Closure Properties of Regular Sets

Beulah A.

AP/CSE

Definition of Regular Expression

- Let Σ be an alphabet. The regular expressions over Σ and the sets that they denote are defined recursively as follows:
- 1. φ is a regular expression and denotes the empty set.
- 2. ϵ is a regular expression and denotes the set $\{\epsilon\}$
- 3. For each $a \in \Sigma$, 'a' is a regular expression and denotes the set $\{a\}$.
- 4. If r and s are regular expressions denoting the languages R and S respectively then (r + s), (rs), (r)* are regular expressions that denotes the sets RUS, RS and R* respectively.

*Regular sets are closed under union, concatenation, and closure

Proof

- If L_1 and L_2 are regular, then there are regular expressions r_1 and r_2 denoting the languages L_1 and L_2 , respectively.
- By definition of RE "If r and s are regular expressions denoting the languages R and S respectively then (r + s), (rs), (r)* are regular expressions that denotes the sets RUS, RS and R* respectively"
- Therefore (r_1+r_2) , (r_1, r_2) and (r_1^*) are regular expressions denoting the languages $L_1 \cup L_2, L_1$. L_2 and L_1^*

The class of regular sets is closed under complementation. ie If L is a regular set over \sum , then L= \sum^* -L is a regular set

Proof

 $\operatorname{Suppose}$ that L is a regular over an alphabet Σ .

There is a DFA M=(Q, Σ , δ , q₀, F) accepting L

C3Design a DFA M' = $(Q, \Sigma, \delta, q_0, F')$, where F' = Q - F

Solventrate $L(M') = \sum^* - L$.

Hence, the complement of L is regular

Convert every final state into non-final, and every non-final state into a final state

Assumes q0 is a non-final state. If q0 is a final state, invert it.

- Regular sets are closed under intersection
- Proof

3 By DeMorgan's law:

$$L \cap M = \overline{(\overline{L} U \overline{M})}$$

Since Regular Sets are closed under union and complementation, they are also closed under intersection

- $A_L = DFA \text{ for } L = \{Q_L, \sum, q_L, F_L, \delta_L\}$
- $A_{M} = DFA \text{ for } M = \{Q_{M}, \sum, q_{M}, F_{M}, \delta_{M}\}$
- *Build $A_{L \cap M} = \{Q_L x Q_M, \sum, (q_L, q_M), F_L x F_M, \delta\}$ such that:
 - $\mathfrak{CS}\delta((p,q),a) = (\delta_L(p,a), \delta_M(q,a)), \text{ where p in } Q_L,$ and q in Q_M
- This construction ensures that a string w will be accepted if and only if w reaches an accepting state in both input DFAs.

Regular sets are closed under set difference

❖ If L is regular then L^R is also regular

New ε -NFA for L^R

Decision Properties of Regular Sets

Introduction

*Any "decision problem" looks like this

Membership Question

- ❖ Decision Problem: Given L, is w in L?
- ❖ Possible answers: Yes or No

Approach:

- 1. Build a DFA for L
- 2. Input w to the DFA
- 3. If the DFA ends in an accepting state, then yes; otherwise no.

Emptiness Test

- ❖ Decision Problem: Is L=Ø?
- Approach:
 - 1. Build a DFA for L
 - 2. From the start state, run a *reachability* test, which returns:
 - 1. <u>success</u>: if there is at least one final state that is reachable from the start state
 - 2. <u>failure</u>: otherwise
 - 3. L=Ø if and only if the reachability test fails

Finiteness

Decision Problem: Is L finite or infinite?

Approach:

- 1. Build DFA for L
- 2. Remove all states unreachable from the start state
- 3. Remove all states that cannot lead to any accepting state.
- 4. After removal, check for cycles in the resulting FA
- 5. L is finite if there are no cycles; otherwise it is infinite

Finiteness Test - Examples

Ex 1) Is the language of this DFA finite or infinite?

FINITE

Ex 2) Is the language of this DFA finite or infinite?

INFINITE

16

Summary

- Closure Properties of Regular Sets
- Decision Properties of Regular Sets

Test Your Knowledge

- Regular sets are closed under union, concatenation and kleene closure.
 - a) True
 - b) False
 - c) Depends on regular set
 - d) Can't say
- ❖ If L1 and L2 are regular sets then intersection of these two will be
 - a) Regular
 - b) Non Regular
 - c) Recursive
 - d) Non Recursive

Test Your Knowledge

- Reverse of a DFA can be formed by
 - a) using PDA
 - b) making final state as non-final
 - c) making final as starting state and starting state as final state
 - d) None of the mentioned
- \diamond Complement of $(a + b)^*$ will be
 - a) phi
 - b) null
 - c) a
 - d) b

Reference

*Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008