#### МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **ΓΟCT** 32453—2017

# Глобальная навигационная спутниковая система

# СИСТЕМЫ КООРДИНАТ

## Методы преобразований координат определяемых точек

Издание официальное



### Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

#### Сведения о стандарте

- 1 РАЗРАБОТАН Акционерным обществом «Научно-технический центр современных навигационных технологий «Интернавигация» (АО «НТЦ «Интернавигация»)
  - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 Принят Межгосударственным советом по стандартизации, метрологии и сертификации по результатам голосования (протокол от 30 августа 2017 г. № 102-П)

За принятие проголосовали:

| Краткое наименование стр <b>аны</b><br>по МК (ИСО 3166) 004—97 | Код страны по МК<br>(ИСО 3166) 004—97 | Сокращенное наименование национального органа<br>по стандартизации |
|----------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|
| Азербайджан                                                    | AZ                                    | Азстандарт                                                         |
| Армения                                                        | AM                                    | Минэкономики Республики Армения                                    |
| Беларусь                                                       | BY                                    | Госстандарт Республики Беларусь                                    |
| Казахстан                                                      | KZ                                    | Госстандарт Республики Казахстан                                   |
| Киргизия                                                       | KG                                    | Кыргызстандарт                                                     |
| Молдова                                                        | MD                                    | Молдова-Стандарт                                                   |
| Россия                                                         | RU                                    | Росстандарт                                                        |
| Таджикистан                                                    | TJ                                    | Таджикстандарт                                                     |
| Туркменистан                                                   | TM                                    | Главгосслужба «Туркменстандартлары»                                |
| Узбекистан                                                     | UZ                                    | Узгосстандарт                                                      |
| Украина                                                        | UA                                    | Минэкономразвития Украины                                          |

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 2017 г. № 1055-ст межгосударственный стандарт ГОСТ 32453—2017 введен в действие в качестве национального стандарта с 1 июля 2018 г.
  - 5 B3AMEH FOCT 32453-2013

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2017

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

## Содержание

| 1 | Область применения                                                                     | 1  |  |
|---|----------------------------------------------------------------------------------------|----|--|
| 2 | Термины и определения                                                                  | 1  |  |
| 3 | В Сокращения                                                                           |    |  |
| 4 | Земная система координат и ее практические реализации                                  | 3  |  |
|   | 4.1 Системы геодезических параметров                                                   | 3  |  |
|   | 4.2 Референцные геодезические системы координат Российской Федерации                   | 5  |  |
| 5 | Методы преобразований координат определяемых точек                                     | 6  |  |
|   | 5.1 Преобразование геодезических координат в прямоугольные пространственные координаты |    |  |
|   | · · · · · · · · · · · · · · · · · · ·                                                  | 6  |  |
|   | 5.2 Преобразование пространственных прямоугольных координат                            | 7  |  |
|   | 5.3 Преобразование геодезических координат                                             | 8  |  |
|   | 5.4 Преобразование геодезических координат в плоские прямоугольные координаты          |    |  |
|   | и обратно                                                                              | 9  |  |
|   | 5.5 Преобразование приращений пространственных прямоугольных координат                 |    |  |
|   | из одной системы координат в другую                                                    | 11 |  |
|   | 5.6 Связь между геодезической и нормальной высотами                                    | 11 |  |
| П | риложение А (обязательное) Параметры преобразования между системой координат ПЗ-90.11  |    |  |
|   | и референцными системами координат Российской Федерации                                | 12 |  |
| П | риложение Б (обязательное) Параметры преобразования между системой координат ПЗ-90.11  |    |  |
|   | и системой координат ПЗ-90.02                                                          | 14 |  |
| П | риложение В (обязательное) Параметры преобразования между системой координат ПЗ-90.11  |    |  |
|   |                                                                                        | 15 |  |
| П | риложение Г (обязательное) Параметры преобразования между системой координат ПЗ-90.11  |    |  |
|   | и системой координат WGS-84(G1150)                                                     | 16 |  |
| П | риложение Д (обязательное) Параметры преобразования между системой координат ПЗ-90.11  |    |  |
|   | и системой координат ITRF-2008                                                         | 17 |  |
| П | риложение Е (обязательное) Алгоритм учета эпохи параметров преобразования              |    |  |
|   | при преобразовании координат из одной системы в другую                                 | 18 |  |
| Б | иблиография                                                                            | 19 |  |

#### Глобальная навигационная спутниковая система

#### СИСТЕМЫ КООРДИНАТ

#### Методы преобразований координат определяемых точек

Global navigation satellite system. Coordinate systems. Methods of transformations for determinated points coordinates

Дата введения -2018-07-01

### 1 Область применения

Настоящий стандарт распространяется на системы координат, входящие в состав систем геодезических параметров «Параметры Земли 1990 года» и референцные системы координат Российской Федерации.

Настоящий стандарт устанавливает методы преобразований координат и их приращений из одной системы в другую, а также порядок использования параметров преобразования систем координат при выполнении геодезических, навигационных, картографических работ с применением аппаратуры потребителей глобальных навигационных спутниковых систем.

### 2 Термины и определения

- В настоящем стандарте применены следующие термины с соответствующими определениями:
- 2.1 большая полуось эллипсоида а: Параметр, характеризующий размер эллипсоида.
- 2.2 высокоточная геодезическая сеть; ВГС: Спутниковая геодезическая сеть со средним расстоянием между смежными пунктами 150—300 км, координаты которой определяются относительно пунктов фундаментальной астрономо-геодезической сети.
- 2.3 геоид: Эквипотенциальная поверхность, совпадающая с поверхностью Мирового океана в состоянии полного покоя и равновесия и продолженная под материками.
- 2.4 **геодезическая высота:** Высота точки над поверхностью отсчетного эллипсоида, отсчитываемая по нормали к эллипсоиду.
- 2.5 геодезическая долгота: Двугранный угол между плоскостями геодезического меридиана данной точки и начального геодезического меридиана.
- 2.6 **геодезическая широта:** Угол между нормалью к поверхности отсчетного эллипсоида, проходящей через заданную точку, и плоскостью его экватора.
- 2.7 гравитационное поле Земли; ГПЗ: Поле силы тяжести на поверхности Земли и во внешнем пространстве, обусловленное силой притяжения Земли и центробежной силой, возникающей в результате суточного вращения Земли.
- 2.8 квазигеоид: Геометрическое место точек, получаемых путем откладывания нормальных высот от точек физической поверхности Земли по нормали к эллипсоиду. Математическая поверхность, близкая к геоиду, и являющаяся отсчетной для установления системы нормальных высот.
- 2.9 космическая геодезическая сеть; КГС: Сеть геодезических пунктов, закрепляющих геоцентрическую систему координат, положение которых на земной поверхности определено по наблюдениям искусственных спутников Земли.
- 2.10 **модель гравитационного поля Земли:** Математическое описание характеристик гравитационного поля Земли.
- 2.11 **нормальная высота:** Измеренная разность геопотенциала в данной точке и начале счета высот, деленная на среднее значение нормальной силы тяжести.

