4.11

Problem: Show that if A is a decidable set, then so is its complement. Then, show that if A and B are decidable sets, then so are $A \cup B$ and $A \cap B$.

Solution: Let f_A be the function that computes χ_A , and let f_B be the function that computes χ_B .

We define g_A , which computes $\mathbb{N} \setminus A$, by composing f_A with the partial function that computes 1 if the input is 0 and computes 0 if the input is 1.

To define $f_{A \cup B}$ and $f_{A \cap B}$, we take

$$f_{A \cup B} = f_A + f_B - (f_A)(f_B)$$

 $f_{A \cap B} = (f_A)(f_B)$,

in which we use the multiplication and addition operations composed with fA and fB.

Extra Problem 1

Problem: Give an example of a relation that is not computable.

Solution: Let $\{T_m\}_{m\in\mathbb{N}}$ be a denumeration of the set of all Turing machines with one input. We define the relation $R\subseteq\mathbb{N}\times\mathbb{N}$ with the membership $(m,n)\in R$ if and only if $T_m(n)$ halts.

Since it is not possible to compute the halting problem, we know that the relation R is not computable.

Extra Problem 2

Problem: Suppose R, S, T are relations with $(a, b) \in T$ if and only if $(a, b) \in R$ or $(a, b) \in S$.

Extra Problem 3

Problem: Prove that if $R \subseteq \mathbb{N} \times \mathbb{N}$ is computable, then so too is $\mathbb{N} \times \mathbb{N} \setminus R$.

Extra Problem 7

Problem: Let

$$\pi(n) = \begin{cases} 1 & \text{n prime} \\ 0 & \text{else} \end{cases}.$$

Show that π is primitive recursive.

Solution: Consider

$$f(x, z) = \begin{cases} 1 & z \text{ prime, no primes } p \text{ with } x$$