R07 - Contrasts

STAT 5870 (Engineering) Iowa State University

August 28, 2024

Diet Effect on Mice Lifetimes

(STAT587@ISU) R07 - Contrasts August 28, 2024

ANOVA and Regression Models

ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$$

with Y_{ij} being the lifetime for the *i*th mouse on the *j*th diet for j = 0, 1, 2, 3, 4, 5.

Regression model:

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \ldots + \beta_p X_{i,p}, \sigma^2)$$

where Y_i is the lifetime for the *i*th mouse and $X_{i,j}$ is an indicator for the *i*th mouse being on the *j*th diet.

Reparameterized model since

$$\mu_0 = \beta_0 \quad \text{and} \quad \mu_j = \beta_0 + \beta_j$$

for j > 0.

Scientific questions

Here are a few example scientific questions:

- 1. What is the effect of pre-wean calorie restriction on mean lifetimes?
- 2. What is the difference in mean lifetimes between mice on a 40 kcal diet compared to those on a 50 kcal diet?
- 3. What is the effect of high calorie vs low calorie diets on mean lifetimes?

We can compute contrasts:

$$\gamma_{1} = \mu_{R/R50} - \mu_{N/R50}$$

$$\gamma_{2} = \mu_{N/R40} - \frac{1}{2}(\mu_{N/R50} + \mu_{R/R50})$$

$$\gamma_{3} = \frac{1}{4}(\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro}) - \frac{1}{2}(\mu_{NP} + \mu_{N/N85})$$

Contrasts

A linear combination of group means has the form

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \ldots + C_J \mu_J$$

where C_j are known coefficients and μ_j are the unknown population means.

A linear combination with $C_1 + C_2 + \cdots + C_J = 0$ is a contrast.

Contrast interpretation is usually best if $|C_1|+|C_2|+\cdots+|C_J|=2$, i.e. the positive coefficients sum to 1 and the negative coefficients sum to -1.

Inference on Contrasts

Contrast

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \dots + C_J \mu_J$$
 with $\hat{\gamma} = C_1 \overline{Y}_1 + C_2 \overline{Y}_2 + \dots + C_J \overline{Y}_J$

with standard error

$$SE(\hat{\gamma}) = \hat{\sigma}\sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \dots + \frac{C_J^2}{n_J}}.$$

p-values for $H_0: \gamma = g_0$ vs $H_A: \gamma \neq g_0$ and posterior probabilities (i.e. $2P(\gamma > 0|y)$ or $2P(\gamma < 0|y)$):

$$t = \frac{g - g_0}{SE(g)}, \quad p = 2P(T_{n-J} < -|t|).$$

Two-sided equal-tail $100(1-\alpha)\%$ confidence/credible intervals:

$$g \pm t_{n-J,1-\alpha/2} SE(g)$$
.

Contrasts for mice lifetime dataset

For these contrasts:

- 1. Mean lifetimes for N/R50 and R/R50 diet are different.
- 2. Mean lifetimes for N/R40 is different than for N/R50 and R/R50 combined.
- 3. Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie diets combined.

$$H_0: \gamma = 0 \qquad H_A: \gamma \neq 0:$$

(STAT587@ISU)

$$\begin{array}{ll} \gamma_{1} = & \mu_{R/R50} - \mu_{N/R50} \\ \gamma_{2} = & \mu_{N/R40} - \frac{1}{2}(\mu_{N/R50} + \mu_{R/R50}) \\ \gamma_{3} = & \frac{1}{4}(\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro}) \\ & - \frac{1}{2}(\mu_{NP} + \mu_{N/N85}) \end{array}$$

	N/N85	N/R40	N/R50	NP	R/R50	lopro
early rest - none @ 50kcal	0.00	0.00	-1.00	0.00	1.00	0.00
40kcal/week - 50kcal/week	0.00	1.00	-0.50	0.00	-0.50	0.00
lo cal - hi cal	-0.50	0.25	0.25	-0.50	0.25	0.25

R

Fit the Multiple Regression Model

```
m = lm(Lifetime ~ Diet, data = Sleuth3::case0501)
summary(m)
Call:
lm(formula = Lifetime ~ Diet. data = Sleuth3::case0501)
Residuals:
    Min
                  Median
                                30
                                       Max
-25.5167 -3.3857
                  0.8143
                           5.1833 10.0143
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
            32.6912
                        0.8846
                              36.958 < 2e-16 ***
(Intercept)
DietN/R40
            12,4254
                        1.2352 10.059 < 2e-16 ***
DietN/R50
           9 6060
                      1.1877
                                8.088 1.06e-14 ***
DietNP
            -5.2892
                      1.3010 -4.065 5.95e-05 ***
           10.1945
                      1.2565
                                8.113 8.88e-15 ***
DietR/R50
Dietlopro
             6.9945
                        1.2565
                                5.567 5.25e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.678 on 343 degrees of freedom
Multiple R-squared: 0.4543.Adjusted R-squared: 0.4463
F-statistic: 57.1 on 5 and 343 DF, p-value: < 2.2e-16
```

(STAT587@ISU) R07 - Contrasts August 28, 2024 8 / 27

R

Estimate Group Means

```
library("emmeans")
em = emmeans(m, ~ Diet)
em
                SE df lower.CL upper.CL
 Diet
      emmean
        32.7 0.885 343
 N/N85
                          31.0
                                  34.4
 N/R40
        45.1 0.862 343
                          43.4
                                  46.8
 N/R50
       42.3 0.793 343
                          40.7
                                43.9
        27.4 0.954 343
                                 29.3
 NP
                          25.5
 R/R50
       42.9 0.892 343
                          41.1
                                 44.6
lopro
       39.7 0.892 343
                          37.9
                                  41.4
Confidence level used: 0.95
```

(STAT587@ISU) R07 - Contrasts August 28, 2024 9 / 27

R

```
K list
$`early rest - none @ 50kcal`
[1] 0 0 -1 0 1 0
$'40kcal/week - 50kcal/week'
[1] 0.0 1.0 -0.5 0.0 -0.5 0.0
$`lo cal - hi cal`
[1] -0.50 0.25 0.25 -0.50 0.25 0.25
```

```
co = contrast(em, K list)
# p-values (and posterior tail probabilities)
CO
contrast
                        estimate SE df t.ratio p.value
early rest - none @ 50kcal 0.589 1.19 343 0.493 0.6223
40kcal/week - 50kcal/week 2.525 1.05 343 2.408 0.0166
lo cal - hi cal 12.450 0.78 343 15.961 <.0001
# confidence/credible intervals
confint(co)
contrast
                        estimate SE df lower.CL upper.CL
early rest - none @ 50kcal 0.589 1.19 343 -1.759 2.94
40kcal/week - 50kcal/week 2.525 1.05 343 0.463 4.59
lo cal - hi cal 12.450 0.78 343 10.915
                                                  13.98
```

Summary

- Contrasts are linear combinations of means where the coefficients sum to zero
- t-test tools are used to calculate pvalues and confidence intervals

Sulfur effect on scab disease in potatoes

The experiment was conducted to investigate the effect of sulfur on controlling scab disease in potatoes. There were seven treatments: control, plus spring and fall application of 300, 600, 1200 lbs/acre of sulfur. The response variable was percentage of the potato surface area covered with scab averaged over 100 random selected potatoes. A completely randomized design was used with 8 replications of the control and 4 replications of the other treatments.

Cochran and Cox. (1957) Experimental Design (2nd ed). pg96 and Agron. J. 80:712-718 (1988)

Scientific questions:

- Does sulfur have any impact at all?
- What is the difference between spring and fall application of sulfur?
- What is the effect of increased sulfur application?

```
Warning: There was 1 warning in 'mutate()'.
i In argument: 'application = fct_explicit_na(application)'.
Caused by warning:
! 'fct_explicit_na()' was deprecated in forcats 1.0.0.
i Please use 'fct_na_value_to_level()' instead.
   inf trt row col sulfur application treatment
     9
        F3
                       300
                                   fall
                                               F3
    12
                              (Missing)
                                                 0
                         0
    18
        S6
                       600
                                 spring
                                               S6
    10 F12
                      1200
                                   fall
                                              F12
                  4
    24
        S6
                       600
                                               S6
                                 spring
    17 S12
                      1200
                                 spring
                                              S12
    30
        S3
                       300
                                 spring
                                               S3
    16
        F6
                       600
                                   fall
                                               F6
    10
         0
                         0
                              (Missing)
                                                0
        S3
                       300
                                 spring
                                               S3
     4 F12
                      1200
                                   fall
                                              F12
        F6
                                               F6
                       600
                                   fall
        S3
                       300
                                 spring
                                               S3
    24
                         0
                              (Missing)
                                                 0
    29
                         0
                              (Missing)
                                                 0
    12
        S6
                       600
                                 spring
                                                S6
        F3
                       300
                                   fall
                                               F3
18
     7 S12
                      1200
                                              S12
                                 spring
    18
       F6
19
                       600
                                   fall
                                               F6
20
    30
         0
                         0
                              (Missing)
                                                0
    18
        F6
                       600
                                   fall
                                               F6
    16 512
                      1200
                                 spring
                                              S12
```

