GENERAL CHEMISTRY Max. Marks: 90	CHEM F111 Duration: 90 minutes	Mid-Sem Exam. Model Solution Date: March 10, 2018
Ivida. Ividi KS. 90	Duration, 90 minutes	Date. March 10, 2016
Q1. a) Power of lamp = $100 \text{ W} = 100 \text{ Js}^{-1}$.		1M
Energy of a photon of yellow light is		
$E_y = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{560 \times 10^{-9}} = 3.55 \times 10^{-19} J$		1M
Number of photons emitted per second = $\frac{100 J}{3.55 \times 10^{-19} J} = 2.8 \times 10^{20}$		1M
Assumptions: Lamp has 100 % efficiency		1M
Q1. b) Energy of the electron after acceleration is E = $20000 \times 1.602 \times 10^{-19} \text{ J}$,		1M
Hence, $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} = \frac{1}{\sqrt{2 \times 9.1 \times 10}}$	$\frac{6.626\times10^{-34}}{-31\times20000\times1.602\times10^{-19}} = 8.65\times10^{-12} \text{ m}$	1+1=2M

Q1. c

Entry	Entity of interest	Expression	2M
1.	Wavefunction, $\psi(x,y)$	$\psi(x,y) = \frac{2}{\sqrt{L_1 L_2}} \sin \frac{n_x \pi x}{L_1} \sin \frac{n_y \pi y}{L_2}$	ZIVI
2.	Energy, if L ₁ =2L ₂	$E = \frac{h^2}{32mL_2^2}(n_x^2 + 4n_y^2)$	2M 2+2=4M
3.	Quantum numbers for the first degenerate states when L ₁ =2L ₂	$\psi_{4,1}(n_x = 4, n_y = 1)$ and $\psi_{2,2}(n_x = 2, n_y = 2)$	

Q1. d. $E_0 = (0 + \frac{1}{2})hv = \frac{1}{2}hv$

Either $E_0 = 1600/2 = 800 \text{ cm}^{-1}$,

or
$$E_0 = hc/2\lambda = 1600 \times 6.626 \times 10^{-34} \times 3 \times 10^8/2 = 1.59 \times 10^{-20} \text{ J}$$

The lowest energy level has ZERO nodes 1M

Q2. a) i)
$$E = -\frac{e^4 \mu}{8\epsilon_0^2 h^2} \frac{Z_{eff}^2}{n^2}$$

$$E \propto -\frac{Z_{eff}^2}{n^2}$$
 (n = principal quantum number)

$$\frac{E_{F8+}}{E_{Li2+}} = \frac{\frac{(9)^2}{(3)^2}}{\frac{(3)^2}{(2)^2}} = \frac{81 \, x \, 4}{9 \, x \, 9}$$

ii) $L = V[I(I + 1)]\hbar$

Here, 'l' for
$$F^{8+} = 2$$
, so, $L_{F8+} = \sqrt{6}\hbar$

'I' for
$$Li^{2+} = 1$$
, $L_{Li2+} = \sqrt{2}\hbar$

iii) Lz =mıħ

$$m_1$$
 values for $F^{8+} = +2$ (from $\Psi_{3, 2, 2}$)

$$L_z = 2\hbar$$

GENERAL CHEMISTRY	CHEM F111	Mid-Sem Exam. Model Solution
Max. Marks: 90	Duration: 90 minutes	Date: March 10, 2018
Q2. b) E _{IE} (Li ²⁺) = 13.6 x Z ² eV		1M
$= 13.6 \times (3)^2 \text{ eV}$		
= 122.4 eV		2M

Q2. c) i) The most probable radius occurs when the radial distribution wavefunction is a maximum. At this point the derivative of the function with respect to either r or ρ equals zero.

$$R(r) = A \rho e^{\frac{-\rho}{2}}$$
; $A = constant$

$$P(r) = r^2 \rho^2 e^{-\rho} dr;$$
 1M

$$\frac{d[P(r)]}{dr} = 0$$

By putting,
$$\rho = \frac{2Zr}{na_0}; \frac{d}{dr} \left[r^4 e^{\frac{-Zr}{a_0}} \right] = 0 = e^{-\frac{Zr}{a_0}} (4r^3 - \frac{Z}{a_0}r^4)$$

$$r = \frac{4a0}{Z}$$

ii) Here, probability = $\int \Psi^2 \delta v \approx \Psi^2 \delta v$ with $\delta V = 1.0 pm^3$

Probability = Ψ^2 1M

$$\Psi = \left(\sqrt{\frac{1}{32\pi a_0^3}}\right) \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0};$$

At $r = 2a_o$,

Probability, $\Psi^2 = 0$ 1M

Q3. a) Since hybrid orbitals are orthogonal

So,
$$\int_{All\ space} [S - \sqrt{\frac{3}{2}}p_z - \sqrt{\frac{1}{2}}p_x][S + Ap_z + Bp_x]d\tau = 0$$

Applying the given condition of orthogonality and orthonormality the integration will provide

$$1 - \sqrt{\frac{3}{2}} A - \sqrt{\frac{1}{2}} B = 0$$
 2M

Since hybrid orbitals are orthonormal

$$\int_{All \ space} \left[\sqrt{\frac{1}{3}} \{ S + A p_z + B p_x \} \right]^2 d\tau = 1$$

Gives
$$A^2 + B^2 = 2$$
———eq (2)

Solving eq (1) and eq (2) A =
$$\sqrt{\frac{3}{2}}$$
 and B = $-\sqrt{\frac{1}{2}}$

Orbital is in XZ plane.

Q3. b) The spatial arrangement possible for 3p1 is 3 and spin arrangement possible is 2.

So, totally 6 arrangements are possible for one electron in 3p.

Similarly one electron can be placed by 10 different ways in 3d orbital.

GENERAL CHEMISTRY CHEM F111 Mid-Sem Exam. I			
Max. Marks: 90	Duration: 90 minutes	Date: March 10, 2018	
o as a whole there will be 6x10 = 60 states p	oossible.	2M	
riplet states are ³ F, ³ D, ³ P		3M	
Ain. energy for ³ F		2M	
Q 4. a) $log\left(\frac{l}{l_0}\right) = -\varepsilon cl$		1M	
$\frac{1}{100} = \frac{16}{100} = 0.16 \text{ and } c = \frac{3.9 \text{ g/L}}{78 \text{ g/mol}} = 0.05 \text{ m}$	nol/L	1M	
nolar absorption coefficient (ϵ) = $\frac{-\log}{0.05 mol_s}$	$\frac{(0.16)}{/L \times 0.1 \ cm}$	1M	
: 159.2 L mol ⁻¹ cm ⁻¹		1M	
$J_{max} = \left(\frac{kT}{2Bhc}\right)^{\frac{1}{2}} - \frac{1}{2}$		1M	
$A = \left(\frac{298 K \times 1.38 \times 10^{-23} J/K}{2B \times 6.626 \times 10^{-34} Js \times 3 \times 10^{10} cms^{-1}}\right)^{\frac{1}{2}} - \frac{1}{2}$		1M	
$B = \frac{298 K \times 1.38 \times 10^{-23} J/K}{2 \times 4.5 \times 4.5 \times 6.626 \times 10^{-34} Js \times 3 \times 10^{10} cms^{-1}} =$	$5.108 \ cm^{-1}$	1 + 1=2M	
eparation between Stokes or anti-Stokes lin	es in the rotational Raman spect	rum = 4B = 20.4 cm ⁻¹ 1M	
$B = \frac{h}{8\pi^2 Ic} \Longrightarrow I = \frac{h}{8\pi^2 Bc} \text{ or } r = \sqrt{\frac{h}{8\pi^2 B\mu c}}$		1M	
$u = \frac{m_1 \times m_2}{m_1 + m_2} = \frac{1 \times 35 \times 10^{-3}}{(1 + 35)6.023 \times 10^{23}} = 1.61 \times 10^{-3}$	$0^{-27} kg$	1M	
$r = \sqrt{\frac{h}{8\pi^2 B\mu c}} = \sqrt{\frac{6.626 \times 10^{-34} kg r}{8\pi^2 \times 5.108 cm \times 1.61 \times 10^{-27} kg}}$	$\frac{n^2 s^{-1}}{g \times 3 \times 10^{10} \ cm.s^{-1}}$	1M	
$= 0.0184 \times 10^{-8} m$		1M	
) For N ₂ O, number of normal vibrational mo	$de = 3N - 6 = 3 \times 3 - 6 = 3$	1 + 1=2M	
or CH≡CH, number of normal vibrational m	ode = $3N - 5 = 3 \times 4 - 5 = 7$	1M	
l) Increasing order of the C=O stretching free	quency in IR spectra is	2M	
CHO CHO CHO	CO ₂ Et	2N	

GENERAL CHEMISTRY

CHEM F111

Mid-Sem Exam. Model Solution

Max. Marks: 90

Duration: 90 minutes

Date: March 10, 2018

Q 5. a)

[3 Marks for correct structure {no partial marks for incorrect structure}, 1.5 marks each for correct assignment]

b) Same, 7.2 Hz

(c) Fill in the information for the following compound (in the given format)

2M

2+2=4M

2M

Compound	Most Shielded proton in ¹ H NMR spectrum	No. of signals (peaks) in proton decoupled ¹³ C NMR spectrum
$H \longrightarrow OCH_3$	Methoxy OCH₃	<mark>6</mark>

(d)

(i)
$$E_{1/2}$$
 (α state) = - $\gamma_N \hbar B_0 m_1$ [or = - $g_N \mu_N B_0 m_1$] 1M
 $[1.084 \times 10^8 \text{ T}^{-1} \text{ s}^{-1} \times 1.055 \times 10^{-34} \text{ Js} \times 0.5 \times 7.04 \text{ T}] = -4.025 \times 10^{-26} \text{ J}$ 1M
 $E_{-1/2}$ (β state) = $4.025 \times 10^{-26} \text{ J}$ 1M

(ii) $E_{\beta}-E_{\alpha}=h\nu$

Resonance frequency =
$$v = E_{\beta}-E_{\alpha}$$
 /h = [4.025x10⁻²⁶-(-4.025x10⁻²⁶)]/6.626x10⁻³⁴ = 1.2149x10⁸ Hz = 121.5 MHz 2M

Alternatively,

Resonance frequency =
$$\gamma_N B_0/2 \pi$$
 1M

=
$$[(1.084 \times 10^8 \text{ T}^{-1} \text{s}^{-1} \times 7.04 \text{ T})/(2 \times 3.14)] = 1.215 \times 10^8 \text{ Hz} = 121.5 \text{ MHz}$$
 2M

Alternatively,

Resonance frequency =
$$g_N \mu_N B_0/h$$
 1M

=
$$2.263 \times 5.051 \times 10^{-27} \text{ J T}^{-1} \times 7.04 \text{ T} / 6.626 \times 10^{-34} \text{ Js} = 121.44 \text{ MHz}$$