1. 6D: Wk+1 = Wk - Ek V Ein (Wk)

compute gradient of all examples

SGO: At each iteration k, select uniformly randomly the nth example from (1,2, --- N) and set

WK+1 = WK - EK Ven (WK)

compute gradient of a single example

4 Note Q:

Why we can use SGD if "randomly" chosen?

IE [Ven (Wk)] / Expectation

= $P_{\Gamma}(n=1) \cdot \nabla e_{I}(\underline{W}_{k}) + P_{\Gamma}(n=2) \cdot \nabla e_{z}(\underline{W}_{k}) + \cdots + P_{\Gamma}(n=N) \nabla e_{N}(\underline{W}_{k})$

 $= \nabla E_{i_1} (\underline{W}_k)$

: Even randomly select, the mean value is in the direction that we

want to go.

i.e. $\nabla e_n(\underline{W}_K) = mean value + noise$

the right (6D) direction

= VEin (Wk) + noise

⇒ A noisy estimate of the true gradient

Lo Note (2)

- Full GD ("batched" GD) has complexity O(Nd) per iteration to compute $\nabla Ein(\ensuremath{\super})$. N is large
- . But SGD has O(d) ⇒ (an do many more iterations than GD
- · Often there is high reduncy in big dataset.
 - ⇒ No need to consider all data points in one step

2. Minibatch SGD:

4 At each iteration, select M examples uniformly randomly:

 $\underline{\chi}$ (1), $\underline{\chi}$ (2) -- $\underline{\chi}$ (M)

Then update: $W_{k+1} = W_k - \frac{g_k}{M} \sum_{n=1}^{M} e_n(W_k)$

4 Purpose:

- · get a better estimate for $\nabla \text{Ein}(\underline{W})$
- · If choose M = #. of cores of CPU
 - => Parallization across multiple processor.

3. Logistic Regression example:

$$\nabla e_n(\underline{w}) = \frac{-y_n \underline{X}_n}{y_n \underline{w}^T \underline{x}_n}$$

i.e. $y_n \stackrel{\nabla}{w_k} \chi_n \leq 0$ (deduced previously) Then the SGID update rule becomes: $w_{k+1} = w_k + v_k y_n \chi_n$ by Suppose (x_n, y_n) is correctly classified: "Recall that the PLA will not do anything $y_n \stackrel{\nabla}{w_k} \chi_n > 0$ $y_n \stackrel{\nabla}{w_k} \chi_n > 0$ The SGD update rule becomes:
:. $e^{y_n \frac{\omega^T}{K} \chi_n}$ is small Then the SGID update rule becomes: $\frac{\omega}{K+1} = \frac{\omega}{K} + \frac{2}{K} \frac{y_n \chi_n}{\chi_n}$ Is suppose (χ_n, y_n) is correctly classified: "Recall that the PLA will not do anything :. $y_n \frac{\omega^T \chi_n}{\chi_n} > 0$:. $e^{y_n \frac{\omega^T \chi_n}{\chi_n}}$ is large :. The SGD update rule becomes:
Then the SGD update rule becomes: $ \underline{U}_{K+1} = \underline{W}_{K} + \underline{g}_{K} \underline{y}_{n} \underline{\chi}_{n} $ Is Suppose $(\underline{\chi}_{n}, \underline{y}_{n})$ is correctly classified: $ \ \text{Recall that the PLA will not do anything}} $ $ \therefore \underline{y}_{n} \underline{w}^{T} \underline{\chi}_{n} > 0 $ $ \therefore \underline{e}^{T} \underline{w}^{T} \underline{\chi}_{n} \text{ is large} $ $ \vdots \text{ The SGD update rule becomes:} $
$ \underline{\omega}_{k+1} = \underline{\omega}_k + \mathcal{E}_k \underline{y}_n \underline{\chi}_n $ Is suppose $(\underline{\chi}_n, \underline{y}_n)$ is correctly classified:
Is suppose (2n, yn) is correctly classified: // Recall that the PLA will not do anything : yn w xn > 0 : e y w xn is large : The SGD update rule becomes:
"Recall that the PLA will not do anything : $y_n \underline{w}^T \underline{x}_n > 0$: $e^{y_n \underline{w}^T \underline{x}_n}$ is large : The SGD update rule becomes:
"Recall that the PLA will not do anything : $y_n \underline{w}^T \underline{x}_n > 0$: $e^{y_n \underline{w}^T \underline{x}_n}$ is large : The SGD update rule becomes:
: Yn w ^T xn > 0 : e is large : The SGD update rule becomes:
the SGD update rule becomes:
: The SGD update rule becomes:
<u>₩</u> ĸ+ı ≈ <u>₩</u> k
:. PLA is an exterme case of SGD + logistic regression
1 1011 15 W. Excelled assert 1 3010 1 10915 No. 10915 No.