

Thermodynamics

Measurement of $\Delta U \& \Delta H$, Work Done and Heat Capacity

1. Which of the following p-V curve represents maximum work done? (2022)

2. Which one among the following is the correct option for right relationship between C_p and C_V for one mole of ideal gas? (2021)

a.
$$C_P - C_V = R$$

b.
$$C_P = RC_V$$

c.
$$C_V = RC_P$$

$$d. C_{p} + C_{v} = R$$

3. The correct option for free expansion of an ideal gas under adiabatic condition is : (2020)

a.
$$q = 0$$
, $\Delta T < 0$ and $w > 0$ b. $q < 0$, $\Delta T = 0$ and $w = 0$

c.
$$q > 0$$
, $\Delta T > 0$ and $w > 0$ d. $q = 0$, $\Delta T = 0$ and $w = 0$

4. Under isothermal condition, a gas at 300 K expands from 0.1 L to 0.25 L against a constant external pressure of 2 bar. The work done by the gas is (Given that 1 L bar = 100 J) (2019)

5. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be: (2017-Delhi)

Enthalpies For Different Types of Reactions

6. At standard conditions, if the change in the enthalpy for the following reaction is -109 kJ mol^{-1}

$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

Given that bond energy of H₂ and Br₂ is 435 kJ mol⁻¹ and 192 kJ mol⁻¹, respectively, what is the bond energy (in kJ mol⁻¹) of HBr? (2020-Covid)

7. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1 : 0.5 : 1. ΔH for the formation of XY is -200 kJ mol^{-1} (2018)

The bond dissociation energy of X, will be

8. The heat of combustion of carbon to CO₂ is -393.5 kJ/mol. The heat released upon formation of 35.2 g of CO₂ from carbon and oxygen gas is: (2015)

a.
$$+ 315 \text{ kJ}$$

$$b. - 630 \text{ kJ}$$

$$c. - 3.15 \text{ kJ}$$

Spontaneity, Entropy, Gibbs Energy Change and Equilibrium

9. For irreversible expansion of an ideal gas under isothermal condition, the correct option is: (2021)

a.
$$\Delta U \neq 0$$
, $\Delta S_{total} \neq 0$

b.
$$\Delta U = 0$$
, $\Delta S_{total} \neq 0$

c.
$$\Delta U \neq 0$$
, $\Delta S_{total} = 0$

d.
$$\Delta U = 0$$
, $\Delta S_{total} = 0$

10. For the reaction, $2Cl(g) \rightarrow Cl_2(g)$, the correct option is: (2020)

a.
$$\Delta_{r}H > 0$$
 and $\Delta_{r}S < 0$

b.
$$\Delta_r H < 0$$
 and $\Delta_r S < 0$

c.
$$\Delta H < 0$$
 and $\Delta S < 0$

d.
$$\Delta H > 0$$
 and $\Delta S > 0$

- 11. If for a certain reaction \triangle H is 30 kJ mol⁻¹ at 450 K, the value of ΔS (in JK⁻¹ mol⁻¹) for which the same reaction will be spontaneous at the same temperature is (2020-Covid)
 - a. -33

b. 33

- c. -70
- d. 70
- **12.** In which case change in entropy is negative?
- (2019)

- a. Evaporation of water
- b. Expansion of a gas at constant temperature
- c. Sublimation of solid to gas
- d. $2H(g) \rightarrow H_2(g)$
- **13.** For a given reaction, $\Delta H = 35.5 \text{ KJ mol}^{-1}$ and $\Delta S = 83.6 \text{ JK}^{-1}$ mol^{-1} . The reaction is spontaneous at: (Assume that ΔH and ΔS do not vary with temperature) (2017-Delhi)
 - a. T > 298 K
- b. T < 425 K
- c. T > 425 K
- d. All temperatures
- 14. For a sample of perfect gas when its pressure is changed isothermally from P_i to P_f, the entropy change is given by:
 - a. $\Delta S = nRT \ln \left(\frac{P_f}{P_i} \right)$ b. $\Delta S = nRT \ln \left(\frac{P_i}{P_f} \right)$
 - c. $\Delta S = nR \ln \left(\frac{P_f}{P_i} \right)$ d. $\Delta S = nR \ln \left(\frac{P_i}{P_i} \right)$

- 15. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is: (2016 - I)
 - a. $\Delta H < 0$ and $\Delta S < 0$
 - b. $\Delta H < 0$ and $\Delta S = 0$
 - c. $\Delta H > 0$ and $\Delta S < 0$
 - d. $\Delta H < 0$ and $\Delta S > 0$
- **16.** For the reaction, $X_2O_4(l) \rightarrow 2XO_2(g)$, $\Delta U = 2.1$ kcal, $\Delta S = 20$ cal K⁻¹ at 300 K. Hence, ΔG is:
 - a. -2.7 kcal
- b. 9.3 kcal
- c. -9.3 kcal
- d. 2.7 kcal

Clausius Clapeyron Equation

17. Consider the following liquid-vapour equilibrium.

Liquid \Rightharpoonup Vapour. Which of the following relations is correct?

- a. $\frac{d\ln P}{dT^2} = \frac{-\Delta H_v}{T^2}$
- b. $\frac{d\ln P}{dT} = \frac{-\Delta H_v}{RT^2}$
- c. $\frac{d \ln G}{d T^2} = \frac{\Delta H_v}{R T^2}$
- d. $\frac{d\ln P}{dT} = \frac{-\Delta H_v}{RT}$

Answer Key

1																
С	a	d	a	d	d	d	a	b	С	d	d	c	d	d	a	b