Criptografia de Chave Pública

MOUTA Leonardo

PFC-F - ITA/ISAE-SUPAERO

May 13, 2022

Objetivo: Explicar o funcionamento dos criptossistemas RSA e EIGamal

Sumário

- Princípios de Criptografia de Chave Pública
- Tópicos de Teoria dos Números RSA
- O Sistema RSA
- 4 Tópicos de Teoria dos Números ElGamal
- O Sistema ElGamal

Sumário

- Princípios de Criptografia de Chave Pública
- 2 Tópicos de Teoria dos Números RSA
- O Sistema RSA
- 4 Tópicos de Teoria dos Números ElGamal
- O Sistema ElGama

Definição Formal de um Criptossistema

Um criptossistema consiste em uma tupla $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$, onde valem as seguintes proposições:

- lacktriangledown \mathcal{P} é o conjunto (finito) de todos os textos planos
- ${\it 2}$ ${\it C}$ é o conjunto (finito) de todos os textos cifrados
- ${\mathfrak S}$ ${\mathcal K}$ é o espaço de chaves, o conjunto finito de todas as chaves possíveis
- Para cada $K \in \mathcal{K}$, existe uma função de criptografia $e_K \in \mathcal{E}$ e uma função de descriptografia $d_K \in \mathcal{D}$. Cada $e_K : \mathcal{P} \to \mathcal{C}$ e $d_K : \mathcal{C} \to \mathcal{P}$ são funções tais que $d_K(e_K(x)) = x$ para todo $x \in \mathcal{P}$

Observação: Se e_K e d_K são iguais (ou facilmente relacionáveis), o sistema é dito "simétrico". Caso contrário, o sistema é "assimétrico" ou "de chave pública".

Existem alguns criptossistemas simétricos célebres, por exemplo:

- A Cifra de Deslocamento (ou "de César")
- A Cifra de Permutação
- O One-Time Pad (OTP)
- O DES (Data Encryption Standard)
- O AES (Advanced Encryption Standard)
- Etc.

O Problema da Chave Simétrica

7/47

A utilização de sistemas baseados em chaves simétricas traz um grande problema: como transmitir essa chave entre as partes?

O Problema da Chave Simétrica

A utilização de sistemas baseados em chaves simétricas traz um grande problema: como transmitir essa chave entre as partes?

 Você precisa de um canal previamente seguro

O Problema da Chave Simétrica

A utilização de sistemas baseados em chaves simétricas traz um grande problema: como transmitir essa chave entre as partes?

- Você precisa de um canal previamente seguro
- Em alguns sistemas (como o OTP), o tamanho da chave é igual ao tamanho da mensagem

A Solução: Criptografia de Chave Pública

A Solução: Criptografia de Chave Pública

Uma das partes gera um par de chaves: uma chave pública e uma chave privada

- Uma das partes gera um par de chaves: uma chave pública e uma chave privada
- A chave pública é usada para cifrar mensagens. A chave privada é usada para decifrar mensagens

- Uma das partes gera um par de chaves: uma chave pública e uma chave privada
- A chave pública é usada para cifrar mensagens. A chave privada é usada para decifrar mensagens
- Baseado na ideia de "funções alçapão" → Uma função que é fácil de calcular em um sentido, mas difícil em outro, a menos que você conheça a "manha"

- Uma das partes gera um par de chaves: uma chave pública e uma chave privada
- A chave pública é usada para cifrar mensagens. A chave privada é usada para decifrar mensagens
- Baseado na ideia de "funções alçapão" → Uma função que é fácil de calcular em um sentido, mas difícil em outro, a menos que você conheça a "manha"
- Importante: nenhum desses sistemas pode fornecer segurança incondicional, apenas computacional ou provável

Alguns sistemas de chave pública

10/47

Alguns dos principais sistemas de chave pública são:

- RSA
- ElGamal
- Ocertas aplicações de Criptografia de Curva Elíptica (ECC)
- Oramer-Shoup
- Merkle-Hellman
- Etc.

Segundo Shannon, existem três tipos de segurança:

Segundo Shannon, existem três tipos de segurança:

 Segurança incondicional: o sistema não pode ser quebrado, mesmo com recursos computacionais infinitos

Segundo Shannon, existem três tipos de segurança:

- Segurança incondicional: o sistema não pode ser quebrado, mesmo com recursos computacionais infinitos
- Segurança computacional: o melhor algoritmo para quebrar o sistema precisa de pelo menos N operações, onde N é um número grande

Segundo Shannon, existem três tipos de segurança:

- Segurança incondicional: o sistema não pode ser quebrado, mesmo com recursos computacionais infinitos
- Segurança computacional: o melhor algoritmo para quebrar o sistema precisa de pelo menos N operações, onde N é um número grande
- Segurança provável: quebrar o sistema significa resolver um problema considerado difícil

Segundo Shannon, existem três tipos de segurança:

- Segurança incondicional: o sistema não pode ser quebrado, mesmo com recursos computacionais infinitos
- Segurança computacional: o melhor algoritmo para quebrar o sistema precisa de pelo menos N operações, onde N é um número grande
- Segurança provável: quebrar o sistema significa resolver um problema considerado difícil

"Quebrar um sistema" tem múltiplos significados: pode ser encontrar a chave usada, um algoritmo equivalente para decifrar, alterar uma mensagem enviada, etc. A ideia é a mesma: furar a proposta de segurança.

Tipos de Ataque

12/47

A segurança de um sistema é altamente dependente do tipo de ataque:

- Texto plano conhecido
- Texto plano escolhido
- Homem-no-meio
- Texto cifrado conhecido
- Adulteração de mensagem
- Etc.

