Introduction to Machine Learning

Quick introduction

Contact: mkm0796@gmail.com
or via fb/twitter (same
username,photo from above)

Main fields of work: Computer Vision/Medical imaging.

Is this a dog?

Is this a cat?

What about the computer?

Machine learning is the science of programming computers so they can learn from data how to perform some specified task - without being explicitly programmed.

Tasks ML is great for

- Problems which existing solutions require a lot of manual tuning and lists of rules
- Problems with fluctuating environments, ML systems can update quite easily/automatically to new data.
- Complex problems, with no good solution at all with traditional approaches, e.g. image or audio recognition
- Reversing decision processes/finding associations/getting insights from data so called data mining.

Sudden popularity rise

And **why** has ML become much more common and popular in recent years?

(besides the fact that we can do pretty cool things with it)

Exponential data growth

The unreasonable effectiveness of data

"The unreasonable effectiveness of data", Banko & Brill, 2001

- Machine learning algorithms are often called "data hungry".
- Their performance rise with the amount of training data, often outweighing selected algorithm and feature engineering.

GOOGLE DATACENTER

1,000 CPU Servers 2,000 CPUs • 16,000 cores 600 kWatts \$5,000,000

STANFORD AI LAB

3 GPU-Accelerated Servers 12 GPUs • 18,432 cores 4 kWatts \$33,000

Machine learning workflow schema

Types of machine learning

Supervised learning

Unsupervised learning

Unsupervised learning

Reinforcement learning

Classification problem

Regression problem

Underfitting and overfitting

Train/test splitting

Train/test splitting

Performance on training data vs test data

But what if my machine is not enough...

- Despite what it seems like, even "casual user" machines are often good enough at the beginning of the ML adventure.
- There are some computing resources available for free, e.g. Google Colab.
- Cloud resources (Paperspace, Azure, and so on) are quite cheap (and often have some free starter/student packages).
- And at last get used to it (as after some threshold this problem affects pretty much everyone).

Just remember - ML isn't a silver bullet...

"gibbon"
99.3 % confidence

Tools and stuff

And many, many others...

