Lecture 3: Regression analysis with time series data II

Prof. dr. Wolter Hassink Utrecht University School of Economics w.h.j.hassink@uu.nl

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Contents:

- Spurious regression
- Consequences of spurious regression & stationarity
- Dickey-Fuller test
- Application of Dickey-Fuller test
- Co-integration
- Error-correction models
- Forecasting
- Vector autoregressive (VAR) model

Material:

Chapter 18: 11.3, 18.2, 18.3, 18.4, 18.5

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author.

© Utrecht University School of Economics 2023

Motivation

• For instance the stockprice of ASML. Development of ASML on Thursday 22 September 2023

• There is also information on the development of the AEX index on the same day

FORECASTING THE STOCKPRICE OF ASML – WAY OF THINKING

- Construct a forecasting model. Make a sample split into the observations to estimate the parameters of a forecasting model
- The remainder of the observations are used to make predictions (forecasts) with the forecasting model
- Make use of the model that has the smallest forecast error for the testing dataset (= running a horse race)
- Options:
 - 1. simple time trend: $ASML_t = \hat{\alpha}_0 + \hat{\alpha}_1 t$
 - 2. Lagged values: $ASML_{t} = \hat{\beta}_{0} + \hat{\beta}_{1}ASML_{t-1}$ with $|\hat{\beta}_{1}| < 1$
 - 3. Other variables: $ASML_t = \hat{\gamma}_0 + \hat{\gamma}AEX_{t-1}$
 - 4. Unit root/Random walk/I(1): $ASML_{i-1} = \hat{\lambda}_0 + ASML_{i-1}$
 - 5. Co-integration: $ASML_t = \hat{\delta}_0 + \hat{\delta}_1 AEX_t$
 - 6. Some combination of these five options
 - 7. Vector Autoregressive (VAR) model
- Previous week: options 1, 2 and 3
- THIS WEEK: options 4 and 5 and 7
- THIS WEEK: shall we analyse ASML, or

$$\Delta ASML_{t}$$
 (= $ASML_{t} - ASML_{t-1}$)

We will apply the Dickey-Fuller test

Spurious regression

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Motivation: spurious regression

Aim: to introduce spurious regression and co-integration.

- Consider a regression of y_t on x_t where both variables are non-stationary (they are integrated of order one I(1)). A good example is the relation between AEXindex and the stockprice of ASML.
- In that case, there is the possibility of spurious regression. CONSEQUENCE: Estimation by OLS gives inconsistent coefficients and the *t*-values are misleading.
- Spurious regression does not occur if the two variables are cointegrated, that is, a linear combination of the two variables is stationary (I(0)).

Example - Spurious regression

• Let y_t (= stock price ASML) and x_t (=AEX index) be two independent random walks:

$$o \quad y_{t} = y_{t-1} + e_{t}$$

$$\circ \quad x_{t} = x_{t-1} + a_{t}$$

Where the error terms e_t and a_t are mutually independent.

- Let's assume that y_t and x_t are independent, so that there is no relationship between both variables.
- However, a regression of the level of y (not a growth variable) on the level of x yields a high R^2 and a very low Durbin Watson statistic:

$$0 y_{t} = \beta_{0} + \beta_{1} x_{t} + u_{t} (18.30)$$

• Adding a time trend to the regression equation does not change the result, and the results cannot be trusted.

$$0 y_t = \beta_0 + \beta_1 x_t + \gamma t + u_t$$

• However, a regression in first differences delivers the expected results: $\Delta y_t = \alpha_2 + \beta_2 \Delta x_t + \Delta u_t$

Level: AEXindex

- . keep if stock == 14
- . tsset time
- . graph twoway line AEXindex time

Level: Stockprice

The purpose of those graphs is to recognize the development of the level stockprice and to check whether any time trend is needed. Graphs below: the development in the first difference of the stock price is not completely irregular. This is what will be usually checked first.

First difference: $\triangle AEXindex$. graph twoway line d.AEXindex time

First difference: Δstockprice

. graph twoway line d.stockprice time

Consequences of spurious regression & stationarity

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Time series: consistency of OLS

Consider a time-series model with a finite lag.

$$y_{t} = \alpha + \delta_{0} z_{t} + \delta_{1} z_{t-1} + u_{t}$$
 $t = 1, 2, ...$

- The regression parameters $\alpha, \delta_0, \delta_1$ can be estimated consistently with OLS if the following assumptions hold (in addition to the assumptions of linearity and no perfect collinearity):
- TS.1' $y_{t}, z_{t}, z_{t-1}, u_{t}$ must be:
 - Stationary
 - o Weakly dependent.

TS.3' z_{t} , z_{t-1} are contemporaneously exogenous: $Cov(z_{t}, u_{t}) = 0$ and $Cov(z_{t-1}, u_{t}) = 0$.

Week 2: weak dependence

• Moving average (MA) and autoregressive (AR) models are weakly dependent, in contrast to unit root models.

Correlation between x_t and x_{t+1} :

$$Corr(x_{t}, x_{t+1}) = \frac{Cov(x_{t}, x_{t+1})}{\sqrt{Var(x_{t})}\sqrt{Var(x_{t+1})}}$$

Correlation between x_t and x_{t+2} :

$$Corr(x_{t}, x_{t+2}) = \frac{Cov(x_{t}, x_{t+2})}{\sqrt{Var(x_{t})}\sqrt{Var(x_{t+2})}}$$

.

