Работа 2.1.6

Эффект Джоуля-Томсона

Цель работы: 1) определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычислить по результатам опытов коэффициенты a и b модели Вандер-Ваальса.

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат жидкостной; дифференциальная термопара; вольтметр универсальный (мультиметр); балластный баллон; манометр.

Эффектом Дэсоуля—Томсона называется изменение температуры газа, медленно просачивающегося из области высокого в область низкого давления в условиях тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному, при таком течении температура газа не меняется. Таким образом, в эффекте Джоуля—Томсона проявляется отличие исследуемого газа от идеального.

В данной работе исследуется изменение температуры углекислого газа при его медленном течении по трубке с пористой перегородкой (см. рис. 1). Трубка хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки в область с атмосферным давлением P_2 . Перепад давления $|\Delta P| = P_1 - P_2$ из-за большого сопротивления перегородки может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля—Томсона определяется по разности ΔT температур газа до и после перегородки.

Рис. 1. Принципиальная схема эффекта Джоуля-Томсона

Эффект Джоуля—Томсона. Получим теоретическое выражения для расчёта величины эффекта Джоуля—Томсона. Рассмотрим стационарный поток газа между сечениями I и II трубки до перегородки и после неё. Пусть через трубку прошёл $\Delta \nu = 1$ моль газа с молярной массой μ . Пусть V_1 и V_2 — молярные объёмы газа в сечениях I и II, P_1 и P_2 — соответствующие давления, U_1 и U_2 — внутренние энергии в расчёте на 1 моль. Для того чтобы ввести в трубку порцию газа объёмом V_1 , над ней нужно совершить внешнюю работу $A_1 = P_1 V_1$. Выходя через сечение II, эта же порция газа сама совершает работу $A_2 = P_2 V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то:

$$A_1 - A_2 = P_1 V_1 - P_2 V_2 = (U_2 + \mu v_2^2 / 2) - (U_1 + \mu v_1^2 / 2), \tag{1}$$

где кроме изменения внутренней энергии U учтена кинетическая энергия течения $\mu v_{1,2}^2/2$. Определим молярную энтальпию газа как H=U+PV. Тогда уравнение (1) можно переписать как

$$H_1 - H_2 = \frac{\mu}{2} (v_2^2 - v_1^2). \tag{2}$$

Это — не что иное, как *уравнение Бернулли* для течения газа, учитывающее его сжимаемость и внутреннюю энергию.

Внутри пористой перегородки газ испытывает сильное трение. Это приводит к необратимому переходу почти всей кинетической энергии газа в тепловую. Поскольку оболочка системы является теплоизолирующей, всё выделившееся тепло передаётся газу и уносится с потоком. Тогда закон сохранения энергии (2) остаётся в силе, однако его правая часть (кинетическая энергия) оказывается пренебрежимо малой. Тогда приходим к выводу, что эффект Джоуля—Томсона — это процесс, в котором сохраняется энтальпия:

$$H_1 \approx H_2.$$
 (3)

Энтальпия — функция состояния, зависящая, в общем случае, как от температуры T, так и от давления P. Поэтому в результате просачивания газа под действием перепада давления, равного по модулю $|\Delta P| = P_1 - P_2$, возникнет изменение его температуры $\Delta T = T_2 - T_1$. Коэффициентом Дэкоуля-Томсона называют отношение

$$\mu_{A-T} = \frac{\Delta T}{\Delta P}.\tag{4}$$

Как показывает опыт и теория (см. ниже), знак коэффициента $\mu_{\rm д-T}$ может быть различным: он зависит как от сорта газа, так и от начальной температуры. Поскольку всегда $\Delta P < 0$, положительный $\mu_{\rm д-T} > 0$ означает, что газ в процессе охлаждается, $\Delta T < 0$ (и наоборот). На практике эффект Джоуля–Томсона используют для получения низких температур («метод дросселирования*»), и именно поэтому понижение температуры принято считать «положительным» эффектом. Измерение коэффициента Джоуля–Томсона (для углекислого газа) и является основной целью данной работы.

