First Order Logic

Slides by Thom Fruewirth

Foundations from Logic

Good, too, Logic, of course; in itself, but not in fine weather.

Arthur Hugh Clough, 1819-1861

Die Logik muß für sich selber sorgen.

Ludwig Wittgenstein, 1889-1951

First-Order Logic

Syntax – Language

- Alphabet
- Well-formed Expressions

Semantics - Meaning

- Interpretation
- Logical Consequence

Calculi - Derivation

- Inference Rule
- Transition System

Why First-Order Logic

Propositional Logic is lacking structure:

- P = Every man is mortal
- S = Socrate is a man
- Q = Socrate is mortal

In propositional logic Q is not a logic consequence of P and S, but we would like to express this relationship.

Syntax of First-Order Logic

Signature $\Sigma = (\mathcal{P}, \mathcal{F})$ of a first-order language

- \mathcal{P} : finite set of *predicate symbols*, each with *arity* $n \in \mathbb{N}$
- \mathcal{F} : finite set of function symbols, each with arity $n \in \mathbb{N}$

Naming conventions:

- nullary, unary, binary, ternary for arities 0, 1, 2, 3
- constants: nullary function symbols
- propositions: nullary predicate symbols

Syntax of First-Order Logic (ctnd)

Alphabet

- \mathcal{P} : predicate symbols: p, q, r, \dots
- \mathcal{F} : function symbols: $a, b, c, \ldots, f, g, h, \ldots$
- \mathcal{V} : countably infinite set of variables: X, Y, Z, \dots
- logic symbols:
 - truth symbols: ⊥ (false), ⊤ (true)
 - ▶ logical connectives: \neg , \land , \lor , \rightarrow
 - ▶ quantors: ∀, ∃
 - syntactic symbols: "(",")", ","

Well-Formed Expressions

Term

Set of *terms* $\mathcal{T}(\Sigma, \mathcal{V})$:

- \bullet a *variable* from \mathcal{V} , or
- a function term $f(\overline{t})$, where f is an n-ary function symbol from Σ and the arguments \overline{t} are terms $(n \ge 0)$.

Examples (a/0, f/1, g/2):

- X
- a
- f(X)
- g(f(X), g(Y, f(a)))

Well-Formed Expressions (ctnd)

Well-Formed Formula

Set of (well-formed) formulae $\mathcal{F}(\Sigma, \mathcal{V}) = \{A, B, C, \dots, F, G, \dots\}$:

• an atomic formula (atom) $p(\bar{t})$, where p is an n-ary predicate symbol from Σ and the arguments \bar{t} are terms, or \bot , or \top . or

```
t_1 \dot{=} t_2 for terms t_1 and t_2 (i.e., \dot{=} (t_1, t_2)), or
```

- the negation $\neg F$ of a formula F, or
- the conjunction $(F \wedge F')$, the disjunction $(F \vee F')$, or the implication $(F \to F')$ between two formulae F and F', or
- a universally quantified formula ∀XF, or an existentially quantified formula ∃XF, where X is a variable and F is a formula.

Example – Terms

```
\mathcal{P} = \{ 	exttt{mortal/1} \}, \mathcal{F} = \{ 	exttt{socrates/0,father/1} \}, \mathcal{V} = \{ X, \dots \}
```

Terms:

```
X, socrates, father(socrates),
father(father(socrates)),
but not: father(X, socrates)
```

Example - Formulae

Atomic Formulae:

```
mortal(X), mortal(socrates),
mortal(father(socrates))
but not: mortal(mortal(socrates))
```

Non-Atomic Formulae:

```
mortal(socrates) \land mortal(father(socrates))
\forall X.mortal(X) \rightarrow mortal(father(X))
\exists X.X \doteq socrates
```

