Urządzenie Wzmacniające Nachylenie

a.k.a. Gradient Boosting Machine

Spis treści

- Idea boostingu
- Algorytm dla regresji
- Algorytm dla klasyfikacji
- Porównanie do innych modeli komitetowych
- Przykład
- Wady i zalety

Idea - boosting

Gradient boosting i drzewa decyzyjne

Algorytm - co jest potrzebne?

- Dane wejściowe $\{(x_i, y_i)\}_{i=1}^n$
- Różniczkowalna funkcja straty $L(y_i, F(x))$
- Dla regresji najczęściej

L=0.5(obserwacja - predykcja)²

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Algorytm - inicjalizacja

- Pierwszy model $F_0(x)$ jest drzewem składającym się z jednego liścia
- Dla L=0,5(obserwacja predykcja)² F₀(x) jest średnią arytmetyczną
- Ogólnie $F_0(x)$ wyraża się wzorem $F_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^{n} L(y_i, \gamma)$

Average Weight

71.2

 Liczymy pseudo rezydua używając predykcji poprzedniego modelu

$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
for $i = 1,...,n$

 Dopasowujemy drzewo decyzyjne do wartości r_{im} i otrzymujemy liście R_{jm}(j-ty liść w drzewie m)

Gender=F				
	/	7		
Height<1.6		Color not Blue		
		1	×	
-14.2, -15.2	4.8	1.8, 5.8	16.8	

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

• Dla każdego liścia w nowym drzewie liczymy $\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ii}} L(y_i, F_{m-1}(x_i) + \gamma)$

• Aktualizujemy $F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$

- Nowe rezydua są bliższe zeru niż poprzednie
- Spadek gradientów wykonujemy dla modeli od 1 do M, gdzie M to ustalona liczba drzew
- $F_M(x)$ jest wynikiem działania algorytmu.

Residual	Residual
16.8	15.1
4.8	4.3
-15.2	-13.7
1.8	1.4
5.8	5.4
-14.2	-12.7

Klasyfikacja a regresja

- regresja: przewidywanie wartości ciągłej
- klasyfikacja: przewidywanie wartości binarnej

Jak wykorzystać regresję w klasyfikacji??

Zmienić wartość ciągłą na binarną

Klasyfikacja a regresja

Jak wykorzystać regresję w klasyfikacji??

Zmienić wartość ciągłą na binarną

$$f(x) = \frac{1}{1 + e^{-(x)}}$$

Klasyfikacja - pierwszy model

Likes Popcorn	Age	Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

logarytm szans

$$\log(\frac{4}{2}) = 0.6931$$

$$\frac{e^{\log(4/2)}}{1 + e^{\log(4/2)}} = 0.6667$$

prawdopodobieństwo pozytywnego wyniku

Klasyfikacja - drugi model

Residual = True - Predicted

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

Klasyfikacja - drugi model

$\sum Residual_i$

 \sum [Previous Probability_i × (1 – Previous Probability_i)]

Klasyfikacja - predykcja

Likes	Age	Favorite	Loves
Popcorn		Color	Troll 2
Yes	12	Blue	Yes

$$log(odds) Prediction = 0.7 + (0.8 \times 1.4) = 1.8$$

Probability =
$$\frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$

Klasyfikacja - predykcja

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Predicted Prob.	Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	-0.5
Yes	19	Red	No	0.1	-0.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

Klasyfikacja - algorytm

Input: Data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable **Loss Function** $L(y_i, F(x))$

Step 1: Initialize model with a constant value: $F_0(x) = \operatorname{argmin} \sum L(y_i, \gamma)$

Step 2: for m = 1 to M:

(A) Compute
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
 for $i = 1,...,n$

- **(B)** Fit a regression tree to the r_{im} values and create terminal regions R_{im} , for $i = 1...J_m$
- (C) For $j = 1...J_m$ compute $\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$ (D) Update $F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$

(D) Update
$$F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$

Step 3: Output $F_M(x)$

Klasyfikacja - algorytm

$$\mathbf{y}_i \times \log(\mathbf{p}) + (1 - \mathbf{y}_i) \times \log(1 - \mathbf{p})$$

Input: Data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable **Loss Function** $L(y_i, F(x))$

Step 1: Initialize model with a constant value: $F_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^{n} L(y_i, \gamma)$

Step 2: for m = 1 to M:

(A) Compute
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
 for $i = 1,...,n$

(B) Fit a regression tree to the r_{im} values and create terminal regions R_{jm} , for $j = 1...J_m$

(C) For
$$j = 1...J_m$$
 compute $\gamma_{jm} = \operatorname{argmin} \sum L(y_i, F_{m-1}(x_i) + \gamma)$

Klasyfikacja - algorytm

Input: Data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable **Loss Function** $L(y_i, F(x))$

Step 1: Initialize model with a constant value:
$$F_0(x) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, \gamma)$$

Step 2: for m = 1 to M:

(A) Compute
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{--}, (x)}$$
 for $i = 1,...,n$

- **(B)** Fit a regression tree to the r_{im} values and create terminal regions R_{im} , for $j = 1...J_m$
- (C) For $j = 1...J_m$ compute $\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$ (D) Update $F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$

(D) Update
$$F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$

Step 3: Output $F_M(x)$

Podobne modele

- 1. Random Forest
 - a. modele niezależne
 - b. mniejszy overfitting niż w GBM
 - c. GBM redukuje bias
- 2. Ada boost
 - a. małe modele tylko po 2 liście
 - b. różna waga kolejnych modeli (różny learning rate)

```
library(OpenML)
library(gbm)
```

```
dset \leftarrow getOMLDataSet(1067)$data levels(dset$defects) \leftarrow c(0, 1)
```

```
library(OpenML)
library(mlr)
dset ← getOMLDataSet(1067)$data
levels(dset$defects) \leftarrow c(0, 1)
p_task ← makeClassifTask("task", data = dset,
                            target = "defects")
p_learner ← makeLearner("classif.gbm")
model \leftarrow crossval(p_learner, p_task, 10)
```

```
Resampling: cross-validation
Measures:
                    auc
[Resample] iter 1:
                    0.7597953
[Resample] iter 2: 0.8037634
[Resample] iter 3: 0.7918122
[Resample] iter 4:
                    0.8469841
[Resample] iter 5:
                    0.7868421
[Resample] iter 6:
                    0.8615101
[Resample] iter 7:
                    0.8237605
[Resample] iter 8:
                    0.8061278
[Resample] iter 9:
                    0.7987526
[Resample] iter 10:
                      0.7845578
```

Aggregated Result: auc.test.mean=0.8063906

Wady i zalety

- + duża skuteczność
- duża dostosowywalność (ale przez to wymaga dużo pracy)
- + brak konieczności wstępnej obróbki danych, radzi sobie z brakami

- groźba silnego overfittingu
- duży koszt obliczeniowy i pamięciowy
- niska interpretowalność (względem modeli prostych)

Referencje

- UC Business Analytics R Programming Guide
 - http://uc-r.github.io/gbm regression
- Gradient boosting machines, a tutorial
 - https://www.frontiersin.org/articles/10.3389/fnbot.2013.00021/full
- StatQuest:
 - https://www.youtube.com/watch?v=StWY5QWMXCw
 - https://www.youtube.com/watch?v=jxuNLH5dXCs
 - https://www.youtube.com/watch?v=2xudPOBz-vs
 - https://www.youtube.com/watch?v=3CC4N4z3GJc