FCC RF Test Report

APPLICANT : Amazon Fulfillment Services, Inc.

EQUIPMENT: Wireless push button device

MODEL NAME : H5V83Y FCC ID : UUU-4612

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The test was completed on Sep. 30, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 1 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

1190

Report No.: FR780313-01A

TABLE OF CONTENTS

SU	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Product Feature of Equipment Under Test	5
	1.3	Product Specification of Equipment Under Test	5
	1.4	Modification of EUT	5
	1.5	Testing Location	6
	1.6	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Descriptions of Test Mode	9
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	12
3	TEST	RESULT	13
	3.1	Number of Channel Measurement	13
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	18
	3.4	20dB and 99% Bandwidth Measurement	20
	3.5	Peak Output Power Measurement	25
	3.6	Conducted Band Edges Measurement	26
	3.7	Conducted Spurious Emission Measurement	29
	3.8	Radiated Band Edges and Spurious Emission Measurement	33
	3.9	Antenna Requirements	37
4	LIST	OF MEASURING EQUIPMENT	38
5	UNC	ERTAINTY OF EVALUATION	39
AP	PEND	IX A. CONDUCTED TEST RESULTS	
AP	PEND	IX B. RADIATED SPURIOUS EMISSION	
AP	PEND	IX C. RADIATED SPURIOUS EMISSION PLOTS	
AP	PEND	IX D. DUTY CYCLE PLOTS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 2 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR780313-01A	Rev. 01	Initial issue of report	Oct. 03, 2017

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 3 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass
3.4	-	99% Bandwidth	-	Pass
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass
-	15.207	AC Conducted Emission	15.207(a)	Not Required
3.9	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 4 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

1 General Description

1.1 Applicant

Amazon Fulfillment Services, Inc.

410 Terry Avenue North Seattle, WA 98109-5210 United States

1.2 Product Feature of Equipment Under Test

	Product Feature
Equipment	Wireless push button device
Model Name	H5V83Y
FCC ID	UUU-4612
EUT supports Radios application	BR/LE

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz	
Number of Channels	79	
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78	
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 9.54 dBm (0.00899 W)	
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.956MHz	
Antenna Type / Gain	Fixed Internal Antenna with gain 2.49 dBi	
Type of Modulation	Bluetooth BR (1Mbps) : GFSK	

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456

FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 5 of 39
Report Issued Date : Oct. 03, 2017

Report No.: FR780313-01A

Report Version : Rev. 01
Report Template No.: BU5-FR15CBT Version 2.0

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
rest Site Location	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Took Site No	Sporton Site No.		
Test Site No.	TH05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,		
Test Site Location	Taoyuan City, Taiwan (R.O.C.)		
lest Site Location	TEL: +886-3-327-0868		
	FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
lest Site No.	03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 6 of 39

Report Issued Date : Oct. 03, 2017

Report Version : Rev. 01

Report No.: FR780313-01A

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 7 of 39

Report Issued Date : Oct. 03, 2017

Report Version : Rev. 01

Report No.: FR780313-01A

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 8 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

Report No.: FR780313-01A

2.2 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

	Frequency	Bluetooth RF Output Power		
Channel		Data Rate / Modulation		
Chamilei		GFSK		
		1Mbps		
Ch00	2402MHz	9.54 dBm		
Ch39	2441MHz	9.30 dBm		
Ch78	2480MHz	9.05 dBm		

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 9 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

2.3 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases					
	Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps				
	GFSK				
Conducted	Mode 1: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz				
Bluetooth BR 1Mbps GFSK					
Radiated	Mode 1: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz				
	Mode 3: CH78_2480 MHz				

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 10 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

2.4 Connection Diagram of Test System

<Bluetooth Tx Mode>

2.5 EUT Operation Test Setup

The RF test items, programmed RF utility installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 11 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 12 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 13 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

Date: 27.SEP.2017 21:49:59

Date: 27.SEP.2017 21:50:41

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 14 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels;
 - RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 15 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

Channel Separation Plot on Channel 00 - 01

Date: 27.SEP.2017 22:40:01

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 16 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

Channel Separation Plot on Channel 39 - 40

Date: 27.SEP.2017 22:42:50

Channel Separation Plot on Channel 77 - 78

Date: 27.SEP.2017 22:45:51

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 17 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 18 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 15.SEP.2017 00:08:16

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 19 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW \geq 1% of the 20 dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW \geq 1% of the 99% bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 20 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

20 dB Bandwidth Plot on Channel 00

Date: 27.SEP.2017 22:54:46

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 21 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

20 dB Bandwidth Plot on Channel 39

Date: 27.SEP.2017 22:56:57

20 dB Bandwidth Plot on Channel 78

Date: 27.SEP.2017 23:01:31

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 22 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

99% Occupied Bandwidth Plot on Channel 00

Date: 27.SEP.2017 22:38:49

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 23 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

99% Occupied Bandwidth Plot on Channel 39

Date: 27.SEP.2017 22:41:47

99% Occupied Bandwidth Plot on Channel 78

Date: 27.SEP.2017 22:44:26

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 24 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power with cable loss and record the results in the test report.
- 6. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 25 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 26 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

Low Band Edge Plot on Channel 00

Date: 27.SEP.2017 22:39:08

High Band Edge Plot on Channel 78

Date: 27.SEP.2017 22:44:48

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 27 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.6.1 Test Result of Conducted Hopping Mode Band Edges

Please refer to Appendix A.

1Mbps Hopping Mode Low Band Edge Plot

Date: 27.SEP.2017 21:51:50

1Mbps Hopping Mode High Band Edge Plot

Date: 27.SEP.2017 21:52:25

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 28 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 29 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.7.5 Test Result of Conducted Spurious Emission

Please refer to Appendix A.

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 27.SEP.2017 22:34:02

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 27.SEP.2017 22:34:23

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 30 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 27.SEP.2017 22:40:43

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 27.SEP.2017 22:41:05

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 31 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 27.SEP.2017 22:43:23

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 27.SEP.2017 22:43:45

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 32 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 33 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.67dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 34 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 35 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 36 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

3.9 Antenna Requirements

3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 37 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

Report Template No.: BU5-FR15CBT Version 2.0

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Power Meter	Anritsu	ML2495A	1218006	N/A	Oct. 06, 2016	Sep. 15, 2017~ Sep. 27, 2017	Oct. 05, 2017	Conducted (TH05-HY)	
Power Sensor	Anritsu	MA2411B	1207363	300MHz~40GHz	Oct. 06, 2016	Sep. 15, 2017~ Sep. 27, 2017	Oct. 05, 2017	Conducted (TH05-HY)	
Spectrum Analyzer	Rohde & Schwarz	FSP30	101067	9kHz ~ 30GHz	Nov. 17, 2016	Sep. 15, 2017~ Sep. 27, 2017	Nov. 16, 2017	Conducted (TH05-HY)	
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 10, 2016	Sep. 30, 2017	Nov. 09, 2017	Radiation (03CH11-HY)	
Bilog Antenna	TESEQ	CBL 6111D&N-6-06	35414&AT-N06 02	30MHz~1GHz	Oct. 15, 2016	Sep. 30, 2017	Oct. 14, 2017	Radiation (03CH11-HY)	
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz ~ 18GHz	Oct. 07, 2016	Sep. 30, 2017	Oct. 06, 2017	Radiation (03CH11-HY)	
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Sep. 30, 2017	Oct. 19, 2018	Radiation (03CH11-HY)	
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 10, 2016	Sep. 30, 2017	Nov. 09, 2017	Radiation (03CH11-HY)	
Preamplifier	MITEQ	AMF-7D-001018 00-30-10P	1902247	1GHz~18GHz	Jun. 23, 2017	Sep. 30, 2017	Jun. 22, 2018	Radiation (03CH11-HY)	
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz ~ 44GHz	Oct. 12, 2016	Sep. 30, 2017	Oct. 11, 2017	Radiation (03CH11-HY)	
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Sep. 30, 2017	N/A	Radiation (03CH11-HY)	
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Sep. 30, 2017	N/A	Radiation (03CH11-HY)	
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Sep. 30, 2017	N/A	Radiation (03CH11-HY)	
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290053	20Hz to 26.5GHz	Jan. 12, 2017	Sep. 30, 2017	Jan. 11, 2018	Radiation (03CH11-HY)	
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170584	18GHz- 40GHz	Nov. 08, 2016	Sep. 30, 2017	Nov. 07, 2017	Radiation (03CH11-HY)	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 38 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No. : FR780313-01A

Report Template No.: BU5-FR15CBT Version 2.0

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	3.20

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	3.30

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UUU-4612 Page Number : 39 of 39
Report Issued Date : Oct. 03, 2017
Report Version : Rev. 01

Report No.: FR780313-01A

Report Template No.: BU5-FR15CBT Version 2.0

Report Number : FR780313-01A

Bluetooth

Test Engineer:	Aking chang	Temperature:	21~25	°C
Test Date:	2017/9/15~2017/9/27	Relative Humidity:	51~54	%

TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation												
Mod	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail			
DH	I 1Mbps	1	0	2402	1.016	0.956	1.002	0.6773	Pass			
DH	1Mbps	1	39	2441	1.008	0.952	1.002	0.6720	Pass			
DH	1Mbps	1	78	2480	1.012	0.952	1.002	0.6747	Pass			

<u>TEST RESULTS DATA</u> Dwell Time										
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail				
Nomal	79	106.67	2.94	0.31	0.4	Pass				
AFH	20	53.33	2.94	0.16	0.4	Pass				

<u>TEST RESULTS DATA</u> Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result				
	0	1	9.54	20.97	Pass				
DH1	39	1	9.30	20.97	Pass				
	78	1	9.05	20.97	Pass				

<u>TEST RESULTS DATA</u> Number of Hoppina Frequency												
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	ı								
79	20	> 15	Pass									

Appendix B. Radiated Spurious Emission

Test Engineer :	Ken Wu	Temperature :	26~28°C
rest Engineer.		Relative Humidity :	52~57%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.275	43.94	-30.06	74	44.31	26.87	6.36	33.6	100	310	Р	Н
		2389.275	19.27	-34.73	54	-	-	-	-	-	-	Α	Н
DT	*	2402	107.42	-	-	107.78	26.87	6.36	33.59	100	310	Р	Н
BT CH00	*	2402	82.75	-	-	-	-	-	-	-	-	Α	Н
2402MHz		2358.615	41.66	-32.34	74	42.21	26.76	6.29	33.6	351	360	Р	V
2402111112		2358.615	16.99	-37.01	54	-	-	ı	-	-	-	Α	V
	*	2402	101.46	-	-	101.82	26.87	6.36	33.59	351	360	Р	V
	*	2402	76.79	-	-	-	-	ı	-	-	-	Α	V
		2366	43.51	-30.49	74	44.06	26.76	6.29	33.6	144	311	Р	Н
		2366	18.84	-35.16	54	-	-	-	-	-	-	Α	Н
	*	2441	106.78	-	-	106.95	27.03	6.38	33.58	144	311	Р	Н
	*	2441	82.11	-	-	-	-	-	-	-	-	Α	Н
		2491.25	42.07	-31.93	74	42.06	27.2	6.39	33.58	144	311	Р	Н
BT		2491.25	17.4	-36.6	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		2384.2	41.61	-32.39	74	42.04	26.81	6.36	33.6	395	355	Р	V
2441111112		2384.2	16.94	-37.06	54	-	-	-	-	-	-	Α	V
	*	2441	100.7	-	-	100.87	27.03	6.38	33.58	395	355	Р	V
	*	2441	76.03	-	-	-	-	-	-	-	-	Α	V
		2487.54	41.96	-32.04	74	41.95	27.2	6.39	33.58	395	355	Р	V
		2487.54	17.29	-36.71	54	-	-	-	-	-	-	Α	V

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B1 of B6

SPORTON LAB. FCC RF Test Report

	*	2480	106.57	-	-	106.63	27.14	6.38	33.58	100	298	Р	Н
	*	2480	81.9	-	-	-	-	-	-	-	-	Α	Н
		2483.76	51.24	-22.76	74	51.3	27.14	6.38	33.58	100	298	Р	Н
BT		2483.76	26.57	-27.43	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz	*	2480	100.83	-	-	100.89	27.14	6.38	33.58	367	0	Р	V
2400WII 12	*	2480	76.16	-	-	-	•	-	-	-	-	Α	V
		2483.72	46.97	-27.03	74	47.03	27.14	6.38	33.58	367	0	Р	V
		2483.72	22.3	-31.7	54	-	•	-	-	-	-	Α	V
Remark		o other spurio		st Peak	and Averac	ne limit line	e.						

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: B2 of B6

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	($dB\mu V$)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
DT		4804	48.11	-25.89	74	69.5	31.6	9.6	63.02	100	0	Р	Н
BT CH 00		4804	23.44	-30.56	54	-	-	-	-	-	-	Α	Н
2402MHz		4804	45.76	-28.24	74	67.15	31.6	9.6	63.02	100	0	Р	V
2402111112		4804	21.09	-32.91	54	-	-	-	-	-	-	Α	V
		4882	48.75	-25.25	74	69.92	31.71	9.56	62.87	100	0	Р	Н
		4882	24.08	-29.92	54	-	-	-	-	-	-	Α	Н
ВТ		7323	44.89	-29.11	74	58.33	37.51	11.31	62.7	100	0	Р	Н
CH 39		7323	20.22	-33.78	54	-	-	-	-	-	-	Α	Н
2441MHz		4882	44.7	-29.3	74	65.87	31.71	9.56	62.87	100	0	Р	V
2441111112		4882	20.03	-33.97	54	-	-	-	-	-	-	Α	V
		7323	47.92	-26.08	74	61.36	37.51	11.31	62.7	100	0	Р	V
		7323	23.25	-30.75	54	-	-	-	-	-	-	Α	V
		4960	45.98	-28.02	74	66.85	31.84	9.53	62.68	100	0	Р	Н
		4960	21.31	-32.69	54	-	-	-	-	-	-	Α	Н
DT		7440	43.63	-30.37	74	56.62	38.06	11.34	62.77	100	0	Р	Н
BT CH 78		7440	18.96	-35.04	54	-	-	-	-	-	-	Α	Н
2480MHz		4960	45.04	-28.96	74	65.91	31.84	9.53	62.68	100	0	Р	V
2400WII 12		4960	20.37	-33.63	54	-	-	-	-	-	-	Α	V
		7440	45.05	-28.95	74	58.04	38.06	11.34	62.77	100	0	Р	V
		7440	20.38	-33.62	54	-	-	-	-	-	-	Α	V

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.81	22.81	-17.19	40	30.62	23.84	0.82	32.49	-	-	Р	Н
		142.05	17.85	-25.65	43.5	31.37	17.34	1.51	32.44	-	-	Р	Н
		258.96	19.72	-26.28	46	30.25	19.68	2.09	32.38	-	-	Р	Н
		426	24.69	-21.31	46	31.51	22.84	2.63	32.34	-	-	Р	Н
0.4011		762.7	30.09	-15.91	46	30.56	28.24	3.44	32.29	-	-	Р	Н
2.4GHz		951	34.25	-11.75	46	30.63	30.82	3.82	31.19	100	0	Р	I
BT LF		31.08	30.21	-9.79	40	38.02	23.84	0.82	32.49	-	-	Р	7
LF		36.21	27.89	-12.11	40	38.26	21.3	0.82	32.49	-	-	Р	٧
		45.66	30.43	-9.57	40	45.67	16.23	1.02	32.49	100	88	Р	٧
		440	24.95	-21.05	46	31.52	23.04	2.7	32.35	-	-	Р	٧
		759.2	30.12	-15.88	46	30.62	28.22	3.44	32.3	-	-	Р	٧
		950.3	33.8	-12.2	46	30.19	30.82	3.82	31.2	-	-	Р	٧

Remark

TEL: 886-3-327-3456 FAX: 886-3-328-4978

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

Report No. : FR780313-01A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL INC. Page Number : B5 of B6

A calculation example for radiated spurious emission is shown as below:

Report No.: FR780313-01A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL INC. Page Number : B6 of B6

Appendix C. Radiated Spurious Emission Plots

Toot Engineer	Ken Wu	Temperature :	26~28°C	
Test Engineer :		Relative Humidity :	52~57%	

Report No. : FR780313-01A

-L	Low channel location
-R	High channel location

SPORTON INTERNATIONAL INC. Page Number : C1 of C11

2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR780313-01A

Report No. : FR780313-01A

TEL: 886-3-327-3456 FAX: 886-3-328-4978

ANT BT CH78 2480MHz

1 Vertical Fundamental

Vertical Fundamental

Fun

TEL: 886-3-327-3456 FAX: 886-3-328-4978

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Emission below 1GHz 2.4GHz BT (LF)

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report No.: FR780313-01A

Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.91 / 100 = 5.84 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.67 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Page Number

: D-1 of 2

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.91 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

$$2.91 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms}/100\text{ms}) = -24.67 \text{ dB}$

TEL: 886-3-327-3456 FAX: 886-3-328-4978