Testing Paired Data

Kevin Hayes, Anthony Kinsella, and Kevin O'Brien

Department of Mathematics and Statistics, University of Limerick.

The 2010 Conference of Applied Statistics in Ireland, May 16th to 18th.

- 1 A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- Concluding Remarks

- 1 A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- 4 Concluding Remarks

- 1 A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- Concluding Remarks

- 1 A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- Concluding Remarks

- 1 A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- 4 Concluding Remarks

Let Y_1 and Y_2 be distributed bivariate normal: $\mathrm{E}(Y_1) = \mu_1$, $\mathrm{E}(Y_2) = \mu_2$, $\mathrm{var}(Y_1) = \sigma_1^2$, $\mathrm{var}(Y_2) = \sigma_2^2$, and $-1 < \rho_{12} < 1$.

Of interest are the tests of the hypotheses

- **1** H': $\mu_1 \mu_2 = 0$, ?;
- ② H": $\sigma_1^2 = \sigma_2^2$, ?, ?;
- **3** H^J: $\mu_1 \mu_2 = 0$ and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

Let Y_1 and Y_2 be distributed bivariate normal: $\mathrm{E}(Y_1) = \mu_1$, $\mathrm{E}(Y_2) = \mu_2$, $\mathrm{var}(Y_1) = \sigma_1^2$, $\mathrm{var}(Y_2) = \sigma_2^2$, and $-1 < \rho_{12} < 1$.

Of interest are the tests of the hypotheses:

- **1** H': $\mu_1 \mu_2 = 0$, ?;
- **2** H": $\sigma_1^2 = \sigma_2^2$, ?, ?;
- **3** H^J: $\mu_1 \mu_2 = 0$ and $\sigma_1^2 = \sigma_2^2$, ?.

Define $D = Y_1 - Y_2$ and $S = Y_1 + Y_2$

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3 H^J:
$$\mu_1 - \mu_2 = 0$$
 and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2$$

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3
$$H^{J}$$
: $\mu_{1} - \mu_{2} = 0$ and $\sigma_{1}^{2} = \sigma_{2}^{2}$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2,$$

$$cov(D, S) = \sigma_2^2 - \sigma_2^2$$

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3 H^J:
$$\mu_1 - \mu_2 = 0$$
 and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2,$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2,$$

$$cov(D, S) = \sigma_1^2 - \sigma_2^2.$$

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3 H^J:
$$\mu_1 - \mu_2 = 0$$
 and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2,$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2,$$

$$cov(D, S) = \sigma_1^2 - \sigma_2^2.$$

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3 H^J:
$$\mu_1 - \mu_2 = 0$$
 and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2,$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2,$$

$$cov(D, S) = \sigma_1^2 - \sigma_2^2.$$

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3 H^J:
$$\mu_1 - \mu_2 = 0$$
 and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2,$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2,$$

$$cov(D, S) = \sigma_1^2 - \sigma_2^2.$$

Let Y_1 and Y_2 be distributed bivariate normal: $\mathrm{E}(Y_1) = \mu_1$, $\mathrm{E}(Y_2) = \mu_2$, $\mathrm{var}(Y_1) = \sigma_1^2$, $\mathrm{var}(Y_2) = \sigma_2^2$, and $-1 < \rho_{12} < 1$.

Of interest are the tests of the hypotheses:

1 H':
$$\mu_1 - \mu_2 = 0$$
, ?;

2 H":
$$\sigma_1^2 = \sigma_2^2$$
, ?, ?;

3 H^J:
$$\mu_1 - \mu_2 = 0$$
 and $\sigma_1^2 = \sigma_2^2$, ?.

Define
$$D = Y_1 - Y_2$$
 and $S = Y_1 + Y_2$

$$E(D) = \mu_D = \mu_1 - \mu_2$$

$$E(S) = \mu_S = \mu_1 + \mu_2,$$

$$var(D) = \sigma_D^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2,$$

$$var(S) = \sigma_S^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2,$$

$$cov(D, S) = \sigma_1^2 - \sigma_2^2.$$

H':
$$\mu_1 - \mu_2 = 0$$
, ?

