

STIC Search Report

STIC Database Tracking Number: 17891

TO: Laura C Hill

Location: RND 6b76

Art Unit: 3761

Monday, March 27, 2006

Case Serial Number: 10/775666

From: Ethel Leslie Location: EIC 3700

RND 8A34

Phone: 571-272-5992

Ethel.leslie@uspto.gov

Search Notes

Laura,

I hope you received the search results for the surgical drain with sensors I sent to you via email. If you didn't get them, let me know and I'll be happy to get them to you.

Attached is a copy of your search request as well as a STIC Feedback Form. If you have a moment, please fill out the Feedback Form and return it to us.

Thank you! Ethel Leslie

Solomon, Terrance

From:

Hill, Laura C.

Sent:

Tuesday, February 07, 2006 4:15 PM

To:

STIC-EIC3700

Subject:

Database Search Request, Serial Number: 10/775666

Requester:

LAURA HILL (P/3761)

Art Unit:

GROUP ART UNIT 3761

Employee Number:

80706

Office Location:

RND 06B76

Phone Number:

(571)272-7137

Mailbox Number:

Case serial number:

10/775666

Class / Subclass(es):

600/301-302; 604/541

Earliest Priority Filing Date:

02/07/03

Format preferred for results:

E-mail

Search Topic Information:

-implanted surgical drain with multiple sensors attached to drain

-system for postoperative tissue or organ monitoring having processor to determine color

value based on spectral energy/light/radiation

Special Instructions and Other Comments:

8:30-5:30pm (Monday-Friday; off every other Friday)

FEB 0 8 2006

EIC SEARCH RESULTS

Serial No. 10/775,666 – Surgical drain with sensors for monitoring internal tissue condition

ASRC Searcher: Ethel Leslie Date: March 23 & 27, 2006

Foreign & International Patent Search #1

(c) 2006 Thomson Derwent

Search Strategy

```
Description
Set
        Items
S1
       129939
                SPECTRAL? OR SPECTRUM?
                WAVELENGTH? OR WAVEFORM? OR WAVE() (LENGTH? OR FORM? ?) OR -
S2
      2470828
             ENERGY OR ENERGIES OR LIGHT? ? OR RADIAT?
s3
       757213
                COLOR? OR COLOUR? OR CHROMATIC?
S4
      3624462
                SENSOR? ? OR SENSE? ? OR SENSING? OR DETECT? OR ELECTRODE?
             ? OR MICROELECTRODE? ? OR PROBE OR PROBES
S5
                MULTIPL? OR PLURAL?
      1602455
                DRAIN? OR TUBE? ? OR TUBING? OR TUBUL? OR CATHETER? OR CAN-
             NULA? OR CONDUIT? ?
s7
                ORGAN? ? OR TISSUE? ? OR (BODY OR BODILY) (2N) FLUID? ?
       264050
       585674 BLOOD OR LIVER OR HEPATIC OR KIDNEY OR RENAL OR HEART OR C-
S8
             ARDIAC OR LUNG OR LUNGS OR PULMONARY OR WOUND? ? OR BLADDER OR
              STOMACH OR IN()(VIVO OR SITU)
       481226 IC=(A61B? OR A61D? OR A61F? OR A61M?)
S9
        27154
                S1(5N)S2
S10
        87282
                S4 (5N) S5
S11
S12
            0
                S10 AND S11 AND S3 AND S6 AND S7:S8
S13
          219
                S2 AND S3 AND S4 AND S6 AND S7:S8
S14
           51
                S13 AND S9
S15
           48
                S2 (S) S3 (S) S4 (S) S6 (S) S7:S8
           13
                S15 AND S9
S16
           38
                S14 NOT S16
S17
       269955
                S2:S3(5N)S4
S18
                S18 AND S6 AND S7:S8
S19
         1487
S20
          789
                S19 AND S9
S21
          520
                S18(S)S6(S)S7:S8
          290
S22
                S21 AND S9
S23
       241583
                S2(5N)S4
S24
         1395
                S23 AND S6 AND S7:S8
S25
          768
                S24 AND S9
S26 '
          281
                (S23(S)S6(S)S7:S8) AND S9
File 347: JAPIO Nov 1976-2005/Nov (Updated 060302)
         (c) 2006 JPO & JAPIO
File 350: Derwent WPIX 1963-2006/UD, UM & UP=200619
```

Search Results

16/5/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

015933640

WPI Acc No: 2004-091481/200409

Related WPI Acc No: 2004-108893; 2004-191063; 2004-795801

XRAM Acc No: C04-037267 XRPX Acc No: N04-073246

Characterizing the condition of a region of a tissue sample, useful in diagnosing a disease, by determining if a region lies outside a zone of interest and/or if optical data obtained are affected by an obstruction

Patent Assignee: MEDISPECTRA INC (MEDI-N)

Inventor: ABELE C C; BANKS P S; CLUNE T R; COSTA P J; DRAAYER B F; FLANAGAN J A; FLEWELLING R F; GRIFFIN C E; JIANG C; MEESE T M; MORRELL R M; SAAGER R B; SCHOMACKER K T; SCHOTT J; SUM S T; TWIETMEYER K; ZELENCHUK A; TWIETMEYER K M

Number of Countries: 106 Number of Patents: 012

Patent Family:

Patent No Kind Date Applicat No Kind Date A1 20040115 WO 2003US21347 WO 200405895 Α 20030708 200409 B US 20040010375 A1 20040115 US 2002394696 Ρ 20020709 200416 US 2002243535 Α 20020913 US 2002295794 Α 20021115 US 2003418415 Α 20030418 AU 2003259095 A1 20040123 AU 2003259095 Α 20030708 200459 US 20040206882 A1 20041021 US 2003419181 Α 20030418 200470 US 20040206913 A1 20041021 US 2003418668 Α 20030418 200470 US 20040206914 A1 20041021 US 2003418973 20030418 Α 200470 US 20040207625 A1 20041021 US 2003418902 Α 20030418 200470 20041021 US 2003418974 US 20040208385 A1 Α 20030418 US 20040208390 A1 20041021 US 2003418975 Α 20030418 200470 US 20040209237 Al 20041021 US 2003418922 Α 20030418 200470 Α AU 2003259095 A2 20040123 AU 2003259095 20030708 200517 EP 1532431 A120050525 EP 2003763350 Α 20030708 200535 WO 2003US21347 Α 20030708

Abstract (Basic): WO 200405895 A1

NOVELTY - Characterizing the condition of a region of a tissue sample comprises determining whether a region of a tissue sample lies outside a zone of interest and/or whether optical data obtained from the region are affected by an obstruction.

DETAILED DESCRIPTION - Characterizing the condition of a region of a tissue sample comprises:

- (a) determining at least one of:
- (i) whether a region of a tissue sample lies outside a zone of interest; and
- (ii) whether optical data obtained from the region are affected by an obstruction;
- (b) processing a set of optical data obtained from the region to determine one or more tissue-class probabilities; and
- (c) characterizing a condition of the region based on results of the determining step and the processing step.

The method comprises:

- (a) processing spectral data obtained from a region of tissue to determine, for each member of predefined tissue classes, a probability that the region comprises tissue within the member;
- (b) evaluating a classification metric using spectral data obtained from the region;
- (c) if the classification metric is satisfied, characterizing a condition of the region according to the classification metric; and
- (d) if the classification metric is not satisfied, characterizing a condition of the region according to the probabilities.

