특 1999-0086006

## (19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI.° HO4N 13/02

(11) 공개번호 특1999-0086006

(43) 공개일자 1999년12월15일

| 7.D. 1.G. C.           |                                             |
|------------------------|---------------------------------------------|
| (21) 출원번호<br>(22) 출원일자 | 10-1998-0018773<br>1998년 05월 25일            |
| (71) 출원인               | 한국과학기술연구원 박호군                               |
| (72) 발명자               | 서울특별시 성북구 하월곡동 39-1<br>손정영                  |
|                        | 경기도 성남시 분당구 구미동 111 하얀마을 그랜드 빌라 301-201     |
|                        | 스미노브 바딤 브이.                                 |
|                        | 러시아 사인트페테르스버그 쪼크로브스키 애비뉴 1/13-321           |
| ,                      | 전형육                                         |
|                        | 서울특별시 노원구 상계9동 주공 아파트 1408동 1006호           |
|                        | 최용진                                         |
|                        | 서울특별시 노원구 공룡동 230 현대 아파트 7동 201호            |
|                        | 이혁수                                         |
| (74) 대리인               | 서울특별시 도봉구 창4동 주공아파트 1802동 1206호<br>장수길, 주성민 |
| 실사용구 : 있음              |                                             |

### (54) 편광과 광미를 이용한 다자 시청용 3차원 영상 표시 장치

#### SP SP

본 발명은 편광 필터 또는 백색광 [[]를 사용하여 증렬 화소선 별로 입체 또는 다시점 영상이 순차적으로 반복 표시되어 있는 영상 표시 소자의 표시 영상을 시점 영상별로 분리시킴에 의해 시점별 시역을 행성시 키는 입체 및 다시점 영상 표시 장치에 관한 것이다. 편광 필터는 서로간에 편광(Polarization) 방향이 90°차이가 있는 두개의 편광범을 각 편광 별로 영상 표시 소자에 표시된 좌우 눈에 대용하는 영상 중 어 는 한 영상을 표시하는 증렬 화소선만 조명하도록 편광 스트립(Polarizing Strip)이 교대로 평행하게 배 열되어 있는 편광판이다. 백색광 [[[(White Light Strip)를 사용하는 경우는 다시점 영상의 수에 해당하 는 백색광 [[] 발생기를 서로 일정 간격으로 배치하고 각 발생기로부터의 백색광 [[]를 영상 표시 소자에 표시되어 있는 다시점 영상 중 대응하는 다시점 영상을 표시하는 화소선만을 조명하도록 하여 다시점 영 상의 표시가 가능하다. 시역은 영상 표시 소자의 앞쪽 또는 뒷쪽에 놓여 있는 프레넬 렌즈 또는 미와 유 사한 특성을 가진 광학 소자에 의해 형성된다.

#### B.375

£3

## BNN

#### 도면의 견단한 설명

- 도 1은 일반적인 투사형 다시점 3차원 영상 표시 장치의 동작 원리를 나타내는 도면.
- 도 2는 일반적인 접촉형 다시점 3차원 영상 표시 장치의 동작 원리를 나타내는 도면.
- 도 3은 편광을 이용한 무안경식 입체 영상 표시 장치의 원리를 나타내는 도면.
- 도 4는 천영색 화소와 단색 화소 구조를 가진 액정 영상 표시 장치와 입체 영상 표시를 위한 좌우 눈의 대용 화상 배열 방법을 나타내는 도면.
- 도 5는 액정들 사용하는 영상 표시 소자의 구조와 구성총의 편광 방향을 나타내는 도면.
- 도 6은 다이크로익 편광기를 이용하는 편광 필터의 구조와 편광 방향을 나타내는 도면.
- 도 7은 위상 지연 소자를 이용하는 편광 필터의 구성도.
- 도 8은 무색의 위상 지연 소자를 미용하는 편광 필터 구성도.

12-1

도 9는 2인 동시 시청용 편광 필터를 이용한 입체 영상 장치의 광학 구성도. 도 10은 백색광 [[[를 이용한 다시점(4 시점의 경우) 영상 표시 시스템의 광학 구성도. <도면의 주요 부분에 대한 부호의 설명>

1 : 고속 표시 장치 2 : 표시면의 화상

3 : 투사 렌즈 4 : 액정 셔터

5, 6 : [[[형 액정 셔터

7 : 스크린 8, 10 : 부시역

9 : 시역

11 : 영상 표시 소자

12 : 광학판

13, 14, 15, 16 : 시역 17 : 영상 표시 소자의 화소

18, 19 : 광원 20, 21 : 편광판 22, 23 : 확산판 24 : 편광 필터

25 : 명상 표시 소자

26 : 렌즈 27, 28 : 영상 29, 30 : 화소선

31 : 화소 32 : 편광판 33 : 액정층 34 : 분석판

35, 36 : 다이크로익 편광기

37 : 적색 화소열 38 : 녹소 화소열 39 : 청색 화소열

40 : 왼쪽 눈에 대응하는 화소선41 : 오른쪽 눈에 대응하는 화소선

42 : 위상 지면 소자

43 : 적색 반파장 위상 지연 소자 44 : 녹색 반파장 위상 지연 소자 45 : 청색 반파장 위상 지연 소자

46 : 화소선에 대응하는 부분의 편광 필터

47 : 영상 표시 소자의 편광판 편광 방향과 평행한 입사빔 편광 방향

48 : 영상 표시 소자 편광판 편광 방향

49 : 영상 표시 소자의 편광판 편광 방향과 90°되는 입사빔 편광 방향

50 : 무색 위상 지연 소자 51 : 1/4·파장의 위상 지연판

52 : 편광 필터의 화소선에 대응하는 부분

53, 54 : 조명부

55, 56, 57, 58 : 시점별 백색광 [[[열 투사기

59 : 백색 광원

60 : 마스크

61 : 투사 렌즈

62 : 영상 표시 장치

63 : 광학판

64: 투사 렌즈의 영상

65 : 슬릿의 영상

66 : 직사각형 슬릿

67 : 슬릿간 거리

68 : 슬릿 폭

69 : 화소선 폭

70 : 두 조명부를 결합한 한개의 광원

#### 발명의 상세환 설명

#### 보명의 목적

#### 발명이 속하는 기술문에 및 그 분야의 중래기술

본 발명은 영상 표시 소자의 화소선을 서로 간에 편광(Polarization)이 90° 차이가 있고, 폭(Width)이 사용하는 표시 소자의 화소 크기와 같은 편광 스트립(Polarizing Strip)이 교대로 평행하게 배열되어 있는 편광 필터(Polarizing Filter) 또는 화소선 크기와 같은 백색광(White Light) 스트립을 사용, 영상 표시 소자의 대응하는 화소선(Pixel Line)을 선별적으로 조명함에 의해 입체 내지는 다시점 영상 표시가 가능하며 또한 여러 사람이 동시에 시청 가능한 표시 장치의 제작에 관한 것으로, 시역(Viewing Zone)은 영상표시 소자와 평행하게 놓여 있는 프레넬(Fresnel) 렌즈와 같은 투명 광학 소자 또는 이와 유사 특성을 가진 홀로그래픽 광학 소자(Holographic Optical Element)와 같은 광학 부품에 의해 형성되도록 한 것이다.

현재 개발 중인 3차원 영상 표시 장치는 무안경식(No Glasses Type)으로 크게 투사식(Projection Type)과 접촉식(Contact Type)으로 분류가 가능하다. 투사식의 경우는 주로 시분할(Time Multiplexing) 방식 위 주의 프레넬 렌즈(A. R. Travis et. al., 'Time-Multiplexed Three-Dimensional Video Display', J SID, V3, pp 203-205, 1995) 또는 홀로그래픽 스크린(Jung-Young Son et. al., 'A Multiview 3 Dimensional Imaging System with Full Color Capabilities', SPIE V3295.) 등을 이용한 다시점(Multiview) 영상 표시를, 접촉식의 경우는 공간 분할(Spatial Multiplexing) 방식 위주의 렌티큘라(Lenticular)판(R. Borner, 'Autostereoskopische Ruckprojektions-und Flachbildschirme, FKT, V48, pp. 594-600, 1994), 시차장벽(Parallax Barrier)판(H. Isono et. al. 'Autostereoscopic 3-D Display Using LCD Generated Parallax Barrier, 12th Int. Display Research Conference, Japan, Display '92, pp. 303-306, 1992) 또는 슬릿형 광원(Slit Type Light Source)(J.B. Eichenlaub, 'An Autostereoscopic Display for Use with a Personal Computer, Proc. SPIE, V1256, pp. 156-163, 1990) 등을 시선 추적(Eye Tracking) 기능과 겸용하여, 다시점 영상 표시를 하고 있다. 이러한 방식들은 각 방식별로 이점과 결점을 가지고 있으나 공통적으로 1인 이상의 시청이 용이하지 않다는 문제점이 있다.

투사식의 경우는 주로 CRT의 표시 영상을 다시점 영상의 수만큼 서로 띠형으로 분리되어 있는 액정 셔터를 통해 영상을 투사하므로 시역이 표시 장치의 전면에 있는 일정 공간에 형성되어 광미독(Optical Gain)이 높고 영상의 확대가 가능하나, 시스템의 부피가 크며, 시역의 확대를 위해서는 투사 렌즈의 개구(Aperture) 직경이 큰 것을 사용해야 하는 결점이 있다.

접촉식의 경우는 전체 시스템의 부피가 적다는 이점에 있으나, 좌우 눈에 해당하는 시역이 영상 표시 소자의 전면에 추기적으로 분포되어 있고 그 밝기와 크기가 중앙에서 멀어질수록 줄어들기 때문에 광 이득이 낮음은 물론 화면이 크지 않을 경우는 1만 이상의 동시 시청이 어렵고, 화면의 확대가 불가능하며, 화면의 크기를 크게 하면 영상의 질이 감소되는 결점이 있다. 또한 각 시점별 영상의 해상도는 표시 장치화소수의 1/2 이하가 되어 해상도가 낮다. 그러나 해상도의 문제는 현재 평판 표시 장치의 크기와 해상도가 증가되고 있는 중이므로 해결의 전망이 밝다.

#### 显图的 이루고자 市上 기술적 承和

본 발명은 투사식과 접촉식을 절충한 것의 하나로, 서로 간의 편광이 90°다른 [[[형 편광기(Polarizer)가 교대로 그 간격을 최소화하며 평행하게 배열되어 있는 편광판 또는 [[[형 백색광 열(Array)을 이용하여 액정 표시판과 같은 투명 화상 표시판에 화소선 별로 교대로 배열되어 있는 다시점 영상을 시점별로 분리시켜 시역을 형성함에 의해 업체를 포함한 다시점 3차원 영상의 시청을 가능하게 하는 방법 및 그 장치 구성이다.

편광 필터는 영상 표시 소자와 밀착되어 있고, 편광 필터의 각 편광 [[[의 간격과 백색광 [[[의 간격은 영상 표시 소자의 향행 화소선 수와 동일하다. 면광 필터의 경우, [[[의 편광과 같은 편광을 가진 일정 간격으로 놓인 두개의 조명 광을 직접 편광 필터 에 조사하거나 영상 표시 소자와 거의 동일 치수의 프레넬 렌즈나 홀로그래픽 스크린과 같은 투명 광학 부품을 통해 조사하면 된다. 조명광을 직접 편광판에 조시하는 경우는 백색광 [미의 경우와 같이 영상 표 시 소자 앞에 미와 동일한 치수의 프레넬 렌즈나 홀로그래픽 스크린과 같은 투명 광학 부품을 포개어 놓 이야 한다. 백생광 [미를 이용하는 경우는 다시점 영상의 수와 같은 일정 간격으로 배열된 조명광을 화상 표시판의 평행 화소선 수를 다시점 영상의 수로 나는 만큼의 직사각형(Rectangular)의 개구가 일정 간격을 두고 서로 평행하게 배열되어 있는 마스크와 투사 렌즈를 통해 마스크의 확대된 상이 영상 표시 소자 에 나타나도록 한다. 이 경우 마스크 상의 각 개구의 영상이 대응하는 영상 표시 소자의 화소선과 일치 되도록 해야 한다.

#### 발명의 구성 및 작용

이제, 첨부된 도면을 참조하며 본 발명을 상세히 설명한다.

