Chapitre 16 - Analyse asymptotique

1 Comparaison des suites

1.1 Relations de comparaison

Uniquement pour les suites réelles : on se place dans $\mathbb{R}^{\mathbb{N}}$.

Définition 1.1. Soit (v_n) une suite de réels non nuls à partir d'un certain rang N_0 et (u_n) une suite de réels. On dit que :

- (u_n) est dominée par (v_n) si à partir du rang N_0 $\left(\frac{u_n}{v_n}\right)$ est bornée. On note alors $u_n \underset{+\infty}{=} O(v_n)$.
- (u_n) est négligeable devant (v_n) si $\left(\frac{u_n}{v_n}\right)$ tend vers 0. On note alors $u_n = o(v_n)$.
- (u_n) est équivalente à (v_n) si $\left(\frac{u_n}{v_n}\right)$ tend vers 1. On note alors $u_n \underset{+\infty}{\sim} v_n$.

Théorème 1.1. Soit (v_n) une suite de réels non nuls à partir d'un certain rang N_0 et (u_n) une suite de réels. (u_n) est négligeable devant (v_n) si et seulement si il existe une suite (ε_n) qui tend vers 0 telle que $u_n = v_n \cdot \varepsilon_n$.

1.2 Propriétés des relations de comparaison

Proposition 1.2. Soit $(u_n), (v_n), (w_n)$ des suites réelles.

$$Si \ u_n \sim v_n \ alors \ v_n \sim u_n$$
.

$$Si \ u_n \underset{+\infty}{\sim} v_n \ \ et \ v_n \underset{+\infty}{\sim} w_n \ \ alors \ u_n \underset{+\infty}{\sim} w_n.$$

$$Si \ u_n \ et \ v_n \ ne \ s'annulent \ pas, \ alors \ u_n \underset{+\infty}{\sim} v_n \Longleftrightarrow u_n - v_n = o(v_n).$$

$$Si \ u_n \underset{+\infty}{\sim} v_n \ alors \ u_n = O(v_n) \ et \ v_n = O(u_n).$$

1.3 Suites de référence

Proposition 1.3. Pour tous
$$\alpha > 0, \beta > 0, \gamma > 0$$
, on a $\ln^{\beta}(n) \underset{+\infty}{=} o(n^{\alpha})$ et $n^{\alpha} \underset{+\infty}{=} o(e^{\gamma n})$ et pour $q > 1$, on a $n^{\alpha} = o(q^{n})$.

1.4 Opérations sur les équivalents

Proposition 1.4. Soit $(u_n), (v_n), (w_n), (x_n)$ des suites réelles.

$$Si \ u_n \underset{+\infty}{\sim} v_n \ et \ w_n \underset{+\infty}{\sim} x_n \ alors \ u_n w_n \underset{+\infty}{\sim} v_n x_n.$$

$$Si\ u_n \underset{+\infty}{\sim} v_n\ et\ w_n \underset{+\infty}{\sim} x_n\ et\ si\ w_n\ et\ x_n\ ne\ s'annulent\ pas\ alors\ rac{u_n}{w_n} \underset{+\infty}{\sim} rac{v_n}{x_n}.$$

Si
$$u_n \underset{+\infty}{\sim} v_n$$
 et si p est un entier $p \in \mathbb{N}$ alors $u_n^p \underset{+\infty}{\sim} v_n^p$.

1.5 Relations de comparaison et limites

Théorème 1.5. Soit (u_n) et (v_n) deux suites réelles telles que $u_n \sim v_n$.

Alors, pour tout
$$\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$$
, on a $u_n \xrightarrow[+\infty]{} \ell \iff v_n \xrightarrow[+\infty]{} \ell$

En particulier, (u_n) est convergente si et seulement si (v_n) est convergente.

Proposition 1.6. Soit (u_n) et (v_n) deux suites réelles.

- $Si \ u_n = o(v_n) \ et \ (v_n) \ converge, \ alors \ (u_n) \ converge \ vers \ 0.$
- Si $u_n = o(v_n)$ et (u_n) diverge vers $+\infty$, alors (v_n) diverge.
- $Si \ u_n \sim v_n$, alors à partir d'un certain rang, u_n et v_n sont de même signe.

2 Relations de comparaison appliquées aux fonctions

Soit I un intervalle de \mathbb{R} et $a \in \mathbb{R} \cup \{-\infty, +\infty\}$ élément ou extrémité de I.

Fonction dominée par une autre

Définition 2.1. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f est dominée par g au voisinage de a si la fonction $\frac{f}{a}$ est bornée au voisinage de a. On note f = O(g)

Fonction négligeable devant une autre

Définition 2.2. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f est négligeable devant g au voisinage de a si la fonction $\frac{f}{a}$ tend vers 0 en a.

On note f = o(g) ou bien $f(x) = g(x).\varepsilon(x)$ avec $\lim_{x \to a} \varepsilon(x) = 0$

Fonctions équivalentes

Définition 2.3. Soit f et g deux fonctions définies sur I. On suppose que g ne s'annule pas sur $I \setminus \{a\}$.

On dit que f et g sont équivalentes au voisinage de a si la fonction $\frac{f}{g}$ tend vers 1 en a. On note $f \sim g$

 $Si\ f'(a) \neq 0$, alors $f(x) - f(a) \sim f'(a)(x-a)$. **Proposition 2.1.** Soit f une fonction dérivable en $a \in \mathbb{R}$.

Proposition 2.2. Soit f et g définies sur I, ne s'annulant pas sur $I \setminus \{a\}$. On a: $f \sim g \iff f - g = o(g)$.

2.4Opérations sur les équivalents

Proposition 2.3. Si $f, g, h, f_1, g_1, f_2, g_2$ sont des fonctions définies au voisinage de a, on a:

- $\begin{array}{l} \bullet \ f \sim g \Longrightarrow g \sim f \\ \bullet \ f \sim g \ et \ g \sim h \Longrightarrow f \sim h \\ \bullet \ f_1 \sim g_1 \ et \ f_2 \sim g_2 \Longrightarrow f_1 f_2 \sim g_1 g_2 \end{array}$
- $f_1 \sim g_1$ et $f_2 \sim g_2 \Longrightarrow \frac{f_1}{f_2} \sim \frac{g_1}{g_2}$

Utilisation des équivalents

Proposition 2.4. Étant donnés deux fonctions f et g équivalentes en $a: f \sim g$.

Si g a une limite finie ou infinie en a alors f aussi et $\lim_a f = \lim_a g$.

Proposition 2.5. Étant donnés deux fonctions f et g définies sur I et équivalentes en $a: f \sim g$.

Si g est positive sur I alors f est positive au voisinage de a.

Si g ne s'annule pas sur I, alors f ne s'annule pas au voisinage de a.

Si g ne s'annule pas sur $I \setminus \{a\}$, alors la restriction de f à $I \setminus \{a\}$ ne s'annule pas au voisinage de a.

3 Développements limités

Définition

Définition 3.1. On dit qu'une fonction f de I dans $\mathbb R$ ou $\mathbb C$ admet un développement limité d'ordre $n\in\mathbb N$ au voisinage de $a \in \mathbb{R}$ élément ou extrémité de I si il existe un polynôme P de degré inférieur ou égal à n tel que f(a+h) = $P(h) + o(h^n)$ au voisinage de 0 (pour h).

 $f(a+h) = a_0 + a_1h + a_2h^2 + \cdots + a_{n-1}h^{n-1} + a_nh^n + o(h^n)$ C'est à dire

 $f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \cdots + a_{n-1}(x-a)^{n-1} + a_n(x-a)^n + o((x-a)^n)$

On le note $DL_n(a)$ de f.

3.2 Exemple fondamental

Proposition 3.1. La fonction $f: \begin{bmatrix} \mathbb{R} \setminus \{1\} & \longrightarrow & \mathbb{R} \\ u & \longmapsto & \frac{1}{1-u} \end{bmatrix}$ admet des développements limités à l'ordre n, pour tout entier n, au voisinage de 0:

$$\frac{1}{1-u} = 1 + u + u^2 + \dots + u^n + o(u^n)$$

3.3 Unicité du développement limité

Proposition 3.2. Si f est une fonction admettant deux développements limités à l'ordre n au voisinage de $a \in \mathbb{R}$, alors ces développements sont égaux.

$$Si\ f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) \ et\ f(x) = \sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n), \ alors\ orall k \in \llbracket 0, n
rbracket, \ a_k = b_k.$$

On appelera le polynôme $P(x) = \sum_{k=0}^{n} a_k (x-a)^k$ la partie régulière du DL de f à l'ordre n en a.

Corollaire 3.3. Si f admet un développement limité à l'ordre n en a, alors pour tout entier $p \leq n$, f admet un développement limité à l'ordre p obtenu en tronquant le développement d'ordre n.

Corollaire 3.4. Soit f admettant un développement limité en 0 de partie régulière P. Si f est paire, alors P est pair. Si f est impaire, alors P est impair.

3.4 Forme normalisée d'un développement limité

Définition 3.2. Soit f une application admettant un développement limité l'ordre n + p au voisinage de a. On appelle forme normalisée du développement limité de f, l'écriture :

$$f(a+h) = h^p (a_0 + a_1 h + \dots + a_n h^n + o(h^n))$$
 où $a_0 \neq 0$.

