Supporting Information

In Silico Prediction of Chemical Ames Mutagenicity

Congying Xu^{\dagger} , Feixiong Cheng † , Lei Chen † , Zheng Du^{\dagger} , Weihua Li^{\dagger} , Guixia $Liu^{*,\dagger,\ddagger}$, Philip W. Lee † and Yun Tang *,†

[†]Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

[‡] State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chongzhi Road, Shanghai 201203, China

* To whom correspondence should be addressed.

Tel: +86-21-64250811; Fax: +86-21-64253651

Email: gxliu@ecust.edu.cn (G. Liu), ytang234@ecust.edu.cn (Y. Tang)

Table S1. The database of the training set, external validation set ,balanced external validation set.

Table S2. The performance of the balanced external validation set.

Table S3. The "Frequency of a fragment" enrichment factors of 25 representative substructure fragments for mutagens using FP4.

Table S4. Semicarbazone substructural alerts and representative structures.

Table S2. The performance of the balanced external validation set

Model Name	Q	SE	SP	AUC
PubChem-kNN	0.944	0.983	0.906	0.969
MACCS-kNN	0.906	0.992	0.821	0.958
PubChem-SVM	0.850	0.974	0.726	0.934

Table S3. The "Frequency of a fragment" enrichment factor of 25 representative substructure fragments for mutagens using FP4.

NO	SMARTS	Description	General tructure	IG	N _m	N_{Nm}	F _m
1	[IX1][CX4]	Alkyliodide	R-I	0.000	4866	12	1.287
2	[NX3H0+0,NX4H1+;!\$([N][!c]); !\$([N]*~[#7,#8,#15,#16])]	Tertiary_arom_amine	$R_{1} R_{2}$ R_{3}	0.015	4866	453	1.439
3	[NX3H1+0,NX4H2+;\$([N]([c])[C]);; ; !\$([N]*~[#7,#8,#15,#16])]	Secondary_mixed_amine	R_1 R_2	0.001	4866	97	1.290
4	[OX2H][OX2]	Hydroperoxide	$R_1 O O_R_2$	0.001	4866	17	1.535
5	[OX2]([#6;!\$(C=[N,O,S])])[CX3;\$([H0][#6]), \$([H1])]=[CX3]	Enolether	$ \begin{array}{ccc} R_1 & O - R_4 \\ C = C \\ R_2 & R_3 \end{array} $	0.001	4866	74	1.309
6	[CX3;\$([R0][#6]),\$([H1R0])](=[O X1])[CIX1]	Acylchloride	R CI	0.002	4866	29	1.605
7	[CX3;\$([R0][#6]),\$([H1R0])](=[O X1]) [FX1,CIX1,BrX1,IX1]	Acylhalide	O R Cl, Br,I	0.002	4866	29	1.605
8	[CX3;\$([H0][#6]),\$([H1])](=[OX1])[#7X3;\$([H1]), \$([H0][#6;!\$(C=[O,N,S])])][\$([OX 2H]),\$([OX1-])]	Hydroxamic_acid	R C-NH-OH O	0.001	4866	35	1.305
9	[CX3R0;\$([H0][#6]),\$([H1])](=[N X2;\$([H1]), \$([H0][#6;!\$(C=[O,N,S])])])[\$([OX 2H]),\$([OX1-])]	Imidoacid	NH R C OH	0.002	4866	41	1.599
10	[#6R][#6X3R](=,:[#7X2;\$([H1]),\$(Imidolactone	O_N-R	0.000	4866	26	1.312
11	[#7X2;!\$([#7][!#6])]=,: [#6X3]([#16X2&!\$([#16][!#6]),SX 1-])[#7X3;!\$([#7][!#6])]	Isothiourea	SH H ₂ N NH	0.002	4866	77	1.420
12	[N;v3X3,v4X4+][CX3](=[N;v3X2, v4X3+]) [N;v3X3,v4X4+]	Guanidine	NH H ₂ N NH ₂	0.000	4866	29	1.309

-			HaN				
13	[#7X2](=[#6])[#7X3][#6X3]([#7X3 ;!\$([#7][#7])])=[OX1]	Semicarbazone	$R_1 \longrightarrow N_{HN} O$ R_2	0.001	4866	14	1.601
14	[c]=[NX2;\$([H1]),\$([H0][#6;!\$([C] =[N,S,O])])]	Iminoarene	H N=C-R Ar	0.001	4866	24	1.372
15	[NX2](=[OX1])[O;\$([X2]),\$([X1-])	Nitrite	-0 _{_N} ,0	0.001	4866	8	1.716
16	[NX2](=[OX1])[!#7;!#8]	Nitroso	R-N [°] O	0.002	4866	51	1.535
17	[NX1]~[NX2]~[NX2,NX1]	Azide	R ⁻N=N+:Ń	0.004	4866	53	1.653
18	[NX2](=[OX1])N-*=O	Nitrosamide	H_2N_N O	0.004	4866	54	1.684
19	[NX3;\$([H2]),\$([H1][#6]),\$([H0]([#6])[#6]);!\$(NC=[O,N,S])] [NX3;\$([H2]),\$([H1][#6]),\$([H0]([#6])[#6]);!\$(NC=[O,N,S])]	Hydrazine	H ₂ N-NH ₂	0.001	4866	30	1.391
20	[SX4;\$([H1]),\$([H0][#6])](=[OX1])(=[OX1])[OX2] [#6;!\$(C=[O,N,S])]	Sulfonic_ester	0 R ₁ -S-O-R ₂ 0	0.001	4866	30	1.430
21	[OX2r3]1[#6r3][#6r3]1	Epoxide	0 R	0.006	4866	342	1.316
22	[NX3H1r3]1[#6r3][#6r3]1	NH_aziridine	H N 	0.003	4866	29	1.716
23	[sX2]	Hetero_S	R_2 S R_1	0.005	4866	286	1.330
24	[\$([NX3](=O)=O),\$([NX3+](=O)[O-])][!#8]	Nitro	R^{NO_2}	0.060	4866	1448	1.459
25	[NX3;\$([H2]),\$([H1][#6]), \$([H0]([#6])[#6]);!\$(NC=[O,N,S])] [OX2;\$([H1]),\$(O[#6;!\$(C=[N,O,S])])]	Hydroxylamine	H ₂ N-OH	0.001	4866	51	1.250

 $\overline{N_{Nm}}$ is the number of mutagenicity class with specified fragment. Nm is the number of mutagens. Fm is the "Frequency of a fragment" enrichment factor of a specified fragment mutagenicity class

Table S4. Semicarbazone substructural alert and representative structures. M in Label means mutagens, N in Label means non-mutagens. The red fragment stands for the semicarbazone.

smiles	CAS	Structure	Label
[O-][N+](=O)c1oc(\C=C\C=N\ N2CC(=O)NC2=O)cc1	1672-88-4		M
CC1CN(\N=C\c2oc(cc2)[N+](= O)[O-])C(=O)N1	21638-36-8	HN N-N O N [†] O	M
NC(=O)N\N=C\cloc(ccl)[N+](=O)[O-]	59-87-0	N ⁺ ON N NH ₂	M
[O-][N+](=O)c1oc(\C=N\N2CC CNC2=O)cc1	75888-03-8	O N N NH	M
ON(=O)c1ccc(C=NN2CC(=O) NC2=O)o1	67-20-9	HN N-N O N ⁺ O	M
NC(=O)N\N=C\C(=O)O	928-73-4	HO N NH2	N