Correlation between x_t and x_{t+h} :

$$Corr(x_{t}, x_{t+h}) = \frac{Cov(x_{t}, x_{t+h})}{\sqrt{Var(x_{t})}\sqrt{Var(x_{t+h})}}$$

The definition of weakly-dependent time series:

A stationary time series $\{x_t : t = 1, 2, ..., \}$ is weakly dependent if x_t and x_{t+h} are "almost independent" as $h \to \infty$. Thus $Corr(x_t, x_{t+h}) \to 0$ as $h \to \infty$.

Stationarity

Formal definition of stationary stochastic process (see Wooldridge, Section 11.1):

The stochastic process $\{x_t: t=1,2,...,\}$ is stationary if for every collection of time indices $1 \le t_1 < t_2 < ... < t_m$, the joint distribution of $x_{t_1} < x_{t_2} < ... < x_{t_m}$ is the same as the joint distribution of $x_{t_1+h} < x_{t_2+h} < ... < x_{t_m+h}$ for all integers $h \ge 1$.

- A stochastic process that is not stationary, is said to be a nonstationary process.
- Stationarity implies that the sequence $\{x_t : t = 1, 2, ..., \}$ is *identically distributed*.
- A process with a time trend is nonstationary

Weaker requirement: covariance stationarity

The stochastic process $\{x_t : t = 1, 2, ..., \}$ is covariance stationary if

- 1) $E(x_t)$ is constant
- 2) $Var(x_t)$ is constant
- 3) For any t, $h \ge 1$, $Cov(x_t, x_{t+h})$ depends only on h and not on t.

Examples of stationary and non-stationary models

Three classes of models are considered:

1) Moving Average (MA) models. E.g. MA(1) (maximum of one period lag):

$$y_{t} = e_{t} + \alpha_{1}e_{t-1}$$
 $t = 1, 2, ...$

where the error term e_i is i.i.d. with $Ee_i = 0$ and $Var(e_i) = \sigma_e^2$ Features: y_i is stationary and weakly dependent.

2) Autoregressive models. E.g. AR(1) (maximum of one period lag):

$$y_{t} = \rho_{1} y_{t-1} + e_{t}$$
 $t = 1, 2, ...$

where e_t is i.i.d. with $Ee_t = 0$ and $Var(e_t) = \sigma_e^2$. The error term e_t is independent of y_{t-1} .

Features: y_t is stationary and weakly dependent if the stability condition is met: $|\rho_t| < 1$.

3) Unit root model:

$$y_{t} = y_{t-1} + e_{t}$$
 $t = 1, 2, ...$

where e_t is i.i.d. with $Ee_t = 0$ and $Var(e_t) = \sigma_e^2$. The error term e_t is independent of y_{t-1} . Features: y_t is a highly persistent time series. It is nonstationary and not weakly dependent.

We would like to know how to respond to models containing unit root.

Response:

- 1) Do not need to apply any transformation to the time series if a time series does not have a unit root.
- 2) Take the first differences if a time series has a unit root.
- $\{y_t\}$: Integrated of order one (or I(1)). $\{y_t\}$: I(1) or $y_t = y_{t-1} + e_t$
- Note that the first difference of $\{y_i\}$ is $\{e_i\}$.

$$y_{t} - y_{t-1} = e_{t}$$

Since e_i is assumed to be i.i.d., it is stationary and weakly dependent.

Dickey-Fuller test

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

How do we check for a unit root? Dickey-Fuller test

Aim: to describe the Dickey-Fuller(DF) test.

• Start with an AR(1) model:

$$y_{t} = \alpha + \rho y_{t-1} + e_{t}$$
 $t = 1, 2, ..., n$ (18.17)

• Assume that e_{t} is i.i.d. with zero mean and constant variance.

$$e_t$$
 is independent of $y_{t-1}, y_{t-2}, ..., y_0$:

$$E(e_{t} | y_{t-1}, y_{t-2}, ..., y_{0}) = 0$$

• $\rho = 1$ gives a random walk

$$\alpha = 0$$
 without drift $\alpha \neq 0$ with drift

$$\alpha \neq 0$$
 with drift

• The hypotheses:

$$\circ H_0: \rho = 1$$
 (unit root)

$$H_1: \rho < 1$$
 (no unit root)

- Note:
 - \circ Under the null hypothesis the time series $\{y_i\}$ follows random walk/ $\{y_i\}$ has a unit root/ $\{y_i\}$ is I(1) (integrated of order one). These three terms are synonyms. The time series does not follow a tdistribution if the null hypothesis is not rejected. Not even asymptotically.
 - o The alternative hypothesis is one sided. If the null hypothesis is rejected, the time series follows a stable AR(1) model.

