Multiple Regression Leverage, outliers, and influence measures

Leverage

- Leverage a measure of "outlier" in "x-direction" in SLR;
 - a measure of distance of a point $(x_1, x_2, ...xn)$ from the center of the data given by $(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})$ in MLR.
- For SLR: leverage of x_i is: $h_i = \frac{1}{n} + \frac{(x_i \overline{x})^2}{SSx}$.
- For MLR there is a more complex formula for H_i=leverage of predictors of ith observation. MINITAB computes Hi's.
- High leverage point has hi > 3k/n, where k=#of predictors, and n=number of observations.

3. Leverage vs. Influence

High influence: when removal of an outlier changes regression line. High leverage is not enough for influence!

Outliers in Y direction: standardized residuals

- Residual $e_i = Y_i \widehat{Y}_i$.
- Standard error of a residual: $s\sqrt{1-h_i}$
- Standardized residual: $e_{si} = e_{i_S\sqrt{1-h_i}}$
- OUTLIERS: observations with $|e_{si}| > 2$ or > 3 (extreme outlier)
- Why? Standardized residuals should have standard normal distribution, so |values|>2 are rare, and |values|>3 are extremely rare.
- Also: Many outliers may suggest not normal distribution! However, plots are better to check that.

Outliers in Y direction: studentized residuals (TRESIDs)

- TRESID_i = $\frac{e_{(i)}}{SD_{e_{(i)}}}$, where $e_{(i)}$ is the ith prediction residual, i.e.
- $e_{(i)} = Y_i \widehat{Y}_i$, where \widehat{Y}_i is computed using regression model estimated with ith observation deleted, and $SD_{e_{(i)}}$ is the standard deviation of $e_{(i)}$.
- TRESID~ $t_{(n-k-1)}$ if the model holds with normal errors.
- Large TRESIDi suggests that ith observation may hold an outlier in y-direction, so could be influential.

Measures of influence COOK's D and DFFITS

- COOK's D is a very popular measure of influence.
- Observation I has COOK's D $m{D}_i = rac{1}{k} \Big(rac{h_i}{1-h_i}\Big)$ (standardized residual $_{f j}$)
- D_i combines leverage of predictors for observation I with a measure of "outlier" in the "Y-direction" of observation i.
- Observation I has high influence if $D_i > F_{k+1,n-k,0.1}$
- For n > 30, critical values for D_i are about 1.6 to 2.

DFFITS – related to studentized residuals

- DFFITS of observation i is DFFITS_i=TRESID_i $\sqrt{\frac{h_i}{1-h_i}}$
- Observation I is considered to have high influence if $\left| {
 m DFFITS}_{
 m i}
 ight| > 2 \sqrt{^k/_n}$

SUMMARY

- To identify outliers in Y-direction use standardized or studentized residuals.
- To identify influential observations with use Cook's D or DFFITS.
- To identify observations with unusual x use leverage statistics $m{h}_i$.
- Often influence can be detected by high leverage and outlier in Y direction.

If an influential point is detected...

- Check it out for possible error.
- If error detected, correct it if possible, or delete the observation.
- If no error consider other models that may fit the point better or use procedures robust to outliers.

Example: data set influenceclass16.MTW

Observation 15 is far from the rest of the data. Is it influential?

Need to find the thresholds for the measures of influence: Cook's D, DFFITS, and TRESID, and compare them to these measures computed for observation 15.

Coefficients

Regression Equation y = 2.74 + 0.819 x

Fits and Diagnostics for Unusual Observations

Obs y Fit Resid Std Resid

15 1.833 6.095 -4.262 -3.26 R

R Large residual

Example: data set influenceclass16.MTW

obs	У	x	FITS	SRES	TRES	HI	COOK	DFIT
1	4.97468	2.13042	4.48819	0.33742	0.32561	0.078740	0.004865	0.095193
2	1.66211	0.60897	3.24196	-1.29328	-1.33112	0.338663	0.428251	-0.952552
15	1.83260	4.09203	6.09496	-3.26301	-7.36915	0.243801	1.71634	-4.18424

Thresholds for the measures of influence:

For Cook's D:
$$F_{2, 14, 0.05} = 2.73$$
, D15=1.716

For DFFITS:
$$2\sqrt{1/15} = 0.516$$
, DFFITS15 = -4.184

For TRESID:
$$t_{13}$$
, 0.05= 1.771, TRESID15 = -7.37.

It looks like obs 15 can be influential. W will compute regression eqn without obs 15 to see this.

Example: data set influenceclass16.MTW

Regression Equation (with observation 15) y = 2.74 + 0.819 x

Regression Equation
(without observation 15)
$$y = 1.491 + 1.461 x$$

Looks like observation 15 was quite influential. After we removed if from the data, we got a quite different regression line.

Multicollinearity

 Multicollinearity means that at least one predictor is closely related to one (or more) other predictors.

Consequences:

- Problems with stat inference, unreliable regression equation, etc.
- Unstable regression equation.
- Stepwise procedures may produce different (contradictory) models.
- Diagnostics: Compute correlation coefficients between all pairs of predictors. If the correlation is large, we may have a problem with collinearity.
- Solutions/remedies:
 - Eliminate some predictors in severe cases,
 - Use principal components in less severe cases (outside the scope of this course)

Measure of Multicollinearity: Variance Inflation factors (VIF)

Variance Inflation Factor for predictor j is:

$$VIF_j = \frac{1}{1 - R_j^2}$$
, where R_j^2 is the multiple Rsquared

from the prediction of jth predisctor on all other predictors.

If multicollinearity is present, then for some j we have $R_j^2 \approx 1$, so then VIF_j would be very large.

If no multicollinearity, then all $R_j^2 \approx 0$, so then VIF_j would be close to 1.

Serious problem with variable j if $R_j^2 \approx 0.9$, then $VIF_j > 10$.

Multicollinearity example: multicollclass data

Model with 4 explanatory variables:

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	4.08	1.33	3.06	0.012	
x 1	-4.64	3.47	-1.34	0.211	77.55
x 2	9.73	6.98	1.39	0.194	256.69
x 3	4.70	5.26	0.89	0.393	920.42
x 4	0.17	1.20	0.14	0.892	342.03

Regression Equation

$$y = 4.08 - 4.64 \times 1 + 9.73 \times 2 + 4.70 \times 3 + 0.17 \times 4$$

Model with 2 explanatory variables:

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	3.56	1.32	2.70	0.019	
x 1	0.719	0.413	1.74	0.107	1.05
x 2	-0.506	0.457	-1.11	0.290	1.05

Regression Equation

$$y = 3.56 + 0.719 \times 1 - 0.506 \times 2$$