대체, 점우된 도면을 참소하며 본 혈당을 상세히 혈당한다.
도 1은 일반적인 투사형 다시점 3차원 영상 표시 장치의 동작 원리를 나타낸다. 일반적인 투사형 다시점 표시 장치에서는 영상 표시 소자는 프레임(Frame) 또는 필드(Field)율이 초당 최소 60 × 다시점 영상수가 되는 것이어야 화면의 "각막인(Flickering)이 없는 영상을 전달할 수 있으므로 따T, 마마(Deformable Micromirror Device) 또는 FLC(Ferroelectric Liquid Crystal) 등과 같은 고속 표시 소자가 되어야 한다. 도 1메서 고속 표시 소자(1)의 표시면의 화상(2)은 이와 근접하여 있는 투사 렌즈(3)와 이 투사 렌즈(3)의 이 주평면(Principal Plane)에 놓인 [[[형(Strip Type)]] 액정 셔터(LCD Shutter)(4)를 거쳐 스크린(7)에 투사된다. 액정 셔터(4)는 다시점 영상의 수메 해당하는 [[[형 액정 셔터(5, 6)가 수평으로 배열되어 있는 것으로 각 [[[형 셔터(4)는 다시점 영상의 수메 해당하는 [[[형 액정 셔터(5, 6)가 수평으로 배열되어 있는 것으로 각 [[[형 셔터(5, 6)는 고속 표시 소자(1)에 표시되는 다시점 화상(2)의 표시 순서와 통기되어 개폐되며, 마되는 기간은 대응하는 시점 영상이 고속 표시 소자(1)에 표시되는 동안이며 그 외는 0FF되어 있다. 예로 고속 표시 소자(1)에 시점 1의 영상이 표시되는 경우에 이에 대응하는 [[[형 액정 셔터는 액정 셔터(4)의 가장 왼쪽에 있는 [[[형 액정 셔터(5)라면 표시면의 화상(2)] 표시되는 기간동안 [[[형 액정 셔터(5)가 아되며, 화상은 이 셔터를 통해 렌즈 또는 반사경의 특성을 가진 스크린(7)에 투사되며, 스크린(7)은 투사된 영상을 모아 [[[형 액정 셔터(5)의 스크린(7)에 막한 영상(Image)이 맺혀지는 지역(8)에 수렴시킨다. 이 스크린에 의한 액정 셔터(4)의 영상이 맺혀지는 지역(9)을 시역이라 하며, 이 시역 내에 각각의 [[[]형 셔터의 영상이 上타나는 지역을 부시역(Sub-Zone)(8, 10)이라 한다. 액정 셔터(6)의 영상은 부시역(10)에 대응한다. 부시역(10)에 대응한다.

도 2는 일반적인 접촉형 다시점 3차원 영상 표시 장치의 동작 원리를 나타낸다. 영상 표시 소자(11)의 화소(Pixel)(17)을 다시점 영상의 수만큼 분할하며 다시점 영상을 화소선 별로 하며 반복적으로 표시한다. 예로 4개의 다시점 영상 A, B, C, D가 있들 때, 각 다시점 영상으로부터 표시 소자(11)의 그다시점 화소선이 표시되는 위치의 화소선을 선별하며, A, B, C, D, A, B, C, D, A, B, C, D,

· 순으로 다시점 영상을 표시한다. 이 표시 소자의 앞 또는 뒷 단에는 각 다시점 화소선을 분리하여 같은 다시점 화소선만 모아 일정 위치에 나타나게 하는 핸티클라 또는 시차 장벽과 같은 광학판(12)을 놓아다시점 영상 A, B, C, D의 시역(16, 15, 14, 13)이 표시 소자의 앞쪽에 일정 거리 떨어져서 나타나게 한

도 3은 편광을 이용한 무안경식(Non Glasses Type) 입체 영상 표시 장치의 원리를 나타낸다. 서로 이웃하여 영상 표시 소자(25)에 수평 방향으로 평행하게 놓인 두개의 광원(18, 19)에서의 빛이 편광판(20, 21)과 확산판(Diffuser)(22, 23) 그리고 편광 필터(Polarization Filter)(24)를 거쳐 좌우 눈에 해당되는 영상이 증렬(Column) 화소선 별로 교대로 표시되어 있는 영상 표시 소자(25)를 조명시킨다. 두 광원(18, 19)의 앞쪽에 놓인 편광판(20, 21)은 그 분극 방향이 서로 90°차이가 있어 편광판(20, 21)을 통과한 두 광원(18, 19)으로부터의 빛은 서로 편광 방향이 90°차이가 나게, 각기 일정 방향으로 편광되어 있다. 예로 편광판(20)을 통과한 빛이 수평 편광이면, 편광판(21)을 통과한 빛은 수직 편광이다. 각개의 광원, 편광판 그리고 확산판은 영상 표시 소자를 조명하는 조명부(Illuminator)(53)이다. 두 조명부를 한개의 광원으로 합쳐(70) 사용하는 것도 가능하다.

편광 필터(24)는 입사하는 두 편광 방향의 빛을 각 편광별로 좌우 어느 한쪽 눈에 대응하는 영상 표시 소자(25) 상의 화소선만을 조명하도록 하는 역할을 한다. 즉 한 편광 방향의 빛이 좌(우)축 눈에 대응하는 화소선들만 조명하면 다른 편광 방향의 빛은 우(좌)축 눈에 대응하는 화소선들만 조명하도록 한다. 각 편광별 빛은 영상 표시 소자(25)의 앞쪽 또는 편광 필터(24)의 뒤쪽에 놓인 렌즈(26)는 영상 표시 소자(25)를 투과한 빛을 각 편광별로 수렴시켜 확산판(20, 21)의 상(27, 28)이 영상 표시 소자(25)의 앞쪽에 형성되게 한다. 이 상(27, 28)이 형성되는 지역이 시역이며, 각 시역은 서로 편광차가 90°가 나는 좌 또는 우측 눈에 대응하는 화소선들만 통과한 어느 한 편광의 빛만 모여 있으므로, 만약 좌측 눈에 대응하는 화상을 상(27)에서 시청 가능하면, 우측 눈에 대응하는 화상은 상(28)에서 시청 가능하게 되어 입체하산의 사용이 가능해 지다. 화상의 시청이 가능해 진다.

도 4는 천연색 화소(도 4a)와 단색 화소(도 4b) 구조를 가진 액정(Liquid Crystal) 영상 표시 소자와 입체 영상 표시를 위한 좌우 눈의 대응 화상 배열 방법을 나타낸다. 영상 표시 소자(25) 상에는 각 증렬화소선(29,, 30,, 29,, · · · 30,, ·, 29,, 30,) 별로 좌촉 눈에 대응 화상(29, · · · 29,)과 우측 눈에 대응 하는 화상(30, · · · 30,)이 교대로 표시되어 있다. 각 화소선 내의 한 화소(31)는 천역색 화소의 경우는 적, 독, 청의 3원색 화소로 구성되어 있고, 모든 화소에 공통으로 3원색 화소가 적, 독, 청의 순서로 되어 있어, 실제 각 화소선은 적(37), 독(38), 청(39) 세 색상의 (미로 구성되어 있는 것과 같다. 단색 화소의 경우는 적, 독, 청의 어느 한색으로 되어 있고, 이 화소의 주위를 적, 독, 청의 순서로 미 화소의 색상과 다른 색상의 화소가 배열되어 있다.

도 5는 액정을 사용하는 영상 표시 소자의 구조(도 5a)와 구성총의 편광 방향(도 5b)을 나타낸다. 액정을 사용하는 영상 표시 소자(25)는 빛이 입시하는 방향으로 편광판(Polarizer)(32), 액정흥(Liquic Crystal Layer)(33) 그리고 분석판(Analyzer)(34)의 3층 구조로 되어 있다. 편광판(32)은 입사광의 어느한 편광 성분을 선택하여(도 5에서는 수직 편광 성분이 예로 주어짐) 액정층(33)에 보내며, 액정총(33)을 통과한 빛은 편광판(32)과는 편광 방향이 90° 다른 분석판(34)에 의해 액정층(33)에 인가된 화소별 전압 액정층(Liquid 에 의해 편광 방향이 회전된 입사빔 성분을 통과시킨다. 편광 필터는 [[형의 다이크로익 편광기 (Dichroic Polarizer), [[형의 위상 지면(Phase Retardation) 소자 그리고 무색의 위상 지면(Achromatic Phase Retardation) 소자를 이용하는 세가지 방식이 있다.

도 6은 다이크로의 편광기를 이용하는 편광 필터의 구조(도 6a)와 편광 방향(도 6b)을 나타낸다. 편광 필터(24)는 편광 방향이 영상 표시 소자의 편광판 분국 방향과 +45°(36,, 36,)와 -45°(35,, 35,) 다른 두 [[[형 다이크로의 편광기를 교대로 영상 표시 소자의 화소선 수만큼 배열한 것으로 각 [[[형 편광기의 폭과 각 [[[형 편광기 사이의 간격은 각 [[[형 편광기를 통과한 빛이 영상 표시 소자의 대용하는 화소선만을 조명하도록 설정되어 있다. 각 [[[형 편광기의 길이는 편광판의 상하 폭과 같다. 영상 표시 소자의 편광판 편광 방향이 90°인 경우는 [[[형 편광기의 편광 방향은 각각 45°와 135°가 된다. 이 편 광 필터는 구성이 간단하나, 입시범 에너지의 75%가 이 편광 필터와 영상 표시 소자의 편광판에 의해 손실되는 것이 문제이다.

