		Descripció Anem a practicar i a familiaritzar-nos amb algoritmes de classificació. Nivell 1 import pandas as pd import xgboost as xgb import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn import metrics from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt # Importar el Data set
	[111	Taw_df
In In	[112 [113 [114	<pre># para eliminar entradas Nan y se reemplazan por la media de los valores de todo el set raw_df['ArrTime']= raw_df['ArrTime'].fillna(raw_df['ArrTime'].mean()) # se seleccionan las columnas que se quieren utilizar. Se seleccionan las columnas de salida programada, # salida real, llegada programada y llegada real. df = raw_df[['UniqueCarrier', 'DepTime', 'CRSDepTime', 'ArrTime', 'CRSArrTime']] df.head(5) UniqueCarrier DepTime CRSDepTime ArrTime CRSArrTime 0 WN 2003.0 1955 2211.0 2225 1 WN 754.0 735 1002.0 1000</pre>
	[115	2 WN 628.0 620 804.0 750 3 WN 1829.0 1755 1959.0 1925 4 WN 1940.0 1915 2121.0 2110 df['UniqueCarrier'].value_counts() WN 377602 AA 191865 MQ 141920 UA 141426 OO 132433 DL 114238 XE 103663 CO 100195 US 98425 EV 81877 NW 79108 FL 71284 YV 67063 B6 55315 OH 52657 9E 51885 AS 39293 F9 28269 HA 7490
In	[116 [117	AQ 750 Name: UniqueCarrier, dtype: int64 # finalmente, por cuestiones técnicas decido trabajar con los datos de una compañía y predecir # la puntualidad de una compañía específica en lugar de todo el set. carriers = df[(df.UniqueCarrier == 'WN')]['UniqueCarrier'] wn = df[df['UniqueCarrier'].isin(carriers)] wn.head(5) UniqueCarrier DepTime CRSDepTime ArrTime CRSArrTime 0 WN 2003.0 1955 2211.0 2225
	[118	1 WN 754.0 735 1002.0 1000 2 WN 628.0 620 804.0 750 3 WN 1829.0 1755 1959.0 1925 4 WN 1940.0 1915 2121.0 2110 UniqueCarrier object DepTime float64 CRSDepTime int64 ArrTime float64
Out		CRSArrTime int64 dtype: object wn.describe() DepTime CRSDepTime ArrTime CRSArrTime CRSArrTime CRSArrTime CRSArrTime Count 377602.000000 377777 377777 37777
In Out	[121 [122	<pre># creación del objeto clf = DecisionTreeClassifier() # Train del Decision Tree Classifer clf = clf.fit(X ,y) # predicciónes de test dataset y_pred = clf.predict(X) y_pred array([2205, 1000, 750,, 2215, 2005, 1920])</pre>
In	[124 [125	<pre># Accuracy de modelo Decision Tree accuracy_decision_tree = metrics.accuracy_score(y, y_pred) # Matriz de confianza matrix_decision_tree = metrics.confusion_matrix(y, y_pred) # Separación de la matriz de confianza confusion_decision_tree = metrics.confusion_matrix(y, y_pred) print(confusion_decision_tree) #[fila, columna] TP_DT = confusion_decision_tree[0, 0] TP_DT = confusion_decision_tree[0, 1] FN_DT = confusion_decision_tree[1, 0] [[1041</pre>
	[127	<pre>print(metrics.accuracy_score(y , y_pred)) 0.9955099422706863 0.9028156630526322 #classification error classification_error_decision_tree = (FP_DT + FN_DT) / float(TP_DT + TN_DT + FP_DT + FN_DT) print(classification_error_decision_tree) print(1 - metrics.accuracy_score(y , y_pred)) 0.004490057729313663 0.09718433694736783 # sensibilidad</pre>
	[129	<pre>sensitivity_decision_tree = (TP_DT) / float(FN_DT + TP_DT) print(sensitivity_decision_tree) print(metrics.recall_score(y , y_pred, average='micro')) 0.988394584139265 0.9028156630526322 #especifidad specificity_decision_tree = (TN_DT) / (TN_DT + FP_DT) print(specificity_decision_tree) 0.9990403071017274 # ratio de falsos positivos</pre>
In	[131	<pre>false_positive_rate_decision_tree = (FP_DT) / float(TN_DT + FP_DT) print(false_positive_rate_decision_tree) print(1 - specificity_decision_tree) 0.0009596928982725527 0.0009596928982725794 # precisión precision_decision_tree = (TP_DT) / float(TP_DT + FP_DT) print(precision_decision_tree) print(metrics.precision_score(y , y_pred, average='micro')) 0.998046875 0.9028156630526322</pre>
	[132	<pre>feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',] X = wn[feature_cols] # Características y = wn.CRSArrTime # Eje objetivo # Objeto KNN classifier = KNeighborsClassifier() # Fit classifier.fit(X, y) # predicciones</pre>
Out	[134 [134 [135	<pre>y_pred = classifier.predict(X) y_pred array([2205, 1000, 800,, 2215, 1950, 1920]) # Accuracy de modelo KNN accuracy_knn = metrics.accuracy_score(y , y_pred) print(accuracy_knn) 0.5089909481411645</pre>
In	[136	<pre># Separación de la matriz de confianza confusion_knn = metrics.confusion_matrix(y, y_pred) print(confusion_knn) #[fila, columna] TP_KNN = confusion_knn[1, 1] TN_KNN = confusion_knn[0, 0] FP_KNN = confusion_knn[0, 1] FN_KNN = confusion_knn[1, 0] [[795 32 19 21 22 87] [75 324 12 4 3 21] [61 20 275 4 8 13]</pre>
In	[137	[61 11 16 408 66 60] [94 11 18 57 555 87] [152 37 30 71 71 927]] #classification accuracy classification_accuracy_knn = (TP_KNN + TN_KNN) / float(TP_KNN + TN_KNN + FP_KNN + FN_KNN) print(metrics.accuracy_score(y , y_pred)) print(metrics.accuracy_score(y , y_pred)) 0.5089909481411645 0.5089909481411645 # Error de clasificación classification_error_knn = (FP_KNN + FN_KNN) / float(TP_KNN + TN_KNN + FP_KNN + FN_KNN) print(classification_error_knn) print(1 - metrics.accuracy_score(y , y_pred)) 0.08727569331158239 0.4910090518588355 #Sensibilidad sensitivity_knn = (TP_KNN) / float(FN_KNN + TP_KNN) print(sensitivity_knn) print(metrics.recall_score(y , y_pred, average='micro'))
	[140	<pre>0.8120300751879699 0.5089909481411645 # Especificidad specificity_knn = TN_KNN / (TN_KNN + FP_KNN) print(specificity_knn) 0.9613059250302297 # Ratio de falsos positvos false_positive_rate_knn = (FP_KNN) / float(TN_KNN + FP_KNN) print(false_positive_rate_knn) print(1 - specificity_knn)</pre>
	[142	<pre>0.03869407496977025 0.03869407496977029 # precisión precision_knn = (TP_KNN) / float(TP_KNN + FP_KNN) print(precision_knn) print(metrics.precision_score(y , y_pred, average='micro')) 0.9101123595505618 0.5089909481411645 Support Vector Machine feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',]</pre>
	[144	<pre>X = wn[feature_cols] # Características y = wn.CRSArrTime # Eje objetivo # por rendimiento, limito las muestras a 20000, pese a que puede afectar los resultados. X = X[:1000] y = y[:1000] # Clasificación mediante SVM clf = svm.SVC() clf.fit(X , y) # Predicciones</pre>
	[146	<pre># Accuracy de modelo SVM accuracy_svm = metrics.accuracy_score(y , y_pred) # Separación de la matriz de confianza confusion_svm = metrics.confusion_matrix(y , y_pred) print(confusion_svm) #[fila, columna] TP_SVM = confusion_svm[1, 1] TN_SVM = confusion_svm[0, 0] FP_SVM = confusion_svm[0, 1]</pre>
	[148	<pre>FN_SVM = confusion_svm[1, 0] [[0 0 0 0 1 0] [[0 0 0 0 0 0] [[0 0 0 0 0 0] [[0 0 0 0 1 0] [[0 0 0 0 1 0] [[0 0 0 0 1 0] [[0 0 0 0 1 0] [[0 0 0 0 1 0]] #classification accuracy classification_accuracy_svm = (TP_SVM + TN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM) print(classification_accuracy_svm) print(metrics.accuracy_score(y , y_pred)) nan 0.065 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/2487099221.py:2: RuntimeWarning: invalid value e ncountered in true_divide classification_accuracy_svm = (TP_SVM + TN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM)</pre>
	[150	<pre># classification error classification_error_svm = (FP_SVM + FN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM) print(classification_error_svm) print(1 - metrics.accuracy_score(y , y_pred)) nan 0.935 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/2179497558.py:2: RuntimeWarning: invalid value e ncountered in true_divide classification_error_svm = (FP_SVM + FN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM) # sensibilidad sensitivity_svm = (TP_SVM) / float(FN_SVM + TP_SVM) print(sensitivity_svm) print(metrics.recall_score(y , y_pred, average='micro')) nan 0.065 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/2944104583.py:2: RuntimeWarning: invalid value e ncountered in true_divide sensitivity_svm = (TP_SVM) / float(FN_SVM + TP_SVM) # Especifidad specificity_svm = (TN_SVM) / (TN_SVM + FP_SVM) print(specificity_svm = (TN_SVM) / (TN_SVM + FP_SVM)</pre>
	[153	<pre># National Positive_rate_sym = (FP_SVM) / float(TN_SVM + FP_SVM) print(false_positive_rate_sym) print(1 - specificity_sym) nan nan /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/2499976114.py:2: RuntimeWarning: invalid value e ncountered in true_divide false_positive_rate_sym = (FP_SVM) / float(TN_SVM + FP_SVM) #precisión precision_sym = (TP_SVM) / float(TP_SVM + FP_SVM) print(precision_sym) print(metrics.precision_score(y , y_pred, average='micro')) nan 0.065 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/86456474.py:2: RuntimeWarning: invalid value enc</pre>
In		<pre>ountered in true_divide precision_svm = (TP_SVM) / float(TP_SVM + FP_SVM) - Exercici 2 Compara els models de classificació utilitzant la precisió (accuracy), una matriu de confiança i d'altres mètriques més avançades. # comparativa de Accuracy de los tres modelos de clasificación print("Decision Tree accuracy: %f" %accuracy_decision_tree) print("KNN accuracy: %f" %accuracy_knn) print("SVM accuracy: %f" %accuracy_svm) Decision Tree accuracy: 0.902816 KNN accuracy: 0.508991 SVM accuracy: 0.065000</pre>
	[155	<pre>print("Matriz del arbol de decisión: ") print (matrix_decision_tree) print("\nMatriz del modelo KNN: ") print (confusion_knn) print("\nMatriz del modelo SVM: ") print (confusion_svm) Matriz del arbol de decisión: [[1041</pre>
		Matriz del modelo KNN: [[795 32 19 21 22 87] [75 324 12 4 3 21] [61 20 275 4 8 13] [61 11 16 408 66 60] [94 11 18 57 555 87] [152 37 30 71 71 927]] Matriz del modelo SVM: [[0 0 0 0 1 0] [0 0 0 0 0 0] [0 0 0 0 0 0]
In	[156	[0 0 0 0 1 0] [0 0 0 0 3 0] [0 0 0 0 1 0]] # comparativa resultados Classification Accuracy de los tres modelos print("Classificaction Accuracy Decision Tree: ", classification_accuracy_decision_tree) print("Classificaction KNN: ", classification_accuracy_knn) print("Classificaction SVM: ", classification_accuracy_svm) Classificaction Accuracy Decision Tree: 0.9955099422706863 Classificaction KNN: 0.9127243066884176 Classificaction SVM: nan
	[157	<pre># comparativa Classification error accuracy de los tres modelos print("Classification error accuracy Decision Tree: " , classification_error_decision_tree) print("Classification error accuracy KNN: " , classification_error_knn) print("Classification error accuracy SVM: " , classification_error_svm) Classification error accuracy Decision Tree: 0.004490057729313663 Classification error accuracy KNN: 0.08727569331158239 Classification error accuracy SVM: nan # comparativa sensibilidad de los tres modelos print("Sensitivity decision tree: " , sensitivity_decision_tree) print("Sensitivity KNN: " ,sensitivity_knn) print("Sensitivity SVM: " ,sensitivity_svm)</pre>
In	[159	Sensitivity decision tree: 0.988394584139265 Sensitivity KNN: 0.8120300751879699 Sensitivity SVM: nan # comparativa especifidad de los tres modelos print("Specifitcity Decision Tree: ", specificity_decision_tree) print("Specifitcity KNN: ", specificity_knn) print("Specifitcity SVM: ", specificity_svm) Specifitcity Decision Tree: 0.9990403071017274 Specifitcity KNN: 0.9613059250302297 Specifitcity SVM: nan
	[160	<pre># comparativa falsos positivos de los tres modelos print("False positive Decision Tree: " , false_positive_rate_decision_tree) print("False positive KNN: " , false_positive_rate_knn) print("False positive SVM: " , false_positive_rate_svm) False positive Decision Tree: 0.0009596928982725527 False positive KNN: 0.03869407496977025 False positive SVM: nan # comparativa precisión de los tres modelos print("Precision Decision tree: " , precision_decision_tree) print("Precision Decision KNN: " , precision_knn)</pre>
		<pre>print("Precision Decision SVM: ", precision_svm) Precision Decision tree: 0.998046875 Precision Decision KNN: 0.9101123595505618 Precision Decision SVM: nan - Exercici 3 Entrena'ls utilitzant els diferents paràmetres que admeten. Decison Tree feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',] X = wn[feature_cols] # Caracteristicas y = wn.CRSArrTime # Eje objetivo # creación del objeto modificado criterio y la profundidad clf = DecisionTreeClassifier(criterion='gini', max_depth=5) # Train del Decision Tree Classifer clf = clf.fit(X, y) # predicciónes de test dataset y pred = clf.predict(X)</pre>
Out	[164 [164 [165	<pre>y_pred array([2135, 55, 55,, 2210, 2035, 1910]) # Accuracy de modelo Decision Tree trained_accuracy_decision_tree = metrics.accuracy_score(y, y_pred) print(trained_accuracy_decision_tree) 0.09276169088087458 KNN</pre>
In In Out	[166 [167 [168 [169	<pre>feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',] X = wn[feature_cols] # Caracteristicas y = wn.CRSArrTime # Eje objetivo # KNN con parámetro de n_neighbors personalizado classifier = KNeighborsClassifier(n_neighbors=9) classifier.fit(X , y) y_pred = classifier.predict(X) y_pred array([2205, 945, 750,, 2215, 1950, 1920]) # Accuracy de modelo KNN trained_accuracy_knn = metrics.accuracy_score(y , y_pred) print(accuracy_knn) 0.5089909481411645</pre>
In	[170 [171	feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',] X = wn[feature_cols] # Características y = wn.CRSArrTime # Eje objetivo # Limitación de muestras por motivos de rendiento y limitación de equipo X = X[:1000] y = y[:1000] # Clasificación mediante SVM modificando a Kernel Lineal
In	[173	# Clasificación mediante SVM modificando a Kernel Lineal clf = svm.SVC(kernel='linear') clf.fit(X , y) # Predicciones y_pred = clf.predict(X) y_pred array([2150, 1000, 750, 1855, 2100, 1950, 915, 1725, 1010, 1615, 955,
		1790, 81, 1320, 25, 1811, 2011, 150, 1780, 1780, 181, 2011, 180, 1845, 30, 1880, 1320, 5, 1610, 2225, 1720, 1905, 2015, 1820, 1820, 1821, 1801, 1802, 1804, 1825, 5, 2245, 1857, 2255, 1825, 2255, 2015, 745, 1802, 1804, 1825
		1325, 855, 1145, 2255, 1615, 1845, 1655, 1435, 950, 1500, 1235, 2010, 30, 1155, 2225, 1855, 1550, 800, 1745, 1530, 830, 1050, 1340, 1945, 2030, 1125, 1725, 1235, 1140, 1010, 1625, 1315, 1440, 1505, 2115, 2205, 1245, 1750, 1055, 1825, 1630, 2235, 1835, 1510, 1505, 855, 1410, 2245, 1730, 1300, 2200, 1730, 2000, 1550, 1240, 2205, 1035, 1625, 1855, 1325, 2105, 2255, 910, 1630, 2000, 2220, 955, 1320, 2140, 1110, 2040, 1625, 2255, 1400, 2115, 1505, 1250, 1655, 1825, 2245, 1855, 1315, 1035, 1645, 2135, 945, 1855, 1530, 2210, 1950, 1715, 1825, 1215, 915, 1915, 2045, 1320, 1835, 2025, 1815, 30, 1615, 2115, 2210, 1845, 1400, 2000, 1700, 1845, 755, 2325, 2115, 1355, 2300, 1920, 1540, 2105, 1410, 1655, 2155, 830, 1400, 1815, 1405, 1615, 1110, 1325, 1855, 2100, 1455, 1800, 855, 2155, 1645, 1340, 1950, 1925, 2255, 1600, 2255, 1300, 1920, 2020, 2225, 1750, 1350, 1550, 2110, 1250, 1745, 2020, 2045, 1405, 1950, 1405, 2045, 1750, 1435, 1800, 1825, 2040, 1000, 1550, 1225, 1910,
	[174	<pre># Accuracy de modelo SVM trained_accuracy_svm = metrics.accuracy_score(y , y_pred) print(trained_accuracy_svm) 0.462 print("Accuracy sin modificación de parámetros") print("Accuracy Decision Tree: " , accuracy_decision_tree) print("Accuracy KNN: " , accuracy_knn) print("Accuracy SVM: " , accuracy_svm) Accuracy sin modificación de parámetros</pre>
		Accuracy Decision Tree: 0.9028156630526322 Accuracy KNN: 0.5089909481411645 Accuracy SVM: 0.065 print("Accuracy con parámetros modificados") print("Decision tree con parámetros: " , trained_accuracy_decision_tree) print("KNN con parámetros: " , trained_accuracy_knn) print("SVM con parámetros: " , trained_accuracy_svm) Accuracy con parámetros modificados Decision tree con parámetros: 0.09276169088087458 KNN con parámetros: 0.4555563794683291 SVM con parámetros: 0.462 - Exercici 4 Compara el seu rendiment utilitzant l'aproximació traint/test o cross-validation. Decision Tree Model feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',]
In		<pre>feature_cols = ['CRSDepTime', 'DepTime', 'ArrTime',] X = wn[feature_cols] # Características y = wn.CRSArrTime # Eje objetivo X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # creación del objeto clf = DecisionTreeClassifier() # Train del Decision Tree Classifer clf = clf.fit(X_train,y_train) # predicciónes de test dataset y_pred = clf.predict(X_test)</pre>
In	[180 [181	# Accuracy de modelo Decision Tree tt_accuracy_decision_tree = metrics.accuracy_score(y_test, y_pred) # Matriz de confianza tt_matrix_decision_tree = metrics.confusion_matrix(y_test, y_pred) # Separación de la matriz de confianza tt_confusion_decision_tree = metrics.confusion_matrix(y_test, y_pred) print(tt_confusion_decision_tree) #[fila, columna] TP_DT = confusion_decision_tree[0, 0] FP_DT = confusion_decision_tree[0, 0] FP_DT = confusion_decision_tree[0, 1] FN_DT = confusion_decision_tree[1, 0] [[112 25 7 27 17 50] [19 74 6 3 1 24] [13 5 50 7 4 5] [14 2 7 74 26 24] [19 12 7 27 121 40]
	[183	<pre>#classification accuracy tt_classification_accuracy_decision_tree = (TP_DT + TN_DT) / float(TP_DT + TN_DT + FP_DT + FN_DT) print(tt_classification_accuracy_decision_tree) print(metrics.accuracy_score(y_test, y_pred)) 0.9955099422706863 0.25192221113867286 #classification_error tt_classification_error_decision_tree = (FP_DT + FN_DT) / float(TP_DT + TN_DT + FP_DT + FN_DT) print(tt_classification_error_decision_tree) print(1 - metrics.accuracy_score(y_test, y_pred))</pre>
In	[185	
	[187	<pre># ratio de falsos positivos tt_false_positive_rate_decision_tree = (FP_DT) / float(TN_DT + FP_DT) print(tt_false_positive_rate_decision_tree) print(1 - specificity_decision_tree) 0.0009596928982725527 0.0009596928982725794 # precisión tt_precision_decision_tree = (TP_DT) / float(TP_DT + FP_DT) print(tt_precision_decision_tree) print(metrics.precision_score(y_test, y_pred, average='micro')) 0.998046875 0.25192221113867286</pre>
In	[189 [190	<pre>Classifier = KNeighborsClassifier() classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test)</pre> 'ArrTime', ArrTime', ArrTime'
In	[192	

In [193	<pre>tt_confusion_knn = metrics.confusion_matrix(y_test, y_pred) print(tt_confusion_knn) #[fila, columna] TP_KNN = confusion_knn[1, 1] TN_KNN = confusion_knn[0, 0] FP_KNN = confusion_knn[0, 1] FN_KNN = confusion_knn[1, 0]</pre> [[170 10 7 10 17 50] [40 62 5 2 3 19]
In [194	[40 62 5 2 3 19] [21 10 50 1 5 9] [37 3 5 66 25 22] [49 6 7 29 95 40] [88 9 13 29 22 190]] #classification accuracy tt_classification_accuracy_knn = (TP_KNN + TN_KNN) / float(TP_KNN + TN_KNN + FP_KNN + FN_KNN) print(metrics.accuracy_score(y_test, y_pred)) print(metrics.accuracy_score(y_test, y_pred)) 0.2909402282818831
In [195 In [196	<pre>0.2909402282818831 # Classification error tt_classification_error_knn = (FP_KNN + FN_KNN) / float(TP_KNN + TN_KNN + FP_KNN + FN_KNN) print(tt_classification_error_knn) print(1 - metrics.accuracy_score(y_test, y_pred)) 0.08727569331158239 0.7090597717181168 # sensibilidad</pre> # sensibilidad
In [196 In [197	<pre>tt_trained_sensitivity_knn = (TP_KNN) / float(FN_KNN + TP_KNN) print(tt_trained_sensitivity_knn) print(metrics.recall_score(y_test, y_pred, average='micro')) 0.8120300751879699 0.2909402282818831</pre>
In [198 In [199	0.9613059250302297 # Ratio falsos positivos tt_trained_false_positive_rate_knn = (FP_KNN) / float(TN_KNN + FP_KNN) print(tt_trained_false_positive_rate_knn) print(1 - tt_trained_specificity_knn) 0.03869407496977025 0.03869407496977029 # Precisión
In [199 In [200	<pre>tt_trained_precision_knn = (TP_KNN) / float(TP_KNN + FP_KNN) print(tt_trained_precision_knn) print(metrics.precision_score(y_test, y_pred, average='micro')) 0.9101123595505618 0.2909402282818831 Support vector Machine</pre>
	<pre>#Create a sym classifier clf = sym.SVC(kernel='linear') #Train the model using the training sets clf.fit(X_train, y_train)</pre>
In [204 In [205	<pre>#Predict the response for test dataset y_pred = clf.predict(X_test) # Accuracy de modelo SVM c = metrics.accuracy_score(y_test, y_pred) # Separación de la matriz de confianza tt_confusion_svm = metrics.confusion_matrix(y_test, y_pred) print(tt_confusion_svm)</pre>
	<pre>#[fila, columna] TP_SVM = confusion_svm[1, 1] TN_SVM = confusion_svm[0, 0] FP_SVM = confusion_svm[0, 1] FN_SVM = confusion_svm[1, 0] [[0 0 1 0 0 1] [0 0 1 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 0 0 0 0] [0 0 1 0 0 0]</pre>
In [206	<pre>#classification accuracy tt_classification_accuracy_svm = (TP_SVM + TN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM) print(tt_classification_accuracy_svm) print(metrics.accuracy_score(y_test, y_pred)) nan 0.12 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/2008478641.py:2: RuntimeWarning: invalid value e ncountered in true_divide tt_classification_accuracy_svm = (TP_SVM + TN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM)</pre>
In [207	<pre>tt_classification_error_svm = (FP_SVM + FN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM) print(tt_classification_error_svm) print(1 - metrics.accuracy_score(y_test, y_pred)) nan 0.88 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/385855457.py:2: RuntimeWarning: invalid value en countered in true_divide tt_classification_error_svm = (FP_SVM + FN_SVM) / float(TP_SVM + TN_SVM + FP_SVM + FN_SVM)</pre>
In [208	<pre>tt_sensitivity_svm = (TP_SVM) / float(FN_SVM + TP_SVM) print(tt_sensitivity_svm) print(metrics.recall_score(y_test, y_pred, average='micro')) nan 0.12 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/1600740172.py:2: RuntimeWarning: invalid value e ncountered in true_divide tt_sensitivity_svm = (TP_SVM) / float(FN_SVM + TP_SVM)</pre>
In [210	<pre>tt_specificity_svm = (TN_SVM) / (TN_SVM + FP_SVM) print(tt_specificity_svm) nan /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/4151203144.py:2: RuntimeWarning: invalid value e ncountered in long_scalars tt_specificity_svm = (TN_SVM) / (TN_SVM + FP_SVM) # Ratio falsos positivos tt_false_positive_rate_svm = (FP_SVM) / float(TN_SVM + FP_SVM) print(tt_false_positive_rate_svm)</pre>
In [211	<pre>print(1 - tt_specificity_svm) nan nan /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/1009052086.py:2: RuntimeWarning: invalid value e ncountered in true_divide tt_false_positive_rate_svm = (FP_SVM) / float(TN_SVM + FP_SVM) # precision tt_precision_svm = (TP_SVM) / float(TP_SVM + FP_SVM) print(tt_precision_svm)</pre>
In [212	<pre>print(metrics.precision_score(y_test, y_pred, average='micro')) nan 0.12 /var/folders/s5/_b24t8m574q3h2svhkm3k6500000gn/T/ipykernel_804/1451187741.py:2: RuntimeWarning: invalid value e ncountered in true_divide tt_precision_svm = (TP_SVM) / float(TP_SVM + FP_SVM)</pre>
In [213	Accuracy de los tres modelos Decision Tree Accuracy no entrenada: 0.9028156630526322 Accuracy entrenada: 0.09276169088087458 Train Test accuracy: 0.25192221113867286
In [215	Decision tree con parámetros: 0.4555563794683291 KNN con parámetros: 0.4555563794683291 SVM con parámetros: 0.2909402282818831 print("Accuracy de los tres modeos KNN") print("Accuracy sin parámetros: ", classification_accuracy_svm) print("Accuracy con parámetros ", trained_accuracy_svm) print("Accuracy con train/test: ", tt_classification_accuracy_svm) Accuracy de los tres modeos KNN Accuracy sin parámetros: nan
	Accuracy con parámetros 0.462 Accuracy con train/test: nan Nivell 2 • Exercici 5 Realitza algun procés d'enginyeria de variables per millorar-ne la predicció Nivell 3 • Exercici 6 No utilitzis la variable DepDelay a l'hora de fer prediccions