la función de verosimilitud, a partir de la ecuación (35).

$$L(p) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} {n \choose x_i} p^{x_i} (1-p)^{n-x_i}$$
 (36)

$$L(p) = \binom{n}{x_1} p^{x_1} (1-p)^{n-x_1} * \binom{n}{x_2} p^{x_2} (1-p)^{n-x_2} * \dots * \binom{n}{x_n} p^{x_n} (1-p)^{n-x_n}$$
(37)

$$L(p) = p^{\sum_{i=1}^{n} x_i} (1-p)^{n^2 - \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} \binom{n}{x_i}$$
(38)

Aplicando logaritmo natural a la ecuación (38).

$$ln(L(p)) = ln\left[p^{\sum_{i=1}^{n} x_i} (1-p)^{n^2 - \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} \binom{n}{x_i}\right]$$
(39)

$$ln(L(p)) = ln(p^{\sum_{i=1}^{n} x_i}) + ln[(1-p)^{n^2 - \sum_{i=1}^{n} x_i}] + ln\left[\prod_{i=1}^{n} \binom{n}{x_i}\right]$$
(40)

Buscar el máximo y derivar con respecto a p la ecuación (40).





$$\frac{d}{dp}\ln(L(p)) = \frac{d}{dp}\left[\ln(p^{\sum_{i=1}^{n}x_i}) + \ln[(1-p)^{n^2 - \sum_{i=1}^{n}x_i}] + \ln\left[\prod_{i=1}^{n}\binom{n}{x_i}\right]\right]$$
(41)

$$\frac{d}{dp}\ln(L(p)) = \frac{\sum_{i=1}^{n} x_i}{p} - \left(n^2 - \sum_{i=1}^{n} x_i\right) \left(\frac{1}{1-p}\right)$$
(42)

Igualar a 0 la ecuación (42).

$$\frac{\sum_{i=1}^{n} x_i}{p} - \left(n^2 - \sum_{i=1}^{n} x_i\right) \left(\frac{1}{1-p}\right) = 0 \tag{43}$$

Como

$$\frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$$

Despejar la sumatoria

$$\sum_{i=1}^{n} x_i = n\bar{x}$$

• Usar esa igualdad para sustituirla en nuestra ecuación (43).

$$\frac{n\bar{x}}{p} - (n^2 - n\bar{x})\left(\frac{1}{1-p}\right) = 0 \tag{44}$$

Despejar p de la ecuación (44).

$$\frac{n\bar{x}}{p} = (n^2 - n\bar{x})\left(\frac{1}{1-p}\right) \tag{45}$$

$$\frac{n\bar{x}}{p} = n(n - \bar{x}) \left(\frac{1}{1 - p}\right) \tag{46}$$

$$\frac{(1-p)}{p} = n(n-\bar{x})\left(\frac{1}{n\bar{x}}\right) \tag{47}$$





$$\frac{1}{p} - 1 = \frac{n}{\bar{x}} - 1 \tag{48}$$

$$\frac{1}{p} = \frac{n}{\bar{x}} \tag{49}$$

$$\widehat{\boldsymbol{p}}_{MLE} = \frac{\overline{\boldsymbol{x}}}{\boldsymbol{n}} \tag{50}$$

### $\therefore$ Candidato a máximo para p.

 Se comprueba si es un máximo obteniendo la segunda derivada de la ecuación (40), pero como ya se había derivado, de la ecuación (42) se vuelve a derivar.

$$\frac{d^2}{dp^2}ln(L(p)) = \frac{-\sum_{i=1}^n x_i}{p^2} - \left(n^2 - \sum_{i=1}^n x_i\right) \left[\frac{1}{(1-p)^2}\right]$$
(51)

$$\frac{d^2}{dp^2}ln(L(p)) = -\frac{\sum_{i=1}^n x_i}{p^2} - \frac{n^2}{(1-p)^2} + \frac{\sum_{i=1}^n x_i}{(1-p)^2} < 0$$
(52)

## $\therefore$ Este es el estimador para p.

# VARIABLE CON SU DISTRIBUCIÓN TEÓRICA ASOCIADA

**Peso:** Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos hacen que el grafico se sesgue a la derecha.







**Edad:** Observando el histograma, se sospecha que sigue una distribución uniforme, ya que los datos se mantienen casi constantes.



**Altura:** Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos hacen que el grafico se sesgue a la izquierda.



**IMC:** Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos hacen que el grafico se sesgue a la derecha.







**Longitud de la pierna:** Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos (que son mínimos) hacen que el grafico se sesgue ligeramente a la izquierda.



**Longitud del brazo:** Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos (que son mínimos) hacen que el grafico se sesgue ligeramente a la izquierda.







**Circunferencia del brazo:** Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos (que son mínimos) hacen que el grafico se sesgue ligeramente a la derecha.



Circunferencia de la cintura: Observando el histograma, se sospecha que sigue una distribución normal, sin embargo, los presentes datos a típicos hacen que el grafico se sesgue a la derecha.







**Sexo:** Para asociarle una distribución a esta variable categórica, supondremos que se distribuye de manera binomial, siendo la respuesta "mujer" como "éxito" y la respuesta "hombre" como "fracaso".



**Raza2:** Para asociarle una distribución a esta variable categórica, supondremos que se distribuye de manera binomial, siendo la respuesta "NBA" como "éxito" y la respuesta "OMO" como "fracaso".







#### PRUEBAS DE BONDAD DE AJUSTE

Como ya se hizo la asociación a cada variable sobre qué tipo de distribución podría seguir y se obtuvo las estimaciones de los parámetros por MLE, se probará si existe una diferencia significativa entre una distribución de frecuencias observadas y una distribución de frecuencias teórica. De esta manera, se puede determinar la bondad de ajuste a una distribución teórica, es decir, se puede determinar si los datos observados constituyen una muestra obtenida de la distribución teórica que se planteó.

Se empleará esta fórmula para saber si rechazar o no  $H_0$ .

Estadístico de prueba:

$$X^{2} = \sum_{i=1}^{n} \frac{(fo_{i} - fe_{i})^{2}}{fe_{i}}$$

Donde: i es el número de clase. n es el total de clases.

Criterio de rechazo de  $H_0$ :

$$X^2 \ge X_{\alpha,k-1-t}^2$$

Donde: k es el número de intervalos. t es el número de parámetros estimados.  $\alpha$  es el valor del error.





## Variable Peso (kg)

De acuerdo con los datos, los parámetros estimados para la variable Peso son:

$$\hat{\mu}_{MLE} = 73.9714$$

$$\hat{\sigma}^2_{MLE} = 595.8861$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu=73.971$  y  $\sigma^2=595.8861$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$   $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Peso (kg) |               |               |                |            |              |            |             |
|-------|----------------------------------|---------------|---------------|----------------|------------|--------------|------------|-------------|
| Clase | Intervalo                        | Intervalo     |               | Marca de clase | Frecuencia | Probabilidad | Frecuencia | Estadístico |
| Clase | intervalo                        | Lím. Inferior | Lím. Superior | Marca de Clase | Trecuencia | Esperada     | Esperada   | de Prueba   |
| 1     | [17.7, 26.8)                     | 17.7          | 26.8          | 22.23          | 101        | 0.0266       | 187.2867   | 39.7540     |
| 2     | [26.8, 35.8)                     | 26.8          | 35.8          | 31.29          | 325        | 0.0325       | 229.1161   | 40.1269     |
| 3     | [35.8, 44.9)                     | 35.8          | 44.9          | 40.35          | 314        | 0.0576       | 406.5476   | 21.0678     |
| 4     | [44.9, 53.9)                     | 44.9          | 53.9          | 49.41          | 634        | 0.0893       | 629.5317   | 0.0317      |
| 5     | [53.9, 63.0)                     | 53.9          | 63.0          | 58.47          | 946        | 0.1206       | 850.7037   | 10.6751     |
| 6     | [63.0, 72.1)                     | 63.0          | 72.1          | 67.53          | 1168       | 0.1422       | 1003.2204  | 27.0651     |
| 7     | [72.1, 81.1)                     | 72.1          | 81.1          | 76.59          | 1091       | 0.1464       | 1032.4601  | 3.3192      |
| 8     | [81.1, 90.2)                     | 81.1          | 90.2          | 85.65          | 880        | 0.1315       | 927.2767   | 2.4104      |
| 9     | [90.2, 99.2)                     | 90.2          | 99.2          | 94.71          | 620        | 0.1030       | 726.7810   | 15.6886     |
| 10    | [99.2, 108.3)                    | 99.2          | 108.3         | 103.77         | 392        | 0.0705       | 497.1113   | 22.2252     |
| 11    | [108.3, 117.4)                   | 108.3         | 117.4         | 112.83         | 234        | 0.0421       | 296.7263   | 13.2600     |
| 12    | [117.4, 126.4)                   | 117.4         | 126.4         | 121.89         | 145        | 0.0219       | 154.5632   | 0.5917      |
| 13    | [126.4, 135.5)                   | 126.4         | 135.5         | 130.95         | 82         | 0.0100       | 70.2583    | 1.9623      |
| 14    | [135.5, 144.5)                   | 135.5         | 144.5         | 140.01         | 58         | 0.0040       | 27.8691    | 32.5761     |
| 15    | [144.5, 153.6)                   | 144.5         | 153.6         | 149.07         | 30         | 0.0014       | 9.6466     | 42.9434     |
| 16    | [153.6, 162.7)                   | 153.6         | 162.7         | 158.13         | 21         | 0.0004       | 2.9137     | 112.2674    |
| 17    | [162.7, 171.7)                   | 162.7         | 171.7         | 167.19         | 7          | 0.0001       | 0.7679     | 50.5757     |
| 18    | [171.7, 180.8)                   | 171.7         | 180.8         | 176.25         | 3          | 0.0000       | 0.1766     | 45.1387     |
| 19    | [180.8, 189.8)                   | 180.8         | 189.8         | 185.31         | 1          | 0.0000       | 0.0354     | 26.2548     |
| 20    | [189.8, 198.9]                   | 189.8         | 198.9         | 194.37         | 1          | 0.0000       | 0.0073     | 135.0974    |
|       |                                  |               |               |                | 7053       | 100%         | 7053       | 643.0315    |

|                            | Bondad de Ajuste |
|----------------------------|------------------|
| $\widehat{\mu}_{MLE}$      | 73.9714          |
| $\widehat{\sigma}^2_{MLE}$ | 595.8861         |
| $X^2$                      | 643.0315         |
| $X_{0.05,20-1-2}^2$        | 27.5871          |
| α                          | 0.05             |
| P-valor                    | 0.00             |





Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $643.5533 \ge 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \le \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%. Entonces, la variable Peso no sigue una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%.

