

# מבני נתונים ומבוא לאלגוריתמים מפגש הנחיה מס' 7

מדעי המחשב, קורס מס' 20407

סמסטר 2016ב

מנחה: ג'ון מרברג



# ?מה ראינו במפגש הקודם

- חציונים וערכי מיקום
  - בעיית הבחירה
- מציאת מינימום ומקסימום
- מציאת האיבר ה- i בגודלו פתרון אקראי lacksquare
- מציאת האיבר ה- i בגודלו פתרון דטרמיניסטי lacksquare



## מפגש שביעי

- נושאי השיעור 🔳
- פרק 8 בספר מיונים בזמן לינארי
  - מיון-מנייה 🔳
  - מיון-בסיס
    - מיון-דלי =
- פרק 10 בספר מבני נתונים בסיסיים
  - מחסניות ותורים
  - רשימות מקושרות -

מבוסס על מצגת של ברוך חייקין ואיציק בייז



# מיון מבוסס השוואות

- אין מידע על תכונות כלשהן של ערכי הקלט 🔳
- ההנחה היחידה: כל הערכים ניתנים להשוואה זה עם זה (סדר מלא)
  - כל המידע לסידור הקלט מתקבל מפעולות השוואה בין המפתחות
    - $a < b, a \le b, a = b, a \ge b, a > b$ יש 5 פעולות השוואה שונות: -
      - לכל פעולת השוואה 2 תוצאות בלבד: נכון או לא נכון
      - דוגמאות: מיון-הכנסה, מיון-בועות, מיון-מיזוג, מיון-ערמה... ■
  - אלגוריתם מיון מבוסס השוואות עורך השוואות בין זוגות מפתחות עד לקבלת הסידור הנכון
    - $a = \langle a_1, a_2, ..., a_n \rangle$  סדרת מפתחות =
    - <1, 2, ..., n> של האינדקסים  $\pi$  של האינדקסים  $\pi = <\pi(1), \pi(2), ..., \pi(n)>$ 
      - $a_{\pi} = \langle a_{\pi(1)}, \, a_{\pi(2)}, \, ..., \, a_{\pi(n)} \rangle$  הפלט: הסדרה : $a_{\pi(i)} \leq a_{\pi(j)} \leq a_{\pi(j)}$  כאשר  $a_{\pi(i)} \leq a_{\pi(j)}$  לכל



# חסם תחתון על מיון מבוסס השוואות

- נניח בלי הגבלת כלליות שכל n המפתחות שונים זה מזה  $\blacksquare$
- על הקלט A נתאר את סדרת ההשוואות שמבצע אלגוריתם כעץ החלטה בינארי
  - A <u>שורש העץ:</u> ההשוואה הראשונה שמבצע שורש העץ
  - a<sub>i</sub> ≤ a<sub>j</sub> צומת פנימית: פעולת השוואה בין שני מפתחות כלשהם עם שתי תוצאות אפשריות (המוליכות לשני בנים)
    - <u>עלה</u>: תמורה של הסדרה <1, 2, ..., *n*> בהתאם למסלול ההשוואות מהשורש עד לעלה הנתון
      - תכונות עץ ההחלטה:
    - n!=מספר העלים = מספר הסידורים האפשריים של הקלט
      - גובה העץ = המסלול הארוך ביותר משורש לעלה
- כדי להגיע לפלט במסלול זה A מספר ההשוואות שמבצע =
  - A חסם תחתון על זמן הריצה של =



# עץ החלטה



- גובה העץ הוא המסלול הארוך ביותר מהשורש לעלה
- log(n!) מס' העלים בעץ ההחלטה הוא !ח ולכן גובה העץ הוא לפחות  $\blacksquare$

$$\log(n!) = \Theta(n\log n)$$
  
 $h = \Omega(n\log n)$  : idea[



# מיון מבוסס השוואות – מסקנות

- ולכל n, יש לפחות קלט A, ולכל  $\Omega$  אלגוריתם מיון מבוסס השוואות  $\Omega(n\log n)$  השוואות אחד בגודל  $\Omega(n\log n)$  יבצע
  - מסקנה:  $\Omega(n\log n)$  הוא חסם תחתון על זמן הריצה של מיון  $\Omega(n\log n)$  מבוסס השוואות
  - O(nlogn) כאשר החסם העליון על זמן הריצה של האלגוריתם הוא האלגוריתם הוא אופטימלי (אסימפטוטית)
    - דוגמאות: מיון-ערמה, מיון-מיזוג