INDEPENDENT CLAIMS are also included for:

- (1) an apparatus, for characterizing the condition of one or more regions of a tissue sample, comprising:
- (i) an optical detection device adapted to obtain spectral data from regions of a tissue sample;
 - (ii) a memory that stores code defining a set of instructions;
- (iii) a processor that executes the instructions to identify spectral data obtained from substantially unobstructed members of the regions, where the members are within a zone of interest, determine tissue-class probabilities using the spectral data and determine a condition of one or more of the regions using the tissue-class probabilities;
- (2) determining the condition of one or more regions of a tissue sample;
 - (3) determining a tissue-class probability for a region of tissue;
 - (4) using a spectral mask to process spectral data;
 - (5) identifying a region of healthy tissue;
 - (6) identifying a region of necrotic tissue;
 - (7) using an image mask to process optical data;
 - (8) displaying diagnostic data;
 - (9) creating an overlay for displaying diagnostic data;
 - (10) calibrating spectral data obtained from a tissue sample;
- (11) correcting spectral data from a tissue sample for stray light internal to an optical instrument;
 - (12) focusing an optical instrument on a tissue sample; and
 - (13) enhancing an image of a tissue sample.
- USE The method is useful in characterizing the condition of a region of a tissue sample. The method is useful in diagnosing a disease.

pp; 351 DwgNo 0/117

Title Terms: CHARACTERISTIC; CONDITION; REGION; TISSUE; SAMPLE; USEFUL; DIAGNOSE; DISEASE; DETERMINE; REGION; LIE; ZONE; INTEREST; OPTICAL; DATA; OBTAIN; AFFECT; OBSTRUCT

Derwent Class: B04; D16; P31; P81; S03; S05

International Patent Class (Main): C12Q-001/00; G01N-021/00; G01N-021/64; G02B-007/04; G06F-019/00; G06K-009/00

International Patent Class (Additional): A61B-005/00 ; C12Q-001/02;
G02B-027/40; G06K-009/40

File Segment: CPI; EPI; EngPI

16/5/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

015671106 **Image available**
WPI Acc No: 2003-733293/200370
Related WPI Acc No: 2005-650952

XRAM Acc No: C03-202259 XRPX Acc No: N03-586225

Drug delivery system used for delivering effective amount of drug comprises delivery pump having chamber for housing drug, delivery conduit connected to pump, sensor, and control unit in communication with sensor and pump

Patent Assignee: CODMAN & SHURTLEFF INC (CODM-N); DEXTRADEUR A J (DEXT-I); KONIECZYNSKI D D (KONI-I); ROHR W L (ROHR-I)

Inventor: DEXTRADEUR A J; KONIECZYNSKI D D; ROHR W L

Number of Countries: 035 Number of Patents: 007

Patent Family:

Patent No Kind Date Applicat No Kind Date Week 20030910 EP 2003251317 A EP 1342482 A1 20030305 200370 B CA 2420746 A1 20030906 CA 2420746 Α 20030304 200370 US 20030171711 A1 20030911 US 200292955 20020306 200370 Α JP 2004000496 A 20040108 JP 200358907 20030305 200405 Α AU 2003200923 Al 20031002 AU 2003200923 20030304 Α 200428 EP 1342482 B1 20051116 EP 2003251317 Α 20030305 200579 EP 200576066 Α 20050506 20051222 DE 302264 DE 60302264 Ε 20030305 200603 Α EP 2003251317 Α 20030305

Abstract (Basic): EP 1342482 A1

NOVELTY - Drug delivery system (10) comprises a delivery pump (12) having a chamber housing at least one drug, a delivery conduit (14) connected to the pump and adapted to extend into a tissue site, a sensor producing a sensor output signal representative of a sensed biochemical parameter, and a control unit in communication with the sensor and pump.

DETAILED DESCRIPTION - Drug delivery system comprises a delivery pump having a chamber housing at least one drug, a delivery conduit connected to the pump and adapted to extend into a tissue site, a sensor producing a sensor output signal representative of a sensed biochemical parameter, and a control unit in communication with the sensor and pump. The control unit receives the sensor output signal and communicates a delivery signal to the pump to deliver the drug at a rate and for a duration to achieve a desired biochemical parameter in a predetermined range.

USE - Used for delivering an effective amount of drug to a tissue site, and assess primary biochemical parameters and/or events.

ADVANTAGE - The system is capable of directly measuring a primary biochemical parameter that underlies a particular disorder, and responds rapidly to the detected biochemical parameter with appropriate drug treatment.

DESCRIPTION OF DRAWING(S) - The drawing shows a closed loop drug delivery system.

Drug delivery system (10)

Delivery pump (12)

Delivery conduit (14)

Distal delivery end (15)

Pore regions (14a)

Controller unit (20)

pp; 15 DwgNo 1/3

Title Terms: DRUG; DELIVER; SYSTEM; DELIVER; EFFECT; AMOUNT; DRUG; COMPRISE; DELIVER; PUMP; CHAMBER; HOUSING; DRUG; DELIVER; CONDUIT; CONNECT; PUMP; SENSE; CONTROL; UNIT; COMMUNICATE; SENSE; PUMP

Derwent Class: B07; P31; P34; S05; V07

International Patent Class (Main): A61M-005/142; A61M-005/168;

A61M-031/00 ; A61M-037/00

International Patent Class (Additional): A61B-005/00; A61M-005/172

File Segment: CPI; EPI; EngPI

16/5/7 (Item 7 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

013684259 **Image available**
WPI Acc No: 2001-168483/200117

XRAM Acc No: C01-050314 XRPX Acc No: N01-121497

Detection of ischemia in biological tissue, e.g. myocardium of the heart, involves altering the temperature of a tissue section to be warmer or colder than normal, and recording and displaying its thermal profile

Patent Assignee: BARD INC C R (BRDC)

Inventor: GAMBALE R A

Number of Countries: 029 Number of Patents: 004

Patent Family:

Patent No Kind Date Applicat No Kind Date 20000721 200117 WO 200106919 A1 20010201 WO 2000US19936 A US 99358947 19990722 200150 US 6277082 B1 20010821 Α EP 1213992 Α1 20020619 EP 2000948866 Α 20000721 200240 WO 2000US19936 A 20000721 20030212 WO 2000US19936 A 20000721 200321 JP 2003505131 W 20000721 JP 2001511815 Α

Abstract (Basic): WO 200106919 A1

NOVELTY - An ischemia in the tissue is detected by providing a catheter with optical fiber and at least one lumen; navigating the catheter through the vascular system of the patient; delivering a fluid capable of either heating or cooling a finite section of the tissue; and creating a thermal image of the temperature profile of the tissue section by the optical fiber.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for an ischemia detector comprising a catheter (14) with proximal and distal end, at least one lumen, and a temperature alteration mechanism of a finite tissue; a temperature detector for monitoring thermal response of the tissue; and a temperature display for the data collected by the temperature detector.

USE - For detection and treatment of ischemia in biological tissue such as myocardium (18) of the heart.

ADVANTAGE - The method uses a catheter-based apparatus that can monitor the thermal response of tissue after the device has been used to alter the temperature of the tissue.

DESCRIPTION OF DRAWING(S) - The figure is an illustration of an ischemic detector that uses an obturator having thermal sensors at the distal end.

