

SN54HCT244, SN74HCT244

ZHCSQK3H - MARCH 2003 - REVISED AUGUST 2023

SNx4HCT244 具有三态输出的八路缓冲器和线路驱动器

1 特性

- 4.5V 至 5.5V 的工作电压范围
- 高电流输出可驱动多达 15 个 LSTTL 负载
- 低功耗:最大 80µA I_{CC}
- t_{pd} 典型值 = 13ns
- 电压为 5V 时,输出驱动为 ±6mA
- 低输入电流,最大值 1µA
- 输入兼容 TTL 电压
- 三态输出驱动总线和缓冲存储器地址寄存器

2 应用

- 服务器
- LED 显示屏
- 网络交换机
- 电信基础设施
- 电机驱动器
- I/O 扩展器

10E 1 18 1Y1 16 1Y2 14 12 1Y4

3 说明

这些八路缓冲器和线路驱动器专门设计用于提高三态存 储器地址驱动器、时钟驱动器以及总线导向接收器和发 送器的性能和密度。SNx4HCT244 器件配备两个具有 独立输出使能 (OE) 输入的 4 位缓冲器或驱动器。当 OE 为低电平时,该器件将来自 A 输入的同相数据传递 到 Y 输出。当 OE 为高电平时,输出处于高阻态。

器件信息

器件型号	额定值	封装 ⁽¹⁾
		DB (SSOP , 20)
SN74HCT244		DW (SOIC , 20)
		N (PDIP , 20)
	通用级	NS (SO , 20)
		PW (TSSOP , 20)
		DGS (VSSOP , 20)
SN54HCT244	军用	J (CDIP , 20)
311341101244	半 用	FK (LCCC , 20)

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

Copyright © 2016, Texas Instruments Incorporated

逻辑图(正逻辑)

Table of Contents

1 特性	1 8.1 Overview	9
2 应用		
3 说明		
4 Revision History		9
5 Pin Configuration and Functions	9 Application and Implementation	
6 Specifications	9.1 Application Information	
6.1 Absolute Maximum Ratings	4 9.2 Typical Application	
6.2 ESD Ratings	4 9.3 Power Supply Recommendations	
6.3 Recommended Operating Conditions	4 9.4 Layout	
6.4 Thermal Information	5 10 Device and Documentation Support	
6.5 Electrical Characteristics - SN54HCT244	5 10.1 Documentation Support	
6.6 Electrical Characteristics - SN74HCT244	6 10.2 接收文档更新通知	
6.7 Switching Characteristics: SN54HCT244		
6.8 Switching Characteristics: SN74HCT244	7 10.4 Trademarks	12
6.9 Operating Characteristics	7 10.5 静电放电警告	12
6.10 Typical Characteristics		12
7 Parameter Measurement Information	8 11 Mechanical, Packaging, and Orderable	
8 Detailed Description	9 Information	12
添加了 DGS (SOT) 封装的支持信息更新了 器件信息 表以包含额定值	to Revision H (August 2023)	1
、		
Changes from Povision E (May 2022) to Povi	icion G (Docombor 2022)	1
Changes from Revision F (May 2022) to Revi	ision G (December 2022)	1 Page
• 添加了 DGS (SOT) 封装信息		Page
添加了 DGS (SOT) 封装信息Added DGS (SOT) package information		Page
添加了 DGS (SOT) 封装信息Added DGS (SOT) package information		Page
 添加了 DGS (SOT) 封装信息	ationRevision F (May 2022)	Page1
 添加了 DGS (SOT) 封装信息	ation	Page15 Page 4 is now
 添加了 DGS (SOT) 封装信息	Revision F (May 2022) es increased. DW was 76.6 is now 109.1, DB was 89.8 is now 113.4, PW was 97.4 is now 131.8	Page5 Page 4 is now Page
 添加了 DGS (SOT) 封装信息	Revision F (May 2022) es increased. DW was 76.6 is now 109.1, DB was 89. B is now 113.4, PW was 97.4 is now 131.8	Page35 Page 4 is now5 Page 局部分、器1

English Data Sheet: SCLS175

5 Pin Configuration and Functions

J, DB, DW, N, NS, PW or DGS Packages, 20-Pin CDIP, CFP, SSOP, SOIC, PDIP, SO, TSSOP, or VSSOP (Top View)

FK Package, 20-Pin LCCC (Top View)

表 5-1. Pin Functions

	PIN	TYPE(1)	DESCRIPTION
NAME	NO.	ITPE(')	DESCRIPTION
1 ŌE	1	I	Output enable
1A1	2	I	Input
2Y4	3	0	Output
1A2	4	I	Input
2Y3	5	0	Output
1A3	6	I	Input
2Y2	7	0	Output
1A4	8	I	Input
2Y1	9	0	Output
GND	10	_	Ground
2A1	11	I	Input
1Y4	12	0	Output
2A2	13	I	Input
1Y3	14	0	Output
2A3	15	I	Input
1Y2	16	0	Output
2A4	17	I	Input
1Y1	18	0	Output
2 OE	19	I	Output enable
V _{CC}	20	_	Power pin