• Define:
$$\theta = \rho - 1$$
 (18.19)

•
$$y_t = \alpha + \rho y_{t-1} + e_t$$
 becomes

$$y_{t} - y_{t-1} = \alpha + \rho y_{t-1} - y_{t-1} + e_{t}$$

$$\Delta y_{t} = \alpha + (\rho - 1) y_{t-1} + e_{t}$$

$$\circ \text{ which is a regression of } \Delta y_{t} \text{ on } y_{t-1}$$
:
$$(18.21)$$

• The hypotheses become:

$$0 \quad H_0: \theta = 0; (\rho = 1) \qquad \text{(unit root)}$$

$$H_1: \theta < 0; (\rho < 1) \qquad \text{(no unit root)}$$

- Note:
 - The left-hand side is the first difference variable Δy_t (which is I(0) if H₀ is true); the right-hand side is a level variable (I(1) if H₀ is true).
 - o Problem: the *t*-statistic for $\hat{\theta}$ does not follow *t*-distribution under H₀ as y_{t-1} is I(1).
 - O Dickey-Fuller uses different critical values for the *t*-statistic of $\hat{\theta}$ (estimated parameter on lagged level variable)

Table 18.2 Signif. level 1% 2.5% 5% 10% Critical value -3.43 -3.12 -2.86 -2.57

- E.g. reject H_0 if *t*-value < -2.86. Compared with the standard *t*-test critical values (e.g. -1.645 with α =0.05), it is more difficult to reject H_0 with the DF-critical values.
- Apply DF-test on all variables of the regression equation.

Augmented Dickey-Fuller test

Aim: to introduce the augmented DF-test, which corrects for autocorrelation in the residuals.

Consider a model with additional lags

$$\Delta y_{t} = \alpha + \theta y_{t-1} + \gamma_{1} \Delta y_{t-1} + e_{t}$$
 with $\gamma_{1} < 1$ (18.23)
 $t = 2, 3, ..., n$

- DF-test: H₀: $\theta = 0$; H₁: $\theta < 0$ using DF-critical values of *t*-statistic $\hat{\theta}$
- The critical values of *t*-statistic for $\hat{\gamma}_1$ (lagged dependent variable) approximately follow a *t*-distribution. Standard *t*-tests and *F*-tests can be applied to determine the appropriate number of (p) lags, Δy_{t-j} to include. j=1,2,...,p
- Rule of thumb:
 - o Annual data: one or two lags suffice
 - o Monthly data: 12 lags might be needed
 - o Quarterly data: four or five lags.

Dickey-Fuller test with time trend

Aim: to introduce a time trend in the DF-test.

• A time trend is added to the basic equation:

$$\Delta y_{t} = \alpha + \delta t + \theta y_{t-1} + e_{t}$$
 $t = 2, 3, ..., n$ (18.25)

- The same testing procedure as above is applied. Problem: t-value of the estimated parameter on time trend $\hat{\delta}$ does not follow t-distribution under H_0 .
- Dickey-Fuller: the critical values for the *t*-statistic of $\hat{\theta}$ (estimated parameter on lagged level variable) are:

Table 18.3

Signif. level	1%	2.5%	5%	10%
Critical value	-3.96	-3.66	-3.41	-3.12

- E.g. reject H₀ if *t*-value < -3.41 at the 5% level. The critical value (5% significance level) of Table 18.2 was 2.86.
- The problem with the DF-test is that it lacks power (large type II-error). There is a high tendency to "accept" the null hypothesis of a unit root, while H₁ (stationarity) is true. This is especially true in the case of small samples.

Application of Dickey-Fuller test

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Example 1: stockdata.dta

Structure:

- Visually inspect to determine whether a time trend is needed in the test.
- Test for unit root in both AEXindex and stockprice.
- Start with augmented Dickey-Fuller test and determine the appropriate number of lags to include.
- Check whether the time trend is needed in the DF-test.

graph twoway line AEXindex time

1. Test for stockprice (no time trend)

• First investigate how many lags of the dependent variable should be included (augmented Dickey-Fuller test).

. reg d.AEXindex 1.d.AEXindex 12.d.AEXindex 13.d.AEXindex 1.AEXindex

Source	SS	df	MS		Number of obs F(4, 501)	
Model Residual		501 21	2.194083		Prob > F R-squared	= 0.3399 = 0.0090
Total	107271.253				Adj R-squared Root MSE	= 0.0011
•	Coef.			• •	[95% Conf.	Interval]
AEXindex LD. L2D.		.0448846	-0.74	0.390 0.461	0495491 1217377	.1268216
L3D. L1.	.0445622 0083304	.0451556 .0052092	-1.60	0.324 0.110 0.102	0441554 018565 -2.165858	.1332798 .0019042 24.07174
_cons	10.95294	0.0//210	1.04	0.102	-2.103030	24.0/1/4

. test 1.d.AEXindex 12.d.AEXindex 13.d.AEXindex

- (1) LD.AEXindex = 0
- (2) L2D.AEXindex = 0
- (3) L3D.AEXindex = 0

$$F(3, 501) = 0.71$$

 $Prob > F = 0.5479$

$$H_0: \beta_1 = 0, \beta_2 = 0, \beta_3 = 0$$

$$H_1: H_0$$
 not true

The F-statistic > critical value then reject H_0

Since 0.71 < 2.60 we cannot reject H_0

This can also be observed from the p-value: 0.5479 > 0.05

. reg d.AEXindex l.d.AEXindex l.AEXindex

· ·	ss			-		Number of obs		
Model Residual	641.309471 106703.314	2 505	320 211	. 654735 . 293691		F(2, 505) Prob > F R-squared Adj R-squared	= 0.220 = 0.006	2
Total	107344.624	507	211	.725096		Root MSE		
•						[95% Conf.		-1
AEXindex LD.	.0354617 0082106	.0447	228	0.79 -1.59	0.428 0.113	052404	.123327 .001951	
_cons	10.80051	6.629	097	1.63	0.104	-2.223492	23.8245	2

- Estimated parameter on $D.AEX_{t-1}$: a one unit increase in the previous period's change in the AEX index is associated with a 0.0355 unit increase in the current period's change in the AEX index (the t-statistic of 0.79 indicates the effect is zero)
- Estimated parameter on AEX_{t-1} : a one unit increase in AEX in the previous period is associated with a -0.0082 unit decrease in the change in AEX in the current period. (the t-statistic of -1.59 indicates the effect is zero)

. reg d.AEXindex l.AEXindex

Source		df	MS		Number of obs F(1, 507)	
Model Residual	494.45124 106884.985	1 49 507 21	4.45124 0.81851		Prob > F R-squared Adj R-squared	= 0.1263 = 0.0046
•	107379.436				Root MSE	
•					[95% Conf.	-
AEXindex L1.		.0051549	-1.53	0.126	018022	.002233
_cons	10.39236	6.605534 	1.57	0.116	-2.58522 4	23.36995

H₀:
$$\theta = 0$$
 (thus: $\rho = 1$)
H₁: $\theta < 0$ (thus: $\rho < 1$)

If tstat < cv, we decide to reject H_0

-1.53 > -2.86, Ho cannot be rejected.

Thus: There is a unit root

• Conclusion 1: no lags on Δy is needed.

• Conclusion 2: the *t*-statistic of the parameter on y_{t-1} is -1.53, which is above the critical value of -2.86 in the DF-table.

Conclusion: H₀ cannot be rejected. *AEXindex* has a unit root.

2. Test for stockprice (time trend)

Source	SS	df	MS		Number of obs	= 506
+-					F(5, 500)	= 1.23
Model	1304.99105	5 20	60.99821		Prob > F	
Residual	105966.262	500 21:	1.932524		R-squared	= 0.0122
+-					Adj R-squared	= 0.0023
Total	107271.253				Root MSE	
•	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
AEXindex						
LD.	.0459267	.0452216	1.02	0.310	042921	.1347745
L2D.	0264859	.0453212	-0.58	0.559	1155293	.0625576
L3D.	.0508838	.0454005	1.12	0.263	0383155	.1400831
L1.	0178597	.0091222	-1.96	0.051	0357822	.0000629
day	.009889	.0077735	1.27	0.204	0053839	.0251618
cons	20.56107	10.07844	2.04	0.042	.7597643	40.36237

. test 1.d.AEXindex 12.d.AEXindex 13.d.AEXindex

```
( 1) LD.AEXindex = 0
( 2) L2D.AEXindex = 0
( 3) L3D.AEXindex = 0
    F( 3, 500) = 0.83
        Prob > F = 0.4782
```

differences constant.

Estimated parameter on day: The current period's change in the AEXindex increases by 0.0099 per day, holding 3 periods lagged

. reg d.AEXinde Source	ex l.d.AEXin SS		ndex day MS		Number of obs	= 508
•					F(3, 504)	
Model					Prob > F	= 0.2065
Residual	106377.635	504 211	. 066737		R-squared	= 0.0090
+-					Adj R-squared	= 0.0031
Total	107344.624	507 211	.725096		Root MSE	= 14.528
•					[95% Conf.	-
AEXindex						
LD.	.0425579	.0450624	0.94	0.345	0459753	.1310911
L1.	0173047	.0089625	-1.93	0.054	0349132	.0003037
day	.0094712	.0076246	1.24	0.215	0055088	.0244511
_cons	19.96979	9.918958	2.01	0.045	. 4821953	39.45739

. reg d.AEXino	dex 1.AEXinde	x day						
Source	l ss	df		MS		Number of obs	=	509
	+					F(2, 506)	=	1.85
Model	778.508723	2	389	.254362		Prob > F	=	0.1587
Residual	106600.927	506	210	. 673769		R-squared	=	0.0073
	+					Adj R-squared	=	0.0033
Total	107379.436	508	211	.376842		Root MSE	=	14.515
D.AEXindex	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	+							
AEXindex	l							
L1.	0162843	.0088	3746	-1.83	0.067	0337199		0011513
day	.0087559	.0075	5405	1.16	0.246	0060587		0235704
_cons	18.85052	9.831	L666	1.92	0.056	4653963	3	8.16643

Conclusion of unit root does not change.

3. Test for *stockprice* (no time trend)
. reg d.stockprice 1.d.stockprice 12.d.stockprice 13.d.stockprice 1.stockprice

Source	ss	df	MS		Number of obs	
Model Residual	21268.5588 5686521.35	_	317.13969 11350.342		Prob > F R-squared Adj R-squared	= 0.7589 = 0.0037
Total	5707789.91	505 1	1302.5543		Root MSE	= 106.54
D.stockprice	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
stockprice						
_ LD.	0354153	.044752	3 -0.79	0.429	1233407	.05251
L2D.	0016895	.044945	1 -0.04	0.970	0899935	.0866146
L3D.	.034884	.045008	6 0.78	0.439	053545	.1233129
L1.	0028721	.003560	4 -0.81	0.420	0098673	.0041231
_cons	28.99591	26.7086	9 1.09	0.278	-23.47893	81.47075

