THE JIANG-SU ALGEBRA DOES NOT ALWAYS EMBED

MARIUS DADARLAT, ILAN HIRSHBERG, ANDREW S. TOMS, AND WILHELM WINTER

ABSTRACT. We exhibit a unital simple nuclear non-type-I C*-algebra into which the Jiang-Su algebra does not embed unitally. This answers a question of M. Rørdam.

The Jiang-Su algebra, denoted by \mathcal{Z} ([3]), occupies a central position in the structure theory of separable amenable C*-algebras. The property of absorbing the Jiang-Su algebra tensorially is a necessary, and, in considerable generality, sufficient condition for the confirmation of G. A. Elliott's K-theoretic rigidity conjecture for simple separable amenable C*-algebras ([5], [7]). The uniqueness question for this algebra is therefore of great interest. M. Rørdam observed that if $\mathcal C$ is a class of unital separable C*-algebras, and $A \in \mathcal{C}$ has the properties that (i) for every $B \in \mathcal{C}$ there is a unital *-homomorphism $\gamma : A \to B$ and (ii) every unital *-endomorphism of *A* is approximately inner, then *A* is the only such algebra, up to isomorphism. (This follows from an application of Elliott's Intertwining Argument.) Every unital *-endomorphism of \mathcal{Z} is approximately inner ([3]), and there are no obvious obstructions to the existence of a unital *-homomorphism $\gamma: \mathcal{Z} \to A$ for any unital separable C*-algebra A without finite-dimensional quotients. Indeed, such a γ always exists when A has real rank zero, and examples show that the existence of γ is strictly weaker than tensorial absorption of \mathcal{Z} -see [1] and [6], respectively. All of this begs the question, first posed by Rørdam: "Does every unital C*-algebra without finite-dimensional quotients admit a unital embedding of \mathbb{Z} ?", see [1]. We prove that the answer is negative, even when the target algebra is simple and nuclear.

Theorem. There is a unital simple nuclear infinite dimensional C*-algebra (in fact, an AH algebra) into which the Jiang-Su algebra does not embed unitally.

Date: January 4, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L35, Secondary 46L80.

Key words and phrases. Jiang-Su algebra, embeddability.

The authors were partially supported by the Fields Institute; M.D. was partially supported by NSF grant #DMS-0500693; I.H. was partially supported by the Israel Science Foundation (grant No. 1471/07); A.T. was partially supported by NSERC.

In the remainder of the paper we give some background discussion and prove the theorem. For a pair of relatively prime integers p, q > 1, we set

$$Z_{p,q} = \{ f \in \mathcal{C}([0,1]; \mathcal{M}_p \otimes \mathcal{M}_q) \mid f(0) \in \mathcal{M}_p \otimes 1, f(1) \in 1 \otimes \mathcal{M}_q \}.$$

Each $Z_{p,q}$ is contained unitally in \mathcal{Z} . If a unital C^* -algebra A admits no unital *-homomorphism $\gamma: Z_{p,q} \to A$, then there is no unital embedding of \mathcal{Z} into A.

Let A, B be unital C*-algebras, and let $e, f \in A$ be projections satisfying $(n + 1)[e] \leq n[f]$ in the Murray-Von Neumann semigroup V(A) for some $n \in \mathbb{N}$. It is implicitly shown in the proof of [4, Lemma 4.3] that if $\gamma: Z_{n,n+1} \to B$ is a unital *-homomorphism, then $[e \otimes 1_B] \leq [f \otimes 1_B]$ in $V(A \otimes B)$; tensor products are minimal. Example 4.8 of [2] exhibits a sequence $(B_j)_{j \in \mathbb{N}}$ of unital separable C*-algebras with the following property: there are projections $e, f \in B_1 \otimes B_2$ such that $4[e] \leq 3[f]$, but $[e \otimes 1_{\bigotimes_{j=3}^n B_j}] \not\leq [f \otimes 1_{\bigotimes_{j=3}^n B_j}]$ for any $n \geq 3$. Using Rørdam's result, one concludes that there is no unital *-homomorphism $\gamma: Z_{3,4} \to \bigotimes_{j=3}^n B_j$ for any $j \geq 3$. (In fact, there is nothing special about $Z_{3,4}$. A similar construction can be carried out for a wide variety of $Z_{p,q}$ s.)

