Introduction to Machine Learning CentraleSupélec Paris — Fall 2017

2. Elements of convex optimization

Chloé-Agathe Azencott

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr

Supervised ML: empirical risk minimization

$$f^* = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

Supervised ML: empirical risk minimization

$$f^* = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

• Quadratic loss $\mathcal{L}(y, f(x)) = (y - f(x))^2$

— Quadratic loss

Supervised ML: empirical risk minimization

$$f^* = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{n} \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

• Absolute loss $\mathcal{L}(y, f(x)) = |y - f(x)|$

Quadratic lossAbsolute loss

Supervised ML: empirical risk minimization

$$f^* = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

0/1 loss

$$\mathcal{L}(y, f(\boldsymbol{x})) = \begin{cases} 0 \text{ if } f(\boldsymbol{x}) = y\\ 1 \text{ otherwise} \end{cases}$$

 Unsupervised machine learning also involves minimizing functions.

Examples:

- Dimensionality reduction: find a set of m features, m<p, such that the data projected on these m features retains maximal information.
- Clustering: find K groups of samples such that the between-groups variance is high and the within-group variance is small.

Learning objectives

- Recognize a convex optimization problem.
- Solve an unconstrained convex optimization problem
 - Exactly when possible
 - By gradient descent and a number of its variants.
- Solve a quadratic program
 - Formulate the dual problem
 - Write down Karush-Kuhn-Tucker conditions.
- Transform inequality constraints with slack variables.

Convex functions

Convex set

 $\mathcal{S} \subseteq \mathbb{R}^n$ is a convex set iff:

$$t\boldsymbol{u} + (1-t)\boldsymbol{v} \in \mathcal{S}$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}$ and $0 \le t \le 1$

Line segments between 2 points of S lie entirely in S.

Convex set of \mathbb{R}^2

Non-convex set of \mathbb{R}^2

Convex function

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex iff:

its domain is a convex set

•
$$f(tu + (1-t)v) \le tf(u) + (1-t)f(v)$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$ and $0 \le t \le 1$

f lies below the line segment joining $f(\mathbf{u})$ and $f(\mathbf{v})$.

Convex function of $\mathbb{R} \to \mathbb{R}$

Non-convex function of $\mathbb{R} \to \mathbb{R}$

Concave function

 $f: \mathbb{R}^n \to \mathbb{R}$ is concave iff:

its domain is a convex set

•
$$f(tu + (1-t)v) \ge tf(u) + (1-t)f(v)$$
 for all $u, v \in \text{dom}(f)$ and $0 \le t \le 1$

f concave ⇔ -f convex

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 + 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 - 3$

•
$$f: [0,1] \cup [3,+\infty[\to \mathbb{R} \ u \mapsto 2u^2 - 3]$$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R}_+ \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \max(u, 2)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \sin(u)$

•
$$f: \mathbb{R} \to \mathbb{R}$$

$$u \mapsto 2u^2 + 3$$

•
$$f: \mathbb{R} \to \mathbb{R}$$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 + 3$
• $f: \mathbb{R} \to \mathbb{R}$ $u \mapsto 2u^2 - 3$

•
$$f: [0,1] \cup [3,+\infty[\to \mathbb{R} \quad u \mapsto 2u^2 - 3]$$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R}_+ \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \max(u, 2)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \sin(u)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 + 3$

•
$$f: \mathbb{R} o \mathbb{R}$$
 $u \mapsto 2u^2 - 3$ Yes!

•
$$f: [0,1] \cup [3, +\infty[\to \mathbb{R} \quad u \mapsto 2u^2 - 3]$$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R}_+ \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \max(u, 2)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \sin(u)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 + 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 - 3$

•
$$f: [0,1] \cup [3,+\infty[\to \mathbb{R} \quad u \mapsto 2u^2 - 3]$$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R}_+ \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \max(u, 2)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \sin(u)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 + 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 - 3$

•
$$f:[0,1]\cup[3,+\infty[\to\mathbb{R}\quad u\mapsto 2u^2-3]$$
 No!

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R}_+ \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \max(u, 2)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \sin(u)$

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 + 3$ Yes

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^2 - 3$ Yes

•
$$f:[0,1]\cup[3,+\infty[\to\mathbb{R}\quad u\mapsto 2u^2-3$$
 No

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$ No

•
$$f: \mathbb{R}_+ \to \mathbb{R}$$
 $u \mapsto 2u^3 - 3$ Yes

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \max(u, 2)$ Yes

•
$$f: \mathbb{R} \to \mathbb{R}$$
 $u \mapsto \sin(u)$ No

Univariate examples

- Exponential: $u \mapsto e^{au} \ \forall a \in \mathbb{R}$
- Logarithmic: $u \mapsto -\log(au) \ \forall a > 0 \ \text{on } \mathbb{R}_+^*$
- Power functions:

$$u \mapsto u^a \ \forall a \ge 1 \text{ or } a \le 0 \text{ on } \mathbb{R}_+^*$$

 $u \mapsto -u^a \ \forall 0 \le a \le 1 \text{ on } \mathbb{R}_+^*$

$$u \mapsto u^a \ \forall a = 2n, n \in \mathbb{N}$$

• Affine functions are both convex and concave

$$\boldsymbol{u} \mapsto \boldsymbol{a}^{\top} \boldsymbol{u} + b \ \boldsymbol{a} \in \mathbb{R}^n$$

Affine functions are both convex and concave

$$\boldsymbol{u} \mapsto \boldsymbol{a}^{\top} \boldsymbol{u} + b \ \boldsymbol{a} \in \mathbb{R}^n$$

Quadratic functions

$$m{u} \mapsto rac{1}{2} m{u}^ op Q m{u} + m{b}^ op m{u} + c \quad \boxed{Q \succeq 0} \quad m{b} \in \mathbb{R}^n \quad c \in \mathbb{R}$$
 Q positive semi-definite

Affine functions are both convex and concave

$$\boldsymbol{u} \mapsto \boldsymbol{a}^{\top} \boldsymbol{u} + b \ \boldsymbol{a} \in \mathbb{R}^n$$

Quadratic functions

$$\boldsymbol{u} \mapsto \frac{1}{2} \boldsymbol{u}^{\top} Q \boldsymbol{u} + \boldsymbol{b}^{\top} \boldsymbol{u} + c \quad \boxed{Q \succeq 0} \quad \boldsymbol{b} \in \mathbb{R}^n \quad c \in \mathbb{R}$$

Q positive semi-definite

- All eigenvalues of Q are non-negative
- The bilinear form $oldsymbol{u}, oldsymbol{v} \mapsto oldsymbol{v}^ op Q oldsymbol{u}$ is an inner product
- Q is a Gram matrix of independent vectors $Q_{ij} = \langle m{v}_i, m{v}_j
 angle$
- Unique Cholesky decomposition $Q = LL^{\top}$

Affine functions are both convex and concave

$$\boldsymbol{u} \mapsto \boldsymbol{a}^{\top} \boldsymbol{u} + b \ \boldsymbol{a} \in \mathbb{R}^n$$

Quadratic functions

$$\boldsymbol{u} \mapsto \frac{1}{2} \boldsymbol{u}^{\top} Q \boldsymbol{u} + \boldsymbol{b}^{\top} \boldsymbol{u} + c \quad \boxed{Q \succeq 0} \quad \boldsymbol{b} \in \mathbb{R}^n \quad c \in \mathbb{R}$$

Q positive semi-definite

• Lp norms

$$|\boldsymbol{u} \mapsto ||\boldsymbol{u}||_p = \left(\sum_{j=1}^n |u_j^p|\right)^{1/p}$$

• $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex iff:

$$\forall \mathbf{u} \neq \mathbf{v} \in \text{dom}(f), \ \forall \ 0 < t < 1$$

$$f(t\mathbf{u} + (1-t)\mathbf{v}) < tf(\mathbf{u}) + (1-t)f(\mathbf{v}).$$

f is convex and has greater curvature than a linear function.

• $f: \mathbb{R}^n \to \mathbb{R}$ is strongly convex of parameter m>0 iff:

$$f-rac{m}{2}||oldsymbol{u}||_2^2$$
 is convex.

f is convex and has curvature as least as great as a quadratic function.

strongly convex ⇒ strictly convex ⇒ convex

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set
 - for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$

$$f(\boldsymbol{v}) \ge f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u})$$

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set
 - for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$

$$f(oldsymbol{v}) \geq f(oldsymbol{u}) +
abla f(oldsymbol{u})^ op (oldsymbol{v} - oldsymbol{u})$$

Gradient of f

 $abla f = egin{pmatrix} rac{\partial f}{\partial u_1} \\ rac{\partial f}{\partial u_2} \\ \cdots \\ rac{\partial f}{\partial u_n} \end{pmatrix}$

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set

- for all
$${m u}, {m v} \in {
m dom}(f)$$

$$f({m v}) \geq f({m u}) + \nabla f({m u})^\top ({m v} - {m u})$$

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set
 - for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$

$$f(\boldsymbol{v}) \ge f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u})$$

First-order Taylor expansion of f in u

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set
 - for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$

$$f(\boldsymbol{v}) \ge f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u})$$

First-order Taylor expansion of f in u

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set
 - for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$

$$f(\boldsymbol{v}) \ge f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u})$$

First-order Taylor expansion of f in u

What does it mean if

$$\nabla f(\boldsymbol{u}) = 0$$
 ?

