2° . Дифференцируемость неявной функ-и. Если, сверх того, 4) функция F(x, y, z) дифференцируема в окрестности точки \widehat{A}_0 (x_0 , y_0 , z_0), то функция (1) дифференцируема в окрестности точки A_0 (x_0 , y_0) и ее производные $\frac{\partial z}{\partial x}$ в $\frac{\partial z}{\partial u}$ могут быть найдены из уравнений

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0, \quad \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = 0. \tag{2}$$

Если функция F(x, y, z) дифференцируема достаточное число раз, то последовательным дифференцированием равенств (2) вычисляются также производные высших порядков от функции г.

- 3° . Неявные функции, определяемые системой уравнений. Пусть функции $F_{\ell}(x_1,\ldots,x_m;y_1,\ldots,y_n)$ $(i=1,2,\ldots,n)$ удовлетворяют следующим ус-ЛОВИЯМ:
- нуль в точке \widehat{A}_{\bullet} ($x_{1\bullet}$, . . . x_{m0}) 1) обращаются в y_{10}, \ldots, y_{n0}).

2) дифференцируемы в окрестности точки \widehat{A}_0 ;
3) функциональный определитель $\frac{\partial (F_1, \ldots, F_n)}{\partial (y_1, \ldots, y_n)} \neq 0$ в точке \widehat{A}_0 .

В таком случае система уравнений

$$F_i(x_1, \ldots, x_m; y_1, \ldots, y_n) = 0 \quad (i = 1, 2, \ldots, n),$$
 (3)

однозначно определяет в некоторой окрестности $A_{a}\left(x_{1a},\ldots,x_{ma}
ight)$ систему дифференцируемых функций

$$y_i = f(x_1, \ldots, x_m)$$
 $(i = 1, 2, \ldots, n),$

УДОВЛЕТВОДЯЮЩИХ УДАВНЕНИЯМ (3) И УСЛОВИЯМ

$$f_l(x_{10},\ldots,x_{mn})=y_{l0} \quad (l=1,2,\ldots,n).$$

Дифференциалы этих неявных функций могут быть найдены из системы

$$\sum_{j=1}^{m} \frac{\partial F_{i}}{\partial x_{i}} dx_{j} + \sum_{k=1}^{n} \frac{\partial F_{i}}{\partial y_{k}} dy_{k} = 0$$

 $(i = 1, 2, ..., n)^*$).

3361. Показать, что разрывная в каждой точке функция Дирихле

$$y = \begin{cases} 1, & \text{если } x \text{ рационально,} \\ 0, & \text{если } x \text{ иррационально,} \end{cases}$$

^{*)} При формулировке большинства задач этого раздела без оговорок предполагается, что выполнены условня существовання неявных функций и их соответствующих производных.