CSE 326: Data Structures Disjoint Set Union/Find

Brian Curless Spring 2008

Announcements (5/19/08)

- Homework due on Friday at the beginning of class.
- Reading for this lecture: Chapter 8.

2

Making Connections

You have a set of nodes (numbered 1-9) on a network. You are given a sequence of pairwise connections between them:

3-7

8-2

1-6

5-7

4-8

3-5

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections redundant due to indirect connections?

Q: How many sub-networks do you have?

Making Connections

Answering these questions is much easier if we create disjoint sets of nodes that are connected:

Start: {1} {2} {3} {4} {5} {6} {7} {8} {9}

3-5

4-2

1-6

5-7

4-8

3-5

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections redundant due to indirect connections?

Q: How many sub-networks do you have?

Applications of Disjoint Sets

Maintaining disjoint sets in this manner arises in a number of areas, including:

- Networks
- -Transistor interconnects
- -Compilers
- Image segmentation
- Building mazes (this lecture)
- -Graph problems
 - Minimum Spanning Trees (upcoming topic in this class)

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
 - Union merge two sets to create their union
 - Find determine which set a given item appears in
- A common operation sequence:
 - Connect two elements if not already connected: if (Find(x) != Find(y)) then Union(x,y)

5

6

Disjoint Sets and Naming

- Maintain a set of pairwise disjoint sets.
 - $-\{3,5,7\}$, $\{4,2,8\}$, $\{9\}$, $\{1,6\}$
- Each set has a unique name: one of its members (for convenience)
 - $-\{3,\underline{5},7\}$, $\{4,2,\underline{8}\}$, $\{\underline{9}\}$, $\{\underline{1},6\}$

Union

- Union(x,y) take the union of two sets named x and y
 - $-\{3,\underline{5},7\}$, $\{4,2,\underline{8}\}$, $\{9\}$, $\{\underline{1},6\}$
 - Union(5,1)
 - $\{3,\underline{5},7,1,6\}, \{4,2,\underline{8}\}, \{\underline{9}\},$

7

Find

 Find(x) – return the name of the set containing x.

$$-\{3,\underline{5},7,1,6\},\{4,2,\underline{8}\},\{\underline{9}\},$$

- -Find(1) = 5
- Find(4) = 8

Example

{1,2,<mark>7</mark>,8,9,13,19} {1,2,<u>7</u>,8,9,13,19,14,20 26,27} Find(8) = 7Find(14) = 20**4 5**} {<mark>6</mark>} Union(7,20) **10 10** *{*11,17*}* {11,<u>17</u>} **12** <u>{12</u>} {14,<u>20</u>,26,27} {15,<u>16</u>,21} {15,<u>16</u>,21} {22,23,24,29,39,32 {22,23,24,29,39,32 33,34,35,36} 33,34,35,36} 10

9

Nifty Application: Building Mazes

Idea: Build a random maze by erasing edges.

Building Mazes

· Pick Start and End

Building Mazes

• Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted (except at "start" and "end").
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

13

A Cycle

A Good Solution

15

14

16

A Hidden Tree

17

Number the Cells

We start with disjoint sets S ={ $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$,... $\{36\}$ }. We have all possible edges between neighbors E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start

1	2	3	4	5	6	
7	8	9	10	11	12	
13	14	15	16	17	18	
19	20	21	22	23	24	
25	26	27	28	29	30	
31	32	33	34	35	36	Er

End

18

Idea: Union-find operations will be done on cells.

Maze Building with Disjoint Union/Find

Algorithm sketch:

- 1. Choose edge at random.
 - → Boundary edges are not in edge list, so left alone
- 2. Erase it (and its wall) if the neighbors are in disjoint sets.
 - → Avoids cycles
- 3. Take union of those sets.
- 4. Go to 1, iterate until there is only one set.
 - → Every cell reachable from every other cell.

Pseudocode

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S
Pick a random edge (x,y) and remove from E
u = Find(x);
v = Find(y);
if u ≠ v then
Union(u,v)
else
Add edge (x,y) to Maze
All remaining members of E together with Maze form
the maze
```

9

Example Step

Example

```
{1,2,<mark>7</mark>,8,9,13,19}
                                              {1,2,7,8,9,13,19,14,20,26,27}
                         Find(8) = 7
4
                         Find(14) = 20
                                              4
(5)
                                              {<u>5</u>}
6}
                                              {<mark>6</mark>}
                          Union(7,20)
10
                                              10
{11,17}
                                             {11,<u>17</u>}
{12}
                                              {12}
{14,20,26,27}
                                             {15,<u>16</u>,21}
{15,<u>16</u>,21}
                                              {22,23,24,29,39,32
{22,23,24,29,39,32
                                               33,34,35,36}
 33,34,35,36}
                                                                            22
```

Example

Example at the End

