WEST Search History

Hide Items	Restore	Clear	Cancel
	***************************************	**********	***************************************

DATE: Monday, February 07, 2005

Hide?	<u>Set</u> <u>Name</u>	Query	<u>Hit</u> Count
	DB=U	SPT; PLUR=YES; OP=AND	
	Ll	5919665.pn.	1
	L2	botulinum.clm. same toxin.clm.	121
	L3	L2 and (truncat\$ or domain or domains or region or regions or portion or portions or chain or chains or fragment or fragments).clm.	47

END OF SEARCH HISTORY

Search Results - Record(s) 1 through 9 of 9 returned. 1. 20040253673. 05 Dec 03. 16 Dec 04. Recombinant botulinum toxins with a soluble C-terminal portion. Williams, James A., 435/69.1; 435/252.33 435/254.2 435/320.1 435/348 530/350 536/23.7 C07K014/33 C07H021/04 C12N001/21. 2. 20040235118. 04 Dec 03. 25 Nov 04. Portions of soluble recombinant botulinum toxins. Williams, James A., 435/69.7; C12P021/04. 3. 20040219637. 05 Dec 03. 04 Nov 04. Soluble recombinant botulinum toxins having a Cterminal portion of a heavy chain, a N-terminal portion of a heavy chain and a light chain. Williams, James A., 435/69.3; 435/252.33 435/254.2 435/320.1 435/348 C12P021/02 C12N001/18 C12N005/06. 4. 20040142455. 05 Dec 03. 22 Jul 04. Recombinant botulinum toxins having a soluble C-terminal portion of a heavy chain, an N-terminal portion of a heavy chain and a light chain. Williams, James A... 435/252.33; 435/254.2 435/320.1 435/348 435/69.3 530/350 536/23.7 C12P021/02 C12N001/21 C12N001/18 C12N005/06. 5. 2004<u>0115215</u>. 05 Dec 03. 17 Jun 04. Recombinant botulinum toxins with a soluble C-terminal portion, an N-terminal portion and a light chain. Williams, James A., 424/184.1; A61K039/395 A61K039/00 A61K039/38. 6. 20030219457. 15 Oct 02. 27 Nov 03. Soluble recombinant botulinum toxins. Williams, James A., 424/199.1; 424/186.1 424/234.1 435/6 C12Q001/68 A61K039/12 A61K039/02. 7. 20030215468. 30 Jan 03. 20 Nov 03. Soluble recombinant botulinum toxin proteins. Williams, James A., et al. 424/239.1; 435/252.3 435/70.21 530/388.4 A61K039/08 C12P021/04 C12N001/21 C07K016/12. 8. 20030118547. 14 Nov 02. 26 Jun 03. Composition for intestinal delivery. Vandenberg, Grant William, 424/85,4; 424/130,1 424/85,2 424/93,2 514/169 514/2 514/54 514/560 A61K048/00 A61K038/21 A61K031/715 A61K038/24 A61K038/20 A61K031/573 A61K031/20 A61K031/56 A61K039/395.

9. 20030108597. 13 Aug 02. 12 Jun 03. Application of lipid vehicles and use for drug delivery. Chancellor, Michael B., et al. 424/450; 424/143.1 424/239.1 424/760 514/44 514/625 A61K048/00

A61K039/395 A61K009/127 A61K035/78 A61K031/16 A61K039/08.

DERWENT-ACC-NO: 1998-230234

DERWENT-WEEK: 200482

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Host cell containing recombinant expression vector encoding Clostridium botulinum type B or E toxin - useful to treat humans and other animals at risk of intoxication with clostridial toxin

INVENTOR: THALLEY, B S; WILLIAMS, J A

PATENT-ASSIGNEE: OPHIDIAN PHARM INC (OPHIN), <u>ALLERGAN</u> BOTOX LTD (ALLR), <u>ALLERGAN</u> INC (ALLR), <u>ALLERGAN</u> SALES INC (ALLR)

PRIORITY-DATA: 1996US-0704159 (August 28, 1996), 1995US-0405496 (March 16, 1995), 2003US-0354774 (January 30, 2003), 2002US-0271012 (October 15, 2002), 2003US-0729122 (December 5, 2003), 2003US-0729039 (December 5, 2003), 2003US-0729527 (December 5, 2003), 2003US-0727898 (December 4, 2003), 2003US-0728696 (December 5, 2003)

		Search Selected	Search ALL	Clear	
PAT	TENT-FAMILY:				
	PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
	<u>US 20040253673 A1</u>	December 16, 2004		000	C07K014/33
	WO 9808540 A1	March 5, 1998	E	427	A61K039/00
	<u>AU 9742450 A</u>	March 19, 1998		000	
	EP 1105153 A1	June 13, 2001	E	000	A61K039/00
	<u>US 20030215468 A1</u>	November 20, 2003		000	A61K039/08
	<u>US 20030219457 A1</u>	November 27, 2003		000	C12Q001/68
	<u>US 20040115215 A1</u>	June 17, 2004		000	A61K039/395
	<u>US 20040142455 A1</u>	July 22, 2004		000	C12P021/02
	<u>US 20040219637 A1</u>	November 4, 2004		000	C12P021/02
	<u>US 20040235118 A1</u>	November 25, 2004		000	C12P021/04

