

Compiladores¹ Análise Lexical

Capítulo 3 - "Compilers: Principles, Techniques and Tools"

Prof. Alberto Abad

IST - Universidade de Lisboa

2021/2022

¹Slides adaptados a partir do material do Prof. Pedro T. Monteiro (2017/2018)

Outline

Reconhecimento de elementos da linguagem

Expressões Regulares

Autómatos Finitos

Conversão entre Representações

Reconhecimento multi-string

Introdução

Objectivo: Processamento da parte regular de uma linguagem

Introdução

Objectivo: Processamento da parte regular de uma linguagem

Etapas principais:

- Ler a sequência de caracteres do programa fonte
- Agrupar conjuntos de caracteres em lexemas
- Produzir uma sequência de tokens correspondente aos lexemas do programa fonte

Objectivo: Processamento da parte regular de uma linguagem

Etapas principais:

- Ler a sequência de caracteres do programa fonte
- Agrupar conjuntos de caracteres em lexemas
- Produzir uma sequência de tokens correspondente aos lexemas do programa fonte

Etapas adicionais:

- remoção de espaços
- remoção de comentários
- informação de número de linha
- gestão de erros

tokens, lexemas & padrões

Token	Informal description	Lexeme(s)
IF	characters i, f	if
ELSE	characters e, l, l, e	else
COMPARISON	< or $>$ or $<=$ or $>=$ or $==$ or $!=$	<=,!=
ID	letter followed by letters and digits	pi, score, D2
NUMBER	any numeric constant	3.1415, 0, 6.02e23

- Token: símbolo abstracto representando uma unidade lexical par consistindo num nome e num atributo opcional
- Padrão: representação dos lexemes associados a um token
 - e.g. dígito repetido uma ou mais vezes
- Lexema: sequência de characteres de um programa que faz match com o padrão

tokens, lexemas & padrões

- Na maioria de linguagens as seguintes classes cobrem a maioria (ou todos) os tokens:
 - 1. Um token para cada keyword
 - 2. Um token para cada operador
 - 3. Um token para representar todos os identificadores
 - 4. Um token para cada tipo literal (números, strings)
 - 5. Um token para cada da símbolo de pontuação (parenteses, ponto vírgula, etc.)
 - Alguns tokens podem ter atributos (ex: identificadores e literais)

TÉCNICO LISBOA

Primeira fase do compilador

TÉCNICO LISBOA

Primeira fase do compilador

Gestão de Tokens:

- Como são representados?
- Como são reconhecidos?

Primeira fase do compilador

Gestão de Tokens:

- Como são representados?
 - Expressões regulares (REs)
- Como são reconhecidos?

Primeira fase do compilador

Gestão de Tokens:

- Como são representados?
 - Expressões regulares (REs)
- Como são reconhecidos?
 - Autómatos finitos determinísticos (DFAs)

Tópicos

TÉCNICO LISBOA

Tópicos

- Expressões regulares (REs)
- Autómatos finitos (não) determinísticos (NFA/DFA)
- Conversão de expressões regulares para NFA
- Conversão de NFA para DFA
- Minimização de DFAs

Tópicos

- Expressões regulares (REs)
- Autómatos finitos (não) determinísticos (NFA/DFA)
- Conversão de expressões regulares para NFA
- Conversão de NFA para DFA
- Minimização de DFAs

Concretizado na ferramenta Flex

Outline

Reconhecimento de elementos da linguagem

Expressões Regulares

Autómatos Finitos

Conversão entre Representações

Reconhecimento multi-string

- Números inteiros
- Números reais
- Identificadores em C/C++/...
- Matrículas de veículos ligeiros
- Endereços web
- Palavras começadas por 'v' e terminadas por 'ar' em ficheiros de texto
- Strings de 0s e 1s terminadas em 01
- ...

- Um alfabeto Σ é um conjunto de símbolos, não vazio e finito
 - Exemplo: $\Sigma = \{0, 1\}$
- Uma string (ou palavra) é uma sequência finita de símbolos de um alfabeto
 - Exemplo: 011001

- Um alfabeto Σ é um conjunto de símbolos, não vazio e finito
 - Exemplo: $\Sigma = \{0,1\}$
- Uma string (ou palavra) é uma sequência finita de símbolos de um alfabeto
 - Exemplo: 011001 String vazia: ϵ

- Um alfabeto Σ é um conjunto de símbolos, não vazio e finito
 - Exemplo: $\Sigma = \{0, 1\}$
- Uma string (ou palavra) é uma sequência finita de símbolos de um alfabeto
 - Exemplo: 011001
 - String vazia: €
 - Comprimento da string w, |w|: número de posições de símbolos na string

TÉCNICO LISBOA

- Um alfabeto Σ é um conjunto de símbolos, não vazio e finito
 - Exemplo: $\Sigma = \{0, 1\}$
- Uma string (ou palavra) é uma sequência finita de símbolos de um alfabeto
 - Exemplo: 011001
 - String vazia: €
 - Comprimento da string w, w: número de posições de símbolos na string
 - $-\Sigma^k$: conjunto de strings com comprimento k com símbolos de Σ
 - $ightharpoonup \Sigma^0 = \{\epsilon\}$
 - $\Sigma = \{0,1\}, \Sigma^1 = \{0,1\}, \Sigma^2 = \{00,01,10,11\}$
 - $-\Sigma^*$: conjunto de todas as strings sobre um alfabeto Σ

TÉCNICO LISBOA

- Um alfabeto Σ é um conjunto de símbolos, não vazio e finito
 - Exemplo: $\Sigma = \{0, 1\}$
- Uma string (ou palavra) é uma sequência finita de símbolos de um alfabeto
 - Exemplo: 011001
 - String vazia: ϵ
 - Comprimento da string w, |w|: número de posições de símbolos na string
 - $-\Sigma^k$: conjunto de strings com comprimento k com símbolos de Σ
 - $ightharpoonup \Sigma^0 = \{\epsilon\}$
 - $\Sigma = \{0, 1\}, \ \Sigma^1 = \{0, 1\}, \ \Sigma^2 = \{00, 01, 10, 11\}$
 - Σ^* : conjunto de todas as strings sobre um alfabeto Σ
 - Se x, y são strings, xy é a concatenação de x e y
 - ► Cópia de *x* seguida de cópia de *y*

Definições: linguagem & problema

- Dado um alfabeto Σ , uma linguagem é um qualquer subconjunto das strings em Σ^*
 - e.g. a linguagem de todas as strings sobre $\{0,1\}$ que contém a string 01

- Problema: decidir se uma string w pertence a uma linguagem L
 - Seja Σ um alfabeto e seja L uma linguagem sobre Σ
 - Problema L: Dada $w \in \Sigma^*$, decidir se w pertence a L

TÉCNICO LISBOA

- União de linguagens L e M ($L \cup M$)
 - Conjunto de strings em L, em M ou em ambas
 - $L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$

TÉCNICO LISBOA

- União de linguagens L e M ($L \cup M$)
 - Conjunto de strings em L, em M ou em ambas
 - $L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$
- Concatenação de linguagens L e M ($L \cdot M$ ou LM)
 - Conjunto de strings formadas pela concatenação de qualquer string de ${\it L}$ com qualquer string de ${\it M}$
 - \blacktriangleright $LM = \{st \mid s \in L \text{ and } t \in M\}$
 - ▶ $L^0 = \{\epsilon\}$; $L^2 = \{s_1 s_2 \mid s_1, s_2 \in L\}$; $L^k = \{s_1 \dots s_k \mid s_1, \dots s_k \in L\}$

TÉCNICO LISBOA

- União de linguagens L e M ($L \cup M$)
 - Conjunto de strings em L, em M ou em ambas
 - $L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$
- Concatenação de linguagens L e M ($L \cdot M$ ou LM)
 - Conjunto de strings formadas pela concatenação de qualquer string de ${\it L}$ com qualquer string de ${\it M}$
 - $\blacktriangleright LM = \{ st \mid s \in L \text{ and } t \in M \}$
 - ▶ $L^0 = \{\epsilon\}$; $L^2 = \{s_1 s_2 \mid s_1, s_2 \in L\}$; $L^k = \{s_1 \dots s_k \mid s_1, \dots s_k \in L\}$
- Fecho (ou fecho de Kleene) de uma linguagem L (L*)
 - Conjunto de strings formadas por concatenação de qualquer string de L 0 ou mais vezes

TÉCNICO LISBOA

- União de linguagens L e M ($L \cup M$)
 - Conjunto de strings em L, em M ou em ambas

$$L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$$

- Concatenação de linguagens L e M (L · M ou LM)
 - Conjunto de strings formadas pela concatenação de qualquer string de ${\it L}$ com qualquer string de ${\it M}$
 - $LM = \{ st \mid s \in L \text{ and } t \in M \}$
 - ▶ $L^0 = \{\epsilon\}$; $L^2 = \{s_1 s_2 \mid s_1, s_2 \in L\}$; $L^k = \{s_1 \dots s_k \mid s_1, \dots s_k \in L\}$
- Fecho (ou fecho de Kleene) de uma linguagem $L(L^*)$
 - Conjunto de strings formadas por concatenação de qualquer string de L 0 ou mais vezes

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

- Fecho Positivo de uma linguagem L (L⁺)
 - Conjunto de strings formadas por concatenação de qualquer string de L 1 ou mais vezes

$$L^+ = \cup_{i=1}^{\infty} L^i$$

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

• $L \cup M =$

Exemplos

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

• $L \cup M = \{a, cc, bb, ddd\}$

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

- $L \cup M = \{a, cc, bb, ddd\}$
- *LM* =

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

- $L \cup M = \{a, cc, bb, ddd\}$
- $LM = \{acc, addd, bbcc, bbddd\}$

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

- $L \cup M = \{a, cc, bb, ddd\}$
- *LM* = {*acc*, *addd*, *bbcc*, *bbddd*}
- L* =

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

- $L \cup M = \{a, cc, bb, ddd\}$
- *LM* = {*acc*, *addd*, *bbcc*, *bbddd*}
- $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$

- $L = \{a, bb\}$ and $M = \{cc, ddd\}$
 - $L \cup M = \{a, cc, bb, ddd\}$
 - *LM* = {acc, addd, bbcc, bbddd}
 - $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$
 - M* =

TÉCNICO LISBOA

- $L = \{a, bb\}$ and $M = \{cc, ddd\}$
 - $L \cup M = \{a, cc, bb, ddd\}$
 - *LM* = {acc, addd, bbcc, bbddd}
 - $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$
 - $M^* = \{\epsilon, cc, ccddd, cccc, dddc, dddcccc, \ldots\}$

TÉCNICO LISBOA

$$L = \{a, bb\}$$
 and $M = \{cc, ddd\}$

- $L \cup M = \{a, cc, bb, ddd\}$
- *LM* = { *acc*, *addd*, *bbcc*, *bbddd* }
- $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$
- $M^* = \{\epsilon, cc, ccddd, cccc, dddc, dddcccc, \ldots\}$
- L⁺ =

TÉCNICO LISBOA

- $L = \{a, bb\}$ and $M = \{cc, ddd\}$
 - $L \cup M = \{a, cc, bb, ddd\}$
 - *LM* = {*acc*, *addd*, *bbcc*, *bbddd*}
 - $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$
 - $M^* = \{\epsilon, cc, ccddd, cccc, dddc, dddcccc, \ldots\}$
 - $L^+ = \{a, abb, aa, aabb, aaabb, bba, \ldots\}$

TÉCNICO LISBOA

Exemplos

```
L = \{a, bb\} and M = \{cc, ddd\}
```

- $L \cup M = \{a, cc, bb, ddd\}$
- *LM* = {*acc*, *addd*, *bbcc*, *bbddd*}
- $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$
- $M^* = \{\epsilon, cc, ccddd, cccc, dddc, dddcccc, \ldots\}$
- $L^+ = \{a, abb, aa, aabb, aaabb, bba, \ldots\}$
- *M*⁺ =

Exemplos

```
L = \{a, bb\} and M = \{cc, ddd\}
```

- $L \cup M = \{a, cc, bb, ddd\}$
- *LM* = {*acc*, *addd*, *bbcc*, *bbddd*}
- $L^* = \{\epsilon, a, abb, aa, aabb, aaabb, bba, \ldots\}$
- $M^* = \{\epsilon, cc, ccddd, cccc, dddc, dddcccc, \ldots\}$
- $L^+ = \{a, abb, aa, aabb, aaabb, bba, \ldots\}$
- $M^+ = \{cc, ccddd, cccc, dddc, dddcccc, \ldots\}$

Construção

Caso base:

- A constante ϵ é uma expressão regular, $L(\epsilon) = \{\epsilon\}$
- Se a é um símbolo, então \mathbf{a} é uma expressão regular, $L(\mathbf{a})=\{a\}$

Construção

Caso base:

- A constante ϵ é uma expressão regular, $L(\epsilon) = \{\epsilon\}$
- Se a é um símbolo, então \mathbf{a} é uma expressão regular, $L(\mathbf{a}) = \{a\}$

Indução:

Se as variáveis R e S são expressões regulares que denotam as lingugens L(R) e L(S), então:

- (R)|(S) é uma expressão regular, com linguagen $L(R) \cup L(S)$
- (R)(S) é uma expressão regular, com linguagen L(R)L(S)
- $-(R)^*$ é uma expressão regular, com linguagen $(L(R))^*$
- (R) é uma expressão regular, com linguagen L(R)

Precedência de operadores

Os parêntesis permitem alterar a prioridade dos operadores.

Convenções para precedência:

- Fecho (*) tem a maior precedência
- Concatenação (·) é o próximo na ordem de precedência
- União (|) tem a menor precedência

Exemplos:

- $\mathbf{a}^* | \mathbf{b}^*$ corresponde a $(\mathbf{a}^*) | (\mathbf{b}^*)$
- $\mathbf{a}^*\mathbf{c}|\mathbf{b}^*$ corresponde a $(\mathbf{a}^*)(\mathbf{c})|(\mathbf{b}^*)$

Exemplos

Considerando o alfabeto $\Sigma = \{a, b\}$:

- $\mathbf{a}|\mathbf{b}$ representa a linguagem $\{a,b\}$
- (a|b)(a|b) representa a linguagem $\{aa, ab, ba, bb\}$
- \mathbf{a}^* representa a linguagem $\{\epsilon, a, aa, aaa, \ldots\}$
- $(\mathbf{a}|\mathbf{b})^*$ representa a linguagem $\{\epsilon, a, b, aa, ab, ba, bb, aaa, \ldots\}$
- $\mathbf{a}|\mathbf{a}^*\mathbf{b}$ representa a linguagem $\{a,b,ab,aab,aaab,\ldots\}$

Notação adicional

- Operador ? representa zero ou um de
 - R? corresponde a $\epsilon | R$
- Operador + representa um ou mais de
 - $-R^+$ corresponde a RR^*
- Operador $\{n\}$ representa n cópias de
- Símbolo . representa qualquer caracter
- Sequência $[a_1 \cdots a_k]$ representa a expressão regular $a_1 | \cdots | a_k$
- Intervalos x-y podem ser utilizados dentro de parêntesis rectos
 - e.g. todos os caracteres de x a y na sequência ASCII
- Caracteres especiais do UNIX/Linux: precedidos por \

Notação adicional

Exemplos de expressões regulares (baseadas no código ASCII):

- Inteiros:
 - -([+-]?[1-9][0-9]*)|0
- Identificadores:
 - [a-zA-Z][a-zA-Z0-9]* - [a-zA-Z_][a-zA-Z0-9_]*
- Reais:
 - $[+-]?(([0-9]^+ \setminus .[0-9]^*)|([0-9]^* \setminus .[0-9]^+))$

Exemplos de expressões regulares (baseadas no código ASCII):

- Inteiros:
 - -([+-]?[1-9][0-9]*)|0
- Identificadores:
 - [a-zA-Z][a-zA-Z0-9]* - [a-zA-Z_][a-zA-Z0-9_]*
- Reais:
 - $[+-]?(([0-9]^+ \setminus .[0-9]^*)|([0-9]^* \setminus .[0-9]^+))$

Nota: notação adicional simplifica escrita de expressões regulares, mas permite representar as mesmas linguagens

Outline

Reconhecimento de elementos da linguagem

Expressões Regulares

Autómatos Finitos

Conversão entre Representações

Reconhecimento multi-string

Autómatos finitos

Um autómato finito é essencialmente um grafo que:

- actua como um reconhecedor de uma linguagem regular
 - responde "sim" ou "não" para uma string de entrada
- pode ser de dois tipos:
 - Autómato finito determinístico (DFA), em que para cada estado e símbolo do alfabeto, existe um único arco com esse símbolo partindo desse estado
 - Autómato finito **não determinístico** (NDA), em que não existem restrições nos símbolos dos seus arcos, pudendo existir vários arcos com o mesmo símbolo, assim como o símbolo ϵ , partindo de um mesmo estado

Um autómato finito determinístico (DFA) A é um tuplo $(Q, \Sigma, \delta, q_0, F)$ em que:

- Q é o conjunto finito de estados
- Σ é o conjunto finito de símbolos de entrada
- $\delta: Q \times \Sigma \rightarrow Q$ é uma função de transição
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto de estados finais ou aceitadores

Representação: Diagramas de transição

- DFA $A = (Q, \Sigma, \delta, q_0, F)$
- Diagrama de transição:
 - Um nó para cada estado em Q
 - Uma transição com etiqueta a do estado q para o estado p, com $p = \delta(q, a)$, e com $q, p \in Q$ e $a \in \Sigma$
 - Seta para o estado inicial q_0
 - Estados aceitadores (em F) marcados com dois círculos

Representação: Diagramas de transição

- DFA $A = (Q, \Sigma, \delta, q_0, F)$
- Diagrama de transição:
 - Um nó para cada estado em Q
 - Uma transição com etiqueta a do estado q para o estado p, com $p = \delta(q, a)$, e com $q, p \in Q$ e $a \in \Sigma$
 - Seta para o estado inicial q_0
 - Estados aceitadores (em F) marcados com dois círculos
- Exemplo:

Exemplo 1

Considerando o alfabeto $\Sigma = \{0,1\}$, construa o DFA para reconhecer strings com um número par de 0's:

Exemplo 1

Considerando o alfabeto $\Sigma=\{0,1\}$, construa o DFA para reconhecer strings com um número par de 0's:

Exemplo 1

Considerando o alfabeto $\Sigma = \{0,1\}$, construa o DFA para reconhecer strings com um número par de 0's:

Uma solução com menos estados:

Exemplo 2

Considerando o alfabeto $\Sigma=\{0,1\}$, construa o DFA para reconhecer strings tal que número de 0's é um múltiplo de 3:

Exemplo 2

Considerando o alfabeto $\Sigma=\{0,1\}$, construa o DFA para reconhecer strings tal que número de 0's é um múltiplo de 3:

Exemplo 2

Considerando o alfabeto $\Sigma=\{0,1\}$, construa o DFA para reconhecer strings tal que número de 0's é um múltiplo de 3:

Uma solução com menos estados:

Definição

Um autómato finito não determinístico (NFA) A é um tuplo $(Q, \Sigma, \delta, q_0, F)$ em que:

- Q é o conjunto finito de estados
- ullet Σ é o conjunto finito de símbolos de entrada
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathbb{P}^Q$ é uma função de transição
 - δ mapeia um estado ou um símbolo de entrada (ou ϵ) num subconjunto de Q
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto de estados finais ou aceitadores

Um autómato finito não determinístico (NFA) A é um tuplo $(Q, \Sigma, \delta, q_0, F)$ em que:

- Q é o conjunto finito de estados
- Σ é o conjunto finito de símbolos de entrada
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathbb{P}^Q$ é uma função de transição
 - δ mapeia um estado ou um símbolo de entrada (ou ϵ) num subconjunto de Q
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto de estados finais ou aceitadores

NOTA: Esta definição correponde a uma geralização, também conhecida como NFA com transições ϵ

Definição

Características diferenciadoras:

- É possível existirem múltiplas mudanças de estado com o mesmo símbolo
- ullet É possível existirem mudanças de estado com o símbolo ϵ

Características diferenciadoras:

- É possível existirem múltiplas mudanças de estado com o mesmo símbolo
- ullet É possível existirem mudanças de estado com o símbolo ϵ

Exemplo - NFA aceitador de strings terminadas com abb:

NFA para reconhecimento de linguagem Exemplo 1

Considerando o alfabeto $\Sigma = \{a, b\}$, construa o NFA que aceita strings terminadas com aa ou com bb:

NFA para reconhecimento de linguagem Exemplo 1

terminadas com aa ou com bb:

Considerando o alfabeto $\Sigma=\{a,b\}$, construa o NFA que aceita strings

Exemplo 2

Considerando o alfabeto $\Sigma = \{0,1\}$, construa o NFA que aceita strings terminadas com a sequência 01:

Considerando o alfabeto $\Sigma=\{0,1\}$, construa o NFA que aceita strings terminadas com a sequência 01:

Exemplo 2

Exemplo 3 (com transições ϵ)

Considerando o alfabeto $\Sigma = \{a, b\}$, construa o NFA que aceita strings formadas por um ou mais símbolo a ou b:

Exemplo 3 (com transições ϵ)

Considerando o alfabeto $\Sigma = \{a, b\}$, construa o NFA que aceita strings formadas por um ou mais símbolo a ou b:

Exemplo 4 (números decimais)

NFA que aceita números decimais:

- Sinal + ou opcional
- string de digitos
- ponto decimal
- outra string de digitos
- pelo menos uma string de digitos deve ser n\u00e3o vazia

Exemplo 4 (números decimais)

NFA que aceita números decimais:

- Sinal + ou − opcional
- string de digitos
- ponto decimal
- outra string de digitos
- pelo menos uma string de digitos deve ser não vazia

Não determinismo

Não determinismo

Operação fecho- ϵ (ϵ -closure)

- ullet Mecanismo para aceder aos estados atingíveis com transições ϵ
- Fecho- ϵ de q, ϵ -closure(q):
 - **Caso base:** Estado q está em ϵ -closure(q)
 - Indução: Se p ∈ ϵ -closure(q), então ϵ -closure(q) contém os estados em $\delta(p, \epsilon)$

Operação fecho- ϵ (ϵ -closure)

- Mecanismo para aceder aos estados atingíveis com transições ϵ
- Fecho- ϵ de q, ϵ -closure(q):
 - **Caso base:** Estado q está em ϵ -closure(q)
 - Indução: Se p ∈ ϵ -closure(q), então ϵ -closure(q) contém os estados em $\delta(p, \epsilon)$

Autómatos finitos não determinísticos (NFA)

Operação fecho- ϵ (ϵ -closure)

- ullet Mecanismo para aceder aos estados atingíveis com transições ϵ
- Fecho- ϵ de q, ϵ -closure(q):
 - **Caso base:** Estado q está em ϵ -closure(q)
 - Indução: Se p ∈ ϵ -closure(q), então ϵ -closure(q) contém os estados em $\delta(p, \epsilon)$

$$\epsilon$$
-closure $(q_0) = \{q_0, q_1, q_3\}$

Autómatos finitos não determinísticos (NFA)

Operação fecho- ϵ (ϵ -closure)

- Mecanismo para aceder aos estados atingíveis com transições ϵ
- Fecho- ϵ de q, ϵ -closure(q):
 - **Caso base:** Estado q está em ϵ -closure(q)
 - Indução: Se p ∈ ϵ -closure(q), então ϵ -closure(q) contém os estados em $\delta(p, \epsilon)$

$$\epsilon$$
-closure $(q_0)=\{q_0,q_1,q_3\}$
 ϵ -closure $(q_1)=\{q_1\}$

Outline

Reconhecimento de elementos da linguagem

Expressões Regulares

Autómatos Finitos

Conversão entre Representações

Reconhecimento multi-string

Qualquer linguagem descrita por uma expressão regular, é aceite por um autómato não determinista

Qualquer linguagem descrita por uma expressão regular, é aceite por um autómato não determinista

O **Algoritmo de Thompson** permite converter uma expressão regular em um NFA

Caso base:

• Expressão ϵ :

Algoritmo de Thompson

Algoritmo de Thompson

Caso base:

• Expressão ϵ :

• Expressão **a**:

Algoritmo de Thompson

Indução:

Se as variáveis R e S são expressões regulares, então:

• Expressão *R*|*S*:

Algoritmo de Thompson

Indução:

Se as variáveis R e S são expressões regulares, então:

• Expressão *R*|*S*:

O autómato aceita $L(R) \cup L(S)$

Algoritmo de Thompson

Indução: (Cont.)

Se as variáveis R e S são expressões regulares, então:

Expressão R S:

Algoritmo de Thompson

Indução: (Cont.)

Se as variáveis R e S são expressões regulares, então:

• Expressão *R S*:

O autómato aceita L(R) L(S)

Algoritmo de Thompson

Indução: (Cont.)

Se as variáveis R e S são expressões regulares, então:

Expressão R*:

Algoritmo de Thompson

Indução: (Cont.)

Se as variáveis R e S são expressões regulares, então:

Expressão R*:

O autómato aceita $L(\epsilon), L(R), L(R)L(R), \dots$

Algoritmo de Thompson - Exemplo

Construir NFA para (a|b)*abb

Algoritmo de Thompson - Exemplo

Construir NFA para $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

• Primeiro, identificar componentes da expressão regular

Algoritmo de Thompson - Exemplo

Construir NFA para (a|b)*abb

- Primeiro, identificar componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b

Algoritmo de Thompson - Exemplo

Construir NFA para $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

- Primeiro, identificar componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\mathbf{b}$

Algoritmo de Thompson - Exemplo

Construir NFA para $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

- Primeiro, identificar componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\mathbf{b}$
 - Um componente para $(\mathbf{a}|\mathbf{b})^*$

Algoritmo de Thompson - Exemplo

Construir NFA para $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

- Primeiro, identificar componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\mathbf{b}$
 - Um componente para $(\mathbf{a}|\mathbf{b})^*$
 - Um componente final que agrega todos os outros componentes

Algoritmo de Thompson - Exemplo

Construir NFA para $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

• Expressões **a** e **b**:

Algoritmo de Thompson - Exemplo

Construir NFA para $(\mathbf{a}|\mathbf{b})^*\mathbf{abb}$

• Expressões **a** e **b**:

Expressão a b:

Algoritmo de Thompson - Exemplo

Construir NFA para $(a|b)^*abb$

Expressão (a|b)*:

Algoritmo de Thompson - Exemplo

Construir NFA para $(a|b)^*abb$

• Agregar todos os componentes:

Outro exemplo

• Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{a}\mathbf{b})^*(\mathbf{b}|\epsilon)$

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\epsilon$

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\epsilon$
 - Um componente para ab

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\epsilon$
 - Um componente para ab
 - Um componente para (ab)*

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\epsilon$
 - Um componente para ab
 - Um componente para (ab)*
 - Um componente para $\mathbf{b}|\epsilon$

