DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/

Summary

Total Loss=

 $\sum_{i=1}^{N=3} \{(x_i, y_i)\} \sum_{i=1}^{N} \sum_{i=1}^{N} Loss_i(f(x_i, W), y_i) + \lambda R(W)$

def predict(image, W):

return(W*image)

	· · · · · · · · · · · · · · · · · · ·		
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Τ	-100(e_k
$-$ L $_{l}$ $-$	$=-log(\frac{1}{2})$	$\overline{\neg J}_{oS}$
	Z	_j=1 ^e j

Optimization

Analytic Gradient

$$W = [0.34, -1.11, 0.78, 0.12 \dots 0.3, 0.77]$$

$$dw = f(X, W)$$

$$\nabla f(X, W) = [\dots]$$

Gradient

dW: [-2.5, 0.6, 4.3, 0.5 ... 0, 0.3]

$$f(X, W)$$

$$\sum_{j \neq y_i}^{s} max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

Backpropogation

$$f(x, y, z) = (x + y) * z$$

The Goal

$$\frac{\partial F}{\partial x} \quad \frac{\partial F}{\partial y} \quad \frac{\partial F}{\partial z}$$

The Goal

$$\frac{\partial F}{\partial x} \quad \frac{\partial F}{\partial y} \quad \frac{\partial F}{\partial z}$$

Local Gradient ∂F

Local Gradient Output (F) $\frac{\partial L}{\partial F}$

W1_1 (Bird) -2

W1_2 (Bird) -1 f(X, W)

 $\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$

W2_1 (Car)

W2_2 (Car) -5

W1_2 (Bird) -1

W2_1 (Car)

W2_2 (Car) -5

f(X, W)

W1_2 (Bird) -1

f(X, W)

f(X, W)

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon)$$

Weights Gradient

W1_1 (Bird) -3

W2_1 (Car) 3

W2_2 (Car) 2

W1_2 (Bird) -2 For these weights, in our forward pass,

the Car score was -7.

The bird score was -8.

So in our classification, we guess Car. That isn't what we want (i.e., it's Bad).

Weights Gradient

W1_1 (Bird) -3

W2_1 (Car) 3

W2_2 (Car) 2

W1_2 (Bird) -2 For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

Weights

Gradient

Weights + (-1 * Gradient)

W1_1 (Bird)

-3

W2_1 (Car)

3

W2_2 (Car) -5

2

W1_2 (Bird)

-2

For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

Weights	Gradient	Weights + (-1 * Gradient)	
W1_1 (Bird) -2	-3	1	
W2_1 (Car) 1	3	-2	
W2_2 (Car) -5	2	-7	
W1_2 (Bird) -1	-2	1	

For these weights, in our forward pass,

the Car score was -7.

The **bird** score was **-8.**

Summary

- Computational Graphs
- Gradients & Partial Derivatives
- Backpropagation with a small example
- Next time: Matrix and vectorized backpropagation

