Se se aumentar a resistància dum circuito ressonante RLC:

a)	a	frequência de ressonância diminui	m
		sinal de saída sofre uma desfasagem,	
c)	ą	gama de frequências de saida estreita-se	H
d)	a	gama de frequência de saída alarga-se	M

NOTA:

Sabe-se que
$$Q = \frac{\omega L}{R} = \frac{f_1 - f_2}{f_1} = \frac{1}{Q}$$

aendo L= indutância

$$\omega$$
 =2 π^*f Q= factor de qualidade do cirquito R= resistência

f₁-f₂ = a faixa de frequências que passa num circuito ressonante

 $f_{_{_{f r}}}$ = a frequência de ressonância

Então, aumentando R diminui Q e diminuindo Q aumenta f $_1$ $_1$ $_2$, portanto, a faixa de frequências de saída alarga-se.

3.2.4.1

Se num circuito ressonante houver um curto-circuito numa espira da bobina desse circuito, o que acontece la fraquência de ressonância?

a)	aumenta porque a indutância foi reduzida	X
ь)	diminui porque a indutância foi reduzida	
	não há qualquer alteração na frequência de ressonância	
	diminui porque aumenta a capacidade entre espiras	_

NOTA: Como L varia com n², aumentando ou diminuindo se n aumenta ou diminui (ver "Nota" da pergunta nº.2.5.3.5) , então, curto-circuitando uma espira, diminui o número de espiras, o que implica uma diminuição de L. Se L é menor, f_p aumenta (ver "Nota" da pergunta nº.3.2.2.1)