<222>

<223>

<400>

1/

1/6

SEQUENCE LISTING

s M. Anderson <110>

Christina M. Van Itallie

complete sequence

human occludin

<120>	Human Occludin, Its Uses and Enhancement of Drug
	Absorption Using Occludin Inhibitors
<130>	OCR-754.CIP
<140> <141>	US 09/891,064 2001-06-25
<150> <151>	US 09/142,732 1998-09-15
<160> <170>	6 MS DOS
<210>	1
<211>	2312
<212>	DNA
<213>	Homo sapiens
<220>	
<221>	mat_peptide

qcctctctcc atcaqacacc ccaaqqttcc atccqaaqca qqcqqaqcac cgaacgcacc ccggggtggt cagggacccc catccgtgct gccccctagg 100 agecegege teteetetge geeegeete tegggeegea acategegeg 150 gttcctttaa cagcgcgctg gcagggtgtg ggaagcagga ccgcgtcctc 200 ccgcccctc ccatccgagt ttcaggtgaa ttggtcaccg agggaggagg 250 ccgacacacc acacctacac tcccgcgtcc acctctccct ccctgcttcc 300 tcttggcgga ggcggcagga accgagagcc aggtccagag cgccgaggag 350 ccggtctagg acgcagcaga ttggtttatc ttggaagcta aagggcattg ctcatcctga agatcagctg accattgaca atcagccatg tcatccaggc 450 ctcttgaaag tccacctcct tacaggcctg atgaattcaa accgaatcat 500 tatgcaccaa gcaatgacat atatggtgga gagatgcatg ttcgaccaat 550 gctctctcag ccagcctact ctttttaccc agaagatgaa attcttcact 600 tctacaaatg gacctctcct ccaggagtga ttcggatcct gtctatgctc 650 attattgtga tgtgcattgc catctttgcc tgtgtggcct ccacgcttgc 700 ctgggacaga ggctatggaa cttccctttt aggaggtagt gtaggctacc cttatggagg aagtggcttt ggtagctacg gaagtggcta tggctatggc 800 tatggttatg gctatggcta cggaggctat acagacccaa gagcagcaaa 850 gggcttcatg ttggccatgg ctgccttttg tttcattgcc gcgttggtga

EL PECTULA SOUTH

```
2/6
tctttgttac caqtqttata aqatctqaaa tqtccaqaac aaqaaqatac
tacttaagtg tgataatagt gagtgctatc ctgggcatca tggtgtttat 1000
tgccacaatt gtctatataa tgggagtgaa cccaactgct cagtcttctg 1050
gatototata tggttcacaa atatatgcoo totgcaacca attttataca 1100
cctgcagcta ctggactcta cgtggatcag tatttgtatc actactgtgt 1150
tgtggatccc caggaggcca ttgccattgt actggggttc atgattattg 1200
tggcttttgc tttaataatt ttctttgctg tgaaaactcg aagaaagatg 1250
gacaggtatg acaagtccaa tattttgtgg gacaaggaac acatttatga 1300
tgagcagccc cccaatgtcg aggagtgggt taaaaatgtg tctgcaggca 1350
cacaggacgt gccttcaccc ccatctgact atgtggaaag agttgacagt 1400
cccatggcat actettecaa tggcaaagtg aatgacaage ggttttatee 1450
agagtettee tataaateea egeeggttee tqaaqtqqtt caqqagette 1500
cattaacttc gcctgtggat gacttcaggc agcctcgtta cagcagcggt 1550
ggtaactttg agacaccttc aaaaagagca cctqcaaaqq qaaqagcagg 1600
aaggtcaaag agaacagagc aagatcacta tgagacagac tacacaactg 1650
gcggcgagtc ctgtgatgag ctggaggagg actggatcag ggaatatcca 1700
cctatcactt cagatcaaca aagacaactg tacaagagga attttgacac 1750
tggcctacag gaatacaaga gcttacaatc agaacttgat gagatcaata 1800
aagaactctc ccgtttggat aaagaattgg atgactatag agaagaaagt 1850
gaagagtaca tggctgctgc tgatgaatac aatagactga agcaagtgaa 1900
gggatctgca gattacaaaa gtaagaagaa tcattgcaag cagttaaaga 1950
gcaaattgtc acacatcaag aagatggttg gagactatga tagacagaaa 2000
acatagaagg ctgatgccaa gttgtttgag aaattaagta tctgacatct 2050
ctgcaatctt ctcagaaggc aaatgacttt ggaccataac cccggaagcc 2100
aaacctctgt gagcatcaca aagttttggg ttgctttaac atcatcagta 2150
ttgaagcatt ttataaatcg cttttgataa tcaactgggc tgaacaactc 2200
caattaagga ttttatgctt taaacattgg ttcttgtatt aagaatgaaa 2250
tactgtttga ggtttttaag ccttaaagga aggttctggt gtgaactaaa 2300
ctttcacacc cc
                                                       2312
<210>
           2
<211>
           522
           PRT
<212>
<213>
           Homo sapiens
<220>
```