The test of the hypothesis H': $\mu_D = 0$ due to ? is based on the *t*-ratio

$$T^* = \frac{\bar{D}}{\hat{\sigma}_D/\sqrt{n}} \sim t_{(n-1)df},\tag{1}$$

where D is the mean of the n case-wise differences $D_i = Y_{i1} - Y_{i2}$ of the pairs $(Y_{i1}, Y_{i2}), i = 1, ..., n$ and

$$\hat{\sigma}_D^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i - \bar{D})^2$$

is the usual estimate of the variance of the differences σ_D^2 .

Kevin Hayes (UL) paired-samples t-test

H':
$$\mu_1 - \mu_2 = 0$$
, ?

The test of the hypothesis H': $\mu_D=0$ due to ? is based on the *t*-ratio

$$T^* = \frac{\bar{D}}{\hat{\sigma}_D/\sqrt{n}} \sim t_{(n-1)df},\tag{1}$$

where \bar{D} is the mean of the n case-wise differences $D_i = Y_{i1} - Y_{i2}$ of the pairs (Y_{i1}, Y_{i2}) , i = 1, ..., n and

$$\hat{\sigma}_D^2 = \frac{1}{n-1} \sum_{i=1}^n (D_i - \bar{D})^2$$

is the usual estimate of the variance of the differences σ_D^2 .

This classical test makes no assumptions about the equality (or otherwise) of the variance parameters σ_1^2 and σ_2^2 .

Kevin Hayes (UL) paired-samples t-test CASI 2010

H": $\sigma_1^2 = \sigma_2^2$, ?, ?

The test of the hypothesis that the variances σ_1^2 and σ_2^2 are equal, which was devised concurrently by ? and ?, is based on the correlation of D with S, the coefficient being $\rho_{DS}=(\sigma_1^2-\sigma_2^2)/(\sigma_D\sigma_S)$, which is zero if, and only if, $\sigma_1^2=\sigma_2^2$. Consequently a test of H'': $\sigma_1^2=\sigma_2^2$ is equivalent to a test of H'': $\rho_{DS}=0$ and the test statistic is the familiar t-test for a correlation coefficient with (n-2) degrees of freedom:

$$T_{\rm PM}^* = R\sqrt{\frac{n-2}{1-R^2}},$$
 (2)

where

$$R = \frac{\sum (D_i - \bar{D})(S_i - \bar{S})}{\left[\sum (D_i - \bar{D})^2 \sum (S_i - \bar{S})^2\right]^{\frac{1}{2}}}$$
(3)

is the sample correlation coefficient of the n case-wise differences D_i and sums $S_i = Y_{i1} + Y_{i2}$.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 9

$$\mathsf{H}^{\mathsf{J}} \colon \mu_1 - \mu_2 = \mathsf{0} \ \mathsf{and} \ \sigma_1^2 = \sigma_2^2, \ \ \mathsf{?}$$

They write the conditional expectation of D given S as

$$E(D|S) = \mu_D + cov(D, S)var(S)^{-1}(S - \mu_S),$$

= $\mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](S - \mu_S),$
= $\beta_0 + \beta_1 S,$

where
$$\beta_0 = \mu_D - [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2]\mu_S$$
 and $\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_S^2$.

The hypothesis H^J: $\mu_D=0$ and $\sigma_1^2=\sigma_2^2$, is true iff $\beta_0=\beta_1=0$

The test statistic is

$$F^* = (\frac{n-2}{2})(\frac{\sum D_i^2 - \text{SSE}}{\text{SSE}}) \sim F_{(2,n-2)\text{df}},$$
 (4)

where SSE is the residual error sum-of-squares from $\hat{D}_i = \hat{eta}_0 + \hat{eta}_1 s_i$

4 □ ▶ ◀ 클 ▶ ◀ 클 ▶ ▼ 클 ▶ ▼ 클 ▶ ▼

$$\mathsf{H}^{\mathsf{J}} \colon \mu_1 - \mu_2 = \mathsf{0} \ \mathsf{and} \ \sigma_1^2 = \sigma_2^2, \ \ \mathsf{?}$$

They write the conditional expectation of D given S as

$$E(D|S) = \mu_D + cov(D, S)var(S)^{-1}(S - \mu_S),$$

= $\mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](S - \mu_S),$
= $\beta_0 + \beta_1 S,$

where
$$\beta_0 = \mu_D - [(\sigma_1^2 - \sigma_2^2)/\sigma_5^2]\mu_S$$
 and $\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_5^2$.

The hypothesis H^J: $\mu_D = 0$ and $\sigma_1^2 = \sigma_2^2$, is true iff $\beta_0 = \beta_1 = 0$.

The test statistic is

$$F^* = (\frac{n-2}{2})(\frac{\sum D_i^2 - \text{SSE}}{\text{SSE}}) \sim F_{(2,n-2)\text{df}},$$
 (4)

where $ext{SSE}$ is the residual error sum-of-squares from $\hat{D}_i = \hat{eta}_0 + \hat{eta}_1 s_i$

4 □ ▶ ◀ 클 ▶ ◀ 클 ▶ ▼ 클 ▶ ▼ 클 ▶ ▼

$\mathsf{H}^{\mathsf{J}} \colon \mu_1 - \mu_2 = \mathsf{0} \ \mathsf{and} \ \sigma_1^2 = \sigma_2^2, \ \ \mathsf{?}$

They write the conditional expectation of D given S as

$$E(D|S) = \mu_D + cov(D, S)var(S)^{-1}(S - \mu_S),$$

= $\mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](S - \mu_S),$
= $\beta_0 + \beta_1 S,$

where
$$\beta_0 = \mu_D - [(\sigma_1^2 - \sigma_2^2)/\sigma_5^2]\mu_S$$
 and $\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_5^2$.

The hypothesis H^J: $\mu_D = 0$ and $\sigma_1^2 = \sigma_2^2$, is true iff $\beta_0 = \beta_1 = 0$.

The test statistic is

$$F^* = (\frac{n-2}{2})(\frac{\sum D_i^2 - \text{SSE}}{\text{SSE}}) \sim F_{(2,n-2)df},$$
 (4)

where SSE is the residual error sum-of-squares from $\hat{D}_i = \hat{\beta}_0 + \hat{\beta}_1 s_i$.

4 □ > < 6 > < 5 > < 5 > < 5 > < 5 </p>

Kevin Hayes (UL) paired-samples t-test CASI 2010 7 / 18

$$\mathsf{H}^{\mathsf{J}}$$
: $\mu_1 - \mu_2 = 0$ and $\sigma_1^2 = \sigma_2^2$, ?

They write the conditional expectation of D given S as

$$E(D|S) = \mu_D + cov(D, S)var(S)^{-1}(S - \mu_S),$$

= $\mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](S - \mu_S),$
= $\beta_0 + \beta_1 S,$

where
$$\beta_0 = \mu_D - [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2]\mu_S$$
 and $\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_S^2$.

The hypothesis H^J: $\mu_D = 0$ and $\sigma_1^2 = \sigma_2^2$, is true iff $\beta_0 = \beta_1 = 0$.

The test statistic is

$$F^* = (\frac{n-2}{2})(\frac{\sum D_i^2 - \text{SSE}}{\text{SSE}}) \sim F_{(2,n-2)df},$$
 (4)

where SSE is the residual error sum-of-squares from $\hat{D}_i = \hat{\beta}_0 + \hat{\beta}_1 s_i$.

4 □ ▷ 〈國▷ 〈國▷ 〈夏▷ 〈夏▷ ○夏□ ⑤

- 1 A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- Concluding Remarks

Write

$$\mu_{D|S=s} = \mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](s - \mu_S)$$

= $\beta_0 + \beta_1 s$

where
$$\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_S^2$$
 and $\beta_0 = \mu_D - \beta_1 \mu_S$ with $\sigma_{D|S}^2 = \sigma_D^2 - (\sigma_1^2 - \sigma_2^2)^2/\sigma_S^2$.

