12ML:: BASICS

Data

 $\mathcal{X} \subset \mathbb{R}^p$: p-dimensional **feature / input space** Usually we assume $\mathcal{X} \equiv \mathbb{R}^p$, but sometimes, dimensions may be bounded (e.g., for categorical or non-negative features.)

 $\mathcal{Y}\subset\mathbb{R}^g$: target space e.g.: $\mathcal{Y}=\mathbb{R}$, $\mathcal{Y}=\{0,1\}$, $\mathcal{Y}=\{-1,1\}$, $\mathcal{Y}=\{1,\ldots,g\}$ with g classes

 $\mathbf{x} = (x_1, \dots, x_p)^T \in \mathcal{X}$: feature vector

 $y \in \mathcal{Y}$: target / label / output

 $\mathbb{D}_n = (\mathcal{X} \times \mathcal{Y})^n \subset \mathbb{D}$: set of all finite data sets of size n

 $\mathbb{D} = \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets

 $\mathcal{D} = ((\mathsf{x}^{(1)}, \mathsf{y}^{(1)}), \dots, (\mathsf{x}^{(n)}, \mathsf{y}^{(n)})) \in \mathbb{D}_n$: data set with n observations

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subset \mathcal{D}$: data for training and testing (often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$)

 $(\mathsf{x}^{(i)}, \mathsf{y}^{(i)}) \in \mathcal{X} \times \mathcal{Y} : i$ -th observation or instance

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} imes \mathcal{Y}$

 $p(x,y): \mathcal{X} \times \mathcal{Y} \to [0,\infty):$ joint probability density function **(pdf)**, often parametrized by $\theta \in \Theta$ (then: $p(x,y \mid \theta)$)

Model and Learner

Model / **hypothesis:** $f: \mathcal{X} \to \mathbb{R}^g$, $x \mapsto f(x)$ (also: $f_{\theta}: \mathcal{X} \to \mathbb{R}^g$, $x \mid \theta \mapsto f(x \mid \theta)$) is a function that maps feature vectors to predictions, often parametrized by $\theta \in \Theta$.

 $\Theta \subset \mathbb{R}^d$: parameter space

 $\theta = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameters** Some models may traditionally use different symbols.

 $\mathcal{H}=\{f:\mathcal{X}\to\mathbb{R}^g\mid f \text{ belongs to a certain functional family}\}:$ hypothesis space

Set of functions defining a specific model class to which we restrict our learning task.

Learner $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ takes a training set $\mathcal{D}_{\mathsf{train}} \in \mathbb{D}$ and produces a model $f: \mathcal{X} \to \mathbb{R}^g$, its hyperparameters set to $\lambda \in \Lambda$.

For a parametrized model the definition can be adapted $\mathcal{I}: \mathbb{D} imes \mathbf{\Lambda} o \Theta$

 $\Lambda \subset \mathbb{R}^{foo}$: hyperparameter space

 $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, ..., \lambda_{foo}) \in \boldsymbol{\Lambda}$: hyperparameter vector

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate $\pi = \mathbb{P}(y = 1)$.

 $\pi_k(x) = \mathbb{P}(y = k \mid x)$: **posterior probability** for class k, given x In case of binary labels we might abbreviate $\pi(x) = \mathbb{P}(y = 1 \mid x)$.

 $\mathcal{L}(m{ heta})$ and $\ell(m{ heta}) = \log(\mathcal{L}(m{ heta}))$: likelihood and log-likelihood for parameter $m{ heta}$

These are based on a statistical model.

 $\epsilon = y - f(x)$ or $\epsilon^{(i)} = y^{(i)} - f(x^{(i)})$: *i*-th **residual** in regression.

yf(x) or $y^{(i)}f(x^{(i)})$: **margin** for *i*-th observation in binary classification (with $\mathcal{Y} = \{-1, 1\}$).

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(x)$, $\hat{\pi}(x)$ and $\hat{\theta}$

The hat symbol denotes **learned** functions and parameters.

Loss and Risk

 $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$.: **loss function :** L(y, f(x)) quantifies the "quality" of the prediction f(x) of a single observation x.

 $\mathcal{R}_{emp}:\mathcal{H}\to\mathbb{R}:$ The ability of a model f to reproduce the association between x and y that is present in the data \mathcal{D} can be measured by the summed loss, the **empirical risk**:

$$\mathcal{R}_{\mathsf{emp}}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Since f is usually defined by **parameters** θ , this becomes:

$$\mathcal{R}_{emp}: \mathbb{R}^d
ightarrow \mathbb{R}$$

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)\right)$$

Learning then amounts to **empirical risk minimization** – figuring out which model f has the smallest summed loss:

$$\hat{f} = rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})).$$

Components of Learning

Learning = Hypothesis space + Risk + Optimization.

Hypothesis space : Defines (and restricts!) what kind of model *f* can be learned from the data.

Examples: linear functions, decision trees

Risk: Quantifies how well a model performs on a given data set. This allows us to rank candidate models in order to choose the best one.

Examples: squared error, negative (log-)likelihood

Optimization: Defines how to search for the best model, i.e., the model with the smallest risk, in the hypothesis space.

Examples: gradient descent, quadratic programming

Regression Losses

Basic idea (L2 loss / squared error):

- $ightharpoonup L(y, f(x)) = (y f(x))^2 \text{ or } L(y, f(x)) = 0.5(y f(x))^2$
- ► Convex and differentiable
- ► Tries to reduce large residuals (loss scaling quadratically)
- ▶ Optimal constant model: $\hat{f}(x) = \text{mean of } y | x$

Basic idea (L1 loss / absolute error):

- L(y, f(x)) = |y f(x)|
- ► Convex and more robust
- Non-differentiable for y = f(x), optimization becomes harder
- ▶ Optimal constant model: $\hat{f}(x) = \text{median of } y | x$

Classification

Assume we are given a classification problem:

$$\mathbf{x} \in \mathcal{X}$$
 feature vector $y \in \mathcal{Y} = \{1, \dots, g\}$ categorical output variable (label) $\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)}\right)\right)$ observations of \mathbf{x} and \mathbf{y}

Classification usually means to construct g discriminant functions:

 $f_1(\mathsf{x}),\ldots,f_g(\mathsf{x})$, so that we choose our class as $h(\mathsf{x})=\max_{k\in\{1,\ldots,g\}}f_k(\mathsf{x})$

Linear Classifier:

If the functions $f_k(x)$ can be specified as linear functions, we will call the classifier a *linear classifier*.

Binary classification: If only 2 classes exist, we can use a single discriminant function $f(x) = f_1(x) - f_2(x)$.