Avaliação de Decisões Estratégicas sob Incerteza Profunda na Indústria da Manufatura Aditiva: Uma Análise a partir do método Robust Decision Making (RDM)

Pedro Nascimento de Lima

Orientador: Daniel Pacheco Lacerda

Programa de Pós Graduação em Engenharia de Produção e Sistemas — UNISINOS

Estrutura da Dissertação

- 1. Introdução;
- 2. Fundamentação Teórica;
- 3. Procedimentos Metodológicos;
- 4. Desenvolvimento da Análise RDM;
- 5. Análise de Robustez;
- 6. Discussões;
- 7. Conclusões.

1 – INTRODUÇÃO

Contextualização

- **Decisões Estratégicas**: Aspecto Central da Estratégia que molda o Futuro das Empresas. (EISENHARDT; ZBARACKI, 1992; WILSON, 2015).
- Avaliação de Decisões estratégicas: Suportam a escolha entre diferentes decisões estratégicas.
- **Incerteza:** Aspecto que dificulta a avaliação de decisões estratégicas.
- Decisões que Suportam a Difusão de Novos Produtos: São ainda mais impactadas pela incerteza visto que há menos informação histórica disponível.

Contexto de Aplicação

Incerteza no Contexto da Impressão 3D

Indícios "Positivos"

- Indústria da Impressão 3D cresceu à uma taxa anual de 26,2 % ao ano;
- Tem o potencial de reconfigurar cadeias de suprimentos reduzir tempo de desenvolvimento de produtos, permitir a manufatura de alta complexidade.

Indícios "Negativos"

- Estimativas sobre o impacto econômico da manufatura aditiva variam entre 21 bilhões de USD em 2020 a 550 bilhões em 2025;
- Houve uma bolha financeira da impressão 3D em 2014, ações de empresas caíram mais do que 70%;
- Lucratividade dos Fabricantes de Sistemas de Impressão 3D tem caiu entre 2011 e 2015 para patamares negativos.

JESUÍTAS BRASIL

O Problema

- A empresa deve considerar o ambiente interno e externo para suportar suas decisões estratégicas, mas...
- O mundo é dinâmico, e a empresa precisa se antecipar à eventos futuros;
- Decisões relacionadas à difusão de novos produtos são especialmente vulneráveis;
- Quando há informação suficiente para estimar modelos com precisão, é tarde para tomar decisões;

Existem Alternativas

- Alternativas consolidadas no Contexto de Negócios: Análise de Decisão, Opções Reais, Teoria dos Jogos, Abordagem de Cenários, etc.;
- Abordagens Emergentes no contexto de políticas públicas: Abordagens para Decisão Sob Incerteza Profunda.

8

Incerteza Profunda

Deep Uncertainty ("Incerteza Profunda")

"Situações nas quais as partes de uma decisão não conhecem ou não concordam sobre (i) os modelos apropriados para descrever as interações entre as variáveis de um sistema; (ii) as distribuições de probabilidades que representam a incerteza sobre parâmetros chave do modelo, e/ou; (iii) como valorizar a utilidade de diferentes resultados."

(LEMPERT; POPPER; BANKES, 2003).

Fontes de Incerteza no Contexto da Difusão de Novos Produtos

Demanda:

- Tamanho do mercado potencial;
- Resposta dos clientes à Precificação;
- Velocidade de Difusão do Novo Produto;

• Oferta:

- Planos de expansão dos concorrentes;
- Resposta dos concorrentes às decisões da empresa.

Questão de Pesquisa

Questão:

"Que estratégias que suportam a difusão de novos produtos na indústria da manufatura aditiva são mais robustas, e em que condições estas estratégias robustas falham?"

Objetivo Geral:

O objetivo deste trabalho é avaliar a robustez de decisões estratégicas que suportam a difusão de produtos na indústria da manufatura aditiva, em condições de incerteza profunda.