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		- 0.5	7	V	
I _{IK}	Input clamp current ⁽²⁾	$V_I < 0$ or $V_I > V_{CC}$		±20	mA	
I _{OK}	Output clamp current ⁽²⁾	$V_O < 0$ or $V_O > V_{CC}$		±20 m		
Io	Continuous output current	V _O = 0 to V _{CC}				
	Continuous channel current through V _{CC} or GND			±70	mA	
TJ	Junction temperature		150	°C		
T _{stg}	Storage temperature	- 65	150	°C		

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT	
SN74H0	CT244 in DB, DW, N, NS, o	or PW package			
.,	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		±2000	V	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V	
SN54H0	CT244 in J or FK package				
V _(ESD)	Electrostatic discharge	Human-body model (HBM)	±1500	V	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5	5.5	V
V _{IH}	High-level input voltage	V _{CC} = 4.5 V to 5.5 V	2			V
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V to 5.5 V			0.8	V
VI	Input voltage		0		V _{CC}	V
Vo	Output voltage	Output voltage				V
Δt/Δν	Input transition rise and fall time				500	ns
		SN54HCT244	- 55		125	
T _A	Operating free-air temperature	SN74HCT244 ⁽²⁾	- 40		85	°C
		3N/4NC1244\ ⁽²⁾	- 40		125	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the *Implications of Slow or Floating CMOS Inputs* application report.

(2) For correct operating free-air temperature, see the orderable addendum at the end of the data sheet.

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

				SN74F	ICT244			
THERMAL METRIC		DW (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	DGS (VSSOP)	UNIT
		20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	
R ₀ JA	Junction-to-ambient thermal resistance ⁽¹⁾	109.1	122.7	84.6	113.4	131.8	130.6	°C/W
R _{θ JC (top)}	Junction-to-case (top) thermal resistance	76	81.6	72.5	78.6	72.2	68.7	°C/W
R ₀ JB	Junction-to-board thermal resistance	77.6	77.5	65.3	78.4	82.8	85.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	51.5	46.1	55.3	47.1	21.5	10.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	77.1	77.1	65.2	78.1	82.4	85.0	°C/W
R _θ JC (bot)	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics - SN54HCT244

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V _{cc}	T _A = 25°C			-5	UNIT		
PARAMETER		MIN		TYP	MAX	MIN	TYP	MAX	UNII	
V _{OH}	\/ = \/ or \/	I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4			V
	$V_I = V_{IH}$ or V_{IL}	I _{OH} = -6 mA		3.98	4.3		3.7			
V	$V_I = V_{IH}$ or V_{IL}	Ι _{ΟL} = 20 μΑ	4.5 V		0.001	0.1			0.1	V
V _{OL}	VI - VIH OI VIL	I _{OL} = 6 mA	4.5 V		0.17	0.26			0.4	
I _I	V _I = V _{CC} or 0		5.5 V		±0.1	±100			±1000	nA
I _{OZ}	$V_O = V_{CC}$ or 0, V	I = V _{IH} or V _{IL}	5.5 V		±0.01	±0.5			±10	μA
I _{CC}	$V_I = V_{CC}$ or 0, I_O	= 0	5.5 V			8			160	μA
ΔI _{CC} (1)	One input at 0.5	V or 2.4 V, Other inputs at 0 or V _{CC}	5.5 V		1.4	2.4			3	mA
Ci			4.5 V to 5.5 V		3	10			10	pF

⁽¹⁾ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

6.6 Electrical Characteristics - SN74HCT244

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V	T,	_A = 25°	С	-40	0°C to	85°C	-40°C to 125°C			UNIT
PARAMETER	1231 00	NDITIONS	V _{cc}	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	ONII
V	V _I = V _{IH} or V _{IL}	$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4			4.4			V
V _{OH}	VI - VIH OI VIL	I _{OH} = -6 mA	4.5 V	3.98	4.3		3.84			3.7			\ \ \
V _{OL}	$V_{I} = V_{IH}$ or V_{IL}		4.5 V		0.001	0.1			0.1			0.1	V
VOL	VI - VIH OI VIL	I _{OL} = 6 mA	4.5 V		0.17	0.26			0.33			0.4	, v
II	$V_I = V_{CC}$ or 0		5.5 V		±0.1	±100			±1000			±1000	nA
I _{OZ}	$V_O = V_{CC}$ or 0,	$V_I = V_{IH}$ or V_{IL}	5.5 V		±0.01	±0.5			±5			±10	μΑ
I _{CC}	$V_I = V_{CC}$ or 0, I_C	_O = 0	5.5 V			8			80			160	μA
ΔI _{CC} (1)	One input at 0.5 V or 2.4 V, Other inputs at 0 or V _{CC}		5.5 V		1.4	2.4			2.9			3	mA
C _i			4.5 V to 5.5 V		3	10			10			10	pF

