15/1/2020 Lecture 3 MAP De Coding
TIL Dewang
Minimum distance) of a block Gode
Annous cements
D Toma 10:30 am Tutorial
1 Tomo 10:30 am Tutorial (16th Jan)
3 Assignment 2 (graded) - Keleased
on 16th Jan, Due on 22nd Jan, Discussion will be on 23rd Jan
Discussion will be on 23rd Jan
Assignment 2 will be on linear Codes
Main material selicited to solve to
assignment will be breved on Wednesday).
Block Codes (n - Blocklength ox length of the Lode).
M - No. of Code words in H. Gode
r 1 code word is no no trole over to
M- No. of Codewords is the Code. Each codeword is an n-typle over the Code alphabet F.
Decodur D: Fn -> C.

The schanging the summators.
$$y = c \in C$$
 $y : A(y) \neq c$

$$z = \sum_{y \in C} P_{x}(y) \neq c$$

$$z = \sum_{y \in C} P_{x}(y) = \sum_{y \in C} P_{x}(y) \neq c$$

$$z = \sum_{y \in C} P_{x}(y)$$

Examples of Codes.

(1) n-fold repetition. -> (n, 2, n) 2) Simple parity check -> (n, 2ⁿ⁻¹, 2) (3) (7,4) Hamming Gode.→ (7,2⁴,3) -> Minimum distance of a Code determines the exrox detection Capability & errors Correction Eapability. Consider a (n, M, d) block code. C Claim: There is a decoder of for the Gode C which can detect (d-1) errors. Proof. D(y)= J y if y e C.
Error otterwise.

Error Correction
Consider a (n, M, d) block Code C.
claims There is a decoder for C. that
Correcte upto $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.
Proofe Decoder is minimum distance decoder.
D(y): arg min d4(y, c).
Las = largest integer less than or equal to a.
$B(c_i, \lfloor \frac{d_i}{2} \rfloor)$ $B(c_i, \lfloor \frac{d_i}{2} \rfloor)$ $B(c_i, \lfloor \frac{d_i}{2} \rfloor)$
Ball that we are
drawing around each codeword is a
B(S, t) = & y e f": dH(y, S) \ t
Ball that we are drawing around each codeword is a Hamming ball. B(S,t) = d y ∈ Fn: dH(y,S) ≤ the

$$d_{H}\left(\underline{C}; , \underline{C}j\right) \geq d$$

$$\underline{y} \in B(\underline{C}; , \underline{L}\underline{d}; \underline{J})$$

$$d_{H}\left(\underline{y}, \underline{C};\right) \leq \underline{L}\underline{d}-\underline{J}$$

$$d_{H}\left(\underline{y}, \underline{C};\right) \leq d_{H}(\underline{y}, \underline{C};\right) + d_{H}(\underline{y}, \underline{C};\right) + d_{H}(\underline{y}, \underline{C};\right)$$

$$d_{H}\left(\underline{y}, \underline{C};\right) \geq d - \underline{L}\underline{J}$$

$$\underline{y} \notin B(\underline{C};, \underline{L}\underline{d}-\underline{J})$$

$$\underline{y} \notin B(\underline{C};, \underline{L}\underline{d}-\underline{J})$$
All the Hamming balls are disjoint.