Programação Inteira: restrições fortes e restrições (lógicas) com variáveis binárias

Duas restrições que definam o mesmo conjunto de pontos inteiros podem corresponder a domínios diferentes quando se considera a *relaxação linear* (ou seja, quando as variáveis podem ter valores fraccionários).

Considere as restrições :

alternativa 1: $7x_1 + 8x_2 \le 12$ alternativa 2: $x_1 + x_2 \le 1$

1. Identifique o conjunto de pontos inteiros definido pelas duas restrições:

$$(x_1,x_2)^t = (..., ...)^t, (..., ...)^t, (..., ...)^t.$$

2. Identifique um ponto com coordenadas fraccionárias que obedeça à primeira restrição, mas não obedeça à segunda:

$$(x_1,x_2)^t = (\dots,x_1,x_2)^t$$

Tenho _____ % de confiança. A minha dúvida é:

Quanto mais restritivas (mais *fortes*) forem as inequações quando se considera a relaxação linear, melhor é o modelo, significando que os solvers encontram mais rapidamente a solução óptima.

Para cada par de alternativas de modelos com <u>variáveis</u> <u>binárias</u>, identifique a restrição (ou o conjunto de restrições) mais forte:

alternativa 1: $x_1 + x_2 \le 2y$

alternativa 2: $x_1 \le y$, $x_2 \le y$

Identifique um ponto fraccionário que obedeça à primeira restrição, mas não obedeça à segunda:

$$(x_1,x_2,y)^t = (\dots, \dots)^t$$

alternativa 1: $3x_1 + x_2 + x_3 \ge 2$

alternativa 2: $2x_1 + x_2 + x_3 \ge 2$

Identifique um ponto fraccionário que obedeça à primeira restrição, mas não obedeça à segunda:

$$(x_1,x_2,x_3)^t = (\ldots, \ldots, \ldots)^t$$

alternativa 1: $x_1 + x_2 \le 1$, $x_2 + x_3 \le 1$, $x_1 + x_3 \le 1$ alternativa 2: $x_1 + x_2 + x_3 \le 1$

Identifique um ponto fraccionário que obedeça à primeira restrição, mas não obedeça à segunda:

$$(x_1, x_2, x_3)^t = (\dots, \dots)^t$$

Considere as seguintes operações lógicas que envolvem os literais a e b:

Operador lógico	Símbolo	interpretação
negação	₇ a	não a
conjunção	a e b	ambos a e b
disjunção	a ou b	a ou b
inclusiva		
disjunção	a ou-excl b	exactamente
exclusiva		um de a ou b
implicação	a => b	se a, então b
equivalência	a ⇔ b	a se e só se b

Ligue os pontos para fazer a correspondência entre as tabelas lógicas e as restrições com variáveis binárias:

а	b	a e b	a ou b	a => b	a ⇔b
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1
		•	•	•	•

•	•	•	•
a = b	a ≤ b	a+b=2	a+b≥1

Tenho _____ % de confiança. A minha dúvida é:

.....

.....