Package 'Davies'

February 16, 2022

Title The Davies Quantile Function

Version 1.2-0

Index

Imports mathjaxr
Author Robin K. S. Hankin
Description Various utilities for the Davies distribution.
Maintainer Robin K. S. Hankin hankin.robin@gmail.com
License GPL-2
Repository CRAN
Date/Publication 2016-05-26 09:21:09
NeedsCompilation no
RdMacros mathjaxr
·
R topics documented:
Davies
davies.moment
davies.start
expected.gld
fit.davies.p
Gld
least.squares
likelihood
objective
ozturk
plotef

16

Davies Davies

Davies	The Davies distribution

Description

Density, distribution function, quantile function and random generation for the Davies distribution.

Usage

```
ddavies(x, params,log=FALSE)
pdavies(x, params,log.p=FALSE,lower.tail=TRUE)
qdavies(p, params,lower.tail=TRUE)
rdavies(n, params)
ddavies.p(x,params,log=FALSE)
```

Arguments

X	quantile
p	vector of probabilities
n	number of observations. If $length(n) > 1$, the length is taken to be the number required
lower.tail	logical; if TRUE (default), probabilities are $P(X \leq x)$, otherwise $P(X > x)$
log,log.p	logical; if TRUE, probabilities are given as $\log(p)$
params	A three-member vector holding C , λ_1 and λ_2

Details

The Davies distribution is defined in terms of its quantile function:

$$Cp^{\lambda_1}/(1-p)^{\lambda_2}$$

It does not have a closed-form probability density function or cumulative density function, so numerical solution is used.

Function ddavies.p() returns the density of the Davies function but as a function of the quantile.

Value

Function ddavies() gives the density, pdavies() gives the distribution function, qdavies() gives the quantile function, and rdavies() generates random deviates.

Author(s)

Robin K. S. Hankin

References

R. K. S. Hankin and A. Lee 2006. "A new family of non-negative distributions" *Australia and New Zealand Journal of Statistics*, 48(1):67–78

davies.moment 3

See Also

```
Gld, fit.davies.p, least.squares, skewness
```

Examples

```
params <- c(10,0.1,0.1)
x <- seq(from=4,to=20,by=0.2)
p <- seq(from=1e-3,to=1-1e-3,len=50)

rdavies(n=5,params)
least.squares(rdavies(100,params))
plot(pdavies(x,params))

plot(p,qdavies(p,params))
plot(x,ddavies(x,params),type="b")</pre>
```

davies.moment

Moments of the Davies distribution

Description

Moments of order statistics of random variables drawn from a Davies distribution

Usage

```
davies.moment(n=1 , i=1 , order=1 , params)
M(order,params)
mu(params)
expected.value(n,i,params)
expected.value.approx(n,i,params)
variance(params)
skewness(params)
kurtosis(params)
```

Arguments

params	A three-member vector holding C , λ_1 and λ_2
n	The number of observations
i	Return information about the i -th order statistic (ie $i=1$ means the smallest, $i=n$ means the biggest)
order	The order (eg order=2 gives the square)

Details

Function davies.moment(n,i,order=r) gives the r-th moment of the i-th order statistic of n observations. The following aliases are just convenience wrappers with n=i=1 (ie moments of one observation from a Davies distribution):

• M() gives the r-th moment for n = i = 1

4 davies.moment

- mu() gives the first moment of a Davies distribution (ie the mean)
- variance() gives the second central moment of a Davies distribution
- skewness() gives the normalized skewness of a Davies distribution
- kurtosis() gives the normalized kurtosis of a Davies distribution

Author(s)

Robin K. S. Hankin

See Also

```
expected.value, expected.gld
```

```
params <- c(10, 0.1, 0.1)
davies.moment(n=100,i=99,2,params) # ie the second moment of the 99th smallest
                              # observation of 100 drawn from a Davies
                             # distribution with parameters p
mean(rdavies(1e6,params))-mu(params)
#now reproduce the S-K graph:
f \leftarrow function(x,y)\{c(skewness(c(1,x,y)),kurtosis(c(1,x,y)))\}
g \gets function(j, vector, pp, qq=1)\{points(t(sapply(vector, f, y=j)), type="l", col="black", lty=qq)\}
vector <-c((0:300)/100, (0:300)/10000, seg(from=3,to=10,len=100))
vector <- sort(unique(vector))</pre>
plot(t(sapply((0:10)/10,f,y=0)),
       xlim=c(-3,3), ylim=c(0,10),
       type="n",xlab="skewness",ylab="kurtosis")
g(0.001, vector, "red", qq=1)
g(0.01, vector, "yellow", qq=2)
g(0.02, vector, "green", qq=3)
g(0.05, vector, "blue", qq=4)
g(0.1 ,vector,"purple",qq=5)
g(0.14, vector, "black", qq=6)
x \leftarrow seq(from=-3, to=3, len=30)
points(x,x^2+1,type="l",lwd=2)
leg.txt <- expression(lambda[2]==0.001,</pre>
        lambda[2]==0.01,lambda[2]==0.02,lambda[2]==0.05,
        lambda[2]==0.1,lambda[2]==0.14)
legend(-1.1,10,leg.txt,col="black",lty=1:6)
```

davies.start 5

davies.start

start value for Davies minimization routines

Description

Gives a "start" value for the optimization routines. Uses heuristics that seem to work.