# ?האם ניתן לשבור את החסם התחתון על מיון

- רק אם יש מידע מוקדם על תכונות מתמטיות כלשהן של ערכי הקלט
  - ניתן להשתמש בתכונות הקלט כדי לבצע על ערכי הקלט פעולות שאינן השוואות
    - $\Omega(n \log n)$  פעולות אלה שוברות את החסם התחתון על הזמן
    - בד"כ נשלם על השיפור בזמן עם עלות גדולה יותר של מקום
      - <u>לא ניתן</u> להשתמש במיון מסוג זה על קלט כללי כלשהו ■
    - לכל אלגוריתם יש לפרט את ההנחות על ערכי הקלט עליהם הוא מתבסס
    - האלגוריתם לא יעבוד נכון על קלט שאינו מקיים את ההנחות 💻
      - והי טעות נפוצה! ■



# מיון שאינו מבוסס השוואות

- נכיר שלשה אלגוריתמים למיון בזמן לינארי
- כל אלגוריתם מתבסס על תכונות אחרות של הקלט
  - CountingSort מיון-מניה
  - 1..k תכונות הקלט: ערכים שלמים בתחום■
    - RadixSort מיון-בסיס ■
  - k ספרות בבסיס d ספרות בבסיס =
    - BucketSort מיון-דלי
  - תכונות הקלט: ערכים בהתפלגות אחידה בתחום (0..1]



# מיון-מנייה

- הנחות על הקלט: כל אחד מ- ח מפתחות הקלט הוא מספר שלםבתחום 1..k
  - :הרעיון
- עצמו) עבור כל מפתח x נספור כמה מפתחות קטנים או שווים לו  $(clobeta x \ v)$ 
  - בפלט m במקום x נציב את x במקום m בפלט  $\square$
- :שגודלו k ומבצע 4 שלבים k שגודלו k שלבים  $\blacksquare$ 
  - $(1 \le i \le k)$  0 מקבל את הערך ההתחלתי C[i] : מקבל C[i]
  - בקלט i מקבל את מספר המופעים של המפתח בקלט C[i] :
  - ושל כל i מקבל את סה"כ מספר המופעים של המפתח i ושל כל C[i] מקבל את סה"כ. מספר המופעים של הקטנים ממנו
- כדי להציב כל איבר במקום הנכון בפלט C כדי להציב כל איבר במקום הנכון בפלט .4
- נזכור שכל מפתח בקלט הוא יותר מסתם מספר הוא גם אינדקס לתוך מערך העזר



# מיון-מנייה – דוגמה



(k = 8) מערך העזר

```
1 2 3 4 5 6 7 8

C 0 0 0 0 0 0 0 0
```

שלב 1 – איפוס

שלב 2 – מנייה

שלב 3 – צבירה



# מיון-מנייה – דוגמה (המשך)



1 2 **3** 4 5 6 7 8 2 4 **6** 8 9 9 11 11

שלב 4: הצבה

$$A[j] = A[11] = 3$$
  $B$   $C[A[j]] = C[3] = 6$   $B[C[A[j]]] = B[6] \leftarrow A[j] = 3$   $C[A[j]] = C[3] \leftarrow C[A[j]] - 1 = 5$ 



1 2 3 4 5 6 7 8 **C** 2 4 5 **8** 9 9 11 11

```
1 2 3 4 5 6 7 8 9 10 11 B 3 4
```

$$A[j] = A[10] = 4$$
 $C[A[j]] = C[4] = 8$ 
 $B[C[A[j]]] = B[8] \leftarrow A[j] = 4$ 
 $C[A[j]] = C[4] \leftarrow C[A[j]] - 1 = 7$ 



