АЛГЕБРА И НАЧАЛА АНАЛИЗА ФУНКЦИИ*)

Числовой функцией называется соответствие, которое каждому числу x из некоторого заданного множества сопоставляет единственное число y.

Обозначение: y = f(x), где x — независимая переменная (аргумент функции), y — зависимая переменная (функция).

Множество значений x называется **областью определения** функции (обычно обозначается D).

Множество значений y называется **областью значений** функции (обычно обозначается E).

Графиком функции называется множество точек плоскости с координатами (x, f(x)).

способы задания функций

• *Аналитический способ:* функция задается с помощью математической формулы.

Примеры: $y = x^2$, $y = \ln x$

• Табличный способ: функция задается с помощью таблицы.

Пример.

\boldsymbol{x}	1	2	3	4	5	
y	2	4	6	8	10	

• *Описательный способ:* функция задается словесным описанием.

Пример: функция Дирихле $f(x) = \begin{cases} 1 \text{ для рациональных } x, \\ 0 \text{ для иррациональных } x. \end{cases}$

• *Графический способ:* функция задается с помощью графика.

^{*)}Все параметры функций, в том числе коэффициенты многочленов, считаются действительными.

ОСНОВНЫЕ СВОЙСТВА ФУНКЦИЙ

ЧЕТНОСТЬ И НЕЧЕТНОСТЬ

Функция называется **четной**, если:

- область определения функции симметрична относительно нуля,
- для любого x из области определения

$$f(-x)=f(x).$$

График четной функции симметричен относительно оси y.

Функция называется нечетной, если:

- область определения функции симметрична относительно нуля,
- для любого x из области определения

$$f(-x)=-f(x).$$

График нечетной функции симметричен относительно начала координат.

Многие функции не являются ни четными, ни нечетными.

Пример графика функции, не являющейся ни четной, ни нечетной:

Примеры четных функций: $y=x^{2n}, n\in Z; y=\cos x$

Примеры нечетных функций: $y=x^{2n+1}, n \in \mathbb{Z}; y=\sin x$

Примеры функций, не являющихся ни четными, ни нечетными:

$$y = e^x$$
, $y = \ln x$, $y = x - 2$, $y = (x + 1)^2$

ПЕРИОДИЧНОСТЬ

Функция f(x) называется **периодической** с периодом T>0, если для любого x из области определения значения x+T и x-T также принадлежат области определения и

$$f(x) = f(x + T) = f(x - T).$$

При этом любое число вида Tn, где $n \in N$, также является периодом этой функции.

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов. Чтобы построить график периодической функции, строят фрагмент графика на любом отрезке длиной T (например, [0; T]), а затем производят последовательные параллельные переносы фрагмента графика на T, 2T, 3T и т.д. вдоль оси x (вправо и влево).

нули функции

Нулем функции y = f(x) называется такое значение аргумента x_0 , при котором функция обращается в нуль:

$$f\left(x_{0}\right) =0.$$

В нуле функции ее график имеет общую точку с осью x.

МОНОТОННОСТЬ (ВОЗРАСТАНИЕ, УБЫВАНИЕ)

Функция y = f(x) называется возрастающей на интервале (a; b), если для любых x_1 и x_2 из этого интервала таких, что $x_1 < x_2$, справедливо неравенство

$$f(x_1) < f(x_2).$$

Функция y = f(x) называется убывающей на интервале (a; b), если для любых x_1 и x_2 из этого интервала таких, что $x_1 < x_2$, справедливо неравенство

$$f(x_1) > f(x_2).$$

ЭКСТРЕМУМЫ (МАКСИМУМЫ И МИНИМУМЫ)

Внутренняя точка x_{max} области определения называется **точкой максимума**, если для всех x из некоторой окрестности этой точки справедливо неравенство:

$$f(x) < f(x_{max}).$$

Значение $y_{max} = f\left(x_{max}\right)$ называется **максимумом** этой функции.

 x_{max} — точка максимума y_{max} — максимум

Внутренняя точка x_{min} области определения называется точкой минимума, если для всех x из некоторой окрестности этой точки справедливо неравенство:

$$f\left(x\right) >f\left(x_{min}\right) .$$

Значение $y_{min} = f(x_{min})$ называется **минимумом** этой функции.

 x_{min} — точка минимума y_{min} — минимум

АСИМПТОТЫ

Если график функции y = f(x) имеет бесконечную ветвь (ветви), у графика могут быть асимптоты.

Асимптотой графика называется прямая, к которой неограниченно приближается точка графика при удалении этой точки по бесконечной ветви.

Вертикальная асимптота

x = a

Горизонтальная асимптота u = b

Наклонная асимптота
$$y = kx + b$$

Прямая x = a является **вертикальной асимптотой**, если хотя бы один из пределов $\lim_{x \to a+0} f(x)$ (предел справа) или $\lim_{x \to a-0} f(x)$ (предел слева) равен бесконечности.

Прямая y = b является **горизонтальной асимптотой**, если существуют конечные пределы

$$\lim_{x\to +\infty} f(x) = b \text{ или } \lim_{x\to -\infty} f(x) = b.$$

Прямая y = kx + b является **наклонной асимптотой**, если существуют конечные пределы

$$k = \lim \frac{f(x)}{x}, b = \lim (f(x) - kx)$$

либо при $x \to \infty$, либо при $x \to -\infty$.

ОБРАТНЫЕ ФУНКЦИИ

Понятие обратной функции применимо к функциям, обладающим следующим свойством: каждому значению y из области значений функции соответствует eduncmbenhoe значение x из области определения этой функции.

Замечание. Для многих функций это свойство выполняется лишь на части области определения, в частности, на любом промежутке монотонности (для функции $y = x^2$ таким промежутком является, например, луч $[0; \infty)$, для функции $y = \sin x$ — отрезок $[-\pi/2; \pi/2]$).

Функция g называется **обратной** для функции f, если каждому y из области значений функции f функция g ставит в соответствие такое x из области определения функции f, что y = f(x). Таким образом, если y = f(x), то x = g(y). Функции f и g являются **взаимно обратными**.

- Область определения функции f является областью значений функции g, а область значений функции f является областью определения функции g.
- Графики взаимно обратных функций симметричны друг другу относительно прямой y = x (построение графика обратной функции см. на стр. 23).

Примеры взаимно обратных функций:

$$y = x^3 \text{ in } y = \sqrt[3]{x}$$
, $y = 2^x \text{ in } y = \log_2 x$

нахождение формулы для функции, обратной данной

• Пользуясь формулой y = f(x), следует выразить x через y, а в полученной формуле x = g(y) заменить x на y, а y на x.

Пример. Найти формулу для функции, обратной функции

$$y=\frac{1}{2}x+1.$$

Выражение x через y: x = 2y - 2. Замена x на y, y на x дает: y = 2x - 2. Результат: функция y = 2x - 2 является обратной для функции $y = \frac{1}{2}x + 1$.

ПРЕОБРАЗОВАНИЯ ГРАФИКОВ ФУНКЦИЙ

ПРЕОБРАЗОВАНИЕ СИММЕТРИИ ОТНОСИТЕЛЬНО ОСИ $oldsymbol{x}$

$$f(x) \rightarrow -f(x)$$

График функции y = -f(x) получается преобразованием симметрии графика функции y = f(x) относительно оси x.

Замечание. Точки пересечения графика с осью *х* остаются неизменными.

Примеры:

преобразование симметрии относительно оси *у*

$$f(x) \to f(-x)$$

График функции y = f(-x) получается преобразованием симметрии графика функции y = f(x) относительно оси y.

Замечание. Точка пересечения графика с осью *у* остается неизменной.

Примеры:

 $y = \sqrt{-x} \qquad y = \sqrt{x}$ x

Замечание 1. График четной функции (см. стр. 11) не изменяется при отражении относительно оси y, поскольку для четной функции f(-x) = f(x). Пример: $(-x)^2 = x^2$.

4

Замечание 2. График нечетной функции (см. стр. 11) изменяется одинаково как при отражении относительно оси x, так и при отражении относительно оси y, поскольку для нечетной функции f(-x) = -f(x). Пример: $\sin(-x) = -\sin x$.

параллельный перенос вдоль оси $oldsymbol{x}$

$$f(x) \to f(x-a)$$

График функции y = f(x - a) получается параллельным переносом графика функции y = f(x) вдоль оси x на |a| вправо при a > 0 и влево при a < 0.

Примеры:

 $3 a \, me \, ua \, nu \, e$. График периодической функции (см. стр. 12) с периодом T не изменяется при параллельных переносах вдоль оси x на nT, $n \in Z$.

параллельный перенос вдоль оси \boldsymbol{y} $f(x) \rightarrow f(x) + b$

График функции y = f(x) + bполучается параллельным переносом графика функции y = f(x) вдоль оси y на |b|вверх при b>0 и вниз при b < 0.

Примеры:

3

СЖАТИЕ И РАСТЯЖЕНИЕ ВДОЛЬ ОСИ x $f(x) o f(\alpha x)$, где $\alpha > 0$

График функции $y = f(\alpha x)$ получается сжатием графика функции y = f(x) вдоль оси x в α раз.

$$0 < \alpha < 1$$

График функции $y = f(\alpha x)$ получается растяжением графика функции y = f(x) вдоль оси x в $1/\alpha$ раз.

 $3 a \, me \, u \, a \, hu \, e$. Точки пересечения графика с осью y остаются неизменными.

Примеры:

СЖАТИЕ И РАСТЯЖЕНИЕ ВДОЛЬ ОСИ y $f(x) \rightarrow kf(x)$, где k > 0

График функции y = kf(x) получается растяжением графика функции y = f(x) вдоль оси y в k раз.

0 < k < 1

График функции y = kf(x) получается сжатием графика функции y = f(x) вдоль оси y в 1/k раз.

Замечание. Точки пересечения графика с осью х остаются неизменными.

Примеры:

построение графика функции y = |f(x)|

Части графика функции y = f(x), лежащие выше оси x и на оси x, остаются без изменения, а лежащие ниже оси x — симметрично отражаются относительно этой оси (вверх).

3ameuahue. Функция y = |f(x)| неотрицательна (ее график расположен в верхней полуплоскости).

построение графика функции y = f(|x|)

Часть графика функции y = f(x), лежащая левее оси y, удаляется, а часть, лежащая правее оси y — остается без изменения и, кроме того, симметрично отражается относительно оси y (влево). Точка графика, лежащая на оси y, остается неизменной.

 $3a\,me\,u\,a\,n\,u\,e$. Функция y = f(|x|) четная (ее график симметричен относительно оси y).

ПОСТРОЕНИЕ ГРАФИКА ОБРАТНОЙ ФУНКЦИИ

График функции y = g(x), обратной для функции y = f(x), можно получить преобразованием симметрии графика функции y = f(x) относительно прямой y = x.

Замечание. Описанное построение можно производить только для функции, имеющей обратную (см. стр. 15).

Примеры графиков взаимно обратных функций.

ПОСТРОЕНИЕ ГРАФИКОВ СЛОЖНЫХ ФУНКЦИЙ с помощью последовательных преобразований графиков элементарных функций (на примерах)

$$y = |x^2 - 6|x| + 8| = ||x|^2 - 6|x| + 8| = |(|x| - 3)^2 - 1|$$

$$y = |\log_2(|x - 1|)|$$

$y = |3\sin 2x| - 1$

$$y = |3\sin 2x| - 1$$

ЛИНЕЙНАЯ ФУНКЦИЯ

y=kx+b, где k, b — действительные числа.

График — **прямая**. Угловой коэффициент

 $k = \operatorname{tg} \alpha$

b — ордината точки пересечения графика с осью y.

ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ

Прямая пропорциональность

$$y = kx$$

Постоянная функция

$$y = b$$

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ

Если $k_1 \neq k_2$, графики функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$ пересекаются в одной точке.

Если $k_1 = k_2$, $b_1 \neq b_2$, графики функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$ являются параллельными прямыми.

свойства линейной функции y = kx + b

- Область определения: R
- Область значений:

при
$$k \neq 0$$
 R

$$при k = 0$$
 $\{b\}$

• Четность, нечетность:

если $k \neq 0$, $b \neq 0$, то функция не является ни четной, ни нечетной

если $k \neq 0$, b = 0, то функция нечетная

если $k=0, b \neq 0$, то функция четная

если k = 0, b = 0, то функция тождественно равна нулю, то есть является одновременно четной и нечетной

• Нули:

если
$$k \neq 0$$
, то $y = 0$ при $x = -b/k$ если $k = 0$, $b \neq 0$, то нулей нет если $k = 0$, $b = 0$, то $y = 0$ при $x \in R$

• Промежутки знакопостоянства:

если
$$k>0$$
, то
$$\begin{cases} y>0 \text{ при } x \in (-b/k;\infty) \\ y<0 \text{ при } x \in (-\infty;-b/k) \end{cases}$$
 если $k<0$, то
$$\begin{cases} y>0 \text{ при } x \in (-\infty;-b/k) \\ y<0 \text{ при } x \in (-\infty;-b/k) \\ y<0 \text{ при } x \in (-b/k;\infty) \end{cases}$$
 если $k=0,\ b>0$, то $y>0$ при $x\in R$ если $k=0,\ b<0$, то $y<0$ при $x\in R$ если $k=0,\ b=0$, то $y=0$ при $x\in R$

• Промежутки монотонности:

если
$$k>0$$
, то функция возрастает при $x\in R$ если $k<0$, то функция убывает при $x\in R$ если $k=0$, то функция постоянна при $x\in R$

• Экстремумов нет

ПОСТРОЕНИЕ ГРАФИКА ЛИНЕЙНОЙ ФУНКЦИИ ПО ДВУМ ТОЧКАМ

Часто удобно выбирать $x_1 = 0$, $x_2 = 1$. Соответствующие точки прямой (0; b) и (1; b + k).

Пример.

$$y = 3x + 2$$

Если $x_1 = 0$, то $y_1 = 2$;
если $x_2 = 1$, то $y_2 = 5$.
Через точки $(0; 2)$ и $(1; 5)$
провести прямую.

Если $k \neq 0$, $b \neq 0$, можно выбирать точки (0; b) и (-b/k; 0) на осях координат.

Пример.

$$y=2x+2$$
 Если $x_1=0$, то $y_1=2$; если $y_2=0$, то $x_2=-1$. Через точки (0; 2) и (-1; 0) провести прямую.

Если коэффициент перед x дробный, удобно выбирать x_1 и x_2 так, чтобы y_1 и y_2 были целыми.

Пример.

$$y=-rac{1}{3}x+2$$
 Если $x_1=3$, то $y_1=1$; если $x_2=-3$, то $y_2=3$. Через точки $(3;\ 1)$ и $(-3;\ 3)$ провести прямую.

построение графика линейной функции y = kx + b с помощью элементарных преобразований

графика функции y = x

Этапы преобразования графика

Построить график функции y = x.

2. y = kx

Произвести растяжение (при |k| > 1) или сжатие (при |k| < 1) графика вдоль оси y (если k < 0, произвести, кроме того, зеркальное отражение относительно любой из координатных осей).

3. y = kx + b

Произвести параллельный перенос графика вдоль оси y на |b| (вверх при b > 0, вниз при b < 0).

Примеры:

1.
$$y = 2x - 1$$

2.
$$y = -x/3 + 2$$

КВАДРАТИЧНАЯ ФУНКЦИЯ

$$y = ax^2 + bx + c$$
, где $a \neq 0$. График — парабола.

Свойства функции и вид ее графика определяются, в основном, значениями коэффициента a и $\partial ucкриминанта$

$$D=b^2-4ac.$$

РАЗЛИЧНЫЕ ПРЕДСТАВЛЕНИЯ КВАДРАТИЧНОЙ ФУНКЦИИ

1. ВЫДЕЛЕНИЕ ПОЛНОГО КВАДРАТА

$$y = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

2. РАЗЛОЖЕНИЕ НА ЛИНЕЙНЫЕ МНОЖИТЕЛИ

при
$$D>0$$
 $y=ax^2+bx+c=a(x-x_1)(x-x_2)$ при $D=0$ $y=ax^2+bx+c=a(x-x_1)^2$ при $D<0$ разложить на множители нельзя

свойства квадратичной функции $y=ax^2+bx+c$

- Область определения: R
- Область значений:

при
$$a>0$$
 $[-D/(4a); \infty)$ при $a<0$ $(-\infty; -D/(4a)]$

• Четность, нечетность:

при
$$b=0$$
 функция четная при $b \neq 0$ функция не является ни четной, ни нечетной

Нули:

при
$$D>0$$
 два нуля: $x_1=\frac{-b-\sqrt{D}}{2a}$, $x_2=\frac{-b+\sqrt{D}}{2a}$ при $D=0$ один нуль: $x_1=-b/(2a)$ при $D<0$ нулей нет

• Промежутки знакопостоянства:

если
$$a>0$$
, $D>0$, то
$$\begin{cases} y>0 \text{ при } x \in (-\infty;x_1) \cup (x_2;\infty) \\ y<0 \text{ при } x \in (x_1;x_2) \end{cases}$$
 если $a>0$, $D=0$, то
$$y>0 \text{ при } x \in (-\infty;x_1) \cup (x_1;\infty)$$
 если $a>0$, $D<0$, то
$$y>0 \text{ при } x \in R$$
 если $a<0$, $D>0$, то
$$\begin{cases} y>0 \text{ при } x \in (x_1;x_2) \\ y<0 \text{ при } x \in (-\infty;x_1) \cup (x_2;\infty) \end{cases}$$
 если $a<0$, $D=0$, то
$$y<0 \text{ при } x \in (-\infty;x_1) \cup (x_1;\infty)$$
 если $a<0$, $D<0$, то
$$y<0 \text{ при } x \in R$$

• Промежутки монотонности:

