MATH 541 Lecture Notes

Pongsaphol Pongsawakul

Spring 2023

Contents

1	Algebra			
	1.1	Axioms of Groups		
		1.1.1 Properties		
	1.2	Dihedral Groups		
		1.2.1 Triangle		
		1.2.2 n-gon		
		1.2.3 Definition		
	1.3	Symmetric Group		
		1.3.1 Cycle Decomposition		

• Book: Dujmit Foote "Modern Algebra 3rd ed"

• Midterm 3/23 in class

• Final 5/8

• Homeworks: weekly

 \bullet Honors Credit: Extra sections + homeworks

1 Algebra

Operations often modeled: $+, \cdot$

composition: space of thing that you are looking at \leftarrow alomst always not commutative

Groups: One operation \cdot

Rings: 2 operations: +, \cdot that play nice

1.1 Axioms of Groups

By "operation" on S, I mean a function $\cdot S \times S \to S$

Instead of $\cdot(a, b)$, we write $a \cdot b$

A group is a set G with an operation \cdot satisfying:

- 1. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. There is an identity element: there is one special element $1 \in G$ so $1 \cdot \alpha = \alpha$ for any $\alpha \in G$ and $\alpha \cdot 1 = \alpha$ for any $\alpha \in G$
- 3. Inverses: For any $a \in G$, there is a $b \in G$ so $a \cdot b = b \cdot a = 1$

Note: $a \cdot b = b \cdot a$ is <u>not</u> an axiom.

If G satisfies this, we call it an abelian group

Example. $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+), (\mathbb{C},+)$

- 1. 0 is the identity
- 2. inverses: -a is the inverse of a

Example. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$

- 1. 1 is the identity
- 2. Inverses: $\frac{1}{a}$ is the inverse of a

Note: $(\mathbb{Z} \setminus \{0\}, \cdot)$ is not a group

(V, +) is a group

Example. For n, a natural number, $(\mathbb{Z}/n\mathbb{Z}, +)$ is a group

On \mathbb{Z} , we say $\mathfrak{a},\mathfrak{b}$ are (mod \mathfrak{n}) equivalent (written $\mathfrak{a} \equiv \mathfrak{b} \pmod{\mathfrak{n}}$) if \mathfrak{n} divides $\mathfrak{a} - \mathfrak{b}$ $\mathbb{Z}/\mathfrak{n}\mathbb{Z}$ is the set of equivalence classes mod \mathfrak{n}

Example. n = 2: (odds, evens) which is $\{0_{\text{mod } 2}, 1_{\text{mod } 2}\}$

$$17_{\text{mod } 2} + 64_{\text{mod } 2} = 81_{\text{mod } 2} = 1_{\text{mod } 2}$$

Example. $\mathbb{Z}/3\mathbb{Z} = \{0_{\text{mod } 3}, 1_{\text{mod } 3}, 2_{\text{mod } 3}\}$

Example. $(2\mathbb{Z}, +)$ is a group (even numbers)

Example. If (G, \cdot_G) and (H, \cdot_H) are groups, then $(G \times H, \cdot_G \times \cdot_H)$ is a group

- $(g_1, h_1) \cdot_{G \times H} (g_2, h_2) = (g_1 \cdot_G g_2, h_1 \cdot_H h_2)$
- Identity: $1_{G \times H} = (1_G, 1_H)$
- Inverse of (g, h): (g^{-1}, h^{-1})

1.1.1 Properties

- G has exactly 1 identity
- Each $g \in G$, there is exactly 1 inverse of g we write this g^{-1} (i.e. $^{-1}: G \to G$)
- $(g^{-1})^{-1} = g$
- $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- $\bullet \ (\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_m)^{-1} = \alpha_m^{-1} \cdot \alpha_{m-1}^{-1} \cdot \ldots \cdot \alpha_1^{-1}$

Proof.

- Suppose a, b are both identities in G. Then $a = a \cdot b = b$
- Suppose a, b are both inverses of g. i.e $a \cdot g = g \cdot a = 1$ and $b \cdot g = g \cdot b = 1$ Then $b = 1 \cdot b = (a \cdot g) \cdot b = a \cdot (g \cdot b) = a \cdot 1 = a$

- know $g \cdot g^{-1} = g^{-1} \cdot g = 1$ so $(g^{-1})^{-1} = g$
- $(a \cdot b)^{-1}$ satisfies: $x \cdot (a \cdot b) = (a \cdot b) \cdot x = 1$ we check $b^{-1}a^{-1}$ does this $(b^{-1}a^{-1}) \cdot (a \cdot b) = b^{-1}(a^{-1} \cdot a)b = b^{-1} \cdot 1 \cdot b = b^{-1}b = 1$ $(ab)(b^{-1}a^{-1}) = a(b \cdot (b^{-1}) \cdot a^{-1} = a \cdot 1 \cdot a^{-1} = aa^{-1} = 1$

Theorem 1. In G, there is exactly 1 solution to the equation ax = b for a fixed $a, b \in G$

