Table of Contents

xercise 1: Solve a simple linear regression problem	1
)	1
)	
)	
)	2
))	
)	
)	c
,	
1	1

Exercise 1: Solve a simple linear regression problem

Farzad Rezazadeh Pilehdarboni, 25.05.2022

b)

% Using the randn() function, create a vector, eps, containing 100

```
\mbox{\ensuremath{\$}} observations drawn from N(0,30^2) distribution, i.e., a normal distribution
% with mean zero and standard deviation 30.
sd = 30;
eps = sd*randn(N,1);
c)
% Using x and eps, generate a vector y according to the model
% Y0 = 50 + 7*X
% and add the noise to obtain the disturbed output Y = Y0 + eps.
% What is the length of the vector y? What are the values of \beta_0 and
% \beta_1 in this linear model?
beta_0 = 50;
beta 1 = 7;
Y0 = beta_0 + beta_1*X;
Y = Y0 + eps;
                   % generate disturbed output
d)
% Using scatter(), create a scatterplot displaying the relationship
% between x and y. Comment on what you observe.
figure(i)
```


scatter(X,Y, '.')

e)

```
% Using the backslash operator, fit a least squares linear model to
\mbox{\ensuremath{\upsigma}} predict y using x. First, create the regression matrix using
 Phi=[ones(size(x)) x]. Comment on the model obtained. How do
% \hat{\beta}_0 and \hat{\beta}_1 compare to \beta_0 and \beta_1?
Phi = [ones(size(X)) X];
theta = Phi\Y;
f)
least
% squares line on the scatterplot obtained in d) using hold all. Additonally,
draw the
% population regression line on the plot.
Y_hat = Phi*theta;
hold all
plot(X,Y_hat)
plot(X,Y0)
legend('Data','LS estimate','Y0')
title('y vs. x1')
xlabel('x1')
ylabel('y')
```


g)

```
% Alternatively, use the Matlab function fitlm to generate a linear
% regression model object. Plot the results by the use of plot(myModel) in a
new figure.
myModel = fitlm(X,Y)
% By default, LinearModel assumes that you want to model the relationship
% as a straight line with an intercept term. The expression "y \sim 1 + x1"
% describes this model. Formally, this expression translates as "Y is
% modeled as a linear function which includes an intercept and a variable".
% Once again note that we are representing a model of the form Y = mX + B...
% The next block of text includes estimates for the coefficients, along
% with basic information regarding the reliability of those estimates.
% Finally, we have basic information about the goodness-of-fit including
% the R-square, the adjusted R-square and the Root Mean Squared Error.
figure(i+1)
plot(myModel)
% Notice that this simple command creates a plot with a wealth of information
 including
     - A scatter plot of the original dataset
     - A line showing our fit
```

% - Confidence intervals for the fit

%

% MATLAB has also automatically labelled our axes and added a legend.

myModel =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	Estimate SE	tStat	pValue
(Intercept)	53.322	20.016	2.6639	0.02863
<i>x</i> 1	6.8212	0.33601	20.3	3.6234e-08

Number of observations: 10, Error degrees of freedom: 8

Root Mean Squared Error: 33.6

R-squared: 0.981, Adjusted R-Squared: 0.979

F-statistic vs. constant model: 412, p-value = 3.62e-08

myModel =

Linear regression model:

$$y \sim 1 + x1$$

Estimated Coefficients:

	Estimate	Estimate SE		tStat	pValue
(Intercept)	45.194	6.5505	6.8993	5.1832e-10	
x1	7.0793	0.11261	62.863	5.2049e-81	

Number of observations: 100, Error degrees of freedom: 98

Root Mean Squared Error: 32.5

R-squared: 0.976, Adjusted R-Squared: 0.976

F-statistic vs. constant model: 3.95e+03, p-value = 5.2e-81

myModel =

Linear regression model:

$$y \sim 1 + x1$$

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept)	48.97	1.9671	24.894	8.5785e-107
<i>x</i> 1	6.9985	0.033893	206.49	0

Number of observations: 1000, Error degrees of freedom: 998
Root Mean Squared Error: 30.7
R-squared: 0.977, Adjusted R-Squared: 0.977
F-statistic vs. constant model: 4.26e+04, p-value = 0

h)

% Now fit a polynomial regression model that prdicts y using x and x^2.

% Is ther evidence that the quadratic term improves the model fit? Explain % your answer.

myModel2 = fitlm(X,Y,'poly2')

myModel2 =

Linear regression model: $y \sim 1 + x1 + x1^2$ Estimated Coefficients:

	Estimate	SE	tStat	pValue
				
(Intercept)	47.57	29.139	1.6325	0.14659
<i>x</i> 1	7.1955	1.3443	5.3524	0.0010614
x1^2	-0.0037059	0.012832	-0.2888	0.7811

Number of observations: 10, Error degrees of freedom: 7

Root Mean Squared Error: 35.7

R-squared: 0.981, Adjusted R-Squared: 0.976

F-statistic vs. constant model: 182, p-value = 9.14e-07

myModel2 =

Linear regression model:

 $y \sim 1 + x1 + x1^2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
	<u> </u>			
(Intercept)	58.148	9.8479	5.9047	5.2119e-08
<i>x</i> 1	6.3173	0.45007	14.036	4.3162e-25
x1^2	0.0075447	0.0043174	1.7475	0.083712

Number of observations: 100, Error degrees of freedom: 97

Root Mean Squared Error: 32.2

R-squared: 0.977, Adjusted R-Squared: 0.976

F-statistic vs. constant model: 2.02e+03, p-value = 9.14e-80

myModel2 =

Linear regression model:

 $y \sim 1 + x1 + x1^2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	48.046	3.0232	15.892	7.2975e-51
x1	7.0524	0.13807	51.079	1.3781e-280
x1^2	-0.0005337	0.0013252	-0.40274	0.68722

Number of observations: 1000, Error degrees of freedom: 997

Root Mean Squared Error: 30.7

R-squared: 0.977, Adjusted R-Squared: 0.977

F-statistic vs. constant model: 2.13e+04, p-value = 0

% Repeat a)-g) with different noise levels by sampling from N=(0,\sigma^2) % with \sigma= $\{30,60,100\}$ to generate different \eps. Describe your results.

end

Published with MATLAB® R2022a