1. Що таке електростатичне поле і в чому міститься його відносність?

Электростатическое поле — силовое поле, посредством которого осуществляются электрические взаимодействия; создаваемое неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Относительность электростатического поля заключается в том, что поле, постоянное в одной системе отсчёта, в общем случае оказывается переменным в другой системе отсчёта. Стоит отметить, что необходимо рассматривать только Инерциальные Системы Отсчёта.

2. Теорема Гауса для електричного поля.

$$egin{aligned} \Phi_{\mathbf{E}} &= rac{Q}{arepsilon_0}, \ &&&& \ \Phi_{\mathbf{E}} &\equiv \oint\limits_{S} \mathbf{E} \cdot \mathrm{d}\mathbf{S} \end{aligned}$$

- поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность.

О – полный (суммарный) заряд, охваченный площадью S

 ε_0 - электрическая постоянная = 8,85 * 10⁻¹² Кл / (В * м)

Словесная формулировка: поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность равен алгебраической сумме зарядов, охваченных площадью S, делённой на электрическую постоянную.

3. Що таке магнітостатичне поле і в чому міститься його відносність?

Магнитное поле — силовое поле, посредством которого осуществляются взаимодействия между токами или магнитами; создаваемое током заряженных частиц или постоянными магнитами.

Относительность электростатического поля заключается в том, что поле, постоянное в одной системе отсчёта, в общем случае оказывается переменным в другой системе отсчёта. Стоит отметить, что необходимо рассматривать только Инерциальные Системы Отсчёта.

4. Теорема Гауса для магнітного поля.

$$\Phi_{\mathbf{B}} \equiv \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0,$$

Словесная формулировка: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

5. Що таке віхреве електричне поле? Його властивості.

Вихревое электрическое поле – электрическое поле, вызываемое изменениями магнитного поля.

Свойства:

- 1. Силовые линии замкнуты.
- 2. Не потенциально.

6. Зв'язок електричного зміщення з напруженістю.

$$\vec{D} = \varepsilon \varepsilon_0 \vec{E}.$$

где

 ε_0 электрическая постоянная = 8,85 * 10^{-12} Кл / (В * м) ε - электрическая проницаемость среды (вакуум = 1 ...)

D – электрическое смещение

Е - напряжённость электрического поля

7. Перше рівняння Максвела і його фізичний смисл.

$$\oint_{l} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{s} \mathbf{B} \cdot d\mathbf{s}$$

Е — напряжённость электрического поля (в единицах СИ — В/м);

В— магнитная индукция (в единицах СИ — $T_{\pi} = B6/M^2 = \kappa \Gamma \cdot c^{-2} \cdot A^{-1});$

Изменение потока магнитной индукции, проходящего через незамкнутую поверхность s, взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре l, который является границей поверхности s.

8. Зв'язок магнітної індукції з напруженістю.

$$H = \frac{B}{\mu_0 \mu}.$$

 $\mu_0 = 4\pi \ imes \ 10^{-7}$ - магнитная постоянная

 μ - магнитная проницаемость (вакуум = 1 ...)

В – магнитная индукция

Н – напряжённость магнитного поля

9. Що таке струм зміщення? Його властивості.

Ток смещения – величина, прямо пропорциональная скорости изменения электрического смещения.

$$\mathbf{j_D} = \frac{\partial \mathbf{D}}{\partial t}$$

D – электрическое смещение

Свойства:

- 1. Не выделяет теплоту.
- 2. Способен создавать в окружающем пространстве магнитное поле.

10. Закон Ома в диференціальній формі.

$$\mathbf{j} = \sigma \mathbf{E}$$

где:

 \mathbf{j} — вектор плотности тока,

 σ — удельная проводимость,

Е — вектор напряжённости электрического поля.

11. Друге рівняння Максвела і його фізичний смисл.

$$\oint_{l} \mathbf{H} \cdot d\mathbf{l} = I + \frac{d}{dt} \int_{s} \mathbf{D} \cdot d\mathbf{s}$$

$$I = \int_{\mathbf{J}} \mathbf{j} \cdot d\mathbf{s}$$

 $I = \int_{s} \mathbf{j} \cdot d\mathbf{s}$ - электрический ток, проходящий через поверхность s (в

H — напряжённость магнитного поля (в единицах СИ — A/M);

 \mathbf{D} — электрическое смещение (в единицах СИ — $\mathrm{K}\pi/\mathrm{M}^2$);

Полный электрический ток свободных зарядов и изменение потока электрической индукции через незамкнутую поверхность s, пропорциональны циркуляции магнитного поля на замкнутом контуре l, который является границей поверхности s.

12. Що таке система рівнянь Максвела? Що в них є невідомими величинами?

Уравнения Максвелла — система

уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

$$\begin{split} \oint_{l} \mathbf{E} \cdot d\mathbf{l} &= -\frac{d}{dt} \int_{s} \mathbf{B} \cdot d\mathbf{s} \\ \oint_{l} \mathbf{H} \cdot d\mathbf{l} &= I + \frac{d}{dt} \int_{s} \mathbf{D} \cdot d\mathbf{s} \\ \oint_{s} \vec{\mathbf{D}} d\vec{\mathbf{S}} &= \int_{r} \rho dV \\ \oint_{s} \vec{\mathbf{B}} d\vec{\mathbf{S}} &= 0 \\ \vec{\mathbf{B}} &= \mu_{0} \mu \vec{\mathbf{H}} \\ \vec{\mathbf{D}} &= \varepsilon_{0} \varepsilon \vec{\mathbf{E}} \\ \mathbf{j} &= \sigma \mathbf{E} \end{split}$$

Неизвестные величины: D, B, E, H

13. Що таке електромагнітне поле? Його складові.

Электромагнитным полем (ЭМП) называется вид материи, оказывающий на заряженные частицы силовое воздействие и определяемый во всех точках двумя парами векторных величин, которые характеризуют две его стороны электрическое и магнитное поля.

Составляющие:

ЭлектроСтатическое Поле, МагнитоСтатическое Поле, Переменное Магнитное Поле, Переменное Электрическое Поле.

14. Чим може створюватись електричне поле?

Неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

15. Якими формулами обґрунтовується існування електромагнітного поля?

Формулами Системы уравнений Максвелла. (смотрим 12 пункт)

16. Чим може створюватись магнітне поле?

Током заряженных частиц или постоянными магнитами.