при
$$a>0$$
 $\begin{cases} функция возрастает при $x\in [-b/(2a);\infty) \\ функция убывает при $x\in (-\infty;-b/(2a)] \end{cases}$ при $a<0$ $\begin{cases} функция возрастает при $x\in (-\infty;-b/(2a)] \\ функция убывает при $x\in [-b/(2a);\infty) \end{cases}$$$$$

• Экстремумы:

при
$$a>0$$
 $x_{min}=-b/(2a);$ $y_{min}=-D/(4a)$ при $a<0$ $x_{max}=-b/(2a);$ $y_{max}=-D/(4a)$

НАПРАВЛЕНИЕ ВЕТВЕЙ, ХАРАКТЕРНЫЕ ТОЧКИ И ОСЬ СИММЕТРИИ ПАРАБОЛЫ,

являющейся графиком функции $y = ax^2 + bx + c$

• Направление ветвей параболы:

при a > 0 ветви направлены вверх

при a < 0 ветви направлены вниз

- ullet Координаты вершины параболы: $\left(-rac{b}{2a}; -rac{D}{4a}
 ight)$
- ullet Ось симметрии параболы прямая $x=-rac{b}{2a}$
- Точки пересечения (касания) графика с осью х:

$$D>0$$
: $x_1=rac{-b-\sqrt{D}}{2a}$, $x_2=rac{-b+\sqrt{D}}{2a}$ (точки пересечения)

D = 0: $x_1 = -b/(2a)$ (точка касания)

D < 0: общих точек у графика с осью x нет

• Точка пересечения графика c осью y: (0; c), симметричная ей точка относительно оси параболы (-b/a; c)

Для построения графика квадратичной функции используют некоторые из указанных характеристик. Например, если уравнение $ax^2+bx+c=0$ имеет два корня, удобно использовать координаты вершины параболы и координаты двух точек пересечения параболы с осью x.

ПОСТРОЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ ПО НАПРАВЛЕНИЮ ВЕТВЕЙ, ХАРАКТЕРНЫМ ТОЧКАМ И ОСИ СИММЕТРИИ ПАРАБОЛЫ

Примеры:

$$y=x^2-4x+3$$

- 1. Ветви направлены вверх, т.к. a = 1 > 0.
- 2. Координаты вершины (2; -1), т.к.

$$-\frac{b}{2a} = -\frac{-4}{2} = 2;$$

$$y(2) = 2^2 - 4 \cdot 2 + 3 = -1.$$

3. Ось симметрии параболы

$$x=-\frac{b}{2a}=2.$$

- 4. Координаты точек пересечения с осью x: $(x_1; 0) = (1; 0)$ и $(x_2; 0) = (3; 0)$.
- 5. Координаты точки пересечения c осью y: (0; c) = (0; 3); симметричная ей точка относительно оси параболы: $\left(-\frac{b}{a}; c\right) = (4; 3).$

- $y=-x^2-6x-9$
- 1. Ветви направлены вниз, т.к. a = -1 < 0.
- 2. Координаты вершины (-3; 0), т.к.

$$-\frac{b}{2a} = -\frac{-6}{-2} = -3;$$

$$y(3) = -(-3)^2 - 6 \cdot (-3) - 9 = 0.$$

- $y(3) = -(-3)^2 6 \cdot (-3) 9 = 0$. 3. Ось симметрии параболы $x = -\frac{b}{2a} = -3$.
- 4. Координаты точки касания c осью x: $(x_1; 0) = (-3; 0)$.
- 5. Координаты точки пересечения c осью y: (0; c) = (0; -9); симметричная ей точка относительно оси параболы: $\left(-\frac{b}{a}; c\right) = (-6; -9).$

построение графика квадратичной функции с помощью элементарных преобразований графика функции $y=x^2$

С помощью выделения полного квадрата (см. стр. 30) любую квадратичную функцию можно представить в виде:

$$y=ax^2+bx+c=aigg(x+rac{b}{2a}igg)^2-rac{b^2-4ac}{4a}=a(x-m)^2+n,$$
 где $m=-rac{b}{2a}$, $n=-rac{b^2-4ac}{4a}$.

Это позволяет построить график квадратичной функции с помощью элементарных преобразований графика функции $y=x^2$.

Этапы построения графика функции $y = a(x - m)^2 + n$:

1. Растяжение графика $y = x^2$ вдоль оси y в |a| раз (при |a| < 1 — это сжатие в 1/|a| раз).

Если a < 0, произвести, кроме того, зеркальное отражение графика относительно оси x (ветви параболы будут направлены вниз).

Pезультат: график функции $y = ax^2$.

2. Параллельный перенос графика функции $y = ax^2$ вдоль оси x на |m| (вправо при m > 0 и влево при m < 0).

Результат:

график функции $y = a(x - m)^2$.

3. Параллельный перенос графика функции $y = a(x - m)^2$ вдоль оси y на |n| (вверх при n > 0 и вниз при n < 0).

Результат:

график функции $y = a(x - m)^2 + n$.

Примеры:

$$y = 2x^2 - 12x + 19 = 2(x - 3)^2 + 1$$

- Растяжение графика функции
 у = x² вдоль оси у в 2 раза.
- 2. Параллельный перенос графика функции $y = 2x^2$ вдоль оси x на 3 вправо.
- 3. Параллельный перенос графика функции $y = 2(x-3)^2$ вдоль оси y на 1 вверх.

$$y = -\frac{x^2}{2} - 2x - 3 = -\frac{1}{2}(x+2)^2 - 1$$

$$y = x^2$$

--- $y = x^2/2$
--- $y = -x^2/2$

$$--- y = -x^2/2$$

$$--- y = -(x+2)^2/2$$

 $--- y = -(x+2)^2/2$ $--- y = -(x+2)^2/2 - 1$

- Сжатие графика функции
 у = x² вдоль оси у
 в 2 раза и преобразование симметрии относительно оси х.
- 2. Параллельный перенос графика функции $y = -x^2/2$ вдоль оси x на 2 влево.
- 3. Параллельный перенос графика функции $y = -(x + 2)^2/2$ вдоль оси y на 1 вниз.

СТЕПЕННЫЕ ФУНКЦИИ

с натуральными показателями степени

$$y=x^n$$
, где $n\in N$

Примеры графиков

п нечетное

п четное

СВОЙСТВА ФУНКЦИЙ

• Область определения: R

• Область значений:

при n нечетном R

при n четном $[0; \infty)$

• Четность, нечетность:

при п нечетном функция нечетная

при n четном функция четная

• $Hy\pi u$: y = 0 при x = 0

• Промежутки знакопостоянства:

 $\int y > 0 \text{ при } x \in (0; \infty)$

если n нечетное, то $\begin{cases} y > 0 \text{ при } x \in (0,\infty) \\ y < 0 \text{ при } x \in (-\infty;0) \end{cases}$

если n четное, то y > 0 при $x \in (-\infty; 0) \cup (0; \infty)$

• Промежутки монотонности:

если n нечетное, то функция возрастает при $x \in R$

если n четное, то $\begin{cases} функция возрастает при <math>x \in [0; \infty) \\ функция убывает при <math>x \in (-\infty; 0] \end{cases}$

• Экстремумы:

если n нечетное, экстремумов нет

если n четное, $y_{min} = 0$ при $x_{min} = 0$

• Графики функций проходят через точки:

при n нечетном (-1; -1), (0; 0), (1; 1)

при n четном (-1; 1), (0; 0), (1; 1)

3a мечание. При n = 0 функция $y = x^n$ определяется так: $x^0 = 1$ при $x \neq 0$; при x = 0 функция не определена.

СТЕПЕННЫЕ ФУНКЦИИ

с целыми отрицательными показателями степени

$$y=x^{-n}$$
, где $n\in N$

СВОЙСТВА ФУНКЦИЙ

- Область определения: $(-\infty; 0) \cup (0; \infty)$
- Область значений:

при п нечетном

$$(-\infty; 0) \cup (0; \infty)$$

при п четном

 $(0; \infty)$

Четность, нечетность:

при п нечетном

функция нечетная

при п четном

функция четная

- Нулей нет.
- Промежутки знакопостоянства:

если n нечетное, то

$$\begin{cases} y > 0 \text{ при } x \in (0; \infty) \\ \dots \leq 0 \text{ при } x \in (0; \infty) \end{cases}$$

y < 0 при $x \in (-\infty; 0)$

если n четное, то

y > 0 при $x \in (-\infty; 0) \cup (0; \infty)$

Промежутки монотонности:

если n нечетное, то

функция убывает при $x \in (-\infty; 0)$

и при $x \in (0; \infty)$

если n четное, то

функция возрастает при $x \in (-\infty; 0)$ функция убывает при $x \in (0; \infty)$

- Экстремумов нет
- Графики функций проходят через точки:

при n нечетном (-1; -1), (1; 1)

при п четном

(-1; 1), (1; 1)

Асимптоты:

x = 0, y = 0

3амечание. При n=1 функция $y=x^{-n}$ имеет вид y=1/x и называется обратной пропорциональностью.

ФУНКЦИИ

$$y = \sqrt[n]{x}$$
 , где $n \in N$

п нечетное

п четное

СВОЙСТВА ФУНКЦИЙ

• Область определения:

при n нечетном R

при n четном $[0; \infty)$

• Область значений:

при n нечетном R

при n четном $[0; \infty)$

• Четность, нечетность:

при n нечетном функция нечетная

при *п* четном функция не является ни четной, ни нечетной

• $Hy \pi u$: y = 0 при x = 0

• Промежутки знакопостоянства:

если n нечетное, то $\begin{cases} y > 0 \text{ при } x \in (0; \infty) \\ y < 0 \text{ при } x \in (-\infty; 0) \end{cases}$

если n четное, то y>0 при $x\in(0;\infty)$

• *Промежутки монотонности:* функция возрастает при всех *x* из области определения

- Экстремумов нет
- Графики функций проходят через точки:

при n нечетном (-1; -1), (0; 0), (1; 1)

при n четном (0; 0), (1; 1)

СТЕПЕННЫЕ ФУНКЦИИ

с действительными показателями степени

$$y=x^{\alpha}$$
, где $\alpha\in R$

 $\alpha > 0$

 $\alpha < 0$

СВОЙСТВА ФУНКЦИЙ

• Область определения:

если $\alpha > 0$,

 $[0; \infty)$

если $\alpha < 0$.

 $(0; \infty)$

Область значений:

если $\alpha > 0$,

 $[0; \infty)$

если $\alpha < 0$,

 $(0; \infty)$

• Четность, нечетность:

функция не является ни четной, ни нечетной

Нули:

если $\alpha > 0$, y = 0 при x = 0

если $\alpha < 0$, нулей нет

• Промежутки знакопостоянства:

y > 0 при $x \in (0; \infty)$

• Промежутки монотонности:

при $\alpha > 0$ функция возрастает при $x \in [0; \infty)$

при $\alpha < 0$ функция убывает при $x \in (0; \infty)$

- Экстремумов нет
- Графики функций проходят через точки:

при $\alpha > 0$ (0; 0), (1; 1)

при $\alpha < 0$ (1; 1)

• Асимптоты: при $\alpha < 0$ x = 0 и y = 0

показательная функция

$$y = a^x$$
, где $a > 0$, $a \neq 1^*$)

СВОЙСТВА ФУНКЦИИ

- Область определения: R
- Область значений: (0; ∞)
- Четность, нечетность: функция не является ни четной, ни нечетной

• Нулей нет

- ullet Промежутки знакопостоянства: y>0 при $x\in R$
- Промежутки монотонности:

при 0 < a < 1 функция убывает при $x \in R$ при a > 1 функция возрастает при $x \in R$

- Экстремумов нет
- График функции проходит через точку (0; 1)
- Acumnmoma: y = 0

^{*)} При a=1 функция $y=a^x$ является постоянной: $1^x=1$ при $x\in R$.

ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ

$$y = \log_a x$$
, где $a > 0$, $a \neq 1$

СВОЙСТВА ФУНКЦИИ

- Область определения: (0; ∞)
- Область значений: R
- *Четность*, *нечетность*: функция не является ни четной, ни нечетной
- Hyли: y = 0 при x = 1
- Промежутки знакопостоянства:

если
$$0 < a < 1$$
, то $y > 0$ при $x \in (0; 1), y < 0$ при $x \in (1; \infty)$ если $a > 1$, то $y > 0$ при $x \in (1; \infty), y < 0$ при $x \in (0; 1)$

• Промежутки монотонности:

при
$$0 < a < 1$$
 функция убывает при $x \in (0; \infty)$ при $a > 1$ функция возрастает при $x \in (0; \infty)$

- Экстремумов нет
- График функции проходит через точку (1; 0)
- Acumnmoma: x = 0

Замечание. Логарифмическая и показательная функции с одним и тем же основанием а являются взаимно обратными функциями (см. стр. 15).

ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ*)

график — синусоида

СВОЙСТВА ФУНКЦИИ

- Область определения: R
- Область значений: [-1; 1]
- Четность, нечетность: функция нечетная
- Περυοд: 2π
- $Hy\pi u$: $\sin x = 0$ πpu $x = \pi n$, $n \in Z$
- Промежутки знакопостоянства:

$$\sin x > 0$$
 при $x \in (2\pi n; \pi + 2\pi n), n \in Z$ $\sin x < 0$ при $x \in (-\pi + 2\pi n; 2\pi n), n \in Z$

• Экстремумы:

$$x_{min} = -\frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z}; \quad y_{min} = -1$$

$$x_{max} = \frac{\pi}{2} + 2\pi n, \quad n \in \mathbb{Z}; \quad y_{max} = 1$$

• Промежутки монотонности:

функция возрастает при
$$x\in \left[-\frac{\pi}{2}+2\pi n;\frac{\pi}{2}+2\pi n\right], n\in Z$$

функция убывает при
$$x \in \left[\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n\right], n \in \mathbb{Z}$$

^{*)} Основные формулы тригонометрии см. на стр. 184-187. Далее в качестве периода функции рассматривается ее наименьший положительный период.

$$y = \cos x$$

график — косинусоида

СВОЙСТВА ФУНКЦИИ

- Область определения: R
- Область значений: [-1; 1]
- Четность, нечетность: функция четная
- Πериод: 2π
- $Hy\pi u$: y=0 при $x=\frac{\pi}{2}+\pi n$, $n\in Z$
- Промежутки знакопостоянства:

$$\cos x > 0$$
 при $x \in \left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n\right), n \in \mathbb{Z}$

$$\cos x < 0$$
 при $x \in \left(\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n\right), n \in Z$

• Экстремумы:

$$x_{min} = \pi + 2\pi n, \quad n \in \mathbb{Z}; \quad y_{min} = -1$$

$$x_{max} = 2\pi n$$
, $n \in \mathbb{Z}$; $y_{max} = 1$

• Промежутки монотонности:

функция возрастает при $x \in [-\pi + 2\pi n; 2\pi n], n \in \mathbb{Z}$

функция убывает при $x \in [2\pi n; \pi + 2\pi n], n \in \mathbb{Z}$

3ameuahue. Графики функций $y = \sin x$ и $y = \cos x$ получаются друг из друга с помощью параллельных переносов вдоль оси x

Ha
$$\pi/2$$
: $\cos x = \sin\left(x + \frac{\pi}{2}\right)$; $\sin x = \cos\left(x - \frac{\pi}{2}\right)$.

график — тангенсоида

СВОЙСТВА ФУНКЦИИ

• Область определения: объединение интервалов

$$\left(-\frac{\pi}{2}+\pi n;\frac{\pi}{2}+\pi n\right), n\in \mathbb{Z}$$

- Область значений: R
- Четность, нечетность: функция нечетная
- Πериод: π
- $Hy\pi u$: y = 0 при $x = \pi n$, $n \in \mathbb{Z}$
- Промежутки знакопостоянства:

tg
$$x > 0$$
 при $x \in \left(\pi n; \frac{\pi}{2} + \pi n\right), n \in Z$

$$\mathbf{tg} \ x < \mathbf{0}$$
 при $x \in \left(-\frac{\pi}{2} + \pi n; \pi n\right), n \in Z$

- Экстремумов нет
- Промежутки монотонности:

функция возрастает на каждом интервале области определения

• Acumnmomu: $x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

график — котангенсоида

СВОЙСТВА ФУНКЦИИ

- Область определения: объединение интервалов $(\pi n; \pi + \pi n), n \in Z$
- Область значений: R
- Четность, нечетность: функция нечетная
- Πериод: π
- $Hy\pi u$: y=0 при $x=\frac{\pi}{2}+\pi n$, $n\in Z$
- Промежутки знакопостоянства:

$$\operatorname{ctg} x > 0$$
 при $x \in \left(\pi n; \frac{\pi}{2} + \pi n\right)$, $n \in \mathbb{Z}$

$$\operatorname{ctg} x < 0$$
 при $x \in \left(-\frac{\pi}{2} + \pi n; \pi n\right), n \in \mathbb{Z}$

- Экстремумов нет
- Промежутки монотонности: функция убывает на каждом интервале области определения
- Acumnmomu: $x = \pi n, n \in \mathbb{Z}$

Замечание. График функции $y = \operatorname{ctg} x$ получается из графика функции $y = \operatorname{tg} x$ отражением относительно любой из координатных осей и последующим параллельным переносом вдоль оси x на $\pi/2$.

ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

$$y = \arcsin x$$

 $y = \arccos x$

функция, обратная функции $y = \sin x$, $-\pi/2 \le x \le \pi/2$

функция, обратная функции $y = \cos x$, $0 \le x \le \pi$

СВОЙСТВА ФУНКЦИЙ*)

 $y = \arcsin x$

 $y = \arccos x$

Область определения: [-1; 1]

[-1; 1]

Область значений:

$$\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$$

[0; π]

Четность, нечетность:

нечетная

ни четная, ни нечетная

Нули:

$$y = 0$$
 при $x = 0$

$$y=0$$
 при $x=1$

Промежутки знакопостоянства:

y < 0 при $x \in [-1; 0)$

y > 0 при $x \in (0; 1]$ y > 0 при $x \in [-1; 1)$

Экстремумы:

нет

нет

Промежутки монотонности:

возрастает на всей области определения

убывает на всей области определения

 $\arcsin x + \arccos x = \pi/2$

^{*)} См. также стр. 187.

$y = \operatorname{arctg} x$

функция, обратная функции $y = \text{tg } x, -\pi/2 < x < \pi/2$

$y = \operatorname{arcctg} x$

функция, обратная функции $y = \operatorname{ctg} x$, $0 < x < \pi$

СВОЙСТВА ФУНКЦИЙ

 $y = \operatorname{arctg} x$ $y = \operatorname{arcctg} x$

Область определения:

R

R

Область значений:

 $\left(-\frac{\pi}{2};\frac{\pi}{2}\right)$

 $(0; \pi)$

Четность, нечетность:

нечетная

ни четная, ни нечетная

Нули:

y = 0 при x = 0

нулей нет

Промежутки знакопостоянства:

y>0 при $x\in(0;\infty)$ y>0 при $x\in R$ y < 0 mpu $x \in (-\infty; 0)$

Экстремумы:

нет

нет

Промежутки монотонности:

возрастает при $x \in R$

убывает при $x \in R$

Асимптоты:

 $y=-\frac{\pi}{2} \text{ if } y=\frac{\pi}{2}$

y=0 и $y=\pi$

				единицы						
десятки	0	1	2	3	4	5	6	7	8	9
1	100	121	144	169	196	225	256	289	324	361
2	400	441	484	529	576	625	676	729	784	841
3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
7	4900	5041	5184	5329	5476	56 25	5776	5929	6084	6241
8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921

ТАБЛИЦА КВАДРАТОВ ДВУЗНАЧНЫХ ЧИСЕЛ

пропорции*)

8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

СВОЙСТВА ПРОПОРЦИЙ

- 1. Произведение крайних членов равно произведению средних, т.е. если $\frac{a}{b}=\frac{c}{d}$, то ad=bc .
- 2. В пропорции, все члены которой отличны от нуля, можно менять местами средние и крайние члены пропорции, т.е. если

$$\frac{a}{b} = \frac{c}{d}$$
, to $\frac{a}{c} = \frac{b}{d}$, $\frac{d}{b} = \frac{c}{a}$, $\frac{d}{c} = \frac{b}{a}$.

9

производные пропорции,

полученные из пропорции $\frac{a}{b} = \frac{c}{d}$:

$$\frac{a \pm b}{a} = \frac{c \pm d}{c} \qquad \frac{a + b}{a - b} = \frac{c + d}{c - d}$$

$$\frac{a \pm b}{b} = \frac{c \pm d}{d} \qquad \frac{a \pm c}{b \pm d} = \frac{a}{b} = \frac{c}{d}$$

$$\frac{am_1 + bn_1}{am_2 + bn_2} = \frac{cm_1 + dn_1}{cm_2 + dn_2}, \qquad \frac{am_1 + cn_1}{am_2 + cn_2} = \frac{bm_1 + dn_1}{bm_2 + dn_2},$$

где m_1 , m_2 , n_1 , n_2 — произвольные числа.

^{*)} Во всех приведенных формулах знаменатели не должны равняться нулю.

многочлены

$$a^2-b^2=(a-b)(a+b)$$

$$(a+b)^2=a^2+2ab+b^2$$

$$(a-b)^2=a^2-2ab+b^2$$

$$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$$

$$a^3+b^3=(a+b)(a^2-ab+b^2)$$

$$a^3-b^3=(a-b)(a^2+ab+b^2)$$

$$(a+b)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab(a+b)$$

$$(a-b)^3=a^3-3a^2b+3ab^2-b^3=a^3-b^3-3ab(a-b)$$

$$\Box n=n$$

модуль числа

где $C_n^k = \frac{n!}{k!(n-k)!}$ — число сочетаний из n по k.

$$|a| = \begin{cases} a, a \ge 0 \\ -a, a < 0 \end{cases}, |a| = \sqrt{a^2}$$

$$|a| \ge 0; \qquad |a \cdot b| = |a| \cdot |b| \qquad |a + b| \le |a| + |b|$$

$$|a| = 0 \Leftrightarrow a = 0 \qquad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}, b \ne 0 \qquad |a - b| \ge ||a| - |b||$$

ЛОГАРИФМЫ

Логарифмом положительного числа b по основанию a ($a>0,\ a\neq 1$) называется такой показатель степени c, в которую надо возвести число a, чтобы получить число b:

$$\log_a b = c \iff a^c = b.$$

СВОЙСТВА ЛОГАРИФМОВ*)

- Основное логарифмическое тождество: $a^{\log_a b} = b, \ b > 0$
- $\log_a a = 1$
- $\log_a 1 = 0$
- ullet Логарифм произведения: $\log_a xy = \log_a |x| + \log_a |y|$, xy > 0
- Логарифм частного: $\log_a \frac{x}{y} = \log_a |x| \log_a |y|, \frac{x}{y} > 0$

$$\log_a x^p = p \log_a |x|, x^p > 0$$

• Логарифм степени:

$$\log_{a^q} x^p = \frac{p}{q} \log_a |x|, \ x^p > 0$$

• Логарифм корня:

$$\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x, \ x > 0$$

• Формула перехода к другому основанию:

$$\log_a b = \frac{\log_c b}{\log_c a}$$
, где $b > 0$, $c > 0$, $c \neq 1$

$$\log_a b = \frac{1}{\log_b a}$$
, где $b > 0$, $b \neq 1$

^{*)} Во всех приведенных формулах a > 0, $a \neq 1$

ОСНОВНЫЕ ФОРМУЛЫ ТРИГОНОМЕТРИИ*)

СООТНОШЕНИЯ МЕЖДУ ТРИГОНОМЕТРИЧЕСКИМИ ФУНКЦИЯМИ ОДНОГО И ТОГО ЖЕ АРГУМЕНТА

$$\sin^2 x + \cos^2 x = 1$$

$$tg x = \frac{\sin x}{\cos x}$$

$$1 + tg^2 x = \frac{1}{\cos^2 x}$$

$$ctg x = \frac{\cos x}{\sin x}$$

$$1 + ctg^2 x = \frac{1}{\sin^2 x}$$

формулы сложения

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$tg(x+y) = \frac{tg x + tg y}{1 - tg x tg y} \qquad ctg(x+y) = \frac{ctg x ctg y - 1}{ctg x + ctg y}$$

$$tg(x-y) = \frac{tg x - tg y}{1 + tg x tg y} \qquad ctg(x-y) = -\frac{ctg x ctg y + 1}{ctg x - ctg y}$$

ВЫРАЖЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ ЧЕРЕЗ ТАНГЕНС ПОЛОВИННОГО УГЛА

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^{2} \frac{x}{2}}$$

$$\cos x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{1 + \operatorname{tg}^{2} \frac{x}{2}}$$

$$\cot x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{2 + \operatorname{tg}^{2} \frac{x}{2}}$$

$$\cot x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{2 + \operatorname{tg}^{2} \frac{x}{2}}$$

*)Во всех формулах, приведенных в этом разделе, следует учитывать область допустимых значений левой и правой частей формул.

ФОРМУЛЫ ДВОЙНОГО АРГУМЕНТА

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x} = \frac{2}{ctg x - tg x}$$

$$\operatorname{ctg} 2x = \frac{\operatorname{ctg}^2 x - 1}{2\operatorname{ctg} x} = \frac{\operatorname{ctg} x - \operatorname{tg} x}{2}$$

ФОРМУЛЫ ПОЛОВИННОГО АРГУМЕНТА

$$\sin^2\frac{x}{2} = \frac{1-\cos x}{2}$$

$$tg^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\cos^2\frac{x}{2} = \frac{1+\cos x}{2}$$

$$\operatorname{ctg}^{2} \frac{x}{2} = \frac{1 + \cos x}{1 - \cos x}$$

$$tg\frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$

$$\operatorname{ctg} \frac{x}{2} = \frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$$

ФОРМУЛЫ ТРОЙНОГО АРГУМЕНТА

$$\sin 3x = 3\sin x - 4\sin^3 x$$

$$\cos 3x = 4\cos^3 x - 3\cos x$$

$$\operatorname{tg} 3x = \frac{3\operatorname{tg} x - \operatorname{tg}^3 x}{1 - 3\operatorname{tg}^2 x}$$

$$\operatorname{ctg} 3x = \frac{\operatorname{ctg}^3 x - 3\operatorname{ctg} x}{3\operatorname{ctg}^2 x - 1}$$

ФОРМУЛЫ ПРЕОБРАЗОВАНИЯ СУММЫ В ПРОИЗВЕДЕНИЕ

$$\sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}$$

$$\sin x - \sin y = 2 \sin \frac{x - y}{2} \cos \frac{x + y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}$$

$$\cos x - \cos y = -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2}$$

$$tg x + tg y = \frac{\sin(x + y)}{\cos x \cos y} \qquad ctg x + ctg y = \frac{\sin(x + y)}{\sin x \sin y}$$

$$tg x - tg y = \frac{\sin(x - y)}{\cos x \cos y} \qquad ctg x - ctg y = -\frac{\sin(x - y)}{\sin x \sin y}$$

$$tg x + ctg y = \frac{\cos(x - y)}{\cos x \sin y}$$

$$tg x - ctg y = -\frac{\cos(x + y)}{\cos x \sin y}$$

$$tg x - ctg y = -\frac{\cos(x + y)}{\cos x \sin y}$$

$$tg x - ctg x = -2 \frac{\cos 2x}{\sin 2x} = -2 ctg 2x$$

$$\cos x + \sin x = \sqrt{2} \cos(45^\circ - x) = \sqrt{2} \sin(45^\circ + x)$$

$$\cos x - \sin x = \sqrt{2} \sin(45^\circ - x) = \sqrt{2} \cos(45^\circ + x)$$

$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \phi)$$

$$rge \sin \phi = \frac{b}{\sqrt{a^2 + b^2}}, \cos \phi = \frac{a}{\sqrt{a^2 + b^2}}$$

ФОРМУЛЫ ПРЕОБРАЗОВАНИЯ ПРОИЗВЕДЕНИЯ В СУММУ

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

ФОРМУЛЫ ПРИВЕДЕНИЯ

угол функция	$\beta = \frac{\pi}{2} \pm \alpha$	$\beta = \pi \pm \alpha$	$\beta = \frac{3\pi}{2} \pm \alpha$	$\beta = 2\pi \pm \alpha$
$\sin eta$	$\cos \alpha$	∓ sin α	$-\cos \alpha$	$\pm \sin \alpha$
$\cos \beta$	∓ sin α	$-\cos \alpha$	$\pm \sin \alpha$	$\cos \alpha$
tgβ	∓ ctg α	$\pm \mathbf{tg} \alpha$	∓ ctg α	±tgα
$\operatorname{\mathbf{ctg}} olimitseta$	∓ tg α	$\pm \operatorname{\mathbf{ctg}} lpha$	∓ tgα	±ctg α

ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ НЕКОТОРЫХ УГЛОВ

Угол в градусах	0 °	30°	45°	60°	90°	180°	270°	360°
Угол в радианах	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tgα	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	не сущ.	0	не сущ.	0
ctg a	не сущ.	√3	1	$\frac{1}{\sqrt{3}}$	0	не сущ.	0	не сущ.

СВОЙСТВА ОБРАТНЫХ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

$$arcsin(-a) = -arcsin a,$$
 $|a| \le 1$
 $arccos(-a) = \pi - arccos a,$ $|a| \le 1$
 $arctg(-a) = -arctg a,$ $a \in \mathbb{R}$
 $arcctg(-a) = \pi - arcctg a,$ $a \in \mathbb{R}$
 $arcsin a + arccos a = \frac{\pi}{2},$ $|a| \le 1$
 $arctg a + arcctg a = \frac{\pi}{2},$ $a \in \mathbb{R}$