A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

Stefan Langerman^{*1} and Andrew Winslow¹

Département d'Informatique, Université Libre de Bruxelles, ULB CP212, boulevard du Triomphe, 1050 Bruxelles, Belgium, {stefan.langerman,andrew.winslow}@ulb.ac.be

Polyominoes

Rectilinear simple polygons with unit edge lengths

Boundary words

Decide whether a polyomino has an isohedral tiling.

Conway's criterion

B, C, D, E palindromes

$$X = x_1 x_2 \dots x_n$$
 with $\overline{u} = d$ $\overline{r} = l$ $\widehat{X} = \overline{x_n} \overline{x_{n-1}} \dots \overline{x_1}$ with $\overline{d} = u$ $\overline{l} = r$

Isohedral boundary criteria

[Heesch, Kienzle 1963]

Isohedral boundary criteria

[Heesch, Kienzle 1963]

Isohedral boundary criteria

[Heesch, Kienzle 1963]

7 isohedral criteria

B, C, D, E palindromes A, B 90-dromes, C palindrome

7 isohedral criteria

Translation criterion

B, C, D, E palindromes A, B 90-dromes, C palindrome

B, C palindromes

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

7 isohedral criteria

Conway's criterion

B, C, D, E palindromes A, B 90-dromes, C palindrome

B, C palindromes

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

Decide whether a polyomino has an isohedral tiling.

(passes any of 7 criteria)

Prior work

(input polyomino with n sides)

Prior work

(input polyomino with n sides)

General case (all 7 criteria):

- [Keating, Vince 1999]: O(n¹⁸)
- Naive checking of criteria: O(n⁶)
- This work: O(n*log²(n))

Prior work

(input polyomino with n sides)

General case (all 7 criteria):

- [Keating, Vince 1999]: O(n¹⁸)
- Naive checking of criteria: O(n⁶)
- This work: O(n*log²(n))

Translation criterion only:

- [Gambini, Vuillon 2007]: O(n²)
- [Provençal 2008]: O(n*log³(n))
- [Brlek, Provençal, Fédou 2009]: O(n) (special cases)
- [W. 2015]: O(n)

Algorithm

Test the input boundary for each criterion.

Fast via several technical lemmas on words.

B, C, D, E palindromes A, B 90-dromes, C palindrome

B, C, D, E palindromes A, B 90-dromes, C palindrome

A, C palindromes $\Theta^{\circ} - \Phi^{\circ} = \pm 90^{\circ}$

$$O(n)$$
 $O(n*log^2(n))$ $O(n)$ $O(n)$ $O(n*log^2(n))$ total time

$$O(n*log(n))$$
 $O(n)$ $O(n*log(n))$ $O(n*log(n))$

Theorem: O(n*log²(n))-time algorithm for deciding if a polyomino tiles the plane isohedrally.

Theorem: O(n*log²(n))-time algorithm for deciding if a polyomino tiles the plane isohedrally.

O(n)-time algorithm?

Theorem: O(n*log²(n))-time algorithm for deciding if a polyomino tiles the plane isohedrally.

O(n)-time algorithm?

Enumeration of tilings in O(n*log2(n) + t) time?

Theorem: O(n*log²(n))-time algorithm for deciding if a polyomino tiles the plane isohedrally.

O(n)-time algorithm?

Enumeration of tilings in O(n*log2(n) + t) time?

Extend inputs to polygons?

Theorem: O(n*log²(n))-time algorithm for deciding if a polyomino tiles the plane isohedrally.

O(n)-time algorithm?

Enumeration of tilings in O(n*log2(n) + t) time?

Extend inputs to polygons?

Decide whether a polyomino has a ≤k-isohedral tiling.

Decide whether a polyomino has a ≤k-isohedral tiling.

Algorithm

Check every fundamental domain of size \leq k*8 for translation criterion.

Decide whether a polyomino has a ≤k-isohedral tiling.

Algorithm

Check every fundamental domain no(k)-time of size ≤ k*8 for translation criterion.

Is there an f(k)n^{O(1)}-time algorithm?

50-year-old Problem

Decide whether a polyomino has a ≤k isohedral tiling.

Algorithm

O(k) time

Is there an f(k)n^{O(1)}-time algorithm?

A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

Stefan Langerman*1 and Andrew Winslow¹

Département d'Informatique, Université Libre de Bruxelles, ULB CP212, boulevard du Triomphe, 1050 Bruxelles, Belgium, {stefan.langerman,andrew.winslow}@ulb.ac.be