Measure and Integration I (MAA5616), Fall 2020 Homework 3, due Thursday, Sep. 24

- 1. A finitely additive measure μ that is continuous below is countably additive. Prove it. *Note:* If $\mu(X) < \infty$, continuity above also implies countable additivity. *Note:* Compare this problem to #4 in HW2.
- **2.** Let $\mathcal{A} \subset 2^X$ be an infinite σ -algebra, that is, $\operatorname{card}(\mathcal{A}) \geq \operatorname{card}(\mathbb{N})$. Verify the following properties.
 - A contains an infinite sequence of disjoint sets.
 - $\operatorname{card}(\mathcal{A}) \geq \mathfrak{c} = \operatorname{card}(\mathbb{R}).$
- **3.** Let (X, \mathcal{A}) be a measurable space, so that $X \neq \emptyset$ and \mathcal{A} is a σ -algebra. A mapping $f: X \to Y$ is given, $Y \neq \emptyset$. Verify the following properties.
 - The collection of sets $\{E \subset Y : f^{-1}(E) \in \mathcal{A}\}$ is a σ -algebra. Note: we already encountered this statement when discussing product spaces.
 - If $\mathcal{E} \subset 2^Y$ and $f^{-1}(E) \in \mathcal{A}$ for every $E \in \mathcal{E}$, then also $f^{-1}(F) \in \mathcal{A}$ for all $F \in \sigma(\mathcal{E})$.
- **4.** Verify that an open set in \mathbb{R}^n is represented as a countable union of disjoint dyadic cubes. Conclude that $\mathcal{B}_{\mathbb{R}^n} = \sigma(\{\text{dyadic cubes in } \mathbb{R}^n\})$.
- **5.** Verify that a dyadic cube in \mathbb{R} of the form

$$\left[\frac{a_l}{2^k}, \frac{a_l+1}{2^k}\right), \qquad a_l, k \in \mathbb{Z}$$

contains exactly all the numbers in \mathbb{R} with binary expansions prescribed up to the k-th place. For example, if $a_l = k = 0$, we have

$$[0,1) = \{x \in \mathbb{R} : x = \overline{0 \cdot b_1 b_2 b_3 \dots}\},$$

with b_i denoting the digits in binary expansion. Note that we prohibit periodic $\overline{1}$, which causes the cube to be half-open.

6. Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}$:

$$(\overline{\ldots a_{-1}a_0\boldsymbol{.}a_1a_2a_3\ldots}, \overline{\ldots b_{-1}b_0\boldsymbol{.}b_1b_2b_3\ldots}) \mapsto \overline{\ldots a_{-1}b_{-1}a_0b_0\boldsymbol{.}a_1b_1a_2b_2\ldots},$$

where the binary expansion is used and there are infinitely many zero digits on the left. We also prohibit periodic $\overline{1}$.

- Verify that f is injective but not surjective.
- \bullet Verify that preimage of a 1-dimensional dyadic cube is either one or two 2-dimensional cubes. (Use #5.)
- ullet Conclude from #3 and #4 that preimage of a Borel set under f is a Borel set.