TEST REPORT

for

FCC Part 22 Subpart H / Part 24 Subpart E

of

E.U.T. : Rugged Tablet PC

Model : ALGIZ 7X, CS25 plus, CS25 LRBT

plus, CS25 GNSS plus, CC61 plus,

CC60 plus

FCC ID: YY3-0112070926724

for

APPLICANT: Handheld Group AB

ADDRESS : Kinnegatan 17, 53133, Lidköping, Sweden

Test Performed by

ELECTRONICS TESTING CENTER, TAIWAN

NO. 34. LIN 5. DINGFU, LINKOU DIST., NEW TAIPEI CITY, TAIWAN, 24442, R.O.C.

Tel:(02)26023052 Fax:(02)2

Fax:(02)26010910

http://www.etc.org.tw; e-mail: emc@etc.org.tw

Report Number: 13-06-RBF-026-01

TEST REPORT CERTIFICATION

Applicant : Handheld Group AB

Kinnegatan 17, 53133, Lidköping, Sweden

Manufacture : WINMATE Communication INC.

9F, No.111-6, Shing-De Rd., San-Chung District, New Taipei City

241 Taiwan

Description of Device

a) Type of EUT : Rugged Tablet PC

b) Trade Name : Handheld

c) Model No. : ALGIZ 7X, CS25 plus, CS25 LRBT plus, CS25 GNSS plus, CC61

plus, CC60 plus

d) Power Supply : Switching Adapter

I/P: 100-240VAC, 50-60Hz, 2.5A

O/P: 12VDC, 6.6A

Regulation Applied : FCC 47 CFR, Part 22 Subpart H and Part 24 Subpart E

I HEREBY CERTIFY THAT:

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

The compliance test is only certified for the test equipment and the results of the testing report relate only to the item tested. The compliance test of this report was conducted in accordance with the appropriate standards. It's not intention to assure the quality and performance of the product. This report shall not be reproduced except in full, without the approval of ETC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Date Test Item Received : Oct. 09, 2012

Date Test Campaign Completed : Jul. 05, 2013

Date of Issue : Dec. 03, 2013

Test Engineer :

(Vincent Chang, Engineer)

Approve & Authorized

S. S. Liou, Section Manager

SS Lion

EMC Dept. II of ELECTRONICS
TESTING CENTER, TAIWAN

Table of Contents	Page
1 GENERAL INFORMATION	1
1.1 Product Description	1
1.2 Characteristics of Device	1
1.3 Test Methodology	1
1.4 Test Facility	1
1.5 Test Summary	2
2 SYSTEM TEST CONFIGURATION	3
2.1 Justification	3
2.2 Devices for Tested System	3
3 PEAK POWER MEASUREMENT	4
3.1 Applied Standard	4
3.2 Measurement Procedure	4
3.3 Measurement Equipment	4
3.4 Test Result	5
4. ERP & EIRP MEASUREMENT	6
43.1 Standard Applicable	6
4.2 Measurement Procedure	6
4.3 Test Result	8
3.4 Result Calculation	10
4.5 Test Equipment	10
5 OCCUPIED BANDWIDTH MEASUREMENT	11
5.1 Standard Applicable	11
5.2 Measurement Procedure	11
5.3 Measurement Equipment	11
5.4 Test Result	12
6 OUT OF BAND EMISSION AT ANTENNA TERMINALS	40
6.1 Standard Applicable	40
6.2 Measurement Procedure	40
6.3 Measurement Equipment	40
6.4 Measurement Data	41
7 SPURIOUS RADIATION MEASUREMENT	65
7.1 Applicable Standard	65
7.2 Measurement Procedure	65
7.3 Measuring Instrument	65
7.4 Test Result	66

7.5	Photos of Test Setup	70
8. I	FREQUENCY STABILITY MEASUREMENT	71
8.1	Provisions Applicable	71
8.2	Measurement Procedure	71
8.3	Measurement Instrument	72
8.4	Measurement Data	73
9 C	CONDUCTED EMISSION MEASUREMENT	. 77
9.1	Standard Applicable	77
9.2	Measurement Procedure	77
9.3	Conducted Emission Data	79
9.4	Result Data Calculation.	81
9.5	Conducted Measurement Equipment	81
9.6	Photos of Conduction Measuring Setup	82

ETC Report No.: 13-06-RBF-026-01 Sheet 1 of 82 Sheets

FCC ID: YY3-0112070926724

1 GENERAL INFORMATION

1.1 Product Description

a) Type of EUT : Rugged Tablet PC

b) Trade Name : Handheld

c) Model No. : ALGIZ 7X, CS25 plus, CS25 LRBT plus, CS25 GNSS

plus, CC61 plus, CC60 plus

d) Power Supply : Switching Adapter

I/P: 100-240VAC, 50-60Hz, 2.5A

O/P: 12VDC, 6.6A

e) Model Difference : There is no difference between serial models except the

model name designation.

f) Note : N/A

1.2 Characteristics of Device

The EUT is a rugged Tablet PC.

