Modeling Conversion Using Hierarchical Interest Metrics

By Robyn Kwok, Samuel Appiah-Kubi, Bassim Eledath

Exploratory Data Analysis

Engagement score: weak indicator of conversion

 No correlation between categories with high engagement scores and categories with the most conversion

Depth of main interest is significant

 Users with very general (depth = 0) or very niche (2 < depth < 6) main interest had the highest conversion rates.

Data Processing

Aggregation

- Interest data is hierarchical in nature:
 - Aggregate to avoid curse of dimensionality
- Construct metrics to:
 - Account for loss of information after aggregation
 - Make inferences on the relationship between user interests and conversion

Figure: Hierarchical nature of interest data

Objectives

Main objective: <u>Inference</u>, not prediction Key Questions Answered:

- **1.** Magnitude of user interest

 Does a higher interest in favorite topic signify higher conversion rate?
- 2. Depth of user interest
 Do users with more niche interests have higher conversion rates?
- 3. Spread of user interest
 Are users who have multiple interests more likely to convert?
- 4. Preferential difference in interest

 How strongly in favor is the user for their
 main interest?

Feature Engineering - Constructing Metrics

Depth

Given that interests are structured in an heirachichal order, users display varying depths in their interests. Depth measures

Spread

A User's interests are varied in each main group due to subgroups. Spread measures how closely interests in a main category is distributed.

We model this as the proportionate interest of the User's favorite subgroup to the User's main group.

Difference

User interests are ranked in magnitudes. The differential score measures the magnitude of the difference between the top interest and the second most interest.

Results and Recommendations

Results

- Model fit: Both our logistic and random forest classifiers fit the data poorly (AUC ~ 0.5)
- **ANOVA** (p-val = 0.05):
 - Significant relationships:
 - Negative: Average depth, max proportionate interest (sub-group)
 - **Positive**: Differential interest, max proportionate interest (main group)
 - Insignificant relationships:
 - Centrality, max depth, deviation of interest
- **Correlation analysis**: Inconclusive, given proportionate interest does not signify anything about frequency.

Recommendations

- **Use frequency metrics**: In conjunction with interest metrics, frequency metrics will enable us to separate active vs inactive users, as this is a potential confounding factor. This will improve inference.
- Complex models: As the nature of data is hierarchical (high cardinality), for prediction, we recommend deep learning models. To correct for class imbalance we recommend algorithms such as SMOTE.
- Other metrics to consider: Besides frequency, other metrics such as device used, duration spent etc. can work well with user interests in modeling conversion.

Appendix - Random Forest Feature Importances

Appendix - Logistic Regression Results

Logit Regression Results

						====	
Dep. Variable: inAudience		nce No.	No. Observations:			96406	
Model: Logit		git Df F	Residual	s:	9	96395	
Method: MLE Date: Sat, 02 Nov 2019		ILE Df I	Model:		10		
		919 Pseu	Pseudo R-squ.:		0.002214		
Time:	18:29:		-Likelih	ood:	-75	70.5	
converged:	Tr	rue LL-1	LL-Null:		-7587.3		
		LLR	LLR p-value:			0.0002157	
=======================================							
					1.5	[0.025	0.975]
main_cat_val		3260	0.369	3.591		0.602	2.050
maxDepth	0.1	1439	0.342	0.420	0.674	-0.527	0.815
aveDepth	-7.1	1597	0.535	-13.374	0.000	-8.209	-6.110
maxCatVal	-20.7	7561	0.953	-21.789	0.000	-22.623	-18.889
sim_aveDepth_maxCatVal 15.5287		5287	1.853	8.380	0.000	11.897	19.161
sim_depthOfMaxCat_maxCatVal 3.752		7528	0.548	6.850	0.000	2.679	4.826
sim_maxDepth_maxCatVal -0.		5946	1.500	-0.396	0.692	-3.535	2.346
		1608	0.607	0.265	0.791	-1.030	1.351
difference_sub_cat 3.054		545	0.651	4.694	0.000	1.779	4.330
difference_main_cat 1.231		2313	0.673	1.830	0.067	-0.088	2.550
std_interest -1.154		1549	3.575	-0.323	0.747	-8.161	5.851

Appendix - Data Dictionary

```
levels = read.csv("explain.csv")
kable(levels, "latex", booktabs = T, linesep="") %>% kable_styling(position="center")
```

Variable.Name	Variable.Description
main_cat_val	main catergory value
\max Depth	The maximum depth found in a catergory for a user
aveDepth	The average depth found in a catergory for a user
maxCatVal	The maximum interest value in a category of a user
$sim_aveDepth_maxCatVal$	Product of the average depth and the maximum category value
$sim_depthOfMaxCat_maxCatVal$	Product of the depth of th maximum category and the maximum category value
Centrality_score	subgroups covered in the maximum proportional group for an individual
difference_sub_cat	the difference between the highest in a subcategory minus the second highest
difference_main_cat	the difference between the highest in a main category minus the second highest
$std_interest$	The standard deviation of proportionate interest of user

Appendix - Engagement Scores by Conversion Outcome

Appendix - Correlation Analysis