#### Variable Edad

De acuerdo con los datos, los parámetros estimados para la variable Edad son:

$$\hat{a}_{MLE} = 8$$

$$\hat{b}_{MLF} = 80$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Uniforme teórica con a=8 y b=80 con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $U\sim(a,b)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Edad |            |          |                |           |              |            |             |
|-------|-----------------------------|------------|----------|----------------|-----------|--------------|------------|-------------|
| Clase | Intervalo                   | Intervalo  |          | Marca de clase |           | Probabilidad | Frecuencia | Estadístico |
| Clase | Lím. Inferior Lím. Superior | riecuencia | Esperada | Esperada       | de Prueba |              |            |             |
| 1     | [8.0, 11.6)                 | 8.0        | 11.6     | 9.80           | 806       | 0.05         | 352.65     | 582.8051    |
| 2     | [11.6, 15.2)                | 11.6       | 15.2     | 13.40          | 644       | 0.05         | 352.65     | 240.7056    |
| 3     | [15.2, 18.8)                | 15.2       | 18.8     | 17.00          | 439       | 0.05         | 352.65     | 21.1437     |
| 4     | [18.8, 22.4)                | 18.8       | 22.4     | 20.60          | 342       | 0.05         | 352.65     | 0.3216      |
| 5     | [22.4, 26.0)                | 22.4       | 26.0     | 24.20          | 279       | 0.05         | 352.65     | 15.3816     |
| 6     | [26.0, 29.6)                | 26.0       | 29.6     | 27.80          | 385       | 0.05         | 352.65     | 2.9676      |
| 7     | [29.6, 33.2)                | 29.6       | 33.2     | 31.40          | 356       | 0.05         | 352.65     | 0.0318      |
| 8     | [33.2, 36.8)                | 33.2       | 36.8     | 35.00          | 282       | 0.05         | 352.65     | 14.1540     |
| 9     | [36.8, 40.4)                | 36.8       | 40.4     | 38.60          | 316       | 0.05         | 352.65     | 3.8089      |
| 10    | [40.4, 44.0)                | 40.4       | 44.0     | 42.20          | 262       | 0.05         | 352.65     | 23.3019     |
| 11    | [44.0, 47.6)                | 44.0       | 47.6     | 45.80          | 340       | 0.05         | 352.65     | 0.4538      |
| 12    | [47.6, 51.2)                | 47.6       | 51.2     | 49.40          | 339       | 0.05         | 352.65     | 0.5283      |
| 13    | [51.2, 54.8)                | 51.2       | 54.8     | 53.00          | 270       | 0.05         | 352.65     | 19.3705     |
| 14    | [54.8, 58.4)                | 54.8       | 58.4     | 56.60          | 309       | 0.05         | 352.65     | 5.4029      |
| 15    | [58.4, 62.0)                | 58.4       | 62.0     | 60.20          | 308       | 0.05         | 352.65     | 5.6533      |
| 16    | [62.0, 65.6)                | 62.0       | 65.6     | 63.80          | 337       | 0.05         | 352.65     | 0.6945      |
| 17    | [65.6, 69.2)                | 65.6       | 69.2     | 67.40          | 289       | 0.05         | 352.65     | 11.4882     |
| 18    | [69.2, 72.8)                | 69.2       | 72.8     | 71.00          | 187       | 0.05         | 352.65     | 77.8106     |
| 19    | [72.8, 76.4)                | 72.8       | 76.4     | 74.60          | 187       | 0.05         | 352.65     | 77.8106     |
| 20    | [76.4, 80.0]                | 76.4       | 80.0     | 78.20          | 376       | 0.05         | 352.65     | 1.5461      |
|       |                             |            |          |                | 7053      | 100%         | 7053       | 1105.3808   |





|                                  | Bondad de Ajuste |
|----------------------------------|------------------|
| $\widehat{a}_{MLE}$              | 8                |
| $\widehat{\boldsymbol{b}}_{MLE}$ | 80               |
| $X^2$                            | 1105.3808        |
| $X_{0.05,20-1-2}^2$              | 27.5871          |
| α                                | 0.05             |
| P-valor                          | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \geq X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $1105.3808 \geq 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \leq \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.\ U\sim(a,b)$  con una confianza del 95%. Entonces, la variable Edad no sigue una  $Dist.\ U\sim(a,b)$  con una confianza del 95%.

## Variable Altura (cm)

De acuerdo con los datos, los parámetros estimados para la variable Altura son:

$$\hat{\mu}_{MLE} = 162.9377$$

$$\hat{\sigma}^2_{MLE} = 168.3069$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu = 162.9377$  y  $\sigma^2 = 168.3069$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$  $H_1$ : Los datos observados provienen de una población con otra Dist.





|       | Tabla de Frecuencia de Altura (cm) |               |               |                |            |              |            |                |
|-------|------------------------------------|---------------|---------------|----------------|------------|--------------|------------|----------------|
| Clase | Intervalo                          | Inte          | rvalo         | Marca do alaco | Erocuonoia | Probabilidad | Frecuencia | Estadístico de |
| Clase | intervalo                          | Lím. Inferior | Lím. Superior | Marca de clase | riecuencia | Esperada     | Esperada   | Prueba         |
| 1     | [111.8, 116.345)                   | 111.8         | 116.3         | 114.07         | 2          | 0.0002       | 1.1598     | 0.6087         |
| 2     | [116.345, 120.89)                  | 116.3         | 120.9         | 118.62         | 14         | 0.0004       | 3.0393     | 39.5271        |
| 3     | [120.89, 125.435)                  | 120.9         | 125.4         | 123.16         | 26         | 0.0013       | 9.3538     | 29.6241        |
| 4     | [125.435, 129.98)                  | 125.4         | 130.0         | 127.71         | 84         | 0.0036       | 25.4921    | 134.2841       |
| 5     | [129.98, 134.525)                  | 130.0         | 134.5         | 132.25         | 137        | 0.0087       | 61.5233    | 92.5946        |
| 6     | [134.525, 139.07)                  | 134.5         | 139.1         | 136.80         | 146        | 0.0186       | 131.4912   | 1.6009         |
| 7     | [139.07, 143.615)                  | 139.1         | 143.6         | 141.34         | 161        | 0.0353       | 248.8745   | 31.0274        |
| 8     | [143.615, 148.16)                  | 143.6         | 148.2         | 145.89         | 247        | 0.0591       | 417.1528   | 69.4037        |
| 9     | [148.16, 152.705)                  | 148.2         | 152.7         | 150.43         | 481        | 0.0878       | 619.2190   | 30.8526        |
| 10    | [152.705, 157.25)                  | 152.7         | 157.3         | 154.98         | 780        | 0.1154       | 814.0114   | 1.4211         |
| 11    | [157.25, 161.795)                  | 157.3         | 161.8         | 159.52         | 991        | 0.1344       | 947.6665   | 1.9815         |
| 12    | [161.795, 166.34)                  | 161.8         | 166.3         | 164.07         | 976        | 0.1385       | 977.0580   | 0.0011         |
| 13    | [166.34, 170.885)                  | 166.3         | 170.9         | 168.61         | 1038       | 0.1265       | 892.1241   | 23.8529        |
| 14    | [170.885, 175.43)                  | 170.9         | 175.4         | 173.16         | 805        | 0.1023       | 721.3891   | 9.6907         |
| 15    | [175.43, 179.975)                  | 175.4         | 180.0         | 177.70         | 623        | 0.0732       | 516.5971   | 21.9157        |
| 16    | [179.975, 184.52)                  | 180.0         | 184.5         | 182.25         | 361        | 0.0465       | 327.6198   | 3.4010         |
| 17    | [184.52, 189.065)                  | 184.5         | 189.1         | 186.79         | 134        | 0.0261       | 184.0014   | 13.5876        |
| 18    | [189.065, 193.61)                  | 189.1         | 193.6         | 191.34         | 37         | 0.0130       | 91.5169    | 32.4759        |
| 19    | [193.61, 198.155)                  | 193.6         | 198.2         | 195.88         | 6          | 0.0057       | 40.3094    | 29.2024        |
| 20    | [198.155, 202.7]                   | 198.2         | 202.7         | 200.43         | 4          | 0.0033       | 23.4007    | 16.0845        |
|       |                                    |               |               |                | 7053       | 100%         | 7053       | 583.1377       |

|                            | Bondad de Ajuste |
|----------------------------|------------------|
| $\widehat{\mu}_{MLE}$      | 162.9377         |
| $\widehat{\sigma}^2_{MLE}$ | 168.3069         |
| $X^2$                      | 583.1377         |
| $X_{0.05,20-1-2}^2$        | 27.5871          |
| α                          | 0.05             |
| P-valor                    | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $583.1377 \ge 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \le \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%. Entonces, la variable Altura no sigue una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%.

#### Variable IMC

De acuerdo con los datos, los parámetros estimados para la variable IMC son:

$$\hat{\mu}_{MLE} = 27.3715$$

$$\hat{\sigma}^2_{MLE} = 53.4428$$





Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu=27.3715$  y  $\sigma^2=53.4428$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de IMC |               |               |                |                           |              |            |                |
|-------|----------------------------|---------------|---------------|----------------|---------------------------|--------------|------------|----------------|
| Clase | Intervalo                  | Intervalo     |               | Marca da alaca | Marca de clase Frecuencia | Probabilidad | Frecuencia | Estadístico de |
| Clase | intervalo                  | Lím. Inferior | Lím. Superior | Marca de Clase | riecuencia                | Esperada     | Esperada   | Prueba         |
| 1     | [12.3, 14.915)             | 12.3          | 14.9          | 13.61          | 78                        | 0.0442       | 311.7249   | 175.2421       |
| 2     | [14.915, 17.53)            | 14.9          | 17.5          | 16.22          | 382                       | 0.0449       | 316.8101   | 13.4141        |
| 3     | [17.53, 20.145)            | 17.5          | 20.1          | 18.84          | 622                       | 0.0723       | 510.1788   | 24.5090        |
| 4     | [20.145, 22.76)            | 20.1          | 22.8          | 21.45          | 934                       | 0.1026       | 723.8704   | 60.9977        |
| 5     | [22.76, 25.375)            | 22.8          | 25.4          | 24.07          | 1028                      | 0.1283       | 904.9341   | 16.7363        |
| 6     | [25.375, 27.99)            | 25.4          | 28.0          | 26.68          | 1045                      | 0.1413       | 996.7643   | 2.3342         |
| 7     | [27.99, 30.605)            | 28.0          | 30.6          | 29.30          | 943                       | 0.1372       | 967.3599   | 0.6134         |
| 8     | [30.605, 33.22)            | 30.6          | 33.2          | 31.91          | 683                       | 0.1173       | 827.1867   | 25.1331        |
| 9     | [33.22, 35.835)            | 33.2          | 35.8          | 34.53          | 498                       | 0.0884       | 623.2147   | 25.1578        |
| 10    | [35.835, 38.45)            | 35.8          | 38.5          | 37.14          | 311                       | 0.0587       | 413.7028   | 25.4962        |
| 11    | [38.45, 41.065)            | 38.5          | 41.1          | 39.76          | 192                       | 0.0343       | 241.9651   | 10.3176        |
| 12    | [41.065, 43.68)            | 41.1          | 43.7          | 42.37          | 129                       | 0.0177       | 124.6885   | 0.1491         |
| 13    | [43.68, 46.295)            | 43.7          | 46.3          | 44.99          | 83                        | 0.0080       | 56.6115    | 12.3005        |
| 14    | [46.295, 48.91)            | 46.3          | 48.9          | 47.60          | 49                        | 0.0032       | 22.6455    | 30.6709        |
| 15    | [48.91, 51.525)            | 48.9          | 51.5          | 50.22          | 37                        | 0.0011       | 7.9809     | 105.5152       |
| 16    | [51.525, 54.14)            | 51.5          | 54.1          | 52.83          | 13                        | 0.0004       | 2.4780     | 44.6772        |
| 17    | [54.14, 56.755)            | 54.1          | 56.8          | 55.45          | 13                        | 0.0001       | 0.6779     | 223.9915       |
| 18    | [56.755, 59.37)            | 56.8          | 59.4          | 58.06          | 7                         | 0.0000       | 0.1634     | 286.1169       |
| 19    | [59.37, 61.985)            | 59.4          | 62.0          | 60.68          | 4                         | 0.0000       | 0.0347     | 453.3701       |
| 20    | [61.985, 64.6]             | 62.0          | 64.6          | 63.29          | 2                         | 0.0000       | 0.0077     | 513.2917       |
|       |                            |               |               |                | 7053                      | 100%         | 7053       | 2050.0347      |

