Wprowadzenie z dynamicznej optymalizacji

Łukasz Woźny*

29kwietnia 2007

Spis treści

1	Opt	zymalizacja statyczna a optymalizacja dynamiczna	2
	1.1	Ekstrema lokalne funkcji wielu zmiennych - statyka	2
	1.2	O naturze dynamicznej optymalizacji	4
2	Przypadek ciągły - teoria sterowania optymalnego		5
	2.1	Najprostszy problem sterowania optymalnego	L
	2.2	Hamiltonian i zasada maksimum	٦
	2.3	Problem z wieloma zmiennymi stanu i zmiennymi sterującymi	6
	2.4	Alternatywne warunki końcowe	7
	2.5	Dyskontowanie i hamiltonian wartości bieżącej	7
	2.6	Zagadnienie z nieskończonym horyzontem czasowym	7
3	Przypadek dyskretny - programowanie dynamiczne		8
	3.1	Nieskończony horyzont	8
	3.2	Twierdzenie o obwiedni	Ć
	3.3	Schemat	Ć
	3.4	Skończony horyzont	Ć
т.;	terat	ura	ç

^{*}lukasz.wozny@sgh.waw.pl.

1 Optymalizacja statyczna a optymalizacja dynamiczna

1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka

Rozpatrzmy funkcję $f:X\to\mathbb{R},$ gdzie $X\subset\mathbb{R}^n$ jest zbiorem otwartym, a $n\in\mathbb{N}$:

Definicja 1.1 Mówimy, że funkcja f ma w punkcie $\bar{x} \in X$ minimum (maksimum) lokalne wtt., gdy

$$\exists r > 0 \,\forall x \in K(\bar{x}, r) \quad f(\bar{x}) \le f(x) \quad (f(\bar{x}) \ge f(x))^{1},$$

gdzie $K(\bar{x},r)$ jest otwartą kulą o środku w \bar{x} i promieniu r.

Twierdzenie 1.1 Jeżeli funkcja f ma w otoczeniu punktu $\bar{x} \in X$ ciągłe pochodne cząstkowe drugiego rzędu i $f'(\bar{x}) = 0$, to²:

- f ma minimum (maksimum) lokalne w \bar{x} , gdy macierz $f''(\bar{x})$ jest dodatnio (ujemnie) określona,
- f nie ma ekstremum lokalnego $w \bar{x}$, gdy macierz $f''(\bar{x})$ jest nieokreślona.

Ograniczenia zadane równaniami

Definicja 1.2 Niech $f, g_1, g_2, \ldots, g_m : X \to \mathbb{R}$, $gdzie X \subset \mathbb{R}^n$ jest zbiorem otwartym $a \ n > m$. Niech ponadto:

$$G = [g_1, g_2, \dots, g_m]^T, \quad M = \{x \in X : G(x) = 0\}.$$

M'owimy, 'ze funkcja f ma w punkcie $\bar{x} \in M$ minimum (maksimum) lokalne warunkowe na zbiorze M wtt., <math>gdy:

$$\exists r > 0 \,\forall x \in M \cap K(\bar{x}, r) \quad f(\bar{x}) \le f(x) \quad (f(\bar{x}) \ge f(x))^3.$$

Poniżej zakładamy, że funkcje f oraz g_i gdzie $i=1,\ldots,m$ są różniczkowalne.

Definicja 1.3 Punkt $\bar{x} \in M$ nazywamy punktem regularnym ograniczeń wtt. $rzG'(\bar{x}) = m$ a więc wiersze macierzy $G'(\bar{x})$ są liniowo niezależne.

 $^{^1}$ Jeżeli nierówność jest spełniona dla wszystkich argumentów $x \in X$, to \bar{x} nazywamy minimum (maksimum) globalnym f na X

²Symbol **0** oznacza wektor $[0, ..., 0]^T$ o wymiarze $1 \times n$.

 $^{^3}$ Jeżeli nierówność jest spełniona dla każdego $x\in M,$ to \bar{x} nazywamy minimum (maksimum) globalnym f na M

Definicja 1.4 Funkcją Lagrange'a dla problemu ekstremum warunkowego zadanego przez f i G nazywamy funkcję $\mathcal{L}: X \to \mathbb{R}$ o wartościach

$$\mathcal{L}(x,\lambda) = f(x) + \lambda^T G(x),$$

gdzie $x \in X \subset \mathbb{R}^n$ jest wektorem zmiennych, a $\lambda \in \mathbb{R}^m$ jest wektorem parametrów (mnożników Lagrange'a).