To simplify notation, we renumber the B_j s so that $Z_{3,4}$ does not embed into $\bigotimes_{j=1}^n B_j$ for any $n \in \mathbb{N}$. For each $i \in \mathbb{N}$, set $D_i = \bigotimes_{j=1}^i B_j$. We will perturb the canonical embeddings

$$\psi_i := \mathrm{id} \otimes 1_{B_{i+1}} : D_i \longrightarrow D_i \otimes B_{i+1} = D_{i+1}$$

to maps ϕ_i with the property that $(D_i, \phi_i)_{i \in \mathbb{N}}$ has simple limit D. Any such limit, simple or not, fails to admit a unital *-homomorphism $\gamma: Z_{3,4} \to D$, and so also fails to admit a unital embedding of \mathcal{Z} . Indeed, suppose that such a γ did exist. Then, by the semiprojectivity of $Z_{3,4}$ ([3]), there would exist a unital *-homomorphism $\tilde{\gamma}: Z_{3,4} \to D_i$ for some i, contradicting our choice of D_i . We remark that, in particular, $\bigotimes_{j=1}^{\infty} B_j$ admits no unital embedding of \mathcal{Z} . This algebra is a continuous field of C*-algebras whose fibres are \mathcal{Z} -absorbing – in fact, its fibres are all isomorphic to the CAR algebra (see [2, Example 4.8]).

The B_j s have the form $(e_j \oplus f_j)$ $(C(X_j) \otimes \mathcal{K})$ $(e_j \oplus f_j)$, where e_j and f_j are rank one projections and $X_j = (S^2)^{\times m(j)}$. Let $\alpha: X_j \to X_j$ be a homeomorphism homotopic to the identity map, and view B_j as a corner of $C(X_j) \otimes M_n$ for some sufficiently large $n \in \mathbb{N}$. The map α induces an automorphism α^* of $C(X_j) \otimes M_n$, $\alpha^*(f) = f \circ \alpha$. In general, α^* will not carry B_j into B_j , but this can be corrected. Since α is homotopic to the identity, the projection $e_j \oplus f_j$ is homotopic, and hence unitarily equivalent, to its image under α^* . If u is a unitary implementing this equivalence, then $\overline{\alpha} := (\mathrm{Ad}(u) \circ \alpha^*)|_{B_j}$ is an automorphism of B_j . For our purposes, the salient

property of $\overline{\alpha}$ is this: if $f \in B_j$ and $f(x) \neq 0$ for some $x \in X_j$, then $\overline{\alpha}(f)(\alpha^{-1}(x)) \neq 0$.

It remains to construct the ϕ_i , and prove the simplicity of the resulting inductive limit algebra D. Let us set $Y_i := \prod_{j=1}^i X_j$ where $i \in \mathbb{N}$ or $i = \infty$. We endow Y_i with the metric $d(x,y) = \sum_{j=1}^i 2^{-j} d_j(x^j,y^j)$ where d_j is the canonical metric on X_j , normalized so that X_j has diameter equal to one.

Choose a dense sequence $(z_k)_{k\in\mathbb{N}}$ in Y_∞ . Fix $z_0\in Y_\infty$ and for each $k\in\mathbb{N}$ let $\beta_k:Y_\infty\to Y_\infty$ be a cartesian product of isometries of X_j s which are homotopic to the identity and such that $\beta_k(z_0)=z_k$. Let $(\alpha_k)_{k\in\mathbb{N}}$ be an enumeration of the set $\{\beta_m\beta_n^{-1}:n,m\in\mathbb{N}\}$. It is easy to see that for any point $x\in Y_\infty$ and any $i\in\mathbb{N}$, the sequence $(\alpha_k(x))_{k\geq i}$ is dense in Y_∞ . Note that each α_k is also a cartesian product of isometries α_k^j of X_j homotopic to id_{X_j} . Let us set $\alpha_{k,[i]}=\prod_{j=1}^i\alpha_k^j$. Let $\pi_i:Y_\infty\to Y_i$ be the co-ordinate projection. Then $\pi_i\alpha_k(x)=\alpha_{k,[i]}(\pi_i(x))$ for $x\in Y_\infty$. Therefore for any point $y\in Y_i$, the sequence $(\alpha_{k,[i]}(y))_{k\geq i}$ is dense in Y_i . So is the sequence $((\alpha_{k,[i]})^{-1}(y))_{k\geq i}$ since each $\alpha_{k,[i]}$ is an isometry. By the compactness of Y_i it follows that for any nonempty open set U of Y_i , there is $j\geq i$ such that $Y_i=\bigcup_{k=i}^j(\alpha_{k,[i]})^{-1}(U)$.

For each $i \leq k \in \mathbb{N}$, let $\overline{\alpha_{k,[i]}}: D_i \to D_i$ be the automorphism induced, in the manner described above, by the homeomorphism $\alpha_{k,[i]}: Y_i \to Y_i$.