Design

Completely randomized design potato scab experiment

row 3

4

2

_

F3 0 S6 F12 S6 S12 S3 F6 0 S3 F12 F6 S3 0 0 S6 F3 S12 F6 0 F6 S12 F3 F12 S3 0 S6 F12 F3 S12 0 О

1 2 3 4 5 6 7 8

col

Design

Treatment visualization

(STAT587@ISU) R07 - Contrasts August 28, 2024

(STAT587@ISU) R07 - Contrasts August 28, 2024

(STAT587@ISU) R07 - Contrasts August 28, 2024

```
Warning: 'qplot()' was deprecated in ggplot2 3.4.0.
This warning is displayed once every 8 hours.
Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was generated.
```


Model

 Y_{ij} : avg % of surface area covered with scab for plot i in treatment j for $j=1,\ldots,7$.

Assume $Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$.

Hypotheses:

- Difference amongst any means: One-way ANOVA F-test
- Any effect:
- Contrast: control vs sulfur
- Fall vs spring:
 Contrast: fall vs spring applications
- Sulfur level:
 Contrast: linear trend

Contrasts

• Sulfur effect: Any sulfur vs none

$$\gamma = \frac{1}{6}(\mu_{F12} + \mu_{F6} + \mu_{F3} + \mu_{S3} + \mu_{S6} + \mu_{S12}) - \mu_O$$
$$= \frac{1}{6}(\mu_{F12} + \mu_{F6} + \mu_{F3} + \mu_{S3} + \mu_{S6} + \mu_{S12} - 6\mu_O)$$

Fall vs spring: Contrast comparing fall vs spring applications

$$\gamma = \frac{1}{3}(\mu_{F12} + \mu_{F6} + \mu_{F3}) + 0\mu_O - \frac{1}{3}(\mu_{S3} + \mu_{S6} + \mu_{S12})$$
$$= \frac{1}{3}[1\mu_{F12} + 1\mu_{F6} + 1\mu_{F3} + 0\mu_O - 1\mu_{S3} - 1\mu_{S6} - 1\mu_{S12}]$$

Contrasts (cont.)

- Sulfur linear trend
 - The group sulfur levels (X_j) are 12, 6, 3, 0, 3, 6, and 12 (100 lbs/acre)
 - and a linear trend contrast is $X_j \overline{X}$

$$\gamma = 6\mu_{F12} + 0\mu_{F6} - 3\mu_{F3} - 6\mu_O - 3\mu_{S3} + 0\mu_{S6} + 6\mu_{S12}$$

Trt	F12	F6	F3	0	S3	S6	S12	Div
Sulfur v control	1	1	1	-6	1	1	1	6
	1	1	1	0	-1	-1	-1	3
Linear Trend	6	0	-3	-6	-3	0	6	1


```
em <- emmeans(m. "treatment): em
 treatment emmean SE df lower.CL upper.CL
 F12
            5.75 3.35 25
                            -1.15
                                     12.7
 F6
           15.50 3.35 25
                             8.60
                                     22.4
 F3
            9.50 3.35 25
                             2.60
                                     16.4
 0
           22.62 2.37 25
                            17.74
                                     27.5
 S3
           16.75 3.35 25
                             9.85
                                     23.7
 S6
           18.25 3.35 25
                            11.35
                                     25.2
 S12
           14.25 3.35 25
                            7.35
                                     21.2
Confidence level used: 0.95
co <- contrast(em. K)
confint(co)
                             SE df lower.CL upper.CL
 contrast
                 estimate
 sulfur - control
                   -9.29 2.74 25
                                     -14.9 -3.657
 fall - spring -6.17 2.74 25 -11.8 -0.532
 linear trend
                   -94.50 34.82 25
                                    -166.2 -22.779
Confidence level used: 0.95
```


Summary

For this particular data analysis

- Significant differences in means between the groups (ANOVA $F_{6,25}=3.61$ p=0.01)
- ullet Having sulfur was associated with a reduction in scab % of 9 (4,15) compared to no sulfur
- Fall application reduced scab % by 6 (0.5,12) compared to spring application
- Linear trend in sulfur was significant (p=0.01)

- Concerned about spatial correlation among columns
- Consider a logarithm of the response
 - CI for F12 (-1.2, 12.7)
 - Non-constant variance (residuals vs predicted, sulfur, application)