Free Variables

and a formula F

- quantified formula $\forall XF$ or $\exists XF$ binds variable X within scope F
- set Fv(F) of free (not bounded) variables of a formula F:

$$Fv(t_1 \dot{=} t_2) := \textit{vars}(t_1) \cup \textit{vars}(t_2)$$

$$Fv(p(\bar{t})) := \cup \textit{vars}(\bar{t})$$

$$Fv(\top) := Fv(\bot) := \emptyset$$

$$Fv(\neg F) := Fv(F) \text{ for a formula } F$$

$$Fv(F * F') := Fv(F) \cup Fv(F') \text{ for formulae } F \text{ and } F'$$

$$\text{and } * \in \{\land, \lor, \to\}$$

$$Fv(\forall XF) := Fv(\exists XF) := Fv(F) \setminus \{X\} \text{ for a variable } X$$

Example – Free Variables

Give the set of free variables for each braced part.

$$p(X) \wedge \overbrace{\exists X p(X)}$$

$$(\forall X \, \underline{p(X,Y)}) \, \vee \, \underline{q(X)}$$

Universal and Existential Closure of F

• universal closure $\forall F$ of F:

$$\forall X_1 \forall X_2 \dots \forall X_n F$$

• existential closure $\exists F$ of F:

$$\exists X_1 \exists X_2 \dots \exists X_n F$$

where X_1, X_2, \dots, X_n are all free variables of F

Naming Conventions:

- closed formula or sentence: does not contain free variables
- theory: set of sentences
- ground term or formula: does not contain any variables

Semantics of First-Order Logic

Interpretation / of Σ

- universe U: a non-empty set
- $I(f): U^n \to U$: a function for every *n*-ary function symbol f of Σ
- $I(p) \subseteq U^n$: a relation for every *n*-ary predicate symbol p of Σ

Variable Valuation for V w.r.t. /

• $\eta: \mathcal{V} \to U$: for every variable X of \mathcal{V} into the universe U of I

(Σ signature of a first-order language, $\mathcal V$ set of variables)

Interpretation of Terms

Given Σ signature, I interpretation with universe $U, \eta: V \to U$ variable valuation, the function

$$\eta^I: \mathcal{T}(\Sigma, V) \to U$$

for an *n*-ary function symbol f and terms t_1, \ldots, t_n

defined as follows provides the interperation of terms:

$$\eta'(X) := \eta(X)$$
 for a variable X

 $\eta^{I}(f(t_{1},...,t_{n}))):=I(f)(\eta^{I}(t_{1}),...,\eta^{I}(t_{n}))$

Example – Interpretation of Terms

- signature $\Sigma = (\emptyset, \{1/0, */2, +/2\})$
- universe $U = \mathbb{N}$
- interpretation I
 I(1) := 1
 I(A+B) := A + B, I(A*B) := AB for A, B ∈ U
- variable valuation η $\eta(X) := 3, \ \eta(Y) := 5$

$$\eta^{I}(X*(Y+1)) = I(*)(\eta^{I}(X), \eta^{I}(Y+1))$$

$$= I(*)(3, I(+)(\eta^{I}(Y), \eta^{I}(1))$$

$$= \dots = 3 \cdot (5+1) = 18$$

Interpretation of Formulae – Preliminaries

For a function g, the function $g[Y \mapsto a]$ is

For a function
$$g$$
, the function $g[Y \mapsto a]$ is
$$g[Y \mapsto a](X) := \begin{cases} g(X) & \text{if } X \neq Y, \\ a & \text{if } X = Y, \end{cases}$$

where X and Y are variables.

Interpretation of Formulae

I interpretation of Σ , η variable valuation satisfy F, written

$$I, \eta \models F$$
, defined as follows:
• $I, \eta \models \top$ and $I, \eta \not\models \bot$

•
$$I, \eta \models s = t \text{ iff } \eta^I(s) = \eta^I(t)$$

•
$$I, \eta \models p(t_1, \ldots, t_n)$$
 iff $(\eta'(t_1), \ldots, \eta'(t_n)) \in I(p)$

$$I, \eta \models \rho(\iota_1, \dots, \iota_n) \sqcap (\iota_n) \vdash \neg F \text{ iff } I \mid n \not\models F$$