|                        | Bondad de Ajuste |
|------------------------|------------------|
| $\widehat{\mu}_{MLE}$  | 27.3715          |
| $\hat{\sigma}^2_{MLE}$ | 53.4428          |
| $X^2$                  | 2050.0347        |
| $X_{0.05,20-1-2}^2$    | 27.5871          |
| α                      | 0.05             |
| P-valor                | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \geq X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $2050.0347 \geq 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \leq \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.\,N{\sim}(\mu,\sigma^2)$  con una confianza del 95%. Entonces, la variable IMC no sigue una  $Dist.\,N{\sim}(\mu,\sigma^2)$  con una confianza del 95%.





## Variable Longitud de la pierna (cm)

De acuerdo con los datos, los parámetros estimados para la variable Longitud de la pierna son:

$$\hat{\mu}_{MLE} = 38.0967$$

$$\hat{\sigma}^2_{MLE} = 17.3311$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu=38.0967$  y  $\sigma^2=17.3311$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Longitud de la pierna (cm) |               |               |                |            |              |            |                |
|-------|---------------------------------------------------|---------------|---------------|----------------|------------|--------------|------------|----------------|
| Clase | Intervalo                                         | Intervalo     |               | Marca de clase | Erocuoncia | Probabilidad | Frecuencia | Estadístico de |
| Clase | iiitei vaio                                       | Lím. Inferior | Lím. Superior | Marca de Clase |            | Esperada     | Esperada   | Prueba         |
| 1     | [24, 25.355)                                      | 24.0          | 25.4          | 24.68          | 4          | 0.0011       | 7.7883     | 1.8427         |
| 2     | [25.355, 26.71)                                   | 25.4          | 26.7          | 26.03          | 13         | 0.0020       | 14.1983    | 0.1011         |
| 3     | [26.71, 28.065)                                   | 26.7          | 28.1          | 27.39          | 40         | 0.0049       | 34.3171    | 0.9411         |
| 4     | [28.065, 29.42)                                   | 28.1          | 29.4          | 28.74          | 96         | 0.0106       | 74.6735    | 6.0908         |
| 5     | [29.42, 30.775)                                   | 29.4          | 30.8          | 30.10          | 184        | 0.0207       | 146.2879   | 9.7220         |
| 6     | [30.775, 32.13)                                   | 30.8          | 32.1          | 31.45          | 279        | 0.0366       | 258.0112   | 1.7074         |
| 7     | [32.13, 33.485)                                   | 32.1          | 33.5          | 32.81          | 338        | 0.0581       | 409.6939   | 12.5460        |
| 8     | [33.485, 34.84)                                   | 33.5          | 34.8          | 34.16          | 568        | 0.0830       | 585.6975   | 0.5348         |
| 9     | [34.84, 36.195)                                   | 34.8          | 36.2          | 35.52          | 698        | 0.1069       | 753.8441   | 4.1369         |
| 10    | [36.195, 37.55)                                   | 36.2          | 37.6          | 36.87          | 886        | 0.1239       | 873.5446   | 0.1776         |
| 11    | [37.55, 38.905)                                   | 37.6          | 38.9          | 38.23          | 848        | 0.1292       | 911.3489   | 4.4035         |
| 12    | [38.905, 40.26)                                   | 38.9          | 40.3          | 39.58          | 863        | 0.1214       | 856.0132   | 0.0570         |
| 13    | [40.26, 41.615)                                   | 40.3          | 41.6          | 40.94          | 822        | 0.1026       | 723.8893   | 13.2972        |
| 14    | [41.615, 42.97)                                   | 41.6          | 43.0          | 42.29          | 544        | 0.0781       | 551.1364   | 0.0924         |
| 15    | [42.97, 44.325)                                   | 43.0          | 44.3          | 43.65          | 433        | 0.0536       | 377.7810   | 8.0712         |
| 16    | [44.325, 45.68)                                   | 44.3          | 45.7          | 45.00          | 234        | 0.0331       | 233.1383   | 0.0032         |
| 17    | [45.68, 47.035)                                   | 45.7          | 47.0          | 46.36          | 124        | 0.0184       | 129.5321   | 0.2363         |
| 18    | [47.035, 48.39)                                   | 47.0          | 48.4          | 47.71          | 50         | 0.0092       | 64.7932    | 3.3775         |
| 19    | [48.39, 49.745)                                   | 48.4          | 49.7          | 49.07          | 23         | 0.0041       | 29.1787    | 1.3084         |
| 20    | [49.745, 51.1]                                    | 49.7          | 51.1          | 50.42          | 6          | 0.0026       | 18.1324    | 8.1178         |
|       |                                                   |               |               |                | 7053       | 100%         | 7053       | 76.7646        |

|                            | Bondad de Ajuste |
|----------------------------|------------------|
| $\widehat{\mu}_{MLE}$      | 38.0967          |
| $\widehat{\sigma}^2_{MLE}$ | 17.3311          |
| $X^2$                      | 76.7646          |
| $X_{0.05,20-1-2}^2$        | 27.5871          |
| α                          | 0.05             |
| P-valor                    | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $76.7646 \ge 27.5871$ , como se cumple la desigualdad,





rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \leq \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor\approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%. Entonces, la variable Longitud de la pierna no sigue una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%.

## • Variable Longitud del brazo (cm)

De acuerdo con los datos, los parámetros estimados para la variable Longitud del brazo son:

$$\hat{\mu}_{MLE} = 36.1549$$

$$\hat{\sigma}^2_{MLF} = 12.7563$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu = 36.1549$  y  $\sigma^2 = 12.7563$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Longitud del brazo (cm) |               |                                       |                 |            |              |            |                |  |
|-------|------------------------------------------------|---------------|---------------------------------------|-----------------|------------|--------------|------------|----------------|--|
| Clase | Intervalo                                      | Inte          | rvalo                                 | Marca de clase  | Erocuonoia | Probabilidad | Frecuencia | Estadístico de |  |
| Clase | intervalo                                      | Lím. Inferior | Lím. Superior                         | Mai ca de ciase | riecuencia | Esperada     | Esperada   | Prueba         |  |
| 1     | [22.5, 23.745)                                 | 22.5          | 23.7                                  | 23.12           | 4          | 0.0003       | 1.8041     | 2.6727         |  |
| 2     | [23.745, 24.99)                                | 23.7          | 25.0                                  | 24.37           | 7          | 0.0006       | 4.4443     | 1.4697         |  |
| 3     | [24.99, 26.235)                                | 25.0          | 26.2                                  | 25.61           | 45         | 0.0019       | 13.0726    | 77.9768        |  |
| 4     | [26.235, 27.48)                                | 26.2          | 27.5                                  | 26.86           | 74         | 0.0048       | 34.0925    | 46.7145        |  |
| 5     | [27.48, 28.725)                                | 27.5          | 28.7                                  | 28.10           | 138        | 0.0112       | 78.8306    | 44.4120        |  |
| 6     | [28.725, 29.97)                                | 28.7          | 30.0                                  | 29.35           | 160        | 0.0229       | 161.6128   | 0.0161         |  |
| 7     | [29.97, 31.215)                                | 30.0          | 31.2                                  | 30.59           | 257        | 0.0417       | 293.7689   | 4.6021         |  |
| 8     | [31.215, 32.46)                                | 31.2          | 32.5                                  | 31.84           | 286        | 0.0671       | 473.4659   | 74.2260        |  |
| 9     | [32.46, 33.705)                                | 32.5          | 33.7                                  | 33.08           | 603        | 0.0959       | 676.5932   | 8.0048         |  |
| 10    | [33.705, 34.95)                                | 33.7          | 35.0                                  | 34.33           | 687        | 0.1215       | 857.2841   | 33.8239        |  |
| 11    | [34.95, 36.195)                                | 35.0          | 36.2                                  | 35.57           | 1060       | 0.1366       | 963.1228   | 9.7445         |  |
| 12    | [36.195, 37.44)                                | 36.2          | 37.4                                  | 36.82           | 1019       | 0.1360       | 959.3985   | 3.7027         |  |
| 13    | [37.44, 38.685)                                | 37.4          | 38.7                                  | 38.06           | 1010       | 0.1201       | 847.3774   | 31.2094        |  |
| 14    | [38.685, 39.93)                                | 38.7          | 39.9                                  | 39.31           | 736        | 0.0941       | 663.6122   | 7.8962         |  |
| 15    | [39.93, 41.175)                                | 39.9          | 41.2                                  | 40.55           | 522        | 0.0653       | 460.7974   | 8.1289         |  |
| 16    | [41.175, 42.42)                                | 41.2          | 42.4                                  | 41.80           | 281        | 0.0402       | 283.7013   | 0.0257         |  |
| 17    | [42.42, 43.665)                                | 42.4          | 43.7                                  | 43.04           | 113        | 0.0220       | 154.8693   | 11.3195        |  |
| 18    | [43.665, 44.91)                                | 43.7          | 44.9                                  | 44.29           | 35         | 0.0106       | 74.9581    | 21.3005        |  |
| 19    | [44.91, 46.155)                                | 44.9          | 46.2                                  | 45.53           | 11         | 0.0046       | 32.1674    | 13.9289        |  |
| 20    | [46.155, 47.4]                                 | 46.2          | 47.4                                  | 46.78           | 5          | 0.0026       | 18.0268    | 9.4136         |  |
|       |                                                |               | · · · · · · · · · · · · · · · · · · · | •               | 7053       | 100%         | 7053       | 410.5885       |  |





|                        | Bondad de Ajuste |
|------------------------|------------------|
| $\widehat{\mu}_{MLE}$  | 36.1549          |
| $\hat{\sigma}^2_{MLE}$ | 12.7563          |
| $X^2$                  | 410.5885         |
| $X_{0.05,20-1-2}^2$    | 27.5871          |
| α                      | 0.05             |
| P-valor                | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \geq X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $410.5885 \geq 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \leq \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%. Entonces, la variable Longitud del brazo no sigue una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%.

