Specialisation Project (VT) HS2024

Platform for Investment Analysis

Python based Linear Programming Optimization for Optimal Energy Assets Management

Submitted by

Rui Vieira

Business Engineering Profile IPP Institute of Product Development and Production Technologies

January 2025

Contents

1	Introduction					
	1.1	Project Context	3			
	1.2	Objectives	3			
2	Theoretical Background					
	2.1	Linear Programming in Energy Systems	3			
	2.2	DC Optimal Power Flow	3			
	2.3	Economic Analysis Framework	3			
3	Plat	tform Architecture	3			
	3.1	System Design	3			
	3.2	Key Components	3			
4	Imp	plementation	4			
	4.1	Core Optimization Module	4			
	4.2	Scenario Analysis Framework	4			
	4.3	AI Integration	4			
5	Results and Validation					
	5.1	Test Cases	4			
	5.2	Performance Analysis	4			
	5.3	Case Studies	4			
6	Disc	cussion	4			
	6.1	Platform Capabilities	4			
	6.2	Future Improvements	4			
7	Con	nclusion	5			
\mathbf{A}	Tec	hnical Documentation	5			
	A.1	Installation Guide	5			
	A.2	User Manual	5			
	A.3	API Reference	5			

В	Mat	chematical Formulations	5
	B.1	Optimization Model	5
	B.2	Economic Calculations	5

1 Introduction

1.1 Project Context

Brief introduction to energy investment optimization and the need for automated analysis tools.

1.2 Objectives

- Develop a Python-based platform for energy investment analysis
- Implement linear programming optimization for asset management
- Create scenario analysis capabilities
- Provide AI-powered insights for decision support

2 Theoretical Background

2.1 Linear Programming in Energy Systems

Overview of optimization techniques in energy asset management.

2.2 DC Optimal Power Flow

Mathematical formulation and constraints.

2.3 Economic Analysis Framework

NPV calculations, investment metrics, and risk assessment methods.

3 Platform Architecture

3.1 System Design

Overall structure and component interaction.

3.2 Key Components

- Optimization engine
- Scenario generator
- Results analyzer
- AI critique module

4 Implementation

4.1 Core Optimization Module

Description of the linear programming implementation.

4.2 Scenario Analysis Framework

How different scenarios are generated and compared.

4.3 AI Integration

Implementation of AI-powered analysis features.

5 Results and Validation

5.1 Test Cases

Description of validation scenarios.

5.2 Performance Analysis

Computational efficiency and scalability.

5.3 Case Studies

Real-world applications and insights.

6 Discussion

6.1 Platform Capabilities

Current functionality and limitations.

6.2 Future Improvements

Potential enhancements and extensions.

7 Conclusion

Summary of achievements and recommendations.

A Technical Documentation

- A.1 Installation Guide
- A.2 User Manual
- A.3 API Reference
- **B** Mathematical Formulations
- **B.1** Optimization Model
- **B.2** Economic Calculations