PREDICTION MODELS BASED ON MAX-STEMS

(or harnessing imbalanced data)

Chapter Two: A Combinatorial Approach

Ahmet Furkan EMREHAN (matahmet@gmail.com)

MOTIVATION

- ▶ This study is an extension of previous study (chapter one) with combinational approach.
- ▶ In chapter one, I examine five models using distribution of stems separately. Combination of stems with s-elements have a potential to help efficient prediction. Because documents including comination of stems may be semantically closer than one stem based prediction (defined in chapter one).

ADAPTATION OF COMPONENTS OF **MODELS**

- ▶ $p, Label^p, n, doc_i \ and \ \Sigma^p$, components of general parameters, are defined in Chapter One $\ Slide \ 8$
- ightharpoonup combo $_{ij}^s$: combination of stems indexed j wit s elements of doc $_i$ (stem can be c osen as max stem mentioned previous slides.)
- \triangleright m_i^s : counts of combo $_{ii}^s$
- $\Sigma_{ij}^{p,s}$: counts of documents, w ic include all elements of combo $_{ij}^{s}$, labelled wit category wit index p in train set
- $\land \Lambda_{ij}^s := Label^q w \ ere \ q = arg \max \Sigma_{ij}^{p,s}$
- $ightharpoonup \Lambda_i^{p,s}$: counts of $\Lambda_{ij}^s w$ ic equals to Label^p

ADAPTATION OF COMPONENTS OF **MODELS**

- $\triangleright \lambda_{ij}^s$: sum of lengt of stems in combo_{ij}
- in case t at $\Sigma^p = 0$, $\rho_i^p = 0$

 $\frac{\Sigma_{ij}^{p,s}}{\overline{\Sigma_{q-1}^n}\,\Sigma_{ij}^q}$ (it can be considered as probability of combo $_{ij}^s$, labelled wit category wit p index)

- $\blacktriangleright \quad \overline{\Pi_i^{p,s}} := average_j \ \left(\Pi_{ij}^{p,s}\right) \! suc \ t \ at \ all \ "j \ "s \ meet \ t \ e \ condition \ \Pi_{ij}^{p,s} > 0 \ *$ in case that $\Sigma_{ij}^{p,s}=0$ for all $p=1,2,...n,\overline{\Pi_i^{p,s}}=0$
- $\Pi_i^{\widehat{p},s} \quad \max_j (\Pi_{ij}^{p,s})$

A Trivial Result

- ▶ $predict_cb_k(doc_i, 1) = predict_k(doc_i)$ for k = 1, 2, ..., 5
- Moreover all parameters in case s=1, equal to corresponding <u>parameters</u> in chapter one (slides 8-10) For example $m_i^s=m_i, \Sigma_{ij}^{p,1}=\Sigma_{ij}^p$ and $\Pi_i^{\overline{p,1}}=\overline{\Pi_i^p}$.

Application (introduction)

- We use data of «nayn.co» a news portal in Turkish Language. Data is imported by url "https://raw.githubusercontent.com/naynco/nayn.data/master/classification_clean.c sv"» as done in chapter one.
- Head of data is presented below

	Title	Categories
12006	58 Saniyede Katar Meselesi? Katar krizi nedir?	DÜNYA
12496	58 Saniyede Türkiye - Almanya Gerginliği	DÜNYA
12877	Adriana Lima, Bomba Aşkla İlgili İlk Kez Konuş	DÜNYA
12878	Galatasaraylı Taraftarlar Patladı: İstifa Edin	SPOR
12880	Galatasaray'dan Ayrılan Sabri, Neredeyse Bedav	SPOR

There are 11622 documents («Title» column) with label («DÜNYA» (World), «SPOR» (Sports), «SANAT»(Art) and «Teknoloji»(Technology)). But data is imbalanced in favor of category «DÜNYA» such that the counts [and percentages] of categories 9226[%79] ,1967 [%17],285 [%2] and 144 [%1] respectively.

Application (computations)

- $\rho_i^p \colon \rho_i^1 = \frac{8}{7384} = 0.001, \ \rho_i^2 = \frac{3}{1568} = 0.002, \\ \rho_i^3 = \frac{3}{229} = 0.013, \ \rho_i^4 = \frac{0}{116} = 0$
- $\qquad \qquad \overline{\Pi_i^p} \colon \overline{\Pi_i^1} = \frac{1 + 0.67 + 1 + 0.75 + 1}{4} = 0.884, \ \overline{\Pi_i^2} = \frac{0.25 + 1}{2} = 0.625, \ \overline{\Pi_i^3} = \frac{1 + 0.33}{2} = 0.665, \overline{\Pi_i^4} = 0.884, \ \overline{\Pi_i^2} = \frac{0.25 + 1}{2} = 0.625, \ \overline{\Pi_i^3} = \frac{1 + 0.33}{2} = 0.665, \ \overline{\Pi_i^4} = 0.884, \ \overline{\Pi_i^4} =$
- $\blacktriangleright \widehat{\Pi_i^p} \colon \widehat{\Pi_i^1} = 1, \, \widehat{\Pi_i^2} = 1, \, \widehat{\Pi_i^3} = 1, \, \widehat{\Pi_i^4} = 0$

EMREHAN

9/3/2021

' /

Application (Predictions)

- \rightarrow for i = 38296
- $ightharpoonup predict_cb_1(doc_i, 2) = SPOR$
- $ightharpoonup predict_cb_2(doc_i, 2) = SANAT$
- ▶ $predict_cb_3(doc_i, 2) = D\ddot{U}NYA$
- ▶ $predict_cb_4(doc_i, 2) = D\ddot{U}NYA$
- $ightharpoonup predict_cb_5(doc_i, 2) = SANAT$

Application (Results)

Confusion Matrix for Model 5 (count) s= 2							Confusion Matrix for Model 5 (percentage)						
	Prediction						Prediction (rounded to 2 digits)						
		DÜNYA	SANAT	SPOR	Teknoloji	No Prediction	Total	DÜNYA	SANAT	SPOR	Teknoloji	No Prediction	Total
Observed	DÜNYA	977	289	189	362	25	1842	0.53	0.16	0.1	0.2	0.01	1
	SANAT	3	40	10	0	3	56	0.05	0.71	0.18	0	0.05	1
	SPOR	25	27	308	26	13	399	0.06	0.07	0.77	0.07	0.03	1
	Teknoloji	10	0	3	15	0	28	0.36	0	0.11	0.54	0	1
Accuracy Pate For Model F													

0.58

A Note:

All predictions of 25,2,13 documents labelled with "DÜNYA", "SANAT" and "SPOR" respectively are "No prediction". Because no combinations, with s=2 stems,of those documents in test set are covered by a document in train set. Trivially prediction based combinations of stems of these documents, with s>2 stems, are "No Predidiction".

End of Chapter Two