- 2.12 нормальное гравитационное поле Земли: Модель гравитационного поля Земли, представляемая нормальным потенциалом силы тяжести уровенного эллипсоида вращения и фундаментальными геодезическими параметрами, однозначно определяющими отсчетную систему.
- 2.13 общеземной эллипсоид; ОЗЭ: Эллипсоид вращения, который характеризует фигуру и размеры Земли и применяется для обработки геодезических измерений на всей поверхности Земли в общеземной (геоцентрической) системе координат.
- 2.14 **отсчетный эллипсоид:** Эллипсоид вращения, который характеризует фигуру и размеры Земли и определенным образом ориентирован в теле Земли.
- 2.15 **планетарная модель гравитационного поля Земли:** Модель гравитаионного поля Земли, отражающая гравитационные особенности Земли в целом.
- 2.16 плоскость астрономического меридиана: Плоскость, проходящая через отвесную линию в данной точке и параллельная оси вращения Земли.
- 2.17 плоскость геодезического меридиана: Плоскость, проходящая через нормаль к поверхности отсчетного эллипсоида в данной точке и параллельная его малой оси.
  - 2.18 плоскость начального меридиана: Плоскость меридиана, от которого ведется счет долгот.
- 2.19 плоские прямоугольные координаты: Линейные величины, определяющие положение точек на плоскости, на которой отображена в заданной картографической проекции ограниченная часть поверхности отсчетного эллипсоида. Осями координат являются прямолинейные изображения экватора эллипсоида и осевого меридиана соответствующей зоны, пересекающиеся под прямым углом.
- 2.20 **сжатие эллипсоида** α: Разность между большой или малой осями эллипсоида, выраженная в единицах большой полуоси и вычисляемая по формуле

$$\alpha = \frac{a-b}{a}$$
.

- 2.21 **первый (второй) эксцентриситет e (e') эллипсоида:** Фокальное расстояние c, выраженное в единицах большой (малой) полуоси эллипсоида и вычисляемое по формуле  $e = \frac{c}{a} \left( e' = \frac{c}{b} \right)$ , где  $c = \sqrt{a^2 b^2}$ .
- 2.22 геодезические координаты: Параметры, два из которых (геодезическая широта и геодезическая долгота) характеризуют направление нормали к поверхности отсчетного эллипсоида в данной точке пространства относительно плоскостей его экватора и начального меридиана, а третий (геодезическая высота) представляет собой высоту точки над поверхностью отсчетного эллипсоида.
- 2.23 система геодезических параметров Земли: Совокупность параметров и точностных характеристик фундаментальных геодезических постоянных, общеземного эллипсоида, модели гравитационного поля Земли, геоцентрической системы координат и параметров трансформирования ее в другие системы координат.
- 2.24 спутниковая геодезическая сеть 1-го класса; СГС-1: Спутниковая геодезическая сеть со средним расстоянием между соседними пунктами 15 20 км, координаты которых определяются относительно высокоточной геодезической сети.
- 2.25 фундаментальная астрономо-геодезическая сеть; ФАГС: Спутниковая геодезическая сеть со средним расстоянием между соседними пунктами 650 1000 км, координаты которых определяются в геоцентрической системе координат.
- 2.26 фундаментальные геодезические постоянные: Взаимосогласованные геодезические постоянные, однозначно определяющие параметры общеземного эллипсоида и нормальное гравитационное поле Земли.
- 2.27 эквипотенциальная поверхность: Поверхность, в каждой точке которой потенциал остается постоянным.
- 2.28 параметры трансформирования систем координат: Параметры, с помощью которых выполняется преобразование координат из одной системы координат в другую.

### 3 Сокращения

В настоящем стандарте применены следующие сокращения:

ВГС — высокоточная геодезическая сеть;

ГГС — государственная геодезическая сеть;

ГЛОНАСС — глобальная навигационная спутниковая система Российской Федерации;

ГНСС — глобальная навигационная спутниковая система;

ГПЗ — гравитационное поле Земли:

ПЗ-90, ПЗ-90.02, ПЗ-90.11 — системы геодезических параметров «Параметры Земли 1990 года» Российской Федерации:

ГСК -2011 — геодезическая система координат 2011 года Российской Федерации, эпоха 2011 года:

СГС-1 — спутниковая геодезическая сеть 1-го класса:

СК — система координат;

ФАГС — фундаментальная астрономо-геодезическая сеть;

ВІН — Международное бюро времени;

GPS — глобальная навигационная спутниковая система Соединенных Штатов Америки;

IERS — Международная служба вращения Земли;

ITRF — практическая реализация системы координат TRS, осуществляемая IERS;

IRM — референцный меридиан, установленный IERS; IRP — референцный полюс, установленный IERS;

TRS — земная система координат, участвующая вместе с Землей в ее суточном вращении

вокруг оси;

TRF — практическая реализация системы координат TRS;

 $a_{
m WGS-84}$  — большая полуось общеземного эллипсоида в системе WGS-84;

— большая полуось эллипсоида Красовского;

α<sub>Кр</sub> — сжатие эллипсоида Красовского;

WGS-84 — система геодезических параметров «Мировая геодезическая система 1984 года»

Соединенных Штатов Америки.

### 4 Земная система координат и ее практические реализации

Земная система координат предназначена для количественного описания положения и движения объектов, находящихся на поверхности Земли и в околоземном пространстве.

Количественными характеристиками положения точки в земной системе координат являются координаты, имеющие вариации во времени, вызванные геофизическими явлениями (тектоническими или приливными деформациями).

Практическая реализация TRS, осуществляемая IERS, получила наименование ITRF и заключается в определении координат пунктов (и их скоростей изменения во времени), закрепляющих ITRF на поверхности Земли.

Начало и направление осей системы координат ITRF определены следующим образом:

- **начало** в центре масс Земли:
- ось Z направлена в IRP;
- ось X направлена в точку пересечения плоскости IRM с плоскостью, проходящей через начало системы координат TRF и перпендикулярную к оси Z;
  - ось У дополняет систему до правой ортогональной координатной системы.

Точность последних практических реализаций TRS находится на субсантиметровом уровне точности определения координат пунктов.

Практические реализации земной системы координат TRS, используемые в глобальных навигационных спутниковых системах ГЛОНАСС (П3-90) и GPS (WGS-84), а также референцные системы координат Российской Федерации (СК-42, СК-95, ГСК-2011) приведены в 4.1.