⁽¹⁾ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

6.7 Switching Characteristics: SN54HCT244

over recommended operating free-air temperature range (unless otherwise noted) (see 🛭 7-1)

PARAMETER	FROM	то	V _{cc}	LOAD		T _A = 25°C		-55°C to	125°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V CC	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNII
			4.5 V	C _L = 50 pF		15	28		42	
+	А	Y	4.0 V	C _L = 150 pF		21	45		68	ns
t _{pd}		1	5 5 V	C _L = 50 pF		13	25		38	115
			5.5 V	C _L = 150 pF		18	40		61	
	ŌĒ		4.5 V	C _L = 50 pF		21	35		53	
		Y	4.5 V	C _L = 150 pF		25	52		79	ns l
t _{en}			5.5 V	C _L = 50 pF		19	32		48	
				C _L = 150 pF		22	47		71	
	ŌĒ	Y	4.5 V	C _L = 50 pF		19	35		53	no
t _{dis}	OE	Ī	5.5 V	C _L = 50 pF		18	32		48	ns
			4.5 V	C _L = 50 pF		8	12		18	
		V	4.5 V	C _L = 150 pF		17	42		63	ns
t _t		Y	1 55V I	C _L = 50 pF		7	11		16	
				C _L = 150 pF		14	38		57	

6.8 Switching Characteristics: SN74HCT244

over recommended operating free-air temperature range (unless otherwise noted) (see 🗵 7-1)

PARAMETER	FROM	то	V	LOAD		T _A = 25°C	;	-40°C t	o 85°C	-40°C to	125°C	UNIT
PARAIVIETER	(INPUT)	(OUTPUT)	V _{CC}	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	OMI
			4.5 V	C _L = 50 pF		15	28		35		42	
 • .	Α	Y	4.5 V	C _L = 150 pF		21	45		56		68	ns
t _{pd}	^		5.5 V	C _L = 50 pF		13	25		32		38	115
			J.J V	C _L = 150 pF		18	40		51		61	
	en OE Y		4.5 V	C _L = 50 pF		21	35		44		53	
 			4.5 V	C _L = 150 pF		25	52		65		79	ns
ten			5.5 V	C _L = 50 pF		19	32		40		48	113
				C _L = 150 pF		22	47		59		71	
+	ŌĒ	Y	4.5 V	C _L = 50 pF		19	35		44		53	ns
t _{dis}	OL	!	5.5 V	OL - 30 PF		18	32		40		48	119
			4.5 V	C _L = 50 pF		8	12		15		18	
 -		4.5 V	C _L = 150 pF		17	42		53		63	ns	
t _t			5.5 V	C _L = 50 pF		7	11		14		16	113
			J.J V	C _L = 150 pF		14	38		48		57	

6.9 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per buffer or driver	No load	40	pF

6.10 Typical Characteristics

图 6-1. Enable Time vs V_{CC}

7 Parameter Measurement Information

PARA	METER	RL	CL	S 1	S2	
t _{en}	tPZH	1 kΩ	50 pF or	Open	Closed	
	tPZL	1 K22	150 pF	Closed	Open	
4	tPHZ	1 kΩ	50 pF	Open	Closed	
^t dis	t _{PLZ}	1 K12	50 pr	Closed	Open	
t _{pd} or t _t		_	50 pF or 150 pF	Open	Open	

VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_I includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 6 ns, t_f = 6 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. tpLH and tpHL are the same as tpd.

图 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SNx4HCT244 device is organized as two 4-bit buffers and line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state. For the high-impedance state during power up or power down, \overline{OE} must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

图 8-1. Logic Diagram (Positive Logic)

8.3 Feature Description

The SN74HCT244 device can drive up to 15 LSTTL loads. This device has low power consumption of 80- μ A I_{CC}. The SN74HCT244 also has 3 state outputs that allow the outputs to go to high impedance, low or high.

8.4 Device Functional Modes

表 8-1 lists the functions of the SNx4HC244.

