# MDBM-Chapter 3 The Enhanced E-R Model

## **Objectives**

- Understand use of <u>supertype/subtype</u> <u>relationships</u>
- Understand use of <u>specialization and</u> <u>generalization</u> techniques
- Specify <u>completeness and disjointness</u> <u>constraints</u>
- Develop <u>supertype/subtype hierarchies</u> for realistic business situations
- Develop entity clusters

# Supertypes and Subtypes

- Enhanced ER (EER) model: A model extended from the original ER model with new modeling constructs
- Supertype: A generic entity type that has a relationship with one or more subtypes
- Subtype: A subgrouping of the entities in an entity type that has attributes distinct from those in other subgroupings
- Attribute Inheritance:
  - Subtype entities inherit values of all attributes of the supertype
  - An instance of a subtype is also an instance of the supertype

#### Basics for supertype/subtype notation



#### Basics for supertype/subtype notation (cont.)



Different modeling tools may have different notations for the same modeling constructs

#### **Employee supertype with three subtypes**



# Relationships and Subtypes

- Relationships at the supertype level indicate that all subtypes will participate in the relationship
- The instances of a subtype may participate in a relationship unique to that subtype. In this situation, the relationship is shown at the subtype level

### Supertype/subtype relationships in a hospital



## Generalization and Specialization

- Generalization: The process of defining a more general entity type (supertype) from a set of more specialized entity types, a BOTTOM-UP approach
- Specialization: The process of defining one or more subtypes of the supertype and forming supertype/subtype relationships, a TOP-DOWN approach

### **Example of generalization**

a) Three entity types: CAR, TRUCK, and MOTORCYCLE

| CAR                                                                              | TRUCK                                                                             | MOTORCYCLE                                                      |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Vehicle ID Price Engine Displacement Vehicle Name (Make, Model) No Of Passengers | Vehicle ID Price Engine Displacement Vehicle Name (Make, Model) Capacity Cab Type | Vehicle ID Price Engine Displacement Vehicle Name (Make, Model) |

All these types of vehicles have some common attributes

### **Example of generalization (cont.)**

b) Generalization to the VEHICLE supertype



Note: there is no subtype for motorcycle in this case

### **Example of specialization**

a) Entity type PART



### **Example of specialization (cont.)**

b) Specialization to MANUFACTURED PART and PURCHASED PART



# EER Diagram of PVFC



# Constraints in Supertype/Subtype Relationship: Completeness Constraint

Completeness Constraints: Whether an instance of a supertype must also be a member of at least one subtype

- Yes: total specialization rule (double line)
- No: partial specialization rule (single line)

### **Examples of completeness constraints**

a) Total specialization rule



### **Examples of completeness constraints (cont.)**

#### b) Partial specialization rule



# Constraints in Supertype/Subtype Relationship: Disjointness Constraint

*Disjointness Constraints*: Whether an instance of a supertype may <u>simultaneously</u> be a member of two (or more) subtypes

- Yes: Overlap Rule (represented with an "o" in the circle)
- No: Disjoint Rule (represented with a "d" in the circle)

### **Examples of disjointness constraints**

a) Disjoint rule



### **Examples of disjointness constraints (cont.)**

#### b) Overlap rule



# Constraints in Supertype/Subtype Relationship: Subtype Discriminators

**Subtype Discriminator**: An attribute of the supertype whose values determine the target subtype(s). It has two situations:

- Disjoint a simple attribute with alternative values to indicate the possible subtypes
- Overlapping a composite attribute whose subparts pertain to different subtypes. Each subpart contains a Boolean value to indicate whether or not the instance belongs to the associated subtype

### Subtype discriminator (disjoint rule)



### Subtype discriminator (overlap rule)



### Supertype/Subtype Hierarchy

- □ A subtype may have other subtypes defined on it, so that the subtype becomes a supertype of the newly defined subtypes.
- ☐ Supertype/subtype hierarchy is a hierarchal arrangement of supertypes and subtypes in which each subtype has only one supertype.

### **Example of supertype/subtype hierarchy**



### **Entity Clusters**

- EER diagrams are difficult to read when there are too many entities and relationships
- Solution: Group entities and relationships into entity clusters
- Entity cluster: Set of one or more entity types and associated relationships grouped into a single abstract entity type

# Possible entity clusters for Pine Valley Furniture Company in Microsoft Visio

Related groups of entities could become a cluster.



### **EER diagram of PVF entity clusters**



### Manufacturing entity cluster

Details for a single cluster

### **Packaged Data Models**

- Predefined data models
- Could be universal or industry-specific
- □ Universal data model = a generic or template data model that can be reused as a starting point for a data modeling project (also called a "pattern")

### **Advantages of Packaged Data Models**

- Use proven model components
- Save time and cost
- Less likelihood of data model errors
- Easier to evolve and modify over time
- Aid in requirements determination
- Easier to read
- Supertype/subtype hierarchies promote reuse
- Many-to-many relationships enhance model flexibility
- Vendor-supplied data model fosters integration with vendor's applications
- Universal models support inter-organizational systems