Analysis of Three-Body Scattering Signatures for Use in Hail Size Estimation

Anna VanAlstine¹ and Matthew R. Kumjian¹
¹Department of Meteorology & Atmospheric Science, The Pennsylvania State University, University Park, PA

Impacts of Hail

Hailstorms becoming increasingly significant events

Gargantuan hailstone that fell in Hondo, Texas, on April 28, 2021. (Image/PSURadarMeteorology)

△ Largest hailstone

8 in (2010, Vivian, South Dakota, USA)

△ Surface Fall Speeds

Hailstone (1.5 in)

~25 m/s

Hailstone (4 in)

~40 m/s

Impacts of Hail

Hail severity commonly associated with hail size

Marginally Severe

$$\leq 1$$
 in

Significantly Severe

$$\geq 2$$
 in

Giant-to-gargantuan

$$\geq 4 - 6 \text{ in}$$

Radar & Hail Detection

- Radar highly effective in hail detection
- Dual-polarization enhances observation data
 - Scatterers shape, size, and physical composition
- Radar-based hailstone size determination a challenge
 - Roughness / irregular shape
 - Orientation from collisions
 - Nonuniform beamfilling

Three-Body Scattering Signature (TBSS; Zrnić 1987)

- Weak reflectivity "spike" or "flare"
- Colloquially referred to as "hail spike"
- Often used to infer the existence of severe hail for NWS forecasting

Schematic of Three-Body Scattering Signature

(VanAlstine & Kumjian 2022)

Utility of TBSS to estimate hail size?

Detroit, Michigan 2015 - 05 - 27 Marginally Severe ≤ 1 in.

Detroit, Michigan 2015 - 05 - 27 Marginally Severe ≤ 1 in.

Detroit, Michigan 2015 - 05 - 27 Marginally Severe ≤ 1 in.

Detroit, Michigan 2015 - 05 - 27 Marginally Severe ≤ 1 in.

Detroit, Michigan

2015 - 05 - 27

Marginally Severe ≤ 1 in. (2.54 cm)

Est. Hail Sizes for Hail Regions & Mass-Diameter Power Fit					
	10 th	25 th	50 th	75 th	90 th
Max ZH	2.28	2.15	2.02	1.91	1.84
Mode (ZH ≥ 60 dBZ)	2.37	2.23	2.10	1.98	1.91
Median (ZH ≥ 60 dBZ)	2.11	1.98	1.86	1.76	1.70
Manually Selected	2.28	2.15	2.02	1.91	1.84

Results

Scratch

- Forecasting and detecting hail size remains a challenge
- Radar is highly effective tool in hail detection

