Theory of Automata

Closure properties and Pumping Lemma for Regular Languages

Dr. Sabina Akhtar

Revision

- Design DFA for
 - L = {w | w is of the form 0^n1^n , for all n≥0}
 - $-L1 = \{w \mid w \text{ is of the form } 0^n, \text{ for all } n \ge 0\}$
 - $-L2 = \{w \mid w \text{ is of the form } 0^{n}1^{n}, \text{ for all } n<10000000\}$
- Why it is not possible? Informally state.
- When language is regular, how do we prove it?

PUMPING LEMMA FOR REGULAR LANGUAGES

Regular Languages

- Finite regular language
 - Always regular?
- Infinite regular language
- Examples?

The Infiniteness Problem

- Is a given regular language infinite?
- Start with a DFA for the language.
- Key idea: if the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length n-1 or less.

Proof of Key Idea

- If an n-state DFA accepts a string w of length *n* or more, then there must be a state that appears twice on the path from the start state to a final state.
- Because there are at least n+1 states along the path.

Regular or not?

When is a language regular?

if we are able to construct one of the following: DFA

or NFA or & -NFA or regular expression

When is it not?

If we can show that no FA can be built for a language

How to prove languages are *not* regular?

What if we cannot come up with any FA?

- A) Can it be language that is not regular?
- B) Or is it that we tried wrong approaches?

How do we *decisively* prove that a language is not regular?

Examples

- $L_1 = \{w \mid w \text{ is of the form } 0^n \text{, for all } n \ge 0\}$
- $L_2 = \{w \mid w \text{ is of the form } 0^n 1^n \text{, for all } n \ge 0\}$

The Pumping Lemma for Regular Languages

What it is?

The Pumping Lemma is a property of all regular languages.

How is it used?

A technique that is used to show that a given language is not regular

Pumping Lemma for Regular Languages

Let L be a regular language

Then <u>there exists</u> some constant N such that <u>for every</u> string $w \in L$ s.t. $|w| \ge N$, <u>there exists</u> a way to break w into three parts, w = xyz, such that:

- 1. $y \neq \varepsilon$
- 2. |xy|≤N
- 3. For all $k \ge 0$, all strings of the form $xy^kz \in L$

Definition: N is called the "Pumping Lemma Constant"

This property should hold for <u>all</u> regular languages.

Pumping Lemma: Proof

- L is regular => it should have a DFA.
 - <u>Set</u> N := number of states in the DFA
- Any string w∈L, s.t. |w|≥N, should have the form: w=a₁a₂...a_m, where m≥N
- Let the states traversed after reading the first N symbols be: $\{p_0, p_1, ..., p_N\}$
 - > ==> There are N+1 p-states, while there are only N DFA states
 - > ==> at least one state has to repeat i.e, p_i = p_i where $0 \le i < j \le N$ (by PHP)

Pumping Lemma: Proof...

 \triangleright => We should be able to break w=xyz as follows:

 $> x=a_1a_2...a_i;$

- $y=a_{i+1}a_{i+2}..a_{j};$ $z=a_{j+1}a_{j+2}..a_{m}$
- \triangleright x's path will be $p_0..p_i$
- \triangleright y's path will be $p_i p_{i+1}..p_j$ (but $p_i=p_j$ implying a loop)
- \triangleright z's path will be $p_1p_{1+1}..p_m$
- Now consider another string $w_k = xy^k z$, where $k \ge 0$

- Case k=0
 - > DFA will reach the accept state p_m
- Case k>0
 - \triangleright DFA will loop for y^k, and finally reach the accept state p_m for z
- This proves part (3) of the lemma \triangleright In either case, $w_k \in L$

Pumping Lemma: Proof...

- For part (1):
 - Since i<j, y $\neq \varepsilon$

- For part (2):
 - By PHP, the repetition of states has to occur within the first N symbols in w
 - $= > |xy| \le N$

The Purpose of the Pumping Lemma for RL

To prove that some languages cannot be regular.

Example of using the Pumping Lemma to prove that a language is not regular

Let L = {w | w is of the form 0^n1^n , for all $n \ge 0$ }

- Your Claim: L is not regular
- Proof:
 - By contradiction, let L be regular
 - P/L constant should exist
 - \triangleright Let N = that P/L constant
 - Consider input $w = 0^N 1^N$ s.t. $|w| \ge N$ (your choice for the template string)
 - By pumping lemma, we should be able to break w=xyz, such that:
 - 1) y≠ *E*
 - 2) |xy|≤N
 - 3) For all $k \ge 0$, the string xy^kz is also in L

Template string $w = 0^N 1^N = 00 \dots 011 \dots 1$

- Because |xy|≤N, xy should contain only 0s
 - \triangleright (This and because $y \neq \mathcal{E}$, implies $y=0^+$)
- > Therefore x can contain at most N-1 0s
- Also, all the N 1s must be inside z
- One possible division is
- \rightarrow x = 0^{N-1}, y = 0, z = 1^N
- \triangleright By (3), any string of the form xy^kz ∈ L for all $k\ge 0$
- Case k=0: xz has at most N-1 0s but has N 1s
- ➤ Therefore, xy⁰z ∉ L
- This violates the P/L (a contradicion)

Setting k>1 is referred to as <u>"pumping up"</u>

Setting k=0 is

referred to as

Proof...

Exercise 2

Prove $L = \{0^n 1^m \mid n < m\}$ is not regular

$$w_1 = 0^{N-1}1^N$$

 $w_2 = 0^N1^{N+1}$

Exercise 3

Prove $L = \{0^n 10^n \mid n \ge 1\}$ is not regular

Note: This n is not to be confused with the pumping lemma constant N. That *can* be different.

In other words, the above question is same as proving:

 $-L = {0^m10^m | m≥ 1}$ is not regular

References

- Book Chapter 4
- Lectures from Washington State University
 - http://www.eecs.wsu.edu/~ananth/CptS317/Lect ures/
- Lectures from Stanford University
 - http://infolab.stanford.edu/~ullman/ialc/spr10/spr10.html#LECTURE%20NOTES