6 0	
1) a) Fx(x): [x1+0 2 x x 21	C) We can draw samples by
O otherwise	first finding the colf as done
0.00	In 16 and then generating
$\Rightarrow \int_{\infty}^{\infty} \frac{\partial}{\partial x} dx$	a probability in (0,1) with
	Unif (0,1). We know that
$= 0 \cdot \left[\frac{-1}{0(x^{9})} \right]^{\infty}$	Unif (0,1) is a one to one
	continuous distribution that
<u>-1</u> + 10 = 0+1	will be used as Y.
	From here we can use an
$\int_{-\infty}^{\infty} f_{x}(x) dx \Rightarrow \int_{-\infty}^{\infty} f_{x}(x) dx = 1$	inverse Runction for the colf
	to get y such that
As a result, we know our fixed is	Fry = - in t. Using such an inversed function
a proper density function	
b) a (epf)	and solving for it will allow
b) $f_{\chi}(x) = \frac{\delta}{\chi^{1+\delta}} \Rightarrow f_{\chi}(x) = \int_{\frac{1}{2}}^{\chi} \frac{\delta}{(cDF)} d+$	us to find the random ramples
$F_{x}(x) = o\left[\frac{-1}{-e+e}\right]^{x}$	STATE OF THE STATE
× - • + •]	C ALL INC.
$F_{X}(x) = \frac{-1}{X^{\bullet}} + \frac{1}{1^{\bullet}}$	The state of the s
Xo 10	1161282
$F_{x}(x) = \frac{-1}{x^{o}} + 1$	
X	

Y·
2) a) x Y 0 1 2 (i) Given X = 1, Y is wolfarmly distributed
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
We can confirm the following since X=1, 'Y is unlhaming distributed
$P_{\text{true}}(1,1) = \frac{1}{2}$
$P_{X1Y}(0,0) = \frac{2}{3} = \frac{P_{X1Y}(0,0)}{P_{Y}(0)} = \frac{P_{X1Y}(0,0)}{P_{X1Y}(1,0)}$
Py (0) - xiy (0,0) + [xiy(1,0)
= P(XIY) (0,0)
P(x1y) (0,0)+8
$P(x y)(0,0) = (\frac{2}{3})(P_{x y}(0,0) + \frac{1}{8})$
$= \frac{2}{3} (P_{XIV}(0,0)) + (\frac{2}{3}) (\frac{1}{3}) = -\frac{1}{3}$
$(P(x y)(0,0)-(\frac{2}{3})(P_{RN}(0,0))=(\frac{2}{24})$
$\frac{1}{3}\left(P(x y)(0,0)\right) = \left(\frac{2}{24}\right)$
P(x y)(0,0) = 1/4
E(VV-1) = 4 - 1/2 / 1
$E(Y X=0) = \frac{4}{5} = 0 \cdot (P_{Y X}(0,0) + 1 \cdot (P_{Y X}(1,0)) + 2 \cdot (P_{Y X}(2,0))$
$= \frac{P_{X Y}(0,1) + 2(P_{X Y}(0,2))}{P_{X Y}(0,0) + P_{X Y}(0,1) + P_{X Y}(0,2)}$ $= \frac{P_{X Y}(0,1) + 2(P_{X Y}(0,2))}{P_{X Y}(0,0) + P_{X Y}(0,1) + P_{X Y}(0,2)}$
= Px1y (0,1) + 2 (3 - Px1y (0,1))
2 + Pxiy (0,1) + 3 - Pxiy (0,1)
$\Rightarrow P_{X Y}(0,1) + 2\left(\frac{3}{8} - P_{X Y}(0,1)\right) = \left(\frac{4}{5}\right)\left(\frac{5}{8}\right)$
$\Rightarrow P_{x Y}(o_{i}) + 2\left(\frac{3}{8}\right) - 2P_{x Y}(o_{i}) = \frac{20}{40}$
=> Pxy (0,1) = 2/8 = 1/4

$P_{X Y}(0,2) = \frac{3}{8} - P_{X Y}(0,1)$
3 1
= \frac{1}{8}
We can fill out the table as follows:
X 0 1 2
0 1/4 1/4 1/8
1 1/8 1/8 1/8
$3)a)P(A=k) = \sum_{n=0}^{\infty} P(B=n) \cdot P(A=k/B=n)$
$= \frac{e^{\lambda} \lambda^{n}}{2} \left(\frac{e^{\lambda} \lambda^{n}}{n!} \right) \left(\binom{n}{k} p^{k} \binom{n-k}{1-p} \right)$
$= e^{-\lambda} \lambda_{k}^{k} \sum_{n=k}^{\infty} \lambda_{n-k} ((-b)_{n-k} (x))$
$= e^{\lambda} (\lambda p)^{k} \sum_{n=k}^{\infty} \frac{(\lambda(1-p))^{n-k}}{(n-k)! \mu}$
01-17
$= \underbrace{e^{\lambda}(\lambda p)^{k}}_{k!} \underbrace{\infty}_{n=k} (\lambda(1-p))^{n-k}$
$u=n-k = \frac{e^{-\lambda}(\lambda p)^k}{\sum_{i=0}^{k} (\lambda(1-p))^{i}} = \frac{e^{\lambda}(\lambda p)^k}{k!} e^{\lambda(1-p)}$
= EAP (Ap) It Pollows poisson distribution)
K! Lt follows poisson distribution

No.	
	b) $P(B=n A=k) = \frac{P(B=n)P(A=k B=n)}{P(A=k)}$
	$= \frac{e^{-\lambda} \lambda^{n}}{n!} \left(\frac{\lambda^{n}}{k} \right)^{k} \left(\frac{1-p}{k} \right)^{k}$
	D!
	6 1 (yb),
	1211 - 2 Ap. n n! . k n-k
	$= \frac{(k!)}{e^{\lambda}} \frac{e^{\lambda} e^{\lambda} e^{\lambda} \frac{(n-p)!k!}{(n-p)!k!} p^{k} (1-p)^{n-k}}{\lambda^{k} p^{k}}$
	λ ^k P ^k
	$= e^{-\lambda(1-p)} \lambda^{n-k} (1-p)^{n-k}$
	(n-k)!
	$= \left e^{-\lambda(1-p)} \left(\lambda(1-p) \right)^{n-k} \right $
	(n-k)!
	Company of the compan
4)	a) f(x,y)= x+y 0 < x < y < 2 b) P(x < \frac{1}{2} y=1)
marginal 4 pag	=31 x2 + ~7 1/2
	= 4 2 + 4x 0
	$= \frac{1}{4} \left[\frac{y^2}{2} + y^2 \right]^{\frac{1}{2}}$
Conditional	$= \frac{3}{3}\sqrt{2} \qquad \qquad P(X < \frac{3}{2}) \lor = 1)$
bee xine	$\int_{0}^{\infty} \frac{(x+y)}{3} \left(\frac{x+y}{2}\right) dx$
	$F_{\times Y(X,Y) } = \left(\frac{2}{3}\right) \left(\frac{X+Y}{Y^2}\right)$ $\frac{2}{3} \left[\frac{X^2}{2} + X\right] = \frac{2}{3} \left(\frac{1}{2} + 1\right)$ when $0 < X < Y$
	P/ = 2 · 3
	P(x<₹1/=1)=1

$$E[x^{2}] Y = y] = \int_{0}^{y} x^{2} f(x|y) dx$$

$$= \int_{0}^{y} x^{2} \left(\frac{2}{3}\right) \left(\frac{x+y}{y^{2}}\right) dx$$

$$= \frac{2}{3y^{2}} \int_{0}^{y} x^{3} + x^{2}y dx$$

$$= \frac{2}{3y^{2}} \left[\frac{x^{4}}{4} + \frac{x^{2}}{3}\right]_{0}^{y}$$

$$= \frac{2}{3y^{2}} \left[\frac{y^{4}}{4} + \frac{y^{2}}{3}\right] = \frac{2}{3y^{2}} \left(\frac{7}{12}y^{4}\right)$$

$$Marginal pdf$$
of x

$$= \int_{x}^{y} \left[\frac{x+y}{4} + \frac{y}{3}\right] = \frac{2}{3y^{2}} \left(\frac{7}{12}y^{4}\right)$$

$$= \int_{0}^{y} \left[2x + 2 - \frac{3x^{2}}{2}\right]$$

$$= \frac{1}{4} \left[4x + 4 - 3x^{2}\right] = 0 < x < 2$$

$$= \frac{1}{8} \left[4x + 4 - 3x^{2}\right] = 0 < x < 2$$

$$= \frac{1}{8} \left[4x + 4 - 3x^{2}\right] = \frac{3x^{5}}{5} = 0$$

$$= \frac{1}{8} \left[4x + 4x^{3} - 3x^{5}\right] = \frac{1}{8} \left[400 - 288\right]$$

$$= \frac{1}{8} \left[8 + \frac{32}{3} - \frac{96}{5}\right]$$

$$= \frac{1}{8} \left[8 - \frac{80}{3} - \frac{96}{5}\right] = \frac{1}{8} \left[400 - 288\right]$$

$$= \frac{112}{120} = \frac{14}{15}$$