- If f is differentiable, then f is convex if and only if:
 - its domain is a convex set
 - for all $\boldsymbol{u}, \boldsymbol{v} \in \text{dom}(f)$

$$f(\boldsymbol{v}) \ge f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u})$$

First-order Taylor expansion of f in u

$$abla f(u) = 0 \Leftrightarrow u \text{ minimizes } f$$

$$(v, f(v))$$

$$(v, f(u) + f'(u).(v-u))$$

$$(u, f(u))$$

Second-order characterization

- If f is twice differentiable, then f is convex iff:
 - its domain is a convex set

- for all
$$u \in \text{dom}(f)$$
 $\nabla^2 f(u) \succeq 0$

Second-order characterization

- If f is twice differentiable, then f is convex iff:
 - its domain is a convex set
 - for all $u \in dom(f)$

$$\nabla^2 f(\boldsymbol{u}) \succeq 0$$

Hessian of

$$\nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial u_1^2} & \frac{\partial^2 f}{\partial u_1 u_2} & \cdots & \frac{\partial^2 f}{\partial u_1 u_n} \\ \frac{\partial^2 f}{\partial u_2 u_1} & \frac{\partial^2 f}{\partial u_2^2} & \cdots & \frac{\partial^2 f}{\partial u_2 u_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial u_n u_1} & \frac{\partial^2 f}{\partial u_n u_2} & \cdots & \frac{\partial^2 f}{\partial u_n^2} \end{pmatrix}$$

Second-order characterization

- If f is twice differentiable, then f is convex iff:
 - its domain is a convex set
 - for all $u \in dom(f)$

$$\nabla^2 f(\boldsymbol{u}) \succeq 0$$

Hessian of f

f has positive curvature in any point u.

Operations preserving convexity

Non-negative linear combination

If f_1, f_2, \ldots, f_m convex and $a_1, a_2, \ldots, a_m \ge 0$ then $a_1 f_1 + a_2 f_2 + \cdots + a_m f_m$ is convex.

Pointwise maximization

If f_1, f_2, \ldots, f_m convex, then $u \mapsto \max_{1,\ldots,m} f_k(u)$ is convex (also true for an infinite number of functions f_k).

Partial minimization

If $f: \mathbb{R}^n \to \mathbb{R}$ convex and C is a convex set, then $(u_1,u_2,\ldots,u_{n-1}) \mapsto \min_{v \in C} f(u_1,u_2,\ldots,u_{n-1},v)$ is convex.

Convex optimization

Unconstrained convex optimization

Unconstrained convex optimization program/problem:

$$\min_{\boldsymbol{u}\in\mathrm{dom}(f)}f(\boldsymbol{u})$$

where f is convex.

Unconstrained convex optimization program/problem:

$$\min_{\boldsymbol{u}\in\mathrm{dom}(f)}f(\boldsymbol{u})$$

where f is convex.

Unconstrained convex optimization program/problem:

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
subject to $g_i(\boldsymbol{u}) \leq 0, i = 1, \dots, m$
 $h_j(\boldsymbol{u}) = 0, j = 1, \dots, r$

- f is convex
- $g_i, i = 1, \ldots, m$ are convex
- $h_j, j=1,\ldots,r$ are affine $h_j: {\boldsymbol u} \mapsto {\boldsymbol a}_j^{ op} {\boldsymbol u} + b_j$
- D is the common domain of all the functions.

$$D = \operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}(g_i) \bigcap_{j=1}^{r} \operatorname{dom}(h_j)$$

$$\min_{oldsymbol{u} \in D} f(oldsymbol{u})$$
 subject to $g_i(oldsymbol{u}) \leq 0, i = 1, \ldots, m$ $h_j(oldsymbol{u}) = 0, j = 1, \ldots, r$

$$\min_{oldsymbol{u} \in D} f(oldsymbol{u})$$
 $\mathrm{subject\ to}\ g_i(oldsymbol{u}) \leq 0, i = 1, \ldots, m$
 $h_j(oldsymbol{u}) = 0, j = 1, \ldots, r$

$$\min_{oldsymbol{u} \in D} f(oldsymbol{u})$$
 $\mathrm{subject\ to}\ g_i(oldsymbol{u}) \leq 0, i = 1, \ldots, m$
 $h_j(oldsymbol{u}) = 0, j = 1, \ldots, r$

$$\min_{oldsymbol{u} \in D} f(oldsymbol{u})$$
 $\mathrm{subject\ to}\ g_i(oldsymbol{u}) \leq 0, i = 1, \ldots, m$
 $h_j(oldsymbol{u}) = 0, j = 1, \ldots, r$

- f is the objective function
- $g_i, i = 1, \ldots, m$ are the inequality constraints
- $h_j, j = 1, \ldots, r$ are the equality constraints
- $v \in D$ that verifies all constraints is a feasible point $g_i(v) \le 0, i = 1, ..., m$ and $h_j(v) = 0, j = 1, ..., r$
- The set of all feasible points is the feasible region

$$\{ \boldsymbol{v} : \boldsymbol{v} \in D; g_i(\boldsymbol{v}) \le 0, i = 1, \dots, m; h_j(\boldsymbol{v}) = 0, j = 1, \dots, r \}$$

$$\min_{oldsymbol{u} \in D} f(oldsymbol{u})$$
 $\sup_{oldsymbol{u} \in D} f(oldsymbol{u})$ $\sup_{oldsymbol{u} \in D} f(oldsymbol{u})$ $\sup_{oldsymbol{u} \in D} f(oldsymbol{u}) \leq 0, i = 1, \ldots, m$ $h_j(oldsymbol{u}) = 0, j = 1, \ldots, r$

- Assuming it exists, the solution f^* , that is to say, the minimum value of f over all feasible points, is the optimal value (optimum)
- u feasible such that $f(u) = f^*$ is called **optimal**, or a minimizer (it needs not be unique).
- If u is feasible and $g_i(\mathbf{u}) = 0$ then g_i is active at u.

Local & global optima

For convex optimization problems,

local minima are global minima!

If **u** is feasible and minimizes f in a local neighborhood:

 $f(u) \le f(v)$ for all feasible $v, ||u-v||_2^2 \le \epsilon$ then **u** minimizes f globally.

Local & global optima

For convex optimization problems,

local minima are global minima!

If **u** is feasible and minimizes f in a local neighborhood:

$$f(u) \le f(v)$$
 for all feasible $v, ||u - v||_2^2 \le \epsilon$

then **u** minimizes f globally.

Suppose $\bar{\boldsymbol{u}}$ is feasible and a local optimum of $f: \exists \epsilon > 0: f(\bar{\boldsymbol{u}}) \leq f(\boldsymbol{v})$ for all feasible \boldsymbol{v} such that $||\bar{\boldsymbol{u}} - \boldsymbol{v}|| \leq \epsilon$. Suppose \boldsymbol{u}^* is a global optimum, $\boldsymbol{u}^* \neq \bar{\boldsymbol{u}}$. Then

$$f(\boldsymbol{u}^*) < f(\bar{\boldsymbol{u}}) \tag{1}$$

and

$$||\bar{\boldsymbol{u}} - \boldsymbol{u}^*|| > \epsilon \tag{2}$$

Consider $u = (1 - \lambda)\bar{u} + \lambda u^*$, where $\lambda = \frac{1}{2} \frac{\epsilon}{||\bar{u} - u^*||}$. Because of (2), $0 \le \lambda < 1$. Because the feasible set is convex and both \bar{u} and u^* are feasible, u is feasible.

 $||\boldsymbol{u} - \bar{\boldsymbol{u}}|| = ||(1 - \lambda)\bar{\boldsymbol{u}} + \lambda \boldsymbol{u}^*|| = \lambda ||\boldsymbol{u}^* - \bar{\boldsymbol{u}}|| = \epsilon/2 < \epsilon$, hence $f(\boldsymbol{u}) \geq f(\bar{\boldsymbol{u}})$ (as $\bar{\boldsymbol{u}}$ is a local minimum).

But because f is convex, $f(u) \leq (1-\lambda)f(\bar{u}) + \lambda f(u) = f(\bar{u}) + \lambda (f(u^*) - f(\bar{u})) < f(\bar{u})$. (The last inequality comes from (1).) The contradiction implies that it is impossible that $u^* \neq \bar{u}$, hence the local optimum is also global.

Why talk about convex optimization?

- Convex optimization is "easy".
- We'll often try to formulate ML problems as convex optimization problems.

Why talk about convex optimization?

Supervised ML: empirical risk minimization

$$f^* = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n \mathcal{L}(y^i, f(\boldsymbol{x}^i))$$

Losses for classification

The 0/1 loss is non-convex. We'll replace it with other losses.

$$y \in \{-1, 1\}$$
— 0/1 loss
— Hinge loss
— Logistic loss

- Suppose f differentiable
- Given the first-order characterization of convex functions, how can we solve $\min_{{m u}\in {
 m dom}(f)}f({m u})$?

- Suppose f differentiable
- Given the first-order characterization of convex functions, how can we solve $\min_{{m u}\in {
 m dom}(f)}f({m u})$?

- Suppose f differentiable
- Given the first-order characterization of convex functions, how can we solve $\min_{{\bm u} \in \mathrm{dom}(f)} f({\bm u})$?

Set the gradient of f to 0

- Suppose f differentiable
- Given the first-order characterization of convex functions, how can we solve $\min_{{\bm u} \in \mathrm{dom}(f)} f({\bm u})$?

Set the gradient of f to 0

• But what if $\nabla f(u) = 0$ cannot be solved?

Gradient descent

• Start from a random point **u**.

How do I get closer to the solution?

Gradient descent

- Start from a random point **u**.
- How do I get closer to the solution?
- Follow the opposite of the gradient.

The gradient indicates the direction of steepest increase.

Gradient descent

- Start from a random point **u**.
- How do I get closer to the solution?
- Follow the opposite of the gradient.

The gradient indicates the direction of steepest increase.

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$

Stop at some point

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$

step size

Stop at some point

stopping criterion

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$

Stop at some point

step size

stopping criterion

Usually: stop when
$$||\nabla f(\boldsymbol{u}^{(k)})||_2 < \epsilon$$
 $\epsilon = 10^{-\text{sthg}}$

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$
 step size

If the step size is too big

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$oldsymbol{u}^{(k)} = oldsymbol{u}^{(k-1)} - oldsymbol{\alpha_k}
abla f(oldsymbol{u}^{(k-1)})$$
 step size

If the step size is too big,

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$oldsymbol{u}^{(k)} = oldsymbol{u}^{(k-1)} - oldsymbol{\alpha}_k
abla f(oldsymbol{u}^{(k-1)})$$
 step size

If the step size is too big, the search might diverge

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$oldsymbol{u}^{(k)} = oldsymbol{u}^{(k-1)} - oldsymbol{\alpha}_k
abla f(oldsymbol{u}^{(k-1)})$$
 step size

- If the step size is too big, the earch might diverge
- If the step size is too small

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$oldsymbol{u}^{(k)} = oldsymbol{u}^{(k-1)} - oldsymbol{\alpha}_k
abla f(oldsymbol{u}^{(k-1)})$$
 step size

- If the step size is too big, the search might diverge
- If the step size is too small, the search might take a very long time

- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...

$$oldsymbol{u}^{(k)} = oldsymbol{u}^{(k-1)} - oldsymbol{\alpha}_k
abla f(oldsymbol{u}^{(k-1)})$$
 step size

- If the step size is too big, the search might diverge
- If the step size is too small, the search might take a very long time
- Backtracking line search makes it possible to chose the step size adaptively.

$$f(u-\alpha\nabla f(u))$$
 > $f(u)-\alpha/2 \nabla f(u)^T\nabla f(u)$

$$f(\boldsymbol{u}^{(k-1)} - \alpha_{k-1} \nabla f(\boldsymbol{u}^{(k-1)})) > f(\boldsymbol{u}^{(k-1)}) - \frac{1}{2} \alpha_{k-1} ||\nabla f(\boldsymbol{u}^{(k-1)})||_2^2$$
$$f(\boldsymbol{u} - \alpha \nabla f(\boldsymbol{u})) > f(\boldsymbol{u} - \alpha \nabla f(\boldsymbol{u})) > f(\boldsymbol{u} - \alpha \nabla f(\boldsymbol{u}))$$

$$f(\boldsymbol{u}^{(k-1)} - \alpha_{k-1} \nabla f(\boldsymbol{u}^{(k-1)})) \le f(\boldsymbol{u}^{(k-1)}) - \frac{1}{2} \alpha_{k-1} ||\nabla f(\boldsymbol{u}^{(k-1)})||_2^2$$
$$f(\boldsymbol{u} - \alpha \nabla f(\boldsymbol{u})) \le f(\boldsymbol{u} - \alpha \nabla f(\boldsymbol{u})) \le f(\boldsymbol{u} - \alpha \nabla f(\boldsymbol{u}))$$

Backtracking line search

- Shrinking parameter $0 < \beta < 1$, initial step size α_0
- Choose an initial point $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
- Repeat for k=1, 2, 3, ...
 - $\text{ If } f(\boldsymbol{u}^{(k-1)} \alpha_{k-1} \nabla f(\boldsymbol{u}^{(k-1)})) > f(\boldsymbol{u}^{(k-1)}) \frac{1}{2} \alpha_{k-1} ||\nabla f(\boldsymbol{u}^{(k-1)})||_2^2 \\ \text{ shrink the step size: } \alpha_k = \beta \alpha_{k-1}$
 - Else: $\alpha_k = \alpha_{k-1}$
 - Update: $\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$
- Stop when $||\nabla f(\boldsymbol{u}^{(k)})||_2 < \epsilon$ $\epsilon = 10^{-\text{sthg}}$

Newton's method

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$

- Suppose f is twice derivable
- Second-order Taylor's expansion:

$$f(\boldsymbol{v}) \approx f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u}) + \frac{1}{2} (\boldsymbol{v} - \boldsymbol{u})^{\top} \nabla^2 f(\boldsymbol{u}) (\boldsymbol{v} - \boldsymbol{u})$$

Minimize in v instead of in u

Newton's method

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$

- Suppose f is twice derivable
- Second-order Taylor's expansion:

$$f(\boldsymbol{v}) \approx f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u}) + \frac{1}{2} (\boldsymbol{v} - \boldsymbol{u})^{\top} \nabla^{2} f(\boldsymbol{u}) (\boldsymbol{v} - \boldsymbol{u})$$

$$g(\boldsymbol{v})$$

• Minimize in **v** instead of in **u**

Newton's method

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$$

- Suppose f is twice derivable
- Second-order Taylor's expansion:

$$f(\boldsymbol{v}) \approx f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\top} (\boldsymbol{v} - \boldsymbol{u}) + \frac{1}{2} (\boldsymbol{v} - \boldsymbol{u})^{\top} \nabla^{2} f(\boldsymbol{u}) (\boldsymbol{v} - \boldsymbol{u})$$

$$g(\boldsymbol{v})$$

• Minimize in \mathbf{v} : $\nabla_{\mathbf{v}}g(\mathbf{v}) = \nabla f(\mathbf{u}) + \nabla^2 f(\mathbf{u})(\mathbf{v} - \mathbf{u})$

$$\nabla_v g(\mathbf{v}) = 0 \Rightarrow \mathbf{v} - \mathbf{u} = -(\nabla^2 f(\mathbf{u}))^{-1} \nabla f(\mathbf{u})$$

$$\alpha_k = \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1}$$

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1} \nabla f(\boldsymbol{u}^{(k-1)})$$

- Computing the inverse of the Hessian is computationally intensive.
- Instead, compute $\nabla^2 f(\boldsymbol{u}^{(k-1)})$ and $\nabla f(\boldsymbol{u}^{(k-1)})$ and solve $\nabla^2 f(\boldsymbol{u}^{(k-1)})\delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ for δ_k
- What is the new update rule?

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1} \nabla f(\boldsymbol{u}^{(k-1)})$$

- Computing the inverse of the Hessian is computationally intensive.
- Instead, compute $\nabla^2 f(\boldsymbol{u}^{(k-1)})$ and $\nabla f(\boldsymbol{u}^{(k-1)})$ and solve $\nabla^2 f(\boldsymbol{u}^{(k-1)})\delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ for δ_k
- New update rule:

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \delta_k$$

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1} \nabla f(\boldsymbol{u}^{(k-1)})$$

- Computing the inverse of the Hessian is computationally intensive.
- Instead, compute $\nabla^2 f(\boldsymbol{u}^{(k-1)})$ and $\nabla f(\boldsymbol{u}^{(k-1)})$ and solve $\nabla^2 f(\boldsymbol{u}^{(k-1)})\delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ for δ_k

This is a problem of the form Ax - b = 0 $A \succeq 0$

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1} \nabla f(\boldsymbol{u}^{(k-1)})$$

- Computing the inverse of the Hessian is computationally intensive.
- Instead, compute $\nabla^2 f(\boldsymbol{u}^{(k-1)})$ and $\nabla f(\boldsymbol{u}^{(k-1)})$ and solve $\nabla^2 f(\boldsymbol{u}^{(k-1)})\delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ for δ_k

This is a problem of the form Ax - b = 0 $A \succeq 0$

$$A \succeq 0$$

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1} \nabla f(\boldsymbol{u}^{(k-1)})$$

- Computing the inverse of the Hessian is computationally intensive.
- Instead, compute $\nabla^2 f(\boldsymbol{u}^{(k-1)})$ and $\nabla f(\boldsymbol{u}^{(k-1)})$ and solve $\nabla^2 f(\boldsymbol{u}^{(k-1)})\delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ for δ_k

This is a problem of the form $A \boldsymbol{x} - \boldsymbol{b} = 0$ $A \succeq 0$

Second-order characterization of convex functions

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1} \nabla f(\boldsymbol{u}^{(k-1)})$$

- Computing the inverse of the Hessian is computationally intensive.
- Instead, compute $\nabla^2 f(\boldsymbol{u}^{(k-1)})$ and $\nabla f(\boldsymbol{u}^{(k-1)})$ and solve $\nabla^2 f(\boldsymbol{u}^{(k-1)})\delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ for δ_k

This is a problem of the form Ax - b = 0 $A \succeq 0$ Solve using the **conjugate gradient method.**

Conjugate gradient method

Solve
$$Ax - b = 0$$
 $A \succeq 0$

• Idea: build a set of A-conjugate vectors (basis of \mathbb{R}^n)

$$\{\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\}: \boldsymbol{v}_i^{\top}A\boldsymbol{v}_j=0 \ \forall i\neq j$$

- Initialisation: $oldsymbol{v}_0 = oldsymbol{r}_0 = b Aoldsymbol{x}^{(0)}$
- At step t:
- Update rule: $oldsymbol{x}^{(t)} = oldsymbol{x}^{(t-1)} + oldsymbol{lpha_t} oldsymbol{v_t}$
 - ullet residual $oldsymbol{r}_t = oldsymbol{b} A oldsymbol{x}^{(t)}$
 - $\bullet \ v_t = r_t + \beta_t v_{t-1}$

Convergence:
$$\boldsymbol{r}_i^{\top} \boldsymbol{r}_j = 0 \ \forall i \neq j \ \mathrm{hence} \boldsymbol{r}_n = 0$$

$$\alpha_t = \frac{\boldsymbol{r}_{t-1}^{\top} \boldsymbol{r}_{t-1}}{\boldsymbol{v}_{t-1}^{\top} A \boldsymbol{v}_{t-1}}$$

$$\beta_t = \frac{\boldsymbol{r}_t^\top \boldsymbol{r}_t}{\boldsymbol{r}_{t-1}^\top \boldsymbol{r}_{t-1}}$$

$$\mathbf{v}_t^{\top} A \mathbf{v}_{t-1} = 0$$

 $\mathbf{v}_t^{\top} A \mathbf{v}_i = 0 \ \forall i < t$

Conjugate gradient method

Prove
$$v_t^{\top} A v_{t-1} = 0$$

Given

- Initialisation: $oldsymbol{v}_0 = oldsymbol{r}_0 = b Aoldsymbol{x}^{(0)}$
- At step t:

• Update rule:
$$m{x}^{(t)} = m{x}^{(t-1)} + \alpha_t m{v}_{t-1}$$
• residual $m{r}_t = m{b} - A m{x}^{(t)}$
• $m{v}_t = m{r}_t + \beta_t m{v}_{t-1}$
and assuming $m{r}_t^{\top} m{r}_{t-1} = 0$

$$lpha_t = rac{oldsymbol{r}_{t-1}^ op oldsymbol{r}_{t-1}}{oldsymbol{v}_{t-1}^ op A oldsymbol{v}_{t-1}}$$

$$\beta_t = \frac{\boldsymbol{r}_t^{\top} \boldsymbol{r}_t}{\boldsymbol{r}_{t-1}^{\top} \boldsymbol{r}_{t-1}}$$

Prove $\boldsymbol{v}_t^{\top} A \boldsymbol{v}_{t-1} = 0$

 $\alpha_t = \frac{\boldsymbol{r}_{t-1}^{\top} \boldsymbol{r}_{t-1}}{\boldsymbol{r}_{t-1}^{\top} A \boldsymbol{r}_{t-1}}$

Given

– Initialisation:
$$oldsymbol{v}_0 = oldsymbol{r}_0 = b - Aoldsymbol{x}^{(0)}$$

– Update rule:
$$oldsymbol{x}^{(t)} = oldsymbol{x}^{(t-1)} + oldsymbol{o}_t oldsymbol{v}_{t-1}$$

– residual
$$oldsymbol{r}_t = oldsymbol{b} - A oldsymbol{x}^{(t)}$$

$$oldsymbol{v}_t = oldsymbol{v}_t + oldsymbol{eta}_t oldsymbol{v}_{t-1}$$
 and assuming $oldsymbol{r}_t^ op oldsymbol{r}_{t-1} = 0$

By definition, $r_t = \boldsymbol{b} - A\boldsymbol{x}^{(t)}$ and $\boldsymbol{x}^{(t)} = \boldsymbol{x}^{(t-1)} + \alpha_t \boldsymbol{v}_{t-1}$. Hence $r_t = b - A(\boldsymbol{x}^{(t-1)} + \alpha_t \boldsymbol{v}_{t-1})$ and

$$\boldsymbol{r}_t = \boldsymbol{r}_{t-1} - \alpha_t A \boldsymbol{v}_{t-1}. \tag{1}$$

By definition, $v_t = r_t + \beta_t v_{t-1}$ and $\beta_t = \frac{r_t^\top r_t}{r_t^\top r_{t-1}}$. Hence $v_t^\top A v_{t-1} = r_t^\top A v_{t-1} + \beta_t v_{t-1}^\top A v_{t-1}$ and therefore

$$oldsymbol{v}_t^ op A oldsymbol{v}_{t-1} = oldsymbol{r}_t^ op A oldsymbol{v}_{t-1} + rac{oldsymbol{r}_t^ op oldsymbol{r}_t}{oldsymbol{r}_{t-1}^ op oldsymbol{r}_{t-1}} oldsymbol{v}_{t-1}^ op A oldsymbol{v}_{t-1}.$$

Because $\alpha_t = \frac{\mathbf{r}_{t-1}^{\top} \mathbf{r}_{t-1}}{\mathbf{r}_{t-1}^{\top} A \mathbf{r}_{t-1}}$,

$$\boldsymbol{v}_t^{\top} A \boldsymbol{v}_{t-1} = \boldsymbol{r}_t^{\top} A \boldsymbol{v}_{t-1} + \frac{1}{\alpha_t} \boldsymbol{r}_t^{\top} \boldsymbol{r}_t.$$

From (1), $A \boldsymbol{v}_{t-1} = \frac{1}{\alpha_t} (\boldsymbol{r}_{t-1} - \boldsymbol{r}_t)$, and therefore

$$\boldsymbol{v}_t^\top A \boldsymbol{v}_{t-1} = \frac{1}{\alpha_t} \boldsymbol{r}_t^\top (\boldsymbol{r}_{t-1} - \boldsymbol{r}_t) + \frac{1}{\alpha_t} \boldsymbol{r}_t^\top \boldsymbol{r}_t = \frac{1}{\alpha_t} \boldsymbol{r}_t^\top \boldsymbol{r}_{t-1} = 0.$$

This is true if and only if we have shown that $r_t^{\top} r_{t-1} = 0$.

Conjugate gradient method

- Initialisation: $oldsymbol{v}_0 = oldsymbol{r}_0 = b Aoldsymbol{x}^{(0)}$
- At step t:

• Update rule:
$$m{x}^{(t)} = m{x}^{(t-1)} + m{\alpha}_t m{v}_{t-1}$$
• residual $m{r}_t = m{b} - A m{x}^{(t)}$
• $m{v}_t = m{r}_t + eta_t m{v}_{t-1}$

$$oldsymbol{v}_t = oldsymbol{r}_t + oldsymbol{eta}_t oldsymbol{v}_{t-1}$$

$$\alpha_t = \frac{\boldsymbol{r}_{t-1}^{\top} \boldsymbol{r}_{t-1}}{\boldsymbol{v}_{t-1}^{\top} A \boldsymbol{v}_{t-1}}$$

$$\beta_t = \frac{\boldsymbol{r}_t^{\top} \boldsymbol{r}_t}{\boldsymbol{r}_{t-1}^{\top} \boldsymbol{r}_{t-1}}$$

Prove $\boldsymbol{r}_t^{\top} \boldsymbol{r}_{t-1} = 0$

Given

– Initialisation:
$$oldsymbol{v}_0 = oldsymbol{r}_0 = b - Aoldsymbol{x}^{(0)}$$

– Update rule:
$$oldsymbol{x}^{(t)} = oldsymbol{x}^{(t-1)} + oldsymbol{\alpha_t} oldsymbol{v}_{t-1}$$

– residual
$$oldsymbol{r}_t = oldsymbol{b} - A oldsymbol{x}^{(t)}$$

$$-\boldsymbol{v}_t = \boldsymbol{r}_t + \boldsymbol{\beta}_t \boldsymbol{v}_{t-1}$$

From (1),

$$\mathbf{r}_{t}^{\top} \mathbf{r}_{t-1} = \mathbf{r}_{t-1}^{\top} \mathbf{r}_{t-1} - \alpha_{t} (A \mathbf{v}_{t-1})^{\top} \mathbf{r}_{t-1}
= \mathbf{r}_{t-1}^{\top} \mathbf{r}_{t-1} - \frac{\mathbf{r}_{t-1}^{\top} \mathbf{r}_{t-1}}{\mathbf{v}_{t-1}^{\top} A \mathbf{v}_{t-1}} \mathbf{v}_{t-1}^{\top} A^{\top} \mathbf{r}_{t-1} = \left(\mathbf{r}_{t-1}^{\top} \mathbf{r}_{t-1} \right) \left(1 - \frac{\mathbf{v}_{t-1}^{\top} A^{\top} \mathbf{r}_{t-1}}{\mathbf{v}_{t-1}^{\top} A \mathbf{v}_{t-1}} \right).$$

Because $A \succeq 0, A = A^{\top}$ and hence

$$\boldsymbol{r}_{t}^{\top} \boldsymbol{r}_{t-1} = \left(\boldsymbol{r}_{t-1}^{\top} \boldsymbol{r}_{t-1} \right) \left(1 - \frac{\boldsymbol{v}_{t-1}^{\top} A \boldsymbol{r}_{t-1}}{\boldsymbol{v}_{t-1}^{\top} A \boldsymbol{v}_{t-1}} \right). \tag{2}$$

- If t=1, because $\mathbf{r}_0=\mathbf{v}_0, \mathbf{r}_1^{\top}\mathbf{r}_0=0$. From the previous proof, we now have that $\mathbf{v}_1^{\top}A\mathbf{v}_0=0$.
- For t=2, by definition $m{v}_{t-1}=m{r}_{t-1}+eta_{t-1}m{v}_{t-2}$ and we can replace $m{r}_{t-1}$ accordingly to find that

$$v_{t-1}^{\top} A r_{t-1} = v_{t-1}^{\top} A v_{t-1} - \beta_{t-1} v_{t-1}^{\top} A v_{t-2}.$$

Because we have shown that $\mathbf{v}_1^{\top} A \mathbf{v}_0 = 0$, we conclude from (2) that $\mathbf{r}_t^{\top} \mathbf{r}_{t-1} = 0$.

— We can iterate this procedure to show alternatively that $v_t^\top A v_{t-1} = 0$ and $r_t^\top r_{t-1} = 0$ for all values of t.

Quasi-Newton methods

$$\mathbf{u}^{(k)} = \mathbf{u}^{(k-1)} - \delta_k$$

$$\nabla^2 f(\mathbf{u}^{(k-1)}) \delta_k = \nabla f(\mathbf{u}^{(k-1)})$$

- What if the Hessian is unavailable / expensive to compute at each iteration?
- Approximate the inverse Hessian: $\delta_k = W_{k-1} \nabla f(\boldsymbol{u}^{(k-1)})$ update $W_k \approx (\nabla^2 f(\boldsymbol{u}^{(k)}))^{-1}$ iteratively
- Conditions:

$$\Rightarrow W_k \left(\nabla f(\boldsymbol{u}^{(k)}) - \nabla f(\boldsymbol{u}^{(k-1)}) \right) = \boldsymbol{u}^{(k)} - \boldsymbol{u}^{(k-1)}$$

• Initialization: Identity $W_0 = I_n$

Quasi-Newton methods

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \delta_k$$

$$\nabla^2 f(\boldsymbol{u}^{(k-1)}) \delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$$

- What if the Hessian is unavailable / expensive to compute at each iteration?
- Approximate the inverse Hessian: $\delta_k = W_{k-1} \nabla f(\boldsymbol{u}^{(k-1)})$ update $W_k \approx (\nabla^2 f(\boldsymbol{u}^{(k)}))^{-1}$ iteratively
- BFGS: Broyden-Fletcher-Goldfarb-Shanno

$$W_k = W_{k-1} - \frac{\boldsymbol{s}_k \boldsymbol{y}_k^\top W_{k-1} + W_{k-1} \boldsymbol{y}_k \boldsymbol{s}_k^\top}{\langle \boldsymbol{y}_k, \boldsymbol{s}_k \rangle} + \left(1 + \frac{\langle \boldsymbol{y}_k, W_k \boldsymbol{y}_k \rangle}{\langle \boldsymbol{y}_k, \boldsymbol{s}_k \rangle}\right) \frac{\boldsymbol{s}_k \boldsymbol{s}_k^\top}{\langle \boldsymbol{y}_k, \boldsymbol{s}_k \rangle}$$
$$\boldsymbol{s}_k = \boldsymbol{u}^{(k)} - \boldsymbol{u}^{(k-1)} \qquad \boldsymbol{y}_k = \nabla f(\boldsymbol{u}^{(k)}) - \nabla f(\boldsymbol{u}^{(k-1)})$$

• L-BFGS: Limited memory variant Do not store the full matrix W_k .

Stochastic gradient descent

• For
$$f: oldsymbol{u} \mapsto \sum_{i=1}^m h_i(oldsymbol{u})$$

Gradient descent:

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \sum_{i=1}^{k} \nabla h_i(\boldsymbol{u}^{(k-1)})$$

Stochastic gradient descent:

$$\boldsymbol{u}^{(k)} = \boldsymbol{u}^{(k-1)} - \alpha_k \nabla h_{i_k}(\boldsymbol{u}^{(k-1)})$$

- Cyclic: cycle over 1, 2, ..., m, 1, 2, ..., m, ...
- Randomized: chose i_k uniformely at random in {1, 2, ..., m}.

Coordinate Descent

• For
$$f: \mathbb{R}^n \to \mathbb{R}$$
 $u \mapsto g(u) + \sum_{i=1}^n h_i(u_i)$

- g: convex and differentiable
- h_i : convex ⇒ the non-smooth part of f is separable.
- Minimize coordinate by coordinate:
 - Initialisation: $oldsymbol{u}^{(0)} \in \mathbb{R}^n$

- For k=1, 2, ...:
$$u_1^{(k)} \in \arg\min_{\underline{u_1}} f(\underline{u_1}, u_2^{(k-1)}, \dots, u_n^{(k-1)})$$

$$u_2^{(k)} \in \arg\min_{\underline{u_2}} f(u_1^{(k)}, \underline{u_2}, \dots, u_n^{(k-1)})$$

$$\cdots$$

$$u_n^{(k)} \in \arg\min_{\underline{u_n}} f(u_1^{(k)}, u_2^{(k)}, \dots, \underline{u_n})$$

Coordinate Descent

• For
$$f: \mathbb{R}^n \to \mathbb{R}$$
 $u \mapsto g(u) + \sum_{i=1}^n h_i(u_i)$

- g: convex and differentiable
- h_i : convex ⇒ the non-smooth part of f is separable.
- Minimize coordinate by coordinate:
 - Initialisation: $oldsymbol{u}^{(0)} \in \mathbb{R}^n$
 - For k=1, 2, ...: $u_1^{(k)} \in \arg\min_{u_1} f(u_1, u_2^{(k-1)}, \dots, u_n^{(k-1)})$ $u_2^{(k)} \in \arg\min_{u_2} f(u_1^{(k)}, u_2, \dots, u_n^{(k-1)})$ \cdots $u_n^{(k)} \in \arg\min_{u_1} f(u_1^{(k)}, u_2^{(k)}, \dots, u_n^{(k)})$

Coordinate Descent

• For
$$f: \mathbb{R}^n \to \mathbb{R}$$
 $u \mapsto g(u) + \sum_{i=1}^n h_i(u_i)$

- g: convex and differentiable
- h_i : convex ⇒ the non-smooth part of f is separable.
- Minimize coordinate by coordinate:
 - Initialisation: $oldsymbol{u}^{(0)} \in \mathbb{R}^n$

- For k=1, 2, ...:
$$u_1^{(k)} \in \arg\min_{u_1} f(u_1, u_2^{(k-1)}, \dots, u_n^{(k-1)})$$
 $u_2^{(k)} \in \arg\min_{u_2} f(u_1^{(k)}, u_2, \dots, u_n^{(k-1)})$

Variants:

- re-order the coordinates randomly
- Proceed by blocks of coordinates (2 or more at a time)

Summary: Unconstrained convex optimization

If f is differentiable

- Set its gradient to zero
- If hard to solve: gradient descent $u^{(k)} = u^{(k-1)} \alpha_k \nabla f(u^{(k-1)})$ Setting the learning rate:
 - Backtracking Line Search (adapt heuristically to avoid "overshooting")
 - Newton's method: Suppose f twice differentiable
 - $-\alpha_k = \left(\nabla^2 f(\boldsymbol{u}^{(k-1)})\right)^{-1}$ If the Hessian is hard to invert, compute $\delta_k = \alpha_k \nabla f(\boldsymbol{u}^{(k-1)})$ by solving $\nabla^2 f(\boldsymbol{u}^{(k-1)}) \delta_k = \nabla f(\boldsymbol{u}^{(k-1)})$ by the conjugate gradient method
 - If the Hessian is hard to compute, approximate the inverse Hessian with a quasi-Newton method such as BFGS (L-BFGS: less memory)
- If f is separable: stochastic gradient descent
- If the non-smooth part of f is separable: coordinate descent.

Constrained convex optimization

Constrained convex optimization

Convex optimization program/problem:

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
subject to $g_i(\boldsymbol{u}) \leq 0, i = 1, \dots, m$
 $h_j(\boldsymbol{u}) = 0, j = 1, \dots, r$

- f is convex
- $g_i, i = 1, \ldots, m$ are convex
- $h_j, j=1,\ldots,r$ are affine $h_j: {m u}\mapsto {m a}_j^{ op}{m u}+b_j$
- The feasible set is convex

$$C = \{ v : v \in D; g_i(v) \le 0, i = 1, \dots, m; h_j(v) = 0, j = 1, \dots, r \}$$

Lagrangian

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
subject to $g_i(\boldsymbol{u}) \leq 0, i = 1, \dots, m$

$$h_j(\boldsymbol{u}) = 0, j = 1, \dots, r$$

• Lagrangian: $L:\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$

$$u, \alpha, \beta \mapsto f(u) + \sum_{i=1}^{m} \alpha_i g_i(u) + \sum_{j=1}^{r} \beta_i h_j(u)$$

- = Lagrange multipliers
- = dual variables

Lagrange dual function

• Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$

$$\mathbf{u}, \boldsymbol{\alpha}, \boldsymbol{\beta} \mapsto f(\mathbf{u}) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{u}) + \sum_{j=1}^{r} \beta_i h_j(\mathbf{u})$$

Lagrange dual function:

$$Q: \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$$

$$\boldsymbol{\alpha}, \boldsymbol{\beta} \mapsto \inf_{\boldsymbol{u} \in D} L(\boldsymbol{u}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

Infimum = the greatest value x such that $x \le L(u, \alpha, \beta)$

Q is concave (independently of the convexity of f)

Lagrange dual function

• $Q: \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$

$$\alpha, \beta \mapsto \inf_{\mathbf{u} \in D} f(\mathbf{u}) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{u}) + \sum_{j=1}^{r} \beta_i h_j(\mathbf{u})$$

Q is concave (independently of the convexity of f)

Consider $(\boldsymbol{\alpha}_1, \boldsymbol{\beta}_1)$, $(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_2)$ and $0 \le \lambda \le 1$. Set $\boldsymbol{\alpha} = \lambda \boldsymbol{\alpha}_1 + (1 - \lambda) \boldsymbol{\alpha}_2$ and $\boldsymbol{\beta} = \lambda \boldsymbol{\beta}_1 + (1 - \lambda) \boldsymbol{\beta}_2$. $Q(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \boldsymbol{\alpha}^{\top} \boldsymbol{g}(\boldsymbol{u}) + \boldsymbol{\beta}^{\top} \boldsymbol{h}(\boldsymbol{u})$, where $\boldsymbol{g}(\boldsymbol{u}) = (g_1(\boldsymbol{u}), g_2(\boldsymbol{u}), \dots g_m(\boldsymbol{u}))$ and $\boldsymbol{h}(\boldsymbol{u}) = (h_1(\boldsymbol{u}), h_2(\boldsymbol{u}), \dots h_r(\boldsymbol{u}))$. Hence

$$Q(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \lambda \boldsymbol{\alpha}_{1}^{\top} \boldsymbol{g}(\boldsymbol{u}) + (1 - \lambda) \boldsymbol{\alpha}_{2}^{\top} \boldsymbol{g}(\boldsymbol{u}) + \lambda \boldsymbol{\beta}_{1}^{\top} \boldsymbol{h}(\boldsymbol{u}) + (1 - \lambda) \boldsymbol{\beta}_{2}^{\top} \boldsymbol{h}(\boldsymbol{u})$$
$$= \inf_{\boldsymbol{u} \in D} \lambda \left(f(\boldsymbol{u}) + \boldsymbol{\alpha}_{1}^{\top} \boldsymbol{g}(\boldsymbol{u}) + \boldsymbol{\beta}_{1}^{\top} \boldsymbol{h}(\boldsymbol{u}) \right) + (1 - \lambda) \left(f(\boldsymbol{u}) + \boldsymbol{\alpha}_{2}^{\top} \boldsymbol{g}(\boldsymbol{u}) + \boldsymbol{\beta}_{2}^{\top} \boldsymbol{h}(\boldsymbol{u}) \right).$$

This last equality holds because $f(u) = \lambda f(u) + (1 - \lambda)f(u)$. Hence

$$Q(\boldsymbol{\alpha}, \boldsymbol{\beta}) \ge \lambda \inf_{\boldsymbol{u} \in D} \left(f(\boldsymbol{u}) + \boldsymbol{\alpha}_1^{\top} \boldsymbol{g}(\boldsymbol{u}) + \boldsymbol{\beta}_1^{\top} \boldsymbol{h}(\boldsymbol{u}) \right) + (1 - \lambda) \inf_{\boldsymbol{u} \in D} \left(f(\boldsymbol{u}) + \boldsymbol{\alpha}_2^{\top} \boldsymbol{g}(\boldsymbol{u}) + \boldsymbol{\beta}_2^{\top} \boldsymbol{h}(\boldsymbol{u}) \right)$$
$$\ge \lambda Q(\boldsymbol{\alpha}_1, \boldsymbol{\beta}_1) + (1 - \lambda)Q(\boldsymbol{\alpha}_2, \boldsymbol{\beta}_2).$$

Lagrange dual function

The dual function gives a lower bound on our solution

Let
$$p^* = \min_{\boldsymbol{u} \in \mathcal{C}} f(\boldsymbol{u})$$
 feasible set

Then for any
$$\pmb{\alpha} \in \mathbb{R}_+^m$$
 $\alpha_1 \geq 0, \alpha_2 \geq 0, \ldots \alpha_m \geq 0$ $\pmb{\beta} \in \mathbb{R}^r$ $Q(\pmb{\alpha}, \pmb{\beta}) \leq p^*$

Consider any feasible point \boldsymbol{u} . Then $g_1(\boldsymbol{u}) \leq 0, g_2(\boldsymbol{u}) \leq 0, \dots g_m(\boldsymbol{u}) \leq 0$ and $h_1(\boldsymbol{u}) = h_2(\boldsymbol{u}) = \dots = h_r(\boldsymbol{u}) = 0$. By definition, $L(\boldsymbol{u}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j h_j(\boldsymbol{u})$. Because the second term is negative $(\alpha_i \geq 0, g_i(\boldsymbol{u}) \leq 0)$ and the third one is zero $(h_j(\boldsymbol{u}) = 0), L(\boldsymbol{u}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \leq f(\boldsymbol{u})$ for every feasible point \boldsymbol{u} . Hence $\inf_{\boldsymbol{u} \in D} L(\boldsymbol{u}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \leq \min_{\boldsymbol{u} \in C} f(\boldsymbol{u})$.

- $Q(\alpha, \beta) \leq p^*$ for any $\alpha \in \mathbb{R}^m_+, \beta \in \mathbb{R}^r$
- What is the best lower bound on p* we can get?

- $Q(\alpha, \beta) \leq p^*$ for any $\alpha \in \mathbb{R}^m_+, \beta \in \mathbb{R}^r$
- What is the best lower bound on p* we can get?

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} Q(\boldsymbol{\alpha},\boldsymbol{\beta})$$

subject to $\alpha_1 \geq 0, \alpha_2 \geq 0, \dots, \alpha_m \geq 0$

- $Q(\alpha, \beta) \leq p^*$ for any $\alpha \in \mathbb{R}^m_+, \beta \in \mathbb{R}^r$
- What is the best lower bound on p* we can get?

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} Q(\boldsymbol{\alpha},\boldsymbol{\beta})$$
 subject to $\alpha_1 \geq 0, \alpha_2 \geq 0, \ldots, \alpha_m \geq 0$ Lagrange dual problem

- $Q(\alpha, \beta) \leq p^*$ for any $\alpha \in \mathbb{R}^m_+, \beta \in \mathbb{R}^r$
- What is the best lower bound on p* we can get?

```
\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} Q(\boldsymbol{\alpha},\boldsymbol{\beta}) subject to \alpha_1 \geq 0, \alpha_2 \geq 0, \ldots, \alpha_m \geq 0 Lagrange dual problem —
```

- Optimal values α*, β* of α, β are called dual optimal or optimal Lagrange multipliers.
- Original optimization problem = primal
- The dual is a convex optimization problem (even if the primal is not!)

Let d* be the solution to the dual problem

$$d^* = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}} Q(\boldsymbol{\alpha}, \boldsymbol{\beta})$$

subject to $\alpha_1 \ge 0, \alpha_2 \ge 0, \dots, \alpha_m \ge 0$

• Because for every dual admissible α , β $Q(\alpha, \beta) \leq p^*$

$$d^* \le p^*$$

Weak duality (always holds)

Strong duality & Slater's conditions

- Strong duality: d* = p*
 - Does not hold in general
 - But often holds for convex optimization problems

Strong duality & Slater's conditions

- Strong duality: d* = p*
 - Does not hold in general
 - But often holds for convex optimization problems
- Constraint qualifications: conditions under which strong duality holds (in addition to convexity)

Strong duality & Slater's conditions

- Strong duality: d* = p*
 - Does not hold in general
 - But often holds for convex optimization problems
- Constraint qualifications: conditions under which strong duality holds (in addition to convexity)
- In particular: Slater's conditions:
 - If the primal is convex and there exists at least one strictly feasible point (i.e. the inequalities hold strictly), then strong duality holds
 - Strict inequalities only need to hold for non-affine constraints.

Karush-Kuhn-Tucker conditions

Suppose f, g_i, h_j differentiable + strong duality

$$f(\boldsymbol{u}^*) = Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$$

[strong duality]

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \end{split}$$

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \end{split}$$

Suppose f, g_i, h_i differentiable + strong duality

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\geq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g$$

What is the sign of this expression?

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_i(\boldsymbol{u}^*) + \sum_{i=1}$$

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \\ &\leq f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= \mathbf{u}^* \text{ feasible} \Rightarrow \mathbf{g_i} \leq \mathbf{0} \\ &\leq f(\boldsymbol{u}^*). & \mathbf{\alpha}^* \text{ feasible} \Rightarrow \alpha_i \geq \mathbf{0} \end{split}$$

$$f(u^*) = Q(\alpha^*, \beta^*) \qquad [strong duality]$$

$$= \inf_{u \in D} f(u) + \sum_{i=1}^m \alpha_i^* g_i(u) + \sum_{j=1}^r \beta_j^* h_j(u) \qquad [definition of Q]$$

$$\leq f(u^*) + \sum_{i=1}^m \alpha_i^* g_i(u^*) + \sum_{j=1}^r \beta_j^* h_j(u^*) \qquad [definition of inf]$$

$$u^* \text{ feasible} \Rightarrow g_i \leq 0$$

$$\leq f(u^*).$$
• Hence ?

Suppose f, g_i, h_i differentiable + strong duality

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq f(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) & \text{[definition of inf]} \\ &\leq$$

• Hence all above inequalities are equalities

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) & \text{[strong duality]} \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) & \text{[definition of Q]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \alpha_j^* g_j(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \alpha_j^* g_j(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \alpha_j^* g_j(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \alpha_j^* g_j(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \alpha_j^* g_j(\boldsymbol{u}^*)\right] + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\ &= f(\boldsymbol{u}^*) + \left[\sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*)\right] & \text{[definition of inf]} \\$$

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) \quad L(\boldsymbol{u}, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) \quad [\text{definition of Q}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^m \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \beta_i^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{$$

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) \quad L(\boldsymbol{u}, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) \quad [\text{definition of Q}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^r \beta_i^* h_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) \quad [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*) + \sum_{$$

•
$$f(\boldsymbol{u}^*) = L(\boldsymbol{u}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \inf_{\boldsymbol{u} \in D} L(\boldsymbol{u}, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$$

$$\nabla_{\boldsymbol{u}} L(\boldsymbol{u}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0$$

Suppose f, g_i, h_i differentiable + strong duality

$$\begin{split} f(\boldsymbol{u}^*) &= Q(\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) \underbrace{L(\boldsymbol{u}, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}_{T} & [\text{strong duality}] \\ &= \inf_{\boldsymbol{u} \in D} f(\boldsymbol{u}) + \sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}) + \sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}) \\ &= f(\boldsymbol{u}^*) + \underbrace{\sum_{i=1}^m \alpha_i^* g_i(\boldsymbol{u}^*)}_{i=1} + \underbrace{\sum_{j=1}^r \beta_j^* h_j(\boldsymbol{u}^*)}_{j=1} & [\text{definition of inf}] \\ &= f(\boldsymbol{u}^*). & \mathbf{u}^* \text{ feasible} \Rightarrow \mathbf{g_i} \leq 0 \\ &= f(\boldsymbol{u}^*). & \mathbf{\alpha}^* \text{ feasible} \Rightarrow \alpha_i \geq 0 \end{split}$$

complementary slackness

$$\begin{array}{c} \bullet \quad \alpha_i^* g_i(\boldsymbol{u}^*) = 0 \\ g_i(\boldsymbol{u}^*) < 0 \Rightarrow g_i(\boldsymbol{u}^*) = 0 \\ g_i(\boldsymbol{u}^*) < 0 \Rightarrow \alpha_i = 0 \end{array}$$

Let's sum up all of our conditions:

- Primal feasibility:
$$g_i({m u}^*) \le 0$$
 $i=1,\ldots,m$ $h_j({m u}^*) = 0$ $j=1,\ldots,r$ - Dual feasibility: $\alpha_i^* \ge 0$ $i=1,\ldots,m$

- Complementary slackness: $\alpha_i^* g_i(\boldsymbol{u}^*) = 0$ $i = 1, \ldots, m$
- Stationarity: m $\nabla_u f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* \nabla_u g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* \nabla_u h_j(\boldsymbol{u}^*) = 0.$

Let's sum up all of our conditions:

- Primal feasibility:
$$g_i(\boldsymbol{u}^*) \leq 0$$
 $i=1,\dots,m$ $h_j(\boldsymbol{u}^*) = 0$ $j=1,\dots,r$ - Dual feasibility: $\alpha_i^* \geq 0$ $i=1,\dots,m$ - Complementary slackness: $\alpha_i^* g_i(\boldsymbol{u}^*) = 0$ $i=1,\dots,m$ - Stationarity: m

 $\nabla_u f(\boldsymbol{u}^*) + \sum_{i} \alpha_i^* \nabla_u g_i(\boldsymbol{u}^*) + \sum_{i} \beta_j^* \nabla_u h_j(\boldsymbol{u}^*) = 0.$

Karush-Kuhn-Tucker (KKT) conditions

• Let's sum up all of our conditions:

- Primal feasibility:
$$g_i({m u}^*) \le 0$$
 $i=1,\dots,m$ $h_j({m u}^*) = 0$ $j=1,\dots,r$ - Dual feasibility: $\alpha_i^* \ge 0$ $i=1,\dots,m$ - Complementary slackness: $\alpha_i^* g_i({m u}^*) = 0$ $i=1,\dots,m$ - Stationarity: m

Stationarity:
$$m$$

$$\nabla_u f(\boldsymbol{u}^*) + \sum_{i=1}^m \alpha_i^* \nabla_u g_i(\boldsymbol{u}^*) + \sum_{j=1}^r \beta_j^* \nabla_u h_j(\boldsymbol{u}^*) = 0.$$

Karush-Kuhn-Tucker (KKT) conditions

 For convex optimization problems, any (u, α, β) that verify the KKT conditions are optimal.

• For convex optimization problems, any (u, α, β) that verify the KKT conditions are optimal.

Consider $\bar{u}, \bar{\alpha}, \bar{\beta}$ that verify the KKT conditions.

Primal feasibility implies that \bar{u} is feasible.

 $L(\boldsymbol{u}, \bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}})$ is convex in \boldsymbol{u} . Indeed $L(\boldsymbol{u}, \bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}}) = f(\boldsymbol{u}) + \sum_{i=1}^{m} \bar{\alpha}_i g_i(\boldsymbol{u}) + \sum_{j=1}^{r} \bar{\beta}_j h_j(\boldsymbol{u})$, and f and g_i are convex, h_j is affine, and dual feasibility implies $\bar{\alpha}_i \geq 0$.

Because $L(\boldsymbol{u}, \bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}})$ is convex in \boldsymbol{u} , stationarity implies that $\bar{\boldsymbol{u}}$ minimizes $L(\boldsymbol{u}, \bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}})$, hence $Q(\bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}}) = L(\boldsymbol{u}, \bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}})$. Because of complementary slackness, $\sum_{i=1}^m \bar{\alpha}_i g_i(\boldsymbol{u}) = 0$, and because of primal feasibility, $\sum_{j=1}^r \bar{\beta}_j h_j(\boldsymbol{u}) = 0$. Therefore, $Q(\bar{\boldsymbol{\alpha}}, \bar{\boldsymbol{\beta}}) = f(\bar{\boldsymbol{u}})$.