# מיון-מנייה – דוגמה (סוף)



1 **2** 3 4 5 6 7 8 2 **4** 5 7 9 9 11 11

1 2 3 **4** 5 6 7 8 9 10 11

3

$$A[j] = A[9] = 2$$
 $C[A[j]] = C[2] = 4$ 
 $B[C[A[j]]] = B[4] \leftarrow A[j] = 2$ 
 $C[A[j]] = C[2] \leftarrow C[A[j]] - 1 = 3$ 

•••

 1
 2
 3
 4
 5
 6
 7
 8

 C
 0
 2
 4
 6
 8
 9
 9
 11



# מיון-מנייה – האלגוריתם

### CountingSort (A, B, k)

*Input*: An input array A, an output array B and an integer k, where length[A] = length[B] = n and  $1 \le A[j] \le k$  for all  $1 \le j \le length[A]$ .

*Output*: The output array B contains all elements of array A, sorted.

*Notes*: The algorithm uses an auxiliary array C[1..k].

1. for  $i \leftarrow 1$  to k

► stage 1: initialization

- 2. **do**  $C[i] \leftarrow 0$
- 3. for  $j \leftarrow 1$  to length[A]  $\triangleright$  stage 2: counting
- 4. **do**  $C[A[j]] \leftarrow C[A[j]] + 1$
- 5.  $\triangleright C[i]$  now contains the number of elements equal to i.
- 6. for  $i \leftarrow 2$  to k

- ► stage 3: accumulation
- 7. **do**  $C[i] \leftarrow C[i] + C[i-1]$
- 8.  $\triangleright C[i]$  now contains the number of elements less than or equal to i.
- 9. for  $j \leftarrow length[A]$  downto 1  $\triangleright$  stage 4: placement
- 10. **do**  $B[C[A[j]]] \leftarrow A[j]$
- 11.  $C[A[j]] \leftarrow C[A[j]] 1$



# מיון-מנייה – תכונות

- O(n + k) :זמן ריצה
- O(n) אז זמן הריצה הוא k = O(n)
- (איך?)  $\Omega(n{\sf log}n)$  נשבר" החסם התחתון"  $\blacksquare$ 
  - O(n + k) :מקום
- המיון יציב, כלומר איברים בעלי מפתחות שווים יופיעו בפלטבאותו סדר יחסי כמו בקלט
  - "נובע מכך שהלולאה בשורה 9 רצה מהסוף להתחלה
- תכונת היציבות שימושית אם רוצים למיין רשומות לפי כמה מפתחות (למשל סטודנטים לפי ציון ואחר כך לפי גיל)
  - נראה שימוש ביציבות של מיון-מניה ככלי עזר במיון-בסיס



# מיון-בסיס

- הנחות על הקלט: כל אחד מ-n מפתחות הקלט הוא מספר שלם בן d ספרות בבסיס k כלשהו
- "וכו' (0-9,A-F), וכו' (0-9), הקסאדצימלי (0-9), וכו' (0-9) וכו'
  - אפשר לחשוב גם על אותיות (א-ת, A-Z, וכו'), או קוד אסקי lacksquare
    - :הרעיון
  - נבצע מיון <u>יציב</u> לפי ספרה אחר ספרה, החל מהמקום הכי פחות משמעותי
    - בעת המיון על הספרה ה-*j*, הסדר היחסי בין המפתחות שנוצר על-ידי = המיונים הקודמים לפי הספרות 1..j–1 לא ישתנה

| 100000000000000000000000000000000000000 |          | SA COLONIA DE MARIA |  | 5774A4640174 |                 | Principle Control of |                                                                                     |
|-----------------------------------------|----------|---------------------|--|--------------|-----------------|----------------------|-------------------------------------------------------------------------------------|
| 329                                     | moojjje- | 720                 |  | 720          | mmi <b>jj</b> n | 329                  | $ \begin{array}{c} 5 \\ 6 \\ 7 \\ 7 \\ 0 \end{array} $ $d = 3$ $k = \text{decimal}$ |
| 457                                     |          | 355                 |  | 329          |                 | 355                  |                                                                                     |
| 657                                     |          | 436                 |  | 436          |                 | 436                  |                                                                                     |
| 839                                     |          | 457                 |  | 839          |                 | 457                  |                                                                                     |
| 436                                     |          | 657                 |  | 355          |                 | 657                  |                                                                                     |
| 720                                     |          | 329                 |  | 457          |                 | 720                  |                                                                                     |
| 355                                     |          | 839                 |  | 657          |                 | 839                  |                                                                                     |



# (8.3-1 מיון-בסיס – דוגמה (תרגיל





# מיון-בסיס – האלגוריתם

### RadixSort(A, d)

*Input*: An input array A and an integer d, where A[j] is an integer with exactly d digits, for  $1 \le j \le length[A]$ .

Output: The array A sorted.

- 1. for  $i \leftarrow 1$  to d  $\triangleright$  go from least significant to most significant digit
- 2. **do** sort array A on digit i using a stable sort

### :הערות לאלגוריתם

- המיון לפי ספרה (שורה 2) חייב להיות יציב כדי לשמור את הסדר המצטבר
  - 0..k–1 הערכים נתונים בבסיס k כלשהו, כלומר כל ספרה היא בתחום
    - לכן מתאים להשתמש בשורה 2 במיון-מניה
      - 1..*k* ננרמל את התחום 0..*k*-1 לתחום ■
    - כאשר הערכים בבסיס k ומשתמשים במיון-מניה לכל ספרה, כאשר הערכים בבסיס  $O(d\cdot(n+k))$  זמן הריצה של מיון-בסיס הוא



# מיון-דלי

- הנחות על הקלט: *ח* מפתחות הקלט הם מספרים ממשיים המתפלגים בצורה אחידה בקטע (0,1]
- התפלגות אחידה: ההסתברות שמפתח x כלשהו יימצא בתוך תת-קטע נתון נמצאת ביחס ישר לאורך התת-קטע
  - $(\frac{1}{4}$  היא  $[\frac{1}{2},\frac{3}{4}]$  היא בתת-קטע ההסתברות שהמפתח יימצא בתת-קטע (  $\frac{1}{2},\frac{3}{4}$
  - אם המפתחות מתפלגים בצורה אחידה בקטע [a,b), ניתן "לנרמל" כל y=(x-a)/(b-a) באמצעות הנוסחה y=(x-a)/(b-a)

### :הרעיון

- נפזר את המפתחות ל-n "דליים" (ממוספרים מ-0 עד n) שכל אחד מהם נפזר את המפתחות ל-n1. המפתח שערכו n2 נכנס לדלי שמספרו n2 מכסה" תת-קטע שגודלו n1. המפתח שערכו
  - נמיין כל אחד מהדליים. המיון הכולל מתקבל ע"י שרשור הדליים הממוינים
    - מכיוון שהתפלגות המפתחות אחידה, אנו מצפים למצוא מספר קטן של מפתחות בכל דלי, ולכן מיון המפתחות בכל דלי יהיה מהיר



# מיון-דלי – דוגמה (תרגיל 1-8.4)



10



# מיון-דלי – האלגוריתם

### **BucketSort**(A)

*Input*: An array A with n keys, distributed uniformly in the range [0,1)

*Output*: The array A, sorted.

*Notes*: The algorithm uses an auxiliary array B[0..n-1] of n buckets (lists).

- 1.  $n \leftarrow length[A]$
- 2. for  $i \leftarrow 1$  to n
- 3. **do** insert A[i] into list  $B[\lfloor nA[i] \rfloor]$
- 4. for  $i \leftarrow 0$  to n-1
- 5. **do** sort list B[i] using (e.g.) InsertionSort
- 6. concatenate the lists B[0], B[1], ..., B[n-1] together in order
  - O(n) תוחלת זמן הריצה של מיון דלי היא
  - רק שורות 4-5 רלוונטיות לחישוב התוחלת (n הקריאות למיון הכנסה)
    - ההוכחה מופיעה בספר בעמ' 146 ■
- משמעות התוחלת: אמנם ייתכן קלט "גרוע" שבו רוב המפתחות ייכנסו למספר קטן של דליים אבל מכיוון שההתפלגות אחידה, הסיכוי שזה יקרה הוא קטן מאוד
  - (לפי מיון הכנסה)  $O(n^2)$  זמן הריצה עבור המקרה הגרוע הוא



# מיון-דלי – הוכחת נכונות

- אם שני מפתחות A[I], A[J] נכנסים לאותו דלי, הם עוברים
   מיון בדלי ולכן יוצאים לפלט בסדר הנכון
  - אחרת, המפתחות נכנסים לשני דליים שונים:
  - B[y] נכנס לדלי A[j], ואילו B[x] נכנס לדלי A[i]
    - x < y נניח בלי הגבלת הכלליות כי
    - A[I] לפיכך A[I] נמצא בפלט לפני
    - $A[I] \le A[J]$  נותר להוכיח שמתקיים
      - A[i] > A[j] נניח בשלילה כי
    - מהנחה זו ושורה 3 של האלגוריתם נקבל

$$x < y$$
 -ם בסתירה לכך ש $x = \lfloor nA[i] \rfloor \geq \lfloor nA[j] \rfloor = y$ 



# מיון-דלי – תרגול

(8.4-2 תרגיל) ■

מהו המקרה הגרוע של מיון-דלי? מהו זמן הריצה במקרה הגרוע? איזה שינוי פשוט ניתן להכניס באלגוריתם כך שזמן הריצה במקרה הגרוע יהיה (O(nlgn) ותישמר התוחלת הלינארית של זמן הריצה?





# אלגוריתמי מיון בזמן לינארי - סיכום

- CountingSort מיון-מניה
- 1..k תכונות הקלט: ערכים שלמים בתחום
  - O(n+k) :זמן ריצה
  - RadixSort מיון-בסיס
- k ספרות בבסיס d תכונות הקלט: ערכים שלמים בני
  - $O(d \cdot (n+k))$  זמן ריצה:
  - BucketSort מיון-דלי
- תכונות הקלט: ערכים בהתפלגות אחידה בתחום (0..1]
  - זמן ריצה: O(n) במקרה הממוצע  $\blacksquare$



# מיון-דלי – תרגול

## (8.4-4 תרגיל) ■

 $1 \le i \le n$  נתונות n נקודות  $p_i = (x_i, y_i)$  בעיגול היחידה. דהיינו, עבור  $p_i = (x_i, y_i)$  מתקיים  $0 < x_i^2 + y_i^2 \le 1$ 

נניח שהתפלגותן של הנקודות אחידה; כלומר, ההסתברות למצוא נקודה באזור כלשהו של העיגול נמצאת ביחס ישר לשטחו.

תכננו אלגוריתם שתוחלת זמן הריצה שלו היא  $\Theta(n)$  למיון n הנקודות שתוחלת זמן הריצה שלו היא  $d_i = \sqrt{(x_i^2 + y_i^2)}$  על פי מרחקיהן

(רמז: תכננו את גודלי הדליים כך שישקפו את ההתפלגות האחידה של הנקודות בעיגול היחידה.)





## מבנה נתונים

- משמש לשיכון קבוצת נתונים בזיכרון באופן שמאפשר גישה יעילהלנתונים לפי הפעולות הנדרשות על הקבוצה
  - יש להפריד בין **מימוש** המבנה לבין **שימוש** בו!
    - מימוש:
  - אופן שיכון הנתונים: בחירת מבני אחסון ומשתנים בהתאם לפעולות הנדרשות
    - אתחול המבנה -
    - מימוש אלגוריתם לכל פעולה נדרשת בזמן הנדרש 🗨
      - שימוש:
      - אך ורק דרך הפעולות המוגדרות על המבנה 🔳
    - אף פעם לא בגישה ישירה לנתונים שבתוך המבנה