. test 1.d.stockprice 12.d.stockprice 13.d.stockprice

- (1) LD.stockprice = 0
- (2) L2D.stockprice = 0
- (3) L3D.stockprice = 0

$$F(3, 501) = 0.41$$

 $Prob > F = 0.7462$

. Leg a.scockp.	rice l.d.stoc	kprice l.st	cockprice		
Source	SS	df	MS		Number of obs = 508
					F(2, 505) = 0.60
	13523.8227				Prob > F = 0.5496
	5698814.53				R-squared = 0.0024
•					Adj R-squared = -0.0016
Total	5712338.36	507 11266	5.9396		Root MSE = 106.23
D.stockprice	Coef.	Std. Err.	t	 P> t	[95% Conf. Interval]
+					
stockprice					
LD.	0350543	.0445508	-0.79	0.432	122582 .0524734
L1.					0094953 .004371
_cons	26.78994	26.47965	1.01	0.312	-25.2339 78.81378
. reg d.stockp	rice l.stockp	rice			
Source	rice 1.stockp SS 	df			Number of obs = 509 F(1, 507) = 0.49
Source	ss 	df 			Number of obs = 509 F(1, 507) = 0.49 Prob > F = 0.4859
Source	SS	df 1 1 5486.	72812		F(1, 507) = 0.49 Prob > F = 0.4859
Source Model Residual	SS 5486.72812	df 1 5486. 507 11283	72812 3.2751		F(1, 507) = 0.49
Source 	SS 5486.72812 5720620.49	df 	72812 3.2751		F(1, 507) = 0.49 Prob > F = 0.4859 R-squared = 0.0010
Source Model Residual Total D.stockprice	SS 5486.72812 5720620.49 5726107.22 Coef.	df 1 5486. 507 11283 508 11271	72812 3.2751 8646	 P> t	F(1, 507) = 0.49 Prob > F = 0.4859 R-squared = 0.0010 Adj R-squared = -0.0010 Root MSE = 106.22 [95% Conf. Interval]
Source Model Residual Total D.stockprice	SS 5486.72812 5720620.49 5726107.22 Coef.	df 1 5486. 507 11283 508 11271	72812 3.2751 8646	 P> t	F(1, 507) = 0.49 Prob > F = 0.4859 R-squared = 0.0010 Adj R-squared = -0.0010 Root MSE = 106.22
Source Model Residual Total D.stockprice stockprice	SS 5486.72812 5720620.49 5726107.22 Coef.	df 1 5486. 507 11283 508 11271	72812 3.2751 8646	P> t	F(1, 507) = 0.49 Prob > F = 0.4859 R-squared = 0.0010 Adj R-squared = -0.0010 Root MSE = 106.22 [95% Conf. Interval]
Source Model Residual Total D.stockprice stockprice	SS 5486.72812 5720620.49 5726107.22 Coef.	df 1 5486. 507 11283 508 11271 Std. Err. .0035196	72812 3.2751 8646	P> t	F(1, 507) = 0.49 Prob > F = 0.4859 R-squared = 0.0010 Adj R-squared = -0.0010 Root MSE = 106.22 [95% Conf. Interval] 0093692 .0044605

- Conclusion 1: no lags on Δy is needed.
- Conclusion 2: the *t*-statistic of the parameter on y_{t-1} is -0.70, which is above the critical value of -2.86 in the DFtable.

Conclusion: H₀ cannot be rejected. Stockprice has a unit root.

4. Test for stockprice (time trend)

. reg d.stockprice l.d.stockprice 12.d.stockprice 13.d.stockprice l.stockprice day

Source	SS	df	M	1S		Number of obs F(5, 500)		
Model Residual	155454.684 5552335.23		31090. 11104.			Prob > F R-squared Adj R-squared	=	
Total	5707789.91	505	11302.	5543		Root MSE	=	105.38
D.stockprice	Coef.					[95% Conf.	In	terval]
stockprice	1							
LD. L2D.	0116868	.04478	229	-0.26 0.46	0.644	0996838 0674939	•	0763101 1090281
L3D. L1.	.0555125 0494445	.04491		1.24 -3.57	0.217	0327283 0766613		1437533 0222277
day _cons	.4386184	.12617 71.490		3.48 3.64	0.001	.1907127 119.4604		6865241 00.3792

- . test l.d.stockprice 12.d.stockprice 13.d.stockprice
- (1) LD.stockprice = 0
- (2) L2D.stockprice = 0
 (3) L3D.stockprice = 0

$$F(3, 500) = 0.59$$

 $Prob > F = 0.6206$

. reg d.stockprice l.d.stockprice l.stockprice day

Source	ss	df	MS		Number of obs F(3, 504)		
Model Residual	138911.355 5573427	3 46 504 11	303.7848 058.3869		Prob > F R-squared	= 0.006 = 0.024	51 13
Total	5712338.36				Adj R-squared Root MSE	= 0.018 = 105.1	-
-	Coef.				[95% Conf.	Interval	 L]
stockprice							_
LD.	0138589	.0445486	-0.31	0.756	1013827	.073664	48
L1.	0464675	.0134986	-3.44	0.001	072988	01994	17
day	.4139798	.1229413	3.37	0.001	.1724392	. 655520)3
_cons	244.7914	69.84611	3.50	0.000	107.566	382.016	58

. reg d.stockprice l.stockprice day

Source	ss	df		MS		Number of obs		
Model Residual	143367.438	2	71683	3.7191 3.0826		F(2, 506) Prob > F R-squared Adj R-squared	= 0.0 = 0.	0016 0250 0212
Total	5726107.22	508	1127	1.8646			= 10	
D.stockprice						-	Inter	val]
stockprice	0478543	.0133		-3.60	0.000	0739958	021	7129
day _cons	.4282322 251.1049	.1211 68.95		3.54 3.64	0.000 0.000	.1902392 115.6343	.666 386.	_

- Conclusion 1: no lags on Δy is needed.
- Conclusion 2: the *t*-statistic of the parameter on y_{t-1} is
 - -3.60, which is below the critical value of -3.41 in the DF-table, but it is above the critical value of -3.96.