<222>

<221>

complete sequence

peptide

human occludin <223>

<400>

Met Ser Ser Arq Pro Leu Glu Ser Pro Pro Pro Tyr Arq Pro Asp 10

Glu Phe Lys Pro Asn His Tyr Ala Pro Ser Asn Asp Ile Tyr Gly 20 25 30

Gly Glu Met His Val Arg Pro Met Leu Ser Gln Pro Ala Tyr Ser 35 40 45

										•				
Phe	e Tyr	Pro	Glu	Asp 50	Glu	Ile	Leu	His	Phe 55	Tyr	Lys	Trp	Thr	Ser 60
Pro	Pro	Gly	Val	Ile 65	Arg	Ile	Leu	Ser	Met 70	Leu	Ile	Ile	Val	Met 75
Суя	s Ile	Ala	Ile	Phe 80	Ala	Cys	Val	Ala	Ser 85	Thr	Leu	Ala	Trp	Asp 90
Arg	g Gly	Tyr	Gly	Thr 95	Ser	Leu	Leu	Gly	Gly 100	Ser	Val	Gly	Tyr	Pro 105
Туз	Gly	Gly	Ser	Gly 110	Phe	Gly	Ser	Tyr	Gly 115	Ser	Gly	Tyr	Gly	Tyr 120
Gly	y Tyr	Gly	Tyr	Gly 125	Tyr	Gly	Tyr	Gly	Gly 130	Tyr	Thr	Asp	Pro	Arg 135
Ala	a Ala	Lys	Gly	Phe 140	Met	Leu	Ala	Met	Ala 145	Ala	Phe	Cys	Phe	Ile 150
Ala	a Ala	Leu	Val	Ile 155	Phe	Val	Thr	Ser	Val 160	Ile	Arg	Ser	Glu	Met 165
Sei	Arg	Thr	Arg	Arg 170	Tyr	Tyr	Leu	Ser	Val 175	Ile	Ile	Val	Ser	Ala 180
Ιlϵ	e Leu	Gly	Ile	Met 185	Val	Phe	Ile	Ala	Thr 190	Ile	Val	Tyr	Ile	Met 195
GlΣ	v Val	Asn	Pro	Thr 200	Ala	Gln	Ser	Ser	Gly 205	Ser	Leu	Tyr	Gly	Ser 210
Glr	ılle	Tyr	Ala	Leu 215	Cys	Asn	Gln	Phe	Tyr 220	Thr	Pro	Ala	Ala	Thr 225
GlΣ	. Leu	Tyr	Val	Asp 230	Gln	Tyr	Leu	Tyr	His 235	Tyr	Cys	Val	Val	Asp 240
Pro	Gln	Glu	Ala	Ile 245	Ala	Ile	Val	Leu	Gly 250	Phe	Met	Ile	Ile	Val 255
Alá	. Phe	Ala	Leu	Ile 260	Ile	Phe	Phe	Ala	Val 265	Lys	Thr	Arg	Arg	Lys 270
Met	. Asp	Arg	Tyr	Asp 275	Lys	Ser	Asn	Ile	Leu 280	Trp	Asp	Lys	Glu	His 285
Ile	. Tyr	Asp	Glu	Gln 290	Pro	Pro	Asn	Val	Glu 295	Glu	Trp	Val	Lys	Asn 300
Va]	Ser	Ala	Gly	Thr 305	Gln	Asp	Val	Pro	Ser 310	Pro	Pro	Ser	Asp	Tyr 315
Va]	. Glu	Arg	Val	Asp 320	Ser	Pro	Met	Ala	Tyr 325	Ser	Ser	Asn	Gly	Lys 330

