Kolmogorov's Theorem

Travis Westura

April 19, 2015

Our goal is to understand Kolmogorov's theorem:

Theorem 0.1 (Kolmogorov's Theorem). Let $\rho, \gamma > 0$ be given, and let $h(\boldsymbol{q}, \boldsymbol{p}) = h_0(\boldsymbol{p}) + h_1(\boldsymbol{q}, \boldsymbol{p})$ be a Hamiltonian, with $h_0, h_1 \in \mathcal{A}_{\rho}$ and $\|h\|_{\rho} \leq 1$. Suppose the Taylor polynomial of h_0 is

$$h_0(\mathbf{p}) = a + \omega \mathbf{p} + \frac{1}{2} \mathbf{p} \cdot C \mathbf{p} + o(|\mathbf{p}|^2),$$

with $\omega \in \Omega_{\gamma}$ and C is symmetric and invertible. Then for any $\rho_* \leq \rho$, there exists $\epsilon > 0$, which depends on C and γ , but not on the remainder term in $o(|\mathbf{p}|^2)$, such that if $||h_1||_{\rho} \leq \epsilon$, there exists a symplectic mapping $\Phi : A_{\rho_*} \to A_{\rho}$ such that if we set $(\mathbf{q}, \mathbf{p}) = \Phi(\mathbf{Q}, \mathbf{P})$ and $H = h \circ \Phi$, we have

$$H(\mathbf{Q}, \mathbf{P}) = A + \omega \mathbf{P} + R(\mathbf{Q}, \mathbf{P}),$$

with $R(\boldsymbol{Q}, \boldsymbol{P}) \in O(|\boldsymbol{P}|^2)$.

To read this theorem, we require some notation.