COMP9318: Data Warehousing

and Data Mining Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What is Cluster Analysis?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other chusters
- Cluster analysis https://powcoder.com
- Grouping a set of data objects into clusters
 Clustering belongs to unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

General Applications of Clustering

- Pattern Recognition
- Spatial Data Analysis
 - create thematic mapping less by all stering feature spaces
 - detect spatialtensters and explain them in spatial data mining
- Image Processing WeChat powcoder
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeting marketing programs. Help
- Land use: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

What Is Good Clustering?

- A good clustering method will produce high quality clusters with Assignment Project Exam Help
 - high <u>intra-class</u> similarity
 - low inter-class similarity
- The <u>quality</u> of adds tending tending to both the similarity measure used by the method and its implementation.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of science With a both a belp
- Minimal requirements for domain knowledge to determine input parameters

 Add WeChat powcoder

 Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Chapter 8. Cluster Analysis

Preliminaries

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Typical Inputs

Key component for clustering: the dissimilarity/similarity metric: d(i, j)

- Data matrix
 - N objects, each represented by a representation of the representa

```
\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1m} \\ \dots & \dots & \dots & \dots \\ \mathbf{nx}_{iI} \mathbf{Help} & x_{if} & \dots & x_{im} \\ \dots & \dots & \dots & \dots \\ \mathbf{nm}_{x_{n1}} & \dots & x_{nf} & \dots & x_{nm} \end{bmatrix}
```