Objetivos Específicos:

- a) expandir um modelo de difusão de novos produtos e dinâmica competitiva para viabilizar a avaliação de estratégias no contexto da manufatura aditiva, utilizando o RDM;
- b) construir algoritmos para a execução do RDM a partir de modelos de dinâmica de sistemas;
- c) incorporar algoritmos de seleção de variáveis para a análise de vulnerabilidade de estratégias;
- d) avaliar a aplicabilidade do RDM em modelos de estratégia empresarial;
- e) identificar e avaliar estratégias adaptativas a um conjunto de cenários plausíveis.

11

Justificativa

Abordagens	Fragilidades sob Incerteza Profunda	Como as Fragilidades serão endereçadas neste trabalho
Simulação Computacional	Modelos são formados a partir de dados sobre o passado e pressupostos, que podem ser falhos.	O resultado de apenas uma simulação tem pouco valor. A alternativa é rodar o modelo diversas vezes considerando a incerteza.
Decision Analysis e Métodos Baseados na Máxima Utilidade Esperada	Depende de Pressupostos sobre o futuro. Utilizam "probabilidades subjetivas" primárias como input.	Ao invés de favorecer a decisão com a máxima utilidade esperada dada um conjunto de pressupostos, o processo de decisão pode buscar a estratégia que satisfaça um critério de aceitação no maior número de futuros, postergando a avaliação de probabilidades.
Planejamento por Cenários	A escolha de qualquer pequeno número de cenários para representar um futuro altamente complexo pode ser arbitrária.	A ideia da procura pela robustez das estratégias pode ser mantida, e os cenários importantes para a decisão podem ser extraídos a partir de dados simulados.

Fonte: Elaborado pelo Autor com base em Lempert (2003).

12

Justificativa

- Avaliação de Decisões Estratégicas no Contexto Empresarial: Ignora o RDM para suporte à decisão sob incerteza. Este trabalho explora o potencial do RDM para avaliação de decisões sob incerteza.
- Difusão de Novos Produtos: Utiliza modelos para representar a evolução da demanda, porém seu uso para fins preditivos é limitado pela ausência de dados.

Delimitações

- O trabalho não cria um "modelo genérico" de difusão de novos produtos -> Apenas estratégias selecionadas podem ser testadas;
- Os algoritmos gerados por este trabalho não executam todas as etapas do RDM (ex.: PRIM);
- O trabalho utiliza o RDM, porém não é uma avaliação experimental do mesmo;
- O trabalho focaliza-se sobre decisões de fabricantes de sistemas de impressão 3D profissionais (preço > 5 K USD);
- O trabalho utiliza dados disponíveis publicamente, avaliando decisões de players dominantes no mercado (3D Systems e Stratasys).

2 – FUNDAMENTAÇÃO TEÓRICA

Fundamentação Teórica

Fundamentação Teórica

- 1. Avaliação de Decisões Estratégicas e Incerteza Profunda.
 - 1. Avaliação de Decisões Estratégicas.
 - 2. Níveis de Incerteza e Incerteza Profunda.
- 2. Abordagens para Avaliação de Decisão sob Incerteza Profunda.
 - 1. Abordagens para Suporte a Decisão Estratégica
 - 2. Contextos de Aplicação do RDM
- 3. RDM Robust Decision Making
 - 1. Elementos Analíticos
 - Modelagem e Análise Exploratória
 - 3. Visão Geral das Etapas do RDM
 - 4. Estruturação da Decisão
 - 5. Geração de Casos
 - 6. Descoberta de Cenários para Análise de Vulnerabilidades
 - 7. Análise de Tradeoffs
 - 8. Quando Usar o RDM
- 4. Indústria da Manufatura Aditiva
- 5. Modelos para Suporte a decisões estratégicas relacionadas à Difusão de Novos Produtos

2.1 – Avaliação de Decisões Estratégicas e Incerteza Profunda

Localização				Nível de Incertez	a		
Localização		Nível 1	Nível 2	Nível 3	Nível 4	Nível 5	
Contexto Futuro		Um futuro claro	Futuros Alternativos com probabilidades	Futuros alternativos ranqueados	Diversos futuros plausíveis	Um futuro desconhecido	
Modelo	Completa	Um único modelo determinístico	Um único modelo estocástico	Diversos modelos, um deles é o mais provável	Diversos modelos com diferentes estruturas	Modelo desconhecido; sabe-se que não se sabe	Ignorância
Outcomes do Sistema	Certeza Con	Uma estimativa para cada outcome	Um intervalo de confiança para cada outcome	Diversos conjuntos de estimativas ranqueados pela sua probabilidade percebida	Um range conhecido de outcomes	Outcomes desconhecidos	icia Completa
Pesos de Outcomes		Um único conjunto de pesos	Diversos conjuntos de pesos, com uma probabilidade relacionada a cada um deles	Diversos conjuntos de pesos, ranqueados de acordo com a sua probabilidade percebida	Um range conhecido de pesos	Pesos desconhecidos	

2.2 – Abordagens para Avaliação de Decisões sob Incerteza Profunda

2.3 - RDM - Robust Decision Making

2.4 – Indústria da Manufatura Aditiva

24

2.5 – Modelos para suporte à decisões estratégicas relacionadas à difusão de novos produtos

Trabalho	Mahajan	Dattée,	Maier (1998) -	Maier (1998) -	Cui, Zhao,	Sterman (2007)
	Muller (1996)	Birdseye (2007)	Competição	Substituição	Ravichandran	
					(2011)	
Objeto original	Substituição de	Substituições	Modelos de Difusão de	Dinâmica de	Dynamic New	"Get Big Fast
	gerações de	Tecnológicas	Novos produtos (new	substituição de	Product Launch	Strategies"
	novos produtos.	(technological	product difgusion	produtos novos por	Strategies	Estratégia
	(new product	substitutions)	models).	modelos antigos.		Competitiva
	launch strategy)					Agressivas vs
						Conservadoras
Principal	Bass não	Simplificam em	Não consideram a	Não consideram a	Na maioria das	Não consideram
Crítica aos	captura a	demasia a	entrada de outros	entrada de novos	vezes, não	delays e
demais	sucessão de	heterogeneidade do	concorrentes no	modelos no mercado.	consideram	imperfeições no
modelos.	diferentes	mercado.	mercado.		estratégias	processo de decisão
	gerações de				dinâmicas.	de expansão da
	produtos.					capacidade e
						precificação.
X - Incertezas	Tamanho relativo	Heterogeneidade da	Tempo de Entrada de	Tamanho potencial	Tamanho do	Delays nos
	danma	pulação de	outros com	do more Mark	Markot	200

					1	
	'	custo.		'		
M - Métricas	Número Total de	Vendas totais por	Vendas, número de	Vendas	Lucro Líquido.	Lucro Líquido.
	Produtos	tecnologia, Número	clientes.	'		
	Vendidos, por	total de		'		
	geração.	consumidores		'		
	'	usuários.		'		
Fragilidades	Não contempla a	Não apresenta	Não apresenta	Não contempla	Não representa	Não apresenta
para a	competição entre	formulação	formulação completa	competição entre	competidores	performance como
aplicação	players.	matemática do	do modelo.	players.	explicitamente.	critério de divisão do
neste	'	modelo.		'	Escala temporal	market share.
trabalho.	'	['	limitada.	

GMAP | UI

3. PROCEDIMENTOS METODOLÓGICOS

Delineamento

- Método Científico: Abdutivo e Indutivo (porém a indução ocorre apenas após a dedução operacionalizada pelo modelo computacional).
- Método de Pesquisa: Modelagem e Simulação Computacional.
- Classificação de Bertrand e Fransoo (2002):
 - Pesquisa Axiomática (e não empírica): produz conhecimento de certas variáveis do modelo baseadas em pressupostos sobre outras variáveis do modelo.
 - Pesquisa Normativa (e não descritiva): o interesse é comparar diversas estratégias para solucionar um problema específico.

Método de Trabalho

Método de Trabalho

GMAP | UNISINOS

Grupo de Pesquisa em Modelagem para Aprendizagem www.gmap.unisinos.br

Coleta de Dados

- Relatórios Retrospectivos: Agregam dados passados sobre a Indústria da Manufatura Aditiva (ex.: demanda);
- Relatórios Prospectivos: Focalizamse sobre as potencialidades da Manufatura Aditiva (ex.: informações sobre a difusão potencial da tecnologia);
- Fundamentos Financeiros:

 Consolidam dados de empresas com ação negociadas em bolsa (ex.: despesas com P & D);
- Guias Tecnológicos: Apresentam informações técnicas sobre a indústria (ex.: como a performance é considerada).

Fonte	Categoria	Trabalho e Contribuição	Informações Disponíveis
(QUANDL,	Fundamentos	Base Free US Fundamentals - Quandi	Receita, Despesas,
2017)	Financeiros	A base disponível na plataforma Quandl contém séries históricas	Investimento em Pesquisa e
		de fundamentos financeiros da empresa 3D Systems de modo	Desenvolvimento (Série
		aberto. Esta base permite consultar o nível de despesas da	Histórica)
		empresa em Pesquisa e Desenvolvimento, balizando a análise	
		das estratégias da empresa.	
(US	Fundamentos	Base US Fundamentals	Receita, Despesas,
FUNDAMENTA	Financeiros	A plataforma consolida variáveis de fundamentos financeiros de	Investimento em Pesquisa e
LS, 2017)		empresas negociadas em Bolsa dos Estados Unidos, incluindo	Desenvolvimento (Série
		os fabricantes de impressão 3D Stratasys e 3D Systems. Apesar	Histórica)
		disso, os dados encontrados na base são fragmentados e	
		incompletos.	
(CAFFREY;	Relatório	Executive summary of the Wohlers Report 2016	Estimativas de Impressoras
,			OF

(0		our milling a mi	pul
LTD, 2015)	Prospectivo	Apresenta uma survey realizada junto a empresas usuárias da	usuários de impressão 3D
		impressão 3D observando expectativas sobre os resultados da	na manufatura aditiva.
		impressão 3D. Indica que empresas tem se preparado para	
		projetar peças especificamente para fabricação em 3 dimensões.	
(3D SYSTEMS,	Guia	3D Printer Buyer's Guide for Professional and Production	Nenhuma variável
2018)	Tecnológico	Applications	quantitativa informada.
		Apresenta critérios de seleção para a compra de impressoras 3D.	
		Possibilitou a definição do conceito de performance.	
(3D HUBS,	Guia	Additive Manufacturing Technologies: An Overview	Players presentes na
2017a)	Tecnológico	Apresenta tecnologias existentes de impressão 3D e players	indústria da impressão 3D e
		produtores de impressoras de cada tecnologia.	tecnologias envolvidas.
(3D HUBS,	Guia	3D Printer Index	Avaliações de Performance
2017b)	Tecnológico	Ranking com impressoras 3D e avaliação de usuários, incluindo	de Impressoras.
		preços e comentários.	

Análise de Dados

Análise	Biblioteca e Função Utilizada	Características da Análise
Teste t	Biblioteca: Teste t nativo do R (t.test) (t.test(x ~ casos_para_teste\$CasoInteresse))	Teste t de duas amostras. Teste bicaudal. Nível de confiança = 0,95; Pressupõe variâncias diferentes. A variável "x" representa a incerteza, e a variável CasoInteresse corresponde a 1 se a estratégia falha, e a 0 se a estratégia não falha.
Random Forest	Biblioteca: randomForest randomForest(factor(y)~., data = x)	Random Forest aplicada para classificar as condições nas quais a estratégia falha (representadas pelo número 1 na variável y), em função das incertezas (incluídas no objeto "x" referenciado na função. Foram utilizadas as opções padrão da função randomForest.
Boruta	Biblioteca: Boruta Boruta(y ~ ., data=na.omit(x), doTrace=2)	O Algoritmo Boruta foi aplicado para identificar variáveis relevantes para a identificação dos casos de vulnerabilidade. Foram utilizadas as opções padrão da biblioteca (valor-p = 0,01, maxRuns =100).
PRIM	Biblioteca: prim (Utilizada a linguagem python). p = prim.Prim(incertezas, resposta, threshold=211920013, threshold_type=">")	O algoritmo PRIM, utilizado na linguagem Python foi utilizado (visto que as alternativas no R não funcionaram). O algoritmo foi aplicado para encontrar regiões do espaço de incerteza que contém uma alta concentração de casos onde a estratégia falha. A tabela "incertezas" contém as 5 variáveis de incertezas confirmadas como mais importantes em cada técnica utilizada, e a variável resposta contém o custo de oportunidade. O Threshold foi definido como o percentil 75% da estratégia 31.