Catheter (14) End (16) Myocardium (18) Shaft (28) End (30) Obturator (29) Tip (31) Sensor (32, 34) pp; 23 DwgNo 4/6

Title Terms: DETECT; ISCHAEMIC; BIOLOGICAL; TISSUE; MYOCARDIUM; HEART; ALTER; TEMPERATURE; TISSUE; SECTION; WARM; COLD; NORMAL; RECORD; DISPLAY;

THERMAL; PROFILE

Derwent Class: B07; P31; P32

International Patent Class (Main): A61B-005/00

International Patent Class (Additional): A61F-007/00; G01D-007/00;

G01K-001/02

File Segment: CPI; EngPI

16/5/8 (Item 8 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

012891704 **Image available**
WPI Acc No: 2000-063539/200006

XRAM Acc No: C00-017847 XRPX Acc No: N00-049754

Apparatus for measuring parameter changes in a transparent blood flow hose tube

Patent Assignee: FRESENIUS AG (FREP)

Inventor: MEISBERGER A

Number of Countries: 002 Number of Patents: 003

Patent Family:

Patent No Kind Date Applicat No · Kind Date 200006 B DE 19825518 A1 19991216 DE 1025518 Α 19980608 DE 1025518 Α 19980608 200157 DE 19825518 C2 20011004 US 6362887 B1 20020326 US 99327822 Α 19990608 200226

Priority Applications (No Type Date): DE 1025518 A 19980608

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 19825518 A1 11 G01J-001/28 DE 19825518 C2 G01J-001/28 US 6362887 B1 G01N-021/27

Abstract (Basic): DE 19825518 A1

NOVELTY - The apparatus for measuring changes in parameters at an object (2), which is permeable to light, has a light source (1) and an optical line sensor (3) on the opposite side of the object to register the intensity of the light passing through at positions, and a computer (4) which gives the distribution of the light intensities to be compared with at least one reference distribution.

DETAILED DESCRIPTION - Preferred Features: The line sensor is a charge coupled device (CCD). The lamp is a point light source to deliver parallel light. A reference distribution is stored in the computer memory, taken without any influences for the light passing through a dummy object to a line sensor, or with a known change in the light refraction or light scatter characteristic against the dummy object. The stored reference distribution takes into account known changes in the color filter characteristics. At least one reference distribution is a mathematical model, giving values through a curve analysis. The line sensor has separate color sensors, and especially red and green and blue, to measure the coloration of the object. The comparison at the computer is a correlation where the

parameter change at the measured object against a dummy object is taken as the strength of the correlation with the reference distribution for the parameter in question. The object is a medical hose tube (6), carrying a flow of a liquid medium (5) such as blood. The object can also be a divided container, with two chambers symmetrical to the dividing wall, each filled with a different liquid medium. The dividing wall lies on the symmetrical plane of the light source and the line sensor . The measured parameter changes are stored according to time, for the stored values additionally to give a dynamic change in the parameter of the liquid medium. The measurement of parameter changes, against a dummy object, is simultaneous for both chambers of a divided container. The light intensity distribution measured in one chamber acts as a reference distribution for the evaluation of the light intensity distribution measured at the other chamber. The same principle applies to a container with more than one dividing wall giving three chambers or more.

USE - For use in medical applications such as for the detection of red blood bodies, or air bubbles, in the flow through a transparent tube at an artificial kidney.

ADVANTAGE - The apparatus can be used in a variety of medical applications, where there is a liquid flow through a transparent object.

DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the apparatus.

light source (1) object (2) CCD sensor (3) computer (4) liquid medium (5) hose tube (6)

pp; 11 DwgNo 1/5

Title Terms: APPARATUS; MEASURE; PARAMETER; CHANGE; TRANSPARENT; BLOOD;

FLOW; HOSE; TUBE

Derwent Class: B04; P34; S03; S05

International Patent Class (Main): G01J-001/28; G01N-021/27

International Patent Class (Additional): A61M-001/14; G01J-003/46;

G01N-021/59; G01N-021/85; G01N-033/49

File Segment: CPI; EPI; EngPI

16/5/9 (Item 9 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

012650716 **Image available**
WPI Acc No: 1999-456821/199938
Related WPI Acc No: 2001-257377

XRAM Acc No: C99-133969 XRPX Acc No: N99-341598

Apparatus for determining cardiac output of the cardiovascular system of the body of a patient, gives highly enhanced measurement rapidity without adverse consequences to body hemostasis or stability

Patent Assignee: CARDIOX CORP (CARD-N)

Inventor: EGGERS P E; HUNTLEY S P; KHALIL G E Number of Countries: 030 Number of Patents: 008

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

```
19990727 US 97792967
                                                 19970124
                                                           199938 B
US 5928155
                                             Α
                             US 9840167
                                             Α
                                                 19980317
EP 943289
              A1
                  19990922
                             EP 99630023
                                             Α
                                                 19990312
                                                           199943
NO 9901259
              Α
                   19990920
                            NO 991259
                                             Α
                                                 19990315
                                                           199949
                  19990930
                            AU 9920332
                                             Α
                                                 19990310
                                                          199952
AU 9920332
              Α
                  19991124
                             JP 9972634
                                             Α
                                                 19990317
                                                           200006
JP 11318834
              Α
CA 2256915
                  19990917
                             CA 2256915
                                             Α
                                                 19981222
                                                           200007
              A1
                   20030306 AU 9920332
                                                 19990310
                                                           200324 -
AU 757810
               В
                                             Α
CA 2256915
               С
                   20030311
                             CA 2256915
                                             Α
                                                 19981222
                                                           200324
```

Abstract (Basic): US 5928155 A

NOVELTY - Apparatus for determining cardiac output of the cardiovascular system of the body of a patient.

DETAILED DESCRIPTION - Apparatus comprises (a) catheter with externally disposed proximal end region and oppositely disposed measurement region positionable within the bloodstream of the body; (b) indicator channel within the catheter with a fluid input at the proximal end region connected with a controlled source of analyte-containing fluid, biocompatible with and metabolizable within the body, chosen from ammoniacal fluid, heparin, ethanol, carbon dioxide-releasing fluid, glucose, anesthesia agent, but excluding oxygen, and extending to an infusion outlet at the measurement region from which the analyte-containing fluid may be expressed; and (c) analyte concentration sensor responsive to the analyte with a forward assembly configured for flowing blood contact mounted with the catheter at the measurement region at a location spaced downstream from the infusion outlet when positioned within the bloodstream and having an analyte sensor or concentration sensor output transmissib le to the proximal end region corresponding with a concentration level of the analyte within the bloodstream that is correlatable with the cardiac output. INDEPENDENT CLAIMS are also included for (1) system for determining cardiac output of cardiovascular system of body; (2) method of determining cardiac output of cardiovascular system of body.

 \mbox{USE} - \mbox{Used} to determine cardiac output of the cardiovascular system of the body of a patient (claimed).

ADVANTAGE - Capable of carrying out cardiac output measurements with highly enhanced measurement rapidity without adverse consequences to body hemostasis or stability. Enhance cardiac output measurements are achieved by selection of analyte-containing fluid as dilution injectate that is non-thermal, biocompatible and metabolizable within the body of the patient. Accuracy is achieved without call for multiple measurement-averaging regimen. Avoids labor-intensive cardiac output measurement processes, while making a variety of cardiovascular parameters available at a display and in conjunction with recorded media.

DESCRIPTION OF DRAWING(S) - Schematic, partially sectional view of heart showing placement and illustrating use of cardiac output-measuring catheter.

```
pulmonary artery catheter (60) distal end or tip and measurement region (62) partially inflated balloon (64) outer tip (66) analyte -containing fluid injectate or infusion port (70) measurement region (72) pp; 52 DwgNo 1/35
```

Title Terms: APPARATUS; DETERMINE; CARDIAC; OUTPUT; CARDIOVASCULAR; SYSTEM; BODY; PATIENT; HIGH; ENHANCE; MEASURE; RAPID; ADVERSE; CONSEQUENT; BODY;

HAEMOSTATIC; STABILISED

Derwent Class: B04; J04; P31; P34; S03; S05

International Patent Class (Main): A61B-005/0215 ; A61B-005/0275 ;

A61B-005/028 ; G01N-000/00

International Patent Class (Additional): A61B-005/029; A61B-005/14;

A61M-025/00

File Segment: CPI; EPI; EngPI

16/5/10 (Item 10 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

008480676 **Image available**
WPI Acc No: 1990-367676/199049

XRPX Acc No: N90-280333

Blood vessel locating needle assembly - has thermochromic indicator located at or near needle hub

Patent Assignee: BIO-PLEXUS INC (BIOP-N)

Inventor: SAHI C R

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
US 4971068 A 19901120 US 89376420 A 19890707 199049 B

Priority Applications (No Type Date): US 89376420 A 19890707

Abstract (Basic): US 4971068 A

The needle assembly has a metal cannula, the cannula having a pointed distal end and defining a hollow needle bore. The cannula passes through a needle hub and its proximal end may be attached to or is integral with a fluid dispensing or collecting device such as, for example, an evacuated tube. Depending on the application, the cannula may be discontinuous and will customarily be provided with a valvew, a pressure responsive flow controller located within the hub assembly for example.