Twierdzenie 1.2 W problemie zadanym przez różniczkowalne f, g_1, g_2, \ldots, g_m funkcja f może mieć ekstremum lokalne na M tylko w takim \bar{x} , że:

- \bar{x} jest punktem nieregularnym w M,
- \bar{x} wraz z danym wektorem $\bar{\lambda}$ spełnia układ:

$$\begin{cases}
\mathscr{L}'(\bar{x}, \bar{\lambda}) &= 0, \\
G(\bar{x}) &= 0.
\end{cases}$$

Twierdzenie 1.3 Jeśli w problemie na ekstremum warunkowe zadanym przez f i G funkcje f, g_1, g_2, \ldots, g_m mają ciągłe pochodne cząstkowe drugiego rzędu, \bar{x} jest punktem regularnym w M i $\mathcal{L}'(\bar{x}, \bar{\lambda}) = \mathbf{0}$ to:

- f ma minimum (maksimum) lokalne na M, jeśli forma kwadratowa zadana macierzą $\mathcal{L}''(\bar{x}, \bar{\lambda})$ jest dodatnio (ujemnie) określona na $C = KerG'(\bar{x}), ^4$
- f nie ma ekstremum lokalnego na M, jeśli forma kwadratowa zadana macierzą $\mathcal{L}''(\bar{x}, \bar{\lambda})$ jest nieokreślona na $C = KerG'(\bar{x})$

Przypomnijmy: $C = \operatorname{Ker} G'(\bar{x}) = \{h \in \mathbb{R}^n : G'(\bar{x})h = \mathbf{0}\}$ a dodatnia (ujemna) określoność $\mathscr{L}''(\bar{x}, \bar{\lambda})$ na jądrze C oznacza, że $(\mathscr{L}''(\bar{x}, \bar{\lambda})h|h) > (< 0)$ 0 dla $h \in C \setminus \{0\}$.

Ograniczenia zadane nierównościami Rozpatrzmy następujące problem: $\max_{x \in X} f(x)$ przy warunkach $g_i(x) = 0, i = 1, \ldots, m$ oraz $h_j(x) \leq 0, j = 1, \ldots, k$, gdzie $X \subset \mathbb{R}^n$ a $m, k \in \mathbb{N}$ oraz $n \geq k + m$. Zauważmy, gdy m = 0 wtedy mamy tylko ograniczenia zadane nierównościami a gdy k = 0 wtedy mamy tylko ograniczenia zadane równaniami. Niech $M \subset \mathbb{R}^n$ oznacza zbiór rozwiązań dopuszczalnych, tzn. $M = \{x \in \mathbb{R}^n g_i(x) = 0, h_j(x) \leq 0, i = 1, \ldots, m, j = 1, \ldots, k\}$. Zakładamy, że funkcje $f, g_i, i = 1, \ldots, m$ oraz $h_j, j = 1, \ldots, k$ są różniczkowalne.

Definicja 1.5 Punkt $\bar{x} \in M$ nazywamy punktem regularnym ograniczeń wtt. gdy ograniczenia, które są spełnione dla \bar{x} co do równości są niezależne tzn. gdy wiersze macierzy $D = [G'(\bar{x})H'(\bar{x})]^T$ gdzie $G(\bar{x}) = [g_1(\bar{x}), g_2(\bar{x}), \dots, g_m(\bar{x})]^T$, $H(\bar{x}) = [h_j(\bar{x}), \forall j \text{ takich, } że h_j(\bar{x}) = 0]^T$ są liniowo niezależne.

 $[\]overline{^{4}\text{W}}$ szczególności, gdy macierz $\mathcal{L}''(\bar{x}, \bar{\lambda})$ jest dodatnio (ujemnie) określona.

Twierdzenie 1.4 (Warunki Kuhn'a-Tucker'a) Niech punkt $\bar{x} \in M$ bedzie punktem regularnym ograniczeń. Wtedy istnieją mnożniki $\lambda_i \in \mathbb{R}, i = 1, \ldots, m$ oraz $\lambda_j \in \mathbb{R}_+, j = 1, \ldots, k$, takie, że

• $dla\ ka\dot{z}dego\ l=1,\ldots,n\ zachodzi$:

$$\frac{\partial f(\bar{x})}{\partial x_l} = \sum_{i=1}^m \lambda_i \frac{\partial g_i(\bar{x})}{\partial x_l} + \sum_{i=1}^k \lambda_j \frac{\partial h_j(\bar{x})}{\partial x_l},$$

oraz

• dla każdego j = 1..., k zachodzi $\lambda_j h_j(\bar{x}) = 0$, $tzn. \lambda_j = 0$ dla każdego ograniczenia j, które nie jest spełnione co do równości.

Twierdzenie 1.5 Niech m=0 oraz funkcja h_j będzie quasi-wypukła dla każdego j. Niech ponadto funkcja f spełnia warunek $f'(x_1)(x_2-x_1)^T>0$ dla każdych x_2, x_1 takich, że $f(x_2)>f(x_1)$. Jeżeli \bar{x} będący punktem regularnym ograniczeń spełnia warunki Kuhn'a-Tucker'a wtedy \bar{x} jest maksimum globalnym funkcji f na zbiorze M.

Twierdzenie 1.6 Niech zbiór M będzie wypukły a funkcja f silnie quasiwklęsła na M, wtedy istnieje jeden punkt $\bar{x} \in M$ rozwiązujący problem maksymalizacyjny z ograniczeniami.

Przypomnijmy: f jest quasi-wypukła na zbiorze A wtt. $\forall x_1, x_2 \in A$ oraz $\mu \in [0,1]$ zachodzi $f(\mu x_1 + (1-\mu)x_2) \leq \max\{f(x_1), f(x_2)\}$. Funkcja f jest silnie quasi-wypukła jeżeli nierówność jest ostra dla $\mu \in (0,1)$ i każdych $x_1 \neq x_2$. Każda funkcja wypukła jest także quasi-wypukła. Funkcja f jest quasi-wypukła.

1.2 O naturze dynamicznej optymalizacji

Intuicja i przykłady dla podstawowych pojęć:

- funkcjonał,
- zmienne warunki końcowe (pionowa i pozioma linia końcowa, krzywa końcowa),
- warunek transwersalności.

Alternatywne podejścia do dynamicznej optymalizacji:

- rachunek wariacyjny,
- teoria optymalnego sterowania,
- programowanie dynamiczne.

Twierdzenie 1.7 (Zasada Leibniza) Rozważmy całkę oznaczoną: $I(x) \equiv \int_a^b F(t,x)dt$, gdzie $F'_x(t,x)$ jest ciągłe na przedziale [a,b] wtedy:

$$\frac{dI}{dx} = \int_{a}^{b} F_x'(t, x) dt,$$

ponadto oznaczając: $J(b,a) \equiv \int_a^b F(t,x)dt$ mamy reguly cząstkowe:

$$\frac{\partial J}{\partial b} = F(b, x),$$
$$\frac{\partial J}{\partial a} = -F(a, x).$$

2 Przypadek ciągły - teoria sterowania optymalnego

2.1 Najprostszy problem sterowania optymalnego

$$\begin{array}{ll} \max & V = \int_0^T F(t,y,u) dt, \\ \text{przy warunkach} & \dot{y} = f(t,y,u), \\ y(0) = A, \quad y(T) \text{ swodobne (A,T - dane)} \\ \text{oraz} & u(t) \in \mathcal{U} \text{ dla wszystkich } t \in [0,T]. \end{array}$$

Zakładamy, że funkcje F i f są ciągłe i mają ciągłe pochodne pierwszego rzędu względem t i y. Przyjmiemy, iż $\mathcal{U} = \mathbb{R}$.

2.2 Hamiltonian i zasada maksimum

Definicja 2.1 Funkcję Hamiltona (hamiltonian) dla problemu (2.1) definiujemy jako:

$$H(t, y, u, \lambda) \equiv F(t, y, u) + \lambda f(t, y, u),$$

 $gdzie \lambda jest tzw.$ zmienną dualną.

