GLocalX and the Local to Global explanation paradigm

Mattia Setzu mattia.setzu@phd.unipi.it

Local and Global explanations

Local explanations

- explain one prediction on one record
- locally approximate the decision boundary

E.g. LIME¹, LORE², SHAP³, etc.

[3] A Unified Approach to Interpreting Model Predictions, Lundberg & Lee

Global explanations

- explain all predictions on all records
- globally approximate the decision boundary

E.g. CART⁴, CPAR⁵, SBRL⁶, etc.

[1] "Why Should I Trust You?": Explaining the Predictions of Any Classifier, Ribeiro et al. [4] Classification and Regression Trees, Breiman et al. [2] Factual and Counterfactual Explanations for Black Box Decision Making, Guidotti et al. [5] CPAR: Classification based on Predictive Association Rules, Yin et al. [6] Scalable Bayesian Rule Lists, Yang et al.

Who are our users?

Who are our users?

ML developer

- Has global access
 Desires local and glob
- Desires local and global understanding

End user

- Has none (or local) access
- Desires local understanding !

Auditor

- Has none (or local) access
 - Desires global understanding

Local and Global explanations

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex
- possibly diverse^{7,8}

E.g. LIME, LORE, SHAP, etc.

Global explanations

- require data
- more **cumbersome** to acquire
- loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

A third way: Local to Global⁹

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex
- possibly diverse^{1,2}

E.g. LIME, LORE, SHAP, etc.

Global explanations

- require data
- more cumbersome to acquire
- loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

^[9] Meaningful explanations of black box ai decision systems, Pedreschi et al.

The Local to Global setting in GLocalX

Explain globally by explaining locally!

- explanation-driven (decision rules)
- inferring instead of learning
- model-agnostic

GLocalX¹⁰: iterative and hierarchical inference axis-parallel decision rules as explanations

The Local to Global setting in GLocalX

Explain globally by explaining locally!

GLocalX¹⁰:

- input: local decision rules
- output: global decision rules
- inferring instead of learning
- model-agnostic

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)

def glocalx(local_exp, X, f, a):
 boundary = copy(local_exp)
 q = sort(boundary, X)


```
def glocalx(local_exp, X, f, a):
  boundary = copy(local_exp)
  q = sort(boundary, X)
  while len(q) > 1:
    e1, e2 = pop(q)
    M = merge(e1, e2, batch(X), f)
```


 $\{age > 20, salary > 8k\}$

=> grant

{age > 25, salary < 10k} => deny

{age > 25, salary < 10k} => deny

{age > 20, salary > 8k} => grant

{age > 20, salary > 8k} => grant {age > 25, salary < 10k} => deny

 ${age > 25, salary < 12k} => deny,$ {age in [15, 25], salary in [8k, 10k]} => grant $\{age > 25, salary < 10k\} => deny,$ {age in [20, 25], salary in [8k, 10k]} => grant $\{age > 20, salary > 8k\}$ $\{age > 25, salary < 10k\}$ => deny => grant

 ${age > 25, salary < 12k} => deny,$ {age in [15, 25], salary in [8k, 10k]} => grant $\{age > 25, salary < 10k\} => deny,$ {age in [20, 25], salary in [8k, 10k]} => grant $\{age > 20, salary > 8k\}$ $\{age > 25, salary < 10k\}$

=> deny

=> grant

```
def glocalx(local_exp, X, f, a):
  boundary = copy(local_exp)
  q = sort(boundary, X)
  while len(q) > 1:
   e1, e2 = pop(q)
    M = merge(e1, e2, batch(X), f)
    if fitness(e1, e2, M, f, X):
      replace(boundary,
              (e1, e2), M)
      q = sort(boundary, X)
      break
  return filter(boundary, a)
```

 ${age > 25, salary < 12k} => deny,$ {age in [15, 25], salary in [8k, 10k]} => grant $\{age > 25, salary < 10k\} => deny,$ {age in [20, 25], salary in [8k, 10k]} => grant $\{age > 20, salary > 8k\}$ $\{age > 25, salary < 10k\}$ => deny => grant

```
def glocalx(local_exp, X, f, a):
  boundary = copy(local_exp)
  q = sort(boundary, X)
  while len(q) > 1:
    e1, e2 = pop(q)
    M = merge(e1, e2, batch(X), f)
    if fitness(e1, e2, M, f, X):
          replace(boundary,
                  (e1, e2), M)
          q = sort(boundary, X)
          break
  return filter(boundary, a)
```

What to merge?

sort merge fitness

Distance between explanations

- Linkage for sets of explanations
 - o min
 - o max
 - o full

How to merge?

sort merge fitness

Twofold merge operator

- approximate union (⊕) for concordance, approximate difference
 (๑) for discordance
- each premise is an axis-parallel polyhedron, e.g.
 premise age > 20 is polyhedron P_{age}: [20, +∞)

Join sort merge fitness

From local to global via premise relaxation.

