

PSC 40A Zecture 07 Zeost Squares Regression, pt.I

Last Time

- ▶ **Goal**: Find prediction rule H(x) for predicting salary given years of experience.
- Minimize mean absolute error?

$$\frac{1}{n}\sum_{i=1}^{n}\left|H(x_i)-y_i\right|$$

▶ Not differentiable, instead minimize mean squared error:

$$\frac{1}{n}\sum_{i=1}^{n}\left(H(x_i)-y_i\right)^2$$

To avoid **overfitting**, use linear prediction rule:

$$H(x) = w_1 x + w_0$$

Last Time

▶ **Goal**: find w_1 and w_0 which minimize MSE:

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x + w_0) - y_i)^2$$

- Strategy: Take derivatives $\partial R_{sq}/\partial w_1$ and $\partial R_{sq}/\partial w_0$, set to zero, solve.
- ▶ We found:

$$\begin{split} &\frac{\partial R_{\text{sq}}}{\partial w_{1}}(w_{1},w_{0}) = \frac{2}{n} \sum_{i=1}^{n} \left((w_{1}x_{i} + w_{0}) - y_{i} \right) x_{i} \\ &\frac{\partial R_{\text{sq}}}{\partial w_{0}}(w_{1},w_{0}) = \frac{2}{n} \sum_{i=1}^{n} \left((w_{1}x_{i} + w_{0}) - y_{i} \right) \end{split}$$

Today

- ► Solve these equations to find the **least squares solutions**.
- See how to easily fit non-linear trends, too.

Strategy

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad 0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

- 1. Solve for w_0 in second equation.
- 2. Plug solution for w_0 into first equation, solve for w_1 .

Solve for W_0

$$0 = \frac{2}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)$$

Solve for W_0

$$0 = \frac{2}{n} \sum_{i=1}^{n} \left((w_1 x_i + w_0) - y_i \right)$$

Key Fact

Define

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

▶ Then

$$\sum_{i=1} (x_i - \bar{x}) = 0 \qquad \sum_{i=1} (y_i - \bar{y}) = 0$$

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad w_0 = \bar{y} - w_1 \bar{x}$$

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad w_0 = \bar{y} - w_1 \bar{x}$$

Least Squares Solutions

► The lease squares solutions for the slope w_1 and intercept w_0 are:

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Interpretation of Slope

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\triangleright x_i > \bar{x} \text{ and } y_i > \bar{y}?$
 - \triangleright $x_i < \bar{x}$ and $y_i < \bar{y}$?
 - $\rightarrow x_i > \bar{x}$ and $y_i < \bar{y}$?
 - $\triangleright x_i < \bar{x} \text{ and } y_i > \bar{y}?$

Interpretation of Intercept

$$w_0 = \bar{y} - w_1 \bar{x}$$

▶ What is $H(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

- a) slope increases, intercept increases
- b) slope decreases, intercept increases
- c) slope stays same, intercept increases
- d) slope stays same, intercept stays same

Example

$$\bar{x} =$$

$$W_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} =$$

$$w_0=\bar{y}-w_1\bar{x}$$

xi	Уi	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
3	7				
4	3				
8	2				

Example: Parallel Processing

Problem

- Some parts of a program are necessarily sequential.
- E.g., downloading the data must happen before analysis.
- More processors do not speed up sequential code.
- But they do speed up non-sequential code.

Speedup

Amdahl's Law

The time *T* it takes to run a program on *p* processors is:

$$T(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$

where t_S and t_{NS} are the time it takes the sequential and non-sequential parts to run on one processor, respectively.

Amdahl's Law

The time T it takes to run a program on p processors is:

$$T(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$

where t_S and $t_{\rm NS}$ are the time it takes the sequential and non-sequential parts to run on one processor, respectively.

Problem: we don't know t_S and t_{NS} .

Fitting Amdahl's Law

- **Solution**: we will learn t_S and t_{NS} from data.
- Run with varying number of processors, record total time:

Find decision rule $H(p) = \frac{t_{NS}}{p} + t_{S}$ by minimizing MSE.