DESIGNATED-STATES: AU CA JP AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
US20040253673A1	March 16, 1995	1995US-0405496	CIP of
US20040253673A1	August 28, 1996	1996US-0704159	Cont of
US20040253673A1	October 15, 2002	2002US-0271012	Div ex
US20040253673A1	December 5, 2003	2003US-0728696	
US20040253673A1		US 5919665	CIP of
WO 9808540A1	August 28, 1997	1997WO-US15394	

AU 9742450A	August 28, 1997	1997AU-0042450	
AU 9742450A		WO 9808540	Based on
EP 1105153A1	August 28, 1997	1997EP-0940746	
EP 1105153A1	August 28, 1997	1997WO-US15394	
EP 1105153A1		WO 9808540	Based on
US20030215468A1	March 16, 1995	1995US-0405496	CIP of
US20030215468A1	August 28, 1996	1996US-0704159	Cont of
US20030215468A1	January 30, 2003	2003US-0354774	
US20030215468A1		US 5919665	CIP of
US20030219457A1	March 16, 1995	1995US-0405496	CIP of
US20030219457A1	August 28, 1996	1996US-0704159	Cont of
US20030219457A1	October 15, 2002	2002US-0271012	
US20030219457A1		US 5919665	CIP of
US20040115215A1	March 16, 1995	1995US-0405496	CIP of
US20040115215A1	August 28, 1996	1996US-0704159	Cont of
US20040115215A1	October 15, 2002	2002US-0271012	Div ex
US20040115215A1	December 5, 2003	2003US-0729122	
US20040115215A1		US 5919665	CIP of
US20040142455A1	March 16, 1995	1995US-0405496	CIP of
US20040142455A1	August 28, 1996	1996US-0704159	Cont of
US20040142455A1	October 15, 2002	2002US-0271012	Div ex
US20040142455A1	December 5, 2003	2003US-0729039	
US20040142455A1		US 5919665	CIP of
US20040219637A1	March 16, 1995	1995US-0405496	CIP of
US20040219637A1	August 28, 1996	1996US-0704159	Cont of
US20040219637A1	October 15, 2002	2002US-0271012	Div ex
US20040219637A1	December 5, 2003	2003US-0729527	
US20040219637A1		US 5919665	CIP of
US20040235118A1	March 16, 1995	1995US-0405496	CIP of
US20040235118A1	August 28, 1996	1996US-0704159	Cont of
US20040235118A1	January 30, 2003	2003US-0354774	Div ex
US20040235118A1	December 4, 2003	2003US-0727898	
US20040235118A1		US 5919665	CIP of
		•	

 $\begin{array}{c} \text{INT-CL (IPC): } \underline{A61 \ \underline{K} \ 38/08; \ \underline{A61 \ \underline{K} \ 39/00; \ \underline{A61 \ \underline{K} \ 39/02; \ \underline{A61 \ \underline{K} \ 39/08; \ \underline{A61 \ \underline{K} \ 39/12; \ \underline{A61 \ \underline{K} \ 39/38; \ \underline{A61 \ \underline{K} \ 39/395; \ \underline{C07 \ \underline{H} \ 21/04; \ \underline{C07 \ \underline{K} \ 14/33; \ \underline{C07 \ \underline{K} \ 16/00; \ \underline{C07 \ \underline{K} \ 16/12; \ \underline{C12 \ \underline{N} \ 1/18; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12} \ \underline{N} \ 15/06; \ \underline{C12 \ \underline{N} \ 15/02; \ \underline{C12 \ \underline{N} \ 15/70; \ \underline{C12 \ \underline{N} \ 15/74; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{N} \ 1/21; \ \underline{C12 \ \underline{P} \ 21/02; \ \underline{C12 \ \underline{P$

RELATED-ACC-NO: 1994-217494;1994-271898;1994-341765;1996-230603

ABSTRACTED-PUB-NO: WO 9808540A

BASIC-ABSTRACT:

Host cell, containing a recombinant expression vector, which encodes a protein comprising at least a portion of a Clostridium botulinum type B or E toxin, is claimed. Also claimed are: (1) a host cell containing a recombinant expression vector, which encodes a fusion protein comprising a non-toxin protein sequence, preferably comprising a poly-histidine tract, and at least a portion, preferably comprising the receptor binding domain, of a C. botulinum type B or E toxin; and (2) a vaccine, preferably endotoxin free, comprising the fusion protein of (1), and preferably further comprising a fusion protein comprising a non-toxin protein sequence and at least a portion of C. botulinum type A toxin.

USE - An antigen comprising the fusion protein can be used to generate a novel antibody (Ab) directed against a C. botulinum toxin (claimed). The vaccine and the Ab can be used to treat humans and other animals at risk of intoxication with clostridial toxin, while the Ab or the protein can also be used for the detection of bacterial toxins.

ABSTRACTED-PUB-NO: WO 9808540A EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/40

DERWENT-CLASS: B04 D16

CPI-CODES: B04-E08; B04-G01; B04-N0300E; B12-K04A4; B14-A01; B14-S11B; D05-H07; D05-

H11; D05-H14A1; D05-H17C;

ExPASy Home page Site Map Search ExPASy Contact us Swiss-Prot

Search Swiss-Prot/TrEMBL for botulinum toxin Go Clear

NiceProt

View of

Swiss-

Prot:

P10845

Printer-friendly view

Submit update

Quick BlastP search

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name BXA1_CLOBO

Primary accession number P10845

Secondary accession numbers P01561 P18639

Entered in Swiss-Prot in Release 11, July 1989
Sequence was last modified in Release 26, July 1993

Annotations were last modified in Release 46, February 2005

Name and origin of the protein

Protein name Botulinum neurotoxin type A [Precursor]

Synonyms EC 3.4.24.69
BoNT/A
Bontoxilysin A

BOTOX

Contains

Botulinum neurotoxin A, light-chain

Gene name

Botulinum neurotoxin A, heavy-chain
Name: botA

Synonyms: atx, bna

From Clostridium botulinum [TaxID: 1491]

Taxonomy Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;

Clostridium.

