Taller de Tesis I – Entrega II Año 2025

Data Mining - UBA

Alumno: Santiago Tedoldi

Tabla de Contenido

Data Mining - UBA	1
Contexto y Objetivo	1
Descripción del Conjunto de Datos	1
Contenido y Origen:	1
Características:	2
Preguntas y Retos del Proyecto	2
Técnicas y Enfoques Propuestos	2
Metodología	2
EDA	2
Ingeniería de variables	2
Técnicas no-supervisadas	3
Definición del target/ variable objetivo	3
Técnicas supervisadas y transferencia del aprendizaje	3
Perfilado y análisis de los datos	4
Quick EDA	4
Nomenclatura HS06 en inglés	5
Nomenclatura HS06 en inglés EDA detallado	
	6
EDA detallado	6 8
EDA detallado Embeddings con DistilBERT y PCA	6 8 9
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno	6 8 9
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno Entrenamiento del clasificador	6 8 12
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno Entrenamiento del clasificador Arquitectura encoder-classifier	
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno Entrenamiento del clasificador Arquitectura encoder-classifier Entrenamiento	
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno Entrenamiento del clasificador Arquitectura encoder-classifier Entrenamiento Rendimiento	
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno Entrenamiento del clasificador Arquitectura encoder-classifier Entrenamiento Rendimiento Visualización del DistiltBERT ajustado.	
EDA detallado Embeddings con DistilBERT y PCA Medición de similitud del coseno Entrenamiento del clasificador Arquitectura encoder-classifier Entrenamiento Rendimiento Visualización del DistiltBERT ajustado Análisis del error	

Contexto y Objetivo

El tema elegido para cumplir con las consignas del Taller de Tesis I se relaciona con la clasificación arancelaria/tarifario de mercaderías, partiendo de descripciones comerciales y según la nomenclatura del Sistema Armonizado (SA) internacional. La finalidad es entrenar y evaluar un modelo de clasificación de texto, considerando los desafíos propios de un dataset presuntamente acotado -para la cantidad de clases objetivo- y desbalanceado.

Descripción del Conjunto de Datos

Contenido y Origen:

El dataset está formado por tuplas con información de mercaderías sometidas al

comercio internacional (descripción_comercial, código_tarifario) en idioma inglés, en un total de 500 mil ítems.

El origen de estos datos no es preciso. Fue material de un curso suministrado en una capacitación internacional en Corea del Sur, en el marco del Programa BACUDA de la Organización Mundial de Aduanas.

Características:

- Muestra Variada: El conjunto de datos presenta una diversidad considerable en cuanto a tipos de productos y mercaderías, clasificadas en ~1200 códigos a 4 dígitos y ~5600 códigos a 6 dígitos.
- Desbalanceo: Predominan las descripciones de productos relacionados con máquinas y material eléctrico/electrónico, como también de vehículos automotores.

Preguntas y Retos del Proyecto

Con estos datos y la problemática planteada, surgen preguntas que podrían abordarse en el siguiente orden:

¿Es posible entrenar un modelo de clasificación arancelaria basado en descripciones comerciales, incluso con una muestra acotada?

Técnicas y Enfoques Propuestos

Para enfrentar los desafíos planteados, las potenciales técnicas identificadas son:

- Encoders de texto y Clasificación: Se propone el uso de redes neuronales usando modelos "tradicionales" -Doc2Vec, FastText- y con arquitectura transformer pre-entrenados -BERT o similar-.
- PCA y Clústering: Cómo método analítico y exploratorio, para reducir la dimensionalidad del conjunto de datos, facilitar el manejo de las características extraídas e identificar patrones de los textos.

Metodología

EDA

En la problemática a trabajar sobre clasificación arancelaria/tarifaria de mercaderías del comercio internacional, el dataset disponible es particularmente sencillo, partiendo de solo dos variables:

- HS06_code: código tarifario armonizado a 6 dígitos (Categórica).
- goods desc: texto libre para describir comercialmente la mercadería (Texto).

