CE 5332: Highway Design

Spring 2020

Project-1: Making the right move

Submitted by:

Zannatul Ferdous Labony

Date: 05.06.2020

Introduction

For my project, I chose "Project 1 - Making the Right Move".

Here, a problem is described where at an urban intersection, the northbound right turn (the north to east maneuver, with Δ =90°) is to be channelized for a large school bus (S-Bus-40) at a 10-mph design speed. The PI is at station 80+00. The channelized section is to include provisions for passing a stalled vehicle of the same type.

According to the project, I have to prepare a plan view centerline drawing and the associated table of deflection angles and chord lengths to stake out the curve from the PC to the PT at 25' (every 1/4 station) intervals.

Methodology

At first, I have to find out what things are given through which I can proceed to solve the problem. Given,

- It is an urban intersection and the northbound right turn is to be channelized for a large school bus (S-Bus-40)
- Δ=90° is already given here
- Design speed, V= 10 mph
- Station, **PI = 80+00**

Solution Approach:

Secondly, I have to think what I can derive from the given information.

I have to find out the radius of the curve. So, I need to find the super elevation and the side friction.

As the super elevation is not given, I can assume super elevation e= 1%. I assume that as the Professor taught us in the class for **Urban area**, super elevation, e = 0 - 0.06

I also assumed that, **side friction**, **f= 0.38** (as Professor gave us a table of side friction for different design speed)

We know,

$$R_{min} = v^2 / 15(.01e+f)$$

$$= 10^2 / 15(.01*1+0.38)$$

From figure 2-17 (AASHTO-2018),

R_{max} for S-Bus-40 is **42.2 ft**

So, I am considering, R = 42.2 ft

Station of PC= Station of PI -T

Station of PT = Station of PC + Larc

Length of the arc, Larc = $\Delta R / 57.3$

Tangent, $T = R \times tan(\Delta/2)$

Station of PC = (80+00) - 42.2'

Station of PT = (79 + 57.8) + 66.28'

$$= 80 + 24.08$$

External Distance, $E = T*tan(\Delta/4)$

=42.2*tan(90/4)= 17.48 ft

Middle ordinate, $M = R*(1-cos(\Delta/2))$

=42.2*(1-cos(90/2))= 12.36 ft

Long chord, $C = 2*R*sin(\Delta/2)$

=2*42.2*sin(90/2)=59.68 ft

Figure 1: Horizontal Curve Layout (drawn by AutoCAD)

Figure 2: Horizontal Curve Layout

Sample calculation for deflection angle and chord length

$$6 = Larc/R x (180/π)$$
= (25/42.2) x (180/π)
= 33.92°

Deflection angle, d = 6/2

1st chord length

Table: Deflection angles and Chord lengths to stake out the curve from the PC to PT at 25' intervals

Stations	Total Deflection Angles from PC	Total chord length
79 + 57.8(PC)	-	1
79 + 82.8	16.97°	24.64′
80 + 7.8	33.94°	47.12′
80 + 24.08(PT)	45°	59.68'

I have also drawn the horizontal Curve in AutoCAD which is submitted in canvas.