П р и м е ч а н и е — В настоящее время Международной службой вращения Земли получена практическая реализация TRS, обозначаемая как ITRF-2014 на эпоху 2010 года.

#### 4.1 Системы геодезических параметров

### 4.1.1 Система геодезических параметров «Параметры Земли 1990 года»

- 4.1.1.1 Система геодезических параметров ПЗ-90 включает в себя:
- фундаментальные геодезические постоянные;
- параметры ОЗЭ;

#### **FOCT 32453—2017**

- систему координат ПЗ-90, закрепляемую координатами пунктов космической геодезической сети:
  - характеристики модели ГПЗ;
- параметры трансформирования геоцентрической системы координат ПЗ-90 в референцные системы координат России и зарубежные системы координат.

Параметры трансформирования между системой координат П3-90 и референцными системами координат России и порядок их использования при преобразовании систем координат приведены в приложении А.

П р и м е ч а н и е — В соответствии с [1] в настоящее время установлена государственная геоцентрическая система координат «Параметры Земли 1990 года» (ПЗ-90), отнесенная к эпохе 2010.0 и обозначаемая как ПЗ-90.11.

Числовые значения элементов трансформирования между системами координат ПЗ-90, ПЗ-90.02 и ПЗ-90.11, а также порядок их использования при преобразовании систем координат приведены в приложениях Б и В.

- 4.1.1.2 Теоретическое определение системы координат ПЗ-90 основывается на следующих положениях:
  - начало системы координат расположено в центре масс Земли;
  - ось Z направлена к условному земному полюсу (международному условному началу);
- ось X лежит в плоскости начального астрономического меридиана, установленного IERS и **М**еждународным бюро времени:
  - ось У дополняет систему до правой системы координат.
- 4.1.1.3 Положения точек в системе П3-90 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр ОЗЭ совпадает с началом системы координат ПЗ-90, ось вращения эллипсоида — с осью Z, а плоскость начального меридиана — с плоскостью XOZ.

П р и м е ч а н и е — За отсчетную поверхность в системах геодезических параметров ПЗ-90, ПЗ-90.02 и ПЗ-90.11 принят общеземной эллипсоид с большой полуосью  $a_{\Pi 3}$  = 6378136 м и сжатием  $\alpha_{\Pi 3}$  = 1/298,25784.

#### 4.1.2 Система геодезических параметров «Мировая геодезическая система 1984 года»

4.1.2.1 Система параметров WGS-84 включает в себя:

- фундаментальные геодезические постоянные;
- систему координат WGS-84, закрепляемую координатами пунктов глобальной геодезической сети;
  - параметры ОЗЭ;
  - характеристики модели ГПЗ;
- параметры элементов трансформирования между геоцентрической системой координат WGS-84 в различные национальные системы координат.

Параметры элементов трансформирования между геоцентрическими системами координат ПЗ-90 и WGS-84, а также порядок использования элементов трансформирования приведены в приложении Г.

П р и м е ч а н и е — В настоящее время действует шестая версия системы координат WGS-84, отнесенная к эпохе 2005.0 и обозначаемая как WGS-84(G1762). В приведенных обозначениях версий системы координат WGS-84 литера «G» означает «GPS», а «730», «873», «1150» и «1762» указывают на номер GPS-недели, соответствующей дате, к которой отнесены эти версии системы координат WGS-84.

По оценкам зарубежных специалистов система координат WGS-84(G1762) согласована с системой координат ITRF-2008 на субмиллимитровом уровне.

- 4.1.2.2 Теоретическое определение системы координат WGS-84 основывается на следующих положениях:
  - начало системы координат расположено в центре масс Земли;
  - ось Z направлена в IERS Reference Pole (IRP);
- ось *X* направлена в точку пересечения плоскости (IRM) с плоскостью, проходящей через начало системы координат WGS-84 и перпендикулярную к оси *Z*;
  - ось У дополняет систему до правой системы координат.

4.1.2.3 Положения точек в системе WGS-84 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр эллипсоида совпадает с началом системы координат WGS-84, ось вращения эллипсоида совпадает с осью *Z*, а плоскость начального меридиана — с плоскостью *XOZ*.

П р и м е ч а н и е — 3а отсчетную поверхность в WGS принят общеземной эллипсоид с большой полуосью  $a_{\text{WGS-84}}$  равным 6378137 м, и сжатием  $\alpha_{\text{WGS-84}}$  равным 1/298,257223563.

#### 4.2 Референцные геодезические системы координат Российской Федерации

## 4.2.1 Геодезическая система координат Российской Федерации ГСК-2011

4.2.1.1 В соответствии с [1] в качестве государственной установлена также ГСК-2011, отнесенная к эпохе 2011 года.

ГСК-2011 — государственная геодезическая система координат, предназначенная для осуществления геодезической, картографической, навигационной и других видов деятельности для текущих и перспективных потребностей экономики, науки, обороны и безопасности Российской Федерации и обеспечивающая преемственность существующих геодезических систем координат СК-95 и СК-42.

- 4.2.1.2 Теоретическое определение системы координат ГСК-2011 основывается на следующих положениях:
  - начало системы координат расположено в центре масс Земли;
  - ось Z направлена к Условному земному полюсу, как определено рекомендациями IERS и BIH;
- ось X направлена в точку пересечения плоскости экватора и начального меридиана, установленного ВІН:
  - ось У дополняет систему до правой системы координат.
- 4.2.1.3 ГСК-2011 закрепляется на поверхности Земли пунктами ФАГС, ВГС, СГС-1, а также пунктами ГГС Российской Федерации общим числом около 300000.
- 4.2.1.4 Положения точек в системе ГСК-2011 могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры и форма которого определяются значениями большой полуоси и сжатия.

Центр ОЗЭ совпадает с началом системы координат ГСК-2011, ось вращения эллипсоида совпадает с осью *Z*, а плоскость начального меридиана — с плоскостью *XOZ*.

П р и м е ч а н и е — За отсчетную поверхность в ГСК-2011 принят общеземной эллипсоид с большой полуосью  $a_{\Gamma CK-2011}$  равной, 6 378 136,5 м, и сжатием  $\alpha_{\Gamma CK-2011}$  равным 2564151.

#### 4.2.2 Референцные системы координат СК-95 и СК-42

Кроме ГСК-2011 координатная основа Российской Федерации представлена референцной системой координат, реализованной в виде ГГС, закрепляющей систему координат на территории страны, и государственной нивелирной сети, распространяющей на всю территорию страны систему нормальных высот (Балтийская система), исходным началом которой является нуль Кронштадтского футштока.