4 – DESENVOLVIMENTO DA ANÁLISE RDM

4.1 Estruturação do Problema

X – Incertezas	L – Decisões Estratégicas
Tamanho do Mercado Potencial das	Agressividade de Apropriação do Market
Impressoras Profissionais;	Share.
Velocidade de Difusão das Impressoras	Market Share Desejado;
Maturidade da Tecnologia;	Intensidade de Investimentos em P&D
Decisões estratégicas dos Demais	Investimento em P&D Aberto ou
Players Fabricantes de Impressoras 3D;	Fechado.
Velocidade do desenvolvimento	
tecnológico da impressão 3D.	
R – Relações	M – Métricas
Modelo de Dinâmica de Sistemas	Custo de Oportunidade do Valor
detalhado na seção 4.2.	Presente Líquido da Firma.

Elementos não inseridos no modelo.

- Desagregação dos Modelos de Impressora 3D:
- Desagregação dos Mercados de Impressão 3D;
- Aquisições entre Players;
- Licenciamento de Patentes:
- Entrada de Novos Players;
- Mercado de Serviços de Impressão;
- Venda de Matéria Prima para impressoras 3D:
- Interações com o Mercado de Imp. 3D não-industriais.

4.2 Modelo de Dinâmica Competitiva

- Modelo de Sterman et al. (2007) foi utilizado como ponto de partida;
- Modificações foram realizadas para permitir que o modelo:
 - Considerasse a performance dos produtos;
 - Considerasse mais do que dois players do mercado;
 - Considerasse a dinâmica de emissão de patentes.

$$\begin{split} A_t &= A_{t_0} + \int_{t_0}^t MAX \bigg(0, N \bigg(\alpha + \beta \frac{A}{POP} \bigg) \bigg) \\ A^* &= MIN \bigg(POP, POP^r * MAX \bigg(0, 1 + \frac{\sigma(P^{min} - P^r)}{POP^r} \bigg) \bigg) \\ Y_i &= exp \left(\varepsilon_p \frac{P_i}{P^r} \right) * exp(\varepsilon_a * \tau_i / \tau^r) * exp \left(\varepsilon_x \frac{X^r}{X_i} \right) \\ s_i^* &= \begin{cases} MAX(s_i^{min}, s_i^u), & \text{if } Str_i = Agress. \\ MIN(s_i^{max}, s_i^u), & \text{if } Str_i = Conserv. \end{cases} \\ P_i^* &= MAX \bigg[u_i^v, P_i \bigg(1 + \alpha^c \bigg(\frac{P_i^c}{P_i} - 1 \bigg) \bigg) \bigg(1 + \alpha^d \bigg(\frac{Q_i^*}{u_i^* K_i} - 1 \bigg) \bigg) (1 + \alpha^s (s_i^* - s_i)) \bigg] \\ dT^o / dt &= \sum_i [\kappa_i * (1 - \psi) * T_i^r / v^a] - T^o / v^e \end{split}$$

4.3 Algoritmos Desenvolvidos para a Análise RDM

36

4.4 Avaliação do Modelo Computacional

- A Demanda Global de Impressoras 3D profissionais foi utilizada como variável para avaliação do modelo.
- Foram utilizadas métricas de avaliação do modelo (STERMAN, 2000, p. 875).
- Erro Médio Quadrado se concentrou na "Covariação Desigual". Viés e Variação Desigual foram as menores fontes de erro.

