МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1
по дисциплине «Качество и метрология программного обеспечения»
Тема: Расчет метрических характеристик качества разработки
программ по метрикам Холстеда

Студент гр. 8304	Алтухов А.Д.
Преподаватель	Ефремов М.А

Санкт-Петербург

2022

Цель работы.

Изучить метрические характеристики качества разработки программ на основе метрик Холстеда для программ на Pascal, С и ассемблере.

Ход выполнения.

Был выбран вариант 1 — численное интегрирование методом Симпсона. Исходный код представлен в Приложении А. Для этой программы был произведен вручную расчет операторов и операндов. Результат представлен в таблице 1.

Таблица 1. Ручной расчет операторов и операндов в программе на Pascal.

№	Оператор	Количество	№	Операнд	Количество
1	;	28	1	tol	2
2	:=	20	2	sum	7
3	()	22	3	upper	6
4	begin end	5	4	lower	8
5	repeat until	1	5	Х	4
6	for to do	1	6	fx	1
7	fx	8	7	dfx	1
8	dfx	2	8	i	2
9	simps	1	9	delta_x	7
10	abs	2	10	even_sum	4
11	and	1	11	odd_sum	7
12	+	9	12	end_sum	3
13	-	8	13	end_cor	2
14	*	11	14	sum1	3

15	/	7	15	pieces	6
16	div	1	16	1.0E-6	1
17	<>	1	17	2	7
18	<=	1	18	0	2
19	function fx	1	19	4	1
20	function dfx	1	20	3	1
21	procedure	1	21	1	3
	simps				
22	exp	2	22	7	1
			23	9	1
			24	14	1
			25	15	1
			26	16	1

Далее был произведен расчет измеримых характеристик этой программы. Полученный результат представлен в таблице 2.

Таблица 2. Ручное определение измеримых характеристик программы на Pascal.

Характеристика	Формула	Значение
Число уникальных операторов	η_1	22
Число уникальных операндов	η_2	26
Число всех операторов	N_1	134
Число всех операндов	N_2	83
Словарь программы	$\eta_1 = \eta_1 + \eta_2$	48

Длина программы	$N = N_1 + N_2$	217

Далее были произведены расчеты для получения расчетных характеристик. Результаты представлены в таблице 3. Для расчетов значение коэффициента Стауда S принято 10, значение η_2^* принято 4, так как процедура simps принимает 4 параметра, из которых в один записывается возвращаемое значение.

Таблица 3. Ручное определение расчетных характеристик программы на Pascal.

Характеристика	Формула	Значение
Теоретическая оценка	$\check{N}=\eta_1log_2\eta_1+\eta_2log_2\eta_2$	220,32
длины программы		
Реальный объём	$V = N \log_2 \eta_2$	1020
Потенциальный объём		15,51
	$V^* = (2 + \eta_2^*) \log_2(2 + \eta_2^*)$	
Уровень программы	L=V*/V	0,015
Интеллектуальное	$I=2\eta_2/(\eta_1N_2)(N_1+N_2)\log_2(\eta_1)$	34,51
содержание программы	$+\eta_2)$	
Работа программиста	E=V/L	68000
Время	T=E/S	6800
программирования		
Уровень языка	$\lambda = LV^*$	0,233
Ожидаемое число	$B=(V^*)^2/(1000\lambda)$	1,03
ошибок		

С помощью программы автоматизации расчета метрик Холстеда были подсчитаны операторы и операнды в программе на Pascal, определены измеримые характеристики программы на Pascal, определены расчетные характеристики программы на Pascal.

Таблица 4. Программный расчет операторов и операндов в программе на Pascal.

№	Оператор	Количество	No	Операнд	Количество
1	()	23	1	0	2
2	*	11	2	1	3
3	+	9	3	1.0E-6	1
4	-	8	4	14	1
5	/	8	5	15	1
6	;	44	6	16	1
7	<=	1	7	2	7
8	\Leftrightarrow	1	8	3	1
9	=	20	9	4	1
10	abs	2	10	7	1
11	and	1	11	9	1
12	const	1	12	delta_x	8
13	dfx	3	13	dfx	1
14	exp	2	14	end_cor	3
15	for	1	15	end_sum	4
16	fx	5	16	even_sum	5
17	program	1	17	fx	1

18	real	2	18	i	2
19	repeat	1	19	lower	10
20	simps	2	20	odd_sum	8
			21	pieces	7
			22	simp1	1
			23	sum	9
			24	sum1	4
			25	tol	4
			26	upper	8
			27	X	7

 Таблица 5. Программное определение измеримых характеристик

 программы на Pascal.

Характеристика	Формула	Значение
Число уникальных операторов	η_1	20
Число уникальных операндов	η_2	27
Число всех операторов	N_1	146
Число всех операндов	N_2	102
Словарь программы	$\eta_1 = \eta_1 + \eta_2$	47
Длина программы	$N = N_1 + N_2$	248

Таблица 6. Программное определение расчетных характеристик программы на Pascal.

Характеристика	Формула	Значение
----------------	---------	----------

Теоретическая оценка длины программы	$\check{N} = \eta_1 log_2 \eta_1 + \eta_2 log_2 \eta_2$	214.821
Реальный объём	$V = N \log_2 \eta_2$	1377,54
Потенциальный объём		15,51
	$V^* = (2 + \eta_2^*) \log_2(2 + \eta_2^*)$	
Уровень программы	L=V*/V	0.011
Интеллектуальное	$I=2\eta_2/(\eta_1N_2)(N_1+N_2)log_2(\eta_1)$	36,46
содержание программы	$+\eta_2)$	
Работа программиста	E=V/L	122349
Время	T=E/S	12234,9
программирования		
Уровень языка	$\lambda = LV^*$	0,175
Ожидаемое число ошибок	$B=(V^*)^2/(1000\lambda)$	0,82

На основе программы на языке Pascal была написана аналогичная программа на языке C.

Результат работы программы на С представлен в приложении Б. Код программы представлен в приложении В. Для этой программы был произведен ручной расчет операторов и операндов. Результат представлен в таблице 7.

Таблица 7. Ручной расчет операторов и операндов в программе на С.

No॒	Оператор	Количество	№	Операнд	Количество
1	;	27	1	tol	2
2	=	19	2	sum	8

3	()	22	3	upper	6
4	{}	6	4	lower	8
5	+	9	5	X	4
6	-	8	6	i	2
7	*	17	7	delta_x	7
8	/	8	8	even_sum	4
9	++	1	9	odd_sum	7
10	&	1	10	end_sum	3
11	&&	1	11	end_cor	2
12	<=	2	12	sum1	3
13	!=	1	13	pieces	6
14	fx	4	14	1.0E-6	1
15	dfx	2	15	2	7
16	exp	2	16	0	4
17	fabs	2	17	4	1
18	simps	1	18	3	1
19	do while	1	19	1	3
20	for	1	20	7	1
21	return	3	21	9	1
22	double fx	1	22	14	1
23	double dfx	1	23	15	1
24	double simps	1	24	16	1
25	int main	1			

Далее был произведен расчет измеримых характеристик этой программы. Полученный результат представлен в таблице 8.

Таблица 8. Ручное определение измеримых характеристик программы на C.

Характеристика	Формула	Значение
Число уникальных операторов	η_1	25
Число уникальных операндов	η_2	24
Число всех операторов	N_1	142
Число всех операндов	N_2	84
Словарь программы	$\eta = \eta_1 + \eta_2$	49
Длина программы	$N = N_1 + N_2$	226

Далее были произведены расчеты для получения расчетных характеристик. Результаты представлены в таблице 9. Для расчетов значение коэффициента Стауда S принято 10, значение η_2^* принято 4, так как функция simps принимает 4 параметра, из которых в один записывается возвращаемое значение.

Таблица 9. Ручное определение расчетных характеристик программы на C.

Характеристика	Формула	Значение
Теоретическая оценка	$\check{N} = \eta_1 log_2 \eta_1 + \eta_2 log_2 \eta_2$	226,14
длины программы		
Реальный объём	$V = N \log_2 \eta$	1268,92
Потенциальный объём		15,51
	$V^*=(2+\eta_2^*)\log_2(2+\eta_2^*)$	

Уровень программы	L=V*/V	0,012
Интеллектуальное	$I=2\eta_2/(\eta_1N_2)(N_1+N_2)\log_2(\eta_1)$	29
содержание программы	$+\eta_2)$	
Работа программиста	E=V/L	105743,3
Время	T=E/S	10574,33
программирования		
Уровень языка	$\lambda = LV^*$	0,186
Ожидаемое число	$B=(V^*)^2/(1000\lambda)$	1,3
ошибок		

С помощью программы автоматизации расчета метрик Холстеда были подсчитаны операторы и операнды в программе на С, определены измеримые характеристики программы на С, определены расчетные характеристики программы на С. Результаты представлены в таблице 10, 11, 12.

Таблица 10. Программный расчет операторов и операндов в программе на C.

No	Оператор	Количество	№	Операнд	Количество
1	!=	1	1	0	4
2	&&	1	2	1	3
3	()	15	3	1.0E-6	1
4	*	11	4	14	1
5	+	9	5	15	1
6	++	1	6	16	1
7	,	6	7	2	7
8	-	5	8	3	1

9	/	8	9	4	1
10	;	30	10	7	1
11	<=	2	11	9	1
12	=	20	12	delta_x	7
13	_&	1	13	end_cor	2
14	_*	6	14	end_sum	3
15		3	15	even_sum	4
16	*	1	16	i	4
17	dfx	3	17	lower	9
18	dowhile	1	18	odd_sum	7
19	exp	2	19	pieces	6
20	fabs	2	20	sum	9
21	for	1	21	sum1	4
22	fx	5	22	tol	4
23	1	main	23	upper	7
24	return	3	24	X	7
25	simps	2			

 Таблица 11. Программное определение измеримых характеристик

 программы на С.

Характеристика	Формула	Значение
Число уникальных операторов	η_1	25
Число уникальных операндов	η_2	24

Число всех операторов	N_1	140
Число всех операндов	N_2	95
Словарь программы	$\eta_1 = \eta_1 + \eta_2$	49
Длина программы	$N = N_1 + N_2$	235

Таблица 12. Программное определение расчетных характеристик программы на C.

Характеристика	Формула	Значение
Теоретическая оценка	$\check{N}=\eta_1log_2\eta_1+\eta_2log_2\eta_2$	226,136
длины программы		
Реальный объём	$V = N \log_2 \eta$	1319,46
Потенциальный объём		15,51
	$V^* = (2 + \eta_2^*) \log_2(2 + \eta_2^*)$	
Уровень программы	L=V*/V	0,012
Интеллектуальное	$I=2\eta_2/(\eta_1N_2)(N_1+N_2)log_2(\eta_1)$	26,7
содержание программы	$+\eta_2)$	
Работа программиста	E=V/L	112250
Время	T=E/S	11225
программирования		
Уровень языка	$\lambda = LV^*$	0.18
Ожидаемое число	$B=(V^*)^2/(1000\lambda)$	0.8
ошибок		

С помощью команды:

gcc -S C.c -masm=intel -fno-asynchronous-unwind-tables

Получен ассемблерный код этой программы. В полученном коде удалены комментарии и отладочные директивы. Ассемблерный код представлен в приложении Г. Для ассемблерной программы был произведен ручной расчет операторов и операндов. Результат представлен в таблице 13.

 Таблица 13. Ручной расчет операторов и операндов в программе на ассемблере.

№	Оператор	Количест	№	Операнд	Количес
		ВО			тво
1	endbr64	4	1	rbp	8
2	push	4	2	rsp	8
3	mov	28	3	16	2
4	sub	5	4	QWORD PTR -8[rbp]	4
5	movsd	53	5	xmm0	91
6	movq	12	6	xmm1	38
7	xorpd	3	7	QWORD PTR .LC0[rip]	3
8	divsd	7	8	QWORD PTR .LC1[rip]	3
9	call exp@PLT	2	9	112	1
10	leave	4	10	QWORD PTR -72[rbp]	6
11	ret	4	11	QWORD PTR -80[rbp]	4
12	cvtsi2sd	3	12	QWORD PTR -88[rbp]	1
13	addsd	9	13	QWORD PTR -96[rbp]	6
14	call fx	4	14	DWORD PTR -64[rbp]	4
15	pxor	3	15	xmm2	8
16	call dfx	2	16	rdi	2

17	movapd	3	17	2	1
18	mulsd	9	18	QWORD PTR -40[rbp]	5
19	subsd	4	19	rax	24
20	sal	1	20	QWORD PTR -56[rbp]	4
21	jmp .L6	1	21	QWORD PTR -48[rbp]	2
22	add	3	22	QWORD PTR -104[rbp]	2
23	shr	1	23	QWORD PTR -32[rbp]	2
24	sar	1	24	xmm3	3
25	cmp	1	25	QWORD PTR -24[rbp]	2
26	jle .L7	1	26	QWORD PTR .LC3[rip]	1
27	ucomisd	2	27	QWORD PTR .LC4[rip]	1
28	jp .L11	1	28	QWORD PTR [rax]	4
29	je .L8	1	29	QWORD PTR -16[rbp]	4
30	andpd	2	30	DWORD PTR -60[rbp]	1
31	comisd	1	31	1	3
32	jnb .L10	1	32	eax	13
33	nop	1	33	QWORD PTR -8[rbp]	4
34	xor	2	34	edx	3
35	call simps	1	35	31	1
36	je .L14	1	36	QWORD PTR .LC5[rip]	1
			37	QWORD PTR .LC6[rip]	1
			38	QWORD PTR .LC7[rip]	1
			39	QWORD PTR .LC8[rip]	1
			40	QWORD PTR .LC9[rip]	1

	41	32	1
	42	QWORD PTR fs:40	2
	43	QWORD PTR .LC10[rip]	1
	44	QWORD PTR .LC11[rip]	1
	45	QWORD PTR .LC12[rip]	1
	46	-32[rbp]	3
	47	rdx	2
	48	0	1
	49	rcx	2

Далее был произведен расчет измеримых характеристик этой программы. Полученный результат представлен в таблице 14.

 Таблица 14. Ручное определение измеримых характеристик программы

 на ассемблере.

Характеристика	Формула	Значение
Число уникальных операторов	η_1	36
Число уникальных операндов	η_2	49
Число всех операторов	N_1	185
Число всех операндов	N_2	288
Словарь программы	$\eta_1 = \eta_1 + \eta_2$	85
Длина программы	$N = N_1 + N_2$	473

Далее были произведены расчеты для получения расчетных характеристик. Результаты представлены в таблице 15. Для расчетов значение коэффициента Стауда S принято 10.

 Таблица 15. Ручное определение расчетных характеристик программы

 на ассемблере.

Характеристика	Формула	Значение
Теоретическая оценка	$\check{N}=\eta_1log_2\eta_1+\eta_2log_2\eta_2$	461,24
длины программы		
Реальный объём	$V = N \log_2 \eta$	3031,64
Потенциальный объём		15,51
	$V^* = (2 + \eta_2^*) \log_2(2 + \eta_2^*)$	
Уровень программы	L=V*/V	0,005
Интеллектуальное	$I=2\eta_2/(\eta_1N_2)(N_1+N_2)log_2(\eta_1)$	28,66
содержание программы	$+\eta_2)$	
Работа программиста	E=V/L	606328
Время	T=E/S	60632,8
программирования		
Уровень языка	$\lambda = LV^*$	0,078
Ожидаемое число	$B=(V^*)^2/(1000\lambda)$	3,08
ошибок		

В таблице 16 приведена сводная характеристика расчётов для трёх языков (Паскаль, Си, Ассемблер):

Таблица 16 - Сводная таблица расчётов по трём языкам

Характеристика	Паскаль	Си	Ассемблер
Число уникальных	22	25	36
операторов			
Число уникальных	26	24	49

операндов			
Число всех	134	142	185
операторов			
Число всех	83	84	288
операндов			
Словарь	48	49	85
программы			
Длина программы	217	226	473
Теоретическая	220,32	226,14	461,24
оценка длины			
программы			
Реальный объём	1020	1268,92	3031,64
Потенциальный	15,51	15,51	15,51
объём			
Уровень	0,015	0,012	0,005
программы			
Интеллектуальное	34,51	29	28,66
содержание			
программы			
Работа	68000	105743,3	606328
программиста			
Время	6800	10574,33	60632,8
программирования			
Уровень языка	0,233	0,186	0,078
Ожидаемое число	1,03	1,3	3,08
ошибок			

Выводы.

В ходе выполнения лабораторной работы были изучены метрические характеристики качества разработки программ на основе метрик Холстеда. В результате были вручную рассчитаны метрики Холстеда для программ на Pascal, С и ассемблере, аналогичные расчёты были произведены с помощью специальных программ автоматизации расчёта для языков Pascal и С. На основе полученных характеристик было установлено, что программа на ассемблере обладает гораздо большим объёмом и, следовательно, требует гораздо больше времени для написания, что также увеличивает число потенциальных ошибок в ней.

Приложение А.

```
program simp1;
{ integration by Simpson's method }
                      = 1.0E-6;
const tol
       sum,upper,lower
var
                             : real;
function fx(x: real): real;
begin
 fx := exp(-x / 2)
end;
       { function fx }
function dfx(x: real): real;
begin
 dfx := -(exp(-x / 2)) / 2
end;
       { function fx }
procedure simps(
              lower,upper,tol
                                     : real;
               var sum
                                     : real);
{ numerical integration by Simpson's rule }
{ function is fx, limits are lower and upper }
{ with number of regions equal to pieces }
{ partition is delta_x, answer is sum }
       i
                      : integer;
var
       x,delta_x,even_sum,
       odd_sum,end_sum,
       end_cor,sum1 : real;
       pieces
                      : integer;
begin
 pieces := 2;
 delta_x := (upper-lower) / pieces;
 odd_sum := fx(lower+delta_x);
```

```
even_sum := 0;
 end\_sum := fx(lower) + fx(upper);
 end\_cor := dfx(lower)-dfx(upper);
 sum := (end_sum + 4*odd_sum)*delta_x / 3;
 repeat
  pieces := pieces*2;
  sum1 := sum;
  delta_x := (upper-lower) / pieces;
  even_sum := even_sum+odd_sum;
  odd_sum := 0;
  for i := 1 to pieces div 2 do
   begin
       x := lower + delta_x*(2*i-1);
       odd_sum := odd_sum + fx(x)
   end;
  sum := (7*end\_sum+14*even\_sum+16*odd\_sum)
                            +end_cor*delta_x)*delta_x / 15;
 until (sum<>sum1) and (abs(sum-sum1)<=abs(tol*sum))
       { simps }
end;
begin
              { main program }
 lower := 1;
 upper := 9;
 simps(lower,upper,tol,sum);
end.
```

Приложение Б.

```
area= 1.190732
...Program finished with exit code 0
Press ENTER to exit console.
```

Приложение В.

```
#include <stdio.h>
#include <math.h>
const double tol = 1.0E-6;
double fx(double x) {
  return \exp(-x/2);
}
double dfx(double x) {
  return -(\exp(-x/2))/2;
}
double simps(double lower, double upper, double tol, double* sum) {
  int pieces=2;
  double delta_x=(upper-lower) / pieces;
  double odd_sum = fx(lower+delta_x);
  double even_sum =0;
  double end_sum =fx(lower)+fx(upper);
  double end_cor =dfx(lower)-dfx(upper);
  *sum=(end_sum+4*odd_sum)*delta_x / 3;
  double sum1;
  double x;
  do
  {
    pieces=pieces*2;
```

```
sum1=*sum;
    delta_x=(upper-lower) / pieces;
    even_sum=even_sum+odd_sum;
    odd_sum=0;
    for (int i=1; i \le pieces / 2; i++) {
          x=lower+delta_x*(2*i-1);
          odd_sum=odd_sum+fx(x);
    }
    *sum=(7*end_sum+14*even_sum+16*odd_sum+end_cor*delta_x)*delta_x /
15;
  } while ( (*sum != sum1) && (fabs(*sum-sum1) <= fabs(tol*(*sum))) );
}
int main()
{
  double lower=1;
  double upper=9;
  double sum = 0;
  simps(lower,upper,tol,&sum);
  return 0;
}
```

Приложение Г.

```
fx:
    endbr64
    push
         rbp
    mov
          rbp, rsp
    sub
         rsp, 16
   movsd QWORD PTR -8[rbp], xmm0
    movsd xmm0, QWORD PTR -8[rbp]
    movq xmm1, QWORD PTR .LC0[rip]
    xorpd xmm0, xmm1
   movsd xmm1, QWORD PTR .LC1[rip]
    divsd xmm0, xmm1
    call exp@PLT
    leave
    ret
    .size fx, .-fx
    .globl dfx
    .type dfx, @function
dfx:
    endbr64
    push rbp
         rbp, rsp
    mov
         rsp, 16
    sub
    movsd QWORD PTR -8[rbp], xmm0
   movsd xmm0, QWORD PTR -8[rbp]
   movq xmm1, QWORD PTR .LC0[rip]
    xorpd xmm0, xmm1
    movsd xmm1, QWORD PTR .LC1[rip]
    divsd xmm0, xmm1
```

```
call exp@PLT
    movq xmm1, QWORD PTR .LC0[rip]
    xorpd xmm0, xmm1
    movsd xmm1, QWORD PTR .LC1[rip]
    divsd xmm0, xmm1
    leave
    ret
    .size dfx, .-dfx
    .globl simps
    .type simps, @function
simps:
    endbr64
    push
         rbp
    mov
          rbp, rsp
         rsp, 112
    sub
    movsd QWORD PTR -72[rbp], xmm0
    movsd QWORD PTR -80[rbp], xmm1
    movsd QWORD PTR -88[rbp], xmm2
          QWORD PTR -96[rbp], rdi
    mov
          DWORD PTR -64[rbp], 2
    mov
    movsd xmm0, QWORD PTR -80[rbp]
   subsd xmm0, QWORD PTR -72[rbp]
    cvtsi2sd
              xmm1, DWORD PTR -64[rbp]
    divsd xmm0, xmm1
   movsd QWORD PTR -40[rbp], xmm0
    movsd xmm0, QWORD PTR -72[rbp]
    addsd xmm0, QWORD PTR -40[rbp]
    call fx
    movq rax, xmm0
          QWORD PTR -56[rbp], rax
    mov
```

pxor xmm0, xmm0

movsd QWORD PTR -48[rbp], xmm0

mov rax, QWORD PTR -72[rbp]

movq xmm0, rax

call fx

movsd QWORD PTR -104[rbp], xmm0

mov rax, QWORD PTR -80[rbp]

movq xmm0, rax

call fx

addsd xmm0, QWORD PTR -104[rbp]

movsd QWORD PTR -32[rbp], xmm0

mov rax, QWORD PTR -72[rbp]

movq xmm0, rax

call dfx

movsd QWORD PTR -104[rbp], xmm0

mov rax, QWORD PTR -80[rbp]

movq xmm0, rax

call dfx

movsd xmm3, QWORD PTR -104[rbp]

subsd xmm3, xmm0

movapd xmm0, xmm3

movsd QWORD PTR -24[rbp], xmm0

movsd xmm1, QWORD PTR -56[rbp]

movsd xmm0, QWORD PTR .LC3[rip]

mulsd xmm0, xmm1

addsd xmm0, QWORD PTR -32[rbp]

mulsd xmm0, QWORD PTR -40[rbp]

movsd xmm1, QWORD PTR .LC4[rip]

divsd xmm0, xmm1

mov rax, QWORD PTR -96[rbp]

movsd QWORD PTR [rax], xmm0 .L10: DWORD PTR -64[rbp] sal rax, QWORD PTR -96[rbp] mov movsd xmm0, QWORD PTR [rax] movsd QWORD PTR -16[rbp], xmm0 movsd xmm0, QWORD PTR -80[rbp] subsd xmm0, QWORD PTR -72[rbp] cvtsi2sd xmm1, DWORD PTR -64[rbp] divsd xmm0, xmm1 movsd QWORD PTR -40[rbp], xmm0 movsd xmm0, QWORD PTR -48[rbp] addsd xmm0, QWORD PTR -56[rbp] movsd QWORD PTR -48[rbp], xmm0 pxor xmm0, xmm0 movsd QWORD PTR -56[rbp], xmm0 DWORD PTR -60[rbp], 1 mov imp .L6 .L7: eax, DWORD PTR -60[rbp] mov add eax, eax sub eax, 1 cvtsi2sd xmm0, eax mulsd xmm0, QWORD PTR -40[rbp] movsd xmm1, QWORD PTR -72[rbp] addsd xmm0, xmm1 movsd QWORD PTR -8[rbp], xmm0

rax, QWORD PTR -8[rbp]

mov

call fx

movq xmm0, rax

movsd xmm1, QWORD PTR -56[rbp] addsd xmm0, xmm1 movsd QWORD PTR -56[rbp], xmm0 add DWORD PTR -60[rbp], 1 .L6: eax, DWORD PTR -64[rbp] mov mov edx, eax edx, 31 shr add eax, edx sar eax DWORD PTR -60[rbp], eax cmp ile .L7 movsd xmm1, QWORD PTR -32[rbp] movsd xmm0, QWORD PTR .LC5[rip] mulsd xmm1, xmm0 movsd xmm2, QWORD PTR -48[rbp] movsd xmm0, QWORD PTR .LC6[rip] mulsd xmm0, xmm2 addsd xmm1, xmm0 movsd xmm2, QWORD PTR -56[rbp] movsd xmm0, QWORD PTR .LC7[rip] mulsd xmm0, xmm2 addsd xmm1, xmm0 movsd xmm0, QWORD PTR -24[rbp] mulsd xmm0, QWORD PTR -40[rbp] addsd xmm0, xmm1 mulsd xmm0, QWORD PTR -40[rbp] movsd xmm1, QWORD PTR .LC8[rip] divsd xmm0, xmm1

rax, QWORD PTR -96[rbp]

mov

```
movsd QWORD PTR [rax], xmm0
        rax, QWORD PTR -96[rbp]
    movsd xmm0, QWORD PTR [rax]
    ucomisd xmm0, QWORD PTR -16[rbp]
   jp
        .L11
    ucomisd xmm0, QWORD PTR -16[rbp]
        .L8
   je
.L11:
         rax, QWORD PTR -96[rbp]
    movsd xmm0, QWORD PTR [rax]
    subsd xmm0, QWORD PTR -16[rbp]
   movq xmm1, QWORD PTR .LC9[rip]
    andpd xmm1, xmm0
    mov rax, QWORD PTR -96[rbp]
    movsd xmm0, QWORD PTR [rax]
   mulsd xmm0, QWORD PTR -88[rbp]
    movq xmm2, QWORD PTR .LC9[rip]
    andpd xmm0, xmm2
    comisd xmm0, xmm1
   inb
         .L10
.L8:
   nop
   leave
    ret
    .size simps, .-simps
    .globl main
    .type main, @function
main:
    endbr64
    push rbp
```

```
rbp, rsp
   mov
         rsp, 32
   sub
         rax, QWORD PTR fs:40
   mov
          QWORD PTR -8[rbp], rax
   mov
         eax, eax
   xor
   movsd xmm0, QWORD PTR .LC10[rip]
   movsd QWORD PTR -24[rbp], xmm0
   movsd xmm0, QWORD PTR .LC11[rip]
   movsd QWORD PTR -16[rbp], xmm0
   pxor xmm0, xmm0
   movsd QWORD PTR -32[rbp], xmm0
   movsd xmm1, QWORD PTR .LC12[rip]
   lea
        rdx, -32[rbp]
   movsd xmm0, QWORD PTR -16[rbp]
         rax, QWORD PTR -24[rbp]
   mov
         rdi, rdx
   mov
   movapd xmm2, xmm1
   movapd xmm1, xmm0
   movq xmm0, rax
   call simps
   mov eax, 0
   mov rcx, QWORD PTR -8[rbp]
   xor
         rcx, QWORD PTR fs:40
        .L14
   je
   call __stack_chk_fail@PLT
.L14:
   leave
   ret
    .size main, .-main
    .section
              .rodata
```