Proposition 3.5. Si f a un développement limité normalisé $f(a+h) = h^p(a_0 + a_1h + \cdots + a_nh^n + o(h^n))$ où $a_0 \neq 0$, alors $f(a+h) \underset{h \to 0}{\sim} a_0h^p$ et f est de même signe que a_0h^p .

3.5 Translation d'un développement limité

Proposition 3.6. Si f est une fonction vérifiant f(a+h) = g(h) pour tout h dans l'intervalle I contenant 0, et si g admet un développement limité à l'ordre n en 0 : $g(x) = P(x) + o(x^n)$. Alors f admet un développement limité à l'ordre n en a : $f(x) = P(x-a) + o((x-a)^n)$.

3.6 Développement limité au voisinage de l'infini

Définition 3.3. Soit f une fonction définie sur un intervalle I.

Si la fonction g définie par $g(u) = f\left(\frac{1}{u}\right)$ admet un développement limité en 0 à l'ordre n sur l'intervalle $J_+ = \left\{\frac{1}{x} \middle| x \in I \cap \mathbb{R}_+^*\right\}$ (respectivement sur $J_- = \left\{\frac{1}{x} \middle| x \in I \cap \mathbb{R}_-^*\right\}$), alors on dit que f admet un développement limité à l'ordre f au voisinage de f (respectivement f).

Si
$$g(u) = P(u) + o(u^n)$$
, alors $f(x) = P(\frac{1}{x}) + o(\frac{1}{x^n})$.

4 Formule de Taylor-Young

4.1 Intégration terme à terme d'un DL

Théorème 4.1. Soit I un intervalle contenant a et $f:I \longrightarrow \mathbb{R}$, une fonction continue possédant un développement limité à l'ordre n en a qui est :

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o(x-a)^n.$$

Alors toute primitive F de f sur I possède un développement limité à l'ordre n+1 en a qui est :

$$F(x) = F(a) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x-a)^{k+1} + o((x-a)^{n+1}).$$

4.2 Formule de Taylor-Young

Théorème 4.2. Soit f une fonction de classe C^n d'un intervalle I de \mathbb{R} dans \mathbb{K} avec $n \in \mathbb{N}$.

f possède en tout point a de I un développement limité d'ordre n donné par :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n) \qquad ou \qquad f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n)}(a)}{n!}h^n + o(h^n).$$

5 Opérations sur les développement limités

5.1 Somme et produit

Proposition 5.1. Soit f et g deux fonctions réelles admettant en a des développements limités à l'ordre n :

$$f(x) = P(x-a) + o(x-a)^n$$
 et $g(x) = Q(x-a) + o(x-a)^n$

où Pet Q sont des pllynômes réels de degré au plus égal à n.

Alors les fonctions f+g et fg admettent des développements limités d'ordre n qui sont :

$$(f+g)(x) = P(x-a) + Q(x-a) + o((x-a)^n).$$

 $(fg)(x) = R(x-a) + o((x-a)^n)$

où R est le polynôme obtenu tronquant le produit PQ au degré n.

5.2 Dérivation d'un développement limité

Proposition 5.2. Soit f une fonction de classe C^1 sur un intervalle I contenant a, admettant un développement limité d'ordre n au voisinage de a:

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o(x-a)^n.$$

 $Si\ f'\ admet\ un\ développement\ limit\'e\ d'ordre\ n-1\ en\ a,\ alors\ ce\ développement\ s'obtient\ en\ dérivant\ celui\ de\ f\ :$

$$f'(x) = \sum_{k=1}^{n} k a_k (x-a)^{k-1} + o(x-a)^{n-1}.$$

5.3 Développement limité d'une fonction composée

Proposition 5.3. soit f une fonction définie sur I admettant un $Dl_n(a)$ en $a \in I$, telle que $f(I) \subset J$, avec $f(x) = P(x-a) + o(x-a)^n$.

Soit g une fonction définie sur J admettant un DL_n en b = f(a) avec $g(u) = Q(u-b) + o(u-b)^n$.

Alors $g \circ f$ possède un développement limité à l'ordre n en a obtenu en tronquant à l'ordre n le polynôme composé Q(P(X)):

$$g \circ f(x) = reste$$
 de la division de $Q(P(x-a))$ par $(x-a)^{n+1} + o((x-a)^n)$.

5.4 Développement limité d'un quotient

Proposition 5.4. Si u est une fonction telle que $\lim_a u = 0$ et si u a un développement limité à l'ordre n en a, alors la fonction $x \mapsto \frac{1}{1 - u(x)}$ admet un $DL_n(a)$.

Si
$$u(x) = P(x-a) + o(x-a)^n$$
, alors $\frac{1}{1-u(x)} = 1 + P(x-a) + P^2(x-a) + P^3(x-a) + \cdots + P^n(x-a) + o(x-a)^n$: le développement limité s'obtient en tronquant à l'ordre n le polynôme $1 + P(X) + P^2(X) + \cdots + P^n(X)$.

6 Formulaire

$$\frac{1}{1-x} = 1+x+x^2+\cdots+x^n+o(x^n)$$

$$(1+x)^{\alpha} = 1+\frac{\alpha}{1!}x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}x^n+o(x^n)$$

$$\ln(1+x) = x-\frac{1}{2}x^2+\frac{1}{3}x^3+\cdots+(-1)^{n-1}\frac{1}{n}x^n+o(x^n)$$

$$\arctan x = x-\frac{1}{3}x^3+\frac{1}{5}x^5+\cdots+(-1)^p\frac{1}{2p+1}x^{2p+1}+o(x^{2p+1})$$

$$e^x = 1+\frac{1}{1!}x+\frac{1}{2!}x^2+\cdots+\frac{1}{n!}x^n+o(x^n)$$

$$\operatorname{ch} x = 1+\frac{1}{2!}x^2+\frac{1}{4!}x^4+\cdots+\frac{1}{(2p)!}x^{2p}+o(x^{2p})$$

$$\operatorname{sh} x = x+\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+\frac{1}{(2p+1)!}x^{2p+1}+o(x^{2p+1})$$

$$\cos x = \frac{1}{0}x^2+\frac{1}{4!}x^4+\cdots+(-1)^p\frac{1}{(2p)!}x^{2p}+o(x^{2p})$$

$$\sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+\cdots+(-1)^p\frac{1}{(2p+1)!}x^{2p+1}+o(x^{2p+1})$$

$$\tan x = x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+o(x^8)$$

7 Applications

7.1 Étude de limites

Proposition 7.1. Si une fonction f a un développement limité de la forme $f(x) = a_0 + o(1)$ au voisinage de $a \in \mathbb{R}$, alors f a une limite en a qui vaut a_0 .

7.2 Prolongement par continuité

Proposition 7.2. Soit I un intervalle de \mathbb{R} .

Si une fonction f définie sur $I \setminus \{a\}$, a un développement limité de la forme $f(x) = a_0 + o(1)$ au voisinage de $a \in \mathbb{R}$, alors f est prolongeable par continuité en a en posant $f(a) = a_0$.

7.3 Dérivabilité d'un prolongement par continuité

Proposition 7.3. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur $I \setminus \{a\}$, a un développement limité de la forme $f(x) = a_0 + a_1(x-a) + o(x-a)$, alors f est prolongeable par continuité en a en posant $\tilde{f}(a) = a_0$ et le prolongement \tilde{f} est dérivable en a avec $\tilde{f}'(a) = a_1$.

7.4 Position relative de la courbe et de la tangente

Proposition 7.4. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur I a un développement limité de la forme $f(x) = a_0 + a_1(x-a) + a_p(x-a)^p + o((x-a)^p)$ avec $p \ge 2$ et $a_p \ne 0$, alors la droite $y = a_0 + a_1(x-a)$ est tangente à la courbe représentative de f en a. De plus, la position de la courbe par rapport à la tangente au voisinage du point a est donnée par le signe de

•

 $a_p(x-a)^p$: au-dessus si $a_p(x-a)^p\geqslant 0$.

7.5 Étude d'un extremum

Proposition 7.5. Soit I un intervalle de \mathbb{R} et $a \in I$.

Si une fonction f définie sur I a un développement limité de la forme $f(x) = a_0 + a_2(x-a)^2 + o((x-a)^2)$ avec $a_2 \neq 0$, alors la fonction f a un extremum local en a : maximum local si $a_2 < 0$ et minimum local si $a_2 > 0$.

7.6 Asymptotes

Proposition 7.6. Soit f une fonction définie au voisinage de $+\infty$ (ou $-\infty$).

$$Si \ il \ existe \ un \ r\'eel \ k \ tel \ que \qquad f(x) - kx \mathop{=}\limits_{+\infty} \limits_{ou} a_0 + rac{a_p}{x^p} + o\left(rac{1}{x^p}
ight) \ avec \ a_p
eq 0,$$

alors la droite $y=kx+a_0$ est asymptote à la courbe représentative de la fonction f en $+\infty$ (ou $-\infty$). De plus, la position de la courbe par rapport à l'asymptote est donnée par le signe de $\frac{a_p}{x^p}$ au voisinage de $+\infty$ (ou $-\infty$).