Word representation in machine learning problem

- 1. Localist representation: One-hot encoding vector, a vector of zeros, excepts the position where the target is in the word pool.
- 2. Words vector: word embeddings or word representations, which are distributed representation. Captures word meanings by a vector of real valued numbers (as opposed to dummy numbers) where each point captures a dimension of the word's meaning and where semantically similar words have similar vectors.

Dimensions

			Dillieli	1310113		
						_
Word vectors	dog	-0.4	0.37	0.02	-0.34	animal
	cat	-0.15	-0.02	-0.23	-0.23	domesticated
	lion	0.19	-0.4	0.35	-0.48	pet
	tiger	-0.08	0.31	0.56	0.07	fluffy
	elephant	-0.04	-0.09	0.11	-0.06	
	cheetah	0.27	-0.28	-0.2	-0.43	
	monkey	-0.02	-0.67	-0.21	-0.48	
	rabbit	-0.04	-0.3	-0.18	-0.47	
	mouse	0.09	-0.46	-0.35	-0.24	
	rat	0.21	-0.48	-0.56	-0.37	

Advantage:

- Relatively smaller dimension
- o similar words as similar word vectors, and can be measured mathematically.
- support mathematical operation e.g. King Man + Women = Queen

How to construct word vector?

SVD method

- 1. Construct a matrix X:
 - Word to document matrix
 - Window based Co-occurrence Matrix
- 2. Apply $X = USV^T$

3. Select k columns of U.

disadvantage: computational intensive $\mathcal{O}(N^2)$

Word2vec

Likelihood function:

$$Likelihood = L(heta) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m; j
eq 0} P(w_{t+j}| > w_t; heta)$$

Objective function:

$$J(heta) = -rac{1}{T}\log L(heta) = -rac{1}{T}\sum_{t=1}^T\sum_{-m\leq j\leq m; j
eq 0}\log P(w_{t+j}|w_t; heta)$$

where

$$P(w_{t+j}|w_t; heta) = Softmax(\mu_o^T v_c) = rac{e^{\mu_o^T v_c}}{\sum_{w \in W} e^{\mu_w^T v_c}}$$

then we can write

$$J(heta) = -rac{1}{T}\sum_{t=1}^T \sum_{o \in V} \log rac{e^{\mu_o^T v_c}}{\sum_{w \in W} e^{\mu_w^T v_c}}$$

find the derivative

$$egin{aligned} rac{\partial J}{\partial v_c} &= rac{\partial}{\partial v_c} - rac{1}{T} \sum_{t=1}^T \sum_{o \in V} [u_o^T v_c - \log \sum_{w \in W} e^{u_w^T v_c}] \ &= -rac{1}{T} \sum_{t=1}^T \sum_{o \in V} [u_o - \sum_{w \in W} P(u_o|v_c) u_w] \ &rac{\partial J}{\partial u_o} &= rac{\partial}{\partial u_o} - rac{1}{T} \sum_{t=1}^T \sum_{o \in V} [u_o^T v_c - \log \sum_{w \in W} e^{u_w^T v_c}] \ &= -rac{1}{T} \sum_{t=1}^T [(1 - P(u_o|v_c)) v_c] \end{aligned}$$

A very good source that explains word2vec in very details can be found here