Tipos de Ataque

12/47

A segurança de um sistema é altamente dependente do tipo de ataque:

- Texto plano conhecido
- Texto plano escolhido
- Homem-no-meio
- Texto cifrado conhecido
- Adulteração de mensagem
- Etc.

Focaremos no ataque passivo de texto cifrado conhecido, no qual apenas a mensagem cifrada (e demais informações públicas) são conhecidas pelo atacante, que age passivamente, ou seja, não tenta alterar a mensagem em trânsito.

Sumário

- Princípios de Criptografia de Chave Pública
- 2 Tópicos de Teoria dos Números RSA
- O Sistema RSA
- 4 Tópicos de Teoria dos Números ElGamal
- O Sistema ElGama

Seja $m \in \mathbb{N}^*$, definimos $\mathbb{Z}_m = \{0, 1, ..., m-1\}$ como um conjunto munido de duas operações, $+ e \times$, em cima do qual podemos construir a chamada "Aritmética Modular".

Seja $m \in \mathbb{N}^*$, definimos $\mathbb{Z}_m = \{0, 1, ..., m-1\}$ como um conjunto munido de duas operações, $+ e \times$, em cima do qual podemos construir a chamada "Aritmética Modular".

Dizemos que dois números a e b são "congruentes módulo m" se m divide b-a:

$$a \equiv b \pmod{m} \iff \exists k \in \mathbb{Z} | (b-a) = k \cdot m$$

Importante: não confundir com a notação sem parênteses, que se refere à operação de resto euclideano. Seja $r \in \mathbb{Z}_m$:

$$a \mod m = r \implies \exists k \in \mathbb{Z} | a = k \cdot m + r$$

Seja $m \in \mathbb{N}^*$, definimos $\mathbb{Z}_m = \{0, 1, ..., m-1\}$ como um conjunto munido de duas operações, $+ e \times$, em cima do qual podemos construir a chamada "Aritmética Modular".

Dizemos que dois números a e b são "congruentes módulo m" se m divide b-a:

$$a \equiv b \pmod{m} \iff \exists k \in \mathbb{Z} | (b-a) = k \cdot m$$

Importante: não confundir com a notação sem parênteses, que se refere à operação de resto euclideano. Seja $r \in \mathbb{Z}_m$:

$$a \mod m = r \implies \exists k \in \mathbb{Z} | a = k \cdot m + r$$

Podemos ligar as duas operações: $a \mod m = r \implies a \equiv r \pmod m$

L. Mouta (ITA/ISAE) Criptografia May 13, 2022 14/47

Se definirmos as operações + e \times como a soma e multiplicação usuais módulo m, temos as seguintes propriedades:

- Para +: Fechamento, comutatividade, associatividade, identidade aditiva $0 \in \mathbb{Z}_m$, inverso aditivo $-a \in \mathbb{Z}_m$ (o que permite a definição de uma operação diferença)
- Para \times : Fechamento, comutatividade, associatividade, identidade multiplicativa $1 \in \mathbb{Z}_m$
- Para + e ×: Distributividade (esquerda e direita)

Se definirmos as operações + e \times como a soma e multiplicação usuais módulo m, temos as seguintes propriedades:

- Para +: Fechamento, comutatividade, associatividade, identidade aditiva $0 \in \mathbb{Z}_m$, inverso aditivo $-a \in \mathbb{Z}_m$ (o que permite a definição de uma operação diferença)
- Para \times : Fechamento, comutatividade, associatividade, identidade multiplicativa $1 \in \mathbb{Z}_m$
- Para + e x: Distributividade (esquerda e direita)

Essas propriedades fazem de \mathbb{Z}_m um tipo especial de estrutura algébrica: \mathbb{Z}_m é um **anel**.

A função ϕ

16/47

Definição da função totiente de Euler ϕ : seja $m \in \mathbb{N}^*$, definimos $\phi(m)$ como o número de elementos $a \in \mathbb{Z}_m$ tal que mdc(m, a) = 1 (ou seja, o número de co-primos de m em \mathbb{Z}_m).

Se você conhecer a fatoração de m, a função ϕ é facilmente calculável:

A função ϕ

16/47

Definição da função totiente de Euler ϕ : seja $m \in \mathbb{N}^*$, definimos $\phi(m)$ como o número de elementos $a \in \mathbb{Z}_m$ tal que mdc(m, a) = 1 (ou seja, o número de co-primos de m em \mathbb{Z}_m).

Se você conhecer a fatoração de \emph{m} , a função ϕ é facilmente calculável:

Teorema: Sendo:

$$m = \prod_{i=1}^{n} p_i^{e_i}$$

Onde p_i são primos distintos e $e_i > 0$, temos que:

$$\phi(m) = \prod_{i=1}^n (p_i^{e_i} - p_i^{e_i-1})$$

L. Mouta (ITA/ISAE) Criptografia May 13, 2022

A Questão dos Inversos

Teorema: o elemento não-nulo $a \in \mathbb{Z}_m$ possui inverso $a^{-1} \in \mathbb{Z}_m$ tal que $a^{-1} \times a \equiv 1 \pmod{m}$ se e somente se mdc(a, m) = 1.

A Questão dos Inversos

Teorema: o elemento não-nulo $a \in \mathbb{Z}_m$ possui inverso $a^{-1} \in \mathbb{Z}_m$ tal que $a^{-1} \times a \equiv 1 \pmod{m}$ se e somente se mdc(a, m) = 1.

