PILEASE HARD IN

FACULTY OF ARTS AND SCIENCE UNIVERSITY OF TORONTO

PLEASE HAND IN

Final Examinations MAT301H1F – Groups and Symmetry Tuesday, December 14, 2011

Instructor: Prof. J. W. Lorimer
Duration – 3 hours
No Examination Aids Allowed

LAST NAME:	 	
FISRT NAME:		
STUDENT NUMBER:		

INSTRUCTIONS:

- 1. DO THREE questions out of FOUR from PART A and the TWO questions from PART B.
- 2. Write the final solutions in the pages provided.
- 3. There are 25 pages and 6 questions in this examination paper.

FOR EXAMINER ONLY							
Question	Value	Mark					
PART A							
1.	20						
2.	20						
3.	20						
4.	20						
	PART B						
5.	20						
6.	20						
TOTAL	100						

PART A

PART A

Do any THREE QUESTIONS.

- 1. [20 marks] DEFINE or EXPLAIN the following notions: (6 parts)
- 1. (a) [3 marks] The Klein-4- group.

1. (b) [3 marks] The canonical (natural) homomorphism of a normal subgroup of a group G.

1. (c) [3 marks] The kernel of a homomorphism.

1. (d) [3 marks] A quotient group.

1. (e) [4 marks] The internal direct product of n subgroups of a group G.

1. (f)	The BASIS abelian grou	and the	FUNDAM.	IENTAL	THEOREM	of finitely

- 2. [20 marks] In S_3 , let H=<(12)> and K=<(123)> (8 parts)
- 2. (a) [2 marks] Determine the order of (12) and (123).

2. (b) [2 marks] Show that $K = A_3$.

2. (c) [2 marks] Determine $(123)^{-1}$.

 $2.~(d)~~ \textit{[2 marks]}~ Calculate~ (123)(12)(123)^{-1}~.$

2. (e) [2 marks] Show that $\,H\,$ is NOT NORMAL in $\,S_3\,$.

2. (f) [3 marks] Show that $S_3 = <(12), (123) >$.

2. (g) [3 marks] Show that $S_3 = HK$.

2. (h) [4 marks] Show that S_3/A_3 is isomorphic to \mathbb{Z}_2 .

- 3. [20 marks] Let G be a group with subgroups H and K. Define a relation \sim on G by $a \sim b$ if and only if a = hbk where $h \in H$ and $k \in K$.
- 3. (a) [6 marks] Show that \sim is an equivalence relation on G.

3. (b) [3 marks] Show that the equivalence classes of \sim are the sets HxK where $x \in G$.

3. (c) [5 marks] For each $x \in G$, prove that $x^{-1}Hx$ is a subgroup of G.

3. (d) [6 marks] Prove that $|HxK| = \frac{\circ (H) \circ (K)}{\circ (x^{-1}Hx \cap K)}$ if G is a finite group.

3. (d) (Continued)

4. [20 marks] Let $\varphi: G_1 \to G_2$ be a group homomorphism and H_i a normal subgroup of $G_i(i=1,2)$ so that $\varphi[H_1] \subseteq H_2$.

Define, $\varphi^*: G_1/H_1 \to G_2/H_2$ by $\varphi^*(H_1g_1) = H_2\varphi(g_1)$.

4. (a) [8 marks] Show that φ^* is a well defined homorphism.

4. (b) [2 marks] If φ is an epimorphism, show that φ^* is an epimorphism.

4. (c) [3 marks] If φ_{H_i} is the canonical (natural) homomorphism of $H_i(i=1,2)$ show that $\varphi^* \circ \varphi_{H_1} = \varphi_{H_2} \circ \varphi$.

4. (d) [7 marks] If φ is a monomorphism and $\varphi[H_1] = H_2$, prove that φ^* is a monomorphism.

PART B

Do BOTH QUESTIONS.

- 5. [20 marks] Let G be a group and Auto (G) its automorphism group. For each $g \in G, \varphi_g: G \to G$ defined by $\varphi_g(x) = gxg^{-1}$ for each $x \in G$, is an inner automorphism of G, and Inn (G) is the set of all inner automorphisms of G.
- 5. (a) [4 marks] For each $\psi \in$ Auto (G), prove that $\psi \circ \varphi_g \circ \psi^{-1} = \varphi_{\psi(g)}$ for each $g \in G$.

5. (b) [4 marks] Prove that Inn (G) is a normal subgroup of Auto (G).

5. (c) [3 marks] For each $g \in G$, prove that $\varphi_g = 1$ if and only if $g \in \mathbb{Z}(G)$, the centre of G.

5. (d) [3 marks] Define the map $\varphi:G\to Auto(G)$ by $\varphi(g)=\varphi_g$ for every $g\in G$. Show that φ is a homomorphism.

5. (e) $\ \ [6\ marks]$ Prove that $\ G/\mathbb{Z}(G)$ is isomorphic to Inn $\ (G)$.

- 6 [20 marks] Let G be a finite group of order p^2q for distinct primes p and q.
- 6. (a) [7 marks] Prove that there exists subgroups \mathbb{P} and \mathbb{Q} so that
 - (i) $\circ(\mathbb{P}) = p^2$ and $\circ(\mathbb{Q}) = q$.
 - (ii) $\mathbb{P} \cap \mathbb{Q} = \{e\}$.
 - (iii) $G = \mathbb{PQ}$.

6. (a) (Continued)

6. (b) [3 marks] Give an example to show that a group of order p^2q for distinct primes p and q is not necessarily abelian.

6. (c) [6 marks] Using the subgroups \mathbb{P} and \mathbb{Q} from (a) prove that G is abelian if and only if \mathbb{P} and \mathbb{Q} are normal.

6. (c) (Continued)

6. (d) [4 marks] If G is abelian, prove that $G \cong \mathbb{Z}_{p^2q}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_P \times \mathbb{Z}_q$.