

A new algorithm for b tagging very high p_T jets via pixel hit multiplicities

Manuel Sommerhalder BTV meeting 26.06.19

Bachelor/Master thesis supervised by

Prof. Dr. Ben Kilminster Dr. Alberto Zucchetta

Dr Thea Arrestad

Dr. Yuta Takahashi

github.com/msommerh/bTag_HitCount

Motivation

- ullet decay of highly boosted B hadrons between pixel detection layers causes a lack of hits in the earlier layer
- ullet efficiency loss in track reconstruction at extreme p_T due to missing hits

wrongly reconstructed tracks

Motivation

- all state-of-the-art taggers in CMS like CSV are based on PF candidates which in turn are based on tracks
- ullet degrading b tagging performance at very high p_T
- what if we want to tag 6 or 8 TeV resonances in Full Run-II searches?

Motivation

- alternative approach by B. Todd Huffman et al. (arXiv:1604.05036 and arXiv:1701.06832)
- count pixel hits inside a small cone around the jet axis in each layer
- build tagging variables based on the increase in hit multiplicity in subsequent detector layers

arXiv:1604.05036

Aim of the study

- 1. check if a hit multiplicity increase is found for high $p_T\ B$ hadrons on a CMS detector simulation
- 2. develop a simple cut-based b tagger from this
- 3. check if such a tagger is competitive to the CSV at very high p_T
- 4. further develop the tagger with MVA techniques to maximize the performance

arXiv:1604.05036

Method

- 1. generate high- p_T b jets ($p_T > 500$ GeV)
- 2. geometrically match hits in each layer to the jets
- 3. construct hit-based variables
- 4. compare the variables of b jets (signal) to those of light-flavor jets (background)
- 5. develop discriminants to distinguish signal from background

Monte Carlo samples

- ullet signal: $Z' o bar{b}$ at 9 mass points from 2 to 6 TeV, 2017 and 2018
- background: QCD samples produced in pT-bins, *TuneCUETP8M1* (102X), 2018
- momentum threshold of 350 GeV imposed on outgoing particles
- jets within $200 \text{ GeV} < p_T < 2500 \text{ GeV}$ selected
- with respect to the previous presentation, the samples have been updated to more realistic conditions
- ullet p_T distributions before reweighting:

Pixel cluster matching

- hits given by clusters: adjacent pixels in the silicon pixel detector whose charge exceeds a pre-defined readout threshold
- clusters are counted for each jet and layer if they lie insiside a cone of fixed $\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2}$ around the jet axis
- \bullet different values for ΔR were tested: 0.04, 0.06, 0.08, 0.10, 0.16 (see later)

MANtag structure

Multiplicity-based Artificial Neural network tagger (MANtag) input variables:

- number of hits in each Layer Li matched at 5 different ΔR
- ratio of hits for consecutive layer: L2/L1, L3/L2, L4/L3
- variables from previous discussion: L4/L1, L4-L1
- ullet p_T as input variable o need to reweight p_T profiles

Convolutional layer

- Li and cone size arranged in a 5x4 matrix
- convolutional 5x2 filter sliding over input matrix
- take advantage of spatial structure

ROC curves

- ullet hit-based approach more stable at higher p_T than the CSVs
- MANtag yields a higher efficiency than CSV at low mistag rates

Efficiency vs pT

 At a flat 10% mistag rate working point, the MANtag efficiency exceeds the CSVs at $p_T>1200~{\rm GeV}$

Relative gain

- relative gain = (additionally tagged jets) / (already tagged by CSV)
- at a flat 10% mistag rate, a significant relative gain could be reproduced
- ullet gain with respect to deepCSV more strongly dependent on the p_T threshold

Stability with respect to pileup

- again considering the same flat 10% mistag rate working point
- efficiency and mistag rate of MANtag are relatively flat at an increasing number of primary vertices

Conclusion and outlook

Counting hits in a small angular region around the jet axis in each pixel detection layer...

- ...results in remarkably simple variables.
- ...yields a significant potential for improving b tagging at extreme p_T .
- ...has a stable absolute performance with respect to pileup.

Next steps:

- short-term: add the information to CMSSW for further studies with the Ultra-Legacy re-reco
- long-term: provide pixel hit multiplicity information to DeepJet if improvements are confirmed

read more at: github.com/msommerh/bTag_HitCount or see: github.com/cms-sw/cmssw/issues/27286