Book Embedding with Fixed Page Assignments

Daniel Hoske, 20th November 2012

Department of Informatics, Institute of Theoretical Computer Science Advisors: Dipl.-Inform. Thomas Bläsius, Dr. Ignaz Rutter

Page embedding

Definition

Page embedding is planar embedding with

- vertices on a line and
- · edges in half-plane above the line

Page embeddable = outerplanar

Page embedding

Definition

Page embedding is planar embedding with

- vertices on a line and
- · edges in half-plane above the line

Page embeddable = outerplanar

Book embedding

Definition

Book embedding of $G_i = (V, E_i)$, $i \in \{1, ..., k\}$ consists of page embeddings for G_i with the same vertex positions.

Book embedding

Definition

Book embedding of $G_i = (V, E_i)$, $i \in \{1, ..., k\}$ consists of page embeddings for G_i with the same vertex positions.

Problem: BOOK-EMBEDDING

Given: Vertex set V and edge sets $E_1, \ldots, E_k \subseteq \binom{V}{2}$. Question: Is there a book embedding of (V, E_i) ?

k = 1: embeddable = outerplanar

k = 2: decidable in O(n) [Hong and Nagamochi, 2009]

What happens for k = 3?

Motivation

Problem: CONNECTED-SEFE

Given: Two graphs G_1 and G_2 on V where $G_1 \cap G_2$ is connected. **Question:** Are there planar embeddings of G_1 and G_2 that coincide on $G_1 \cap G_2$?

is equivalent to 2-page book embedding + a tree [Angelini et al., 2012]

Observations

BOOK-EMBEDDING is an ordering problem:

Avoid suborder a < c < b < d for $\{a, b\}, \{c, d\} \in E_i$

Mirror image and cyclic shifts of a valid order remain valid:

$$d$$
 c b a

Results

Contents

1 NP-completeness and connected pages

2 Disjoint perfect matchings

3 Tree on the vertices

Contents

1 NP-completeness and connected pages

Disjoint perfect matchings

Tree on the vertices

BOOK-EMBEDDING is NP-complete

Theorem

BOOK-EMBEDDING with matchings as pages is NP-complete.

Reduce from NP-complete problem BETWEENNESS [Opatrny, 1979].

Problem: BETWEENNESS

Given: Finite set $M := \{1, ..., n\}$ and ordered triples $C \subseteq M^3$.

Question: Is there a total ordering < of M such that $\alpha < b < c$ or

a > b > c for all $(a, b, c) \in C$?

Reduction from BETWEENNESS

Problem: BETWEENNESS

Given: Finite set $M := \{1, ..., n\}$ and ordered triples $C \subseteq M^3$.

Question: Is there a total ordering < of M such that $\alpha < b < c$ or

a > b > c for all $(a, b, c) \in C$?

Map triple $(a, b, c) \in C$ to two new pages (r fixed new vertex):

For example: (a, b, c), (b, c, d)

Reduction from BETWEENNESS

Problem: BETWEENNESS

Given: Finite set $M := \{1, ..., n\}$ and ordered triples $C \subseteq M^3$.

Question: Is there a total ordering < of M such that $\alpha < b < c$ or

a > b > c for all $(a, b, c) \in C$?

Map triple $(a, b, c) \in C$ to two new pages (r fixed new vertex):

 $BETWEENNESS \Rightarrow BOOK-EMBEDDING$:

Take r as first vertex

 \rightsquigarrow Orders $r < \alpha < b < c$ or $r < c < b < \alpha$ are valid

Reduction from BETWEENNESS

Problem: BETWEENNESS

Given: Finite set $M := \{1, ..., n\}$ and ordered triples $C \subseteq M^3$.

Question: Is there a total ordering < of M such that $\alpha < b < c \mbox{ or }$

a > b > c for all $(a, b, c) \in C$?

Map triple $(a, b, c) \in C$ to two new pages (r fixed new vertex):

BOOK-EMBEDDING \Rightarrow BETWEENNESS:

Rotate r to front

 \rightsquigarrow r < a < b < c or r < c < b < a are the only valid orders

Theorem

BOOK-EMBEDDING with connected pages can be solved in O(kn) time.

Idea:

Compute valid orders $\pi_i \subseteq \operatorname{Sym}(n)$ for single pages and intersect them.

$$\pi(\mathsf{T}) = \{ \begin{aligned} \textbf{12345}, \textbf{14325}, \textbf{52341}, \textbf{54321}, \textbf{15234}, \textbf{15432}, \\ \textbf{51234}, \textbf{51432}, \textbf{23415}, \textbf{43215}, \textbf{23451}, \textbf{43251} \end{aligned}$$

$$\pi(T) = \{ 12345, 14325, 52341, 54321, 15234, 15432, \\ 51234, 51432, {\color{red} 23415}, 43215, 23451, 43251 \}$$

$$\pi(T) = \{ 12345, 14325, 52341, 54321, 15234, 15432, \\ 51234, 51432, 23415, 43215, 23451, 43251 \}$$

$$\pi(T) = \{ \begin{tabular}{ll} 12345, 14325, 52341, 54321, 15234, 15432, \\ & 51234, 51432, 23415, 43215, 23451, 43251 \} \end{tabular}$$

Permutations with the leaves in {1, 2} adjacent

Theorem

BOOK-EMBEDDING with connected pages can be solved in O(kn) time.

