Laboratorio Funciones Vectoriales

M. Perez

July 21, 2021

Contents

1	Funciones Vectoriales		1
	1.1	Ejercicio 1	1
	1.2	Ejercicio 2	2
2	Identidades con funciones vectoriales.		2
	2.1	Ejercicio 3	2
3	Velocidad, Aceleración, Distancia y Posición.		
3	Velo	ocidad, Aceleración, Distancia y Posición.	2
3		ocidad, Aceleración, Distancia y Posición. Ejercicio 4	_
3	3.1	,	2
3	3.1 3.2	Ejercicio 4	2
3	3.1 3.2 3.3	Ejercicio 4	2 3 3

1 Funciones Vectoriales

- Vea la descripción aquí.
- Para los siguientes ejercicios puede usar este ejemplo de guía.

1.1 Ejercicio 1

Considere $f(t) = \langle \frac{t(t-1)}{t}, \frac{\sin t}{t}, e^t - 1 \rangle$.

- Encuentre el dominio de f(t).
- Calcule $\lim_{t\to 0} f(t)$.
- Calcule $\frac{df}{dt}$.

1.2 Ejercicio 2

Considere $f(t) = \langle 1 - t^2, \cos t, \sin t \rangle$.

- Describa la imagen de f(t).
- Calcule $\int f(t) dt$.

2 Identidades con funciones vectoriales.

Las propiedades básicas de las funciones de una variable pueden extenderse a funciones vectoriales por ejemplo puede ver uno aquí.

2.1 Ejercicio 3

Sea $\mathbf{r}(\mathbf{t})$ una función vectorial demuestre que:

$$\frac{d}{dt} \|\mathbf{r}\|^2 = 2\mathbf{r} \cdot \frac{d\mathbf{r}}{dt}.$$

3 Velocidad, Aceleración, Distancia y Posición.

Podemos utilizar funciones vectoriales para describir la dinámica de una partícula.

• Ver definiciones aquí.

3.1 Ejercicio 4

Considere una partícula con posición dada por:

$$\mathbf{r}(t) = \langle t, t^2, t \rangle.$$

- Encuentre su velocidad en t=2.
- Encuentre la rapidez en t = 2.

Puede ver un ejemplo relacionado aquí.

3.2 Ejercicio 5

Una partícula es sometida a una aceleración de $\mathbf{a}(t) = \langle -1, 2-t, 3-t \rangle$. Si su posición inicial es (4, 1, 7), la coordenada z es la altura respecto al piso z = 0, y una velocidad inicial de $\langle 0, 0, 3 \rangle$. Realice lo siguiente:

- 1. Calcule la velocidad para todo tiempo.
- 2. Calcule la posición en todo tiempo.
- 3. Determine en que momento la partícula toca el suelo.

Use como referencia este vídeo.

3.3 Ejercicio 6

Considere una partícula con posición $\mathbf{r}(t) = \langle \sin t, \cos t, t \rangle$. Determine la distancia que ha recorrido cuando llega a una altura de 2m, la coordenada z modela la altura.

Puede usar como referencia este vídeo.