Sigla	Significado	Valor
R ²	Coeficiente de Determinação. Representa a Fração da Variância dos dados explicada pelo modelo.	0,8525
r	Coeficiente de Correlação entre os dados Simulados e dados observados.	0,9233
MSE	Erro Médio Quadrado.	1817965
RMSE	Raiz do Erro médio Quadrado.	1348,3195
SSR	Soma dos Erros Médios Quadrados	19997619
MAE	Erro Médio Absoluto.	1111,7701
MAPE	Erro Médio Absoluto Percentual.	0,1866
UM	Estatística de Thiel - Viés (representa a parcela do erro médio quadrado correspondente à diferença entre médias dos dados e dos resultados do modelo).	0,1725
US	Esatística de Thiel - Variação Desigual (representa a parecela de erro devida à diferença na variância entre os dados simulados e os dados observados).	0,0397
UC	Estatística de Thiel - Covariação desigual (representa a parcela de erro devida a diferenças relacionadas à correlação imperfeita, ou seja, diferenças ponto a ponto).	0,7878

5 – ANÁLISE DA ROBUSTEZ DE DECISÕES ESTRATÉGICAS EM CONDIÇÕES DE INCERTEZA PROFUNDA

5. Análise de Robustez

Decisões Simuladas para o Player 1:

Variável	Decisão Estratégica	Níveis Testados
Ctm	Apropriação do Market Share (Estr. Mkt.	Agressiva (1)
Str_i	Share)	Conservadora (2)
	Market Share Desejado (Mkt. Des.)	20%
S_i^{max} , S_i^{min}	Para a estratégia conservadora, S_i^{max}	30%
	Para a estratégia agressiva, S_i^{min}	40%
	9/ de Deseita Dedicado a Resquisa o	5%
η_i	% da Receita Dedicado a Pesquisa e	10%
	Desenvolvimento (Orc. P&D)	15%
	% Organista da R&D dadicada a Patentas	0%
κ_i	% Orçamento de P&D dedicado a Patentes	50%
	Open Source (Perc. P&D Ab.)	90%

	Decisões			
Estratégia	Estr. Mkt Share	Mkt Des.	Orc. P&D	Perc. P&D Ab
1	AGR	30%	10%	0%
2	CON	30%	10%	0%
3	AGR	30%	10%	50%
4	CON	30%	10%	50%
5	AGR	30%	10%	90%
6	CON	30%	10%	90%
7	AGR	20%	10%	0%
8	CON	20%	10%	0%
9	AGR	20%	10%	50%
10	CON	20%	10%	50%
11	AGR	20%	10%	90%
12	CON	20%	10%	90%
13	AGR	40%	10%	0%
14	CON	40%	10%	0%
15	AGR	40%	10%	50%
16	CON	40%	10%	50%
17	AGR	40%	10%	90%
18	CON	40%	10%	90%
19	AGR	30%	5%	0%
20	CON	30%	5%	0%
21	AGR	30%	5%	50%
22	CON	30%	5%	50%
23	AGR	30%	5%	90%
24	CON	30%	5%	90%

5. Análise de Robustez

- A combinação das 4 decisões gerou 54 estratégias a serem testadas;
- Cada estratégia foi testada em 200 "cenários" distintos, durante 10 anos;
- Ao todo, foram realizadas 10800 simulações, gerando 1.738.800 linhas de dados simulados.

5.1 Avaliação de Robustez das Estratégias

- Custo de Oportunidade das 54 estratégias simuladas (quanto menor, melhor):
 - Estratégias agressivas foram, em geral, mais robustas.

5.1 Avaliação de Robustez das Estratégias

- Estratégias Agressivas Dominaram Estratégias Conservadoras;
- Não há suporte para publicação de patentes open source;
- Primeiras estratégias do ranking investem menos em P&D.
- Estratégia 31
 identificada como a
 mais robusta dentre as
 testadas.