Por esta razón, para la etapa exploratoria, además de evaluar temas de calidad (nulos, duplicados, outliers) y distribución/frecuencias, corresponde trabajar con técnicas de **ingeniería de variables**.

En términos generales, el análisis exploratorio busca entender cómo se compone el dataset, que mercaderías abarca, que información contiene y que limitaciones tenemos que considerar.

Ingeniería de variables

Para mejorar el análisis del dataset, y contemplar toda la información "escondida" en el mismo, se procede a:

Desagregar la variable HS06 en otros códigos subyacentes. Buscar fuentes externas que complementan a los datos disponibles. Aplicar técnicas de encoding de texto, buscando representaciones latentes. Reducir dimensiones (PCA, UMAP y/o t-SNE).

Técnicas no-supervisadas

Las técnicas que no requieren el uso del resultado o variable target pueden presentar una solución simplificada a problemáticas de clasificación. La variedad de mercaderías, con aprox. 1200 códigos posibles, y la baja calidad que suelen acarrear campos de texto libre, parece que la solución requerirá entrenamiento y ajuste de los encoders mediante el uso de técnicas supervisadas.

Luego del deep EDA, descripto más adelante, se descartó el uso de estás técnicas, previendo un desempeño pobre, incluso a la hora de agrupar descripciones en códigos HS02. Por este motivo, no se aplicaron técnicas de clustering sobre los embeddings de los textos trabajados.

Definición del target/ variable objetivo

La desagregación del código tarifario HS06 tiene fundamento de negocio y permite considerar cambios en la variable objetivo, de cara a técnicas supervisadas. El sistema armonizado de clasificación de mercaderías, a nivel internacional, se compone de:

- Secciones: No se reflejan en el código tarifario, pero tienen un papel normativo relevante. Ejemplo: Sección XVI refiere a las máquinas, aparatos y equipamiento eléctrico/electrónico y comprende los capítulos 84 y 85.
- Capítulos (HS02): Primeros dos dígitos del código y agrupa mercaderías según su tipo o naturaleza. Ejemplo: Capítulo 84 contiene los reactores nucleares, calderas, maquinaria y aparatos mecánicos.
- Partidas (HS04): Primeros cuatro dígitos del código y define a mercaderías relevantes para el comercio internacional. Ejemplo: Partida 8471 define a las máquinas automáticas para tratamiento o procesamiento de datos (computadoras).
- Subpartidas (HS06): Códigos tarifarios a 6 dígitos, con una "apertura" de la partida, permitiendo definir mercaderías más específicas. Ejemplo: 847130 define a Máquinas automáticas para tratamiento o procesamiento de datos, portátiles, de peso inferior o igual a 10 kg, que estén constituidas, al menos, por una unidad central de proceso, un teclado y un visualizador.

Lo descripto, permitiría ejercitar la clasificación a 2, 4 o 6 dígitos. A menor cantidad de dígitos, menos cantidad de clases, lo que también simplifica la tarea.

Sin embargo, en el comercio internacional, una clasificación debe tener tantos dígitos como sea necesario. En el MERCOSUR, las mercaderías se comercializan con 8 dígitos (se agregan códigos regionales) y en Argentina la nomenclatura moderna usa 11 dígitos tarifarios, que definen aranceles y tributos, certificaciones, prohibiciones y cupos, entre otras cuestiones de relevancia para el comercio legítimo.

Técnicas supervisadas y transferencia del aprendizaje

Para abordar la pregunta, sobre si es posible entrenar un modelo para clasificación arancelaria, cubriendo las técnicas de explotación de datos y aprendizaje automático disponibles, debemos cubrir técnicas de aprendizaje supervisado.

Algunas técnicas ya "tradicionales" de explotación de texto (Doc2Vec o FastText) utilizan redes neuronales para generar representaciones latentes y luego clasificarlas usando medidas de similitud. Estos modelos deben entrenarse desde cero, con el corpus disponible.

Además, es posible partir de modelos con arquitectura Transformer (BERT, distiltBERT, o similar), pre-entrenados con corpus de texto extensos. Esto puede usarse como

encoder (codificador o cuerpo) del modelo, mientras que se desarrolla y entrena un classifier (clasificador o cabeza) que se encarga de la clasificación final.

La arquitectura **encoder-classifier** se utiliza mediante:

- Transfer learning (transferencia del aprendizaje), ajustando durante el entrenamiento solo al classifier.
- Fine-tuning (ajuste fino) total o parcial, ajustando el conjunto cabeza y encoder (en todos sus capas -total- o en algunas de sus capas de salidad -parcial-.

Perfilado y análisis de los datos

Quick EDA

En una revisión rápida del dataset crudo, se analizan nulos, duplicados y frecuencias respecto a códigos de capítulo (HS02), partida (HS04) y subpartida (HS06):

Valores nulos por columna:

Columna	Valores nulos
HS06	0
GOODS_DESCRIPT ION	0
HS04	0
HS02	0

Frecuencias por HS02, TOP10:

HS02	Cantidad	Frecuencia relativa	Frecuencia acumulada
84	54.901	20,5%	20,5%
85	33.571	12,54%	33,04%
87	28.476	10,63%	43,67%
73	16.173	6,04%	49,71%
39	12.218	4,56%	54,28%
90	11.611	4,34%	58,61%
82	7.972	2,98%	61,59%
94	7.921	2,96%	64,55%
40	7.526	2,81%	67,36%
83	4.285	1,60%	68,96%

Frecuencias por HS02, BOTTOM10:

HS02	Cantidad	Frecuencia relativa	Frecuencia acumulada
41	22	0,01%	99,96%
81	19	0,01%	99,97%
45	19	0,01%	99,97%
05	15	0,01%	99,98%
80	15	0,01%	99,98%
50	11	0,00%	99,99%
14	11	0,00%	99,99%
78	10	0,00%	100,0%
51	6	0,00%	100,0%
43	5	0,00%	100,0%

Frecuencias por HS04, TOP10:

HS04	Cantidad	Frecuencia	Frecuencia
11001	Caritiada	i i coaciiola	i i coaciiola

		relativa	acumulada
8708	8.524	3,18%	3,18%
8703	7.341	2,74%	5,92%
7318	5.700	2,13%	8,05%
8536	5.487	2,05%	10,10%
8482	4.895	1,83%	11,93%
8421	4.593	1,72%	13,65%
8431	3.910	1,46%	15,11%
8483	3.819	1,43%	16,53%
8481	3.562	1,33%	17,86%
8714	3.485	1,30%	19,16%

Frecuencias por HS06, TOP10:

HS06	Cantidad	Frecuencia relativa	Frecuencia acumulada
870323	3.869	1,44%	1,44%
848280	2.924	1,09%	2,54%
871120	2.779	1,04%	3,57%
731815	2.632	0,98%	4,56%
870322	2.247	0,84%	5,40%
870899	2.074	0,77%	6,17%
950300	1.988	0,74%	6,91%
940540	1.874	0,70%	7,61%
848180	1.857	0,69%	8,31%
901890	1.836	0,69%	8,99%

Respecto a las frecuencias por HS04 y HS06, BOTTOM10, los mínimos están en 1 única muestra por código.

Nomenclatura HS06 en inglés

Como desarrollo del dataset original, se trabajó con la nomenclatura de los códigos de HS06 que consiste en descripciones genéricas para cada código y que, además puede separarse en capítulos, partidas y subpartidas.

Primeros 5 códigos HS06:

HS06	full_eng	HS04	HS02
010120	Live horses, asses, mules and hinnies. && - Horses:	0101	01
010121	Live horses, asses, mules and hinnies. && - Horses : && Pure-bred breeding animals	0101	01
010129	Live horses, asses, mules and hinnies. && - Horses : && Other	0101	01
010130	Live horses, asses, mules and hinnies. && - Asses	0101	01
010190	Live horses, asses, mules and hinnies. && - Other	0101	01

Últimos 5 códigos HS06:

HS06	full_eng	HS04	HS02
961590	Combs, hair-slides and the like; hairpins, curling pins, curling grips, hair-curlers and the like, other than those of heading 85.16, and parts thereof. && - Other	9615	96
961610	Scent sprays and similar toilet sprays, and mounts and heads therefor; powder-puffs and pads for the application of cosmetics or toilet preparations. && - Scent sprays and	9616	96

	similar toilet sprays, and mounts and heads therefor		
961620	Scent sprays and similar toilet sprays, and mounts and heads therefor; powder-puffs and pads for the application of cosmetics or toilet preparations. && - Powder-puffs and pads for the application of cosmetics or toilet preparations	9616	96
970110	Paintings, drawings and pastels, executed entirely by hand, other than drawings of heading 49.06 and other than hand- painted or hand-decorated manufactured articles; collages and similar decorative plaques. && - Paintings, drawings and pastels	9701	97
970190	Paintings, drawings and pastels, executed entirely by hand, other than drawings of heading 49.06 and other than hand- painted or hand-decorated manufactured articles; collages and similar decorative plaques. && - Other	9701	97

IMPORTANTE: Encontramos que 4.5 % de los datos no encuentran su descripción de nomenclatura, lo que puede deberse a que se están utilizando una nomenclatura diferente a la usada en el registro de los datos.

EDA detallado

Para analizar la composición de las descripciones, desde parámetros estadísticos, se procedió a generar las siguientes variables:

['GOODS_DESCRIPTION_len_words',

'GOODS_DESCRIPTION_len_chars',

'subtokenization_indicator']

Para cada descripción, se evalúan el largo en cantidad de palabras y de caracteres y un indicador de tokenización, que mide como se tokeniza la descripción en relación a la cantidad de palabras.

El tokenizer utilizado es un algoritmo de Hugging Face Transformers, llamado "distilbert-base-uncased". Este algoritmo corresponde al modelo pre-entrenado que se utiliza luego para procesar los textos en estudio:

https://huggingface.co/distilbert/distilbert-base-uncased

Luego, se procesaron las variables en agregaciones estadísticas, para agrupaciones en HS06, HS04 y HS02, según el siguiente diccionario:

{'HS06': ['count'],

'GOODS_DESCRIPTION_len_words': ['sum', 'min', 'mean', 'median', 'max', 'std'],

'GOODS DESCRIPTION len chars': ['sum', 'min', 'mean', 'median', 'max', 'std'],

'subtokenization_indicator': ['sum', 'min', 'mean', 'median', 'max', 'std']}

A continuación, se muestran algunas distribuciones, con datos básicos de las variables:

HS06 count

Real number (ℝ)

High	correlation

Distinct	430	Minimum	1
Distinct (%)	10.3%	Maximum	3869
Missing	0	Zeros	0
Missing (%)	0.0%	Zeros (%)	0.0%
Infinite	0	Negative	0
Infinite (%)	0.0%	Negative (%)	0.0%
Mean	63.909308	Memory size	65.5 KiB

El desbalance en las clases/códigos se cuantifica razonablemente en variables como: HS06_count, GOODS_DESCRIPTION_len_words_sum y GOODS_DESCRIPTION_len_chars_sum, con valores medios lejos de la mediana y distribuciones de colas largas.

GOODS_DESCRIPTION_len_words_mean

Real number (\mathbb{R})

A su vez, surgen distribuciones más acampanadas para variables como el largo promedio (tanto para palabras como para caracteres), cuando se agrupa en los distintos códigos HS06, HS04 y HS02.

GOODS_DESCRIPTION_len_words_std

Real number (R)

High correlation Missing Zeros			
Distinct	2713	Minimum	0
Distinct (%)	74.3%	Maximum	10.843585
Missing	540	Zeros	100
Missing (%)	12.9%	Zeros (%)	2.4%
Infinite	0	Negative	0
Infinite (%)	0.0%	Negative (%)	0.0%
Mean	2.2447975	Memory size	65.5 KiB

Finalmente, la desviación estándar del largo de las descripciones tiene una distribución parecida a un Xi cuadrado, tanto para el largo en palabras como en caracteres. Se destaca que hay códigos con una única muestra, resultado en NULLs al calcular la desviación.

En términos de correlaciones, no hay grandes sorpresas, ya que se correlacionan variables que agregan cantidades como: HS06_count, GOODS_DESCRIPTION_len_words_sum, GOODS_DESCRIPTION_len_chars_sum, GOODS_DESCRIPTION_len_chars_max.

Embeddings con DistilBERT y PCA

Para evaluar las descripciones se procede a utilizar un modelo pre-entrenado, disponible en Hugging Face, llamado "distilbert-base-uncased": https://huggingface.co/distilbert/distilbert-base-uncased

Los tokens generados se procesan y se obtienen embeddings de 764 dimensiones, uno para cada caso. A su vez, a modo de referencia, se procesan los textos de la nomenclatura de los códigos HS06.

Para la visualización de estos embeddings se utiliza PCA, en 2 y 3 dimensiones. A continuación, se observan los resultados, según HS06 descripciones de mercaderías - muestra de un 5 % (13,389 casos):

Goods Description sampled - 3D PCA of DistilBERT Embeddings

En amarillo, se observa un marcado cluster que consiste en las descripciones del capítulo HS02 87 (vehículos y material automotor); y

HS06 full eng (nomenclatura):

En este caso, en rosa y verde claro se observan un cluster que corresponde a la nomenclatura de los capítulos HS02 28 y 29 (químicos orgánicos e inorgánicos).

Medición de similitud del coseno

Cómo último ejercicio exploratorio, se procede a medir la similitud, para cada caso, entre GOODS_DESCRIPTION y full_eng (descripción de nomenclatura), para evaluar cuando distan los embeddings de estos textos.

En una agregación por HS06 se observan valores medios y medianos altos y coincidentes, del orden de 0.84:

En términos de similitud mínima por código HS06, la similitud también es relativamente alta, con una media de 0.79.

En términos de similitud máxima por código HS06, el valor medio ronda el 0.89, aunque se muestran valores muy próximos a la unidad.

$cosine_sim_gd_vs_hs_text_max$

Real number (\mathbb{R})

High correlation Missing	
Distinct	3951
Distinct (%)	99.8%
Missing	230
Missing (%)	5.5%
Infinite	0
Infinite (%)	0.0%
Mean	0.88693692

Minimum	0.66693276
Maximum	0.98533964
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	65.5 KiB

Lo antes descripto, motiva a observar los casos de similitud media, mínima y máxima.

Casos de similitud media o regular:

HS06	Descripción de la mercadería	Descripción completa del HS06	Similitud de coseno
853950	ASSY LED Base Strobe Upgrade	Electric filament or discharge lamps, including sealed beam lamp units and ultra-violet or infra-red lamps – Light-emitting diode (LED) lamps	0.827174
220870	VODKA FRAISE JELZIN STRAWBERRY	Undenatured ethyl alcohol of an alcoholic strength by volume of less than 80 % vol; spirits, liqueurs and other spirituous beverages – Liqueurs and cordials	0.831804
620590	SHORT SLEEVE REPAIR SHIRT	Men's or boys' shirts – Of other textile materials	0.830535
732620	HANGER ROD	Other articles of iron or steel – Articles of iron or steel wire	0.830890
843143	8-3/8"SH Extension Overshot C-17208	Parts suitable for use solely or principally with the machinery of headings 84.25 to 84.30 – Parts for boring or sinking machinery	0.828724
870323	SUZUKI ESCUDO 2006	Motor cars and other motor vehicles principally designed for the transport of persons – Of a cylinder capacity exceeding 1 500 cm³ but not exceeding 3 000 cm³	0.817948
841899	Spare Parts for 10 TR Air Cooled Water Chiller	Refrigerators, freezers and other refrigerating or freezing equipment – Parts	0.822742
871120	USED CHANGZHOU KWANGYANG MOTORBYKE	Motorcycles (including mopeds) and cycles fitted with an auxiliary motor – With reciprocating internal combustion piston engine of a cylinder capacity exceeding 50 cm³ but not exceeding 250 cm³	0.826228
940540	SURFACE MOUNTED LIGHTS	Lamps and lighting fittings including searchlights and spotlights and parts thereof – Other electric lamps and lighting fittings	0.817389
842131	FILTER ASSY, AIR CLEANER	Centrifuges, including centrifugal dryers; filtering or purifying machinery and apparatus for liquids or gases – Intake air filters for internal combustion engines	0.831361

BOTTOM5 casos de similitud mínima:

HS06	Descripción de la mercadería	Descripción completa del HS06	Similitud de coseno
741820	SHOWER HEAD SQUARE BLACK 260X 190mm	Table, kitchen or other household articles and parts thereof, of copper; pot scourers and scouring or polishing pads, gloves and the like, of copper; sanitary ware and parts thereof – Sanitary ware and parts thereof	0.553591
741820	74182000000	Table, kitchen or other household articles and parts thereof, of copper; pot scourers and scouring or polishing pads, gloves and the like, of copper; sanitary ware and parts thereof – Sanitary ware and parts thereof	0.552399
741820	FREESTANDING BATH TOWER	Table, kitchen or other household articles and parts thereof, of copper; pot scourers and scouring or polishing pads, gloves and the like, of copper; sanitary ware and parts thereof – Sanitary ware and parts thereof	0.552331
741820	TRAP ASSEMBLY	Table, kitchen or other household articles and parts thereof, of copper; pot scourers and scouring or polishing pads, gloves and the like, of copper; sanitary ware and parts thereof – Sanitary ware and parts thereof	0.548731
741820	HG BATH MIXER WALL MOUNTED MYSPORT CHROME	Table, kitchen or other household articles and parts thereof, of copper; pot scourers and scouring or polishing pads, gloves and the like, of copper; sanitary ware and parts thereof – Sanitary ware and parts thereof	0.545765

TOP5 Casos de similitud máxima:

HS06	Descripción de la mercadería	Descripción completa del HS06	Similitud de coseno
640299	Other:Other footwear with outer soles and uppers of rubber or pla:Other footwear	Other footwear with outer soles and uppers of rubber or plastics. – Other footwear – Other	0.98534
520939	Other fabrics:Woven fabrics of cotton, containing 85 % or more by weight of:Dyed	Woven fabrics of cotton, containing 85 % or more by weight of cotton, weighing more than 200 g/m² – Dyed – Other fabrics	0.984521
700729	Other:Safety glass, consisting of toughened (tempered) or:Laminated safety glass	Safety glass, consisting of toughened (tempered) or laminated glass – Laminated safety glass – Other	0.984296
848220	Tapered roller bearings, including cone and tapered roller assemblies	Ball or roller bearings – Tapered roller bearings, including cone and tapered roller assemblies	0.984269
740729	Other:Copper bars, rods and profiles.:Of copper alloys	Copper bars, rods and profiles – Of copper alloys – Other	0.984245

Los casos de similitud mínima muestran indicios de una mala calidad de la descripción, incluso con un caso donde la descripción es el mismo código. Por otro lado, los casos de similitud máxima muestran que la descripción comercial, en realidad, consiste en una variante descripción de nomenclatura.

En los casos de similitud dentro del entorno de la media, las descripciones parecen lógicas, relacionadas con la naturaleza de la mercadería, pero un tanto escuetas.

