MENTOR: Multilingual tExt detection Toward learning by analogy

Hsin-Ju Lin, Tsu-Chun Chung, Ching-Chun Hsiao, Pin-Yu Chen*, Wei-Chen Chiu, and Ching-Chun Huang

Outline

Introduction

Challenges

Problem Setting

Proposed Method

Experimental Result

Conclusion

Introduction

3 Challenges

A universal text dataset containing all languages for supervised learning is not available.

Text training datasets that are imbalanced between languages.

The detection model must be retrained or fine-tune to detect new languages.

Problem Setting

A generalizable multilingual text detector

detect both seen and unseen SHOULD language regions

need to collect supervised NO training data for unseen language

model re-training required for NO unseen language

Detector

Proposed Method

printed text images generation

character set

곜곝곞곟고곡곢곣곤곥곦곧골곩곪곫곬곭곮곯......

synthetic text generation

BBC news

Proposed Method

Quantitative evaluation (F1-score) on MLT17 dataset and Malayalam in IIIT-ILST dataset

Method	English	Arabic	Bangla	Chinese	Japanese	Korean	Malayalam
E2E-MLT [1]	55.43	55.431	3.027	50.594	12.9	32.715	X
MultiplexedOCR [2]	83.284	80.074	78.104	56.251	70.986	67.862	11.932
(a) Ours	84.031	80.952	81.76	83.585	76.896	<u>72.479</u>	65.837
(b) Ours	82.527	82.092	80.909	<u>69.046</u>	83.51	84.013	55.895
(c) Ours	81.778	54.646	82.134	82.554	80.737	83.143	43.992

^[1] M.Bušta, Y.Patel, and J.Matas, "E2e-mlt-anunconstrained end-to-end method formulti-language scene text," ArXiv:1801.09919, 2018.

Quantitative evaluation (F1-score) on **synthetic** MLT17 dataset and **synthetic** Malayalam in IIIT-ILST dataset

Method	English	Arabic	Bangla	Chinese	Japanese	Korean	Malayalam
E2E-MLT [1]	50.19	54.67	4.027	55.138	22.346	34.317	X
MultiplexedOCR [2]	67.392	75.511	78.874	54.914	62.024	71.21	11.159
(a) Ours	71.76	74.949	79.044	74.351	71.556	50.534	55.607
(b) Ours	63.119	71.811	80.393	48.905	63.472	75.385	42.497
(c) Ours	63.424	46.061	80.328	80.328	59.254	75.385	36.586

^[1] M.Bušta, Y.Patel, and J.Matas, "E2e-mlt-anunconstrained end-to-end method formulti-language scene text," ArXiv:1801.09919, 2018.

The visualization results of detecting language-agnostic text regions

yellow bounding box means the text region belongs to unseen languages.

masking result

The detection results of synthetic MLT17 from different target languages

(a) Japanese

(d) Korean

(b) Arabic

(e) English

(c) Bangla

(f) Chinese (unseen)

Conclusion

- 1) We introduced a **new problem setting** for multilingual scene text detection and proposed a novel method "MENTOR" to **deal with text detection for both seen and unseen languages**.
- Our "Dynamic Guide", a dynamic and learnable module, and "Text Finder" module can extract language specific features for seen and unseen languages from printed text image and scene image, respectively.
- 3) We can identify the text regions of unseen languages via our "LM" module, by comparing pixel-wise scene text features with language-specific printed text feature, that is, its mentor.
- 4) Experiments show that our "MENTOR" can achieve comparable results with supervised methods for seen languages and outperforms other methods in detecting unseen languages.

Thank you for listening

Refer to the github for more detail

