

AMENDMENTS TO THE CLAIMS

1. (Currently amended) An aminoquinoxaline compound of the following formula (1a)

[Chemical Formula 1]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be

substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X¹ represents -NH-R⁵-NH₂ [[or -NH-R⁶]];

R⁵ represents a C₁-C₁₀ alkylene group, a C(O)CH₂, —CH₂C(O), a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

—R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or

a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.

2. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) independently represent a group of the following formula (2)
[Chemical Formula 2]

wherein R⁷-R¹¹ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₄ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₄ cyanoalkyl group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a

C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

3. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) independently represent a group of the following formula (3)

[Chemical Formula 3]

wherein R¹²-R¹⁸ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group.

4. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) independently represent a group of the following formula (4)

[Chemical Formula 4]

wherein R¹⁹-R²¹ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

A¹ represents NH, O or S.

5. (Currently amended) The aminoquinoxaline compound according to claim 1, wherein R¹ and R² in the above formula (1) represent a group of the following formula (5)

[Chemical Formula 5]

wherein R²² represents a halogen atom or a cyano group, R²³-R²⁶ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

6. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (6)

[Chemical Formula 6]

wherein R²⁷-R³⁰ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

7. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (7)

[Chemical Formula 7]

wherein R³¹-R³² independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

W¹ represents NH, O or S.

8. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (8)

~~[Chemical Formula 8]~~

wherein R³³-R³⁴ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group; and

Q¹ represents NH, O or S.

9. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R⁵ in the formula (1) represents a group of the following formula (9)

~~[Chemical Formula 9]~~

wherein R³⁵-R⁴⁰ independently represent, each substituted at an arbitrary position on the ring of the formula, a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

10. **(Cancelled)**

11. **(Currently amended)** The aminoquinoxaline compound according to claim 1, wherein R⁶ in the formula (1) represents a group An aminoquinoxaline compound of the following formula (11)

[Chemical Formula 11]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{46} – R^{48} independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

W^2 represents NH, O or S.

12. (Currently amended) The aminoquinoxaline compound according to claim 1, wherein R⁶ in the formula (1) represents a group An aminoquinoxaline compound of the following formula (12)

[Chemical Formula 12]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y.

furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond:

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

R⁴⁹-R⁵¹ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

Q² represents NH, O or S.

13. (Currently amended) The aminoquinoxaline compound according to claim 1, wherein R⁶ in the formula (1) represents a group An aminoquinoxaline compound of the following formula (13)

[Chemical Formula 13]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

R⁵²-R⁵⁸ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a

C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different.

14. (Currently amended) The aminoquinoxaline compound according to claim 1, wherein the group formed by bonding R¹ and R² through a single bond in the formula (1) is represented by the An aminoquinoxaline compound of the following formula (14)

[Chemical Formula 14]

wherein R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group

which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶:

R⁵ represents a C₁-C₁₀ alkylene group, a -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl

group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

A² are each [[CN]] C or N,

R⁵⁹-R⁶⁶ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different, provided that when A² represents N, R⁶² and R⁶³ are both non-existent.

15. (Currently amended) An aminoquinoxaline compound of the following formula (1b),
-[Chemical Formula 15]

wherein R¹ and R² join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-, -OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-, -CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-, -OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-, -N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-, -CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-, -CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a furyl group which may be substituted with Y, or a condensed heteroaryl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or

a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different.

16. (Currently amended) An aminoquinoxaline compound of the following formula (1c),
[Chemical Formula 16]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,
-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,
-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,
-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,
-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,
-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,
-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,
-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,
-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,
-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom
bonded to a carbon atom of these groups may be substituted with Y, and R' represents a
hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a
phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z,
a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted
with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be
substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl
group which may be substituted with Z;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring
which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a
divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which
may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole

ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different.