表 8-1. Function Table

INP	UTS	OUTPUT
ŌĒ	Α	Υ
L	Н	Н
L	L	L
Н	Х	Z

9 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 Application Information

The SN74HC244 is a high-drive CMOS device that can be used for a multitude of bus interface type applications where output drive or PCB trace length is a concern.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

图 9-1. Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Avoid bus contention because it can drive currents in excess of maximum limits. The high drive creates fast edges into light loads, so consider routing and load conditions to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended input conditions:
 - For rise time and fall time specifications, see \(\Delta \text{ V} \) in Recommended Operating Conditions.
 - For specified high and low levels, see V_{IH} and V_{IL} in Recommended Operating Conditions.
- 2. Recommend output conditions:
 - Load currents must not exceed the I_O maximum per output and must not exceed the continuous current through V_{CC} or GND total current for the part. These limits are located in *Absolute Maximum Ratings*.
 - Outputs must not be pulled above V_{CC}.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

9.2.3 Application Curve

图 9-2. Propagation Delay vs V_{CC}

9.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor. If there are multiple V_{CC} terminals, then TI recommends 0.01- μ F or 0.022- μ F capacitors for each power terminal. It is okay to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor must be installed as close to the power terminal as possible for the best results.

9.4 Layout

9.4.1 Layout Guidelines

When using multiple bit logic devices, inputs must not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input and gate are used, or when only 3 of the 4-buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in $\[mathbb{N}\]$ 9-3 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient.

9.4.2 Layout Example

图 9-3. Layout Diagram

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

For related documentation, see the following:

· Texas Instruments, Implications of Slow or Floating CMOS Inputs

10.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击 订阅更新 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.3 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

10.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

10.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

www.ti.com 2-Dec-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8513001VRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8513001VR A SNV54HCT244J	Samples
5962-8513001VSA	ACTIVE	CFP	W	20	25	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8513001VS A SNV54HCT244W	Samples
85130012A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	85130012A SNJ54HCT 244FK	Samples
8513001RA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8513001RA SNJ54HCT244J	Samples
JM38510/65755B2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755B2A	Samples
JM38510/65755BRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755BRA	Samples
M38510/65755B2A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755B2A	Samples
M38510/65755BRA	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 65755BRA	Samples
SN54HCT244J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HCT244J	Samples
SN74HCT244DBR	ACTIVE	SSOP	DB	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT244	Samples
SN74HCT244DGSR	ACTIVE	VSSOP	DGS	20	5000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HT244	Samples
SN74HCT244DWR	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWRE4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244DWRG4	ACTIVE	SOIC	DW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples
SN74HCT244N	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HCT244N	Samples
SN74HCT244NE4	ACTIVE	PDIP	N	20	20	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HCT244N	Samples
SN74HCT244NSR	ACTIVE	SO	NS	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT244	Samples

www.ti.com 2-Dec-2023

Orderable Device	Status (1)	Package Type	Package Drawing		Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HCT244PWR	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HT244	Samples
SN74HCT244PWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HT244	Samples
SNJ54HCT244FK	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	85130012A SNJ54HCT 244FK	Samples
SNJ54HCT244J	ACTIVE	CDIP	J	20	20	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8513001RA SNJ54HCT244J	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

www.ti.com 2-Dec-2023

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HCT244, SN54HCT244-SP, SN74HCT244:

Catalog: SN74HCT244, SN54HCT244

Automotive: SN74HCT244-Q1, SN74HCT244-Q1

● Enhanced Product: SN74HCT244-EP, SN74HCT244-EP

Military: SN54HCT244

• Space : SN54HCT244-SP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

www.ti.com 5-Dec-2023

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCT244DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HCT244DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HCT244DGSR	VSSOP	DGS	20	5000	330.0	16.4	5.4	5.4	1.45	8.0	16.0	Q1
SN74HCT244DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HCT244DWR	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
SN74HCT244NSR	so	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HCT244NSR	so	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74HCT244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HCT244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HCT244PWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN74HCT244PWRG4	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

www.ti.com 5-Dec-2023

*All dimensions are nominal

7 til dilliciololio ale nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HCT244DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74HCT244DBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74HCT244DGSR	VSSOP	DGS	20	5000	356.0	356.0	35.0
SN74HCT244DWR	SOIC	DW	20	2000	356.0	356.0	41.0
SN74HCT244DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HCT244NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HCT244NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HCT244PWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74HCT244PWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74HCT244PWRG4	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74HCT244PWRG4	TSSOP	PW	20	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-8513001VSA	W	CFP	20	25	506.98	26.16	6220	NA
85130012A	FK	LCCC	20	55	506.98	12.06	2030	NA
JM38510/65755B2A	FK	LCCC	20	55	506.98	12.06	2030	NA
M38510/65755B2A	FK	LCCC	20	55	506.98	12.06	2030	NA
SN74HCT244N	N	PDIP	20	20	506	13.97	11230	4.32
SN74HCT244NE4	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54HCT244FK	FK	LCCC	20	55	506.98	12.06	2030	NA

8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.

 E. Falls within Mil—Std 1835 GDFP2—F20

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司