		Decisões					CO % Perc
#	Estratégia	Estr. CAP	Perc. P&D Ab.	Mkt Des.	Orc. P&D	CO Perc 75%	75%
1	31	AGR	0%	40%	5%	\$211.920.013	32,41%
2	19	AGR	0%	30%	5%	\$258.564.861	25,41%
3	25	AGR	0%	20%	5%	\$328.221.015	37,79%
4	13	AGR	0%	40%	10%	\$338.723.235	39,13%
5	21	AGR	50%	30%	5%	\$371.287.014	37,63%
6	27	AGR	50%	20%	5%	\$378.755.033	47,23%
7	33	AGR	50%	40%	5%	\$394.291.939	51,24%
8	1	AGR	0%	30%	10%	\$397.669.159	40,21%
9	7	AGR	0%	20%	10%	\$401.770.486	49,69%
TU	30		C., .	2070	J /0	φ1 J4. J4. J-	00,10/0
41	18	CON	90%	40%	10%	\$761.918.524	82,30%
42	41	AGR	90%	30%	15%	\$762.670.284	79,22%
43	6	CON	90%	30%	10%	\$768.576.893	84,78%
44	10	CON	50%	20%	10%	\$777.519.137	85,03%
45	47	AGR	90%	20%	15%	\$795.049.983	86,22%
46	52	CON	50%	40%	15%	\$798.592.893	90,82%
47	44	CON	0%	20%	15%	\$805.859.927	93,25%
48	40	CON	50%	30%	15%	\$806.799.092	91,05%
49	53	AGR	90%	40%	15%	\$846.136.461	100,00%
50	12	CON	90%	20%	10%	\$846.287.996	91,04%
51	54	CON	90%	40%	15%	\$863.780.237	96,36%
52	42	CON	90%	30%	15%	\$877.290.790	96,46%
53	46	CON	50%	20%	15%	\$895.893.334	97,33%
54	48	CON	90%	20%	15%	\$947.271.829	100,00%

5.2 – Identificação de Incertezas Críticas e Análise de Vulnerabilidade

- O modelo empregado contém 35 variáveis incertas;
- Em que condições a estratégia 31 falha?
- 3 Grupos de Técnicas Empregadas:
 - Médias: Diferença Relativa entre Médias e Teste t;
 - Random Forests: Score de Importância, algoritmo Boruta e Gráficos de Dependência Parcial;
 - Algoritmo PRIM.

5.2.1 – Diferença de Médias

- Cada Gráfico apresenta uma variável;
- A variável da direita é mais importante para determinar os casos onde a estratégia falha.

5.2.2 – Random Forests

- Fontes de vulnerabilidade:
 - Estratégias agressivas do player 2 e 4;
 - Mercado acima de aprox. 60K torna a estratégia vulnerável;
 - Baixa sensibilidade a preço;

5.2.2 – Random Forests

 Condição de vulnerabilidade: Mercado acima de 60K e estratégia agressiva de outro player.

5.2.2 – Algoritmo Boruta

- Utiliza Random Forests para definir a importância de variáveis;
- O algoritmo confirmou a importância de 5 variáveis, manteve uma como "tentativa" e rejeitou a importância de outras 29.

Variável	$\overline{\iota mp}$	med(imp)	min(imp)	max(imp)	nhits	dec.
Estratégia de Capac. Player 2	16,510	17,624	6,825	20,282	1,000	Conf.
Tamanho do Mercado de Referência	16,502	17,432	6,968	21,196	1,000	Conf.
Estratégia de Capac. Player 4	14,094	15,193	3,461	18,615	0.980	Conf.
Sensib. da Atratividade ao Preço	6.431	6,520	3,526	9.554	0.960	Conf.
Inclinação da Curva de Perform. X Patentes Tempo de Ajuste da Capacidade	5,869	5,905	1,455	9,328	0,929	Conf.
Delay no Report de Demanda	2,146 1,465	2,043 1,537	-0,830 0,043	4,654 3,383	0,475 0.000	Tent. Rej.
Market Share Desejado Player 2	1,399	1,381	-0,488	3,132	0,000	Rej.
% de Utilização da Capacidade	1,098	1,001	-0.080	2,050	0.000	Rej.

Triangulação das Técnicas

- Cada uma das técnicas produziu um ranking de incertezas mais críticas para o sucesso da estratégia 31;
- Tamanho do mercado e estratégia do player 2 foi mais determinante nelas.

