Hypothesis tests

Jana de Wiljes

jana@dewiljes.de
www.dewiljes-lab.com

28. November 2022

Motivation

Clinical trial: test efficacy a new drugs

Aspekte:

- \blacksquare Given Score-Function mapping to $(-\infty,\infty)$ acting as a measure for the efficacy of new drug
- Know mean efficacy θ_0 of placebos
- Want to know, if average efficacy of new drug is going being placebo effect
- Given samples x_1, \ldots, x_n ; need decision tool

Parametric Hypotheses Tests

Consider: Family of densities $\{f(x|\theta) : \theta \in \Theta\}$

Definition: A hypothesis is a statement about a population parameter θ .

Example: Consider Gaußdistirbution $\mathcal{N}(\theta, 1)$; hypothesis H_0 : efficacy of new drug has expected value θ_0

Hypothesis test

Problem setting:

 $\begin{cases} H_0: & \theta \in \Theta_0 \quad \text{Null hypothesis} \\ H_1: & \theta \in \Theta_1 \quad \text{Alternativ hypothesis} \end{cases}$

where $\Theta_0 \cap \Theta_1 = \emptyset$

4

Likelihood Ratio Tests

Def: The likelihood ratio test (LRT) statistic for testing

$$H_0: \theta \in \Theta_0$$
 gegen $H_1: \theta \in \Theta_1$

is

$$\lambda(x_1,\ldots,x_n) = \frac{\sup_{\Theta_0} L(\theta|x_1,\ldots,x_n)}{\sup_{\Theta} L(\theta|x_1,\ldots,x_n)}.$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form

$$\{(x_1,\ldots,x_n)\in\mathcal{X}:\lambda(x_1,\ldots,x_n)\leq c\},\$$

where c is any number satisfying $0 \le c \le 1$.

Example: Normal LRT

Example: For a given set of iid samples $x_1, \ldots, x_n \sim \mathcal{N}(\theta, 1)$

$$\lambda(x_1,\ldots,x_n) = \frac{(2\pi)^{-n/2} \exp(-\sum_{i=1}^n (x_i - \theta_0)^2/2)}{(2\pi)^{-n/2} \exp(-\sum_{i=1}^n (x_i - \bar{x})^2/2)}$$
(1)

$$= \exp\left[\left(-\sum_{i=1}^{n}(x_i - \theta_0)^2 + \sum_{i=1}^{n}(x_i - \bar{x})^2\right)/2\right]$$
 (2)

$$\sum_{i=1}^{n} (x_i - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - \theta_0)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2(\bar{x} - \theta_0) \sum_{i=1}^{n} (x_i - \bar{x}) + \sum_{i=1}^{n} (\bar{x} - \theta_0)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2(\bar{x} - \theta_0) \left(\underbrace{\sum_{i=1}^{n} (x_i) - n\bar{x}}_{=0} \right) + \sum_{i=1}^{n} (\bar{x} - \theta_0)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2$$

6

Example: Normal LRT

Inserting

$$\sum_{i=1}^{n} (x_i - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2$$

in

$$\lambda(x_1, \dots, x_n) = \exp\left[\left(-\sum_{i=1}^n (x_i - \theta_0)^2 + \sum_{i=1}^n (x_i - \bar{x})^2\right)/2\right]$$
$$= \exp\left[\left(-n(\bar{x} - \theta_0)^2\right)/2\right]$$

Ansatz: An LRT test rejects H_0 for small values of $\lambda(x_1, \ldots, x_n)$. Using the rejection region

$$\{x_1, \dots, x_n : \lambda(x) \ge c\} = \{x_1, \dots, x_n : |\bar{x} - \theta_0| \ge \sqrt{-2(\log c)/n}\}$$
 (3)

Error Probabilities

Note that

$$\mathbb{P}((X_1,\ldots,X_n)\in R)=\begin{cases} \text{probability of a Type I Error} & \text{if }\theta\in\Theta_0\\ 1 \text{ - the probability of a Type II Error} & \text{if }\theta\in\Theta_0^c \end{cases}$$

Power function

Def: The power function of a hypothesis test with rejection region R is the function of θ defined by

$$g(\theta) = \mathbb{P}_{\theta}((X_1, \ldots, X_n) \in R)$$

.

