5.A Invariant Subspaces

Thursday 16 May 2024 14:47

definition: invariant subspace
let TEL(V). UKV is invariant under T
if TUEU HUEU
The is Twith a domain U

if U is invariant under Then The L(V)

example: a) {0}
b) \(\tag{c} \) \(\text{ker}(T) \)

d) Im (T)

proposition: V is finite dimensional, $T \in L(V)$, $\lambda \in F$ then λ is eigenvalue of T $\iff T - \lambda I$ is not injective $\iff T - \lambda I$ is not surjective $\iff T - \lambda I$ is not bijective proof: $T = \lambda V \iff (T - \lambda I)V = 0 \implies T - \lambda I$ not injective

operator injective $\implies SW$: extractive

corollary: TEL(V) has at most dim(V) distinct eigendus

definition', suppose $T \in L(V)$ and U < V is invariant under T the restriction operator $T|_{U} \in L(U)$ is $T|_{U}(u) := Tu$ for $u \in U$ the quotient operator $T/U \in L(V/U)$ is $(T/U)_{U}(V+U) := T_{V} + U$ veV