Cross-encoder Reranking

Marcos Piau Vieira

1. Explicação de conceitos importantes do exercício feito - fine tune

- finetune de modelo cross encoder
- serialização: [CLS] query [SEP] doc [SEP]
- 20 épocas, partindo do nreimers/MiniLM-L6-H384-uncased, com 10% para validação
- checkpoint epoch 11, 0.934091 de acurácia em dev
- learning rate constante AdamW de 5e-5, batch size de 32

1. Explicação de conceitos importantes do exercício feito - finetune

 seq_length de 200 tokens (+ que P99) com padding dinâmico + group_by_length *

1. Explicação de conceitos importantes do exercício feito - finetune [12380/12380 21:51, Epoch 20/20]

I	[12380/	12380 21:51, E	Epoch 20/20]	
	Epoch	Training Loss	Validation Loss	Accuracy
	1	0.537100	0.294124	0.878182
	2	0.276300	0.259004	0.898636
	3	0.189900	0.308098	0.895909
	4	0.125700	0.257628	0.917727
	5	0.092900	0.394939	0.905909
	6	0.080600	0.330439	0.917273
	7	0.062900	0.421384	0.907273
	8	0.047400	0.462463	0.914545
	9	0.049800	0.422735	0.923636
	10	0.049000	0.554873	0.894545
	11	0.041100	0.333965	0.934091
	12	0.027200	0.331679	0.929091
	13	0.026400	0.409901	0.930455
	14	0.027900	0.409177	0.926818
	15	0.024200	0.441777	0.931818
	16	0.024100	0.435244	0.927273
	17	0.023800	0.530606	0.925909
	18	0.021600	0.426661	0.924091
	19	0.016600	0.513425	0.925455
	20	0.018200	0.673593	0.902273

1. Explicação de conceitos importantes do exercício feito - rerank

First stage	Reranker	ndcg_cut_10
BM25 (k1=0.9, b=0.4)	N/A	0.4796
BM25 (k1=0.9, b=0.4)	marcospiau/MiniLM-L6-H384-uncased-msmarco-tiny-finetune	0.4146
BM25 (k1=0.9, b=0.4)	cross-encoder/ms-marco-TinyBERT-L-2	
BM25 (k1=0.9, b=0.4)	shuffle scores BM25	0.0344

2. Técnicas para garantir que a implementação está correta

- finetune
 - overfit de uma amostra
 - overfit de um batch
- rerank:
 - usar rerank com modelo já treinado no msmarco como referência (cross-encoder/ms-marco-TinyBERT-L-2)
 - gerar uma run com scores aleatórios (shuffle dos scores do BM25)
 - gerar run com scores constantes (não fiz por falta de tempo)
 - olhar scores que saem do rerank

3. Truques de código que funcionaram

- utilizar indexes e funções pyserini (exemplo: utilizar indexes e funções pyserini ex) (searcher.batch_doc(docids, threads=threads))
- usar bibliotecas de dataframe para manipulação de dados ao invés de fazer tudo mão deixa código mais simples e (possivelmente eficiente)
- usar ecossistema huggingface (datasets, trainer etc)
- usar group_by_length=True no training_arguments reduziu tempo de 20 epochs de 51 min pra 20 min
- usar lib fix_text pra limpar mojibakes e erro de decoding
- no reranking, ordenar exemplos por sum(words_query+words_doc) diminuiu tempo de execução

3. Truques de código que funcionaram

qid	q0	docid	rank	score	run_id	query	document
i64	str	i64	i64	f64	str	str	str
23849	"Q0"	4348282	1	10.0663	"Anserini"	"are naturaliza	"Civil Records
23849	"Q0"	2674124	2	9.8655	"Anserini"	"are naturaliza	"See our FAQ's
23849	"Q0"	7119957	3	9.6442	"Anserini"	"are naturaliza	"Yes, in most c
23849	"Q0"	8133127	4	9.4317	"Anserini"	"are naturaliza	"Spokeo pulls d
23849	"Q0"	542113	5	9.3852	"Anserini"	"are naturaliza	"Public Records

3. Truques de código que funcionaram

qid	q0	docid	score	run_id	rank
i64	str	i64	f32	str	u32
23849 23849 23849 23849 1136962 1136962 1136962	Q0 Q0 Q0 Q0 Q0 Q0 Q0 Q0	2647769 8010559 8010561 8010558 80877 8065423 7101410 1880431	0.999556 0.999528 0.999473 0.999406 0.000278 0.000277 0.000274	DONT_CARE DONT_CARE DONT_CARE DONT_CARE DONT_CARE DONT_CARE DONT_CARE DONT_CARE DONT_CARE	1 2 3 4 997 998 999 1000

4. Problemas e soluções no desenvolvimento

5. Resultados interessantes/inesperados

- meu reranker ficou pior que o BM25 sozinho
- bug do pyserini, salva docs raw (em formato json) ao invés do contents apenas
- reranker menor (mas certamente melhor treinado) ficou melhor que o meu modelo com finetune

6. Uma dúvida "básica" que você ou os colegas possam ter

- MonoBert pygaggle faz inferência um exemplo por vez ao invés de batches.
 Por quê?
- MonoBert pygaggle usa os documentos raws (com id e tudo ou json)?

7. Um tópico "avançado" para discutirmos

- até que ponto bibliotecas com muitas abstrações valem a pena? exemplos:
 - loop manual de treino vs pytorch lightgning ou huggingface
 - reranking manual vs pygaggle (MonoBert)
 - estruturas de dados default Python (dict, lists, etc) vs bibliotecas de dataframe
- minha opinião:
 - pra quem está aprendendo ou nunca fez, melhor não abstrair tanto
 - às vezes tentamos economizar tempo, mas acabamos perdendo tempo com bugs de difícil
 - solução (ainda mais com bibliotecas mais "exóticas")
 - problemas:
 - "premature optimization is the root of all evil."
 - "ter o martelo e sair procurando o prego"