This device includes 2G/3G, Bluetooth and 2.4GHz WiFi function.

1.3 Test Methodology

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the roof top of Building at NO. 34. LIN 5. DINGFU, LINKOU DIST., NEW TAIPEI CITY, TAIWAN, 24442, R.O.C.

This site has been fully described in a report submitted to your office, and accepted in a letter dated Jan. 11, 2011.

Open Area Test Site Industry Canada Number: 2949A-1.

1.5 Test Summary

FCC Part Section (s)	RSS Section (s)	Test Description	Test Limit	Test Condition	Test Result	Note
TRANSMITTER MOI	DE (TX)	1				
2.1049, 22.917(a), 24.238 (a)	RSS-Gen (4.6.1) RSS-133 (2.3)	Occupied Bandwidth	N/A		PASS	
2.1051, 22.917(a) 24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Band Edge/Conducted Spurious Emissions	<43+ log10 (P[Watts]) at Band Edge and for all outband emissions	CONDUCTED	PASS	
24.232(d)	RSS-133	(6.4) Peak- Average Ratio	<13 dB		PASS	
2.1046	RSS-132 (4.4) RSS-133 (4.1)	Transmitter Conducted Output Power	N/A		PASS	
22.913(a)(2)	RSS-132 (4.4) [SRSP- 503(5.1.3)]	Effective Radiated Power	<7 Watts max. ERP		PASS	
24.232(c)	RSS-133 (6.4) [SRSP- 510(5.1.2)]	Equivalent Isotropic Radiated Power	<2 Watts max. EIRP		PASS	
2.1053, 22.917(a), 24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Undesirable Emissions	<43+log10 (P[Watts]) for all outband emissions	RADIATED	PASS	
2.1055,22.355,24.235	RSS-132 (4.3) RSS-133 (6.3)	Frequency Stability	<2.5 ppm		PASS	
RECEIVER MODE (F	X) / DIGITAL EMI	SSIONS				
N/A	RSS-132 (4.6) RSS-133 (6.6)	Receiver Spurious Emissions Limits	<rss-gen Limits [Section 6; Table 1]</rss-gen 	RADIATED	PASS	

2 SYSTEM TEST CONFIGURATION

2.1 Justification

For the purposes of this test report ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT during the test. The simulate equipment was used to control the RF channel under the hightest, middle and lowest frequency and transmit the maximum RF power.

2.2 Devices for Tested System

Device	Device Manufacture Model		Cable Description
Rugged Tablet PC * HANDHELD		ALGIZ 7X/ YY3-ALGIZ7X	1.8m Unshielded AC Adapter
	GROUP AB.		-
Earphone	KINYO EM3000 0.8m Unshielded E		0.8m Unshielded Earhpone Cable
Monitor	BenQ	FP547	1.8m Unshielded AC Power Cord
			0.8m Shielded D-SUB data line
2.5"USB Disk	PHILIPS	100GB	0.3m Unshielded USB Line
2.5"USB Disk	Ministation 3.0	HD-PCTU3	0.3m Unshielded USB Line

Remark "*" means equipment under test.

2.2.1 Test Channel – Frequency comparison table for test:

GSM 850		PCS 1900		
Channel	Channel Frequency (MHz)		Frequency (MHz)	
128	824.2	512	1850.2	
190	836.6	661	1880.0	
251	848.8	810	1909.8	

2.2.2 Power Control Level (CMU200)

GSM 850	5 (33 dBm)
PCS 1900	0 (30 dBm)

3 PEAK POWER MEASUREMENT

3.1 Applied Standard

According to FCC §2.1046.

3.2 Measurement Procedure

The setup of the EUT as shown in figure 1. The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a Spectrum Analyzer. Transmitter output was read off the Spectrum Analyzer in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the Spectrum Analyzer reading.

Figure 1: Peak power measurement configuration.

3.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due		
Spectrum Analyzer	Rohde & Schwarz	FSP40	2013/09/20		
Power Divider	SUHNER	4901.19.A	2013/08/12		
Universal Digital	R&S	CMU200	2013/04/22		
Radiocommunication					
Tester					

3.4 Test Result

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

(A) 850 band Limits:

Power Control Level	Normal Peak Output Power	Tolerance (dB)
5	33dBm (2W)*	<u>+2</u>

Power measurements:

Test Mode	st Mode Channel		Peak Power (dBm)		
CCN 4070	128	824.2	31.59		
GSM850	190	836.6	31.21		
GPRS	251	848.8	31.32		
CCM 4050	128	824.2	31.61		
GSM850	190	836.6	31.28		
EDGE	251	848.8	31.35		

(B) 1900 band

Limits:

Power Control Level	Normal Peak Output Power	Tolerance (dB)
0	30dBm (1W)*	±2

Power measurements:

