

PLASTIC MEDIUM-POWER COPLEMENTARY SILICON TRANSISTORS

...designed for general-purpose amplifier and low speed switching applications

FEATURES:

* Collector-Emitter Sustaining Voltage-

V_{CEO(SUS)} = 60 V (Min) - TIP110, TIP115

= 80 V (Min) - TIP111,TIP116

= 100 V (Min) - TIP112,TIP117

* Collector-Emitter Saturation Voltage

V_{CE(sat)} = 2.5 V (Max.) **@** I_C = 2.0 A * Monolithic Construction with Built-in Base-Emitter Shunt Resistor

MAXIMUM RATINGS

Characteristic	Symbol	TIP110 TIP115	TIP111 TIP116	TIP112 TIP117	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	100	V.
COllector-Base Voltage	V _{CBO}	60	80	100	V
Emitter-Base Voltage	V _{EBO}		5.0		V
Collector Current-Continuous -Peak	I _C		2.0 4.0		Α
Base Current	I _B		50		mA
Total Power Dissipation @T _C = 25°C Derate above 25°C	P _D		50 0.4		W/°C
Operating and Storage Junction Temperature Range	T _J ,T _{STG}		- 65 to +150)	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rθjc	2.5	°C/W

NPN PNP **TIP110 TIP115 TIP111 TIP116 TIP112 TIP117**

2.0 AMPERE DARLINGTON COMPLEMENTARY SILICON **POWER TRANSISTORS** 60-100 VOLTS 50 WATTS

PIN 1.BASE 2.COLLECTOR 3.EMITTER 4.COLLECTOR(CASE)

DIM	MILLIM	LIMETERS
DIN	MIN	MAX
Α	14.68	15.31
В	9.78	10.42
С	5.01	6.52
D	13.06	14.62
E	3.57	4.07
F	2.42	3.66
G	1.12	1.36
Н	0.72	0.96
1	4.22	4.98
J	1.14	1.38
Κ	2.20	2.97
L	0.33	0.55
M	2.48	2.98
0	3.70	3.90

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}$ C unless otherwise noted)

Characteristic	,	Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
(.6 4.8 -)	TIP110,TIP115 TIP111,TIP116 TIP112,TIP117	V _{CEO(sus)}	60 80 100		V
(V _{CF} = 40 V, I _R = 0)	TIP110,TIP115 TIP111,TIP116 TIP112,TIP117	I _{CEO}		2.0 2.0 2.0	mA
$(V_{CR} = 80 \text{ V}, I_{E} = 0)$	TIP110,TIP115 TIP111,TIP116 TIP112,TIP117	I _{CBO}		1.0 1.0 1.0	mA
Emitter Cutoff Current (V _{EB} = 5.0 V,I _C = 0)		I _{EBO}		2.0	mA
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 1.0 A, V _{CE} = 4.0 V) (I _C = 2.0 A, V _{CE} = 4.0 V)		hFE	1000 500		
Collector-Emitter Saturation Voltage (I _C = 2.0 A, I _B = 8.0 mA)		V _{CE(sat)}		2.5	٧
Base-Emitter On Voltage (I _C = 2.0 A, V _{CE} = 4.0 V)		V _{BE(on)}		2.8	V
DYNAMIC CHARACTERISTICS					
Small-Signal Current Gain (I _C = 0.75 A,V _{CE} = 10 V, f = 1.0 MHz)		h _{fe}	25		
	P110,TIP111,TIP112 P115,TIP116,TIP117	C _{ob}		250 150	pF

(1) Pulse Test: Pulse width $\,$ = 300 us , Duty Cycle $\, \leqq \,$ 2.0%

FIG-6 ACTIVE REGION SAFE OPERATING AREA

FIG-3 SWITCHING TIME

FIG-5 ACTIVE REGION SAFE OPERATING AREA

There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $I_{\text{C}}\text{-}V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of FIG-5 and 6 is base on $T_{J(PK)}$ =150 °C; T_{C} is variable depending on power level, second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(PK)} \le 150$ °C, At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.