Nonlinear Relationships

(Grab "Essay 2" Assignment Sheet)

Understanding Political Numbers

March 27, 2019

Where do you find nonlinear relationships?

Diminishing Effects

Poverty and Education

Data from Midwest Counties

Value (Utility) of Eating Bananas

Natural Boundaries

Racial Composition and Population

Data from Midwest Counties

"Multiplicative data"

Long right tails (imperfect indicator)

Logarithmic transformations

Logarithmic relationship

Sudden increase that tapers off

Skewed histogram

Long right tail

Logarithmic relationship

Appears LINEAR after logging

Skewed histogram

Appears NORMAL after logging

Exponential relationship

Explosive nonlinear increase

Exponential relationship

Appears LINEAR after logging Y

What is log? (Baby don't hurt me)

- Steep increase that diminishes
- Never fully "levels off"
- Defined over *positive* values only
- Commonly appears with count data, money, population

If $b^x = y$, then $\log_b(y) = x$

```
If b^x = y, then \log_b(y) = x We usually only care about "base e" ( e = 2.7182818... )
```

If $b^x = y$, then $\log_b(y) = x$

We usually only care about "base e" ($e=2.7182818\ldots$)

$$e^x = y$$

$$ln(y) = x$$

$$\log(y) = x$$

```
If b^x = y, then \log_b(y) = x
```

We usually only care about "base e" (e=2.7182818...)

$$e^x = y$$

$$ln(y) = x$$

$$\log(y) = x$$

Never worry about solving by hand

```
# natural log (base e) of 8
log(8)
```

[1] 2.079442

```
# exponentials e^(2.079...)
exp(2.079442)
```

```
## [1] 8.000004
```

Logs and exponentials are inverse functions

Inverse functions: if y = f(x), then $f^{-1}(y) = x$

$$f^{-1}(f(x)) = x$$

$$\log(e^x) = x$$

$$e^{\log(x)} = x$$

If you need to log a variable: log(var)

If you need to "unlog" a variable: exp(var)

Why we log for "multiplicative" data

Sum of random fluctuations -> Normal

Product of random fluctuations -> "Log Normal"

Why we log for "multiplicative" data

Sum of random fluctuations -> Normal

Product of random fluctuations -> "Log Normal"

Logs turn *multiplicative* operations into *additive* (linear) operations

$$\log(a \times b) = \log(a) + \log(b)$$

Remember those long tails?

Take the log, long tails look normal


```
library("gapminder")

# most recent gapminder year
gap_07 <- gapminder %>%
  filter(year == max(year))

# linear relationship looks bad
ggplot(gap_07, aes(x = gdpPercap, y = lifeExp)) +
  geom_point() +
  geom_smooth(method = "lm") +
  labs(x = "GDP per cap", y = "Life Exp")
```



```
Plot y = f(log(x))
```


Estimate the model

```
# new variable is log(x)
gap_07 <- gap_07 %>%
  mutate(log_gdp = log(gdpPercap))
log_model <- lm(lifeExp ~ log_gdp, data = gap_07)</pre>
tidy(log_model)
## # A tibble: 2 x 5
          estimate std.error statistic p.value
##
    term
                 <dbl> <dbl> <dbl>
                                         <dbl>
##
   <chr>
## 1 (Intercept) 4.95 3.86 1.28 2.02e- 1
              7.20 0.442 16.3 4.12e-34
## 2 log_gdp
```

Estimate the model

```
# new variable is log(x)
gap_07 <- gap_07 %>%
  mutate(log_gdp = log(gdpPercap))

log_model <- lm(lifeExp ~ log_gdp, data = gap_07)

tidy(log_model)</pre>
```

$$\hat{life} = 4.95 + 7.2 \log(gdp. pc)$$

As log GDP per capita increases by one unit...

Interpret graphically

```
## # A tibble: 142 x 13
##
     lifeExp log gdp .fitted .se.fit .resid
                                               .hat .sigma .cooksd
        <dbl>
                <dbl>
                        <dbl>
                                <dbl>
                                                <dbl> <dbl>
##
                                        <dbl>
                                                               <dbl>
                               0.972 -10.7
        43.8
                6.88
                         54.5
                                              0.0186
                                                        7.09 2.18e-2
##
   1
##
        76.4
                8.69
                         67.5
                                0.599
                                        8.89
                                              0.00706
                                                        7.11 5.58e-3
                                0.600
##
        72.3
                8.74
                         67.9
                                        4.43 0.00710
                                                        7.14 1.39e-3
                8.48
                                0.601 -23.3
##
   4
        42.7
                         66.0
                                              0.00712
                                                        6.87 3.85e-2
                                0.704
                                              0.00976
                                                        7.15 5.03e-4
##
        75.3
                9.46
                         73.1
                                        2.26
                                        1.04 0.0200
##
   6
        81.2
                10.4
                         80.2
                                1.01
                                                        7.15 2.21e-4
##
        79.8
                10.5
                         80.5
                                1.02
                                       -0.712 0.0207
                                                        7.15 1.08e-4
         75.6
                         79.2
                                                        7.14 2.28e-3
##
                10.3
                                0.956
                                       -3.52 0.0180
   8
```

Interpret graphically

```
## # A tibble: 142 x 13
##
      lifeExp log gdp .fitted .se.fit .resid
                                                .hat .s:
        <dbl>
               <dbl>
                       <dbl>
                               <dbl>
                                       <dbl>
                                               <dbl> <<
##
        43.8
               6.88
                        54.5
                               0.972 -10.7
##
                                             0.0186
##
        76.4
                8.69
                        67.5
                               0.599
                                       8.89
                                             0.00706
        72.3
                8.74
                        67.9
                               0.600
##
                                       4.43 0.00710
              8.48
                               0.601 -23.3
##
   4
        42.7
                        66.0
                                             0.00712
        75.3
                9.46
                        73.1
                               0.704
##
                                       2.26
                                             0.00976
                                       1.04
##
        81.2
               10.4
                        80.2
                               1.01
                                             0.0200
##
        79.8
                10.5
                        80.5
                               1.02
                                      -0.712 0.0207
         75.6
                10.3
                        79.2
                               0.956
##
                                      -3.52 0.0180
```

```
# plot y over unlogged x, add yhat line
ggplot(log_preds, aes(x = gdp_pc, y = lifeExp)) +
  geom_point(color = "gray50") +
  geom_ribbon(
    aes(ymin = conf.low, ymax = conf.high),
    fill = "maroon", alpha = .3
) +
  geom_line(aes(y = .fitted))
```


Other log rules

$$\log(a \times b) = \log(a) + \log(b)$$

$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

$$\log(a^b) = b \times \log(a)$$

$$\log(1) = 0$$

$$\log(0) = ?$$

Remember...

Diminishing effects, natural boundaries

Data generated from "multiplicative" process (populations, dollars)

Don't solve logs yourself; only need to log(x)

Undoing logs: exp(log_x)