## Variable Circunferencia del brazo (cm)

De acuerdo con los datos, los parámetros estimados para la variable Circunferencia del brazo son:

$$\hat{\mu}_{MLE} = 31.2374$$

$$\hat{\sigma}^2_{MLF} = 37.1030$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu = 31.2374$  y  $\sigma^2 = 37.1030$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$  $H_1$ : Los datos observados provienen de una población con otra Dist.





|       | Tabla de Frecuencia de Circunferencia del brazo (cm) |               |               |                |            |              |            |                |  |
|-------|------------------------------------------------------|---------------|---------------|----------------|------------|--------------|------------|----------------|--|
| Clase | Intervalo                                            | Inte          | rvalo         | Marca de clase | Erecuencia | Probabilidad | Frecuencia | Estadístico de |  |
| Clase | intervalo                                            | Lím. Inferior | Lím. Superior | Marca de Clase | Trecuencia | Esperada     | Esperada   | Prueba         |  |
| 1     | [13.8, 15.84)                                        | 13.8          | 15.8          | 14.82          | 4          | 0.0057       | 40.4765    | 32.8718        |  |
| 2     | [15.84, 17.88)                                       | 15.8          | 17.9          | 16.86          | 44         | 0.0084       | 59.3757    | 3.9816         |  |
| 3     | [17.88, 19.92)                                       | 17.9          | 19.9          | 18.90          | 176        | 0.0174       | 122.9189   | 22.9224        |  |
| 4     | [19.92, 21.96)                                       | 19.9          | 22.0          | 20.94          | 269        | 0.0323       | 227.6986   | 7.4915         |  |
| 5     | [21.96, 24)                                          | 22.0          | 24.0          | 22.98          | 337        | 0.0535       | 377.4300   | 4.3308         |  |
| 6     | [24, 26.04)                                          | 24.0          | 26.0          | 25.02          | 581        | 0.0794       | 559.8215   | 0.8012         |  |
| 7     | [26.04, 28.08)                                       | 26.0          | 28.1          | 27.06          | 694        | 0.1053       | 743.0222   | 3.2343         |  |
| 8     | [28.08, 30.12)                                       | 28.1          | 30.1          | 29.10          | 893        | 0.1251       | 882.4588   | 0.1259         |  |
| 9     | [30.12, 32.16)                                       | 30.1          | 32.2          | 31.14          | 977        | 0.1330       | 937.8393   | 1.6352         |  |
| 10    | [32.16, 34.2)                                        | 32.2          | 34.2          | 33.18          | 905        | 0.1265       | 891.8752   | 0.1931         |  |
| 11    | [34.2, 36.24)                                        | 34.2          | 36.2          | 35.22          | 797        | 0.1076       | 758.9640   | 1.9062         |  |
| 12    | [36.24, 38.28)                                       | 36.2          | 38.3          | 37.26          | 545        | 0.0819       | 577.9347   | 1.8768         |  |
| 13    | [38.28, 40.32)                                       | 38.3          | 40.3          | 39.30          | 352        | 0.0558       | 393.7999   | 4.4369         |  |
| 14    | [40.32, 42.36)                                       | 40.3          | 42.4          | 41.34          | 199        | 0.0340       | 240.1097   | 7.0385         |  |
| 15    | [42.36, 44.4)                                        | 42.4          | 44.4          | 43.38          | 125        | 0.0186       | 131.0022   | 0.2750         |  |
| 16    | [44.4, 46.44)                                        | 44.4          | 46.4          | 45.42          | 88         | 0.0091       | 63.9557    | 9.0395         |  |
| 17    | [46.44, 48.48)                                       | 46.4          | 48.5          | 47.46          | 38         | 0.0040       | 27.9388    | 3.6232         |  |
| 18    | [48.48, 50.52)                                       | 48.5          | 50.5          | 49.50          | 17         | 0.0015       | 10.9210    | 3.3838         |  |
| 19    | [50.52, 52.56)                                       | 50.5          | 52.6          | 51.54          | 9          | 0.0005       | 3.8197     | 7.0253         |  |
| 20    | [52.56, 54.6]                                        | 52.6          | 54.6          | 53.58          | 3          | 0.0002       | 1.6374     | 1.1339         |  |
|       |                                                      |               |               |                | 7053       | 100%         | 7053       | 117.3271       |  |

|                            | Bondad de Ajuste |
|----------------------------|------------------|
| $\widehat{\mu}_{MLE}$      | 31.2374          |
| $\widehat{\sigma}^2_{MLE}$ | 37.1030          |
| $X^2$                      | 117.3271         |
| $X_{0.05,20-1-2}^2$        | 27.5871          |
| α                          | 0.05             |
| P-valor                    | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $117.3271 \ge 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \le \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist. N \sim (\mu, \sigma^2)$  con una confianza del 95%. Entonces, la variable Circunferencia del brazo no sigue una  $Dist. N \sim (\mu, \sigma^2)$  con una confianza del 95%.

# Variable Circunferencia de la cintura (cm)

De acuerdo con los datos, los parámetros estimados para la variable Circunferencia de la cintura son:

$$\hat{\mu}_{MLE} = 93.2970$$

$$\hat{\sigma}^2_{MLE} = 374.3794$$





Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Normal teórica con  $\mu = 93.2970$  y  $\sigma^2 = 374.3794$  con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $N \sim (\mu, \sigma^2)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Circunferencia de la cintura (cm) |               |               |                |            |              |            |                |  |
|-------|----------------------------------------------------------|---------------|---------------|----------------|------------|--------------|------------|----------------|--|
| Clase | Intervalo                                                | Inte          | rvalo         | Marca de clase | Erocuoncia | Probabilidad | Frecuencia | Estadístico de |  |
| Clase | intervalo                                                | Lím. Inferior | Lím. Superior | Marca de Clase | Trecuencia | Esperada     | Esperada   | Prueba         |  |
| 1     | [45.2, 51.52)                                            | 45.2          | 51.5          | 48.36          | 14         | 0.0154       | 108.7547   | 82.5569        |  |
| 2     | [51.52, 57.84)                                           | 51.5          | 57.8          | 54.68          | 154        | 0.0180       | 127.0834   | 5.7010         |  |
| 3     | [57.84, 64.16)                                           | 57.8          | 64.2          | 61.00          | 281        | 0.0326       | 230.0118   | 11.3029        |  |
| 4     | [64.16, 70.48)                                           | 64.2          | 70.5          | 67.32          | 399        | 0.0531       | 374.5254   | 1.5994         |  |
| 5     | [70.48, 76.8)                                            | 70.5          | 76.8          | 73.64          | 627        | 0.0778       | 548.6360   | 11.1931        |  |
| 6     | [76.8, 83.12)                                            | 76.8          | 83.1          | 79.96          | 756        | 0.1025       | 723.0374   | 1.5027         |  |
| 7     | [83.12, 89.44)                                           | 83.1          | 89.4          | 86.28          | 814        | 0.1215       | 857.2588   | 2.1829         |  |
| 8     | [89.44, 95.76)                                           | 89.4          | 95.8          | 92.60          | 863        | 0.1296       | 914.4050   | 2.8898         |  |
| 9     | [95.76, 102.08)                                          | 95.8          | 102.1         | 98.92          | 897        | 0.1244       | 877.4876   | 0.4339         |  |
| 10    | [102.08, 108.4)                                          | 102.1         | 108.4         | 105.24         | 787        | 0.1074       | 757.5632   | 1.1438         |  |
| 11    | [108.4, 114.72)                                          | 108.4         | 114.7         | 111.56         | 571        | 0.0834       | 588.3987   | 0.5145         |  |
| 12    | [114.72, 121.04)                                         | 114.7         | 121.0         | 117.88         | 354        | 0.0583       | 411.1482   | 7.9434         |  |
| 13    | [121.04, 127.36)                                         | 121.0         | 127.4         | 124.20         | 196        | 0.0366       | 258.4623   | 15.0952        |  |
| 14    | [127.36, 133.68)                                         | 127.4         | 133.7         | 130.52         | 147        | 0.0207       | 146.1728   | 0.0047         |  |
| 15    | [133.68, 140)                                            | 133.7         | 140.0         | 136.84         | 87         | 0.0105       | 74.3710    | 2.1446         |  |
| 16    | [140, 146.32)                                            | 140.0         | 146.3         | 143.16         | 55         | 0.0048       | 34.0412    | 12.9041        |  |
| 17    | [146.32, 152.64)                                         | 146.3         | 152.6         | 149.48         | 33         | 0.0020       | 14.0174    | 25.7063        |  |
| 18    | [152.64, 158.96)                                         | 152.6         | 159.0         | 155.80         | 7          | 0.0007       | 5.1927     | 0.6291         |  |
| 19    | [158.96, 165.28)                                         | 159.0         | 165.3         | 162.12         | 9          | 0.0002       | 1.7305     | 30.5383        |  |
| 20    | [165.28, 171.6]                                          | 165.3         | 171.6         | 168.44         | 2          | 0.0001       | 0.7018     | 2.4013         |  |
|       |                                                          |               |               |                | 7053       | 100%         | 7053       | 218.3878       |  |

|                            | Bondad de Ajuste |
|----------------------------|------------------|
| $\widehat{\mu}_{MLE}$      | 93.2970          |
| $\widehat{\sigma}^2_{MLE}$ | 374.3794         |
| $X^2$                      | 218.3878         |
| $X_{0.05,20-1-2}^2$        | 27.5871          |
| α                          | 0.05             |
| P-valor                    | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \geq X_{0.05,20-1-2}^2$ , haciendo los cálculos correspondientes:  $218.3878 \geq 27.5871$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \leq \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%. Entonces, la variable Circunferencia de la cintura no sigue una  $Dist.N\sim(\mu,\sigma^2)$  con una confianza del 95%.





#### Variable Sexo

Se usará un valor de referencia para saber si en la variable Sexo existe la misma proporción entre Hombres y Mujeres:

$$\hat{p}_{MLE} = 0.5$$

Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Binomial teórica con p=0.5 y con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $B \sim (0.5)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Sexo |                                   |            |              |            |             |  |  |
|-------|-----------------------------|-----------------------------------|------------|--------------|------------|-------------|--|--|
| Claso | Intervale                   | Intervalo Marca de clase Frecuenc | Erocuoncia | Probabilidad | Frecuencia | Estadístico |  |  |
| Clase | IIILEI VAIO                 | ivial ca de clase                 | riecuencia | Esperada     | Esperada   | de Prueba   |  |  |
| 1     | 0                           | Hombre                            | 3461       | 0.5000       | 3526.5     | 1.2166      |  |  |
| 2     | 1                           | Mujer                             | 3592       | 0.5000       | 3526.5     | 1.2166      |  |  |
|       |                             |                                   | 7053       | 100%         | 7053       | 2.4331      |  |  |

|                     | Bondad de Ajuste |
|---------------------|------------------|
| $\widehat{p}_{MLE}$ | 0.5000           |
| $X^2$               | 2.4331           |
| $X_{0.05,2-1-0}^2$  | 3.8415           |
| α                   | 0.05             |
| P-valor             | 0.12             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,2-1-0}^2$ , haciendo los cálculos correspondientes:  $2.4331 \ge 3.8415$ , como no se cumple la desigualdad, no rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \le \alpha$ , tenemos que  $\alpha=0.05$  y p-valor=0.12, como no se cumple la desigualdad, no rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que provienen de una  $Dist.B\sim(p=0.5)$  con una confianza del 95%. Entonces, en la variable Sexo, existe una misma proporción para Hombres y Mujeres con  $Dist.B\sim(p=0.5)$  con una confianza del 95%.

