Linear Transformations and Matrices - a short Review

Peleg Bar Sapir

October 21, 2024

1 Introduction

- 1.1 Transformations on Vectors
- 1.2 Examples of Core LTs in \mathbb{R}^2
- 2 Definition and Properties of LTs
- 3 Vectors and Basis Sets
- 4 From LTs to Matrices
- 5 The Determinant
- 5.1 Definition and Properties
- 5.2 Calculating the Determinant

In \mathbb{R}^2 the determinant of two vectors **a** and **b** is simply the area of the parallelogram spanned by the two vectors (Figure 1).

Let's check several properties of this area:

- 1. The parallelogram spanned by the two basis vectors $\hat{\mathbf{e}}_1$ and $\hat{\mathbf{e}}_2$ has an area of 1: $A(\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2) = 1$.
- 2. If the two vectors are on the same line then the area equals 0, i.e. $A(\mathbf{a}, \lambda \mathbf{a}) = 0$, where $\lambda \in \mathbb{R}$.
- 3. The parallelogram spanned by one vector \mathbf{a} and a sum of two vectors $\mathbf{b} + \mathbf{c}$ has the same area as the sum of the areas of the two parallelograms spanned by \mathbf{a} , \mathbf{b} and by \mathbf{a} , \mathbf{c} : $A(\mathbf{a}, \mathbf{b} + \mathbf{c}) = A(\mathbf{a}, \mathbf{b}) + A(\mathbf{a}, \mathbf{c})$ (Figure 2).
- 4. Scaling any of the two vectors scales the area by the same factor: $A(\alpha \mathbf{a}, \beta \mathbf{b}) = \alpha \beta A(\mathbf{a}, \mathbf{b})$, where $\alpha, \beta \in \mathbb{R}$ (Figure 3). A special case of scaling is that of scaling by a negative scalar: for example, $A(-\mathbf{a}, \mathbf{b}) = -A(\mathbf{a}, \mathbf{b})$.

Using the above properties, we can derive the relation between $A(\mathbf{a}, \mathbf{b})$ and $A(\mathbf{b}, \mathbf{a})$:

$$A(\mathbf{a}, \mathbf{b}) = \underline{A(\mathbf{a} + \mathbf{b}, \mathbf{b} + \mathbf{a})} - A(\mathbf{b}, \mathbf{a})$$

= $-A(\mathbf{b}, \mathbf{a})$. (1)

This means that swapping the order of vectors in the area of a parallelogram changes its sign.

Figure 1: The area of the parallelogram spanned by two vectors **a** and **b**.

Figure 2: Adding two vectors...

Figure 3: Scaling the vector \mathbf{a} by a factor of 2 scales the area of the parallelogram by the same factor.

- 5.3 Matrix Rank and Null Space
- 6 Matrix-Matrix Products
- 7 Eigenvalues and Eigenvectors