# Sistemas Digitales

Nad Garraz y comunidad (ojalá) Facultad de Ciencias Exactas y Naturales UBA

## Choose your destiny:

(dobleclick en los ejercicio para saltar)

9.

**10**.

### • Notas teóricas

**4**.

• Ejercicios de la guía:

| 1. | <b>5.</b> |
|----|-----------|
| 2. | 6.        |
| 3. | <b>7.</b> |

8.

El repo en github para descargar las guías con los últimos updates.



https://github.com/nad-garraz/sistemasDigitales

La Guía 2 se actualizó por última vez:  $\frac{24/08}{2024}$  @  $\frac{17:46}{2024}$ 





https://github.com/nad-garraz/sistemasDigitales/blob/main/2-guia/2-sol.pdf

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram  $\bigcirc$ .



https://t.me/joinchat/DS9ZukGbZgIOIaHgdBlavQ

#### Notas teóricas:

 $\blacksquare$  En la siguiente table  ${\tt A}, {\tt B}$  y  ${\tt C}$  son booleanas que pueden tener cualquier valor 0 o 1:

| Propiedad           | AND, ·                                               | <del>-</del> D-      | OR, +                                                     | <b>₽</b>                     |
|---------------------|------------------------------------------------------|----------------------|-----------------------------------------------------------|------------------------------|
| Identidad           | 1·A = A                                              | 1 - 0 - 1 - 1 - 1    | O+A=A                                                     | 0<br>1<br>1<br>1             |
| Nulo                | 0·A = 0                                              | 0 1 -0               | 1+A=1                                                     | 1 1 1 1 1 1 1                |
| Idempotencia        | $A \cdot A = A$                                      | 1 - 0 - 0            | A+A=A                                                     |                              |
| Inverso/complemento | $A \cdot \overline{A} = 0$                           | 1 - 0 - 0 1 - 0 - 0  | $A + \overline{A} = 1$                                    | 1 - 1 0 - 1                  |
| Conmutatividad      | $A \cdot B = B \cdot A$                              | 1, 0 10 0, 1 00      | A+B=B+A                                                   | 1, 0 - 10 1, 0 - 00          |
| Distributividad     | $A+(B\cdot C)=(A+B)\cdot (A+C)$                      | =<br>:D;D,<br>;D,    | $A \cdot (B+C) = A \cdot B + A \cdot C$                   | ; D-7<br>=<br>; D-7<br>; D-7 |
| Asociatividad       | $(A \cdot B) \cdot C = A \cdot (B \cdot C)$          | ;:D-;D-;             | (A+B)+C=A+(B+C)                                           | ; D-D-,                      |
| Absorción           | $A \cdot (A+B) = A$                                  | ; D-v                | A+A·B=A                                                   | ; <del>D-</del> D-,          |
| De Morgan           | $\overline{A \cdot B} = \overline{A} + \overline{B}$ | 1:±D+<br>≡<br>1:\$D- | $\overline{A}+\overline{B}=\overline{A}\cdot\overline{B}$ | # <del></del>                |

#### Ejercicios de la guía:

Todas las compuertas mencionadas en esta práctica son de 1 o 2 entradas, a menos que se indique lo contrario. Usaremos símbolos detallados a continuación para representar las distintas funciones lógicas:  $\mathtt{XOR} \to \oplus$ ,  $\mathtt{NAND} \to |$ ,  $\mathtt{NOR} \to \downarrow$ .

Durante la presente práctica se recomienda fuertemente la utilización de un simulador para experimentar con los componentes y cicuitos propuestos y verificar las soluciones. Una recomendación es el Logisim (http://www.cburch.com/logisim/)

#### Circuitos Combinatorios

Ejercicio 1 Demostrar si las siguientes equivalencias de fórmulas booleanas son verdaderas o falsas:

- a)  $x \cdot z = (x + \overline{y}) \cdot (\overline{x} + z)$ .
- b)  $x \oplus (y \cdot z) = (x \oplus y) \cdot (x \oplus z)$  donde se aplica la propiedad distributiva con respecto a  $\oplus$ .
- a)  $(x+y)(x+\overline{y})(\overline{x}+z) = (xx+x\overline{y}+xy+y\overline{y})(\overline{x}+z) = (x+x(y+\overline{y})+0)(\overline{x}+z) = x(\overline{x}+z) = x\overline{x}+xz = xz$
- b)  $x \oplus (y \cdot z) = (x \oplus y) \cdot (x \oplus z)$  donde se aplica la propiedad distributiva con respecto a  $\oplus$ .

Si querés mandarlo: Telegram  $\rightarrow \bigcirc$ , o mejor aún si querés subirlo en LATEX  $\rightarrow \bigcirc$ .

Ejercicio 3 💩... hay que hacerlo! 🗑

Si querés mandarlo: Telegram  $\rightarrow \bigcirc$ , o mejor aún si querés subirlo en  $\LaTeX$ 

Si querés mandarlo: Telegram  $\to \odot$ , o mejor aún si querés subirlo en LATEX  $\to \odot$ .

Ejercicio 5 💩... hay que hacerlo! 🗑

Si querés mandarlo: Telegram  $\to \odot$ , o mejor aún si querés subirlo en LATEX  $\to \odot$ .

Ejercicio 6 ②... hay que hacerlo! 🔞

Si querés mandarlo: Telegram  $\to \bigcirc$ , o mejor aún si querés subirlo en LATEX  $\to \bigcirc$ .

Si querés mandarlo: Telegram  $\to \bigcirc$ , o mejor aún si querés subirlo en LATEX  $\to \bigcirc$ .

Si querés mandarlo: Telegram  $\rightarrow \bigcirc 3$ , o mejor aún si querés subirlo en  $\LaTeX \rightarrow \bigcirc 3$ .

Si querés mandarlo: Telegram  $\rightarrow \bigcirc 3$ , o mejor aún si querés subirlo en  $\LaTeX \rightarrow \bigcirc 3$ .

Ejercicio 10 @... hay que hacerlo! 6

Si querés mandarlo: Telegram  $\rightarrow \bigcirc 3$ , o mejor aún si querés subirlo en  $\LaTeX \rightarrow \bigcirc 3$ .