Mathematical Methods for Artificial Intelligence Lab $3\,$

Vytautas Kraujalis

2021-10-30

Contents

1	Reading Data	1
2	Required packages	1
3	Parallel processing	2
4	EDA, first look at the dataset	2
5	Pre-process	9
	5.1 Removal of correlated variables	9
6	Fitting models	10
	6.1 Simple LDA	10
	6.2 Simple QDA	12
	6.3 Simple RDA	12
	6.4 CART	15
7	Comparison of models	17
1	Reading Data	
set.seed(123)		

2 Required packages

data_original <- read.csv("Arrhythmia_Dataset.csv")</pre>

```
library(SmartEDA)
library(dplyr)
library(ggplot2)
library(caret)
library(rattle)

# Function for 3 class accuracy from confusion matrix
classAcc <- function(confusionMatrix) {
   classO <- round(confusionMatrix$table[1, 1] / sum(confusionMatrix$table[, 1]) * 100, 1)
   class1 <- round(confusionMatrix$table[2, 2] / sum(confusionMatrix$table[, 2]) * 100, 1)
   class2 <- round(confusionMatrix$table[3, 3] / sum(confusionMatrix$table[, 3]) * 100, 1)
   acc <- c(classO, class1, class2)
   names(acc) <- colnames(confusionMatrix$table)
   return(acc)
}</pre>
```

3 Parallel processing

```
library(parallel)
no_cores <- detectCores() - 1
library(doParallel)
cl <- makePSOCKcluster(no_cores)
registerDoParallel(cl)</pre>
```

4 EDA, first look at the dataset

```
ExpData(data_original, type=1)
```

```
##
                                              Descriptions
                                                                Value
## 1
                                        Sample size (nrow)
                                                               175729
## 2
                                   No. of variables (ncol)
                                                                   34
## 3
                        No. of numeric/interger variables
                                                                   32
## 4
                                   No. of factor variables
                                                                    0
## 5
                                     No. of text variables
                                  No. of logical variables
## 6
                                                                    0
                                                                    0
## 7
                               No. of identifier variables
## 8
                                     No. of date variables
                                                                    0
## 9
                 No. of zero variance variables (uniform)
## 10
                    %. of variables having complete cases 100% (34)
## 11
        %. of variables having >0% and <50% missing cases
                                                               0% (0)
## 12 %. of variables having >=50% and <90% missing cases
                                                               0% (0)
## 13
               %. of variables having >=90% missing cases
                                                               0% (0)
```

We have a dataset of 175729 observations with 34 variables, of which are 2 text variables and 32 - numerical. All variables have no missing values.

Let's look at the text variables:

```
data_original %>%
  group_by(record) %>%
  summarise(n = n()) %>%
  summary()
```

```
##
       record
                               n
                                :1452
##
    Length:75
                         Min.
##
    Class : character
                         1st Qu.:1957
##
    Mode :character
                         Median:2323
##
                         Mean
                                 :2343
##
                         3rd Qu.:2659
##
                         Max.
                                 :3909
```

Our first text variable record has 75 unique values (unique patients). Each patient has on average 2343 observations.

```
data_original %>%
  group_by(type) %>%
  summarise(n = n()) %>%
  mutate(n_prop = round(n / sum(n) * 100, 2))
```

```
## # A tibble: 5 x 3
##
     type
                n n_prop
##
     <chr>>
            <int>
                   <dbl>
## 1 F
               219
                     0.12
## 2 N
            153546 87.4
## 3 Q
                 6
                     0
## 4 SVEB
             1958
                     1.11
            20000 11.4
## 5 VEB
```

The next text variable type is our target variable. It has 5 classes, but there's a huge class imbalance. 2 out of 5 classes takes up to 98.76% of all observations, 1 class has just 6 observations. We are planning to combine F, Q, SVEB classes into one class, as those 3 classes combined only takes up to 1.23% of observations.

N (Normal) - Normal beat.

SVEB (Supraventricular ectopic beat) - Supraventricular Ectopic Beats indicates atrial irritability. Isolated Supraventricular Ectopic Beats are generally not significant in nature but a high frequency can represent more risk. An increasing trend in Supraventricular Ectopic Beats may be an indicator or sign for atrial fibrillation. Atrial Fibrillation is considered to be significant as it can lead to heart attack or stroke.

VEB (Ventricular ectopic beat) - Ventricular ectopics are a type of arrhythmia or abnormal heart rhythm. It is caused by the electric signals in the heart starting in a different place and travelling a different way through the heart. If it happens occasionally, it should not cause any problems but if it happens a lot, you will need to have treatment.

F (Fusion beat) - A fusion beat occurs when a supraventricular and a ventricular impulse coincide to produce a hybrid complex. It indicates that there are two foci of pacemaker cells firing simultaneously: a supraventricular pacemaker (e.g. the sinus node) and a competing ventricular pacemaker (source of ventricular ectopics).

Q (Unknown beat) - Unknown beat.

```
data <- data_original %>%
  mutate(type = case_when(
  type %in% c("F", "Q", "SVEB") ~ "F_Q_SVEB",
  TRUE ~ type
  ))

data %>%
  group_by(type) %>%
  summarise(n = n()) %>%
  mutate(n_prop = round(n / sum(n) * 100, 2))
```

```
## # A tibble: 3 x 3
##
     type
                    n n_prop
##
     <chr>>
                <int>
                       <dbl>
## 1 F_Q_SVEB
                 2183
                        1.24
## 2 N
               153546
                       87.4
## 3 VEB
                20000
                      11.4
```

We combined the 3 classes into 1 class, which has only 2183 observations (1.24%) which is still low, but still better for our basic models to classify.

We are not interested in the patient record variable, so we'll remove it:

```
data <- data %>%
    select(-record)
```

Let's look at descriptive statistics of each variable:

```
ExpNumStat(data,by ="A",round= 2, gp = "type") %>%
select(Vname, min, max, mean, median, SD)
```

```
##
                Vname
                        min
                               max
                                     mean median
                                                     SD
           XO_post.RR 71.00 506.00 197.20 188.00 61.72
## 2
             XO pPeak -4.21 10.57
## 3
                                     0.04
                                             0.00 0.19
## 9
       X0_pq_interval 1.00 113.00
                                             6.00 7.89
                                     8.71
            XO_pre.RR 49.00 506.00 197.18 188.00 61.70
## 1
## 7
             X0_qPeak -7.11
                              3.13
                                    -0.17
                                           -0.11 0.37
## 8
      X0_qrs_interval 0.00 131.00
                                    17.62
                                           17.00 10.62
        X0_qrs_morph0 -7.11
## 12
                              3.13
                                    -0.17
                                           -0.11 0.37
## 13
        X0_qrs_morph1 -7.11
                              3.47
                                    -0.08
                                           -0.03 0.40
## 14
        XO_qrs_morph2 -7.51
                              4.09
                                     0.28
                                            0.24 0.64
                              4.50
## 15
        X0_qrs_morph3 -7.80
                                     0.61
                                            0.64 0.85
## 16
        X0_qrs_morph4 -7.94
                              4.30
                                     0.17
                                            0.14 0.68
## 10
       X0_qt_interval 3.00 247.00
                                    37.46
                                           30.00 23.64
## 5
                              4.60
                                            0.91 0.87
             X0_rPeak -7.11
                                     0.86
## 6
             X0_sPeak -7.97
                              3.89
                                    -0.59
                                           -0.63 0.80
## 11
       XO_st_interval
                      1.00
                             89.00
                                    11.13
                                             6.00 14.30
## 4
             X0_tPeak -7.96
                              4.63
                                     0.12
                                           -0.04 0.64
## 18
           X1 post.RR 71.00 506.00 197.20 188.00 61.72
## 19
             X1_pPeak -1.10
                              7.63
                                     0.06
                                             0.04 0.11
       X1_pq_interval 1.00 121.00
## 25
                                     7.11
                                             5.00 7.65
## 17
            X1_pre.RR 49.00 506.00 197.18 188.00 61.70
```

```
## 23
            X1_qPeak -6.46
                            1.38 -0.22 -0.12 0.28
## 24 X1_qrs_interval 0.00 128.00
                                  10.59
                                          5.00 9.92
       X1_qrs_morph0 -6.46
                             1.38
                                  -0.22
                                        -0.12 0.28
       X1_qrs_morph1 -4.91
                             2.78
## 29
                                  -0.25
                                         -0.19 0.31
## 30
       X1_qrs_morph2 -3.99
                            4.04
                                  -0.32
                                         -0.34 0.41
## 31
       X1_qrs_morph3 -2.96
                             2.77
                                  -0.39
                                        -0.48 0.49
## 32
       X1_qrs_morph4 -3.13
                             2.76
                                  -0.54 -0.59 0.49
## 26 X1_qt_interval 4.00 290.00
                                         24.00 14.83
                                  28.05
## 21
            X1_rPeak -2.39
                             4.06
                                  -0.11
                                         -0.09 0.40
## 22
            X1_sPeak -3.27
                                        -0.75 0.42
                             2.82
                                  -0.75
## 27 X1_st_interval 1.00 86.00 10.35
                                          9.00 4.83
                                          0.32 0.28
## 20
            X1_tPeak -2.02
                             3.65
                                   0.37
```

```
variables_of_further_interest <- c("X0_post.RR", "X0_pq_interval", "X0_pre.RR", "X0_qrs_interval", "X0_
```

We noticed some variables which should require further analysis, those variables are:

```
variables_of_further_interest
```

```
## [1] "X0_post.RR" "X0_pq_interval" "X0_pre.RR" "X0_qrs_interval"
## [5] "X0_qt_interval" "X1_post.RR" "X1_pre.RR" "X1_qrs_interval"
## [9] "X1_qt_interval"
```

We will look through these variables more closely and report any irregularities.

```
ggplot(data, aes(x = X0_qrs_interval, color = type)) +
  geom_boxplot() +
  theme_minimal()
```



```
data_original %>%
  filter(X0_qrs_interval > 125)
```

```
##
    record type XO_pre.RR XO_post.RR XO_pPeak XO_tPeak XO_rPeak XO_sPeak
                                 115 -0.1446686 1.394598 1.178978 1.178978
## 1
                   335
       I43
             F
      XO_qPeak XO_qrs_interval XO_pq_interval XO_qt_interval XO_st_interval
##
## 1 -0.1450307
                           131
    XO_qrs_morph0 XO_qrs_morph1 XO_qrs_morph2 XO_qrs_morph3 XO_qrs_morph4
       -0.1450307 -0.09808338
                                 -0.04288349 -0.004493709
## 1
                                                               0.01901518
    X1_pre.RR X1_post.RR X1_pPeak X1_tPeak X1_rPeak X1_sPeak X1_qPeak
##
                     115 0.1182595 1.325323 -2.114941 -2.323128 -2.114941
## 1
    X1_qrs_interval X1_pq_interval X1_qt_interval X1_st_interval X1_qrs_morph0
##
                                                                     -2.114941
## 1
                                 8
                                               26
                                                              16
##
    X1_qrs_morph1 X1_qrs_morph2 X1_qrs_morph3 X1_qrs_morph4
        -2.114941
                      -2.114941
                                    -2.306017
## 1
                                                  -2.306017
```

There's quite an unusual observation in $X0_qrs_i$ interval variable, where our new class F_QSVEB has a value of > 125. We also see from the original dataset that this observation was classified as F. We are going to classify this observation as an outlier and remove it.

```
data <- data %>%
  filter(X0_qrs_interval < 125)</pre>
```

```
ggplot(data, aes(x = X0_qt_interval, color = type)) +
  geom_boxplot() +
  theme_minimal()
```


We noticed another outlier, for the $X0_qt_interval$ variable, when the type is VEB, the value is close to 250 which is quite unusual in this dataset. We'll remove this observation.

```
data <- data %>%
  filter(X0_qt_interval < 225)

ggplot(data, aes(x = X1_qrs_interval, color = type)) +
  geom_boxplot() +
  theme_minimal()</pre>
```



```
data_original %>%
  filter(X1_qrs_interval > 75, type %in% c("F", "Q", "SVEB"))
```

```
X0_rPeak
    record type XO_pre.RR XO_post.RR XO_pPeak XO_tPeak
##
                                                                      X0_sPeak
## 1
       I05
              F
                      177
                                 367 0.02885405 0.4625619 -0.1868355 -0.2210357
      X0_qPeak X0_qrs_interval X0_pq_interval X0_qt_interval X0_st_interval
##
## 1 -0.1868355
                             2
                                           12
                                                          27
                                                                         13
##
    X0_qrs_morph0 X0_qrs_morph1 X0_qrs_morph2 X0_qrs_morph3 X0_qrs_morph4
       -0.1868355
                     -0.1868355
                                   -0.1868355
                                                 -0.2103347
                                                               -0.2103347
## 1
    X1_pre.RR X1_post.RR
                          X1_pPeak X1_tPeak X1_rPeak X1_sPeak X1_qPeak
                     367 0.08331537 0.3157339 0.1065414 -0.1558735 -0.1257657
## 1
         177
##
    X1_qrs_interval X1_pq_interval X1_qt_interval X1_st_interval X1_qrs_morph0
## 1
                 94
                                22
                                              123
                                                                    -0.1257657
    X1_qrs_morph1 X1_qrs_morph2 X1_qrs_morph3 X1_qrs_morph4
##
    -0.09340949 -0.04265345 -0.01324232 0.006886856
```

Seems like another outlier was detected in X1_qrs_interval variable, where the type is F_Q_SVEB and the value is close to 100. From the original dataset, this observation had F type. We'll remove it.

```
data %>%
  mutate(row = row_number()) %>%
  filter(X1_qrs_interval > 75, type == "F_Q_SVEB") %>%
  select(row)
```

```
## row
## 1 10934
```

```
data <- data %>%
  filter(row_number() != 10934)
```

We should look at the correlation between variables

```
# Correlation
corr_simple <- function(df,sig=0.5){</pre>
  corr <- cor(df)</pre>
  #prepare to drop duplicates and correlations of 1
  corr[lower.tri(corr,diag=TRUE)] <- NA</pre>
  #drop perfect correlations
  corr[corr == 1] <- NA
  #turn into a 3-column table
  corr <- as.data.frame(as.table(corr))</pre>
  #remove the NA values from above
  corr <- na.omit(corr)</pre>
  #select significant values
  corr <- subset(corr, abs(Freq) > sig)
  #sort by highest correlation
  corr <- corr[order(-abs(corr$Freq)),]</pre>
  return(corr)
}
correlation_matrix = cor(data %>% select(-type))
length(findCorrelation(correlation_matrix, cutoff = 0.99))
## [1] 4
length(findCorrelation(correlation_matrix, cutoff = 0.95))
## [1] 6
length(findCorrelation(correlation_matrix, cutoff = 0.9))
```

[1] 8

We have 4 variables with higher than .99 correlation. We have 6 variables with higher than .95 correlation. We have 8 variables with higher than .9 correlation.

5 Pre-process

5.1 Removal of correlated variables

We've found some highly correlated variables. We don't have a lot of variables (32) and because of that, we'll only remove the variables with >.99 correlation.

```
data <- data %>%
  select(-findCorrelation(correlation_matrix, cutoff = 0.99))
```

6 Fitting models

6.1 Simple LDA

```
##
## parameter
                             "none"
## logLoss
                             "0.1569349"
## AUC
                             "0.9660774"
## prAUC
                             "0.8503791"
## Accuracy
                             "0.9682119"
## Kappa
                             "0.8479544"
                             "0.8095788"
## Mean_F1
## Mean_Sensitivity
                             "0.7998741"
                             "0.9366059"
## Mean_Specificity
## Mean_Pos_Pred_Value
                             "0.8271019"
## Mean_Neg_Pred_Value
                             "0.9781875"
## Mean_Precision
                             "0.8271019"
                             "0.7998741"
## Mean_Recall
## Mean_Detection_Rate
                             "0.3227373"
## Mean_Balanced_Accuracy
                             "0.86824"
## logLossSD
                             "0.003783519"
## AUCSD
                             "0.002409343"
## prAUCSD
                             "0.006933635"
## AccuracySD
                             "0.0004901414"
## KappaSD
                             "0.002839515"
                             "0.003479908"
## Mean_F1SD
## Mean_SensitivitySD
                             "0.002722242"
## Mean_SpecificitySD
                             "0.002274744"
## Mean_Pos_Pred_ValueSD
                             "0.005635765"
## Mean_Neg_Pred_ValueSD
                             "0.0006510096"
## Mean_PrecisionSD
                             "0.005635765"
## Mean_RecallSD
                             "0.002722242"
```

```
## Mean_Detection_RateSD "0.0001633805"
## Mean_Balanced_AccuracySD "0.00183603"
```

AUC is 0.96, which is pretty good, the Mean F1 is 0.8 which also indicated quite a good model. The variance for AUC is 0.002, for Mean F1 - 0.003, this indicated a stable model.

```
predictions <- lda.fit %>% predict(data)
confusion_matrix <- confusionMatrix(predictions, as.factor(data$type))
confusion_matrix</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction F_Q_SVEB
                                  VEB
                             N
                                  846
##
     F_Q_SVEB
                  1328
                           323
    N
                   778 152896
                                 3230
##
##
     VEB
                    75
                           327
                               15923
##
## Overall Statistics
##
                  Accuracy : 0.9683
##
                    95% CI: (0.9674, 0.9691)
##
##
       No Information Rate: 0.8738
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.8481
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                        Class: F_Q_SVEB Class: N Class: VEB
## Sensitivity
                                0.608895
                                           0.9958
                                                      0.79619
## Specificity
                                0.993264
                                           0.8193
                                                      0.99742
## Pos Pred Value
                                0.531838
                                           0.9745
                                                      0.97538
## Neg Pred Value
                                0.995076
                                           0.9655
                                                      0.97443
## Prevalence
                                0.012411
                                           0.8738
                                                      0.11381
## Detection Rate
                                0.007557
                                           0.8701
                                                      0.09061
## Detection Prevalence
                                0.014210
                                           0.8929
                                                      0.09290
## Balanced Accuracy
                                           0.9075
                                0.801079
                                                      0.89680
```

classAcc(confusion_matrix)

```
## F_Q_SVEB N VEB
## 60.9 99.6 79.6
```

The overall accuracy is pretty good (96.8%), the accuracies for each class are: $F_Q_SVEB = 60.9\%$, N = 99.6%, VEB = 79.6%.

6.2 Simple QDA

Can't fit a QDA model because of our small class F_Q_SVEB.

6.3 Simple RDA

1807.66 sec elapsed

```
library(tictoc)
tic()
fitControl <- trainControl(## 5-fold CV</pre>
                            method = "cv",
                            number = 5,
                            ## Estimate class probabilities
                            classProbs = TRUE,
                            ## Evaluate performance using
                            ## the following function
                            summaryFunction = multiClassSummary,
                            savePredictions="all",
                            verboseIter = TRUE)
rdaGrid = expand.grid(lambda = seq(0.1,1,0.1),
                        gamma = seq(0,1,0.1)
rda.fit <- train(type ~ ., data = data,</pre>
                 method = "rda",
                 trControl = fitControl,
                 preProcess=c("center", "scale", "pca"),
                 ## Now specify the exact models
                 ## to evaluate:
                 tuneGrid = rdaGrid)
## Aggregating results
## Selecting tuning parameters
## Fitting gamma = 0, lambda = 0.9 on full training set
toc()
```

```
trellis.par.set(caretTheme())
plot(rda.fit, metric = "AUC")
```


plot(rda.fit, metric = "AUC", plotType = "level")

From those 2 graphs, we can see that the best cross-validation AUC is achieved using gamma - 0 and Lambda

0.5 or 0.6.

```
resamp = rda.fit$pred %>%
    filter(gamma == 0 & lambda == 0.6)
confusion_matrix <- confusionMatrix(resamp$pred, resamp$obs)</pre>
confusion_matrix
## Confusion Matrix and Statistics
##
```

```
##
              Reference
## Prediction F_Q_SVEB
                              N
                                   VEB
##
     F_Q_SVEB
                            329
                                   932
##
     N
                    725 150230
                                  2912
     VEB
                                16155
##
                    147
                           2987
##
```

Overall Statistics ##

##

##

##

Accuracy: 0.9543

95% CI: (0.9533, 0.9553)

No Information Rate: 0.8738 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.7943

Mcnemar's Test P-Value : < 2.2e-16 ##

```
##
## Statistics by Class:
##
##
                       Class: F_Q_SVEB Class: N Class: VEB
## Sensitivity
                              0.600183
                                        0.9784
                                                  0.80779
## Specificity
                             0.992734
                                        0.8360
                                                  0.97988
## Pos Pred Value
                             0.509339 0.9764
                                                  0.83752
## Neg Pred Value
                             0.994964 0.8483
                                                  0.97543
                                                  0.11381
## Prevalence
                             0.012411
                                        0.8738
## Detection Rate
                             0.007449 0.8549
                                                  0.09193
## Detection Prevalence
                             0.014625 0.8756
                                                  0.10977
## Balanced Accuracy
                             0.796459 0.9072
                                                  0.89383
```

classAcc(confusion_matrix)

```
## F_Q_SVEB N VEB
## 60.0 97.8 80.8
```

Overall accuracy using gamma - 0 and lambda - 0.6 is 95.4%, while accuracies for each class are: $F_Q_SVEB = 60.1\%$, N = 97.8% and VEB = 80.8%.

6.4 CART

##

##

```
fitControl <- trainControl(## 5-fold CV</pre>
                            method = "cv",
                            number = 5,
                            ## Estimate class probabilities
                            classProbs = TRUE,
                            ## Evaluate performance using
                            ## the following function
                            summaryFunction = multiClassSummary,
                            savePredictions="all",
                            verboseIter = TRUE)
cart.fit <- train(type ~ ., data = data,</pre>
                 method = "rpart",
                 trControl = fitControl,
                 preProcess=c("center", "scale"))
## Aggregating results
## Selecting tuning parameters
## Fitting cp = 0.0357 on full training set
cart.fit
## CART
##
## 175726 samples
##
       28 predictor
```

3 classes: 'F_Q_SVEB', 'N', 'VEB'

```
## Pre-processing: centered (28), scaled (28)
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 140579, 140581, 140582, 140581, 140581
## Resampling results across tuning parameters:
##
##
                logLoss
                           AUC
                                      prAUC
                                                  Accuracy
                                                            Kappa
                                                                       Mean F1
##
    0.04332732 0.1976976 0.8122371 0.17183438 0.9546681 0.7696368
##
                                                                       NaN
##
    0.31169973 0.2915470 0.6851202 0.05012975 0.9208718 0.4535553 NaN
    Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
##
##
    0.5990333
                      0.9166634
                                        NaN
                                                             0.9726729
                      0.8991634
##
    0.5799575
                                        NaN
                                                             0.9714899
##
    0.4774082
                      0.8029081
                                        NaN
                                                             0.9696886
##
    Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
##
                    0.5990333
                                 0.3201973
                                                      0.7578484
    NaN
##
    NaN
                    0.5799575
                                 0.3182227
                                                      0.7395605
##
    NaN
                    0.4774082
                                 0.3069573
                                                      0.6401581
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.03566276.
predictions <- cart.fit %>% predict(data)
confusion_matrix <- confusionMatrix(predictions, as.factor(data$type))</pre>
confusion_matrix
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction F_Q_SVEB
                                VEB
##
    F_Q_SVEB
                           0
                                  0
                    0
                 1416 152877
                               4542
##
##
    VEB
                  765
                         669 15457
##
## Overall Statistics
##
##
                 Accuracy : 0.9579
##
                   95% CI: (0.957, 0.9589)
##
      No Information Rate: 0.8738
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                    Kappa: 0.7889
##
##
  Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                       Class: F_Q_SVEB Class: N Class: VEB
## Sensitivity
                               0.00000
                                         0.9956
                                                   0.77289
## Specificity
                               1.00000
                                         0.7314
                                                   0.99079
## Pos Pred Value
                                         0.9625
                                                   0.91510
## Neg Pred Value
                               0.98759
                                         0.9604
                                                   0.97140
## Prevalence
                               0.01241
                                         0.8738
                                                   0.11381
## Detection Rate
                               0.00000 0.8700
                                                  0.08796
```

```
## Detection Prevalence 0.00000 0.9039 0.09612
## Balanced Accuracy 0.50000 0.8635 0.88184
```

classAcc(confusion_matrix)

```
## F_Q_SVEB N VEB
## 0.0 99.6 77.3
```

Our overall accuracy is 95.8%, but if we would look at each class accuracies: $F_Q_SVEB = 0\%$, N = 99.6% and VEB = 77.3% we could see that our newly created class has 0% accuracy.

fancyRpartPlot(cart.fit\$finalModel)

We can see that our simple decision tree is too simple for our data.

7 Comparison of models

```
resamps = resamples(list(LDA = lda.fit, RDA = rda.fit, CART = cart.fit))
summary(resamps)
```

##

Call:

```
## summary.resamples(object = resamps)
##
## Models: LDA, RDA, CART
## Number of resamples: 5
## Accuracy
                    1st Qu.
                               Median
                                           Mean
                                                   3rd Qu.
             Min.
## LDA 0.9676777 0.9678484 0.9681311 0.9682119 0.9685304 0.9688718
## RDA 0.9617606 0.9623844 0.9626394 0.9626179 0.9630673 0.9632380
                                                                        0
  CART 0.9569770 0.9585432 0.9616446 0.9605920 0.9627564 0.9630388
                                                                        0
## AUC
##
                    1st Qu.
                               Median
                                                   3rd Qu.
             Min.
                                           Mean
                                                                Max. NA's
## LDA 0.9635871 0.9636174 0.9668114 0.9660774 0.9673088 0.9690626
## RDA 0.9665374 0.9671713 0.9692470 0.9685768 0.9695154 0.9704131
                                                                        0
## CART 0.8157842 0.8190693 0.8234511 0.8252275 0.8307674 0.8370653
                                                                        0
##
## Kappa
##
                    1st Qu.
                                                   3rd Qu.
             Min.
                               Median
                                           Mean
## LDA 0.8451663 0.8456669 0.8472608 0.8479544 0.8498086 0.8518692
## RDA 0.8173951 0.8201225 0.8212765 0.8213531 0.8236918 0.8242795
                                                                        0
## CART 0.7839078 0.7919512 0.8121432 0.8052525 0.8174476 0.8208126
##
## logLoss
##
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                   3rd Qu.
                                                                Max. NA's
## LDA 0.1512249 0.1562215 0.1564785 0.1569349 0.1600049 0.1607446
                                                                        Λ
## RDA 0.1518779 0.1528204 0.1537549 0.1575828 0.1646560 0.1648047
                                                                        0
  CART 0.1713400 0.1737416 0.1759465 0.1786449 0.1841291 0.1880673
##
## Mean_Balanced_Accuracy
##
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                   3rd Qu.
## LDA 0.8656041 0.8670207 0.8692831 0.8682400 0.8695879 0.8697044
                                                                        0
  RDA 0.8529640 0.8548076 0.8567340 0.8577915 0.8608292 0.8636224
                                                                        0
  CART 0.7467136 0.7494044 0.7620201 0.7578484 0.7635739 0.7675297
                                                                        0
## Mean Detection_Rate
##
             Min.
                    1st Qu.
                               Median
                                           Mean
## LDA 0.3225592 0.3226161 0.3227104 0.3227373 0.3228435 0.3229573
                                                                        0
## RDA 0.3205869 0.3207948 0.3208798 0.3208726 0.3210224 0.3210793
                                                                        0
## CART 0.3189923 0.3195144 0.3205482 0.3201973 0.3209188 0.3210129
                                                                        0
##
## Mean F1
             Min.
                    1st Qu.
                               Median
                                           Mean
                                                   3rd Qu.
                                                                Max. NA's
## LDA 0.8066834 0.8069488 0.8076621 0.8095788 0.8123586 0.8142412
                                                                        0
       0.7869788 0.7875537 0.7951355 0.7953770 0.8028126 0.8044042
## RDA
                                                                        0
## CART
               NA
                         NA
                                                                        5
                                   NA
                                             NaN
                                                        NA
                                                                  NA
##
## Mean_Neg_Pred_Value
                    1st Qu.
                                                   3rd Qu.
             Min.
                               Median
                                           Mean
## LDA 0.9778328 0.9778440 0.9778449 0.9781875 0.9780785 0.9793374
## RDA 0.9678969 0.9684508 0.9686151 0.9688364 0.9695881 0.9696311
                                                                        0
## CART 0.9712291 0.9717812 0.9724677 0.9726729 0.9736701 0.9742164
##
## Mean Pos Pred Value
```

```
##
                    1st Qu.
                               Median
                                                   3rd Qu.
             Min.
                                            Mean
       0.8211892 0.8218708 0.8268752 0.8271019 0.8326699 0.8329045
                                                                         0
## T.DA
       0.8014779 0.8057200 0.8123176 0.8116519 0.8192844 0.8194593
                                                                         0
  CART
                         NA
                                   NA
                                             NaN
                                                                         5
##
               NA
                                                        NA
                                                                   NA
##
## Mean Precision
##
             Min.
                    1st Qu.
                               Median
                                            Mean
                                                   3rd Qu.
## LDA 0.8211892 0.8218708 0.8268752 0.8271019 0.8326699 0.8329045
                                                                         0
  RDA 0.8014779 0.8057200 0.8123176 0.8116519 0.8192844 0.8194593
                                                                         0
##
  CART
               NA
                         NA
                                   NA
                                             NaN
                                                        NA
                                                                   NA
                                                                         5
##
## Mean_Recall
##
                               Median
                                                   3rd Qu.
                                                                 Max. NA's
             Min.
                    1st Qu.
                                            Mean
## LDA 0.7957643 0.7997502 0.7998441 0.7998741 0.8006556 0.8033562
                                                                         0
## RDA 0.7755548 0.7813015 0.7850337 0.7866291 0.7934752 0.7977805
                                                                         0
## CART 0.5879250 0.5905707 0.6028431 0.5990333 0.6054517 0.6083760
                                                                         0
##
## Mean Sensitivity
##
             Min.
                    1st Qu.
                                                   3rd Qu.
                                                                 Max. NA's
                               Median
                                            Mean
## LDA 0.7957643 0.7997502 0.7998441 0.7998741 0.8006556 0.8033562
## RDA 0.7755548 0.7813015 0.7850337 0.7866291 0.7934752 0.7977805
                                                                         0
  CART 0.5879250 0.5905707 0.6028431 0.5990333 0.6054517 0.6083760
                                                                         0
##
## Mean Specificity
                                                                 Max. NA's
##
             Min.
                    1st Qu.
                               Median
                                            Mean
                                                   3rd Qu.
## LDA 0.9342911 0.9352099 0.9354438 0.9366059 0.9387532 0.9393316
                                                                         0
## RDA 0.9281833 0.9283138 0.9284344 0.9289538 0.9294643 0.9303733
                                                                         0
  CART 0.9055023 0.9082380 0.9211972 0.9166634 0.9216961 0.9266835
                                                                         0
##
## prAUC
##
             Min.
                    1st Qu.
                               Median
                                            Mean
                                                   3rd Qu.
## LDA 0.8429418 0.8447308 0.8498277 0.8503791 0.8547689 0.8596263
                                                                         0
       0.8392596 0.8413105 0.8433615 0.8479929 0.8523596 0.8613577
                                                                         2
## CART 0.3052808 0.3057780 0.3065798 0.3079498 0.3098714 0.3122391
                                                                         0
```

Both LDA and RDA models gave very similar results, resulting in $\sim 60\%$ accuracy for F_Q_SVEB, $\sim 99\%$ for N and $\sim 80\%$ for VEB classes. Based on Mean F1, simple LDA model is slightly better than RDA, where LDA had 0.81 mean F1 and RDA had 0.79.

Decision tree performed worse, the model could not predict F Q SVEB class at all.