Entrenamiento del clasificador

Se procedió al diseño y el entrenamiento de un modelo para la clasificación de texto, usando una arquitectura **encoder-classifier**. Se exploran las opciones de transfer learning (fixed encoder), fine-tuning parcial y total, observando cómo varía su entrenamiento y cuestión de tiempo y resultados.

Arquitectura encoder-classifier

Usando PyTorch, se construye el modelo definiendo una clase en Python que permite ajustar la cantidad de capas del modelo Encoder son ajustadas durante el entrenamiento. Además, se adapta a distintas cantidad de clases, para poder reutilizarse en modelos HS06. A continuación, se describen las partes de la clase HSClassifier:

Encoder — DistilBertModel

Embeddings

- Word embeddings (30522 × 768): convierte cada token (con un <u>vocabulario de</u> 30522 tokens en inglés) en un vector de 768 dimensiones.
- Positional embeddings (512 × 768): añade información de posición para conservar el orden de la secuencia, manejando una cantidad máxima de 512 tokens.
- LayerNorm + Dropout. normaliza la suma embeddings + posicional y aplica dropout (p=0.1) para regularizar.

Transformer (6 capas)

Cada capa incluye:

- Self-Attention con proyecciones lineales (q_lin, k_lin, v_lin) y dropout.
- Add & LaverNorm tras la atención.
- Feed-Forward (lin1: 768→3072, GELU, lin2: 3072→768) con dropout.
- Add & LayerNorm final.

Estas 6 capas refinan las representaciones contextualizadas del token [CLS].

Clasificación

- Linear (768→1024): proyecta la representación del token [CLS] a un espacio intermedio más amplio.
- ReLU + BatchNorm1d: introduce no linealidad y estabiliza la distribución de activaciones.
- Dropout (p=0.3): regulariza para evitar sobreajuste.
- Linear (1024→1133): mapea al espacio de salida con una dimensión por cada clase posible.

Flujo de datos en inferencia

- La secuencia entra al embeddings y pasa por las 6 capas de Transformer.
- Se toma la salida del token [CLS] (índice 0) como resumen de toda la secuencia.

• Ese vector va al cabezal secuencial, generando logits sobre las 1133 clases.

Entrenamiento

El entrenamiento se llevó a cabo en un Laptop GPU NVIDIA GeForce RTX 3060, pre-tokenizando las descripciones para ahorrar cómputo en el CPU. En la siguiente tabla, se definen los parámetro del entrenamiento para cada ejercicio:

Parámetro	Transfer learning	Fine-tune 2 capas	Fine-tune total			
target	HS04					
train/validation [%]	90/10					
max_length [tokens]	300					
batch_size [samples]	32					
criterion	CrossEntropyLoss					
optimizer		Adam				
Ir		2e-5				
epochs	10 6 3					
time/epoch [min]	~25	~38	~65			

Transfer learning [250 min]

Fine-tune 2 capas [230 min]

Fine-tune total [196 min]

Rendimiento

Cada modelo fue evaluado con el set de validación, usado anteriormente para monitorear el overfitting, ahora como ser de prueba final. Los resultados de evaluar sobre la muestra total, se muestran a continuación:

TopN	Transfer learning [%]	Fine-tune 2 capas [%]	Fine-tune total [%]
1	50.5	63.3	63.9
2	60.7	72.9	73.4
3	66.1	77.2	77.9
4	69.4	79.9	80.6
5	72.2	81.7	82.3

TopN indica si la clasificación correcta está dentro de los N primeros candidatos, arrojados por el HSClassifier. Es decir, en Top1 el modelo acierta en el primer código recomendado.

En estas condiciones, el modelo Fine-tune total resulta el mejor, tanto en términos de rendimiento, como en términos de tiempo de entrenamiento (comparando con el Fine-tune parcial).

Para tener una perspectiva estadística del performance de cada modelo, se debería repetir la evaluación sampleando con reposición la muestra de prueba, observando la estabilidad del rendimiento.