## מחסנית

- (LIFO) "מחסנית (stack) מדיניות "נכנס אחרון יוצא ראשון (stack) ∎
  - פעולות 🔳
  - הכנסת איבר לראש המחסנית, המחסנית גדלה Push(S,x)
    - שביאת גלישה (overflow) אם המחסנית מלאה ■
  - הוצאת האיבר שבראש המחסנית, המחסנית קטנה  $\mathsf{Pop}(S)$ 
    - שגיאת חמיקה (underflow) אם המחסנית ריקה ■
- ו- StackFull(S) בדיקה אם המחסנית ריקה/מלאה StackFull(S) StackEmpty(S)
  - מימושים 🛚
- שמצביע לאיבר שהוא ראש המחסנית S באמצעות מערך S באמצעות מערך
  - המחסנית מוגבלת לגודל המערך 🔳
    - באמצעות רשימה מקושרת
  - $\Theta(1)$  בשני המימושים סיבוכיות הזמן של כל פעולה היא



# מחסנית – מימוש ע"י מערך

#### Push(S, x)

- 1. **if** StackFull(*S*)
- 2. **then error** "overflow"
- 3.  $top[S] \leftarrow top[S] + 1$
- 4.  $S[top[S]] \leftarrow x$

### StackFull(S)

1. **return** top[S] = length[S]

### Pop(S)

- 1. **if** StackEmpty(*S*)
- 2. **then error** "underflow"
- 3.  $x \leftarrow S[top[S]]$
- 4.  $top[S] \leftarrow top[S] 1$
- 5. return x

### StackEmpty(S)

1. return top[S] = 0

### StackInit(S)

1.  $top[S] \leftarrow 0$ 



## מחסנית – דוגמה

מצב התחלתי

 $\operatorname{Push}(S, r)$ - המצב לאחר קריאה



Pop(S)- המצב לאחר שתי קריאות



## תור

- (FIFO) "מדיניות "נכנס ראשון יוצא ראשון (queue) תור
  - פעולות 🔳
  - הכנסת איבר לסוף התור, התור גדל Enqueue(Q,x)
    - אם התור מלא (overflow) שור מלא 🔳
  - הוצאת האיבר שבראש התור, התור קטַן Dequeue(Q)
    - שביאת חמיקה (underflow) אם התור ריק ■
- ו- QueueFull(Q) בדיקה אם התור ריק/מלא QueueFull(Q) QueueEmpty(Q)
  - מימושים 🔳
  - tail[Q] ו- head[Q] ו- head[Q] וושני אינדקסים,  $\mathbb{Q}$ 
    - באמצעות רשימה מקושרת עם מצביע נוסף לסוף הרשימה 💻
      - $\Theta(1)$  בשני המימושים סיבוכיות הזמן של כל פעולה היא



# "תור – מימוש ע"י מערך "מעגלי

### Enqueue(Q, x)

- 1. **if** QueueFull(*Q*)
- 2. **then error** "overflow"
- 3.  $Q[tail[Q]] \leftarrow x$
- 4.  $tail[Q] \leftarrow Next(tail[Q], length[Q])$

### $\mathbf{Dequeue}(Q)$

- 1. **if** QueueEmpty(*Q*)
- 2. **then error** "underflow"
- 3.  $x \leftarrow Q[head[Q]]$
- 4.  $head[Q] \leftarrow Next(head[Q], length[Q])$
- 5. return x

### QueueEmpty(Q)

1. **return** (head[Q] = tail[Q])

### QueueFull(Q)

1. **return** Next(tail[Q], length[Q]) = head[Q]

### Next(i, n)

1. **return**  $(i \mod n) + 1$  היא שגרה לשימוש Next פנימי בלבד ואי אפשר לקרוא לה מבחוץ

### QueueInit(Q)

- 1.  $tail[Q] \leftarrow 1$
- 2.  $head[Q] \leftarrow 1$





## תור – דוגמה





# מחסניות ותורים – תרגול

■ (תרגיל 10.1-6)הראו כיצד ניתן לממש תור באמצעות שתי מחסניות.נתחו את זמן הריצה של הפעולות על התור.





## פתרון תרגיל 10.1-6 מימוש תור באמצעות שתי מחסניות

#### Enqueue(Q, x)

- 1. **if** QueueFull(*Q*)
- 2. **then error** "queue overflow"
- 3. Push(tail[Q], x)

#### $\mathbf{Dequeue}(Q)$

- 1. **if** QueueEmpty(*Q*)
- 2. **then error** "queue underflow"
- 3. MoveStack(tail[Q], head[Q])
- 4.  $x \leftarrow \text{Pop}(head[Q])$
- 5. MoveStack(head[Q], tail[Q])
- 6. return x

#### נשתמש בשתי מחסניות:

- מחזיקה את כל האיברים tail[Q]
  - מחסנית עזר להוצאה *head*[Q]

#### QueueFull(Q)

1. **return** StackFull(*tail*[*Q*])

### **QueueEmpty**(Q)

1. **return** StackEmpty(tail[Q])

#### MoveStack(src, dst)

- 1. **while not** StackEmpty(*src*)
- 2. **do** Push(dst, Pop(src))

### QueueInit(Q)

- 1. StackInit(tail[Q])
- 2. StackInit(head[Q])



## פתרון תרגיל 10.1-6 (המשך) מימוש משופר

### **Enqueue**(Q, x)

- 1. **if** QueueFull(*Q*)
- 2. **then error** "queue overflow"
- 3. if StackFull(tail[Q]) and StackEmpty(head[Q])
- 4. **then** MoveStack(tail[Q], head[Q])
- 5. Push(tail[Q], x)

### $\mathbf{Dequeue}(Q)$

- 1. **if** QueueEmpty(Q)
- 2. **then error** "queue underflow"
- 3. **if** StackEmpty(*head*[*Q*])
- 4. **then** MoveStack(tail[Q], head[Q])
- 5. **return** Pop(head[Q])

#### נשתמש בשתי מחסניות:

- מחסנית להכנסה לתור tail[Q]
- מחסנית להוצאה מהתור head[Q]

### QueueFull(Q)

1. **return** StackFull(tail[Q]) **and not** StackEmpty(head[Q])

#### **QueueEmpty**(Q)

1. **return** StackEmpty(tail[Q]) **and** StackEmpty(head[Q])

#### MoveStack(src, dst)

- 1. **while not** StackEmpty(*src*)
- 2. **do** Push(dst, Pop(src))

### QueueInit(Q)

- 1. StackInit(tail[Q])
- 2. StackInit(head[Q])



# רשימות מקושרות

- רשימה מקושרת (linked list) האיברים משורשרים זה לזה
  - :דוגמאות לפעולות על רשימה
    - חיפוש איבר בעל מפתח נתון 🗨
  - הכנסת איבר חדש לתוך הרשימה
    - מחיקת איבר מן הרשימה
      - החזרת אורך הרשימה
    - סוגים שונים של רשימות:
  - כיוון המצביעים: חד-מקושרת או דו-מקושרת 🔳
    - סדר המפתחות: ממוינת או לא ממוינת
      - צורת הרשימה: מעגלית או קווית
  - שימוש בזקיפים (sentinels) מאפשר לפשט את הקוד ■



# רשימה חד-מקושרת

- (singly-linked list) רשימה חד-מקושרת ■
- לאיבר שאחריו next[x] לאיבר שאחריו x
  - אם x אחרון ברשימה next[x] = nil
- לאיבר הראשון head[L] יש מצביע ביע L
  - אם הרשימה ריקה head[L] = nil







# רשימה דו-מקושרת

- (doubly-linked list) רשימה דו-מקושרת
  - כמו רשימה חד-מקושרת, ובנוסף: ■
- לאיבר שלפניו prev[x] לאיבר שלפניו x
  - אם x ראשון ברשימה prev[x] = nil
  - לאיבר האחרון tail[L] יש מצביע ביע L
    - אם הרשימה ריקה tail[L] = nil
      - רשימה מעגלית
    - רשימה דו-מקושרת, אבל המצביעיםשל איברי הקצה "סוגרים" מעגל
      - next[tail[L]] = head[L] =
      - prev[head[L]] = tail[L] =







## חיפוש איבר ברשימה ממוינת

L חיפוש האיבר הראשון שמפתחו k ברשימה (דו-)מקושרת ממוינת

#### SortedListSearch(L, k)

- 1.  $x \leftarrow head[L]$
- 2. while  $x \neq \text{nil and } key[x] \leq k$
- 3. **do**  $x \leftarrow next[x]$
- 4. **if** x = nil or key[x] > k
- 5. then return nil
- 6. else return x



