MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Hassiba Benbouali de Chlef

Faculté des sciences

Département de TC Mathématiques & Informatique

l^{ière}année licence S1

Année universitaire : 2015 - 2016

Durée : **1h30**

Contôle du module : Initiation à l'algorithmique

Exercice 1 (4 points)

- 1. Donner le schéma classique de l'UAL.
- 2. On considère le jeu d'instruction d'un processeur simplifié :

Code Opération	Description
001 + ADR	Charger le contenu de l'adresse ADR dans A
010 + ADR	Charger le contenu de l'adresse ADR dans B
011000	Faire l'addition par l'UAL
011110	Faire la division par l'UAL
011100	Faire la multiplication par l'UAL
100 + ADR	Stocker le contenu de R dans l'adresse ADR
101000	Transférer le contenu de R vers A

• Supposant que le bus d'adresse est sur **3 bits**, Écrire un programme binaire qui permet d'incrémenter la valeur contenue dans l'adresse **10** puis stocke le résultat dans l'adresse **11**.

Exercice 2 (5 points)

On veut calculer le montant des impôts d'un employé selon son salaire brut :

Salaire Brut (SB)	Taux d'impôt
SB < 150	5 %
$150 \le SB < 300$	10 %
300 ≤ SB	25 %

Écrire un algorithme qui lit le salaire brut **SB** et qui calcule et affiche le montant des impôts et le salaire net (salaire brut soumis aux impôts).

Exercice 3 (6 points)

Soit l'algorithme suivant :

- 1. Donner la trace d'exécution pour n = 5 ensuite pour n = 6
- 2. Réécrire l'algorithme SP à l'aide de la boucle Tant que
- 3. Modifier cet algorithme pour calculer la somme des n premiers termes de la série suivante :

$$1-2+3-4+5-6...\pm n$$

Exercice 4 (5 points)

La formule récurrente ci-dessous permet de calculer la racine de « A » :

$$\begin{cases} U_1 = 1 \\ U_i = \frac{\left(U_{i-1} + \frac{A}{U_{i-1}}\right)}{2} \end{cases}$$

Écrire en langage C++ un programme qui demande à l'utilisateur la valeur de « A » et le nombre d'itérations, puis calcule et affiche le $n^{ième}$ terme de U.