

An introduction to model stacking

Marios Michailidis

Marios.michailidis@dunnhumby.com

dunhumby

What is kaggle

- World's biggest predictive modelling competition platform
- Half a million members
- Companies host data challenges.
- Usual tasks include:
 - Predict topic or sentiment from text.
 - Predict species/type from image.
 - Predict store/product/area sales
 - Marketing response

dunhumby

Inspired by Horse races...!

 At the University of Southampton, an entrepreneur talked to us about how he was able to predict the horse races with regression!

Was curious, wanted to learn more

- learned statistical tools (Like SAS, SPSS, R)
- I became more passionate!
- Picked up programming skills

Built KazAnova

- Generated a couple of algorithms and data techniques and decided to make them public so that others can gain from it.
- I released it at <u>www.kazanovaforanalytics.com/</u>
- Named it after ANOVA (Statistics) and
- KAZANI, mom's last name.

Joined Kaggle!

- Was curious about Kaggle.
- Joined a few contests and learned lots © .
- The community was very open to sharing and collaboration.

3 Years of modelling competitions

- Over 100 competitions
- Participated with 46 different teams
- 25 top 10 finishes
- 14 times prize winner
- 3 different modelling platforms
- Ranked 1st out of 480k data scientists

So... what wins competitions?

In short:

- Understand the problem (functions, metrics, features)
- Discipline (especially in when testing)
- try problem-specific things or new approaches
- The hours you put in
- the right tools
- Collaboration.
- Ensembling

What's next

- PhD (UCL) about using ensemble methods to improve recommender systems.
- Developed StackNet , a scalable meta-modelling framework

dunnhumby

The StackNet Model

A scalable meta-modelling framework

Supervisors

Professor Philip Treleaven Giles Pavey

dunhumby

What is StackNet?

 StackNet is... □ A meta modelling methodology that □utilizes Wolpert's stacked generalization (1992) of combining multiple models assuming □ a feedforward neural network architecture of multiple levels □ Each node represents a machine learning algorithm ☐ A version of it with several algorithms is available in Java

Inspiration - Stacking

- Wolpert in 1992 introduced stacking a Meta-modelling technique.
- 1. Split the training set into two disjoint sets.
- 2. Train several base learners on the first part.
- 3. Test the base learners on the second part.
- Using the predictions from (3) as the inputs, and the correct responses as the outputs, train a higher level learner.

Inspiration – Neural Networks

- Artificial networks were first created in an attempt to mimic the biological neural networks in the human Brain. [Rosenblatt ,1958] was the first to create – the perceptron.
- The advances in computing power and specifically the usages of GPUs has allowed them to be run at greater speeds in comlex structures taking the form of today's deep learning [Schmidhuber, 2015].
- Their structure is considered state-of-the-art for many tasks

Inspiration – Why Java

- is less verbose than C and very popular
- Can be used in any operational system
- Almost every computer/device has it by default
- Statically typed and better defined
- Java Does not have Scikit-learn!

How it works - General

- In a neural network, every node is a simple linear model (like linear regression) maybe with some non linear transformation.
- Instead of a linear model, StackNet proposes any modelling function.
- In other words:

$$f_1(x_i) = \sum_{h=1}^{H} (g_1(\widehat{x_i})beta_{1h} + bias_{1h})$$

$$f_1(x_i, s) = \sum_{h=1}^{H} (g_1s_h(\widehat{x_i}))$$

How it works - General

First batch of models includes

- Linear Regression
- Logistic regression
- Kernel models
- K nearest neighbours
- GBMs

- Naïve Bayes
- LibFm
- Multilayer Perceptron
- Decision trees
- Random Forests

Training – Reusable Holdout

- Limited data based on which multiple models must be built on, enhances the notion of a re-usable holdout
- It uses stratified k-folding which is a hyper parameter.

Training - Modes

 The training process is a straight one-pass. There is no notion of re-optimizing in multiple epochs. Convergence needs to reached within that 1 epoch.

Command Line parameters

Command	Explanation
sparse	True if the data to be imported are in sparse format (libsvm)
has_head	True if train_file and test_file have headers else false
model	Name of the output model file.
pred_file	Name of the output prediction file.
train_file	Name of the training file.
test_file	Name of the test file.
test_target	True if the test file has a target variable in the beginning
params	Parameter file where each line is a model.
verbose	True if we need StackNet to output its progress else false
threads	Number of models to run in parallel.
metric	Logloss, Rmse, accuracy or auc (for binary only)
stackdata	True for restacking else false
seed	Integer for randomised procedures
folds	Number of folds for re-usable kfold

Sample Parameter's File

LogisticRegression Type:Liblinear C:2.0 threads:1 usescale:True GradientBoostingForestClassifier estimators:300 shrinkage:0.10 max_depth:6 max_features:0.5 RandomForestClassifier estimators:300 threads:5 max_depth:16 max_features:0.25

RandomForestClassifier estimators:1500 max_depth:7 max_features:0.2 min_leaf:1.0

Example Amazon – get top 10 with StackNet

How the experiment was run

- Amazon.com Employee Access Challenge was a popular Kaggle competition (around 1700 teams) and they first one I entered! I finished 100ish after spending 3 weeks.
- This experiment will get you to top10 within a few hours (including data preparation and modelling.
- The interesting about this competition is it has <u>only 8 Variables</u> (and 1 duplicate)!
- All categorical with high cardinality
- The purpose is to build a model, learned using historical data, that will determine an employee's access needs
- The metric to optimize is Area Under The Roc Curve or simply AUC
- Data is downloaded from : https://www.kaggle.com/c/amazon-employee-access-challenge
- To get all the code , visit : https://github.com/kaz-anova/StackNet/tree/master/example/example_amazon
- Run with python the prepare_data.py script to create the modelling data.