Conclusion: H₀ can be rejected. *Stockprice* has no unit root for significance level of 0.05 and *Stockprice* has a unit root for significance level of 0.01.

In what follows, we assume that Stockprice has a unit root.

Co-integration

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Co-integration and error-correction models

Aim: to introduce a co-integrating regression

- Co-integration theory was developed by Engle and Granger (1987)
- Starting point: two variables that are both I(1): y_i and x_j .
 - A Dickey Fuller test indicates whether the variables are I(0) or I(1).
- One would expect that linear combinations of y_t and x_t are non-stationary also.
- Both variables are co-integrated if there is a β , for which the linear combination of y_t and x_t is stationary (I(0)). The linear combination is $y_t \beta x_t$
- Economic interpretation of co-integration: the difference between y_t and βx_t is on average constant. There is a tendency to move back to this constant. Also, the variance of $y_t \beta x_t$ is constant. Thus, $y_t = \alpha + \beta x_t$ is a long-run relationship.
- There are two cases where co-integration occurs.
- Case 1: β is known. Compute $s_t = y_t \beta x_t$ and test whether there is a unit root in s_t using a Dickey Fuller test.
 - If the null hypothesis is rejected (of a unit root in s_t) then y_t and x_t will be co-integrated.
- Case 2: β is unknown and must be estimated. If y_t and x_t are co-integrated the OLS estimator $\hat{\beta}$ from the co-integrating regression:

$$\hat{y}_{t} = \hat{\alpha} + \hat{\beta}x_{t} \tag{18.31}$$

is consistent for β .

O Determine the residual: $\hat{u}_t = y_t - \hat{\alpha} - \hat{\beta}x_t$

O Since $\hat{\beta}$ is estimated, the critical values of Tables 18.2 and 18.3 cannot be used.

Testing for co-integration (after co-integrating regression (18.31) (Engle-Granger test):

Table 18.4

Signif. level	1%	2.5%	5%	10%
Critical value	-3.90	-3.59	-3.34	-3.04

- The model: $y_t = \alpha + \beta x_t$
- Dickey Fuller test on co-integration of y_t and x_t . We run a regression of $\Delta \hat{u}_t$ on \hat{u}_{t-1} , and we may compare the *t*-statistic on \hat{u}_{t-1} with the critical value in table 18.3.
 - o If fail to reject H₀: regression of y_t on x_t is spurious.
 - If reject H₀: regression of y_t on x_t is a co-integrating regression.
- There may be a time-trend in the co-integrating regression:

$$y_{t} = \hat{\alpha} + \hat{\eta}t + \hat{\beta}x_{t} \tag{18.32}$$

Table 18.5

Signif. level	1%	2.5%	5%	10%
Critical value	-4.32	-4.03	-3.78	-3.50

Example 2: test on co-integration

. reg AEXindex stockprice

· reg mmminaez	· bcockpiicc					
Source	SS	df	MS		Number of obs F(1, 508)	
	6031609.59				Prob > F	
Residual	1902875.37 +	508 3745	.81766		R-squared Adj R-squared	
	7934484.96				Root MSE	
	Coef.				[95% Conf.	Interval]
	•				.0772144	.0851645
_cons	675.5636	15.19135	44.47	0.000	645.718	705.4092
. predict uhat						
	SS +		MS		Number of obs F(1, 507)	= 509
Model	195.994111	1 195.			Prob > F	= 0.1881
	57211.1212 +				R-squared Adj R-squared	
	57407.1153				Root MSE	
D.uhat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
uhat	+ 					
L1.	0101998	.0077394	-1.32	0.188	0254051	.0050054
cons	I					

• The above output indicates that *AEXindex* and *stockprice* are not co-integrated, as the *t*-statistic on \hat{u}_{t-1} (-1.32) is above the critical value (Table 18.4; -3.34 at the 5%-level).

. reg d.uhat l.uhat day

Source	SS	df		MS		Number of obs F(2, 506)		509 1.42
Model Residual	320.225932 57086.8894	2	160.	.112966		Prob > F R-squared Adj R-squared	= =	0.2429 0.0056
	57407.1153	508	113.	.006133		Root MSE		10.622
·	Coef.					[95% Conf.	In	terval]
uhat L1.				-1.37	0.171			0045995
day _cons		.0032		-1.05 0.62	0.295	0096705 -1.270671		0029368

• The above output indicates that *AEXindex* and *stockprice* are not co-integrated, as the *t*-statistic on \hat{u}_{t-1} (-1.37) is above the critical value (Table 18.5; -3.78 at the 5%-level).

Error-correction models

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Error-correction models

Aim: to consider the economic implications of error-correction models.

