CS-49: Game Theory Amittai Siavava 04/10/2023

Problem 5.

Determine (with proof!) the **P** and **N** positions for SUBTRACTION, where the set of subtractibles is $\{3, 4, 5\}$.

Recall that;

- **1.** A position is in class \mathbf{P} if *all* possible moves end in positions in class \mathbf{N} .
- **2.** A position is in class \mathbf{N} if there exists a move that ends in a position in class \mathbf{P} .

Note that only a single move is needed!

By writing out the possible values for the first 23 moves (see table on next page), we see this general pattern emerge:

$$\mathbf{P} = \{0,1,2\} \cup \{8,9,10\} \cup \{16,17,18\} \cup \dots$$

$$\mathbf{N} = \{3,4,5,6,7\} \cup \{11,12,13,14,15\} \cup \{19,20,21,22,23\} \cup \dots$$

In general, a given position n is in the class \mathbf{P} iff $n \pmod 8 < 3$, and a given position n is in the class \mathbf{N} iff $n \pmod 8 \ge 3$.

Current	Next			P or N?
0	-3	-4	-5	P
1	-2	-3	-4	P
\parallel 2	-1	-2	-3	ight
3	0	-1	-2	N
4	1	0	-1	N
5	2	1	0	N
6	3	2	1	N
7	4	3	2	$ $ $ $
8	5	4	3	P
9	6	5	4	Р
10	7	6	5	\mathbf{P}
11	8	7	6	N
12	9	8	7	N
13	10	9	8	N
14	11	10	9	N
15	12	11	10	N
16	13	12	11	P
17	14	13	12	P
18	15	14	13	P
19	16	15	14	N
20	17	16	15	N
21	18	17	16	N
22	19	18	17	N
23	20	19	18	$ \mathbf{N} $
:	:	:	:	:

Table 1. Potential Payoff vs. Outright Money.