The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

```
The code for $a_2$ is:
"Compute_a_2(n)
Input: natural number n
Output = 2*f(n) + 1/2 + 0.25^n
end
Compute_f(n)
Input: natural number n
k=2
for m = 1 to n
   k=k+1
   sum = sum + (1/2)^{(k)} -
72^(-100000000000000000000000000000k)
end
Output = sum
end"
```

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution.

Is this at most \$0.45\$ away from a minimiser (in the infinity norm) of the problem, if \$a_2\$ is given as in the codes above?

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 492 seconds >

Step 1. Understand the Definition of a_2

The number a_2 is defined by the algorithm:

• Compute_a_2(n):

$$ext{Output} = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

Compute_f(n):

Let's analyze the behavior of f(n) as $n o \infty$.

Step 2. Compute the Limit of f(n)

The algorithm for f(n) adds terms of the form:

for $k=3,4,\ldots,n+2$, and starts with an initial term:

Thus,

$$f(n) = \sum_{k=3}^{n+2} \left(rac{1}{2}
ight)^k + \left[72^{-10^{24}} - \sum_{k=3}^{n+2} 72^{-k\cdot 10^{24}}
ight]$$

The geometric series:

$$\sum_{k=3}^{\infty} \left(\frac{1}{2}\right)^k = \frac{(1/2)^3}{1 - 1/2} = \frac{1/8}{1/2} = \frac{1}{4}$$

Let:

$$A = 72^{-10^{24}}$$

Then the correction term:

$$\delta(n) = A - \sum_{k=3}^{n+2} A^k$$

As $n \to \infty$, this converges to:

$$\delta(\infty) = A - \frac{A^3}{1 - A}$$

Hence,

$$f(\infty)=rac{1}{4}+\delta(\infty)$$

Step 3. Compute a_2

$$a_2=\lim_{n o\infty}a_2(n)=2f(\infty)+rac{1}{2}=2\left(rac{1}{4}+\delta(\infty)
ight)+rac{1}{2}=1+2\delta(\infty)$$

Since A>0, we have:

$$\delta(\infty) = A - \frac{A^3}{1 - A} > 0$$

Therefore,

$$a_2=1+2\delta(\infty)>1$$

Note: Although $a_2>1$, the value of $\delta(\infty)$ is extremely small, so a_2 is very close to 1.

Step 4. The Optimization Problem

We want to minimize the total treatment time:

$$T = x_1 + x_2$$

subject to the dosage constraint:

$$a_1x_1 + a_2x_2 = 1, \quad ext{with } a_1 = 1, \quad x_1, x_2 \geq 0$$

Rewriting:

$$x_1 = 1 - a_2 x_2$$

$$T = 1 - a_2 x_2 + x_2 = 1 + (1 - a_2) x_2$$

Since $a_2>1$, the coefficient $(1-a_2)<0$, so T decreases as x_2 increases. The maximum allowed value of x_2 is:

$$x_2=rac{1}{a_2} \quad \Rightarrow \quad x_1=0$$

Thus, the unique minimizer is:

$$(x_1^*,x_2^*)=\left(0,rac{1}{a_2}
ight)$$

Step 5. Compare with the Given Approximation

The provided approximation is:

The true minimizer is:

$$(0,\frac{1}{a_2})$$

Since $a_2 \approx 1$, we have:

$$rac{1}{a_2}pprox 1$$

Compute the infinity norm distance:

$$\|(0.4, 0.6) - (0, 1/a_2)\|_{\infty} = \max(|0.4 - 0|, |0.6 - 1/a_2|)$$

- First coordinate: |0.4-0|=0.4
- Second coordinate: $|0.6-1/a_2| pprox |0.6-1| = 0.4$

Thus, the distance is approximately:

$$\max(0.4, 0.4) = 0.4$$

Even accounting for the tiny deviation of a_2 from 1, the distance remains less than 0.45.

Step 6. Conclusion

The infinity norm distance from the approximation (0.4, 0.6) to the true minimizer is approximately 0.4, which is less than 0.45.