See also: http://en.wikibooks.org/High_School_Mathematics_Extensions/Discrete_Probability

Introduction

Discrete Probability (crash course)

U: finite set (e.g.
$$U = \{0,1\}^n$$
)

Def: **Probability distribution** P over U is a function P: U
$$\longrightarrow$$
 [0,1] such that $\sum_{x \in U} P(x) = 1$

- 1. Uniform distribution: for all $x \in U$: P(x) = 1/|U|
- 2. Point distribution at x_0 : $P(x_0) = 1$, $\forall x \neq x_0$: P(x) = 0

Distribution vector: (P(000), P(001), P(010), ..., P(111))

Dan Boneh

Events

• For a set
$$A \subseteq U$$
: $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

note: Pr[U]=1

The set A is called an event

Example:
$$U = \{0,1\}^8$$

• A = $\{ all x in U such that <math>lsb_2(x)=11 \} \subseteq U$

for the uniform distribution on
$$\{0,1\}^8$$
: $Pr[A] =$

The union bound

For events A₁ and A₂

$$Pr[A_1 \cup A_2] \leq Pr[A_1] + Pr[A_2]$$

Example:

$$A_1 = \{ all x in \{0,1\}^n s.t lsb_2(x)=11 \}$$
; $A_2 = \{ all x in \{0,1\}^n s.t. msb_2(x)=11 \}$

$$Pr[lsb_2(x)=11 \text{ or } msb_2(x)=11] = Pr[A_1UA_2] \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Random Variables

Def: a random variable X is a function $X:U \rightarrow V$

Example:
$$X: \{0,1\}^n \longrightarrow \{0,1\}$$
; $X(y) = Isb(y) \in \{0,1\}$

For the uniform distribution on U:

$$Pr[X=0] = 1/2$$
 , $Pr[X=1] = 1/2$

More generally:

rand. var. X induces a distribution on V: $Pr[X=v] := Pr[X^{-1}(v)]$

The uniform random variable

Let U be some set, e.g. $U = \{0,1\}^n$

We write $r \stackrel{R}{\leftarrow} U$ to denote a <u>uniform random variable</u> over U

for all
$$a \in U$$
: $Pr[r=a] = 1/|U|$

(formally, r is the identity function: r(x)=x for all $x \in U$)

Let r be a uniform random variable on $\{0,1\}^2$

Define the random variable $X = r_1 + r_2$

Hint:
$$Pr[X=2] = Pr[r=11]$$

Randomized algorithms

• Deterministic algorithm: $y \leftarrow A(m)$

Randomized algorithm

$$y \leftarrow A(m;r)$$
 where $r \stackrel{R}{\leftarrow} \{0,1\}^n$

output is a random variable

$$y \stackrel{R}{\leftarrow} A(m)$$

Example: A(m; k) = E(k, m), $y \stackrel{R}{\leftarrow} A(m)$

End of Segment