

Universidade do Minho

Mestrado em Engenharia Informática

Engenharia dos Sistemas de Computação - 2014/2015 Análise de Traçados com strace

14 de Maio de 2015

Resumo

Este trabalho resultará num relatório de desempenho equivalente ao que é produzido diretamente pela aplicação iozone e produzir gráficos que representem os padrões temporais de acesso aos dados, para as operações de leitura/escrita e busca (Iseek).

Índice

Índice	2
Introdução	
Strace e Parâmetros de teste	4
Estatísticas	5
Tempo	5
Total de Operações E/S	5
Banda utilizada pelo write	
Tamanho de Blocos de Ficheiros no write	6
Resumo do write	7
Banda utilizada pelo read	8
Tamanho de Blocos de Ficheiros no read	8
Resumo do read	9
Conclusão	o

Introdução

O *strace* é uma ferramenta para a depuração de programas cujos traçados quando filtrados e analisados podem também ser usados para estudar o padrão de execução das aplicações. Monitoriza interações entre os programas e o kernel do Linux, como chamadas ao sistema, sinais e mudanças no estado do processo. O trabalho do *strace* só é possível devido ao *ptrace*.

Com a ajuda do ficheiro *refazStFd.py* disponibilizado pelo professor foi possível obter melhores informações sobre a utilização dos vários ficheiros temporários criados pelo *iozone*.

Strace e Parâmetros de teste

Para este trabalho utilizei o strace versão 4.5.19 instalada no cluster. Primeiramente foi necessário utilizar o *strace* da seguinte forma num job sobre o iozone com 256 MB:

```
strace -T -ttt -o strace.out /opt/iozone/bin/iozone -R -a -i0 -i1 -i2 -i5 -g 256M
```

Com o ficheiro output strace.out passei-o pelo refazStFd.py para tratar dos ficheiros temporários.

```
/share/apps/IOAPPS/refazStFd.py < strace.out > ref.rsf
```

O *ref.rsf* já está tratado e então é altura de o passar pelo *strace_analyzer* para gerar algumas estatísticas para melhor compreender o que se passou naquela execução do *iozone*.

```
/share/apps/IOAPPS/strace_analyzer_ng_0.09.pl ref.rsf > stanREF.txt
```

Estatísticas

Tendo já o ficheiro pronto para análise, é possível obter as seguintes informações.

Tempo

O programa na totalidade demorou cerca de 191.96 segundos a concluir, sendo que 83.65% desse tempo foi em operações de E/S ao sistema perfazendo 160.587 segundos.

Elapsed Time for run	191.959035 (secs)
Total IO Time	160.587606 (secs)
Total IO Time Counter	324461
Percentage of Total Time	83.657227%

Total de Operações E/S

As seguintes chamadas ao sistema via operações de E/S foram contabilizadas da seguinte forma:

Command	Count
access	1
Iseek	95254
stat	404
unlink	234
open	941
close	1175
creat	117
fstat	6
fsync	1404
read	126931
write	97920

Como se trata de um teste de escrita em disco, é normal que os comandos *Iseek*, *read* e *write* sejam os mais utilizados.

Banda utilizada pelo write

Com o histórico da chamada ao sistema write, foi possível gerar o seguinte gráfico onde podemos analisar a quantidade de informação escrita por segundo (*Banda/Bandwidth*) ao longo da execução. Os dados obtidos resultaram em 97921 linhas, resultando num gráfico ilegível, portanto fiz uma média a cada 512 linhas para ficar à volta dos 191 segundos, tempo de duração da execução. Ficando assim um gráfico mais percetível e de melhor interpretação.

Tamanho de Blocos de Ficheiros no write

A tabela seguinte representa a dispersão entre os tamanhos de blocos utilizados nas chamadas ao sistema em operações de escrita.

IO Size Range	Number of syscalls
OKB < < 1KB	2901
1KB < < 8KB	24528
8KB < < 32KB	18396
32KB < < 128KB	27639
128KB < < 256KB	12285
256KB < < 512KB	6141
512KB < < 1000KB	3069
1000KB < < 10MB	2868
10MB < < 100MB	93
100MB < < 1GB	0
1GB < < 10GB	0
10GB < < 100GB	0
100GB < < 1TB	0
1TB < < 10TB	0

Resumo do write

Concluídas as análises anteriores à chamada *write* é possível tirar uma conclusão geral e algumas estatísticas interessantes com os valores obtidos.

WRITE SUMMARY	
Total number of Bytes written	14,796,940,713 (14,796.940713 MB)
Number of Write syscalls	97920
Average (mean) Bytes per syscall	151,112.548131127 (bytes) (0.151112548131127 MB)
Standard Deviation	718,723.650115704 (bytes) (0.718723650115704 MB)
Mean Absolute Deviation	686,634.90476273 (bytes) (0.68663490476273 MB)
Median Bytes per syscall	65,536 (bytes) (0.065536 MB)
Median Absolute Deviation	142,811.593045343 (bytes) (0.142811593045343 MB)
Time for slowest write syscall (secs)	0.164958
Line location in file	304974
Smallest write syscall size	1 (Byte)
Largest write syscall size	16777216 (Bytes)

No total foram escritos 14 796.9 MB (+/- 14 GB), num total de 97920 chamadas de escrita (como o write), como mostra a primeira estatística (*Total de Operações E/S*). A Mediana de Bytes por chamada ao sistema está nos 65536, valor esse presente nos blocos de teste do *iozone*, não sendo um valor estranho às estatísticas.

Banda utilizada pelo read

Com o histórico da chamada ao sistema read, foi possível gerar o seguinte gráfico onde podemos analisar a quantidade de informação lida por segundo (*Banda/Bandwidth*) ao longo da execução. Tal como no *Write*, o gráfico gerado diretamente a partir dos dados ficaria gigantesco, portanto fiz uma média a cada 650 linhas para ficar à volta dos 191 segundos, tempo de duração da execução. Ficando assim um gráfico mais percetível e de melhor interpretação.

Tamanho de Blocos de Ficheiros no read

A tabela seguinte representa a dispersão entre os tamanhos de blocos utilizados nas chamadas ao sistema em operações de escrita.

IO Size Range	Number of syscalls
OKB < < 1KB	3
1KB < < 8KB	32724
8KB < < 32KB	24564
32KB < < 128KB	36896
128KB < < 256KB	16404
256KB < < 512KB	8210
512KB < < 1000KB	4112
1000KB < < 10MB	3884
10MB < < 100MB	134
100MB < < 1GB	0
1GB < < 10GB	0
10GB < < 100GB	0
100GB < < 1TB	0
1TB < < 10TB	0

Resumo do read

Concluídas as análises anteriores ao *read* é possível tirar uma conclusão geral e algumas estatísticas interessantes com os valores obtidos.

READ SUMMARY	
Total number of Bytes read	20,131,020.718 (20,131.020718 MB)
Number of Read syscalls	126,931
Average (mean) Bytes per syscall	158,598.141651764 (bytes) (0.158598141651764 MB)
Standard Deviation	749,136.288122469 (bytes) (0.749136288122469 MB)
Mean Absolute Deviation	716,227.68995956 (bytes) (0.71622768995956 MB)
Median Bytes per syscall	65,536 (bytes) (0.065536 MB)
Median Absolute Deviation	148,001,871520747 (bytes) (0.148001871520747 MB)
Time for slowest read syscall (secs)	0.006456
Line location in file	199947
Smallest read syscall size	832 (Bytes)
Largest read syscall size	16777216 (Bytes)

No total foram lidos 20 131 MB (+/- 20 GB), num total de 126931 chamadas de leitura (como o *read*), como mostra a primeira estatística (*Total de Operações E/S*). A Mediana de Bytes por chamada ao sistema está nos 65536, valor esse presente nos blocos de teste do *iozone*, não sendo um valor estranho às estatísticas.

Conclusão

Com a ferramenta *strace* foi possível ter uma perspetiva diferente de como o *iozone* trabalha. Analisando de um ponto de vista de chamadas ao sistema, *syscalls*, como *lseek*, *write* ou *read*. Podendo assim obter melhores informações do seu funcionamento e até detetar erros ou anomalias.