Global Explainability (XAI) Techniques Quantifying the uncertainty of the explanations

Vasilis Gkolemis¹

¹ATHENA Research and Innovation Center

November 2021

- Intro to XAI
- Peature Effect
- Feature Interaction
- 4 Heterogeneous effects
- 5 Feature Importance
- 6 Extras

- Intro to XAI
- Peature Effect
- Feature Interaction
- 4 Heterogeneous effects
- **5** Feature Importance
- 6 Extras

- 1 Intro to XAI
- Peature Effect
- Feature Interaction
- 4 Heterogeneous effects
- 5 Feature Importance
- 6 Extras

Feature Interaction - Motivation

- Is Feature Effect a good approach?
 - Interpretability? very good, easy intuition
 - Fidelity? it depends..
- Additive case: $f(x) = f_1(x_1) + f_2(x_2)$
 - Generalized Additive Models
 - X-by-design
- Non-additive case: $f(\mathbf{x}) = f_1(x_1) + f_2(x_2) + \underbrace{f_{12}(x_1, x_2)}_{interaction}$
 - how to distribute $f_{12}(x_1, x_2)$ to x_1 and x_2 ?
 - Research question! Later: uncertainty could help
- *f* is unknonw, so first, someone must inform about the interaction terms
- Feature Interaction Methods!

Problem Statement

When features interact with each other in a prediction model, the prediction cannot be expressed as the sum of the feature effects, because the effect of one feature depends on the value of the other feature. Aristotle's predicate "The whole is greater than the sum of its parts" applies in the presence of interactions.¹

¹Interpretable Machine Learning book

H-statistic

• Level of interaction between feature i and feature j

$$\mathcal{H}_{jk}^{2} = \frac{\sum_{i=1}^{n} \left(PD_{jk}(x_{j}^{(i)}, x_{k}^{(i)}) - PD_{j}(x_{j}^{(i)}) - PD_{k}(x_{k}^{(i)}) \right)^{2}}{\sum_{i=1}^{n} PD_{jk}^{2}(x_{j}^{(i)}, x_{k}^{(i)})}$$

 Level of interaction between feature i and all the other features

$$\mathcal{H}_{j}^{2} = \frac{\sum_{i=1}^{n} \left(f(x^{(i)}) - PD_{j}(x_{j}^{(i)}) - PD_{-j}(x_{-j}^{(i)}) \right)^{2}}{\sum_{i=1}^{n} f^{2}(x^{(i)})}$$

H-statistic

Other approaches

- Greenwell's interaction index
 - PDP-based method
 - A Simple and Effective Model-Based Variable Importance Measure
- SHAP interaction index
 - SHAP-based method
 - Consistent Individualized Feature Attribution for Tree Ensembles

- Intro to XAI
- Peature Effect
- Feature Interaction
- 4 Heterogeneous effects
- Feature Importance
- 6 Extras

Interaction implies heterogeneity

The interaction index measures the contribution of the interaction terms:

- $f(x_1, x_2) = x_1^2 + \log(x_2) + \alpha x_1 x_2^3$
- $\alpha = 0.1 \rightarrow$ low interaction index \rightarrow high fidelity
- $\alpha = 100 \rightarrow \text{high interaction index} \rightarrow \text{low fidelity}$

But it does not say how the interaction terms influence the feature effect plots

Example

- Intro to XAI
- 2 Feature Effect
- Feature Interaction
- 4 Heterogeneous effects
- 5 Feature Importance
- 6 Extras

- Intro to XAI
- Peature Effect
- Feature Interaction
- 4 Heterogeneous effects
- 5 Feature Importance
- 6 Extras