备案号: 10888-2002

中华人民共和国电力行业标准

DL/T 634.5101-2002/IEC608-70-5-101:2002 代替DL/T634-1997

远动设备及系统 第5-101部分:传输规约 基本远动任务配套标准

Telecontrol equipment and systems
Part 5:Transmission protocols
Section 101:Companion standard for basic telecontrol tasks
(IEC 60870-5-101:2002,IDT)

目 次

肌	昌		
1	7 1	芭围 ····································	· 1
2	艿	则范性引用文件 ·······	• 1
3	7	术语和定义	. 2
4		一般规则 ······	
	4.1	· 规约结构 ·······	. 3
	4.2	2 物理层	. 3
	4.3		
	4.4	· 	
	4.5	5 用户进程	• 4
5	4	物理层 ······	
	5.1	: / · · · · · · · · · · · · · · · · · ·	
	5.2	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	
	5.3		
	5.4	7	
6	1	链路层 ······	
	6.1		
	6.2		
7	J	应用层和用户进程	
	7.1	· = · · · · · · · · · · · · · · · · · ·	
	7.2	· · · · · · · · · · · · · · · · · · ·	
	7.3		
	7.4		
8	-	互操作性	
	8.1		
	8.2		
	8.3		
	8.4		
	8.5		
	8.6		
		: A(资料性附录)帧格式级别 FT1.2 的同步稳定性证明 ··················· 1	
		: B(资料性附录)帧格式级别 FT1.2 的字符间允许的线路空闲间隔 ················· 1	
附	录	: C (资料性附录) 互操作性推荐意见 ·······]	124

前 言

IEC 1995 年出版 IEC 60870—5—101 以来,得到广泛应用,总结实践经验,又出版了两个附件,于 2001 年将 IEC 60870—5—101:1995 和两个附件合并,出版了 IEC 60870—5—101:2002V.2。本标准等同采用 IEC 60870—5—101 远动设备与系统 第 5 部分 传输规约 第 101 篇基本远动任务配套标准:2002。

将本标准代替 DL/T 634-1997 (neq IEC 60870-5-101:1995)。

20 世纪 90 年代以来,国际电工委员会第 57 技术委员会,为适应电力系统,包括 EMS、SCADA、DMS(配电管理系统)、DA(配电自动化)及其他公用事业的需要,制定了一系列传输规约。这些规约 共分 5 篇:

GB/T 18657.1-2002 远动设备与系统 第 5 部分: 传输规约 第 1 篇: 传输帧格式 (IDT.IEC 60870-5-1:1990);

GB/T 18657.2—2002 远动设备与系统 第 5 部分: 传输规约 第 2 篇: 链路传输规则 (IDT.IEC 60870—5—2:1992);

GB/T 18657.3—2002 远动设备与系统 第 5 部分: 传输规约 第 3 篇: 应用数据的一般结构 (IDT.IEC 60870—5—3:1992);

GB/T 18657.4-2002 远动设备与系统 第 5 部分: 传输规约 第 4 篇: 应用信息元素定义和编码 (IDT.IEC 60870-5-4:1992);

近年来,我国制定了一系列配套标准,它们是:

DL/T 634-1997 基本远动任务配套标准 (neq. IEC 60870-5-101:1995)

DL/T 719-2000 电力系统电能累计量传输配套标准 (idt. IEC 60870-5-102:1996)

DL/T 667-1999 继电保护设备信息接口配套标准 (idt. IEC 60870-5-103:1997)

DL/T 634.5104-2002: 远动设备与系统 第 5 部分: 传输规约 第 104 篇: 采用标准传输协议集的 IEC 60870-5-101 网络访问(IDT.IEC 60870-5-104:2000)

基本标准是制定和理解配套标准的依据,配套标准都要引用基本标准,配套标准针对具体应用作了具体规定,使基本标准的原则更加明确。等同采用基本标准和配套标准有利于更好地贯彻标准,实现远动设备的互操作性。

IEC 60870—5 系列标准涵盖了各种网络配置(点对点、多个点对点、多点共线、多点环型、多点星形),各种传输模式(平衡式、非平衡式),网络的主从传输模式和网络的平衡传输模式,电力系统所需要的应用功能和应用信息,是一个完整的集,和 IEC 61334、配套标准 DL/T 634.5104—2002、(IDT.IEC 60870—5—104:2002)、DL/T 719—2000—起,可以适应电力自动化系统中各种调制方式、各种网络配置和各种传输模式的需要。

本标准附录 A、附录 B、附录 C 为资料性附录。

本标准由全国电力系统控制及其通信标准化技术委员会提出和归口。

本标准由中国电力科学研究院负责起草,国调中心、国家电力公司电力自动化研究院、国电南京自动化股份有限公司、国家电力公司华东电力公司、北京供电局参加。

本标准主要起草人: 谭文恕、郭 进、刘佩娟、曹冬明、胡道徐、岑宗浩、舒彬。

本标准于 1997 年首次公布。

远动设备及系统 第 5-101 部分: 传输规约 基本远动任务配套标准

1 范围

本标准适用于具有编码的比特串行数据传输的远动设备和系统,用以对地理广域过程的监视和控制。制定远动配套标准的目的是使兼容远动设备之间达到互操作性。本标准采用了 IEC 60870—5 标准系列文件。本标准规范提出了基本远动任务的功能协议子集。正在考虑基于上述标准的其他配套标准。

本标准定义了从毫秒到分的二进制时间的三个八位位组时标 CP24Time2a 的应用服务数据单元 (ASDU)。在本标准的规范中又补充定义了从毫秒到年的二进制时间七个八位位组时标 CP56Time2a 的应用服务数据单元(见 GB/T 18657.4—2002 6.8 和本标准的 7.2.6.18)。

采用时标 CP56Time2a 的应用服务数据单元,是因为在采用传输延时不确定的网络或者网络发生暂时性故障时,控制站不能准确地将从小时到年加到接收到的具有时标为从毫秒到分的应用服务数据单元上。

虽然本配套标准除定义实际通信功能,还定义了最重要的用户功能。它不能保证在不同制造厂的设备之间完全兼容和互操作性。要求有关单位在考虑整个远动设备的运行时,就所定义的通信功能的使用方法达成一致。

在本标准中规定的内容和 GB/T 18657.1-2002~GB/T 18657.5-2002 定义的标准兼容。

2 规范性引用文件

下列文件中的条款通过本标准中引用而构成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分。然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是注日期的引用文件,其最新版本适用于本标准。

GB/T 18657.1-2002 远动设备及系统 第 5 部分一传输规约 第 1 篇一传输帧格式 (IDT. IEC 60870-5-1:1990)

GB/T 18657.2—2002 远动设备及系统 第 5 部分—传输规约 第 2 篇 —链路传输规则 (IDT.IEC 60870—5—2:1992)

GB/T 18657.3—2002 远动设备及系统 第 5 部分—传输规约 第 3 篇—应用数据的一般结构 (IDT.IEC 60870—5—3:1992)

GB/T 18657.4—2002 远动设备及系统 第 5 部分—传输规约 第 4 篇—应用信息元素的定义和编码 (IDT.IEC 60870—5—4:1993)

GB/T 18657.5—2002 远动设备及系统 第 5 部分—传输规约 第 5 篇 —基本应用功能 (IDT.IEC 60870—5—5:1995)

DL/T 667—1999 远动设备及系统 第 5 部分—传输规约 第 103 篇 —继电保护信息接口配套标准 (IDT.IEC 60870—5—103:1997)

IEC 60050-371:1984 国际电工词汇 (IEV) - 第 371 章: 远动

IEC 60870-1-1:1988 远动设备及系统 第1部分:总则第1篇:基本原则

IEC 60870-1-3:1990 远动设备及系统 第1部分: 总则第3篇: 术语

IEC 60870—1—4:1994 远动设备及系统 第1部分:总则第4篇: IEC 60870—5和 IEC 60870—

6 标准的远动数据传输和结构的基本概貌

ISO/IEC 8824-1-2000 信息技术--抽象语法记法(ASN.1)-第一部分:基本记法规范

ITU-T 建议 V.24—1993 数据终端设备 (DTE) 和数据电路终接设备 (DCE) 之间的交换电路定义表

ITU-T 建议 V.28-1993 非平衡双流交换电路的电特性

ITU-T 建议 X.24—1988 在公共数据网数据终端设备 (DTE) 和数据电路终接设备 (DCE) 之间的交换电路定义表

ITU-T 建议 X.27—1998 在数据通信领域集成电路设备一般应用的平衡双流交换电路电特性

R32 IEEE Standard 754: Binary floatin point arithmetic The Institute of Electrical and Electronics Engineers. Inc

3 术语和定义

本标准采用如下术语定义:

3.1

配套标准 companion standard

配套标准是对基本标准或功能协议子集的定义增加语义,它表现在对信息对象定义一些特定的用途,或定义另外的一些信息对象、服务规则和基本标准的参数。

注: 配套标准不得违反所引用的基本标准的规则,将这些基本标准的规则共同用于某一特定的活动范围时,配套标准使得这些基本标准的规则之间的关系变得更加明确。

3.2

信息对象组 group of information object

一个信息对象组是公共地址或信息地址一个集,它是为某一特定系统专门地定义。

注: DL/T 634-1997 (neqIEC 60870-5-101:1995) 中的"信息体"本标准称为"信息对象"。

3.3

控制方向 control direction

由控制站到被控站的传输方向。

3.4

监视方向 monitor direction

由被控站到控制站的传输方向。

3.5

系统参数 system parameter

系统参数或者系统特定参数对采用本配套标准的整个远动系统有效。远动系统是由通过不同的网络 配置连接起来的全部被控站和控制站所组成。

3.6

网络特定参数 network-specific parameter

网络特定参数是对通过特定网络配置连接起来的全部站有效。

3.7

站特定参数 station-specific parameter

站特定参数是对某一个特定站有效。

3.8

对象特定参数 object-specific parameter

对象特定参数是对某一个特定信息对象或者信息对象的特定组有效。

4 一般规则

这一章提供了采用 GB/T 18657 规约构成特定远动系统传输规约配套标准的一般规则。这些一般规

则用于以下各节。

4.1 规约结构

GB/T 18657 规约是基于三层参考模型 "增强性能体系结构 (EPA)" (由 GB/T 18657.3—2002 第 4 节所规定)。

物理层采用 ITU-T 建议,在所要求的介质上提供了二进制对称无记忆传输,以保证链路层所定义的组编码方法高的数据完整性。

链路层由采用明确的链路规约控制信息(LPCI)的许多链路传输过程所组成,此链路控制信息可将一些应用服务数据单元(ASDU)当作链路用户数据,链路层采用帧格式的选集能保证所需的数据完整性、效率、以及传输方便性。

应用层包含一系列"应用功能",它包含在源和目的之间传送的应用服务数据单元中。

本配套标准的应用层未采用明确的应用规约控制信息(APCI),它隐含在应用服务数据单元的数据单元标识符域以及所采用的链路服务类型中。

夂	1 邱元为博品州能体系结构	(FDA)	模型和配套标准所选用的标准定义。
231	1 171 11 11 11 11 11 11 11 11 11 11 11 1	LEPAL	(秦华州10) 秦州(在7) 亚州(1) 小(在北 X 。

从 GB/T 18657.5 选用的应用功能	用户进程
从 GB/T 18657.4 选用的应用信息元素	应用层
从 GB/T 18657.3 选用的应用服务数据单元	(第7层)
从 GB/T 18657.2 选用的链路传输规则	链路层
从 GB/T 18657.1 选用的传输帧格式	(第2层)
从 ITU-T 建议中选用	物理层 (第1层)

图 1 配套标准所选用的标准条文

4.2 物理层

配套标准采用 ITU-T 建议,它定义了控制站和被控站的数据电路终接设备 (DCE) 和数据终端设备 (DTE) 之间的接口 (见图 2 和 IEC 60870—1—1:1988 图 2)。

数据电路终接设备(DCE)和数据终端设备(DTE)之间的接口为异步 ITU-TV.24/ITU-TV.28 接口。传输通道的运行模式不同,所要求的接口信号也不相同,本配套标准定义了交换电路信号,它可能被采用、也可能不被采用。

注:应当避免采用在一个给定的传输通道增加带宽利用率的数据传输方法,一般地这些方法破坏了所要求的无记忆通道编码原则,除非能证明采用此种方法不会降低在链路层中所选用帧格式的数据组编码方法的数据完整性。

图 2 控制站和被控站的接口和连接

4.3 链路层

GB/T 18657.2—2002 提供了采用一个控制域和一个任选的地址域的链路传输规则的选集,在站之间的链路可以按非平衡或者平衡式传输模式工作。对于这两种工作模式在控制域规定了相应的功能码。

若从一个中心控制站(控制站)到几个外站(被控站)之间链路共用一条公共的物理通道,那么这

DL/T 634.5101 - 2002

些链路必须工作在非平衡式,以避免多个被控站试图在同一时刻在通道上传输。不同的被控站在通道上传输的顺序取决于控制站的应用层的规则,见 GB/T 18657.5—2002 中的 6.2 "问答式收集数据"。

配套标准要指明采用的是非平衡传输模式还是平衡传输模式,还要指明采用哪一种链路规则(以及相应链路功能码)。

对于每一个链路,配套标准要指明惟一的地址序号,在一个特定系统中,每个地址是惟一的,或者 在共用一条通道的链路组中,其地址是惟一的,后者需要一个较小的地址域,但需要控制站按通道序号 来安排地址。

配套标准要指明从GB/T 18657.1—2002 的众多的帧格式中选择一种,所选用的帧格式既要达到所要求的数据完整性,又要为了实现的方便性达到可接受的程度时具有的最大的效率。配套标准规定所有链路的启动站的超时时间(T_n)和从动站的最大响应时间(T_n)(GB/T 18657.2—2002 附录 A.1)。

4.4 应用层

配套标准应当按照 GB/T 18657.3-2002 的一般结构来定义相应的应用服务数据单元,采用 GB/T 18657.4-2002 中应用信息元素的定义和编码规范来构建应用服务数据单元。

配套标准应当指明按照 GB/T 18657.4—2002 的 4.10 选用一种应用数据域传输的秩,此秩就是模式 1 或模式 2,选用后在特定系统中应用时,对于各种计算机能得到最大的总体的编程方便性。

4.5 用户进程

GB/T 18657.5-2002 提供了基本应用功能的选集,配套标准包含从这些功能中所选用的一个或多个功能,为适应特定的系统的需要,提供了所需的应用过程输入和输出集。

5 物理层

从 ISO 和 ITU-T 标准中选用

支持下述网络配置:

- 一一点对点:
- ——多个点对点;
- ——多点星形:
- ——多点共线:
- ——多点环形。

在 5.1 定义的 ITU-T 建议 V.24/V.28 的子集有效。

在采用数字信号复接器的数字传输方法,在协商一致的情况下,X.24/X.27接口可以用于速率高至 64kbits/s (见 5.2)。

本配套标准中,数据终接电路是从远动站(DTE)分离出来,因其硬件常常是分开的,因此在配套标准内有 DTE/DCE(数据终端设备/数据电路终接设备)接口的完整技术说明,但是仅给出适用于 DCE 的要求的说明。

5.1 非平衡式交换电路 V.24/V.28

配套标准采用 ITU-T 建议 V.24 的子集,采用 ITU-T 建议 V.28 规定的信号电平,见表 1。

交换电路号	交换电路名	从 DCE 来	到 DCE 去
102	接地信号线或公共线	_	
103	发送数据		×
104	接收数据	×	
105ª	请求发送		×

表 1 从 V.24/V.28 的选择

表1(续完)

交换电路号	交换电路名	从 DCE 来	到 DCE 去
106 ^b	发送准备就绪	×	
107 ^b	数传机准备就绪	×	
108ª	数据终端准备就绪		×
109 ^b	数据通道接受线路信号检出器		×

注1: a 可以是固定电位。

注 2: b 不作规定,它可以用于监视传输电路。

V.24/V.28 FSK 接口的标准传输速率:

100bits/s, 200bits/s, 300bits/s, 600bits/s, 1.2kbits/s,

V.24/V.28 MODEM 接口的标准传输速率是:

300bits/s, 600bits/s, 1.2kbit/s, 2.4kbit/s, 4.8kbit/s, 9.6kbit/s,

(异步地采用) 数字信号复接器传输速率和 MODEM 接口相同。

注:应当避免采用在一个给定的传输通道增加带宽利用率的数据传输方法,一般地这些方法破坏了所要求的无记忆 通道编码原则,除非能证明采用此种方法不会降低在链路层中所选用帧格式的数据组编码方法的数据完整性。

5.2 平衡式交换电路 X.24/X.27

表 2 从 X.24/X.27 选择的和同步数字信号复接器的接口

交换电路号	交换电路名	从 DCE 来	到 DCE 去		
G	接地信号线或公共线	_	*****		
Т	发送		×		
R	接收	×			
Ca	控制		×		
Iª	指示	×			
S	信号码元定时	×			
注: a 如数据终端设备和数字信号复接器相连接,不需要控制和指示信号,这些信号可以用于监视的目的。					

表 2 示 (同步地采用) 平衡式交换电路 X.24/X.27 到数字信号复接器的接口,此接口如果工作在 对称差分信号时适合于 64kbit/s。

发送和接收方向的传输速率可以分别规定。标准传输速率是:

2.4kbit/s, 4.8kbit/s, 9.6kbit/s, 19.2kbit/s, 38.4kbit/s, 56kbit/s, 64kbit/s,

5.3 和交换通信网络接口

配套标准对采用交换通信网络的应用不做规定。

5.4 其他兼容接口

在制造厂和用户协商一致时,可采用在 GB/T 18657 系列中建议之外的其他物理接口,在采用其他物理接口时,证明它们的功能和互操作性是用户和制造厂的责任。

6 链路层

采用下列国际标准:

GB/T 18657.1-2002: 传输帧格式

GB/T 18657.2-2002; 链路传输规则

6.1 选自 GB/T 18657.1-2002 的传输帧格式

配套标准惟一地采用 GB/T 18657.1—2002 中 6.2.4.2 定义的帧格式 FT1.2^{1),2)},允许采用固定帧长和可变帧长,也可采用单个控制字符。当传输 ASDU 时,采用可变帧长帧。当没有 ASDU 传输时,采用固定帧长帧或者单个字符。

传输规则R3 规定在字符间可以没有线路空闲间隔。在某些实践中,特别在高比特速率传输时,由于不可避免的硬件和软件的延时,不可能达到没有线路空闲间隔。

然而,本标准的附录 B 阐述了在字符间的线路空闲间隔不大于一个传输比特的持续时间时,不会降低帧完整性。因此传输规则 R3 的规定可以放宽,允许字符间线路空闲间隔不大于一个传输比特的持续时间。字符间线路空闲间隔扩宽的结果对于时间紧急信息(例如时钟同步)可能降低被控站时钟准确度。

不要求接收端去测量字符间的线路空闲间隔。例如接收端可能采用工业标准 UART 电路,没有测量接收帧中字符间的间隙持续时间间隔的专门的硬件和软件。

6.2 选自 GB/T 18657.2-2002 链路传输规则

链路帧的最大帧长为一个系统(网络特定)参数,如果需要的话,在每一个方向上的最大帧长可以不相同。

固定帧长帧没有链路用户数据。

如果需要,应采用发送/无回答、发送/确认和请求/响应的传输规则。本配套标准不定义链路层和服务用户之间接口。

6.2.1 状态转换图

本节对 GB/T 18657.2—2002 链路传输规则的基本定义进行更加详细的描述。状态转换图更加准确 地定义这些规则,这样由不同制造厂实现的链路层达到完全地互操作。状态转换图代表(在 GB/T 18657.2—2002 中定义的链路层)状态以及从一个状态转换到另一个状态的过程,包括动作(发送 Tx 和接收 Rx),还包括重要的内部过程。

状态转换图采用由 Grady Booch/Harel 定义的格式表示,特定元素的解释如图 3 所示。

图 3 由 Grady Booch/Harel 定义的状态转换图

当发生转换到一个新的状态时, "in"描述一个被触发的动作, 在规定的事件没有发生的情况下, 转换到下一个的状态是当前的状态本身。

在下面的转换图中采用的标志如下:

FC0 到 FC15 = 功能码数目 0 到 15, 见 GB/T 18657.2-2002 的表 1~表 4。

FCB= 帧计数位。

FCV=帧计数位有效。

DFC=数据流控制。

ACD=访问请求。

PRM=启动报文。

SC=单个字符。

¹⁾ 完全遵守在 6.2.4.2 中定义的规则。

²⁾ FT1.2 帧是异步的,每一字符由 11 位组成的时序,第一位为启动位,最后一位为停止位,当用于上述 5.1.2 所定义同步接口时,信号定时是从数据电路设备所引出且连续运行,在此种情况下将等时地发送和接收帧。

6.2.1.1 非平衡传输规则

在非平衡传输系统、被控站常为从动站、控制站为启动站。

在分层系统中,任何中间结点在面向被控站方向,它是启动站,在面向控制站方向,它是从动站。 控制域的 RES 位未用,并设置为 0。

链路地址域 A 可以为一个八位位组也可以为二个八位位组由系统参数确定。广播命令(通常指发送无回答服务)地址为 255 (对应一个八位位组),或者为 65535 (对应两个八位位组)。发送/无回答服务用于向全部被控站发送用户数据报文(广播地址)。

没有定义组地址。

在询问(问答)式系统中基本传输过程采用请求/响应服务,功能码为11(请求2级用户数据)。如在GB/T18657.2—2002 所规定用ACD位来表示有1级用户数据。在7.4.2中定义了两个级别的传送原因的赋值。被控站如果没有2级用户数据,可用1级用户数据响应2级用户请求。

表 3 所示为非平衡链路层服务的组合。

启动方向的功能码和服务	从动方向所允许的功能码和服务
〈0〉复位远方链路	〈0〉确认:认可或者 〈1〉确认:否定认可
〈1〉复位用户进程	〈0〉确认:认可或者 〈1〉确认:否定认可
〈3〉发送/确认用户数据	〈0〉确认:认可或者 〈1〉确认:否定认可请求
〈4〉发送/无回答用户数据	无回答
〈8〉访问请求	〈11〉响应:链路状态
〈9〉请求/响应请求链路状态	〈11〉响应:链路状态
〈10〉请求/响应 请求 1 级用户数据	〈8〉响应:用户数据或者 〈9〉响应:无所请求的用户数据
〈11〉请求/响应 请求 2 级用户数据	〈8〉响应:用户数据或者 〈9〉响应:无所请求的用户数据

表 3 非平衡链路层服务的组合

也同样允许采用响应〈14〉链路服务没起作用或者〈15〉链路服务没有完成。除非有1级用户数据访问请求(ACD=1)或者后续报文将引起溢出(DFC=1)才采用固定帧长帧。单个控制字符 E5 用来取代固定帧长肯定确认帧(从动功能码〈0〉)或固定帧长否定确认帧(从动功能码〈9〉)。不采用单个字符 A2。

非平衡传输规则:启动站仅包括一个启动链路层,从动站仅包括一个从动链路层(见图 4)。多个从动站可以和一个启动站相连接。在启动站和特定从动站之间的兼容通信仅和这两个站有关。从多个从动站请求数据的询问过程是启动站当地内部功能,不需要在图 4 至图 6 中显示。这些图仅显示启动站和单个从动站。在多于一个从动站的情况下,启动站必须记住每个从动站当前状态。

图 4 启动站和从动站非平衡式传输过程

图 5 是启动站状态转换图,图 6 是从动站状态转换图。

注 1: 启动(始发)链路层指特定站 A, 从动链路层指特定站 B。

注 2: REQ、IND、RESP、CON 在 GB/T 18657.2 中定义。

注 3: ACD 或 DFC 不为 1 时,从动站可采用单个控制字符代替 FC0 或 FC9。

注 4: 不出现(从动站发送)服务 FC=1,由特定应用定义其使用。

注 5: T₀ 为重传帧超时时间, T_{so}为重传计时器或重传机制。

图 5 启动站到从动站非平衡式传送的状态转换图

6.2.1.2 平衡传输规则

在启动方向所有标准化功能码(0~4和9)的请求必须收到肯定或者否定响应。在没有完成服务的情况下,从动站以功能码 15 回答链路服务没有完成。

表 4 是平衡链路层服务的组合。

也可采用响应〈14〉链路服务没起作用或者〈15〉链路服务没有完成。如果后续报文将引起溢出(DFC=1)时采用固定帧长肯定确认帧(从动功能码〈0〉),否则用单个控制字符 E5 作为肯定确认帧。

*"链路可用" 后评价请求/响应

注1: 从动链路层指特定站 B, 启动(始发)链路层指特定站 A。

注 2: REQ、IND、RESP、CON 在 GB/T 18657.2 中定义。

注 3: 从动站可采用单个字符代替 FC0 或 FC9, 除非 AC=1 或 DFC=1。

图 6 从动站到启动站的非平衡式传送的状态转换图

表 4 平衡链路层服务的组合

启动方向的功能码和服务	从动方向所允许的功能码和服务
〈0〉复位远方链路	〈0〉确认:认可或者
(0) 发证四分证明	〈1〉确认:否定认可
〈1〉复位用户进程	〈0〉确认:认可或者
〈1〉复位用户进程 	〈1〉确认:否定认可
〈2〉发送/确认链路测试功能	〈0〉确认:认可或者
〈2〉发送/确认链路测试功能	〈1〉确认:否定认可
〈3〉发送/确认用户数据	〈0〉确认:认可或者
(0) 222. 9407117 3834	〈1〉确认: 否定认可
〈4〉发送/无回答用户数据	无回答
〈9〉请求/响应请求链路状态	〈11〉响应:链路状态

图 7 启动和从动链路平衡式传输过程

链路地址域 A 可以为一个八位位组也可以为两个八位位组,由系统参数确定。在平衡传输系统没有定义广播命令。

控制域中的 RES-bit 未用,设置为零。

平衡传输的链路层有两个独立的逻辑过程。一个逻辑过程代表 A 站为启动站、站 B 为从动站。一个逻辑过程代表 B 站为启动站、A 站为从动站。每一个站均为综合站。这样在每一个站存在两个独立的过程,在逻辑启动方向和逻辑从动方向去控制链路层。图 7 是采用平衡传输过程链路层的典型框图。

注:物理传输方向由 DIR 位定义。从站 A 到站 B 的启动逻辑过程或者从动逻辑过程可能改变和取相反状态。PRM=1 定义启动报文。PRM=0 定义从动报文(见 GB/T 18657.2—2002 中 6.1.2)。

图 8 和图 9 没有显示在接收受干扰帧时链路层的反应,这些帧早已被(未在图中显示的)过程丢弃。这个过程也负责超时时间间隔的控制。图 8 所示为启动链路层的状态转换图。图 9 所示为从动链路层的状态转换图。

DIR 定义了物理传输方向(见 GB/T 18657.2-2002 中 6.1.2)。

1=站A(控制站)到站B(被控站)。

0=站B(被控站)到站A(控制站)。

所有由控制站发送报文中的数据链路控制域 DIR 位设置为 1。所有由被控站发送报文中的数据链路控制域 DIR 位设置为 0。

在两个等同的站(即两个控制中心)由协商确定 DIR 位的定义。

启动报文和从动报文的平衡模式地址域(如果定义)包含目的地址。

6.2.2 重复帧传输的超时时间间隔的定义

GB/T 18657.2—2002 附录 A 中给出了计算两种情况和工程特定参数的重复帧传输超时时间间隔的公式。不采用 GB/T 18657.2—2002 中图 A.2/A.4 情况 2 的匹配超时时间间隔。采用图 A.2/A.4 情况 1。对于各种传输速率超时时间间隔 T_0 是恒定的。

本节阐明采用公式计算了两张表,这些表(表 5、6)给出了平衡和非平衡传输许多典型情况的超时时间间隔的例子。

参见 GB/T 18657.2-2002 中附录 A、图 A.2 情况 1 (非平衡传输过程)。

参见 GB/T 18657.2-2002 中附录 A、图 A.4 情况 1 (平衡传输过程)。

未在 GB/T 18657.2-2002 中定义的缩写:

BAB---从站 A 到站 B 的传输速率。

BBA——从站 B 到站 A 的传输速率。

LBAmax——从B到A的最长帧的八位位组数目。

LADDR---链路地址域的长度。

BAB, BBA, LBAmax, LADDR, t_R 和 t_{RB}为工程特定参数。

6.2.2.1 非平衡传输

超时时间间隔 T_0 :

- 注1: 从动链路层指站 B, 启动链路层为站 A。
- 注 2: REQ、IND、RESP、CON 在 GB/T 18657.2 中定义。
- 注 3: 除非 ACD=1 或 DFC=1, 单个控制字符可能代替 FC0 或者 FC9。
- 注 4: (从启动发送) 不出现服务 FC1 (复位用户进程), 根据其特定的应用的需要来定义其使用。
- 注 5: T_0 帧重复传送的超时时间, $T_{\rm m}$ 重传的时间间隔, $T_{\rm m}$ 定义为时间间隔或定义为等效的重传次数。

图 8 启动站到从动站的平衡式传送的状态转换图

式中:

$$t_{LD}$$
— $t_{LD} = t_{DAB} + t_R + t_{DBA}$;
 t_R — $t_R =$ 站 B 的反应时间(每个设备特定);
 t_{DAB} — $t_{DAB} = 0.5/BAB^3$;
 t_{DBA} — $t_{DBA} = 0.5/BBA^3$;
 t_{LBA} — $t_{LBA} = 11 \times LBAmax/BBA$ 。

³⁾ t_{DAB}和 t_{DBA}的信号延时(见 GB/T 18657.2-2002 附录 A) 假定为数据比特传输时间的一半。

Rx[FC0]/Tx:[FC1,DFC=1],或 Rx[FC2]/Tx:[FC0,DFC=1],或 Rx[FC3]/Tx:(FC1,DFC=1),或 Rx[FC4]/IND("差错"),或 Rx[FC9]/Tx:(FC11,DFC=1),或 Rx[FC 没有完成]/Tx:(FC15,DFC=1)

注1: 从动链路层指站 B, 启动链路层为站 A。

注 2: REQ、IND、RESP、CON 在 GB/T 18657.2 中定义。

注 3: 除非 DFC=1。从动站可用单个控制字符代替 FCO。

注 4: (从启动发送) 不出现服务 FC1, 根据其特定的应用来定义其使用。

图 9 从动站到启动站的平衡式传送的状态转换图

超时时间间隔规范的例子。

定义:站B=被控站。

两个方向传输速率相等。

站 B 的反应时间 $t_R = 50 \text{ms}$ 。

表 5 超时时间 (T₀) 和帧长、传输速率、工程特定参数有关

LBAmax	传输速率	. t _{1d}	T _{LBA}	T_0
LDAMax	bit/s	ms	ms	ms
	100	60.0	2200.0	2260.0
	600	51.7	366.7	418.4
20	1200	50.8	183.3	234.1
20	9600	50.1	22.9	73.0
	19200	50.0	11.4	61.4
	64000	50.0	3.4	53.4
	100	60.0	26400.0	26460.0
	600	51.7	4400.0	4451.7
240	1200	50.8	2200.0	2250.8
240	9600	50.1	275.0	325.1
	19200	50.0	137.5	187.5
	64000	50.0	41.3	91.3

6.2.2.2 平衡传输

超时时间间隔 T_0 :

$$T_0 > t_{LDA} + T_{LSPBA} + t_{GB} + T_{LPSBA}$$

式中:

 $t_{\text{LDA}} - t_{\text{LDA}} = t_{\text{DAB}} + t_{\text{RB}} + t_{\text{DBA}};$

 t_{RB} — t_{RB} =站 B 的反应时间 (每个设备特定);

 $t_{\rm DAB} - t_{\rm DAB} = 0.5 / {\rm BAB}^{4}$;

 $t_{\rm DBA}$ — $t_{\rm DBA} = 0.5/{\rm BBA}^{5)}$;

 $t_{\rm GB}$ — $t_{\rm GB} = 33/{\rm BBA}^{6}$;

 T_{LPSBA} $T_{LPSBA} = 11 \times LBAmax/BBA;$

 T_{LSPBA} $\longrightarrow T_{LSPBA} = 11 \times (LADDR + 4) /BBA_o$

超时时间间隔规范的例子

定义: 站 B=被控站。

在两个方向传输速率相等。

站 B 的反应时间 $t_R = 50 \text{ms}$ 。

地址域的长度 LADDR=1。

表 6 超时时间 (T_0) 和帧长、传输速率、工程特定参数有关

LBAmax	传输速率 bit/s	$t_{ m LDA}$ ms	$t_{ m GB}$ ms	T _{LSPBA} ms	T _{LPSBA}	$T_{f 0}$ ms
	100	60.0	330.0	550.0	2200.0	3140.0
	600	51.7	55.0	91.7	366.7	565.1
•	1200	50.8	27.5	45.8	183.3	307.4
20	9600	50.1	3.4	5.7	22.9	82.1
	19200	50.0	1.7	2.9	11.4	66.0
	64000	50.0	0.5	0.9	3.4	54.8
	100	60.0	330.0	550.0	26400.0	27340.0
	600	51.7	55.0	91.7	4400.0	4598.4
210	1200	50.8	27.5	45.8	2200.0	2324.1
240	9600	50.1	3.4	5.7	275.0	334.2
	19200	50.0	1.7	2.9	137.5	192.1
	64000	50.0	0.5	0.9	41.3	92.7

6.2.3 各种复位的应用

GB/T 18657.2—2002 定义复位远方链路服务(FC0)和复位用户进程服务(FC1)。另外在 GB/T 18657.5—2002 和本标准定义了远方初始化过程,即采用复位进程命令 C_RP_NA_1 类型标识 $\langle 105 \rangle$ 。

表 7 规定了各种复位的应用。

^{4), 5)} t_{DAB} 和 t_{DBA} 的信号延时(见 GB/T 18657.2—2002 附录 A)假定为数据比特传输时间的一半。

⁶⁾ 在超时时间 T_0 定义中, $t_{\rm GB}$ =33bit 是最极端的情况, $t_{\rm GB}$ 是一系统特定参数,通常远小于 33bit(例如 0.5bit)。

表7 各种复位的作用

控制站第7层和用户	始发链路	从动链路	被控站第7层和用户
	远方链路复位 (FC0)	从动链路复位	
	用户进程复位 (FC1)	复位	复位
复位进程命令	_	_	复位

当从动链路复位和链路以上各层无关时采用复位远方链路。在这种情况下控制域的帧计数位常置为零。删除挂起的从动链路报文。

如果链路仍然工作,而被控站的进程不工作,采用复位用户进程。在这种情况下通过链路功能复位 用户进程可将用户进程重新工作。如果链路层有可能通过单独的信号复位用户进程,才可采用这种服务。

在 GB/T 18657.5-2002 的 6.1.4 和 6.1.7 定义了复位进程命令。

7 应用层和用户进程

采用下述国家标准:

GB/T 18657.3-2002: 应用数据的一般结构

GB/T 18657.4-2002: 应用信息元素定义和编码

GB/T 18657.5-2002: 基本应用功能

7.1 选自 GB/T 18657.3 中应用数据的一般结构

GB/T 18657.3—2002 描述了远动系统传输帧中的基本应用数据单元,本章规定的域元素选自 GB/T 18657.3—2002,并定义了用于配套标准中的应用服务数据单元(ASDU)。

本配套标准规定每一个链路规约数据单元(LPDU)只有一个 ASDU。

应用服务数据单元(ASDU 见图 10)由数据单元标识符和一个或多个信息对象所组成。

数据单元标识符在所有应用服务数据单元中有相同的结构,一个应用服务数据单元中的信息对象有相同的结构和类型,它们由类型标识域所定义。每个应用服务数据单元包含单一类型标识和单一传送原因。

数据单元标识符的结构如下:

• 一个八位位组

类型标识 (TYPE IDENTIFICATION);

• 一个八位位组

可变结构限定词 (VARIABLE STRUCTURE QUALIFIER);

• 一个或者两个八位位组

传送原因 (CAUSE OF TRANSMISSION);

• 一个或者两个八位位组

应用服务数据单元公共地址(COMMON ADDRESS OF ASDU)。

应用服务数据单元公共地址的八位位组数目是由系统参数(网络特定)所决定,为一个或两个八位位组、公共地址是站地址。它可寻址整个站或者站的特定部分。

应用服务数据单元没有数据长度域,每一帧仅有一个应用服务数据单元,应用服务数据单元的长度 是由帧长(即为链路规约长度域)减去一个固定的整数,此固定整数是一个系统参数(无链路地址时系统参数为1、有一个八位位组链路地址时系统参数为2、有两个八位位组链路地址时系统参数为3)。

时标 (如果出现的话) 它属于单个信息对象。

信息对象由一个信息对象标识符、一组信息元素和一个信息对象时标(如果出现)所组成。

信息对象标识符仅由信息对象地址组成,在大多数情况下,在一个特定系统中,应用服务数据单元 公共地址连同信息对象地址一起可以区分全部信息元素集,在每一个系统中这两个地址结合在一起将是 明确的。类型标识不是公共地址也不是信息对象地址的一部分。

一组信息元素集可以是单个信息元素/信息元素集合、单个信息元素序列或者信息元素集合序列。

类型标识定义了信息对象的结构、类型和格式。一个应用服务数据单元内全部信息对象有相同的结

数据单元标识符:=CP16+8a+8b {类型标识,可变结构限定词,传送原因,公共地址}

系统参数 a: =公共地址的八位位组数目(1或者 2)

系统参数 b: = 传送原因的八位位组数目(1或者 2)

信息对象: = CP8c + 8d + 8t {信息对象地址,信息元素集、时标(任送)}

系统参数 c: = 信息对象地址的八位位组数目(1,2或者3)

可变参数 d:=信息元素集八位位组的数目

可变参数 t:=3或7若信息对象时标出现,0若信息对象时标不出现

图 10 应用服务数据单元(ASDU)的结构

构、类型和格式。

7.2 选自GB/T 18657.4 中的应用信息元素的定义和编码

按照 GB/T 18657.4—2002 中所定义信息元素的规则,规定了应用服务数据单元的各个信息元素域的大小和内容。

7.2.1 类型标识

第一个八位位组为类型标识(图 11),它定义 了后续信息对象的结构、类型和格式。

类型标识定义如下:

类型标识=TYPE IDENTIFICATION:=UI8 [1···8] 〈I···255〉

图 11 类型标识

信息对象是否带时标由标识类型的不同序号来区分。

控制站将舍弃那些类型标识未被定义的应用服务数据单元。

7.2.1.1 类型标识域值的语义定义

类型标识值〈0〉未用,在本配套标准中定义了 $1\sim127$ 的值, $128\sim255$ 未定义。 $136\sim255$ 可以由此标准的使用者彼此独立的进行定义,仅当使用具有类型标识号为 $1\sim127$ 的范围的应用服务数据单元才能达到全部互操作。

表 8~表 13 定义了在监视方向和控制方向上的过程信息和控制信息的类型标识号。在标准的运行

DL/T 634.5101 -- 2002

中,在网络的各站之间有一个垂直的信息流。命令是由控制站向几个被控站之一传送,事件/测量值从 被控站向控制站传送。

在一些设施中,信息还需要在同等级的各个站之间流通。可采用双模式,这样命令和事件/测量值可在两个方向传送。公共的链路层支持标准方向操作和相反方向操作。根据要求,个别的应用功能和ASDU可为标准方向所采用、相反方向所采用或者为两个方面所采用。

双-模式站可运行在平衡链路层或者非平衡链路层的顶部。当一个非平衡链路用于和一个双-模式站相连接,在系统设计阶段就必须确定谁是启动链路层的角色,在通信时不得改变。在非平衡链路的情况下,相反方向的命令应用服务数据单元由非平衡链路层请求/响应服务所请求。

双-模式站必须在每个传输报文内将应用服务数据单元的公共地址设置成当前作为被控站的站地址。 接收站将依据应用服务数据单元的公共地址来确定此报文为请求或者响应。

当没有其他合适的数据类型可定义时,可采用类型标识 7、8、33 和 51 (在监视方向和控制方向的 32 比特串)。这些类型不得包括以单点或双点信息出现的数据(成组或者非成组)。

类型标识=TYPE IDENTIFICATION: = UI8 [1···8] (1···255)

〈1…127〉:=本配套标准的标准定义(兼容范围)

(128…135):=为路由报文保留(专用范围)

〈136…255〉:=特殊应用(专用范围)7)

表 8 类型标识的语义

在监视方向上的过程信息	
类型标识=TYPE IDENTIFICATION:=UI8 [1…8]〈0…44〉	
〈0〉:=未定义	
〈1〉:=单点信息	$M_SP_NA_1$
〈2〉:=带时标的单点信息	$M_SP_TA_1$
〈3〉:= 双点信息	M _ DP _ NA _ 1
〈4〉:=带时标的双点信息	$M_DP_TA_1$
〈5〉:=步位置(档位)信息	$M_ST_NA_1$
〈6〉:= 带时标的步位置(档位)信息	M_ST_TA_1
〈7〉:=32 比特串	$M _BO _NA _1$
〈8〉:= 带时标的 32 比特串	$M_BO_TA_1$
〈9〉:=测量值,规一化值	M _ ME _ NA _ 1
〈10〉:=测量值,带时标的规一化值	M _ ME _ TA _ 1
〈11〉:=测量值,标度化值	$M _ ME _ NB _ 1$
〈12〉:=测量值,带时标的标度化值	$M_ME_TB_1$
〈13〉:=测量值,短浮点数	M _ ME _ NC _ 1
〈14〉:=测量值,带时标的短浮点数	$M _ ME _ TC _ 1$
〈15〉:= 累计量	$M_IT_NA_1$
〈16〉:= 带时标的累计量	$M_IT_TA_1$
〈17〉:=带时标的继电保护设备事件	$M_EP_TA_1$
〈18〉:=带时标的继电保护设备成组启动事件	M_EP_TB_1

⁷⁾ 建议专用应用服务数据单元数据单元标识符域和标准应用服务数据单元数据单元标识符域格式一致。

表8(续完)

在监视方向上的过程信息	
类型标识=TYPE IDENTIFICATION:=UI8 [1…8] 〈0…44〉	
〈19〉:=带时标的继电保护设备成组输出电路信息	$M_EP_TC_1$
〈20〉:=带变位检出的成组单点信息	$M_PS_NA_1$
〈21〉:=测量值,不带品质描述词的规一化值	$M _ ME _ ND _ 1$
〈22…29〉:= 为将来兼容定义保留	
〈30〉:= 带 CP56Time2a 时标的单点信息	$M_SP_TB_1$
〈31〉:= 带 CP56Time2a 时标的双点信息	$M_DP_TB_1$
〈32〉:= 带 CP56Time2a 时标的步位置信息	$M_ST_TB_1$
〈33〉:=带 CP56Time2a 时标的 32 比特串	$M_BO_TB_1$
〈34〉:=带 CP56Time2a 时标的测量值,规一化值	$M_ME_TD_1$
〈35〉:=带 CP56Time2a 时标的测量值,标度化值	$M_ME_TE_1$
〈36〉:=带 CP56Time2a 时标的测量值,短浮点数	$M_ME_TF_1$
〈37〉:= 带 CP56Time2a 时标的累计量	$M_IT_TB_1$
〈38〉:=带 CP56Time2a 时标的继电保护设备事件	$M_EP_TD_1$
〈39〉:=带 CP56Time2a 时标的继电保护设备成组启动事件	$M_EP_TE_1$
〈40〉:=带 CP56Time2a 时标的继电保护设备成组输出电路信息	$M_EP_TF_1$
〈41…44〉:= 为将来兼容定义保留	

表 9 类型标识的语义

在控制方向的过程信息	
类型标识=TYPE IDENTIFICATION:=UI8 [1…8] 〈45…69〉	
CON〈45〉:=单点命令	$C_SC_NA_1$
CON (46):=双点命令	$C_DC_NA_1$
CON 〈47〉:=步调节命令	$C _ RC _ NA _ 1$
CON〈48〉:=设定值命令,规一化值	$C_SE_NA_1$
CON〈49〉:=设定值命令,标度化值	C _ SE _ NB _ 1
CON〈50〉:=设定值命令,短浮点数	C_SE_NC_1
CON〈51〉:=32 比特串	$C_BO_NA_1$
〈52…69〉:=为将来兼容定义保留	
注,在控制方向标上(CON)的应用服务数据单元是被确认的应用服务。	在监视方向形成镨傻 但传送原因不

注:在控制方向标上(CON)的应用服务数据单元是被确认的应用服务,在监视方向形成镜像,但传送原因不同,这些镜像的应用服务数据单元用来作为肯定/否定认可(验证)。传输原因在7.2.3中定义。

表 10 类型标识的语义

在监视方向的系统命令

类型标识=TYPE IDENTIFICATION=:=UI8 [1…8] 〈70…99〉

〈70〉:=初始化结束 M_EI_NA_1

〈71…99〉:=为将来兼容定义保留

表 11 类型标识的语义

在控制方向的系统命令 类型标识=TYPE IDEN

类型标识=TYPE IDENTIFICATION: = UI8 [1…8] 〈100…109〉

 CON〈100〉:=站(总)召唤命令
 C_IC_NA_1

 CON〈101〉:=计数量召唤命令
 C_CI_NA_1

 CON〈102〉:=读命令
 C_RD_NA_1

 CON〈103〉:=时钟同步命令
 C_CS_NA_1

 CON〈104〉:=测试命令
 C_TS_NA_1

 CON〈105〉:=复位进程命令
 C_RP_NA_1

CON (106):=延时获得命令 (107···109):=为将来兼容定义保留

注:在控制方向标上(CON)的应用服务数据单元是被确认的应用服务,在监视方向形成镜像,但传送原因不同,这些镜像的应用服务数据单元用来作为肯定/否定认可(验证)。传输原因在7.2.3中定义。

表 12 类型标识的语义

在控制方向的参数命令

类型标识=TYPE IDENTIFICATION:=UI8 [1…8] 〈110…119〉

 CON 〈110〉:=测量值参数,规--化值
 P_ME_NA_1

 CON 〈111〉:=测量值参数,标度化值
 P_ME_NB_1

 CON 〈112〉:=测量值参数,短浮点数
 P_ME_NC_1

 CON 〈113〉:=参数激活
 P_AC_NA_1

〈114…119〉:= 为将来兼容定义保留

注:在控制方向标上(CON)的应用服务数据单元是被确认的应用服务,在监视方向形成镜像,但传送原因不同,这些镜像的应用服务数据单元用来作为肯定/否定认可(验证)。传输原因在7.2.3中定义。

表 13 类型标识的语义

文件传输 类型标识=TYPE IDENTIFICATION=:=UI8 [1…8] (120…127) 〈120〉:=文件准备就绪 F FR NA 1 F SR NA 1 〈121〉:= 节准备就绪 〈122〉:=召唤目录,选择文件,召唤文件,召唤节 F SC_NA_1 〈123〉:=最后的节,最后的段 F LS NA 1 〈124〉:=认可文件,认可节 F AF NA 1 〈125〉:=段 $F_SG_NA_1$ $F_DR_TA_1$ 〈126〉:=目录 〈127〉:=为将来兼容定义保留

(bit) $\frac{8}{SQ}$ $\frac{7}{2^6}$ $\frac{6}{2^6}$ $\frac{5}{2^6}$ $\frac{4}{2^6}$ $\frac{3}{2}$ $\frac{2}{2}$ $\frac{1}{2^6}$

7.2.2 可变结构限定词

在应用服务数据单元中,其数据单元标识符的第二个八位位组定义为可变结构限定词(图 12),规定如下:

C CD_NA_1

图 12 可变结构限定词

7.2.2.1 可变结构限定词域值语义定义

可变结构限定词=VARIABLE STRUCTURE QUALIFIER:=CP8 {数目、SQ}

N =数目:=UI7 $\lceil 1 \cdots 7 \rceil \langle 0 \cdots 127 \rangle$

(0):=应用服务数据单元不含信息对象

〈1…127〉:=应用服务数据单元信息元素(单个信息元素或同类信息元素组合)的数目

SQ=单个或者顺序:=BS1 [8] (0···1)

- 〈0〉:=寻址同一种类型的许多信息对象中单个的信息元素或者信息元素的集合
- 〈1〉:= 寻址 ASDU 单个信息对象中顺序的单个信息元素或信息元素的同类集合
- $SQ\langle 0\rangle$ 和 $N\langle 0\cdots 127\rangle := 信息对象的数目 i$
- $SQ\langle 1\rangle$ 和 N $\langle 0\cdots 127\rangle$:= 每个应用服务数据单元中单个对象的信息元素或者信息元素的集合的数目;

SQ 位规定寻址后续信息对象或单个信息元素/信息元素集合的方法。

SQ: = 0 由信息对象地址寻址的单个信息元素或信息元素集合。应用服务数据单元可以由一个或者多个同类的信息对象所组成。数目 N 是一个二进制数,它定义了信息对象的数目。

SQ: =1单个信息元素或者信息元素同类集合的序列(例如同一种格式测量值)由信息对象地址来寻址(见 GB/T 18657.3—2002 中的 5.1.5),信息对象地址是顺序单个信息元素或者信息元素集合的第一个信息元素或者集合的地址。后续单个信息元素或者信息元素集合的地址是从这个地址起顺序加1。数目 N 是一个二进制数,它定义了单个信息元素或者信息元素集合的数目。在顺序单个信息元素或者信息元素集合的情况下每个应用服务数据单元仅安排一个信息对象。

7.2.2.2 按日历顺序传输信息对象的要求

由被控站的优先控制管理器管理特定优先级别,按照日历顺序正确地传输信息对象,采用如下规范:

被监视的信息对象可以带下列传送原因传送:

- ——循环/周期;
- ——背景扫描;
- ——突发;
- ---被请求:
- ——由远方命令引起的返回信息;
- ——由当地命令引起的返回信息;
- ——由站召唤和组召唤所召唤:
- ——由总的计数数请求和分组计数量请求所召唤。

传输特定信息对象的连续值应按测量这些值的时间顺序进行。

注:为了保证特定信息对象的值按正确的日历顺序传输,信息对象采用单个优先级缓冲区,或者信息对象的值放在不同优先级缓冲区,这些值之间有协调关系。

存储在优先级缓冲区的信息对象的传输,如图 13 所示。

从优先缓冲区正确传输信息对象的日历顺序集,要按照下述过程来实现。在图 13 的例子中,类型标识为 A、B、C的信息对象在优先缓冲区 1 内按随机顺序存储。从这个缓冲区中传输信息对象,将类

型标识 A 名为 A1 和 A2 的最先两个信息对象组装成一个应用服务数据单元。将信息对象 B1 和 B2 组装成第二个应用服务数据单元,然后将信息对象 A3 和 A4 组装成第三个应用服务数据单元,然后将信息对象 A3 和 A4 组装成第三个应用服务数据单元和传送原因的信息对象按照日历的顺序存储,中间不会有不同类型标识的信息对象,这些同类型标识的信息对象组在一个应用服务数据单元中传输。下一个应用服务数据单元同样是按单一类型标识信

图 13 在优先缓冲区内类型信息对象的表示

息对象组装。在一个应用服务数据单元内组装的信息对象具有相同的传输优先级。

传输帧的最大长度是一个固定的参数。因为不同类型标识信息对象的长度不相同,因此在一个应用服务数据单元内给定类型的最大信息对象数目可能随类型从一种类型到另一种类型的变化而变化。如果在缓冲区有足够数量顺序存储的同一类型标识和传送原因的信息对象,将用信息对象填充应用服务数据单元直至最大规定的长度。

不允许为了使这个应用服务数据单元达到最大可能的长度,而等待新的信息对象存储到缓冲区,延 时传输这个应用服务数据单元。

在每一个优先级缓冲区仅存储单一类型标识的信息对象可达到最高的效率。这通常由配置参数完成。

本节指出了事件的突发传输,但是没有规定如何构成信息元素序列,这些信息元素序列用于具有非结构信息对象地址的应用服务数据单元内,例如对站召唤的响应。但必须遵守按正确的日历顺序传输单个信息对象的所有值。

在本节定义的实现优先级缓冲区和优先级控制管理器:必需保证不带时标的信息对象(当前版本) 传输到控制站之前,这些相同信息对象在这之前所产生的全部版本已经传输到控制站。

由于下述一些原因必须十分小心:

- a) 由不同传输原因产生的信息对象(例如为背景扫描所采集或者突发传输的事件)不会在同一时刻产生。这样同一信息对象的两种版本当它们产生的时间非常接近的时候,可能不是准确的按照日历时间顺序进入优先级缓冲区。
- b) 进入不同优先级缓冲区的信息对象流不可能是同一种速度,这意味着按照正确日历时间顺序 进入这些缓冲区的信息对象,可能不会仍然按照同一日历时间顺序出现在优先级控制管理器。
- c) 当采用非平衡模式链路过程,在传输区等待传输的一些对象可能不会按照它们进入缓冲区的同一日历时间顺序进行传输。这是因为被控站无法控制请求1级用户数据和请求2级用户数据的接收顺序。

维持正确的日历时间顺序的方法是当地的事情(是特定被控站内部的事情),不在本标准中定义。

当采用结构信息对象地址,由于寻址序号可能有间隙,为单个信息对象的顺序信息元素所定义的一 些应用服务数据单元不会按最佳帧长实现。它降低了站召唤过程的组装效率。

7.2.2.3 缓冲区溢出

被控站采用单点信息对象表示缓冲区溢出状态(STATUS=〈1〉溢出,STATUS=〈0〉未溢出)。 控制站为缓冲区溢出所采取的动作是实现特定的事情。

7.2.3 传送原因

在应用服务数据单元中,其数据单元标识符的第三个八位位组或任选的第四个八位位组定义为传送原因,如图 14 所示:

图 14 传送原因域

7.2.3.1 传送原因域值语义定义

传送原因 = : = CP16 {Cause, P/N, T, 源发站地址 (任选)}

其中 Cause: = UI6 [1…6] 〈0…63〉

(0):=未定义

〈1…63〉:=传送原因序号

〈1…47〉:=本配套标准的标准定义(兼容范围)见表 14

表 14 传送原因的语义

原因 = Cause: = UI6 [1…6] 〈0…63〉	
⟨0⟩:=未用	
〈1〉:=周期、循环	per/cyc
$\langle 2 \rangle$:= 背景扫描 $^{1)}$	back
〈3〉:=突发(自发)	spont
〈4〉:=初始化	init
〈5〉:=请求或者被请求	req
⟨6⟩:=激活	act
〈7〉:=激活确认	actcon
⟨8⟩:=停止激活	deact
〈9〉:=停止激活确认	deactcon
⟨10⟩:=激活终止	actterm
〈11〉:=远方命令引起的返送信息	retrem
〈12〉:= 当地命令引起的返送信息	. retloc
〈13〉:=文件传输	file
〈14…19〉:= 为配套标准兼容范围保留	
〈20〉:=响应站召唤	introgen
〈21〉:=响应第1组召唤	inro1
〈22〉:=响应第2组召唤	inro2
(23):=响应第3组召唤	inro3
〈24〉:=响应第4组召唤	inro4
〈25〉:=响应第5组召唤	inro5
〈26〉:= 响应第 6 组召唤	inro6
〈27〉:=响应第7组召唤	inro7
〈28〉:= 响应第8组召唤	inro8
〈29〉:= 响应第 9 组召唤	inro9
⟨30⟩:=响应第 10 组召唤	inro10
⟨31⟩:=响应第 11 组召唤	inro11
(32) := 响应第 12 组召唤	inro12
〈33〉:=响应第 13 组召唤 〈34〉:=响应第 14 组召唤	inro13
(35):=响应第 15 组 召唤	inro14 inro15
〈36〉:=响应第 16 组召唤	inro16
〈37〉:=响应计数量(累计量)站(总)召唤	regcogen
〈38〉:=响应第1组计数量(累计量)召唤	reqco1
〈39〉:=响应第2组计数量(累计量)召唤	reqco2
〈40〉:=响应第3组计数量(累计量)召唤	reqco3
〈41〉:=响应第4组计数量(累计量)召唤	reqco4
〈42…43〉:=为配套标准兼容范围保留	
〈44〉:= 未知的类型标识	
〈45〉:=未知的传送原因	
〈46〉:=未知的应用服务数据单元公共地址	
(47):=未知的信息对象地址	
〈48…63〉:=特殊应用保苗 (专用范围)	

〈48…63〉:=专用范围

 $P/N := BS1 [7] \langle 0, 1 \rangle$

〈0〉:=肯定确认

〈1〉:=否定确认

T = test: = BS1 [8] $\langle 0, 1 \rangle$

〈0〉:=未试验

(1):=试验

源发站地址:=UI8 [9…16] 〈0…255〉

〈0〉:=缺省值

〈1…255〉:=源发站地址号

控制站将舍弃那些给定类型标识中的传送原因值没有被定义的应用服务数据单元。

将应用服务数据单元送给某个特定的应用任务(程序)时,应用任务(程序)根据传送原因的内容便于进行处理。

P/N 位用以对由始发应用功能所请求的激活以肯定或者否定确认,在无关的情况下 P/N 置零。

原因中测试比特定义了应用服务数据单元是在测试条件下所产生的。它被用于(例如)去测试传输和设备,但不控制过程。

在控制方向标上(CON)的应用服务数据单元是被应用服务所确认,在监视方向形成镜像,但传送原因不同(见表9、11和12)。

源发站地址指引这些镜像的应用服务数据单元和在监视方向所召唤(例如由站(总)召唤所召唤)的应用服务数据单元送给激活这个进程的源地址。

如果没有使用源发站地址,在系统中有多个源,在镜像方向的应用服务数据单元将被送给系统全部 有关的源。在这种情况下,特定的受影响的源必须选择它自己的特定应用服务数据单元。

如果采用了源发站地址、定义如下。

〈0〉:=缺省

0 用来定义过程信息当作返回信息、事件等,它们必须传输到分布系统的所有部分。

⟨1····255⟩

此值域用于寻址系统的特定部分,在镜像方向上向系统这些特定部分返回相应的信息。

在一个系统内,系统的各部分可以是启动站(总)召唤、请求累计总量、命令等的信息源。返回的信息仅对启动请求或命令的源是重要的。在这些系统中信息源将在控制方向设置应用服务数据单元的源 发站地址。被控站将在监视方向的响应中回应这个源发站地址。

示例 1:

由特定源(在图 15 中控制站 A) 启动的站召唤,在监视方向返回的召唤信息将惟一地引到特定源,不引导到系统的其他部分(例如图 15 中控制站 B)。站召唤的应用服务数据单元标明特定的(范围为〈1…255〉)源发站地址。在监视方向返回所召唤的信息(例如,在图 15 中通过集中站)带有源发站地址按规定的路线送到启动源。

示例 2:

由特定源(在图 16 中控制站 A,传送原因 = 激活)发送命令,返回认可(传送原因 = 激活确认、激活终止),此认可仅对启动命令的源是重要的。因此激活确认、激活终止将惟一地(通过集中站见图 16)引到特定源。然而,代表过程信息(具有传送原因 11、12)的相应的返回信息,它们将存储和控制在整个系统的不同的数据库中(图 16 的控制站 A和B),它们的源发站地址 = 0,就可向需要这些信息的所有部分传送。

在控制方向的应用服务数据单元其数据单元标识符以及信息对象地址为未定义的值(可变结构限定词除外),被控站以"P/N=〈1〉否定确认"以及下述传送原因回答。

图 15 采用源发站地址的通过集中站的站召唤

图 16 采用源发站地址通过集中站的命令传输

传送原因

未知类型标识 44 未知传送原因 45 未知应用服务数据单元公共地址 46 未知信息对象地址 47 控制站每次接收到下述应用服务数据单元, 监视和记录通信差错:

- ——在监视方向上的应用服务数据单元,其数据单元标识符(可变结构队限定词除外)值未定义;
- ——在监视方向上的应用服务数据单元,其信息对象地址值未定义;
- ——由于控制方向未知(类型标识符 45 至 51)的序号的镜像的应用服务数据单元。

接收这些应用服务数据单元不会影响后续报文的处理。

7.2.4 应用服务数据单元公共地址

应用服务数据单元中数据单元标识符的第四个和第五个(任选)[当传送原因中采用了源发者地址为第五个和第六个(任选)]八位位组定义为应用服务数据单元公共地址,公共地址的长度(一个或两个八位位组)是一个系统参数,每一个系统中此参数为固定值(图 17、图 18)。

图 17 应用服务数据单元公共地址(一个八位位组)

应用服务数据单元公共地址:=UI8 [1···8] 〈0···255〉

其中〈0〉:=未用 〈1…254〉:=站地址 〈255〉:=全局地址

(bit)	8	7	6	5_	4	3	2	1	
	27							20	应用服务数据单元公共地址低八位位组
	215							28	应用服务数据单元公共地址高八位位组

图 18 应用服务数据单元公共地址(两个八位位组)

应用服务数据单元公共地址:=UI16 [1···16] 〈0···65535〉

其中〈0〉:=未用 〈1…65534〉:=站地址 〈65535〉:=全局地址

控制站将舍弃那些公共地址具有未定义值的应用服务数据单元。

公共地址是和一个应用服务数据单元内的全部对象联系在一起(见 GB/T 18657.3—2002 表 1)。全局地址是向特定系统全部站的广播地址。在控制方向带广播地址的应用服务数据单元,必须在监视方向以包含特定定义的地址(站地址)的应用服务数据单元回答。

在公共地址为 FF 或者 FFFF (广播地址,请求全体)的情况下,被控站以特定公共地址返回 ACTCON、ACTTERM 和被召唤的信息对象 (如果有的话),这和向某个特定站发送命令后的响应一样。

FF 和 FFFF 的公共地址严格限定用于在控制方向上的下述应用服务数据单元:

 类型标识〈100〉:=召唤命令
 C_IC_NA_1

 类型标识〈101〉:=计数量召唤命令
 C_CI_NA_1

 类型标识〈103〉:=时钟同步命令
 C_CS_NA_1

 类型标识〈105〉:=复位进程命令
 C_RP_NA_1

FF 和 FFFF 的公共地址用于一个特定系统中在同一时刻向所有站同时启动同一个应用功能,例如用时钟同步命令去同步当地时钟或者由计数量召唤命令去冻结电能累计量。

7.2.5 信息对象地址

下面定义一个、二个或者三个信息对象地址(图 19、20、21),信息对象地址长度(一个、二个或者三个八位位组)是一个系统参数,每一个系统是固定的。

信息对象地址在控制方向作为目的地址,在监(Bit) 8 7 6 5 4 3 2 视方向作为源地址。

20 信息对象地址

信息对象地址 = 信息对象地址: = UI8[1…8] $\langle 0\cdots 255 \rangle$

图 19 信息对象地址 (一个八位位组)

〈0〉:=无关的信息对象地址

〈1…255〉:=信息对象地址

图 20 信息对象地址(二个八位位组)

信息对象地址:=UI16「1···16]〈0···65535〉

其中〈0〉:=无关的信息对象地址 〈1…65534〉:=信息对象地址

(bit)	8	7	6	5	4	3	2	1	
	27							20	信息对象地址低八位位组
	215							28	
	2 ²³							216	信息对象地址高八位位组

图 21 信息对象地址(三个八位位组)

信息对象地址:=UI24「1…24〕〈0…16777215〉

其中〈0〉:=无关的信息对象地址 〈1…16777215〉:=信息对象地址

控制站将舍弃那些信息对象地址具有未定义值的应用服务数据单元。

第三个八位位组仅用于结构化信息对象地址,在一个特定系统中定义惟一的地址。在所有情况下不 同信息对象地址的最大数目限制为65536(两个八位位组)。如果某些应用服务数据单元中信息对象地 址是无关的,它就设置为零。

信息对象是一组定义好的信息、它需要一个名字(信息对象地址)以便在通信时去标识它(见 ISO/IEC 8824-2000 中 3.31 和 GB/T 18657.3-2002 中 3.3)。信息对象携带信息元素,它标识单个信 息点,单个信息点可以由信息对象地址惟一地寻址。例如传输返回信息的信息对象必须和传送命令的信 息对象有不同的信息对象地址。

读命令 C RD NA 1 是例外,因为它的信息对象地址用来寻址在监视方向返回可用的信息对象。 信息对象地址可以和应用服务数据单元(类型标识)独立地规定,应用服务数据单元传送特定的信 息对象。信息对象可以用同一个信息对象地址采用不同的应用服务数据单元,即带时标或者不带时标的 单点信息。

表 15	在监视方向可以传	送具有同等信息对象地址	的应用服务数据单元

类型标识	带时标的类型标识	变通格式类型标识	类型标识	带时标的类型标识	变通格式类型标识
1	2 或者 30	20	9	10 或者 34	21
3	4 或者 31	17 或 38	11	12 或者 35	
5	6 或者 32		13	14 或者 36	
7	8 或者 33		15	16 或者 37	

DL/T 634.5101 - 2002

在监视方向或者(和)控制方向上没有特定公共地址的应用服务数据单元的其他组合可以携带同样的信息对象地址。特别是,命令(应用服务数据单元类型 45~69)和参数(应用服务数据单元类型 110~119)不能和监视的数据(应用服务数据单元类型 1~44)使用相同的信息对象地址值。

在信息点的单个状态改变时,具有同样信息对象地址的信息对象可以传输两次,一次不带时标,一次带时标。通常尽可能地优先传输不带时标的信息对象,对于控制站能尽快地反映过程控制是非常有用的。带时标的信息对象传输优先级较低,事后用以对事件系列校核。所有信息对象以传送原因 3 (突发)传送两次。这种模式称为"双传输"必须由固定的站-特定参数加以定义。

对于没有指明支持双传输的所有应用服务数据单元类型,单个状态改变仅引起传输一次信息对象。

7.2.6 信息元素

下述信息元素用于本配套标准中定义的应用服务数据单元中,它们是按照 GB/T 18657.4—2002 的 定义构成的。

7.2.6.1 带品质描述词的单点信息 (IEV 371-02-07) (SIQ)

SIQ: = CP8 | SPI, RES, BL, SB, NT, IV

SPI =单点信息: = BS1 [1] $\langle 0, 1 \rangle$ (Type 6)

〈0〉:=开

〈1〉:=合

RES = RESERVE: = BS3 $[2\cdots 4]$ $\langle 0 \rangle$ (Type 6)

BL: = BS1 [5] $\langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被闭锁

〈1〉:=被闭锁

 $SB: = BS1 [6] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被取代

〈1〉:=被取代

 $NT := BS1 [7] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=当前值

〈1〉:= 非当前值

 $IV: = BS1 [8] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=有效

〈1〉:= 无效

品质描述词的定义(BL, SB, NT, IV)见 7.2.6.3品质描述词 QDS。

7.2.6.2 带品质描述词的双点信息 (IEV 371-02-08) (DIQ)

DIQ: = CP8 {DPI, RES, BL, SB, NT, IV}

DPI = 双点信息: = UI2 [1、2] (0···3) (Type 1.1)

〈0〉:=不确定或中间状态

〈1〉:=确定状态开

〈2〉:=确定状态合

〈3〉:=不确定

RES = RESERVE: = BS2 [3, 4] $\langle 0 \rangle$ (Type 6)

 $BL: = BS1 [5] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被闭锁

〈1〉:=被闭锁

 $SB: = BS1 [6] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被取代

(1):=被取代

 $NT := BS1 [7] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=当前值

〈1〉:=非当前值

 $IV := BS1 [8] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=有效

〈1〉:= 无效

品质描述词的定义(BL, SB, NT, IV)见 7.2.6.3品质描述词 QDS。

7.2.6.3 品质描述词 (单个八位位组) (ODS)

品质描述词由 5 个品质比特组成,它们可彼此独立地设置。品质描述词向控制站提供关于信息对象的额外的品质信息。

QDS: = CP8 $\{OV, RES, BL, SB, NT, IV\}$

 $OV: = BS1 [1] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=未溢出

〈1〉:=溢出

RES = RESERVE: = BS3 $[2\cdots 4]$ $\langle 0 \rangle$ (Type 6)

BL: = BS1 [5] $\langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被闭锁

〈1〉:=被闭锁

 $SB: = BS1 [6] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被取代

〈1〉:=被取代

 $NT := BS1 [7] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=当前值

〈1〉:= 非当前值

 $IV := BS1 [8] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=有效

〈1〉:= 无效

OV=溢出/未溢出:

信息对象的值超出了预先定义值的范围(主要适用模拟量值)

BL=被闭锁/未被闭锁:

信息对象的值为传输闭锁,值保持闭锁前采集的状态。闭锁和解锁可以由当地联锁机构或当地自动 原因启动。

SB=被取代/未被取代:

信息对象的值由值班员 (调度员)输入或者由当地自动原因所提供。

NT=当前值/非当前值:

若最近的刷新成功则值就称为当前值,若一个指定的时间间隔内刷新不成功或者其值不可用,值就 称为非当前值。

IV=有效/无效:

若值被正确采集就是有效。在采集功能确认信息源的反常状态(装置不能工作或非工作刷新)则值就是无效,在这些条件下没有定义信息对象的值。标上无效用以提醒使用者,此值不正确而不能使用。

中间设备可修改品质描述词 BL、SB、NT、IV。

BL:如中间设备闭锁传输信息对象,它将品质描述词 BL 置位。否则,它将报告从低层设备报告的

DL/T 634.5101 - 2002

品质描述词 BL。

SB:如中间设备取代信息对象的值,它将品质描述词 SB 置位。否则,它将报告从低层设备报告的品质描述词 SB。

NT:如中间设备不能得到信息对象的值,它将品质描述词 NT 置位。否则,它将报告从低层设备报告的品质描述词 NT。

IV:如中间设备标识信息对象不是有效,它将品质描述词 IV 置位。否则,它将报告从低层设备报告的品质描述词 NT。

例1由于现场接口处于测试模式,断路器状态被闭锁,在这种情况下品质描述词(BL=1"被闭锁"),从现场接口、通过系统的所有层传输到控制站不得改变闭锁状态。

例 2 当数据采集受到干扰,测量值将自动地或者手动地被赋予取代值,此被取代的测量值和品质比特 SB=1 "取代"一起传输到控制站。

如果信息对象值由于特定的条件而标上新品质描述词,当条件改变时,品质描述词将手动地或自动地复位。 如某个信息对象仅突发地报告,每一次品质描述词的改变,将启动一次受影响的信息对象的突发传输。传输带时标的信息对象时,其时标即为品质描述词发生变化的时刻。

站召唤过程召唤全部信息对象,它是由特定召唤组所定义而和品质描述词的内容无关。当信息对象 被召唤时,品质描述词为最近的状态。这保证了在控制站可以实现完整性校验。

7.2.6.4 继电保护设备事件的品质描述词 (单个的八位位组 QDP)

 $QDP := CP8 \mid RES, EI, BL, SB, NT, IV \mid$

RES = RESERVE: = BS3 $[1 \cdots 3] \langle 0 \rangle$ (Type 6)

EI: = BS1 [4] $\langle 0, 1 \rangle$ (Type 6)

〈0〉:=动作时间有效

〈1〉:=动作时间无效

 $BL: = BS1 [5] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被闭锁

〈1〉:=被闭锁

SB: = BS1 [6] $\langle 0, 1 \rangle$ (Type 6)

〈0〉:=未被取代

〈1〉:=被取代

 $NT := BS1 [7] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=当前值

〈1〉:=非当前值

 $IV: = BS1 [8] \langle 0, 1 \rangle$ (Type 6)

〈0〉:=有效

〈1〉:= 无效

IE: = 若正确采集了动作时间就是有效。在采集功能确认反常条件则动作时间就标上无效。信息对象的动作时间在这种条件下不被定义。标上无效用以提醒使用者、此动作时间不正确而不能被使用。

品质描述词(BL, SB, NT, IV)的定义见 7.2.6.3 品质描述词 QDS。

7.2.6.5 带瞬变状态指示的值

带瞬变状态指示的值,用于变压器的步位置或者其他步位置信息(VTI)

VTI: = CP8 {值,瞬变状态}

值:= I7 $[1\cdots7]$ $\langle -64\cdots +63 \rangle$ (Type 2.1)

瞬变状态:=BS1 [8] \(\lambda \), 1 \(\text{Type 6} \)

〈0〉:=设备未在瞬变状态

〈1〉:=设备处于瞬变状态

7.2.6.6 规一化值(NVA)

NVA:F16 [1...16]
$$\langle -1...+1-2^{-15} \rangle$$

(Type 4.1)

没有定义测量值的分辨率,如果测量值的分辨率比 LSB 的最小单位粗,则这些 LSB 位设置为零。

7.2.6.7 标度化值(SVA)

SVA: = I16
$$[1 \cdots 16] \langle -2^{15} \cdots + 2^{15} - 1 \rangle$$

(Type 2.1)

没有定义测量值的分辨率,如果测量值的分辨率比 LSB 的最小单位粗,则这些 LSB 位设置为零。 为了传输工程值如电流、电压、功率等用它们的物理单位传输(即A,kV,MW)。量程和小数点 位置是固定参数。

例如:

电流: 103A; 传输值 103。

电压: 10.3kV; 传输值 103, 小数点 10⁻¹。

7.2.6.8 短浮点数 (R32-IEEE STD 754)

R32-IEEE STD 754: = R32.23 (小数,指数,Sign) (Type 5)

没有定义测量值的分辨率,如果测量值的分辨率比 LSB 的最小单位粗,则这些 LSB 位设置为零。

7.2.6.9 二进制计数器读数 (BCR)

BCR:=CP40 计数器读数、顺序记法

计数器读数:= $[32 [1...32] (-2^{31}...+2^{31}-1)$

(Type 2.1)

顺序记法:=CP8 {SQ, CY, CA, IV}

SQ=顺序号:=UI5 [33···37] 〈0···31〉

(Type 1.1)

CY = 进位: = BS1 [38] (0, 1)

(Type 6)

〈0〉:=在相应的累加周期内计数器未溢出

〈1〉:=在相应的累加周期内计数器溢出

CA = 计数量被调整: = BS1 [39] (0, 1)

(Type 6)

〈0〉:=上次读数后计数器未被调整

〈1〉:=上次读数后计数器被调整

IV =无效 $: = BS1 [40] \langle 0, 1 \rangle$

(Type 6)

〈0〉:=有效

〈1〉:=无效

SQ=顺序号

CY = 进位(当值由 + 2⁺³¹ - 1 加 1 以后变成零或由 - 2⁺³¹变成零时发生计数器溢出)。

CA= 计数器被调整(如计数器初始化为某个值,例如在启动时设置为零或其他某个值,认为计数 器被调整)

IV=无效

注:由值确定 CA、CY、IV 是否修改。它们可出现在对计数量召唤命令的响应中,或者在完成计数量冻结、冻结和 复位命令的自动内部功能的响应中。

7.2.6.10 继电保护设备单个事件 (SEP)

 $SEP := CP8 \{ES, RES, EI, BL, SB, NT, IV\}$

ES=事件状态:=UI2 [1, 2] (0···3)

(Type 1.1)

〈0〉:=不确定或中间状态

〈1〉:=确定状态开

〈2〉:=确定状态合

〈3〉:=不确定

DL/T 634.5101 - 2002

```
RES = RESERVE: = BS1 [3] \langle 0 \rangle
                                                   (Type 6)
    EI := BS1 [4] \langle 0, 1 \rangle
                                                   (Type 6)
       〈0〉:=动作时间有效
       〈1〉:=动作时间无效
    BL: = BS1 [5] \langle 0, 1 \rangle
                                                   (Type 6)
       〈0〉:=未被闭锁
       〈1〉:=被闭锁
    SB: = BS1 \begin{bmatrix} 6 \end{bmatrix} \langle 0, 1 \rangle
                                                   (Type 6)
       〈0〉:=未被取代
       (1):=被取代
    NT := BS1 [7] \langle 0, 1 \rangle
                                                   (Type 6)
       〈0〉:=当前值
       〈1〉:=非当前值
    IV: = BS1 [8] \langle 0, 1 \rangle
                                                   (Type 6)
       〈0〉:=有效
       〈1〉:= 无效
品质描述词的定义(BL, SB, NT, IV)见 7.2.6.4继电保护设备事件品质描述词 QDP。
7.2.6.11 继电保护设备启动事件 (SPE)
    SPE: = BS8 \{GS, SL1, SL2, SL3, SIE, SRD, RES\}
    GS=总启动:=BS1 [1] 〈0, 1〉
                                                   (Type 6)
        〈0〉:=无总启动
        〈1〉:=总启动
    SL1 = A 相保护启动: = BS1 [2] 〈0, 1〉
                                                   (Type 6)
```

〈0〉:=A相保护未启动

〈1〉:=A 相保护启动

SL2=B相保护启动:=BS1 [3] (0, 1) (Type 6)

〈0〉:=B相保护未启动

〈1〉:=B相保护启动

SL3=C相保护启动:=BS1 [4] (0, 1) (Type 6)

〈0〉:=C相保护未启动

〈1〉:=C相保护启动

SIE = 接地电流保护启动: = BS1 [5] (0, 1) (Type 6)

〈0〉:=接地电流保护未启动

〈1〉:=接地电流保护启动

SRD=反向保护启动:=BS1 [6] (0, 1) (Type 6)

〈0〉:=反向保护未启动

〈1〉:=反向保护启动

RES = RESERVE: = BS2 [7, 8] $\langle 0 \rangle$ (Type 6)

定义: 当继电保护设备检出故障时产生启动事件, 启动事件是瞬变信息。当继电保护设备决定去跳 断路器时,将跳闸命令输出至输出电路,输出电路信息是瞬变信息。继电保护设备动作开始到继电保护 设备动作结束这段时间是继电器动作持续时间(见图22)。继电保护设备动作开始到跳闸命令输出这段 时间是继电器动作时间。

7.2.6.12 继电保护设备输出电路信息 (OCI)

图 22 继电器动作持续时间,继电器动作时间

OCI: = BS8 {GC, CL1, CL2, CL3, RES}

GC=总命令输出至输出电路:=BS1 [1] (0, 1) (Type 6)

- 〈0〉:=无总命令输出至输出电路
- 〈1〉:=总命令输出至输出电路
- CL1 = A 相保护命令输出至输出电路: = BS1 [2] (0, 1) (Type 6)
 - 〈0〉:=无命令输出至 A 相输出电路
 - 〈1〉:=命令输出至 A 相输出电路
- CL2 = B 相保护命令输出至输出电路: = BS1 [3] (0, 1) (Type 6)
 - 〈0〉:=无命令输出至B相输出电路
 - 〈1〉:=命令输出至B相输出电路
- CL3=C相保护命令输出至输出电路:=BS1 [4] (0, 1) (Type 6)
 - 〈0〉:=无命令输出至 C 相输出电路
 - 〈1〉:=命令输出至 C 相输出电路

RES = RESERVE: = BS4 $[5 \cdots 8]$ $\langle 0 \rangle$

(Type 6)

7.2.6.13 二进制状态信息 [IEV-371-02-03] (BSI)

BSI = 二进制状态信息: = 32BS1 [1…32] 〈0, 1〉 (Type 6)

7.2.6.14 固定测试字,两个八位位组 (FBP)

FBP = 固定测试字: = UI16 [1…16] 〈55AA〉 (Type 1.1)

7.2.6.15 单命令 [IEV-371-03-02] (SCO)

SCO=单命令:=CP8 [SCS, BS1, QOC]

SCS=单命令状态:=BS1 [1] (0, 1) (Type 6)

- $\langle 0 \rangle :=$ 开
- 〈1〉:=合

RES=备用:=BS1 [2] (0)

QOC = : = CP6 [3...8] {QU, S/E} \mathbb{R} 7.2.6.26QOC

7.2.6.16 双命令 [IEV-371-03-03] (DCO)

DCO=双命令:=CP8 {DCS, QOC}

DCS = 双命令状态: = UI2 [1, 2] 〈0···3〉 (Type 1.1)

- $\langle 0 \rangle := 不允许$
- 〈1〉:=开
- 〈2〉:=合
- 〈3〉:=不允许

QOC = : = CP6 [3...8] | QU, S/E | \mathbb{R} 7.2.6.26QOC

7.2.6.17 步调节命令 [IEV--371-03-13] (RCO)

RCO=步调节命令:=CP8 {RCS, QOC}

RCS=步调节命令状态:=UI2 [1, 2] 〈0···3〉 (Type 1.1)

〈0〉:= 不允许

DL/T 634.5101 -- 2002

- 〈1〉:=降一步
- (2):=升一步
- 〈3〉:=不允许

QOC: = CP6 $\lceil 3 \cdots 8 \rceil$ {QU, S/E}

见 7.2.6.26QOC

7.2.6.18 七个八位位组二进制时间(CP56Time2a)

CP56Time2a: = CP56 { 毫秒, 分, 保留 1, 无效, 小时, 保留 2, 夏季时间, 一月的某天, 星期的某天, 月, 保留 3, 年, 保留 4 }

二进制时间在 GB/T 18657.4-2002 6.8 中定义。

星期的某天:=〈0〉未用

星期的某天:=〈1…7〉采用(任选)

星期一:=〈1〉

星期二:=〈2〉

星期三:= 〈3〉

星期四:= 〈4〉

星期五:= 〈5〉

星期六:=〈6〉

星期日:=〈7〉

在本配套标准中夏季时间为任选项,用以作为辅助信息表示当前时间为标准时间或夏时制。可能对于从标准时间改为夏时制的第1个小时赋予信息对象正确小时有用。

在本配套标准中未采用夏季时间,设置为0。

在跨越时间区段的系统,对于所有时标建议采用 UTC。

在监视方向 RES1 比特可用以表示当 RTU 采取的信息对象附加的时间为真实时间、或者由中间站如集控站加上的时标、或者由控制站加上的时标。

RES1:=保留1=GEN(真实时间)

- (0):=真实时间
- 〈1〉:=取代时间

7.2.6.19 三个八位位组二进制时间 (CP24Time2a)

CP24Time2a: = CP24 {毫秒,分,保留1,无效}

二进制时间在 GB/T 18657.4-2002 6.8 中定义。它用于信息对象的时标。舍弃 CP56Time2a 的第 4 个 到第 7 个八位位组。

在监视方向 RES1 比特可用以表示当 RTU 采取的信息对象附加的时间为真实时间、或者由中间站如集控站加上的时标、或者由控制站加上的时标。

RES1:=保留1=GEN(真实时间)

- 〈0〉:=真实时间
- 〈1〉:=取代时间

7.2.6.20 二个八位位组二进制时间 (CP16Time2a)

CP16Time2a: = UI16 [1...16] $\langle 0...59999 \text{ms} \rangle$

二进制时间用于动作时间如"继电器动作时间"或者"继电器动作持续时间"。

7.2.6.21 初始化原因 (COI)

 $COI := CP8 \mid UI7 \mid 1 \cdots 7 \mid, BS1 \mid 8 \mid$

(Type 1.1)

UI7 $[1\cdots7]$ $\langle 0\cdots127\rangle$

- 〈0〉:= 当地电源合上
- 〈1〉:=当地手动复位
- 〈2〉:=远方复位

〈3…31〉:=为本配套标准的标准定义保留(兼容范围)

〈32…127〉:=为特定使用保留(专用范围)

```
BS1 [8] \langle 0, 1 \rangle
                                     (Type 6)
     〈0〉:=未改变当地参数的初始化
     〈1〉:=改变当地参数后的初始化
7.2.6.22 召唤限定词 (OOI)
                                     (Type 1.1)
   QOI := UI [1 \cdots 8] \langle 0 \cdots 255 \rangle
      〈0〉:=未用
      〈1…19〉:=为本配套标准的标准定义保留(兼容范围)
      〈20〉:=站召唤(全局)
      〈21〉:=第1组召唤
      (22):=第2组召唤
      〈23〉:=第3组召唤
      〈24〉:=第4组召唤
      〈25〉:=第5组召唤
      〈26〉:=第6组召唤
      〈27〉:=第7组召唤
      〈28〉:=第8组召唤
      〈29〉:=第9组召唤
      〈30〉:=第10组召唤
      〈31〉:=第11组召唤
      〈32〉:=第12组召唤
      〈33〉:=第13组召唤
      〈34〉:=第14组召唤
      〈35〉:=第15组召唤
      〈36〉:=第16组召唤
      〈37…63〉:=为配套标准的标准定义保留(兼容范围)
      〈64…255〉:=为特定使用保留(专用范围)
7.2.6.23 计数量召唤命令限定词 (OCC)
   QCC: = CP8 \{RQT, FRZ\}
   RQT = 请求: = UI6 [1···6] 〈0···63〉
                                    (Type 1.1)
      〈0〉:=没请求计数量(未采用)
      〈1〉:=请求计数量第1组
      〈2〉:=请求计数量第2组
      〈3〉:=请求计数量第3组
      (4):=请求计数量第4组
      〈5〉:=总的请求计数量
      〈6…31〉:=为本配套标准的标准定义保留(兼容范围)
      〈32…63〉:=为特定使用保留(专用范围)
   FRZ = 冻结: = UI2 「7, 8] 〈0···3〉
                                     (Type 1.1)
      (0):=读(无冻结或复位)
      〈1〉:= 计数量冻结不带复位(被冻结的值为累加值)
      〈2〉:= 计数量冻结带复位(被冻结的值为增量信息)
      〈3〉:=计数量复位
   由 FRZ 码所规定的动作仅适用由 RQT 码所规定的组。
7.2.6.24 测量值参数限定词 (QPM)
   QPM := CP8 \{KPA, LPC, POP\}
   KPA =  多数类别: = UI6 [1…6] \langle 0…63 \rangle (Type 1.1)
```

- 〈0〉:=未用
- 〈1〉:=门限值
- (2):=平滑系数(滤波时间常数)
- 〈3〉:=传送测量值的下限
- 〈4〉:=传送测量值的上限
- 〈5…31〉:=为本配套标准的标准定义保留(兼容范围)
- 〈32…63〉:=为特定使用保留(专用范围)

LPC = 当地参数改变: = BS1 [7] (0, 1)

(Type 6)

- 〈0〉:=未改变
- 〈1〉:=改变

POP = 参数在运行: = BS1 [8] 〈0, 1〉

(Type 6)

- 〈0〉:=运行
- 〈1〉:=未运行

如 LPC 和 POP 没用时设置为 0。

在 GB/T 18657.5 的 6.10 中定义一次可装载一个或多个参数,但本标准规定一次只可装载一个参数(见本标准 7.4.9)。

在被控站由缺省值定义的当地参数可由站(总)召唤过程查询。如果这些参数不用站总召唤〈20〉 传定,可用组1〈21〉至16〈36〉进行。

门限值是测量值最小改变量,改变量超过此值就引起新的测量值传输。

传输的上下限值是测量值超过它将引起测量值传输。

每个系统由惟一的信息对象地址为每一种参数进行定义。

7.2.6.25 参数激活限定词 (QPA)

 $QPA := UI8 [1 \cdots 8] \langle 0 \cdots 255 \rangle$

(Type 1.1)

- 〈0〉:=未用
- $\langle 1 \rangle :=$ 激活/停止激活这之前装载的参数(信息对象地址=0) 8
- 〈2〉:=激活/停止激活所寻址信息对象的参数⁹⁾
- 〈3〉:=激活/停止激活所寻址的持续循环或周期传输的信息对象
- 〈4…127〉:=为本配套标准的标准定义保留(兼容范围)
- 〈128…255〉:=为特定使用保留(专用范围)

激活/停止激活在传输原因中定义。

7.2.6.26 命令限定词(QOC)

 $QOC := CP6 \{QU, S/E\}$

 $\mathbf{QU} := \mathbf{UI5} \left[3 \cdots 7 \right] \left\langle 0 \cdots 31 \right\rangle$

(Type 1.1)

- 〈0〉:= 无另外的定义¹⁰⁾
- 〈1〉:=短脉冲持续时间(断路器),持续时间由被控站内的系统参数所确定
- 〈2〉:=长脉冲持续时间,持续时间由被控站内的系统参数所确定
- 〈3〉:=持续输出
- 〈4…8〉:=为本配套标准的标准定义保留(兼容范围)
- 〈9…15〉:=为其他预先定义的功能选集保留11〕
- 〈16…31〉:=为特定使用保留(专用范围)

^{8), 9)} 在本配套标准中没有采用(为将来扩充参数装载功能保留)。

¹⁰⁾ 在被控站内预先确定所寻址的控制功能的属性(即脉冲持续时间等)时采用,不由控制站选择。

¹¹⁾ 采用在被控站内预先定义固定属性的控制功能。

```
S/E = := BS1 \{8\} \langle 0, 1 \rangle
                                             (Type 6)
        〈0〉:=执行
        〈1〉:= 洗择
7.2.6.27 复位进程命令限定词 (ORP)
   ORP := UI8 \left[1 \cdots 7\right] \left\langle 0 \cdots 255\right\rangle
                                             (Type 1.1)
       〈0〉:=未采用
       〈1〉:=进程的总复位
       〈2〉:=复位事件缓冲区等待处理的带时标的信息
       〈3…127〉:=为本配套标准的标准定义保留(兼容范围)
       〈128…255〉:=为特定使用保留(专用范围)
7.2.6.28 文件准备就绪限定词 (FRO)
   FRO: = CP8 |UI7 [1...7], BS1 [8]
   UI7 [1\cdots7] \langle 0\cdots127 \rangle
                                             (Type 1.1)
       〈0〉:=缺省
       〈1…63〉:=为本配套标准的标准定义保留(兼容范围)
       〈64…127〉:=为特定使用保留(专用范围)
   BS1 [8] \langle 0, 1 \rangle
                                             (Type 6)
       (0):=选择、请求、停止激活或删除的肯定确认
      〈1〉:=选择、请求、停止激活或删除的否定确认
7.2.6.29 节准备就绪限定词 (SRO)
   SRQ: = CP8 \ \{UI7 \ [1...7], BS1 \ [8]\}
   UI7 \lceil 1 \cdots 7 \rceil \langle 0 \cdots 127 \rangle
                                             (Type 1.1)
       〈0〉:=缺省
       〈1…63〉:=为本配套标准的标准定义保留(兼容范围)
       〈64…127〉:=为特定使用保留(专用范围)
   BS1 [8] \langle 0, 1 \rangle
                                             (Type 6)
       〈0〉:=节准备就绪
       〈1〉:=节未准备就绪
7.2.6.30 选择和召唤限定词 (SCO)
   SCQ: = CP8 \{UI4 [1...4], UI4 [5...8]\}
   UI4 [1\cdots 4] \langle 0\cdots 15\rangle
                                             (Type 1.1)
       〈0〉:=缺省
       〈1〉:= 选择文件
       (2):=请求文件
       〈3〉:=停止激活文件
       〈4〉:=删除文件
       〈5〉:=选择节
       〈6〉:=请求节
       〈7〉:=停止激活节
       〈8…10〉:= 为本配套标准的标准定义保留(兼容范围)
       〈11…15〉:=为特定使用保留(专用范围)
   UI4 [5···8] (0···15)
                                             (Type 1.1)
```

〈0〉:=缺省

〈4〉:=节传输的否定认可 〈5…10〉:=为本配套标准的标准定义保留(兼容范围) 〈11…15〉:=为特定使用保留(专用范围) UI4 [5···8] (0···15) (Type 1.1) 〈0〉:=缺省 〈1〉:=无所请求的存储空间 (2):=校验和错 〈3〉:=非所期望的通信服务 〈4〉:=非所期望的文件名称 〈5〉:=非所期望的节名称 〈6…10〉:=为本配套标准的标准定义保留(兼容范围) 〈11…15〉:= 为特定使用保留(专用范围) 7.2.6.33 文件名称 (NOF) NOF : = UI16 $[1 \cdots 16] \langle 0 \cdots 65535 \rangle$ (Type 1.1) 〈0〉:=缺省 〈1…65535〉:=文件名称 7.2.6.34 节名称 (NOS) NOS : = UI8 $[1 \cdots 8]$ $\langle 0 \cdots 255 \rangle$ (Type 1.1) 〈0〉:=缺省 〈1…255〉:=节名称

7.2.6.31 最后的节和段的限定词 (LSO)

〈1〉:=无所请求的存储空间

〈3〉:=非所期望的通信服务 〈4〉:=非所期望的文件名称 〈5〉:=非所期望的节名称

〈2〉:=校验和错

 $LSQ := UI8 \left[1 \cdots 8\right] \left\langle 0 \cdots 255\right\rangle$

(Type 1.1)

- 〈0〉:=未用
- 〈1〉:=不带停止激活的文件传输

〈11…15〉:=为特定使用保留(专用范围)

- 〈2〉:=带停止激活的文件传输
- 〈3〉:=不带停止激活的节传输
- 〈4〉:=带停止激活的节传输
- 〈5…127〉:= 为本配套标准的标准定义保留(兼容范围)

〈6…10〉:=为本配套标准的标准定义保留(兼容范围)

- (128…255):=为特定使用保留(专用范围)
- 7.2.6.32 文件认可或节认可限定词 (AFO)

 $AFQ: = CP \{UI4 [1...4], UI4 [5...8]\}$

UI4 $\lceil 1 \cdots 4 \rceil \langle 0 \cdots 15 \rangle$

(Type 1.1)

- 〈0〉:=缺省
- 〈1〉:=文件传输的肯定认可
- 〈2〉:=文件传输的否定认可
- 〈3〉:=节传输的肯定认可

7.2.6.35 文件或节的长度 (LOF)

LOF: = UI24 [1...24] (0...16777215) (Type 1.1)

〈0〉:=未用

〈1…16777215〉:=整个文件或节的八位位组数

7.2.6.36 段的长度(LOS)

 $LOS := UI8 \left[1 \cdots 8\right] \left\langle 0 \cdots 255\right\rangle$

(Type 1.1)

〈0〉:=未用

〈1···n〉:=段的八位位组数

n 的范围最大数目在 234 (当链路域、数据单元标识符和信息对象地址为最大长度) 和 240 (当链路域、数据单元标识符和信息对象地址为最小长度) 之间。

7.2.6.37 校验和 (CHS)

CHS: = UI8 $\lceil 1 \cdots 8 \rceil \langle 0 \cdots 255 \rangle$

(Type 1.1)

〈0···255〉:= 为一个节的全部八位位组(当用于最后段规约数据单元中)或者整个文件的全部八位位组(当用于最后节规约数据单元中)不考虑溢出的算术和(256 模加)。

7.2.6.38 文件的状态 (SOF)

SOF: = CP8 {STATUS, LFD, FOR, FA}

STATUS : = UI5 $[1 \cdots 5]$ $\langle 0 \cdots 31 \rangle$

(Type 1.1)

〈0〉:=缺省

〈1…15〉:=为本配套标准的标准定义保留(兼容范围)

〈16…31〉:=为特定使用保留(专用范围)

LFD: = BS1 $\begin{bmatrix} 6 \end{bmatrix}$ $\langle 0, 1 \rangle$

(Type 6)

〈0〉:=后面还有目录文件

〈1〉:=最后目录文件

FOR : = BS1 [7] $\langle 0, 1 \rangle$

(Type 6)

〈0〉:=定义文件名

〈1〉:=定义子目录名

 $FA := BS1 [8] \langle 0, 1 \rangle$

(Type 6)

〈0〉:=文件等待传输

〈1〉:=文件传输已激活

7.2.6.39 设定命令限定词 (OOS)

 $QOS := CP8 \{QL, S/E\}$

 $Ql := UI7 [1 \cdots 7] \langle 0 \cdots 127 \rangle$

〈0〉:=缺省

〈1…63〉:=为本配套标准的标准定义保留(兼容范围)

〈64…127〉:=为特定使用保留(专用范围)

 $S/E := BS1 [8] \langle 0, 1 \rangle$

(Type 6)

〈0〉:=执行

〈1〉:=选择

7.2.6.40 状态和状态变位检出 (SCD)

 $SCD: = CP32 \{ST, CD\}$

 $ST := BS16 [1 \cdots 16]$ (Type 6)

BS16 [n]:=STn=位序为 n 位的状态位

 $STn \langle 0 \rangle :=$ 开

 $STn \langle 1 \rangle :=$

CD: = BS16 [17...32] (Type 6)

BS16 [n]:=CDn=位序为 n+16 位的状态变位检出

CDn (0):=上次报告后未检出到状态变化

CDn 〈1〉:=上次报告后至少检出到一次状态变化

若被监视的状态点自上次报告后已经完成了至少一次转换循环,转换循环就是 0-1-0 或者 1-0-1 序列。

7.3 特定应用数据单元的定义和表示

下面规定了本配套标准的全部 ASDU 的定义。类型标识序号为 1~127 内本标准尚未定义的 ASDU 可由另外标准定义。类型标识为 128~235 的 ASDU 可由本标准的用户采用,作为专用使用(见7.2.1.1),需在系统用户和制造厂就所需的规范取得一致。每个系统由固定参数规定标准范围(1…127)或专用范围(128…255)的使用。如果仅定义标准范围。(监视方面) 由控制站舍弃大于 127 的类型标识序号,(在控制方向) 由被控站以 COT=44 回答。

特定的应用可选择带时标 CP24Time2a 的 ASDU,或者选择带时标 CP56Time2a 的 ASDU,不得混合用选带时标 CP24Time2a 的 ASDU 和带时标 CP56Time2a 的 ASDU,在本标准中早已定义的类型标识 103(C_CS_NA_1)和类型标识 126(F_DR_TA_1)是例外。

在 GB/T 18657.2-2002 中定义了链路的 LDPU, 在这里不再重复这些定义。

7.3.1 在监视方向过程信息的应用服务数据单元

7.3.1.1 类型标识 1: M _ SP _ NA _ 1

不带时标的单点信息(见图 23~图 24)。

信息对象序列 (SQ=0)

0	0	0	0 信Æ	0 息対象	0 数 i	0	1	类型标识(TYP) 可变结构限定词(VSQ)	数据单元 标识符在				
_	.2.4							传送原因(COT) 应用服务数据单元公共地址	7.1 中定义				
	.2.5 P	,	BL	0	0	0 .	SPI	信息对象地址 SIQ=带品质描述词的单点信息(在 7.2.6.1 中定义)	信息对象 1				
在 7 IV	.2.5 [‡] NT	Þ定义 SB	BL	0	0	0	SPI	信息对象地址 SIQ=带品质描述词的单点信息(在 7.2.6.1 中定义)	信息对象;				

图 23 应用服务数据单元: M_SP_NA 1 不带时标的单点信息

M_SP_NA_1:=CP {数据单元标识符, i (信息对象地址, SIQ)}

i:=在可变结构限定词中定义的信息对象数目

单个信息对象中顺序的信息元素 (SQ=1)

0	0	. 0	0	0	0	0	1	类型标识 (TYP)	数据单元		
1		•	信息	可变结构限定词(VSQ)							
在 7	.2.3	中定义	_	传送原因 (COT)	标识符在						
在7	.2.4	中定义						应用服务数据单元公共地址	7.1 中定义		
在 7	.2.5	中定义						信息对象地址 A			
IV	NT	SB	BL	0	0	0	SPI	1SIQ=带品质描述词的单点信息(在 7.2.6.1 中定义) 属于信息对象地址 A			
									信息对象		
137	NIT	CD	DI				CDI	j SIQ=带品质描述词的单点信息(在 7.2.6.1 中定义)			
IV	NT	I SB	. SB	SB	BL	U	0	0	SPI	属于信息对象地址 A+j-1	

图 24 应用服务数据单元: M SP NA 1 不带时标的单点信息

M SP NA 1:= CP {数据单元标识符,信息对象地址,j(SIQ)}

j:=在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 1:M_SP_NA_1

传送原因

〈2〉:=背景扫描

〈3〉:=突发(自发)

〈5〉:=被请求

〈11〉:=远方命令引起的返送信息

〈12〉:=当地命令引起的返送信息

〈20〉:=响应站召唤

〈21〉:=响应第1组召唤

〈22〉: ≃响应第2组召唤

:

〈36〉:=响应第16组召唤

7.3.1.2 类型标识 2:M SP TA 1

带时标的单点信息(见图 25)。

信息对象序列 (SQ=0)

0 0 0 0 0 0 1	类型标识(TYP)			
0 信息对象数:	可变结构限定词 (VSQ)	数据单元		
在 7.2.3 中定义	传送原因 (COT)	── 标识符在 7.1 中定义		
在 7.2.4 中定义	应用服务数据单元公共地址	/.1 甲延又		
在 7.2.5 中定义				
IV NT SB BL 0 0 0 SPI	SIQ=带品质描述词的单点信息(在7.2.6.1 中定义)	启力·备,		
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间	信息对象 1		
在 7.2.5 中定义	信息对象地址			
IV NT SB BL 0 0 0 SPI	SIQ=带品质描述词的单点信息(在7.2.6.1 中定义)	/定自动备:		
CP24Time2a	三个八位位组二进制时间	信息对象 i		
在 7.2.6.19 中定义				

图 25 应用服务数据单元: M _ SP _ TA _ 1 带时标的单点信息

M _ SP _ TA _1: = CP | 数据单元标识符, i (信息对象地址, SIQ, CP24Time2a) | i: = 在可变结构限定词中定义的信息对象数目

因为每个单点信息有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。 传送原因用于

类型标识 2:M _ SP _ TA _ 1

传送原因

- (3):= 突发(自发)
- 〈5〉:=被请求
- 〈11〉:=远方命令引起的返送信息
- 〈12〉:=当地命令引起的返送信息

7.3.1.3 类型标识 3:M _ DP NA _ 1

不带时标的双点信息(见图 26~图 27)。

信息对象序列 (SQ=0)

0	0	0	0	0	0	1	1	类型标识 (TYP)				
0	0 信息对象数 i							可变结构限定词 (VSQ)	数据单元			
在 7.2.3 中定义								传送原因 (COT)	── 标识符在 ── 7.1 中定义			
在	在 7.2.4 中定义							应用服务数据单元公共地址	7			
在	7.2.	5 中5	定义					信息对象地址	信息对象 1			
IV	NT	St	BI	. 0	0	D	ΡI	DIQ=带品质描述词的双点信息(在7.2.6.2中定义)	1.像以象1			
在 7.2.5 中定义								信息对象地址				
ΙV	NT	SE	BI	, 0	0	D	ΡI	DIQ=带品质描述词的双点信息(在7.2.6.2中定义)	── 信息对象 i			
								L				

图 26 应用服务数据单元: M _ DP _ NA _ 1 不带时标的双点信息

M _ DP _ NA _1: = CP {数据单元标识符, i(信息对象地址, DIQ)}

i:=在可变结构限定词中定义的信息对象数目

单个信息对象中顺序的信息元素 (SQ=1)

				<u> </u>		,	-					
0	0	0	0	0	0	1	1	类型标识 (TYP)				
1		信息元素数j 可变结构限定词 (VSQ)										
在	在7.2.3 中定义							传送原因 (COT)	标识符在 7.1 中定义			
在	在 7.2.4 中定义 应用服务数据单元公共地址											
在	7.2.5	中定	义					信息对象地址 A				
ΙV	NT	SB	BL	0	0	Г	PΙ	1 DIQ= 带品质描述词的双点信息 (在 7.2.6.2 中定义), 属于信息对象地址 A				
									信息对象			
IV	NT	SB	BL	0	0	Γ	PI	j DIQ= 带品质描述词的双点信息(在 7.2.6.2 中定义)属于信息对象地址 A+j-1				

图 27 应用服务数据单元: M DP NA 1 不带时标的双点信息

M _ DP _ NA _1: = CP | 数据单元标识符,信息对象地址,j(DIQ)|

j:=在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 3:M _ DP _ NA _ 1

传送原因

〈2〉:=背景扫描

〈3〉:=突发(自发)

〈5〉:=被请求

〈11〉:=远方命令引起的返送信息

〈12〉:=当地命令引起的返送信息

〈20〉:=响应站召唤

(21):=响应第1组召唤

〈22〉:=响应第2组召唤

〈36〉:=响应第 16 组召唤

7.3.1.4 类型标识 4: M _ DP _ TA _ 1

带时标的双点信息(见图 28)。

信息对象序列 (SQ=0)

0	0	0	0	0	1	0	0	类型标识 (TYP)			
0			信息	对象	·数 i			可变结构限定词 (VSQ) 数据			
在	7.2.	3 中2	定义		-			传送原因 (COT)	── 标识符在 7.1 中定义		
在 7.2.4 中定义								应用服务数据单元公共地址			
在	7.2.	5 中2	定义					信息对象地址			
IV	IV NT SB BL 0 0 DPI DIQ=带品质标						ΡI	DIQ=带品质描述词的双点信息(在 7.2.6.2 中定义)	信息对象 1		
		_	P24T			ί.		三个八位位组二进制时间			
在	7.2.	5 中2	定义					信息对象地址			
IV	NT	SI	3 BI	. 0	0	D	ΡI	DIQ=带品质描述词的双点信息(在7.2.6.2中定义)	 信息対 象 i		
CP24Time2a 在 7.2.6.19 中定义								三个八位位组二进制时间			

图 28 应用服务数据单元: M _ DP _ TA _ 1 带时标的双点信息

M _ DP _ TA _ 1:= CP {数据单元标识符, i (信息对象地址, DIQ, CP24Time2a)}
i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 4: M _ DP _ TA _ 1

传送原因

- 〈3〉:=突发(自发)
- 〈5〉:=被请求
- 〈11〉:=远方命令引起的返送信息
- 〈12〉:=当地命令引起的返送信息

因为每个双点信息有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.5 类型标识 5:M _ ST _ NA _ 1

不带时标的步位置信息(见图 29、30)。

信息对象序列 (SQ=0)

0	0	0	0	0	1	0	1	类型标识 (TYP)						
0			信息	对象	数i		•	可变结构限定词 (VSQ)	数据单元					
在 7.2.3 中定义								传送原因 (COT)	标识符在 7.1 中定义					
在	在 7.2.4 中定义							应用服务数据单元公共地址						
在	7.2.	5 中分	建义					信息对象地址						
Т			值 VTI= 带瞬变状态指示的值(7.2.6.5 中定义)						信息对象 1					
IV	NT	NT SB BL 0 0 0 OV					ov	QDS=品质描述词 (在 7.2.6.3 中定义)						
在	在 7.2.5 中定义					2.5 中定义 信息对象地址								
Т		值					值 VTI=带瞬变状态指示的值(7.2.6.5 中定义)							信息对象i
IV	NT	SB	BL	0	0	0	ov	QDS=品质描述词(在7.2.6.3 中定义)						

图 29 应用服务数据单元: M __ ST __ NA __ 1 步位置信息

M_ST_NA_1:=CP {数据单元标识符, i(信息对象地址, VTI, QDS)}

i:=在可变结构限定词中定义信息对象数目

单个信息对象中顺序的信息元素 (SQ=1)

0 0 0 0 0 1 0 1 1 信息对象数: 在7.2.3 中定义	类型标识(TYP) 可变结构限定词(VSQ) 传送原因(COT) 应用服务数据单元公共地址	数据单元 标识符在 7.1 中定义
在 7.2.5 中定义 T 值 IV NT SB BL 0 0 0 OV	信息对象地址 A 1 VTI= 带瞬变状态指示的值 (7.2.6.5 中定义) 属于信息对象地址 A QDS=品质描述词 (在 7.2.6.3 中定义)	信息对象
T 值 IV NT SB BL 0 0 0 OV	j VTI = 帯瞬变状态指示的值 (7.2.6.5 中定义) 属于信息对象地址 A+j-1 QDS=品质描述词 (在7.2.6.3 中定义)	

图 30 应用服务数据单元: M _ ST _ NA _ 1 步位置信息 M _ ST _ NA _1:= CP | 数据单元标识符,信息对象地址,j (VTI, QDS) j:=在可变结构限定词中定义信息元素数目

传送原因用于

类型标识 5:M ST NA 1

传送原因

〈2〉:=背景扫描

〈3〉:=突发(自发)

〈5〉:=被请求

〈11〉:=远方命令引起的返送信息

〈12〉:=当地命令引起的返送信息

〈20〉:=响应站召唤

〈21〉:=响应第1组召唤

(22):=响应第2组召唤

〈36〉:=响应第16组召唤

7.3.1.6 类型标识 6:M ST _ TA _ 1

带时标的步位置信息(见图 31)。

信自对象序列(20-0)

信息对象许列(SQ=V)					
0 0 0 0 0 1 1 0	类型标识 (TYP)	****			
0 信息对象数 i	可变结构限定词 (VSQ)	数据单元			
在 7.2.3 中定义	传送原因_(COT)	标识符在			
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义			
在 7.2.5 中定义	信息对象地址				
T 值	VTI = 带瞬变状态指示的值 (7.2.6.5 中定义)				
V NT SB BL 0 0 0 OV	QDS=品质描述词(在7.2.6.3 中定义)	信息对象 1			
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间				
在 7.2.5 中定义	信息对象地址				
T 值	VTI=带瞬变状态指示的值(7.2.6.5 中定义)				
V NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	信息对象i			
P24Time2a 至 7.2.6.19 中定义	三个八位位组二进制时间				

图 31 应用服务数据单元: M _ ST _ TA _ 1 带时标的步位置信息 M _ ST _ TA _1: = CP {数据单元标识符, i (信息对象地址, VTI, QDS, CP24Time2a)} i: = 在可变结构限定词中定义信息对象数目

传送原因用于

类型标识 6: M _ ST _ TA _ 1

传送原因

〈3〉:=突发(自发)

- 〈5〉:=被请求
- 〈11〉:=远方命令引起的返送信息
- 〈12〉:=当地命令引起的返送信息

因为每个步位置信息有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.7 类型标识 7:M _ BO _ NA _ 1

32 比特串(见图 32, 33)。

信息对象序列(SQ=0)

0 0 0 0 0 1 1 1	类型标识 (TYP)	数据单元
0 信息对象数 i	可变结构限定词 (VSQ)	
在 7.2.3 中定义	传送原因 (COT)	──── 标识符在
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义
在 7.2.5 中定义	信息对象地址	
比特串 比特串 比特串 比特串	BSI = 二进状态信息, 32bit (在 7.2.6.13 中定义)	信息对象 1
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	
在 7.2.5 中定义	信息对象地址	
比特串 比特串 比特串 比特串	BSI = 二进状态信息,32bit (在 7.2.6.13 中定义)	信息对象:
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	

图 32 应用服务数据单元: M _ BO _ NA _ 1 不带时标的 32 比特串

M _ BO _ NA _1: = CP {数据单元标识符, i (信息对象地址, BSI, QDS)}

i: = 在可变结构限定词中定义的信息对象数目

单个信息对象中顺序的信息元素 (SQ=1)

0	0	0	0	0	1	1	. 1	类型标识 (TYP)	数据单元
1			信息	元素	数	j		可变结构限定词(VSQ)	
在	在 7.2.3 中定义							传送原因 (COT)	标识符在
在	在 7.2.4 中定义							应用服务数据单元公共地址	7.1 中定义
在	7.2.	5 中兌	义					信息对象地址 A	
			比特	串					
			比特	串				1 BSI = 二进状态信息, 32bit (在 7.2.6.13 中定义)	
			比特	串				属于信息对象地址 A	
			比特	串					
IV	NT	SB	BL	0	0	0	OV	QDS=品质描述词(在 7.2.6.3 中定义)	
									信息对象
比特串							, i BSI = 二进状态信息, 32bit (在 7.2.6.13 中定义)		
	比特串							属于信息对象地址 A+j-1	
			比特	串				例,情感对象地址 A + j = t	
	比特串								
IV	NT	SB	BL	0	0	0	OV	QDS=品质描述词(在 7.2.6.3 中定义)	

图 33 应用服务数据单元: M BO NA 1 不带时标的 32 比特串

M_BO_NA_1:= CP {数据单元标识符,信息对象地址,j(BSI, QDS)}

j:=在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 7: M __ BO __ NA __1 传送原因

〈2〉:=背景扫描

〈3〉:= 突发(自发)

〈5〉:=被请求

〈20〉:=响应站召唤

〈21〉:=响应第1组召唤

〈22〉:=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

7.3.1.8 类型标识 8:M __ BO __ TA __ 1

带时标的 32 比特串 (见图 34)。

信息对象序列 (SQ=0)

0 0 0 0 1 0	0 类型标识 (TYP)				
0 信息对象数:	可变结构限定词 (VSQ)	数据单元			
在 7.2.3 中定义	传送原因 (COT)	标识符在 7.1 中定义			
在 7.2.4 中定义	应用服务数据单元公共地址	/.1 / 22			
在 7.2.5 中定义	信息对象地址				
比特串					
比特串	BSI = 二进状态信息, 32bit				
比特串	(在 7.2.6.13 中定义)				
比特串		信息对象 1			
IV NT SB BL 0 0 0	OV QDS=品质描述词 (在 7.2.6.3 中定义)				
CP24Time2a	三个八位位组二进制时间				
在 7.2.6.19 中定义	二十八世世组—五前时间				
在 7.2.5 中定义	信息对象地址				
比特串					
比特串	BSI = 二进状态信息, 32bit				
比特串	(在7.2.6.13 中定义)				
比特串		信息对象 i			
IV NT SB BL 0 0 0	OV QDS=品质描述词 (在 7.2.6.3 中定义)				
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间				

图 34 应用服务数据单元: M __ BO __ TA __ 1 带时标的 32 比特串

M _ BO _ TA _1: = CP {数据单元标识符, i (信息对象地址, BSI, QDS, CP24Time2a)} i: = 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 8: M _ BO _ TA _ 1

传送原因

- 〈3〉:=突发(自发)
- 〈5〉:=被请求

因为每个比特串有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.9 类型标识 9:M ME _ NA _ 1

测量值,规一化值(见图 35、图 36)。

信息对象序列 (SQ=0)

0 0 0 0 1 0 0 1	类型标识 (TYP)			
0 信息对象数 i	可变结构限定词 (VSQ)	数据单元 标识符在		
在 7.2.3 中定义	传送原因 (COT)	7.1 中定义		
在 7.2.4 中定义	应用服务数据单元公共地址			
在 7.2.5 中定义	信息对象地址	Electric and Alberta		
值	NVA=規一化值(在 7.2.6.6 中定义)	信息对象 1		
S 值				
IV NT SB BL 0 0 0 OV	QDS=品质描述词(在 7.2.6.3 中定义)			
在 7.2.5 中定义	信息对象地址	4. 41. 6.		
值	NVA= 规一化值(在 7.2.6.6 中定义)	信息对象:		
S 值	NVA-观一化值(在 /.2.0.0 中定义)			
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)			

图 35 应用服务数据单元: M _ ME _ NA _ 1 测量值, 规一化值

M __ ME __ NA __1: = CP {数据单元标识符, i (信息对象地址, NVA, QDS)}

i: = 在可变结构限定词中定义的信息对象数目

单个信息对象中信息元素序列 (SQ=1)

0	0	0	0	1	0	0	1	类型标识 (TYP)		
1			信息	元素	数j			可变结构限定词(VSQ)	数据单元	
在	7.2.	3 中2	定义					传送原因 (COT)	标识符在 7.1 中定义	
在	在 7.2.4 中定义							应用服务数据单元公共地址	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
在 7.2.5 中定义								信息对象地址 A	12-4-14	
			儙	Ĺ				1 NVA=规一化值(在 7.2.6.6 中定义)	信息对象	
s				值				属于信息对象地址 A QDS=品质描述词(在 7.2.6.3 中定义)		
IV	NT	SE	в в	. 0	0	0	ov			
	值							j NVA= 规一化值(在 7.2.6.6 中定义)		
S 值								属于信息对象地址 A+j-1		
IV	V NT SB BL 0 0 OV QDS=品质描述词(在 7.2.6.3 中定义)									

图 36 应用服务数据单元: M _ ME _ NA _ 1 测量值, 规一化值

传送原因用于

类型标识 9:M _ ME _ NA _ 1

传送原因

〈1〉:=周期/循环

〈2〉:=背景扫描

〈3〉:=突发(自发)

〈5〉:=被请求

〈20〉:=响应站召唤

〈21〉:=响应第1组召唤

(22):=响应第2组召唤

i

〈36〉:=响应第 16 组召唤

7.3.1.10 类型标识 10:M ME TA 1

测量值,带时标的规一化值(见图 37)。

信息对象序列(SQ=0)

0 0 0 0 1 0 1 0	类型标识 (TYP)	数据单元		
0 信息对象数 i	可变结构限定词(VSQ)			
在 7.2.3 中定义	传送原因 (COT)	7.1 中定义		
在 7.2.4 中定义	应用服务数据单元公共地址			
在 7.2.5 中定义	信息对象地址	信息对象1		
值 S	信 NVA=規一化值(在 7.2.6.6 中定义)			
IV NT SB BL 0 0 0 OV	QDS=品质描述词(在 7.2.6.3 中定义)			
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间			
在 7.2.5 中定义	信息对象地址			
值	NVA=规一化值(在 7.2.6.6 中定义)	信息对象;		
S 值	NVA-M RECEIVED THE CONTROL OF THE CO			
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)			
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间			

图 37 应用服务数据单元: M _ ME _ TA _ 1 测量值,带时标的规一化值

M _ ME _ TA _1: = CP {数据单元标识符, i (信息对象地址, NVA, QDS, CP24Time2a)} i: = 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 10:M _ ME _ TA _ 1

传送原因

- (3):=突发(自发)
- 〈5〉:=被请求

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.11 类型标识 11:M ME NB 1

测量值,标度化值(见图 38, 39)。

信息对象序列 (SQ=0)

0 0 0 0 1 0 1 1	类型标识 (TYP)			
0 信息对象数 i	可变结构限定词 (VSQ)	数据单元		
在 7.2.3 中定义	传送原因 (COT)	标识符在 7.1 中定义		
在 7.2.4 中定义	应用服务数据单元公共地址			
在 7.2.5 中定义	信息对象地址	拉自社会 4		
值	SVA= 标度化值(在 7.2.6.7 中定义)	信息对象 1		
S 值				
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)			
在 7.2.5 中定义	信息对象地址	234 ph 2 day .		
值	SVA= 标度化值 (在 7.2.6.7 中定义)	信息对象i		
S 值	37月- 你及礼祖(在 1.2.0.1 年起又)			
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)			

图 38 应用服务数据单元: M _ ME _ NB _ 1 测量值,标度化值

M _ ME _ NB _1: = CP {数据单元标识符, i (信息对象地址, SVA, QDS)} i: = 在可变结构限定词中定义的信息对象数目

单个信息对象中信息元素序列 (SQ=1)

0	0	0	0	1	0	1	1	类型标识 (TYP)			
1			信息	对象	数;			可变结构限定词(VSQ)	数据单元		
在 7.2.3 中定义								传送原因 (COT)	标识符在 7.1 中定义		
在	7.2.	4 中兌	义					应用服务数据单元公共地址			
在 7.2.5 中定义								信息对象地址 A			
			Œ	Í.				1 SVA=标度化值(在 7.2.6.7 中定义)	信息对象		
s				值				属于信息对象地址 A QDS=品质描述词(在 7.2.6.3 中定义)			
ΙV	NT	SB	BI	. 0	0	0	ov				
	值							j SVA= 标度化值(在 7.2.6.7 中定义)			
s				值				属于信息对象地址 A+j-1			
IV NT SB BL 0 0 0 OV QDS=						0	ov	QDS=品质描述词 (在 7.2.6.3 中定义)			

图 39 应用服务数据单元: M ME NB 1测量值,标度化值

M_ME_NB_1:= CP | 数据单元标识符,信息对象地址,j(SVA, QDS)| j:= 在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 11:M _ ME _ NB _ 1

传送原因

〈1〉:=周期/循环
〈2〉:=背景扫描
〈3〉:=突发(自发)

〈5〉:=被请求

〈20〉:=响应站召唤

(21):=响应第1组召唤

(22):=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

7.3 1 12 **类型标识** 12:M _ ME _ TB _ 1 测量值,带时标的标度化值(见图 40)。

信息对象序列 (SQ=0)

0 0 0 0 1 1 0 0	类型标识(TYP)			
0 信息对象数 i	可变结构限定词(VSQ)	数据单元		
在 7.2.3 中定义	传送原因 (COT)	标识符在 7.1 中定义		
在 7.2.4 中定义	应用服务数据单元公共地址			
在 7.2.5 中定义	信息对象地址	信息对象 1		
值		IH VEN AND A		
S 值	SVA=标度化值(在 7.2.6.7 中定义)			
IV NT SB BL 0 0 0 OV	QDS=晶质描述词 (在 7.2.6.3 中定义)			
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间			
į.				
在 7.2.5 中定义	信息对象地址			
值		III W A M		
S 值	- SVA=标度化值 (在 7.2.6.7 中定义)			
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)			
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间			

图 40 应用服务数据单元: M _ ME _ TB _ 1 测量值,带时标的标度化值 M _ ME _ TB _ 1:= CP {数据单元标识符,i(信息对象地址,SVA,QDS,CP24Time2a)} i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 12:M _ ME _ TB _ 1

传送原因

- 〈3〉:= 突发(自发)
- 〈5〉:=被请求

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.13 类型标识 13:M _ ME _ NC _ 1

测量值,短浮点数(见图 41,42)。

信息对象序列 (SQ=0)

0	0	0	0	1	1		0	1	类型标识(TYP)		
0			信	息对	象数	(i			可变结构限定词 (VSQ)	数据单元 标识符在	
在	7.2.	3 中:	定义						传送原因(COT)	7.1 中定义	
在	7.2.	4中	定义						应用服务数据单元公共地址		
在	7.2.	5中	定义						信息对象地址		
	小数								[EEE STD 754 短澤点数(在 7.2.6.8 中定义)	信息对象 1	
E S				<u>小</u> 指							
IV	 [N	r s	В	BL		0	0	ov	QDS=品质描述词 (在 7.2.6.3 中定义)		
				:							
在	7.2	.5中	定》	X.					信息对象地址		
				小数						信息对象i	
									IEEE STD 754 短浮点数 (在 7.2.6.8 中定义)	j	
Е									12.0.6 千足人)		
S				指	数						
IV	N'	T S	SB	BL	0	0	0	ov	QDS=品质描述词 (在 7.2.6.3 中定义)		

图 41 应用服务数据单元: M _ ME _ NC _ 1 测量值, 短浮点数

M _ ME _ NC _1: = CP {数据单元标识符, i (信息对象地址, IEEE STD 754, QDS)} i: = 在可变结构限定词中定义的信息对象数目

单个信息对象中信息元素序列(SQ=1)

0	0	0	0	1	1	0	1	类型标识 (TYP)			
1			信息	一	数 j			可变结构限定词(VSQ)	数据单元		
在 7.2.3 中定义								传送原因 (COT)	标识符在 7.1 中定义		
在 7.2.4 中定义								应用服务数据单元公共地址	/.I + Æ X		
在	在 7.2.5 中定义							信息对象地址 A	4.5.1		
			小梦	ţ.			_		信息对象		
			小数	女				1 IEEE STD 754 短浮点数(在 7.2.6.8 中定义)			
E			1	人数				属于信息对象地址 A			
s			ł	旨数							
IV	NT	SB	BL	0	0	0	ov	QDS=品质描述词(在 7.2.6.3 中定义)			
			:								
			小	Ý.							
小数								j IEEE STD 754 短浮点数 (在 7.2.6.8 中定义)			
Е	E 小数							属于信息对象地址 A+j-1			
s			ŧ	對数							
IV	NT	SB	BL	0	0	0	ov	QDS=品质描述词(在 7.2.6.3 中定义)			

图 42 应用服务数据单元: M _ ME _ NC _ 1 测量值, 短浮点数

M _ ME _ NC _1:= CP {数据单元标识符,信息对象地址,j(IEEE STD 754, QDS)} j:= 在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 13:M __ ME __ NC __ 1

传送原因

〈1〉:=周期/循环

〈2〉:=背景扫描

〈3〉:= 突发(自发)

(5):=被请求

〈20〉:=响应站召唤

(21):=响应第1组召唤

(22):=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

7.3.1.14 类型标识 14:M _ ME _ TC _ 1

测量值,带时标短浮点数(见图 43)。

信息对象序列 (SQ=0)

0 0 0 0 1 1 0	类型标识(TYP)	数据单元
0 信息对象数 i	可变结构限定词 (VSQ)	→ 数据单元 → 标识符在
在 7.2.3 中定义	传送原因 (COT)	7.1 中定义
在 7.2.4 中定义	应用服务数据单元公共地址	
在 7.2.5 中定义	信息对象地址	
小数		信息对象 1
小数	 	
E 小数	TELE OTE TO THE TANK (IE TIES TO THE TELE TELE TELE TELE TELE TELE TELE	
S 指数		
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	
CP24Time2a		·
在 7.2.6.19 中定义		
在 7.2.5 中定义	信息对象地址	
小数		信息对象i
小数] - IEEE STD 754 短浮点数(在 7.2.6.8 中定义)	
E 小数	IEEE 31D /34 粒件点数(在 /.2.0.6 干足文/	
S指数		
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	
CP24Time2a	三个八位位组二进制时间	
在 7.2.6.19 中定义		

图 43 应用服务数据单元: M _ ME _ TC _ 1 测量值, 带时标短浮点数

M _ ME _ TC _1: = CP {数据单元标识符, i (信息对象地址, IEEE STD 754, QDS, CP24Time2a)} i: = 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 14:M _ ME _ TC _ 1

传送原因

〈3〉:=突发(自发)

〈5〉:=被请求

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.15 类型标识 15:M __ IT __ NA __ 1

累计量 (见图 44, 45)。

信息对象序列(SQ=0)

0	0	0	0	1	1	1	1	类型标识(TYP)			
0			信息	、对象	è数 i			可变结构限定词 (VSQ)	数据单元		
在	7.2.	3 中;	定义		·			传送原因 (COT)	标识符在 7.1 中定义		
在	7.2.	4中	定义					应用服务数据单元公共地址	7.1 17.2		
在 7.2.5 中定义								信息对象地址			
				直					信息对象 1		
				直							
				直				BCR = 二进制计数器读数(在 7.2.6.9 中定义)			
s				直							
IV	CA	CY	<u> </u>		顺序 -	号					
								•			
在	7.2.	5中	定义					信息对象地址			
				值					信息对象i		
值 值											
								BCR=二进制计数器读数(在 7.2.6.9 中定义)			
S 值											
ΙV	CA	CY		J	· 阪序-	号					

图 44 应用服务数据单元: M __ IT __ NA __ 1 累计量

M _ IT _ NA _1: = CP | 数据单元标识符, i (信息对象地址, BCR) |

i: = 在可变结构限定词中定义的信息对象数目

单个信息对象中信息元素序列 (SQ=1)

0 0 0	0 1 1 1 1	类型标识 (TYP)	数据单元		
1	信息对象数;	可变结构限定词 (VSQ)	标识符在		
在 7.2.3 中	定义	传送原因 (COT)			
在 7.2.4 中	定义	应用服务数据单元公共地址	7.1 中定义		
在 7.2.5 中	定义	信息对象地址 A			
			信息对象		
S	值	─ 属于信息对象地址 A			
IV CA CY	7 顺序号				
	•				
	值		-		
	值	- jBCR=二进制计数器读数 (在 7.2.6.9 中定义)			
S		─ 属于信息对象地址 A+j-1			
IV CA CY	顺序号		1		

图 45 应用服务数据单元: M __ IT __ NA __ 1 累计量

M __ IT __ NA __1: = CP {数据单元标识符,信息对象地址,j(BCR)}

j:=在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 15: M _ IT _ NA _ 1

传送原因

〈3〉:=突发(自发)

〈37〉:=响应计数量站(总)召唤

〈38〉:=响应第1组计数量召唤

〈39〉:=响应第2组计数量召唤

〈40〉:=响应第3组计数量召唤

〈41〉:=响应第4组计数量召唤

7.3.1.16 类型标识 16:M __ IT __ TA __ 1

带时标的累计量(见图 46)。

信息对象序列(SQ=0)

0	0 0 1 0 0 0							类型标识(TYP)			
0			信息	. 对象	数;			可变结构限定词(VSQ)	数据单元 标识符在		
在	7.2.	3 中2	定义					传送原因 (COT)			
在	在 7.2.4 中定义							应用服务数据单元公共地址			
在	在 7.2.5 中定义							信息对象地址	(h. + -1 A)		
	值								信息对象 1		
	值										
			1	直				BCR = 二进制计数器读数 (在 7.2.6.9 中定义)			
s			1	直							
IV	CA	CY		月 月	顶序	∌					
	;			Time2				三个八位位组二进制时间			
				į							
在	7.2.	5 中2	定义					信息对象地址			
			ſ	直					信息对象:		
			ſ	直							
			ſ	直				BCR = 二进制计数器读数 (在 7.2.6.9 中定义)			
s	S 值										
IV	IV CA CY 顺序号					}					
	CP24Time2a 在 7.2.6.19 中定义							三个八位位组二进制时间			

图 46 应用服务数据单元: M __ IT __ TA __ 1 带时标的累计量

M_IT_TA_1:= CP | 数据单元标识符, i (信息对象地址, BCR, CP24Time2a) | i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 16:M _ IT _ TA _ 1

传送原因

〈3〉:=突发(自发)

〈37〉:=响应计数量站(总)召唤

〈38〉:=响应第1组计数量召唤

〈39〉:=响应第2组计数量召唤

〈40〉:=响应第3组计数量召唤

〈41〉:=响应第 4 组计数量召唤

因为每个累计量有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.17 类型标识 17:M EP TA 1

带时标的继电保护设备事件(见图 47)。

信息对象序列(SQ=0)

0 0 0 1 0 0 1	类型标识 (TYP)	数据单元
0 信息对象数 i	可变结构限定词(VSQ)	
在 7.2.3 中定义	传送原因 (COT)	─ 标识符在
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义
在 7.2.5 中定义	信息对象地址	
IV NT SB BL EI 0 ES	SEP=继电保护设备的单个事件 (在 7.2.6.10 中定义)	信息对象 1
CP16Time2a 在 7.2.6.20 中定义	两个八位位组二进制时间	
CP24Time2a 在 7.2.6.19 中定义	三个八位位组二进制时间	
在 7.2.5 中定义	信息对象地址	
IV NT SB BL EI 0 ES	SEP=继电保护设备的单个事件(在7.2.6.10中定义)	信息对象:
CP16Time2a	五人 / (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	
在 7.2.6.20 中定义	两个八位位组二进制时间(动作时间) 	
CP24Time2a	一人,在在外里一堆制叶岗	
在 7.2.6.19 中定义	三个八位位组二进制时间	

图 47 应用服务数据单元: M _ EP _ TA _ 1 带时标的继电保护设备事件

M _ EP _ TA _1: = CP {数据单元标识符, i (信息对象地址, SEP, CP16Time2a, CP24Time2a)} i: = 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 17:M EP TA 1

传送原因

〈3〉:=突发(自发)

因为每个继电保护设备事件有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.18 类型标识 18:M _ EP TB 1

带时标的继电保护设备成组启动事件(见图 48)。

信息对象序列 (SQ=0)

0	0	0	1	0	0	1	0	类型标识 (TYP)	数据单元
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	I
在 7	.2.3	中定义						传送原因 (COT)	标识符在
在7	.2.4	中定义						应用服务数据单元公共地址	7.1 中定义
在7	.2.5	中定义						信息对象地址	
0	0	SRD	SIE	SL3	SL2	SL1	GS	SPE=继电保护设备的启动事件 (在 7.2.6.11 中定义)	信息对象
IV	NT	SB	BL	ΕI	0	0	0	QDP=继电保护设备事件的品质描述词(在 7.2.6.4 中定义)	1
CP16Time2a 在 7.2.6.20 中定义 CP24Time2a					1			两人,传传有一维加瓦尔(从中里市长托体市台)	
					定义			两个八位位组二进制时间(继电器动作持续时间)	
					3			- A & C- C- OH MIDLE	1
	在 7.2.6.19 中定义							三个八位位组二进制时间	

图 48 应用服务数据单元: M __ EP __ TB __ 1 带时标的继电保护设备成组启动事件 M __ EP __ TB __1:= CP | 数据单元标识符,信息对象地址, SPE, QDP, CP16Time2a, CP24Time2a|

传送原因用于

类型标识 18: M _ EP _ TB 1

传送原因

〈3〉:=突发(自发)

7.3.1.19 类型标识 19:M __ EP __ TC __ 1

带时标的继电保护设备成组输出电路信息(见图 49)。

信息对象序列 (SQ=0)

0	0	0	1	0	0	1	1	类型标识 (TYP)				
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识符在			
在 7	.2.3	中定义						传送原因 (COT)	7.1 中定义			
在7	.2.4	中定义						应用服务数据单元公共地址	1			
在7	.2.5	中定义						信息对象地址	信息对象			
0	0	0	0	CL3	CL2	CL1	GC	OCI = 继电保护设备的输出电路信息 (在 7.2.6.12 中定义)	- 10 VD V1 38			
IV	NT	SB	BL	EI	0	0	0	QDP=继电保护设备事件的品质描述词(在 7.2.6.4 中定义)				
CP16Time2a 在 7.2.6.20 中定义								两个八位位组二进制时间 (继电器动作时间)				
	CP24Time2a 在 7.2.6.19 中定义							三个八位位组二进制时间				

图 49 应用服务数据单元: M __EP __TC __1 带时标的继电保护设备成组输出电路信息 M __EP __TC __1:=CP {数据单元标识符,信息对象地址,OCI,QDP,CP16Time2a,CP24Time2a}

传送原因用于

类型标识 19: M _ EP _ TC _ 1

传送原因

〈3〉:= 突发(自发)

7.3.1.20 类型标识 20:M __ PS __ NA __ 1

带变位检出的成组单点信息(见图 50,51)。

信息对象序列 (SQ=0)

0	0	0	1	0 1	0	0	类型标识(TYP)				
0 信息对象数 i					i		可变结构限定词(VSQ)	数据单元			
在	7.2.3	中定	义				传送原因 (COT)				
在 7.2.4 中定义							应用服务数据单元公共地址				
在	7.2.5	7 中定	义		-		信息对象地址				
状态 状态 状态变位检出 状态变位检出					SCD=状态和状态变位检出, 32 比特, (在 7.2.6.40 中定义)	信息对象					
IV	NT	SB	BL	0 0	0	ov	QDS=品质描述词(在 7.2.6.3 中定义)				
在	7.2.5	7 中定	义				信息对象地址				
状态 状态 状态变位检出 状态变位检出				检出			SCD=状态和状态变位检出, 32 比特, (在 7.2.6.40 中定义)	信息对象 i			
IV	NT	SB	BL	0 0	0	ov	QDS=品质描述词(在7,2.6.3 中定义)				

图 50 应用服务数据单元: M _ PS _ NA _ 1 带变位检出的成组单点信息

M _ PS _ NA _1: = CP {数据单元标识符, i(信息对象地址, SCD, QDS)}

i: = 在可变结构限定词中定义的信息对象数目

单个信息对象中信息元素序列 (SQ=1)

0 0 0 1 0 1 0 0 1 信息对象数; 在7.2.3 中定义	类型标识(TYP) 可变结构限定词(VSQ) 传送原因(COT)	数据单元标识符在
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义
在 7.2.5 中定义	信息对象地址 A	
状态 状态变位检出 状态变位检出	1 SCD=状态和状态变位检出, 32 比特, (在 7.2.6.40 中定义), 属于信息对象地址 A	信息对象
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	
: 状态 状态 状态变位检出 状态变位检出	; J SCD= 状态和状态变位检出,32 比特,(在7.2.6.40 中定 义),属于信息对象地址 A+16× (j-1)	
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	

图 51 应用服务数据单元: M __ PS __ NA __ 1 带变位检出的成组单点信息 M __ PS __ NA __1:= CP {数据单元标识符,信息对象地址,j(SCD,QDS)} j:= 在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 20: M _ PS _ NA _ 1

传送原因

- (2):=背景扫描
- 〈3〉:=突发(自发)
- 〈5〉:=被请求
- 〈11〉:=由远方命令引起的返送信息
- 〈12〉:=由当地命令引起的返送信息
- 〈20〉:=响应站召唤
- (21):=响应第1组召唤
- (22):=响应第2组召唤

〈36〉:=响应第 16 组召唤

信息对象地址定义第1个状态字节的 LSB 比特, 后续比特由此比特地址顺序加1标识。

7.3.1.21 类型标识 21:M ME ND 1

测量值,不带品质描述词的规一化值(见图 52,53)。

信息対象序列 (SQ=0)

0 0 0 1 0 1 0 1	类型标识 (TYP)	**- TE 7Y		
0 信息对象数;	可变结构限定词(VSQ)	数据单元		
在 7.2.3 中定义	传送原因 (COT)	标识符在		
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义		
在 7.2.5 中定义	信息对象地址			
值	NVA= 规一化值, (在 7.2.6.6 中定义)	信息对象 1		
S 值				
在 7.2.5 中定义	信息对象地址			
值	NVA= 规一化值, (在 7.2.6.6 中定义)	信息对象;		
S 值	NVA= 观一化组,(在 1.2.6.6 中定义)			

图 52 应用服务数据单元: M _ ME _ ND _ 1 测量值,不带品质描述词的规一化值 M _ ME _ ND _ 1:= CP {数据单元标识符, i(信息对象地址, NVA)} i:= 在可变结构限定词中定义的信息对象数目

单个信息对象中信息元素序列 (SQ=1)

0 0 0 1 0 1 0 1	类型标识 (TYP)	***
1 信息对象数 j	可变结构限定词 (VSQ)	数据单元
在 7.2.3 中定义	传送原因 (COT)	标识符在
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义
在 7.2.5 中定义	信息对 象地 址 A	44.4.5
值	1 NVA=规一化值, (在 7.2.6.6 中定义)	信息对象
S 值	属于信息对象地址 A	
值	j NVA= 规一化值,(在 7.2.6.6 中定义)	
S 值	属于信息对象地址 A+j-1	

图 53 应用服务数据单元: M _ ME _ ND _ 1 测量值,不带品质描述词的规一化值 M ME ND 1:= CP | 数据单元标识符,信息对象地址,j(NVA)}

 i:=在可变结构限定词中定义的信息元素数目

传送原因用于

类型标识 21: M _ ME _ ND _ 1

传送原因

(1):=周期/循环

〈2〉:=背景扫描

(3):=突发(自发)

〈5〉:=被请求

〈20〉:=响应站召唤

〈21〉:=响应第1组召唤

〈22〉:=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

7.3.1.22 类型标识 30:M SP TB 1

带时标 CP56Time2a 的单点信息(见图 54)。

信息对象序列 (SQ=0)

0 0 0 1 1 1 1 0 0 信息対象数: 在7.2.3 中定义 在7.2.4 中定义 在7.2.5 中定义 IV NT SB BL 0 0 SPI CP56Time2a 在7.2.6.18 中定义	数据单元 标识符在 7.1 中定义 信息对象 1	
# 7.0 5 th Ct V	Are the code of the Late.	
在 7.2.5 中定义 IV NT SB BL 0 0 0 SPI	信息对象地址 SIQ=带品质描述词的单点信息(在 7.2.6.1 中定义)	信息对象 i
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间	

图 54 应用服务数据单元: M __ SP __ TB __ 1 带时标 CP56Time2a 的单点信息

M _ SP _ TB _1: = CP {数据单元标识符, i (信息对象地址, SIQ, CP56Time2a)}

i:=在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 30:M _ SP _ TB _ 1

传送原因

〈3〉:=突发(自发)

〈5〉:=被请求

〈11〉:=远方命令引起的返送信息

〈12〉:=当地命令引起的返送信息

因为每个单点信息有自己的时标,这种 ASDU 类型不存在信息元素序列 (SQ-1)。

7.3.1.23 类型标识 31:M DP TB 1

带时标 CP56Time2a 的双点信息 (见图 55)。

信息对象序列(SQ=0)

0	0	0	1	1	1	1	1	类型标识 (TYP)	
0 信息对象数 i					数i			可变结构限定词(VSQ)	数据单元
在 7.2.3 中定义							传送原因 (COT)	── 标识符在 7.1 中定义	
在 7.2.4 中定义								应用服务数据单元公共地址	
在 7.2.5 中定义							信息对象地址	信息对象 1	
IV	NT	SB	BL	0	0	D	ΡΙ	DIQ=带品质描述词的双点信息(在 7.2.6.2 中定义)	
CP56Time2a 在 7.2.6.18 中定义					Ľ		七个八位位组二进制时间		
						•			
	在 7.2.5 中定义					信息对象地址	信息对象i		
IV	NT	SB	BL	0	0	D.	ΡΙ	DIQ=带品质描述词的双点信息(在 7.2.6.2 中定义)	
	CP56Time2a 在 7.2.6.18 中定义							七个八位位组二进制时间	

图 55 应用服务数据单元: M __ DP __ TB __ 1 带时标 CP56Time2a 的双点信息

M _ DP _ TB _1:= CP {数据单元标识符, i (信息对象地址, DIQ, CP56Time2a)} i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 31:M _ DP _ TB _ 1

传送原因

〈3〉:= 突发(自发)

〈5〉:=被请求

〈11〉:=远方命令引起的返送信息

〈12〉:=当地命令引起的返送信息

因为每个双点信息有自己的时标,这种 ASDU 类型不存在信息元素序列 (SQ-1)。

7.3.1.24 类型标识 32:M ST TB 1

带时标的步位置信息(见图 56)。

信息对象序列(SQ=0)

10.00		
0 0 1 0 0 0 0 0	类型标识 (TYP)	#E HT 36 →
0 信息对象数 i	可变结构限定词(VSQ)	数据单元
在 7.2.3 中定义	传送原因(COT)	标识符在
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义
在 7.2.5 中定义	信息对象地址	
T	VTI=带瞬变状态指示的值 (7.2.6.5 中定义)	信息对象 1
IV NT SB BL 0 0 0 OV	QDS=品质描述词(在7.2.6.3 中定义)	
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间	
: :	:	
	<u> </u>	
在 7.2.5 中定义	信息对象地址	
T <u>值</u>	VTI=带瞬变状态指示的值(7.2.6.5 中定义)	信息对象i
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	
CP56Time2a	七个八位位组二进制时间	
在 7.2.6.18 中定义		

图 56 应用服务数据单元: M __ST __TB __1 带时标 CP56Time2a 的步位置信息 M __ST __TB __1:= CP {数据单元标识符, i (信息对象地址, VTI, QDS, CP56Time2a)} i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 32: M _ ST _ TB _ 1

传送原因

- 〈3〉:= 突发(自发)
- 〈5〉:=被请求
- 〈11〉:=远方命令引起的返送信息
- 〈12〉:=当地命令引起的返送信息

因为每个步位置信息有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素(SQ=1)。

7.3.1.25 类型标识 33:M _ BO _ TB _ 1

带时标 CP56Time2a 的 32bit (见图 57)。

信息对象序列(SQ=0)

信息对象序列(SQ=U)					
0 0 1 0 0 0 0 1	类型标识 (TYP)	数据单元			
0 信息对象数 i	可变结构限定词(VSQ)	一			
在 7.2.3 中定义	传送原因 (COT)	7.1 中定义			
在 7.2.4 中定义	应用服务数据单元公共地址	/.1 中定义			
在 7.2.5 中定义	信息对象地址	() - dr 1 dr			
比特串		信息对象 1			
比特串	BS1=二进状态信息, 32bit				
比特串	(在 7.2.6.13 中定义)				
比特串					
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)				
CP56Time2a	七个八位位组二进制时间				
在 7.2.6.18 中定义	七十八世祖二姓制列问				
在 7.2.5 中定义	信息对象地址				
比特串		信息对象:			
比特串	BSI=二进状态信息,32bit				
比特串	(在 7.2.6.13 中定义)				
比特串					
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)				
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间				

图 57 应用服务数据单元: M _ BO _ TB _ 1 带时标 CP56Time2a 的 32 比特串

M BO _ TB _ 1:= CP | 数据单元标识符, i (信息对象地址, BSI, QDS, CP56Time2a) |

i:=在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 33:M BO _ TB _ 1

传送原因

〈3〉:=突发(自发)

〈5〉:=被请求

因为每个比特串有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.26 类型标识 34:M _ ME _ TD _ 1

测量值,带时标 CP56Time2a 的规一化值(见图 58)。

信息对象序列(SQ=0)

0 0 1 0 0 0 1 0	类型标识(TYP)			
0 信息对象数 i	可变结构限定词 (VSQ)	数据单元		
在 7.2.3 中定义	传送原因 (COT)	── 标识符在 7.1 中定义		
在 7.2.4 中定义	应用服务数据单元公共地址			
在 7.2.5 中定义	信息对象地址	信息对象 1		
值	NVA = 规一化值(在 7.2.6.6 中定义)	IN DEVICE SECTION		
S 值	.NVA-			
IV NT SB BL 0 0 0 OV	QDS=品质描述词(在 7.2.6.3 中定义)			
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间			
在 7.2.5 中定义	信息对象地址	信息对象i		
值	NVA = 规一化值(在 7.2.6.6 中定义)	,,,, <u>=</u> , ,,,,		
S 值	NVA-			
IV NT SB BL 0 0 0 OV	QDS=品质播述词(在 7.2.6.3 中定义)			
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间			

图 58 应用服务数据单元: M __ ME __ TD __ 1 测量值, 带时标 CP56Time2a 的规一化值

M __ ME __ TD __1:= CP {数据单元标识符, i (信息对象地址, NVA, QDS, CP56Time2a)}

i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 34: M ME TD 1

传送原因

〈3〉:=突发(自发)

〈5〉:=被请求

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.27 类型标识 35:M ME TE 1

测量值, 带时标 CP56Time2a 的标度化值 (见图 59)。

信息对象序列 (SQ=0)

0 0 1 0 0 0 1 1	类型标识(TYP)	
0 信息对象数 i	可变结构限定词 (VSQ)	数据单元 标识符在
在 7.2.3 中定义	传送原因 (COT)	7.1 中定义
在 7.2.4 中定义	应用服务数据单元公共地址	
在 7.2.5 中定义	信息对象地址	信息对象 1
值		
S 值	SVA= 标度化值(在 7.2.6.7 中定义)	
IV NT SB BL 0 0 0 OV	QDS=品质描述词 (在 7.2.6.3 中定义)	
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间	
在 7.2.5 中定义	信息对象地址	信息对象i
值		
S 值	SVA= 标度化值(在 7.2.6.7 中定义)	
IV NT SB BL 0 0 0 OV	QDS=品质描述词(在 7.2.6.3 中定义)	
CP56Time2a 在 7.2.6.18 中定义	七个八位位组二进制时间	

传送原因用于

类型标识 35: M _ ME _ TE _ 1

传送原因

- 〈3〉:=突发(自发)
- 〈5〉:=被请求

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.28 类型标识 36:M _ ME _ TF _ 1

测量值,带时标 CP56Time2a 的短浮点数 (见图 60)。

信息对象序列 (SQ=0)

0	0	1	0	0	1	0	0	类型标识(TYP)						
0			信息	对象	è数 i		•	可变结构限定词(VSQ)	数据单元					
在	7.2.	3 中2	定义					传送原因 (COT)	标识符在 7.1 中定义					
在	7.2.	4 中2	定义					应用服务数据单元公共地址						
在	7.2.	5 中;	定义			-		信息对象地址						
	小数													
	小数							IEEE STD 754 短浮点数(在 7,2.6.8 中定义)						
E	小数							TEEE 31D / 34 应行从数(住 /, 2.0.0 干化义)						
s	指数								•					
IV	V NT SB BL 0 0 0 OV					0	ov	QDS=品质擋述词(在 7.2.6.3 中定义)						
	:		P56 2.6.		·2a 中定り	Z		七个八位位组二进制时间						
				į										
		在	7.2.	5 中:	定义			信息对象地址	信息对象i					
			小	数										
			小	数	,			IEEE STD 754 短浮点数(在 7.2.6.8 中定义)						
E	小数							ELE 31D 734 及行為双(在 7.2.0.0 年足入)						
s				指数	t									
IV	NT	` SI	В В	L (0	0	ov	QDS=品质描述词(在 7.2.6.3 中定义)						
	7		P567 2.6.		2a 中定 <i>》</i>	L		七个八位位组二进制时间						

图 60 应用服务数据单元: M __ ME __ TF __ 1 测量值, 带时标 CP56Time2a 的短浮点数
M __ ME __ TF __1:= CP {数据单元标识符, i (信息对象地址, IEEE STD 754, QDS, CP56Time2a)}
i:= 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 36:M _ ME _ TF _ 1

传送原因

- (3):=突发(自发)
- 〈5〉:=被请求

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.29 类型标识 37:M IT TB 1

带时标 CP56Time2a 的累计量 (见图 61)。

信息对象序列(SQ=0)

0 0 1	0 0 1	0	1	类型标识 (TYP)						
0	信息对象数	i		可变结构限定词(VSQ)	数据单元					
在 7.2.3 中分	三义			传送原因 (COT)	标识符在 7.1 中定义					
在 7.2.4 中分	三义			应用服务数据单元公共地址						
在 7.2.5 中分	建义			信息对象地址						
	值				18,78,74,38, 1					
	值									
	值			BCR=二进制计数器读数 (在 7.2.6.9 中定义)						
	值									
IV CA CY	顺序	号								
	P56Time2a 2.6.18 中定)	Ž.		七个八位位组二进制时间						
	į			1						
在 7.2.5 中分	三义			信息对象地址	信息对象;					
	值									
	值									
	值			BCR=二进制计数器读数 (在 7.2.6.9 中定义)						
	值									
IV CA CY	顺序	号								
	P56Time2a 2.6.18 中定』	 义		七个八位位组二进制时间						

图 61 应用服务数据单元: M __ IT __ TB __ 1 带时标 CP56Time2a 累计量

M __ ME __ TB __1:= CP {数据单元标识符, i (信息对象地址, BCR, CP56Time2a)}

i:=在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 37: M __ IT __ TB 1

传送原因

- 〈3〉:=突发(自发)
- 〈37〉:=响应总计数量召唤
- 〈38〉:=响应第1组召唤
- 〈39〉:=响应第2组召唤
- 〈40〉:=响应第3组召唤
- 〈41〉:=响应第4组召唤

因为每个测量值有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.30 类型标识 38:M _ EP _ TD _ 1

带时标 CP56Time2a 的继电保护设备事件(见图 62)。

信息对象序列(SQ=0)

0 0 1 0 0 1 1 0	类型标识(TYP)	**###
0 信息对象数 i	可变结构限定词 (VSQ)	数据単元
在 7.2.3 中定义	传送原因 (COT)	一 标识符在
在 7.2.4 中定义	应用服务数据单元公共地址	7.1 中定义
在 7.2.5 中定义	信息对象地址	
IV NT SB BL EI 0 ES	SEP=继电保护设备的单个事件(在7.2.6.10中定义)	信息对象 1
CP16Time2a	两个人位位组二进制时间	
在 7.2.6.20 中定义	网生人位置组二进制时间	
CP56Time2a	七个八位位组二进制时间	
在 7.2.6.18 中定义	11八位位组二进制时间	
在 7.2.5 中定义	信息对象地址	-
IV NT SB BL EI 0 ES	SEP=继电保护设备的单个事件(在7.2.6.10中定义)	信息对象i
CP16Time2a	两个工作位的一世制时间(动作时间)	
在 7.2.6.20 中定义	两个八位位组二进制时间(动作时间)	
CP56Time2a	七个八位位组二进制时间	
在 7.2.6.18 中定义	1.1八世世祖一定朝时间	

图 62 应用服务数据单元: M EP TD 1 带时标 CP56Time2a 的继电保护设备事件

M _ EP _ TD _1: = CP {数据单元标识符, i (信息对象地址, SEP, CP16Time2a, CP56Time2a)} i: = 在可变结构限定词中定义的信息对象数目

传送原因用于

类型标识 38: M _ EP _ TD _ 1

传送原因

〈3〉:=突发(自发)

因为每个继电保护设备事件有它们自己的时标,这个应用服务数据单元类型不存在顺序的信息元素。

7.3.1.31 类型标识 39:M _ EP _ TE 1

带时标 CP56Time2a 的继电保护设备成组启动事件(见图 63)。

单个信息对象 (SQ=0)

,	1 14 4	77 71 75 C	(04	٠,					
0	0	1	0	0	1	1	1	类型标识 (TYP)	W. 10 34 -
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元
在 7	.2.3	中定义						传送原因 (COT)	──标识符在 7.1 中定义
在 7	.2.4	中定义						应用服务数据单元公共地址	7.1.1.2.2
在 7	.2.5	中定义						信息对象地址	
0	0	SRD	SIE	SL3	SL2	SL1	GS	SPE≈继电保护设备的启动事件(在7.2.6.11中定义)	信息对象
IV	NT	SB	BL	ΕI	0	0	0	QDP=继电保护设备的品质描述词 (在 7.2.6.4 中定义)	
		-	CP167	Time2	a			两个八位位组二进制时间(继电器动作持续时间)	
		在 7	.2.6.	20 中	定义			2117位区型二处制引用(在记机员作70次77777	
			CP567	Time2	<u> </u>			七个八位位组二进制时间	
		在 7	.2.6.	18 中.	定义			飞十八世世祖一英啊吗吗———————————————————————————————————	

图 63 应用服务数据单元: M __ EP __ TE __ 1 带时标 CP56Time2a 的继电保护设备成组启动事件 M __ EP __ TE __1:= CP{数据单元标识符,信息对象地址,SPE,QDP,CP16Time2a,CP56Time2a

传送原因用于

类型标识 39: M _ EP _ TE _ 1

传送原因

〈3〉:=突发(自发)

7.3.1.32 类型标识 40:M _ EP _ TF _ 1

带时标 CP56Time2a 的继电保护设备成组输出电路信息 (见图 64)。

单个信息对象 (SQ=0)

0	0	1	0	1	0	0	0	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词(VSQ)	数据单元
在 7	.2.3	中定义		•	1		,	传送原因 (COT)	√标识符在 7.1 中定义
在 7	.2.4	中定义						应用服务数据单元公共地址	
在 7	.2.5	中定义	:					信息对象地址	信息对象
0	0	0	0	CL3	CL2	CL1	GC	OCI=继电保护设备的输出电路命令 (在 7.2.6.12 中定义)	10.20.03
IV	NT	SB	BL	ΕI	0	0	0	QDP=继电保护设备的品质描述词(在7.2.6.4 中定义)	
				Time2a . 20 中:				两个八位位组二进制时间 (继电器动作时间)	
	CP56Time2a 在 7.2.6.18 中定义							七个八位位组二进制时间	

图 64 应用服务数据单元: M _ EP _ TF _ 1 带时标 CP56Time2a 的继电保护 设备成组输出电路信息

M_ EP TF 1:= CP | 数据单元标识符, 信息对象地址, OCI, QDP, CP16Time2a, CP56Time2a|

传送原因用于

类型标识 40:M _ EP TF 1

传送原因

- 〈3〉:=突发(自发)
- 7.3.2 在控制方向过程信息的应用服务数据单元
- 7.3.2.1 类型标识 45:C __SC __NA __1

单命令 (见图 65)。

单个信息对象 (SQ=0)

	194 200	1200		1	1				
0	0	1	0	1	1	0	1	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词(VSQ)	— 数据单元 — 标识符在
在 7	.2.3	中定义						传送原因 (COT)	7.1 中定义
在7	.2.4	中定义	•					应用服务数据单元公共地址	
在 7	.2.5	中定义	-					信息对象地址	信息对象
S/E			QU			0	scs	SCO=単命令(在 7.2.6.15 中定义)	

图 65 应用服务数据单元: C _ SC _ NA _ 1 单命令
C SC NA 1:= CP 数据单元标识符,信息对象地址,SCO

传送原因用于

类型标识 45:C _ SC _ NA _ 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.2.2 类型标识 46:C __ DC __ NA __ 1

双命令 (见图 66)。

单个信息对象 (SQ=0)

0	0	1	0	1	1	1	0	类型标识 (TYP)	W
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	一 数据单元
在 7	.2.3	中定义						传送原因 (COT)	→ 标识符在 → 7.1 中定义
在 7	.2.4	中定义						应用服务数据单元公共地址	7.11
在 7	.2.5	中定义						信息对象地址	信息对象
S/E	T		G	U			DCS	DCO=双命令 (在 7.2.6.16 中定义)	IEI WE WISK

图 66 应用服务数据单元: C __ DC __ NA __ 1 双命令 C DC NA __ 1:= CP {数据单元标识符,信息对象地址,DCO}

传送原因用于

类型标识 46:C _ DC _ NA _ 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.2.3 类型标识 47:C __RC __NA __1

步调节命令(见图 67)。

单个信息对象 (SQ=0)

0	0	1	0	1	1	1	1	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词(VSQ)	数据单元
在 7	.2.3	中定义						传送原因(COT)	─ 标识符在 7.1 中定义
在 7	.2.4	中定义						应用服务数据单元公共地址	
在 7	.2.5	中定义						信息对象地址	信息对象
S/E			Q	U			RCS	RCO=步调节命令(在 7.2.6.17 中定义)	

图 67 应用服务数据单元: C __ RC __ NA __ 1 步调节命令 C __ RC __ NA __ 1:= CP | 数据单元标识符,信息对象地址,RCO|

传送原因用于

类型标识 47:C __ RC __ NA __ 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.2.4 类型标识 48:C _ SE _ NA _ 1

设定命令,规一化值(见图 68)。

单个信息对象 (SQ=0)

0	0	1	1	0	0	0	0	类型标识(TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元
在 7	.2.3	中定义			•			传送原因 (COT)	── 标识符在 7.1 中定义
在 7	.2.4	中定义						应用服务数据单元公共地址	
在 7	.2.5	中定义	-	-				信息对象地址	信息对象
			ſ	直				No. 11. No. 11. No. 1 de m O C C de COV.	
s				值		-		NVA= 规一化值, (在 7.2.6.6 中定义)	
S/1	2	_		QI	-			QOS=设定命令限定词 (在 7.2.6.39 中定义)	

图 68 应用服务数据单元: C _ SE _ NA _ 1 设定命令, 规一化值 C _ SE _ NA _ 1:=CP | 数据单元标识符, 信息对象地址, NVA, QOS |

传送原因用于

类型标识 48:C _ SE _ NA _ 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止(任选)

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.2.5 类型标识 49:C SE NB 1

设定命令,标度化值(见图 69)。

单个信息对象 (SQ=0)

0	0	1	1	0	0	0	1	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元
在 7	.2.3	中定义						传送原因 (COT)	─ 标识符在 7.1 中定义
在 7	.2.4	中定义						应用服务数据单元公共地址	
在 7	.2.5	中定义						信息对象地址	信息对象
			1	直				OXIA + TELLIFE (-t- a a c a 4.55 (Y)	后总列教
s				值	į .			SVA= 标度化值(在 7.2.6.7 中定义)	
S/	E	·	,	QI	L			QOS=设定命令限定词 (在 7.2.6.39 中定义)	7

图 69 应用服务数据单元: C SE NB 1设定命令,标度化值

C _ SE _ NB _ 1: = CP | 数据单元标识符,信息对象地址, SVA, QOS|

传送原因用于

类型标识 49:C SE NB 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止(任选)

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.2.6 类型标识 50:C __ SE __ NC 1

设定命令,短浮点数(见图 70)。

单个信息对象 (SQ=0)

0	0	1	1	0	0	1	0	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元
在7	7.2.3 中定义						•	传送原因(COT)	标识符在 7.1 中定义 信息对象
在 7	7.2.4 中定义							应用服务数据单元公共地址	
在 7	E 7.2.5 中定义							信息对象地址	信自对象
			小	数					信息对象
			小	数				VEDER OFFICE AS A SECOND TO SECOND THE SECON	
E	E 小数							IEEE STD 754 短浮点数(在 7.2.6.8 中定义)	
s	S 指数								
S/I	S/E QL							QOS=设定命令限定词 (在 7.2.6.39 中定义)	

图 70 应用服务数据单元: C__SE__NC__1设定命令, 短浮点数

C __ SE __ NC __ 1: = CP {数据单元标识符,信息对象地址, IEEE STD 754, QOS

传送原因用于

类型标识 50:C _ SE _ NC _ 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止(任选)

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.2.7 类型标识 51:C BO NA 1

32 比特串 (见图 71)。

单个信息对象 (SQ=0)

0	0	1	1	0	0	1	1	类型标识 (TYP)			
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元		
在7.2.3 中定义								传送原因 (COT)	标识符在 7.1 中定义		
在 7.2.4 中定义								应用服务数据单元公共地址			
在 7	在 7.2.5 中定义							信息对象地址	信息对象		
比特串											
比特串] BSI = 二进制状态信息, 32bit(在 7.2.6.13 中定			
	_		比4	侍串				义)			
	比特串								!		

图 71 应用服务数据单元: C __ BO __ NA __ 1 32 比特串 C __ BO __ NA __ 1:= CP | 数据单元标识符,信息对象地址,BSI |

传送原因用于

类型标识 51:C _ BO _ NA _ 1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止(任选)

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.3 在监视方向系统信息的应用服务数据单元

类型标识 70: M _ EI _ NA _ 1 初始化结束 (见图 72)。

单个信息对象 (SQ=0)

									<u> </u>			
0	1	0	0	0	1	1	0	类型标识 (TYP)				
0	0	0	0	0	0	0	1	可变结构限定词(VSQ)	数据单元			
在 7	.2.3	中定义						传送原因 (COT)	标识符在 7.1 中定义			
在 7	.2.4	中定义	:					应用服务数据单元公共地址				
在 7	.2.5	中定义				·		信息对象地址	信息对象			
			С	P8				COI = 初始化原因 (在 7.2.6.21 中定义)				

图 72 应用服务数据单元: M _ EI _ NA _ 1 初始化结束

M _ EI _ NA _ 1: = CP {数据单元标识符,信息对象地址,COI}

传送原因用于

类型标识 70: M _ EI _ NA _ 1

传送原因

〈4〉:=被初始化

- 7.3.4 在控制方向系统信息的应用服务数据单元
- 7.3.4.1 类型标识 100:C __ IC __ NA __ 1

召唤命令(见图73)。

单个信息对象 (SQ=0)

	1 111 14											
0	1	1	0	0	1	0	0	类型标识(TYP)				
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元			
在 7	在 7.2.3 中定义							传送原因 (COT)	── 标识符在 7.1 中定义			
在 7	在 7.2.4 中定义							应用服务数据单元公共地址				
在 7	在 7.2.5 中定义							信息对象地址=0	信息对象			
	CP8							QOI = 召唤限定词 (在 7.2.6.22 中定义)				

图 73 应用服务数据单元: C IC NA 1召唤命令

C __ IC __ NA __ 1: = CP {数据单元标识符,信息对象地址,QOI}

传送原因用于

类型标识 100: C __ IC __ NA __1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.4.2 类型标识 101:C __ CI __ NA __ 1

计数量召唤命令(见图 74)。

单个信息对象 (SQ=0)

	1 111 70	3,7,7,7,4	. (54	٠,_							
0	1	1	0	0	1	0	1	类型标识 (TYP)			
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元		
在 7	.2.3	中定义	ζ.					传送原因 (COT)	标识符在 7.1 中定义		
在 7	.2.4	中定义	ζ.					应用服务数据单元公共地址			
在 7	.2.5	中定义	4					信息对象地址=0	信息对象		
			С	P8				QCC=计数量召唤命令限定词(在7.2.6.23中定义)			

图 74 应用服务数据单元: C CI NA_1计数量召唤命令

C CI NA 1:= CP {数据单元标识符,信息对象地址,QCC}

传送原因用于

类型标识 101:C __ CI __ NA __1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止

〈44〉:=未知的类型标识

〈45〉:≈未知的传送原因

(46):=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.4.3 类型标识 102:C_RD_NA_1

读命令 (见图 75)。

单个信息对象 (SQ=0)

0	1	1	0	0	1	1	0	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元
在 7	.2.3 =	户定义		•				传送原因 (COT)	标识符在 7.1 中定义
在 7	.2.4 F	户定义						应用服务数据单元公共地址	
在 7	.2.5 =	户定义						信息对象地址	信息对象

图 75 应用服务数据单元: C_RD_NA_1 读命令

C RD NA_1: = CP {数据单元标识符, 信息对象地址}

传送原因用于

类型标识 102:C RD NA 1

传送原因

在控制方向

〈5〉:=请求

在监视方向

〈5〉:=被请求

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.4.4 类型标识 103:C CS NA_1

时钟同步命令(见图 76)。

单个信息对象 (SQ=0)

0	1	1	0	0	1	1	. 1	类型标识(TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识符在
在	7.2.3	9 中5	巨义					传送原因(COT)	7.1 中定义
在1	7.2.4	+ 中只	足义					应用服务数据单元公共地址	
在	7.2.	5 中5	定义					信息对象地址=0	信息对象
	;	_	P567					七个八位位组二进制时间(从毫秒至年的日期和时钟时间)	

图 76 应用服务数据单元: C_CS_NA_1 时钟同步命令 C_CS_NA_1: = CP | 数据单元标识符, 信息对象地址, CP56Time2a|

传送原因用于

类型标识 103:C_CS_NA_1

传送原因

在控制方向

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈10〉:=激活终止

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

在 GB/T 18657.5.6.7 中所述, C CS NA 1 可以用在监视方向突发传输时钟时间, 例如用以指

出一个被控站的小时变化,这样可使得报文在被控站存储时间超过 1h 而不会有多义性。7.3.4.5 类型标识 104:C_TS_NA_1

测试命令(见图 77)。

单个信息对象 (SQ=0)

0	1	1	0	1	0	0	0	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元
在	7.2.	3 中気	区义					传送原因 (COT)	标识符在 7.1 中定义
在	7.2.	4 中氣	三义			* ***		应用服务数据单元公共地址	
在:	7.2.	5 中気	三义					信息对象地址=0	信息对象
1	0	1	0	1	0	1	0	FBP=固定测试字(在7.2.6.14	
0	1	0	1	0	1	0	1	中定义)	

图 77 应用服务数据单元: C_TS_NA_1测试命令
C TS NA 1:= CP | 数据单元标识符,信息对象地址,FBP}

传送原因用于

类型标识 104:C TS_NA 1

传送原因

在控制方向

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.4.6 类型标识 105:C_RP_NA_1

复位进程命令(见图 78)。

单个信息对象 (SQ=0)

0	1	1	0	1	0	0	1	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识
在	7.2.	3 中気	E 义	,				传送原因 (COT)	符在 7.1 中定 义
在	7.2.	4 中気	2.5					应用服务数据单元公共地址	
在	7.2.	5 中总	三义					信息对象地址=0	信息对象
			U	18				GRP=复位进程命令限定词(在 7.2.6.27 中定义)	

图 78 应用服务数据单元: C_RP_NA_1 **复位进程命令** C_RP NA_1:=CP 数据单元标识符,信息对象地址,GRP

传送原因用于

类型标识 105:C RP NA_1

传送原因

在控制方向

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.4.7 类型标识 106:C_CD_NA_1

延时获得命令(见图 79)。

单个信息对象 (SQ=0)

0	1	1	0	í	0	1	0	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识
在	7.2.2	3 中兌	巨义			•		传送原因 (COT)	符在 7.1 中定 义
在	7.2.4	+ 中分	建义					应用服务数据单元公共地址	
在	7.2.5	5 中知	赵					信息对象地址=0	信息对象
	7	_	P167 2.6.					两个八位位组二进制时间 (毫秒 至秒)	

图 79 应用服务数据单元:C_CD_NA_1 延时获得命令

C CD NA_1:=CP {数据单元标识符,信息对象地址,CP16Time2a}

传送原因用于

类型标识 106: C_CD_NA_1

传送原因

在控制方向

〈3〉:=突发(自发)

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.5 在控制方向参数的应用服务数据单元

7.3.5.1 类型标识 110:P ME NA 1

测量值参数,规一化值(见图80)。

单个信息对象(SQ=0)

0	1	1	0	1	1	1	0	类型标识 (TYP)					
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识				
在:	E 7.2.3 中定义							传送原因 (COT)	─ 符在 7.1 中定 _ 义				
在:	在 7.2.4 中定义							应用服务数据单元公共地址					
在	7.2.	5 中5	定义					信息对象地址	44.62.41.64				
			ſ	直				NVA= 规一化值, (在 7.2.6.6 中定义)	一 信息对象				
s			ſ	直									
			U	18				QPM=测量值参数限定词 (在 7.2.6.24 中定义)					

图 80 应用服务数据单元: P_ME_NA_1 测量值参数, 规一化值 P_ME_NA_1:=CP | 数据单元标识符, 信息对象地址, NVA, QPM |

传送原因用于

类型标识 110:P ME NA 1

传送原因

在控制方向

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈20〉:=响应站召唤

(21):=响应第1组召唤

〈22〉:=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.5.2 类型标识 111:P_ME_NB_1

测量值参数,标度化值(见图81)。

单个信息对象 (SQ=0)

0	1	1	0	1	1	1	1	类型标识 (TYP)						
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识 ── 符在 7.1 中定					
在	至7.2.3 中定义							传送原因(COT) 対						
在	在 7.2.4 中定义							应用服务数据单元公共地址	7					
在	7.2.:	5 中 5	足义					信息对象地址	65- 411 - M					
			1	直				SVA=标度化值, (在 7.2.6.7 中定义)	信息对象					
s			1	直										
			U	18				QPM=测量值参数限定词 (在 7.2.6.24 中定义)						

图 81 应用服务数据单元: P_ME_NB_1 测量值参数,标度化值 P_ME_NA_1:=CP {数据单元标识符,信息对象地址,SVA,QPM}

传送原因用于

类型标识:111:P_ME_NB_1

传送原因

在控制方向

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈20〉:=响应站召唤

〈21〉:=响应第1组召唤

〈22〉:=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.5.3 类型标识 112:P ME NC 1

测量值参数,短浮点数(见图82)。

单个信息对象 (SQ=0)

0	1	1	1	0	0	0	0	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识
在	7.2.	3 中 5	定义				•	传送原因 (COT)	─ 符在 7.1 中定 ■ 义
在	7.2.	4 中5	足义					应用服务数据单元公共地址	
在 ′	7.2.	5 中5	定义					信息对象地址	5 to 14 - 1 1 55
			小	数					一 信息对象
			小	数					
Е		-	小	数				IEEE STD 754 短浮点数(在 7.2.6.8 中定义)	
s			指	数					
			U	18			•	QPM=测量值参数限定词 (在 7.2.6.24 中定义)	7

图 82 应用服务数据单元:P_ME_NC_1测量值参数,短浮点数

P_ME_NC_1:=CP | 数据单元标识符,信息对象地址,IEEE STD 754, QPM |

传送原因用于

类型标识 112: P_ME_NC_1

传送原因

在控制方向

〈6〉:=激活

在监视方向

〈7〉:=激活确认

〈20〉:=响应站召唤

(21):=响应第1组召唤

(22):=响应第2组召唤

:

〈36〉:=响应第 16 组召唤

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.5.4 类型标识 113:P_AC_NA_1

参数激活 (见图 83)。

单个信息对象 (SQ=0)

0	1	1	1	0	0	0	1	类型标识 (TYP)		
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识	
在:	7.2.	3 中気	定义	•				传送原因 (COT)	── 符在 7.1 中定	
在	7.2.4	4 中気	定义					应用服务数据单元公共地址	7^	
在:	7.2.5	5 中5	主义					信息对象地址	13 1. 4-	
	UI8							QPA=参数激活限定词 (在 7.2.6.25 中定义)	信息对象	

图 83 应用服务数据单元:P_AC_NA_1参数激活

P AC NA 1:= CP |数据单元标识符,信息对象地址,QPA|

传送原因用于

类型标识 113:P_AC_NA_1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.6 文件传输的应用服务数据单元

7.3.6.1 类型标识 120:F FR_NA_1

文件准备就绪(见图 84)。

单个信息对象 (SQ=0)

0	1	1	1	1	0	0	0	类型标识 (TYP)	米セサニモ 2月
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识
在	7.2.	9 中分	定义					传送原因 (COT)	→ 符在 7.1 中定 」、、
在	7.2.	4 中2	定义					应用服务数据单元公共地址]×
在	7.2.:	5 中2	定义					信息对象地址	
在	7.2.	5.33	中京	义				文件名	信息对象
在	7.2.0	5.35	中定	义				文件长度	
			C	P8				FRQ=文件准备就绪限定词 (在 7.2.6.28 中定义)	

图 84 应用服务数据单元:P FR NA 1文件准备就绪

F_FR_NA_1:=CP{数据单元标识符,信息对象地址,文件名,文件长度,FRQ}

传送原因用于

类型标识 120:F FR NA 1

传送原因

〈13〉:=文件传输

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.6.2 类型标识 121: F SR NA 1

节准备就绪(见图85)。

单个信息对象 (SQ=0)

0	1	1	1	1	0	0	1	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	→ 数据单元标识 → 符在 7.1 中定
在	7.2.	3 中2	主义					传送原因 (COT)	义
在	7.2.4	4 中紀	主义					应用服务数据单元公共地址	
在	7.2.:	5 中紀	定义					信息对象地址	c b st A
在	7.2.	5.33	中定	义				文件名	信息对象
在:	7.2.	5.34	中定	义				节名字	
在	7.2.	6.35	中定	义				节长度	
			С	P8				SRQ=节准备就绪限定词(在 7.2.6.29 中定义)	

图 85 应用服务数据单元:F_SR_NA_1节准备就绪

F SR NA 1:= CP {数据单元标识符,信息对象地址,文件名,节名字,节长度,SRQ}

传送原因用于

类型标识 121:F SR NA 1

传送原因

〈13〉:=文件传输

〈44〉:=未知的类型标识。

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址。

〈47〉:=未知的信息对象地址

7.3.6.3 类型标识 122: F_SC_NA_1

召唤目录,选择文件,召唤文件,召唤节(见图86)。

单个信息对象 (SQ=0)

	, 114	MEN 1-1	201		0,				
0	0 1 1 1 1 0 1 0		0	类型标识 (TYP)	数据单元标识				
0	0 0 0 0 0 0 0 1		1	可变结构限定词 (VSQ)	符在 7.1 中定				
在	在 7.2.3 中定义					传送原因 (COT)	7年7.1年起		
在	在 7.2.4 中定义			-		应用服务数据单元公共地址	 		
在	在 7.2.5 中定义					信息对象地址			
在	在 7.2.6.33 中定义			文件名	信息对象				
在	在 7.2.6.34 中定义					节名字			
	CP8					SCQ=选择和调用限定词(在7.2.6.30中定义)			

图 86 应用服务数据单元: $F_SC_NA_1$ 召唤目录,选择文件,召唤文件,召唤节 $F_SC_NA_1$: = CP {数据单元标识符,信息对象地址,文件名,节名字,SCQ}

传送原因用于

类型标识 122:F_SC_NA_1

传送原因

〈5〉:=请求(仅用于召唤目录)

〈13〉:=文件传输(除了召唤目录之外)

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.6.4 类型标识 123:F LS NA 1

最后的节,最后的段(见图87)。

单个信息对象 (SQ=0)

_	1		1	1	ī		T		
0	1	1	1	1	0	1	1	类型标识 (TYP)	
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识符在 7.1 中定
在 7.2.3 中定义							传送原因 (COT)	】 付任 / .1 中足 义	
在'	7.2.4 中定义 应用服务数据单元公共地址								
在 7.2.5 中定义 信息对象地址				信息对象地址	Andrew and the				
在	在 7.2.6.33 中定义					文件名	信息对象		
在 ′	在 7.2.6.34 中定义					节名字			
	UI8					LSQ=最后的节,最后的段限定词(在7.2.6.31 中定义)			
	UI8					CHS=校验和 (在 7.2.6.37 中定义)			

图 87 应用服务数据单元: F_LS_NA 1最后的节,最后的段

F_LS_NA_1:=CP {数据单元标识符,信息对象地址,文件名,节名字,LSQ,CHS}

传送原因用于

类型标识 123:F_LS_NA_1

传送原因

〈13〉:=文件传输

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.6.5 类型标识 124:F_AF_NA_1

认可文件,认可节(见图 88)。

单个信息对象 (SQ=0)

0	1	1	1	1	1	0	0	米 町村は (でなり)	
U	1	1	1	1	1	0	0	类型标识 (TYP)	数据单元标识
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	符在 7.1 中定
在 7.2.3 中定义								何任 7.1 中疋	
在	在 7.2.4 中定义 应用服务数据单元公共地址 义			X					
在	在 7.2.5 中定义					信息对象地址			
在	在 7.2.6.33 中定义 文件名 信息对		信息对象						
在 7.2.6.34 中定义					节名字				
CP8					AFQ=认可文件,认可节限定词(在7.2.6.32中定义)				

图 88 应用服务数据单元: F_AF_NA_1 认可文件, 认可节

F AF NA 1:=CP {数据单元标识符,信息对象地址,文件名,节名字,AFQ}

传送原因用于

类型标识 124:F AF NA 1

传送原因

〈13〉:=文件传输

〈44〉:=未知的类型标识

(45):=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.6.6 类型标识 125:F_SG_NA_1

段 (见图 89)。

单个信息对象 (SQ=0)

0	1	1	1	1	1	0	1	类型标识(TYP)			
0	0	0	0	0	0	0	1	可变结构限定词 (VSQ)	数据单元标识		
在	7.2.	3 中気	建义					传送原因 (COT)	────────────────────────────────────		
在	在 7.2.4 中定义							应用服务数据单元公共地址			
在	在 7.2.5 中定义							信息对象地址	信息对象		
在	在 7.2.6.33 中定义							文件名			
在 2	7.2.6	5.34	中定	义				节名字			
			U	18				LOS=段的长度(在 7.2.6.36 中定义)			
	八位位组 1										
								段			
	八位位组 n				n						

图 89 应用服务数据单元:F_SG_NA_1段

 $F_SG_NA_1:=CP\{$ 数据单元标识符,信息对象地址,文件名,节名字,段的长度,段}

传送原因用于

类型标识 125:F SG_NA_1

传送原因

〈13〉:=文件传输

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址

7.3.6.7 类型标识 126:F DR TA 1

目录(见图 90)。

信息元素序列(SQ=0)

0	1	1	1	1	1	1	0	类型标识(TYP)		数据单元标识		
1	1 信息对象数 j		可变结构限定词(VSQ)	符在 7.1 中定								
在	7.2.	3 中 5	定义					传送原因(COT)		义		
在	7.2.	4 中分	定义		•			应用服务数据单元公共地址				
在	7.2.	5 中 9	定义					信息对象地址		0.4.15		
在	7.2.	6.33	中定	义				文件名或者子目录名		信息对象		
在	7.2.	6.35	中定	义				文件长度				
在	在 7.2.6.38 中定义		SOF=文件的状态	文件 1,属于信息对象地								
		-	P561	Cima of	2.5			七个八位位组二进制时间 (从毫秒至年的日期和时钟				
			2.6.			,						
		任 / -	2.0.	10 7	* AE .X			时间)文件建立的时间		ı		
				:								
在	7.2.	6.33	中定	义				文件名或者子目录名				
在	至7.2.6.35 中定义		文件长度									
在	在 7.2.6.38 中定义		SOF=文件的状态 文件j,属于信息对象地址									
	CP56Time2a		七个八位位组二进制时间	A+j-1								
						,		(从毫秒至年的日期和时钟				
	在 7.2.6.18 中定义		时间)文件建立的时间									

图 90 应用服务数据单元:F DR TA 1目录

 $F_DR_TA_1:=CP\{$ 数据单元标识符,信息对象地址,j(文件名,文件长度,SOF,CP56Time2a) $\}$ j:=在可变结构限定词中定义的元素集的数目

传送原因用于

类型标识 126:F DR TA 1

传送原因

- 〈3〉:=突变
- 〈5〉:=被请求
- 7.4 选自 GB/T 18657.5 的基本应用功能

采用了在 GB/T18657.5 中定义的下述基本应用功能:

- ——站初始化 (6.1);
- ----用查询方式收集数据 (6.2);
- ——循环数据传输(6.3);
- ——事件收集 (6.4);
- ——站(总)召唤(查询)(6.6);
- ——时钟同步 (6.7);
- ---命令传输(6.8);
- ——传输累计量 (6.9);
- ——装载参数 (6.10);
- ——测试过程(6.11);
- ——文件传输(6.12);
- ——传输延时的采集 (6.13)。

站初化成功以后,全部应用功能可用,并同时运行。

如果被控站有多个应用服务数据单元类型的数据同时准备就绪等待传输,它们应当按照如下顺序

(表 16) 发送而不管哪一种数据最先产生。此表并不定义控制站请求数据传输的顺序或者要求被控站不传输数据直到另外一种数据类型变成可用。在同一行的应用服务数据单元类型标识可以按任何次序传输。在 7.2.2.2 中定义按日历报告的要求。

请求应用服务数据单元	描述		注 释
70	初始化结束	在监视方向	
45~69	命令传输	, i	
1~44	事件报告		
103	时钟同步	在监视方向,	传送原因=3
106	传输延时的采集	:	
102, 104, 105, 110~113	读命令、测试过程、复位进程、装载参数		
100, 101	站召唤、传输累计量		
9, 11, 13 120~127	循环数据传输(在监视方向,传送原因=1) 文件传输		

表 16 被控站的响应优先级

7.4.1 站初始化

GB/T 18657.5-2002 中 6.1 的任选项:

在监视方向不采用 M AA (应用层可用)。

本标准定义由应用服务数据单元的公共地址来寻址整个站或者寻址特定站区段。站区段可以作为设备的独立的物理部分存在(例如在图 91 中 RTU1~RTU4 和 LRU1~LRU4 一致)或者在一个物理单元内作为逻辑单元存在(例如在图 91 中在 RTU5 内的 LRU5~LRU5+n)。在下面的描述中两者定义为逻辑远方单元 LRU(见图 91)。

当初始化以后这些 LRU 的数据变成可用,每个 LRU 分别传输 ENTINIT (见 GB/T 18657.5—2002 中 6.1),当在一个物理设备 (硬件)内的几个 LRU 实现公共初始化过程也同样要求每个 LRU 分别传输 ENTINIT。在这两种情况下,每个 LRU 必须传输一个包含其特定的应用服务数据单元的公共地址的 ENDINIT。

7.4.2 用查询(问答)方式收集数据

采用在 GB/T 18657.5-2002 中 6.2 定义的全部功能。

一般,由请求1级用户数据和2级用户数据的链路层支持询问过程,包含传输原因(周期、循环)的应用服务数据单元为2级用户数据传输。全部带时标或突发传输的应用服务数据单元为1级用户数据传输。传输优先级低如传送原因为背景扫描的应用服务数据单元为2级用户数据,这些必须在互操作性文件中列出。

必须考虑这样一种情况,1级数据链路请求发生在(到或从)2级数据链路请求的不同时间点,这可能影响到向控制站应用层发送应用服务数据单元的正确顺序。

当被控站没有2级数据,在响应2级数据召唤时,被控站可能以1级数据响应。

当采用读命令,召唤由信息对象地址所指定的特定信息对象时,将返回带有传送原因〈5〉(被请求)的信息对象。一般地这些被请求的信息对象不带时标。

7.4.3 循环数据传输

采用在 GB/T 18657.5-2002 中 6.3 定义的全部功能。

7.4.4 事件收集的选择

采用在 GB/T 18657.5-2002 中 6.4 定义的全部功能。

7.4.5 站召唤

GB/T 18657.5-2002 中 6.6 的任选项。

在监视方向采用 C IC ACTCON 和 C IC ACTTERM。

召唤命令 C_IC ACT 请求被控站传输所定义的子集的全部或者规定的子集。子集(组)由召唤限 定词 QOI 的定义规定。

站召唤命令请求被控站传输那些平时突发地传输(传输原因=3)的信息的实际状态给控制站,此时的传送原因为〈20〉~〈36〉。站召唤命令是用于将被控站的过程信息同步控制站的电网镜像(NIM),它也用来在初始化以后刷新控制站,或者当控制站检出了链路失效(链路层不成功的重传),而链路层重新又变成可用时刷新控制站。对站召唤的响应包括存储在被控站的全部过程信息对象。对站召唤请求的响应用类型标识〈1〉、〈3〉、〈5〉、〈7〉、〈9〉、〈11〉、〈13〉、〈20〉或〈21〉传送这些信息对象。也可用类型标识〈1〉到〈14〉、〈20〉、〈21〉和〈30〉到〈36〉传送这些信息对象,传送原因为〈1〉周期/循环、〈2〉背景扫描或〈3〉突发。

被控站不需要发送那些不在控制站保持的信息(见 GB/T 18657.5—2002 中 6.6)。例如在站召唤的响应中不返送那些不在被控站存储的任何对象,而仅用传送原因〈1〉周期/循环来报告这些信息。这可以由配置被控站在站召唤请求的响应中发送哪些信息来实现,而不是要求被控站必须做到的性能。

表 17 所示为站召唤过程的响应中所传输的应用服务数据单元的类型标识、传送原因和站召唤命令的召唤限定词。

远动终端 RTU 可能由几个(逻辑)区段(LRU=逻辑远方单元)所组成。每个 LRU 由系统特定公共地址所定义。如果一个远方站仅包含一个 LRU,站召唤直接传送到这个 LRU,LRU 将返送包含定义 LRU 的特定公共地址的应用服务数据单元。如果远方站由几个 RTU 组成,通过以应用服务数据单元公共地址 FF 或者 FFFF 的站召唤命令(或者计数量召唤命令)(见图 92)同时对全部 LRU(例如 LRU1~LRU4)进行召唤。在图 91 中,LRU1 负责向和它连接的 LRU(LRU2~LRU4)启动站召唤过程。

方向 C=控制方向 M=监视方向	类型标识	传送原因	召唤限定词
С	⟨100⟩ C_IC_NA_1	⟨6⟩ act	⟨20⟩ ~ ⟨36⟩
M	(100) C_IC_NA_1	⟨7⟩ actcon	⟨20⟩ ~ ⟨36⟩
M	(1) M_SP_NA_1 (3) M_DP_NA_1 (5) M_ST_NA_1 (7) M_BO_NA_1 (9) M_ME_NA_1 (11) M_ME_NB_1 (13) M_ME_NC_1 (20) M_PS_NA_1 (21) M_ME_ND_1	⟨20⟩ inrogen ⟨21⟩ ~ ⟨36⟩ inro1 ~ inro16	
M	⟨100⟩ C_IC_NA_1	〈10〉 actterm	⟨20⟩ ~ ⟨36⟩

表 17 站召唤过程中传输的应用服务数据单元

如果 LRU (图 91 中 LRU5 + n + m + 1) 被分布到一个以上的物理被控站 (图 91 中 RTU7 ~ RTU8),每个都通过单独的链路层连接,必须向每个物理站 (RTU7 和 RTU8) 发送站召唤 (或者计数量召唤命令)。它可以采用广播链路地址来进行。

同一个源的同一类站(总)召唤的启动只有在前一个结束之后才能启动另一个站(总)召唤,这是由控制站掌握。

在下述情况下,控制站向被控站发送站召唤请求:

——如果从被控站接收了 ENDINIT, 或者

图 91 ASDU 到 LRU 的公共地址分配的分层表示法

——如果控制站观察到链路无效(链路层不成功的重传)后链路层重新可用。当被控站还没有为返回被召唤信息准备就绪,被控站以 C_IC ACTCON 否定认可站召唤命令 C_CI ACT, 在这种情况下重复传输站召唤命令。

另外,在响应别的(配置)判据例如当手动启动时,向被控站发送站召唤。

当向被控站发送公共地址 FF 或者 FFFF 的站召唤命令(请求全部),以这些 LRU 的特定公共地址 返送 C_IC ACTCON、 C_IC ACTTERM 和被召唤的信息对象,这和向特定 LRU 发送站召唤命令启动

图 92 对一个特定被控站的全部 LRU 的站召唤顺序过程

的过程相同。

可以并行地向被控站传送 LRU 特定站召唤命令,例如先传送召唤命令的响应序列 C_IC ACTCON ~C_IC ACTTERM 不一定完全优先于向其他 LRU 传送召唤命令的响应序列。被控站可以否定激活确认响应向多个地址传送同一类型的同时请求。

传送原因为20~36的应用服务数据单元不带时标。

如图 92 所示,一个 LRU 的响应可以是接连传送(C_CI ACT, C_CI ACTCONpos, M, M.... C CI ACTTERM)格式,或者和其他 LRU 的响应混在一起。

7.4.6 时钟同步

采用在 GB/T 18657.5-2002 的 6.7 中定义的全部功能。

惟一地由被控站进行时间信息的校正。

时钟同步命令的标准时间是系统相关参数。标准时间可以是当地时间,如系统覆盖几个时区,可以 采用 UTC 或者中央时间标准。在控制站和被控站都不采用夏令时比特,(SU) 比特应设置为零。

属于信息元素 CP56Time2a 的无效位 IV 是指传输时间的准确度,如果时钟在特定时间周期内没有进行同步, IV 位设置为 1。

7.4.7 命令传输

GB/T 18657.5-2002 的 6.8 中的任选项。

选择过程仅用于选择和执行功能。DEACT, DEACTCON 仅用于选择和执行功能。

采用 C SC, C DC, C RC: ACT, ACTCON和ACTTERM。

C_SE ACT 和 ACTCON 用于直接命令传输或者选择和执行过程。C_SEACTTERM 的采用是任意的。

不采用控制操作启动的 RETURN_INF。

采用控制操作完成的 RETURN INF (如果可用)。

在具有传送原因为停止激活和停止激活确认的应用服务数据单元中,命令 QOC 限定词的 S/E 没有意义。

通常,单命令(类型标识 45)用于控制单点信息对象(类型标识 1 和 2 或 30)。双命令(类型标识 46)用于控制双点信息对象(类型标识 3 和 4 或 31),步调节命令(类型标识 47)用于控制步位置信息对象(类型标识 5 和 6 或 32)。

7.4.8 传输累计量

GB/T 18657.5-2002 的 6.9 中的任选项。

采用 C_CI ACT, ACTCON 和 ACTTERM。

可以选用两种任选项:存储计数量和存储增量。存储后传输累计量的传送原因为突发。存储可以当地(当地时钟)执行。在此情况下不采用存储计数量和存储增量。

采用请求累计量、传输累计量的传送原因为响应计数量请求。

不采用 C CIDEACT, DEACTCON。

一般计数器模型示图 93。累计量是按一个特定时间间隔累计的值(见 GB/T 18657.5—2002 的 6.9)。

图 93 一般计数器模型

实际值是由计数器累计。实际值可以由控制站发送冻结命令将冻结值存储起来,或者在装置内当地启动冻结。冻结后,实际值可复位(增量信息采集)或者不复位继续累计(累计量采集)。

累计量信息对象地址可以按组定义。这些组可以冻结、复位或者选择地传输。计数量召唤命令包括定义要完成动作(FRZ)的限定词域(QCC),以及动作应作用到那个计数量组(RQT) (见7.2.6.23)。

有四种采集累计量或者增量信息模式。

模式 A (图 94); 具有突发传输的当地冻结。

被控站当地时钟启动冻结或者冻结带复位操作。当冻结或者冻结带复位操作完成后,用 M_IT 应用服务数据单元突发传输累计量(冻结值)。控制站不发送计数量召唤命令(C_CI)。

如果采用带时标的累计量应用服务数据单元($M_IT_TA_1$),即使通信失效一段时间,可由这个模式顺序地恢复冻结计数量的历史数据。

控制站的应用功能	通信服务	被控站的应用功能
A INTO ind	M IT SPONT	A_INTO. req 累计量 A
累计量 A - 	M_IT SPONT	A_INTO.req 累计量 B
累计量 B — A_INTO.ind		
	M_IT SPONT	A_INTO.reg 累计量 n
果计量n — A_INTO.ind		

图 94 突发传输累计量顺序过程(模式 A)

模式 B (图 95): 具有计数量召唤的当地冻结。

被控站当地时钟启动冻结或者冻结带复位操作。由计数量召唤命令(C_CI)请求累计量(冻结值)。在此情况下,计数量召唤命令不得采用冻结或者冻结带复位功能(例如命令限定词的 FRZ 为零)。

控制站的应用功能	通信服务	被控站的应用功能
请求累计量 A REQINTO.req	C_CI ACT COT = <6>FRZ = <0>RQT = <1> ~<5>	The tree of the tr
	COT = <7>FRZ = <0>RQT = <1>~<5>	A_REQINTO. ind 请求累计量 A_REQINTO. res 请求累计量确认
请求累计量确认 A_REQINTO. ∞n	C_IC ACTCON	
果计量 A A_INTOind	M_IT REQCO COT =<37>~<41> —	A_INTO.reg 累计量 A
銀计量B A_INTOind	M_IT REQCO COT	A_INTO.reg 累计量 B
果计量 n A_INTOind	M_IT REQCO COT =<37>~<41>	A_INTO.req 緊计量 n
计数量请求终止 A_ITERMind	COT =<10 > FRZ = <0 > RQT = <1 > ~<5 > C_CIACTTERM	A_ITERM.req 计数量请求终止

图 95 召唤累计量顺序过程(模式 B)

用站(总)召唤或者用组1~组4请求累计量。在被控站必须规定将累计量信息对象地址赋予特定组。 累计值传输的传送原因为37~41。

模式 C (图 96): 由控制站发送计数量召唤命令启动冻结、冻结带复位或者复位命令。随后由控制站发送计数量召唤命令从被控站收集被冻结值。

由控制站定期地发送计数量召唤命令去控制冻结和/或复位。

冻结和/或复位冻结值的计数量召唤命令可以规定全部计数量(总计数量请求,RQT=〈5〉或者规定特定计数量组(RQT=〈1〉~〈4〉)。不得选用"无计数量"(RQT=〈0〉),此命令同时规定要完成的操作:冻结(FRZ=〈1〉见图 96),冻结带复位(FRZ=〈2〉见图 97)或者复位(FRZ=〈3〉)。由 FRZ 所规定的操作仅适用于由 RQT 所指定的计数量,其他计数量不受影响。此命令不会导致计数量的传输。

这个过程完成后,由控制站发送计数量召唤命令从被控站收集被冻结值。其格式和模式 B 中所描述的收集累计量的格式相同。

控制站的应用功能	通信服务	被控站的应用功能
存储计数量命令 A_MEMCNT.req_	C_CI ACT COT = <6>FRZ = <1> RQT = <1>~<5>	A_MEMCNT.ind 存储计数量命令
计数量被存储 A_MEMCNT.con	C_IC ACT CON COT=<7>FRZ=<1> RQT=<1>~<5>	A_MEMCNT.res 计数量被存储
	随后收集冻结值见模式B	

图 96 不带复位存储累计量顺序过程 (模式 C)

模式 D (图 97): 由控制站发送计数量召唤命令启动冻结操作,冻结值突发报告。此模式是将模式 C (由控制站发送召唤命令) 和模式 A (累计量突发报告)结合在一块。

控制站的应用功能	通信服务	被控站的应用功能
存储增量命令 A_MEMNCR. req	C_CI ACT COT = <6>FRZ = <2> ROT = <1>~<5>	A MEMINCR ind
	-	存储增量命令
		A_MEMINCR. res
增量值被存储 C A_MEMINCR.con	IC ACT CON COT=<7>FRZ=<2> RQT=<1>~<5>	增量值被存储
	随后收集冻结值见模式B	

图 97 带复位存储累计量顺序过程(模式 D)

7.4.9 装载参数

GB/T 18657.5-2002 的 6.10 的任选项。

采用 P_AC ACT/ACTCON 和 DEACT, DEACTCON, 此参数激活/停止激活命令仅和 QPA: = (3) = 所寻址的对象持续循环或者周期传输一起使用。

不采用当地参数改变的 P ME SPONT。

采用装载单个参数的 P_ME ACT/ACTCON,在进行合理性检查并确认为一个有效值以后立即执行。不管是肯定或否定接收,在返回的 ASDU P_ME ACTCON 中的参数值是正在运行的(新的或旧的)参数。

7.4.10 测试过程

采用在 GB/T 18657:5-2002 的 6.11 定义的全部功能。

7.4.11 文件传输

GB/T 18657.5-2002 的 6.12 的任选项。

在控制方向采用 F_SC_NA_1 (召唤目录)。 在监视方向采用 F DR TA 1 (目录)。

7.4.11.1 文件传输的一般寻址结构

7.4.11.1.1 引言

一般地,文件在系统中建立、控制和存贮在产生它们的地方,例如继电保护文件建立在继电保护设备中,事件顺序记录文件建立在变电站自动化系统中,配置数据文件建立在控制系统中…等,文件可被通信的伙伴所选择和请求,为了避免在控制站和被控站有两个庞大的数据文件管理功能,可由控制站请求目录,确定这个文件在被控站可用,由应用服务数据单元公共地址、信息对象地址和文件名惟一定义每一个文件(目录或子目录)。按照本标准的规定,一个文件是一个信息对象。目录既可直接规定文件的信息对象地址,也可以直接指定文件的子目录,再定义实际的信息对象地址和文件名。由信息元素的SOF(目录的文件状态)定义其区别,FOR=0定义的是文件名,FOR=1定义的是子目录名。图 98 示一个目录的例子。在DL/T 667—1999(idt. IEC 60870-5-103:1997)定义的继电保护信息需要用文件名和信息对象地址来寻址。FOR=1的目录中的时标定义了子目录最近变化的时间。

图 98 文件寻址 (例子)

文件名定义如下:

文件名

- (1):=透明文件
- 〈2〉:=继电保护设备的扰动数据
- 〈3〉:=事件序列
- 〈4〉:=被记录的模拟量系列
- 〈5…127〉:= 为将来兼容范围保留
- 〈128…255〉:= 为特定应用保留(专用范围)

文件名的第2个八位位组为将来兼容范围保留。

7.4.11.1.2 目录和子目录规范

变电站自动化系统(包括 RTU)对目录和子目录排序。目录和子目录可以由控制站请求后传输或者变化时突发传输。

在同一时刻在变电站自动化系统中各个文件不一定同时存在,它们可能被存贮在继电保护设备中按照请求传输。然而,变电站自动化系统必须具有至少保存一个完整的文件的内存。在变电站自动化系统 中清除文件是应用特定功能,不在本标准中定义。

7.4.11.2 扰动数据传输

本节定义了在变电站中从继电保护设备获得的扰动数据,当需要传输到控制站时,如何映射到本标准的文件传输机制。扰动文件的格式在 DL/T 667—1999 (idt. IEC 60870-5-103:1997 继电保护设备信息接口配套标准)中定义。

DL/T 667—1999 (idt. IEC 60870-5-103:1997) 和本标准的数据单元和过程有差别,需要进行补充定义才能将变电站自动化系统中采集的和贮存的扰动数据传输到控制站。定义见 7.4.11.2.1 至7.4.11.2.7。

7.4.11.2.1 从继电保护设备请求数据文件的定义

下面的定义既可以用于从继电保护设备或者从变电站自动化系统中的其他部分直接地传输扰动数据,在这两种情况下将扰动数据分成特定的节如在图 101 所示。从控制站的观点来看除了具有不同的超时时间之外这两种情况可以被控制成同样的方式。

7.4.11.2.2 控制站从继电保护设备请求文件

当所选择的文件存贮在继电保护设备内,由控制站进行选择时,在 DL/T 667—1999 (idt. IEC 60870-5-103:1997) 中定义的传输扰动数据过程,由应用服务数据单元 24 (ASDU 24 扰动数据传输的命令) 启动,此过程是由控制站的应用服务数据单元 F_SC_NA_1 SCQ:=1 (选择文件) 触发 (见图 99 的第 1 步),之后,从继电保护设备向变电站自动化系统传输被选择的文件 (见图 99 的第 2 步),在继电保护设备的这个过程成功的终止之后 (应用服务数据单元 31-ASDU31 传输结束,其命令类型 TOO:= 〈32〉——不带中止的扰动数据传输),应用服务数据单元 F_FR_NA_1 FRQ BS1 [8]:= ①〉(选择的肯定确认)传输到控制站。否则向控制站传输应用服务数据单元 (F_FR_NA_1)带FRQ BS1〈8〉:=〈1〉(选择的否定确认)。如为肯定确认,控制站向变电站自动化系统请求扰动数据文件,变电站自动化系统向控制站传输文件(见图 99、第 3 步)。

必须考虑从继电保护设备到变电站自动化系统传输所选择的文件的传输时间(例如控制站的中央文件处理管理器的非预计的超时时间)。

图 99 从继电保护设备请求文件

7.4.11.2.3 控制站从变电站自动化系统请求文件

当文件在变电站自动化系统中可用时,文件是由控制站的应用服务数据单元 F SC NA 1 SCQ:=

1(选择文件)所选择,变电站自动化系统传输肯定确认应用服务数据单元 ASDU F_FR_NA_1 FRQ BS1 [8]:= $\langle 0 \rangle$ (选择的肯定确认)到控制站(见图 100 的第 1 步),否则向控制站传输否定确认(应用服务数据单元 ASDU F_FR_NA_1 FRQ BS1[8]:= $\langle 1 \rangle$ 选择的否定确认)。如为肯定确认,跟着从变电站自动化系统向控制站传输包含扰动数据的文件(见图 100,第 2 步)。传输到控制站的中央处理管理器的文件是直接由变电站自动化系统来而不用间接地向继电保护设备请求,在这种情况下本标准和 DL/T 667—1999的过程服务暂时地脱离,本标准对 DL/T 667—1999的过程服务不直接发送指令。

存贮在变电站自动化系统中的文件 1 到 k 的数目可能超过存贮在继电保护设备中的文件数目 1 到 i。

图 100 从变电站自动化系统请求文件

7.4.11.2.4 扰动数据文件的结构

在 DL/T 667—1999 (idt. IEC 60870-5-103: 1997) 中所定义的应用服务数据单元和过程是按照扰动、带标识的状态变位和扰动数据通道构成的,在传输扰动数据时,本标准的文件传输维持这种结构不变化,产生在继电保护设备中的扰动数据按照扰动数据文件存贮,每一个继电保护设备建立一张被记录的扰动表(目录),这张记录的扰动表被映射成子目录 F_DR_TA_1 (见 7.4.11.2.5)。

每一个文件分别地传输到控制站。

继电保护设备记录的扰动表的结构见图 101,每一个存贮的扰动文件分成若干个对应在 GB/T 18657.5 定义的节例如节 1 到 n,在 DL/T 667—1999 (idt. IEC 60870-5-103:1997) 中的参数、带标识的状态变位和扰动数据是这样安排的:

节1扰动1到k的参数;

节2扰动1到k的带标识的状态变位;

节3第一个通道的1到k的扰动参数;

节4第一个通道的扰动1到k的扰动数据:

节5第二个通道的1到k的扰动参数;

节6第二个通道的扰动1到k的扰动数据等。

在 DL/T 667—1997 (idt. IEC 60870-5-103:1997) 中定义的扰动参数、扰动的带标识的状态变位、通道的参数和扰动数据见图 102。这些参数和数据属于继电保护设备子目录的节,以 ASDU F_SG_NA_1 段的 $1\sim n$ 八位位组传输。

7.4.11.2.5 扰动数据表对目录的映射

图 102 DL/T 667—1999 (idt. IEC 60870-5-103: 1997) 的数据类型 (应用服务数据单元) 对应扰动数据文件节的分配

本标准中所定义的目录、子目录的响应帧(F_DR_TA_1),图 103 示这两种应用服务数据单元的映射。这些信息域类型标识、信息对象地址和文件状态是从本标准的类型标识 126 到 DL/T 667—1999 (idt. IEC 60870-5-103:1997) 中的类型标识 23 的复制或者反过来复制。而且是通过映射表(见表 18)进行映射。文件信息域名和故障序号进行映射,二进制时间两者是一致的,可直接复制(见图 103)。

表 18 本标准的类型标识和 DL/T 667—1999 类型标识的分配

本 标 准	DL/T 667—1999
类型标识	类型标识
⟨126⟩	⟨23⟩

两者彼此独立地采用可变结构限定词和传送原因。

目录响应帧(F DR TA 1)的应用服务数据单元的公共地址按照本标准的定义选用。

和继电保护设备接口的公共地址/功能类型独立地规定控制站到被控站接口的目录响应帧(F_DR_TA_1)的信息对象地址,通过变电站自动化系统表分配类型标识23的公共地址/功能类型。故障序

图 103 数据单元类型 23 到目录响应帧 F_DR_TA_1 的分配

号(名字)的顺序由于删除扰动文件和继电保护设备重新启动可能中断而不连续,因而会多次出现同一个名字。这样扰动数据文件必须用信息对象地址 B 和名字=故障序号惟一地进行寻址,见表 19。在这里信息对象地址是按固定的方式定义,例如当这些文件被产生或者删除的时候,名字(故障序号)可能变化。在这种情况下当前的目录应突发地传输到控制站。

当文件传输到控制站时,在变电站自动化系统中不得刷新目录或者正在被传输的文件。在当前的目录被突发地传输到控制站之前,变电站自动化系统中产生的目录和控制站的请求(召唤)同时发生,信息对象地址和文件名可能变化、且不合理,此时应拒绝请求(召唤),并必须重传。

表 19 定义信息对象地址的例子

(目录和子目录)

信息对象地址 A	信息对象地址 A+1	信息对象地址 A+2	信息对象地址 A+n
1000	1001	1002	1000 + n
FOR = 0	FOR = 1	FOR = 0	FOR = 0
NAME = 1	NAME = 2	NAME = 1	NAME = 1

A+1=1001 分配为 B=2000

信息对象地址 B	信息对象地址 B+1	信息对象地址 B+2	信息对象地址 B+n
2000	2001	2002	2000 + n
FOR = 0	FOR = 0	FOR = 0	FOR = 0
NAME=故障序号=10000	NAME=故障序号=10001	NAME=故障序号=X	NAME=故障序号=Y

当控制站向继电保护设备请求文件,在传输目录和子目录时,变电站自动化系统并不知道文件的长度,文件的长度域定义为 0。

在 FOR = 0 时, 给故障序号分配一个文件名;

在 FOR = 1 时, 文件名和故障序号一样。

当扰动数据文件在继电保护设备中产生时的时钟时间为 CP56Tine 2a, 这个时间被复制到应用服务数据单元目录响应帧(F DR_TA_1)中。

本标准和 DL/T 667-1999 (idt.IEC 60870-5-103:1997) 的故障状态 (SOF) 的对应关系见表 20。

表 20 本标准和 DL/T 667-1999 (idt. IEC60870-5-103:1997) 的故障状态 (SOF) 的对应关系

DL/T 634—2002	DL/T 667—1999
UI5[1···5]<0···31>	
〈0〉= 未用	
⟨1⟩	$TP := BS1[1] := \langle 0 \rangle, TEST := BS1[3] := \langle 0 \rangle, OTEV : BS1[4] := \langle 0 \rangle$
⟨2⟩	$TP := BS1[1] := \langle 1 \rangle, TEST := BS1[3] := \langle 0 \rangle, OTEV : BS1[4] := \langle 0 \rangle$
⟨3⟩	$TP := BS1[1] := \langle 0 \rangle, TEST := BS1[3] := \langle 1 \rangle, OTEV : BS1[4] := \langle 0 \rangle$
(4)	$TP := BS1[1] := \langle 1 \rangle, TEST := BS1[3] := \langle 1 \rangle, OTEV : BS1[4] := \langle 0 \rangle$
⟨5⟩	$TP := BS1[1] := \langle 0 \rangle, TEST := BS1[3] := \langle 0 \rangle, OTEV : BS1[4] := \langle 1 \rangle$
⟨6⟩	$TP := BS1[1] := \langle 1 \rangle, TEST := BS1[3] := \langle 0 \rangle, OTEV : BS1[4] := \langle 1 \rangle$
⟨7⟩	$TP := BS1[1] := \langle 0 \rangle, TEST := BS1[3] := \langle 1 \rangle, OTEV : BS1[4] := \langle 1 \rangle$
⟨8⟩	$TP := BS1[1] := \langle 1 \rangle, TEST := BS1[3] := \langle 1 \rangle, OTEV : BS1[4] := \langle 1 \rangle$
〈9…15〉:= 为将来兼容定义保留	
〈16…31〉:=特定应用(专用范围)	
LFD: = BS1 $\{6\}\langle0,1\rangle$	未用
〈0〉:=后面跟随另外的文件	
〈1〉:=目录的最后文件	
$FOR := BSI[7]\langle 0,1\rangle$	未用
〈0〉:=名字定义文件	
〈1〉:=名字定义子目录	
$FA := BS1[8]\langle 0,1\rangle$	未用(TM 和 101 无关)
〈0〉:=文件等待传输	
〈1〉:=文件传输激活	

7.4.11.2.6 过程

在 7.4.11.2.4 和 7.4.11.2.5 中定义的关于目录和扰动数据传输过程的应用服务数据单元见图 104 和图 105,这些定义对应 GB/T 18657.5—2002 的 6.12 中定义的过程。为了传输多于一个应用服务数据单元的大容量的目录,目录响应帧(F DR_TA_1)文件状态八位位组的 LFD 位定义如下:

控制 站	通信服务	被 控 站	工作内容
A _ CALL _ DIRECTORY.req	F_SC_NA_1 req	A_CALL_DIRECTORY.ind	请求目录
A_DIRECTORY.ind	F_DR_TA_1 req	A_DIRECTORY.req	被请求的目录1,后面跟随其他的目录
A_DIRECTORY.ind	F_DR_TA_1 req	A_DIRECTORY.req	被请求的目录 2,后面跟随其他的目录
A_DIRECTORY.ind	F_DR_TA_1 req	A _ DIRECTORY. req	被请求的目录 n,包含最后的文件
A_DIRECTORY.ind	F_DR_TA_1 req	A_DIRECTORY.req	目录的突发传输(每次变化可能有几个 应用服务数据单元)

图 104 目录传输顺序过程

LFD=目录的最后文件: =BS1 [6] (0, 1)

〈0〉:=后面跟随另外的文件

〈1〉:=目录的最后文件

目录可能在变化后突发地传输(见图 104),例如由于复位,使得继电保护设备记录的扰动表变化,在变电站自动化系统重新初始化以后,在站(总)召唤之后传输当前记录的扰动表。这些将导致目录的变化,需从变电站自动化系统突发传输当前记录的扰动表到控制站,如果到控制站的链路中断,当链路恢复以后,需要重新召唤目录。

控制站	通信服务	被控站	工作内容
A _SELECT _ FILE. req	F_SC_NA_1 file	A_SELECT FILE ind	选择扰动数据传输(自动地或者由值班
A_FILE_READY ind	F_FR_NA_1 file	A_FILE_READY req	□ 员) □ 被选择的扰动传输准备就绪(肯定/否 □ 令)
A_CALL_FILE.req c	F_SC_NA_1 file	A CALL FILE ind	定) 请求扰动数据传输(自动地或者由值班
A_SECTIONI_READY.ind	F_SR_NA_1 file	A _ SECTION1 _ READY. req	□ 员) □ 节1(扰动的参数)准备就绪(肯定/否 □ □ □
A CALL SECTION1 req	F_SC_NA_1 flie	A_CALL SECTION1. ind	定) 请求节 1
A_SEGMENT1.ind	F_SG_NA_1 file	A_SEGMENT1.req	节 1(扰动的参数)正在传输
A LAST SEGMENT ind	F_LS_NA_1 file	A _ LAST _ SEGMENT. ind	节1最后的段(扰动的参数)被传输(肯定/否定)
A_ACK_SECTION1.ind	F_AF_NA_1 file	A ACK SECTION1. ind	节1传输认可(肯定/否定)
A _SECTION2 _READY.ind	F_SR_NA_1 file	A_SECTION2_READY.req	节 2(批动的带标志的状态变位)准备
A _ CALL _ SECTION2. req	F_SC_NA_1 flie	A_CALL_SECTION2.ind	就绪(肯定/否定) 请求节 2
A_SEGMENT1.ind	F_SG_NA_1 file	A_SEGMENT1.req	节 2(扰动的带标志状态变位)正在传
A_SEGMENT2.ind	F_SG_NA_1 file	A SEGMENT2. req	输 节 2(扰动的带标志状态变位)正在传
			物
	i		
A_LAST_SEGMENT.ind	F_LS_NA_1 file	A _ LAST _ SEGMENT.ind	
A_ACK_SECTION2.req	F_AF_NA_1 file	A_ACK_SECTION2.ind	节 2 传输认可(肯定/否定)
A_SECTION3_READY.ind	F_SR_NA_1 file	A_SECTION3_READY.req	节 3(通道 1 的参数)准备就绪(肯定/ 否定)
A_CALL_SECTION3.req	F_SC_NA_1 flie	A_CALL_SECTION3.ind	请求节3
A_SEGMENT1.ind	F_SG_NA_1 file	A_SEGMENT1.req	- 本2(添送1 始会搬)元大佐岭
	i		· 节 3(通道 1 的参数)正在传输 :
		. Lace and the	业,自己从前,这样,从本地 1777年。
A _ LAST _ SEGMENT. ind	F_LS_NA_1 file	A _ LAST _ SEGMENT. req	」 节3最后的段(通道1的参数)正在被 传输(肯定/否定)
A_ACK_SECTION3.ind	F AF NA 1 file	A_ACK_SECTION3.ind	节 3 传输认可(肯定/否定)

图 105 扰动数据文件传输的顺序过程 (待续)

控 制 站	通信服务	被控站	工作内容
A SECTION4 READY ind	F SR NA 1 file	A_SECTION4_READY.req	节 4(通道 1 的扰动数据)准备就绪 (肯定/否定)
A _ CALL _ SECTION4. req	F_SC_NA_1 file	A_CALL_SECTION4.ind	请求节 4
A_SEGMENT1.ind	F_SG_NA_1 file	A_SEGMENT1.req	节 4(通道 1 的扰动数据)正在传输
A SEGMENT2. ind	F_SG_NA_1 file	A_SEGMENT2.req	节 4(通道 1 的扰动数据)正在传输
A _ LAST _ SEGMENT.ind	F_LS_NA_1 file	A_LAST_SEGMENT.req	节 4 最后的段(通道 1 的扰动数据)正 在被传输(肯定/否定)
A_ACK_SECTION4.req	F_AF NA_1 file	A_ACK_SECTION4.ind	节 4 传输认可(肯定/否定)
i			·
A_SECTIONm_READY.ind	F_SR_NA_1 file	A _ SECTIONm _ READY. req	节 m(扰动的参数)准备就绪(肯定/否定)
A CALL_SECTIONm.req	F_SC_NA_1 flie	A_CALL_SECTIONm.ind	请求节 m
A_SEGMENT1.ind	F_SG_NA_1 file	A_SEGMENT1.req	节 m(通道 n 的参数)正在传输
A_LAST_SEGMENT.ind	F_LS_NA_1 file	A_LAST_SEGMENT.ind	! 节 m 最后的段(通道 n 的参数)正在被
A _ ACK _ SECTIONm · req	F_AF_NA_1 file	A_ACK_SECTIONm.ind	节 m 传输认可(肯定/否定)
A _ SECTIONm + I _ READY.	F_SR_NA_1 file	A _ SECTIONm + 1 _ READY.	节 m+1(通道 n 扰动数据)准备就绪 (肯定/否定)
A CALL_SECTIONm+1.req	F_SC_NA_1 flie	A_CALL_SECTIONm+1.ind	请求节 m+1
A_SEGMENT1.ind	F_SG_NA_1 file	A_SEGMENT1.req	节 m + I 的第 I 段(通道 n 扰动数据) 正在传输
A_SEGMENT2.ind	F_SG_NA_1 file	A_SEGMENT2.req	节 m+1 的第2段(通道 n 扰动数据) 正在传输
A_LAST_SEGMENT.ind	F_LS_NA_1 file	A LAST SEGMENT. req	节 m + 1 最后的段(通道 n 扰动数据) 被传输(肯定/否定)
A_ACK_SECTIONm+1.req	F_AF_NA_1 file	A_ACK_SECTIONm+1.ind	节 m+1 传输认可(肯定/否定)
A_LAST_SECTION.ind	F_LS_NA_1 file	A_LAST_SECTION.ind	最后的节被传输(肯定/否定)
A_ACK_FILE.req	F_AF_NA_1 file	A _ACK _ FILE. ind	扰动传输的认可(肯定/否定)
	F_DR_TA 1 spont	A_DIRECTORY.req	传输当前的扰动表

图 105 扰动数据文件传输的顺序过程(结束)

7.4.11.2.7 中断扰动数据传输的条件

本标准 7.2.6 和 7.3.6 提供了正确传输文件的保证措施,包括数据文件的完整性和一致性的测试,由控制站认可了传输为不正常,可以重复请求传输一个节或者整个文件。

下述类型标识应用服务数据单元的正确数据传输可证实测试的有效性。

- ---120 文件准备就绪;
- ---121 节准备就绪;
- ---122 召唤目录、选择文件、召唤文件、召唤节;
- ---123 最后的节、最后的段;

---124 文件认可、节认可。

这些 ASDU 用来控制文件传输。

在不正确或者丢失了上面所指出的应用服务数据单元之一,文件传输中断,不能在没有重传时,就继续传输。检测出这些不正确性的站,必须在经过定义的超时时间之后中断传输。如果这个错误是由控制站检出,控制站传输带 SCQ=3(停止激活文件)F_SC_NA_1。如果是由被控站检出错误,被控站就传输带 LSQ=2(带停止激活的文件传输)F LS NA 1。

在全部丧失了链路层的链路服务,文件传输不用特定的 差错指示,就停止激活文件传输。当链路层功能再一次有效 时,文件传输必须重新初始化。

7.4.11.3 事件序列的传输(突发数字信息)

本节定义变电站内作为信息对象收集和记录的事件序列 (突发数字信息)的传输。当要求向控制站传输时,信息对象 被映射到本标准文件传输的机能。

7.4.11.3.1 在文件的节中事件序列记录的结构

图 106 示事件序列记录(突发数字信息)的结构。每个 图 106 数据文件的节中的事件序列记录事件以在 7.3 中定义的应用服务数据单元进行传输。带突发数字信息的文件由节组成、它和 GB/T 18657.5 中定义的节相对应。

下述类型标识的应用服务数据单元可以作为突发数字信息传输:

$\langle 30 \rangle$:=带 CP56Time2a 时标的单点信息	$M_SP_TB_1$
$\langle 31 \rangle$:=带 CP56Time2a 时标的双点信息	$M_DP_TB_1$
⟨32⟩	:=带 CP56Time2a 时标的步位置信息	$M_ST_TB_1$
⟨33⟩	:=带 CP56Time2a 时标的 32 比特串	$M_BO_TB_1$
$\langle 34 \rangle$:=带 CP56Time2a 时标的测量值,规一化值	$M_ME_TD_1$
〈35 〉	:=带 CP56Time2a 时标的测量值,标度化值	$M_ME_TE_1$
$\langle 36 \rangle$:=带 CP56Time2a 时标的测量值,短浮点数	$M_ME_TF_1$
⟨37⟩	:=带 CP56Time2a 时标的累计量	$M_IT_TB_1$
$\langle 38 \rangle$:=带 CP56Time2a 时标的继电保护装置事件	$M_EP_TD_1$
$\langle 39 \rangle$:=带 CP56Time2a 时标的继电保护装置成组启动事件	$M_EP_TE_1$
$\langle 40 \rangle$:=带 CP56Time2a 时标的继电保护装置成组输出电路信息	$M_EP_TF_1$

可变结构限定词设置为1、即每个应用服务数据单元仅传输一个信息对象。

7.4.11.3.2 过程

在图 104 中定义了目录传输过程。在图 107 中定义了在 7.4.11.3.1 中规定事件序列的传输过程。 这和在 GB/T 18657.5—2002 中 6.12 中所定义的过程对应。

通过文件传输向控制站传输的应用服务数据单元〈30〉~〈40〉包括在被控站存储起来的采集时间。如果全部传输文件超过预先定义的数目(参数-存储的应用服务数据单元的数目)。被控站突发地传输目录 $F_DR_TA_1$ 到控制站。在下述情况下发送 $F_SC_NA_1$ 文件名 = 3、FOR=0 的传输准备就绪的应用服务数据单元去激活事件序列文件的传输。

- ——在控制站由操作员启动;
- ——在接收突发传输的目录以后由控制站自动地启动;
- ——当目录指出文件已准备好去传输时一天自动地启动一次;
- ——控制站或者被控站重新启动以后,目录指出文件已准备好去传输时启动;
- ——一次链路中断后链路层重新可用时启动。

段的最大长度: 240 八位位组

控制 站	通信服务	被控站	工作内容
A_SELECT_FILE.req	F_SC_NA_1 file	A_SELECT_FILE.ind	选择事件数据传输(自动地或者由值班
A_FILE_READY.ind	F_FR_NA_1 file	A FILE READY.req	员)被选择的事件数据传输准备就绪(肯定 /否定)
A_CALL_FILE.req	F_SC_NA_1 file	A_CALL_FILE.ind	请求事件数据传输(自动地或者由值班
A_SECTION_READY.ind	F_SR_NA_1 file	A_SECTION_READY.req	员) 节 1(数据)准备就绪(肯定/否定)
A _ CALL _ SECTION. req	F_SC_NA_1 file	A_CALL_SECTION.ind	请求节
A_SEGMENT.ind	F_SG_NA_1 file	A_SEGMENT.req	节(数据)正在传输
A_SEGMENT.ind	F_SG_NA_1 file	A_SEGMENT.req	节(数据)正在传输
A_LAST_SEGMENT.ind	F_LS_NA_1 file	A_LAST_SEGMENT.req	节最后的股(数据)被传输(肯定/否定)
A_ACK_SECTION.req	F_AF_NA_1 file	A_ACK_SECTION.ind	节1传输认可(肯定/否定)
A_LAST_SECTION.ind	F_LS_NA_1 file	A _ LAST _ SECTION. req	最后的节被传输(肯定/否定)
A_ACK_FILE.req	F_AF_NA_1 file	A_ACK_FILE.ind	数据传输的认可(肯定/否定)

图 107 事件序列传输过程

节的最大长度: 64000 八位位组

7.4.11.3.3 在受干扰的情况下事件序列传输

见 7.4.11.2.7。

7.4.11.4 被记录的模拟值序列传输

本节定义被控站采集、记录的模拟值(例如测量值,累计量)序列传输,在 GB/T 18657.5 以及本标准中定义了通过文件传输来传输被记录的模拟量到控制站。在本标准中不采用压缩记录。但可以作为透明数据文件传输。

7.4.11.4.1 包含被记录模拟值序列的数据文件结构 (图 108)

每个文件由一个或多个节组成,这种节和 GB/T 18657.5 中定义的节对应,节的结构也一致。每个文件包含由记录标识符所定义的记录模拟值(二进制计数量读数或者被测值)的特定序列信息元素。

节1: 节1的被记录的模拟值序列;

节2: 节2的被记录的模拟值序列;

节3: 节3的被记录的模拟值序列等。

图 108 示以 ASDU F SG NA 1 的八位位组 1 到 n 所传输的记录模拟值序列的结构。

CP56Time2a	记录的启动时间 T_s	^
时间间隔	时间间隔定义	
UI16	记录地址	
UI16	信息元素数目	
信息元素	值 (T _s +0×时间间隔)	——— 的八位位组 1 到 n
信息元素	值 (T _s +1×时间间隔)	
:	:	
信息元素	值(Ts+m×时间间隔)	

图 108 包含记录模拟值序列的数据文件的节

下述信息元素可以当作记录模拟值序列进行传输:

- ——按照 7.2.6.9 的二进制计数量读数。
- ---按照 7.2.6.6 的规一化值。
- ——按照 7.2.6.3 的带品质描述 QDS 规一化值 (7.2.6.6)。

时间间隔(信息元素之间的时间间隔)为时间基值和系数的乘积。

时间间隔的定义:

时间间隔 := CP16 (系数, 时间基值)

系数 := UI8 [1···8] 〈0···255〉

⟨0⟩ :=没用
⟨1···255⟩ :=系数

时间基值 := UI8 [9···16] (0···255)

⟨0⟩ :=没用
⟨1⟩ :=1ms

 $\langle 1 \rangle$:= 1ms $\langle 2 \rangle$:= 10ms

 $\langle 3 \rangle$:= 100ms $\langle 4 \rangle$:= 1000ms

 $\langle 5 \rangle$:= 1min $\langle 6 \rangle$:= 1h

〈7…15〉 :=本配套标准的标准定义(兼容范围)

〈16…255〉 := 特殊应用 (专用范围)*

记录标识符的定义:

记录标识符 := CP16 (记录地址,记录限定词)

记录地址 := UI14 [1···14] 〈0···16383〉

记录限定词 := UI2 [15…16] (0…3)

〈1〉 := 按照 7.2.6.6 的记录规一化值序列

〈2〉 :=按照 7.2.6.9 的记录二进制计数量读数序列

(3) :=特殊応用(专用范围)*

记录标识符定义信息元素集(规一化值或者二进制计数量读数)和被记录模拟值整个序列的地址。 记录地址和信息元素的特定地址无关。

7.4.11.4.2 过程

图 104 中定义了目录传输过程。图 109 定义 7.4.11.4.1 的记录模拟值序传输过程。这些定义和在 GB/T 18657.5—2002 的 6.12 中所定义的过程对应。在下述情况下发送 $F_SC_NA_1$ 文件名 = 4、 FOR=0 的传输准备就绪的应用服务数据单元去激活记录模拟值序列文件的传输。

- ----在控制站由操作员启动;
- ——在接收突发传输的目录以后由控制站自动地启动:
- ——当目录指出文件已准备好去传输时一天自动地启动一次:
- ——控制站或者被控站重新启动以后,当目录指出文件已准备好去传输时启动;
- ——链路层一次中断后再次可用时启动。

7.4.11.4.3 在受干扰的情况下记录模拟值序列传输的条件见7.4.11.2.7

7.4.12 传输延时采集

GB/T 18657.5-2002 的 6.13 的任选项。

在控制方向采用 C_CD_NA_1 突发 (装载延时)。

当接收了时钟同步命令,在被控站必须利用由装载延时命令所接收的值对时间信息进行校正。

控制 站	通信服务	被控站	工作内容
A_SELECT_FILE.req	F_SC_NA_1 file	A_SELECT_FILE.ind	选择模拟值传输(自动地或者由值班 员)
A_FILE_READY.ind	F_FR_NA_1 file	A_FILE_READY req	被选择的模拟值传输准备就绪(肯定/
A_CALL_FILE. req	F_SC_NA_1 file	A _ CALL _ FILE. ind	否定) 请求模拟值传输(自动地或者由值班
A_SECTIONI_READY.ind	F_SR_NA_1 file	A_SECTION1 READY.req	节 1(数据)准备就绪(肯定/否定)
A _ CALL _ SECTION1.req	F_SC_NA_1 flie	A CALL_SECTION1.ind	请求节1
A_SEGMENT.ind	F SG NA_1 file	A_SEGMENT.req	节 1(数据)正在传输
A_SEGMENT.ind	F SG NA I file	A SEGMENT.req	节 1(数据)正在传输
A LAST SEGMENT. ind	F_LS_NA_1 file	A _ LAST _ SEGMENT. req	节 1 最后的段(数据)被传输
A_ACK_SECTION1.req	F_AF_NA_1 file	A_ACK_SECTION1.ind	节 1 传输认可(肯定/否定)
A_SECTION2_READY.ind	F_SR_NA_1 file	A_SECTION2_READY.req	节 2(数据)准备就绪(肯定/否定)
A CALL SECTION2. req	F_SC_NA_1 file	A_CALL_SECTION2.ind	请求节 2
A_SEGMENT.ind	F_SG_NA_1 file	A_SEGMENT.req	节 2(数据)正在传输
A SEGMENT ind	F SG NA 1 file	A SEGMENT.req	节 2(数据)正在传输
A _ LAST _ SEGMENT. ind	F_LS_NA_1 file	A_LAST_SEGMENT.req	节2最后的段(数据)被传输(肯定/否
A_ACK_SECTION2.req	F_AF_NA_1 file	A ACK SECTION2 ind	定) 节 2 传输认可(肯定/否定)
SECTIONn _ READY.ind	F_SR_NA_1 file	A _ SECTIONn _ READY req	节 n(数据)准备就绪(肯定/否定)
A _ CALL _ SECTIONn. req	F_SC_NA_1 flie	A_CALL_SECTIONn.ind	请求节n
A_SEGMENT.ind	F SG NA 1 file	A SEGMENT. req	节 n(数据)正在传输
A_SEGMENT.ind	F SG NA I file	A SEGMENT.req	节 n(数据)正在传输
A LAST SEGMENT.ind	F_LS_NA_1 file	A_LAST_SEGMENT.req	节 n 最后的段(数据)被传输
A_ACK_SECTIONn.req	F_AF_NA_1 file	A_ACK_SECTIONn.ind	节 n 传输认可(肯定/否定)
A_LAST_SECTION.ind	F_LS_NA_1 file	A _ LAST _ SECTION. req	最后的节被传输
A_ACK_FILE. req	F_AF_NA_1 file	A_ACK_FILE.ind	数据传输的认可(肯定/否定)
11_1XX_11DE.10q	I IM IMA I HE	A ACK FILE IN	A M K 100 M M M M M M M M M M M M M M M M M M

图 109 记录的模拟值序列传输过程

注:被控站接收了 C_CD 帧的第 1 比特时由 A_SDT. ind 记录瞬间的时间,控制站接收了 C_CD ACT CON 帧的第 1 比特时由 A_SDT+tR. ind 记录瞬间的时间(见 GB/T 18657.5—2002 的图 23)。

7.4.13 背景扫描 (表 21)

采用背景扫描刷新由被控站向控制站传输过程信息、刷新控制站数据库、作为对站召唤和突发传输

过程的安全保证的一种补充。传输那些站召唤过程所定义的同样类型标识号的应用服务数据单元,其传送原因为〈2〉背景扫描,背景扫描为低优先级连续传送方式。背景扫描由被控站启动,因此和站召唤命令无关。传送周期由被控站的固定参数所配置。按定期或者循环传送(COT=1)的测量值不按背景扫描(COT=2)或突发 COT(=3)或站召唤(COT=20~36)报告。

方向 C=控制方向, M=监视方向	类型 标识	传 送 原 因
	(1) M_SP_NA_1 (3) M_DP_NA_1 (5) M_ST_NA_1 (7) M_BO_NA_1 (9) M_ME_NA_1 (11) M_ME_NB_1 (13) M_ME_NC_1 (20) M_PS_NA_1 (21) M_ME_ND_1	〈2〉背景扫描

表 21 背景扫描的类型标识

7.4.14 读过程(图 110)

控制站	通信服务 被控站	工作内容	
A.RD.DATA. req	C-RD-NA-1 < 5 > REQ	A.RD.DATA.ind	读由信息对象地址所 指定的信息对象
A_M.DATA. ind	M. < 5 > REQ	A_M_DATA. req	报告被读的信息对象

图 110 读过程

在控制站的应用进程发送读命令 A_RD_DATA . req 给通信服务,通信服务传送 $C_RD_NA_1$ PDU,它包含所请求的信息对象的信息对象地址。

被控站的应用进程返送所请求的信息对象 A_M_DATA.req 给通信服务,被控站的通信服务将所请求的信息对象赋予监视方向的应用服务数据单元并传送带有传送原因〈5〉REQ 的 M PDU。

在监视方向可返送如下 M PDU REQ 应用服务数据单元。

- (1) M SP NA 1 REQ
- 〈2〉M SP TA 1 REQ 或者〈30〉M SP TB 1 REQ
- (3) M DP NA 1 REQ
- 〈4〉M_DP_TA_1 REQ 或者〈31〉M_DP_TB_1 REQ
- (5) M_ST_NA 1 REQ
- 〈6〉M_ST_TA_1 REQ 或者〈32〉M_ST_TB_1 REQ
- $\langle 7 \rangle$ M BO NA 1 REQ
- 《8》M BO_TA_1 REQ 或者《33》M_BO_TB_1 REQ
- (9) M ME NA 1 REQ
- 〈10〉M_ME_TA_1 REQ 或者〈34〉M_ME_TD_1 REQ
- (11) M ME NB 1 REQ
- 〈12〉M ME TB 1 REQ 或者〈35〉M_ME_TE_1 REQ
- (13) M ME NC 1 REQ
- 〈14〉M ME TC 1 REQ 或者〈36〉M ME TF 1 REQ
- $\langle 20 \rangle$ M PS NA 1 REQ
- $\langle 21 \rangle$ M ME ND 1 REQ
- $\langle 126 \rangle$ F DR TA 1 REQ

如果在被控站未定义 C_RD_NA 1 的数据单元标识符的值(可变结构限定词除外)和读命令中 的信息对象地址,则回送一个镜像 C_RD_NA_1 其传送原因为〈44~47〉(见 7.2.3.1)。

8 互操作性

这一节总结前面各节所列的参数和替换项,为实现特定远动系统可从中选择子集。某些特定值例如 例如在 适当选 先择的

ASDU 公	共地址的八位位	组数是排他性的选项。这	意味着每个系统只允许定	义一个值。其他参数例如在
监视方向	和控制方向所列	出的各种过程信息根据应	用可以选择全集或子集。	为方便特定应用作适当选
择,本节	总结前面各节参	数列出如下。如果一个系	统由不同制造厂的设备所	组成,所有成员在所选择的
参数上必	须一致。			
选用	的参数在方框内	应画上如下标记。		
	未采用的功能或	战者应用服务数据单元		
X	标准模式(缺省	î)采用的功能或者应用 II	没务数据单 元	
R	反向模式采用的	为 功能或者应用服务数据单	 立元	
В	标准和反向模式	 (、 、 、 、 、 、 、 、 、 、 、 、 、	5数据单元	
为每	一个特定的节和	参数规定可能的选择(空	白 X、R、B)	
注:5	5外,一个系统的全	部参数对于此系统的某些部分)的某些参数要求有单独选择,	例如对于不同地址测量值有不
į̈́]标度变换系数。			
	的或者设备			
(系统		「面之一标以"X"指明系	统或者设备的定义)	
	系统定义			
	控制站定义(主	Ξ)		
	被控站定义(从	()		
8.2 网络	各配置			
(网络	各特定参数,采 用	目的所有配置均标以"X")		
点□	对点	□多点共线		
	个点对点	□多点星形		
8.3 物理				
		目的所有接口和数据率标じ	ι "X")	
传输	速度(控制方向	<u>)</u>		
非平	工衡交换电路	非平衡交换电路	平衡交换电路	
V.2	4/V.28	V.24/V.28	X.24/X.27	
标准	È	建议若>1200 bit/s		
	00 bit/s	□2400 bit/s	□2400 bit/s	□56000 bit/s
$\square 2$	00 bit/s	□4800 bit/s	□4800 bit/s	□64000 bit/s
□3	00 bit/s	□9600 bit/s	□9600 bit/s	
□6	00 bit/s		□19200 bit/s	
□1	200 bit/s		□38400 bit/s	
传输)速率(监视方向])		

平衡交换电路

非平衡交换电路 非平衡交换电路

标准 □100 bit/□200 bit/□300 bit/□1200 bit/□120	∕s □4800 bit/s	☐ 2400 bit/s ☐ 4800 bit/s	□56000 bit/s
□200 bit/ □300 bit/ □600 bit/	∕s □4800 bit/s		□56000 bit/s
□300 bit/□600 bit/		□4800 bit/s	
□600 bit/	/s □0600 bit/s		□64000 bit/s
	s	□9600 bit/s	
□1200 L:	/s	□19200 bit/s	
□1200 bit	t/s	□38400 bit/s	
8.4 链路层			
,,,,,,,,,			长,如采用非平衡传输的2级报文
		文的类型标识和传送原因)	to the
		[12, 单个字符 1 和固定的超时	可时间。
	输过程	链路地址域	5 /b= 14-4A \
□ 平街		□ 不出现(仅在平	一數传輸)
L_J #F#	平衡传输	□ 一个八位位组□ 两个八位位组	
		□ 结构的	
		□ 非结构的	
帧长		□ 11 5H 1 4 H 4	
	— b大帧长 L(八位位组数)	按判去点) 基本 基本	帧长 L(八位位组数,监视方向)
		•	则以 L (八位世组数,监优为问)
	f 允许重传时的时间(T_1	•	
	'衡链路层,下述应用服	务数据单元类型用 2 级报文返	回(低优先级)并带有所指出的传
送原因。		1 - 1 - a /at litt - 1 -	
□ 卜还应户	用服务数据单元标准的规 ————————————————————————————————————		
类型标识	ί	传送原因	
9, 11,	13, 21	⟨1⟩	
□ 下述应月	用服务数据单元特定的 规	定为2级报文:	
类型标识	1	传送原因	

8.5 应用层

应用数据的传输模式

在本配套标准中惟一地采用在 GB/T 18657.4-20002 的 4.10 定义的模式 1 (最低位的八位位组先 传送)

应用服务数据单元公共地址

(系统特定参数,所有采用的配置都应标以"X")

□ 一个八位位组	□ 二个八位位组	
信息对象地址		
(系统特定参数, 所有采	用的配置都应标以"X")	
□ 一个八位位组	□ 结构的	
□ 二个八位位组	□非结构的	
□ 三个八位位组		
传送原因		
(系统特定参数,所有采	用的配置都应标以"X")	
□ 一个八位位组	□ 二个八位位组(具有源发	者地址)
	不采用源发者地址设置为	零
标准应用服务数据单元		
在监视方向的过程信息		
(站特定参数,每个类型	JID 如果仅用于标准方向标以"X",	,如果仅用于反向方向标以"R",如
两个方向都用标以"B")		
□〈1〉:=単点信息		$M_SP_NA_1$
□〈2〉:=带时标的单。	点信息	$M_SP_TA_1$
□ ⟨3⟩:=双点信息		M_DP_NA_1
□〈4〉:=带时标的双点	点信息	$M_DP_TA_1$
□〈5〉:=歩位置信息		M_ST_NA_1
□〈6〉:=带时标的步位	立置信息	$M_ST_TA_1$
□〈7〉:=32 比特串		M _ BO _ NA _ 1
□ 〈8〉:= 带时标的 32	比特串	$M_BO_TA_1$
□〈9〉:=测量值,规-	一化值	M _ ME _ NA _ 1
□〈10〉:=带时标的测	量值, 规一化值	$M_ME_TA_1$
□〈11〉:=测量值,标	度化值	$M _ ME _ NB _ 1$
□〈12〉:=帯时标的测	量值,标度化值	$M _ ME _ TB _ 1$
□〈13〉:=测量值,短	浮点数	$M _ ME _ NC _ 1$
□〈14〉:=帯时标的测	量值,短浮点数	$M_ME_TC_1$
□〈15〉:=累计量		$M_IT_NA_1$
□〈16〉:=带时标的累	计量	$M_IT_TA_1$
□〈17〉:=带时标的继	电保护设备事件	$M _ EP _ TA _ 1$
□〈18〉:=帯时标的继	电保护设备成组启动事件	$M_EP_TB_1$
□〈19〉:=帯时标的继	电保护设备成组输出电路信息	$M_EP_TC_1$
□〈20〉:=帯变位检出	的成组单点信息	$M_PS_NA_1$
□〈21〉:=测量值,不	带品质描述词的规一化值	$M _ ME _ ND _ 1$
□〈30〉:=帯 CP56Tin	ne2a 时标的单点信息	$M_SP_TB_1$
□ 〈31〉:= 带 CP56Tin	ne2a 时标的双点信息	$M_DP_TB_1$
□ 〈32〉:=带 CP56Tim	ne2a 时标的步位置信息	$M_ST_TB_1$
□ 〈33〉:= 带 CP56Tin	ne2a 时标的 32 比特串	$M_BO_TB_1$
□ 〈34〉:= 带 CP56Tin	ne2a 时标的测量值,规一化值	$M_ME_TD_1$
□ 〈35〉:=带 CP56Tim	ne2a 时标的测量值,标度化值	$M_ME_TE_1$
□ 〈36〉:= 带 CP56Tim	ne2a 时标的测量值,短浮点数	$M_ME_TF_1$
□ 〈37〉:=帶 CP56Tin	ne2a 时标的累计量	$M_IT_TB_1$

果

□〈38〉:=带 CP56Time2a 时标的继电保护设备事件	$M_EP_TD_1$
□〈39〉:=带 CP56Time2a 时标的继电保护设备成组局	
□〈40〉:=带 CP56Time2a 时标的继电保护设备成组输	
采用应用服务数据单元集〈2〉〈4〉,〈6〉,〈8〉,〈10〉,	
者采用应用服务数据单元集〈30〉~〈40〉。	
控制方向的过程信息	
(站特定参数,每个类型 ID 如果仅用于标准方向标以	"X",如果仅用于反向方向标以"R",如果
两个方向都用标以"B")	
□〈45〉:=单点命令	C_SC_NA_1
□ 〈46〉:= 双点命令	$C_DC_NA_1$
□〈47〉:=步调节命令	$C_RC_NA_1$
□〈48〉:=设定值命令,规一化值	C_SE_NA_1
□〈49〉:=设定值命令,标度化值	C_SE_NB_1
□〈50〉:=设定值命令,短浮点数	$C_SE_NC_1$
□〈51〉:=32 比特串	C_BO_NC_1
在监视方向的系统命令	
(站特定参数,如果仅用于标准方向标以"X",如果仅	用于反向方向标以 "R", 如果两个方向都用
标以"B")	
□〈70〉:=初始化结束	$M_EI_NA_1$
在控制方向的系统命令	
(站特定参数,每个类型 ID 如果仅用于标准方向标以	"X",如果仅用于反向方向标以"R",如果
两个方向都用标以"B")	
□〈100〉:=总召唤命令	C_IC_NA_1
□〈101〉:=累计量召唤命令	C_CI_NA_1
□〈102〉:=读命令	$C_RD_NA_1$
□〈103〉:=时钟同步命令	$C_CS_NA_1$
□〈104〉:=測试命令	C_TS_NA_1
□〈105〉:=复位进程命令	$C_RP_NA_1$
□〈106〉:=延时获得命令	C_CD_NA_1
在控制方向的参数命令	
(站特定参数,每个类型 ID 如果仅用于标准方向标以	"X",如果仅用于反向方向标以"R",如果
两个方向都用标以"B")	
□〈110〉:=測量值参数,规一化值	P_ME_NA_1
□〈111〉:=測量值参数,标度化值	$P_ME_NB_1$
□〈112〉:=测量值参数,短浮点数	P_ME_NC_1
□〈113〉:=参数激活	P_AC_NA_1
文件传输	
(站特定参数,每个类型 ID 如果仅用于标准方向标以	"X",如果仅用于反向方向标以"R",如果
两个方向都用标以"B")	
□ 〈120〉:=文件准备就绪	$F_FR_NA_1$
□〈121〉:=节准备就绪	F_SR_NA_1
□〈122〉:=召唤目录,选择文件,召唤文件,召唤节	_ _
□〈123〉:=最后的节、最后的段	F LS NA 1

类型标识和传送原因赋值 (表 22)	
□〈126〉:=目录(为空白或者 X, 仅在监视方向(标准)方向可	用) F_DR_TA_1
□〈125〉:=段	$F_SG_NA_1$
□〈124〉:=认可文件,认可节	$F_AF_NA_1$

(系统特定参数)

阴影方框为非要求:

空白方框为不被采用的功能或者应用服务数据单元;

横和列相交处的标记类型标识和传送原因;

"X" 仅用在标准方向;

"R" 仅用在反向方向;

"B"在两个方向均采用。

1)

表 22 类型标识和传送原因赋值

*	型标识						-~			\$ \$	俞 原	₹ E	<u> </u>							
	<u> </u>	1	2	3	4	5	6	7	8		10		12	13	20到 36	37到 41	44	45	46	47
(1)	M_SP_NA_1	200)			. er							101					275	X-7
⟨2⟩	M_SP_TA_1																			
⟨3⟩	M_DP_NA_1																			13.0
4	M_DP_TA_1													18	1.2 T					
⟨5⟩	M_ST_NA_1	100						2									180	41		
⟨6⟩	M_ST_TA_1	Value SACS								3	263			- 35	rsv.		d.			
⟨7⟩	M_BO_NA_1												37.50					4	ji,	
⟨8⟩	M_BO_TA_1							la dise												Ä.,
⟨9⟩	M_ME_NA_1	Į.) JJ							
⟨10⟩	M_ME_TA_1									7	Ŷ.,		1		. ,					
(11)	M_ME_NB_1	/ 							1											
⟨12⟩.	M_ME_TB_1			,				319 353			1	(35)			1.32			22		
⟨13⟩	M_ME_NC_1)		*						1			4.15		4.0		
(14)	M_ME_TC_1								7							13				
⟨15⟩	M_IT_NA_1					a, ž				11.0										
⟨16⟩	M_IT_TA_1	1.5	7,01			41		خيا			٠,.		6.5			114 4 96				
(17)	M_EP_TA_1	5.0	3									. 6				4.2		ri er	12	
⟨18⟩	M EP TB 1	153						1.		% 5				Ź				*		
(19)	M_EP_TC_1								<u>.,, </u>				2.00						6	
⟨20⟩	M_PS_NA_1						13/					3700								
⟨21⟩	M_ME_ND_1				si.			ļ.,												
⟨30⟩	M_SP_TB_1																			
⟨31⟩	M_DP_TB_1				á.				25											
⟨32⟩	M_ST_TB_1												<u></u>							

表 22 (续完)

类	型标识	l							女儿	₹ \$	俞 原	? B	E							
		1	2	3	4	5	6	7	8	9	10	11	12	13	20到 36	37到 41	44	45	46	47
⟨33⟩	M_BO_TB_1																	111	\$ 550 2524 2024	
⟨34⟩	M_ME_TD_1		2.7												7).2					
(35)	M_ME_TE_1																	35.0		
⟨36⟩	M_ME_TF_1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100										N.				Yars			
(37)	M_IT_TB_1																	257		4.7
⟨38⟩	M_EP_TD_1	M.																	j. 1	
(39)	M_EP_TE_1		982									37 Mil.					100			
⟨40⟩	M_EP_TF_1										5.7	30 A		2.5					5.77	
⟨45⟩	C_SC_NA_1						100													
⟨46⟩	C_DC_NA_1														, y					
47 >	C_RC_NA_1	Ç.				152		!				ě.			(A)					
⟨48⟩	C_SE_NA_1	X				ge 1						1 L P								
⟨49⟩	C_SE_NB_1																			
⟨50⟩	C_SE_NC_1												19-63 -							
⟨51⟩	C_BO_NA_1																			
⟨70⟩	M_EI_NA_1						<u>.</u>	7									an i	1037		
(100)	C_IC_NA_1						o de la companya de l												ļ Ļ——	
(101)	C_CI_NA_1		e de la	16		j.				, u		8								
⟨102⟩	C_RD_NA_1			×.							4.1		773					<u> </u>		
⟨103⟩	C_CS_NA_1			e samone	X			<u> </u>			1		*.		1		ļ			
⟨104⟩	C_TS_NA_1	***				31		ļ		3,83		3.00								
⟨105⟩	C_RP_NA_1											5.5 5.55 10		Sur-to-ref						
⟨106⟩	C_CD_NA_1			e in a second														; !		
⟨110⟩	P_ME_NA_1										210	123						ļ		
(111)	P_ME_NB_1					67.5			36.									ļ		
⟨112⟩	P_ME_NC_1					186					2.1	á.			51100 TS				ļ	ļ
⟨113⟩	P_AC_NA_1								50000000000000000000000000000000000000	Electric res			3 6						! :	ļ
⟨120⟩	F_FR_NA_1					At.														
⟨121⟩	F_SR_NA_1																			
⟨122⟩	F_SC_NA_1					10 To			1											
⟨123⟩	F_LS_NA_1														*					
⟨124⟩	F_AF_NA_1																			
⟨125⟩	F_SG_NA_1													5.55V)		e de la composition della comp		15 0 C C C C C C C C C C C C C C C C C C	.	Section 1
⟨126⟩	F_DR_TA_1*							gi.	2				V)		.	37		ķδ.	H	57
注:	* 为空白或 X															_				

8.6	基本应用功能
	站初始化
	(站特定参数,如果功能被采用应标以"X")
	□ 远方初始化
	循环数据传输
	(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用	标以"B")
	□循环数据传输
	卖过程
	(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用	标以"B")
	□ 读过程
	突发传输
	(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用	标以"B")
	□ 突发传输
	带突发传输传送原因的信息对象的两次传输
	(站特定参数,每个信息类型标以"X"在响应单次被监视信息对象的突发变位时,发出不带时间
的类	型标识以及相应的带时间的类型标识)
	单次信息对象的状态变位引起下述类型标识接连传输,在工程-特定表中定义两次传输的特定信息
对象	地址。
	□ 单点信息 M_SP_NA_1、M_SP_TA_1、M_SP_TB_1 和 M_PS_NA_1
	□ 双点信息 M_DP_NA_1、M_DP_TA_1 和 M_DP_TB_1
1	□ 步位置信息 M_ST_NA_1、M_ST_TA_1 和 M_ST_TB_1
1	□ 32 比特串 M _ BO _ NA _ 1 、M _ BO _ TA _ 1 和 M _ BO _ TB _ 1(如果在特定工程中定义,见
7.2.	1.1)
	□ 测量值、规一化值 M _ ME _ NA _ 1、M _ ME _ TA _ 1、M _ ME _ ND _ 1 和 M _ ME _ TD _ 1
	□ 测量值、标度化值 M _ ME _ NB _ 1、M _ ME _ TB _ 1 和 M _ ME _ TE _ 1
	□ 测量值、短浮点数 M_ME_NC_1、M_ME_TC_1 和 M_ME_TF_1
	站召唤
	(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用	标以"B")
	□ 全局
	□ 组1 □ 组7 □ 组13
	□ 组2 □ 组8 □ 组14
	□ 组3 □ 组9 □ 组15
	□ 组4 □ 组10 □ 组16
	□ 组5 □ 组11
	□ 组6 □ 组12
	必须在另外的表中定义每个组内的信息对象地址。

时钟同步

	站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
	示以 "B")
	□ 采用星期每天
	□ 采用 RES1, GEN(时间标记取代/不取代)
_	□ 采用 S _{L1_} bit(夏时制)
	市令传输
	对象特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方
	月标以"B")
	□ 直接命令传输 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	□ 直接设定值命令的传输
	3 选择和执行命令
	□ 选择和执行设定值命令
	□ 采用 C _ SEACTTERM
	□ 无附加定义
] 短脉冲持续时间(在被控站由系统参数确定持续时间)
	〕 长脉冲持续时间(在被控站由系统参数确定持续时间)
	〕 持续输出
5	累计量传输
(站或者对象-特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如
果两个	个方向都用标以"B")
	〕 模式 A: 突发传输的当地冻结
	〕 模式 B: 计数量召唤的当地冻结
	〕 模式 C: 由计数量召唤命令冻结并传输
	〕 模式 D: 由计数量召唤命令冻结,冻结值突发报告
ſ	
	□ 计数量冻结不复位
	□ 计数量冻结带复位
	□ 计数量复位
<u></u>	
	□ 总请求计数量
C	□ 请求计数量组1
	〕 请求计数量组 2
] 请求计数量组 3
	□ 请求计数量组 4
ź	参数装载
(对象特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方
向都用	目标以"B")
	〕门限值
] 滤波因子
	〕 传输测量值的下限

DL/T 634.5101 — 2002
□ 传输测量值的上限
参数激活
(对象特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方
向都用标以"B")
□ 所寻址信息对象的持续循环传输或者定期传输的激活或者停止激活
测试过程
(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用标以"B")
□ 测试过程
文件传输
(站特定参数,如果功能被采用应标以"X")
在监视方向文件传输
□ 透明文件
□ 继电保护设备的扰动数据
□ 事件序列传输
□ 被记录的模拟量序列传输
在控制方向文件传输
□ 透明文件
背景扫描
(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用标以"B")
□ 背景扫描
传输延时获得
(站特定参数,如果功能仅用于标准方向标以"X",如果仅用于反向方向标以"R",如果两个方向
都用标以"B")
□ 传输延时获得

附 录 A (资料性附录) 帧格式级别 FT1.2 的同步稳定性证明

A.1 引言

本附录证明在 GB/T 18657.1 中定义的帧格式级别 FT1.2 满足数据完整性级别 I2 的数据完整性要求,数据完整性级别 12 要求在发生少于 4 比特差错不会引起不可检出报文差错。

本附录证明了在传输帧中、在任何位置上(包括线路静止状态)能够检出三比特取反的差错。阐述了能检出由比特取反引起的同步滑动。由 GB/T 18657.2 中定义的规则(奇偶位和算术校验和)能检出发生在移位帧中比特取反。

本附录按下述步骤 a) 到 c) 进行证明:

- a) 所定义的字符的移位不敏感性证明;
- b) 证明多个字符相互间不敏感移位,即固定组长度的字符不会由于少于 4 个差错的干扰而转换成由另一个字符:
- c) 可变帧长的帧移位不敏感性证明。 必须考虑在 GB/T 18657.1 中规定的全部规则。

A.1.1 UART 定义 (图 A.1)

图 A.1 UART 定义

A.1.2 FT1.2 帧格式定义 (图 A.2)

下面定义了启动、结束和控制字符,这些可用于混合配置。

可变帧长的帧格式:

	1	2	3	4	5	6	7	8	9	10	11
线路上比特顺序	0		启动	68H						P	1
	0		L							P	1
	0		L							P	1
	0		启动	68H						P	1
1 ↓ n		用	户数据								
	0		校验	和						P	1
	0		结束	16H						P	1

启动 68H=0/00010110/1/1 P=偶校验 结束 16H=0/01101000/1/1

图 A.2 FT1.2 帧格式

固定帧长帧格式: (图 A.3)

用十六进制表示的数据代表由处理器向 UART 写的数据,即在线路上传送相反顺序。

所有规定的四组八位位组至少有四个零比特(包括 START 比特),因此仅当至少发生四个差错(0 变成 1)才会发生报文消失。

DL/T 634.5101 - 2002

线路上比特顺序

1	2	3	4	5	6	7	8	9	10	11
0		启动	10H						P	1
		用户	数据							
0		校验和							Р	1
0		结束 16	H				-		Р	1

启动 10H 0/00010000/1/1 P= 偶校验 结束 16H = 0/01101000/1/1

图 A.3 固定帧长帧格式

单个字符: (图 A.4)

单个字符 A2H=0/01000101/1/1

图 A.4 单个字符

注:在 GB/T 18657 标准中未采用单个字符 A2。

定义的字符符合下述条件:

- a) 在线路空闲状态和信息域≤4 个差错引起不正确同步的移位不会产生不可检出的帧差错;
- b) 由≤4 个差错引起不正确同步的移位, START 68H 不会变成 START 10H 或者相反;
- c) 由≤4 个差错引起不正确同步的移位, START 68H 不会变成单个字符 E5H 或 A2H 或者相反;
- d) 由≤4 个差错引起不正确同步的移位, START 10H 不会变成单个字符 E5H 或 A2H 或者相反。

A.1.3 按照 A.2、A.3 证明的解释信息

在下面各图中最上面一行由原始比特和静止状态组成,其中 X 的地方可以为 0 或 1。"!"为差错。 后面一行是不正确的同步字符和形成不正确的同步字符所必需的比特差错数目。

A.2 发生差错时特定字符形成移位差错的证明

A.2.1 由于于扰形成移位的 START 68H 差错码 (图 A.5)

启动 LSB

偶校验 MSB 停止

	_																					
1	1	1	1	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0	X	X	X	比特差错数
				!	!	!		!		!												
				0	0	0	0	1	0	1	1	0	1	1	0							5
					Ţ	!			!			!	!		!	!						
					0	0	0	0	1	0	1	1	0	1	1	0						7
						!				į	Ţ	ţ		i	!		!					
						0	0	0	0	1	0	1	1	0	1	1	0					7
		正	确同	步			0	0	0	0	1	0	1	1	0	1	1					
							1				!	!	!		į	!		!				
							1	0	0	0	0	1	0	1	1	0	1	1	0			7
							!	!			!			!	!		!	!				
							1	1	0	0	0	0	1	0	1	1	0	1	1	0		7
							!	!	1		!		!									
						-	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0	5

图 A.5 形成移位的 START 68H 差错码

至少发生 4 个差错才会产生字符移位。

A.2.2 由于干扰形成移位的 START 10H 差错码 (图 A.6)

偶校验

					启	动	LSI	3					MS	SB	停.	止							
1	1	1	1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	X	X	X	比特差错数	
				1	!	1			!			!		!									
				0	0	0	0	0	1	0	0	0	1	1	0							7	
					!	1				1		!		!	!	1							
					0	0	0	0	0	1	0	0	0	1	1	0						7	
						!					!	Ţ			!		••						
	Π.					0	0	0	0	0	1	0	0	0	1	1	0					5	
		Œ,	确同	步			0	0	0	0	0	1	0	0	0	1	1	0					
							1					!	1			!		1					
1							1	0	0	0	0	0	1	0	0	0	1	1				5	
							ţ	!				!		!		!	!	į					
						ı	1	1	0	0	0	0	0	1	0	0	0	1	1	0		7	
							!	1	!			į			!	1	!						
	•						1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	7	

图 A.6 由于干扰形成移位的 START 10H 差错码

至少发生 4 个差错才会产生字符移位。

A.2.3 由于干扰形成移位的单个字符 (SINGLE CHATACTER) E5H 差错码 (图 A.7)

偶校验 自动 LSB MSR 停止

) Y	7 IL	•							
1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	比特差错数_
	!		!		!	!	!		!		!				L			Ì							
[0	1	0	1	0	0	1	1	1	1	1														7
		1	[<u> </u>	!		Ţ			Ţ		!	1													
		0	1	0	1	0	0	1	1	1	1	1						l							6
			!		!			!	!		!	ľ													
			0	1	0	1	0	0	1	1	1	1	1												6
				!		!	!	!			!	!													
				0	1	0	1	0	0	1	1	1	1	1											6
					!					!	!	!													
				Į	0	1	0	1	0	0	1	1	1	1	1										4
						!	1	!	!	į		!													
					Ĺ	0	1	0	1	0	0	1	1	1	1	1								_	6
		Œ	确同	步			0	1	0	1	0	0	1_	1	1	1	1								
							!!	!	!	į	!		!_				i				L.				
							1	0	1	0	1	0	0	1	1	1	1	1							6
							1					1	!_	!											
							1	1	0	1	0	1	0	0	1	1	1	1	1		<u></u>				4
							!		!	!	!			!	!										
							1	1	1	0	1	0	1	0	0	1	1	1	1	1					6
							1	Ĺ	!			1	!		!	!					<u> </u>		_		
							1	1	1	1	0	1	0	1	0	0	1	1	1	1	1		<u> </u>		6
							!		!		1		L.	!		1	!								
							1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1			6
							!		!			!	!		!		!	!					_		
							1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1		8

图 A.7 由于干扰形成移位的单个字符 (SINGLE CHATACTER) E5H 差错码

至少发生4个差错才会产生字符移位。

A.2.4 由于干扰形成移位的单个字符 (SINGLE CHATACTER) A2H 差错码 (图 A.8)

启动 LSB MSB 停止 比特差错数 ! ! ! 1 1 ! ! ! 1 0 0 1 0 0 0 1 0 1 1 1 8 !!! !!! 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 9 ! 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 5 1 1 | 1 0 0 1 0 0 0 1 0 1 1 6 ! ! 1 ! ! 1 0 0 1 0 0 0 1 0 1 1 1 6 1 | 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 6 0 0 1 0 0 0 1 0 1 1 1 正确同步 !!! 0 0 1 0 0 0 1 0 1 1 1 6 1! 1 1 0 0 1 0 0 0 1 0 1 1 1 6 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 6 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 6 !!! !!! 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 9 !!!!! 1 1 1 1 1.1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1

偶校验

图 A.8 由于干扰形成移位的单个字符 (SINGLE CHATACTER) A2H 差错码至少发生 4 个差错才会产生字符移位。

A.2.5 由于干扰形成移位的结束字符 16H 差错码 (图 A.9)

 偶校验

 启动 LSB
 MSB
 停止

 0 0 1 1 1 0 1 0 0 0 0 1 1 1

x	х	х	х	x	х	1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1	1	比特差错数
							!			!		!	••	!	!										
			1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1					6
						!	1	1.	1			!		!	!										
	1			1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1		1		7
						į		ţ		!	į	!			1										
					1	0	0	1	1	0	1_	0	0	0	1	1	1	1	1	1	1	1	1	1	6
		正	角同	步		1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1		
							!		!		!	!	!			Ţ			<u> </u>					<u> </u>	
							1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1	6
								1	!	!	!			!	·	!	!							L	
-								1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	1	7
										!			!		1.	1	1	1							
									1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	1	6
												!	!	1			1	!	!						
1										1	0	0	1	1	0	1	0	0	0	1	1	1	1	1	6
											!	!		1	!	!		1	į	!					
_											1	0	0	1	1	0	1	0	0	0	1	1	1	1	8

图 A.9 由于干扰形成移位的结束字符 16H 差错码

至少发生 4 个差错才会产生字符移位。

A.3 发生差错时形成移位差错使得一个字符变成另一个字符的证明

A.3.1 发生差错时形成移位差错使得 START68H 变成 START10H (图 A.10)

															偶	校娶	È								
							启	助 L	SB					N	MSE	í	争止								
		1	1	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0	x	х	х	х	х	х	比特差错数
	<u> </u>			1	!	1			ì		1											_			
				0	0	0	0	0	1	0	0_	0	1	1											5
	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!														!	!		l							
	<u> </u>				0	0	0	0	0	1	0	0	0	1	1	0									7
						!							!	!	!		ţ								
		L.				0	0	0	0	0	1	0	0	0	1	1	0								5
			Ľ.		L.	Ĺ_					!	!	!	<u>!</u>						_					
	_						0	0	0	0	0	1	0	0	0	1	1	0							4
}	₹	效	,搜	移	位		!			<u>L</u> .	!		L	!		Ì		1			L				
							1	0	0	0	0	0	1	0	0	0	1	1	0			_		L.	5
							!	!		<u> </u>	!		!			1	!	1						L.	
	1 1 0 0 0 0													1	0	0	0	1	1	0					7
							!	!	!	<u> </u>	!		!	!	!	!	!					<u> </u>			
							1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	L_			9

图 A. 10 发生差错时形成移位差错使得 START68H 变成 START10H

至少发生 4 个差错才会发生使得一个字符变成另一字符。

A.3.2 发生差错时形成移位差错使得 (START10H 变成 START68H (图 A.11)

																偶	校图	Ŷ.								
								启	动 L	SB					Ī	MSE	3 1	亭止								
		1		1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	x	х	х	х	х	х	比特差错数
					!	!	į		į		!	!	!	!	!_											
					0	0	0	0	1	0	1	1	0	1	1	0										9
						ļ	!			!		!			!	!	!									
	Ī	\perp	T			0	0	0	0	1	0	1	1	0	1	1	0									7
	T			'			!_				1			!		!		!								
							0	0	0	0	1	0	1	1	0	1	1	0	ľ							5
												!	!	!	!											
	•				-4-	۵.		0	0	0	0	1	0	1	1	0	1	1	0							4
		无效	ξ,	B	移1	A		!							1	!	!		!							
İ								1	0	0	0	0	1	0	1	1	0	1	1	0						5
								1	!					!		!		!	1							
								1	1	0	0	0	0	1	0	1	1	0	1	1	0					7
								!	!	!			!		!											
L								1	1	1	0	0	0	0	1	0	1	1	0	1	1	0				5

图 A.11 发生差错时形成移位差错使得 START10H 变成 START68H

至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.3 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) E5H 变成 START68H (图 A.12)

															偶	校业	È								
							启	カレ	SB					N	MSE	1	亭止								
		1	1	1	1	1	0	1	0	1	0	0	1	1	ı	1	1	1	1	1	1	1	1	1	比特差錯数
Г				1	!	!					!			!				Ī							
Г				0	0	0	0	1	0	1	1	0	1	1	0										6
					!	i		11		!!		!	!			Ţ									
					0	0	0	0	1	0	1	1	0	1	1	0									9
						1		!			L	!		1			!								
						0	0	0	0	1	0	1	1	0	1	1	0								8
								!		ţ	1				1			!							
							0	0	0	0	1	0	1	1	0	1	1	0							5
	7	效	B	移	位		!	ľ		!		!	!		L	!			!						
							1	0	0	0	0	1	0	1	1	0	1	1	0	Ĺ.	Ĺ		_	Ĺ	7
							1			!				!			!			!					
							1	1	0	0	0	0	1	0	1	1	0	1	1	0					5
							!		!	ţ		,	!		!				_		!	_			
							1	1	1	0	0	0	0	1	0	1	1	0	1	1	0		<u>.</u>	L_	6
							!		!				!	1	L.	!						1		<u>L</u>	
							1	1	1	1	0	0	0	0	1_	0	1	1	0	1	1	0			6
							1		!	L	!		!	!	!		1		_				!		
							1	1	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0		8

图 A.12 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) E5H 变成 START68H 至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.4 发生差错时形成移位差错使得 START 68H 变成单个字符(SINGLE CHATACTER)E5H(图 A.13) 偶校验

							启	助 L	SB					N	MSF	s	亭止	:							
	1	1	1	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0	x	х	x	x	х	x	比特差错数
	!		!		!	1	Ţ	!	!	!					<u> </u>										
	0	1	0	1	0	0	1	1	1	1	1														8
		Ţ		!		!		!	!	!		İ													
		0	1	0	1	0	0	1	1	1	1	1	1												7
			!		!				!	!		!													
			0	1	0	1	0	0	1	1	1	1	1												5
				!		!	!			!		!													
				0	1	0	1	0	0	1	1	1	1	1											5
					!			!				!			!			l							
					0	1	0	1	0	0	1	1	1	1	1										4
						!	!		!		!	!			!										
						0	1	0	1	0	0.	1	1	1	1	1									6
								!		1	Ţ				!										
Г	,						0	i	6	1	0	0	1	1	1	1	1								4
	无	效.	、没	移1	立		1		!				!		!			1							
							1	0	1	0	1	0	0	1	1	1	1	1							5
							!	1		1	!	!	!	1	!			1							
							1	1	0	1	0	1	0	0	1	1	1	1	1						9
							!	!	!					!											
							1	1	1	0	1	0	1	0	0	1	1	1	1	1					5

图 A.13 发生差错时形成移位差错使得 START 68H 变成单个字符 (SINGLE CHATACTER) E5H 至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.5 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) E5H 变成 START 10H (图 A.14)

															偶	校业	≩								
							启	功 L	SB					ľ	MSE	3 6	亭止								
	T	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	比特差错数
				ļ	!	ţ		!	1						!										
				0	0	0	0	0	1	0	0	0	1	1	0										7
					!	!		!					ŗ			!									
					0	0	0	0	0	1	0	0	0	1	1	0	Ш								5
L	1_		L		L	!		!		!	!		1	!			!								
						0	0	0	0	0	1	0	0	0	1	1	0	١.							7
								!		!		!	!	!	!		Щ	!							,
							0	0	0	0	0	1	0	0	0	1	1	0							7
	7	C效 .	, B	移	位		!	!		*				!	!	!			!		<u> </u>				
							1	0	0	0	0	0	1	0	0	0	1	1	0		L_				7
							!			!			1		!	!	!			!	L_		ļ		
							1	1	0	0	0	0	0	1	0	0	0	1	1	0	Ļ		<u> </u>		7
							!		!	!	L		!	!	_	į	!	!	L.		!		<u> </u>		
İ							1	1	1	0	0	0	0	0	1	0	0	0	1	1	0		_		9
							!		!		L.		!	!	!		!	!	!		<u> </u>	!	<u> </u>		
-							1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0			9
							!	ļ	!	_	!		!	!	!	!	Щ	!	!	!	L_	_	!		
							1	1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0		11

图 A.14 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) E5H 变成 START10H 至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.6 发生差错时形成移位差错使得 START 10H 变成单个字符(SINGLE CHATACTER)E5H(图 A.15) 偶校验

							启	助 L	SB					N	MSE	3 1	亭止								
	1	1	1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	х	х	×	х	x	х	比特差错数
	ļ.		Ţ		1	!	1	!	!	!	!														
	0	1	0	1	0	0	1	1	1	1	1														9
		!		!		!		!	!	!	!														
		0	1	0	1	0	0	1	1	1	1	1													7
Г	İ		!		!				!	!	!		!												
			0	1	0	1	0	0	1	1	1	1	1												6
				!		!	!			!	!		!	!											
				0	1	0	1	0	0	1	1	1	1	1											7
					!			!			!		!	1	!										
					0	1	0	1	0	0	1	1	1	1	1										6
						!	!		!				!	!	!										
П						0	1	0	1	0	0	1	1	1	1	1									6
								. !		!		Ţ	į	!	1										
\Box							0	1	0	1	0	0	1	1	1	1	1								6
	₹	效	, 🖔	移	位		!		!		!	!		!	!			!							
							1	0	1	0	1	0	0	1	1	1	1	1							7
							!	!		1					!			!							
							1	1	0	1	0	1	0	0	1	1	1	1	1						5
							!	1	!		!	!	!					1							
							1	1	1	0	1	0	1	0	0	1	1	1	1	1					7

图 A.15 发生差错时形成移位差错使得 START 10H 变成单个字符 (SINGLE CHATACTER) E5H 至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.7 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) A2H 变成 START 68H (图 A.16)

/HI ++: 11/4.

															偶	校业	Ż								
							启	カ L	SB					ľ	MSE	3 1	亭止								
	I	1	1	1	1	1	0	0	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	比特差错数
				ţ	!	ţ		1	!	Ţ	!			!	!										[
				0	0	0	0	1	0	1	1	0	1	1	0										9
Г					!	į					!	ľ	!	!		!									
	T				0	0	0	0	1	0	1	1	0	1	1	0									7
						!			1	!		!					!								
						0	0	0	0	1	0	1	1	0	1	1	0								5
	Т	Γ							!		1			!	1			!							
							0	0	0	0	1	0	1	1	0	1	1	0							5
	₹	效	. 没	移	立		!		!			!	1	ļ.		!			!						
ļ							1	0	0	0	0	1	0	1	1	0	1	1	0					Ī	7
							!	!	!								1			!					
							1	1	0	0	0	0	1	0	1	1	0	1	1	0					5
ļ							!	!					!	!	!			ľ			!				
							1	1	1	0	0	0	0	1	0	1	1	0	1	1	0				7
							1	!		!			!			!			!			!			
							1	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0			7

图 A.16 发生差错时形成移位差错使得 单个字符 (SINGLE CHATACTER) A2H 变成 START68H

至少发生4个差错才会发生使得一个字符变成另一个字符。

A.3.8 发生差错时形成移位差错使得 START 68H 变成单个字符 (SINGLE CHATACTER) A2H (图 A.17)

															偶	校业									
							启	カレ	SB					ľ	ASE	f	亭止								
	1	1	1	1	1	1	0	0	0	0	1	0	1	1	0	1	1	0	x	х	х	х	х	X	比特差错数
			!	!		1			ţ			Ţ													
			0	0	1	0	0	0	1	0	1	1	1												6
				!	!					!	!	!													
				0	0	1	0	0	0	1	0	1	1	1											5
					!	1	1								1										
					0	0	1	0	0	0	1	0	1	1	1										4
					Ĺ	!		!			!	!	į		1										
			L			0	0	1	0	0	0	1	0	1	1	1									6
									1.		1			!											
							0	0	1	0	0	0	1	0	1	1	1								4
	Ŧ	效	, %	移	位		!			Ţ	ţ		į					!							
							1	0	0	1	0	0	0	1	0	1	1	1							5
							!	!					1	!	1			!							
ŀ							1	1	0	0	1	0	0	0	1	0	1	1	1						7
							!	!	!		!	!	!				!	•							
							1	1	1	0	0	1	0	0	0	1	0	1	1	1					9

图 A. 17 发生差错时形成移位差错 使得 START 68H 变成单个字符 (SINGLE CHATACTER) A2H

至少发生4个差错才会发生使得一个字符变成另一个字符。

A.3.9 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) A2H 变成 START 10H (图 A.18)

															偶	校业									
							启	动 L	SB					N	MSE	f	亭止								
	1	1	1	1	1	1	0	0	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	比特差错数
				0	0	0	0	0	1	0	0	0	1	1	0										5
					Ţ	!		Ĺ.,	!	!			!	!		į									
	0 0 0 0 0 1 0 0 1 1 0																ı							7	
	0 0 0 0 0 1 0 0 1 1 0																			5					
	!!!!!																	!							
							0	0	0	0	0	1	0	0	0	1	1	0							5
	Ŧ	改	. 8	移1	Ż.		!_		i						!	1			!						
							1	0	0	0	0	0	1	0	0	0	1	1	0						5
							İ	!	1				Ţ	1	1	!	1			!		L		<u> </u>	
Ì							1	1	0	0	0	0	0	1	0	0	0	1	1	0	Ì	<u> </u>			9
							!_	ţ					!			!	1	1			ţ				
							1	1	1	0	0	0	0	0	1	0	0	0	1	1	0				7
							Ţ	!		!			!		1		!	!	!			!			
							1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0			9

图 A.18 发生差错时形成移位差错使得 单个字符 (SINGLE CHATACTER) A2H 变成 START10H

至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.10 发生差错时形成移位差错使得 START 10H 变成单个字符 (SINGLE CHATACTER) A2H (图 A.19)

														偶	校业	È								
						启	勃 L	SB					1	MSE	3 1	亭止	•							
1	1	1	1	1	1	0	0	0	0	0	1	0	0	0	1	1	0	х	х	ж	х	x	X	比特差错数
		!	!		1			!		!		!									_			
		0	0	1	0	0	0	1	0	1	1	1												6
			!	!					!			!	Ţ				ı							
			0	0	1	0_	0	0	1	0	1	1	1											5
				!	į	!				!	Ţ.	!	!	!										
				0	0	1	0	0	0	1	0	1	1	1										8
					!		٠,						!	!										
					0	0	1	0	0	0	1	0	1	1	1									4
								!			•	!		!										
						0	0	1	0	0	0	1	0	1	1	1								4
无	效.	,搜	移	泣		1			!		!		!				!							
						1	0	0	1	0	0	0	1	0	1	1	1							5
						1	!			!	!			!	!		!							
						1	1	0	0	1	0	0	0	1	0	1	1	1						7
						Ţ	!	!						Ĺ		1	!							
						1	1	1	0	0	1	0	0	0	1	0	1	1	1					5

图 A. 19 发生差错时形成移位差错 使得 START 10H 变成单个字符 (SINGLE CHATACTER) A2H

至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.11 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) A2H 变成 SINGLE CHARACTER E5H (图 A.20)

/021 July 11/A

															偶	校业	Ž.								
							启	効 L	SB					1	MSE	3 1	亭止	:							
	1	1	1	1	1	1	0	0	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	1	比特差错数
		!		Ţ		Ţ		!		!	Ţ	1													
		0	1	0	1	0	0	1	1	1	1	1						ı							7
			. !		į					!	!	!													
		L	0	1	0	1	0	0	1	1	1_	1	. 1												5
				!		!	1		!	!	!	!		!											
				0	1	0	1	0	0	1	1	1	1	1											8
					!			!	!		1	!		!											
					0	1	o	1	0	0	1	1	1	1	1										6
						!	!					!	L	!											
				Ĺ		0	ı	0	1	0	0	1	1	1	1	1		ı							4
						L		1	!	1				!											
-							0	1	0	1	0	0	1	1	1	1	1								4
	7	:效	. 没	移	立		1			<u> </u>	1		1	!							L	<u> </u>		L.	
							1	0	1	0	1	0	0	1_	1	1	1	1			<u>L</u>	L.		ļ	4
-							!	!	!	!		!	!	<u> </u>		<u></u>				_	<u> </u>	<u> </u>		L	
							1	1	0	1	0	1	0	0	1	1	1	1	1				ļ		6
1							1	!		<u> </u>	!	Ĺ		<u> </u>	!	<u> </u>					<u></u>			ļ	
							1	1	1	0	1	0	1	0	0	1	1	1	1	1		<u> </u>	L.	1_	4
							<u>!</u>	!	L	!		!	!	1	!	!	Ш				<u>L</u> _		ļ	L	
							1	1	1	1	0	1	0	1	0	0	1	1	1	1	1		ļ		8

图 A.20 发生差错时形成移位差错

使得单个字符 (SINGLE CHATACTER) A2H 变成 SINGLE CHARACTER E5H

至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.3.12 发生差错时形成移位差错使得单个字符 (SINGLE CHATACTER) E5H 变成 SINGLE CHARACTER A2H (图 A.21)

/m 44 nV

															偶	校业	Đ.								
							启	勃 L	SB					1	MSE	3 1	亭止	<u>:</u>							
	1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	ж	ж	x	x	х	ж	х	比特差错数
			1	1		1		!	!	!	1	!													
			0	0	1	0	0	0	1	0	1	1	1					ľ							8
				!	!			!				!													
				0	0	1	0	0	0	1	0	1	1	1											4
					1	!	1	!		!	!														
					0	0	1	0	0	0	1	0	1	1	1		L								6
L						!				!		!	!												
						0	0	1	0	0	0	1	0	1	1	1									4
		L				<u> </u>	L	1	!	!			ļ	!											
1							0	0	1	0	0	O	1	0	1	1	1	L.	,			,		, .	4
	九	效	, 没	移1	立		!	!					!		1						<u>L</u> _		L.		
1							1	0	0	1	0	0	0	1	0	1	1	1		_					4
							!		L	!	!		1	!		!			<u>L</u> .						
							1	1	0	0	1	0	0	0	1	0	1	1	1		<u> </u>	ļ		Ш	6
							!	L.	!	!_		!	!	!	!		!			L	<u> </u>	<u> </u>	<u></u>		
							1	1	1	0	0	1	0	0	0	1	0	1	1	1	L		ļ	_	8
							!		!					!	!	!		ļ			L_	L			
							1	1	1	1	0	0	1	0	0	0	1	0	1	1	1	<u> </u>	L	Ш	5
							!		!		!		!	L	!	!	!			<u> </u>	<u> </u>		L_		
							1	1	1	1	1	0	0	1	0	0	0	1	0	1	1	1			7

图 A.21 发生差错时形成移位差错

使得单个字符 (SINGLE CHATACTER) E5H 变成 (SINGLE CHARACTER) A2H 至少发生 4 个差错才会发生使得一个字符变成另一个字符。

A.4 可变帧长的帧移位差错

其帧结构见 A.1.2。

可变帧长的帧以启动字符 START68H 开始。这个字符的移位差错(图 A.22)证明可以检出小于 4 个比特差错的同步滑动 (见 A.2)。当第 1 个长度八位位组 L1 的 startbits 由 0 变成 1 才会发生移位。

图 A.22 可变帧长的帧移位差错

GB/T 18657.1 的规则说明:发送时长度八位位组 L1 和长度八位位组 L2 的信息内容相同。必须证明此种帧长规范能够有效检出小于 4 个比特差错。

第2个启动字符68H接收时被认为是第1个长度字符,只有L1和L2都没有接收到,至少有4个比特差错才会发生这种情况。因为每个字符至少包含2个零:即启动比特为零,数据域为偶校验,至少会有1个比特为零。

如果一个长度字符(L1 或 L2)接收不到而把第 2 个启动字符 68H 当成第 2 个长度字符。启动字符 68H 中零的比特数为 6 比特。这么多的零的比特数,小于 4 比特差错不可能错成 L2,因此只有这种情况下才有可能,即长度字符部分地移位入第 2 个启动字符 68H,如同同步差错一样。这相当于第 2 个启动字符相对于它原来的位置移位。下面,我们确定长度字符需要多少比特的同步滑动移位入第 2 个启动字符 68H,需要发生多少比特差错才会发生这种情况(见图 A.23)。

										佴	校	睑							偶	校业	슢			
	启	动	LSE	3				M	SB	停	止力	自动	LS	В					MS	В	í	亭止		
	1	0									1	0	0	0	0	1	0	1	1	0	1	1	0	比特差错数
	ſ	!				_						!				!	!	!		!	!		!	
移位次数		1	0									1	0	0	0	0	1	0	1	1	0	1	1	8
		!										!	!			!			!	!		!	!	
)	1	0									1	1	0	0	0	0	1	0	1	1	0	1	8
1		!										!	!	!		!	_	!						
	ĺ	1	0									1	1	1	0	0	0	0	1	0	1	1	0	6*
		!											!			!			!	!	L	!	!	
		1		0		_							1	0	0	0	0	1	0	1	1	0	1	7
}		!										<u>_</u>	!	!		!		i					ļ	
2	J	1		0						L.		L.	1	1	0	0	0	0	1	0	1	1	0	5
1		!	_									_	!	!	!	!		!	!	!	•!		!	
		1	_	0				_	<u>_</u>				1	1	1	0	0	0	0	1	0	1	1	10
		!					_		ļ			_	!	!	ľ			!	!			!	!	
		1		0			L.		L	L			1	1	1	1	0	0	0	0	1	0	1	8,
l	(1			Ĺ.,		_		L	L				!	_	!	ļ	!			L	ļ		
		1			0				L				L	1	0	0	0	0	1	0	1	1	0	4
3	Į	!											L_	!	!	!	L	!	!	!	!		!	
		1	<u></u>		0				L				_	1	1	0	0	0	0	1	0	1	1	9
}		!	_							_			_	!	1	_	<u> </u>	!	!	<u> </u>	_	!	!	
		1			0				L.,					1	1	1	0	0	0	0	1	0	1	7*

图 A.23 长度字符移入第 2 个 68H 要求发生比特差错数

	ĥ	自动	LSI	3					М	ISB		校验	验 启动	LS	SB					偶 MS	校驱 B		争止		
	1	0	1		1			Γ.		Γ	Γ	1	0	0	0	0	1	0	1	1	0	1	1	0	比特差错数
	(!												_		!	!		!	!	!	!		!	
移位次数		1				0										1	0	0	0	0	1	0	1	1	8
	.	1		_										_		1			!	!			1	!	
		1		_		0		<u> </u>		<u> </u>				_	<u> </u>	1	1	0	0	0	0	1	0	1	6
4	\downarrow	!	ļ_	_		L.,	<u> </u>		_	L	_	-		_	ļ	!	<u>L</u>	!	!	!		!	Ĺ	ļ	
		1	ļ	<u> </u>	_	0	 	-	<u></u>	L	_	<u> </u>		_		1	1	1	0	0	0	 	1	0	6
		!	-	-			-			<u> </u>	<u> </u>	-	<u> </u>		-	!	_	!		!	_	!	!	!	
		1	-	-	_	0	-		-	_		-	_	-	-	1	1	1	1	0	0	<u> </u>	0	1	7
		!	_	 	<u> </u>	_	-	_		┝	-	_	-	-	<u> </u>	!		!				!	!	_	<i>-</i>
	(1	-		-	0					_	-		-		1	1	1	1	1	0	0	0	0	5*
		1	-	-	-		0	-	\vdash	\vdash	-	-		-	-	\vdash	1	0	0	! 0	0	1	0	1	5
		1 !	\vdash	-	\vdash	<u> </u>		\vdash	_	-		_		-	+-		 	!	!	!		!	-	1	
		1	\vdash	-	-	-	0	-		-		-	-	-	\vdash	-	1	1	0	├-	0	-	1	0	5
		!		-	_			-				\vdash		-	-		<u> </u>	!	<u> </u>	!	-	1	1	!	
5	\langle	1		_	·		0			-				-	\vdash	 	1	1	1	0	0	0	0	1	6
	1	!		-										-			-	!	l			!	!	-	
		1		-			0	Г		\vdash	<u> </u>	\vdash					1	1	1	1	0	0	0	0	4
		!	<u> </u>											-			T	!			!	!	Ţ		
	{	1					0					[1	1	1	1	1	0	0	0	5*
		!																!	!	!		!			
	{	1						0							Г			1	0	0	0	0	1	0	5
		!																!		1		!	!	!	
	ļ	1	1	-				0				T		Г				1	1	0	0	0	0	1	6
6	1	!		<u> </u>					_						T		_	!				!	!		
	İ	1		-				0		_							_	1	1	1	0	0	0	0	4
		!		-			_					\vdash			\vdash		<u> </u>	!			į	!	!	Ι.	
	Ĺ	1	\vdash		-		 	0	_	 		 		_	T	-	<u> </u>	1	1	1	1	0	0	0	5*
	ſ	1	\vdash	-			 		-	<u> </u>		-			 		-	-	-	!		!	!	!	
		1	\vdash	\vdash		L	-		0	\vdash	\vdash	┢			<u> </u>				1	0	0	0	0	1	5
		!								-	_	-	-		 		-	-				!	!		
		1	\vdash	-			-	<u> </u>	0			\vdash	-		+		-	-	1	1	0	0	0	0	3
		!	-	-					Í		_	-	-	-	-	-	-	-	-	_	!	!	!	<u> </u>	
7	{	1		-	-		<u> </u>	_	0	-		⊢	- -		-	-		\vdash	1	1	1	0	0	0	4
	-	!	<u> </u>	├—			۰		_			\vdash	-	<u></u>		<u> </u>	 -	 	1	Ľ-,	1	Ľ	!		
		1	\vdash	-	-	_	-	_	0	-	\vdash	-	\vdash			\vdash		-	1	1	1	1	0	0	3
		-		<u> </u>	<u> </u>				_	_	-	-	<u> </u>	_	-	_	-		-	1		1	-		
	ĺ	!	-	<u> </u>			-		_	-					_		<u> </u>	!			!			_	
	Ĺ	1	1	l					0	1			1				l	ŀ	1	1	1	1	1	0	2 *

注: 要求多于 4 个比特差错, 才发生 START 68H 继续移位。

图 A.23 长度字符移入第2个68H 要求发生比特差错数(完)

这说明至少必需移位7位、差错少于4个时,第2个长度字节才移入START 68H。

两个比特差错产生下述 L2V。

图 A. 24 两比特差错产生 L2V

只有 L1 和 L2 字符中的比特 2 到比特 7 (必须一致) 均为 1, 这种情况才会发生(见图 A.24)。

在这些条件下,差错字符 L2V 必须和发生 4 个差错的差错字符 L1V 相等。在下图(图 A.25)中说明导致这种情况发生所必须发生的比特差错数。L1 中的 X、Y 必须和字符 L2 中的相同,如果字符的移位不同,还要求发生更多比特差错数。

图 A.25 L2V 错成 L1V 所需比特差错数

第2个长度字节移入第2个启动字符68H和上面所述情况(整个长度字节消失)相比,需发生更多的差错才产生不可检出的、不正确的长度字节。

可编一个程序来检验这个结果。按如下准则 a) \sim d) 进行校验,帧长 $0\sim255$ 、L1、L2 和启动字符 68H 的各种可能的移位:

- a) L1、L2 相等:
- b) 奇偶校验;
- c) 字符的启动位=0;
- d) 启动字符 68H。

计算结果证明上述分析正确。

附 录 B (资料性附录)

帧格式级别 FT1.2 的字符间允许的线路空闲间隔

帧级别 FT1.2 的规则 3 (见 GB/T18657.1—2002 的 6.2.4.2.1) 要求在一帧内的两个字符之间没有空闲间隔。规定这个规则的原因是为了避免由于线路空闲位(线路空闲位为 1) 变成 0 时,接收时当成启动位,在帧内发生不可检出的同步滑移。图 B.1 所示当传送第 1 个字符后线路空闲位错误地变成 0。

接收

图 B.1 传送第 1 个字符后线路空闲位错误

增加的线路空闲位在接收端当作额外的停止位。此时,接收端在下一个启动位同步。如果线路空闲位由 1 变成 0,这样接收端提前一位启动,使得下一个字符向前移 1 位如图 B.1 的第 2 行所示。传输的启动位变成下个字符的 B1,它常为 0。B8 移至奇偶位,奇偶位变成停止位。下一个停止位被认为线路空闲位。下一个(第 3 个)字符正确启动不会移位。

需要证明线路空闲扩充为 1 位不会降低数据完整性和海明距离 d=4。如果证明的结论是肯定的,那么允许线路空闲为 1 位。

图 B.2 字符 1 的个数

一个字符 1 的个数可以为偶数也可能为奇数,奇偶位使字符的 1 的数目为偶。如果一个字符 1 的个数为偶数,奇偶位为 0。如果一个字符 1 的个数为奇数,奇偶位为 1 (见图 B.2)。

如果奇偶位为 0,由于线路空闲位反相(见图 B.1)字符移 1 位,为 0 的奇偶位移入停止位的位置,引起停止位出错。

如果奇偶位为 1, 停止位仍保持 1 的状态, 此时传输帧中的 bit8 移入奇偶位位置。奇偶位由 1 变成 0, 但字符仍保持为奇数。

注:移位字符的比特位1常为0见图 B.1。

如果 bit8 为 1, 奇偶位仍保持为奇, 字符由奇数变成偶数, 这两种情况均可检出差错。

- 1 在任何情况下,除了线路空闲位变成启动位之外,字符内还得有 1 位反相, 才使得接收了错误字符而没有发现。这满足了海明距离 *d* = 2。
- 2 在同一帧中,在另外两个字符间的线路空闲间隔取反,至少发生 4 比特差错才会接收了错误帧 而没有检出。这满足了海明距离 d = 4。

下面证明一帧中两个字符间的线路空闲位反相时对校验和的影响(图 B.3)

s	B1	B2	В3	B4	В5	В6	B7	В8	P	1	
0	0	1	1	1	1	1	1	1	1	1	发送
0	0	0	1	1	1	1	1	1	1	1	接收

图 B.3 移位比特图像

图 B.3 所示为移位比特图像最坏的情况,发送和接收字符之间有一位的移位,另外 B2 取反,因此 奇偶位是正确的。此时,原来发送的字符保存下来,没有理由拒绝。

至少还得发生两个比特取反(总的有4个或更多)的差错,才能造成不能检出错误帧,否则校验和(累加和)不对。

例 (图 B.3)

如果第 2 个字符的 B3 位取反, 奇偶位还是偶状态。由累加和检出移位字符和原来字符至少有两比特的差别。

结论:

FT1.2 帧在两字符间空闲间隔为 1 比特,还能保证海明距离 d = 4,应严格禁止两字符间空闲间隔大于 1 比特。

附 录 C 资料性附录 互操作性推荐意见

C.1 互操作性推荐意见

为了实现国内生产的设备在电力系统的应用中达到互操作,对本标准的第 8 章互操作性作如下选择:其中■一黑方框为不推荐采用的选择项,□一白方框为可选用选项; ⊠一推荐采用的选项。本标准用于 DL/T 634-5104-2002 的网络传输时,应采用平衡式,照 DL/T 634-5104-2002 的互操作性要求来选择的参数。下面的互操作性选项用于多点共线或多点星形,应采用快速校验过程。实现互操作性的一个重要内容是传输过程见电力行业指导性技术文件"远动设备及系统 第 5-6 部分 IEC60870-5 规约系列测试规则"。

开的多从。 两的工床 上及火//	112 从八次以2 从至少,应	. 不用
重要内容是传输过程见电力行业指	诗性技术文件"远动设备及	系统 第 5-6 部分 IEC60870-5 规约系
试规则"。		
C.1.1 系统或者装置		
(系统特定参数)		
🛛 系统定义		
□ 控制站定义(主)		
□ 被控站定义(从)	•	
C.1.2 网络配置		
根据电力系统通信网络实际情	况和需要,网络配置可选择	:
☑点对点 □多点共线 図多	:个点对点 □多点星形	
C.1.3 物理层		
(网络特定参数)		
根据电力系统通信网络实际情	况和需要,选择传输速率:	
传输速率 (控制方向)		
非平衡交换电路	非平衡交换电路	平衡交换电路
V.24/V.28	V.24/V.28	X.24/X.27
标准	建议 若>1200bit/s	
■ 100 bit/s	☐ 2400 bit/s	☐ 2400 bit/s ☐ 56000 bit/s
200 bit/s	☐ 4800 bit/s	☐ 4800 bit/s ☐ 64000 bit/s
☐ 300 bit/s	☐ 9600 bit/s	☐ 9600 bit/s
☐ 600 bit/s		☐ 19200 bit/s
☐ 1200 bit/s		□ 38400 bit/s
传输速率 (监视方向)		
非平衡交换电路	非平衡交换电路	平衡交换电路
V.24/V.28	V.24/V.28	X.24/X.27
标准	建议若 > 1200bit	
■ 100 bit/s	☐ 2400 bit/s	☐ 2400 bit/s ☐ 56000 bit/s
■ 200 bit/s	☐ 4800 bit/s	☐ 4800 bit/s ☐ 64000 bit/s
☐ 300 bit/s	☐ 9600 bit/s	☐ 9600 bit/s
☐ 600 bit/s		☐ 19200 bit/s
☐ 1200 bit/s		38400 bit/s

C.1.4 链路层

(网络特定参数,规定最大帧长,如非平衡传输的2级报文的非标准赋值,指明赋予2级的所有报文的类型标识和传送原因)

在此配套标准中唯一采用帧格式 FT12, 单个字符 1 和固定的超时时间。

根据电力系统实际情况和需要,选择平衡传输或非平衡传输。平衡传输或非平衡传输的实现应按照 GB/T 18657.2 的规定:

	链路传输过程	链路 经	各地址域	
	□平衡传输	■ 不	5出现(仅在平衡传输)	
	Ⅺ非平衡传输	\mathbf{X}	一个八位位组	
		· □ 两	5 个八位位组(配电自动化	2系统优选)
		■结	吉构的	
			丰结构的	
	注 一个八位位组可 帧长	[]用于网调、省调、地调调]	芰系统,两个八位位组可 月	用于配电自动化系统。
		(八位位组数,控制方向)	□□□□ 最长帷长 I (ハ	位位组数 监视方向)
		·层,下述应用服务数据单元		
米庫	· 当水川平,黄芪品 京因。		0人至用上表派人起口(图	
<i>*</i> 2.**	.,	数据单元标准的规定为 2 级	录报文 .	
		类型标识	传送原因	
		9、11、13、21	<1>	
		7. 11. 13. 21		
	□ 下述应用服务	数据单元规定为2级报文:		
		类型标识	传送原因	
		1, 3, 5, 7, 11, 13, 20, 21	<2>	
	去响应2個用点器	据召唤,被控站无2级用户	**************************************	ि विद ्यार्थन होते
C 1		166 年代,1865年11月 12 18 17 17 1	"奴城,可以用工纵用厂划	X 1/급 메일 /보조 o
C. 1	.5 应用层 应用数据的传输模	· 		
		:八 :一地采用在 GB/T 18657.4	的 4 10 字》的模式 1 (長	\$低位的《位位组生 <i>体</i> 学》
	应用服务数据单元		11) 4.10 足人即发入 I(其	
		公共地址		
	(系统特定参数) X 一个八位位组		二个八位位组(可用于酯	中自录化)
	•		二个八位位组(67万万	电自列化)
	信息对象地址			
	(系统特定参数)	<u>—</u>	4± 1/a 6h	
	■ 一个八位位组		结构的	
	□ 二个八位位组		非结构的	
	□ 三个八位位组			

1 在 7.1 中规定 "信息对象标识符仅由信息对象地址组成,在大多数情况下,在一个特定系统中,应用服务数据单元公共地址连同信息对象地址一起可以区分全部信息元素集,在每一个系统中这两个地

信息对象地址的选择应注意如下几点:

DL/T 634.5101 - 2002

址结合在一起将是明确的。类型标识不是公共地址也不是信息对象地址的一部分。", "类型标识定义了信息对象的结构、类型和格式。"

- 2 在 7.2.5 中规定 "特别是,命令(应用服务数据单元类型 45~69)和参数(应用服务数据单元类型 110~119)不能和监视的数据(应用服务数据单元类型 1~44)使用相同的信息对象地址值。","传输返回信息的信息对象必需和传送命令的信息对象有不同的信息对象地址。"
 - 3 如果既有单点信息,又有双点信息需要认真考虑信息对象地址的安排。 为此本标准附录 C.2 为信息对象地址推荐意见。

传送原因

(系统特定参数)

☑ 一个八位位组

□ 二个八位位组(具有源发者地址)

不采用源发者地址设置为零

标准应用服务数据单元

在监视方向的过程信息

(站特定参数,短浮点数可用于继电保护设定值或继电保护动作电流值。)

X	<1>:=单点信息	$M_SP_NA_1$
\mathbf{X}	<2>:= 带时标的单点信息	$M_SP_TA_1$
X	<3>:=双点信息	$M_DP_NA_1$
\mathbf{X}	<4>:= 带时标的双点信息	$M_DP_TA_1$
\mathbf{X}	<5>:= 步位置信息	$M_ST_NA_1$
	<6>:= 带时标的步位置信息	$M_ST_TA_1$
	<7>:=32 比特串	$M_BO_NA_1$
	<8>:= 带时标的 32 比特串	$M_BO_TA_1$
X	<9>:=测量值,规一化值	$M _ ME _ NA _ 1$
	<10>:=带时标的测量值,规一化值	$M_ME_TA_1$
X	<11>:=测量值,标度化值	$M_ME_NB_1$
	<12>:=带时标的测量值,标度化值	$M_ME_TB_1$
\mathbf{X}	<13>:=测量值,短浮点数	$M _ ME _ NC _ 1$
	<14>:= 带时标的测量值,短浮点数	$M_ME_TC_1$
	<15>:= 累计量	$M_IT_NA_1$
\mathbf{X}	<16>:= 带时标的累计量	$M_IT_TA_1$
X	<17>:=带时标的继电保护设备事件	$M_EP_TA_1$
\mathbf{X}	<18>:=带时标的继电保护设备成组启动事件	$M_EP_TB_1$
\mathbf{X}	<19>:=带时标的继电保护设备成组输出电路信息	$M_EP_TC_1$
\mathbf{X}	<20>:=带变位检出的成组单点信息	$M_PS_NA_1$
\mathbf{X}	<21>:=测量值,不带品质描述词的规一化值	$M_ME_ND_1$
	<30>:= 带 CP56Time2a 时标的单点信息	$M_SP_TB_1$
	<31>:=带 CP56Time2a 时标的双点信息	$M_DP_TB_1$
	<32>:=带 CP56Time2a 时标的步位置信息	$M_ST_TB_1$
	<33>:= 带 CP56Time2a 时标的 32 比特串	$M_BO_TB_1$
	<34>: = 带 CP56Time2a 时标的测量值,规一化值	$M_ME_TD_1$
	<35>: = 带 CP56Time2a 时标的测量值,标度化值	$M _ ME _ TE _ 1$
	<36>:= 带 CP56Time2a 时标的测量值,短浮点数	$M _ ME _ TF _ 1$

	□ <37>:= 带 CP56Time2a 时标的累计量	$M_IT_TB_1$
	□ <38>:= 带 CP56Time2a 时标的继电保护设	BANGER TEP_TD_1
	□ <39>:= 带 CP56Time2a 时标的继电保护设	设备成组启动事件
	□ <40>:= 带 CP56Time2a 时标的继电保护等	支置成组输出电路信息 M_EP_TF_1
	在选择采用应用服务数据单元集<2>、<4>、	<6>, <8>, <10>, <12>, <14>, <16>
<17	/>、<18>、<19>或者采用应用服务数据单元	集<30>~<40>时,本规范推荐采用前者。
	控制方向的过程信息	
	(站特定参数)	
	図 <45>:=単点命令	$C_SC_NA_1$
	図 <46>:=双点命令	$C_DC_NA_1$
	☑ <47>:=步调节命令	$C_RC_NA_1$
	Ⅺ <48>:=设定值命令,规一化值	C_SE_NA_1 (直接控制命令)
	□ <49>:=设定值命令,标度化值	$C_SE_NB_1$
	□ <50>:=设定值命令,短浮点数	C_SE_NC_1
	□ <51>:=32 比特串	$C_BO_NC_1$
	在监视方向的系统命令	
	(站特定参数)	
	図 <70>:=初始化结束	M_EI_NA_1
	在控制方向的系统命令	
	(站特定参数)	
	Ⅺ <100>:=总召唤命令(包括分组召唤)	$C_IC_NA_1$
	☑ <101>:=累计量召唤命令	$C_CI_NA_1$
	図 <102>:=读命令	$C_RD_NA_1$
	図 <103>:= 时钟同步命令	$C_CS_NA_1$
	Ⅺ <104>:=测试命令	$C_TS_NA_1$
	図 <105>:=复位进程命令	$C_RP_NA_1$
	図 <106>:=延时获得命令	$C_CD_NA_1$
	在控制方向的参数命令	
	(站特定参数)	
	図 <110>:=测量值参数,规一化值	P_ME_NA_1
	図 <111>:=测量值参数,标度化值	$P_ME_NB_1$
	図 <112>:≡测量值参数,短浮点数	$P_ME_NC_1$
	□ <113>:=参数激活	$P_AC_NA_1$
	文件传输	
	(站特定参数)	
	□ <120>:=文件准备就绪	F_FR_NA_1
	□ <121>:=节准备就绪	F_SR_NA_1
	□ <122>:=召唤目录,选择文件,召唤文件	·召唤节F_SC_NA_1
	□ <123>:=最后的节,最后的段	F_LS_NA_1
	□ <124>:=认可文件,认可节	$F_AF_NA_1$
	□ <125>:=段	F_SG_NA_1
	□ <126>:=目录(为黑或者 X, 仅在监视方	

类型标识和传送原因赋值(见表 22)

DL/T 634.5101 - 2002

(系统特定参数)

阴影方框为非要求

黑方框为不被采用的功能或者应用服务数据单元

C.1.6 基本应用功能

站初始化

(站特定参数)

区 远方初始化

循环数据传输

(站特定参数)

□ 循环数据传输

读过程

(站特定参数)

□ 读过程

突发传输

(站特定参数)

図 突发传输

带突发传输传送原因的信息对象的两次传输

(站特定参数,被监视信息对象的突发变位时,先发出不带时间的类型标识后发送相应的带时间的 类型标识)

单次信息对象的状态变位引起下述类型标识后续传输,在工程特定表中定义两次传输的特定信息对 象地址。

- 区 单点信息 M SP NA 1、M SP TA 1、M SP TB 1和 M PS NA 1
- 図 双点信息 M_DP_NA_1、M_DP_TA_1和 M_DP_TB_1
- 図 步位置信息 M ST NA 1、M ST TA 1 和 M ST TB 1
- 32 比特串 M_BO_NA_1、M_BO_TA_1和 M_BO_TB_1 (如果在特定工程中定义, 见7.2.1.1)
 - 测量值、规一化值 M ME NA 1、M ME_TA_1、M_ME_ND_1和 M_ME_TD_1
 - 测量值、标度化值 M _ ME _ NB _ 1、M _ ME _ TB _ 1 和 M _ ME _ TE _ 1
 - 测量值、短浮点数 M_ME_NC_1、M_ME_TC_1 和 M_ME_TF_1 测量值变化采用单次传输。

站召唤

(站特定参数)。对于特定远方终端采用的组数由具体情况确定。

図 全局

🛛 组1

※ 组 7

组 13组 14

X 组 2 X 组 3

図 组8

区 组15

🛚 组4

図 组 9図 组 10

図 组16

図 组 5

区 组11

図 组6

区 组12

必需在另外的表中定义组地址

时钟同步

(站特定参数)	
☑ 时钟同步	
控制命令传输	
(对象特定参数)	
■ 直接命令传输	
図 直接设定值命令的传输	
☑ 选择和执行命令	
■ 选择和执行设定值命令	
■ 采用 C_SE ACTTERM	
☑ 无附加定义	
□ 短脉冲持续时间(在被控站由系统参数确定持续时间)
□ 长脉冲持续时间(在被控站由系统参数确定持续时间)
□ 持续输出	
累计量传输	
(站或者对象特定参数)	
■ 模式 A: 突发传输的当地冻结	
■ 模式 B: 计数量召唤的当地冻结	
☒ 模式 C: 由计数量召唤命令冻结并传输	
□ 模式 D:由计数量召唤命令冻结,冻结值突发报告	
☑ 计数量读	
🛛 计数量冻结不复位	
■ 计数量冻结带复位	
■ 计数量复位	
☑ 总请求计数量	
☑ 请求计数量组1	
☑ 请求计数量组 2	
□ 请求计数量组 3	
□ 请求计数量组 4	
参数装载	
(对象特定参数)	
Ⅺ 门限值	
□ 滤波因子	
Ⅺ 传输测量值的下限	
X 传输测量值的上限	
参数激活	
(信息对象特定参数)	
□ 信息对象被寻址时激活或者停止激活	
测试过程	
(站特定参数)	

図 测试过程

DL/T 634.5101 - 2002

文件传输

(站特定参数)

在监视方向文件传输

- □ 透明文件
- □ 继电保护设备的扰动数据
- □ 事件序列传输
- □ 被记录的模拟量序列传输

在控制方向文件传输

□ 透明文件

背景扫描

(站特定参数)

☑ 背景扫描

传输延时获得

(站特定参数)

区 传输延时获得

C.2 信息对象地址及组号分配

C.2.1 信息对象地址

信息对象地址:=UI16 [1~16] <0...65535>

<0>:= 无关的信息对象地址

<1…65535>:=信息对象地址

谣信:信息对象地址范围为1H~1000H。

继电保护:信息对象地址范围为 1001H~4000H,

遥测:信息对象地址范围为 4001H~5000H。

参数地址范围为 5001H~6000H。

遥控、升降地址范围为 6001H~6200H。

设定地址范围为 6201H~6400H。

电能累计量地址范围为6401H~6600H。

步位置信息地址范围为 6601H~6700H。

向被控站传送二进制信息地址范围为 6701H~6800H。

远动终端状态地址 6801H。

文件传送地址 6802H~7000H。

C.2.2 组号分配

第1组~第8组 遥信

第9组~第14组遥测

第 15 组 步位置信息

第16组 远动终端状

C.3 多点设定命令

为满足 AGC 应用的需要,特定义一种专用范围的多点设定值命令,一帧可以传送 i 个设定值。 类型标识 = 136: C_SE_ND_1

多点设定命令

多个信息对象 (SQ=0)

0	0	0	0	1	0	0	0	类型标识 (TYPE)	数据单元		
0			'	i	•		•	可变结构限定词 (VSQ)	标识符在		
在标准 7.2.3 中定义							传送原因 (COT)	标准 7.1 中定义			
在标准 7.2.4 中定义										应用服务数据单元公共地址	
在标准	标准7.2.5 中定义 信息对象地址			信息对象地址							
值					Ĺ			1NVA= 规一化值、(在标准 7.2.6.6 中定义)			
s 值							1 INVA = 戏一化直,(在你在 / . 2.5.5 中定义)				
								信息对象			
在标准 7.2.5 中定义					2.5 中定义 信息对象地址						
值				[NIVA - 19 14 15 (15 14 7 2 6 6 14 15 1)				
s	s 值							→ iNVA= 規—化值, (在标准 7.2.6.6 中定义)			
S/E	/E QL							QOS=设定命令限定词(在标准7.2.6.39 中定义)			

应用服务数据单元: C_SE_ND_1 多点设定命令, 规一化值

C_SE_ND_1:=CP {数据单元标识符,信息对象地址,iNVA,QOS} 传送原因用于

类型标识 136: C_SE_ND_1

传送原因

在控制方向

〈6〉:=激活

〈8〉:=停止激活

在监视方向

〈7〉:=激活确认

〈9〉:=停止激活确认

〈10〉:=激活终止(任选)

〈44〉:=未知的类型标识

〈45〉:=未知的传送原因

〈46〉:=未知的应用服务数据单元公共地址

〈47〉:=未知的信息对象地址