CMOS FABRICATION TECHNOLOGY

Introduction

CMOS Fabrication Technology

- A basic N-well CMOS Process
- The P-well Process
- Twin –tub Process
- Silicon On Insulator(SOI)

CMOS Fabrication Process

- CMOS transistors are fabricated on silicon wafer
- Wafers diameters (200-300 mm)
- Lithography process similar to printing press
- On each step, different materials are deposited, or patterned or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

WAFERS SELECTION

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires to make an n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Schottky Diode
- Use heavily doped well and substrate contacts/taps

Inverter Mask Set

- Top view
- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

In reality >40 masks may be needed

Fabrication Steps

- Start with blank wafer (typically p-type where NMOS is created)
- Build inverter from the bottom up
- First step will be to form the n-well (where PMOS would reside)
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove oxide layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer to form n-well
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - 900 1200 C with H₂O or O₂ in oxidation furnace

SiO₂ p substrate

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Property changes where exposed to light
- Two types of photoresists (positive or negative)
 - Positive resists can be removed if exposed to UV light
 - Negative resists cannot be removed if exposed to UV light

	Photoresist
	SiO ₂
	2
p substrate	

Lithography

- Expose photoresist to Ultra-violate (UV) light through the n-well mask
- Strip off exposed photoresist with chemicals

Photoresist SiO, p substrate

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed
- N-well pattern is transferred from the mask to silicon-di-oxide surface; creates an opening to the silicon surface

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

SiO₂

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic-rich gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - lons blocked by SiO₂, only enter exposed Si
- SiO₂ shields (or masks) areas which remain p-type

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well p substrate

Polysilicon

(self-aligned gate technology)

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

 Use same lithography process discussed earlier to pattern polysilicon

Self-Aligned Process

- Use gate-oxide/polysilicon and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion/implantation

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks n-dopants
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion/implantation cont.

- Historically dopants were diffused
- Usually high energy ion-implantation used today
- But n+ regions are still called diffusion

N-diffusion cont.

Strip off oxide to complete patterning step

P-Diffusion/implantation

 Similar set of steps form p+ "diffusion" regions for PMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide (FO)
- Etch oxide where contact cuts are needed

Metalization

Inverter Fabrication Cross-section

THANK YOU