General Problem

- ► Given data (x₁, y₁), ..., (x_n, y_n).
- Fit a non-linear rule $H(x) = w_1 \cdot \frac{1}{x} + w_0$ by minimizing MSE:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

Using definition of H:

Minimizing MSE

Take derivatives, you'll find:

$$\frac{\partial R_{\text{sq}}}{\partial w_1}(w_1, w_0) = \frac{2}{n} \sum_{i=1}^n \left[\left(w_1 \cdot \frac{1}{x_i} + w_0 \right) - y_i \right] \frac{1}{x_i}$$

$$\frac{\partial R_{\text{sq}}}{\partial w_0}(w_1, w_0) = \frac{2}{n} \sum_{i=1}^{n} \left[\left(w_1 \cdot \frac{1}{x_i} + w_0 \right) - y_i \right]$$

Minimizing MSE

Set to zero, solve. You'll find:

$$w_1 = \frac{\sum_{i=1}^n \left(\frac{1}{x_i} - \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right) (y_i - \bar{y})}{\sum_{i=1}^n \left(\frac{1}{x_i} - \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right)^2}$$

$$w_0 = \bar{y} - w_1 \cdot \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}$$

Minimizing MSE

Set to zero, solve. You'll find:

$$w_{1} = \frac{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right) (y_{i} - \bar{y})}{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2}} \qquad w_{0} = \bar{y} - w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}$$

▶ Define
$$z_i = \frac{1}{x_i}$$
, $\bar{z} = \frac{1}{n} \sum_{i=1}^n z_i = \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}$. Then:

$$w_1 = w_0 = 0$$

Fitting Non-Linear Trends

To fit a prediction rule of the form $H(x) = w_1 \cdot \frac{1}{x} + w_0$:

- 1. Create a new data set $(z_1, y_1), \dots, (z_n, y_n)$, where $z_i = \frac{1}{x_i}$.
- 2. Fit $H(z) = w_1 z + w_0$ using familiar least squares solutions:

$$w_{1} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}}$$

$$w_{0} = \bar{y} - w_{1} \cdot \bar{z}$$

3. Use w_1 and w_0 in original decision rule, H(x).

Example: Amdahl's Law

We have timed our program:

Time (Hours)		
8		
4		
3		

Fit prediction rule:
$$H(p) = \frac{t_{NS}}{p} + t_{S}$$

Example: fitting $H(x) = w_1 \cdot \frac{1}{x_i} + x_0$

$$\bar{z} = \bar{y} =$$

$$w_{1} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}}$$

$$w_{0} = \bar{y} - w_{1}\bar{z}$$

xi	zi	Уi	$(z_i - \bar{z})$	$(y_i - \bar{y})$	$(z_i - \bar{z})(y_i - \bar{y})$	$(z_i - \bar{z})^2$
3	7					
4	3					
8	2					

Example: Amdahl's Law

- ► We found: $t_{NS} = \frac{48}{7} \approx 6.88$, $t_{S} = 1$
- Our prediction rule:

$$H(p) = \frac{t_{NS}}{p} + t_{S}$$
$$= \frac{6.88}{p} + 1$$

Fitting Non-Linear Trends

To fit a prediction rule of the form $H(x) = w_1 \cdot f(x) + w_0$:

- 1. Create a new data set $(z_1, y_1), \dots, (z_n, y_n)$, where $z_i = f(x_i)$.
- 2. Fit $H(z) = w_1 z + w_0$ using familiar least squares solutions:

$$w_{1} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}}$$

$$w_{0} = \bar{y} - w_{1} \cdot \bar{z}$$

3. Use w_1 and w_0 in original decision rule, H(x).

Fitting Non-Linear Trends

We can fit rules like:

$$w_1 x + w_0$$
 $w_1 \cdot \frac{1}{x} + w_0$ $w_1 x^2 + w_0$ $w_1 e^x + w_0$

We can't fit rules like:

$$w_0 e^{w_1 x}$$
 $\sin(w_1 x + w_0)$

 \triangleright Can fit as long as linear function of w_1, w_0 .

What's Left?

- ► How do we make predictions with lots of features?
- ► E.g., experience, age, GPA, number of internships, etc.