#### K-Anonymity

**REU Summer 2007** 

Advisors: Ryan Williams and Manuel Blum

## How do you publicly release a database without compromising individual privacy?

The Wrong Approach:

- Just leave out any unique identifiers like name and SSN and hope that this works.
- The triple (DOB, gender zip code) suffices to uniquely identify at least 87% of US citizens in publicly available databases (Sweeney).
- Moral: Any real privacy guarantee must be proved and established mathematically.

#### **Definitions**

- Database a table with n rows (records) and m columns (attributes)
- Alphabet of a Database (Σ) the range of values that individual cells in the database can take.
- Note that the alphabet of the k-anonymized database is ∑ ∪ {\*}

## How do you publicly release a database without compromising individual privacy?

- Models: K-Anonymity (Sweeney), Output Perturbation
- K-Anonymity: attributes are suppressed or generalized until each row is identical with at least k-1 other rows.
   At this point the database is said to be k-anonymous.
- K-Anonymity thus prevents definite database linkages.
   At worst, the data released narrows down an individual entry to a group of k individuals.
- Unlike Output Perturbation models, K-Anonymity guarantees that the data released is accurate.

## Methods for Achieving K-Anonymity

- Suppression can replace individual attributes with a \*
- Generalization replace individual attributes with a broader category Example: (Age: 26 => Age: [20-30])
- We will be looking at K-Anonymity with suppression

#### **Examples**

The following database:

| first    | last    | age | race   |
|----------|---------|-----|--------|
| Harry    | Stone   | 34  | Afr-Am |
| John     | Reyser  | 36  | Cauc   |
| Beatrice | Stone   | 34  | Afr-Am |
| John     | Delgado | 22  | Hisp   |

Can be 2-Anonymized with suppression as follows:

| first | last  | age | race   |
|-------|-------|-----|--------|
| *     | Stone | 34  | Afr-Am |
| John  | *     | *   | *      |
| *     | Stone | 34  | Afr-Am |
| John  | *     | *   | *      |

Note: Rows 1 and 3 are identical and Rows 2 and 4 are identical

#### Minimum Cost K-Anonymity

- Obviously, we can guarantee k-anonymity by replacing every cell with a \*, but this renders the database useless.
- The cost of K-Anonymous solution to a database is the number of \*'s introduced.
- A minimum cost k-anonymity solution suppresses the fewest number of cells necessary to guarantee k-anonymity.

#### Results

- Minimum Cost 3-Anonymity is NP-Hard for  $|\Sigma| = O(n)$  (Meyerson, Williams 2004)
- Minimum Cost 3-Anonymity is NP-Hard for  $|\Sigma|$  = 3 (Aggarwal et al. 2005)
- Minimum Cost 3-Anonymity is NP-Hard for  $|\Sigma|$  = 2 (Dondi et al. July 2007)
- We independently proved the same thing this summer.

## Theorem: Minimum Cost 3-Anonymity is NP-Hard even with $|\Sigma| = 2$

- $|\Sigma| = 2$
- Lemma 1: There is a polynomial time reduction from the Edge Partition into Triangles and 4-stars problem to binary 3-Anonymity
- Lemma 2: Edge Partition into Triangles and 4-stars is NP-Complete

#### Triangles and 4-Stars

A 4-Star is a simple graph with three edges, all three of which are incident to a common vertex v. v is called the center of the 4-Star. The other vertices are called the leaves of the 4-Star.



• A *triangle* is the complete graph with three vertices.



# Edge Partition into Triangles And 4-Stars Given a graph G=(E,V) partition the set E into triples (e,e,e,b) such that for each triple (e,e,e,ek) is either a triangle or a 4-Star. Example:



#### 

Example 2:



## Lemma 2: Exactly One In Three SAT $\leq_p$ Edge Partition into Triangles And 4-Stars

- Exactly One In Three Sat: Given a formula φ whose clauses each contain 3 variables, is there an assignment such that each clause contains exactly one true variable?
- Exactly One In Three SAT is known to be NP-Complete.
- Given a formula  $\phi$  we construct a triangle free graph  $G_{\phi}$  such that  $E(G_{\phi})$  can be partitioned into 4-Stars  $\Leftrightarrow \phi$  is satisfiable.
- G<sub>φ</sub> is constructed from clause gadgets and variable gadgets.

#### Clause Gadget

 A 5-Star is a simple graph with 4 edges all incident with a common vertex v (the center).



In our usage, v and p are considered *private*, while the other vertices are considered *shared* 

Note: In any 4-Star edge partition of a graph G which contains the clause gadget, v must be the center of exactly one 4-Star since v is the only vertex adjacent to p and has deg(v) = 4. Hence, the 4-Star must use exactly two of the shared edges.

#### Variable Gadget

 Let d∈N be given, a 3-Binary Tree of depth d is a complete tree of depth d where the root has three children and all other nodes have two children.



 Let d∈N be given, G<sub>d</sub> is the graph formed by taking two 3-Binary trees of depth d, deleting 3 leaf nodes from each and adding 3 edges between the parents of the deleted leaf nodes so that each parent node still has degree



# Lemma 2: Exactly One In Three SAT $\leq_p$ Edge Partition into Triangles And 4-Stars

 G<sub>d</sub> is a gadget corresponding to each variable, the leaf vertices are consider *shared*, while all other vertices are considered *private*



## Lemma 2: Exactly One In Three SAT $\leq_p$ Edge Partition into Triangles And 4-Stars

• Motivation: In any 4-Star edge partition P of a graph G which contains  $G_d$ , if any of the *shared* vertices on the top (bottom) 3-Binary Tree are the leafs of a 4-Star in P then all of the *shared* vertices on top are leaves of a 4-Star in P and all of the shared vertices on the bottom (top) are the center of a 4-Star in P. Accordingly, we can say that  $G_d$  is true (false) partitioned.







## Lemma 2: Exactly One In Three Sat $\leq_p$ Edge Partition into Triangles And 4-Stars

#### **Proof Motivation:**

Given a formula  $\phi$  with variables  $x_1, ..., x_n$  and clauses  $c_1, ..., c_n$ , we can build a graph G using clause and variable gadgets such that any partition of G into 4-Stars corresponds to a satisfying assignment of  $\phi$  and vice versa.

### Is Minimum Cost 2-Anonymity NP-Hard?

- Without loss of generality, a 2-Anonymization partitions the rows into doubles and triples. Larger groups of rows could be split into smaller subgroups.
- Intuition 1: Minimum Weight Matching is easy and triples can only increase the number of stars per row.
- Problem: In some cases it is actually beneficial to use groups of three. Example:

\*\*00000000...
\*\*00000000...
\*\*00000000...
\*\*11111111...
\*\*11111111...

#### Theorem: 2-Anonymity is in P

- We can reduce a 2-Anonymity instance to the Simplex Matching Problem
- Anshelevich and Karagiozova just showed that there is a polynomial time algorithm to solve Simplex Matching (STOC, 2007)

#### Simplex Matching

Given a hypergraph H with hyperedges of size 2 and 3, and a cost function C(e) such that:

- 1.  $(u,v,w) \in E(H) \to (u,v),(v,w),(u,w) \in E(H)$
- 2.  $C(u,v) + C(u,w) + C(v,w) \le 2 C(u,v,w)$

Find the minimum cost node partition into hyperedges

#### 2-Anonymity $\leq_p$ Simplex Matching

- Given a database D, build a hypergraph H with a node v<sub>i</sub> for each row r<sub>i</sub>.
- Let  $C_{i,j,}$  denote the number of \*'s needed to anonymize the rows  $r_i$ ,  $r_j$ . Similarly, define  $C_{i,i,k}$ .
- For every pair of rows (r<sub>i</sub>,r<sub>j</sub>) add a hyperedge e<sub>i,j</sub> with cost C(e<sub>i,j</sub>)=C<sub>i,j</sub>
- For every triple (r<sub>i</sub>,r<sub>j</sub>,r<sub>k</sub>) add a hyperedge e<sub>i,j,k</sub> with C(e<sub>i,j,k</sub>)=C<sub>i,j,k</sub>

#### Do the Simplex Conditions Apply?

- (u,v,w)∈ E(H) → (u,v),(v,w),(u,w) ∈ E(H)
   Because E(H) contains every pair.
- Note that adding an extra row to a double can only increase the number of \*'s per row.

$$\frac{1}{3}C_{i,j,k} \ge \frac{1}{2}C_{i,j}, \frac{1}{2}C_{j,k}, \frac{1}{2}C_{i,k}$$

Therefore,

$$2C_{i,j,k} \ge C_{i,j} + C_{j,k} + C_{i,k}$$

#### $\text{2-Anonymity} \leq_{\text{p}} \text{Simplex Matching}$

- Recall that the optimal 2-Anonymity solution partitions the rows into groups of size 2 and 3.
   Larger groups can be split into smaller groups of size 2 and 3.
- Therefore, the optimal 2-Anonymity solution corresponds to the minimum cost partition of V(H) into hyperedges.
- Because the Simplex Conditions apply we can find the minimum cost partition of V(H) into hyperedges in polynomial time.