

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

# Определение удельного заряда электрона

Работа №3.3.1; дата: 18.11.22

Семестр: 3

# А. Метод магнитной фокусировки

## 1. Аннотация

### Цель работы:

Определение значения магнитных полей, при которых происходит фокусировка электронного пучка, и по результатам измерений считать удельный заряд электрона e/m.

### Схема установки:



Рис. 1: Схема установки

Основной частью установки является электронный осциллограф, трубка которого вынута и установлена в длинном соленоиде, создающим магнитное поле. Напряжение на отклоняющие пластины и питание подводятся к трубке многожильным кабелем.

Пучок электронов, вылетающих из катода с разными скоростями, ускоряется анодным напряжением. Пропустив пучок сквозь две узкие диафрагмы, можно выделить электроны с практически одинаковой продольной скоростью. Небольшое переменное напряжение, поступающее с клеммы "Контрольный сигнал" осциллографа на отклоняющие пластины, изменяет только поперечную составляющую скорости. При увеличении магнитного поля линия на экране стягивается в точку, а затем снова удлиняется.

Магнитное поле создается постоянным током, величина которого регулируется ручками источника питания и измеряется амперметром. Ключ служит для изменения направления поля в соленоиде.

Величина магнитного поля определяется с помощью милливеберметра.

На точность результатов может влиять внешнее магнитное поле, особенно продольное.

Измерения магнитного поля с помощью милливеберметра обычно проводятся в предварительных опыта: при отключении ключа устанавливается связь между силой тока и индукцией магнитного поля в соленоиде.

### В работе используются:

Электронно-лучевая трубка и блок питания к ней; источник постоянного тока; соленоид; электростатический вольтметр; милливеберметр; ключи.

## 2. Теоретическая справка

В постоянном однородном магнитном поле траектории заряженных частиц представляют собой спирали, радиус которых определяется формулой (3.4). За время  $T_B = \frac{2\pi r_B}{v_\perp}$ , которое можно назвать циклотронным периодом, заряд сместится вдоль магнитного поля на расстояние L (шаг спирали):

$$L = v_{\parallel} T_B = \frac{2\pi v \cos \alpha}{\frac{e}{m} B},\tag{1}$$

где  $\alpha$  — угол между вектором скорости  $\boldsymbol{v}$  и направлением поля  $\boldsymbol{B}$ . Если углы малы,  $\alpha \ll 1$ , то  $\cos \alpha \approx 1$  и

$$L \approx \frac{2\pi v}{\frac{e}{m}B}. (2)$$

Таким образом, при малых углах расстояние L не зависит от  $\alpha$ , так что все электроны, вышедшие из одной точки, после одного оборота вновь соберутся в одной точке —  $c\phi$ окусируются. Как следует из (2), индукция поля B, при которой точка фокусировки отстоит от точки вылета на расстоянии L, определяется величиной e/m — удельным зарядом частицы.

$$v_{\parallel} = \sqrt{\frac{2eU_{\rm A}}{m}},$$

следующего из закона сохранения энергии.

В магнитном поле соленоида коллимированные электроны будут двигаться по спиралям практически с одним и тем же шагом L (см. формулу (1)) и, следовательно, будут встречаться вновь, пересекая ось пучка на расстояниях nL,  $n=1,2,3,\ldots$  В этих точках сечение пучка будет наименьшим, и при изменении магнитного поля изображение пучка на экране будет периодически стягиваться в ярко светящуюся точку. Таким образом, удельный заряд может быть получен из соотношения

$$\frac{e}{m} = \frac{8\pi^2 U}{L^2} \cdot \frac{n^2}{B_{\Phi}^2(n)}.\tag{3}$$

Эта формула и лежит в основе экспериментального измерения удельного заряда электрона методом магнитной фокусировки.

## 3. Ход работы

Занесем в таблицу параметры установки.

| Величина     | Значение |
|--------------|----------|
| V, кВ        | 0,78     |
| <i>l</i> , м | 0,265    |
| $SN$ , $M^2$ | 0,3      |

Таблица 1. Параметры установки.