Variável Incerta	Random Forest	Boruta	Dif. Médias	Teste T
Estratégia de Capac. Player 2	1	1	2	2
Tamanho do Mercado de Referência	2	2	1	1
Sensib. da Atratividade ao Preço	3	4	7	7
Inclinação da Curva de Perform. X Patentes	4	5	26	28
Estratégia de Capac. Player 4	5	3	4	4
Delay no Report de Demanda	6	7	5	6
% de Utilização da Capacidade	7	9	3	3
Tempo de Ajuste da Capacidade	8	6	14	15
Razão de Custos Fixos/Custos Variáveis	9	10	8	8
Tempo de Realização do Inv. em P&D	10	22	12	11
Market Share Desejado Player 2	11	8	6	5
Tempo de Avaliação de Patentes	12	14	11	13
Market Share Desejado Player 3	13	12	16	17
Orçamento P&D Player 4	14	29	9	9
Sensib. do Preço a Oferta e Demanda	15	34	35	35
Fração de Descartes de Imp. 3D	16	31	15	14
Elasticidade da Demanda	17	13	17	16
Tempo de Inutilização da Patente	18	23	18	19
% de Pedidos Iniciais por Substituição	19	16	20	20

49

5.2.3 – Resultados Algoritmo PRIM

- Identificou uma região de vulnerabilidade na qual a estratégia 31 falha 82,1 % das vezes, quando:
- Os players de porte semelhante possuem estratégias agressivas;
- Tamanho do Mercado é maior do que 60 mil compradores.
- Utilização da capacidade é baixa.

Estatística	Valor	Significado
Cobertura (Coverage)	46 %	As condições especificadas acima contém 46 % dos casos onde a estratégia falha.
Densidade (Density)	82,1 %	Dentro das condições especificadas, a estratégia falha em 82,1 % das simulações.
Abrangência (Mass)	14 %	As condições especificadas contém 14 % de todos os casos simulados.

5.2.3 – Resultados Algoritmo PRIM

- Quando há outros players agressivos e o mercado é suficientemente grande (> 58 K), a empresa é melhor que a empresa escolha outra estratégia que não a 31.
- Que outras estratégias funcionam melhor nestas condições?

5.3 – Identificação de Estratégias Alternativas

5.3 – Identificação de Estratégias Alternativas

6.1 – Contribuições Gerenciais

- Para os Players Dominantes na Impressão 3D:
 - Resultados suportam estratégias agressivas;
 - Não há suporte à estratégias open source;
 - Menores investimentos em P&D;
- Para empresas em Geral:
 - Estrutura de análise oferece alternativa para análise de decisões em condições de incerteza;
 - A análise de permite identificar situações específicas de vulnerabilidade e testar alternativas;
- Ressalvas:
 - Processo de avaliação estratégica deve ser diferente para que a análise produza efeito.
 - A condução da análise requer esforços e competências específicas.
 - Cabe ao gestor avaliar se a incerteza que o mesmo observa e seu impacto sobre suas decisões é relevante ao ponto de justificar uma análise quantitativa como a empregada neste trabalho.

6.2 – Contribuições Acadêmicas

- Suporte à decisão sob incerteza profunda:
 - Trabalho emprega o RDM no contexto da dinâmica competitiva de empresas privadas;
 - Utilizou-se a avaliação de incertezas críticas com o algoritmo Boruta;
- Difusão de Novos Produtos:
 - Ampliação do modelo para novos players e consideração de performance e patentes;
 - Utilização de um novo framework analítico;
- Avaliação de Decisões Estratégicas:
 - Análise emprega o critério de robustez;
 - Cenários são definidos sistematicamente;

7 - Conclusões

- Objetivos definidos foram atendidos;
- Futuros Trabalhos podem:
 - Expandir o modelo para considerar outros aspectos da indústria de manufatura aditiva;
 - Adaptar o modelo empregado e realizar a análise em outros contextos;
 - Considerar outras abordagens de decisão sob incerteza (ex.: DAAP, MORDM, Info-Gap).

Publicações

Publicação	Status
The Impacts of Additive Manufacturing on Production Systems	Aprovado
Avaliação de Decisões Estratégicas sob Incerteza Profunda na Indústria da Manufatura Aditiva - Uma Análise a partir do método Robust Decision Making (RDM)	Submetido
The Fourth Scenario School: A bibliometric review of methods for Decision Making Under Deep Uncertainty	WIP
SDRDM: An R package for RDM Analysis with SD models	WIP
Improving Scenario Discovery with Random Forests and Partial Dependence Plots	WIP

Obrigado!