도 7은 위상 지연 소자를 이용하는 편광 필터의 구성도이다. 이 편광 필터(24)는 좌우 눈에 대용하는 머느 한쪽 화상의 화소선(40)에 입사하는 범의 위상을 반파장 지연시키는 위상 지연 소자(42)를 사용하며 다른 화상의 화소선(41)은 입사범이 그대로 투과하도록 하는 것이다. 여기에 사용하는 위상 지연 소자 (42)는 복굴절(Birefringence) 물질로 만들어지며, 그 빠른 축(Fast Axis)이 액정과 같은 영상 표시 소자 (25)의 편광층 편광 방향과 +45° 또는 -45°가 되도록 만든 것으로, 화소선의 각 색상 화소별로 반파장의 위상 지연을 주기 위해 적(43), 녹(44), 청(45)색의 순서로 위상 지연 소자(42)의 두께가 줄어들며, 화소선(41)에 대용하는 부분의 편광 필터(46)는 위상 지연이 없는 투명판이다. 위상 지연 소자형 편광 필터를 사용하는 경우는 입사범의 두 편광 방향은 영상 표시 소자의 편광판 편광 방향(48)과 하나는 평행(47)하며, 다른 하나는 90° (49)가 되는 것이어야 한다.

지어에게, 다른 아니는 90° (49)가 되는 것이더라 된다.
도 8은 무색의 위상 지연 소자를 사용하는 편광 필터 구성도이다. 이 편광 필터(24)는 도 7의 위상 지연 소자를 사용하는 편광 필터와 같이 좌우 눈에 대응하는 머느 한쪽 화상의 화소선(40)에 입사하는 범의 위상을 반파장 지연시키는 무색 위상 지연 소자(50)를 사용하며 다른 화상의 화소선(41)은 입사범이 그대로 투과하도록 하는 것이다. 무색 위상 지연 소자는 1/4 파장의 위상 지연판(51)과 그 밑에 이 위상 지연판(51)의 파장별 위상 지연에 있어 차이를 보상할 수 있는 편광 보상기(Polarization Compensator)를 사용하여 가시광의 전범위에 걸쳐 편광 방향을 90° 회전시키거나, 위상 지연 소자의 편광판의 편광 방향(48)과 동일 방향(47)은 통과하지 못하게 하고, 이와 수직인 편광(49)의 빛만 편광을 90° 회전시켜 통과시킨다. 이 편광이 90° 회전된 범은 그 편광 방향이 위상 지연 소자의 편광판 편광 방향과 동일하거나 180° 차이가 나게 되어 편광판을 통과하게 된다. 편광 필터(24)의 화소선(41)에 대응하는 부분(52)은 입사범의 위상을 변화시킴이 없이 그대로 투과시킨다. 도 9는 2인 동시 시청용 편광 필터를 이용한 입체 영상장치의 광학 구성도이다. 도 3에 보이는 1인용 입체 영상 장치에서 조명부(54)를 여러개 배치한 것이다. 이 조명부(54)의 상대적인 위치에 따라 형성되는 시역(27, 28,)의 위치와 크기가 달라진다.

도 10은 백색광 [[(White Light Strip)를 이용한 4시점 표시 장치를 예로 들은 다시점 3차원 영상 표시 시스템의 광학 구성도를 도시했다. 도 10a는 평면도이며, 도 10b은 백색광 [[]를 나타내는 도면이다. 다시점 영상은 도 2에서 설명한 것과 같이 영상 표시 소자(62)에는 4시점 영상이 A,B,C,D,A,B,C,D,A, · · · D,, 주 A 영상의 첫번째 화소선, B 영상의 두번째 화소선, C 영상의 3번째 화소선, D 영상의 4번째 화소선, A 영상의 5번째 화소선, B 영상의 6번째 화소선, C 영상의 7번째 화소선, D 영상의 8번째 화소선, A 영상의 9번째 화소선 그리고 같으로 D 영상의 6번째, 즉 마지막 화소선의 순으로 표시되어 있다. 4시점 영상 표시 를 위해서는 각 시점의 영상별로 독립적인 광원에 의해 동시에 조명되어야 한다. 각 시점별 화소선은 시절별 백색광 [[[일(Strip Array) 투사기(55, 56, 57, 58)에 의해 조명되며, 각 투사기는 백색 광원(59)과 마스크(60) 그리고 투사 핸즈(61)로 구성되어 있으며, 마스크(60)는 일정 간격으로 직사각형 들릿(6 6)이 배열되어 있다. 이 슬릿의 수는 영상 표시 소자(62)의 전체 화소선수를 다시점 영상의 수로 나는 값과 같고, 슬릿의 폭(88)은 영상 표시 소자(62)의 화소선 폭(69)를 투사 렌즈의 비율, m으로 나누어준 값과 등일하다. 각 투사기 내의 마스크(60)는 이 마스크(60) 슬릿의 영상(65)이 대용하는 시점별 화소선만을 정확히 조명하도록 배열되어 있다. 각 투사기의 투사 렌즈(61)의 영상(64)은 영상 표시 소자(62)의 앞쪽 전조의 의명상(64)과 서로 중첩되지 않고 우리 눈간 거리(Eye Distance) 이하의 폭을 가지고 서로 인접하게 배열되어 있다.

#### ### 57

본 발명에 따르면, 영상 표시 소자의 대응하는 화소선(Pixel Line)를 선별적으로 조명함에 의해 입체 내지는 다시점 영상 표시가 가능하며 또한 여러 사람이 동시에 시청이 가능한 영상 표시 장치를 제공할 수있다.

#### (도) 경구의 방위

#### 청구함 1

입체 영상 표시 시스템에 있어서,

영상 표시 소자에 증렬 화소선 별로 교대로 표시되어 있는 좌측 및 우측 눈에 대응하는 영상을 편광 필터를 이용하여 화소선 별로 분리 조명시키며, 주요 구성 부품이 서로 편광 방향이 90°차이가 나는 두개의 조명부, 프레넬 렌즈 또는 이와 유사한 특성을 가진 광학 부품, 편광 필터, 그리고 액정 표시 소자 또는 이와 유사한 영상 표시 소자로 주머지며, 좌우 눈에 대응하는 시역은 편광이 90°차이가 나는 조명부로부 터의 광으로 형성되는 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구함 2

제1항에 있어서, 각개의 조명부는 백색 광원, 편광판 그리고 확산판으로 구성되어 있고 두 조명부의 편광 판은 서로 편광 방향이 90°차이가 나는 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 3

제1항에 있어서, 편광 필터의 하나는 좌측 및 우측 눈에 대응하는 영상이 증렬 화소선 별로 교대로 표시 되어 있는 액정형 영상 표시 소자의 화소선 폭메 대응하는 폭을 가진 편광이 서로 90° 다른 띠형의 다이 크로익(Dichroic) 편광기를 일정 간격으로 영상 표시 소자의 화소선 수만큼 교대로 배열한 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 4

제1항에 있어서, 편광 필터의 다른 하나는 영상 표시 소자의 증렬 화소선 중, 좌측 또는 우측의 어느 한 눈에 대응하는 영상이 표시된 화소선에, 조명부로부터 입사하는 광의 위상을 반파장 지연시켜 입사광의 편광 방향을 90°회전시키며, 다른측은 위상 지연 없이 그대로 통과시키는 위상 지연 소자를 사용한 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 5

제1항에 있어서, 영상 표시 시스템은 조명부, 프레넬 렌즈 또는 미와 유사한 특성을 가진 광학 부품, 편광 필터, 영상 표시 소자의 순 또는 조명부, 편광 필터, 영상 표시 소자, 프레넬 렌즈 또는 미와 유사한 특성을 가진 광학 부품 순으로 구성된 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 6

제1항에 있머서, 편광 필터의 또다른 하나는 영상 표시 소자의 증렬 화소선 중, 좌측 또는 무촉의 머느한 눈에 대응하는 영상미 표시된 화소선에, 조명부로부터 입시하는 광의 위상을 반파장 지연시켜 입사광의 편광 방향을 90°회전시키는 무색(Achromatic)의 위상 지연 소자를 사용하며, 다른 쪽은 그대로 투과시키는 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 7

제6항에 있어서, 상기 편광 필터에서 무색의 위상 지연 소자는 입사범의 한 편광 방향 빛만 90°편광 방향을 회전시켜 통과시키고 이와 90°편광 방향의 빛은 통과시키지 않는 것을 특징으로 하는 입체 영상 표사 시스템.