Для начала стоит определить связь между индукцией B магнитного поля в соленоиде и током I через обмотки магнита. Для этого снимем зависимость магнитного потока  $\Phi = BSN$  от тока I.

| I, A | $\sigma_I$ , A | Ф, мВб | $\sigma_{\Phi}$ , мВб |
|------|----------------|--------|-----------------------|
| 0,26 | 0,01           | 0,4    | 0,1                   |
| 0,41 | 0,01           | 0,6    | 0,1                   |
| 0,79 | 0,01           | 1,2    | 0,1                   |
| 1,01 | 0,01           | 1,4    | 0,1                   |
| 1,49 | 0,01           | 2,0    | 0,1                   |
| 2,28 | 0,01           | 3,1    | 0,1                   |
| 2,54 | 0,01           | 3,5    | 0,1                   |
| 3,06 | 0,01           | 4,2    | 0,1                   |
| 3,53 | 0,01           | 4,9    | 0,1                   |

**Табл. 2:** Зависимость  $\Phi(I)$  в прямом направлении.



 $\Phi(I)$  в прямом направлении

**Рис. 2:**  $\Phi(I)$  в прямом направлении.

| I, A | $\sigma_I$ , A | Ф, мВб | $\sigma_{\Phi}$ , мВб |
|------|----------------|--------|-----------------------|
| 0,26 | 0,01           | 0,3    | 0,1                   |
| 0,41 | 0,01           | 0,5    | 0,1                   |
| 0,79 | 0,01           | 1,1    | 0,1                   |
| 1,01 | 0,01           | 1,3    | 0,1                   |
| 1,49 | 0,01           | 2,0    | 0,1                   |
| 2,28 | 0,01           | 3,2    | 0,1                   |
| 2,54 | 0,01           | 3,5    | 0,1                   |
| 3,06 | 0,01           | 4,2    | 0,1                   |
| 3,53 | 0,01           | 4,8    | 0,1                   |

**Табл. 3:** Зависимость  $\Phi(I)$  в обратном направлении.





**Рис. 3:**  $\Phi(I)$  в обратном направлении.

Графики  $\Phi(I)$  подчиняются линейным зависимостям с коэффициентами  $\alpha_1=(1,36\pm0,03)\frac{\text{мB6}}{\text{A}}$  и  $\alpha_2=(1,39\pm0,03)\frac{\text{мB6}}{\text{A}}$ . Теперь будем увеличивать постепенно ток и найдем ток при каждом фокусе, так как мы знаем зависимость  $\Phi=\Phi(I)$  для каждого направления, то мы можем определить зависимость  $B_\Phi=f(n)$ . При этом можно считать, что  $\sigma_{B_\Phi}=B_\Phi\cdot\varepsilon_{alpha}$ 

|   | В             | прямом                 | направлен        | ии                        | В обратном направлении |               |                        | нии              |                           |
|---|---------------|------------------------|------------------|---------------------------|------------------------|---------------|------------------------|------------------|---------------------------|
| n | $I_{\Phi}, A$ | $\sigma_{I_{\Phi}}, A$ | $B_{\Phi}$ , мТл | $\sigma_{B_{\Phi}}$ , мТл | n                      | $I_{\Phi}, A$ | $\sigma_{I_{\Phi}}, A$ | $B_{\Phi}$ , мТл | $\sigma_{B_{\Phi}}$ , мТл |
| 1 | 0,55          | 0,01                   | 2,63             | 0,26                      | 1                      | 0,55          | 0,01                   | 2,38             | 0,25                      |
| 2 | 1,09          | 0,01                   | 5,07             | 0,31                      | 2                      | 1,09          | 0,01                   | 4,88             | 0,30                      |
| 3 | 1,65          | 0,01                   | 7,61             | 0,37                      | 3                      | 1,68          | 0,01                   | 7,62             | 0,36                      |
| 4 | 2,15          | 0,01                   | 9,88             | 0,42                      | 4                      | 2,28          | 0,01                   | 10,40            | 0,42                      |
| 5 | 2,69          | 0,01                   | 12,33            | 0,47                      | 5                      | 2,79          | 0,01                   | 12,76            | 0,47                      |

**Табл. 4:** Зависимость  $B_{\Phi} = f(I)$ .



**Рис. 4:**  $B_{\Phi} = f(I)$  в прямом направлении.



**Рис. 5:**  $B_{\Phi} = f(I)$  в обратном направлении.

Угловые коэффициенты  $k_1=2,46\pm0,05$  мТл,  $k_2=2,59\pm0,07$  мТл. Угловые коэффициенты совпадают в рамках погрешности. Возьмем усредненное значение  $k=2,54\pm0,13$  мТл.

В итоге, подставив в формулу (3) мы получаем, что

$$\frac{e}{m} = (1, 4 \pm 0, 2) \cdot 10^{11} \text{K} \text{л/к} \text{г}, \varepsilon = 0, 1$$

## 4. Выводы

В данной работе мы нашли знаечения магнитных полей при которых происходит фокусировка электронного пучка и по ним рассчитали значение удельного заряда и получили:  $e/m=(1,4\pm0,2)\cdot 10^{11}{\rm K}_{\rm Л}/{\rm k}$ г. Это значение близко к реальному  $e/m=1,76\cdot 10^{11}{\rm K}_{\rm Л}/{\rm k}$ г

## В. Метод магнетрона

## 1. Аннотация

#### Цель работы:

Исследование зависимости анодного тока от тока, протекающего через соленоид при различных напряжениях на аноде лампы и по результатам измерений рассчитать удельный заряд электрона e/m.

### Схема установки:



Рис. 6: Схема установки

Два крайних цилиндра изолированы от среднего небольшими зазорами и используются для устранения краевых эффектов на торцах среднего цилиндра, ток с которого используется при измерениях. В качестве катода используется тонкая вольфрамовая проволока. Катод разогревается переменным током, отбираемым от стабилизированного источника питания.

С этого же источника на анод лампы подается напряжение, регулируемое с помощью потенциометра и измеряемое вольтметром.

Индукция магнитного поля в соленоиде рассчитывается по току  $I_m$ , протекающему через обмотку соленоида. Коэффициент пропорциональности между ними указан в установке.

Лампа закреплена в соленоиде. Магнитное поле в соленоиде создается постоянным током, сила которого регулируется ручками источника питания и измеряется амперметром.

#### В работе используются:

Электронная лампа с цилиндрическим анодом; соленоид; источники питания лампы и соленоида; вольтметр постоянного тока; миллиамперметр, амперметр.

## 2. Теоретическая справка

Рассчитаем критическое магнитное поле для плоского конденсатора. Движение электрона будет иметь характер электрического дрейфа. Если начальная скорость равна нулю (начальные условия x(0) = y(0) = 0,  $v_x(0) = v_y(0) = 0$ ), то, как следует из уравнений (3.5), траектория частицы будет  $uu\kappa noudo \ddot{u}$ :

$$x = Vt - R\sin\omega_B t, \qquad y = R(1 - \cos\omega_B t),$$
 (4)

где V=E/B — дрейфовая скорость,  $R=V/\omega_B=Em/(eB^2)$ . Касание анода происходит при 2R=h (h — расстояние между анодом и катодом). Этому значению соответствует критическое поле

$$B_{\rm \kappa p} = \frac{\sqrt{2U}}{h\sqrt{e/m}},\tag{5}$$

где U=Eh — напряжение между пластинами. Отсюда находим удельный заряд:

$$\frac{e}{m} = \frac{2U}{B_{\rm kp}^2 h^2}.\tag{6}$$

Здесь удельный заряд электрона определяется по формуле

$$\frac{e}{m_e} = \frac{8V_a}{B_{\rm \tiny KP}^2 r_a^2}$$

где  $V_a$  - анодное напряжение,  $B_{\rm kp}$  - критическое поле,  $r_a$  - радиус анода.

## 3. Ход работы

Запишем параметры установки в таблицу

| Величина   | Значение           |
|------------|--------------------|
| K, Тл/А    | $2,8\cdot 10^{-2}$ |
| $r_a$ , MM | 12                 |

Табл. 5: Параметры установки

Снимем зависимость анодного тока от тока через соленоид для различных значений  $V_a$ .  $\sigma_{I_m}=1$  y.e. =4 мA,  $\sigma_{I_a}=1$  y.e. =4 мKA

| $I_m$ , y.e. | $I_a$ , y.e. |
|--------------|--------------|
| 0            | 104          |
| 20           | 104          |
| 23           | 99           |
| 25           | 100          |
| 27           | 98           |
| 28           | 92           |
| 30           | 87           |
| 34           | 80           |
| 38           | 64           |
| 40           | 55           |
| 43           | 37           |
| 66           | 0            |
| 75           | 0            |

**Табл. 6:** Зависимость  $I_a(B)$  для  $V_a = 70$  В.

| 0         | 102         |
|-----------|-------------|
| 20        | 102         |
| 30        | 92          |
| 33        | 83          |
| 38        | 71          |
| 44        | 51          |
| 48        | 18          |
| 71        | 0           |
| 75        | 0           |
| висимость | $I_a(B)$ да |
|           |             |

 $I_m$ , y.e.

 $I_a$ , y.e.

**Табл. 7:** Зависимость  $I_a(B)$  для  $V_a = 80$  В.

| $I_m$ , y.e. | $I_a$ , y.e. |
|--------------|--------------|
| 0            | 107          |
| 20           | 107          |
| 32           | 96           |
| 41           | 78           |
| 46           | 61           |
| 48           | 50           |
| 51           | 25           |
| 63           | 3            |
| 75           | 0            |

**Табл. 8:** Зависимость  $I_a(B)$  для  $V_a = 90$  В.

| $I_m$ , y.e. | $I_a$ , y.e. |
|--------------|--------------|
| 0            | 106          |
| 20           | 108          |
| 35           | 95           |
| 44           | 78           |
| 51           | 51           |
| 54           | 26           |
| 64           | 4            |
| 75           | 0            |

**Табл. 9:** Зависимость  $I_a(B)$  для  $V_a = 100$  В.

| $I_m$ , y.e. | $I_a$ , y.e. |
|--------------|--------------|
| 0            | 104          |
| 20           | 104          |
| 37           | 94           |
| 46           | 85           |
| 53           | 59           |
| 57           | 25           |
| 75           | 2            |

**Табл. 10:** Зависимость  $I_a(B)$  для  $V_a = 110$  В.

| $I_m$ , y.e. | $I_a$ , y.e. |
|--------------|--------------|
| 0            | 110          |
| 20           | 109          |
| 31           | 106          |
| 46           | 91           |
| 51           | 76           |
| 55           | 61           |
| 58           | 42           |
| 75           | 2            |

**Табл. 11:** Зависимость  $I_a(B)$  для  $V_a = 120$  В.

Занесем данные из вышеприведенных таблиц в один график.



**Рис. 7:** График для определения  $B_{\rm kp}$  в зависимости от  $V_a$ .

 $B_{
m kp}$  будем определять по месту наибольшего углового коэффициента наклона прямой. Делать это достаточно трудно, поэтому абсолютную погрешность его определения будем считать равным  $\sigma_{I_m}=3$  у.е. Пересчитаем  $B_{
m kp}=KI_m,\, \varepsilon_{B_{
m kp}{}^2}=2\varepsilon_{I_m}.$  По этим данным построим график. Получаем зависимость  $B_{
m kp}^2$  от  $V_a$ .

| $B_{\rm \kappa p}^2$ , ·10 <sup>-6</sup> Тл <sup>2</sup> | $V_a$ , B |
|----------------------------------------------------------|-----------|
| $20,1 \pm 3,0$                                           | 70        |
| $25,4 \pm 3,4$                                           | 80        |
| $31,4 \pm 3,8$                                           | 90        |
| $35,2 \pm 4,0$                                           | 100       |
| $39,3 \pm 4,2$                                           | 110       |
| $43,7 \pm 4,5$                                           | 120       |

**Табл. 12:**  $B_{\text{кр}}^2$  от  $V_a$ 



**Рис. 8:** График зависимости  $B_{\mathrm{\kappa p}}^2$  от  $V_a$ .

По этим данным мы получаем (погрешность углового коэффициента оценена по отклонению от медианной прямой).

$$\frac{e}{m} = (1, 5 \pm 0, 1) \cdot 10^{11} \text{K} \text{л/к} \text{г}$$

## 4. Выводы

В данной работе мы исследовали зависимость андоного тока от тока, протекающего через соленоид при различных напряжениях на аноде лампы, и по ней рассчитали значение удельного заряда и получили:  $e/m=(1,5\pm0,1)\cdot 10^{11} {\rm K} {\rm f}/{\rm k}$ г. Это значение также близко к табличному  $e/m=1,76\cdot 10^{11} {\rm K} {\rm f}/{\rm k}$ г