Corolário: se m for um número primo, todo elemento não nulo de \mathbb{Z}_m possui inverso em \mathbb{Z}_m (nesse caso, \mathbb{Z}_m é promovido ao status de **corpo**)

Por outro lado, podemos construir o **grupo abeliano** \mathbb{Z}_m^* , constituído de todos os elementos $a < m, a \in \mathbb{N}$ tal que mdc(a, m) = 1.

Sejam dois números naturais não nulos a e b. O algoritmo de Euclides estendido calcula, com complexidade O(log(min(a,b)), os números inteiros r, s e t tais que:

$$\begin{cases} mdc(a,b) = r \\ s \cdot a + t \cdot b = r \end{cases}$$

Por que esse algoritmo importa? Ele permite que calculemos inversos de forma rápida!

O Algoritmo de Euclides Estendido

19/47

Considere o problema de achar $t \in \mathbb{Z}_m$ tal que $t \times b \equiv 1 \pmod{m}$.

O Algoritmo de Euclides Estendido

19/47

Considere o problema de achar $t \in \mathbb{Z}_m$ tal que $t \times b \equiv 1 \pmod{m}$.

Como dito, esse problema só tem solução se mdc(m, b) = 1. Aplicando o algoritmo em (m, b):

$$1 = mdc(m, b) = s \cdot m + t \cdot b \implies 1 \equiv t \times b \pmod{m}$$

O Algoritmo de Euclides Estendido

19/47

Considere o problema de achar $t \in \mathbb{Z}_m$ tal que $t \times b \equiv 1 \pmod{m}$.

Como dito, esse problema só tem solução se mdc(m, b) = 1. Aplicando o algoritmo em (m, b):

$$1 = mdc(m, b) = s \cdot m + t \cdot b \implies 1 \equiv t \times b \pmod{m}$$

Se quisermos achar $b^{-1} \in \mathbb{Z}_m$, basta tomar $t \mod m = b^{-1}$

Teorema de Euler e Teorema de Fermat

Teorema de Euler: sejam $n, a \in \mathbb{N}^*$ tais que mdc(a, n) = 1, temos:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Teorema de Euler: sejam $n, a \in \mathbb{N}^*$ tais que mdc(a, n) = 1, temos:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Teorema de Fermat (Corolário do Teorema de Euler): sejam $p, a \in \mathbb{N}^*$ tais que p é primo e mdc(a, p) = 1, temos:

$$a^{(p-1)} \equiv 1 \pmod{p}$$

Sumário

- Princípios de Criptografia de Chave Pública
- 2 Tópicos de Teoria dos Números RSA
- O Sistema RSA
- Tópicos de Teoria dos Números ElGamal
- O Sistema ElGama

O Sistema RSA

O criptossistema de chave pública mais conhecido é o sistema RSA ("Rivest-Shamir-Adleman"). Sua segurança é baseada no problema da fatoração de inteiros.

O Sistema RSA

O criptossistema de chave pública mais conhecido é o sistema RSA ("Rivest-Shamir-Adleman"). Sua segurança é baseada no problema da fatoração de inteiros.

Sejam Alice e Bob duas partes que desejam estabelecer uma comunicação segura, de forma que Bob possa enviar mensagens a Alice, face a um adversário, Eva. O Sistema RSA consiste em duas partes: a geração das chaves e a comunicação em si.

Geração de chaves em RSA

23/47

Geração de chaves em RSA

Alice deve, primeiramente, gerar um par de chaves

Alice gera aleatoriamente dois números primos secretos p e q. O produto N = pq é calculado

- Alice gera aleatoriamente dois números primos secretos $p \in q$. O produto N = pq é calculado
- ② Alice calcula $\phi(n)$. Como ela sabe a decomposição de N, temos $\phi(N) = (p-1)(q-1)$

- Alice gera aleatoriamente dois números primos secretos $p \in q$. O produto N = pq é calculado
- ② Alice calcula $\phi(n)$. Como ela sabe a decomposição de N, temos $\phi(N) = (p-1)(q-1)$
- Alice calcula um número (aleatório ou não) a tal que mdc(a, φ(N)) = 1

- Alice gera aleatoriamente dois números primos secretos $p \in q$. O produto N = pq é calculado
- ② Alice calcula $\phi(n)$. Como ela sabe a decomposição de N, temos $\phi(N) = (p-1)(q-1)$
- Alice calcula um número (aleatório ou não) a tal que mdc(a, φ(N)) = 1
- 4 Alice calcula b tal que $a \times b \equiv 1 \pmod{\phi(N)}$, usando o algoritmo de Euclides estendido (problema dos inversos)

- Alice gera aleatoriamente dois números primos secretos $p \in q$. O produto N = pq é calculado
- ② Alice calcula $\phi(n)$. Como ela sabe a decomposição de N, temos $\phi(N) = (p-1)(q-1)$
- Alice calcula um número (aleatório ou não) a tal que mdc(a, φ(N)) = 1
- 4 Alice calcula b tal que $a \times b \equiv 1 \pmod{\phi(N)}$, usando o algoritmo de Euclides estendido (problema dos inversos)
- Alice divulga a chave pública (N, a) e guarda a chave privada (p, q, b)

Troca de Mensagens em RSA

A troca de mensagens funciona da seguinte forma:

Troca de Mensagens em RSA

A troca de mensagens funciona da seguinte forma:

1 Bob, utilizando a chave pública (N, a) e um texto plano $x \in \mathbb{Z}_N$, gera uma mensagem cifrada $y = x^a \mod N$

Troca de Mensagens em RSA

A troca de mensagens funciona da seguinte forma:

- **1** Bob, utilizando a chave pública (N, a) e um texto plano $x \in \mathbb{Z}_N$, gera uma mensagem cifrada $y = x^a \mod N$
- ② Alice recebe a mensagem cifrada y, que é decodificada usando a chave privada $x' = y^b \mod N$

Geração de Chaves:

• Alice escolhe aleatoriamente dois primos: p = 7639 e q = 5981. Alice calcula N = pq = 45688859

- Alice escolhe aleatoriamente dois primos: p = 7639 e q = 5981. Alice calcula N = pq = 45688859
- ② Alice calcula $\phi(N) = (p-1)*(q-1) = 45675240$

- Alice escolhe aleatoriamente dois primos: p = 7639 e q = 5981. Alice calcula N = pq = 45688859
- ② Alice calcula $\phi(N) = (p-1)*(q-1) = 45675240$
- 3 Alice escolhe o número a = 17. Podemos ver que $mdc(a, \phi(N)) = 1$

- Alice escolhe aleatoriamente dois primos: p = 7639 e q = 5981. Alice calcula N = pq = 45688859
- ② Alice calcula $\phi(N) = (p-1)*(q-1) = 45675240$
- Alice escolhe o número a = 17. Podemos ver que mdc(a, φ(N)) = 1
- 4 Alice, com o algoritmo de Euclides estendido, calcula b = 16120673. Podemos verificar que $a \times b \equiv 1 \pmod{\phi(N)}$

25/47

- Alice escolhe aleatoriamente dois primos: p = 7639 e q = 5981. Alice calcula N = pq = 45688859
- ② Alice calcula $\phi(N) = (p-1)*(q-1) = 45675240$
- Alice escolhe o número a = 17. Podemos ver que mdc(a, φ(N)) = 1
- 4 Alice, com o algoritmo de Euclides estendido, calcula b = 16120673. Podemos verificar que $a \times b \equiv 1 \pmod{\phi(N)}$
- \bullet Alice publica (N, a) e guarda (p, q, b)

Comunicação:

Comunicação:

17 Bob deseja transmitir a mensagem "ITA". Temos $ITA \xrightarrow{ASCII,hex} 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, <math>x = 4805697$

Comunicação:

- **17** Bob deseja transmitir a mensagem "ITA". Temos *ITA* $\xrightarrow{ASCII,hex}$ 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, x=4805697
- 2 A mensagem que Bob envia é $y = x^a \mod N = 130102$

Comunicação:

- **17** Bob deseja transmitir a mensagem "ITA". Temos $ITA \xrightarrow{ASCII,hex} 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, <math>x = 4805697$
- 2 A mensagem que Bob envia é $y = x^a \mod N = 130102$
- 3 Alice recebe y e calcula $x = y^b \mod N = 4805697$. Fazendo o caminho inverso, temos $4805679 \rightarrow 0d4805697 \rightarrow 0x495441 \rightarrow 495441 \xrightarrow{ASCII}$ ITA

L. Mouta (ITA/ISAE) Criptografia May 13, 2022 26/47

Para provarmos que o sistema funciona, devemos mostrar que a mensagem x' encontrada por Alice é côngrua módulo N à mensagem enviada por Bob. Por construção, sabemos que:

Para provarmos que o sistema funciona, devemos mostrar que a mensagem x' encontrada por Alice é côngrua módulo N à mensagem enviada por Bob. Por construção, sabemos que:

$$\begin{cases} y \equiv x^a \pmod{N} \\ x' \equiv y^b \pmod{N} \end{cases} \implies x' \equiv x^{a \cdot b} \pmod{N}$$

Para provarmos que o sistema funciona, devemos mostrar que a mensagem x' encontrada por Alice é côngrua módulo N à mensagem enviada por Bob. Por construção, sabemos que:

$$\begin{cases} y \equiv x^a \pmod{N} \\ x' \equiv y^b \pmod{N} \end{cases} \implies x' \equiv x^{a \cdot b} \pmod{N}$$

Também sabemos que:

$$a \times b \equiv 1 \pmod{\phi(N)} \implies a \cdot b = 1 + k\phi(N)$$

Para provarmos que o sistema funciona, devemos mostrar que a mensagem x' encontrada por Alice é côngrua módulo N à mensagem enviada por Bob. Por construção, sabemos que:

$$\begin{cases} y \equiv x^a \pmod{N} \\ x' \equiv y^b \pmod{N} \end{cases} \implies x' \equiv x^{a \cdot b} \pmod{N}$$

Também sabemos que:

$$a \times b \equiv 1 \pmod{\phi(N)} \implies a \cdot b = 1 + k\phi(N)$$

Logo:

$$X' \equiv (X^{\phi(N)})^k X \pmod{N}$$

28/47

Se mdc(x, N) = 1, podemos aplicar o teorema de Euler:

$$X' \equiv (X^{\phi(N)})^k X \pmod{N} \implies X' \equiv X \pmod{N}$$

29/47

Já se
$$mdc(x, N) \neq 1 \implies x \equiv 0 \pmod{p} \lor x \equiv 0 \pmod{q}$$

29/47

Já se
$$mdc(x, N) \neq 1 \implies x \equiv 0 \pmod{p} \lor x \equiv 0 \pmod{q}$$

No caso onde a congruência é nula, temos que $x^{a \cdot b} \equiv x \pmod{p,q}$

Já se
$$mdc(x, N) \neq 1 \implies x \equiv 0 \pmod{p} \lor x \equiv 0 \pmod{q}$$

No caso onde a congruência é nula, temos que $x^{a \cdot b} \equiv x \pmod{p,q}$

Se a congruência não é nula, podemos aplicar o teorema de Fermat, já que $\phi(N)=(p-1)(q-1)$: $x^{k(p-1)(q-1)}x\equiv 1\pmod{p,q}$

