SPRING 2016 HUNTER COLLEGE STAT 707 General Linear Model II Final Exam

Last Name: _______

First Name: ______

May 23, 2017

Instructions

- There are 4 questions, each question is between 5-6 points. The maximal score is 22 points. A perfect score is **20** points.
- There are two versions of Question 2, 3 with different points. Please choice one version and only one to answer.
- Show all work. You will receive partial credit for partially completed problems.
- You may use any references.

Q1. Regression (5pt).

Consider a hierarchical linear model without random effects.

$$Y_{ij} = \beta_{0j} + \beta_{1j}x_{ij} + R_{ij},$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01}z_{j},$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11}z_{j},$$

$$R_{ij} \sim N(0, \sigma^{2}),$$

where $i=0,1,2,\ j=1,2,3$. Note here the index i starts from 0. The level-2 explanatory variable z_j is the observation of Y_{ij} when i=0. Say, $z_j=y_{0j}$. Additionally, we have $x_{0j}=0$. Denote $\gamma=(\gamma_{00},\gamma_{01},\gamma_{10},\gamma_{11})$. Suppose that we have two maximum likelihood estimates of γ , one is $\check{\gamma}$, where the estimation is based on the full data set $\{y_{ij},z_j=y_{0j},x_{ij}\}_{i=0,1,2,j=1,2,3}$; the other is $\check{\gamma}$, where the estimation is based on the partial data set without the baseline data points $\{y_{ij},z_j=y_{0j},x_{ij}\}_{i=1,2,j=1,2,3}$.

- (1) Show $\mathbb{E}[\tilde{\gamma}] = \mathbb{E}[\tilde{\gamma}] = \gamma$, say, the MLEs based on the full data set and based on the partial data set are both unbiased.
- (2) Suppose that $y_{01} = 20$, $y_{02} = 24$, $y_{03} = 27$, and $x_{1j} = 1$, $x_{2j} = 2$. Numerically show that $var[\tilde{\gamma}] < var[\tilde{\gamma}]$

Hint: R functions: transpose of A: t(A); inverse of A: solve(A); matrix multiplication: A %*% B.

Q2. Multilevel modeling: GLMM and GEE.

Please choose only one question from 2-A (5 pts) and 2-B (6 pts). Circle your option.

The table below shows a data set of time of half marathon of 6 amateur athletes. These athletes belong to one of two running clubs during one running event.

Athlete	Age (yr)	Club	Time (min)
1	38	0	95
1	40	0	94
1	43	1	93
2	53	1	96
2	55	1	98
2	56	1	91
2	58	1	93
3	37	1	83
3	40	1	82
3	42	0	82
4	41	0	91
4	45	1	94
4	46	0	99
5	54	1	105
5	58	1	111
6	57	1	90
6	60	1	89
6	62	1	95

Apply GLMM with Gaussian family and identity link to this data set to fit two models:

 $Model 1: log(Time) \sim Club + log(Age) + (1|Athlete)$

 $Model \ 2: log(Time) \sim log(Age) + (1|Athlete)$

Apply GEE with Gaussian family and identity link to this data set to fit two models:

Model 3: $log(Time) \sim Club + log(Age)$

Model 4: $log(Time) \sim log(Age)$

where the correlation matrix structure is exchangeable.

Report the estimates of these models. Briefly explain your estimations.

- 2-A. Additionally, test the significance of factor "club" by using either t-test or deviance test.
- **2-B.** Additionally, test the significance of factor "club" by using both t-test and deviance test.

Q3. Spatial data analysis: Kriging.

Please **choose only one** question from 3-A (5 pts) and 3-B (6 pts). Circle your option.

Consider a 1-D Kriging regression. There are three observations along a line. The locations are x1 = 0, $x_2 = 3$, $x_3 = 10$. The coal qualities at these three locations are $z_1 = 7$, $z_2 = 6$, $z_3 = 10$. Find the Kriging prediction of coal quality \hat{z}_0 at location $x_0 = 4$.

Hint: $\widehat{z}_0 = \sum_{i=1}^3 \lambda_i z_i$. Denote the semivariogram between point i and point j as γ_{ij} . The semivariograms in the linear system for solving λ_i 's are from fitted relation between semivariogram γ and distance d. Say, $\gamma_{ij} = \gamma(d_{ij})$, γ a function of d.

- **3-A.** Use $\gamma = 1 + 2\sqrt{d}$ to find the Kriging prediction. Note, when d = 0, it follows that $\gamma = 1$. Find the Kriging estimation based on this $\gamma \sim d$ relation.
- **3-B.** Suppose the relation between γ and d is $\gamma = 1 + k\sqrt{d}$, where k is a parameter. Determine k by using least-squares fitting. Find the Kriging estimation based on your fitted $\gamma \sim d$ relation. Hint: Run a least-squares fitting without intercept between $\gamma 1$ and \sqrt{d} .

Q4. Observational study: Propensity score matching (5pt).

There are twenty participants who are assigned to either control group (z = 0) or treatment group (z = 1), and the observed covariates include Age and Family history of disease.

Calculate the propensity scores, which are the conditional probability given vectors of observed covariates. Make a plot of Propensity score versus Group.

ID	Age	Family history of disease	Group	ID	Age	Family history of disease	Group
1	≤ 30	N	С	11	≤ 30	Y	Τ
2	≤ 30	$\mathbf N$	\mathbf{C}	12	30 - 50	$\mathbf N$	С
3	≤ 30	$\mathbf N$	$^{\mathrm{C}}$	13	30 - 50	$\mathbf N$	С
4	≤ 30	${f N}$	\mathbf{C}	14	30 - 50	Y	T
5	≤ 30	${f N}$	\mathbf{C}	15	30 - 50	Y	T
6	≤ 30	${f N}$	Y	16	30 - 50	Y	T
7	≤ 30	${f N}$	Y	17	30 - 50	\mathbf{Y}	${ m T}$
8	≤ 30	Y	\mathbf{C}	18	≥ 50	\mathbf{Y}	С
9	≤ 30	Y	${ m T}$	19	≥ 50	\mathbf{Y}	${ m T}$
_10	≤ 30	Y	${ m T}$	20	≥ 50	Y	Т

Please list statistical topics which you are interested in or which are useful to you, especially which you have not learned from STAT 703, 706, $\&$ 707.
End of the final exam of Stat 707 (Instructor: Jiangtao Gou)