Twierdzenie 2.1 (Zasada maksimum) Dla problemu (2.1) warunki zasady maksimum są następujące:

$$\begin{array}{ll} \max_{u} H(t,y,u,\lambda) & \textit{dla każdego } t \in [0,T], \\ \dot{y} = \frac{\partial H}{\partial \lambda}, & [\textit{r\'ownanie ruchu dla } y] \\ \dot{\lambda} = -\frac{\partial H}{\partial y}, & [\textit{r\'ownanie ruchu dla } \lambda] \\ \lambda(T) = 0 & [\textit{warunek transwersalno\'sci}]. \end{array}$$

Twierdzenie 2.2 (Mangasariana) Dla problemu

$$\max_{u} V = \int_{0}^{T} F(t, y, u) dt,$$

$$przy warunkach \quad \dot{y} = f(t, y, u),$$

$$y(0) = y_{0} \quad (y_{0}, T \ dane).$$

 $warunki\ zasady\ maksimum\ sq\ wystarczające\ do\ globalnej\ maksymalizacji\ V$ o ile

- obie funkcje F i f są różniczkowalne i wklęsłe oraz różniczkowalne łącznie względem zmiennych (y,u) oraz
- jeśli f jest nieliniowe względem y lub u to dla rozwiązania optymalnego zachodzi: $\lambda(t) \geq 0$ dla każdego $t \in [0,T]$.

Twierdzenie Mangasariana jest szczególnym przypadkiem twierdzenia Arrowa:

Twierdzenie 2.3 (Arrowa) Niech $u^* = u^*(t, y, u)$ maksymalizuje hamiltonian w każdej chwili, przy danych wartościach zmiennej stanu y i zmiennej dualnej λ . Stwórzmy zmaksymalizowany hamitlonian:

$$H^{0}(t, y, u) = F(t, y, u^{*}) + \lambda f(t, y, u^{*}),$$

dla problemu z poprzedniego twierdzenia warunki zasady maksimum są wystarczające na globalną maksymalizację V, o ile zmaksymalizowany hamiltonian H^0 jest wklęsty względem y dla wszystkich $t \in [0,T]$ dla danego λ .

2.3 Problem z wieloma zmiennymi stanu i zmiennymi sterującymi

max
$$V = \int_{0}^{T} F(t, y_{1}, y_{2}, \dots, u_{1}, u_{2}, \dots, u_{m}) dt,$$
 przy warunkach
$$\dot{y}_{j} = f^{j}(t, y_{1}, y_{2}, \dots, u_{1}, u_{2}, \dots, u_{m}),$$

$$y_{j}(0) = y_{j0}, \quad y_{j}(T) = y_{jT},$$
 oraz
$$u_{i}(t) \in \mathcal{U}_{i} \quad (i = 1, \dots, m, j = 1, \dots, n).$$

Dla takiego problemu otrzymujemy hamiltonian:

$$H \equiv F(t, y_1, y_2, \dots, u_1, u_2, \dots, u_m) + \sum_{j=1}^{n} \lambda_j f^j(t, y_1, y_2, \dots, u_1, u_2, \dots, u_m),$$

zasada maksimum przybiera postać:

Twierdzenie 2.4 (Zasada maksimum) Dla problemu wielowymiarowego warunki zasady maksimum są następujące:

$$\begin{split} \max_{u} H(t, y, u, \lambda), \\ \dot{y} &= \frac{\partial H}{\partial \lambda^{T}}, \\ \dot{\lambda}^{T} &= -\frac{\partial H}{\partial y} \quad gdzie \ \dot{\lambda}^{T} \ to \ transpozycja \ \dot{\lambda}, \\ H_{t=T} &= 0 \quad (lub \ \lambda_{j}(T) = 0) \ jeśli \ T \ (lub \ y_{jT}) \ jest \ swobodne, \end{split}$$

gdzie
$$y = [y_1, y_2, \dots, y_n]^T$$
, $u = [u_1, u_2, \dots, u_m]^T$ i $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_n]^T$.