•
$$I, \eta \models \neg F \text{ iff } I, \eta \not\models F$$

•
$$I, \eta \models \neg F$$
 iff $I, \eta \not\models F$

•
$$I, \eta \models F \land F'$$
 iff $I, \eta \models F$ and $I, \eta \models F'$

$$\land F' \text{ iff } I \ n \models I$$

iff
$$I, \eta \not\models F$$

\ F' iff $I, n \models F$

• $I, \eta \models F \rightarrow F'$ iff $I, \eta \not\models F$ or $I, \eta \models F'$

• $I, \eta \models \forall XF \text{ iff } I, \eta[X \mapsto u] \models F \text{ for all } u \in U$ • $I, \eta \models \exists XF \text{ iff } I, \eta[X \mapsto u] \models F \text{ for some } u \in U$

$$d I, \eta \models F'$$

$$I, \eta \models F'$$

•
$$I, \eta \models F \land F'$$
 iff $I, \eta \models F$ and $I, \eta \models F'$
• $I, \eta \models F \lor F'$ iff $I, \eta \models F$ or $I, \eta \models F'$

$$I, \eta \models F'$$

$$(t_n)\in I(p)$$

Example – Interpretation

$oxed{\forall X.p(X,a,b) ightarrow q(b,X)}$.	$I_1(.)$	$I_2(.)$
	U	real things	natural numbers
	а	"food" "Fitz the cat"	5
	Ь		10
	р	"_ gives" "_ loves _"	_+_>_
	q	"_ loves _"	_ < _

 I_1 : "Fitz the cat loves everybody who gives him food." I_2 : "10 is less than any X if X+5>10." (counterexample: X=6)

Model of F, Validity

- We say that I model of F or I satisfies F, written $I \models F$ when: $I, \eta \models F$ for every variable valuation η
- I aq emphmodel of theory T when I is a model of each formula in T

Sentence S is

- valid: satisfied by every interpretation, i.e., $I \models S$ for every I
- *satisfiable*: satisfied by some interpretation, i.e., $I \models S$ for some I
- falsifiable: not satisfied by some interpretation, i.e., $I \not\models S$ for some I
- unsatisfiable: not satisfied by any interpretation, i.e., $I \not\models S$ for every I
- $(\Sigma \text{ signature}, I \text{ interpretation})$

Example – Validity, Satisfiability, Falsifiable, Unsatisfiability (1)

	valid	satisfiable	falsifiable	unsatisfiable
$A \vee \neg A$				
$A \wedge \neg A$				
A o eg A				
$A \rightarrow (B \rightarrow A)$				
$A \rightarrow (A \rightarrow B)$				
$A \leftrightarrow \neg A$				

(A, B formulae)

Example – Validity, Satisfiability, Unsatisfiability (2)

	correct/counter example
If F is valid, then F is satisfiable.	
If F is satisfiable, then $\neg F$ is unsatisfiable.	
If F is valid, then $\neg F$ is unsatisfiable.	
If F is unsatisfiable, then $\neg F$ is valid.	

(F formula)

Example - Interpretation and Model

- signature $\Sigma = (\{pair/2\}, \{next/1\})$
- universe $U = \{Mon, Tue, Wed, Thu, Fri, Sat, Sun\}$
- interpretation I

$$I(\texttt{pair}) := \left\{ \begin{aligned} (\textit{Mon}, \textit{Tue}), & (\textit{Mon}, \textit{Wed}), & \dots, & (\textit{Mon}, \textit{Sun}), \\ & (\textit{Tue}, \textit{Wed}), & \dots, & (\textit{Tue}, \textit{Sun}), \\ & & \ddots & \vdots \\ & & & (\textit{Sun}, \textit{Sun}) \end{aligned} \right\}$$

 $I(\texttt{next}): U \to U$, next day function $Mon \mapsto Tue, \dots, Sun \mapsto Mon$

Example – Interpretation and Model (cont)

- (one possible) valuation η $\eta(X) := Sun, \eta(Y) := Tue$
 - $ightharpoonup \eta^I(\operatorname{next}(X)) = Mon$
 - $\rightarrow \eta'(\text{next}(\text{next}(Y))) = Thu$
 - ▶ $I, \eta \models pair(next(X), Y)$
- model relationship ("for all variable valuations")
 - ▶ $I \not\models \forall X \forall Y. pair(next(X), Y)$
 - ▶ $I \models \forall X.pair(next(X), Sun)$
 - ▶ $I \models \forall X \exists Y. pair(X, Y)$

Logical Consequence

- A sentence/theory T_1 is a logical consequence of a sentence/theory T_2 , written $T_2 \models T_1$, if every model of T_2 is also a model of T_1 , i.e. $I \models T_2$ implies $I \models T_1$.
- Two sentences or theories are equivalent (⇔) if they are logical consequences of each other.
- |= is undecidable for FOL [Church]

Example:

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B \text{ (de Morgan)}$$

Example – Tautology Laws (1)

Dual laws hold for \land and \lor exchanged.

- $A \Leftrightarrow \neg \neg A$ (double negation)
- $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$ (de Morgan)
- $A \wedge A \Leftrightarrow A$ (idempotence)
- $A \land (A \lor B) \Leftrightarrow A \text{ (absorption)}$
- $A \wedge B \Leftrightarrow B \wedge A$ (commutativity)
- $A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge C$ (associativity)
- $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge B)$ (distributivity)

Example – Tautology Laws (2)

- $A \rightarrow B \Leftrightarrow \neg A \lor B$ (implication)
- $A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$ (contraposition)
- $(A \rightarrow (B \rightarrow C)) \Leftrightarrow (A \land B) \rightarrow C$
- $\bullet \neg \forall XA \Leftrightarrow \exists X \neg A$
- $\bullet \neg \exists XA \Leftrightarrow \forall X \neg A$
- $\forall X(A \land B) \Leftrightarrow \forall XA \land \forall XB$
- $\exists X(A \lor B) \Leftrightarrow \exists XA \lor \exists XB$
- $\forall XB \Leftrightarrow B \Leftrightarrow \exists XB \text{ (with } X \text{ not free in } B)$

Example – Logical Consequence

F	G	$ F \models G \text{ or } F \not\models G$
Α	$A \vee B$	
Α	$A \wedge B$	
A, B	$A \vee B$	
A, B	$A \wedge B$	
$A \wedge B$	Α	
$A \vee B$	Α	
$A, (A \rightarrow B)$	В	

Note: I is a model of $\{A, B\}$, iff $I \models A$ and $I \models B$.

Example – Logical Consequence, Validity, Unsatisfiability

The following statements are equivalent:

- $F_1, \ldots, F_k \models G$ (*G* is a logical consequence of F_1, \ldots, F_k)

Note: In general, $F \not\models G$ does *not* imply $F \models \neg G$.

Herbrand Interpretation – Motivation

The formula A is valid in I, $I \models A$, if I, $\eta \models A$ for every valuation η . This requires to fix a universe U as both I and η use U.

Jacques Herbrand (1908-1931) discovered that there is a *universal* domain together with a *universal* interpretation, s.t. that any *universally* valid formula is valid in *any* interpretation.

Therefore, only interpretations in the *Herbrand universe* need to be checked, provided the Herbrand universe is infinite.

Herbrand Interpretation

- Herbrand universe: set $\mathcal{T}(\Sigma,\emptyset)$ of ground terms
- for every *n*-ary function symbol f of Σ , the assigned function I(f) maps a tuple (\overline{t}) of ground terms to the ground term " $f(\overline{t})$ ".
- Herbrand base for signature Σ : set of ground atoms in $\mathcal{F}(\Sigma,\emptyset)$, i.e., $\{p(\overline{t})\mid p \text{ is an } n\text{-ary predicate symbol of } \Sigma \text{ and } \overline{t}\in \mathcal{T}(\Sigma,\emptyset)\}.$
- Herbrand model of sentence/theory: Herbrand interpretation satisfying sentence/theory.

Example – Herbrand Interpretation

For the formula $F \equiv \exists X \exists Y. p(X,a) \land \neg p(Y,a)$ the Herbrand universe is $\{a\}$ and F is unsatisfiable in the Herbrand universe as $p(a,a) \land \neg p(a,a)$ is false, i.e., there is no Herbrand model. However, if we add (another element) b we have $p(a,a) \land \neg p(b,a)$ so F is valid for any interpretation whose universe' cardinality is greater than 1.

For the formula $\forall X \forall Y.p(X,a) \land q(X,f(Y))$ the (infinite, as there is a constant and a function symbol) Herbrand domain is $\{a,f(a),f(f(a)),f(f(f(a))),\ldots\}.$

Herbrand theorem (simple version)

Let P be a set of universal sentences. The following are equivalent:

- P has an Herbrand model
- P has a model
- ground(P) is satisfiable

Proof of Herbrand theorem

- $(1) \Rightarrow (2)$ Obvious
- (2) \Rightarrow (3) Every sentence in ground(P) is a logical consequence of P (proof as exercise). Hence every model of P is a model of ground(P).
- (3) \Rightarrow (1) If ground(P) is satisfiable then ground(P) has an Herbrand model **A**. If fact let M be a model of ground(P). Then we can define **A** in the usual way for function symbols, while for atomic fromulas we can define $\mathbf{A} \models p(t_1,...,t_n)$ iff $\mathbf{M} \models p(t_1,...,t_n)$ and then inductively for arbitrary formulas (details for exercise).

Now we have that **A** is also a model of P. In fact, assume that $A \models ground(\forall \phi)$ where ϕ is quantifier free and $Var(\phi) = \{x_1, \ldots, x_n\}$. Let t_1, \ldots, t_n be n be n arbitrary ground terms and define $\theta = \{x_1/t_1, \ldots, x_n/t_n\}$. Since $A \models ground(\forall \phi)$ we have that $A \models \phi\theta$. Since the terms t_i are generic elements of the domain of **A** this means that $A \models \forall \phi$ and concludes the proof.

Logic and Calculus

Logic: formal language for expressions

- syntax: "spelling rules" for expressions
- semantics: meaning of expressions (logical consequence ⊨)
- calculus: set of given formulae and syntactic rules for manipulation of formulae to perform proofs.
 - derivation: $\phi \vdash \rho \ (\phi, \rho \ \text{formulae})$

Calculus

- axioms: given formulae, elementary tautologies and contradictions which cannot be derived within the calculus
- inference rules: allow to derive new formulae from given formulae
- derivation $\phi \vdash \psi$: a sequence of inference rule applications starting with formula ϕ and ending in formula ψ

- \models and \vdash should coincide
 - Soundness: $\phi \vdash \rho$ implies $\phi \models \rho$
 - *Completeness*: $\phi \models \rho$ implies $\phi \vdash \rho$

Resolution

Robinson 1965

- inference rule that can be easily implemented
- used as execution mechanism of (constraint) logic programming
- uses clausal normal form and unification

Normal Forms

Negation Normal Form of Formula F

F in negation normal form F_{neg} :

- no sub-formula of the form $F \to F'$
- in every sub-formula of the form $\neg F'$ the formula F' is atomic

Negation Normal Form – Computation

For every sentence F, there is an equivalent sentence F_{neg} in negated normal form (apply "tautologies" from left to right.):

Negation

$$\neg\bot\Leftrightarrow\top$$
 $\neg\top\Leftrightarrow\bot$

$$\neg \neg F \Leftrightarrow F \quad F \text{ is atomic}$$

$$\neg(F \land F') \Leftrightarrow \neg F \lor \neg F' \qquad \neg(F \lor F') \Leftrightarrow \neg F \land \neg F'$$

$$\neg \forall XF \Leftrightarrow \exists X \neg F \qquad \neg \exists XF \Leftrightarrow \forall X \neg F \qquad \neg (F \to F') \Leftrightarrow F \land \neg F'$$

Implication

$$F \to F' \Leftrightarrow \neg F \lor F'$$

Skolemization of Formula F

- $F = F_{\text{neg}} \in \mathcal{F}(\Sigma, \mathcal{V})$ in negation normal form
- occurrence of sub formula $\exists XG$ with free variables \overline{V}
- f/n function symbol not occurring in Σ

Compute F' by replacing $\exists XG$ with $G[X \mapsto f(\overline{V})]$ in F (all occurrences of X in G are replaced by $f(\overline{V})$).

Naming conventions:

- Skolemized form of F: F'
- Skolem function: f / n

Equivalence of Skolemized form

- A formula F is satisfiable iff its skolemized form is satisfiable
- A formula F and its skolemized form are not logically equivalent

Consider $F = \forall X.\exists Y.p(a,Y,a,b)$ and consider an interpretation I where f(a)=b (f skolem function) and only p(a,a,a,b) holds.

I is a model of F, but I is not a model of the skolemized form of F

Prenex Form of Formula F

$$F = Q_1 X_1 \dots Q_n X_n G$$

- $ullet Q_i$ quantifiers
- Xi variables
- G formula without quantifiers
- quantifier prefix: $Q_1 X_1 \dots Q_n X_n$
- matrix: G
- For every sentence F, there is an equivalent sentence in prenex form and it is possible to compute such a sentence from F by applying tautology laws to push the quantifieres outwards.

Examples

Example - Prenex Normal Form

$$\neg \exists x p(x) \lor \forall x r(x) \Leftrightarrow \forall x \neg p(x) \lor \forall x r(x)$$
$$\Leftrightarrow \forall x \neg p(x) \lor \forall y r(y)$$
$$\Leftrightarrow \forall x (\neg p(x) \lor \forall y r(y))$$
$$\Leftrightarrow \forall x \forall y (\neg p(x) \lor r(y))$$

Example – Skolemization

$$\forall z \exists x \forall y (p(x,z) \land q(g(x,y),x,z))$$

$$\Leftrightarrow \forall z \forall y (p(f(z),z) \land q(g(f(z),y),f(z),z))$$

With new function symbol f/1.

Clauses and Literals

- literal: atom (positive literal) or negation of atom (negative literal)
- complementary literals: positive literal L and its negation $\neg L$
- clause (in disjunctive normal form): formula of the form $\bigvee_{i=1}^{n} L_i$ where L_i are literals.
 - empty clause (empty disjunction): n = 0: \bot

Clauses and Literals (cont)

• implication form of the clause:

$$F = \bigwedge_{j=1}^{n} B_{j} \to \bigvee_{k=1}^{m} H_{k}$$
body

for

$$F = \bigvee_{i=1}^{n+m} L_i \text{ with } L_i = \begin{cases} \neg B_i & \text{ for } i = 1, \dots, n \\ H_{i-n} & \text{ for } i = n+1, \dots, n+m \end{cases}$$

for atoms B_i and H_k

- closed clause: sentence $\forall \overline{x} C$ with C clause
- clausal form of theory: consists of closed clauses

Normalization steps

An arbitrary theory T can be transformed into clausal form as follows

- Convert every formula in the theory into an equivalent formula in negation normal form.
- Perform Skolemization in order to eliminate all existential quantifiers.
- Convert the resulting theory, which is still in negation normal form, into an equivalent theory in clausal form: Move conjunctions and universal quantifiers outwards.

Unification

Substitution

- $\sigma: \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V}')$
- finite: V finite, written as $\{X_1 \mapsto t_1, \dots, X_n \mapsto t_n\}$ with distinct variables X_i and terms t_i
- identity substitution $\epsilon = \emptyset$
- written as postfix operators, application from left to right in composition
- $\sigma: \mathcal{T}(\Sigma, \mathcal{V}) \to \mathcal{T}(\Sigma, \mathcal{V}')$ implicit homomorphic extension, i.e., $f(\overline{t})\sigma := f(t_1\sigma, \dots, t_n\sigma)$.

Example:

$$\sigma = \{X \mapsto 2, Y \mapsto 5\}: (X * (Y + 1))\sigma = 2 * (5 + 1)$$

Substitution applied to a Formula

Homomorphic extension

- $(s = t)\sigma := (s\sigma) = (t\sigma)$
- $\bot \sigma := \bot$ and $\top \sigma := \top$
- $(\neg F)\sigma := \neg (F\sigma)$
- $(F * F')\sigma := (F\sigma) * (F'\sigma)$ for $* \in \{\land, \lor, \rightarrow\}$

Except

- $\bullet \ (\forall XF)\sigma := \forall X'(F\sigma[X\mapsto X'])$
- $(\exists XF)\sigma := \exists X'(F\sigma[X \mapsto X'])$

where X' is a fresh variable.

Example - Application of substitution

- $\sigma = \{X \mapsto Y, Z \mapsto 5\}: (X * (Z + 1))\sigma = Y * (5 + 1)$
- $\sigma = \{X \mapsto Y, Y \mapsto Z\}$: $p(X)\sigma = p(Y) \neq p(X)\sigma\sigma = p(Z)$
- $\bullet \ \sigma = \{X \mapsto Y\}, \tau = \{Y \mapsto 2\}$
 - $(X*(Y+1))\sigma\tau = (Y*(Y+1))\tau = (2*(2+1))$
 - $(X*(Y+1))\tau\sigma = (X*(2+1))\sigma = (Y*(2+1))$
- $\sigma = \{X \mapsto Y\}: (\forall Xp(3))\sigma = \forall X'p(3)$
- $\sigma = \{X \mapsto Y\}: (\forall X p(X)) \sigma = \forall X' p(X'), (\forall X p(Y)) \sigma = \forall X' p(Y)$
- $\sigma = \{Y \mapsto X\}: (\forall X p(X)) \sigma = \forall X' p(X'), (\forall X p(Y)) \sigma = \forall X' p(X)$

Logical Expression over ${\cal V}$

- term with variables in \mathcal{V} ,
- formula with free variables in V,
- substitution from an arbitrary set of variables into $\mathcal{T}(\Sigma, \mathcal{V})$, or
- tuple of logical expressions over V.

A logical expression is a *simple expression* if it does not contain quantifiers.

Examples:

$$\mathcal{V} = \{X\}: \ f(X), \ \forall Y.p(X) \land q(Y), \ \{X \mapsto a\}, \ \langle p(X), \sigma \rangle$$

Instance, Variable Renaming, Variants

- e instance of e': $e = e'\sigma$
- e' more general than e: e is instance of e'
- ullet variable renaming for e: substitution σ
 - $\triangleright \sigma$ injective
 - ▶ $X\sigma \in \mathcal{V}$ for all $X \in \mathcal{V}$
 - \blacktriangleright $X\sigma$ does not occur in e for free variables X of e
- e and e' variants (identical modulo variable renaming): $e = e'\sigma$ and $e' = e\tau$

Examples:

variable renaming $(\forall Xp(X_1))\{X_1 \mapsto X_2\} = \forall X'p(X_2)$ but not $(\forall Xp(X_1) \land q(X_2))\{X_1 \mapsto X_2\} = \forall X'.p(X_2) \land q(X_2)$ (e, e' logical expressions, σ , τ substitutions)

Unifier and m.g.u.

- σ is a unifier for e_1, \ldots, e_n if $e_1 \sigma = \cdots = e_n \sigma$
- e_1, \ldots, e_n unifiable if unifier exists
- σ is most general unifier (mgu) for e_1, \ldots, e_n if every unifier τ for \overline{e} is instance of σ , i.e., $\tau = \sigma \rho$ for some ρ

 $(e_1, \ldots, e_n \text{ simple expressions, } \sigma, \tau, \rho, \sigma_i \text{ substitutions})$

Example - Most General Unifier

$$f(X,a) \doteq f(g(U),Y) \doteq Z$$

MGU:

$$\sigma = \{X \mapsto g(U), Y \mapsto a, Z \mapsto f(g(U), a)\}$$

Proof: $f(X, a)\sigma = f(g(U), Y)\sigma = Z\sigma = f(g(U), a)$ one element.

