UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 310 DIGITAL SIGNAL PROCESSING - FALL 2023

Homework 7

Profs. Do, Snyder, Moustakides

Due: October 13, 2023 on Gradescope

1. For each of the following LTI systems with impulse response h[n], determine the (i) frequency response $H(\omega)$, (ii) magnitude response $|H(\omega)|$, (iii) phase response $\angle H(\omega)$, and (iv) plot the magnitude and phase responses for $\pi \leq \omega \leq \pi$.

(a)
$$h[n] = \{2, 0 - 1, 0, 2\}$$

(b)
$$h[n] = \{1, -1, 1, -1\}$$

2. The frequency response of a real-valued LTI system is given by

$$H(\omega) = j, \ \pi \le \omega \le 2\pi.$$

for the interval of $\pi \leq \omega \leq 2\pi$. Considering the symmetries of the DTFT:

- (a) Plot $|H(\omega)|$ for $-\pi \le \omega \le \pi$.
- (b) Plot $\angle H(\omega)$ for $-\pi \le \omega \le \pi$.
- (c) Determine the system's impulse response h[n].

3. Consider an LTI system with the following frequency response:

$$H(\omega) = \omega^2 e^{j\sin(\omega)}.$$

- (a) Is this system real-valued?
- (b) Compute the system response y[n] to input $x[n] = e^{j\frac{\pi}{2}n} 2\cos\left(\frac{5\pi}{6}n\right)$.
- (c) Compute the system response y[n] to input $x[n] = 5 e^{j\frac{\pi}{4}n} + 3\sin\left(\frac{\pi}{3}n + \frac{\pi}{4}\right)$

4. The continuous-time Fourier transform $X_a(\Omega)$ of an analog signal $x_a(t)$ is given below. We sample $x_a(t)$ at some sampling rate $f_s = \frac{1}{T}$ to obtain discrete-time signal x[n].

(a) What is the minimum sampling rate such that we avoid aliasing when obtaining x[n]?

- (b) Sketch the DTFT of $x[n], X_d(\omega),$ for $-3\pi \le \omega \le 3\pi$ when $T = \frac{1}{2000}$ s. Please carefully label your axes.
- (c) Sketch $X_d(\omega)$ for $-3\pi \le \omega \le 3\pi$ when $T = \frac{1}{1000}$ s. (d) Sketch $X_d(\omega)$ for $-3\pi \le \omega \le 3\pi$ when $T = \frac{3}{2000}$ s.