Title

D. Zack Garza

Monday 28th September, 2020

Contents

1	Mor	nday, September 28	1
	1.1	Kempf's Theorem	1
	1.2	Good Filtrations and Weyl Filtrations	2
	1.3	Cohomological Criteria for Good Filtrations	4

Monday, September 28

1.1 Kempf's Theorem

Next topic: Kempf's Vanishing Theorem. Proof in Jantzen's book involving ampleness for sheaves.

Setup:

We have

along with the weights X(T).

We can consider derived functors of induction, yielding $R^n \operatorname{Ind}_B^G \lambda = \mathcal{H}^n(G/B, \mathcal{L}(\lambda)) := H^n(\lambda)$ where $\mathcal{L}(\lambda)$ is a line bundle and G/B is the flag variety.

Recall that

- $H^0(\lambda) = \operatorname{Ind}_B^G(\lambda),$
- $\lambda \notin X(T)_+ \Longrightarrow H^0(\lambda) = 0$ $\lambda \in X(T)_+ \Longrightarrow L(\lambda) = \operatorname{Soc}_G H^0(\lambda) \neq 0.$

Theorem 1.1(Kempf).

If $\lambda \in X(T)_+$ a dominant weight, then $H^n(\lambda) = 0$ for n > 0.

Remark 1.

In char (k) = 0, $H^n(\lambda)$ is known by the Bott-Borel-Weil theorem. In positive characteristic, this is not know: the characters char $H^n(\lambda)$ is known, and it's not even known if or when they vanish. Wide open problem!

Could be a nice answer when p > h the Coxeter number.

1.2 Good Filtrations and Weyl Filtrations

We define two classes of distinguished modules for $\lambda \in X(T)_+$:

- $\nabla(\lambda) := H^0(\lambda) = \operatorname{Ind}_B^G \lambda$ the costandard/induced modules.
- $\Delta(\lambda) = V(\lambda) := H^0(-w_0\lambda) = \operatorname{Ind}_B^G \lambda$ the standard/Weyl modules
 - Here w_0 is the longest element in the Weyl group

We have

$$L(\lambda) \hookrightarrow \nabla(\lambda)\Delta(\lambda)$$
 $\longrightarrow L(\lambda)$.

We define the category Rat-G of rational G-modules. This is a highest weight category (as is e.g. Category \mathcal{O}).

Definition 1.1.1 (Good Filtrations).

An (possibly infinite) ascending chain of G-modules

$$0 < V_0 \subset V_1 \subset V_2 \subset \cdots \subset V$$

is a **good filtration** of V iff

- 1. $V = \bigcup_{i>0} V_i$
- 2. $V_i/V_{i-1} \cong H^0(\lambda_i)$ for some $\lambda_i \in X(T)_+$.

In characteristic zero, the H^0 are irreducible and this recovers a composition series. Since we don't have semisimplicity in this category, this is the next best thing.

Definition 1.1.2 (Weyl Filtration).

With the same conditions of a good filtration, a chain is a **Weyl filtration** on V iff

- 1. $V = \bigcup_{i>0} V_i$
- 2. $V_i/V_{i-1} \cong V(\lambda_i)$ for some $\lambda_i \in X(T)_+$.

I.e. the different is now that the quotients are standard modules.

Definition 1.1.3 (Tilting Modules).

V is a **tilting module** iff V has both a good filtration and a Weyl filtration.

Theorem 1.2(Ringel, 1990s).

Let $\lambda \in X(T)_+$ be a dominant weight. Then there is a unique indecomposable highest weight tilting module $T(\lambda)$ with highest weight λ .

Example 1.1.

We have the following situation for type A_2 :

Figure 1: Image

And thus a decomposition:

Figure 2: Image

The picture to keep in mind is the following: 4 types of modules, all indexed by dominant weights:

1.3 Cohomological Criteria for Good Filtrations

We'll take cohomology in the following way: let G be an algebraic group scheme, and define