Положения определяемых точек относительно координатной основы могут быть получены в виде пространственных прямоугольных или геодезических координат либо в виде плоских прямоугольных координат и высот.

Геодезические координаты в референцных системах координат Российской Федерации СК-95 и СК-42 относятся к эллипсоиду Красовского, размеры и форма которого определяются значениями большой полуоси  $a_{\mathrm{KD.}}$  равной 6378245 м, и сжатия  $\alpha_{\mathrm{KD.}}$  равного 1/298,3.

Центр эллипсойда Красовского совпадает с началом референцной системы координат, ось вращения эллипсоида параллельна оси вращения Земли, а плоскость нулевого меридиана определяет положение начала счета долгот.

П р и м е ч а н и е — В соответствии [1] система геодезических координат 1995 года (СК-95) и единая система геодезических координат 1942 года (СК-42), введенная в соответствии с [2], применяются до 1 января 2021 г. в отношении материалов (документов), созданных с их использованием.

### 5 Методы преобразований координат определяемых точек

### 5.1 Преобразование геодезических координат в прямоугольные пространственные координаты и обратно

5.1.1 Преобразование геодезических координат в прямоугольные пространственные координаты осуществляют по формулам:

$$X = (N + H)\cos B \cos L$$

$$Y = (N + H)\cos B \sin L$$

$$Z = [(1 - e^2)N + H]\sin B$$
(1)

где X, Y, Z — прямоугольные пространственные координаты точки;

В, L — геодезические широта и долгота точки соответственно, рад;

Н — геодезическая высота точки, м;

N — радиус кривизны первого вертикала, м;

е — эксцентриситет эллипсоида.

Значения радиуса кривизны первого вертикала и квадрата эксцентриситета эллипсоида вычисляют соответственно по формулам:

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 B}},\tag{2}$$

$$e^2 = 2\alpha - \alpha^2,\tag{3}$$

где а — большая полуось эллипсоида, м;

 $\alpha$  — сжатие эллипсоида.

5.1.2 Для преобразования пространственных прямоугольных координат в геодезические необходимо проведение итераций при вычислении геодезической широты.

Для этого используют следующий алгоритм:

1 — вычисляют вспомогательную величину D по формуле

$$D = \sqrt{\chi^2 + \gamma^2} \; ; \tag{4}$$

2 — анализируют значение D:

a) если D = 0. то

$$B = \frac{\pi}{2} \frac{Z}{|Z|},\tag{5}$$

$$L = 0,$$
  
 $H = Z \cdot \sin B - a\sqrt{1 - e^2 \sin^2 B},$  (6)

б) если *D ≠ 0*, то при

$$Y < 0, X > 0, \qquad L = 2\pi - L_{a},$$

$$Y < 0, X < 0, \qquad L = \pi + L_{a},$$

$$Y > 0, X < 0, \qquad L = \pi - L_{a},$$

$$Y > 0, X > 0, \qquad L = L_{a},$$

$$Y = 0, X > 0, \qquad L = 0,$$

$$Y = 0, X < 0, \qquad L = \pi.$$
(7)

где 
$$L_a = \left| \arcsin \left( \frac{Y}{D} \right) \right|$$
 (8)

3 — анализируют значение Z:

а) если Z = 0, то

$$B = 0, H = D - a,$$
 (9)

б) во всех других случаях вычисления выполняют следующим образом:

- вычисляют значения вспомогательных величин r, c, p по формулам:

$$r = \sqrt{X^2 + Y^2 + Z^2} , {10}$$

$$c = \arcsin\left(\frac{Z}{r}\right),\tag{11}$$

$$\rho = \frac{e^2 a}{2r};\tag{12}$$

- реализуют итеративный процесс, используя вспомогательные величины  $s_1$  и  $s_2$ :

$$s_1 = 0, \tag{13}$$

$$b = c + s_1, \tag{14}$$

$$s_2 = \arcsin\left[\frac{p\sin(2b)}{\sqrt{1 - e^2\sin^2b}}\right],\tag{15}$$

$$d = |s_2 - s_1|, (16)$$

если значение d, определяемое по формуле (16), меньше установленного значения допуска, то

$$B = b, (17)$$

$$H = D \cdot \cos B + Z \cdot \sin B - a \cdot \sqrt{1 - e^2 \sin^2 B} , \qquad (18)$$

если значение d не менее установленного значения допуска, то

$$s_1 = s_2, \tag{19}$$

и вычисления повторяют, начиная с формулы (14).

5.1.3 При преобразованиях координат в качестве допуска прекращения итеративного процесса принимают значение d, равное  $10^{-4}$ .

В этом случае погрешность вычисления геодезической высоты не превышает 0,003 м.

#### 5.2 Преобразование пространственных прямоугольных координат

Пользователям ГНСС ГЛОНАСС и GPS необходимо выполнять преобразования координат из системы ПЗ-90 в систему WGS-84 и обратно, а также из ПЗ-90 и WGS-84 в референцные системы координат Российской Федерации, используя семь элементов трансформирования, точность которых определяет точность преобразований.

Параметры трансформирования между системами координат указаны в соответствии с приложениями А — Д:

- П3-90.11 и CK-42, CK-95, ГСК-2011 (см. приложение A);
- П3-90.11 и П3-90.02 (см. приложение Б);
- П3-90.11 и П3-90 (см. приложение В);
- П3-90.11 и WGS-84(G1150) (см. приложение Г);
- П3-90.11 и ITRF-2008 (см. приложение Д);

Приложения А, Б и Д содержат эпоху параметров преобразования.

Это обстоятельство необходимо учитывать при преобразовании координат в соответствии с процедурой, приведенной в приложении E.

Если данные об эпохе параметров преобразования отсутствуют, то преобразование координат выполняют стандартным образом.

Преобразование координат из системы WGS-84 в координаты референцных систем Российской Федерации осуществляют последовательным преобразованием координат сначала в систему ПЗ-90, а затем — в координаты референцных систем.