29/47

Já se
$$mdc(x, N) \neq 1 \implies x \equiv 0 \pmod{p} \lor x \equiv 0 \pmod{q}$$

No caso onde a congruência é nula, temos que $x^{a \cdot b} \equiv x \pmod{p,q}$

Se a congruência não é nula, podemos aplicar o teorema de Fermat, já que $\phi(N)=(p-1)(q-1)$: $x^{k(p-1)(q-1)}x\equiv 1\pmod{p,q}$

Pelo teorema chinês do resto: $x' \equiv x \pmod{pq}$

Já se
$$mdc(x, N) \neq 1 \implies x \equiv 0 \pmod{p} \lor x \equiv 0 \pmod{q}$$

No caso onde a congruência é nula, temos que $x^{a \cdot b} \equiv x \pmod{p,q}$

Se a congruência não é nula, podemos aplicar o teorema de Fermat, já que $\phi(N)=(p-1)(q-1)$: $x^{k(p-1)(q-1)}x\equiv 1\pmod{p,q}$

Pelo teorema chinês do resto: $x' \equiv x \pmod{pq}$

Ou seja, não importando o caso: $x' \equiv x \pmod{N}$

Além disso, como há uma operação resto antes de x' e $x \in \mathbb{Z}_N$, temos mais que uma congruência: x' = x.

Prova de Segurança

Imagine que Eva quer realizar um ataque de tipo texto cifrado conhecido, captando a mensagem de Bob para Alice. O problema de Eva é achar a chave privada b tal que $a \times b \equiv 1 \pmod{\phi(N)}$. O que Eva não conhece é o valor de $\phi(N)$, que pode ser obtido de duas formas:

Prova de Segurança

Imagine que Eva quer realizar um ataque de tipo texto cifrado conhecido, captando a mensagem de Bob para Alice. O problema de Eva é achar a chave privada b tal que $a \times b \equiv 1 \pmod{\phi(N)}$. O que Eva não conhece é o valor de $\phi(N)$, que pode ser obtido de duas formas:

• Por enumeração simples, contando o número de elementos em \mathbb{Z}_N que são primos relativos a N (segurança computacional)

Prova de Segurança

Imagine que Eva quer realizar um ataque de tipo texto cifrado conhecido, captando a mensagem de Bob para Alice. O problema de Eva é achar a chave privada b tal que $a \times b \equiv 1 \pmod{\phi(N)}$. O que Eva não conhece é o valor de $\phi(N)$, que pode ser obtido de duas formas:

- Por enumeração simples, contando o número de elementos em \mathbb{Z}_N que são primos relativos a N (segurança computacional)
- Fatorando N em seus componentes primos e aplicando o teorema do cálculo de $\phi(N)$

Prova de Segurança

Imagine que Eva quer realizar um ataque de tipo texto cifrado conhecido, captando a mensagem de Bob para Alice. O problema de Eva é achar a chave privada b tal que $a \times b \equiv 1 \pmod{\phi(N)}$. O que Eva não conhece é o valor de $\phi(N)$, que pode ser obtido de duas formas:

- Por enumeração simples, contando o número de elementos em \mathbb{Z}_N que são primos relativos a N (segurança computacional)
- Fatorando N em seus componentes primos e aplicando o teorema do cálculo de $\phi(N)$

Podemos ver que quebrar o sistema RSA equivale a resolver o problema da fatoração de um inteiro, para o qual não conhecemos nenhum algoritmo clássico eficiente! (Atenção: não sabemos se não existe um!)

Curiosidade: o maior inteiro já fatorado continha 240 dígitos

O Sistema RSA é notoriamente complicado de se implementar e algumas falhas, que foram ignoradas, reduzem a sua segurança:

 Se a mensagem x e o número a forem pequenos, o problema se converte em uma simples extração da raiz a-ésima

- Se a mensagem x e o número a forem pequenos, o problema se converte em uma simples extração da raiz a-ésima
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada

- Se a mensagem x e o número a forem pequenos, o problema se converte em uma simples extração da raiz a-ésima
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Gerar os primos p e q aleatoriamente de forma segura e sem que eles contenham propriedades que facilitem a decomposição de N é um problema bastante complicado

- Se a mensagem x e o número a forem pequenos, o problema se converte em uma simples extração da raiz a-ésima
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Gerar os primos p e q aleatoriamente de forma segura e sem que eles contenham propriedades que facilitem a decomposição de N é um problema bastante complicado
- Em raros casos, não há uma injeção na função de criptografia

- Se a mensagem x e o número a forem pequenos, o problema se converte em uma simples extração da raiz a-ésima
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Gerar os primos p e q aleatoriamente de forma segura e sem que eles contenham propriedades que facilitem a decomposição de N é um problema bastante complicado
- Em raros casos, não há uma injeção na função de criptografia
- Um atacante pode testar a criptografia de diversas mensagens planas até chegar na que "bate"

- Se a mensagem x e o número a forem pequenos, o problema se converte em uma simples extração da raiz a-ésima
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Gerar os primos p e q aleatoriamente de forma segura e sem que eles contenham propriedades que facilitem a decomposição de N é um problema bastante complicado
- Em raros casos, não há uma injeção na função de criptografia
- Um atacante pode testar a criptografia de diversas mensagens planas até chegar na que "bate"
- Etc.

Definição formal do sistema RSA:

Seja N=pq, onde p e q são primos. Considere $\mathcal{P}=\mathcal{C}=\mathbb{Z}_N$. Defina o espaço de chaves \mathcal{K} como:

$$\mathcal{K} = \{ (N, p, q, a, b) | a \times b \equiv 1 \pmod{\phi(N)} \}$$

Para uma chave $K \in \mathcal{K}$, temos:

$$e_K(x) = x^a \mod N$$

$$d_K(y) = y^b \mod N$$

Onde $x \in \mathcal{P}, y \in \mathcal{C}$ são, respectivamente, a mensagem plana e a mensagem cifrada. Os valores (N, a) constituem a chave pública e os valores (p, q, b) são a chave privada.

Sumário

- Princípios de Criptografia de Chave Pública
- 2 Tópicos de Teoria dos Números RSA
- O Sistema RSA
- 4 Tópicos de Teoria dos Números ElGamal
- O Sistema ElGama

Introdução

Enquanto o sistema RSA se baseia na fatoração de inteiros, o sistema ElGamal é pautado em outro problema: o cálculo de logaritmos discretos.

Lembrete: Seja p um número primo, pode-se denotar $\mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}$ como o conjunto de todos os naturais menores que p e co-primos de p.

35/47

Lembrete: Seja p um número primo, pode-se denotar $\mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}$ como o conjunto de todos os naturais menores que p e co-primos de p.

O grupo \mathbb{Z}_p^* é um **grupo multiplicativo**. Além disso, também é um **grupo cíclico** pois existe pelo menos um elemento g do grupo tal que:

$$\{g^i \mod p, 1 \leq i \leq p-1\} = \mathbb{Z}_p^*$$

35/47

Lembrete: Seja p um número primo, pode-se denotar $\mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}$ como o conjunto de todos os naturais menores que p e co-primos de p.

O grupo \mathbb{Z}_p^* é um **grupo multiplicativo**. Além disso, também é um **grupo cíclico** pois existe pelo menos um elemento g do grupo tal que:

$$\{g^i \mod p, 1 \le i \le p-1\} = \mathbb{Z}_p^*$$

O elemento g é chamado um $\operatorname{\mathbf{gerador}}$ de \mathbb{Z}_p^*

Lembrete: Seja p um número primo, pode-se denotar $\mathbb{Z}_p^* = \{1, 2, 3, ..., p-1\}$ como o conjunto de todos os naturais menores que p e co-primos de p.

O grupo \mathbb{Z}_p^* é um **grupo multiplicativo**. Além disso, também é um **grupo cíclico** pois existe pelo menos um elemento g do grupo tal que:

$$\{g^i \mod p, 1 \leq i \leq p-1\} = \mathbb{Z}_p^*$$

O elemento g é chamado um **gerador** de \mathbb{Z}_p^*

Importante: o cálculo de g é um problema à parte. Apesar de não haver uma fórmula geral, ele é facilmente encontrável.

36/47

Segue-se o seguinte teorema:

Seja p um número primo tal que α é um gerador do conjunto \mathbb{Z}_p^* . Para qualquer $\beta \in \mathbb{Z}_p^*$, existe $x \in \mathbb{Z}_p^*$ tal que $\beta \equiv \alpha^x \pmod{p}$

Com base no teorema anterior, podemos definir o problema do logaritmo discreto:

Com base no teorema anterior, podemos definir o problema do logaritmo discreto:

Definimos $x = \log_{\alpha} \beta$ como o valor em \mathbb{Z}_p^* tal que $\alpha^x \equiv \beta \pmod{p}$

Com base no teorema anterior, podemos definir o problema do logaritmo discreto:

Definimos $x = \log_{\alpha} \beta$ como o valor em \mathbb{Z}_p^* tal que $\alpha^x \equiv \beta \pmod{p}$

Importante: não há nenhum algoritmo clássico conhecido que resolva o problema dos logaritmos discretos em tempo polinomial. Se p for grande o suficiente, o problema dos logaritmos discretos se torna intratável.

Sumário

- Princípios de Criptografia de Chave Pública
- 2 Tópicos de Teoria dos Números RSA
- O Sistema RSA
- Tópicos de Teoria dos Números ElGamal
- O Sistema ElGamal

O Sistema ElGamal

39/47

Definamos o criptossistema ElGamal. Sejam Alice e Bob duas partes que desejam estabelecer uma comunicação segura, de forma que Bob possa enviar mensagens a Alice, face a um adversário, Eva. O Sistema ElGamal consiste em duas partes: a geração das chaves e a comunicação em si.

Alice deve, primeiramente, gerar um par de chaves:

Alice deve, primeiramente, gerar um par de chaves:

• Alice gera, aleatoriamente, um número primo p suficientemente grande. Com esse número, Alice tem implicitamente o grupo \mathbb{Z}_p^* , do qual é escolhido um elemento gerador α

Alice deve, primeiramente, gerar um par de chaves:

- Alice gera, aleatoriamente, um número primo p suficientemente grande. Com esse número, Alice tem implicitamente o grupo \mathbb{Z}_p^* , do qual é escolhido um elemento gerador α
- ② Alice escolhe aleatoriamente um elemento a do conjunto \mathbb{Z}_p^* e calcula $\beta = \alpha^a \mod p$

Alice deve, primeiramente, gerar um par de chaves:

- Alice gera, aleatoriamente, um número primo p suficientemente grande. Com esse número, Alice tem implicitamente o grupo \mathbb{Z}_p^* , do qual é escolhido um elemento gerador α
- ② Alice escolhe aleatoriamente um elemento a do conjunto \mathbb{Z}_p^* e calcula $\beta = \alpha^a \mod p$
- **3** Alice publica a chave (p, α, β) e guarda para si a chave privada a

A troca de mensagens funciona da seguinte forma:

1 Bob, que agora conhece a chave pública (p, α, β) , gera um texto plano $x \in \mathbb{Z}_p^*$

- ① Bob, que agora conhece a chave pública (p, α, β) , gera um texto plano $x \in \mathbb{Z}_p^*$
- ② Bob escolhe um elemento aleatório $k \in \mathbb{Z}_p^*$

- Bob, que agora conhece a chave pública (p, α, β) , gera um texto plano $x \in \mathbb{Z}_p^*$
- **2** Bob escolhe um elemento aleatório $k \in \mathbb{Z}_p^*$
- **3** Bob gera a primeira parte da mensagem cifrada $y_1 = \alpha^k \mod p$

- Bob, que agora conhece a chave pública (p, α, β) , gera um texto plano $x \in \mathbb{Z}_p^*$
- **3** Bob escolhe um elemento aleatório $k \in \mathbb{Z}_p^*$
- **1** Bob gera a primeira parte da mensagem cifrada $y_1 = \alpha^k \mod p$
- **9** Bob gera a segunda parte da mensagem cifrada $y_2 = x \cdot \beta^k \mod p$

- Bob, que agora conhece a chave pública (p, α, β) , gera um texto plano $x \in \mathbb{Z}_p^*$
- ② Bob escolhe um elemento aleatório $k \in \mathbb{Z}_p^*$
- **1** Bob gera a primeira parte da mensagem cifrada $y_1 = \alpha^k \mod p$
- Bob gera a segunda parte da mensagem cifrada $y_2 = x \cdot \beta^k$ mod p
- **5** Bob envia a mensagem (y_1, y_2)

- Bob, que agora conhece a chave pública (p, α, β) , gera um texto plano $x \in \mathbb{Z}_p^*$
- ② Bob escolhe um elemento aleatório $k \in \mathbb{Z}_p^*$
- **1** Bob gera a primeira parte da mensagem cifrada $y_1 = \alpha^k \mod p$
- Bob gera a segunda parte da mensagem cifrada $y_2 = x \cdot \beta^k$ mod p
- **5** Bob envia a mensagem (y_1, y_2)

Exemplo ElGamal

42/47

Geração de Chaves:

Exemplo ElGamal

Geração de Chaves:

1 Alice escolhe aleatoriamente um primo p = 345553971. O valor $\alpha = 2121$ é um gerador desse grupo

Geração de Chaves:

- Alice escolhe aleatoriamente um primo p=345553971. O valor $\alpha=2121$ é um gerador desse grupo
- 2 Alice escolhe a=31221. Temos $\beta=\alpha^a \mod p=27866523$

Geração de Chaves:

- Alice escolhe aleatoriamente um primo p = 345553971. O valor $\alpha = 2121$ é um gerador desse grupo
- ② Alice escolhe a=31221. Temos $\beta=\alpha^a \mod p=27866523$
- **3** Alice publica (p, α, β) e guarda *a*

Comunicação:

43/47

Comunicação:

17 Bob deseja transmitir a mensagem "ITA". Temos *ITA* $\xrightarrow{ASCII,hex}$ 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, x=4805697

- **1** Bob deseja transmitir a mensagem "ITA". Temos *ITA* $\xrightarrow{ASCII,hex}$ 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, x=4805697
- 2 Bob escolhe aleatoriamente k = 21

- **17** Bob deseja transmitir a mensagem "ITA". Temos *ITA* $\xrightarrow{ASCII,hex}$ 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, x = 4805697
- 2 Bob escolhe aleatoriamente k = 21
- **3** Bob gera $y_1 = \alpha^k \mod p = 24780864$, a primeira parte da mensagem

- **17** Bob deseja transmitir a mensagem "ITA". Temos *ITA* $\xrightarrow{ASCII,hex}$ 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, x=4805697
- 2 Bob escolhe aleatoriamente k = 21
- **3** Bob gera $y_1 = \alpha^k \mod p = 24780864$, a primeira parte da mensagem
- 4 Bob calcula $y_2 = x \cdot \beta^k \mod p = 18310053$, a segunda parte da mensagem cifrada

- **17** Bob deseja transmitir a mensagem "ITA". Temos *ITA* $\xrightarrow{ASCII,hex}$ 49 54 41 \rightarrow 0x495441 \rightarrow 0d4805697. Logo, x = 4805697
- 2 Bob escolhe aleatoriamente k = 21
- **3** Bob gera $y_1 = \alpha^k \mod p = 24780864$, a primeira parte da mensagem
- 4 Bob calcula $y_2 = x \cdot \beta^k \mod p = 18310053$, a segunda parte da mensagem cifrada
- **5** Bob envia a mensagem (y_1, y_2)

- 2 Bob escolhe aleatoriamente k = 21
- **3** Bob gera $y_1 = \alpha^k \mod p = 24780864$, a primeira parte da mensagem
- 4 Bob calcula $y_2 = x \cdot \beta^k \mod p = 18310053$, a segunda parte da mensagem cifrada
- **1** Bob envia a mensagem (y_1, y_2)
- **⑤** Alice recebe (y_1, y_2) e calcula $x' = y_2(y_1^a)^{-1} \mod p = 4805697$. Fazendo o caminho inverso, temos $4805679 \rightarrow 0d4805697 \rightarrow 0x495441 \rightarrow 495441 \xrightarrow{ASCII} ITA$

Prova de Funcionamento

Devemos provar que $x' \equiv x \pmod{p}$ para mostrar que o sistema funciona. Da mensagem recebida, temos:

$$X' \equiv y_2(y_1^a)^{-1} \pmod{p} \implies X' \equiv X \cdot \beta^k (\alpha^{a \cdot k})^{-1} \pmod{p}$$

Prova de Funcionamento

Devemos provar que $x' \equiv x \pmod{p}$ para mostrar que o sistema funciona. Da mensagem recebida, temos:

$$X' \equiv y_2(y_1^a)^{-1} \pmod{p} \implies X' \equiv X \cdot \beta^k (\alpha^{a \cdot k})^{-1} \pmod{p}$$

Porém, por construção: $\alpha^a \equiv \beta \pmod{p}$. Logo:

Devemos provar que $x' \equiv x \pmod{p}$ para mostrar que o sistema funciona. Da mensagem recebida, temos:

$$x' \equiv y_2(y_1^a)^{-1} \pmod{p} \implies x' \equiv x \cdot \beta^k(\alpha^{a \cdot k})^{-1} \pmod{p}$$

Porém, por construção: $\alpha^a \equiv \beta \pmod{p}$. Logo:

$$X' \equiv X \cdot \beta^k (\beta^k)^{-1} \pmod{p} \implies X' \equiv X \pmod{p}$$

Devemos provar que $x' \equiv x \pmod{p}$ para mostrar que o sistema funciona. Da mensagem recebida, temos:

$$x' \equiv y_2(y_1^a)^{-1} \pmod{p} \implies x' \equiv x \cdot \beta^k(\alpha^{a \cdot k})^{-1} \pmod{p}$$

Porém, por construção: $\alpha^a \equiv \beta \pmod{p}$. Logo:

$$x' \equiv x \cdot \beta^k (\beta^k)^{-1} \pmod{p} \implies x' \equiv x \pmod{p}$$

Além disso, como há uma operação resto antes de x' e $x \in \mathbb{Z}_p^*$, temos mais que uma congruência: x' = x.

Prova de Segurança

Imagine que Eva quer realizar um ataque de tipo texto cifrado conhecido, captando a mensagem de Bob para Alice. O problema de Eva é achar a chave privada a tal que $\alpha^a \equiv \beta \pmod{p}$.

Prova de Segurança

Imagine que Eva quer realizar um ataque de tipo texto cifrado conhecido, captando a mensagem de Bob para Alice. O problema de Eva é achar a chave privada a tal que $\alpha^a \equiv \beta \pmod{p}$.

Podemos ver que quebrar o sistema ElGamal corresponde a resolver o problema do logaritmo discreto, considerado intratável. O sistema é seguro!

O Sistema ElGamal também é notoriamente complicado de se implementar e algumas falhas, que foram ignoradas, reduzem a sua segurança:

• Se o gerador α for pequeno e o primo p for grande, o logaritmo discreto pode se converter em um logaritmo normal

- Se o gerador α for pequeno e o primo p for grande, o logaritmo discreto pode se converter em um logaritmo normal
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada

- Se o gerador α for pequeno e o primo p for grande, o logaritmo discreto pode se converter em um logaritmo normal
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Se a chave a for pequena, ela pode ser descoberta por tentativa e erro

- Se o gerador α for pequeno e o primo p for grande, o logaritmo discreto pode se converter em um logaritmo normal
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Se a chave a for pequena, ela pode ser descoberta por tentativa e erro
- Em raros casos, não há uma injeção na função de criptografia

- Se o gerador α for pequeno e o primo p for grande, o logaritmo discreto pode se converter em um logaritmo normal
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Se a chave a for pequena, ela pode ser descoberta por tentativa e erro
- Em raros casos, não há uma injeção na função de criptografia
- Um atacante pode testar a criptografia de diversas mensagens planas até chegar na que "bate"

- Se o gerador α for pequeno e o primo p for grande, o logaritmo discreto pode se converter em um logaritmo normal
- Um adversário ativo pode alterar as mensagens enviadas por Bob sem que Alice perceba, sem que para isso ele precise descobrir a chave provada
- Se a chave a for pequena, ela pode ser descoberta por tentativa e erro
- Em raros casos, não há uma injeção na função de criptografia
- Um atacante pode testar a criptografia de diversas mensagens planas até chegar na que "bate"
- Etc.

Formalização

Definição formal do sistema ElGamal:

Seja p um primo grande o suficiente para que o problema do logaritmo discreto em \mathbb{Z}_p^* seja intratável. Seja α um elemento gerador em \mathbb{Z}_p^* . Considere $\mathcal{P} = \mathbb{Z}_p^* \in \mathcal{C} = \mathbb{Z}_p^* \times \mathbb{Z}_p^*$. Defina o espaço de chaves \mathcal{K} como:

$$\mathcal{K} = \{ (\mathbf{p}, \alpha, \mathbf{a}, \beta) | \beta \equiv \alpha^{\mathbf{a}} \pmod{\mathbf{p}} \}$$

Para uma chave $K \in \mathcal{K}$ e um número secreto $k \in \mathbb{Z}_p^*$, temos:

$$e_K(x, k) = (y_1, y_2)|y_1 = \alpha^k \mod p, \ y_2 = x\beta^k \mod p$$

$$d_K(y_1, y_2) = y_2(y_1^a)^{-1} \mod p$$

Onde $x \in \mathcal{P}, (y_1, y_2) \in \mathcal{C}$ são, respectivamente, a mensagem plana e a mensagem cifrada. Os valores (p, α, β) constituem a chave pública e o valor a é a chave privada.