Example

Let $X \sim binomial(5, \theta)$

 $H_0: \theta \leq \frac{1}{2} \text{ versus } H_1: \theta > \frac{1}{2}$

Zwei Beispieltests:

- Consider test that rejects H_0 if and only if all *successes* are observed. The power function for this test is $g_1(\theta) = \mathbb{P}_{\theta}(X \in R) = \mathbb{P}_{\theta}(X = 5) = \theta^5$
- Consider test that rejects H_0 if X = 3, 4 or 5 are observed. The power function for this test is

$$g_2(\theta) = \mathbb{P}_{\theta}(X = 3, 4, 5) = \binom{5}{3} \theta^3 (1 - \theta)^2 + \binom{5}{4} \theta^4 (1 - \theta)^1 + \binom{5}{5} \theta^5 (1 - \theta)^0_{10}$$

Significance level α

Ansatz: Trying to fix error of Typ-I first

Def: For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level α test if

$$\sup_{\theta \in \Theta_0} g(\theta) \le \alpha.$$

Idea for construction of tests with significance level α :

- Set level α (in applications typical values: $\alpha \in \{0.05; 0.01; 0.001\}$)
- Choose c of LRTs, so that the test a level α test is, i.e., determine c with

$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(\lambda(X_1, \dots, X_n) \le c) = \alpha$$

Example

Let X_1,\ldots,X_n be a RVs distributed according to $\mathcal{N}(\theta,\sigma^2)$ with known σ^2 . An LRT of $H_0:\theta\leq\theta_0$ versus $H_1:\theta>\theta_0$ is a test that rejects H_0 if $(\bar{X}-\theta_0)/(\sigma/\sqrt{n})>c$. The constant c can be any positive number. The power function of this is

$$\begin{split} g(\theta) &= \mathbb{P}_{\theta} \Big(\frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} > c \Big) \\ &= \mathbb{P}_{\theta} \Big(\frac{\bar{X} - \theta}{\sigma / \sqrt{n}} > c + \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} \Big) \\ &= \mathbb{P} \Big(Z > c + \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} \Big) \end{split}$$

where Z is a standard normal random variable, since $\frac{\bar{X}-\theta_0}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)$ In general: Construct size α test by choosing c such that we obtain α , e.g. for LRTs

$$\sup_{\theta \in \Theta} \mathbb{P}_{\theta}(\lambda(X_1, \dots, X_n) \le c) = \alpha \tag{4}$$

Z-Test/Gaußtest

Example: $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ with $\sigma = 1$

- $\theta = \theta_0$, since $\Theta_0 = \{\theta_0\}$ und $Z = \sqrt{n}(\bar{X} \theta_0) \sim \mathcal{N}(0, 1)$
- the test rejects H_0 , if $\sqrt{n}|\bar{X} \theta_0| \ge z_{\alpha/2}$
- for $z_{\alpha/2}$ holds $\mathbb{P}(Z>z_{\alpha/2})=\alpha/2$ with $Z\sim\mathcal{N}(0,1)$

New drug:
$$\bar{x}=3.7$$
; $\theta_0=3.1$; $n=16$; $\alpha=0.05$; $z_{\alpha/2}\approx1.96$
$$\sqrt{n}\cdot|\bar{x}-\theta_0|=\sqrt{16}\cdot|3.7-3.1|=4\cdot0.6=2.4>z_{\alpha/2}$$

Typ-II-Error

Consider: $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ mit $g(\theta) = \mathbb{P}\left(Z > c' + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$ **Goal:**

- Typ-I-Error not larger than lpha=0,1, choose c'=1,28 and obtain $g(heta_0)=\mathbb{P}ig(Z>1,28ig)=0.1$
- Typ-II-Error not larger than 0,2 for $\theta \ge \theta_0 + \sigma$

$$g(\theta_0 + \sigma) = \mathbb{P}\Big(Z > \underbrace{c' - \sqrt{n}}_{-0.84}\Big) = 0.8.$$

For n = 4,49 the desired value can be obtained.

Student t-distribution

Def: A continuous random variable X with density

$$f(x) = \frac{\Gamma(n+1)/2}{\sqrt{n\pi}\Gamma(n/2)(1+x^2/n)^{(n+1)/2}}$$
 (5)

is called t-distributed with n degrees of freedom, abbreviated by the notation $t \sim t_n$ where $\Gamma(x) = \int\limits_0^{+\infty} t^{x-1} e^{-t} \, \mathrm{d} \, t$.

t-Test

Lemma: Let X_1, \ldots, X_n be iid RVs with $X_i \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\frac{\bar{X}-\mu}{S}\sqrt{n}\sim t_{n-1},$$

where

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Example: $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, where σ unknown,

- lacksquare it holds that $\sqrt{n}(ar{X}- heta_0)/\sqrt{S^2}\sim t_{n-1}$
- the test rejects H_0 , if $|\bar{X} \theta_0|/\sqrt{S^2} \ge t_{n-1,\alpha/2}/\sqrt{n}$
- for $t_{n-1,\alpha/2}$ holds $\mathbb{P}(T_{n-1} \geq t_{n-1,\alpha/2}) = \alpha$ with $T_{n-1} \sim t_{n-1}$

Unbiased Tests

Want: a test to be more likely rejecting H_0 if $\theta \in \Theta_0^c$ than if $\theta \in \Theta_0$

Def: A test with power function $\beta(\theta)$ is unbiased if $\beta(\theta') \leq \beta(\theta'')$ for every $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$.

Example: Consider LRT with Gauß-RV for $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ with power function

$$g(\theta) = \mathbb{P}\left(Z > c' + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right).$$

Since $g(\theta)$ is increasing with θ the following holds for fixed θ_0 :

$$g(\theta) > g(\theta_0) = \max_{t \le \theta_0} g(t)$$
 für alle $\theta > \theta_0$

and therefore the test unbiased.

Uniformly most powerful

Def: Let \mathcal{C} be class of tests for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$. A test in class \mathcal{C} , with power function $g(\theta)$, is a uniformly most powerful (UMP) class \mathcal{C} test if $g(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .

Neyman-Pearson Lemma

Lemma: Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$, where the pdf or pmf corresponding to θ_0 and θ_1 are $f(x_1, \ldots, x_n | \theta_0)$ and $f(x_1, \ldots, x_n | \theta_1)$ using a test with rejection region R that satisfies

$$x_1,\ldots,x_n\in R$$
 if $f(x_1,\ldots,x_n|\theta_1)>kf(x_1,\ldots,x_n|\theta_0)$ (6)

and

$$x_1, \ldots, x_n \in R^c \text{ if } f(x_1, \ldots, x_n | \theta_1) < kf(x_1, \ldots, x_n | \theta_0)$$
 (7)

for some $k \geq 0$ and $\alpha = \mathbb{P}_{\theta_0}((X_1, \dots, X_n) \in R)$. Then

- 1. Any test that satisfies the above conditions is an UMP level α test.
- 2. If there exists a test satisfying the above conditions with k > 0 then every UMP level α test is a size α test and every UMP level test satisfies expect perhaps on a set A satisfying $\mathbb{P}_{\theta_0}((X_1,\ldots,X_n)\in A)=\mathbb{P}_{\theta_1}((X_1,\ldots,X_n)\in A)=0$

χ^2 -distribution

Definition: A continuous, non-negative random variable X with density

$$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} \exp\left(-\frac{1}{2}x\right), \quad x > 0$$
 (8)

is called χ^2 -distributed with n degrees of freedom, abbreviated by the notation $X \sim \chi^2_n$.

Lemma: Let $X \sim \chi_n^2$ be a continuous, non-negative random variable. Then its expectation and variance are given by:

- $\mathbb{E}[X] = n$
- Var(X) = 2n

χ^2 -distribution

Lemma: Let $X_1, ..., X_n$ be independent and identically standard normally distributed, then

$$Y_n = \sum_{i=1}^n X_i^2 \tag{9}$$

is χ^2 – distributed with n degrees of freedom.

Some References

Original Paper:

 J. Neyman and E. S. Pearson (1933) On the Problem of the Most Efficient Tests of Statistical Hypotheses, Philosophical Transactions of the Royal Society of London. Series A, Vol. 231, pp. 289–337.

• Introductions:

- D. R. Cox, D. V. Hinkley (1974) Theoretical Statistics, Springer US.
- 2. Van der Vaart, A. W. (2000) *Asymptotic Statistics*, Cambridge University Press.
- 3. George Casella und Roger L. Berger (2002) *Statistical Inference*, Cengage Learning.
- 4. Caputo, Fahrmeir, Künstler, Pigeot, Tutz (2011) *Statistik: Der Weg zur Datenanalyse*, Springer.