Преобразование пространственных прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{5} = (1+m) \begin{pmatrix} 1 & +\omega_{Z} & -\omega_{Y} \\ -\omega_{Z} & 1 & +\omega_{X} \\ +\omega_{Y} & -\omega_{X} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{A} + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix},$$
 (20)

где  $\Delta x$ ,  $\Delta y$ ,  $\Delta z$  — линейные параметры трансформирования при переходе из системы A в систему E, м;  $\omega_x$ ,  $\omega_y$ ,  $\omega_z$  — угловые параметры трансформирования при переходе из системы E в систему E, рад; E — масштабный параметр трансформирования при переходе из системы E в систему E. Обратное преобразование прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{A} = (1 - m) \begin{pmatrix} 1 & -\omega_{Z} & +\omega_{Y} \\ +\omega_{Z} & 1 & -\omega_{X} \\ -\omega_{Y} & +\omega_{X} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{5} - \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}.$$
 (21)

#### 5.3 Преобразование геодезических координат

Преобразование геодезических координат из системы А в систему Б выполняют по формулам

$$B_{\mathcal{B}} = B_{\mathcal{A}} + \Delta B,$$

$$L_{\mathcal{B}} = L_{\mathcal{A}} + \Delta L,$$

$$H_{\mathcal{B}} = H_{\mathcal{A}} + \Delta H,$$
(22)

где В, L — геодезические широта и долгота, выраженные в единицах плоского угла;

*H* — геодезическая высота, м;

 $\Delta B$ ,  $\Delta L$ ,  $\Delta H$  — поправки к геодезическим координатам точки.

Поправки к геодезическим координатам вычисляют по формулам:

$$\Delta B = \frac{\rho}{(M+H)} \left[ \frac{N}{a} e^{2} \sin B \cos B \Delta a + \left( \frac{N^{2}}{a^{2}} + 1 \right) N \sin B \cos B \frac{\Delta e^{2}}{2} - \right.$$

$$\left. - (\Delta x \cos L + \Delta y \sin L) \sin B + \Delta z \cos B \right] -$$

$$\left. - \omega_{x} \sin L (1 + e^{2} \cos 2B) + \omega_{y} \cos L (1 + e^{2} \cos 2B) - \rho m e^{2} \sin B \cos B;$$

$$\Delta L = \frac{\rho}{(N+H) \cos B} \left( -\Delta x \sin L + \Delta y \cos L \right) + tg B (1 - e^{2}) (\omega_{x} \cos L + \omega_{y} \sin L) - \omega_{z};$$

$$\Delta H = -\frac{a}{N} \Delta a + N \sin^{2} B \frac{\Delta e^{2}}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B -$$

$$\left. - N e^{2} \sin B \cos B \left( \frac{\omega_{x}}{\rho} \sin L - \frac{\omega_{y}}{\rho} \cos L \right) + \left( \frac{a^{2}}{N} + H \right) m \right.$$

$$(23)$$

где  $\Delta B$ ,  $\Delta L$  — поправки к геодезическим широте, долготе, угл. с;

 $\Delta H$  — поправка к геодезической высоте, м;

В, L — геодезические широта и долгота, рад;

Н — геодезическая высота, м;

 $\Delta x$ ,  $\Delta y$ ,  $\Delta z$  — линейные элементы трансформирования систем координат при переходе из системы A в систему B, м;

 $\omega_{X}$ ,  $\omega_{Y}$ ,  $\omega_{Z}$ — угловые параметры трансформирования систем координат при переходе из системы A в систему B, угл. c;

m — масштабный элемент трансформирования систем координат при переходе из системы A в систему B;

$$\Delta a = a_{5} - a_{A};$$

$$\Delta e^{2} = e_{5}^{2} - a_{A}^{2};$$

$$a = \frac{a_{5} + a_{A}}{2};$$

$$e^{2} = \frac{e_{5}^{2} + e_{A}^{2}}{2};$$

M — радиус кривизны меридианного сечения ( $M = a(1 - e^2)(1 - e^2 \sin^2 B)^{-\frac{3}{2}}$ );

N — радиус кривизны первого вертикала ( $N = a(1 - e^2 \sin^2 B)^{-\frac{1}{2}}$ );

 $a_{\it B},\,a_{\it A}$  — большие полуоси эллипсоидов в системах координат  $\it B$  и  $\it A$  соответственно;

 $e_{B}^{2}$ ,  $a_{A}^{2}$  — квадраты эксцентриситетов эллипсоидов в системах координат B и A соответственно;  $\rho$  — число угловых секунд в 1 радиане [ $\rho$  = 206 264, 806"].

Формулы (23) обеспечивают вычисление поправок к геодезическим координатам с погрешностью, не превышающей 0,3 м (в линейной мере). Для достижения погрешности не более 0,001 м выполняют вторую итерацию, т. е. учитывают значения поправок к геодезическим координатам по формулам (22) и повторно выполняют вычисления по формулам (23).

При этом

$$B = \frac{B_A + (B_A + \Delta B)}{2},$$

$$L = \frac{L_A + (L_A + \Delta L)}{2},$$

$$H = \frac{H_A + (H_A + \Delta H)}{2}.$$
(24)

Формулы (22), (23) и точностные характеристики преобразований по этим формулам справедливы до широт 89°.

### 5.4 Преобразование геодезических координат в плоские прямоугольные координаты и обратно

5.4.1 Для получения плоских прямоугольных координат в принятой на территории Российской Федерации проекции Гаусса-Крюгера используют геодезические координаты на эллипсоиде Красовского.

Плоские прямоугольные координаты с погрешностью не более 0,001 м вычисляют по формулам

 $x = 6367558,496 \ 8 \ B - \sin 2B \ (16002,890 \ 0 + 66,9607 \ \sin^2 B + 0,3515 \ \sin^4 B - l^2 \ (1594561,25 + 5336,535 \ \sin^2 B + 26,790 \ \sin^4 B + 0,149 \ \sin^6 B + l^2 \ (672483,4 - 811219,9 \ \sin^2 B + 5420,0 \ \sin^4 B - 10,6 \ \sin^6 B + l^2 \ (278194 - 830174 \ \sin^2 B + 572434 \ \sin^4 B - 16010 \ \sin^6 B + l^2 \ (109500 - 574700 \ \sin^2 B + 863700 \ \sin^4 B - 398600 \ \sin^6 B \ )))));$   $y = (5 + 10n)10^5 + l \cos B \ (6378245 + 21346,1415 \ \sin^2 B + 107,1590 \ \sin^4 B + l^2 \ (1070204,16 - 2136826,66 \ \sin^2 B + 17,98 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (270806 - 1523417 \ \sin^2 B + 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (270806 - 1523417 \ \sin^2 B + 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (270806 - 1523417 \ \sin^2 B + 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 21701 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^6 B + l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327645 \ \sin^4 B - 11,99 \ \sin^4 B - l^2 \ (1070204,16 - 1327$ 

 $+ l^2 (79690 - 866190 \sin^2 B + 1730360 \sin^4 B - 945460 \sin^6 B)))).$  (26)

где x, y — плоские прямоугольные координаты (абсцисса и ордината) определяемой точки в проекции Гаусса-Крюгера. м:

В — геодезическая широта определяемой точки, рад;

 / — расстояние от определяемой точки до осевого меридиана зоны, выраженное в радианной мере и вычисляемое по формуле

$$l = \{L - [3 + 6(n-1)]\} / 57,29577951; \tag{27}$$

L — геодезическая долгота определяемой точки, град;

n — номер шестиградусной зоны в проекции Гаусса-Крюгера, вычисляемый по формуле

$$n = E[(6 + L) / 6], (28)$$

Е[...] — целая часть выражения, заключенного в квадратные скобки.

5.4.2. Преобразование плоских прямоугольных координат в проекции Гаусса-Крюгера на эллипсоиде Красовского в геодезические координаты осуществляют по формулам

$$B = B_0 + \Delta B; \tag{29}$$

$$L = 6(n - 0.5) / 57,29577951 + I, (30)$$

где B, L — геодезические широта и долгота соответственно определяемой точки, рад;

 $B_0$  — геодезическая широта точки, абсцисса которой равна абсциссе x определяемой точки, а ордината равна нулю, рад;

n — номер шестиградусной зоны в проекции Гаусса-Крюгера, вычисляемый по формуле

$$n = E[y10^{-6}], (31)$$

Е[...] — целая часть выражения, заключенного в квадратные скобки;

у — ордината определяемой точки в проекции Гаусса-Крюгера, м.

Значения  $B_0$ ,  $\Delta B$  и l вычисляют по следующим формулам

$$B_0 = \beta + \sin 2\beta (0,00252588685 - 0,00001491860 \sin^2 \beta + 0,00000011904 \sin^4 \beta);$$
 (32)

 $\Delta B = -z_0^2 \cdot \sin 2B_0 (0,251684631 - 0,003369263 \sin^2\!B_0 + 0,00001127 \sin^4\!B_0 - 0,00001127 \sin^4\!B_0 + 0,000011127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,000011127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,000011127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,000011127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,000011127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,00001127 \sin^4\!B_0 + 0,000011127 \sin^4\!B_0 + 0,00001127 \sin^2\!B_0 + 0,00001127 \sin^4\!B_0 + 0,00001127 \sin^2\!B_0 + 0,000$ 

$$-z_0^2(0,10500614-0,04559916\sin^2B_0+0,00228901\sin^4B_0-0,00002987\sin^6B_0-0$$

$$-z_0^2(0.042858 - 0.025318\sin^2 B_0 + 0.014346\sin^4 B_0 - 0.001264\sin^6 B_0 - 0.0012645\sin^6 B_0 - 0.0012645\sin^6 B_0 - 0.0012645\sin^6 B_0 - 0.001265\sin^6 B_0 - 0.001265\cos^2 B_0 - 0.00126$$

$$-z_0^2(0.01672 - 0.00630\sin^2 B_0 + 0.01188\sin^4 B_0 - -0.00328\sin^6 B_0))));$$

$$-z_0^2(0.0420025 + 0.1487407\sin^2 B_0 + 0.0059420\sin^4 B_0 - 0.0000150\sin^6 B_0 - (34)$$

$$-z_0^2(0.0038 + 0.0524\sin^2 B_0 + 0.0482\sin^4 B_0 - 0.0032\sin^6 B_0)))))$$

где  $\beta$  — вспомогательная величина, вычисляемая по формуле

$$\beta = \frac{x}{6367558,4968} \,; \tag{35}$$

 $z_0$  — вспомогательная величина, вычисляемая по формуле

$$z_0 = \frac{(y - (10n + 5)10^5)}{(6378245\cos B_0)}; {36}$$

х, у — абсцисса и ордината определяемой точки в проекции Гаусса-Крюгера соответственно, м.

Погрешность преобразования координат по формулам (25): (26) и (32) — (36) составляет не более 0.001 м.

### 5.5 Преобразование приращений пространственных прямоугольных координат из одной системы координат в другую

Преобразование приращений пространственных прямоугольных координат из системы координат А в систему Б осуществляют по формуле

$$\begin{bmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{bmatrix}_{E} = (1 + m) \begin{bmatrix}
1 & +\omega_{Z} & -\omega_{Y} \\
-\omega_{Z} & 1 & +\omega_{X} \\
+\omega_{Y} & -\omega_{X} & 1
\end{bmatrix} \begin{bmatrix}
\Delta X \\
\Delta \Delta Y \\
\Delta Z
\end{bmatrix}_{A} + \begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta z
\end{bmatrix}.$$
(37)

Обратное преобразование приращений пространственных прямоугольных координат из системы Б в систему А выполняют по формуле

$$\begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}_{A} = (1 - m) \begin{pmatrix}
1 & -\omega_{Z} & +\omega_{Y} \\
+\omega_{Z} & 1 & -\omega_{X} \\
-\omega_{Y} & +\omega_{X} & 1
\end{pmatrix} \begin{pmatrix}
\Delta X \\
\Delta Y \\
\Delta Z
\end{pmatrix}_{B} - \begin{pmatrix}
\Delta x \\
\Delta y \\
\Delta z
\end{pmatrix}.$$
(38)

В формулах (37) и (38) угловые элементы трансформирования  $\omega_{\chi}$ ,  $\omega_{\gamma}$ ,  $\omega_{Z}$  выражены в радианах.

#### 5.6 Связь между геодезической и нормальной высотами

Геодезическая и нормальная высоты связаны соотношением:

$$H = H^{\gamma} + \zeta, \tag{39}$$

где Н — геодезическая высота определяемой точки, м;

 $H^{\gamma}$  — нормальная высота определяемой точки, м;

 $\zeta$  — высота квазигеоида над эллипсоидом в определяемой точке, м.

Высоты квазигеоида над отсчетным эллипсоидом систем геодезических параметров ПЗ и WGS вычисляют по моделям ГПЗ, являющимися составной частью систем геодезических параметров.

При перевычислении высот квазигеоида из системы координат А в систему координат Б используют формулу

$$\zeta_{5} = \zeta_{A} + \Delta H,\tag{40}$$

где  $\zeta_{\mathcal{B}}$  — высота квазигеоида над ОЗЭ, м;  $\zeta_{\mathcal{A}}$  — высота квазигеоида над эллипсоидом Красовского, м;

 $\Delta \dot{H}$  — поправка к геодезической высоте, вычисляемая по формуле (23), м.

# Приложение А (обязательное)

# Параметры преобразования между системой координат ПЗ-90.11 и референцными системами координат Российской Федерации

# А.1 Преобразование координат из референцной системы координат 1942 года (СК-42) в систему координат ПЗ-90.11

$$\Delta x = + 23,557 \text{ M};$$
  $\omega_x = -0,00230'';$   $\Delta y = -140,844 \text{ M};$   $\omega_y = -0,34646'';$   $\Delta z = -79,778 \text{ M};$   $\omega_z = -0,79421'';$   $m = (-0,228) \cdot 10^{-6};$ 

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 & -3,850439 \cdot 10^{-6} & +1,679685 \cdot 10^{-6} \\ +3,850439 \cdot 10^{-6} & 1 & -1,115071 \cdot 10^{-8} \\ -1,679685 \cdot 10^{-6} & +1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-42}} + \begin{bmatrix} +23,557 \\ -140,844 \\ -79,778 \end{bmatrix}$$

# А.2 Преобразование координат из системы координат ПЗ-90.11 в референцную систему координат 1942 года (СК-42)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-42}} = \begin{bmatrix} 1 & +3,850439 \cdot 10^{-6} & -1,679685 \cdot 10^{-6} \\ -3,850439 \cdot 10^{-6} & 1 & +1,115071 \cdot 10^{-8} \\ +1,679685 \cdot 10^{-6} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} \begin{bmatrix} +23,557 \\ -140,844 \\ -79,778 \end{bmatrix}$$

# А.3 Преобразование координат из референцной системы координат 1995 года (СК-95) в систему координат ПЗ-90.11

$$\Delta x = + 24,457 \text{ M};$$
  $\omega_{\chi} = -0,00230'';$   $\Delta y = -130,784 \text{ M};$   $\omega_{y} = +0,00354'';$   $\Delta z = -81,538 \text{ M};$   $\omega_{z} = -0,13421'';$   $m = (-0,228)10^{-6};$ 

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 & -6,506684 \cdot 10^{-7} & -1,716240 \cdot 10^{-8} \\ +6,506684 \cdot 10^{-7} & 1 & -1,115071 \cdot 10^{-8} \\ +1,716240 \cdot 10^{-8} & +1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-95}} + \begin{bmatrix} +24,457 \\ -130,784 \\ -81,538 \end{bmatrix}$$

# А.4 Преобразование координат из системы координат ПЗ-90.11 в референциую систему координат 1995 года (СК-95)

# А.5 Преобразование координат из референцной системы координат ГСК-2011 в систему координат ПЗ-90.11

$$\Delta x = 0,000 \text{ M};$$
  $\omega_{\rm x} = -0,000562'';$   $\Delta y = +0,014 \text{ M};$   $\omega_{\rm y} = -0,000019'';$   $\Delta z = -0,008 \text{ M};$   $\omega_{\rm z} = +0,000053'';$   $m = (-0,0006)10^{-6}.$ 

Эпоха параметров преобразования 2011,0

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 & +2,569513 \cdot 10^{-10} & +9,211460 \cdot 10^{-11} \\ -2,569513 \cdot 10^{-10} & 1 & -2,724653 \cdot 10^{-9} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Gamma CK-2011} + \begin{bmatrix} 0,000 \\ +0,014 \\ -0,008 \end{bmatrix}.$$

# А.6 Преобразование координат из системы координат ПЗ-90.11 в референцную систему координат ГСК-2011

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{FCK-2011}} = \begin{bmatrix} 1 & -2,56951 \cdot 10^{-10} & -9,21146 \cdot 10^{-11} \\ +2,569513 \cdot 10^{-10} & 1 & -2,72465 \cdot 10^{-9} \\ +9,211460 \cdot 10^{-11} & -2,72465 \cdot 10^{-9} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} - \begin{bmatrix} 0,000 \\ +0,014 \\ -0,008 \end{bmatrix}.$$

# Приложение Б (обязательное)

# Параметры преобразования между системой координат ПЗ-90.11 и системой координат ПЗ-90.02

#### Б.1 Преобразование координат из системы координат ПЗ-90.02 в систему координат ПЗ-90.11

$$\Delta x = -0.373 \text{ M};$$
  $\omega_{\chi} = -0.00230'';$   $\Delta y = +0.186 \text{ M};$   $\omega_{y} = +0.00354'';$   $\Delta z = +0.202 \text{ M};$   $\omega_{z} = -0.00421'';$   $m = (-0.008)10^{-6}$ 

Эпоха параметров преобразования: 2010,0

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 & -2,04107 \cdot 10^{-8} & -1,71624 \cdot 10^{-8} \\ +2,04107 \cdot 10^{-8} & 1 & -1,11507 \cdot 10^{-8} \\ +1,71624 \cdot 10^{-8} & +1,11507 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} + \begin{bmatrix} -0,373 \\ +0,186 \\ +0,202 \end{bmatrix}.$$

### Б.2 Преобразование координат из системы координат ПЗ-90.11 в систему координат ПЗ-90.02

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.02} = \begin{bmatrix} 1 & +2,041066 \cdot 10^{-8} & +1,716240 \cdot 10^{-8} \\ -2,041066 \cdot 10^{-8} & 1 & +1,115071 \cdot 10^{-8} \\ -1,716240 \cdot 10^{-8} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} - \begin{bmatrix} -0,373 \\ +0,186 \\ +0,202 \end{bmatrix}.$$

# Приложение В (обязательное)

# Параметры преобразования между системой координат ПЗ-90.11 и системой координат ПЗ-90

### В.1 Преобразование координат из системы координат ПЗ-90 в систему координат ПЗ-90.11

$$\Delta x = -$$
 1,443 M;  $\omega_{\rm x} = -$  0,00230",  $\Delta y = +$  0,156 M;  $\omega_{\rm y} = +$  0,00354",  $\Delta z = +$  0,222 M;  $\omega_{\rm z} = -$  0,134210";  $m = (-$  0,228)  $10^{-6}$ 

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 + (-0.228)10^{-6} \end{bmatrix} \begin{bmatrix} 1 & -6.50668 \cdot 10^{-7} & -1.71624 \cdot 10^{-8} \\ +6.50668 \cdot 10^{-7} & 1 & -1.11507 \cdot 10^{-8} \\ +1.71624 \cdot 10^{-8} & +1.11507 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} + \begin{bmatrix} -1.443 \\ +0.156 \\ +0.222 \end{bmatrix}.$$

### В.2 Преобразование координат из системы координат ПЗ-90.11 в систему координат ПЗ-90

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90} = \begin{bmatrix} 1 & +6,506684 \cdot 10^{-7} & +1,716240 \cdot 10^{-8} \\ -6,506684 \cdot 10^{-7} & 1 & +1,115071 \cdot 10^{-8} \\ -1,716240 \cdot 10^{-8} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} - \begin{bmatrix} -1,443 \\ +0,156 \\ +0,222 \end{bmatrix}.$$

