

Универзитет у Београду Факултет организационих наука 30.06.2020.

ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

Тест има 20 задатака на 2 странице. Сви задаци се вреднују са по 5 поена. Уколико не желите да се определите за један од првих пет понуђених одговора можете да означите "N", што се вреднује са 0 поена. За погрешан одговор се одузима 0.5 поена. Ако се, за конкретан задатак, означи више од једног или не означи ни један одговор, као и ако се на било који начин неправилно означи одговор, одузима се 1 поен.

Шифра задатка:

267465

- **1.** Вредност израза $\frac{\left(\sqrt{3^4} + \sqrt[3]{3^6}\right) \cdot 3^{-2} + 3^0}{\sqrt[5]{(-3)^5} \sqrt[4]{(-3)^4}}$ једнака је:
- A) 1;
- C) $-\frac{1}{2}$; D) $\frac{1}{2}$;
- N) Не знам.
- **2.** За $a \neq 0$, $b \neq 0$ и $a \neq -b$, израз $\left(\frac{a^{-1}}{b^{-1}} + \frac{b^{-2}}{a^{-2}}\right)^{-1} \cdot \left(\frac{a}{b} + \frac{b}{a} 1\right) + \frac{1}{b} : \left(\frac{1}{a} + \frac{1}{b}\right)$ је идентички једнак:
- (A) 1;
- B) $\frac{b}{a+b}$; C) $\frac{b-a}{a+b}$; D) 0;
- E) $\frac{a}{a+b}$;
- N) Не знам.

- 3. Нека је $f\left(\frac{x}{1-x}\right) = \frac{x}{2}$ за $x \neq 1$ и g(x) = f(x) + f(-x) за $x \neq \pm 1$. Тада је:
- A) $g(x) = \frac{x^2 + 1}{x^2 1}$; B) $g(x) = \frac{x^2}{1 x^2}$; C) $g(x) = \frac{2x}{1 x^2}$; D) $g(x) = \frac{2x}{x^2 1}$; E) $g(x) = \frac{x^2}{x^2 1}$; N) He sham.
- **4.** Ако је $|z| + \overline{z} = 3 + i\sqrt{3}$, $i^2 = -1$, онда је $(z-1)^{2020}$ једнако:
- (B) 3^{1010} ;
- C) $3^{2020}i$;
- D) 3^{2020} ;
- E) $-3^{1010}i$;
- N) Не знам.
- 5. Збир три природна броја је 1995. Ако је први број за 30% већи од другог, а други за 30% већи од трећег, онда је други број једнак:
- A) 605;
- B) 635;
- (C) 650:
- D) 665;
- E) 620;
- N) Не знам.

- **6.** Број свих целобројних решења неједначине $\frac{x^2 + 2x 15}{x^2 + 5x + 6} \leqslant -1$ једнак је:
- A) 2;
- C) 0:
- D) 1:
- E) 3:
- N) Не знам.
- 7. Остатак који се добија дељењем полинома $P(x) = x^{2020} + 2x^{2019} 1$ полиномом $Q(x) = x^3 + x^2 + x + 1$

- A) $2x^2 2x 2$; B) $2x^2 + 2x + 2$; C) $x^2 + 2x + 1$; D $-2x^2 2x 2$; E) $-x^2 2x 1$; N) He 3Ham.

- 8. Вредност израза $7^{\frac{2-\log_{14}7}{\log_{14}49}}$ једнака је:
- (A) $2\sqrt{7}$;
- B) $7\sqrt{2}$;
- C) $2\sqrt{14}$;
- D) $\sqrt{7}$;
- E) $\sqrt{14}$;
- N) Не знам.