- Construir NFA para $(\mathbf{a}|\epsilon)(\mathbf{ab})^*(\mathbf{b}|\epsilon)$
- Primeiro, identificar os componentes da expressão regular
 - Um componente para cada símbolo de entrada a e b
 - Um componente para $\mathbf{a}|\epsilon$
 - Um componente para ab
 - Um componente para (ab)*
 - Um componente para $\mathbf{b}|\epsilon$
- Um componente final que agregue todos os outros componentes

Qualquer linguagem descrita por um NFA, é aceite por um DFA

Qualquer linguagem descrita por um NFA, é aceite por um DFA

O algoritmo de **Construção de Subconjuntos** (*subset construction*) permite converter um NFA em um DFA

 A ideia geral consiste em que cada estado do DFA corresponde a um conjunto de estados do NFA, que são todos aqueis que são atingíveis apõs processar uma certa string de entrada

Construção de Subconjuntos - Processo de determinização

- Caso base: Conjunto singular consistindo do estado inicial do NFA é atingível
- Indução: Se um conjunto de estados S é atingível, então todos os estados alcançáveis a partir de S por transições vazias, também são atingíveis

Construção de Subconjuntos - Processo de determinização

Exemplo

Expressão regular: $(a + b)^*abb$

NFA:

Construção de Subconjuntos - Processo de determinização

Exemplo

Expressão regular: $(a + b)^*abb$

NFA:

$$I_n \mid \alpha \in \Sigma \mid \mathsf{move}(I_n, \alpha) \mid \epsilon\text{-closure}(\mathsf{move}(I_n, \alpha)) \mid I_{n+1}$$

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	a	3, 8	1, 2, 3, 4, 6, 7, 8	1

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2

In	$\alpha \in \mathbf{\Sigma}$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	ь	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	а	3, 8	1, 2, 3, 4, 6, 7, 8	1

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
2	b	5	1, 2, 4, 5, 6, 7	2

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
2	b	5	1, 2, 4, 5, 6, 7	2
3	а	3, 8	1, 2, 3, 4, 6, 7, 8	1

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	ь	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
2	b	5	1, 2, 4, 5, 6, 7	2
3	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
3	ь	5, 10	1, 2, 4, 5, 6, 7, 10	4

I_n	$\alpha \in \mathbf{\Sigma}$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	ь	5	1, 2, 4, 5, 6, 7	2
1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	ь	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
2	b	5	1, 2, 4, 5, 6, 7	2
3	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
3	ь	5, 10	1, 2, 4, 5, 6, 7, 10	4
4	а	3, 8	1, 2, 3, 4, 6, 7, 8	1

	In	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
	-	-	0	0, 1, 2, 4, 7	0
	0	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
	0	b	5	1, 2, 4, 5, 6, 7	2
	1	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
	1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3
	2	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
	2	b	5	1, 2, 4, 5, 6, 7	2
•	3	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
	3	b	5, 10	1, 2, 4, 5, 6, 7, 10	4
	4	а	3, 8	1, 2, 3, 4, 6, 7, 8	1
	4	b	5	1, 2, 4, 5, 6, 7	2

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
2	b	5	1, 2, 4, 5, 6, 7	2
3	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
3	b	5, 10	1, 2, 4, 5, 6, 7, 10	4
4	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
4	b	5	1, 2, 4, 5, 6, 7	2

In	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move(I_n, α))	I_{n+1}
-	-	0	0, 1, 2, 4, 7	0
0	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
0	b	5	1, 2, 4, 5, 6, 7	2
1	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
1	b	5, 9	1, 2, 4, 5, 6, 7, 9	3
2	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
2	b	5	1, 2, 4, 5, 6, 7	2
3	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
3	b	5, 10	1, 2, 4, 5, 6, 7, 10	4
4	a	3, 8	1, 2, 3, 4, 6, 7, 8	1
4	b	5	1, 2, 4, 5, 6, 7	2

Minimização da tabela / Compactação de autómatos

O número de estados do DFA obtido através da construção de subconjuntos não é, necessariamente, mínimo

Minimização da tabela / Compactação de autómatos

O número de estados do DFA obtido através da construção de subconjuntos não é, necessariamente, mínimo

Abordagem:

Aplicação do Algoritmo de Hopcroft

Minimização da tabela / Compactação de autómatos

O número de estados do DFA obtido através da construção de subconjuntos não é, necessariamente, mínimo

Abordagem:

- Aplicação do Algoritmo de Hopcroft
 - Partição inicial constituída por: estados finais e estados não finais

Minimização da tabela / Compactação de autómatos

O número de estados do DFA obtido através da construção de subconjuntos não é, necessariamente, mínimo

Abordagem:

- Aplicação do Algoritmo de Hopcroft
 - Partição inicial constituída por: estados finais e estados não finais
 - Fragmentar partições por símbolos de entrada diferentes

Minimização da tabela / Compactação de autómatos

O número de estados do DFA obtido através da construção de subconjuntos não é, necessariamente, mínimo

Abordagem:

- Aplicação do Algoritmo de Hopcroft
 - Partição inicial constituída por: estados finais e estados não finais
 - Fragmentar partições por símbolos de entrada diferentes
 - ▶ Repetir até que não sejam criados novos subgrupos

Minimização da tabela / Compactação de autómatos

Exemplo:

Minimização da tabela / Compactação de autómatos

Exemplo:

Autómato finito determinista (DFA)

 $\{0,1,2,3,4\}$

Minimização da tabela / Compactação de autómatos

Exemplo:

Minimização da tabela / Compactação de autómatos

Exemplo:

Minimização da tabela / Compactação de autómatos

Exemplo:

Minimização da tabela / Compactação de autómatos

Exemplo:

Minimização da tabela / Compactação de autómatos

Exemplo: (Final)

Outline

Reconhecimento de elementos da linguagem

Expressões Regulares

Autómatos Finitos

Conversão entre Representações

Reconhecimento multi-string

Depois de obtido o DFA mínimo, pode iniciar-se o processamento das palavras na entrada, e decidir se são ou não aceites pela expressão regular

Problema:

- O reconhecimento de uma palavra é apenas parte do problema
- Um analisador lexical deve conseguir reconhecer uma frase (multi-palavra)

Abordagem: Dividir a linguagem numa união de expressões regulares $L = (r_1 \mid r_2 \mid ... \mid r_n)^*$

Subdivisão do problema devido às propriedades de fecho

- Considerar um estado inicial que deriva, através de transições vazias, cada uma das expressões regulares
- Associar cada estado final à respectiva expressão regular
- Após o reconhecimento, o analisador recomeça no estado inicial

Nota: o processamento considera sempre o reconhecimento:

- da sequência mais comprida
- das palavras pela ordem da entrada

$$L = \{a^*|b, a|b^*, a^*\}$$

$$L = \{a^*|b,a|b^*,a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

$$L = \{a^*|b,a|b^*,a^*\} \qquad \textit{TOK}1 = a^*|b \qquad \textit{TOK}2 = a|b^* \qquad \textit{TOK}3 = a^*$$

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A tabela de análise é diferente! (coluna Token adicional)

O token emitido é o correspondente ao estado final com menor númeração.

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A tabela de análise é diferente! (coluna Token adicional)

$$I_n \mid \alpha \in \Sigma \mid \mathsf{move}(I_n, \alpha) \mid \epsilon$$
-closure($\mathsf{move}(I_n, \alpha)$) $\mid I_{n+1} \mid \mathsf{Tok}$

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

_I _n	$\alpha \in \Sigma$	$move(\mathit{I}_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

In	$\alpha \in \mathbf{\Sigma}$	$move(I_n, \alpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Toker
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	a	6, 15, 19	5, 6, 7, 8, 15, 16, 18, 19, <mark>20</mark>	1	TOK1

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

In	$\alpha \in \Sigma$	$move(\mathit{I}_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	а	6, 15, 19	5, 6, 7, <mark>8</mark> , 15, <mark>16</mark> , 18, 19, <mark>20</mark>	1	TOK1
0	b	4, 12	4, 8, 11, 12, 13, <mark>1</mark> 6	2	TOK1

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

In	$\alpha \in \Sigma$	$move(I_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Toker
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	а	6, 15, 19	5, 6, 7, <mark>8</mark> , 15, <mark>16</mark> , 18, 19, <mark>20</mark>	1	TOK1
0	b	4, 12	4, 8, 11, 12, 13, <mark>16</mark>	2	TOK1
1	a	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, 20	3	TOK1

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

In	$\alpha \in \mathbf{\Sigma}$	$move(\mathit{I}_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	а	6, 15, 19	5, 6, 7, <mark>8</mark> , 15, <mark>16</mark> , 18, 19, <mark>20</mark>	1	TOK1
0	b	4, 12	4, <mark>8</mark> , 11, 12, 13, <mark>16</mark>	2	TOK1
1	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
1	b	-	-	-	-

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

_I _n	$\alpha \in \Sigma$	$move(\mathit{I}_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	а	6, 15, 19	5, 6, 7, <mark>8</mark> , 15, 16 , 18, 19, 20	1	TOK1
0	b	4, 12	4, <mark>8</mark> , 11, 12, 13, <mark>16</mark>	2	TOK1
1	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
1	b	-	-	-	-
2	а	-	-	-	1

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

	In	$\alpha \in \mathbf{\Sigma}$	$move(\mathit{I}_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
	0	а	6, 15, 19	5, 6, 7, 8, 15, 16, 18, 19, 20	1	TOK1
	0	b	4, 12	4, 8, 11, 12, 13, 16	2	TOK1
_	1	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
	1	b	-	-	-	-
_	2	a	-	-	-	-
	2	b	12	11, 12, 13, 16	4	TOK2

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

In	$\alpha \in \Sigma$	$move(\mathit{I}_n, \alpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Toker
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK:
0	а	6, 15, 19	5, 6, 7, 8, 15, 16, 18, 19, 20	1	TOK:
0	b	4, 12	4, 8, 11, 12, 13, 16	2	TOK:
1	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK:
1	b	-	-	-	-
2	а	-	-	-	-
2	b	12	11, 12, 13, 16	4	TOK
3	а	6, 19	5, 6, 7, 8, 18, 19, <mark>20</mark>	3	TOK:
	•	•	•		

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

I _n	$\alpha \in \Sigma$	$move(I_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	a	6, 15, 19	5, 6, 7, 8, 15, 16, 18, 19, 20	1	TOK1
0	b	4, 12	4, 8, 11, 12, 13, 16	2	TOK1
1	a	6, 19	5, 6, 7, 8 , 18, 19, 20	3	TOK1
1	b	-	-	-	-
2	a	-	-	-	-
2	b	12	11, 12, 13, 16	4	TOK2
3	а	6, 19	5, 6, 7, 8 , 18, 19, 20	3	TOK1
3	b	-	-	-	-