# Приложение Г (обязательное)

# Параметры преобразования между системой координат ПЗ-90.11 и системой координат WGS-84 (G1150)

Г.1 Преобразование координат из системы координат WGS-84 (G1150) в систему координат ПЗ-90.11

$$\Delta x = -0.013 \text{ M};$$
  $\omega_{\rm X} = -0.00230 \text{ }^{\prime\prime};$   $\Delta y = +0.106 \text{ M};$   $\omega_{\rm y} = +0.00354 \text{ }^{\prime\prime};$   $\Delta z = +0.022 \text{ M};$   $\omega_{\rm z} = -0.00421 \text{ }^{\prime\prime};$   $m = (-0.008)10^{-6}.$ 

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 & -2,041066 \cdot 10^{-8} & -1,716240 \cdot 10^{-8} \\ +2,041066 \cdot 10^{-8} & 1 & -1,115071 \cdot 10^{-8} \\ +1,716240 \cdot 10^{-8} & +1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS-84(G1150)}} + \begin{bmatrix} -0,003 \\ -0,001 \\ 0,000 \end{bmatrix}$$

Г.2 Преобразование координат из системы координат ПЗ-90.11 в систему координат WGS-84 (G1150)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{WGS-84(G1150)}} = \begin{bmatrix} 1 & +2,041066 \cdot 10^{-8} & +1,716240 \cdot 10^{-8} \\ -2,041066 \cdot 10^{-8} & 1 & +1,115071 \cdot 10^{-8} \\ -1,716240 \cdot 10^{-8} & -1,115071 \cdot 10^{-8} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3-90.11}} - \begin{bmatrix} -0,003 \\ -0,001 \\ 0,000 \end{bmatrix}.$$

# Приложение Д (обязательное)

# Параметры преобразования между системой координат ПЗ-90.11 и системой координат ITRF-2008

### Д.1 Преобразование координат из системы координат ПЗ-90.11 в систему координат ITRF-2008

$$\Delta x = -0,003 \text{ M};$$
  $\omega_x = +0,000019'';$   $\Delta y = -0,001 \text{ M};$   $\omega_y = -0,000042'';$   $\Delta z = 0,000 \text{ M};$   $\omega_z = +0,000002'';$   $m = (-0,000) 10^{-6}.$ 

Эпоха параметров преобразования: 2010,0

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\mathsf{ITRF-2008}} = \begin{bmatrix} 1 + (-0,000)10^{-6} \end{bmatrix} \begin{bmatrix} 1 & +9,696274 \cdot 10^{-12} & +2,036217 \cdot 10^{-10} \\ -9,696274 \cdot 10^{-12} & 1 & +9,211460 \cdot 10^{-11} \\ -2,036217 \cdot 10^{-10} & -9,211460 \cdot 10^{-11} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\mathsf{IIRS-90.11}} + \begin{bmatrix} -0,003 \\ -0,001 \\ 0,000 \end{bmatrix}.$$

## Д.2 Преобразование координат из системы координат ITRF-2008 в систему координат ПЗ-90.11

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\Pi 3-90.11} = \begin{bmatrix} 1 & -9,696274 \cdot 10^{-12} & -2,036217 \cdot 10^{-10} \\ +9,696274 \cdot 10^{-12} & 1 & -9,211460 \cdot 10^{-11} \\ +2,036217 \cdot 10^{-10} & +9,211460 \cdot 10^{-11} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\mathsf{ITRF-2008}} - \begin{bmatrix} -0,003 \\ -0,001 \\ 0,000 \end{bmatrix}.$$

# Приложение E (обязательное)

# Алгоритм учета эпохи параметров преобразования при преобразовании координат из одной системы в другую

Так как системы координат ПЗ-90.11, ПЗ-90.02, ITRF-2008, WGS-84 (G1150), ГСК-2011 отличаются повышенной точностью, то перед выполнением преобразования из одной системы координат в другую координаты пунктов должны быть приведены на эпоху вывода параметров преобразования этих систем координат с использованием скоростей изменения координат пунктов. Для этого используют следующую трехшаговую процедуру.

В качестве примера преобразуем координаты пункта Менделеево (MDVJ), заданные в системе ITRF-2008 и отнесенные к эпохе 2005,0, в систему координат ПЗ-90.11 на произвольную эпоху 2013,9.

Координаты пункта Менделеево (MDVJ) в системе ITRF-2008 на эпоху 2005,0 и скорости изменения координат пункта имеют значения:

```
X = 2845456,081 м; V_{\rm X} = -0,0212 м/год; Y = 2160954,245 м; V_{\rm Y} = +0,0124 м/год; Z = 5265993,223 м; V_{\rm Z} = +0,0072 м/год.
```

Первый шаг.

Вычисляем координаты пункта Менделеево (MDVJ) в системе координат ITRF-2008 на эпоху 2010,0

 $X = 2845456,081 + (-0,0212) \times (2010,0-2005,0) = 2845455,975;$ 

 $Y = 2160954, 245 + (+0,0124) \times (2010,0-2005,0) = 2160954, 307;$ 

 $Z = 5265993,223+(+0,0072)\times(2010,0-2005,0) = 5265993,259.$ 

Второй шаг.

Выполнив преобразование координат пункта Менделеево (MDVJ) из системы координат ITRF-2008 в систему ПЗ-90.11 на эпоху 2010,0 с использованием параметров преобразования, приведенных в приложении Д, получаем

X = 2845455,9769 M;

Y = 2160954,3075 M;

Z = 5265993.2598 M.

Третий шаг.

Вычисляем координаты пункта Менделеево (MDVJ) в системе координат ПЗ-90.11 на эпоху 2013,9

 $X = 2845455.977 + (-0.0212) \times (2013.9 - 2010.0) = 2845455.894$ 

 $Y = 2160954,308+(+0,0124)\times(2013,9-2010,0)=2160954,356;$ 

 $Z = 5265993,260+(+0,0072)\times(2013,9-2010,0)=5265993,288.$ 

## Библиография

- [1] Постановление Правительства Российской Федерации от 26 ноября 2016 г. № 1240 «Об установлении государственных систем координат, государственной системы высот и государственной гравиметрической системы».
- [2] Постановление Совета Министров СССР от 07.04.1946 г. № 760 «О введении единой системы геодезических координат и высот на территории СССР».

УДК 629.783:[528.2+528.344+523.34.13]:006.354

MKC 07.040

Ключевые слова: приемная аппаратура глобальной навигационной спутниковой системы, системы координат, определение координат местоположения

### БЗ 9—2017/4

Редактор *Р.Г. Говердовская*Технический редактор *В.Н. Прусакова*Корректор *И.А. Королева*Компьютерная верстка *А.А. Ворониной* 

Сдано в набор 13.09.2017. Подписано в печать 04.10.2017. Формат 60×84<sup>1</sup>/<sub>8</sub>. Гарнитура Ариал. Усл. печ. л. 2,79. Уч.-изд. л. 2,52. Тираж 20 экз. Зак. 1676. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта