Muhammad Hamza Khan 21402885 Section 2

Part A)

Integrals taken from X=5 to X=35 with 1000 subintervals:

L = 5

U = 35

K = 1000

	Y = X	$Y = X^2$	$Y = X^3$
N = 5	520	618	650
N = 10	964	936	1055
N = 20	1439	1679	1719
N = 40	2907	3354	3822
N = 50	3704	4103	4816

Part B)

Integrals taken from X=5 to X=35 with 1000 subintervals:

L = 5

U = 35

K = 1000

	Y = X	$Y = X^2$	$Y = X^3$
N = 100	6450	10128	10770
N = 200	14608	17893	17629
N = 400	34469	35235	36236
N = 800	76907	80323	81251
N = 1000	119169	108205	116934

Conclusion: Regardless of the choice of function, the time cost increases, almost doubles, every time the value of N is doubled. This is consistent across both, threads and processes. This is because when there is a large number of processes or threads, each of them needs to get a slice of CPU time, which leads to lots of context switches and hence a lot of overhead.