U.S.S.N.: 10/521,300

Filed: 1/14/05

Case No.: 21126YP

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 September 2001 (27.09.2001)

PCT

English

(10) International Publication Number WO 01/70955 A2

- (51) International Patent Classification⁷: C12N 15/11, C12Q 1/68, C12N 15/31, C07K 14/195, A61K 31/7088, C07K 16/12
- (21) International Application Number: PCT/US01/09180
- (22) International Filing Date: 21 March 2001 (21.03.2001)
- (25) Filing Language:
- (26) Publication Language: English
- (30) Priority Data: 60/191,078 21 March 2000 (21.03.2000) US 23 May 2000 (23.05.2000) US 60/206,848 26 May 2000 (26.05.2000) US 60/207,727 US 60/242,578 23 October 2000 (23.10.2000) 60/253,625 27 November 2000 (27.11.2000) US 22 December 2000 (22.12.2000) US 60/257,931 16 February 2001 (16.02.2001) 60/269,308
- (71) Applicant (for all designated States except US): ELITRA PHARMACEUTICALS, INC. [US/US]; Suite A, 3510 Dunhill Street, San Diego, CA 92121 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HASELBECK, Robert [US/US]; 4672 El Cerrito Drive, San Diego, CA 92115 (US). OHLSEN, Kari, L. [US/US]; 3560 Vista de la Orilla, San Diego, CA 92117 (US). ZYSKIND, Judith, W. [US/US]; 8415 La Jolla Scenic Drive, La Jolla, CA 92037 (US). WALL, Daniel [US/US]; 3734 Brookshire Street, San Diego, CA 92111 (US). TRAWICK, John, D. [US/US]; 7975 Michelle Drive, La Mesa, CA 91942 (US). CARR, Grant, J. [US/US]; 2210 Sonrisa Glen, Escondido, CA 92029 (US). YAMAMOTO, Robert, T. [US/US]; 3725 Norte Dame Avenue, San Diego, CA 92122 (US). XU, H., Howard [US/US]; 11142 Ivy Ifill Drive, San Diego, CA 92131 (US).
- (74) Agent: HART, Daniel; Knobbe, Martens, Olson & Bear, LLP, 16th floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model)

[Continued on next page]

(54) Title: IDENTIFICATION OF ESSENTIAL GENES IN PROKARYOTES

(57) Abstract: The sequences of antisense nucleic acids which inhibit the proliferation of prokaryotes are disclosed. Cell-based assays which employ the antisense nucleic acids to identify and develop antibiotics are also disclosed. The antisense nucleic acids can also be used to identify proteins required for proliferation, express these proteins or portions thereof, obtain antibodies capable of specifically binding to the expressed proteins, and to use those expressed proteins as a screen to isolate candidate molecules for rational drug discovery programs. The nucleic acids can also be used to screen for homologous nucleic acids that are required for proliferation in cells other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nucleic acids of the present invention can also be used in various assay systems to screen for proliferation required genes in other organisms.

70 01/70955

model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, I.R, I.S, IT, LU, I.V, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

5

10

15

20

25

30

IDENTIFICATION OF ESSENTIAL GENES IN PROKARYOTES

Sequence Listing

The present application is being filed along with duplicate copies of a CD-ROM marked "Copy 1" and "Copy 2" containing a Sequence Listing in electronic format. The duplicate copies of the CD-ROM each contain a file entitled SEQLIST_FINAL_9PM created on March 20, 2001 which is 37,487,912 bytes in size.

Background of the Invention

Since the discovery of penicillin, the use of antibiotics to treat the ravages of bacterial infections has saved millions of lives. With the advent of these "miracle drugs," for a time it was popularly believed that humanity might, once and for all, be saved from the scourge of bacterial infections. In fact, during the 1980s and early 1990s, many large pharmaceutical companies cut back or eliminated antibiotics research and development. They believed that infectious disease caused by bacteria finally had been conquered and that markets for new drugs were limited. Unfortunately, this belief was overly optimistic.

The tide is beginning to turn in favor of the bacteria as reports of drug resistant bacteria become more frequent. The United States Centers for Disease Control announced that one of the most powerful known antibiotics, vancomycin, was unable to treat an infection of the common Staphylococcus aureus (staph). This organism is commonly found in our environment and is responsible for many nosocomial infections. The import of this announcement becomes clear when one considers that vancomycin was used for years to treat infections caused by Staphylococcus species as well as other stubborn strains of bacteria. In short, bacteria are becoming resistant to our most powerful antibiotics. If this trend continues, it is conceivable that we will return to a time when what are presently considered minor bacterial infections are fatal diseases.

Over-prescription and improper prescription habits by some physicians have caused an indiscriminate increase in the availability of antibiotics to the public. The patients are also partly responsible, since they will often improperly use the drug, thereby generating yet another population of bacteria that is resistant, in whole or in part, to traditional antibiotics.

The bacterial pathogens that have haunted humanity remain, in spite of the development of modern scientific practices to deal with the diseases that they cause. Drug resistant bacteria are now an increasing threat to the health of humanity. A new generation of antibiotics is needed to once again deal with the pending health threat that bacteria present.

. 5

10

15

20

25

30

35

Discovery of New Antibiotics

As more and more bacterial strains become resistant to the panel of available antibiotics, new antibiotics are required to treat infections. In the past, practitioners of pharmacology would have to rely upon traditional methods of drug discovery to generate novel, safe and efficacious compounds for the treatment of disease. Traditional drug discovery methods involve blindly testing potential drug candidate-molecules, often selected at random, in the hope that one might prove to be an effective treatment for some disease. The process is painstaking and laborious, with no guarantee of success. Today, the average cost to discover and develop a new drug exceeds US \$500 million, and the average time from laboratory to patient is 15 years. Improving this process, even incrementally, would represent a huge advance in the generation of novel antimicrobial agents.

Newly emerging practices in drug discovery utilize a number of biochemical techniques to provide for directed approaches to creating new drugs, rather than discovering them at random. For example, gene sequences and proteins encoded thereby that are required for the proliferation of a cell or microorganism make excellent targets since exposure of bacteria to compounds active against these targets would result in the inactivation of the cell or microorganism. Once a target is identified, biochemical analysis of that target can be used to discover or to design molecules that interact with and alter the functions of the target. Use of physical and computational techniques to analyze structural and biochemical properties of targets in order to derive compounds that interact with such targets is called rational drug design and offers great potential. Thus, emerging drug discovery practices use molecular modeling techniques, combinatorial chemistry approaches, and other means to produce and screen and/or design large numbers of candidate compounds.

Nevertheless, while this approach to drug discovery is clearly the way of the future, problems remain. For example, the initial step of identifying molecular targets for investigation can be an extremely time consuming task. It may also be difficult to design molecules that interact with the target by using computer modeling techniques. Furthermore, in cases where the function of the target is not known or is poorly understood, it may be difficult to design assays to detect molecules that interact with and alter the functions of the target. To improve the rate of novel drug discovery and development, methods of identifying important molecular targets in pathogenic cells or microorganisms and methods for identifying molecules that interact with and alter the functions of such molecular targets are urgently required.

Staphylococcus aureus is a Gram positive microorganism which is the causative agent of many infectious diseases. Local infection by Staphylococcus aureus can cause abscesses on skin and cellulitis in subcutaneous tissues and can lead to toxin-related diseases such as toxic shock and scalded skin syndromes. Staphylococcus aureus can cause serious systemic infections such as osteomyelitis, endocarditis, pneumonia, and septicemia. Staphylococcus aureus is also a common cause of food poisoning, often arising from contact between prepared food and infected food industry workers. Antibiotic resistant strains of Staphylococcus aureus have recently been

identified, including those that are now resistant to all available antibiotics, thereby severely limiting the options of care available to physicians.

5

10

15

25

30

35

i, .

Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen. It is the most common Gram-negative found in nosocomial infections. P. aeruginosa is responsible for 16% of nosocomial pneumonia cases, 12% of hospital-acquired urinary tract infections, 8% of surgical wound infections, and 10% of bloodstream infections. Immunocompromised patients, such as neutropenic cancer and bone marrow transplant patients, are particular susceptible to opportunistic infections. In this group of patients, P. aeruginosa is responsible for pneumonia and septicemia with attributable deaths reaching 30%. P. aeruginosa is also one of the most common and lethal pathogens responsible for ventilator-associated pneumonia in intubated patients, with directly attributable death rates reaching 38%. Although P. aeruginosa outbreaks in burn patients are rare, it is associated with 60% death rates. In the AIDS population, P. aeruginosa is associated with 50% of deaths. Cystic fibrosis patients are characteristically susceptible to chronic infection by P. aeruginosa, which is responsible for high rates of illness and death. Current antibiotics work poorly for CF infections (Van Delden & Igelwski. 1998. Emerging Infectious Diseases 4:551-560; references therein).

The gram-negative enteric bacterial genus, Salmonella, encompasses at least 2 species. One of these, S. enterica, is divided into multiple subspecies and thousands of serotypes or serovars (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467). The S. enterica human pathogens include serovars Typhi, Paratyphi, Typhimurium, Cholerasuis, and many others deemed so closely related that they are variants of a widespread species. Worldwide, disease in humans caused by Salmonella is a very serious problem. In many developing countries, S. enterica ser. Typhi still causes oftenfatal typhoid fever. This problem has been reduced or eliminated in wealthy industrial states. However, enteritis induced by Salmonella is widespread and is the second most common disease caused by contaminated food in the United States (Edwards, BH 1999 "Salmonella and Shigella species" Clin. Lab Med. 19(3):469-487). Though usually self-limiting in healthy individuals, others such as children, seniors, and those with compromising illnesses can be at much greater risk of serious illness and death.

Some S. enterica serovars (e.g. Typhimurium) cause a localized infection in the gastrointestinal tract. Other serovars (i.e. Typhi and Paratyphi) cause a much more serious systemic infection. In animal models, these roles can be reversed which has allowed the use of the relatively safe S. enterica ser. Typhimurium as a surrogate in mice for the typhoid fever agent, S. enterica ser. Typhi. In mice, S. enterica ser Typhimurium causes a systemic infection similar in outcome to typhoid fever. Years of study of the Salmonella have led to the identification of many determinants of virulence in animals and humans. Salmonella is interesting in its ability to localize to and invade the intestinal epithelium, induce morphologic changes in target cells via injection of certain cell-remodeling proteins, and to reside intracellularly in membrane-bound vesicles (Wallis, TS and

5

٠;

10

15

20

25

30

35

Galyov, EE 2000 "Molecular basis of Salmonella-induced enteritis." Molec. Microb. 36:997-1005; Falkow, S "The evolution of pathogenicity in Escherichia, Shigella, and Salmonella," Chap. 149 in Neidhardt, et al. eds pp 2723-2729; Gulig, PA "Pathogenesis of Systemic Disease," Chap. 152 in Neidhardt, et al. ppp 2774-2787). The immediate infection often results in a severe watery diarrhea but Salmonella also can establish and maintain a subclinical carrier state in some individuals. Spread is via food contaminated with sewage.

The gene products implicated in Salmonella pathogenesis include type three secretion systems (TTSS), proteins affecting cytoplasmic structure of the target cells, many proteins carrying out functions necessary for survival and proliferation of Salmonella in the host, as well as "traditional" factors such as endotoxin and secreted exotoxins. Additionally, there must be factors mediating species-specific illnesses. Despite this most of the genomes of S. enterica ser. Typhi (see http://www.sanger.ac.uk/Projects/S typhi/ for the genome database) and S. enterica ser. Typhimurium (see http://genome.wustl.edu/gsc/bacterial/salmonella.shtml for the genome database) are highly conserved and are mutually useful for gene identification in multiple serovars. The Salmonella are a complex group of enteric bacteria causing disease similar to but distinct from other gram-negative enterics such as E. coli and have been a focus of biomedical research for the last century.

Enterococcus faecalis, a Gram-positive bacterium, is by far the most common member of the enterococci to cause infections in humans. Enterococcus faecium generally accounts for less than 20% of clinical isolates. Enterococci infections are mostly hospital-acquired though they are also associated with some community-acquired infections. Of nosocomial infections enterococci account for 12% of bacteremia, 15% of surgical wound infections, 14% of urinary tract infections, and 5 to 15% of endocarditis cases (Huycke, M. M., D. F., Sahm and M. S. Gilmore. 1998. Emerging Infectious Diseases 4:239-249). Additionally enterococci are frequently associated with intraabdominal and pelvic infections. Enterococci infections are often hard to treat because they are resistant to a vast array of antimicrobial drugs, including aminoglycosides, penicillin, ampicillin and vancomycin. The development of multiple-drug resistant (MDR) enterococci has made this bacteria a major concern for treating nosocomial infections.

These reasons underscore the urgency of developing new antibiotics that are effective against Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis. Accordingly, there is an urgent need for more novel methods to identify and characterize bacterial genomic sequences that encode gene products involved in proliferation, and are thereby potential new targets for antibiotic development. Prior to the present invention, the discovery of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, and Pseudomonas aeruginosa and Enterococcus faecalis genes required for proliferation of the microorganism was a painstaking and slow process. While the detection of new cellular drug targets within a Staphylococcus aureus, Salmonella typhimurium, Klebsiella

pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis cell is key for novel antibiotic development, the current methods of drug target discovery available prior to this invention have required painstaking processes requiring years of effort.

Summary of the Invention

Some aspects of the present invention are described in the numbered paragraphs below.

1. A purified or isolated nucleic acid sequence comprising a nucleotide sequence consisting essentially of one of SEQ ID NOs: 8-3795, wherein expression of said nucleic acid inhibits proliferation of a cell.

- The nucleic acid sequence of Paragraph 1, wherein said nucleotide sequence is
 complementary to at least a portion of a coding sequence of a gene whose expression is required for proliferation of a cell.
 - 3. The nucleic acid of Paragraph 1, wherein said nucleic acid sequence is complementary to at least a portion of a nucleotide sequence of an RNA required for proliferation of a cell.
 - 4. The nucleic acid of Paragraph 3, wherein said RNA is an RNA comprising a sequence of nucleotides encoding more than one gene product.
 - 5. A purified or isolated nucleic acid comprising a fragment of one of SEQ ID NOs.: 8-3795, said fragment selected from the group consisting of fragments comprising at least 10, at least 20, at least 25, at least 30, at least 50 and more than 50 consecutive nucleotides of one of SEQ ID NOs: 8-3795.
- 20 6. The fragment of Paragraph 5, wherein said fragment is included in a nucleic acid obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr 25 (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, 30 Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus 35 pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

7. The fragment of Paragraph 5, wherein said fragment is included in a nucleic acid obtained from an organism other than *Escherichia coli*.

- 8. A vector comprising a promoter operably linked to the nucleic acid of any one of Paragraphs 1-7.
- 5 9. The vector of Paragraph 8, wherein said promoter is active in a microorganism selected from the group consisting of Anaplasma marginale, Aspergillus funigatus, Bacillus anthracis. Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapșilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida 10 pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, 15 Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, 20 Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans. Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 10. A host cell containing the vector of Paragraph 8 or Paragraph 9.

25

30

- 11. A purified or isolated antisense nucleic acid comprising a nucleotide sequence complementary to at least a portion of an intragenic sequence, intergenic sequence, sequences spanning at least a portion of two or more genes, 5' noncoding region, or 3' noncoding region within an operon comprising a proliferation-required gene whose activity or expression is inhibited by an antisense nucleic acid comprising the nucleotide sequence of one of SEQ ID NOs.: 8-3795.
- 12. The purified or isolated antisense nucleic acid of Paragraph 11, wherein said antisense nucleic acid is complementary to a nucleic acid from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli,

Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

5

10

15

- 13. The purified or isolated antisense nucleic acid of Paragraph 11, wherein said nucleotide sequence is complementary to a nucleotide sequence of a nucleic acid from an organism other than *E. coli*.
- 14. The purified or isolated antisense nucleic acid of Paragraph 11, wherein said proliferation-required gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
- 15. A purified or isolated nucleic acid comprising a nucleotide sequence having at least 70% identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795, the nucleotide sequences complementary to SEQ ID NOs.: 8-3795 and the sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795 as determined using BLASTN version 2.0 with the default parameters.
- 16. The purified or isolated nucleic acid of Paragraph 15, wherein said nucleic acid is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, 25 Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, 30 Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, 35 Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus

pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

17. The nucleic acid of Paragraph 15, wherein said nucleic acid is obtained from an organism other than *E. coli*.

5

30

- 18. A vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795.
- 19. The vector of Paragraph 18, wherein said nucleic acid encoding said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, 10 Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium 15 perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella 20 multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, 25 Yersinia pestis and any species falling within the genera of any of the above species.
 - 20. The vector of Paragraph 18, wherein said nucleotide sequence encoding said polypeptide is obtained from an organism other than *E. coli*.
 - 21. A host cell containing the vector of Paragraph 18.
 - 22. The vector of Paragraph 18, wherein said polypeptide comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.
 - 23. The vector of Paragraph 18, wherein said promoter is operably linked to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 24. A purified or isolated polypeptide comprising a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795, or a fragment selected from the group consisting of fragments comprising at least 5,

at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of one of the said polypeptides.

25. The polypeptide of Paragraph 24, wherein said polypeptide comprises an amino acid sequence of any one of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 or a fragment comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.

5

30

- 26. The polypeptide of Paragraph 24, wherein said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, 10 Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, 15 Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis 20 carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis 25 and any species falling within the genera of any of the above species.
 - 27. The polypeptide of Paragraph 24, wherein said polypeptide is obtained from an organism other than *E. coli*.
 - 28. A purified or isolated polypeptide comprising a polypeptide having at least 25% amino acid identity to a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or at least 25% amino acid identity to a fragment comprising at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 as determined using FASTA version 3.0t78 with the default parameters.
 - 29. The polypeptide of Paragraph 28, wherein said polypeptide has at least 25% identity to a polypeptide comprising one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 or at least 25% identity to a fragment comprising at least 5, at least 10, at least 20, at least 30, at least 40, at

least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide comprising one of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 as determined using FASTA version 3.0t78 with the default parameters.

- 30. The polypeptide of Paragraph 28, wherein said polypeptide is obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, 5 Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata). Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia 10 trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae. Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae. Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria 15 meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus 20 pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 31. The polypeptide of Paragraph 28, wherein said polypeptide is obtained from an organism other than E. coli.
- 32. An antibody capable of specifically binding the polypeptide of one of Paragraphs 25 28-31.

- 33. A method of producing a polypeptide, comprising introducing a vector comprising a promoter operably linked to a nucleic acid comprising a nucleotide sequence encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising one of SEQ ID NOs.: 8-3795 into a cell.
 - 34. The method of Paragraph 33, further comprising the step of isolating said polypeptide.
- 35. The method of Paragraph 33, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 36. The method of Paragraph 33, wherein said nucleic acid encoding said polypeptide is
 obtained from an organism selected from the group consisting of Anaplasma marginale, Aspergillus
 fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia,
 Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata),

5

10

15

20

Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae,

- Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae,
 Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes,
 Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria
 meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis
 carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis,
 Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium,
 Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella
 dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus
 pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis
 and any species falling within the genera of any of the above species.
 - 37. The method of Paragraph 33, wherein said nucleic acid encoding said polypeptide is obtained from an organism other than *E. coli*.
 - 38. The method of Paragraph 33, wherein said promoter is operably linked to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.

٠.;

- 39. A method of inhibiting proliferation of a cell in an individual comprising inhibiting the activity or reducing the amount of a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product.
- 25 40. The method of Paragraph 39, wherein said method comprises inhibiting said activity or reducing said amount of a gene product in an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, 30 Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, 35 Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus yulgaris, Pseudomonas aeruginosa, Salmonella bongori.

5

10

15

Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

- 41. The method of Paragraph 39, wherein said method comprises inhibiting said activity or reducing said amount of a gene product in an organism other than E. coli.
- 42. The method of Paragraph 39, wherein said gene product is present in an organism other than *E. coli*.
- 43. The method of Paragraph 39, wherein said gene product comprises a polypeptide comprising a sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
 - 44. A method for identifying a compound which influences the activity of a gene product required for proliferation, said gene product comprising a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:

contacting said gene product with a candidate compound; and determining whether said compound influences the activity of said gene product.

- 45. The method of Paragraph 44, wherein said gene product is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, 20 Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus. Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, 25 Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, 30 Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris. Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans,
- 35 Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

46. The method of Paragraph 44, wherein said gene product is from an organism other than *E. coli*.

- 47. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is an enzymatic activity.
- 48. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a carbon compound catabolism activity.

5

15

20

- 49. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a biosynthetic activity.
- 50. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a transporter activity.
 - 51. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a transcriptional activity.
 - 52. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a DNA replication activity.
 - 53. The method of Paragraph 44, wherein said gene product is a polypeptide and said activity is a cell division activity.
 - 54. The method of Paragraph 44, wherein said gene product is an RNA.
 - 55. The method of Paragraph 44, wherein said gene product is a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
 - 56. A compound identified using the method of Paragraph 44.
 - 57. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:
 - (a) contacting a target gene or RNA encoding said gene product with a candidate compound or nucleic acid; and
 - (b) measuring an activity of said target.
- 58. The method of Paragraph 57, wherein said target gene or RNA is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus

faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris,

- Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 59. The method of Paragraph 57, wherein said target gene or RNA is from an organism other than *E. coli*.
 - 60. The method of Paragraph 57, wherein said gene product is from an organism other than *E. coli*.
 - 61. The method of Paragraph 57, wherein said target is a messenger RNA molecule and said activity is translation of said messenger RNA.

15

20

25

30

- 62. The method of Paragraph 57, wherein said target is a messenger RNA molecule and said activity is transcription of a gene encoding said messenger RNA.
- 63. The method of Paragraph 57, wherein said target is a gene and said activity is transcription of said gene.
- 64. The method of Paragraph 57, wherein said target is a nontranslated RNA and said activity is processing or folding of said nontranslated RNA or assembly of said nontranslated RNA into a protein/RNA complex.
- 65. The method of Paragraph 57, wherein said target is a messenger RNA molecule encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 66. The method of Paragraph 57, wherein said target comprises a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 67. A compound or nucleic acid identified using the method of Paragraph 57.
- 68. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising the steps of:
 - (a) providing a sublethal level of an antisense nucleic acid comprising a nucleotide sequence complementary to a nucleic acid comprising a nucleotide sequence encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell;

- (b) contacting said sensitized cell with a compound; and
- (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 69. The method of Paragraph 68, wherein said determining step comprises determining
 whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.
 - 70. The method of Paragraph 68, wherein said cell is a Gram positive bacterium.
 - 71. The method of Paragraph 68, wherein said Gram positive bacterium is selected from the group consisting of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
 - 72. The method of Paragraph 68, wherein said bacterium is Staphylococcus aureus.
 - 73. The method of Paragraph 72, wherein said *Staphylococcus* species is coagulase negative.

10

15

- 74. The method of Paragraph 72, wherein said bacterium is selected from the group consisting of *Staphylococcus aureus* RN450 and *Staphylococcus aureus* RN4220.
- 75. The method of Paragraph 68, wherein said cell is an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae,
- Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella bovdii. Shigella dysenteriae. Shigella flexneri. Shigella sonnei. Staphylococcus enidermidis
 - boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 76. The method of Paragraph 68, wherein said cell is not an E. coli cell.
- 77. The method of Paragraph 68, wherein said gene product is from an organism other than 35 E. coli.
 - 78. The method of Paragraph 68, wherein said antisense nucleic acid is transcribed from an inducible promoter.

79. The method of Paragraph 68, further comprising the step of contacting said cell with a concentration of inducer which induces transcription of said antisense nucleic acid to a sublethal level.

- 80. The method of Paragraph 68, wherein growth inhibition is measured by monitoring optical density of a culture growth solution.
 - 81. The method of Paragraph 68, wherein said gene product is a polypeptide.
- 82. The method of Paragraph 81, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
 - 83. The method of Paragraph 68, wherein said gene product is an RNA.
- 84. The method of Paragraph 68, wherein nucleic acid encoding said gene product comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 85. A compound identified using the method of Paragraph 68.

5

10

15

20

25

30

- 86. A method for inhibiting cellular proliferation comprising introducing an effective amount of a compound with activity against a gene whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a compound with activity against the product of said gene into a population of cells expressing said gene.
- . 87. The method of Paragraph 86, wherein said compound is an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof.
- 88. The method of Paragraph 86, wherein said proliferation inhibiting portion of one of SEQ ID NOs.: 8-3795 is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 51 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.
- 89. The method of Paragraph 86, wherein said population is a population of Gram positive bacteria.
- 90. The method of Paragraph 89, wherein said population of Gram positive bacteria is selected from the group consisting of a population of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
- 91. The method of Paragraph 86, wherein said population is a population of Staphylococcus aureus.
- 92. The method of Paragraph 91, wherein said population is a population of a bacterium selected from the group consisting of *Staphylococcus aureus* RN450 and *Staphylococcus aureus* RN4220.
- 93. The method of Paragraph 86, wherein said population is a population of a bacterium selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus

anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus,

- 5 Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis,
 Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus
 faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori,
 Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae,
 Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides,
- Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris,
 Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica,
 Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri,
 Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans,
 Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 94. The method of Paragraph 86, wherein said population is a population of an organism other than *E. coli*.
 - 95. The method of Paragraph 86, wherein said product of said gene is from an organism other than E. coli.

20

25

30

- 96. The method of Paragraph 86, wherein said gene encodes a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 97. The method of Paragraph 86, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 98. A composition comprising an effective concentration of an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof in a pharmaceutically acceptable carrier.
- 99. The composition of Paragraph 98, wherein said proliferation-inhibiting portion of one of SEQ ID NOs.: 8-3795 comprises at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.
- 100. A method for inhibiting the activity or expression of a gene in an operon required for proliferation wherein the activity or expression of at least one gene in said operon is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising contacting a cell in a cell population with an antisense nucleic acid complementary to at least a portion of said operon.

5

10

15

20

25

35

101. The method of Paragraph 100, wherein said antisense nucleic acid comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof.

- 102. The method of Paragraph 100, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica. Yersinia pestis and any species falling within the genera of any of the above species.
 - 103. The method of Paragraph 100, wherein said cell is not an E. coli cell.
 - 104. The method of Paragraph 100, wherein said gene is from an organism other than E. coli.
- 105. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a plasmid which expresses said antisense nucleic acid into said cell population.
 - 106. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a phage which encodes said antisense nucleic acid into said cell population.
- 30 The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by expressing said antisense nucleic acid from the chromosome of cells in said cell population.
 - 108. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a promoter adjacent to a chromosomal copy of said antisense nucleic acid such that said promoter directs the transcription of said antisense nucleic acid.

109. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a retron which expresses said antisense nucleic acid into said cell population.

110. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a ribozyme into said cell-population, wherein a binding portion of said ribozyme comprises said antisense nucleic acid.

5

10

15

20

- 111. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by introducing a liposome comprising said antisense nucleic acid into said cell.
- 112. The method of Paragraph 100, wherein said cell is contacted with said antisense nucleic acid by electroporation of said antisense nucleic acid into said cell.
- 113. The method of Paragraph 100, wherein said antisense nucleic acid is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.
- 114. The method of Paragraph 100 wherein said antisense nucleic acid is a synthetic oligonucleotide.
 - 115. The method of Paragraph 100, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 116. A method for identifying a gene which is required for proliferation of a cell comprising:
 - (a) contacting a cell with an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, wherein said cell is a cell other than the organism from which said nucleic acid was obtained;
 - (b) determining whether said nucleic acid inhibits proliferation of said cell; and
 - (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.
 - 117. The method of Paragraph 116, wherein said cell is selected from the group consisting of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
- 118. The method of Paragraph 116 wherein said cell is selected from the group
 30 consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae,

Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

119. The method of Paragraph 116, wherein said cell is not E. coli.

5

10

15

20

25

30

- 120. The method of Paragraph 116, further comprising operably linking said antisense nucleic acid to a promoter which is functional in said cell, said promoter being included in a vector, and introducing said vector into said cell.
- 121. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising:
 - (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 in a test cell, wherein said test cell is not the cell from which said nucleic acid was obtained;
 - (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell;
 - (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell;
 - (d) contacting the sensitized cell of step (c) with a compound; and
 - (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said inhibitory nucleic acid.
- 122. The method of Paragraph 121, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.
- 123. The method of Paragraph 121, wherein step (a) comprises identifying a nucleic acid homologous to a gene or gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 or a nucleic acid encoding a homologous polypeptide to a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 by using an algorithm selected from the group consisting of BLASTN version 2.0 with the default parameters and FASTA version 3.0t78 algorithm with the default parameters to identify said homologous nucleic acid or said nucleic acid encoding a homologous polypeptide in a database.

5

124. The method of Paragraph 121 wherein said step (a) comprises identifying a homologous nucleic acid or a nucleic acid comprising a sequence of nucleotides encoding a homologous polypeptide by identifying nucleic acids which hybridize to said nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 or the complement of said nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795.

- 125. The method of Paragraph 121 wherein step (a) comprises expressing a nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795 in said test cell.
- 126. The method of Paragraph 121, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a test cell selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus 10 anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis. 15 Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, 20 Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, 25 Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the
 - 127. The method of Paragraph 121, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a test cell other than *E. coli*.
- The method of Paragraph 121, wherein said inhibitory nucleic acid is an antisense nucleic acid.

genera of any of the above species.

- 129. The method of Paragraph 121, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of said homolog.
- 130. The method of Paragraph 121, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of the operon encoding said homolog.

131. The method of Paragraph 121, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises directly contacting the surface of said cell with said inhibitory nucleic acid.

132. The method of Paragraph 121, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises transcribing an antisense nucleic acid complementary to at least a portion of the RNA transcribed from said homolog in said cell.

5

10

15

20

25

30

- 133. The method of Paragraph 121, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 134. The method of Paragraph 121, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 135. A compound identified using the method of Paragraph 121.
- 136. A method of identifying a compound having the ability to inhibit proliferation comprising:
 - (a) contacting a test cell with a sublethal level of a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, thus sensitizing said test cell;
 - (b) contacting the sensitized test cell of step (a) with a compound; and
 - (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said nucleic acid.
- 137. The method of Paragraph 136, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.
 - 138. A compound identified using the method of Paragraph 136.
- 139. The method of Paragraph 136, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori.

Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

140. The method of Paragraph 136, wherein the test cell is not E. coli.

5

10

15

20

25

30

- 141. A method for identifying a compound having activity against a biological pathway required for proliferation comprising:
 - (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, in said cell to reduce the activity or amount of said gene product;
 - (b) contacting the sensitized cell with a compound; and
 - (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 142. The method of Paragraph 141, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.
- 143. The method of Paragraph 141, wherein said cell is selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells.
 - 144. The method of Paragraph 141, wherein said cell is a Gram positive bacterium.
- 145. The method of Paragraph 144, wherein said Gram positive bacterium is selected from the group consisting of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
- 146. The method of Paragraph 145, wherein said Gram positive bacterium is Staphylococcus aureus.
- 147. The method of Paragraph 146, wherein said Gram positive bacterium is selected from the group consisting of *Staphylococcus aureus* RN450 and *Staphylococcus aureus* RN4220.
- 148. The method of Paragraph 141, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neofornans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli,

Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

149. The method of Paragraph 141, wherein said cell is not an E. coli cell.

5

10

15

20

25

30

- 150. The method of Paragraph 141, wherein said gene product is from an organism other than *E. coli*.
- 151. The method of Paragraph 141, wherein said antisense nucleic acid is transcribed from an inducible promoter.
- 152. The method of Paragraph 141, further comprising contacting the cell with an agent which induces transcription of said antisense nucleic acid from said inducible promoter, wherein said antisense nucleic acid is transcribed at a sublethal level.
- 153. The method of Paragraph 141, wherein inhibition of proliferation is measured by monitoring the optical density of a liquid culture.
- 154. The method of Paragraph 141, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 155. The method of Paragraph 141, wherein said nucleic acid encoding said gene product comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
 - 156. A compound identified using the method of Paragraph 141.
- 157. A method for identifying a compound having the ability to inhibit cellular proliferation comprising:
 - (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795;
 - (b) contacting said cell with a compound; and
 - (c) determining whether said compound reduces proliferation of said contacted cell by acting on said gene product.

158. The method of Paragraph 157, wherein said determining step comprises determining whether said compound reduces proliferation of said contacted cell to a greater extent than said compound reduces proliferation of cells which have not been contacted with said agent.

- The method of Paragraph 157, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus funigatus, Bacillus anthracis, Bacterioides fragilis 5 Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus 10 neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, 15 Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species. 20
 - 160. The method of Paragraph 157, wherein said cell is not an E. coli cell.
 - 161. The method of Paragraph 157, wherein said gene product is from an organism other than E. coli.
- 162. The method of Paragraph 157, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises an antisense nucleic acid to a gene or operon required for proliferation.
 - 163. The method of Paragraph 157, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises a compound known to inhibit growth or proliferation of a cell.
- The method of Paragraph 157, wherein said cell contains a mutation which reduces the activity or level of said gene product required for proliferation of said cell.
 - 165. The method of Paragraph 157, wherein said mutation is a temperature sensitive mutation.
- 166. The method of Paragraph 157, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
 - 167. A compound identified using the method of Paragraph 157.

168. A method for identifying the biological pathway in which a proliferation-required gene or its gene product lies, wherein said gene or gene product comprises a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:

5

- (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity of said proliferation-required gene or gene product in a test cell;
- (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and

10

15

20

25

30

- (c) determining the degree to which said proliferation of said test cell is inhibited relative to a cell which was not contacted with said compound.
- 169. The method of Paragraph 168, wherein said determining step comprises determining whether said test cell has a substantially greater sensitivity to said compound than a cell which does not express said sublethal level of said antisense nucleic acid.
- 170. The method of Paragraph 168, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 171. The method of Paragraph 168, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 172. The method of Paragraph 168, wherein said test cell is not an E. coli cell.
- 173. The method of Paragraph 168, wherein said gene product is from an organism other than *E. coli*.

174. A method for determining the biological pathway on which a test compound acts comprising:

- (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a first cell, wherein the activity or expression of said proliferation-required nucleic acid is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795 and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required nucleic acid lies is known,
 - (b) contacting said first cell with said test compound; and

(c) determining the degree to which said test compound inhibits proliferation of said first cell relative to a cell which does not contain said antisense nucleic acid.

- 175. The method of Paragraph 174, wherein said determining step comprises determining whether said first cell has a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said antisense nucleic acid.
 - 176. The method of Paragraph 174, further comprising:

5

10

15

20

25

30

- (d) providing a sublethal level of a second antisense nucleic acid complementary to a second proliferation-required nucleic acid in a second cell, wherein said second proliferation-required nucleic acid is in a different biological pathway than said proliferation-required nucleic acid in step (a); and
- (e) determining whether said second cell does not have a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said second antisense nucleic acid, wherein said test compound is specific for the biological pathway against which the antisense nucleic acid of step (a) acts if said first cell has a substantially greater sensitivity to said test compound than said second cell.
- consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella

typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

178. The method of Paragraph 174, wherein said first cell is not an E. coli cell.

5

10

15

20

25

- 179. The method of Paragraph 174, wherein said proliferation-required nucleic acid is from an organism other than *E. coli*.
- 180. A purified or isolated nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795.
- 181. A compound which interacts with a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.
- 182. The compound of Paragraph 181, wherein said gene product is a polypeptide comprising one of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 183. The compound of Paragraph 181, wherein said gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.
- 184. A compound which interacts with a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.
- 185. A method for manufacturing an antibiotic comprising the steps of:
 screening one or more candidate compounds to identify a compound that reduces the
 activity or level of a gene product required for proliferation, said gene product comprising a gene
 product whose activity or expression is inhibited by an antisense nucleic acid comprising a
 nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795; and
 manufacturing the compound so identified.
- 186. The method of Paragraph 185, wherein said screening step comprises performing any one of the methods of Paragraphs 44, 68, 121, 136, 141, and 157.
- 187. The method of Paragraph 185, wherein said gene product is a polypeptide comprising one of SEQ ID NOs:3801-3805, 4861-5915, 10013-14110.
- 188. A method for inhibiting proliferation of a cell in a subject comprising administering an effective amount of a compound that reduces the activity or level of a gene product required for proliferation of said cell, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 to said subject.
- The method of Paragraph 188 wherein said subject is selected from the group consisting of vertebrates, mammals, avians, and human beings.

190. The method of Paragraph 188, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.

- 191. The method of Paragraph 188, wherein said cell is selected from the group 5 consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus 10 neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, 15 Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, 20 Yersinia pestis and any species falling within the genera of any of the above species.
 - 192. The method of Paragraph 188, wherein said cell is not E. coli.
 - 193. The method of Paragraph 188, wherein said gene product is from an organism other than E. coli.
- 194. A purified or isolated nucleic acid consisting essentially of the coding sequence of one of SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012.
 - 195. A fragment of the nucleic acid of Paragraph 8, said fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012.
- 196. A purified or isolated nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the nucleotide sequences complementary to SEQ ID NOs.:3796-3800, 3806-4860, 5916-10012, and the nucleotide sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 as determined using BLASTN version 2.0 with the default parameters.

The nucleic acid of Paragraph 196, wherein said nucleic acid is from an organism 197. selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida 5 pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, 10 Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, 15 Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

198. The nucleic acid of Paragraph 196, wherein said nucleic acid is from an organism other than E. coli.

20

25

30

35

A method of inhibiting proliferation of a cell comprising inhibiting the activity or 199. reducing the amount of a gene product in said cell or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in said cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795

under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795.

- 200. The method of Paragraph 199, wherein said method comprises inhibiting said 5 activity or reducing said amount of said gene product or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida 10 guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis). Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium. Escherichia coli. Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, 15 Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori. Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella 20 boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis. Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 201. The method of Paragraph 199, wherein said method comprises inhibiting said activity or reducing said amount of said gene product or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in an organism other than E. coli.

25

30

- 202. The method of Paragraph 199, wherein said gene product is from an organism other than E. coli.
- 203. The method of Paragraph 199, wherein said gene product comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.
- 204. The method of Paragraph 199, wherein said gene product is encoded by a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-

3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.

205. A method for identifying a compound which influences the activity of a gene product required for proliferation comprising:

5

10

15

20

25

30

35

contacting a candidate compound with a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and

determining whether said candidate compound influences the activity of said gene product.

206. The method of Paragraph 205, wherein said gene product is from an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori,

Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

5

. 10

15

20

25

30

35

- 207. The method of Paragraph 205, wherein said gene product is from an organism other than *E. coli*.
- 208. The method of Paragraph 205, wherein said gene product is a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.
- 209. The method of Paragraph 205, wherein said gene product is encoded by a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.
 - 210. A compound identified using the method of Paragraph 205.
- 211. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation comprising:
 - (a) providing a target that is a gene or RNA, wherein said target comprises a nucleic acid that encodes a gene product selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group

-33-

> consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;

5

10

- (b) contacting said target with a candidate compound or nucleic acid; and
- (c) measuring an activity of said target.
- 212. The method of Paragraph 211, wherein said target gene or RNA is from an 15 organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia 20 trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis 25 carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus 30 pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 213. The method of Paragraph 211, wherein said target gene or RNA is from an organism other than E. coli.
 - 214. The method of Paragraph 211, wherein said gene product is from an organism other than E. coli.
 - 215. The method of Paragraph 211, wherein said target is a messenger RNA molecule and said activity is translation of said messenger RNA.

216. The method of Paragraph 211, wherein said compound is a nucleic acid and said activity is translation of said gene product.

- 217. The method of Paragraph 211, wherein said target is a gene and said activity is transcription of said gene.
- 218. The method of Paragraph 211, wherein said target is a nontranslated RNA and said activity is processing or folding of said nontranslated RNA or assembly of said nontranslated RNA into a protein/RNA complex.
- 219. The method of Paragraph 211, wherein said target gene is a messenger RNA molecule encoding a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.
- 220. The method of Paragraph 11, wherein said target gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.
 - 221. A compound or nucleic acid identified using the method of Paragraph 211.
- 222. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell comprising:

25

30

5

10

15

20

(a) providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited

by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;

10

15

20

25

30

35

- (b) contacting said sensitized cell with a compound; and
- (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 223. The method of Paragraph 222, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.
- 224. The method of Paragraph 222, wherein said sensitized cell is a Gram positive bacterium.
- 225. The method of Paragraph 224, wherein said Gram positive bacterium is selected from the group consisting of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
 - 226. The method of Paragraph 225, wherein said bacterium is Staphylococcus aureus.
- 227. The method of Paragraph 224, wherein said *Staphylococcus* species is coagulase negative.
- 228. The method of Paragraph 226, wherein said bacterium is selected from the group consisting of *Staphylococcus aureus* RN450 and *Staphylococcus aureus* RN4220.
- 229. The method of Paragraph 222, wherein said sensitized cell is an organism selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris.

5

10

15

20

Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

- 230. The method of Paragraph 222, wherein said cell is an organism other than E. coli.
- 231. The method of Paragraph 222, wherein said gene product is from an organism other than E. coli.
- 232. The method of Paragraph 222, wherein said antisense nucleic acid is transcribed from an inducible promoter.
- 233. The method of Paragraph 222, further comprising the step of contacting said cell with a concentration of inducer which induces transcription of said antisense nucleic acid to a sublethal level.
- 234. The method of Paragraph 222, wherein growth inhibition is measured by monitoring optical density of a culture medium.
 - 235. The method of Paragraph 222, wherein said gene product is a polypeptide.
 - 236. The method of Paragraph 235, wherein said polypeptide comprises a polypeptide selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.
 - 237. The method of Paragraph 222, wherein said gene product is an RNA.
- 238. The method of Paragraph 222, wherein said nucleic acid encoding said gene product comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.
 - 239. A compound identified using the method of Paragraph 222.
- 240. A method for inhibiting cellular proliferation comprising introducing a compound
 with activity against a gene product or a compound with activity against a gene encoding said gene
 product into a population of cells expressing said gene product, wherein said gene product is
 selected from the group consisting of a gene product having at least 70% nucleotide sequence

5

10

15

25

30

identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.

- 241. The method of Paragraph 240, wherein said compound is an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof.
- 242. The method of Paragraph 240, wherein said proliferation inhibiting portion of one of SEQ ID NOs.: 8-3795 is a fragment comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 51 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.
 - 243. The method of Paragraph 240, wherein said population is a population of Gram positive bacteria.
 - 244. The method of Paragraph 243, wherein said population of Gram positive bacteria is selected from the group consisting of a population of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
 - 245. The method of Paragraph 243, wherein said population is a population of Staphylococcus aureus.
 - 246. The method of Paragraph 245, wherein said population is a population of a bacterium selected from the group consisting of *Staphylococcus aureus* RN450 and *Staphylococcus aureus* RN420.
- 247. The method of Paragraph 240, wherein said population is a population of a bacterium selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus,
 Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia,
 Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata),
 Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr

(also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae,

- Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium,
- 10 Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 248. The method of Paragraph 240, wherein said population is a population of an organism other than *E. coli*.

15

20

- 249. The method of Paragraph 240, wherein said product of said gene is from an organism other than *E. coli*.
- 250. The method of Paragraph 240, wherein said gene product is selected from the group consisting of a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 to a polypeptide selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 and a polypeptide whose activity may be complemented by a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.
- from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate condtions.
 - 252. A preparation comprising an effective concentration of an antisense nucleic acid in a pharmaceutically acceptable carrier wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid comprising a sequence having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion

5

10

15

20

25

30

35

thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions.

- 253. The preparation of Paragraph 252, wherein said proliferation-inhibiting portion of one of SEQ ID NOs.: 8-3795 comprises at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.
- A method for inhibiting the activity or expression of a gene in an operon which encodes a gene product required for proliferation comprising contacting a cell in a cell population with an antisense nucleic acid comprising at least a proliferation-inhibiting portion of said operon in an antisense orientation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
- 255. The method of Paragraph 254, wherein said antisense nucleic acid comprises a nucleotide sequence having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a proliferation inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid which comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions.
- 256. The method of Paragraph 254, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis

5

10

15

20

25

30

Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

- 257. The method of Paragraph 254, wherein said cell is not an E. coli cell.
- 258. The method of Paragraph 254, wherein said gene is from an organism other than E. coli.
- 259. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a plasmid which transcribes said antisense nucleic acid into said cell population.
 - 260. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a phage which transcribes said antisense nucleic acid into said cell population.
- 261. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by transcribing said antisense nucleic acid from the chromosome of cells in said cell population.
- 262. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a promoter adjacent to a chromosomal copy of said antisense nucleic acid such that said promoter directs the synthesis of said antisense nucleic acid.
- 263. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a retron which expresses said antisense nucleic acid into said cell population.
- 264. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a ribozyme into said cell-population, wherein a binding portion of said ribozyme is complementary to said antisense oligonucleotide.

265. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by introducing a liposome comprising said antisense oligonucleotide into said cell,

266. The method of Paragraph 254, wherein said cell is contacted with said antisense nucleic acid by electroporation of said antisense nucleic acid into said cell.

5

10

15

20

25

- 267. The method of Paragraph 254, wherein said antisense nucleic acid has at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence comprising at least 10, at least 20, at least 25, at least 30, at least 50 or more than 50 consecutive nucleotides of one of SEQ ID NOs.: 8-3795.
- 268. The method of Paragraph 254 wherein said antisense nucleic acid is a synthetic oligonucleotide.
 - 269. The method of Paragraph 254, wherein said gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.
- 270. A method for identifying a gene which is required for proliferation of a cell comprising:
 - (a) contacting a cell with an antisense nucleic acid selected from the group consisting of a nucleic acid at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, wherein said cell is a cell other than the organism from which said nucleic acid was obtained;
 - (b) determining whether said nucleic acid inhibits proliferation of said cell; and
 - (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.
- 271. The method of Paragraph 270, wherein said cell is selected from the group consisting of Staphylococcus species, Streptococcus species, Enterococcus species, Mycobacterium species, Clostridium species, and Bacillus species.

272. The method of Paragraph 270 wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida 5 guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae. 10 Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella 15 boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis. Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

273. The method of Paragraph 270, wherein said cell is not E. coli.

25

30

- 274. The method of Paragraph 270, further comprising operably linking said antisense nucleic acid to a promoter which is functional in said cell, said promoter being included in a vector, and introducing said vector into said cell.
 - 275. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising:
 - (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by an antisense nucleic acid in a test cell, wherein said test cell is not the microorgaism from which the antisense nucleic acid was obtained, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions;
 - (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell;
 - (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell;

- (d) contacting the sensitized cell of step (c) with a compound; and
- (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not express said inhibitory nucleic acid.
- 276. The method of Paragraph 275, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.

5

10

15

20

- 277. The method of Paragraph 275, wherein step (a) comprises identifying a homologous nucleic acid to a gene or gene product whose activity or level is inhibited by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a nucleic acid encoding a homologous polypeptide to a polypeptide whose activity or level is inhibited by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 by using an algorithm selected from the group consisting of BLASTN version 2.0 with the default parameters and FASTA version 3.0t78 algorithm with the default parameters to identify said homologous nucleic acid or said nucleic acid encoding a homologous polypeptide in a database.
- 278. The method of Paragraph 275 wherein said step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide by identifying nucleic acids comprising nucleotide sequences which hybridize to said nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or the complement of the nucleotide sequence of said nucleic acid selected from the group consisting of SEQ ID NOs. 8-3795.
- 279. The method of Paragraph 275 wherein step (a) comprises expressing a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a sequence selected from the group consisting of SEQ ID NOs. 8-3795 in said test cell.
- 280. The method of Paragraph 275, wherein step (a) comprises identifying a

 homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in an test cell selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus

jaecans, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris,

- Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 281. The method of Paragraph 275, wherein step (a) comprises identifying a homologous nucleic acid or a nucleic acid encoding a homologous polypeptide in a test cell other than E. coli.
 - 282. The method of Paragraph 275, wherein said inhibitory nucleic acid is an antisense nucleic acid.

15

- 283. The method of Paragraph 275, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of said homolog.
- 284. The method of Paragraph 275, wherein said inhibitory nucleic acid comprises an antisense nucleic acid to a portion of the operon encoding said homolog.
- 285. The method of Paragraph 275, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises directly contacting said cell with said inhibitory nucleic acid.
 - 286. The method of Paragraph 275, wherein the step of contacting the cell with a sublethal level of said inhibitory nucleic acid comprises expressing an antisense nucleic acid to said homolog in said cell.
 - 287. The method of Paragraph 275, wherein said gene product comprises a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.

289. A compound identified using the method of Paragraph 275.

5

10

15

20

25

30

35

ĺ

290. A method of identifying a compound having the ability to inhibit proliferation comprising:

- (a) sensitizing a test cell by contacting said test cell with a sublethal level of an antisense nucleic acid, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditionst;
 - (b) contacting the sensitized test cell of step (a) with a compound; and
- (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said antisense nucleic acid.
- 291. The method of Paragraph 290, wherein said determining step comprises determining whether said compound inhibits proliferation of said sensitized test cell to a greater extent than said compound inhibits proliferation of a nonsensitized test cell.
 - 292. A compound identified using the method of Paragraph 290.
- 293. The method of Paragraph 290, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans. Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica,

Yersinia pestis and any species falling within the genera of any of the above species.

294. The method of Paragraph 290, wherein the test cell is not E. coli.

5

10

15

20

25

30

35

295. A method for identifying a compound having activity against a biological pathway required for proliferation comprising:

- (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation. wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;
 - (b) contacting the sensitized cell with a compound; and
- (c) determining the extent to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 296. The method of Paragraph 295, wherein said determining step comprises determining whether said compound inhibits the growth of said sensitized cell to a greater extent than said compound inhibits the growth of a nonsensitized cell.
- 297. The method of Paragraph 295, wherein said cell is selected from the group consisting of bacterial cells, fungal cells, plant cells, and animal cells.
 - 298. The method of Paragraph 295, wherein said cell is a Gram positive bacterium.
- 299. The method of Paragraph 298, wherein said Gram positive bacterium is selected from the group consisting of *Staphylococcus* species, *Streptococcus* species, *Enterococcus* species, *Mycobacterium* species, *Clostridium* species, and *Bacillus* species.
- 300. The method of Paragraph 299, wherein said Gram positive bacterium is Staphylococcus aureus.

5

10

15

25

301. The method of Paragraph 298, wherein said Gram positive bacterium is selected from the group consisting of *Staphylococcus aureus* RN450 and *Staphylococcus aureus* RN4220.

- The method of Paragraph 295, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
- 20 303. The method of Paragraph 295, wherein said cell is not an E. coli cell.
 - 304. The method of Paragraph 295, wherein said gene product is from an organism other than E. coli.
 - 305. The method of Paragraph 295, wherein said antisense nucleic acid is transcribed from an inducible promoter.
 - 306. The method of Paragraph 305, further comprising contacting the cell with an agent which induces expression of said antisense nucleic acid from said inducible promoter, wherein said antisense nucleic acid is expressed at a sublethal level.
 - 307. The method of Paragraph 295, wherein inhibition of proliferation is measured by monitoring the optical density of a liquid culture.
- 308. The method of Paragraph 295, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 309. The method of Paragraph 295, wherein said nucleic acid encoding said gene
 product comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a
 nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN
 version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting

of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.

310. A compound identified using the method of Paragraph 295.

5

10

15

20

25

30

- 311. A method for identifying a compound having the ability to inhibit cellular proliferation comprising:
 - (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;
 - (b) contacting said cell with a compound; and
 - (c) determining the degree to which said compound reduces proliferation of said contacted cell relative to a cell which was not contacted with said agent.
- 312. The method of Paragraph 311, wherein said determining step comprises determining whether said compound reduces proliferation of said contacted cell to a greater extent than said compound reduces proliferation of cells which have not been contacted with said agent.
- 313. The method of Paragraph 311, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida

glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, 5 Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

The method of Paragraph 311, wherein said cell is not an E. coli cell. 314.

10

15

20

25

30

- The method of Paragraph 311, wherein said gene product is from an organism other 315. than E. coli.
- The method of Paragraph 311, wherein said agent which reduces the activity or 316. level of a gene product required for proliferation of said cell comprises an antisense nucleic acid to a gene or operon required for proliferation.
- The method of Paragraph 311, wherein said agent which reduces the activity or level of a gene product required for proliferation of said cell comprises a compound known to inhibit growth or proliferation of a cell.
- The method of Paragraph 311, wherein said cell contains a mutation which reduces 318. the activity or level of said gene product required for proliferation of said cell.
- The method of Paragraph 311, wherein said mutation is a temperature sensitive mutation.
- The method of Paragraph 311, wherein said gene product comprises a gene product 320. comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
 - 321. A compound identified using the method of Paragraph 311.
- 322. A method for identifying the biological pathway in which a proliferation-required gene product or a gene encoding a proliferation-required gene product lies comprising:
- (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity or reduces the level of said gene encoding a proliferation-required gene product or said said proliferation-required gene product in a test cell, wherein said proliferation-

5

10

15

20

25

30

35

required gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEO ID NOs: 8-3795;

- (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and
- (c) determining the degree to which said compound inhibits proliferation of said test cell relative to a cell which does not contain said antisense nucleic acid.
- 323. The method of Paragraph 322, wherein said determining step comprises determining whether said test cell has a substantially greater sensitivity to said compound than a cell which does not express said sublethal level of said antisense nucleic acid.
- 324. The method of Paragraph 322, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 325. The method of Paragraph 322, wherein said test cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus

neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.

5

10

20

25

30

- 326. The method of Paragraph 322, wherein said test cell is not an E. coli cell.
- 327. The method of Paragraph 322, wherein said gene product is from an organism other than *E. coli*.
- 328. A method for determining the biological pathway on which a test compound acts comprising:
 - (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a cell, thereby producing a sensitized cell, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required polypeptide lies is known,
 - (b) contacting said cell with said test compound; and
 - (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
 - 329. The method of Paragraph 328, wherein said determining step comprises determining whether said sensitized cell has a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said antisense nucleic acid.
 - 330. The method of Paragraph 328, further comprising:
 - (d) providing a sublethal level of a second antisense nucleic acid complementary to a second proliferation-required nucleic acid in a second cell, wherein said second

5

proliferation-required nucleic acid is in a different biological pathway than said proliferation-required nucleic acid in step (a); and

- (e) determining whether said second cell does not have a substantially greater sensitivity to said test compound than a cell which does not express said sublethal level of said second antisense nucleic acid, wherein said test compound is specific for the biological pathway against which the antisense nucleic acid of step (a) acts if said sensitized cell has substantially greater sensitivity to said test compound than said second cell.
- The method of Paragraph 328, wherein said sensitized cell is selected from the 331. group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, 10 Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, 15 Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, 20 Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of 25 the above species.
 - 332. The method of Paragraph 328, wherein said sensitized cell is not an E. coli cell.
 - 333. The method of Paragraph 328, wherein said proliferation-required nucleic acid is from an organism other than *E. coli*.
- 334. A compound which inhibits proliferation by interacting with a gene encoding a
 336 gene product required for proliferation or with a gene product required for proliferation, wherein
 337 said gene product is selected from the group consisting of a gene product having at least 70%
 338 nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters
 348 to a gene product whose expression is inhibited by an antisense nucleic acid comprising a
 359 nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product
 360 encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using
 361 BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose
 362 expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from

5

10

15

20

25

30

35

the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.

- 335. The compound of Paragraph 334, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 336. The compound of Paragraph 334, wherein said gene comprises a nucleic acid selected from the group consisting of a nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 under moderate conditions.
- 337. A method for manufacturing an antibiotic comprising the steps of: screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence

which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and

manufacturing the compound so identified.

5

10

15

20

25

30

- 338. The method of Paragraph 337, wherein said screening step comprises performing any one of the methods of Paragraphs 205, 211, 222, 275, 290, 295, 311.
- 339. The method of Paragraph 337, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.
- 340. A method for inhibiting proliferation of a cell in a subject comprising administering an effective amount of a compound that reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
- 341. The method of Paragraph 340 wherein said subject is selected from the group consisting of vertebrates, mammals, avians, and human beings.
- 342. The method of Paragraph 340, wherein said gene product comprises a polypeptide having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default

5

10

15

20

25

30

35

parameters to an amino acid sequence selected from the group consisting of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110.

- 343. The method of Paragraph 340, wherein said cell is selected from the group consisting of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species.
 - 344. The method of Paragraph 340, wherein said cell is not E. coli.
- 345. The method of Paragraph 340, wherein said gene product is from an organism other than *E. coli*.

Definitions

By "biological pathway" is meant any discrete cell function or process that is carried out by a gene product or a subset of gene products. Biological pathways include anabolic, catabolic, enzymatic, biochemical and metabolic pathways as well as pathways involved in the production of cellular structures such as cell walls. Biological pathways that are usually required for proliferation of cells or microorganisms include, but are not limited to, cell division, DNA synthesis and replication, RNA synthesis (transcription), protein synthesis (translation), protein processing, protein transport, fatty acid biosynthesis, electron transport chains, cell wall synthesis, cell membrane production, synthesis and maintenance, and the like.

By "inhibit activity of a gene or gene product" is meant having the ability to interfere with the function of a gene or gene product in such a way as to decrease expression of the gene, in such a way as to reduce the level or activity of a product of the gene or in such a way as to inhibit the interaction of the gene or gene product with other biological molecules required for its activity. Agents which inhibit the activity of a gene include agents that inhibit transcription of the gene, agents that inhibit processing of the transcript of the gene, agents that reduce the stability of the

5

10

15

20

25

30

35

transcript of the gene, and agents that inhibit translation of the mRNA transcribed from the gene. In microorganisms, agents which inhibit the activity of a gene can act to decrease expression of the operon in which the gene resides or alter the folding or processing of operon RNA so as to reduce the level or activity of the gene product. The gene product can be a non-translated RNA such as ribosomal RNA, a translated RNA (mRNA) or the protein product resulting from translation of the gene mRNA. Of particular utility to the present invention are antisense RNAs that have activities against the operons or genes to which they specifically hybridze.

By "activity against a gene product" is meant having the ability to inhibit the function or to reduce the level or activity of the gene product in a cell. This includes, but is not limited to, inhibiting the enzymatic activity of the gene product or the ability of the gene product to interact with other biological molecules required for its activity, including inhibiting the gene product's assembly into a multimeric structure.

By "activity against a protein" is meant having the ability to inhibit the function or to reduce the level or activity of the protein in a cell. This includes, but is not limited to, inhibiting the enzymatic activity of the protein or the ability of the protein to interact with other biological molecules required for its activity, including inhibiting the protein's assembly into a multimeric structure.

By "activity against a nucleic acid" is meant having the ability to inhibit the function or to reduce the level or activity of the nucleic acid in a cell. This includes, but is not limited to, inhibiting the ability of the nucleic acid interact with other biological molecules required for its activity, including inhibiting the nucleic acid's assembly into a multimeric structure.

By "activity against a gene" is meant having the ability to inhibit the function or expression of the gene in a cell. This includes, but is not limited to, inhibiting the ability of the gene to interact with other biological molecules required for its activity.

By "activity against an operon" is meant having the ability to inhibit the function or reduce the level of one or more products of the operon in a cell. This includes, but is not limited to, inhibiting the enzymatic activity of one or more products of the operon or the ability of one or more products of the operon to interact with other biological molecules required for its activity.

By "antibiotic" is meant an agent which inhibits the proliferation of a cell or microorganism.

By "E. coli or Escherichia coli" is meant Escherichia coli or any organism previously categorized as a species of Shigella including Shigella boydii, Shigella flexneri, Shigella dysenteriae, Shigella sonnei, Shigella 2A.

By "homologous coding nucleic acid" is meant a nucleic acid homologous to a nucleic acid encoding a gene product whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 or a portion thereof. In some embodiments, the homologous coding nucleic acid may have at least 97%, at least 95%, at least 90%, at least 85%, at

5

10

15

20

25

30

35

least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. In other embodiments the homologous coding nucleic acids may have at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequences complementary to one of SEQ ID NOs.: 8-3795 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Identity may be measured using BLASTN version 2.0 with the default parameters or tBLASTX with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997)) Alternatively a "homologuous coding nucleic acid" could be identified by membership of the gene of interest to a functional orthologue cluster. All other members of that orthologue cluster would be considered homologues. Such a library of functional orthologue clusters can be found at http://www.ncbi.nlm.nih.gov/COG. A gene can be classified into a cluster of orthologous groups or COG by using the COGNITOR program available at the above web site, or by direct BLASTP comparison of the gene of interest to the members of the COGs and analysis of these results as described by Tatusov, R.L., Galperin, M.Y., Natale, D. A. and Koonin, E.V. (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research v. 28 n. 1, pp33-36.

The term "homologous coding nucleic acid" also includes nucleic acids comprising nucleotide sequences which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% maino acid identity or similarity to a polypeptide comprising the amino acid sequence of one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 or to a polypeptpide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs: 8-3795 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters.

Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, or tBLASTX with the default parameters, TBLASTN with the default parameters, or tBLASTX with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997)).

The term "homologous coding nucleic acid" also includes coding nucleic acids which hybridize under stringent conditions to a nucleic acid selected from the group consisting of the nucleotide sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and coding nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequences complementary to one of SEQ ID NOS.:

5

10

15

20

25

30

35

3796-3800, 3806-4860, 5916-10012 As used herein, "stringent conditions" means hybridization to filter-bound nucleic acid in 6xSSC at about 45°C followed by one or more washes in 0.1xSSC/0.2% SDS at about 68°C. Other exemplary stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C, 48°C, 55°C, and 60°C as appropriate for the particular probe being used.

The term "homologous coding nucleic acid" also includes coding nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence selected from the group consisting of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and coding nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequences complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012. As used herein, "moderate conditions" means hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45°C followed by one or more washes in 0.2xSSC/0.1% SDS at about 42-65°C.

The term "homologous coding nucleic acids" also includes nucleic acids comprising nucleotide sequences which encode a gene product whose activity may be complemented by a gene encoding a gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795. In some embodiments, the homologous coding nucleic acids may encode a gene product whose activity is complemented by the gene product encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012. In other embodiments, the homologous coding nucleic acids may comprise a nucleotide sequence encode a gene product whose activity is complemented by one of the polypeptides of SEQ ID NOs. 3745-4773.

The term "homologous antisense nucleic acid" includes nucleic acids comprising a nucleotide sequence having at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 8-3795 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Homologous antisense nucleic acids may also comprising nucleotide sequences which have at least 97%, at least 95%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of the sequences complementary to one of sequences of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof. Nucleic acid identity may be determined as described above.

The term "homologous antisense nucleic acid" also includes antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleotide sequence complementary to one of SEQ ID NOs.: 8-3795 and antisens nucleic acids comprising

5

10

15

20

25

30

35

nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795. Homologous antisense nucleic acids also include antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.

The term "homologous antisense nucleic acid" also includes antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleotide sequence complementary to one of SEQ ID NOs.: 8-3795 and antisens nucleic acids comprising nucleotide seuqences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795. Homologous antisense nucleic acids also include antisense nucleic acids comprising nucleotide seuqences which hybridize under moderate conditions to a nucleotide sequence selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and antisense nucleic acids which comprising nucleotide sequences hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.

By "homologous polypeptide" is meant a polypeptide homologous to a polypeptide whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or by a homologous antisense nucleic acid. The term "homologous polypeptide" includes polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795 or by a homologous antisense nucleic acid, or polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide to a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of a polypeptide whose activity or level is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 or by a homologous antisense nucleic acid. Identity or similarity may be determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default

5

10

15

30

35

parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997).

The term homologous polypeptide also includes polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 and polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of a polypeptide selected from the group consisting of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110.

The invention also includes polynucleotides, preferably DNA molecules, that hybridize to one of the nucleic acids of SEQ ID NOs.: 8-3795, SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 or the complements of any of the preceding nucleic acids. Such hybridization may be under stringent or moderate conditions as defined above or under other conditions which permit specific hybridization. The nucleic acid molecules of the invention that hybridize to these DNA sequences include oligodeoxynucleotides ("oligos") which hybridize to the target gene under highly stringent or stringent conditions. In general, for oligos between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula:

20 Tm (°C) =
$$81.5 + 16.6(\log[\text{monovalent cations (molar})] + 0.41 (% G+C) - (500/N)$$

where N is the length of the probe. If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation:

25
$$Tm(^{\circ}C) = 81.5 + 16.6(log[monovalent cations (molar)] + 0.41(% G+C) - (0.61)$$

(% formamide) - (500/N)

where N is the length of the probe. In general, hybridization is carried out at about 20-25 degrees below Tm (for DNA-DNA hybrids) or about 10-15 degrees below Tm (for RNA-DNA hybrids).

Other hybridization conditions are apparent to those of skill in the art (see, for example, Ausubel, F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc. and John Wiley & Sons, Inc., New York, at pp. 6.3.1-6.3.6 and 2.10.3.

The term, Salmonella, is the generic name for a large group of gram-negative enteric bacteria that are closely related to Escherichia coli. The diseases caused by Salmonella are often due to contamination of foodstuffs or the water supply and affect millions of people each year. Traditional methods of Salmonella taxonomy were based on assigning a separate species name to

5

10

15

20

25

30

35

each serologically distinguishable strain (Kauffmann, F 1966 The bacteriology of the *Enterobacteriaceae*. Munksgaard, Copenhagen). Serology of *Salmonella* is based on surface antigens (O [somatic] and H [flagellar]). Over 2,400 serotypes or serovars of *Salmonella* are known (Popoff, et al. 2000 Res. Microbiol. 151:63-65). Therefore, each serotype was considered to be a separate species and often given names, accordingly (e.g. *S. paratyphi*, *S. typhimurium*, *S. typhi*, *S. enteriditis*, etc.).

However, by the 1970s and 1980s it was recognized that this system was not only cumbersome, but also inaccurate. Then, many Salmonella species were lumped into a single species (all serotypes and subgenera I, II, and IV and all serotypes of Arizona) with a second subspecies, S. bongorii also recognized (Crosa, et al., 1973, J. Bacteriol. 115:307-315). Though species designations are based on the highly variable surface antigens, the Salmonella are very similar otherwise with a major exception being pathogenicity determinants.

There has been some debate on the correct name for the Salmonella species. Currently (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467), the accepted name is Salmonella enterica. S. enterica is divided into six subspecies (I, S. enterica subsp. enterica; II, S. enterica, subsp. salamae; IIIa, S. enterica subsp. arizonàe; IIIb, S. enterica subsp. diarizonae; IV, S. enterica subsp. houtenae; and VI, S. enterica subsp. indica). Within subspecies I, serotypes are used to distinguish each of the serotypes or serovars (e.g. S. enterica serotype Enteriditis, S. enterica serotype

Typhimurium, S. enterica serotype Typhi, and S. enterica serotype Choleraesuis, etc.). Current convention is to spell this out on first usage (Salmonella enterica ser. Typhimurium) and then use an abbreviated form (Salmonella Typhimurium or S. Typhimurium). Note, the genus and species names (Salmonella enterica) are italicized but not the serotype/serovar name (Typhimurium).

Because the taxonomic committees have yet to officially approve of the actual species name, this latter system is what is employed by the CDC (Brenner, et al. 2000 J. Clin. Microbiol. 38:2465-2467). Due to the concerns of both taxonomic priority and medical importance, some of these serotypes might ultimately receive full species designations (S. typhi would be the most notable).

Therefore, as used herein "Salmonella enterica or S. enterica" includes serovars Typhi, Typhimurium, Paratyphi, Choleraesuis, etc." However, appeals of the "official" name are in process and the taxonomic designations may change (S. choleraesuis is the species name that could replace S. enterica based solely on priority).

By "identifying a compound" is meant to screen one or more compounds in a collection of compounds such as a combinatorial chemical library or other library of chemical compounds or to characterize a single compound by testing the compound in a given assay and determining whether it exhibits the desired activity.

By "inducer" is meant an agent or solution which, when placed in contact with a cell or microorganism, increases transcription, or inhibitor and/or promoter clearance/fidelity, from a desired promoter.

5

10

15

20

25

30

35

As used herein, "nucleic acid" means DNA, RNA, or modified nucleic acids. Thus, the terminology "the nucleic acid of SEQ ID NO: X" or "the nucleic acid comprising the nucleotide sequence" includes both the DNA sequence of SEQ ID NO: X and an RNA sequence in which the thymidines in the DNA sequence have been substituted with uridines in the RNA sequence and in which the deoxyribose backbone of the DNA sequence has been substituted with a ribose backbone in the RNA sequence. Modified nucleic acids are nucleic acids having nucleotides or structures which do not occur in nature, such as nucleic acids in which the internucleotide phosphate residues with methylphosphonates, phosphorothioates, phosphoramidates, and phosphate esters. Nonphosphate internucleotide analogs such as siloxane bridges, carbonate bridges, thioester bridges, as well as many others known in the art may also be used in modified nucleic acids. Modified nucleic acids may also comprise, α-anomeric nucleotide units and modified nucleotides such as 1.2dideoxy-d-ribofuranose, 1,2-dideoxy-1-phenylribofuranose, and N^4 . N^4 -ethano-5-methyl-cytosine are contemplated for use in the present invention. Modified nucleic acids may also be peptide nucleic acids in which the entire deoxyribose-phosphate backbone has been exchanged with a chemically completely different, but structurally homologous, polyamide (peptide) backbone containing 2-aminoethyl glycine units.

As used herein, "sub-lethal" means a concentration of an agent below the concentration required to inhibit all cell growth.

Brief Description of the Drawings

Figure 1 is an IPTG dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing either an antisense clone to the *E. coli* ribosomal protein rpIW (AS-rpIW) which is required for protein synthesis and essential for cell proliferation, or an antisense clone to the elaD (AS-elaD) gene which is not known to be involved in protein synthesis and which is also essential for proliferation.

Figure 2A is a tetracycline dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing antisense to *rplW* (AS-*rplW*) in the absence (0) or presence of IPTG at concentrations that result in 20% and 50% growth inhibition.

Figure 2B is a tetracycline dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing antisense to *elaD* (AS-*elaD*)in the absence (0) or presence of IPTG at concentrations that result in 20% and 50% growth inhibition.

Figure 3 is a graph showing the fold increase in tetracycline sensitivity of *E. coli* transfected with antisense clones to essential ribosomal proteins *L23* (AS-*rplW*) and *L7/L12* and *L10* (AS-*rplLrplJ*). Antisense clones to genes known to not be directly involved in protein synthesis, *atpB/E* (AS-*atpB/E*), *visC* (AS-*visC*), *elaD* (AS-*elaD*), *yohH* (AS-*yohH*), are much less sensitive to tetracycline.

5

10

15

20

25

30

35

Figure 4 illustrates the results of an assay in which Staphylococcus aureus cells transcribing an antisense nucleic acid complementary to the gyrB gene encoding the β subunit of gyrase were contacted with several antibiotics whose targets were known.

Detailed Description of the Preferred Embodiments

The present invention describes a group of prokaryotic genes and gene families required for cellular proliferation. Exemplary genes and gene families from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi are provided. A proliferation-required gene or gene family is one where, in the absence or substantial reduction of a gene transcript and/or gene product, growth or viability of the cell or microorganism is reduced or eliminated. Thus, as used herein, the terminology "proliferation-required" or "required for proliferation" encompasses instances where the absence or substantial reduction of a gene transcript and/or gene product completely eliminates cell growth as well as instances where the absence of a gene transcript and/or gene product merely reduces cell growth. These proliferation-required genes can be used as potential targets for the generation of new antimicrobial agents. To achieve that goal, the present invention also encompasses assays for analyzing proliferation-required genes and for identifying compounds which interact with the gene and/or gene products of the proliferation-required genes. In addition, the present invention contemplates the expression of genes and the purification of the proteins encoded by the nucleic acid sequences identified as required proliferation genes and reported herein. The purified proteins can be used to generate reagents and screen small molecule libraries or other candidate compound libraries for compounds that can be further developed to yield novel antimicrobial compounds.

The present invention also describes methods for identification of nucleotide sequences homologous to these genes and polypeptides described herein, including nucleic acids comprising nucleotide sequences homologous to the nucleic acids of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and polypeptides homologous to the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110. For example, these sequences may be used to identify homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides in microorganisms such as Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli,

5

10

15

20

25

30

35

Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments, the homologous coding nucleic acids, homologus antisense nucleic acids, or homologous polypeptides are identified in an organism other than E. coli.

The homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides, may then be used in each of the methods described herein, including methods to identify compounds which inhibit the proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods of inhibiting the growth of the organism containing the homologous coding nucleic acid, homologus antisense nucleic acid or homologous polypeptide, methods of identifying compounds which influence the activity or level of a gene product required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for identifying compounds or nucleic acids having the ability to reduce the level or activity of a gene product required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods of inhibiting the activity or expression of a gene in an operon required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for identifying a gene required proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for identifying the biological pathway in which a gene or gene product required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide lies, methods for identifying compounds having activity against biological pathway required for proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide, methods for determining the biological pathway on which a test compound acts, and methods of inhibiting the proliferation of the organism containing the homologous coding nucleic acid, homologous antisense nucleic acid or homologous polypeptide in a subject. In some embodiments of the present invention, the methods are performed using an organism, other than E. coli or a gene or gene product from an organism other than E. coli.

5

10

15

20

25

30

35

The present invention utilizes a novel method to identify proliferation-required sequences, Generally, a library of nucleic acid sequences from a given source are subcloned or otherwise inserted immediately downstream of an inducible promoter on an appropriate vector, such as a Staphylococcus aureus/E. coli or Pseudomonas aeruginosa/E. coli shuttle vector, or a vector which will replicate in both Salmonella typhimurium and Klebsiella pneumoniae, or other vector or shuttle vector capable of functioning in the intended organism., thus forming an expression library. It is generally preferred that expression is directed by a regulatable promoter sequence such that expression level can be adjusted by addition of variable concentrations of an inducer molecule or of an inhibitor molecule to the medium. Temperature activated promoters, such as promoters regulated by temperature sensitive repressors, such as the lambda C₁₈₅₇ repressor, are also envisioned. Although the insert nucleic acids may be derived from the chromosome of the cell or microorganism into which the expression vector is to be introduced, because the insert is not in its natural chromosomal location, the insert nucleic acid is an exogenous nucleic acid for the purposes of the discussion herein. The term "expression" is defined as the production of a sense or antisense RNA molecule from a gene, gene fragment, genomic fragment, chromosome, operon or portion thereof. Expression can also be used to refer to the process of peptide or polypeptide synthesis. An expression vector is defined as a vehicle by which a ribonucleic acid (RNA) sequence is transcribed from a nucleic acid sequence carried within the expression vehicle. The expression vector can also contain features that permit translation of a protein product from the transcribed RNA message expressed from the exogenous nucleic acid sequence carried by the expression vector. Accordingly, an expression vector can produce an RNA molecule as its sole product or the expression vector can produce a RNA molecule that is ultimately translated into a protein product.

Once generated, the expression library containing the exogenous nucleic acid sequences is introduced into a population of cells (such as the organism from which the exogenous nucleic acid sequences were obtained) to search for genes that are required for bacterial proliferation. Because the library molecules are foreign, in context, to the population of cells, the expression vectors and the nucleic acid segments contained therein are considered exogenous nucleic acid.

Expression of the exogenous nucleic acid fragments in the test population of cells containing the expression library is then activated. Activation of the expression vectors consists of subjecting the cells containing the vectors to conditions that result in the expression of the exogenous nucleic acid sequences carried by the expression library. The test population of cells is then assayed to determine the effect of expressing the exogenous nucleic acid fragments on the test population of cells. Those expression vectors that negatively impacted the growth of the cells upon induction of expression of the random sequences contained therein were identified, isolated, and purified for further study.

A variety of assays are contemplated to identify nucleic acid sequences that negatively impact growth upon expression. In one embodiment, growth in cultures expressing exogenous nucleic acid sequences and growth in cultures not expressing these sequences is compared. Growth measurements

5

10

15

20

25

30

35

are assayed by examining the extent of growth by measuring optical densities. Alternatively, enzymatic assays can be used to measure bacterial growth rates to identify exogenous nucleic acid sequences of interest. Colony size, colony morphology, and cell morphology are additional factors used to evaluate growth of the host cells. Those cultures that fail to grow or grow at a reduced rate under expression conditions are identified as containing an expression vector encoding a nucleic acid fragment that negatively affects a proliferation-required gene.

Once exogenous nucleic acids of interest are identified, they are analyzed. The first step of the analysis is to acquire the nucleotide sequence of the nucleic acid fragment of interest. To achieve this end, the insert in those expression vectors identified as containing a nucleotide sequence of interest is sequenced, using standard techniques well known in the art. The next step of the process is to determine the source of the nucleotide sequence. As used herein "source" means the genomic region containing the cloned fragment.

Determination of the gene(s) corresponding to the nucleotide sequence was achieved by comparing the obtained sequence data with databases containing known protein and nucleotide sequences from various microorganisms. Thus, initial gene identification was made on the basis of significant sequence similarity or identity to either characterized or predicted Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genes or their encoded proteins and/or homologues in other species.

The number of nucleotide and protein sequences available in database systems has been growing exponentially for years. For example, the complete nucleotide sequences of Caenorhabditis elegans and several bacterial genomes, including E. coli, Aeropyrum pernix, Aquifex aeolicus, Archaeoglobus fulgidus, Bacillus subtilis, Borrelia burgdorferi, Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium tetani, Corynebacterium diptheria, Deinococcus radiodurans, Haemophilus influenzae, Helicobacter pylori 26695, Helicobacter pylori J99, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycobacterium tuberculosis, Mycoplasma genitalium, Mycoplasma pneumoniae, Pseudomonas aeruginosa, Pyrococcus abyssi, Pyrococcus horikoshii, Rickettsia prowazekii, Synechocystis PCC6803, Thermotoga maritima, Treponema pallidum, Bordetella pertussis, Campylobacter jejuni, Clostridium acetobutylicum, Mycobacterium tuberculosis CSU#93, Neisseria gonorrhoeae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrobaculum aerophilum, Pyrococcus furiosus, Rhodobacter capsulatus, Salmonella typhimurium, Streptococcus mutans, Streptococcus pyogenes, Ureaplasma urealyticum and Vibrio cholera are available. This nucleotide sequence information is stored in a number of databanks, such as GenBank, the National Center for Biotechnology Information (NCBI), the Genome Sequencing Center (http://genome.wustl.edu/gsc/salmonella.shtml), and the Sanger Centre (http://www.sanger.ac.uk/projects/S typhi)which are publicly available for searching. A variety of computer programs are available to assist in the analysis of the sequences stored within these

databases. FASTA, (W. R. Pearson (1990) "Rapid and Sensitive Sequence Comparison with

5

10

15

20

25

30

35

FASTP and FASTA" Methods in Enzymology 183:63-98), Sequence Retrieval System (SRS), (Etzold & Argos, SRS an indexing and retrieval tool for flat file data libraries. Comput. Appl. Biosci. 9:49-57, 1993) are two examples of computer programs that can be used to analyze sequences of interest. In one embodiment of the present invention, the BLAST family of computer programs, which includes BLASTN version 2.0 with the default parameters, or BLASTX version 2.0 with the default parameters, is used to analyze nucleotide sequences.

BLAST, an acronym for "Basic Local Alignment Search Tool," is a family of programs for database similarity searching. The BLAST family of programs includes: BLASTN, a nucleotide sequence database searching program, BLASTX, a protein database searching program where the input is a nucleic acid sequence; and BLASTP, a protein database searching program. BLAST programs embody a fast algorithm for sequence matching, rigorous statistical methods for judging the significance of matches, and various options for tailoring the program for special situations. Assistance in using the program can be obtained by e-mail at blast@ncbi.nlm.nih.gov. tBLASTX can be used to translate a nucleotide sequence in all three potential reading frames into an amino acid sequence.

Bacterial genes are often transcribed in polycistronic groups. These groups comprise operons, which are a collection of genes and intergenic sequences under common regulation. The genes of an operon are transcribed on the same mRNA and are often related functionally. Given the nature of the screening protocol, it is possible that the identified exogenous nucleic acid corresponds to a gene or portion thereof with or without adjacent noncoding sequences, an intragenic sequence (i.e. a sequence within a gene), an intergenic sequence (i.e. a sequence between genes), a nucleotide sequence spanning at least a portion of two or more genes, a 5' noncoding region or a 3' noncoding region located upstream or downstream from the actual nucleotide sequence that is required for bacterial proliferation. Accordingly, it is often desirable to determine which gene(s) that is encoded within the operon is individually required for proliferation.

In one embodiment of the present invention, an operon is identified and then dissected to determine which gene or genes are required for proliferation. Operons can be identified by a variety of means known to those in the art. For example, the RegulonDB DataBase described by Huerta et al. (Nucl. Acids Res. 26:55-59, 1998), which may also be found on the website http://www.cifn.unam.mx/Computational_Biology/regulondb/, provides information about operons in Escherichia coli. The Subtilist database (http://bioweb.pasteur.fr/GenoList/SubtiList), (Moszer, I., Glaser, P. and Danchin, A. (1995) Microbiology 141: 261-268 and Moszer, I (1998) FEBS Letters 430: 28-36), may also be used to predict operons. This database lists genes from the fully sequenced, Gram-positive bacteria, Bacillus subtilis, together with predicted promoters and terminator sites. This information can be used in conjunction with the Staphylococcus aureus genomic sequence data to predict operons and thus produce a list of the genes affected by the antisense nucleic acids of the present invention. The Pseudomonas aeruginosa web site (http://www.pseudomonas.com) can be used to help predict operon organization in this bacterium.

5

10

15

20

25

30

35

The databases available from the Genome Sequencing Center (http://genome.wustl.edu/gsc/salmonella.shtml), and the Sanger Centre (http://www.sanger.ac.uk/projects/S___typhi) may be used to predict operons in Salmonella typhimurium. The TIGR microbial database has an incomplete version of the E. faecalis genome http://www.tigr.org/cgi-bin/BlastSearch/blast.cgi?organism=e_faecalis. One can take a nucleotide sequence and BLAST it for homologs.

A number of techniques that are well known in the art can be used to dissect the operon.

Analysis of RNA transcripts by Northern blot or primer extension techniques are commonly used to analyze operon transcripts. In one aspect of this embodiment, gene disruption by homologous recombination is used to individually inactivate the genes of an operon that is thought to contain a gene required for proliferation.

Several gene disruption techniques have been described for the replacement of a functional gene with a mutated, non-functional (null) allele. These techniques generally involve the use of homologous recombination. One technique using homologous recombination in *Staphylococcus aureus* is described in Xia et a.. 1999, Plasmid 42: 144-149. This technique uses crossover PCR to create a null allele with an in-frame deletion of the coding region of a target gene. The null allele is constructed in such a way that nucleotide sequences adjacent to the wild type gene are retained. These homologous sequences surrounding the deletion null allele provide targets for homologous recombination so that the wild type gene on the *Staphylococcus aureus* chromosome can be replaced by the constructed null allele. This method can be used with other bacteria as well, including *Salmonella* and *Klebsiella* species. Similar gene disruption methods that employ the counter selectable marker *sacB* (Schweizer, H. P., Klassen, T. and Hoang, T. (1996) Mol. Biol. of *Pseudomonas*. ASM press, 229-237 are available for *Pseudomonas*, *Salmonella* and *Klebsiella* species. *E. faecalis* genes can be disrupted by recombining in a non-replicating plasmid that contains an internal fragment to that gene (Leboeuf, C., L. Leblanc, Y. Auffray and A. Hartke. 2000. J. Bacteriol. 182:5799-5806).

The crossover PCR amplification product is subcloned into a suitable vector having a selectable marker, such as a drug resistance marker. In some embodiments the vector may have an origin of replication which is functional in *E. coli* or another organism distinct from the organism in which homologous recombination is to occur, allowing the plasmid to be grown in *E. coli* or the organism other than that in which homologous recombination is to occur, but may lack an origin of replication functional in *Staphylococcus aureus*, *Salmonella typhimurium*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Enterococcus faecalis*, *Escherichia coli*, *Enterococcus faecalis*, *Haemophilus influenzae*, *Helicobacter pylori*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, or *Salmonella typhi* such that selection of the selectable marker requires integration of the vector into the homologous region of the *Staphylococcus aureus*, *Salmonella typhimurium*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Enterococcus faecalis*,

5

10

15

20

25

30

35

Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi chromosome. Usually a single crossover event is responsible for this integration event such that the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi chromosome now contains a tandem duplication of the target gene consisting of one wild type allele and one deletion null allele separated by vector sequence. Subsequent resolution of the duplication results in both removal of the vector sequence and either restoration of the wild type gene or replacement by the in-frame deletion. The latter outcome will not occur if the gene should prove essential. A more detailed description of this method is provided in Example 5 below. It will be appreciated that this method may be practiced with any of the nucleic acids or organisms described herein.

Recombinant DNA techniques can be used to express the entire coding sequences of the gene identified as required for proliferation, or portions thereof. The over-expressed proteins can be used as reagents for further study. The identified exogenous sequences are isolated, purified, and cloned into a suitable expression vector using methods well known in the art. If desired, the nucleic acids can contain the nucleotide sequences encoding a signal peptide to facilitate secretion of the expressed protein.

Expression of fragments of the bacterial genes identified as required for proliferation is also contemplated by the present invention. The fragments of the identified genes can encode a polypeptide comprising at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, at least 60, at least 65, at least 75, or more than 75 consecutive amino acids of a gene complementary to one of the identified sequences of the present invention. The nucleic acids inserted into the expression vectors can also contain endogenous sequences upstream and downstream of the coding sequence.

When expressing the encoded protien of the idnetified required for bacterial proliferation or a fragment thereof, the nucleotide sequence to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector can be any of the bacterial, insect, yeast, or mammalian expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon usage and codon bias of the sequence can be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767. Fusion protein expression systems are also contemplated by the present invention.

5

10

15

20

25

30

35

Following expression of the protein encoded by the identified exogenous nucleic acid, the protein may be purified. Protein purification techniques are well known in the art. Proteins encoded and expressed from identified exogenous nucleic acids can be partially purified using precipitation techniques, such as precipitation with polyethylene glycol. Alternatively, epitope tagging of the protein can be used to allow simple one step purification of the protein. In addition, chromatographic methods such as ion-exchange chromatography, gel filtration, use of hydroxyapaptite columns, immobilized reactive dyes, chromatofocusing, and use of high-performance liquid chromatography, may also be used to purify the protein. Electrophoretic methods such as one-dimensional gel electrophoresis, high-resolution two-dimensional polyacrylamide electrophoresis, isoelectric focusing, and others are contemplated as purification methods. Also, affinity chromatographic methods, comprising antibody columns, ligand presenting columns and other affinity chromatographic matrices are contemplated as purification methods in the present invention.

The purified proteins produced from the gene coding sequences identified as required for proliferation can be used in a variety of protocols to generate useful antimicrobial reagents. In one embodiment of the present invention, antibodies are generated against the proteins expressed from the identified exogenous nucleic acids. Both monoclonal and polyclonal antibodies can be generated against the expressed proteins. Methods for generating monoclonal and polyclonal antibodies are well known in the art. Also, antibody fragment preparations prepared from the produced antibodies discussed above are contemplated.

In addition, the purified protein, fragments thereof, or derivatives thereof may be administered to an individual in a pharmaceutically acceptable carrier to induce an immune response against the protein. Preferably, the immune response is a protective immune response which protects the individual. Methods for determining appropriate dosages of the protein and pharmaceutically acceptable carriers may be determined empiracally and are familiar to those skilled in the art.

Another application for the purified proteins of the present invention is to screen small molecule libraries for candidate compounds active against the various target proteins of the present invention. Advances in the field of combinatorial chemistry provide methods, well known in the art, to produce large numbers of candidate compounds that can have a binding, or otherwise inhibitory effect on a target protein. Accordingly, the screening of small molecule libraries for compounds with binding affinity or inhibitory activity for a target protein produced from an identified gene is contemplated by the present invention.

The present invention further contemplates utility against a variety of other pathogenic microorganisms in addition to Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi. For example, homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from other pathogenic

5

10

15

20

25

30

35

microorganisms (including nucleic acids homologous to the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, nucleic acids homologous to the antisense nucleic acids of SEQ ID NOs.: 8-3795, and polypeptides homologous to the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) may be identified using methods such as those described herein. The homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides may be used to identify compounds which inhibit the proliferation of these other pathogenic microorganisms using methods such as those described herein.

For example, the proliferation-required nucleic acids, antisense nucleic acids, and polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi described herein (including the nucleic acids of SEO ID NOs.: 3796-3800, 3806-4860, 5916-10012, the antisense nucleic acids of SEO ID NOs: 8-3795, and the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) may be used to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides required for proliferation in prokaryotes and eukaryotes. For example, nucleic acids or polypeptides required for the proliferation of protists, such as Plasmodium spp.; plants; animals, such as Entamoeba spp. and Contracaecum spp; and fungi including Candida spp., (e.g., Candida albicans), Cryptococcus neoformans, and Aspergillus fumigatus may be identified. In one embodiment of the present invention, monera, specifically bacteria, including both Gram positive and Gram negative bacteria, are probed in search of novel gene sequences required for proliferation. Likewise, homologous antisense nucleic acids which may be used to inhibit growth of these organisms or to identify antibiotics may also be identified. These embodiments are particularly important given the rise of drug resistant bacteria.

The number of bacterial species that are becoming resistant to existing antibiotics is growing. A partial list of these microorganisms includes: Escherichia spp., such as E. coli, Enterococcus spp, such as E. faecalis; Pseudomonas spp., such as P. aeruginosa, Clostridium spp., such as C. botulinum, Haemophilus spp., such as H. influenzae, Enterobacter spp., such as E. cloacae, Vibrio spp., such as V. cholera; Moraxala spp., such as M. catarrhalis; Streptococcus spp., such as S. pneumoniae, Neisseria spp., such as N. gonorrhoeae; Mycoplasma spp., such as Mycoplasma pneumoniae; Salmonella typhimurium; Helicobacter pylori; Escherichia coli; and Mycobacterium tuberculosis. The genes and polypeptides identified as required for the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the sequences complementary to the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860,

5916-10012, and the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) can be used to identify homologous coding nucleic acids or homologous polypeptides required for proliferation from these and other organisms using methods such as nucleic acid hybridization and computer database analysis. Likewise, the antisense nucleic acids which inhibit proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the antisense nucleic acids of SEQ ID NOs.: 8-3795 or the sequences complementary thereto) may also be used to identify antisense nucleic acids which inhibit proliferation of these and other microorganisms or cells using nucleic acid hybridization or computer database analysis.

5

10

In one embodiment of the present invention, the nucleic acid sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, 15 Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhii (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 and the antisense nucleic acids of SEQ ID NOs. 8-3795) are used to screen genomic libraries generated from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, 20 Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi and other bacterial species of interest. For example, the genomic library may be from Gram positive bacteria, Gram negative bacteria or other organisms including Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida 25 glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, 30 Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella 35 typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica,

5

10

15

20

25

30

35

Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative species of Staphylococcus. In some embodiments, the genomic library may be from an organism other than E. coli. Standard molecular biology techniques are used to generate genomic libraries from various cells or microorganisms. In one aspect, the libraries are generated and bound to nitrocellulose paper. The identified exogenous nucleic acid sequences of the present invention can then be used as probes to screen the libraries for homologous sequences.

For example, the libraries may be screened to identify homologous coding nucleic acids or homologous antisense nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid complementary to one of SEO ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, and nucleic acids comprising nucleotide sequences which hybridize under stringent conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012.

The libraries may also be screened to identify homologous nucleic coding nucleic acids or homologous antisense nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOs. 8-3795, nucleic acids comprising nucleotide

sequences which hybridize under moderate conditions to a nucleic acid complementary to one of SEO ID NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEO ID 5 NOs. 8-3795, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid selected from the group consisting of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids comprising nucleic acid sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEO ID NOS.: 3796-3800, 3806-4860. 10 5916-10012, nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a nucleic acid complementary to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 and nucleic acids comprising nucleotide sequences which hybridize under moderate conditions to a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of the sequence complementary to one of SEO ID NOS.: 3796-15 3800, 3806-4860, 5916-10012.

The homologous nucleic coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides identified as above can then be used as targets or tools for the identification of new, antimicrobial compounds using methods such as those described herein. In some embodiments, the homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides may be used to identify compounds with activity against more than one microorganism.

20

25

30

35

150

For example, the preceding methods may be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the sequences of SEQ ID NOS. 8-3795, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. The preceding methods may also be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of one of the nucleotide sequences of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. In some embodiments, the preceding methods may be used to isolate homologous coding nucleic acids or homologous antisense nucleic acids comprising a nucleotide sequence with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleic acid sequence selected from the group consisting of one of the sequences of SEO ID NOS.

5

10

15

20

25

30

35

3796-3800, 3806-4860, 5916-10012, fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, and the sequences complementary thereto. Identity may be measured using BLASTN version 2.0 with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997)). For example, the homologous polynucleotides may comprise a coding sequence which is a naturally occurring allelic variant of one of the coding sequences described herein. Such allelic variants may have a substitution, deletion or addition of one or more nucleotides when compared to the nucleic acids of SEQ ID NOS: 8-3795, SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012 or the nucleotide sequences complementary thereto.

Additionally, the above procedures may be used to isolate homologous coding nucleic acids which encode polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid identity or similarity to a polypeptide comprising the sequence of one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110 or to a polypeptpide whose expression is inhibited by a nucleic acid of one of SEQ ID NOs: 8-3795 or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof as determined using the FASTA version 3.0t78 algorithm with the default parameters. Alternatively, protein identity or similarity may be identified using BLASTP with the default parameters, BLASTX with the default parameters, or TBLASTN with the default parameters. (Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acid Res. 25: 3389-3402 (1997)).

Alternatively, homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides may be identified by searching a database to identify sequences having a desired level of nucleotide or amino acid sequence homology to a nucleic acid or polypeptide involved in proliferation or an antisense nucleic acid to a nucleic acid involved in microbial proliferation. A variety of such databases are available to those skilled in the art, including GenBank and GenSeq. In some embodiments, the databases are screened to identify nucleic acids with at least 97%, at least 95%, at least 90%, at least 85%, at least 80%, or at least 70% nucleotide sequence identity to a nucleic acid required for proliferation, an antisense nucleic acid which inhibits proliferation, or a portion of a nucleic acid required for proliferation or a portion of an antisense nucleic acid which inhibits proliferation. For example, homologous coding sequences may be identified by using a database to identify nucleic acids homologous to one of SEQ ID Nos. 8-3795, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof, nucleic acids homologous to one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides of one of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, nucleic acids homologous to one of SEQ ID Nos. 8-

3795, homologous to fragments comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive nucleotides thereof or nucleic acids homologous to the sequences complementary to any of the preceding nucleic acids. In other embodiments, the databases are screened to identify polypeptides having at least 99%, 95%, at least 90%, at least 85%, at least 80%, 5 at least 70%, at least 60%, at least 50%, at least 40% or at least 25% amino acid sequence identity or similarity to a polypeptide involved in proliferation or a portion thereof. For example, the database may be screened to identify polypeptides homologous to a polypeptide comprising one of SEQ ID NOs: 3801-3805, 4861-5915, 10013-14110, a polypeptide whose expression is inhibited by a nucleic acid of one of SEO ID NOs: 8-3795 or homologous to fragments comprising at least 5, 10. 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of any of the preceding 10 polypeptides. In some embodiments, the database may be screened to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from cells or microorganisms other than the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas 15 aeruginosa, Staphylococcus aureus, or Salmonella typhi species from which they were obtained, For example the database may be screened to identify homologous coding nucleic acids, homologous antisense nucleic acids or homologous polypeptides from microorganisms such as Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella 20 pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus 25 neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, 30 Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species, including coagulase negative Staphylococcus. In some embodiments, the homologous coding nucleic acids, 35 homologous antisense nucleic acids, or homologous polypeptides are from an organism other than E. coli.

5

10

15

20

25

30

35

In another embodiment, gene expression arrays and microarrays can be employed. Gene expression arrays are high density arrays of DNA samples deposited at specific locations on a glass chip, nylon membrane, or the like. Such arrays can be used by researchers to quantify relative gene expression under different conditions. Gene expression arrays are used by researchers to help identify optimal drug targets, profile new compounds, and determine disease pathways. An example of this technology is found in U.S. Patent No. 5807522.

It is possible to study the expression of all genes in the genome of a particular microbial organism using a single array. For example, the arrays may consist of 12 x 24 cm nylon filters containing PCR products corresponding to ORFs from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012). 10 ngs of each PCR product are spotted every 1.5 mm on the filter. Single stranded labeled cDNAs are prepared for hybridization to the array (no second strand synthesis or amplification step is done) and placed in contact with the filter. Thus the labeled cDNAs are of "antisense" orientation. Quantitative analysis is done by phosphorimager.

Hybridization of cDNA made from a sample of total cell mRNA to such an array followed by detection of binding by one or more of various techniques known to those in the art results in a signal at each location on the array to which cDNA hybridized. The intensity of the hybridization signal obtained at each location in the array thus reflects the amount of mRNA for that specific gene that was present in the sample. Comparing the results obtained for mRNA isolated from cells grown under different conditions thus allows for a comparison of the relative amount of expression of each individual gene during growth under the different conditions.

Gene expression arrays may be used to analyze the total mRNA expression pattern at various time points after induction of an antisense nucleic acid complementary to a proliferation-required gene. Analysis of the expression pattern indicated by hybridization to the array provides information on other genes whose expression is influenced by antisense expression. For example, if the antisense is complementary to a gene for ribosomal protein L7/L12 in the 50S subunit, levels of other mRNAs may be observed to increase, decrease or stay the same following expression of antisense to the L7/L12 gene. If the antisense is complementary to a different 50S subunit ribosomal protein mRNA (e.g. L25), a different mRNA expression pattern may result. Thus, the mRNA expression pattern observed following expression of an antisense nucleic acid comprising a nucleotide sequence complementary to a proliferation required gene may identify other proliferation-required nucleic acids. In addition, the mRNA expression patterns observed when the bacteria are exposed to candidate drug compounds or known antibiotics may be compared to those observed with antisense nucleic acids comprising a nucleotide sequence complementary to a

proliferation-required nucleic acid. If the mRNA expression pattern observed with the candidate drug compound is similar to that observed with the antisense nucleic acid, the drug compound may be a promising therapeutic candidate. Thus, the assay would be useful in assisting in the selection of promising candidate drug compounds for use in drug development.

In cases where the source of nucleic acid deposited on the array and the source of the nucleic acid being hybridized to the array are from two different cells or microorganisms, gene expression arrays can identify homologous nucleic acids in the two cells or microorganisms.

5

10

15

20

25

30

35

The present invention also contemplates additional methods for screening other microorganisms for proliferation-required genes. In one aspect of this embodiment, an antisense nucleic acid comprising a nucleotide sequence complementary to the proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or a portion thereof is transcribed in an antisense orientation in such a way as to alter the level or activity of a nucleic acid required for proliferation of an autologous or heterologous cell or microorganism. For example, the antisense nucleic acid may be a homologous antisense nucleic acid such as an antisense nucleic acid homologous to the nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, an antisense nucleic acid comprising a nucleotide sequence homologous to one of SEQ ID Nos.: 8-3795, or an antisense nucleic acid comprising a nucleotide sequence complementary to a portion of any of the preceding nucleic acids. The cell or microorganism transcribing the homologous antisense nucleic acid may be used in a cell-based assay, such as those described herein, to identify candidate antibiotic compounds. In another embodiment, the conserved portions of nucleotide sequences identified as proliferationrequired can be used to generate degenerate primers for use in the polymerase chain reaction (PCR). The PCR technique is well known in the art. The successful production of a PCR product using degenerate probes generated from the nucleotide sequences identified herein indicates the presence of a homologous gene sequence in the species being screened. This homologous gene is then isolated, expressed, and used as a target for candidate antibiotic compounds. In another aspect of this embodiment, the homologous gene (for example a homologous coding nucleic acid)thus identified, or a portion thereof, is transcribed in an autologous cell or microorganism or in a heterologous cell or microorganism in an antisense orientation in such a way as to alter the level or activity of a homologous gene required for proliferation in the autologous or heterologous cell or microorganism. Alternatively, a homologous antisense nucleic acid may be transcribed in an autologous or heterologous cell or microorganism in such a way as to alter the level or activity of a gene product required for proliferation in the autologous or heterologous cell or microorganism.

The nucleic acids homologous to the genes required for the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and

Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or the sequences complementary thereto may be used to identify homologous coding nucleic acids or homologous antisense nucleic acids from cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa 5 and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi to inhibit the proliferation of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, 10 Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi by inhibiting the activity or reducing the amount of the identified homologous coding nucleic acid or homologous polypeptide in the cell or microorganism other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, 15 Helicobacter pylori, or Salmonella typhi or to identify compounds which inhibit the growth of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi as described below. For example, the nucleic acids homologous to proliferation-required genes from Staphylococcus aureus, 20 Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or the sequences complementary thereto may be used to identify compounds which inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis 25 Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium 30 difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, 35 Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella

5

10

boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the genera of any of the above species. In some embodiments of the present invention, the nucleic acids homologous to proliferation-required sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi (including nucleic acids homologous to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012) or the sequences complementary thereto (including nucleic acids homologous to one of SEQ ID NOs.: 8-3795) are used to identify proliferation-required sequences in an organism other than E. coli.

In another embodiment of the present invention, antisense nucleic acids complementary to the sequences identified as required for proliferation or portions thereof (including antisense nucleic acids comprising a nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 or portions thereof, such as the nucleic acids of SEQ ID NOs.: 8-3795) are transferred 15 to vectors capable of function within a species other than the species from which the sequences were obtained. For example, the vector may be functional in Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), 20 Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, 25 Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, 30 Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the vector may be functional in an organism other than E. coli. As would be appreciated by one of ordinary skill in the art, vectors may contain certain elements that are species 35 specific. These elements can include promoter sequences, operator sequences, repressor genes, origins of replication, ribosomal binding sequences, termination sequences, and others. To use the

5

10

15

20

25

30

35

antisense nucleic acids, one of ordinary skill in the art would know to use standard molecular biology techniques to isolate vectors containing the sequences of interest from cultured bacterial cells, isolate and purify those sequences, and subclone those sequences into a vector adapted for use in the species of bacteria to be screened.

Vectors for a variety of other species are known in the art. For example, numerous vectors which function in *E. coli* are known in the art. Also, Pla et al. have reported an expression vector that is functional in a number of relevant hosts including: *Salmonella typhimurium*, *Pseudomonas putida, and Pseudomonas aeruginosa*. J. Bacteriol. 172(8):4448-55 (1990). Brunschwig and Darzins (Gene (1992) 111:35-4) described a shuttle expression vector for *Pseudomonas aeruginosa*. Similarly many examples exist of expression vectors that are freely transferable among various Gram-positive microorganisms. Expression vectors for *Enterococcus faecalis* may be engineered by incorporating suitable promoters into a pAK80 backbone (Israelsen, H., S. M. Madsen, A. Vrang, E. B. Hansen and E. Johansen. 1995. Appl. Environ. Microbiol. 61:2540-2547).

Following the subcloning of the antisense nucleic acids complementary to proliferationrequired sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi or portions thereof into a vector functional in a second cell or microorganism of interest (i.e. a cell or microorganism other than the one from which the identified nucleic acids were obtained), the antisense nucleic acids are conditionally transcribed to test for bacterial growth inhibition. The nucleotide sequences of the nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi that, when transcribed, inhibit growth of the second cell or microorganism are compared to the known genomic sequence of the second cell or microorganism to identify the homologous gene from the second organism. If the homologous sequence from the second cell or microorganism is not known, it may be identified and isolated by hybridization to the proliferation-required Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi sequence of interest or by amplification using PCR primers based on the proliferation-required nucleotide sequence of interest as described above. In this way, sequences which may be required for the proliferation of the second cell or microorganism may be identified. For example, the second microorganism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis,

Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile,
Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus
neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli,
Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae,
Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria
gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella
multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori,
Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella
typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella
boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis,
Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica,
Yersinia pestis or any species falling within the genera of any of the above species. In some
embodiments of the present invention, the second microorganism is an organism other than E. coli.

The homologous nucleic acid sequences from the second cell or microorganism which are 15 identified as described above may then be operably linked to a promoter, such as an inducible promoter, in an antisense orientation and introduced into the second cell or microorganism. The techniques described herein for identifying Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, 20 Pseudomonas aeruginosa, Staphylococcus aureus, or Salmonella typhi genes required for proliferation may thus be employed to determine whether the identified nucleotide sequences from a second cell or microorganism inhibit the proliferation of the second cell or microorganism. For example, the second microorganism may be Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, 25 Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus 30 faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria 35 monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans,

Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the second microorganism may be an organism other than *E. coli*.

Antisense nucleic acids required for the proliferation of microorganisms other than 5 Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or the genes corresponding thereto, may also be hybridized to a microarray containing the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis ORFs, Escherichia coli, 10 Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, and Salmonella typhi (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012) to gauge the homology between the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi sequences and the proliferation-15 required nucleic acids from other cells or microorganisms. For example, the proliferation-required nucleic acid may be from Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida 20 pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, 25 Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, 30 Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the proliferation-required nucleotide sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, Salmonella typhi or 35 homologous nucleic acids are used to identify proliferation-required sequences in an organism other than E. coli. In some embodiments of the present invention, the proliferation-required sequences

5

10

15

20

25

30

35

may be from an organism other than *E. coli*. The proliferation-required nucleic acids from a cell or microorganism other than *Staphylococcus aureus*, *Salmonella typhimurium*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Enterococcus faecalis*, *Escherichia coli*, *Enterococcus faecalis*, *Haemophilus influenzae*, *Helicobacter pylori*, or *Salmonella typhi* may be hybridized to the array under a variety of conditions which permit hybridization to occur when the probe has different levels of homology to the nucleotide sequence on the microarray. This would provide an indication of homology across the cells or microorganisms as well as clues to other possible essential genes in these cells or microorganisms.

In still another embodiment, the antisense nucleic acids of the present invention (including the antisense nucleic acids of SEQ ID NOs. 8-3795 or homologous antisense nucleic acids) that inhibit bacterial growth or proliferation can be used as antisense therapeutics for killing bacteria. The antisense sequences can be complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, homologous nucleic acids, or portions thereof. Alternatively, antisense therapeutics can be complementary to operons in which proliferation-required genes reside (i.e. the antisense nucleic acid may hybridize to a nucleotide sequence of any gene in the operon in which the proliferation-required genes reside). Further, antisense therapeutics can be complementary to a proliferation-required gene or portion thereof with or without adjacent noncoding sequences, an intragenic sequence (i.e. a sequence within a gene), an intergenic sequence (i.e. a sequence between genes), a sequence spanning at least a portion of two or more genes, a 5' noncoding region or a 3' noncoding region located upstream or downstream from the actual sequence that is required for bacterial proliferation or an operon containing a proliferation-required gene.

In addition to therapeutic applications, the present invention encompasses the use of nucleic acids complementary to nucleic acids required for proliferation as diagnostic tools. For example, nucleic acid probes comprising nucleotide sequences complementary to proliferation-required sequences that are specific for particular species of cells or microorganisms can be used as probes to identify particular microorganism species or cells in clinical specimens. This utility provides a rapid and dependable method by which to identify the causative agent or agents of a bacterial infection. This utility would provide clinicians the ability to accurately identify the species responsible for the infection and amdminister a compound effective against it. In an extension of this utility, antibodies generated against proteins translated from mRNA transcribed from proliferation-required sequences can also be used to screen for specific cells or microorganisms that produce such proteins in a species-specific manner.

Other embodiments of the present invention include methods of identifying compounds which inhibit the activity of gene products required for cellular proliferation using rational drug design. As discussed in more detail below, in such methods, the structure of the gene product is determined using techniques such as x-ray crystallography or computer modeling. Compounds are screened to identify those which have a structure which would allow them to interact with the gene product or a portion

thereof to inhibit its activity. The compounds may be obtained using any of a variety of methods familiar to those skilled in the art, including combinatorial chemistry. In some embodiments, the compounds may be obtained from a natural product library. In some embodiments, compounds having a structure which allows them to interact with the active site of a gene product, such as the active site of an enzyme, or with a portion of the gene product which interacts with another biomolecule to form a complex are identified. If desired, lead compounds may be identified and further optimized to provide compounds which are highly effective against the gene product.

The following examples teach the genes of the present invention and a subset of uses for the genes identified as required for proliferation. These examples are illustrative only and are not intended to limit the scope of the present invention.

EXAMPLES

The following examples are directed to the identification and exploitation of genes required for proliferation. Methods of gene identification are discussed as well as a variety of methods to utilize the identified sequences. It will be appreciated that any of the antisense nucleic acids, proliferartion-required genes or proliferation-required gene products described herein, or portions thereof, may be used in the procedures described below, including the antisense nucleic acids of SEQ ID NOs.: 8-3795, the nucleic acids of SEQ ID NOS.: 3796-3800, 3806-4860, 5916-10012, or the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110. Likewise, homologous coding nucleic acids or portions thereof, may be used in any of the procedures described below.

20

25

30

35

15

5

10

Genes Identified as Required for Proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis

Genomic fragments were operably linked to an inducible promoter in a vector and assayed for growth inhibition activity. Example 1 describes the examination of a library of genomic fragments cloned into vectors comprising inducible promoters. Upon induction with xylose or IPTG, the vectors produced an RNA molecule corresponding to the subcloned genomic fragments. In those instances where the genomic fragments were in an antisense orientation with respect to the promoter, the transcript produced was complementary to at least a portion of an mRNA (messenger RNA) encoding a Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis gene product such that they interacted with sense mRNA produced from various Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genes and thereby decreased the translation efficiency or the level of the sense messenger RNA thus decreasing production of the protein encoded by these sense mRNA molecules. In cases where the sense mRNA encoded a protein required for proliferation, bacterial cells containing a vector from which transcription from the promoter had been induced failed to grow or grew at a substantially reduced rate. Additionally, in cases where the transcript produced was complementary to at least a portion of a non-translated RNA and where that

non-translated RNA was required for proliferation, bacterial cells containing a vector from which transcription from the promoter had been induced also failed to grow or grew at a substantially reduced rate.

EXAMPLE 1

5

10

15

20

25

30

35

Inhibition of Bacterial Proliferation after Induction of Antisense Expression

Nucleic acids involved in proliferation of Staphylococcus aureus, Salmonella typhimurium, and Klebsiella pneumoniae were identified as follows. Randomly generated fragments of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genomic DNA were transcribed from inducible promoters.

In the case of Staphylococcus aureus, a novel inducible promoter system, XylT5, comprising a modified T5 promoter fused to the xylO operater from the xylA promoter of Staphylococcus aureus was used. The promoter is described in U.S. Provisional Patent Application Serial Number 60/259,434. Transcription from this hybrid promoter is inducible by xylose.

Randomly generated fragments of Salmonella typhimarium genomic DNA were transcribed from an IPTG inducible promoter in pLEX5BA (Krause et al., J. Mol. Biol. 274: 365 (1997) or a derivative thereof. Randomly generated fragements of Klebsiella pneumoniae genomic DNA were expressed from an IPTG inducible promoter in pLEX5BA-Kan. To construct pLEX5BA-kan, pLEX5BA was digested to completion with ClaI in order to remove the bla gene. Then the plasmid was treated with a partial NotI digestion and blunted with T4 DNA polymerase. A 3.2 kbp fragment was then gel purified and ligated to a blunted 1.3 kbp kan gene from pKan π . Kan resistant transformants were selected on Kan plates. Orientation of the kan gene was checked by SmaI digestion. A clone, which had the kan gene in the same orientation as the bla gene, was used to identify genes required for proliferation of Klebsiella pneumoniae.

Randomly generated fragments of *Pseudomonas aeruginosa* genomic DNA were trancribed from a two-component inducible promoter system. Integrated on the chromosome was the T7 RNA polymerase gene regulated by *lacUV5/lacO* (Brunschwig, E. and Darzins, A. 1992. Gene 111:35-41). On a separate plasmid, a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, was fused with a *lacO* operator followed by a multiple cloning site.

Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of an mRNA or a non-translated RNA encoding a gene product involved in proliferation, then induction of transcription from the promoter will result in detectable inhibition of proliferation.

In the case of Staphylococcus aureus, a shotgun library of Staphylococcus aureus genomic fragments was cloned into the vector pXyIT5-P15a, which harbors the XyIT5 inducible promoter. The vector was linearized at a unique BamHI site immediately downstream of the XyIT5 promoter/operator. The linearized vector was treated with shrimp alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from Staphylococcus aureus strain RN450

5

10

15

20

25

30

35

was fully digested with the restriction enzyme Sau3A, or, alternatively, partially digested with DNase I and "blunt-ended" by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 0.1 to 1, and ligated to form a shotgun library.

The ligated products were transformed into electrocompetent E. coli strain XL1-Blue MRF (Stratagene) and plated on LB medium with supplemented with carbenicillin at $100 \mu g/ml$. Resulting colonies numbering 5×10^5 or greater were scraped and combined, and were then subjected to plasmid purification.

The purified library was then transformed into electrocompetent *Staphylococcus aureus* RN4220. Resulting transformants were plated on agar containing LB + 0.2% glucose (LBG medium) + chloramphenicol at 15 µg/ml (LBG+CM15 medium) in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100µl of LBG + CM15 liquid medium. Inoculated 384 well dishes were incubated 16 hours at 37°C, and each well was robotically gridded onto solid LBG + CM15 medium with or without 2% xylose. Gridded plates were incubated 16 hours at 37°C, and then manually scored for arrayed colonies that were growth-compromised in the presence of xylose.

Arrayed colonies that were growth-sensitive on medium containing 2% xylose, yet were able to grow on similar medium lacking xylose, were subjected to further growth sensitivity analysis as follows: Colonies from the plate lacking xylose were manually picked and inoculated into individual wells of a 96 well culture dish containing LBG + CM15, and were incubated for 16 hours at 37°C. These cultures were robotically diluted 1/100 into fresh medium and allowed to incubate for 4 hours at 37°C, after which they were subjected to serial dilutions in a 384 well array and then gridded onto media containing 2% xylose or media lacking xylose. After growth for 16 hours at 37°C, the arrays that resulted on the two media were compared to each other. Clones that grew similarly at all dilutions on both media were scored as a negative and were no longer considered. Clones that grew on xylose medium but failed to grow at the same serial dilution on the non-xylose plate were given a score based on the differential, i.e. should the clone grow at a serial dilution of 10⁴ or less on the xylose plate and grow at a serial dilution of 10⁸ or less on the non-xylose plate, then the corresponding clone received a score of "4" representing the log difference in growth observed.

For Salmonella typhimurium and Klebsiella pneumoniae growth curves were carried out by back diluting cultures 1:200 into fresh media containing 1 mM IPTG or media lacking IPTG and measuring the OD₄₅₀ every 30 minutes (min). To study the effects of transcriptional induction on solid medium, 10², 10³, 10⁴, 10⁵, 10⁶, 10⁷ and 10⁸ fold dilutions of overnight cultures were prepared.

5

10

15

20

25

30

35

Aliquots of from 0.5 to $3 \mu l$ of these dilutions were spotted on selective agar plates with or without $1 \mu l$ mM IPTG. After overnight incubation, the plates were compared to assess the sensitivity of the clones to IPTG.

Nucleic acids involved in proliferation of *Pseudomonas aeruginosa* were identified as follows. Randomly generated fragments of *Pseudomonas aeruginosa* genomic DNA were transcribed from a two-component inducible promoter system. Integrated on the chromosome was the T7 RNA polymerase gene regulated by *lacUV5/lacO* (Brunschwig, E. and Darzins, A. 1992. Gene 111:35-41). On an expression plasmid there was a T7 gene 10 promoter, which is transcribed by T7 RNA polymerase, fused with a *lacO* operator followed by a multiple cloning site. Transcription from this hybrid promoter is inducible by IPTG. Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of an mRNA encoding a gene product involved in proliferation, then induction of expression from the promoter will result in detectable inhibition of proliferation.

A shotgun library of *Pseudomonas aeruginosa* genomic fragments was cloned into the vectors pEP5, pEP5S, or other similarly constructed vectors which harbor the T7lacO inducible promoter. The vector was linearized at a unique *SmaI* site immediately downstream of the T7lacO promoter/operator. The linearized vector was treated with shrimp alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from *Pseudomonas aeruginosa* strain PAO1 was partially digested with DNase I and "blunt-ended" by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 2 to 1, and ligated to form a shotgun library.

The ligated products were transformed into electrocompetent E. coli strain XL1-Blue MRF (Stratagene) and plated on LB medium with carbenicillin at 100 g/ml or Streptomycin 100 g/ml. Resulting colonies numbering 5 x 10^5 or greater were scraped and combined, and were then subjected to plasmid purification.

The purified library was then transformed into electrocompetent *Pseudomonas aeruginosa* strain PAO1. Resulting transformants were plated on LB agar with carbenicillin at 100 g/ml or Streptomycin 40 g/ml in order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 l of LB + CB 100 or Streptomycin 40 liquid medium. Inoculated 384 well dishes were incubated 16 hours at room temperature, and each well was robotically gridded onto solid LB + CB100 or Streptomycin 40 medium with or without 1 mM IPTG. Gridded plates were incubated 16 hours at 37°C, and then manually scored for arrayed colonies that were growth-compromised in the presence of IPTG.

Arrayed colonies that were growth-sensitive on medium containing 1 mM IPTG, yet were able to grow on similar medium lacking IPTG, were subjected to further growth sensitivity analysis

5

10

15

20

25

30

35

as follows: Colonies from the plate lacking IPTG were manually picked and inoculated into individual wells of a 96 well culture dish containing LB + CB100 or Streptomycin 40, and were incubated for 16 hours at 30°C. These cultures were robotically diluted 1/100 into fresh medium and allowed to incubate for 4 hours at 37°C, after which they were subjected to serial dilutions in a 384 well array and then gridded onto media with and without 1 mM IPTG. After growth for 16 hours at 37°C, the arrays of serially diluted spots that resulted were compared between the two media. Clones that grew similarly at all dilutions on both media were scored as a negative and were no longer considered. Clones that grew on IPTG medium but failed to grow at the same serial dilution on the non-IPTG plate were given a score based on the differential, i.e. should the clone grow at a serial dilution of 10⁴ or less on the IPTG plate and grow at a serial dilution of 10⁸ or less on the IPTG plate, then the corresponding clone received a score of "4" representing the log difference in growth observed.

Following the identification of those vectors that, upon induction, negatively impacted *Pseudomonas aeruginosa* growth or proliferation, the inserts or nucleic acid fragments contained in those vectors were isolated for subsequent characterization. Vectors of interest were subjected to nucleic acid sequence determination.

Nucleic acids involved in proliferation of *E. faecalis* were identified as follows. Randomly generated fragments of genomic DNA were expressed from the vectors pEPEF3 or pEPEF14, which contain the CP25 or P59 promoter, respectively, regulated by the xyl operator/repressor. Should the genomic DNA downstream of the promoter contain, in an antisense orientation, at least a portion of a mRNA encoding a gene product involved in proliferation, then induction of expression from the promoter will result in detectable inhibition of proliferation.

A shotgun library of *E. faecalis* genomic fragments was cloned into the vector pEPEF3 or pEPEF14, which harbor xylose inducible promoters. The vector was linearized at a unique *Smal* site immediately downstream of the promoter/operator. The linearized vector was treated with alkaline phosphatase to prevent reclosure of the linearized ends. Genomic DNA isolated from *E. faecalis* strain OG1RF was partially digested with DNase I and "blunt-ended" by incubating with T4 DNA polymerase. Random genomic fragments between 200 and 800 base pairs in length were selected by gel purification. The size-selected genomic fragments were added to the linearized and dephosphorylated vector at a molar ratio of 2 to 1, and ligated to form a shotgun library.

The ligated products were transformed into electrocompetent E. coli strain TOP10 cells (Invitrogen) and plated on LB medium with erythromycin (Erm) at 150 μ g/ml. Resulting colonies numbering 5 x 10^5 or greater were scraped and combined, and were then subjected to plasmid purification.

The purified library was then transformed into electrocompetent *E. faecalis* strain OG1RF. Resulting transformants were plated on Todd-Hewitt (TH) agar with erythromycin at $10 \mu g/ml$ in

5

10

15

20

25

order to generate 100 to 150 platings at 500 colonies per plating. The colonies were subjected to robotic picking and arrayed into wells of 384 well culture dishes. Each well contained 100 μ l of THB + Erm 10 μ g/ml. Inoculated 384 well dishes were incubated 16 hours at room temperature, and each well was robotically gridded onto solid TH agar + Erm with or without 5% xylose. Gridded plates were incubated 16 hours at 37°C, and then manually scored for arrayed colonies that were growth-compromised in the presence of xylose.

Arrayed colonies that were growth-sensitive on medium containing 5% xylose, yet were able to grow on similar medium lacking xylose, were subjected to further growth sensitivity analysis. Colonies from the plate lacking xylose were manually picked and inoculated into individual wells of a 96 well culture dish containing THB + Erm 10, and were incubated for 16 hours at 30°C. These cultures were robotically diluted 1/100 into fresh medium and allowed to incubate for 4 hours at 37°C, after which they were subjected to serial dilution on plates containing 5% xylose or plates lacking xylose. After growth for 16 hours at 37°C, the arrays of serially diluted spots that resulted were compared between the two media. Colonies that grew similarly on both media were scored as a negative and corresponding colonies were no longer considered. Colonies on xylose medium that failed to grow to the same serial dilution compared to those on the non-xylose plate were given a score based on the differential. For example, colonies on xylose medium that only grow to a serial dilution of -4 while they were able to grow to -8 on the non-xylose plate, then the corresponding transformant colony received a score of "4" representing the log difference in growth observed.

Following the identification of those vectors that, upon induction, negatively impacted *E.* faecalis growth or proliferation, the inserts or nucleic acid fragments contained in those expression vectors were isolated for subsequent characterization. The inserts in the vectors of interest were subjected to nucleotide sequence determination.

It will be appreciated that other restriction enzymes and other endonucleases or methodologies may be used to generate random genomic fragments. In addition, random genomic fragments may be generated by mechanical shearing. Sonication and nebulization are two such techniques commonly used for mechanical shearing of DNA.

EXAMPLE 2

Nucleotide Sequence Determination of Identified Clones Transribing Nucleic Acid Fragments with

Detrimental Effects on Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae,

Pseudomonas aeruginosa or Enterococcus faecalis Proliferation

Plasmids from clones that received a dilution plating score of "2" or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. *Staphylococcus aureus* were grown in standard laboratory media (LB or TB with 15 ug/ml Chloramphenicol to select for the plasmid). Growth was carried out at 37°C overnight in culture tubes or 2 ml deep well microtiter plates.

Lysis of *Staphylococcus aureus* was performed as follows. Cultures (2-5 ml) were centrifuged and the cell pellets resuspended in 1.5 mg/ml solution of lysostaphin (20 μ l/ml of original culture) followed by addition of 250 μ l of resuspension buffer (Qiagen). Alternatively, cell pellets were resuspended directly in 250 μ l of resuspension buffer (Qiagen) to which 5-20 μ l of a 1 mg/ml lysostaphin solution were added.

DNA was isolated using Qiagen miniprep kits or Wizard (Qiagen) miniprep kits according to the instructions provided by the manufacturer.

The genomic DNA inserts were amplified from the purified plasmids by PCR as follows.

1 μl of Qiagen purified plasmid was put into a total reaction volume of 25 μl Qiagen Hot Start PCR mix. For Staphylococcus aureus, the following primers were used in the PCR reaction:

pXylT5F: CAGCAGTCTGAGTTATAAAATAG (SEQ ID NO: 1)

LexL TGTTTTATCAGACCGCTT (SEQ ID NO: 2)

Similar methods were conducted for Salmonella typhimurium and Klebsiella pneumoniae. For Salmonella typhimurium and Klebsiella pneumoniae the following primers were used:

5' - TGTTTTATCAGACCGCTT- 3' (SEQ ID NO: 2) and

25 5'-ACAATTTCACACAGCCTC-3' (SEQID NO: 4)

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 95° C 15 min

5

10

15

20

35

Step 2. 94° C 45 sec

Step 3. 54° C 45 sec

30 Step 4. 72° C 1 minute

Step 5. Return to step 2, 29 times

Step 6. 72° C 10 minutes

Step 7. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

For Pseudomonas aeruginosa, plasmids from transformant colonies that received a dilution plating score of "2" or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. Pseudomonas aeruginosa were grown in standard laboratory media (LB with carbenicillin at 100 g/ml or Streptomycin 40 g/ml to select for the plasmid). Growth was carried out at 30°C overnight in 100 ul culture wells in microtiter plates. To amplify insert DNA 2 ul of culture were placed into 25 ul Qiagen Hot Start PCR mix. PCR reactions were in 96 well microtiter plates. For plasmid pEP5S the following primers were used in the PCR reaction:

T7L1+: GTCGGCGATATAGGCGCCAGCAACCG (SEQ ID NO: 5)

pStrA3: ATAATCGAGCATGAGTATCATACG (SEO ID NO: 6)

10 PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 95° C 15 min

Step 2. 94° C 45 sec

Step 3. 54° C 45 sec

Step 4. 72° C 1 minute

15 Step 5. Return to step 2, 29 times

Step 6. 72° C 10 minutes

Step 7. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

The purified PCR products were then directly cycle sequenced with Qiagen Hot Start PCR mix. The following primers were used in the sequencing reaction:

T7/L2: ATGCGTCCGGCGTAGAGGAT (SEQ ID NO: 7)

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 94° C 15 min

25 Step 2. 96° C 10 sec

Step 3. 50° C 5 sec

Step 4. 60 C 4 min

Step 5. Return to step 2, 24 times

Step 6. 4° C hold

35

30 The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

For *E. faecalis*, plasmids from transformant colonies that received a dilution plating score of "2" or greater were isolated to obtain the genomic DNA insert responsible for growth inhibition as follows. *E. faecalis* were grown in THB 10 μ g/ml Erm at 30°C overnight in 100 ul culture wells in microtiter plates. To amplify insert DNA 2 ul of culture were placed into 25 μ l Qiagen Hot Start

PCR mix. PCR reactions were in 96 well microtiter plates. The following primers were used in the PCR reaction:

pXyIT5: CAGCAGTCTGAGTTATAAAATAG (SEQ ID NO: 1) and the

pEP/pAK1 primer.

5 PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 95° C 15 min

Step 2. 94° C 45 sec

Step 3. 54° C 45 sec

Step 4. 72° C 1 minute

10 Step 5. Return to step 2, 29 times

Step 6. 72° C 10 minutes

Step 7. 4° C hold

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

The purified PCR products were then directly cycle sequenced with Qiagen Hot Start PCR mix. The following primers were used in the PCR reaction:

pXyIT5: CAGCAGTCTGAGTTATAAAATAG (SEQ ID NO: 1)

PCR was carried out in a PE GenAmp with the following cycle times:

Step 1. 94° C 15 min

20 Step 2. 96° C 10 sec

Step 3. 50° C 5 sec

Step 4. 60° C 4 min

Step 5. Return to step 2, 24 times

Step 6. 4° C hold

35

The PCR products were cleaned using Qiagen Qiaquick PCR plates according to the manufacturer's instructions.

The amplified genomic DNA inserts from each of the above procedures were subjected to automated sequencing. Sequence identification numbers (SEQ ID NOs) and clone names for the identified inserts are listed in Table IA and discussed below.

30 EXAMPLE 3

Comparison Of Isolated Nucleic Acids to Known Sequences

The nucleotide sequences of the subcloned fragments from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis obtained from the expression vectors discussed above were compared to known sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis and other microorganisms as follows. First, to confirm that

each clone originated from one location on the chromosome and was not chimeric, the nucleotide sequences of the selected clones were compared against the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis genomic sequences to align the clone to the correct position on the chromosome. The NCBI BLASTN v 2.0.9 program was used for this comparison, and the incomplete Staphylococcus aureus genomic sequences licensed from TIGR, as well as the NCBI nonredundant GenBank database were used as the source of genomic data. Salmonella typhimurium sequences were compared to sequences available from the Genome Sequencing Center (http://genome.wustl.edu/gsc/salmonella.shtml),and the Sanger Centre (http://www.sanger.ac.uk/projects/S__typhi). Pseudomonas aeruginosa sequences were compared to a proprietary database and the NCBI GenBank database. The E. faecalis sequences were compared to a proprietary database.

The BLASTN analysis was performed using the default parameters except that the filtering was turned off. No further analysis was performed on inserts which resulted from the ligation of multiple fragments.

In general, antisense molecules and their complementary genes are identified as follows. First, all possible full length open reading frames (ORFs) are extracted from available genomic databases. Such databases include the GenBank nonredundant (nr) database, the unfinished genome database available from TIGR and the PathoSeq database developed by Incyte Genomics. The latter database comprises over 40 annotated bacterial genomes including complete ORF analysis. If databases are incomplete with regard to the bacterial genome of interest, it is not necessary to extract all ORFs in the genome but only to extract the ORFs within the portions of the available genomic sequences which are complementary to the clones of interest. Computer algorithms for identifying ORFs, such as GeneMark, are available and well known to those in the art. Comparison of the clone DNA to the complementary ORF(s) allows determination of whether the clone is a sense or antisense clone. Furthermore, each ORF extracted from the database can be compared to sequences in well annotated databases including the GenBank (nr) protein database, SWISSPROT and the like. A description of the gene or of a closely related gene in a closely related microorganism is often available in these databases. Similar methods are used to identify antisense clones corresponding to genes encoding non-translated RNAs.

In order to generate the gene identification data compiled in Table IB, each of the cloned nucleic acid sequences discussed above corresponding to SEQ ID NO.s 8-3795 was used to identify the corresponding Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis ORFs in the PathoSeq v.4.1 (March 2000 release) database of microbial genomic sequences. For this purpose, the NCBI BLASTN 2.0.9 computer algorithm was used. The default parameters were used except that filtering was turned off. The default parameters for the BLASTN and BLASTX analyses were:

Expectation value (e)=10

5

10

15

20

25

30

35

Alignment view options: pairwise

Filter query sequence (DUST with BLASTN, SEG with others)=T

Cost to open a gap (zero invokes behavior)=0

Cost to extend a gap (zero invokes behavior)=0

5 X dropoff value for gapped alignment (in bits) (zero invokes behavior)=0

Show GI's in deflines=F

Penalty for a nucleotide mismatch (BLASTN only)=-3

Reward for a nucleotide match (BLASTN only)=1

Number of one-line descriptions (V)=500

Number of alignments to show (B)=250

Threshold for extending hits=default

Perform gapped alignment (not available with BLASTX)=T

Query Genetic code to use=1

DB Genetic code (for TBLAST[nx] only=1

Number of processors to use=1

SeqAlign file

25

30

35

40

45

Believe the query defline=F

Matrix=BLOSUM62

Word Size= default

20 Effective length of the database (use zero for the real size)=0

Number of best hits from a region to keep=100

Length of region used to judge hits=20

Effective length of the search space (use zero for the real size)=0

Query strands to search against database (for BLAST[nx] and TBLASTX), 3 is both, 1 is top, 2 is bottom=3

Produce HTML output=F

Alternatively, ORFs were identified and refined by conducting a survey of the public and private data sources. Full-length gene protein and nucleotide sequences for these organisms were assembled from various sources. For *Pseudomonas aeruginosa*, gene sequences were adopted from the Pseudomonas genome sequencing project (downloaded from http://www.pseudomonas.com). For *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Streptococcus pneumoniae* and *Salmonella typhi*, genomic sequences from PathoSeq v 4.1 (Mar 2000 release) was reanalyzed for ORFs using the gene finding software GeneMark v 2.4a, which was purchased from GenePro Inc. 451 Bishop St., N.W., Suite B, Atlanta, GA, 30318, USA.

Antisense clones were identified as those clones for which transcription from the inducible promoter would result in the expression of an RNA antisense to a complementary ORF, intergenic or intragenic sequence. Those clones containing single inserts and that caused growth sensitivity upon induction are listed in Table IA. ORFs complementary to the antisense nucleic acids, and their encoded polypeptides, are listed in Table IB.

The gene descriptions in the PathoSeq database derive from annotations available in the public sequence databases described above. Where a clone was found to share significant sequence identity to two or more adjacent ORFs, it was listed once for each ORF and the PathoSeq information for each ORF was compiled in Table IB.

Table IA lists the SEQ ID NOs. and clone names of the inserts which inhibited proliferation and the organism in which the clone was identified. This information was used to identify the

ORFs (SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012) whose gene products (SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110) were inhibited by the nucleic acids comprising the nucleotide sequences of SEQ ID NOs. 8-3795. Table IB lists the clone name, the SEQ ID NO. of the antisense clone (in the column labelled Clone SEQ ID), the PathoSeq Locus containing the clone, the SEQ ID of the ORF identified in PathoSeq (in the column labelled Gene Seq ID (protein), the refined full length gene (column labelled genemarked gene), and the SEQ ID NO of the protein encoded by the refined full length gene (column labelled full length ORF protein SEQ ID).

Table IC provides a cross reference between PathoSeq Gene Locus listed in Table IB, the SEQ ID NOs. of the PathoSeq proteins and the SEQ ID NOs. of the nucleic acids which encode them.

It will be appreciated that ORFs may also be identified using databases other than PathoSeq. For example, the ORFs may be identified using the methods described in U.S. Provisional Patent Application Serial Number 60/191,078, filed March 21, 2000.

15 EXAMPLE 4

10

20

25

30

35

Identification of Genes and their Corresponding Operons Affected by Antisense Inhibition

Once the genes involved in Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis proliferation are identified as described above, the operons in which these genes lie may be identified by comparison with known microbial genomes. Since bacterial genes are transcribed in a polycistronic manner, the antisense inhibition of a single gene in an operon might affect the expression of all the other genes on the operon or the genes downstream from the single gene identified. Accordingly, each of the genes contained within an operon may be analyzed for their effect on proliferation.

Operons are predicted by looking for all adjacent genes in a genomic region that lie in the same orientation with no large noncoding gaps in between. First, full-length ORFs complementary to the antisense molecules are identified as described above. Adjacent ORFs are then identified and their relative orientation determined either by directly analyzing the genomic sequences surrounding the ORFs complementary to the antisense clones or by extracting adjacent ORFs from the collection obtained through whole genome ORF analysis described above followed by ORF alignment. Operons predicted in this way may be confirmed by comparison to the arrangement of the homologous nucleic acids in the *Bacillus subtilis* complete genome sequence, as reported by the genome database compiled at Institut Pasteur Subtilist Release R15.1 (June 24, 1999) which can be found at http://bioweb.pasteur.fr/GenoList/SubtiList/. The *Bacillus subtilis* genome is the only fully sequenced and annotated genome from a Gram-positive microorganism, and appears to have a high level of similarity to *Staphylococcus aureus* both at the level of conservation of gene sequence and genomic organization including operon structure. Operons for *Salmonella typhimurium* and *Klebsiella pneumoniae* may be identified by comparison with *E. coli, Haemophilus*, or

Pseudomonas sequences. The Pseudomonas aeruginosa web site (http://www.pseudomonas.com) can also be used to help predict operon organization in this bacterium.

Extensive DNA sequences of Salmonella typhimurium are available through the Salmonella Genome Center (Washington University, St. Louis, MO) the Sanger Centre (United Kingdom) and the PathoSeq database (Incyte). Annotation of some of the DNA sequences in some of the aforementioned databases is lacking, but comparisons may be made to E. coli using tools such as BLASTX.

Public or proprietary databases may be used to analyzed *E. faecalis* sequences as well as sequences from the organisms listed above.

The results of such an analysis as applied to clone number S1M10000001A05 from Staphylococcus aureus are listed in Table II. Table II lists the SEQ ID NOs. of the Staphylococcus aureus genes involved in proliferation, the SEQ ID NOs. of the proteins encoded by these genes, and the clone name containing the nucleic acid which inhibits Staphylococcus aureus proliferation. In addition, Table II lists those other genes located on the operon included in the Staphylococcus aureus genomic sequence determined as described above. For each of the genes described in Table II, the microorganism containing the most closely related homolog, identified in one of the public databases, is also indicated in Table II.

TABLE II

20

25

30

15

5

10

DNA Seq ID	Protein Seq ID	Molecule number	Clone name	Gene	Organism used for identification of gene
3796	3801	SaXA001	S1M1000001A05	ytmI	B. subtilis
3797	3802			nirR	S. carnosus
3798	3803			nirB	S. carnosus
3799	3804			nirD	S. carnosus
3800	3805			sirB	S. carnosus

The preceding analyses may be conducted for each of the sequences which are listed in Table IA which inhibit proliferation and the ORFs listed in Table IB and Table IC. Once the full length ORFs and/or the operons containing them have been identified using the methods described above, they can be obtained from a genomic library by performing a PCR amplification using primers at each end of the desired sequence. Those skilled in the art will appreciate that a comparison of the ORFs to homologous sequences in other cells or microorganisms will facilitate confirmation of the start and stop codons at the ends of the ORFs.

In some embodiments, the primers may contain restriction sites which facilitate the insertion of the gene or operon into a desired vector. For example, the gene may be inserted into an expression vector and used to produce the proliferation-required protein as described below. Other methods for obtaining the full length ORFs and/or operons are familiar to those skilled in the art.

5

10

15

20

25

30

35

For exmaple, natural restriction sites may be employed to insert the full length ORFs and/or operons into a desired vector.

EXAMPLE 5

Identification of Individual Genes within an Operon Required for Proliferation

The following example illustrates a method for determining if a targeted gene within an operon is required for cell proliferation by replacing the targeted allele in the chromosome with an in-frame deletion of the coding region of the targeted gene.

Deletion inactivation of a chromosomal copy of a gene in Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi can be accomplished by integrative gene replacement. The principles of this method were described in Xia, M., et al. 1999 Plasmid 42:144-149 and Hamilton, C. M., et al 1989. J. Bacteriol. 171: 4617-4622. A similar gene disruption method is available for Pseudomonas aeruginosa, except the counter selectable marker is sacB (Schweizer, H. P., Klassen, T. and Hoang, T. (1996) Mol. Biol. of Pseudomonas. ASM press, 229-237). In this approach, a mutant allele of the targeted gene is constructed by way of an in-frame deletion and introduced into the chromosome using a suicide vector. This results in a tandem duplication comprising a deleted (null) allele and a wild type allele of the target gene. Cells in which the vector sequences have been deleted are isolated using a counter-selection technique. Removal of the vector sequence from the chromosomal insertion results in either restoration of the wild-type target sequence or replacement of the wild type sequence with the deletion (null) allele. E. faecalis genes can be disrupted using a suicide vector that contains an internal fragment to a gene of interest. With the appropriate selection this plasmid will homologously recombine into the chromosome (Nallapareddy, S. R., X. Qin, G. M. Weinstock, M. Hook, B. E. Murray. 2000. Infect. Immun. 68:5218-5224).

The resultant population of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi colonies can then be evaluated to determine whether the target sequence is required for proliferation by PCR amplification of the affected target sequence. If the targeted gene is not required for proliferation, then PCR analysis will show that roughly equal numbers of colonies have retained either the wild-type or the mutant allele. If the targeted gene is required for proliferation, then only wild-type alleles will be recovered in the PCR analysis.

The method of cross-over PCR is used to generate the mutant allele by amplification of nucleotide sequences flanking but not including the coding region of the gene of interest, using specifically designed primers such that overlap between the resulting two PCR amplification products allows them to hybridize. Further PCR amplification of this hybridization product using

5

10

15

20

25

30

35

primers representing the extreme 5' and 3' ends can produce an amplification product containing an in-frame deletion of the coding region but retaining substantial flanking sequences.

For Staphylococcus aureus, this amplification product is subcloned into the suicide vector pSA3182 (Xia, M., et al. 1999 Plasmid 42:144-149) which is host-dependent for autonomous replication. This vector includes a tetC tetracycline-resistance marker and the origin of replication of the well-known Staphylococcus aureus plasmid pT181 (Mojumdar, M and Kahn, S.A., Characterisation of the Tetracycline Resistance Gene of Plasmid pT181, J. Bacteriol. 170: 5522 (1988)). The vector lacks the repC gene which is required for autonomous replication of the vector at the pT181 origin. This vector can be propagated in a Staphylococcus aureus host strain such as SA3528, which expresses repC in trans. Once the amplified truncated target gene sequence is cloned and propagated in the pSA3182 vector, it can then be introduced into a repC minus strain such as RN4220 (Kreiswirth, B.N. et al., The Toxic Shock Syndrome Exotoxin Structural Gene is Not Detectably Transmitted by a Prophage, Nature 305:709-712 (1983)) by electroporation with selection for tetracycline resistance. In this strain, the vector must integrate by homologous recombination at the targeted gene in the chromosome to impart drug resistance. This results in a inserted truncated copy of the allele, followed by pSA3182 vector sequence, and finally an intact and functional allele of the targeted gene.

Once a tetracycline resistant Staphylococcus aureus strain is isolated using the above technique and shown to include truncated and wild-type alleles of the targeted gene as described above, a second plasmid, pSA7592 (Xia, M., et al. 1999 Plasmid 42:144-149) is introduced into the strain by electroporation. This gene includes an erythromycin resistance gene and a repC gene that is expressed at high levels. Expression of repC in these transformants is toxic due to interference of normal chromosomal replication at the integrated pT181 origin of replication. This selects for strains that have removed the vector sequence by homologous recombination, resulting in either of two outcomes: The selected cells either possess a wild-type allele of the targeted gene or a gene in which the wild-type allele has been replaced by the engineered in-frame deletion of the truncated allele.

PCR amplification can be used to determine the genetic outcome of the above process in the resulting erythromycin resistant, tet sensitive transformant colonies. If the targeted gene is not required for cellular replication, then PCR evidence for both wild-type and mutant alleles will be found among the population of resultant transformants. However, if the targeted gene is required for cellular proliferation, then only the wild-type form of the gene will be evident among the resulting transformants.

Similarly, for Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi the PCR products containing the mutant allele of the

target sequence may be introduced into an appropriate knockout vector and cells in which the wild type target has been disrupted are selected using the appropriate methodology.

The above methods have the advantage that insertion of an in-frame deletion mutation is far less likely to cause downstream polar effects on genes in the same operon as the targeted gene. However, it will be appreciated that other methods for disrupting Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi genes which are familiar to those skilled in the art may also be used.

Each gene in the operon may be disrupted using the methodology above to determine whether it is required for proliferation.

10

15

20

25

30

35

EXAMPLE 6

Expression of the Proteins Encoded by Genes Identified as

Required for Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis,
Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi Proliferation

The following is provided as one exemplary method to express the proliferation-required proteins idenfied as described above. The proliferation-required proteins may be expressed using any of the bacterial, insect, yeast, or mammalian expression systems known in the art. In some embodiments, the proliferation-required proteins encoded by the identified nucleotide sequences described above (including the proteins of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110 encoded by the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 are expressed using expression systems designed either for E. coli or for Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. First, the initiation and termination codons for the gene are identified. If desired, methods for improving translation or expression of the protein are well known in the art. For example, if the nucleic acid encoding the polypeptide to be expressed lacks a methionine codon to serve as the initiation site, a strong Shine-Delgarno sequence, or a stop codon, these nucleotide sequences can be added. Similarly, if the identified nucleic acid lacks a transcription termination signal, this nucleotide sequence can be added to the construct by, for example, splicing out such a sequence from an appropriate donor sequence. In addition, the coding sequence may be operably linked to a strong constitutive promoter or an inducible promoter if desired. The identified nucleic acid or portion thereof encoding the polypeptide to be expressed is obtained by, for example, PCR from the bacterial expression vector or genome using oligonucleotide primers complementary to the identified nucleic acid or portion thereof and containing restriction endonuclease sequences appropriate for inserting the coding sequences into the vector such that the coding sequences can be expressed from the vector's promoter. Alternatively, other conventional cloning techniques may be used to place the coding sequence under the control of

5

10

15

20

25

30

35

the promoter. In some embodiments, a termination signal may be located downstream of the coding sequence such that transcription of the coding sequence ends at an appropriate position.

Several expression vector systems for protein expression in E. coli are well known and available to those knowledgeable in the art. The coding sequence may be inserted into any of these vectors and placed under the control of the promoter. The expression vector may then be transformed into DH5 α or some other E. coli strain suitable for the over expression of proteins.

Alternatively, an expression vector encoding a protein required for proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi may be introduced into Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. Protocols for introducing nucleic acids into these organisms are well known in the art. For example, the protocols described in J.C.Lee "Electroporation of Staphylococci" from Methods in Molecular Biology vol 47: Electroporation Protocols for Microorganisms Edited by: J.A. Nickoloff Humana Press Inc., Totowa, NJ. pp209-216, may be used to introduce nucleic acids into Staphylococcus aureus. Nucleic acids may also be introduced into Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa or Enterococcus faecalis using methods familiar to those skilled in the art. Positive transformants are selected after growing the transformed cells on plates containing an antibiotic to which the vector confers resistance. In one embodiment, Staphylococcus aureus is transformed with an expression vector in which the coding sequence is operably linked to the T5 promoter containing a xylose operator such that expression of the encoded protein is inducible with xylose.

In one embodiment, the protein is expressed and maintained in the cytoplasm as the native sequence. In an alternate embodiment, the expressed protein can be modified to include a protein tag that allows for differential cellular targeting, such as to the periplasmic space of Gram-negative or Gram-positive expression hosts or to the exterior of the cell (i.e., into the culture medium). In some embodiments, the osmotic shock cell lysis method described in Chapter 16 of Current Protocols in Molecular Biology, Vol. 2, (Ausubel, et al., Eds.) John Wiley & Sons, Inc. (1997) may be used to liberate the polypeptide from the cell. In still another embodiment, such a protein tag could also facilitate purification of the protein from either fractionated cells or from the culture medium by affinity chromatography. Each of these procedures can be used to express a proliferation-required protein.

Expressed proteins, whether in the culture medium or liberated from the periplasmic space or the cytoplasm, are then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, standard chromatography, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange chromatography, and HPLC.

Alternatively, the polypeptide may be secreted from the host cell in a sufficiently enriched or pure state in the supernatant or growth media of the host cell to permit it to be used for its intended purpose without further enrichment. The purity of the protein product obtained can be assessed using techniques such as SDS PAGE, which is a protein resolving technique well known to those skilled in the art. Coomassie, silver staining or staining with an antibody are typical methods used to visualize the protein of interest.

Antibodies capable of specifically recognizing the protein of interest can be generated using synthetic peptides using methods well known in the art. See, Antibodies: A Laboratory Manual, (Harlow and Lane, Eds.) Cold Spring Harbor Laboratory (1988). For example, 15-mer peptides having an amino acid sequence encoded by the appropriate identified gene sequence of interest or portion thereof can be chemically synthesized. The synthetic peptides are injected into mice to generate antibodies to the polypeptide encoded by the identified nucleic acid sequence of interest or portion thereof. Alternatively, samples of the protein expressed from the expression vectors discussed above can be purified and subjected to amino acid sequencing analysis to confirm the identity of the recombinantly expressed protein and subsequently used to raise antibodies. An Example describing in detail the generation of monoclonal and polyclonal antibodies appears in Example 7.

10

15

20

25

30

35

The protein encoded by the identified nucleic acid of interest or portion thereof can be purified using standard immunochromatography techniques. In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically-bound secreted protein is then released from the column and recovered using standard techniques. These procedures are well known in the art.

In an alternative protein purification scheme, the identified nucleic acid of interest or portion thereof can be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the coding sequence of the identified nucleic acid of interest or portion thereof is inserted in-frame with the gene encoding the other half of the chimera. The other half of the chimera can be maltose binding protein (MBP) or a nickel binding polypeptide encoding sequence. A chromatography matrix having maltose or nickel attached thereto is then used to purify the chimeric protein. Protease cleavage sites can be engineered between the MBP gene or the nickel binding polypeptide and the identified expected gene of interest, or portion thereof. Thus, the two polypeptides of the chimera can be separated from one another by protease digestion.

One useful expression vector for generating maltose binding protein fusion proteins is pMAL (New England Biolabs), which encodes the *malE* gene. In the pMal protein fusion system, the cloned gene is inserted into a pMal vector downstream from the *malE* gene. This results in the expression of an MBP-fusion protein. The fusion protein is purified by affinity chromatography. These techniques as described are well known to those skilled in the art of molecular biology.

EXAMPLE 7

Production of an Antibody to an isolated Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi Protein

Substantially pure protein or polypeptide (including one of the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) is isolated from the transformed cells as described in Example 6. The concentration of protein in the final preparation is adjusted, for example, by concentration on a 10,000 molecular weight cut off AMICON filter device (Millipore, Bedford, MA), to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

Monoclonal Antibody Production by Hybridoma Fusion

5

10

15

20

25

30

35

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or any of the well-known derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody-producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells are destroyed by growth of the system on selective medium comprising aminopterin (HAT medium). The successfully-fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as described by Engvall, E., "Enzyme immunoassay ELISA and EMIT," Meth. Enzymol. 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.

Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogeneous epitopes of a single protein or a peptide can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity.

Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than larger molecules and can require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: **Handbook of Experimental Immunology** D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 µM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: **Manual of Clinical Immunology**, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies can also be used in therapeutic compositions for killing bacterial cells expressing the protein.

EXAMPLE 8

Screening Chemical Libraries

A. Protein-Based Assays

5

10

15

20

25

30

35

Having isolated and expressed bacterial proteins shown to be required for bacterial proliferation, the present invention further contemplates the use of these expressed target proteins in assays to screen libraries of compounds for potential drug candidates. The generation of chemical libraries is well known in the art. For example, combinatorial chemistry can be used to generate a library of compounds to be screened in the assays described herein. A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building block" reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining amino acids in every possible combination to yield peptides of a given length. Millions of chemical compounds theoretically can be synthesized through such combinatorial mixings of chemical building blocks. For example, one commentator observed that the systematic, combinatorial mixing of 100 interchangeable chemical building blocks results in the theoretical synthesis of 100 million tetrameric compounds or 10 billion pentameric compounds. (Gallop et al., "Applications of Combinatorial Technologies to Drug Discovery, Background and Peptide Combinatorial Libraries," Journal of Medicinal Chemistry, Vol. 37, No. 9, 1233-1250 (1994). Other chemical libraries known to those in the art may also be used, including natural product libraries.

Once generated, combinatorial libraries can be screened for compounds that possess desirable biological properties. For example, compounds which may be useful as drugs or to develop drugs would likely have the ability to bind to the target protein identified, expressed and purified as discussed above. Further, if the identified target protein is an enzyme, candidate compounds would likely interfere with the enzymatic properties of the target protein. For example, the enzymatic function of a

5

10

15

20

25

30

35

target protein may be to serve as a protease, nuclease, phosphatase, dehydrogenase, transporter protein, transcriptional enzyme, and any other type of enzyme known or unknown. Thus, the present invention contemplates using the protein products described above to screen combinatorial chemical libraries.

In one example, the target protein is a serine protease and the substrate of the enzyme is known. The present example is directed towards the analysis of libraries of compounds to identify compounds that function as inhibitors of the target enzyme. First, a library of small molecules is generated using methods of combinatorial library formation well known in the art. U.S. Patent Nos. 5,463,564 and 5,574,656, to Agrafiotis, et al., entitled "System and Method of Automatically Generating Chemical Compounds with Desired Properties," are two such teachings. Then the library compounds are screened to identify those compounds that possess desired structural and functional properties. U.S. Patent No. 5,684,711, also discusses a method for screening libraries.

To illustrate the screening process, the target polypeptide and chemical compounds of the library are combined with one another and permitted to interact with one another. A labeled substrate is added to the incubation. The label on the substrate is such that a detectable signal is emitted from the products of the substrate molecules that result from the activity of the target polypeptide. The emission of this signal permits one to measure the effect of the combinatorial library compounds on the enzymatic activity of target enzymes by comparing it to the signal emitted in the absence of combinatorial library compounds. The characteristics of each library compound are encoded so that compounds demonstrating activity against the enzyme can be analyzed and features common to the various compounds identified can be isolated and combined into future iterations of libraries.

Once a library of compounds is screened, subsequent libraries are generated using those chemical building blocks that possess the features shown in the first round of screen to have activity against the target enzyme. Using this method, subsequent iterations of candidate compounds will possess more and more of those structural and functional features required to inhibit the function of the target enzyme, until a group of enzyme inhibitors with high specificity for the enzyme can be found. These compounds can then be further tested for their safety and efficacy as antibiotics for use in mammals.

It will be readily appreciated that this particular screening methodology is exemplary only. Other methods are well known to those skilled in the art. For example, a wide variety of screening techniques are known for a large number of naturally-occurring targets when the biochemical function of the target protein is known. For example, some techniques involve the generation and use of small peptides to probe and analyze target proteins both biochemically and genetically in order to identify and develop drug leads. Such techniques include the methods described in PCT publications No. WO9935494, WO9819162, WO9954728. Other techniques utilize natural product libraries or libraries of larger molecules such as proteins.

It will be appreciated that the above protein-based assays may be performed with any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) or portions thereof. In addition, the above protein-based assays may be performed with homologous polypeptides or portions thereof.

B. Cell-Based Assays

5

10

15

20

25

30

35

Current cell-based assays used to identify or to characterize compounds for drug discovery and development frequently depend on detecting the ability of a test compound to modulate the activity of a target molecule located within a cell or located on the surface of a cell. An advantage of cell-based assays is that they allow the effect of a compound on a target molecule's activity to be detected within the physiologically relevant environment of the cell as opposed to an in vitro environment. Most often such target molecules are proteins such as enzymes, receptors and the like. However, target molecules may also include other molecules such as DNAs, lipids, carbohydrates and RNAs including messenger RNAs, ribosomal RNAs, tRNAs, regulatory RNAs and the like. A number of highly sensitive cell-based assay methods are available to those of skill in the art to detect binding and interaction of test compounds with specific target molecules. However, these methods are generally not highly effective when the test compound binds to or otherwise interacts with its target molecule with moderate or low affinity. In addition, the target molecule may not be readily accessible to a test compound in solution, such as when the target molecule is located inside the cell or within a cellular compartment. Thus, current cell-based assay methods are limited in that they are not effective in identifying or characterizing compounds that interact with their targets with moderate to low affinity or compounds that interact with targets that are not readily accessible.

The cell-based assay methods of the present invention have substantial advantages over current cell-based assays. These advantages derive from the use of sensitized cells in which the level or activity of at least one proliferation-required gene product (the target molecule) has been specifically reduced to the point where the presence or absence of its function becomes a rate-determining step for cellular proliferation. Bacterial, fungal, plant, or animal cells can all be used with the present method. Such sensitized cells become much more sensitive to compounds that are active against the affected target molecule. Thus, cell-based assays of the present invention are capable of detecting compounds exhibiting low or moderate potency against the target molecule of interest because such compounds are substantially more potent on sensitized cells than on non-sensitized cells. The effect may be such that a test compound may be two to several times more potent, at least 10 times more potent, at least 20 times more potent, at least 50 times more potent, at least 100 times more potent, at least 1000 times more potent, or even more than 1000 times more potent when tested on the sensitized cells as compared to the non-sensitized cells. The

5

10

15

20

25

30

35

proliferation-required nucleic acids or polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, may be employed in any of the cell-based assays described herein. Similarly, homologous coding nucleic acids, homologous antisense nucleic acids, or homologous polypeptides or portions of the homologous nucleic acids or homologous polypeptides, may be employed in any of the cell-based assays described herein.

Due in part to the increased appearance of antibiotic resistance in pathogenic microorganisms and to the significant side-effects associated with some currently used antibiotics, novel antibiotics acting at new targets are highly sought after in the art. Yet, another limitation in the current art related to cell-based assays is the problem of repeatedly identifying hits against the same kinds of target molecules in the same limited set of biological pathways. This may occur when compounds acting at such new targets are discarded, ignored or fail to be detected because compounds acting at the "old" targets are encountered more frequently and are more potent than compounds acting at the new targets. As a result, the majority of antibiotics in use currently interact with a relatively small number of target molecules within an even more limited set of biological pathways.

The use of sensitized cells of the current invention provides a solution to the above problem in two ways. First, desired compounds acting at a target of interest, whether a new target or a previously known but poorly exploited target, can now be detected above the "noise" of compounds acting at the "old" targets due to the specific and substantial increase in potency of such desired compounds when tested on the sensitized cells of the current invention. Second, the methods used to sensitize cells to compounds acting at a target of interest may also sensitize these cells to compounds acting at other target molecules within the same biological pathway. For example, expression of an antisense molecule to a gene encoding a ribosomal protein is expected to sensitize the cell to compounds acting at that ribosomal protein and may also sensitize the cells to compounds acting at any of the ribosomal components (proteins or rRNA) or even to compounds acting at any target which is part of the protein synthesis pathway. Thus an important advantage of the present invention is the ability to reveal new targets and pathways that were previously not readily accessible to drug discovery methods.

Sensitized cells of the present invention are prepared by reducing the activity or level of a target molecule. The target molecule may be a gene product, such as an RNA or polypeptide produced from the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including a gene product produced from the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the polypeptides of SEQ ID NOs.: 3801-3805, 4861-

5915, 10013-14110) or from homologous nucleic acids. For example, the target molecule may be one of the polypeptides of SEQ ID NOs. 3801-3805, 4861-5915, 10013-14110 or a homologous polypeptide. Alternatively, the target may be a gene product such as an RNA or polypeptide which is produced from a sequence within the same operon as the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or from homologous nucleic acids. In addition, the target may be an RNA or polypeptide in the same biological pathway as the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or from homologous nucleic acids. Such biological pathways include, but are not limited to, enzymatic, biochemical and metabolic pathways as well as pathways involved in the production of cellular structures such the cell wall.

10

15

20

25

30

35

Current methods employed in the arts of medicinal and combinatorial chemistries are able to make use of structure-activity relationship information derived from testing compounds in various biological assays including direct binding assays and cell-based assays. Occasionally compounds are directly identified in such assays that are sufficiently potent to be developed as drugs. More often, initial hit compounds exhibit moderate or low potency. Once a hit compound is identified with low or moderate potency, directed libraries of compounds are synthesized and tested in order to identify more potent leads. Generally these directed libraries are combinatorial chemical libraries consisting of compounds with structures related to the hit compound but containing systematic variations including additions, subtractions and substitutions of various structural features. When tested for activity against the target molecule, structural features are identified that either alone or in combination with other features enhance or reduce activity. This information is used to design subsequent directed libraries containing compounds with enhanced activity against the target molecule. After one or several iterations of this process, compounds with substantially increased activity against the target molecule are identified and may be further developed as drugs. This process is facilitated by use of the sensitized cells of the present invention since compounds acting at the selected targets exhibit increased potency in such cell-based assays, thus; more compounds can now be characterized providing more useful information than would be obtained otherwise.

Thus, it is now possible using cell-based assays of the present invention to identify or characterize compounds that previously would not have been readily identified or characterized including compounds that act at targets that previously were not readily exploited using cell-based assays. The process of evolving potent drug leads from initial hit compounds is also substantially

5

10

15

20

25

30

35

improved by the cell-based assays of the present invention because, for the same number of test compounds, more structure-function relationship information is likely to be revealed.

The method of sensitizing a cell entails selecting a suitable gene or operon. A suitable gene or operon is one whose transcription and/or expression is required for the proliferation of the cell to be sensitized. The next step is to introduce into the cells to be sensitized, an antisense RNA capable of hybridizing to the suitable gene or operon or to the RNA encoded by the suitable gene or operon. Introduction of the antisense RNA can be in the form of a vector in which antisense RNA is produced under the control of an inducible promoter. The amount of antisense RNA produced is modulated by varying an inducer concentration to which the cell is exposed and thereby varying the activity of the promoter driving transcription of the antisense RNA. Thus, cells are sensitized by exposing them to an inducer concentration that results in a sub-lethal level of antisense RNA expression. The requisite maount of inducer may be derived empiracally by one of skill in the art.

In one embodiment of the cell-based assays, antisense nucleic acids complementary to the identified Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi nucleotide sequences or portions thereof (including antisense nucleic acids comprising a nucleotide sequence complementary to one of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, and the antisense nucleic acids of SEQ ID NOs.: 8-3795 or antisense nucleic acids comprising a nucleotide sequence complementary to portions of the foregoing nucleic acids thereof), antisense nucleic complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids are used to inhibit the production of a proliferation-required protein. Vectors producing antisense RNA complementary to identified genes required for proliferation, or portions thereof, are used to limit the concentration of a proliferation-required protein without severely inhibiting growth. The proliferation-required protein may be one of the proteins of SEO ID NOs.: 3801-3805, 4861-5915, 10013-14110 or a homologous polypeptide. To achieve that goal, a growth inhibition dose curve of inducer is calculated by plotting various doses of inducer against the corresponding growth inhibition caused by the antisense expression. From this curve, the concentration of inducer needed to achieve various percentages of antisense induced growth inhibition, from 1 to 100% can be determined.

A variety of different regulatable promoters may be used to produce the antisense nucleic acid. Transcription from the regulatable promoters may be modulated by controlling the activity of a transcription factor repressor which acts at the regulatable promoter. For example, if transcription is modulated by affecting the activity of a repressor, the choice of inducer to be used depends on the repressor/operator responsible for regulating transcription of the antisense nucleic acid. If the regulatable promoter comprises a T5 promoter fused to a xylO (xylose operator; e.g. derived from Staphylococcus xylosis (Schnappinger, D. et al., FEMS Microbiol. Let. 129: 121-128 (1995)) then transcription of the antisense nucleic acid may be regulated by a xylose repressor. The xylose

5

10

15

20

25

30

35

repressor may be provided by ectoptic expression within an *S. aureus* cell of an exogenous xylose repressor gene, e.g. derived from *S. xylosis* DNA. In such cases transcription of antisense RNA from the promoter is inducible by adding xylose to the medium and the promoter is thus "xylose inducible." Similarly, IPTG inducible promoters may be used. For example, the highest concentration of the inducer that does not reduce the growth rate significantly can be estimated from the curve. Cellular proliferation can be monitored by growth medium turbidity via OD measurements. In another example, the concentration of inducer that reduces growth by 25% can be predicted from the curve. In still another example, a concentration of inducer that reduces growth by 50% can be calculated. Additional parameters such as colony forming units (cfu) can be used to measure cellular viability.

Cells to be assayed are exposed to the above-determined concentrations of inducer. The presence of the inducer at this sub-lethal concentration reduces the amount of the proliferation required gene product to a sub-optimal amount in the cell that will still support growth. Cells grown in the presence of this concentration of inducer are therefore specifically more sensitive to inhibitors of the proliferation-required protein or RNA of interest or to inhibitors of proteins or RNAs in the same biological pathway as the proliferation-required protein or RNA of interest but not to inhibitors of unrelated proteins or RNAs.

Cells pretreated with sub-inhibitory concentrations of inducer and thus containing a reduced amount of proliferation-required target gene product are then used to screen for compounds that reduce cell growth. The sub-lethal concentration of inducer may be any concentration consistent with the intended use of the assay to identify candidate compounds to which the cells are more sensitive. For example, the sub-lethal concentration of the inducer may be such that growth inhibition is at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% at least about 75%, or more. Cells which are pre-sensitized using the preceding method are more sensitive to inhibitors of the target protein because these cells contain less target protein to inhibit than do wild-type cells.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids comprising a nucleotide sequence complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides.

5

10

15

20

25

30

35

In another embodiment of the cell-based assays of the present invention, the level or activity of a proliferation required gene product is reduced using a mutation, such as a temperature sensitive mutation, in the gene encoding a gene product required for proliferation and an antisense nucleic acid comprising a nucleotide sequence complementary to the gene encoding the gene product required for proliferation or a portion thereof. Growing the cells at an intermediate temperature between the permissive and restrictive temperatures of the temperature sensitive mutant where the mutation is in a proliferation-required gene produces cells with reduced activity of the proliferation-required gene product. The antisense RNA complementary to the proliferationrequired sequence further reduces the activity of the proliferation required gene product. Drugs that may not have been found using either the temperature sensitive mutation or the antisense nucleic acid alone may be identified by determining whether cells in which transcription of the antisense nucleic acid has been induced and which are grown at a temperature between the permissive temperature and the restrictive temperature are substantially more sensitive to a test compound than cells in which expression of the antisense nucleic acid has not been induced and which are grown at a permissive temperature. Also drugs found previously from either the antisense nucleic acid alone or the temperature sensitive mutation alone may have a different sensitivity profile when used in cells combining the two approaches, and that sensitivity profile may indicate a more specific action of the drug in inhibiting one or more activities of the gene product.

Temperature sensitive mutations may be located at different sites within the gene and correspond to different domains of the protein. For example, the dnaB gene of Escherichia coli encodes the replication fork DNA helicase. DnaB has several domains, including domains for oligomerization, ATP hydrolysis, DNA binding, interaction with primase, interaction with DnaC, and interaction with DnaA [(Biswas, E.E. and Biswas, S.B. 1999. Mechanism and DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochem. 38:10919-10928; Hiasa, H. and Marians, K.J. 1999. Initiation of bidirectional replication at the chromosomal origin is directed by the interaction between helicase and primase. J. Biol. Chem. 274:27244-27248; San Martin, C., Radermacher, M., Wolpensinger, B., Engel, A., Miles, C.S., Dixon, N.E., and Carazo, J.M. 1998. Three-dimensional reconstructions from cryoelectron microscopy images reveal an intimate complex between helicase DnaB and its loading partner DnaC. Structure 6:501-9; Sutton, M.D., Carr, K.M., Vicente, M., and Kaguni, J.M. 1998. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J. Biol. Chem. 273:34255-62.)]. Temperature sensitive mutations in different domains of DnaB confer different phenotypes at the restrictive temperature, which include either an abrupt stop or slow stop in DNA replication with or without DNA breakdown (Wechsler, J.A. and Gross, J.D. 1971. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol. Gen. Genetics 113:273-284) and termination of growth or cell death. Combining the use of temperature sensitive mutations in the dnaB gene that cause cell death at the restrictive temperature

with an antisense to the *dnaB* gene could lead to the discovery of very specific and effective inhibitors of one or a subset of activities exhibited by DnaB.

5

10

15

20

25

30

35

It will be appreciated that the above method may be performed with any mutation which reduces but does not eliminate the activity or level of the gene product which is required for proliferation.

It will be appreciated that the above cell-based assays may be performed using mutations in, such as temperature sensitive mutations, and antisense nucleic acids comprising a nucleotide sequence complementary to any of the genes encoding proliferation-required gene products from from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof (including the nucleic acids of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012), mutations in and antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.

When screening for antimicrobial agents against a gene product required for proliferation, growth inhibition of cells containing a limiting amount of that proliferation-required gene product can be assayed. Growth inhibition can be measured by directly comparing the amount of growth, measured by the optical density of the growth medium, between an experimental sample and a control sample. Alternative methods for assaying cell proliferation include measuring green fluorescent protein (GFP) reporter construct emissions, various enzymatic activity assays, and other methods well known in the art.

It will be appreciated that the above method may be performed in solid phase, liquid phase or a combination of the two. For example, cells grown on nutrient agar containing the inducer of the antisense construct may be exposed to compounds spotted onto the agar surface. If desired, the cells may be grown on agar containing varying concentrations of the inducer. A compound's effect may be judged from the diameter of the resulting killing zone, the area around the compound application point in which cells do not grow. Multiple compounds may be transferred to agar plates and simultaneously tested using automated and semi-automated equipment including but not restricted to multi-channel pipettes (for example the Beckman Multimek) and multi-channel spotters (for example the Genomic Solutions Flexys). In this way multiple plates and thousands to millions of compounds may be tested per day.

5

10

15

20

25

30

35

The compounds may also be tested entirely in liquid phase using microtiter plates as described below. Liquid phase screening may be performed in microtiter plates containing 96, 384, 1536 or more wells per microtiter plate to screen multiple plates and thousands to millions of compounds per day. Automated and semi-automated equipment may be used for addition of reagents (for example cells and compounds) and determination of cell density.

EXAMPLE 9

Cell-Based Assay Using Antisense Complementary to Genes Encoding Ribosomal Proteins

The effectiveness of the above cell-based assay was validated using constructs transribing antisense RNA to the proliferation required E. coli genes rplL, rplJ, and rplW encoding ribosomal proteins L7/L12, L10 and L23 respectively. These proteins are essential components of the protein synthesis apparatus of the cell and as such are required for proliferation. These constructs were used to test the effect of antisense transcription on cell sensitivity to antibiotics known to bind to the ribosome and thereby inhibit protein synthesis. Constructs transcribing antisense RNA to several other genes (elaD, visC, yohH, and atpE/B), the products of which are not involved in protein synthesis were used for comparison.

First, pLex5BA (Krause et al., J. Mol. Biol. 274: 365 (1997)) vectors containing antisense constructs to either *rplW* or to *elaD* were introduced into separate *E. coli* cell populations. Vector introduction is a technique well known to those of ordinary skill in the art. The vectors of this example contain IPTG inducible promoters that drive the transcription of the antisense RNA in the presence of the inducer. However, those skilled in the art will appreciate that other inducible promoters may also be used. Suitable vectors are also well known in the art. Antisense clones to genes encoding different ribosomal proteins or to genes encoding proteins that are not involved in protein synthesis were utilized to test the effect of antisense transcription on cell sensitivity to the antibiotics known to bind to ribosomal proteins and inhibit protein synthesis. Antisense nucleic acids comprising a nucleotide sequence complementarty to the *elaD*, *atpB&atpE*, *visC* and *yohH* genes are referred to as AS-*elaD*, AS-*atpB/E*, AS-*visC*, AS-*yohH* respectively. These genes are not known to be involved in protein synthesis. Antisense nucleic acids to the *rplL*, *rplL&rplJ* and *rplW* genes are referred to as AS-*rplL*, AS-*rplL/J*, and AS-*rplW* respectively. These genes encode ribosomal proteins L7/L12 (*rplL*) L10 (*rplJ*) and L23 (*rplW*). Vectors containing these antisense nucleic acids were introduced into separate *E. coli* cell populations.

The cell populations containing vectors producing AS-elaD or AS-rplW were exposed to a range of IPTG concentrations in liquid medium to obtain the growth inhibitory dose curve for each clone (Fig. 1). First, seed cultures were grown to a particular turbidity measured by the optical density (OD) of the growth solution. The OD of the solution is directly related to the number of bacterial cells contained therein. Subsequently, sixteen 200 µl liquid medium cultures were grown in a 96 well microtiter plate at 37° C with a range of IPTG concentrations in duplicate two-fold

5

10

15

20

25

30

35

serial dilutions from 1600 uM to 12.5 µM (final concentration). Additionally, control cells were grown in duplicate without IPTG. These cultures were started from an inoculum of equal amounts of cells derived from the same initial seed culture of a clone of interest. The cells were grown for up to 15 hours and the extent of growth was determined by measuring the optical density of the cultures at 600 nm. When the control culture reached mid-log phase the percent growth (relative to the control culture) for each of the IPTG containing cultures was plotted against the log concentrations of IPTG to produce a growth inhibitory dose response curve for the IPTG. The concentration of IPTG that inhibits cell growth to 50% (IC₅₀) as compared to the 0 mM IPTG control (0% growth inhibition) was then calculated from the curve. Under these conditions, an amount of antisense RNA was produced that reduced the expression levels of *rplW* or *elaD* to a degree such that growth of cells containing their respective antisense vectors was inhibited by 50%.

Alternative methods of measuring growth are also contemplated. Examples of these methods include measurements of proteins, the expression of which is engineered into the cells being tested and can readily be measured. Examples of such proteins include green fluorescent protein (GFP), luciferase, and various enzymes.

Cells were pretreated with the selected concentration of IPTG and then used to test the sensitivity of cell populations to tetracycline, erythromycin and other known protein synthesis inhibitors. Figure 1 is an IPTG dose response curve in *E. coli* transformed with an IPTG-inducible plasmid containing either an antisense clone to the *E. coli rplW* gene (AS-*rplW*) which encodes ribosomal protein L23 which is required for protein synthesis and essential for cell proliferation, or an antisense clone to the *elaD* (AS-*elaD*) gene which is not known to be involved in protein synthesis.

An example of a tetracycline dose response curve is shown in Figures 2A and 2B for the rplW and elaD genes, respectively. Cells were grown to log phase and then diluted into medium alone or medium containing IPTG at concentrations which give 20% and 50% growth inhibition as determined by IPTG dose response curves. After 2.5 hours, the cells were diluted to a final OD₆₀₀ of 0.002 into 96 well plates containing (1) +/- IPTG at the same concentrations used for the 2.5 hour pre-incubation; and (2) serial two-fold dilutions of tetracycline such that the final concentrations of tetracycline range from 1 μ g/ml to 15.6 μ g/ml and 0 μ g/ml. The 96 well plates were incubated at 37°C and the OD₆₀₀ was read by a plate reader every 5 minutes for up to 15 hours. For each IPTG concentration and the no IPTG control, tetracycline dose response curves were determined when the control (absence of tetracycline) reached 0.1 OD₆₀₀.

To compare tetracycline sensitivity with and without IPTG, tetracycline IC_{50s} were determined from the dose response curves (Figs. 3A-B). Cells transcribing antisense nucleic acids AS-*rplL* or AS-*rplW* to genes encoding ribosomal proteins L7/L12 and L23 respectively showed increased sensitivity to tetracycline (Fig. 2A) as compared to cells with reduced levels of the *elaD*

5

10

15

20

25

30

35

gene product (AS-elaD) (Fig. 2B). Figure 3 shows a summary bar chart in which the ratios of tetracycline IC_{50s} determined in the presence of IPTG which gives 50% growth inhibition versus tetracycline IC_{50s} determined without IPTG (fold increase in tetracycline sensitivity) were plotted. Cells with reduced levels of either L7/L12 (encoded by genes rplL, rplJ) or L23 (encoded by the rplW gene) showed increased sensitivity to tetracycline (Fig. 3). Cells expressing antisense to genes not known to be involved in protein synthesis (AS-atpB/E, AS-visC, AS-elaD, AS-yohH) did not show the same increased sensitivity to tetracycline, validating the specificity of this assay (Fig. 3).

In addition to the above, it has been observed in initial experiments that clones transcribing antisense RNA to genes involved in protein synthesis (including genes encoding ribosomal proteins L7/L12 & L10, L7/L12 alone, L22, and L18, as well as genes encoding rRNA and Elongation Factor G) have increased sensitivity to the macrolide, erythromycin, whereas clones transcribing antisense to the non-protein synthesis genes *elaD*, *atpB/E* and *visC* do not. Furthermore, the clone transcribing antisense to *rplL* and *rplJ* (AS-*rplL/J*) does not show increased sensitivity to nalidixic acid and ofloxacin, antibiotics which do not inhibit protein synthesis.

The results with the ribosomal protein genes rplL, rplJ, and rplW as well as the initial results using various other antisense clones and antibiotics show that limiting the concentration of an antibiotic target makes cells more sensitive to the antimicrobial agents that specifically interact with that protein. The results also show that these cells are sensitized to antimicrobial agents that inhibit the overall function in which the protein target is involved but are not sensitized to antimicrobial agents that inhibit other functions. It will be appreciated that the cell-based assays described above may be implemented using the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi antisense nucleotide sequences which inhibit the activity of genes required for proliferation described herein (including the antisense nucleic acids of SEQ ID NOs.: 8-3795) or antisense nucleic acids comprising nucleotide sequences which are complementary to the sequences of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 or portions thereof.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa,

Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides may be reduced.

5

10

15

20

25

30

35

The cell-based assay described above may also be used to identify the biological pathway in which a proliferation-required nucleic acid or its gene product lies. In such methods, cells transcribing a sub-lethal level of antisense to a target proliferation-required nucleic acid and control cells in which transcription of the antisense has not been induced are contacted with a panel of antibiotics known to act in various pathways. If the antibiotic acts in the pathway in which the target proliferation-required nucleic acid or its gene product lies, cells in which transcription of the antisense has been induced will be more sensitive to the antibiotic than cells in which expression of the antisense has not been induced.

As a control, the results of the assay may be confirmed by contacting a panel of cells transcribing antisense nucleic acids to many different proliferation-required genes including the target proliferation-required gene. If the antibiotic is acting specifically, heightened sensitivity to the antibiotic will be observed only in the cells transcribing antisense to a target proliferation-required gene (or cells expressing antisense to other proliferation-required genes in the same pathway as the target proliferation-required gene) but will not be observed generally in all cells expressing antisense to proliferation-required genes.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, or the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids comprising nucleotide sequences complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.

Similarly, the above method may be used to determine the pathway on which a test compound, such as a test antibiotic acts. A panel of cells, each of which transcribes an antisense to a proliferation-required nucleic acid in a known pathway, is contacted with a compound for which it is desired to determine the pathway on which it acts. The sensitivity of the panel of cells to the test compound is determined in cells in which transcription of the antisense has been induced and in control cells in which expression of the antisense has not been induced. If the test compound acts on the pathway on which an antisense nucleic acid acts, cells in which expression of the antisense

has been induced will be more sensitive to the compound than cells in which expression of the antisense has not been induced. In addition, control cells in which expression of antisense to proliferation-required genes in other pathways has been induced will not exhibit heightened sensitivity to the compound. In this way, the pathway on which the test compound acts may be determined.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids comprising nucleotide sequences complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110) or homologous polypeptides may be reduced.

The Example below provides one method for performing such assays.

20 **EXAMPLE 10**

Identification of the Pathway in which a Proliferation-Required

Gene Lies or the Pathway on which an Antibiotic Acts

A. Preparation of Bacterial Stocks for Assay

5

10

15

25

30

35

To provide a consistent source of cells to screen, frozen stocks of host bacteria containing the desired antisense construct are prepared using standard microbiological techniques. For example, a single clone of the microorganism can be isolated by streaking out a sample of the original stock onto an agar plate containing nutrients for cell growth and an antibiotic for which the antisense construct contains a selectable marker which confers resistance. After overnight growth an isolated colony is picked from the plate with a sterile needle and transferred to an appropriate liquid growth medium containing the antibiotic required for maintenance of the plasmid. The cells are incubated at 30°C to 37°C with vigorous shaking for 4 to 6 hours to yield a culture in exponential growth. Sterile glycerol is added to 15% (volume to volume) and 100µL to 500 µL aliquots are distributed into sterile cryotubes, snap frozen in liquid nitrogen, and stored at -80°C for future assays.

B. Growth of Bacteria for Use in the Assay

A day prior to an assay, a stock vial is removed from the freezer, rapidly thawed (37°C water bath) and a loop of culture is streaked out on an agar plate containing nutrients for cell growth and an antibiotic to which the selectable marker of the antisense construct confers resistance. After overnight growth at 37°C, ten randomly chosen, isolated colonies are transferred from the plate (sterile inoculum loop) to a sterile tube containing 5 mL of LB medium containing the antibiotic to which the antisense vector confers resistance. After vigorous mixing to form a homogeneous cell suspension, the optical density of the suspension is measured at 600 nm (OD₆₀₀) and if necessary an aliquot of the suspension is diluted into a second tube of 5 mL, sterile, LB medium plus antibiotic to achieve an OD₆₀₀ \leq 0.02 absorbance units. The culture is then incubated at 37° C for 1-2 hrs with shaking until the OD₆₀₀ reaches OD 0.2 – 0.3. At this point the cells are ready to be used in the assay.

C. Selection of Media to be Used in Assay

5

10

15

20

25

30

35

Two-fold dilution series of the inducer are generated in culture media containing the appropriate antibiotic for maintenance of the antisense construct. Several media are tested side by side and three to four wells are used to evaluate the effects of the inducer at each concentration in each media. For example, LB broth, TBD broth and Muller-Hinton media may be tested with the inducer xylose at the following concentrations, 5 mM, 10 mM, 20 mM, 40 mM, 80 mM, 120 mM and 160 mM. Equal volumes of test media-inducer and cells are added to the wells of a 384 well microtiter plate and mixed. The cells are prepared as described above and diluted 1:100 in the appropriate media containing the test antibiotic immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells of each media that do not contain inducer, for example 0 mM xylose. Cell growth is monitored continuously by incubation at 37°C in a microtiter plate reader monitoring the OD₆₀₀ of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of inducer is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without inducer. The medium yielding greatest sensitivity to inducer is selected for use in the assays described below.

D. Measurement of Test Antibiotic Sensitivity in the Absence of Antisense Construct Induction

Two-fold dilution series of antibiotics of known mechanism of action are generated in the culture medium selected for further assay development that has been supplemented with the antibiotic used to maintain the construct. A panel of test antibiotics known to act on different pathways is tested side by side with three to four wells being used to evaluate the effect of a test antibiotic on cell growth at each concentration. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the medium selected for assay development supplemented with the antibiotic required to maintain the antisense construct and are diluted 1:100 in identical medium immediately prior to addition to the microtiter plate wells. For a control, cells are also added to several wells that lack antibiotic,

but contain the solvent used to dissolve the antibiotics. Cell growth is monitored continuously by incubation at 37° C in a microtiter plate reader monitoring the OD₆₀₀ of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without antibiotic. A plot of percent inhibition against log[antibiotic concentration] allows extrapolation of an IC₅₀ value for each antibiotic.

E. Measurement of Test Antibiotic Sensitivity in the Presence of Antisense Construct Inducer

The culture medium selected for use in the assay is supplemented with inducer at concentrations shown to inhibit cell growth by 50% and 80% as described above, as well as the antibiotic used to maintain the construct. Two-fold dilution series of the panel of test antibiotics used above are generated in each of these media. Several antibiotics are tested side by side in each medium with three to four wells being used to evaluate the effects of an antibiotic on cell growth at each concentration. Equal volumes of test antibiotic and cells are added to the wells of a 384 well microtiter plate and mixed. Cells are prepared as described above using the medium selected for use in the assay supplemented with the antibiotic required to maintain the antisense construct. The cells are diluted 1:100 into two 50 mL aliquots of identical medium containing concentrations of inducer that have been shown to inhibit cell growth by 50% and 80 % respectively and incubated at 37°C with shaking for 2.5 hours. Immediately prior to addition to the microtiter plate wells, the cultures are adjusted to an appropriate OD₆₀₀ (typically 0.002) by dilution into warm (37°C) sterile medium supplemented with identical concentrations of the inducer and antibiotic used to maintain the antisense construct. For a control, cells are also added to several wells that contain solvent used to dissolve test antibiotics but which contain no antibiotic. Cell growth is monitored continuously by incubation at 37°C in a microtiter plate reader monitoring the OD₆₀₀ of the wells over an 18-hour period. The percent inhibition of growth produced by each concentration of antibiotic is calculated by comparing the rates of logarithmic growth against that exhibited by cells growing in medium without antibiotic. A plot of percent inhibition against log[antibiotic concentration] allows extrapolation of an IC₅₀ value for each antibiotic.

F. Determining the Specificity of the Test Antibiotics

5

10

15

20

25

30

A comparison of the IC₅₀s generated by antibiotics of known mechanism of action under antisense induced and non-induced conditions allows the pathway in which a proliferation-required nucleic acid lies to be identified. If cells expressing an antisense nucleic acid comprising a nucleotide sequence complementary to a proliferation-required gene are selectively sensitive to an antibiotic acting via a particular pathway, then the gene against which the antisense acts is involved in the pathway on which the antibiotic acts.

35 G. Identification of Pathway in which a Test Antibiotic Acts

5

10

15

20

25

30

35

As discussed above, the cell-based assay may also be used to determine the pathway against which a test antibiotic acts. In such an analysis, the pathways against which each member of a panel of antisense nucleic acids acts are identified as described above. A panel of cells, each containing an inducible vector which transcribes an antisense nucleic acid comprising a nucleotide sequence complementary to a gene in a known proliferation-required pathway, is contacted with a test antibiotic for which it is desired to determine the pathway on which it acts under inducing and non-inducing conditions. If heightened sensitivity is observed in induced cells transcribing antisense complementary to a gene in a particular pathway but not in induced cells transcribing antisense nucleic acids comprising nucleotide sequences complementary to genes in other pathways, then the test antibiotic acts against the pathway for which heightened sensitivity was observed.

One skilled in the art will appreciate that further optimization of the assay conditions, such as the concentration of inducer used to induce antisense transcription and/or the growth conditions used for the assay (for example incubation temperature and medium components) may further increase the selectivity and/or magnitude of the antibiotic sensitization exhibited.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids comprising nucleotide sequences complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, (including antisense nucleic acids comprising nucleotide sequences complemenatary to SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.

The following example confirms the effectiveness of the methods described above.

EXAMPLE 11

Identification of the Biological Pathway in which a Proliferation-Required Gene Lies

The effectiveness of the above assays was validated using proliferation-required genes from E. coli which were identified using procedures similar to those described above. Antibiotics of various chemical classes and modes of action were purchased from Sigma Chemicals (St. Louis, MO). Stock solutions were prepared by dissolving each antibiotic in an appropriate aqueous solution based on information provided by the manufacturer. The final working solution of each

5

10

15

20

25

30

35

antibiotic contained no more than 0.2% (w/v) of any organic solvent. To determine their potency against a bacterial strain engineered for transcription of an antisense comprising a nucleotide sequence complementary to a proliferation-required 50S ribosomal protein, each antibiotic was serially diluted two- or three- fold in growth medium supplemented with the appropriate antibiotic for maintenance of the antisense construct. At least ten dilutions were prepared for each antibiotic. 25 µL aliquots of each dilution were transferred to discrete wells of a 384-well microplate (the assay plate) using a multi-channel pipette. Quadruplicate wells were used for each dilution of an antibiotic under each treatment condition (plus and minus inducer). Each assay plate contained twenty wells for cell growth controls (growth medium replacing antibiotic), ten wells for each treatment (plus and minus inducer, in this example IPTG). Assay plates were usually divided into the two treatments: half the plate containing induced cells and an appropriate concentrations of inducer (in this example IPTG) to maintain the state of induction, the other half containing non-induced cells in the absence of IPTG.

Cells for the assay were prepared as follows. Bacterial cells containing a construct, from which transcription of antisense nucleic acid comprising a nucleotide sequence complementary to rplL and rplJ (AS-rplL/J), which encode proliferation-required 50S ribosomal subunit proteins, is inducible in the presence of IPTG, were grown into exponential growth (OD600 0.2 to 0.3) and then diluted 1:100 into fresh medium containing either 400 µM or 0 µM inducer (IPTG). These cultures were incubated at 37° C for 2.5 hr. After a 2.5 hr incubation, induced and non-induced cells were respectively diluted into an assay medium at a final OD₆₀₀ value of 0.0004. The medium contained an appropriate concentration of the antibiotic for the maintenance of the antisense construct. In addition, the medium used to dilute induced cells was supplemented with 800 µM IPTG so that addition to the assay plate would result in a final IPTG concentration of 400 µM. Induced and noninduced cell suspensions were dispensed (25 µl/well) into the appropriate wells of the assay plate as discussed previously. The plate was then loaded into a plate reader, incubated at constant temperature, and cell growth was monitored in each well by the measurement of light scattering at 595 nm. Growth was monitored every 5 minutes until the cell culture attained a stationary growth phase. For each concentration of antibiotic, a percentage inhibition of growth was calculated at the time point corresponding to mid-exponential growth for the associated control wells (no antibiotic, plus or minus IPTG). For each antibiotic and condition (plus or minus IPTG), a plot of percent inhibition versus log of antibiotic concentration was generated and the IC₅₀ determined. A comparison of the IC₅₀ for each antibiotic in the presence and absence of IPTG revealed whether induction of the antisense construct sensitized the cell to the mechanism of action exhibited by the antibiotic. Cells which exhibited a statistically significant decrease in the IC50 value in the presence of inducer were considered to have an increased sensitivity to the test antibiotic.

The results are provided in the table below, which lists the classes and names of the antibiotics used in the analysis, the targets of the antibiotics, the IC_{50} in the absence of IPTG, the IC_{50} in the presence of IPTG, the concentration units for the IC_{50s} , the fold increase in IC_{50} in the presence of IPTG, and whether increased sensitivity was observed in the presence of IPTG.

5

TABLE III
Effect of Expression of Antisense RNA to rplL and rplJ on Antibiotic Sensitivity

ער זיס זיסיי	EXECT OF EADICSTON OF ANTISCUSE TO THE MINITEST OF ANTIQUES SOLISINY IN	מוח לוח ביים מווי	מומה אומות אוני	ALL VALLY		
ANTIBIOTIC CLASS /Names	TARGET	1Ç ₆ (-IPTG)	IC _{s0} (+IPTG)	Conc. Unit	Fold Increase in Sensitivity	Sensitivity Increased?
PROTEIN SYNTHESIS INHIBITOR						
AMINOGLYCOSIDES						
Gentamicin	30S ribosome function	2715	19.19	ng/ml	141	Yes
Streptomycin	30S ribosome function	11280	161	ng/ml	70	Yes
Spectinomycin	30S ribosome function	18050	<156	ng/ml		Yes
Tobramycin	30S ribosome function	3594	70.58	ng/ml	51	Yes
MACROLIDES						
Erythromycin	50S ribosome function	7467	187	ng/ml	40	Yes
AROMATIC POYKETIDES						
Tetracycline	30S ribosome function	199.7	1.83	ng/ml	109	Yes
Minocycline	30S ribosome function	668.4	3.897	ng/ml	172	Yes
Doxycycline	30S ribosome function	413.1	27.81	ng/ml	15	Yes
OTHER PROTEIN SYNTHESIS INHIBITORS						
Fusidic acid	Elongation Factor G function	29990	641	ng/ml	94	Yes
Chloramphenicol	30S ribosome function	465.4	1.516	ng/ml	307	Yes
Lincomycin	50S ribosome function	47150	324.2	ng/ml	145	Yes
OTHER ANTIBIOTIC MECHANISMS				,		
B-LACTAMS						-
Cefoxitin	Cell wall biosynthesis	2782	2484	ng/ml	-	N _o
Cefotaxime	Cell wall biosynthesis	24.3	24.16	ng/ml		No
DNA SYNTHESIS INHIBITORS				•		
Nalidixic acid	DNA Gyrase activity	6973	6025	ng/ml	-	N _o
Ofloxacin	DNA Gyrase activity	49.61	45.89	ng/ml	-	No
OTHER						
Bacitracin	Cell membrane function	4077	4677	mg/ml	-	S.
Trimethoprim	Dihydrofolate Reductase activity	128.9	181.97	ng/ml	-	% N
Vancomycin	Cell wall biosynthesis	145400	72550	lm/gu	7	N _o
					ļ-	

5

10

15

20

25

30

35

The above results demonstrate that induction of an antisense RNA complementary to genes encoding 50S ribosomal subunit proteins results in a selective and highly significant sensitization of cells to antibiotics that inhibit ribosomal function and protein synthesis. The above results further demonstrate that induction of an antisense to an essential gene sensitizes a cell or microorganism to compounds that interfere with that gene product's biological role. This sensitization is restricted to compounds that interfere with pathways associated with the targeted gene and its product.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi i (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.

Example 11A below describes an analysis performed in Staphylococcus aureus.

EXAMPLE 11A

<u>Identification of the Biological Pathway in which a Gene Required for</u> <u>Proliferation of Staphylococcus aureus Lies</u>

Antibiotics of various chemical classes and modes of action were purchased from chemical suppliers, for example Sigma Chemicals (St. Louis, MO). Stock solutions were prepared by dissolving each antibiotic in an appropriate aqueous solution based on information provided by the manufacturer. The final working solution of each antibiotic contained no more than 0.2% (w/v) of any organic solvent.

To determine its potency against a bacterial strain containing an antisense nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence encoding the Beta subunit of DNA gyrase (which is required for proliferation) under the control of a xylose inducible promoter, each antibiotic was serially diluted two- or three- fold in growth medium supplemented with the appropriate antibiotic for maintenance of the antisense construct. At least ten dilutions were prepared for each antibiotic.

Aliquots (25 µL) of each dilution were transferred to discrete wells of a 384-well microplate (the assay plate) using a multi-channel pipette. Quadruplicate wells were used for each dilution of an antibiotic under each treatment condition (plus and minus inducer). Each assay plate

contained twenty wells for cell growth controls (growth medium, no antibiotic), ten wells for each treatment (plus and minus inducer, xylose, in this example). Half the assay plate contained induced cells (in this example *Staphylococcus aureus* cells) and appropriate concentrations of inducer (xylose, in this example) to maintain the state of induction while the other half of the assay plate contained non-induced cells maintained in the absence of inducer.

Preparation of Bacterial Cells

5

10

15

20

25

30

35

Cells of a bacterial clone containing a construct in which transcription of antisense comprising a nucleotide sequence complementary to the sequence encoding the Beta subunit of DNA gyrase under the control of the xylose inducible promoter (S1M10000001F08) were grown into exponential growth (OD₆₀₀ 0.2 to 0.3) and then diluted 1:100 into fresh medium containing either 12 mM or 0 mM inducer (xylose). These cultures were incubated at 37° C for 2.5 hr. The presence of inducer (xylose) in the medium initiates and maintains production of antisense RNA from the antisense construct. After a 2.5 hr incubation, induced and non-induced cells were respectively diluted into an assay medium containing an appropriate concentration of the antibiotic for the maintenance of the antisense construct. In addition, medium used to dilute induced cells was supplemented with 24 mM xylose so that addition to the assay plate would result in a final xylose concentration of 12 mM. The cells were diluted to a final OD₆₀₀ value of 0.0004.

Induced and non-induced cell suspensions were dispensed (25 µl/well) into the appropriate wells of the assay plate as discussed previously. The plate was then loaded into a plate reader and incubated at constant temperature while cell growth was monitored in each well by the measurement of light scattering at 595 nm. Growth was monitored every 5 minutes until the cell culture attained a stationary growth phase. For each concentration of antibiotic, a percentage inhibition of growth was calculated at the time point corresponding to mid-exponential growth for the associated control wells (no antibiotic, plus or minus xylose). For each antibiotic and condition (plus or minus xylose), plots of percent inhibition versus Log of antibiotic concentration were generated and IC_{50s} determined.

A comparison of each antibiotic's IC₅₀ in the presence and absence of inducer (xylose, in this example) reveals whether induction of the antisense construct sensitized the cell to the antibiotic's mechanism of action. If the antibiotic acts against the β subunit of DNA gyrase, the IC₅₀ of induced cells will be significantly lower than the IC₅₀ of uninduced cells.

Figure 4 lists the antibiotics tested, their targets, and their fold increase in potency between induced cells and uninduced cells. As illustrated in Figure 4, the potency of cefotaxime, cefoxitin, fusidic acid, lincomycin, tobramycin, trimethoprim and vancomycin, each of which act on targets other than the β subunit of gyrase, was not significantly different in induced cells as compared to uninduced cells. However, the potency of novobiocin, which is known to act against the Beta subunit of DNA gyrase, was significantly different between induced cells and uninduced cells.

5

10

15

20

25

30

35

Thus, induction of an antisense nucleic acid comprising a nucleotide sequence complementary to the sequence encoding the β subunit of gyrase results in a selective and significant sensitization of *Staphylococcus aureus* cells to an antibiotic which inhibits the activity of this protein. Furthermore, the results demonstrate that induction of an antisense construct to an essential gene sensitizes a cell or microorganism to compounds that interfere with that gene product's biological role. This sensitization is apparently restricted to compounds that interfere with the targeted gene and its product.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs. 8-3795), or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides may be reduced.

Assays utilizing antisense constructs to essential genes or portions thereof can be used to identify compounds that interfere with the activity of those gene products. Such assays could be used to identify drug leads, for example antibiotics.

Panels of cells transcribing different antisense nucleic acids can be used to characterize the point of intervention of a compound affecting an essential biochemical pathway including antibiotics with no known mechanism of action.

Assays utilizing antisense constructs to essential genes can be used to identify compounds that specifically interfere with the activity of multiple targets in a pathway. Such constructs can be used to simultaneously screen a sample against multiple targets in one pathway in one reaction (Combinatorial HTS).

Furthermore, as discussed above, panels of antisense construct-containing cells may be used to characterize the point of intervention of any compound affecting an essential biological pathway including antibiotics with no known mechanism of action.

It will be appreciated that the above cell-based assays may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids comprising nucleotide sequences

5

10

15

20

25

30

35

complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs. 8-3795), or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or homologous polypeptides may be reduced.

Another embodiment of the present invention is a method for determining the pathway against which a test antibiotic compound is active, in which the activity of target proteins or nucleic acids involved in proliferation-required pathways is reduced by contacting cells with a sub-lethal concentration of a known antibiotic which acts against the target protein or nucleic acid. In one embodiment, the target protein or nucleic acid corresponds to a proliferation-required nucleic acid identified using the methods described above, such as the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110, or homologous polypeptides. The method is similar to those described above for determining which pathway a test antibiotic acts against, except that rather than reducing the activity or level of a proliferation-required gene product using a sub-lethal level of antisense to a proliferation-required nucleic acid, the sensitized cell is generated by reducing the activity or level of the proliferation-required gene product using a sub-lethal level of a known antibiotic which acts against the proliferation required gene product. Heightened sensitivity determines the pathway on which the test compound is active.

Interactions between drugs which affect the same biological pathway have been described in the literature. For example, Mecillinam (Amdinocillin) binds to and inactivates the penicillin binding protein 2 (PBP2, product of the mrdA in E. coli). This antibiotic interacts with other antibiotics that inhibit PBP2 as well as antibiotics that inhibit other penicillin binding proteins such as PBP3 [(Gutmann, L., Vincent, S., Billot-Klein, D., Acar, J.F., Mrena, E., and Williamson, R. (1986) Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some beta-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrobial Agents & Chemotherapy, 30:906-912)]. Interactions between drugs could, therefore, involve two drugs that inhibit the same target protein or nucleic acid or inhibit different proteins or nucleic acids in the same pathway [(Fukuoka, T., Domon, H., Kakuta, M., Ishii, C., Hirasawa, A., Utsui, Y., Ohya, S., and Yasuda, H. (1997) Combination effect between panipenem and vancomycin on highly methicillin-resistant Staphylococcus aureus. Japan. J. Antibio. 50:411-419; Smith, C.E., Foleno, B.E., Barrett, J.F., and Frosc, M.B. (1997) Assessment of the synergistic interactions of levofloxacin and ampicillin against Enterococcus faecium by the checkerboard agar dilution and time-kill methods. Diagnos. Microbiol. Infect. Disease 27:85-92; den Hollander, J.G., Horrevorts, A.M., van Goor, M.L., Verbrugh, H.A., and Mouton, J.W. (1997)

5

10

· 15

20

25

30

35

Synergism between tobramycin and ceftazidime against a resistant *Pseudomonas aeruginosa* strain, tested in an in vitro pharmacokinetic model. Antimicrobial Agents & Chemotherapy. 41:95-110)].

Two drugs may interact even though they inhibit different targets. For example, the proton pump inhibitor, Omeprazole, and the antibiotic, Amoxycillin, two synergistic compounds acting together, can cure *Helicobacter pylori* infection [(Gabryelewicz, A., Laszewicz, W., Dzieniszewski, J., Ciok, J., Marlicz, K., Bielecki, D., Popiela, T., Legutko, J., Knapik, Z., Poniewierka, E. (1997) Multicenter evaluation of dual-therapy (omeprazol and amoxycillin) for *Helicobacter pylori*-associated duodenal and gastric ulcer (two years of the observation). J. Physiol. Pharmacol. 48 Suppl 4:93-105)].

The growth inhibition from the sub-lethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.

Alternatively, the sub-lethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.

Cells are contacted with a combination of each member of a panel of known antibiotics at a sub-lethal level and varying concentrations of the test antibiotic. As a control, the cells are contacted with varying concentrations of the test antibiotic alone. The IC₅₀ of the test antibiotic in the presence and absence of the known antibiotic is determined. If the IC₅₀s in the presence and absence of the known drug are substantially similar, then the test drug and the known drug act on different pathways. If the IC₅₀s are substantially different, then the test drug and the known drug act on the same pathway.

It will be appreciated that the above cell-based assays may be performed using a sub-lethal concentration of a known antibiotic which acts against the product of any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the products of SEQ ID NOs: 3796-3800, 3806-4860, 5916-10012, or portions thereof, or the products of homologous coding nucleic acids or portions thereof. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi (including the polypeptides of SEQ ID NOs.: 3801-3805, 4861-5915, 10013-14110), or homologous polypeptides may be reduced.

Another embodiment of the present invention is a method for identifying a candidate compound for use as an antibiotic in which the activity of target proteins or nucleic acids involved in proliferation-required pathways is reduced by contacting cells with a sub-lethal concentration of

5

10

15

20

25

a known antibiotic which acts against the target protein or nucleic acid. In one embodiment, the target protein or nucleic acid is a target protein or nucleic acid corresponding to a proliferation-required nucleic acid identified using the methods described above. The method is similar to those described previously herein for identifying candidate compounds for use as antibiotics except that rather than reducing the activity or level of a proliferation-required gene product using a sub-lethal level of antisense to a proliferation-required nucleic acid, the activity or level of the proliferation-required gene product is reduced using a sub-lethal level of a known antibiotic which acts against the proliferation required gene product.

The growth inhibition from the sub-lethal concentration of the known antibiotic may be at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or at least about 75%, or more.

Alternatively, the sub-lethal concentration of the known antibiotic may be determined by measuring the activity of the target proliferation-required gene product rather than by measuring growth inhibition.

In order to characterize test compounds of interest, cells are contacted with a panel of known antibiotics at a sub-lethal level and one or more concentrations of the test compound. As a control, the cells are contacted with the same concentrations of the test compound alone. The IC₅₀ of the test compound in the presence and absence of the known antibiotic is determined. If the IC₅₀ of the test compound is substantially different in the presence and absence of the known drug then the test compound is a good candidate for use as an antibiotic. As discussed above, once a candidate compound is identified using the above methods its structure may be optimized using standard techniques such as combinatorial chemistry.

Representative known antibiotics which may be used in each of the above methods are provided in Table IV below. However, it will be appreciated that other antibiotics may also be used.

TABLE IV

Antibiotics and Their Targets

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT MUTANTS
Inhibitors of Transcription		
Rifamycin, Rifampicin Rifabutin Rifaximin	Inhibits initiation of transcription/B-subunit RNA polymerase, rpoB	rpoB, crp, cyaA
Streptolydigin	Accelerates transcription chain termination/B-subunit RNA polymerase	rpoB
Streptovaricin	an acyclic ansamycin, inhibits RNA polymerase	гроВ
Actinomycin D+EDTA	Intercalates between 2 successive G-C pairs, rpoB, inhibits RNA synthesis	pldA

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT
L		MUTANTS
Inhibitors of Nucleic Acid N	Aetabolism .	
Quinolones,	subunit gyrase and/or topoisomerase	
Nalidixic acid Oxolinic acid	IV, gyrA	gyrAorB, icd, sloB
Fluoroquinolones	subunit gyrase, gyrA and/or	gyrA
Ciprofloxacin,	topoisomerase IV (probable target in	norA (efflux in
Norfloxacin	Staph)	Staph)
Coumerins	Inhibits ATPase activity of B-subunit	hipQ
Novobiocin	gyrase, gyrB	gyrB, cysB, cysE, nov, ompA
Coumermycin	Inhibits ATPase activity of \(\mathcal{B}\)-subunit gyrase, \(gyrB \)	gyrB, hisW
Albicidin	DNA synthesis	tsx (nucleoside channel)
Metronidazole	Causes single-strand breaks in DNA	nar
Inhibitors of Metabolic Patl	hways	
Sulfonamides,	blocks synthesis of	folP, gpt, pabA,
Sulfanilamide	dihydrofolate, dihydro-pteroate synthesis, folP	pabB, pabC
Trimethoprim,	Inhibits dihydrofolate reductase, folA	folA, thyA
Showdomycin	Nucleoside analogue capable of	nupC, pnp
ono madiny em	alkylating sulfhydryl groups, inhibitor of thymidylate synthetase	napo, pnp
Thiolactomycin	type II fatty acid synthase inhibitor	emrB
•	,	fadB, emrB due to gene dosage
Psicofuranine	Adenosine glycoside antibiotic, target is GMP synthetase	guaA,B
Triclosan	Inhibits fatty acid synthesis	fabI (envM)
Diazoborines Isoniazid,	heterocyclic, contain boron, inhibit fatty	fabl (envM)
Ethionamide	acid synthesis, enoyl-ACP reductase, fabI	. , ,
Inhibitors of Translation		
Phenylpropanoids	Binds to ribosomal peptidyl transfer	
Chloramphenicol,	center preventing peptide translocation/	rrn, cmlA, marA,
- ,	binds to S6, L3, L6, L14, L16, L25,	ompF, ompR
	L26, L27, but preferentially to L16	•
Tetracyclines, type II	Binding to 30S ribosomal subunit, "A" si	clmA (cmr), mar,
polyketides	on 30S subunit, blocks peptide	ompF
Minocycline	elongation, strongest binding to S7	•
Doxycycline	Th. 11 4. 50 m 11 1 1 1 1 1 1	
Macrolides (type I	Binding to 50 S ribosomal subunit, 23S	
polyketides)	rRNA, blocks peptide translocation,	www. wm1C1D117
Erythromycin, Carbomycin,	L15, L4, L12	rrn, rplC, rplD, rplV, mac
Spiramycin etc		

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT
		MUTANTS
Aminoglycosides	Irreversible binding to 30S ribosomal	
Streptomycin,	subunit, prevents translation or causes	rpsL, strC,M, ubiF
Neomycin	mistranslation of mRNA/16S rRNA	atpA-E, ecfB, hemAC,D,E,G, topA,_
Spectinomycin		rpsC,D,E, rrn, spcB atpA-atpE, cpxA,
Kanamycin		ecfB, hemA,B,L, topA
Kasugamycin		ksgA,B,C,D, rplB,K, rpsI,N,M,R rplF, ubiF
Gentamicin,		cpxA
Amikacin		rpsL
Paromycin	D. I	7 202
Lincosamides	Binding to 50 S ribosomal subunit,	tin two a
Lincomycin,	blocks peptide translocation	linB, rplN,O, rpsG
Clindamycin Streptogramins	2 components, Streptogramins A&B,	
Virginiamycin,	bind to the 50S ribosomal subunit	
Pristinamycin	blocking peptide translocation and	
Synercid: quinupristin	peptide bond formation	
/dalfopristin	1 1	
Fusidanes	Inhibition of elongation factor G (EF-G)	fusA .
Fusidic Acid	prevents peptide translocation	
Kirromycin (Mocimycin)	Inhibition of elongation factor TU (EF-	tufA,B
	Tu), prevents peptide bond formation	
Pulvomycin	Binds to and inhibits EF-TU	
Thiopeptin	Sulfur-containing antibiotic, inhibits protein synthesis, EF-G	rplE
Tiamulin	Inhibits protein synthesis	rplC, rplD
Negamycin	Inhibits termination process of protein synthesis	prfB
Oxazolidinones Linezolid Isoniazid	23S rRNA	
		pdx
Nitrofurantoin	Inhibits protein synthesis, nitroreductases convert	nfnA,B
	nitroferantoin to highly reactive	
	electrophilic intermediates which	
	attack bacterial ribosomal proteins	
	non-specifically	
Pseudomonic Acids	Inhibition of isoleucyl tRNA	ileS
Mupirocin (Bactroban)	synthetase-used for Staph, topical	
-	cream, nasal spray	
Indolmycin	Inhibits tryptophanyl-tRNA synthetase	trpS
Viomycin		rrmA (23S rRNA
		methyltransferase;
		mutant has slow
		growth rate, slow
		chain elongation
		rate, and viomycin
		resistance)

ANTIBIOTIC	INHIBITS/TARGET	RESISTANT MUTANTS
Thiopeptides	Binds to L11-23S RNA complex	
Thiostrepton	Inhibits GTP hydrolysis by EF-G	
Micrococcin	Stimulates GTP hydrolysis by EF-G	
Inhibitors of Cell Walls/Men	nbranes	
B-lactams	Inhibition of one or more cell wall	
Penicillin, Ampicillin	transpeptidases, endopeptidases, and	
Methicillin,	glycosidases (PBPs), of the 12 PBPs only 2 are essential: mrdA (PBP2) and fisI (pbpB, PBP3)	ampC, ampD, ampE, envZ, galU, hipA, hipQ, ompC, ompF, ompR, ptsI, rfa, toID, toIE
Cephalosporins,		tonB
Mecillinam (amdinocillin)	Binds to and inactivates PBP2 (mrdA) Inactivates PBP3 (ftsI)	alaS, argS, crp, cyaA, envB, mrdA,B, mreB,C,D
Aztreonam (Furazlocillin)		
Bacilysin, Tetaine	Dipeptide, inhib glucosamine synthase	dppA
Glycopeptides Vancomycin,	Inhib G+ cell wall syn, binds to terminal D-ala-D-ala of pentapeptide,	
Polypeptides Bacitracin	Prevents dephosphorylation and regeneration of lipid carrier	rfa
Cyclic lipopeptide	Disrupts multiple aspects of	
Daptomycin,	membrane function, including peptidoglycan synthesis, lipoteichoic acid synthesis, and the bacterial membrane potential	
Cyclic polypeptides	Surfactant action disrupts cell	pmrA
Polymixin,	membrane lipids, binds lipid A mioety of LPS	•
Fosfomycin,	Analogue of P-enolpyruvate, inhibits 1 st step in peptidoglycan synthesis - UDP-N-acetylglucosamine enolpyruvyl transferase, <i>murA</i> . Also acts as Immunosuppressant	murA, crp, cyaA glpT, hipA, ptsI, uhpT
Cycloserine	Prevents formation of D-ala dimer, inhibits D-ala ligase, ddlA,B	hipA, cycA
Alafosfalin	phosphonodipeptide, cell wall synthesis inhibitor, potentiator of β -lactams	pepA, tpp
Inhibitors of Protein Process	<u> </u>	
Globomycin	Inhibits signal peptidase II (cleaves prolipoproteins subsequent to lipid modification, <i>lspA</i>	lpp, dnaE

It will be appreciated that the above cell-based assays may be performed using a sub-lethal concentration of a known antibiotic which acts against the product of any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, or homologous nucleic acids. In this way, the level or activity of a target, such as any of the proliferation-required polypeptides from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or homologous polypeptides may be reduced.

EXAMPLE 12

Transfer of Exogenous Nucleic Acid Sequences to other Bacterial Species

15

20

25

The ability of an antisense molecule identified in a first organism to inhibit the proliferation of a second organism (thereby confirming that a gene in the second organism which is homologous to the gene from the first organism is required for proliferation of the second organism) was validated using antisense nucleic acids which inhibit the growth of *E. coli* which were identified using methods similar to those described above. Expression vectors which inhibited growth of *E. coli* upon induction of antisense RNA expression with IPTG were transformed directly into *Enterobacter cloacae*, *Klebsiella pneumonia* or *Salmonella typhimurium*. The transformed cells were then assayed for growth inhibition according to the method of Example 1. After growth in liquid culture, cells were plated at various serial dilutions and a score determined by calculating the log difference in growth for INDUCED vs. UNINDUCED antisense RNA expression as determined by the maximum 10 fold dilution at which a colony was observed. The results of these experiments are listed below in Table V. If there was no effect of antisense RNA expression in a microorganism, the clone is minus in Table V. In contrast, a positive in Table V means that at least 10 fold more cells were required to observe a colony on the induced plate than on the non-induced plate under the conditions used and in that microorganism.

TABLE V

Sensitivity of Other Microorganisms to Antisense Nucleic Acids That Inhibit Proliferation in E. coli

Mol. No.	S. typhimurium	E. cloacae	K. pneumoniae
EcXA001	+	+	-
EcXA004	+	-	
EcXA005	+	+	+
EcXA006	-	-	-
EcXA007	-	+	
EcXA008	+	•	+
EcXA009	-	•	-
EcXA010	+	+	+
EcXA011	-	+	-

Mol. No.	S. typhimurium	E. cloacae	K. pneumoniae
EcXA012	•	+	
EcXA013	+	+	+
EcXA014	+	+	-
EcXA015	+	+	+
EcXA016	+	+	+
EcXA017	+	+	+
EcXA018	+	+	+
EcXA019	+	+	+
EcXA020	+	+	+
EcXA021	+	+	+
EcXA023	+	+	+
EcXA024	+		+
EcXA025	-		-
EcXA026	+	+	_
EcXA020	+	+	-
EcXA027	+	-	•
EcXA028	T	 	
EcXA030	+	+	+
EcXA031	+	T	-
EcXA031 EcXA032	+	+	
EcXA032 EcXA033	+	+	+
EcXA034	+	+	+
	 		
EcXA035	-	<u> </u>	
EcXA036	+		++
EcXA037	+	+	
EcXA038	+	+	+
EcXA039	+	-	-
EcXA041	+	+	+
EcXA042	<u> </u>	+	+
EcXA043	-	<u> </u>	-
EcXA044	-	<u>•</u>	-
EcXA045	+	+	+
EcXA046	<u> </u>	<u>-</u>	<u> </u>
EcXA047	+	+	·
EcXA048	-	•	<u> </u>
EcXA049	+	<u> </u>	-
EcXA050	•	<u> </u>	-
EcXA051	+		<u>-</u>
EcXA052	+	-	-
EcXA053	+	+	+
EcXA054	•	-	+
EcXA055	+	-	-
EcXA056	+	-	+
EcXA057	+	+	•
EcXA058	-	-	-
EcXA059	+	+	+
EcXA060	•	•	-
EcXA061	•	•	-
EcXA062	-	- .	•
EcXA063	+	+	•
EcXA064	-		-
EcXA065	+	+	-
EcXA066	-	<u> </u>	_
			_
EcXA066 EcXA067		+	-

Mol. No.	S. typhimurium	E. cloacae	K. pneumoniae
EcXA068		-	-
EcXA069	-	+	-
EcXA070	-	-	
EcXA071	+		<u> </u>
EcXA072	+	-	+
EcXA073	+	+	+
EcXA074	+	+	+
EcXA075	+		
EcXA076	· · · · · · · · · · · · · · · · · · ·	+	
EcXA077	+	+	
	+	+	+
EcXA079		 	
EcXA080	+		<u> </u>
EcXA082		+	-
EcXA083	 	-	-
EcXA084	-	+	-
EcXA086	-	-	
EcXA087	-	-	-
EcXA088			
EcXA089	-	-	-
EcXA090	-	-	-
EcXA091	<u>-</u>	-	
EcXA092	-	-	-
EcXA093	<u> </u>	-	<u>-</u>
EcXA094	+	+	+
EcXA095	+	+	-
EcXA096	-	-	<u> </u>
EcXA097	+	-	-
EcXA098	+	-	•
EcXA099	•	-	-
EcXA100	-	-	-
EcXA101	-	-	-
EcXA102	-	_	•
EcXA103	-	+	
EcXA104	+	+	+
EcXA106	+	+	-
EcXA107	-	-	-
EcXA108	-	-	-
EcXA109	 -		
EcXA110	+	+	-
EcXA111	<u> </u>	<u>-</u>	-
EcXA112		+	<u> </u>
EcXA113	+	+	+
EcXA114	-	+	_
EcXA115		+	_ -
EcXA116	+	+	
EcXA116 EcXA117	+	<u> </u>	
		<u> </u>	
EcXA118			
EcXA119	+	+	-
EcXA120	-	<u>-</u>	
EcXA121	-	<u>-</u> ;	-
EcXA122	+	-	+
EcXA123	+	-	<u> </u>
EcXA124	-	<u> </u>	<u> </u>
EcXA125	-	-	-

Mol. No.	S. typhimurium	E. cloacae	K. pneumoniae
EcXA126	-	•	-
EcXA127	+	+	÷
EcXA128	•	-	-
EcXA129	-	+	•
EcXA130	+	+	•
EcXA132	-	•	-
EcXA133	•		•
EcXA136	-	•	•
EcXA137	-	•	•
EcXA138	+		-
EcXA139	-	•	
EcXA140	+		•
EcXA141	+	•	•
EcXA142	-	<u>-</u>	•
EcXA143	-	+	•
EcXA144	+	+	
EcXA145		-	
EcXA146	-	•	-
EcXA147	-	•	<u> </u>
EcXA148		-	
EcXA149	+	+	+
EcXA150	-		-
EcXA151	+	•	-
EcXA152	-	<u> </u>	-
EcXA153	. +	+	-
EcXA154	-	•	<u> </u>
EcXA155	•	-	ND
EcXA156	<u> </u>	+	-
EcXA157	-	-	-
EcXA158	-	•	•
EcXA159	+	-	-
EcXA160	+	-	-
EcXA162	-		-
EcXA163	-	•	•
EcXA164	•		-
EcXA165	-		-
EcXA166	-	•	
EcXA167		-	•
EcXA168 EcXA169	-		-
ECXA169 ECXA171	<u>-</u>	+	-
EcXA171 EcXA172	-	<u></u>	_
EcXA172 EcXA173		<u>-</u>	-
EcXA173 EcXA174	-	<u> </u>	-
EcXA174 EcXA175	-		
EcXA176			
EcXA178	· -		-
EcXA178 EcXA179			
EcXA180	+	<u>-</u>	
ECXA181	<u> </u>	-	
EcXA181 EcXA182	-	<u> </u>	
EcXA183	-	-	-
ECXA183	-		
EcXA184			
FEWWION ,	<u>-</u>	-	<u> </u>

Mol. No.	S. typhimurium	E. cloacae	K. pneumoniae
EcXA186	-	-	-
EcXA187	+	+	+
EcXA189	+	-	-
EcXA190	+	+	+
EcXA191	+	+	-
EcXA192		+	-

Thus, the ability of an antisense nucleic acid which inhibits the proliferation of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, 5 Helicobacter pylori, or Salmonella typhi to inhibit the growth of other organims may be evaluated by transforming the antisense nucleic acid directly into species other than the organism from which they were obtained. In particular, the ability of the antisense nucleic acid to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also 10 called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, 15 Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella 20 typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species. may be evaluated. In some embodiments of the present invention, the ability of the antisense nucleic acid 25 to inhibit the growth of an organism other than E. coli may be evaluated. In such embodiments, the antisense nucleic acids are inserted into expression vectors functional in the organisms in which the antisense nucleic acids are evaluated.

It will be appreciated that the above methods for evaluating the ability of an antisense nucleic acid to inhibit the proliferation of a heterologous organism may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae,

30

Helicobacter pylori, or Salmonella typhi (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids.

Those skilled in the art will appreciate that a negative result in a heterologous cell or microorganism does not mean that that cell or microorganism is missing that gene nor does it mean that the gene is unessential. However, a positive result means that the heterologous cell or microorganism contains a homologous gene which is required for proliferation of that cell or microorganism. The homologous gene may be obtained using the methods described herein. Those cells that are inhibited by antisense may be used in cell-based assays as described herein for the identification and characterization of compounds in order to develop antibiotics effective in these cells or microorganisms. Those skilled in the art will appreciate that an antisense molecule which works in the microorganism from which it was obtained will not always work in a heterologous cell or microorganism.

15 EXAMPLE 12A

5

10

20

Transfer of Exogenous Nucleic Acid Sequences to other Bacterial Species Using the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi Expression Vectors or Expression Vectors Functional in Bacterial Species other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae,

Helicobacter pylori, or Salmonella typhi.

The antisense nucleic acids that inhibit the growth of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, 25 Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, or portions thereof, may also be evaluated for their ability to inhibit the growth of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi. For example, the 30 antisense nucleic acids that inhibit the growth of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi may be evaluated for their ability to inhibit the growth of other organisms. In particular, the ability of the antisense nucleic acid to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, 35 Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia. Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr

(also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae,

- Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium,
- Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of the above species may be evaluated. In some embodiments of the present invention, the ability of the antisense nucleic acid to inhibit the growth of an organism other than E. coli may be evaluated.

In such methods, expression vectors in which the expression of an antisense nucleic acid that inhibits the growth of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi is under the control of an inducible promoter are introduced into the cells or microorganisms in which they are to be evaluated. In some embodiments, the antisense nucleic acids may be evaluated in cells or microorganisms which are closely related to Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli; Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typh. The ability of these antisense nucleic acids to inhibit the growth of the related cells or microorganisms in the presence of the inducer is then measured.

20

25

30

35

For example, thirty-nine antisense nucleic acids which inhibited the growth of Staphylococcus aureus were identified using methods such as those described herein and were inserted into an expression vector such that their expression was under the control of a xylose-inducible Xyl-T5 promoter. A vector with Green Fluorescent Protein (GFP) under control of the Xyl-T5 promoter was used to show that expression from the Xyl-T5 promoter in Staphylococcus epidermidis was comparable to that in Staphylococcus aureus.

The vectors were introduced into Staphylococcus epidermidis by electroporation as follows: Staphylococcus epidermidis was grown in liquid culture to mid-log phase and then harvested by centrifugation. The cell pellet was resuspended in 1/3 culture volume of ice-cold EP buffer (0.625 M sucrose, 1 mM MgC1₂, pH=4.0), and then harvested again by centrifugation. The cell pellet was then resuspended with 1/40 volume EP buffer and allowed to incubate on ice for 1 hour. The cells

were then frozen for storage at -80°C. For electroporation, 50 µl of thawed electrocompetent cells were combined with 0.5 µg plasmid DNA and then subjected to an electrical pulse of 10 kV/cm, 25 uFarads, 200 ohm using a biorad gene pulser electroporation device. The cells were immediately resuspended with 200 µl outgrowth medium and incubated for 2 hours prior to plating on solid growth medium with drug selection to maintain the plasmid vector. Colonies resulting from overnight growth of these platings were selected, cultured in liquid medium with drug selection, and then subjected to dilution plating analysis as described for *Staphylococcus aureus* in Example 10 above to test growth sensitivity in the presence of the inducer xylose.

The results are shown in Table VI below. The first column indicates the Molecule Number of the Staphylococcus aureus antisense nucleic acid which was introduced into Staphylococcus epidermidis. The second column indicates whether the antisense nucleic acid inhibited the growth of Staphylococcus epidermidis, with a "+" indicating that growth was inhibited. Of the 39 Staphylococcus aureus antisense nucleic acids evaluated, 20 inhibited the growth of Staphylococcus epidermidis.

15

10

5

TABLE VI
Sensitivity of Other Microorganisms to Antisense Nucleic Acids That Inhibit Proliferation of
Staphylococcus aureus

Mol. No.	S. epidermidis
SaXA005	+
SaXA007	+
SaXA008	+
SaXA009	+
SaXA010	+
SaXA011	-
SaXA012	-
SaXA013	-
SaXA015	+
SaXA017	-
SaXA022	+
SaXA023	-
SaXA024	-
SaXA025	+
SaXA026	+
SaXA027	-
SaXA027b	-

SaXA02c	-
SaXA028	-
SaXA029	+
SaXA030	+
SaXA032	+
SaXA033	+
SaXA034	-
SaXA035	+
SaXA037	+
SaXA039	-
SaXA042	-
SaXA043	-
SaXA044	-
SaXA045	+
SaXA051	+
SaXA053	-
SaXA056b	-
SaXA059a	+
SaXA060	-
SaXA061	+
SaXA062	+
SaXA063	-
SaXA065	
	

Although the results shown above were obtained using a subset of the nucleic acids of the present invention, it will be appreciated that similar analyses may be performed using the other nucleic acids of the present invention to determine whether they inhibit the proliferation of cells or microorganisms other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi.

5

10

Thus, it will be appreciated that the above methods for evaluating the ability of an antisense nucleic acid to inhibit the proliferation of a heterologous organism may be performed using antisense nucleic acids complementary to any of the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae,

Helicobacter pylori, or Salmonella typhi, (including antisense nucleic acids complementary to SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, such as the antisense nucleic acids of SEQ ID NOs.: 8-3795) or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids or portions thereof, or homologous antisense nucleic acids.

5

10

15

20

25

30

35

EXAMPLE 12C

As a demonstration of the methodology required to find homologues to an essential gene, nine prokaryotic organisms were analyzed and compared in detail. First, the most reliable source of gene sequences for each organism was assessed by conducting a survey of the public and private data sources. The nine organisms studied are Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi. Full-length gene protein and nucleotide sequences for these organisms were assembled from various sources. For Escherichia coli, Haemophilus influenzae and Helicobacter pylori, gene sequences were adopted from the public sequencing projects, and derived from the GenPept 115 database (available from NCBI). For Pseudomonas aeruginosa, gene sequences were adopted from the Pseudomonas genome sequencing project (downloaded from http://www.pseudomonas.com). For Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae and Salmonella typhi, genomic sequences from PathoSeq v 4.1 (Mar 2000 release) was reanalyzed for ORFs using the gene finding software GeneMark v 2.4a, which was purchased from GenePro Inc. 451 Bishop St., N.W., Suite B, Atlanta, GA, 30318, USA.

Subsequently, the essential genes found by the antisense methodology were compared to the derived proteomes of interest, in order to find all the homologous genes to a given gene. This comparison was done using the FASTA program v3.3. Genes were considered homologues if they were greater than 25% identical and the alignment between the two genes covered more than 70% of the length of one of the genes. The best homologue for each of the nine organisms, defined as the most significantly scoring match which also fulfilled the above criteria, was reported in Table VIIA. Table VIIA lists the best ORF identified as described above (column labelled LOCUSID), the SEQ ID, % identity, and the amount of the protein which aligns well with the query sequence (coverage) for the gene identified in each of the nine organisms evaluated as described above.

Table VIIB lists the PathoSeq cluster ID for genes identified as being required for proliferation in *Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa*, and *Staphylococcus aureus* using the methods described herein. As indicated in the column labelled PathoSeq cluster ID, these sequences share homology to one another and were consequently grouped within the same PathoSeq cluster. Thus, the methods described herein identified genes required for proliferation in several species which share homology.

CABLE VIIA

TOCUSID	Data	Escherichia	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella	Haemophilus	Helicobacter	ł	Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
		coli	faecalis	influenzae	pylori	0	aeruginosa	aureus	pneumoniae	typhi
EFA100001		10430	10618	10998	11603	11739		12309	13524	14040
	UTY	27%	100	28%	28%	73%		25%	22%	28%
		%66		101%	462	77%		%86	%86	%86
EFA100023	SeqID		10505					12860	13392	
	IDENTITY		100%					27%	36%	
	COVERAGE		100%					%56	101%	
EFA100065	SeqID	10322	3813		11351			12820	13186	13733
	IDENTITY	49%	100	49%	44%		48%	29%	65%	48%
	COVERAGE	%96	100%	95%	%96		97%	%16	%86	%96
EFA100151	SeqID	10128)516		11340				13362	
	DENTITY	20%	100	379	46		49%	54%	21%	
	COVERAGE	%66	100%	100%	100%		100%	%66	100%	
EFA100157	SeqID		10673		11448				13176	
	IDENTITY		%001		39%			64%	74%	
1	COVERAGE		100%		%86			%86	%66	
EFA100165	SeqID				11564				13399	14078
	IDENTITY	31%	100	33%	78		32%	79%	27%	29%
		97%	100%	%86	100%		%96	90%	%96	%16
EFA100190	SeqID	10364)480							13966
		54%	2	57%	25%	22%	54%	78%	%08	24
,		100%	101%	100%	%66	%06	100%	101%	101%	101%
BFA100194		10336)540		11426					14096
	IDENTITY	%09	100	62%	62		%09	85%	%98	%19
ı	COVERAGE	80	101%	%001	102%		100%	101%	92%	101%
EFA100200	SeqID	10323	0798	11193						13731
	DENTITY	36%	<u> </u>	38%			40%	20%	26%	36%
	COVERAGE	85%	100%	87%			85%	85%	88%	85%
EFA100210	SeqID	10352	0950		11439			12260	13204	13968
	IDENTITY	23%	001	23%	23%		24%	74%	93%	23%
- 1	COVERAGE	95%	101%	%56			%56	101%	94%	%56
EFA100211	SeqID	10351	0523	11105	11438		11992	12214	13205	
	COVERAGE	87%					45%		81%	
1		1					21.2		1,,,,	

	1	4	ı
	>		
	_	į	l
Ē	_		

coli faecalis influenzae pylori pneumonia 10284 10810
100%
%101 %26
10641 100% 100%
10782 100% 100%
10675 11238 100% 43%
108% 100%
31% 100% 29% 29% 100% 29%
111
% 100% 59% 98% 100% 9
10702
% 100% 99% 101%
10486 111
100% 29% 100% 7.
=
100% 44% 100% 82%
0764 11216 100% 42%
100%
205 10793

•	◂	¢	l
ŀ	5	7	ı
ľ	ī	ב	١
	7	֚֡֡֜֝֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֜֜֜֜֜֡֡֡֜֜֜֜֜֡֡֡֜֜֜֜֡֡֡֡	l
	9	ζ	ı
ŧ	_	٠	

l	2] <u></u>		- 1	•			:
FOCOSID	Data	coli	Escrericnia Eriterococcus Haemopnius Helicobacier Kleoslella Coli	Haemopnius influenzae	nelicobacier	01	rseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella derucinosa durens	Streptococcus	Saimonella
	4		20000	T		2000	Т			
EFA100642	Sequi		76/01		11520		12023		13367	
	COVERAGE		100%	-	100%	_	101%	100%	100%	
EFA100668	SeqID	10026	10679	11184	11613		12013	12891		14073
	IDENTITY	%	%	%	29%		%	%6	%	27%
	COVERAGE	83%		39	78%		95%			95%
EFA100689	SeqID		10717						13698	
	IDENTITY		100%					33%	33%	
	COVERAGE		100%					100%	100%	
EFA100704	SeqID	10362		65011	11415					13964
_	IDENTITY	78%	001	78%	926	_	75%	%06	78%	77%
	COVERAGE	001	100%	%00I	%I0I		101%	100%	101%	100%
EFA100739	SeqID									14010
	IDENTITY	71%	20	%69	63%	70%	71%	84%	84%	70%
	COVERAGE	83%	101%	83%	%98	87%	83%	87%	87%	87%
EFA100740	SeqID	10075)536							13717
	IDENTITY	45%	2	47%	30%	45%	48%	\$	%09	44%
	COVERAGE	94%	100%	94%	93%	94%	82%	94%	93%	94%
EFA100741	SeqID	10339	0535		11430					14098
	IDENTITY	40%	9	37%	346		36%	48%	%09	40%
	COVERAGE	03%	100%	102%	101%		102%	101%	100%	103%
EFA100742	SeqID	10340	0534	1116	11431		_		13217	14099
	IDENTITY	25%		25%	39%		46%	79%	 88%	52%
	COVERAGE	99%	101%	%66	92%		99%	101%	101%	%66
EFA100748	SeqID	10287	0483	1004				12595		13868
	IDENTITY	41%	20	39%	762	42%	44%	25%		41%
25 1007 KE	COVERAGE	39%	10676	27%	11206	98%	100%	100%	122.43	%00I
00/00/14/77	ocquire or a contract		10073		11390		}	-	}	14009
	COVERAGE	49%	100%		43%		45% 81%	64% 94%	62% 94%	75%
EFA100757	SeqID	10155	188							
	IDENTITY	27%	00							
- 1	COVERAGE	85%	100%							
EFA100783	SeqID IDENTITY	10035 32%	0811 100%	10986 34%	11543 86%		11953	12738 77%	13261	13914
	COVERAGE	104%		83%	100%		78%		%66	%66

CABLE VIIA		
ABLE	IIA	
AB	щ	
	AB	

6 63% 89% 92% 1223 11758 1223 1223 1223 1223 1223 1223 1223 122	3	Enterococcus Hae
68% 89% 89% 89% 89% 89% 89% 11775 8179 116% 11758 1111 11758 111809 11809 11809 11809 11809 11809 11809 11809 11809 11801 11987 11988 11801	pylori	mfiuenzae
6 89% 89% 92% 89% 92% 122 122 123 124 46% 101% 101% 102% 102% 102% 102% 102% 102		
6 89% 63% 92% 122		
89% 92% 89% 92% 89% 112 46% 116% 101% 102% 121 40% 40% 123 80% 101% 122 80% 101% 122 80% 43% 122 80% 198% 122 80% 11801 122 80% 11801 122 80% 11801 122 80% 1194% 91% 80% 1194% 123 88% 1194% 123 88% 1194% 123 88% 1194% 123	11 <u>55</u> 0 56%	11153
6 5179 124 79% 116% 124 101% 102% 102% 101% 102% 102% 101% 102% 102% 101% 102% 125 6 46% 125 99% 140% 122 98% 43% 122 98% 11987 122 88 11945 123 88% 11945 123 88% 11957 125 11646 11957 125	68	95%
6 46% 116% 79% 12111 123 6 40% 40% 128 101% 102% 128 125 99% 46% 128 125 98% 49% 43% 128 98% 79% 45% 122 98% 11987 122 6 42% 11945 123 88% 11945 123 88% 11957 125 11646 11957 125		
6 5179 1244 79% 116% 116% 101% 102% 102% 101% 102% 102% 101% 102% 125 6 46% 125 99% 79% 43% 98% 79% 98% 98% 11987 122 6 42% 33% 98% 94% 91% 98% 11945 123 6 61% 123 88% 11957 125 11646 11957 125		
6 46% 11758 12111 123 6 40% 40% 128 101% 102% 125 6 46% 125 99% 79% 43% 98% 79% 98% 98% 11801 122 6 45% 102% 98% 11801 122 6 42% 91% 127 88 11945 127 88% 11957 125 11646 11957 125	11410	11036
116% 116% 1178	52%	%
11758 12111 123 12111 123 40% 40% 102% 102% 11809 125		117%
190% 40% 102% 102% 11809 125 46% 101% 11627 5158 122 43% 122 45% 1168 11801 1168 11801 122 39% 11945 127 11646 11957 11646 11957 11646 11957	2	11018
% 102% 102% 128%	34%	40%
11809 125 46% 101% 101% 101% 101% 102% 43% 102% 102% 102% 102% 102% 102% 102% 102% 102% 102% 102% 102% 103% 10		102%
9% 46% 55% 11627 5158 12232 49% 43% 65% 3% 1987 12231 45% 71% 71% 11668 11801 12289 42% 39% 49% 11945 12715 61% 76% 11646 11957 12504	7	11127
11627 10156 12232 49% 655%	40%	45%
11627 5158 12232 49% 43% 65% 55% 55% 55% 65%	- 1	NIOI %
15% 43% 63% 179% 43% 63% 11987 12231 71% 11668 11801 12289 42% 39% 49% 38% 94% 91% 11945 12715 61% 76% 11646 11957 12504	11582	
11987 12231 1231 1231 1231 1300	42%	48%
11987 12231 45% 71% 102% 11% 102% 11801 12289 49% 49% 94% 91% 11945 12715 11945 1156% 11957 12504	3	2000
11987 12231 45% 71% 102% 102% 11668 11801 12289 42% 39% 49% 3% 94% 91% 11945 12715 61% 76% 11646 11957 12504		
11987 12231 45% 71% 102% 102% 11668 11801 42% 39% 49% 5% 91% 49% 11945 12715 61% 76% 11646 11957 12504		
45% 71% 102% 102% 11668 11801 42% 39% 49% 91% 11945 12715 61% 76% 11646 11957 11564 12504	11583	
11668 11801 12289 42% 39% 49% 5% 94% 91% 11945 12715 61% 76% 11646 11957 12504	35%	46%
11068 11801 12289 42% 39% 49% 11945 12715 11715 16% 76% 11646 11957 12504	- 1	%66
39% 49% 39% 49% 94% 91% 11945 12715 61% 76% 11646 11957 12504	11607	
3% 94% 91% 11945 12715 61% 76% 3% 85% 12504	73%	40%
11945 12715 61% 76% 85% 85% 11646 11957 12504	-	93%
85% 85% 76% 11646 11957 12504	14	10982
8% 85% 11646 11957 12504	20%	28%
11646 11957 1250		82%
34% 71%	11575 35%	
3% 77% 97%	83	

	Salmonella	typhi	13764	36%	93%	14012	29%	103%			13783	42%	%86	14045	31%	%96	13943	36%	73%	13974	23%	100%	13973	43%	93%	13972	100%	13971	28%	100%		-		13970	55% 91%
	Streptococcus	pneumoniae	13662	25%	%56	13498	64%	%86	13600	%66 %0¢	Γ	70%	100%		70%	101%		28%	100%	13197	% 68	%66		74%	2001	13199	103%	13200	84%	100%	13201	%06	100%		81%
	Pseudomonas Staphylococcus Streptococcus Salmonella	aureus	12953	21%	%86	12505	79%	%66	12606	38%	12674	20%	%66	12450	%09	98%		45%	%001	12235	28%	%66	12240	62%	100%	12242	93%	12249	78%	100%	12255	84%	101%	12258	66%
	Pseudomonas		12052	35%	%26	12057	29%	103%			11820	40%		5181	40%	95%		33%	100%	5176	49%	101%		45%	277	37%	%96 	11993	21%	%66		%02	100%		85%
	Klebsiella	pneumoniae aeruginosa	11716	38%	%16						11629	43%	94%															11679	59	100%					
TABLE VIIA	Helicobacter	pylori	11454	27%	%86	11331	27%	74%			11478	33%		11573	35%		11556	26		11442	48%	81%	11595	33%	2070			11441	59%	100%	11594	%09	%16	11593	4/% 91%
II.	Haemophilus	influenzae	11215	37%	%68	11219	31%	102%			11131	39%	97%	11071	40%	%96	11221	36%	100%	11097	25%	100%	11098	43%	-	35%	%66	11100	28%	100%		%89	%66	11102	28% 91%
	snoo	faecalis		100%	100%	8	100%	100%	90	100%		100	100%		100	101%		100	100%	0543	100	101%	0549	%001	10070	10551		0555	90	100%	0557	100	101%		100%
	Escherichia	coli	10315	37%	91%	10017	30%	102%			10420	43%	%86	10436	35%	74%	10174	35%	100%	10359	25%	100%	10358	43%	· I	10357	86%	10356	28%	100%	10355	%99	00%		91%
	Data		SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY COVED A GE	COVERAGE	DENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	COVERAGE
	TOCUSTD		EFA101086			EFA101120			EFA101121		EFA101123		- 1	EFA101141			EFA101150			EFA101159			EFA101160		- 1	ErA101101		BFA101162			EFA101163			EFA101164 SeqID	

-1										
TOCOSID	Data	Escherichia	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella	Наеторише	неисорастег		Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
ı		con	Jaecalis	ızae	pylori	pneumoniae aeruginosa		aureus	oniae	typhi
EFA101165	SeqID	10353	10559	11103	11592			12259	13203	13969
	IDENTITY	%65	00	%09	25%		%19	78%	88	29%
	COVERAGE	95%	100%	95%	%66		95%	100%	100%	
EFA101169	SeqID		ĺ	11091			12025	12516		13849
	DENTITY	27%	100%	28%			79%	5		27%
	COVERAGE	93%	100%	%16			%	100%		93%
EFA101253	SeqID		1	11065	11551		11838	13072	13457	
	IDENTITY	43%	100%	42%	31%		36%	54%	%19	
i	COVERAGE	%26	100%	%16	%96		%66	%16		
EFA101257	SeqID	10124		92601	11484				13357	14037
	IDENTITY	40%	100	39%	36		37%	39%	28%	38
	COVERAGE	%66	100%	%66			97%	%26		101%
EFA101258	SeqID	10127	8160	10973	11513		11892	12802	13358	13871
	IDENTITY	40%	8	40%	39%		36%	41%	%99	29%
	COVERAGE	%26	101%	%96	%56		%96	%26	%56	92%
EFA101322	SeqID		ŏ					12534	13328	
	IDENTITY		%001					%99	92%	
- 1	COVERAGE		100%					%98	%98	
EFA101339	SeqID		10743		11448			12326	13391	
	IDENTITY COVERAGE		100%		33%			46%	%80 %09	
	To Co		-		2					
EFA101340	Seqio		10/45							
	COVERAGE		102%	·						-
EFA101354	SeqID	10047	2	1089	11608		11935	12617	13345	13913
	IDENTITY	33%	100%	33%	329		34%	38%	36%	32
	COVERAGE	101%	- 1	104%	101%		104%	%26	100%	101%
EFA101370	SeqID		10738					13126		
	COVERAGE		101%				•	31%		
EFA101403	SeqID		10662					12941		
	IDENTITY		100%		•			34%		
	COVERAGE		100%					100%		
EFA101404	SeqID	10210			11554			12135		13925
	IDENTITY Cover 100	29%	100	28	36%		27%	29%	64 %	30%
	COVERAGE	%66	100%	%70I	98%		100%	%66	%66	%66

TOCUSID	Data	Escherichia	hia Enterococcus Haemophilus Helicobacter Klebsiella	Haemophilus	Helicobacter		Pseudomonas .	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
		coli	faecalis	influenzae	pylori	pneumoniae aeruginosa			oniae	typhi
EFA101409	SeqID	10350	10524		11437				13207	
	IDENTITY	54%	100%	28%	44%		23%	81%	87%	
	COVERAGE	83%	101%	80%			91%	91%	%16	
EFA101410	SeqID	10349	8	11107	11436		5169	12216	13208	14108
	IDENTITY	62%	100%	64%	63%		%99	%	%06	62%
	COVERAGE	01%	101%	101%	100%	-	100%	101%	101%	102%
EFA101411	SeqID	10348	0526	11108			5168	12217	13209	14107
	IDENTITY	20%	001	43%		- -	49%	%99	71%	46%
	COVERAGE	%26	101%	%16			93%	%96	%66	%16
EFA101412	SeqID	10347	0527			١			13210	14106
	IDENTITY	%09	9	59	25%	%19	28%	82%	83%	%09
	COVERAGE	%001	101%	100%	%86	101%	%66	%76	100%	101%
EFA101414	SeqID	10345	0528		11435					14104
	IDENTITY	49%	9	47%	42%		46%	79%	81%	49%
	COVERAGE	%66	101%	%66	%66		100%	101%	101%	101%
EFA101415	SeqID				11434					14103
	IDENTITY	47%	100	20%	39%		49%	63%	74%	47%
	COVERAGE	%	101%	98%	100%		%86	101%	101%	%86
EFA101416	SeqID				11433	•				14102
DENTITY	IDENTITY	20%	8	48%	42%		25%	%89	85%	21%
	COVERAGE	97%	101%	97%	%16		94%	%66	101%	%86
EFA101417	SeqID	10342	0531		11432	•				14101
	IDENTITY	22%	8	26%	61%		25%	72%	85%	55
	COVERAGE	% 001	101%		84%	-	92%	95%	94%	100%
EFA101424	SeqID	10220	0784	11276						13934
	IDENTITY	44%	00	38%		34%	36%	92%	%62	41%
- 1	COVERAGE	%66	101%			73%	78%		%66	%66
EFA101425	SeqID	10240	10785	11275		_	-	12351	13281	13863
	IDENTITY	49%	100	20%			36%	63%	78%	47%
	COVERAGE	%66	100%	%66			%66	100%	100%	84%
EFA101477	SeqID			10965	11562	<u>-</u>		13066	13525	14089
	DENTITY	25%	8	20%	41%		49%	29%	72%	20%
		91%	100%	%56	91%		%56	94%	%16	91%
EFA101536	SeqID IDENTITY	10281	10823			-				
		%98								

⋖	•
E	ì
_	•
щ	i
2	ì
~	4
	۹

1						ſ				
aisnoot	Data	Escherichia coli	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli faecalis influenzae pylori pneumonia	Haemophilus influenzae	Helicobacter pylori	G	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae lyphl	Streptococcus pneumoniae	Salmonella typht
EFA101540	SeqID	10041		11149	11456			12314		13907
	IDENTITY	51%	100%	20%	20%		49%	73%	3 92	\$1%
	COVERAGE	92%	100%				92%	%26	%66	95%
EFA101541	SeqID	l	10488	11150	11620		ı	12742		806£1
	IDENTITY	41%	100	45%	32		44%	63%	44%	41%
ı	COVERAGE	100%	- 1	%86	121%		101%	%00I	116%	100%
EFA101583	SeqID		10593							*
	COVERAGE		100%							
EFA101670	SeqID		10511							
	DENTITY		100%							
EFA101682	SeqID)		11178	11517			12811		13864
	IDENTITY	45%	100	45%	40%		44%	57%	21%	45%
	COVERAGE	%26	100%	%86			91%	%96		%26
EFA101685	SeqID		10201		11369		27021	12492	%69 13368	
	COVERAGE		100%		%76		%80		%66	
EFA101686 SeqID	SeqID	10237	940	-	11325			12456		13956
		39%	100	37%	37%		36%	64%	63%	38%
	١	%66	100%	%66	%66		%66	%66	%66	%66
EFA101695	SeqID	10204 10)629		11479			12560	3284	13928
		34%	ĕ	320	34%	31%	35		75%	34%
1	RAGE	104%	100%	106%	76%	93%	101%	100%	%66	105%
EFA101736		10219	3775	11024				12300	3340	13976
	IDENTITY COVER A CE	33%	100%	29%			27%	35%	32%	28%
EFA101737	SeqID	10218	3778	11023			11923	12301	13341	13774
	IDENTITY	39%	100%	37%			42%	13%	43%	28%
	COVERAGE	%86	100%				%8	100%	103%	%96
EFA101753	SeqID	10134	12	11211				12151		13826
	IDENTITY OF	36%	100	37%			36%	50%	20%	37%
	COVERAGE	%16	%00I	%68			%06	94%		%16
EFA101765	SeqID		10587					13010 28%	13353 35%	
	COVERAGE		100%					98%		

_	4
# N	,
PI H	
TARI	+

					_								_			_				_			_		~		_				_
Salmonella typhi	13747	101%				31%		13886	32%	%26	138	53%	%86	13897	54%	%26	14072	31%	%62				13779	%59 86%			14021	47%			
Streptococcus pneumoniae						13333	100%	13363	47%	%66		74%	%66	13366	%99	92%	13451	%65	%16					92% 102%			13190	46%	100%	13463 65%	94%
lococcus	12306	46%	1235	37%	0/./	12360	101%		36%	98%	13127	29%	%86		54%	%26	12340	51%	%26					93% 97%			12142	%6	101%	12331 65%	100%
Pseudomonas aeruginosa	11915	101%	_			5187 33%	%66	12062	37%	%86		25%	%86	11934	25%	%26	12039	35%	86%					%09 60%	11796	36%	12005	53%	100%		
Klebsiella Pseudomon pneumoniae aeruginosa																								%10 79%							
Helicobacter pylori						11458 27%		11322	36%	%66	12511	49%	%86	11339	49%		11335	36%	92%				}	38%			11281	41%	97%	11532 36%	101%
Haemophilus influenzae	11085				00,11	32%		11159	36%	88%		25%	%86	11014	22%	97%							11044	%98 %70			11048	%	100%		
Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli faecalis influenzae pylori pneumonia	10803	100%	108	100%	201%	10805	100%	0922	100	101%	0924	001	100%	9260	00	100%	10720	100%	100%	67801	100%	100%	-	100%	108	100%		100%		10891 100%	100%
Escherichia coli	10414	101%				31%	%86	10329	34%	98%	10330	53%	98%	10048	23%	97%		31%	79%					%98 %70			10454	47%	100%		
Data	SeqID	COVERAGE	SeqID	IDENTITY	COVERMOE	Seque	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	COVERAGE	SeqID	IDENTITY	SeaID	IDENTITY	COVERAGE	SeqID IDENTITY	COVERAGE
1 1	EFA101790		EFA101791		10100	EFA101/92		EFA101795			EFA101797		١.	EFA101799			EFA101833		- 1	EFA101868			EFA101872		EFA101873		EFA101892		- 1	EFA101924	

TOCUSID	Data	Escherichia		Haemophilus	Helicobacter	\vdash	Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
- 1		con	Jaecans	injiuenzae	pyiori	pneumoniae aeruginosa	╗	aureus	рпеитопіае	indy
EFA101925	SeqID		10893					12332		
	DENTITY		100%					%65		
- 1	COVERAGE		100%							
EFA101963	SeqID	10034	10848	11148	11536			12552	13648	13901
_	DENTITY	48%	100	47%	49%		47%	27%	%69	48%
	COVERAGE	105%		105%	%66		108%	101%		105%
EFA102006	SeqID		10580				11830	12804	13315	
	IDENTITY		100%				33%	42%	43%	
	COVERAGE		100%				84%	%66	%56	
EFA102022	SeqID				11502	11754	12051	12324	13485	13767
	IDENTITY	23%	100	23%	51%	54%	25%	78%	78%	25%
	COVERAGE	8%	101%	88%	81%	89%	88%	89%	86%	86%
EFA102023	SeqID	10312			11576					13768
	IDENTITY	21%	100	20%	38%	20%	20%	63%	70%	20%
	COVERAGE	%86	100%	%66	%66	84%	%26	99%	%66	%16
EFA102091	SeqID	10363	0481		11568			12443	13233	13965
	DENTITY	- %09 -	9	61%	63		62%	75%	%98	29
	COVERAGE	101%	100%	101%	100%		101%	%001		
EFA102110	SeqID	10193	0841	11255			12082		13430	13752
	IDENTITY	32%	9	34%			34%		62%	32%
	COVERAGE	103%	100%	94%			100%		100%	%66
EFA102183	SeqID	10393	0952	Г	11330		11774		13420	13920
	IDENTITY	25%	100%	24%	20%		54%	%19	78%	25%
	COVERAGE	84%	100%	%98	82%		%98	%86	100%	84%
EFA102185	SeqID	10458	0560		11421	11632	12075	12413	13501	13858
	IDENTITY	27%	8	79%	29%	28%	75%	63%	73%	27%
	COVERAGE	3%	101%	%06	94%	93%	%16	91%	%96	83%
EFA102186	EFA102186 SeqID	10448	0949		11579				13543	13817
	IDENTITY	73%	100	29%	27%			23%	%09	30%
	COVERAGE	%	101%	%06				101%		%06
EFA102205	SeqID	10108	69/0	10985	11375				13375	13997
	DENTITY	46%	8	38%	26%				25%	37%
	COVERAGE	71%	102%	82%					%96	104%
EFA102253	SeqID	10275	0727		11320					13865
	COVERAGE	33%	3	526	48,		53%	%/ 9	%08 80	54%
	COVERAGE	100%	100%	101%	101%		101%	%001	%66	%0%

-										
TOCUSID	Data	Escherichia	snoo	Haemophilus	Helicobacter		Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
- 1		coli	S	influenzae	pylori	pneumoniae aeruginosa			oniae	typhi
EFA102282	SeqID		10729			!		12607	13424	
	DENTITY		100%					40%	46%	
	COVERAGE		%			-		81%	%92	
EFA102338	SeqID	10250	0651	11012	11488		11954			13705
	IDENTITY	36%	100%	38%	35%		36%	42%	20%	38%
	COVERAGE	85%		%26	%98		%86	%66		%66
EFA102350	SeqID		10632							
	IDENTITY		100%							
ı	COVERAGE		101%							
EFA102351	SeqID		10634					12795	13406	
	IDENTITY COVIED AGE		100%					33%	38%	
	COVERAGE		100/0					2/70	0/101	
EFA102352	Sequi	10028	0635							14075
	IDENTITY	40%	≅	39%	35%	40%	36%	21%	25%	4
	COVERAGE	01%	100%	101%	101%	101%	101%	%66	100%	101%
EFA102353	SeqID	10029	0636		11329					14076
	IDENTITY	32%	000	34%	28%		32%	20%	% 19	31%
	COVERAGE	%66	100%	%66	83%		98%	98%	%66	%66
EFA102389	SeqID	10378	0904	11094					13263	
-	IDENTITY	41%	9	42%			40%	54%	25%	_
	COVERAGE	97%	100%	83%			%86	82%	100%	
EFA102453	SeqID		0931			11762		12412	3502	13819
	IDENTITY		100%	53	33%	33%		54%	54	29%
	COVERAGE		101%	101%	88%	105%		1%	101%	%96
EFA102501	SeqID	10438	9790		11410		11997	2447	3187	14043
	IDENTITY	45%	2	4	40%		44%	75%	76%	45%
	COVERAGE	12%	100%	111%	- 1		113%	93%	%96	- }
EFA102502	SeqID	10439	0627		11410		5179	2446		14042
	DENTITY	47%	100	46%	52%		46%	72%	78%	469
	COVERAGE	44 84	100%	117%	%61		116%	%66	%86	114%
EFA102503	SeqID	10016	ŏ		11446		12027	2995		13947
	DENTITY	45%	2		37%		43%	61%	62%	41%
	COVERAGE	86	100%		101%		%101	98%	100%	85%
EFA102518	SeqID	10288	90			11681		2248	13229	13881
	COVERAGE	105%	100%			20%		34%	24% 100%	32%

	Salmonella tvohi	13770		77%	13732	7 6% 100%				14097	28%				13898	47%	%16			14011	55%	%0%	13859	52%	%06			13822	71%	%66	13978	%96 6%
	Streptococcus :	T	%	81%		100% 100%					81%	713216	63%		13228	%09	108%	13668	55% 100%					81%	%00I	13401	%66		%08	100%	13235	%4%
	Pseudomonas Staphylococcus Streptococcus Salmonella aerueinosa aureus		%69			17%					75%		2%	102%	12952	21%	%86	12321	55% 100%		_			76%	%96				%89	%66	12150	%86
		5188	%6	7%		75%	5159	%89	100%		%96 06%	1713	12%	%16	11813	48%	%66			11807	31%	8		54%	82%	11943	100%				12040	95%
	Klebsiella pneumoniae				-					11688	30%																					
TABLE VIIA	Helicobacter ovlori	11471	49%		11288	67% 100%	11428	71%		11427	28%				11305	42%	%66						11420	25%		11300					11362	32% 94%
<u>7T. </u>	Haemophilus influenzae	11241	29%		11240	70%	11117	63%	100%	61111	61%	11115	40%		11086	47%	866			109	%09	%06	11050	23%		11205		11054	%95	%66	11261	96%
	Enterococcus Haemophilus Helicobacter faecalis	10607	100%		9	100%	10538	100%	103%	18	100%	0530	%001 100%		0	100	100%	10734	100%	6060	100	100%	0948	100	101%	10556	100%	0478	100	100%	10896	
	ichia	10327	868	77%	10326	75%	10338	ر د	100%	10337	%65	10341	%	93%	10049	47%	%26			10082	26%	20%	10459	51%	2	10285	%86 %76	10201	72%	99%	10142	%96
	Data	Seath	IDENTITY	贸		IDENTITY COVERAGE		IDENTITY	COVERAGE	SeqID	DENTITY	Sealth	DENTITY	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTITY COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	DENTITY	COVERAGE	SeqID	COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	COVERAGE
	TOCUSID	FFA 102541			EFA102542		EFA102549			EFA102551		PEA 102554			EFA102655			EFA102656		EFA102698			EFA102728			EFA102736		EFA102764			EFA102774	_

_
⋖
ㅂ
5
Ξ
ت
$\overline{\mathbf{m}}$
\neg
⋖.
•

TANK TO A	4					ſ	•			
TOCOSID	Data	Escherichia	Escherichia Enterococcus Haemopnius Helicobacter Klebsiella coli coli	Haemophilus influenzae	Helicobacter	<u> </u>	Pseudomonas neruoinosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruoinosa aureus	Streptococcus	Salmonella
EFA102780	SedID	35	8060	Т	11616		Т	12701	13552	36
	IDENTITY	~	100%	%	37%		3	51%	46%	
	COVERAGE	77%	100%	%91	77%		75%	101%		
EFA102788	SeqID	10176	1990	11223	11297		11882	12630	13303	13941
	IDENTITY	29%	100%	%19	54%	•	63%	70%	81%	%65
	COVERAGE	94%	%101	93%	%16		94%	93%		94%
EFA102802	SeqID	10274	0854		11298		11932	13128	13313	13866
	IDENTITY	%99	001	64%	28%		64%	74%	83%	65%
	COVERAGE	%66	100%	100%	%96		100%	100%	100%	
EFA102813	SeqID	10101	878		11347			12816	13492	13754
	IDENTITY	54%	100	23%	21%		52%	64%	92%	23%
	COVERAGE	% 001	100%	100%	%66		%66	%66		100%
EFA102915	SeqID	10297	0640		11323				13664	13737
	IDENTITY	27%	100	32%	30%		31%	20%	25%	8
	COVERAGE	%00	100%	100%	%06		100%	%86	%66	100%
EFA103021	SeqID	10434	0612		11413			12451	13517	
	IDENTITY	%59	200	%99	%09		62%	%98	%98	
	COVERAGE	101%	101%	101%	%66		101%	101%	%66	
EFA103033	SeqID	10221	1890			11668	11801	12289	13191	14027
	IDENTITY	45%	2	40%	78%	45%	39%	49%	%95	30%
	COVERAGE	91%	001	93%	%86	94%	91%	93%	87%	93%
EFA103038	SeqID	10435	0613		11412					14046
	IDENTITY	54%	190	25%	%95		21%	73%	73%	23%
	COVERAGE	%66	100%	100%	%66		100%	100%	100%	
EFA103039	SeqID	10293	0850						13377	13741
	IDENTITY COVERAGE	45%	100%	46%	44%	40%	46%	73%	69%	45%
EFA103062	SeqID	10437	0615	11072	11572	2	5180	12449	13247	14044
	IDENTITY	vo	100%	%	54%		2%	64%	%	29%
	COVERAGE	101%	101%	102%	102%		101%	%66		
EFA103081	SeqID	10262	0862		11403		11947		13415	14090
	IDENTITY	41%	100	41%	40%		41%		74%	40%
	COVERAGE	82%	101%	83%	82%		80%		95%	82%
EFA103174	SeqID	10251	100%	33%	11370		11955	12600	13518	13703
	COVERAGE	93%	100%	94%	%56		%96 */*C	100%	100%	92%

				1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
TOCUSID	Data	Escherichia	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella	Haemophilus	Helicobacter		Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
		coli	faecalis	zae		pneumoniae aeruginosa		aureus	pneumoniae	typhi
EFA103210	SeqID	10071	10688	61011	11371		11850	12601	13319	13945
	IDENTITY	%95	100%	93%	39%	*	21%	79%	%91	21%
	COVERAGE	97%	101%	%86	%66		%26	%66	101%	
EFA103268	SeqID	10365	0479	79011	11409		5178	12445	13231	13967
	IDENTITY	%69	%001	70%	89		20%	83%	93%	70%
	COVERAGE	100%	101%	100%	100%		%66	101%	101%	101%
EFA103295	SeqID	10319	10633	11140	11493			12640	13320	13771
	IDENTITY	%99	100%	28%	28%		%02	79%	%98	%09
	COVERAGE	%11%	101%	85%	85%		77%	100%	%96	%26
EFA103348	SeqID		10873	10983	11402		11946			
	IDENTITY		100%	36%	%65		36%			
	COVERAGE		103%	82%	85%	•••	82%			
EFA103365	SeqID			11096	11443	11643	5177	12224	13196	13975
	IDENTITY	57%	%001	28%	23%	28%	28%	82%	82%	28%
	COVERAGE	100%	101%	100%		100%	100%	%88	101%	100%
EFA103375	SeqID	10177		11222	11296		5120	12628	13302	
	IDENTITY	20%	100%	25%	36%		20%	%99	78%	
	COVERAGE	85%	102%	82%	%16		94%	102%	102%	
EFA103504	SeqID	10320	10671	11141	11492		12030	12638	13322	13766
	IDENTITY	42%	100%	45%	41%		48%	63%	%18	41%
	COVERAGE	%26	101%	%16	%96		%16	%86	100%	100%
EFA103508	SeqID		10672						13321	
	COVERAGE		100%						30%	
EFA103571	SeqID	10335	10879	11121	11425		11988	12578	13240	14095
	IDENTITY	45%	%001	47%	48%		47%	2%	%89	45%
	COVERAGE	102%	٠	102%	103%	_	102%	%66	100%	102%
EFA103786	SeqID		10806					12361		
	IDENTITY		100%			_		59%		
	COVERAGE		100%					94%		

LOCUSID Data	Data	Escherichia coli	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli faecalis influenzae pylori pneumoniae	Haemophilus influenzae	Helicobacter pylori		Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruzinosa aureus	Streptococcus pneumoniae	Salmonella tvphi
SAU100040 SeqID	SeqID							12533		
· ·	IDEN I I Y COVERAGE							100%		
SAU100053	SeqID	10366		11075		Γ	11855		13318	13814
IDENTITY	DENTITY	32%	46%	30%	32%	33%	%	100%	48%	32%
	COVERAGE	%26	100%	%66	81%	84%	81%	100%	100%	%16
SAU100056	SeqID		10930					12577	4	
COVERAGE	IDENTITY COVERAGE		39%					100%	33%	
SAU100059	SeqID	10213	10598	11161	11528	11750	12064	12652	433	13929
IDENTITY	DENTITY	78%	70%	79%	79%	%	%	100%	25%	28%
		71%	%16	95%			Ö	100%	95%	
SAU100062		10430	9	10998	11603	11739		12309	294	14040
IDENTITY COMERAGE		27%	52%	29%	29%	31%		100%	53%	28%
SATTIONO77		2/201	1566	0/ 701		8/0/		10070		10270
770001086			10303						13464	
COVERAGE	COVERAGE		102%					100%	02%	
SAU100112	SeaID	10059			11477	11702	12096	12634		13895
-: 3	IDENTITY				%	%	%	100%		49%
)		0			100%	77%	100	100%		%16
SAU100114				11279	11302		11851	535	1387	13824
COVERAGE		44%	51%	43%	45%		43%	100%	25%	43%
SAU100118	SeaID		10903				11828	2125	3262	
IDENTITY	DĖNTITY		<u>=</u>				%	100%	37%	
	COVERAGE		101%				100%		101%	
SAU100123 SeqID	SeqID	10258	3628		11489		5192	2526	3421	14088
	DENTITY	52%	43	53%	47%		25%	100%	45%	25%
	COVERAGE	%86	100%	%26	%96		%86	100%	82%	%86
SAU100131 SeqID	SeqID DENTITY	10466		11274				12517		13854
	COVERAGE	71%		97%			40%	100%		35%
		1	1				1-:	1		

	٩		ı
ļ	>	*	1
ſ	I	1	1
,	÷	֚֚֭֡֜֜֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	
	٩	d	
E	_		

		'			_		 .	,	. ~			1												·			_
saimoneila typhi	13769 34%	79%			13970	~	93%	13969	%96 6%	13966	60% 101%	13965	%66	5	43% 93%	13705	35% 99%			13909 45%	101%				7,000	14056 65% 94%	
coccus	13412 43%	%66	13201	%98 %98	13202	63%	%16	13203	/4%	13232	77%	3233	%//	3597		13272	42% 102%			13355 54%	96%	13414	79%				13490
aureus	12 <i>57</i> 4 100%	100%	12255	100%		%00	101%	12259	100%		100%	12443	100%	12583	100% 100%	12582	100%	123 6 2 100%	101%	12317	101%	12120	100%	12525 100%	%00I	12336 100% 100%	12496
aeruginosa	11885 31%	79%		63%		%81	93%	5172	%96 %		57% 100%	11858	%86 %60		43%	11954	34%			11939	%0(65% 65% 95%	
pneumoniae aeruginosa	11703 30%	82%								11659	62% 88%																
pylori	11308 33%		11594	64%	11440	40%	94%	11592		11408	55% 99%	11568	97%	11382	3/% 80%					11423	98%	11445	29% 78%			-	
zae	10990 34%	80%	11101	66%	11102	54%	93%	11103		11061	60% 100%	11060	%86 %60	11239	44% 88%	11012	38%			11124	%66				,,,,,,,	11201 62% 96%	
S	10493 44%	%66		84%		%	91%	10559	101%	0480	78%	0481	%57 97%	0630	49% 89%	1991	42%			10489	%66			10765 36%	100%		10821
	10311 34%	79%		%5% 82%			20		% %	10364	60% 100%	10363	%86 %00	10069	45%		34%			10043	96%				10004	10097 65% 94%	
	SeqID IDENTITY	COVERAGE	SeqID	DENTITY COVERAGE	SealD			SAU100141 SeqID		SeqID	JE		COVERAGE		COVERAGE	SeqID	IDENTITY	SAU100182 SeqID IDENTITY	COVERAGE	SeqID IDENTITY	COVERAGE	SeqID	COVERAGE	SeqID IDENTITY	COVERAGE	Seque IDENTITY COVERAGE	SeaID
TISCO DO	SAU100133 SeqID IDENTITY		SAU100139 SeqID		SATT100140 SeqID			SAU100141		SAU100157 SeqID		SAU100158		SAU100162 SeqID		SAU100175 SeqID		SAU100182		SAU100186 SeqID		SAU100198 SeqID		SAU100227 SeqID IDEN	0.400040	SAUTUUZ42 SeqLD IDEN' COVE	SAU100246 SeqID

	onella								51% 88%							40% 94%	19 28%	%66	11 27% 90%		791
	Salmo							12007	Ŝ						m		39		137		je.
	Streptococcus	38% 93%						13438	65%	1517 82%		168 51%	%16		12	49% 101%	13252 29%	%66	13244 40% 92%	43%	143
	Pseudomonas Staphylococcus Streptococcus Salmonella nerucinosa aureus nomiae tombi	100%	12363	12122	100%	12256 100% 101%	12141	100%	001 %001 %	12451 13	101%	12452 100%	101%	2	12397	100% 100%	12313 100%	100%	12312 13244 100% 409 100%	12661 100% 100%	12358 13
	Klebsiella Pseudomonas							110/11	%	11999	99%	12000 42%	98	12001 31% 103%		40% 92%					12087
VIIA	Klebsiella																11685 28%	%66			1727
1ABLE VIIA	Helicobacter nylori		:					 -	51%	<u> </u>	%26	⊩ i	%96								11326 1
	Haemophilus influenzae								47%				102%	34% 34% 93%	10990	38% <u>.</u> 94%	10954 29%	%66	10963 30% 86%		11136
	Enterococcus Haemophilus Helicobacter Klebsiella faecalis	35%					10617 26%	10487	52% 73% 1188% 94%		99%		%86		10774	%66 %00	1072 5 32%	100%	10013 10814 10963 26% 44% 30% 90% 86%	1 0	0802
1	Escherichia			10469	37%			10041	52%	10434	%66	10433 10624 41% 58%	%66	10432 25% 92%	10311	40% 94%	10392	%66	10013 10814 26% 449 90%		10419
	Data	IDENTITY COVERAGE	SeqID IDENTITY	SeqID	DENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY	COVERAGE	照		Œ	. 1	KAGE	TITY		COVERAGE	SeqID IDENTITY	COVERAGE	SeqID IDENTITY COVERAGE	SAU100313 SeqID IDENTITY COVERAGE	SeqID
	rocusin		SAU100251 SeqID IDENTITY	SAU100265 SeqID		SAU100266 SeqID IDENTITY	SAU100272 SeqID	SATT100275	IDENTITY COVERAGE	SAU100300 SeqID		SAU100301 SeqID IDENTITY	0000011110	SAUTUU302 SeqLD IDEN COVE	SAU100305 SeqID		SAU100307 SeqID		SAU100308 SeqID IDEN COVE	SAU100313	SAU100315 SeqID

⋖
5
凹
AB
\mathbf{H}

Salmonella typhi	33 34% 88%				31 28% 101%	-	53 31% 99%		.72 60% 96%	45 31% 98%	44 58% 98%		69 40% 92%	#
Salmo typhi	13933 34'				14031 28		14053 31		138	140	140	,,	38	14041
Streptococcus pneumoniae		13206 42% 100%	13300 31% 109%	132		13344 27% 71%		13468 40% 97%	13401 76% 96%	13246 55%	13247 69% 99%	13393 27% 100%	135	13403
Pseudomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae	12 <i>575</i> 100% 100%	12334 100% 100%	12155 100% 100%	12239 100% 100%	12276 100% 100%	12279 100% 100%	12576 100% 101%	121 <i>97</i> 100% 100%	12148 100% 101%	12450 100%	12449 100% 101%	12154 100% 100%	00	12392
Klebsiella Pseudomonas pneumoniae aeruginosa		12077 30% 100%			11903 33% 92%			73%	11943 67% 91%	5181 39% 99%	5180 58% 98%		8%	11967
Klebsiella pneumoniae							11641 33% 95%							
Helicobacter pylori						11374 41% 99%		11360 33% 74%	11300 60% 99%	11411 31% 95%	11 <i>572</i> <i>57%</i> 99%			11540
Haemophilus Helicobacter Klebsiella influenzae pylori pneumonia		10961 30% 84%					10980 27% 95%	11194 30%	11205 61% 98%	33% 33%	11072 63% 98%		11081 39% 96%	11016
Enterococcus faecalis	%66 %	% 106%	10683 42% 93%	10757 52% 97%	10674 29% 99%	0737 50% 95%	0706 30% 99%	10563 42% 100%	80% 80% 89%	%86 %	%66 %	10569 27% 100%	100%	10583
ichia	10216 32% 88%				10411 28% 101%	10473 1 ¹ 27% 75%	10090 31% 95%	% %	10453 60% 96%	%86 88%	10437 58% 97%		10272 40% 92%	10440
Data	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqD IDENTITY COVERAGE	SAU100414 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SAU100436 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID
Locusin	SAU100323 SeqID IDENTITY COVERAC	SAU100347 SeqID IDENTITY COVERAC	SAU100355 SeqID IDENTITY COVERAC	SAU100359 SeqID IDEN COVE	SAU100381	SAU100389 SeqID IDEN COVE	SAU100401 SeqID IDEN COVE	SAU100412 SeqID IDEN COVE	SAU100414	SAU100432	SAU100433	SAU100436	SAU100443	SAU100444 SeqID

					TABLE VIIA					
LOCUSID	Data	Escherichia coli	interococcus	Haemophilus	Helicobacter .		Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
	IDENTITY	29%	30%	41% 94%	41%		~ %	100%	%	.ye 29% 75%
SAU100475	SeqID IDENTITY COVERAGE		10927 33% 101%				11911 30% 101%	12337 100% 100%		
SAU100478 SeqD IDEN COVE	SeqID IDENTITY COVERAGE			%96 %				12605 100% 100%		
SAU100489 SeqID IDEN COVE	SeqID IDENTITY COVERAGE	10332 33% 101%	0685 33% 102%	1074 31% 99%	11580 34% 94%	1729 34% 101%	11778 29% 99%	125 66 100% 100%	13298 34% 97%	14100 33% 94%
SAU100496	SAU100496 SeqID IDENTITY COVERAGE		6					124 8 4 100% 100%		
SAU100497	SAU100497 SeqID IDENTITY COVERAGE	86	10709 59% 101%	11171 49% 99%	11395 44% 100%		11792 48% 99%	12140 100% 100%		13740 45% 100%
SAU100514	SeqD IDENTITY COVERAGE	10215 52% 93%			11388 34% 95%		12036 51% 98%	12626 100% 100%		13932 51% 95%
SAU100521 SeqID IDENTITY COVERAG	SeqID IDENTITY COVERAGE	10251 43% 104%		%801 %108%	11370 34% 103%		% 103%	12600 100% 100%		13703 42% 104%
SAU100522 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	6 91%		11206 34% 89%		11680 30% 80%	11904 36% 90%	12599 100% 100%		14007 35% 91%
SAU100527	SAU100527 SeqID IDENTITY COVERAGE	10298 44% 98%	0721 48% 97%	10996 42% 99%			11782 41% 98%	12341 100% 101%	13452 43% 98%	13736 45% 97%
SAU100528 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE		10521 30% 83%					12507 100% 101%	33% 33% 719	
SAU100532 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	% 101%	10645 47% 100%	1128 29% 72%				30% 100%	40% 97%	13744 31% 0 72%
SAU100542 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	10371 52% 100%		1070 51% 98%	11422 46% 98%		1% 1029	12532 100% 100%	35% 35% 102%	13806 52% 6 100%
SAU100546 SeqID IDENT COVE	SeqID IDENTITY COVERAGE	10359 43% 97%		11097 46% 97%	11596 34% 90%		5176 47% 99%	12235 100% 100%	3197 66% 999	13974 46% 91%

rocusm	Data	herichia	snood	ırs	ABLE \		Pseudomonas	Pseudomonas Staphylococcus	S	Salmonella
		coli	8	zae		oneumoniae aeruginosa	\neg		oniae	typhi
SAU100547 SeqID	SeqID IDENTITY	10358 41%	10549 1 62%	11098 39%	11595 40%			12240 100%	3198 63%	13973 41%
	COVERAGE	2%			%96		7%	100%		93%
SAU100557 SeqID IDEN' COVE	SeqID IDENTITY COVERAGE		10928 50% 99%				· ·	30%	13651 49% 99%	
SAU100582 SeqID IDEN COVE	SeqID IDENTITY COVERAGE	·						12503 100% 100%		
SAU100590 SeqID IDEN COVE	SeqID IDENTITY COVERAGE							00% 100%		
SAU100595 SeqID IDEN' COVE	SeqID IDENTITY COVERAGE	10051 47% 88%	10832 66% 89%		11464 42% 89%		12109 50% 93%	12547 100% 100%	3174 46% 90%	13722 42% 91%
SAU100596	SAU100596 SeqID IDENTITY COVERAGE	10050 36% 99%	10833 50% 99%	11067 31% 100%	11624 41% 92%	11656 38% 89%	12110 42% 95%	12548 100% 100%	13173 30% 106%	13720 32% 95%
SAU100601	SeqID IDENTITY COVERAGE							12616 100% 100%		
SAU100608 SeqID IDENTITY COVERAG	SeqID IDENTITY COVERAGE	10032 30% 102%	10870 61% 96%	11190 29% 100%	11349 29% 98%		12008 34% 87%	12293 100% 100%	3507 50% 96%	14079 28% 104%
SAU100610	SAU100610 SeqID IDENTITY COVERAGE							12294 100% 100%	1	
SAU100613 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	10378 44% 91%	%	11094 43% 93%			11781 46% 73%	%	13589 49% 89%	
SAU100617 SeqID IDENTITY COVERAG	SeqID IDENTITY COVERAGE		10502 26% 91%					≥	13314 25% 91%	
SAU100633 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	% 92%	10589 42% 103%			11698 25% 89%	% 101%	12515 100% 100%	13644 35% 105%	13724 26% 103%
SAU100646 SeqID IDENTITY COVERAG	SeqID IDENTITY COVERAGE	10051 50% 95%	10570 48% 94%		11464 46% 97%		%6 %6	121 68 100% 100%	13174 42% 95%	14109 50% 96%
SAU100658 SeqID	SeqID	10322	10813	11177	11351		12018	12388	13186	13733