#### 청구항 8

제2항에 있어서, 조명부의 확산판은 수직 방향의 시역 확대를 위해 수직 방향으로 늘어난 직사각형 형태 를 가진 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 9

제3항에 있어서, 상기 편광 필터를 사용하는 경우는 두 조명부로부터 편광된 광의 편광 방향은 액정형 영상 표시 소자에 부착된 편광판의 편광 방향과 하나는 +45°다른 하나는 -45°의 각도를 갖는 것을 특징으로 하는 입체 영상 표시 시스템.

#### 청구항 10

제4항에 있어서, 상기 위상 지연 소자는 영상 표시 소자의 증렬 화소선 내의 적, 녹, 청색의 각 색상별 파장에 따른 위상 지연을 보상하기 위해 색상 화소별로 지연 소자의 두께를 달리하며 사용하는 것을 특징 으로 하는 입체 영상 표시 시스템.

#### 청구항 11

제4항 또는 제10항에 있어서, 상기 위상 지면 소자는 복굴절 물질로 만들어지며, 그 빠른 축이 액정과 같은 영상 표시 소자의 편광층 편광 방향과 +45° 또는 -45°가 되도록 만든 것을 특징으로 하는 입체 영상 표시 시스템

#### 청구함 12

제6항 또는 제7항에 있어서, 상기 편광 필터를 사용하는 경우, 두 조명부로부터의 편광된 광의 편광 방향은 액정형 영상 표시 소자에 부착된 편광판의 편광 방향과 하나는 평행이며, 다른 하나는 90° 차이가 나게 하며 사용하는 것을 특징으로 하는 입체 영상 표사 시스템.

#### 청구함 13

다시점 영상 표시 시스템에 있어서,

영상 표시 소자에 증렬 화소선 별로 순차적으로 반복 표시되어 있는 다시점 영상을 백생광 [[기를 화소선 별로 조시하여, 각 시점별 영상을 분리시키며, 백색광 [[] 발생기, 액정 표시 소자 또는 이와 유시한 영상 표시 소자 그리고 프레넬 렌즈 또는 이와 유시한 광학 부품의 순으로 구성된 것을 특징으로 하는 다시점 영상 표시 시스템.

#### 청구함 14

제13항에 있어서, 백색광 따는 다시점 영상의 수만큼 일정 간격으로 배열되어 있는 백색광 때 발생기에 의해 발생되며, 백색광 때 발생기는 백색 광원, 영상 표시 소자의 증렬 화소선을 다시점 영상의 수로 나 눈 만큼 직사각형 슬릿이 배열되어 있는 마스크, 및 투사 렌즈로 구성된 것을 특징으로 하는 다시점 영상 표시 시스템.

#### 청구항 15

제14항에 있어서, 전체 백색광 [[의 수는 영상 표시 소자의 화소선 수와 동일하고, 각 백색광 [[] 발생기로부터의 백색광 [[]는 해당 다시점 영상이 표시되어 있는 화소선만 조명하도록 한 것을 특징으로 하는 다시점 영상 표시 시스템.

#### 청구항 16

제14항 또는 제15항에 있어서, 상기 백색광 띠는 그 폭과 길이는 영상 표시 소자의 각 화소선의 그것들과 동일한 것을 특징으로 하는 CH시점 영상 표시 시스템.

丘四

*도胆1* 



*5.0!2* 



*⊊№3* 



5.014



a) 천연색 화소 구조



이 단색 화소 구조

*⊊₽5* 



*도만*6



*597* 



<u> 528</u>



££10





# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |  |
|-------------------------------------------------------------------------|--|
| BLACK BORDERS                                                           |  |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |  |
| ☐ FADED TEXT OR DRAWING                                                 |  |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |  |
| ☐ SKEWED/SLANTED IMAGES                                                 |  |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                                    |  |
| ☐ GRAY SCALE DOCUMENTS                                                  |  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |  |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |  |
| □ other:                                                                |  |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.