Сравнения по модулю

Определение. Два целых числа a и b называются cpaehumыми по натуральному модулю n, если их разность делится на n.

Обозначение сравнимости a и b по модулю n. $a \equiv b \pmod n$ или $a \equiv b$.

Ключевая идея. $a \equiv b \pmod{a-b}$ и $a \equiv -b \pmod{a+b}$.

Свойства сравнимости. Если $a \equiv b \pmod{n}$, $c \equiv d \pmod{n}$, то:

- $a + c \equiv b + d \pmod{n}$
- $a c \equiv b d \pmod{n}$
- $a \cdot c \equiv b \cdot d \pmod{n}$
- $a^m \equiv b^m \pmod{n}$ для любого натурального m
- $a \equiv b \pmod{\frac{n}{k}}$, если n делится на k
- $\frac{a}{k} \equiv \frac{b}{k} \pmod{\frac{n}{k}}$, если a, b, n делятся на k
- $\frac{a}{k} \equiv \frac{b}{k} \pmod{n}$, если a и b делятся на взаимно простое с n число k
- **0.** Докажите, что $3^{100} 2^{100}$ делится на $3^{10} + 2^{10}$.
- 1. a+2c и b+3d делятся на n. Докажите, что ab-6cd делится на n.
- **2.** Докажите, что $(3^n + 1)^n 2$ делится на $3^n 2$.
- 3. (a) $(4a^2-1)^2$ делится на 4ab-1. Докажите, что $(a-b)^2$ тоже.
 - (б) $n^3 + 1$ делится на mn 1. Докажите, что $m^3 + 1$ тоже.
- **4.** Целые числа a, b, c, d, e и простое p таковы, что числа $a^2 b, a^3 c, c^5 d, b^7 e$ делятся на p. Докажите, что число ae d тоже делится на p.
- **5.** (а) Для какого наибольшего натурального n число $n^3 + 7n^2 2n + 100$ делится на число n + 10?
 - (б) При каких целых m число $2m^2 3m + 1$ делится на 3m 2 ?
- **6.** a,b,c натуральные числа. Число abc+1 делится на ab-b+1. Докажите, что числа ac-a+1 и bc-c+1 тоже делятся на ab-b+1.