

# Homework 3 ELE2765 - Deep Learning

Thiago Matheus Bruno da Silva - 1413286

2020 Pontifícia Universidade Católica do Rio de Janeiro

## 1 Objetivo

O objetivo do trabalho foi realizar uma segmentação semântica no dataset de de imagens de satélite do desmatamento da amazônia com a arquitetura U-net e a função de custo weighted cross entropy. Foi realizado três diferentes tipos de treino cada um com patchesize diferente e comparado os resultados. Fora isso os hiperparâmetros usados foram os mesmos. O stride utilizado foi sempre metade do número de patches, pois era a quantidade que o meu computador local aguentava alocar na memória RAM.

| Model/parameters | learning rate | patche size | stride | batch size |
|------------------|---------------|-------------|--------|------------|
| Modelo1          | 1,00E-04      | 128         | 64     | 32         |
| Modelo2          | 1,00E-04      | 64          | 32     | 32         |
| Modelo3          | 1,00E-04      | 32          | 16     | 32         |

Figura 1: Parâmetros

## 2 Resultados

### 2.1 Gráficos



Figura 2: Modelo 1



Figura 3: Modelo 2



Figura 4: Modelo 3

## 2.2 Inferência



Figura 5: Cores de cada classe



Figura 6: Referência



Figura 7: Modelo 1



Figura 8: Modelo 2



Figura 9: Modelo 3

#### 2.3 Métricas

| Accuracy:  | 74,83 |       |       |       |       |
|------------|-------|-------|-------|-------|-------|
| Classes:   | 0     | 1     | 2     | 3     | 4     |
| F1score:   | 78,75 | 76,23 | 69,13 | 80,24 | 42,59 |
| Recall:    | 80,77 | 78,79 | 67,10 | 78,86 | 36,57 |
| Precision: | 76,83 | 73,84 | 71,28 | 81,67 | 51,00 |

Figura 10: Modelo 1

| Accuracy:  | 72,73 |       |       |       |       |
|------------|-------|-------|-------|-------|-------|
| Classes:   | 0     | 1     | 2     | 3     | 4     |
| F1score:   | 76,29 | 77,36 | 61,20 | 79,04 | 40,88 |
| Recall:    | 82,51 | 89,08 | 49,75 | 83,05 | 29,27 |
| Precision: | 70,95 | 68,36 | 79,49 | 75,40 | 67,92 |

Figura 11: Modelo 2

| Accuracy:  | 74,08 |       |       |       |       |
|------------|-------|-------|-------|-------|-------|
| Classes:   | 0     | 1     | 2     | 3     | 4     |
| F1score:   | 76,24 | 77,15 | 67,40 | 79,48 | 39,59 |
| Recall:    | 77,76 | 81,79 | 62,92 | 80,82 | 33,91 |
| Precision: | 74,77 | 73,02 | 72,57 | 78,19 | 47,54 |

Figura 12: Modelo 3

### 3 Comentários

Como já foi dito antes, todos os modelos foram treinados usando a mesma configuração, exceto pelos diferentes tamanhos dos patches extraídos das imagens. Além disso, todos os modelos utilizaram early stopping usando a função de custo como referência. Salvando sempre o peso de menor valor na validação da função de custo e parando após 10 épocas incrementando o valor da validação da "loss".

Pelos gráficos de treinamento podemos ver que conforme diminuímos o tamanho do patch a acurácia não cresceu tanto no treino e na validação. Além disso, os gráficos com maior o maior tamanho de patches se mostram menos ruidosos que os de menores, mostrando um melhor ajuste as curvas de treino e consequentemente uma melhor generalização.

Olhando para a inferência e para as métricas fica mais nítido essa diferença de performance nos treinos. O modelo 1 apresentou a maior acurácia dentre os três modelos, e o melhor f1 score em todas as classes, que é responsável por harmonizar o recall e a precisão. Se compararmos com os outros modelos, podemos ver manchas azul claro da classe 2 em cima do azul escuro da classe 3. Também é possível identificar maiores manchas verdes correspondente a classe 1, mostrando uma piora da segmentação conforme a diminuição do patch size. Esses resultados também podem ser evidenciados olhando a acurácia referente ao modelo 2 e 3, as quais são menores que o modelo 1. Podemos ver também, que a precisão referente as casses 1 e 3 caíram nos modelos 2 e 3, ou seja, a taxa de falso positivos

aumentou, confirmando o observando na imagem de inferência.

Outra questão importante se refere a quuntiade de pixels em cada classe no dataset. Como utilizamos a função de custo **weighted categorical cross entropy** para balancear as classes com poucos pixels, no caso a 3 e 4. A terceira, possui um pouco menos pixels classificados do que as classes restantes, enquanto a 4 possui duas ordens de grandeza a menos. Fica evidente que o balanceamento feito pela função de custo implementada ajudou a classificação da classe 3, mostrando resultados melhores que o da classe 2, a qual possuía mais amostras em todos os modelos. Entretanto, a classe 4, cor amarelo, não conseguiu bons resultados devido a pouca quantidade de pixels no nosso dataset. Mesmo com a função de custo ponderando as classes com base na quantidade de pixels de cada uma não foi o suficiente para dar resultados convincentes a última classe.

### 4 Conclusão

Como foi dito antes, o modelo 1 obteve os melhores resultados, os quais foram piorando gradativamente conforme diminuímos o patch size. Podemos explicar tal fenômeno pela perde de contexto global de cada imagem. A primeiro momento podemos pensar que a diminuição do tamanho de cada patch irá consequentemente mais imagens e por isso melhorará a acurácia da rede. Porém, essa diminuição de tamanho acarreta numa perda de contexto da rede, classificando erradamente os pixels. Para clasificarmos a imagem toda, cuja resolução é muito alta precisamos dividir em vários pedaços a imagem, porém esses pedaços não podem ser tão pequenos de forma que comprometa o contexto global da imagem.