	Salmonella tvohi		13911 44%		13/2/ 35%		13749	%26									13853		13945		13746 39%	95%	13734			13981 49% 97%
	Streptococcus pneumoniae	58% 100%	13616 56%	%CK	13329 42%	104%					13311		13671				13382	101%	13319				3273 31%		13404 26% 97%	3169 45%
	snz	100%	12390	101%	100%	100%	12632	100%	12633	100%	12323	100%	12196	100%	12546	70% 101%	12635	103%	12601	101%	12602	100%	12603 1 100%	100%	12391 100% 100%	12624 13 100% 6 100%
	Pseudomonas aeruginosa	~	11937 46%	11700	35%	91%	120 <i>97</i> 16%	8								73%	19611	%	11850	%66	2084 42%	95%	2031 28%	3%		51% 51% 97%
	a			1913	33%	%96															1636 42%					11634 48% 94%
TABLE VIIA	Helicobacter pylori	46%	11601 40%		⇉	106%	11486	%66				_					11563		-	101%	~	92%	11306 27%			11600 42% 97%
	Haemophilus Helicobacter Klebsiella influenzae pylori	49%	11174 45%	10007	%	%66											11238		11019	100%			11142 29%	97%		10953 46% 98%
	nterococcus ecalis	59% 100%)923 54%	9776			•				10694	%86 86	10655 46%	%16)675 5797	100%	3688				0573 36%	95%	10585 27% 97%	0847 45% 98%
	Escherichia coli	49% 100%	10045 47%	10303	32%	%96	10412 46%	%26								·	10465	108%	10071	%66	10415	95%	10321 28%	×		10188 48% 97%
	Data	IDENTITY COVERAGE		KAGE	TITY	RAGE	1117	COVERAGE	SeqID	COVERAGE	SeqID	COVERAGE	SAU100702 SeqID	COVERAGE	SeqID	COVERAGE	SeqID	COVERAGE	SeqID	COVERAGE	SeqID IDENTITY	COVERAGE	SeqID SeqID	COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE
	rocusid		SAU100659	0 4 7 11 00 6 70	DEN DEN		SAU100684 SeqID		SAU100685		SAU100689		SAU100702		SAU100710 SeqID		SAU100714 SeqID		SAU100731 SeqID		SAU100733 SeqID		SAU100734 SeqID		SAU100736 SeqID IDENTITY COVERAC	SAU100738 SeqID IDENTITY COVERAC

TABLE VIIA	

TOCUSID	Data	Escherichia coli	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella foscolis infuenzae molori	Haemophilus influenzae	Helicobacter mlori	1 0	Pseudomonas aerueinosa	Pseudomonas Staphylococcus Streptococcus Salmonella aerueinosa aureus	Streptococcus	Salmonella tvohi
SAU100741	SealD	Τ						12409		13714
	IDENTITY COVER A GE	65%	50%		35%		100	100%		66% 101%
SATT100745	į	11	Ě	1202	11607	11733	11906	12596	1453	13847
IDENTITY		34%	%	35%	31%	%	%	100%	49%	35%
	Ä	%			%66	101%	686	100%	%86	101%
SAU100747 SeqID	SeqID		101/					2597	13266	
	IDENTITY COMED A CE	-	32%					100%	31%	
SATTION SOUTH	COVENAGE	10425	10966	11000		4741	11007	10334	13431	13788
9A0100/31	Seque	%	10800	2007		%	%	16333	15+51	13/00
-	COVERAGE	%66 %70		%86		87%	966	100%	%66 7.50	%66
SAU100752 SeqID	SeqID	10140					1	12524		14022
	IDENTITY	31%					35%	100%		38%
	COVERAGE	71%					82	100%		72%
SAU100767 SeqID IDENTITY	SeqID IDENTITY	10290 43%					12094 1.7 42%	12 <i>57</i> 9 100%		13875 42%
•	COVERAGE	100%					90%			100%
SAU100771 SeqID	SeqID	10084					11821	12	3306	13710
	IDENTITY COVERAGE	30%			٠		29% 80%	100%	2 8% 90%	26% 94%
SAU100773 SeqID	SeqID	10055	0758	11093	11336	11763		12377	32	
	IDENTITY	47%	70%	41%	41%	46%	51%	100%	70%	•
	COVERAGE	94%	100%	%86	%96	94%	93%	101%	%96	
SAU100776	SAU100776 SeqID							12482		
	COVERAGE							100%		
SAU100778 SeqID	SeqID	10083	i :	10957	:		1	12514		14062
	IDENTITY	52% 89%		52% 89%			45% 88%	100%		47% 89%
SAU100793	SeqID							12188	33	
•	COVERAGE	-						100%	27% 103%	
SAU100794 SeqID	SeqID	10203						12189		
	COVERAGE	%101 101%	-					100%		
SAU100799	SAU100799 SeqID							12682		
	COVERAGE							100%		
SAU100808	SeqID				<u> </u>			12345		14081

IIA	
LE V	
TAB	

- 1		- 1				Ţ				
TOCOSID	Data	Escherichia	Enterococcus Haemophilus Helicobacter Klebstella Goscolis	Haemophilus	Helicobacter	9	Pseudomonas	Pseudomonas Staphylococcus Streptococcus	Streptococcus	Salmonella
	COVERAGE							100%		
SAU100880 SeqID	SeqID	10429	10720		11335		12039	12340	3451	14072
	COVERAGE	%18 81%	95%		97% 97%		81%	100%	45% 99%	32% 85%
SAU100882	SeqID IDENTITY	10322 10750 43% 54%	10750 54%	11177 1 42%	11351 40%		12018 17 45%	2374 100%	3330 52%	13733 43%
CAYTIANOOF GOOT	NA GE	70.70	2070	2	F		12005	1007	707	7007
3AU 100883	LITY	52% 10/34		53%	52%		53%	3		14032
	RAGE	%26	74%	94%			%76	100%		93%
SAU100886 SeqID		10224	10701	1213	—		11905	139.	3348	13957
	照	38% 86 97% 97%	83% 83%	38%	36% 98%		36% 104%	100% 100%	52% 102%	38%
SAU100887 SeqID		10393	10952	=	\vdash		11774	138	3342	13920
	. ;	50%		50%	49%		48%	100%	40%	20%
	COVERAGE	%C8	%0%	%7%	83%		83%	100%	%06	85%
SAU100899 SeqID	SeqID IDENTITY							22 <i>77</i> 100%		
	COVERAGE							%00I		
SAU100901 SeqID	SeqID				•			12278		
	COVERAGE		-			_		100%		
SAU100916 SeqID IDEN COVE	SeqID IDENTITY COVERAGE	10209 10887 32% 34% 75%	10887 34% % 72%					12394 100% 101%		13876 32% 75%
SAU100920		10060		191	11530	11756	1983	12395		13896
	IDĖNTITY COVERAGE	43% 489 91%	48% 86%	% 87%	% 91%	% 86%	30%	100%		43%
SAU100921		10027	7773	11185		i	2012	12396	3478	14074
	TITY RAGE	32% 101%	43%	33% 96%			%96 %	100%	34% 98%	32% 101%
SAU100932 SeqID		10095		11271				128		14055
	IDENTITY COVERAGE	39% 101%		36% 101%			39%	100%		39%
SAU100944 SeqID	SeqID	10017	2890	11219	13		12057	125	3498	14012
	COVERAGE	37% 80%	26% 108%	36% 79%	36% 79%		39%	100%	27%	39% 80%
							<i>: .</i>			
				•						
					٠.	•••				

TAUL OF A					L MAI	Γ				
rocesm	ria m	escnericnia coli	escherionia Ernerococcus Indemopnius Inelicobacier Aleosieua coli faecalis influenzae pylori pneumonia	naemopnius influenzae	neucooacier pylori	<u></u>	r seudomonas aeruginosa	r seudomonas istapriviococcus istraptococcus istamoneua aeruginosa aureus pneumoniae typhi	Streptococcus pneumoniae	Saimoneila
SAU100952 SeqID	SeqID IDENTITY		33%					12523 100%	13312 31%	
02001XA10	COVERAGE		104%					100%	102%	
SAU100959	SeqID		10704 58%					12485	13504	
	COVERAGE		%66					100%	101%	
SAU100961 SeqID	SeqID	10320	10671	1141	71215		12030	12638 13	13322	13766
	COVERAGE	&	%66 %C0				80	101%	101%	
SAU100962 SeqID	SeqID				11299			12639	2	
	COVERAGE				%08 80%			100%	%26 %07	
SAU100963 SeqID	SeqID				11493		12029	2640	33	13771
	COVERAGE	60% 84%	%96 %6/. 9	%65 81%	61% 81%		63% 84%	100% 101%	81%	%88 88%
SAU100964 SeqID	SeqID IDENTITY		10501 61%	11139			12028	12641 1.	13331	
	COVERAGE		101%				77%	100%		
SAU100965 SeqID	SeqID	-						12642		
	COVERAGE							0001 101%		
SAU100970 SeqID	SeqID	1			11512			Г	1336	
	IDENTITY COVERAGE	52% 99%	54% 99%	39%	47%		52% 99%	100%	46%	
SAU100996 SeqID	SeqID		<u> </u>		11350			12606	13600	
	IDENTITY COVERAGE		38%		34% 73%			100%	39% 96%	
SAU101006 SeqID	SeqID		10572	1022	11473		5122	12190		13820
	IDENTITY COVERAGE	29%	40%	31% 87%	26% 94%		26% 79%	100%		30%
SAU101020 SeqID	SeqID							12710		
	IDENTITY			-				100%		
SAU101024 SeqID	SeqID IDENTITY	1						12711		
	COVERAGE							101%		
SAU101028 SeqID IDEN COVE	SeqID IDENTITY COVERAGE	10034 46% 106%	0848 57% 101%	11148 43% 107%	11364 46% 100%		12006 46% 108%	2552 100% 100%	3471 55% 100%	13901 45% 106%
SAU101034 SeqID	SeqID		10578					2608	3654	

⋖
Ħ
>
ш
7
Ξ
\mathbf{z}
2
-

									-				
Salmonella typhi			14027 31% 98%				13993 32% 88%					13906 47% 99%	
Streptococcus pneumoniae 37% 71%	13428 36% 103%		1191 46% 102%	13394 40% 99%	13380 32% 82%		225 47% 101%	9	13188 31% 97%		13482 38% 96%		
S	1 <u>2521</u> 100% 101%	12522 100% 100%	12289 100% 100%	12290 13 100% 100%	12291 100% 100%	12283 100% 100%	12284 13 100% 100% 100% 13)% 100%	12191 100% 100%	12192 100% 100%	12195 100% 6 100%	12502 100% 100%	12299 100% 101%
Klebsiella Pseudomonas l pneumoniae aeruginosa c	35% 35% 78%		11801 36% 989			82	%	34% 34% 94%		11847 17 30% 72%	1869 42% 999	1968 44% 1009	12070 12 43% 96%
Klebstella pneumoniae			11668 38% 97%								11732 37% 99%		
Helicobacter pylori			11607 28% 108%				11462 37% 94%	11366 42% 74%			11404 37% 92%	11315 43% 98%	
Haemophilus influenzae			11210 40% 100%			34% 34% 102%	11263 34% 88%				11248 39% 100%	_	
Enterococcus faecalis 36% 80%	10716 42% 96%		10681 49% 103%	10682 41% 100%	0770 40% 89%				10755 36% 97%	33% 33% 96%)768 45% 100%		10548 42% 98%
Escherichia coli			10221 37% 98%			10066 36% 90%	10170 37% 89%			10450 1 35% 71%	10135 38% 98%	10040 47% 99%	
Data IDENTITY COVERAGE	SAU101038 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	. 22	l e	H		SeqID IDENTITY COVERAGE	Ħ	E	贸	SeqID IDENTITY COVERAGE
Locusin	SAU101038	SAU101039 SeqID IDENTITY COVERAC	SAU101065 SeqID IDENTITY COVERAC	SAU101067 SeqID IDEN COVE	SAU101070 SeqID IDEN' COVE	SAU101084 SeqID IDENTITY COVERAC	SAU101085	SAU101086 SeqID IDENTITY COVERAC	SAU101090 SeqID IDENTITY COVERAG	SAU101092 SeqID IDENTITY COVERAG	SAU101104 SeqID IDENTITY COVERAG	SAU101143 SeqID IDENTITY COVERAC	SAUTO1145 SeqID IDEN' COVE

۷	
5	-
12 12	ļ
TAR	
٠	•

				,	, , , ,	П	,			
rocosm	Data	Escherichia coli	Escherichia Enterococcus coli faecalis	Haemophilus Helicobacier Klebsiella influenzae pylori pneumonia	Helicobacter pylori	<u>g</u>	r seudomonas aeruginosa	revadomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus preumoniae typhi	Streptococcus	Salmonella
SAU101155 SeqID	SeqID	10287	10697	11077		11690	Γ	12310	13549	13868
	IDENTITY	43%	49%	40%	30%	42%	42%	100%	37%	43%
0 1 0 1 0 1 0	COVERAGE	0/56	7570	7.006	000.	9270	2470			
SAU101156 SeqID	SeqID	10426	10698	11032	11333	·	2083	12311		13/90
	COVERAGE	%96					%9			%96
SAU101159 SeqID	SeqID		8		11532			12331	13463	
	IDENTITY COVERAGE		%99 100%		36%			100%	54%	
SAU101175	SAU101175 SeqID							12213		
	IDENTITY COVERAGE							100%		
SAU101180 SeqID	SeqID	10061	10888					12656		
	IDENTITY COVERAGE	38%	50% 89%				37%	100%		
SAU101183 SeqID	SeqID		108					12304		
	DENTITY		42%					100%		
	COVERAGE		102%					%001		
SAU101184 SeqID	SeqID	10477	10711	11218				12305	349	13709
	COVERAGE	3/%	46% 100%	30%	30% 85%	38% 82%	35% 85%	100%	98%	38% 82%
SAU101189 SeqID	SeqID							12264		
	IDENTITY COVERAGE							100%		
SAU101197 SeqID	SeqID	10180		11024			1	12300		13976
	闰	31%	44%				100%	100%		30% 98%
SAU101198	SAU101198 SeqID	10218	107	11023				12301	13341	
		43%	%86 80%	43%			41%	100%	46%	
SAU101199 SeqID		10088	1	10970			1	12302	13178	12
	H	29%	40%	31%		_	36%	100%	37%	30%
SAU101220 SeqID		10286	864					12645	13390	13870
	IDENTITY	32%	37%					100%	39% 99%	31%
SAU101224 SeqID	SeqID IDENTITY				11533 28%			12647 100%		
SAU101226 SeqID	SegID		10837		%//	11658	11825	12298	13296	13721
1 ~~~~~~~~	- Arthur	_		-				12270		17/51

(14095 47% 105% 106% 100% %96 Salmonella 27% 31% 20% 35% **4**% 13942 13954 13943 typhi 57% 101% 67% 100% 55% 101% 101% 97% 85% %86 77% 103% %86 Pseudomonas Staphylococcus Streptococcus pneumoniae 33% 27% 35% 81% %19 46% 35% 13474 13486 13240 13359 13238 13317 13383 13385 13299 12573 100% 101% 12512 100% 100% 112488 100% 100% 12363 100% 100% 12364 100% 100% 12366 100% 100% 12564 100% 100% 12570 100% 100% 4 100% 100% 100% 100% 100% 100% aureus 12578 12490 12303 12604 33% 97% 36% 36% 52% | 11845 | 34% | 94% 12079 32% 73% 35% 100% 47% 104% 39% 100% 43% 89% 11988 1951 11708 34% 96% 11673 29% 108% 28% 75% Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli faecalis Influenzae pylori pneumonia TABLE VIIA 25% 100% 33% 98% 47% 101% 48% 105% %86 %86 93% 45% 41% 33% 11425 11556 11361 1399 11324 38% 93% 93% 47% 97% 27% 90% 36% 47% 104% 100% 46% 10981 11121 11220 11087 11221 110616 37% 84% 32% 91% 10735 70% 100% 46% 57% 101% \$2% \$2% 61% 100% (10500 55% 77% 67% 67% 101% 62% 99% %66 57% \$50% \$0% \$6% \$10719 \$4 10174 37% 100% 10684 5 0513 (10137 28% 73% 10232 35% 95% 10301 32% 101% (10335 48% 104% 110238 45% 100% 42% 101% 68001 IDENTITY SeqID IDENTITY COVERAGE SeqID IDENTITY DÉNTITY SeqID IDENTITY SeqID IDENTITY DENTITY DENTITY SeqID SedID LOCUSID SAU101235 SAU101236 SAU101239 SAU101240 SAU101242 SAU101262 SAU101266 SAU101270 SAU101275 SAU101247 SAU101267 SAU10127 SAU10123

PCT/US01/09180 WO 01/70955

46%

47%

%00

49%

100%

45%

35%

104%

47%

36%

Escherichia Enterococcus Haemophilus Helicobacter Klebsiella Pseudomonas Staphylococcus Streptococcus Salmonella coli faecalis influenzae pylori pneumoniae aeruginosa aureus 14089 14014 13888 13885 26% 72% \$6% 56% %06 %66 %86 %66 100% 92% %66 %9/ pneumoniae 13189 54% 35% 54% 51% 27% 28% 40% 48% 3346 13194 13195 13364 13254 13495 13405 13365 13611 100% 12612 100% 101% , 100% 101% , 100% 101% 12562 100% 100% 100% 100% 100% 100% 100% 4 100% 100% 12631 100% 101% 100% 101% 100% 100% 11840 35% 101% 12618 10' 42% 96% 12128 12558 12399 12619 12292 12559 12563 12557 12620 45% 45% 34% 92% 51% 99% 54% 97% 47% 98% 94% 27% 11785 12063 11859 11826 50% 99% TABLE VIIA 26% 74% 39% 100% %98 %86 %86 33% 11385 48% 43% 11317 11321 11562 10965 49% 99% (11278 46% 98% 43% 101% %86 95% %66 11212 48% (<u>11162</u> 49% 48% 11160 11147 11252 \$10752 \$7% 96% 749% 101% 29% 89% 55% 92% 4 47% 100% 30% 74% 55% 100% 93% %86 %/6 21% 52% 46% 10884 10924 01/01 10751 10753 10861 10520 10925 0649 10650 110230 47% 93% 46% 98% 50% 50% 100% 10092 37% 106% 30 47% 98% 35% 10078 100% (10093 55% 99% 50% 50% 10330 10171 SeqID IDENTITY COVERAGE SeqD IDENTITY COVERAGE SeqID IDENTITY SeqID IDENTITY SeqID IDENTITY SeqD IDENTITY SeqID IDENTITY SeqID IDENTITY SeqD IDENTITY SeqID IDENTITY SeqID IDENTITY SeqID IDENTITY DENTITY SedID SAU101344 SeqID LOCUSID Data SAU101310 SAU101286 SAU101293 SAU101300 SAU101339 SAU101340 SAU101302 SAU101343 SAU101301 SAU101311 SAU101320 SAU10132 SAU10134

172

M	l
E	l
BL	İ
H	l

									-				
Salmonella typhi 38%	13894 36% 99%	13 8 39 62% 100%	3		13838 56% 98%	13874 45% 101%	13843 48% 99%				13862 52% 98%	13761 39% 8	14067 32% 6 99%
Streptococcus pneumoniae 44% 79%		13259 30% 91%	2	13285 59% 96%	31	13295 50% 100%	13179 56% 99%		13243 34% 77%	13432 41% 99%	657 63% 96%	1422 37% 1129	1508 38% 929
lococcus 00% 100%	12621 100% 100%	2622 100% 100%	2487 100% 100%	2486 100% 100%	12555 100% 100%	12556 100% 100%	122 66 100% 100%	30% 100%	12275 100% 100%	12145 100% 100%	2146 100% 1009	2147 100% 1009	2385 100% 1009
Klebsiella Pseudomonas pneumoniae aeruginosa 37% 82%	11803 43% 99%	100%	12069 1 46% 100%	·	11878 58% 98%	11809 45% 101%			11902 32% 79%		11879 53% 989	94%	2115 29% 98%
Klebsiella pneumoniae					11684 - 55% 88%						11635 39% 79%		1640 32% 96%
Helicobacter pylori	11282 35% 103%	11283 62% 101%	11318 32% 81%		11598 35% 97%	11 <i>577</i> 40% 99%			11372 40% 86%		11292 42% 97%	11418 26% 98%	
Haemophilus influenzae 40% 79%		11163 29% 96%			10977 54% 98%	11127 44% 101%					% 97%	11226 36% 97%	1030 31% 92%
Enterococcus faecalis 62% 88%			10508 56% 98%	0507 60% 96%	10571 70% 101%	5% 101%	10654 73% 98%				%66 %09 1,010	39% 39% 90%	52% 52% 909
Escherichia E coli 48% 81%	10058 36% 99%	10139 63% 100%	10184 61% 95%		8%	% 101%	10147 49% 99%			10373 26% 98%	10239 53% 98%	10317 37% 102%	10403 33% 99%
rity Rage	IITY RAGE	TITY	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	E	贸		SAU101385 SeqID IDENTITY COVERAGE
LOCUSID	SAU101346 SeqID IDENT COVE	SAU101347 SeqID IDEN COVE	SAU101350 SeqID IDEN COVE	SAU101351	SAU101360 SeqID IDEN COVE	SAU101365 SeqID IDENTITY COVERAC	SAU101366 SeqID IDEN COVE	SAU101369 SeqID IDENTITY COVERAC	SAU101371	SAU101381 SeqID IDENTITY COVERAC	SAU101382 SeqID IDENTITY COVERAC	SAU101383 SeqID IDENTITY COVERAC	SAU101385

%86 %06 88% 100% 100% Salmonella 27% 55% 54% 27% 30% 29% 21% 14069 13842 3873 13949 14031 13510 74% 41% 96% 27% 61% 99% %85 %85 68% 101% 72% 100% 101% %06 100% Pseudomonas Staphylococcus | Streptococcus pneumoniae 113538 26% 32% 42% 48% 13509 13485 3699 13278 13335 13408 13391 13234 13337 , 12067 59% 98% 12379 100% 12500 100% 100% 12308 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% | 12114 | 12114 | 27% | 87% | 12387 12326 aureus 12498 12382 12184 12324 12325 12383 57% 98% 12051 56% 100% 60% 100% 51% 97% %66 %66 pneumoniae aeruginosa 54% %89 12065 12050 11903 12037 57% 101% 85% 101% Helicobacter Klebsiella 51% 63% 11755 TABLE VIIA 11502 51% 99% 27% 71% 11400 60% 100% 38% 97% 32% 95% 900 100% 61% 97% 54% 100% 11549 11286 11285 pylori 11301 57% 99% 57% 89% 54% 100% ,48% 98% 62% 99% 29% 57% 100% %96 Escherichia Enterococcus Haemophilus coli faecalis influenzae 52% 11029 68601 11046 11045 11224 11207 72% 72% 78% 78% 101% 35% ,3 46% 96% 29% 63% 100% , 66% 101% 70% 100% %66 93% 1<u>10676</u> 38% 43% 10839 10882 0200 10828 10674 10827 (1040<u>2</u> 27% 87% 55% 98% [10254 60% 100% 110146 30% 88% 55% 100% 10267 37% 100% 10271 27% 50% 50% 99% \$2% \$2% 0248 10401 10411 SeqID IDENTITY COVERAGE SeqD IDENTITY SeqID IDENTITY SeqID IDENTITY SeqID IDENTITY SeqID IDENTITY SeqID IDENTITY SeqID IDENTITY DENTITY DENTITY DENTITY DENTITY DENTITY SeqID SeqID SeqID SeqID SedID SAU101446 SeqID LOCUSID Data SAU101387 SAU101389 SAU101398 SAU101399 SAU101400 SAU101432 SAU101436 SAU101438 SAU101444 SAU101445 SAU101408 SAU101421 SAU101427

a	%66	·		1	<u> </u>	,21%	8	l	% 101%	%8	%	<u> </u>	%86 %	T
Salmonell tvehi	2					14051 29%	13905 26% 73%		14092 379	13871 31%	13799 28% 73%		13715 38%	13716 44%
Streptococcus pneumoniae			·	·		13584 26% 88%	13454 25% 95%	13580 41% 96%	3360 48%	13674 51% 6	13450 33% 6	13315 42% 95%	13323 43% 85%	13564 64%
Pseudomonas Staphylococcus Streptococcus Salmonella aerueinosa aureus	100%	12683 100% 101%	12684 100% 100%	126 86 100% 100%	12680 100% 101%	12679 100% 101%	12254 100% 100%	12130 13 100% 100%	1123 100% 100%	1124 100% 1019	2164 100% 100%	12165 100% 100%	121	121 <i>67</i> 100%
Pseudomonas aeruginosa	33%	·			11790 26% 86%	11919 26% 91%		11894 39% 96%	1893 52% 98%	1892 61% 879	11868 25% 74%		11831 37% 94%	11 8 32 43%
Klebsiella pneumoniae									36% 36% 77%					
Helicobacter pylori								1290 32% 93%	1342 44% 98%	11341 58% 90%			11284 29% 78%	11381 30%
Haemophilus influenzae	·						·	10975 40% 96%	1 2 . .	18 1			37% 37%	11021 41%
Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumoniae	59% 100%				10705 54% 93%	10708 45% 98%	10905 29% 94%	95%	100%	918 41% 90%	10730 28% 95%	0580 42% 104%	0581 52% 101%	
Escherichia coli	%86 88%					% 77%	10469 1 38% 84%	10125 10920 40% 39% 93%	10126 55% 98%	10127 65% 88%			%86 %86	10074 42%
Data	IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	ш	照	買	. 22	SeqID IDENTITY COVERAGE	, <u>H</u>	Ħ	
Locusin		SAU101447 SeqID IDENTITY COVERAG	SAU101452 SeqID IDENTITY COVERAC	SAU101455 SeqID DENTITY COVERAG	SAU101461 SeqID IDENTITY COVERAG	SAU101463 SeqID IDENTITY COVERAG	SAU101476 SeqID IDENTITY COVERAG	SAU101481 SeqID IDENTITY COVERAG	SAU101482 SeqID IDENTITY COVERAG	SAU101483 SeqID IDENTITY COVERAG	SAU101488 SeqID IDENTITY COVERAC	SAU101491 SeqD DENTITY COVERAC	SAU101492 SeqID IDENTITY COVERAG	SAU101493 SeqID DENTITY

32% 92<u>%</u> 28% 76% %96 100% Pseudomonas Staphylococcus | Streptococcus | Salmonella 40% 30% 38% 52% typhi 14077 59% 101% %16 94% 83% %68 %% %26 %16 95% 1<u>13406</u> 32% pneumoniae 32% 47% 39% 49% 34% 46% 13633 13672 13333 13249 13465 13647 13460 11867 27% 73% 12348 100% 12418 100% 100% 12179 12544 100% 100% 12344 100% 100% 100% 100% 100% 12349 100% 100% 100% 101% 100% 101% aureus 12549 12361 12360 12550 12551 42% 101% 33% 29% 92% 26% 26% %86 pneumoniae aeruginosa 12014 12049 12019 2815 38% 70% 36% 104% Escherichia Enterococcus Haemophilus Helicobacter Klebsiella TABLE VIIA 27% 89% 94% %98 %86 83% .11526 38% 29% 76% 27% 11458 11485 pylori 11329 1360 27% 78% 30% 88% 26% 26% 97% %06 101% 97% influenzae 36% 42% 32% 11187 11228 33% 27% 77% 8% 8% 63% 100% 92% 100% %88 %66 95% 83% 1<u>10636</u> 50% , 34% 29% 38% 38% 48% faecalis 9080 86901 10805 10634 10762 10485 10490 10601 10631 32% 92% 21 34% 104% 41% 101% 10025 26% 78% (10029 31% 98% 40% 70% (10172 52% 97% %96 10030 10024 10443 10121 coți COVERAGE SeqID IDENTITY COVERAGE SeqID IDENTITY COVERAGE SeqID IDENTITY DENTITY SeqID IDENTITY SAU101495 SAU101509 SAU101526 SAU101545 SAU101529 SAU101541 SAU101543 SAU101549 SAU101554 SAU101546 Locusm SAU101497 SAU101551

⋖	į
≓	I
>	l
, [4]	I
떡	ı
≍	Į
炲	ı
⊴	ı
H	Į

						- 1		,		
rocosm	Data	Escherichia coli	Enterococcus Haemophilus Helicobacter Klebstella faecalis influenzae pylori pneumonia	Haemophilus influenzae	Helicobacter pylori	Ø	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Samonella aeruginosa aureus pneumoniae typhi	Streptococcus pneumoniae 1	Saimonella typhi
SAU101561 SeqID	SeqID	8	10937			11759		7	3307	14064
	IDENTITY	%	21%	44%	38%	•	44%	100%	49%	43%
	COVERAGE	86	%66	%66	100%	%66	100%	100%	%66	%66
SAU101565 SeqID	SeqID		10552	11211		•	11895	2151	3448	13826
	COVERAGE	3/%	%96 %0¢	35% 94%			36% 92%	100%	44%	30% 92%
SAU101567	Seam		ı					121		
IDENTITY	IDENTITY							%001		
	COVERAGE							100%		
SAU101570	SAU101570 SeqID		10690	11208				12584	3563	13900
	IDENTITY COVERAGE	32%	48%	31%	•	34%	33%	100%	37%	30%
SAU101571	SeaID		16901				11917	12585	13308	
IDENTITY	IDENTITY		%				%	100%	31%	
	COVERAGE		%86				94%	100%	%26	
SAU101572 SeqID	SeqID	10068	ŏ				11864	12586		14083
	DENTITY	26%	56%			46%	43%	100% 100%	45%	25%
2003 600 4 4 10	COVERAGE	22	k	11000		0270	11066	H030	7070	0/5/
SAUTO15/3 SeqID	Sequin		10093	2			11803	ĩ		14034
	COVERAGE	31% 98%	49% 103%	35% 98%			30% 101%	100%		31% 98%
SAU101574 SeatD	SeaID							13		
	IDENTITY							100%		
	COVERAGE							101%		
SAU101575 SeqID	SeqID		10869					12589	363	;
	COVERAGE		31%					100%	%96 %/Z	
SAU101576	SeaID		10762				12049		13460	
IDENTITY	IDENTITY		%				%	100%	39%	
	COVERAGE		93%				%86	102%	%86	
SAU101586 Seq1D	SeqID								13487	
	COVERAGE							~~~	34%	
SAU101592 SeqID	SeqID		10605	10987		1			13283	13950
	IDENTITY COVERAGE	51%	74%	53%	53%	51%	52%	100%	70%	51% 101%
0477101500	OCATION DE	101				0/101	101	12470		0/101
SAUTOTOS SEGILI IDENTITY COVERAC	Seque IDENTITY COVERAGE					-		12478 100% 100%		
SAU101610 SeqID	SeqID	10449			11390		12048	12629		13816
		i								

PCT/US01/09180 WO 01/70955

105%

(13832 70% 100% 13903 33% 100% 26% 107% 48% 100%] Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhi 38% 13851 33% 33% 93% 63% 100% %66 %86 100% 26% 23% 26% 13462 13368 13334 13430 13384 13369 13367 | 12022 50% 95% | 12493 100% 17 34% 90% 12492 100% 12637 100% 100% 12430 100% 100% 100% 12193 100% 100% 12429 100% 100% 12410 100% 100% 12201 100% 101% 4 100% 100% 100% 12432 100% 100% 100% 100% 12023 49% 100% 12494 12649 Pneumoniae aeruginosa au 40% 34% 36% 39% 95% 53% 95% 11896 30% 83% 4 43% 101% 11978 12104 29% 104% 67% | 78% | 78% Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coll faecalis influenzae pylori 11695 TABLE VIIA 111407 32% 88% 29% 104% $\begin{array}{c}
111520 \\
46\% \\
100\%
\end{array}$ 49% 91% 38% 97% 11552 28% 89% 101% 94% (1<u>1534</u> 29% 38% 27% 106% 93% 29% 11262 38% 97% 73% 73% 100% 50% 97% 62% 62% %86 %66 %66 55% 28% 44% 10678 10886 10667 (10167 49% 100% 31% 84% 38% 105% (10186 33% 102% (10162 69% 100% (10193 26% 101% 51% 92% 10205 10223 COVERAGE SeqID IDENTITY COVERAGE SeqID IDENTITY COVERAGE SeqID IDENTITY COVERAGE SeqID IDENTITY COVERAGE SeqID IDENTITY DENTITY SAU101614 SAU101616 SAU101612 SAU101622 SAU101630 SAU101632 SAU101624 SAU101637 SAU101652 SAU101653 SAU101655 **TOCUSID** SAU101641 SAU101651

			ı
l			I
		•	l
ļ	1		l
ĺ	ĭ		ı
	Y 0	ς	
Ç			

						ı				
rocusin	Data	Escherichia coli	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli faecalis influenzae pylori pneumonic	Haemophilus influenzae	Helicobacter pylori	õ	Pseudomonas zeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhi	Streptococcus pneumoniae	Salmonella typhi
SAU101663 SeqID IDEN COVE	SeqID IDENTITY COVERAGE							%		
SAUT01664 SeqD DENTITY COVERAC	ii ii	10202 37% 98%	10512 41% 97%	36% 36% 108%			106%	12262 100% 101%	3685 38% 105%	13823 36% 98%
SAU101674 SeqID IDENTITY COVERAG	<u> </u>	% 103%					% 1019	12594 100% 100%		14082 27% 103%
SAU101679 SeqID IDENT COVE	TTY	10190 41% 90%	53% 53% 100%	11055 42% 99%	11398 36% 86%		2%	2593 100% 100%	3264 45% 98%	13756 40% 90%
SAU101681 SeqID IDEN' COVE	ITTY	10464 10 39% 100%	10746 46% 102%				11861 31% 95%	2592 100% 100%	3419 44% 102%	13987 40% 97%
SAU101682 SeqID IDEN COVE	rity Rage	10156 28% 94%	שו	112 65 28% 102%				2591 100% 100%	3488 34% 80%	13884 26% 94%
SAU101685 SeqID IDEN' COVE	SeqID IDENTITY COVERAGE		10590 26% 88%				11920 37% 97%	121 <i>5</i> 2 100% 100%	3396 56% 100%	
SAU101717 SeqID IDEN' COVE	、 B	10129 33% 101%	10586 51% 100%	11027 35% 93%	11610 31% 70%		38% 38%	12131 100% 100%	3352 49% 93%	14070 34% 101%
SAU101724 SeqID IDENTITY COVERAC) <u>H</u>	10309 10588 44% 44% 97%	9 10588 1 4% 44% 97% 99%	11268 41% 97%	11337 36% 87%		12015 43% 80%	12136 100% 100%	3678 45% 98%	13772 43% 97%
SAU101726 SeqID IDENT COVE	IITY RAGE	10130 37% 101%	10664 50% 100%	11026 42% 101%	11461 36% 101%		11889 1 40% 100%	2134 100% 100%	13550 48% 100%	14071 41% 77%
SAU101727 SeqID IDEN COVE	SeqID IDENTITY COVERAGE		10665 50% 101%					2133 100% 101%	13551 49% 101%	
SAU101728 SeqID IDENT COVE	rity Rage	10019 34% 86%	10666 54% 95%	11053 35% 88%		11734 35% 85%	4% 90%	12132 1 100% 100%	13182 53% 94%	14015 34% 86%
SAU101736 SeqID IDEN COVE	rity Rage	10225 28% 72%					8% 99%	12519 100% 100%		13958 29% 72%
SAU101737 SeqID					11405		11817	12518	-	_

	Salmonella typhi			13706	31%	14043	46%	14042 46%		13967		139	41% 91%	138	48% 84%							13900 44% 97%		14108 67% 102%
	Streptococcus pneumoniae			13165	45% 99%	13187	%66 %69	13646	101%	13231 82%		13280	%29 88%	13281	61% 101%	1317	62% 98%	3308	28%	33(40%	13563 37% 99%	3207 79%	89% 89% 101%
•	cus	2	123 <i>67</i> 100% 100%	12448	100%	12447	100%	12446	%	12445	101%	12350	100%	12351	100%	12352	100%		100%	12354	100%	12355 100% 100%	12215	12216 12216 100% 131%
	Pseudomonas . aeruginosa	30%					45% 116%	5179	%	5178	%		36% 80%		38%		•	1	38% 93%		41% 99%	11866 42% 99%	5170 55%	\$169 899 100%
VIIA	Klebsiella pneumoniae	•		11671	30%							11765	35%								44%	11700 35% 92%		
TABLE VIIA	Helicobacter pylori	32%				11410	40%	11571		11409 65%				112	27% 77%	11448	43%						11437	1436 62% 1
	Haemophilus influenzae	.				11037	47%	11036 46%		11062	%16	11276	37%	11275	51%							11208 45% 97%	106 55%	107 69% 1
	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli		10562 44% 101%	90901	46% 100%	8	75%	0627 72%	100%	10479 83%	93%	10784	1% 65% 91% 101%		, 101%	10673	64%	10495	%66 %29	10496	100%	10498 65% 100%	10524 % 81%	0349 10525 111 67% 90% 101% 101%
	Escherichia coli				30%	10438	46%	10439	116%	10365	916		43%	10240	50%							10037 44% 97%	10350 51%	10349 67% 101%
	Data	IDENTITY COVERAGE	SeqID IDENTITY COVERAGE		COVERAGE	SeqID	IDENTITY	SAU101754 SeqID	COVERAGE	SeqID IDENTITY	COVERAGE	SeqID	IDENTITY COVERAGE	SeqID	IDENTITY	SeqID	IDENTITY COVERAGE		COVERAGE	SeqID	COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY	SeqID IDENTITY COVERAGE
	LOCUSID	_	SAU101744	SAU101751		SAU101752 SeqID		SAU101754		SAU101756 SeqID		SAU101771		SAU101772 SeqID		SAU101777		\$AU101781		SAU101782 SeqID		SAU101784 SeqID IDENTITY COVERAC	SAU101790 SeqID DENTITY	SAU101791 SeqID IDEN'

_	
2	l
>	l
ъį	l
뭂	l
₹	l
Η	ı

LOCUSID Data SAU101792 SeqID IDENTITY COVERAGE	ichia % 96%	nterococcus vecalis 0526 66%	Haemophilus influerzae 11108 52% 95%	Helicobacter pylori	2	Pseudomonas aeruginosa 5168 49% 97%	Pseudomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae 5168 12217 13209 199% 99% 99%	Streptococcus pneumoniae 13209 68% 94%	Salmonella typhi 14107 50% 96%
SeqID IDENTITY COVERAGE SeqID	10347 64% 100% 10345 1	85% 85% 10528 10528 79%	65% 65% 99% 11111 47%	51% 51% 99% 11435 44%	11654 64% 101%	5167 63% 99% 5165 44%	12218 100% 101% 12219 100%	13210 79% 100% 13212 76%	14106 64% 101% 14104 51%
COVERAGE SeqID DENTITY COVERAGE	% %	105	E	114		100% 5163 48% 96%	1222	13214 66% 101%	141
H H	10342 55% 99% 10341 51% 100%	10531 72% 95% 10532 62% 10232	55% 55% 99% 11115 42% 100%	11432 62% 87%		5162 52% 99% 5161 42%	12222 100% 101% 12223 100% 102%	13215 66% 96% 13216 69% 98%	14101 55% 99%
SAU101800 SeqID IDENTITY COVERAGE SAU101802 SeqID IDENTITY COVERAGE	10340 10 47% 99% 10075 10 48%)534 79% 101%)536 64% 97%	11116 46% 99% 11008 52% 97%	11431 40% 90% 11348 31% 93%	%	5160 42% 99% 11942 53% 84%	12225 100% 101% 12227 100%	13217 84% 101% 13219 56% 96%	14099 47% 99% 13717 47% 97%
SeqID IDENTITY COVERAGE SeqID IDENTITY COVERAGE	10111 71% 97% 10337 10397 1098	84% 84% 101% 0539 75% 101%	71% 71% 97% 11119 52%	11429 60% 100% 11427 58% 99%	11651 70% 101%	%96 %09 %1 <i>L</i> %1 <i>L</i> %1 <i>L</i>	12228 100% 101% 12229 100%	13220 82% 101% 13221 74% 101%	14010 70% 101% 14097 52% 96%
SeqID IDENTITY COVERAGE SeqID IDENTITY COVERAGE	100% 8% 99%	10540 85% 101% 10541 71% 100%	11120 64% 100% 11122 42% 99%			11989 61% 100% 11987 42% 99%		13222 85% 92% 13223 58% 99%	14096 63% 101% 14094 42% 99%
SeqID IDENTITY COVERAGE SeqID	10333 48% 98% 10053	10542 65% 103% 10544	49% 49% 11229	11582 46% 99% 11625	11627 48% 78% 11666	5158 45% 98% 11909	12232 100% 101% 12233	13224 67% 106% 13441	14093 48% 98% 14110

3 VIIA
TABLE

	,		1	,									
Salmonella typhi 36% 73%	13	13729 56% 94%	13732 51% 99%			13775 44% 89%	13924 28% 94%	13999 45% 99%	13953 28% 101%	13713 56% 104%		13797 39% 98%	
Streptococcus pneumoniae 47% 88%	3440 45% 87%	3356 65%	13361 69%	13494 35% 93%		13388 46% 103%	13291 32% 83%	1445 65% 82%	3544 43% 102%	13379 75% 98%		13305 62% 99%	
phylococcus eus 100% 100%	234 100% 100%	30% 101%	30% 101%	12369 100% 101%	12371 100% 100%	12373 100% 100%	00% 100%	2510 100% 100%	2506 100% 100%	2567 100% 100%	12569 100% 100%	12 <i>57</i> 1 100% 100%	12 <i>57</i> 2 100% 100%
r Klebsiella Pseudomonas Sia pneumoniae aeruginosa aur 36% 33% 72%	11888 32% 82%	88 55% 97%	016 53% 93%	%96 %	75%	% 1173	% %	11855 47% 979	% 1019	12058 56% 103%		39% 39% 98%	
a vo	11666 33% 6 83%	11655 56% 719						11723 33% 94%					
Helicobacter K pylori pi 32% 77%	11463 32% 829	11471 47% 929	11288 46% 939	11307 33% 90%		11481 44% 107%		11376 48% 99%	11567 40% 102%	117		11334 33% 101%	
Haemophilus influenzae 34% 78%	11068 33%	11241 57%	11240 48%	11231 32% 95%		11040 28% 95%	11236 32% 90%	11075 33% 95%		11209 54% 103%		10955 40% 98%	
Finterococcus Haemophilus Helicobacter Klebstella faecalis influenzae pylori pneumonia 34% 32% 36% 35% 77% 7139)545 49%	10602 69% %)747 49% 102%)849 33% 78%	10942 70% 95%	10739 47% 102%	23		10817 63% 100%	
Escherichia E. coli 35% 76%	10196 10 38% 78%	10327 58% 94%	10326 49% 98%		20	10207 42% 100%	10398 10 30% 94%	10105 45% 98%	10231 30% 101%	10015 56% 103%		10257 40% 98%	
Data IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	田田	 	贸	й	贸	Œ	. 8	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE
LOCUSID	SAU101811	SAU101814	SAU101815	SAU101818	SAU101824	SAU101833 SeqID IDENTITY COVERAG	SAU101839 SeqID IDENTITY COVERAC	SAU101842 SeqID IDENTITY COVERAC	SAU101845 SeqID IDENTITY COVERAC	SAU101849 SeqID IDENTITY COVERAC	SAU101857 SeqID IDENTITY COVERAC	SAU101862 SeqID IDEN COVE	SAU101864 SeqID IDEN COVE

4	1
Ę	
μ	۱
2	1
_ ⊢	

TOUTOUR	(T. 4)			4.4	1 1 1 1 1 1	11.				1
COCOSID	Data	coli	Enterococcus faecalis	riaemopnius influenzae	neticobacter pylori	26	r seuaomonas aeruginosa	r seuaomonas stapnytococcus aeruginosa aureus	Sireptococcus pneumoniae	Saimoneila typhi
SAU101865 SeqID	SeqID	4		11151			11938	12318	3227	13910
	IDENTITY	43%	28%	45%	40%		40%		54%	41%
	COVERAGE	85%		%88	87%		%18	100%	%88	%88
SAU101866 SeqID	SeqID		10835	-			11873	12319	328	
	IDENTITY		42%				29%	100%	400	
	COVERAGE		102%				%66			
AU101868	SAU101868 SeqID			11086	11305		11813	12320	13228	13898
	IDENTITY COVERAGE	45%	%66 898	45%	42%		48%	100%	49%	45%
ATT101869	Seatt		10734					12321	13668	
DENTITY	IDENTITY		55%					100%	49%	
	COVERAGE		100%					100%		
SAU101876 SeqID	SeqID							12169		
	IDENTITY COVERAGE							100%		•
CATTIOIO COUNT	Codin	10225					13001	12162		12770
4010108	DENTITY	•			·	•	%	12102		42%
	COVERAGE	%86					%16			%86
SAU101882 SeqID	SeqID		1082				12080	12163		13727
	IDENTITY. COVERAGE	33%	30%			31%	31%	100%		33%
SAU101890 SeqID		10374		111			12091	12280		13809
	TITY	53%		49%			47%	100%		53%
	COVERAGE	9		92%			63%			%16
SAU101891	SeqID				11483		11791	12281		13739
	田	63%	72%	%79 %79	%06 %09		%8¢ 93%	100% 100%	67%	91%
AU101893		Г	1072			11748	11981	12282	13290	13825
	笆	46% 87%	47%			41% 78%	35% 93%	100%	40%	43%
AU101904		10047	0648		11451		11935	12617	1334	13913
	, tr	34%	38%	33%	31%		31%	%001	34%	33%
SAU101907 SeqID		10362	2482	11059	Ė		11995	12442	13171	13964
	ITTY	75%	90%	76%	74		73%	100%	75%	74%
00010111	KAGE	1939	101%	100%			%10I	%00I	%101	100%
SAUTO1909 Sequ	TITY	41%		32%	11346 29%		36%	12441		14063 32%
COVE	COVERAGE	10100		0200			7570	10070		/370
larztatow	Tribac	22101	_		_	_	01011	12440	-	-

Salmonella typhi				14003 45% 88%	13998 31% 76%			13956 37% 98%	13708 48% 97%	14088 47% 105%			
Streptococcus pneumoniae						13500 25% 80%	1386 51% 74%	3455 58% 100%	13241 64% 97%	13636 46% 98%			13260 47%
ococcus 100% 100%	12439 100% 100%	12438 100% 100%	12709 100% 100%	12186 100% 101%	121 8 7 100% 100%	12454 100% 101%	2455 100% 1009	2456 100% 100%	2423 100% 100%	12424 100% 100%	12425 100% 100%	12426 100% 101%	12427 100%
Pseudomonas a aeruginosa 60% 97%				11897 45% 88%	11965 30% 83%		1957 57% 769	1901 35% 999	12035 51% 96%	11787 49% 98%			
g)				11705 43% 88%			1646 46% 72%						
Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumonia				1538 37% 86%	11480 27% 88%		1575 58% 72%	 	11304 49% 91%	11489 43% 105%			11555 28%
Haemophilus influenzae				11007 32% 92%][11066 49% 73%	S)	11	47%			11267 44%
Enterococcus faecalis	10838 26% 90%			10561 31% 91%	0568 31%	10938 40% 101%	10939 1 47% 78%	10940 64% 99%	8	0628 58%			
Escherichia coli 56% 97%				10101 45% 88%	10106 30% 90%		72%	10237 1 38% 98%	10476 1 48% 97%	10258 47% 105%			
Data IDENTITY COVERAGE	SAU101915 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SAU101968 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY
Locusin	SAU101915	SAU101922 SeqID IDEN COVE	SAU101948 SeqID IDEN COVE	SAU101966 SeqID IDEN COVI	SAU101968	SAU101991	SAU101995 SeqID IDEN COVE	SAU101996 SeqID IDEN COVE	SAU101999 SeqID IDENTITY COVERAC	SAU102001	SAU102002 SeqID IDENTITY COVERAC	SAU102003 SeqID IDENTITY COVERAG	SAU102006 SeqID IDENTITY

ď	
Z	
Ë	
B	
ΤĀ	

LOCUSID Data	Data	Escherichia	Enterococcus	Haemophilus	Helicobacter	Klebsiella Pseudomona	Pseudomonas	Enterococcus Haemophilus Helicobacter Klebsiella Pseudomonas Staphylococcus Streptococcus Salmonella Gascelis	Streptococcus	Salmonella
	COVERAGE			%	74%			101%	105%	
SAU102007 SeqID	SeqID			11266				12428	132	
	IDENTITY COVERAGE			60% 97%				100%	%19 %16	
SAU102032 SeqID IDENTITY	SeqID IDENTITY						120 8 6 62%	12198 100%		13989 58%
	COVERAGE						99%	100%		75%
SAU102035 SeqID	SeqID	10299	0933		11514		ı	12199	360	13763
	照	%86 %09	%66 80%	26% 85%	29%		41%	100%	31% 86%	%66 86%
SAU102044 SeqID		10141	9160	11011	11344			2414	447	13977
	. <u>भ</u>	86% 100%	67%	%001 100%	50% 101%		58% 101%	100%	69% 102%	
SAU102046 SeqID		10103	07.				12089	12415		4001
	RAGE	32% 74%	%98 %97				%67 %67	100%		%68 86%
SAU102049 SeqID		10427	318		11291		11784	9116	13652	13781
	DENTITY	36%	39%	49%	40% %		41%	100%	46%	36%
11100001	COVERAGE	8	99%	%/6	23.5	747.11	%) 1000	3	98%	%101
SAU102054 SeqiD IDENTITY	SeqID	53%	0494 50%	1095 55%	11356 51%	53%	1856 55%	12417		13877
	COVERAGE	100%		100%		70%	100%	100%		100%
SAU102059 SeqID	SeqID	10085	6	1152	<u>1</u>		1969	2286	3226	14059
	IDENTITY COVERAGE	43%	72%	43%	40%		41%	100%	72%	40% 89%
SAU102067 SealD	SealD	10380	10564	11155			11795	12287	13407	13798
	IDĖNTITY	%	%	31%			%	100%	%	31%
	COVERAGE	%	%86	%86			%16		%86	94%
SAU102068 SeqID	SeqID IDENTITY COVERAGE		10680 29% 101%					12288 100% 100%		
SAU102102	SeqID							12696		
IDENTITY COVERAC	IDENTITY COVERAGE							100%		
SAU102113 SeqID IDEN	SeqID IDENTITY		10641 34%					12178 100%		
	COVERAGE		110%	·				101%		

WO 01/70955

LOCUSID Data SAU102116 SeqID	Data SeqID	Escherichia coli	TABLE VIIA Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumonia 10642.	Haemophilus influenzae	TABLE VIIA Helicobacter Kleb pylori pneu	1 01	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus preumoniae typhi 17180	Streptococcus pneumoniae	Salmonella typhi
	IDENTITY COVERAGE		29%					100%		
1102117	SAU102117 SeqID IDENTITY COVERAGE	10016 43% 101%	6 10643 3% 61% 101% 100%		11604 38% 102%		12027 42% 103%	12181 100% 100%	13481 55% 100%	13947 41% 85%
SAU102129 SeqID IDEN COVE	SeqID IDENTITY COVERAGE		10859 60% 98%					12176 100% 100%	3400 56%	
SAU102132 SeqID IDEN COVE	SAU102132 SeqID IDENTITY COVERAGE		10760 39% 101%					12177 1: 100% 100%	13304 41% 101%	
7102142	SAU102142 SeqID IDENTITY COVERAGE	10154 37% 99%						12457 100% 100%		
1102143	SeqID IDENTITY COVERAGE	10154 32% 100%						12458 100% 100%		
1102144	SAU102144 SeqID IDENTITY COVERAGE				7.7			12459 100% 100%		
102162	SAU102162 SeqID IDENTITY COVERAGE							12462 100% 100%		
102165	SAU102165 SeqID IDENTITY COVERAGE							12460 100% 100%		
102200	SAU102200 SeqID IDENTITY COVERAGE							12665 100% 101%		
102201	SAU102201 SeqID IDENTITY COVERAGE							12666 100% 101%		
1 77777 I	SAU102222 SeqID IDENTITY COVERAGE	%66 %	0797 68% 99%	%66 %8	11358 52% 99%	_	%66 %	12511 100% 100%	13192 67% 99%	13818 58% 99%
) I I 162201	SAU102231 SeqID IDENTITY COVERAGE	% 94%	10798 50% 93%	11193 42% 89%			12020 38% 94%	12527 100% 100%	13561 46% 99%	13731 41% 94%
SAU102232 SeqID	seqID	10100	66201		II.	11687		12530	13562	14004

<u>~ %</u>	Γ	Γ	<u>×</u>	<u> </u>		<u> </u>	Γ	Γ	%	28	<u>×</u>	<u>%</u>	<u> </u>
Salmonella typhi 34% 75%				13866 58% 99%		13825 41% 98%			13782 25% 87%	13984 32% 87%	13983 26% 79%	13881 34% 104%	13830 43% 101%
Streptococcus pneumoniae 42% 79%	13496 45% 91%		3593 70% 100%	13313 81% 101%	13180 28% 74%	13290 43% 95%	13531 75% 101%	13274 85% 101%	3519 72% 97%	83% 83% 100%	1276 74% 99%	82% 100%	
Pseudomonas Staphylococcus Sareptococcus Salmonella aeruginosa aureus 100% 42% 34% 100% 75%	12531 100% 100%	12539 100% 100%	12540 100% 100%	12542 100% 100%	00	12241 100% 100%	0% 1019	12244 1 100% 101%	0% 100%	12246 100% 101%	12247 100% 100%	12248 100% 100%	12250 100%
Klebsiella Pseudomonas pneumoniae aeruginosa 35% 74%			11907 47% 1009	11932 62% 100%		11981 37% 91%							5103 44% 100%
Klebsiella pneumoniae 35% 74%			11634 47% 98%			11748 39% 73%				11682 32% 96%		11724 31% 84%	
Helicobacter pylori			11600 38% 100%	11476 54% 96%			11515 32% 97%	11515 29% 75%					
Haemophilus influenzae			10953 44% 101%	11154 60% 97%								·	
Enterococcus Haemophilus Helicobacter Klebstella faecalis influenzae pylori pneumonia 35% 79%	10800 61% 98%	10845 43% 99%	72% 72%	10854 74% 6 100%		10677 48% 93%			10844 65% 97%	10646 37% 87%	10731 30% 80%	10759 39% 103%	
Escherichia E coli 36% 75%		10163 11 28% 74%	10188 10 47% 100%	10274 10 59% 99%		10300 39% 79%	10451 33% 97%	10451 38% 81%		10182 34% 96%	10183 25% 79%	10270 35% 104%	10160 45% 100%
Data IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	IITY IRAGE	, 8	9	. <u>H</u>	· Hi	· H	. 21). J.B.	, H	E	ä	IITY RAGE
LOCUSID Data	SAU102233 SeqID IDEN COVE	SAU102241	SAU102242 SeqID IDEN COVE	SAU102246 SeqID IDENTITY COVERAC	SAU102247 SeqID IDENTITY COVERAC	SAU102252 SeqID IDENTITY COVERAG	SAU102256 SeqID IDENTITY COVERAC	SAU102257 SeqID IDENTITY COVERAC	SAU102259 SeqID IDENTITY COVERAC	SAU102260 SeqID IDENTITY COVERAC	SAU102261 SeqID IDENTITY COVERAC	SAU102262 SeqID IDENTITY COVERAG	SAU102264 SeqID IDEN' COVE

TOCOSID			_	\	A A	- 1				
	Data	escherichia coli	Eschericnia Enterococcus Haemophilus Helicobacter Klebstella coli faecalis influenzae pylori pneumonia	Haemophilus influenzae	Helicobacter pylori	W.	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhi	Streptococcus pneumoniae	Salmonella typhi
SAU102265 SeqID	SeqID IDENTITY						11 <u>926</u> 37%	12251 100%		
	COVERAGE						8	100%		
SAU102268	SeqID							12252		
	COVERAGE	_						100%		
SAU102270	SeqID							12253		
	COVERAGE							100%	***	
SAU102280	SAU102280 SeqID							12378		
	IDENTITY COVERAGE							100%	_	
SAU102281	SAU102281 SeqID	10316			11469		ı	12384	1497	13762
	IDENTITY COVERAGE	45%		48%	39%		45% 99%	100%	61%	44%
SAU102283 SeqID	SeqID	ı	10875		11560			121	3251	14086
	COVERAGE	88%	%88	45%	41%		41% 95%	100%	24% 88%	41% 88%
SAU102284 SeqID	SeqID							12389		
	COVERAGE							100%		
SAU102286 SeqID	SeqID	10385	12					12393	136	
	IDENTITY COVERAGE	37%	42%					100%	39% 101%	•
SAU102287	SAU102287 SeqID	10220	55	11025			j	12398	13427	139
	COVERAGE	42% 81%	81% 45% 85%	40% 88%		%68 %8	1% 849	100% 101%	41% 94%	39% 83%
SAU102292	SAU102292 SeqID	10399	,	11018			ļ	12368	3230	14065
	COVERAGE	41%	59% 100%	40% 101%	37% 100%	41% 101%	42% 1019	100%	57% 94%	41% 101%
SAU102294								12610 100%		
SAU102297	SAU102297 SeqID	10405		1063	11303		- 1	100%	989	14066
	闰	52% 99%	; 100%	51% 100%	46%		% 86 88	100%	64%	48%
SAU102298	SAU102298 SeqID IDENTITY COVERAGE	10404 10914 36% 62% 72%	%66)[11686 1. 35% 89%	2116 28% 879	12705 100% 100%	13255 54% 100%	
SAU102308 SeqID	SeqID	10077		1248	11625	11732	2032	12706	3350	13995

				·		· - · · · · · · · · · · · · · · · · · ·							
Salmonella typhi 39%	14039 31% 6 89%	13829 38% 95%		·						13960 43% 95%			13802 36% 96%
Streptococcus Sipremoniae 5y 45% 100%	242 63% 97%	316 31% 90%						13426 39% 91%		1324 56% 99%			
phylococcu reus 100% 1009	$\begin{vmatrix} 12707 & 13 \\ 100\% & 100\% \end{vmatrix}$	657 100% 1009	12658 100% 100%	12659 100% 101%	12660 100% 100%	12655 100% 8 101%	12433 100% 101%	12434 13 100% 100%	12435 100% 100%	12436 100% 100%	12437 100% 100%	12265 100% 100%	11808
Pseudomonas S aeruginosa a 38% 90%	11806 37% 72%	12102 40% 96%	12101 50% 92%			11843 37% 86%				11805 . 43% 95%		11870 32% 71%	11808 39% 99%
\ \\ \\													
Helicobacter pylori 33% 87%										11546 48% 98%			11386 27% 101%
Haemophilus influenzae 37% 86%				,						11203 45% 95%			11157 33% - 90%
nterococcus tecalis 46% 100%	10795 75% 6 97%	10550 43% 97%						10657 55% 100%	10726 39% 87%	10669 60% 100%			
ichia % 88%	8,8	× 2	10056 50% 91%	·						10227 43% 95%			10367 36% 96%
Data IDENTITY COVERAGE	SeqID IDENTITY COVERAGE			SAU102336 SeqID IDENTITY COVERAGE	SAU102340 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SAU102380 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE
Locusin	SAU102318 SeqID IDEN COVE	SAU102333 SeqID IDENTITY COVERAC	SAU102334	SAU102336	SAU102340	SAU102345 SeqID IDENTITY COVERAG	SAU102350 SeqID IDENTITY COVERAC	SAU102352 SeqID IDENTITY COVERAC	SAU102355 SeqID IDENTITY COVERAC	SAU102356 SeqID IDEN COVE	SAU102378 SeqID IDENTITY COVERAC	SAU102380	SAU102388

FABLE VIIA

				8. 6	1	Γ				
TOCOSID	Data	Escherichia coli	Escherichia Emerococcus Haemophius Helicobacter Klebstelia coli faecalis influenzae pylori pneumonio	Haemophilus influenzae	Helicobacter pylori	<u>9</u>	rseudomonas	rseudomonas Stapnylococcus Streptococcus Saimoneud aeruginosa aureus pneumoniae lyphi	Sireptococcus pneumoniae	Saimoneua typhi
SAU102389 SeqID	SeqID IDENTITY	10063 33%		10988 31%			11837 36%	12268 100%	3395 35%	13917 33%
	COVERAGE	99%	%26	%26			%56	100%	%86	%66
SAU102390	SAU102390 SeqID IDENTITY	10192 41% 100%				11678 26% 97%		12269 100%		13753 42% 100%
SAU102392 SeqID	SeqID IDENTITY	10131 10	10500 42%			11673 32%	11951 42%	12270 100%	3474 42%	
	COVERAGE	73%	80%			%08	74%	100%	492	
SAU102394	SAU102394 SeqID IDENTITY COVERAGE		10807 32% 102%					12271 100% 100%		
SAU102396	SeqID	1	10809					12272	346	13794
	COVERAGE	3/%	%66 %79				:	100%	%86 %/7	37%
SAU102401 SeqID IDEN	SeqID IDENTITY							12209 100%		
CAT1102417	COVERAGE CATTION 17 Seath		76001				12068	12204		
115701000	DENTITY COVER A CE		31%				%	100%		
	COVERAGE		1970				0.771	10078		
SAU102418 SeqID IDENTITY	SeqID IDENTITY					11760 25%		12205		
0 4 Y 1 60 400	COVERAGE					02/0		70001		
SAU102420 SeqUD DENTITY COVERAG	Sequi IDENTITY COVERAGE							100%		
SAU102422 SeqID	SeqID	10308				11665	1977	12207		13776
	IDENTITY COVERAGE	30% 92%				30%	27%	100%		31%
SAU102423 SeqID	SeqID			11084	14		2099	12208		
	IDENTITY COVERAGE			27% 94%	25% 92%		27% 93%	100%		
SAU102433 SeqID	SeqID IDENTITY	10395 42%	10908	<u> </u>	1616 37%		11772 12701 52% 100	12701	3552 44%	
	COVERAGE		%00I	, l	73%		72%	100%	%86	
SAU102434 SeqID	SeqID IDENTITY COVERAGE	10394 10907 26% 449 99%	% 100%	_			11773 26% 100%	% 100%	3446 40% 101%	13921 27% 99%
SAU102437	SAU102437 SeqID	10393			11330		11774	\$693	12	3920

⋖	
Ξ	ı
>	
щ	
닀	
9	
≃	

	1327772	いというこうこう	Haemophilus	Enterococcus Haemophilus Helicobacter Klebsiella		Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
		faecalis	influenzae	pylori	в	aeruginosa	aureus	pneumoniae	typhi
IDENTITY COVERAGE	86%	%66 %L9	57%	51%		55%	100%	64%	56% 86%
						12085	126		13990
IDENTITY COVERAGE						41%	100%		39%
		10947					126	343	
IDENTITY		38%					ŝ	32%	
COVERAGE		98%					100%	%86	
SAU102448 SeqID	10460	10946	1049	11332			12681	[3435	13860
IDENTITY COVERAGE	32% 55%	55%	31%	35%		34%	100%	46%	32%
SAU102449 SeqID	10445	10945	1253	11444	11731	2072	12677	13434	14028
TITY	45%	45% 55% 97% 98%	43%	35%	43%	44%	100%	51%	45%
	10456	10943	11264			12076	12675	237	13857
	47% 70%	70%	46	43%		47%	47% 100%	%89	
Œ	100%	100%				%66	100%	100%	100%
SAU102452 SeqID	10420	10748	11143	11478	1629	11820	12674	265	13783
Ţ	41%	%0/ %0/	37%	32%	40%	40%	100%	97%	38%
		10749		ŀ	2/1/2	12107	12669	990	200
IDENTITY		٠.				73%	100%	41%	
COVERAGE		101%				70%	100%		
SAU102460 SeqID IDENTITY	10063 1 34%	0547 35%	10988 349			11837 34%	2171 100%	13395 34%	13917 34%
COVERAGE	98%		100%			8	100%		%86
SAU102469 SeqID	10217						12172		
IDENTITY COVERAGE	28% 98%		•				100%		
SAU102473 SeqID		8					12173	347	
IDENTITY COVERAGE		28%					100%	35%	_
SAU102474 SeqID		10713	10971				12174	3476	14025
COVERAGE		%96 %07				-	100%	%68 %07	%/7
SAU102476 SeqID							12175		
COVERAGE		;					%001 100%		
SAU102479 SeqID IDENTITY	10306 26%				·		12405 100%		
COVERAGE	84%						100%		

					4 444	ſ	4			
TOCOSID	Data	Escherichia coli	Enterococcus Haemophitus Heitcobacter Klebsiella faecalis influenzae pylori pneumonic	Haemophilus influenzae	Helicobacter pylori	g	r seudomonas aeruginosa	Fseudomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae	Streptococcus pneumoniae	Salmonella typhi
SAU102480 SeqID	SeqID	10310	10935					12404		13770
	COVERAGE	78% 100%	33%				30%	100%		%00I 100%
SAU102481	SeqID	10289	<u></u>					12422		13879
		26% 102%	29%					100%		2 6 % 102%
SAU102485 SeqID		10457	l∞ ∞					12421		13961
	田	28% 86%	53%					100%	%66 89%	%09 83%
SAU102486 SeqID		10294	8	11025				12420	351	13962
	IDENTITY COVERAGE	36%	38% 97%	27%				100%	42% 93%	37% 95%
SAU102487 SeqID	SeqID							12419		
	IDENTITY COVERAGE						-	100%		
SAU102498 SeqID	SeqID	10241		10974				12688	338	14092
	COVERAGE	36% 93%	35% 94%	35% 93%	33% 92%	37%	94%	%001 100%	35% 93%	30% 93%
SAU102502	SAU102502 SeqID							12689		
	COVERAGE					•	85%	100%		
SAU102503 SeqID	SeqID							12690		
	IDENTITY						32% 92%	100%		
SAU102526 SeqID	SeqID							12691		
	COVERAGE							100%		
SAU102527 SeqID	SeqID	10352	10560	Ħ	11439		ļ	12260	13204	13968
	COVERAGE	93%	101%	93%	30% 94%		93%	100%	94%	93%
SAU102531 SeqID	SeqID		10765					12667		
	COVERAGE		34% 102%		-			100%		
SAU102541 SeqID	SeqID IDENTITY	10076 41%	10520 49%	11000 38%	11498 37%		11966 44%	12668 100%	13405	13718 41%
	COVERAGE	93%		91%			100%			
SAU102551 SeqID IDEN	SeqID IDENTITY COVERAGE			11013 47% 87%	11353 38% 84%		11816 39% 84%	12672 100% 101%	13271 41% 95%	
SAU102554 SeqID	SeqID		10494						13466	

								,					
Salmonella typhi	13836 27% 98%	13859 59% 89%				13833 31% 86%	13773 32% 101%	13867 27% 6 92%	13971 58% 99%			13867 26% 94%	
Streptococcus pneumoniae 44% 98%		13503 73% 94%			13513 27% 88%		1653 32% 77%	51% 51% 97%	,200 77% 100%			13256 50% 97%	13 <i>579</i> 43%
Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhl 100% 44% 98%	5 9	12411 100% 101%	12537 100% 100%	12611 100% 100%	12463 100% 100%	12464 100% 6 100%	2466 100% 100%	2467 100% 100%	2249 100% 100%	12469 100% 100%	12470 100% 100%	12471 100% 100%	12472 100%
Klebsiella Pseudomonas pneumoniae aeruginosa	% %	12074 1 65% 81%				1979 31% 929	33% 33% 799	931 28% 939	.993 60% 999			1931 25% 93%	
						11710 27% 75%		11722 28% 95%	11679 59% 1009			11722 27% 95%	
Helicobacter pylori	35% 35% 99%	11420 51% 89%					11619 30% 73%		1441 57% 100%				
Haemophilus influenzae	11232 29% 91%	11050 60% 88%				10958 32% 85%	10958 30% 93%	30% 30% 93%	11100 61% 100%			11076 30% 92%	
Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumoniae 47% 99%)948 76% 95%			10889 27% 87%)944 26% 76%)555 78% 100%		1083 6 47% 96%		
ichia	10166 28% 98%	10459 10 59% 88%				10187 30% 102%	10206 36% 38%	10273 27% 95%	110356 882 100%			10273 27% 95%	
33		<u> </u>		SAU102585 SeqID IDENTITY COVERAGE		<u> </u>	. 19	JE JE	. 8		, <u>H</u>	Ξ.	
LOCUSID Data IDEN COV	SAU102575 SeqID IDENTITY COVERAC	SAU102578	SAU102584 SeqID IDENTITY COVERAC	SAU102585	SAU102593 SeqID IDENTITY COVERAC	SAU102598 SeqID IDENTITY COVERAC	SAU102599 SeqID IDENTITY COVERAC	SAU102601 SeqID IDENTITY COVERAG	SAU102602 SeqID IDENTITY COVERAC	SAU102603 SeqID IDENTITY COVERAC	SAU102605 SeqID IDENTITY COVERAC	SAU102606 SeqID IDENTITY COVERAC	SAU102607 SeqID IDENTITY

LOCUSID Data	Data	Escherichia	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella	Haemophilus	Helicobacter .	Klebsiella	Pseudomonas	Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
	COVERAGE		Juecans	anzuandu	rowa.	pneumoniue ueruginosu 		nureus 100%	reumoniae 98%	indy
SAU102609	SeqID							12473		
	IDENTITY					_		100%		
SAU102610	SAU102610 SeqID							12474		
	COVERAGE							%001 100%		
SAU102613 SeqID	SeqID	10461		11272				12475		13988
	IDENTITY COVERAGE	26%		28%				100%		26%
SAU102614	SeqID	1	106					12476		13927
	DENTITY	33%	55% 100%					100%		32%
SAU102615 SeqID	SeqID		10601				1	12477		13926
	COVERAGE	%86 %76	100%			32% 92%	%07 82%	100%		31%
SAU102620	SeqID							12479		
	DENTITY							100%		•
SAU102621	I SeqID	10288				11724		12480		13881
	DENTITY	61% 100%	62% 101%			58% 81%		100% 5. 100%	59% 101%	%19 100%
SAU102629 SeqID	SeqID							12481		
	LDEN III Y COVERAGE		70% 108%					100%		
SAU102631 SeqID	SeqID		10522				1	12712		
	IDENTITY COVERAGE		27%			44% 83%	32%	100% 100%		
SAU102636 SeqID IDENTITY	SeqID IDENTITY							12650 I3 100%	13696	
	COVERAGE							100%	102%	:
SAU102637	SAU102637 SeqID IDENTITY							12651 100%	13697	
	COVERAGE							100%		
SAU102652 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE							12653 100%		
								IN TOT		

1					אוו א מממטץ	- (
LOCUSID	Data	Escherichia coli	Escherichia Enterococcus coli faecalis		Haemophilus Helicobacter Klebsiella influenzae pylori	ē	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhi	Streptococcus preumoniae	Salmonella typhi
SAU102658 SeqID	SeaID	33		11064			Τ		Т	13855
	IDENTITY	45%	,	42%			%	100%	49%	41%
	COVERAGE	%16	12%				97%	100%	%96	100%
SAU102663 Seq1D	SeqID	10304	840	11043	11626					13780
		43%	28%	44%	34%		45%	100%	× 56%	41%
	린	27.00	%66	1			71%	COOL	2170	1007
SAU102669 SeqID		10022	756	11257			12045	12160	13371	14035
	田	8,	91%				94%	100%	%56	93%
SAU102671 SeqID		10409		11079					13373	14033
	IDENTITY COVERAGE	34%		32%	44%	35%	%66 %95	100%	%96 %69	33%
CINDS ATTOORY	Seath	10020		11164		11648	5127	12156		14016
10201000	DENTITY	55%		54%		\o	22%	100%		53%
	COVERAGE	102%		103%		%	105%			102%
SAU102693 SeqID	SeqID	10178	1065		11474			12627		13940
	COVERAGE	53% 82%	82% /47% 87%		38%		45%	100%	%06 61%	4970
SAU102694	SAU102694 SeqID	10177		1122	11296			1262	13302	
	IDENTITY COVER A GE	48%	8% 66%	50%	44%		55%	100%	60% 102%	
SATT102725	SealD	10418	102/1	11137	11507		12088	1238	13378	13789
DENTILLA	DENTITY	40%	vo	39%	38%		%	100%	%	40%
	COVERAGE	%96					104%	100%		
SAU102764 SeqID	SeqID	10179	10929	11234	11295		11884	12625	13484	13938
	COVERAGE	%				-	2	100%		
SAU102812 SeqID	SeqID		108					12127	13253	
	IDENTITY		48%					100%	49%	
SAU102870 SeqID	SeqID	10113	8					12170		14008
	COVERAGE	%67 85%	35%					100%	%66 %67	%87 87%
SAU102880 SeqID	SeqID	10360	10533	11096	11443	11643	5177	12224	13196	13975
	COVERAGE	100%				100%	30%		101%	100%
SAU102881 SeqID IDEN	SeqID IDENTITY	10357 38%)551 69%	11099 37%			11994 38%	12242 100%	13199 54%	13 <i>97</i> 2 38%
SAU102883 Seat	Seam	10396	3070	11168	11449		12118	12702	13181	03.70
2110100000	arihaa	200	_	<u> </u>		-	_	-	•	-

	Salmonella tvphi				33	%56 62%	13817	103%	3955 33%	%86	13834 51%				37	33% 90%			13941					
	Streptococcus pneumoniae	%9 <i>L</i>			*	73% 124%	3502 50%	101%			13339 51%		\square	%66	7	33%	Ž	27%	3303	%66 				13267 26% 86%
	Pseudomonas Staphylococcus Streptococcus Salmonella aerueinosa aureus	100%	12273	100%	12315	٥,	2412 100%	101%	2356 100%	101%	2296 100%	100%	12468 I3 100%	100%	2536	100% 100%	2676	100%	12630	101%	12194 100% 100%	12200 100%	12202 100% 100%	12613 100% 101%
	Klebsiella Pseudomonas! oneumoniae aerueinosa	~			ı	%00 686	119 85 1	101%	11804 17 60%	%96						41%			11882	8		12042 26% 72%		
VIIA	Klebsiella pneumoniae				I≍	%56	11762 31%	107%			11696 50%	%66										11670 44% 89%		
TABLE VIIA	Helicobacter pylori	%98 %09	11373 38%		-	130%	1579 32%	108%							11384	32% 87%			11297			:		
	Haemophilus influenzae	%	11217		11150	95%	100				11230 43%	%66			10979	37%			11223	%66				
	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli		10732	%	10488	95%)949 53%	113%	10872 66%	100%	0492 55%	100%					10883	28%	10661	92%				10867 27% 99%
:	Escherichia coli	53% 86%			10042	95%	10448 10 33%	104%	10236 33%	97%	10136	100%			10014	33% 88%			10176 62%	%66				
	Data	IDENTITY COVERAGE	SeqID IDENTITY	COVERAGE	SeqID	Œ			SAU102936 SeqID	COVERAGE	SeqID IDENTITY	COVERAGE	SeqID IDENTITY	COVERAGE	SeqID	COVERAGE	SeqID	IDENTITY COVERAGE	SeqID IDENTITY	COVERAGE	SAU103010 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SAU103025 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE
- 1	LOCUSID		SAU102905 SeqID		SAU102909 SeqID		SAU102933 SeqID IDENTITY		SAU102936		SAU102942 SeqID IDENTITY		SAU102944 SeqID		SAU102979 SeqID		SAU102983 SeqID		SAU102992 SeqID		SAU103010	SAU103024 SeqID IDENTITY COVERAC	SAU103025	SAU103037 SeqID IDEN' COVE

196

		1								
COCOSID		Escherichia coli	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli Jaecalis influenzae pylori pneumoniae	Haemophilus influenzae	Helicobacter 1 pylori		Pseudomonas zeruginosa	ococcus	Streptococcus pneumoniae	Salmonella typhi
SAU103077 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE					,		12408 100% 100%		
SAU103115 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE							12508 13 100% 101%	13469 32% 101%	
SAU103144 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE		10936 42% 84%					12663 100% 100%		
SAU103159 SeqID IDEN COVE	SeqID IDENTITY COVERAGE	10110 43% 115%	10783 48%	11134 38% 112%	11489 48% 117%		11787 48% 98%	12670 13 100% 100%	63% 63% 101%	13994 43% 116%
SAU103169	SAU103169 SeqID IDENTITY COVERAGE							12678 100% 100%	13239 34% 84%	
SAU103175 SeqID IDENTITY COVERAG	SeqID IDENTITY COVERAGE	10157 36% 96%	·					12 68 7 100% 100%		
SAU103191	SAU103191 SeqID IDENTITY COVERAGE							12465 100% 102%	13332 42% 75%	
SAU103204 SeqID IDENTITY COVERAG	SAU103204 SeqID IDENTITY COVERAGE						·	12499 100% 101%		
SAU103226	SeqID IDENTITY COVERAGE		. ,				•	12713 100% 100%		
SAU103232	田田	10368 36% 102%				11704 35% 98%	11848 48% 101%	12697 100% 101%		13803 35% 102%
SAU200006 SeqID IDENTITY COVERAG		10033 53% 78%	,639 70% 80%	11192 47% 84%	11553 43% 82%		12007 50% 89%	12723 100% 100%	13479 65% 77%	
SAU200028								.694 100% 100%		
SAU200030	SAUZ00030 SeqID IDENTITY COVERAGE	10372 42% 84%	0553 74% 98%	11056 39% 84%	11447 43% 93%	11672 41% 86%	12092 35% 93%	12745 100% 102%	3449 73% 95%	13807 42% 84%
SAU200058 SeqID	SeqID		10621					12719	13327	

⋖	
Ħ	
>	
цĺ	
百	
⋖	
Η	

onologies.	i i		87	31%	/3%	90,00	82%		-	32% 32%	R		92	%86 %07	22	78%	45	29% 72%		35	34% 87%	91 33% 97%		1 6
100	typhi		140		إ	14090				139	\perp		13892	•	13822		139			13992	- •	13991	4	135
Ctrontogoggu	on epiococcias pneumoniae	37%	3325	40%	%96	13415				13371 33%					13425	76%	3423	32%					13397 64% 99%	7621
Demilorance (Grante Janean Chamber of the Colmone)	aureus	100%	12720	100%	ļ	12724		12734	100%	12739 100%	12751	100%	12755	100%	12937	100%	12777	100%	2693 1009	12780	100%	2781 100	12784 100% 100%	127
Degradomonas	aeruginosa			36%	74%	11947	3%			11982 33% 0492	200		Į į	33,	i	% 81%	12046	30%		11788	32% 93%	39% 39% 97%	11998 52% 100%	
Vohaialla	pneumoniae aeruginosa														II II II					11645	34%			
Valiachantar	rieucovacier pylori					11403	37%						11566	%86 %/ <i>7</i>						11602	31%	11386 35% 98%		
Dage on hiles	influenzae		109	32%	73%		91%			11257 34%				%96 827	120	62% 74%	11277	26% 80%		11170	87%	1250 34% 96%	1038 50%	
Traferities Entrangement Danmanhilan Dilinghanhanhilan	faecalis	39%		33%	%16			10712	%66	10756 64%				30% 80%	1478	75%	728	31%					613 73% 100%	10856
Frakaniakia	coli		10259	31%	73%	10262	82%			10109 33%	97.576			%45 64%	10201	78%	10039	28%		10099	33%	10098 32% 97%	10435 110 53% 99%	10173
Darte		IDENTITY COVERAGE	SeqID	IDENTITY	COVERAGE	SeqID	IDENTILIT COVERAGE	SeqID	COVERAGE	SeqID IDENTITY	SeqID	IDENTITY COVERAGE	SeqID	DENTITY	SeqID	IDENTITY COVERAGE	SeqID	IDENTITY COVERAGE	SeqID IDENTITY COVER A GE	SedID	. <u>H</u>	<u> </u>	rity Rage	TITY.
I WOLLD			SAU200059 SeqID			SAU200088 SeqID		SAU200242 SeqID		SAU200297 SeqID IDENTITY	SAU200345 SeqID		SAU200392 SeqID		SAU200468 SeqID		SAU200558 SeqID		SAU200561 SeqID IDENTITY	SAU200564	IDENTITY	SAU200565 SeqID IDENTITY	SAU200593 SeqID IDEN	SAU200628 SeqID

LOCUSID Data	Escherichia coli	Enterococcus faecalis	Haemophilus influenzae	Helicobacter . pylori	a	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhi	Streptococcus pneumoniae	Salmonella typhi
SeqID IDENTITY COVERAGE							12801 100% 100%	13185 31% 94%	
SeqID IDENTITY COVERAGE	10208 40% 92%	10582 33% 79%	11015 41% 99%	11541 36% 94%			12 <i>797</i> 100% 100%	13681 42% 100%	13922 41% 94%
	10118 10761 30% 46% 98%	10761 46% 100%	10966 30% 97%			11780 25% 98%	%	3632 47% 100%	14020 29% 98%
SAU200731 SeqID IDENTITY COVERAGE	10283 55% 99%	10822 54% 100%	11064 44% 98%			12090 43% 98%	123	3514 51% 100%	3855 46%
H	10318 48% 86%	10554 56% · 102%	11225 48% 86%	11393 49% 73%		12056 50% 87%	12798 100% 100%	1695 55% 93%	13760 48% 86%
SAU200752 SeqID IDENTITY COVERAGE							12809 100% 100%		
3.6	10383 26% 96%	10714 28% 98%			11747 27% 79%	11927 27% 90%	12837 100% 100%	1431 25% 91%	13788 25% 90%
SAU200916 SeqID IDENTITY COVERAGE					-		1283 8 100% 100%		
	%98 %	3627 73% 99%	11036 55% 87%	11571 53% 86%		5179 49% 102%	12815 100% 100%	3646 69% 100%	14042 54% 86%
. 8	10212 44% 72%	10780 60% 93%				11964 42% 82%	12842 100% 100%		13835 42% 88%
SAU200949 SeqID IDENTITY COVERAGE							12846 100% 100%		
				11500 42% 70%		% 91%	12431 100% 102%		
SeqID IDENTITY COVERAGE	10036 10497 36% 629 100%	% 101%	11270 32% 100%			11865 37% 102%	12935 100% 100%	13310 35% 73%	14054 33% 99%
		10779					12887		

/IIA
LE
TAB

SAUZ01168 SeqID IDENTITY COVERAGE COVERAGE COVERAGE			•	-	Escherichia Enterococcus Indemophitus Inelicobacter Inteostetia	Senacimonas	r seudomonds siapnyiococcus surepiococcus saimoneila	Streptococcus	Salmonella
IDENTITY COVERAGE SeqID IDENTITY COVERAGE	coli	faecalis	influenzae	pylori	pneumoniae aeruginosa		anreus	neumoniae	typhi
SeqID IDENTITY COVERAGE	_	37%					100%		
IDENTITY COVERAGE		61801					12889	38	
Chall		53% 102%					100%	56% 100%	
That I	10448	715	995	12		11985	12807	202	13819
IDENTITY	40%	25%	35%	37%		37%	%001	23%	32%
COVERAGE	ဗို	108%	%16	82%		2	101%	111%	111%
7 SeqID IDENTITY	10330	924	160	11321	7.	5215 58%	215 12938 13364 58% 100% 63%	364 63%	13885
COVERAGE	8	%66 ***********************************				%66	101%	%96 ~~~~	%66
SAU201225 SeqID		-					12896	13170	
IDENTITY		41%	33% 80%				100%	38% 87%	
SAU201236 SeqID IDENTITY	10026 32%	10679 29%	11184 33%	11613 33%		12013 34%	2891 100%	505 30%	14073 32%
COVERAGE	23	%96				%56	100%	95%	%06
SAU201301 SeqID IDENTITY							12899 100%		
COVERAGE	7						100%		
SAU201333 SeqID	10192				11678 28%		12905		13753 41%
COVERAGE	100%				%96		101%		100%
SAU201375 SeqID						1929 36%	12926		
COVERAGE						%56	100%		
SAU201380 SeqID	10379	10499		11313		12024	12922		13801
COVERAGE	34% 94%	%657 %		%56 %97		& &	100%		25% 101%
SAU201381 SeqID	10241	10597	974	11387	1706	11833	923	1387	13878
COVERAGE	%68 86%	%96 86%	46% 90%	44% 91%	%68 89%	57% 100%	100%	52% 92%	64% 89%
SAU201403 SeqID	-						2		
COVERAGE							100%		
SAU201469 SeqID IDENTITY COVERAGE							12967 100% 100%		
SAU201486 SeqID							13023		
COVERAGE							100%		

WO 01/70955

Ŀ					TADLE VILA					
LOCUSID	Data	Escherichia coli	Escherichia Enterococcus coli faecalis	Haemophilus Helicobacter Klebsiella influenzae pylori	Helicobacter pylori	ie	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhl	Streptococcus pneumoniae	Salmonella typhi
SAU201506 SeqID	SeqID IDENTITY	10145 49%					11963 1: 49%	12946 100%		13841 50%
	COVERAGE	101%					102%			100%
SAU201508 SeqID	SeqID	10370					11874	23		13805
	COVERAGE	73%					42%	100%		36%
SAU201513 SeqID	SeqID	10229						12944		
	COVERAGE	%1L 11%						100%		
SAU201539 SeqID	SeqID	10109		11257			ı	12943	13625	13996
	COVERAGE	% 95%		%96 87			% %	100% 100%	32%	33%
SAU201541 SeqID	SeqID		1050				13611	2942	4	
	COVERAGE	20%	39%			33% 77%	41%	100%	41%	
SAU201558 SeqID	SeqID	10112		11258	11396		11875	12954	33	6
	COVERAGE	% 8%		51% 94%	43%		49% 99%	100%	46%	51% 96%
SAU201571 SeqID	SeqID	ĺ	1095	11213	113		11905	2997	3268	13957
	IDENTITY COVERAGE	%86 88%	61%	. 47%			45% 103%	100%	54%	49%
SAU201611 SeqID	SeqID				11539		11902	53	324	
	IDENTITY COVERAGE				38%			100%	58% 95%	
SAUZ01615 SeqID	SeqID						11962	12972		
	COVERAGE							100%		
SAU201621	I SeqID IDENTITY	10038	10842		11392 42%	11707	12047	12662		13902 46%
	COVERAGE	%16			91%		10	101%		91%
SAU201654	SAU201654 SeqID DENTITY							12982		
	COVERAGE							101%		
SAU201666	SAU201666 SeqID IDENTITY	10291 33%	10900 29%	1102 8 35%	11557 31%	11761	34%	12981		13743
	COVERAGE	%					3%	100%		71%
SAU201752 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE		10623 45% 89%					12963 100% 100%	13 6 89 40% 92%	
SAU201765 SeqID	SeqID							12770	727	

Salmonella	nudko		-		14088 39% 108%						14085 52% 94%			
Streptococcus	епшомиа: на примененти				1411 63% 101%					13374 48% 98%	13417 58% 94%			
Pseudomonas Staphylococcus Streptococcus Salmonella	uureus 100% 100%	12996 100% 100%	12996 100% 100%	12769 100% 100%	13002 13 100% 13 100% 13	1300 8 100% 100%	13020 100% 100%	13015 100% 101%	13018 100% 100%	13009 13 100% 101%	2714 100% 101%	12895 100% 101%	12895 100% 101%	12731 100%
Pseudomonas S					11787 1 45% 88%	1		1	-		11946 46% 93%			1
1 0	preumonuae aerugmosa									, 0				
Helicobacter Kleb	pytori				11310 41% 104%					11359 44% 96%	11561 33% 6 84%			
Haemophilus	ıryınenzae				11134 41% 100%						10983 52% 91%			
ia Enterococcus Haemophilus Helicobacter Klebsiella	Jaecans				10783 46% 100%						10874 50% 94%			
Escherichia	7700				10258 38% 108%						10261 51% 94%			10062 28%
Data	IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SAU201775 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY
Locusin		SAU201773	SAU201775	SAU201810	SAU201827	SAU201929	SAU201952	SAU201971	SAU202006 SeqID IDEN COVE	SAU202039 SeqID IDEN COVE	SAU202126 SeqID IDENTITY COVERAC	SAU202174 SeqID IDENTITY COVERAC	SAU202176 SeqID IDENTITY COVERAC	SAU202186 SeqID IDENTITY

	d	ŕ	١
۰	`	1	1
t			ļ
۲	-	•	Ì
C	1	١	ĺ
_		1	l
7	Y	7	ĺ
_		7	۱
Ľ	٦	4	ı
t			

		· .										
Salmonella typhi		13735 25% 86%		14045 40% 97%								
Sireptococcus pneumoniae			13248 38% 103%	13246 53% 91%		13670 28% 98%				·		
Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae typhl 101%	12727 100% 100%	12855 100% 100%	12927 100% 100%	13027 100% 100%	12718 100% 100%	12866 100% 100%	12848 100% 101%	12871 100% 100%	128 68 100% 100%	12886 100% 100%	12894 100% 100%	12893 100% 100%
Klebsiella Pseudomonas pneumoniae aeruginosa			11857 38% 93%	5181 44% 92%								
			11 <i>677</i> 37% 80%									
Helicobacter pylori			11494 40% 91%					·				
Haemophilus influerzae			11181 37% 98%	11071 47% 86%						·		
Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumoniae		10913 28% 84%	10902 40% 93%	10614 63% 92%		10656 45% 101%						
Escherichia coli 73%		10428 25% 86%	95%	10436 10436 10436 10436	-	·						·
Data COVERAGE	SeqID IDENTITY COVERAGE		i		SeqID IDENTITY COVERAGE	SAU202872 SeqID IDENTITY COVERAGE	SAU202882 SeqID IDENTITY COVERAGE	SAU202930 SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SAU202968 SeqID IDENTITY COVERAGE	SeqD DENTITY COVERAGE	SeqID IDENTITY COVERAGE
rocusm	SAU202267 SeqID IDENTITY COVERAG	SAU202708	SAU202736	SAU202756	SAU202781 SeqID IDENTITY COVERAG	SAU202872	SAU202882	SAU202930	SAU202945	SAU202968	SAU203001 SeqID IDENTITY COVERAC	SAU203007 SeqID IDENTITY COVERAG

					אוו א מממטו	- 1				
rocusin	Data	Escherichia coli	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella coli faecalis influenzae pylori pneumonia	Haemophilus influenzae	Helicobacter pylori	ā	Pseudomonas reruginosa	Pseudomonas Staphylococcus Streptococcus Salmonella aeruginosa aureus pneumoniae lyphi	Streptococcus pneumoniae	Salmonella typhi
SAU203196 SeqID IDEN' COVE	SAU203196 SeqID IDENTITY COVERAGE						i	12945 100% 101%		
SAU203293	SeqID IDENTITY COVERAGE							12979 100% 101%		
SAU203296 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE				11330 29% 88%			12263 100% 101%		
SAU203524 SeqID IDENTITY COVERAG	SeqID IDENTITY COVERAGE							12957 100% 100%		
SAU300110 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	% 82%	10544 38% 109%			11662 33% 73%	-	13031 100% 102%	3441 30% 109%	
SAU300131 SEGID IDENTITY COVERAG	SeqID IDENTITY COVERAGE	10344 1 45% 100%	0529 71% 99%	11112 44% 100%	11434 52% 99%		164 47% 99%	3034 100% 101%	5213 60% 99%	14103 44% 100%
SAU300156 SeqID IDENT COVE	SeqID IDENTITY COVERAGE							3036 100% 100%		
SAU300191	SeqID IDENTITY COVERAGE		10562 43% 103%		11519 39% 91%		11844 32% 72%	12367 100% 101%	13522 41% 104%	
SAU300572	SeqID IDENTITY COVERAGE				11522 32% 108%			12717 100% 100%		
SAU300617	SAU300617 SeqID IDENTITY COVERAGE		10851 50% 97%					12513 100% 100%	13289 49% 97%	
SAU300713 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE		~				666 93%	13058 100% 100%		
SAU300719 SeqID IDENTITY COVERAC	SeqID IDENTITY COVERAGE	,000	0611 34% 87%	11246 34% 101%	11380 30% 94%	11644 30% 101%	11887 40% 100%	2987 100% 101%	3456 33% 96%	13726 34% 100%
SAU300732 SeqID IDEN' COVE	SeqID IDENTITY COVERAGE	10282 26% 71%	10682 51% 88%					3061 100% 100%	13394 49% 86%	
SAU300825 Seq1D	SeqID		10655		_	_		13068	13671	

nella	<u></u> .		· ·				95 48% 96%		37 32% 104%	704 52% 95%		97 54% 99%		
Salmo	<u>.</u>						13795 48%		137	13		138		
Streptococcus	41%		13489 40% 99%	·				13443 30% 93%	13664 48% 98%	3506 59%		13366 46% 84%	13354 76% 100%	13393
Pseudomonas Staphylococcus Streptococcus Salmonella	100%	12203 100% 102%	13077 100% 102%	13079 100% 100%	13080 100% 100%	13083 100% 100%	12904 100% 100%	13087 100% 100%	13090 100%	13092 100% 100%	13102 100% 100%	<u>e</u>	12859 100% 1019	12845
Klebsiella Pseudomonas		•							11783 34% 102%	11956 59% 779		53% 53% 97%		
Klebsiella		·					11653 53% 78%			11669 52% 95%			11766 33% 93%	
Helicobacter Kleb.									11323 32% 90%			11511 50% 97%		
Haemophilus							11092 48% 91%		10964 31% 102%	11010 63% 74%		11014 55% 97%	Ħ	
Enterococcus Haemophilus Helicobacter Klebsiella focodis	52%	10604 · 30% 72%	10820 40% 99%	10744 40% 101%			10808 58% 98%	10898 39% 96%	10640 50% 99%	10877 52% 92%		0926 47% 84%	0696 74% 98%	
Escherichia							10242 47% 98%		19% 19%	10252 52% 95%		10048 54% 99%		
Data	IDENTITY COVERAGE	SAU300975 SeqID IDENTITY COVERAGE	SAU300998 SeqID IDENTITY COVERAGE	SeqD DENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY COVERAGE	SeqID IDENTITY
rocusm		SAU300975	SAU300998	SAU301004 SeqID IDENTITY COVERAC	SAU301030 SeqID IDENTITY COVERAC	SAU301080 SeqID IDENTITY COVERAG	SAU301118 SeqID IDENTITY COVERAG	SAU301133 SeqID IDENTITY COVERAG	SAU301223 SeqID IDENTITY COVERAC	SAU301230 SeqID IDENTITY COVERAC	SAU301268 SeqID IDENTITY COVERAC	SAU301275 SeqID IDENTITY COVERAC	SAU301357	SAU301433 SeqID

ПА	
>	
BLI	
Z	
TABL	

	į		3			- 1				
rocosm		escherichia coli	Eschericnia Enterococcus Itaemopnius Heucobacter Kiebsteua coli faecalis influenzae pylori pneumonia	naemopnius influenzae	Helicobacter pylori	0	revaomonas	rsevaomonas Siapnylococcus Sireptococcus Saimoneua aeruginosa aureus pneumoniae lyphi	Sireptococcus pneumoniae	Saimonella
SAU301465 SeqID	, market	10210	128	1214	1554			3013	3418	13925
	铝	%67 100%	24% 104%	32% 104%	3/%		101%	100%	103%	102%
SAU301472 SeqID		10157	ı	ı				12925		
	IDENTITY COVERAGE	36%						100%		
SAU301592								13137		
	COVERAGE							100%		
SAU301620 SeqID	SeqID							13140		
	COVERAGE							100%		
SAU301758 SeqID	SeqID							13156		
	IDENTITY					,		100%		
SAU301773 SeqID	SeqID							12729		
	COVERAGE							100%		
SAU301829	SeqID	10107			11309		j	13162	7	13935
	COVERAGE	45% 98%			40% 97%		42% 96%	100%	38% 106%	41%
SAU301869	SeqID		107		11373			12903		
	IDENTITY COVERAGE		30%		36%	_		100%		
SAU301898	SAU301898 SeqID		10932					13057		
	COVERAGE		%1 <i>L</i>				•	100%		
SAU302060 SeqID	SeqID							13042		
	IDENTITY							100%		
SAU302513	SeqID							12851		
	COVERAGE						-	100%		
SAU302626 SeqID	SeqID IDENTITY							13105 100%		
	COVERAGE							100%		
SAU302685 SeqID	SeqID IDENTITY COVERAGE							13113		
SAU302698	SAU302698 SeqID							12725		

7 7		
4		

LOCUSID Data	Data	Escherichia	Enterococcus	Haemophilus	Helicobacter	Klebsiella	Pseudomonas	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
		coli	faecalis	influenzae	pylori	pneumoniae aeruginosa		aureus	pneumoniae typhi	byphi
	IDENTITY							100%		
	COVERAGE							100%		
SAU302699 SeqID	SeqID							13115		
•	IDENTITY							100%		
	COVERAGE							100%		-
SAU302805 SeqID	SeqID				11345			13133		
	IDENTITY				33%			100%		
	COVERAGE				75%			101%		-
SAU302901	SAU302901 SeqID							12872		}
	IDENTITY							100%		
	COVERAGE							100%		
SAU302931 SeqID	SeqID							13155		
	IDENTITY							100%		
	COVERAGE							100%		
SAU302950	SeqID							12664		
	IDENTITY							100%		
	COVERAGE							101%		
SAU302956 SeqID	SeqID	10023		11256		11742	12044	12930	13372	14018
	IDENTITY	32%		78%		31%	79%	100%	31%	32%
	COVERAGE	%88		%88		88%	%98	101%	%88	%88

FABLE VIIA

LOCUSID	Data	Escherichia	Enterococcus	Escherichia Enterococcus Haemophilus Helicobacter Klebsiella	Helicobacter	1	Pseudomonas	Pseudomonas Staphylococcus Streptococcus		Salmonella
		coli	faecalis	influenzae	pylori	pneumoniae aeruginosa	zeruginosa	aureus	pneumoniae	typhi
ECO100078	Seq ID	10023		11256			12044		13595	14018
	IDENTITY	100%		%99		%56	%59		41%	%26
	COVERAGE	%001		%86		100%	%66		%16	100%
ECO100252	Seq ID	10052			11503		12078	12626		13932
	IDENTITY	100%			41%	·	48%	38%		40%
	COVERAGE	100%			%66		%96	%66		93%
ECO100397	Seq ID	10064	0781	10993	11499		11959	12884	13614	13915
	IDENTITY	100%	20%	71%	38%		71%	45%	47%	94%
	COVERAGE	100%	%96	100%	%16		%16	%16	%16	%66
ECO100398	Seq ID	10065	10653	10992	11311		11958	12883	13177	13916
	IDENTITY	100%	23%	%18	46%	•	71%	21%	20%	%86
	COVERAGE	100%	%56	101%	%86		%66	%56	%56	100%
ECO100990	Seq ID	10120				11768				
	IDENTITY	100%				72%				
	COVERAGE	100%				82%				
ECO102108		10214	10608	11129		11757	11852		13627	13931
		100%	36%	74%		94%	36%		36%	%96
		100%	%96	100%		100%	%16		%16	73%
ECO102262	Seq ID	10228		11204		11631	12038	13132		13963
		100%		42%		%98	51%	35%		87%
	Ξ	100%		100%		81%	100%	100%		100%
ECO102447	Seq ID	10247					11812			13948
	DENTITY	%00I				•	47%			%66
	田	100%					826		•	%96
ECO102539	Seq ID	10258			11489			12526	13636	14088
		100%	46%	71%	48%		71%	52%	47%	%16
	田	100%	101%	100%	100%		100%	100%	82%	100%
ECO102620	Seq ID	10266	510		11524		61811			14049
		100%	21%	76%	30%		78%	42%	49%	86%
	COVERAGE	100%	93%	%08	94%		91%	%96	101%	%66

TOTION	In the	T	£	77	77-111	VI-1 - 111-	7	7.7.7.		11.
LOCUSID	Data	Escherichia	Enterococcus	Sm	Helicobacter	Kiebsiella	rseuaomonas	OCOCCUS	Sireprococcus	Saimonella
			Jaecans	anz		nuae	uer uginosa	aureus	oniae	ypu
ECO103101	Seq ID		10763				12052			13764
	IDENTITY	%001	37%	73%	76%	%96	64%		33%	94%
	COVERAGE	100%	74%	100%	<i>1</i> 9%		100%		74%	101%
ECO104120	Seq ID	10462	10609	11034		11726	11853			13887
	IDENTITY	100%	75%	34%		87%	28%			37%
	COVERAGE	100%	79%	%68		100%	%68			%76
ECO104268		10475	10607					12370	13166	13707
	IDENTITY	100%	43%			-		43%	38%	95%
4	COVERAGE	100%	92%					%66	92%	100%
KPN100432		10258 10	12							14088
		%06	37%	62%	37%	<u></u>	62%	41%	47%	95%
	AGE	100%	61%	100%	93%	101%	%16	86%	87%	101%
KPN100854		98001	9			11630	11862			14060
		35%	79%	76%	27%	<u>≅</u>	42%		32%	35%
	SAGE	74%	72%	72%	85%		77%		71%	74%
KPN101022		10475)9(11642		12370		13707
	IDENTITY	%06				100%		27%	26%	818
	COVERAGE	100%	77%			101%		101%	79%	101%
KPN101026	Seq ID	10228		11204		11631		13132		13963
	IDENTITY	%98 —		44%		100%	24%	37%		85%
- 1	COVERAGE	%66		%26		100%	%86			%66
KPN101729	Seq ID						12067	13032		
	DENTITY			20%	20%	<u>=</u>	63%	63%		
	COVERAGE			%96	%96	102%	%96	%96		
KPN101750	Seq ID	10052						12626		13918
	IDENTITY COVERAGE	94%			38%	100%	47%	37%		34%
KPN102057	Sed ID	10406	10892	11035	2001	11661	11854	13153		13883
	IDENTITY	75%	30%	30%		100%	27%	28%		29%
	COVERAGE	%96	%96	84%		100%	%16	82%		%96
KPN102638	Seq ID	10266	051		11524	11667		12915		14049
	COVERAGE	700%	21%		%67	100%		44%	20%	71%
	COVERAGE				2			0/00	0/2/	
KPN103882	Seq ID IDENTITY	10315 96%	.0763 38%	11215 73%	11454 26%	11716 100	12052 65%			137 64 93%
	COVERAGE	100%	74%	100%	77%	100%			74%	101%

Ì										
LOCUSID	Data	Escherichia coli	Enterococcus faecalis	Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumonic	Helicobacter pylori	Klebsiella Pseudomon pneumoniae aeruginosa	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae		Salmonella typhi
KPN104183	Seq ID	10065	10653	10992	11490	11650	11958	12883	Γ	13916
	DENTITY	%16	%95	%08	46%	100%	%08	%09	25%	%86
	COVERAGE	85%	74%		%98					85%
KPN104281	Seq ID	10023		11256		11742	12044		13595	14018
	IDENTITY	95%		%89		100%	%99		41%	95%
	COVERAGE	94%		92%		101%	94%		91%	101%
KPN104538	Seq ID	10462	10609	11034		11726	11853			13887
	COVERAGE	8/%	27%	35%		100% 100%	29%			38%
KPN104716	Seq ID	10214	8090	11129		11757	11852		13627	13931
	IDENTITY	94%	36%	75%		100%	36%		35%	94%
- 1	COVERAGE	100%	30%	4001		100%	%/.6		97%	73%
KPN105779	Seq ID						12103			
	COVERAGE					100%	%87 88%			
KPN106659	Seq ID	10064	10781	10993		11649	11959	12884	13614	13915
_	DENTITY	%06	58%	72%		100%	74%	51%	28%	%16
,	COVERAGE	80%	%02	75%		101%	74%	72%	%02	81%
KPN106840	Seq ID		10857	109		11664	12026	12182		14087
	COVERAGE	91%	44%	74%		100%	25%	38%	42%	91%
APTTO INCL		10222		11122		11771	11010		72/0	12025
	DENTITY	78%		37%		~~~ %	35%			80%
	E	%86		%68		102%				%86
SAU100968		10064	1781	10993	11499		11959	12643	13614	13915
_		45%	62%	44%	36%		46%	100%	62%	46%
- 1	ш	%16	%16				97%	100%	%86	%26
SAU201145	Seq ID	10064	<u>~</u>	10993	11499		-	12884		13915
	DENTITY	45%	62%	44%	36%		46%	100%	62%	46%
İ	COVERAGE	%/6	١				%/6		%86	%16
SFN101971	Seq 1D	10064	10/81	10993	11499		11959	12884	13287	13915
	COVERAGE	100%	%66				100%			100%
SPN201024	Seq ID	10064	10781	10993	11499		11959	12884		13915
	DENTITY COVERACE	46%	77%	43%	36%		49%	62%	100%	46%
	COVERAGE	33.70		102%			32%	97.66	%00I	%66

4	⋖	1	l
Ę	>	•	ı
,	ľ	3	۱
١,		ì	l
٩			I
C		•	ı

- 1						17.				
LOCUSID	Data	Escherichia	Enterococcus	Haemophilus	Helicobacter	Klebsiella	Pseudomonas	Enterococcus Haemophitus Helicobacter Klebsiella Pseudomonas Staphylococcus Streptococcus Salmonella	Streptococcus	Salmonella
			faecalis	influenzae	pylori	pneumoniae aeruginosa		aureus	niae	typhi
STY000277	Seq ID	10475	10901					12370	.99161	13707
	IDENTITY	%56	44%					42%	38%	100%
	COVERAGE	100%	816					%66	%96	100%
STY000625	Seq ID	10421								13784
	IDENTITY	83%								100%
	COVERAGE	100%								101%
STY000773	Seq ID	10315	10763	11215	11454	11716	12052		13662	13764
	IDENTITY	94%	36%	71%	79%	93%	. 62%		31%	100%
	COVERAGE	100%	74%		77%	100%	100%		74%	100%
STY001430	Seq ID	10064	10781	10993	11499		11959	12884	13614	13915
·	IDENTITY	94%	46%	70%	37%		70%	46%	47%	100%
	COVERAGE	100%	%96	101%	%86		%86	%16	%86	100%
STY001433	Seq ID	10065	10653	10992	11311		11958	12883	13177	13916
	IDENTITY	%86	23%	82%	46%		72%	28%	20%	100%
	COVERAGE	%66	94%	100%	%16		%66	94%	94%	100%
STY001867	Seq ID	10247					11812			13948
	IDENTITY	%66					47%			100%
	COVERAGE	%86					%96			100%
STY002995	Seq ID	10023		11256		11742	12044		36561	14018
	DENTITY	97%		%29		%56	%59		40%	100%
	COVERAGE	94%		%26		101%	94%		91%	101%
STY003357	Seq ID	10228		11204		11631	12038	13132		13963
	IDENTITY	87%		42%		85%	49%	36%		100%
	COVERAGE	100%		100%		81%	101%	100%		100%

9	Data	Escherichia coli	Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumonia	Haemophilus influenzae	Helicobacter pylori	<u>u</u>	Pseudomonas aeruginosa	Pseudomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae	Γ :	Salmonella typhi
PA0028	SeqID COVERAGE IDENTITY						5053 100% 100%			
PA0120	SeqID COVERAGE IDENTITY	10386 96% 28%		10959 94% 28%			5054 100% 100%			13899 95% 28%
PA0129	SeqID COVERAGE IDENTITY	10265 93% 67%			11388 91% 32%		5055 100% 100%	12844 94% 36%		14048 91% 67%
PA0141	SeqID COVERAGE IDENTITY						5056 100% 100%			
PA0221	SeqID COVERAGE IDENTITY			11250 73% 32%	11386 77% 26%	11701 83% 28%	5057 100% 100%	12781 96% 28%		13778 77% 29%
PA0265	SeqID COVERAGE IDENTITY	10264 100% 81%	10550 97% 35%		11466 99% 26%		5058 100% 100%	12375 96% 38%	13316 91% 34%	14047 100% 80%
PA0321	SeqID COVERAGE IDENTITY						5059 100% 100%			
PA0337	SeqID COVERAGE IDENTITY	10278 99% 43%	10785 73% 35%	11275 72% 37%			5060 100% 100%	12351 72% 36%	13281 73% 35%	13880 99% 42%
PA0353	SeqID COVERAGE IDENTITY	10408 97% 74%		11088 100% 75%	11397 88% 28%	11749 101% 74%	5061 100% 100%	12159 100% 45%	13511 96% 38%	14034 101% 74%
PA0378	SeqID COVERAGE IDENTITY	10324 94% 52%		11130 80% 49%			5062 100% 100%			13730 95% 53%

PCT/US01/09180

WO 01/70955

<	
IJ	֡
E	
3	
4	

1		Г		1					Г	
LUCUSID	Data	ıcnıa	Enterococcus Haemophilus Helicobacter Klebsiella	наеториния	Helicobacter		Pseudomonas	Pseudomonas Staphylococcus Streptococcus		Salmonella
ļ		coli	faecalis	influenzae	pylori	pneumoniae	aeruginosa	reus	niae	typhi
PA0401			10858				5063	666		13723
	COVERAGE	%66	100%				100%	%96	100%	%66
	IDENTITY	79%	31%				100%	33%	33%	79%
PA0413	SeqID						5064			
	COVERAGE	-					100%			
	IDENTITY						100%			İ
PA0414	SeqID						5065			
	COVERAGE	•					100%			
	DENTITY						100%			
PA0419	SeqID			11003		11660	9905	12971		13738
	COVERAGE	100%	93%	102%		78%	100% 100%	%	%16	100%
00,0	DEN III Y	40%	29%	45%		41%	100%	0/./7	0%67	4 /%
PA0423	SeqID	10123			11424	•	5067	12708		14038
	COVERAGE	%66			%16		100%	75%		%66
	I III II	0.570			3270		10070			0/0/
PA0469	SeqID						5068			
	IDENTITY						100%		_	
PA0472	SeqID	10471					6905			
	COVERAGE	%88			, -		100%	-		
	IDENTITY	47%					100%			
PA0506	SeqID						2070			
	COVERAGE						100%			
	IDENTITY						100%			
PA0600	SeqID						5071			
	COVERAGE	_					100%			
0,000	IDENIII Y						%00I			
PA0642	Seq1D						2072			
	COVERAGE				•		100%			
PA0650	SeqID	10150			11581		5073	15	13459	13846
	COVERAGE	95%		83%	93%		100%	76%	38%	36%
PA0715	SeqID						5074			
	COVERAGE				-		100%			
							2001			

		ſ				ſ				
rocusin	Data	ierichia	occus	Haemophilus	Helicobacter		Pseudomonas	Pseudomonas Staphylococcus Streptococcus	Streptococcus	Salmonella
		2011	Jaecans	injiuenzae	pyiori	рпештопіае	inosa	aureus	рпеитопіае	indy
PA0788	SeqID						5075			
	COVERAGE						100%			_
	IDENTITY						100%			
PA0882	SeqID	10233					5076			14013
	COVERAGE	85%					100%			101%
	IDENTITY	33%					100%			28%
PA0934	SeqID			90011		11753		264	13483	
	COVERAGE	%101	93%	101%		%08	100%	95%	94%	
ļ	IDENTITY	47%	40%	46%		37%		39%	38%	
PA0938	SeqID						8078			
	COVERAGE						100%			
	IDENTITY						100%			
PA1019	SeqID			11180			5079			
	COVERAGE	%88	84 %	88			100%			
	DENTITY	76%		28%			100%			
PA1072	SeqID	10377					2080		13410	13813
	COVERAGE	100%					100%		71%	100%
	IDENTITY	62%					100%		36%	
PA1115	SeqID						5081			
	COVERAGE						100%			
	IDENTITY						100%			
PA1270	SeqID	10328					2082			13946
	COVERAGE	%92				79%	100%			%92
	DENTITY	26%				25%	100%			76%
PA1301	SeqID	10470					5083			
	COVERAGE	%96					100%			
	DENTITY	28%					100%			
PA1360	SeqID	10104					5084		13282	14000
	COVERAGE	%26					100%		%26	82%
	IDENTITY	%69					100%		25%	63%
PA1365	SeqID		_	-			5085			
	COVERAGE			•			100%			
	IDENTITY						100%			
PA1398	SeqID						5086			
	IDENTITY						100%			

COVERAGE Coverage	TOCITOR	Date	Fechorichia	Fotoronorie	Hoomonhilne	Holicohactor	Kloheiolla	Deandomonde	Crambalococone	Chrontonomic	Calmonolla
SeqUence 10094 10096 1038 1038 1038 1038 1038 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374 1374				faecalis	influenzae	pylori	e		aureus	pneumoniae	typhi
COVERAGE 38% 101% 100% SeqD 10423 59% 101% 13786 SeqD 10423 59% 100% 22% IDBNTITY 56% 11377 49% 100% 25% IDBNTITY 56% 11377 49% 100% 81% COVERAGE 101% 100% 26% 81% COVERAGE 101% 100% 26% 81% COVERAGE 101% 100% 26% 81% COVERAGE 23% 100% 26% 81% SeqD 103% 100% 39% 100% SeqD 1010% 100% 39% 100% SeqD 1010% 100% 39% 100% SeqD 1010% 100% 30% 13745 SeqD 100% 100% 30% 13745 SeqD 100% 100% 100% 30% SeqD 100% 100%	PA1462	SeqID		10915		11559		2087			
DENTITY COVERAGE		COVERAGE		%86		101%		100%			
Could Age of DENTITY Could Age of DENTITY 11718 11718 11786 11746		IDENTITY		29%		30%		100%			
COVERAGE 97% 100% 92% COVERAGE 95% 11377 5089 100% COVERAGE 100% 100% 13890 COVERAGE 101% 100% 13890 COVERAGE 101% 100% 26% 81,4036 COVERAGE 101% 100% 26% 81,4036 COVERAGE 1036 100% 26% 81,4036 COVERAGE 1036 100% 26% 81,4036 COVERAGE 23% 100% 26% 14036 COVERAGE 23% 100% 100% 93% COVERAGE 100% 100% 100% 93% COVERAGE 100% 100% 13745 93% COVERAGE 100% 100% 13745 93% COVERAGE 100% 100% 13745 13745 COVERAGE 87% 100% 100% 13745 COVERAGE 87% 100% 100% <	PA1493	SeqID	10423					5088			13786
COVERAGE 11377 5089 COVERAGE 10096 12090 13800 COVERAGE 10104 96% 13800 COVERAGE 1010 26% 81% COVERAGE 1010 26% 13800 COVERAGE 1010 26% 13800 COVERAGE 1010 26% 81% COVERAGE 1010 26% 1380 COVERAGE 26% 100% 26% COVERAGE 25% 100% 26% 1380 COVERAGE 25% 100% 100% 93% COVERAGE 100% 100% 13745 93% COVERAGE 100% 100% 13745 13745 SeqUD 100% 100% 100% 13745		COVERAGE	92%				97%	100%			92%
COVERAGE 88% 100% 100% 13890 SeqD 1001 5090 12990 13890 SeqD 1001 96% 81% DENTITY 37% 100% 96% 81% SeqD 100% 96% 81% 81% SeqD 100% 99% 100% 81% SeqD 100% 100% 99% 100% 93% SeqD 100% 100% 100% 93% 100% 14036 SeqD 100% 100% 100% 13436 13743 COVERAGE 79% 100% 100% 13743 SeqD 100% 100% 13743 13743 COVERAGE 87% 100% 100% 13743 SeqD 100% 100% 13743 13743 COVERAGE 87% 100% 100% 13743 COVERAGE 87% 100% 100% 13461 COV	PA1547	SeqID				11377		6805			
SeqUency Sequency		COVERAGE				%88 %88		100%			<u>.</u>
COVERAGE 101% 96% 81½ DENTITY 37% 11693 5091 81½ SeqID 10361 5092 100% 81½ COVERAGE 823% 100% 99% 100% SeqID 10361 10361 99% 100% COVERAGE 823% 100% 93% 14036 COVERAGE 823% 100% 93% 14036 COVERAGE 76% 100% 93% 14036 COVERAGE 78% 100% 13745 13745 COVERAGE 78 100% 13745 13745 COVERAGE 78 100% 13745 13745 COVERAGE 78 100% 100% 13745 SeqID 1023 100% 100% 13745 SeqID 1023 100% 100% 13782 13861 COVERAGE 92% 100% 100% 1388 13861 COVERAGE	PA1636	SeaID	10091			707		5090	12990		13890
DENTITY 37% 1693 100% 26% SeqID 10361 99% 100% 100% COVERAGE 82% 100% 100% 93% SeqID 10361 100% 100% 93% COVERAGE 82% 100% 93% 100% 93% DENTITY 35% 11033 5094 100% 93% DENTITY 31% 82% 100% 13745 13745 SeqID 1013 11033 100% 13745 13745 SeqID 100% 100% 100% 13861 13861 COVERAGE 87% 100% 100% 13861 13861 COVERAGE 95% 100% 100% 88% 1386		COVERAGE						100%			81%
COVERAGE COVERAGE COVERAGE COVERAGE COVERAGE COVERAGE SeqU COVERAGE Sequ COVERAGE Sequ COVERAGE		IDENTITY	37%					100%			32%
COVERAGE 99% 100% 100% DENTITY 82% 100% 100% SeqID 10361 100% 14036 SeqID 10153 11033 11033 14036 SeqID 10153 11033 100% 13745 SeqID 100% 100% 100% SeqID 100% 100% 100% SeqID 100% 100% 100% SeqID 100% 100% 100% SeqID 100% 100% 13861 SeqID 100% 100% 1388% 13861 SeqID 100% 100% 100% 1388% SeqID 100% 100% 100%	PA1684	SeqID									
DENTITY 10361 10361 10362 100% 1		COVERAGE					%66	100%			
SeqID 10361 5092 100% 14036 COVERAGE 82% 11746 5093 14036 SeqID 10133 11034 13745 93% IDENTITY 1013 82% 100% 13745 SeqID 76% 100% 13745 79% IDENTITY 31% 82% 100% 79% SeqID 100% 100% 79% 79% SeqID 100% 100% 100% 100% SeqID 100% 100% 100% 100% SeqID 1023 85% 100% 100% 13861 SeqID 1023 85% 100% 100% 13861 SeqID 1023 85% 100% 13861 13861 SeqID 1038 100% 100% 13861 13861 SeqID 1038 100% 100% 13861 13861 SeqID 1038 100% 100%		IDENIIIY					%60	%001			
DENTITY 35% 11746 5093 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 14036 13745	PA1868	SeqID COVERAGE	<u> </u>	i -				5092			•
SeqID SeqID 11746 5093 14036		IDENTITY	<u>.</u>		•			100%			
COVERAGE COVERAGE 100% 100% 93% IDENTITY 10153 11033 100% 179% 13745 SeqID 79% 28% 100% 79% 79% IDENTITY 31% 28% 100% 79% 79% SeqID COVERAGE 100% 100% 100% 100% IDENTITY SeqID 100% 100% 100% 100% IDENTITY 31% 85% 100% 13861 25% IDENTITY 30% 100% 13861 25% IDENTITY 30% 100% 88% 95% IDENTITY 30% 100% 88% 95%	PA1876	SeqID					11746	5093			14036
DENTITY Automatic Book		COVERAGE	•				%91	100%			93%
SeqID 10153 11033 11033 13745 COVERAGE 79% 82% 100% 79% DENTITY 31% 28% 100% 79% SeqID 100% 100% 100% 100% COVERAGE 87% 100% 100% 100% DENTITY 85% 100% 100% 13861 COVERAGE 87% 100% 100% 13282 13861 COVERAGE 88% 95% 100% 88% 95% IDENTITY 30% 88% 95% 100% 88% 95% IDENTITY 30% 100% 100% 88% 95% IDENTITY 30% 100% 88% 95% IDENTITY 30% 88% 100% 95% IDENTITY 30% 88% 100% 95% IDENTITY 30% 88% 100% 95%		IDENTITY					40%	100%			39%
COVERAGE 79% 82% 100% 79% IDENTITY 31% 28% 100% 79% SeqID COVERAGE 100% 100% 100% DENTITY SeqID 100% 100% 100% COVERAGE 87% 100% 100% 13861 COVERAGE 87% 100% 13861 25% IDENTITY 31% 88% 95% COVERAGE 92% 100% 13861 25% DENTITY 30% 100% 88% 95% DENTITY 30% 100% 88% 95%	PA1918	SeqID	101		11033			5094			13745
DENTITY 51% 28% 100% COVERAGE 100% 100% DENTITY 5096 100% COVERAGE 100% 100% DENTITY 10253 85% 100% SeqID 1028 85% 100% DENTITY 31% 85% 100% DENTITY 31% 85% 13861 COVERAGE 92% 100% 88% 95% DENTITY 30% 100% 88% 95% DENTITY 30% 100% 88% 95%		COVERAGE	79%		82%			100%			79%
SeqID 100% 100% COVERAGE 100% 100% DENTITY 5096 100% COVERAGE 100% 100% DENTITY 85% 100% SeqID 85% 100% DENTITY 31% 85% 100% SeqID 10198 100% 13282 COVERAGE 92% 88% 95% IDENTITY 30% 100% 88% 95% IDENTITY 30% 100% 88% 95%	000	DENTITY	31%		28%			100%			28%
COVERAGE 100% 100% DENTITY \$096 100% SeqID 10253 11692 5097 SeqID 87% 100% 13282 DENTITY 31% 85% 100% 13861 SeqID 10198 100% 13282 13861 COVERAGE 92% 88% 95% IDENTITY 30% 88% 95% IDENTITY 30% 100% 25%	PA1986	SeqID						5095			
SeqID 5096 5096 6 100% 1		DENTITY	-					100%			
COVERAGE IDENTITY 100% 100% SeqID 10253 11692 5097 COVERAGE 87% 100% 13861 SeqID 10198 13282 13861 COVERAGE 92% 88% 95% IDENTITY 30% 100% 88% 95%	PA2009	SeqID						9609			
DEMILITY 10253 11692 5097 100% COVERAGE 87% 100% 13861 DENTITY 31% 5098 13282 13861 COVERAGE 92% 88% 95% IDENTITY 30% 25% 25%		COVERAGE						100%			
COVERAGE 87% 100% IDENTITY 31% 35% 100% SeqID 10198 13282 13861 COVERAGE 92% 88% 95% IDENTITY 30% 25%	PA2083	Seoto	10253					5097			
IDENTITY 31% 35% 100% 13282 13861 SeqID 10198 100% 88% 95% COVERAGE 92% 100% 88% 95% IDENTITY 30% 25% 25%		COVERAGE	<u>.</u>				৽	100%			
SeqID 10198 13282 13861 COVERAGE 92% 88% 95% IDENTITY 30% 25%		IDENTITY					35%	100%			
30% 100% 25%	PA2101	SeqID	101					5098		13282	13861
		DENTITY	726					100%		25%	200

- 1	occus Salmonella		%9 6	%	13893	62%	2	13985	%86 	29%	13852	43%	13830	100%	73%														13930	%09 %86	-	13080
	Pseudomonas Siaphylococcus Streptococcus aerucinosa aureus	13625		34%	13683	80%		İ							44%					_												_
	ias Staphyloco			%(%(3	%		%(291	%26	%(2		<u> %</u>		 ;	%(700	2		<u>%</u>		%		
	Klebsiella Pseudomoni pneumoniae aeruoinosa	5099	100%	100	_	<u></u>		Ţ	100%	S.	5102	001	5103	100%	100	5104	100%	5105	100%	100	5106	100%	100	5107	100%	5108	100%	100%	5109	100%		15110
אווא חחמטיו	r Klebsiella nneumoniae	2			11752	%98	25,															•										
<u>ا</u>	Helicobacter nylori			. 6																									,			
	Haemophilus influenzae	11257	%	27%				-																			·-					1117
	Enterococcus Haemophilus Helicobacter Klebsiella faecalis	Time and			59801	%96	76%																									_
	Escherichia	10109	%96	%	10472	%26	27%	10181	%86 	%09	10169 99%	43%	10160	100%	74%						10132	%98 %	32%									10189
	Data	SeaTD	RAGE	IDENTITY	SeqID	Щ	TTY		COVERAGE	χĮ	SeqID COVERAGE	IDENTITY		COVERAGE	IDENTITY	SeqID	COVERAGE	Sealth	COVERAGE	IDENTITY	-	COVERAGE	IDENTITY	SeqID	COVERAGE	SealD	COVERAGE	IDENTITY	SeqID	COVERAGE IDENTITY		Seath
- 1	rocusin	PA2108			PA2128			PA2147			PA2196		PA2197			PA2222		PA7313			PA2398			PA2424		PA2461			PA2470			PA7488

A
릷
\simeq

		Г		1.1	1 11 11	11 . 11.72	,	, ,		1.0
menan	nara Tara	coli	Enterococcus naemopnius neucobacter Kiebsteita faecalis influenzae pylori pneumonia	naemopnius influenzae	neticooacter	nieosieita pneumoniae	r seuaomonas aeruginosa	r seuaomonas Staphytococcus Istreptococcus aeruginosa aureus pneumoniae		Saimoneila
PA2494	SeqID	10331		1	11516		Г			13719
	COVERAGE	%66		%	100%		100%			%86
	IDENTITY	42%		31%	79%		9			41%
PA2584	SeqID	10195	66801	19601	11504			12330		14058
	COVERAGE	94%	%66	94%	%16		100%	%66	%26	94%
	IDENTITY	%09	37%	21%	38%		100%	41%	42%	%85
PA2594	SeqID	10116				11714	5113			
	COVERAGE	97%				80%	100%			
PA2634	SeqID	10441					5114			
	COVERAGE	74%					100%			
	DENTITY	78%					100%			
PA2641	SeqID		10566				5115			13959
	COVERAGE	%56 	%68 %68				100%			95%
	IDEN III Y	20%					100%			80%
FA2671	SeqID COVERAGE						100%			
	IDENTITY						100%			
PA2680	SeqID		10703			11730	5117			14029
	COVERAGE	101%	74%			%06	100			101%
	DENTITY	42%	30%			43%	100%			42%
PA2684	SeqID	10384					5118			
	DENTITY	33%					100%			
PA2726	SeqID						5119			
	COVERAGE						100%			
PA2742	SeqID		10660	11222	11296			12628	13302	
	COVERAGE	91%	97% 50%	84%	89%		100%	97% 55%		
PA3006	SeqID						5121			
	COVERAGE						100%			
PA3011	SeqID COVERAGE	10151 100%	10695 79%	11233 100%	122		5122 17	12339 75%		13848
	DENTITY	%89		- 1	39%		100%	1		%99

lä	Data	verichia	Enterococcus Haemophilus Helicobacter Klebsiella	Haemophilus	Helicobacter		Pseudomonas	Pseudomonas Staphylococcus Streptococcus	Streptococcus	Salmonella
	8 3		S	zae		рпеитопіае	inosa	aureus	pneumoniae	typhi
SeqID 10416 COVERAGE 98		% 64%	10494 80% 39%	11095 102% 43%	11525 102% 41%		5123 100% 100%	12461 102% 40%		13750 98% 64%
田	<u> </u>	10307 88%					5124 100%			13777
) I		32%					100%			32%
SeqID COVERAGE	10	10117 99%		10966 75%			5125 100%			14005
DENTITY		47%	-	45%			100%			47%
SeqID COVERAGE IDENTITY	<u> </u>						5126 100% 100%			
SeqID 1002	<u>ĕ</u>	121			11363		5127	12156		14017
COVERAGE IDENTITY		%99 63%		99% 	81% 26%		100%	%96 26%		%59 %59
SeqID	L						5128			
COVERAGE IDENTITY							100%			
SeqID COVERAGE	L						5129			
IDENTITY							100%			
SeqID COVERAGE							5130			
IDENTITY	_						100%			
SeqID							5131			
COVERAGE							100%			
Sealth	\perp						100%			
COVERAGE							100%			
SeqID 10452	104	52					5133			
COVERAGE		99%					100%			
SeqID							5134			
IDENTITY							100%			

-	a)
P	
_	21
U	1
	٦.
-	ы
_	ш
_	٠ŀ
Н	ш
_	31
_	11
	71
П	31
	21
•	71
. `	41
_	41
٠	

ACUSID Data A3484 SeqID						-			
	coli	Enterococcus Haemophilus Helicobacier Klebsiella faecalis influenzae pylori pneumonio	Haemophilus influenzae	Helicobacier	16	rsevaomonas aeruginosa	rseuaomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae	streptococcus pneumoniae	заітопеца typhi
DO A GENTOOL						5135			
DENTITY	a —					100%			
A3522 SeqID COVERAGE	10331 E 98%		11145 99%	11516 99%		5136 100%			13719 99%
DENTITY			30%	26%		100%			40%
A3643 SeqD COVERAGE DENTITY	10046 E 99% 53%		11173 111 100% 51%	11378 79% 30%		5137 100% 100%			13912 99% 52%
A3703 SeqID	10194					5138			13751
	E 100% 30%					100%			100% 31%
A3709 SeqID						5139			
COVERAGE	<u> </u>					100%			
A3716 SeqID	ļ					5140			
COVERAGE	<u> </u>					100%			
A3764 SeqID	102		10601			5141		:	13793
COVERAGE	E 94%		91%			100%			39%
A3845 SeqID	10277		11200			5142			13882
COVERAGE	IE 98% 34%		%0£ 30%	1		100%			98% 35%
A3866 SeqID						5143			
COVERAGE	<u></u>					100% 100%			
A3876 SeqID	101					5144		•	13840
COVERAGE	IE 97% 61%				-	100% 100%			97%
PA3877 SeqID	101					5145	12699		13831
IDENTITY	28%					%001 100%			27%
PA3931 SeqID COVERAGE	10050 82%	10833 92%	11067 103%	460 92%	11656 82%	5146 100%	548 96%	13173 109%	13720 95%
IDENTITY	20%	43%		46%	48%	ŀ	44%	369	35%

COCUSID	Data	verichia	snoo	Haemophilus	Helicobacter		Pseudomonas	lococcus		Salmonella
			ړ	zae	pylori	pneumoniae	nosa	aureus	pneumoniae	typhi
PA4242	SeqID	10338			11428		5159		_	
	COVERAGE	100%	100%	100%	100%		100%			
	DENTITY	81%	%89	%9 <i>L</i>	74%		100%			
	SeqID	10340		11116						14099
	COVERAGE	100%	100%	100%			100%	100%	100%	100%
	DENTITY	%59	46%				100%	42%		
PA4245	SeqID	10341	10532	11115					13216	13812
	COVERAGE	%56	%86	95%			100%	%86	%86	78%
	IDENTITY	26%		28%			100%	42%	40%	33%
PA4246	SeqID	10342		ŀ	11432				13215	14101
	COVERAGE	100%	82%	% 66	%88		100%	% 66	87%	100%
	DENTITY	77%		74%	46%		100%	25%	23%	77%
	SeqID	10343			11433					14102
•	COVERAGE	%66	86	%66	81%		100%	% 86	%86	% 66
	DENTITY	%65		63%	37%		100%	48%	54%	29%
PA4248	SeqID	10344			11434					14103
	COVERAGE	100%	%66	100%	%66		100%	%66	%66	100%
	DENTITY	%29	49%	%99	20%		100%	43%	47%	62%
	SeqID	10345			11435					14104
_	COVERAGE	%66	102%	%66	100%		100%	102%	102%	% 66
	IDENTITY	64%	46%	64%	40%		100%	44%	47%	64%
	SeqID	10346		11110						14105
	COVERAGE	100%	100	100%			100%	100%	100%	100%
	IDENTITY	%69	43%	63%			100%	46%	23%	
	SeqID	103								14106
	COVERAGE	%66 	%66	%66	%66	866	201	%06	%86	%66
	IDENTITY	%69	58%	%89	48%	69%	100%	63%	%19	%89
	SeqID	[103		11108					13209	14107
	COVERAGE	97%	65%	94%			100%	%86	%2%	%96
	IDENTITY	65%	46%				100%	46%		64%
	SeqID	10349		11107	11436				13208	14108
	COVERAGE	101%	100%	101%	100%		100%	100%	100%	101%
	IDENTITY	85%	%99	85%	%59		100%	%99		84%
	SeqID	10350	10524	11106	11437		5170	12215	13207	
	IDENTITY	71%		62%			100%			
							T			

Locusm	Data	Escherichia	Enterococcus Haemonhilus Helicohacter Klehsiella	Haemonhilus	Helicobacter	Klebsiella	Pseudomonas	Pseudomonas Stanhylococcus Strentococcus	Streptococcus	Salmonella
		coli	faecalis	influenzae	pylori	pneumoniae	aeruginosa	aureus	pneumoniae	typhi
PA4256	SeqID	10352	10560	Γ	11439		Γ	12260	13204	13968
	COVERAGE	%	%	%(%96		100%	%86	%86	100%
	IDENTITY	77%	24%	77%	92%		100%		21%	
PA4257	SeqID	10353	10559	11103	11592		5172	12259	13203	13969
	COVERAGE	%66	91%	100%	%66		100%	%16	93%	%66
!	IDENTITY	74%	61%	72%	25%		100%		%65	
PA4258	SeqID		_	Г	11593		Γ	12258		139
	COVERAGE	100%	91%	100%	95%		100%	% 66	91%	100%
	IDENTITY	%69	27%	70%	41%		100%	48%	28%	%69
PA4259	SeqID	10355	0557		11594				13201	
	COVERAGE	100%	101%	100%	96%		100%	100%	100%	
CYCVVQ	Seom	10358	0540	11008	11505		10078	12240	13108	13073
1074UI	COVERAGE	%	%	%	%96		%00	%1	%26	100%
	IDENTITY	%89					100%			
PA4263	SeqID	10359			11442			12235	13197	13974
	COVERAGE	%66		%86	91%		100%	103%	%66	%66
	IDENTITY	75%		73%	35%		100%	46%	21%	75%
PA4264	SeqID			ŀ			5177		13196	13975
	COVERAGE	100%	75%	100%	95%	100%	100		%66	100%
	IDENTITY	%06	58%	92%	57%	%26	100%		%19	%16
PA4268	SeqID				11409				13231	13967
	COVERAGE	100%	1119	100%	100%		100%	111%	111%	100%
	IDENTITY	%68	40%	89%	75%		100%	68%	%0 2	%68
PA4269	SeqID				11410		_		13646	14042
	COVERAGE	100%	100%	100%	109%		100%	101%	% 66	100%
	DENTITY	76%	46%	73%			100%	46%	45%	75%
PA4271	SeqID				11572			12449	13247	14044
	COVERAGE	100%	101%	101%	102%		100%	%86	100%	100%
	IDENTITY	%99	65%	%99	54%		100%		28%	%4%
PA4272	SeqID	10436		11071			5181	12450	13246	14045
	COVERAGE	7009	7007	10076			100%	2002	792/	7627
) i di	IDEN III I						ſ			
PA4316	SeqID	10200		11235			5182	_		13821
	DENITITY	\$8%0		70%			100%			91%
	111111111111111111111111111111111111111	21.70		0//*			100.0			2170

	TABLE VIIA	
1	TA	

TOCUSID	Data	Escherichia	Enterococcus	Enterococcus Haemophilus Helicobacter Klebsiella facedis	Helicobacter	9	Pseudomonas	Pseudomonas Staphylococcus Streptococcus		Salmonella
0007			Jacons	Т			Т			
PA4332	Sedim						2183			_
	COVERAGE						100%			
	DENTITY						100%			-
PA4347	SeqID					11699	_			
	COVERAGE	•				%98				
	DENTITY					27	100%			
PA4363	SeqID	10292				11740	5185			13742
-	COVERAGE	95%				81%	100%			95%
PA4375		10072		11145	11516		5186			13719
	RAGE	101%		100%	100%		2			101%
	DENTITY	20		%			100%			33%
PA4413	SeqID				11458					14077
	COVERAGE	%66 	94%	92%	93%		100%	93%	%86	% 86
	IDENTITY	45%	33%	41%	30%		100%			44%
PA4433	SeqID	-	70901		11289		5188	12237	13356	13729
	COVERAGE	100%	%66 %66	100%	94%	72%	100%	99%	%%	100%
	11111	`	27.70		0/10	10/0	00,0	27.00		
PA4473 	SeqID	10463		11195			5189			13986
	DENTITY	39%		37%			100%			39%
PA4506	SeqID	10381	10658	11198	11314	11717	5190	12850	13248	13800
	COVERAGE	%	%	%86	%	%16	100%	%	1%	%66
	IDENTITY	28%	48%	%09	21%	29%	100%	46%	42%	28%
PA4512	SeqID						1615			13815
	COVERAGE IDENTITY						100%			99%
PA4542	SeqID				11489			12526	13421	14088
	COVERAGE	100%	101%	100%	100%		100%	101%	80%	100%
PA4576	SealD	0/1/	2/11		PVCF		5193	777	200	
	COVERAGE	<u> </u>					100%			
DA4508	Cadin	10072		11145	11516		5104			12710
200	COVERAGE	100% 100%		% 29%	99%		100%			100%
				27.5			200			

_		_		_			_					,					_,	_		_			_					_		_	
Salmonella	typhi	13979	%99 %001							13765	107% 58%	13828	%16	33%				13856	95%	14006	%98	44%			14057	94%	30%			12909	100%
Streptococcus	pneumoniae	13336	%05 %66							13663	91%	13402	%96	33%						13458	%16	32%			13292	%80	30%				
Pseudomonas Staphylococcus Streptococcus	aureus	380	98%							2322	78%									501	%96	37%									
Pseudomonas	aeruginosa	5195	100%	5196	100%	100%	5197	100%	100%	8615	100%	5199	100%	100%	5200	100%	100%	5201	100%	5202	100%	100%	5203	100%	5204	100%		2002	100%	2005	100%
	e e	11675	100% 65%																						11694	%06	29%		-	11700	77%
Helicobacter	pylori		97% 52%							11501	93%									11394	83%	31%			11383	%16	76%				
Haemophilus	influenzae	11251	101% 64%							11216	%85 28%	11280	%66	45%				10972	91%	10960	97%	44%			11176	%16	27%			11126	96%
Enterococcus Haemophilus Helicobacter Klebsiella	faecalis	10826	97%																	10619	82%	36%			96/01	%	33%				
Escherichia		10143	%99 %001							10314	107%	10387	%001	81%				10455	93%	10115	%98	43%	10165	%V9 %06	10197	94%	29%			10373	100%
Data		SeqID	COVERAGE	SeaID	COVERAGE	IDENTITY	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	IDENIIIY	SeqID	COVERAGE	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	SeqID	COVERAGE	IDENTITY	GIpaS	COVERAGE	Seatt	COVERAGE
LOCUSID		PA4665		PA4681			PA4709			PA4744		PA4771			PA4888			PA4942		PA4997			PA5030		PA5076			PA5088		DA 5103	

	a	Τ	32%	3		7		28%						7			7			Г					25%		•	\$ %			Τ	
	Salmonella typhi	13810	103%				13758	83%															13885	94%		13748	100%					
	Streptococcus pneumoniae																						13617	94%		13643	105%	39%			13236	101%
	Pseudomonas Staphylococcus Streptococcus aeruginosa aureus pneumoniae			12730	100%	28%				•					12129	73%	40%						13127	94%		12489	100%	38%			12623	100%
!	Pseudomonas aeruginosa	5207	100%	5208	8	100%	5209	100%	5210	100%	100%	5211	100%	100%	5212	100%	%00I	5213	100%	5214	100%	100%	5215	100%	100%	5216	100%	100%	5217	100%	5218	100%
TABLE VIIA	Klebsiella pneumoniae	11711	102%																													
TAB	Helicobacter pylori			11612	%88	39%		,							11327	78%	39%						11321	94%		111452	%	35%			11609	102%
	Haemophilus influenzae			11260	8	54%									11158	%66 40%	%6/						11160	94%		11199	100%	%96			11133	102%
	Enterococcus Haemophilus Helicobacter Klebsiella faecalis influenzae pylori pneumonle	10596	71%															10503	28%				10924	94%	21%	10788	103%	38%			10668	102%
	Escherichia coli	75	102%				103	90% 29%							10391	100%	%7%						10330	94%	25%		100%	04%			10417	2%
	Data	_	COVERAGE	SeaID	COVERAGE	IDENTITY	SeqID	COVEKAGE	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	IDENIIIY	SeqID COVER AGE	DENTITY	SeqID	COVERAGE	IDENTITY	SeqID	COVERAGE	ŢŢŢ		COVERAGE	DENTILY	SeqID	COVERAGE IDENTITY 1	SealD	COVERAGE
	LOCUSID	PA5199		PA5207			PA5209		PA5248			PA5299			PA5316			PA5388		PA5393			PA5436		}	PA5443			PA5490		PA 5493	

225

TABLE VIIA

LOCUSID Data		Escherichia	Enterococcus	Haemophilus	Enterococcus Haemophilus Helicobacter Klebsiella	Klebsiella	Pseudomonas	Staphylococcus	Pseudomonas Staphylococcus Streptococcus Salmonella	Salmonella
		coli	faecalis	influenzae pylori		pneumoniae	pneumoniae aeruginosa aureus	aureus	pneumoniae typhi	typhi
PA5507	SeqID	10119					5219			
	COVERAGE	%66					100%			
	DENTITY	31%					100%			-
PA5567	SeqID	10397	11601	11169	11450		5220	12703	13338	13923
_,	COVERAGE	%66	103%	%66	100%		100%	102%	101%	%66
	DENTITY	%19	39%	64%	33%		100%	34%	37%	%19

PathoSeq Cluster ID	Enterococcus faecalis	Escherichia coli	Pseudomonas aeruginosa	Staphylococcus aureus
15	EFA102326	ECO101796	PAE100280	SAU102515
55	EFA100151	ECO104157	PAE100416	SAU100633
57	EFA100617	ECO102690	PAE105434	SAU100158
1443	EFA100689	ECO103692	PAE101987	SAU100952
1861	EFA101412	ECO103231	PAE104331	SAU101793
2286	EFA103268	ECO103265	PAE104314	SAU101756
2362	EFA101425	ECO100662	PAE101537	SAU101236
2367	EFA101417	ECO103226	PAE103206	SAU101798
2549	EFA101410	ECO103233	PAE104329	SAU101791
3816	EFA101159	ECO103243	PAE104319	SAU100546
3857	EFA101415	ECO103228	PAE103204	SAU101796
4322	EFA101165	ECO103237	PAE104325	SAU100141
4569	EFA100955	ECO103217	PAE103215	SAU101808
4948	EFA101160	ECO103242	PAE104320	SAU100547
5818	EFA100742	ECO103224	PAE103208	SAU101800
8159	EFA101163	ECO103239	PAE104323	SAU100139
8296	EFA101164	ECO103238	PAE104324	SAU100140
8316	EFA101409	ECO103234	PAE104328	SAU101790
8494	. EFA103062	ECO103884	PAE104311	SAU100433
8498	EFA101411	ECO103232	PAE104330	SAU101792
8499	EFA101416	ECO103227	PAE103205	SAU101797
7		ECO100071	PAE100837	SAU102674
8	EFA101340		PAE106580	SAU100118
28	EFA101403		PAE102647	SAU100514
41	EFA101753	ECO100148		SAU101565
63	EFA101685		PAE103857	SAU100331
147		ECO100645	PAE100543	SAU100053
548		ECO100377	PAE100604	SAU100747
730		ECO103592	PAE103108	SAU100061
1721	EFA101686	ECO100663		SAU101996
1749	EFA101477	ECO102557		SAU100613
2153	EFA102656	ECO100184		SAU101869
2790	EFA102764	ECO100500		SAU101578
3164	EFA101162	ECO103240		SAU102602
3312	EFA103174		PAE105008	SAU100521
3926	BFA100194	ECO103220		SAU101806
4441	EFA102541		PAE105364	SAU101814
5685	EFA100190	ECO103264		SAU100157
7417	EFA102788	ECO101684		SAU102992
7437	EFA102351	ECO100084		SAU100056
7579		ECO102470	PAE102641	SAU100607
7726	EFA102551	ECO103221		SAU101805
7727	EFA100978	ECO103218		SAU101807
8092		ECO102035	PAE102964	SAU100794
8158	EFA103365		PAE104318	SAU102880
8161	EFA100210		PAE104326	SAU102527
8162	EFA101414		PAE103203	SAU101795

PathoSeq Cluster ID	Enterococcus faecalis	Escherichia coli	Pseudomonas aeruginosa	Staphylococcus aureus
8164	EFA100741	ECO103223		SAU101801
8493	EFA101141		PAE104310	SAU100432
10185	EFA102728	ECO104092		SAU102578
35		ECO102870		SAU100497
44			PAE101061	SAU101143
54			PAE100225	SAU100123
85		ECO101104		SAU101262
184			PAE104901	SAU101366
362	EFA102736		· ·	SAU100414
575	EFA101790			SAU100133
579	EFA102110			SAU101624
911			PAE105432	SAU102054
941		ECO101365		SAU102162
952	EFA100615	"-		SAU100964
1084	EFA100289	ECO102819		
1141		ECO102255		SAU102356
1232		ECO100703		SAU101346
1274			PAE103655	SAU102264
1337		ECO102562		SAU100567
1350		ECO100930	PAE103901	
1374		ECO103659		SAU101385
1427	EFA100394			SAU100714
1535		ECO101207		SAU101561
1653	EFA102655			SAU101868
1849	EFA100642			SAU101653
1932	EFA100919			SAU101365
2156	EFA101150			SAU101271
2189		ECQ102827	PAE100476	
2238		ECO101436		SAU101092
2338	EFA103038			SAU100518
2411	EFA102802			SAU102246
2501	EFA101121			SAU100996
2974			PAE102537	SAU102125
3027		ECO103959	1123102337	SAU200242
3239	EFA103021			SAU100300
3244	EFA100399	 		SAU101891
3386	EFA100426			SAU100886
3447	EFA102915			SAU100330
3460	EFA102023			SAU101399
3682	EFA100740			SAU101802
3771	EFA101540	 		SAU100275
4424	EFA102542		 	SAU100275
4654	D17102342	ECO100488	PAE106184	GAOTO1912
5148	EFA100065	TCC100400	LVP100104	SAU100658
7227				
7240	EFA100023	ECO102672		SAU100436
		ECO103672	DATIALO	SAU101682
7278			PAE101620	SAU301370
7374	777.4.1000.51		PAE106765	SAU103042
7375	EFA102051			SAU103038

PathoSeq	Enterococcus faecalis	Escherichia coli	Pseudomonas	Staphylococcus
Cluster ID	Taecans		aeruginosa	aureus
7402	<u> </u>	ECO103572	PAE106044	
7419		ECO101686	<u> </u>	SAU102693
7436	EFA101792			SAU101495
7504	EFA101670			SAU102603
7653	EFA100397			SAU100246
7660	EFA102352	ECO103698		
7719	EFA100756			SAU100496
7725	EFA100739			SAU101803
8040	EFA101736			SAU101197
8058	EFA103571			SAU101242
8077	EFA100200			SAU102231
8082	EFA101080			SAU100199
8116	EFA101963		•	SAU101028
8122	EFA101737			SAU101198
8141 •	EFA102780			SAU102433
8177	EFA103348			SAU202126
8178	EFA101022			SAU102283
8181	EFA101541			SAU102909
8191	EFA102022			SAU101398
8234	EFA103033			SAU100745
8237	EFA101682			SAU101266
8238	EFA103295			SAU100963
8251			PAE100662	SAU100596
8300	EFA101120			SAU100944
8539	EFA101339			SAU101400
8610		ECO103661		SAU102298
8874	EFA100748			SAU101155
9028	EFA103210			SAU100731
9996	EFA102338			SAU100175
10234	EFA102186			SAU102933
10248		ECO102828		SAU101220
10297			PAE105229	SAU101381
10328	EFA101079			SAU101547
10345	EFA100295			SAU100659
10365	EFA100641			SAU101655
10393	EFA103504			SAU100961
10402	EFA 101833			SAU100880
12426	EFA101413			SAU101794
14277	EFA103081			SAU200088
14330	EFA101161			SAU102881
14455	EFA101424			SAU101771
14520	EFA100211			SAU101789
15660	EFA103375			SAU102694

EXAMPLE 13

Use of Identified Nucleic Acid Sequences as Probes

The sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus 5 faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids can be used as probes to obtain the sequence of additional genes of interest from a second cell or microorganism. For example, probes to genes encoding potential bacterial target proteins may be hybridized to nucleic acids from other organisms including other bacteria and higher organisms, to identify homologous sequences in 10 these other organisms. For example, the identified sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi, homologous coding nucleic acids, or homologous antisense nucleic acids may be used to identify homologous sequences in Anaplasma marginale, Aspergillus fumigatus, Bacillus 15 anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus 20 faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus yulgaris, 25 Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, Yersinia pestis and any species falling within the 30 genera of any of the above species. In some embodiments of the present invention, the nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids may be used to identify homologous nucleic acids 35 from a heterologous organism other than E. coli.

