3. Tests Statistiques paramétriques

Le principe:

- Désicion à prendre entre deux hypothèses incompatibles : \mathcal{H}_0 contre \mathcal{H}_1
- Risque de première espèce ou seuil du test : $\alpha = P[rejet de \mathcal{H}_0 \mid \mathcal{H}_0] = P_{\mathcal{H}_0}[accepter \mathcal{H}_1]$
- Risque de deuxième espèce : $\beta = P[accepter \mathcal{H}_0 \mid \mathcal{H}_1]$. La puissance du test est 1β
- Règle de décision : $\{ Rejet \ de \ \mathcal{H}_0 \iff T \in W \ (la \ statistique \ du \ test \ T \ est \ dans \ la \ région \ critique) \}$

Tests de paramètres : Si X suit une loi $\mathcal{N}(\mu, \sigma^2)$

$$\mathcal{H}_0$$
: $\mu = \mu_0$ et σ^2 connue, alors $T = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \rightsquigarrow \mathcal{N}(0, 1)$
 \mathcal{H}_0 : $\mu = \mu_0$ et σ^2 inconnue, alors $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n-1}} \rightsquigarrow \mathcal{T}_{n-1}$
 \mathcal{H}_0 : $\mu = \mu_0$ et n grand, alors $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \rightsquigarrow \mathcal{N}(0, 1)$

$$\mathcal{H}_0$$
: $\sigma^2 = \sigma_0^2$ et σ^2 et μ inconnues, alors $T = \frac{nS^2}{\sigma_0^2} \leadsto \mathcal{X}_{n-1}^2$

$$\mathcal{H}_0$$
: $p = p_0$ et n grand, alors $T = \frac{F - p_0}{\frac{\sqrt{p_0(1 - p_0)}}{\sqrt{n}}} \rightsquigarrow \mathcal{N}(0, 1)$

$$\begin{cases} \mathcal{H}_{0}: \mu = \mu_{0} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < -u_{1-\alpha} & si \ \sigma^{2} \ connue \\ \mathcal{H}_{1}: \mu < \mu_{0} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < -t_{1-\alpha}^{n-1} & si \ \sigma^{2} \ inconnue \\ \end{cases}$$

$$\begin{cases} \mathcal{H}_{0}: \mu = \mu_{0} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T > u_{1-\alpha} & si \ \sigma^{2} \ connue \\ \mathcal{H}_{1}: \mu > \mu_{0} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T > t_{1-\alpha}^{n-1} & si \ \sigma^{2} \ inconnue \\ \end{cases}$$

$$\begin{cases} \mathcal{H}_{0}: \mu = \mu_{0} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < -u_{(1-\alpha/2)} \ ou \ T > u_{(1-\alpha/2)} & si \ \sigma^{2} \ connue \\ \mathcal{H}_{1}: \mu \neq \mu_{0} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < -t_{(1-\alpha/2)}^{n-1} \ ou \ T > t_{(1-\alpha/2)}^{n-1} & si \ \sigma^{2} \ inconnue \\ \end{cases}$$

$$\begin{cases} \mathcal{H}_{0}: \sigma^{2} = \sigma_{0}^{2} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < z_{1-\alpha}^{n-1} \\ \mathcal{H}_{1}: \sigma^{2} > \sigma_{0}^{2} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T > z_{1-\alpha}^{n-1} \end{cases}$$

$$\begin{cases} \mathcal{H}_{0}: \sigma^{2} = \sigma_{0}^{2} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < z_{\alpha/2}^{n-1} & ou \ T > z_{1-\alpha/2}^{n-1} \end{cases}$$

$$\begin{cases} \mathcal{H}_{0}: \sigma^{2} = \sigma_{0}^{2} & Rejet \ de \ \mathcal{H}_{0} \Longleftrightarrow T < z_{\alpha/2}^{n-1} & ou \ T > z_{1-\alpha/2}^{n-1} \end{cases}$$

$$\begin{cases} \mathcal{H}_0: \sigma^2 = \sigma_0^2 \\ \mathcal{H}_1: \sigma^2 \neq \sigma_0^2 \end{cases} \qquad Rejet \ de \ \mathcal{H}_0 \Longleftrightarrow T < z_{\alpha/2}^{n-1} \quad ou \quad T > z_{1-\alpha/2}^{n-1}$$

$$\begin{cases} \mathcal{H}_0: p = p_0 \\ \mathcal{H}_1: p < p_0 \end{cases}$$
 Rejet de $\mathcal{H}_0 \iff T < -u_{1-\alpha}$ sin grand
$$\begin{cases} \mathcal{H}_0: p = p_0 \\ \mathcal{H}_0: p = p_0 \end{cases}$$
 Rejet de $\mathcal{H}_0 \iff T > u_{1-\alpha}$ sin grand

$$\begin{cases} \mathcal{H}_0: p = p_0 \\ \mathcal{H}_1: p \neq p_0 \end{cases} \qquad Rejet \ de \ \mathcal{H}_0 \Longleftrightarrow T < -u_{(1-\alpha/2)} \quad ou \quad T > u_{(1-\alpha/2)} \quad si \ n \ grand$$

Calcul de la p_{valeur} :