Corollary. Cancellation laws:

$$ax = ay \implies x = y$$

$$xa = ya \implies x = y$$

Proof. If $a \cdot x = b$

$$a^{-1} \cdot a \cdot x = a^{-1} \cdot b$$

$$(\alpha^{-1} \cdot \alpha) \cdot x =$$

$$1x = x =$$

Definition. For $x \in G$, the order of x, written |x|, is the least n > 0 so

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_n = 1_G$$

If there is no such n, x has "infinite order"

Example. In $(\mathbb{R} \setminus \{0\}, \cdot)$, $|5| = \infty$, |-1| = 2, |1| = 1

Example. $(\mathbb{Z}/6\mathbb{Z}, +)$, $|1_{\text{mod } 6}| = 6$, $|2_{\text{mod } 6}| = 3$, $|3_{\text{mod } 6}| = 2$, $|4_{\text{mod } 6}| = 3$, $|5_{\text{mod } 6}| = 2$

1.2 Dihedral Groups

1.2.1 Triangle

Look at the collection of symmetries of an equilateral Triangle

Rotation right

$$ullet$$
 1 o 2

$$\bullet$$
 2 \rightarrow 3

•
$$3 \rightarrow 1$$

r

Reflection around 1

$$\bullet$$
 1 \rightarrow 1

$$\bullet$$
 2 \rightarrow 3

•
$$3 \rightarrow 2$$

s

Rotation Left

•
$$1 \rightarrow 3$$

$$\bullet$$
 2 \rightarrow 1

•
$$3 \rightarrow 2$$

 r^2

Reflection around 3

•
$$1 \rightarrow 2$$

$$\bullet$$
 2 \rightarrow 1

•
$$3 \rightarrow 3$$

$$r\circ s=s\circ r^2$$

Reflection around 2

•
$$1 \rightarrow 3$$

$$\bullet$$
 2 \rightarrow 2

•
$$3 \rightarrow 1$$

$$r^2 \circ s \\$$

Identity

•
$$1 \rightarrow 1$$

$$\bullet$$
 2 \rightarrow 2

$$\bullet$$
 3 \rightarrow 3

$$r^3, s^2$$

$$r^{s} = r \cdot (r \cdot s)$$

$$= (r \cdot s) \cdot r^{-1}$$

$$= s \cdot (r^{-1} \cdot r^{-1})$$

$$= s \cdot (r^{-1})^{2}$$

(Symmetry of \triangle , \circ) = D₆

1.2.2 n-gon

Rotation right

Reflection around 1

My Symmetry

• $k \rightarrow k+1$ (for k < n)

• $k \rightarrow n + 2 - k$

• $1 \rightarrow k$

 $\bullet \ n \to 1$

ullet 1 \rightarrow 1

• $2 \rightarrow k+1$

r, |r| = n

$$s, |r| = n$$

 $\mathbf{r}^{\mathbf{k}}$

So, $\{r, s\}$ generates the group of sym of regular n-gon

(Symmetry of a regular n-gon, \circ) = D_{2n}

1.2.3 Definition

Rules of dihedral group multiplication in D_{2n} $\{r,s\}$

- a) $r^{n} = 1$
- b) $s^2 = 1$
- c) $\mathbf{r} \cdot \mathbf{s} = \mathbf{s} \cdot \mathbf{r}^{-1}$

When you have generators S for G and can list R_1, R_2, R_3 all the rules you need to know to do multiplication in G Then $\langle S, R_1, R_2, R_3 \rangle$ is a "presentation of the group G"

$$D_{2n} = \langle r, s | r^n = 1, s^2 = 1, rs = sr^{-1} \rangle$$

Fact: There is a finite set of rule R_1, \ldots, R_{2000} so $\langle \alpha, b | R_1, \ldots, R_{2000} \rangle$ "undecidable word problem"

1.3 Symmetric Group

Given Ω any set, $S_{\Omega}=$ The permutations of $\Omega=$ The bijections $f:\Omega\to\Omega$

Example 2. $\Omega = \{1, 2, 3\}$

 $S_n = S_{\{1,2,\dots,n\}}$ has n! elements

$$|S_3| = 6, |D_6| = 6, D_6 \subseteq S_3$$

$$|D_{2n}| = 2n$$

$$|S_n| = n!$$

1.3.1 Cycle Decomposition

$$1 \rightarrow 4, 2 \rightarrow 1, 3 \rightarrow 2, 4 \rightarrow 3, 5 \rightarrow 5$$
 can be written as $(1432)(5)$

 $(\alpha_1\dots\alpha_{m_1})(\alpha_{m_1+1}\dots\alpha_{m_2})$ with α_i is disjoint represents the function which satisfies

- a_i to a_{i+1} unless $i = m_j$ for some j
- $\mathfrak{a}_{\mathfrak{m}_{j}}$ to $\mathfrak{a}_{\mathfrak{m}_{j-1}}+1$ $j\neq 1$
- $\bullet \ \alpha_{m_1} \ \mathrm{to} \ \alpha_1$

$$(1)(2)(3)(4)(5)(6)(7) = 1$$

$$(1442) \circ (3421) = (124)$$

$$|(123)(45)| = 6$$

Order of a product of disjoint cycles is the lcm(lengths of the cycles)