References

[1] NUCLEOTIDE SEQUENCE.

STRAIN=Type A / NCTC 2916;

MEDLINE=90235864, PubMed=2185020 [NCBI, ExPASy, EBI, Israel, Japan]

Thompson D.E., Brehm J.K., Oultram J.D., Swinfield T.-J., Shone C.C., Atkinson T., Melling J., Minton N.P.:

"The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene.";

Eur. J. Biochem. 189:73-81(1990).

[2] NUCLEOTIDE SEQUENCE.

STRAIN=Type A / 62A;

MEDLINE=90264400; PubMed=2160960 [NCBI, ExPASy, EBI, Israel, Japan]

Binz B., Kuarzono H., Wille M., Frevent J., Wernars K., Niemann H.;

"The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins.";

J. Biol. Chem. 265:9153-9158(1990).

[3] NUCLEOTIDE SEQUENCE OF 1-65.

STRAIN=Type A / 62A;

MEDLINE=97016817; PubMed=8863443 [NCBI, ExPASy, EBI, Israel, Japan]

East A.K., Bhandari M., Stacey J.M., Campbell K.D., Collins M.D.;

"Organization and phylogenetic interrelationships of genes encoding components of the botulinum toxin complex in proteolytic Clostridium botulinum types A, B, and F: evidence of chimeric sequences in the gene encoding the nontoxic nonhemagglutinin component.";

Int. J. Syst. Bacteriol. 46:1105-1112(1996).

[4] NUCLEOTIDE SEQUENCE OF 1-34.

STRAIN=Type A / Hall;

MEDLINE=89350959; PubMed=2669749 [NCBI, ExPASy, EBI, Israel, Japan]

Betley M.J., Somers E., Dasgupta B.R.;

"Characterization of botulinum type A neurotoxin gene: delineation of the N-terminal encoding region.";

Biochem. Biophys. Res. Commun. 162:1388-1395(1989).

[5] NUCLEOTIDE SEQUENCE OF 1-18.

STRAIN=Type A / NIH;

DOI=10.1016/0014-5793(95)01241-5;MEDLINE=96096783;PubMed=8521962 [NCBI, ExPASy, EBI, Israel, Japan]

Fujita R., Fujinaga Y., Inoue K., Nakajima H., Kumon H., Oguma K.;

"Molecular characterization of two forms of nontoxic-nonhemagglutinin components of Clostridium botulinum type A progenitor toxins.";

FEBS Lett. 376:41-44(1995).

[6] PROTEIN SEQUENCE OF 1-16.

MEDLINE=84178501; PubMed=6370252 [NCBI, ExPASy, EBI, Israel, Japan]

Schmidt J.J., Sartymoorthy V., Dasgupta B.R.;

"Partial amino acid sequence of the heavy and light chains of botulinum neurotoxin type A."; Biochem. Biophys. Res. Commun. 119:900-904(1984).

[7] PROTEIN SEQUENCE OF 1-46.

Dasgupta B.R., Foley J., Niece R.;

"Partial sequence of the light chain of botulinum neurotoxin type A.";

Biochemistry 26:4162-4162(1987).

[8] PROTEIN SEQUENCE OF 1-5 AND 444-456.

DOI=10.1016/0300-9084(90)90048-L;MEDLINE=91120847;PubMed=2126206 [NCBI, ExPASy, EBI, Israel, Japan]

Dasgupta B.R., Dekleva M.L.;

"Botulinum neurotoxin type A: sequence of amino acids at the N-terminus and around the nicking site.";

Biochimie 72:661-664(1990).

[9] PROTEIN SEQUENCE OF 448-464 AND 872-895.

MEDLINE=89024662; PubMed=3178218 [NCBI, ExPASy, EBI, Israel, Japan]

Sathymoorthy V., Dasgupta B.R., Foley J., Niece R.L.;

"Botulinum neurotoxin type A: cleavage of the heavy chain into two halves and their partial sequences.";

Arch. Biochem. Biophys. 266:142-151(1988).

[10] PROTEIN SEQUENCE OF 448-482.

MEDLINE=85285016; PubMed=3896784 [NCBI, ExPASy, EBI, Israel, Japan]

Shone C.C., Hambleton P., Melling J.;

"Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity.";

Eur. J. Biochem. 151:75-82(1985).

[11] PROTEIN SEQUENCE OF 866-879 AND 1147-1218.

PubMed=8397793 [NCBI, ExPASy, EBI, Israel, Japan]

Gimenez J.A., DasGupta B.R.;

"Botulinum type A neurotoxin digested with pepsin yields 132, 97, 72, 45, 42, and 18 kD fragments.";

J. Protein Chem. 12:351-363(1993).

[12] IDENTIFICATION OF SUBSTRATE.

DOI=10.1016/0014-5793(93)80448-4;MEDLINE=94063091;PubMed=8243676 [NCBI, ExPASy, EBI, Israel, Japan]

Schiavo G., Santtuci A., Dasgupta B.R., Mehta P.P., Jontes J., Benfenati F., Wilson M.C., Montecucco C.;

"Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds.";

FEBS Lett. 335:99-103(1993).

[13] IDENTIFICATION OF SUBSTRATE.

MEDLINE=94124495; PubMed=8294407 [NCBI, ExPASy, EBI, Israel, Japan]

Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Suedhof T.C., Jahn R., Niemann H.;

"Proteolysis of SNAP-25 by types E and A botulinal neurotoxins.";

J. Biol. Chem. 269:1617-1620(1994).

[14] MUTAGENESIS OF GLU-261; PHE-265 AND TYR-365.

DOI=10.1006/bbrc.2001.5911;MEDLINE=21556941;PubMed=11700044 [NCBI, ExPASy, EBI, Israel, Japan]

Rigoni M., Caccin P., Johnson E.A., Montecucco C., Rossetto O.;

"Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type a.":

Biochem. Biophys. Res. Commun. 288:1231-1237(2001).

[15] X-RAY CRYSTALLOGRAPHY (3.3 ANGSTROMS).

MEDLINE=98455071; PubMed=9783750 [NCBI, ExPASy, EBI, Israel, Japan]

Lacy D.B., Tepp W., Cohen A.C., Dasgupta B.R., Stevens R.C.;

"Crystal structure of botulinum neurotoxin type A and implications for toxicity.";

Nat. Struct. Biol. 5:898-902(1998).

Comments

- FUNCTION: Inhibits acetylcholine release. The botulinum toxin binds with high affinity to peripheral neuronal presynaptic membrane, is then internalized by receptor-mediated endocytosis. The C-terminus of the heavy chain (H) is responsible for the adherence of the toxin to the cell surface while the N-terminus mediates transport of the light chain from the endocytic vesicle to the cytosol. After translocation, the light chain (L) hydrolyzes the 197-Gln-|-Arg-198 bond in SNAP-25, thereby blocking neurotransmitter release. Inhibition of acetylcholine release results in flaccid paralysis, with frequent heart or respiratory failure.
- CATALYTIC ACTIVITY: Limited hydrolysis of proteins of the neuroexocytosis apparatus, synaptobrevins, SNAP25 or syntaxin. No detected action on small molecule substrates.

- COFACTOR: Binds 1 zinc ion per subunit.
- SUBUNIT: Disulfide-linked heterodimer of a light chain (L) and a heavy chain (H).
- SUBCELLULAR LOCATION: Secreted.
- PHARMACEUTICAL: Available under the name BOTOX (Allergan) for the treatment of strabismus and blepharospasm associated with dystonia and cervical dystonia. Also used for the treatment of hemifacial spasm and a number of other neurological disorders characterized by abnormal muscle contraction.
- MISCELLANEOUS: There are seven antigenically distinct forms of botulinum neurotoxin: Types Types A, B, C1, D, E, F, and G.
- SIMILARITY: Belongs to the peptidase M27 family [view classification].
- DATABASE: NAME=BOTOX product information Web site; WWW="http://www.botox.com/site/".
- DATABASE: NAME=Protein Spotlight; NOTE=Issue 19 of February 2002: WWW="http://www.expasy.org/spotlight/back_issues/sptlt019.shtml".

Copyright

This Swiss-Prot entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use as long as its content is in no way modified and this statement is not removed.

Cross-references	
EMBL	X52066; CAA36289.1; [EMBL / GenBank / DDBJ] [CoDingSequence] M30196; AAA23262.1; [EMBL / GenBank / DDBJ] [CoDingSequence] X92973; CAA63551.1; [EMBL / GenBank / DDBJ] [CoDingSequence] D67030; BAA11051.1; [EMBL / GenBank / DDBJ] [CoDingSequence] M27892; AAA23269.1; [EMBL / GenBank / DDBJ] [CoDingSequence]
PIR	A35294; BTCLAB.
PDB	3BTA; X-ray; A=1-1295.[ExPASy / RCSB / EBI]
MEROPS	M27.002;
InterPro	IPR008985; ConA_like_lec_gl. IPR011065; Kunitz_like. IPR006025; Pept_M_Zn_BS. IPR000395; Peptidase_M27. Graphical view of domain structure.
Pfam	PF01742; Peptidase_M27; 1. Pfam graphical view of domain structure.
PRINTS	PR00760; BONTOXILYSIN
ProDom	PD001963; Botulinum; 1. [Domain structure / List of seq. sharing at least 1 domain]
PROSITE	PS00142; ZINC_PROTEASE; 1.
HOBACGEN	[Family / Alignment / Tree]
BLOCKS	P10845.
ProtoNet	P10845.
ProtoMap	P10845.
PRESAGE	P10845.
DIP	P10845.
ModBase	P10845.
SMR	P10845; 858342F754862579.
SWISS-2DPAGE	Get region on 2D PAGE.

View cluster of proteins with at least 50% / 90% identity.

UniRef

3D-structure; Direct protein sequencing; Hydrolase; Metalloprotease; Neurotoxin; Pharmaceutical; Transmembrane; Zinc.

