### Preliminary Results from the 12 GeV EMC Effect Experiment in Jefferson Lab's Hall C

**Cameron Cotton** 

2023 Fall Meeting of APS DNP and JPS

Connections Between Nuclear PDFs and Nuclear Structure

11.28.23







## Outline

- What is the EMC Effect?
- Experimental Overview
- Select Experiment Goals
- Select Preliminary Results
- Summary



### The EMC Effect

### **Prediction (Pre-1983)**

$$F_2^A(x) = ZF_2^p(x) + NF_2^n(x)$$



### **Experiment**

#### Quark distributions are modified in nuclei?



### The EMC Effect

- We can compare the "size" of the EMC Effect in different nuclei by taking the slope of the per-nucleon cross section ratio in the range: 0.30 < x < 0.70
- We find that the size of the EMC varies between nuclei, generally increasing with A.



• Exp. E12-10-008 ran in Hall C of Jefferson Lab from Fall 2022 through Spring 2023.



- Exp. E12-10-008 ran in Hall C of Jefferson Lab from Fall 2022 through Spring 2023.
- This experiment collected inclusive Deep Inelastic Scattering (DIS) data utilizing a 10.6 GeV electron beam produced at CEBAF and the High Momentum Spectrometer (HMS) present in Hall C.



- Exp. E12-10-008 ran in Hall C of Jefferson Lab from Fall 2022 through Spring 2023.
- This experiment collected inclusive Deep Inelastic Scattering (DIS) data utilizing a 10.6 GeV electron beam produced at CEBAF and the High Momentum Spectrometer (HMS) present in Hall C.
- Data was collected by impinging the 10.6 GeV electron beam on over 20 targets to study the nuclear dependence of the EMC Effect.



- Exp. E12-10-008 ran in Hall C of Jefferson Lab from Fall 2022 through Spring 2023.
- This experiment collected inclusive Deep Inelastic Scattering (DIS) data utilizing a 10.6 GeV electron beam produced at CEBAF and the High Momentum Spectrometer (HMS) present in Hall C.
- Data was collected by impinging the 10.6 GeV electron beam on over 20 targets to study the nuclear dependence of the EMC Effect.
- Kinematic coverage as shown



#### Mapping out EMC Effect in Light Nuclei

- Light (few-body) nuclei are amenable to theoretical comparisons.
- Light nuclei provide an ideal environment to probe short range structure.



#### Mapping out EMC Effect in Light Nuclei

- Light (few-body) nuclei are amenable to theoretical comparisons.
- Light nuclei provide an ideal environment to probe short range structure.

#### Looking for Flavor Dependent EMC Eff.

 Ca40, Ca48, and Ti are well suited to tease out any flavor dependence of the EMC Effect.



#### Mapping out EMC Effect in Light Nuclei

- Light (few-body) nuclei are amenable to theoretical comparisons.
- Light nuclei provide an ideal environment to probe short range structure.

#### Looking for Flavor Dependent EMC Eff.

 Ca40, Ca48, and Ti are well suited to tease out any flavor dependence of the EMC Effect.

#### Exploring EMC-SRC Connection

 Running in parallel with the XEM2 SRC experiment allows for direct comparison between the two phenomena for a large number of nuclei.



See talk by Zoe W. on SRCs!



# Preliminary Results

- Only one pass of detector calibrations completed
- Limited offset/detector efficiency corrections have been applied
- Need to iterate cross section model for radiative corrections
- Data quality checks ongoing

#### EMC Ratio: Carbon at 20°



### Preliminary Results - Be through C



### Preliminary Results – Ca40 through Ni64



## Selected Preliminary Results

### World EMC Slopes



### Summary

- The XEM2 collaboration completed data collection for experiment E12-10-008 at Jefferson Lab in Spring 2023
- Preliminary results look promising when comparing measured EMC slopes to targets with previously published measurements.
- No significant isospin dependence observed for the EMC Effect.
- What we have left:
  - Iterate detector calibrations, offsets, efficiencies
  - Investigate time-dependent effects observed in the data
  - Iterate cross section model for radiative corrections
  - Study targets that were negatively impacted by the beam



# Collaboration

#### **Graduate Students and Post-Docs**



















Cameron Cotton Ryan Goodman Abishek Karki **UVA** 

UTK

**MSU** 

Casey Morean CUA

UTK

Ramon Ogaz Abhyuday Sharda UTK

Burcu Duran UTK

Tyler Hague LBL

**Zoe Wolters UNH** 

Not Pictured: Sebastian Vasquez (UCR)

#### Spokespeople:

John Arrington (LBL), Aji Daniel (Ohio U.), Donal Day (UVA), Nadia Fomin (UTK), Dave Gaskell (JLab)

#### Other Collaborators:

Miguel Arratia (UCR), Dipangkar Dutta (MSU), Shujie Li (LBL), Dien Nguyen(UTK), Nathaly Santiesteban (UNH), Xiaochao Zheng (UVA)

## Questions?

# Backup Slides

### x f(x,Q) versus x



#### Carbon at 20°

### EMC Ratio: x<sub>Bi</sub>