An energy sensing indicator, specifically a crystalline sensing indicator, is located at or near the needle hub and is in intimate contact with the metal cannula. The sensing indicator is configured to detect either thermal or mechanical changes within the cannula bore and to provide, directly or indirectly, a visually observable indication of such changes. The energy sensing indicator comprises thermochromic liquid crystals which, in response to the flow of aspirated blood into the bore of the needle when blood vessel penetration occurs, change colour due to the transfer of thermal energy from the blood to the liquid crystals via the metal cannula

USE - For collection or dispensing of liq. samples e.g. blood from human patient. (5pp Dwg.No.2/4)

Title Terms: BLOOD; VESSEL; LOCATE; NEEDLE; ASSEMBLE; THERMOCHROMIC;

INDICATE; LOCATE; NEEDLE; HUB

Derwent Class: P31

International Patent Class (Additional): A61B-005/00

File Segment: EngPI

16/5/11 (Item 11 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

007275340

WPI Acc No: 1987-272347/198739

XRPX Acc No: N87-203973

Detector system for dialysis fluid tube connected to monitor - avoids false alarms during priming phase when tube is fitted with colourless fluid and detects whether system is assembled correctly

Patent Assignee: GAMBRO AB (GAMB)

Inventor: ERICSON B I; GUMMESSON B A G; ORNDAL C H Number of Countries: 011 Number of Patents: 007

Patent Family:

racene ramitry	•						
Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 238809	Α	19870930	EP 87101232 -	Α	19870129	198739	В
SE 8601354	Α	19870925	•		•	198745	
US 4797655	Α	19890110	US 8729252	Α	19870323	198905	
SE 459641	В	19890724				198932	
EP 238809	В	19910220				199108	
DE 3768033	G	19910328				199114	
ES 2020518	В	19910816				199137	

Abstract (Basic): EP 238809 A

The detector system has a transmitter and a receiver for a signal of preferably infrared light. A device conducts the beam through the tube when assembled on the monitor. The system can sense whether the tube is assembled in the correct position and whether the tube is filled or not. The tube can be filled with blood or a printing fluid. The receiver is joined to an arrangement for comparing the valves received at least one reference valve.

If the critical limit valves are exceeded or are failed to be attained an alarm is sounded.

USE/ADVANTAGE - Dialysis establishes whether tube is present and whether blood fills tube.

1/3

Title Terms: DETECT; SYSTEM; DIALYSE; FLUID; TUBE; CONNECT; MONITOR; AVOID; FALSE; ALARM; PRIME; PHASE; TUBE; FIT; COLOUR; FLUID; DETECT; SYSTEM; ASSEMBLE; CORRECT

Derwent Class: P34; S05

International Patent Class (Additional): A61M-001/16; G05D-007/06;

G08B-019/00

File Segment: EPI; EngPI

16/5/12 (Item 12 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

003587133

WPI Acc No: 1983-D5330K/198311

XRPX Acc No: N83-046425

Fibre optic pH probe for tissue measurements - has needle containing colour changing dye in ion permeable tube and system for determining colour change

Patent Assignee: US SEC OF COMMERCE (USDC) Inventor: CHEN V T; GOLDSTEIN S R; MARKLE D R Number of Countries: 004 Number of Patents: 001 Patent Family:

Patent No Kind Date Applicat No Kind Date Week
EP 73558 A 19830309 198311 B

Priority Applications (No Type Date): US 81296239 A 19810825 Cited Patents: DE 2215984; DE 2705370; FR 2409743; No-SR.Pub; US 3068742; US 4201222; US 4344438

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 73558 A E 13

Designated States (Regional): DE FR GB NL

Abstract (Basic): EP 73558 A

The probe for insertion into tissue and includes a rigid hollow needle (12) having a sharp-forward end (14) and an ion-permeable membrane in the form of an ion-permeable tube (18) mounted in the needle. The needle has at least one aperture (15) exposing the tube. A pH sensitive, colour-changing, dye-containing material (19) is mounted in the tube in the region of the aperture and the forward portion of the tube adjacent this material is sealed.

A pair of optical fibres (17,20) are mounted in the **tube** rearwardly of and contiguous to the material (19) for respectively delivering **light** from an external source to the material and returning **light** from the material to an external **sensor** for measuring **colour** change of the material. This **probe** causes the min. damage or trauma to the **tissue** of interest. generates min. signal artefact, and provides improved output signal strength.

1/4

Title Terms: FIBRE; OPTICAL; PH; PROBE; TISSUE; MEASURE; NEEDLE; CONTAIN; COLOUR; CHANGE; DYE; ION; PERMEABLE; TUBE; SYSTEM; DETERMINE; COLOUR; CHANGE

Derwent Class: P31; S03; S05

International Patent Class (Additional): A61B-005/00

File Segment: EPI; EngPI

16/5/13 (Item 13 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

001228517

WPI Acc No: 1975-B2293W/197505

Transmission colorimetry inside the heart or blood vessels - uses catheter to carry light to internal detector

Patent Assignee: THOMSON MEDICAL-TELCO (THMT)
Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week FR 2225060 A 19741206 197505 B

Priority Applications (No Type Date): FR 7312535 A 19730406

Abstract (Basic): FR 2225060 A

An in vitro catheter for transmission colorimetry of blood has two channels. One is used for perfusion of chemicals into the blood stream and exits at the side of the head. The second channel carries a bunch of optical fibres up which light from an external source is passed to the walls of a rigid transparent chamber. The other side of the chamber

has a micro-miniature phototransistor built in, and its output leads pass back down the second channel to the outside of the body. Blood flows freely into the chamber through side windows which lie between the perfusion exit and the tip of the catheter. The system permits the use of very bright external lights such as lasers and of the desired wavelength.

Title Terms: TRANSMISSION; COLORIMETRIC; HEART; BLOOD; VESSEL; CATHETER; CARRY; LIGHT; INTERNAL; DETECT

Derwent Class: P34; S03; S05

International Patent Class (Additional): A61M-025/00 ; G01N-021/26;

G01N-033/16

File Segment: EPI; EngPI

?

17/5/2 (Item 2 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

016302419

WPI Acc No: 2004-460314/200443

Related WPI Acc No: 1997-202559; 2003-811509; 2003-862882; 2004-118840

XRAM Acc No: C04-171698 XRPX Acc No: N04-364598

Simultaneously measuring in a living vessel two chemical parameters associated with an inflamed vulnerable atherosclerotic plaque, comprises measuring two parameters at sites on a vessel wall, and analyzing the parameters

Patent Assignee: TEXAS HEART INST (TEXA-N)

Inventor: CASSCELLS S W; GUO B; NAGHAVI M; WILLERSON J T

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
US 20040111016 A1 20040610 US 96717449 A 19960920 200443 B
US 98188661 A 19981109

US 2003640570 A 20030812

Abstract (Basic): US 20040111016 A1

NOVELTY - Two chemical parameters associated with an inflamed vulnerable atherosclerotic plaque are simultaneously measured by measuring two parameters at sites on a vessel wall, and analyzing parameter measurements corresponding to the sites with the use of a programmed processor to provide a qualitative or quantitative value for each parameter.