Test Mode	Channel	Frequency (MHz)	Peak Power (dBm)
DCC1000	512	1850.2	28.15
PCS1900	661	1880.0	28.41
GPRS	810	1909.8	28.82
DCC1000	512	1850.2	28.18
PCS1900	661	1880.0	28.47
EDGE	810	1909.8	28.89

4. ERP & EIRP MEASUREMENT

43.1 Standard Applicable

According to FCC § 2.1046 and FCC § 22.913(b): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts. FCC §24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

4.2 Measurement Procedure

- 1. Setup the configuration per figure 2 and 3 for frequencies measured below and above 1 GHz respectively, adjusting the input voltage to produce the maximum power.
- 2. Adjust the analyzer for each frequency measured in chapter 6 on a 1 MHz frequency span and 1MHz resolution bandwidth.
- 3. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 ° to 360 °, and record the highest value indicated on spectrum analyzer as reference value.
- 4. Repeat step 3 until all frequencies need to be measured were complete.
- 5. Repeat step 4 with search antenna in vertical polarized orientations.
- 6. Replace the EUT with a tuned dipole antenna (horn antenna for above 1 GHz) relative to each frequency in horizontally polarized orientation and as the same polarized orientation with search antenna. Connect the tuned dipole antenna to a standard signal generator (SG) via a low loss cable. Power on the SG and tune the right frequency in measuring as well as set SG at a appreciated output level. Rise and lower the search antenna to get the highest value on spectrum analyzer, and then hold this position. Adjust the SG output to get a identical value derived from step 3 on spectrum analyzer. Record this value for result calculated.
- 7. Repeat step 6 until all frequencies need to be measured was complete.
- 8. Repeat step 7 with both dipole antenna (horn antenna for above 1 GHz) and search antenna in vertical polarized orientations.

Figure 2: Frequencies measured below 1 GHz configuration

Figure 3: Frequencies measured above 1 GHz configuration

4.3 Test Result

Test Date: Jul. 07, 2013 Temperature: 25 °C Humidity: 60 %

GSM 850 Band (ERP)/(GPRS)

Test	Channel	Frequency	Polarity	Meter	SG	Cable	Antenna	Result	Limit	Margin
Mode		(MHz)	(H/V)	Reading	Reading	Loss	Gain	ERP	(dBm)	(dBm)
				(dB μ V/m)	(dBm)	(dB)		(dBm)		
	128	824.200	Н	91.6	20.8	2.7		18.1	33	-14.9
	128	824.200	V	101.1	33.1	2.7		30.4	33	-2.6
GSM850	190	836.600	Н	90.9	20.9	2.7		18.2	33	-14.8
GPRS	190	836.600	٧	99.9	32.7	2.7		30.0	33	-3.0
	251	848.800	Н	91.2	22.0	2.7		19.3	33	-13.7
	251	848.800	٧	99.3	32.9	2.7		30.2	33	-2.8

Note: For measured frequency below 1GHz, a tuned dipole antenna is used.

GSM 850 Band (EDGE)/(GPRS)

Test	Channel	Frequency	Polarity	Meter	SG	Cable	Antenna	Result	Limit	Margin
Mode		(MHz)	(H/V)	Reading	Reading	Loss	Gain	ERP	(dBm)	(dBm)
				(dB μ V/m)	(dBm)	(dB)		(dBm)		
	128	824.200	Н	92.1	21.4	2.7		18.7	33	-14.3
	128	824.200	V	101.1	33.2	2.7		30.5	33	-2.5
GSM850	190	836.600	Н	91.3	21.3	2.7		18.6	33	-14.4
EDGE	190	836.600	V	100.3	33.1	2.7		30.4	33	-2.6
	251	848.800	Н	91.3	22.1	2.7		19.4	33	-13.6
	251	848.800	V	99.5	33.1	2.7		30.4	33	-2.6

Note: For measured frequency below 1GHz, a tuned dipole antenna is used.

Test Date : Jul. 07, 2013 Temperature : 25 °C Humidity : 60 %

PCS 1900 Band (EIRP)/ GPRS

Test	Channel	Frequency	Polarity	Meter	SG	Cable	Antenna	Result	Limit	Margin
Mode		(MHz)	(H/V)	Reading	Reading	Loss	Gain	EIRP	(dBm)	(dBm)
				(dB μ V/m)	(dBm)	(dB)		(dBm)		
	512	1850.200	Н	118.2	9.4	1.6	7.7	15.5	30	-14.5
	512	1850.200	V	128.3	19.6	1.6	7.7	25.7	30	-4.3
PCS1900	661	1880.000	Н	118.4	9.7	1.7	7.7	15.7	30	-14.3
GPRS	661	1880.000	V	128.6	20.0	1.7	7.7	26.0	30	-4.0
	810	1909.800	Н	119.0	10.4	1.7	7.7	16.4	30	-13.6
	810	1909.800	V	129.4	20.8	1.7	7.7	26.9	30	-3.1