Hybridization between the nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis,

Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids and nucleic acids from humans might indicate that the protein encoded by the gene to which the probe corresponds is found in humans and therefore not necessarily an optimal drug target.

Alternatively, the gene can be conserved only in bacteria and therefore would be a good drug target for a broad spectrum antibiotic or antimicrobial. These probes can also be used in a known manner to isolate homologous nucleic acids from *Staphylococcus*, *Salmonella*, *Klebsiella*, *Pseudomonas*, *Enterococcus* or other cells or microorganisms, e.g. by screening a genomic or cDNA library.

Probes derived from the nucleic acid sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi described herein, homologous coding nucleic acids, or homologous antisense nucleic acids, or portions thereof, can be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe can be single stranded or double stranded and can be made using techniques known in the art, including in vitro transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it can be denatured prior to contacting the probe. In some applications, the nucleic acid sample can be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample can comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.

Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe can be cloned into vectors such as expression vectors, sequencing vectors, or in vitro transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques can be used to isolate, purify and clone sequences from a genomic library, made from a variety of bacterial species, which are capable of hybridizing to probes made from the sequences identified in Examples 5 and 6.

30

35

10

15

20

25

EXAMPLE 14

Preparation of PCR Primers and Amplification of DNA

The identified Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi genes corresponding directly to or located within the operon of nucleic acid sequences required for proliferation, homologous coding nucleic acids, or homologous antisense nucleic acids or portions thereof can be used to prepare PCR primers for a variety of applications, including the identification or isolation of homologous sequences

PCT/US01/09180 WO 01/70955

from other species. For example, the Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi genes may be used to prepare PCR primers to identify or isolate homologous sequences from Anaplasma marginale, 5 Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium 10 perfringens, Coccidiodes immitis, Corynebacterium diptheriae, Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica, Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema pallidum, Yersinia enterocolitica, 20 Yersinia pestis or any species falling within the genera of any of the above species. In some embodiments of the present invention, the PCR primers may be used to identify or isolate homologous nucleic acids from an organism other than E. coli.

15

25

30

35

The identified or isolated nucleic acids obtained using the PCR primers may contain part or all of the homologous nucleic acids. Because homologous nucleic acids are related but not identical in sequence, those skilled in the art will often employ degenerate sequence PCR primers. Such degenerate sequence primers are designed based on sequence regions that are either known to be conserved or suspected to be conserved such as conserved coding regions. The successful production of a PCR product using degenerate probes generated from the sequences identified herein would indicate the presence of a homologous gene sequence in the species being screened. The PCR primers are at least 10 nucleotides, and preferably at least 20 nucleotides in length. More preferably, the PCR primers are at least 20-30 nucleotides in length. In some embodiments, the PCR primers can be more than 30 nucleotides in length. It is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. When the entire coding sequence of the target gene is known, the 5' and 3' regions of the target gene can be used as the sequence source for PCR probe generation. In each of these PCR procedures, PCR

5

10

15

20

25

30

35

primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.

EXAMPLE 15

Inverse PCR

The technique of inverse polymerase chain reaction can be used to extend the known nucleic acid sequence identified in Examples 5 and 6. The inverse PCR reaction is described generally by Ochman et al., in Ch. 10 of PCR Technology: Principles and Applications for DNA Amplification, (Henry A. Erlich, Ed.) W.H. Freeman and Co. (1992). Traditional PCR requires two primers that are used to prime the synthesis of complementary strands of DNA. In inverse PCR, only a core sequence need be known.

Using the sequences identified as relevant from the techniques taught in Examples 5 and 6 and applied to other species of bacteria, a subset of nucleic sequences are identified that correspond to genes or operons that are required for bacterial proliferation. In species for which a genome sequence is not known, the technique of inverse PCR provides a method for obtaining the gene in order to determine the sequence or to place the probe sequences in full context to the target sequence to which the identified nucleic acid sequence binds.

To practice this technique, the genome of the target organism is digested with an appropriate restriction enzyme so as to create fragments of nucleic acid that contain the identified sequence as well as unknown sequences that flank the identified sequence. These fragments are then circularized and become the template for the PCR reaction. PCR primers are designed in accordance with the teachings of Example 15 and directed to the ends of the identified sequence. The primers direct nucleic acid synthesis away from the known sequence and toward the unknown sequence contained within the circularized template. After the PCR reaction is complete, the resulting PCR products can be sequenced so as to extend the sequence of the identified gene past the core sequence of the identified exogenous nucleic acid sequence identified. In this manner, the full sequence of each novel gene can be identified. Additionally the sequences of adjacent coding and noncoding regions can be identified.

EXAMPLE 16

Identification of Genes Required for Escherichia coli Proliferation

Genes required for proliferation in *Escherichia coli* are identified according to the methods described above.

EXAMPLE 17

Identification of Genes Required for Neisseria gonorrhoeae Proliferation

Genes required for proliferation in *Neisseria gonorrhoeae* are identified according to the methods described above.

5

EXAMPLE 18

Identification of Genes Required for Salmonella enterica Proliferation

Genes required for proliferation in Salmonella enterica are identified according to the methods described above.

EXAMPLE 19

10

15

20

Identification of Genes Required for Enterococcus faecium Proliferation

Genes required for proliferation in *Enterococcus faecium* are identified according to the methods described above.

EXAMPLE 20

Identification of Genes Required for Haemophilus influenzae Proliferation

Genes required for proliferation in *Haemophilus influenzae* are identified according to the methods described above.

EXAMPLE 21

Identification of Genes Required for Aspergillus fumigatus Proliferation

Genes required for proliferation in *Aspergillus fumigatus* are identified according to the methods described above.

EXAMPLE 22

Identification of Genes Required for Helicobacter pylori Proliferation

Genes required for proliferation in *Helicobacter pylori* are identified according to the methods described above.

25

EXAMPLE 23

Identification of Genes Required for Mycoplasma pneumoniae Proliferation

Genes required for proliferation in *Mycoplasma pneumoniae* are identified according to the methods described above.

EXAMPLE 24

30

35

Identification of Genes Required for Plasmodium ovale Proliferation

Genes required for proliferation in *Plasmodium ovale* are identified according to the methods described above.

EXAMPLE 25

Identification of Genes Required for Entamoeba histolytica Proliferation

Genes required for proliferation in *Entamoeba histolytica* are identified according to the methods described above.

EXAMPLE 26

Identification of Genes Required for Candida albicans Proliferation

Genes required for proliferation in *Candida albicans* are identified according to the methods described above.

5

EXAMPLE 27

Identification of Genes Required for Histoplasma capsulatum Proliferation

Genes required for proliferation in *Histoplasma capsulatum* are identified according to the methods described above.

EXAMPLE 28

10

15

20

Identification of Genes Required for Salmonella typhi Proliferation

Genes required for proliferation in Salmonella typhi are identified according to the methods described above.

EXAMPLE 29

Identification of Genes Required for Salmonella paratyphi Proliferation

Genes required for proliferation in *Salmonella paratyphi* are identified according to the methods described above.

EXAMPLE 30

Identification of Genes Required for Salmonella cholerasuis Proliferation

Genes required for proliferation in Salmonella cholerasuis are identified according to the methods described above.

EXAMPLE 31

Identification of Genes Required for Staphylococcus epidermis Proliferation

Genes required for proliferation in *Staphylococcus epidermis* are identified according to the methods described above.

25

EXAMPLE 32

Identification of Genes Required for Mycobacterium tuberculosis Proliferation

Genes required for proliferation in *Mycobacterium tuberculosis* are identified according to the methods described above.

EXAMPLE 33

30

35

Identification of Genes Required for Mycobacterium leprae Proliferation

Genes required for proliferation in *Mycobacterium leprae* are identified according to the methods described above.

EXAMPLE 34

Identification of Genes Required for Treponema pallidum Proliferation

Genes required for proliferation in *Treponema pallidum* are identified according to the methods described above.

EXAMPLE 35

Identification of Genes Required for Bacillus anthracis Proliferation

Genes required for proliferation in *Bacillus anthracis* are identified according to the methods described above.

5

EXAMPLE 36

Identification of Genes Required for Yersinia pestis Proliferation

Genes required for proliferation in *Yersinia pestis* are identified according to the methods described above.

EXAMPLE 37

10

20

25

30

Identification of Genes Required for Clostridium botulinum Proliferation

Genes required for proliferation in *Clostridium botulinum* are identified according to the methods described above.

EXAMPLE 38

Identification of Genes Required for Campylobacter jejuni Proliferation

Genes required for proliferation in *Campylobacter jejuni* are identified according to the methods described above.

EXAMPLE 39

Identification of Genes Required for Chlamydia trachomatis Proliferation

Genes required for proliferation in *Chlamydia trachomatis* are identified according to the methods described above.

EXAMPLE 40

Identification of Genes Required for Staphylococcus aureus Proliferation

Genes required for proliferation in *Staphylococcus aureus* are identified according to the methods described above.

EXAMPLE 41

Identification of Genes Required for Salmonella typhimurium Proliferation

Genes required for proliferation in Salmonella typhinurium are identified according to the methods described above.

EXAMPLE 42

Identification of Genes Required for Klebsiella Pneumoniae Proliferation

Genes required for proliferation in *Klebsiella Pneumoniae* are identified according to the methods described above.

EXAMPLE 43

Identification of Genes Required for Pseudomonas aeruginosa Proliferation

Genes required for proliferation in *Pseudomonas aeruginosa* are identified according to the methods described above.

5

EXAMPLE 44

Identification of Genes Required for Enterococcus faecalis Proliferation

Genes required for proliferation in *Enterococcus faecalis* are identified according to the methods described above.

10

15

Use of Isolated Exogenous Nucleic Acid Fragments as Antisense Antibiotics

In addition to using the identified sequences to enable screening of molecule libraries to identify compounds useful to identify antibiotics, antisense nucleic acids complementary to the proliferation-required sequences or portions thereof, antisense nucleic acids complementary to homologous coding nucleic acids, or homologous antisense nucleic acids can be used as therapeutic agents. Specifically, the proliferation-required sequences or homologous coding nucleic acids, or portions therof, in an antisense orientation or homologous antisense nucleic acids can be provided to an individual to inhibit the translation of a bacterial target gene or the processing, folding, or assembly into a protein/RNA complex of a nontranslated RNA.

20

EXAMPLE 45

Generation of Antisense Therapeutics from Identified Exogenous Sequences

Antisense nucleic acids complementary to the proliferation-required sequences described herein, or portions thereof, antisense nucleic acids complementary to homologous coding nucleic 25 acids, or portions thereof, or homologous antisense nucleic acids or portions thereof can be used as antisense therapeutics for the treatment of bacterial infections or simply for inhibition of bacterial growth in vitro or in vivo. For example, the antisense therapeutics may be used to treat bacterial infections caused by Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, 30 Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or to inhibit the growth of these organisms. The antisense therapeutics may also be used to treat infections caused by or to inhibit the growth of Anaplasma marginale, Aspergillus fumigatus, Bacillus anthracis, Bacterioides fragilis Bordetella pertussis, Burkholderia cepacia, Campylobacter jejuni, Candida albicans, Candida glabrata (also called Torulopsis glabrata), Candida tropicalis, Candida parapsilosis, 35 Candida guilliermondii, Candida krusei, Candida kefyr (also called Candida pseudotropicalis), Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatus, Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Coccidiodes immitis, Corynebacterium diptheriae,

Cryptococcus neoformans, Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium,
Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Histoplasma capsulatum, Klebsiella
pneumoniae, Listeria monocytogenes, Mycobacterium leprae, Mycobacterium tuberculosis,
Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia asteroides, Pasteurella haemolytica,
Pasteurella multocida, Pneumocystis carinii, Proteus vulgaris, Pseudomonas aeruginosa,
Salmonella bongori, Salmonella cholerasuis, Salmonella enterica, Salmonella paratyphi,
Salmonella typhi, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes,
Moxarella catarrhalis, Shigella boydii, Shigella dysenteriae, Shigella flexneri, Shigella sonnei,
Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus mutans, Treponema
pallidum, Yersinia enterocolitica, Yersinia pestis or any species falling within the genera of any of
the above species. In some embodiments of the present invention, the antisense therapuetics may
be used to treat infection by or inhibit the growth of an organism other than E. coli.

The therapy exploits the biological process in cells where genes are transcribed into messenger RNA (mRNA) that is then translated into proteins. Antisense RNA technology contemplates the use of antisense nucleic acids, including antisense oligonucleotides, complementary to a target gene that will bind to its target nucleic acid and decrease or inhibit the expression of the target gene. For example, the antisense nucleic acid may inhibit the translation or transcription of the target nucleic acid. In one embodiment, antisense oligonucleotides can be used to treat and control a bacterial infection of a cell culture containing a population of desired cells contaminated with bacteria. In another embodiment, the antisense oligonucleotides can be used to treat an organism with a bacterial infection.

15

20

25

30

35

Antisense oligonucleotides can be synthesized from any of the sequences of the present invention using methods well known in the art. In a preferred embodiment, antisense oligonucleotides are synthesized using artificial means. Uhlmann & Peymann, Chemical Rev. 90:543-584 (1990) review antisense oligonucleotide technology in detail. Modified or unmodified antisense oligonucleotides can be used as therapeutic agents. Modified antisense oligonucleotides are preferred. Modification of the phosphate backbones of the antisense oligonucleotides can be achieved by substituting the internucleotide phosphate residues with methylphosphonates, phosphorothioates, phosphoramidates, and phosphate esters. Nonphosphate internucleotide analogs such as siloxane bridges, carbonate brides, thioester bridges, as well as many others known in the art may also be used. The preparation of certain antisense oligonucleotides with modified internucleotide linkages is described in U.S. Patent No. 5,142,047.

Modifications to the nucleoside units of the antisense oligonucleotides are also contemplated. These modifications can increase the half-life and increase cellular rates of uptake for the oligonucleotides *in vivo*. For example, α -anomeric nucleotide units and modified nucleotides such as 1,2-dideoxy-d-ribofuranose, 1,2-dideoxy-1-phenylribofuranose, and N^4 , N^4 -ethano-5-methyl-cytosine are contemplated for use in the present invention.

5

10

15

20

25

30

35

An additional form of modified antisense molecules is found in peptide nucleic acids. Peptide nucleic acids (PNA) have been developed to hybridize to single and double stranded nucleic acids. PNA are nucleic acid analogs in which the entire deoxyribose-phosphate backbone has been exchanged with a chemically different, but structurally homologous, polyamide (peptide) backbone containing 2-aminoethyl glycine units. Unlike DNA, which is highly negatively charged, the PNA backbone is neutral. Therefore, there is much less repulsive energy between complementary strands in a PNA-DNA hybrid than in the comparable DNA-DNA hybrid, and consequently they are much more stable. PNA can hybridize to DNA in either a Watson/Crick or Hoogsteen fashion (Demidov et al., Proc. Natl. Acad. Sci. U.S.A. 92:2637-2641, 1995; Egholm, Nature 365:566-568, 1993; Nielsen et al., Science 254:1497-1500, 1991; Dueholm et al., New J. Chem. 21:19-31, 1997).

Molecules called PNA "clamps" have been synthesized which have two identical PNA sequences joined by a flexible hairpin linker containing three 8-amino-3,6-dioxaoctanoic acid units. When a PNA clamp is mixed with a complementary homopurine or homopyrimidine DNA target sequence, a PNA-DNA-PNA triplex hybrid can form which has been shown to be extremely stable (Bentin et al., *Biochemistry* 35:8863-8869, 1996; Egholm et al., *Nucleic Acids Res.* 23:217-222, 1995; Griffith et al., *J. Am. Chem. Soc.* 117:831-832, 1995).

The sequence-specific and high affinity duplex and triplex binding of PNA have been extensively described (Nielsen et al., Science 254:1497-1500, 1991; Egholm et al., J. Am. Chem. Soc. 114:9677-9678, 1992; Egholm et al., Nature 365:566-568, 1993; Almarsson et al., Proc. Natl. Acad. Sci. U.S.A. 90:9542-9546, 1993; Demidov et al., Proc. Natl. Acad. Sci. U.S.A. 92:2637-2641, 1995). They have also been shown to be resistant to nuclease and protease digestion (Demidov et al., Biochem. Pharm. 48:1010-1313, 1994). PNA has been used to inhibit gene expression (Hanvey et al., Science 258:1481-1485, 1992; Nielsen et al., Nucl. Acids. Res., 21:197-200, 1993; Nielsen et al., Gene 149:139-145, 1994; Good & Nielsen, Science, 95: 2073-2076, 1998), to block restriction enzyme activity (Nielsen et al., supra., 1993), to act as an artificial transcription promoter (Mollegaard, Proc. Natl. Acad. Sci. U.S.A. 91:3892-3895, 1994) and as a pseudo restriction endonuclease (Demidov et al., Nucl. Acids. Res. 21:2103-2107, 1993). Recently, PNA has also been shown to have antiviral and antitumoral activity mediated through an antisense mechanism (Norton, Nature Biotechnol., 14:615-619, 1996; Hirschman et al., J. Investig. Med. 44:347-351, 1996). PNAs have been linked to various peptides in order to promote PNA entry into cells (Basu et al., Bioconj. Chem. 8:481-488, 1997; Pardridge et al., Proc. Natl. Acad. Sci. U.S.A. 92:5592-5596, 1995).

The antisense oligonucleotides contemplated by the present invention can be administered by direct application of oligonucleotides to a target using standard techniques well known in the art. The antisense oligonucleotides can be generated within the target using a plasmid, or a phage.

Alternatively, the antisense nucleic acid may be expressed from a sequence in the chromosome of the target cell. For example, a promoter may be introduced into the chromosome of the target cell

near the target gene such that the promoter directs the transcription of the antisense nucleic acid.

Alternatively, a nucleic acid containing the antisense sequence operably linked to a promoter may be introduced into the chromosome of the target cell. It is further contemplated that the antisense oligonucleotides are incorporated in a ribozyme sequence to enable the antisense to specifically bind and cleave its target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi et al., Pharmacol. Ther. 50(2):245-254, (1991). The present invention also contemplates using a retron to introduce an antisense oligonucleotide to a cell. Retron technology is exemplified by U.S. Patent No. 5,405,775. Antisense oligonucleotides can also be delivered using liposomes or by electroporation techniques which are well known in the art.

5

10

15

20

25

30

35

The antisense nucleic acids described above can also be used to design antibiotic compounds comprising nucleic acids which function by intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. The antisense nucleic acids can be used to inhibit cell or microorganism gene expression in individuals infected with such microorganisms or containing such cells. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences based on the sequences from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or homologous nucleic acids that are required for proliferation are contemplated for use as antibiotic compound templates.

The antisense nucleic acids, such as antisense oligonucleotides, which are complementary to the proliferation-required nucleic acids from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or to homologous coding nucleic acids, or portions thereof, may be used to induce bacterial cell death or at least bacterial stasis by inhibiting target nucleic acid transcription or translation. Antisense oligonucleotides complementary to about 8 to 40 nucleotides of the proliferation-required nucleic acids described herein or homologous coding nucleic acids have sufficient complementarity to form a duplex with the target sequence under physiological conditions.

To kill bacterial cells or inhibit their growth, the antisense oligonucleotides are applied to the bacteria or to the target cells under conditions that facilitate their uptake. These conditions include sufficient incubation times of cells and oligonucleotides so that the antisense oligonucleotides are taken up by the cells. In one embodiment, an incubation period of 7-10 days is sufficient to kill bacteria in a sample. An optimum concentration of antisense oligonucleotides is selected for use.

The concentration of antisense oligonucleotides to be used can vary depending on the type of bacteria sought to be controlled, the nature of the antisense oligonucleotide to be used, and the

relative toxicity of the antisense oligonucleotide to the desired cells in the treated culture. Antisense oligonucleotides can be introduced to cell samples at a number of different concentrations preferably between $1 \times 10^{-10} M$ to $1 \times 10^{-4} M$. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use *in vivo*. For example, an inhibiting concentration in culture of 1×10^{-7} translates into a dose of approximately 0.6 mg/kg body weight. Levels of oligonucleotide approaching 100 mg/kg body weight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the subject are removed, treated with the antisense oligonucleotide, and reintroduced into the subject. This range is merely illustrative and one of skill in the art are able to determine the optimal concentration to be used in a given case.

After the bacterial cells have been killed or controlled in a desired culture, the desired cell population may be used for other purposes.

10

15

20

25

30

35

EXAMPLE 46

Use of Antisense Oligonucleotides to Treat Contaminated Cell Cultures

The following example demonstrates the ability of an Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi antisense oligonucleotide or an antisense oligonucleotide complementary to a homologous coding nucleic acid, or portions thereof, to act as a bacteriocidal or bacteriostatic agent to treat a contaminated cell culture system. The application of the antisense oligonucleotides of the present invention are thought to inhibit the translation of bacterial gene products required for proliferation. The antisense nucleic acids may also inhibit the transcription, folding or processing of the target RNA.

In one embodiment of the present invention, the antisense oligonucleotide may comprise a phosphorothioate modified nucleic acid comprising at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, or more than 40 consecutive nucleotides of an antisense nucleic acid listed in Table IA. A sense oligodeoxynucleotide complementary to the antisense sequence is synthesized and used as a control. The oligonucleotides are synthesized and purified according to the procedures of Matsukura, et al., Gene 72:343 (1988). The test oligonucleotides are dissolved in a small volume of autoclaved water and added to culture medium to make a 100 micromolar stock solution.

Human bone marrow cells are obtained from the peripheral blood of two patients and cultured according standard procedures well known in the art. The culture is contaminated with Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or an organism containing a homologous nucleic acid and incubated at 37°C overnight to establish bacterial infection.

The control and antisense oligonucleotide containing solutions are added to the contaminated cultures and monitored for bacterial growth. After a 10 hour incubation of culture and oligonucleotides, samples from the control and experimental cultures are drawn and analyzed for the translation of the target bacterial gene using standard microbiological techniques well known in the art. The target Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi gene or an organism containing the homologous coding nucleic acid is found to be translated in the control culture treated with the control oligonucleotide, however, translation of the target gene in the experimental culture treated with the antisense oligonucleotide of the present invention is not detected or reduced, indicating that the culture is no longer contaminated or is contaminated at a reduced level.

5

10

15

20

25

30

35

EXAMPLE 47

Use of Antisense Oligonucleotides to Treat Infections

A subject suffering from a Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi infection or an infection with an organism containing a homologous coding nucleic acid is treated with the antisense oligonucleotide preparation above. The antisense oligonucleotide is provided in a pharmaceutically acceptable carrier at a concentration effective to inhibit the transcription or translation of the target nucleic acid. The present subject is treated with a concentration of antisense oligonucleotide sufficient to achieve a blood concentration of about 0.1-100 micromolar. The patient receives daily injections of antisense oligonucleotide to maintain this concentration for a period of 1 week. At the end of the week a blood sample is drawn and analyzed for the presence or absence of the organism using standard techniques well known in the art. There is no detectable evidence of Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or an organim containing a homologous coding nucleic acid and the treatment is terminated.

Antisense nucleic acids complementary to a homologous coding nucleic acid or a portion thereof may be used in the preceding method to treat individuals infected with an organism containing the homologous coding nucleic acid.

EXAMPLE 48

Preparation and Use of Triple Helix Forming Oligonucleotides

The sequences of proliferation-required nucleic acids, homologous coding nucleic acids, or homologous antisense nucleic acids are scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches that could be used in triple-helix based strategies for inhibiting gene expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in

inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into a population of bacterial cells that normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis.

The oligonucleotides can be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

5

10

15

20

25

30

35

Treated cells are monitored for a reduction in proliferation using techniques such as monitoring growth levels as compared to untreated cells using optical density measurements. The oligonucleotides that are effective in inhibiting gene expression in cultured cells can then be introduced *in vivo* using the techniques well known in that art at a dosage level shown to be effective.

In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (Science 245:967-971 (1989)).

EXAMPLE 49

Identification of Bacterial Strains from Isolated Specimens by PCR

Classical bacteriological methods for the detection of various bacterial species are time consuming and costly. These methods include growing the bacteria isolated from a subject in specialized medium, cultivation on selective agar medium, followed by a set of confirmation assays that can take from 8 to 10 days or longer to complete. Use of the identified sequences of the present invention provides a method to dramatically reduce the time necessary to detect and identify specific bacterial species present in a sample.

In one exemplary method, bacteria are grown in enriched medium and DNA samples are isolated from specimens of, for example, blood, urine, stool, saliva or central nervous system fluid by conventional methods. A panel of PCR primers based on identified sequences unique to various species or types of cells or microorganisms are then utilized in accordance with Example 12 to amplify DNA of approximately 100-200 nucleotides in length from the specimen. A separate PCR reaction is set up for each pair of PCR primers and after the PCR reaction is complete, the reaction mixtures are assayed for the presence of PCR product. The presence or absence of bacteria from the species to which the PCR primer pairs belong is determined by the presence or absence of a PCR product in the various test PCR reaction tubes.

Although the PCR reaction is used to assay the isolated sample for the presence of various bacterial species, other assays such as the Southern blot hybridization are also contemplated.

Compounds which inhibit the activity or reduce the amount of gene products required for proliferation may be identified using rational drug design. These methods may be used with the

5

10

15

20

25

30

35

proliferation-required polypeptides described herein or homologous polypeptides. In such methods, the structure of the gene product is determined using methods such as x-ray crystallography, NMR, or computer modelling. Compounds are screened to identify those which have a structure which allows them to interact with the gene product. In some embodiments, the compounds are screened to identify those which have structures which allow them to interact with regions of the gene product which are important for its activity. For example, the compounds may be screened to identify those which have structures which allow them to bind to the active site of the gene product to inhibit its activity. For example, the compound may be a suicide substrate which binds to the active site with high affinity, thereby preventing the gene product from acting on its natural substrate. Alternatively, the compound may bind to a region of the gene product which is involved in complex formation with other biomolecules. In such instances, the activity of the gene product is inhibited by blocking the interaction between the gene product and other members of the complex.

Thus, one embodiment of the present invention comprises a method of using a crystal of the gene products of the present invention and/or a dataset comprising the three-dimensional coordinates obtained from the crystal in a drug-screening assay. The present invention also includes agents (modulators or drugs) that are identified by the methods of the present invention, along with the method of using agents (modulators or drugs) identified by a method of the present invention, for inhibiting the activity of or modulating the amount of an essential gene product. The present invention also includes crystals comprising the gene products of the present invention or portions thereof.

In some embodiments of the present invention, the three-dimensional structure of the polypeptides required for proliferation is determined using X-ray crystallography or NMR. The coordinates of the determined structure are used in computer-assisted modeling programs to identify compounds that bind to and/or modulate the activity or amount of the encoded polypeptide. The method may include the following steps: 1) the generation of high-purity crystals of the encoded recombinant (or endogenous) polypeptide for analysis; 2) determination of the three-dimensional structure of the polypeptide; and, 3) the use of computer-assisted "docking" programs to analyze the molecular interaction of compound structure and the polypeptide (i.e., drug screening).

General methods for performing each of the above steps are described below and are also well known to those of skill in the art. Any method known to those of skill in the art, including those described herein, may be employed for generating the three-dimensional structure for each identified essential gene product and its use in the drug-screening assays.

Crystals of the gene products required for proliferation may be obtained as follows. Under certain conditions, molecules condense from solution into a highly-ordered crystalline lattice, which is defined by a unit cell, the smallest repeating volume of the crystalline array. The contents of such a cell can interact with and diffract certain electromagnetic and particle waves (e.g., X-rays,

neutron beams, electron beams etc.). Due to the symmetry of the lattice, the diffracted waves interact to create a diffraction pattern. By measuring the diffraction pattern, crystallographers are able to reconstruct the three-dimensional structure of the atoms in the crystal.

Any method known to those of skill in the art, including those set forth below, may be 5 employed to prepare high-purity crystals. For example, crystals of the product of the identified essential gene can be grown by a number of techniques including batch crystallization, vapor diffusion (either by sitting drop or hanging drop) and by microdialysis. Seeding of the crystals in some instances is required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used. Exemplified below is the hanging-drop vapor diffusion procedure. 10 Hanging drops of an essential gene product (2.5 µl, 10 mg/ml) in 20 mM Tris, pH=8.0, 100 mM NaCl are mixed with an equal amount of reservoir buffer containing 2.7-3.2 M sodium formate and 100 mM Tris buffer, pH=8.0, and kept at 4°C. Crystal showers may appear after 1-2 days with large single crystals growing to full size (0.3 X 0.3 X 0.15 mm³) within 2-3 weeks. Crystals are harvested in 3.5 M sodium formate and 100 mM Tris buffer, pH=8.0 and cryoprotected in 3.5 M sodium 15 formate, 100 mM Tris buffer, pH=8.0, 10% (w/v) sucrose, and 10% (v/v) ethylene glycol before flash freezing in liquid propane. In some embodiments, the crystal may be obtained using the methods described in U.S. Patent No. 5,869,604. The method involves (a) contacting a mixture containing uncrystallized polypeptides with an exogenous nucleating agent that has an areal lattice match of at least 90.4% to the polypeptide, (b) crystallizing the polypeptides, thereby forming at 20 least one crystal of the polypeptide attached to the nucleating agent, the attached crystal being of a high purity, and at least one polypeptide crystal unattached to the nucleating agent, the unattached crystal being of a lower purity than the attached crystal, and (c) separating the crystal attached to the nucleating agent from the crystal unattached to the nucleating agent. The crystallized polypeptide may also be purified from contaminants by (a) contacting a mixture containing 25 uncrystallized polypeptides and a contaminant with an exogenous nucleating agent that has an areal lattice match of at least 90.4% to the polypeptide, (b) crystallizing the polypeptides, thereby forming at least one crystal of the polypeptide attached to the nucleating agent, the attached crystal being of a high purity and produced in a high yield, and at least one crystal unattached to the nucleating agent, the unattached crystal being of a lower purity than the attached crystal, and (c) 30 separating the crystal attached to the nucleating agent from the crystal unattached to the nucleating agent.

Once a crystal of the present invention is grown, X-ray diffraction data can be collected using methods familiar to those skilled in the art. Therefore, any person with skill in the art of protein crystallization having the present teachings and without undue experimentation can crystallize a large number of alternative forms of the essential gene products from a variety of different organisms, or polypeptides having conservative substitutions in their amino acid sequence.

35

5

10

15

20

25

30

35

A crystal lattice is defined by the symmetry of its unit cell and any structural motifs the unit cell contains. For example, there are 230 possible symmetry groups for an arbitrary crystal lattice, while the unit cell of the crystal lattice group may have an arbitrary dimension that depends on the molecules making up the lattice. Biological macromolecules, however, have asymmetric centers and are limited to 65 of the 230 symmetry groups. See Cantor et al., Biophysical Chemistry, Vol. III, W. H. Freeman & Company (1980).

A crystal lattice interacts with electromagnetic or particle waves, such as X-rays or electron beams respectively, that have a wavelength with the same order of magnitude as the spacing between atoms in the unit cell. The diffracted waves are measured as an array of spots on a detection surface positioned adjacent to the crystal. Each spot has a three-dimensional position, hkl, and an intensity, I(hkl), both of which are used to reconstruct the three-dimensional electron density of the crystal with the so-called Electron Density Equation. The Electron Density Equation states that the three-dimensional electron density of the unit cell is the Fourier transform of the structure factors. Thus, in theory, if the structure factors are known for a sufficient number of spots in the detection space, then the three-dimensional electron density of the unit cell could be calculated using the Electron Density Equation.

In some embodiments of the present invention, an image of a crystal of a gene product required for proliferation or a portion thereof is obtained with the aid of a digital computer and the crystal's diffraction pattern as described in U.S. Patent No. 5,353,236. The diffraction pattern contains a plurality of reflections, each having an associated resolution. The image is obtained by (a) converting the diffraction pattern of the crystal into computer usable normalized amplitudes, the pattern being produced with a diffractometer, (b) determining from the diffraction pattern a dimension of a unit cell of the crystal; (c) providing an envelope defining the region of the unit cell occupied by the gene product or portion thereof in the crystal; (d) distributing a collection of scattering bodies within said envelope, the collection of scattering bodies having various arrangements, each of which has an associated pattern of Fourier amplitudes; (e) condensing the collection of scattering bodies to a condensed arrangement that results in a high correlation between a diffraction pattern and the pattern of Fourier amplitudes for said collection of scattering bodies; (f) determining the phase associated with at least one of the reflections of said diffraction pattern from the condensed arrangement of scattering bodies; (g) calculating an electron density distribution of the gene product or portion thereof within the unit cell from the phase determined in procedure f; and (h) displaying a graphical image of the gene product or portion thereof constructed from said electron density distribution.

The crystals of the gene products required for proliferation may be used in drug screening methods such as those described in U.S. Patent Number 6,156,526. Briefly, in such methods, a compound which inhibits the formation of a complex comprising the gene product or a portion thereof is identified as follows. A set of atomic coordinates defining the three-dimensional

structure of a complex including the gene product of interest or a portion thereof are determined. A potential compound that binds to the gene product or a portion thereof involved in complex formation is selected using the atomic coordinates obtained above. The compound is contacted with the gene product or portion thereof and its binding partner(s) in the complex under conditions which would permit the complex to form in the absence of the potential compound. The binding affinity of the gene product or portion thereof for its binding partner(s) is determined and a potential compound is identified as a compound that inhibits the formation of the complex when there is a decrease in the binding affinity of the gene product or portion thereof for its binding partner(s).

In some embodiments of the present invention, the three dimensional structure of the essential gene product is determined and potential agonists and/or potential antagonists are designed with the aid of computer modeling [Bugg et al., Scientific American, Dec.:92-98 (1993); West et al., TIPS, 16:67-74 (1995); Dunbrack et al., Folding & Design, 2:27-42 (1997)].

10

15

20

25

30

35

Computer analysis may be performed with one or more of the computer programs including: QUANTA, CHARMM, INSIGHT, SYBYL, MACROMODEL and ICM [Dunbrack et al., Folding & Design, 2:27-42 (1997)]. In a further embodiment of this aspect of the invention, an initial drug-screening assay is performed using the three-dimensional structure so obtained, preferably along with a docking computer program. Such computer modeling can be performed with one or more Docking programs such as FlexX, DOC, GRAM and AUTO DOCK [Dunbrack et al., Folding & Design, 2:27-42 (1997)].

It should be understood that for each drug screening assay provided herein, a number of iterative cycles of any or all of the steps may be performed to optimize the selection. The drug screening assays of the present invention may use any of a number of means for determining the interaction between an agent or drug and an essential gene product.

In some embodiments of the present invention, a drug can be specifically designed to bind to an essential gene product of the present invention through NMR based methodology. [Shuker et al., pi Science 274:1531-1534 (1996).] NMR spectra may be recorded using devices familiar to those skilled in the art, such as the Varian Unity Plus 500 and unity 600 spectrometers, each equipped with a pulsed-field gradient triple resonance probe as analyzed as described in Bagby et al., [Cell 82:857-867 (1995)]. Sequential resonance assignments of backbone ¹H, .¹⁵N, and .¹³ C atoms may be made using a combination of triple resonance experiments similar to those previously described [Bagby et al., Biochemistry, 33:2409-2421 (1994a)], except with enhanced sensitivity [Muhandiram and Kay, J. Magn. Reson., 103: 203-216 (1994)] and minimal H₂O saturation [Kay et al., J. Magn. Reson., 109:129-133 (1994)]. Side chain ¹H and ¹³ C assignments may be made using HCCH-TOCSY [Bax et al., J. Magn. Reson., 87:620-627 (1990)] experiments with mixing times of 8 ms and 16 ms.in solution but need not be included in structure calculations. Nuclear Overhauser effect (NOE) cross peaks in two-dimensional ¹H--¹H NOE spectroscopy (NOESY), three-dimensional ¹⁵N-edited NOESY-HSQC [Zhang et al., J. Biomol, NMR, 4:845-858 (1994)] and

5

10

15

20

25

30

35

three-dimensional simultaneous acquisition ¹⁵ N/¹³C-edited NOE [Pascal et al., J. Magn. Reson., 103:197-201 (1994)] spectra may be obtained with 100 ms NOE mixing times. Standard pseudo-atom distance corrections [Wuthrich et al., J. Mol. Biol., 169:949-961 (1983)] may be incorporated to account for center averaging. An additional 0.5 .ANG. may be added to the upper limits for distances involving methyl groups [Wagner et al., J. Mol. Biol., 196:611-639 (1987); Clore et al., Biochemistry, 26:8012-8023 (1987)].

The structures can be calculated using a simulated annealing protocol [Nilges et al., In computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy, J. C. Hoch, F. M. Poulsen, and C. Redfield, eds., New York: Plenum Press, pp. 451-455 (1991)] within X-PLOR [Brunger, X-PLOR Manual, Version 3.1, New Haven, Conn.: Department of Molecular Biophysics and Biochemistry, Yale University (1993)] using the previously described strategy [Bagby et al., Structure, 2:107-122 (1994b)]. Interhelical anges may be calculated using a program written by K. Yap. Accessible surface areas were calculated using the program Naccess, available from Prof. J. Thornton, University College, London.

Compounds capable of reducing the activity or amount of gene products required for cellular proliferation may be identified using the methods described in US Pat. No. 6,077,682. Briefly, the three-dimensional structure of the gene product or portion thereof may be used in a drug screening assay by (a) selecting a potential drug by performing rational drug design with the three-dimensional structure determined from one or more sets of atomic coordinates of the gene product or portion thereof in conjunction with computer modeling; (b) contacting the potential drug with a polypeptide comprising the gene product or portion thereof and (c) detecting the binding of the potential drug with said polypeptide; wherein a potential drug is selected as a drug if the potential drug binds to the polypeptide. In some methods, the three-dimensional structure of the gene product or portion thereof is used in a drug screening assay involving (a) selecting a potential drug by performing structural based rotational drug design with the three-dimensional structure of the gene product or portion thereof; wherein said selecting is performed in conjunction with computer modeling; (b) contacting the potential drug with a polypeptide comprising the gene product or portion thereof in the presence of a substrate of the gene product; wherein in the absence of the potential drug the substrate is acted upon by the gene product; and (c) determining the extent to which the gene product acted upon the substrate; wherein a drug is selected when a decrease in the action of the gene product on the substrate is determined in the presence of the potential drug relative to in its absence. In some embodiments, the preceding method further involves(d) contacting the potential drug with the gene product or portion thereof for NMR analysis; wherein a binding complex forms between the potential drug and said gene product or portion thereof for NMR analysis; wherein the gene product or portion thereof for NMR analysis comprises a conservative amino acid substitution; (e) determining the three-dimensional structure of the binding complex by NMR; and (f) selecting a candidate drug by performing structural based rational drug

5

10

15

20

25

30

35

design with the three-dimensional structure determined for the binding complex; wherein said selecting is performed in conjunction with computer modeling; (g) contacting the candidate drug with a second polypeptide comprising the gene product or portion thereof in the presence of a substrate of the gene product or portion thereof; wherein in the absence of the candidate drug the substrate is acted upon by the second polypeptide; and (h) determining the amount of action of the second polypeptide on the substrate; wherein a drug is selected when a decrease in the amount of action of the second polypeptide is determined in the presence of the candidate drug relative to in its absence.

Once the three-dimensional structure of a crystal comprising an essential gene product is determined, a potential modulator of its activity, can be examined through the use of computer modeling using a docking program such as FlexX, GRAM, DOCK, or AUTODOCK [Dunbrack et al., 1997, supra], to identify potential modulators. This procedure can include computer fitting of potential modulators to the polypeptide or fragments thereof to ascertain how well the shape and the chemical structure of the potential modulator will bind. Computer programs can also be employed to estimate the attraction, repulsion, and steric hindrance of the two binding partners (e.g., the essential gene product and a potential modulator). Generally the tighter the fit, the lower the steric hindrances, and the greater the attractive forces, the more potent the potential modulator since these properties are consistent with a tighter binding constant. Furthermore, the more specificity in the design of a potential drug the more likely that the drug will not interact as well with other proteins. This will minimize potential side-effects due to unwanted interactions with other proteins.

Compound and compound analogs can be systematically modified by computer modeling programs until one or more promising potential analogs is identified. In addition systematic modification of selected analogs can then be systematically modified by computer modeling programs until one or more potential analogs are identified. Such analysis has been shown to be effective in the development of HIV protease inhibitors [Lam et al., Science 263:380-384 (1994); Wlodawer et al., Ann. Rev. Biochem. 62:543-585 (1993); Appelt, Perspectives in Drug Discovery and Design 1:23-48 (1993); Erickson, Perspectives in Drug Discovery and Design 1:109-128 (1993)]. Alternatively a potential modulator could be obtained by initially screening a random peptide library produced by recombinant bacteriophage for example, [Scott and Smith, Science, 249:386-390 (1990); Cwirla et al., Proc. Natl. Acad. Sci., 87:6378-6382 (1990); Devlin et al., Science, 249:404-406 (1990)]. A peptide selected in this manner would then be systematically modified by computer modeling programs as described above, and then treated analogously to a structural analog.

Example 45 describes computer modelling of the structures of gene products required for proliferation.

5

10

15

20

25

30

EXAMPLE 50

Determination of the Structure of Gene Products Required for Proliferation Using Computer Modelling

Three dimensional models were built by applying computer modelling methods to some of the gene products required for proliferation of *Staphylococcus aureus* using the amino acid sequences of the encoded proteins as follows. Sir Tom Blundell's program COMPOSER as provided by Tripos Associates in their BIOPOLYMER module to SYBYL was used to build the models. Skolnik's method of topology fingerprinting as implemented in Matchmaker was used to score the average mutation free energy. This number is in Boltzmans (units of kT) and should be negative (the more negative, the better the model.

Composer uses a Needleman Wunsch alignment with jumbling to find significant alignments. The reported parameters are percent identity and significance as measured from the jumbling. Those matches which were 30% identical and had a significance greater that 4 on the scale were judged to be good candidates for model building templates. If no three dimensional structures met these criteria, then a BLAST search was conducted against the most recent PDB sequence database. Any significant hits discovered in this manner were then added to the binary protein structure database and the candidate search was repeated in the manner discussed above.

In the next phase, Composer assigned structurally conserved and structurally variable regions and built the backbone structure and then searched the database for structures of the variable loops. These were then spliced in and a model of the protein resulted. Any loops (variable regions) which were unassignable were manually built and refined with a combination of dynamics.

The structure was then refined. Hydrogen atoms were added and a non-active aggregate was defined. 1000pS of dynamics using AMBER ALL-ATOM and Kollman charges are performed. Next a minimization cycle of up 5000 steepest decent steps were performed and then the aggregate was thawed and the process was repeated on the entire protein.

The resulting structure was then validated in MATCHMAKER. The topologically scanned free energy determined from empirically derived protein topologies was computed and the average energy/residue is reported in Boltzamans was reported. As this number represents a free energy the more negative it is the more favorable it is.

Sixty six proteins required for the proliferation of *Staphylococcus aureus* were modelled as described above. MATCHMAKER energies were computed for these. The distribution of the models built by class is shown in the table below.

WO 01/70955 PCT/US01/09180

Classification	Number of Models	Average Matchmaker Energy
Acylases	1	-0.10
Dehydrogenases	3	-0.12
DNA Related	3	-0.12
Heat Shock Protein	2	-0.16
Hydrolases	3	-0.16
Isomerases	1	0.05
Ligases	7	-0.07
Lyases	1	-0.09
Membrane Anchored	1	-0.12
Misc	18	-0.21
Oxidoreductases	6	-0.09
Proteases	1	-0.03
Ribosome	3	-0.11
Synthases	4	-0.14
Transferases	6	-0.12

Table 1. Distribution of models built with their MATCHMAKER energies in kT

5

10

15

20

25

The validity of the above method was confirmed using FtsZ. In the case of FtsZ, a crystal structure from M. Janeschi was available. Examination of the gross structural features determined using the above modelling showed all of the folds in the correct place, although there were some minor differences from the structure determined by x-ray crystallography.

EXAMPLE 51 FUNCTIONAL COMPLEMENTATION

In another embodiment, gene products whose activities may be complemented by a proliferation-required gene product from Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Enterococcus faecalis, Haemophilus influenzae, Helicobacter pylori, or Salmonella typhi or homologous polypeptides are identified using merodiploids, created by introducing a plasmid or Bacterial Artificial Chromosome into an organism having a mutation in the essential gene which reduces or eliminates the activity of the gene product. In some embodiments, the mutation may be a conditional mutation, such as a temperature sensitive mutation, such that the organism proliferates under permissive conditions but is unable to proliferate under non-permissive conditions in the absence of complementation by the gene on the plasmid or Bacterial Artificial Chromosome. Alternatively, duplications may be constructed as described in Roth et al. (1987) Biosynthesis of Aromatic Amino Acids in Escherichia coli and Salmonella typhimurium, F. C. Neidhardt, ed., American Society for Microbiology, publisher, pp. 2269-2270. Such methods are familiar to those skilled in the art.

Table VIII provides a cross reference for SEQ ID NOs. of the nucleotide sequences discussed herein and the SEQ ID NOs. of the polypeptides encoded by these nucleotide.

Nucleotide SeqID	Protein SeqID
5916	10013
5917	10014
5918	10015
5919	10016
5920	10017
5921	10018
5922	10019
5923	10020
5924	10021
5925	10022
5926	10023
5927	10024
5928	10025
5929	10026
5930	10027
5931	10028
5932	10029
5933	10030
5934	10031
5935	10032
5936	10033
5937	10034
5938	10035
5939	10036
5940	10037
5941	10038
5942	10039
5943	10040
5944	10041
5945	10042
5946	10043
5947	10044
5948	10045
5949	10046
5950	10047
5951	10048
5952	10049
5953	10050
5954	10051
5955	10052
5956	10053
5957	10054
5958	10055
5959	10056
5960	10057
5961	10058
5962	10059
3702	10033

Nucleotide SeqID	Protein SeqID
5963	10060
5964	10061
5965	10062
5966	10063
5967	10064
5968	10065
5969	10066
5970	10067
5971	10068
5972	10069
5973	10070
5974	10071
5975	10072
5976	10073
5977	10074
5978	10075
5979	10076
5980	10077
5981	10078
5982	10079
5983	10080
5984	10081
5985	10082
5986	10083
5987	10084
5988	10085
5989	10086
5990	10087
5991	10088
5992	10089
5993	10090
5994	10091
5995	10092
5996	10093
5997	10094
5998	10095
5999	10096
6000	10090
6001	10097
6002	10098
6002	10100
l j	
6004	10101
6005	10102
6006	10103
6007	10104
6008	10105
6009	10106

Nucleotide SeqID	Protein SeqID
6010	10107
6011	10108
6012	10109
6013	10110
6014	10111
6015	10112
6016	10113
6017	10114
6018	10115
6019	10116
6020	10117
6021	10118
6022	10119
6023	10120
6024	10121
6025	10122
6026	10123
6027	10124
6028	10125
6029	10126
6030	10127
6031	10128
6032	10129
6033	10130
6034	10131
6035	10132
6036	10133
6037	10134
6038	10135
6039	10136
6040	10137
6041	10138
6042	10139
6043	10140
6044	10141
6045	10142
6046	10143
6047	10144
6048	10145
6049	10146
6050	10147
6051	10148
6052	10149
6053	10150
6054	10151
6055	10152
6056	10153
6057	10154

Nucleotide SeqID	Protein SeqID
6058	10155
6059	10156
6060	10157
6061	10158
6062	10159
6063	10160
6064	10161
6065	10162
6066	10163
6067	10164
6068	10165
6069	10166
6070	10167
6071	10168
6072	10169
6073	10170
6074	10171
6075	10172
6076	10173
6077	10174
6078	10175
6079	10176
6080	10177
6081	10178
6082	10179
6083	10180
6084	10181
6085	10182
6086	10183
6087	10184
6088	10185
6089	10186
6090	10187
6091	10188
6092	10189
6093	10190
6094	10191
6095	10192
6096	10193
6097	10194
6098	10195
6099	10196
6100	10197
6101	10198
6102	10199
6103	10200
6104	10201
6105	10202

Nucleotide SeqID	Protein SeqID
6106	10203
6107	10204
6108	10205
6109	10206
6110	10207
6111	10208
6112	10209
6113	10210
6114	10211
6115	10212
6116	10213
6117	10214
6118	10215
6119	10216
6120	10217
6121	10218
6122	10219
6123	10220
6124	10221
6125	10222
6126	10223
6127	10224
6128	10225
6129	10226
6130	10227
6131	10228
6132	10229
6133	10230
6134	10231
6135	10232
6136	10233
6137	10234
6138	10235
6139	10236
6140	10237
6141	10238
6142	10239
6143	10240
6144	10241
6145	10242
6146	10243
6147	10244
6148	10245
6149	10246
6150	10247
6151	10248
6152	10249
6153	10250

Nucleotide SeqID	Protein SeqID
6154	10251
6155	10252
6156	10253
6157	10254
6158	10255
6159	10256
6160	10257
6161	10258
6162	10259
6163	10260
6164	10261
6165	10262
6166	10263
6167	10264
6168	10265
6169	10266
6170	10267
6171	10268
6172	10269
6173	10270
6174	10271
6175	10272
6176	10273
6177	10274
6178	10275
6179	10276
6180	10277
6181	10278
6182	10279
6183	10280
6184	10281
6185	10282
6186	10283
6187	10284
6188	10285
6189	10286
6190	10287
6191	10288
6192	10289
6193	10290
6194	10291
6195	10292
6196	10293
6197	10294
6198	10295
6199	10296
6200	10297 .
6201	10298

Nucleotide SeqID	Protein SeqID
6202	10299
6203	10300
6204	10301
6205	10302
6206	10303
6207	10304
6208	10305
6209	10306
6210	10307
6211	10308
6212	10309
6213	10310
6214	10311
6215	10312
6216	10313
6217	10314
6218	10315
6219	10316
6220	10317
6221	10318
6222	10319
6223	10320
6224	10321
6225	10322
6226	10323
6227	10324
6228	10325
6229	10326
6230	10327
6231	10328
6232	10329
6233	10330
6234	10331
6235	10332
6236	10333
6237	10334
6238	10335
6239	10336
6240	10337
6241	10338
6242	10339
6243	10340
6244	10341
6245	10342
6246	10343
6247	10344
6248	10345
6249	10346
027/	10370

Nucleotide SeqID	Protein SeqID
6250	10347
6251	10348
6252	10349
6253	10350
6254	10351
6255	10352
6256	10353
6257	10354
6258	10355
6259	10356
6260	10357
6261	10358
6262	10359
6263	10360
6264	10361
6265	10362
6266	10363
6267	10364
6268	10365
6269	. 10366
6270	10367
6271	10368
6272	10369
6273	10370
6274	10371
6275	10372
6276	10373
6277	10374
6278	10375
6279	10376
6280	10377
6281	10378
6282	10379
6283	10380
6284	10381
6285	10382
6286	10383
6287	10384
6288	10385
6289	10386
6290	10387
6291	10388
6292	10389
6293	10390
6294	10391
6295	10392
6296	10393
6297	10394
	L

Nucleotide SeqID	Protein SeqID
6298	10395
6299	10396
6300	10397
6301	10398
6302	10399
6303	10400
6304	10401
6305	10402
6306	10403
6307	10404
6308	10405
6309	10406
6310	10407
6311	10408
6312	10409
6313	10410
6314	10411
6315	10412
6316	10413
6317	10414
6318	10415
6319	10416
6320	10417
6321	10418
6322	10419
6323	10420
6324	10421
6325	10422
6326	10423
6327	10424
6328	10425
6329	10426
6330	10427
6331	10428
6332	10429
6333	10430
6334	10431
6335	10432
6336	10433
6337	10434
6338	10435
6339	10436
6340	10437
6341	10438
6342	10439
6343	10440
6344	10441
6345	10442

Nucleotide SeqID	Protein SeqID
6346	10443
6347	10444
6348	10445
6349	10446
6350	10447
6351	10448
6352	10449
6353	10450
6354	10451
6355	10452
6356	10453
6357	10454
6358	10455
6359	10456
6360	10457
6361	10458
6362	10459
6363	10460
6364	10461
6365	10462
6366	10463
6367	10464
6368	10465
6369	10466
6370	10467
6371	10468
6372	. 10469
6373	10470
6374	10471
6375	10472
6376	10473
6377	10474
6378	10475
6379	10476
6380	10477
6381	10478
6382	10479
6383	10480
6384	10481
6385	10482
6386	10483
6387	10484
6388	10485
6389	10486
6390	10487
6391	10488
6392	10489
6393	10490

Nucleotide SeqID	Protein SeqID
6394	10491
6395	10492
6396	10493
6397	10494
6398	10495
6399	10496
6400	10497
6401	10498
6402	10499
6403	10500
6404	10501
6405	10502
6406	10503
6407	10504
6408	10505
6409	10506
6410	10507
6411	10508
6412	10509
6413	10510
6414	10511
6415	10512
6416	10513
6417	10514
6418	10515
6419	10516
6420	10517
6421	10518
6422	10519
6423	10520
6424	10521
6425	10522
6426	10523
6427	10524
6428	10525
6429	10526
6430	10527
6431	10528
6432	10528
6432	
6434	10530 10531
6435	10531
6436	
	10533
6437	10534
6438	10535
6439	10536
6440	10537
6441	10538

Nucleotide SeqID	Protein SeqID
	•
6442·	10539
6443	10540
6444	10541
6445	10542
6446	10543
6447	10544
6448	10545
6449	10546
6450	10547
6451	10548
6452	10549
6453	10550
6454	10551
6455	10552
6456	10553
6457	10554
6458	10555
6459	10556
6460	10557
6461	10558
6462	10559
6463	10560
6464	10561
6465	10562
6466	10563
6467	10564
6468	10565
6469	10566
6470	10567
6471	10568
6472	10569
6473	10570
6474	10571
6475	10572
6476	10573
6477	10574
6478	10575
6479	10576
6480	10577
6481	10578
6482	10579
6483	10580
6484	10581
6485	10582
6486	10583
6487	10584
6488	10585
6489	10586
1	

Nucleotide SeqID	Protein SeqID
6490	10587
6491	10588
6492	10589
6493	10590
6494	10591
6495	10592
6496	10593
6497	10594
6498	10595
6499	10596
6500	10597
6501	10598
6502	10599
6503	10600
6504	10601
6505	10602
6506	10603
6507	10604
6508	10605
6509	10606
6510	10607
6511	10608
6512	10609
6513	10610
6514	10611
6515	10612
6516	10613
6517	10614
6518	10615
6519	10616
6520	10617
6521	10618
6522	10619
6523	10620
6524	10621
6525	10622
6526	10623
6527	10624
6528	10625
6529	10626
6530	10627
6531	10628
6532	10629
6533	10630
6534	10631
6535	10632
6536	10633
6537	10634

Nucleotide SeqID	Protein SeqID
6538	10635
6539	10636
6540	10637
6541	10638
6542	10639
6543	10640
6544	10641
6545	10642
6546	10643
6547	10644
6548	10645
6549	10646
6550	10647
6551	10648
6552	10649
6553	10650
6554	10651
6555	10652
6556	10653
6557	10654
6558	10655
6559	10656
6560	10657
6561	10658
6562	10659
6563	10660
6564	10661
6565	10662
6566	10663
6567	10664
6568	10665
6569	10666
6570	10667
6571	10668
6572	10669
6573	10670
6574	10671
6575	10672
6576	10673
6577	10674
6578	10675
6579	10676
6580	10677
6581	10678
6582	10679
6583	10680
6584	10681
6585	10682

Nucleotide SeqID	Protein SeqID
6586	10683
6587	10684
6588	10685
6589	10686
6590	10687
6591	10688
6592	10689
6593	10690
6594	10691
6595	10692
6596	10693
6597	10694
6598	10695
6599	10696
6600	10697
6601	10698
6602	10699
6603	10700
6604	10701
6605	10702
6606	10703
6607	10704
. 6608	10705
6609	10706
6610	10707
6611	10708
6612	10709
6613	10710
6614	10711
6615	10712
6616	10713
6617	10714
6618	10715
6619	10716
6620	10717
6621	10718
6622	10719
6623	10720
6624	10721
6625	10722
6626	10723
6627	10724
6628	10725
6629	10726
6630	10727
6631	10728
6632	10729
6633	10730

Nucleotide SeqID	Protein SeqID
6634	10731
6635	10732
6636	10733
6637	10734
6638	10735
6639	10736
6640	10737
6641	10738
6642	10739
6643	10740
6644	10741
6645	10742
6646	10743
6647	10744
6648	10745
6649	10746
6650	10747
6651	10748
6652	10749
6653	10750
6654	10751
6655	10752
6656	10753
6657	10754
6658	10755
6659	10756
6660	10757
6661	10758
6662	10759
6663	10760
6664	10761
6665	10762
6666	10763
6667	10764
6668	10765
6669	10766
6670	10767
6671	10768
6672	10769
6673	10770
6674	10771
6675	10772
6676	10773
6677	10774
6678	10775
6679	10776
6680	10777
6681	10778

Nucleotide SeqID	Protein SeqID
6682	10779
6683	10780
6684	10781
6685	10782
6686	10783
6687	10784
6688	10785
6689	10786
6690	10787
6691	10788
6692	10789
6693	10790
6694	10791
6695	10792
6696	10793
6697	10794
6698	10795
6699	10796
6700	10797
6701	10798
6702	10799
6703	10800
6704	10801
6705	10802
6706	10803
6707	10804
6708	10805
6709	10806
6710	10807
6711	10808
6712	10809
6713	10810
6714	10811
6715	10812
6716	10813
6717	10814
6718	10815
6719	10816
6720	10817
6721	10817
6722	10819
	10819
6723	10821
6724	
6725	10822
6726	10823
6727	10824
6728	10825
6729	10826

Nucleotide SeqID	Protein SeqID
6730	10827
6731	10828
6732	10829
6733	10830
6734	10831
6735	10832
6736	10833
6737	10834
6738	10835
6739	10836
6740	10837
6741	10838
6742	10839
6743	10840
6744	10841
6745	10842
6746	10843
6747	10844
6748	10845
6749	10846
6750	10847
6751	10848
6752	10849
6753	10850
6754	10851
6755	10852
6756	10853
6757	10854
6758	10855
6759	10856
6760	10857
6761	10858
6762	10859
6763	10860
6764	10861
6765	10862
6766	10863
6767	10864
6768	10865
6769	10866
6770	10867
6771	10868
6772	10869
6773	10870
6774	10871
6775	10872
6776	10873
6777	10874

PCT/US01/09180

6770	
6778	10875
6779	10876
6780	10877
6781	10878
6782	10879
6783	10880
6784	10881
6785	10882
6786	10883
6787	10884
6788	10885
6789	10886
6790	10887
6791	10888
6792	10889
6793	10890
6794	10891
6795	10892
6796	10893
6797	10894
6798	10895
6799	10896
6800	10897
6801	10898
6802	10899
6803	10900
6804	10901
6805	10902
6806	10903
6807	10904
6808	10905
6809	10906
6810	10907
6811	10908
6812	10909
6813	10910
6814	10911
6815	10912
6816	10913
6817	10914
6818	10915
6819	10916
6820	10917
6821	10918
6822	10919
6823	10920
6824	10921
6825	10922

Nucleotide SeqID	Protein SeqID
6826 .	10923
6827	10924
6828	10925
6829	10926
6830	10927
6831	10928
6832	10929
6833	10930
6834	10931
6835	10932
6836	10933
6837	10934
6838	10935
6839	10936
6840	10937
6841	10938
6842	10939
6843	10940
6844	10941
6845	10942
6846	10943
6847	10944
6848	10945
6849	10946
6850	10947
6851	10948
6852	10949
6853	10950
6854	10951
6855	10952
6856	10953
6857	10954
6858	10955
6859	10956
6860	10957
6861	10958
6862	10959
6863	10960
6864	10961
6865	10962
6866	10963
6867	10964
6868	10965
6869	10966
6870	10967
6871	10968
6872	10969
6873	10970

Nucleotide SeqID	Protein SeqID
6874	10971
6875	10972
6876	10973
6877	10974
6878	10975
6879	10976
6880	10977
6881	10978
6882	10979
6883	10980
6884	10981
6885	10982
6886	10983
6887	10984
6888	10985
6889	10986
6890	10987
6891	10988
6892	10989
6893	10990
6894	10991
6895	10992
6896	10993
6897	10994
6898	10995
6899	10996
6900	10997
6901	10998
6902	10999
6903	11000
6904	11001
6905	11002
6906	11003
6907	11004
6908	11005
6909	11006
6910	11007
6911	11008
6912	11009
6913	11010
6914	11011
6915	11012
6916	11013
6917	11014
6918	11015
6919	11016
6920	11017
6921	11018
07/1	11010

6922 11019 6923 11020 6924 11021 6925 11022 6926 11023 6927 11024 6928 11025 6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6924 11021 6925 11022 6926 11023 6927 11024 6928 11025 6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6925 11022 6926 11023 6927 11024 6928 11025 6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6926 11023 6927 11024 6928 11025 6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6927 11024 6928 11025 6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6928 11025 6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6929 11026 6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6930 11027 6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6931 11028 6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6932 11029 6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6933 11030 6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6934 11031 6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6935 11032 6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6936 11033 6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6937 11034 6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6938 11035 6939 11036 6940 11037 6941 11038 6942 11039
6939 11036 6940 11037 6941 11038 6942 11039
6940 11037 6941 11038 6942 11039
6941 11038 6942 11039
6942 11039
, , , , , , , , , , , , , , , , , , ,
20.10
6943 11040
6944 11041
6945 11042
6946 11043
6947 11044
6948 11045
6949 11046
6950 11047
6951 11048
6952 11049
6953 11050
6954 11051
6955 11052
6956 11053
6957 11054
6958 11055
6959 11056
6960 11057
6961 11058
6962 11059
6963 11060
6964 11061
6965 11062
6966 11063
6967 11064
6968 11065
6969 11066

Nucleotide SeqID	Protein SeqID
6970	11067
6971	11068
6972	11069
6973	11070
6974	11071
6975	11072
6976	11073
6977	11074
6978	11075
6979	11076
6980	11077
6981	11078
6982	11079
6983	11080
6984	11081
6985	11082
6986	11083
. 6987	11084
6988	11085
6989	. 11086
6990	11087
6991	11088
6992	11089
6993	11090
6994	11091
6995	11092
6996	11093
6997	11094
6998	11095
6999	11096
7000	11097
7001	11098
7002	11099
7003	11100
7004	11101
7005	11102
7006	11103
7007	11104
7008	11105
7009	11106
7010	11107
7011	11108
7012	11109
7013	11110
7014	11111
7015	11112
7016	11113
7017	11114

Nucleotide SeqID	Protein SeqID
7018	11115
7019	11116
7020	11117
7021	11118
7022	11119
7023	11120
7024	11121
7025	11122
7026	11123
7027	11124
7028	11125
7029	11126
7030	11127
7031	11128
7032	11129
7033	11130
7034	11131
7035	11132
7036	11133
7037	11134
7038	11135
7039	11136
7040	11137
7041	11138
7042	11139
7043	11140
7044	11141
7045	11142
7046	11143
7047	11144
7048	11145
7049	11146
7050	11147
7051	11148
7052	11149
7053	11150
7054	11151
7055	11152
7056	11153
7057	11154
7058	11155
7059	11156
7060	11157
7061	11158
7062	11159
7063	11160
7064	11161
7065	11162
L	

Nucleotide SeqID	Protein SeqID
7066	11163
7067	11164
7068	11165
7069	11166
7070	11167
7071	11168
7072	11169
7073	11170
7074	11171
7075	11172
7076	11173
7077	11174
7078	11175
7079	11176
7080	11177
7081	11178
7082	11179
7083	11180
7084	11181
7085	11182
7086	11183
7087	11184
7088	11185
7089	11186
7090	11187
7091	11188
7092	11189
7093	11190
7094	11191
7095	11192
7096	11193
7097	11194
7098	11195
7099	11196
7100	11197
7101	11198
7102	11199
7103	11200
7104	11201
7105	11202
7106	11203
7107	11204
7108	11205
7109	11206
7110	11207
7111	11208
7112	11209
7113	11210
<u> </u>	

Nucleotide SeqID	Protein SeqID
7114	11211
7115	11212
7116	11213
7117	11214
7118	11215
7119	11216
7120	11217
7121	11218
7122	11219
7123	11220
7124	11221
7125	11222
7126	11223
7127	11224
7128	11225
7129	11226
7130	11227
7131	11228
7132	11229
7133	11230
7134	11231
7135	11232
7136	11233
7137	11234
7138	11235
7139	11236
7140	11237
7141	11238
7142	11239
7143	11240
7144	11241
7145	11242
7146	11243
7147	11244
7148	11245
7149	11246
7150	11247
7151	11248
7152	11249
7153	11250
7154	11251
7155	11252
7156	11253
7157	11254
7158	11255
7159	11256
7160	11257
7161	11258

Nucleotide SeqID	Protein SeqID
7162	11259
7163	11260
7164	11261
7165	11262
7166	11263
7167	11264
7168	11265
7169	11266
7170	11267
7171	11268
7172	11269
7173	11270
7174	11271
7175	11272
7176	11273
7177	11274
7178	11275
7179	11276
7180	11277
7181	11278
7182	11279
7183	11280
7184	11281
7185	11282
7186	11283
7187	11284
7188	11285
7189	11286
7190	11287
7191	11288
7192	11289
7193	11290
7194	11291
7195	11292
7196	11293
7197	11294
7198	11295
7199	11296
7200	11297
7201	11298
7202	11299
7203	11300
7204	11301
7205	11302
7206	11303
7207	11304
7208	11305
7209	11306
1207	11300

Nucleotide SeqID	Protein SeqID
7210	11307
7211	11308
7212	11309
7213	11310
7214	11311
7215	11312
7216	11313
7217	11314
7218	11315
7219	11316
7220	11317
7221	11318
7222	11319
7223	11320
7224	11321
7225	11322
7226	11323
7227	11324
7228	11325
7229	11326
7230	11327
7231	11328
7232	11329
7233	11330
7234	11331
7235	11332
7236	11333
7237	11334
7238	11335
7239	11336
7240	11337
7241	11338
7242	11339
7243	11340
7244	11341
7245	11342
7246	11343
7247	11344
7248	11345
7249	11346
7250	11347
7251	11348
7252	11349
7253	11350
7254	11351
7255	11352
7256	11353
7257	11354

W 0 01/10933	
Nucleotide SeqID	Protein SeqID
7258	11355
7259	11356
7260	11357
7261	11358
7262	11359
7263	11360
7264	11361
7265	11362
7266	11363
7267	11364
7268	11365
7269	11366
7270	11367
7271	11368
7272	11369
7273	11370
7274	11371
7275	11372
7276	11373
7277	11374
7278	11375
7279	11376
7280	11377
7281	11378
7282	11379
7283	11380
7284	11381
7285	11382
7286	11383
7287	11384
7288	11385
7289	11386
7290	11387
7291	11388
7292	11389
7293	11390
7294	11391
7295	11392
7296	11393
7297	11394
7298	11395
7299	11396
7300	11397
7301	11398
7302	11399
7303	11400
7304	11400
7305	
/303	11402

-	
Nucleotide SeqID	Protein SeqID
7306	11403
7307	11404
7308	11405
7309	11406
7310	11407
7311	11408
7312	11409
7313	11410
7314	11411
7315	11412
7316	11413
7317	11414
7318	11415
7319	11416
7320	11417
7321	11418
7322	11419
7323	11420
7324	11421
7325	11422
7326	11423
7327	11424
7328	11425
7329	11426
7330	11427
7331	11428
7332	11429
7333	I 1430
7334	11431
7335	11432
7336	11433
7337	11434
7338	11435
7339	11436
7340	11437
7341	11438
7342	11439
7343	11440
7344	11441
7345	11442
7346	11443
7347	11444
7348	11445
7349	11446
7350	11447
7351	11448
7352	11449
7353	11450
·	

Nucleotide SeqID	Protein SeqID
7354	11451
7355	11452
7356	11453
7357	11454
7358	11455
7359	11456
7360	11457
7361	11458
7362	11459
7363	11460
7364	11461
7365	11462
7366	11463
7367	11464
7368	11465
7369	11466
7370	11467
<i>7</i> 371	11468
7372	11469
7373	11470
7374	11471
7375	11472
7376	11473
7377	11474
7378	11475
7379	11476
7380	11477
7381	11478
7382	11479
7383	11480
7384	11481
7385	11482
7386	11483
7387	11484
7388	11485
7389	11486
7390	11487
7391	11488
7392	11489
7393	11490
7394	11491
7395	11492
7396	11493
7397	11494
7398	11495
7399	11496
7400	11497
7401	11498
, .or	1170

Nucleotide SeqID	Protein SeqID
7402	11499
7403	11500
7404	11501
7405	11502
7406	11503
7407	11504
7408	11505
7409	11506
7410	11507
7411	11508
7412	11509
7413	11510
7414	11511
7415	11512
7416	11512
7417	11514
7418	11515
7419	11516
7420	11517
7421	11518
7422	11519
7423	11520
7424	11521
7425	11522
7426	11523
7427	11524
7428	11525
7429	11526
7430	11527
7431	11528
7432	11529
7433	11530
7434	11531
7435	11532
7436	11533
7437	11534
7438	11535
7439	11536
7440	11537
7441	11538
7442	11539
7443	11540
7444	11541
7445	11542
7446	11542
7447	11544
7447	11545
7448	11546
/443	11340

Nucleotide SeqID	Protein SeqID
7450	11547
7451	11548
7452	11549
7453	11550
7454	11551
7455	11552
7456	11553
7457	11554
7458	11555
7459	11556
7460	11557
7461	11558
7462	11559
7463	11560
7464	11561
7465	11562
7466	11563
7467	11564
7468	11565
7469	11566
7470	11567
7471	11568
7472	11569
7473	11570
7474	11571
7475	11572
7476	11573
7477	11574
7478	11575
7479	11576
7480	11577
7481	11578
7482	11579
7483	11580
7484	11581
7485	11582
7486	11583
7487	11584
7488	11585
7489	11586
7490	11587
7491	11588
7492	11589
7493	11590
7494	11591
7495	11592
7496	11593
7497	11594

Nucleotide SeqID	Protein SeqID
7498	11595
7499	11596
7500	11597
7501	11598
7502	11599
7503	11600
7504	11601
7505	11602
7506	11603
7507	11604
7508	11605
7509	11606
7510	11607
7511	11608
7512	11609
7513	11610
7514	11611
7515	11612
7516	11613
7517	11614
7518	11615
7519	11616
7520	11617
7521	11618
7522	11619
7523	11620
7524	11621
7525	11622
7526	11623
7527	11624
7528	11625
7529	11626
7530	11627
7531	11628
7532	11629
7533	11630
7534	11631
7535	11632
7536	11633
7537	11634
7538	11635
7539	11636
7540	11637 .
7541	11638
7542	11639
7543	11640
7544	11641
7545	11642
1343	11042

Nucleotide SeqID	Protein SeqID
7546	11643
7547	11644
7548	11645
7549	11646
7550	11647
7551	11648
7552	11649
7553	11650
7554	11651
7555	11652
7556	11653
7557	11654
7558	11655
7559	11656
7560	11657
7561	11658
7562	11659
7563	11660
7564	11661
7565	11662
7566	11663
7567	11664
7568	11665
7569	11666
7570	11667
7571	11668
7572	11669
7573	11670
7574	11671
7575	11672
7576	11673
7577	11674
7578	11675
7579	11676
7580	11677
7581	11678
7582	11679
7583	11680
7584	11681
7585	11682
7586	11683
7587	11684
7588	11685
7589	11686
7590	11687
7591	11688
7592	11689
7593	11690

Nucleotide SeqID	Protein SeqID
7594	11691
7595	11692
7596	11693
7597	11694
7598	11695
7599	11696
7600	11697
7601	11698
7602	11699
7603	11700
7604	11701
7605	11702
7606	11703
7607	11704
7608	11705
7609	11706
7610	11707
7611	11708
7612	11709
7613	11710
7614	11711
7615	11712
7616	11713
7617	11714
7618	11715
7619	11716
7620	11717
7621	11718
7622	11719
7623	11720
7624	11721
7625	11722
7626	11723
7627	11724
7628	11725
7629	11726
7630	11727
7631	11728
7632	11729
7633	11730
7634	11731
7635	11732
7636	11733
7637	11734
7638	11735
7639	11736
7640	11737
7641	11737
/041	11/38

Nucleotide SeqID	Protein SeqID
7642	11739
7643	11740
7644	11741
7645	11742
7646	11743
7647	11744
7648	11745
7649	11746
7650	^11747
7651	11748
7652	11749
7653	11750
7654	11751
7655	11752
7656	11753
7657	11754
7658	11755
7659	11756
7660	11757
7661	11758
7662	11759
7663	11760
7664	11761
7665	11762
7666	11763
7667	11764
7668	11765
7669	11766
7670	11767
7671	11768
7672	11769
7673	11770
7674	11771
4052	5107
4053	5108
4054	5109
4055	5110
4056	5111
4057	5112
4058	5113
4059	5114
4060	5115
4061	5116
4062	5117
4063	5118
4064	5119
4065	5120
4066	5121

Nucleotide SeqID	Protein SeqID
4067	5122
4068	5123
4069	5124
4070	5125
4071	5126
4072	5127
4073	5128
4074	5129
4075	5130
4076	5131
4077	5132
4078	5133
4079	5134
4080	5135
4081	5136
4082	5137
4083	5138
4084	5139
4085	5140
4086	5141
4087	5142
4088	5143
4089	5144
4090	5145
4091	5146
4092	5147
4093	5148
4094	5149
4095	5150
4096	5151
4097	5152
4098	5153
4099	5154
4100	5155
4101	5156
4102	5157
4103	5158
4104	5159
4105	5160
4106	5161
4107	5162
4108	5163
4109	5164
4110	5165
4111	5166
4112	5167
4113	5168
4114	5169

Nucleotide SeqID	Protein SeqID
4115	5170
4116	5171
4117	5172
4118	5173
4119	5174
4120	5175
4121	5176-
4122	5177
4123	5178
4124	5179
4125	5180
4126	5181
4127	5182
4128	5183
4129	5184
4130	5185
4131	5186
4132	5187
4133	5188
4134	5189
4135	5190
4136	5191
4137	5192
4138	5193
4139	5194
4140	5195
4141	5196
4142	5197
4143	5198
4144	5199
4145	5200
4146	5201
4147	5202
4148	5203
4149	5204
4150	5205
4151	5206
4152	5207
4153	5208
4154	5209
4155	5210
4156	5211
4157	5212
4158	5213
4159	5214
4160	5215
4161	5216
4162	5217
L	

Nucleotide SeqID	Protein SeqID
4163	5218
4164	5219
4165	5220
3998	5053
3999	5054
4000	5055
4001	5056
4002	5057
4003	5058
4004	5059
4005	5060
4006	5061
4007	5062
4008	5063
4009	5064
4010	5065
4011	5066
4012	5067
4013	5068
4014	5069
4015	5070
4016	5071
4017	5072
4018	5073
4019	5074
4020	5075
4021	5076
4022	5077
4023	5078
4024	5079
4025	5080
4026	5081
4027	5082
4028	5083
4029	5084
4030	5085
4031	5086
4032	5087
4033	5088
4034	5089
4035	5090
4036	5091
4037	5092
4038	5093
4039	5094
4040	5095
4041	5096
4042	5097

Nucleotide SeqID	Protein SeqID
4043	5098
4044	5099
4045	5100
4046	5101
4047	5102
4048	5103
4049	5104
4050	5105
4051	5106
7675	11772
7676	11773
7677	11774
7678	11775
7676	11776
7679	11777
7680	11778
7681	11779
7682	11780
7683	11781
7684	11782
7685	11783
7686	11784
7687	11785
7688	11786
7689	11787
7690	11788
7691	11789
7692	11790
7693	11791
7694	11792
7695	11793
7696	11794
7697	11795
7698	11796
7699	11797
7700	11798
7701	11799
7702	11800
7703	11801
7704	11802
7705	11803
7706	11804
7707	11805
7708	11806
7709	11807
7710	11808
7711	11809
7712	11810

Nucleotide SeqID	Protein SeqID
	_
. 7713	11811
7714	11812
7715	11813
7716	11814
7717	11815
7718	11816
7719	11817
7720	11818
7721	11819
7722	11820
7723	11821
7724	11822
7725	11823
7726	11824
7727	11825
7728	11826
7729	11827
7730	11828
7731	11829
7732	11830
7733	11831
7734	11832
7735	11833
7736	11834
7737	11835
7738	11836
7739	11837
7740	11838
7741	11839
7742	11840
7743	11841
7744	. 11842
7745	11843
7746	11844
7747	11845
7748	11846
7749	11847
7750	11848
7751	11849
7752	11850
7753	11851
7754	11852
7755	11853
7756	11854
7757	11855
7758	11856
7759	11857
7760	11858
L—	

Nucleotide SeqID	Protein SeqID
	11050
7761	11859
7762	11860
7763	11861
7764	11862
7765	11863
7766	11864
7767	11865
7768	11866
7769	11867
7770	11868
7771	11869
7772	11870
7773	11871
7774	11872
7775	11873
7776	11874
7777	11875
7778	11876
7779	11877
7780	11878
7781	11879
7782	11880
7783	11881
7784	11882
7785	11883
7786	11884
7787	11885
7788	11886
7789	11887
7790	11888
7791 .	11889
7792	11890
7793	11891
7794	11892
7795	11893
7796	11894
7797	11895
7798	11896
7799	11897
7800	11898
7801	11899
7802	11900
7803	11901
7804	11902
7805	11903
7806	11904
7807	11905
7808	11906
L	

Nucleotide SeqID	Protein SeqID
7809	11907
7810	11908
7811	11909
7812	11910
7813	11911
7814	11912
7815	11913
7816	11914
7817	11915
7818	11916
7819	11917
7820	11918
7821	11919
7822	11920
7823	11921
7824	11922
7825	11923
7826	11924
7827	11925
7828	11926
7829	11927
7830	11928
7831	11929
7832	11930
7833	11931
7834	11932
7835	11933
7836	11934
7837	11935
7838	11936
7839	11937
7840	11938
7841	11939
7842	11940
7843	11941
7844	11942
7845	11943
7846	11944
7847	11945
7848	11946
7849	11947
7850	11948
7851	11949
7852	11950
7853	11951
7854	11952
7855	11953
7856	11954

Protein SeqID
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002

Nucleotide SeqID	Protein SeqID
7905	12003
7906	12004
7907	12005
7908	12006
7909	12007
7910	12008
7911	12009
7912	12010
7913	12011
7914	12012
7915	12013
7916	12014
7917	12015
7918	12016
7919	12017
7920	12018
7921	12019
7922	12020
7923	12021
7924	12022
7925	12023
7926	12024
7927	12025
7928	12026
7929	12027
7930	12028
7931	12029
7932	12030
7933	12031
7934	12032
7935	12033
7936	12034
7937	12035
7938	12036
7939	12037
7940	12038
7941	12039
7942	12040
7943	12041
7944	12042
7945	12043
7946	12044
7947	12045
7948	12046
7949	12047
7950	12048
7951	12049
7952	12050
	L.,,

Nucleotide SeqID	Protein SeqID
7953	12051
7954	12052
7955	12053
7956	12054
7957	12055
7958	12056
7959	12057
7960	12058
7961	12059
7962	12060
7963	12061
7964	12062
7965	12063
7966	12064
7967	12065
7968	12066
7969	12067
7970	12068
7971	12069
7972	12070
7973	12071
7974	12072
7975	12073
7976	12074
7977	12075
7978	12076
7979	12077
7980	12078
7981	12079
7982	12080
7983	12081
7984	12082
7985	12083
7986	12084
7987	12085
7988	12086
7989	12087
7990	12088
7991	12089
7992	12090
7993	12091
7994	12092
7995	12093
7996	12094
7997	12095
7998	12096
7999	12097
8000	12098
	12070

Nucleotide SeqID	Protein SeqID
8001	12099
8002	12100
8003	12101
8004	12102
8005	12103
8006	12104
8007	12105
8008	12106
8009	12107
8010	12108
8011	12109
8012	12110
8013	12111
8014	12112
8015	12113
8016	12114
8017	12115
8018	12116
8019	12117
8020	12118
8021	12119
8022	12120
8023	12121
8024	12122
8025	12123
8026	12124
8027	12125
8028	12126
8029	12127
8030	12128
8031	12129
8032	12130
8033	12131
8034	12132
8035	12133
8036	12134
8037	12135
8038	12136
8039	12137
8040	12138
8041	12139
8042	12140
8043	12141
8044	12142
8045	12143
8046	12144
8047	12145
8048	12146

Nucleotide SeqID	Protein SeqID
8049	12147
8050	12148
8051	12149
8052	12150
8053	12151
8054	12152
8055	12153
8056	12154
8057	12155
8058	12156
8059	12157
8060	12158
8061	12159
8062	12160
8063	12161
8064	12162
8065	12162
8066	12164
8067	12165
8068	12166
8069	12167
8070	12168
8071	12169
8072	12170
8073	12171
8074	12172
8075	12173
8076	12174
8077	12175
8078	12176
8079	12177
8080	12178
1808	12179
8082	12180
8083	12181
8084	12182
8085	12183
8086	12184
8087	12185
8088	12186
8089	12187
8090	12188
8091	12189
8092	12190
8093	12191
8094	12192
8095	12193
8096	12194

Nucleotide SeqID	Protein SeqID
8097	12195
8098	12196
8099	12197
8100	12198
8101	12199
8102	12200
8103	12201
8104	12202
8105	12203
8106	12204
8107	12205
8108	12206
8109	12207
8110	12208
8111	12209
8112	12210
8113	12211
8114	12212
8115	12213
8116	12214
8117	12215
8118	12216
8119	12217
8120	12218
8121	12219
8122	12220
8123	12221
8124	12222
8125	12223
8126	12224
8127	12225
8128	12226
8129	12227
8130	12228
8131	12229
8132	12230
8133	12231
8134	12232
8135	12233
8136	12234
8137	12235
8138	12236
8139	12237
8140	12238
8141	12239
8142	12240
8143	12241
8144	12241
6144	12242

Nucleotide SeqID	Protein SeqID
8145	12243
8146	12244
8147	12245
8148	12246
8149	12247
8150	12248
8151	12249
8152	12250
8153	12251
8154	12252
8155	12253
8156	12254
8157	12255
8158	12256
8159	12257
8160	12258
8161	12259
8162	12260
8163	12261
8164	12262
8165	12263
8166	12264
8167	12265
8168	12266
8169	12267
8170	12268
8171	12269
8172	12270
8173	12271
8174	12272
8175	12273
8176	12274
8177	12275
8178	12276
8179	12277
8180	12278
8181	12279
8182	12280
8183	12281
8184	12282
8185	12283
8186	12284
8187	12285
8188	12286
8189	12287
8190	12288
8191	12289
8192	12290

Nucleotide SeqID	Protein SeqID
8193	12291
8194	12292
8195	12293
8196	12294
8197	12295
8198	12296
8199	_
8200	12297
8201	12298 12299
8202	12300
8203	12301
8204	12302
8205	12303
8206	12304
8207	12305
8208	12306
8209	12307
8210	12308
8211	12309
8212	12310
8213	12311
8214	12312
8215	12313
8216	12314
8217	12315
8218	12316
8219	12317
8220	12318
8221	12319
8222	12320
8223	12321
8224	12322
8225	12323
8226	12324
8227	12325
8228	12326
8229	12327
8230	12328
8231	12329
8232	12330
8233	12331
8234	12332
8235	12333
8236	12334
8237	12335
8238	12336
8239	12337
8240	12338
8240	12338

WO 01/70955	
Nucleotide SeqID	Protein SeqID
8241	12339
8242	12340
8243	12341
8244	12342
8245	12343
8246	12344
8247	12345
8248	12346
8249	12347
8250	12348
8251	12349
8252	12350
8253	12351
8254	12352
8255	12353
8256	12354
8257	12355
8258	12356
8259	12357
8260	12358
8261	12359
8262	12360
8263	12361
8264	12362
8265	12362
8266	12364
8267	12365
8268	12366
8269	12367
8270	12367
8271	12369
8272	12370
8273	12370
8274	12372
8275	12373
8276	12374
8277	12375
8278	12376
8279	12377
8280	12378
8281	12379
8282	12380
8283	12381
8284	12382
8285	12383
8286	12384
8287	12385
8288	· 12386

Nucleotide SeqID	Protein SeqID
8289	12387
8290	12388
8291	12389
8292	12390
8293	12391
8294	12392
8295	12393
8296	12394
8297	12395
8298	12396
8299	12397
8300	12398
8301	12399
8302	12400
8303	12401
8304	12402
8305	12403
8306	12404
8307	12405
8308	12406
8309	12407
8310	12408
8311	12409
8312	12410
8313	12411
8314	12412
8315	12413
8316	12414
8317	12415
8318	12416
8319	12417
8320	12418
8321	12419
8322	12420
8323	12421
8324	12422
8325	12423
8326	12424
8327	12425
8328	12426
8329	12427
8330	12428
8331	12429
8332	12430
8333	12431
8334	12432
8335	12433
8336	12434

Nucleotide SeqID	Protein SeqID
8337	12435
8338	12436
8339	12437
8340	12438
8341	12439
8342	12440
8343	12441
8344	12442
8345	12443
8346	12444
8347	12445
1 8348	12446
8349	12447
8350	12448
8351	12449
8352	12450
8353	12451
8354	12452
8355	12453
8356	12454
8357	12455
8358	12456
8359	12457
8360	12458
8361	12459
8362	12460
8363	12461
8364	12462
8365	12463
8366	12464
8367	12465
8368	12466
8369	12467
8370	12468
8371	12469
8372	12470
8373	12471
8374	12472
8375	12473
8376	12474
8377	12475
8378	12476
8379	12477
8380	12478
8381	12479
8382	12480
8383	12481
8384	12482
	102

Nucleotide SeqID	Protein SeqID
8385	12483
8386	12484
8387	12485
8388	12486
8389	12487
8390	12488
8391	12489
8392	12490
8393	12491
8394	12492
8395	12493
8396	12494
8397	12495
8398	12496
8399	12497
8400	12498
8401	12499
8402	12500
8403	12501
8404	12502
8405	12503
8406	12504
8407	12505
8408	12506
8409	12507
8410	12508
8411	12509
8412	12510
8413	12511
8414	12512
8415	12513
8416	12514
8417	12515
8418	12516
8419	12517
8420	12518
8421	12519
8422	12520
8423	12521
8424	12522
8425	12523
8426	12524
8427	12525
8428	12526
8429	12527
8430	12528
8431	12529
8432	12530

Nucleotide SeqID	Protein SeqID
8433	12531
8434	12532
8435	12533
8436	12534
8437	12535
8438	12536
8439	12537
8440	12538
8441	12539
8442	12540
8443	12541
8444	12542
8445	12543
8446	12544
8447	12545
8448	12546
8449	12547
8450	12548
8451	12549
8452	12550
8453	12551
8454	12552
8455	12553
8456	12554
8457	12555
8458	12556
8459	12557
8460	12558
8461	12559
8462	12560
8463	12561
8464	12562
8465	12563
8466	12564
8467	12565
8468	12566
8469	12567
8470	12568
8471	12569
8472	12570
8473	12571
8474	12572
8475	12572
8476	12574
8477	12575
8478	12576
8479	12577
8479	12578
0400	12378

Nucleotide SeqID	Protein SeqID
8481	12579
8482	12580
8483	12581
8484	12582
8485	12583
8486	12584
8487	12585
8488	12586
8489	12587
8490	12588
8491	12589
8492	12590
8493	12591
8494	12592
8495	12593
8496	12594
8497	12595
8498	12596
8499	12597
8500	12598
8501	12599
8502	12600
8503	12601
8504	12602
8505	12603
8506	12604
8507	12605
8508	12606
8509	12607
8510	
	12608
8511	12609
8512	12610
8513	12611
8514	12612
8515	12613
8516	12614
8517	12615
8518	12616
8519	12617
8520	12618
8521	12619
8522	12620
8523	12621
8524	12622
8525	12623
8526	12624
8527	12625
8528	12626

Nucleotide SeqID	Protein SeqID
8529	12627
8530	12628
8531	12629
8532	12630
8533	12631
8534	12632
8535	12633
8536	12634
8537	12635
8538	12636
8539	12637
8540	12638
8541	12639
8542	12640
8543	12641
8544	12642
8545	12643
8546	12644
8547	12645
8548	12646
8549	12647
8550	12648
8551	12649
8552	12650
8553	12651
8554	12652
8555	12653
8556	12654
8557	12655
8558	12656
8559	12657
8560	12658
8561	12659
8562	12660
8563	12661
8564	12662
8565	12663
8566	12664
8567	12665
8568	12666
8569	12667
8570	12668
8571	12669
8572	12670
8573	12671
8574	12672
8575	12673
8576	12674
	12017

Nucleotide SeqID	Protein SeqID
8577	12675
8578	12676
8579	12677
8580	12678
8581	12679
8582	12680
8583	12681
8584	12682
8585	12683
8586	12684
8587	. 12685
8588	12686
8589	12687
8590	12688
8591	12689
8592	12690
8593	12691
8594	12692
8595	12693
8596	12694
8597	12695
8598	12696
8599	12697
8600	12698
8601	12699
8602	12700
8603	12701
8604	12702
8605	12703
8606	12704
8607	12705
8608	12706
8609	12707
8610	12708
8611	12709
8612	12710
8613	12711
8614	12712
8615	12713
8616	12714
8617	12715
8618	12716
8619	12717
8620	12718
8621	12719
8622	12720
8623	12721
8624	12722
	<u> </u>

Nucleotide SeqID	Protein SeqID
8625	12723
8626	12724
8627	12725
8628	12726
8629	12727
8630	12728
8631	12729
8632	12730
8633	12731
8634	12732
8635	12733
8636	12734
8637	12735
8638	12736
8639	12737
8640	12738
8641	12739
8642	12740
8643	12741
8644	12742
8645	12743
8646	12744
8647	12745
8648	12746
8649	12747
8650	12748
8651	12749
8652	12750
8653	12751
8654	12752
8655	12753
8656	12754
8657 8658	12755 12756
8659	12757
8660	12758
8661	12759
8662	12760
8663	12761
8664	12762
8665	12763
8666	12764
8667	12765
8668	12766
8669	12767
8670	12768
8671	12769
8672	12770

Nucleotide SeqID	Protein SeqID
8673	12771
8674	12772
8675	12773
8676	12774
8677	12775
8678	12776
8679	12777
8680	12778
8681	12779
8682	12780
8683	12781
8684	12782
8685	12783
8686	12784
8687	12785
8688	12786
8689	12787
8690	12788
8691	12789
8692	12790
8693	12791
8694	12792
8695	12793
8696	12794
8697	12795
8698	12796
8699	12797
8700	12798
8701	12799
8702	12800
8703	12801
8704	12802
8705	12803
8706	12804
8707	12805
8708	12806
8709	12807
8710	12808
8711	12809
8712	12810
8713	12811
8714	12812
8715	12813
8716	12814
8717	12815
8718	12816
8719	12817
8720	12818

8721 12819 8722 12820 8723 12821 8724 12822 8725 12823 8726 12824 8727 12825 8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 </th <th>Nucleotide SeqID</th> <th>Protein SeqID</th>	Nucleotide SeqID	Protein SeqID
8723 12821 8724 12822 8725 12823 8726 12824 8727 12825 8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 </th <th>8721</th> <th>12819</th>	8721	12819
8724 12822 8725 12823 8726 12824 8727 12825 8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 </th <th>8722</th> <th>12820</th>	8722	12820
8725 12823 8726 12824 8727 12825 8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 </th <th>8723</th> <th>12821</th>	8723	12821
8726 12824 8727 12825 8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 </th <th>8724</th> <th>12822</th>	8724	12822
8727 12825 8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12848 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8725	12823
8728 12826 8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859	8726	12824
8729 12827 8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860	8727	12825
8730 12828 8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8728	12826
8731 12829 8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8729	12827
8732 12830 8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8730	12828
8733 12831 8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8731	12829
8734 12832 8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8732	12830
8735 12833 8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8733	12831
8736 12834 8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8734	12832
8737 12835 8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8735	12833
8738 12836 8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8736	12834
8739 12837 8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8737	12835
8740 12838 8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8738	12836
8741 12839 8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8739	12837
8742 12840 8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8740	12838
8743 12841 8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8741	12839
8744 12842 8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8742	12840
8745 12843 8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8743	12841
8746 12844 8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8744	12842
8747 12845 8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8745	12843
8748 12846 8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8763 12861	8746	12844
8749 12847 8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8747	12845
8750 12848 8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8748	12846
8751 12849 8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8749	12847
8752 12850 8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8750	12848
8753 12851 8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8751	12849
8754 12852 8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8752	12850
8755 12853 8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861		
8756 12854 8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8754	12852
8757 12855 8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8755	12853
8758 12856 8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8756	12854
8759 12857 8760 12858 8761 12859 8762 12860 8763 12861	8757	12855
8760 12858 8761 12859 8762 12860 8763 12861	8758	
8761 12859 8762 12860 8763 12861	8759	12857
8762 12860 8763 12861	8760	12858
8763 12861	8761	12859
	8762	12860
8764 12862	8763	12861
0107 12002	8764	12862
8765 12863	8765	12863
8766 12864	8766	12864
8767 12865	8767	12865
8768 12866	8768	12866

Nucleotide SeqID	Protein SeqID
8769	12867
8770	12868
8771	12869
8772	12870
8773	12871
8774	12872
8775	12873
8776	12874
8777	12875
8778	12876
8779	12877
8780	12878
8781	12879
8782	12880
8783	12881
8784	12882
8785	12883
8786	12884
8787	12885
8788	12886
8789	12887
8790	12888
8791	12889
8792	12890
8793	12891
8794	12892
8795	12893
8796	12894
8797	12895
8798	12896
8799	12897
8800	12898
8801	12899
8802	12900
8803	12901
8804	12902
8805	12903
8806	12904
8807	12905
8808	12906
8809	12907
8810	12908
8811	12909
8812	12910
8813	12911
8814	12912
8815	12913
8816	12914

Nucleotide SeqID	Protein SeqID
8817	12915
8818	12916
8819	12917
8820	12918
8821	12919
8822	12920
8823	12921
8824	12922
8825	12923
8826	12924
8827	12925
8828	12926
8829	12927
8830	12928
8831	12929
8832	12930
8833	12931
8834	12932
8835	12933
8836	12934
8837	12935
8838	12936
8839	12937
8840	12938
8841	12939
8842	12940
8843	12941
8844	12942
8845	12943
8846	12944
8847	12945
8848	12946
8849	12947
8850	12948
8851	12949
8852	12950
8853	12951
8854	12952
8855	12953
8856	12954
8857	12955
8858	12956
8859	12957
8860	12958
8861	12959
8862	12960
8863	12961
8864	12962

Nucleotide SeqID	Protein SeqID
	_
8865	12963
8866	12964
8867	12965
8868	12966
8869	12967
8870	12968
8871	12969
8872	12970
8873	12971
8874	12972
8875	12973
8876	12974
8877	12975
8878	12976
8879	12977
8880	12978
8881	12979
8882	12980
8883	12981
8884	12982
8885	12983
8886	12984
8887	12985
8888	12986
8889	12987
8890	12988
8891	12989
8892	12990
8893	12991
8894	12992
8895	12993
8896	12994
8897	12995
8898	12996
8899	12997
8900	12998
8901	12999
8902	13000
8903	13001
8904	13002
8905	13003
8906	13004
8907	13005
8908	13006
8909	13007
8910	13008
8911	13009
8912	13010

Nucleotide SeqID	Protein SeqID
8913	13011
8914	13012
8915	13013
8916	13014
8917	13015
8918	13016
8919	13017
8920	13018
8921	13019
8922	13020
8923	13021
8924	13022
8925	13023
8926	13024
8927	13025
8928	13026
8929	13027
8930	13028
8931	13029
8932	13030
8933	13031
8934	13032
8935	13033
8936	13034
8937	13035
8938	13036
8939	13037
8940	13038
8941	13039
· 8942	13040
8943	13041
8944	13042
8945	13043
8946	13044
8947	13045
8948	13046
8949	13047
8950	13048
8951	13049
8952	13050
8953	13051
8954	13052
8955	13053
8956	13054
8957	13055
8958	13056
8959	13057
8960	13058

Nucleotide SeqID	Protein SeqID
8961	13059
8962	13060
8963	13061
8964	13062
8965	13063
8966	13064
8967	13065
8968	13066
8969	13067
8970	13068
8971	13069
8972	13070
8973	13071
8974	13072
8975	13073
8976	13074
8977	13075
8978	13076
8979	13077
8980	13078
8981	13079
8982	13080
8983	13081
8984	13082
8985	13083
8986	13084
8987	13085
8988	13086
8989	13087
8990	13088
8991	13089
8992	13090
8993	13091
8994	13092
8995	13093
8996	13094
8997	13095
8998	13096
8999	13097
9000	13098
9001	13099
9002	13100
9003	13101
9004	13102
9005	13103
9006	13104
9007	13105
9008	13106

Nucleotide SeqID	Protein SeqID
9009	13107
9010	13108
9011	13109
9012	13110
9013	13111
9014	13112
9015	13113
9016	13114
9017	13115
9018	13116
9019	13117
9020	13117
9021	13119
9022	13120
9023	13120
9023	13121
9025	13123
9025	13123
9026	13124
	13125
9028	
9029	13127
9030	13128
9031	13129
9032	13130
9033	13131
9034	13132
9035	13133
9036	13134
9037	13135
9038	13136
9039	13137
9040	13138
9041	13139
9042	13140
9043	13141
9044	13142
9045	13143
9046	13144
9047	13145
9048	13146
9049	13147
9050	13148
9051	13149
9052	13150
9053	13151
9054	13152
9055	13153
9056	13154
, , , , ,	1010 (

Nucleotide SeqID	Protein SeqID
9057	13155
9058	13156
9059	13157
9060	13158
9061	13159
9062	13160
9063	13161
9064	13162
9065	13163
9066	13164
9067	13165
9068	13166
9069	13167
9070	13168
9071	13169
9072	13170
9073	13170
9074	13172
9075	13172
9076	13173
9077	13175
9078	13176
9079	13170
9080	13178
9081	13179
9082	13179
9083	13181
9084	13182
9085	13183
9086	13184
9087	13185
9088	13186
9089	13187
9090	13188
9091	13189
9092	13190
9093	13191
9094	13191
9095	13192
9096	13194
9097	13195
9098	13196
9099	13197
9100	13197
9100	
	13199
9102	13200
9103 9104	13201 13202
7104	13202

Nucleotide SeqID	Protein SeqID
9105	13203
9106	13204
9107	13205
9108	13206
9109	13207
9110	13208
9111	13209
9112	13210
9113	13211
9114	13212
9115	13213
9116	13214
9117	13215
9118	13216
9119	13217
9120	13218
9121	13219
9122	13220
9123	13221
9124	13222
9125	13223
9126	13224
9127	13225
9128	13226
9129	13227
9130	13228
9131	13229
9132	13230
9133	13231
· 9134	13232
9135	13233
9136	13234
9137	13235
9138	13236
9139	13237
9140	13238
9141	13239
9142	13240
9143	13241
9144	13242
9145	13243
9146	13244
9147	13245
9148	13246
9149	13247
9150	13248
9151	13249
9152	13250
L	<u> </u>

Nucleotide SeqID	Protein SeqID
9153	13251
9154	13252
9155	13253
9156	13254
9157	13255
9158	13256
9159	13257
9160	13258
9161	13259
9162	13260
9163	13261
9164	13262
9165	13263
9166	13264
9167	13265
9168	13266
9169	13267
9170	13268
9171	13269
9172	13270
9173	13271
9174	13272
9175	13273
9176	13274
9177	13275
9178	13276
9179	13277
9180	13278
9181	13279
9182	13280
9183	13281
9184	13282
9185	13283
9186	13284
9187	13285
9188	13286
9189	13287
9190	13288
9191	13289
9192	13290
9193	13291
9194	13292
9195	13293
9196	13294
9197	13295
9198	13296
9199	13297
9200	13298
,200	202/0

Nucleotide SeqID	Protein SeqID
9201	13299
9202	13300
9203	13301
9204	13302
9205	13303
9206	13304
9207	13305
9208	13306
9209	13307
9210	13308
9211	13309
9212	13310
9213	13311
9214	13312
9215	13313
9216	13314
9217	13315
9218	13316
9219	13317
9220	13318
9221	13319
9222	13320
9223	13321
9224	13322
9225	13323
9226	13324
9227	13325
9228	13326
9229	13327
9230	13328
9231	13329
9232	13330
9233	13331
9234	13332
9235	13333
9236	13334
9237	13335
9238	13336
9239	13337
9240	13338
9241	13339
9242	13340
9243	13341
9244	13342
9245	13343
9246	13344
9247	13345
9248	13346

Nucleotide SeqID	Protein SeqID
9249	13347
9250	13348
9251	13349
9252	13350
9253	13351
9254	13352
9255	13353
9256	13354
9257	13355
9258	13356
9259	13357
9260	13358
9261	13359
9262	13360
9263	13361
9264	13362
9265	13363
9266	13364
9267	13365
9268	13366
9269	13367
9270	13368
9271	13369
9272	13370
9273	13371
9274	13372
9275	13373
9276	13374
9277	13375
9278	13376
9279	13377
9280	13378
9281	13379
9282	13380
9283	13381
9284	13382
9285	13383
9286	13384
9287	13385
9288	13386
9289	13387
9290	13388
9291	13389
9292	13390
9293	13391
9294	13392
9295	13393
9296	13394

Nucleotide SeqID	Protein SeqID
9297	13395
9298	13396
9299	13397
9300	13398
9301	13399
9302	13400
9303	13401
9304	13402
9305	13403
9306	13404
9307	13405
9308	13406
9309	13407
9310	13408
9311	13409
9312	13410
9313	13411
9314	13412
9315	13413
9316	13414
9317	13415
9318	13416
9319	13417
9320	13418
9321	13419
9322	13420
9323	13421
9324	13422
9325	13423
9326	13424
9327	13425
9328	13426
9329	13427
9330	13428
9331	13429
9332	13430
9333	13431
9334	13432
9335	13433
9336	13434
9337	13435
9338	13436
9339	13437
9340	13438
9341	13439
9342	13440
9343	13441
9344	13442

Nucleotide SeqID	Protein SeqID
9345	13443
9346	13444
9347	13445
9348	13446
9349	13447
9350	13448
9351	13449
9352	13450
9353	13451
9354	13452
9355	13453
9356	13454
9357	13455
9358	13456
9359	13457
9360	13458
9361	13459
9362	13460
9363	13461
9364	13462
9365	13463
9366	13464
9367	13465
9368	13466
9369	13467
9370	13468
9371	13469
9372	13470
9373	13471
9374	13472
9375	13473
9376	13474
9376	13475
9378	13476
9379	13477
9380	13478
9381	13479
9382	13480
9383	13481
9384	13482
9385	13483
9386	13484
9387	13485
9388	13486
9389	13487
9390	13488
9391	13489
9392	13490
<u> </u>	·

Nucleotide SeqID	Protein SeqID
9393	13491
9394	13492
9395	13493
9396	13494
9397	13495
9398	13496
9399	13497
9400	13498
9401	13499
9402	13500
9403	13501
9404	13502
9405	13503
9406	13504
9407	13505
9408	13506
9409	13507
9410	13508
9411	13509
9412	13510
9413	13511
9414	13512
9415	13513
9416	13514
9417	13515
9418	13516
9419	13517
9419	13518
9420	13519
9422	13519
9423	13521
9423	13522
9424	13523
9425	
	13524
9427	13525
9428	13526
9429	13527
9430	13528
9431	13529
9432	13530
9433	13531
9434	13532
9435	13533
9436	13534
9437	13535
9438	13536
9439	13537
9440	13538

Nucleotide SeqID	Protein SeqID
Tructeodure social	1 Totali Seqii
9441	13539
9442	13540
9443	13541
9444	13542
9445	13543
9446	13544
9447	13545
9448	13546
9449	13547
9450	13548
9451	13549
9452	13550
9453	13551
9454	13552
9455	13553
9456	13554
9457	13555
9458	13556
9459	13557
9460	13558
9461	13559
9462	13560
9463	13561
9464	13562
9465	13563
9466	13564
9467	13565
9468	13566
9469	13567
9470	13568
9471	13569
9472	13570
9473	13571
9474	13572
9475	13573
9476	13574
9477	13575
9478	13576
9479	13577
9480	13578
9481	13579
9482	13580
9483	13581
9484	13582
9485	13583
9486	13584
9487	13585
9488	13586

Nucleotide SeqID	Protein SeqID
9489	13587
9490	13588
9491	13589
9492	13590
9493	13591
9494	13592
9495	13593
9496	13594
9497	13595
9498	13596
9499	13597
9500	13598
9501	13599
9502	13600
9503	13601
9504	13602
9505	13603
9506	13604
9507	13605
9508	13606
9509	13607
9510	13608
9511	13609
9512	13610
9513	13611
9514	13612
9515	13613
9516	13614
9517	13615
9518	13616
9519	13617
9520	13618
9521	13619
9522	13620
9523	13621
9524	13622
9525	13623
9526	13624
9527	13625
9528	13626
9529	13627
9530	13628
9531	13629
9532	13630
9533	13631
9534	13632
9535	13633
9536	13634

9537 13635 9538 13636 9539 13637 9540 13638 9541 13639 9542 13640 9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9560 13668 9560 13668 9560 13660 9561 13669 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9570 13668 9571 13669 9570 13668	Nucleotide SeqID	Protein SeqID
9538 13636 9539 13637 9540 13638 9541 13639 9542 13640 9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 </td <td></td> <td></td>		
9539 13637 9540 13638 9541 13639 9542 13640 9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 </td <td>9537</td> <td></td>	9537	
9540 13638 9541 13639 9542 13640 9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 </td <td>9538</td> <td>13636</td>	9538	13636
9541 13639 9542 13640 9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 </td <td>9539</td> <td>13637</td>	9539	13637
9542 13640 9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9575 13673 </td <td>9540</td> <td>13638</td>	9540	13638
9543 13641 9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 </td <td>9541</td> <td>13639</td>	9541	13639
9544 13642 9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13651 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 </td <td></td> <td>13640</td>		13640
9545 13643 9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 </td <td></td> <td>13641</td>		13641
9546 13644 9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 </td <td>9544</td> <td></td>	9544	
9547 13645 9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 </td <td></td> <td></td>		
9548 13646 9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 </td <td>· ·</td> <td>· ·</td>	· ·	· ·
9549 13647 9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678 </td <td>9547</td> <td>13645</td>	9547	13645
9550 13648 9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9548	13646
9551 13649 9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9549	13647
9552 13650 9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9553 13651 9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9554 13652 9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9552	13650
9555 13653 9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9553	'
9556 13654 9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	1	
9557 13655 9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9555	13653
9558 13656 9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13678	9556	13654
9559 13657 9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9557	13655
9560 13658 9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9558	13656
9561 13659 9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	· ·	13657
9562 13660 9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9578 13675 9579 13677 9580 13678		•
9563 13661 9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9564 13662 9565 13663 9566 13664 9567 13665 9568 13666 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678	9562	
9565 13663 9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9566 13664 9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9567 13665 9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9568 13666 9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9569 13667 9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9570 13668 9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9571 13669 9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9572 13670 9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9573 13671 9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9574 13672 9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9575 13673 9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9576 13674 9577 13675 9578 13676 9579 13677 9580 13678		
9577 13675 9578 13676 9579 13677 9580 13678		
9578 13676 9579 13677 9580 13678		
9579 13677 9580 13678		
9580 13678		
L		·
9581 13679		
9582 13680	9582	13680
9583 13681	j i	· ·
9584 13682	9584	13682

Nucleotide SeqID	Protein SeqID
9585	13683
9586	13684
9587	13685
9588	13686
9589	13687
9590	13688
9591	13689
9592	13690
9593	13691
9594	13692
9595	13693
9596	13694
9597	13695
9598	13696
9599	13697
9600	13698
9601	13699
9602	13700
9603	13701
9604	13702
9605	13703
9606	13704
9607	13705
9608	13706
9609	13707
9610	13708
9611	13709
9612	13710
9613	13711
9614	13712
9615	13713
9616	13714
9617	13715
9618	13716
9619	13717
9620	13718
9621	13719
9622	13720
9623	13721
9624	13722
9625	13723
9626	13724
9627	13725
9628	13726
9629	13727
9630	13728
9631	13729
9632	13730

Nucleotide SeqID	Protein SeqID
9633	13731
9634	13732
9635	13733
9636	13734
9637	13735
9638	13736
9639	13737
9640	13738
9641	13739
9642	13740
9643	13741
9644	13742
9645	13743
9646	13744
9647	13745
9648	13746
9649	13747
9650	13748
9651	13749
9652	13750
9653	13751
9654	13,752
9655	13753
9656	13754
9657	13755
9658	13756
9659	13757
9660	13758
9661	13759
9662	13760
9663	13761
9664	13762
9665	13763
9666	13764
9667	13765
9668	13766
9669	13767
9670	13768
9671	13769
9672	13770
9673	13771
9674	13772
9675	13773
9676	13774
9677	13775
9678	13776
9679	13777
9680	13778

Nucleotide SeqID	Protein SeqID
9681	13779
9682	13780
9683	13781
9684	13782
9685	13783
9686	13784
9687	13785
9688	13786
9689	13787
9690	13788
9691	13789
9692	13790
9693	13791
9694	13792
9695	13793
9696	13794
9697	13795
9698	13796
9699	13797
9700	13798
9701	13799
9702	13800
. 9703	13801
9704	13802
9705	13803
9706	13804
9707	13805
9708	13806
9709	13807
9710	13808
9711	13809
9712	13810
9713	13811
9714	13812
9715	13813
9716	13814
9717	13815
9718	13816
9719	13817
9720	13818
9721	13819
9722	13820
9723	13821
9724	13822
9725	13823
9726	13824
9727	13825
9728	13826
7140	13020

Nucleotide SeqID	Protein SeqID
9729	13827
9730	13828
9731	13829
9732	13830
9733	13831
9734	13832
9735	13833
9736	13834
9737	13835
9738	13836
9739	13837
9740	13838
9741	13839
9742	13840
9743	13841
9744	13842
9745	13843
9746	13844
9747	13845
9748	13846
9749	13847
9750	13848
9751	13849
9752	13850
9753	13851
9754	13852
9755	13853
9756	13854
9757	13855
9758	13856
9759	13857
9760	13858
9761	13859
9762	13860
9763	13861
9764	13862
9765	13863
9766	13864
9767	13865
9768	13866
9769	13867
9770	13868
9771	13869
9772	. 13870
9773	13871
9774	13872
9775	13873
9776	13874
<u> </u>	

Nucleotide SeqID	Protein SeqID
9777	13875
9778	13876
9779	13877
9780	13878
9781	13879
9782	13880
9783	13881
9784	13882
9785	13883
9786	13884
9787	13885
9788	13886
9789	13887
9790	13888
9791	13889
9792	13890
9793	13891
9794	13892
9795	13893
9796	13894
9797	13895
9798	13896
9799	13897
9800	13898
9801	13899
9802	13900
9803	13901
9804	13902
9805	13903
9806	13904
9807	13905
9808	13906
9809	13907
9810	13908
9811	13909
9812	13910
9813	13911
9814	13912
9815	13913
9816	13914
9817	13915
9818	13916
9819	13917
9820	13918
9821	13919
9822	13920
9823	13921
9824	13922

Nucleotide SeqID	Protein SeqID
9825	13923
9826	13924
9827	13925
9828	13926
9829	13927
9830	13928
9831	13929
9832	13930
9833	13931
9834	13932
9835	13933
9836	13934
9837	13935
9838	13936
9839	13937
9840	13938
9841	13939
9842	13940
9843	13941
9844	13942
9845	13943
9846	13944
9847	13945
9848	13946
9849	13947
9850	13948
9851	13949
9852	13950
9853	13951
9854	13952
9855	13953
9856	13954
9857	13955
9858	13956
9859	13957
9860	13958
9861	13959
9862	13960
9863	13961
9864	13962
9865	13963
9866	13964
9867	13965
9868	13966
9869	13967
9870	13968
9871	13969
9872	13970

Nucleotide SeqID	Protein SeqID
9873 .	13971
9874	13972
9875	13973
9876	13974
9877	13975
9878	13976
9879	13977
9880	13978
9881	13979
9882	13980
9883	13981
9884	13982
9885	13983
9886	13984
9887	13985
9888	13986
9889	13987
9890	13988
9891	13989
9892	13990
9893	13991
9894	13992
9895	13993
9896	13994
9897	13995
9898	13996
9899	13997
9900	13998
9901	13999
9902	14000
9903	14001
9904	14002
9905	14003
9906	14004
9907	14005
9908	14006
9909	14007
9910	14008
9911	14009
9912	14010
9913	14011
9914	- 14012
9915	14013
9916	14014
9917	14015
9918	14016
9919	14017
9920	14018
L	

Nucleotide SeqID	Protein SeqID
9921	14019
9922	14020
9923	14021
9924	14022
9925	14023
9926	14024
9927	14025
9928	14026
9929	14027
9930	14028
9931	14029
9932	14030
9933	14031
9934	14032
9935	14033
9936	14034
9937	14035
9938	14036
9939	14037
9940	14038
9941	14039
9942	14040
9943	14041
9944	14042
9945	14043
9946	14044
9947	14045
9948	14046
9949	14047
9950	14048
9951	14049
9952	14050
9953	14051
9954	14052
9955	14053
9956	14054
9957	14055
9958	14056
9959	14057
9960	14058
9961	14059
9962	14060
9963	14061
9964	14062
9965	14063
9966	14064
9967	14065
9968	14066

Nucleotide SeqID	Protein SeqID
Nuccount order	r rotem Soque
9969	14067
9970	14068
9971	14069
9972	14070
9973	14071
9974	14072
9975	14073
9976	14074
9977	14075
9978	14076
9979	14077
9980	14078
9981	14079
9982	14080
9983	14081
9984	14082
9985 9986	14083 14084
9987	14084
9988	14086
9989	14087
9990	14088
9991	14089
9992	14090
9993	14091
9994	14092
9995	14093
9996	14094
9997	14095
9998	14096
9999	14097
10000	14098
10001	14099
10002	14100
10003	14101
10004	14102
10005	14103
10006	14104
10007	14105
10008	14106
10009	14107
10010	14108
10011	14109
10012	14110

SeqID	Clone name	Organism
8	E3M10000001A02	Enterococcus faecalis
9	E3M10000001A06	Enterococcus faecalis
10	E3M10000001B01	Enterococcus faecalis
11	E3M1000001B02	Enterococcus faecalis
12	E3M10000001B05	Enterococcus faecalis
13	E3M10000001B06	Enterococcus faecalis
14	E3M10000001B08	Enterococcus faecalis
15	E3M10000001B10	Enterococcus faecalis
16	E3M10000001C02	Enterococcus faecalis
17	E3M10000001C09	Enterococcus faecalis
18	E3M1000001D02	Enterococcus faecalis
19	E3M10000001D04	Enterococcus faecalis
20	E3M1000001D05	Enterococcus faecalis
21	E3M10000001D09	Enterococcus faecalis
22	E3M10000001E01	Enterococcus faecalis
23	E3M10000001E02	Enterococcus faecalis
24	E3M10000001E03	Enterococcus faecalis
25	E3M10000001E04	Enterococcus faecalis
26	E3M1000001E08	Enterococcus faecalis
27	E3M10000001E09	Enterococcus faecalis
28	E3M10000001F02	Enterococcus faecalis
29	E3M10000001F04	Enterococcus faecalis
30	E3M10000001F06	Enterococcus faecalis
31	E3M10000001F07	Enterococcus faecalis
32	E3M1000001G02	Enterococcus faecalis
33	E3M1000001G03	Enterococcus faecalis
34	E3M1000001G04	Enterococcus faecalis
35	E3M1000001G05	Enterococcus faecalis
36	E3M10000001H02	Enterococcus faecalis
37	E3M10000001H03	Enterococcus faecalis
38	E3M10000001H04	Enterococcus faecalis
39	E3M10000004A04	Enterococcus faecalis
40	E3M1000004C03	Enterococcus faecalis
41	E3M10000004D01	Enterococcus faecalis
42	E3M10000004D02	Enterococcus faecalis
43	E3M1000004D10	Enterococcus faecalis
44	E3M10000004E11	Enterococcus faecalis
45	E3M10000004F08	Enterococcus faecalis
46	E3M10000004F10	Enterococcus faecalis
47	E3M10000004G01	Enterococcus faecalis
48	E3M10000004H11	Enterococcus faecalis
49	E3M10000005A07	Enterococcus faecalis
50	E3M10000005B01	Enterococcus faecalis
51	E3M1000005B08	Enterococcus faecalis
52	E3M1000005C01	Enterococcus faecalis
53	E3M1000005C03	Enterococcus faecalis
54	E3M1000005C04	Enterococcus faecalis
55	E3M10000005D03	Enterococcus faecalis .

SeqID	Clone name	Organism
56	E3M10000005D04	Enterococcus faecalis
57	E3M10000005D10	Enterococcus faecalis
58	E3M10000005E01	Enterococcus faecalis
59	E3M10000005E02	Enterococcus faecalis
60	E3M10000005E03	Enterococcus faecalis
61	E3M10000005E08	Enterococcus faecalis
62	E3M10000005F07	Enterococcus faecalis
63	E3M10000005F10	Enterococcus faecalis
64	E3M10000005G05	Enterococcus faecalis
65	E3M10000005H04	Enterococcus faecalis
66	Е3М10000006В03	Enterococcus faecalis
67	E3M10000006C01	Enterococcus faecalis
68	E3M10000006C12	Enterococcus faecalis
69	E3M10000006D03	Enterococcus faecalis
70	E3M10000006E11	Enterococcus faecalis
71	E3M10000006F04	Enterococcus faecalis
72	E3M10000006G04	Enterococcus faecalis
73	E3M10000006G12	Enterococcus faecalis
74	E3M10000006H09	Enterococcus faecalis
75	E3M10000007A02	Enterococcus faecalis
76	E3M10000007B02	Enterococcus faecalis
77	E3M10000007B03	Enterococcus faecalis
78	E3M10000007C03	Enterococcus faecalis
79	E3M10000007C04	Enterococcus faecalis
80	E3M10000007D03	Enterococcus faecalis
81	E3M10000007E05	Enterococcus faecalis
82	E3M10000007F01	Enterococcus faecalis
83	E3M10000007F06	Enterococcus faecalis
84	E3M10000007G01	Enterococcus faecalis
85	E3M10000008C03	Enterococcus faecalis
86	E3M10000008C08	Enterococcus faecalis
87	E3M10000008C09	Enterococcus faecalis
88	E3M10000008D08	Enterococcus faecalis
89	E3M10000008E02	Enterococcus faecalis
90	E3M10000008G05	Enterococcus faecalis
91	E3M10000008G09	Enterococcus faecalis
92	E3M10000008H02	Enterococcus faecalis
93	E3M10000009C07	Enterococcus faecalis
94	E3M10000009C09	Enterococcus faecalis
95	E3M10000009D01	Enterococcus faecalis
96	E3M10000009E02	Enterococcus faecalis
97	E3M10000009E03	Enterococcus faecalis
98	E3M10000009E05	Enterococcus faecalis
99	E3M10000009G02	Enterococcus faecalis
100	E3M10000010C08	Enterococcus faecalis
101	E3M10000010D05	Enterococcus faecalis
102	E3M10000010F01	Enterococcus faecalis
103	E3M10000010G05	Enterococcus faecalis
104	E3M10000010G07	Enterococcus faecalis

PCT/US01/09180

SeqID	Clone name	Organism
105	E3M10000010G09	Enterococcus faecalis
106	E3M10000010G10	Enterococcus faecalis
107	E3M10000010H02	Enterococcus faecalis
108	E3M10000011A09	Enterococcus faecalis
109	E3M10000011B03	Enterococcus faecalis
110	E3M10000011B09	Enterococcus faecalis
111	E3M10000011C07	Enterococcus faecalis
112	E3M10000011D03	Enterococcus faecalis
113	E3M10000011H02	Enterococcus faecalis
114	E3M10000011H05	Enterococcus faecalis
115	E3M10000012B01	Enterococcus faecalis
116	E3M10000012B02	Enterococcus faecalis
117	E3M10000012B07	Enterococcus faecalis
118	E3M10000012B08	Enterococcus faecalis
119	E3M10000012C01	Enterococcus faecalis
120	E3M10000012D10	Enterococcus faecalis
121	E3M10000012E08	Enterococcus faecalis
122	E3M10000012F05	Enterococcus faecalis
123	E3M10000012F06	Enterococcus faecalis
124	E3M10000012F07	Enterococcus faecalis
125	E3M10000012F10	Enterococcus faecalis
126	E3M10000012G02	Enterococcus faecalis
127	E3M10000012G07	Enterococcus faecalis
128	E3M10000013A06	Enterococcus faecalis
129	E3M10000013A07	Enterococcus faecalis
130	E3M10000013C05	Enterococcus faecalis
131	E3M10000013D02	Enterococcus faecalis
132	E3M10000013D08	Enterococcus faecalis
133	E3M10000013D10	Enterococcus faecalis
134	E3M10000013E02	Enterococcus faecalis
135	E3M10000013E08	Enterococcus faecalis
136	E3M10000013F05	Enterococcus faecalis
137	E3M10000013F12	Enterococcus faecalis
138	E3M10000013G10	Enterococcus faecalis
139	E3M10000013H03	Enterococcus faecalis
140	E3M10000013H05	Enterococcus faecalis
141	E3M10000013H10	Enterococcus faecalis
142	E3M10000014B12	Enterococcus faecalis
143	E3M10000014E12	Enterococcus faecalis
144	E3M10000014G09	Enterococcus faecalis
145	E3M10000015B04	Enterococcus faecalis
146	E3M10000015B12	Enterococcus faecalis
147	E3M10000015E12	Enterococcus faecalis
148	E3M10000016A03	Enterococcus faecalis
149	E3M10000016A04	Enterococcus faecalis
150	E3M10000016C11	Enterococcus faecalis
151	E3M10000016D03	Enterococcus faecalis
152	E3M10000016F06	Enterococcus faecalis
153	E3M10000016F10	Enterococcus faecalis

SeqID	Clone name	Organism
154	E3M10000016H05	Enterococcus faecalis
155	E3M10000016H10	Enterococcus faecalis
156	E3M10000017A09	Enterococcus faecalis
157	E3M10000017D09	Enterococcus faecalis
158	E3M10000018A07	Enterococcus faecalis
159	E3M10000018C02	Enterococcus faecalis
160	E3M10000018E01	Enterococcus faecalis
161	E3M10000018G09	Enterococcus faecalis
162	E3M10000018H06	Enterococcus faecalis
163	E3M10000019B06	Enterococcus faecalis
164	E3M10000019D02	Enterococcus faecalis
165	E3M10000019E03	Enterococcus faecalis
166	E3M10000019E04	Enterococcus faecalis
167	E3M10000020G04	Enterococcus faecalis
168	E3M10000020H05	Enterococcus faecalis
169	E3M10000021A08	Enterococcus faecalis
170	E3M10000021A11	Enterococcus faecalis
171	E3M10000021B10	Enterococcus faecalis
172	E3M10000021C03	Enterococcus faecalis
173	E3M10000021C04	Enterococcus faecalis
174	E3M10000021C08	Enterococcus faecalis
175	E3M10000021D04	Enterococcus faecalis
176	E3M10000021E10	Enterococcus faecalis
177	E3M10000021G04	Enterococcus faecalis
178	E3M10000021G10	Enterococcus faecalis
179	E3M10000021G11	Enterococcus faecalis
180	E3M10000021H11	Enterococcus faecalis
181	E3M10000022A04	Enterococcus faecalis
182	E3M10000022A11	Enterococcus faecalis
183	E3M10000022B04	Enterococcus faecalis
184	E3M10000022B05	Enterococcus faecalis
185	E3M10000022B07	Enterococcus faecalis
186	E3M10000022C05	Enterococcus faecalis
187	E3M10000022C06	Enterococcus faecalis
188	E3M10000022C09	Enterococcus faecalis
189	E3M10000022D04	Enterococcus faecalis
190	E3M10000022F05	Enterococcus faecalis
191 192	E3M10000022F06 E3M10000022F08	Enterococcus faecalis
192	E3M10000022F08	Enterococcus faecalis
193	E3M10000022G02	Enterococcus faecalis
194	E3M10000022G12	Enterococcus faecalis
196	E3M10000023A06	Enterococcus faecalis Enterococcus faecalis
196	E3M10000023A07	Enterococcus faecalis Enterococcus faecalis
197	E3M10000023A07	Enterococcus faecalis Enterococcus faecalis
199	E3M10000023A09	Enterococcus faecalis Enterococcus faecalis
200	E3M10000023B02	Enterococcus faecalis Enterococcus faecalis
200	E3M10000023B00	Enterococcus faecalis Enterococcus faecalis
202	E3M10000023C04	Enterococcus faecalis Enterococcus faecalis
202	E318110000023C04	Emerococcus jaecaus

SeqID	Clone name	Organism
203	E3M10000023C06	Enterococcus faecalis
204	E3M10000023C08	Enterococcus faecalis
205	E3M10000023C09	Enterococcus faecalis
206	E3M10000023D02	Enterococcus faecalis
207	E3M10000023D04	Enterococcus faecalis
208	E3M10000023D10	Enterococcus faecalis
209	E3M10000023E04	Enterococcus faecalis
210	E3M10000023E07	Enterococcus faecalis
211	E3M10000023E09	Enterococcus faecalis
212	E3M10000023F02	Enterococcus faecalis
213	E3M10000023F10	Enterococcus faecalis
214	E3M10000023G02	Enterococcus faecalis
215	E3M10000023G04	Enterococcus faecalis
216	E3M10000023G10	Enterococcus faecalis
217	E3M10000023H08	Enterococcus faecalis
218	E3M10000024A03	Enterococcus faecalis
219	E3M10000024A04	Enterococcus faecalis
220	E3M10000024A08	Enterococcus faecalis
221	E3M10000024C06	Enterococcus faecalis
222.	E3M10000025A06	Enterococcus faecalis
223	E3M10000025B01	Enterococcus faecalis
224	E3M10000025B03	Enterococcus faecalis
225	E3M10000025B05	Enterococcus faecalis
226	E3M10000025B10	Enterococcus faecalis
227	E3M10000025C01	Enterococcus faecalis
228	E3M10000025C04	Enterococcus faecalis
229	E3M10000025C05	Enterococcus faecalis
230	E3M10000025C07	Enterococcus faecalis
231	E3M10000025C08	Enterococcus faecalis
232	E3M10000025C09	Enterococcus faecalis
233	E3M10000025C11	Enterococcus faecalis
234	E3M10000025D01	Enterococcus faecalis
235	E3M10000025D10	Enterococcus faecalis
236	E3M10000025E07	Enterococcus faecalis
237	E3M10000025E08	Enterococcus faecalis
238	E3M10000025E12	Enterococcus faecalis
239	E3M10000025F04	Enterococcus faecalis
240	E3M10000025F06	Enterococcus faecalis
241	E3M10000025F08	Enterococcus faecalis
242	E3M10000025F09	Enterococcus faecalis
243	E3M10000025F10	Enterococcus faecalis
244	E3M10000025F11	Enterococcus faecalis
245	E3M10000025F12	Enterococcus faecalis Enterococcus faecalis
246	E3M10000025G02 E3M10000025G07	l
247	E3M10000025G07	Enterococcus faecalis
248	E3M10000023G09	Enterococcus faecalis Enterococcus faecalis
250	E3M10000027A02	l
	<u> </u>	Enterococcus faecalis
251	E3M10000027A09	Enterococcus faecalis

SeqID	Clone name	Organism
252	E3M10000027B07	Enterococcus faecalis
253	E3M10000027B08	Enterococcus faecalis
254	E3M10000027B09	Enterococcus faecalis
255	E3M10000027C02	Enterococcus faecalis
256	E3M10000027C03	Enterococcus faecalis
257	E3M10000027C08	Enterococcus faecalis
258	E3M10000027D03	Enterococcus faecalis
259	E3M10000027D05	Enterococcus faecalis
260	E3M10000027D08	Enterococcus faecalis
261	E3M10000027D10	Enterococcus faecalis
262	E3M10000027G01	Enterococcus faecalis
263	E3M10000027G08	Enterococcus faecalis
264	E3M10000027H04	Enterococcus faecalis
265	E3M10000027H07	Enterococcus faecalis
266	E3M10000028A02	Enterococcus faecalis
267	E3M10000028A03	Enterococcus faecalis
268	E3M10000028A04	Enterococcus faecalis
269	E3M10000028A05	Enterococcus faecalis
270	E3M10000028A06	Enterococcus faecalis
271	E3M10000028A08	Enterococcus faecalis
272	E3M10000028B01	Enterococcus faecalis
273	E3M10000028B02	Enterococcus faecalis
274	E3M10000028B03	Enterococcus faecalis
275	E3M10000028B04	Enterococcus faecalis
276	E3M10000028B05	Enterococcus faecalis
277	E3M10000028B06	Enterococcus faecalis
278	E3M10000028B07	Enterococcus faecalis
279	E3M10000028B08	Enterococcus faecalis
280	E3M10000028C01	Enterococcus faecalis
281	E3M10000028C02	Enterococcus faecalis
282	E3M10000028C04	Enterococcus faecalis
283	E3M10000028C05	Enterococcus faecalis
284	E3M10000028C06	Enterococcus faecalis
285	E3M10000028C07	Enterococcus faecalis
286	E3M10000028C08	Enterococcus faecalis
287	E3M10000028D01	Enterococcus faecalis
288 289	E3M10000028D02 E3M10000028D05	Enterococcus faecalis
289	E3M10000028D05	Enterococcus faecalis Enterococcus faecalis
290	E3M10000028D08	Enterococcus faecalis Enterococcus faecalis
291	E3M10000028E01	
292	E3M10000028E01	Enterococcus faecalis Enterococcus faecalis
294	E3M10000028E07	Enterococcus faecalis Enterococcus faecalis
294	E3M10000028E07	Enterococcus faecalis Enterococcus faecalis
296	E3M10000028F03	Enterococcus faecalis
297	E3M10000028F04	Enterococcus faecalis Enterococcus faecalis
298	E3M10000028F05	Enterococcus faecalis Enterococcus faecalis
299	E3M10000028F06	Enterococcus faecalis Enterococcus faecalis
300	E3M10000028F07	Enterococcus faecalis Enterococcus faecalis
300	123M11000050L0 /	Liver ococcus jaecalis

SeqID	Clone name	Organism
301	E3M10000028G05	Enterococcus faecalis
302	E3M10000028G06	Enterococcus faecalis
303	E3M10000028G07	Enterococcus faecalis
304	E3M10000028H04	Enterococcus faecalis
305	E3M10000028H07	Enterococcus faecalis
306	E3M10000029A02	Enterococcus faecalis
307	E3M10000029A04	Enterococcus faecalis
308	E3M10000029A05	Enterococcus faecalis
309	E3M10000029A10	Enterococcus faecalis
310	E3M10000029A11	Enterococcus faecalis
311	E3M10000029B01	Enterococcus faecalis
312	E3M10000029B02	Enterococcus faecalis
313	E3M10000029B05	Enterococcus faecalis
314	E3M10000029B06	Enterococcus faecalis
315	E3M10000029B08	Enterococcus faecalis
316	E3M10000029B11	Enterococcus faecalis
317	E3M10000029B12	Enterococcus faecalis
318	E3M10000029C01	Enterococcus faecalis
319	E3M10000029C02	Enterococcus faecalis
320	E3M10000029C03	Enterococcus faecalis
321	E3M10000029C04	Enterococcus faecalis
322	E3M10000029C05	Enterococcus faecalis
323	E3M10000029C06	Enterococcus faecalis
324	E3M10000029C07	Enterococcus faecalis
325	E3M10000029C08	Enterococcus faecalis
326	E3M10000029C09	Enterococcus faecalis
327	E3M10000029C10	Enterococcus faecalis
328	E3M10000029C12	Enterococcus faecalis
329	E3M10000029D01	Enterococcus faecalis
330	E3M10000029D03	Enterococcus faecalis
331	E3M10000029D04	Enterococcus faecalis
332	E3M10000029D05	Enterococcus faecalis
333	E3M10000029D06	Enterococcus faecalis
334	E3M10000029D08	Enterococcus faecalis
335	E3M10000029D12	Enterococcus faecalis
336	E3M10000029E01	Enterococcus faecalis
337	E3M10000029E02	Enterococcus faecalis
338	E3M10000029E03	Enterococcus faecalis
339	E3M10000029E05	Enterococcus faecalis
340	E3M10000029E07	Enterococcus faecalis
341	E3M10000029E08	Enterococcus faecalis
342	E3M10000029E09	Enterococcus faecalis
343	E3M10000029E12	Enterococcus faecalis
344	E3M10000029F01	Enterococcus faecalis
345	E3M10000029F05	Enterococcus faecalis
346	E3M10000029F06	Enterococcus faecalis
347	E3M10000029F09	Enterococcus faecalis
348	E3M10000029F10	Enterococcus faecalis
349	E3M10000029F11	Enterococcus faecalis

SeqID	Clone name	Organism
350	E3M10000029F12	Enterococcus faecalis
351	E3M10000029G01	Enterococcus faecalis
352	E3M10000029G04	Enterococcus faecalis
353	E3M10000029G05	Enterococcus faecalis
354	E3M10000029G07	Enterococcus faecalis
355	E3M10000029G08	Enterococcus faecalis
356	E3M10000029G09	Enterococcus faecalis
357	E3M10000029G10	Enterococcus faecalis
358	E3M10000029G11	Enterococcus faecalis
359	E3M10000029G12	Enterococcus faecalis
360	E3M10000029H02	Enterococcus faecalis
361	E3M10000029H04	Enterococcus faecalis
362	E3M10000029H05	Enterococcus faecalis
363	E3M10000029H07	Enterococcus faecalis
364	E3M10000029H08	Enterococcus faecalis
365	E3M10000029H11	Enterococcus faecalis
366	E3M10000030A05	Enterococcus faecalis
367	E3M10000030A08	Enterococcus faecalis
368	E3M10000030A09	Enterococcus faecalis
369	E3M10000030A11	Enterococcus faecalis
370	E3M10000030B03	Enterococcus faecalis
371	E3M10000030B04	Enterococcus faecalis
372	E3M10000030B05	Enterococcus faecalis
373	E3M10000030B06	Enterococcus faecalis
374	E3M10000030B07	Enterococcus faecalis
. 375	E3M10000030B08	Enterococcus faecalis
376	E3M10000030B10	Enterococcus faecalis
377	E3M10000030B11	Enterococcus faecalis
378	E3M10000030B12	Enterococcus faecalis
379	E3M10000030C03	Enterococcus faecalis
380	E3M10000030C04	Enterococcus faecalis
381	E3M10000030C12	Enterococcus faecalis
382	E3M10000030D02	Enterococcus faecalis
383	E3M10000030D05	Enterococcus faecalis
384	E3M10000030D08	Enterococcus faecalis
385	E3M10000030D09	Enterococcus faecalis
386	E3M10000030D10	Enterococcus faecalis
387	E3M10000030D12	Enterococcus faecalis
388	E3M10000030E01	Enterococcus faecalis
389	E3M10000030E02	Enterococcus faecalis
390	E3M10000030E04	Enterococcus faecalis
391	E3M10000030E08	Enterococcus faecalis
392	E3M10000030E09	Enterococcus faecalis
393	E3M10000030E10	Enterococcus faecalis
394	E3M10000030F01	Enterococcus faecalis
395	E3M10000030F04	Enterococcus faecalis
396	E3M10000030F06	Enterococcus faecalis
397	E3M10000030F07	Enterococcus faecalis
398	E3M10000030F10	Enterococcus faecalis

WO 01/70955

SeqID	Clone name	Organism
399	E3M10000030F12	Enterococcus faecalis
400	E3M10000030G01	Enterococcus faecalis
401	E3M10000030G03	Enterococcus faecalis
402	E3M10000030G06	Enterococcus faecalis
403	E3M10000030G08	Enterococcus faecalis
404	E3M10000030G09	Enterococcus faecalis
405	E3M10000030G12	Enterococcus faecalis
406	E3M10000030H03	Enterococcus faecalis
407	E3M10000030H04	Enterococcus faecalis
408	E3M10000030H06	Enterococcus faecalis
409	Е3М10000030Н07	Enterococcus faecalis
410	E3M10000030H08	Enterococcus faecalis
411	E3M10000030H10	Enterococcus faecalis
412	E3M10000030H11	Enterococcus faecalis
413	E3M10000031A02	Enterococcus faecalis
414	E3M10000031A06	Enterococcus faecalis
415	E3M10000031A07	Enterococcus faecalis
416	E3M10000031A08	Enterococcus faecalis
417	E3M10000031B02	Enterococcus faecalis
418	E3M10000031B03	Enterococcus faecalis
419	E3M10000031B04	Enterococcus faecalis
420	E3M10000031B09	Enterococcus faecalis
421	E3M10000031B10	Enterococcus faecalis
422	E3M10000031B11	Enterococcus faecalis
423	E3M10000031B12	Enterococcus faecalis
424	E3M10000031C01	Enterococcus faecalis
425	E3M10000031C04	Enterococcus faecalis
426	E3M10000031C06	Enterococcus faecalis
427	E3M10000031C10	Enterococcus faecalis
428	E3M10000031C11	Enterococcus faecalis
429	E3M10000031C12	Enterococcus faecalis
430	E3M10000031D03	Enterococcus faecalis
431	E3M10000031D04	Enterococcus faecalis
432	E3M10000031D08	Enterococcus faecalis
433	E3M10000031E03	Enterococcus faecalis
434	E3M10000031E09	Enterococcus faecalis
435	E3M10000031F02	Enterococcus faecalis
436	E3M10000031F04	Enterococcus faecalis
437	E3M10000031F07	Enterococcus faecalis
438	E3M10000031F09	Enterococcus faecalis
439	E3M10000031F11	Enterococcus faecalis
440	E3M10000031G03	Enterococcus faecalis
441	E3M10000031G04	Enterococcus faecalis
442	E3M10000031G05	Enterococcus faecalis
443	E3M10000031G06	Enterococcus faecalis
444	E3M10000031G07	Enterococcus faecalis
445	E3M10000031G08	Enterococcus faecalis
446	E3M10000031G11	Enterococcus faecalis
447	E3M10000031H05	Enterococcus faecalis

SeqID	Clone name	Organism
448	E3M10000031H06	Enterococcus faecalis
449	E3M10000031H07	Enterococcus faecalis
450	E3M10000031H08	Enterococcus faecalis
451	E3M10000031H10	Enterococcus faecalis
452	E3M10000031H11	Enterococcus faecalis
453	E3M10000032A02	Enterococcus faecalis
454	E3M10000032A04	Enterococcus faecalis
455	E3M10000032A06	Enterococcus faecalis
456	E3M10000032A07	Enterococcus faecalis
457	E3M10000032A08	Enterococcus faecalis
458	E3M10000032A09	Enterococcus faecalis
459	E3M10000032A10	Enterococcus faecalis
460	E3M10000032A11	Enterococcus faecalis
461	E3M10000032B03	Enterococcus faecalis
462	E3M10000032B04	Enterococcus faecalis
463	E3M10000032B07	Enterococcus faecalis
464	E3M10000032B08	Enterococcus faecalis
465	E3M10000032B09	Enterococcus faecalis
466	E3M10000032B11	Enterococcus faecalis
467	E3M10000032B12	Enterococcus faecalis
468	E3M10000032C01	Enterococcus faecalis
469	E3M10000032C02	Enterococcus faecalis
470	E3M10000032C03	Enterococcus faecalis
471	E3M10000032C04	Enterococcus faecalis
472	E3M10000032C06	Enterococcus faecalis
473	E3M10000032C09	Enterococcus faecalis
474	E3M10000032C11	Enterococcus faecalis
475	E3M10000032C12	Enterococcus faecalis
476	E3M10000032D01	Enterococcus faecalis
477	E3M10000032D02	Enterococcus faecalis
478	E3M10000032D03	Enterococcus faecalis
479	E3M10000032D06	Enterococcus faecalis
480	E3M10000032D09	Enterococcus faecalis
481	E3M10000032D12	Enterococcus faecalis
482	E3M10000032E04	Enterococcus faecalis
483	E3M10000032E05	Enterococcus faecalis
484	E3M10000032E08	Enterococcus faecalis
485	E3M10000032E10	Enterococcus faecalis
486	E3M10000032E11	Enterococcus faecalis
487	E3M10000032E12	Enterococcus faecalis
488	E3M10000032F02	Enterococcus faecalis
489	E3M10000032F03	Enterococcus faecalis
490	E3M10000032F05	Enterococcus faecalis
491	E3M10000032F07	Enterococcus faecalis
492	E3M10000032F08	Enterococcus faecalis
493	E3M10000032F11	Enterococcus faecalis
494	E3M10000032F12	Enterococcus faecalis
495	E3M10000032G01	Enterococcus faecalis
496	E3M10000032G02	Enterococcus faecalis

SeqID	Clone name	Organism
497	E3M10000032G04	Enterococcus faecalis
498	E3M10000032G05	Enterococcus faecalis
499	E3M10000032G06	Enterococcus faecalis
500	E3M10000032G07	Enterococcus faecalis
501	E3M10000032H05	Enterococcus faecalis
502	E3M10000032H06	Enterococcus faecalis
503	E3M10000032H08	Enterococcus faecalis
504	E3M10000032H09	Enterococcus faecalis
505	E3M10000032H10	Enterococcus faecalis
506	E3M10000033A03	Enterococcus faecalis
507	E3M10000033A04	Enterococcus faecalis
508	E3M10000033A05	Enterococcus faecalis
509	E3M10000033A06	Enterococcus faecalis
510	E3M10000033A07	Enterococcus faecalis
511	E3M10000033A08	Enterococcus faecalis
512	E3M10000033A11	Enterococcus faecalis
513	E3M10000033B01	Enterococcus faecalis
514	E3M10000033B02	Enterococcus faecalis
515	E3M10000033B04	Enterococcus faecalis
516	E3M10000033B05	Enterococcus faecalis
517	E3M10000033B06	Enterococcus faecalis
518	E3M10000033B08	Enterococcus faecalis
519	E3M10000033B09	Enterococcus faecalis
520	E3M10000033C01	Enterococcus faecalis
521	E3M10000033C02	Enterococcus faecalis
522	E3M10000033C05	Enterococcus faecalis
523	E3M10000033C09	Enterococcus faecalis
524	E3M10000033C10	Enterococcus faecalis
525	E3M10000033C11	Enterococcus faecalis
526	E3M10000033C12	Enterococcus faecalis
527	E3M10000033D01	Enterococcus faecalis
528	E3M10000033D04	Enterococcus faecalis
529	E3M10000033D05	Enterococcus faecalis
530	E3M10000033D06	Enterococcus faecalis
531	E3M10000033D09	Enterococcus faecalis
532	E3M10000033D10	Enterococcus faecalis
533	E3M10000033D11	Enterococcus faecalis
534	E3M10000033E02	Enterococcus faecalis
535	E3M10000033E03	Enterococcus faecalis
536	E3M10000033E04	Enterococcus faecalis
537	E3M10000033E05	Enterococcus faecalis
538	E3M10000033E07	Enterococcus faecalis
539	E3M10000033E08	Enterococcus faecalis
540	E3M10000033E09	Enterococcus faecalis
541	E3M10000033E11	Enterococcus faecalis
542	E3M10000033F01	Enterococcus faecalis
543	E3M10000033F03	Enterococcus faecalis
544	E3M10000033F04	Enterococcus faecalis
545	E3M10000033F05	Enterococcus faecalis

SeqID	Clone name	Organism
546	E3M10000033F07	Enterococcus faecalis
547	E3M10000033F08	Enterococcus faecalis
548	E3M10000033F10	Enterococcus faecalis
549	E3M10000033F12	Enterococcus faecalis
550	E3M10000033G01	Enterococcus faecalis
551	E3M10000033G02	Enterococcus faecalis
552	E3M10000033G02	Enterococcus faecalis
553	E3M1000033G04	Enterococcus faecalis
554	E3M1000033G06	Enterococcus faecalis
555	E3M10000033G07	Enterococcus faecalis
556	E3M1000033G08	Enterococcus faecalis
557	E3M10000033G09	Enterococcus faecalis
558	E3M10000033G12	Enterococcus faecalis
559	E3M10000033H02	Enterococcus faecalis
560	E3M10000033H04	Enterococcus faecalis
561	E3M10000033H05	Enterococcus faecalis
562	E3M10000033H07	Enterococcus faecalis
563	E3M10000033H08	Enterococcus faecalis
564	E3M10000033H09	Enterococcus faecalis
565	E3M10000033H10	Enterococcus faecalis
566	E3M10000033H11	Enterococcus faecalis
567	E3M10000034A02	Enterococcus faecalis
568	E3M10000034A03	Enterococcus faecalis
569	E3M10000034A04	Enterococcus faecalis
570	E3M10000034B02	Enterococcus faecalis
571	E3M10000034B04	Enterococcus faecalis
572	E3M10000034C04	Enterococcus faecalis
573	E3M10000034D01	Enterococcus faecalis
574	E3M10000034D02	Enterococcus faecalis
575	E3M10000034E01	Enterococcus faecalis
576	E3M10000034E04	Enterococcus faecalis
577	E3M10000034F02	Enterococcus faecalis
578	E3M10000034F03	Enterococcus faecalis
579	E3M10000034F04	Enterococcus faecalis
580	E3M10000034G02	Enterococcus faecalis
581	E3M10000034G03	Enterococcus faecalis
582	E3M10000034H02	Enterococcus faecalis
583	E3M10000034H03	Enterococcus faecalis
584	E3M10000035A02	Enterococcus faecalis
585	E3M10000035A04	Enterococcus faecalis
586	E3M10000035A05	Enterococcus faecalis
587	E3M10000035A06	Enterococcus faecalis
588	E3M10000035A08	Enterococcus faecalis
589	E3M10000035A09	Enterococcus faecalis
590	E3M10000035A11	Enterococcus faecalis
591	E3M10000035B01	Enterococcus faecalis
592	E3M10000035B03	Enterococcus faecalis
593	E3M10000035B06	Enterococcus faecalis
594	E3M10000035B07	Enterococcus faecalis

SeqID	Clone name	Organism
595	E3M10000035B08	Enterococcus faecalis
596	E3M10000035B10	Enterococcus faecalis
597	E3M10000035B11	Enterococcus faecalis
598	E3M10000035B12	Enterococcus faecalis
599	E3M10000035C01	Enterococcus faecalis
600	E3M10000035C03	Enterococcus faecalis
601	E3M10000035C04	Enterococcus faecalis
602	E3M10000035C05	Enterococcus faecalis
603	E3M10000035C06	Enterococcus faecalis
604	E3M1000035C07	Enterococcus faecalis
605	E3M1000035C08	Enterococcus faecalis
606	E3M1000035C09	Enterococcus faecalis
607	E3M10000035C09	Enterococcus faecalis
608	E3M10000035C12	Enterococcus faecalis
609	E3M1000035D02	Enterococcus faecalis
610	E3M10000035D02	Enterococcus faecalis
611	E3M10000035D04	Enterococcus faecalis
612	E3M10000035D05	Enterococcus faecalis
613	E3M10000035D10	Enterococcus faecalis
614	E3M10000035D11	Enterococcus faecalis
615	E3M10000035E03	Enterococcus faecalis
616	E3M10000035E04	Enterococcus faecalis
617	E3M10000035E05	Enterococcus faecalis
618	E3M10000035E07	Enterococcus faecalis
619	E3M10000035E08	Enterococcus faecalis
620	E3M10000035E09	Enterococcus faecalis
621	E3M10000035E10	Enterococcus faecalis
622	E3M10000035E11	Enterococcus faecalis
623	E3M10000035E12	Enterococcus faecalis
624	E3M10000035F01	Enterococcus faecalis
625	E3M10000035F02	Enterococcus faecalis
626	E3M10000035F03	Enterococcus faecalis
627	E3M10000035F06	Enterococcus faecalis
628	E3M10000035F07	Enterococcus faecalis
629	E3M10000035F08	Enterococcus faecalis
630	E3M10000035F09	Enterococcus faecalis
631	E3M10000035F11	Enterococcus faecalis
632	E3M10000035F12	Enterococcus faecalis
633	E3M10000035G02	Enterococcus faecalis
634	E3M10000035G04	Enterococcus faecalis
635	E3M10000035G05	Enterococcus faecalis
636	E3M10000035G08	Enterococcus faecalis
637	E3M10000035G09	Enterococcus faecalis
638	E3M10000035G10	Enterococcus faecalis
639	E3M10000035G11	Enterococcus faecalis
640	E3M10000035H03	Enterococcus faecalis
641	E3M10000035H06	Enterococcus faecalis
642	E3M10000035H09	Enterococcus faecalis
643	E3M10000035H11	Enterococcus faecalis

SeqID	Clone name	Organism
644	E3M10000036A03	Enterococcus faecalis
645	E3M10000036A04	Enterococcus faecalis
646	E3M10000036A05	Enterococcus faecalis
647	E3M10000036A06	Enterococcus faecalis
648	E3M10000036A07	Enterococcus faecalis
649	E3M10000036A08	Enterococcus faecalis
650	E3M10000036A09	Enterococcus faecalis
651	E3M10000036A10	Enterococcus faecalis
652	E3M10000036B01	Enterococcus faecalis
653	E3M10000036B03	Enterococcus faecalis
654	E3M10000036B06	Enterococcus faecalis
655	E3M10000036B07	Enterococcus faecalis
656	E3M10000036B08	Enterococcus faecalis
657	E3M10000036B09	Enterococcus faecalis
658	E3M10000036B11	Enterococcus faecalis
659	E3M10000036B12	Enterococcus faecalis
660	E3M10000036C01	Enterococcus faecalis
661	E3M10000036C03	Enterococcus faecalis
662	E3M10000036C06	Enterococcus faecalis
663	E3M10000036C07	Enterococcus faecalis
664	E3M10000036C08	Enterococcus faecalis
665	E3M10000036C09	Enterococcus faecalis
666	E3M10000036C10	Enterococcus faecalis
667	E3M10000036C11	Enterococcus faecalis
668	E3M10000036D03	Enterococcus faecalis
669	E3M10000036D04	Enterococcus faecalis
670	E3M10000036D06	Enterococcus faecalis
671	E3M10000036D08	Enterococcus faecalis
672	E3M10000036D09	Enterococcus faecalis
673	E3M10000036D10	Enterococcus faecalis
674	E3M10000036D11	Enterococcus faecalis
675	E3M10000036D12	Enterococcus faecalis
676	E3M10000036E01	Enterococcus faecalis
677	E3M10000036E04	Enterococcus faecalis
678	E3M10000036E05 E3M10000036E07	Enterococcus faecalis
679 680	E3M10000036E08	Enterococcus faecalis Enterococcus faecalis
681	E3M10000036F03	Enterococcus jaecaus Enterococcus faecalis
682	E3M10000036F04	Enterococcus jaecaus Enterococcus faecalis
683	E3M10000036F05	Enterococcus faecalis Enterococcus faecalis
684	E3M10000036F08	Enterococcus faecalis Enterococcus faecalis
685	E3M10000036F09	Enterococcus faecalis Enterococcus faecalis
686	E3M1000036F10	Enterococcus faecalis Enterococcus faecalis
687	E3M10000036F12	Enterococcus faecalis Enterococcus faecalis
688	E3M10000036G01	Enterococcus faecalis Enterococcus faecalis
689	E3M10000036G02	Enterococcus faecalis
690	E3M1000036G03	Enterococcus faecalis Enterococcus faecalis
691	E3M1000036G04	Enterococcus faecalis Enterococcus faecalis
692	E3M1000036G06	Enterococcus faecatis Enterococcus faecalis
092	F274T1000030Q00	Emer ococcus jaecaus

SegID	Clone name	Organism
693	E3M10000036G10	Enterococcus faecalis
694	E3M10000036H02	Enterococcus faecalis
695	E3M10000036H03	Enterococcus faecalis
696	E3M10000036H04	Enterococcus faecalis
697	E3M10000036H05	Enterococcus faecalis
698	E3M10000036H06	Enterococcus faecalis
699	E3M10000036H07	Enterococcus faecalis
700	E3M10000036H08	Enterococcus faecalis
701	E3M10000036H09	Enterococcus faecalis
702	E3M10000036H10	Enterococcus faecalis
703	E3M10000037A03	Enterococcus faecalis
704	E3M10000037A06	Enterococcus faecalis
705	E3M10000037A08	Enterococcus faecalis
706	E3M10000037A09	Enterococcus faecalis
707	E3M10000037A10	Enterococcus faecalis
708	E3M10000037B02	Enterococcus faecalis
709	E3M10000037B07	Enterococcus faecalis
710	E3M10000037B08	Enterococcus faecalis
711	E3M10000037B11	Enterococcus faecalis
712	E3M10000037C01	Enterococcus faecalis
713	E3M10000037C02	Enterococcus faecalis
714	E3M10000037C04	Enterococcus faecalis
715	E3M10000037C05	Enterococcus faecalis
716	E3M10000037C07	Enterococcus faecalis
717	E3M10000037C11	Enterococcus faecalis
718	E3M10000037C12	Enterococcus faecalis
719	E3M10000037D02	Enterococcus faecalis
720	E3M10000037D03	Enterococcus faecalis
721	E3M10000037D04	Enterococcus faecalis
722	E3M10000037D05	Enterococcus faecalis
723	E3M10000037D06	Enterococcus faecalis
724	E3M10000037D09	Enterococcus faecalis
725	E3M10000037D11	Enterococcus faecalis
726	E3M10000037E01	Enterococcus faecalis
727	E3M10000037E02	Enterococcus faecalis
728	E3M10000037E03	Enterococcus faecalis
729	E3M10000037E05	Enterococcus faecalis
730	E3M10000037E07	Enterococcus faecalis
731	E3M10000037E08	Enterococcus faecalis
732	E3M10000037E10	Enterococcus faecalis
733	E3M10000037E12	Enterococcus faecalis
734	E3M10000037F01	Enterococcus faecalis
735	E3M10000037F02	Enterococcus faecalis
736	E3M10000037F06	Enterococcus faecalis
737	E3M10000037F07	Enterococcus faecalis
738	E3M10000037F12	Enterococcus faecalis
739	E3M10000037G01	Enterococcus faecalis
,,,,		
740	E3M10000037G02	Enterococcus faecalis

SeqID	Clone name	Organism
742	E3M10000037G05	Enterococcus faecalis
743	E3M10000037G06	Enterococcus faecalis
744	E3M10000037G07	Enterococcus faecalis
745	E3M10000037G08	Enterococcus faecalis
746	E3M10000037G10	Enterococcus faecalis
747	E3M10000037G11	Enterococcus faecalis
748	E3M10000037H02	Enterococcus faecalis
749	E3M10000037H05	Enterococcus faecalis
750	E3M10000037H07	Enterococcus faecalis
751	E3M10000037H10	Enterococcus faecalis
752	E3M10000037H11	Enterococcus faecalis
753	E3M10000038A02	Enterococcus faecalis
754	E3M10000038A03	Enterococcus faecalis
755	E3M10000038A05	Enterococcus faecalis
756	E3M10000038A06	Enterococcus faecalis
757	E3M10000038A07	Enterococcus faecalis
758	E3M10000038A09	Enterococcus faecalis
759	E3M10000038A10	Enterococcus faecalis
760	E3M10000038A11	Enterococcus faecalis
761	E3M10000038B02	Enterococcus faecalis
762	E3M10000038B03	Enterococcus faecalis
763	E3M10000038B04	Enterococcus faecalis
764	E3M10000038B05	Enterococcus faecalis
765	E3M10000038B07	Enterococcus faecalis
766	E3M10000038B08	Enterococcus faecalis
767	E3M10000038B09	Enterococcus faecalis
768	E3M10000038B11	Enterococcus faecalis
769	E3M10000038C02	Enterococcus faecalis
770	E3M10000038C03	Enterococcus faecalis
771	E3M10000038C05	Enterococcus faecalis
772	E3M10000038C07	Enterococcus faecalis
773	E3M10000038C10	Enterococcus faecalis
774	E3M10000038C12	Enterococcus faecalis
775	E3M10000038D01	Enterococcus faecalis
776	E3M10000038D02	Enterococcus faecalis
777	E3M10000038D04	Enterococcus faecalis
778	E3M10000038D08 E3M10000038D10	Enterococcus faecalis
779	i i	Enterococcus faecalis
780	E3M10000038D11	Enterococcus faecalis
781	E3M10000038D12	Enterococcus faecalis
782	E3M10000038E02	Enterococcus faecalis
783 784	E3M10000038E03 E3M10000038E04	Enterococcus faecalis
		Enterococcus faecalis
785	E3M10000038E05	Enterococcus faecalis
786	E3M10000038E07	Enterococcus faecalis
787	E3M10000038E08	Enterococcus faecalis
788	E3M10000038E11	Enterococcus faecalis
789	E3M10000038F02	Enterococcus faecalis
790	E3M10000038F04	Enterococcus faecalis

SeqID	Clone name	Organism
791	E3M10000038F05	Enterococcus faecalis
792	E3M10000038F06	Enterococcus faecalis
793	E3M10000038F07	Enterococcus faecalis
794	E3M10000038F09	Enterococcus faecalis
795	E3M10000038F10	Enterococcus faecalis
796	E3M10000038F11	Enterococcus faecalis
797	E3M10000038G02	Enterococcus faecalis
798	E3M10000038G03	Enterococcus faecalis
799	E3M10000038G06	Enterococcus faecalis
800	E3M10000038G07	Enterococcus faecalis
801	E3M10000038G11	Enterococcus faecalis
802	E3M10000038H02	Enterococcus faecalis
803	E3M10000038H05	Enterococcus faecalis
804	E3M10000038H06	Enterococcus faecalis
805	E3M10000038H07	Enterococcus faecalis
806	E3M10000038H08	Enterococcus faecalis
807	E3M10000038H09	Enterococcus faecalis
808	E3M10000038H10	Enterococcus faecalis
809	E3M10000039A02	Enterococcus faecalis
810	E3M10000039A06	Enterococcus faecalis
811	E3M10000039A07	Enterococcus faecalis
812	E3M10000039A08	Enterococcus faecalis
813	E3M10000039A10	Enterococcus faecalis
814	E3M10000039A11	Enterococcus faecalis
815	E3M10000039B01	Enterococcus faecalis
816	E3M10000039B03	Enterococcus faecalis
817	E3M10000039B04	Enterococcus faecalis
818	E3M10000039B06	Enterococcus faecalis
819	E3M10000039B07	Enterococcus faecalis
820	E3M10000039B08	Enterococcus faecalis
821	E3M10000039B09	Enterococcus faecalis
822	E3M10000039B11	Enterococcus faecalis
823	E3M10000039C02	Enterococcus faecalis
824	E3M10000039C04	Enterococcus faecalis
825	E3M10000039C05	Enterococcus faecalis
826	E3M10000039C06	Enterococcus faecalis
827	E3M10000039C07	Enterococcus faecalis
828	E3M10000039C08	Enterococcus faecalis
829	E3M10000039C09	Enterococcus faecalis
830	E3M10000039C10	Enterococcus faecalis
831	E3M10000039D02	Enterococcus faecalis
832	E3M10000039D03	Enterococcus faecalis
833	E3M10000039D04	Enterococcus faecalis
834	E3M10000039D06	Enterococcus faecalis
835	E3M10000039E01	Enterococcus faecalis
836	E3M10000039E02	Enterococcus faecalis
837	E3M10000039E03	Enterococcus faecalis
838	E3M10000039E05	Enterococcus faecalis
839	E3M10000039E07	Enterococcus faecalis

SeqID	Clone name	Organism
840	E3M10000039E08	Enterococcus faecalis
841	E3M10000039F01	Enterococcus faecalis
842	E3M10000039F02	Enterococcus faecalis
843	E3M10000039F03	Enterococcus faecalis
844	E3M10000039F06	Enterococcus faecalis
845	E3M10000039F07	Enterococcus faecalis
846	E3M10000039F08	Enterococcus faecalis
847	E3M10000039G01	Enterococcus faecalis
848	E3M10000039G02	Enterococcus faecalis
849	E3M10000039G05	Enterococcus faecalis
850	E3M10000039G07	Enterococcus faecalis
851	E3M10000039G09	Enterococcus faecalis
852	E3M10000039G10	Enterococcus faecalis
853	E3M10000039H02	Enterococcus faecalis
854	E3M10000039H07	Enterococcus faecalis
855	E3M10000039H08	Enterococcus faecalis
856	E3M10000039H10	Enterococcus faecalis
857	E3M10000039H11	Enterococcus faecalis
858	E3M10000040A03	Enterococcus faecalis
859	E3M10000040A05	Enterococcus faecalis
860	E3M10000040A07	Enterococcus faecalis
861	E3M10000040A09	Enterococcus faecalis
862	E3M10000040A10	Enterococcus faecalis
863	E3M10000040A11	Enterococcus faecalis
864	E3M10000040B01	Enterococcus faecalis
865	E3M10000040B02	Enterococcus faecalis
866	E3M10000040B05	Enterococcus faecalis
867	E3M10000040B06	Enterococcus faecalis
868	E3M10000040B08	Enterococcus faecalis
869	E3M10000040B09	Enterococcus faecalis
870	E3M10000040B10	Enterococcus faecalis
871	E3M10000040B11	Enterococcus faecalis
872	E3M10000040B12	Enterococcus faecalis
873	E3M10000040C02	Enterococcus faecalis
874	E3M10000040C05	Enterococcus faecalis
875	E3M10000040C06	Enterococcus faecalis
876	E3M10000040C07	Enterococcus faecalis
877	E3M10000040C08	Enterococcus faecalis
878	E3M1000040C09	Enterococcus faecalis
879	E3M10000040C10	Enterococcus faecalis
880	E3M10000040C11	Enterococcus faecalis
881	E3M10000040C12	Enterococcus faecalis
882	E3M10000040D03	Enterococcus faecalis
883	E3M10000040D04	Enterococcus faecalis
884	E3M10000040D08	Enterococcus faecalis
885	E3M10000040D12	Enterococcus faecalis
886	E3M10000040E02	Enterococcus faecalis
887	E3M10000040E10	Enterococcus faecalis
888	E3M10000040E11	Enterococcus faecalis

SeqID	Clone name	Organism
889	E3M10000040E12	Enterococcus faecalis
890	E3M10000040F01	Enterococcus faecalis
891	E3M10000040F03	Enterococcus faecalis
892	E3M10000040F08	Enterococcus faecalis
893	E3M10000040F09	Enterococcus faecalis
894	E3M10000040F10	Enterococcus faecalis
895	E3M10000040G01	Enterococcus faecalis
896	E3M10000040G02	Enterococcus faecalis
897	E3M10000040G04	Enterococcus faecalis
898	E3M10000040G05	Enterococcus faecalis
899	E3M10000040G07	Enterococcus faecalis
900	E3M10000040G08	Enterococcus faecalis
901	E3M10000040G09	Enterococcus faecalis
902	E3M10000040G11	Enterococcus faecalis
903	E3M10000040H02	Enterococcus faecalis
904	E3M10000040H03	Enterococcus faecalis
905	E3M10000040H04	Enterococcus faecalis
906	E3M10000040H05	Enterococcus faecalis
907	E3M10000040H09	Enterococcus faecalis
908	E3M10000041A03	Enterococcus faecalis
909	E3M10000041A05	Enterococcus faecalis
910	E3M10000041A08	Enterococcus faecalis
911	E3M10000041A09	Enterococcus faecalis
912	E3M10000041A10	Enterococcus faecalis
913	E3M10000041A11	Enterococcus faecalis
914	E3M10000041B02	Enterococcus faecalis
915	E3M10000041B03	Enterococcus faecalis
916	E3M10000041B05	Enterococcus faecalis
917	E3M10000041B06	Enterococcus faecalis
918	E3M10000041B08	Enterococcus faecalis
919	E3M10000041B09	Enterococcus faecalis
920	E3M10000041B10	Enterococcus faecalis
921	E3M10000041B11	Enterococcus faecalis
922	E3M10000041B12	Enterococcus faecalis
923	E3M10000041C01	Enterococcus faecalis
924	E3M10000041C07 E3M10000041C08	Enterococcus faecalis Enterococcus faecalis
925	E3M10000041C08	Enterococcus faecalis Enterococcus faecalis
926 927	E3M10000041C10	Enterococcus faecalis Enterococcus faecalis
927	E3M10000041C10	Enterococcus faecalis Enterococcus faecalis
928	E3M10000041C11	Enterococcus faecalis Enterococcus faecalis
930	E3M10000041C12	Enterococcus faecalis Enterococcus faecalis
930	E3M10000041D03	Enterococcus faecalis Enterococcus faecalis
931	E3M10000041D03	Enterococcus faecalis Enterococcus faecalis
932	E3M10000041D05	Enterococcus faecalis Enterococcus faecalis
933	E3M10000041D05	Enterococcus faecalis Enterococcus faecalis
934	E3M10000041D08	Enterococcus faecalis Enterococcus faecalis
935	E3M10000041D09	Enterococcus faecalis Enterococcus faecalis
937	E3M10000041D10	Enterococcus faecalis Enterococcus faecalis
93 /	MITO000041DIO	Enterococcus Jaecaus

SeqID	Clone name	Organism
938	E3M10000041D11	Enterococcus faecalis
939	E3M10000041D12	Enterococcus faecalis
940	E3M10000041E02	Enterococcus faecalis
941	E3M10000041E03	Enterococcus faecalis
942	E3M10000041E05	Enterococcus faecalis
943	E3M10000041E07	Enterococcus faecalis
944	E3M10000041E10	Enterococcus faecalis
945	E3M10000041E11	Enterococcus faecalis
946	E3M10000041F03	Enterococcus faecalis
947	E3M10000041F05	Enterococcus faecalis
948	E3M10000041F06	Enterococcus faecalis
949	E3M10000041F07	Enterococcus faecalis
950	E3M10000041F08	Enterococcus faecalis
951	E3M10000041F09	Enterococcus faecalis
952	E3M10000041F10	Enterococcus faecalis
953	E3M10000041F11	Enterococcus faecalis
954	E3M10000041G02	Enterococcus faecalis
955	E3M10000041G03	Enterococcus faecalis
956	E3M10000041G04	Enterococcus faecalis
957	E3M10000041G06	Enterococcus faecalis
958	E3M10000041G07	Enterococcus faecalis
959	E3M10000041G08	Enterococcus faecalis
960	E3M10000041G09	Enterococcus faecalis
961	E3M10000041G10	Enterococcus faecalis
962	E3M10000041G12	Enterococcus faecalis
963	E3M10000041H04	Enterococcus faecalis
964	E3M10000041H05	Enterococcus faecalis
965	E3M10000041H06	Enterococcus faecalis
966	E3M10000041H07	Enterococcus faecalis
967	E3M10000041H08	Enterococcus faecalis
968	E3M10000041H09	Enterococcus faecalis
969	E3M10000041H10	Enterococcus faecalis
970	E3M10000041H11	Enterococcus faecalis
971	E3M10000042A03	Enterococcus faecalis
972	E3M10000042A08	Enterococcus faecalis
973	E3M10000042A10	Enterococcus faecalis
974	E3M10000042B01	Enterococcus faecalis
975	E3M10000042B02	Enterococcus faecalis
976	E3M10000042B04	Enterococcus faecalis
977	E3M10000042B08	Enterococcus faecalis
978	E3M10000042B09	Enterococcus faecalis
979	E3M10000042B10	Enterococcus faecalis
980	E3M10000042B11	Enterococcus faecalis
981	E3M10000042C02	Enterococcus faecalis
982	E3M10000042C03	Enterococcus faecalis
983	E3M10000042C04	Enterococcus faecalis
984	E3M10000042C10	Enterococcus faecalis
985	E3M10000042D01	Enterococcus faecalis
986	E3M10000042D02	Enterococcus faecalis

SeqID	Clone name	Organism
987	E3M10000042D03	Enterococcus faecalis
988	E3M10000042D06	Enterococcus faecalis
989	E3M10000042D09	Enterococcus faecalis
990	E3M10000042D11	Enterococcus faecalis
991	E3M10000042D12	Enterococcus faecalis
992	E3M10000042E05	Enterococcus faecalis
993	E3M10000042E12	Enterococcus faecalis
994	E3M10000042F11	Enterococcus faecalis
995	E3M10000042G01	Enterococcus faecalis
996	E3M10000042G05	Enterococcus faecalis
997	E3M10000042G07	Enterococcus faecalis
998	E3M10000042G08	Enterococcus faecalis
999	E3M10000042G11	Enterococcus faecalis
1000	E3M10000042G12	Enterococcus faecalis
1001	E3M10000042H06	Enterococcus faecalis
1002	E3M10000042H08	Enterococcus faecalis
1003	E3M10000042H11	Enterococcus faecalis
1004	E3M10000043A02	Enterococcus faecalis
1005	E3M10000043A03	Enterococcus faecalis
1006	E3M10000043A05	Enterococcus faecalis
1007	E3M10000043A08	Enterococcus faecalis
1008	E3M10000043A09	Enterococcus faecalis
1009	E3M10000043A10	Enterococcus faecalis
1010	E3M10000043A11	Enterococcus faecalis
1011	E3M10000043B01	Enterococcus faecalis
1012	E3M10000043B02	Enterococcus faecalis
1013	E3M10000043B03	Enterococcus faecalis
1014	E3M10000043B06	Enterococcus faecalis
1015	E3M10000043B08	Enterococcus faecalis
1016	E3M10000043B09	Enterococcus faecalis
1017	E3M10000043B10	Enterococcus faecalis
1018	E3M10000043B11	Enterococcus faecalis
1019	E3M10000043B12	Enterococcus faecalis
1020	E3M10000043C01	Enterococcus faecalis
1021	E3M10000043C08	Enterococcus faecalis
1022	E3M10000043C09	Enterococcus faecalis
1023	E3M10000043D01	Enterococcus faecalis
1024	E3M10000043D02	Enterococcus faecalis
1025	E3M10000043D09	Enterococcus faecalis
1026	E3M10000043D10	Enterococcus faecalis
1027	E3M10000043D12	Enterococcus faecalis
1028	E3M10000043E03	Enterococcus faecalis
1029	E3M10000043E07	Enterococcus faecalis
1030	E3M10000043E08	Enterococcus faecalis
1031	E3M10000043E10	Enterococcus faecalis
1032	E3M10000043E11	Enterococcus faecalis
1033	E3M10000043F03	Enterococcus faecalis
1034	E3M10000043F04	Enterococcus faecalis
1035	E3M10000043F06	Enterococcus faecalis

SeqID	Clone name	Organism
1036	E3M10000043F08	Enterococcus faecalis
1037	E3M10000043F10	Enterococcus faecalis
1038	E3M10000043F12	Enterococcus faecalis
1039	E3M10000043G03	Enterococcus faecalis
1040	E3M10000043G04	Enterococcus faecalis
1041	E3M10000043G05	Enterococcus faecalis
1042	E3M10000043G07	Enterococcus faecalis
1043	E3M10000043G08	Enterococcus faecalis
1044	E3M10000043G10	Enterococcus faecalis
1045	E3M10000043G11	Enterococcus faecalis
1046	E3M10000043G12	Enterococcus faecalis
1047	E3M10000043H02	Enterococcus faecalis
1048	E3M10000043H05	Enterococcus faecalis
1049	E3M10000043H08	Enterococcus faecalis
1050	E3M10000043H09	Enterococcus faecalis
1051	E3M10000043H11	Enterococcus faecalis
1052	E3M10000044C02	Enterococcus faecalis
1053	E3M10000044E01	Enterococcus faecalis
1054	K1M10000002F02	Klebsiella pneumoniae
1055	K1M1000003C01	Klebsiella pneumoniae
1056	K1M10000004F06	Klebsiella pneumoniae
1057	K1M10000007F01	Klebsiella pneumoniae
1058	K1M10000008C02	Klebsiella pneumoniae
1059	K1M10000008C10	Klebsiella pneumoniae
1060	K1M1000008G10	Klebsiella pneumoniae
1061	K1M10000009D04	Klebsiella pneumoniae
1062	K1M10000013E04	Klebsiella pneumoniae
1063	K1M10000013E06	Klebsiella pneumoniae
1064	K1M10000019D06	Klebsiella pneumoniae
1065	K1M10000020B02	Klebsiella pneumoniae
1066	K1M10000021H06	Klebsiella pneumoniae
1067	K1M10000022C10	Klebsiella pneumoniae
1068	K1M10000023E09	Klebsiella pneumoniae
1069	K1M10000023E10	Klebsiella pneumoniae
1070	K1M10000030C07	Klebsiella pneumoniae
1071	K1M10000030E07	Klebsiella pneumoniae
1072	K1M10000031B11	Klebsiella pneumoniae
1073	K1M10000032E11	Klebsiella pneumoniae
1074	K1M10000033B02	Klebsiella pneumoniae
1075	K1M10000033E01	Klebsiella pneumoniae
1076	K1M10000036G08	Klebsiella pneumoniae
1077	K1M10000037D10	Klebsiella pneumoniae
1078	K1M10000038H09	Klebsiella pneumoniae
1079	K1M10000039H03	Klebsiella pneumoniae
1080	K1M10000043C01	Klebsiella pneumoniae
1081	K1M10000043D05	Klebsiella pneumoniae
1082	K1M10000043H10	Klebsiella pneumoniae
1083	K1M10000044D05	Klebsiella pneumoniae
1084	K1M10000044D08	Klebsiella pneumoniae
	. L	<u> </u>

SeqID	Clone name	Organism
1085	K1M10000044E05	Klebsiella pneumoniae
1086	K1M10000044G05	Klebsiella pneumoniae
1087	K1M10000045A07	Klebsiella pneumoniae
1088	K1M10000045D10	Klebsiella pneumoniae
1089	K1M1000003D03	Klebsiella pneumoniae
1090	K1M10000010C02	Klebsiella pneumoniae
1091	K1M10000021H10	Klebsiella pneumoniae
1092	P1M10000008C06	Pseudomonas aeruginosa
1093	P1M1000008G04	Pseudomonas aeruginosa
1094	P1M10000010C03	Pseudomonas aeruginosa
1095	P1M10000014H10	Pseudomonas aeruginosa
1096	P1M10000015C06	Pseudomonas aeruginosa
1097	P1M10000015C09	Pseudomonas aeruginosa
1098	P1M10000016C04	Pseudomonas aeruginosa
1099	P1M10000018B01	Pseudomonas aeruginosa
1100	P1M10000018C01	Pseudomonas aeruginosa
1101	P1M10000018E01	Pseudomonas aeruginosa
1102	P1M10000018G01	Pseudomonas aeruginosa
1103	P1M10000019F01	Pseudomonas aeruginosa
1104	P1M10000021G03	Pseudomonas aeruginosa
1105	P1M10000021G05	Pseudomonas aeruginosa
1106	P1M10000022D09	Pseudomonas aeruginosa
1107	P1M10000024D06	Pseudomonas aeruginosa
1108	P1M10000024E06	Pseudomonas aeruginosa
1109	P1M10000024H03	Pseudomonas aeruginosa
1110	P1M10000025A06	Pseudomonas aeruginosa
1111	P1M10000025G07	Pseudomonas aeruginosa
1112	P1M10000025H07	Pseudomonas aeruginosa
1113	P1M10000026E06	Pseudomonas aeruginosa
1114	P1M10000026F04	Pseudomonas aeruginosa
1115	P1M10000026G09	Pseudomonas aeruginosa
1116	P1M10000026H02	Pseudomonas aeruginosa
	P1M10000026H05 P1M10000027A06	Pseudomonas aeruginosa Pseudomonas aeruginosa
1118	P1M10000027A06	3
1119	P1M10000027B02	Pseudomonas aeruginosa
1121	P1M10000027G03	Pseudomonas aeruginosa Pseudomonas aeruginosa
1122	P1M10000028A08	Pseudomonas aeruginosa
1123	P1M10000028E02	Pseudomonas aeruginosa
1124	P1M10000029A09	Pseudomonas aeruginosa
1125	P1M10000029A09	Pseudomonas aeruginosa
1126	P1M10000029H05	Pseudomonas aeruginosa Pseudomonas aeruginosa
1127	P1M10000032F04	Pseudomonas aeruginosa
1128	P1M10000032F04	Pseudomonas aeruginosa
1129	P1M10000033R02	Pseudomonas aeruginosa
1130	P1M10000033E03	Pseudomonas aeruginosa
1131	P1M10000033E03	Pseudomonas aeruginosa
1132	P1M10000033G08	Pseudomonas aeruginosa
1133	P1M1000035A06	Pseudomonas aeruginosa
	1 11110000033700	T DOWNOUTHING ACT RELITION

SeqID	Clone name	Organism
1134	P1M10000037B12	Pseudomonas aeruginosa
1135	P1M10000037G12	Pseudomonas aeruginosa
1136	P1M10000038B08	Pseudomonas aeruginosa
1137	P1M10000038C03	Pseudomonas aeruginosa
1138	P1M10000038C06	Pseudomonas aeruginosa
1139	P1M10000038F04	Pseudomonas aeruginosa
1140	P1M10000038G02	Pseudomonas aeruginosa
1141	P1M10000039G05	Pseudomonas aeruginosa
1142	P1M10000039G12	Pseudomonas aeruginosa
1143	P1M10000040C01	Pseudomonas aeruginosa
1144	P1M10000040C04	Pseudomonas aeruginosa
1145	P1M10000040D04	Pseudomonas aeruginosa
1146	P1M10000040D05	Pseudomonas aeruginosa
1147	P1M10000040E10	Pseudomonas aeruginosa
1148	P1M10000040H03	Pseudomonas aeruginosa
1149	P1M10000041A12	Pseudomonas aeruginosa
1150	P1M10000041B02	Pseudomonas aeruginosa
1151	P1M10000041E01	Pseudomonas aeruginosa
1152	P1M10000041F01	Pseudomonas aeruginosa
1153	P1M10000042B12	Pseudomonas aeruginosa
1154	P1M10000042E08	Pseudomonas aeruginosa
1155	P1M10000043A03	Pseudomonas aeruginosa
1156	P1M10000043D06	Pseudomonas aeruginosa
1157	P1M10000044F07	Pseudomonas aeruginosa
1158	P1M10000046B03	Pseudomonas aeruginosa
1159	P1M10000046C07	Pseudomonas aeruginosa
1160	P1M10000046C08	Pseudomonas aeruginosa
1161	P1M10000046C09	Pseudomonas aeruginosa
1162	P1M10000046G11 P1M10000047B04	Pseudomonas aeruginosa
1163	P1M10000047B04	Pseudomonas aeruginosa
1164	P1M10000047E11	Pseudomonas aeruginosa Pseudomonas aeruginosa
1165	P1M10000047F07	Pseudomonas aeruginosa Pseudomonas aeruginosa
1167	P1M10000047G10	Pseudomonas aeruginosa Pseudomonas aeruginosa
1168	P1M10000049E08	Pseudomonas aeruginosa Pseudomonas aeruginosa
1169	P1M10000049E08	Pseudomonas aeruginosa
1170	P1M1000059G11	Pseudomonas aeruginosa
1171	P1M1000051D11	Pseudomonas aeruginosa
1172	P1M10000051F01	Pseudomonas aeruginosa
1173	P1M10000052C03	Pseudomonas aeruginosa
1174	P1M10000052C12	Pseudomonas aeruginosa
1175	P1M10000052E04	Pseudomonas aeruginosa
1176	P1M10000053B12	Pseudomonas aeruginosa
1177	P1M10000053C02	Pseudomonas aeruginosa
1178	P1M10000053E07	Pseudomonas aeruginosa
1179	P1M10000053F08	Pseudomonas aeruginosa
1180	P1M10000055A11	Pseudomonas aeruginosa
1181	P1M10000055C08	Pseudomonas aeruginosa
1182	P1M10000055E05	Pseudomonas aeruginosa
		1

	16	lo
SeqID	Clone name	Organism
1183	P1M10000056C07	Pseudomonas aeruginosa
1184	P1M10000056F05	Pseudomonas aeruginosa
1185	P1M10000056F06	Pseudomonas aeruginosa
1186	P1M1000056G01	Pseudomonas aeruginosa
1187	P1M10000058B07	Pseudomonas aeruginosa
1188	P1M10000059B04	Pseudomonas aeruginosa
1189	P1M10000059B10	Pseudomonas aeruginosa
1190	P1M10000059B11	Pseudomonas aeruginosa
1191	P1M10000059D11	Pseudomonas aeruginosa
1192	P1M10000059H08	Pseudomonas aeruginosa
1193	P1M10000059H09	Pseudomonas aeruginosa
1194	P1M10000060E03	Pseudomonas aeruginosa
1195	P1M10000060H02	Pseudomonas aeruginosa
1196	P1M10000060H04	Pseudomonas aeruginosa
1197	P1M10000061B04	Pseudomonas aeruginosa
1198	P1M10000061E04	Pseudomonas aeruginosa
1199	P1M10000061F04	Pseudomonas aeruginosa
1200	P1M10000062A12	Pseudomonas aeruginosa
1201	P1M10000062C03	Pseudomonas aeruginosa
1202	P1M10000062C04	Pseudomonas aeruginosa
1203	P1M10000062C07	Pseudomonas aeruginosa
1204	P1M10000062C12	Pseudomonas aeruginosa
1205	P1M10000062D07	Pseudomonas aeruginosa
1206	P1M10000062D08	Pseudomonas aeruginosa
1207	P1M10000062E08	Pseudomonas aeruginosa
1208	P1M10000062F06	Pseudomonas aeruginosa
1209	P1M10000062G11	Pseudomonas aeruginosa
1210	P1M10000062H01 P1M10000062H04	Pseudomonas aeruginosa
1211	P1M10000063F02	Pseudomonas aeruginosa
1212	P1M10000063G02	Pseudomonas aeruginosa Pseudomonas aeruginosa
1213	P1M10000063H02	Pseudomonas aeruginosa Pseudomonas aeruginosa
1214	P1M10000064A10	Pseudomonas aeruginosa Pseudomonas aeruginosa
1213	P1M10000064C02	Pseudomonas aeruginosa
1217	P1M10000064C03	Pseudomonas aeruginosa
1217	P1M10000064D03	Pseudomonas aeruginosa
1219	P1M10000064E05	Pseudomonas aeruginosa
1220	P1M10000064G12	L.,
1220	P1M10000064H07	Pseudomonas aeruginosa Pseudomonas aeruginosa
1222	P1M10000065A04	
1223	P1M10000065B07	Pseudomonas aeruginosa Pseudomonas aeruginosa
1223	P1M10000065C03	Pseudomonas aeruginosa Pseudomonas aeruginosa
1224	P1M10000065C05	Pseudomonas aeruginosa Pseudomonas aeruginosa
1225	PIM10000065D06	Pseudomonas aeruginosa Pseudomonas aeruginosa
1226	P1M10000065F01	Pseudomonas aeruginosa Pseudomonas aeruginosa
1227	P1M10000065G06	<u> </u>
1228	P1M10000065H07	Pseudomonas aeruginosa Pseudomonas aeruginosa
1230	PIM10000066A10	
1230	P1M10000066A11	Pseudomonas aeruginosa
1231	L IMITOOOOOWII	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1232	P1M10000066F04	Pseudomonas aeruginosa
1233	P1M10000067A05	Pseudomonas aeruginosa
1234	P1M10000067A06	Pseudomonas aeruginosa
1235	P1M10000067A08	Pseudomonas aeruginosa
1236	P1M10000067C04	Pseudomonas aeruginosa
1237	P1M10000067C06	Pseudomonas aeruginosa
1238	P1M10000067D05	Pseudomonas aeruginosa
1239	P1M10000067F05	Pseudomonas aeruginosa
1240	P1M10000067G05	Pseudomonas aeruginosa
1241	P1M10000068A09	Pseudomonas aeruginosa
1242	P1M10000068D04	Pseudomonas aeruginosa
1243	P1M10000068F04	Pseudomonas aeruginosa
1244	P1M10000068F08	Pseudomonas aeruginosa
1245	P1M10000068G01	Pseudomonas aeruginosa
1246	P1M10000068H05	Pseudomonas aeruginosa
1247	P1M10000069D09	Pseudomonas aeruginosa
1248	P1M10000069G06	Pseudomonas aeruginosa
1249	P1M10000069H02	Pseudomonas aeruginosa
1250	P1M10000070A05	Pseudomonas aeruginosa
1251	P1M10000070B10	Pseudomonas aeruginosa .
1252	P1M10000070C06	Pseudomonas aeruginosa
1253	P1M10000070D08	Pseudomonas aeruginosa
1254	P1M10000070E03	Pseudomonas aeruginosa
1255	P1M10000070G06	Pseudomonas aeruginosa
1256	P1M10000070G12	Pseudomonas aeruginosa
1257	P1M10000070H06	Pseudomonas aeruginosa
1258	P1M10000071A03	Pseudomonas aeruginosa
1259	P1M10000071C01	Pseudomonas aeruginosa
1260	P1M10000071E04	Pseudomonas aeruginosa
1261	P1M10000071F01	Pseudomonas aeruginosa
1262	P1M10000073A06	Pseudomonas aeruginosa
1263	P1M10000073B10	Pseudomonas aeruginosa
1264	P1M10000073D04	Pseudomonas aeruginosa
1265	P1M10000073D09	Pseudomonas aeruginosa
1266	P1M10000073G03	Pseudomonas aeruginosa
1267	P1M10000074B01	Pseudomonas aeruginosa
1268	P1M10000074B04	Pseudomonas aeruginosa
1269	P1M10000074E04	Pseudomonas aeruginosa
1270	P1M10000074E09	Pseudomonas aeruginosa
1271	P1M10000074F10	Pseudomonas aeruginosa
1272	P1M10000074G12	Pseudomonas aeruginosa
1273	P1M10000075A04	Pseudomonas aeruginosa
1274	P1M10000075B03	Pseudomonas aeruginosa
1275	P1M10000075F02	Pseudomonas aeruginosa
1276	P1M10000075G05	Pseudomonas aeruginosa
1277	P1M10000076D05	Pseudomonas aeruginosa
1278	P1M10000076D10	Pseudomonas aeruginosa
1279	P1M10000077A08	Pseudomonas aeruginosa
1280	P1M10000077C08	Pseudomonas aeruginosa

SeqID	Clone name	Organism
1281	P1M10000077E04	Pseudomonas aeruginosa
1282	P1M10000077H05	Pseudomonas aeruginosa
1283	P1M10000079A10	Pseudomonas aeruginosa
1284	P1M10000079B10	Pseudomonas aeruginosa ·
1285	P1M10000079C10	Pseudomonas aeruginosa
1286	P1M10000079D01	Pseudomonas aeruginosa
1287	P1M10000079D10	Pseudomonas aeruginosa
1288	P1M10000079F06	Pseudomonas aeruginosa
1289	P1M10000080B01	Pseudomonas aeruginosa
1290	P1M10000080B06	Pseudomonas aeruginosa
1291	P1M10000080C01	Pseudomonas aeruginosa
1292	P1M10000080C06	Pseudomonas aeruginosa
. 1293	P1M10000080E04	Pseudomonas aeruginosa
1294	P1M10000081D12	Pseudomonas aeruginosa
1295	P1M10000081G05	Pseudomonas aeruginosa
1296	P1M10000081H05	Pseudomonas aeruginosa
1297	P1M10000082A05	Pseudomonas aeruginosa
1298	P1M10000082B04	Pseudomonas aeruginosa
1299	P1M10000082C05	Pseudomonas aeruginosa
1300	P1M10000082D05	Pseudomonas aeruginosa
1301	P1M10000082E05	Pseudomonas aeruginosa
1302	P1M10000083A11	Pseudomonas aeruginosa
1303	P1M10000083B01	Pseudomonas aeruginosa
1304	P1M10000083B12	Pseudomonas aeruginosa
1305	PIM10000083C11	Pseudomonas aeruginosa
1306	P1M10000083C12	Pseudomonas aeruginosa
1307	PIM10000084A04	Pseudomonas aeruginosa
1308	PIM10000084D03	Pseudomonas aeruginosa
1309	P1M10000084E04 P1M10000084E11	Pseudomonas aeruginosa
1310	P1M10000084E11	Pseudomonas aeruginosa Pseudomonas aeruginosa
1311	P1M10000084F08	Pseudomonas aeruginosa Pseudomonas aeruginosa
1312	P1M1000085D06	Pseudomonas aeruginosa Pseudomonas aeruginosa
1313	P1M10000086A02	Pseudomonas aeruginosa Pseudomonas aeruginosa
1314	P1M10000086D02	Pseudomonas aeruginosa Pseudomonas aeruginosa
1316	P1M10000086E05	Pseudomonas aeruginosa
1317	P1M10000087A11	Pseudomonas aeruginosa
1318	P1M10000087C09	Pseudomonas aeruginosa
1319	P1M10000087E04	Pseudomonas aeruginosa
1320	P1M1000007E04	Pseudomonas aeruginosa
1321	P1M10000087F09	Pseudomonas aeruginosa
1322	P1M10000088A07	Pseudomonas aeruginosa
1323	P1M10000088D06	Pseudomonas aeruginosa
1324	P1M1000089C08	Pseudomonas aeruginosa
1325	P1M10000089D11	Pseudomonas aeruginosa
1326	P1M10000089G08	Pseudomonas aeruginosa
1327	P1M10000090B11	Pseudomonas aeruginosa
1328	P1M10000090F06	Pseudomonas aeruginosa
1329	P1M1000090F08	Pseudomonas aeruginosa
	<u> </u>	

SeqID	Clone name	Organism
1330	P1M10000091D02	Pseudomonas aeruginosa
1331	P1M10000091E09	Pseudomonas aeruginosa
1332	P1M10000091G10	Pseudomonas aeruginosa
1333	P1M10000092B02	Pseudomonas aeruginosa
1334	P1M10000092B10	Pseudomonas aeruginosa
1335	P1M10000092D09	Pseudomonas aeruginosa
1336	P1M10000092E02	Pseudomonas aeruginosa
1337	P1M10000092F05	Pseudomonas aeruginosa
1338	P1M10000093A03	Pseudomonas aeruginosa
1339	P1M10000093B09	Pseudomonas aeruginosa
1340	P1M10000093C08	Pseudomonas aeruginosa
1341	P1M10000093E09	Pseudomonas aeruginosa
1342	P1M10000093F03	Pseudomonas aeruginosa
1343	P1M10000093H07	Pseudomonas aeruginosa
1344	P1M10000094F04	Pseudomonas aeruginosa
1345	P1M10000094H03	Pseudomonas aeruginosa
1346	P1M10000095C01	Pseudomonas aeruginosa
1347	P1M10000095C09	Pseudomonas aeruginosa
1348	P1M10000095E04	Pseudomonas aeruginosa
1349	P1M10000095G04	Pseudomonas aeruginosa
1350	P1M10000096E04	Pseudomonas aeruginosa
1351	P1M10000096E12	Pseudomonas aeruginosa
1352	ID2	Pseudomonas aeruginosa
1353	4.1	Pseudomonas aeruginosa
1354	S1M10000001A05	Staphylococcus aureus
1355	S1M10000001A08	Staphylococcus aureus
1356	S1M10000001A09	Staphylococcus aureus
1357	S1M10000001A10	Staphylococcus aureus
1358	S1M10000001C06	Staphylococcus aureus
1359	S1M10000001D01	Staphylococcus aureus
1360	S1M10000001D02	Staphylococcus aureus
1361	S1M10000001D06	Staphylococcus aureus
1362	S1M10000001D07	Staphylococcus aureus
1363	S1M10000001E02	Staphylococcus aureus
1364	S1M10000001E04	Staphylococcus aureus
1365	S1M10000001E05	Staphylococcus aureus
1366	S1M10000001E09	Staphylococcus aureus
1367 1368	S1M10000001E10 S1M10000001E11	Staphylococcus aureus Staphylococcus aureus
1369	S1M10000001E11	
1370	S1M10000001F04	Staphylococcus aureus
1370	S1M10000001F04	Staphylococcus aureus
1371	S1M10000001F09	Staphylococcus aureus Staphylococcus aureus
1372	S1M10000001F10	
1374	S1M10000001F10	Staphylogogyu gyrous
1374	S1M10000001F11	Staphylogogya gyreys
1376	S1M1000001G01	Staphylococcus aureus Staphylococcus aureus
1377	S1M1000001G07	
	<u> </u>	Staphylococcus aureus
1378	S1M10000001G10	Staphylococcus aureus

SeqID	Clone name	Organism
1379	S1M10000002A02	Staphylococcus aureus
1380	S1M10000002A09	Staphylococcus aureus
1381	S1M10000002A10	Staphylococcus aureus
1382	S1M10000002A12	Staphylococcus aureus
1383	S1M10000002B01	Staphylococcus aureus
1384	S1M10000002B03	Staphylococcus aureus
1385	S1M10000002B04	Staphylococcus aureus
1386	S1M10000002B05	Staphylococcus aureus
1387	S1M10000002B06	Staphylococcus aureus
1388	S1M10000002B07	Staphylococcus aureus
1389	S1M10000002B09	Staphylococcus aureus
1390	S1M10000002B11	Staphylococcus aureus
1391	S1M10000002C02	Staphylococcus aureus
1392	S1M1000002C09	Staphylococcus aureus
1393	S1M10000002C10	Staphylococcus aureus
1394	S1M10000002C11	Staphylococcus aureus
1395	S1M10000002C12	Staphylococcus aureus
1396	S1M10000002D01	Staphylococcus aureus
1397	S1M1000002D02	Staphylococcus aureus
1398	S1M10000002D03	Staphylococcus aureus
1399	S1M10000002D05	Staphylococcus aureus
1400	S1M1000002D07	Staphylococcus aureus
1401	S1M1000002D08	Staphylococcus aureus
1402	S1M10000002D10	Staphylococcus aureus
1403	S1M10000002D12	Staphylococcus aureus
1404	S1M10000002E01	Staphylococcus aureus
1405	S1M10000002E02	Staphylococcus aureus
1406	S1M10000002E07 S1M10000002E09	Staphylococcus aureus
1407	S1M10000002E09	Staphylococcus aureus
1408	S1M10000002E11	Staphylococcus aureus Staphylococcus aureus
1410	S1M10000002E12	Staphylococcus aureus Staphylococcus aureus
1410	S1M10000002F01	Staphylococcus aureus Staphylococcus aureus
1411	S1M10000002F02	Staphylococcus aureus
1413	S1M10000002F09	Staphylococcus aureus
1414	S1M1000002F12	Staphylococcus aureus
1415	S1M1000002G01	Staphylococcus aureus
1416	S1M1000002G03	Staphylococcus aureus
1417	S1M10000002G05	Staphylococcus aureus
1418	S1M1000002G06	Staphylococcus aureus
1419	S1M10000002G07	Staphylococcus aureus
1420	S1M1000002G08	Staphylococcus aureus
1421	S1M1000002G09	Staphylococcus aureus
1422	S1M10000002G10	Staphylococcus aureus
1423	S1M10000002G11	Staphylococcus aureus
1424	S1M10000002G12	Staphylococcus aureus
1425	S1M10000003A01	Staphylococcus aureus
1426	S1M1000003A02	Staphylococcus aureus
1427	S1M10000003A03	Staphylococcus aureus

SeqID	Clone name	Organism
1428	S1M1000003A04	Staphylococcus aureus
1429	S1M1000003A06	Staphylococcus aureus
1430	S1M1000003A07	Staphylococcus aureus
1431	S1M1000003A08	Staphylococcus aureus
1432	S1M1000003A10	Staphylococcus aureus
1433	S1M10000003A11	Staphylococcus aureus
1434	S1M1000003B06	Staphylococcus aureus
1435	S1M10000003B08	Staphylococcus aureus
1436	S1M10000003B09	Staphylococcus aureus
1437	S1M10000003B12	Staphylococcus aureus
1438	S1M1000003C06	Staphylococcus aureus
1439	S1M10000003C07	Staphylococcus aureus
1440	S1M10000003C10	Staphylococcus aureus
1441	S1M10000003C12	Staphylococcus aureus
1442	S1M10000003D05	Staphylococcus aureus
1443	S1M10000003D06	Staphylococcus aureus
1444	S1M10000003D08	Staphylococcus aureus
1445	S1M10000003D10	Staphylococcus aureus
1446	S1M10000003E07	Staphylococcus aureus
1447	S1M10000003E09	Staphylococcus aureus
1448	S1M10000003E10	Staphylococcus aureus
1449	S1M10000003E11	Staphylococcus aureus
1450	S1M10000003F02	Staphylococcus aureus
1451	S1M10000003F05	Staphylococcus aureus
1452	S1M10000003F06	Staphylococcus aureus
1453	S1M10000003F07	Staphylococcus aureus
1454	S1M10000003F08	Staphylococcus aureus
1455	S1M10000003F12	Staphylococcus aureus
1456	S1M10000003G03	Staphylococcus aureus
1457	S1M10000003G04	Staphylococcus aureus
1458	S1M10000003G08	Staphylococcus aureus
1459	S1M10000003G10	Staphylococcus aureus
1460	S1M10000004A04	Staphylococcus aureus
1461	S1M10000004A06	Staphylococcus aureus
1462	S1M10000004A07	Staphylococcus aureus
1463	S1M10000004A11	Staphylococcus aureus
1464	S1M10000004A12	Staphylococcus aureus
1465	S1M10000004B03	Staphylococcus aureus
1466	S1M10000004B04	Staphylococcus aureus
1467	S1M10000004B06	Staphylococcus aureus
1468	S1M10000004B08 S1M10000004B09	Staphylococcus aureus
1469		Staphylococcus aureus
1470	S1M10000004B11	Staphylococcus aureus
1471	S1M10000004C01	Staphylococcus aureus
1472	S1M10000004C02	Staphylococcus aureus
1473	S1M10000004C03	Staphylococcus aureus
1474	S1M10000004C06	Staphylococcus aureus
1475	S1M10000004C07	Staphylococcus aureus
1476	S1M10000004C08	Staphylococcus aureus

SeqID	Clone name	Organism
1477	S1M10000004C09	Staphylococcus aureus
1478	S1M10000004C10	Staphylococcus aureus
1479	SIM10000004C12	Staphylococcus aureus
1480	S1M10000004D01	Staphylococcus aureus
1481	S1M10000004D03	Staphylococcus aureus
1482	S1M10000004D04	Staphylococcus aureus
1483	SIM10000004D06	Staphylococcus aureus
1484	S1M10000004D07	Staphylococcus aureus
1485	S1M10000004D08	Staphylococcus aureus
1486	S1M10000004D10	Staphylococcus aureus
1487	S1M10000004D12	Staphylococcus aureus
1488	S1M10000004E03	Staphylococcus aureus
1489	S1M10000004E04	Staphylococcus aureus
1490	S1M10000004E06	Staphylococcus aureus
1491	S1M10000004E07	Staphylococcus aureus
1492	S1M10000004E11	Staphylococcus aureus
1493	S1M10000004E12	Staphylococcus aureus
1494	S1M10000004F01	Staphylococcus aureus
1495	S1M10000004F02	Staphylococcus aureus
1496	S1M10000004F06	Staphylococcus aureus
1497	S1M10000004F07	Staphylococcus aureus
1498	S1M10000004F08	Staphylococcus aureus
1499	S1M10000004F09	Staphylococcus aureus
1500	S1M10000004F12	Staphylococcus aureus
1501	S1M10000004G01	Staphylococcus aureus
1502	S1M1000004G02	Staphylococcus aureus
1503	S1M10000004G03	Staphylococcus aureus
1504	S1M10000004G05	Staphylococcus aureus
1505	S1M1000004G06	Staphylococcus aureus
1506	S1M1000004G07	Staphylococcus aureus
1507	S1M1000004G09	Staphylococcus aureus
1508	S1M10000004G12	Staphylococcus aureus
1509	S1M10000005A01	Staphylococcus aureus
1510	S1M10000005A03	Staphylococcus aureus
1511	S1M10000005A05 S1M10000005A06	Staphylococcus aureus Staphylococcus aureus
1	S1M10000005A05	,
1513 1514	S1M10000005A07	Staphylococcus aureus Staphylococcus aureus
1514	S1M10000005A08	Staphylococcus aureus Staphylococcus aureus
1516	S1M10000005A10	Staphylococcus aureus Staphylococcus aureus
1517	S1M10000005A10	Staphylococcus aureus
1517	S1M1000005A11 S1M10000005B02	Staphylococcus aureus
1519	S1M10000005B04	Staphylococcus aureus
1520	S1M10000005B07	Staphylococcus aureus
1521	S1M1000005B07	Staphylococcus aureus
1522	S1M10000005B09	Staphylococcus aureus
1523	S1M10000005B09	Staphylococcus aureus
1524	S1M10000005B12	Staphylococcus aureus
1525	S1M1000005C05	Staphylococcus aureus
1323	121111000000000	Diaphysococom amens

SeqID	Clone name	Organism
1526	S1M1000005C06	Staphylococcus aureus
1527	S1M1000005C09	Staphylococcus aureus
1528	S1M1000005C11	Staphylococcus aureus
1529	S1M10000005D01	Staphylococcus aureus
1530	S1M10000005D02	Staphylococcus aureus
1531	S1M10000005D03	Staphylococcus aureus
1532	S1M10000005D04	Staphylococcus aureus
1533	S1M10000005D05	Staphylococcus aureus
1534	S1M10000005D06	Staphylococcus aureus
1535	S1M10000005D07 .	Staphylococcus aureus
1536	S1M10000005D08	Staphylococcus aureus
1537	S1M10000005D09	Staphylococcus aureus
1538	S1M10000005D11	Staphylococcus aureus
1539	S1M10000005D12	Staphylococcus aureus
1540	S1M10000005E01	Staphylococcus aureus
1541	S1M10000005E02	Staphylococcus aureus
1542	S1M10000005E05	Staphylococcus aureus
1543	S1M10000005E06	Staphylococcus aureus
1544	S1M10000005E07	Staphylococcus aureus
1545	S1M10000005E08	Staphylococcus aureus
1546	S1M10000005E10	Staphylococcus aureus
1547	S1M10000005E11	Staphylococcus aureus
1548	S1M10000005E12	Staphylococcus aureus
1549	S1M10000005F02	Staphylococcus aureus
1550	S1M10000005F03	Staphylococcus aureus
1551	S1M10000005F04	Staphylococcus aureus
1552 1553	S1M10000006A03 S1M10000006A04	Staphylococcus aureus Staphylococcus aureus
1554	S1M10000006A04	Staphylococcus aureus Staphylococcus aureus
1555	S1M10000006A07	Staphylococcus aureus Staphylococcus aureus
1556	S1M10000006A08	Staphylococcus aureus
1557	S1M10000006A10	Staphylococcus aureus
1558	S1M10000006A12	Staphylococcus aureus
1559	S1M10000006B02	Staphylococcus aureus
1560	S1M10000006B03	Staphylococcus aureus
1561	S1M10000006B04	Staphylococcus aureus
1562	S1M10000006B07	Staphylococcus aureus
1563	S1M10000006B10	Staphylococcus aureus
1564	S1M10000006B11	Staphylococcus aureus
1565	S1M10000006C02	Staphylococcus aureus
1566	S1M1000006C04	Staphylococcus aureus
1567	S1M10000006C06	Staphylococcus aureus
1568	S1M1000006C07	Staphylococcus aureus
1569	S1M1000006C08	Staphylococcus aureus
1570	S1M1000006C10	Staphylococcus aureus
1571	S1M1000006D03	Staphylococcus aureus
1572	S1M1000006D05	Staphylococcus aureus
1573	S1M10000006D06	Staphylococcus aureus
1574	S1M1000006D07	Staphylococcus aureus
L		<u></u>

SeqID	Clone name	Organism
1575	S1M10000006D08	Staphylococcus aureus
1576	S1M10000006E02	Staphylococcus aureus
1577	S1M10000006E03	Staphylococcus aureus
1578	S1M10000006E04	Staphylococcus aureus
1579	S1M10000006E07	Staphylococcus aureus
1580	S1M10000006E08	Staphylococcus aureus
1581	S1M10000006F01	Staphylococcus aureus
1582	S1M10000006F02	Staphylococcus aureus
1583	S1M10000006F03	Staphylococcus aureus
1584	S1M10000006F04	Staphylococcus aureus
1585	S1M10000006F06	Staphylococcus aureus
1586	S1M10000006G02	Staphylococcus aureus
1587	S1M1000006G03	Staphylococcus aureus
1588	S1M1000006G05	Staphylococcus aureus
1589	S1M1000006G06	Staphylococcus aureus
1590	S1M1000006G07	Staphylococcus aureus
1591	S1M1000006G09	Staphylococcus aureus
1592	S1M10000006G10	Staphylococcus aureus
1593	S1M1000006G11	Staphylococcus aureus
1594	S1M10000007A02	Staphylococcus aureus
1595	S1M1000007A03	Staphylococcus aureus
1596	S1M10000007B02	Staphylococcus aureus
1597	S1M10000007B11	Staphylococcus aureus
1598	S1M10000007C02	Staphylococcus aureus
1599	S1M10000007C04	Staphylococcus aureus
1600	S1M10000007C05	Staphylococcus aureus
1601	S1M1000007C06 S1M1000007C07	Staphylococcus aureus
1602	S1M1000007C07	Staphylococcus aureus
1604	S1M1000007C09	Staphylococcus aureus Staphylococcus aureus
1605	S1M1000007C09	Staphylococcus aureus
1606	S1M10000007D06	Staphylococcus aureus
1607	S1M10000007D08	Staphylococcus aureus
1608	S1M10000007D10	Staphylococcus aureus
1609	S1M10000007D11	Staphylococcus aureus
1610	S1M1000007E04	Staphylococcus aureus
1611	S1M1000007E06	Staphylococcus aureus
1612	S1M1000007E07	Staphylococcus aureus
1613	S1M10000007F01	Staphylococcus aureus
1614	S1M10000007F02	Staphylococcus aureus
1615	S1M10000007F04	Staphylococcus aureus
1616	S1M10000007F08	Staphylococcus aureus
1617	S1M1000007F09	Staphylococcus aureus
1618	S1M10000007F10	Staphylococcus aureus
1619	S1M10000007F11	Staphylococcus aureus
1620	S1M10000007F12	Staphylococcus aureus
1621	S1M1000007G02	Staphylococcus aureus
1622	S1M1000007G03	Staphylococcus aureus
1623	S1M1000007G05	Staphylococcus aureus
	-1	<u> </u>

SeqID	Clone name	Organism
1624	S1M10000007G07	Staphylococcus aureus
1625	S1M1000007G08	Staphylococcus aureus
1626	S1M10000008A03	Staphylococcus aureus
1627	S1M10000008A04	Staphylococcus aureus
1628	S1M10000008A05	Staphylococcus aureus
1629	S1M10000008A08	Staphylococcus aureus
1630	S1M10000008A09	Staphylococcus aureus
1631	S1M10000008A12	Staphylococcus aureus
1632	S1M10000008B03	Staphylococcus aureus
1633	S1M10000008B04	Staphylococcus aureus
1634	S1M10000008B06 .	Staphylococcus aureus
1635	S1M10000008B08	Staphylococcus aureus
1636	S1M10000008B09	Staphylococcus aureus
1637	S1M10000008B10	Staphylococcus aureus
1638	S1M10000008C05	Staphylococcus aureus
1639	S1M10000008C06	Staphylococcus aureus
1640	S1M10000008C07	Staphylococcus aureus
1641	S1M10000008C08	Staphylococcus aureus
1642	S1M1000008C09	Staphylococcus aureus
1643	S1M10000008D05	Staphylococcus aureus
1644	S1M1000008D09	Staphylococcus aureus
1645	S1M10000008E05	Staphylococcus aureus
1646	S1M10000008E08	Staphylococcus aureus
1647	S1M10000008E09	Staphylococcus aureus
1648	S1M10000008E10	Staphylococcus aureus
1649	S1M10000008F01	Staphylococcus aureus
1650	S1M10000008F02	Staphylococcus aureus
1651	S1M10000008F03	Staphylococcus aureus
1652	S1M10000008F06	Staphylococcus aureus
1653	S1M10000008F08	Staphylococcus aureus
1654	S1M10000008F09	Staphylococcus aureus
1655	S1M10000008F10	Staphylococcus aureus
1656	S1M10000008F11	Staphylococcus aureus
1657	S1M10000008G02	Staphylococcus aureus
1658	S1M10000008G03	Staphylococcus aureus
1659	S1M10000008G05	Staphylococcus aureus
1660	S1M10000009A02	Staphylococcus aureus
1661	S1M10000009A04	Staphylococcus aureus
1662	S1M10000009A07	Staphylococcus aureus
1663	S1M1000009A08	Staphylococcus aureus
1664	S1M10000009A09	Staphylococcus aureus
1665	S1M10000009A10	Staphylococcus aureus
1666	S1M10000009A11	Staphylococcus aureus
1667	S1M10000009B01	Staphylococcus aureus
1668	S1M10000009B02	Staphylococcus aureus
1669	S1M10000009B03	Staphylococcus aureus
1670	S1M10000009B04	Staphylococcus aureus
1671	S1M10000009B05	Staphylococcus aureus
1672	S1M10000009B06	Staphylococcus aureus

SeqID	Clone name	Organism
1673	S1M1000009B07	Staphylococcus aureus
1674	S1M1000009B10	Staphylococcus aureus
1675	S1M10000009B11	Staphylococcus aureus
1676	S1M10000009B12	Staphylococcus aureus
1677	S1M1000009C01	Staphylococcus aureus
1678	S1M10000009C02	Staphylococcus aureus
1679	S1M1000009C05	Staphylococcus aureus
1680	S1M1000009C06	Staphylococcus aureus
1681	S1M1000009C07	Staphylococcus aureus
1682	S1M1000009C08	Staphylococcus aureus
1683	S1M1000009C09	Staphylococcus aureus
1684	S1M1000009C10	Staphylococcus aureus
1685	S1M10000009C11	Staphylococcus aureus
1686	S1M10000009D01	Staphylococcus aureus
1687	S1M10000009D02	Staphylococcus aureus
1688	S1M10000009D03	Staphylococcus aureus
1689	S1M10000009D04	Staphylococcus aureus
1690	S1M10000009D05	Staphylococcus aureus
1691	S1M10000009D07	Staphylococcus aureus
1692	S1M10000009D09	Staphylococcus aureus
1693	S1M10000009D11	Staphylococcus aureus
1694	S1M10000009E02	Staphylococcus aureus
1695	S1M10000009E06	Staphylococcus aureus
1696	S1M10000009E08	Staphylococcus aureus
1697	S1M10000009E09	Staphylococcus aureus
1698	S1M10000009E11	Staphylococcus aureus
1699	S1M10000009E12	Staphylococcus aureus
1700	S1M10000009F01	Staphylococcus aureus
1701	S1M10000009F02	Staphylococcus aureus
1702	S1M10000009F03	Staphylococcus aureus
1703	S1M10000009F05	Staphylococcus aureus
1704	S1M10000009F06	Staphylococcus aureus
1705	S1M10000009F07	Staphylococcus aureus
1706	S1M10000009F09	Staphylococcus aureus
1707	S1M10000009F10	Staphylococcus aureus
1708	S1M1000009G02	Staphylococcus aureus
1709	S1M10000009G03	Staphylococcus aureus
1710	S1M1000009G05	Staphylococcus aureus
1711	S1M10000009G06	Staphylococcus aureus
1712	S1M10000009G07	Staphylococcus aureus
1713	S1M10000009G09	Staphylococcus aureus
1714	S1M10000009G10	Staphylococcus aureus
1715	S1M10000009G11	Staphylococcus aureus
1716	S1M10000009H01	Staphylococcus aureus
1717	S1M10000009H02	Staphylococcus aureus
1718	S1M10000009H03	Staphylococcus aureus
1719	S1M10000009H05	Staphylococcus aureus
1720	S1M10000009H07	Staphylococcus aureus
1721	S1M10000009H09	Staphylococcus aureus

SeqID	Clone name	Organism
1722	S1M10000009H11	Staphylococcus aureus
1723	S1M10000011A02	Staphylococcus aureus
1724	S1M10000011A03	Staphylococcus aureus
1725	S1M10000011A04	Staphylococcus aureus
1726	S1M10000011A06	Staphylococcus aureus
1727	S1M10000011B01	Staphylococcus aureus
1728	S1M10000011B02	Staphylococcus aureus
1729	S1M10000011B03	Staphylococcus aureus
1730	S1M10000011B04 .	Staphylococcus aureus
1731	S1M10000011B05	Staphylococcus aureus
1732	S1M10000011C01	Staphylococcus aureus
1733	S1M10000011C05	Staphylococcus aureus
1734	S1M10000011C06	Staphylococcus aureus
1735	S1M10000011D01	Staphylococcus aureus
1736	S1M10000011D02	Staphylococcus aureus
1737	S1M10000011D04	Staphylococcus aureus
1738	S1M10000011D06	Staphylococcus aureus
1739	S1M10000011E02	Staphylococcus aureus
1740	S1M10000011E03	Staphylococcus aureus
1741	S1M10000011E04	Staphylococcus aureus
1742	S1M10000011F01	Staphylococcus aureus
1743	S1M10000011F03	Staphylococcus aureus
1744	S1M10000011F04	Staphylococcus aureus
1745	S1M10000011F06 S1M10000011G01	Staphylococcus aureus
1746	S1M10000011G01	Staphylococcus aureus
1747	S1M10000011G03	Staphylococcus aureus
1748	S1M10000011G04	Staphylococcus aureus Staphylococcus aureus
1750	S1M10000011G05	Staphylococcus aureus Staphylococcus aureus
1751	S1M10000011G00	Staphylococcus aureus
1752	S1M10000011H03	Staphylococcus aureus
1753	S1M10000011H04	Staphylococcus aureus
1754	S1M10000012A02	Staphylococcus aureus
1755	S1M10000012A06	Staphylococcus aureus
1756	S1M10000012A08	Staphylococcus aureus
1757	S1M10000012A09	Staphylococcus aureus
1758	S1M10000012A10	Staphylococcus aureus
1759	S1M10000012A11	Staphylococcus aureus
1760	SIM10000012B01	Staphylococcus aureus
1761	S1M10000012B05	Staphylococcus aureus
1762	S1M10000012B06	Staphylococcus aureus
1763	SIM10000012B07	Staphylococcus aureus
1764	S1M10000012B11	Staphylococcus aureus
1765	S1M10000012C01	Staphylococcus aureus
1766	S1M10000012C03	Staphylococcus aureus
1767	S1M10000012C04	Staphylococcus aureus
1768	S1M10000012C05	Staphylococcus aureus
1769	S1M10000012C06	Staphylococcus aureus
1770	S1M10000012C11	Staphylococcus aureus

SeqID	Clone name	Organism
1771	S1M10000012C12	Staphylococcus aureus
1772	S1M10000012D04	Staphylococcus aureus
1773	S1M10000012D06	Staphylococcus aureus
1774	S1M10000012D07	Staphylococcus aureus
1775	S1M10000012D08	Staphylococcus aureus
1776	S1M10000012D09	Staphylococcus aureus
1777	S1M10000012D12	Staphylococcus aureus
1778	S1M10000012E01	Staphylococcus aureus
1779	S1M10000012E02	Staphylococcus aureus
1780	S1M10000012E04	Staphylococcus aureus
1781	S1M10000012E07	Staphylococcus aureus
1782	S1M10000012E08	Staphylococcus aureus
1783	S1M10000012E12	Staphylococcus aureus
1784	S1M10000012F04	Staphylococcus aureus
1785	S1M10000012F07	Staphylococcus aureus
1786	S1M10000012F08	Staphylococcus aureus
1787	S1M10000012F09	Staphylococcus aureus
1788	S1M10000012F10	Staphylococcus aureus
1789	S1M10000012F11	Staphylococcus aureus
1790	S1M10000012F12	Staphylococcus aureus
1791	S1M10000012G01	Staphylococcus aureus
1792	S1M10000012G02	Staphylococcus aureus
1793	S1M10000012G03	Staphylococcus aureus
1794	S1M10000012G06	Staphylococcus aureus
1795	S1M10000012G07	Staphylococcus aureus
1796	S1M10000012G08	Staphylococcus aureus
1797	S1M10000012G10	Staphylococcus aureus
1798	S1M10000012H05 S1M10000012H08	Staphylococcus aureus
1800	S1M10000012H09	Staphylococcus aureus
1801	S1M10000012H09	Staphylococcus aureus
1802	S1M10000012H10	Staphylococcus aureus Staphylococcus aureus
1803	S1M10000012H11	Staphylococcus aureus Staphylococcus aureus
1804	S1M10000013A02	Staphylococcus aureus Staphylococcus aureus
1805	S1M10000013A05	Staphylococcus aureus
1806	S1M1000013A07	Staphylococcus aureus
1807	S1M1000013A08	Staphylococcus aureus
1808	S1M10000013A09	Staphylococcus aureus
1809	S1M10000013A10	Staphylococcus aureus
1810	S1M10000013A11	Staphylococcus aureus
1811	S1M1000013A12	Staphylococcus aureus
1812	S1M10000013B02	Staphylococcus aureus
1813	S1M10000013B03	Staphylococcus aureus
1814	S1M10000013B04	Staphylococcus aureus
1815	S1M10000013B05	Staphylococcus aureus
1816	S1M10000013B06	Staphylococcus aureus
1817	S1M10000013B07	Staphylococcus aureus
1818	S1M10000013B09	Staphylococcus aureus
1819	S1M10000013B11	Staphylococcus aureus
L	1	

SeqID	Clone name	Organism
1820	S1M10000013C03	Staphylococcus aureus
1821	S1M10000013C05	Staphylococcus aureus
1822	S1M10000013C07	Staphylococcus aureus
1823	S1M10000013C08	Staphylococcus aureus
1824	S1M10000013C09	Staphylococcus aureus
1825	S1M10000013C10	Staphylococcus aureus
1826	S1M10000013C11	Staphylococcus aureus
1827	S1M10000013C12	Staphylococcus aureus
1828	S1M10000013D08	Staphylococcus aureus
1829	S1M10000013D09	Staphylococcus aureus
1830	S1M10000013D11	Staphylococcus aureus
1831	S1M10000013E01	Staphylococcus aureus
1832	S1M10000013E02	Staphylococcus aureus
1833	S1M10000013E04	Staphylococcus aureus
1834	S1M10000013E06	Staphylococcus aureus
1835	S1M10000013E08	Staphylococcus aureus
1836	S1M10000013E09	Staphylococcus aureus
1837	S1M10000013E10	Staphylococcus aureus
1838	S1M10000013F02	Staphylococcus aureus
1839	S1M10000013F03	Staphylococcus aureus
1840	S1M10000013F06	Staphylococcus aureus
1841	S1M10000013F07	Staphylococcus aureus
1842	S1M10000013F08	Staphylococcus aureus
1843	SIM10000013F09	Staphylococcus aureus
1844	S1M10000013F12	Staphylococcus aureus
1845	S1M10000013G01	Staphylococcus aureus
1846	S1M10000013G04	Staphylococcus aureus
1847	S1M10000013G05	Staphylococcus aureus
1848	S1M10000013G06	Staphylococcus aureus
1849	S1M10000013G07	Staphylococcus aureus
1850	S1M10000013G10	Staphylococcus aureus
1851	S1M10000013G11	Staphylococcus aureus
1852	S1M10000013G12	Staphylococcus aureus
1853	S1M10000013H03	Staphylococcus aureus
1854	S1M10000013H04	Staphylococcus aureus
1855	S1M10000013H05	Staphylococcus aureus
1856	S1M10000013H07	Staphylococcus aureus
1857	S1M10000013H09	Staphylococcus aureus
1858	S1M10000013H10	Staphylococcus aureus
1859	S1M10000013H11	Staphylococcus aureus
1860	S1M10000014A02	Staphylococcus aureus
1861	S1M10000014A03	Staphylococcus aureus
1862	S1M10000014A05	Staphylococcus aureus
1863	S1M10000014A07	Staphylococcus aureus
1864	S1M10000014A08	Staphylococcus aureus
1865	S1M10000014A11	Staphylococcus aureus
1866	S1M10000014A12	Staphylococcus aureus
1867	S1M10000014B01	Staphylococcus aureus
1868	S1M10000014B02	Staphylococcus aureus

SeqID	Clone name	Organism
1869	S1M10000014B03	Staphylococcus aureus
1870	S1M10000014B04	Staphylococcus aureus
1871	S1M1000014B05	Staphylococcus aureus
1872	S1M10000014B05	Staphylococcus aureus
1873	S1M10000014B07	Staphylococcus aureus
1874	S1M10000014B08	Staphylococcus aureus
1875	S1M10000014B10	Staphylococcus aureus
1876	S1M10000014B11	Staphylococcus aureus
1877	S1M10000014B12	Staphylococcus aureus
1878	S1M10000014C01	Staphylococcus aureus
1879	S1M10000014C05	Staphylococcus aureus
1880	S1M1000014C06	Staphylococcus aureus
1881	S1M1000014C07	Staphylococcus aureus
1882	S1M10000014C09	Staphylococcus aureus
1883	S1M10000014C10	Staphylococcus aureus
1884	S1M10000014C10	Staphylococcus aureus
1885	S1M10000014C12	Staphylococcus aureus
1886	S1M10000014D03	Staphylococcus aureus
1887	S1M10000014D06	Staphylococcus aureus
1888	S1M10000014D08	Staphylococcus aureus
1889	S1M10000014D09	Staphylococcus aureus
1890	S1M10000014D10	Staphylococcus aureus
1891	S1M10000014E01	Staphylococcus aureus
1892	S1M10000014E04	Staphylococcus aureus
1893	S1M10000014E05	Staphylococcus aureus
1894	S1M10000014E07	Staphylococcus aureus
1895	S1M10000014E08	Staphylococcus aureus
1896	S1M10000014E09	Staphylococcus aureus
1897	S1M10000014E10	Staphylococcus aureus
1898	S1M10000014E12	Staphylococcus aureus
1899	S1M10000014F02	Staphylococcus aureus
1900	S1M10000014F03	Staphylococcus aureus
1901	S1M10000014F04	Staphylococcus aureus
1902	S1M10000014F05	Staphylococcus aureus
1903	S1M10000014F08	Staphylococcus aureus
1904	S1M10000014F09	Staphylococcus aureus
1905	S1M10000014F10	Staphylococcus aureus
1906	S1M10000014G02	Staphylococcus aureus
1907	S1M10000014G04	Staphylococcus aureus
1908	S1M10000014G06	Staphylococcus aureus
1909	S1M10000014G07	Staphylococcus aureus
1910	S1M10000014G08	Staphylococcus aureus
1911	S1M10000014G12	Staphylococcus aureus
1912	S1M10000014H02	Staphylococcus aureus
1913	S1M10000014H03	Staphylococcus aureus
1914	S1M10000014H04	Staphylococcus aureus
1915	S1M10000014H05	Staphylococcus aureus
1916	S1M10000014H06	Staphylococcus aureus
1917	S1M10000014H07	Staphylococcus aureus

SeqID	Clone name	Organism
1918	S1M10000014H08	Staphylococcus aureus
1919	S1M10000014H11	Staphylococcus aureus
1920	S1M10000015A02	Staphylococcus aureus
1921	S1M10000015A03	Staphylococcus aureus
1922	S1M10000015A05	Staphylococcus aureus
1923	S1M10000015A06	Staphylococcus aureus
1924	S1M10000015A09	Staphylococcus aureus
1925	S1M10000015A10	Staphylococcus aureus
1926	S1M10000015A11	Staphylococcus aureus
1927	S1M10000015A12	Staphylococcus aureus
1928	S1M10000015B02	Staphylococcus aureus
1929	S1M10000015B05	Staphylococcus aureus
1930	S1M10000015B08	Staphylococcus aureus
1931	S1M10000015B09	Staphylococcus aureus
1932	S1M10000015B10	Staphylococcus aureus
1933	S1M10000015C01	Staphylococcus aureus
1934	S1M10000015C02	Staphylococcus aureus
1935	S1M10000015C03	Staphylococcus aureus
1936	S1M10000015C05	Staphylococcus aureus
1937	S1M10000015C06	Staphylococcus aureus
1938	S1M10000015C08	Staphylococcus aureus
1939	S1M10000015C10	Staphylococcus aureus
1940	S1M10000015C12	Staphylococcus aureus
1941	S1M10000015D02	Staphylococcus aureus
1942	S1M10000015D03	Staphylococcus aureus
1943	S1M10000015D04	Staphylococcus aureus
1944	S1M10000015D05	Staphylococcus aureus
1945	S1M10000015D06	Staphylococcus aureus
1946	S1M10000015D12	Staphylococcus aureus
1947	S1M10000015E02	Staphylococcus aureus
1948	S1M10000015E03	Staphylococcus aureus
1949	S1M10000015E06	Staphylococcus aureus
1950	S1M10000015E07	Staphylococcus aureus
1951	S1M10000015E09	Staphylococcus aureus
1952	S1M10000015E10	Staphylococcus aureus
1953	S1M10000015E11	Staphylococcus aureus
1954	S1M10000015E12	Staphylococcus aureus
1955	S1M10000015F01	Staphylococcus aureus
1956	S1M10000015F02	Staphylococcus aureus
1957	S1M10000015F03	Staphylococcus aureus
1958	S1M10000015F04	Staphylococcus aureus
1959	S1M10000015F06	Staphylococcus aureus
1960	S1M10000015F07	Staphylococcus aureus
1961	S1M10000015F08	Staphylococcus aureus
1962	S1M10000015F09	Staphylococcus aureus
1963	S1M10000015F10	Staphylococcus aureus
1964	S1M10000015G01	Staphylococcus aureus
1965	S1M10000015G02	Staphylococcus aureus
1966	S1M10000015G03	Staphylococcus aureus

SeqID	Clone name	Organism
1967	S1M10000015G04	Staphylococcus aureus
1968	S1M10000015G05	Staphylococcus aureus
1969	S1M10000015G06	Staphylococcus aureus
1970	S1M10000015G07	Staphylococcus aureus
1971	S1M10000015G08	Staphylococcus aureus
1972	S1M10000015G09	Staphylococcus aureus
1973	S1M10000015G10	Staphylococcus aureus
1974	S1M10000015G11	Staphylococcus aureus
1975	S1M10000015H04	Staphylococcus aureus
1976	S1M10000015H06	Staphylococcus aureus
1977	S1M10000016A03	Staphylococcus aureus
1978	S1M10000016A04	Staphylococcus aureus
1979	S1M10000016A06	Staphylococcus aureus
1980	S1M10000016A07	Staphylococcus aureus
1981	S1M10000016A09	Staphylococcus aureus
1982	S1M10000016A10	Staphylococcus aureus
1983	S1M10000016A12	Staphylococcus aureus
1984	S1M10000016B02	Staphylococcus aureus
1985	S1M10000016B05	Staphylococcus aureus
1986	S1M10000016B06	Staphylococcus aureus
1987	S1M10000016B07	Staphylococcus aureus
1988	S1M10000016B08	Staphylococcus aureus
1989	S1M10000016B09	Staphylococcus aureus
1990	S1M10000016B10	Staphylococcus aureus
1991	S1M10000016B11	Staphylococcus aureus
1992	S1M10000016B12	Staphylococcus aureus
1993	S1M10000016C01	Staphylococcus aureus
1994	S1M10000016C02	Staphylococcus aureus
1995	S1M10000016C04	Staphylococcus aureus
1996	S1M10000016C05	Staphylococcus aureus
1997	S1M10000016C06	Staphylococcus aureus
1998	S1M10000016C08	Staphylococcus aureus
1999	SIM10000016C09	Staphylococcus aureus
2000	SIM10000016C10	Staphylococcus aureus
2001	S1M10000016C11	Staphylococcus aureus
2002	S1M10000016C12	Staphylococcus aureus
2003	S1M10000016D01	Staphylococcus aureus
2004	S1M10000016D02	Staphylococcus aureus
2005	S1M10000016D04	Staphylococcus aureus
2006	S1M10000016D05	Staphylococcus aureus
2007	S1M10000016D06	Staphylococcus aureus
2008	S1M10000016D08	Staphylococcus aureus
2009	S1M10000016D09	Staphylococcus aureus
2010	S1M10000016D10	Staphylococcus aureus
2011	SIM10000016D11	Staphylococcus aureus
2012	S1M10000016E04	Staphylococcus aureus
2013	S1M10000016E05	Staphylococcus aureus
2014	S1M10000016E06	Staphylococcus aureus
2015	S1M10000016E07	Staphylococcus aureus

SeqID	Clone name	Organism
2016	S1M10000016E08	Staphylococcus aureus
2017	S1M10000016E09	Staphylococcus aureus
2018	S1M10000016E10	Staphylococcus aureus
2019	S1M10000016E[1	Staphylococcus aureus
2020	S1M10000016E12	Staphylococcus aureus
2021	S1M10000016F02	Staphylococcus aureus
2022	S1M10000016F03	Staphylococcus aureus
2023	S1M10000016F05	Staphylococcus aureus
2024	S1M10000016F06	Staphylococcus aureus
2025	S1M10000016F08	Staphylococcus aureus
2026	S1M10000016F09	Staphylococcus aureus
2027	S1M10000016F11	Staphylococcus aureus
2028	S1M10000016G01	Staphylococcus aureus
2029	S1M10000016G03	Staphylococcus aureus
2030	S1M10000016G04	Staphylococcus aureus
2031	S1M10000016G05	Staphylococcus aureus
2032	S1M10000016H03	Staphylococcus aureus
2033	S1M10000016H04	Staphylococcus aureus
2034	S1M10000016H08	Staphylococcus aureus
2035	S1M10000016H10	Staphylococcus aureus
2036	S1M10000017A02	Staphylococcus aureus
2037	S1M10000017A03	Staphylococcus aureus
2038	S1M10000017A04	Staphylococcus aureus
2039	S1M10000017A08	Staphylococcus aureus
2040	S1M10000017A11	Staphylococcus aureus
2041	S1M10000017A12	Staphylococcus aureus
2042	S1M10000017B02	Staphylococcus aureus
2043	\$1M10000017B05	Staphylococcus aureus
2044	S1M10000017B07	Staphylococcus aureus
2045	S1M10000017B08	Staphylococcus aureus
2046	S1M10000017B09	Staphylococcus aureus
2047	S1M10000017B10	Staphylococcus aureus
2048	S1M10000017B11	Staphylococcus aureus
2049	S1M10000017B12	Staphylococcus aureus
2050	SIM10000017C01	Staphylococcus aureus
2051	S1M10000017C03	Staphylococcus aureus
2052	S1M10000017C05	Staphylococcus aureus
2053	S1M10000017C08	Staphylococcus aureus
2054	S1M10000017C09	Staphylococcus aureus
2055	S1M10000017C10	Staphylococcus aureus
2056	S1M10000017C11	Staphylococcus aureus
2057	S1M10000017C12	Staphylococcus aureus
2058	S1M10000017D03	Staphylococcus aureus
2059	S1M10000017D09	Staphylococcus aureus
2060	S1M10000017D10	Staphylococcus aureus
2061	S1M10000017E04	Staphylococcus aureus
2062	S1M10000017E05	Staphylococcus aureus
2063	S1M10000017E08	Staphylococcus aureus
2064	S1M10000017E11	Staphylococcus aureus

SeqID	Clone name	Organism
2065	S1M10000017F01	Staphylococcus aureus
2066	S1M10000017F04	Staphylococcus aureus
2067	S1M10000017F05	Staphylococcus aureus
2068	S1M10000017F06	Staphylococcus aureus
2069	S1M10000017F11	Staphylococcus aureus
2070	S1M10000017G02	Staphylococcus aureus
2071	S1M10000017G05	Staphylococcus aureus
2072	S1M10000017G06	Staphylococcus aureus
2073	S1M10000018A03	Staphylococcus aureus
2074	S1M10000018A04	Staphylococcus aureus
2075	S1M10000018A05	Staphylococcus aureus
2076	S1M10000018A06	Staphylococcus aureus
2077	S1M10000018A08	Staphylococcus aureus
2078	SIM10000018A09	Staphylococcus aureus
2079	S1M10000018A10	Staphylococcus aureus
2080	S1M10000018A11	Staphylococcus aureus
2081	S1M10000018B02	Staphylococcus aureus
2082	S1M10000018B03	Staphylococcus aureus
2083	S1M10000018B05	Staphylococcus aureus
. 2084	S1M10000018B09	Staphylococcus aureus
2085	S1M10000018B10	Staphylococcus aureus
2086	S1M10000018B11	Staphylococcus aureus
2087	S1M10000018C01	Staphylococcus aureus
2088	S1M10000018C02	Staphylococcus aureus
2089	S1M10000018C03	Staphylococcus aureus
2090	S1M10000018C04	Staphylococcus aureus
2091	S1M10000018C05	Staphylococcus aureus
2092	S1M10000018C06	Staphylococcus aureus
2093	S1M10000018C08	Staphylococcus aureus
2094	S1M10000018C09	Staphylococcus aureus
2095	S1M10000018C10	Staphylococcus aureus
2096	S1M10000018C11	Staphylococcus aureus
2097	S1M10000018C12	Staphylococcus aureus
2098	S1M10000018D01	Staphylococcus aureus
2099	S1M10000018D02	Staphylococcus aureus
2100	S1M10000018D03	Staphylococcus aureus
2101	S1M10000018D04 S1M10000018D09	Staphylococcus aureus
2102	S1M10000018D10	Staphylococcus aureus
2103	S1M10000018D11	Staphylococcus aureus
2104	S1M10000018D12	Staphylococcus aureus
2105	S1M10000018D12	Staphylococcus aureus
2106	S1M10000018E02	Staphylococcus aureus Staphylococcus aureus
2107	S1M10000018E03	
	S1M10000018E03	Staphylococcus aureus
2109 2110	S1M10000018E05	Staphylococcus aureus
2111	S1M10000018E08	Staphylococcus aureus
2112	S1M10000018E09	Staphylococcus aureus
2112	S1M10000018E09	Staphylococcus aureus
2113	BUMIOOOOIOEII	Staphylococcus aureus

SeqID	Clone name	Organism
2114	S1M10000018E12	Staphylococcus aureus
2115	S1M10000018F03	Staphylococcus aureus
2116	S1M10000018F04	Staphylococcus aureus
2117	S1M10000018F07	Staphylococcus aureus
2118	S1M10000018F09	Staphylococcus aureus
2119	S1M10000018F10	Staphylococcus aureus
2120	S1M10000018F12	Staphylococcus aureus
2121	S1M10000018G03	Staphylococcus aureus
2122	S1M10000018G05	Staphylococcus aureus
2123	S1M10000018G07	Staphylococcus aureus
2124	S1M10000018G08	Staphylococcus aureus
2125	S1M10000018G09	Staphylococcus cureus
2126	S1M10000018G10	Staphylococcus aureus
2127	S1M10000018G12	Staphylococcus aureus
2128	S1M10000018H01	Staphylococcus aureus
2129	S1M10000018H02	Staphylococcus aureus
2130	S1M10000018H07	Staphylococcus aureus
2131	S1M10000018H09	Staphylococcus aureus
2132	S1M10000018H10	Staphylococcus aureus
2133	S1M10000019A02	Staphylococcus aureus
2134	S1M10000019A03	Staphylococcus aureus
2135	S1M10000019A05	Staphylococcus aureus
2136	S1M10000019A06	Staphylococcus aureus
2137	S1M10000019A07	Staphylococcus aureus
2138	S1M10000019A09	Staphylococcus aureus
2139	S1M10000019A11	Staphylococcus aureus
2140	S1M10000019A12	Staphylococcus aureus
2141	S1M10000019B03	Staphylococcus aureus
2142	S1M10000019B04	Staphylococcus aureus
2143	S1M10000019B07	Staphylococcus aureus
2144	S1M10000019B08	Staphylococcus aureus
2145	S1M10000019B09	Staphylococcus aureus
2146	S1M10000019B10	Staphylococcus aureus
2147	S1M10000019B11	Staphylococcus aureus
2148	S1M10000019B12	Staphylococcus aureus
2149	S1M10000019C01	Staphylococcus aureus
2150	S1M10000019C04	Staphylococcus aureus
2151	S1M10000019C05	Staphylococcus aureus
2152	S1M10000019C06	Staphylococcus aureus
2153	S1M10000019C07	Staphylococcus aureus
2154	S1M10000019C08	Staphylococcus aureus
2155	S1M10000019C11	Staphylococcus aureus
2156	S1M10000019C12	Staphylococcus aureus
2157	S1M10000019D01	Staphylococcus aureus
2158	S1M10000019D02	Staphylococcus aureus
2159	S1M10000019D04	Staphylococcus aureus
2160	S1M10000019D05	Staphylococcus aureus
2161	S1M10000019D06	Staphylococcus aureus
2162	S1M10000019D07	Staphylococcus aureus

SeqID	Clone name	Organism
2163	S1M10000019D09	Staphylococcus aureus
2164	S1M10000019D12	Staphylococcus aureus
2165	S1M10000019E01	Staphylococcus aureus
2166	S1M10000019E02	Staphylococcus aureus
2167	S1M10000019E07	Staphylococcus aureus
2168	S1M10000019F01	Staphylococcus aureus
2169	S1M10000019F05	Staphylococcus aureus
2170	S1M10000019F06	Staphylococcus aureus
2171	S1M10000019F08	Staphylococcus aureus
2172	S1M10000019F09	Staphylococcus aureus
2173	S1M10000019F11	Staphylococcus aureus
2174	S1M10000019G04	Staphylococcus aureus
2175	S1M10000019G07	Staphylococcus aureus
2176	S1M10000019G09	Staphylococcus aureus
2177	S1M10000019G10	Staphylococcus aureus
2178	S1M10000019G11	Staphylococcus aureus
2179	S1M10000019H05	Staphylococcus aureus
2180	S1M10000019H08	Staphylococcus aureus
2181	S1M10000020A05	Staphylococcus aureus
2182	S1M10000020A06	Staphylococcus aureus
2183	S1M10000020A07	Staphylococcus aureus
2184	S1M10000020A11	Staphylococcus aureus
2185	S1M10000020A12	Staphylococcus aureus
2186	S1M10000020B02	Staphylococcus aureus
2187	S1M10000020B03	Staphylococcus aureus
2188	S1M10000020B05	Staphylococcus aureus
2189	S1M10000020B06 S1M10000020B07	Staphylococcus aureus
2191	S1M10000020B07	Staphylococcus aureus Staphylococcus aureus
2192	S1M10000020B09	Staphylococcus aureus
2192	S1M10000020C09	Staphylococcus aureus
2194	S1M10000020C10	Staphylococcus aureus
2195	S1M10000020C10	Staphylococcus aureus
2196	S1M1000020D03	Staphylococcus aureus
2197	S1M1000020D04	Staphylococcus aureus
2198	S1M10000020D06	Staphylococcus aureus
2199	S1M10000020D07	Staphylococcus aureus
2200	S1M10000020D08	Staphylococcus aureus
2201	S1M10000020D09	Staphylococcus aureus
2202	S1M10000020D12	Staphylococcus aureus
2203	S1M10000020E01	Staphylococcus aureus
2204	S1M10000020E03	Staphylococcus aureus
2205	S1M10000020E04	Staphylococcus aureus
2206	S1M10000020E06	Staphylococcus aureus
2207	S1M10000020E08	Staphylococcus aureus
2208	S1M10000020E11	Staphylococcus aureus
2209	S1M10000020E12	Staphylococcus aureus
2210	S1M10000020F01	Staphylococcus aureus
2211	S1M10000020F05	Staphylococcus aureus
		<u> </u>

SeqID	Clone name	Organism
2212	S1M10000020F06	Staphylococcus aureus
2213	S1M10000020F07	Staphylococcus aureus
2214	S1M10000020F09	Staphylococcus aureus
2215	S1M10000020F11	Staphylococcus aureus
2216	S1M10000020F12	Staphylococcus aureus
2217	S1M10000020G01	Staphylococcus aureus
2218	S1M10000020G05	Staphylococcus aureus
2219	S1M10000020G07	Staphylococcus aureus
2220	S1M10000020G08	Staphylococcus aureus
2221	S1M10000020G09	Staphylococcus aureus
2222	S1M10000020G10	Staphylococcus aureus
2223	S1M10000020G11	Staphylococcus aureus
2224	S1M10000020G12	Staphylococcus aureus
2225	S1M10000020H01	Staphylococcus aureus
2226	S1M10000020H02	Staphylococcus aureus
2227	S1M10000020H04	Staphylococcus aureus
2228	S1M10000020H06	Staphylococcus aureus
2229	S1M10000020H08	Staphylococcus aureus
2230	S1M10000020H10	Staphylococcus aureus
2231	S1M10000020H11	Staphylococcus aureus
2232	S1M10000021A04	Staphylococcus aureus
2233	S1M10000021A05	Staphylococcus aureus
2234	S1M10000021A06	Staphylococcus aureus
2235	S1M10000021A07	Staphylococcus aureus
2236	S1M10000021A08	Staphylococcus aureus
2237	S1M10000021A09	Staphylococcus aureus
2238	S1M10000021A10	Staphylococcus aureus
2239	S1M10000021B05	Staphylococcus aureus
2240	S1M10000021B06	Staphylococcus aureus
2241	S1M10000021B07	Staphylococcus aureus
2242	S1M10000021B10	Staphylococcus aureus
2243	S1M10000021C04	Staphylococcus aureus
2244	S1M10000021C05	Staphylococcus aureus
2245	S1M10000021C07	Staphylococcus aureus
2246	S1M10000021C08	Staphylococcus aureus
2247	S1M10000021C10	Staphylococcus aureus
2248	S1M10000021C11	Staphylococcus aureus
2249	S1M10000021C12 S1M10000021D01	Staphylococcus aureus
2250 2251	S1M10000021D01	Staphylococcus aureus
2252	S1M10000021D03	Staphylococcus aureus Staphylococcus aureus
2252	S1M10000021D04	Staphylococcus aureus Staphylococcus aureus
2254	S1M10000021D09	Staphylococcus aureus Staphylococcus aureus
2255	S1M10000021D09	Staphylococcus aureus Staphylococcus aureus
2256	S1M10000021D10	Staphylococcus aureus Staphylococcus aureus
2257	S1M10000021E01	Staphylococcus aureus Staphylococcus aureus
2258	S1M10000021E02	Staphylococcus aureus Staphylococcus aureus
2259	S1M10000021E05	Staphylococcus aureus
2260	S1M10000021E03	Staphylococcus aureus Staphylococcus aureus
2200	D17410000051E00	Siapnyiococcus aureus

SeqID	Clone name	Organism
2261	S1M10000021E09	Staphylococcus aureus
2262	S1M10000021E12	Staphylococcus aureus
2263	S1M10000021F02	Staphylococcus aureus
2264	S1M10000021F04	Staphylococcus aureus
2265	S1M10000021F05	Staphylococcus aureus
2266	S1M10000021F06	Staphylococcus aureus
2267	S1M10000021F07	Staphylococcus aureus
2268	S1M10000021F09	Staphylococcus aureus
2269	SIM10000021F11	Staphylococcus aureus
2270	S1M10000021G01	Staphylococcus aureus
2271	SIM10000021G03	Staphylococcus aureus
2272	SIM10000021G08	Staphylococcus aureus
2273	S1M10000021H04	Staphylococcus aureus
2274	S1M10000021H05	Staphylococcus aureus
2275	S1M10000021H07	Staphylococcus aureus
2276	S1M10000021H08	Staphylococcus aureus
2277	S1M10000021H11	Staphylococcus aureus
2278	S1M10000022A02	Staphylococcus aureus
2279	S1M10000022A03	Staphylococcus aureus
2280	S1M10000022A05	Staphylococcus aureus
2281	S1M10000022A08	Staphylococcus aureus
2282	S1M10000022A09	Staphylococcus aureus
2283	S1M10000022A12	Staphylococcus aureus
2284	S1M10000022B02	Staphylococcus aureus
2285	S1M10000022B03	Staphylococcus aureus
2286	S1M10000022B05	Staphylococcus aureus
2287	S1M10000022B06	Staphylococcus aureus
2288	S1M10000022B08	Staphylococcus aureus
2289	S1M10000022B09	Staphylococcus aureus
2290	S1M10000022B10	Staphylococcus aureus
2291	S1M10000022B11	Staphylococcus aureus
2292	S1M10000022B12	Staphylococcus aureus
2293	S1M10000022C02	Staphylococcus aureus
2294	S1M10000022C03	Staphylococcus aureus
2295	S1M10000022C04	Staphylococcus aureus
2296	S1M10000022C06	Staphylococcus aureus
2297	S1M10000022C07	Staphylococcus aureus
2298	S1M10000022C08	Staphylococcus aureus
2299	S1M10000022C11	Staphylococcus aureus
2300	S1M10000022D03	Staphylococcus aureus
2301	S1M10000022D05	Staphylococcus aureus
2302	S1M10000022D06	Staphylococcus aureus
2303	S1M10000022D07	Staphylococcus aureus
2304	S1M10000022D08	Staphylococcus aureus
2305	S1M10000022D09	Staphylococcus aureus
2306	S1M10000022D11	Staphylococcus aureus
2307	S1M10000022E01	Staphylococcus aureus
2308	S1M10000022E03	Staphylococcus aureus
2309	S1M10000022E05	Staphylococcus aureus

SeqID	Clone name	Organism
2310	S1M10000022E09	Staphylococcus aureus
2311	S1M10000022F04	Staphylococcus aureus
2312	S1M10000022F06	Staphylococcus aureus
2313	S1M10000022F07	Staphylococcus aureus
2314	S1M10000022F08	Staphylococcus aureus
2315	S1M10000022F11	Staphylococcus aureus
2316	S1M10000022G03	Staphylococcus aureus
2317	S1M10000022G04	Staphylococcus aureus
2318	S1M10000022G07	Staphylococcus aureus
2319	S1M10000022G08	Staphylococcus aureus
2320	S1M10000022G12	Staphylococcus aureus
2321	S1M10000022H03	Staphylococcus aureus
2322	S1M10000022H05	Staphylococcus aureus
2323	S1M10000022H06	Staphylococcus aureus
2324	S1M10000022H07	Staphylococcus aureus
2325	S1M10000022H08	Staphylococcus aureus
2326	S1M10000022H11	Staphylococcus aureus
2327	S1M10000023A05	Staphylococcus aureus
2328	S1M10000023A09	Staphylococcus aureus
2329	S1M10000023A11	Staphylococcus aureus
2330	S1M10000023A12	Staphylococcus aureus
2331	S1M10000023B01	Staphylococcus aureus
2332	S1M10000023B03	Staphylococcus aureus
2333	S1M10000023B07	Staphylococcus aureus
2334	S1M10000023B08	Staphylococcus aureus
2335	S1M10000023B09	Staphylococcus aureus
2336	S1M10000023B10	Staphylococcus aureus
2337	S1M10000023B11	Staphylococcus aureus
2338	S1M10000023B12	Staphylococcus aureus
2339	S1M10000023C02	Staphylococcus aureus
2340	S1M10000023C10	Staphylococcus aureus
2341	S1M10000023C11	Staphylococcus aureus
2342	S1M10000023C12	Staphylococcus aureus
2343	S1M10000023D01	Staphylococcus aureus
2344	S1M10000023D03	Staphylococcus aureus
2345	S1M10000023D04	Staphylococcus aureus
2346	S1M10000023D07	Staphylococcus aureus
2347	S1M10000023D08	Staphylococcus aureus
2348	S1M10000023D09	Staphylococcus aureus
2349	S1M10000023D10	Staphylococcus aureus
2350	S1M10000023D12	Staphylococcus aureus
2351	S1M10000023E01	Staphylococcus aureus
2352	S1M10000023E04	Staphylococcus aureus
2353	S1M10000023E07	Staphylococcus aureus
2354	S1M10000023E10	Staphylococcus aureus
2355	S1M10000023E11	Staphylococcus aureus
2356	S1M10000023F04	Staphylococcus aureus
2357	S1M10000023F07	Staphylococcus aureus
2358	S1M10000023F08	Staphylococcus aureus

· <u>· </u>	<u> </u>	·
SeqID	Clone name	Organism
2359	S1M10000023F10	Staphylococcus aureus
. 2360	S1M10000023F11	Staphylococcus aureus
2361	S1M10000023F12	Staphylococcus aureus
2362	S1M10000023G02	Staphylococcus aureus
2363	S1M10000023G03	Staphylococcus aureus
2364	S1M10000023G06	Staphylococcus aureus
2365	S1M10000023G07	Staphylococcus aureus
2366	S1M10000023G08	Staphylococcus aureus
2367	S1M10000023G09	Staphylococcus aureus
2368	S1M10000023G11	Staphylococcus aureus
2369	S1M10000023H02	Staphylococcus aureus
2370	S1M10000023H06	Staphylococcus aureus
2371	S1M10000023H07	Staphylococcus aureus
2372	S1M10000023H09	Staphylococcus aureus
2373	S1M10000023H10	Staphylococcus aureus
2374	S1M10000024A02	Staphylococcus aureus
2375	S1M10000024A04	Staphylococcus aureus
2376	S1M10000024A07	Staphylococcus aureus
2377	S1M10000024A08	Staphylococcus aureus
2378	S1M10000024A11	Staphylococcus aureus
2379	S1M10000024B05	Staphylococcus aureus
2380	S1M10000024B06	Staphylococcus aureus
2381	S1M10000024B08	Staphylococcus aureus
2382	S1M10000024B09	Staphylococcus aureus
2383	S1M10000024B10	Staphylococcus aureus
2384	S1M10000024C02	Staphylococcus aureus
2385	S1M10000024C04	Staphylococcus aureus
2386	S1M10000024C07	Staphylococcus aureus
2387	S1M10000024D02	Staphylococcus aureus
2388	S1M10000024D03	Staphylococcus aureus
2389	S1M10000024D10	Staphylococcus aureus
2390	SIM10000024D11	Staphylococcus aureus
2391	S1M10000024E03	Staphylococcus aureus
2392	SIM10000024E05	Staphylococcus aureus
2393	S1M10000024E06	Staphylococcus aureus
2394	S1M10000024E07	Staphylococcus aureus
2395	S1M10000024E08	Staphylococcus aureus
2396	S1M10000024F02	Staphylococcus aureus
2397	S1M10000024F03	Staphylococcus aureus
2398	S1M10000024F05	Staphylococcus aureus
2399	S1M10000024F08	Staphylococcus aureus
2400	S1M10000024F10	Staphylococcus aureus
2401	S1M10000024G05	Staphylococcus aureus
2402	S1M10000024G06	Staphylococcus aureus
2403	S1M10000024G07	Staphylococcus aureus
2404	S1M10000024G08	Staphylococcus aureus
2405	S1M10000024G10	Staphylococcus aureus
2406	S1M10000024G12	Staphylococcus aureus
2407	S1M10000024H02	Staphylococcus aureus

SeqID	Clone name	Organism
2408	S1M10000024H04	Staphylococcus aureus
2409	S1M10000024H07	Staphylococcus aureus
2410	S1M10000024H08	Staphylococcus cureus
2411	S1M10000025A03	Staphylococcus aureus
2412	S1M10000025A08	Staphylococcus aureus
2413	S1M10000025A09	Staphylococcus aureus
2414	S1M10000025A10	Staphylococcus aureus
2415	S1M10000025B01	Staphylococcus aureus
2416	S1M10000025B02	Staphylococcus aureus
2417	S1M10000025B03	Staphylococcus aureus
2418	S1M10000025B05	Staphylococcus aureus
2419	S1M10000025B06	Staphylococcus aureus
2420	S1M10000025B09	Staphylococcus aureus
2421	S1M10000025B12	Staphylococcus aureus
2422	S1M10000025C01	Staphylococcus aureus
2423	S1M10000025C03	Staphylococcus aureus
2424	S1M10000025C05	Staphylococcus aureus
2425	S1M10000025C09	Staphylococcus aureus
2426	S1M10000025C10	Staphylococcus aureus
2427	S1M10000025C11	Staphylococcus aureus
2428	S1M10000025D01	Staphylococcus aureus
2429	S1M10000025D03	Staphylococcus aureus
2430	S1M10000025D04	Staphylococcus aureus
2431	S1M10000025D06	Staphylococcus aureus
2432	S1M10000025D08	Staphylococcus aureus
2433	S1M10000025D09	Staphylococcus aureus
2434	S1M10000025D10	Staphylococcus aureus
2435	S1M10000025E01	Staphylococcus aureus
2436	S1M10000025E04	Staphylococcus aureus
2437	S1M10000025E09	Staphylococcus aureus
2438	S1M10000025E11	Staphylococcus aureus
2439	S1M10000025F03	Staphylococcus aureus
2440	S1M10000025F05	Staphylococcus aureus
2441	S1M10000025F08	Staphylococcus aureus
2442	S1M10000025F09	Staphylococcus aureus
2443	S1M10000025F10	Staphylococcus aureus
2444	S1M10000025F12	Staphylococcus aureus
2445	S1M10000025G04	Staphylococcus aureus
2446 2447	S1M10000025G06 S1M10000025G10	Staphylococcus aureus
2447	S1M10000025H05	Staphylococcus aureus
2448	S1M10000025H05	Staphylococcus aureus Staphylococcus aureus
2449	S1M10000025H07	Staphylococcus aureus Staphylococcus aureus
2451	S1M10000025H10	Staphylococcus aureus
2452 2453	S1M10000026A02 S1M10000026A04	Staphylococcus aureus
2453	S1M10000026A04	Staphylococcus aureus
1	S1M10000026A06	Staphylococcus aureus
2455		Staphylococcus aureus
2456	S1M10000026A07	Staphylococcus aureus

SeqID	Clone name	Organism .
2457	S1M10000026A08	Staphylococcus aureus
2458	S1M10000026A09	Staphylococcus aureus
2459	S1M10000026A10	Staphylococcus aureus
2460	S1M10000026A11	Staphylococcus aureus
2461	S1M10000026B02	Staphylococcus aureus
2462	S1M10000026B03	Staphylococcus aureus
2463	S1M10000026B05	Staphylococcus aureus
2464	S1M10000026B06	Staphylococcus aureus
2465	S1M10000026B07	Staphylococcus aureus
2466	S1M10000026B10	Staphylococcus aureus
2467	S1M10000026B11	Staphylococcus aureus
2468	S1M10000026B12	Staphylococcus aureus
2469	S1M10000026C01	Staphylococcus aureus
2470	S1M10000026C06	Staphylococcus aureus
2471	S1M10000026C07	Staphylococcus aureus
2472	S1M10000026C08	Staphylococcus aureus
2473	S1M10000026C11	Staphylococcus aureus
2474	S1M10000026C12	Staphylococcus aureus
2475	S1M10000026D04	Staphylococcus aureus
2476	S1M10000026D05	Staphylococcus aureus
2477	S1M10000026D06	Staphylococcus aureus
2478	S1M10000026D07	Staphylococcus aureus
2479	S1M10000026D08	Staphylococcus aureus
2480	S1M10000026D10	Staphylococcus aureus
2481	S1M10000026D12	Staphylococcus aureus
2482	S1M10000026E01	Staphylococcus aureus
2483	S1M10000026E07	Staphylococcus aureus
2484	S1M10000026E09	Staphylococcus aureus
2485	S1M10000026E10	Staphylococcus aureus
2486	S1M10000026E11	Staphylococcus aureus
2487	S1M10000026E12	Staphylococcus aureus
2488	S1M10000026F01	Staphylococcus aureus
2489	S1M10000026F03	Staphylococcus aureus
2490	S1M10000026F04	Staphylococcus aureus
2491	S1M10000026F05	Staphylococcus aureus
2492	S1M10000026F06	Staphylococcus aureus
2493	S1M10000026F07	Staphylococcus aureus
2494	S1M10000026F08	Staphylococcus aureus
2495	S1M10000026F09	Staphylococcus aureus
2496	S1M10000026F10	Staphylococcus aureus
2497	S1M10000026F11	Staphylococcus aureus
2498	S1M10000026F12	Staphylococcus aureus
2499	S1M10000026G01	Staphylococcus aureus
2500	S1M10000026G03	Staphylococcus aureus
2501	S1M10000026G04	Staphylococcus aureus
2502	S1M10000026G05	Staphylococcus aureus
2503	S1M10000026G06	Staphylococcus aureus
2504	S1M10000026G07	Staphylococcus aureus
2505	S1M10000026G09	Staphylococcus aureus

SeqID	Clone name	Organism
2506	S1M10000026G10	Staphylococcus aureus
2507	S1M10000026G12	Staphylococcus aureus
2508	S1M10000026H01	Staphylococcus aureus
2509	S1M10000026H02	Staphylococcus aureus
2510	S1M10000026H03	Staphylococcus aureus
2511	S1M10000026H04	Staphylococcus aureus
2512	S1M10000026H05	Staphylococcus aureus
2513	S1M10000026H07	Staphylococcus aureus
2514	S1M10000026H09	Staphylococcus aureus
2515	S1M10000026H10	Staphylococcus aureus
2516	S1M10000027A04	Staphylococcus aureus
2517	S1M10000027A05	Staphylococcus aureus
2518	S1M10000027A08	Staphylococcus aureus
2519	S1M10000027A11	Staphylococcus aureus
2520	S1M10000027B04	Staphylococcus aureus
2521	S1M10000027B06	Staphylococcus aureus
2522	S1M10000027B07	Staphylococcus aureus
2523	S1M10000027B08	Staphylococcus aureus
2524	S1M10000027B09	Staphylococcus aureus
2525	S1M10000027B11	Staphylococcus aureus
2526	S1M10000027C02	Staphylococcus aureus
2527	S1M10000027C04	Staphylococcus aureus
2528	S1M10000027C05	Staphylococcus aureus
2529	S1M10000027C06	Staphylococcus aureus
2530	S1M10000027C08	Staphylococcus aureus
2531	S1M10000027C09	Staphylococcus aureus
2532	S1M10000027D02	Staphylococcus aureus
2533	S1M10000027D03	Staphylococcus aureus
2534	S1M10000027D05	Staphylococcus aureus
2535	S1M10000027D06	Staphylococcus aureus
2536 2537	S1M10000027D08 S1M10000027D09	Staphylococcus aureus
2538	S1M10000027D09	Staphylococcus aureus
2539	S1M10000027D10	Staphylococcus aureus Staphylococcus aureus
2540	S1M10000027D11 S1M10000027E05	Staphylococcus aureus Staphylococcus aureus
2541	S1M10000027E06	Staphylococcus aureus
2542	S1M10000027E07	Staphylococcus aureus
2543	S1M10000027E07	Staphylococcus aureus
2544	S1M10000027E09	Staphylococcus aureus
2545	S1M10000027E03	Staphylococcus aureus
2546	S1M1000027F01	Staphylococcus aureus
2547	S1M10000027F02	Staphylococcus aureus
2548	S1M10000027F05	Staphylococcus aureus
2549	S1M1000027F06	Staphylococcus aureus
2550	S1M10000027F08	Staphylococcus aureus
2551	S1M1000027F09	Staphylococcus aureus
2552	S1M10000027G03	Staphylococcus aureus
2553	S1M10000027G04	Staphylococcus aureus
2554	S1M1000027G05	Staphylococcus aureus

r		10
SeqID	Clone name	Organism
2555	S1M10000027G06	Staphylococcus aureus
2556	S1M10000027G07	Staphylococcus aureus
2557	S1M10000027G09	Staphylococcus aureus
2558	S1M10000027G11	Staphylococcus aureus
2559	S1M10000027H02	Staphylococcus aureus
2560	S1M10000027H04	Staphylococcus aureus
2561	S1M10000027H05	Staphylococcus aureus
2562	S1M10000027H06	Staphylococcus aureus
2563	S1M10000027H07	Staphylococcus aureus
2564	S1M10000027H08	Staphylococcus aureus
2565	S1M10000027H09	Staphylococcus aureus
2566	S1M10000027H10	Staphylococcus aureus
2567	S1M10000027H11	Staphylococcus aureus
2568	S1M10000028A02	Staphylococcus aureus
2569	S1M10000028A04	Staphylococcus aureus
2570	S1M10000028A06	Staphylococcus aureus
2571	S1M10000028A08	Staphylococcus aureus
2572	S1M10000028B01	Staphylococcus aureus
2573	S1M10000028B02	Staphylococcus aureus
2574	S1M10000028B03	Staphylococcus aureus
2575	S1M10000028B04	Staphylococcus aureus
2576	S1M10000028B05	Staphylococcus aureus
2577	S1M10000028B06	Staphylococcus aureus
2578	S1M10000028B08	Staphylococcus aureus
2579	S1M10000028B09	Staphylococcus aureus
2580	S1M10000028C02	Staphylococcus aureus
2581	S1M10000028C04	Staphylococcus aureus
2582	S1M10000028C05	Staphylococcus aureus
2583	S1M10000028C06	Staphylococcus aureus
2584	S1M10000028C08	Staphylococcus aureus
2585	S1M10000028D03	Staphylococcus aureus
2586	S1M10000028D04	Staphylococcus aureus
2587	S1M10000028D06	Staphylococcus aureus
2588	S1M10000028D07	Staphylococcus aureus
2589 2590	S1M10000028D08	Staphylococcus aureus
1	SIM10000028D09 S1M10000028E01	Staphylococcus aureus
2591 2592	S1M10000028E01	Staphylococcus aureus
2592	S1M10000028E08	Staphylococcus aureus
2594	S1M10000028E08	Staphylococcus aureus
2595	S1M10000028F03	Staphylococcus aureus
2596	S1M10000028F04	Staphylococcus aureus Staphylococcus aureus
2597	S1M10000028F05	Staphylococcus aureus Staphylococcus aureus
2598	S1M10000028F06	Staphylococcus aureus
2599	S1M10000028F07	Staphylococcus aureus Staphylococcus aureus
2600	S1M10000028G01	Staphylococcus aureus Staphylococcus aureus
2601	S1M10000028G02	Staphylococcus aureus
2602	S1M10000028G02	Staphylococcus aureus
2603	S1M10000028G03	Staphylococcus aureus
2003	19114110000020004	Diaphyrococcus aureus

SeqID	Clone name	Organism
2604	S1M10000028G05	Staphylococcus aureus
2605	S1M10000028G06	Staphylococcus aureus
2606	S1M10000028G08	Staphylococcus aureus
2607	S1M10000028H03	Staphylococcus aureus
2608	S1M10000028H04	Staphylococcus aureus
2609	S1M10000028H05	Staphylococcus aureus
2610	S1M10000029A02	Staphylococcus aureus
2611	S1M10000029A04	Staphylococcus aureus
2612	S1M10000029A09	Staphylococcus aureus
2613	S1M10000029A10	Staphylococcus aureus
2614	S1M10000029A11	Staphylococcus aureus
2615	S1M10000029A12	Staphylococcus aureus
2616	S1M10000029B02	Staphylococcus aureus
2617	S1M10000029B03	Staphylococcus aureus
2618	S1M10000029B04	Staphylococcus aureus
2619	S1M10000029B05	Staphylococcus aureus
2620	S1M10000029B06	Staphylococcus aureus
2621	S1M10000029B08	Staphylococcus aureus
2622	S1M10000029B10	Staphylococcus aureus
2623	S1M10000029C02	Staphylococcus aureus
2624	S1M10000029C03	Staphylococcus aureus
2625	S1M10000029C05	Staphylococcus aureus
2626	S1M10000029C07	Staphylococcus aureus
2627	S1M10000029C09	Staphylococcus aureus
2628	S1M10000029C10	Staphylococcus aureus
2629	S1M10000029C12	Staphylococcus aureus
2630	S1M10000029D02	Staphylococcus aureus
2631	S1M10000029D05	Staphylococcus aureus
2632	S1M10000029D09	Staphylococcus aureus
2633	S1M10000029D10	Staphylococcus aureus
2634	S1M10000029D12	Staphylococcus aureus
2635	S1M10000029E02	Staphylococcus aureus
2636	S1M10000029E05	Staphylococcus aureus
2637	S1M10000029E10	Staphylococcus aureus
2638	S1M10000029E11	Staphylococcus aureus
2639	S1M10000029F01	Staphylococcus aureus
2640	S1M10000029F02	Staphylococcus aureus
2641	S1M10000029F04	Staphylococcus aureus
2642	S1M10000029F09	Staphylococcus aureus
2643	S1M10000029F10	Staphylococcus aureus
2644	S1M10000029F11	Staphylococcus aureus
2645	S1M10000029F12	Staphylococcus aureus
2646	S1M10000029G01	Staphylococcus aureus
2647	S1M10000029G02	Staphylococcus aureus
2648	S1M10000029G03	Staphylococcus aureus
2649	S1M10000029G05	Staphylococcus aureus
2650	S1M10000029G07	Staphylococcus aureus
2651	S1M10000029G08	Staphylococcus aureus
2652	S1M10000029G12	Staphylococcus aureus

SeqID	Clone name	Organism
2653	S1M10000029H01	Staphylococcus aureus
2654	S1M10000029H05	Staphylococcus aureus
2655	S1M10000029H06	Staphylococcus aureus
2656	S1M10000029H08	Staphylococcus aureus
2657	S1M10000029H09	Staphylococcus aureus
2658	S1M10000029H10	Staphylococcus aureus
2659	S1M10000030A02	Staphylococcus aureus
2660	S1M10000030A05	Staphylococcus aureus
2661	S1M10000030A09	Staphylococcus aureus
2662	S1M10000030A10	Staphylococcus aureus
2663	S1M10000030A11	Staphylococcus aureus
2664	S1M10000030B02	Staphylococcus aureus
2665	S1M10000030B05	Staphylococcus aureus
2666	S1M10000030B07	Staphylococcus aureus
2667	S1M10000030B09	Staphylococcus aureus
2668	S1M10000030C02	Staphylococcus aureus
2669	S1M10000030C03	Staphylococcus aureus
2670	S1M10000030C04	Staphylococcus aureus
2671	S1M10000030C05	Staphylococcus aureus
2672	S1M10000030C08	Staphylococcus aureus
2673	S1M10000030C09	Staphylococcus aureus
2674	S1M10000030C10	Staphylococcus aureus
2675	S1M10000030C12	Staphylococcus aureus
2676	S1M10000030D01	Staphylococcus aureus
2677	S1M10000030D02	Staphylococcus aureus
2678	S1M10000030D03	Staphylococcus aureus
2679	S1M10000030D05	Staphylococcus aureus
2680	S1M10000030D06	Staphylococcus aureus
2681	S1M10000030D07	Staphylococcus aureus
2682	S1M10000030D09	Staphylococcus aureus
2683	S1M10000030D10	Staphylococcus aureus
2684	S1M10000030D11 S1M10000030E02	Staphylococcus aureus
2685	S1M10000030E02	Staphylococcus aureus Staphylococcus aureus
2686 2687		
2688	S1M10000030E07 S1M10000030E11	Staphylococcus aureus
2689		Staphylococcus aureus Staphylococcus aureus
2690	\$1M10000030E12 \$1M10000030F01	Staphylococcus aureus Staphylococcus aureus
2690	S1M1000030F07	Staphylococcus aureus Staphylococcus aureus
2692	S1M10000030F08	Staphylococcus aureus Staphylococcus aureus
2693	S1M10000030F09	Staphylococcus aureus Staphylococcus aureus
2694	S1M10000030F10	Staphylococcus aureus
2695	S1M10000030F10	Staphylococcus aureus
2696	S1M10000030G05	Staphylococcus aureus
2697	S1M1000030G03	Staphylococcus aureus
2698	S1M1000030G07	Staphylococcus aureus
2699	S1M1000030G09	Staphylococcus aureus
2700	S1M1000030G10	Staphylococcus aureus
2701	S1M1000030G11	Staphylococcus aureus

SeqID	Clone name	Organism
2702	S1M10000030G12	Staphylococcus aureus
2703	S1M10000030H01	Staphylococcus aureus
2704	S1M10000030H02	Staphylococcus aureus
2705	S1M10000030H03	Staphylococcus aureus
2706	S1M10000030H05	Staphylococcus aureus
2707	S1M10000030H07	Staphylococcus aureus
2708	S1M10000030H09	Staphylococcus aureus
2709	S1M10000031A03	Staphylococcus aureus
2710	S1M10000031A08	Staphylococcus aureus
2711	S1M10000031A10	Staphylococcus aureus
2712	S1M10000031B01	Staphylococcus aureus
2713	S1M10000031B02	Staphylococcus aureus
2714	S1M10000031B04	Staphylococcus aureus
2715	S1M10000031B11	Staphylococcus aureus
2716	S1M10000031B12	Staphylococcus aureus
2717	S1M10000031C04	Staphylococcus aureus
2718	S1M10000031C07	Staphylococcus aureus
2719	S1M10000031C09	Staphylococcus aureus
2720	S1M10000031C11	Staphylococcus aureus
2721	S1M10000031D06	Staphylococcus aureus
2722	S1M10000031D07	Staphylococcus aureus
2723	S1M10000031D08	Staphylococcus aureus
2724	S1M10000031D09	Staphylococcus aureus
2725	S1M10000031E02	Staphylococcus aureus
2726	S1M10000031E03	Staphylococcus aureus
2727	\$1M10000031E04	Staphylococcus aureus
2728	S1M10000031E07	Staphylococcus aureus
2729	S1M10000031E08	Staphylococcus aureus
2730	S1M10000031E10	Staphylococcus aureus
2731	S1M10000031E12	Staphylococcus aureus
2732	S1M10000031F02	Staphylococcus aureus
2733	S1M10000031F03	Staphylococcus aureus
2734	S1M10000031F04	Staphylococcus aureus
2735	S1M10000031F05	Staphylococcus aureus
2736	S1M10000031F08	Staphylococcus aureus
2737	S1M10000031F10	Staphylococcus aureus
2738 2739	S1M10000031F11	Staphylococcus aureus
2740	S1M10000031F12 S1M10000031G02	Staphylococcus aureus
2740	S1M10000031G02	Staphylococcus aureus
2741	S1M10000031G03	Staphylococcus aureus
2743	S1M10000031G04	Staphylococcus aureus
2744	S1M10000031G09	Staphylogogya gyrgys
2745	S1M10000031G10	Staphylococcus aureus
2745	S1M10000031G10	Staphylococcus aureus
	<u> </u>	Staphylococcus aureus
2747	S1M10000031H01	Staphylococcus aureus
2748	S1M10000031H02	Staphylococcus aureus
2749	S1M10000031H06	Staphylococcus aureus
2750	S1M10000031H09	Staphylococcus aureus

SeqID	Clone name	Organism
2751	S1M10000031H11	Staphylococcus aureus
2752	S1M10000032A03	Staphylococcus aureus
2753	S1M10000032A05	Staphylococcus aureus
2754	S1M10000032A06	Staphylococcus aureus
2755	S1M10000032A07	Staphylococcus aureus
2756	S1M10000032A08	Staphylococcus aureus
2757	S1M10000032A10	Staphylococcus aureus
2758	S1M10000032B01	Staphylococcus aureus
2759	S1M10000032B05	Staphylococcus aureus
2760	S1M10000032B07	Staphylococcus aureus
2761	S1M10000032B08	Staphylococcus aureus
2762	S1M10000032B11	Staphylococcus aureus
2763	S1M10000032B12	Staphylococcus aureus
2764	S1M10000032C01	Staphylococcus aureus
2765	S1M10000032C03	Staphylococcus aureus
2766	S1M10000032C04	Staphylococcus aureus
2767	S1M10000032C05	Staphylococcus aureus
2768	S1M10000032C09	Staphylococcus aureus
2769	S1M10000032C10	Staphylococcus aureus
2770	S1M10000032C11	Staphylococcus aureus
2771	S1M10000032C12	Staphylococcus aureus
2772	S1M10000032D03	Staphylococcus aureus
2773	S1M10000032D06	Staphylococcus aureus
2774	S1M10000032D07	Staphylococcus aureus
2775	S1M10000032D09	Staphylococcus aureus
2776	S1M10000032D11	Staphylococcus aureus
2777	S1M10000032E02	Staphylococcus aureus
2778	S1M10000032E03	Staphylococcus aureus
2779	S1M10000032E04	Staphylococcus aureus
2780	S1M10000032E06	Staphylococcus aureus
2781	S1M10000032E08	Staphylococcus aureus
2782	S1M10000032E09	Staphylococcus aureus
2783	S1M10000032E10	Staphylococcus aureus
2784	S1M10000032E11	Staphylococcus aureus
2785	S1M10000032E12	Staphylococcus aureus
2786	S1M10000032F01	Staphylococcus aureus
2787	S1M10000032F04	Staphylococcus aureus
2788	S1M10000032F05	Staphylococcus aureus
2789	S1M10000032F10	Staphylococcus aureus
2790	S1M10000032F11	Staphylococcus aureus
2791	S1M10000032F12	Staphylococcus aureus
2792	S1M10000032G02	Staphylococcus aureus
2793	S1M10000032G03	Staphylococcus aureus
2794	S1M10000032G04	Staphylococcus aureus
2795	S1M10000032G06	Staphylococcus aureus
2796	S1M10000032G08	Staphylococcus aureus
2797	S1M10000032G10	Staphylococcus aureus
2798	S1M10000032G12	Staphylococcus aureus
2799	S1M10000032H01	Staphylococcus aureus

SeqID	Clone name	Organism
2800	S1M10000032H04	Staphylococcus aureus
2801	S1M10000032H07	Staphylococcus aureus
2802	S1M10000032H09	Staphylococcus aureus
2803	S1M10000032H11	Staphylococcus aureus
2804	S1M10000033A02	Staphylococcus aureus
2805	S1M10000033A07	Staphylococcus aureus
2806	S1M10000033A08	Staphylococcus aureus
2807	S1M10000033A10	Staphylococcus aureus
2808	S1M10000033B02	Staphylococcus aureus
2809	S1M10000033B07	Staphylococcus aureus
2810	SIM10000033B08	Staphylococcus aureus
2811	S1M10000033B11	Staphylococcus aureus
2812	S1M10000033B12	Staphylococcus aureus
2813	S1M10000033C04	Staphylococcus aureus
2814	S1M10000033D02	Staphylococcus aureus
2815	S1M10000033D03	Staphylococcus aureus
2816	S1M10000033D04	Staphylococcus aureus
2817	S1M10000033D05	Staphylococcus aureus
2818	S1M10000033D06	Staphylococcus aureus
2819	S1M10000033D10	Staphylococcus aureus
2820	S1M10000033D12	Staphylococcus aureus
2821	S1M10000033E04	Staphylococcus aureus
2822	S1M10000033E10	Staphylococcus aureus
2823	S1M10000033E12	Staphylococcus aureus
2824	S1M10000033F02	Staphylococcus aureus
2825	S1M10000033F03	Staphylococcus aureus
2826	S1M10000033F06	Staphylococcus aureus
2827	S1M10000033F07	Staphylococcus aureus
2828	S1M10000033F09	Staphylococcus aureus
2829	S1M10000033F11	Staphylococcus aureus
2830	S1M10000033G05	Staphylococcus aureus
2831	S1M10000033G07 S1M10000033G09	Staphylococcus aureus
2832 2833	S1M10000033G10	Staphylococcus aureus
2834	S1M10000033G10	Staphylococcus aureus
2835	S1M10000033G11	Staphylococcus aureus
2836	S1M10000033H01	Staphylococcus aureus Staphylococcus aureus
2837	S1M10000033H01	Staphylococcus aureus Staphylococcus aureus
2838	S1M10000033H03	Staphylococcus aureus
2839	S1M10000033H07	Staphylococcus aureus
2840	S1M1000033H08	Staphylococcus aureus
2841	S1M10000033H09	Staphylococcus aureus
2842	S1M10000033H10	Staphylococcus aureus
2843	S1M10000033H11	Staphylococcus aureus
2844	S1M1000034A02	Staphylococcus aureus
2845	S1M10000034A03	Staphylococcus aureus
2846	S1M10000034A04	Staphylococcus aureus
2847	S1M10000034A05	Staphylococcus aureus
2848	S1M10000034A08	Staphylococcus aureus
	L.	

SeqID	Clone name	Organism
2849	S1M10000034A09	Staphylococcus aureus
2850	S1M10000034A11	Staphylococcus aureus
2851	S1M10000034A12	Staphylococcus aureus
2852	S1M10000034B03	Staphylococcus aureus
2853	S1M10000034B05	Staphylococcus aureus
2854	S1M10000034B06	Staphylococcus aureus
2855	S1M10000034B07	Staphylococcus aureus
2856	S1M10000034B08	Staphylococcus aureus
2857	S1M10000034B09	Staphylococcus aureus
2858	S1M10000034B10	Staphylococcus aureus
2859	S1M10000034B12	Staphylococcus aureus
2860	S1M10000034C02	Staphylococcus aureus
2861	S1M10000034C06	Staphylococcus aureus
2862	S1M10000034C07	Staphylococcus aureus
2863	S1M10000034C09	Staphylococcus aureus
2864	S1M10000034C12	Staphylococcus aureus
2865	S1M10000034D01	Staphylococcus aureus
2866	S1M10000034D05	Staphylococcus aureus
2867	S1M10000034D06	Staphylococcus aureus
2868	S1M10000034D07	Staphylococcus aureus
2869	S1M10000034D08	Staphylococcus aureus
2870	S1M10000034D10	Staphylococcus aureus
2871	S1M10000034D11	Staphylococcus aureus
2872	S1M10000034D12	Staphylococcus aureus
2873	S1M10000034E01	Staphylococcus aureus
2874	S1M10000034E02	Staphylococcus aureus
2875	S1M10000034E04	Staphylococcus aureus
2876	S1M10000034E05	Staphylococcus aureus
2877	S1M10000034E06	Staphylococcus aureus
2878	S1M10000034E07	Staphylococcus aureus
2879	S1M10000034E10	Staphylococcus aureus
2880	S1M10000034E11	Staphylococcus aureus
2881	S1M10000034E12	Staphylococcus aureus
2882	S1M10000034F01	Staphylococcus aureus
2883	S1M10000034F02	Staphylococcus aureus
2884	S1M10000034F03	Staphylococcus aureus
2885	S1M10000034F04	Staphylococcus aureus
2886	S1M10000034F05	Staphylococcus aureus
2887	S1M10000034F07	Staphylococcus aureus
2888	S1M10000034F08	Staphylococcus aureus
2889	S1M10000034F09	Staphylococcus aureus
2890	S1M10000034F10	Staphylococcus aureus
2891	S1M10000034F12	Staphylococcus aureus
2892	S1M10000034G02	Staphylococcus aureus
2893	S1M10000034G03	Staphylococcus aureus
2894	S1M10000034G06	Staphylococcus aureus
2895	S1M10000034G07	Staphylococcus aureus
2896	S1M10000034G08	Staphylococcus aureus
2897	S1M10000034G09	Staphylococcus aureus

SeqID	Clone name	Organism
2898	S1M10000034G11	Staphylococcus aureus
2899	S1M10000034G11	Staphylococcus aureus
2900	S1M10000034H01	Staphylococcus aureus
2901	S1M10000034H02	Staphylococcus aureus
2902	S1M10000034H03	Staphylococcus aureus
2903	S1M10000034H06	Staphylococcus aureus
2904	S1M10000034H07	Staphylococcus aureus
2905	S1M10000034H08	Staphylococcus aureus
2906	S1M10000034H09	Staphylococcus aureus
2907	S1M10000034H10	Staphylococcus aureus
2908	S1M10000035A03	Staphylococcus aureus
2909	S1M10000035A08	Staphylococcus aureus
2910	S1M10000035A09	Staphylococcus aureus
2911	S1M10000035A10	Staphylococcus aureus
2912	S1M10000035A11	Staphylococcus aureus
2913	S1M10000035A12	Staphylococcus aureus
2914	S1M10000035B01	Staphylococcus aureus
2915	S1M10000035B03	Staphylococcus aureus
2916	S1M10000035B04	Staphylococcus aureus
2917	S1M10000035B08	Staphylococcus aureus
2918	S1M10000035B11	Staphylococcus aureus
2919	S1M10000035C01	Staphylococcus aureus
2920	S1M10000035C02	Staphylococcus aureus
2921	S1M10000035C04	Staphylococcus aureus
2922	S1M10000035C06	Staphylococcus aureus
2923	S1M10000035C11	Staphylococcus aureus
2924	S1M10000035D01	Staphylococcus aureus
2925	S1M10000035D04	Staphylococcus aureus
2926	S1M10000035D06	Staphylococcus aureus
2927	S1M10000035D09	Staphylococcus aureus
2928	S1M10000035D12	Staphylococcus aureus
2929	S1M10000035E02	Staphylococcus aureus
2930	S1M10000035E03	Staphylococcus aureus
2931	S1M10000035E04	Staphylococcus aureus
2932	S1M10000035E08	Staphylococcus aureus
2933	S1M10000035E09	Staphylococcus aureus
2934	S1M10000035E12	Staphylococcus aureus
2935	S1M10000035F03	Staphylococcus aureus
2936	S1M10000035F04	Staphylococcus aureus
2937	S1M10000035F09	Staphylococcus aureus
2938	S1M10000035F12	Staphylococcus aureus
2939	S1M10000035G02	Staphylococcus aureus
2940	S1M10000035G09	Staphylococcus aureus
2941	S1M10000035G11	Staphylococcus aureus
2942	S1M10000035G12	Staphylococcus aureus
2943	S1M10000035H01	Staphylococcus aureus
2944	S1M10000035H07	Staphylococcus aureus
2945	S1M10000035H08	Staphylococcus aureus
2946	S1M10000035H09	Staphylococcus aureus

SeqID	Clone name	Organism
2947	S1M10000035H10	Staphylococcus aureus
2948	S1M10000035H11	Staphylococcus aureus
2949	S1M10000035H11	Staphylococcus aureus
2950	SIM1000036A03	Staphylococcus aureus
2951	SIM1000036A04	Staphylococcus aureus
2952	S1M10000036A05	Staphylococcus aureus
2953	S1M10000036A08	Staphylococcus aureus
2954	S1M10000036A11	Staphylococcus aureus
2955	S1M10000036A12	Staphylococcus aureus
2956	S1M10000036B04	Staphylococcus aureus
2957	S1M10000036B06	Staphylococcus aureus
2958	S1M10000036B07	Staphylococcus aureus
2959	S1M10000036B08	Staphylococcus aureus
2960	S1M10000036B11	Staphylococcus aureus
2961	S1M10000036B12	Staphylococcus aureus
2962	S1M10000036C01	Staphylococcus aureus
2963	S1M10000036C03	Staphylococcus aureus
2964	S1M10000036C04	Staphylococcus aureus
2965	S1M10000036C05	Staphylococcus aureus
2966	S1M10000036C06	Staphylococcus aureus
2967	S1M1000036C07	Staphylococcus aureus
2968	S1M10000036C09	Staphylococcus aureus
2969	S1M1000036C10	Staphylococcus aureus
2970	S1M10000036D02	Staphylococcus aureus
2971	S1M10000036D03	Staphylococcus aureus
2972	S1M10000036D06	Staphylococcus aureus
2973	S1M10000036D08	Staphylococcus aureus
2974	S1M10000036D10	Staphylococcus aureus
2975	S1M10000036D11	Staphylococcus aureus
2976	S1M10000036D12	Staphylococcus aureus
2977	S1M10000036E06	Staphylococcus aureus
2978	S1M10000036E08	Staphylococcus aureus
2979	SIM10000036E11	Staphylococcus aureus
2980	S1M10000036F06	Staphylococcus aureus
2981	S1M10000036F07	Staphylococcus aureus
2982	S1M10000036F08	Staphylococcus aureus
2983	S1M10000036F09	Staphylococcus aureus
2984	S1M10000036F10	Staphylococcus aureus
2985	S1M10000036F11	Staphylococcus aureus
2986	S1M10000036G03	Staphylococcus aureus
2987	S1M10000036G07	Staphylococcus aureus
2988	S1M10000036G08	Staphylococcus aureus
2989	S1M10000036G11	Staphylococcus aureus
2990	S1M10000036H01	Staphylococcus aureus
2991	S1M10000036H02	Staphylococcus aureus
2992	S1M10000036H03	Staphylococcus aureus
2993	S1M10000036H04	Staphylococcus aureus
2994	S1M10000036H05	Staphylococcus aureus
2995	S1M10000036H06	Staphylococcus aureus
L		1

SeqID	Clone name	Organism
2996	S1M10000036H08	Staphylococcus aureus
2997	S1M10000036H11	Staphylococcus aureus
2998	S1M10000037A02	Staphylococcus aureus
2999	S1M10000037A03	Staphylococcus aureus
3000	S1M10000037A06	Staphylococcus aureus
3001	S1M10000037A08	Staphylococcus aureus
3002	S1M10000037A09	Staphylococcus aureus
3003	S1M10000037A11	Staphylococcus aureus
3004	S1M10000037A12	Staphylococcus aureus
3005	S1M10000037B03	Staphylococcus aureus
3006	S1M10000037B04	Staphylococcus aureus
3007	S1M10000037B05	Staphylococcus aureus
3008	S1M10000037B06	Staphylococcus aureus
3009	S1M10000037B07	Staphylococcus aureus
3010	S1M10000037B08	Staphylococcus aureus
3011	S1M10000037B10	Staphylococcus aureus
3012	S1M10000037B11	Staphylococcus aureus
3013	S1M10000037B12	Staphylococcus aureus
3014	S1M10000037C05	Staphylococcus aureus
3015	S1M10000037C06	Staphylococcus aureus
3016	S1M10000037C07	Staphylococcus aureus
3017	S1M10000037C08	Staphylococcus aureus
3018	S1M10000037C09	Staphylococcus aureus
3019	S1M10000037C10	Staphylococcus aureus
3020	S1M10000037D04	Staphylococcus aureus
3021	S1M10000037D05	Staphylococcus aureus
3022	S1M10000037D06	Staphylococcus aureus
3023	S1M10000037D09	Staphylococcus aureus
3024	S1M10000037D12	Staphylococcus aureus
3025	S1M10000037E02	Staphylococcus aureus
3026	S1M10000037E03	Staphylococcus aureus
3027	S1M10000037E06	Staphylococcus aureus
3028	S1M10000037E08	Staphylococcus aureus
3029	S1M10000037E09	Staphylococcus aureus
3030	S1M10000037E10	Staphylococcus aureus
3031	SIM10000037E11	Staphylococcus aureus
3032	S1M10000037E12	Staphylococcus aureus
3033 3034	S1M10000037F02 S1M10000037F03	Staphylococcus aureus
<u> </u>		Staphylococcus aureus
3035 3036	S1M10000037F04 S1M10000037F05	Staphylococcus aureus
3036	S1M10000037F05	Staphylococcus aureus
3037	S1M10000037F06	Staphylococcus aureus
ł	<u></u>	Staphylococcus aureus
3039	S1M10000037F08	Staphylococcus aureus
3040	S1M10000037F09	Staphylococcus aureus
3041	S1M10000037F10	Staphylococcus aureus
3042	S1M10000037G01	Staphylococcus aureus
3043	S1M10000037G02	Staphylococcus aureus
3044	S1M10000037G03	Staphylococcus aureus

SeqID	Clone name	Organism
3045	S1M10000037G06	Staphylococcus aureus
3046	S1M10000037G07	Staphylococcus aureus
3047	S1M10000037G08	Staphylococcus aureus
3048	S1M10000037G10	Staphylococcus aureus
3049	S1M10000037H02	Staphylococcus aureus
3050	S1M10000037H03	Staphylococcus aureus
3051	S1M10000037H05	Staphylococcus aureus
3052	S1M10000037H07	Staphylococcus aureus
3053	S1M10000037H08	Staphylococcus aureus
3054	S1M10000037H09	Staphylococcus aureus
3055	S1M10000037H11	Staphylococcus aureus
3056	S1M10000038A04	Staphylococcus aureus
3057	S1M10000038A07	Staphylococcus aureus
3058	S1M10000038A08	Staphylococcus aureus
3059	S1M10000038A09	Staphylococcus aureus
3060	S1M10000038A11	Staphylococcus aureus
3061	S1M10000038A12	Staphylococcus aureus
3062	S1M10000038B01	Staphylococcus aureus
3063	S1M10000038B03	Staphylococcus aureus
3064	S1M10000038B07	Staphylococcus aureus
3065	S1M10000038B08	Staphylococcus aureus
3066	S1M10000038B09	Staphylococcus aureus
3067	S1M10000038B12	Staphylococcus aureus
3068	S1M10000038C01	Staphylococcus aureus
3069	S1M10000038C02	Staphylococcus aureus
3070	S1M10000038C06	Staphylococcus aureus
3071	S1M10000038C08	Staphylococcus aureus
3072 3073	S1M10000038C10 S1M10000038C11	Staphylococcus aureus
3073	S1M10000038C11	Staphylococcus aureus
3075	S1M10000038D02	Staphylococcus aureus Staphylococcus aureus
3076	S1M10000038D02	Staphylococcus aureus Staphylococcus aureus
3077	S1M10000038D07	Staphylococcus aureus Staphylococcus aureus
3078	S1M10000038D07	Staphylococcus aureus Staphylococcus aureus
3079	S1M1000038D09	Staphylococcus aureus
3080	S1M1000038D10	Staphylococcus aureus
3081	S1M1000038D11	Staphylococcus aureus
3082	S1M10000038D12	Staphylococcus aureus
3083	S1M1000038E01	Staphylococcus aureus
3084	S1M10000038E02	Staphylococcus aureus
3085	S1M10000038E03	Staphylococcus aureus
3086	S1M10000038E04	Staphylococcus aureus
3087	S1M10000038E05	Staphylococcus aureus
3088	S1M10000038E06	Staphylococcus aureus
3089	S1M10000038E07	Staphylococcus aureus
3090	S1M10000038E10	Staphylococcus aureus
3091	S1M10000038E12	Staphylococcus aureus
3092	SIM10000038F03	Staphylococcus aureus
3093	S1M10000038F04	Staphylococcus aureus
L		<u></u>

SeqID	Clone name	Organism
3094	S1M10000038F05	Staphylococcus aureus
3095	S1M10000038F06	Staphylococcus aureus
3096	S1M10000038F08	Staphylococcus aureus
3097	S1M10000038F09	Staphylococcus aureus
3098	S1M10000038F10	Staphylococcus aureus
3099	S1M10000038F11	Staphylococcus aureus
3100	S1M10000038F12	Staphylococcus aureus
3101	S1M10000038G01	Staphylococcus aureus
3102	S1M10000038G03	Staphylococcus aureus
3103	S1M10000038G04	Staphylococcus aureus
3104	S1M10000038G06	Staphylococcus aureus
3105	S1M10000038G08	Staphylococcus aureus
3106	S1M10000038G10	Staphylococcus aureus
3107	S1M10000038G11	Staphylococcus aureus
3108	S1M10000038G12	Staphylococcus aureus
3109	S1M10000038H03	Staphylococcus aureus
3110	S1M10000038H07	Staphylococcus aureus
3111	S1M10000038H09	Staphylococcus aureus
3112	S1M10000038H11	Staphylococcus aureus
3113	S1M10000039A02	Staphylococcus aureus
3114	S1M10000039A05	Staphylococcus aureus
3115	S1M10000039A07	Staphylococcus aureus
3116	S1M10000039A08	Staphylococcus aureus
3117	S1M10000039A11	Staphylococcus aureus
3118	S1M10000039A12	Staphylococcus aureus
3119	S1M10000039B02	Staphylococcus aureus
3120	S1M10000039B06	Staphylococcus aureus
3121	S1M10000039B07	Staphylococcus aureus
3122	S1M10000039B10	Staphylococcus aureus
3123	S1M10000039B12	Staphylococcus aureus
3124	S1M10000039C04	Staphylococcus aureus
3125	S1M10000039C06	Staphylococcus aureus
3126	S1M10000039C07 S1M10000039C08	Staphylococcus aureus Staphylococcus aureus
3127	S1M10000039C08	
3128	S1M10000039C09	Staphylococcus aureus
3130	S1M10000039C10	Staphylococcus aureus Staphylococcus aureus
3131	S1M10000039Ct1	Staphylococcus aureus Staphylococcus aureus
3132	S1M10000039D02	Staphylococcus aureus Staphylococcus aureus
3133	S1M10000039D09	Staphylococcus aureus
3134	S1M10000039E01	Staphylococcus aureus
3135	S1M10000039E08	Staphylococcus aureus
3136	S1M10000039E09	Staphylococcus aureus
3137	S1M10000039E10	Staphylococcus aureus
3138	S1M10000039E11	Staphylococcus aureus
3139	S1M10000039F02	Staphylococcus aureus
3140	S1M1000039F03	Staphylococcus aureus
3141	S1M10000039F05	Staphylococcus aureus
3142	S1M10000039F07	Staphylococcus aureus
J172	101111111111111111111111111111111111111	Description and and and and and and and and and an

SeqID	Clone name	Organism
3143	S1M10000039F08	Staphylococcus aureus
3143	S1M10000039F09	Staphylococcus aureus
3145	S1M10000039F10	Staphylococcus aureus
3145	S1M10000039F10	Staphylococcus aureus Staphylococcus aureus
3147	S1M10000039F12	Staphylococcus aureus
3148	S1M1000039G04	Staphylococcus aureus
3149	S1M10000039G07	Staphylococcus aureus
3150	S1M10000039G07	Staphylococcus aureus
3151	S1M10000039H02	Staphylococcus aureus
3152	S1M10000039H02	Staphylococcus aureus
3153	S1M10000039H04	Staphylococcus aureus
3154	S1M10000039H04	Staphylococcus aureus
3155	S1M10000039H07	<u> </u>
3156	S1M10000039H07	Staphylococcus aureus Staphylococcus aureus
3157	S1M10000039H08	Staphylococcus aureus
3158	S1M10000040A04	Staphylococcus aureus
3159	S1M10000040A03	Staphylococcus aureus
3160	S1M10000040A07	Staphylococcus aureus
3161	S1M10000040A08	Staphylococcus aureus
3162	S1M10000040A10	Staphylococcus aureus
3163	S1M10000040A11	Staphylococcus aureus
3164	S1M10000040B01	Staphylococcus aureus
3165	S1M10000040B07	Staphylococcus aureus
3166	S1M10000040B07	Staphylococcus aureus
3167	S1M10000040B11	Staphylococcus aureus
3168	S1M10000040C03	Staphylococcus aureus
3169	S1M1000040C05	Staphylococcus aureus
3170	S1M1000040C06	Staphylococcus aureus
3171	S1M1000040C07	Staphylococcus aureus
3172	S1M1000040C08	Staphylococcus aureus
3173	S1M10000040C10	Staphylococcus aureus
3174	S1M10000040C11	Staphylococcus aureus
3175	S1M10000040D01	Staphylococcus aureus
3176	S1M10000040D03	Staphylococcus aureus
3177	S1M1000040D08	Staphylococcus aureus
3178	S1M10000040D09	Staphylococcus aureus
3179	S1M10000040D11	Staphylococcus aureus
3180	S1M10000040E01	Staphylococcus aureus
3181	S1M10000040E02	Staphylococcus aureus
3182	S1M10000040E04	Staphylococcus aureus
3183	S1M10000040E05	Staphylococcus aureus
3184	S1M10000040E06	Staphylococcus aureus
3185	S1M10000040E07	Staphylococcus aureus
3186	S1M10000040E09	Staphylococcus aureus
3187	S1M10000040E10	Staphylococcus aureus
3188	S1M1000040E11	Staphylococcus aureus
3189	S1M10000040E12	Staphylococcus aureus
3190	S1M1000040F01	Staphylococcus aureus
3191	S1M10000040F02	Staphylococcus aureus
		Designification was can

SeqID	Clone name	Organism
3192	S1M10000040F03	Staphylococcus aureus
3193	S1M10000040F04	Staphylococcus aureus
3194	S1M10000040F05	Staphylococcus aureus
3195	S1M10000040F06	Staphylococcus aureus
3196	S1M10000040F08	Staphylococcus aureus
3197	S1M10000040F09	Staphylococcus aureus
3198	S1M10000040F12	Staphylococcus aureus
3199	S1M10000040G01	Staphylococcus aureus
3200	S1M10000040G02	Staphylococcus aureus
3201	S1M10000040G04	Staphylococcus aureus
3202	S1M10000040G07	Staphylococcus aureus
3203	S1M10000040G08	Staphylococcus aureus
3204	S1M10000040G12	Staphylococcus aureus
3205	S1M10000040H02	Staphylococcus aureus
3206	S1M10000040H03	Staphylococcus aureus
3207	S1M10000040H04	Staphylococcus aureus
3208	S1M10000040H05	Staphylococcus aureus
3209	S1M10000040H07	Staphylococcus aureus
3210	S1M10000040H10	Staphylococcus aureus
3211	S1M10000041A03	Staphylococcus aureus
3212	S1M10000041B02	Staphylococcus aureus
3213	S1M10000041B03	Staphylococcus aureus
3214	S1M10000041B05	Staphylococcus aureus
3215	S1M10000041B06	Staphylococcus aureus
3216	S1M10000041B07	Staphylococcus aureus
3217	S1M10000041B12	Staphylococcus aureus
3218	S1M10000041C08	Staphylococcus aureus
3219	S1M10000041C10	Staphylococcus aureus
3220	S1M10000041C11	Staphylococcus aureus
3221	S1M10000041D06	Staphylococcus aureus
3222	S1M10000041D07	Staphylococcus aureus
3223	S1M10000041D08	Staphylococcus aureus
3224	S1M10000041D10	Staphylococcus aureus
3225	S1M10000041D12	Staphylococcus aureus
3226	S1M10000041E03	Staphylococcus aureus
3227	S1M10000041E06	Staphylococcus aureus
3228	S1M10000041E09	Staphylococcus aureus
3229	S1M10000041E12	Staphylococcus aureus
3230	S1M10000041F03	Staphylococcus aureus
3231	S1M10000041F11	Staphylococcus aureus
3232	S1M10000041F12	Staphylococcus aureus
3233	S1M10000041G01	Staphylococcus aureus
3234	S1M10000041G06	Staphylococcus aureus
3235	S1M10000041G08	Staphylococcus aureus
3236	S1M10000041G10	Staphylococcus aureus
3237	S1M10000041G11	Staphylococcus aureus
3238	S1M10000041H01	Staphylococcus aureus
3239	S1M10000041H04	Staphylococcus aureus
3240	S1M10000041H05	Staphylococcus aureus

SeqID	Clone name	Organism
3241	S1M10000041H07	Staphylococcus aureus
3242	S1M10000041H08	Staphylococcus aureus
3243	S1M10000041H09	Staphylococcus aureus
3244	S1M10000042A04	Staphylococcus aureus
3245	S1M10000042A05	Staphylococcus aureus
3246	S1M10000042A06	Staphylococcus aureus
3247	S1M10000042A07	Staphylococcus aureus
3248	S1M10000042A09	Staphylococcus aureus
3249	S1M10000042A11	Staphylococcus aureus
3250	S1M10000042A12	Staphylococcus aureus
3251	S1M10000042B02	Staphylococcus aureus
3252	S1M10000042B03	Staphylococcus aureus
3253	S1M10000042B06	Staphylococcus aureus
3254	S1M10000042B07	Staphylococcus aureus
3255	S1M10000042B08	Staphylococcus aureus
3256	S1M10000042B09	Staphylococcus aureus
3257	S1M10000042B10	Staphylococcus aureus
. 3258	S1M10000042B11	Staphylococcus aureus
3259	S1M10000042B12	Staphylococcus aureus
3260	S1M10000042C02	Staphylococcus aureus
3261	S1M10000042C06	Staphylococcus aureus
3262	S1M10000042C10	Staphylococcus aureus
3263	S1M10000042C11	Staphylococcus aureus
3264	S1M10000042D04	Staphylococcus aureus
3265	S1M10000042D07	Staphylococcus aureus
3266	S1M10000042D10	Staphylococcus aureus
3267	S1M10000042D11	Staphylococcus aureus
3268	S1M10000042E03	Staphylococcus aureus
3269 3270	S1M10000042E06 S1M10000042E08	Staphylococcus aureus
3270	S1M10000042E08	Staphylococcus aureus
3272	S1M10000042F01	Staphylococcus aureus Staphylococcus aureus
3273	S1M10000042F02	Staphylococcus aureus
3274	S1M10000042F06	Staphylococcus aureus
3275	S1M10000042F08	Staphylococcus aureus
3276	SIM10000042F09	Staphylococcus aureus
3277	S1M10000042F10	Staphylococcus aureus
3278	S1M10000042F11	Staphylococcus aureus
3279	S1M10000042G01	Staphylococcus aureus
3280	S1M10000042G03	Staphylococcus aureus
3281	S1M10000042G08	Staphylococcus aureus
3282	S1M10000042G09	Staphylococcus aureus
3283	S1M10000042G12	Staphylococcus aureus
3284	S1M10000042H05	Staphylococcus aureus
3285	S1M10000042H07	Staphylococcus aureus
3286	S1M10000042H11	Staphylococcus aureus
3287	S1M10000043A02	Staphylococcus aureus
3288	S1M10000043A03	Staphylococcus aureus
3289	S1M10000043A04	Staphylococcus aureus
		

SeqID	Clone name	Organism
3290	S1M10000043A06	Staphylococcus aureus
3291	S1M10000043A07	Staphylococcus aureus
3292	S1M10000043A08	Staphylococcus aureus
3293	S1M10000043A10	Staphylococcus aureus
3294	S1M10000043A11	Staphylococcus aureus
3295	S1M10000043A12	Staphylococcus aureus
3296	S1M10000043B01	Staphylococcus aureus
3297	S1M10000043B02	Staphylococcus aureus
3298	S1M10000043B07	Staphylococcus aureus
3299	S1M10000043B08	Staphylococcus aureus
3300	S1M10000043B09	Staphylococcus aureus
3301	S1M10000043B10	Staphylococcus aureus
3302	S1M10000043B12	Staphylococcus aureus
3303	S1M10000043C02	Staphylococcus aureus
3304	S1M10000043C07	Staphylococcus aureus
3305	S1M10000043C11	Staphylococcus aureus
3306	S1M10000043C12	Staphylococcus aureus
3307	S1M10000043D01	Staphylococcus aureus
3308	S1M10000043D02	Staphylococcus aureus
3309	S1M10000043D04	Staphylococcus aureus
3310	SIM10000043D10	Staphylococcus aureus
3311	S1M10000043D12	Staphylococcus aureus
3312	S1M10000043E02	Staphylococcus aureus
3313	S1M10000043E03	Staphylococcus aureus
3314	S1M10000043E05	Staphylococcus aureus
3315	S1M10000043E07	Staphylococcus aureus
3316	S1M10000043E08	Staphylococcus aureus
3317	S1M10000043E10	Staphylococcus aureus
3318	S1M10000043E11	Staphylococcus aureus
3319	S1M10000043E12	Staphylococcus aureus
3320	S1M10000043F01	Staphylococcus aureus
3321	S1M10000043F05	Staphylococcus aureus
3322	S1M10000043F07	Staphylococcus aureus
3323	S1M10000043F08	Staphylococcus aureus
3324	S1M10000043F09	Staphylococcus aureus
3325	S1M10000043G01	Staphylococcus aureus
3326	SIM10000043G04	Staphylococcus aureus
3327	S1M10000043G05	Staphylococcus aureus
3328	S1M10000043G09	Staphylococcus aureus
3329	SIM10000043G10	Staphylococcus aureus
3330	S1M10000043H01	Staphylococcus aureus
3331	S1M10000043H03	Staphylococcus aureus
3332	S1M10000043H04	Staphylococcus aureus
3333	S1M10000043H05	Staphylococcus aureus
3334	S1M10000043H06	Staphylococcus aureus
3335	S1M10000043H09	Staphylococcus aureus
3336	S1M10000043H10	Staphylococcus aureus
3337	S1M10000043H11	Staphylococcus aureus
3338	S1M10000044A02	Staphylococcus aureus

SeqID	Clone name	Organism
3339	S1M10000044A06	Staphylococcus aureus
3340	S1M10000044A08	Staphylococcus aureus
3341	S1M10000044A09	Staphylococcus aureus
3342	S1M10000044A11	Staphylococcus aureus
3343	S1M10000044A12	Staphylococcus aureus
3344	S1M10000044B01	Staphylococcus aureus
3345	S1M10000044B02	Staphylococcus aureus
3346	S1M10000044B05	Staphylococcus aureus
3347	S1M10000044B06	Staphylococcus aureus
3348	S1M10000044B08	Staphylococcus aureus
3349	S1M10000044B11	Staphylococcus aureus
3350	S1M10000044B12	Staphylococcus aureus
3351	S1M10000044C04	Staphylococcus aureus
3352	S1M10000044C06	Staphylococcus aureus
3353	S1M10000044C07	Staphylococcus aureus
3354	S1M10000044C08	Staphylococcus aureus
3355	S1M10000044C11	Staphylococcus aureus
3356	S1M10000044C12	Staphylococcus aureus
3357	S1M10000044D01	Staphylococcus aureus
3358	S1M10000044D04	Staphylococcus aureus
3359	S1M10000044D06	Staphylococcus aureus
3360	SIM10000044D08	Staphylococcus aureus
3361	S1M10000044D09	Staphylococcus aureus
3362	S1M10000044D10	Staphylococcus aureus
3363	S1M10000044D11	Staphylococcus aureus
3364	S1M10000044D12	Staphylococcus aureus
3365	S1M10000044E01	Staphylococcus aureus
3366	S1M10000044E02	Staphylococcus aureus
3367	S1M10000044E06	Staphylococcus aureus
3368	S1M10000044E07	Staphylococcus aureus
3369	S1M10000044E09	Staphylococcus aureus
3370	S1M10000044E10	Staphylococcus aureus
3371	S1M10000044E11	Staphylococcus aureus
3372	S1M10000044F02	Staphylococcus aureus
3373	S1M10000044F06	Staphylococcus aureus
3374	S1M10000044F08	Staphylococcus aureus
3375	S1M10000044F10	Staphylococcus aureus
3376	S1M10000044G02	Staphylococcus aureus
3377	S1M10000044G05	Staphylococcus aureus
3378	S1M10000044G08	Staphylococcus aureus
3379	\$1M10000044G10	Staphylococcus aureus
3380	S1M10000044G11	Staphylococcus aureus
3381	S1M10000044H06	Staphylococcus aureus
3382	S1M10000044H07	Staphylococcus aureus
3383	S1M10000044H08	Staphylococcus aureus
3384	S1M10000044H09	Staphylococcus aureus
3385	S1M10000044H10	Staphylococcus aureus
3386	S1M10000044H11	Staphylococcus aureus
3387	S1M10000045A02	Staphylococcus aureus

SeqID	Clone name	Organism
3388	S1M10000045A06	Staphylococcus aureus
3389	S1M10000045A07	Staphylococcus aureus
3390	S1M10000045A08	Staphylococcus aureus
3391	S1M10000045A12	Staphylococcus aureus
3392	S1M10000045B01	Staphylococcus aureus
3393	S1M10000045B02	Staphylococcus aureus
3394	S1M10000045B03	Staphylococcus aureus
3395	S1M10000045B07	Staphylococcus aureus
3396	S1M10000045B10	Staphylococcus aureus
3397	S1M10000045B11	Staphylococcus aureus
3398	S1M10000045B12	Staphylococcus aureus
3399	S1M10000045C02	Staphylococcus aureus
3400	S1M10000045C03	Staphylococcus aureus
3401	S1M10000045C04	Staphylococcus aureus
3402	S1M10000045C05	Staphylococcus aureus
3403	S1M10000045C07	Staphylococcus aureus
3404	S1M10000045C09	Staphylococcus aureus
3405	S1M10000045D01	Staphylococcus aureus
3406	S1M10000045D03	Staphylococcus aureus
3407	S1M10000045D07	Staphylococcus aureus
3408	S1M10000045D08	Staphylococcus aureus
3409	S1M10000045D09	Staphylococcus aureus
3410	S1M10000045D10	Staphylococcus aureus
3411	S1M10000045D11	Staphylococcus aureus
3412	S1M10000045D12	Staphylococcus aureus
3413	S1M10000045E04	Staphylococcus aureus
3414	S1M10000045E05	Staphylococcus aureus
3415	S1M10000045E08	Staphylococcus aureus
3416	S1M10000045E09	Staphylococcus aureus
3417	S1M10000045E10	Staphylococcus aureus
3418	S1M10000045E11	Staphylococcus aureus
3419	S1M10000045E12	Staphylococcus aureus
3420	S1M10000045F04	Staphylococcus aureus
3421	S1M10000045F05	Staphylococcus aureus
3422	S1M10000045F08	Staphylococcus aureus
3423	S1M10000045F11	Staphylococcus aureus
3424	S1M10000045F12	Staphylococcus aureus
3425	S1M10000045G03	Staphylococcus aureus
3426	S1M10000045G06	Staphylococcus aureus
3427	S1M10000045G07	Staphylococcus aureus
3428	S1M10000045G08	Staphylococcus aureus
3429	S1M10000045G10	Staphylococcus aureus
3430	S1M10000045G12	Staphylococcus aureus
3431	S1M10000045H06	Staphylococcus aureus
3432	S1M10000045H10	Staphylococcus aureus
3433	S1M10000045H11	Staphylococcus aureus
3434	S1M10000046A03	Staphylococcus aureus
3435	S1M10000046A04	Staphylococcus aureus
3436	S1M10000046A06	Staphylococcus aureus

SeqID	Clone name	Organism
3437	S1M10000046A08	Staphylococcus aureus
3438	S1M10000046A09	Staphylococcus aureus
3439	S1M10000046A11	Staphylococcus aureus
3440	S1M10000046A12	Staphylococcus aureus
3441	S1M10000046B01	Staphylococcus aureus
3442	S1M10000046B03	Staphylococcus aureus
3443	S1M10000046B04	Staphylococcus aureus
3444	S1M10000046B05	Staphylococcus aureus
3445	S1M10000046B07	Staphylococcus aureus
3446	S1M10000046B08	Staphylococcus aureus
3447	S1M10000046B09	Staphylococcus aureus
3448	S1M10000046B11	Staphylococcus aureus
3449	S1M10000046B12	Staphylococcus aureus
3450	S1M10000046C02	Staphylococcus aureus
3451	S1M10000046C04	Staphylococcus aureus
3452	S1M10000046C05	Staphylococcus aureus
3453	S1M10000046C06	Staphylococcus aureus
3454	S1M10000046C07	Staphylococcus aureus
3455	S1M10000046C08	Staphylococcus aureus
- 3456	S1M10000046C11	Staphylococcus aureus
3457	S1M10000046C12	Staphylococcus aureus
3458	S1M10000046D01	Staphylococcus aureus
3459	S1M10000046D02	Staphylococcus aureus
3460	S1M10000046D03	Staphylococcus aureus
3461	S1M10000046D04	Staphylococcus aureus
3462	S1M10000046D05	Staphylococcus aureus
3463	S1M10000046D08	Staphylococcus aureus
3464	S1M10000046D09	Staphylococcus aureus
3465	S1M10000046D10	Staphylococcus aureus
3466	S1M10000046D11	Staphylococcus aureus
3467	S1M10000046D12	Staphylococcus aureus
3468	S1M10000046E01	Staphylococcus aureus
3469	S1M10000046E02 S1M10000046E04	Staphylococcus aureus Staphylococcus aureus
3470	.L	
3471	S1M10000046E07 S1M10000046E08	Staphylococcus aureus Staphylococcus aureus
	S1M10000046E10	1
3473 3474	S1M10000046F01	Staphylococcus aureus Staphylococcus aureus
3474	S1M10000046F02	Staphylococcus aureus Staphylococcus aureus
3475	S1M10000046F05	Staphylococcus aureus
3477	S1M10000046F06	Staphylococcus aureus
3477	S1M10000046F08	Staphylococcus aureus
3479	S1M10000046F09	Staphylococcus aureus
3480	S1M10000046F10	Staphylococcus aureus
3481	SIM10000046F12	Staphylococcus aureus
3482	S1M10000046G01	Staphylococcus aureus
3483	S1M1000046G02	Staphylococcus aureus
3484	S1M10000046G03	Staphylococcus aureus
3485	S1M10000046G04	Staphylococcus aureus
	1011111000001000	2.mp.,-,-0000mm mm. 0m0

SeqID	Clone name	Organism
3486	S1M10000046G07	Staphylococcus aureus
3487	S1M10000046G09	Staphylococcus aureus
3488	S1M10000046G10	Staphylococcus aureus
3489	S1M10000046H01	Staphylococcus aureus
3490	S1M10000046H10	Staphylococcus aureus
3491	SIM10000047A03	Staphylococcus aureus
3492	S1M10000047A04	Staphylococcus aureus
3493	S1M10000047A05	Staphylococcus aureus
3494	S1M10000047A06	Staphylococcus aureus
3495	S1M10000047A07	Staphylococcus aureus
3496	S1M10000047A08	Staphylococcus aureus
3497	S1M10000047A09	Staphylococcus aureus
3498	S1M10000047A10	Staphylococcus aureus
3499	S1M10000047A11	Staphylococcus aureus
3500	S1M10000047A12	Staphylococcus aureus
3501	S1M10000047B02	Staphylococcus aureus
3502	S1M10000047B04	Staphylococcus aureus
3503	S1M10000047B05	Staphylococcus aureus
3504	S1M10000047B06	Staphylococcus aureus
3505	S1M10000047B08	Staphylococcus aureus
3506	S1M10000047B09	Staphylococcus aureus
3507	S1M10000047B10	Staphylococcus aureus
3508	S1M10000047B12	Staphylococcus aureus
3509	S1M10000047C01	Staphylococcus aureus
3510	S1M10000047C02	Staphylococcus aureus
3511	S1M10000047C03	Staphylococcus aureus
3512	S1M10000047C04	Staphylococcus aureus
3513	S1M10000047C06	Staphylococcus aureus
3514	S1M10000047C08	Staphylococcus aureus
3515	S1M10000047C09	Staphylococcus aureus
3516	S1M10000047C11	Staphylococcus aureus
3517	S1M10000047C12	Staphylococcus aureus
3518	S1M10000047D02	Staphylococcus aureus
3519	S1M10000047D03	Staphylococcus aureus
3520	S1M10000047D04	Staphylococcus aureus
3521	S1M10000047D05	Staphylococcus aureus
3522	S1M10000047D09	Staphylococcus aureus
3523	S1M10000047D10	Staphylococcus aureus
3524	S1M10000047D11	Staphylococcus aureus
3525	S1M10000047D12 S1M10000047E01	Staphylococcus aureus
3526	<u> </u>	Staphylococcus aureus
3527	S1M10000047E02	Staphylococcus aureus
3528	S1M10000047E03	Staphylococcus aureus
3529	S1M10000047E04	Staphylococcus aureus
3530	S1M10000047E05	Staphylococcus aureus
3531	S1M10000047E06	Staphylococcus aureus
3532	S1M10000047E08	Staphylococcus aureus
3533	S1M10000047E09	Staphylococcus aureus
3534	S1M10000047E10	Staphylococcus aureus

SeqID	Clone name	Organism
3535	S1M10000047E11	Staphylococcus aureus
3536	S1M10000047E12	Staphylococcus aureus
3537	S1M10000047F02	Staphylococcus aureus
3538	S1M10000047F03	Staphylococcus aureus
3539	S1M10000047F04	Staphylococcus aureus
3540	S1M10000047F05	Staphylococcus aureus
3541	S1M10000047F06	Staphylococcus aureus
3542	S1M10000047F07	Staphylococcus aureus
3543	S1M10000047F08	Staphylococcus aureus
3544	S1M10000047F09	Staphylococcus aureus
3545	S1M10000047F10	Staphylococcus aureus
3546	S1M10000047F11	Staphylococcus aureus
3547	S1M10000047F12	Staphylococcus aureus
3548	S1M10000047G01	Staphylococcus aureus
3549	S1M10000047G02	Staphylococcus aureus
3550	S1M10000047G04	Staphylococcus aureus
3551	S1M10000047G05	Staphylococcus aureus
3552	S1M10000047G06	Staphylococcus aureus
3553	S1M10000047G07	Staphylococcus aureus
3554	S1M10000047G08	Staphylococcus aureus
3555	S1M10000047G09	Staphylococcus aureus
3556	S1M10000047G10	Staphylococcus aureus
3557	S1M10000047H03	Staphylococcus aureus
3558	S1M10000047H04	Staphylococcus aureus
3559	S1M10000047H05	Staphylococcus aureus
3560	S1M10000047H06	Staphylococcus aureus
3561	S1M10000047H07	Staphylococcus aureus
3562	S1M10000047H08	Staphylococcus aureus
3563	S1M10000047H09	Staphylococcus aureus
3564	S1M10000047H11	Staphylococcus aureus
3565	S1M10000048A02	Staphylococcus aureus
3566	S1M10000048A03	Staphylococcus aureus
3567	S1M10000048A04	Staphylococcus aureus
3568	S1M10000048A05	Staphylococcus aureus
3569	S1M10000048A06	Staphylococcus aureus
3570	S1M10000048A07	Staphylococcus aureus
3571	S1M10000048A09	Staphylococcus aureus
3572	S1M10000048A10	Staphylococcus aureus
3573	S1M10000048A11	Staphylococcus aureus
3574	S1M10000048A12	Staphylococcus aureus
3575	S1M10000048B02	Staphylococcus aureus
3576	S1M10000048B05	Staphylococcus aureus
3577	S1M10000048B08	Staphylococcus aureus
3578	S1M10000048B10	Staphylococcus aureus
3579	S1M10000048B11	Staphylococcus aureus
3580	S1M10000048B12	Staphylococcus aureus
3581	S1M10000048C01	Staphylococcus aureus
3582	S1M10000048C02	Staphylococcus aureus
3583	S1M10000048C03	Staphylococcus aureus

SeqID	Clone name	Organism
3584	S1M10000048C05	Staphylococcus aureus
3585	S1M10000048C06	Staphylococcus aureus
3586	S1M10000048C07	Staphylococcus aureus
3587	S1M10000048C08	Staphylococcus aureus
3588	S1M10000048C09	Staphylococcus aureus
3589	S1M10000048C11	Staphylococcus aureus
3590	S1M10000048D02	Staphylococcus aureus
3591	S1M10000048D08	Staphylococcus aureus
3592	S1M10000048D09	Staphylococcus aureus
3593	S1M10000048D10	Staphylococcus aureus
3594	S1M10000048D12	Staphylococcus aureus
3595	S1M10000048E02	Staphylococcus aureus
3596	S1M10000048E03	Staphylococcus aureus
3597	S1M10000048E04	Staphylococcus aureus
3598	S1M10000048E06	Staphylococcus aureus
3599	S1M10000048E07	Staphylococcus aureus
3600	S1M10000048E08	Staphylococcus aureus
3601	S1M10000048E10	Staphylococcus aureus
3602	S1M10000048F02	Staphylococcus aureus
3603	S1M10000048F07	Staphylococcus aureus
3604	S1M10000048F08	Staphylococcus aureus
3605	S1M10000048F09	Staphylococcus aureus
3606	S1M10000048F11	Staphylococcus aureus
3607	S1M10000048F12	Staphylococcus aureus
3608	S1M10000048G02	Staphylococcus aureus
3609	S1M10000048G03	Staphylococcus aureus
3610	S1M10000048G04	Staphylococcus aureus
3611	S1M10000048G05	Staphylococcus aureus
3612	S1M10000048G07	Staphylococcus aureus
3613	S1M10000048G10	Staphylococcus aureus
3614	S1M10000048G11	Staphylococcus aureus
3615	S1M10000048H01	Staphylococcus aureus
3616	S1M10000048H02	Staphylococcus aureus
3617	S1M10000048H03	Staphylococcus aureus
3618	S1M10000048H04	Staphylococcus aureus
3619	S1M10000048H05	Staphylococcus aureus
3620	S1M10000048H07	Staphylococcus aureus
3621	S1M10000048H08	Staphylococcus aureus
3622	S1M10000048H09	Staphylococcus aureus
3623	S1M10000048H10	Staphylococcus aureus
3624	S1M10000048H11	Staphylococcus aureus
3625	S1M10000009E10	Staphylococcus aureus
3626	S1M10000001F01	Staphylococcus aureus
3627	S1M10000006B12	Staphylococcus aureus
3628	S1M10000003D09	Staphylococcus aureus
3629	S1M10000001D11	Staphylococcus aureus
3630	S1M10000003B07	Staphylococcus aureus
3631	S1M10000002A07	Staphylococcus aureus
3632	S1M10000003F11	Staphylococcus aureus

SeqID	Clone name	Organism
3633	S1M10000047C07	Staphylococcus aureus
3634	S1M10000013F10	Staphylococcus aureus
3635	S1M10000014D11	Staphylococcus aureus
3636	S1M10000015F05	Staphylococcus aureus
3637	S1M10000048D01	Staphylococcus aureus
3638	S1M10000011C03	Staphylococcus aureus
3639	S1M10000012F03	Staphylococcus aureus
3640	S1M10000002F07	Staphylococcus aureus
3641	S1M10000048G01	Staphylococcus aureus
3642	S1M1000009G12	Staphylococcus aureus
3643	S1M10000012D05	Staphylococcus aureus
3644	S1M10000014D07	Staphylococcus aureus
3645	S1M10000047C05	Staphylococcus aureus
3646	S1M10000018D08*	Staphylococcus aureus
3647	S1M10000047B01	Staphylococcus aureus
3648	S1M10000047H10	Staphylococcus aureus
3649	S1M10000001A04	Staphylococcus aureus
3650	S1M10000016E01	Staphylococcus aureus
3651	S1M10000017E12	Staphylococcus aureus
3652	S1M10000019B01	Staphylococcus aureus
3653	S1M10000048F03	Staphylococcus aureus
3654	S1M10000034A07	Staphylococcus aureus
3655	S1M10000023G01	Staphylococcus aureus
3656	S1M10000021G12	Staphylococcus aureus
3657	S1M10000024E04	Staphylococcus aureus
3658	S1M10000028H08	Staphylococcus aureus
3659	S1M10000022B07	Staphylococcus aureus
3660	S1M10000003A05	Staphylococcus aureus
3661	S1M10000003A09	Staphylococcus aureus
3662	S1M10000003E01	Staphylococcus aureus
3663	S1M10000004C11	Staphylococcus aureus
3664	S1M10000007E08	Staphylococcus aureus
3665	S1M10000021G06	Staphylococcus aureus
3666	S1M10000024C06	Staphylococcus aureus
3667	S1M10000024D01	Staphylococcus aureus
3668	S1M10000027D07	Staphylococcus aureus
3669	S1M10000027E03	Staphylococcus aureus
3670	S1M10000027G01	Staphylococcus aureus
3671	S1M10000029A03	Staphylococcus aureus
3672	S1M10000032B10	Staphylococcus aureus
3673	S1M10000032C07	Staphylococcus aureus
3674	S1M10000038D04	Staphylococcus aureus
3675	S1M10000047D07	Staphylococcus aureus
3676	S1M10000048B03	Staphylococcus aureus
3677	S1M10000048B06	Staphylococcus aureus
3678	S1M10000048C10	Staphylococcus aureus
3679	S1M10000048F05	Staphylococcus aureus
3680	S4M10000001C01	Salmonella typhimurium
3681	S4M10000002B06	Salmonella typhimurium

SeqID	Clone name	Organism
3682	S4M1000002B09	Salmonella typhimurium
3683	S4M1000002G04	Salmonella typhimurium
3684	S4M1000002G08	Salmonella typhimurium
3685	S4M1000005G05	Salmonella typhimurium
3686	S4M10000005H02	Salmonella typhimurium
3687	S4M10000006A06	Salmonella typhimurium
3688	S4M10000006A08	Salmonella typhimurium
3689	S4M1000006C05	Salmonella typhimurium
3690	S4M10000006F08	Salmonella typhimurium
3691	S4M10000007G01	Salmonella typhimurium
3692	S4M10000008C08	Salmonella typhimurium
3693	S4M10000008H10	Salmonella typhimurium
3694	S4M10000009A05	Salmonella typhimurium
3695	S4M10000010B05	Salmonella typhimurium
3696	S4M10000010D04	Salmonella typhimurium
3697	S4M10000010H04	Salmonella typhimurium
3698	S4M10000011D08	Salmonella typhimurium
3699	S4M10000011E08	Salmonella typhimurium
3700	S4M10000012B06	Salmonella typhimurium
3701	S4M10000012B12	Salmonella typhimurium
3702	S4M10000012D02	Salmonella typhimurium
3703	S4M10000013H02	Salmonella typhimurium
3704	S4M10000014B05	Salmonella typhimurium
3705	S4M10000014D04	Salmonella typhimurium
3706	S4M10000014D07	Salmonella typhimurium
3707	S4M10000014H02	Salmonella typhimurium
3708	S4M10000015B11	Salmonella typhimurium
3709	S4M10000015E09	Salmonella typhimurium
3710	S4M10000016A02	Salmonella typhimurium
3711	S4M10000018D09	Salmonella typhimurium
3712	S4M10000018E10	Salmonella typhimurium
3713 3714	S4M10000018F10 S4M10000018G03	Salmonella typhimurium
L	S4M10000018H04	Salmonella typhimurium
3715 3716	S4M10000018H04	Salmonella typhimurium
3717	S4M10000019F03	Salmonella typhimurium Salmonella typhimurium
3717	S4M10000019G05	Salmonella typhimurium Salmonella typhimurium
3719	S4M10000019G05	Salmonella typhimurium Salmonella typhimurium
3720	S4M10000019H08	Salmonella typhimurium Salmonella typhimurium
3720	S4M1000020A04	Salmonella typhimurium Salmonella typhimurium
3721	S4M10000020F03	Salmonella typhimurium
3723	S4M10000022D04	Salmonella typhimurium Salmonella typhimurium
3724	S4M10000022D04	Salmonella typhimurium Salmonella typhimurium
3724	S4M10000022D12	Salmonella typhimurium
3726	S4M10000022E12	Salmonella typhimurium
3727	S4M10000022H06	Salmonella typhimurium
3728	S4M10000022F00	Salmonella typhimurium Salmonella typhimurium
3729	S4M10000023F01	Salmonella typhimurium Salmonella typhimurium
3730	S4M10000024B02	Salmonella typhimurium Salmonella typhimurium
3/30	D-TIVLI UUU UUZ-ICUU	раннопена курптигин

SeqID	Clone name	Organism
3731	S4M10000024C11	Salmonella typhimurium
3732	S4M10000024F08	Salmonella typhimurium
3733	S4M10000024G01	Salmonella typhimurium
3734	S4M10000024G04	Salmonella typhimurium
3735	S4M10000024G09	Salmonella typhimurium
3736	S4M10000024H02	Salmonella typhimurium
3737	S4M10000025A11	Salmonella typhimurium
3738	S4M10000025E02	Salmonella typhimurium
3739	S4M10000025E05	Salmonella typhimurium
3740	S4M10000025H07	Salmonella typhimurium
3741	S4M10000026C10	Salmonella typhimurium
3742	S4M10000026D04	Salmonella typhimurium
3743	S4M10000026E06	Salmonella typhimurium
3744	S4M10000026E12	Salmonella typhimurium
3745	S4M10000027C10	Salmonella typhimurium
3746	S4M10000027E02	Salmonella typhimurium
3747	S4M10000029B12	Salmonella typhimurium
3748	S4M10000029D12	Salmonella typhimurium
3749	S4M10000030D03	Salmonella typhimurium
3750	S4M10000030F07	Salmonella typhimurium
3751	S4M10000030G11	Salmonella typhimurium
3752	S4M10000032B12	Salmonella typhimurium
3753	S4M10000033F08	Salmonella typhimurium
3754	S4M10000033G05	Salmonella typhimurium
3755	S4M10000033G09	Salmonella typhimurium
3756	S4M10000034A02	Salmonella typhimurium
3757	S4M10000034A09	Salmonella typhimurium
3758 3759	S4M10000034D06	Salmonella typhimurium
3760	S4M10000034H05 S4M10000034H09	Salmonella typhimurium
3761	S4M10000034H09	Salmonella typhimurium
3762	S4M10000035D01	Salmonella typhimurium Salmonella typhimurium
3763	S4M10000035D01	Salmonella typhimurium
3764	S4M10000035E03	Salmonella typhimurium
3765	S4M10000035F02	Salmonella typhimurium
3766	S4M10000035F09	Salmonella typhimurium
3767	S4M10000036D07	Salmonella typhimurium
3768	S4M10000036F07	Salmonella typhimurium
3769	S4M10000037A04	Salmonella typhimurium
3770	S4M10000037A10	Salmonella typhimurium
3771	S4M10000037E10	Salmonella typhimurium
3772	S4M10000037H09	Salmonella typhimurium
3773	S4M10000001H01	Salmonella typhimurium
3774	S4M10000002F06	Salmonella typhimurium
3775	S4M10000008D01	Salmonella typhimurium
3776	S4M1000009G11	Salmonella typhimurium
3777	S4M10000011F09	Salmonella typhimurium
3778	S4M10000020F08	Salmonella typhimurium
. 3779	S4M10000021E07	Salmonella typhimurium
		

SeqID	Clone name	Organism
3780	S4M10000022B05	Salmonella typhimurium
3781	S4M10000025H11	Salmonella typhimurium
3782	S4M10000026B10	Salmonella typhimurium
3783	S4M10000026E03	Salmonella typhimurium
3784	S4M10000029A03	Salmonella typhimurium
3785	S4M10000029C11	Salmonella typhimurium
3786	S4M10000030F06	Salmonella typhimurium
3787	S4M10000032F03	Salmonella typhimurium
3788	S4M10000032G01	Salmonella typhimurium
3789	S4M10000034C05	Salmonella typhimurium
3790	S4M10000034H04	Salmonella typhimurium
3791	S4M10000035A09	Salmonella typhimurium
3792	S4M10000035B06	Salmonella typhimurium
3793	S4M10000035F01	Salmonella typhimurium
3794	S4M10000037A08	Salmonella typhimurium
3795	S4M10000037E03	Salmonella typhimurium

TABLE IB

Clone PathoSeq Locus Gene SeqID Genemarked gene full length Clone name SeqID ORF (protein) Protein Seq D E3M10000001A02 EFA101409 4934 EFA1c0022 orf 11p 8 10524 EFA1c0041_orf_56p E3M10000001A06 9 EFA100642 4884 10792 E3M10000001B01 4934 EFA1c0022 orf 11p 10524 10 EFA101409 4888 E3M10000001B02 11 EFA100739 EFA1c0022 orf 23p 10537 5000 EFA1c0022 orf 24p 10538 E3M10000001B02 EFA102549 11 E3M10000001B02 11 EFA102551 5001 EFA1c0022 orf 25p 10539 E3M10000001B05 4922 EFA1c0022 orf 8p 10559 12 EFA101165 4921 E3M10000001B06 13 EFA101164 EFA1c0022 orf 7p 10558 4884 10792 E3M10000001B08 14 EFA100642 EFA1c0041 orf 56p E3M10000001B10 15 EFA101409 4934 EFA1c0022 orf 11p 10524 E3M10000001C02 EFA103038 5017 EFA1c0030 orf 17p 10613 16 5015 EFA1c0030 orf 16p E3M10000001C09 17 EFA103021 10612 4916 EFA1c0022 orf 2p 10543 E3M10000001D02 18 EFA101159 E3M10000001D04 19 EFA100742 4891 EFA1c0022 orf 20p 10534 4942 E3M10000001D04 19 EFA101417 EFA1c0022 orf 18p 10531 5002 E3M10000001D04 19 EFA102554 EFA1c0022 orf 19p 10532 E3M10000001D05 20 EFA100955 4902 EFA1c0022 orf 28p 10542 E3M10000001D05 20 EFA100978 4904 EFA1c0022 orf 27p 10541 4870 EFA1c0022_orf_9p E3M10000001D09 21 EFA100210 10560 E3M10000001D09 21 EFA100211 4871 EFA1c0022 orf_10p 10523 E3M10000001E01 4919 EFA1c0022 orf 5p 10555 22 EFA101162 E3M10000001E01 4920 22 EFA101163 EFA1c0022 orf 6p 10557 E3M10000001E02 23 EFA103038 5017 EFA1c0030 orf 17p 10613 4870 E3M10000001E03 24 EFA100210 EFA1c0022 orf 9p 10560 EFA1c0022 orf 10p E3M10000001E03 24 EFA100211 4871 10523 E3M10000001E04 25 EFA100642 4884 EFA1c0041_orf_56p 10792 4995 10627 E3M10000001E08 26 EFA102502 EFA1c0031 orf 36p E3M10000001E09 27 EFA100210 4870 EFA1c0022 orf 9p 10560 E3M10000001E09 27 EFA100211 4871 EFA1c0022 orf 10p 10523 4995 10627 E3M10000001F02 28 EFA102502 EFA1c0031 orf 36p 29 EFA102541 4998 10602 E3M10000001F04 EFA1c0028 orf 3p E3M10000001F06 30 EFA100642 4884 EFA1c0041 orf 56p 10792 E3M10000001F07 31 EFA101164 4921 EFA1c0022_orf_7p 10558 4934 E3M10000001G02 32 EFA101409 EFA1c0022 orf 11p 10524 4870 E3M10000001G03 33 EFA100210 EFA1c0022 orf 9p 10560 E3M10000001G03 33 EFA100211 4871 EFA1c0022 orf 10p 10523 4922 10559 E3M10000001G04 34 EFA101165 EFA1c0022 orf 8p E3M10000001G05 35 EFA101160 4917 EFA1c0022 orf 3p 10549 E3M10000001H02 36 EFA102541 4998 EFA1c0028 orf 3p 10602 E3M10000001H03 EFA100210 4870 EFA1c0022 orf 9p 10560 37 E3M10000001H03 37 EFA100211 4871 EFA1c0022 orf 10p 10523 4891 10534 E3M10000001H04 38 EFA100742 EFA1c0022 orf 20p E3M10000001H04 38 EFA101417 4942 EFA1c0022_orf_18p 10531 E3M10000001H04 38 EFA102554 5002 EFA1c0022 orf 19p 10532 39 4942 E3M10000004A04 EFA101417 EFA1c0022 orf 18p 10531 5002 EFA102554 10532 E3M10000004A04 39 EFA1c0022 orf 19p

E3M10000004C03 40 EFA100478 4880 EFA1c0012_orf_2p E3M10000004D01 41 EFA101412 4937 EFA1c0022_orf_14p E3M10000004D01 41 EFA101413 4938 #N/A E3M10000004D01 41 EFA101414 4939 EFA1c0022_orf_15p E3M10000004D02 42 EFA102022 4974 EFA1c0044_orf_106p E3M10000004D02 42 EFA102023 4975 EFA1c0044_orf_107p E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004D10 43 EFA101086 4910 EFA1c0022_orf_90p E3M10000004E11 44 EFA101086 4910 EFA1c0022_orf_24p E3M10000004F08 45 EFA102551 5001 EFA1c0022_orf_25p	10486 10527 #N/A 10528 10881 10882 10555 10557 10763 10538
E3M10000004D01 41 EFA101413 4938 #N/A E3M10000004D01 41 EFA101414 4939 EFA1c0022_orf_15p E3M10000004D02 42 EFA102022 4974 EFA1c0044_orf_106p E3M10000004D02 42 EFA102023 4975 EFA1c0044_orf_107p E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	#N/A 10528 10881 10882 10555 10557 10763 10538
E3M10000004D01 41 EFA101414 4939 EFA1c0022_orf_15p E3M10000004D02 42 EFA102022 4974 EFA1c0044_orf_106p E3M10000004D02 42 EFA102023 4975 EFA1c0044_orf_107p E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10528 10881 10882 10555 10557 10763 10538
E3M10000004D02 42 EFA102022 4974 EFA1c0044_orf_106p E3M10000004D02 42 EFA102023 4975 EFA1c0044_orf_107p E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10881 10882 10555 10557 10763 10538
E3M10000004D02 42 EFA102022 4974 EFA1c0044_orf_106p E3M10000004D02 42 EFA102023 4975 EFA1c0044_orf_107p E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10881 10882 10555 10557 10763 10538
E3M10000004D02 42 EFA102023 4975 EFA1c0044_orf_107p E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10882 10555 10557 10763 10538
E3M10000004D10 43 EFA101162 4919 EFA1c0022_orf_5p E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10555 10557 10763 10538
E3M10000004D10 43 EFA101163 4920 EFA1c0022_orf_6p E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10557 10763 10538
E3M10000004E11 44 EFA101086 4910 EFA1c0040_orf_90p E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10763 10538
E3M10000004F08 45 EFA102549 5000 EFA1c0022_orf_24p	10538
1	
	10539
E3M10000004F10 46 EFA101086 4910 EFA100040 orf 90p	10763
E3M10000004G01 47 EFA103021 5015 EFA10030 orf 16p	10612
E3M10000004H11 48 EFA102549 5000 EFA10022 orf 24p	10538
E3M10000004H11 48 EFA102551 5001 EFA1c0022_orf_25p	10539
E3M10000005A07 49 EFA102541 4998 EFA10028 orf 3p	10602
E3M10000003A07 49 EFA102341 4998 EFA10028_0h_3p E3M10000005B01 50 EFA101414 4939 EFA10022_orf_15p	10528
	10528
	10538
	10539
E3M10000005C01 52 EFA103021 5015 EFA1c0030_orf_16p	10612
E3M10000005C03 53 EFA102541 4998 EFA1c0028_orf_3p	10602
E3M10000005C04 54 EFA102186 4981 EFA1c0045_orf_94p	10949
E3M10000005C04 54 EFA102453 4993 EFA1c0045_orf_203p	10931
E3M10000005C04 54 EFA102728 5006 EFA1c0045_orf_93p	10948
E3M10000005D03 55 EFA102541 4998 EFA1c0028_orf_3p	10602
E3M10000005D04 56 EFA103021 5015 EFA1c0030_orf_16p	10612
E3M10000005D10 57 EFA102549 5000 EFA1c0022_orf_24p	10538
E3M10000005D10 57 EFA102551 5001 EFA1c0022_orf_25p	10539
E3M10000005E01 58 EFA102549 5000 EFA1c0022_orf_24p	10538
E3M10000005E01 58 EFA102551 5001 EFA1c0022_orf_25p	10539
E3M10000005E02 59 EFA102549 5000 EFA1c0022_orf_24p	10538
E3M10000005E02 59 EFA102551 5001 EFA1c0022_orf_25p	10539
E3M10000005E03 60 EFA102541 4998 EFA1c0028_orf_3p	10602
E3M10000005E08 61 EFA101403 4932 EFA1c0033_orf_54p	10662
E3M10000005F07 62 EFA103021 5015 EFA1c0030_orf_16p	10612
E3M10000005F10 63 EFA102549 5000 EFA1c0022_orf_24p	10538
E3M10000005F10 63 EFA102551 5001 EFA1c0022_orf_25p	10539
E3M10000005G05 64 EFA102549 5000 EFA1c0022_orf_24p	10538
E3M10000005G05 64 EFA102551 5001 EFA1c0022_orf_25p	10539
E3M10000005H04 65 EFA103021 5015 EFA1c0030_orf_16p	10612
E3M10000006B03 66 EFA101162 4919 EFA1c0022_orf_5p	10555
E3M10000006B03 66 EFA101163 4920 EFA1c0022_orf_6p	10557
E3M10000006C01 67 EFA101416 4941 EFA1c0022_orf_17p	10530
E3M10000006C01 67 EFA101417 4942 EFA1c0022_orf_18p	10531
E3M10000006C12 68 EFA102549 5000 EFA1c0022 orf 24p	10538
E3M10000006C12 68 EFA102551 5001 EFA1c0022_orf 25p	10539
E3M10000006D03 69 EFA101416 4941 EFA1c0022_orf_17p	10530

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000006D03	69	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000006E11	70	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000006E11	70	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000006F04	71	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000006F04	71	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000006G04	72	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000006G04	72	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000006G12	73	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000006G12	73	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000006H09	74	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000007A02	75	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007A02	75	EFA101163	4920	EFA1c0022 orf 6p	10557
E3M10000007B02	76	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000007B02	76	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M1000007B03	77	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007B03	77	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007C03	78	EFA101416	4941	EFA1c0022 orf 17p	10530
E3M1000007C03	78	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000007C04	79	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000007D03	80	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007D03	80	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007E05	81	EFA100742	4891	EFA1c0022_orf_20p	10534
E3M10000007E05	81	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000007E05	81	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000007F01	82	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000007F01	82	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007F06	83	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000007F06	83	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000007G01	84	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M1000007G01	84	EFA101163	4920	EFA1c0022 orf 6p	10557
E3M10000008C03	85	EFA102501	4994	EFA1c0031_orf 35p	10626
E3M10000008C08	86	EFA101536	4946	EFA1c0042_orf_46p	10823
E3M10000008C09	87	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000008D08	88	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000008E02	89	EFA100783	4895	EFA1c0042 orf 141p	10811
E3M10000008G05	90	EFA101162	4919	EFA1c0042_off_141p	10555
E3M10000008G05	90	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000008G09	90	EFA103021	5015	EFA1c0022_off_6p	10612
E3M10000008G09	91	EFA103038	5017	EFA1c0030_orf_17p	10612
E3M10000008G09	91	EFA101695	4954	EFA1c0030_on_1/p	10629
E3M10000008F102	92	EFA103508	5029	EFA1c0031_orf_op	
E3M1000009C07	93	EFA100870	4899	EFA1c0033_orf_95p	10672
				EFA1c0022_orf_12p	10627
E3M10000009D01	95	EFA101410	4935		10525
E3M10000009E02	96	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000009E02	96	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000009E03	97	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000009E05	98	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000009G02	99	EFA102501	4994	EFA1c0031_orf_35p	10626

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000010C08	100	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000010D05	101	EFA100757	4894	EFA1c0044_orf_27p	10897
E3M10000010F01	102	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000010G05	103	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000010G07	104	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000010G09	105	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000010G10	106	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000010H02	107	EFA100194	4868	EFA1c0022 orf 26p	10540
E3M10000011A09	108	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000011B03	109	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000011B09	110	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000011C07	111	EFA101790	4959	EFA1c0042_orf_111p	10803
E3M10000011D03	112	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000011D03	112	EFA100211	4871	EFA1c0022 orf 10p	10523
E3M10000011H02	113	EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000011H05	114	EFA101164	4921	EFA1c0022 orf 7p	10558
E3M10000012B01	115	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000012B02	116	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000012B07	117	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000012B07	117	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000012B07	117	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000012B08	118	EFA101409	4934	EFA1c0022_orf_llp	10524
E3M10000012C01	119	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000012D10	120	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000012E08	121	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000012F05	122	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000012F06	123	EFA101409	4934	EFA1c0022_orf_llp	10524
E3M10000012F07	124	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000012F07	124	EFA102554	5002	EFA1c0022 orf 19p	10532
E3M10000012F10	125	EFA101410	4935	EFA1c0022 orf 12p	10525
E3M10000012F10	125	EFA101411	4936	EFA1c0022 orf 13p	10526
E3M10000012G02	126	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000012G07	1	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000012G07	127	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000013A06	128	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000013A07	129	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000013C05	130	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000013C05	130	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000013D02	131	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000013D08	132	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000013D10	133	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000013D10	133	EFA100211	4871	EFA1c0022_orf_10p	10523
E3M10000013E02	134	EFA100642	4884	EFA1c0022_off_top	10323
E3M10000013E08	135	EFA102501	4994	EFA1c0041_orf_35p	10626
E3M10000013E08	136	EFA102541	4998	EFA1c0031_off_3p	10602
E3M10000013F03	L	EFA101164	4921	EFA1c0028_orf_7p	10558
E3M10000013F12	137	EFA101165	4921		_ 1 1
	ł	I	I	EFA1c0022_orf_8p	10559
E3M10000013G10	138	EFA103062	5019	EFA1c0030_orf_19p	10615

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000013H03	139	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000013H05	140	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000013H10	141	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000014B12	142	EFA100739	4888	EFA1c0022_orf_23p	10537
E3M10000014B12	142	EFA102549	5000	EFA1c0022 orf 24p	10538
E3M10000014B12	142	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000014E12	143	EFA101409	4934	EFA1c0022 orf 11p	10524
E3M10000014E12	143	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000014G09	144	EFA100991	4905	EFA1c0035 orf 60p	10681
E3M10000014G09	144	EFA103033	5016	EFA1c0035_orf_60p	10681
E3M10000015B04	145	EFA100065	4863	EFA1c0042 orf 14p	10813
E3M10000015B12	146	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000015E12	147	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000015E12	147	EFA100211	4871	EFA1c0022 orf 10p	10523
E3M10000016A03	148	EFA101753	4957	EFA1c0022_orf_50p	10552
E3M10000016A04	149	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000016C11	150	EFA101163	4920	EFA1c0022 orf 6p	10557
E3M10000016C11	150	EFA101164	4921	EFA1c0022 orf 7p	10558
E3M10000016D03	151	EFA102774	5009	EFA1c0044 orf 25p	10896
E3M10000016F06	152	EFA102205	4983	EFA1c0041 orf 115p	10769
E3M10000016F10	153	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000016F10	153	EFA101411	4936	EFA1c0022 orf_13p	10526
E3M10000016H05	154	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000016H10	155	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000017A09	156	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000017A09	156	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000017D09	157	EFA101412	4937	EFA1c0022 orf_14p	10527
E3M10000018A07	158	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000018C02	159	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000018E01	160	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000018G09	161	EFA101583	4949	EFA1c0026_orf_23p	10593
E3M10000018H06	162	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000019B06	163	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000019D02	164	EFA102022	4974	EFA1c0044 orf 106p	10881
E3M10000019E03	165	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000019E03	165	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000019E04	166	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000020G04	167	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M1000020G04	167	EFA102502	4995	EFA1c0031 orf 36p	10627
E3M10000020H05	168	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000020103	169	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000021A08	169	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000021A11	170	EFA101417	4942	EFA1c0022_orf_18p	10537
E3M10000021A11	171	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000021E10	171	EFA102501	4994	EFA1c0022_off_op	10626
E3M10000021C03	172	EFA101161	4934	EFA1c0031_off_35p	10551
E3M10000021C04	173	EFA101160	4918	EFA1c0022_orf_4p	
1		<u></u>	l		10549
E3M10000021D04	175	EFA100870	4899	EFA1c0031_orf_36p	10627

O 01/70955		<u>T/</u>	ABLE IA	PCT/US01	1/09180
Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000021D04	175	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000021E10	176	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000021G04	177	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000021G10	178	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000021G11	179	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000021H11	180	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000022A04	181	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022A11	182	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000022B04	183	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022B05	184	EFA101410	4935	EFA1c0022 orf_12p	10525
E3M10000022B05	184	EFA101411	4936	EFA1c0022 orf_13p	10526
E3M10000022B07	185	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000022C05	186	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000022C05	186	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000022C06	187	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000022C09	188	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000022D04	189	EFA101412	4937	EFA1c0022 orf 14p	10527
E3M10000022F05	190	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000022F06	191	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000022F06	191	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000022F08	192	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000022G02	193	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000022G12	194	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000023A03	195	EFA101413	4938	#N/A	#N/A
E3M10000023A06	196	EFA100978	4904	EFA1c0022 orf 27p	10541
E3M10000023A07	197	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000023A09	198	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000023B02	199	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000023B02	199	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000023B02	200	EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000023C03	201	EFA101409	4934	EFA1c0022_orf_11p	10524
E3M10000023C03	201	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000023C04	202	EFA102541	4998	EFA1c0022_off_12p	10602
E3M10000023C06	203	EFA101413	4938	#N/A	#N/A
E3M10000023C08	204	EFA100955	4902	EFA1c0022_orf_28p	
E3M10000023C09	204	EFA101159			10542
		<u> </u>	4916	EFA1c0022_orf_2p	10543
E3M10000023C09 E3M10000023D02	205	EFA101160	4917	EFA1c0022_orf_3p	10549
l	206	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000023D04	207	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000023D10	208	EFA101413	4938	#N/A	#N/A
E3M10000023E04	209	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000023E07	210	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000023E09	211	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000023F02	212	EFA101412	4937	EFA1c0022_orf_14p	10527
E21/10000022E10	1 212	EEA103661	5001	EEA1-0000 6 05-	10500

5001

4917

4939

4936

EFA1c0022_orf_25p

EFA1c0022_orf_3p

EFA1c0022_orf_15p

EFA1c0022_orf_13p

10539

10549

10528

10526

E3M10000023F10

E3M10000023G02

E3M10000023G04

E3M10000023G10

213

214

215

216

EFA102551

EFA101160

EFA101414

EFA101411

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000023H08	217	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000024A03	218	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000024A04	219	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000024A08	220	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000024A08	220	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000024C06	221	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000025A06	222	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000025B01	223	EFA100194	4868	EFA1c0022_orf_26p	10540
E3M10000025B01	223	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000025B03	224	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000025B03	224	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000025B05	225	EFA100978	4904	EFA1c0022 orf 27p	10541
E3M10000025B10	226	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000025C01	227	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000025C04	228	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000025C05	229	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000025C05	229	EFA102551	5001	EFA1c0022 orf 25p	10539
E3M10000025C07	230	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000025C08	231	EFA100870	4899	EFA1c0031 orf 36p	10627
E3M10000025C08	231	EFA102502	4995	EFA1c0031 orf 36p	10627
E3M10000025C09	232	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000025C11	233	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000025D01	234	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000025D01	234	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000025D10	235	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000025E07	236	EFA101165	4922	EFA1c0022 orf 8p	10559
E3M10000025E08	237	EFA100955	4902	EFA1c0022 orf 28p	10542
E3M10000025E12	238	EFA102728	5006	EFA1c0045_orf_93p	10948
E3M10000025F04	239	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000025F04	239	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000025F06	240	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000025F06	240	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000025F06	240	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000025F08	241	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000025F09	242	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000025F10	243	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000025F11	244	EFA100955	4902	EFA1c0022 orf 28p	10542
E3M10000025F12	245	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000025G02	246	EFA101164	4921	EFA1c0022 orf 7p	10558
E3M10000025G07	247	EFA101159	4916	EFA1c0022 orf 2p	10543
E3M10000025G09	248	EFA102185	4980	EFA1c0045 orf 95p	10950
E3M10000027A02	249	EFA101416	4941	EFA1c0022 orf 17p	10530
E3M10000027A07	250	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027A09	251	EFA101413	4938	#N/A	#N/A
E3M10000027A09	251	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000027R07	252	EFA101163	4920	EFA1c0022_orf 6p	10557
E3M10000027B08	253	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027B09	254	EFA100870	4899	EFA1c0031_orf 36p	10627

Clone паше	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000027B09	254	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000027C02	255	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000027C03	256	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027C08	257	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000027D03	258	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000027D03	258	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000027D05	259	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000027D08	260	EFA103504	5028	EFA1c0033 orf 94p	10671
E3M10000027D10	261	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000027G01	262	EFA102186	4981	EFA1c0045 orf 94p	10949
E3M10000027G08	263	EFA101409	4934	EFA1c0022 orf 11p	10524
E3M10000027H04	264	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000027H07	265	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000027H07	265	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000028A02	266	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000028A03	267	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000028A04	268	EFA101410	4935	EFA1c0022 orf 12p	10525
E3M10000028A04	268	EFA101411	4936	EFA1c0022 orf 13p	10526
E3M10000028A05	269	EFA101080	4909	#N/A	#N/A
E3M10000028A05	269	EFA102915	5014	EFA1c0032 orf 27p	10640
E3M10000028A06	270	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000028A08	271	EFA101424	4943	EFA1c0041 orf 39p	10784
E3M10000028A08	271	EFA101425	4944	EFA1c0041_orf_40p	10785
E3M10000028B01	272	EFA103021	5015	EFA1c0030 orf 16p	10612
E3M10000028B02	273	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028B02	273	EFA102542	4999	EFA1c0028 orf 4p	10603
E3M10000028B03	274	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000028B04	275	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000028B05	276	EFA101424	4943	EFA1c0041 orf 39p	10784
E3M10000028B05	276	EFA101425	4944	EFA1c0041 orf 40p	10785
E3M10000028B06	277	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000028B07	278	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000028B08	279	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000028C01	280	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028C01	280	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000028C02	281	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028C02	281	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000028C04	282	EFA101322	4927	EFA1c0030 orf 57p	10620
E3M10000028C05	283	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000028C06	284	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000028C07	285	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000028C08	286	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028C08	286	EFA102542	4999	EFA1c0028 orf 4p	10603
E3M10000028D01	287	EFA100194	4868	EFA1c0022_orf_26p	10540
E3M10000028D01	287	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000028D02	288	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000028D05	289	EFA101080	4909	#N/A	#N/A
E3M10000028D06	290	EFA103021	5015	EFA1c0030_orf_16p	10612
	1 2/0		3013	Try varcoon out 10h	1 10012

Clone name	Clone SeqID	PathoSeg Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000028D08	291	EFA103268	5023	EFA1c0010_orf_lp	10479
E3M10000028E01	292	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000028E04	293	EFA101370	4931	EPA1c0040_orf_103p	10738
E3M10000028E07	294	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000028F02	295	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000028F03	296	EFA100742	4891	EFA1c0022 orf 20p	10534
E3M10000028F03	296	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000028F03	296	EFA102554	5002	EFA1c0022_orf_19p	10532
E3M10000028F04	297	EFA101163	4920	EFA1c0022 orf 6p	10557
E3M10000028F04	297	EFA101164	4921	EFA1c0022 orf 7p	10558
E3M10000028F05	298	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000028F06	299	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000028F07	300	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000028G05	301	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000028G06	302	EFA100748	4892	EFA1c0011_orf_10p	10483
E3M10000028G07	303	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000028G07	303	EFA101411	4936	EFA1c0022 orf 13p	10526
E3M10000028H04	304	EFA101409	4934	EFA1c0022 orf 11p	10524
E3M10000028H07	305	EFA103062	5019	EFA1c0030 orf 19p	10615
E3M10000029A02	306	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000029A04	307	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000029A05	308	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000029A10	309	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000029A11	310	EFA101413	4938	#N/A	#N/A
E3M10000029B01	311	EFA103295	5024	EFA1c0032 orf 1p	10633
E3M10000029B02	312	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000029B05	313	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000029B06	314	EFA100914	4900	EFA1c0024_orf_9p	10579
E3M10000029B08	315	EFA102338	4987	EFA1c0032 orf 8p	10651
E3M10000029B11	316	EFA100397	4877	EFA1c0041 orf 148p	10773
E3M10000029B12	317	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000029C01	318	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000029C02	319	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000029C03	320	EFA102253	4984	EFA1c0038 orf 85p	10727
E3M10000029C04	321	EFA102503	4996	EFA1c0032 orf 32p	10643
E3M10000029C05	322	EFA100399	4878	EFA1c0041 orf 104p	10766
E3M10000029C06	323	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000029C06	323	EFA101415	4940	EFA1c0022 orf 16p	10529
E3M10000029C07	324	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000029C07	324	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000029C08	325	EFA101868	4966	EFA1c0042 orf 69p	10829
E3M10000029C09	326	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000029C10	327	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000029C12	328	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000029D01	329	EFA101080	4909	#N/A	#N/A
E3M10000029D03	330	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000029D03	331	EFA102656	5004	EFA1c0022_01_5p EFA1c0039 orf 26p	10734
		(1 2007	1-7-1-1-00037_017_\$0\$	1 10/54

E3M10000029D06 E3M10000029D06 E3M10000029D12 E3M10000029D12	333 333 334	EFA100210			ID .
E3M10000029D08 E3M10000029D12	1		4870	EFA1c0022_orf_9p	10560
E3M10000029D12	334	EFA101165	4922	EFA1c0022_orf_8p	10559
l		EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000029E01	335	EFA101410	4935	EFA1c0022_orf_12p	10525
	336	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000029E02	337	EFA102051	4976	#N/A	#N/A
E3M10000029E03	338	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000029E05	339	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000029E07	340	EFA100919	4901	EFA1c0013 orf 12p	10491
E3M10000029E08	341	EFA101022	4906	EFA1c0043 orf_69p	10875
E3M10000029E09	342	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000029E12	343	EFA100397	4877	EFA1c0041_orf_148p	10773
E3M10000029F01	344	EFA100023	4862	EFA1c0017_orf_lp	10505
E3M10000029F05	345	EFA102503	4996	EFA1c0032 orf 32p	10643
E3M10000029F06	346	EFA101795	4962	EFA1c0045 orf 165p	10922
E3M10000029F09	347	EFA100689	4886	EFA1c0038_orf_54p	10717
E3M10000029F10	348	EFA100919	4901	EFA1c0013 orf 12p	10491
E3M10000029F11	349	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000029F12	350	EFA102282	4985	EFA1c0038_orf_89p	10729
E3M10000029G01	351	EFA100394	4876	EFA1c0034 orf 6p	10675
E3M10000029G04	352	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000029G05	353	EFA102351	4989	EFA1c0032 orf 20p	10634
E3M10000029G07	354	EFA101121	4912	EFA1c0036 orf 112p	10686
E3M10000029G08	355	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000029G09	356	EFA102201	4982	#N/A	#N/A
E3M10000029G10	357	EFA101797	4963	EFA1c0045_orf_167p	10924
E3M10000029G11	358	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000029G12	359	EFA101541	4948	EFA1c0012_orf_5p	10488
E3M10000029H02	360	EFA101339	4928	EFA1c0040_orf_13p	10743
E3M10000029H02	360	EFA101340	4929	EFA1c0040 orf 15p	10745
E3M10000029H04	361	EFA102352	4990	EFA1c0032 orf 21p	10635
E3M10000029H04	361	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000029H05	362	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000029H07	363	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000029H08	364	EFA101416	4941	EFA1c0022 orf 17p	10530
E3M10000029H11	365	EFA101159	4916	EFA1c0022 orf 2p	10543
E3M10000030A05	366	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000030A08	367	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000030A09	368	EFA102501	4994	EFA1c0031 orf 35p	10626
E3MI0000030A11	369	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000030B03	370	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000030B04		EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000030B05		EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030B06	373	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000030B07		EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000030B08	375	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030B10	376	EFA102655	5003	EFA1c0039 orf 25p	10733
E3M10000030B11	377	EFA101121	4912	EFA1c0036_orf_112p	10686

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000030B12	378	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000030B12	378	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000030C03	379	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000030C04	380	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000030C12	381	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000030D02	382	EFA102350	4988	EFA1c0032_orf_19p	10632
E3M10000030D05	383	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000030D08	384	EFA102780	5010	EFA1c0045 orf_101p	10908
E3M10000030D09	385	EFA102780	5010	EFA1c0045 orf 101p	10908
E3M10000030D10	386	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000030D12	387	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000030E01	388	EFA101410	4935	EFA1c0022 orf 12p	10525
E3M10000030E01	388	EFA101411	4936	EFA1c0022 orf 13p	10526
E3M10000030E02	389	EFA100329	4875	EFA1c0041 orf 35p	10782
E3M10000030E04	390	EFA102655	5003	EFA1c0039 orf 25p	10733
E3M10000030E08	391	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000030E09	392	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000030E10	393	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000030F01	394	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000030F04	395	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000030F06	396	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000030F07	397	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000030F10	398	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000030F12	399	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000030G01	400	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000030G03	401	EFA100023	4862	EFA1c0017_orf_lp	10505
E3M10000030G06	402	EFA101686	4953	EFA1c0045 orf 63p	10940
E3M10000030G08	403	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000030G09	404	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000030G12	405	EFA103504	5028	EFA1c0033 orf 94p	10671
E3M10000030H03	406	EFA101258	4926	EFA1c0045 orf 160p	10918
E3M10000030H04	407	EFA101121	4912	EFA1c0036 orf 112p	10686
E3M10000030H06	408	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000030H07	409	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000030H08	410	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000030H10	411	EFA102091	4977	EFA1c0010 orf_3p	10481
E3M10000030H11	412	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000031A02	413	EFA102006	4973	EFA1c0025 orf 17p	10580
E3M10000031A06	414	EFA100970	4903	EFA1c0044 orf 98p	10906
E3M10000031A07	415	EFA102201	4982	#N/A	#N/A
E3M10000031A08	416	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000031B02	417	EFA100289	4872	EFA1c0042_orf_139p	10810
E3M10000031B03	418	EFA100426	4879	EFA1c0036_orf_59p	10702
E3M10000031B04	419	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000031B09	420	EFA102183	4979	EFA1c0045_orf_97p	10952
E3M10000031B10	421	EFA101253	4924	EFA1c0043_orf_178p	10852
E3M10000031B10	421	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000031B11	423	EFA100190	4884	EFA1c0041 orf 56p	10792

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000031C01	424	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000031C04	425	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000031C06	426	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000031C10	427	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000031C11	428	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000031C12	429	EFA100668	4885	EFA1c0035_orf_58p	10679
E3M10000031D03	430	EFA102503	4996	EFA1c0032 orf 32p	10643
E3M10000031D04	431	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000031D08	432	EFA102503	4996	EFA1c0032 orf 32p	10643
E3M10000031E03	433	EFA102501	4994	EFA1c0031 orf_35p	10626
E3M10000031E09	434	EFA102736	5007	EFA1c0022 orf_60p	10556
E3M10000031F02	435	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000031F02	435	EFA101685	4952	EFA1c0041 orf 55p	10791
E3M10000031F04	436	EFA101160	4917	BFA1c0022 orf 3p	10549
E3M10000031F07	437	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000031F09	438	EFA102764	5008	EFA1c0008_orf_3p	10478
E3M10000031F11	439	EFA102549	5000	EFA1c0022 orf 24p	10538
E3M10000031F11	439	EFA102551	5001	EFA1c0022 orf 25p	10539
E3M10000031G03	440	EFA102655	5003	EFA1c0039 orf 25p	10733
E3M10000031G04	441	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000031G05	442	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000031G06	443	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000031G07	444	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000031G08	445	EFA100295	4873	EFA1c0021 orf 15p	10517
E3M10000031G11	446	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000031H05	447	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000031H06	448	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000031H07	449	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000031H08	450	EFA102736	5007	EFA1c0022 orf 60p	10556
E3M10000031H10	451	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000031H11	452	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000031H11	452	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000032A02	453	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000032A04	454	EFA101670	4950	EFA1c0019 orf 20p	10511
E3M10000032A06	455	EFA101022	4906	EFA1c0043 orf 69p	10875
E3M10000032A07	456	EFA101670	4950	EFA1c0019_orf_20p	10511
E3M10000032A08	457	EFA100329	4875	EFA1c0041 orf 35p	10782
E3M10000032A09	458	EFA100394	4876	EFA1c0034 orf 6p	10675
E3M10000032A10	459	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000032A11	460	EFA100642	4884	EFA1c0022_off_12p	10792
E3M10000032A11	460	EFA101685	4952	EFA1c0041_orf_55p	10792
E3M10000032A11	461	EFA101540	4947	EFA1c0041_orf_4p	10/91
E3M10000032B04	462	EFA102091	4947	EFA1c0012_orf_3p	10487
E3M10000032B07	462	EFA101164	4977	EFA1c0010_orf_3p	
E3M10000032B07	464	EFA102698	5005		10558
E3M10000032B08			l .	EFA1c0045_orf_115p	10909
ł	465	EFA102051	4976	#N/A	#N/A
E3M10000032B11	466	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000032B12	467	EFA100295	4873	EFA1c0021_orf_15p	10517

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000032C01	468	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000032C02	469	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000032C03	470	EFA103348	5025	EFA1c0043_orf_67p	10873
E3M10000032C04	471	EFA101163	4920	EFA1c0022 orf 6p	10557
E3M10000032C06	472	EFA101150	4915	EFA1c0038_orf_57p	10719
E3M10000032C09	473	EFA100740	4889	EFA1c0022_orf_22p	10536
E3M10000032C11	474	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000032C12	475	EFA101165	4922	EFA1c0022 orf 8p	10559
E3M10000032D01	476	EFA103504	5028	EFA1c0033 orf 94p	10671
E3M10000032D02	477	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000032D03	478	EFA100399	4878	EFA1c0041 orf 104p	10766
E3M10000032D06	479	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000032D09	480	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000032D12	481	EFA101165	4922	EFA1c0022 orf 8p	10559
E3M10000032E04	482	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000032E04	482	EFA103786	5031	EFA1c0042 orf 114p	10806
E3M10000032E05	483	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000032E08	484	EFA101164	4921	EFA1c0022 orf 7p	10558
E3M10000032E10	485	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000032E10	485	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000032E11	486	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000032E12	487	EFA102326	4986	#N/A	#N/A
E3M10000032F02	488	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000032F02	488	EFA101165	4922	EFA1c0022 orf 8p	10559
E3M10000032F03	489	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000032F05	490	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000032F07	491	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000032F08	492	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000032F11	493	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000032F12	494	EFA102201	4982	#N/A	#N/A
E3M10000032G01	495	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000032G02	496	EFA100870	4899	EFA1c0031_orf 36p	10627
E3M10000032G04	497	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000032G05	498	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000032G06	499	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000032G07	500	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000032H05	501	EFA100200 .	4869	EFA1c0041_orf_88p	10798
E3M10000032H06	502	EFA101833	4965	EFA1c0038_orf_61p	10720
E3M10000032H08	503	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000032H09	504	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000032H10	505	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000033A03	506	EFA101253	4924	EFA1c0043_orf_178p	10852
E3M10000033A04	507	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000033A05	508	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000033A06	509	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000033A07	510	EFA102774	5009	EFA1c0044 orf 25p	10896
E3M10000033A08	511	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033A11	512	EFA100642	4884	EFA1c0041_orf_56p	10792

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000033B01	513	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000033B02	514	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000033B04	515	EFA101765	4958	EFA1c0025_orf_33p	10587
E3M10000033B05	516	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000033B06	517	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000033B08	518	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000033B09	519	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000033C01	520	EFA101540	4947	EFA1c0012 orf 4p	10487
E3M10000033C02	521	EFA103174	5021	EFA1c0036 orf 120p	10689
E3M10000033C05	522	EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000033C05	522	EFA102542	4999	EFA1c0028 orf 4p	10603
E3M10000033C09	523	EFA100811	4898	EFA1c0022 orf 33p	10546
E3M10000033C10	524	EFA101410	4935	EFA1c0022 orf 12p	10525
E3M10000033C10	524	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000033C11	525	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000033C12	526	EFA102389	4992	EFA1c0044 orf 83p	10904
E3M10000033D01	527	EFA102351	4989	EFA1c0032 orf 20p	10634
E3M10000033D04	528	EFA101682	4951	EFA1c0041_orf_53p	10789
E3M10000033D05	529	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000033D06	530	EFA100641	4883	EFA1c0041_orf_57p	10793
E3M10000033D06	530	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000033D09	531	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000033D10	532	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000033D11	533	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000033E02	534	EFA101477	4945	EFA1c0043_orf_224p	10861
E3M10000033E03	535	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000033E03	535	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000033E04	536	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033E05	537	EFA102503	4996	EFA1c0039_0ff_20p	10643
E3M10000033E07	538	EFA102502	4995	EFA1c0032_0ff_36p	10627
E3M10000033E07	539	EFA102351	4989	EFA1c0031_011_30p	10634
E3M10000033E09	540	EFA100617	4882	EFA1c0032_orf_20p	10034
E3M10000033E09		EFA102551	5001	EFA1c0040_orf_93p	10764
E3M10000033E11	542	EFA102502	4995	EFA1c0022_orf_25p EFA1c0031_orf_36p	10539
E3M10000033F01		EFA101686	4993	EFA1c0031_orf_63p	10627
E3M10000033F03	544	EFA100704	4887	EFA1c0010_orf_4p	
	545		4887		10482
E3M10000033F05		EFA102501		EFA1c0031_orf_35p	10626
E3M10000033F07	_	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000033F08 E3M10000033F10	547	EFA101165	4922	EFA1c0022_orf_8p	10559
	548	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000033F12	549	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000033F12	549	EFA102542	4999	EFA1c0028_orf_4p	10603
E3M10000033G01	550	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000033G02		EFA102813	5013	EFA1c0043_orf_9p	10878
E3M10000033G03		EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033G04		EFA102326	4986	#N/A	#N/A
E3M10000033G06	554	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000033G07	555	EFA101685	4952	EFA1c0041_orf_55p	10791

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000033G08	556	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000033G09	557	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000033G12	558	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000033H02	559	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000033H04	560	EFA102780	5010	EFA1c0045 orf 101p	10908
E3M10000033H05	561	EFA100741	4890	EFA1c0022_orf_21p	10535
E3M10000033H07	562	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000033H08	563	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000033H09	564	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000033H10	565	EFA101079	4908	#N/A	#N/A
E3M10000033H11	566	EFA100190	4867	EFA1c0010 orf 2p	10480
E3M10000034A02	567	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000034A03	568	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000034A04	569	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000034B02	570	EFA103504	5028	EFA1c0033 orf 94p	10671
E3M10000034B04	571	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000034C04	572	EFA102502	4995	EFA1c0031 orf 36p	10627
E3M10000034D01	573	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000034D02	574	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034E01	575	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000034E04	576	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034E04	577	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000034F03	578	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000034F04	579	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000034G02	580	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000034G03	581	EFA100740	4889	EFA1c0022_orf_22p	10536
E3M10000034H02	582	EFA101257	4925	EFA1c0045_orf_159p	10917
E3M10000034H03	583	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000034103	584	EFA103268	5023	EFA1c0010 orf 1p	10479
E3M10000035A04	585	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000035A05	586	EFA101540	4947	EFA1c0012 orf 4p	10487
E3M10000035A06	587	EFA103571	5030	EFA1c0044 orf 101p	10407
E3M10000035A08		EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035A09	589	EFA100210	4870	EFA1c0030_off_17p	10560
E3M10000035A11	590	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000035B01	591	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000035B03	592	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035B06	593	EFA101164	4921	EFA1c0012_orf_7p	10482
E3M10000035B07	594	EFA103571	5030	EFA1c0044 orf 101p	10338
E3M10000035B08	595	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000035B10	596	EFA100151	4864	EFA1c0043_0ff_10fp	10516
E3M10000035B10	597	EFA103571	5030	EFA1c0021_off_14p	10316
E3M10000035B11		EFA103038	5017	EFA1c0030_orf_17p	
	598				10613
E3M10000035C01	599	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035C03	600	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000035C04	601	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035C05	602	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000035C06	603	EFA101160	4917	EFA1c0022_orf_3p	10549

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000035C07	604	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000035C08	605	EFA100741	4890	EFA1c0022_orf_21p	10535
E3M10000035C08	605	EFA100742	4891	EFA1c0022_orf_20p	10534
E3M10000035C09	606	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000035C11	607	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035C12	608	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035D02	609	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000035D03	610	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000035D04	611	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000035D05	612	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000035D10	613	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000035D11	614	EFA100919	4901	EFA1c0013 orf_12p	10491
E3M10000035E03	615	EFA101414	4939	EFA1c0022 orf 15p	10528
E3M10000035E04	616	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000035E05	617	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000035E07	618	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000035E08	619	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000035E09	620	EFA100312	4874	EFA1c0032_orf_28p	10641
E3M10000035E10	621	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000035E11	622	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000035E12	623	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035F01	624	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000035F02	625	EFA101925	4971	EFA1c0044_orf_19p	10893
E3M10000035F03	626	EFA100312	4874	EFA1c0032_orf_28p	10641
E3M10000035F06	627	EFA101080	4909	#N/A	#N/A
E3M10000035F07	628	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000035F08	629	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035F09	630	EFA101410	4935	EFA1c0022_orf_12p	10525
E3M10000035F09	630	EFA101411	4936	EFA1c0022_orf_13p	10526
E3M10000035F11	631	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000035F12	632	EFA101120	4911	EFA1c0036 orf 113p	10687
E3M10000035G02	633	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000035G02	633	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000035G04	634	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000035G05	635	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000035G08	636	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000035G09	637	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000035G09	637	EFA103508	5029	EFA1c0033_orf_95p	10672
E3M10000035G10	638	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000035G11	639	EFA101540	4947	EFA1c0012 orf 4p	10487
E3M10000035H03	640	EFA101080	4909	#N/A	#N/A
E3M10000035H06	641	EFA100210	4870		
		j		EFA1c0022_orf_9p	10560
E3M10000035H09	642	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000035H11	643	EFA101257	4925	EFA1c0045_orf_159p	10917
E3M10000035H11	643	EFA101258	4926	EFA1c0045_orf_160p	10918
E3M10000036A03	644	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000036A04	645	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000036A05	646	EFA102780	5010	EFA1c0045_orf_101p	10908

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000036A06	647	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000036A07	648	EFA103268	5023	EFA1c0010_orf_lp	10479
E3M10000036A08	649	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000036A09	650	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000036A10	651	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000036B01	652	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036B03	653	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000036B06	654	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036B07	655	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000036B08	656	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000036B09	657	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000036B11	658	EFA103504	5028	EFA1c0033 orf 94p	10671
E3M10000036B12	659	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036B12	659	EFA101163	4920	EFA1c0022_orf_6p	10557
E3M10000036C01	660	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000036C03	661	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000036C06	662	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000036C07	663	EFA101141	4914	EFA1c0030 orf 18p	10614
E3M10000036C08	664	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000036C09	665	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000036C10	666	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000036C11	667	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000036D03	668	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000036D04	669	EFA102201	4982	#N/A	#N/A
E3M10000036D06	670	EFA100740	4889	EFA1c0022 orf 22p	10536
E3M10000036D08	671	EFA101164	4921	EFA1c0022_orf_7p	10558
E3M10000036D09	672	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000036D10	673	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036D11	674	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000036D12	675	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000036E01	676	EFA101121	4912	EFA1c0036 orf 112p	10686
E3M10000036E04	677	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036E05	678	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000036E07	679	EFA101022	4906	EFA1c0043_orf_69p	10875
E3M10000036E08	680	EFA100210	4870	EFA1c0022 orf 9p	10560
E3M10000036F03	681	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000036F04	682	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000036F05	683	EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000036F08	684	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000036F09	685	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000036F10	686	EFA 101 162	4919	EFA1c0022 orf 5p	10555
E3M10000036F12	687	EFA101163	4920	EFA1c0022 orf 6p	10557
E3M10000036G01	688	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000036G01	688	EFA102551	5001	EFA1c0022_orf_25p	10539
E3M10000036G02	689	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000036G03	690	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000036G04	691	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000036G06	692	EFA100295	4873	EFA1c0021_orf_15p	10517

Clone name	Clone SeqID	PathoSeq Locus	Gene SegID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000036G10	693	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000036H02	694	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000036H03	695	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000036H04	696	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000036H05	697	EFA100194	4868	EFA1c0022_orf_26p	10540
E3M10000036H06	698	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000036H07	699	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000036H08	700	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000036H09	701	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000036H10	702	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000037A03	703	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000037A06	704	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000037A08	705	EFA103365	5026	EFA1c0022_orf_lp	10533
E3M10000037A09	706	EFA100756	4893	EFA1c0024_orf_39p	10575
E3M10000037A10	707	EFA103268	5023	EFA1c0010_orf_1p	10479
E3M10000037B02	708	EFA100641	4883	EFA1c0041_orf_57p	10793
E3M10000037B02	708	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000037B07	709	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000037B08	710	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000037B11	711	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000037C01	1	EFA101080	4909	#N/A	#N/A
E3M10000037C02	713	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000037C04	714	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000037C05	715	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000037C07	716	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000037C07	716	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000037C11	717	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000037C12	718	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000037D02	719	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000037D03	720	EFA100795	4896	EFA1c0043 orf 229p	10863
E3M10000037D03	720	EFA103081	5020	EFA1c0043_orf_228p	10862
E3M10000037D04	721	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037D05	722	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000037D06		EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000037D09	724	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000037D09	724	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000037D11	725	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037E01	726	EFA102736	5007	EFA1c0022 orf 60p	10556
E3M10000037E02	727	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000037E03	728	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000037E05	729	EFA101080	4909	#N/A	#N/A
E3M10000037E07	730	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037E08		EFA100642	4884	EFA1c0041 orf_56p	10792
E3M10000037E10	732	EFA101253	4924	EFA1c0043_orf_178p	10852
E3M10000037E12	733	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000037F01		EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000037F02	1	EFA101160	4917	EFA1c0022_orf 3p	10549
E3M10000037F06			4870		10560
l	736	EFA100210	L	EFA1c0022_orf_9p	

Clone name	Clone SegID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000037F07	737	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000037F12	738	EFA101161	4918	EFA1c0022_orf_4p	10551
E3M10000037G01	739	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000037G02	740	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000037G03	741	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000037G05	742	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000037G06	743	EFA103295	5024	EFA1c0032_orf_1p	10633
E3M10000037G07	744	EFA101541	4948	EFA1c0012_orf_5p	10488
E3M10000037G08	745	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000037G10	746	EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000037G11	747	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000037H02	748	EFA101413	4938	#N/A	#N/A
E3M10000037H05	749	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000037H07	750	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000037H10	751	EFA101080	4909	#N/A	#N/A
E3M10000037H11	752	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000038A02	753	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000038A03	754	EFA103038	5017	EFA1c0030_orf_17p	10613
E3M10000038A05	755	EFA100151	4864	EFA1c0021_orf_14p	10516
E3M10000038A06	756	EFA102549	5000	EFA1c0022_orf_24p	10538
E3M10000038A07	757	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000038A09	758	EFA102736	5007	EFA1c0022_orf_60p	10556
E3M10000038A10	759	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000038A11	760	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000038B02	761	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000038B03	762	EFA102389	4992	EFA1c0044_orf_83p	10904
E3M10000038B04	763	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000038B05	764	EFA100795	4896	EFA1c0043_orf_229p	10863
E3M10000038B05	764	EFA103081	5020	EFA1c0043_orf_228p	10862
E3M10000038B07	765	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000038B08	766	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038B09	767	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000038B11	768	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000038C02	769	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000038C03	770	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000038C05	771	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000038C07	772	EFA101963	4972	EFA1c0043_orf_162p	10848
E3M10000038C10	773	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000038C12	774	EFA101080	4909	#N/A	#N/A
E3M10000038D01	775	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038D02	776	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000038D04	777	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038D08	778	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038D10	779	EFA103504	5028	EFA1c0033_orf_94p	10671
E3M10000038D11	780	EFA103571	5030	EFA1c0044_orf_101p	10879
E3M10000038D12	781	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038E02	782	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000038E03	783	EFA101159	4916	EFA1c0022_orf_2p	10543

	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000038E04	784	EFA101540	4947	EFA1c0012_orf_4p	10487
E3M10000038E05	785	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000038E07	786	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000038E08	787	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000038E11	788	EFA102780	5010	EFA1c0045 orf 101p	10908
E3M10000038F02	789	EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000038F04	790	EFA101686	4953	EFA1c0045 orf 63p	10940
E3M10000038F05	791	EFA101160	4917	EFA1c0022 orf 3p	10549
E3M10000038F05	791	EFA101161	4918	EFA1c0022 orf 4p	10551
E3M10000038F06	792	EFA103571	5030	EFA1c0044 orf 101p	10879
E3M10000038F07	793	EFA103210	5022	EFA1c0036_orf_119p	10688
E3M10000038F09	794	EFA102185	4980	EFA1c0045_orf_95p	10950
E3M10000038F10	795	EFA101080	4909	#N/A	#N/A
E3M10000038F11	796	EFA100740	4889	EFA1c0022 orf 22p	10536
E3M10000038G02	797	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000038G03	798	EFA101414	4939	EFA1c0022 orf 15p	10528
E3M10000038G06	799	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000038G07	800	EFA102352	4990	EFA1c0032_orf_21p	10635
E3M10000038G07	800	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000038G11	801	EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000038H02	802	EFA101414	4939	EFA1c0022 orf 15p	10528
E3M10000038H05		EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000038H06	804	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000038H07	805	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000038H08	806	EFA100295	4873	EFA1c0021 orf 15p	10517
E3M10000038H09	807	EFA102802	5012	EFA1c0043 orf 18p	10854
E3M10000038H10	808	EFA101541	4948	EFA1c0012_orf_5p	10488
E3M10000039A02	809	EFA101736	4955	EFA1c0041 orf 14p	10775
E3M10000039A02	809	EFA101737	4956	EFA1c0041 orf 15p	10778
E3M10000039A06		EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000039A07		EFA102006	4973	EFA1c0025 orf 17p	10580
E3M10000039A08	812	EFA101162	4919	EFA1c0022 orf 5p	10555
E3M10000039A10		EFA101257	4925	EFA1c0045_orf_159p	10917
E3M10000039A11		EFA101412	4937	EFA1c0022_orf_14p	10527
E3M10000039B01		EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000039B03		EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000039B04		EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000039B04	817	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000039B06	818	EFA100870	4899	EFA1c0031_orf_36p	10627
E3M10000039B07	819	EFA102110	4978	EFA1c0042 orf 99p	10841
E3M10000039B08	820	EFA101416	4941	EFA1c0022 orf 17p	10530
E3M10000039B09		EFA101792	4961	EFA1c0042_orf_113p	10805
E3M10000039B11		EFA101080	4909	#N/A	#N/A
E3M10000039C02		EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000039C02		EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039C04		EFA100739	4888	EFA1c0022_orf_23p	10535
E3M10000039C05		EFA103504	5028	EFA1c0033 orf 94p	10537
E3M10000039C07		EFA101791	4960	EFA1c0042_orf_112p	10804

Clone name	Clone SegID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000039C07	827	EFA101792	4961	EFA1c0042 orf 113p	10805
E3M10000039C08	828	EFA101159	4916	EFA1c0022 orf 2p	10543
E3M10000039C09	829	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000039C10	830	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039D02	831	EFA101165	4922	EFA1c0022 orf 8p	10559
E3M10000039D03	832	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000039D04	833	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000039D06	834	EFA101540	4947	EFA1c0012 orf 4p	10487
E3M10000039E01	835	EFA102201	4982	#N/A	#N/A
E3M10000039E02	836	EFA101540	4947	EFA1c0012 orf 4p	10487
E3M10000039E03	837	EFA100919	4901	EFA1c0013 orf 12p	10491
E3M10000039E05	838	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000039E07	839	EFA103295	5024	EFA1c0032_orf_1p	10633
E3M10000039E08	840	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000039F01	841	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000039F02	842	EFA103021	5015	EFA1c0030_orf_16p	10612
E3M10000039F03	843	EFA102788	5011	EFA1c0033 orf 41p	10661
E3M10000039F03	843	EFA103375	5027	EFA1c0033_orf_40p	10660
E3M10000039F06	844	EFA100739	4888	EFA1c0022 orf 23p	10537
E3M10000039F07	845	EFA102541	4998	EFA1c0028 orf 3p	10602
E3M10000039F08	846	EFA101162	4919	EFA1c0022_orf_5p	10555
E3M10000039G01	847	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000039G02	848	EFA101686	4953	EFA1c0045 orf 63p	10940
E3M10000039G05	849	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000039G07	850	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000039G09	851	EFA102541	4998	EFA1c0028_orf_3p	10602
E3M10000039G10	852	EFA101682	4951	EFA1c0041_orf_53p	10789
E3M10000039H02	853	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000039H07	854	EFA101080	4909	#N/A	#N/A
E3M10000039H08	855	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000039H10	856	EFA101413	4938	#N/A	#N/A
E3M10000039H11	857	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000039H11	857	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000040A03	858	EFA101123	4913	EFA1c0040_orf_22p	10748
E3M10000040A05	859	EFA101080	4909	#N/A	#N/A
E3M10000040A07	860	EFA100157	4865	EFA1c0034_orf_63p	10673
E3M10000040A09	861	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000040A10	862	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000040A11	863	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000040B01	864	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000040B02	865	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000040B05	866	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000040B05	866	EFA103268	5023	EFA1c0010_orf_1p	10479
E3M10000040B06	867	EFA102518	4997	EFA1c0032_orf_46p	10647
E3M10000040B08	868	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000040B09	869	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000040B10	870	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000040B11		EFA102764	5008	EFA1c0008 orf 3p	10478

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000040B12	872	EFA100210	4870	EFA1c0022_orf_9p	10560
E3M10000040C02	873	EFA101080	4909	#N/A	#N/A
E3M10000040C05	874	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000040C06	875	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000040C07	876	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000040C08	877	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000040C09	878	EFA100165	4866	EFA1c0032_orf_23p	10637
E3M10000040C09	878	EFA102353	4991	EFA1c0032_orf_22p	10636
E3M10000040C10	879	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000040C11	880	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000040C12	881	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000040D03	882	EFA102201	4982	#N/A	#N/A
E3M10000040D04	883	EFA101080	4909	#N/A	#N/A
E3M10000040D08	884	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000040D12	885	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000040E02	886	EFA102051	4976	#N/A	#N/A
E3M10000040E10	887	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000040E11	888	EFA103039	5018	EFA1c0043 orf 16p	10850
E3M10000040E12	889	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000040F01	890	EFA100295	4873	EFA1c0021_orf_15p	10517
E3M10000040F03	891	EFA102503	4996	EFA1c0032_orf_32p	10643
E3M10000040F08	892	EFA101080	4909	#N/A	#N/A
E3M10000040F09	893	EFA100919	4901	EFA1c0013_orf_12p	10491
E3M10000040F10	894	EFA102051	4976	#N/A	#N/A
E3M10000040G01	895	EFA101415	4940	EFA1c0022 orf 16p	10529
E3M10000040G02	896	EFA101424	4943	EFA1c0041_orf_39p	10784
E3M10000040G02	896	EFA101425	4944	EFA1c0041 orf 40p	10785
E3M10000040G04	897	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000040G05	898	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000040G07	899	EFA101079	4908	#N/A	#N/A
E3M10000040G07	899	EFA101080	4909	#N/A	#N/A
E3M10000040G08	900	EFA102186	4981	EFA1c0045 orf 94p	10949
E3M10000040G09	901	EFA103021	5015	EFA1c0030 orf 16p	10612
E3M10000040G11	902	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000040H02	903	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000040H03	904	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000040H04	905	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000040H04	905	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000040H05	906	EFA100642	4884	EFA1c0041 orf 56p	10792
E3M10000040H05	906	EFA101685	4952	EFA1c0041_orf_55p	10791
E3M10000040H09	907	EFA101416	4941	EFA1c0022_orf_17p	10530
E3M10000040H09	907	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041A03	908	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000041A05	909	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000041A08	910	EFA100704	4887	EFA1c0011_orf_4p	10627
E3M10000041A09	911	EFA101354	4930	EFA1c0010_orf_4p	
E3M10000041A10	911	EFA100001	4930	EFA1c0032_orf_69p	10648
E3M10000041A11	912	EFA100642	4884	EFA1c0030_orf_3p	10618

Cione name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000041A11	913	EFA101685	4952	EFA1c0041 orf 55p	10791
E3M10000041B02	914	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000041B03	915	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000041B05	916	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000041B06	917	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000041B08	918	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000041B09	919	EFA101924	4970	EFA1c0044_orf_18p	10891
E3M10000041B09	919	EFA101925	4971	EFA1c0044_orf_19p	10893
E3M10000041B10	920	EFA101080	4909	#N/A	#N/A
E3M10000041B11	921	EFA101416	4941	EFA1c0022 orf 17p	10530
E3M10000041B11	921	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000041B12	922	EFA101411	4936	EFA1c0022 orf 13p	10526
E3M10000041C01	923	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000041C07	924	EFA100739	4888	EFA1c0022 orf 23p	10537
E3M10000041C07	925	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000041C09	926	EFA103365	5026	EFA1c0022 orf 1p	10533
E3M10000041C10	927	EFA102503	4996	EFA1c0032 orf 32p	10643
E3M10000041C11	928	EFA102655	5003	EFA1c0039 orf 25p	10733
E3M10000041C12	929	EFA100798	4897	EFA1c0042 orf 160p	10818
E3M10000041D02	930	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000041D03	931	EFA101060	4907	EFA1c0038 orf 73p	10722
E3M10000041D04	932	EFA100642	4884	EFA1c0041_orf_56p	10792
E3M10000041D04	932	EFA101685	4952	EFA1c0041 orf 55p	10791
E3M10000041D05	933	EFA101080	4909	#N/A	#N/A
E3M10000041D06	934	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000041D08	935	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041D09	936	EFA101120	4911	EFA1c0036 orf 113p	10687
E3M10000041D10	937	EFA102780	5010	EFA1c0045 orf 101p	10908
E3M10000041D11	938	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041D12	939	EFA100394	4876	EFA1c0034 orf 6p	10675
E3M10000041E02	940	EFA101797	4963	EFA1c0045 orf 167p	10924
E3M10000041E03	941	EFA102091	4977	EFA1c0010 orf 3p	10481
E3M10000041E05	942	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000041E07	943	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000041E10	944	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000041E11	945	EFA100190	4867	EFA1c0010_orf_2p	10480
E3M10000041F03	946	EFA102503	4996	EFA1c0032 orf 32p	10643
E3M10000041F05	947	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000041F06	948	EFA102501	4994	EFA1c0031 orf 35p	10626
E3M10000041F07	949	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000041F08	950	EFA100295	4873	EFA1c0021 orf 15p	10517
E3M10000041F09	951	EFA101417	4942	EFA1c0022_orf_18p	10531
E3M10000041F10	952	EFA101079	4908	#N/A	#N/A
E3M10000041F10	952	EFA101080	4909	#N/A	#N/A
E3M10000041F11	953	EFA101160	4917	EFA1c0022_orf_3p	10549
E3M10000041F11	954	EFA101141	4914	EFA1c0030 orf 18p	10614
E3M10000041G02	955	EFA102253	4984	EFA1c0038 orf 85p	10727
E3M10000041G03	956	EFA101685	4952	EFA1c003a_off_55p	10727

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
E3M10000041G06	957	EFA100978	4904	EFA1c0022_orf_27p	10541
E3M10000041G07	958	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000041G08	959	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041G09	960	EFA100704	4887	EFA1c0010_orf_4p	10482
E3M10000041G10	961	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000041G12	962	EFA100394	4876	EFA1c0034_orf_6p	10675
E3M10000041H04	963	EFA102351	4989	EFA1c0032_orf_20p	10634
E3M10000041H05	964	EFA100329	4875	EFA1c0041_orf_35p	10782
E3M10000041H06	965	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000041H07	966	EFA103062	5019	EFA1c0030_orf_19p	10615
E3M10000041H08	967	EFA101686	4953	EFA1c0045_orf_63p	10940
E3M10000041H09	968	EFA102788	5011	EFA1c0033_orf_41p	10661
E3M10000041H10	969	EFA101685	4952	EFA1c0041 orf 55p	10791
E3M10000041H11	970	EFA102253	4984	EFA1c0038_orf_85p	10727
E3M10000042A03	971	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000042A03	971	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042A08	972	EFA102351	4989	EFA1c0032 orf 20p	10634
E3M10000042A10	973	EFA101121	4912	EFA1c0036 orf 112p	10686
E3M10000042B01	974	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000042B02	975	EFA100668	4885	EFA1c0035 orf 58p	10679
E3M10000042B04	976	EFA102186	4981	EFA1c0045_orf_94p	10949
E3M10000042B04	976	EFA102453	4993	EFA1c0045_orf_203p	10931
E3M10000042B08	977	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000042B09	978	EFA101797	4963	EFA1c0045 orf 167p	10924
E3M10000042B10	979	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042B11	980	EFA101165	4922	EFA1c0022_orf_8p	10559
E3M10000042C02	981	EFA101150	4915	EFA1c0038_orf_57p	10719
E3M10000042C03	982	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000042C04	983	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000042C10	984	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000042C10	984	EFA100295	4873	EFA1c0021 orf 15p	10517
E3M10000042D01	985	EFA100615	4881	EFA1c0016 orf 29p	10501
E3M10000042D02	986	EFA102501	4994	EFA1c0031_orf_35p	10626
E3M10000042D03	987	EFA100394	4876	EFA1c0034 orf 6p	10675
E3M10000042D06	988	EFA102091	4977	EFA1c0010_orf_3p	10481
E3M10000042D09	989	EFA101141	4914	EFA1c0030_orf_18p	10614
E3M10000042D11	990	EFA101412	4937	EFA1c0022 orf 14p	10527
E3M10000042D12	991	EFA100795	4896	EFA1c0043 orf 229p	10863
E3M10000042E05	992	EFA102501	4994	EFA1c0043_orf_35p	10626
E3M10000042E03	993	EFA102351	4989	EFA1c0031_off_20p	10634
E3M10000042E12	994	EFA101792	4961	EFA1c0042_orf_113p	
E3M10000042F11	994	EFA101412	4937	EFA1c0042_orf_113p	10805
E3M10000042G05	996	EFA101685		EFA1c0022_ori_14p EFA1c0041_orf_55p	· ·
L		1	4952		10791
E3M10000042G07	997	EFA101169	4923	EFA1c0024_orf_38p	10574
E3M10000042G08	998	EFA102780	5010	EFA1c0045_orf_101p	10908
E3M10000042G11	999	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000042G11	999	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000042G12	1000	EFA102501	4994	EFA1c0031_orf_35p	10626

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000042H06	1001	EFA101799	4964	EFA1c0045_orf_169p	10926
E3M10000042H08	1002	EFA101120	4911	EFA1c0036_orf_113p	10687
E3M10000042H11	1003	EFA100668	4885	EFA1c0035_orf_58p	10679
E3M10000043A02	1004	EFA101799	4964	EFA1c0045_orf_169p	10926
E3M10000043A03	1005	EFA101414	4939	EFA1c0022 orf 15p	10528
E3M10000043A05	1006	EFA102502	4995	EFA1c0031 orf 36p	10627
E3M10000043A08	1007	EFA100689	4886	EFA1c0038_orf_54p	10717
E3M10000043A09	1008	EFA101414	4939	EFA1c0022 orf 15p	10528
E3M10000043A09	1008	EFA101415	4940	EFA1c0022_orf_16p	10529
E3M10000043A10	1009	EFA101080	4909	#N/A	#N/A
E3M10000043A11	1010	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000043B01	1011	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000043B02	1012	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000043B03	1013	EFA103038	5017	EFA1c0030 orf 17p	10613
E3M10000043B06	1014	EFA101404	4933	EFA1c0033_orf_55p	10663
E3M10000043B08	1015	EFA101123	4913	EFA1c0040 orf 22p	10748
E3M10000043B09	1016	EFA101892	4969	EFA1c0017 orf 21p	10506
E3M10000043B10	1017	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000043B11	1018	EFA100704	4887	EFA1c0010 orf 4p	10482
E3M10000043B12	1019	EFA100151	4864	EFA1c0021 orf 14p	10516
E3M10000043C01	1020	EFA102656	5004	EFA1c0039 orf 26p	10734
E3M10000043C08	1021	EFA101412	4937	EFA1c0022 orf 14p	10527
E3M10000043C09	1022	EFA100151	4864	EFA1c0021 orf_14p	10516
E3M10000043D01	1023	EFA101417	4942	EFA1c0022 orf 18p	10531
E3M10000043D02	1024	EFA102502	4995	EFA1c0031 orf 36p	10627
E3M10000043D09	1025	EFA102351	4989	EFA1c0032 orf 20p	10634
E3M10000043D10	1026	EFA101872	4967	EFA1c0042_orf_152p	10815
E3M10000043D10	1026	EFA101873	4968	EFA1c0042 orf 153p	10816
E3M10000043D12	1027	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043E03	1028	EFA100397	4877	EFA1c0041 orf 148p	10773
E3M10000043E07	1029	EFA101339	4928	EFA1c0040 orf 13p	10743
E3M10000043E08	1030	EFA101872	4967	EFA1c0042 orf_152p	10815
E3M10000043E08		EFA101873	4968	EFA1c0042_orf_153p	10816
E3M10000043E10	1031	EFA102656	5004	EFA1c0039_orf_26p	10734
E3M10000043E11	1032	EFA102813	5013	EFA1c0043_orf_9p	10878
E3M10000043F03	1033	EFA102655	5003	EFA1c0039 orf 25p	10733
E3M10000043F04	1034	EFA102006	4973	EFA1c0025 orf 17p	10580
E3M10000043F06	1035	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000043F08	1036	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000043F10	1037	EFA101159	4916	EFA1c0022_orf_2p	10543
E3M10000043F12	1038	EFA101080	4909	#N/A	#N/A
E3M10000043F12	1039	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043G04	1040	EFA102502	4995	EFA1c0031_orf_36p	10627
E3M10000043G04	1040	EFA101686	4953	EFA1c0031_off_63p	10027
E3M10000043G07	1041	EFA100157	4865	EFA1c0043_orf_63p	10940
E3M10000043G07	1042	EFA101080	4909	#N/A	#N/A
E3M10000043G10	1043	EFA101792	4961	EFA1c0042_orf_113p	10805
		L	4909	#N/A	#N/A
E3M10000043G11	1045	EFA101080	4909	#N/A	#IVA

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
E3M10000043G12	1046	EFA101121	4912	EFA1c0036_orf_112p	10686
E3M10000043H02	1047	EFA101414	4939	EFA1c0022_orf_15p	10528
E3M10000043H05	1048	EFA101080	4909	#N/A	#N/A
E3M10000043H08	1049	EFA100615	4881	EFA1c0016_orf_29p	10501
E3M10000043H09	1050	EFA102006	4973	EFA1c0025_orf_17p	10580
E3M10000043H11	1051	EFA102655	5003	EFA1c0039_orf_25p	10733
E3M10000044C02	1052	EFA100955	4902	EFA1c0022_orf_28p	10542
E3M10000044E01	1053	EFA102091	4977	EFA1c0010_orf_3p	10481
K1M10000002F02	1054	KPN101750	5037	KPN1c1723_orf_lp	11652
K1M1000003C01	1055	KPN103882	5040	KPN1c2848_orf_1p	11716
K1M10000007F01	1057	KPN104183	5041	KPN1c1646_orf_2p	11650
K1M10000007F01	1057	KPN106659	5049	KPN1c1646_orf_lp	11649
K1M10000008C02	1058	KPN107626	5051	#N/A	#N/A
K1M10000008C10	1059	KPN101729	5036	KPN1c1566 orf_lp	11647
K1M1000008G10	1060	KPN106840	5050	KPN1c2087_orf_lp	11664
K1M1000009D04	1061	KPN107776	5052	KPN1c4041 orf 1p	11771
K1M10000013E04	1062	KPN105779	5047	KPN1c4012 orf 1p	11770
K1M10000020B02	1065	KPN101729	5036	KPN1c1566 orf 1p	11647
K1M10000022C10	1067	KPN100854	5033	KPN1c0845_orf_lp	11630
K1M10000030C07	1070	KPN104716	5045	KPN1c3094_orf_5p	11757
K1M10000030E07	1071	KPN104538	5044	KPN1c2918_orf_2p	11726
K1M10000032E11	1073	KPN101729	5036	KPN1c1566_orf_1p	11647
K1M10000033B02	1074	KPN101729	5036	KPN1c1566 orf 1p	11647
K1M10000033E01	1075	KPN100432	5032	KPN1c0331_orf_lp	11628
K1M10000036G08	1076	KPN106044	5048	#N/A	#N/A
K1M10000037D10	1077	KPN104281	5042	KPN1c3000 orf 3p	11742
K1M10000038H09	1078	KPN102057	5038	KPN1c1958_orf_lp	11661
K1M10000039H03	1079	KPN106840	5050	KPN1c2087_orf_lp	11664
K1M10000043D05	1081	KPN102638	5039	KPN1c2127_orf_lp	11667
K1M10000043H10	1082	KPN105722	5046	#N/A	#N/A
K1M10000044D08	1084	KPN104430	5043	#N/A	#N/A
K1M10000044G05	1086	KPN101026	5035	KPN1c0875_orf_1p	11631
K1M10000045A07	1087	KPN101022	5034	KPN1c1316_orf_3p	11642
K1M10000045D10	1088	KPN102638	5039	KPN1c2127_orf_lp	11667
P1M10000008C06	1092	PA2424	5107	#N/A	#N/A
P1M10000008G04	1093	PA0337	5060	#N/A	#N/A
P1M10000010C03	1094	PA4997	5202	#N/A	#N/A
P1M10000014H10	1095	PA4252	5168	#N/A	#N/A
P1M10000014H10	1095	PA4253	5169	#N/A	#N/A
PIMI0000015C06	1096	PA0413	5064	#N/A	#N/A
P1M10000015C06	1096	PA0414	5065	#N/A	#N/A
P1M10000015C09	1097	PA3041	5124	#N/A	#N/A
P1M10000016C04	1098	PA2680	5117	#N/A	#N/A
P1M10000018B01	1099	PA4264	5177	#N/A	#N/A
P1M10000018C01	_ i	PA4264	5177	#N/A	#N/A
P1M10000018E01	_ !	PA4067	5151	#N/A	#N/A
PIM10000018G01	1102	PA4067	5151	#N/A	#N/A
P1M10000019F01	1103	PA4271	5180	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
P1M10000019F01	1103	PA4272	5181	#N/A	#N/A
P1M10000021G03	1104	PA4264	5177	#N/A	#N/A
P1M10000021G05	1105	PA4251	5167	#N/A	#N/A
P1M10000022D09	1106	PA5299	5211	#N/A	#N/A
P1M10000024D06	1107	PA3160	5130	#N/A	#N/A
P1M10000024E06	1108	PA4888	5200	#N/A	#N/A
P1M10000024H03	1109	PA2313	5105	#N/A	#N/A
P1M10000025A06	1110	PA2222	5104	#N/A	#N/A
P1M10000025G07	1111	PA3153	5128	#N/A	#N/A
P1M10000025H07	1112	PA3153	5128	#N/A	#N/A
P1M10000025H07	1112	PA3154	5129	#N/A	#N/A
P1M10000026E06	1113	PA0715	5074	#N/A	#N/A
P1M10000026F04	1114	PA2222	5104	#N/A	#N/A
P1M10000026G09	1115	PA3011	5122	#N/A	#N/A
P1M10000026H02	1116	PA3013	5123	#N/A	#N/A
P1M10000026H05	1117	PA3154	5129	#N/A .	#N/A
P1M10000027A06	1118	PA4257	5172	#N/A	#N/A
P1M10000027B02		PA3154	5129	#N/A	#N/A
P1M10000027G05	1120	PA2313	5105	#N/A	#N/A
P1M10000028A08	1121	PA0788	5075	#N/A	#N/A
P1M10000028B01	1122	PA4263	5176	#N/A	#N/A
P1M10000028E02	1123	PA2584	5112	#N/A	#N/A
P1M10000029A09	1124	PA3154	5129	#N/A	#N/A
P1M10000029G03	1125	PA1301	5083	#N/A	#N/A
P1M10000029H05	1126	PA0353	5061	#N/A	#N/A
PIM10000032F04	1127	PA0265	5058	#N/A	#N/A
P1M10000033A02	1128	PA3068	5126	#N/A	#N/A
P1M10000033B08	1129	PA4244	5160	#N/A	#N/A
P1M10000033E03	1	PA3984	5147	#N/A	#N/A
P1M10000033F01	1131	PA1986	5095	#N/A	#N/A
P1M10000033G08	1132	PA2009	5096	#N/A	#N/A
PIM10000035A06	1133	PA4249	5165	#N/A	#N/A
P1M10000037B12		PA4254	5170	15-14	
P1M10000037G12	1135	PA5076	5204	#N/A #N/A	#N/A #N/A
P1M10000037612	1136	PA4070	5152	#N/A	#N/A
P1M10000038C03	1137	PA3931	5146	#N/A	#N/A
P1M10000038C06	1137	PA2197	5103	#N/A	#N/A
P1M10000038F04	1138	PA5207	5208	#N/A #N/A	#N/A
P1M10000038F04	1139	PA4542	5192	#N/A #N/A	#N/A
P1M10000038G02	1140	PA3764	5192	#N/A #N/A	#N/A #N/A
P1M10000039G03		PA5567	5220		_ !
P1M10000039G12	1142			#N/A	#N/A
ł	1143	PA4105	5154	#N/A	#N/A
P1M10000040C04	1144	PA1115	5081	#N/A	#N/A
P1M10000040D04	1145	PA0378	5062	#N/A	#N/A
P1M10000040D05	1146	PA5209	5209	#N/A	#N/A
P1M10000040E10	1147	PA2128	5100	#N/A	#N/A
P1M10000040H03	1148	PA1115	5081	#N/A	#N/A
P1M10000041A12	1149	PA4254	5170	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
P1M10000041B02	1150	PA2128	5100	#N/A	#N/A
P1M10000041E01	1151	PA2398	5106	#N/A	#N/A
P1M10000041F01	1152	PA4681	5196	#N/A	#N/A
P1M10000042B12	1153	PA0642	5072	#N/A	#N/A
P1M10000042E08	1154	PA4252	5168	#N/A	#N/A
P1M10000042E08	1154	PA4253	5169	#N/A	#N/A
P1M10000043A03	1155	PA3006	5121	#N/A	#N/A
P1M10000043D06	1156	PA3764	5141	#N/A	#N/A
P1M10000044F07	1157	PA4244	5160	#N/A	#N/A
P1M10000046B03	1158	PA1462	5087	#N/A	#N/A
P1M10000046C07	1159	PA2671	5116	#N/A	#N/A
P1M10000046C08	1160	PA0472	5069	#N/A	#N/A
P1M10000046C09	1161	PA3764	5141	#N/A	#N/A
PIM10000046G11	1162	PA1115	5081	#N/A	#N/A
P1M10000047B04	1163	PA3006	5121	#N/A	#N/A
PIM10000047E11	1164	PA2684	5118	#N/A	#N/A
P1M10000047F07	1165	PA4506	5190	#N/A	#N/A
P1M10000047G10	1166	PA4259	5174	#N/A	#N/A
P1M10000048A03	1167	PA4105	5154	#N/A	#N/A
P1M10000049E08	1168	PA4272	5181	#N/A	#N/A
PIM10000049G10	1169	PA4027	5149	#N/A	#N/A
P1M10000050G11	1170	PA4249	5165	#N/A	#N/A
P1M10000051D11	1171	PA1365	5085	#N/A	#N/A
P1M10000051F01	1172	PA1115	5081	#N/A	#N/A
P1M10000052C03	1173	PA0938	5078	#N/A	#N/A
PIM10000052C12	1174	PA5076	5204	#N/A	#N/A
P1M10000052E04	1175	PA1398	5086	#N/A	#N/A
P1M10000053B12	1176	PA5436	5215	#N/A	#N/A
P1M10000053C02	1177	PA0353	5061	#N/A	#N/A
P1M10000053E07	1178	PA4254	5170	#N/A	#N/A
P1M10000053F08	1179	PA1270	5082	#N/A	#N/A
P1M10000055A11	1180	PA5076	5204	#N/A	#N/A
P1M10000055C08	1181	PA1493	5088	#N/A	#N/A
P1M10000055E05	1182	PA5507	5219	#N/A	#N/A
PIM10000056C07	1183	PA1360	5084	#N/A	#N/A
P1M10000056F05	1184	PA4258	5173	#N/A	#N/A
P1M10000056F05	1184	PA4259	5174	#N/A	#N/A
P1M10000056F06	1185	PA2634	5114	#N/A	#N/A
P1M10000056G01	1186	PA5076	5204	#N/A	#N/A
P1M10000058B07	1187	PA5436	5215	#N/A	#N/A
P1M10000059B04	1188	PA4375	5186	#N/A	#N/A
P1M10000059B10	1189	PA4269	5179	#N/A	#N/A
P1M10000059B11	1190	PA0934	5077	#N/A	#N/A
PIM10000059D11		PA4027	5149	#N/A	#N/A
P1M10000059H08		PA4027	5149	#N/A	#N/A
PIM10000059H09		PA4271	5180	#N/A	#N/A
P1M10000060E03		PA0423	5067	#N/A	#N/A
P1M10000060H02		PA0221	5057	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
P1M10000060H04	1196	PA4473	5189	#N/A	#N/A
P1M10000061B04	1197	PA2726	5119	#N/A	#N/A
P1M10000061E04	1198	PA4244	5160	#N/A	#N/A
P1M10000061F04	1199	PA3522	5136	#N/A	#N/A
P1M10000062A12	1200	PA4598	5194	#N/A	#N/A
P1M10000062C03	1201	PA0321	5059	#N/A	#N/A
P1M10000062C04	1202	PA4254	5170	#N/A	#N/A
P1M10000062C07	1203	PA4251	5167	#N/A	#N/A
P1M10000062C12	1204	PA5316	5212	#N/A	#N/A
P1M10000062D07	1205	PA4247	5163	#N/A	#N/A
P1M10000062D08	1206	PA0882	5076	#N/A	#N/A
P1M10000062E08	1207	PA4248	5164	#N/A	#N/A
P1M10000062E08	1207	PA4249	5165	#N/A	#N/A
P1M10000062F06	1208	PA0028	5053	#N/A	#N/A
P1M10000062G11	1209	PA4506	5190	#N/A	#N/A
P1M10000062H01	1210	PA3121 ·	5127	#N/A	#N/A
P1M10000062H04	1211	PA4254	5170	#N/A	#N/A
P1M10000063F02	1212	PA2684	5118	#N/A	#N/A
P1M10000063G02	1213	PA4262	5175	#N/A	#N/A
P1M10000063H02	1214	PA4081	5153	#N/A	#N/A
P1M10000064A10	1215	PA4268	5178	#N/A	#N/A
P1M10000064C02	1216	PA0650	5073	#N/A	#N/A
P1M10000064C03	1217	PA5030	5203	#N/A	#N/A
P1M10000064D03	1218	PA0129	5055	#N/A	#N/A
P1M10000064E05	1219	PA4512	5191	#N/A	#N/A
P1M10000064G12	1220	PA2147	5101	#N/A	#N/A
P1M10000064H07	1221	PA1072	5080	#N/A	#N/A
P1M10000065A04	1222	PA3522	5136	#N/A	#N/A
P1M10000065B07	1223	PA4347	5184	#N/A	#N/A
P1M10000065C03	1224	PA4347	5184	#N/A	#N/A
P1M10000065C05	1225	PA0642	5072	#N/A	#N/A
P1M10000065D06	1226	PA4347	5184	#N/A	#N/A
P1M10000065F01	1227	PA2494	5111 ·	#N/A	#N/A
P1M10000065G06		PA0423	5067	#N/A	#N/A
P1M10000065H07	1229	PA1019	5079	#N/A	#N/A
P1M10000066A10	1230	PA4709	5197	#N/A	#N/A
P1M10000066A11	1231	PA2594	5113	#N/A	#N/A
P1M10000066F04	1232	PA4024	5148	#N/A	#N/A
P1M10000067A05	1233	PA3876	5144	#N/A	#N/A
P1M10000067A05	1233	PA3877	5145	#N/A	#N/A
P1M10000067A06	1234	PA0419	5066	#N/A	#N/A
P1M10000067A08	1235	PA0600	5071	#N/A	#N/A
P1M10000067C04	1236	PA3845	5142	#N/A	#N/A
P1M10000067C06	1237	PA4433	5188	#N/A	#N/A
P1M10000067D05	1238	PA3479	5134	#N/A	#N/A
P1M10000067F05	1239	PA3643	5137	#N/A	#N/A
P1M10000067G05	1240	PA5199	5207	#N/A	#N/A
PIM1000068A09	1241	PA0353	5061	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
P1MI0000068D04	1242	PA5388	5213	#N/A	#N/A
P1M10000068F04	1243	PA4237	5158	#N/A	#N/A
P1M10000068F08	1244	PA5193	5206	#N/A	#N/A
P1M10000068G01	1245	PA3716	5140	#N/A	#N/A
P1M10000068H05	1246	PA4268	5178	#N/A	#N/A
P1M10000069D09	1247	PA4246	5162	#N/A	#N/A
P1M10000069G06	1248	PA4246	5162	#N/A	#N/A
P1M10000069H02	1249	PA4433	5188	#N/A	#N/A
P1M10000070A05	1250	PA2470	5109	#N/A	#N/A
P1M10000070B10	1251	PA5393	5214	#N/A	#N/A
P1M10000070C06	1252	PA4237	5158	#N/A	#N/A
P1M10000070D08	1253	PA4105	5154	#N/A	#N/A
P1M10000070E03	1254	PA4709	5197	#N/A	#N/A
P1M10000070G06	1255	PA3374	5133	#N/A	#N/A
P1M10000070G12	1256	PA3121	5127	#N/A	#N/A
P1M10000070H06	1257	PA3374	5133	#N/A	#N/A
P1M10000071A03	1258	PA4251	5167	#N/A	#N/A
P1M10000071C01	1259	PA4251	5167	#N/A	#N/A
P1M10000071E04	1260	PA3484	5135	#N/A	#N/A
P1M10000071F01	1261	PA0506	5070	#N/A	#N/A
P1M10000073A06	1262	PA4246	5162	#N/A	#N/A
P1M10000073B10	1263	PA5248	5210	#N/A	#N/A
P1M10000073D04	1264	PA1115	5081	#N/A	#N/A
P1M10000073D09	1265	PA1918	5094	#N/A	#N/A
P1M10000073G03	1266	PA5248	5210	#N/A	#N/A
P1M10000074B01	1267	PA4771	5199	#N/A	#N/A
P1M10000074B04	1268	PA1684	5091	#N/A	#N/A
P1M10000074E04	1269	PA0120	5054	#N/A	#N/A
P1M10000074E09	1270	PA3479	5134	#N/A	#N/A
P1M10000074F10	1271	PA1019	5079	#N/A	#N/A
P1MI0000074GI2	1272	PA4244	5160	#N/A	#N/A
P1M10000074G12	1272	PA4245	5161	#N/A	#N/A
P1M10000075A04		PA3279	5131	#N/A	#N/A
P1M10000075A04	1273	PA3280	5132	#N/A	#N/A
P1M10000075B03	1274	PA4576	5193	#N/A	#N/A
P1M10000075F02	1275	PA4254	5170	#N/A	#N/A
P1M10000075G05	1276	PA3709	5139	#N/A	#N/A
P1M1000076D05	1277	PA1876	5093	#N/A	#N/A
P1M10000076D10	1278	PA1636	5090	#N/A	#N/A
P1M10000077A08	1279	PA3479	5134	#N/A	#N/A
P1M10000077C08	1280	PA1019	5079	#N/A	#N/A
P1M10000077E04	1280	PA3522	5136	#N/A	#N/A
P1M10000077H05	1281	PA4246	5162	#N/A	#N/A
P1M1000077A03	1282	PA4576	5193		
P1M10000079B10	1283	PA4576	<u> </u>	#N/A	#N/A
		L	5193	#N/A	#N/A
P1M10000079C10	1285	PA4576	5193	#N/A	#N/A
P1M10000079D01	1286	PA1547	5089	#N/A	#N/A
P1M10000079D10	1287	PA5490	5217	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
PIM10000079F06	1288	PA3006	5121	#N/A	#N/A
P1M10000080B01	1289	PA3866	5143	#N/A	#N/A
P1M10000080B06	1290	PA4244	5160	#N/A	#N/A
P1M10000080B06	1290	PA4245	5161	#N/A	#N/A
P1M10000080C01	1291	PA0469	5068	#N/A	#N/A
P1M10000080C06	1292	PA4250	5166	#N/A	#N/A
P1M10000080E04	1293	PA4250	5166	#N/A	#N/A
P1M10000081D12	1294	PA3006	5121	#N/A	#N/A
P1M10000081G05	1295	PA4037	5150	#N/A	#N/A
P1M10000081H05	1296	PA4316	5182	#N/A	#N/A
P1M10000082A05	1297	PA0401	5063	#N/A	#N/A
P1M10000082B04	1298	PA3006	5121	#N/A	#N/A
PIM1000082C05	1299	PA4246	5162	#N/A	#N/A
PIM10000082D05	1300	PA4256	5171	#N/A	#N/A
PIM10000082E05	1301	PA4246	5162	#N/A	#N/A
PIM10000083A11	1302	PA3006	5121	#N/A	#N/A
PIM10000083B01	1303	PA4271	5180	#N/A	#N/A
P1M10000083B12	1304	PA4268	5178	#N/A	#N/A
PIM10000083C11	1305	PA4242	5159	#N/A	#N/A
PIM10000083C12	1306	PA3006	5121	#N/A	#N/A
P1M10000084A04	1307	PA4942	5201	#N/A	#N/A
PIM10000084D03	1308	PA3006	5121	#N/A	#N/A
P1M10000084E04	1309	PA5493	5218	#N/A	#N/A
P1M10000084E11	1310	PA2196	5102	#N/A	#N/A
P1M10000084F08	1311	PA4271	5180	#N/A	#N/A
P1M10000085D06	1312	PA3006	5121	#N/A	#N/A
P1M10000086A02	1313	PA4413	5187	#N/A	#N/A
P1M10000086B01	1314	PA4158	5157	#N/A	#N/A
P1M10000086D02	1315	PA2641	5115	#N/A	#N/A
PIM10000086E05	1316	PA3006	5121	#N/A	#N/A
PIM10000087A11	1317	PA4268	5178	#N/A	#N/A
PIM10000087C09	1318	PA2083	5097	#N/A	#N/A
P1M10000087E04		PA4246	5162	#N/A	#N/A
PIM10000087E04	1320	PA0141	5056	#N/A	#N/A
PIM10000087F09	1321	PA4124	5155	#N/A	#N/A
PIM10000087F09	1321	PA4125	5156	#N/A	#N/A
P1M10000087109	1321	PA2742	5120	#N/A	#N/A
PIM10000088A07	1323	PA2108	5099	#N/A #N/A	#N/A #N/A
P1M10000088D06	1323	PA3048	5125	#N/A #N/A	#N/A
P1M1000089C08	1324	PA4268	5178	#N/A #N/A	#N/A
P1M10000089D11	1325	PA2461	1		
P1M10000089G08	1326	PA3153	5108	#N/A	#N/A
		I	5128	#N/A	#N/A
P1M10000090F06	1328	PA2313	5105	#N/A	#N/A
P1M10000090F08	1329	PA4258	5173	#N/A	#N/A
P1M10000090F08	1329	PA4259	5174	#N/A	#N/A
P1M10000091D02	1330	PA3866	5143	#N/A	#N/A
P1M10000091E09	1331	PA5316	5212	#N/A	#N/A
PIM10000091G10	1332	PA2742	5120	#N/A	#N/A

Clone name	Cione SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
PIM10000092B02	1333	PA2641	5115	#N/A	#N/A
P1M10000092B10	1334	PA4268	5178	#N/A	#N/A
P1M10000092D09	1335	PA2128	5100	#N/A	#N/A
P1M10000092E02	1336	PA4256	5171	#N/A	#N/A
P1M10000092F05	1337	PA0423	5067	#N/A	#N/A
P1M10000093A03	1338	PA5088	5205	#N/A	#N/A
P1M10000093B09	1339	PA3703	5138	#N/A	#N/A
P1M10000093C08	1340	PA1868	5092	#N/A	#N/A
P1M10000093E09	1341	PA4332	5183	#N/A	#N/A
P1M10000093F03	1342	PA2101	5098	#N/A	#N/A
PIM10000093H07	1343	PA4665	5195	#N/A	#N/A
P1M10000094F04	1344	PA4268	5178	#N/A	#N/A
P1M10000094H03	1345	PA4744	5198	#N/A	#N/A
P1M10000095C01	1346	PA2488	5110	#N/A	#N/A
P1M10000095C09	1347	PA5443	5216	#N/A	#N/A
P1M10000095E04	1348	PA4363	5185	#Ñ/A	#N/A
P1M10000095G04	1349	PA4256	5171	#N/A	#N/A
P1M10000096E04	1350	PA0353	5061	#N/A	#N/A
P1M10000096E12	1351	PA4246	5162	#N/A	#N/A
S1M10000001A05	1354	SAU103232	5769	SAU1c0045_orf_341p	12697
S1M10000001A05	1354	SAU201508	5819	SAU2c0432 orf 19p	12947
S1M10000001A08	1355	SAU102437	5670	SAU1c0045 orf 33p	12695
S1M10000001A09	1356	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000001A10	1357	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000001C06	1358	SAU102939	5747	#N/A	#N/A
S1M10000001D01	1359	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000001D02	1360	SAU100527	5285	SAU1c0037_orf_101p	12341
S1M10000001D02	1360	SAU100880	5346	SAU1c0037 orf 100p	12340
S1M10000001D06	1361	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000001D07	1362	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000001E02	1363	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000001E04	1364	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000001E04	1	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000001E05	1365	SAU102939	5747	#N/A	#N/A
S1M10000001E09	1366	SAU201752	5832	SAU2c0436_orf_19p	12963
S1M10000001E10	1367	SAU103038	5757	#N/A	#N/A
S1M10000001E11	_!	SAU302513	5906	SAU3c1298_orf_lp	13085
S1M10000001E11	_!	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000001F04		SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000001F08	1371	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000001F09	1372	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM10000001F10	1373	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000001F11	1374	SAU102939	5747	#N/A	#N/A
S1M10000001G01	1375	SAU102939	5747	#N/A	#N/A
S1M10000001G07	1376	SAU102939	5747	#N/A	#N/A
S1M10000001G07	1377	SAU102939	5747	#N/A	#N/A
S1M10000001G08	1378	SAU100300	5253	SAU1c0040 orf 90p	12451
S1M10000001G10	1378	SAU102631	5721	SAU1c0045_orf_94p	12431

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000002A09	1380	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000002A10	1381	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000002A10	1381	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002A10	1381	SAU301148	5888	#N/A	#N/A
S1M10000002A12	1382	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000002A12	1382	SAU300455	5872	#N/A	#N/A
S1M10000002A12	1382	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000002B01	1383	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000002B03	1384	SAU101034	5371	SAUIc0044_orf_27p	12608
S1M10000002B04	1385	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002B05	1386	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000002B06	1387	SAU100157	5237	SAU1c0040 orf 81p	12444
S1M10000002B07	1388	SAU101389	5441	SAU1c0038 orf 54p	12387
S1M10000002B09	1389	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000002B09	1389	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002B09	1389	SAU301148	5888	#N/A	#N/A
S1M10000002B11	1390	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000002C02	1391	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000002C02	1391	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002C02	1391	SAU301148	5888	#N/A	#N/A
S1M10000002C09	1392	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000002C10	1393	SAU103077	5759	SAU1c0039 orf 44p	12408
S1M10000002C11	1394	SAU202267	5848	SAU2c0204 orf 2p	12727
S1M10000002C11	1394	SAU202781	5853	SAU2c0109_orf_2p	12718
S1M10000002C11	1394	SAU203001	5859	SAU2c0412 orf 15p	12894
S1M10000002C11	1394	SAU302698	5909	SAU3c1408_orf_2p	13114
S1M10000002C11	1394	SAU302699	5910	SAU3c1408_orf_3p	13115
S1M10000002C12	1395	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000002D01	1396	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002D02	1397	SAU100741	5318	SAU1c0039_orf_48p	12409.
S1M10000002D03	1398	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000002D05	1399	SAU202930	5856	SAU2c0396_orf_3p	12871
S1M10000002D07	1400	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000002D07	1400	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000002D08	1401	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000002D10	1402	SAU102939	5747	#N/A	#N/A
S1M10000002D12	1403	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000002E01	1404	SAU101616	5495	SAU1c0040_orf_32p	12432
S1M10000002E02	1405	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000002E07	1406	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000002E07	1406	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000002E07	1406	SAU301148	5888	#N/A	#N/A
S1M10000002E09	1407	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000002E11	1408	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000002E12	1409	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000002F01	1410	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000002F02	1411	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000002F04	1412	SAU102939	5747	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000002F09	1413	SAU302513	5906	SAU3c1298_orf_1p	13085
S1M10000002F12	1414	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002G01	1415	SAU102939	5747	#N/A	#N/A
S1M10000002G03	1416	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000002G05	1417	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002G06	1418	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000002G07	1419	SAU103038	5757	#N/A	#N/A
S1M10000002G08	1420	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000002G09	1421	SAU102939	5747	#N/A	#N/A
S1M10000002G10	1422	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000002G11	1423	SAU102939	5747	#N/A	#N/A
S1M10000002G12	1424	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003A01	1425	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000003A01	1425	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000003A01	1425	SAU301148	5888	#N/A	#N/A
S1M10000003A02	1426	SAU101624	5497	SAU1c0040_orf_25p	12429
S1M10000003A03	1427	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000003A04	1428	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000003A06	1429	SAU101266	5408	SAU1c0042_orf_117p	12490
S1M10000003A07	1430	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003A08	1431	SAU102939	5747	#N/A	#N/A
S1M10000003A10	1432	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000003A11	1433	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000003B06	1434	SAU102007	5590	SAU1c0040 orf 108p	12428
S1M10000003B08	1435	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000003B09	1436	SAU100771	5325	SAU1c0043_orf_49p	12545
S1M10000003B12	1437	SAU302060	5905	SAU3c0879_orf_lp	13042
S1M10000003C06	1438	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000003C07	1439	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000003C10	1440	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000003C12	1441	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000003D05	1442	SAU102939	5747	#N/A	#N/A
S1M10000003D06	1443	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000003D08	1444	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000003D10	1445	SAU102422	5666	SAU1c0030_orf_22p	12207
S1M10000003E07	1446	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000003E09	1447	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003E10	1448	SAU101674	5508	SAU1c0044 orf 226p	12594
SIM10000003E11	1449	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003F02	1450	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000003F05	1451	SAU101092	5381	SAU1c0028 orf 9p	12192
S1M10000003F06	1452	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000003F07	1453	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000003F08	1454	SAU102939	5747	#N/A	#N/A
S1M10000003F12	1455	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000003G03	1456	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000003G04	1457	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000003G04	1457	SAU202174	5845	SAU2c0412 orf 3p	12895

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000003G04	1457	SAU301148	5888	#N/A	#N/A
S1M10000003G08	1458	SAU102939	5747	#N/A	#N/A
S1M10000003G10	1459	SAU102939	5747	#N/A	#N/A
S1M10000004A04	1460	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000004A06	1461	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000004A07	1462	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000004A11	1463	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000004A12	1464	SAU102132	5605	SAU1c0027_orf_19p	12177
SIM1000004B03	1465	SAU102610	5714	SAU1c0041_orf_53p	12474
SIM1000004B04	1466	SAU102059	5597	SAU1c0034 orf 51p	12286
SIM10000004B06	1467	SAU102939	5747	#N/A	#N/A
S1M10000004B08	1468	SAU100272	5251	SAU1c0018_orf_7p	12141
S1M10000004B09	1469	SAU101476	5459	SAU1c0032 orf 69p	12254
S1M10000004B11	1470	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000004C01	1471	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000004C02	1472	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M1000004C02	1472	SAU202174	5845	SAU2c0412 orf 3p	12895
SIM10000004C02	1472	SAU301148	5888	#N/A	#N/A
SIM1000004C03	1473	SAU102939	5747	#N/A	#N/A
S1M10000004C06	1474	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000004C07	1475	SAU102939	5747	#N/A	#N/A
S1M10000004C08	1476	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000004C08	1476	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000004C09	1477	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004C09	1477	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004C09	1477	SAU301148	5888	#N/A	#N/A
SIM1000004C10	1478	SAU101271	5411	SAU1c0037_orf_90p	12366
SIM1000004C10	1478	SAU101286	5413	SAU1c0034_orf_67p	12292
S1M10000004C10	1478	SAU302931	5913	SAU3c1507_orf_10p	13155
S1M10000004C12	1479	SAU102007	5590	SAU1c0040_orf_108p	12428
SIM10000004D01	1480	SAU101301	5416	SAU1c0044_orf_114p	12558
S1M10000004D01	1480	SAU101302	5417	SAU1c0044_orf_115p	12559
S1M10000004D03	1481	SAU102390	5657	SAU1c0033_orf_38p	12269
SIM10000004D03	1481	SAU201333	5810	SAU2c0418_orf_8p	12905
SIM10000004D04	1482	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000004D04	1482	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000004D06	1483	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000004D07	1484	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004D07	1484	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004D07	1484	SAU301148	5888	#N/A	#N/A
S1M10000004D08	1485	SAU100414	5270	SAU1c0022_orf_24p	12148
SIM10000004D10	1486	SAU101365	5432	SAU1c0044_orf_112p	12556
SIM10000004D12	1487	SAU101545	5474	SAU1c0037_orf_132p	12348
SIM10000004D12	1487	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000004E03	1488	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000004E04	1489	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000004E06	1490	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000004E07	1491	SAU101476	5459	SAU1c0032_orf_69p	12254

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000004E11	1492	SAU102939	5747	#N/A	#N/A
S1M10000004E12	1493	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000004F01	1494	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000004F02	1495	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000004F06	1496	SAU201611	5825	SAU2c0440_orf_14p	12973
S1M10000004F07	1497	SAU102764	5734	SAU1c0044_orf_56p	12625
S1M10000004F08	1498	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000004F08	1498	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000004F09	1499	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000004F09	1499	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000004F09	1499	SAU301148	5888	#N/A	#N/A
S1M10000004F12	1500	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000004G01	1501	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M1000004G01	1501	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M1000004G01	1501	SAU301148	5888	#N/A	#N/A
S1M1000004G02	1502	SAU102939	5747	#N/A	#N/A
S1M10000004G03	1503	SAU102449	5674	SAU1c0045 orf 22p	12677
S1M10000004G05	1504	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000004G06	1505	SAU102939	5747	#N/A	#N/A
S1M1000004G07	1506	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000004G07	1506	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000004G09	1507	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000004G12	1508	SAU100497	5280	SAU1c0018_orf_3p	12140
S1M10000005A01	1509	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005A01	1509	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005A01	1509	SAU301148	5888	#N/A	#N/A
S1M10000005A03	1510	SAU101090	5380	SAU1c0028_orf_8p	12191
S1M10000005A05	1511	SAU102939	5747	#N/A	#N/A
S1M10000005A06	1512	SAU102939	5747	#N/A	#N/A
S1M10000005A07	1513	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000005A08	1514	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000005A08	1514	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000005A08	1514	SAU301148	5888	#N/A	#N/A
S1M10000005A09	1515	SAU103038	5757	#N/A	#N/A
S1M10000005A10	1516	SAU101239	5402	SAU1c0044_orf_15p	12570
S1M10000005A10	1516	SAU101240	5403	SAU1c0044_orf_16p	12573
S1M10000005A11	1	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000005B02		SAU102527	5693	SAU1c0032 orf 9p	12260
S1M10000005B04	1519	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000005B07	1520	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005B07	1520	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000005B07	1520	SAU301148	5888	#N/A	#N/A
SIM10000005B08	1521	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000005B09	1522	SAU102422	5666	SAU1c0030_orf_22p	12207
S1M10000005B12	1523	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000005B12	1523	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000005C01	1524	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000005C01	1524	SAU202174	5845	SAU2c0412_orf_3p	12895

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000005C01	1524	SAU301148	5888	#N/A	#N/A
S1M10000005C05	1525	SAU101869	5566	SAU1c0036 orf 24p	12321
S1M10000005C06	1526	SAU100885	5348	SAU1c0038 orf 38p	12376
S1M10000005C09	1527	SAU302513	5906	SAU3c1298_orf_lp	13085
S1M10000005C11	1528	SAU101495	5467	SAU1c0037 orf 65p	12360
S1M10000005D01	1529	SAU103038	5757	#N/A	#N/A
S1M10000005D02	1530	SAU102007	5590	SAU1c0040 orf 108p	12428
S1M10000005D03	1531	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000005D04	1532	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000005D04	1532	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000005D05	1533	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000005D06	1534	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000005D06	1534	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000005D07	1535	SAU101869	5566	SAU1c0036 orf 24p	12321
S1M10000005D08	1536	SAU101624	5497	SAU1c0040 orf 25p	12429
S1M10000005D09	1537	SAU101752	5522	SAU1c0040 orf 85p	12447
SIM10000005D11	1538	SAU100158	5238	SAU1c0040_orf_80p	12443
SIM10000005D12	1539	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000005E01	1540	SAU100542	5288	SAU1c0043_orf_210p	12532
S1M10000005E02	1541	SAU102631	5721	SAU1c0045 orf 94p	12712
S1M10000005E05	1542	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000005E05	1542	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000005E05	1542	SAU301148	5888	#N/A	#N/A
S1M10000005E06	1543	SAU102939	5747	#N/A	#N/A
S1M10000005E07	1544	SAU102939	5747	#N/A	#N/A
S1M10000005E08	1545	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000005E08	1545	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000005E08	1545	SAU301148	5888	#N/A	#N/A
S1M10000005E10	1546	SAU102939	5747	#N/A	#N/A
S1M10000005E11	1547	SAU100381	5265	SAU1c0033_orf_9p	12276
S1M10000005E12	1548	SAU102939	5747	#N/A	#N/A
S1M10000005F02	1549	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000005F02	1549	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000005F03	1550	SAU100793	5329	SAU1c0028 orf 52p	12188
SIM10000005F03	1550	SAU301433	5895	SAU3c1420 orf 2p	13118
S1M10000005F04	1551	SAU102044	5593	SAU1c0039 orf 65p	12414
S1M10000005F04	1551	SAU102046	5594	SAU1c0039_orf_66p	12415
S1M10000005F04	1551	SAU201961	5840	#N/A	#N/A
S1M10000006A03	1552	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006A03	1552	SAU202174	5845	SAU2c0412 orf 3p	12895
SIM10000006A03	1552	SAU301148	5888	#N/A	#N/A
S1M10000006A04	1553	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000006A05	1554	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000006A05	1554	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000006A07	1555	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000006A08	1556	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006A08	1556	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M1000000A08	1556	SAU301148	5888	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000006A10	1557	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006A10	1557	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006A10	1557	SAU301148	5888	#N/A	#N/A
S1M10000006A12	1558	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000006B02	1559	SAU100741	5318	SAU1c0039_orf_48p	12409
S1M10000006B03	1560	SAU102631	5721	SAU1c0045_orf_94p	12712
S1M10000006B04	1561	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006B04	1561	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006B04	1561	SAU301148	5888	#N/A	#N/A
S1M10000006B07	1562	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000006B10	1563	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000006B11	1564	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000006C02	1565	SAU102939	5747	#N/A	#N/A
S1M10000006C04	1566	SAU102287	5637	SAU1c0038_orf_7p	12398
S1M10000006C06	1567	SAU102486	5687	SAU1c0039_orf_93p	12420
S1M10000006C06	1567	SAU102487	5688	SAU1c0039_orf_92p	12419
SIM10000006C07	1568	SAU100157	5237	SAU1c0040 orf 81p	12444
S1M10000006C08	1569	SAU102939	5747	#N/A	#Ñ/A
S1M10000006C10	1570	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006C10	1570	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006C10	1570	SAU301148	5888	#N/A	#N/A
S1M10000006D03	1571	SAU100608	5297	SAU1c0034 orf 69p	12293
S1M10000006D05	1572	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000006D05	1572	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006D05	1572	SAU301148	5888	#N/A	#N/A
S1M10000006D06	1573	SAU201810	5836	SAU2c0308_orf_2p	12769
SIM10000006D06	1573	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006D06	1573	SAU301148	5888	#N/A	#N/A
S1M10000006D07	1574	SAU102936	5746	SAU1c0037_orf_57p	12356
S1M10000006D08	1575	SAU102939	5747	#N/A	#N/A
S1M10000006E02	1576	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000006E02	1576	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000006E02	1576	SAU301148	5888	#N/A	#N/A
S1M1000006E03	1577	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000006E04	1578	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000006E07	1579	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000006E07	1579	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000006E07	1579	SAU301148	5888	#N/A	#N/A
S1M10000006E08	1580	SAU101793	5534	SAU1c0032 orf 14p	12218
S1M10000006F01	1581	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000006F02	1582	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000006F03	1583	SAU102294	5639	SAU1c0044_orf_288p	12610
S1M10000006F03	1583	SAU301080	5885	SAU3c1287_orf_lp	13083
S1M10000006F04	1584	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000006F06	1585	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000006G02	1586	SAU101833	5555	SAU1c0038_orf_34p	12373
S1M10000006G03	1587	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000006G05	1588	SAU100275	5252	SAU1c0036 orf 15p	12314

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M1000006G06	1589	SAU201571	5824	SAU2c0447_orf_17p	12997
SIM10000006G07	1590	SAU101612	5493	SAU1c0044_orf_7p	12637
S1M10000006G07	1590	SAU202945	5857	SAU2c0394_orf_7p	12868
S1M10000006G09	1591	SAU102939	5747	#N/A	#N/A
S1M10000006G10	1592	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000006G11	1593	SAU101438	5450	SAU1c0038_orf_40p	12379
S1M10000007A02	1594	SAU102939	5747	#N/A	#N/A
S1M10000007A03	1595	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000007B02	1596	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000007B02	1596	SAU202872	5854	SAU2c0393 orf 6p	12866
SIM10000007B11	1597	SAU101476	5459	SAU1c0032_orf_69p	12254
S1M10000007C02	1598	SAU102939	5747	#N/A	#N/A
S1M10000007C04	1599	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000007C05	1600	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000007C06	1601	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000007C07	1602	SAU101266	5408	SAU1c0042 orf 117p	12490
S1M10000007C08	1603	SAU101717	5513	SAU1c0016_orf_16p	12131
S1M10000007C09	1604	SAU102939	5747	#N/A	#N/A
S1M10000007D03	1605	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000007D03	1605	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000007D03	1605	SAU301148	5888	#N/A	#N/A
S1M10000007D06	1606	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000007D08	1607	SAU102939	5747	#N/A	#N/A
S1M10000007D10	1608	SAU100300	5253	SAU1c0040 orf 90p	12451
S1M10000007D11	1609	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000007E04	1610	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000007E04	1610	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000007E04	1610	SAU301148	5888	#N/A	#N/A
S1M10000007E06	1611	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000007E07	1612	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000007F01	1613	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000007F02	1614	SAU101685	5512	SAU1c0023_orf_11p	12152
S1M10000007F04	1615	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000007F08	1616	SAU100794	5330	SAU1c0028_orf_53p	12189
S1M10000007F09	1617	SAU202930	5856	SAU2c0396_orf_3p	12871
S1M10000007F10	1618	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000007F11	1619	SAU102939	5747	#N/A	#N/A
S1M10000007F12	1620	SAU102939	5747	#N/A	#N/A
S1M10000007G02	1621	SAU101270	5410	SAU1c0037_orf_89p	12365
S1M10000007G03	1622	SAU100952	5358	SAU1c0043 orf 182p	12523
S1M1000007G05	1623	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M1000007G07	1624	SAU102652	5725	SAUIc0045_orf_115p	12653
S1M1000007G08	1625	SAU103038	5757	#N/A	#N/A
S1M10000008A03	1626	SAU101476	5459	SAU1c0032_orf_69p	12254
S1M10000008A04	1627	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000008A05	1628	SAU102939	5747	#N/A	#N/A
S1M10000008A08	1629	SAU102905	5742	SAU1c0033_orf_45p	12273
S1M10000008A08	1629	SAU301869	5903	SAU3c1353 orf 1p	13093

1631 1632 1633 1633 1634	SAU100741 SAU100608 SAU103144 SAU201810 SAU202174 SAU301148	5318 5297 5761 5836	SAU1c0039_orf_48p SAU1c0034_orf_69p SAU1c0045_orf_15p	12409 12293
1632 1633 1633 1634	SAU103144 SAU201810 SAU202174	5761 5836		
1633 1633 1634	SAU201810 SAU202174	5836	SAU1c0045_orf_15p	
1633 1634	SAU202174			12663
1633 1634		5015	SAU2c0308_orf_2p	12769
1634	SAU301148	5845	SAU2c0412_orf_3p	12895
		5888	#N/A	#N/A
1635	SAU101806	5546	SAU1c0032_orf_25p	12230
1033	SAU101652	5503	SAU1c0042_orf_123p	12492
1636	SAU102117	5603	SAU1c0027_orf_6p	12181
1637	SAU100608	5297	SAU1c0034 orf 69p	12293
1638	SAU102939	5747	#N/A	#N/A
1639	SAU102939	5747	#N/A	#N/A
1640	SAU102939	5747	#N/A	#N/A
1641	SAU201571	5824	SAU2c0447 orf 17p	12997
1642	SAU101793	5534		12218
1643	SAU100414	5270		12148
1644	SAU103038	5757	#N/A	#N/A
1645	SAU101545	5474	SAU1c0037 orf 132p	12348
		L		12442
				12619
1648	SAU101360			12555
		l		12389
				12967
				12428
1651	SAU101028			12552
				12409
	1			12556
1654	SAU201810	5836		12769
1654	SAU202174	5845		12895
1654	SAU301148	5888	#N/A	#N/A
1655	SAU100300	5253	SAU1c0040 orf 90p	12451
1656	SAU301620	5899		13140
1657	SAU201167	5803		12887
		5500	1	12201
		5738	,	12170
				12331
				12536
				12275
		·		12388
_				12390
			, – – -	12997
				12388
	1		,	12535
				12946
				12331
				12946
	l I			12181
				12447
	1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1654 1655 1656 1657 1658 1660 1661 1662 1663 1663 1663 1664 1665 1666 1667	1637 SAU100608 1638 SAU102939 1639 SAU102939 1640 SAU102939 1641 SAU201571 1642 SAU101793 1643 SAU100414 1644 SAU103038 1645 SAU101545 1646 SAU101907 1647 SAU101343 1648 SAU101360 1649 SAU102284 1649 SAU201469 1650 SAU102007 1651 SAU101028 1652 SAU100741 1653 SAU101365 1654 SAU20174 1654 SAU201810 1655 SAU100300 1656 SAU301620 1657 SAU201167 1658 SAU101371 1660 SAU102979 1661 SAU100658 1663 SAU100658 1664 SAU201571 1665 SAU201506 1667 SAU201506 1668 SAU101159 1666 SAU100114 1667 SAU201506 1668 SAU101159 1668 SAU10159 1669 SAU201506 1669 SAU201506 1670 SAU102117	1637 SAU100608 5297 1638 SAU102939 5747 1639 SAU102939 5747 1640 SAU102939 5747 1641 SAU201571 5824 1642 SAU101793 5534 1643 SAU100414 5270 1644 SAU103038 5757 1645 SAU101545 5474 1646 SAU101907 5574 1647 SAU101343 5425 1648 SAU101360 5431 1649 SAU102284 5635 1649 SAU102007 5590 1651 SAU102007 5590 1651 SAU101028 5370 1652 SAU100741 5318 1653 SAU101365 5432 1654 SAU201810 5836 1655 SAU301148 5888 1655 SAU301620 5899 1657 SAU201167 5803 1658 SAU100371	1637 SAU100608 5297 SAU1c0034_orf_69p 1638 SAU102939 5747 #NVA 1649 SAU102939 5747 #NVA 1640 SAU102939 5747 #NVA 1641 SAU102939 5747 #NVA 1641 SAU101793 5534 SAU1c0032_orf_14p 1642 SAU10038 5757 \$AU1c0022_orf_24p 1644 SAU103038 5757 #NVA 1645 SAU101545 5474 SAU1c0037_orf_132p 1646 SAU101907 5574 SAU1c0040_orf_79p 1647 SAU101343 5425 SAU1c0044_orf_40p 1648 SAU101360 5431 SAU1c0044_orf_109p 1649 SAU102284 5635 SAU1c0038_orf_5p 1649 SAU102007 5590 SAU1c0044_orf_108p 1651 SAU10028 5370 SAU1c0049_orf_108p 1652 SAU100128 5370 SAU1c0049_orf_48p 1653 SAU1001365 5432 SAU1c0044_orf_1

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000009B06	1672	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000009B07	1673	SAU201952	5839	SAU2c0457_orf_10p	13020
S1M10000009B10	1674	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000009B10	1674	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000009B11	1675	SAU301898	5904	SAU3c1079_orf_1p	13057
S1M10000009B12	1676	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000009C01	1677 .	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M1000009C01	1677	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000009C02	1678	SAU102418	5664	SAUIc0030_orf_18p	12205
S1M10000009C05	1679	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M1000009C06	1680	SAU102613	5715	SAU1c0041_orf_55p	12475
S1M10000009C07	1681	SAU102460	5678	SAU1c0026_orf_18p	12171
S1M10000009C08	1682	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M1000009C09	1683	SAU102129	5604	SAU1c0027_orf_17p	12176
S1M10000009C10	1684	SAU102336	5646	SAU1c0045_orf_146p	12659
S1M10000009C11	1685	SAU102340	5647	SAU1c0045_orf_149p	12660
S1M10000009D01	1686	SAU102262	5627	SAU1c0032_orf_58p	12248
S1M10000009D02	1687	SAU100355	5263	SAU1c0023_orf_6p	12155
S1M10000009D03	1688	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000009D04	1689	SAU102979	5750	SAU1c0043_orf_227p	12536
S1M10000009D05	1690	SAU100799	5331	SAU1c0045_orf_243p	12682
S1M10000009D07	1691	SAU200994	5802	SAU2c0428 orf 4p	12935
S1M10000009D09	1692	SAU101681	5510	SAU1c0044_orf_220p	12592
S1M10000009D09	1692	SAU101682	5511	SAU1c0044_orf_219p	12591
S1M10000009D11	1693	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000009D11	1693	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000009D11	1693	SAU301620	5899	SAU3c1478 orf 2p	13140
S1M10000009E02	1694	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000009E02	1694	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000009E06	1695	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000009E08	1696	SAU201539	5821	SAU2c0431_orf_15p	12943
S1M10000009E09	1697	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000009E11	1698	SAU101801	5541	#N/A	#N/A
S1M10000009E12	1699	SAU101572	5484	SAU1c0044 orf 211p	12586
S1M10000009F01	1700	SAU101452	5455	SAU1c0045 orf 247p	12684
S1M10000009F02	1701	SAU101818	5553	SAU1c0038 orf 20p	12369
S1M10000009F03	1702	SAU101488	5463	SAU1c0025_orf_18p	12164
S1M10000009F05	1703	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000009F06	1704	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000009F07	1705	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000009F07	1705	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000009F09	1706	SAU202176	5846	SAU2c0412_orf_3p	12895
S1M10000009F09	1706	SAU302805	5911	SAU3c1458_orf_lp	13133
S1M10000009F10	1707	SAU102392	5658	SAU1c0033_orf_40p	12270
S1M10000009F10	1707	SAU201541	5822	SAU2c0431 orf 14p	12942
S1M1000009G02	1708	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M1000009G02	1708	SAU101573	5485	SAU1c0044_orf_212p	12587
	ı	1	1	,	1

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000009G05	1710	SAU101752	5522	SAU1c0040 orf 85p	1D 12447
S1M1000009G06	1711	SAU102909	5743	SAU1c0036 orf 16p	12315
S1M10000009G07	1712	SAU200468	5781	SAU2c0429 orf 19p	12937
S1M1000009G09	1713	SAU102693	5731	SAU1c0044_orf_58p	12627
S1M10000009G10	1714	SAU100646	5302	SAU1c0025_orf_5p	12168
S1M1000009G10	1715	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M1000009H01	1716	SAU201506	5818	SAU2c0432_orf_18p	12946
S1M10000009H02	1717	SAU102658	5726	SAU1c0045 orf 121p	12654
S1M10000009H02	1718	SAU201654	5829	SAU2c0442 orf 12p	12034
S1M10000009H05	1719	SAU100582	5292	SAU1c0042 orf 21p	12503
S1M10000009H05	1719	SAU102165	5610	SAU1c0042_off_21p	
S1M10000009H05	1719	SAU201929	5838	SAU1c0041_orf_19p	12460
S1M10000009H03	1719	SAU102297	<u> </u>		13008
S1M10000009H07	1720	SAU200928	5640	SAU1c0045_orf_41p	12704
		1	5798	SAU2c0365_orf_5p	12815
S1M10000009H11 S1M10000011A02	1722	SAU101801	5541	#N/A	#N/A
	1723	SAU100414	5270	SAU1c0022_orf_24p	12148
SIM10000011A03	1724	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000011A04	1725	SAU101791	5532	SAU1c0032_orf_12p	12216
SIM10000011A06	1726	SAU101574	5486	SAU1c0044_orf_213p	12588
SIM10000011A06	1726	SAU101575	5487	SAU1c0044_orf_214p	12589
S1M10000011B01	1727	SAU102881	5740	SAU1c0032_orf_4p	12242
S1M10000011B02	1728	SAU101541	5472	SAU1c0037_orf_128p	12344
S1M10000011B03	1729	SAU101849	5559	SAU1c0044_orf_148p	12567
S1M10000011B04	1730	SAU101574	5486	SAU1c0044_orf_213p	12588
S1M10000011B04	1730	SAU101575	5487	SAU1c0044_orf_214p	12589
S1M10000011B05	1731	SAU200934	5799	SAU2c0375_orf_9p	12842
S1M10000011C01	1732	SAU101447	5454	SAU1c0045_orf_244p	12683
S1M10000011C05	1733	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000011C05	1733	SAU202756	5852	SAU2c0470_orf_1p	13027
S1M10000011C06	1734	SAU102350	5649	SAU1c0040_orf_36p	12433
SIM10000011D01	1735	SAU101293	5414	SAU1c0044_orf_61p	12631
SIM10000011D02	1736	SAU100414	5270	SAU1c0022_orf_24p	12148
SIM10000011D04	1737	SAU102280	5632	SAU1c0038_orf_3p	12378
S1M10000011D06	1738	SAU102942	5748	SAU1c0035_orf_103p	12296
S1M10000011E02	1739	SAU101966	5580	SAU1c0028_orf_41p	12186
S1M10000011E03	1740	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000011E04	1741	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000011F01	1742	SAU101365	5432	SAU1c0044 orf 112p	12556
SIM10000011F03	1743	SAU102350	5649	SAUIc0040 orf 36p	12433
S1M10000011F04	1744	SAU101155	5385	SAU1c0036_orf_llp	12310
SIM10000011F06	1745	SAU101481	5460	SAU1c0015 orf 9p	12130
S1M10000011F06	1	SAU101482	5461	SAU1c0015_orf_10p	12123
S1M10000011G01)	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000011G03		SAU302626	5907	SAU3c1367_orf_3p	13105
S1M10000011G04		SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000011G04	:	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000011G05	1 '	SAU102298	5641	SAU1c0045 orf 42p	12705
S1M10000011G08	1751	SAU201558	5823	SAU2c0434 orf 5p	12703

Clone name	Clone SeqID	PathoSeq Locus	Gene SegID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000011H03	1752	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000011H03	1752	SAU202756	5852	SAU2c0470 orf 1p	13027
S1M10000011H04	1753	SAU200934	5799	SAU2c0375_orf_9p	12842
S1M10000012A02	1754	SAU102533	5695	#N/A	#N/A
S1M10000012A02	1754	SAU102534	5696	#N/A	#N/A
SIM10000012A06	1755	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000012A08	1756	SAU101630	5498	SAU1c0039 orf 4p	12410
S1M10000012A08	1756	SAU300156	5867	SAU3c0609 orf 2p	13036
SIM10000012A09	1757	SAU102356	5652	SAU1c0040_orf_41p	12436
S1M10000012A10	1758	SAU101266	5408	SAU1c0042_orf_117p	12490
S1M10000012A11	1759	SAU100390	5267	#N/A	#N/A
SIM10000012A11	1759	SAU200028	5771	SAU2c0145 orf lp	12721
S1M10000012B01	1760	SAU100751	5321	SAU1c0036_orf_59p	12335
S1M10000012B05	1761	SAU101573	5485	SAU1c0044 orf 212p	12587
S1M10000012B06	1762	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000012B07	1763	SAU101814	5551	SAU1c0032 orf 32p	12237
S1M10000012B07	1763	SAU101815	5552	SAU1c0032_orf_33p	12238
SIM10000012B11	1764	SAU102551	5698	SAU1c0045 orf 206p	12672
SIM10000012C01	1765	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000012C03	1766	SAU100776	5327	SAU1c0041_orf_72p	12482
SIM10000012C04	1767	SAU100776	5327	SAU1c0041_orf_72p	12482
SIM10000012C05	1768	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000012C06	1769	SAU101570	5482	SAU1c0044_orf_209p	12584
SIM10000012C06	1769	SAU101571	5483	SAU1c0044 orf 210p	12585
S1M10000012C11	1770	SAU100547	5290	SAU1c0032 orf 3p	12240
S1M10000012C11	1770	SAU102881	5740	SAU1c0032 orf 4p	12242
S1M10000012C12	1771	SAU101781	5528	SAU1c0037_orf_43p	12353
S1M10000012D04	1772	SAU201952	5839	SAU2c0457_orf_10p	13020
S1M10000012D06	1773	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000012D07	1774	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000012D08	1775	SAU101652	5503	SAU1c0042 orf 123p	12492
SIM10000012D09	1776	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000012D12	1777	SAU102620	5718	SAU1c0041 orf 62p	12479
S1M10000012D12	1777	SAU102621	5719	SAU1c0041_orf_63p	12480
S1M10000012D12	1777	SAU202006	5842	SAU2c0456_orf_20p	13018
S1M10000012E01	1778	SAU100733	5314	SAU1c0044_orf_254p	12602
S1M10000012E01	1778	SAU100734	5315	SAU1c0044_orf_255p	12603
SIM10000012E02	1779	SAU102485	5686	SAU1c0039 orf 95p	12421
S1M10000012E04	1780	SAU201486	5817	SAU2c0457_orf_34p	13023
S1M10000012E07	1781	SAU100390	5267	#N/A	#N/A
SIM10000012E07	1781	SAU200028	5771	SAU2c0145_orf_lp	12721
S1M10000012E08	1782	SAU101189	5392	SAU1c0033 orf 25p	12264
SIM10000012E12	1783	SAU201810	5836	SAU2c0308_orf_2p	12769
SIM10000012E12	1783	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000012E12	1783	SAU301148	5888	#N/A	#N/A
S1M10000012E12	1784	SAU101793	5534	SAU1c0032_orf_14p	12218
SIM10000012F07	1785	SAU102284	5635	SAU1c0032_off_14p	12389
SIM10000012F07	1785	SAU201469	5816	SAU2c0438_orf_6p	12389

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000012F08	1786	SAU101189	5392	SAU1c0033_orf_25p	12264
S1M10000012F09	1787	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000012F10	1788	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000012F11	1789	SAU101781	5528	SAU1c0037_orf_43p	12353
S1M10000012F12	1790	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000012F12	1790	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000012F12	1790	SAU301148	5888	#N/A	#N/A
S1M10000012G01	1791	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000012G02	1792	SAU301758	5900	SAU3c1508_orf_5p	13156
S1M10000012G03	1793	SAU201301	5809	SAU2c0416_orf_17p	12899
S1M10000012G06	1794	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000012G07	1795	SAU101572	5484	SAU1c0044 orf 211p	12586
S1M10000012G07	1795	SAU101573	5485	SAU1c0044 orf 212p	12587
S1M10000012G08	1796	SAU102593	5704	SAU1c0041 orf 39p	12463
S1M10000012G10	1797	SAU100887	5350	SAUIc0018 orf 15p	12138
S1M10000012H05	1798	SAU100157	5237	SAU1c0040 orf 81p	12444
S1M10000012H08	1799	SAU202186	5847	SAU2c0222 orf 1p	12731
S1M10000012H09	1800	SAU100227	5244	SAU1c0043 orf 188p	12525
S1M10000012H10	1801	SAU100432	5271	SAU1c0040 orf 88p	12450
S1M10000012H10	1801	SAU100433	5272	SAU1c0040 orf 87p	12449
S1M10000012H10	1801	SAU101751	5521	SAU1c0040 orf 86p	12448
S1M10000012H11	1802	SAU301118	5886	SAU3c1305_orf_3p	13086
S1M10000013A02	1803	SAU102674	5730	SAU1c0024 orf 12p	12156
S1M10000013A03	1804	SAU101006	5367	SAUIc0028_orf_59p	12190
S1M10000013A05	1805	SAU102450	5675	SAU1c0045 orf 21p	12675
S1M10000013A07	1806	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000013A08	1807	SAU101143	5383	SAU1c0042 orf 159p	12502
S1M10000013A09	1808	SAU101567	5481	SAU1c0022_orf_10p	12144
S1M10000013A09	1808	SAU200030	5772	SAU2c0282_orf_3p	12745
S1M10000013A10	1809	SAU201403	5815	SAU2c0423 orf 3p	12913
S1M10000013A11	1810	SAU101573	5485	SAU1c0044_orf_212p	12587
SIM10000013A12	1811	SAU100690	5309	#N/A	#N/A
S1M10000013B02	1812	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000013B03	1813	SAU201236	5808	SAU2c0409 orf 10p	12891
S1M10000013B04	1814	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000013B05	1815	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000013B06	1816	SAU100118	5229	SAU1c0015_orf_13p	12125
S1M10000013B07	1817	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000013B07	1817	SAU301148	5888	#N/A	#N/A
S1M10000013B09	1818	SAU200006	5770	SAU2c0157_orf_lp	12723
SIM10000013B11	1819	SAU103042	5758	#N/A	#N/A
\$1M10000013C03	1820	SAU101781	5528	SAU1c0037_orf_43p	12353
S1M10000013C05	1821	SAU101038	5372	SAU1c0043 orf 180p	12521
SIM10000013C07	1822	SAU100300	5253	SAU1c0040_orf_90p	12451
SIM10000013C08	1823	SAU101571	5483	SAU1c0040_dil_90p	12585
S1M10000013C09	1824	SAU102059	5597	SAU1c0034_orf_51p	12286
SIM10000013C10	1825	SAU102039 SAU100736	5316	SAU1c0034_orf_51p	12391
SIM10000013C10		i e	1		
91M10000013C11	1826	SAU102059	5597	SAU1c0034_orf_51p	12286

Clone name	Clone SeqID	PathoSeq Locus	Gene SegID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000013C12	1827	SAU103038	5757	#N/A	#N/A
S1M10000013D08	1828	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000013D09	1829	SAU102669	5728	SAU1c0024_orf_7p	12160
S1M10000013D09	1829	SAU302956	5915	SAU3c1513_orf_9p	13161
S1M10000013D11	1830	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000013E01	1831	SAU102674	5730	SAU1c0024_orf_12p	12156
S1M10000013E02	1832	SAU101184	5391	SAU1c0035_orf_80p	12305
S1M10000013E04	1833	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000013E06	1834	SAU101833	5555	SAU1c0038_orf_34p	12373
S1M10000013E08	1835	SAU100831	5335	SAU1c0038_orf_93p	12403
S1M10000013E09	1836	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000013E10	1837	SAU101801	5541	#N/A	#N/A
\$1M10000013F02	1838	SAU101570	5482	SAU1c0044 orf 209p	12584
S1M10000013F03	1839	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000013F06	1840	SAU103038	5757	#N/A	#N/A
S1M10000013F07	1841	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000013F08	1842	SAU100961	5360	SAU1c0044 orf 83p	12638
S1M10000013F09	1843	SAU101398	5442	SAU1c0036 orf 33p	12324
SIM10000013F12	1844	SAU102437	5670	SAU1c0045 orf 33p	12695
S1M10000013G01	1845	SAU100521	5283	SAU1c0044 orf 250p	12600
S1M10000013G04	1846	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000013G05	1847	SAU102241	5617	SAU1c0043 orf 25p	12539
S1M10000013G05	1847	SAU102242	5618	SAU1c0043 orf 26p	12540
S1M10000013G06	1848	SAU102380	5654	SAU1c0033 orf 29p	12265
S1M10000013G07	1849	SAU101573	5485	SAU1c0044 orf_212p	12587
S1M10000013G10	1850	SAU201539	5821	SAU2c0431_orf_15p	12943
S1M10000013G11	1851	SAU101890	5570	SAU1c0034_orf_29p	12280
S1M10000013G12	1852	SAU100843	5339	SAU1c0036_orf_40p	12328
S1M10000013H03	1853	SAU100690	5309	#N/A	#N/A
S1M10000013H04	1854	SAU102450	5675	SAU1c0045_orf_21p	12675
S1M10000013H05	1855	SAU200914	5796	SAU2c0373_orf_2p	12837
SIM10000013H07	1856	SAU100414	5270	SAU1c0022_orf_24p	12148
SIM10000013H09		SAU100444	5275	SAU1c0038 orf 67p	12392
S1M10000013H09	1857	SAU200721	5791	SAU2c0339_orf_5p	12797
SIM10000013H10	1858	SAU102059	5597	SAU1c0034_orf_51p	12286
SIM10000013H11	1859	SAU100690	5309	#N/A	#N/A
S1M10000014A02	1860	SAU200564	5784	SAU2c0324_orf_6p	12780
S1M10000014A03	1861	SAU101310	5418	SAU1c0044_orf_125p	12562
S1M10000014105	1862	SAU101991	5582	SAU1c0040_orf_94p	12454
SIM10000014A07	1863	SAU101526	5470	SAU1c0027_orf_32p	12179
SIM10000014A07	1864	SAU103038	5757	#N/A	#N/A
SIM10000014A11	1865	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000014A11	1866	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000014A12		SAU100547	1	SAU1c0032_orf_3p	
1	1867	1	5290	1:	12240
S1M10000014B02	1868	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000014B02	1868	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000014B03	1869	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000014B04	1870	SAU100778	5328	SAU1c0043_orf_140p	12514

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000014B05	1871	SAU102476	5682	SAU1c0026_orf_33p	12175
S1M10000014B06	1872	SAU101199	5395	SAU1c0035_orf_62p	12302
S1M10000014B07	1873	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000014B08	1874	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000014B10	1875	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000014B11	1876	SAU102534	5696	#N/A	#N/A
S1M10000014B12	1877	SAU102534	5696	#N/A	#N/A
S1M10000014C01	1878	SAU101575	5487	SAU1c0044_orf_214p	12589
S1M10000014C05	1879	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000014C06	1880	SAU100305	5256	SAU1c0038_orf_77p	12397
S1M10000014C07	1881	SAU101801	5541	#N/A	#N/A
S1M10000014C09	1882	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000014C09	1882	SAU102881	5740	SAU1c0032_orf_4p	12242
S1M10000014C10	1883	SAU302901	5912	SAU3c1497_orf_8p	13146
S1M10000014C11	1884	SAU100514	5281	SAU1c0044_orf_57p	12626
S1M10000014C12	1885	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000014C12	1885	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000014D03	1886	SAU100885	5348	SAU1c0038 orf 38p	12376
S1M10000014D06	1887	SAU100305	5256	SAU1c0038_orf_77p	12397
S1M10000014D08	1888	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000014D09	1889	SAU100808	5332	SAU1c0037 orf 12p	12345
S1M10000014D10	1890	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000014E01	1891	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000014E01	1891	SAU101794	5535	#N/A	#N/A
S1M10000014E04	1892	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000014E05	1893	SAU101565	5480	SAU1c0022_orf_8p	12151
S1M10000014E07	1894	SAU100658	5303	SAU1c0038 orf 59p	12388
S1M10000014E07	1894	SAU100659	5304	SAU1c0038_orf_60p	12390
S1M10000014E08	1895	SAU202176	5846	SAU2c0412 orf 3p	12895
S1M10000014E09	1896	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000014E09	1896	SAU300269	5869	#N/A	#N/A
S1M10000014E10	1897	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000014E12	1898	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000014E12	1898	SAU201469	5816	SAU2c0438 orf 6p	12967
S1M10000014F02	1899	SAU100128	5231	#N/A	#N/A
S1M10000014F02	1899	SAU101549	5476	SAU1c0043 orf 64p	12549
S1M10000014F02	1899	SAU101576	5488	SAU1c0044 orf 105p	12554
S1M10000014F03	1900	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000014F03	1900	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000014F04	1901	SAU102449	5674	SAU1c0045 orf 22p	12677
S1M10000014F05	1902	SAU200914	5796	SAU2c0373_orf_2p	12837
SIM10000014F08	1903	SAU102433	5668	SAU1c0045 orf 37p	12701
SIM10000014F09	1904	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000014F09	1904	SAU300269	5869	#N/A	#N/A
S1M10000014F10	1905	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000014G02	1906	SAU102054	5596	SAU1c0039_orf_74p	12417
SIM10000014G04	1907	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000014G06	1908	SAU100275	5252	SAU1c0036_orf_15p	12314

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000014G07	1909	SAU201620	5827	#N/A	#N/A
S1M10000014G08	1910	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000014G12	1911	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000014H02	1912	SAU100242	5246	SAU1c0036_orf_5p	12336
S1M10000014H03	1913	SAU102264	5628	SAU1c0032_orf_60p	12250
S1M10000014H04	1914	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000014H05	1915	SAU102116	5602	SAU1c0027_orf_5p	12180
S1M10000014H06	1916	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000014H07	1917	SAU103038	5757	#N/A	#N/A
S1M10000014H08	1918	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000014H11	1919	SAU102534	5696	#N/A	#N/A
S1M10000015A02	1920	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000015A03	1921	SAU102388	5655	SAU1c0033 orf_35p	12267
S1M10000015A05	1922	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000015A06	1923	SAU101857	5560	SAU1c0044 orf 156p	12569
SIM10000015A09	1924	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000015A10	1925	SAU103038	5757	#N/A	#N/A
S1M10000015A11	1926	SAU101791	5532	SAU1c0032 orf 12p	12216
S1M10000015A12	1927	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000015B02	1928	SAU102340	5647	SAU1c0045_orf_149p	12660
S1M10000015B05	1929	SAU103038	5757	#N/A	#N/A
SIM10000015B08	1930	SAU101791	5532	SAU1c0032 orf 12p	12216
S1M10000015B08	1930	SAU101792	5533	SAU1c0032_orf_13p	12217
S1M10000015B09	1931	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000015B09	1931	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000015B09	1931	SAU302685	5908	SAU3c1403_orf_lp	13113
SIM10000015B10	1932	SAU102308	5642	SAU1c0045 orf 50p	12706
S1M10000015C01	1933	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000015C02	1934	SAU102340	5647	SAU1c0045_orf_149p	12660
SIM10000015C03	1935	SAU102390	5657	SAU1c0033_orf_38p	12269
S1M10000015C03	1935	SAU201333	5810	SAU2c0418_orf_8p	12905
S1M10000015C05	1936	SAU100690	5309	#N/A	#N/A
S1M10000015C06	1937	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000015C08	1938	SAU100133	5233	SAU1c0044_orf_170p	12574
S1M10000015C08	1938	SAU100323	5261	SAU1c0044_orf_171p	12575
S1M10000015C10	1939	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000015C12	1940	SAU100305	5256	SAU1c0038_orf_77p	12397
S1M10000015D02	1941	SAU100794	5330	SAU1c0028_orf_53p	12189
S1M10000015D03	1942	SAU102032	5591	SAU1c0029_orf_47p	12198
SIM10000015D04	1943	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000015D05	1944	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000015D06	1945	SAU100736	5316	SAU1c0038_orf_64p	12391
S1M10000015D12	1946	SAU101814	5551	SAU1c0032 orf 32p	12237
S1M10000015E02	1947	SAU102390	5657	SAU1c0033_orf_38p	12269
S1M10000015E02	1947	SAU201333	5810	SAU2c0418 orf 8p	12905
S1M10000015E03	1948	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000015E06	1949	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000015E07	1950	SAU101545	5474	SAU1c0037_orf_132p	12348

Clone name	Clone SegID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000015E09	1951	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000015E10	1952	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000015E11	1953	SAU102286	5636	SAU1c0038_orf_6p	12393
S1M10000015E11	1953	SAU102287	5637	SAU1c0038_orf_7p	12398
S1M10000015E12	1954	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000015F01	1955	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000015F01	1955	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000015F01	1955	SAU103159	5762	SAU1c0045 orf 204p	12670
S1M10000015F01	1955	SAU201827	5837	SAU2c0449 orf 21p	13002
S1M10000015F02	1956	SAU101561	5479	SAU1c0022 orf 4p	12149
S1M10000015F03	1957	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000015F04	1958	SAU201403	5815	SAU2c0423 orf 3p	12913
S1M10000015F06	1959	SAU201385	5814	#N/A	#N/A
S1M10000015F07	1960	SAU101752	5522	SAULc0040 orf 85p	12447
S1M10000015F08	1961	SAU102102	5600	SAUIc0045 orf 340p	12696
S1M10000015F09	1962	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000015F09	1962	SAU101801	5541	#N/A	#N/A
S1M10000015F10	1963	SAU100114	5228	SAU1c0043 orf 225p	12535
S1M10000015G01	1964	SAU102481	5685	SAUIc0039 orf 99p	12422
S1M10000015G02	1965	SAU200058	5773	SAU2c0134 orf 1p	12719
S1M10000015G02	1965	SAU200059	5774	SAU2c0134_orf_3p	12720
S1M10000015G03	1966	SAU101070	5376	SAU1c0034 orf 60p	12291
SIM10000015G04	1967	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000015G05	1968	SAU101573	5485	SAU1c0044 orf 212p	12587
SIM10000015G06	1969	SAU101156	5386	SAU1c0036 orf 12p	12311
S1M10000015G07	1970	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000015G08	1971	SAU101814	5551	SAU1c0032 orf 32p	12237
S1M10000015G09	1972	SAU102143	5607	SAU1c0041_orf_14p	12458
S1M10000015G09	1972	SAU102144	5608	SAU1c0041 orf 15p	12459
S1M10000015G10	1973	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000015G11	1974	SAU100275	5252	SAU1c0036 orf 15p	12314
S1M10000015H04	1975	SAU101801	5541	#N/A	#N/A
S1M10000015H04	1975	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000015H06	1976	SAU201385	5814	#N/A	#N/A
S1M10000016A03	1977	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000016A03	1977	SAU101804	5544	#N/A	#N/A
S1M10000016A04	1978	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000016A04	1978	SAU100433	5272	SAU1c0040 orf 87p	12449
S1M10000016A06	1979	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000016A07	1980	SAU100932	5356	SAU1c0044_orf_308p	12615
S1M10000016A09	1981	SAU101067	5375	SAU1c0034_orf_58p	12290
S1M10000016A09	1981	SAU300732	5877	SAU3c1116_orf_lp	13061
S1M10000016A10	1982	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000016A12	1983	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000016B02	1984	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000016B05	1985	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000016B06	1986	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000016B06	1986	SAU100433	5272	SAU1c0040 orf 87p	12449

Clone name	Clone SegID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000016B07	1987	SAU103077	5759	SAU1c0039_orf_44p	12408
S1M10000016B08	1988	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000016B09	1989	SAU301465	5896	SAU3c1429 orf 4p	13121
S1M10000016B10	1990	SAU101006	5367	SAU1c0028 orf 59p	12190
S1M10000016B11	1991	SAU101242	5404	SAU1c0044 orf 18p	12578
S1M10000016B12	1992	SAU101794	5535	#N/A	#N/A
S1M10000016B12	1992	SAU101795	5536	SAU1c0032_orf_15p	12219
S1M10000016C01	1993	SAU100845	5340	SAU1c0036 orf 41p	12329
S1M10000016C02	1994	SAU102049	5595	SAU1c0039 orf 68p	12416
SIM10000016C04	1995	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000016C05	1996	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000016C06	1997	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000016C06	1997	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000016C06	1997	SAU301148	5888	#N/A	#N/A
S1M10000016C08	1998	SAU101491	5464	SAU1c0025 orf 20p	12165
S1M10000016C09	1999	SAU102233	5616	SAU1c0043_orf_20p	12531
S1M10000016C10	2000	SAU201513	5820	SAU2c0432_orf_10p	12944
S1M10000016C10	2000	SAU203196	5861	SAU2c0432_orf_11p	12945
S1M10000016C11	2001	SAU101573	5485	SAU1c0044 orf 212p	12587
SIM10000016C12	2002	SAU101752	5522	SAU1c0040 orf_85p	12447
S1M10000016D01	2003	SAU102355	5651	SAU1c0040 orf 40p	12435
S1M10000016D02	2004	SAU200242	5777	SAU2c0250 orf 2p	12734
S1M10000016D04	2005	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000016D05	2006	SAU100770	5324	#N/A	#N/A
S1M10000016D06	2007	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000016D08	2008	SAU101070	5376	SAU1c0034 orf 60p	12291
S1M10000016D09	2009	SAU101868	5565	SAU1c0036 orf 23p	12320
S1M10000016D10	2010	SAU201513	5820	SAU2c0432_orf_10p	12944
S1M10000016D10	2010	SAU203196	5861	SAU2c0432_orf_11p	12945
SIM10000016D11	2011	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000016E04	2012	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000016E05	2013	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000016E06	2014	SAU102639	5724	#N/A	#N/A
S1M10000016E07	2015	SAU102636	5722	SAU1c0045 orf 101p	12650
S1M10000016E07	2015	SAU102637	5723	SAU1c0045 orf 102p	12651
S1M10000016E08	2016	SAU200928	5798	SAU2c0365 orf_5p	12815
S1M10000016E09	2017	SAU102527	5693	SAU1c0032 orf 9p	12260
S1M10000016E10	2018	SAU102983	5751	SAU1c0045_orf_224p	12676
S1M10000016E11	2019	SAU102281	5633	SAU1c0038_orf_4p	12384
S1M10000016E12	2020	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000016F02	2021	SAU102113	5601	SAU1c0027_orf_2p	12178
S1M10000016F02	2021	SAU301223	5889	SAU3c1345_orf_3p	13090
S1M10000016F03	2022	SAU101864	5562	SAU1c0044 orf 163p	12572
S1M10000016F05	2022	SAU201168	5804	SAU2c0407_orf_8p	12889
S1M10000016F06	2023	SAU102407	5662	#N/A	#N/A
S1M10000016F08	2024	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000016F09	2025	SAU102527	5693	SAU1c0023_orf_9p	12260
S1M1000016F09	2026	SAU102113	5601	SAU1c0032_orf_9p	12178
SIMIWWWIOFII	202/	3AU102113	10001	SAU 10002/_ort_2p	121/8

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000016F11	2027	SAU301223	5889	SAU3c1345_orf_3p	13090
S1M10000016G01	2028	SAU102434	5669	SAU1c0045_orf_36p	12700
S1M10000016G03	2029	SAU101300	5415	SAU1c0044_orf_113p	12557
S1M10000016G03	2029	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000016G04	2030	SAU102450	5675	SAU1c0045_orf_21p	12675
S1M10000016G05	2031	SAU102292	5638	SAU1c0038_orf_10p	12368
SIM10000016H03	2032	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000016H04	2033	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000016H08	2034	SAU101067	5375	SAU1c0034_orf_58p	12290
S1M10000016H08	2034	SAU300732	5877	SAU3c1116_orf_lp	13061
S1M10000016H10	2035	SAU101756	5524	SAU1c0040 orf 82p	12445
SIM10000017A02	2036	SAU101866	5564	SAU1c0036_orf_21p	12319
SIM10000017A03	2037	SAU101545	5474	SAU1c0037 orf 132p	12348
SIM10000017A03	2037	SAU101546	5475	SAU1c0037 orf 133p	12349
SIM10000017A04	2038	SAU102292	5638	SAU1c0038 orf 10p	12368
SIM10000017A08	2039	SAU102117	5603	SAU1c0027_orf_6p	12181
SIM10000017A11	2040	SAU102437	5670	SAU1c0045_orf_33p	12695
SIM10000017A12	2041	SAU301357	5893	SAU3c1394_orf_2p	13111
SIM10000017B02	2042	SAU102242	5618	SAU1c0043 orf 26p	12540
S1M10000017B05	2043	SAU302513	5906	SAU3c1298 orf 1p	13085
SIM10000017B07	2044	SAU101806	5546	SAU1c0032 orf 25p	12230
SIM10000017B08	2045	SAU101546	5475	SAU1c0037 orf 133p	12349
S1M10000017B09	2046	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000017B10	2047	SAU101754	5523	SAU1c0040 orf 84p	12446
S1M10000017B11	2048	SAU101754	5523	SAU1c0040 orf 84p	12446
S1M10000017B12	2049	SAU201375	5811	SAU2c0426 orf 4p	12926
S1M10000017C01	2050	SAU101224	5397	SAU1c0044 orf 98p	12647
SIM10000017C03	2051	SAU101910	5576	SAU1c0040 orf 76p	12440
S1M10000017C05	2052	SAU200657	5789	#N/A	#N/A
S1M10000017C08	2053	SAU101890	5570	SAU1c0034_orf_29p	12280
SIM10000017C09	2054	SAU101398	5442	SAU1c0036 orf 33p	12324
S1M10000017C10	2055	SAU102614	5716	SAU1c0041 orf 56p	12476
SIM10000017C10	2055	SAU102615	5717	SAU1c0041_orf_57p	12477
S1M10000017C11	1	SAU101799	5539	SAU1c0032 orf 19p	12223
S1M10000017C11	1	SAU101800	5540	SAU1c0032_orf_20p	12225
SIM10000017C12	2057	SAU101782	5529	SAU1c0037 orf 44p	12354
S1M10000017C12	2057	SAU200994	5802	SAU2c0428 orf 4p	12935
S1M10000017D03	2058	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000017D09	2059	SAU101799	5539	SAU1c0032 orf 19p	12223
S1M10000017D09	2059	SAU101800	5540	SAU1c0032 orf 20p	12225
S1M10000017D10	2060	SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000017E04	2061	SAU101801	5541	#N/A	#N/A
S1M10000017E05	2062	SAU102334	5645	SAU1c0045_orf_144p	12658
SIM10000017E08	2063	SAU101198	5394	SAU1c0035 orf_61p	12301
S1M10000017E00	,	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000017E11	2065	SAU100157	5237	SAU1c0049_orf_81p	12444
S1M10000017F04	2066	SAU100140	5235	SAU1c0040_off_81p	12258
S1M10000017F04	2066	SAU100141	I	SAU1c0032_orf_8p	
S11VL10000017F04	2000	3AU100141	5236	SAUICOUSZ_OII_8p	12259

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000017F05	2067	SAU102541	5697	SAU1c0045_orf_195p	12668
S1M10000017F06	2068	SAU102356	5652	SAU1c0040_orf_41p	12436
S1M10000017F11	2069	SAU101463	5458	SAU1c0045_orf_232p	12679
S1M10000017G02	2070	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000017G05	2071	SAU102259	5624	SAU1c0032_orf_55p	12245
S1M10000017G06	2072	SAU200565	5785	SAU2c0324_orf_7p	12781
S1M10000018A03	2073	SAU100139	5234	SAUIc0032_orf_6p	12255
S1M10000018A03	2073	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000018A04	2074	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000018A05	2075	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000018A05	2075	SAU100887	5350	SAUIc0018_orf_15p	12138
S1M10000018A06	2076	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000018A08	2077	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000018A08	2077	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000018A09	2078	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000018A10	2079	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000018A11	2080	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000018A11	2080	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000018B02	2081	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000018B02	2081	SAU100887	5350	SAUIc0018_orf_15p	12138
S1M10000018B03	2082	SAU101839	5556	SAU1c0042_orf_12p	12495
S1M10000018B05	2083	SAU100300	5253	SAUIc0040_orf_90p	12451
S1M10000018B09	2084	SAU100836	5336	SAUIc0031_orf_13p	12212
S1M10000018B09	2084	SAU202731	5850	#N/A	#N/A
S1M10000018B10	2085	SAU100401	5268	SAU1c0044_orf_174p	12576
S1M10000018B10	2085	SAU300335	5870	#N/A	#N/A
S1M10000018B11	2086	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000018C01	2087	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000018C02	2088	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000018C03	2089	SAU100778	5328	SAU1c0043_orf_140p	12514
S1M10000018C04	2090	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000018C05	2091	SAU103038	5757	#N/A	#N/A
S1M10000018C06	2092	SAU100684	5306	SAU1c0044_orf_68p	12632
S1M10000018C08	2093	SAU102256	5622	SAU1c0032_orf_52p	12243
S1M10000018C08	2093	SAU102257	5623	SAU1c0032_orf_53p	12244
S1M10000018C09	2094	SAU101065	5374	SAU1c0034_orf_56p	12289
S1M10000018C09	2094	SAU102068	5599	SAU1c0034_orf_55p	12288
S1M10000018C10	2095	SAU100112	5227	SAU1c0044_orf_70p	12634
S1M10000018C11	2096	SAU102663	5727	SAU1c0024_orf_2p	12158
S1M10000018C12	2097	SAU101948	5579	SAU1c0045_orf_69p	12709
S1M10000018D01	2098	SAU101452	5455	SAU1c0045_orf_247p	12684
S1M10000018D02	2099	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000018D02	2099	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000018D03	2100	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000018D04	2101	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000018D09	2102	SAU101067	5375	SAU1c0034_orf_58p	12290
S1M10000018D10	2103	SAU301898	5904	SAU3c1079_orf_1p	13057
S1M10000018D11	2104	SAU101752	5522	SAU1c0040_orf_85p	12447

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000018D12	2105	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000018E01	2106	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000018E02	2107	SAU100265	5249	SAU1c0014_orf_11p	12122
S1M10000018E03	2108	SAU102420	5665	SAU1c0030_orf_20p	12206
S1M10000018E04	2109	SAU102035	5592	SAU1c0029_orf_50p	12199
S1M10000018E05	2110	SAU100596	5295	SAU1c0043_orf_63p	12548
S1M10000018E08	2111	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000018E09	2112	SAU301898	5904	SAU3c1079_orf_lp	13057
S1M10000018E11	2113	SAU101799	5539	SAU1c0032_orf_19p	12223
S1M10000018E11	2113	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000018E12	2114	SAU200914	5796	SAU2c0373 orf 2p	12837
S1M10000018F03	2115	SAU100887	5350	SAU1c0018_orf_15p	12138
SIM10000018F04	2116	SAU102396	5660	SAU1c0033_orf_43p	12272
S1M10000018F04	2116	SAU301118	5886	SAU3c1305_orf_3p	13086
S1M10000018F07	2117	SAU102629	5720	SAU1c0041_orf_71p	12481
S1M10000018F09	2118	SAU101810	5549	SAU1c0032_orf_28p	12233
S1M10000018F09	2118	SAU300110	5865	SAU3c0533 orf 2p	13031
S1M10000018F10	2119	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000018F10	2119	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000018F12	2120	SAU201469	5816	SAU2c0438 orf 6p	12967
S1M10000018G03	2121	SAU101808	5548	SAU1c0032 orf 27p	12232
S1M10000018G05	2122	SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000018G07	2123	SAU101727	5516	SAU1c0016 orf 6p	12133
S1M10000018G08	2124	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000018G08	2124	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000018G09	2125	SAU102200	5611	SAU1c0045 orf 168p	12665
S1M10000018G09	2125	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000018G10	2126	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000018G10	2126	SAU102527	5693	SAU1c0032_orf_9p	12260
S1M10000018G12	2127	SAU200928	5798	SAU2c0365_orf_5p	12815
SIM10000018H01	2128	SAU101663	5506	SAU1c0033_orf_14p	12261
S1M10000018H02	2129	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000018H02		SAU101653	5504	SAU1c0042_orf_124p	12493
SIM10000018H07	1	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000018H09	2131	SAU101622	5496	SAU1c0040_orf_27p	12430
S1M10000018H10	2132	SAU100157	5237	SAU1c0040_orf_81p	12444
SIM10000019A02	2133	SAU103077	5759	SAU1c0039_orf_44p	12408
SIM10000019A03	2134	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000019A05	2135	SAU201469	5816	SAU2c0438_orf_6p	12967
SIM10000019A06	2136	SAU101311	5419	SAU1c0044_orf_126p	12563
SIM10000019A07	2137	SAU101727	5516	SAU1c0016_orf_6p	12133
SIM10000019A07	2137	SAU101728	5517	SAU1c0016_orf_Sp	12133
SIM10000019A09	2137	SAU102117	5603	SAU1c0027_orf_6p	12132
SIM10000019A09	2138	SAU102117 SAU102292	5638	SAU1c0027_on_op	1
SIM10000019A11	2139	SAU102292 SAU102693		, – – ·	12368
SIM10000019A12			5731	SAU1c0044_orf_58p	12627
l	2140	SAU102694	5732	SAU1c0044_orf_59p	12628
SIM10000019B03	2141	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000019B04	2142	SAU100899	5351	SAU1c0034_orf_llp	12277

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000019B04	2142	SAU100901	5352	SAU1c0034_orf_13p	12278
SIM10000019B07	2143	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000019B08	2144	SAU102422	5666	SAU1c0030_orf_22p	12207
S1M10000019B08	2144	SAU102423	5667	SAU1c0030_orf_23p	12208
S1M10000019B09	2145	SAU100182	5241	SAU1c0037 orf 82p	12362
SIM10000019B09	2145	SAU100251	5248	SAU1c0037_orf_83p	12363
S1M10000019B10	2146	SAU101570	5482	SAU1c0044_orf_209p	12584
SIM10000019B11	2147	SAU100879	5345	SAU1c0041_orf_82p	12483
SIM10000019B12	2148	SAU101793	5534	SAU1c0032_orf_14p	12218
SIM10000019C01	2149	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000019C04	2150	SAU103175	5764	SAU1c0045 orf 269p	12687
S1M10000019C04	2150	SAU301472	5897	SAU3c1431 orf 4p	13124
S1M10000019C05	2151	SAU101756	5524	SAU1c0040 orf 82p	12445
S1M10000019C06	2152	SAU101790	5531	SAU1c0032 orf 11p	12215
S1M10000019C06	2152	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000019C07	2153	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000019C08	2154	SAU202126	5844	SAU2c0045_orf_lp	12714
S1M10000019C11	2155	SAU100301	5254	SAU1c0040_orf_91p	12452
S1M10000019C12	2156	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000019D01	2157	SAU102270	5631	SAU1c0032 orf 65p	12253
S1M10000019D02	2158	SAU101145	5384	SAU1c0035_orf_43p	12299
S1M10000019D04	2159	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000019D05	2160	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000019D06	2161	SAU102526	5692	SAU1c0045_orf_299p	12691
S1M10000019D07	2162	SAU301898	5904	SAU3c1079 orf 1p	13057
\$1M10000019D09	2163	SAU102639	5724	#N/A	#N/A
S1M10000019D12	2164	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000019E01	2165	SAU100961	5360	SAU1c0044_orf_83p	12638
S1M10000019E01	2165	SAU100962	5361	SAU1c0044_orf_84p	12639
S1M10000019E02	2166	SAU101624	5497	SAU1c0040_orf_25p	12429
S1M10000019E07	2167	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000019F01	2168	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000019F05	2169	SAU101612	5493	SAU1c0044_orf_7p	12637
S1M10000019F05	2169	SAU202945	5857	SAU2c0394_orf_7p	12868
SIM10000019F06	2170	SAU101864	5562	SAU1c0044_orf_163p	12572
S1M10000019F08	2171	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000019F09	2172	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000019F11	2173	SAU101242	5404	SAU1c0044 orf 18p	12578
S1M10000019G04	2174	SAU101793	5534	SAU1c0032_orf_14p	12218
SIM10000019G07	2175	SAU100522	5284	SAU1c0044 orf 249p	12599
SIM10000019G09	2176	SAU100300	5253	SAU1c0040 orf 90p	12451
SIM10000019G10	2177	SAU101235	5400	SAU1c0044_orf_llp	12561
S1M10000019G10	2177	SAU101236	5401	SAU1c0044 orf 12p	12564
S1M10000019G11	2178	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000019H05	2179	SAU101802	5542	SAU1c0032 orf 22p	12227
S1M10000019H05	2179	SAU101803	5543	SAU1c0032 orf 23p	12228
S1M10000019H08	2180	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000020A05	2181	SAU101868	5565	SAU1c0036_orf_23p	12320

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000020A06	2182	SAU101801	5541	#N/A	#N/A
S1M10000020A07	2183	SAU101567	5481	SAU1c0022_orf_10p	12144
S1M10000020A07	2183	SAU200030	5772	SAU2c0282_orf_3p	12745
SIM10000020A11	2184	SAU102437	5670	SAU1c0045_orf_33p	12695
S1M10000020A12	2185	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000020B02	2186	SAU100475	5276	SAU1c0036_orf_61p	12337
S1M10000020B03	2187	SAU100059	5224	SAU1c0045_orf_10p	12652
S1M10000020B05	2188	SAU301133	5887	SAU3c1311_orf_3p	13087
S1M10000020B06	2189	SAU100747	5320	SAU1c0044_orf_235p	12597
SIM10000020B07	2190	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000020B09	2191	SAU101371	5435	SAU1c0033_orf_7p	12275
SIM10000020B12	2192	SAU102143	5607	SAU1c0041 orf_14p	12458
S1M10000020C09	2193	SAU101545	5474	SAU1c0037 orf 132p	12348
SIM10000020C10	2194	SAU101799	5539	SAU1c0032 orf 19p	12223
S1M10000020C10	2194	SAU101800	5540	SAU1c0032 orf 20p	12225
S1M10000020C11	2195	SAU101452	5455	SAU1c0045_orf_247p	12684
SIM10000020D03	2196	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000020D04	2197	SAU102481	5685	SAU1c0039_orf_99p	12422
SIM10000020D06	2198	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000020D07	2199	SAU100198	5243	SAU1c0009 orf lp	12120
S1M10000020D08	2200	SAU100547	5290	SAU1c0032_orf_3p	12240
SIM10000020D09	2201	SAU102939	5747	#N/A	#N/A
S1M10000020D12	2202	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000020E01	2203	SAU200006	5770	SAU2c0157_orf_lp	12723
SIM10000020E03	2204	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000020E04	2205	SAU101805	5545	SAU1c0032_orf_24p	12229
SIM10000020E06	2206	SAU102162	5609	SAU1c0041_orf_27p	12462
SIM10000020E08	2207	SAU101756	5524	SAU1c0040 orf 82p	12445
SIM10000020E11	2208	SAU101876	5567	SAU1c0025 orf 9p	12169
S1M10000020E12	2209	SAU200657	5789	#N/A	#N/A
SIM10000020F01	2210	SAU101592	5490	SAU1c0039 orf 37p	12406
SIM10000020F05	2211	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000020F06	2212	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000020F06	L	SAU101653	5504	SAU1c0042_orf_124p	12493
SIM10000020F07	2213	SAU200731	5793	SAU2c0352 orf 2p	12808
S1M10000020F09	2214	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000020F11	J	SAU101663	5506	SAU1c0033_orf_14p	12261
S1M10000020F11	2215	SAU101664	5507	SAU1c0033_orf_15p	12262
S1M10000020F12	2216	SAU100745	5319	SAU1c0044_orf_233p	12596
S1M10000020G01	2217	SAU102905	5742	SAU1c0033 orf 45p	12273
S1M10000020G05	2218	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000020G07	2219	SAU100114	5228	SAU1c0043 orf 225p	12535
S1M10000020G08	2220	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000020G09	2221	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000020G10	2222	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000020G10	L	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000020G10	2223	SAU101592	5490	SAU1c0032_orf_37p	12406
O 11/1/00/00/02/00/11	رعمه ا	0.10101372	טידי ו	loug 100032_017_3 \h	12400

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000020H01	2225	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000020H02	2226	SAU101754	5523	SAU1c0040_orf_84p	12446
S1M10000020H04	2227	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000020H06	2228	SAU101541	5472	SAU1c0037_orf_128p	12344
S1M10000020H08	2229	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000020H10	2230	SAU101754	5523	SAU1c0040_orf_84p	12446
S1M10000020H11	2231	SAU100053	5222	SAU1c0020_orf_lp	12143
S1M10000021A04	2232	SAU200752	5795	SAU2c0354 orf 5p	12809
S1M10000021A04	2232	SAU300975	5880	SAU3c1240 orf 3p	13075
S1M10000021A05	2233	SAU101408	5445	SAU1c0035_orf_93p	12308
S1M10000021A06	2234	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000021A07	2235	SAU100496	5279	SAUIc0041 orf 83p	12484
S1M10000021A07	2235	SAU301004	5882	SAU3c1255_orf_1p	13079
S1M10000021A08	2236	SAU101183	5390	SAUIc0035_orf_79p	12304
S1M10000021A09	2237	SAU102933	5744	SAU1c0039_orf_62p	12412
S1M10000021A09	2237	SAU201184	5805	SAU2c0351_orf_19p	12807
S1M10000021A10	2238	SAU101545	5474	SAUIc0037_orf_132p	12348
S1M10000021B05	2239	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000021B05	2239	SAU102602	5708	SAUIc0032_orf_5p	12249
S1M10000021B06	2240	SAU101752	5522	SAUIc0040_orf 85p	12447
S1M10000021B07	2241	SAU101632	5499	SAUlc0039_orf_3p	12407
S1M10000021B10	2242	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000021C04	2243	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000021C05	2244	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000021C07	2245	SAU202968	5858	SAU2c0407_orf_2p	12886
S1M10000021C08	2246	SAU102575	5700	SAU1c0044_orf_283p	12609
S1M10000021C10	2247	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000021C11	2248	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000021C12	2249	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000021D01	2250	SAU102503	5691	SAU1c0045_orf_274p	12690
S1M10000021D03	2251	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000021D03	2251	SAU101286	5413	SAU1c0034_orf_67p	12292
S1M10000021D04	2252	SAU100858	5341	SAU1c0038_orf_86p	12401
S1M10000021D04	2252	SAU100859	5342	SAU1c0038_orf_87p	12402
S1M10000021D06	2253	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000021D09	2254	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000021D10	2255	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000021E01	2256	SAU101655	5505	SAU1c0042_orf_125p	12494
S1M10000021E02	2257	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000021E02	2257	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000021E03	2258	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000021E05	2259	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000021E06	2260	SAU102663	5727	SAU1c0024_orf_2p	12158
S1M10000021E09	2261	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000021E12	2262	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000021F02	2263	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021F04	2264	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000021F04	2264	SAU102602	5708	SAU1c0032_orf_5p	12249

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID . (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000021F05	2265	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021F06	2266	SAU101235	5400	SAU1c0044_orf_11p	12561
S1M10000021F07	2267	SAU101383	5438	SAU1c0022_orf_20p	12147
S1M10000021F09	2268	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000021F09	2268	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000021F11	2269	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000021G01	2270	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000021G03	2271	SAU301357	5893	SAU3c1394_orf_2p	13111
S1M10000021G08	2272	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000021H04	2273	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000021H04	2273	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000021H05	2274	SAU300131	5866	SAU3c0560_orf_2p	13034
S1M10000021H07	2275	SAU101806	5546	SAU1c0032 orf 25p	12230
S1M10000021H08	2276	SAU102059	5597	SAU1c0034 orf 51p	12286
S1M10000021H11	2277	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000022A02	2278	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000022A02	2278	SAU301230	5890	SAU3c1347_orf_6p	13092
S1M10000022A03	2279	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000022A05	2280	SAU101807	5547	SAU1c0032 orf 26p	12231
S1M10000022A08	2281	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000022A09	2282	SAU102939	5747	#N/A	#N/A
S1M10000022A12	2283	SAU101868	5565	SAU1c0036 orf 23p	12320
S1M10000022B02	2284	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000022B02	2284	SAU301230	5890	SAU3c1347_orf_6p	13092
S1M10000022B03	2285	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000022B05	2286	SAU100920	5354	SAU1c0038_orf_75p	12395
\$1M10000022B06	2287	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000022B08	2288	SAU102292	5638	SAU1c0038 orf 10p	12368
S1M10000022B09	2289	SAU102939	5747	#N/A	#N/A
S1M10000022B10	2290	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000022B11	2291	SAU101726	5515	SAU1c0016 orf 7p	12134
S1M10000022B12	2292	SAU101868	5565	SAU1c0036 orf 23p	12320
S1M10000022C02	2293	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000022C03	2294	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000022C04	2295	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000022C06	2296	SAU100246	5247	SAU1c0042_orf_130p	12496
S1M10000022C06	2296	SAU300998	5881	SAU3c1253_orf_3p	13077
S1M10000022C07	2297	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000022C08	2298	SAU100528	5286	SAU1c0042 orf_87p	12507
S1M10000022C08	2298	SAU103115	5760	SAU1c0042_orf_88p	12508
S1M10000022C11	2299	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000022D03	2300	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000022D05	2301	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000022D06	2302	SAU100921	5355	SAU1c0038 orf 76p	12396
SIM10000022D07	2303	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000022D08	2304	SAU101189	5392	SAU1c0033_orf_25p	12264
SIM10000022D09	2305	SAU101726	5515	SAUIc0016_orf_7p	12134
S1M10000022D11	2306	SAU101447	5454	SAU1c0045_orf_244p	12683

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000022E01	2307	SAU200601	5787	#N/A	#N/A
S1M10000022E03	2308	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000022E05	2309	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000022E09	2310	SAU101235	5400	SAU1c0044_orf_11p	12561
S1M10000022E09	2310	SAU101236	5401	SAU1c0044_orf_12p	12564
S1M10000022F04	2311	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000022F06	2312	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000022F07	2313	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000022F08	2314	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000022F11	2315	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000022G03	2316	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000022G04	2317	SAU101777	5527	SAU1c0037 orf 39p	12352
S1M10000022G07	2318	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000022G08	2319	SAU100557	5291	SAU1c0044 orf 132p	12565
S1M10000022G12	2320	SAU101546	5475	SAU1c0037 orf_133p	12349
S1M10000022H03	2321	SAU101006	5367	SAU1c0028_orf_59p	12190
S1M10000022H05	2322	SAU101814	5551	SAU1c0032 orf 32p	12237
S1M10000022H06	2323	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000022H07	2324	SAU100866	5344	SAU1c0044 orf 100p	12553
S1M10000022H08	2325	SAU100887	5350	SAU1c0018 orf 15p	12138
S1M10000022H11	2326	SAU101610	5492	SAU1c0044 orf 5p	12629
S1M10000023A05	2327	SAU301465	5896	SAU3c1429 orf 4p	13121
S1M10000023A09	2328	SAU101340	5423	SAU1c0038 orf 82p	12400
SIM10000023A11	2329	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000023A12	2330	SAU101651	5502	SAU1c0042_orf_122p	12491
S1M10000023A12	2330	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000023B01	2331	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000023B03	2332	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000023B03	2332	SAU101653	5504	SAUIc0042_orf_124p	12493
S1M10000023B07	2333	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000023B08	2334	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000023B08	2334	SAU100141	5236	SAU1c0032 orf 8p	12259
S1M10000023B09	2335	SAU101340	5423	SAU1c0038_orf_82p	12400
S1M10000023B10	•	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000023B11	2337	SAU102613	5715	SAU1c0041 orf 55p	12475
S1M10000023B12	2338	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000023B12	2338	SAU301148	5888	#N/A	#N/A
S1M10000023C02	2339	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000023C02	2339	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000023C10	2340	SAU102554	5699	SAU1c0045_orf_209p	12673
S1M10000023C11	2341	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000023C12	2342	SAU100077	5226	SAUIc0043 orf 178p	12520
S1M10000023D01	2343	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000023D03	2344	SAU101996	5584	SAU1c0040 orf 99p	12456
S1M10000023D04	2345	SAU102602	5708	SAUIc0032 orf 5p	12249
S1M10000023D07	2346	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000023D08	2347	SAU100887	5350	SAU1c0018_orf_15p	12138
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	~

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
Ì			(р. с)		Protein Seq
S1M10000023D10	2349	SAU100963	5362	SAUIc0044_orf_85p	12640
S1M10000023D12	2350	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000023E01	2351	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000023E04	2352	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000023E07	2353	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000023E10	2354	SAU203293	5862	SAU2c0441 orf 21p	12979
S1M10000023E11	2355	SAU102292	5638	SAU1c0038 orf 10p	12368
S1M10000023F04	2356	SAU101736	5518	SAU1c0043 orf 166p	12519
S1M10000023F04	2356	SAU101737	5519	SAU1c0043_orf_165p	12518
S1M10000023F07	2357	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000023F08	2358	SAU102883	5741	SAU1c0045 orf 38p	12702
S1M10000023F10	2359	SAU102352	5650	SAU1c0040 orf 38p	12434
S1M10000023F11	2360	SAU100617	5300	SAU1c0035 orf 102p	12295
S1M10000023F12	2361	SAU102352	5650	SAU1c0040_orf_38p	12434
S1M10000023G02	2362	SAU301465	5896	SAU3c1429 orf 4p	13121
S1M10000023G03	2363	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000023G06	2364	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000023G07	2365	SAU301054	5884	#N/A	#N/A
SIM10000023G08	2366	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000023G09	2367	SAU101968	5581	SAU1c0028_orf_43p	12187
S1M10000023G11	2368	SAU102613	5715	SAU1c0041 orf 55p	12475
S1M10000023H02	2369	SAU101996	5584	SAU1c0040 orf 99p	12456
S1M10000023H06	2370	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000023H07	2371	SAU100300	5253	SAU1c0040 orf 90p	12451
S1M10000023H09	2372	SAU101340	5423	SAU1c0038_orf_82p	12400
S1M10000023H10	2373	SAU101365	5432	SAU1c0044 orf 112p	12556
S1M10000024A02	2374	SAU101798	5538	SAU1c0032 orf 18p	12222
S1M10000024A04	2375	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000024A07	2376	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000024A08	2377	SAU101231	5399	SAU1c0035_orf_6p	12303
S1M10000024A11	2378	SAU103226	5768	SAU1c0045_orf_95p	12713
S1M10000024B05	2379	SAU102418	5664	SAU1c0030_orf_18p	12205
S1M10000024B06	2380	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000024B08	2381	SAU100601	5296	SAU1c0044_orf_313p	12616
S1M10000024B09	2382	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000024B10	2383	SAU101265	5407	#N/A	#N/A
S1M10000024C02	2384	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000024C04	2385	SAU101862	5561	SAU1c0044_orf_161p	12571
S1M10000024C07	2386	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000024D02	2387	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000024D03	2388	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000024D10	2389	SAU100140	5235	SAU1c0032_orf_7p	12258
SIM10000024D10	2389	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000024D11	2390	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000024E03	2391	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000024E05	2392	SAU101800	5540	SAU1c0032_orf_20p	12225
SIM10000024E05	2392	SAU101801	5541	#N/A	#N/A
S1M10000024E06	2393	SAU102418	5664	SAU1c0030_orf_18p	12205
<u> </u>		l	<u> </u>		

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000024E07	2394	SAU101039	5373	SAU1c0043_orf_181p	12522
SIM10000024E07	2395	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000024E08	2396	SAU101447	5454	SAU1c0045_orf_244p	12683
S1M10000024F02	2397	SAU102992	5752	SAU1c0043_orf_60p	12630
S1M10000024F05	2398	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000024F03	2399	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000024F08	2400	SAU200468	5781	SAU2c0429 orf 19p	12134
S1M10000024F10	2400	SAU101800	5540	SAU1c0032_orf_20p	12937
S1M10000024G05	2401	SAU101801	5541	#N/A	#N/A
S1M10000024G05	2401	SAU102418	5664	SAU1c0030_orf_18p	<u> </u>
L		l	<u> </u>		12205
S1M10000024G07	2403	SAU102334	5645	SAU1c0045_orf_144p SAU1c0039 orf 3p	12658
S1M10000024G08 S1M10000024G10	1	SAU101632	5499		12407
	2405	SAU202176	5846	SAU2c0412_orf_3p	12895
S1M10000024G12	2406	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000024H02	2407	SAU201571	5824	SAU2c0447_orf_17p	12997
SIM10000024H04	2408	SAU100770	5324	#N/A	#N/A
S1M10000024H07	2409	SAU200725	5792	SAU2c0428_orf_20p	12933
S1M10000024H08	2410	SAU102002	5587	SAU1c0040_orf_103p	12425
S1M10000024H08	2410	SAU102003	5588	SAU1c0040_orf_104p	12426
S1M10000025A03	2411	SAU101247	5405	SAU1c0043_orf_136p	12512
S1M10000025A08	2412	SAU102766	5735	#N/A	#N/A
S1M10000025A08	2412	SAU201236	5808	SAU2c0409_orf_10p	12891
S1M10000025A08	2412	SAU300338	5871	#N/A	#N/A
S1M10000025A09	2413	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000025A10	2414	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000025A10	2414	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000025A10	2414	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000025B01	2415	SAU101655	5505	SAU1c0042_orf_125p	12494
S1M10000025B02	2416	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000025B03	2417	SAU101385	5439	SAU1c0038_orf_50p	12385
S1M10000025B05	2418	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000025B05	2418	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000025B05	2418	SAU301620	5899	SAU3c1478_orf_2p	13140
SIM10000025B06	L	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000025B09	2420	SAU200928	5798	SAU2c0365_orf_5p	12815
SIM10000025B12	2421	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000025C01	2422	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000025C03	2423	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000025C05	2424	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000025C09	2425	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000025C09	2425	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000025C10	2426	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000025C11	2427	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000025D01	2428	SAU102117	5603	SAU1c0027_orf_6p	12181
SIM10000025D03	2429	SAU101771	5525	SAU1c0037_orf_33p	12350
SIM10000025D03	2429	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000025D04	2430	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000025D06	2431	SAU101543	5473	SAU1c0037_orf_130p	12346

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000025D08	2432	SAU102598	5705	SAU1c0041 orf 43p	12464
S1M10000025D08	2432	SAU102599	5706	SAU1c0041 orf 45p	12466
S1M10000025D08	2432	SAU103191	5765	SAU1c0041_orf_44p	12465
S1M10000025D09	2433	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000025D10	2434	SAU102200	5611	SAU1c0045 orf 168p	12665
S1M10000025D10	2434	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000025E01	2435	SAU102117	5603	SAU1c0027 orf 6p	12181
S1M10000025E04	2436	SAU100389	5266	SAU1c0034_orf_14p	12279
S1M10000025E09	2437	SAU102117	5603	SAU1c0027 orf 6p	12181
S1M10000025E11	2438	SAU102437	5670	SAU1c0045 orf 33p	12695
S1M10000025F03	2439	SAU102297	5640	SAU1c0045_orf_4lp	12704
S1M10000025F05	2440	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000025F05	2440	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000025F08	2441	SAU200685	5790	SAU2c0344_orf_9p	12801
S1M10000025F09	2442	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000025F10	2443	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000025F12	2444	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000025F12	2444	SAU102201	5612	SAU1c0045 orf 169p	12666
S1M10000025G04	2445	SAU300617	5874	SAU3c1046 orf 2p	13056
S1M10000025G06	2446	SAU300617	5874	SAU3c1046_orf_2p	13056
S1M10000025G10	2447	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000025H05	2448	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000025H06	2449	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000025H07	2450	SAU200752	5795	SAU2c0354_orf_5p	12809
S1M10000025H07	2450	SAU300975	5880	SAU3c1240 orf 3p	13075
S1M10000025H10	2451	SAU100590	5293	SAU1c0013_orf_5p	12121
S1M10000025H10	2451	SAU301268	5891	SAU3c1364 orf 2p	13102
S1M10000026A02	2452	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000026A04	2453	SAU102340	5647	SAU1c0045 orf 149p	12660
S1M10000026A05	2454	SAU200934	5799	SAU2c0375_orf_9p	12842
S1M10000026A06	2455	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000026A07	2456	SAU100970	5365	SAU1c0043 orf 197p	12529
S1M10000026A08	2457	SAU100266	5250	SAU1c0032_orf_75p	12256
S1M10000026A09		SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000026A09	2458	SAU102453	5677	SAU1c0045 orf 19p	12669
S1M10000026A10	2459	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000026A11	2460	SAU102259	5624	SAU1c0032_orf_55p	12245
S1M10000026A11	2460	SAU102260	5625	SAU1c0032_orf_56p	12245
S1M10000026A11	2460	SAU102261	5626	SAU1c0032_orf_57p	12247
S1M10000026A11	2460	SAU300868	5879	#N/A	#N/A
S1M10000026B02	2461	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000026B03	2462	SAU100158	5238	SAU1c0040_orf_80p	12442
S1M10000026B05	2462	SAU101546			_1
S1M10000026B06			5475	SAU1c0037_orf_133p	12349
L		SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000026B07	_i	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000026B07	_i	SAU301275	5892	SAU3c1365_orf_2p	13103
S1M10000026B10	2466	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000026B11	2467	SAU101999	5585	SAU1c0040_orf_101p	12423

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000026B12	2468	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000026C01	2469	SAU100266	5250	SAU1c0032_orf_75p	12256
S1M10000026C06	2470	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000026C07	2471	SAU101842	5557	SAU1c0042_orf_9p	12510
S1M10000026C08	2472	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000026C11	2473	SAU200657	5789	#N/A	#N/A
S1M10000026C12	2474	SAU101726	5515	SAU1c0016_orf_7p	12134
S1M10000026D04	2475	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000026D05	2476	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000026D06	2477	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000026D07	2478	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000026D08	2479	SAU100690	5309	#N/A	#N/A
S1M10000026D10	2480	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000026D12	2481	SAU100546	5289	SAU1c0032_orf_2p	12235
SIM10000026E01	2482	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000026E07	2483	SAU102939	5747	#N/A	#N/A
S1M10000026E09	2484	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000026E09	2484	SAU102002	5587	SAU1c0040_orf_103p	12425
S1M10000026E10	2485	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000026E11	2486	SAU101791	5532	SAU1c0032 orf 12p	12216
S1M10000026E12	2487	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000026F01	2488	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000026F03	2489	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000026F03	2489	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000026F04	2490	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000026F05	2491	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000026F06	2492	SAU100414	5270	SAU1c0022 orf 24p	12148
SIM10000026F07	2493	SAU101869	5566	SAU1c0036 orf 24p	12321
S1M10000026F08	2494	SAU101756	5524	SAU1c0040 orf 82p	12445
S1M10000026F09	2495	SAU102939	5747	#N/A	#N/A
S1M10000026F10	2496	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000026F11	2497	SAU102939	5747	#N/A	#N/A
S1M10000026F12	2498	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000026G01	2499	SAU101869	5566	SAU1c0036 orf 24p	12321
S1M10000026G03	2500	SAU100547	5290	SAU1c0032 orf 3p	12240
S1M10000026G04	2501	SAU100690	5309	#N/A	#N/A
S1M10000026G05	2502	SAU101756	5524	SAU1c0040_orf_82p	12445
\$1M10000026G06	2503	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000026G07	2504	SAU100886	5349	SAU1c0018 orf 16p	12139
SIM10000026G09	2505	SAU100542	5288	SAU1c0043_orf_210p	12532
S1M10000026G10	2506	SAU100613	5299	SAU1c0015 orf 14p	12126
S1M10000026G10	2506	SAU102812	5736	SAU1c0015_orf_15p	12127
SIM1000026G12	2507	SAU101551	5477	SAU1c0043 orf 67p	12550
S1M10000026H01	2508	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000026H02	2509	SAU102355	5651	SAU1c0040 orf 40p	12435
S1M10000026H03	2510	SAU101801	5541	#N/A	#N/A
S1M10000026H04	2511	SAU201810	5836	SAU2c0308 orf 2p	12769
S1M10000026H04	2511	SAU202174	5845	SAU2c0412 orf 3p	12895
011111000000201104		U.102021/4	2012		12073

Clone name	Clone SeqID	PathoSeg Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000026H04	2511	SAU301148	5888	#N/A	#N/A
S1M10000026H05	2512	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000026H07	2513	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000026H07	2513	SAU101807	5547	SAU1c0032 orf 26p	12231
S1M10000026H09	2514	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000026H09	2514	SAU301148	5888	#N/A	#N/A
S1M10000026H10	2515	SAU102479	5683	SAUIc0039 orf 101p	12405
S1M10000027A04	2516	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000027A05	2517	SAU101805	5545	SAUlc0032 orf 24p	12229
S1M10000027A08	2518	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000027A11	2519	SAU101551	5477	SAU1c0043 orf 67p	12550
S1M10000027B04	2520	SAU102939	5747	#N/A	#N/A
S1M10000027B06	2521	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000027B07	2522	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000027B08	2523	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000027B09	2524	SAU102059	5597	SAUIc0034_orf_51p	12286
S1M10000027B11	2525	SAU101265	5407	#N/A	#N/A
S1M10000027C02	2526	SAU101327	5421	SAUIc0044 orf 296p	12612
S1M10000027C02	2527	SAU201236	5808	SAU2c0409 orf 10p	12891
S1M10000027C05	2528	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000027C06	2529	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000027C08	2530	SAU101807	5547	SAU1c0043_off_26p	12231
S1M10000027C09	2531	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000027D02	2532	SAU101652	5503	SAU1c0042 orf 123p	12492
S1M10000027D02	2532	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000027D03	2533	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000027D05	2534	SAU101554	5478	SAU1c0043_orf_70p	12551
S1M10000027D06	2535	SAU202708	5849	SAU2c0385_orf_1p	12855
S1M10000027D08	2536	SAU100714	5312	SAU1c0044_orf_74p	12635
S1M10000027D09	2537	SAU203524	5864	SAU2c0435_orf_1p	12957
S1M10000027D10	2538	SAU102283	5634	SAUIc0006_orf_lp	12119
S1M10000027D11	2539	SAU101996	5584	SAU1c0040 orf 99p	12456
S1M10000027E05	2540	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000027E05	2540	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000027E06	2541	SAU100690	5309	#N/A	#N/A
S1M10000027E07	2542	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000027E08	2543	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000027E09	2544	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000027E09	2545	SAU101551	<u> </u>	SAU1c0032_orf_67p	
S1M10000027E11		SAU103038	5477	#N/A	12550 #N/A
I	2546	L	5757		
S1M10000027F02	2547	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000027F05	2548	SAU100882	5347	SAU1c0038_orf_35p	12374
S1M10000027F06	2549	SAU100690	5309	#N/A	#N/A
S1M10000027F08	2550	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000027F09	2551	SAU100858	5341	SAU1c0038_orf_86p	12401
S1M10000027G03	2552	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000027G04	2553	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000027G05	2554	SAU102526	5692	SAU1c0045_orf_299p	12691

Clone name	Clone SeqID	PathoSeq Locus	Gene SegID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000027G06	2555	SAU202708	5849	SAU2c0385_orf_lp	12855
S1M10000027G07	2556	SAU102265	5629	SAU1c0032_orf_61p	12251
S1M10000027G09	2557	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000027G11	2558	SAU102533	5695	#N/A	#N/A
S1M10000027G11	2558	SAU102534	5696	#N/A	#N/A
S1M10000027H02	2559	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000027H04	2560	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000027H05	2561	SAU102526	5692	SAU1c0045_orf_299p	12691
S1M10000027H06	2562	SAU100690	5309	#N/A	#N/A
S1M10000027H07	2563	SAU100542	5288	SAU1c0043_orf_210p	12532
S1M10000027H08	2564	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000027H09	2565	SAU101382	5437	SAU1c0022_orf_19p	12146
S1M10000027H10	2566	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000027H11	2567	SAU102533	5695	#N/A	#N/A
SIM10000027H11	2567	SAU102534	5696	#N/A	#N/A
S1M10000028A02	2568	SAU101085	5378	SAU1c0034 orf 42p	12284
S1M10000028A02	2568	SAU101086	5379	SAU1c0034 orf 43p	12285
SIM10000028A04	2569	SAU101028	5370	SAU1c0043 orf 7p	12552
S1M10000028A06	2570	SAU100478	5277	SAU1c0044 orf 265p	12605
S1M10000028A06	2570	SAU100996	5366	SAU1c0044_orf_266p	12606
S1M10000028A08	2571	SAU102054	5596	SAUIc0039 orf 74p	12417
S1M10000028B01	2572	SAU101085	5378	SAU1c0034 orf 42p	12284
S1M10000028B01	2572	SAU101086	5379	SAU1c0034_orf_43p	12285
S1M10000028B02	2573	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000028B02	2573	SAU301465	5896	SAU3c1429 orf 4p	13121
S1M10000028B03	2574	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000028B04	2575	SAU102764	5734	SAU1c0044_orf_56p	12625
S1M10000028B05	2576	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000028B06	2577	SAU201558	5823	SAU2c0434 orf 5p	12954
S1M10000028B08	2578	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000028B09	2579	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000028C02	2580	SAU203296	5863	SAU2c0442_orf_18p	12983
S1M10000028C04	2581	SAU101381	5436	SAU1c0022_orf_18p	12145
S1M10000028C05	2582	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000028C05	2582	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000028C05	2582	SAU200297	5778	SAU2c0274 orf 2p	12739
S1M10000028C06	2583	SAU103226	5768	SAU1c0045_orf_95p	12713
S1M10000028C08	2584	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000028D03	2585	SAU301898	5904	SAU3c1079_orf_lp	13057
S1M10000028D04	2586	SAU101381	5436	SAU1c0022_orf_18p	12145
S1M10000028D06	2587	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000028D07	2588	SAU101271	5411	SAU1c0037 orf 90p	12366
S1M10000028D08	2589	SAU100858	5341	SAU1c0038_orf_86p	12401
S1M10000028D09	2590	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000028E01	2591	SAU100062	5225	SAUIc0035_orf_98p	12309
S1M10000028E01	2591	SAU100231	5245	#N/A	#N/A
S1M10000028E03	2592	SAU100770	5324	#N/A	#N/A
S1M10000028E08	2593	SAU101865	5563	SAU1c0036_orf_20p	12318

TABLE-IA PCT/US01/ Gene SeqID Genemarked gene

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID . (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000028F01	2594	SAU101085	5378	SAU1c0034_orf_42p	12284
S1M10000028F01	2594	SAU101086	5379	SAU1c0034 orf 43p	12285
S1M10000028F03	2595	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000028F04	2596	SAU100301	5254	SAU1c0040_orf_91p	12452
S1M10000028F04	2596	SAU100302	5255	SAU1c0040_orf_92p	12453
S1M10000028F05	2597	SAU100301	5254	SAU1c0040_orf_91p	12452
S1M10000028F05	2597	SAU100302	5255	SAU1c0040 orf 92p	12453
S1M10000028F06	2598	SAU100432	5271	SAU1c0040 orf 88p	12450
S1M10000028F06	2598	SAU202756	5852	SAU2c0470_orf_lp	13027
S1M10000028F07	2599	SAU101006	5367	SAU1c0028 orf 59p	12190
S1M10000028G01	2600	SAU102554	5699	SAU1c0045_orf_209p	12673
\$1M10000028G02	2601	SAU201236	5808	SAU2c0409_orf_10p	12891
S1M10000028G02	2601	SAU300338	5871	#N/A	#N/A
S1M10000028G03	2602	SAU101231	5399	SAU1c0035_orf_6p	12303
S1M10000028G04	2603	SAU200916	5797	SAU2c0373 orf 4p	12838
S1M10000028G04	2603	SAU301620	5899 • •	SAU3c1478 orf_2p	13140
S1M10000028G05	2604	SAU100690	5309	#N/A	#N/A
S1M10000028G06	2605	SAU101865	5563	SAU1c0036 orf 20p	12318
S1M10000028G08	2606	SAU101341	5424	SAU1c0044 orf_38p	12618
S1M10000028G08	2606	SAU301275	5892	SAU3c1365 orf_2p	13103
S1M10000028H03	2607	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000028H04	2608	SAU103038	5757	#N/A	#N/A
S1M10000028H05	2609	SAU101869	5566	SAU1c0036 orf_24p	12321
S1M10000029A02	2610	SAU100887	5350	SAU1c0018 orf_15p	12138
S1M10000029A04	2611	SAU100489	5278	SAU1c0044_orf_133p	12566
S1M10000029A04	2611	SAU100557	5291	SAU1c0044 orf 132p	12565
S1M10000029A09	2612	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000029A10	2613	SAU100414	5270	SAU1c0022 orf_24p	12148
S1M10000029A11	2614	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000029A12	2615	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000029B02	2616	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000029B03	2617	SAU201225	5807	SAU2c0412_orf_5p	12896
S1M10000029B04	2618	SAU201621	5828	SAU2c0437_orf_4p	12966
S1M10000029B05	2619	SAU100355	5263	SAU1c0023_orf_6p	12155
S1M10000029B06	2620	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000029B08	2621	SAU101360	5431	SAU1c0044_orf_109p	12555
SIM10000029B10	2622	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000029C02	· 2623	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029C03	2624	SAU100690	5309	#N/A	#N/A
S1M10000029C05	2625	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000029C07	2626	SAU102222	5613	SAU1c0043_orf_12p	12511
S1M10000029C09	2627	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000029C10	2628	SAU101995	5583	SAU1c0040_orf_98p	12455
S1M10000029C12	2629	SAU100859	5342	SAU1c0038_orf_87p	12402
S1M10000029D02	2630	SAU101400	5444	SAU1c0036_orf_35p	12326
SIM10000029D05	2631	SAU100887	5350	SAU1c0018_orf_15p	12138
SIM10000029D09	2632	SAU101495	. 5467	SAU1c0037_orf_65p	12360
S1M10000029D10	2633	SAU101891	5571	SAU1c0034_orf_30p	12281

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000029D12	2634	SAU100056	5223	SAU1c0044_orf_176p	12577
SIM10000029E02	2635	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000029E05	2636	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000029E10	2637	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029E11	2638	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029F01	2639	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000029F01	2639	SAU101804	5544	#N/A	#N/A
SIM10000029F02	2640	SAU101271	5411	SAU1c0037 orf 90p	12366
S1M10000029F02	2640	SAU101286	5413	SAU1c0034 orf 67p	12292
SIM10000029F04	2641	SAU102639	5724	#N/A	#N/A
SIM10000029F09	2642	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000029F09	2642	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000029F10	2643	SAU102621	5719	SAU1c0041_orf_63p	12480
S1M10000029F11	2644	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000029F12	2645	SAU102603	5709	SAU1c0041 orf 48p	12469
S1M10000029F12	2645	SAU102609	5713	SAU1c0041 orf 52p	12473
S1M10000029G01	2646	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000029G02	2647	SAU101622	5496	SAU1c0040_orf_27p	12430
S1M10000029G03	2648	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000029G05	2649	SAU101156	5386	SAU1c0036 orf 12p	12311
SIM10000029G07	2650	SAU101622	5496	SAU1c0040 orf 27p	12430
S1M10000029G08	2651	SAU101365	5432	SAU1c0044 orf 112p	12556
S1M10000029G12	2652	SAU101270	5410	SAU1c0037_orf_89p	12365
S1M10000029H01	2653	SAU100414	5270	SAU1c0022 orf 24p	12148
SIM10000029H05	2654	SAU102613	5715	SAU1c0041 orf 55p	12475
S1M10000029H06	2655	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000029H08	2656	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000029H09	2657	SAU101365	5432	SAU1c0044 orf 112p	12556
S1M10000029H10	2658	SAU101271	5411	SAU1c0037 orf 90p	12366
S1M10000030A02	2659	SAU101543	5473	SAU1c0037 orf 130p	12346
SIM10000030A05	2660	SAU101491	5464	SAU1c0025 orf 20p	12165
SIM10000030A09	2661	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000030A10	2662	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000030A10	2662	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000030A11	2663	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000030B02	2664	SAU101573	5485	SAU1c0044 orf 212p	12587
SIM10000030B05	2665	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000030B07	2666	SAU101180	5389	SAU1c0045_orf_126p	12656
SIM10000030B09	2667	SAU301898	5904	SAU3c1079_orf_lp	13057
SIM10000030C02	2668	SAU102531	5694	SAU1c0045_orf_186p	12667
S1M10000030C03	2669	SAU102629	5720	SAU1c0041_orf_7lp	12481
S1M1000030C04	2670	SAU101999	5585	SAU1c0040 orf 101p	12423
S1M10000030C05	2671	SAU101999	5585	SAU1c0040_orf_101p	12423
SIM1000030C08	2672	SAU101175	5388	SAU1c0031 orf 1p	12213
S1M10000030C09	2673	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000030C10	2674	SAU301592	5898	SAU3c1467_orf_2p	13137
S1M10000030C10	2675	SAU100961	5360	SAU1c0044 orf 83p	12638
		l	L		
SIM10000030C12	2675	SAU100962	5361	SAU1c0044_orf_84p	12639

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000030D01	2676	SAU101495	5467	SAU1c0037 orf 65p	12360
S1M10000030D02	2677	SAU101573	5485	SAU1c0044 orf 212p	12587
S1M10000030D03	2678	SAU100731	5313	SAUIc0044 orf_252p	12601
S1M10000030D05	2679	SAU102222	5613	SAU1c0043_orf_12p	12511
S1M10000030D06	2680	SAU102392	5658	SAU1c0033_orf_40p	12270
S1M10000030D06	2680	SAU201541	5822	SAU2c0431_orf_14p	12942
S1M10000030D07	2681	SAU102392	5658	SAU1c0033 orf 40p	12270
SIM10000030D07	2681	SAU201541	5822	SAU2c0431 orf 14p	12942
S1M10000030D09	2682	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000030D10	2683	SAU100313	5259	SAU1c0045 orf_153p	12661
S1M10000030D10	2683	SAU100359	5264	SAU1c0032 orf_35p	12239
S1M10000030D11	2684	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000030E02	2685	SAU100731	5313	SAU1c0044 orf 252p	12601
S1M10000030E06	2686	SAU102909	5743	SAU1c0036 orf 16p	12315
S1M1000030E07	2687	SAU102939	5747	#N/A	#N/A
S1M10000030E11	2688	SAU101790	5531	SAU1c0032 orf_11p	12215
S1M10000030E12	2689	SAU100300	5253	SAU1c0040 orf 90p	12451
S1M10000030F01	2690	SAU100731	5313	SAU1c0044 orf 252p	12601
S1M10000030F07	2691	SAU102939	5747	#N/A	#N/A
S1M10000030F08	2692	SAU101800	5540	SAU1c0032 orf 20p	12225
S1M10000030F08	2692	SAU101801	5541	#N/A	#N/A
S1M10000030F09	2693	SAU101266	5408	SAU1c0042 orf 117p	12490
S1M10000030F10	2694	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000030F10	2695	SAU101752	5522	SAU1c0040_orf_85p	12447
SIM10000030G05	2696	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000030G05	2696	SAU102247	5620	SAU1c0043_orf_31p	12543
SIM1000030G07	2697	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000030G07	2698	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000030G09	2699	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000030G10	2700	SAU102453	5677	SAU1c0045 orf 19p	12669
S1M10000030G11	2701	SAU101529	5471	SAU1c0043_orf_39p	12544
S1M10000030G12	2702	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000030H01	1	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000030H02	2704	SAU200392	5780	SAU2c0298_orf_3p	12755
S1M10000030H03	2705	SAU102162	5609	SAU1c0041_orf_27p	12462
S1M10000030H05	2706	SAU102380	5654	SAU1c0033 orf 29p	12265
S1M10000030H07	2707	SAU100123	5230	SAU1c0043_orf_189p	12526
SIM10000030H07	2707	SAU102001	5586	SAU1c0049_orf_102p	12424
S1M10000030H07	2707	SAU103159	5762	SAU1c0045_orf_204p	12670
S1M10000030H07	2707	SAU201827	5837	SAU2c0449 orf 21p	13002
S1M10000030H07	2707	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M1000030H09	2709	SAU100546	5289	SAU1c0044_on_86p SAU1c0032 orf 2p	12041
SIM10000031A03	2710	SAU101641	5501	SAU1c0032_orf_12p	12233
S1M10000031A10					
I .	2711	SAU102242	5618	SAU1c0043_orf_26p	12540
SIM10000031B01	2712	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000031B02	2713	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000031B04	2714	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000031B11	2715	SAU101262	5406	SAU1c0042_orf_113p	12488

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000031B12	2716	SAU101360	5431	SAU1c0044_orf_109p	12555
S1M10000031C04	2717	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000031C04	2717	SAU100231	5245	#N/A	#N/A
S1M10000031C07	2718	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000031C09	2719	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000031C11	2720	SAU102935	5745	#N/A	#N/A
S1M10000031D06	2721	SAU201197	5806	SAU2c0429_orf_2p	12938
SIM10000031D07	2722	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000031D08	2723	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000031D09	2724	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000031E02	2725	SAU101350	5429	SAU1c0042_orf_109p	12487
S1M10000031E03	2726	SAU101267	5409	SAU1c0037_orf_86p	12364
S1M10000031E03	2726	SAU300719	5876	SAU3c1108_orf_3p	13059
S1M10000031E04	2727	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000031E07	2728	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000031E08	2729	SAU100158	5238	SAU1c0040_orf_80p	12443
SIM10000031E10	2730	SAU102433	5668	SAU1c0045_orf_37p	12701
SIM10000031E12	2731	SAU101400	5444	SAU1c0036_orf_35p	12326
SIM10000031F02	2732	SAU101800	5540	SAU1c0032_orf_20p	12225
SIM10000031F02	2732	SAU101801	5541	#N/A	#N/A
S1M10000031F03	2733	SAU101791	5532	SAU1c0032_orf_12p	12216
SIM10000031F04	2734	SAU101571	5483	SAU1c0044_orf_210p	12585
SIM10000031F04	2734	SAU101572	5484	SAU1c0044_orf_211p	12586
SIM10000031F05	2735	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM10000031F08	2736	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000031F10	2737	SAU102593	5704	SAU1c0041_orf_39p	12463
SIM10000031F11	2738	SAU102469	5679	SAU1c0026_orf_25p	12172
S1M10000031F12	2739	SAU102593	5704	SAU1c0041_orf_39p	12463
S1M10000031G02	2740	SAU101797	5537	SAU1c0032_orf_17p	12221
SIM10000031G03	2741	SAU101679	5509	SAU1c0044_orf_222p	12593
S1M10000031G04	2742	SAU103198	5766	#N/A	#N/A
S1M10000031G06	2743	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM10000031G09	2744	SAU201571	5824	SAU2c0447_orf_17p	12997
SIM10000031G10	2745	SAU100077	5226	SAU1c0043_orf_178p	12520
SIM10000031G11	2746	SAU100118	5229	SAU1c0015_orf_13p	12125
S1M10000031H01	2747	SAU103144	5761	SAU1c0045_orf_15p	12663
SIM10000031H02	2748	SAU100886	5349	SAU1c0018_orf_16p	12139
SIM10000031H06	2749	SAU100690	5309	#N/A	#N/A
S1M10000031H09	2750	SAU201743	5831	#N/A	#N/A
SIM10000031H11	2751	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000032A03	2752	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000032A05	2753	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000032A06	2754	SAU100610	5298	SAU1c0034_orf_71p	12294
S1M10000032A07	2755	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000032A08	2756	SAU102142	5606	SAU1c0041_orf_13p	12457
SIM10000032A08	2756	SAU102143	5607	SAU1c0041_orf_14p	12458
S1M10000032A10	2757	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000032B01	2758	SAU301898	5904	SAU3c1079_orf_lp	13057

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000032B05	2759	SAU102607	5712	SAU1c0041_orf_51p	1D 12472
S1M10000032B05	2759	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000032B07	2760	SAU100157	5237	SAU1c0040 orf 81p	12444
S1M10000032B08	2761	SAU100175	5240	SAU1c0044_orf_204p	12582
S1M10000032B11	2762	SAU100944	5357	SAU1c0042_orf_5p	12505
SIM1000032B12	2763	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M1000032C01	2764	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000032C03	2765	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M1000032C04	2766	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000032C05	2767	SAU101632	5499	SAU1c0039 orf 3p	12407
SIM1000032C09	2768	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000032C10	2769	SAU201615	5826	SAU2c0440_orf_10p	12972
S1M1000032C11	2770	SAU102863	5737	#N/A	#N/A
S1M10000032C12	2771	SAU102863	5737	#N/A	#N/A
S1M10000032D03	2772	SAU100613	5299	SAU1c0015_orf_14p	12126
S1M10000032D06	2773	SAU101652	5503	SAU1c0042 orf_123p	12492
S1M10000032D07	2774	SAU200468	5781	SAU2c0429 orf 19p	12937
SIM1000032D09	2775	SAU100128	5231	#N/A	#N/A
S1M10000032D09	2775	SAU101549	5476	SAU1c0043 orf 64p	12549
SIM10000032D09	2775	SAU101576	5488	SAU1c0043_ori_64p	12549
SIM1000032D11	2776	SAU100128	5231	#N/A	#N/A
S1M10000032D11	2776	SAU101549	5476	SAU1c0043_orf_64p	#IV/A 12549
SIM1000032D11	2776	SAU101576	5488	SAU1c0043_off_04p	
SIM10000032E02	2777	SAU101776	5530	SAU1c0037 orf 46p	12554 12355
SIM10000032E02	2778	SAU101784 SAU101791	5532	SAU1c0037_6H_46p	12333
SIM1000032E04	2779	SAU201197	5806	SAU2c0429 orf 2p	12938
S1M10000032E04	2780	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000032E08	2780	SAU102281	5633	SAU1c0037_0ff_130p	12346
S1M1000032E09	2782	SAU100521	5283	SAU1c0038_011_4p	12564
S1M10000032E09	2782	SAU101868	5565	SAU1c0036_orf_23p	12320
SIM10000032E10	2784	SAU101592	5490	SAU1c0036_6H_23p	. 1
S1M10000032E11	2785	SAU101392 SAU101999	5585	SAU1c0039_on_37p	12406
S1M10000032F01		SAU102001	5586		12423 12424
S1M10000032F01		SAU102001	5587	SAU1c0040_orf_102p SAU1c0040_orf_103p	12424
S1M10000032F04	1	SAU101271	5411	SAU1c0037_orf_90p	12423
S1M10000032F04	1	SAU101339	5422	SAU1c0037_0ff_90p	12399
S1M10000032F03		SAU102585	5703	SAU1c0038_off_81p	
S1M10000032F10		SAU201773	5834	SAU2c0446 orf 4p	12611
S1M10000032F10					12996
S1M10000032F11		SAU101189 SAU100964	5392	SAU1c0033_orf_25p SAU1c0044_orf_86p	12264 12641
S1M10000032F12	<u> </u>	SAU100710	L		
S1M10000032G02	2792	SAU200628	5311 5788	SAU1c0043_orf_54p SAU2c0334_orf_4p	12546
S1M1000032G02		·			12790
j .	2793	SAU100813	5334	SAU1c0036_orf_29p	12322
S1M10000032G04	2794	SAU101904	5573	SAU1c0044_orf_36p	12617
S1M10000032G06	1	SAU101509	5469	SAU1c0039_orf_81p	12418
S1M10000032G08	2796	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000032G10	2797	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000032G12	2798	SAU101084	5377	SAUIc0034_orf_4lp	12283