DETAILED DESCRIPTION - Simultaneously measuring in a living vessel at least two chemical parameters associated with inflamed vulnerable atherosclerotic plaque, comprises providing a fiber optic catheter having an illumination fiber bundle and a detection fiber bundle capable of, respectively, directing radiation into or receiving radiation from a site on a vessel wall. The catheter has a mechanism for reducing optical interference by blood or other fluid within a vessel when undergoing examination. A source of 400-2500 nm wavelength

radiation operatively linked to the illumination fiber bundle is provided. A spectrometer operatively linked to detection fiber bundle is provided. A processor operatively linked to the spectrometer is provided containing algorithms and reference measurements for at least two chemical parameters associated with inflamed vulnerable

atherosclerotic plaque. The spectrometer and processor can receive and analyze spectral data collected by the **detection** fiber bundle and report corresponding parameter measurements. A display system capable of receiving and displaying a report from the processor is optionally provided. A first parameter at the sites on a vessel wall is measured. At least one other parameter at the sites on a vessel wall is measured. Parameter measurements are analyzed corresponding to the sites where a qualitative or quantitative value for each parameter is reported for a corresponding site or region on a vessel wall.

INDEPENDENT CLAIMS are also included for:

- (a) a multi-parameter catheter comprising a distal and proximal ends and a conduit, an outer wall, an inflatable balloon, a window, an illumination lumen, a detection lumen, a guidewire lumen, a balloon inflation lumen, an optional fluid transporting lumen, a fiber optic illumination bundle, a fiber optic detection bundle, a radiation focusing mechanism, and a manifold; and
- (b) a multi-parameter analyzer for diagnosing an atherosclerotic plaque at risk of rupture or thrombosis, comprising the **catheter**, a **light** source, a spectrometer, a processor, a display system, and an optional microcontroller.

USE - The inventive method is used in simultaneously measuring in a living vessel at least two chemical parameters associated with inflamed vulnerable atherosclerotic plaque. It can also be used in the detection of infection, cancer, wounds, or auto-immune disease in the body. (all claimed)

ADVANTAGE - The invention can determine which lesion is dangerous and needs pre-emptive treatment.

DESCRIPTION OF DRAWING(S) - The figure is a schematic diagram of a fiber optic **catheter** apparatus of the invention.

pp; 33 DwgNo 3/14

Title Terms: SIMULTANEOUS; MEASURE; LIVE; VESSEL; TWO; CHEMICAL; PARAMETER; ASSOCIATE; INFLAMMATION; VULNERABLE; ATHEROSCLEROSIS; PLAQUE; COMPRISE; MEASURE; TWO; PARAMETER; SITE; VESSEL; WALL; PARAMETER

Derwent Class: A96; B04; D16; P31; S05

International Patent Class (Main): A61B-006/00

File Segment: CPI; EPI; EngPI

17/5/3 (Item 3 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

016080905 **Image available**
WPI Acc No: 2004-238766/200422

XRAM Acc No: C04-093426 XRPX Acc No: N04-189269

Multifocal surgical probe apparatus for delivering agent to and/or gathering information on biological tissue, includes catheter having extending lumen defining deployment port, extendable-retractable needles, and deployment device

Patent Assignee: US DEPT OF HEALTH (USSH); BETH ISRAEL DEACONESS MEDICAL CENT (BETH-N); US DEPT HEALTH & HUMAN SERVICES (USSH)

Inventor: GORBACH A M; HVIZDA J; NEEMAN Z; PERELMAN L T; WOOD B J

Number of Countries: 105 Number of Patents: 003

Patent Family:

Patent No Kind Date Applicat No Kind Date Week WO 200416155 A2 20040226 WO 2003US25575 A 20030814 200422 B

AU 2003258250 A1 20040303 AU 2003258250 A 20030814 200457 AU 2003258250 A8 20040303 AU 2003258250 A 20030814 200562

Abstract (Basic): WO 200416155 A2

NOVELTY - A multifocal surgical **probe** apparatus (10) includes **catheter** (24) with proximal and distal ends, and lumen (28) extending partially on distal end (22) to define a deployment port; extendable-retractable needles (15) within the **catheter** lumen; and deployment device coupled to the needles for advancing the needles through the lumen. Each needle has proximal and distal ends and one of which has delivery lumen extending partially through the needle.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

- (1) a kit comprising the above apparatus and a therapeutic or diagnostic agent;
- (2) an apparatus for determining the margins of a neoplasm (20) comprising a hollow catheter and deployable needles;
- (3) delivering a therapeutic or diagnostic agent to a **tissue** within a subject by providing the above multifocal delivery apparatus, advancing the distal end of the **catheter** into a target **tissue** of a subject, deploying the needles, and introducing the therapeutic or diagnostic agent through the delivery lumens of the needles into the target **tissue**; and
- (4) determining characteristic(s) of a neoplasm by providing the above multifocal fiber optic apparatus, advancing the **catheter** into a target neoplasm, deploying the tines, causing the **light** to be emitted by the fiber optic **probes** to generate spectroscopic information, and determining characteristics of the neoplasm based on the resulting spectroscopic information.

USE - The apparatus is for delivering an agent to and/or gathering information on biological ${\it tissue}$.

ADVANTAGE - The apparatus is capable of multifocal, localized delivery of agents to a **tissue** and is capable of gathering spectroscopic data and other information for characterizing the **tissue**, while providing real-time information about the progress and effects of the **tissue** ablation. The **catheter** has sufficient strength and rigidity to puncture **tissue**, e.g. to puncture and penetrate the external body surface.

DESCRIPTION OF DRAWING(S) - The figure is a schematic view of the multifocal surgical **probe** apparatus.

Surgical **probe** apparatus (10)
Needles (15)
Neoplasm (20)

Distal end (22)

Catheter (24)

Skin (26)

Lumen (28)

pp; 35 DwgNo 1/9

Title Terms: MULTIFOCAL; SURGICAL; PROBE; APPARATUS; DELIVER; AGENT; GATHER; INFORMATION; BIOLOGICAL; TISSUE; CATHETER; EXTEND; LUMEN; DEFINE; DEPLOY; PORT; EXTEND; RETRACT; NEEDLE; DEPLOY; DEVICE

Derwent Class: B04; B07; P31; S05; T01; V07

International Patent Class (Main): A61B-000/00

File Segment: CPI; EPI; EngPI

17/5/4 (Item 4 from file: 350)
DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

016080904

WPI Acc No: 2004-238765/200422

XRAM Acc No: C04-093425 XRPX Acc No: N04-189268

Identifying sentinel lymph nodes, useful in the prognostic and diagnostic analysis of cancer, involves administering a composition comprising a marker nucleic acid segment and determining its presence in lymph node

Patent Assignee: WAYNE CANCER INST JOHN (WAYN-N)

Inventor: HOON D S B; TABACK B

Number of Countries: 106 Number of Patents: 004

Patent Family:

Patent No Kind Date Applicat No Kind Date Week 200422 WO 200416154 A2 20040226 WO 2003US25553 20030815 Α AU 2003268105 A1 20040303 AU 2003268105 20030815 200457 Α US 20050142556 A1 20050630 US 2002403872 20020816 200543 P US 2003641595 Α 20030815 EP 1560924 A2 20050810 EP 2003749055 20030815 200552 Α

WO 2003US25553 A 20030815

Abstract (Basic): WO 200416154 A2

NOVELTY - Identifying (M1) sentinel lymph nodes (SLN), involves administering a composition comprising a marker nucleic acid segment to a human regional to SLN, and determining the presence or absence of the marker nucleic acid segment in a lymph node, where the presence of the marker nucleic acid segment in the lymph node identifies the lymph node as SLN.

ACTIVITY - Cytostatic.

No biological data given.

MECHANISM OF ACTION - Gene therapy.

USE - (M1) is useful for identifying sentinel lymph nodes in a human who is at risk of cancer or cancer metastasis. The human subject has been diagnosed with a solid cancer or diagnosed with cancer and is believed to be in remission. The cancer is solid tumor cancer chosen from breast cancer, gastrointestinal cancer, melanoma, lymphoma, squamous carcinoma, merkel cell cancer, colorectal cancer, pancreatic cancer, gastric cancer, thyroid cancer, renal cancer, bladder cancer, prostate cancer, esophageal cancer, vulvar cancer, ovarian cancer, penile cancer, head and neck cancer and lung cancer. (M1) is also useful as part of a treatment method for cancer comprising delivery of a therapeutic gene or genes to the SLN to activate tumor immunity to tumor cells, and/or to inhibit tumor metastases (claimed).

pp; 90 DwgNo 0/9

Title Terms: IDENTIFY; LYMPH; NODE; USEFUL; PROGNOSIS; DIAGNOSE; ANALYSE; CANCER; ADMINISTER; COMPOSITION; COMPRISE; MARK; NUCLEIC; ACID; SEGMENT; DETERMINE; PRESENCE; LYMPH; NODE

Derwent Class: B04; D16; K08; P31; S03

International Patent Class (Main): A61B-000/00; C12Q-001/68

File Segment: CPI; EPI; EngPI

17/5/5 (Item 5 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

016033786 **Image available**

WPI Acc No: 2004-191637/200418

XRAM Acc No: C04-075638 XRPX Acc No: N04-152012

New system comprising agglutinative particles capable of interacting with an analyte to cause an optical change, and an in vivo imaging system for detecting the optical change, useful for in vivo analysis of a body lumen

Patent Assignee: GIVEN IMAGING LTD (GIVE-N)

Inventor: PALTI Y

Number of Countries: 106 Number of Patents: 003

Patent Family:

Kind Patent No Kind Date Applicat No Date A1 20040219 WO 2003IL651 20030807 200418 B WO 200414227 Α AU 2003249551 A1 20040225 AU 2003249551 Α 20030807 200456 EP 1534120 A1 20050601 EP 2003784455 Α 20030807 200536 WO 2003IL651 20030807

Abstract (Basic): WO 200414227 Al

NOVELTY - A system for in vivo analysis, comprising agglutinative particles capable of interacting with at least one analyte to cause an optical change, and at least one in vivo imaging system configured for detecting the optical change, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

- (1) a device for **in vivo** analysis comprising the system defined above:
 - (2) an ingestible capsule comprising:
- (a) an optical window having immobilized into it agglutinative particles capable of interacting with at least one analyte to cause an optical change;
- (b) at least one imaging system configured for **detecting** at least the optical change; and
- (c) a transmitter configured for transmitting image data to an external receiving system; and
 - (3) a method for in vivo analysis comprising:
 - (a) obtaining a sample from a body lumen;
- (c) detecting at least one optical change in the combined sample. USE - The system is useful for in vivo and in situ sampling and analysis of conditions prevailing in a body lumen.

DESCRIPTION OF DRAWING(S) - The figure presents a device comprising a system for in vivo analysis of the body lumen.

Device; (100)

Shell; (101)

Sampling chamber; (102)

Membrane; (102')

Chamber sides; (125')

Bottom of the chamber; (126)

Optical window; (210)

Optical system; (220)

Illumination unit; (230)

Image sensor; (240)

Power source; (250)

Transmitter; (260)

Antenna; (270)

Gastrointestinal fluids (370)

pp; 28 DwgNo 1/4

Title Terms: NEW; SYSTEM; COMPRISE; PARTICLE; CAPABLE; INTERACT; ANALYTE; CAUSE; OPTICAL; CHANGE; VIVO; IMAGE; SYSTEM; DETECT; OPTICAL; CHANGE;

USEFUL; VIVO; ANALYSE; BODY; LUMEN Derwent Class: B04; D16; P31; S03; S05

International Patent Class (Main): A61B-005/00

File Segment: CPI; EPI; EngPI

17/5/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

015853875 **Image available**

WPI Acc No: 2004-011707/200401

XRAM Acc No: C04-003378 XRPX Acc No: N04-008607

System for detecting one or more cardiovascular risk factor analytes e.g., cholesterol, lipoprotein A, in fluid comprises light source, sensor array formed from a supporting member and a detector

Patent Assignee: UNIV TEXAS SYSTEM (TEXA); ANSLYN E V (ANSL-I); CHRISTODOULIDES N J (CHRI-I); MCDEVITT J T (MCDE-I); NEIKIRK D P (NEIK-I); SHEAR J B (SHEA-I)

Inventor: ANSLYN E V; CHRISTODOULIDES N J; MCDEVITT J T; NEIKIRK D P; SHEAR
J B

Number of Countries: 104 Number of Patents: 004

Patent Family:

Date Patent No Kind Date Applicat No Kind A2 20031106 WO 2003US12951 A 20030428 200401 B WO 200390605 Р 20020426 200412 US 20040029259 A1 20040212 US 2002375775 20030428 US 2003427744 Α AU 2003228711 A1 20031110 AU 2003228711 Α 20030428 200442 EP 1502097 A2 20050202 EP 2003726476 Α 20030428 200510 WO 2003US12951 'A 20030428

Abstract (Basic): WO 200390605 A2

NOVELTY - System (I) for **detecting** one or more cardiovascular risk factor analytes in fluid comprises **light** source, **sensor** array having supporting member with cavities formed within member, several particles positioned within cavity, where particle produces signal in presence of cardiovascular risk factor analyte during use and **detector** is configured to **detect** signal produced by particles during use.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a sensor array for detecting one or more cardiovascular risk factor analytes in a fluid comprising, a supporting member having several cavities formed within the supporting member, several particles, each particles positioned within a cavity, where at least one particle is configured to produce a signal in the presence of a cardiovascular risk factor analyte during use.

USE - (I) is useful for **detecting** one or more cardiovascular risk factor analytes in a fluid, which involves passing the fluid over a **sensor** array, the **sensor** array comprises a supporting member having several cavities formed within the supporting member, several particles positioned within a cavity, where at least one particle is configured to produce a signal in the presence of a cardiovascular risk factor analyte during use, and monitoring a spectroscopic change of one or more of the particles as the fluid is passed over the **sensor** array. The **sensor** array further comprises a bottom layer and a cover, where

