Introduction to Competitive Programming

What is Competitive Programming

- A mind sport
- Solving a set of problems
 - Often related to computation, algorithms and data structures
 - Most of the contestants are EECS students.
 - Some problems are also used for job interview.
 - By using programming languages
 - C++ is the most popular choice.
 - With certain restrictions and limited resources
 - Time
 - Memory
 - Length of code

International Collegiate Programming Contest

- The most important collegiate programming contest.
- Multi-layer
 - World Finals
 - League Championship or Playoff Round (2020/12/21~23 @Hanoi)
 - Regional Contest (2020/10/31-11/2 @NTUB)
 - Preliminary Contest
 - Taiwan Online Programming Contest (expected host: NCTU)
 - National Contest for Private Universities
 - National Contest for Technology Universities

ICPC-Style Contests

- 3 contestants form a team
 - Share one computer
- Typically 5 hours
 - Some preliminary contests only last for 3 or 4 hours
- 8 to 13 problems
 - No partial credit
- Penalty:
 - (minutes passed after begin) + 20*#(unsuccessful submission before accepted)
- Winner solve most problems
 - Tie-breaker: least total penalty, then earliest last solution.

National Collegiate Programming Contest

- The most important domestic ICPC-style contest in Taiwan.
- At most 6 teams per university in the final.
- The NCTU representatives are selected by NCTU annual programming contest.
 - Expected time: 1 week before 2020 fall semester
 - Must commit at least 5 hour for team practice per week in the contest season
 - Being the top 2 universities in Taiwan in recent 5 years.

Open Contests

- Google Code Jam
 - Kickstart
 - Google Code Jam to I/O for women
- Facebook Hacker Cup
- TopCoder
- CodeForces
- AtCoder

Online Judges

- UVa
- Kattis
- CodeForces
- AtCoder
- vjudge
- NCTU OJ

Contest Problem

- Description
- Input Format
- Output Format
- Specification
 - Input size
 - Time limit
 - Memory limit
 - Output limit
 - Compilation limit

Judge Responses

- Yes / Correct / Accepted
- CE: Compilation Error
- WA: Wrong Answer
- TLE: Time Limit Exceeded
- RE: Run Time Error
- MLE: Memory Limit Exceeded
- OLE: Output Limit Exceeded

Sample Problem: 3n+1 (UVa 100)

https://onlinejudge.org/index.php?option=onlinejudge&Itemid=8&page=show_problem&problem=36

Sample Problem: n-Queens

https://onlinejudge.org/index.php?option=onlinejudge&Itemid=8&page=show_problem&problem=691

Computational Complexity

- Time complexity
 - TLE
- Space complexity
 - RE or MLE
- Descriptive complexity (Kolmogorov complexity)
 - Too late
- Communication complexity
- Circuit complexity

Word RAM Model

- RAM = Random Access Machine
 - Turing machine is not a RAM.
- Word RAM
 - Access a w-bit word with a single operation
 - Perform bitwise operations, including addition and shift, in constant time
 - U, the number of possible values, is bounded by 2^w.
- We assume word RAM model in this class.
 - Sometimes, we also assume multiplication and division can be done in constant time.

Asymptotic Notations

- Big-Oh: f(n)=O(g(n))
- Little-Oh: f(n)=o(g(n))
- Theta: $f(n) = \Theta(g(n))$
- Big-Omega: $f(n)=\Omega(g(n))$
- Little-Omega: $f(n)=\omega(g(n))$

Sample Problem: Josephus Problem

https://en.wikipedia.org/wiki/Josephus_problem

Sample Problem: Majority Vote

Description

Suppose you are given n numbers $a_1, ..., a_n$. More than half of them equal x. Please write a program to find out the value x.

Input format

The first line of the input contains an integer n, and the second line contains n numbers $a_1, ..., a_n$ separated by blanks.

Output format

Output x on a line.

Specification

 a_1 , ..., a_n are 32-bit integers, and $n < 10^7$. Time limit is 1 second, and memory limit is 50 megabytes.