Features

Feature table viewer

Feature aligner

Key	From	To	Length	Description
INIT_MET	0	0	•	
CHAIN	1	447	447	Botulinum neurotoxin A light-chain.
CHAIN	448	1295	848	Botulinum neurotoxin A heavy-chain.
METAL	222	222		Zinc (catalytic).
ACT_SITE	223	223		
METAL	226	226		Zinc (catalytic).
METAL	261	261		Zinc (catalytic).
DISULFID	429	453		Interchain.
DISULFID	1234	1279		•
TRANSMEM	626	646	. 21	Potential.
TRANSMEM	655	675	21	Potential.
VARIANT	26	26	1	V -> A.
MUTAGEN	261	261		E->A: Drastic decrease in enzymatic activity.
MUTAGEN	265	265		F->A: Decreases enzymatic activity.
MUTAGEN	365	365		Y->A: Decreases enzymatic activity.
CONFLICT	1	1		P -> Q (in Ref. 1).
CONFLICT	479	479		E -> P (in Ref. 9).
CONFLICT	875	875		T -> L (in Ref. 8).
CONFLICT	891	891		$S \rightarrow K \text{ (in Ref. 8)}.$
CONFLICT	1217	1217		S -> Y (in Ref. 11).
TURN	9	10	2	
STRAND	18	22	5	
STRAND	25	25	1	
STRAND	32	38	7	
TURN	39	40	2	
STRAND	41	47	7	
HELIX	53	55	3	
TURN	74	77	4	
HELIX	80	98	19	
TURN	99	99	1	
HELIX	101	112	12	
TURN	119	120	2	
TURN	123	124	2	
HELIX	130	132	3	
STRAND	133	137	5	
TURN	139	140	2	
STRAND	143	147	5	
STRAND	150	154	5	
TURN	159	160	2	
STRAND	163	165	3	

167

1

167

STRAND

	154	100	_
TURN	174	176	3 4
STRAND	183	186	•
STRAND	191	192	2 2
STRAND	194	195	
HELIX	200	202	3
TURN	203	203	1
TURN	205	206	2
STRAND	212	213	2
HELIX	216	231	16
TURN	232	233	2
TURN	238	239	2
STRAND	241	241	1
STRAND	244	244	1
STRAND	251	251	1
STRAND	258	258	1
HELIX	259	265	7
TURN	267	268	2
HELIX	269	272	4
HELIX	275	297	23
TURN	298	298	1 1
STRAND	305	305	_
HELIX	309 321	320 321	12 1
TURN STRAND	321	321	2
STRAND	330	331	2
HELIX	334	346	13
TURN	334 347	347	13
HELIX	350	356	7
TURN	357	358	2
TURN	365	366	2
STRAND	373	374	2
TURN	380	382	3
STRAND	384	384	1
TURN	385	387	3
STRAND	388	388	1
TURN	389	389	1
HELIX	401	403	3
STRAND	404	404	1
TURN	405	408	4
HELIX	409	411	3
STRAND	413	414	2
TURN	420	422	3
STRAND	425	430	6
STRAND	453	457	5
HELIX	458	460	3
STRAND	462	462	1
STRAND	465	465	1

TURN	467	469	3
TURN	474	475	2
STRAND	478	480	3
HELIX	495	503	9
TURN	504	504	1
STRAND	516	516	1
STRAND	524	524	1
STRAND	527	527	1
STRAND	541	544	4
HELIX	549	554	6
TURN	555	556	2
HELIX	572	575	4
TURN	576	576	1
TURN	578	579	2
HELIX	587	593 '	7
TURN	599	600	2
HELIX	603	616	14
TURN	617	618	2
STRAND	621	621	1
TURN	624	625	2
TURN	627	628	2
STRAND	632	632	1
HELIX	634	636	3
TURN	637	643	7
HELIX	651	658	8
HELIX	660	663	4
STRAND	678	680	3
TURN	684	685	2
HELIX	687	719	33
TURN	720	720	1
HELIX	721	741	21
TURN	742	744	3
HELIX	745	750	6
TURN	751	752	2
TURN	757	758	2
HELIX	765	798	34
TURN	799	799	1
HELIX	800	823	24
TURN	824	828	5
HELIX	830	832	3
TURN	833	834	2
HELIX	835	843	9
TURN	844	845	2
HELIX	852	854	3
HELIX	859	870	12
HELIX	872	875	4
STRAND	878	883	6
TURN	884	885	2
			_

STRAND	886	889	4
TURN	890	891	2
STRAND	894	899	6
STRAND	904	905	2
TURN	910	911	2
STRAND	912	916	5
TURN	919	920	2
STRAND	923	927	5
TURN	930	931	. 2
HELIX	934	937	4
STRAND	940	947	8
TURN	955	958	4
STRAND	960	965	6
STRAND	974	978	5
STRAND	981	987	7
TURN	989	990	2
STRAND	993	999	7
TURN	1010	1011	2
STRAND	1013	1020	8
TURN	1022	1023	2
STRAND	1025	1030	6
TURN	1031	1032	2
STRAND	1033	1039	7
TURN	1041	1042	2
STRAND	1051	1057	7
TURN	1062	1063	2
STRAND	1065	1074	10
HELIX	1080	1089	10
TURN	1090	1091	2
TURN	1093	1094	2
STRAND	1095	1095	1
STRAND	1097	1097	1
TURN	1099	1100	2
STRAND	1103	1103	1
STRAND	1105	1105	1
STRAND	1110	1112	3
TURN	1118	1119	2
STRAND	1121	1124	4
TURN	1129	1130	2
STRAND	1133	1136	4
STRAND	1141	1141	1
STRAND	1151	1151	1
STRAND	1158	1162	5
STRAND	1172	1172	1
STRAND	1174	1174	1
TURN	1175	1176	2
STRAND	1178	1185	8
TURN	1186	1187	2

