		• 구체적인 설비 제어정밀도 향상방안 확정, 적용
ㅇ 설비 제어시스턴	및 엔진 모	완료 및 오차감소여부 평가
사시스템 개선 및	평가	(제어 주요인자의 정상상태 제어성능을 ASME
		권고 수준 이상으로 향상)
o 설비 모사시스템 개선 및 평 가	•설비 정상상태 모사 결과와 시험 데이터 비교를	
	기서 미 퍼	통한 예측 신뢰성 개선 (목표 예측오차 3%이내)
	月刊 天 号	- 현재 예측오차 : 4%이상
		•설비 천이운전 모사 특성과 시험 데이터 비교를
		통한 예측 신뢰성 평가

위 연구목표들을 달성하기 위한 연구범위 및 구체적인 연구수행 방법은 아래와 같다.

가. 1차년도 연구범위 및 연구수행 방법

연구범위	연구수행방법	구체적인 내용
,		- 현 설비에 적용이 가능한 온도/압력 측
	수 연구 수행	정 장치 설계변수 선별 및 이에 따른
- 측정체계		형상설계
고도화를	- 석계변수에 따르 형산석계를 지해	- 현재 활용 중인 측정 장치 성능 지표
위한	하고 이에 대한 성능을 현재 활용	
온도/압력	중인 측정 장치와 비교	
	- 기존 tare Load 시스템에 대한 성	
및 tare	능분석	- 기존 엔진 추력 측정 시스템 및 tare
	- Tare Load 시스템에 대한 요구성능	Load 시스템 데이터 분석
10au 시스템	분석	- Tare load 시스템에 대한 국과연 요구
	신 기	도 분석
기초연구		- Tare load 시스템의 작동기 개선 요구
		사항 도출 및 작동기 설계/제작
	_ 주ㅇ 무리랴 츠저기버이 체이도햐	- AIAA, ASME 논문 및 NASA, DTIC
측정방법의	부석 - 부석	technical report 검색
유효성	신 기	- Major 급 엔진 시험설비 제작 회사의
검증을		데이터 측정 시스템 사양 조사
통한	기스코 법사 O 트뤼 기조 호기 비.	
데이터		- 각종 물리량 측정방법에 대한 유효성
획득	법의 유효성 검증 및 개선방안 도	
시스템	출 - 기존 호기 변하드 편기거기에 대최	영 계획 수립 - 공기유량 및 추력측정 등에 대한 측정
기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	, , , , , , , , , , , , , , , , , , , ,	
기선 당신 - 도출 및	단계적 검증 수행	불확도 평가절차 검증 및 수정 필요항
	축과 부위는 학교회의 기업이다.	목 도출
		- 측정 불확도 개선 방법 도출, 내부 검
측정	출	증 및 향후 반영 계획 수립
불확도	- 기술적 분석/시험을 통한 물리량 별	- 물리량 별 측정기 교정을 통한 향상된
분석	향상된 측정정확도 제공	측정 정확도 제공