Московский физико-технический институт (госудраственный университет)

Лабораторная работа по квантовой физике

Определение энергии α -частиц по величине их пробега в воздухе[4.1]

Талашкевич Даниил Александрович Группа Б01-008

Содержание

1	Теоретическое введение					
2	Экспериментальная установка					
	2.1	Счётчик Гейгера	4			
	2.2	Счётчик Гейгера	,			
	2.3	Иниозационная камера	,			
3	Ход работы					
	3.1	Измерение длины пробега α-частиц с помощью счётчика				
		Гейгера				
	3.2	Сцинтилляционнай счётчик				
	3.3	Измерение длины пробега α-частиц с помощью ионизаци-				
		онной камеры	ć			
4	Зак	лючение	9			

Цель работы: измерить пробег α-частиц в воздухе двумя способами: с помощью торцевого счетчика Гейгера и синтиляционного счетчика, – по полученным данным определить энергию частиц.

1 Теоретическое введение

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная связь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b.$$

Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под барьером, где потенциальная энергия больше энергии частицы.

Экспериментально энергию α -частиц удобно определять по величине их пробега в веществе. Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением

$$R = 0,32E^{3/2},\tag{1}$$

где пробег α -частиц в воздухе R (при 15 °C и атмосферном давлении) выражается в сантиметрах, а энергия частицы E в МэВ.

Рассеяние α -частиц в веществе и статистический характер потерь энергии приводят к тому, что даже при одинаковой начальной энергии пробеги разных α -частиц несколько отличаются друг от друга. Эти различия проявляются в форме кривой, выражающей зависимость числа частиц от расстояния, пройденного ими в поглотителе.

При малых глубинах число частиц не меняется с расстоянием. В конце пути это число не сразу обрывается до нуля, а приближается к нему постепенно. Как видно из кривой dN/dx, большая часть α -частиц останавливается в узкой области, расположенной около некоторого значения x, которое называется средним пробегом $R_{\rm cp}$. Иногда вместо $R_{\rm cp}$ измеряются экстраполированное значение $R_{\rm s}$.

Несмотря на наличие коллиматора, в данной работе мы имеем дело не с узкими параллельными пучками частиц, а с пучками конечных размеров, обладающими заметной угловой расходимостью. Это приводит к тому, что экспериментально наблюдаемые зависимости числа α -частиц

Рис. 1: Зависимость числа α -частиц от глубины их проникновения в вещество

от глубины их проникновения качественно правильно передают появление брэгговского пика и, тем самым, относительную величину пробега частиц с разной энергией.

Однако в силу указанных причин брэгговский пик оказывается смещенным и сильно размытым. Поэтому лучшей оценкой пробега оказывается экстраполированный пробег.

2 Экспериментальная установка

2.1 Счётчик Гейгера

Для определения пробега α -частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы, в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным окошком, сквозь которое могут проходить α -частицы.

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы. Расстояние между счетчиком и препаратом измеряется по шкале, нанесенной на держатель счетчика.

Рис. 2: Счётчик Гейгера

2.2 Сцинтилляционный счётчик

Установка состоит из цилиндрической камеры, на дне которой находится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора. С наружной стороны к стеклу прижат фотокатод фотоумножителя. Оптический контакт ФЭУ-стекло обеспечивается тонким слоем вазелинового масла.

Сигналы с фотоумножителя через усилитель поступают на пересчетную установку. Расстояние между препаратом и люминофором составляет 9 см, так что α -частицы не могут достигнуть люминофора при обычном давлении. Определение пробега сводится к измерению зависимости интенсивности счета от давления в камере.

2.3 Иниозационная камера

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами. Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС. Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая рождает в газе на

Рис. 3: Установка для измерения пробега α -частиц с помощью сцинтилляционного счетчика

своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения, заполним объем камеры воздухом. Зависимость силы тока, протекающего через камеру, от приложенной разности потенциалов представлен на рисунке. Плато в зависимости объясняется отсутствием рекомбинации ионов на своём пути, то есть ионы доходят до противоположного электрода.

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. При изменении давления в камере ионизационный ток меняется так, как это показано на рисунке. При небольших давлениях газа α -частицы передают часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается. Для определения давления P_0 чаще всего пользуются методом экстраполяции, продолжая наклонный и горизонтальный участки кривой до пересечения. Найденный таким образом пробег затем должен быть приведен к нормальному давлению и температуре $15\ ^{\circ}C$.

