Exercise set 9 Topological Data Analysis, FS 23

Theory Recap

Definition 1 (Shifted homomorphism). Let \mathbb{U}, \mathbb{V} be persistence modules over \mathbb{R} , and let ϵ be any real number. A homomorphism of degree ϵ is a collection Φ of linear maps

$$\phi_a:U_a\to V_{a+\epsilon}$$

for all $a \in \mathbf{R}$, such that the diagram

$$U_{a} \xrightarrow{u_{a,a'}} U_{a'}$$

$$\downarrow \phi_{a} \qquad \downarrow \phi_{a'}$$

$$V_{a+\epsilon} \xrightarrow{v_{a+\epsilon,a'+\epsilon}} V_{a'+\epsilon}$$

commutes whenever $a \leq a'$. We write

$$\operatorname{Hom}^{\epsilon}(\mathbb{U}, \mathbb{V}) = \{ \text{ homomorphisms } \mathbb{U} \to \mathbb{V} \text{ of degree } \epsilon \}$$

 $\operatorname{End}^{\epsilon}(\mathbb{V}) = \{ \text{ homomorphisms } \mathbb{V} \to \mathbb{V} \text{ of degree } \epsilon \}$

Composition gives a map

$$\operatorname{Hom}^{\epsilon_2}(\mathbb{V}, \mathbb{W}) \times \operatorname{Hom}^{\epsilon_1}(\mathbb{U}, \mathbb{V}) \to \operatorname{Hom}^{\epsilon_1 + \epsilon_2}(\mathbb{U}, \mathbb{W})$$

For $\epsilon \geqslant 0$, the *shift map*

$$1^{\epsilon}_{\mathbb{V}} \in \mathrm{End}^{\epsilon}(\mathbb{V})$$

is the degree- ϵ endomorphism given by the collection of maps $\{v_{a,a+\epsilon}\}$ from the persistence structure on \mathbb{V} . If Φ is a homomorphism $\mathbb{U} \to \mathbb{V}$ of any degree, then by definition

$$\Phi 1_{\mathbb{T}^{\mathsf{T}}}^{\epsilon} = 1_{\mathbb{V}}^{\epsilon} \Phi$$

for all $\epsilon \geqslant 0$.

Definition 2 (Interleaving). Let $\epsilon \geq 0$. Two persistence modules \mathbb{U}, \mathbb{V} are said to be ϵ -interleaved if there are maps

$$\Phi \in \operatorname{Hom}^{\epsilon}(\mathbb{U}, \mathbb{V}), \quad \Psi \in \operatorname{Hom}^{\epsilon}(\mathbb{V}, \mathbb{U})$$

such that

$$\Psi\Phi = 1^{2\epsilon}_{\mathbb{T}}, \quad \Phi\Psi = 1^{2\epsilon}_{\mathbb{V}}.$$

The interleaving distance between the two modules \mathbb{U}, \mathbb{V} is defined as

$$d_{I}(\mathbb{U}, \mathbb{V}) = \inf_{\epsilon} \left\{ \epsilon \, | \, \mathbb{U}, \mathbb{V} \, are \, \epsilon \, interleaved \right\}. \tag{1}$$

Exercise 1

Proposition 1. The interleaving distance is a pseudo-metric.

Proof. 1. Interleaving distance between isomorphic persistence modules is 0: It is sufficient to prove that the two persistence modules say \mathbb{U}, \mathbb{V} , are 0-interleaved. The commutativity of first two "square" diagrams (we refer to Definition 3 of SN17 for notation) follows directly from the fact that \mathbb{U}, \mathbb{V} are isomorphic. Since $f_a^{-1} \circ f_a = \mathrm{Id}_{U_a}$, $f_a \circ f_a^{-1} = \mathrm{Id}_{V_a}$, also the following diagrams commute and so \mathbb{U}, \mathbb{V} are 0-interleaved.

- 2. Interleaving distance is non-negative: by contradiction, $d_I(\mathbb{U}, \mathbb{V}) < 0$ implies that there exists an $\epsilon < 0$ such that the two persistance modules are ϵ -interleaved. But this cannot happen by definition since $\epsilon > 0$.
- 3. *Interleaving distance fulfils the triangle inequality:* we have to prove that for any three persistence modules $\mathbb{U}, \mathbb{V}, \mathbb{W}$ it holds that

$$d_{\mathrm{I}}(\mathbb{U},\mathbb{W})\leqslant d_{\mathrm{I}}(\mathbb{U},\mathbb{V})+d_{\mathrm{I}}(\mathbb{V},\mathbb{W})$$

Given a δ_1 -interleaving between \mathbb{U}, \mathbb{V} and a δ_2 -interleaving between \mathbb{V}, \mathbb{W} we can construct a $\delta = (\delta_1 + \delta_1)$ -interleaving between \mathbb{U}, \mathbb{W} by composing the following interleaving maps:

$$\mathbb{U} \xrightarrow{\Phi_1} \mathbb{V} \xrightarrow{\Phi_2} \mathbb{W}$$

$$\mathbb{U} \xleftarrow{\Psi_1} \mathbb{V} \xleftarrow{\Psi_2} \mathbb{W}$$

We have that $\Phi=\Phi_2\Phi_1$ and $\Psi=\Psi_1\Psi_2$ are interleaving maps, indeed

$$\begin{split} \Psi \Phi &= \Psi_1 \Psi_2 \Phi_2 \Phi_1 = \Psi_1 1_{\mathbb{V}}^{2\delta_2} \Phi_1 = \Psi_1 \Phi_1 1_{\mathbb{U}}^{2\delta_2} = 1_{\mathbb{U}}^{2\delta_1} 1_{\mathbb{U}}^{2\delta_2} = 1_{\mathbb{U}}^{2\delta} \\ \Phi \Psi &= \Phi_2 \Phi_1 \Psi_1 \Psi_2 = \Phi_2 1_{\mathbb{V}}^{2\delta_1} \Psi_2 = \Phi_2 \Psi_2 1_{\mathbb{W}}^{2\delta_1} = 1_{\mathbb{W}}^{2\delta_2} 1_{\mathbb{W}}^{2\delta_2} = 1_{\mathbb{W}}^{2\delta} \end{split}$$

Therefore

 $\inf\{\delta \mid \mathbb{U} \text{ and } \mathbb{W}, \delta\text{-interleaved }\} \leq \inf\{\delta \mid \mathbb{U} \text{ and } \mathbb{V}, \delta\text{-interleaved }\} + \inf\{\delta \mid \mathbb{V} \text{ and } \mathbb{W}, \delta\text{-interleaved }\}$

Remark 1. The interleaving distance is not a true metric because $d_I(\mathbb{U}, \mathbb{V}) = 0$ does not imply $\mathbb{U} \cong \mathbb{V}$ (the two "square" diagram do not commute both ways in general. In fact, two q-tame persistence modules have interleaving distance 0 if and only if their undecorated persistence diagrams are the same. This is a consequence of the isometry theorem (Theorem 9 of SN17).

Example 0-interleaved non isomorphic: Let \mathbb{U} be the all-0 module (the groups are trivial at all values a, i.e., $U_a=0$). \mathbb{V} is the module that has $V_a=0$ for all a except for some single $a'\in R$ it has $V_{a'}=\mathbb{Z}_2$. Note that these are NOT 0-interleaved. However, for any epsilon00 they are epsilon-interleaved, and since the interleaving distance is an infimum, their interleaving distance is 0.

Exercise 2

Lemma 1. Let X be a triangulable topological space and let \mathcal{F}, \mathcal{G} be filtrations over \mathbb{R} of the two tame functions $f, g: X \to \mathbb{R}$. Then it holds that \mathcal{F}, \mathcal{G} are $||f - g||_{\infty}$ -interleaved.

Proof. Let $\epsilon = ||f - g||_{\infty}$.

Why do the diagonal inclusions hold (consider the case $f^{-1}(-\infty,t]$ and $g^{-1}(-\infty,t+\epsilon]$, the others are "similar": let $x \in X$ be any element of X. Then, if $x \in f^{-1}(-\infty,t]$, we have that $f(x) \leq t$. Since the infinity norm of f-g is ϵ , we have that $g(x) \leq t + \epsilon$. Thus $x \in g^{-1}(\infty,t+\epsilon]$.

$$f^{-1}(-\infty,t] \longrightarrow f^{-1}(-\infty,t+\epsilon] \longrightarrow f^{-1}(-\infty,t+2\epsilon]$$

$$g^{-1}(-\infty,t] \longrightarrow g^{-1}(-\infty,t+\epsilon] \longrightarrow g^{-1}(-\infty,t+2\epsilon].$$

Since f,g are tame functions, then the persistence modules of the filtrations \mathcal{F},\mathcal{G} are q-tame. We compute so

$$\begin{aligned} \mathrm{d_b}\left(\mathrm{Dgm_p}\left(\mathcal{F}_\mathrm{f}\right),\mathrm{Dgm_p}\left(\mathcal{F}_\mathrm{g}\right)\right) &= \mathrm{d_I}\left(\mathrm{H_p}\mathcal{F},\mathrm{H_p}\mathcal{G}\right) \quad \text{(Theorem 9 SN17)} \\ &\leq \mathrm{d_I}(\mathcal{F},\mathcal{G}) \quad \text{(Observation 7 SN17)} \\ &< \|f-g\|_{\infty} \quad \text{(Lemma 1)} \end{aligned}$$

Exercise 3

By Definition 2 (see (1)), it is enough to prove that the two persistence modules \mathbb{U} and \mathbb{V} are ϵ -interleaved with $\epsilon = \max\{\frac{x-w}{2}, \frac{z-y}{2}\}$. The following two diagrams

commutes for any a, a', ϵ if $\phi_a, \phi_{a'}, \psi_a, \psi_{a'}$ are the zero maps. So let's focus the attention on the remaining two diagrams:

Let's assume $\epsilon = \max\{\frac{x-w}{2}, \frac{z-y}{2}\} = \frac{z-y}{2}$.

- Case a=y For the rightmost diagram, since $a+2\epsilon=z$, $v_{a,a+2\epsilon}=v_{y,z}$ is the zero map. Then the diagram commutes if $\psi_a=\psi_y, \phi_{a+\epsilon}=\phi_{\frac{z+y}{2}}$ are the zero map. For the leftmost diagram, we consider the two cases $y\geq w$ and y< w. If $y\geq w$ then, since $z\geq y+x-w$, we get $z\geq x$ and so $u_{a,a+2\epsilon}=u_{y,z}$ is the zero map. If instead y< w, then again $u_{a,a+2\epsilon}=u_{y,z}$ is the zero map. Then the diagram commutes when $\phi_a=\phi_y, \psi_{a+\epsilon}=\psi_{\frac{z+y}{2}}$ are both the zero map, both if $y\geq w$ and y< w.
- Case a < y Since a < y, $v_{a,a+2\epsilon} = v_{y,z}$ is the zero map and so the rightmost diagrams commutes if $\psi_a, \phi_{a+\epsilon}$ are both the zero map. Then, by considering the three cases a < y < w, a < w < y and $w \le a < y$ separately and recalling that we are assuming $\max\{\frac{x-w}{2},\frac{z-y}{2}\}=\frac{z-y}{2}$, it's easy to check that also the leftmost diagram commutes if $\phi_a, \psi_{a+\epsilon}$ are both the zero map.
- Case a>y Since $a+2\epsilon=a+z-y>z$, $v_{a,a+2\epsilon}=v_{y,a+2\epsilon}$ is the zero map and so the rightmost diagrams commutes if $\psi_a,\phi_{a+\epsilon}$ are both the zero map. By considering the three cases $w\leq y< a,\,y< w< a$ and y< a< w separately and recalling that we are assuming $\max\{\frac{x-w}{2},\frac{z-y}{2}\}=\frac{z-y}{2}$, it's easy to check that also the leftmost diagram commutes if $\phi_a,\psi_{a+\epsilon}$ are both the zero map.

We can reason analogously if $\epsilon = \max\{\frac{x-w}{2}, \frac{z-y}{2}\} = \frac{x-w}{2}$. Thus the two persistence modules $\mathbb U$ and $\mathbb V$ are ϵ -interleaved with $\epsilon = \max\{\frac{x-w}{2}, \frac{z-y}{2}\}$.