Machine de rééducation SysReeduc ★

B2-07

On propose une modélisation par schéma-blocs dans la figure suivante.

Le moteur à courant continu est régi par les équations suivantes : $u_m(t) = e(t) + Ri(t)$, $e(t) = k_e \omega_m(t)$ et $C_{M1}(t) = k_t i(t)$.

Une étude dynamique a mené à l'équation suivante :

$$(M+m)r\rho_1\dot{\omega}_m(t) = \frac{C_{M1}(t)}{\rho_1 r} - F_p(t)$$

avec : M la masse du chariot et m la masse du support de pied, $\rho_1 = \frac{1}{10}$ le rapport de réduction du réducteur, r = 46,1 mm le rayon de la poulie du transmetteur poulie—courroie, $C_{M1}(t)$ le couple délivré par le moteur et $F_p(t)$ l'effort délivré par le patient sur le support 3.

Le codeur incrémental possède 500 fentes équiréparties. Deux émetteurs-récepteurs positionnés en quadrature permettent de mesurer l'information.

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

1. ... $K_{2} = \frac{k_{t}}{R};$ $K_{7} = k_{e};$ $K_{9} = \rho_{1}r \text{ et } H_{3}(p) = \frac{1}{(M+m)r^{2}\rho_{1}^{2}p};$ $H_{4}(p) = \frac{1}{p};$ $K_{8} = \frac{2000}{2\pi};$ $K_{5} = \rho_{1} \text{ et } K_{6} = r \text{ (à convertir en mètres)};$ $K_{1} = \frac{K_{8}}{K_{5}K_{6}}.$ 2. $A = \frac{K_{8}}{k_{e}}, B = \frac{R(m+M)r^{2}\rho_{1}^{2}}{k_{e}k_{t}} \text{ et } D = \frac{K_{9}Rr\rho_{1}}{K_{8}k_{t}}$

Corrigé voir .