Let p^* be the optimal value of the primal, and d^* the optimal value of the dual. By definition of the optimal, $Q(\bar{\alpha}, \bar{\beta}) \leq d^*$. By weak duality, $d^* \leq p^*$. Therefore $f(\bar{u}) = Q(\bar{\alpha}, \bar{\beta}) \leq d^* \leq p^*$. Because p^* is the optimal value of the primal, this implies $f(\bar{u}) = p^*$ and hence all the above inequalities are equalities: $f(\bar{u}) = p^* = d^* = Q(\bar{\alpha}, \bar{\beta})$. Hence $\bar{u}, \bar{\alpha}, \bar{\beta}$ are optimal.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

• Case 1: the unconstrained minimum lies in the feasible region

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region
- Case 2: it does not.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region
- Case 2: it does not.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region
- Case 2: it does not.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region
- Case 2: it does not.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region
- Case 2: it does not.

What can you say about the gradients of f and g?

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region
- Case 2: it does not. The solution lies where the isocontours of f meet the feasible region.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region $\nabla f(u^*) = 0$ and $g(u^*) \leq 0$
- Case 2: it does not. The solution lies where the isocontours of f meet the feasible region.

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region $\nabla f(u^*) = 0$ and $g(u^*) \leq 0$
- Case 2: it does not. The solution lies where the isocontours of f meet the feasible region.

 The gradients of f and g are parallel, of opposite directions

$$\nabla f(\boldsymbol{u}^*) = -\alpha \nabla g(\boldsymbol{u}^*) \qquad \alpha \ge 0$$

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: the unconstrained minimum lies in the feasible region $\nabla f(u^*) = 0$ and $g(u^*) \leq 0$
- Case 2: it does not. The solution lies where the isocontours of f meet the feasible region.

 The gradients of f and g are parallel, of opposite directions

$$\nabla f(\boldsymbol{u}^*) = -\alpha \nabla g(\boldsymbol{u}^*) \qquad \alpha \ge 0$$

The solution lies at the border of the feasible space

$$g(\boldsymbol{u}^*) = 0$$

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: $\nabla f(u^*) = 0 \text{ and } g(u^*) \le 0$
- Case 2: $\nabla f(\boldsymbol{u}^*) = -\alpha \nabla g(\boldsymbol{u}^*)$ $\alpha \geq 0$ and $g(\boldsymbol{u}^*) = 0$
- Can be summarized as: $\nabla f({m u}^*) + \alpha \nabla g({m u}^*) = 0$ and $\alpha g({m u}^*) = 0$
 - Either $\alpha = 0$ and $g(u^*) \leq 0$ (case 1)
 - or $g(u^*) = 0$ (case 2).

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u}) \quad \text{subject to } g(\boldsymbol{u}) \le 0$$

- Case 1: $\nabla f(u^*) = 0 \text{ and } g(u^*) \le 0$
- Case 2: $\nabla f(u^*) = -\alpha \nabla g(u^*)$ $\alpha \ge 0$ and $g(u^*) = 0$
- Can be summarized as: $\nabla f({\bm u}^*) + \alpha \nabla g({\bm u}^*) = 0$ and $\alpha g({\bm u}^*) = 0$
 - Either $\alpha = 0$ and $g(u^*) \leq 0$ (case 1)
 - or $g(u^*) = 0$ (case 2).

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: $\nabla f(u^*) = 0 \text{ and } g(u^*) \le 0$
- Case 2: $\nabla f(u^*) = -\alpha \nabla g(u^*)$ $\alpha \ge 0$ and $g(u^*) = 0$ stationarity
- Can be summarized as: $\nabla f({m u}^*) + \alpha \nabla g({m u}^*) = 0$ and $\alpha g({m u}^*) = 0$
 - Either $\alpha = 0$ and $g(u^*) \leq 0$ (case 1)
 - or $g(u^*) = 0$ (case 2).

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \le 0$

- Case 1: $\nabla f(u^*) = 0 \text{ and } g(u^*) \le 0$
- Case 2: $\nabla f(u^*) = -\alpha \nabla g(u^*)$ $\alpha \ge 0$ and $g(u^*) = 0$ stationarity
- Can be summarized as: $\nabla f({m u}^*) + \alpha \nabla g({m u}^*) = 0$ and $\alpha g({m u}^*) = 0$
 - Either $\alpha = 0$ and $g(u^*) \leq 0$ (case 1)
 - or $g(u^*) = 0$ (case 2).

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
 subject to $g(\boldsymbol{u}) \leq 0$

- Case 1: $\nabla f(u^*) = 0 \text{ and } g(u^*) \le 0$
- Case 2: $\nabla f(u^*) = -\alpha \nabla g(u^*)$ $\alpha \ge 0$ and $g(u^*) = 0$ stationarity
- Can be summarized as: $\nabla f({m u}^*) + \alpha \nabla g({m u}^*) = 0$ and $\alpha g({m u}^*) = 0$ complementary slackness
 - Either $\alpha = 0$ and $g(u^*) \leq 0$ (case 1)
 - or $g(u^*) = 0$ (case 2).

Quadratic Programs

- Special case of convex optimization problems where
 - f is quadratic

$$f: \boldsymbol{u} \mapsto \frac{1}{2} \boldsymbol{u}^{\top} Q \boldsymbol{u} + \boldsymbol{b}^{\top} \boldsymbol{u} + c \quad Q \succeq 0 \quad \boldsymbol{b} \in \mathbb{R}^{n} \quad c \in \mathbb{R}$$

- g_i and h_j are affine $m{u}\mapsto m{c}^{ op} m{u}+d$ $m{c}\in\mathbb{R}^n$ $d\in\mathbb{R}$ The feasible set is

Quadratic Programs

- Special case of convex optimization problems where
 - f is quadratic

$$f: \boldsymbol{u} \mapsto \frac{1}{2} \boldsymbol{u}^{\top} Q \boldsymbol{u} + \boldsymbol{b}^{\top} \boldsymbol{u} + c \quad Q \succeq 0 \quad \boldsymbol{b} \in \mathbb{R}^{n} \quad c \in \mathbb{R}$$

- $\mathsf{g_i}$ and $\mathsf{h_i}$ are affine $m{u} \mapsto m{c}^{\top} m{u} + d$ $m{c} \in \mathbb{R}^n$ $d \in \mathbb{R}$
- The feasible set is a polyhedron.

Quadratic Programs

- Many methods can be used to solve QPs, for example
 - Interior point methods
 - Active set methods
- Many solvers implement them
 - CPLEX
 - CVXOPT
 - CGAL and more.

Slack variables

Replace the inequality constraints

$$g_i(\mathbf{u}) \le 0 \Leftrightarrow \exists s_i \ge 0 : g_i(\mathbf{u}) + s_i = 0$$

• s_i = slack variable.

$$\min_{oldsymbol{u} \in D} f(oldsymbol{u})$$

subject to $g_i(oldsymbol{u}) + s_i = 0, i = 1, \dots, m$
 $s_i \geq 0, i = 1, \dots, m$
 $h_j(oldsymbol{u}) = 0, j = 1, \dots, r$

Summary

 We often try to formulate machine learning problems as convex optimization problems

$$\min_{\boldsymbol{u} \in D} f(\boldsymbol{u})$$
subject to $g_i(\boldsymbol{u}) \leq 0, i = 1, \dots, m$

$$h_j(\boldsymbol{u}) = 0, j = 1, \dots, r$$

- If f differentiable: $\nabla f(u) = 0 \Leftrightarrow u \text{ minimizes } f$
- Unconstrained convex optimization problems can be solved by gradient descent.

Flavors: Backtracking line search, Newton's methods, BFGS, stochastic gradient descent.

 Constrained convex optimization problems can be solved in dual space via the Lagrangian.

References

- Convex optimization. S. Boyd and L. Vandenberghe. https://web.stanford.edu/~boyd/cvxbook/
 - Convex sets: Chapter 2.1
 - Convex functions: Chapter 3.1.1 3.1.5, 3.2
 - Convex optimization problems: 4.1.1 4.1.2 + 4.2.2
 - Unconstrained minimization: 9.1.1 + 9.2 9.3 (gradient descent) + 9.5 (Newton)
 - QP: 4.4.1 + 5.1 (Lagrange) + 5.2 (Duality) + 5.3.2 (Slater) + 5.5.3 (KKT)
 - Slack variables: 4.1.3
 - Also see the Bibliography section at the end of each chapter.
- To go further
 - Numerical Optimization. J. Bonnans, J. Gilbert, C. Lemaréchal, C. Sagastizábal. Quasi-Newton methods: 4.3 4.4.
 - Stochastic gradient descent tricks. L. Bottou (2012). http://leon.bottou.org/publications/pdf/tricks-2012.pdf
 - Coordinate Descent Algorithms. S. Wright (2015). https://arxiv.org/abs/1502.04759

Homework

By Monday (Oct 2nd)

Visit http://tinyurl.com/ma2823-2017

Download and read the complete syllabus.

Set up your computer for the labs.

By Friday (Oct 6th)

Download, solve and turn in HW 1.

See you on Monday, 8:30am in Amphi sc.046!