评分: _____

SHANGHAI UNIVERSITY

COURSE PAPER

Homework 2

Information	student1	student2
Academy	Management	Management
Specialty	Management Science	Information Science
Student ID	18121216	19121255
Name	Lulu Shi	Jingwen Zhang
Course	Machine Learning in Business	
Teacher	Si Zhang Liyang Xiao	

Listed are the **Answers** to the **Questions**.

```
PART 1 data Stock_Data.csv
```

Using the data set, Stock Data.csv, as in Homework 1, carry out a linear regression analysis on the data with following instructions:

1) Define a variable calling dat_AC which only contains the adjusted closing prices of every stock and S&P 500.

```
> setwd("D:/ ML_in_Business/homework 1")
> dat=read.csv('Stock_Data.csv')
> Indicator=seq(3,dim(dat)[2],2)
```

Reminder:

After importing the data, define a vector Indicator=seq(3,dim(dat)[2],2)to indicate the number of columns you want to pick out from the data set.

```
> dat_AC=(dat[,Indicator])
(the output of dat AC is in H2 dat AC.csv)
```

2) Plugging dat AC into the procedure we used to calculate daily returns of Ford, calculate daily returns of all the stocks and S&P 500.

```
>dat$Date=as.Date(dat$Date,format='%d/%m/%Y')
> result=data.frame(index=(1:4962))
>name=names(dat AC)
> for (o in name){
 ###
 start1 = which(dat$Date = = '1987-01-02')
 end1= which(dat$Date=='2006-08-31')
 prePrice=(dat[o][,1])[start1:end1]
 ###
 start2= which(dat$Date=='1987-01-05')
 end2= which(dat$Date=='2006-09-01')
 curPrice=(dat[o][,1])[start2:end2]
 ###
 Return=NULL
 for(i in 1:4962){
    Return=c(Return,curPrice[i]/prePrice[i]-1)
 }
 AC rtn=paste(o,' Return',sep='')
 result[AC rtn]>-(Return)
(the output of returns is in result.csv)
```

3) Conduct a linear regression analysis on the returns with returns of S&P 500 being the response variable and all the other returns being predict variables.

```
>lm.fit=lm(S.P_AC_Return~.,data=result)
>sink('H2_returnsRegression.csv')
>summary(lm.fit)
>sink(NULL)
(the output of returns Regression is in H2 returnsRegression.csv)
```

4) What can you conclude from the regression result, are these predictors significant and can you explain why?

Coefficients:	
	Estimate Std. Error t value Pr(> t)
(Intercept)	-2.005e-04 6.408e-05 -3.129 0.00177 **
GM_AC_Return	5.533e-02 4.087e-03 13.538 < 2e-16 ***
F_AC_Return	3.778e-02 4.007e-03 9.429 < 2e-16 ***
UTX_AC_Return	7.825e-02 4.337e-03 18.042 < 2e-16 ***
CAT_AC_Return	5.611e-02 3.810e-03 14.727 < 2e-16 ***
MRK_AC_Return	6.705e-02 4.502e-03 14.891 < 2e-16 ***
PFE_AC_Return	6.916e-02 4.272e-03 16.190 < 2e-16 ***
IBM_AC_Return	1.044e-01 3.890e-03 26.834 < 2e-16 ***
MSFT_AC_Return	8.998e-02 3.059e-03 29.412 < 2e-16 ***
C_AC_Return	1.121e-01 3.519e-03 31.847 < 2e-16 ***
XOM_AC_Return	1.415e-01 4.819e-03 29.357 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'	
Residual standard error: 0.004502 on	
4951 degrees of freedom	
Multiple R-squared: 0.8245	Adjusted R-squared: 0.8241
F-statistic: 2325 on 10 and 4951 DF	p-value: < 2.2e-16

TABLE 2.1 For the result data, least squares coefficient estimates of the multiple linear regression of **Returns** of S&P AP on those predictors.

From the regression result, consider the predictors. The RSE = 0.004502, which is quite small, indicating that the model fits the data well. The $Adjusted\ R$ -squared= 0.8241, which is close to 1, indicating that a large proportion of the variability in the response has been explained by the regression, and about 82.41% variability in S. $P_{AC_{Return}}$ is explained by those predictors. The p-values are smaller than the default value 5% or 1%, then we can infer that there is an association between the predictors and the response. We reject the null hypothesis—that is, we declare a relationship to exist between X and Y.

