Empirical Macro I

First homework

(This homework is due, <u>via email</u>, at the latest, by midnight of Sunday, April 9. Please send me a MATLAB code implementing your solution.)

Question I

Based on the data for real GDP, the GDP deflator, and M2 for the Gold Standard era (1875Q1-1914Q2), please

- (1) estimate a VAR for the log-differences of the three series, selecting the lag order as the maximum between the lag orders chosen by the Akaike and Schwartz criteria.
- (2) Bootstrap the VAR as we have done in class, using 10,000 bootstrap replications, and build up and store, as we did, the bootstrapped distributions of all of the relevant objects: the vector of intercepts B₀; the VAR coefficients matrices B₁, B₂, ..., B_p; and the VAR's covariance matrix of reduced-form innovations.
- (3) Based on this, test the hypotheses that
 - (i) the innovation variance of GDP growth is greater than the innovation variance of inflation;
 - (ii) the innovation variance of M2 growth is greater than the innovation variance of inflation.

Question II

Based on the data for real GDP, the GDP deflator, the unemployment rate, and the 3-month Treasury bill rate for the period 1948Q1-2014Q4), please

- (1) estimate a VAR for the unemployment rate, the 3-month Treasury bill rate, and the log-differences of real GDP and the GDP deflator, selecting the lag order as the maximum between the lag orders chosen by the Akaike and Schwartz criteria.
- (2) Generate forecasts for the four variables starting from 2015Q1, by bootstrapping the VAR into the future as we did in class. Plot the 16th, 84th, 5th, and 95th percentiles of the boostrapped distributions of the forecasts.
- (3) What is the probability that, in 2020Q1, Inflation is going to be negative?