Case 1 (no error correction): y_t and x_t are both I(1), and there is no co-integration between y_t and x_t (no rejection of H₀ after DF-test on residuals of (18.31). The model becomes:

$$\Delta y_{t} = \alpha_{0} + \alpha_{1} \Delta y_{t-1} + \gamma_{0} \Delta x_{t} + \gamma_{1} \Delta x_{t-1} + u_{t}$$
(18.36)

All variables are in first differences.

Case 2 (error-correction model): y_t and x_t are both I(1), and there is co-integration between y_t and x_t (rejection of H₀ after DF-test on residuals of (18.31)).

$$\Delta y_{t} = \alpha_{0} + \alpha_{1} \Delta y_{t-1} + \gamma_{0} \Delta x_{t} + \gamma_{1} \Delta x_{t-1} + \delta s_{t-1} + u_{t} =$$

$$= \alpha_{0} + \alpha_{1} \Delta y_{t-1} + \gamma_{0} \Delta x_{t} + \gamma_{1} \Delta x_{t-1} + \delta (y_{t-1} - \beta x_{t-1}) + u_{t}$$
(18.37)

• $s_{t-1} = y_{t-1} - \beta x_{t-1}$ is called the error-correction term. Note that the lag t-1 of s is included in the equation.

Economic interpretation:

$$\Delta y_{t} = \alpha_{0} + \gamma_{0} \Delta x_{t} + \delta (y_{t-1} - \beta x_{t-1}) + u_{t}$$
where $\delta < 0$. (18.38)

- Δy_t will return to equilibrium if $y_{t-1} > \beta x_t$ or $y_{t-1} < \beta x_t$ as $\delta < 0$. If $y_{t-1} > \beta x_t$ the return to equilibrium will involve a decrease in Δy_t , and if $y_{t-1} < \beta x_t$ an it will lead to increase in Δy_t . The adjustments are because the parameter $\delta < 0$
- In equation (18.38) a lag of Δy_t was excluded to keep it simple.

How is an error-correction model estimated?

Aim: to demonstrate the estimation procedure.

Case 1: β is known.

Regress Δy_t on Δx_t and s_{t-1} , where $s_{t-1} = y_{t-1} - \beta x_{t-1}$ s_{t-1} is the error correction term.

Note that the lag t-1 of s is included in the equation.

Case 2: β is unknown - two-stage procedure

Regress Δy_t on Δx_t and \hat{s}_{t-1} , where $\hat{s}_{t-1} = y_{t-1} - \hat{\beta} x_{t-1}$

Summary

- The model: $y_t = \alpha + \beta x_t$
 - Step 1: Dickey Fuller tests for unit root in y_i and x_j
 - \circ This determines whether to include a time trend and how many lags of Δy are appropriate.
 - If both y_t and x_t are I(1) continue with the following:
 - Step 2: co-integrating regression
 - Step 3: Dickey-Fuller test (for unit root), to the residuals $\hat{u}_t = y_t \hat{\alpha} \hat{\beta}x_t$
 - Step 4a: If the model contains unit root (H0 of step 3 cannot be rejected), estimate the model in first differences.
 - Step 4b: If the model contains no unit root (H0 of step 3 can be rejected) use the error-correction model.
 - Step 5 (after 4b). Estimate the error-correction model using the two-stage procedure.

Forecasting

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Section 18.5: Forecasting

Aim: to introduce forecasting procedures

- Next we consider forecasting with time series, and we apply it to dynamic models.
- At time t we would like to make a forecast of y at t+1.
- Notation:
 - \circ I_{t} : all information available at time t.
 - \circ f_t is the one-period ahead forecast.
 - $oe_{t+1} = y_{t+1} f_t$: forecast error
- We consider the squared error (as a loss function)

$$\circ E(e_{t+1}^2 \mid I_t) = E[(y_{t+1} - f_t)^2 \mid I_t]$$
 (18.40)

- The squared error is minimal at $f_t = E(y_{t+1} | I_t)$
- o Best forecast: $E(y_{t+1} | I_t)$
- Example 3: Forecast based on a martingale (it means that adding more lagged variables does not provide more information to the equation):

$$\circ E(y_{t+1} | y_t, y_{t-1}, ..., y_0) = y_t$$

- Example 4: Forecast based on **exponential smoothing**:
 - o $f_t = \alpha y_t + (1 \alpha) f_{t-1}$ (with $f_0 = y_0$ and $0 < \alpha < 1$) so that the forecast of y_{t+1} is a weighted average of the previous forecast (at t-1) and the current realization of y).

$$\circ E(y_{t+1} | I_t) = \alpha y_t + \alpha (1-\alpha) y_{t-1} + ... + \alpha (1-\alpha)^t y_0$$

• The application of smoothing (in addition to forecasting) can be used to extract an overall trend from a time-series. This is because a time series may contain a trend component as well as an irregular component. The researcher might only be interested in the trend component.

Example 5: stockdata.dta

• Example 1 showed that *stockprice* is I(1). It contains a unit root, so the level of *stockprice* is uninformative.

```
. tssmooth exponential lev stockprice = stockprice
computing optimal exponential coefficient (0,1)
optimal exponential coefficient = 0.9998
sum-of-squared residuals = 36603.576
root mean squared error
                          =
                                      8.651817
. tssmooth exponential dif stockprice = d.stockprice
computing optimal exponential coefficient (0,1)
optimal exponential coefficient =
                                          0.0170
sum-of-squared residuals
                                     33045.423
root mean squared error
                                      8.2289751
. tsline gfr gfr smooth level
. tsline d.gfr gfr smooth dif
(see graphs below)
```

tsline stockprice lev_stockprice

. tsline d.stockprice dif_stockprice (on first-differenced data)

Using regression models for forecasting

Aim: to show that regressions can be used for forecasts and forecast intervals.