#### • Variable Raza2

Se usará un valor de referencia para saber si en la variable Raza2 existe la misma proporción entre OMO (Otro hispano, mexicano americano, Otra raza) y NBA (Negro no hispano, Blanco no hispano, asiático no hispano):

$$\hat{p}_{MLE} = 0.5$$





Ahora, con una prueba de bondad de ajuste, probaremos si los datos observados constituyen una muestra obtenida de la Distribución Binomial teórica con p=0.5 y con una confianza del 95%.

 $H_0$ : Los datos observados conforman un muestra de una población con Dist.  $B \sim (0.5)$  $H_1$ : Los datos observados provienen de una población con otra Dist.

|       | Tabla de Frecuencia de Raza2 |                |            |                          |                        |                          |  |  |
|-------|------------------------------|----------------|------------|--------------------------|------------------------|--------------------------|--|--|
| Clase | Intervalo                    | Marca de clase | Frecuencia | Probabilidad<br>Esperada | Frecuencia<br>Esperada | Estadístico de<br>Prueba |  |  |
| 1     | 0                            | OMO            | 2549       | 0.5000                   | 3526.5000              | 270.9503                 |  |  |
| 2     | 1                            | NBA            | 4504       | 0.5000                   | 3526.5000              | 270.9503                 |  |  |
|       |                              |                | 7053       | 100%                     | 7053                   | 541.9006                 |  |  |

|                     | Bondad de Ajuste |
|---------------------|------------------|
| $\widehat{p}_{MLE}$ | 0.5000           |
| $X^2$               | 541.9006         |
| $X_{0.05,2-1-0}^2$  | 3.8415           |
| α                   | 0.05             |
| P-valor             | 0.00             |

Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,2-1-0}^2$ , haciendo los cálculos correspondientes:  $541.9006 \ge 3.8415$ , como se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \le \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor \approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no provienen de una  $Dist.B\sim(p=0.5)$  con una confianza del 95%. Entonces, en la variable Raza2, no existe una misma proporción para OMO y NBA con  $Dist.B\sim(p=0.5)$  con una confianza del 95%.





## PRUEBAS DE HIPÓTESIS

Como los supuestos de que seguían una distribución normal las variables Peso, Altura, IMC, Longitud de la pierna, Longitud del brazo, Circunferencia del brazo, Circunferencia de la cintura no se cumplieron para utilizar pruebas paramétricas, queda utilizar entonces no paramétricas, cuyas hipótesis no corresponden a una afirmación sobre un parámetro, y las pruebas de libre distribución donde su aplicación no depende de la distribución de la variable de interés en la población de estudio.

#### EL PESO ENTRE HOMBRES Y MUJERES

**Planteamiento del problema:** ¿El peso del hombre es mayor al de mujer en Estados Unidos en el año 2015-2016?

Prueba: Prueba U

 $H_0$ : El peso de Hombres es igual al de Mujeres  $H_1$ : El peso de Hombres es diferente al de Mujeres

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \leq \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un p-valor=2.2e-16, se cumple la desigualdad  $p-valor \leq \alpha$ , por lo tanto, se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que el peso de Hombres es diferente al de Mujeres con una confianza del 95%.

| Confianza del 95%      | Inferior | Superior |
|------------------------|----------|----------|
| Intervalo de confianza | 7.7999   | 9.9000   |

Dado el intervalo de confianza, los valores están conformados por valores positivos, podemos decir que, el peso de Hombres es mayor al de Mujeres con una confianza del 95%.

## **EL PESO EN LA RAZA**

**Planteamiento del problema:** ¿El peso es el mismo en las diferentes razas en Estados Unidos en el año 2015-2016?

Prueba: Prueba Kruskall-Wallis

 $H_0$ : El peso es igual en cada raza  $H_1$ : Al menos el peso es diferente en una raza





Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \le \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un p-valor=2.2e-16, se cumple la desigualdad  $p-valor \le \alpha$ , por lo tanto, se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que al menos el peso es diferente en una raza con una confianza del 95%.

Ya que  $H_0$  se rechazó, habría que analizar qué pesos son diferentes en cada raza, entonces aquí se muestra una tabla con los diferentes p-valor, en donde la prueba de hipótesis sería la siguiente con un  $\alpha=0.05$ :

$$H_0$$
:  $Peso_i = Peso_j$   
 $H_1$ :  $Peso_i \neq Peso_j$ 

| P-valor      | Mexicano  | Otro hispano | Blanco     | Negro     | Asiático  | Otra raza |
|--------------|-----------|--------------|------------|-----------|-----------|-----------|
| Otra raza    | 0.4743    | 0.2113       | 0.3065     | 0.0404    | 1.437e-14 |           |
| Asiático     | 7.043e-31 | 1.086e-21    | 2.4164e-49 | 6.576e-53 |           |           |
| Negro        | 8.272e-07 | 7.094e-08    | 0.0327     |           |           |           |
| Blanco       | 0.0008    | 7.370e-05    |            |           |           |           |
| Otro hispano | 0.3485    |              |            |           |           |           |
| Mexicano     |           |              |            |           |           |           |

| ¿Rechazar H <sub>0</sub> ? | Mexicano | Otro hispano | Blanco | Negro | Asiático | Otra raza |
|----------------------------|----------|--------------|--------|-------|----------|-----------|
| Otra raza                  | No       | No           | No     | Si    | Si       |           |
| Asiático                   | Si       | Si           | Si     | Si    |          |           |
| Negro                      | Si       | Si           | Si     |       |          |           |
| Blanco                     | Si       | Si           |        |       |          |           |
| Otro hispano               | No       |              |        |       |          |           |
| Mexicano                   |          |              |        |       |          |           |

Los datos dan evidencia estadística de que el peso es igual para Otra raza y mexicano, Otra raza y Otro hispano, Otra raza y Blanco, Otro hispano y mexicano con una confianza del 95%.

## **RAZA CON MAYOR PESO**

**Planteamiento del problema:** ¿Qué raza tiene mayor peso en Estados Unidos en el año 2015-2016?

Prueba: Prueba U

$$H_0$$
:  $Peso_i = Peso_j$   
 $H_1$ :  $Peso_i \neq Peso_j$ 





Como algunos pesos son diferentes entre razas, habría que analizar qué pesos son mayores que otras razas, entonces se calculó los intervalos de confianza para cada uno, ya que las pruebas de hipótesis unilaterales, no nos daba información suficiente si contenía o no el 0. Por ejemplo, supongamos un  $H_0$ :  $Peso\ mexicano\ =\ Peso\ asiático$ , esto daba un  $p-valor\ =\ 1$ , por lo tanto, no se rechaza  $H_0$ . Cuando en el punto anterior se dijo que eran diferentes.

Con R Studio es posible obtener el intervalo de confianza, entonces se omitirá la parte de la prueba de hipótesis. Intervalos de confianza del 95%. Cuando se dice "Positivo", quiere decir que, el de la fila es mayor al de la columna y viceversa. En cambio, cuando se dice "Igual", es que contiene al 0.

| ¿Rechazar H <sub>0</sub> ? | Otra raza | Otro hispano | Negro    | Blanco   | Asiático | Mexicano |
|----------------------------|-----------|--------------|----------|----------|----------|----------|
| Mexicano                   | Igual     | Igual        | Negativo | Negativo | Positivo |          |
| Asiático                   | Negativo  | Negativo     | Negativo | Negativo |          |          |
| Blanco                     | Igual     | Positivo     | Negativo |          |          |          |
| Negro                      | Positivo  | Positivo     |          |          |          |          |
| Otro hispano               | Igual     |              |          |          |          |          |
| Otra raza                  |           |              |          |          |          |          |

Analizando los resultados, se puede obtener la siguiente forma en como están los pesos por raza.

$$Negro > Blanco \ge Mexicano \ge Otro hispano \ge Otra raza > Asiático$$

De aquí se puede concluir que los que tienen mayor peso son los de raza Negra y los que tienen menor peso son los de raza asiática.

# PROPORCIÓN DE LA RAZA2

**Planteamiento del problema:** ¿La proporción OMO es igual a la proporción NBA de la raza2 en Estados Unidos en el año 2015-2016?

**Prueba:** Prueba dos proporciones poblacionales.

$$H_0$$
:  $p_{OMO} - p_{NBA} = 0 \rightarrow p_{OMO} = p_{NBA}$   
 $H_1$ :  $p_{OMO} - p_{NBA} \neq 0 \rightarrow p_{OMO} \neq p_{NBA}$ 

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \le \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un p-valor=2.2e-16, se cumple la desigualdad  $p-valor \le \alpha$ , por lo tanto, se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que la proporción OMO es diferente a la proporción NBA con una confianza del 95%.





| Confianza del 95%      | Inferior | Superior |
|------------------------|----------|----------|
| Intervalo de confianza | -0.2931  | -0.2611  |

Dado el intervalo de confianza, los valores están conformados por valores negativos, podemos decir que, la proporción NBA es mayor a la proporción OMO con una confianza del 95%. Las estimaciones correspondientes a cada proporción son:  $\hat{p}_{OMO} = 0.3614 \ y \ \hat{p}_{NBA} = 0.6385$ .

#### LA ALTURA ENTRE HOMBRE Y MUJER

**Planteamiento del problema:** ¿La altura del hombre es igual al de mujer en Estados Unidos en el año 2015-2016?

Prueba: Prueba U

 $H_0$ : La altura de Hombres es igual al de Mujeres  $H_1$ : La altura de Hombres es diferente al de Mujeres

Se calculará el p-valor con R Studio y se usará del criterio de  $p-valor \le \alpha$  para rechazar  $H_0$  si es que se cumple la desigualdad. Con un  $\alpha=0.05$  y un p-valor=2.2e-16, se cumple la desigualdad  $p-valor \le \alpha$ , por lo tanto, se rechaza  $H_0$ , ya que los datos dan evidencia estadística de que la altura de Hombres es diferente al de Mujeres con una confianza del 95%.

| Confianza del 95%      | Inferior | Superior |
|------------------------|----------|----------|
| Intervalo de confianza | 12.0000  | 12.9000  |

Dado el intervalo de confianza, los valores están conformados por valores positivos, podemos decir que, la altura de Hombres es mayor al de Mujeres con una confianza del 95%.