In general, suppose that we have p distinct predictors. Then the multiple linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon \tag{2.1}$$

From TABLE 2.1, we get the multiple linear regression model

$$\begin{split} \text{S. P}_{\text{AC}_{\text{Return}}} &= -2.005e^{-04} + 5.533e^{-02} \times GM_{\text{AC}_{\text{Return}}} + 3.778e^{-02} \times F_{\text{AC}_{\text{Return}}} \\ &+ 7.825e^{-02} \times UTX_{\text{AC}_{\text{Return}}} + 5.611e^{-02} \times CAT_{\text{AC}_{\text{Return}}} \\ &+ 6.705e^{-02} \times MRK_{\text{AC}_{\text{Return}}} + 6.916e^{-02} \times PFE_{\text{AC}_{\text{Return}}} \\ &+ 1.044e^{-01} \times IBM_{\text{AC}_{\text{Return}}} + 8.998e^{-02} \times MSFT_{\text{AC}_{\text{Return}}} \\ &+ 1.121e^{-01} \times C_{\text{AC}_{\text{Return}}} + 1.415e^{-01} \times XOM_{\text{AC}_{\text{Return}}} + \varepsilon \end{split} \tag{2.2}$$

The result function is (2.2). Also, we drew **FIGURE 2.2** to visualize the regression result of the response on the predictors. Apparently, the model fits the data well. (source code: **ML h2 StockPlot.R**)

FIGURE 2.2

```
Code Parts (PART 1 data Stock Data.csv) (source code : ML h2 stock.R)
#define a variable named dat AC only contains AC
> setwd("D:/ML in Business/homework 1")
>dat=read.csv('Stock Data.csv')
>Indicator=seq(3,dim(dat)[2],2)
>dat AC=(dat[,Indicator])
# output the dat AC to a csv file.
>write.csv(dat AC,"H2 dat AC.csv",row.names = FALSE)
# to format the Date column.
>dat$Date=as.Date(dat$Date,format='%d/%m/%Y')
> result=data.frame(index=(1:4962))
>name=names(dat AC)
# Create a loop to repeatedly calculate the returns of each predictor.
# Create a dataframe then a csv file named result to hold the data of returns.
>for (o in name){
  ###
  start1 = which(dat$Date = = '1987-01-02')
  end1= which(dat$Date=='2006-08-31')
  prePrice=(dat[o][,1])[start1:end1]
  ###
  start2= which(dat$Date=='1987-01-05')
  end2= which(dat$Date=='2006-09-01')
  curPrice=(dat[o][,1])[start2:end2]
  ###
  Return=NULL
  for(i in 1:4962){
    Return=c(Return,curPrice[i]/prePrice[i]-1)
  }
  AC rtn=paste(o,' Return',sep=")
  result[AC rtn]>-(Return)
}
>result=result[,-1]
# Analyze the returns of S&P on the predictors.
>summary(result)
>lm.fit=lm(S.P AC Return~.,data=result)
>sink('H2 returnsRegression.csv')
>summary(lm.fit)
>sink(NULL) # export the summary(lm.fit) to a csv file.
```

PART 2 data wine.csv

In the data set wine.csv, it contains the results of chemical analysis of different wines. Quality is an ordinal variable with possible ranking from 1 (worst) to 10 (best). The rank of each individual wine is given by a group of tasters:

1) Split the data set into two based on the color of the wines and name the two data sets wine red and wine white respectively.

```
>setwd("C:/Users/啦啦露/Desktop/homework 2")
>dat2=read.csv('wine.csv')
>wine_red=dat2[dat2$color=="red",]#wine_red data set
>wine_white=dat2[dat2$color=="white",]#wine_white_data set
```