- Dissimilarity matrix eChat powcoder
 - A square matrix giving distances between all pairs of objects.
 - If similarity functions are used → similarity matrix

```
\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```

 $n \times r$

Comments

The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal and ratio variables.
 Weights should be associated with different variables

 Weights should be associated with different variables based on applications/andvolatal semantics, or appropriate preprocessing is needed.

Add WeChat powcoder

- There is a separate "quality" function that measures the "goodness" of a cluster.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Type of data in clustering analysis

- Interval-scaled variables:
- Binary variables: Assignment Project Exam Help
- Nominal, ordinal, and ratio variables: https://powcoder.com
- Variables of mixed types: Add WeChat powcoder

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

where
$$S_f = \frac{1}{n} (|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$$

$$m_f = \frac{1}{n} (x_1 + x_2 + ... + x_n)$$

$$f_{Add} We Chat poweboder$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- A popular choice is the Minkowski distance, or the L_p norm of difference by the Minkowski distance, or the L_p

norm of difference by the where
$$\|\mathbf{z}\|_p = \left(\sum_{i=1}^m |z_i|^p\right)^{1/p}$$
 and \mathbf{z} where $\|\mathbf{z}\|_p = \left(\sum_{i=1}^m |z_i|^p\right)^{1/p}$

- Special cases:
 - if p = 1, d is the Manhattan distance
 - if p = 2, d is the Euclidean distance
 - if $p = \infty$, $\|\mathbf{x}_i \mathbf{x}_j\|_{\infty} = \max_{k=1}^m |\mathbf{x}_{ik} \mathbf{x}_{jk}|$

Similarity and Dissimilarity Between Objects (Cont.)

- Other similarity/distance functions:
 - Mahalanobis distance
 - Jaccard, Diee, cost rer sie itality, Pears on correlation coefficient https://powcoder.com
- Metric distance

Properties Add WeChat power to all distance functions

•
$$d(i,j) \geq 0$$

•
$$d(i,i) = 0$$

$$\bullet \ d(i,j) = d(j,i)$$

$$d(i,j) \leq d(i,k) + d(k,j)$$

positiveness symmetry reflexivity

triangular inequality

Areas within a unit distance from q under different L_p distances

Obj	Vector Representation					
i	[0, 1, 0, 1, 0, 0, 1, 0]					
j	[0, 0, 0, 0, 1, 0, 1, 1]					

Binary Variables

A contingency table for binary data

Simple matching coefficient (invariant, if the binary variable is <u>symmetric</u>): $d(i,j) = \frac{b+c}{a+b+c+d}$

Jaccard coefficient (noninvariant if the binary variable is

asymmetric):
$$d(i,j) = \frac{b+c}{a+b+c}$$

Dissimilarity between Binary Variables

$$d(i,j) = \frac{b+c}{a+b+c}$$

Example

	Gender	,			/		Test-4
Jack	MAssi	gnme	nt Pro	ject E	am E	Mp	M
Mary	F	Y	N .	P	M	P	M
Jim	M	https:	#pow	æder.	com	N	N

- gender is a symmetalicketter blatet powcoder
- the remaining attributes are asymmetric binary
- let the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green Assignment Project Exam Help Method 1: Simple matching
- - m: # of materies; p:Poter # of Parables

- Method 2: One-hot encoding
 - creating a new binary variable for each of the M nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
 Can be treated like interval-scaled
 - replace x_{if} by https://apkwcoder.com= $\{1,...,M_f\}$
 - map the range of each variable onto [0, 1] by replacing ith object in the Ith variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for intervalscaled variables

Ratio-Scaled Variables

- Ratio-scaled variable: a positive measurement on a nonlinear scale, approximately at exponential scale, such as significant Project Exam Help
- Methods: https://powcoder.com
 - treat them like interval-scaled variables—not a good Add WeChat powcoder choice! (why?—the scale can be distorted)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled A Categorization of Major Clustering Methods

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Major Clustering Approaches

- Partitioning algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchy algorithms: Create a hierarchical decomposition of the set of data (tops objects) outsing some criterion
- Graph-based algorithms: Spectral clustering
- Density-based: based on connectivity and density functions
- Grid-based: based on a multiple-level granularity structure
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Partitioning Methods

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Partitioning Algorithms: Problem Definition

- Partitioning method: Construct a "good" partition of a database of n objects into a set of k clusters
 - Input: a Assign data in Patrix ct Exam Help
- How to measure the "goodness" of a given partitioning https://powcoder.com
 - Cost of a clustely wetter $||\mathbf{c}||_2^2$

 $\mathbf{x}_i \in \mathcal{C}_i$

- Note: L₂ distance used
- Analogy with binning?
- How to choose the center of a cluster?
 - Centroid (i.e., Avg) of X_j → Minimizes cost(C_i)
- Cost of k clusters: sum of cost(C_i)

Example (2D)

Partitioning Algorithms: Basic Concept

- It's an optimization problem!
 - Global optimal:

 - NP-hard (sign midental gejet cost sunctions) partitions exhaustively enumerate all $\binom{n}{k} = \Theta\left(\frac{k^n}{k!}\right)$ partitions stirling numbers of the second der. com
 - Heuristic methodsweChat powcoder
 - k-means: an instance of the EM (expectation-maximization) algorithm
 - Many variants

Cost function: Total squared distance of points to its cluster representative

The K-Means Clustering Method

- Lloyds Algorithm:
 - Initialize k centers randomly Help
 - 2. While stopping condition is not met https://powcoder.com
 Assign each object to the cluster with the nearest
 - Assign each object to the cluster with the nearest center Add WeChat powcoder
 - Compute the new center for each cluster.
- Stopping condition =?

What are the final clusters?

The *K-Means* Clustering Method

Example

Comments on the *K-Means* Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: O(k(n-k)2), CLARA: O(ks2 + k(n-k))
- Comment: Assignment Project Exam Help
 - Often terminates at a local optimum. The global optimum may be found using techniques spokes of terministic annealing and genetic algorithms
 - No guarantee of the duary hat previous
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify k, the number of clusters, in advance
 - Unable to handle noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Variations of the *K-Means* Method

- A few variants of the k-means which differ in
 - Selection of the initial kmeans Assignment Project Exam Help
 - Dissimilarity calculations https://powcoder.com
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang 98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

k-Means++ [Arthur and Vassilvitskii, SODA 2007]

- A simple initialization routine that guarantees to find a solution that is O(log k) competitive to the optimal k-means solution.
 Assignment Project Exam Help
- Algorithm:
 - Find first center uniformly at random
 - 2. For each datal pointe hooppute (2) as the distance to its nearest center
 - Randomly sample one point as the new center, with probabilities proportional to D²(x)
 - Goto 2 if less than k centers
 - 5. Run the normal k-means with the k centers

k-means: Special Matrix Factorization

- χ nxd $\approx ||Jnxk||Vkxd$
- **Loss function**: $\| X UV \|_{F}^2$
- Squared Frobenius norm
 Constraints: Assignment Project Exam Help
- - Rows of U must be /apone-holeencoding
- Alternative view
 - $X_{j,*} \approx U_{j,*} \lor \xrightarrow{Add} \overset{\text{WeChat powcoder}}{X_{j,*}} can be explained as a "special"$ linear combination of rows in V

Expectation Maximization Algorithm

- Xnxd $\approx I$ Inxk Vkxd
- **Loss function**: $\| X UV \|_{F}^2$
- Finding the best U and V simutaneously is hard, but Expectation Step. Assignment Project Exam Help
- - Given V, find the best of t
- Maximization step:
 Given U, find the best V → easy
- Iterate until converging at a local minima.

What is the problem of k-Means Method?

- The k-means algorithm is sensitive to outliers!
- K-Medoids: Instead of taking the mean value of the object in a
 https://powcoder.com
 cluster as a reference point, medoids can be used, which is the most
 centrally located object where the control of the con

K-medoids (PAM)

<u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster Project Exam Help

https://powcoder.com

Add WeChat powcoder

The K-Medoids Clustering Method

- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
 Assignment Project Exam Help
 starts from an initial set of medoids and iteratively replaces one
 - starts from an initial set of medoids and iteratively replaces one
 of the medoidstbpsoreportheodornoodors if it improves the
 total distance of the resulting clustering
 Add WeChat powcoder
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

Typical k-medoids algorithm (PAM)

PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select K representative objects arbitrarily
 - For each paintophion selected object i, calculate the total swapping cost TCih
 - For each pair of *i* and *h*,
 - If $TC_{ih} < 0$, **i** is replaced by **h**
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

What is the problem with PAM?

- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or othergextrem@values Ehama Irhelan
- PAM works efficiently for small data sets but does not scale well for large data sets.
 - O(k(n-k)²) for each iteration

where n is # of data,k is # of clusters

→ Sampling based method,
CLARA(Clustering LARge Applications)

Gaussian Mixture Model for Clustering

- k-means can be deemed as a special case of the EM algorithm for GMM
- GMM Assignment Project Exam Help
 - allows "soft" cluster assignment: https://powcoder.com
 model Pr(C | x)
 - also a good example of powcoder
 - Generative model
 - Latent variable model
 - Use the Expectation-Maximization (EM) algorithm to obtain a local optimal solution

Hierarchical Methods

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits
 - A clustering sofithe idea to be deptined by eduting the dendrogram at the desired level, then each connected component forms a cluster. https://powcoder.com

Add WeChat powcoder

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by cutting the dendogram at the proper levelttps://powcoder.com
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k custers) left roject Exam Help
 - Divisive: https://powcoder.com
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until Pack Coster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the <u>proximity matrix</u> (i.e., matrix of pair-wise distances)
 - Let eachsoignment a Project Exam Help
 - Repeat
 - Mentine two owes desices om

 - Update the proximity matrix
 Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters

 different from that of two points
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

 Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Intermediate Situation

 We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

Assignment Project Exam Help?

C1 C5 C3 C4

Assignment Project Exam Help?

https://powcoder.com
C3 ? ? ? ? ?

Add WeChat powcoder?

How to Define Inter-Cluster Distance

MAX

- Add WeChat powcoder
- Centroid-based
- Group Average
- Other methods driven by an objective function
 - Ward's Method uses squared error

MAX

- Add WeChat powcoder
- Centroid-based
- Group Average
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Centroid-based
- Group Average
- Other methods driven by an objective function
 - Ward's Method uses squared error

MAX

- Add WeChat powcoder
- Centroid-based
- Group Average
- Other methods driven by an objective function
 - Ward's Method uses squared error

- MAX
- Centroid-based
- Group Average

avg distance between the clusters

- Other methods driven by an objective function
 - Ward's Method uses squared error

Cluster Similarity: MIN or Single Link/LINK

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - i.e., $sim(C_i, C_j) = min(dissim(p_x, p_y)) // p_x \in C_i, p_y \in C_j$ $Assignmentax(sim(p_x, p_y)) // p_x \in C_i, p_y \in C_j$
 - Determined by one pair of points, i.e., by one link in the proximity graphttps://powcoder.com

Add WeChat powcoder

	P1	P2	Р3	P4	P5
P1	1.00	0.90	0.10	0.65	0.20
P2	0.90	1.00	0.70	0.60	0.50
P3	0.10	0.70	1.00	0.40	0.30
P4	0.65	0.60	0.40	1.00	0.80
P5	0.20	0.50	0.30	0.80	1.00

$sim(C_i, C_i) = max(sim(p_x, p_y))$

Single-Link Example

	P1	P2	Р3	P4	P5
P1	1.00	0.90	0.10	0.65	0.20
P2	0.90	1.00	0.70	0.60	0.50
P3	0.10	0.70	1.00	0.40	0.30
P4	0.65	0.60	0.40	1.00	0.80
P5	0.20	0.50	0.30	0.80	ttps

	P1	P2	P3	P4	P5
P1	1.00 (0.90	0.10	0.65	0.20
P2		1.00	0.70	0.60	0.50
t Pip	rojec	t Ex	1.00	1 <u>4</u> 0	0.30
P4				1.00	0.80
p _o	WCO	der.c	om		1.00

	12	Р3	P4	P5 A	laa	W ₁₂ e	Lhat	pagv
12	1.00	0.70	0.65	0.50	12	1.00 (0.70	0.65
P3		1.00	0.40	0.30	P3		1.00	0.40
P4			1.00	0.80	45			1.00
P5				1.00				

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Add WeChat powcoder

Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Link (CLINK)

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - i.e., $sim(C_i, C_j) = max(dissim(p_x, p_y)) // p_x \in C_i, p_y \in C_j$ $Assignment (Rimo(p_x, p_y)) xam Help$
 - Determined by all pairs of points in the two clusters https://powcoder.com

Add WeChat powcoder

	P1	P2	Р3	P4	P5
P1	1.00	0.90	0.10	0.65	0.20
P2	0.90	1.00	0.70	0.60	0.50
P3	0.10	0.70	1.00	0.40	0.30
P4	0.65	0.60	0.40	1.00	0.80
P5	0.20	0.50	0.30	0.80	1.00

 $sim(C_i, C_j) = min(sim(p_x, p_y))$

Complete-Link Example

	P1	P2	P3	P4	P5	
P1	1.00	0.90	0.10	0.65	0.20	
P2	0.90	1.00	0.70	0.60	0.50	
Р3	0.10	0.70	1.00	0.40	0.30	n
P4	0.65	0.60	0.40	1.00	0.80	
P5	0.20	0.50	0.30	0.80	ittps	//

		P1	P2	P3	P4	P5
	P1	1.00 (0.90	0.10	0.65	0.20
	P2		1.00	0.70	0.60	0.50
1	Pp.	roiec	t Ex	100	1 4 0	0.30
	P4				1.00	0.80
	19 6)	wco	der.c	om		1.00

						TTT		
	12	Р3	P4	P5 A	laa	w ₁₂ e	L pat	pgv
12	1.00	0.10	0.60	0.20	12	1.00	0.10	0.20
P3		1.00	0.40	0.30	P3		1.00	0.30
P4			1.00	0.80	45			1.00
P5				1.00				

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

• Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- Tends to break large clusters
- Biased towards globular clusters

Cluster Similarity: Group Average

- GAAC (Group Average Agglomerative Clustering)
- Similarity of two clusters is the average of pair-wise similarity between points in the two clusters.

Why not using simple average distance? This method guarantees that rodid versions apovocander

 $sim(C_i, C_i) = avg(sim(p_i, p_i))$

Group Average Example

	P1	P2	Р3	P4	P5
P1	1.00	0.90	0.10	0.65	0.20
P2	0.90	1.00	0.70	0.60	0.50
Р3	0.10	0.70	1.00	0.40	0.30
P4	0.65	0.60	0.40	1.00	0.80
P5	0.20	0.50	0.30	0.80	ittps

		P1	P2	P3	P4	P5
	P1	1.00 (0.90	0.10	0.65	0.20
	P2		1.00	0.70	0.60	0.50
n	<mark>+</mark> Pp	roiec	t Ex	1 00 1	1 <u>4</u> 0	0.30
	P4				1.00	0.80
//	196)	wco	der.c	om		1.00

0.608

0.5

1.00

0.567

1.00

						II
	12	Р3	P4	P5 ^A	Y aa	Y
12	1.00	0.567	0.717	0.533	12	1
Р3		1.00	0.40	0.30	P3	
P4			1.00	0.80	45	
P5				1.00		

Sim(12,3)=2*(0.1+0.7+0.9)/6=0.5666666Sim(12,45)=2*(0.9+0.65+0.2+0.6+0.5+0.8)/12=0.608

Hierarchical Clustering: Centroidbased and Group Average

 Compromise between Single and Complete Link

Assignment Project Exam Help

- Strengths https://powcoder.com
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

More on Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is stie mumbe Petitota Exhiacts elp
- - BIRCH (1996)AddeWeChatepowloodermentally adjusts the quality of sub-clusters
 - CURE (1998): selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
 - CHAMELEON (1999): hierarchical clustering using dynamic modeling

Spectral Clustering

See additional slides.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder