## Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

grade 100%

## **Key concepts on Deep Neural Networks**

LATEST SUBMISSION GRADE

| 1( | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| 1. | <ul> <li>We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.</li> <li>We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.</li> <li>It is used to cache the intermediate values of the cost function during training.</li> <li>It is used to keep track of the hyperparameters that we are searching over, to speed up computation.</li> </ul> | 1/1 point   |  |  |  |
|    | Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
| 2. | Among the following, which ones are "hyperparameters"? (Check all that apply.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/1 point   |  |  |  |
|    | lacksquare learning rate $lpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |  |  |  |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
|    | $igsquare$ blas vectors $b^{[l]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |  |  |  |
|    | lacksquare number of layers $L$ in the neural network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |  |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
|    | $mec{}$ size of the hidden layers $n^{[l]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |  |  |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
|    | ✓ number of iterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |  |  |  |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
|    | $igsqcup$ activation values $a^{[l]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |  |  |  |
|    | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |  |  |  |
| 3. | Which of the following statements is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 / 1 point |  |  |  |
|    | The deeper layers of a neural network are typically computing more complex features of the input than the<br>earlier layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |  |  |  |
|    | The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |  |  |

|    | Vectorization allows you to compute forward propagation in an $L$ -layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/False?                                                                                                                                          | 1/1 point   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | ○ True                                                                                                                                                                                                                                                                                                                                      |             |
|    | False                                                                                                                                                                                                                                                                                                                                       |             |
|    | Correct Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},)$ . | te          |
| i. | Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$ . So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?                                                         | 1 / 1 point |
|    | <pre>1 * for(i in range(1, len(layer_dims)/2)): 2     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>                                                                                                                                  |             |
|    | <pre>1 * for(i in range(1, len(layer_dims)/2)): 2     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3     parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01</pre>                                                                                                                                |             |
|    | <pre>1 for(i in range(1, len(layer_dims))): 2     parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01 3     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>                                                                                                                                      |             |
|    | <pre>1 * for(i in range(1, len(layer_dims))): 2     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01 3     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01</pre>                                                                                                                                    |             |
|    |                                                                                                                                                                                                                                                                                                                                             |             |

6. Consider the following neural network.

✓ Correct

1/1 point



How many layers does this network have?

- $\bigcirc \hspace{0.5cm} \text{The number of layers } L \text{ is 4. The number of hidden layers is 3.}$
- igcup The number of layers L is 3. The number of hidden layers is 3.
- $\begin{picture}(60,0)\put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$
- $\hfill \bigcap$  The number of layers L is 5. The number of hidden layers is 4.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.



|     | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                   |             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | $lacksquare b^{[2]}$ will have shape (3, 1)                                                                                                                |             |
|     | $\checkmark$ Correct Yes. More generally, the shape of $b^{[l]}$ is $\left(n^{[l]},1\right)$ .                                                             |             |
|     | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                   |             |
|     | $lacksquare b^{[3]}$ will have shape (1, 1)                                                                                                                |             |
|     | $\checkmark$ Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$ .                                                                        |             |
|     | $igwedge W^{[3]}$ will have shape (1, 3)                                                                                                                   |             |
|     | $\checkmark$ Correct Yes. More generally, the shape of $W^{[l]}$ is $\left(n^{[l]},n^{[l-1]} ight)$ .                                                      |             |
|     | $\ \ \ \ b^{[3]}$ will have shape (3, 1)                                                                                                                   |             |
| 10. | Whereas the previous question used a specific network, in the general case what is the dimension of W^{[1]}, the weight matrix associated with layer $l$ ? | 1 / 1 point |
|     | $igcirc$ $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$                                                                                                        |             |
|     | $lackbox{igothambox{igoldsymbol{igoldsymbol{igle}}}} W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$                                                             |             |
|     | $igcirc$ $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$                                                                                                        |             |
|     | $igcolon W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$                                                                                                         |             |
|     | ✓ Correct True                                                                                                                                             |             |
|     |                                                                                                                                                            |             |