Роль трения. Отметим, что эффект Джоуля—Томсона относится к *необратимым* (*не квазистатическим*!) процессам без внешнего подвода тепла, Q=0, в котором энтропия газа может только возрастать $\Delta S>0$. Неквазистатичность процесса следует из отсутствия механического равновесия в любой момент времени: $P_1\neq P_2$. А если попытаться запустить газ в обратном направлении, то это будет возможно только при $P_1< P_2$, но в таком случае знак эффекта не изменится, а значит и газ в исходное состояние не вернётся, то есть процесс действительно необратим. Фундаментальной причиной необратимости и роста энтропии является внутреннее выделение тепла из-за трения газа о стенки пористой перегородки.

С практической точки зрения важно понимать, что тепловыделение при трении может существенно исказить результаты опыта! Дело в том, что в начале процесса это тепло может пойти не на нагрев самого газа, как предполагает теория, а на нагрев *трубки* и других частей установки. Лишь после того как температура трубки установится, и теплообмен между трубкой и газом прекратится, тогда газ станет уносить с собой *всё* выделенное им в перегородке тепло, и формула (3) становится применимой. Последнее, конечно, справедливо при условии, что теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через её стенки.

Модель газа Ван-дер-Ваальса. В *идеальном* газе изменение температуры в процессе Джоуля—Томсона не происходит — эффект *от от ут стверен*! Действительно, для него $\Delta H^{\text{ид.}} = C_P \Delta T = 0$, откуда $\Delta T = 0$. Это можно интерпретировать так, что вся совершённая над газом внешняя работа была превращена в выделившееся из-за трения тепло, в результате чего внутренняя энергия, а значит и температура идеального газа не изменились.

^{*}От нем. drosseln — ограничивать, гасить.

В реальном газе внутренняя энергия зависит не только от температуры, но и от молярного объёма (или плотности) газа: U(T,V). Поэтому внешняя работа частично идёт также и на изменение внутренней энергии газа ($\Delta U \neq 0$), что сопровождается изменением его температуры ($\Delta T \neq 0$). Рассмотрим простейшую модель реального газа: газ Ван-дер-Ваальса. Термическое и калорическое уравнения состояния для него, как известно, имеют следующий вид:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT,$$
(5)

$$U = C_V T - \frac{a}{V}. (6)$$

(теплоёмкость C_V газа для простоты считаем не зависящей от температуры). Напомним, что константа a отвечает за притяжение молекул на дальних расстояниях, а константа b отвечает за их отталкивание при близком контакте и имеет смысл минимально возможного молярного объёма газа. Размерности констант $[a] = \frac{Дж \cdot м^3}{моль^2}$, $[b] = \frac{M^3}{MOЛЬ}$.

Отсюда энтальпия газа Ван-дер-Ваальса:

$$H = U + PV = C_V T + RT \frac{V}{V - b} - \frac{2a}{V}.$$
 (7)

Отметим сразу, что эта формула не удобна в использовании, поскольку в эксперименте измеряется давление газа P и температура T, а его молярный объём пришлось бы вычислять из кубического относительно V уравнения (5).

Для упрощения можно воспользоваться следующим обстоятельством: газ в опыте является достаточно разреженным (его давление не превышает 5 атм) и довольно близок к идеальному. Поэтому его отличия от идеального следует учитывать только в эффекте Дэкоуля-Томсона, но не при вычислении объёма V по известным T и P. То есть, будем считать справедливой формулу (7), но объём в ней найдём из уравнения Менделеева-Клапейрона $V \approx \frac{RT}{P}$. Кроме того, можно учесть, что для разреженного газа молярный объём V мал по сравнению с минимальным b, и можно положить $\frac{V}{V-b} \approx 1 + \frac{b}{V}$. В результате получим:

$$H \approx C_P T + P \left(b - \frac{2a}{RT} \right) \tag{8}$$

(здесь учтено также, что $C_V + R \approx C_P$).

Наконец, в качестве последнего упрощения примем, что относительное изменение температуры в опыте мало: $\Delta T/T \ll 1$ (в рамках нашего опыта $\Delta T/T \sim 10^{-2}$). Тогда полагая в этом приближении $\Delta H=0$ для уравнения (8), получим окончательное выражение для коэффициента Джоуля–Томсона:

$$\mu_{\text{A-T}} = -\frac{\Delta T}{|\Delta P|} \approx -\frac{b - \frac{2a}{RT}}{C_P}.$$
(9)

Эта формула совпадает с формулой (1.35) теоретического Введения, полученной в приближении бесконечно малых изменений давления и температуры («дифференциальный» эффект Джоуля–Томсона). Из проведённого вывода видно, что её можно применять даже в случае, когда относительное приращение давления не мало (в нашем опыте $\Delta P/P \lesssim 4$, но $\Delta T/T \sim 10^{-2}$).

Температура инверсии. Из формулы (9) видно, что эффект Джоуля–Томсона для не очень плотного газа зависит от соотношения параметров a и b, которые оказывают противоположное влияние на знак эффекта. Если силы притяжения между молекулами велики, то основную роль играет член, содержащий a, и газ при расширении охлаждается: $\Delta T < 0$. В обратном случае, когда доминирует отталкивание, т. е. слагаемое b, газ нагревается: $\Delta T > 0$. Видно также, что существует *температура инверсии* эффекта Джоуля–Томсона

$$T_{\text{\tiny LHB}} = \frac{2a}{Rb},\tag{10}$$

при прохождении через которую эффект меняет знак. Газ нагревается ($\mu < 0$, $\Delta T > 0$) при $T > T_{\rm инв}$ и охлаждается ($\mu > 0$, $\Delta T < 0$) при $T < T_{\rm инв}$. Для используемого в работе углекислого газа температура инверсии $T_{\rm инв} \sim 1500~{\rm K}$ (при $P \sim 1$ атм), и при комнатной температуре он будет охлаждаться. Среди всех газов только у гелия ($T_{\rm инв} = 46~{\rm K}$) и водорода ($T_{\rm инв} = 205~{\rm K}$) температура инверсии значительно ниже комнатной, поэтому они при обычных температурах при дросселировании нагреваются.

Сравнение теории и эксперимента. Известно, что модель газ Ван-дер-Ваальса может быть применена к описанию критического состояния вещества. Параметры a и b могут быть найдены из критических температуры и давления как $a=27RT_{\rm Kp}b/8$, и $b=RT_{\rm Kp}/8P_{\rm Kp}$. Соответственно, критическая температура в модели равна $T_{\rm Kp}=\frac{8a}{27Rb}=\frac{4}{27}T_{\rm Инв}\approx T_{\rm Инв}/6$,7. Как видно, интервал между $T_{\rm Kp}$ и $T_{\rm Инв}$ довольно велик. Поэтому трудно ожидать от сильно упрощённой модели Ван-дер-Ваальса хорошей точности во всём диапазоне температур. Например, для углекислого газа экспериментальная критическая температура равна $T_{\rm Kp}=304~{\rm K}$, что даёт $T_{\rm Инв}/T_{\rm Kp}\approx 5$. Для других газов результаты аналогичны, отношения этих температур лежат в диапазоне $T_{\rm Инв}/T_{\rm Kp}\sim 4-8$. То есть в данном случае можно говорить лишь о качественном совпадении результатов теории с экспериментом *по порядку величины*.

Кроме того, следует понимать, что формула (9) также получена с большим количеством приближений (в частности, в приближении постоянной теплоёмкости $C_P = {\rm const}$), поэтому экстраполировать её в область температур, существенно отстоящих от исследуемых в эксперименте, заведомо некорректно. Поскольку для углекислого газа $T_{\rm инв} \sim 1500~{\rm K} \gg 300~{\rm K}$, оцененное по (9) значение $T_{\rm инв}$ может отличаться от реального в несколько раз.

При больших перепадах давления, например, при дросселировании от 200 до 1 атм («интегральный эффект Джоуля–Томсона»), как это нередко бывает в промышленных установках, формулой (9) также пользоваться нельзя. Остаётся верным лишь общее соотношение (3). При этом связь между температурой и давлением находится с помощью специальных диаграмм, например, кривых H(T,P) = const. Такие диаграммы строятся по экспериментальным данным и широко используются в технике.

