Problem Set 10 Solutions

Enrique Rivera Jr

April 8, 2025

Question 1: Expressing $|2; \ell, m\rangle$ in the $|n_1, n_2, n_3\rangle$ Basis

We have two ways to label the n=2 energy eigenstates of the 3D isotropic harmonic oscillator:

- Cartesian basis: $|n_1, n_2, n_3\rangle$, where $n_1 + n_2 + n_3 = 2$. There are exactly 6 such states: $|2, 0, 0\rangle, |0, 2, 0\rangle, |0, 0, 2\rangle, |1, 1, 0\rangle, |1, 0, 1\rangle, |0, 1, 1\rangle.$
- Spherical basis: $|n; \ell, m\rangle$ with n = 2. Then n = 2 can split into (n_r, ℓ) satisfying $2n_r + \ell = 2$. We get:

$$-\ell = 0, n_r = 1 \text{ (1 state: } |2; 0, 0\rangle),$$

 $-\ell = 2, n_r = 0 \text{ (5 states: } |2; 2, m\rangle, m = -2 \cdots + 2).$

So total of 6 states again.

Below we show how each $|2; \ell, m\rangle$ is written as a linear combination of $|n_1, n_2, n_3\rangle$.

1. The $\ell = 2$ Multiplet (Five States)

Since $\ell = 2$, m runs from -2 to +2. We have 5 states: m = -2, -1, 0, 1, 2.

(a) $|2;2,\pm 2\rangle$. It is given (and can be verified by symmetry arguments) that:

$$|2; 2, \pm 2\rangle = \frac{1}{2} [|2, 0, 0\rangle - |0, 2, 0\rangle \pm i\sqrt{2} |1, 1, 0\rangle].$$

The ± 2 indicates that we attach the $\pm i$ factor times $\sqrt{2}$. This ensures these states behave like the $m=\pm 2$ spherical harmonics.

(b) $|2; 2, 0\rangle$. One finds

$$|2;2,0\rangle = \frac{1}{\sqrt{6}} [|2,0,0\rangle + |0,2,0\rangle - 2|0,0,2\rangle].$$

Here we see a combination that is symmetric in (x, y) but subtracts out the z direction in a certain proportion. This matches the $\ell = 2, m = 0$ spherical harmonic in the HO Fock basis.

(c) $|2;2,\pm 1\rangle$. Often written as linear combinations involving $|1,0,1\rangle$ and $|0,1,1\rangle$, plus some portion of $|2,0,0\rangle$ and $|0,2,0\rangle$, with appropriate phases. A typical set (with some sign conventions) is:

$$|2; 2, +1\rangle = \frac{1}{2} \Big[|2, 0, 0\rangle + |0, 2, 0\rangle - \sqrt{2} (|1, 0, 1\rangle + i |0, 1, 1\rangle) \Big],$$

$$|2; 2, -1\rangle = \frac{1}{2} \Big[|2, 0, 0\rangle + |0, 2, 0\rangle + \sqrt{2} (|1, 0, 1\rangle - i |0, 1, 1\rangle) \Big].$$

Exact sign details can vary based on phase conventions.

2. The $\ell = 0$ State (One State)

For n=2 and $\ell=0$, we must have $n_r=1$. The single state is $|2;0,0\rangle$. By orthogonality with the $\ell=2$ subspace, we find:

$$|2;0,0\rangle = \frac{1}{\sqrt{3}} [|1,1,0\rangle + |1,0,1\rangle + |0,1,1\rangle].$$

That combination is fully symmetric among the (x, y, z) directions and carries no angular momentum $(\ell = 0)$.

Conclusion (Question 1)

These six states $|2; \ell, m\rangle$ in spherical coordinates map to linear combinations of the six $|n_1, n_2, n_3\rangle$ with $n_1 + n_2 + n_3 = 2$. As examples:

- $|2; 2, \pm 2\rangle = \frac{1}{2} (|2, 0, 0\rangle |0, 2, 0\rangle \pm i\sqrt{2} |1, 1, 0\rangle),$
- $|2;0,0\rangle = \frac{1}{\sqrt{3}}(|1,1,0\rangle + |1,0,1\rangle + |0,1,1\rangle),$
- $|2;2,\pm 1\rangle$ have slightly more complicated combos involving $|1,0,1\rangle$ and $|0,1,1\rangle$ as well.

These superpositions exhaust the full n=2 manifold in both bases.

Question 2:

Question 3:

Question 4: