Class-based Identification of 'Deviant' Semantic Features in Historical Corpora

Kristoffer L. Nielbo kln@cas.au.dk

DTL|IMC|AU-CAS Aarhus University, Denmark

statistical learning

goal

build a machine that can learn from data and automatically make the right decisions

supervised

infer mapping between data & class-information \rightarrow theoretical 'ground truth' unsupervised

identify latent classes in the data \rightarrow lack theoretical 'ground truth'

application to ctext corpus

goal

combine statistical learning and information theory in order to explore semantic relations between data (Shangshu) and theoretical classes (document dating)

naïve bayes

simple and well-performing Bayesian model for supervised learning, but too constrained latent dirichlet allocation

simple and popular Bayesian model for unsupervised learning, but too unconstrained

supervised/nb

 ${f d}_i$ is the 2K-dimensional feature vectors, $d_{i1}=P(c_1),\ d_{i2}=P(c_2),\ ...$ $d_{i1958}=P(c_{1958})$

 $w_j \in \{Warring_{pre}, Warring, Warring_{late}/Han_{early}, Han\}$

explore category boundaries \sim misclassification semantics

unsupervised/lda

"a rose is a rose is a rose" is less lexically dense than "a rose is red and thorny" lexical density \sim text predictability: $H(X) = \sum_{i=1}^n p_i \log_2 p_i$

H(a rose is a rose) < H(a rose is red and thorny)

H(a rose is a rose) = H(erea oisasessar oiors)

Ida to the rescue: θ_i probability distribution of k latent variables in document i disruption between document is the relative entropy: $D_{KL}(P \parallel Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)}$

in summary

goal

creative use of statistical learning to support humanistic inquiry

supervised

study semantics on the boundaries of theoretical classes relying on less constrained human interpretation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

unsupervised

use theoretical classes to study semantic evolution of cultural system without unconstrained human interpretation