the bottom layer is coupled to a bottom surface of the supporting member, and where the cover is coupled to a top surface of the supporting member, and where both the bottom layer and the cover are coupled to the supporting member such that at least a portion of the particles are substantially contained within one or more cavities by the bottom layer and the cover, and where the bottom layer and the cover are substantially transparent to light produced by the light source. The sensor array further comprises a bottom layer coupled to the supporting member, and where the supporting member comprises silicon, and where the bottom layer comprises silicon nitride. The sensor array further comprises a cover, the cover being coupled to the supporting member such that at least a portion of the particles are substantially contained within one or more cavities by the cover, and where the cover is configured to allow the fluid to pass through the cover to at least a portion of the particles, and where both the supporting member and the cover are substantially transparent to light produced by the light source. The sensor array further comprises a cover positioned at a distance above the upper surface of the supporting member such that an opening is formed between the supporting member and the cover to allow the fluid to enter one or more cavities through the opening, and where the cover inhibits dislodgement of at least a portion of the particles from one or more cavities during use. One or more cavities are configured such that the fluid entering one or more cavities passes through the supporting member during use. One or more cavities are substantially tapered such that the width of one or more cavities narrows in a direction from top surface of the supporting member toward a bottom surface of the supporting member, and where a minimum width of one or more cavities is substantially less than a width of at least a portion of the particles. An inner surface of one or more cavities is coated with a reflective material. At least a portion of the particles comprises a receptor molecule coupled to a polymeric resin, where the polymeric resin comprises polystyrene-polyethylene glycol-divinyl benzene. At least a portion of the particles comprise a receptor molecule coupled to a polymeric resin, and where at least a portion of the particles further comprises a first indicator and a second indicator, the first and second indicators being coupled to the receptor, where the interaction of the receptor with the analyte causes the first and second indicators to interact such that the signal is produced. At least a portion of the particles comprise a receptor molecule coupled to a polymeric resin, and where at least a portion of the particles further comprise an indicator, where the indicator is associated with the receptor such that in the presence of the analyte the indicator is displaced from the receptor to produce the signal. At least a portion of the particles comprise a receptor molecule coupled to a polymeric resin, and where the receptor comprises a peptide, an enzyme, a synthetic receptor, an antibody or an antigen. At least a portion of the particles produce a detectable pattern in the presence of a cardiovascular risk factor analyte. The cardiovascular risk factor analyte comprises c-reactive protein or interleukin-6. The cardiovascular risk factor is high density lipoprotein, low density lipoprotein, very low density lipoprotein, cholesterol, C-reactive protein, interleukin-6, intercellular adhesion molecule-1, fibrinogen, homocysteine, folate, calcium, lipoprotein A, apolipoprotein A-1, apolipoprotein B, Helicobacter pylori, Chlamydia pneumoniae, Herpes virus hominis, or cytomegalovirus. The method further involves simultaneously determining the presence of two or more cardiovascular risk factor analytes in a

fluid sample. All of the particles are configured to produce a detectable signal in the presence of a cardiac risk factor. The supporting member comprises silicon, plastic material, dry film photoresist material or several layers of a dry film photoresist material (all claimed). DESCRIPTION OF DRAWING(S) - The figure shows a portable sensor array system. portable **sensor** array system (1000) sensor array cartridge (1010) alphanumeric display screen (1014) ports (1020, 1022) syringe (1030) nucleopore filters (1040) pp; 104 DwgNo 18/42 Title Terms: SYSTEM; DETECT; ONE; MORE; CARDIOVASCULAR; RISK; FACTOR; ANALYTE; CHOLESTEROL; LIPOPROTEIN; FLUID; COMPRISE; LIGHT; SOURCE; SENSE; ARRAY; FORMING; SUPPORT; MEMBER; DETECT Derwent Class: A89; B04; D16; L03; P31; S03; S05; U12; U13 International Patent Class (Main): A61B-000/00; C12M-001/34; G01N-021/64 International Patent Class (Additional): B01J-019/00; G01N-035/00 File Segment: CPI; EPI; EngPI (Item 8 from file: 350) 17/5/8 DIALOG(R) File 350: Derwent WPIX (c) 2006 Thomson Derwent. All rts. reserv. 015331256 **Image available** WPI Acc No: 2003-392191/200337 Related WPI Acc No: 2006-181803 XRPX Acc No: N03-313324 In - vivo imaging device for endoscopic imaging system, has light sources to provide different illumination spectrum corresponding to each imaging period Patent Assignee: GLUKHOVSKY A (GLUK-I) Inventor: GLUKHOVSKY A Number of Countries: 001 Number of Patents: 001 Patent Family: Patent No Kind Date · Applicat No Kind Date US 20030028078 A1 20030206 US 2001309181 P 20010802 200337 US 2002208832 Α 20020801 Priority Applications (No Type Date): US 2001309181 P 20010802; US 2002208832 A 20020801 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes 18 A62B-001/04 Provisional application US 2001309181 US 20030028078 A1 Abstract (Basic): US 20030028078 A1 NOVELTY - Each light sources (30A-30C) output different illumination spectrum at specific imaging periods and a CMOS image sensor (24A) captures a precursor image during each imaging period.

NOVELTY - Each light sources (30A-30C) output different illumination spectrum at specific imaging periods and a CMOS image sensor (24A) captures a precursor image during each imaging period. Different illumination spectrums are provided corresponding to the imaging periods. The set of images captured during the imaging cycles are combined to produce a color image.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

color imaging method;

- (2) image display system;
- (3) image display method;
- (4) swallowable in vivo imaging capsule; and
- (5) in vivo imaging unit.

USE - In - vivo imaging device e.g. endoscope like devices and catheter like devices for medical application, for insertion into body cavity or lumen, coronary arteries, ureter or urethra or common for performing in - vivo imaging of passages e.g. gastrointestinal tract using endoscopes, laproscopes and gastroscopes.

ADVANTAGE - Enables increasing efficiency of in - vivo imaging device as final image is obtained by processing pre-cursor images created using different spectra or **colors**.

DESCRIPTION OF DRAWING(S) - The figure shows the schematic functional block diagram of the **in** - **vivo** imaging device.

Image sensor (24A)

Light sources (30A-30C)

pp; 18 DwgNo 2a/6

Title Terms: VIVO; IMAGE; DEVICE; ENDOSCOPE; IMAGE; SYSTEM; LIGHT; SOURCE

; ILLUMINATE; SPECTRUM; CORRESPOND; IMAGE; PERIOD

Derwent Class: P31; P35; S03; S05; T01; W02; W04

International Patent Class (Main): A62B-001/04

International Patent Class (Additional): A61B-001/04

File Segment: EPI; EngPI

17/5/10 (Item 10 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

015029571

WPI Acc No: 2003-090088/200308

XRAM Acc No: C03-022725 XRPX Acc No: N03-071112

Changing acoustic reflectivity of ultrasound target for monitoring the temperature of a tissue in a patient, comprises administering a nongaseous acoustic imaging substance

Patent Assignee: BARNES-JEWISH HOSPITAL (BARN-N); HALL C S (HALL-I); LANZA G M (LANZ-I); WICKLINE S A (WICK-I)

Inventor: HALL C S; LANZA G M; WICKLINE S A

Number of Countries: 101 Number of Patents: 005.

Patent Family:

Patent No Kind Date Applicat No Kind Date Week US 20020102216 A1 20020801 US 2001774278 Α 20010130 200308 B WO 200260524 A2 20020808 WO 2002US2631 Α 20020130 200308 EP 1363538 A2 20031126 EP 2002706070 Α 20020130 200380 WO 2002US2631 Α 20020130 AU 2002240177 A1 20020812 AU 2002240177 Α 20020130 200427 JP 2005503836 W 20050210 JP 2002560714 20020130 200511 Α WO 2002US2631 Α 20020130

Abstract (Basic): US 20020102216 A1

NOVELTY - Changing (M1) acoustic reflectivity of an ultrasound target, comprises:

- (a) administering to the target, a nongaseous acoustic imaging substance (I) which binds to the target and produces a change in acoustic reflectivity with a change in temperature; and
 - (b) changing the temperature to produce a measurable change in

acoustic reflectivity of (I) bound to the target.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

- (1) measuring (M2) enhanced acoustic reflectivity of an ultrasound target, comprising:
 - (a) administering (I) to the target;
- (b) changing the temperature to produce a measurable change in acoustic reflectivity of (I) bound to the target; and
- (c) detecting a change in acoustic reflectivity of the bound substance;
- (2) monitoring (M3) the temperature of a tissue in a patient, comprising:
 - (a) administering (I) to the patient;
- (b) **detecting** acoustic reflectivity of (I) bound to the **tissue**; and
 - (c) calculating temperature of (I) bound to the tissue; and
- (3) a device (II) for measuring changes in temperature of a target having a temperature sensitive acoustic imaging substance bound to it, comprising:
- (i) a component configured to change the temperature of the acoustic imaging substance;
- (ii) an ultrasound source configured to transmit acoustic energy to the target;
- (iii) an ultrasound **detecting** component configured to measure acoustic reflectivity of the surface; and
- (iv) a comparator which determines acoustic reflectivity of the target upon changing temperature relative to acoustic reflectivity of the target in absence of changing temperature.

