Why Sorting?

- "When in doubt, sort" one of the principles of algorithm design. Sorting used as a subroutine in many of the algorithms:
 - Searching in databases: we can do binary search on sorted data
 - A large number of computer graphics and computational geometry problems
 - Closest pair, element uniqueness

- A large number of sorting algorithms are developed representing different algorithm design techniques.
- \square A lower bound for sorting $\Omega(n \log n)$ is used to prove lower bounds of other problems

Sorting Algorithms so far

- Insertion sort, selection sort
 - □ Worst-case running time $\Theta(n^2)$; in-place
- ☐ Heap sort
 - □ Worst-case running time $\Theta(n \log n)$.

Divide and Conquer

- Divide-and-conquer method for algorithm design:
 - Divide: if the input size is too large to deal with in a straightforward manner, divide the problem into two or more disjoint subproblems
 - □ Conquer: use divide and conquer recursively to solve the subproblems
 - Combine: take the solutions to the subproblems and "merge" these solutions into a solution for the original problem

- □ **Divide**: If S has at least two elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences, S_1 and S_2 , each containing about half of the elements of S. (i.e. S_1 contains the first $\lceil n/2 \rceil$ elements and S_2 contains the remaining $\lfloor n/2 \rfloor$ elements).
- □ Conquer: Sort sequences S_1 and S_2 using Merge Sort.
- □ **Combine**: Put back the elements into S by merging the sorted sequences S_1 and S_2 into one sorted sequence

Merge Sort: Algorithm

```
Merge-Sort(A, p, r)
   if p < r then
        q←(p+r)/2
        Merge-Sort(A, p, q)
        Merge-Sort(A, q+1, r)
        Merge(A, p, q, r)</pre>
```

```
Merge(A, p, q, r)
```

Take the smallest of the two topmost elements of sequences A[p..q] and A[q+1..r] and put into the resulting sequence. Repeat this, until both sequences are empty. Copy the resulting sequence into A[p..r].

Merge Sort Revisited

- □ To sort *n* numbers
 - ☐ if n=1 done!
 - □ recursively sort 2 lists of numbers \[\ll n/2 \] and \[\ll n/2 \] elements
 - \square merge 2 sorted lists in $\Theta(n)$ time
- Strategy
 - break problem into similar (smaller) subproblems
 - recursively solve subproblems
 - combine solutions to answer

Recurrences

- Running times of algorithms with Recursive calls can be described using recurrences
- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs

$$T(n) = \begin{cases} solving_trivial_problem & \text{if } n = 1\\ num_pieces \ T(n/subproblem_size_factor) + dividing + combining & \text{if } n > 1 \end{cases}$$

□ Example: Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Solving Recurrences

- Repeated substitution method
 - Expanding the recurrence by substitution and noticing patterns
- Substitution method
 - guessing the solutions
 - verifying the solution by the mathematical induction
- Recursion-trees
- Master method
 - templates for different classes of recurrences

Repeated Substitution Method

□ Let's find the running time of merge sort (let's assume that $n=2^b$, for some b).

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = 2T(n/2) + n \text{ substitute}$$

$$= 2(2T(n/4) + n/2) + n \text{ expand}$$

$$= 2^2T(n/4) + 2n \text{ substitute}$$

$$= 2^2(2T(n/8) + n/4) + 2n \text{ expand}$$

$$= 2^3T(n/8) + 3n \text{ observe the pattern}$$

$$T(n) = 2^iT(n/2^i) + in$$

$$= 2^{\lg n}T(n/n) + n\lg n = n + n\lg n$$

Repeated Substitution Method

- The procedure is straightforward:
 - Substitute
 - Expand
 - Substitute
 - Expand

 - Observe a pattern and write how your expression looks after the *i*-th substitution
 - □ Find out what the value of i (e.g., $\lg n$) should be to get the base case of the recurrence (say T(1))
 - □ Insert the value of T(1) and the expression of i into your expression

Java Implementation of Merge-Sort

```
public interface SortObject {
    //sort sequence S in nondecreasing order
    using compartor c
    public void sort (Sequence S, Comparator c);
}
```

Java Implementation of MergeSort (cont.)

```
public class ListMergeSort implements SortObject {
public void sort(Sequence S, Comparator c) {
   int n = S.size();
   if (n < 2) return; //sequence with 0/1 element is sorted.
   // divide
   Sequence S1 = (Sequence)S.newContainer();
   // put the first half of S into S1
   for (int i=1; i <= (n+1)/2; i++) {
      S1.insertLast(S.remove(S.first()));
   Sequence S2 = (Sequence)S.newContainer();
   // put the second half of S into S2
   for (int i=1; i <= n/2; i++) {
      S2.insertLast(S.remove(S.first()));
   sort(S1,c); // recur
   sort(S2,c);
  merge(S1,S2,c,S); // conquer
                                                           42
```

Java Implementation of MergeSort (cont.)

```
public void merge(Sequence S1, Sequence S2, Comparator c, Sequence S) {
         while(!S1.isEmpty() && !S2.isEmpty()) {
                  if(c.isLessThanOrEqualTo(S1.first().element(),
                            S2.first().element())) {
                           // S1's 1st elt <= S2's 1st elt
                            S.insertLast(S1.remove(S1.first()));
                  }else { // S2's 1st elt is the smaller one
                            S.insertLast(S2.remove(S2.first()));
         }if(S1.isEmpty()) {
                  while(!S2.isEmpty()) {
                            S.insertLast(S2.remove(S2.first()));
         }if(S2.isEmpty()) {
                  while(!S1.isEmpty()) {
                            S.insertLast(S1.remove(S1.first()));
                  }}}
```