

Packet Tracer. Настройка сетей VLAN

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	VLAN
PC1	NIC	172.17.10.21	255.255.255.0	10
PC2	NIC	172.17.20.22	255.255.255.0	20
PC3	NIC	172.17.30.23	255.255.255.0	30
PC4	NIC	172.17.10.24	255.255.255.0	10
PC5	NIC	172.17.20.25	255.255.255.0	20
PC6	NIC	172.17.30.26	255.255.255.0	30

Задачи

- Часть 1. Проверка конфигурации VLAN, установленной по умолчанию
- Часть 2. Настройка сетей VLAN
- Часть 3. Назначение сетей VLAN портам

Общие сведения

Сети VLAN удобны в администрировании логических групп, поскольку позволяют легко перемещать, изменять или добавлять участников группы. Главная цель этого задания — создать сети VLAN, присвоить им имена и назначить порты доступа конкретным сетям VLAN.

Часть 1. Проверка конфигурации VLAN, установленной по умолчанию

Шаг 1. Отобразите текущие сети VLAN.

На коммутаторе S1 выполните команду, с помощью которой отображаются все настроенные сети VLAN. По умолчанию все интерфейсы назначены сети VLAN 1.

Шаг 2. Проверьте подключение между компьютерами в одной и той же сети.

Обратите внимание, что с каждого компьютера можно отправлять эхо-запрос на другой компьютер, подключенный к той же сети.

- Проверка связи с помощью утилиты ping компьютера PC1 с PC4 выполняется успешно.
- Узел РС2 может получить ответ на ping-запрос узлу РС5.
- Узел РС3 может получить ответ на ping-запрос узлу РС6.

Эхо-запросы к узлам из других сетей выполнены неудачно.

Какие преимущества могут предоставить сети VLAN?

Часть 2. Настройка сетей VLAN

Шаг 1. Создайте сети VLAN на коммутаторе S1 и присвойте им имена.

- а. Создайте следующие сети VLAN. Имена чувствительны к регистру и должны точно соответствовать требованию:
 - VLAN 10: Faculty/Staff

```
S1#(config)# vlan 10
S1#(config-vlan)# name Faculty/Staff
```

- b. Create the remaining VLANS.
 - VLAN 20: Students
 - VLAN 30: Guest(Default)
 - VLAN 99: Management&Native
 - VLAN 150: VOICE

Шаг 2. Проверьте конфигурацию сети VLAN.

С помощью какой команды отображается только имя сети VLAN, состояние сети и связанные с ней порты коммутатора?

Шаг 3. Создайте сети VLAN на коммутаторах S2 и S3.

С помощью тех же команд, что и в шаге 1, создайте такие же сети VLAN и присвойте им имена на коммутаторах S2 и S3.

Шаг 4. Проверьте конфигурацию сети VLAN.

Часть 3. Назначение сетей VLAN портам

Шаг 1. Назначьте сети VLAN активным портам на коммутаторе S2.

- а. Настройте интерфейсы в качестве портов доступа и назначьте сети VLAN следующим образом.
 - VLAN 10: FastEthernet 0/11

```
S1(config)# interface f0/11
S2(config-if)# switchport mode access
S2(config-if)# switchport access vlan 10
```

- b. Назначьте оставшиеся порты соответствующей VLAN.
 - VLAN 20: FastEthernet 0/18
 - VLAN 30: FastEthernet 0/6

Шаг 2. Назначьте сети VLAN активным портам на коммутаторе S3.

На коммутаторе S3 используются те же назначения портов доступа к сети VLAN, что и на коммутаторе S2. Настройте интерфейсы в качестве портов доступа и назначьте сети VLAN следующим образом.

- VLAN 10: FastEthernet 0/11
- VLAN 20: FastEthernet 0/18
- VLAN 30: FastEthernet 0/6

Шаг 3. Назначьте сеть VOICE VLAN интерфейсу FastEthernet 0/11 на коммутаторе S3.

Как показано в топологии, интерфейс FastEthernet 0/11 коммутатора S3 подключен к IP-телефону Cisco и компьютеру PC4. IP-телефон содержит встроенный 3-портовый коммутатор 10/100. Один порт на телефоне имеет обозначение Switch (Коммутатор) и подключается к интерфейсу F0/4. Другой порт на телефоне обозначен PC (ПК) и подключается к компьютеру PC4. IP-телефон также имеет внутренний порт, который подключается к функциям IP-телефона.

Интерфейс F0/11 на коммутаторе S3 должен быть настроен для поддержки пользовательского трафика, направленного к компьютеру PC4, с использованием сети VLAN 10 и трафика голосовых данных, направленного на IP-телефон, с использованием сети VLAN 150. На интерфейсе также необходимо включить QoS и поддержку значений класса обслуживания (CoS), назначенных IP-телефоном. Для обеспечения приемлемого качества голосовой связи IP-трафика требуется минимальная пропускная способность. Эта команда помогает коммутатору обеспечить этот минимальный объем пропускной способности.

```
S3(config)# interface f0/11
S3(config-if)# mls qos trust cos
S3(config-if)# switchport voice vlan 150
```

Шаг 4. Проверьте подключение.

Ранее РС, находящиеся в одной общей сети, могли успешно отправлять эхо-запросы друг другу.

Изучите выходные данные следующей команды на **\$2** и ответьте на следующие вопросы, основываясь на ваших знаниях связи между VLANS. Обратите внимание на назначение порта Gig0/1.

```
S2# show vlan brief

VLAN Name Status Ports

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4

Fa0/5, Fa0/7, Fa0/8, Fa0/9

Fa0/10, Fa0/12, Fa0/13, Fa0/14

Fa0/15, Fa0/16, Fa0/17, Fa0/19

Fa0/20, Fa0/21, Fa0/22, Fa0/23

Fa0/24, Gig0/1, Gig0/2

10 Faculty/Staff active Fa0/11

20 Students active Fa0/18

30 Guest(Default) active Fa0/6

99 Management&Native active

150 VOICE active
```

Попытайтесь отправить эхо-запросы между компьютерами РС1 и РС4.

Успешно ли выполняются эхо-запросы при назначении портов доступа в соответствующие сети VLAN? Дайте пояснение.

Что можно сделать для разрешения этой проблемы?