STRAND	1188	1194	7
TURN	1196	1197	2
STRAND	1206	1208	3
TURN	1210	1212	3
TURN	1214	1215	2
STRAND	1217	1217	1
STRAND	1220	1222	3
STRAND	1225	1225	1
TURN	1227	1228	2
STRAND	1231	1231	1
STRAND	1234	1234	1
STRAND	1236	1238	3
TURN	1241	1242	2
STRAND	1247	1252	6
STRAND	1259	1263	5
HELIX	1264	1269	6
TURN	1270	1271	2
TURN	1278	1279	2
STRAND	1280	1280	1
STRAND	1283	1284	2
TURN	1288	1289	2

Sequence information

Length: 1295 AA [This is the length of the unprocessed precursor]		Molecular weight: 149323 Da [This is the MW of the unprocessed precursor]		i	CRC64: 858342F754862579 [This is a checksum on the sequence]	
10	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>	
PEVNKOENYK DEVN	JCVDTAY TK	T PNT/COMO P	VKAFKTHNK	TWVTPERDTE	TMPERCHIMP	•

PPEAKQVPVS YYDSTYLSTD NEKDNYLKGV TKLFERIYST DLGRMLLTSI VRGIPFWGGS TIDTELKVID TNCINVIQPD GSYRSEELNL VIIGPSADII QFECKSFGHE VLNLTRNGYG STQYIRFSPD FTFGFEESLE VDTNPLLGAG KFATDPAVTL AHELIHAGHR LYGIAINPNR VFKVNTNAYY EMSGLEVSFE ELRTFGGHDA KFIDSLQENE FRLYYYNKFK DIASTLNKAK SIVGTTASLO YMKNVFKEKY LLSEDTSGKF SVDKLKFDKL YKMLTEIYTE DNFVKFFKVL NRKTYLNFDK AVFKINIVPK VNYTIYDGFN LRNTNLAANF NGQNTEINNM NFTKLKNFTG LFEFYKLLCV RGIITSKTKS LDKGYNKALN DLCIKVNNWD LFFSPSEDNF TNDLNKGEEI TSDTNIEAAE ENISLDLIQQ YYLTFNFDNE PENISIENLS SDIIGQLELM PNIERFPNGK 56<u>0</u> KYELDKYTMF HYLRAQEFEH GKSRIALTNS VNEALLNPSR VYTFFSSDYV KKVNKATEAA 620 630 640 650 660 MFLGWVEQLV YDFTDETSEV STTDKIADIT IIIPYIGPAL NIGNMLYKDD FVGALIFSGA 680 690 700 710 720 VILLEFIPEI AIPVLGTFAL VSYIANKVLT VQTIDNALSK RNEKWDEVYK YIVTNWLAKV 750 760 770 NTQIDLIRKK MKEALENQAE ATKAIINYQY NQYTEEEKNN INFNIDDLSS KLNESINKAM 810 820 830 ININKFLNQC SVSYLMNSMI PYGVKRLEDF DASLKDALLK YIYDNRGTLI GQVDRLKDKV 870 880 NNTLSTDIPF QLSKYVDNQR LLSTFTEYIK NIINTSILNL RYESNHLIDL SRYASKINIG 930 SKVNFDPIDK NQIQLFNLES SKIEVILKNA IVYNSMYENF STSFWIRIPK YFNSISLNNE 970 980 990 1000 YTIINCMENN SGWKVSLNYG EIIWTLQDTQ EIKQRVVFKY SQMINISDYI NRWIFVTITN 1040 1050 1060 1070 NRLNNSKIYI NGRLIDQKPI SNLGNIHASN NIMFKLDGCR DTHRYIWIKY FNLFDKELNE 1090 1100 1110 1120 1130 KEIKDLYDNQ SNSGILKDFW GDYLQYDKPY YMLNLYDPNK YVDVNNVGIR GYMYLKGPRG 1160 1170 1180 1190 SVMTTNIYLN SSLYRGTKFI IKKYASGNKD NIVRNNDRVY INVVVKNKEY RLATNASQAG 1220 1230 1240 1250 VEKILSALEI PDVGNLSQVV VMKSKNDQGI TNKCKMNLQD NNGNDIGFIG FHQFNNIAKL 1280 1290 P10845 in FASTA VASNWYNRQI ERSSRTLGCS WEFIPVDDGW GERPL format

View entry in original Swiss-Prot format View entry in raw text format (no links) Report form for errors/updates in this Swiss-Prot entry

BLAST submission on BLAST ExPASy/SIB or at NCBI (USA)

Sequence analysis tools: ProtParam, ProtScale, Compute pI/Mw, PeptideMass, PeptideCutter, Dotlet (Java)

ScanProsite, MotifScan

Search the SWISS-MODEL Repository

ExPASy Home page	Site	Map	Search E	xPASy	C	ontact	us	Swiss	s-Prot
Hosted by NCSC Mirror sites:	Australia	Bolivia	Brazil new	Canada	China	Korea	Switz	zerland	Taiwan

ExPASy Home page Site Map Search ExPASy Contact us Swiss-Prot

Search Swiss-Prot/TrEMBL for botulinum toxin Go Clean

NiceProt

View of

TrEMBL: **Q84GJ4**

Printer-friendly view

Request update

Quick BlastP search

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name Q84GJ4_CLOBO

Primary accession number Q84GJ4
Secondary accession numbers None

Entered in TrEMBL in Release 24, June 2003
Sequence was last modified in Release 24, June 2003
Annotations were last modified in Release 26, March 2004

Name and origin of the protein

Protein name Neurotoxin type A light chain [Fragment]

Synonyms None Gene name None

From Clostridium botulinum [TaxID: 1491]

Taxonomy Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;

Clostridium.