PCS 1900 Band (EIRP)/ EDGE

Test	Channel	Frequency	Polarity	Meter	SG	Cable	Antenna	Result	Limit	Margin
Mode		(MHz)	(H/V)	Reading	Reading	Loss	Gain	EIRP	(dBm)	(dBm)
				(dB μ V/m)	(dBm)	(dB)		(dBm)		
	512	1850.200	Н	117.8	9.0	1.6	7.7	15.1	30	-14.9
	512	1850.200	٧	127.8	19.1	1.6	7.7	25.2	30	-4.8
PCS1900	661	1880.000	Н	118.3	9.6	1.7	7.7	15.6	30	-14.4
EDGE	661	1880.000	٧	128.7	20.1	1.7	7.7	26.1	30	-3.9
	810	1909.800	Н	119.3	10.7	1.7	7.7	16.7	30	-13.3
	810	1909.800	V	130.0	21.5	1.7	7.7	27.5	30	-2.5

3.4 Result Calculation

Result calculation is as following:

ERP calculation:

Result = SG Reading - Cable Loss + Antenna Gain Corrected (if applicable)

Antenna Gain Corrected is used for antenna other than dipole to convert radiated power to ERP.

EIRP calculation:

Result = SG Reading - Cable Loss + Antenna Gain Corrected

Antenna Gain Corrected is the antenna gain (dBi) of the horn antenna for transmitting.

$$mW = \log^{-1}[\frac{Result(dBm)}{10}]$$

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
EMI Test Receiver	Rohde & Schwarz	ESCI	2013/07/15
Spectrum Analyzer	Rohde & Schwarz	FSP40	2013/09/20
Dipole Antenna	Schwarzbeck	1166;1167	2014/09/07
Dipole Antenna	Schwarzbeck	897;898	2014/09/07
Log-periodic Antenna	EMCO	3146	2013/10/17
Amplifier	НР	8447D	2014/05/02
Horn Antenna	EMCO	3116	2013/11/23
Horn Antenna	EMCO	3115	2014/04/08
Signal generator	НР	83732B	2013/09/06

5 OCCUPIED BANDWIDTH MEASUREMENT

5.1 Standard Applicable

According to §FCC 2.1049.

5.2 Measurement Procedure

The setup of the EUT as shown in figure 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about but not less than 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

5.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Rohde & Schwarz	FSP40	2013/09/20
Power Divider	SUHNER	4901.19.A	2013/08/12
Universal Digital	R&S	CMU200	2013/04/22
Radiocommunication			
Tester			

5.4 Test Result

Test Date : $\underline{Oct. 23, 2012}$ Temperature : $\underline{25}$ °C Humidity : $\underline{65}$ %

5.4.1 GSM 850 Band (GPRS)

Test Mode	Channel	Frequency (MHz)	Bandwidth (kHz)	Occupied Bandwidth (kHz)
CCN 4070	128	824.2	314.00	240.00
GSM850	190	836.6	314.00	242.00
GPRS	251	848.8	312.00	244.00

Note: Please refer to the following pages for chart

(A) Bandwidth (-26dB)

Channel Low

Channel Middle

Channel High

(B) Occupied bandwidth (99% bandwidth)

Channel Low

Channel Middle

Channel High

FCC ID: YY3-0112070926724

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

5.4.2 GSM 850 Band (EDGE)

Test Mode	Channel	Frequency (MHz)	Bandwidth (kHz)	Occupied Bandwidth (kHz)
CCN 4050	128	824.2	314.00	242.00
GSM850	190	836.6	318.00	242.00
EDGE	251	848.8	314.00	248.00

Note: Please refer to the following pages for chart

(A) Bandwidth (-26dB)

Channel Low

Channel Middle

Channel High

(B) Occupied bandwidth (99% bandwidth)

Channel Middle

Channel High

FCC ID: YY3-0112070926724

Test Date : Oct. 23, 2012 Temperature : 20 °C Humidity : 65 %

5.4.3 PCS1900 Band (GPRS)

Test Mode	Channel	Frequency (MHz)	Bandwidth (kHz)	Occupied Bandwidth (kHz)
DCC1000	512	1850.2	306.00	240.00
PCS1900	661	1880.0	310.00	240.00
GPRS	810	1909.8	310.00	240.00

Note: Please refer to the following pages for chart

(A) Bandwidth (-26dB)

Channel Low

Channel Middle

Channel High

(B) Occupied bandwidth (99% bandwidth)

Channel Middle

Channel High

FCC ID: YY3-0112070926724

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

5.4.4 PCS1900 Band (EDGE)

Test Mode	Channel	Frequency (MHz)	Bandwidth (kHz)	Occupied Bandwidth (kHz)
DCC1000	512	1850.2	308.00	240.00
PCS1900	661	1880.0	306.00	238.00
EDGE	810	1909.8	314.00	240.00

Note: Please refer to the following pages for chart

(A) Bandwidth (-26dB)

Channel Low

Channel Middle

Channel High

(B) Occupied bandwidth (99% bandwidth)

Channel Low

Channel Middle

Channel High

6 OUT OF BAND EMISSION AT ANTENNA TERMINALS

6.1 Standard Applicable

According to FCC §2.1051, FCC §22.917(f), FCC §24.238(a).

