- 1. Let $\mathcal{P}(S)$ denote the power set of the set S. Write down the set $\mathcal{P}(\mathcal{P}(\{1\}))$.
- 2. Define $S = \{1, 2, ..., 100\}$. Let $W = \{x \in S \mid x \mod 2 = 0\}$, $H = \{x \in S \mid x \mod 3 = 0\}$, and O = S H W. Is $\{W, H, O\}$ a partition of S? Justify your answer.
- 3. [2 marks] Let us define the *similarity* score of two sets A and B to be the value of $|A \cap B|$. Now suppose we have a collection of sets A_1, A_2, \ldots, A_n . Consider the following claim.

Claim: Suppose that the set A_v is the most similar set to the set A_u in this collection (apart from A_u itself). Then A_u is necessarily the set that is most similar to A_v (apart from A_v itself).

If the claim is true, argue why it must be true. Otherwise, give an example to demonstrate that the claim does not hold.

- 4. Why doesn't the function $f:\{0,\ldots,23\}\to\{0,\ldots,11\}$ where f(n)=n mod 12 have an inverse?
- 5. Consider the function $f:\{0,1,\ldots,7\}\to\{0,1,\ldots,7\}$ defined by $f(x)=(x^2+3)$ mod 8. What is the value of f(3) and f(7)?
- 6. Let us define $f: \{0,1,2,3\} \to \{0,1,2,3\}$ as $f(x) = x^2 \mod 4$. Is f onto?
- 7. [2 marks] Let f(x) = 3x + 1 and let g(x) = 2x. Identify a function h such that $g \circ h$ and f are identical.
- 8. Consider the function $f(x) = (x^3 + 2x) \mod 8$. If we think of this as a function $f: \{0, 1, 2, 3\} \rightarrow \{0, 1, \dots, 7\}$, would f be one-to-one?
- 9. Consider $h: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 1}$, where $h(x) = 3^x$. What is the inverse of h?
- 10. If p(x) and q(x) are both polynomials with degree 7, what is the smallest and largest possible degree of f(x) = p(x) + q(x)?
- 11. If p(x) and q(x) are both polynomials with degree 7, what is the smallest and largest possible degree of $f(x) = p(x) \cdot q(x)$?