1 - Problem:

As we all know, the temperature on the surface of the earth fluctuates throughout the day (see figure 1). The temperature on earth is therefore a function of time. For simplicity, let's assume that the temperature can be described by the following equation:

$$y(t) = R \cdot \sin\left(\frac{2 \cdot \pi}{24} \cdot (t - t \, 0)\right) + B \tag{1}$$

Where the variables are:

- **y**, the temperature (in °F)
- t, the time of day (in hrs)

R is the range in daily temperature (in °F)

t0 is the 'off-set' time of day (in hrs)

B is the 'bias' temperature (in °F)

1 - Questions:

Your assignment is to write software capable of determining the constants for 4 different locations on earth

Location	R (°F)	t0 (hrs)	B (°F)
Philadelphia, PA	25	9	55
Panama City, FL	10	9	72
Brewster, MA	15	9	59
Enugu, Nigeria	13	9	73

1 - Software Solution:

1.A - Write a function (ca1_fun1.m)

This function must do the following (requirements)

- 1. Input 1 (eq_cnst)
 - a. Receive the equation constants as an input vector [1x3]
- 2. Input 2 (t data)
 - a. Receive the time (hrs) variable as an input vector [Nx1]
- 3. calculation
 - a. Use equation 1 to determine temperature based on the input constants and input time variable
- 4. Output (y temp)
 - a. Output the temperature (deg F) as a vector [Nx1]

1.B - Write a script (scrpt_ca1fun1.m)

This script must do the following (requirements)

- 1. <u>Define time variable</u>
 - a. Create a vector starting at 0, ending at 24 and spaced every 1 hr
- 2. Define constants
 - a. Create a [1x3] vector of constants
 - i. (1,1) = [R] temperature range (deg F)
 - ii. (1,2) = [t0] time offset (hrs)
 - iii. (1,3) = [B] temperature bias (deg F)
- 3. Calculate temperature variable
 - a. Use ca1_fun1 to calculate temperature
- 4. Plot results
 - a. create a figure and plot time (x-axis) vs temperature (y-axis)
 - b. Be sure to label axes
- 5. Determine the constants (range, t0, B) used to generate the data in figure 1.
 - a. Change the constants and run your script repeatedly
 - b. Comment on how you knew you were 'right'

2 - Problem:

After we exercise, our heart rate slows down to 'normal' (see figure 2). What you may not know, is that this return to base-line can be described by an exponential function (equation 2):

$$y(t) = D \exp\left(\frac{-t}{T}\right) + B \tag{2}$$

Where the variables are:

- **y**, the heart rate (in beats/min)
- **t**, the time (in sec)

And our constants are:

D is the increase in HR (in BPM)

 τ is the decay constant (sec)

B is the base-line HR (BPM)

2 - Questions:

Since D is the increase in heart-rate, B is the base-line and the decay rate (τ) has been shown to be inversely proportional to how fit a person is (the more fit a person, the less time it takes to return to base-line), generate 3 figures for fit, average, unfit subjects to the same exercise (walking up 3 flights of stairs) based on these values.

Fitness	D	tau	В
Unfit	120	20	75
Average	60	10	60
Fit	40	5	40

2 - Software Solution:

2.A - Write a function (ca1_fun2.m)

This function must do the following (requirements)

- 1. Input 1 (eq_cnst)
 - a. Receive the equation constants as an input vector [1x3]
- 2. Input 2 (t data)
 - a. Receive the time (sec) variable as an input vector [Nx1]
- 3. calculation
 - a. Use equation 2 to determine heart rate (BPM) based on the input constants and input time variable
- 4. Output (y temp)
 - a. Output the heart-rate (BPM) as a vector [Nx1]

2.B - Write a script (scrpt_ca1fun2.m)

This script must do the following (requirements)

- 1. Define time variable
 - a. Create a vector starting at 0, ending at 60 and spaced every 1 sec
- 2. Define constants
 - a. Create a [1x3] vector of constants
 - i. (1,1) = [D] increase in heart-rate (BPM)
 - ii. $(1,2) = [\tau]$ decay constant (sec)
 - iii. (1,3) = [B] base-line heart-rate (BPM)
- 3. Calculate heart-rate variable
 - a. Use cal fun2 to calculate heart-rate
- 4. Plot results
 - a. create a figure and plot time (x-axis) vs heart-rate (y-axis)
- 5. Determine the constants (D, tau, B) used to generate the data in figure 2.
 - a. Change the constants and run your script repeatedly
 - b. Comment on how you knew you were 'right'

Constraints:

- 1. All work (code and other materials) are due (in bblearn) PRIOR to class the following week
- 2. All software must be written in MATLAB
- 3. University Policies (see course syllabus)
- 4. Course Policies (see course syllabus)
- 5. All axes must be labeled

Additional Requirements:

- 1. Your name must appear in your software (commenting in your m-files) in order to receive credit (Your name can appear in multiple m-files)
- 2. Variable names must be related to the data contained in the variable
- 3. Commenting must include ALL software solution steps
- 4. Commenting must explain the 'choices' within your code (for example if your code has something like, dt(:,1), you must comment why column 1)