Versuch V503: Milikan-Versuch

Martin Bieker Julian Surmann

Durchgeführt am 03.06.2014TU Dortmund

1 Einleitung

In diesem Versuch soll die Elementarladung e mit Hilfe der Öltröpfchenmethode nach Milikan bestimmt werden.

2 Theorie

- 2.1 Die Elementarladung
- 2.2 Gravitation und Stokes-Reibung
- 2.3 Elektrische Kräfte auf geladene Teilchen

3 Aufbau und Durchführung

- 3.1 Die Milikan-Kammer
- 3.2 Messprogramm

4 Auswertung

4.1 Auswertung für $U=297\,\mathrm{V}$

$t_{Null}[\mathbf{s}]$	$t_{auf}[\mathbf{s}]$	$t_{ab}[\mathbf{s}]$	$R[M\Omega]$
34.900	3.273	2.918	2.03
58.948	5.011	7.655	2.01
28.018	4.204	9.842	1.89
15.755	7.946	4.245	1.89
26.543	4.735	3.879	1.89
23.904	5.640	3.685	1.85
64.958	3.796	3.484	1.84
26.536	11.756	6.005	1.84
58.571	3.633	3.582	1.80
61.098	20.798	14.684	1.80
17.396	52.334	6.584	1.79
27.842	5.237	3.838	1.79
34.652	5.125	3.424	1.79
47.401	3.125	2.967	1.77
12.061	17.707	4.751	1.77
55.808	9.272	7.093	1.77
18.702	35.159	8.964	1.77
37.240	5.758	4.510	1.77
17.102	23.986	5.877	1.77

Tabelle 1: Messwerte mit $U=297\,\mathrm{V}$

$v_{auf}[10^{-5} \text{m/s}]$	$v_{ab}[10^{-4} {\rm m/s}]$	$T[^{\circ}C]$	$\eta_L[10^{-5}Nsm^{-2}]$	$\eta [10^{-5} Nsm^{-2}]$	$r[10^{-7}m]$	$q[10^{-19}C]$
6.292	1.178	27.0	1.8575	1.671	7.268	4.671
8.865	1.357	28.0	1.8620	1.662	6.738	5.325
0.132	1.435	28.0	1.8620	1.501	3.374	2.808
4.253	0.833	28.0	1.8620	1.649	6.271	2.746
95.540	0.759	29.0	1.8670	1.695	8.016	2.484
9.547	1.303	29.0	1.8670	1.638	5.804	4.510
2.824	1.052	30.0	1.8720	1.711	8.645	4.236
5.393	0.705	30.0	1.8720	1.557	4.010	1.589
1.422	0.558	30.0	1.8720	1.660	6.351	1.559
8.684	1.109	30.0	1.8720	1.603	4.829	3.177
2.085	0.851	30.0	1.8720	1.697	7.895	3.033

Tabelle 2: Auswertung für $U=297\,\mathrm{V}$

4.2 Auswertung für $U = 297 \,\mathrm{V}$

$t_{auf}[\mathbf{s}]$	$t_{ab}[\mathbf{s}]$	$R[M\Omega]$
23.776	20.512	1.76
27.441	9.432	1.76
24.321	16.568	1.76
27.289	16.873	1.76
21.155	18.188	1.76
40.118	8.290	1.76
24.523	8.476	1.76
7.059	5.758	1.76
10.672	4.887	1.75
13.574	6.956	1.75
5.253	3.278	1.75
8.079	10.210	1.75
13.310	5.877	1.75
3.606	3.904	1.75
6.833	3.876	1.75

Tabelle 3: Messwerte mit $U=150\,\mathrm{V}$

$v_{auf}[10^{-5} \text{m/s}]$	$v_{ab}[10^{-5} {\rm m/s}]$	$T[^{\circ}C]$	$\eta_L[10^{-5}Nsm^{-2}]$	$\eta [10^{-5} Nsm^{-2}]$	$r[10^{-7}m]$	$q[10^{-19}C]$
2.103	2.438	30.0	1.872	1.291	1.802	0.390
1.822	5.301	30.0	1.872	1.643	5.811	2.829
2.056	3.018	30.0	1.872	1.479	3.056	0.906
1.832	2.963	30.0	1.872	1.504	3.313	0.951
2.364	2.749	30.0	1.872	1.319	1.934	0.486
1.246	6.031	30.0	1.872	1.673	6.815	3.484
2.039	5.899	30.0	1.872	1.653	6.121	3.352
7.083	8.684	30.0	1.872	1.552	3.941	3.902
4.685	10.231	31.0	1.877	1.690	7.346	7.809
3.684	7.188	31.0	1.877	1.648	5.810	4.355
9.518	15.253	31.0	1.877	1.693	7.470	13.219
6.189	4.897	31.0	1.877	nan	nan	nan
3.757	8.508	31.0	1.877	1.677	6.800	5.872
13.866	12.807	31.0	1.877	nan	nan	nan
7.317	12.900	31.0	1.877	1.691	7.370	10.624

Tabelle 4:

5 Diskussion

6 Quellen

[1] Entnommen der Praktikumsanleitung der TU Dortmund.
Download am 04.06.14 unter:
http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/Milikan.pdf

7 Anhang

 $\bullet\,$ Auszug aus dem Messheft