Unifier. but not MGU:

$$\sigma' = \{X \mapsto g(h(b)), U \mapsto h(b), Y \mapsto a, Z \mapsto f(g(h(b)), a)\}$$

Proof: $\sigma' = \sigma\{U \mapsto h(b)\}.$

Most General Unifier by Hand

- unbound variable: there is no substitution for it
- Start with ϵ
- scan terms simultaneously from left to right according to their structure
- check the syntactic equivalence of the symbols encountered repeat
 - ▶ different function symbols: halt with failure
 - identical: continue
 - one is unbound variable and other term:
 - * variable occurs in other term: halt with failure
 - * apply the new substitution to the logical expressions add corresponding substitution
 - variable is not unbound: replace it by applying substitution

Example – Most General Unifier

to unify	current substitution, remarks	
$p(X, f(a)) \doteq p(a, f(X))$	ϵ , start	
X≐a	$\{X\mapsto a\}$, substitution added	
f(a) = f(X)	continue	
a≐X	$\{X\mapsto a\}$, variable is not unbound	
a≐a	continue	
MGU is $\{X \mapsto a\}$		
What about $p(X, f(b)) = p(a, f(X))$?		

Example – Most General Unifier

S	t	
f	g	failure
a	a	ϵ
X	a	$\{X\mapsto a\}$
X	Y	$\{X \mapsto Y\}$, but also $\{Y \mapsto X\}$
f(a, X)	f(Y, b)	$\{Y \mapsto a, X \mapsto b\}$
f(g(a,X),Y)	f(c,X)	failure
f(g(a,X),h(c))	f(g(a,b),Y)	$\{X\mapsto b,Y\mapsto h(c)\}$
f(g(a,X),h(Y))	f(g(a,b),Y)	failure

Inference Rules

Given a set of formulae

$$\frac{F_1,\ldots,F_n}{F}$$

- \triangleright premises F_1, \ldots, F_n
- conclusion F
- ▶ if premises are given, conclusion is added to the formulae
- derivation step $F_1, \ldots, F_n \vdash F$
- derivation: sequence of derivation steps with conclusion taken as premises for next step
- rule application usually nondeterministic

Resolution Calculus – Inference Rules

Works by contradiction: Theory united with negated consequence must be unsatisfiable ("derive empty clause").

Axiom

empty clause (i.e. the elementary contradiction)

Resolution

$$\frac{R \vee A \qquad R' \vee \neg A'}{(R \vee R')\sigma} \qquad \text{σ is a most general unifier} \\ \text{for the atoms A and A'}$$

Factoring

$$\frac{R \lor L \lor L'}{(R \lor L)\sigma}$$
 σ is a most general unifier for the literals L and L'

 $R \lor A$ and $R' \lor \neg A'$ must have different variables: rename variables apart

Resolution – Remarks

- resolution rule:
 - ▶ two clauses C and C' instantiated s.t. literal from C and literal from C' complementary
 - two instantiated clauses are combined into a new clause
 - resolvent added
- factoring rule:
 - clause C instantiated, s.t. two literals become equal
 - remove one literal
 - factor added

Example – Resolution Calculus

Resolution:

$$\frac{p(\mathsf{a},\mathsf{X}) \vee q(\mathsf{X}) \quad \neg p(\mathsf{a},b) \vee r(\mathsf{X})}{(q(\mathsf{X}) \vee r(\mathsf{X}))\{\mathsf{X} \mapsto b\}}$$

Factoring:

$$\frac{p(X) \vee p(b)}{p(X)\{X \mapsto b\}}$$