

Mid Term (Odd) Semester Examination October 2024

Roll no. 22 9403 f

Name of the Course and semester: B.Tech CSE 5th semester.

Name of the Paper: Computer Based Numerical & Statistical Techniques.

Paper Code: TMA-502

Time: 1.5 hour

Maximum Marks: 50

Note:

- (i) Answer all the questions by choosing any one of the sub questions
- (ii) Each question carries 10 marks.
- (iii) Please specify COs against each question.

Q1. (10 Marks)

- a. (i). If $\Delta x = 0.005$, $\Delta y = 0.001$ be the absolute errors in x = 2.11 and y = 4.15, find the relative and percentage error in the computation of x + y.
 - (ii) Let $x = 0.458529 * 10^{-2}$. Find the absolute, relative & percentage error if x is rounded-off to 3 decimal places. (CO1)

OR

b. Obtain the root of the equation $x^3 + x^2 + x + 7 = 0$ correct to 3 decimal places by bisection method. (CO1)

Q2. (10 Marks)

a. Find the real root of the equation $2x = \cos x + 3$ using Newton Raphson method correct to 3 decimal places. (CO1)

OR

b. Find the real root of the equation $2x - \log_e x = 6$ using Regula falsi method correct to 3 decimal places. (CO1)

Q3. (10 Marks)

a. Solve the following system of linear equations by Gauss Jordan Method: x + y + 2z = 4; 3x + y - 3z = -4; 2x - 3y - 5z = -5. (CO1)

OR

b. Solve the following system of linear equations by Gauss Seidal Method: 10x + y + z = 9; 2x + 10y + z = 13; 2x + 2y + 10z = 14. (CO1)

Q4. (10 Marks)

a. In an examination, the number of candidates who secured marks between certain limits were as follows:

	,	difficulties ville be	carea marks octiv	con cortain mints	were as follows.
Marks:	0-19	20-39	40-59	60-79	80-99
No. of Students:	41	62	65	50	17

Estimate the number of candidates getting marks less than 70. (CO2)

OR

b. Compute the value of Y when X = 0.6538 by using Gauss Forward formula, given that

	, , , , , , , , , , , , , , , , , , , ,						
X:	0.62	0.63	0.64	0.65	0.66	0.67	0.68
Y:	0.619411	0.627046	0.634857	0.642029	0.649376	0.656628	0.663782
(000)						·	

(CO2)

Mid Term (Odd) Semester Examination October 2024

Q5. (10 Marks)

a. Use Newton's Divided Difference formula to find the value of F(5.60275) from the following table:

| X: | 5.600 | 5.602 | 5.605 | 5.607 | 5.608 |
| F(X): | 0.775566 | 0.776827 | 0.778712 | 0.779966 | 0.780591

(CO2)

OR

b. Use Lagranges formula of interpolation to find the value of $Y(5.5)$, given tha	b.	Use Lagranges	formula of interr	polation to find	the value of Y	(5.5), given that:
---	----	---------------	-------------------	------------------	----------------	--------------------

X:	0	3	4		6
Y:	1	19	49	. 4.	181
(CO2)	1				