Экспериментальная установка

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рис. 2. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ — двуокись углерода ${\rm CO_2}$. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5) мм) подобраны так, чтобы обеспечить оптимальный поток

Рис. 2. Экспериментальная установка

газа при перепаде давлений $\Delta P \leq 4$ атм (расход газа составляет $Q \sim 10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля–Томсона создаётся достаточная для надёжного измерения разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется встроенным в термостат термометром. Термостат снабжён автоматическим терморегулятором, поддерживающим постоянной температуру воды в нём с точностью $\pm 0.1^{\circ}\mathrm{C}$.

Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля В, т.е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр М измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением $P_2 = P_A$, этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $|\Delta P| = P_1 - P_2$.

Разность температур газа до и после перегородки измеряется дифференциальной термопарой медь-константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к универсальному цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены для уменьшения теплоотдачи излучением. Для уменьшения теплоотдачи за счёт конвекции один конец трубы Дьюара уплотнён кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создаёт перепада давлений между внутренней полостью трубы и атмосферой.

Измерение температур. Если концы (спаи) термопары помещены в точки с разными температурами, в её цепи возникает разность потенциалов V ($mepmo \mathcal{I}C$), которая и измеряется вольтметром. Зависимость V(t) является, строго говоря, нелинейной, поэтому для восстановления температуры по термо $\mathcal{I}C$, как правило, необходимо использовать экспериментально полученные spadyuposouhuse kpususe. В нашей работе измеряются manuse перепады температур, поэтому удобно использовать uyse cmsumenshocms термопары, т.е. наклон зависимости напряжения от температуры рабочего спая dV/dt. Тогда изменение термо $\mathcal{I}C$ ΔV связано с разностью температур спаев Δt как $\Delta V \approx \frac{dV}{dt} \cdot \Delta t$. Чувствительность термопары зависит от температуры второго спая, т.е. в нашем случае — от температуры термостата. Соответствующие значения чувствительности для медно-константановой термопары приведены в табл. 1. Погрешность данных составляет ± 0.3 мкВ/°С.

Чувствительность медно-константановой термопары

Таблица 1

Температура t_0 , °С 0 - 1010 - 2020-30 30 - 4040 - 5039,1 40,7 41,5 42,4 Чувствительность $\frac{dV}{dt}$, мкВ/°С 39,8 90-100 50-60 60 - 7070-80 80-90 Температура t_0 , °С 43,2 Чувствительность $\frac{dV}{dt}$, мкВ/°С 44,1 44,9 45,6 46,4

ЗАДАНИЕ

Подготовка и настройка приборов

- 1. Перед началом работы убедитесь в том, что термостат заполнен водой, а все электрические приборы заземлены. Следует помнить, что при используемых в работе перепадах давления ($\Delta P \leqslant 4$ атм) величина эффекта не превышает 5°C (V < 200 мкВ по показаниям вольтметра), так что установка весьма чувствительна к электрическим и тепловым помехам.
- 2. Включите термостат и ознакомьтесь с инструкцией по работе с ним. Установите температуру регулирования, равную комнатной.
- 3. Включите и подготовьте к работе вольтметр (мультиметр) 7, следуя расположенной на столе технической инструкции.
- 4. Запишите знак и величину показаний вольтметра в отсутствие потока газа (вентиль В закрыт, $\Delta P = 0$) они могут быть ненулевыми из-за различных паразитных (например, контактных) ЭДС. Используйте эту величину для корректировки показаний вольтметра, либо воспользуйтесь кнопкой установки нуля вольтметра (при наличии).
- 5. Изучите шкалу манометра М, запишите цену деления и его предел измерений.

Измерения

- 6. Откройте регулирующий вентиль В настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм (если перепад давления при полностью открытом кране меньше 4 атм, следует сообщить об этом лаборанту).
- 7. После открытия вентиля температура (показания вольтметра термопары) сразу начнёт изменяться. Однако для корректного измерения необходимо дождаться завершения переходных процессов. После подачи давления подождите 7–10 минут,

и убедившись в том, что показания вольтметра больше не изменяются, запишите их.

