Contents

1. The Khinchin (Shannon?) axioms for entropy	2
1.1. Entropy axioms	2
1.2. Properties of entropy	2

1. The Khinchin (Shannon?) axioms for entropy

Note all random variables we deal with will be discrete, unless otherwise stated.

1.1. Entropy axioms

Definition 1.1 The **entropy** of a discrete random variable X is a quantity H(X) that takes real values and satisfies Normalisation, Invariance, Extendability, Maximality, Continuity and Additivity.

Axiom 1.2 (Normalisation) If X is uniform on $\{0,1\}$ (i.e. $X \sim \text{Bern}(1/2)$), then H(X) = 1.

Axiom 1.3 (Invariance) If Y = f(X) for some bijection f, then H(Y) = H(X).

Axiom 1.4 (Extendability) If X takes values on a set A, B is disjoint from A, Y takes values in $A \sqcup B$, and for all $a \in A$, $\mathbb{P}(Y = a) = \mathbb{P}(X = a)$, then H(Y) = H(X).

Axiom 1.5 (Maximality) If X takes values in a finite set A and Y is uniformly distributed in A, then $H(X) \leq H(Y)$.

Definition 1.6 The total variance distance between X and Y is

$$\sup_E |\mathbb{P}(X \in E) - \mathbb{P}(Y \in E)|.$$

Axiom 1.7 (Continuity) H depends continuously on X (with respect to total variation distance).

Definition 1.8 Let X and Y be random variables. The **conditional entropy** of X given Y is

$$H(X\mid Y)\coloneqq \sum_{y}\mathbb{P}(Y=y)H(X\mid Y=y).$$

Axiom 1.9 (Additivity) H(X, Y) := H((X, Y)) = H(Y) + H(X | Y).

1.2. Properties of entropy

Lemma 1.10 If X and Y are independent, then H(X,Y) = H(X) + H(Y).

Proof (Hints). Straightforward.

Proof. $H(X \mid Y) = \sum_{y} \mathbb{P}(Y = y) H(X \mid Y = y)$ Since X and Y are independent, the distribution of X is unaffected by knowing Y, so $H(X \mid Y = y)$ for all y, which gives the result. (Note we have implicitly used Invariance here).

Corollary 1.11 If $X_1,...,X_n$ are independent, then

$$H(X_1,...,X_n) = H(X_1) + \cdots + H(X_n).$$

Proof (Hints). Straightforward.

Proof. By Lemma 1.10 and induction. \Box

Lemma 1.12 (Chain Rule) Let $X_1, ..., X_n$ be RVs. Then

$$H(X_1,...,X_n) = H(X_1) + H(X_2 \mid X_1) + H(X_3 \mid X_1,X_2) + \cdots + H(X_n \mid X_1,...,X_{n-1}).$$

$$Proof \ (Hints). \ \text{Straightforward}. \qquad \qquad \square$$

$$Proof. \ \text{The case } n = 2 \ \text{is Additivity. In general,}$$

$$H(X_1,...,X_n) = H(X_1,...,X_{n-1}) + H(X_n \mid X_1,...,X_{n-1}),$$
 so the result follows by induction.
$$\square$$

$$\text{Lemma 1.13 Let } X \ \text{and } Y \ \text{be RVs. If } Y = f(X), \ \text{then } H(X,Y) = H(X). \ \text{Also,}$$

$$H(Z \mid X,Y) = H(Z \mid X).$$

$$Proof \ (Hints). \ \text{Consider an appropriate bijection.}$$

$$\square$$

$$Proof. \ \text{The map } g: x \mapsto (x,f(x)) \ \text{is a bijection, and } (X,Y) = g(X), \ \text{so the first statement follows from Invariance. Also,}$$

$$H(Z \mid X,Y) = H(Z,X,Y) - H(X,Y) \ \text{ by additivity}$$

$$= H(Z,X) - H(X) \ \text{ by first part}$$

$$= H(Z \mid X) \ \text{ by additivity}$$

$$\square$$

$$\square$$

$$\text{Lemma 1.14 If } X \ \text{takes only one value, then } H(X) = 0.$$

$$Proof \ (Hints). \ \text{Use that } X \ \text{and } X \ \text{are independent.}$$

$$\square$$

$$Proof. \ X \ \text{and } X \ \text{are independent (verify). So by Lemma 1.10, } H(X,X) = 2H(X).$$
 But by Invariance, $H(X,X) = H(X).$ So $H(X) = 0.$

Proposition 1.15 If X is uniformly distributed on a set of size 2^n , then H(X) = n.

Proof. Let $X_1, ..., X_n$ be independent RVs, uniformly distributed on $\{0, 1\}$. By Corollary 1.11 and Normalisation, $H(X_1, ..., X_n) = n$. So the result follows by

Proof (Hints). Straightforward.

Invariance.