Observe that the canonical embedding $\psi_i: D_i \to D_{i+1}$ is the direct sum of two non-unital embeddings:

$$\psi_i^{(1)} \stackrel{\text{def}}{=} \mathrm{id} \otimes e_{i+1} : D_i \to D_i \otimes e_{i+1} \subseteq D_{i+1},$$

and

$$\psi_i^{(2)} \stackrel{\text{def}}{=} \mathrm{id} \otimes f_{i+1} : D_i \to D_i \otimes f_{i+1} \subseteq D_{i+1}.$$

Set $\phi_i^{(1)}=\psi_i^{(1)}$, and

$$\phi_i^{(2)} \stackrel{\text{def}}{=} \overline{\alpha_{i,[i]}} \otimes f_{i+1} : D_i \to D_i \otimes f_{i+1} \subseteq D_{i+1}.$$

Define $\phi_i: D_i \to D_{i+1}$ to be $\phi_i^{(1)} \oplus \phi_i^{(2)}$.

Let us now verify that $D=\lim_{i\to\infty}(D_i,\phi_i)$ is simple. It will suffice to prove that for any nonzero $a\in D_i$ there is some $j\geq i$ such that $\phi_{i,j+1}(a):=\phi_j\circ\cdots\circ\phi_i(a)$ is nonzero over every point in the spectrum of D_{j+1} .

For each
$$\mathbf{v} = (v_i, \dots, v_j) \in \{1, 2\}^{j-i+1}$$
, set

$$\phi_{i,j+1}^{\mathbf{v}} = \phi_j^{v_j} \circ \phi_{j-1}^{v_{j-1}} \circ \cdots \circ \phi_i^{v_i},$$

and note that $\phi_{i,j+1} = \bigoplus_{\mathbf{v} \in \{1,2\}^{j-i+1}} \phi_{i,j+1}^{\mathbf{v}}$. For $k \in \{i,\ldots,j\}$, let $\mathbf{v}_k \in \{1,2\}^{j-i+1}$ be the vector which is equal to 1 in each co-ordinate except the k^{th} one. We have (with

the exception of the cases k = i, j when the formula reads slightly differently)

$$\phi_{i,j+1}^{\mathbf{v}_k}(a) = \left[\overline{\alpha_{k,[k]}} (a \otimes e_{i+1} \otimes \cdots \otimes e_k) \right] \otimes f_{k+1} \otimes e_{k+2} \otimes \cdots \otimes e_{j+1}$$
$$= \left[\overline{\alpha_{k,[i]}}(a) \otimes \overline{\alpha_k^{i+1}}(e_{i+1}) \otimes \cdots \otimes \overline{\alpha_k^{k}}(e_k) \right] \otimes f_{k+1} \otimes e_{k+2} \otimes \cdots \otimes e_{j+1}.$$

Since a is nonzero on some nonempty open set U, the formula above shows that $\phi_{i,j+1}^{\mathbf{v}_k}(a)$ is nonzero on $W_{i,j+1}^k:=(\alpha_{k,[i]})^{-1}(U)\times X_{i+1}\times\cdots\times X_{j+1}$, for any $j\geq i$. As noticed earlier, there is $j\geq i$ such that $Y_i=\bigcup_{k=i}^j(\alpha_{k,[i]})^{-1}(U)$. Therefore $\bigoplus_{k=i}^j\phi_{i,j+1}^{\mathbf{v}_k}(f)$ is nonzero on $\bigcup_{k=i}^jW_{i,j+1}^k=Y_{j+1}=\widehat{D_{j+1}}$, as required.

REFERENCES

- [1] Elliott, G. A., and Rørdam, M.: Perturbation of Hausdorff moment sequences, and an application to the theory of C*-algebras of real rank zero, In Operator Algebras, The Abel Symposium 2004. Springer-Verlag (2006), 97-115
- [2] Hirshberg, I., Rørdam, M., and Winter, W.: $C_0(X)$ -algebras, stability and strongly self-absorbing C^* -algebras, Math. Ann. **339** (2007), 695-732
- [3] Jiang, X., and Su, H.: *On a simple unital projectionless C*-algebra*, Amer. J. Math. **121** (1999), 359-413
- [4] Rørdam, M.: The stable and the real rank of \mathbb{Z} -absorbing C^* -algebras, Internat. J. Math. **15** (2004), no. 10, 1065–1084.
- [5] Rørdam, M.: A simple C*-algebra with a finite and an infinite projection, Acta Math. 191 (2003), 109-142
- [6] Toms, A. S.: On the classification problem for nuclear C*-algebras, Ann. of Math., to appear
- [7] Winter, W.: Localizing the Elliott conjecture at strongly-self absorbing C*-algebras (with appendix by H. Lin), electronic preprint, arXiv: math.OA/0708.0283v3

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN, 47907-2067, USA

E-mail address: mdd@math.purdue.edu

DEPARTMENT OF MATHEMATICS, BEN GURION UNIVERSITY OF THE NEGEV, P.O.B. 653, BE'ER SHEVA 84105, ISRAEL

E-mail address: ilan@math.bgu.ac.il

Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto, Ontario, Canada, M3J 1P3

E-mail address: atoms@mathstat.yorku.ca

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

E-mail address: wilhelm.winter@nottingham.ac.uk