Approximating solution to Initial Value Problems using the Runge Kutta Method

```
rkmethod[a0_, b0_, b_, m0_, f] := Module[{a = a0, y0 = b0, j, m = m0}, h = b-a/m;

x = Table[a + (j-1) * h, {j, 1, m + 1}];
y = Table[y0, {j, 1, m + 1}];
i = Table[j, {j, 0, m}];

For[j = 1, j ≤ m, j++, k1 = h f[x[[j]], y[[j]]];

k2 = h f[x[[j]] + 1/2 h, y[[j]] + 1/2 k1];

k3 = h f[x[[j]] + 1/2 h, y[[j]] + 1/2 k2];

k4 = h f[x[[j]] + h, y[[j]] + k3];

k = k1 + 2 k2 + 2 k3 + k4/6;

y[[j+1]] = y[[j]] + k;];

Return[
TableForm[
TableForm[
TableHeadings → {{}, {"i", "x", "y"}}]];]
```

```
1. \frac{dy}{dx} = 1 + \frac{y}{x}, 1 \le x \le 6, y[1] = 1. Find y[6].
```

\Box	i	х	у
	0.	1.	1.
	1.	1.25	1.52891
	2.	1.5	2.10816
	3.	1.75	2.72928
	4.	2.	3.38624
	5.	2.25	4.07453
	6.	2.5	4.79066
	7.	2.75	5.53183
	8.	3.	6.29575
	9.	3.25	7.08054
	10.	3.5	7.88457
	11.	3.75	8.70648
	12.	4.	9.54507
	13.	4.25	10.3993
	14.	4.5	11.2682
	15.	4.75	12.1511
	16.	5.	13.0471
	17.	5.25	13.9556
	18.	5.5	14.876
	19.	5.75	15.8077
	20.	6.	16.7504

2.
$$\frac{dy}{dx} = \sqrt{y} x$$
, $2 \le x \le 3$, $y[2] = 4$. Find $y[3]$.

 $f[x_{,}, y_{]} := \sqrt{y} x$ rkmethod[2, 4, 3, 5, f]

i	x	у
0.	2.	4.
1.	2.2	4.8841
2.	2.4	5.95359
3.	2.6	7.23609
4.	2.8	8.76158
5.	3.	10.5625