2.4 Alternatywne warunki końcowe

Wróćmy do problemu jednowymiarowego (2.1). Dla alternatywnych warunków końcowych pierwsze trzy warunki zasady maksimum pozostają niezmienione, zmianie podlega warunek transwersalności:

- ustalony punkt końcowy: $y(T) = y_T ((T, y_T) dane),$
- pozioma linia końcowa: $[H]_{t=T} = 0$,
- krzywa końcowa postaci $y_T = \phi(T)$: $[H \lambda \phi']_{t=T} = 0$,
- obcięta pionowa linia końcowa $(y_T \ge y_{min}, T \text{ i } y_{min} \text{ dane}): \lambda(T) \ge 0,$ $y_T \ge y_{min}, (y_T - y_{min})\lambda(T) = 0,$
- obcięta pozioma linia końcowa $(T^* \leq T_{max})$: $[H]_{t=T} \geq 0, T \leq T_{max}, (T T_{max})[H]_{t=T} = 0.$

2.5 Dyskontowanie i hamiltonian wartości bieżącej

Gdy funkcja podcałkowa F zawiera czynnik dyskontujący $e^{-\rho t}$: $F(t,y,u) = G(t,y,u)e^{-\rho t}$ wtedy hamiltonian można przekształcić do postaci hamiltonianu wartości bieżącej:

Definicja 2.2 Hamiltonian wartości bieżącej definiujemy jako:

$$H_c(t, u, u, \lambda) \equiv He^{\rho t} = G(t, u, u) + m f(t, u, u),$$

 $qdzie m = \lambda e^{\rho t}$ jest tzw. zmienną dualną.

Twierdzenie 2.5 (Skorygowana zasada maksimum) Dla problemu z czynnikiem dyskontującym warunki skorygowanej zasady maksimum są następujące:

$$\begin{array}{ll} \max_{u} H_c(t,y,u,\lambda) & \textit{dla każdego } t \in [0,T] \\ \dot{y} = \frac{\partial H_c}{\partial m} & [\textit{r\'ownanie ruchu dla } y] \\ \dot{m} = -\frac{\partial H_c}{\partial y} + \rho m & [\textit{r\'ownanie ruchu dla } \lambda] \\ m(T)e^{-\rho T} = 0 & [\textit{warunek transwersalno\'sci}]. \end{array}$$

2.6 Zagadnienie z nieskończonym horyzontem czasowym

Uwaga na zbieżność całki!! Dalej jak wyżej, zmieniamy tylko warunek transwersalności:

$$\lim_{t\to\infty} \lambda(t) = 0,$$
 [dla swobodnego stanu końcowego] $\lim_{t\to\infty} \lambda(t) \geq 0$ oraz $\lim_{t\to\infty} \lambda(t)[y(t) - y_{min}] = 0,$ [dla ograniczonego stanu końcowego].

3 Przypadek dyskretny - programowanie dynamiczne

3.1 Nieskończony horyzont

Rozpatrzmy problem⁵:

(SP)
$$\max_{(x_{t+1})_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t F(x_t, x_{t+1})$$

p.w. $x_{t+1} \in \Gamma(x_t), t = 0, 1 \dots,$
i danym $x_0 \in X$.

Zauważmy, że:

Twierdzenie 3.1 Weźmy $f: X \to \mathbb{R}$ oraz $g: X \times Y \to \mathbb{R}$. Przyjmijmy, że $\max_{y \in Y} \{g(x,y)\}$ oraz $\max_{(x,y)} \{f(x) + g(x,y)\}$ istnieją wtedy:

$$\max_{(x,y)} \{ f(x) + g(x,y) \} = \max_{x} \{ f(x) + \max_{y} \{ g(x,y) \} \}.$$

Zadanemu problemowi (SP) optymalizacyjnemu odpowiada równanie funkcyjne postaci:

(FE)
$$V(x) = \max_{y \in \Gamma(x)} \{ F(x, y) + \beta V(y) \}, \forall x \in X.$$

Niech $\Pi(x_0) = \{(x_t)_{t=0}^{\infty} : x_{t+1} \in \Gamma(x_t), t = 0, 1, \ldots\}$ oznacza zbiór planów dostępnych z x_0 a $\underline{x} = (x_0, x_1, \ldots)$ oznacza element zbioru $\Pi(x_0)$. Przyjmiemy następujące założenie:

Założenie 3.1 Zbiór wartości $\Gamma(x)$ jest niepusty dla każdego $x \in X$. Dla każdego x_0 i $\underline{x} \in \Pi(x_0)$ granica $\lim_{n\to\infty} \sum_{t=0}^n \beta^t F(x_t, x_{t+1})$ istnieje.