References

[1] NUCLEOTIDE SEQUENCE.

Seong H.Y., Kim J.S., Lee M.H., Choi Y.M., Choi S.-Y.;

Submitted (OCT-2002) to the EMBL/GenBank/DDBJ databases.

Comments

None

Cross-references

EMBL AY166872; AAO21363.1; -.[EMBL / GenBank / DDBJ] [CoDingSequence]

HSSP P10845; 3BTA. [HSSP ENTRY / PDB]

GO:0008233; Molecular function: peptidase activity (inferred from electronic

annotation).

GO:0009405; Biological process: pathogenesis (inferred from electronic annotation).

GO:0006508; Biological process: proteolysis and peptidolysis (inferred from

electronic annotation).

QuickGo view.

IPR011591; Botulinum.

IPR000395; Peptidase M27.

InterPro IPR006025; Pept M Zn BS.

Graphical view of domain structure.

PF01742; Peptidase M27; 1.

Pfam

Pfam graphical view of domain structure.

PR00760; BONTOXILYSIN. **PRINTS**

PD001963; Botulinum; 1.

ProDom [Domain structure / List of seq. sharing at least 1 domain]

PS00142; ZINC PROTEASE; UNKNOWN 1. **PROSITE**

[Family / Alignment / Tree] **HOBACGEN**

Q84GJ4. **ProtoMap PRESAGE** Q84GJ4. ModBase Q84GJ4.

Q84GJ4; 89C98D162AC9FDBE. **SMR**

SWISS-

Get region on 2D PAGE. 2DPAGE

View cluster of proteins with at least 50% / 90% identity. UniRef

Keywords

Neurotoxin; Toxin.

Features

Feature table viewer

Key From To Length Description

NON TER 448

Sequence information

Length: 448 A length of the sequence]	_	e Molecular v [This is the sequence]	weight: 51325 MW of the pa	ertial CRCC	CRC64: 89C98D162AC9FDBE [This is a checksum on the sequence]			
10	20	30	40	50	60	· .		
MPFVNKQFNY	KDPVNGVDIA	YIKIPNAGQM	QVKAFKIHNK	IWVIPERDTF	TNPEEGDLNP			
70	80	90	100	110	120			
	_	NEKDNYLKGV	TKLFERIYST	DLGRMLLTSI	VRGIPFWGGS			
130	140	150	160	170	180			
		GSYRSEELNL	VIIGPSADII	QFECKSFGHE	VLNLTRNGYG			
19 <u>0</u> STQYIRFSPD	20 <u>0</u> FTFGFEESLE	21 <u>0</u> VDTNPLLGAG	22 <u>0</u> KFATDPAVTL	23 <u>0</u> AHELIHAGHR	24 <u>0</u> LYGIAINPNR			

340

350

420 370 380 390 400 410 LNRKTYLNFD KAVFKINIVP KVNYTIYDGF NLRNTNLAAN FNGQNTEINN MNFTKLKNFT

270

330

VFKVNTNAYY EMSGLEVSFE ELRTFGGHDA KFIDSLQENE FRLYYYNKFK DIASTLNKAK

SIVGTTASLQ YMKNVFKEKY LLSEDTSGKF SVDKLKFDKL YKMKTEIYTE DDNFVKFFKV

260

320

43<u>0</u> 44<u>0</u> GLFEFYKLLC VRGIITSKTK SLDEGYNK

Q84GJ4 in FASTA format

View entry in original TrEMBL format View entry in raw text format (no links) Request for annotation of this TrEMBL entry

BLAST submission on BLAST ExPASy/SIB or at NCBI (USA)

Sequence analysis tools: ProtParam, ProtScale, Compute pI/Mw, PeptideMass, PeptideCutter, Dotlet (Java)

ScanProsite, MotifScan

Search the SWISS-MODEL Repository

ExPASy Home page	Site	Map	Search E	xPASy	C	ontact	us	Swiss	-Prot
Hosted by NCSC Mirror sites:	Australia	Bolivia	Brazil new	Canada	China	Korea	Switze	rland	Taiwan

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/15394

			101/03///135/			
IPC(6)	SSIFICATION OF SUBJECT MATTER Please See Extra Sheet. Please See Extra Sheet. to International Patent Classification (IPC) or to both	national classification	and IPC			
	DS SEARCHED					
Minimum d	ocumentation searched (classification system follows	d by classification sym	ibols)			
U.S. :	424/184.1,192.1, 247.1; 435/69.1, , 69.7, 325, 320.1;	530/388.4, 389.5				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) MEDLINE, BIOSIS, WPIDS, CAPLUS, APS						
c. Doc	UMENTS CONSIDERED TO BE RELEVANT		 			
Category*	Citation of document, with indication, where a	ppropriate, of the releva	ant passages	Relevant to claim No.		
Y	THOMPSON et al. The Complete Amino Acid Sequence of the Clostridium botulinum Type A Neurotoxin, Deduced by Nucleotide Sequence Analysis of the Encoding Gene. Eur. J. Biochem. April 1990, Vol. 189, pages 73-81, see entire document.					
Y	BINZ et al. The Complete Sequence of Botulinum Neurotoxin Type A and Comparison with Other Clostridial Neurotoxins. Journal of Biological Chemistry. June 1990, Vol. 265, No. 16, pages 9153-9158, see entire document.					
Υ	ROITT. Essential Immunology. Oxford: Blackwell Scientific Publications. 1988, especially pages 173-178.					
X Furth	er documents are listed in the continuation of Box C	See patent	t family annex.			
"A" doc	reial enlagories of cited documents: cumant defining the general state of the art which is not considered	data and not in	published after the inte- conflict with the appli- theory underlying the	mational filing date or priority cation but cited to understand invention		
E earl	to be of particular relevance E* earlier document published on or efter the international filling data "X" document of considered as			claimed invention cannot be ed to involve an inventive sup		
O doc	oited to establish the publication date of another criation or other special reason (se specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document document referring to an oral disclosure, use, exhibition or other					
P doc	means being obvious to a person skilled in the art document published prior to the international filing data but later than *g.* document member of the same patent family the priority data alamsed					
	completion of the international search	Date of mailing of the 2 3 DEC 199	_	ch report		
Commission Box PCT	ailing address of the ISA/US er of Palents and Trademarks D.C. 20231	Authorized officer	Zwh			
_	. (703) 305-3230	Telephone No. (703) 308-0196				

