Types of variable normalization formulas

A. Variable (column) normalization

Variable (column) normalization can be applied to any data matrix.

1	Selection of objects and variables	data matrix $[x_{ij}]$		
	Variable scale level	Ratio	Ratio	Interval
2		n6 – quotient transformation (x/sd)	n1 – standardization	n1 – standardization
		n6a – positional quotient transfor-	n2 – positional standardi-	n2 – positional standardi-
		mation (x/mad)	zation	zation
		n7 – quotient transformation (x/range)	n3 – unitization	n3 – unitization
		n8 – quotient transformation (x/max)	n3a – positional unitization	n3a – positional unitization
	able normalization	n9 – quotient transformation (x/mean)	n4 – unitization with zero	n4 – unitization with zero
	formula	n9a – positional quotient transfor-	minimum	minimum
		mation (x/median)	n5 – normalization in range	n5 – normalization in range
		n10 – quotient transformation (x/sum)	[-1, 1]	[-1, 1]
		n11 – quotient transformation	n5a – positional normaliza-	n5a – positional normaliza-
		x/sqrt(SSQ)	tion in range [-1, 1]	tion in range [-1, 1]
	Transformed variable scale level	Ratio	Interval	Interval

$$(n1) z_{ij} = (x_{ij} - \overline{x}_{j})/s_{j}$$

$$(n2) z_{ij} = (x_{ij} - med_{j})/mad_{j}$$

$$(n3) z_{ij} = (x_{ij} - \overline{x}_{j})/r_{j}$$

$$(n3a) z_{ij} = (x_{ij} - med_{j})/r_{j}$$

$$(n4) z_{ij} = \left[x_{ij} - \min_{i} \{x_{ij}\}\right]/r_{j}$$

$$z_{ij} = \left[x_{ij} - \min_{i} \{ x_{ij} \} \right] / r_{j}$$

$$(n5) z_{ij} = (x_{ij} - \overline{x}_j) / \max_i |x_{ij} - \overline{x}_j|$$

(n5a)
$$z_{ij} = (x_{ij} - med_j) / \max_{i} |x_{ij} - med_j|$$

$$(n6) x_{ij}/s_j$$

$$(n6a) z_{ij} = x_{ij} / mad_j$$

$$(n7) x_{ij}/r_j$$

$$(n8) x_{ij} / \max_{i} \{x_{ij}\}$$

$$(n9) x_{ij}/\bar{x}_j$$

$$(n9a) z_{ij} = x_{ij} / med_j$$

$$(n10) x_{ij} / \sum_{i=1}^{n} x_{ij}$$

$$(n11) x_{ij} / \sqrt{\sum_{i=1}^{n} x_{ij}^2}$$

where: $x_{ij}(z_{ij}) - i$ -th observation on j-th variable (i-th normalized observation on j-th variable), $\bar{x}_{i}(s_{i})$ – mean (standard deviation) for j-th variable, med_i (mad_i) – median (median absolute deviation) for j-th variable, $r_j = \max_i \{x_{ij}\} - \min_i \{x_{ij}\}.$

B. Object (row) normalization

The same normalization procedures can be applied as for variable (column) normalization. Object (row) normalization makes sense only when all variables are expressed in the same unit. This is often the case for instance with structural data.

References

- Anderberg, M.R. (1973), *Cluster analysis for applications*, Academic Press, New York, San Francisco, London.
- Gatnar, E., Walesiak, M. (Eds.) (2004), Metody statystycznej analizy wielowymiarowej w badaniach marketingowych [Multivariate statistical analysis methods in marketing research], Wydawnictwo AE, Wroclaw, 35-38.
- Jajuga, K., Walesiak, M. (2000), Standardisation of data set under different measurement scales, In: R. Decker, W. Gaul (Eds.), Classification and information processing at the turn of the millennium, Springer-Verlag, Berlin, Heidelberg, 105-112.
- Milligan, G.W., Cooper, M.C. (1988), A study of standardization of variables in cluster analysis, "Journal of Classification", vol. 5, 181-204.
- Młodak, A. (2006), Analiza taksonomiczna w statystyce regionalnej, Difin, Warszawa.