Usage

```
davies.start(x, threeps=c(0.1, 0.5, 0.9), small = 0.01)
```

Arguments

x dataset to be used

threeps a three-element vector representing the quantiles to be balanced. The default

values balance the first and ninth deciles and the median. These seem to work

for me pretty well; YMMV

small a "small" value to be used for λ_1 and λ_1 because using exactly zero is inappro-

oriate

Details

Returns a "start" value of the pararameters for use in one of the Davies fitting routines maximum.likelihood() or least.squares().

Uses three heuristic methods (one assuming $\lambda_1 = \lambda_2$, one with $\lambda_1 = 0$, and one with $\lambda_2 = 0$). Returns the best one of the three, as measured by objective().

Author(s)

Robin K. S. Hankin

See Also

least.squares, maximum.likelihood, objective

```
d <- rchisq(40,1)
davies.start(d)
least.squares(d)

params <- c(10 , 0.1 , -0.1)
x <- rdavies(100 , params)
davies.start(x)

f <- function(threeps){objective(davies.start(x,threeps),x)}

(jj<-optim(c(0.1,0.5,0.9),f))
davies.start(x,jj$par)
least.squares(x)

#not bad at all.</pre>
```

6 expected.gld

expected.gld

expected value of the Generalized Lambda Distribution

Description

Returns the expected value of the Generalized Lambda Distribution

Usage

```
expected.gld(n=1, i=1, params)
expected.gld.approx(n=1, i=1, params)
```

Arguments

n Number of observations

i Order statistic: i = 1 means the smallest of n, and n = i means the largest

params The four parameters of a GLD distribution

Details

expected.gld and expected.approx return the exact and approximate values of the expected value of a Generalized Lambda Distribution RV.

Exploits the fact that the gld quantile function is the sum of a constant and two davies quantile functions

Author(s)

Robin K. S. Hankin

References

A. Ozturk and R. F. Dale, "Least squares estimation of the parameters of the generalized lambda distribution", Technometrics 1985, 27(1):84 [it does not appear to be possible, as of R-2.9.1, to render the diacritic marks in the first author's names in a nicely portable way]

See Also

```
Gld, expected.value
```

```
params <- c(4.114,0.1333,0.0193,0.1588)
mean(rgld(1000,params))
expected.gld(n=1,i=1,params)
expected.gld.approx(n=1,i=1,params)

f <- function(n){apply(matrix(rgld(n+n,params),2,n),2,min)}
#ie f(n) gives the smaller of 2 rgld RVs, n times.

mean(f(1000))
expected.gld(n=2,i=1,params)</pre>
```

fit.davies.p 7

```
expected.gld.approx(n=2,i=1,params)

plot(1:100,expected.gld.approx(n=100,i=1:100,params)-expected.gld(n=100,i=1:100,params))

# not bad, eh? ....yyyeeeeesss, but the parameters given by Ozturk give

# an almost zero second derivative for d(qgld)/dp, so the good agreement

# isn't surprising really. Observe that the error is minimized at about

# p=0.2, where the point of inflection is.
```

fit.davies.p

Fits and plots Davies distributions to datasets

Description

A convenience wrapper (and pretty-printer) for maximum.likelihood() and least.squares(). Given a dataset, it draws an empirical quantile function (fit.davies.p()) or PDF(fit.davies.q()) and superimposes the dataset.