Dla każdego $n \in \mathbb{N}$ niech $u_n : \Pi(x_0) \to \mathbb{R}$ będzie zadana wzorem: $u_n(\underline{x}) = \sum_{t=0}^n \beta^t F(x_t, x_{t+1})$ a $u : \Pi(x_0) \to \overline{\mathbb{R}}$ będzie zadane: $u(\underline{x}) = \lim_{n \to \infty} u_n(\underline{x})$. Niech $V^*(x_0) = \max_{x \in \Pi(x_0)} u(\underline{x})$.

Twierdzenie 3.2 Niech X, Γ, F, β spełniają założenie 3.1 wtedy funkcja V^* spełnia (FE).

Twierdzenie 3.3 Niech X, Γ, F, β spełniają założenie 3.1 a funkcja V spełnia (FE) oraz $\lim_{n\to\infty} \beta^n V(x_n) = 0$ dla każdego $\underline{x} \in \Pi(x_0)$ i każdego $x_0 \in X$ wtedy $V = V^*$.

Twierdzenie 3.4 Niech X, Γ, F, β spełniają założenie 3.1 a plan $\bar{x}^* \in \Pi(x_0)$ osiąga maksimum (SP) dla danego x_0 . Wtedy

$$V^*(x_0^*) = F(x_t^*, x_{t+1}^*) + \beta V^*(x_{t+1}^*), \forall t.$$
(3.1)

Twierdzenie 3.5 Niech X, Γ, F, β spełniają założenie 3.1 a plan $\bar{x}^* \in \Pi(x_0)$ spełnia równanie (3.1) i warunek $\limsup_{t\to\infty} \beta^n V^*(x_t^*) \leq 0$. Wtedy \underline{x}^* osiąga maksimum w (SP) dla danego x_0 .

⁵Dla uproszczenia zakładamy, że maksimum tego problemu istnieje.

3.2 Twierdzenie o obwiedni

Twierdzenie 3.6 Weźmy funkcję $f(x,\alpha)$ różniczkowalną po x i α oraz załóżmy, że dla każdego α istnieje $\max_x \{f(x,\alpha)\}$ wtedy:

$$\frac{d}{d\alpha}F(\alpha) = f_2(\bar{x}(\alpha), \alpha),$$

 $gdzie F(\alpha) \equiv \max_x \{f(x,\alpha)\} \ a \ \bar{x}(\alpha) \equiv \arg \max_x \{f(x,\alpha)\} \ sa \ r\'ozniczkowalne.$

3.3 Schemat

Schemat:

- maksymalizacja "prawej strony" równania Belmanna po zmiennej sterującej,
- stosujemy twierdzenie o obwiedni dla równania Belmanna i zmiennej stanu,
- zapisujemy równanie Eulera,
- dodajemy warunek transwersalności,
- rozwiązujemy.

3.4 Skończony horyzont

Funkcja celu dla skończonego horyzontu: $\sum_{t=0}^{T} \beta^t F_t(x_t, x_{t+1}) + \beta^{T+1} F_{T+1}(x_{T+1})$.

Definicja 3.1 Funkcją wartości $V_{\tau}(x_{\tau})$ nazywamy odwzorowanie przyporządkowujące każdemu stanowi maksymalną możliwą do osiągnięcia wypłatę:

$$\max_{(x_{t+1})_{t=\tau}^{T+1}} \left\{ \sum_{t=\tau}^{T} \beta^{t-\tau} F_t(x_t, x_{t+1}) + \beta^{T+1-\tau} F_{T+1}(x_{T+1}) \right\}.$$

Zinterpretuj: $V_0(x_0)$ i $V_{T+1}(x_{T+1})$.

Twierdzenie 3.7 Równanie Belmanna dla problemu ze skończonym horyzontem:

$$V_t(x_t) = \max_{x_{t+1} \in \Gamma(x_t)} \left\{ F_t(x_t, x_{t+1}) + \beta V_{t+1}(x_{t+1}) \right\}.$$

Pamiętajmy o warunku transwersalności: $V_{T+1}(x_{t+1}) = 0$.

Literatura

- [1] Chiang A.C., Elementy dynamicznej optymalizacji, Warszawa 2002.
- [2] Dubnicki W., J. Kłopotowski, T. Szapiro, Analiza matematyczna. Podręcznik dla ekonomistów, Warszawa 1999.
- [3] Rockafellar, R.T., Convex analysis, Princeton University Press 1997.
- [4] Stokey, N., R.E. Lucas i E.C. Prescott, Recursive methods in economic dynamics, Cambridge 1989.