Run first StackNet on sparse data

- Compute best 4 way interactions with a linear model (python script)
- Use logistic regression to assess good interractions
- Then run StackNet with the following command:

java -Xmx3048m -jar StackNet.jar train train_file=train.sparse test_file=test.sparse params=param_amazon_linear.txt pred_file=amazon_linear_pred.csv test_target=false verbose=true

_. . .

Threads=1

sparse=true

folds=5

seed=1

metric=auc

Level 1			
MODEL	AUC	GINI	
LogisticRegression L2	0.893	78.70%	
LogisticRegression SGD	0.885	76.95%	
LSVC L2	0.891	78.18%	
LinearRegression	0.879	75.80%	
LibFmClassifier	0.891	78.28%	
softmaxnnclassifier	0.882	76.38%	
GradientBoostingForestClassifier	0.851	70.14%	
LogisticRegression L1	0.88	75.97%	
LSVC L1	0.873	74.52%	
Level 2			
RandomForestClassifier - 0.901			

Run first StackNet on dense data...per fold

- Compute all 3 way interactions
- Compute counts and likelihood (woe features) per fold
- Create five pairs of train/cv files and a train and a test file too.
- Run the command:

java -Xmx3048m -jar StackNet.jar train
data_prefix=amazon_counts
test_file=amazon_counts_test.txt
params=param_amazon_count.txt
pred_file=amazon_count_pred.csv
test_target=false
verbose=true

Threads=1

folds=5

seed=1

metric=auc

Level 1			
MODEL	AUC	GINI	
LogisticRegression	0.889	77.86%	
GradientBoostingForestClassifier	0.9	80.19%	
RandomForestClassifier	0.899	79.78%	
softmaxnnclassifier	0.866	73.14%	
LSVC	0.888	77.59%	
LibFmClassifier	0.89	77.93%	
GradientBoostingForestRegressor	0.858	71.61%	
LinearRegression	0.901	80.19%	
Level 2			
RandomForestClassifier - 0.904			

Blend the 2 predictions to get the top10 score

- Use the blend_script.py to rank average the two prediction files produced with the previous 2 models to achieve the top score
- Submit it to Kaggle.

Things to be mindful when using StackNet

- StackNet cannot do wonders! But it can give you better results than your single models involved or simple ensemble methods (like averaging).
 So...StackNet will be a bit stronger than your best models.
- StackNet may underperform when there are Strong temporal elements in the data and it is better to supply your own train/cv datasets.
- When supplying own files, you are responsible for controlling overfitting. Never have overlapping samples across folds or within folds.

StackNet was used in other challenges...

- It was used to win Dato's Truly native classification challenge (Kaggle): http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
- It was also used to win the Homesite Quote Conversion challenge on Kaggle: http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-clobber/
- There is a big discussion and how it has helped different people in the ongoing Kaggle competition hosted by Twosigma: https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/30012

Next Steps

- Include other prominent machine learning tools such as Xgboost, Lightgbm, H2O, Weka.
- Make it available to more programming languages
- Include feature engineering steps
- Include hyper parameter optimization
- Implement feature selection
- Implement model selection and dropouts

Tools to include vol1

- Liblinear : for linear models
 http://www.csie.ntu.edu.tw/~cjlin/liblinear/
- LibSvm for Support Vector machines www.csie.ntu.edu.tw/~cjlin/libsvm/
- Scikit package in python for text classification, random forests and gradient boosting machines scikit-learn.org/stable/
- Xgboost for fast scalable gradient boosting https://github.com/tqchen/xgboost
- LightGBM https://github.com/Microsoft/LightGBM
- Vowpal Wabbit hunch.net/~vw/ for fast memory efficient linear models
- http://www.heatonresearch.com/encog encog for neural nets
- **H2O** for many models

Tools to include vol 2

- LibFm www.libfm.org
- LibFFM: https://www.csie.ntu.edu.tw/~cjlin/libffm/
- Weka in Java (has everything) http://www.cs.waikato.ac.nz/ml/weka/
- Graphchi for factorizations : https://github.com/GraphChi
- GraphLab for lots of stuff. https://dato.com/products/create/open_source.html
- Cxxnet: One of the best implementation of convolutional neural nets out there. Difficult to install and requires GPU with NVDIA Graphics card. https://github.com/antinucleon/cxxnet
- RankLib: The best library out there made in java suited for ranking algorithms (e.g. rank products for customers) that supports optimization fucntions like NDCG. people.cs.umass.edu/~vdang/ranklib.html
- Keras (http://keras.io/) and Lasagne(https://keras.io/) and Lasagne(<a href="https://github.com/Lasagne/