#### INDEPENDENCIA ENTRE ESTADO NUTRICIONAL IMC Y CINTURA

El IMC, es un indicador simple de la relación entre el peso y la talla que se utiliza frecuentemente para identificar el sobrepeso y la obesidad en los adultos. La circunferencia de la cintura, mide cuando la grasa se acumula en exceso en el abdomen, produce problemas de salud como diabetes, hipertensión, aumento de colesterol y triglicéridos, etc. Estas son sus respectivas tablas:

| IMC                | Estados Nutricionales |
|--------------------|-----------------------|
| Por debajo de 18.5 | Bajo peso             |
| 18.5 – 24.9        | Peso normal           |
| 25.0 – 29.9        | Pre-obesidad          |





| 30.0 – 34.9          | Clase de obesidad I   |
|----------------------|-----------------------|
| 35.0 – 39.9          | Clase de obesidad II  |
| Por encima de los 40 | Clase de obesidad III |

| Estado          | Hombres (cm) | Mujeres (cm) |
|-----------------|--------------|--------------|
| Normal          | Menos de 94  | Menos de 80  |
| Riesgo alto     | 94 – 102     | 80 – 88      |
| Riesgo muy alto | Más de 102   | Más de 88    |

Solo se tomará en cuenta las personas mayores a 19 años.

**Planteamiento del problema:** ¿Existe una relación entre el IMC y la circunferencia de una persona en Estados Unidos en el año 2015-2016?

Prueba: Tabla de contingencia, Prueba chi-cuadrada

 $H_0$ : Hay independencia entre el estado nutricional IMC y la circunferencia de la cintura  $H_1$ : No hay independencia entre el estado nutricional IMC y la circunferencia de la cintura

Se empleará esta fórmula para saber si rechazar o no  $H_0$ .

Estadístico de prueba:

$$X^{2} = \sum_{i} \sum_{j} \frac{(f o_{ij} - f e_{ij})^{2}}{f e_{ij}}$$

Donde: i es la fila. j es la columna.

$$fe_{ij} = \frac{(Total\ en\ el\ renglon\ i)(Total\ en\ la\ columna\ j)}{Total\ general}$$

Criterio de rechazo de  $H_0$ :

$$X^2 \geq X^2_{\alpha,(r-1)(c-1)}$$

Donde: r es el número de renglones. c es el número de columnas.  $\alpha$  es el valor del error.





|   |                       | Circunferencia de la cintura |             |                 |       |
|---|-----------------------|------------------------------|-------------|-----------------|-------|
|   |                       | Normal                       | Riesgo algo | Riesgo muy alto | Total |
|   | Bajo peso             | 71                           | 0           | 0               | 71    |
|   | Peso normal           | 822                          | 369         | 137             | 1328  |
| I | Pre-obesidad          | 246                          | 507         | 872             | 1625  |
| M | Clase de obesidad I   | 6                            | 79          | 1036            | 1121  |
| С | Clase de obesidad II  | 0                            | 1           | 532             | 533   |
|   | Clase de obesidad III | 0                            | 0           | 363             | 363   |
|   | Total                 | 1145                         | 956         | 2940            | 5041  |

Esta es la tabla de contingencia en donde se observa las frecuencias observadas de cada uno de los grupos con un total de 5041. En base a esto, se construirá las frecuencias esperadas con la formula presentada.

|   |                       | Circunferencia de la cintura |             |                 |
|---|-----------------------|------------------------------|-------------|-----------------|
|   |                       | Normal                       | Riesgo algo | Riesgo muy alto |
|   | Bajo peso             | 16.1268                      | 13.4647887  | 41.4084507      |
|   | Peso normal           | 301.639                      | 251.848443  | 774.5129935     |
| M | Pre-obesidad          | 369.098                      | 308.172982  | 947.7286253     |
| C | Clase de obesidad I   | 254.621                      | 212.591946  | 653.786947      |
| C | Clase de obesidad II  | 121.064                      | 101.080738  | 310.8549891     |
|   | Clase de obesidad III | 82.4509                      | 68.841103   | 211.7079944     |

Una vez obtenido las frecuencias esperadas, se calcula el estadístico de prueba.

|   |                       | Circunferencia de la cintura |             |                 |
|---|-----------------------|------------------------------|-------------|-----------------|
|   |                       | Normal                       | Riesgo algo | Riesgo muy alto |
|   | Bajo peso             | 186.713                      | 13.4647887  | 41.4084507      |
|   | Peso normal           | 897.684                      | 54.4950257  | 524.7462861     |
| M | Pre-obesidad          | 41.0547                      | 128.279199  | 6.051125325     |
| C | Clase de obesidad I   | 242.762                      | 83.9486555  | 223.4471314     |
|   | Clase de obesidad II  | 121.064                      | 99.090631   | 157.3245326     |
|   | Clase de obesidad III | 82.4509                      | 68.841103   | 108.1171781     |

|                           | Prueba    |
|---------------------------|-----------|
| $X^2$                     | 3080.9429 |
| $X_{0.05,(6-1)(3-1)}^{2}$ | 18.3070   |
| α                         | 0.05      |
| P-valor                   | 0.00      |





Para nuestro criterio de rechazo, tendríamos que  $X^2 \ge X_{0.05,(r-1)(c-1)}^2$ , haciendo los cálculos correspondientes:  $3080.9429 \ge 18.3070$ , cómo se cumple la desigualdad, rechazamos  $H_0$ . Para reforzar nuestra decisión, usaremos  $p-valor \le \alpha$ , tenemos que  $\alpha=0.05$  y  $p-valor\approx 0.000$ , como se cumple la desigualdad, rechazamos  $H_0$ . Por lo tanto, los datos dan evidencia estadística de que no hay independencia entre el estado nutricional IMC y la circunferencia de la cintura con una confianza del 95%. Esto quiere decir que, entre mas IMC tenga una persona es más probable de tener una circunferencia de la cintura grande, lo que conllevaría a problemas de salud graves antes mencionados.





# CONCLUSIÓN

La estadística es la ciencia que se encarga de recopilar, organizar, procesar, analizar e interpretar los datos con el fin de deducir las características de un grupo o población objetivo, como se hizo en esta investigación.

El objetivo principal era explicar el peso de una persona, tomando en cuenta factores que pudiesen afectar en la variable. Se propuso un modelo lineal múltiple, el cual contemplaba cada una de las variables propuestas exceptuando el IMC, ya que presentaba problemas de multicolinealidad. Se puede decir que un 96.17% de los datos es explicada por el modelo lineal múltiple. Lo que le corresponde un muy buen desempeño. Modelo:  $\hat{y} = -101.5947 - 0.1162x_{Edad} - 0.2602x_{Mujer} + 0.3900x_{Altura} + 0.2313x_{Long\_pierna} - 0.1200x_{Long\_brazo} + 1.4278x_{Cir\_brazo} + 0.7186x_{Cir\_cintura} + 0.7949x_{Raza}$ .

Se analizó ciertas variables por separado para dar respuestas a los problemas planteados y algo interesante, es que en las pruebas de hipótesis se obtuvo que el peso del hombre es mayor al de mujer y eso es considerado en modelo, porque acorde al modelo, las mujeres son en promedio 0.2602 unidades de peso inferior a los hombres.

Yo suponía que la raza mexicana sería el de mayor peso, pero no me esperaba que la gente de raza negra era el que tiene mayor peso. En cambio, desde un principio que la raza asiática, sería la que menor peso tendría, debido a la alimentación que tienen.

El modelo también, se hizo para un polinomio de grado 7, consideran 7 variables que son:  $x_{Edad} + x_{Altura} + x_{Long\_pierna} + x_{Long\_brazo} + x_{Cir\_brazo} + x_{Cir\_cintura} + x_{Raza}$ . Este se hizo, debido a que el supuesto de varianza constante no se cumplía y este a su vez mejoro un poco más el modelo con un 98.03% de ajuste a los datos.

Para finalizar, la estadística es el arte de aprender a partir de los datos. Está relacionada con la recopilación de datos, su descripción subsiguiente y su análisis, lo que nos lleva a extraer conclusiones.





## **BIBLIOGRAFÍA**

- (s.f.). Obtenido de https://www.calcuvio.com/indice-cintura-altura
- Black, K. (2005). *Estadística en los negocios*. Delegación Azcapotzalco, México, D.F.: Grupo Patria Cultural, S.A. de C.V.
- enterat. (s.f.). Obtenido de https://www.enterat.com/salud/imc-indice-masacorporal.php
- Wackerly, Mendenhall, & Scheaffer. (2013). *Estadística Matemática con aplicaciones*. Iztapalapa, México, D.F.: Edamsa Impresiones S.A de C.V.
- Walpole, R., Myers, R., Myers, S., & Ye, K. (2012). *Probabilidad y estadística para ingeniería y ciencias*. Naucalpan de Juárez, Estado de México: Pearson Educación de México, S.A. de C.V.
- World Health Organization. (s.f.). Obtenido de https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/weight-for-age-5to10-years
- World Health Organization. (s.f.). Obtenido de https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi



library(BSDA)



## PROGRAMA DE R STUDIO

```
PROYECTO FINAL
rm(list = ls()) # Borra todos los datos guardados
# Si el archivo aparece signos "raros", ir a File -> Reopen with Encoding
# y seleccionar "UTF-8".
# Correr estas lineas en caso de no tener estos paquetes instalados.
# install.packages("tidyverse")
# install.packages("readr")
# install.packages("dplyr")
# install.packages("ggplot2")
# install.packages("corrplot")
# install.packages("RColorBrewer")
# install.packages("olsrr")
# install.packages("car")
# install.packages("leaps")
# install.packages("broom")
# install.packages("nortest")
# install.packages("Imtest")
# install.packages("exactRankTests")
# install.packages(psych)
# install.packages("BSDA")
library(tidyverse)
library(readr)
library(dplyr)
library(ggplot2)
library(corrplot)
library(RColorBrewer)
library(olsrr)
library(car)
library(leaps)
library(broom)
library(nortest)
library(Imtest)
library(exactRankTests)
library(psych)
```





```
getwd() # Ver la dirección donde se guarda
setwd("D:\\Documentos\\Materia MEB\\Tareas") # Cambiar la dirección del
guardado
getwd() # Ver la dirección donde se guarda
base <- read_delim("Peso.csv", col_names = T, delim = ",") # Abre documento de
excel ".csv"
base2 <- base %>%
 select(-ID, -raza, -est_nut, -est_cin) %>%
 rename(mujer = sexo) # Seleción y limpieza de base
# Análisis de regresión múltiple
# Matriz de dispersión
pairs(base2, labels = c("Peso", "Edad", "Mujer", "Altura", "IMC",
              "Long. Pierna", "Long. Brazo", "Cir. Brazo",
               "Cir. Cintura", "Raza"),
   main = "Matriz de Dispersión")
# Matriz de correlación
ksst <- c("steelblue4", "steelblue3", "steelblue2", "steelblue1", "white",
      "slateblue1", "slateblue2", "slateblue3", "slateblue4") # Colores de la matriz
de correlación
corPlot(base2, cex = 1.25, main = "Matriz de correlación", scale = F,
     gr = colorRampPalette(ksst),
     labels = c("Peso", "Edad", "Mujer", "Altura", "IMC",
           "Long. Pierna", "Long. Brazo", "Cir. Brazo",
           "Cir. Cintura", "Raza"))
# Modelo con todas las variables (antes de multicolinealidad)
regresion <-
Im(base2$peso~base2$edad+base2$mujer+base2$altura+base2$imc+base2$lon
g pier+base2$long bra+base2$circu bra+base2$circu cin+base2$raza2)
vif <- vif(regresion) # Verificación de multicolinealidad
# Modelo General (sin multicolinealidad)
regre.gene <-
lm(base2$peso~base2$edad+base2$mujer+base2$altura+base2$long_pier+base
2$long bra+base2$circu bra+base2$circu cin+base2$raza2)
vif.gene <- vif(regre.gene)# Verificación de multicolinealidad
# Coeficientes del Modelo General
```





coef.gene <- coef(regre.gene)</pre>

# R cuadrada del Modelo General r.gene <- summary(regre.gene)\$r.squared

# R cuadrada ajustada del Modelo General r.gene.ajus <- summary(regre.gene)\$adj.r.squared

# Valor del error alfa <- 0.05

# H0: B1=B2=B3=B4=B5=B6=B7=B8=B9=0

# H1: Al menosun Bj!=0

# P-valor

p\_valorj <- glance(regre.gene)\$p.value

# Comparación con p-valor: p-valor <= alfa -> Rechazamos H0 rpj <- ifelse(p\_valorj<=alfa, "Rechazamos H0", "No rechazamos H0")