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000032H01	2799	SAU101445	5452	SAU1c0038_orf_47p	12382
SIM10000032H01	2799	SAU101446	5453	SAU1c0038_orf_48p	12383
SIM10000032H04	2800	SAU101868	5565	SAU1c0036_orf_23p	12320
SIM10000032H07	2801	SAU101797	5537	SAU1c0032_orf_17p	12221
SIM10000032H07	2801	SAU101798	5538	SAU1c0032_orf_18p	12222
SIM10000032H09	2802	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM10000032H11	2803	SAU202174	5845	SAU2c0412_orf_3p	12895
SIM10000032H11	2803	SAU301148	5888	#N/A	#N/A
S1M10000033A02	2804	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000033A02	2804	SAU301080	5885	SAU3c1287 orf 1p	13083
S1M10000033A07	2805	SAU200949	5800	SAU2c0380 orf 11p	12846
S1M10000033A08	2806	SAU101231	5399	SAU1c0035_orf_6p	12303
S1M10000033A10	2807	SAU202039	5843	SAU2c0452_orf_20p	13009
S1M10000033B02	2808	SAU101808	5548	SAU1c0032 orf 27p	12232
SIM10000033B07	2809	SAU102044	5593	SAU1c0039_orf_65p	12414
S1M10000033B08	2810	SAU101868	5565	SAU1c0036_orf_23p	12320
SIM10000033B11	2811	SAU100793	5329	SAU1c0028 orf 52p	12188
S1M10000033B11	2811	SAU301433	5895	SAU3c1420 orf 2p	13118
S1M10000033B12	2812	SAU101104	5382	SAU1c0029_orf_20p	12195
S1M10000033B12	2812	SAU103010	5753	SAU1c0029_orf_19p	12194
S1M10000033C04	2813	SAU102933	5744	SAU1c0039_orf_62p	12412
S1M10000033D02	2814	SAU102333	5644	SAU1c0045_orf_143p	12657
S1M10000033D03	2815	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000033D04	2816	SAU100745	5319	SAU1c0044 orf 233p	12596
SIM10000033D05	2817	SAU100301	5254	SAU1c0040 orf 91p	12452
S1M10000033D06	2818	SAU102113	5601	SAU1c0027_orf_2p	12178
S1M10000033D10	2819	SAU100813	5334	SAU1c0036_orf_29p	12322
SIM10000033D12	2820	SAU101360	5431	SAU1c0044 orf 109p	12555
S1M10000033E04	2821	SAU102318	5643	SAU1c0045_orf_60p	12707
S1M10000033E10	2822	SAU100162	5239	SAU1c0044 orf 206p	12583
SIM10000033E12	2823	SAU100770	5324	#N/A	#N/A
SIM10000033F02	2824	SAU101724	5514	SAU1c0016_orf_9p	12136
S1M10000033F03	2825	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000033F06	2826	SAU102449	5674	SAU1c0045_orf_22p	12677
S1M10000033F07	2827	SAU102044	5593	SAU1c0039 orf 65p	12414
S1M10000033F09	2828	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000033F11	2829	SAU100689	5308	SAU1c0036 orf 2p	12323
S1M10000033G05	2830	SAU101904	5573	SAU1c0044_orf_36p	12617
SIM10000033G07	2831	SAU101824	5554	SAU1c0038 orf 26p	12371
S1M10000033G09	2832	SAU102380	5654	SAU1c0033_orf_29p	12265
S1M10000033G10	2833	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000033G10	2833	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000033G11	2834	SAU101968	5581	SAU1c0028_orf_43p	12187
\$1M10000033G12	2835	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000033H01	2836	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000033H02	2837	SAU101907	5574	SAU1c0040 orf 79p	12442
S1M10000033H03	2838	SAU101833	5555	SAU1c0038 orf 34p	12373
SIM10000033H07	2839	SAU101996	5584	SAU1c0040_orf_99p	12456

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000033H08	2840	SAU101175	5388	SAU1c0031 orf 1p	12213
S1M10000033H09	2841	SAU100710	5311	SAU1c0043 orf 54p	12546
S1M10000033H10	2842	SAU100690	5309	#N/A	#N/A
S1M10000033H11	2843	SAU102453	5677	SAU1c0045 orf 19p	12669
S1M10000034A02	2844	SAU101197	5393	SAU1c0035 orf 60p	12300
S1M10000034A03	2845	SAU102939	5747	#N/A	#N/A
S1M10000034A04	2846	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000034A05	2847	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000034A08	2848	SAU101020	5368	SAU1c0045 orf 86p	12710
S1M10000034A09	2849	SAU100773	5326	SAU1c0038_orf_39p	12377
S1M10000034A11	2850	SAU102389	5656	SAU1c0033_orf_36p	12268
S1M10000034A12	2851	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000034B03	2852	SAU101907	5574	SAUIc0040_orf_79p	12442
S1M10000034B05	2853	SAU101630	5498	SAUIc0039 orf 4p	12410
S1M10000034B06	2854	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000034B06	2854	SAU102944	5749	SAU1c0041 orf 47p	12468
S1M10000034B07	2855	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000034B08	2856	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000034B09	2857	SAU101909	5575	SAU1c0040_orf_77p	12441
S1M10000034B10	2858	SAU101882	5569	SAUIc0025 orf 15p	12163
S1M10000034B12	2859	SAU200593	5786	SAU2c0327_orf_lp	12784
S1M10000034C02	2860	SAU100557	5291	SAUlc0044_orf_132p	12565
S1M10000034C06	2861	SAU200157	5776	#N/A	#N/A
S1M10000034C07	2862	SAU101343	5425	SAU1c0044_orf_40p	12619
S1M10000034C09	2863	SAU102281	5633	SAUlc0038_orf_4p	12384
S1M10000034C12	2864	SAU100859	5342	SAU1c0038_orf_87p	12402
S1M10000034D01	2865	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000034D05	2866	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000034D06	2867	SAU200157	5776	#N/A	#N/A
S1M10000034D07	2868	SAU100745	5319	SAU1c0044_orf_233p	12596
S1M10000034D08	2869	SAU102284	5635	SAU1c0038_orf_5p	12389
S1M10000034D08	2869	SAU201469	5816	SAU2c0438_orf_6p	12967
S1M10000034D10	2870	SAU102474	5681	SAU1c0026_orf_3lp	12174
S1M10000034D11	2871	SAU101881	5568	SAU1c0025_orf_14p	12162
S1M10000034D12	2872	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000034E01	2873	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000034E02	2874	SAU100557	5291	SAU1c0044_orf_132p	12565
S1M10000034E04	2875	SAU102602	5708	SAU1c0032_orf_5p	12249
\$1M10000034E05	2876	SAU100738	5317	SAU1c0044_orf_52p	12624
S1M10000034E06	2877	SAU100347	5262	SAU1c0036_orf_56p	12334
S1M10000034E06	2877	SAU100443	5274	SAU1c0036_orf_55p	12333
S1M10000034E07	2878	SAU100617	5300	SAU1c0035_orf_102p	12295
S1M10000034E10	2879	SAU102401	5661	SAU1c0030_orf_4p	12209
S1M10000034E11	2880	SAU101881	5568	SAU1c0025_orf_14p	12162
S1M10000034E12	2881	SAU200960	5801	SAU2c0377_orf_5p	12843
S1M10000034F01	2882	SAU202731	5850	#N/A	#N/A
S1M10000034F02	2883	SAU201621	5828	SAU2c0437_orf_4p	12966
SIM10000034F03	2884	SAU201971	5841	SAU2c0455_orf_17p	13015

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000034F03	2884	SAU301363	5894	#N/A	#N/A
S1M10000034F04	2885	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000034F05	2886	SAU101630	5498	SAU1c0039_orf_4p	12410
S1M10000034F07	2887	SAU101175	5388	SAU1c0031_orf_lp	12213
S1M10000034F08	2888	SAU202736	5851	SAU2c0426_orf_7p	12927
S1M10000034F09	2889	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000034F10	2890	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000034F12	2891	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000034G02	2892	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000034G03	2893	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000034G06	2894	SAU202174	5845	SAU2c0412 orf 3p	12895
S1M10000034G07	2895	SAU102380	5654	SAU1c0033_orf_29p	12265
S1M10000034G08	2896	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000034G09	2897	SAU102294	5639	SAU1c0044 orf 288p	12610
S1M10000034G09	2897	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000034G11	2898	SAU200558	5782	SAU2c0322_orf_5p	12777
S1M10000034G12	2899	SAU100557	5291	SAU1c0044 orf 132p	12565
S1M10000034H01	2900	SAU101293	5414	SAU1c0044 orf 61p	12631
S1M10000034H02	2901	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000034H03	2902	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000034H06	2903	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000034H07	2904	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000034H08	2905	SAU200740	5794	SAU2c0340 orf 3p	12798
S1M10000034H09	2906	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000034H10	2907	SAU102422	5666	SAU1c0030 orf 22p	12207
S1M10000035A03	2908	SAU101360	5431	SAU1c0044 orf 109p	12555
S1M10000035A08	2909	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000035A09	2910	SAU101350	5429	SAU1c0042_orf_109p	12487
S1M10000035A09	2910	SAU101351	5430	SAU1c0042_orf_108p	12486
S1M10000035A10	2911	SAU203296	5863	SAU2c0442 orf 18p	12983
S1M10000035A11	2912	SAU101756	5524	SAU1c0040 orf 82p	12445
S1M10000035A12	2913	SAU101455	5456	SAU1c0045 orf 250p	12686
S1M10000035A12	2913	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000035A12	2913	SAU301620	5899	SAU3c1478_orf_2p	13140
S1M10000035B01	2914	SAU102584	5702	SAU1c0043_orf_239p	12537
S1M10000035B03	2915	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000035B04	2916	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000035B08	2917	SAU103232	5769	SAU1c0045_orf_341p	12697
S1M10000035B11	2918	SAU101756	5524	SAU1c0040 orf 82p	12445
S1M10000035C01	2919	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000035C02	2920	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000035C04	2921	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000035C06	2922	SAU101497	5468	SAU1c0037_orf_66p	12361
SIM10000035C11	2923	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000035D01	2924	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000035D04	2925	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000035D06	2926	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000035D09	2927	SAU100970	5365	SAU1c0043 orf 197p	12529

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000035D12	2928	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000035E02	2929	SAU102883	5741	SAU1c0045_orf_38p	12702
S1M10000035E03	2930	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000035E04	2931	SAU103025	5755	SAU1c0029_orf_9p	12202
S1M10000035E08	2932	SAU100690	5309	#N/A	#N/A
S1M10000035E09	2933	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000035E12	2934	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000035F03	2935	SAU101092	5381	SAU1c0028_orf_9p	- 12192
S1M10000035F03	2935	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000035F04	2936	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000035F09	2937	SAU203296	5863	SAU2c0442_orf_18p	12983
SIM10000035F12	2938	SAU101427	5447	SAU1c0042_orf_144p	12500
S1M10000035F12	2938	SAU103204	5767	SAU1c0042_orf_143p	12499
SIM10000035G02	2939	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000035G09	2940	SAU203296	5863	SAU2c0442_orf_18p	12983
SIM10000035G11	2941	SAU101344	5426	SAU1c0044_orf_41p	12620
S1M10000035G12	2942	SAU101907	5574	SAU1c0040_orf_79p	12442
SIM10000035H01	2943	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000035H07	2944	SAU100313	5259	SAU1c0045_orf_153p	12661
SIM10000035H07	2944	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000035H07	2944	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000035H08	2945	SAU101772	5526	SAU1c0037_orf_34p	12351
S1M10000035H09	2946	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000035H09	2946	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000035H10	2947	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000035H11	2948	SAU101344	5426	SAU1c0044_orf_41p	12620
S1M10000036A02	2949	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000036A03	2950	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000036A04	2951	SAU200994	5802	SAU2c0428_orf_4p	12935
S1M10000036A05	2952	SAU101810	5549	SAU1c0032_orf_28p	12233
S1M10000036A05	2952	SAU101811	5550	SAU1c0032_orf_29p	12234
S1M10000036A05	2952	SAU300110	5865	SAU3c0533_orf_2p	13031
S1M10000036A08	2953	SAU101220	5396	SAU1c0044_orf_94p	12645
S1M10000036A11	2954	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000036A12	2955	SAU100813	5334	SAU1c0036_orf_29p	12322
S1M10000036B04	2956	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000036B04	2956	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000036B06	2957	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000036B07	2958	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000036B08	2959	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000036B11	2960	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000036B12	2961	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000036C01	2962	SAU100242	5246	SAU1c0036_orf_5p	12336
SIM10000036C03	2963	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000036C04	2964	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000036C05	2965	SAU100497	5280	SAU1c0018 orf 3p	12140
S1M10000036C06	2966	SAU100158	5238	SAU1c0040 orf 80p	12443
SIM10000036C07	2967	SAU101800	5540	SAU1c0032 orf 20p	12225

TABLE	ΙA

WO 01/70955

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000036C07	2967	SAU101801	5541	#N/A	#N/A
S1M10000036C09	2968	SAU102585	5703	SAU1c0044_orf_289p ·	12611
S1M10000036C09	2968	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000036C09	2968	SAU302685	5908	SAU3c1403_orf_lp	13113
S1M10000036C10	2969	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000036C10	2969	SAU101751	5521	SAU1c0040_orf_86p	12448
S1M10000036D02	2970	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000036D03	2971	SAU103038	5757	#N/A	#N/A
S1M10000036D06	2972	SAU103024	5754	SAU1c0029_orf_6p	12200
S1M10000036D08	2973	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000036D10	2974	SAU102933	5744	SAU1c0039_orf_62p	12412
S1M10000036D11	2975	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000036D11	2975	SAU101198	5394	SAU1c0035_orf_61p	12301 .
S1M10000036D12	2976	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000036E06	2977	SAU100432	5271	SAU1c0040_orf_88p	12450
S1M10000036E06	2977	SAU202756	5852	SAU2c0470_orf_1p	13027
S1M10000036E08	2978	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000036E11	2979	SAU101343	5425	SAU1c0044_orf_40p	12619
S1M10000036F06	2980	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000036F07	2981	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000036F08	2982	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000036F09	2983	SAU100532	5287	SAU1c0044_orf_198p	12580
S1M10000036F10	2984	SAU101586	5489	SAU1c0044_orf_242p	12598
S1M10000036F11	2985	SAU201506	5818	SAU2c0432_orf_18p	12946
S1M10000036G03	2986	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000036G07	2987	SAU102355	5651	SAU1c0040_orf_40p	12435
S1M10000036G08	2988	SAU102336	5646	SAU1c0045_orf_146p	12659
S1M10000036G11	2989	SAU101340	5423	SAU1c0038_orf_82p	12400
S1M10000036H01	2990	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000036H02	2991	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000036H03	2992	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000036H04	2993	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000036H05	2994	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000036H06	2995	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000036H08	2996	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000036H11	2997	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000037A02	2998	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000037A02	2998	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000037A03	2999	SAU100128	5231	#N/A	#N/A
S1M10000037A03	2999	SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000037A03	2999	SAU101576	5488	SAUIc0044_orf_105p	12554
S1M10000037A06	3000	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000037A08	3001	SAU102669	5728	SAU1c0024_orf_7p	12160
S1M10000037A09	3002	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000037A09	3002	SAU200916	5797	SAU2c0373_orf_4p	12838
S1M10000037A11	3003	SAU101436	5449	SAU1c0028_orf_23p	12183
S1M10000037A12	3004	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000037B03	3005	SAU101999	5585	SAU1c0040_orf_101p	12423

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID	Genemarked gene	full length ORF
	Sequi		(protein)	İ	Protein Seq
	_				ID .
S1M10000037B04	3006	SAU100767	5323	SAU1c0044_orf_192p	12579
S1M10000037B05	3007	SAU102578	5701	SAU1c0039_orf_61p	12411
S1M10000037B06	3008	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000037B06	3008	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000037B07	3009	SAU101915	5577	SAU1c0040_orf_72p	12439
S1M10000037B08	3010	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000037B10	3011	SAU101346	5427	SAU1c0044_orf_43p	12621
S1M10000037B11	3012	SAU101399	5443	SAU1c0036_orf_34p	12325
S1M10000037B12	3013	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000037C05	3014	SAU101482	5461	SAU1c0015_orf_10p	12123
S1M10000037C06	3015	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000037C07	3016	SAU101641	5501	SAU1c0029_orf_12p	12193
S1M10000037C08	3017	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000037C09	3018	SAU101818	5553	SAU1c0038_orf_20p	12369
S1M10000037C10	3019	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000037D04	3020	SAU102283	5634	SAU1c0006_orf_lp	12119
SIM10000037D05	3021	SAU100114	5228	SAU1c0043_orf_225p	12535
SIM10000037D06	3022	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000037D09	3023	SAU102246	5619	SAU1c0043_orf_30p	12542
S1M10000037D12	3024	SAU101999	5585	SAU1c0040_orf_101p	12423
S1M10000037E02	3025	SAU102447	5672	SAU1c0045_orf_24p	12685
S1M10000037E02	3025	SAU102448	5673	SAU1c0045_orf_23p	12681
S1M10000037E03	3026	SAU100813	5334	SAU1c0036_orf_29p	12322
S1M10000037E06	3027	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000037E08	3028	SAU100139	5234	SAU1c0032_orf_6p	12255
S1M10000037E08	3028	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000037E09	3029	SAU102049	5595	SAU1c0039_orf_68p	12416
S1M10000037E10	3030	SAU101444	5451	SAU1c0038_orf_46p	12381
S1M10000037E11	3031	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000037E12	3032	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000037F02	3033	SAU100776	5327	SAU1c0041_orf 72p	12482
S1M10000037F03	3034	SAU101339	5422	SAU1c0038_orf_81p	12399
S1M10000037F04	3035	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000037F05	3036	SAU101807	5547	SAU1c0032 orf 26p	12231
S1M10000037F06	3037	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000037F06	3037	SAU201773	5834	SAU2c0446 orf 4p	12996
S1M10000037F07	3038	SAU100793	5329	SAU1c0028 orf 52p	12188
SIM10000037F07	3038	SAU301433	5895	SAU3c1420 orf 2p	13118
S1M10000037F08	3039	SAU203001	5859	SAU2c0412 orf 15p	12894
SIM10000037F08	3039	SAU203007	5860	SAU2c0412_orf_10p	12893
SIM10000037F09	3040	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000037F10	3041	SAU200468	5781	SAU2c0429 orf 19p	12937
S1M10000037G01	3042	SAU102502	5690	SAU1c0045_orf_273p	12689
SIM10000037G01	3042	SAU102503	5691	SAU1c0045 orf 274p	12690
S1M10000037G02	3043	SAU100658	5303	SAU1c0038_orf_59p	12388
S1M10000037G03	3044	SAU101344	5426	SAU1c0044 orf_41p	12620
SIM1000037G06	3045	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000037G07	3046	SAU103038	5757	#N/A	#N/A
511110000057007		0.1010000	3/3/	W14/15	#IVA

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000037G08	3047	SAU100970	5365	SAUIc0043_orf_197p	12529
S1M10000037G10	3048	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000037H02	3049	SAU102059	5597	SAUIc0034_orf_5lp	12286
S1M10000037H03	3050	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000037H05	3051	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000037H07	3052	SAU101571	5483	SAUlc0044_orf_210p	12585
S1M10000037H08	3053	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000037H09	3054	SAU100140	5235	SAU1c0032 orf 7p	12258
S1M10000037H11	3055	SAU100608	5297	SAU1c0034 orf 69p	12293
S1MI0000038A04	3056	SAU101275	5412	SAU1c0044_orf_257p	12604
S1M10000038A07	3057	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000038A08	3058	SAU102059	5597	SAU1c0034_orf_5lp	12286
S1M10000038A09	3059	SAU100307	5257	SAU1c0036_orf_134p	12313
S1M10000038A11	3060	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000038A12	3061	SAU101799	5539	SAU1c0032 orf 19p	12223
S1M10000038B01	3062	SAU101483	5462	SAU1c0015 orf 11p	12124
S1M10000038B03	3063	SAU101360	5431	SAU1c0044 orf 109p	12555
S1M10000038B07	3064	SAU102433	5668	SAU1c0045 orf 37p	12701
S1M10000038B08	3065	SAU100308	5258	SAU1c0036 orf 133p	12312
S1M10000038B09	3066	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000038B09	3066	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038B12	3067	SAU102764	5734	SAU1c0044_orf_56p	12625
S1M10000038C01	3068	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000038C02	3069	SAU200657	5789	#N/A	#N/A
S1M10000038C06	3070	SAU101320	5420	SAU1c0015_orf_16p	12128
S1M10000038C08	3071	SAU102132	5605	SAU1c0027_orf_19p	12177
S1M10000038C10	3072	SAU101346	5427	SAU1c0044_orf_43p	12621
S1M10000038C10	3072	SAU101347	5428	SAU1c0044_orf_44p	12622
S1M10000038C11	3073	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000038C12	3074	SAU101792	5533	SAU1c0032_orf_13p	12217
S1M10000038D02	3075	SAU101842	5557	SAU1c0042_orf_9p	. 12510
S1M10000038D05	3076	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038D07	3077	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000038D08	3078	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000038D08	3078	SAU301275	5892	SAU3c1365_orf_2p	13103
S1M10000038D09	3079	SAU100887	5350	SAU1c0018_orf_15p	12138
S1M10000038D10	3080	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038D11	3081	SAU101300	5415	SAU1c0044_orf_113p	12557
S1M10000038D11	3081	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000038D12	3082	SAU100752	5322	SAU1c0043_orf_183p	12524
S1M10000038D12	3082	SAU100952	5358	SAU1c0043_orf_182p	12523
S1M10000038E01	3083	SAU101814	5551	SAU1c0032_orf_32p	12237
S1M10000038E02	3084	SAU101842	5557	SAU1c0042_orf_9p	12510
S1M10000038E03	3085	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000038E04	3086	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000038E05	3087	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000038E06	3088	SAU102231	5614	SAU1c0043_orf_18p	12527
S1M10000038E06	3088	SAU102232	5615	SAU1c0043_orf_19p	12530

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000038E07	3089	SAU200593	5786	SAU2c0327_orf_1p	12784
S1M10000038E10	3090	SAU201558	5823	SAU2c0434_orf_5p	12954
S1M10000038E12	3091	SAU100838	5337	SAU1c0031_orf_12p	12211
S1M10000038E12	3091	SAU100839	5338	SAU1c0031_orf_11p	12210
S1M10000038F03	3092	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000038F04	3093	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000038F04	3093	SAU100965	5364	SAU1c0044 orf 87p	12642
S1M10000038F05	3094	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000038F05	3094	SAU100965	5364	SAU1c0044 orf 87p	12642
S1M10000038F06	3095	SAU101189	5392	SAUIc0033 orf 25p	12264
S1M10000038F08	3096	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000038F09	3097	SAU201666	5830	SAU2c0442 orf 11p	12981
S1M10000038F10	3098	SAU101197	5393	SAU1c0035 orf 60p	12300
S1M10000038F11	3099	SAU100747	5320	SAU1c0044 orf 235p	12597
S1M10000038F12	3100	SAU202039	5843	SAU2c0452 orf 20p	13009
S1M10000038G01	3101	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000038G03	3102	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000038G04	3103	SAU100475	5276	SAU1c0036 orf 61p	12337
S1M10000038G06	3104	SAU101189	5392	SAU1c0033_orf 25p	12264
S1M10000038G08	3105	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000038G10	3106	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000038G11	3107	SAU100123	5230	SAU1c0043_orf_189p	12526
S1M10000038G11	3107	SAU102001	5586	SAU1c0040_orf_102p	12424
S1M10000038G12	3108	SAU101184	5391	SAU1c0035_orf_80p	12305
S1M10000038H03	3109	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000038H07	3110	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000038H09	3111	SAU102340	5647	SAU1c0045_orf_149p	12660
S1M10000038H11	3112	SAU101452	5455	SAU1c0045 orf 247p	12684
S1M10000039A02	3113	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000039A02	3113	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000039A05	i	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000039A05		SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000039A07	1	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000039A08	3116	SAU100522	5284	SAU1c0044_orf_249p	12599
S1M10000039A11	1	SAU100613	5299	SAU1c0015_orf_14p	12126
S1M10000039A12	3118	SAU301465	5896	SAU3c1429 orf 4p	13121
S1M10000039B02	3119	SAU101455	5456	SAU1c0045_orf_250p	12686
S1M10000039B02	3119	SAU200916	5797	SAU2c0373 orf 4p	12838
S1M10000039B06	3120	SAU102350	5649	SAU1c0040_orf_36p	12433
S1M10000039B07	3121	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000039B10	3122	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000039B10	3123	SAU301118	5886	SAU3c1305_orf_3p	13086
\$1M10000039B12	3123	SAU102252	5621	SAU1c0032_orf_48p	
S1M10000039C04		SAU100633			12241
S1M10000039C06	3125		5301	SAU1c0043_orf_147p	12515
S1M10000039C07	3126	SAU200657	5789	#N/A	#N/A
	3127	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000039C09	3128	SAU100414	5270	SAUIc0022_orf_24p	12148
S1M10000039C10	3129	SAU101543	5473	SAU1c0037_orf_130p	12346

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000039C11	3130	SAU200657	5789	#N/A	#N/A
S1M10000039D02	3131	SAU201403	5815	SAU2c0423_orf_3p	12913
S1M10000039D09	3132	SAU102294	5639	SAU1c0044_orf_288p	12610
S1M10000039D09	3132	SAU301080	5885	SAU3c1287_orf_1p	13083
S1M10000039D10	3133	SAU100323	5261	SAU1c0044_orf_171p	12575
S1M10000039E01	3134	SAU102264	5628	SAU1c0032_orf_60p	12250
S1M10000039E08	3135	SAU100412	5269	SAU1c0029_orf_38p	12197
S1M10000039E09	3136	SAU100056	5223	SAU1c0044_orf_176p	12577
S1M10000039E10	3137	SAU102394	5659	SAU1c0033 orf 41p	12271
S1M10000039E10	3137	SAU301118	5886	SAU3c1305 orf 3p	13086
S1M10000039E11	3138	SAU102473 -	5680	SAU1c0026 orf 30p	12173
S1M10000039F02	3139	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000039F03	3140	SAU102527	5693	SAUIc0032 orf 9p	12260
S1M10000039F05	3141	SAU100118	5229	SAU1c0015_orf_13p	12125
S1M10000039F07	3142	SAU102531	5694	SAU1c0045 orf 186p	12667
S1M10000039F08	3143	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000039F09	3144	SAU200157	5776	#N/A	#N/A
S1M10000039F10	3145	SAU100059	5224	SAUIc0045 orf 10p	12652
S1M10000039F12	3146	SAU101565	5480	SAU1c0022 orf 8p	12151
S1M10000039G03	3147	SAU101653	5504	SAU1c0042 orf 124p	12493
S1M10000039G04	3148	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000039G07	3149	SAU100952	5358	SAU1c0043 orf 182p	12523
S1M10000039G07	3149	SAU101039	5373	SAUIc0043 orf 181p	12522
S1M10000039G10	3150	SAU101815	5552	SAU1c0032 orf 33p	12238
S1M10000039H02	3151	SAU102585	5703	SAU1c0044 orf 289p	12611
S1M10000039H02	3151	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000039H03	3152	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000039H03	3152	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000039H03	3152	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000039H04	3153	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000039H06	3154	SAU102283	5634	SAU1c0006_orf_lp	12119
S1M10000039H07	3155	SAU100793	5329	SAU1c0028_orf_52p	12188
S1M10000039H07	3155	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000039H08	3156	SAU102440	5671	SAU1c0045_orf_30p	12692
S1M10000040A04	3157	SAU100040	5221	SAU1c0043_orf_217p	12533
S1M10000040A05	3158	SAU102671	5729	SAU1c0024_orf_9p	12161
S1M10000040A07	3159	SAU101028	5370	SAU1c0043 orf 7p	12552
SIM10000040A08	3160	SAU200157	5776	#N/A	#N/A
S1M10000040A10	3161	SAU103038	5757	#N/A	#N/A
S1M10000040A11	3162	SAU101801	5541	#N/A	#N/A
S1M10000040B01	3163	SAU101461	5457	SAU1c0045_orf_234p	12680
S1M10000040B03	3164	SAU102102	5600	SAU1c0045_orf_340p	12696
S1M10000040B07	3165	SAU101432	5448	SAU1c0028 orf 27p	12184
SIM10000040B11	3166	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000040C03	3167	SAU201971	5841	SAU2c0455_orf_17p	13015
S1M10000040C03	3167	SAU301363	5894	#N/A	#N/A
S1M10000040C04	3168	SAU102551	5698	SAU1c0045_orf_206p	12672
S1M10000040C05	3169	SAU102534	5696	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000040C06	3170	SAU101247	5405	SAUIc0043_orf_136p	12512
S1M10000040C07	3171	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000040C08	3172	SAU101197	5393	SAU1c0035_orf_60p	12300
S1M10000040C10	3173	SAU201810	5836	SAU2c0308_orf_2p	12769
S1M10000040C10	3173	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000040C10	3173	SAU301148	5888	#N/A	#N/A
S1M10000040C11	3174	SAU101869	5566	SAU1c0036_orf_24p	12321
S1M10000040D01	3175	SAU101806	5546	SAU1c0032_orf_25p	12230
S1M10000040D01	3175	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000040D03	3176	SAU102200	5611	SAUIc0045_orf_168p	12665
S1M10000040D03	3176	SAU102201	5612	SAU1c0045_orf_169p	12666
S1M10000040D08	3177	SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000040D09	3178	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000040D11	3179	SAU101546	5475	SAU1c0037 orf 133p	12349
S1M10000040E01	3180	SAU100916	5353	SAU1c0038 orf 71p	12394
S1M10000040E02	3181	SAU101845	5558	SAU1c0042 orf 7p	12506
S1M10000040E04	3182	SAU101546	5475	SAU1c0037 orf 133p	12349
S1M10000040E05	3183	SAU101632	5499	SAU1c0039 orf 3p	12407
S1M10000040E06	3184	SAU101545	5474	SAU1c0037 orf 132p	12348
S1M10000040E07	3185	SAU101006	5367	SAU1c0028 orf 59p	12190
S1M10000040E09	3186	SAU102605	5710	SAU1c0041 orf 49p	12470
S1M10000040E10	3187	SAU100714	5312	SAU1c0044 orf 74p	12635
S1M10000040E11	3188	SAU101226	5398	SAU1c0035 orf_2p	12298
S1M10000040E12	3189	SAU102503	5691	SAU1c0045 orf 274p	12690
S1M10000040E12	3189	SAU201380	5812	SAU2c0426_orf_11p	12922
S1M10000040F01	3190	SAU101226	5398	SAU1c0035_orf_2p	12298
S1M10000040F02	3191	SAU101614	5494	SAU1c0044 orf 9p	12649
S1M10000040F03	3192	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000040F04	3193	SAU100123	5230	SAU1c0043 orf 189p	12526
S1M10000040F04	3193	SAU102001	5586	SAU1c0040 orf 102p	12424
S1M10000040F04	3193	SAU103159	5762	SAU1c0045 orf 204p	12670
S1M10000040F04	3193	SAU201827	5837	SAU2c0449 orf 21p	13002
S1M10000040F05	3194	SAU102232	5615	SAU1c0043_orf_19p	12530
S1M10000040F06	3195	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000040F08	3196	SAU300713	5875	SAU3c1104 orf 1p	13058
S1M10000040F09	3197	SAU101610	5492	SAU1c0044 orf 5p	12629
S1M10000040F12	3198	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000040G01	3199	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000040G02	3200	SAU200561	5783	SAU2c0324_orf_3p	12779
S1M10000040G02	3200	SAU301773	5901	SAU3c1509_orf_2p	13157
S1M10000040G04	3201	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000040G07	3202	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000040G07	3202	SAU101752	5522	SAU1c0040_orf_85p	12346
S1M10000040G08	3203	SAU101421	5446	SAU1c0040_orf_138p	12447
S1M10000040H02	3204	SAU100773	5326	SAU1c0042_ori_138p	12377
S1M10000040H02		SAU100773	l	SAU1c0038_on_39p	
<u> </u>	3206		5270		12148
S1M10000040H04	3207	SAU200914	5796	SAU2c0373_orf_2p	12837
S1M10000040H05	3208	SAU101400	5444	SAU1c0036_orf_35p	12326

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000040H07	3209	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000040H10	3210	SAU202039	5843	SAU2c0452 orf 20p	13009
S1M1000004LA03	3211	SAU102054	5596	SAU1c0039_orf_74p	12417
S1M10000041B02	3212	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000041B03	3213	SAU101592	5490	SAU1c0039_orf_37p	12406
S1M10000041B05	3214	SAU101798	5538	SAU1c0032_orf_18p	12222
SIM10000041B06	3215	SAU301620	5899	SAU3c1478 orf 2p	13140
S1M10000041B07	3216	SAU101145	5384	SAU1c0035 orf 43p	12299
S1M10000041B12	3217	SAU102725	5733	SAU1c0036 orf 68p	12338
S1M10000041C08	3218	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000041C08	3218	SAU102944	5749	SAU1c0041_orf_47p	12468
S1M10000041C10	3219	SAU101784	5530	SAU1c0037_orf_46p	12355
S1M10000041C11	3220	SAU101570	5482	SAU1c0044_orf_209p	12584
S1M10000041D06	3221	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000041D07	3222	SAU102639	5724	#N/A	#N/A
SIM10000041D08	3223	SAU200030	5772	SAU2c0282 orf 3p	12745
SIM10000041D10	3224	SAU101573	5485	SAU1c0044 orf 212p	12587
S1M10000041D12	3225	SAU102658	5726	SAU1c0045_orf_121p	12654
S1M10000041E03	3226	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000041E06	3227	SAU101996	5584	SAU1c0040 orf 99p	12456
S1M10000041E09	3228	SAU201236	5808	SAU2c0409_orf_10p	12891
SIM10000041E12	3229	SAU100952	5358	SAU1c0043 orf 182p	12523
SIM10000041E03	3230	SAU101571	5483	SAU1c0044 orf 210p	12585
S1M10000041F03	3230	SAU101572	5484	SAU1c0044 orf 211p	12586
S1M10000041F11	3231	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000041F12	3232	SAU102480	5684	SAU1c0039 orf 100p	12404
SIM10000041F12	3232	SAU102481	5685	SAU1c0039_orf_99p	12422
SIM10000041G01	3233	SAU100532	5287	SAU1c0044_orf_198p	12580
SIM10000041G06	3234	SAU102345	5648	SAU1c0045 orf_125p	12655
SIM10000041G08	3235	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000041G10	3236	SAU100866	5344	SAU1c0044 orf 100p	12553
SIM10000041G11	3237	SAU101802	5542	SAU1c0032 orf 22p	12227
S1M10000041H01	3238	SAU101198	5394	SAU1c0035_orf_61p	12301
S1M10000041H04	3239	SAU100497	5280	SAU1c0018_orf_3p	12140
S1M10000041H05	3240	SAU100242	5246	SAU1c0036 orf 5p	12336
SIM10000041H07	3241	SAU102486	5687	SAU1c0039_orf_93p	12420
SIM10000041H07	3241	SAU102487	5688	SAU1c0039 orf 92p	12419
S1M10000041H07	3241	SAU301133	5887	SAU3c1311 orf_3p	13087
S1M10000041H09	3242	SAU103169	5763	SAU1c0045_orf_230p	12678
S1M10000041H09	3243	SAU201236	5808	SAU2c0409 orf_10p	12891
S1M10000042A04	3244	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000042A05	3243	SAU102433	5701	SAU1c0039_orf_61p	12/01
SIM10000042A07	3246	SAU102378 SAU100633	5301	SAU1c0043_orf_147p	12515
S1M10000042A07		SAU100033	5467	SAU1c0043_0ff_147p	12313
I .	3248	1			i i
S1M10000042A11	3249	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000042A12	3250	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000042B02	3251	SAU202736	5851	SAU2c0426_orf_7p	12927
S1M10000042B03	3252	SAU101907	5574	SAU1c0040_orf_79p	12442

Cione name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000042B06	3253	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000042B07	3254	SAU101343	5425	SAU1c0044_orf_40p	12619
S1M10000042B08	3255	SAU100443	5274	SAU1c0036_orf_55p	12333
S1M10000042B09	3256	SAU101802	5542	SAU1c0032_orf_22p	12227
S1M10000042B10	3257	SAU100141	5236	SAU1c0032 orf 8p	12259
S1M10000042B10	3257	SAU102527	5693	SAU1c0032_orf_9p	12260
SIM10000042B11	3258	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000042B12	3259	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000042C02	3260	SAU100617	5300	SAU1c0035_orf_102p	12295
SIM10000042C06	3261	SAU102032	5591	SAU1c0029_orf_47p	12198
S1M10000042C10	3262	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000042C11	3263	SAU103037	5756	SAU1c0044_orf_303p	12613
S1M10000042D04	3264	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000042D07	3265	SAU101632	5499	SAU1c0039 orf 3p	12407
S1M10000042D10	3266	SAU203296	5863	SAU2c0442 orf 18p	12983
S1M10000042D11	3267	SAU102663	5727	SAU1c0024 orf 2p	12158
S1M10000042E03	3268	SAU101495	5467	SAU1c0037 orf 65p	12360
S1M10000042E06	3269	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000042E08	3270	SAU103198	5766	#N/A	#N/A
S1M10000042F01	3271	SAU102117	5603	SAU1c0027 orf 6p	12181
S1M10000042F02	3272	SAU101891	5571	SAU1c0034_orf_30p	12281
S1M10000042F05	3273	SAU101652	5503	SAU1c0042_orf_123p	12492
S1M10000042F06	3274	SAU100773	5326	SAU1c0038 orf 39p	12377
S1M10000042F08	3275	SAU100162	5239	SAU1c0044 orf_206p	12583
SIM10000042F09	3276	SAU100246	5247	SAU1c0042_orf_130p	12496
S1M10000042F09	3276	SAU300998	5881	SAU3c1253_orf_3p	13077
S1M10000042F10	3277	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000042F11	3278	SAU101653	5504	SAU1c0042_orf_124p	12493
S1M10000042G01	3279	SAU100140	5235	SAU1c0032_orf_7p	12258
S1M10000042G03	3280	SAU101220	5396	SAU1c0044 orf 94p	12645
SIM10000042G08	3281	SAU101907	5574	SAU1c0040 orf_79p	12442
S1M10000042G09	3282	SAU100158	5238	SAU1c0040 orf 80p	12443
SIM10000042G12	3283	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000042H05	3284	SAU101491	5464	SAU1c0025_orf_20p	12165
SIM10000042H07	3285	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000042H11	3286	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000043A02	3287	SAU203001	5859	SAU2c0412_orf_15p	12894
S1M10000043A03	3288	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000043A04	3289	SAU200088	5775	SAU2c0159_orf_lp	12724
S1M10000043A06	3290	SAU100077	5226	SAU1c0043_orf_178p	12520
S1M10000043A07	3291	SAU101752	5522	SAU1c0040 orf_85p	12447
S1M10000043A08	3292	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000043A10	3293	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000043A11	3294	SAU100865	5343	SAU1c0044_orf_99p	12648
S1M10000043A12	3295	SAU100887	5350	SAU1c0018 orf 15p	12138
S1M10000043B01	3296	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000043B02	3297	SAU100059	5224	SAU1c0045 orf 10p	12652
SIM10000043B07		SAU101922	5578	SAU1c0040_orf_66p	12438
		L			1

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000043B07	3298	SAU200345	5779	SAU2c0292_orf_3p	12751
S1M10000043B08	3299	SAU100313	5259	SAU1c0045_orf_153p	12661
S1M10000043B08	3299	SAU100359	5264	SAU1c0032_orf_35p	12239
S1M10000043B08	3299	SAU200297	5778	SAU2c0274_orf_2p	12739
S1M10000043B09	3300	SAU100521	5283	SAU1c0044_orf_250p	12600
S1M10000043B10	3301	SAU100436	5273	SAU1c0023_orf_20p	12154
S1M10000043B12	3302	SAU102142	5606	SAU1c0041_orf_13p	12457
S1M10000043C02	3303	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000043C07	3304	SAU101784	5530	SAU1c0037 orf 46p	12355
S1M10000043C11	3305	SAU201403	5815	SAU2c0423 orf 3p	12913
S1M10000043C12	3306	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000043D01	3307	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000043D02	3308	SAU301465	5896	SAU3c1429 orf 4p	13121
S1M10000043D04	3309	SAU200928	5798	SAU2c0365 orf_5p	12815
S1M10000043D10	3310	SAU102631	5721	SAU1c0045 orf 94p	12712
S1M10000043D12	3311	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000043D12	3311	SAU301004	5882	SAU3c1255 orf 1p	13079
S1M10000043E02	3312	SAU100793	5329	SAU1c0028 orf 52p	12188
S1M10000043E02	3312	SAU301433	5895	SAU3c1420_orf_2p	13118
S1M10000043E03	3313	SAU102032	5591	SAU1c0029_orf_47p	12198
S1M10000043E05	3314	SAU102067	5598	SAU1c0034_orf_54p	12287
S1M10000043E07	3315	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000043E08	3316	SAU101344	5426	SAU1c0044_orf_4lp	12620
S1M10000043E10	3317	SAU100186	5242	SAU1c0036_orf_19p	12317
S1M10000043E11	3318	SAU102498	5689	SAU1c0045_orf_270p	12688
S1M10000043E11	3318	SAU201381	5813	SAU2c0426_orf_16p	12923
S1M10000043E12	3319	SAU101752	5522	SAU1c0040 orf 85p	12447
S1M10000043F01	3320	SAU101797	5537	SAU1c0032 orf 17p	12221
S1M10000043F01	3320	SAU101798	5538	SAU1c0032_orf_18p	12222
S1M10000043F05	3321	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000043F07	3322	SAU102447	5672	SAU1c0045 orf 24p	12685
S1M10000043F07	3322	SAU102448	5673	SAU1c0045_orf_23p	12681
S1M10000043F08	3323	SAU101344	5426	SAU1c0044_orf_41p	12620
S1M10000043F09	3324	SAU101801	5541	#N/A	#N/A
S1M10000043G01	3325	SAU100059	5224	SAU1c0045 orf 10p	12652
S1M10000043G04	3326	SAU102423	5667	SAU1c0030_orf_23p	12208
S1M10000043G05	3327	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000043G09	3328	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000043G09	3328	SAU201773	5834	SAU2c0446 orf 4p	12996
S1M10000043G10	3329	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000043H01	3330	SAU101797	5537	SAU1c0032 orf 17p	12221
S1M10000043H01	3330	SAU101798	5538	SAU1c0032_orf_18p	12222
\$1M10000043H03	3331	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000043H03	3331	SAU101804	5544	#N/A	#N/A
S1M10000043H04	3332	SAU100128	5231	#N/A	#N/A
S1M10000043H04	3332	SAU10128 SAU101549	5476	SAU1c0043_orf_64p	12549
S1M10000043H04	3332	SAU101576	5488	SAU1c0044_orf_105p	12549
S1M10000043H04	3333	SAU200058	5773	SAU2c0134_orf_lp	12719
COHEFUCIOUTALE	3333	3AU200038	31/3	JOAU2CUL94_OTT_IP	12/19 .

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000043H05	3333	SAU200059	5774	SAU2c0134_orf_3p	12720
S1M10000043H06	3334	SAU102417	5663	SAU1c0030_orf_17p	12204
S1M10000043H06	3334	SAU102863	5737	#N/A	#N/A
S1M10000043H09	3335	SAU302950	5914	SAU3c1512_orf_12p	13160
S1M10000043H10	3336	SAU101024	5369	SAU1c0045_orf_90p	12711
S1M10000043H11	3337	SAU101907	5574	SAU1c0040_orf_79p	12442
S1M10000044A02	3338	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000044A06	3339	SAU101777	5527	SAU1c0037_orf_39p	12352
S1M10000044A08	3340	SAU101175	5388	SAU1c0031_orf_lp	12213
SIM10000044A09	3341	SAU102292	5638	SAU1c0038_orf_10p	12368
S1M10000044A11	3342	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000044A12	3343	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000044B01	3344	SAU102268	5630	SAU1c0032_orf_63p	12252
S1M10000044B02	3345	SAU101968	5581	SAU1c0028_orf_43p	12187
SIM10000044B05	3346	SAU100690	5309	#N/A	#N/A
S1M10000044B06	3347	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000044B06	3347	SAU102881	5740	SAU1c0032_orf_4p	12242
S1M10000044B08	3348	SAU101752	5522	SAU1c0040_orf_85p	12447
S1M10000044B11	3349	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000044B12	3350	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000044C04	3351	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000044C06	3352	SAU101614	5494	SAU1c0044_orf_9p	12649
S1M10000044C07	3353	SAU100964	5363	SAU1c0044 orf 86p	12641
S1M10000044C07	3353	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000044C08	3354	SAU102909	5743	SAU1c0036_orf_16p	12315
S1M10000044C11	3355	SAU101793	5534	SAU1c0032_orf_I4p	12218
S1M10000044C12	3356	SAU102280	5632	SAU1c0038_orf_3p	12378
SIM10000044D01	3357	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000044D01	3357	SAU102880	5739	SAU1c0032_orf_lp	12224
SIM10000044D04	3358	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000044D06	3359	SAU101300	5415	SAU1c0044_orf_113p	12557
S1M10000044D06	3359	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000044D08	3360	SAU102270	5631	SAU1c0032_orf_65p	12253
S1M10000044D09	3361	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000044D10	3362	SAU201197	5806	SAU2c0429_orf_2p	12938
S1M10000044D11	3363	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000044D12	3364	SAU102231	5614	SAU1c0043_orf_18p	12527
S1M10000044D12	3364	SAU102232	5615	SAU1c0043_orf_19p	12530
S1M10000044E01	3365	SAU101371	5435	SAU1c0033_orf_7p	12275
S1M10000044E02	3366	SAU102283	5634	SAU1c0006_orf_lp	12119
S1M10000044E06	3367	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000044E07	3368	SAU301829	5902	SAU3c1515_orf_7p	13162
SIM10000044E09	3369	SAU101320	5420	SAU1c0015_orf_16p	12128
SIM10000044E10	3370	SAU100497	5280	SAU1c0018_orf_3p	12140
SIM10000044E11	3371	SAU101270	5410	SAU1c0037_orf_89p	12365
S1M10000044F02	3372	SAU101632	5499	SAU1c0039_orf_3p	12407
S1M10000044F06	3373	SAU101756	5524	SAU1c0040 orf 82p	12445
SIM10000044F08	3374	SAU101262	5406	SAU1c0042_orf_113p	12488

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000044F10	3375	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000044F10	3375	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000044G02	3376	SAU102933	5744	SAU1c0039_orf_62p	12412
S1M10000044G05	3377	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000044G08	3378	SAU102601	5707	SAU1c0041_orf_46p	12467
S1M10000044G08	3378	SAU102606	5711	SAU1c0041_orf_50p	12471
S1M10000044G10	3379	SAU101092	5381	SAU1c0028_orf_9p	12192
S1M10000044G10	3379	SAU202882	5855	SAU2c0381_orf_3p	12848
S1M10000044G11	3380	SAU101546	5475	SAU1c0037_orf_133p	12349
S1M10000044H06	3381	SAU100964	5363	SAU1c0044_orf_86p	12641
S1M10000044H06	3381	SAU100965	5364	SAU1c0044_orf_87p	12642
S1M10000044H07	3382	SAU100595	5294	SAU1c0043_orf_62p	12547
S1M10000044H08	3383	SAU101543	5473	SAU1c0037_orf_130p	12346
S1M10000044H09	3384	SAU100886	5349	SAU1c0018_orf_16p	12139
S1M10000044H09	3384	SAU100887	5350	SAU1c0018 orf 15p	12138
S1M10000044H10	3385	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000044H11	3386	SAU102578	5701	SAU1c0039 orf 61p	12411
S1M10000045A02	3387	SAU100866	5344	SAU1c0044 orf 100p	12553
S1M10000045A06	3388	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000045A07	3389	SAU102378	5653	SAU1c0040 orf 61p	12437
S1M10000045A08	3390	SAU102336	5646	SAU1c0045_orf_146p	12659
S1M10000045A12	3391	SAU201765	5833	SAU2c0309 orf 5p	12770
S1M10000045B01	3392	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000045B02	3393	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000045B03	3394	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000045B07	3395	SAU101803	5543	SAU1c0032_orf_23p	12228
S1M10000045B10	3396	SAU200468	5781	SAU2c0429_orf_19p	12937
S1M10000045B11	3397	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000045B12	3398	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000045C02	3399	SAU100690	5309	#N/A	#N/A
S1M10000045C03	3400	SAU100887	5350	SAUIc0018 orf 15p	12138
S1M10000045C04	3401	SAU102286	5636	SAU1c0038_orf_6p	12393
S1M10000045C04	3401	SAU102287	5637	SAU1c0038_orf_7p	12398
S1M10000045C05	3402	SAU101571	5483	SAU1c0044_orf_210p	12585
S1M10000045C07	3403	SAU101573	5485	SAU1c0044_orf_212p	12587
S1M10000045C09	3404	SAU101744	5520	SAU1c0037_orf_94p	12367
S1M10000045C09	3404	SAU300191	5868	SAU3c0672_orf_lp	13037
S1M10000045D01	3405	SAU101893	5572	SAUIc0034_orf_32p	12282
S1M10000045D03	3406	SAU101599	5491	SAUIc0041_orf_5p	12478
S1M10000045D07	3407	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000045D08	3408	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000045D09	3409	SAU101572	5484	SAU1c0044_orf_211p	12586
S1M10000045D10	3410	SAU100866	5344	SAU1c0044_orf_100p	12553
S1M10000045D11	3411	SAU101492	5465	SAU1c0025 orf 21p	12166
S1M10000045D11	3411	SAU101493	5466	SAU1c0025_orf_22p	12167
S1M10000045D12	3412	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000045D12	3412	SAU101801	5541	#N/A	#N/A
S1M10000045E04	3413	SAU102132	5605	SAU1c0027_orf_19p	12177

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000045E05	3414	SAU101491	5464	SAU1c0025_orf_20p	12165
S1M10000045E08	3415	SAU201752	5832	SAU2c0436 orf 19p	12963
SIM10000045E09	3416	SAU101794	5535	#N/A	#N/A
S1M10000045E10	3417	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000045E11	3418	SAU100970	5365	SAU1c0043_orf_197p	12529
S1M10000045E12	3419	SAU100547	5290	SAU1c0032_orf_3p	12240
S1M10000045F04	3420	SAU102241	5617	SAU1c0043_orf_25p	12539
S1M10000045F05	3421	SAU100114	5228	SAU1c0043_orf_225p	12535
S1M10000045F08	3422	SAU200657	5789	#N/A	#N/A
S1M10000045F11	3423	SAU102117	5603	SAU1c0027_orf_6p	12181
S1M10000045F12	3424	SAU101806	5546	SAU1c0032 orf 25p	12230
S1M10000045G03	3425	SAU102059	5597	SAU1c0034_orf_5lp	12286
S1M10000045G06	3426	SAU101400	5444	SAU1c0036_orf_35p	12326
S1M10000045G07	3427	SAU101561	5479	SAU1c0022_orf_4p	12149
S1M10000045G08	3428	SAU100690	5309	#N/A	#N/A
S1M10000045G10	3429	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000045G12	3430	SAU101400	5444	SAU1c0036_orf_35p	12326
SIM10000045H06	3431	SAU200928	5798	SAU2c0365_orf_5p	12815
SIM10000045H10	3432	SAU100414	5270	SAU1c0022_orf_24p	12148
S1M10000045H11	3433	SAU100414	5270	SAU1c0022_orf_24p	12148
SIM10000046A03	3434	SAU202731	5850	#N/A	#N/A
SIM10000046A04	3435	SAU100062	5225	SAU1c0035_orf_98p	12309
S1M10000046A04	3435	SAU100231	5245	#N/A	#N/A
S1M10000046A06	3436	SAU101383	5438	SAU1c0022_orf_20p	12147
S1M10000046A08	3437	SAU200994	5802	SAU2c0428_orf_4p	12935
S1M10000046A09	3438	SAU100315	5260	SAU1c0037_orf_62p	12358
S1M10000046A11	3439	SAU100432	5271	SAU1c0040 orf 88p	12450
S1M10000046A11	3439	SAU100433	5272	SAU1c0040_orf_87p	12449
S1M10000046A12	3440	SAU101814	5551	SAU1c0032 orf 32p	12237
S1M10000046B01	3441	SAU102334	5645	SAU1c0045_orf_144p	12658
S1M10000046B03	3442	SAU101039	5373	SAU1c0043_orf_181p	12522
S1M10000046B04	3443	SAU101797	5537	SAU1c0032 orf 17p	12221
S1M10000046B05	3444	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000046B07	3445	SAU100866	5344	SAU1c0044 orf 100p	12553
S1M10000046B08	3446	SAU101365	5432	SAU1c0044_orf_112p	12556
SIM10000046B09	3447	SAU100866	5344	SAU1c0044_orf_100p	12553
SIM10000046B11	3448	SAU102541	5697	SAU1c0045_orf_195p	12668
SIM10000046B12	3449	SAU101400	5444	SAU1c0036_orf_35p	12326
SIM10000046C02	3450	SAU200601	5787	#N/A	#N/A
SIM10000046C04	3451	SAU100118	5229	SAU1c0015_orf_13p	12125
S1M10000046C05	3452	SAU101159	5387	SAU1c0036_orf_46p	12331
S1M10000046C06	3453	SAU102585	5703	SAU1c0044_orf_289p	12611
S1M10000046C06	3453	SAU201773	5834	SAU2c0446_orf_4p	12996
S1M10000046C07	3454	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000046C08	3455	SAU100414	5270	SAU1c0022 orf 24p	12148
S1M10000046C11	3456	SAU102144	5608	SAU1c0041_orf_15p	12459
S1M10000046C12	3457	SAU100313	5259	SAU1c0045 orf 153p	12661
SIM10000046C12	3457	SAU100359	5264	SAU1c0032 orf 35p	12239

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
S1M10000046D01	3458	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000046D02	3459	SAU102144	5608	SAU1c0041 orf 15p	12459
S1M10000046D03	3460	SAU101857	5560	SAU1c0044 orf 156p	12569
S1M10000046D04	3461	SAU102433	5668	SAU1c0045_orf_37p	12701
S1M10000046D05	3462	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000046D08	3463	SAU101495	5467	SAU1c0037_orf_65p	12360
S1M10000046D09	3464	SAU100679	5305	SAU1c0018 orf 14p	12137
S1M10000046D10	3465	SAU101808	5548	SAU1c0032 orf 27p	12232
S1M10000046D11	3466	SAU100496	5279	SAU1c0041_orf_83p	12484
S1M10000046D11	3466	SAU301004	5882	SAU3c1255 orf 1p	13079
S1M10000046D12	3467	SAU100496	5279	SAU1c0041 orf 83p	12484
S1M10000046D12	3467	SAU301004	5882	SAU3c1255_orf_lp	13079
S1M10000046E01	3468	SAU101610	5492	SAU1c0044 orf 5p	12629
S1M10000046E02	3469	SAU101857	5560	SAU1c0044_orf_156p	12569
S1M10000046E04	3470	SAU101800	5540	SAU1c0032_orf_20p	12225
S1M10000046E04	3470	SAU101801	5541	#N/A	#N/A
S1M10000046E07	3471	SAU100521	5283	SAU1c0044 orf 250p	12600
S1M10000046E08	3472	SAU102283	5634	SAU1c0006_orf_1p	12119
S1M10000046E10	3473	SAU102283	5634	SAU1c0006_orf_lp	12119
S1M10000046F01	3474	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000046F02	3475	SAU100546	5289	SAU1c0032_orf_2p	12235
S1M10000046F02	3475	SAU102880	5739	SAU1c0032_orf_1p	12224
S1M10000046F05	3476	SAU102671	5729	SAU1c0024_orf_9p	12161
S1M10000046F06	3477	SAU100702	5310	SAU1c0029_orf 34p	12196
S1M10000046F06	3477	SAU300825	5878	SAU3c1171_orf_lp	13068
\$1M10000046F08	3478	SAU102297	5640	SAU1c0045_orf_4lp	12704
S1M10000046F09	3479	SAU100517	5282	#N/A	#N/A
\$1M10000046F10	3480	SAU102059	5597	SAU1c0034_orf_51p	12286
S1M10000046F12	3481	SAU101365	5432	SAU1c0044_orf_112p	12556
S1M10000046G01	3482	SAU200752	5795	SAU2c0354 orf 5p	12809
S1M10000046G01	3482	SAU300975	5880	SAU3c1240 orf 3p	13075
S1M10000046G02	3483	SAU101571	5483	SAU1c0044 orf 210p	12585
S1M10000046G03	3484	SAU100773	5326	SAUIc0038_orf_39p	12377
S1M10000046G04	3485	SAU100436	5273	SAU1c0023_orf_20p	12154
S1M10000046G07	3486	SAU101866	5564	SAU1c0036 orf 21p	12319
S1M10000046G09	3487	SAU102663	5727	SAU1c0024 orf 2p	12158
S1M10000046G10	3488	SAU101756	5524	SAU1c0040_orf_82p	12445
S1M10000046H01	3489	SAU101445	5452	SAUIc0038 orf 47p	12382
S1M10000046H01	3489	SAU101446	5453	SAU1c0038_orf_48p	12383
S1M10000046H10	3490	SAU200928	5798	SAU2c0365 orf 5p	12815
S1M10000047A03	3491	SAU100157	5237	SAUIc0040_orf_8lp	12444
S1M10000047A04	3492	SAU300572	5873	SAU3c1019_orf_lp	13051
S1M10000047A05	3493	SAU101805	5545	SAU1c0032_orf_24p	12229
S1M10000047A06	3494	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000047A06	3494	SAU301030	5883	SAU3c1268_orf_lp	13080
S1M10000047A07	3495	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000047A08	3496	SAU102602	5708	SAU1c0032_orf_5p	12249
SIM10000047A09	3497	SAU101271	5411	SAU1c0037_orf_90p	12366

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
SIM10000047A10	3498	SAU100751	5321	SAU1c0036_orf_59p	12335
S1M10000047A11	3499	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000047A12	3500	SAU100300	5253	SAU1c0040_orf_90p	12451
S1M10000047B02	3501	SAU101791	5532	SAU1c0032_orf_12p	12216
S1M10000047B04	3502	SAU101366	5433	SAU1c0033_orf_2p	12266
S1M10000047B05	3503	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000047B06	3504	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000047B08	3505	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000047B09	3506	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000047B10	3507	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000047B12	3508	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000047C01	3509	SAU100275	5252	SAU1c0036_orf_15p	12314
S1M10000047C02	3510	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000047C03	3511	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000047C04	3512	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047C06	3513	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000047C08	3514	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000047C09	3515	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047C11	3516	SAU201775	5835	SAU2c0446_orf_4p	12996
S1M10000047C11	3516	SAU301030	5883	SAU3c1268_orf_lp	13080
S1M10000047C12	3517	SAU101868	5565	SAU1c0036_orf_23p	12320
SIM10000047D02	3518	SAU101387	5440	SAU1c0038_orf_52p	12386
S1M10000047D03	3519	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000047D04	3520	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000047D05	3521	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047D09	3522	SAU100921	5355	SAU1c0038_orf_76p	12396
S1M10000047D10	3523	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000047D11	3524	SAU103038	5757	#N/A	#N/A
S1M10000047D12	3525	SAU101175	5388	SAU1c0031_orf_1p	12213
S1M10000047E01	3526	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000047E02	3527	SAU100131	5232	SAU1c0043_orf_156p	12517
S1M10000047E03	3528	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000047E04	3529	SAU101996	5584	SAU1c0040_orf_99p	12456
S1M10000047E05	3530	SAU101815	5552	SAU1c0032_orf_33p	12238
S1M10000047E06	3531	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000047E08	3532	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000047E09	3533	SAU100810	5333	SAU1c0037_orf_llp	12343
S1M10000047E10	3534	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000047E11	3535	SAU101156	5386	SAU1c0036_orf_12p	12311
S1M10000047E12	3536	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000047F02	3537	SAU100158	5238	SAU1c0040_orf_80p	12443
S1M10000047F03	3538	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000047F04	3539	SAU300572	5873	SAU3c1019_orf_lp	13051
S1M10000047F05	3540	SAU101271	5411	SAU1c0037_orf_90p	12366
S1M10000047F06	3541	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000047F07	3542	SAU102602	5708	SAU1c0032_orf_5p	12249
S1M10000047F08	3543	SAU101242	5404	SAU1c0044_orf_18p	12578
S1M10000047F09	3544	SAU100157	5237	SAU1c0040_orf_81p	12444

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S1M10000047F10	3545	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000047F11	3546	SAU101805	5545	SAU1c0032 orf 24p	12229
S1M10000047F12	3547	SAU101808	5548	SAU1c0032_orf_27p	12232
S1M10000047G01	3548	SAU101369	5434	SAU1c0033_orf_5p	12274
S1M10000047G02	3549	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000047G04	3550	SAU101341	5424	SAU1c0044_orf_38p	12618
S1M10000047G05	3551	SAU100684	5306	SAU1c0044 orf 68p	12632
S1M10000047G05	3551	SAU100685	5307	SAU1c0044 orf 69p	12633
S1M10000047G06	3552	SAU100141	5236	SAU1c0032 orf 8p	12259
SIM10000047G07	3553	SAU101798	5538	SAU1c0032 orf_18p	12222
S1M10000047G08	3554	SAU101028	5370	SAU1c0043 orf 7p	12552
S1M10000047G09	3555	SAU100810	5333	SAU1c0037 orf_11p	12343
S1M10000047G10	3556	SAU102607	5712	SAU1c0041_orf_51p	12472
S1M10000047H03	3557	SAU201571	5824	SAU2c0447 orf_17p.	12997
S1M10000047H04	3558	SAU102200	5611	SAU1c0045_orf_168p	12665
SIM10000047H05	3559	SAU102452	5676	SAU1c0045_orf_20p	12674
S1M10000047H06	3560	SAU103038	5757	#N/A	#N/A
SIM10000047H07	3561	SAU200006	5770	SAU2c0157 orf_lp	12723
S1M10000047H08	3562	SAU101798	5538	SAU1c0032 orf_18p	12222
S1M10000047H09	3563	SAU102578	5701	SAU1c0039 orf 61p	12411
SIM10000047H11	3564	SAU101028	5370	SAU1c0043 orf 7p	12552
S1M10000048A02	3565	SAU201571	5824	SAU2c0447_orf_17p	12997
S1M10000048A03	3566	SAU100866	5344	SAU1c0044 orf_100p	12553
SIM10000048A04	3567	SAU103038	5757	#N/A	#N/A
S1M10000048A05	3568	SAU101868	5565	SAU1c0036_orf_23p	12320
S1M10000048A06	3569	SAU100157	5237	SAU1c0040 orf 8ip	12444
SIM10000048A07	3570	SAU101156	5386	SAU1c0036 orf_12p	12311
S1M10000048A09	3571	SAU100158	5238	SAU1c0040_orf_80p	12443
SIM10000048A10	3572	SAU201571	5824	SAU2c0447_orf_17p	12997
SIM10000048A11	3573	SAU101807	5547	SAU1c0032 orf_26p	12231
SIM10000048A12	3574	SAU101271	5411	SAU1c0037 orf 90p	12366
S1M10000048B02	3575	SAU100608	5297	SAU1c0034 orf 69p	12293
S1M10000048B05	3576	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048B08	3577	SAU102452	5676	SAU1c0045 orf_20p	12674
S1M10000048B10	3578	SAU100158	5238	SAU1c0040_orf_80p	12443
SIM10000048B11	3579	SAU103038	5757	#N/A	#N/A
SIM10000048B12	3580	SAU200916	5797	SAU2c0373_orf_4p	12838
SIM10000048B12	3580	SAU301620	5899	SAU3c1478 orf 2p	13140
SIM10000048C01	3581	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048C02	3582	SAU301465	5896	SAU3c1429_orf_4p	13121
S1M10000048C03	3583	SAU102200	5611	SAU1c0045 orf 168p	12665
SIM10000048C05	3584	SAU300998	5881	SAU3c1253_orf_3p	13077
S1M10000048C06	3585	SAU100684	5306	SAU1c0044 orf 68p	12632
S1M10000048C06	3585	SAU100685	5307	SAU1c0044_orf_69p	12633
S1M10000048C07	3586	SAU102452	5676	SAU1c0045 orf 20p	12674
SIM10000048C08	3587	SAU101632	5499	SAU1c0039 orf 3p	12407
S1M10000048C09	3588	SAU101907	5574	SAU1c0040 orf 79p	12442
SIM10000048C11	3589	SAU101815	5552	SAU1c0032 orf 33p	12238

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
DIN (100000 407000	3590	GATTIO0102		CATIL-0042 C 100	ID .
SIM10000048D02 S1M10000048D02	3590	SAU100123	5230 5586	SAU1c0043_orf_189p	12526
S1M10000048D02	1	SAU102001		SAU1c0040_orf_102p	12424
	3590	SAU103159	5762	SAU1c0045_orf_204p	12670
S1M10000048D02	3590	SAU201827	5837	SAU2c0449_orf_21p	13002
S1M10000048D08	3591	SAU300572	5873	SAU3c1019_orf_1p	13051
S1M10000048D09	3592	SAU100141	5236	SAU1c0032_orf_8p	12259
S1M10000048D10	3593	SAU302950	5914	SAU3c1512_orf_12p	13160
S1M10000048D12	3594	SAU102599	5706	SAU1c0041_orf_45p	12466
S1M10000048D12	3594	SAU103191	5765	SAU1c0041_orf_44p	12465
S1M10000048E02	3595	SAU101028	5370	SAU1c0043_orf_7p	12552
S1M10000048E03	3596	SAU102200	5611	SAU1c0045_orf_168p	12665
S1M10000048E04	3597	SAU101545	5474	SAU1c0037_orf_132p	12348
S1M10000048E06	3598	SAU200006	5770	SAU2c0157_orf_lp	12723
S1M10000048E07	3599	SAU100959	5359	SAU1c0042_orf_102p	12485
S1M10000048E08	3600	SAU101807	5547	SAU1c0032_orf_26p	12231
S1M10000048E10	3601	SAU302950	5914	SAU3c1512_orf_12p	13160
S1M10000048F02	3602	SAU101387	5440	SAU1c0038_orf_52p	12386
S1M10000048F07	3603	SAU101175	5388	SAU1c0031_orf_lp	12213
S1M10000048F08	3604	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048F09	3605	SAU101793	5534	SAU1c0032_orf_14p	12218
S1M10000048F11	3606	SAU202174	5845	SAU2c0412_orf_3p	12895
S1M10000048F11	3606	SAU301148	5888	#N/A	#N/A
S1M10000048F12	3607	SAU103038	5757	#N/A	#N/A
S1M10000048G02	3608	SAU102453	5677	SAU1c0045_orf_19p	12669
S1M10000048G03	3609	SAU200928	5798	SAU2c0365_orf_5p	12815
S1M10000048G04	3610	SAU102602	5708	SAU1c0032 orf 5p	12249
S1M10000048G05	3611	SAU101752	5522	SAU1c0040_orf_85p	12447
SIM10000048G07	3612	SAU102006	5589	SAU1c0040_orf_107p	12427
S1M10000048G07	3612	SAU102007	5590	SAU1c0040 orf 108p	12428
S1M10000048G10	3613	SAU101793	5534	SAU1c0032 orf 14p	12218
SIM10000048G11	3614	SAU200006	5770	SAU2c0157 orf lp	12723
SIM10000048H01	3615	SAU100608	5297	SAU1c0034_orf_69p	12293
S1M10000048H02	3616	SAU100158	5238	SAU1c0040 orf 80p	12443
S1M10000048H03	3617	SAU101815	5552	SAU1c0032_orf_33p	12238
SIM10000048H04	3618	SAU102200	5611	SAU1c0032_011_35p	12665
S1M10000048H05	3619	SAU100157	5237	SAU1c0040 orf 81p	12444
S1M10000048H07	3620	SAU100157	5237	SAU1c0040_oif_81p	12444
SIM10000048H08	3621	SAU100137	5236	SAU1c0032 orf 8p	
I	L	1	i		12259
SIM10000048H09	3622	SAU100157	5237	SAU1c0040_orf_81p	12444
S1M10000048H10	3623	SAU101791	5532	SAU1c0032_orf_12p	12216
SIM10000048H11	3624	SAU101271	5411	SAU1c0037_orf_90p	12366
K1M10000037D10	<u> </u>	ECO100078	10023	#N/A	#N/A
K1M10000002F02	1054	ECO100252	10052	#N/A	#N/A
K1M10000007F01	1057	ECO100397	10064	#N/A	#N/A
K1M10000007F01	1057	ECO100398	10065	#N/A	#N/A
K1M10000004F06	1056	ECO100990	10120	#N/A	#N/A
K1M10000019D06	1064	ECO100990	10120	#N/A	#N/A
K1M10000030C07	1070	ECO102108	10214	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
K1M10000044G05	1086	ECO102262	10228	#N/A	#N/A
K1M10000036G08	1076	ECO102447	10247	#N/A	#N/A
K1M10000033E01	1075	ECO102539	10258	#N/A	#N/A
K1M10000043D05	1081	ECO102620	10266	#N/A	#N/A
K1M10000045D10	1088	ECO102620	10266	#N/A	#N/A
K1M10000003C01	1055	ECO103101	10315	#N/A	#N/A
K1M10000030E07	1071	ECO104120	10462	#N/A	#N/A
K1MI0000045A07	1087	ECO104268	10475	#N/A	#N/A
S4M10000020F05	3721	ECO100449	#N/A	#N/A	#N/A
S4M10000026D04	3742	ECO100676	#N/A	#N/A	#N/A
S4M10000014D07	3706	ECO100757	#N/A	#N/A	#N/A
S4M10000015B11	3708	ECO100757	#N/A	#N/A	#N/A
S4M10000016A02	3710	ECO100757	#N/A	#N/A	#N/A
S4M10000022E12	3725	ECO100757	#N/A	#N/A ·	#N/A
S4M10000026E12	3744	ECO100757	#N/A	#N/A	#N/A
S4M10000035E03	3764	ECO100757	#N/A	#N/A	#N/A
S4M10000008H10	3693	ECO100758	10101	#N/A	#N/A
S4M10000014B05	3704	ECO100758	10101	#N/A	#N/A
S4M10000014D07	3706	ECO100758	10101	#N/A	#N/A
S4M10000015B11	3708	ECO100758	10101	#N/A	#N/A
S4M10000015E09	3709	ECO100758	10101	#N/A	#N/A
S4M10000016A02	3710	ECO100758	10101	#N/A	#N/A
S4M10000022E12	3725	ECO100758	10101	#N/A	#N/A
S4M10000029B12	3747	ECO100758	10101	#N/A	#N/A
S4M10000020G10	3722	ECO100796	10105	#N/A	#N/A
S4M10000023F01	3728	ECO101916	#N/A	#N/A	#N/A
S4M10000014H02	3707	ECO102028	#N/A	#N/A	#N/A
S4M10000012B06	3700	ECO102066	#N/A	#N/A	#N/A
S4M10000035D01	3762	ECO102066	#N/A	#N/A	#N/A
S4M10000024C06	3730	ECO102189	10224	#N/A	#N/A
S4M10000006C05	3689	ECO102282	#N/A	#N/A	#N/A
S4M10000037H09	3772	ECO102296	#N/A	#N/A	#N/A
S4M10000030G11	3751	ECO102302	#N/A	#N/A	#N/A
S4M10000026C10	3741	ECO102416	10245	#N/A	#N/A
S4M10000026E06	3743	EC0102416	10245	#N/A	#N/A
S4M10000036F07	3768	ECO102416	10245	#N/A	#N/A
S4M10000034A02	3756	ECO102526	#N/A	#N/A	#N/A
S4M10000006F08	3690	ECO102541	10259	#N/A	#N/A
S4M10000002G08	3684	ECO102730	#N/A	#N/A	#N/A
S4M10000026C10	3741	ECO102870	#N/A	#N/A	#N/A
S4M10000026E06	3743	EC0102870	#N/A	#N/A	#N/A
S4M10000036F07	3768	ECO102870	#N/A	#N/A	#N/A
S4M10000034H05	3759	EC0102900	#N/A	#N/A	#N/A
S4M1000000541105	3688	EC0102944	#N/A	#N/A	#N/A
S4M1000000400	3705	EC0102986	10301	#N/A	#N/A
S4M10000014D04	3724	EC0103238	10354	#N/A	#N/A
S4M10000022D12	3753	ECO103238	10354	#N/A	#N/A
S4M10000033F08	3755	EC0103238	10354	#N/A	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq ID
S4M10000001C01	3680	ECO103265	10365	#N/A	#N/A
S4M10000024B02	3729	ECO103280	#N/A	#N/A	#N/A
S4M10000020A04	3720	ECO103461	#N/A	#N/A	#N/A
S4M10000002B06	3681	ECO103666	#N/A	#N/A	#N/A
S4M10000019H06	3719	ECO103738	#N/A	#N/A	#N/A
S4M10000024H02	3736	ECO103738	#N/A	#N/A	#N/A
S4M10000030F07	3750	ECO103738	#N/A	#N/A	#N/A
S4M10000034H09	3760	ECO103738	#N/A	#N/A	#N/A
S4M10000032B12	3752	ECO103935	#N/A	#N/A	#N/A
S4M10000002B09	3682	ECO103936	#N/A	#N/A	#N/A
S4M10000037A10	3770	ECO103951	#N/A	#N/A	#N/A
S4M10000018D09	3711	ECO104080	#N/A	#N/A	#N/A
S4M10000035F09	3766	EFA101301	#N/A	EFA1c0040_orf_173p	#N/A
S4M10000035F09	3766	EFA102170	#N/A	EFA1c0040 orf_121p	#N/A
S4M10000001C01	3680	EFA103268	#N/A	EFA1c0010 orf 1p	10479
S4M10000036F07	3768	HPY200334	#N/A	#N/A	#N/A
S4M10000001C01	3680	HPY201116	11570	#N/A	#N/A
S4M10000037A10	3770	KPN100467	#N/A	KPN1c0583 orf 2p	#N/A
S4M10000030G11	3751	KPN101078	#N/A	KPN1c1190 orf lp	#N/A
S4M10000024B02	3729	KPN101160	#N/A	KPN1c1224_orf_lp	#N/A
S4M10000032B12	3752	KPN101846	#N/A	KPN1c1681_orf_2p	#N/A
S4M1000006C05	3689	KPN102011	#N/A	KPN1c1862_orf_4p	#N/A
S4M10000035B01	3761	KPN102014	#N/A	KPN1c1786_orf_lp	11654
S4M10000012B06	3700	KPN102524	#N/A	#N/A	#N/A
S4M10000035D01	3762	KPN102524	#N/A	#N/A	#N/A
S4M10000003G04	3683	KPN102558	#N/A	KPN1c1982_orf_3p	#N/A
S4M10000002G08	3684	KPN102558	#N/A	KPN1c1982_orf_3p	#N/A
S4M10000008H10	3693	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M100000014B05	3704	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000014D07	3706	KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000015B11	3708	KPN103640	#N/A	KPN1c2761 orf lp	#N/A
S4M10000015E09	3709	KPN103640	#N/A	KPN1c2761 orf 1p	#N/A
S4M10000015E05		KPN103640	#N/A	KPN1c2761_orf_lp	#N/A
S4M10000010A02	1	KPN103640	#N/A	KPN1c2761_orf_1p	#N/A
S4M10000022E12	ł	KPN103640	#N/A #N/A	KPN1c2761_orf_lp	#N/A
S4M10000035E03	_L	KPN103640	#N/A	KPN1c2761_orf_1p	#N/A
S4M10000033E03	1	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M100000014B05	3704	KPN103641	#N/A #N/A		
S4M10000014D07	3704	KPN103641	#N/A #N/A	KPN1c2761_orf_2p	11705
S4M10000014D07	3708	KPN103641	1	KPN1c2761_orf_2p	11705
	1		#N/A	KPN1c2761_orf_2p	11705
S4M10000015E09 S4M10000016A02	1	KPN103641	#N/A	KPN1c2761_orf_2p	11705
		KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000022E12		KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000029B12	3747	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000035E03	3764	KPN103641	#N/A	KPN1c2761_orf_2p	11705
S4M10000026C10	3741	KPN103871	#N/A	KPN1c2844_orf_2p	#N/A
S4M10000026E06		KPN103871	#N/A	KPN1c2844_orf_2p	#N/A
S4M10000036F07	3768	KPN103871	#N/A	KPN1c2844_orf_2p	#N/A

Clone name	Cione SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
	1	f		1	ID ID
S4M10000019H06	3719	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000024H02	3736	KPN104321	#N/A	KPN1c3011_orf_lp	#N/A
S4M10000030F07	3750	KPN104321	#N/A	KPN1c3011_orf_lp	#N/A
S4M10000034H09	3760	KPN104321	#N/A	KPN1c3011_orf_1p	#N/A
S4M10000035F02	3765	KPN104321	#N/A	KPN1c3011_orf_lp	#N/A
S4M10000002B06	3681	KPN104608	#N/A	KPN1c3070_orf_3p	#N/A
S4M10000018D09	3711	KPN105957	#N/A	KPN1c3587_orf_lp	#N/A
S4M10000024C06	3730	KPN106468	#N/A	KPN1c1186_orf_lp	11638
S4M10000009A05	3694	KPN106681	#N/A	#N/A	#N/A
S4M10000010D04	3696	KPN106681	#N/A	#N/A	#N/A
S4M10000011E08	3699	KPN106681	#N/A	#N/A	#N/A
S4M10000020A04	3720	KPN106813	#N/A	KPN1c2010_orf_lp	#N/A
S4M10000005G05	3685	KPN106840	#N/A	KPN1c2087_orf_1p	11664
S4M10000006F08	3690	KPN106840	#N/A	KPN1c2087_orf_1p	11664
S4M10000007G01	3691	KPN106840	#N/A	KPN1c2087 orf 1p	11664
S4M10000008C08	3692	KPN106840	#N/A	KPN1c2087 orf 1p	11664
S4M10000018E10	3712	KPN106840	#N/A	KPN1c2087 orf 1p	11664
S4M10000018F10	3713	KPN106840	#N/A	KPN1c2087 orf lp	11664
S4M10000019G04	3717	KPN106840	#N/A	KPN1c2087 orf_lp	11664
S4M1000001C01	3680	SAU101756	#N/A	SAU1c0040 orf 82p	12445
S4M10000001C01	3680	SAU200931	#N/A	SAU2c0151 orf lp	127722
S4M1000001C01	3680	SPN102008	#N/A	SPN1c0007 orf 92p	#N/A
S4M10000001C01	3680	SPN202419	#N/A	SPN2c0592_orf_1p	#N/A
S4M10000019H06	3719	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M100000191100	3736	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000030F07	3750	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000034H09	3760	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000034F02	3765	STY000068	#N/A	STYc00048_orf_26p	#N/A
S4M10000035F02	3741	STY000225	#N/A	STYc00048_011_20p	13740
S4M10000026E06	3743	STY000225	#N/A	STYc00041_orf_40p	13740
S4M10000026E06	3768	STY000225	#N/A	STYc00041_orf_40p	13740
S4M10000036F07	3742	STY000244		STYc00041_orf_11p	#N/A
S4M10000028D04		STY000244	#N/A		li .
L	3759	1	#N/A	STYc00041_orf_11p	#N/A
S4M10000027E02		STY000409	#N/A	STYc00053_orf_110p	#N/A
S4M10000025E02	3738	STY000498	#N/A	STYc00072_orf_46p	#N/A
S4M10000034A02	3756	STY000498	#N/A	STYc00072_orf_46p	#N/A
S4M10000034D06	3758	STY000625	#N/A	STYc00062_orf_63p	13784
S4M10000014D04	3705	STY000737	#N/A	STYc00054_orf_108p	13759
S4M10000013H02	3703	STY000753	#N/A	STYc00054_orf_91p	#N/A
S4M10000006A08	3688	STY000817	#N/A	STYc00054_orf_145p	#N/A
S4M10000036D07	3767	STY000817	#N/A	STYc00054_orf_145p	#N/A
S4M10000018D09	3711	STY000848	#N/A	STYc00101_orf_23p	#N/A
S4M10000014H02	3707	STY000968	#N/A	STYc00086_orf_86p	#N/A
S4M10000024G04	3734	STY000986	#N/A	#N/A	#N/A
S4M10000025H07	3740	STY000986	#N/A	#N/A	#N/A
S4M10000029D12	3748	STY000986	#N/A	#N/A	#N/A
S4M10000037A10	3770	STY001009	#N/A	STYc00080_orf_144p	#N/A
S4M10000035F09	3766	STY001185	#N/A	STYc00098_orf_2p	#N/A

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF
					Protein Seq ID
S4M10000026D04	3742	STY001220	#N/A	STYc00123_orf_17p	#N/A
S4M10000022H06	3727	STY001285	#N/A	#N/A	#N/A
S4M10000030D03	3749	STY001285	#N/A	#N/A	#N/A
S4M10000037E10	3771	STY001363	#N/A	STYc00034_orf_126p	#N/A
S4M10000002B06	3681	STY001380	#N/A	STYc00119_orf_3p	#N/A
S4M10000011D08	3698	STY001534	#N/A	#N/A	#N/A
S4M10000024C11	3731	STY001582	#N/A	#N/A	#N/A
S4M10000025A11	3737	STY001582	#N/A	#N/A	#N/A
S4M10000035F09	3766	STY001619	#N/A	#N/A	#N/A
S4M10000022D12	3724	STY001777	#N/A	STYc00187_orf_4p	13970
S4M10000033F08	3753	STY001777	#N/A	STYc00187_orf_4p	13970
S4M10000033G09	3755	STY001777	#N/A	STYc00187_orf_4p	13970
S4M10000001C01	3680	STY001790	#N/A	STYc00187_orf_14p	13967
S4M10000026C10	3741	STY001853	#N/A	STYc00180_orf_22p	#N/A
S4M10000026E06	3743	STY001853	#N/A	STYc00180 orf 22p	#N/A
S4M10000036F07	3768	STY001853	#N/A	STYc00180 orf 22p	#N/A
S4M10000020A04	3720	STY002064	#N/A	STYc00074_orf_163p	#N/A
S4M10000020A04	3720	STY002066	#N/A	#N/A	#N/A
S4M10000024B02	3729	STY002145	#N/A	STYc00074_orf_17p	#N/A
S4M10000010B05	3695	STY002525	#N/A	STYc00114 orf 159p	#N/A
S4M10000012B12	3701	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000022D04	3723	STY002525	#N/A	STYc00114 orf 159p	#N/A
S4M10000022G07	3726	STY002525	#N/A	STYc00114 orf 159p	#N/A
S4M10000024G01	3733	STY002525	#N/A	STYc00114 orf 159p	#N/A
S4M10000024G09	3735	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000025E05	3739	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000027C10	3745	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000034A09	3757	STY002525	#N/A	STYc00114_orf_159p	#N/A
S4M10000037H09	3772	STY002590	#N/A	STYc00114 orf 104p	#N/A
S4M10000002G04	3683	STY002623	#N/A	STYc00114_orf_90p	#N/A
S4M10000002G08	3684	STY002623	#N/A	STYc00114_orf_90p	#N/A
S4M10000033G05	3754	STY002638	#N/A	STYc00114_orf_15p	13870
S4M10000006A06	3687	STY002672	#N/A	STYc00114_orf_136p	#N/A
S4M10000010H04	3697	STY002711	#N/A	STYc00223_orf_1p	#N/A
S4M10000005H02	3686	STY002738	#N/A	STYc00223_orf_17p	#N/A
S4M10000012B06	3700	STY002826	#N/A	STYc00152_orf_12p	#N/A
S4M10000035D01	3762	STY002826	#N/A	STYc00152_orf_12p	#N/A
S4M10000018G03	3714	STY002889	#N/A	#N/A	#N/A
S4M10000018H04	3715	STY002889	#N/A	#N/A	#N/A
S4M10000019F05	3716	STY002889	#N/A	#N/A	#N/A
S4M10000019G05	3718	STY002889	#N/A	#N/A	#N/A
S4M10000037E10	3771	STY002959	#N/A	STYc00215_orf_11p	14011
S4M10000002B09		STY003082	#N/A	STYc00238_orf_12p	#N/A
S4M10000032B12	1	STY003084	#N/A	STYc00238_orf_13p	#N/A
S4M10000024C06	3730	STY003375	#N/A	STYc00183_orf_19p	13957
S4M10000012D02	3702	STY003377	#N/A	#N/A	#N/A
S4M10000030G11	3751	STY003384	#N/A	STYc00183_orf_130p	#N/A
S4M10000006F08	3690	STY003460	#N/A	STYc00339 orf 20p	14087
		L	<u> </u>		1

Clone name	Clone SeqID	PathoSeq Locus	Gene SeqID (protein)	Genemarked gene	full length ORF Protein Seq
D41 41 000000 4700	3732	STY003664	#N/A	#N/A	#N/A
S4M10000024F08	3732		#N/A		
S4M10000020G10		STY004048	#N/A	STYc00207_orf_161p	13999
S4M10000008H10	3693	STY004152		STYc00207_orf_194p	14003
S4M10000014B05	3704	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000015E09	3709	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000016A02	3710	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000022E12	3725	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000029B12	3747	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000035E03	3764	STY004152	#N/A	STYc00207_orf_194p	14003
S4M10000008H10	3693	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000014B05	3704	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000014D07	3706	STY004154	#N/A	STYc00207_orf_195p	·#N/A
S4M10000015B11	3708	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000015E09	3709	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000016A02	3710	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000022E12	3725	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000026E12	3744	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000035E03	3764	STY004154	#N/A	STYc00207_orf_195p	#N/A
S4M10000005G05	3685	STY004239	#N/A	#N/A	#N/A
S4M10000007G01	3691	STY004239	#N/A	#N/A	#N/A -
S4M10000008C08	3692	STY004239	#N/A	#N/A	#N/A
S4M10000018E10	3712	STY004239	#N/A	#N/A	#N/A
S4M10000018F10	3713	STY004239	#N/A	#N/A	#N/A
S4M10000019G04	3717	STY004239	#N/A	#N/A	#N/A
S4M10000037A04	3769	STY005016	#N/A	#N/A	#N/A
K1M10000007F01	1057	SAU100968	#N/A	SAU1c0044_orf_90p	12643
K1M10000007F01	1057	SAU201145	#N/A	SAU2c0405_orf_7p	12884
K1M1000007F01	1057	SPN101971	#N/A	SPN1c0009_orf_54p	#N/A
K1M10000007F01	1057	SPN201024	#N/A	SPN2c0417 orf 4p	#N/A
K1M10000003C01	1055	STY000773	#N/A	STYc00054 orf_16p	13764
K1M10000023E09	1068	STY000886	#N/A	#N/A	#N/A
K1M10000023E10	1069	STY000886	#N/A	#N/A	#N/A
K1M10000007F01	1057	STY001430	#N/A	STYc00148 orf 11p	13915
K1M10000007F01	1057	STY001433	#N/A	STYc00148 orf_12p	13916
K1M10000036G08	1076	STY001867	#N/A	STYc00180_orf_50p	13948
K1M10000030C07	1070	STY002768	#N/A	#N/A	#N/A
K1M10000037D10	1077	STY002995	#N/A	STYc00215 orf 67p	14018
K1M10000037B10	1086	STY003357	#N/A	STYc00183 orf 91p	13963

TABLE IC

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
ED4:00001	2006	406
EFA100001	3806	4861
EFA100023	3807	4862
EFA100065	3808	4863
EFA100151	3809	4864
EFA100157	3810	4865
EFA100165	3811	4866
EFA100190	3812	4867
EFA100194	3813	4868
EFA100200	3814	4869
EFA100210	3815	4870
EFA100211	3816	4871
EFA100289	3817	4872
EFA100295	3818	4873
EFA100312	3819	4874
EFA100329	3820	4875
EFA100394	3821	4876
EFA100397	3822	4877
EFA100399	3823	4878
EFA100426	3824	4879
EFA100478	3825	4880
EFA100615	3826	4881
EFA100617	3827	4882
EFA100641	3828	4883
EFA100642	3829	4884
EFA100668	3830	4885
EFA100689	3831	4886
EFA100704	3832	4887
EFA100739	3833	4888
EFA100740	3834	4889
EFA100741	3835	4890
EFA100742	3836	4891
EFA100748	3837	4892
EFA100756	3838	4893
EFA100757	3839	4894
EFA100783	3840	4895
EFA100795	3841	4896
EFA100798	3842	4897
EFA100811	3843	4898
EFA100870	3844	4899
EFA100914	3845	4900
EFA100919	3846	4901
EFA100955	3847	4902
EFA100970	3848	4903
EFA100978	3849	4904
EFA100991	3850	4904
EFA101022	3851	4906
EFA101060	3852	4907
ELVI01000	3032	4907

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
EFA101079	3853	4908
EFA101080	3854	4909
EFA101086	3855	4910
EFA101120	3856	4911
EFA101121	3857	4912
EFA101123	3858	4913
EFA101141	3859	4914
EFA101150	3860	4915
EFA101159	3861	4916
EFA101160	3862	4917
EFA101161	3863	4918
EFA101162	3864	4919
EFA101163	3865	4920
EFA101164	3866	4921
EFA101165	3867	4922
EFA101169	3868	4923
EFA101253	3869	4924
EFA101257	3870	4925
EFA101258	3871	4926
EFA101322	3872	4927
EFA101339	3873	4928
EFA101340	3874	4929
EFA101354	3875	4930
EFA101370	3876	4931
EFA101403	3877	4932
EFA101404	3878	4933
EFA101409	3879	4934
EFA101410	3880	4935
EFA101411	3881	4936
EFA101412	3882	4937
EFA101413	3883	4938
EFA101414	3884	4939
EFA101415	3885	4940
EFA101416	3886	4941
EFA101417	3887	4942
EFA101424	3888	4943
EFA101425	3889	4944
EFA101477	3890	4945
EFA101536	3891	4946
EFA101540	3892	4947
EFA101540 EFA101541	3892	4947
EFA101541 EFA101583	3893	4948
EFA101583 EFA101670	3895	4949
EFA101670 EFA101682	3895	4951
		4952
EFA101685	3897	4952
EFA101686	3898	
EFA101695	3899	4954
EFA101736	3900	4955
EFA101737	3901	4956

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
EFA101753	3902	4957
EFA101765	3903	4958
EFA101790	3904	4959
EFA101791	3905	4960
EFA101792	3906	4961
EFA101795	3907	4962
EFA101797	3908	4963
EFA101799	3909	4964
EFA101833	3910	4965
EFA101868	3911	4966
EFA101872	3912	4967
EFA101873	3913	4968
EFA101892	3914	4969
EFA101924	3915	4970
EFA101925	3916	4971
EFA101963	3917	4972
EFA102006	3918	4973
EFA102022	3919	4974
EFA102023	3920	4975
EFA102051	3921	4976
EFA102091	3922	4977
EFA102110	3923	4978
EFA102183	3924	4979
EFA102185	3925	4980
EFA102186	3926	4981
EFA102201	3927	4982
EFA102205	3928	4983
EFA102253	3929	4984
EFA102282	3930	4985
EFA102326	3931	4986
EFA102338	3932	4987
EFA102350	3933	4988
EFA102351	3934	4989
EFA102352	3935	4990
EFA102353	3936	4991
EFA102389	3937	4992
EFA102453	3938	4993
EFA102501	3939	4994
EFA102502	3940	4995
EFA102503	3941	4996
EFA102518	3942	4997
EFA102541	3943	4998
EFA102542	3944	4999
EFA102549	3945	5000
EFA102551	3946	5001
EFA102554	3947	5002
EFA102655	3948	5003
EFA102656	3949	5004
EFA102698	3950	5005

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
EFA102728	3951	5006
EFA102736	3952	5007
EFA102764	3953	5008
EFA102774	3954	5009
EFA102780	3955	5010
EFA102788	3956	5011
EFA102802	3957	5012
EFA102813	3958	5013
EFA102915	3959	5014
EFA103021	3960	5015
EFA103033	3961	5016
EFA103038	3962	5017
EFA103039	3963	5018
EFA103062	3964	5019
EFA103081	3965	5020
EFA103174	3966	5021
EFA103210	3967	5022
EFA103268	3968	5023
EFA103295	3969	5024
EFA103348	3970	5025
EFA103365	3971	5026
EFA103375	3972	5027
EFA103504	3973	5028
EFA103508	3974	5029
EFA103571	3975	5030
EFA103786	3976	5031
KPN100432	3977	5032
KPN100854	3978	5033
KPN101022	3979	5034
KPN101026	3980	5035
KPN101729	3981	5036
KPN101750	3982	5037
KPN102057	3983	5038
KPN102638	3984	5039
KPN103882	3985	5040
KPN104183	3986	5041
KPN104281	3987	5042
KPN104430	3988	5043
KPN104538	3989	5044
KPN104716	3990	5045
KPN105722	3991	5046
KPN105779	3992	5047
KPN106044	3993	5048
KPN106659	3994	5049
KPN106840	3995	5050
KPN107626	3996	5051
KPN107776	3997	5052
PA0028	3998	5053
PA0120	3999	5054
1110120		3034

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
PA0129	4000	5055
PA0141	4001	5056
PA0221	4002	5057
PA0265	4003	5058
PA0321	4004	5059
PA0337	4005	5060
PA0353	4006	5061
PA0378	4007	5062
PA0401	4008	5063
PA0413	4009	5064
PA0414	4010	5065
PA0419	4011	5066
PA0423	4012	5067
PA0469	4013	
		5068
PA0472	4014	5069
PA0506	4015	5070
PA0600	4016	5071
PA0642	4017	5072
PA0650	4018	5073
PA0715	4019	5074
PA0788	4020	5075
PA0882	4021	5076
PA0934	4022	5077
PA0938	4023	5078
PA1019	4024	5079
PA1072	4025	5080
PA1115	4026	5081
PA1270	4027	5082
PA1301	4028	5083
PA1360	4029	5084
PA1365	4030	5085
PA1398	4031	5086
PA1462	4032	5087
PA1493	4033	5088
PA1547	4034	5089
PA1636	4035	5090
PA1684	4036	5091
PA1868	4037	5092
PA1876	4038	5093
PA1918	4039	5094
PA1986	4040	5095
PA2009	4041	5096
PA2083	4042	5097
PA2101	4043	5098
PA2108	4044	5099
PA2128	4045	5100
PA2147	4046	5101
PA2196	4047	5102
PA2197	4048	5103
1.632171	7040	7103

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
PA2222	4049	5104
PA2313	4050	5105
PA2398	4051	5106
PA2424	4052	5107
PA2461	4053	5108
PA2470	4054	5109
PA2488	4055	5110
PA2494	4056	5111
PA2584	4057	5112
PA2594	4058	5113
PA2634	4059	5114
PA2641	4060	5115
PA2671	4061	5116
PA2680	4062	5117
PA2684	4063	5118
PA2726	4064	5119
PA2742	4065	5120
PA3006	4066	5121
PA3011	4067	5122
PA3013	4068	5123
PA3041	4069	5124
PA3048	4070	5125
PA3068	4071	5126
PA3121	4072	5127
PA3153	4073	5128
PA3154	4074	5129
PA3160	4075	5130
PA3279	4076	5131
PA3280	4077	5132
PA3374	4078	5133
PA3479	4079	5134
PA3484	4080	5135
PA3522	4081	5136
PA3643	4082	5137
PA3703	4083	5138
PA3709	4084	5139
PA3716	4085	5140
PA3764	4086	5141
PA3845	4087	5142
PA3866	4088	5143
PA3876	4089	5144
PA3877	4090	5145
PA3931	4091	5146
PA3984	4092	5147
PA4024	4093	5148
PA4027	4094	5149
PA4037	4095	5150
PA4067	4096	5151
PA4070	4097	5152
157070	407/	3132

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
PA4081	4098	5153
PA4105	4099	5154
PA4124	4100	5155
PA4125	4101	5156
PA4158	4102	5157
PA4237	4103	5158
PA4242	4104	5159
PA4244	4105	5160
PA4245	4106	5161
PA4246	4107	5162
PA4247	4108	5163
PA4248	4109	5164
PA4249	4110	5165
PA4250	4111	5166
PA4251	4112	5167
PA4251 PA4252	4112	5168
PA4252 PA4253	4114	5169
PA4254	4115	5170
PA4256	4116	5171
PA4256 PA4257	4117	5171
PA4258		5172
PA4259	4118	
PA4262	4119	5174
	4120	5175
PA4263	4121	5176
PA4264	4122	5177
PA4268	4123	5178
PA4269	4124	5179
PA4271	4125	5180
PA4272	4126	5181
PA4316	4127	5182
PA4332	4128	5183
PA4347	4129	5184
PA4363	4130	5185
PA4375	4131	5186
PA4413	4132	5187
PA4433	4133	5188
PA4473	4134	5189
PA4506	4135	5190
PA4512	4136	5191
PA4542	4137	5192
PA4576	4138	5193
PA4598	4139	5194
PA4665	4140	5195
PA4681	4141	5196
PA4709	4142	5197
PA4744	4143	5198
PA4771	4144	5199
PA4888	4145	5200
PA4942	4146	5201

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
PA4997	4147	5202
PA5030	4148	5203
PA5076	4149	5204
PA5088	4150	5205
PA5193	4151	5206
PA5199	4152	5207
PA5207	4153	5208
PA5209	4154	5209
PA5248	4155	5210
PA5299	4156	5211
PA5316	4157	5212
PA5388	4158	5213
PA5393	4159	5214
PA5436	4160	5215
PA5443	4161	5216
PA5490	4162	5217
PA5493	4163	- 5218
PA5507	4164	5219
PA5567	4165	5220
SAU100040	4166	5220
SAU100040	4167	5222
SAU100056	4168	5223
SAU100059	4169	5224
SAU100039 SAU100062	4170	
SAU100062 SAU100077	4170	5225 5226
SAU100077	4172	5227
SAU100112 SAU100114	4172	5228
SAU100114 SAU100118	4174	5228
SAU100118	4174	
SAU100123		5230
	4176	5231
SAU100131	4177	5232
SAU100133 SAU100139	4178	5233
SAU100139 SAU100140	4179	5234
	4180	5235
SAU100141	4181	5236
SAU100157	4182	5237
SAU100158	4183	5238
SAU100162	4184	5239
SAU100175	4185	5240
SAU100182	4186	5241
SAU100186	4187	5242
SAU100198	4188	5243
SAU100227	4189	5244
SAU100231	4190	5245
SAU100242	4191	5246
SAU100246	4192	5247
SAU100251	4193	5248
SAU100265	4194	5249
SAU100266	4195	5250

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU100272	4196	5251
SAU100275	4197	5252
SAU100300	4198	5253
SAU100301	4199	5254
SAU100302	4200	5255
SAU100305	4201	5256
SAU100307	4202	5257
SAU100308	4203	5258
SAU100313	4204	5259
SAU100315	4205	5260
SAU100323	4206	5261
SAU100347	4207	5262
SAU100355	4208	5263
SAU100359	4209	5264
SAU10038I	4210	5265
SAU100389	4211	5266
SAU100390	4212	5267
SAU100401	4213	5268
SAU100412	4214	5269
SAU100414	4215	5270
SAU100432	4216	5271
SAU100433	4217	5272
SAU100436	4218	5273
SAU100443	4219	5274
SAU100444	4220	5275
SAU100475	4221	5276
SAU100478	4222	5277
SAU100489	4223	5278
SAU100496	4224	5279
SAU100497	4225	5280
SAU100514	4226	5281
SAU100517	4227	5282
SAU100521	4228	5283
SAU100522	4229	5284
SAU100527	4230	5285
SAU100528	4231	5286
SAU100532	4232	5287
SAU100542	4233	5288
SAU100546	4234	5289
SAU100547	4235	5290
SAU100557	4236	5291
SAU100582	4237	5292
SAU100590	4238	5293
SAU100595	4239	5294
SAU100596	4240	5295
SAU100601	4241	5296
SAU100608	4242	5297
SAU100610	4243	5298
	4244	
SAU100610 SAU100613		5298 5299

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU100617	4245	5300
SAU100633	4246	5301
SAU100646	4247	5302
SAU100658	4248	5303
SAU100659	4249	5304
SAU100679	4250	5305
SAU100684	4251	5306
SAU100685	4252	5307
SAU100689	4253	5308
SAU100690	4254	5309
SAU100702	4255	5310
SAU100710	4256	5311
SAU100714	4257	5312
SAU100731	4258	5313
SAU100733	4259	5314
SAU100734	4260	5315
SAU100736	4261	5316
SAU100738	4262	5317
SAU100741	4263	5318
SAU100745	4264	5319
SAU100747	4265	5320
SAU100751	4266	5321
SAU100752	4267	5322
SAU100767	4268	5323
SAU100770	4269	5324
SAU100771	4270	5325
SAU100773	4271	5326
SAU100776	4272	5327
SAU100778	4273	5328
SAU100793	4274	5329
SAU100794	4275	5330
SAU100799	4276	5331
SAU100808	4277	5332
SAU100810	4278	5333
SAU100813	4279	5334
SAU100831	4280	5335
SAU100836	4281	5336
SAU100838	4282	5337
SAU100839	4283	5338
SAU100843	4284	5339
SAU100845	4285	5340
SAU100858	4286	5341
SAU100859	4287	5342
SAU100865	4288	5343
SAU100866	4289	5344
SAU100879	4290	5345
SAU100880	4291	5346
SAU100882	4292	5347
SAU100885	4293	5348
24010000	4273	3340

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU100886	4294	5349
SAU100887	4295	5350
SAU100899	4296	5351
SAU100901	4297	5352
SAU100916	4297	5353
SAU100910	4298	5354
SAU100920 SAU100921	4300	5355
SAU100921 SAU100932	4300	5356
SAU100932 SAU100944	4301	5357
SAU100944 SAU100952	4302	5358
SAU100952 SAU100959	1	
	4304	5359
SAU100961	4305	5360
SAU100962	4306	5361
SAU100963	4307	5362
SAU100964	4308	5363
SAU100965	4309	5364
SAU100970	4310	5365
SAU100996	4311	5366
SAU101006	4312	5367
SAU101020	4313	5368
SAU101024	4314	5369
SAU101028	4315	5370
SAU101034	4316	5371
SAU101038	4317	5372
SAU101039	4318	5373
SAU101065	4319	5374
SAU101067	4320	5375
SAU101070	4321	5376
SAU101084	4322	5377
SAU101085	4323	5378
SAU101086	4324	5379
SAU101090	4325	5380
SAU101092	4326	5381
SAU101104	4327	5382
SAU101143	4328	5383
SAU101145	4329	5384
SAU101155	4330	5385
SAU101156	4331	5386
SAU101159	4332	5387
SAU101175	4333	5388
SAU101180	4334	5389
SAU101183	4335	5390
SAU101184	4336	5391
SAU101189	4337	5392
SAU101197	4338	5393
SAU101198	4339	5394
SAU101199	4340	5395
SAU101220	4341	5396
SAU101224	4342	5397

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU101226	4343	5398
SAU101231	4344	5399
SAU101235	4345	5400
SAU101236	4346	5401
SAU101239	4347	5402
SAU101240	4348	5403
SAU101242	4349	5404
SAU101247	4350	5405
SAU101262	4351	5406
SAU101265	4352	5407
SAU101266	4353	5408
SAU101267	4354	5409
SAU101270	4355	5410
SAU101270	4356	5411
SAU101271	4357	5412
SAU101275	4358	5413
SAU101293	4359	5414
SAU101300	4360	5415
SAU101301	4361	5416
SAU101302	4362	5417
SAU101310	4363	5418
SAU101311	4364	5419
SAU101320	4365	5420
SAU101327	4366	5421
SAU101339	4367	5422
SAU101340	4368	5423
SAU101341	4369	5424
SAU101343	4370	5425
SAU101344	4371	5426
SAU101346	4372	5427
SAU101347	4373	5428
SAU101350	4374	5429
SAU101351	4375	5430
SAU101360	4376	5431
SAU101365	4377	5432
SAU101366	4378	5433
SAU101369	4379	5434
SAU101371	4380	5435
SAU101381	4381	5436
SAU101382	4382	5437
SAU101383	4383	5438
SAU101385	4384	5439
SAU101387	4385	5440
SAU101389	4386	5441
SAU101398	4387	5442
SAU101398 SAU101399	4388	5443
SAU101400	4389	5444
SAU101408	4390	5445
SAU101408 SAU101421	4390	5446
DAU101421	4371	3440

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU101427	4392	5447
SAU101432	4393	5448
SAU101436	4394	5449
SAU101438	4395	5450
SAU101444	4396	5451
SAU101445	4397	5452
SAU101446	4398	5453
SAU101447	4399	5454
SAU101452	4400	5455
SAU101455	4401	5456
SAU101461	4402	5457
SAU101463	4403	5458
SAU101476	4404	5459
SAU101481	4405	5460
SAU101482	4406	5461
SAU101483	4407	5462
SAU101488	4408	5463
SAU101491	4409	5464
SAU101492	4410	5465
SAU101493	4411	5466
SAU101495	4412	5467
SAU101497	4413	5468
SAU101509	4414	5469
SAU101526	4415	5470
SAU101529	4416	5471
SAU101541	4417	5472
SAU101543	4418	5473
SAU101545	4419	5474
SAU101546	4420	5475
SAU101549	4421	5476
SAU101551	4422	5477
SAU101554	4423	5478
SAU101561	4424	5479
SAU101565	4425	5480
SAU101567	4426	5481
SAU101570	4427	5482
SAU101571	4428	5483
SAU101572	4429	5484
SAU101572	4430	5485
SAU101574	4431	5486
SAU101574	4432	5487
SAU101576	4433	5488
SAU101576	4434	5489
SAU101592	4435	5490
SAU101592 SAU101599	4436	5491
SAU101610	4436	5492
SAU101610 SAU101612	<u></u>	
	4438	5493
SAU101614	4439	5494
SAU101616	4440	5495

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU101622	4441	5496
SAU101624	4442	5497
SAU101630	4443	5498
SAU101632	4444	5499
SAU101637	4445	5500
SAU101641	4446	5501
SAU101651	4447	5502
SAU101652	4448	5503
SAU101653	4449	5504
SAU101655	4450	5505
SAU101663	4451	5506
SAU101664	4452	5507
SAU101674	4453	5508
SAU101679	4454	5509
SAU101681	4455	5510
SAU101682	4456	5511
SAU101685	4457	5512
SAU101717	4458	5513
SAU101724	4459	5514
SAU101726	4460	5515
SAU101727	4461	5516
SAU101728	4462	5517
SAU101736	4463	5518
SAU101737	4464	5519
SAU101744	4465	5520
SAU101751	4466	5521
SAU101752	4467	5522
SAU101754	4468	5523
SAU101756	4469	5524
SAU101771	4470	5525
SAU101772	4471	5526
SAU101777	4472	5527
SAU101781	4473	5528
SAU101782	4474	5529
SAU101784	4475	5530
SAU101790	4476	5531
SAU101791	4477	5532
SAU101792	4478	5533
SAU101793	4479	5534
SAU101794	4480	5535
SAU101795	4481	5536
SAU101797	4482	5537
SAU101798	4483	5538
SAU101799	4484	5539
SAU101800	4485	5540
SAU101801	4486	5541
SAU101802	4487	5542
SAU101803	4488	5543
SAU101804	4489	5544

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU101805	4490	5545
SAU101806	4491	5546
SAU101807	4492	5547
SAU101808	4493	5548
SAU101810	4494	5549
SAU101811	4495	5550
SAU101814	4496	5551
SAU101815	4497	5552
SAU101818	4498	5553
SAU101824	4499	5554
SAU101833	4500	5555
SAU101839	4501	5556
SAU101842	4502	5557
SAU101845	4503	5558
SAU101849	4504	5559
SAU101857	4505	5560
SAU101862	4506	5561
SAU101864	4507	5562
SAU101865	4508	5563
SAU101866	4509	5564
SAU101868	4510	5565
SAU101869	4511	5566
SAU101876	4512	5567
SAU101881	4513	5568
SAU101882	4514	5569
SAU101890	4515	5570
SAU101891	4516	5571
SAU101893	4517	5572
SAU101904	4518	5573
SAU101907	4519	5574
SAU101909	4520	5575
SAU101910	4521	5576
SAU101915	4522	5577
SAU101922	4523	5578
SAU101948	4524	5579
SAU101966	4525	5580
SAU101968	4526	5581
SAU101991	4527	5582
SAU101995 .	4528	5583
SAU101996	4529	5584
SAU101999	4530	5585
SAU102001	4531	5586
SAU102002	4532	5587
SAU102003	4533	5588
SAU102006	4534	5589
SAU102007	4535	5590
SAU102032	4536	5591
SAU102035	4537	5592
SAU102044	4538	5593

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
0.4771000.46	4500	5504
SAU102046	4539	5594
SAU102049	4540	5595
SAU102054	4541	5596
SAU102059	4542	5597
SAU102067	4543	5598
SAU102068	4544	5599
SAU102102	4545	5600
SAU102113	4546	5601
SAU102116	4547	5602
SAU102117	4548	5603
SAU102129	4549	5604
SAU102132	4550	5605
SAU102142	4551	5606
SAU102143	4552	5607
SAU102144	4553	5608
SAU102162	4554	5609
SAU102165	4555	5610
SAU102200	4556	5611
SAU102201	4557	5612
SAU102222	4558	5613
SAU102231	4559	5614
SAU102232	4560	5615
SAU102233	4561	5616
SAU102241	4562	5617
SAU102242	4563	5618
SAU102246	4564	5619
SAU102247	4565	5620
SAU102252	4566	5621
SAU102256	4567	5622
SAU102257	4568	5623
SAU102259	4569	5624
SAU102260	4570	5625
SAU102261	4571	5626
SAU102262	4572	5627
SAU102264	4573	5628
SAU102265	4574	5629
SAU102268	4575	5630
SAU102270	4576	5631
SAU102280	4577	5632
SAU102281	4578	5633
SAU102283	4579	5634
SAU102284	4580	5635
SAU102286	4581	5636
SAU102287	4582	5637
SAU102292	4583	5638
SAU102294	4584	5639
SAU102297	4585	5640
SAU102298	4586	5641
SAU102308	4587	5642

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU102318	4588	5643
SAU102333	4589	5644
SAU102334	4590	5645
SAU102336	4591	5646
SAU102340	4592	5647
SAU102345	4593	5648
SAU102350	4594	5649
SAU102352	4595	5650
SAU102355	4596	5651
SAU102356	4597	5652
SAU102378	4598	5653
SAU102380	4599	5654
SAU102388	4600	5655
SAU102389	4601	5656
SAU102390	4602	5657
SAU102392	4603	5658
SAU102394	4604	5659
SAU102396	4605	5660
SAU102401	4606	5661
SAU102407	4607	5662
SAU102417	4608	5663
SAU102418	4609	5664
SAU102420	4610	5665
SAU102422	4611	5666
SAU102423	4612	5667
SAU102433	4613	5668
SAU102434	4614	5669
SAU102437	4615	5670
SAU102440	4616	5671
SAU102447	4617	5672
SAU102448	4618	5673
SAU102449	4619	5674
SAU102450	4620	5675
SAU102452	4621	5676
SAU102453	4622	5677
SAU102460	4623	5678
SAU102469	4624	5679
SAU102473	4625	5680
SAU102474	4626	5681
SAU102476	4627	5682
SAU102479	4628	5683
SAU102480	4629	5684
SAU102481	4630	5685
SAU102485	4631	5686
SAU102486	4632	5687
SAU102487	4633	5688
SAU102498	4634	5689
SAU102502	4635	5690
SAU102503	4636	5691

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU102526	4637	5692
SAU102527	4638	5693
SAU102531	4639	5694
SAU102533	4640	5695
SAU102534	4641	5696
SAU102541	4642	5697
SAU102551	4643	5698
SAU102554	4644	5699
SAU102575	4645	5700
SAU102578	4646	5701
SAU102584	4647	5702
SAU102585	4648	5703
SAU102593	4649	5704
SAU102598	4650	5705
SAU102599	4651	5706
SAU102601	4652	5707
SAU102602	4653	5708
SAU102603	4654	5709
SAU102605	4655	5710
SAU102606	4656	5711
SAU102607	4657	5712
SAU102609	4658	5713
SAU102610	4659	5714
SAU102613	4660	5715
SAU102614	4661	5716
SAU102615	4662	5717
SAU102620	4663	5718
SAU102621	4664	5719
SAU102629	4665	5720
SAU102631	4666	5721
SAU102636	4667	5722
SAU102637	4668	5723
SAU102639	4669	5724
SAU102652	4670	5725
SAU102658	4671	5726
SAU102663	4672	5727
SAU102669	4673	5728
SAU102671	4674	5729
SAU102674	4675	5730
SAU102693	4676	5731
SAU102694	4677	5732
SAU102725	4678	5733
SAU102764	4679	5734
SAU102766	4680	5735
SAU102812	4681	5736
SAU102863	4682	5737
SAU102870	4683	5738
SAU102880	4684	5739
0A-010200V	4004	3137

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU102883	4686	5741
SAU102905	4687	5742
SAU102909	4688	5743
SAU102933	4689	5744
SAU102935	4690	5745
SAU102936	4691	5746
SAU102939	4692	5747
SAU102942	4693	5748
SAU102944	4694	5749
SAU102979	4695	5750
SAU102983	4696	5751
SAU102992	4697	5752
SAU103010	4698	5753
SAU103024	4699	5754
SAU103025	4700	5755
SAU103037	4701	5756
SAU103038	4702	5757
SAU103042	4703	5758
SAU103077	4704	5759
SAU103115	4705	5760
SAU103144	4706	5761
SAU103159	4707	5762
SAU103169	4708	5763
SAU103175	4709	5764
SAU103191	4710	5765
SAU103198	4711	5766
SAU103204	4712	5767
SAU103226	4713	5768
SAU103232	4714	5769
SAU200006	4715	5770
SAU200028	4716	5771
SAU200030	4717	5772
SAU200058	4718	5773
SAU200059	4719	5774
SAU200088	4720	5775
SAU200157	4721	5776
SAU200242	4722	5777
SAU200297	4723	5778
SAU200345	4724	5779
SAU200392	4725	5780
SAU200468	4726	5781
SAU200558	4727	5782
SAU200561	4728	5783
SAU200564	4729	5784
SAU200565	4730	5785
SAU200593	4731	5786
SAU200601	4732	5787
SAU200628	4733	5788
SAU200657	4734	5789

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU200685	4735	5790
SAU200083	4736	5791
SAU200725	4737	5792
SAU200723	4738	5793
SAU200740	4739	5794
SAU200740 SAU200752	4740	5795
SAU200732 SAU200914	4741	5796
SAU200914 SAU200916	4741	5797
SAU200916 SAU200928	4743	5798
SAU200928 SAU200934		
	4744	5799
SAU200949	4745	5800
SAU200960	4746	5801
SAU200994	4747	5802
SAU201167	4748	5803
SAU201168	4749	5804
SAU201184	4750	5805
SAU201197	4751	5806
SAU201225	4752	5807
SAU201236	4753	5808
SAU201301	4754	5809
SAU201333	4755	5810
SAU201375	4756	5811
SAU201380	4757	5812
SAU201381	4758	5813
SAU201385	4759	5814
SAU201403	4760	5815
SAU201469	4761	5816
SAU201486	4762	5817
SAU201506	4763	5818
SAU201508	4764	5819
SAU201513	4765	5820
SAU201539	4766	5821
SAU201541	4767	5822
SAU201558	4768	5823
SAU201571	4769	5824
SAU201611	4770	5825
SAU201615	4771	5826
SAU201620	4772	5827
SAU201621	4773	5828
SAU201654	4774	5829
SAU201666	4775	5830
SAU201743	4776	5831
SAU201752	4777	5832
SAU201765	4778	5833
SAU201773	4779	5834
SAU201775	4780	5835
SAU201810	4781	5836
SAU201827	4782	5837
SAU201929	4783	5838

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU201952	4784	5839
SAU201961	4785	5840
SAU201971	4786	5841
SAU202006	4787	5842
SAU202039	4788	5843
SAU202126	4789	5844
SAU202174	4790	5845
SAU202174	4791	5846
SAU202186	4792	5847
SAU202267	4793	5848
SAU202708	4794	5849
SAU202731	4795	5850
SAU202731	4796	5851
SAU202756	4797	5852
SAU202781	4798	5853
SAU202872	4799	5854
SAU202882	4800	5855
SAU202930	4801	5856
SAU202930 SAU202945	4802	5857
SAU202943	4803	5858
SAU203001	4804	5859
SAU203007	4805	5860
SAU203196	4806	5861
SAU203293	4807	5862
SAU203296	4808	5863
SAU203524	4809	5864
SAU300110	4810	5865
SAU300131	4811	5866
SAU300156	4812	5867
SAU300191	4813	5868
SAU300269	4814	5869
SAU300335	4815	5870
SAU300338	4816	5871
SAU300455	4817	5872
SAU300572	4818	5873
SAU300617	4819	5874
SAU300713	4820	5875
SAU300719	4821	5876
SAU300732	4822	5877
SAU300825	4823	5878
SAU300868	4824	5879
SAU300975	4825	5880
SAU300998	4826	5881
SAU301004	4827	5882
SAU301030	4828	5883
SAU301054	4829	5884
SAU301080	4830	5885
SAU301118	4831	5886
SAU301133	4832	5887
070301133	+032	3667

PathoSeq Gene Locus	Nucleotide SeqID	Protein SeqID
SAU301148	4833	5888
SAU301223	4834	5889
SAU301230	4835	5890
SAU301268	4836	5891
SAU301275	4837	5892
SAU301357	4838	5893
SAU301363	4839	5894
SAU301433	4840	5895
SAU301465	4841	5896
SAU301472	4842	5897
SAU301592	4843	5898
SAU301620	4844	5899
SAU301758	4845	5900
SAU301773	4846	5901
SAU301829	4847	5902
SAU301869	4848	5903
SAU301898	4849	5904
SAU302060	4850	5905
SAU302513	4851	5906
SAU302626	4852	5907
SAU302685	4853	5908
SAU302698	4854	5909
SAU302699	4855	5910
SAU302805	4856	5911
SAU302901	4857	5912
SAU302931	4858	5913
SAU302950	4859	5914
SAU302956	4860	5915

WHAT IS CLAIMED IS:

5

10

15

20

25

30

35

 A purified or isolated nucleic acid sequence comprising a nucleotide sequence consisting essentially of one of SEQ ID NOs: 8-3795, wherein expression of said nucleic acid inhibits proliferation of a cell.

- 2. A purified or isolated nucleic acid comprising a fragment of one of SEQ ID NOs.: 8-3795, said fragment selected from the group consisting of fragments comprising at least 10, at least 20, at least 25, at least 30, at least 50 and more than 50 consecutive nucleotides of one of SEQ ID NOs: 8-3795.
- 3. A purified or isolated antisense nucleic acid comprising a nucleotide sequence complementary to at least a portion of an intragenic sequence, intergenic sequence, sequences spanning at least a portion of two or more genes, 5' noncoding region, or 3' noncoding region within an operon comprising a proliferation-required gene whose activity or expression is inhibited by an antisense nucleic acid comprising the nucleotide sequence of one of SEQ ID NOs.: 8-3795.
- 4. A purified or isolated nucleic acid comprising a nucleotide sequence having at least 70% identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795, the nucleotide sequences complementary to SEQ ID NOs.: 8-3795 and the sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 8-3795 as determined using BLASTN version 2.0 with the default parameters.
- 5. A vector comprising a promoter operably linked to a nucleic acid encoding a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795.
- 6. A purified or isolated polypeptide comprising a polypeptide whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of any one of SEQ ID NOs.: 8-3795, or a fragment selected from the group consisting of fragments comprising at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of one of the said polypeptides.
- 7. A purified or isolated polypeptide comprising a polypeptide having at least 25% amino acid identity to a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or at least 25% amino acid identity to a fragment comprising at least 10, at least 20, at least 30, at least 40, at least 50, at least 60 or more than 60 consecutive amino acids of a polypeptide whose expression is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 as determined using FASTA version 3.0t78 with the default parameters.
- 8. A method of producing a polypeptide, comprising introducing a vector comprising a promoter operably linked to a nucleic acid comprising a nucleotide sequence encoding a

polypeptide whose expression is inhibited by an antisense nucleic acid comprising one of SEQ ID NOs.: 8-3795 into a cell.

- 9. A method of inhibiting proliferation of a cell in an individual comprising inhibiting the activity or reducing the amount of a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.:
 8-3795 or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product.
- 10. A method for identifying a compound which influences the activity of a gene product required for proliferation, said gene product comprising a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:

contacting said gene product with a candidate compound; and determining whether said compound influences the activity of said gene product.

- 11. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:
 - (a) contacting a target gene or RNA encoding said gene product with a candidate compound or nucleic acid; and
 - (b) measuring an activity of said target.
 - 12. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising the steps of:
 - (a) providing a sublethal level of an antisense nucleic acid comprising a nucleotide sequence complementary to a nucleic acid comprising a nucleotide sequence encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell;
- 30

5

10

15

20

25

- (b) contacting said sensitized cell with a compound; and
- (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 13. A method for inhibiting cellular proliferation comprising introducing an effective amount of a compound with activity against a gene whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a compound with activity against the product of said gene into a population of cells expressing said gene.

5

10

15

20

25

30

35

14. A composition comprising an effective concentration of an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, or a proliferation-inhibiting portion thereof in a pharmaceutically acceptable carrier.

- 15. A method for inhibiting the activity or expression of a gene in an operon required for proliferation wherein the activity or expression of at least one gene in said operon is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising contacting a cell in a cell population with an antisense nucleic acid complementary to at least a portion of said operon.
 - 16. A method for identifying a gene which is required for proliferation of a cell comprising:
 - (a) contacting a cell with an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, wherein said cell is a cell other than the organism from which said nucleic acid was obtained;
 - (b) determining whether said nucleic acid inhibits proliferation of said cell; and
 - (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.
- 17. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising:
 - (a) identifying a homolog of a gene or gene product whose activity or level is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 in a test cell, wherein said test cell is not the cell from which said nucleic acid was obtained;
 - (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell;
 - (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell;
 - (d) contacting the sensitized cell of step (c) with a compound; and
 - (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said inhibitory nucleic acid.
- 18. A method of identifying a compound having the ability to inhibit proliferation comprising:
 - (a) contacting a test cell with a sublethal level of a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, thus sensitizing said test cell;
 - (b) contacting the sensitized test cell of step (a) with a compound; and
 - (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said nucleic acid.

19. A method for identifying a compound having activity against a biological pathway required for proliferation comprising:

- (a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein the activity or expression of said gene product is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795, in said cell to reduce the activity or amount of said gene product.
 - (b) contacting the sensitized cell with a compound; and
- (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 20. A method for identifying a compound having the ability to inhibit cellular proliferation comprising:
 - (a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795;
 - (b) contacting said cell with a compound; and
 - (c) determining whether said compound reduces proliferation of said contacted cell by acting on said gene product.
- 21. A method for identifying the biological pathway in which a proliferation-required gene or its gene product lies, wherein said gene or gene product comprises a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, said method comprising:
 - (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity of said proliferation-required gene or gene product in a test cell;
 - (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and
 - (c) determining the degree to which said proliferation of said test cell is inhibited relative to a cell which was not contacted with said compound.
- 22. A method for determining the biological pathway on which a test compound acts comprising:
 - (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a first cell, wherein the activity or expression of said proliferation-required nucleic acid is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795 and wherein the

5

10

15

20

25

30

biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required nucleic acid lies is known,

(b) contacting said first cell with said test compound; and

5

10

15

20

25

30

- (c) determining the degree to which said test compound inhibits proliferation of said first cell relative to a cell which does not contain said antisense nucleic acid.
- 23. A purified or isolated nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795.
- 24. A compound which interacts with a gene or gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.
- 25. A compound which interacts with a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence of one of SEQ ID NOs.: 8-3795 to inhibit proliferation.
 - 26. A method for manufacturing an antibiotic comprising the steps of:
- screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation, said gene product comprising a gene product whose activity or expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795; and manufacturing the compound so identified.
- 27. A purified or isolated nucleic acid comprising a nucleic acid having at least 70% nucleotide sequence identity to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012, the nucleotide sequences complementary to SEQ ID NOs.:3796-3800, 3806-4860, 5916-10012, and the nucleotide sequences complementary to fragments comprising at least 25 consecutive nucleotides of SEQ ID NOs.: 3796-3800, 3806-4860, 5916-10012 as determined using BLASTN version 2.0 with the default parameters.
 - 28. A method of inhibiting proliferation of a cell comprising inhibiting the activity or reducing the amount of a gene product in said cell or inhibiting the activity or reducing the amount of a nucleic acid encoding said gene product in said cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID

5

10

15

20

25

30

NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs: 8-3795.

29. A method for identifying a compound which influences the activity of a gene product required for proliferation comprising:

contacting a candidate compound with a gene product selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and

determining whether said candidate compound influences the activity of said gene product.

- 30. A method for identifying a compound or nucleic acid having the ability to reduce the activity or level of a gene product required for proliferation comprising:
 - (a) providing a target that is a gene or RNA, wherein said target comprises a nucleic acid that encodes a gene product selected from the group consisting of a gene

product having having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;

(b) contacting said target with a candidate compound or nucleic acid; and

(c) measuring an activity of said target.

5

10

15

20

25

30

35

31. A method for identifying a compound which reduces the activity or level of a gene product required for proliferation of a cell comprising:

(a) providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding said gene product in a cell to reduce the activity or amount of said gene product in said cell, thereby producing a sensitized cell, wherein said gene product is selected from the group consisting of a gene product having having at least 70% nucleic acid identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a

nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;

(b) contacting said sensitized cell with a compound; and

5

10

15

20

25

30

- (c) determining the degree to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 32. A method for inhibiting cellular proliferation comprising introducing a compound with activity against a gene product or a compound with activity against a gene encoding said gene product into a population of cells expressing said gene product, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEO ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
- 33. A preparation comprising an effective concentration of an antisense nucleic acid in a pharmaceutically acceptable carrier wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid comprising a sequence having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid

comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions.

5

10

15

20

25

30

35

34. A method for inhibiting the activity or expression of a gene in an operon which encodes a gene product required for proliferation comprising contacting a cell in a cell population with an antisense nucleic acid comprising at least a proliferation-inhibiting portion of said operon in an antisense orientation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.

35. A method for identifying a gene which is required for proliferation of a cell comprising:

(a) contacting a cell with an antisense nucleic acid selected from the group consisting of a nucleic acid at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, wherein said cell is a cell other than the organism from which said nucleic acid was obtained;

- (b) determining whether said nucleic acid inhibits proliferation of said cell; and
- (c) identifying the gene in said cell which encodes the mRNA which is complementary to said antisense nucleic acid or a portion thereof.
- 36. A method for identifying a compound having the ability to inhibit proliferation of a cell comprising:

(a) identifying a homolog of a gene or gene product whose activity or level is inhibited by an antisense nucleic acid in a test cell, wherein said test cell is not the microorgaism from which the antisense nucleic acid was obtained, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions;

10

5

- (b) identifying an inhibitory nucleic acid sequence which inhibits the activity of said homolog in said test cell;
- (c) contacting said test cell with a sublethal level of said inhibitory nucleic acid, thus sensitizing said cell;

15

- (d) contacting the sensitized cell of step (c) with a compound; and
- (e) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not express said inhibitory nucleic acid.
- 37. A method of identifying a compound having the ability to inhibit proliferation comprising:

20

25

(a) sensitizing a test cell by contacting said test cell with a sublethal level of an antisense nucleic acid, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs. 8-3795 or a portion thereof which inhibits the proliferation of the cell from which said nucleic acid was obtained, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditionst;

30

- (b) contacting the sensitized test cell of step (a) with a compound; and
- (c) determining the degree to which said compound inhibits proliferation of said sensitized test cell relative to a cell which does not contain said antisense nucleic acid.
- 38. A method for identifying a compound having activity against a biological pathway required for proliferation comprising:

35

(a) sensitizing a cell by providing a sublethal level of an antisense nucleic acid complementary to a nucleic acid encoding a gene product required for proliferation, wherein said gene product is selected from the group consisting of a gene product having at

5

10

15

20

25

30

35

least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;

- (b) contacting the sensitized cell with a compound; and
- (c) determining the extent to which said compound inhibits the growth of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 39. A method for identifying a compound having the ability to inhibit cellular proliferation comprising:

(a) contacting a cell with an agent which reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795

under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;

- (b) contacting said cell with a compound; and
- (c) determining the degree to which said compound reduces proliferation of said contacted cell relative to a cell which was not contacted with said agent.
- 40. A method for identifying the biological pathway in which a proliferation-required gene product or a gene encoding a proliferation-required gene product lies comprising:
 - (a) providing a sublethal level of an antisense nucleic acid which inhibits the activity or reduces the level of said gene encoding a proliferation-required gene product or said said proliferation-required gene product in a test cell, wherein said proliferationrequired gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795;
 - (b) contacting said test cell with a compound known to inhibit growth or proliferation of a cell, wherein the biological pathway on which said compound acts is known; and
 - (c) determining the degree to which said compound inhibits proliferation of said test cell relative to a cell which does not contain said antisense nucleic acid.

35

5

10

15

20

25

41. A method for determining the biological pathway on which a test compound acts comprising:

5

10

15

20

25

30

- (a) providing a sublethal level of an antisense nucleic acid complementary to a proliferation-required nucleic acid in a cell, thereby producing a sensitized cell, wherein said antisense nucleic acid is selected from the group consisting of a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795 or a proliferation-inhibiting portion thereof, a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, and a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions and wherein the biological pathway in which said proliferation-required nucleic acid or a protein encoded by said proliferation-required polypeptide lies is known,
 - (b) contacting said cell with said test compound; and
- (c) determining the degree to which said compound inhibits proliferation of said sensitized cell relative to a cell which does not contain said antisense nucleic acid.
- 42. A compound which inhibits proliferation by interacting with a gene encoding a gene product required for proliferation or with a gene product required for proliferation, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.
 - 43. A method for manufacturing an antibiotic comprising the steps of:

WO 01/70955 PCT/US01/09180

screening one or more candidate compounds to identify a compound that reduces the activity or level of a gene product required for proliferation wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795; and

manufacturing the compound so identified.

5

10

15

20

25

30

35

44. A method for inhibiting proliferation of a cell in a subject comprising administering an effective amount of a compound that reduces the activity or level of a gene product required for proliferation of said cell, wherein said gene product is selected from the group consisting of a gene product having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEO ID NOs.: 8-3795, a gene product encoded by a nucleic acid having at least 70% nucleotide sequence identity as determined using BLASTN version 2.0 with the default parameters to a nucleic acid encoding a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs:8-3795, a gene product having at least 25% amino acid identity as determined using FASTA version 3.0t78 with the default parameters to a gene product whose expression is inhibited by an antisense nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NOs.: 8-3795, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under stringent conditions, a gene product encoded by a nucleic acid comprising a nucleotide sequence which hybridizes to a nucleic acid selected from the group consisting of SEQ ID NOs.: 8-3795 under moderate conditions, and a gene product whose

WO 01/70955 PCT/US01/09180

activity may be complemented by the gene product whose activity is inhibited by a nucleic acid selected from the group consisting of SEQ ID NOs: 8-3795.

WO 01/70955

FIG. 1

FIG.2A

Log (ng/ml Tetracycline)

FIG.2B

FIG.3

SUBSTITUTE SHEET (RULE 26)

·		

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 September 2001 (27.09.2001)

PCT

(10) International Publication Number WO 2001/070955 A3

- (51) International Patent Classification⁷: C12N 15/11, C12Q 1/68, C12N 15/31, C07K 14/195, A61K 31/7088, C07K 16/12
- (21) International Application Number:

PCT/US2001/009180

- (22) International Filing Date: 21 March 2001 (21.03.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30)	Priority Data:		
	60/191,078	21 March 2000 (21.03.2000)	US
	60/206,848	23 May 2000 (23.05.2000)	US
	60/207,727	26 May 2000 (26.05.2000)	US
	60/242,578	23 October 2000 (23.10.2000)	US
	60/253,625	27 November 2000 (27.11.2000)	US
	60/257,931	22 December 2000 (22.12.2000)	US
	60/269.308	16 February 2001 (16.02.2001)	US

(71) Applicant (for all designated States except US): ELITRA PHARMACEUTICALS, INC. [US/US]; Suite A, 3510 Dunhill Street, San Diego, CA 92121 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HASELBECK, Robert [US/US]; 4672 El Cerrito Drive, San Diego, CA

92115 (US). OHLSEN, Kari, L. [US/US]; 3560 Vista de la Orilla, San Diego, CA 92117 (US). ZYSKIND, Judith, W. [US/US]; 8415 La Jolla Scenic Drive, La Jolla, CA 92037 (US). WALL, Daniel [US/US]; 3734 Brookshire Street, San Diego, CA 92111 (US). TRAWICK, John, D. [US/US]; 7975 Michelle Drive, La Mesa, CA 91942 (US). CARR, Grant, J. [US/US]; 2210 Sonrisa Glen, Escondido, CA 92029 (US). YAMAMOTO, Robert, T. [US/US]; 3725 Norte Dame Avenue, San Diego, CA 92122 (US). XU, H., Howard [US/US]; 11142 Ivy Hill Drive, San Diego, CA 92131 (US). FORSYTH, R., Allyn [US/US]; 1135 Beryl Street, San Diego, CA 92109 (US).

- (74) Agent: HART, Daniel; Knobbe, Martens, Olson & Bear, LLP, 16th floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GII, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(54) Title: IDENTIFICATION OF ESSENTIAL GENES IN PROKARYOTES

(57) Abstract: The sequences of antisense nucleic acids which inhibit the proliferation of prokaryotes are disclosed. Cell-based assays which employ the antisense nucleic acids to identify and develop antibiotics are also disclosed. The antisense nucleic acids can also be used to identify proteins required for proliferation. express these proteins or portions thereof, obtain antibodies capable of specifically binding to the expressed proteins, and to use those expressed proteins as a screen to isolate candidate molecules for rational drug discovery programs. The nucleic acids can also be used to screen for homologous nucleic acids that are required for proliferation in cells other than Staphylococcus aureus, Salmonella typhimurium, Klebsiella pneumoniae, and Pseudomonas

aeruginosa. The nucleic acids of the present invention can also be used in various assay systems to screen for proliferation required genes in other organisms.

WO 2001/070955 A3 ||||||

WO 2001/070955 A3

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau
- (88) Date of publication of the international search report: 1 August 2002
- (48) Date of publication of this corrected version:

15 April 2004

(15) Information about Correction: see PCT Gazette No. 16/2004 of 15 April 2004, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:			
☐ BLACK BORDERS			
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES			
☐ FADED TEXT OR DRAWING			
BLURRED OR ILLEGIBLE TEXT OR DRAWING			
☐ SKEWED/SLANTED IMAGES			
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS			
☐ GRAY SCALE DOCUMENTS			
☐ LINES OR MARKS ON ORIGINAL DOCUMENT			
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY			
D			

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)