17. (Currently amended) An aminoquinoxaline compound of the following formula (1d),

[Chemical Formula 17]

wherein R^{1'} and R^{2'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,
-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,
-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,
-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,
-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,
-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,
-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,
-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,
-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,
-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom
bonded to a carbon atom of these groups may be substituted with Y, and R' represents a
hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a
phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z,
a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted
with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be
substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl
group which may be substituted with Z, and R^{3'} and R^{4'} join together to form

-CH₂CH₂CH₂-, -CH₂CH₂O-, -OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-,
-SCH₂CH₂-, -CH₂SCH₂-, -CH₂CH₂N(R')-, -N(R')CH₂CH₂-,
-CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-,
-CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-, -OCH₂CH₂O-, -SCH₂CH₂S-,
-OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-, -OCH=CH-,
-CH=CHO-, -SCH=CH-, -CH=CHS-, -N(R')CH=CH-, -CH=CHN(R')-,
-OCH=N-, -N=CHO-, -SCH=N-, -N=CHS-, -N(R')CH=N-, -N=CHN(R')-,
-N(R')N=CH-, -CH=N(R')N-, -CH=CHCH=CH-, -OCH₂CH=CH-,
-CH=CHCH₂O-, -N=CHCH=CH-, -CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-,
or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thiienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z;

X¹ represents -NH-R⁵-NH₂ or -NH-R⁶;

R⁵ represents a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R^6 represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thiienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thiienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thiienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different.

18. (Currently amended) The aminoquinoxaline compound according to claim 15, wherein the group formed by joining R¹ and R² together is of the following formula (15)

[Chemical Formula 18]

wherein A³ represents O or S, and R⁶⁷-R⁷⁰ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

19. **(Currently amended)** The aminoquinoxaline compound according to claim 16, wherein the group formed by joining R^{3'} and R^{4'} together is of the following formula (16)

[Chemical Formula 19]

wherein A⁴ represents O or S, and R⁷¹-R⁷⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

20. **(Currently amended)** The aminoquinoxaline compound according to claim 16, wherein the group formed by joining R^{3'} and R^{4'} together is of the following formula (17)

[Chemical Formula 20]

wherein R⁷⁵ and R⁷⁶ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thienyl group which may be substituted with Z; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group.

21. **(Currently amended)** A polyaminoquinoxaline compound having recurring units of the following formula (18a) obtained by polymerizing the monomer defined in claim 1,

[Chemical Formula 21]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl,

pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X^2 represents $-NH-R^{77}-NH-$ or $-NH-R^{78}-$;

R^{77} and R^{78} independently represent a C_1-C_{10} alkylene group, a $-C(O)CH_2-$, $-CH_2C(O)-$, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent furan ring which may be substituted with Y or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1-C_{10} alkyl group, a C_1-C_{10} haloalkyl group, a C_1-C_{10} alkoxy group, a C_1-C_{10} cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C_1-C_{10} alkyl group, a C_1-C_{10} haloalkyl group, a C_1-C_{10} alkoxy group, a C_1-C_{10} cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrolyl group, a furyl group or a condensed heteroaryl group provided that if Z is two or more in number, Z may be the same or different; and

~~n is an integer of 2 or over~~ n is an integer of 2 or more.

22. (Currently amended) A polyaminoquinoxaline compound having recurring units of the following formula (18b) obtained by polymerizing the monomer defined in claim 15,

[Chemical Formula 22]

wherein R^{1'} and R^{2'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,
-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,
-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,
-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,
-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,
-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,
-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,
-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,
-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,
-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted

with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z;

R³ and R⁴ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R³ and R⁴ are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X² represents -NH-R⁷⁷-NH- or -NH-R⁷⁸-;

R⁷⁷ and R⁷⁸ independently represent a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl

group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different; and

~~n is an integer of 2 or over~~ n is an integer of 2 or more.

23. (Currently amended) A polyaminoquinoxaline compound having recurring units of the following formula (18c) obtained by polymerizing the monomer defined in claim 16,

[Chemical Formula 23]

wherein R¹ and R² independently represent a hydrogen atom, a hydroxyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl

group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R¹ and R² are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

R^{3'} and R^{4'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,
-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,
-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,
-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,
-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,
-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,
-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,
-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,
-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,
-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z, or a condensed heteroaryl group which may be substituted with Z;

X² represents -NH-R⁷⁷-NH- or -NH-R⁷⁸-;

R⁷⁷ and R⁷⁸ independently represent a C₁-C₁₀ alkylene group, -C(O)CH₂-, -CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different; and

~~n is an integer of 2 or over~~ n is an integer of 2 or more.

24. (Currently amended) A polyaminoquinoxaline compound having recurring units of the following formula (18d) obtained by polymerizing the monomer defined in claim 17,

-[Chemical Formula 24]

wherein R^{1'} and R^{2'} join together to form -CH₂CH₂CH₂-, -CH₂CH₂O-,
-OCH₂CH₂-, -CH₂OCH₂-, -OCH₂O-, -CH₂CH₂S-, -SCH₂CH₂-, -CH₂SCH₂-,
-CH₂CH₂N(R')-, -N(R')CH₂CH₂-, -CH₂N(R')CH₂-, -CH₂CH₂CH₂CH₂-,
-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-, -CH₂CH₂OCH₂-, -CH₂OCH₂CH₂-, -CH₂OCH₂O-,
-OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-, -SCH₂CH₂O-, -CH₂CH=CH-,
-CH=CHCH₂-, -OCH=CH-, -CH=CHO-, -SCH=CH-, -CH=CHS-,
-N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-, -N=CHO-, -SCH=N-,
-N=CHS-, -N(R')CH=N-, -N=CHN(R')-, -N(R')N=CH-, -CH=N(R')N-,
-CH=CHCH=CH-, -OCH₂CH=CH-, -CH=CHCH₂O-, -N=CHCH=CH-,
-CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-, or -CH=NCH=N- wherein a hydrogen atom
bonded to a carbon atom of these groups may be substituted with Y, and R' represents a
hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a
phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z,
a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted
with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be

substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z, and R^{3'} and R^{4'} join together to form

-CH₂CH₂CH₂-,-CH₂CH₂O-, -OCH₂CH₂-,-CH₂OCH₂-,-OCH₂O-, -CH₂CH₂S-,

-SCH₂CH₂-,-CH₂SCH₂-,-CH₂CH₂N(R')-, -N(R')CH₂CH₂-,-CH₂N(R')CH₂-,

-CH₂CH₂CH₂CH₂-,-CH₂CH₂CH₂O-, -OCH₂CH₂CH₂-,-CH₂CH₂OCH₂-,

-CH₂OCH₂CH₂-,-CH₂OCH₂O-, -OCH₂CH₂O-, -SCH₂CH₂S-, -OCH₂CH₂S-,

-SCH₂CH₂O-, -CH₂CH=CH-, -CH=CHCH₂-,-OCH=CH-, -CH=CHO-,

-SCH=CH-, -CH=CHS-, -N(R')CH=CH-, -CH=CHN(R')-, -OCH=N-,

-N=CHO-, -SCH=N-, -N=CHS-, -N(R')CH=N-, -N=CHN(R')-,

-N(R')N=CH-, -CH=N(R')N-, -CH=CHCH=CH-, -OCH₂CH=CH-,

-CH=CHCH₂O-, -N=CHCH=CH-, -CH=CHCH=N-, -N=CHCH=N-, -N=CHN=CH-,

or -CH=NCH=N- wherein a hydrogen atom bonded to a carbon atom of these groups may be substituted with Y, and R' represents a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z;

X² represents -NH-R⁷⁷-NH- or -NH-R⁷⁸-;

R⁷⁷ and R⁷⁸ independently represent a C₁-C₁₀ alkylene group, -C(O)CH₂-,-CH₂C(O)-, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be

substituted with Y, a divalent pyrrole ring which may be substituted with Y, a divalent furan ring which may be substituted with Y or a condensed hetero ring which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thienyl group which may be substituted with Z, a pyrrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different; and

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group, provided that when Z are two or more in number, Z may be the same or different; and

~~n is an integer of 2 or over~~ n is an integer of 2 or more.

25. (Currently Amended) A film obtained by use of an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in claim 1 claim 21.

26. (Original) The film according to claim 25, wherein the film is prepared by spin coating, casting or vacuum deposition.

27. (Original) The film according to claim 25, wherein the film is obtained by compression molding.