# H0: B0 = 0 # H1: B0 != 0

# P-valor

p\_valor0 <- summary(regre.gene)\$coefficients[1, 4]</pre>

# Comparación con p-valor: p-valor <= alfa -> Rechazamos H0 rp0 <- ifelse(p\_valor0<=alfa, "Rechazamos H0", "No rechazamos H0")

# Intervalos de confianza para el Modelo General int.gene <- confint(regre.gene, level = .95)

# Todos los posibles subconjutos del modelo completo todos.conjuntos <- ols\_step\_all\_possible(regre.gene)

# Los mejores subconjutos del modelo completo mejores.conjuntos <- ols\_step\_best\_subset(regre.gene) mejores.conjuntos\$adjr mejores.conjuntos\$rsquare

# Gráfico del R cuadrada ajustada de los subconjuntos ggplot(mejores.conjuntos)+geom\_point(mapping = aes(x = n, y = adjr), size=3, colour = "darkgoldenrod1") +





```
xlab("Número de variables") +
 ylab("Coef. de determinación ajustado") +
 ggtitle("Diagrama de dispersión Coef. de determinación ajustado") +
 theme(plot.title = element text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold")) +
 theme(axis.text = element_text(face="bold", colour = "black")) +
 theme(plot.background = element_rect (fill = "gray80"),
     panel.background = element_rect(fill = "white"),
     axis.line = element_line(colour = "black"),
     panel.border = element rect(fill = NA, colour = "black")) +
 scale x continuous(limit = c(1, 8))
# Ver por detalle cada paso del modelo forward
detalle <- ols step forward p(regre.gene, details = T, progress = T)
# Los mejores subconjutos del modelo completo
mejores.conjuntos2 <- regsubsets(peso~., data = base2, nbest = 1, force.out =
"imc",
          method = "forward")
summary(mejores.conjuntos2)
summary(mejores.conjuntos2)$adjr2
summary(mejores.conjuntos2)$rsq
# Residuales del modelo
residuales <- residuals(regre.gene)
# Estimaciones del modelo
estimaciones <- fitted.values(regre.gene)
# Valor del error supuestos
alfa.su <- 0.000000000001
# Varianza constante
plot(estimaciones, residuales,
   main = "Residuos vs Estimaciones", font.lab = 2,
   xlab = "Estimaciones", ylab = "Residuales", pch = 16)
abline(h=0, lty = 5, col = "red", lwd = 3)
# Independencia
acf(residuales, main = "Serie Residuales", font.lab = 2)
# H0: Los residuales son independientes
```



# Independencia

acf(re, main = "Serie Residuales", font.lab = 2)



## # H1: Los residuales no son independientes # P-valor p\_valorind <- Box.test(residuales)\$p.value</pre> # Comparación con p-valor: p-valor <= alfa -> Rechazamos H0 rpind <- ifelse(p\_valorind<=alfa.su, "Rechazamos H0", "No rechazamos H0") # Media 0 media.re <- mean(residuales)</pre> # Normalidad con media cero # H0: Datos provienen de una dist normal # H1: Datos provienen de otra dist # P-valor p valorn <- ks.test(residuales, pnorm, mean = 0, sd = sd(residuales))\$p.value # Comparación con p-valor: p-valor <= alfa -> Rechazamos H0 rpn <- ifelse(p\_valorn<=alfa.su, "Rechazamos H0", "No rechazamos H0") # Gráfico de normalidad ggnorm(residuales, xlab = "Residuo", ylab = "Porcentaje", main = "Normalidad de Residuos") qqline(residuales, lty = 5, col = "red", lwd = 3)# Modelo polinómico poli <- lm(peso~poly(edad,altura,long\_pier,long\_bra,circu\_bra,circu\_cin,raza2, degree = 7, raw = T), data = base2) summary(poli) # Varianza constante re <- residuals(poli) steam <- fitted.values(poli) plot(steam, re, main = "Residuos vs Estimaciones", font.lab = 2,xlab = "Estimaciones", ylab = "Residuales", pch = 16) abline(h=0, lty = 5, col = "red", lwd = 3) bptest(poli)





```
# H0: Los residuales son independientes
# H1: Los residuales no son independientes
# P-valor
p_valorpoli <- Box.test(re)$p.value</pre>
# Comparación con p-valor: p-valor <= alfa -> Rechazamos H0
rppoli <- ifelse(p_valorpoli<=alfa, "Rechazamos H0", "No rechazamos H0")
# Media 0
media.poli <- mean(re)
# Normalidad con media cero
# H0: Datos provienen de una dist normal
# H1: Datos provienen de otra dist
# P-valor
p_valornpoli <- ks.test(re, pnorm, mean = 0, sd = sd(re))$p.value
# Comparación con p-valor: p-valor <= alfa -> Rechazamos H0
rpnpoli <- ifelse(p_valornpoli<=alfa.su, "Rechazamos H0", "No rechazamos H0")
# Gráfico de normalidad
qqnorm(re, xlab = "Residuo", ylab = "Porcentaje",
    main = "Normalidad de Residuos")
qqline(re, lty = 5, col = "red", lwd = 3)
# Histogramas con distribución teórica
# Peso
Grapeso <- ggplot(base) +
 geom histogram(mapping = aes(x = peso, y = ..density..),
          bins = 20, fill="darkgoldenrod3",
          colour = "black") +
 stat_function(fun = dnorm, args = list(mean(base$peso), sd(base$peso)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Peso (kg)") +
 ylab("Densidad") +
 ggtitle("Dist. N~(73.97, 595.89) teorica de la variable Peso (kg)") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
```





```
theme(axis.title.x = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold"))
Grapeso + scale_y_continuous(limit = c(0,0.02)) +
 theme(plot.background = element rect (fill = "gray80"),
     panel.background = element rect(fill = "white"),
     axis.line = element line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
# Edad
Graedad <- ggplot(base) +
 geom histogram(mapping = aes(x = edad, y = ..density..),
           bins = 20, fill="forestgreen",
           colour = "black") +
 stat_function(fun = dunif, args = list(8, 80),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Edad") +
 ylab("Densidad") +
 ggtitle("Dist. U~(8, 80) teorica de la variable Edad") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold"))
Graedad + scale_y_continuous(limit = c(0,0.035)) +
 theme(plot.background = element_rect (fill = "gray80"),
     panel.background = element_rect(fill = "white"),
     axis.line = element line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
# Altura
Graaltu <- ggplot(base) +
 geom_histogram(mapping = aes(x = altura, y = ..density..),
           bins = 20, fill="darkred",
          colour = "black") +
 stat_function(fun = dnorm, args = list(mean(base$altura), sd(base$altura)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Altura (cm)") +
 ylab("Densidad") +
 ggtitle("Dist. N~(162.94, 168.31) teorica de la variable Altura (cm)") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold"))
Graaltu + scale_y_continuous(limit = c(0,0.04)) +
 theme(plot.background = element_rect (fill = "gray80"),
     panel.background = element_rect(fill = "white"),
```





```
axis.line = element_line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
# IMC
Graimc <- ggplot(base) +
 geom histogram(mapping = aes(x = imc, y = ..density..),
           bins = 20, fill="dodgerblue3",
           colour = "black") +
 stat_function(fun = dnorm, args = list(mean(base$imc), sd(base$imc)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("IMC") +
 ylab("Densidad") +
 ggtitle("Dist. N~(27.37, 53.44) teorica de la variable IMC") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element_text(hiust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold"))
Graimc + scale_y_continuous(limit = c(0,0.06)) +
 theme(plot.background = element rect (fill = "gray80"),
     panel.background = element_rect(fill = "white"),
     axis.line = element line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
# Longitud de pierna
Gralpier <- ggplot(base) +
 geom histogram(mapping = aes(x = long pier, y = ..density..),
           bins = 20, fill="gold",
           colour = "black") +
 stat_function(fun = dnorm, args = list(mean(base$long_pier),
sd(base$long_pier)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Longitud de la pierna (cm)") +
 ylab("Densidad") +
 ggtitle("Dist. N~(38.1, 17.33) teoríca de la variable L. P. (cm)") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold"))
Gralpier + scale_y_continuous(limit = c(0,0.1)) +
 theme(plot.background = element_rect (fill = "gray80"),
     panel.background = element rect(fill = "white"),
     axis.line = element_line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
```





```
Gralbra <- ggplot(base) +
 geom_histogram(mapping = aes(x = long_bra, y = ..density..),
           bins = 20, fill="darkorchid4",
           colour = "black") +
 stat function(fun = dnorm, args = list(mean(base$long bra), sd(base$long bra)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Logitud del brazo (cm)") +
 vlab("Densidad") +
 ggtitle("Dist. N~(36.15, 12.76) teorica de la variable L. B. (cm)") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element text(hjust = 0.5, face="bold"))
Gralbra + scale y continuous(limit = c(0,0.12)) +
 theme(plot.background = element_rect (fill = "gray80"),
     panel.background = element rect(fill = "white").
     axis.line = element_line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
# Circunferencia del brazo
Gralbra <- ggplot(base) +
 geom_histogram(mapping = aes(x = circu_bra, y = ..density..),
           bins = 20, fill="gray48",
           colour = "black") +
 stat_function(fun = dnorm, args = list(mean(base$circu_bra),
sd(base$circu bra)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Circunferencia del brazo (cm)") +
 ylab("Densidad") +
 ggtitle("Dist. N~(31.24, 37.1) teorica de la variable C. B. (cm)") +
 theme(plot.title = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element text(hjust = 0.5, face="bold"))
Gralbra + scale_y_continuous(limit = c(0,0.08)) +
 theme(plot.background = element rect (fill = "gray80"),
     panel.background = element rect(fill = "white"),
     axis.line = element_line(colour = "black"),
     panel.border = element_rect(fill = NA, colour = "black"))
# Circunferencia de la cintura
Gralbra <- ggplot(base) +
 geom histogram(mapping = aes(x = circu cin, y = ..density..),
           bins = 20, fill="violetred",
           colour = "black") +
```





```
stat_function(fun = dnorm, args = list(mean(base$circu_cin), sd(base$circu_cin)),
          geom = "area", fill = "black", alpha = 0.5) +
 xlab("Circunferencia de la cintura (cm)") +
 ylab("Densidad") +
 ggtitle("Dist. N~(93.3, 374.38) teorica de la variable C. C. (cm)") +
 theme(plot.title = element text(hjust = 0.5, face="bold")) +
 theme(axis.title.x = element_text(hjust = 0.5, face="bold")) +
 theme(axis.title.y = element_text(hjust = 0.5, face="bold"))
Gralbra + scale_y_continuous(limit = c(0,0.025)) +
 theme(plot.background = element_rect (fill = "gray80"),
     panel.background = element rect(fill = "white"),
     axis.line = element line(colour = "black"),
     panel.border = element rect(fill = NA, colour = "black"))
# Sexo
# size: número de ensayos (n > = 0)
# prob: probabilidad de éxito en cada ensayo
# lb: límite inferior de la suma
# ub: límite superior de la suma
# col: color
# lwd: ancho de línea
binom_sum <- function(size, prob, lb, ub, col = "lightskyblue", lwd = 1, ...) {
 x <- 0:size
 if (missing(lb)) {
  lb <- min(x)
 }
 if (missing(ub)) {
  ub <- max(x)
 par(bg = "gray80")
 par(font.lab = 2)
 plot(dbinom(x, size = size, prob = prob), type = "h", lwd = lwd, ...)
 u <- par("usr")
 rect(u[1], u[3], u[2], u[4], col = "#ffffff",
    border = "black", lwd = 1)
 if(lb == min(x) \& ub == max(x)) 
  color <- col
 } else {
  color \leftarrow rep(1, length(x))
  color[(lb + 1):ub] <- col
```





```
}
 lines(dbinom(x, size = size, prob = prob), type = "h",
     col = color, lwd = lwd, ...)
}
# Si se quiere gráficar la probabilidad de P(X<=3500)
# Se debe poner un argumento ub = 3500
binom_sum(size = 7053, prob = 0.5093, lwd = 2, col = "lightpink",
      ylab = "Masa de probabilidad", xlab = "Sexo",
      main="Dist. B~(7053, 0.5093) teorica de la variable Sexo",
      xlim = c(3400, 3800))
#Raza2
# size: número de ensayos (n > = 0)
# prob: probabilidad de éxito en cada ensayo
# lb: límite inferior de la suma
# ub: límite superior de la suma
# col: color
# lwd: ancho de línea
binom_sum <- function(size, prob, lb, ub, col = "tan4", lwd = 1, ...) {
 x <- 0:size
 if (missing(lb)) {
  lb <- min(x)
 if (missing(ub)) {
  ub <- max(x)
 }
 par(bg = "gray80")
 par(font.lab = 2)
 plot(dbinom(x, size = size, prob = prob), type = "h", lwd = lwd, ...)
 u <- par("usr")
 rect(u[1], u[3], u[2], u[4], col = "#ffffff",
    border = "black", lwd = 1)
 if(lb == min(x) \& ub == max(x)) 
  color <- col
 } else {
  color < -rep(1, length(x))
  color[(lb + 1):ub ] <- col
 }
```





```
lines(dbinom(x, size = size, prob = prob), type = "h",
     col = color, lwd = lwd, ...)
}
# Si se quiere gráficar la probabilidad de P(X<=3500)
# Se debe poner un argumento ub = 3500
binom_sum(size = 7053, prob = 0.6386, lwd = 2, col = "sandybrown",
      ylab = "Masa de probabilidad", xlab = "Raza2",
      main="Dist. B~(7053, 0.6386) teorica de la variable Raza2",
      xlim = c(4300, 4750)
}
# Pruebas de hipótesis
# El peso entre hombres y mujeres
peso.hombre <- base2 %>%
 filter(mujer==0) %>%
 select(peso)
peso.hombre <- as.numeric(unlist(peso.hombre))</pre>
peso.mujer <- base2 %>%
 filter(mujer==1) %>%
 select(peso)
peso.mujer <- as.numeric(unlist(peso.mujer))
wilcox.exact(peso.hombre, peso.mujer, alternative = "two.sided", conf.int = T)
# El peso en la raza
peso.mexi <- base %>%
 filter(raza==1) %>%
 select(peso)
peso.mexi <- as.numeric(unlist(peso.mexi))</pre>
peso.ohis <- base %>%
 filter(raza==2) %>%
 select(peso)
peso.ohis <- as.numeric(unlist(peso.ohis))</pre>
peso.bhis <- base %>%
 filter(raza==3) %>%
 select(peso)
peso.bhis <- as.numeric(unlist(peso.bhis))</pre>
```





```
peso.nhis <- base %>%
 filter(raza==4) %>%
 select(peso)
peso.nhis <- as.numeric(unlist(peso.nhis))</pre>
peso.ahis <- base %>%
 filter(raza==6) %>%
 select(peso)
peso.ahis <- as.numeric(unlist(peso.ahis))</pre>
peso.or <- base %>%
 filter(raza==7) %>%
 select(peso)
peso.or <- as.numeric(unlist(peso.or))
kruskal.test(list(peso.mexi, peso.ahis, peso.bhis, peso.nhis, peso.ohis, peso.or))
kruskal.test(list(peso.mexi, peso.ahis))$p.value
kruskal.test(list(peso.mexi, peso.bhis))$p.value
kruskal.test(list(peso.mexi, peso.nhis))$p.value
kruskal.test(list(peso.mexi, peso.ohis))$p.value
kruskal.test(list(peso.mexi, peso.or))$p.value
kruskal.test(list(peso.ahis, peso.bhis))$p.value
kruskal.test(list(peso.ahis, peso.nhis))$p.value
kruskal.test(list(peso.ahis, peso.ohis))$p.value
kruskal.test(list(peso.ahis, peso.or))$p.value
kruskal.test(list(peso.bhis, peso.nhis))$p.value
kruskal.test(list(peso.bhis, peso.ohis))$p.value
kruskal.test(list(peso.bhis, peso.or))$p.value
kruskal.test(list(peso.nhis, peso.ohis))$p.value
kruskal.test(list(peso.nhis, peso.or))$p.value
kruskal.test(list(peso.ohis, peso.or))$p.value
```

