Crypto Bot: Al-Assisted Cryptography Scheme Selection

In the ever-evolving world of digital information, cryptography plays a vital role in ensuring the security and integrity of our data and communication systems. The Crypto Bot project is a groundbreaking solution that leverages the power of Artificial Intelligence (AI) to assist users, even those with minimal cryptographic expertise, in selecting the most appropriate cryptographic primitives for their specific needs.

Cryptographic Primitive Selection: The Importance of Block Ciphers ble via efficient

Widespread Use n DES which was a

a US standard

as an alternative to

ent US standard

ment. Patents were

ssued for it.

standard

Block ciphers, such as

AES in GCM Mode, AES

in CBC Mode, and IDEA,

are extensively used in a

wide range of ough for almost

applications, from secure

communication

protocols to data ____ for almost ,

protection in databases

and storage systems.

Faster than AES, targeting usage on

Essential Components

the building blocks of

many cryptographic

protocols, making their

selection a critical step in

ensuring the overall

security and

effectiveness of these

Not known to

systems.

Diverse Requirements for hash

Block ciphers serve as The selection of the

appropriate block cipher

64 bits, short for hash

function uses

scheme involves

considering various

factors, including

security requirements,

performance

considerations.

compatibility with other

efficiently break cryptographic hash function uses

operations, and

adherence to industry

standards.

🏮 Made with Gamma

Comprehensive Implementation Usage Table

Scheme Overview

The Crypto Bot project has developed a comprehensive implementation usage table that captures the essential features and properties of six widely used block cipher schemes: DES, Triple DES, Blowfish, AES, IDEA, and SIMON.

This table serves as the foundation for the project's Al-powered decision support system, providing a robust knowledge base to guide users in selecting the most suitable block cipher scheme for their specific needs.

Key Characteristics

The table includes information on each scheme's standardization status, runtime efficiency, security considerations, block size, key size, and cipher type. This detailed information empowers users to make informed decisions based on their unique requirements and constraints.

Addressing Diverse Use Cases

The inclusion of the SIMON scheme, a lightweight block cipher designed for resource-constrained devices, demonstrates the project's commitment to addressing a wide range of use cases and staying up-to-date with the latest developments in the field of cryptography.

Guided Decision-Making: The Decision Tree-Based System

User Interaction

The Crypto Bot project features a decision tree-based system that guides users through a structured series of prompts and multiple-choice or multiple-answer of sheeme=IDEA-OFB questions. This approach mimics the experience of consulting with a cryptography expert, leading users through a systematic decision-making process.

2 Adaptive Recommendations

The decision tree is derived from the comprehensive implementation usage table, with each prompt corresponding to a node in the tree. Based on the user's responses, the system traverses the tree, progressively narrowing down the options until it arrives at the most suitable block cipher scheme recommendation.

3 Empowering Non-Experts

By leveraging this decision tree-based system, the Crypto Bot project empowers users with minimal cryptographic expertise to make informed decisions, eliminating the need for in-depth technical knowledge. The adaptive nature of the prompts ensures a personalized and efficient experience for each user.

🏮 Made with Gamma

Decision tree

Implementation table

Criteria / Scheme	Standardization	Runtime Efficiency	Security	Block Size	Key Size	Туре
DES	Was a US standard	Was fast, now slower than AES	Breakable via efficient exhaustive key-search attack	64 bits, short for hash function uses	56 bits (+8 parity bits)	Feistel
Triple DES	Based on DES which was a standard	Slower than DES and AES	Not known to be efficiently breakable	64 bits, short for hash function uses	168 bits (three 56-bit DES keys)	Feiste
Blowfish	Intended as an alternative to the aging DES	A fast cipher that faster than AES	Vulnerable to birthday attack	64 bits, short for hash function uses	32 – 448 bits	Feiste
AES	Current US standard	Fast enough for almost all applications(except for resource- constrained devices)	Not known to be efficiently breakable	128 bits, large enough for hash function uses	128, 192, or 256 bits	SPN
IDEA	Proposed as a DES replacement. Patents were issued for it.	Fast enough for almost all applications(except for resource- constrained devices)	Not known to be efficiently breakable	64 bits, large enough for hash function uses	128 bits	Lai– Masse
SIMON	Wannabe standard	Faster than AES, targeting usage on resource-constrained devices	Breakable with large- computation attack	Short (32) to large (128)	64, 72, 96, 128, 144, 192 or 256 bits	Feiste

Decision Tree-Based System

At the core of the Crypto Bot project lies a decision tree-based system implemented using JavaScript code. This system operates locally within the web browser, ensuring functionality even without internet access. The decision tree structure is defined in the questionData object, where each node represents a question, answer choices, and a function to handle user responses.

The decision tree-based system presents users with a structured series of prompts and multiple-choice or multiple-answer questions. Based on the user's responses, the corresponding function in questionData is executed, updating the progress bar, hiding or displaying answer choices, and creating the next question or providing the final recommendation.

This systematic approach mimics the experience of consulting with a cryptography expert, empowering users to make informed decisions without requiring in-depth cryptographic expertise. The guided and interactive process ensures the security and integrity of the user's data or communications.

Home Page

Offline mode

Chat bot

Vour input: how do you know? Response: I know that AES-OFB is a good choice for your specific requirements because: * **I have been trained on a large dataset of block cipher schemes and their properties.** This dataset includes information on the security, efficiency, and suitability of different schemes for various applications and devices. * **I have analyzed your specific requirements and identified the most suitable scheme based on your inputs.** In your case, you have indicated that you are using the block cipher for application purposes on a normal device, and you have prioritized efficiency. * ***AES-OFB is a well-known and widely used block cipher mode of operation that is known for its high efficiency. ** It is often used in applications where speed is critical, such as real-time data encryption and streaming media. * **AES-OFB does not require streaming data encryption, photo encryption, or hash function compatibility. ** Since you have indicated that you do not require any of these features, AES-OFB is a good choice because it is a relatively simple and efficient mode of operation. I am confident that AES-OFB is the best choice for your specific requirements based on my training and analysis. However, if you have any specific concerns or requirements that I have not addressed, please let me know and I will be happy to provide further

How to run and functionality

https://stream.nyu.edu/edit/1_xbs8up0f