Visualización del DistiltBERT ajustado

En carácter comparativo entre el modelo DistiltBERT original y el modelo ajustado a este problema, se procede a recrear la visualización de los embeddings con PCA mostrada en el EDA detallado.

A continuación, se observan los resultados, según HS06 descripciones de mercaderías - muestra de un 5 % (13,389 casos):

Goods Description - 3D PCA of DistilBERT Finetuned Embeddings

HS02 Chanter

En comparación con la visualización de la proyección del modelo original (pre-entrenado) esta muestra la formación de más clusters, además del rojo (HS02 87) que fue el único distinguible anteriormente.

HS06 full eng (nomenclatura):

HS06 full eng - 3D PCA of DistilBERT Finetuned Embeddings

De nuevo, para el nomenclador HS06 en inglés, el encoder ajustado logra una representación que favorece a la identificación de clusters. Anteriormente solo se identificaba el HS02 28 y 29, y en esta imagen se suma el HS02 03, 02 y otras más.

Análisis del error

Observando las respuestas del modelo óptimo, se nota que las pseudo-probabilidades que asigna a los códigos candidatos dejan prever cuán "seguro" está el modelo sobre su recomendación.

Además, dado que el modelo no alcanza un rendimiento cercano al 100 % de aciertos, ni siquiera en un Top5, se deberían considerar alternativas de cara a una puesta en producción.

Por ejemplo, en un HEAD(5) ordenado por Proba1 y mostrando solo hasta proba del Top3 se observa que la proba del Top1 es aproximadamente 1, mientras que para los otros candidatos esta proba es muy baja:

Description	TRUE	Top1	Proba1	Top2	Proba2	Top3	Proba3
216648 NEW CKD							
MOTORCYCLE HUONIAO:							
MOD: GN125; CHS:L	8711	8711	1.000	8714	0.000	8703	0.000
137054 NEW CKD							
MOTORCYCLE HUONIAO:							
CHS:LJEPCJL03MA021	8711	8711	1.000	8703	0.000	8714	0.000

18312 315/80R22.5 M729 154M156L TL BRIDGESTONE TYRE	4011	4011	1.000	4012	0.000	4013	0.000
194131 NEW CKD MOTORCYCLE HUONIAO: CHS:LJEPCJL09MA022	8711	8711	1.000	8703	0.000	8714	0.000
64969 NEW CKD MOTORCYCLE HUONIAO: CHS:LJEPCJL08MA021	8711	8711	1.000	8703	0.000	8714	0.000

En estos casos, con proba del Top1 alta se observa una alta tasa de aciertos. Sin embargo, si miramos los mismos casos pero con TAIL(5):

Description	TRUE	Top1	Proba1	Top2	Proba2	Top3	Proba3
116730 VOTA	8448	8517	0.025	3923	0.019	3926	0.019
260684 PALMOLIVE	3401	1902	0.024	2103	0.024	3924	0.019
147342 BIDET	3922	7323	0.024	3924	0.022	8517	0.021
228605 FREEHWEEL	8714	8714	0.022	3402	0.022	3808	0.020
58769 MOTIFSIRON	5810	8536	0.021	3808	0.019	8205	0.019

Se observan muchos desaciertos acompañados de bajas probas.

Esto motiva la iniciativa de entrenar un meta-modelo que tome el output del modelo HSClassifier, junto con otras características de la descripción, para predecir la calidad de la predicción, descartando casos que no puedan resolverse de forma automática.

Discusión

En esta sección se retoman los tópicos pendientes o meritorios de comentarios, a los fines de resumir los puntos conflictivos o por abordar en futuros trabajos.

. . .

Conclusiones

El entrenamiento de un modelo de NLP para la clasificación de mercaderías fue llevado a cabo en el marco de este trabajo...

. . .

Bibliografía

Explainable Product Classification for Customs, EUNJI LEE, 2023

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, VICTOR SANH, 2020