History Lattice Geometry Lattice Sites Magnetization Energy

Sampling the Ising Model

Abraham Hinteregger

University of Vienna

04.10.2013

History Lattice Geometry Lattice Sites Magnetization Energy

History

- Proposed by Wilhelm Lenz to his student Ernst Ising
- ▶ 1924: Ernst Ising Beitrag zur Theorie des Ferromagnetismus¹

 "Es entsteht ... [durch] ... die Beschränkung der

 Wechselwirkung auf diejenige benachbarter Elemente

 [...] kein Ferromagnetismus."
- ➤ 1936: Rudolph Peierls On Ising's model of ferromagnetism²

 "[...] for sufficiently low temperatures the Ising

 model in two [or more] dimensions shows

 ferromagnetism [...].

¹Zeitschrift für Physik Februar-April 1925, Volume 31, Issue 1, pp 253-258

²Cambridge Philosophical Society 1936, Volume 32, Issue 03, Oct.

History Lattice Geometry Lattice Sites Magnetization Energy

Lattice

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Lattice

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 dimensions

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 and 3 dimensions

History
Lattice Geometry
Lattice Sites
Magnetization
Energy

Figure: Square Lattice in 1 dimension

Figure: Square Lattice in 2 and 3 dimensions

History Lattice Geometry Lattice Sites Magnetization Energy

Lattice Sites

lacktriangle Each site has a state $s_i = -1 \lor 1$

Lattice Sites

- lacktriangle Each site has a state $s_i = -1 \lor 1$
- Assignment of states $S = (s_0, s_1, s_2, \dots, s_{N-1})$ to the lattice sites is called a configuration
- ► Therefore 2^N unique configurations for a lattice with N lattice sites.

Magnetization

▶ The magnetization of a configuration is calculated by

$$M_S = M(S) = \sum_{i}^{N} s_i \in [-N, N]$$

► The squared magnetization is an indicator for the degree of order

$$M_S^2 = \sum_i s_i^2 \in [0, N]$$

Energy

► Each configuration has a corresponding energy - the Hamiltonian.

$$E_S = E(S) = H(s_0, s_1, \dots, s_{N-1}) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j - h \sum_i s_i$$

Energy

Each configuration has a corresponding energy - the Hamiltonian.

$$E_S = E(S) = H(s_0, s_1, \dots, s_{N-1}) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j - h \sum_i s_i$$

Energy

► Each configuration has a corresponding energy - the Hamiltonian.

$$E_S = E(S) = H(s_0, s_1, \dots, s_{N-1}) = -J \sum_{\langle i,j \rangle} s_i \cdot s_j - h \sum_i s_i$$

History Lattice Geometry Lattice Sites Magnetization Energy

Figure: Energy contribution (nearest neighbor interaction) of the bonds connected to the central lattice site

Figure: Energy contribution (nearest neighbor interaction) of the bonds connected to the central lattice site

Boltzmann distribution

Probability of system being in the state S is given by the Boltzmann distribution ($\beta=1/kT$)

$$p_S = p(S) = \frac{e^{-\beta E_S}}{Z}$$

Z is the the partition function

$$Z = \sum_{i}^{2^{N}} e^{-\beta E_{Si}}$$

- Calculating all 2^N possible configurations (or a big part of them) only viable for small systems.
- Sampling from random configurations would lead to many high- energy (temperature) configurations (simple sampling)

- Calculating all 2^N possible configurations (or a big part of them) only viable for small systems.
- ► Sampling from random configurations would lead to many high- energy (temperature) configurations (simple sampling)
- ightarrow importance sampling

Markov Chain

- ▶ Chain of iteratively created configurations $C_1, C_2, ..., C_n$
- ► Resulting configurations correspond to the desired probability distribution *p* and span the entire state space.
- ▶ Configuration C_t only depends on C_{t-1} (Markov property).

Transitions in the Markov Chain

Probability for being in state A: p_A Transition probability for transition $S_A \to S_B$: p_{AB}

If it fulfills detailed balance (it must!)

$$p_A \cdot p_{AB} = p_B \cdot p_{BA}$$

the following relation for the transition probability follows:

$$\frac{p_{AB}}{p_{BA}} = \frac{p_B}{p_A} = \left(\frac{Z}{Z}\right) \frac{e^{-\beta E_B}}{e^{-\beta E_A}} = e^{-\beta (E_B - E_A) = e^{-\beta \Delta E}}$$

Metropolis- Hastings Algorithm

- ightharpoonup Configuration after t steps is C_t
- ▶ Flip one lattice site $\rightarrow C'_t$
 - has to be chosen randomly suitable RNG necessary
- Calculate energy difference $\Delta E = E'_t E_t$
- ► Calculate acceptance probability P

$$P = \min\left(1, e^{-eta \cdot \Delta E}
ight), \qquad eta = 1/kT > 0$$

- Generate random number $r \in [0, 1[$
 - $ightharpoonup r < P
 ightharpoonup C_{t+1} = C'_t$
 - $ightharpoonup r > P \rightarrow C_{t+1} = C_t$

Absolute magnetization per spin

Absolute magnetization per spin

Magnetization over time

Figure: M per spin plotted over time (Monte Carlo steps)

Properties of a configuration s

- ▶ Energy Hamiltonian: E(s) = H(s)
- ▶ Internal energy (per spin): $e(s) = E/N \in [-2, 2]$
- Magnetization: $M(s) = \sum_{i=1}^{N} s_{i}$
- ▶ Magnetization (per spin): $m(s) = M/N \in [-1, 1]$

Temperature

Temperature in the Ising Model

$$P = \min \left(1, e^{-\beta \cdot \Delta H} \right), \qquad \beta = 1/kT > 0$$

- $ightharpoonup \Delta H < 0 \rightarrow P = 1$
- ▶ high temperature leads to higher acceptance probability \rightarrow unordered (low magnetization, Curie Temperature T_c)
- lacktriangle critical temperature T_c when $\left\langle \sum_i^N s_i \right\rangle/N pprox 0$

Temperature in the Ising Model

$$P = \min \left(1, e^{-eta \cdot \Delta H}
ight), \qquad eta = 1/kT > 0$$

- $ightharpoonup \Delta H < 0 \rightarrow P = 1$
- ▶ high temperature leads to higher acceptance probability \rightarrow unordered (low magnetization, Curie Temperature T_c)
- lacktriangle critical temperature T_c when $\left\langle \sum_i^N s_i \right
 angle / N pprox 0$

$$kT_c/J = 2.269$$

Cluster Flip Algorithms

Summary - Ising Model

- molecules on a lattice each with with one of two possible states
- (magnetic) moments prefer to align
- low temperatures: ordered
- high temperatures: disordered

Different Models

- ► Single value obtained from one configuration hasn't much significance
- Average from many (n) configurations instead:

$$\bar{E} = \frac{1}{n} \sum_{i}^{n} E_{S_i}$$
 $\bar{M} = \frac{1}{n} \sum_{i}^{n} M_{S_i}$...

- ► Single value obtained from one configuration hasn't much significance
- Average from many (n) configurations instead:

$$\bar{E} = \frac{1}{n} \sum_{i}^{n} E_{S_i}$$
 $\bar{M} = \frac{1}{n} \sum_{i}^{n} M_{S_i}$...

► Sampling from completely random configurations does not work well for ordered configurations seen in ferromagnets.