

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA TAREA 1

Pregunta 1

Pregunta 1.1

Si definimos:

$$\varphi = (p_1 \iff p_2) \land \dots \land (p_{n-1} \iff p_n)$$

$$\gamma = ((p_1 \implies p_2) \land \dots \land (p_{n-1} \implies p_n)) \land ((p_n \implies p_{n-1}) \land \dots \land (p_2 \implies p_1))$$

Desarrollando podemos ver que se nos pide demostrar la siguiente equivalencia:

$$\varphi \equiv \gamma$$

Primero debemos recordar la siguiente equivalencia lógica vista en clases:

$$p \iff q \equiv (p \implies q) \land (q \implies p)$$

Usando lo anterior vemos que:

$$\varphi \equiv ((p_1 \implies p_2) \land (p_2 \implies p_1)) \land \cdots \land ((p_{n-1} \implies p_n) \land (p_n \implies p_{n-1}))$$

Luego por asociatividad se cumple que:

$$\varphi \equiv (p_1 \implies p_2) \land (p_2 \implies p_1) \land \cdots \land (p_{n-1} \implies p_n) \land (p_n \implies p_{n-1})$$

Finalmente, por conmutatividad:

$$\varphi \equiv (p_1 \implies p_2) \land \dots \land (p_{n-1} \implies p_n) \land (p_n \implies p_{n-1}) \land \dots \land (p_2 \implies p_1) \equiv \gamma$$

- (4 Puntos) Demostración correcta y clara.
- (3 Puntos) Demostración con pequeños errores u omisiones.
- (0 Puntos) En otros casos.

Pregunta 1.2

 (\Longrightarrow)

Sea $v = (v_1, v_2, \dots, v_n)$ una valuación cualquiera tal que:

$$\longleftrightarrow_{i=1}^{n} p_i(v) = 1$$

Luego suponga que:

$$\exists i \in \{1, \dots, n-1\} \text{ tal que } v_i \neq v_{i+1}$$

Es decir:

$$\longleftrightarrow_{i=1}^{n} p_i(v) = (p_1 \iff p_2) \land \dots \land \underbrace{(p_i \iff p_{i+1})}_{0} \land \dots \land (p_{n-1} \iff p_n)$$

Lo que por definición de conjunción significaría que:

$$\longleftrightarrow_{i=1}^{n} p_i(v) = 0$$

Por lo tanto notamos que se debe cumplir que $v_i = v_{i+1} \ \forall i \in \{1, \dots, n-1\}.$

$$(\longleftarrow)$$

Por hipótesis sabemos que, dada una valuación $v = (v_1, v_2, \dots, v_n)$, se cumple lo siguiente:

$$v_i = v_{i+1} \ \forall i \in \{1, \dots, n-1\}$$

Luego por definición de conjunción y de bicondicional se tiene que:

$$\longleftrightarrow_{i=1}^{n} p_i(v) = 1$$

- (4 Puntos) Demostración correcta y clara.
- (3 Puntos) Demostración con pequeños errores u omisiones.
- (0 Puntos) En otros casos.

Pregunta 2

Pregunta 2.1

Esta afirmación era FALSA. Bastaba con dar un contraejemplo:

Consideremos $\Sigma = \{p \lor q\}, \alpha = \neg p \land q$. Construyamos la parte de la tabla de verdad que nos sirve para el contraejemplo:

p	q	Σ	α	$\neg \alpha$
1	1	1	0	1
1	0	1	1	0

Luego:

$$(\Sigma(1,1) = 1 \land \alpha(1,1) = 0) \implies \Sigma \not\models \alpha$$

у

$$(\Sigma(1,0) = 1 \land \neg \alpha(1,1) = 0) \implies \Sigma \not\models \neg \alpha$$

Finalmente, $\Sigma \not\models \neg \alpha \land \Sigma \not\models \alpha$.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (4 puntos) Por dar un contraejemplo correcto.
- (3 puntos) Por errores menores.
- (0 puntos) En otro caso.

Pregunta 2.2

Esta afirmación era VERDADERA. Hay que demostrarla.

 $\stackrel{\longleftarrow}{}$ Primero demostraremos que si Σ es satisfacible por 0 o por exactamente una valuación, entonces ocurre $\Sigma \models \neg \alpha \lor \Sigma \models \alpha$. Veamos ambos casos:

- 1. Caso 1: Σ no es satisfacible (inconsistente). Cada vez que una valuación satisface Σ (o sea, nunca, pues es inconsistente), entonces también se satisface α . Luego, por la definición de consecuencia lógica, se tiene que $\Sigma \models \alpha$.
- 2. Caso 2: Σ es satisfacible sólo por la valuación v. Para que una fórmula β sea consecuencia lógica de Σ sólo basta que $\beta(v)=1$ (por la definción de consecuencia lógica). Así, si $\alpha(v)=1$, tenemos que $\Sigma \models \alpha$. Pero si $\alpha(v)=0$, entonces $\neg \alpha(v)=1$, y por lo tanto, $\Sigma \models \neg \alpha$. Concluímos que $\Sigma \models \alpha \vee \Sigma \models \neg \alpha$.

 \Rightarrow Este inciso es equivalente a demostrar que si Σ no es inconsistente, y tampoco es satisfacible por exactamente una valuación (en otras palabras, si Σ es satisfacible por dos o más valuaciones), entonces Σ no es completo.

Supongamos que hay dos valuaciones que satisfacen Σ , llamadas v_1, v_2 . Luego, sabemos que con CNF podemos construir una tabla de verdad que tenga la siguiente forma:

	Σ	α_{Σ}	$\neg \alpha_{\Sigma}$
v_1	1	0	1
v_2	1	1	0

Es decir, podemos construir una fórmula α_{Σ} tal que $\alpha_{\Sigma}(v_1) = 0$, $\alpha_{\Sigma}(v_2) = 1$, y el valor que tome α_{Σ} con las otras valuaciones no nos importa. Luego, con un argumento similiar al de la pregunta 2,1, podemos justificar que $\Sigma \not\models \neg \alpha_{\Sigma} \land \Sigma \not\models \alpha_{\Sigma}$. Por lo tanto, $(\forall \Sigma)(\exists \alpha_{\Sigma}) : \Sigma \not\models \neg \alpha_{\Sigma} \land \Sigma \not\models \alpha_{\Sigma}$, donde α_{Σ} es una fórmula que se puede construir con CNF de forma que cumpla las condiciones impuestas en la tabla mostrada más arriba, para dos valuaciones que satisfagan a Σ . Por lo tanto, si Σ tiene dos o más valuaciones que lo satisfacen, entonces no será completo.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (4 punto) Por ambas implicancias correctas.
- (3 puntos) Por una implicancia correcta.
- (0 puntos) En otro caso.