Оптимизация Многомерный случай

Храмов Д. А.

21.01.2019

1. Многомерный поиск: цель прежняя, проблемы новые

Минимум функции многих переменных

$$\mathbf{x} = [x_1, x_2, \dots, x_n]$$

Минимум дифференцируемой функции многих переменных $y=f(\mathbf{x})$ можно найти, исследуя ее значения в критических точках, которые определяются из решения системы уравнений

$$\frac{\partial f}{\partial x_1} = 0,
\frac{\partial f}{\partial x_2} = 0,
\dots
\frac{\partial f}{\partial x_n} = 0.$$

Решение одной задачи сводится к решению другой, вообще говоря, не менее сложной.

Проблемы многомерного поиска по сравнению с одномерным

- 1. Гораздо меньшая вероятность, столкнуться с унимодальной функцией. Сложность проверки унимодальности.
- 2. Невозможность простого переноса на многомерный случай методов, разработанных для одномерного случая (например, методов дихотомии и "золотого сечения"). Нужны новые численные методы.
- 3. «Проклятие размерности»: экспоненциальный рост объема вычислений с увеличением размерности задачи.

Рассмотрим область неопределенности $[0;1]^n$:

- ightharpoonup n=1 разбивая пополам, получим половину области: 0.5.
- n=2 разбивая отрезки изменения переменных пополам, получим площадь $0.5\cdot 0.5=0.25$.
- ightharpoonup n = 3 получим 0.5^3 от объема.
- $ightharpoonup n = 5 0.5^5 pprox 3\%$ от размера исходной области.

Детерминированные алгоритмы минимизации

$$\operatorname*{argmin}_{\mathbf{x} \in X} f(\mathbf{x}) - ?$$

Классы алгоритмов в зависимости от используемой информации о целевой функции и ее производных:

- Если на каждой итерации используются лишь значения целевой функции $f(\mathbf{x})$, то это метод 0-го порядка.
- **Е**сли, кроме того, требуется вычисление $f'(\mathbf{x})$, то это метод **1-го порядка**.
- ightharpoonup Если нужно также вычислять $f''(\mathbf{x})$, то мы имеем дело с методом 2-го порядка.

Приближенное вычисление производных

$$\nabla f(x) = \frac{df}{dx} \approx \frac{f(x+h) - f(x)}{h},$$

$$\nabla^2 f(x) = \frac{d\nabla f}{dx} \approx \frac{\nabla f(x+h) - \nabla f(x)}{h}.$$

С вычислением 2-ой производной могут быть проблемы!

Методы 2-го порядка: метод Ньютона

Пусть необходимо вычислить критические точки внутри отрезка $\left[a;b\right]$, то есть решить уравнение

$$f'(x) = 0.$$

Найдем корень этого уравнения x^* методом Ньютона.

Пусть x^n — значение n-го приближения к корню. Очередное приближение к корню вычисляется по формуле

$$x^{n+1} = x^n - \frac{f'(x^n)}{f''(x^n)}$$

Метод требует больших расходов памяти по сравнению с методами 0-го и 1-го порядков, но зато он весьма быстро сходится.

Метод Ньютона удобно применять как составную часть гибридного метода поиска: искать окрестность минимума каким-то другим методом, а уже в самой окрестности применить метод Ньютона, который сходится с высокой скоростью.

2. Многоликий градиентный спуск (gradient descent)

Одномерный случай

- V Ищем минимум функции y = f(x).
- Известно начальное значение $x = x_0$. Нужно задать направление поиска и величину шага.
- ► Направления: $\uparrow \uparrow OX$ или $\uparrow \downarrow OX$.
- ▶ Шаг: f'(x)

Новая точка вычисляется по формуле

$$x_1 \leftarrow x_0 - \lambda f'(x_0)$$

 λ служит для контроля длины шага. Оно должно обеспечивать выполнение условия: $f(x_{i+1}) \leq f(x_i)$.

Многомерный случай

Вектор градиента

$$\nabla f(\mathbf{x}) = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \frac{\partial f}{\partial x_2} \mathbf{e}_2 + \dots + \frac{\partial f}{\partial x_n} \mathbf{e}_n$$

указывает направление *скорейшего подъема* функции.

Для поиска минимума функции $\mathbf{y} = f(\mathbf{x})$ надо двигаться в противоположном направлении

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i - \lambda \nabla f(\mathbf{x}_i)$$

Пример 1: $y = x_0^2 + x_1^2$ — все просто!

```
fun = 0(x0.x1) x0^2 + x1^2:
lambda = 0.01;
                         % можно подобрать лучше !!!
x0 = 15;
x1 = -9;
v = fun(x0,x1);
for i=1:100
 x0 = x0 - lambda * 2*x0;
 x1 = x1 - lambda * 2*x1;
 y = [y, fun(x0,x1)]; % неэффективно !!!
end
```

График к примеру 1

Пример 2: $y = x_0^2 \sin(x_1) + x_1^2 \exp(x_0)$

```
fun = 0(x0,x1) x0^2*sin(x1) + x1^2*exp(x0);
lambda = 0.001;
x0 = 8;
x1 = -9;
v = fun(x0,x1);
for i = 2:300
  x0 = x0 - lambda * (2*x0*sin(x1) + x1^2*exp(x0));
  x1 = x1 - lambda * (x0^2*cos(x1) + 2*x1*exp(x0));
 y = [y, fun(x0,x1)];
end
```

График к примеру 2

Что происходит?

Если минимума нет, помочь не может даже компьютер

Пример 3.

Найти минимум функции методом градиентного спуска

$$f(x,y) = (x-5)^2 + (y-8)^2.$$

Решение

```
f = 0(x,y) (x-5)^2 + (y-8)^4;
n = 30:
x = zeros(1,n);
y = zeros(1,n);
z = zeros(1,n);
lambda = 0.1;
x(1) = 0; y(1) = 0; z(1) = f(x(1),y(1));
for i=2:n
  x(i) = x(i-1) - lambda * 2 * (x(i-1)-5);
  y(i) = y(i-1) - lambda * 2 * (y(i-1)-8);
  z(i) = f(x(i), y(i));
end
```

График

Параметр λ_i выбирается...

- постоянным, в этом случае метод может расходиться;
- дробным шагом: длина шага в процессе спуска делится на некое число;
- наискорейшим спуском:

$$\lambda_i = \operatorname{argmin}_{\lambda} f(\mathbf{x}_{i+1}) = \operatorname{argmin}_{\lambda} f(\mathbf{x}_i - \lambda \nabla f(\mathbf{x}_i)).$$

Импульсная добавка

Базовый метод:

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \lambda \left. \frac{\partial f}{\partial x_i} \right|_{\mathbf{x}^n}$$

 λ — параметр обучения (learning rate) (между 0 и 1).

Использование "импульсной" добавки позволяет ускорить движение метода по пологой поверхности :

$$\mathbf{x}^{n+1} = \mathbf{x}^n - \lambda \left. \frac{\partial f}{\partial x_i} \right|_{\mathbf{x}^n} + \beta(\mathbf{x}^n - \mathbf{x}^{n-1})$$

 β — "импульс" (между 0 и 1).

Разновидности градиентного спуска

- Коши (метод скорейшего спуска) — движение уменьшающимися шагами в направлении антиградиента.
- Гаусс-Зейдель двигаться по одной переменной пока уровень понижается, затем перейти на следующую переменную (каждый раз решаем одномерную задачу).
- Канторович двигаться в направлении антиградиента до тех пор, пока уровень понижается, затем вычислить новое направление антиградиента (меньше вычислений).

Проблема оврагов

- Гаусс-Зейдель может двигаться только вдоль одной из осей координат. В овраге он застревает.
- Коши оказавшись на краю оврага, он движется в направлении самого крутого спуска, и оно приведет его в точку по другую сторону оврага. Из этой точки он вернется на прежнюю сторону и т.д. Даже если с уменьшением шага минимум и будет достигнут, то очень медленно.

Методы овражного поиска

Гельфанд-Цетлин — движение из двух точек. Оказавшись (по Канторовичу) на краю оврага, определяют направление оврага и идут вдоль него от более высокой точки к более низкой.

3. Методы 0-го порядка (прямые методы поиска)

Симплексный метод

Симплекс (лат. simplex — простой) — простейший выпуклый многогранник данного числа измерений n.* 0-мерный симплекс

- точка. * 1-мерный симплекс отрезок. * 2-мерный симплекс
- треугольник. * 3-мерный тетраэдр (пирамида).

Начальный этап

Зададимся значением точности ε .

Выберем начальную точку \mathbf{x}_0 и построим на ее основе исходный симплекс. Две недостающие точки можно построить «отступая» некоторое расстояние по каждой из координат.

Основной этап 1

- ${f 1}.$ Вычислим значения $f({f x_k})$ в вершинах треугольника ${f x_k},$ k=0,1,2.
- **2.** Упорядочим вершины симплекса так, чтобы $f(\mathbf{x_0}) \leq f(\mathbf{x_1}) \leq f(\mathbf{x_2}).$
- 3. Проверим выполнения условия остановки

$$\frac{1}{n} \sum_{k=1}^{n} [f(\mathbf{x_k}) - f(\mathbf{x_0})]^2 < \varepsilon^2.$$
 (1)

Выполнение этого условия означает, что: либо 1) наш симплекс (треугольник) стал мал настолько, что значения функции в его вершинах мало отличаются, либо 2) внутрь симплекса попала точка минимума \mathbf{x}^* ; 3) произошло и то и другое одновременно.

Если условие 1 выполнено, то вычисления следует прекратить, полагая $\mathbf{x}^* = \mathbf{x}_0$. В противном случае перейти к шагу 4.

Основной этап 2

4. Найдем среднее значение координат всех вершин треугольника \mathbf{x}_c за исключением \mathbf{x}_n , в которой получено наибольшее значение функции

$$\mathbf{x}_c = \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{x}_k.$$

и выполним отражение вершины \mathbf{x}_n относительно \mathbf{x}_c :

$$\mathbf{y} = 2\mathbf{x}_c - \mathbf{x}_n. \tag{2}$$

Формула 2 следует из очевидного равенства:

$$\mathbf{x}_c = \frac{\mathbf{y} + \mathbf{x}_n}{2}.$$

Если $f(\mathbf{y}) < f(\mathbf{x}_n)$, то положим $\mathbf{x}_n = \mathbf{y}$ и вернемся к шагу 2. Иначе — перейдем к шагу 5.

Основной этап 3

5. Перейдем к новому симплексу с вдвое меньшим ребром, считая базовой вершиной \mathbf{x}_0 . Остальные вершины симплекса строим по формуле

$$\mathbf{x}_i = \frac{\mathbf{x}_i + \mathbf{x}_0}{2}, \quad i = 1, 2$$

Перейдем к шагу 1.

Операция отражения стала способом «производства» новых точек. Естественно, его можно усовершенствовать.

Так в 1965 г. британцы Нелдер и Мид предложили свой метод, добавив к отражению при построении нового симплекса операции сжатия и растяжения. Так появился метод Нелдера-Мида.

4. Функции Matlab

Пакеты Matlab (R2017b)

- fminsearch
- Optimization Toolbox методы поиска локального минимума.
- Global Optimization Toolbox методы поиска глобального минимума.

fminsearch — поиск минимума функции нескольких переменных методом Нелдера-Мида

```
[x,fval] = fminsearch(fun,x0,options)
```

- ▶ fun функция, минимум которой мы ищем. Записывается в виде m-функции или анонимной функции;
- x0 вектор координат начальной точки поиска;
- options настройки функции (необязательный параметр);
- x координаты минимума функции fun (вектор той же размерности, что и x0);
- ▶ fval значение целевой функции в точке минимума х.

Пример 1.

Найти минимум функции $f=\sin x\cos y+3$ в окрестности точки [2,-2].

Создадим m-функцию myfun. В файле myfun.m запишем function f = myfun(x)
 f = sin(x(1))*cos(x(2)) + 3:

2. Вызовем fminsearch(), в которую передадим myfun и координаты точки, близи которой искать минимум — [2,-2]:

```
x = fminsearch(@myfun,[2,-2])
```

Получим

```
x = 1.5708 -3.1416
```

Пример 2.

Найти минимум функции $f(x,y) = (x-1)^2 + (y-2)^2$.

```
f = @(x) (x(1)-1).^2+(x(2)-2).^2;
[xmin, fmin] = fminsearch(f, [0 0]);
```


Задача 1.

Найти минимум функции

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

Задача 2.

Найти минимум функции (функция Растригина)

$$f(x,y) = 20 + x^2 + y^2 - 10(\cos 2\pi x + \cos 2\pi y)$$

3D график

Контуры

5. От локального к глобальному: мультистарт

Локальный и глобальный экстремумы

Локальный минимум — точка, в которой целевая функция имеет наименьшее значение среди всех всех соседних точек.

Глобальный минимум — точка, где достигается наименьшее значение целевой функции во всей области поиска. Глобальный минимум — наименьшей среди всех локальных.

Замечания идеологического характера

Мы ищем только локальные минимумы. Имеющиеся в нашем распоряжении функции находят ближайший локальный минимум и на этом поиск прекращается.

Найдя локальный минимум, мы не можем доказать что это точно локальный минимум.

Как же в таком случае искать глобальный минимум?

Мультистарт

Мультистарт предполагает запуск локальных методов поиска минимума из различных точек области поиска. Затем среди всех найденных локальных минимумов выбирается наименьшее значение.

- 1. Мы можем разделить область поиска сеткой. В узлах сетки будем вычислять начальные приближения для какого-нибудь метода локального поиска.
- 2. Случайный мультистарт: координаты начальных точек выбираются в области поиска случайным образом.

Мы не можем быть уверены, что нашли глобальный минимум, и должны удовлетвориться лучшим из минимумов локальных.

Примитивная реализация мультистарта

```
n = 10; % число попыток
fval = zeros(n,1); % здесь будут храниться значения функции
xmin = zeros(n,2); % здесь будут храниться минимумы
for i = 1:n
    % случайным образом задаем начальную точку
    x = -pi + 2 * pi * rand;
    y = -pi + 2 * pi * rand;
    x0 = [x,y];
    % находим локальный минимум
    [xmin(i,:),fval(i)] = fminsearch(@fun,x0);
end
% поиск наименьшего среди всех найденных минимумов
[fv,i] = min(fval);
xmin(i,:) % координаты точки глобального минимума
fval(i) % значение функции в точке глобального минимума
```

Ссылки

http://www.ega-math.narod.ru/Quant/Tmeladze.htm иллюстрации к классическим методам оптимизации взяты из статьи З. Я. Тьмеладзе "Нелинейное программирование" (Квант, № 1, 1976).