28. (**Currently amended**) An electro chromic device made by use of an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in ~~claim 1~~ claim 21.

29. (**Currently amended**) A semiconductor device made by use of an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in ~~claim 1~~ claim 21.

30. (**Currently amended**) A p-type semiconductor obtained by oxidizing, with an oxidizing agent or through electrochemical doping, an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in ~~claim 1~~ claim 21.

31. (**Currently amended**) An n-type semiconductor obtained by reducing, with a reducing agent or through electrochemical doping, an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in ~~claim 1~~ claim 21.

32. (**Currently amended**) A solar cell made by use of ~~the p-type semiconductor defined in claim 30 and the n-type semiconductor defined in claim 31~~ a p-type semiconductor and an n-type semiconductor,

wherein the p-type semiconductor is obtained by oxidizing, with an oxidizing agent or through electrochemical doping, an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in claim 21, and

wherein the n-type semiconductor is obtained by reducing, with a reducing agent or through electrochemical doping, an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in claim 21.

33. **(Currently amended)** An organic electroluminescent device made by use of an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in ~~claim 1~~ claim 21.

34. **(Currently amended)** A non-linear organic material made by use of an aminoquinoxaline compound as defined in claim 1 or a polyaminoquinoxaline compound as defined in ~~claim 1~~ claim 21.

35. **(New)** A polyaminoquinoxaline compound having recurring units of the following formula (18a') obtained by polymerizing the monomer of claim 14,

wherein R^3 and R^4 independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, a C_1 - C_{10} alkyl group, a C_1 - C_{10} alkoxy group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thienyl group which may be substituted with Y, a pyrrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y provided that when R^3 and R^4 are, respectively, the above-defined phenyl, pyridyl, biphenyl, naphthyl, thienyl, pyrrolyl, furyl or condensed heteroaryl group, these groups may be joined through a single bond;

X^2 represents $-NH-R^5-NH_2$ or $-NH-R^6$;

R^5 represents a C_1 - C_{10} alkylene group, a $-C(O)CH_2-$, $-CH_2C(O)-$, a divalent benzene ring which may be substituted with Y, a divalent pyridine ring which may be substituted with Y, a divalent biphenyl group which may be substituted with Y, a divalent naphthalene ring which may be substituted with Y, a divalent thiophene ring which may be substituted with Y, a pyrrole

ring which may be substituted with Y, a furan ring which may be substituted with Y, or a condensed hetero ring which may be substituted with Y;

R⁶ represents a hydrogen atom, a C₁-C₁₀ alkyl group, an acetyl group, a phenyl group which may be substituted with Y, a pyridyl group which may be substituted with Y, a biphenyl group which may be substituted with Y, a naphthyl group which may be substituted with Y, a thiienyl group which may be substituted with Y, a pyrolyl group which may be substituted with Y, a furyl group which may be substituted with Y or a condensed heteroaryl group which may be substituted with Y;

Y represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a C₁-C₁₀ cyanoalkyl group, a phenyl group which may be substituted with Z, a pyridyl group which may be substituted with Z, a biphenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z, a thiienyl group which may be substituted with Z, a pyrolyl group which may be substituted with Z, a furyl group which may be substituted with Z or a condensed heteroaryl group which may be substituted with Z provided that if Y is two or more in number, Y may be the same or different;

A² are each C or N, R⁵⁹-R⁶⁶ independently represent a hydrogen atom, a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a phenyl group which may be substituted with Z, a naphthyl group which may be substituted with Z or a thiienyl group which may be substituted with Z, provided that when A² represents N, R⁶² and R⁶³ are both non-existent;

Z represents a halogen atom, a cyano group, a nitro group, an amino group, an epoxy group, a vinyl group, a C₁-C₁₀ alkyl group, a C₁-C₁₀ haloalkyl group, a C₁-C₁₀ alkoxy group, a

C₁-C₁₀ cyanoalkyl group, a phenyl group, a biphenyl group, a naphthyl group, a thienyl group, a pyrrolyl group, a furyl group or a condensed heteroaryl group, provided that if Z is two or more in number, Z may be the same or different; and
n is an integer of 2 or more.