267465

A) 0;

A) 12;

m за које важи $x_1 < 0$ и $x_2 > 1$ је:

(B) -5;

B) 6;

A) $[-1, +\infty)$;	\bigcirc B $(-2,0);$	C) $(-\sqrt{2},2);$	$D) (-\infty, -1];$	E) $(-\sqrt{3}, \sqrt{3});$	N) Не знам.
12. Производ с	вих решења једнач	ине $\frac{1}{1 - \log_x 16} + \frac{1}{1 + 1}$	$\frac{4}{-\log_x 4} = 1 \text{ je:}$		
A) 1;	B) 2;	C) 16;	D 8;	E) 4;	N) Не знам.
13. Ako je cos 2	$\alpha = \sin \alpha + \frac{5}{8}$ и $\alpha \in ($	$\left(\frac{\pi}{2},\pi\right)$, онда је вред	цност cosα једнака:		
$A) -\frac{2\sqrt{2}}{3};$	B) $-\frac{7}{8}$;	$C) -\frac{2\sqrt{6}}{5};$	D) $-\frac{\sqrt{3}}{2}$;		N) Не знам.
	₁ и CC_1 тежишне ду $A_1 : CC_1 $ једнако:	жи и CC' висина тр	ооугла ABC . Ако ј	$e \triangleleft BAC = 45^{\circ}$ и $ AB $	$ =3\cdot CC' ,$
A) 2:1;	B) $\sqrt{17}:2;$	$\bigcirc \sqrt{17}:\sqrt{5};$	D) 3:2;	E) $4:\sqrt{5}$;	N) Не знам.
	е геометријског низ a_3 . Збир првих дес			эзитивни, важи $a_3^3 +$	$a_7 = 2a_4^2$ и
A) $\frac{5^{10}-1}{4}$;	B) $\frac{3^{10}-1}{2}$;	C) $\frac{2^{10}-1}{2}$;	\bigcirc 2 ¹⁰ – 1;	E) $3^{10} - 1$;	N) Не знам.
16. Збир полуг износи:	пречника свих круж	ница које садрже т	ачке $A\left(\frac{3}{5},\frac{6}{5}\right)$ и B	(-1,2) и додирују г	праву $x = 1$
(A) 3;	B) $\frac{5}{2}$;	C) $\frac{7}{2}$;	D) $2\sqrt{3}$;	E) $2\sqrt{2}$;	N) Не знам.
	ки трапез, чије су ремина тако добијен				је трапеза.
	B) $56\pi \ cm^2$;				N) Не знам.
18. Број свих ј	решења једначине 2	$tg^2x\cos x - tgx + 2s$	$\sin x = 1$ на интерва	лу $(-\pi,\pi)$ једнак је	:
A) 3;	B) 2;	C) 1;	D) 5;	E 4;	N) Не знам.
	гри биномна коефиг и x^3 једнак је:	цијента у развоју ($\frac{\sqrt[3]{y}}{x} - \frac{\sqrt{x}}{y} \right)^n, \ x > 0, \ y$	y ≠ 0 износи 121. Ч.	пан развоја
A) $-455 x^3 y^{-11}$	B) $105 x^3 y^{-11}$;	C) $-1365 x^3 y^{-12}$	z ; D) $-455 x^3 y^{-12}$;	$ \bullet $ 455 x^3y^{-11} ;	N) Не знам.
20 Engianur	непарних шестоциф	рених бројева са мо	еђусобно различит	им цифрама, у који	ма су 1 и 2
суседне ци	рре, једнак је:				

9. Нека су x_1 и x_2 решења једначине $2x^2+2mx-m-4=0$. Збир свих целобројних вредности параметра

10. Разлика највећег и најмањег решења једначине $6^{3x^2} - 3^{2x^2+1} \cdot 4^{x^2} + 3^{x^2+1} \cdot 2^{x^2} = 126$ једнака је:

D) -3;

D) 18;

E) -6;

E) 4;

N) Не знам.

N) Не знам.

C) -2;

C 2;

11. Скуп свих решења неједначине $\sqrt{\frac{9}{x^2}-3} > 1 + \frac{3}{x}$ је подскуп скупа: