IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.

: To Be Assigned

Confirmation No. :

Applicant

: Rainer HANNBECK VON HANWEHR, et al.

Filed TC/A.U. : February 27, 2004: To Be Assigned

Examiner

: To Be Assigned

Docket No.

: 095309.53202US

Customer No.

: 23911

Title

: Engine Controller and Associated Operating Method

CLAIM FOR PRIORITY UNDER 35 U.S.C. §119

Mail Stop: Patent Application

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of prior foreign application No. <u>103 08 650.1</u>, filed in <u>Germany</u> on <u>27 February 2003</u>, is hereby requested and the right of priority under 35 U.S.C. §119 is hereby claimed.

In support of this claim, filed herewith is a certified copy of the original foreign application.

Respectfully submitted,

February 27, 2004

Vincent J. Sunderdick Registration No. 29,004

CROWELL & MORING, LLP Intellectual Property Group

P.O. Box 14300

Washington, DC 20044-4300 Telephone No.: (202) 624-2500

Facsimile No.: (202) 628-8844

VJS:adb

Document#306320

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 08 650.1

Anmeldetag:

27. Februar 2003

Anmelder/Inhaber:

Siemens Aktiengesellschaft, 80333 München/DE;

DaimlerChrysler AG, 70546 Stuttgart/DE.

Bezeichnung:

Motorsteuerung und zugehöriges Betriebsverfahren

IPC:

F 02 D 41/40

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. Januar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Klostermeyet

Beschreibung

Motorsteuerung und zugehöriges Betriebsverfahren

Die Erfindung betrifft ein Betriebsverfahren für eine Motorsteuerung gemäß dem Oberbegriff des Anspruchs 1 sowie eine entsprechende Motorsteuerung gemäß dem Oberbegriff des Anspruchs 13.

Moderne Ottomotoren weisen zur Abgasreinigung in der Regel einen Dreiwegekatalysator auf, wobei das Kraftstoff/Luft- Verhältnis im Abgas durch eine im Abgasstrom angeordnete Lambda-Sonde auf einen Wert von ungefähr λ≈1 geregelt wird, um eine optimale Reinigungswirkung des Dreiwegekatalysators für die verschiedenen Abgasbestandteile zu erreichen.

Bei Ottomotoren sind weiterhin Tankentlüftungen bekannt, bei denen der in dem Kraftstoffbehälter ausgasende Kraftstoff von einem Aktivkohlefilter aufgenommen und zwischengespeichert wird. Diese Zwischenspeicherung des ausgasenden Kraftstoffs in einem Aktivkohlefilter verhindert vorteilhaft, dass Kraftstoffausgasungen die Umgebungsluft verunreinigen können. Das Aufnahmevermögen derartiger Aktivkohlefilter ist jedoch begrenzt, so dass der Aktivkohlefilter beim Erreichen eines vorgegebenen Beladungsgrads mit Frischluft gespült wird, wobei der gespeicherte Kraftstoff in den Ansaugtrakt des Ottomotors gelangt und anschließend verbrannt wird. Bei dieser Spülung des Aktivkohlefilters wechselt der Ottomotor von der normalen Betriebsart mit einem geregelten Lambda-Wert vorübergehend in eine andere Betriebsart, in der das Kraftstoff/Luft-Verhältnis von dem Soll-Wert abweichen kann. Dieser Wechsel der Betriebsart erfolgt bei den bekannten Ottomotoren in vorgegebenen Zeitabständen, damit die Aufnahmefähigkeit des Aktivkohlefilters nicht überschritten wird.

Nachteilig an diesem zeitgesteuerten Wechsel der Betriebsart ist jedoch die Tatsache, dass die Menge des ausgasenden

20

35

30

Kraftstoffs auch von anderen Größen abhängt, wie beispielsweise Kraftstofftemperatur und Kraftstoffdruck. Der zeitgesteuerte Wechsel der Betriebsart führt also zu unbefriedigenden Ergebnissen.

5

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Motorsteuerung und ein entsprechendes Betriebsverfahren zu schaffen, bei dem der Wechsel zwischen den Betriebsarten möglichst bedarfsgerecht erfolgt.

10

Die Aufgabe wird hinsichtlich des Betriebsverfahrens durch die Merkmale des Anspruchs 1 und bezüglich der Motorsteuerung durch die Merkmale des Anspruchs 13 gelöst.

- Die Erfindung umfasst die allgemeine technische Lehre, den Wechsel der Betriebsart in Abhängigkeit von mindestens einer Zustandsgröße der Brennkraftmaschine bedarfsgerecht vorzunehmen.
- In einer Variante der Erfindung steuert das erfindungsgemäße Betriebsverfahren die Umschaltung vom Normal- oder Magerbetrieb eines Ottomotors in einen Tankentlüftungsbetrieb, in dem ein Aktivkohlefilter regeneriert wird, um die Speicherfähigkeit des Aktivkohlefilters nicht zu überschreiten.

5

30

35

In dieser Variante der Erfindung kann der Wechsel der Betriebsart in Abhängigkeit von dem Beladungsgrad des Aktivkohlefilters gesteuert werden. Die Motorsteuerung wechselt dabei vorzugsweise in den Tankentlüftungsbetrieb, wenn der Beladungsgrad des Aktivkohlefilters einen vorgegebenen Grenzwert überschreitet.

Die Ermittlung des Beladungsgrads des Aktivkohlefilters erfolgt vorzugsweise dadurch, dass zeitgesteuert in den Tankentlüftungsbetrieb gewechselt wird, wobei der Aktivkohlefilter mit Frischluft gespült und dadurch regeneriert wird. Die aus dem Aktivkohlefilter ausgespülten Kraftstoffausgasungen

10

15

20

30

35

führen hierbei in Abhängigkeit von dem Beladungsgrad des Aktivkohlefilters zu einer Anfettung des Kraftstoff-Luft-Gemischs, was durch eine Lambda-Sonde erfasst wird. Die Änderung des Kraftstoff/Luft-Verhältnisses während der Regeneration des Aktivkohlefilters ermöglicht also eine Bestimmung des Beladungsgrads des Aktivkohlefilters.

In dieser Variante der Erfindung können jedoch auch Druck und/oder Temperatur in dem Kraftstoffbehälter ausgewertet werden, um den Wechsel in den Tankentlüftungsbetrieb zu steuern. So führen die Kraftstoffausgasungen in dem Kraftstoffbehälter nicht nur zu einem Anstieg des Beladungsgrads des Aktivkohlefilters, sondern auch zu einem Druckanstieg in dem Kraftstoffbehälter, was einen Rückschluss auf den Beladungsgrad des Aktivkohlefilters zulässt. Vorzugsweise wird hierbei auch die Kraftstofftemperatur ausgewertet, da die Kraftstoffausgasungen in dem Kraftstoffbehälter mit der Kraftstofftemperatur zunehmen.

In einer anderen Variante der Erfindung wird der Wechsel von dem Normal- oder Magerbetrieb der Brennkraftmaschine in eine Betriebsart gesteuert, in der eine Adaption des Kraftstoff/ Luft-Verhältnisses erfolgt. So wird das Kraftstoff/Luft-Verhältnis bei modernen Ottomotoren mit einem Abgaskatalysator geregelt, da die Reinigungswirkung von Abgaskatalysatoren von dem Kraftstoff/Luft-Verhältnis abhängt und nur innerhalb eines als Katalysatorfenster bezeichneten, eng begrenzten Wertebereichs des Kraftstoff/Luft-Verhältnisses für die unterschiedliche Abgaskomponenten Kohlenwasserstoff, Stickoxid und Kohlenmonoxid gleichermaßen befriedigend ist. Die Regeldynamik bei der Regelung des Kraftstoff/Luft-Verhältnisses verschlechtert sich jedoch mit der Größe des auszuregelnden Fehlers, so dass die Regelung des Kraftstoff/Luft-Verhältnisses üblicherweise mit einer Vorsteuerung kombiniert wird. Die Vorsteuerung gibt hierbei ein Kraftstoff/Luft-Verhältnis als Arbeitspunkt für die Regelung des Kraftstoff/Luft-Verhältnisses vor, so dass der Regler nur noch kleine Fehler ausregeln muss und deshalb eine gute Regeldynamik aufweist. Die Adaption des Kraftstoff/Luft-Verhältnisses hat hierbei die Aufgabe, die Vorsteuerung so einzustellen, dass im Arbeitspunkt des Reglers möglichst minimale Fehler ausgeregelt werden müssen, um eine möglichst gute Regeldynamik zu erreichen.

Der Wechsel von dem Normal- oder Magerbetrieb der Brennkraftmaschine in den Adaptionsbetrieb wird hierbei vorzugsweise in
Abhängigkeit von einer oder mehreren Zustandsgrößen der
Brennkraftmaschine bedarfsgerecht gesteuert. Beispielsweise
kann hierbei die Drehzahl der Brennkraftmaschine, das Drehmoment der Brennkraftmaschine und/oder die Zeitspanne seit der
letzten Adaption berücksichtigt werden, um den Wechsel der
Betriebsart bedarfsgerecht zu steuern.

15

20

10

5

In einer bevorzugten Ausführungsform ist in dem Adaptionsbetrieb wahlweise eine additive Adaption oder eine faktorielle bzw. multiplikative Adaption des Kraftstoff/Luft-Verhältnisses möglich. Die additive Adaption erfolgt hierbei durch Addition bzw. Subtraktion eines bestimmten Offset-Werts zu dem Arbeitspunkt der Vorsteuerung, um den Arbeitspunkt zu optimieren. Bei der faktoriellen bzw. multiplikativen Adaption erfolgt dagegen zur Optimierung des Arbeitspunktes eine Multiplikation mit einem bestimmten Adaptionsfaktor. Hierbei muss beim Wechsel in den Adaptionsbetrieb eine dieser beiden Betriebsarten ausgewählt werden, wobei vorzugsweise die Drehzahl und das Drehmoment der Brennkraftmaschine berücksichtigt wird. Innerhalb eines bestimmen Drehzahl-Drehmoment-Fensters erfolgt dann eine faktorielle Adaption, während innerhalb eines anderen Drehzahl-Drehmoment-Fensters eine additive Adaption erfolgt. Der Wechsel in den faktoriellen Adaptionsbetrieb oder in den additiven Adaptionsbetrieb wird hierbei also in Abhängigkeit von der Drehzahl und dem Drehmoment der Brennkraftmaschine gesteuert.

35

30

Vorzugsweise erfolgt die faktorielle Adaption, wenn das Drehmoment und die Drehzahl vorgegebene Grenzwerte überschreiten, während die additive Adaption erfolgt, wenn das Drehmoment und die Drehzahl vorgegebene Grenzwerte unterschreiten.

Die Erfindung ist nicht auf die Steuerung eines Ottomotors 5 beschränkt, sondern auch bei einem Dieselmotor anwendbar, der verschiedene Betriebsarten aufweist.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüche enthalten oder werden nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnungen erläutert. Es zeigen:

4		
-	*	
	4-	

10

30

35

	Figur	1		eine erfindungsgemäße Steuereinheit zum Sper-
				ren des Magerbetriebs bei einem Ottomotor,
15	Figur	2		eine Auswertungseinheit der Steuereinheit aus
				Figur 1 zum Sperren des Magerbetriebs für ei-
				ne Tankentlüftung,
	Figur	3		eine Auswertungseinheit der Steuereinheit aus
				Figur 1 zum Sperren des Magerbetriebs für ei-
20				ne faktorielle Adaption des Kraftstoff/Luft-
				Verhältnisses,
	Figur	4		eine Auswertungseinheit der Steuereinheit aus
				Figur 1 zum Sperren des Magerbetriebs für ei-
				ne additive Adaption des Kraftstoff/Luft-
2 5				Verhältnisses,
	Figur	5		ein Drehzahl-Drehmoment-Diagramm mit zwei
				Drehzahl-Drehmoment-Fenstern für eine additi-
				ve bzw. faktorielle Adaption sowie
	Figur	6a	bis	6c das Betriebsverfahren der Steuereinheit aus

Das Blockschaltbild in Figur 1 zeigt eine erfindungsgemäße Steuereinheit 1, die in einer elektronischen Motorsteuerung für einen Ottomotor verwendet wird, um einen Magerbetrieb des Ottomotors zu sperren, wenn der Ottomotor in eine andere Betriebsart wechseln soll. Die Steuereinheit 1 weist deshalb zum Sperren bzw. zur Freigabe des Magerbetriebs einen binären

Figur 1 als Flussdiagramm.

Signalausgang auf, an dem ein Steuersignal OUT ausgegeben wird, wobei das Steuersignal OUT zum Sperren des Magerbetriebs einen High-Pegel und zur Freigabe des Magerbetriebs einen Low-Pegel annimmt.

5

10

15

20

30

Die Sperrung des Magerbetriebs erfolgt beispielsweise, wenn ein Aktivkohlefilter in der Tankentlüftung regeneriert werden muss. Hierzu weist die Steuereinheit 1 eine Auswertungseinheit 2 auf, die detailliert in Figur 2 dargestellt ist und eingangsseitig einen zuvor ermittelten Beladungsgrad CL des Aktivkohlefilters sowie eine gemessene Zeitspanne T_CL seit der letzten Regeneration des Aktivkohlefilters aufnimmt. Darüber hinaus erhält die Auswertungseinheit 2 als Eingangsgröße noch einen oberen Grenzwert CL_MAX für den Beladungsgrad CL des Aktivkohlefilters. Ausgangsseitig erzeugt die Auswertungseinheit 2 ein binäres Steuersignal OUT1, das bei einem High-Pegel anzeigt, das eine Regeneration des Aktivkohlefilters erfolgen sollte, wohingegen ein Low-Pegel des Steuersignals OUT1 angibt, das zur Zeit kein Bedarf an einer Regeneration des Aktivkohlefilters besteht.

5

Im folgenden werden nun anhand des in Figur 2 dargestellten Blockschaltbilds und des in Figur 6a wiedergegebenen Fluss-diagramms Aufbau und Funktionsweise der Auswertungseinheit 2 beschrieben.

Zur Überprüfung des Beladungsgrads CL des Aktivkohlefilters weist die Auswertungseinheit 2 eine Vergleichereinheit 3 auf, die den Beladungsgrad CL mit dem vorgegebenen Grenzwert CL_MAX vergleicht und beim Überschreiten des Grenzwerts CL_MAX einen High-Pegel an ein nachgeschaltetes Oder-Glied 4 weitergibt, so dass das Steuersignal OUT₁ am Ausgang der Auswertungseinheit 2 ebenfalls einen High-Pegel annimmt.

Darüber hinaus weist die Auswertungseinheit 2 eine weitere Vergleichereinheit 5 auf, um die Zeitspanne T_CL seit der letzten Messung des Beladungsgrads CL mit einem oberen Grenz-

20

30

35

wert T_CL_{MAX} zu vergleichen, wobei der Grenzwert T_CL_{MAX} in Abhängigkeit von dem Beladungsgrad CL durch ein Kennlinienglied 6 festgelegt wird. Falls die Zeitspanne T_CL seit der letzten Messung des Beladungsgrads CL den Grenzwert T_CL_{MAX} überschreitet, so gibt die Vergleichereinheit 5 einen High-Pegel an das Oder-Glied 4, so dass das Steuersignal OUT₁ am Ausgang der Auswertungseinheit 2 ebenfalls einen High-Pegel annimmt.

Die Sperrung des Magerbetriebs für die Regeneration des Aktivkohlefilters erfolgt jedoch zeitgesteuert durch ein binäres Zeitscheibensignal ZS_TE, das bei einem High-Pegel die Regeneration des Aktivkohlefilters ermöglicht und bei einem Low-Pegel sperrt. Die Steuereinheit 1 weist deshalb ein Und-Glied 7 auf, das eingangsseitig mit der Auswertungseinheit 2 und mit dem Zeitscheibensignal ZS_TE verbunden ist, so dass das Steuersignal OUT1 der Auswertungseinheit nur bei einem High-Pegel des Zeitscheibensignals ZS_TE weitergegeben und ansonsten gesperrt wird.

Ausgangsseitig ist das Und-Glied 7 über ein Oder-Glied 8 mit dem Signalausgang der Steuereinheit 1 verbunden, so dass die Steuereinheit 1 den Magerbetrieb sperrt, wenn der Beladungsgrad CL zu groß ist oder zulange nicht mehr ermittelt wird.

Darüber hinaus sperrt die Steuereinheit 1 den Magerbetrieb auch dann, wenn eine Adaption des Kraftstoff/Luft-Verhältnisses des Ottomotors erfolgen soll. So wird das Kraftstoff/Luft-Verhältnis bei modernen Ottomotoren mit einem Abgaskatalysator geregelt, da die Reinigungswirkung von Abgaskatalysatoren von dem Kraftstoff/Luft-Verhältnis abhängt und nur innerhalb eines als Katalysatorfenster bezeichneten, eng begrenzten Wertebereichs des Kraftstoff/Luft-Verhältnisses für die unterschiedliche Abgaskomponenten Kohlenwasserstoff, Stickoxid und Kohlenmonoxid gleichermaßen befriedigend ist. Die Regeldynamik bei der Regelung des Kraftstoff/Luft-Verhältnisses verschlechtert sich jedoch mit der Größe des aus-

zuregelnden Fehlers, so dass die Regelung des Kraftstoff/
Luft-Verhältnisses üblicherweise mit einer Vorsteuerung kombiniert wird. Die Vorsteuerung gibt hierbei ein Kraftstoff/Luft-Verhältnis als Arbeitspunkt für die Regelung des
Kraftstoff/Luft-Verhältnisses vor, so dass der Regler nur
noch kleine Fehler ausregeln muss und deshalb eine gute Regeldynamik aufweist. Die Adaption des Kraftstoff/Luft-Verhältnisses hat hierbei die Aufgabe, die Vorsteuerung so einzustellen, dass im Arbeitspunkt des Reglers möglichst minimale Fehler ausgeregelt werden müssen, um eine möglichst gute
Regeldynamik zu erreichen.

800

5

10

15

Die Steuereinheit 1 ermöglicht hierbei in Abhängigkeit von dem Betriebszustand des Ottomotors wahlweise eine additive oder eine faktorielle bzw. multiplikative Adaption des Kraftstoff/Luft-Verhältnisses, wobei der Magerbetrieb sowohl während des additiven Adaptionsbetriebs als auch während des faktoriellen Adaptionsbetriebs gesperrt wird.

Zur Sperrung des Magerbetriebs für einen faktoriellen Adaptionsbetrieb weist die Steuereinheit 1 eine Auswertungseinheit 9 auf, wobei der Aufbau der Auswertungseinheit 9 detailliert in Figur 3 dargestellt ist, während das Flussdiagramm in Figur 6b die Funktionsweise der Auswertungseinheit 9 verdeutlicht.

@ y 25

30

35

Zur Sperrung des Magerbetriebs während des additiven Adaptionsbetriebs weist die Steuereinheit 1 eine weitere Auswertungseinheit 10 auf, wobei Figur 4 den Aufbau der Auswertungseinheit 10 detailliert zeigt, während Figur 6c die Funktionsweise der Auswertungseinheit 10 verdeutlicht.

Die beiden Auswertungseinheiten 9, 10 sind ausgangsseitig über ein Oder-Glied 11 mit dem Oder-Glied 8 verbunden, so dass das Steuersignal OUT am Signalausgang der Steuereinheit 1 bei einer additiven oder faktoriellen Adaption des Kraft-

35

stoff/Luft-Verhältnisses einen High-Pegel annimmt, wodurch der Magerbetrieb gesperrt wird.

Im folgenden wird nun anhand von Figur 3 der Aufbau der Aus-5 wertungseinheit 9 beschrieben, wobei unter Bezugnahme auf das Flussdiagramm in Figur 6b auch die Funktionsweise der Auswertungseinheit 9 erläutert wird.

Die Auswertungseinheit 9 weist eine binären Signalausgang

auf, an dem in Abhängigkeit von dem Betriebszustand des Ottomotors ein Steuersignal OUT2 ausgegeben wird, wobei das Steuersignal OUT2 zum Sperren des Magerbetriebs einen High-Pegel
und zur Freigabe des Magerbetriebs einen Low-Pegel annimmt.

Bei der Erzeugung des Steuersignals OUT₂ berücksichtigt die Auswertungseinheit 9 mehrere binäre Eingangssignale, die den Betriebszustand des Ottomotors wiedergeben, wobei die verschiedenen Eingangssignale durch ein Und-Glied 12 verknüpft werden, so dass der Magerbetrieb nur dann für eine Adaption des Kraftstoff/Luft-Verhältnisses gesperrt wird, wenn mehrere Bedingungen erfüllt sind.

Hierbei gibt ein Eingangssignal Adap_fac_fertig an, ob der faktorielle Adaptionsbereich des Kraftstoff/LuftVerhältnisses ausreichend adaptiert ist. Falls dies der Fall ist, so nimmt das Eingangssignal Adap_fac_fertig einen High-Pegel an, der über einen Inverter 13 auf einen Eingang des Und-Glieds 12 gegeben wird, so dass der Magerbetrieb nicht gesperrt wird. Falls der faktorielle Adaptionsbereich dagegen nicht ausreichend adaptiert ist, so nimmt das Eingangssignal Adap_fac_fertig einen Low-Pegel an, der über den Inverter 13 als High-Pegel an einen Eingang des Und-Glieds 12 gegeben wird, wodurch die Sperrung des Magerbetriebs für eine faktorielle Adaption freigegeben wird.

Weiterhin nimmt die Auswertungseinheit 9 ein binäres Eingangssignal $T_k A_z g$ auf, das mit einem High-Pegel angibt,

dass die Zeitspanne seit der letzten Adaption des Kraftstoff/Luft-Verhältnisses zu groß ist. Dies ist beispielsweise dann der Fall, wenn der Ottomotor für eine längere Zeit nur im Niedriglastbereich betrieben wurde, so dass lastbedingt keine Adaption des Kraftstoff/Luft-Verhältnisses erfolgt ist. In einem solchen Fall soll der Magerbetrieb nicht gesperrt werden, so dass das Eingangssignal T_k_A_z_g über einen Inverter 14 auf einen Eingang des Und-Glieds 12 geführt wird. Die Sperrung des Magerbetriebs für eine faktorielle Adaption ist also nur dann möglich, wenn die Zeitspanne seit der letzten Adaption nicht zu groß ist.

600

5

10

15

20

Die Erzeugung des Steuersignals OUT₂ durch die Auswertungseinheit 9 erfolgt nicht nur in Abhängigkeit von dem Betriebszustand des Ottomotors, sondern auch zeitgesteuert. Die Auswertungseinheit 9 nimmt deshalb eingangsseitig ein Zeitscheibensignal ZS_Adap auf, das einem Eingang des Und-Glieds 12 zugeführt wird und bei einem High-Pegel die Sperrung des Magerbetriebs für eine Adaption des Kraftstoff/Luft-Verhältnisses freigibt.

25

30

35

Darüber hinaus nimmt die Auswertungseinheit 9 ein Eingangssignal Adap_Fenst_fac auf, das mit einem High-Pegel angibt, dass sich Drehzahl und Drehmoment des Ottomotors innerhalb eines Lastfensters 15 liegen, wobei das Lastfenster 15 in Figur 5 dargestellt ist. Das Eingangssignal Adap_Fenst_fac wird über ein Oder-Glied 16 auf einen Eingang des Und-Glieds 12 geführt, so dass die Sperrung des Magerbetriebs für eine faktorielle Adaption freigegeben wird, wenn sich Drehzahl und Drehmoment des Ottomotors innerhalb des Lastfensters 15 befinden.

Die Auswertungseinheit 9 ermöglicht die Sperrung des Magerbetriebs für eine faktorielle Adaption des Kraftstoff/Luft-Verhältnisses jedoch auch dann, wenn Drehzahl und Drehmoment des Ottomotors außerhalb des Lastfensters 15 befinden, falls zwei Bedingungen erfüllt sind.

30

35

Zum einen dürfen Drehzahl und Drehmoment nicht in einem Lastfenster 16 liegen, das für eine additive Adaption des Kraftstoff/Luft-Verhältnisses vorgesehen ist. Die Auswertungseinheit 9 nimmt deshalb ein Eingangssignal Adap_Fenst_wait auf,
das mit einem High-Pegel angibt, dass Drehzahl und Drehmoment
des Ottomotors weder in dem Lastfenster 15 noch in dem Lastfenster 16 liegen.

Zum anderen muss die Drehzahl des Ottomotors oberhalb eines vorgegebenen Grenzwerts liegen, um trotz des außerhalb des Lastfensters 15 liegenden Betriebspunkt des Ottomotors eine Sperrung des Magerbetriebs für eine faktorielle Adaption zu ermöglichen. Die Auswertungseinheit 9 nimmt deshalb ein Eingangssignal N_kl_Adap_Add auf, das mit einem High-Pegel angibt, dass die Drehzahl des Ottomotors einen vorgegebenen Grenzwert unterschreitet.

Das Eingangssignal Adap_Fenst_wait und das durch den Inverter 18 invertierte Eingangssignal N_kl_Adap_Add werden über ein Und-Glied 18 dem Oder-Glied 16 zugeführt, so dass eine Sperrung des Magerbetriebs auch dann erfolgen kann, wenn der Betriebspunkt des Ottomotors außerhalb der beiden Lastfenster 15, 16 liegt, sofern die Drehzahl des Ottomotors oberhalb des Grenzwertes liegt.

Im folgenden wird nun anhand von Figur 4 der Aufbau der Auswertungseinheit 10 beschrieben, wobei unter Bezugnahme auf das Flussdiagramm in Figur 6c auch die Funktionsweise der Auswertungseinheit 10 erläutert wird.

Die Auswertungseinheit 10 weist ebenfalls eine binären Signalausgang auf, an dem in Abhängigkeit von dem Betriebszustand des Ottomotors ein Steuersignal OUT3 ausgegeben wird, wobei das Steuersignal OUT3 zum Sperren des Magerbetriebs einen High-Pegel und zur Freigabe des Magerbetriebs einen Low-Pegel annimmt.

35

Bei der Erzeugung des Steuersignals OUT3 berücksichtigt die Auswertungseinheit 10 mehrere binäre Eingangssignale, die den Betriebszustand des Ottomotors wiedergeben, wobei die verschiedenen Eingangssignale durch ein Und-Glied 19 verknüpft werden, so dass der Magerbetrieb nur dann für eine Adaption des Kraftstoff/Luft-Verhältnisses gesperrt wird, wenn mehrere Bedingungen erfüllt sind.

Hierbei gibt ein Eingangssignal Adap_add_fertig an, ob der additive Adaptionsbereich des Kraftstoff/Luft-Verhältnisses ausreichend adaptiert ist. Falls dies der Fall ist, so nimmt das Eingangssignal Adap_add_fertig einen High-Pegel an, der über einen Inverter 20 auf einen Eingang des Und-Glieds 19 gegeben wird, so dass der Magerbetrieb nicht gesperrt wird. Falls der additive Adaptionsbereich dagegen nicht ausreichend adaptiert ist, so nimmt das Eingangssignal Adap_add_fertig einen Low-Pegel an, der über den Inverter 20 als High-Pegel an einen Eingang des Und-Glieds 19 gegeben wird, wodurch die Sperrung des Magerbetriebs für eine faktorielle Adaption freigegeben wird.

Weiterhin nimmt die Auswertungseinheit 10 das binäre Eingangssignal T_kA_zg auf, das mit einem High-Pegel angibt, dass die Zeitspanne seit der letzten Adaption des Kraftstoff/Luft-Verhältnisses zu groß ist. Das Eingangssignal T_kA_zg wird über einen Inverter 21 auf einen Eingang des Und-Glieds 19 geführt wird. Die Sperrung des Magerbetriebs für eine additive Adaption ist also nur dann möglich, wenn die Zeitspanne seit der letzten Adaption nicht zu groß ist.

Die Erzeugung des Steuersignals OUT₃ durch die Auswertungseinheit 10 erfolgt nicht nur in Abhängigkeit von dem Betriebszustand des Ottomotors, sondern auch zeitgesteuert. Die Auswertungseinheit 10 nimmt deshalb eingangsseitig das Zeitscheibensignal ZS_Adap auf, das einem Eingang des Und-Glieds 19 zugeführt wird und bei einem High-Pegel die Sper-

10

30

35

rung des Magerbetriebs für eine Adaption des Kraftstoff/Luft-Verhältnisses freigibt.

Darüber hinaus nimmt die Auswertungseinheit 10 ein Eingangssignal Adap_Fenst_add auf, das mit einem High-Pegel angibt, dass Drehzahl und Drehmoment des Ottomotors innerhalb des Lastfensters 16 liegen. Das Eingangssignal Adap_Fenst_add wird über ein Oder-Glied 22 auf einen Eingang des Und-Glieds 19 geführt, so dass die Sperrung des Magerbetriebs für eine additive Adaption freigegeben wird, wenn sich Drehzahl und Drehmoment des Ottomotors innerhalb des Lastfensters 16 befinden.

Die Auswertungseinheit 10 ermöglicht die Sperrung des Magerbetriebs für eine faktorielle Adaption des Kraftstoff/Luft-Verhältnisses jedoch auch dann, wenn Drehzahl und Drehmoment des Ottomotors außerhalb des Lastfensters 16 befinden, falls zwei Bedingungen erfüllt sind.

Zum einen dürfen Drehzahl und Drehmoment nicht in einem der Lastfenster 15, 16 liegen. Die Auswertungseinheit 10 nimmt deshalb ein Eingangssignal Adap_Fenst_wait auf, das mit einem High-Pegel angibt, dass Drehzahl und Drehmoment des Ottomotors weder in dem Lastfenster 15 noch in dem Lastfenster 16 liegen.

Zum anderen muss die Drehzahl des Ottomotors unterhalb eines vorgegebenen Grenzwerts liegen, um trotz des außerhalb des Lastfensters 16 liegenden Betriebspunkt des Ottomotors eine Sperrung des Magerbetriebs für eine additive Adaption zu ermöglichen. Die Auswertungseinheit 10 nimmt deshalb das Eingangssignal N_kl_Adap_Add auf, das mit einem High-Pegel angibt, dass die Drehzahl des Ottomotors einen vorgegebenen Grenzwert unterschreitet.

Das Eingangssignal Adap_Fenst_Wait und das Eingangssignal N kl Adap Add werden über ein Und-Glied 23 dem Oder-Glied 22

zugeführt, so dass eine Sperrung des Magerbetriebs für eine additive Adaption des Kraftstoff/Luft-Verhältnisses auch dann erfolgen kann, wenn der Betriebspunkt des Ottomotors außerhalb der beiden Lastfenster 15, 16 liegt, sofern die Drehzahl des Ottomotors unterhalb der Grenzfrequenz liegt.

Die Erfindung ist nicht auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen.

5

10

20

35

Patentansprüche

- 1. Betriebsverfahren einer Motorsteuerung für eine Brennkraftmaschine, mit den folgenden Schritten:
- 5 Betrieb in einer ersten Betriebsart,
 - Erfassung mindestens einer Zustandsgröße (CL, Adap Fenst_fac, Adap Fenst_Add) der Brennkraftmaschine,
 - Wechsel von der ersten Betriebsart in eine zweite Betriebsart,
- dass der Wechsel von der ersten Betriebsart in die zweite Betriebsart in Abhängigkeit von der ermittelten Zustandsgröße (CL, Adap_Fenst_fac, Adap_Fenst_Add) der Brennkraftmaschine bedarfsgerecht erfolgt.
 - 2. Betriebsverfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Brennkraftmaschine in der ersten Betriebsart im Magerbetrieb arbeitet.
 - 3. Betriebsverfahren nach mindestens einem der vorhergehenden Ansprüche,
 da durch gekennzeichnet,
 dass in Abhängigkeit von der ermittelten Zustandsgröße (CL,
 Adap_Fenst_fac, Adap_Fenst_Add) der Brennkraftmaschine von
 der ersten Betriebsart entweder in die zweite Betriebsart oder in eine dritte Betriebsart gewechselt wird.
- 4. Betriebsverfahren nach mindestens einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass in der zweiten Betriebsart oder in der dritten Betriebsart eine Adaption des Kraftstoff/Luft-Verhältnisses der Brennkraftmaschine erfolgt.
 - 5. Betriebsverfahren nach Anspruch 4, dadurch gekennzeichnet,

dass das Kraftstoff/Luft-Verhältnis additiv oder multiplikativ adaptiert wird.

- 6. Betriebsverfahren nach Anspruch 5,
- 5 dadurch gekennzeichnet,
 dass die Drehzahl und das Drehmoment der Brennkraftmaschine
 ermittelt werden, wobei in Abhängigkeit von der Drehzahl und
 dem Drehmoment entweder eine additive oder eine multiplikative Adaption des Kraftstoff/Luft-Verhältnisses erfolgt.

10

15

20

- 7. Betriebsverfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, dass eine multiplikative Adaption des Kraftstoff/Luft-Verhältnisses erfolgt, wenn das Drehmoment einen Grenzwert überschreitet und die Drehzahl einen Grenzwert überschreitet.
- 8. Betriebsverfahren nach Anspruch 6 und/oder Anspruch 7, dad urch gekennzeichnet, dass eine additive Adaption des Kraftstoff/Luft-Verhältnisses erfolgt, wenn das Drehmoment einen Grenzwert unterschreitet und die Drehzahl einen Grenzwert unterschreitet.
- 9. Betriebsverfahren nach mindestens einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass in der zweiten Betriebsart oder in der dritten Betriebsart eine Tankentlüftung erfolgt.

- 10. Betriebsverfahren nach Anspruch 9,
- 30 dadurch gekennzeichnet, dass der Beladungsgrad (CL) eines Tankfilters ermittelt und mit einem vorgegebenen Grenzwert (CL_{MAX}) verglichen wird, wobei der Wechsel der Betriebsart erfolgt, wenn der ermittelte Beladungsgrad (CL) des Tankfilters den Grenzwert (CL_{MAX}) für 35 den Beladungsgrad überschreitet.
 - 11. Betriebsverfahren nach Anspruch 9 und/oder Anspruch 10,

dadurch gekennzeichnet,
dass die Zeitspanne (T_CL) seit der letzten Tankentlüftung
ermittelt wird, wobei der Wechsel der Betriebsart erfolgt,
wenn die Zeitspanne (T_CL) seit der letzten Tankentlüftung
einen vorgegebenen Grenzwert (T CLMAX) überschreitet.

- 12. Betriebsverfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, dass bei der Tankentlüftung der Beladungsgrad (CL) des Tankfilters ermittelt und der Grenzwert (T_CL_{MAX}) für die Zeitspanne (T_CL) seit der letzten Tankentlüftung in Abhängigkeit von dem ermittelten Beladungsgrad (CL) festgelegt wird.
- 13. Motorsteuerung für eine Brennkraftmaschine, mit
 15 mindestens einem ersten Signaleingang zur Erfassung mindestens einer ersten Zustandsgröße (CL, Adap_Fenst_fac, Adap_Fenst_Add) der Brennkraftmaschine,
 einem Signalausgang zur Ausgabe eines Steuersignals (OUT) zum
 Wechseln der Betriebsart der Brennkraftmaschine,
- gekennzeichnet durch mindestens eine Auswertungseinheit (2, 9, 10) zur bedarfsgerechten Erzeugung des Steuersignals (OUT) in Abhängigkeit von der erfassten Zustandsgröße (CL, Adap_Fenst_fac, Adap_Fenst_Add) der Brennkraftmaschine.
- 14. Motorsteuerung nach Anspruch 13,
 d a d u r c h g e k e n n z e i c h n e t,
 dass eine eingangsseitig erfasste Zustandsgröße (A dap_Fenst_fac, Adap_Fenst_Add) die Drehzahl und/oder das
 30 Drehmoment der Brennkraftmaschine wiedergibt.
 - 15. Motorsteuerung nach mindestens einem der Ansprüche 13 bis 14,
 - dadurch gekennzeichnet,
- 35 das eine eingangsseitig erfasste Zustandsgröße die Zeitspanne (T_CL) seit der letzten Tankentlüftung wiedergibt.

16. Motorsteuerung nach mindestens einem der Ansprüche 13 bis 15,

dadurch gekennzeichnet, dass eine eingangsseitig erfasste Zustandsgröße den Beladungsgrad (CL) eines Tankfilters wiedergibt und die Auswertungseinheit (2) eine Vergleichereinheit (3) aufweist, um den Beladungsgrad (CL) mit einem vorgegebenen Grenzwert (CL_{MAX}) zu vergleichen und das Steuersignal (OUT) in Abhängigkeit von dem Vergleich zu erzeugen.

10

17. Motorsteuerung nach mindestens einem der Ansprüche 13 bis 16,

dadurch gekennzeichnet, dass die Auswertungseinheit (2) eine Vergleichereinheit (5)

- aufweist, um die Zeitspanne (T_CL) seit der letzten Tankentlüftung mit einem vorgegebenen Grenzwert (T_CL_{MAX}) zu vergleichen und das Steuersignal (OUT) in Abhängigkeit von dem Vergleich zu erzeugen.
- 20 18. Motorsteuerung nach Anspruch 17,
 d a d u r c h g e k e n n z e i c h n e t,
 dass die Auswertungseinheit (2) ein Kennlinienglied (5) aufweist, um den Grenzwert (T_CL_{MAX}) für die Zeitspanne (T_CL)
 seit der letzten Tankentlüftung in Abhängigkeit von dem Beladungsgrad (CL) des Tankfilters festzulegen.

- 19. Motorsteuerung nach mindestens einem der Ansprüche 15 bis 18,
- dadurch gekennzeichnet,
- 30 dass die Vergleichereinheiten (3, 5) ausgangsseitig mit einer Logikschaltung (4, 7, 8) verbunden sind.

Zusammenfassung

Motorsteuerung und zugehöriges Betriebsverfahren

5 Betriebsverfahren einer Motorsteuerung für eine Brennkraftmaschine, mit den folgenden Schritten: Betrieb in einer ersten Betriebsart, Erfassung mindestens einer Zustandsgröße (CL, Adap_Fenst_fac, Adap_Fenst_Add) der Brennkraftmaschine, Wechsel von der ersten Betriebsart in eine zweite Betriebsart. Es wird vorgeschlagen, dass der Wechsel von der ersten Betriebsart in die zweite Betriebsart in Abhängigkeit von der ermittelten Zustandsgröße (CL, Adap_Fenst_fac, Adap_Fenst_Add) der Brennkraftmaschine bedarfsgerecht erfolgt. Weiterhin umfasst die Erfindung eine entsprechende Motorsteuerung.

15

(Figur 1)

Fig. 2

Fig. 4

Fig. 5

is 2 soft or

Creation date: 03-03-2004

Indexing Officer: HAMINO - HATICA AMINO

Team: OIPEScanning Dossier: 10787256

Legal Date: 02-27-2004

No.	Doccode	Number of pages
1	TRNA	1
2	SPEC	3
3	CLM	2
4	ABST	1
5	DRW	1
6	ADS	1
7	IDS	3

Total number of pages: 12
Remarks:
Order of re-scan issued on