<u>Out of Band Emissions:</u> The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease $43 + 10 \log P \, dB$.

Mobile Emissions in Base Frequency Range: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission.

6.2 Measurement Procedure

The setup of the EUT as shown in figure 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW=1MHz, Start=30MHz, Stop= 10th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz / 1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band emissions. Limit = -13dBm.

6.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Rohde & Schwarz	FSP40	2013/09/20
Power Divider	SUHNER	4901.19.A	2013/08/12
Universal Digital	R&S	CMU200	2013/04/22
Radiocommunication			
Tester			

6.4 Measurement Data

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

6.4.1 GSM850 Band (GPRS)

Test Mode	Channel	Frequency Range	Note	Chart
	128	823MHz-825MHz	Lower Band Edge	Page 44
CC3 10 50	251	848MHz-850MHz	Upper Band Edge	Page 45
GSM850	128	30MHz-10GHz	All Band Edge	Page 46
GPRS	190	30MHz-10GHz	All Band Edge	Page 47
	251	30MHz-10GHz	All Band Edge	Page 48

Note: Please refer to the following pages for chart

(A) Lower Band Edge

(B) Upper Band Edge

High Channel

(C) All Band Edge

(D) All Band Edge

Middle Channel

* RBW 1 MHz

(E) All Band Edge

High Channel

* RBW 1 MHz

FCC ID: YY3-0112070926724

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

6.4.2 GSM850 Band (EDGE)

Test Mode	Channel	Frequency Range	Note	Chart
	128	823MHz-825MHz	Lower Band Edge	Page 50
000 40 50	251	848MHz-850MHz	Upper Band Edge	Page 51
GSM850	128	30MHz-10GHz	All Band Edge	Page 52
EDGE	190	30MHz-10GHz	All Band Edge	Page 53
	251	30MHz-10GHz	All Band Edge	Page 54

Note: Please refer to the following pages for chart

(A) Lower Band Edge

(B) Upper Band Edge

High Channel

(C) All Band Edge

(D) All Band Edge

Middle Channel

(E) All Band Edge

High Channel

* RBW 1 MHz

FCC ID: YY3-0112070926724

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

6.4.3 PCS1900 Band (GPRS)

Test Mode	Channel	hannel Frequency Range Note		Chart
	512	1849MHz-1851MHz	Lower Band Edge	Page 56
DCC1000	810	1909MHz-1911MHz	Upper Band Edge	Page 57
PCS1900	512	30MHz-20GHz	All Band Edge	Page 58
GPRS	661	30MHz-20GHz	All Band Edge	Page 59
	810	30MHz-20GHz	All Band Edge	Page 60

Note: Please refer to the following pages for chart

(A) Lower Band Edge

(B) Upper Band Edge

High Channel

(C) All Band Edge

(D) All Band Edge

Middle Channel

* RBW 1 MHz

(E) All Band Edge

High Channel

* RBW 1 MHz

FCC ID: YY3-0112070926724

Test Date : Oct. 23, 2012 Temperature : 25 °C Humidity : 65 %

6.4.3 PCS1900 Band (EDGE)

Test Mode	Channel	Frequency Range	Note	Chart
	512	1849MHz-1851MHz	Lower Band Edge	Page 62
DCC1000	810	1909MHz-1911MHz	Upper Band Edge	Page 63
PCS1900	512	30MHz-20GHz	All Band Edge	Page 64
EDGE	661	30MHz-20GHz	All Band Edge	Page 65
	810	30MHz-20GHz	All Band Edge	Page 66

Note: Please refer to the following pages for chart

(A) Lower Band Edge

(B) Upper Band Edge

High Channel

(C) All Band Edge

Span 19.97 GHz

ETC Report No. : 13-06-RBF-026-01 FCC ID: YY3-0112070926724

Center 10.015 GHz

(D) All Band Edge

Middle Channel

1 PK VIEW

* RBW 1 MHz

(E) All Band Edge

High Channel

* RBW 1 MHz

7 SPURIOUS RADIATION MEASUREMENT

7.1 Applicable Standard

According to FCC §2.1053

7.2 Measurement Procedure

The setup of the EUT as shown in figure 2 and figure 3. The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamenta frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

