ENGG 5501: Foundations of Optimization

2018–19 First Term

Homework Set 2 Solution

Instructor: Anthony Man-Cho So

October 1, 2018

Problem 1.

(a) (10pts). By Theorem 12 of Handout 2, we have

$$f(y) \ge f(x) + (\nabla f(x))^T (y - x),$$

$$f(x) \ge f(y) + (\nabla f(y))^T (x - y).$$

Adding the above two inequalities yields the desired result.

(b) (10pts). Let $x, y \in \mathbb{R}^n$ be arbitrary. Consider the function $g : \mathbb{R} \to \mathbb{R}$ given by g(t) = f(x + t(y - x)). By the Fundamental Theorem of Calculus and the Chain Rule, we have

$$f(y) - f(x) = g(1) - g(0) = \int_0^1 g'(t) dt = \int_0^1 \nabla f(x + t(y - x))^T (y - x) dt.$$

Upon writing

$$\int_{0}^{1} \nabla f(x + t(y - x))^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (y - x) dt = \int_{0}^{1} \left[\nabla f(x + t(y - x)) - \nabla f(x) \right]^{T} (y - x) dt + \nabla f(x)^{T} (x - x) dt + \nabla f(x)^$$

and using the Cauchy–Schwarz inequality together with the Lipschitz continuity of ∇f , we obtain

$$|f(y) - f(x) - \nabla f(x)^{T} (y - x)| \leq \int_{0}^{1} |[\nabla f(x + t(y - x)) - \nabla f(x)]^{T} (y - x)| dt$$

$$\leq L ||y - x||_{2}^{2} \int_{0}^{1} t dt$$

$$= \frac{L}{2} ||y - x||_{2}^{2},$$

as desired.

Problem 2 (10pts). If the function $x \mapsto c^T x$ is constant on S, then its minimum is attained at any point on S. By Theorem 3 of Handout 2, we have $\operatorname{relint}(S) \neq \emptyset$. It follows that the minimum is attained at a point $\bar{x} \in \operatorname{relint}(S)$.

Conversely, suppose that the minimum of the function $x \mapsto c^T x$ is attained at a point $\bar{x} \in \operatorname{relint}(S)$. If $S = \{\bar{x}\}$, then there is nothing to prove. Hence, suppose that $S \neq \{\bar{x}\}$ and let $y \in S \setminus \{\bar{x}\}$ be arbitrary. Let \mathcal{L} be the line that passes through \bar{x} and y. Since $\bar{x} \in \operatorname{relint}(S)$, there exists an $\epsilon > 0$ such that $B(\bar{x}, \epsilon) \cap \operatorname{aff}(S) \subseteq S$. On the other hand, since $\mathcal{L} \subseteq \operatorname{aff}(S)$, we have $B(\bar{x}, \epsilon) \cap \mathcal{L} \subseteq S$. Thus, there exist $z \in S$ and $\theta \in (0, 1)$ such that $\bar{x} = \theta y + (1 - \theta)z$. Now, since

$$c^T \bar{x} = \theta c^T y + (1 - \theta) c^T z$$

and $c^T \bar{x} \leq \min\{c^T y, c^T z\}$ by the minimality of \bar{x} on S, we conclude that $c^T \bar{x} = c^T y = c^T z$. Since $y \in S \setminus \{\bar{x}\}$ is arbitrary, we see that $x \mapsto c^T x$ is constant on S.

Problem 3.

(a) Let $A = U\Lambda U^T$ be the spectral decomposition of A. Then, we have $\operatorname{tr}(AX) = \operatorname{tr}(U\Lambda U^TX) = \operatorname{tr}(\Lambda U^TXU)$. Since

$$\operatorname{tr}(X) = \operatorname{tr}(XUU^T) = \operatorname{tr}(U^T X U)$$

and

$$v^T X v = (U^T v)^T (U^T X U) (U^T v)$$
 for any $v \in \mathbb{R}^n$,

we see that $X \in \mathcal{U}_k$ iff $U^T X U \in \mathcal{U}_k$, where

$$\mathcal{U}_k \equiv \{ Z \in \mathcal{S}^n : \operatorname{tr}(Z) = k, I \succeq Z \succeq \mathbf{0} \}.$$

In particular, the given optimization problem is equivalent to

maximize
$$\operatorname{tr}(\Lambda X)$$

subject to $\operatorname{tr}(X) = k$, (1)
 $I \succeq X \succeq \mathbf{0}$.

Now, we claim that there exists an optimal solution to (1) that is diagonal. To see this, observe that $\operatorname{tr}(\Lambda X) = \sum_{i=1}^n \Lambda_{ii} X_{ii}$, and $I \succeq X \succeq \mathbf{0}$ implies that $X_{ii} \in [0,1]$ for $i=1,2,\ldots,n$. In particular, if X^* is an optimal solution to (1), then the diagonal matrix $\tilde{X}^* = \operatorname{diag}(X_{11}^*, X_{22}^*, \ldots, X_{nn}^*)$ is feasible for (1) and has the same objective value as X^* . This establishes the claim. Consequently, Problem (1) is equivalent to the following linear program:

maximize
$$\sum_{i=1}^{n} \Lambda_{ii} x_{i}$$
 subject to
$$\sum_{i=1}^{n} x_{i} = k,$$

$$\mathbf{0} \leq x \leq e.$$
 (2)

It is easy to verify that the optimal value of (2) is the sum of the largest k quantites in the set $\{\Lambda_{11}, \ldots, \Lambda_{nn}\}$, which is precisely equal to $\lambda_1^k(A)$. This completes the proof.

(b) For each $X \in \mathcal{S}^n$, define the function $f_X : \mathcal{S}^n \to \mathbb{R}$ by $f_X(A) = \operatorname{tr}(AX)$. Clearly, f_X is linear for each $X \in \mathcal{S}^n$. Then, by the result in (a), we have

$$\lambda_1^k(A) = \max_{X \in \mathcal{U}_k} f_X(A);$$

i.e., λ_1^k is the pointwise supremum of a collection of linear functions. Thus, λ_1^k is convex.

Problem 4.

(a) By Theorem 10 of Handout 2 (which requires the closedness of epi(f)), we have

$$f(x) = \sup_{(y,c) \in S_f} \{ y^T x - c \},$$
 (3)

where $S_f = \{(y, c) \in \mathbb{R}^n \times \mathbb{R} : y^T x - c \leq f(x) \text{ for all } x \in \mathbb{R}^n \}$. Moreover, the discussion below Theorem 10 of Handout 2 shows that $S_f = \text{epi}(f^*)$. Hence, we have $(y, c) \in S_f$ iff $f^*(y) \leq c$. This, together with (3), implies that

$$f(x) = \sup_{y \in \mathbb{R}^n} \left\{ y^T x - f^*(y) \right\},\tag{4}$$

which in turn implies that $f = f^{**}$.

(b) Suppose that (i) holds; i.e., $y \in \partial f(x)$. Then, by definition, we have $f(z) \geq f(x) + y^T(z-x)$ for all $z \in \mathbb{R}^n$, or equivalently,

$$y^T x - f(x) \ge y^T z - f(z)$$
 for all $z \in \mathbb{R}^n$.

In particular, we have $y^Tx - f(x) \ge \sup_{z \in \mathbb{R}^n} \{y^Tz - f(z)\} = f^*(y)$. On the other hand, we have $f(x) \ge y^Tx - f^*(y)$ from (4). Hence, we obtain $f(x) + f^*(y) = x^Ty$; i.e., (ii) holds. By reversing the preceding argument, we see that the converse also holds.

Next, suppose that (ii) holds; i.e., $f(x) + f^*(y) = x^T y$. By the result in (a), we have $f^{**}(x) + f^*(y) = x^T y$. Since $f^{**}(x) \ge z^T x - f^*(z)$ for all $z \in \mathbb{R}^n$, we obtain $y^T x \ge f^*(y) + z^T x - f^*(z)$ for all $z \in \mathbb{R}^n$, or equivalently,

$$f^*(z) \ge f^*(y) + x^T(z - y)$$
 for all $z \in \mathbb{R}^n$.

This shows that $x \in \partial f^*(y)$; i.e., (iii) holds. Again, the converse follows by reversing the preceding argument.