Can also be written $D_i = \beta_0 + \beta_1 s_i + \varepsilon_i$ (i = 1, ..., n) where ε_i are IID $\mathrm{N}(0, \sigma_\varepsilon^2)$ distribution having $\sigma_\varepsilon^2 = \sigma_{D|S}^2$, and the s_i terms are the values in the conditioning set $S_1 = s_1, S_2 = s_2, ..., S_n = s_n$ and are restricted only by the exclusion of the trivial case $s_1 = s_2 = \cdots = s_n$.

Can be reformulated as $D_i = \alpha + \beta_1(s_i - \bar{s}) + \varepsilon_i$ where the intercept parameters are related by $\alpha = \mu_D + \beta_1(\bar{s} - \mu_S)$, and where the slope parameters and the error structures of the two regression models are identical.

Write

$$\mu_{D|S=s} = \mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](s - \mu_S)$$

= $\beta_0 + \beta_1 s$

where $\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_S^2$ and $\beta_0 = \mu_D - \beta_1 \mu_S$ with $\sigma_{D|S}^2 = \sigma_D^2 - (\sigma_1^2 - \sigma_2^2)^2/\sigma_S^2$.

Can also be written $D_i = \beta_0 + \beta_1 s_i + \varepsilon_i$ (i = 1, ..., n) where ε_i are IID $\mathrm{N}(0, \sigma_\varepsilon^2)$ distribution having $\sigma_\varepsilon^2 = \sigma_{D|S}^2$, and the s_i terms are the values in the conditioning set $S_1 = s_1, S_2 = s_2, ..., S_n = s_n$ and are restricted only by the exclusion of the trivial case $s_1 = s_2 = \cdots = s_n$.

Can be reformulated as $D_i = \alpha + \beta_1(s_i - \bar{s}) + \varepsilon_i$ where the intercept parameters are related by $\alpha = \mu_D + \beta_1(\bar{s} - \mu_S)$, and where the slope parameters and the error structures of the two regression models are identical.

Write

$$\mu_{D|S=s} = \mu_D + [(\sigma_1^2 - \sigma_2^2)/\sigma_S^2](s - \mu_S)$$

= $\beta_0 + \beta_1 s$

where $\beta_1 = (\sigma_1^2 - \sigma_2^2)/\sigma_S^2$ and $\beta_0 = \mu_D - \beta_1 \mu_S$ with $\sigma_{D|S}^2 = \sigma_D^2 - (\sigma_1^2 - \sigma_2^2)^2/\sigma_S^2$.

Can also be written $D_i = \beta_0 + \beta_1 s_i + \varepsilon_i$ (i = 1, ..., n) where ε_i are IID $\mathrm{N}(0, \sigma_\varepsilon^2)$ distribution having $\sigma_\varepsilon^2 = \sigma_{D|S}^2$, and the s_i terms are the values in the conditioning set $S_1 = s_1, S_2 = s_2, ..., S_n = s_n$ and are restricted only by the exclusion of the trivial case $s_1 = s_2 = \cdots = s_n$.

Can be reformulated as $D_i = \alpha + \beta_1(s_i - \bar{s}) + \varepsilon_i$ where the intercept parameters are related by $\alpha = \mu_D + \beta_1(\bar{s} - \mu_S)$, and where the slope parameters and the error structures of the two regression models are identical.

Treating the s_i terms as fixed known constants the MLEs are:

$$\hat{\alpha} = \bar{D},$$

$$\hat{\beta}_{1} = \frac{\sum (D_{i} - \bar{D})(s_{i} - \bar{s})}{\sum (s_{i} - \bar{s})^{2}}$$

$$= \frac{\sum D_{i}(s_{i} - \bar{s})^{2}}{\sum (s_{i} - \bar{s})^{2}},$$

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{n} \left(\sum (D_{i} - \bar{D})^{2} - \frac{\left[\sum (s_{i} - \bar{s})D_{i}\right]^{2}}{\sum (s_{i} - \bar{s})^{2}} \right)$$

The estimates $\hat{\alpha}$ and $\hat{\beta}_1$ are independent and have distributions $N(\alpha, n^{-1}\sigma_{\varepsilon}^2)$ and $N(\beta_1, [\sum (s_i - \bar{s})^2]^{-1}\sigma_{\varepsilon}^2)$.

Treating the s_i terms as fixed known constants the MLEs are:

$$\hat{\alpha} = \bar{D},$$

$$\hat{\beta}_{1} = \frac{\sum (D_{i} - \bar{D})(s_{i} - \bar{s})}{\sum (s_{i} - \bar{s})^{2}}$$

$$= \frac{\sum D_{i}(s_{i} - \bar{s})^{2}}{\sum (s_{i} - \bar{s})^{2}},$$

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{n} \left(\sum (D_{i} - \bar{D})^{2} - \frac{\left[\sum (s_{i} - \bar{s})D_{i}\right]^{2}}{\sum (s_{i} - \bar{s})^{2}} \right)$$

The estimates $\hat{\alpha}$ and $\hat{\beta}_1$ are independent and have distributions $N(\alpha, n^{-1}\sigma_{\varepsilon}^2)$ and $N(\beta_1, [\sum (s_i - \overline{s})^2]^{-1}\sigma_{\varepsilon}^2)$.

Treating the s_i terms as fixed known constants the MLEs are:

$$\hat{\alpha} = \bar{D},$$

$$\hat{\beta}_{1} = \frac{\sum (D_{i} - \bar{D})(s_{i} - \bar{s})}{\sum (s_{i} - \bar{s})^{2}}$$

$$= \frac{\sum D_{i}(s_{i} - \bar{s})^{2}}{\sum (s_{i} - \bar{s})^{2}},$$

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{n} \left(\sum (D_{i} - \bar{D})^{2} - \frac{\left[\sum (s_{i} - \bar{s})D_{i}\right]^{2}}{\sum (s_{i} - \bar{s})^{2}} \right)$$

The estimates $\hat{\alpha}$ and $\hat{\beta}_1$ are independent and have distributions $N(\alpha, n^{-1}\sigma_{\varepsilon}^2)$ and $N(\beta_1, [\sum (s_i - \bar{s})^2]^{-1}\sigma_{\varepsilon}^2)$.

The random variables

$$\begin{array}{lcl} Q_0 & = & n(\bar{D} - \alpha)^2/\sigma_{\varepsilon}^2 \ \sim \ \chi_{\rm 1df}^2, \\ \\ Q_1 & = & (\hat{\beta}_1 - \beta_1)^2 \sum (s_i - \bar{s})^2/\sigma_{\varepsilon}^2 \ \sim \ \chi_{\rm 1df}^2, \\ \\ Q_2 & = & n\hat{\sigma}_{\varepsilon}^2/\sigma_{\varepsilon}^2 \sim \chi_{(n-2)\rm df}^2, \end{array}$$

are independent and

$$Q = \sum [D_i - \alpha - \beta (s_i - \overline{s})]^2 \sim \chi_{ndf}^2.$$

Kevin Hayes (UL) paired-samples t-test 11 / 18

Writing $\tilde{\sigma}_{\varepsilon}^2 = n\hat{\sigma}_{\varepsilon}^2/(n-2)$, there are, consequently, two independent F ratio tests from the full model:

$$F_0^* = \frac{n\bar{D}^2}{\tilde{\sigma}_{\varepsilon}^2} \sim F_{(1,n-2)\mathrm{df}},$$

testing $H\colon \ \alpha=\mathbf{0}$ in favour of a reduced model with no intercept parameter; and

$$F_1^* = \frac{\hat{\beta}_1^2 \sum_{i=1}^n (s_i - \bar{s})^2}{\tilde{\sigma}_{\varepsilon}^2} \sim F_{(1,n-2)\mathrm{df}},$$

testing H: $\beta_1 = 0$ in favour of a model with no slope parameter.