• Below is a dynamic regression equation, in which the forecast depends on lagged values of y and z:

$$y_{t} = \delta_{0} + \alpha_{1} y_{t-1} + \gamma_{1} z_{t-1} + u_{t}$$

$$E(u_{t} | I_{t-1}) = 0$$

- The forecast of y_{t+1} is $\delta_0 + \alpha_1 y_t + \gamma_1 z_t$
- Thus: $\hat{f}_t = \hat{\delta}_0 + \hat{\alpha}_1 y_t + \hat{\gamma}_1 z_t$
- The forecast error is $e_{t+1} = y_{t+1} \hat{f}_t$
- The variance of the forecast error is: $Var(e_{t+1}) = Var(u_t) + Var(\hat{f}_t) = \hat{\sigma}_u^2 + Var(\hat{f}_t)$
- A 95% forecast interval: $\hat{f}_{t} \pm 2 * \sqrt{\hat{\sigma}_{u}^{2} + Var(\hat{f}_{t})}$ (18.47)

Vector autoregressive (VAR) model

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2023

Vector autoregressive (VAR) model: Sims (Nobel prize, 2011)

Aim: to introduce VAR-models for forecasting.

• Model:

$$y_{t} = \delta_{0} + \alpha_{1} y_{t-1} + \gamma_{1} z_{t-1} + \alpha_{2} y_{t-2} + \gamma_{2} z_{t-2} + \dots$$

$$z_{t} = \eta_{0} + \beta_{1} y_{t-1} + \rho_{1} z_{t-1} + \beta_{2} y_{t-2} + \rho_{2} z_{t-2} + \dots$$
(18.50)

• A VAR model may be applied for forecasting e.g.

$$y_{t} = \delta_{0} + \alpha_{1} y_{t-1} + \gamma_{1} z_{t-1} + u_{1t}$$

$$z_{t} = \eta_{0} + \beta_{1} y_{t-1} + \rho_{1} z_{t-1} + u_{2t}$$

 u_{1t} and u_{2t} are i.i.d. (with different variances and they are mutually independent). They are independent of all previous observations of y and z.

- Three advantages of VAR models are that:
 - a) The components can be considered simultaneously
 - b) The model can be more parsimonious
 - c) The model may include fewer lags

This allows more accurate forecasting, because the information set (the right-hand side variables of the regression equation) is extended and also includes the history of other variables.

- Impulse Response Functions (IRF) is also used to produce forecasts. (no part of this course)
- The error terms are assumed to be stationary (no unit root).
- (18.50) is not a structural equation model because:
 - The exclusion constraints (see forthcoming lecture 7) are not necessary to identify the structural model.
 - There is no a priori distinction between endogenous and exogenous variables.
- OLS on equations of equation (18.50) separately will yield consistent estimates.
- It is not easy to select the optimal lag length. Estimate the model and then apply the Akaike Information Criterion (AIC, not part of this course). Choose the model with the lowest AIC. The AIC is a selection criterion that is comparable to the adjusted *R*-

squared (remember that the selected model is often the one with the highest *R*-squared).

Example 6: VAR

The command for VAR (we apply 2 lags)

. var d.AEXindex d.stockprice, lags(1/2)

Vector autoregression

Sample: 4 - 5	510		No. of obs	=	507
Log likelihood	1 = -	4994.471	AIC	=	19.7415
FPE	=	1284333	HQIC	=	19.77421
Det(Sigma ml)	=	1234654	SBIC	=	19.82491

Equation	Parms	RMSE	R-sq	chi2	P>chi2	
D_AEXindex	5 5	14.5954	0.0035	1.766256	0.7786	
D_stockprice	5	106.408	0.0050	2.529515	0.6394	

	 Coef	Std. Err.	z.	P> z		Interval
	+					
D AEXindex	1					
- AEXindex	I					
LD.	.0145237	.0617081	0.24	0.814	106422	.1354694
L2D.	0643886	.0615668	-1.05	0.296	1850573	.05628
stockprice	! 					
LD.	.0037053	.0084287	0.44	0.660	0128147	.0202353
L2D.	.0059473	.0084252	0.71		0105657	.0224604
	I					
_cons	.2688697	.6495078	0.41	0.679	-1.004142	1.541882
D stockprice	+ 					
AEXindex	i I					
LD.	.5195352	.4498833	1.15	0.248	36222	1.40129
L2D.	3051594	.4488529	-0.68	0.497	-1.184895	.5745761
stockprice	I					
LD.	0839891	.0614497	-1.37	0.172	2044284	.0364502
L2D.	.0207528	.0614238	0.34	0.735	0996357	.1411413
_cons	8.039581	4.735239	1.70	0.090	-1.241318	17.32048

Wrapping up

We have considered:

- Testing for unit roots
- Co-integration and error correction models
- A test for co-integration: Engle and Granger test.
- Error-correction
- Prediction and smoothing
- Vector Autoregressive (VAR) models