1 Auswertung

1.1 Bestimmen der spezifischen Wärmekapazität des Kalorimeters

Zu Beginn des Versuches wurde die spezifische Wärmekapazität des Kalorimeters $c_g m_g$ bestimmt, da diese Größe für die Berechnung der spezifischen Wärmekapazität der Stoffe c_k notwendig ist. Mittels Formel (??) wurde $c_g m_c$ ermittelt. Mit den folgenden Werten wurde $c_g m_g$ berechnet.

```
\begin{split} T_x &= 294,28\,\mathrm{K} \\ T_y &= 354,59\,\mathrm{K} \\ T_m &= 322,38\,\mathrm{K} \\ m_x &= 278,97\,\mathrm{g} \\ m_y &= 298,98\,\mathrm{g} \end{split}
```

Für die spezifische Wärmekapazität von Wasser wurde der Wert $c_w=4.18\,{\rm J/(g\,K)}$ verwendet. Es ergibt sich ein Wert von $c_qm_q=267.09\,{\rm J/K}.$

2 Bestimmen der spezifischen Wärmekapazität von verschiedenen Stoffen

Es wurden in dem Versuch die spezifische Wärmekapazität der Stoffe Graphit, Blei und Kupfer bestimmt, wobei für Blei die Probe Blei 2 verwendet wurde. Für Graphit und Blei wurden jeweils drei Messungen und für Kupfer lediglich eine Messung durchgeführt. Die spezifische Wärmekapazität c_k eines Körpers wird über Formel (??) ermittelt. In der beiliegenden Tabelle sind die gemessenen Größen des jeweiligen Stoffes eingetragen.

Tabelle 1: Messdaten der verwendeten Stoffe

	T_w in K	T_k in K	T_m in K	m_w in g
Graphit				
Messung 1	293,77	$377,\!27$	296,09	772,50
Messung 2	297,38	374,44	299,70	772,50
Messung 3	$299,\!95$	$375,\!45$	$302,\!53$	$772,\!50$
Blei				
Messung 1	$295,\!31$	371,60	$296,\!86$	$765,\!89$
Messung 2	296,86	$369,\!28$	298,41	$765,\!89$
Messung 3	$298,\!41$	$370,\!57$	$299,\!95$	$765,\!89$
Kupfer				
Messung 1	293,77	377,79	294,80	$769,\!56$

Für die untersuchten Proben ergibt sich somit:

$$\begin{split} c_{Graphit} &= (0.53 \pm 0.03) \frac{\mathrm{J}}{\mathrm{g\,K}} \\ c_{Blei} &= (0.190 \pm 0.004) \frac{\mathrm{J}}{\mathrm{g\,K}} \\ c_{Kupfer} &= 0.18 \frac{\mathrm{J}}{\mathrm{g\,K}} \end{split}$$

Die Fehler für Graphit und Blei wurden über die Formel (1) bestimmt.

$$\Delta \bar{x} = \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (1)

Dabei ist \bar{x} der Mittelwert der gemessenen Größe.

2.1 Bestimmen der Atomwärme

Damit die Atomwärme C_p eines Stoffes bestimmt werden kann, muss die spezifische Wärmekapazität dieses mit seiner Molarenmasse multipliziert werden.

$$C_p = c_k \cdot M \tag{2}$$

Für den jewiligen Stoff ergibt sich somit:

$$\begin{split} C_{pG} &= (6,38 \pm 0,\!40) \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \\ C_{pB} &= (39,\!99 \pm 0,\!73) \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \\ C_{pK} &= 11,\!50 \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \end{split}$$