Devoir Surveillé - 1 h

Exercice 1 - suite arithmétique et géométrique

6 points

La suite $(u_n)_{n\geq 0}$ est arithmétique.

Donner une expression explicite de u_n .

	Α	В
1	n	un
2	10	54
3	11	59
4	12	64
5	13	69
6	14	74
7	15	79
8	16	84
9	17	89
10	18	94

La suite (u_n)_{n≥0} est géométrique.

Donner une expression explicite de u_n.

	Α	В
1	n	un
2	2	20
3	3	-40
4	4	80
5	5	-160
6	6	320
7	7	-640
8	8	1280
9	9	-2560
10	10	5120
	2 3 4 5 6 7 8	1 n 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

Exercice 2 - suite

7 points

Dans cette partie, on se propose de modéliser, par une suite géométrique, l'évolution de l'émission moyenne de CO_2 (exprimée en grammes de CO_2 par km) des voitures particulières neuves immatriculées chaque année en France. On considère que celle-ci diminue de 2,1 % par an à partir de 2013, sachant que cette année-là l'émission moyenne de CO_2 était de $117 \ g/km$.

Pour tout entier naturel n, on note U_n l'émission moyenne de CO_2 des voitures particulières neuves immatriculées dans l'année en France pour l'année 2013 + n. Ainsi $U_0 = 117$.

1a/ Montrer que $U_1 \approx 114,5$

1b/ Calculer U_2 (On arrondira le résultat au dixième).

2/ Expliquer pourquoi la suite (U_n) est une suite géométrique. Donner sa raison.

3/ Exprimer U_n en fonction de n.

4/ Selon ce modèle d'évolution, la France respectera-t-elle l'objectif européen d'émissions moyennes d'au maximum 95 grammes de CO_2 par km en 2020 pour les voitures particulières neuves ?

Exercice 3 - étude de fonction

7 points

Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 - 8x + 1$

1/ Calculer la fonction dérivée de f

2/ Déterminer le signe de f' en fonction de x

3/ Dresser le tableau de variations de f

4/A l'aide de la calculatrice, représenter graphiquement la fonction f.