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

In	$\alpha \in \Sigma$	$move(\mathit{I}_n, lpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	а	6, 15, 19	5, 6, 7, 8, 15, 16, 18, 19, 20	1	TOK1
0	b	4, 12	4, <mark>8</mark> , 11, 12, 13, 16	2	TOK1
1	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
1	b	-	-	-	-
2	а	-	-	-	-
2	b	12	11, 12, 13, 16	4	TOK2
3	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
3	b	-	-	-	-
4	а	_	-	-	-

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-	-	0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	a	6, 15, 19	5, 6, 7, <mark>8</mark> , 15, <mark>16</mark> , 18, 19, <mark>20</mark>	1	TOK1
0	b	4, 12	4, <mark>8</mark> , 11, 12, 13, <mark>16</mark>	2	TOK1
1	a	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
1	b	-	-	-	-
2	a	-	-	-	-
2	b	12	11, 12, 13, <mark>16</mark>	4	TOK2
3	a	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
3	b	-	-	-	-
4	a	-	-	-	-
4	b	12	11, 12, 13, <mark>16</mark>	4	TOK2

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: A tabela de análise é diferente! (coluna Token adicional)

I_n	$\alpha \in \Sigma$	$move(I_n, \alpha)$	ϵ -closure(move($I_n, lpha$))	I_{n+1}	Token
-		0	0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 20	0	TOK1
0	a	6, 15, 19	5, 6, 7, <mark>8</mark> , 15, <mark>16</mark> , 18, 19, <mark>20</mark>	1	TOK1
0	b	4, 12	4, <mark>8</mark> , 11, 12, 13, <mark>16</mark>	2	TOK1
1	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
1	b	-	-	-	-
2	a	-	-	-	-
2	b	12	11, 12, 13, <mark>16</mark>	4	TOK2
3	а	6, 19	5, 6, 7, <mark>8</mark> , 18, 19, <mark>20</mark>	3	TOK1
3	b	-	-	-	-
4	а	-	-	-	-
4	b	12	11, 12, 13, <mark>16</mark>	4	TOK2

2a Etapa: Conversão NFA \rightarrow DFA

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

Nota: Os estados finais são anotados com o Token correspondente que reconhecem.

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

58/61

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$ **Nota**: A minimização é diferente! (adicionalmente separar por token)

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

4a Etapa: Processamento da entrada

$$L = \{a^*|b,a|b^*,a^*\} \qquad \textit{TOK}1 = a^*|b \qquad \textit{TOK}2 = a|b^* \qquad \textit{TOK}3 = a^*$$

 $I_n \mid \text{Entrada} \mid I_{n+1}/\text{Token}$

$$L = \{a^*|b,a|b^*,a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	$I_{n+1}/Token$
0	aababb\$	13

$$L = \{a^*|b,a|b^*,a^*\} \qquad \textit{TOK}1 = a^*|b \qquad \textit{TOK}2 = a|b^* \qquad \textit{TOK}3 = a^*$$

_I _n	Entrada	$I_{n+1}/Token$
0	aababb\$	13
13	ababb\$	13

$$L = \{a^*|b,a|b^*,a^*\} \qquad \textit{TOK} 1 = a^*|b \qquad \textit{TOK} 2 = a|b^* \qquad \textit{TOK} 3 = a^*$$

In	Entrada	$I_{n+1}/Token$
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	$I_{n+1}/Token$
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	$I_{n+1}/Token$
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	I_{n+1}/Token
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1
0	abb\$	13

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	$I_{n+1}/Token$
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1
0	abb\$	13
13	bb\$	TOK1

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	$I_{n+1}/Token$
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1
0	abb\$	13
13	bb\$	TOK1
0	bb\$	2

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

In	Entrada	I_{n+1}/Token
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1
0	abb\$	13
13	bb\$	TOK1
0	bb\$	2
2	b\$	4

$$L = \{a^*|b,a|b^*,a^*\} \qquad \textit{TOK}1 = a^*|b \qquad \textit{TOK}2 = a|b^* \qquad \textit{TOK}3 = a^*$$

In	Entrada	I_{n+1}/Token
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1
0	abb\$	13
13	bb\$	TOK1
0	bb\$	2
2	b\$	4
4	\$	TOK2

4a Etapa: Processamento da entrada

$$L = \{a^*|b, a|b^*, a^*\}$$
 $TOK1 = a^*|b$ $TOK2 = a|b^*$ $TOK3 = a^*$

I _n	Entrada	I_{n+1}/Token
0	aababb\$	13
13	ababb\$	13
13	babb\$	TOK1
0	babb\$	2
2	abb\$	TOK1
0	abb\$	13
13	bb\$	TOK1
0	bb\$	2
2	b\$	4
4	\$	TOK2

A entrada *aababb* é processada em 10 passos, com os seguintes tokens e lexemas correspondentes: TOK1 (aa), TOK1 (b), TOK1 (a), TOK2 (bb)

4a Etapa: Processamento da entrada

Backtracking:

- Caso não seja possível avançar a partir de um estado
- Faz backtracking até ao último estado final visto
 - os símbolos consumidos desde o último estado final voltam para a entrada
 - o token é emitido
- Caso se volte até ao estado inicial e este não for final, a entrada não pertence à linguagem

4a Etapa: Processamento da entrada

Backtracking:

- Caso não seja possível avançar a partir de um estado
- Faz backtracking até ao último estado final visto
 - os símbolos consumidos desde o último estado final voltam para a entrada
 - o token é emitido
- Caso se volte até ao estado inicial e este não for final, a entrada não pertence à linguagem

Exemplo: https://web.tecnico.ulisboa.pt/~david.matos/w/pt/index.php/Theoretical_Aspects_of_Lexical_Analysis/Exercise_6

Questões?

Dúvidas?