硕士毕业论文答辩

基于神经网络的高性能 语言建模技术研究

答辩人:姜楠

(nanjiang@buaa.edu.cn)

指导老师: 荣文戈 副教授

(w.rong@buaa.edu.cn)

北京航空航天大学计算机学院

School of Computer Science & Engineering, Beihang University

1.

课题背景

语言模型历史大词表问题

1.1 语言建模

$$w_1, \dots, w_{t-1} \longrightarrow w_t$$

组织结构:1)上下文表示:2)预测层表示

信息抽取(Information Extraction, IE)、关系抽取(Relation Extraction, RE)、命名实体识别(Named Entity Recognition, NER)、词性标注(Part Of Speech Tagging, POS)、指代消解(Coreference Resolution)、句法分析(Parsing)、词义消歧(Word Sense Disambiguation,WSD)、语音识别(Speech Recognition)、语音合成(Text To Speech, TTS)、机器翻译(Machine Translation,MT)、自动文摘(Automatic Summarization)、问答系统(Question Answering)、自然语言理解(Natural Language Understanding)、光学字符识别(Optical Character Recognition,OCR)、信息检索(Information Retrieval,IR)

1.2上下文表示

- 前馈神经网络
- 双线性神经网络

1.2上下文表示

- 前馈神经网络
- 双线性神经网络
- 循环神经神经网络

1.2上下文表示 循环神经网络

◎ 文本中存在单词依赖关系 → 需要用RNN建模

- ◎ 历史上提出的RNN模型可以分为:
 - RNN ReLU模型
 - RNN tanh模型
 - Quasi RNN模型
 - LSTM模型
 - GRU模型

1.3 预测层表示

◎ Softmax 函数

 $p(w|h) = \frac{\exp(h^{\mathsf{T}}v_w)}{\sum_{w_j \in \mathcal{V}} \exp(h^{\mathsf{T}}v_{w_j})}$

Log-softmax 函数

$$\log p(w|h) = \theta^w h - \log \sum_{u \in \mathcal{V}} \exp(\theta^u h)$$

- 若维度设置为512, 词表大小为267735, Float32 占用4字节softmax矩阵占用522MB, softmax导数 矩阵也占用522MB, 一共占用1.02GB
- ◎ 然而LSTM占用内存却是4MB

1.3 预测层表示 计算瓶颈

$$\frac{\exp(h^{\top}v_w)}{\sum_{w_j \in \mathcal{V}} \exp(h^{\top}v_{w_j})}$$

操作步骤	符号表	示	计算时间(%)
计算矩阵乘法(Multiply)	$h^{T}v_w$		~80%
计算概率归一化(Sum) 除法函数(Divide)	$\sum_{w_j \in \mathcal{V}}$	$\frac{A}{B}$	~20%

1.3 预测层表示 计算瓶颈

$$\frac{\exp(h^{\top}v_w)}{\sum_{w_j \in \mathcal{V}} \exp(h^{\top}v_{w_j})}$$

操作步骤	符号表示	计算时间(%)
计算矩阵乘法(Multiply)	$h^{T}v_w$	~80%
计算概率归一化(Sum) 除法函数(Divide)	$\sum_{w_j \in \mathcal{V}} \qquad \frac{\ell}{L}$	\ \

大词表问题!

- 1. 矩阵乘法需要的时间 > 线性求和计算的时间
- 2. 需要优化算法减少矩阵乘法操作。

1.4 大词表问题 单词拆分算法

◎ 单词级别: 只保留较少的单词用来训练神经网络语言模型

◎ 子词级别:将单词划分成更小的单元子词.

◎ 字符级别:"*a-zA-Z*@!#" cheekbones -> cheek+ bones</w>

entertains -> enter+ tains</w>

development -> develop+ ment</w>

international -> inter+ national</w>

	优点	缺点
单词级别	简单,易行	速度提升有限
子词级别	效果提升明显	破坏了句子的结构,句子长度加倍
字符级别	运算速度最快(94个预测字符)	字串结构被打破,句子长度增长十几倍

1.4 大词表问题 采样近似算法

$$\log p(w|h) = \theta^w h - \log \sum_{u \in \mathcal{V}} \exp(\theta^u h)$$

- 主要算法分类:
 - 重要性采样[2008]:用N-gram 概率估计。
 - 噪声误差估计算法[2010-2012]: 用 Uni-gram 采样, 同时将多元酚类转化成二元分类
 - Blackout 采样[2016]: 在NCE基础上改进,对正例和负例作加权平均。
- Questions:
 - 如何更快的采样?

Alias method

	优点	缺点
重要性采样		模型不收敛
NCE	算法计算快,收敛快	带有采样函数,GPU并行困难
Blackout	估计更精确	GPU并行困难,计算复杂度比NCE高

1.4 大词表问题 词表层次分解

◎ 单词类别分解.

◎ 树状分解

1.5 本文研究内容

	优点	缺点
二叉树结构	算法计算最快	模型并行度不高(Indexing操作过多), 模型精度不高
类别层次	计算速度比采样算法快 稳定性比二叉树结构高	不支持非均匀划分,测试时的策略尚未 讨论

2.

层次概率模型

基于二叉树解构

基于类别划分

北京航空航天大学计算机学院

School of Computer Science & Engineering, Beihang University

原单节点计算函数:

$$p(d_i^w | \theta_i^w, h) = \sigma(\theta_i^w h)^{d_i^w} \times \left(1 - \sigma(\theta_i^w h)\right)^{1 - d_i^w}, d_i^w \in [0, 1]$$

19. The state of t

北京航空航天大学计算机学院

原单节点计算函数:

$$p(d_i^w | \theta_i^w, h) = \sigma(\theta_i^w h)^{d_i^w} \times \left(1 - \sigma(\theta_i^w h)\right)^{1 - d_i^w}, d_i^w \in [0, 1]$$

转化后单节点函数:

$$p(d_i^w | \theta_i^w, h) = \sigma(\theta_i^w h)^{d_i^w}, d_i^w \in [-1, +1]$$

原单节点计算函数:

$$p(d_i^w | \theta_i^w, h) = \sigma(\theta_i^w h)^{d_i^w} \times \left(1 - \sigma(\theta_i^w h)\right)^{1 - d_i^w}, d_i^w \in [0, 1]$$

转化后单节点函数:

$$p(d_i^w | \theta_i^w, h) = \sigma(\theta_i^w h)^{d_i^w}, d_i^w \in [-1, +1]$$

单节点概率公式:

◎ 推导后模型的代价函数

$$\ell(\theta|h, w) = -\log \prod_{i=0}^{l^w - 1} \sigma(d_i^w \theta_i^w h) = -\log \sigma(d_i^w \theta_i^w h)$$
$$= \log (1 + \exp(-d^{w \mathsf{T}} \theta^w h)) = \zeta(-d^{w \mathsf{T}} \theta^w h)$$

◎ 原代价函数

$$\ell(\theta|h, w) = \sum_{i=0}^{l^{w}-1} \left\{ \left(1 - d_{i}^{w}\right) \log\left(\sigma(\theta_{i}^{w}h)\right) + d_{i}^{w} \log\left(1 - \sigma(\theta_{i}^{w}h)\right) \right\}$$

- ◎ 1) 原算法涉及许多微小的矩阵乘法操作,而在新算法中我们直接将所有参数以矩阵形式加载进内存,以内存消耗为代价来提高模型单位时间的计算量,我们进而这个参数矩阵的乘法:
- ② 2)除了我们的新模型的损失函数更加紧凑外,这条路径上所有节点的概率不是逐层计算而是同时计算的,这为我们的新算法提供更好的时间效率。

2.2 基于类别的层次概率模型

◎ 均匀划分

非均匀划分:类别偏差问题

2.2 类别层次概率模型 代价函数

类层的损失

被划分的词损失

被划分填补的词损失

总代价函数

$$\log p^{c}(c|h) = \theta^{c}h - \log \sum \exp(\theta^{c}h)$$

$$\log p^{o}(w|w^{c},h) = \theta^{o}h - \log \sum \exp (\theta^{o}h)$$

$$\log p^{o}(w|w^{c},h) = \theta^{o}h - \log \sum \theta^{m} \exp(\theta^{o}h)$$

$$\ell(\theta|h) = \log p^{c}(w^{c}|h) + \log p^{o}(w^{o}|w^{c},h)$$

2.2 类别层次概率模型 结构化预测argmax

算法3. 计算全部单词的概率, 然后排序,

算法4. 挑选每个类中概率最大的单词, 在这些已经被栅选单词中挑选最佳的单词,

算法5. 计算最大概率的类别;

在该类别取局部最大概率的单词。

3. 实验与分析

层次模型比较采样模型比较

3.1 实验配置 数据集

表 4 WikiText-2, WikiText-103 和 One Billion Words 数据集统计指标

数据集	类型	文章数	句子数量	单词数量	词表大小	OOV (%)
	训练集	600	36,718	2,088,628		
Wikitext-2	验证集	60	3,760	217,646	33,278	2.6%
	测试集	60	4,358	245,569		
	训练集	28,475	1,801,350	103,227,021		
Wikitext-103	验证集	60	3,760	217,646	267,735	0.4%
	测试集	60	4,358	245,569		
	训练集	_	30,301,028	768,646,526		
One Billion Words	验证集	_	6,075	153,583	793,471	0.28%
	测试集	_	6,206	159,354		

3.1 实验配置 评价指标

● 定量度量指标

$$PPL(w_1, \dots, w_T) = \sqrt[T]{\frac{1}{\prod_{t=1}^T p(w_t | w_{1:t-1})}}$$

● 定性度量指标

训练时间效率;

算法对词表可伸缩性;

运行时内存消耗。

3.2 运算效率分析 大词表问题

Softmax模块占据时间在3,4组中已经超过了80%的计算时间时间。

3.2 运算效率分析 设备影响

	Nvidia Titan X		Nvidia K40M	
	Train (µs)	Forward only (µs)	Train (µs)	Forward only (µs)
Theano LSTM	289.6	99.1	275.2	63.4
cuDNN Theano LSTM	118.8	59.5	86	32.1

◎ 不同GPU设备型号之间计算时间有差异,为了统一起见, 我们均采用K40M的配置。

3.2 运算效率分析 层次概率算法计算效率分析

表 5 Wikitext-103 数据集上 GPGPU 和 CPU 的运行时内存和计算时间比较

算法	运行时内存占用	总计算时间 (ms)		前向计算时间 (ms)	
		CPU	GPGPU	CPU	GPGPU
Softmax	$ \mathcal{HV} $	510.4	262.1	352.2	62.9
cHSM	$2 \mathcal{H} \sqrt{ V }$	506.5	40.6	28.7	14.6
tHSM	$ \mathcal{H} $	1,004.0	444.4	8.1	5.6
p-tHSM	$ \mathcal{H} \log \mathcal{V} $	383.5	86.4	7.0	1.4

- ◎ 我们提出的p-tHSM算法的运算速度在三项评测中速度最快
- ◎ tHSM因为过多的indexing操作,导致实际运算速度不高
- ◎ cHSM算法运算效率较高

3.2 运算效率分析 层次概率算法对词表伸缩性试验

- ◎ 我们提出的p-tHSM算法对词表的伸缩性更好
- ◎ 这里没有列举softmax,因为其数值过大

3.3 精确度分析 不同RNN模型的影响分析

表 8 Wikitext-2 数据集上不同循环网络针对 PPL、WER 和计算时间的影响

循环神经网络	计算时间(ms)	验证集(PPL/WER)	测试集(PPL/WER)
1×RNN Relu [54]	176.4	260.52 / 80.00%	238.75 / 80.02%
1×RNN Tanh [37]	176.2	250.57 / 79.61%	230.98 / 79.32%
1×LSTM [22]	189.5	180.98 / 77.16%	165.60 / 76.67%
1×GRU [55]	191.3	179.59 / 77.09%	165.32 / 77.07%
2×RNN Relu [54]	266.3	190.52 / 73.01%	198.75 / 73.02%
2×RNN Tanh [37]	266.3	189.57 / 72.62%	260.98 / 72.32%
2×LSTM [22]	279.4	164.98 / 71.17%	165.60 / 71.67%
2×GRU [55]	281.2	158.59 / 70.08%	155.32 / 70.07%

- ◎ LSTM计算效率比GRU高, GRU精度更好;
- ◎ RNN ReLU和 RNN Tanh 计算相对较快,但是精度低很多。

3.3 精确度分析 不同层次概率模型比较

数据集	算法	验证集(PPL/WER)	测试集(PPL/WER)
WikiText-2	cHSM + Uni-gram	203.18 / 78.25%	206.61 / 78.02%
	p-tHSM + Uni-gram	218.42 / 78.15%	216.05 / 78.15%
WikiText-103	cHSM + Uni-gram	161.81 / 73.42%	156.74 / 73.18%
	p-tHSM + Uni-gram	165.70 / 73.53%	166.11 / 72.44%
One Billion Words	cHSM + Uni-gram	225.36 / 80.32%	224.11 / 79.42%
	p-tHSM + Uni-gram	231.44 / 87.53%	236.11 / 82.53%

- ◎ cHSM算法在PPL和WER上面比p-tHSM更好。
- ◎ 树状模型结构性过强,很难将特征空间做迭代的二元划分。

3.3 精确度分析 不同结构化预测算法比较

表 7 Wikitext-2 数据集上 cHSM 算法针对不同搜索算法的 WER 评测结果

	算法类别	计算时间 (ms)	验证集(WER)	测试集(WER)
	全局 argmax(算法 3)	102	80.00%	80.02%
cHSM	贪心 argmax(算法 4)	87	80.00%	80.02%
	伪贪心 argmax(算法 5)	44	82.09%	82.07%

- ◎ 算法3和算法4WER一样,但是算法更快;
- ◎ 算法5每次都取最佳值,运算速度快,但是求解的是局部解,整体误差率更大。

谢谢!

请老师各位批评指正!