Lab Notebook MSC

Baptiste Rouger

29 janvier 2018

Table des matières

Т	15 Jan 2018	2
2	16 Jan 2018	2
3	17 Jan 2018	2
4	18 Jan 2018	2
5	19 Jan 2018	2
6	20 Jan 2018	3
7	29 Jan 2018	3
\mathbf{A}	Creation du film à partir des images	4
В	Analyse des images de la nutation	4

1 15 Jan 2018

- Début d'installation sur le PC
- Cassage de ArchLinux
- Rangement de la salle de manip et mise en place de la salle de manip
 - Raccourcissement des plus longues barres de la cage qui gênaient.
 - Réorganisation de la salle
- Lecture de la review de Mathieu

Comment la température ambiante influence la fermeture des feuilles ? Comment la fermeture des feuilles affecte la température de celles-ci ?

2 16 Jan 2018

- Installation de Debian sur le PC
- Installation des logiciels importants sur le PC
- Mise en place de la première manip test pour la **nutation** : début à **15h52**, fin à **10h42** le 17 Jan 2018. Les données sont situées sur Alfred : /mnt/data/manip/Baptiste/test_16-01-2018. J'ai utilisé la plante "Abby" pour réaliser cette manip. Photo toutes les 90 secondes.

3 17 Jan 2018

- Arrêt de la manip **test** 16-01-2018 à 10h42
- Arrosage des plantes
- Récupération des données de la manip
- Création du film à partir des données de la manip (cfProtocole A)
- Réalisation du script **analysisScript.py** qui, à partir de photos stockées dans un dossier, réalise la timeline d'une ligne de pixel et la converti en image binaire

Le lien pour la vidéo: http://uptobox.com/5x80eimcd7xu

Le résultat du script analysisScript.py:

4 18 Jan 2018

- Début d'une deuxième manip pour observer la nutation (sur un plus long terme). Début à environ 12h30 (heure pc décalée????). Il fait 24.2°C dans la pièce, 49% d'humidité. On utilise la plante "Béa". Les numéro de protocole sont :
 - arduino : 21608
 - photos : 21821
- Création du script appelé anSc3.py qui utilise la librairie skimage pour analyser les images et réaliser le graphe de mouvement.

5 19 Jan 2018

Je me suis penché sur le problème du maintien de la température et de l'humidité de la salle de manip avec Arduino (ainsi que la photopériode). J'ai pris en compte la mesure de ces données. Schéma :

6 20 Jan 2018

J'ai refait le focus sur la jeune feuille, il n'était évidemment plus bon au bout de ces 2 jours et demi. \Rightarrow Il serait intéressant de voir si l'auto focus pourrait compenser intelligemment cela.

Pour les scripts, je vais essayer de trouver la position du centre de la tige en utilisant une moyenne pondérée par le nombre de pixels consécutifs

J'ai modifié les scripts : je les ai séparé en deux : TL.py sert à créer l'image de la timeline, Trajec.py sert à récupérer la position moyenne de la tige. On peut entre les deux scripts retailler l'image.

7 29 Jan 2018

J'ai travaillé sur les scripts d'analyse de l'image, de récupération de la trajectoire et d'analyse en ondelette de ces trajectoires. J'ai découpé chaque étape et je les ai mises dans des scripts précédents qui prennent différents arguments (cf Protocole B).

J'ai fini le robot arduino qui contrôle la température, l'humidité et les lampes. Je le teste pour la nuit.

Protocoles

A Creation du film à partir des images

- 1. On utilise Thunar pour renommer nos fichier pour que leurs noms soient une suite numérotée ininterrompue (eg. 001.jpg, 002.jpg, etc)
- 2. On utilise la commande ffmpeg -framerate 40 -i %03d.jpg -c:v libx264 -profile:v high -crf 20 -pix_fmt yuv420p output.mp4

Les fichiers à utiliser sont données par l'option -i, on peut changer le framerate (ici 40 images par secondes).

B Analyse des images de la nutation

- 1. On a mis toutes les photos du film dans un dossier. On récupère le chemin d'accès à ce dossier.
- 2. On utilise la commande : python 1-TL.py Path Line avec Path est la localisation du dossier Line est la ligne de pixel à extraire des photos
- 3. Puis python 2-Traj.py Path Picture dt avec Path la localisation du dossier, Picture est le nom de l'image générée par 1-TL.py, et dt est le temps entre chaque photo.
- 4. Enfin python 3-WL.py Path CSV avec Path la localisation du dossier, CSV le nom du fichier csv créé par 2-Trajec.py