7.3 Measuring Instrument

Equipment	Manufacturer	Model No.	Next Cal. Due
EMI Test Receiver	Rohde & Schwarz	ESCI	2013/07/15
Spectrum Analyzer	Rohde & Schwarz	FSP40	2013/09/20
Dipole Antenna	Schwarzbeck	1166;1167	2014/09/07
Dipole Antenna	Schwarzbeck	897;898	2014/09/07
Log-periodic Antenna	EMCO	3146	2013/10/17
Amplifier	HP	8447D	2014/05/02
Horn Antenna	EMCO	3116	2013/11/23
Horn Antenna	EMCO	3115	2014/04/28
Signal generator	НР	83732B	2013/09/06

7.4 Test Result

7.4.1 **GSM850 Band (GPRS)**

Test Date : $\underline{\text{Jul. }07,2013}$ Temperature : $\underline{25}$ °C Humidity : $\underline{60}$ %

(A)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-49.20	-13
			224.000	V	-50.50	-13
	GSM850	400	247.280	Н	-50.80	-13
	GPRS	128	288.020	V	-50.20	-13
			307.420	Н	-50.00	-13
			796 300	V	-50.20	-13

(B)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-49.80	-13
			224.000	V	-50.30	-13
	GSM850	100	247.280	Н	-50.00	-13
	GPRS	190	288.020	V	-51.30	-13
			307.420	Н	-48.90	-13
			796.300	V	-49.40	-13

(C)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-48.50	-13
			224.000	V	-49.80	-13
	GSM850	054	247.280	Н	-50.60	-13
	GPRS	251	288.020	V	-50.50	-13
			307.420	Н	-49.30	-13
			796.300	V	-49.80	-13

7.4.2 **GSM850** Band (EDGE)

Test Date : Jul. 07, 2013 Temperature : 25 °C Humidity : 60 %

(A)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-49.90	-13
	GSM850 EDGE		224.000	V	-48.50	-13
		400	239.520	Н	-50.60	-13
		128	288.020	V	-47.50	-13
			472.320	V	-50.70	-13
				1		

-48.50

-13

796.300

(B)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-50.30	-13
			224.000	V	-48.20	-13
	GSM850	100	239.520	Н	-50.30	-13
	EDGE	190	288.020	V	-48.00	-13
			472.320	V	-50.90	-13
			796.300	V	-49.20	-13

(C)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
		251	47.460	V	-50.50	-13
			224.000	V	-49.20	-13
	GSM850		239.520	Н	-49.90	-13
	EDGE		288.020	V	-47.60	-13
			472.320	V	-50.30	-13
			796.300	V	-48.80	-13

7.4.3 PCS1900 Band (GPRS)

Test Date : Jul. 07, 2013 Temperature : 25 °C Humidity : 60 %

1	٨	1	
		J	
`		-	

A	.)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-43.80	-13
	PCS1900 GPRS		68.800	V	-45.40	-13
		512	218.180	Н	-49.00	-13
		512	255.040	Н	-50.00	-13
			288.020	V	-47.50	-13
			796.300	V	-48.50	-13

(B)

$^{\prime}\mathbf{R}$)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-43.50	-13
	PCS1900 661 GPRS		68.800	V	-45.80	-13
		661	218.180	Н	-49.70	-13
		255.040	Н	-50.20	-13	
			288.020	V	-47.60	-13
			796.300	V	-48.40	-13

(C)

~.	,					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-43.90	-13
	PCS1900 GPRS		68.800	V	-45.30	-13
		040	218.180	Н	-49.50	-13
		810	255.040	Н	-49.70	-13
			288.020	V	-47.90	-13
			796.300	V	-48.80	-13

7.4.4 PCS1900 Band (EDGE)

Test Date : Jul. 07, 2013 Temperature : 25 °C Humidity : 60 %

1	٨	1
	\Box	J
`		_

A	.)					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-42.90	-13
			68.800	V	-44.60	-13
	PCS1900	512	231.760	Н	-50.40	-13
	EDGE	512	383.080	Н	-50.50	-13
			800.180	V	-49.10	-13
			864.200	V	-50.60	-13

(B<u>)</u>

(R	3)						
	Test	Channel	Frequency	Polarity	Result ERP	Limit	
	Mode		(MHz)	(H/V)	(dBm)	(dBm)	
			47.460	V	-43.30	-13	
			68.800	V	-44.70	-13	
	PCS1900	661	231.760	Н	-50.20	-13	
	EDGE	001	383.080	Н	-50.10	-13	
			800.180	V	-49.60	-13	
			864.200	V	-50.50	-13	

(C)

Ч.	,					
	Test	Channel	Frequency	Polarity	Result ERP	Limit
	Mode		(MHz)	(H/V)	(dBm)	(dBm)
			47.460	V	-42.70	-13
			68.800	V	-44.50	-13
	PCS1900	040	231.760	Н	-50.90	-13
	EDGE	810	383.080	Н	-50.80	-13
			800.180	V	-49.30	-13
			864.200	V	-50.20	-13

7.5 Photos of Test Setup

ETC Report No. : 13-06-RBF-026-01 FCC ID: YY3-0112070926724

8. FREQUENCY STABILITY MEASUREMENT

8.1 Provisions Applicable

According to FCC §2.1055, FCC §22.355, .FCC §24.235.

