A

Air University (Mid-Term Examination: Fall 2022)

Subject: Data Structures and Algorithms Lab Total Marks: 50

Course Code: CS-216L Date: Class: BS-CYS Time:

Semester: III Duration: 2 Hours

Section: A FM Name: Mr. Hassan Mazhar

HoD Signatures: _____ FM Signatures: ____

Note:

- All questions must be attempted.
- This examination carries 15% weight towards the final grade.
- Return the question paper with the answer sheet

	Q. No. 1 (CLO 1)		arks
a	$\label{eq:continuous_series} \begin{array}{ll} & & & \text{int } n = si\\ \\ & \text{void reverseArray(int arr[], int } n) \ \{ & & & \\ \\ & \text{for (int } i = 0; \ i < n \slash 2; \ i + +) \ \{ & & \\ \\ & \text{int temp} = \text{arr[i]}; & & & \\ \\ & & \text{for (int } i \end{tabular}$	e where indicated and = {1, 2, 3, 4, 5}; zeof(arr) / sizeof(arr[0]); array(arr, n); "Reversed Array: "; = 0; i < n; i++) { < arr[i] << " "; endl;	
b	Write a C++ function that calculates the Fibonacci series up to the nth term. Calculate Time complexity as well		
c	Implement a function to find the maximum element in an array. Calculate Time Complexity.		
	Q. No. 2 (CLO 2)		arks
a	Scenario: You are part of a team developing a basic management system for a library. The library needs various data structures to handle operations for books, records, and		

	users. Choose the most suitable data structures for the following tasks and implement them to meet the system's requirements.	
	a. Library Book Records Management: The library has numerous book records, each with a unique ID. You need to design and implement a system that:	
	 Allows adding a new book record at the beginning and end of the collection. Supports deleting a book record from a specified position. Can display all book records efficiently. 	
	Task: Choose and implement the most suitable data structure for managing book records, ensuring that it meets the specified requirements.	
	•	
	b. User Borrowing History Management: The system also needs to manage the borrowing history of users. It should be able to:	
b	 Add a new user record at a specified position. Delete a user record from a given position. Display the list of users in both forward and reverse order. 	10
	Task: Select and implement a data structure that best meets these requirements for managing user records.	
	 c. Checkout Request Processing: To handle book checkout requests in the library, you need a structure that: Allows adding a new checkout request. Supports removing the most recent checkout request. 	
С	 Displays all current checkout requests. Task: Identify and implement the data structure that would be most effective for processing these checkout requests. 	6
	Q. No. 3 (CLO 3)	20 Marks
	You are tasked with designing a Customer Service Queue for a tech support center. Customers are served on a first-come , first-served basis. Implement a Queue using both an array-based and a linked list-based approach to handle the following operations:	
a	 Add a customer to the queue: When a new customer arrives, their name is added to the queue. Serve a customer: When a customer is served, they are removed from the queue. Display the queue: Show the current list of customers in the queue. 	20

Requirements:

- Implement the **array-based queue** with the following constraints:
 - The maximum number of customers that can be in the queue at any given time is 5.
 - o If a customer tries to join the queue when it's full, print a message indicating that the queue is full.
- Implement the **linked list-based queue** with the following constraints:
 - o There is no fixed size limit for the queue.
 - o Customers can be dynamically added and removed as needed.

Marking Scheme:

- $\bullet\,$ Array-based implementation (Basic operations: enqueue, dequeue, display) $-\,5\,$ Marks
- Linked list-based implementation (Basic operations: enqueue, dequeue, display)
 10 Marks
- VIP customer prioritization in both implementations 5 Marks

****** End of Question Paper ********