

Geometria Analitica

Videoaula 4.7

Relações entre reta e plano

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Posições relativas - Reta e Plano

Reta contida no plano

Vetor diretor ortogonal ao vetor normal e um ponto de um pertence ao outro

Reta paralela (não contida)

Vetor diretor ortogonal ao vetor normal e um ponto de um não pertence ao outro.

Reta concorrente (não contida)

Vetor diretor e vetor normal não são ortogonais.

Exemple 1

Encontre a posição relativa entre a reta r e o plano π .

$$\pi : x + y - 5 = 0.$$

$$r: \begin{cases} x = 1 - 2t \\ y = -t \\ z = 3 + t \end{cases}$$

$$\alpha : 2x - y + z - 4 = 0.$$

$$s: \begin{cases} x = 1 - t \\ y = 2 \\ z = 3 + 2t \end{cases}$$

Interseção entre Reta e Plano

Reta contida no plano

Interseção é toda a reta.

Reta paralela (não contida)

Interseção é o conjunto vazio.

Reta concorrente (não contida)

Interseção é um ponto.

Calcule a interseção entre a reta r e o plano π .

$$\pi : x + y - 5 = 0.$$

$$r: \begin{cases} x = 1 - 2t \\ y = -t \\ z = 3 + t \end{cases}$$

Ângulo entre Reta e Plano

O ângulo θ entre uma reta e um plano é o complemento do ângulo λ que a reta forma com uma reta normal ao plano.

Como θ e λ são complementares, temos $cos(\lambda) = sen(\theta)$, e assim:

$$sen(\theta) = \frac{|\vec{v} \cdot \vec{n}|}{\|\vec{v}\| \|\vec{n}\|}$$

Encontre o ângulo formado entre a reta r e o plano π :

$$\pi : x + y - 5 = 0.$$

$$r: \begin{cases} x = 1 - 2t \\ y = -t \\ z = 3 + t \end{cases}$$

Condição de ortogonalidade

Uma reta r é ortogonal a um plano π se o vetor diretor de r é paralelo ao vetor normal a π .

Calcule os valores de a e b para que a reta r e o plano α sejam ortogonais.

$$r: \begin{cases} x = 2 - t \\ y = 3 + t \end{cases} \qquad \alpha: 2x + ay + bz = 0.$$

$$z = 1 - 3t$$