Frequency Tolerance: 2.5 ppm

8.2 Measurement Procedure

A) Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 4 for frequencies measured at ambient temperature if it is within 15°C to 25°C. Otherwise, an environmental chamber set for a temperature of 20°C shall be used.
- 2. Turn on EUT and set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 30 kHz, VBW to 100 kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measurement frequencies.

B) Frequency stability versus input voltage

- 1. Setup the configuration per figure 4 for frequencies measured at ambient temperature if it is within 15°C to 25°C. Otherwise, an environmental chamber set for a temperature of 20°C shall be used. Install new batteries in the EUT.
- Set SA center frequency to the right frequency needs to be measured. Then set SA RBW to 30 kHz, VBW to 100 kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. For non hand carried, battery operated device, supply the EUT primary voltage with 85 and 115 percent of the nominal value and record the frequency.

Spectrum Analyzer

DC
Power Supply

Figure 4: Frequency stability measurement configuration

8.3 Measurement Instrument

Equipment	Manufacturer	Model No.	Next Cal. Due
Spectrum Analyzer	Rohde & Schwarz	FSP40	2013/09/20
Power Divider	SUHNER	4901.19.A	2013/08/12
Universal Digital	R&S	CMU200	2013/04/22
Radiocommunication			
Tester			
Temperature Chamber	MALLIER	MCT-2X-M	2013/05/03

8.4 Measurement Data

A. GSM850 Band (GPRS)

A1. Frequency stability versus environment tempture

Reference Frequency : GSM850 Middle Channel 836.6 MHz			
Enviroment	Power	Limit: 0.00	025% (2.5 ppm)
Tempture	Supplied	Frequency	Delta
(°C)	(Vac)	(MHz)	(%)
50		836.6015	0.00018
40		836.6015	0.00018
30	120	836.6010	0.00013
20		836.6012	0.00014
10		836.6010	0.00012
0		836.6008	0.00010
-10		836.5991	-0.00011
-20		836.5992	-0.00010
-30		836.5989	-0.00013

A2. Frequency stability versus supplied voltage (85% - 115%)

Reference Frequency : GSM850 Middle Channel 836.6 MHz			
Enviroment	Power Limit: 0.00025% (2.5 ppm)		
Tempture	Supplied	Frequency	Delta
(℃)	(Vac)	(MHz)	(%)
25	138	836.6012	0.00014
25	102	836.6013	0.00015

B. GSM850 Band (EDGE)

B1. Frequency stability versus environment tempture

Reference Frequency : GSM850 Middle Channel 836.6 MHz			
Enviroment	Power	Limit: 0.00	025% (2.5 ppm)
Tempture	Supplied	Frequency	Delta
(°C)	(Vac)	(MHz)	(%)
50		836.6016	0.00019
40		836.6013	0.00015
30	120	836.6005	0.00006
20		836.6007	0.00008
10		836.6005	0.00006
0		836.5997	-0.00004
-10		836.5996	-0.00005
-20		836.5996	-0.00005
-30		836.5989	-0.00014

B2. Frequency stability versus supplied voltage (85% - 115%)

Reference Frequency : GSM850 Middle Channel 836.6 MHz			
Enviroment	Power	Limit: 0.00	025% (2.5 ppm)
Tempture	Supplied	Frequency	Delta
(°C)	(Vac)	(MHz)	(%)
25	138	836.6006	0.00007
25	102	836.6006	0.00007

C. PCS1900 Band (GPRS)

C1. Frequency stability versus environment tempture

Reference Fr	Reference Frequency : PCS1900 Middle Channel 1880 MHz			
Enviroment	Power	Limit: 0.00	025% (2.5 ppm)	
Tempture	Supplied	Frequency	Delta	
(℃)	(Vac)	(MHz)	(%)	
50		1880.0029	0.00015	
40		1880.0020	0.00010	
30	120	1880.0005	0.00003	
20		1879.9995	-0.00003	
10		1879.9989	-0.00006	
0		1879.9993	-0.00004	
-10		1879.9980	-0.00011	
-20		1879.9975	-0.00013	
-30		1879.9968	-0.00017	

C2. Frequency stability versus supplied voltage (85% - 115%)

Reference Frequency : PCS1900 Middle Channel 1880 MHz			
Enviroment	Power	Limit: 0.00	025% (2.5 ppm)
Tempture	Supplied	Frequency	Delta
(°C)	(Vac)	(MHz)	(%)
25	138	1880.0007	0.00004
25	102	1880.0002	0.00001

