Topologie et Calcul Différentiel ————

Exercices complémentaires – Feuille 3

1 Continuité

Exercice 1. Soit $(E, \| \|)$ un espace vectoriel normé et $B = B(0_E; 1)$ la boule ouverte unité dans Epour $\| \|$. Démontrer que l'application $f: E \to B$ définie par

$$f(x) = \frac{x}{1 + ||x||}, \quad x \in E$$

est un homéomorphisme.

Exercice 2. Déterminer le domaine de définition D_f , étudier la continuité et les limites éventuelles à la frontière ∂D_f de $f: \mathbb{R}^2 \to \mathbb{R}$ définie à chaque cas par :

(a)
$$f(x,y) = \frac{xy}{x+y}$$

(c)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^4}$$

(e)
$$f(x,y) = \frac{1-\cos\left(\sqrt{|xy|}\right)}{|y|}$$
.

(a)
$$f(x,y) = \frac{xy}{x+y}$$
.
(b) $f(x,y) = \frac{x^2y^2}{x^2+y^2}$.

(c)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^4}$$
.
(d) $f(x,y) = \frac{\sqrt{x^2 + y^2}}{|x|\sqrt{|y|} + |y|\sqrt{|x|}}$.
(e) $f(x,y) = \frac{1 - \cos(\sqrt{|xy|})}{|y|}$.
(f) $f(x,y) = \frac{x^2 + y^2}{x + y}$.

(f)
$$f(x,y) = \frac{x^2 + y^2}{x + y}$$

Exercice 3. Soient $p, q \in \mathbb{N}$ et $f(x, y) = \frac{x^p y^q}{x^2 + y^2 - xy}$.

- i) Montrer que $x^2 + y^2 xy > 0$ pour tout $(0,0) \neq (x,y) \in \mathbb{R}^2$.
- ii) Étudier la continuité et les limites éventuelles à la frontière ∂D_f de f, en fonction des valeurs de

Exercise 4. Soit $f: \mathbb{R}^+ \times \mathbb{R}^{+*} \to \mathbb{R}$ définie par $f(x,y) = x^y$ pour x > 0 et f(0,y) = 0.

- i) Montrer que f est une fonction continue.
- ii) Est-il possible de la prolonger en une fonction continue sur $\mathbb{R}^+ \times \mathbb{R}^+$?

Exercice 5. Soit $A = \{(x, y) \in \mathbb{R}^2 \mid xy \geq 0\}$. Montrer qu'il existe une unique fonction $\phi : \mathbb{R} \to \mathbb{R}$ telle que la fonction $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{1+2y-\cos\sqrt{xy}}{y} & , \text{si } (x,y) \in A \setminus \{y=0\} \\ \phi(x) & , \text{si } y=0 \end{cases}$$

est continue.

2 Espaces complètes et compactes

Exercice 6. Soit K un compact d'un espace vectoriel normé (E, || ||) tel que $0 \notin K$. Montrer que $F = \{\lambda x \mid \lambda \in \mathbb{R}^+, x \in K\}$ est fermé.

Exercice 7. Soit $(E, \| \|)$ un espace vectoriel normé de dimension finie. Soient $F, K \subset E$ des parties fermée et compacte respectivement. Montrer que

$$F' = \bigcup_{x \in F} \overline{B}(x; 1)$$
 et $K' = \bigcup_{x \in K} \overline{B}(x; 1)$

sont aussi fermée et compacte, respectivement. Qu'en est-il si on ne suppose plus l'espace E de dimension finie?

Exercice 8. Soit $(E, \|\ \|)$ un espace vectoriel normé et $K \subset E$ une partie compacte. On définie le diamètre de K comme

$$\dim K = \sup\{||x - y|| \mid x, y \in K\}$$

- i) Considérons l'application $f: K \to \mathbb{R}^+$ définie par $f(x) = \sup\{\|x y\| \mid y \in K\}$. Pour tout $x \in K$, existe-t-il un $y \in K$ réalisant ce supremum?
- ii) Montrer que f est continue.
- iii) En conclure qu'ils existent $x, y \in K$ tels que $||x y|| = \operatorname{diam} K$.
- iv) Si K n'est pas un singleton, montrer qu'ils n'existent pas des applications $\varphi: K \to K$ qui soient surjectives et contractantes.

Donner une exemple d'application contractante définie sur un compact.

Exercice 9. Soit (E, || ||) un espace normé et f une application vérifiant

$$||f(x) - f(y)|| = ||x - y||, \ \forall x, y \in E$$

Soit K une partie compacte de E telle que $f(K) \subset K$.

i) Pour $x \in K$ on considère la suite récurrente (x_n) donnée par

$$x_0 = x$$
 et $x_{n+1} = f(x_n), \forall n \in \mathbb{N}$

Montrer que x est valeur d'adhérence de la suite (x_n) .

ii) En déduire que f(K) = K.

3 Applications linéaires continues

Exercice 10. Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés. On suppose qu'une suite (f_n) d'éléments de $\mathcal{L}_c(E, F)$ converge vers $f \in \mathcal{L}_c(E, F)$ (au sens de la norme subordonnée) et qu'une suite (x_n) d'éléments de E converge vers $x \in E$. Établir que $f_n(x_n) \to f(x)$.

Exercice 11. Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés et $f \in \mathcal{L}(E, F)$. On suppose que pour toute suite (u_n) tendant vers $0, f(u_n)$ est bornée. Montrer que f est continue.

Exercice 12. Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$ et $F = \mathcal{C}^1([0,1],\mathbb{R})$. On muni ces espaces avec

$$||f||_E = ||f||_{\infty}$$
 et $||f||_F = ||f||_{\infty} + ||f'||_{\infty}$

i) On définit $T: E \to F$ par : pour tout $f: [0,1] \to \mathbb{R}$, $T(f): [0,1] \to \mathbb{R}$ est définie par

$$T(f)(x) = \int_0^x f(t) \, \mathrm{d}t$$

Montrer que T est une application linéaire continue.

ii) Calculer la norme de T.

Exercice 13. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\| \|_1$. Étudier la continuité de la forme linéaire

$$\varphi(f) = \int_0^1 t f(t) \, \mathrm{d}t$$

et calculer sa norme.

Exercice 14. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de $\| \|_{\infty}$. Étudier la continuité de la forme linéaire $\varphi \in \mathcal{L}(E,\mathbb{R})$ définie par $\varphi(f) = f(1) - f(0)$ et calculer sa norme.

Exercice 15. Soient $E = \mathcal{C}([0,1], \mathbb{R})$ et $u \in \mathcal{L}(E, E)$ qui envoie $f \in E$ sur la fonction définie par

$$u(f)(x) = f(x) - f(0)$$

- i) Montrer que pour E muni de $\| \|_{\infty}$ l'endomorphisme u est continu et calculer sa norme.
- ii) Montrer que pour E muni de $\| \|_1$ l'endomorphisme u n'est pas continu.