- La p_{valeur} est le seuil limite à partir duquel \mathcal{H}_0 est rejetée (\mathcal{H}_1 est acceptée) compte tenu des données observées : $\left\{ Rejet \ de \ \mathcal{H}_0 \Longleftrightarrow \alpha > p_{value} \right\}$
- Test unilatéral inférieur : $p_{valeur} = P_{\mathcal{H}_0}(T < T_{calc})$
- Test unilatéral supérieur : $p_{valeur} = P_{\mathcal{H}_0}(T > T_{calc})$
- Test bilatéral (lois Normale et Student) : $p_{valeur} = 2 * [1 P_{\mathcal{H}_0}(T < |T_{calc}|)]$
- Test bilatéral (lois Khi-deux et Fisher) : $p_{valeur} = 2 * Min \{ P_{\mathcal{H}_0}(T < T_{calc}) ; P_{\mathcal{H}_0}(T > T_{calc}) \}$

4. Tests de comparaisons de 2 échantillons

Test de comparaison de 2 échantillons appariés :

Soient $(x_1,...,x_n)$ et $(x_1',...,x_n')$ deux séries de données mesurées sur le même échantillon d'individus et sur la même variable X. Soient $D_i = X_i - X_i'$ toutes les différences. On suppose que $D \rightsquigarrow \mathcal{N}(\mu_d, \sigma_d^2)$.

$$\begin{cases} \mathcal{H}_0: \mu_d = 0 \\ \mathcal{H}_1: \mu_d \neq 0 \end{cases}$$
 La statistique est $T = \frac{\overline{D}\sqrt{n-1}}{S_d} \rightsquigarrow \mathcal{T}_{n-1}$

Rejet de
$$\mathcal{H}_0 \Longleftrightarrow T < -t_{1-\alpha/2}^{n-1} \text{ ou } T > t_{1-\alpha/2}^{n-1}$$

Pour un test unilatéral supérieur (si inférieur, échanger X et X') : Rejet de $\mathcal{H}_0 \Longleftrightarrow T > t_{1-\alpha}^{n-1}$

Test de comparaison de 2 échantillons indépendants :

Soient $(X_1, ..., X_{n_1})$ un premier échantillon de loi $\mathcal{N}(\mu_1, \sigma_1^2)$, et $(Y_1, ..., Y_{n_2})$ un second échantillon de loi $\mathcal{N}(\mu_2, \sigma_2^2)$. On suppose les deux échantillons indépendants.

1.
$$\begin{cases} \mathcal{H}_0: \sigma_1^2 = \sigma_2^2 \\ \mathcal{H}_1: \sigma_1^2 \neq \sigma_2^2 \end{cases} \iff \begin{cases} \mathcal{H}_0: \sigma_1^2 / \sigma_2^2 = 1 \\ \mathcal{H}_1: \sigma_1^2 / \sigma_2^2 \neq 1 \end{cases} ; T = \frac{S_1^{'2}}{S_2^{'2}} \leadsto \mathcal{F}_{(n_1 - 1; n_2 - 1)}$$

On suppose T>1. Si T<1 échangez les rôles de X et Y (Attention aux degrés de liberté de la loi de Fisher).

Rejet de
$$\mathcal{H}_0 \iff T > f_{(1-\alpha/2)}^{(n_1-1;n_2-1)}$$

Pour un test unilatéral supérieur : $Rejet\ de\ \mathcal{H}_0 \Longleftrightarrow T > f_{(1-\alpha)}^{(n_1-1;n_2-1)}$

2.
$$\begin{cases} \mathcal{H}_0: \mu_1 = \mu_2 \\ \mathcal{H}_1: \mu_1 \neq \mu_2 \end{cases} \quad si \ \sigma_1^2 = \sigma_2^2 \quad T = \sqrt{\frac{n_1 + n_2 - 2}{\frac{1}{n_1} + \frac{1}{n_2}}} \frac{\overline{X} - \overline{Y}}{\sqrt{n_1 S_1^2 + n_2 S_2^2}} \rightsquigarrow \mathcal{T}_{n_1 + n_2 - 2}$$

Rejet de
$$\mathcal{H}_0 \iff T < -t_{(1-\alpha/2)}^{(n_1+n_2-2)} \text{ ou } T > t_{(1-\alpha/2)}^{(n_1+n_2-2)}$$

Pour un test unilatéral supérieur : Rejet de $\mathcal{H}_0 \Longleftrightarrow T > t_{(1-\alpha)}^{(n_1+n_2-2)}$

3. Tests des moyennes dans le cas de grands échantillons :
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \rightsquigarrow \mathcal{N}(0, 1)$$

Test bilatéral : Rejet de $\mathcal{H}_0 \iff T < -u_{(1-\alpha/2)}$ ou $T > u_{(1-\alpha/2)}$

Test unilatéral supérieur : $Rejet de \mathcal{H}_0 \Longleftrightarrow T > u_{(1-\alpha)}$

Test de comparaison de 2 proportions (2 échantillons indépendants) :

Soient p_1 et p_2 les proportions d'un même caractère mesuré sur deux populations différentes de taille n_1 et n_2 (grands).

$$\begin{cases} \mathcal{H}_0: \ p_1 = p_2 \\ \mathcal{H}_1: \ p_1 \neq p_2 \end{cases}$$
 La statistique est $T = \frac{F_1 - F_2}{\sqrt{F(1 - F)(\frac{1}{n_1} + \frac{1}{n_2})}} \rightsquigarrow \mathcal{N}(0, 1) \text{ avec } F = \frac{n_1 F_1 + n_2 F_2}{n_1 + n_2}$

Test bilatéral : Rejet de $\mathcal{H}_0 \iff T < -u_{(1-\alpha/2)} \text{ ou } T > u_{(1-\alpha/2)}$

Test unilatéral supérieur : Rejet de $\mathcal{H}_0 \iff T > u_{(1-\alpha)}$