Usage

```
fit.davies.p(x , print.fit=FALSE, use.q=TRUE , params=NULL, small=1e-5 , ...) fit.davies.q(x , print.fit=FALSE, use.q=TRUE , params=NULL, ...)
```

Arguments

x	dataset to be fitted and plotted
print.fit	Boolean with TRUE meaning print details of the fit
use.q	Boolean with TRUE meaning use least.squares() (rather than maximum.likelihood())
params	three-element vector holding the three parameters of the davies dataset. If NULL, determine the parameters using the method indicated by use.q
small	small positive number showing range of quantiles to plot
	Additional parameters passed to plot()

Value

If print.fit is TRUE, return the optimal parameters

Author(s)

Robin K. S. Hankin

See Also

```
least.squares, maximum.likelihood
```

```
fit.davies.q(rchisq(100,1))
fit.davies.p(exp(rnorm(100)))
data(x00m700p4)
fit.davies.q(x00m700p4)
```

8 Gld

Gld

The Generalized Lambda Distribution

Description

Density, distribution function, quantile function and random generation for the Generalized Lambda Distribution

Usage

```
dgld(x, params)
dgld.p(x, params)
pgld(q, params)
qgld(p, params)
rgld(n, params)
```

Arguments

x,q	vector of quantiles
p	vector of probabilities
n	In function $rgld()$, the number of observations. If $length(n) > 1$, the length is taken to be the number required
params	vector of parameters: params[1]==lambda1 et seq

Details

The Generalized Lambda distribution has quantile function

$$f(x) = \lambda_1 + (p^{\lambda_3} - (1-p)^{\lambda_4})/\lambda_2$$

Value

Function dgld() gives the density, dgld.p() gives the density in terms of the quantile, pgld() gives the distribution function, qgld() gives the quantile function, and rgld() generates random deviates.

References

- M. J. Wichura 1988. "Algorithm AS 241: The Percentage Points of the Normal Distribution". *Applied Statistics*, **37**, 477–484.
- A. Ozturk and R. F. Dale 1985. "Least squares estimation of the parameters of the generalized lambda distribution". *Technometrics* 27(1):84

See Also

```
Davies, expected.gld
```

least.squares 9

Examples

```
params <- c(4.114,0.1333,0.0193,0.1588) #taken straight from some paper gld.rv <- rgld(100,params) hist(gld.rv) fit.davies.q(gld.rv) #remember the Davies distn has 3 DF and the GLD 4...
```

least.squares

Finds the optimal Davies distribution for a dataset

Description

Finds the best-fit Davies distribution using either the least-squares criterion (least.squares()) or maximum likelihood (maximum.likelihood())

Usage

```
least.squares(data, do.print = FALSE, start.v = NULL)
maximum.likelihood(data, do.print = FALSE, start.v = NULL)
```

Arguments

data dataset to be fitted

do.print Boolean with TRUE meaning print a GFM

start.v A suitable starting vector of parameters c(C,lambda1,lambda2), with default

NULL meaning to use start()

Details

Uses optim() to find the best-fit Davies distribution to a set of data.

Function least.squares() does not match that of Hankin and Lee 2006.

Value

Returns the parameters C, λ_1, λ_2 of the best-fit Davies distribution to the dataset data

Note

BUGS:

Function least.squares() does not use the same methodology of Hankin and Lee 2006, and its use is discouraged pending implentation.

Quite apart from that, it can be screwed with bad value for start.v. Function maximum.likelihod() can be very slow. It might be possible to improve this by using some sort of hot-start for optim().

Author(s)

Robin K. S. Hankin

10 likelihood

See Also

```
davies.start, optim, objective, likelihood
```

Examples

```
p <- c(10 , 0.1 , 0.1)
d <- rdavies(10,p)

maximum.likelihood(d)  # quite slow
least.squares(d)  # much faster but not recommended</pre>
```

likelihood

likelihood for the Davies distribution

Description

Likelihood of observing data, on the hypothesis of their coming from a Davies distribution of parameters params.

Function neg.log.likelihood() gives minus the loglikelihood

Usage

```
likelihood(params, data)
```

Arguments

params Parameters of the Davies distribution
data dataset for which the likelihood is computed

Author(s)

Robin K. S. Hankin

See Also

Davies

objective 11

objective

The objective function for fitting the Davies distribution

Description

The "distance" of a dataset from a particular Davies distribution

Usage

```
objective(params, dataset)
objective.approx(params, dataset)
```

Arguments

params A three-member vector holding C, λ_1 and λ_2

dataset The dataset to be considered

Details

```
Used by the fit.davies.p() and fit.davies.q() functions
```

Value

objective returns the "distance" of a dataset from a particular Davies distribution as measured by the sums of the squares of the differences between observed (dataset) and expected (expected.value()) values.

objective.approx() uses expected.approx() rather than expected() to calculate expectations, as per equation 6.

Author(s)

Robin K. S. Hankin

See Also

```
fit.davies.p, fit.davies.q
```

```
params <- c(10, 0.1, 0.1)
x <- rdavies(100,params)
objective(params,x)
objective.approx(params,x)
objective(least.squares(x),x)
objective(davies.start(x),x)</pre>
```

12 plotef

ozturk

Parameters used in a paper by Ozturk

Description

A four-element vector giving the parameters used by Ozturk.

Usage

```
data(x00m700p4)
```

References

A. Ozturk and R. F. Dale 1985. "Least squares estimation of the parameters of the generalized lambda distribution". *Technometrics* 27(1):84; see discussion under expected.gld.Rd.

See Also

```
expected.gld
```

Examples

```
data(ozturk)
hist(rgld(100,ozturk))
```

plotcf

p-value investigation

Description

Plots sorted p-values showing which ones would have been rejected

Usage

```
plotcf(y, q=0.05)
```

Arguments

y dataset

q p-value of critical region

Details

Sorts p-values and plots the order statistic. Useful for investigating a statistical test by using it when the null hypothesis is KNOWN to be true, just to check if the probability of rejection really is alpha.

Also can be used when H0 is wrong, showing what beta is.

Author(s)

Robin K. S. Hankin

rstupid 13

Examples

rstupid

A stupid PDF

Description

a contrived PDF that cannot be closely approximated by a Davies distribution

Usage

```
rstupid(n, a = 1, b = 2, c = 3, d = 4)
```

Arguments

n	Number of observations
а	start of first uniform bit
b	end of first uniform bit
С	start of second uniform bit
d	end of second uniform bit

Details

The stupid distribution is composed of two separate uniform distributions: one from a to b, and one from c to d. It is specifically designed to be NOT fittable to any Davies distribution.

You could probably come up with a more stupid distribution if you tried.

Author(s)

Robin K. S. Hankin

See Also

Davies

```
stupid <- rstupid(500)
fit.davies.q(stupid)</pre>
```

14 x00m700p4

two.	Ι ¬	nac	VA	r t
LWO.	ιт	1153		

Order statistic comparison

Description

Plots two lines and shades the bit in between them

Usage

```
twolines.vert(p, y1, y2, ...)
```

Arguments

p	vector of quantiles
y1	First set of ordinates
y2	Second set of ordinates
	Extra arguments, passed to segments(), for the vertical lines

Details

Plots p against y1, and p against y2, and shades the bit in between using vertical lines. This is useful for comparing two order statistics

Author(s)

Robin K. S. Hankin

See Also

Davies,qqplot

Examples

```
twolines.vert(1:100,sort(rnorm(100)),sort(rnorm(100)))
params <- c(10 , 0.1 , 0.1)
twolines.vert(1:100 , sort(rdavies(100,params)) , sort(rdavies(100,params)))</pre>
```

x00m700p4

Peak concentration for 100 instantaneous releases

Description

This data set gives the peak concentration for 100 independent instantaneous releases of neutral-buoyancy gas in a windtunnel

Usage

```
data(x00m700p4)
```

x00m700p4

Format

A vector containing 100 observations

References

D. J. Hall and others 1991. *Repeat variability in instantaneously released heavy gas clouds—some wind tunnel model experiments*. Technical Report LR 804 (PA), Warren Spring Laboratory, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2BX.

Examples

data(x00m700p4)
fit.davies.q(x00m700p4)

Index

```
* datasets
                                                   neg.log.likelihood(likelihood), 10
    ozturk, 12
                                                   objective, 5, 10, 11
    x00m700p4, 14
                                                   optim, 10
* distribution
                                                   ozturk, 12
    Davies, 2
    davies.moment, 3
                                                   pdavies (Davies), 2
    davies.start, 5
                                                   pgld (Gld), 8
    expected.gld, 6
                                                   plotcf, 12
    fit.davies.p, 7
    Gld, 8
                                                   qdavies (Davies), 2
    least.squares, 9
                                                   qgld (Gld), 8
    likelihood, 10
                                                   qqplot, 14
    objective, 11
    plotcf, 12
                                                   rdavies (Davies), 2
    rstupid, 13
                                                   rgld (Gld), 8
    twolines.vert, 14
                                                   rstupid, 13
Davies, 2, 8, 10, 13, 14
                                                   skewness, 3
davies (Davies), 2
                                                   {\it skewness\,(davies.moment)},\,3
davies.moment, 3
                                                   twolines.vert, 14
davies.start, 5, 10
ddavies (Davies), 2
                                                   variance (davies.moment), 3
dgld (Gld), 8
                                                   x00m700p4, 14
expected.gld, 4, 6, 8, 12
expected.value, 4, 6
expected.value(davies.moment), 3
fit.davies.p, 3, 7, 11
fit.davies.q, 11
fit.davies.q(fit.davies.p), 7
Gld, 3, 6, 8
gld (Gld), 8
kurtosis (davies.moment), 3
least.squares, 3, 5, 7, 9
likelihood, 10, 10
M (davies.moment), 3
maximum.likelihood, 5, 7
maximum.likelihood(least.squares), 9
mu (davies.moment), 3
```