NIVEAU TERMINALE D

Épreuve : Mathématiques

Classe: $T^{le}D$

Situation d'évaluation

Contexte : La fête du retraité

Pour souhaiter un bon départ à la retraite au surveillant générale de l'établissement, les professeurs de mathématiques du Complexe scolaire notre Dame de Lurette CSNDL ont organisé une petite fête La réception a lieu dans une grande salle ayant la forme d'un parallélépipède rectangle ABCDEFGH ci-contre,

- L'unité de longueur est 1cm
- avec AB = 2, AD = AE = 1.
- On suppose que $\widehat{mesBAC} = \frac{2\pi}{3}$ Des lampadaires sont placés aux points I,J,K milieu respectifs de [DE],[DG],[EB].
- Des jeux de décoration sont placés aux points $R(1; \frac{1}{3}; O); S(\frac{3}{4}; 0; 1); L(a; 1; 0)$ et $T(O; \frac{2}{3}; 1)$ où a est un nombre réel de [0, 1].

BONOU élève en classe de T^{le} scientifique présent à la fête, se demande s'il est possible de choisir le réel a de sorte que les droites (SL) et (RT) soient sécantes?

Tâche: Tu vas aider BONOU à avoir une réponse à ses préocupations en traitant les problèmes suivants.

PROBLEME 1

- 1. Détermine les valeurs du réel a tel que \overrightarrow{SL} et \overrightarrow{RT} soient colinéaires.
- 2. Bonou peut-il répondre à sont inquiétude?

- 3. Calculer BC
- 4. Calculer $\overrightarrow{AB}.\overrightarrow{AC}$
- 5. calculer $\overrightarrow{FA}.\overrightarrow{FC};\overrightarrow{AB}.\overrightarrow{AG};\overrightarrow{FD}.\overrightarrow{FC}$ et $\overrightarrow{AG}.\overrightarrow{BH}$
- 6. Détermine les coordonnées du barycentre G_1 des points pondérés (I,1),(K,-3),(L,6) puis le construire.

PROBLEME 2

- 7. On se place dans le repère $(D, \overrightarrow{DA}, \frac{1}{2}\overrightarrow{DC}, \overrightarrow{DH})$
 - (a) Démontre que $(D, \overrightarrow{DA}, \frac{1}{2}\overrightarrow{DC}, \overrightarrow{DH})$ est un repère orthonormé.
 - (b) Détermine les coordonnées des vecteurs \overrightarrow{IJ} et \overrightarrow{IK}
 - (c) Calculer $\overrightarrow{IJ}.\overrightarrow{IK}$ puis les distances IJ et IK
 - (d) Déduis une valeur approchée de l'angle $J\hat{I}K$