Val	Asn	Asp	Lys	Arg 335	Phe	Tyr	Pro	Glu	Ser 340	Ser	Tyr	Lys	Ser	Thr 345
Pro	Val	Pro	Glu	Val 350	Val	Gln	Glu	Leu	Pro 355	Leu	Thr	Ser	Pro	Val 360
Asp	Asp	Phe	Arg	Gln 365	Pro	Arg	Tyr	Ser	Ser 370	Gly	Gly	Asn	Phe	Glu 375
Thr	Pro	Ser	Lys	Arg 380	Ala	Pro	Ala	Lys	Gly 385	Arg	Ala	Gly	Arg	Ser 390
Lys	Arg	Thr	Glu	Gln 395	Asp	His	Tyr	Glu	Thr 400	Asp	Tyr	Thr	Thr	Gly 405
Gly	Glu	Ser	Cys	Asp 410	Glu	Leu	Glu	Glu	Asp 415	Trp	Ile	Arg	Glu	Tyr 420
Pro	Pro	Ile	Thr	Ser 425	Asp	Gln	Gln	Arg	Gln 430	Leu	Tyr	Lys	Arg	Asn 435
Phe	Asp	Thr	Gly	Leu 440	Gln	Glu	Tyr	Lys	Ser 445	Leu	Gln	Ser	Glu	Leu 450
Asp	Glu	Ile	Asn	Lys 455	Glu	Leu	Ser	Arg	Leu 460	Asp	Lys	Glu	Leu	Asp 465
Asp	Tyr	Arg	Glu	Glu 470	Ser	Glu	Glu	Tyr	Met 475	Ala	Ala	Ala	Asp	Glu 480
Tyr	Asn	Arg	Leu	Lys 485	Gln	Val	Lys	Gly	Ser 490	Ala	Asp	Tyr	Lys	Ser 495
Lys	Lys	Asn	His	Cys 500	Lys	Gln	Leu	Lys	Ser 505	Lys	Leu	Ser	His	Ile 510
Lys	Lys	Met	Val	Gly 515	Asp	Tyr	Asp	Arg	Gln 520	Lys	Thr			

<211> 24 <212> PRT

<213> Artificial Sequence

<220>

<210>

<221> peptide

<223> construct used in experiments

<400> 3

Cys Asp Arg Gly Tyr Gly Thr Ser Leu Leu Gly Gly Ser Val Gly

Tyr Pro Tyr Gly Gly Ser Gly Phe Gly 20

<210> 4

<211> 24

<212> PRT

Artificial Sequence <213>

<220>

peptide <221>

construct used in experiments <223>

<400>

Cys Ser Tyr Gly Ser Gly Tyr Gly Tyr Gly Tyr Gly Tyr

Gly Tyr Gly Gly Tyr Thr Asp Pro Arg 20

<210> 5

<211> 20

<212> PRT

Artificial Sequence <213>

<220>

<221> peptide

construct used in experiments <223>

<400>

Asn His Tyr Ala Pro Ser Asn Asp Ile Tyr Gly Glu Met Val

His Arg Pro Met Leu

<210>	6
<211>	11
<212>	PRT
<213>	Artificial Sequence
<220>	
<221>	peptide
<223>	construct used in experiments
<400>	6
Ala Ser Gln	Gln Val Tyr Arg Lys Asp Pro Cys 5 10