

10

Ein gesteuerter Thyristor-Dreipuls-Stromrichter speist eine ohmsch-induktive Last.

Fertigen Sie die Zeichnungen sauber und vollständig an, beschriften Sie die Gehen Sie von idealen Bedingungen aus (ideale Halbleiter-Bauteile, idealer Stromübergang von einem auf das andere Ventil, keine Verluste, $L_d \to \infty$). Sämtliche Wechselgrößen sind als Effektivwerte gegeben. Achsen!

Steuerwinkel $\alpha = 60^{\circ}$ $U_{\Delta} = 400 \text{ V}, 50 \text{ Hz}$ $\ddot{u} = N_P/N_S = 2$ $R = 10 \Omega$

8 ↑ PJ

0

ü = N_P/N_S: Übersetzungsverhältnis des Transformators

Ns: Sekundärwindungszahl des Transformators je Strang Np: Primärwindungszahl des Transformators je Strang

10 A/cm 5 µs/cm

(1.3b)

2.1. Bestimmen Sie den Scheitelwert Üs der sekundärseitigen Strangspannungen

2.2. Zeichnen Sie den zeitlichen Verlauf der Stromrichter-Ausgangsspannung ud. Benutzen Sie das bereitgestellte Diagramm (2a). Kennzeichnen Sie α .

Berechnen Sie die Gleichspannung U_{dia} (Steuerwinkel α = 60°) an dem Lastwiderstand R und den Gleichstrom I_d. 2.3.

2.4. Zeichnen sie die zeitlichen Verläufe der Ströme is1,is2 und is3. Nutzen Sie das bereitgestellte Diagramm (2b).

2.5. Wie verändert sich die Ausgangsspannung der M3-Schaltung, wenn bei gleichem Steuerwinkel der Transformator primärseitig im Stern statt im Dreieck geschaltet wird? (Kurze Antwort genügt)

Aufgabe 2: M3-Schaltung [11 P]

200 V/cm 5 µs/cm

(1.3a)

O