Sequences and Series

沈威宇

June 29, 2025

Contents

1	Seq	uences and Series (數列與級數).........................	1
	1 :	Sequence (數列)	1
		i Sequence (數列)	1
		ii Finite sequence (有限數列)	1
		iii Infinite sequence (無窮數列)	1
	П	Series (級數)	1
		i Series (級數)	1
		ii Finite Series (有限級數)	1
		iii Infinite Series (無窮級數)	1
	Ш	Arithmetic progression/sequence (等差數列) and arithmetic series (等差級數)	1
	IV Geometric progression/sequence (等比/幾何數列) and geometric series (等比/幾		
	何約	級數)	2
	V	Riemann zeta function (黎曼 zeta 函數)	2
		i Harmonic series (調和級數)	2
		ii Basel problem (巴塞爾問題)	2
		iii Other even positive integers	2
		iv Infinity	3
	VI	Euler-Mascheroni constant (歐拉-馬斯克若尼常數)	3
	\/11	買奶數(Power series)	2

1 Sequences and Series (數列與級數)

I Sequence (數列)

i Sequence (數列)

A sequence is a function whose domain is an interval of integers, usually denoted as $\langle a_n \rangle$, $\{a_n\}$, or (a_n) , sometimes with domain as $\langle a_n \rangle_{n=1}^m$, $\{a_n\}_{n=1}^m$, or $(a_n)_{n=1}^m$, where the subscript n refers to the nth element of the sequence, that is, the function value when the independent variable is n.

ii Finite sequence (有限數列)

A finite sequence is a sequence with finite terms, e.g. $(a_n)_{n=1}^m = (a_1, a_2, \dots, a_m), m \ge 1$ and m is finite.

iii Infinite sequence (無窮數列)

An infinite sequence is a sequence with infinite terms, e.g. $\langle a_n \rangle_{n=1}^{\infty} = \langle a_1, a_2, ... \rangle$. Unless otherwise specified, the sequences referred to below are infinite sequences.

II Series (級數)

i Series (級數)

The sum of the terms of a sequence.

ii Finite Series (有限級數)

The sum of the terms of a finite sequence.

iii Infinite Series (無窮級數)

The sum of the terms of an infinite sequence.

III Arithmetic progression/sequence (等差數列) and arithmetic series (等差級數)

An arithmetic sequence is a sequence $\langle a_n \rangle = \langle a_1 + (n-1)d \rangle$.

Given a and b, $\frac{a+b}{2}$ is called the median of an arithmetic sequence (等差中項).

An arithmetic series is a series $S_n = \sum_{i=1}^n a_i$, where $\langle a_n \rangle$ is an arithmetic sequence.

$$\lim_{n\to\infty}a_n,\quad d\neq 0$$

$$\lim_{n\to\infty}a_n=a_1,\quad d=0$$

$$S_n=\frac{n}{2}\left(a_1+a_n\right)=\frac{n}{2}\left(2a_1+(n-1)d\right)=na_1+\frac{n(n-1)d}{2}$$

$$\nexists \lim_{n \to \infty} S_n, \quad a_1 \neq 0 \lor d \neq 0$$

$$\lim_{n \to \infty} S_n = 0, \quad a_1 = 0 \land d = 0$$

IV Geometric progression/sequence (等比/幾何數列) and geometric series (等比/幾何級數)

A geometric sequence is a sequence $\langle a_n \rangle = \langle a_1 \cdot r^{n-1} \rangle$, where $a_1 r \neq 0$.

Given a and b, $\pm \sqrt{ab}$ is called the median of an geometric sequence (等比中項).

A geometric series is a series $S_n = \sum_{i=1}^n a_i$, where $\langle a_n \rangle$ is a geometric sequence.

$$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}, \quad r \neq 1$$

$$S_n = na_1, \quad r = 1$$

$$\lim_{n \to \infty} S_n = \frac{a_1}{1 - r}, \quad |r| < 1$$

$$\lim_{n \to \infty} S_n, \quad |r| \ge 1$$

V Riemann zeta function (黎曼 zeta 函數)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
$$= \frac{1}{\Gamma(s)} \int_0^{\infty} \frac{x^{s-1}}{e^x - 1} dx$$

i Harmonic series (調和級數)

$$S_n = \sum_{n=1}^n \frac{1}{n}$$

$$\not\equiv \sum_{n=1}^{\infty} \frac{1}{n}$$

ii Basel problem (巴塞爾問題)

$$\zeta(2) = \frac{\pi^2}{6}$$

iii Other even positive integers

$$\zeta(4) = \frac{\pi^4}{90}$$
$$\zeta(6) = \frac{\pi^6}{945}$$
$$\zeta(8) = \frac{\pi^8}{9450}$$

2

$$\zeta(10) = \frac{\pi^{10}}{93555}$$

$$\zeta(12) = \frac{691\pi^{12}}{638512875}$$

$$\zeta(14) = \frac{2\pi^{14}}{18243225}$$

iv Infinity

$$\lim_{n\to\infty}\zeta(n)=1$$

VI Euler-Mascheroni constant (歐拉-馬斯克若尼常數)

$$\gamma = \lim_{n \to \infty} \left(\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right)$$
$$= \int_{1}^{\infty} \left(\frac{1}{\lfloor x \rfloor} - \frac{1}{x} \right) dx$$

VII 冪級數 (Power series)

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{i=1}^{n} i^r = n + \sum_{k=1}^{n-1} (n-k)((k+1)^r - k^r)$$

$$= n + \sum_{k=1}^{n-1} (n-k) \sum_{j=0}^{r-1} {r \choose j} k^j$$