P_{i} : $[a_{p}, b_{p}] + Q_{i}$: $[a_{Q}, b_{Q}]$						
[non-empty]	P_i , $Q_i \neq \emptyset$					
[empty]	$P_i = \emptyset XOR$ $Q_i = \emptyset$					
age ∈ [15, 20	0) ⊕ age ∈ [25, 40	(a) = 15 20	25 40	15 40		

age \in [15, 40)

Cut sort merge fitness

From global to local via premise specification.

P_i : $[a_p, b_p] - Q_i$: $[a_Q, b_Q]$						
[left]	[a _P , a _Q]					
[right]	[b _P , b _Q]					
[in-between]	[a _Q , a _P], [b _P , b _Q]					
[everything]	[a _{<} , a _P], [b _P , b _{>}]					

Cut sort merge fitness

From global to local via premise specification.

Should we merge?

sort merge fitness

Not all merges are created equal!

- some are more global and less accurate
- some are less global and more accurate

BIC(E)

- model likelihood as explanation fidelity
- complexity as avg. #rules and avg. length

404: data not found!

Data may be scarce for auditors and users

- density estimation of training data
- run GLocalX as is

Validation setting

- 3 UCI datasets (~1k to ~50k records), 8 black boxes (DNN, RF, SVM)
- 1 real-world fraud detection dataset (from the Italian Ministry of Economics)
- Natively global models:
 - rule-based models (CPAR)
 - decision tree (pruned/not pruned)

Input size: how many rules do we need?

Acquiring local explanation can be costly, can we get away with using fewer local explanations?

How simple can we make our explanations?

The higher the filter, the less rules we output.

α-percentile	Fidelity	Size	Length
75	83.0 ± 3.6	31.0 ± 19.4	5.36 ± 2.41
90	84.7 ± 5.14	11.5 ± 6.4	5.43 ± 2.46
95	84.5 ± 5.48	6.625 ± 2.9	5.17 ± 2.59
99	84.0 ± 5.0	3.625 ± 2.6	5.97 ± 3.04

GLocalX vs Natively global models

	Fidelity	Size	Length
GLocalX	85.1	8.5	4.28 ± 1.42
GLocalX*	83.5	9.5	4.79 ± 1.67
CPAR	86.6	91.6	3.06 ± 1.66
Decision Tree	87.5	1036.5	6.60 ± 1.86
Pruned Decision Tree	85.5	29.1	2.64 ± 0.73
Union	76.8	2660.2	4.14 ± 1.63

GLocalX

- Local to Global explanation paradigm
- Explaining globally by explaining locally
- Explanation cost: how many explanations do we really need?

GLocalX: future works (?)

- Logical inference
- Knowledge integration
- Local to (sub-)Global
- Local to Global in other domains

How to merge?

sort merge fitness

Twofold merge operator

- approximate union (⊕) for concordance, approximate difference
 (๑) for discordance
- each premise is an axis-parallel polyhedron, e.g.
 premise age > 20 is polyhedron P_{age}: [20, +∞)

Inference (or subsumption?)

May remind you of θ -subsumption in ILP⁵. In a LFE setting:

- [join] generalization as entailment (local entails global)
- [cut] specialization as inverse entailment (global entails local)

Why not apply classic LFE learning?

- lack of variables (what to substitute?);
- lattice already implicit in the polyhedral interpretation;
- practically: very few merges, less accurate models;

Generalization: Join

Piggybacking again on ILP: background knowledge injection and predicate invention

- can generalize premises to domain-specific concepts
- can use more principled similarity measures
- invent symbols for common clauses (premises)

Local to (sub-)global

Locality (globality) is a continuum!

Explain different (possibly related) groups/clusters, e.g.

- o medical AI on white/black or young/old patients⁷
- Al judge on white/black defendants⁸

Local to Global in other domains

A plethora of challenges:

- [text] sparsity, merging tokens/text, few (if any) global families;
- [images] highly complex and entangled latent space.

Backup slides

Local and Global explanations

Local explanations

- require only a fraction of the data
- more easily acquired
- precise but potentially complex
- possibly diverse

E.g. LIME, LORE, SHAP, etc.

Global explanations

- require data
- more **cumbersome** to acquire
- loose but potentially simple

E.g. DT, CART, CPAR, SBRL, etc.

The Local to Global setting in GLocalX

Explain globally by explaining locally!

GLocalX:

- input: local decision rules
- output: global decision rules
- inferring instead of learning
- model-agnostic