2) Conduct linear regressions for these two data sets separately with quality being the response variable and any other variables(except color) you think might be relevant as predict variables.

```
>corTRed=cor(wine red)# calculate regression data
>corTWhite=cor(wine white)
>install.packages("corrplot")
>library(corrplot)
>corrplot(corTRed,method='color',type='upper',order='hclust',addCoef.col='b
lack')
# draw the matrix diagram of correlation coefficient
>corrplot(corTWhite,method='color',type='upper',order='hclust',addCoef.col=
'black')
# calculate LR data
>lm.fit1=lm(quality~fixed.acidity+volatile.acidity+citric.acid+residual.sugar+c
hlorides+free.sulfur.dioxide+total.sulfur.dioxide+density+pH+sulphates+alcoh
ol,data=wine red)
>summary(lm.fit1)
# use stepwise regression to eliminate variables
>lm.fit11>-step(lm.fit1)
summary(lm.fit11)
#get wine red regression
>lm.fit111=lm(quality~volatile.acidity+sulphates*alcohol,data=wine red)
> summary(lm.fit111)
> lm.fit2=lm(quality~fixed.acidity+volatile.acidity+citric.acid+residual.sugar+c
hlorides+free.sulfur.dioxide+total.sulfur.dioxide+density+pH+sulphates+alcoh
ol,data=wine white)
> summary(lm.fit2)
```

- >lm.fit21>-step(lm.fit2)# use stepwise regression to eliminate variables
- >summary(lm.fit21)
- #get wine white regression
- >lm.fit22=lm(quality ~ alcohol*volatile.acidity+density,data=wine white)
- >Summary(Im.fit22)

2) From your regression results, what factors affect the quality of red wines and white wines respectively?

FIGURE 2.3

```
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                                                   < 2e-16 ***
(Intercept)
                      4.4300987
                                 0.4029168
                                           10.995
                                                   < 2e-16 ***
volatile.acidity
                     -1.0127527
                                 0.1008429 -10.043
                                            -5.076 4.31e-07 ***
chlorides
                     -2.0178138
                                 0.3975417
                                                      0.017 *
free.sulfur.dioxide
                      0.0050774
                                 0.0021255
                                             2.389
total.sulfur.dioxide -0.0034822
                                           -5.070 4.43e-07 ***
                                 0.0006868
                                 0.1175581
                                            -4.106 4.23e-05 ***
рΗ
                     -0.4826614
                                            8.031 1.86e-15 ***
sulphates
                                 0.1099084
                      0.8826651
alcohol
                      0.2893028 0.0167958
                                           17.225 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6477 on 1591 degrees of freedom
Multiple R-squared: 0.3595, Adjusted R-squared: 0.3567
F-statistic: 127.6 on 7 and 1591 DF, p-value: < 2.2e-16
```

FIGURE 2.4

```
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                                               < 2e-16 ***
(Intercept)
                              0.70988
                   6.43406
                                        9.064
                                              < 2e-16 ***
volatile.acidity
                  -1.17957
                              0.09639 -12.238
                  -5.03825
                                       -4.910 1.00e-06 ***
sulphates
                              1.02609
alcohol
                  -0.07294
                              0.07003
                                       -1.041
                                                 0.298
                                        5.599 2.54e-08 ***
sulphates:alcohol 0.56723
                              0.10132
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6525 on 1594 degrees of freedom
Multiple R-squared: 0.3487, Adjusted R-squared: 0.3471
F-statistic: 213.4 on 4 and 1594 DF, p-value: < 2.2e-16
```

FIGURE 2.5

From the wine red regression result, we choose alcohol, volatile.acidity, sulphates, and sulphates*alcohol as our variables. From **FIGURE 2.5**, we get our regression model(2.3):

$$Quality = 6.43406 - 1.17957 \times volatile. acidity - 5.03825 \times sulphates - 0.07294 \times alcohol + 0.56723 \times sulphates \times alcohol$$
 (2.3)

First, we use stepwise regression model to obtain 7 variables. After comparing their p-value and correlation with quality, we choose 3 variables: alcohol, volatile.acidity, sulphates. By comparing the direct correlation of the three variables, we choose to analyze sulphates*alcohol in our model. We find that this has the highest Adjusted R-squared= 0.3471.

FIGURE 2.6

```
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                         1.541e+02 1.810e+01 8.514 < 2e-16 ***
6.810e-02 2.043e-02 3.333 0.000864 ***
-1.888e+00 1.095e-01 -17.242 < 2e-16 ***
8.285e-02 7.287e-03 11.370 < 2e-16 ***
(Intercept)
fixed.acidity
volatile.acidity
residual.sugar
                                                        4.950 7.67e-07 ***
free.sulfur.dioxide 3.349e-03 6.766e-04
                         -1.543e+02 1.834e+01 -8.411 < 2e-16 *** 6.942e-01 1.034e-01 6.717 2.07e-11 *** 6.285e-01 9.997e-02 6.287 3.52e-10 ***
density
рΗ
sulphates
                           1.932e-01 2.408e-02
                                                       8.021 1.31e-15 ***
alcohol
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7512 on 4889 degrees of freedom
Multiple R-squared: 0.2818,
                                         Adjusted R-squared: 0.2806
F-statistic: 239.7 on 8 and 4889 DF, p-value: < 2.2e-16
```

FIGURE 2.7

```
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        -27.19249 6.08006 -4.472 7.91e-06 ***
                         0.18568
                                              6.052 1.54e-09 ***
alcohol
                                    0.03068
                         -9.02433
                                    0.89138 -10.124 < 2e-16 ***
volatile.acidity
                         31.88575
                                              5.356 8.88e-08 ***
density
                                     5.95285
alcohol:volatile.acidity 0.65911
                                    0.08387
                                              7.859 4.73e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7641 on 4893 degrees of freedom
Multiple R-squared: 0.2563,
                              Adjusted R-squared: 0.2557
F-statistic: 421.6 on 4 and 4893 DF, p-value: < 2.2e-16
```

FIGURE 2.8

From the wine white regression result, we choose alcohol, volatile.acidity, density, and volatile.acidity *alcohol as our variables. From **FIGURE 2.8**, we get our regression model(2.4):

```
\begin{aligned} Quality &= -27.19249 + 0.18568 \times alcohol - 9.02433 \times volatile. acidity \\ &+ 31.88575 \times density \\ &+ 0.65911 \times alcohol \times volatile. acidity \end{aligned} \tag{2.4}
```

First, we use stepwise regression model to obtain 8 variables. After comparing their p-value and correlation with quality, we choose 3 variables: alcohol, volatile.acidity, density. By comparing the direct correlation of the three variables, we choose to analyze volatile.acidity *alcohol in our model. We find that this has the highest Adjusted R-squared= 0.2557.

Also, we drew **FIGURE 2.9 and 2.10** to visualize the regression result of the response *quality* on the predictors. Apparently, the distribution of each predictor concerns to *quality* is distinguishing. (source code : ML h2 WinePlot.R)

FIGURE 2.9 red wine

FIGURE 2.10 white_wine

```
Code Parts (PART 2 data wine.csv) (source code: ML h2 wine.R)
#2.1
>setwd("C:/Users/啦啦露/Desktop/homework 2")
>dat2=read.csv('wine.csv')
>wine red=dat2[dat2$color=="red",]
>wine white=dat2[dat2$color=="white",]
#2.2
#calculate
>corTRed=cor(wine red)
>corTWhite=cor(wine white)
#corrplot
#install.packages("corrplot")
>library(corrplot)
# draw figures
>corrplot(corTRed,method='color',type='upper',order='hclust',addCoef.col='black'
>corrplot(corTWhite,method='color',type='upper',order='hclust',addCoef.col='bla
ck')
#2.3
#wine red
> lm.fit1 = lm(quality~fixed.acidity+volatile.acidity+citric.acid+residual.sugar+chlori
des+free.sulfur.dioxide+total.sulfur.dioxide+density+pH+sulphates+alcohol,data=
wine red)
>summary(lm.fit1)
>lm.fit11<-step(lm.fit1)
> summary(lm.fit11)
>lm.fit111=lm(quality~volatile.acidity+sulphates*alcohol,data=wine red)
> summary(lm.fit111)
#wine white
> lm.fit2=lm(quality~fixed.acidity+volatile.acidity+citric.acid+residual.sugar+chlori
des+free.sulfur.dioxide+total.sulfur.dioxide+density+pH+sulphates+alcohol,data=
wine white)
>summary(lm.fit2)
>lm.fit21<-step(lm.fit2)
> summary(lm.fit21)
>lm.fit22=lm(quality ~ alcohol*volatile.acidity +density,data=wine white)
> summary(lm.fit22)
```