8. При помощи вентиля В установите давление на 0.3-0.5 атм меньше первоначального. Через ~ 5 минут, когда вновь установятся стационарные давление и разность температур, запишите показания манометра и вольтметра.

Проведите измерение зависимости температурного эффекта ΔT от перепада давления $|\Delta P|$ при комнатной температуре термостата. При каждом измерении обязательно дождитесь установления нового стационарного состояния (не менее 5 минут)! Рекомендуется измерить 5–6 значений в диапазоне $|\Delta P|$ от 1,5 до 4 атм.

Замечание. Не рекомендуется использовать малые перепады давления (менее 1,5 атм), поскольку при малой скорости потока газа нарушается условие отсутствия теплообмена газа с окружающей средой.

9. Повторите серию измерений $\Delta T(\Delta P)$ ещё для 4-5 температур термостата в диапазоне от 30 до 70°С. Установите новую температуру на термостате и дождитесь его прогрева. После достижения целевой температуры подождите установления равновесия 7–10 минут. Снова откройте вентиль В на максимум и в течение ещё 5–7 минут подождите установления нового стационарного состояния.

Обработка результатов

- 10. Отложив экспериментальные точки на графике $\Delta T(\Delta P)$, по наклону зависимостей определите коэффициенты Джоуля—Томсона $\mu_{\text{д-T}}$ для каждой температуры. При обработке результатов учтите, что чувствительность термопары медь—константан зависит от рабочей температуры (см. табл. 1). Оцените погрешности опыта и сравните значения коэффициентов Джоуля—Томсона с табличными для разных температур.
- 11. Постройте график зависимости коэффициента Джоуля—Томсона $\mu_{\text{д-т}}$ от обратной температуры 1/T. Убедитесь, что в пределах погрешностей точки ложатся на прямую линию. По коэффициентам наилучшей прямой определите постоянные a и b для углекислого газа в модели Ван-дер-Ваальса (теплоёмкость C_P для CO_2 найдите по справочным данным), а также оцените температуру инверсии $T_{\text{инв}}$. Оцените погрешности результатов.
- 12. Сравните полученные значения a, b, $T_{\text{инв}}$ с табличными. Учтите, что табличные данные для a и b вычислены в модели Ван-дер-Ваальс исходя из экспериментальных данных для критической точки. Что можно сказать на о точности модели Ван-дер-Ваальса на основании ваших измерений?

Исправлено 20.02.2023

Воробъёв A.C.Попов $\Pi.B.$

Контрольные вопросы

- 1. Чем отличаются модели реальных газов от идеального? Как эти различия можно обнаружить на опыте?
- 2. Какие эффекты учитывает модель Ван-дер-Ваальса? Каков физический смысл констант a и b?
- 3. При каких условиях должен протекать процесс Джоуля–Томсона? Какая величина сохраняется в процессе Джоуля–Томсона?
- 4. Является ли процесс Джоуля–Томсона квазистатическим? Как изменяется энтропия в этом процессе?
- 5. Отчего зависит знак эффект Джоуля—Томсона? Что такое температура инверсии? Как температура инверсии связана с критической температурой?
- 6. Объясните качественно знак эффекта Джоуля–Томсона при $b \to 0$ и $a \to 0$.
- 7. Исходя из параметров опыта оцените кинетическую энергию потока и покажите, что её можно считать пренебрежимо малой.
- 8. Исходя из экспериментальных данных вычислите изменение молярной внутренней энергии газа. Увеличивается или уменьшается внутренняя энергия?
- 9. Оцените относительную величину поправок Ван-дер-Ваальса к уравнению состояния газа в условиях опыта. Насколько корректно пользоваться уравнением идеального газа для вычисления его молярного объёма по температуре и давлению?
- 10. Получите точное выражение для величины эффекта Джоуля–Томсона в модели Вандер-Ваальса в следующих предельных случаях: 1) a = 0, $b \neq 0$ и 2) b = 0, $a \neq 0$.