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/15394

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Releval Y SIEGEL. Human Immune Response to Botulinum Pentavalent (ABCDE) Toxoid Determined by a Neutralization Test and by an Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology. November 1988, Vol. 26, pages 2351-2356, see entire document. Y FORD et al. Fusion Tails for the Recovery and Purification of Recombinant Proteins. Protein Expression Purification. 1991, Vol. 2, pages 95-107, see entire document. Y LECLERC et al. Induction of Virus-Neutralizing Antibodies by Bacteria Expressing the C3 Poliovirus Epitope in the Periplasm. Journal of Immunology. April 1990, Vol. 144, pages 3174-3182, see entire document. Y KLEID. Using Genetically Engineered Bacteria for Vaccine Production. Annals New York Acad. Sci. 1983, Vol. 483, pages 23-30, see entire document.			L	·
Y SIEGEL. Human Immune Response to Botulinum Pentavalent (ABCDE) Toxoid Determined by a Neutralization Test and by an Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology. November 1988, Vol. 26, pages 2351-2356, see entire document. Y FORD et al. Fusion Tails for the Recovery and Purification of Recombinant Proteins. Protein Expression Purification. 1991, Vol. 2, pages 95-107, see entire document. Y LECLERC et al. Induction of Virus-Neutralizing Antibodies by Bacteria Expressing the C3 Poliovirus Epitope in the Periplasm. Journal of Immunology. April 1990, Vol. 144, pages 3174-3182, see entire document. Y KLEID. Using Genetically Engineered Bacteria for Vaccine Production. Annals New York Acad. Sci. 1983, Vol. 483, pages	ontinustion). DOCUMENTS CONSIDERED TO BE RELEVANT		
(ABCDE) Toxoid Determined by a Neutralization Test and by an Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology. November 1988, Vol. 26, pages 2351-2356, see entire document. Y FORD et al. Fusion Tails for the Recovery and Purification of Recombinant Proteins. Protein Expression Purification. 1991, Vol. 2, pages 95-107, see entire document. Y LECLERC et al. Induction of Virus-Neutralizing Antibodies by Bacteria Expressing the C3 Poliovirus Epitope in the Periplasm. Journal of Immunology. April 1990, Vol. 144, pages 3174-3182, see entire document. Y KLEID. Using Genetically Engineered Bacteria for Vaccine Production. Annals New York Acad. Sci. 1983, Vol. 483, pages	gory*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No
Recombinant Proteins. Protein Expression Purification. 1991, Vol. 2, pages 95-107, see entire document. Y LECLERC et al. Induction of Virus-Neutralizing Antibodies by Bacteria Expressing the C3 Poliovirus Epitope in the Periplasm. Journal of Immunology. April 1990, Vol. 144, pages 3174-3182, see entire document. Y KLEID. Using Genetically Engineered Bacteria for Vaccine Production. Annals New York Acad. Sci. 1983, Vol. 483, pages	(A Er M	ABCDE) Toxoid Determined by a Neutralization Test nzyme-Linked Immunosorbent Assay. Journal of Clin Cicrobiology. November 1988, Vol. 26, pages 2351-23	1-24	
Bacteria Expressing the C3 Poliovirus Epitope in the Periplasm. Journal of Immunology. April 1990, Vol. 144, pages 3174-3182, see entire document. Y KLEID. Using Genetically Engineered Bacteria for Vaccine Production. Annals New York Acad. Sci. 1983, Vol. 483, pages	R	ecombinant Proteins. Protein Expression Purification	1-24	
Production. Annals New York Acad. Sci. 1983, Vol. 483, pages	B. Jo	acteria Expressing the C3 Poliovirus Epitope in the Pournal of Immunology. April 1990, Vol. 144, pages 3	eriplasm.	1-24
	Pr	roduction. Annals New York Acad. Sci. 1983, Vol.		1-24
[:	

Form PCT/ISA/210 (continuation of second sheet)(July 1992)#

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/15394

	A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
	A61K 39/00, 39/38, 38/08; C12P 21/06, 21/04, 21/08; C12N 15/00, 15/09, 15/63, 15/70, 15/74; C07K 16/00
	A. CLASSIFICATION OF SUBJECT MATTER: US CL:
	424/184.1,192.1, 247.1; 435/69.1, . 69.7, 325, 320.1; 530/388.4, 389.5
	·
	· ·
•	

Form PCT/ISA/210 (extra sheet)(July 1992)*