Fundamentos de Cálculo Aplicado

Fundamentos gerais de Matemática

Profa. Ma. Alessandra Negrini

Tópicos de Trigonometria

$$\frac{1}{2} \left(\frac{2}{x} + \frac{x}{2} - \frac{x}{4} + \frac{x}{2} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{x}{4} + \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{2}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10} \right) \left(\frac{3}{7} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}$$

Catet

Teorema de Pitágoras:

Razões trigonométricas

$$sen(\alpha) = \frac{b}{a}$$

$$\cos(\alpha) = \frac{c}{a}$$

$$t g(\alpha) = \frac{b}{c}$$

Unidades de medida

 Unidades para medida angular: grau (°) e radianos (rad)

Para conversão entre as unidades de medida:

Exemplo:

Ângulos notáveis

α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°
$sen(\alpha)$	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(a)	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$sen(\alpha)$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$sen(\alpha)$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos(a)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	cos(a)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	cos(a)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	cos(a)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
$\operatorname{tg}(\alpha)$	$\frac{\sqrt{3}}{3}$	1	√3	$\operatorname{tg}(\alpha)$	$\frac{\sqrt{3}}{3}$	1	√3	tg(α)	$\frac{\sqrt{3}}{3}$	1	√3	$tg(\alpha)$	$\frac{\sqrt{3}}{3}$	1	√3
α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°
sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos(\alpha)$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg(a)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(a)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°
sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(a)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(a)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg(a)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$
α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°	α	30°	45°	60°
sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	sen(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos(\alpha)$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg(a)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	tg(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Exemplo

Parado a 120 m do centro da base de uma torre, um topógrafo descobre que o ângulo de elevação do topo da torre mede 69,7°. Determine a altura

Fonte: GOMES, 2018, p.454.