Langages Formels et Automates Devoir n° 9

Sébastien MOSSER

ESSI 1 – Groupe 2

Personalisation de l'énoncé

On considère l'alphabet $\{1,2,3,6\}$, puisque la date de naissance en question est 1611.

Le mot w est donc : w = 1236.

Reconnaissance des mots ne contenant pas w:

On définit simplement l'automate déterministe (non-complet pour simplifier la suite) permettant de reconnaitre les mots ne contenant pas w comme facteur. Tous les états sont des états finaux¹.

Grammaire des mots de longueur paire non - palyndrôme

Formalisme : Pour simplifier l'écriture des règles de cette grammaire, on introduit un mécanisme permettant de regrouper certaines règles :

- On note l une lettre quelconque de $\Sigma: l \in \{1, 2, 3, 6\}$
- A chaque lettre de Σ , on associe une variable: $1 \to V_1$, $2 \to V_2$, $3 \to V_3$, $6 \to V_6$.
- T désigne une variable quelconque parmis $V_1 \dots V_6$.

On obtient donc la grammaire suivante :

$$\begin{cases} S \to lS_2T \ (T \neq V_l) \mid lSV_l \\ V_l \to l \\ S_2 \to \varepsilon \mid lS_2T \end{cases}$$

Par théorème, on obtient donc pour reconnaitre cette grammaire un automate à pile à un seul état.

¹dia ne permettant pas de dessiner des doubles cercles.

Reconnaissance par pile vide

On utilise pour cela la technique de l'automate produit. En faisant le produit de l'automate à pile (appelé P pour palyndrome) reconnaissant la grammaire par l'automate déterministe² (appelé F pour facteur), on obtient un automate à pile à 4 etats. On note f tout état appartenant à F, et t_F toute transition telle que $t_F \in \delta(q, x)$.

Etat	Lettre	Pile	Suivant	Pile
Q_0	ε	Z	Q_0	SZ
q	ε	S_2	q	ε
\overline{q}	l	S_2	t_F	S_2T
\overline{q}	l	V_l	t_F	ε
\overline{q}	l	S	t_F	$\overline{\mathrm SV_l}$
q	l	S	t_F	$S_2T, (T \neq V_l)$

Reconnaissance par etat final

Il suffit de rajouter un 5^{eme} état à l'automate. Cette etat, appelé Fi, répond à la transition suivante :

Ainsi, lorsque la pile est 'presque' vide, on se déplace vers un état final \dots

²sa non-complétude est un avantage