Квадратичні форми

Означення. *Квадратичною формою* від змінних $x_1, x_2, ..., x_n$ називається однорідний многочлен другого степеня вигляду

$$Q(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j,$$

де $a_{ij} = a_{ji}, a_{ij} \in \mathbb{R}$.

перетворення.

Використовуючи матрично-векторні позначення, квадратичну форму $Q(x_1, x_2, ..., x_n)$ записуватимемо у вигляді

$$Q(\vec{x}) = (x_1 \quad x_2 \quad \dots \quad x_n) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{nn} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \vec{x}^T A \vec{x},$$

де
$$\vec{x} \in \mathbf{R}^n$$
, $A = (a_{ii})$, $A = A^T$.

Матрицю A називають матрицею квадратичної форми $Q(\vec{x})$.

Означення. Квадратична форма має *канонічний вигляд*, якщо її матриця діагональна, $a_{ij} = 0$ при $i \neq j$, тобто:

$$Q(x_1, x_2, ..., x_n) = a_1 x_1^2 + a_2 x_2^2 + ... + a_n x_n^2.$$

Означення. Квадратична форма має *нормальний вигляд*, якщо в її канонічному вигляді коефіцієнти $a_i \in \{-1,1\}$.

Твердження. Кожну квадратичну форму за допомогою невиродженого лінійного перетворення координат можна звести до канонічного та нормального вигляду.

Квадратичну форму можна звести до канонічного вигляду *методом виділення повних квадратів*, який відомий як *метод Лагранжа*.

Квадратичну форму можна зводити до канонічного вигляду методом зведенням до головних осей.

Щоб звести квадратичну форму до головних осей, треба записати матрицю A цієї квадратичної форми, знайти її власні значення λ_i . Тоді зведена квадратична форма матиме канонічний вигляд $\sum_{i=1}^n \lambda_i x_i^2$. Якщо ж треба знайти відповідне перетворення, то для кожного власного значення λ_i знаходимо власний вектор. Система векторів, які відповідають різним власним значенням, є ортогональною. Пронормувавши систему власних векторів, складаємо з них матрицю T і записуємо

Означення. Квадратична форма $Q(\vec{x})$ називається *додатно визначеною*, якщо для довільного $\vec{x} \in \mathbf{R}^n$, $\vec{x} \neq \vec{0}$, $Q(\vec{x}) > 0$.

Означення. Квадратична форма $Q(\vec{x})$ називається **від'ємно визначеною**, якщо для довільного $\vec{x} \in \mathbf{R}^n$, $\vec{x} \neq \vec{0}$, $Q(\vec{x}) < 0$.

Якщо квадратична форма $Q(\vec{x})$ може набувати додатних і від'ємних значень, то вона називається знакозмінною.

Правильні такі умови додатної визначеності.

- 1. Квадратична форма $Q(\vec{x})$ додатно визначена тоді і тільки тоді, коли всі коефіцієнти в канонічному вигляді квадратичної форми додатні.
- 2. Квадратична форма $Q(\vec{x})$ додатно визначена тоді і тільки тоді, коли всі власні значення матриці квадратичної форми додатні.
- 3. Якщо квадратична форма $Q(\vec{x})$ додатно визначена, то визначник $\ddot{i}\ddot{i}$ матриц \dot{i} додатний. Обернене твердження неправильне.

Вироджена квадратична форма (rangA < n) не може бути додатно визначеною, і лише знакозмінна або невід'ємна.

$$\pmb{\Gamma}$$
оловними мінорами матриці $A=(a_{ij})$ називаються мінори $\Delta_1=|a_{11}|,\ \Delta_2=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},\cdots,\ \Delta_n=\det A$.

Справджується теорема (критерій Сильвестра).

Квадратична форма $Q(\vec{x})$ ϵ додатно визначеною тоді і тільки тоді, коли всі головні мінори її матриці додатні. Тобто:

$$Q(\vec{x}) > 0 \iff \begin{cases} \Delta_1 > 0 \\ \Delta_2 > 0 \\ \Delta_3 > 0 \\ \dots \\ \Delta_n > 0 \end{cases}$$

Квадратична форма $Q(\vec{x})$ є від'ємно визначена тоді і тільки тоді, коли знаки кутових мінорів чергуються, причому $\Delta_1 < 0$. Тобто:

$$Q(\vec{x}) < 0 \iff \begin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \\ \Delta_3 < 0 \\ \Delta_4 > 0 \\ \dots \end{cases}$$