12 / 18

Kevin Hayes (UL) paired-samples t-test CASI 2010

Since $(T_{kdf})^2 \equiv F_{(1,k)df}$ these F ratio tests can be reexpressed as two Student t-tests, each with (n-2) degrees of freedom:

$$T_0^* = \frac{\bar{D}}{\tilde{\sigma}_{\varepsilon}/\sqrt{n}} \sim t_{(n-2)df}$$
 (5)

and

$$T_1^* = \frac{\hat{\beta}_1}{\tilde{\sigma}_{\varepsilon}/\sqrt{\sum (s_i - \bar{s})^2}} \sim t_{(n-2)df}.$$
 (6)

As Q_0 and Q_1 are independent it also follows that

$$\frac{1}{2}(\textit{Q}_{0} + \textit{Q}_{1}) \sim \chi_{2\mathrm{df}}^{2},$$

and a third F-ratio testing H: $\alpha = \beta_1 = 0$ in favour of a model with no intercept parameter and no slope parameter can be formed as

$$F^* = \frac{(T_0^*)^2 + (T_1^*)^2}{2} \sim F_{(2,n-2)df},\tag{7}$$

and is an alternative representation of the Bradley-Blackwood test statistic given in (4) above.

- A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- Concluding Remarks

- The power function for the test of the marginal hypothesis H: $\mu_D=0$ using Student's paired t-test is characterized by a non-central F-distribution with degrees of freedom parameters 1 and (n-1) in the numerator and denominator, and non-centrality parameter $\delta=n(\mu_D)^2/\sigma_D^2$.
- The power function for the test of the marginal hypothesis H: $\mu_D=0$ using the t-ratio T_0^* is a non-central F-distribution with degrees of freedom parameters 1 and (n-2) in the numerator and denominator, and non-centrality parameter $\delta_0=n(\mu_D)^2/\sigma_{D|S}^2$, where $\sigma_{D|S}^2=\sigma_D^2-(\sigma_1^2-\sigma_2^2)^2/\sigma_S^2=\sigma_D^2(1-\rho_{DS}^2)$.
- These results follow as a special cases of power functions for tests of the general linear hypothesis in univariate linear models (?).

- The power function for the test of the marginal hypothesis H: $\mu_D=0$ using Student's paired t-test is characterized by a non-central F-distribution with degrees of freedom parameters 1 and (n-1) in the numerator and denominator, and non-centrality parameter $\delta=n(\mu_D)^2/\sigma_D^2$.
- The power function for the test of the marginal hypothesis H: $\mu_D=0$ using the t-ratio T_0^* is a non-central F-distribution with degrees of freedom parameters 1 and (n-2) in the numerator and denominator, and non-centrality parameter $\delta_0=n(\mu_D)^2/\sigma_{D|S}^2$, where $\sigma_{D|S}^2=\sigma_D^2-(\sigma_1^2-\sigma_2^2)^2/\sigma_S^2=\sigma_D^2(1-\rho_{DS}^2)$.
- These results follow as a special cases of power functions for tests of the general linear hypothesis in univariate linear models (?).

- The power function for the test of the marginal hypothesis H: $\mu_D=0$ using Student's paired t-test is characterized by a non-central F-distribution with degrees of freedom parameters 1 and (n-1) in the numerator and denominator, and non-centrality parameter $\delta=n(\mu_D)^2/\sigma_D^2$.
- The power function for the test of the marginal hypothesis H: $\mu_D=0$ using the t-ratio T_0^* is a non-central F-distribution with degrees of freedom parameters 1 and (n-2) in the numerator and denominator, and non-centrality parameter $\delta_0=n(\mu_D)^2/\sigma_{D|S}^2$, where $\sigma_{D|S}^2=\sigma_D^2-(\sigma_1^2-\sigma_2^2)^2/\sigma_S^2=\sigma_D^2(1-\rho_{DS}^2)$.
- These results follow as a special cases of power functions for tests of the general linear hypothesis in univariate linear models (?).

- A Look at Some Tests for Paired-Samples
- 2 An Alternative Paired-Sampes t-Test
- 3 Power Functions
- 4 Concluding Remarks

- A closed test procedure based on the maximum and minimum t-ratios.
- Hsu's paper "On samples from a normal bivariate population" discusses 7 tests of hypotheses relevant to this discussion.
- The Student t-test is UMP.
- Question the extent to which the results depend on Normality?
- Model selection and Bayes factors.
- kevin.hayes@ul.ie