Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Disciplina de Processamento de Imagens

Detecção de Bordas

Prof. Aurélio Hoppe aureliof@furb.br http://www.inf.furb.br/~aurelio/ Grupo de Processamento de Imagens, Análise de dados, Robótica e Simulação computacional

Bibliografia

Processamento digital de imagens, 3ª ed.

Rafael C. Gonzalez e Richard E. Woods

Porque contornos são importantes?

Porque contornos são importantes?

Detecção de bordas

 Busca identificar descontinuidades repentinas na imagem

Edges

- Para humanos, as bordas (e formas) possuem maioria da informação semântica presente numa imagem
- Representação mais compacta do que pixels

Objetivo máximo

 Detectar bordas com a máxima precisão

Em PDI ou VC, qual é o seu papel?

- Extrair informação
- Reconhecimento de objetos
- Recuperar geometria

Origens da detecção de bordas

- Descontinuidade de superfície
- Descontinuidade de profundidade
- Descontinuidade de cor de superfície
- Descontinuidade de iluminação

Descontinuidade de superfície

Descontinuidade de profundidade

Descontinuidade de cor de superfície

O que são bordas

 Local na imagem onde acontece rápida mudança de tonalidades

Gradiente de uma imagem

- O gradiente de um imagem é a derivada no ponto
- Representa a força direcional num ponto (x,y)

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

Gradiente de uma imagem

Χ

Magnitude do Gradiente

Remover sombreamento

$$R(x,y) = I(x,y) / M(x,y)$$

Imagem original

Filtro morfológico

Imagem corrigida

Shape from Shadding

Estimando o forma/sombreamento a partir do formato do objeto

Curvatura estimada

Remover sombreamento

$$z(x,y) = P_1x^2 + P_2y^2 + P_3xy + P_4x + P_5y + P_6$$

Método de Gauss-Newton para balancear os coeficientes

Obtenção da amostra

Modelo da intensidade da iluminação

Redução do sombreamento

Efeitos causados por ruídos

Onde está o contorno?

Efeito dos ruídos: o que fazer?

- O ruído faz com que bordas não sejam corretamente obtidas:
 - Pixels muito próximos possuem comportamentos aleatório
 - Mudanças súbitas de cor

- O que pode ser feito?
 - Remover ruídos com filtros passa baixa

Filtre primeiro: Gaussiano

O que seria um bom detector?

- Precisa satisfazer 3 propriedades:
 - Detecção: minimizar falso positivos
 - Localização: devem estar ou ser a própria borda
 - Resposta atômica: o mínimo possível de contornos

Quais são as opções?

- a. Roberts
- b. Prewitt
- c. Sobel
- d. Canny

Convolução

13	3	1
9	11	14
5	16	9

	0	-1	0
*	-1	4	-1
	0	-1	0

0	-3	0
9	44	-14
0	-16	0

2	

Roberts: primeira derivada

- Método simples
 - Sensível a ruído
 - Melhor aplicado em imagens binárias
- Máscaras

$$G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad G_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$G_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Prewitt: primeira derivada compass

Derivadas parciais realizadas nas 8 direções básicas

$$h_1(i,j) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} h_2(i,j) = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix} h_3(i,j) = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} h_4(i,j) = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$h_5(i,j) = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} h_6(i,j) = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} h_7(i,j) = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} h_8(i,j) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix}$$

H3

H1

Sobel: primeira derivada compass

$$Z_h = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad Z_v = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_x = (Z_7 + 2Z_8 + Z_9) - (Z_1 + 2Z_2 + Z_3)$$

$$Z_{v} = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$G_v = (Z_3 + 2Z_6 + Z_9) - (Z_1 + 2Z_4 + Z_7)$$

Comparando os diversos Filtros

Operador	Vertical	Horizontal
Roberts	$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$	[-1 0 0]
	0 1 0	0 1 0
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
Sobel	[1 0 -1]	[-1 -2 -1]
	2 0 - 2	0 0 0
	[1 0 -1]	[1 2 1]
Prewit	[1 0 -1]	[-1 -1 -1]
	1 0 - 1	0 0 0
	[1 0 - 1]	

Canny

- Baseado em sucessivas Gaussianas (ou usando gaussianas como complementar) $G'(x) = \frac{-x}{\sqrt{2\pi \sigma^3}} \varepsilon^{\frac{-x^2}{2\sigma^2}}$
- Canny demonstra que a primeira derivada da gaussiana aproxima com alta precisão a detecção de bordas, com as propriedades de localização e atomicidade

