Correction

d'après INA 1998

Préliminaire:

 $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ avec $\forall 1 \le i, j \le n, \lambda_i = \lambda_j \Rightarrow i \ne j$. $M = (m_{i,j})$.

On a $MD = (\lambda_i m_{i,j})$ et $DM = (\lambda_i m_{i,j})$.

Si MD=DM alors $\forall 1\leq i,j\leq n, \lambda_j m_{i,j}=\lambda_i m_{i,j}$ d'où $\forall 1\leq i\neq j\leq n, m_{i,j}=0$ et ainsi M apparaît comme étant diagonale.

Partie I

- 1. ${}^{t}(AP) = {}^{t}(DP)$ donne ${}^{t}P{}^{t}A = {}^{t}D{}^{t}P$ puis ${}^{t}PA = D{}^{t}P$ car A et D sont des matrices symétriques.
- 2. ${}^{t}PPD = {}^{t}PAP = D{}^{t}PP$ donc ${}^{t}PP$ commute avec D et par suite ${}^{t}PP$ est diagonale.
- 3.a $P = (p_{i,i}), {}^{t}P = (p'_{i,i}) \text{ avec } p'_{i,i} = p_{i,i}.$

Par produit matriciel : $\delta_k = \sum_{i=1}^n p'_{k,i} p_{i,k} = \sum_{i=1}^n p_{i,k}^2$.

3.b Si aucune colonne de P n'est nulle alors $\forall 1 \le k \le n, \delta_k \ne 0$.

Par suite Δ est inversible.

Comme ${}^{t}PP = \Delta$ on a $(\det P)^{2} = \det \Delta \neq 0$ et donc P inversible.

Comme $D = P^{-1}AP$ avec A inversible, on a aussi D inversible.

- 4.a Comme $^tPP=\Delta$ on a $P^{-1}=\Delta^{-1t}P$. De plus $A=PDP^{-1}$ donc $A^{-1}=PD^{-1}P^{-1}=PD^{-1}\Delta^{-1}\,^tP\;.$
- 4.b $D^{-1} = \operatorname{diag}(1/\lambda_1, ..., 1/\lambda_n)$, $\Delta^{-1} = \operatorname{diag}(1/\delta_1, ..., 1/\delta_n)$ donc $D^{-1}\Delta^{-1} = \operatorname{diag}(1/\lambda_1\delta_1, ..., 1/\lambda_n\delta_n)$.

$$PD^{-1}\Delta^{-1} = (q_{i,j})$$
 avec $q_{i,j} = \frac{p_{i,j}}{\lambda_i \delta_i}$ et

$$A^{-1} = PD^{-1}\Delta^{-1}{}^{t}P = (b_{i,j}) \text{ avec } b_{i,j} = \sum_{k=1}^{n} q_{i,k}p'_{k,j} = \sum_{k=1}^{n} \frac{p_{i,k}p_{j,k}}{\lambda_{k}\delta_{k}} \,.$$

Partie II

1.a En développant selon la première colonne :

$$D_n = 2D_{n-1} + \begin{vmatrix} -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & & 0 \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ 0 & & & -1 & 2 \end{vmatrix}_{[n-1]}$$

puis en développant selon la première ligne :

$$D_n = 2D_{n-1} - D_{n-2} .$$

- 1.b (D_n) est une suite récurrente linéaire d'ordre 2 Sachant $D_1=2$ et $D_2=3$ on obtient $D_n=n+1$.
- 1.c oui
- 2.a développer les sinus.

2.b Posons
$$Y_k = AX_k = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
.

$$\text{Pour tout } \ 2 \leq i \leq n-1 \ : \ y_i = -\sin\frac{(i-1)k\pi}{n+1} + 2\sin\frac{ik\pi}{n+1} - \sin\frac{(i+1)k\pi}{n+1}$$

et de plus cette formule vaut aussi pour i = 1 et i = n

Pour tout
$$1 \le i \le n$$
: $y_i = (2 - 2\cos\frac{k\pi}{n+1})\sin\frac{ik\pi}{n+1}$

donc
$$Y_k = AX_k = \lambda_k X_k$$
 avec $\lambda_k = 2 - 2\cos\frac{k\pi}{n+1}$.

2.c
$$AP$$
 est la matrice de colonnes $\lambda_1 X_1, \dots, \lambda_n X_n$.

Pour
$$D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$$
, PD a pour colonnes $\lambda_1 X_1, ..., \lambda_n X_n$.

Donc
$$AP = DP$$
.

De plus les coefficients diagonaux de D sont deux à deux distincts puisque la fonction cosinus est injective sur $[0,\pi]$.

3.a
$$p_{i,j} = \sin \frac{ij\pi}{n+1}.$$

3.b
$$\sum_{p=1}^{n} \cos 2px = \text{Re}\left(\sum_{p=1}^{n} e^{2ipx}\right) = \text{Re}\left(e^{2ix} \frac{1 - e^{2inx}}{1 - e^{2ix}}\right) = \text{Re}\left(e^{i(n+1)x} \frac{\sin nx}{\sin x}\right) = \frac{\sin nx}{\sin x} \cos(n+1)x.$$

$$S_n(x) = \sum_{p=1}^{n} \sin^2 px = \frac{1}{2} \sum_{p=1}^{n} (1 - \cos 2px) = \frac{n}{2} - \frac{\sin nx}{2\sin x} \cos(n+1)x.$$

3.c
$$\delta_k = \sum_{i=1}^n p_{i,k}^2 = \sum_{i=1}^n \sin^2 \frac{ik\pi}{n+1} = \frac{n}{2} - (-1)^k \frac{\sin \frac{nk\pi}{n+1}}{2\sin \frac{k\pi}{n+1}} = \frac{n+1}{2}$$

$$\operatorname{car } \sin \frac{nk\pi}{n+1} = \sin \left(k\pi - \frac{k\pi}{n+1} \right) = (-1)^{k-1} \sin \frac{k\pi}{n+1}.$$

4. Le coefficient voulu est
$$\sum_{k=1}^{n} \frac{\sin \frac{ik\pi}{n+1} \sin \frac{jk\pi}{n+1}}{(2-2\cos \frac{k\pi}{n+1})\frac{n+1}{2}} = \sum_{k=1}^{n} \frac{\sin \frac{ik\pi}{n+1} \sin \frac{jk\pi}{n+1}}{2(n+1)\sin^{2} \frac{k\pi}{2(n+1)}}.$$