D. PCS1900 Band (EDGE)

D1. Frequency stability versus environment tempture

Reference Fr	Reference Frequency : PCS1900 Middle Channel 1880 MHz			
Enviroment	Power	Limit: 0.00	025% (2.5 ppm)	
Tempture	Supplied	Frequency	Delta	
(℃)	(Vac)	(MHz)	(%)	
50		1880.0034	0.00018	
40		1880.0026	0.00014	
30	120	1880.0009	0.00005	
20		1879.9999	-0.00001	
10		1879.9996	-0.00002	
0		1879.9996	-0.00002	
-10		1879.9990	-0.00005	
-20		1879.9974	-0.00014	
-30		1879.9970	-0.00016	

D2. Frequency stability versus supplied voltage (85% - 115%)

Reference Frequency : PCS1900 Middle Channel 1880 MHz				
Enviroment	Power	Limit: 0.00025% (2.5 ppm)		
Tempture	Supplied	Frequency	Delta	
(°C)	(Vac)	(MHz)	(%)	
25	138	1880.0006	0.00003	
25	102	1880.0004	0.00002	

9 CONDUCTED EMISSION MEASUREMENT

9.1 Standard Applicable

According to §15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency MHz	Quasi Peak dB μ V	Average dB μ V
0.15 - 0.5	66-56*	56-46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

^{*} Decreases with the logarithm of the frequency

9.2 Measurement Procedure

- 1. Setup the configuration per figure 5.
- 2. A preliminary scan with a spectrum monitor is performed to identify the frequency of emission that has the highest amplitude relative to the limit by operating the EUT in selected modes of operation, typical cable positions, and with a typical system configuration.
- 3. Record the 6 or 8 highest emissions relative to the limit.
- 4. Measure each frequency obtained from step 3 by a test receiver set on quasi peak detector function, and then records the accuracy frequency and emission level. If all emissions measured in the specified band are attenuated more than 20 dB from the limit, this step would be ignored, and the peak detector function would be used.
- 5. Confirm the highest three emissions with variation of the EUT cable configuration and record the final data.
- 6. Repeat all above procedures on measuring each operation mode of EUT.

Figure 5: Conducted emissions measurement configuration

9.3 Conducted Emission Data

Site : conducted #1 Date : 07-05-2013 Condition : CLASS-B QP LISN : NEUTRAL

Tem / Hum : 25 °C / 65%

Test Mode : CHARGE & FULL SYSTEM & 2G LINK MODE

10.8

EUT : Rugged Tablet PC
Power Rating : 120V/60Hz (Adapter)

Freq (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Remark
0.1573	34.0	10.3	44.3	65.6	-21.3	QP
0.2061	32.1	10.3	42.4	63.4	-21.0	QP
0.2672	25.2	10.3	35.5	61.2	-25.7	QP
0.4171	23.5	10.3	33.8	57.5	-23.7	QP
0.8992	18.2	10.3	28.5	56.0	-27.5	QP

34.1

Memo

-25.9

60.0

Note:

17.3830

Memo

- 1. Result = Reading + Factor
- 2. Factor = LISN Factor + Cable Loss

23.3

QP

Site : conducted #1 Date : 07-05-2013

Condition : CLASS-B QP LISN : LINE

Tem / Hum $: 25 \degree C / 65\%$

Test Mode : CHARGE & FULL SYSTEM & 2G LINK MODE

EUT : Rugged Tablet PC
Power Rating : 120V/60Hz (Adapter)

Memo : Memo :

	· · · · · · · · · · · · · · · · · · ·					
Freq (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Remark
0.1796	31.9	10.3	42.2	64.5	-22.3	QP
0.2442	25.7	10.3	36.0	62.0	-26.0	QP
0.4062	22.7	10.3	33.0	57.7	-24.7	QP
1.1720	17.9	10.4	28.3	56.0	-27.7	QP
12.5160	19.4	10.7	30.1	60.0	-29.9	QP
17.3830	25.7	11.0	36.7	60.0	-23.3	QP

Note:

- 1. Result = Reading + Factor
- 2. Factor = LISN Factor + Cable Loss

9.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation with a sample calculation is as follows:

$$RESULT = READING + LISN FACTOR$$

Assume a receiver reading of 22.5 dB μ V is obtained, and LISN Factor is 0.1 dB, then the total of disturbance voltage is 22.6 dB μ V.

RESULT = 22.5 + 0.1 = 22.6 dB
$$\mu$$
 V
Level in μ V = Common Antilogarithm[(22.6 dB μ V)/20]
= 13.48 μ V

9.5 Conducted Measurement Equipment

The following test equipments are used during the conducted test.

Equipment	Manufacturer	Model No.	Next Cal. Due	
EMI Test Receiver	Rohde & Schwarz	ESCI	2013/07/15	
LISN	EMCO	3825/2	2013/11/01	
LISN	Rohde & Schwarz	ESH2-Z5	2014/04/11	

9.6 Photos of Conduction Measuring Setup

