

El MÉTODO ρ DE POLLARD

Alan Reyes-Figueroa Teoría de Números

(AULA 23) 29.SEPTIEMBRE.2023

Suponga que n es un número compuesto muy grande. Usando un test de pseudoprimalidad, podemos mostrar que n es compuesto sin si quiera exhibir un divisor propio de n.

Calcular una factoración de n implica mucho más trabajo. Si p denota el menor factor primo de n, podemos localizar p luego de p pruebas. Como $p \le \sqrt{n}$, esto requiere a lo sumo \sqrt{n} operaciones.

Describimos a continuación un método para localizar el menor factor primo p de n con orden $O(\sqrt{p})$ operaciones.

Lema

Suponga $1 \le k \le n$, y que los números u_1, u_2, \ldots, u_k son elegidos de forma independiente dentro del conjunto $\{1, 2, ldots, n\}$. La probabilidad de que todos los u_j son distintos es

$$\mathbb{P}=\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\ldots\left(1-\frac{k-1}{n}\right).$$

Ejemplo: (Lema del Cumpleaños).

Como ejemplo, tomemos n=365. y k=23, la probabilidad en cuestión es menor a $\frac{1}{2}$. En otras palabras, cuando k=23, la probabilidad de que al elegir al azar 23 personas, al menos 2 de ellas tengan el mismo día de cumpleaños es mayor a $\frac{1}{2}$.

En general, la probabilidad \mathbb{P} anterior es aproximadamente $\mathbb{P} \approx exp(-\frac{k^2}{2n})$. Así, los u_j serán probablemente distintos para valores de k pequeños comparados con \sqrt{n} , pero probablemente no serán distintos para valores de k grandes comparados con \sqrt{n} .

Supongamos ahora que n es un entero positivo muy grande, cuyo menor divisor primo es p. Si elegimos u_1, u_2, \ldots, u_k , con $1 \le u_j \le n$, cuando k es grande comparado con \sqrt{p} , pero pequeño comparado con \sqrt{n} , entonces es muy probable que los u_j sean distintos (mod m), pero probablemente no serán distintos (mod p).

Así, existirán índices $i, j, 1 \le i < j \le k$, tales que $1 < (u_i - u_j, n) < n$.

Testar todos los pares (i,j), $1 \le i < j \le k$, es algo sencillo mediante el Algoritmo de Euclides. Pero son en total $\binom{k}{2}$ pares.

Para simplificar el trabajo, adoptamos el siguiente esquema: generamos los u_j mediante alguna recursión de la forma

$$u_{j+1}=f(u_j),$$

donde $f \in \mathbb{Z}[x]$ es un polinomio con coeficientes enteros.

El proceso de elegir f(u) no es importante, basta con que sea un polinomio fácil de calcular, y que sea un polinomio de grado $\deg(f) \geq 2$. (En general, polinomios lineales no se desempeñan bien).

Por ejemplo, $f(u) = u^2 + 1$ es una buena elección.

La ventaja de generar los u_j de esta manera es que si $u_i \equiv u_j \pmod{d}$, entones

$$u_{i+1} = f(u_i) \equiv f(u_j) = u_{j+1} \pmod{d}.$$

Luego, la secuencia u_i se hace periódica (mod d), con período j - i.

En otras palabras, si hacemos r = j - i entonces

$$u_s \equiv u_t \pmod{d}$$
, siempre que $s \equiv t \pmod{r}$, $s, t \geq i$

En particular, tomando t = 2s, entonces $u_s \equiv u_{2s} \pmod{d}$.

Así, entre los números $u_{2s}-u_{s}$, deberíamos esperar uno que satisfaga

$$1 < d = (u_{2s} - u_{s}, n) < n,$$

produciendo automáticamente un divisor no trivial de n. El método requiere alrededor $s \approx O(\sqrt{p})$ intentos.

Definición

El anterior es llamado el **algoritmo** o **método** ρ **de Pollard**.

Ejemplo

Usamos el método ρ de Pollard para hallar un divisor propio de n=36287. Tomemos $f(u)=u^2+1$ y sea $u_0=1$. Entonces, si $u_{i+1}\equiv f(u_i)\pmod n$

i	1	2	3	4	5	6	7
ui	2	5	26	677	22886	2439	33941
i	8	9	10	11	12	13	14
u_i	24380	3341	22173	25652	26685	29425	22806

Luego:

	i	2i	U _{2i}	ui	$u_{2i}-u_i$	$(u_{2i}-u_i,n)$
_	1	2	5	2	3	(3, n) = 1
	2	4	677	5	672	(672, n) = 1
	3	6	2439	26	2413	(2413, n) = 1
	4	8	24380	677	23703	(23703, n) = 1
	5	10	22173	22886	713	(713, n) = 1
	6	12	26685	2439	24246	(24246, n) = 1
	7	14	22806	33941	11135	(11135, n) = 131

Ejemplo

Diagrama del método ρ de Pollard.