Inteligência Artificial e Cibersegurança

Outubro—Mês Europeu da Cibersegurança

Diogo Nuno Freitas diogo.freitas@iti.larsys.pt

Ciclo de Conversas online com quem sabe.

1 de novembro de 2021

Motivação

Motivação

Olhando para este gráfico, quais os pontos que nos **chamam mais a** atenção?

Como pode um sistema detectar automaticamente esses pontos?

1

Motivação

Olhando para este gráfico, quais os pontos que nos **chamam mais a** atenção?

Como pode um sistema detectar automaticamente esses pontos?

1

Podemos começar por calcular a média e o desvio padrão, isto é,

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \approx 14,42$$
 e $\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \approx 1,45.$

Vamos usar essas duas medidas para calcular o **limite** (*l*) para os dados considerados *normais*:

$$l = \sigma \times c$$
,

onde c é uma constante arbitrária.

Finalmente, podemos definir os limites **inferiores e superiores**, de tal forma que:

$$\begin{cases} l_{\text{inf}} = \bar{x} - l, \\ l_{\text{sup}} = \bar{x} + l. \end{cases}$$

Ou seja, um ponto é considerado normal se $l_{inf} \le x_i \le l_{sup}$.

Para o nosso caso, e considerando c=2,

$$\begin{cases} l_{inf} = 14,42-2,90 \approx 11,52, \\ l_{sup} = 14,42+2,90 \approx 17,32. \end{cases}$$

Graficamente, estamos a criar duas rectas verticais, tais como,

Como definir c?

Motivação: Como definir o valor de *c*?

Precisamos de uma forma automática (e adaptativa) para classificar os pontos como sendo *normais* ou *outliers* → **Inteligência Artificial**.

Objectivos da sessão

Objectivos da sessão

- Perceber a motivação para o uso de métodos automáticos de classificação.
- Ter uma percepção breve sobre a história da Inteligência Artificial (IA).
- 3. Introduzir conceitos básicos de machine learning (ML).
- 4. Conhecer os modelos de IA utilizados actualmente.
- Perceber como é que esses modelos podem ser aplicados no âmbito da cibersegurança.

Introdução

Introdução

O que é a IA?

É uma **invenção humana** que permite usar sistemas informáticos para **simular comportamentos humanos inteligentes**.

Com a IA, assistimos **a uma mudança no paradigma de programação** que até então estávamos habituados.

Programação tradicional:

Introdução (cont.)

Acontecimentos importantes:

- Em 1943, McCulloch e Pitts desenvolveram o primeiro modelo computacional inteligente: uma rede neuronal artificial.
- Rosenblatt nos finais da década de 50 e começo da década de 60, sugere perceptrões.
- · Linnainmaa sugere o algoritmo de de backpropagation (1970).
- Em 1979, Fukushima propõe as rede neuronais convolucionais (CNN).

Introdução (cont.)

Outros acontecimentos importantes:

- · As redes *long short-term memory* (LSTM) são sugeridas em 1997.
- Na década de 2000, começam a surgir implementações dos algoritmos de treino em GPUs.
- Goodfellow e colaboradores introduzem as redes Generative Adversarial em 2014
- Recentemente, o conceito de transformers foi introduzido para processamento de linguagem natural.

IA e a cibersegurança

Já existem diversas aplicações de modelos de IA à cibersegurança. E existirão cada vez mais!

Vantagens:

- · Possibilita detectar padrões em milhões tuplos de dados.
- · Permite fazer processamento de linguagem natural.
- · Possibilita executar aplicações que estão sempre *atentas*.
- Garante que os modelos aprendam constantemente com novas informações.

IA e a cibersegurança (cont.)

Existem, contudo, algumas dificuldades que estão **dependentes dos humanos**.

Dificuldades:

- Elevado desequilíbrio entre o número de dados de ameaças e os de não-ameaça.
- O sucesso dos modelos está sempre dependente da disponibilização de informação.
- · Falta de recursos humanos qualificados na área de IA.
- · Custos elevados com formação e com equipamentos.
- · Pode acontecer virar-se o feitiço contra o feiticeiro!

Conceitos básicos

Conceitos básicos

O que são features?

Features ou atributos são propriedades que descrevem uma possível relação com a variável de saída. Os atributos podem ser numéricos ou categóricos.

Criação de features

Métodos manuais ou automáticos de criação de novos atributos com base nos que já existem.

Selecção de features

Métodos manuais ou automáticos para reduzir a dimensionalidade do problema.

Conceitos básicos (cont.)

Quais são os dois tipos de problemas mais comuns para ML?

Classificação

Os modelos utilizam os atributos fornecidos para **categorizar os dados em classes**. Maioritariamente associada com tarefas de *clustering*.

Regressão

Os modelos tentam **inferir uma função real** para mapear os atributos e as variáveis de saída (em valor real).

Conceitos básicos (cont.)

Quais são os dois tipos de aprendizagem mais comuns para ML?

Supervised learning

Quando disponibilizamos ao modelo exemplos de mapeamento entre as entradas (atributos) e as saídas.

Unsupervised learning

No caso do *unsupervised learning*, esse mapeamento **não é fornecido à rede**. A rede é, assim, obrigada **a aprender a classificar os dados com base nos padrões ou nos** *clusters* **que encontrar.**

Exemplos práticos

Objectivo de modelo

Na sua essência, o faz um modelo de ML?

Num problema de classificação, tenta encontrar **uma linha ou um** plano que permita separar as classes.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

- Forward Propagation.
- Backward Propagation.

Os neurónios numa RNA têm duas funções:

- Função de transferência ($T = W \cdot I$);
- Função de activação (ϕ) .

O algoritmo de *backpropagation* consiste em dois aspectos fundamentais:

- Cálculo do erro de saída e retropropagação até aos neurónios de entrada;
- Actualização dos pesos por meio de um algoritmo de optimização.

Exemplo 2: LSTMs

A estrutura de uma rede Long Short Term Memory (LSTM) é a seguinte¹:

As LSTMs são modelos úteis quando existe uma **sequência ordenada nos dados**, pois conseguem guardar **contexto**.

¹Imagem adaptada de: https://colah.github.io/posts/2015-08-Understanding-LSTMs

Exemplo 2: LSTMs (cont.)

Cada célula de uma LSTM possui três operações/portas (gates):

- · forget—que informação esquecer?
- · input—o que adicionar ao que já sei?
- output—que informação passar?

Exemplo 2: LSTMs (cont.)

Este tipo de redes consegue aprender **dependências douradoras, bem como esporádicas.**

No âmbito da cibersegurança, as LSTMs podem ser usadas **para detectar e prevenir fraudes**. Vejamos um exemplo.

t	X	у
1	15	0
2	45	0
3	65	0
4	500	1
5	500	1
6	25	0

Exemplo 2: LSTMs (cont.)

Para dar contexto à LSTM, os dados **precisam de reestruturados em janela deslizante**. Neste caso, o tamanho da janela escolhido foi 3.

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	У
15	45	65	0
45	65	500	0
65	500	500	1
500	500	25	1

Iremos ter uma LSTM **com três células para predizer** *y*, e detectar movimentos potencialmente fraudulentos.

Exemplo 3: SVMs e NLP

O último exemplo que vamos ver usa as **Support Vector Machines (SVMs)** e o **Processamento de Linguagem Natural** (NLP).

Comecemos por entender como é que as SVMs funcionam.

Como podemos separar as seguintes classes?

Exemplo 3: SVMs e NLP (cont.)

As SVMs na sua essência encontram um hiperplano capaz de separar as duas classes.

Exemplo 3: SVMs e NLP (cont.)

As SVMs na sua essência encontram um hiperplano capaz de separar as duas classes.

Exemplo 3: SVMs e NLP (cont.)

Como podemos desenvolver um sistema automático para detectar se um e-mail é SPAM, ou não?

Abordagem n-grama

Permite **separar o texto em sequências** de *n* caracteres ou palavras.

Modelo bag-of-words

Permite transformar a linguagem natural em representação numérica. A representação numérica é feita à custa da frequência de cada termo.

A partir daqui, **passamos a ter um problema comum de ML** que podemos resolver usando as SVMs.

Conclusão

Conclusão

Começámos por ver **como podemos classificar manualmente** acontecimentos anormais.

Percebemos como surgiram os primeiros modelos de ML.

Entendemos o que são **atributos**, **quais os problemas mais comuns** e que **tipos de aprendizagem existem**.

Finalmente, **aplicámos três modelos de ML** a problemas de cibersegurança.

Conclusão (cont.)

	ANN
Tipos de problema	Classificação e regressão.
Tipos de aprendizagem	Supervised.
Dados	Qualquer tipo de dados.
Exemplos de aplicação	Dados não ordenados (geral).

	LSTM
Tipos de problema	Classificação e regressão.
Tipos de aprendizagem	Supervised.
Dados	Bases de dados com muitos registos.
Exemplos de aplicação	Previsão (séries ordenadas).

Conclusão (cont.)

	SVM
Tipos de problema	Classificação e regressão.
Tipos de aprendizagem	Supervised.
Dados	Dados de grandes dimensões.
Exemplos de aplicação	NLP.

Bibliografia i

[1] S. Aiyar and N. P. Shetty.
N-gram assisted youtube spam comment detection.
Procedia Computer Science, 132:174–182, 2018.
International Conference on Computational Intelligence and Data Science.

[2] A. Parisi. Hands-On Artificial Intelligence for Cybersecurity: Implement Amart AI Systems for Preventing Cyber Attacks and detecting threats and network anomalies. Packt Publishing, 2019.

[3] C. Sammut and G. Webb.
Encyclopedia of Machine Learning.
Encyclopedia of Machine Learning. Springer US, 2011.

Bibliografia ii

[4] E. Tsukerman.

Machine Learning for Cybersecurity Cookbook: Over 80 Recipes on How to Implement Machine Learning Algorithms for Building Security Systems Using Python.

Packt Publishing, 2019.

Inteligência Artificial e Cibersegurança

Outubro—Mês Europeu da Cibersegurança

Diogo Nuno Freitas diogo.freitas@iti.larsys.pt

Ciclo de Conversas online com quem sabe.

1 de novembro de 2021

