MAE 399 - Análise de dados e Simulação Prof. Fábio Machado Lista 7 - 25/06/2022

1. Vamos pensar no problema conhecido como **Ruina do jogador**, ou seja, um passeio aleatório simples $(p \in [0,1])$ em \mathbb{Z} , partindo de x $(S_0 = x)$, com barreiras absorventes em c e d, com $c \le x \le d$. Inicialmente definimos $T_c = \inf_n \{S_n = c\}$ e $T_d = \inf_n \{S_d = d\}$. Da teoria dos processos estocásticos, sabemos que para $p \ne \frac{1}{2}$, $P(T_d = T_c = \infty) = 0$ e

$$P_x(T_d < T_c) = \frac{1 - (q/p)^{x-c}}{1 - (q/p)^{d-c}}.$$

- a. Considere o um passeio onde p seja igual a probabilidade de vencer uma rodada na roleta americana, ou seja, p=18/38 (portanto q=20/38). Imagine um jogador que começa com com $x=\{10,20,30,40\}$ e decide jogar até chegar em \$50,00 ou até perder tudo. Faça 1.000 simulações para cada uma das fortunas iniciais $x=\{10,20,30,40\}$ de modo a comparar os resultados simulados com os obtidos pelas fórmula acima.
- b. Considere agora o passeio simétrico, ou seja p=1/2. Faça o mesmo que foi pedido no item acima, plotando as probabilidades obtidas pela simulação (também para $x=\{10,20,30,40\}$) e inferindo sobre qual a função que melhor ajusta o conjunto de pontos obtidos. Fato: $P_x(T_d < T_c)$ é linear em x (fortuna inicial).
- 2. Considere uma sequência de v.a.i.i.d. $\{X_i\}_{i\in\mathbb{N}}$, com distribuição exponencial de média $1\ (\lambda=1)$ e suas somas parciais, $S_n=\sum_{i=1}^n X_i$, com $S_0=0$. Considere o processo de contagem $N(t)=\max\{n:S_n\leq t\}$, ou seja, um Processo de Poisson. Em particular, $N(t)\sim \mathcal{P}(\lambda t)$, sendo $\mathbb{E}(N(t))=Var(N(t))=\lambda t$.
 - a. Considere 1.000 simulações para as trajetórias de N(t), definido acima. Para cada $n \in \{10, 20, \dots, 100\}$ encontre os percentis 5 e 95 para os valores observados de S_n e os valores análogos estimados pelo Teorema Central do Limite. Apresente estes valores em uma tabela.
 - b. Apresente em um só gráfico
 - i) a trajetória de 5 simulações para N(t), com $t \in [0, 100]$,
 - ii) a função $\mathbb{E}(N(t)) + \text{ou} 3 * (Var(N(t)))^{1/2}$.