 $wilcox.exact(peso.mexi, peso.ahis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.mexi, peso.bhis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.mexi, peso.nhis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.mexi, peso.ohis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.mexi, peso.ohis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.ahis, peso.bhis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.ahis, peso.ohis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.ahis, peso.ohis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.ahis, peso.ohis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.ahis, peso.nhis, alternative = "two.sided", conf.int = T)\$conf.int\\ wilcox.exact(peso.bhis, peso.nhis, alternative = "two.sided", conf$ 





```
wilcox.exact(peso.bhis, peso.ohis, alternative = "two.sided", conf.int = T)$conf.int
wilcox.exact(peso.bhis, peso.or, alternative = "two.sided", conf.int = T)$conf.int
wilcox.exact(peso.nhis, peso.ohis, alternative = "two.sided", conf.int = T)$conf.int
wilcox.exact(peso.nhis, peso.or, alternative = "two.sided", conf.int = T)$conf.int
wilcox.exact(peso.ohis, peso.or, alternative = "two.sided", conf.int = T)$conf.int
# Proporción de la raza2
OMO <- base2 %>%
 filter(raza2==0) %>%
 select(raza2) %>%
 summarise(total = n())
OMO <- as.numeric(unlist(OMO))
NBA <- base2 %>%
 filter(raza2==1) %>%
 select(raza2) %>%
 summarise(total = n())
NBA <- as.numeric(unlist(NBA))
prop.test(c(OMO, NBA), c(7053, 7053))
# La altura entre hombres y mujeres
altura.hombre <- base2 %>%
 filter(mujer==0) %>%
 select(altura)
altura.hombre <- as.numeric(unlist(altura.hombre))
altura.mujer <- base2 %>%
 filter(mujer==1) %>%
 select(altura)
altura.mujer <- as.numeric(unlist(altura.mujer))
wilcox.exact(altura.hombre, altura.mujer, alternative = "two.sided", conf.int = T)
# Tabla de contingencia de IMC y circunferencia de la cintura
imc.cin <- base %>%
 filter(edad>19) %>%
 select(est_nut, est_cin) %>%
 table()
imc.cin
# Mediana por raza
mexicano1 <- base %>%
```





```
filter(raza==1) %>%
 select(peso)
mexicano1 <- as.numeric(unlist(mexicano1))</pre>
mexicano <- base %>%
 filter(raza==1) %>%
 select(peso) %>%
 summarise(Mediana=median(peso))
mexicano <- as.numeric(unlist(mexicano))</pre>
SIGN.test(mexicano1, md = mexicano, alternative = "two.sided")
otro.his1 <- base %>%
 filter(raza==2) %>%
 select(peso)
otro.his1 <- as.numeric(unlist(otro.his1))
otro.his <- base %>%
 filter(raza==2) %>%
 select(peso) %>%
 summarise(Mediana=median(peso))
otro.his <- as.numeric(unlist(otro.his))
SIGN.test(otro.his1, md = otro.his, alternative = "two.sided")
blanco1 <- base %>%
 filter(raza==3) %>%
 select(peso)
blanco1 <- as.numeric(unlist(blanco1))
blanco <- base %>%
 filter(raza==3) %>%
 select(peso) %>%
 summarise(Mediana=median(peso))
blanco <- as.numeric(unlist(blanco))
SIGN.test(blanco1, md = blanco, alternative = "two.sided")
negro1 <- base %>%
 filter(raza==4) %>%
 select(peso)
negro1 <- as.numeric(unlist(negro1))</pre>
negro <- base %>%
 filter(raza==4) %>%
 select(peso) %>%
 summarise(Mediana=median(peso))
negro <- as.numeric(unlist(negro))</pre>
SIGN.test(negro1, md = negro, alternative = "two.sided")
```





```
asiatico1 <- base %>%
 filter(raza==6) %>%
 select(peso)
asiatico1 <- as.numeric(unlist(asiatico1))
asiatico <- base %>%
 filter(raza==6) %>%
 select(peso) %>%
 summarise(Mediana=median(peso))
asiatico <- as.numeric(unlist(asiatico))
SIGN.test(asiatico1, md = asiatico, alternative = "two.sided")
otra.raza1 <- base %>%
 filter(raza==7) %>%
 select(peso)
otra.raza1 <- as.numeric(unlist(otra.raza1))
otra.raza <- base %>%
 filter(raza==7) %>%
 select(peso) %>%
 summarise(Mediana=median(peso))
otra.raza <- as.numeric(unlist(otra.raza))
SIGN.test(otra.raza1, md = otra.raza, alternative = "two.sided")
re1 <- lm(peso~circu_bra, data = base2)
re2 <- lm(peso~long_pier+circu_bra, data = base2)
re3 <- lm(peso~altura+circu bra+circu cin, data = base2)
re4 <- Im(peso~edad+altura+circu_bra+circu_cin, data = base2)
re5 <- lm(peso~edad+altura+long_pier+circu_bra+circu_cin, data = base2)
re6 <- lm(peso~edad+altura+long_pier+circu_bra+circu_cin+raza2, data = base2)
re7 <- lm(peso~edad+altura+long_pier+long_bra+circu_bra+circu_cin+raza2, data
= base2)
```