Рис. 4: Установка для измерения пробега α -частиц с помощью ионизационной камеры

3 Ход работы

3.1 Счётчик Гейгера

Построим таблицу измеренных данных.

x, MM	N_0	t, c	N, c^{-1}	x, MM	N_0	t, c	N, c^{-1}
10.00	149	10.19	14.626	19.00	57	90.19	0.632
11.00	519	30.43	17.057	20.00	16	41.00	0.390
12.00	638	40.08	15.918	21.00	26	70.06	0.371
13.00	685	45.07	15.199	22.00	18	65.25	0.276
14.00	600	40.07	14.972	24.00	17	70.21	0.242
15.00	430	30.29	14.197	26.00	14	70.20	0.199
6.00	646	45.24	14.280	28.00	13	54.79	0.237
17.00	605	49.25	12.284	30.00	15	69.96	0.214
18.00	217	40.06	5.416	_	_	_	_

Таблица 1: Таблица измеренных значений для счётчика Гейгера

Полученный график совпадает с теоретическим. Для поиска экстраполированного значения $R_{\mathfrak{p}}$ длины свободного пробега сперва построим модель зависимости, предполагая, что она функционально описывается следующим образом:

Рис. 5: График зависимости N(x)

$$N(x) = \frac{A}{1 + e^{\frac{x - x_0}{B}}} + C \tag{2}$$

Для построенной аппроксимационной модели получены следующие значения с помощью МНК: $A=15.079, x_0=17.665$ мм, B=0.493 мм, C=0.200. Дисперсия для модели равна $\sigma_N=0.335$ с $^{-1}$, что означает справедливость предположенной модели.

С помощью аппроксимированной аналитической кривой найдём экстрполированное значение длины свободного пробега: $R_9 = (19 \pm 0.5)$ мм. Этой длине свободного пробега соответствует значение энергии $E = (3.27 \pm 0.13)$ МэВ. Отметим, что значение энергии занижено, так как в эксперименте используется плёнка на источнике α -частиц.

3.2 Сцинтилляционнай счётчик

Построим таблицу измеренных данных (время $\tau=10~{\rm c},\,N$ – кол-во частиц за $10~{\rm секунд}).$

Р, мм. рт. ст.	N	Р, мм. рт. ст.	N
0	2	550	471
100	6	580	722
150	3	590	996
200	5	600	1182
350	2	600	1137
400	2	640	1967
450	38	650	2305
480	95	650	2309
480	72	675	2877
500	97	700	3110
510	115	700	3123
535	222	730	3516
550	401	735	3544

Таблица 2: Таблица измеренных значений для ионизационной камеры

Рис. 6: График зависимости N(P)

С помощью аппроксимационной прямой определим P_s = (480 ± 5) торр – давление, при котором длина свободного пробега равна расстоянию от источника для люминофора L=9 см. Пересчитаем длину свободного пробега для нормальных условий:

$$R_9 = L \frac{P_9}{P_0}, \ P_0 = 760 \text{ Topp} \Rightarrow R_9 = (27.2 \pm 0.8) \text{ MM}.$$
 (3)

Этой длине свободного пробега соответствует значение энергии $E=(4.16\pm0.18)~{
m M}{
m sB}.$

3.3 Ионизационная камера

Построим таблицу измеренных данных.

P, MM. pt. ct.	І, пА	P, мм. рт. ст.	І, пА	P, mm. pt. ct.	<i>I</i> , пА
37	37	260	426	520	967
25	10	280	463	540	1010
45	50	300	496	560	1035
65	80	320	540	580	1041
85	115	340	583	600	1045
100	140	360	620	620	1043
120	170	380	666	640	1038
140	206	400	708	660	1039
160	239	420	755	550	1006
180	277	440	795	570	1032
200	308	460	841	590	1037
220	351	480	887	610	1043
240	388	500	935	_	_

Таблица 3: Таблица измеренных значений для ионизационной камеры

С помощью аппроксимационной прямой определим $P_9 = (560\pm5)$ торр – давление, при котором длина свободного пробега равна расстоянию между внутренним и внешним электродами L = (10-0.5)/2 = 4.75 см (10 см – диаметр внешнего диска, 0.5 см – внутреннего). Пересчитаем длину свободного пробега для нормальных условий:

$$R_9 = L \frac{P_9}{P_0}, \ P_0 = 760 \text{ ropp} \Rightarrow R_9 = (28.8 \pm 0.3) \text{ mm}.$$
 (4)

Этой длине свободного пробега соответствует значение энергии $E=(4.33\pm0.07)~{\rm M}{
m sB}.$

Pис. 7: График зависимости I(P)

4 Заключение

Тремя различными способами был измерен свободный пробег в воздухе α -частиц с энергией 5,15 МэВ. В качестве источника радиоактивных частиц был использован 239 Pu.

В результате экспериментов были получены следующие значения энергии α -частиц: с помощью счётчика Гейгера $E=(3.27\pm0.13)$ МэВ, с помощью сцинтилляционного счётчика $E=(4.16\pm0.18)$ МэВ, с помощью ионизационной камеры $E=(4.33\pm0.07)$ МэВ.

Полученные значения является заниженными по сравнению с теоретическим по следующим причинам: источник частиц покрыт слюдяной пленкой, что приводит к замедлению α -частиц; пучки частиц обладают конечными размерами, что приводит к угловой расходимости и заметно искажает брэгговский пик, из-за чего зависимости являются более размытыми.

Список литературы

[1] Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М. Лабораторный практикум по общей физике: Учеб. пособие для вузов. Т. 3 Квантовая физика. М.: Физматкнига, 2005.