Trustworthy Boolean Reasoning 2A: Introduction to BDDs

Randal E. Bryant

Carnegie Mellon University

June, 2022

Important Ideas for These Lectures

- SAT solvers are useful tools
 - Many practical problems reducible to SAT
 - Need to learn effective encoding techniques
- ▶ For many applications, formulas should be unsatisfiable
 - Program should generate a checkable proof
 - ► There is a well-developed proof infrastructure
- Binary Decision Diagrams (BDDs) can play important role
 - In supplementing current SAT algorithms
 - In proof generation

Reduced Ordered Binary Decision Diagrams (BDDs)

- Bryant, 1986
- ▶ Based on earlier work by Lee (1959) and Akers (1978)

Graph Representation of Boolean Functions

- Canonical Form
- Compact for many useful problems
- Simple algorithms to construct & manipulate

Used in SAT, Model Checking, ...

- ► Bottom-up approach
 - Construct canonical representation of problem
 - Generate solutions
- Compare to search-based methods
 - E.g., CDCL
 - ► Top-down approaches
 - ▶ Keep branching on variables until find solution

Boolean Function Representations

Truth Table

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Decision Tree

▶ Size = $O(2^n)$

Boolean Function Representations

- ▶ Size = $O(2^n)$
- Assignment defines path from root to leaf

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Graph Representation

- Merge isomorphic nodes
- Eliminate redundant tests

Truth Table

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Graph Representation

- ► Merge isomorphic nodes
- Eliminate redundant tests.

Truth Table

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Graph Representation

- ► Merge isomorphic nodes
- Eliminate redundant tests

Truth Table

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Graph Representation

- ► Merge isomorphic nodes
- Eliminate redundant tests

Canonical Form

Truth Table

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Reduced Ordered Binary Decision Diagram

- Canonical representation of Boolean function
- ▶ No further simplifications possible

BDD Representation of Unsatisfiable Formula

0

- ▶ Refer to this as ⊥
- Unique
- Converting from CNF to BDD may require exponential number of steps

Effect of Variable Ordering

$$(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$$

Good Ordering

Linear growth

Bad Ordering

Exponential growth

BDD Representation of Parity Constraints

Odd Parity

Even Parity

- Linear complexity
- ▶ Insensitive to variable order
- ▶ Potential major advantage over CDCL

Symbolic Manipulation with BDDs

Strategy

- Represent data as set of BDDs
 - All with same variable ordering
- Express method as sequence of symbolic operations
 - ▶ Generate new BDDs. Test properties of BDDs
- ▶ Implement each operation via BDD manipulation
 - Never enumerate individual cases
 - Efficient, as long as BDDs stay small

Key Algorithmic Properties

- Arguments at each step are BDDs with same variable ordering
- Result is BDD with same ordering
- Each step has polymomial complexity

Bryant: SSFT22 $10 \ / \ 19$

Apply Algorithm

 $h \leftarrow f \odot g$

- ▶ f, g, h functions represented as BDDs
- ▶ ⊙ binary Boolean operator
 - ▶ E.g., ∧, ∨, ⊕

- Recurse through argument graphs
- Stop when hit terminal case
- ▶ Save results in cache to reuse when hit same arguments

Recursive Calls

 F_1, G_1

- Recurse through argument graphs
- Stop when hit terminal case
- ▶ Save results in cache to reuse when hit same arguments

- Recurse through argument graphs
- Stop when hit terminal case
- ▶ Save results in cache to reuse when hit same arguments

- ► Recurse through argument graphs
- ► Stop when hit terminal case
- ▶ Save results in cache to reuse when hit same arguments

- Recurse through argument graphs
- ► Stop when hit terminal case
- ▶ Save results in cache to reuse when hit same arguments

- Recurse through argument graphs
- ► Stop when hit terminal case
- ▶ Save results in cache to reuse when hit same arguments

Apply Algorithm Result

Reduced Result

BDD-Based SAT Solving: Direct Evaluation

Algorithm

- 1. Compute BDD t_i for each input clause C_i
- 2. Form conjunction

$$s = \bigwedge_{1 \leq i \leq m} t_i$$

- ► E.g., with linear or tree evaluation
- 3. Return UNSAT $(s = \bot)$ or SAT $(s \ne \bot)$

Practicality

- Only for small problems
- Resulting BDD s represents all solutions

Parity Benchmark Runtime

- ► TBSAT: BDD-Based SAT Solver
- ▶ In direct mode, even worse than KISSAT
- ▶ Limited to $n \le 24$ within 600 seconds

Bryant: SSFT22 $15 \ / \ 19$

BDD-Based SAT Solving: Bucket Evaluation

- Maintain list ("bucket") B_j for each variable x_j
- ► Each BDD stored in bucket according to root node variable

Place each t_i in bucket according to $Var(t_i)$

Algorithm

```
Initialization:
Form BDD t_i for each input clause C_i
```

```
For each bucket B_j:
Form conjunction s_j of all BDDs in bucket B_j
If s_j = \bot then return UNSAT
Compute r_j = \exists x_j s_j
Place r_j in bucket according to Var(r_i)
```

return SAT

- ▶ Initially: BDD for each input clause
- ▶ In bucket according to root variable

► Conjunct BDDs in topmost bucket *A*

- ► Existentially quantify variable a
- ▶ Place result in appropriate bucket

► Conjunct BDDs in bucket *B*

- ► Existentially quantify variable b
- ▶ Place result in appropriate bucket

- ► Conjunct BDDs in bucket *C*
- ightharpoonup Final result will be \bot or \top

Parity Benchmark Runtime

- n = 10,000 in 633 seconds
- Large benefit from quantification
 - abstracts away intermediate variables

What Parity Benchmark Demonstrates

- Binary Decision Diagrams (BDDs) can play important role in SAT
 - ► In supplementing current SAT algorithms
 - ▶ But, what about proof generation?