SortedListSearch(*L*, "c") = דוגמה:



# הכנסה לרשימה במקום נתון

### y הכנסת איבר x לרשימה חד-מקושרת אחרי איבר

### SinglyListInsertAfter(L, x, y)

- 1. if y = nil > x becomes the head
- 2. **then**  $next[x] \leftarrow head[L]$
- 3.  $head[L] \leftarrow x$
- 4. **else**  $next[x] \leftarrow next[y]$
- 5.  $next[y] \leftarrow x$



SinglyListInsertAfter(*L*, x, y) = דוגמה



# רשימה חד-מקושרת – תרגול

רשימת "שבלול" (lollipop) רשימת שבלול היא רשימה חד-מקושרת שהאיבר האחרון שלה מצביע אל איבר כלשהו בתוך הרשימה. הציעו אלגוריתם הבודק בזמן לינארי ובזיכרון קבוע אם רשימה חד-מקושרת נתונה היא רשימת שבלול.





### פתרון

## בדיקה אם רשימה חד-מקושרת היא שבלול

### **IsLollipop**(*L*)

- 1.  $p \leftarrow head[L]$
- 2.  $q \leftarrow head[L]$
- 3. while  $next[q] \neq nil$ and  $next[next[q]] \neq nil$
- 4.  $\mathbf{do} \ p \leftarrow next[p]$
- 5.  $q \leftarrow next[next[q]]$
- 6. **if** q = p
- 7. then return true
- 8. return false

- נשתמש בשני מצביעים הרצים במהירויות שונות לאורך הרשימה
- מצביע "איטי" *p* המתקדם צעד אחד בכל איטרציה
- מצביע "מהיר" *q* המתקדם שני צעדים בכל איטרציה
  - שני המצביעים "יוצאים למרוץ" יחד

### ?מדוע האלגוריתם נכון

- שורם קורשימת שבלול, אז p ו-q ייפגשו מתישהו בתוך המעגל, ובשורה 7 יוחזר true
- אחרת, המצביע q יגיע לסוף הרשימה, תתבצע יציאה מהלולאה ובשורה  $\theta$  יוחזר false הערך



# רשימה חד-מקושרת – תרגול

(תרגיל 10.2-3 ■

ממשו תור באמצעות רשימה חד-מקושרת L. הפעולות Enqueue וְ- Dequeue ביכות להתבצע גם עתה בזמן (O(1).





## פתרון תרגיל 10.2-3 מימוש תור באמצעות רשימה חד-מקושרת

#### **Enqueue**(L, x)

- 1.  $next[x] \leftarrow nil$
- 2. **if** QueueEmpty(L)
- 3. then  $head[L] \leftarrow x$
- 4. **else**  $next[tail[L]] \leftarrow x$
- 5.  $tail[L] \leftarrow x$

#### $\mathbf{Dequeue}(L)$

- 1. **if** QueueEmpty(L)
- 2. **then error** "underflow"
- 3.  $x \leftarrow head[L]$
- 4.  $head[L] \leftarrow next[x]$
- 5. **if** head[L] = nil
- 6. **then**  $tail[L] \leftarrow nil$
- 7.  $next[x] \leftarrow nil$
- 8. return x

- נשתמש במצביע לאיבר האחרון ברשימה
- מצביע לאיבר הראשון head[L]
  - מצביע לאיבר האחרון tail[L]

#### QueueInit(L)

- 1.  $head[L] \leftarrow nil$
- 2.  $tail[L] \leftarrow nil$

### **QueueEmpty**(L)

1. **return** head[L] = nil



# רשימה חד-מקושרת – תרגול

## תרגיל 10.2-7 ■

כתבו שגרה לא רקורסיבית שהופכת את סדר האיברים ברשימה חד-מקושרת בת *ח* איברים. זמן הריצה (O(n). בעובר וכולה לבעותמען לכל בעתה ברמות דבועה עול זוכנו

השגרה יכולה להשתמש לכל היותר בכמות קבועה של זיכרון, בנוסף למקום הנדרש לאחסון הרשימה עצמה.