Idea:

Compute valid orders $\pi_i \subseteq \operatorname{Sym}(n)$ for single pages and intersect them.

Theorem

BOOK-EMBEDDING with connected pages can be solved in O(kn) time.

• Construct PQ-trees T_i on V representing valid orders of individual pages (V, E_i) $\mathfrak{O}(n)$

[Booth and Lueker et. al. 1976, Shih and Hsu 1993, Boyer and Myrvold 1999]

Theorem

BOOK-EMBEDDING with connected pages can be solved in O(kn) time.

- Construct PQ-trees T_i on V representing valid orders of individual pages (V, E_i)
- Intersect the T_i [Booth, 1975]

O(n)O(n)

→ Resulting PQ-tree T represents valid book orders

Results

k connected pages: O(kn)

k matchings: in NPC

Contents

1 NP-completeness and connected pages

2 Disjoint perfect matchings

3 Tree on the vertices

Disjoint perfect matchings as pages

Problem: PERFECT-MATCHINGS-BOOK-EMBEDDING

Given: Disjoint perfect matchings E_1, \ldots, E_k on a vertex set V.

Question: Is there a book embedding of (V, E_i) ?

Theorem

Necessary: $G := (V, E_1 \cup \cdots \cup E_k)$ *is bipartite.*

Even number of vertices between adjacent vertices in valid order

Disjoint perfect matchings as pages

Problem: PERFECT-MATCHINGS-BOOK-EMBEDDING

Given: Disjoint perfect matchings E_1, \ldots, E_k on a vertex set V.

Question: Is there a book embedding of (V, E_i) ?

Theorem

Necessary: $G := (V, E_1 \cup \cdots \cup E_k)$ is bipartite.

- Even number of vertices between adjacent vertices in valid order
- ⇒ Vertices with even and odd indexes form bipartition

Bipartite examples

k pages: Take the partition

$$E_i := \{\{l_j, r_{(j+i) \mod k}\} : j \in \{1, \dots, k-1\}\} \text{ of } K_{k,k}$$

Bipartite counterexamples

 $k\geqslant$ 4 pages: Partition $K_{k,k}$ into disjoint perfect matchings that contain this counterexample

Bipartite counterexample for three pages

Smallest counterexample where two of the matchings form a cycle

Smallest unrestricted counterexample: $20 \leqslant n \leqslant 28$

Results

Contents

1 NP-completeness and connected pages

Disjoint perfect matchings

3 Tree on the vertices

Tree on the vertices

BOOK-EMBEDDING + tree:

Drawing the tree = Restricting permutations by a P-tree

Tree on the vertices

BOOK-EMBEDDING + tree:

Problem: P-TREE-BOOK-EMBEDDING

Given: BOOK-EMBEDDING instance I and a P-tree T with leaves V.

Question: Is there a total order $< \in \pi(T)$ solving I?

More structure (same for binary trees):

Problem: Q-TREE-BOOK-EMBEDDING

Given: BOOK-EMBEDDING instance I and a Q-tree T with leaves V.

Question: Is there a total order $< \in \pi(T)$ solving I?

Example

- What happens to the forbidden suborder constraint?
- ⇒ 2-CNF formula (Boolean equations) on orientation of Q-nodes

Example

• {a, b}, {c, d}: true

Example

- $\{a, d\}, \{b, c\}: a < b \Leftrightarrow c < d$
- Fix reference orientation of inner nodes r
- Boolean variable o_r for being in reference orientation
- \Rightarrow $o_r \Leftrightarrow o_s$

Book constraints to 2-CNF formula

Theorem

Q-TREE-BOOK-EMBEDDING is solvable in $\mathfrak{O}(kn^2)$ time.

true

$$o_{r(\mathfrak{a},c)} \Leftrightarrow o_{r(\mathfrak{b},d)} \text{ or } o_{r(\mathfrak{a},c)} \Leftrightarrow \neg o_{r(\mathfrak{b},d)}$$

$$o_{r(\mathfrak{a},\mathfrak{d})} \Leftrightarrow o_{r(\mathfrak{b},c)} \text{ or } o_{r(\mathfrak{a},\mathfrak{d})} \Leftrightarrow \neg o_{r(\mathfrak{b},c)}$$

true or false

Multiple spines

Take multiple spines:

Without caps: Level planarity solvable in linear time. [Jünger et al., 1999]

Level planarity

Level planarity is an ordering problem:

$$a_1$$
 a_2 b_1 b_2

Forbidden: $a_1 <_i a_2 \land b_2 < b_1$ for (a_1, b_1) , $(a_2, b_2) \in E_i$

Mapping to 2-page P-TREE-BOOK-EMBEDDING

Theorem

A MULTIPLE-SPINE-EMBEDDING instance is equivalent to a special 2-page P-TREE-BOOK-EMBEDDING instance.

Mapping to 2-page P-TREE-BOOK-EMBEDDING

Theorem

A MULTIPLE-SPINE-EMBEDDING instance is equivalent to a special 2-page P-TREE-BOOK-EMBEDDING instance.

- Complexity for constant number of pages?
- Complexity when constrained by a P-tree?