USE - The method is used for changing the acoustic reflectivity of an ultrasound target. (I) is used to measure enhanced acoustic reflectivity of an ultrasound target. (I) is used to monitor the temperature of a **tissue** in a patient (claimed).

ADVANTAGE - (M1) enhances **detection** of acoustic reflectivity of an ultrasound target (claimed).

pp; 25 DwgNo 0/7

Title Terms: CHANGE; ACOUSTIC; REFLECT; ULTRASONIC; TARGET; MONITOR; TEMPERATURE; TISSUE; PATIENT; COMPRISE; ADMINISTER; ACOUSTIC; IMAGE; SUBSTANCE

Derwent Class: B04; D16; P31; P34; S03; S05

International Patent Class (Main): A61B-008/00; A61K-049/00; A61N-000/00

International Patent Class (Additional): A61B-005/05; A61B-005/055;

A61B-005/06; A61K-009/127; A61K-009/133; A61K-009/14; A61K-048/00; A61K-049/04; A61K-051/00; G01R-033/28

File Segment: CPI; EPI; EngPI

17/5/17 (Item 17 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

014434680 **Image available**

WPI Acc No: 2002-255383/200230

Related WPI Acc No: 2002-536819; 2004-532694; 2005-064114; 2005-149696

XRPX Acc No: N02-197451

Selective image providing apparatus for ROI in patient's body, energizes light source selectively to image ROI for diagnosing, sensing and monitoring specific condition in ROI and providing therapy to ROI

Patent Assignee: UNIV WASHINGTON (UNIW); SEIBEL E J (SEIB-I)

Inventor: SEIBEL E; SEIBEL E J

Number of Countries: 094 Number of Patents: 006

Patent Family:

Patent No Kind Date Applicat No Kind Date Week 20000619 US 20010055462 A1 20011227 US 2000212411 Ρ 200230 B US 2001850594 20010507 Α AU 200174933 Α 20020102 AU 200174933 20010523 Α 200230 WO 200197902 A2 20011227 WO 2001US16844 A 20010523 200230 JP 2003535659 W .20031202 WO 2001US16844 A 20010523 200382 JP 2002503383 20010523 20050915 AU 2001274933 AU 2001274933 A8 20010523 200569 US 6975898 B2 20051213 US 2000212411 Ρ 20000619 200581 US 2001850594 Α 20010507

Abstract (Basic): US 20010055462 A1

NOVELTY - An optical fiber (94) has proximal and distal ends connected to a **light** source and a **tubular** piezoelectric actuator (95) scanning region of interest (ROI). A controller controls the actuator and is coupled to the fiber and **light** source, for selectively energizing the source to image ROI for diagnosing, **sensing** and monitoring specific condition in the ROI and providing a therapy to ROI.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (a) Integral light guide system utilization method;
- (b) Region of interest automatic scanning apparatus and method USE - For selectively providing image of ROI in a patient's body. The apparatus is also used for fluorescence, thermal and tissue imaging using respective UV, visible and IR wavelengths , concentric confocal and true confocal imaging, imaging through blood using IR wavelengths , polarization-contrast imaging, laser induced fluorescence (LIF) and ratio fluorescence imaging and detection , multi-photon excitation fluorescence imaging, fluorescence life time imaging and analysis, laser feedback microscopy, optical coherence tomograph (OCT) and reflectometry (OCR), optical stimulated vibro-acoustography analysis, true sizing of image structures using stereo and range finding options, laser induced fluorescence spectroscopy (LIFS), Raman spectroscopy analysis, elastic, scattering spectroscopy (ESS) analysis, absorption spectroscopy, detection and mapping of chemi-luminescence and cell viability, spatial mapping of optical sensor data, temperature measurement and feedback control, other measurements such as color , laser power delivery, tissue properties, photobleaching and photocreation of compounds for monitoring and feedback control, photodynamic therapy, hypothermia treatment, laser surgeries, photoactivated chemistry, photopolymerization and implantation of biomaterials, laser cauterization, destruction of tissue using shock waves, interactive displays and advanced user interface design, interactive touch/point screen, quasi-stereo on display monitors, stereographic mapping using pseudo color overlay and true 3D display formats.

ADVANTAGE - The apparatus has lower cost with integration and uses low cost components, has lower flexural rigidity allowing greater access within the body. Provides faster procedural times, provides greater accuracy with integrated high-resolution images and interactive display. Provides lower risk to patient for infection from multiple tools or incisions and provides faster recovery times for patient with

less damage to health **tissues** and less anesthetics, by accurately determining scanning motion (velocity, position, frequency, etc) of optical fiber, provides additional features with scanning optical system, such as variable resolution (real-time zooming) and enhanced stereo effects (shading) and provides additional functionality with integrated long visible optical sources and **detectors**.

DESCRIPTION OF DRAWING(S) - The figure shows the components of rectilinear scanning optical fiber for selectively scanning-in either or both of two transverse directions.

Optical fiber (94)

Tubular piezoelectric actuator (95)

pp; 36 DwgNo 3A/12

Title Terms: SELECT; IMAGE; APPARATUS; PATIENT; BODY; ENERGISE; LIGHT; SOURCE; SELECT; IMAGE; DIAGNOSE; SENSE; MONITOR; SPECIFIC; CONDITION; THERAPEUTIC

Derwent Class: P31; P81; S05; V07

International Patent Class (Main): A61B-001/04; A61B-006/00;

A61N-000/00; G02B-006/00

International Patent Class (Additional): A61B-001/00 ; A61B-018/20 ;

G01N-021/27; G01N-021/64; H04N-007/18

File Segment: EPI; EngPI

17/5/19 (Item 19 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

014154369 **Image available**
WPI Acc No: 2001-638588/200173
Related WPI Acc No: 2001-615477

XRAM Acc No: C01-188859 XRPX Acc No: N01-477319

Disposable high density optically readably polydeoxynucleotide array for surgical applications, comprises an excitation source, optically detectable probe, and optical property detector

Patent Assignee: CROWLEY R J (CROW-I)

Inventor: CROWLEY R J

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
US 20010029328 A1 20011011 US 9871906 A 19980120 200173 B

US 99233409 A 19990119 US 2001881283 A 20010614

Priority Applications (No Type Date): US 9871906 P 19980120; US 99233409 A 19990119; US 2001881283 A 20010614

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

US 20010029328 A1 13 A61B-005/04 Provisional application US 9871906

Cont of application US 99233409

Abstract (Basic): US 20010029328 A1

NOVELTY - A disposable high density optically readable polydeoxynucleotide array comprises an excitation source, optically detectable probe, and an optical property detector.

DETAILED DESCRIPTION - A disposable high density optically readable

polydeoxynucleotide array (11) comprises:

- (a) an excitation source;
- (b) an optically detectable probe directed to an analyte; and
- (c) a detector for detecting optical properties of the probe .

The **detector** is configured for converting optical signals representative of the **detected** optical properties to electrical signals. The source, **probe**, and **detector** are adapted for placement together in an area of interest within a body.

USE - The device is used as a disposable high density optically readable polydeoxynucleotide array useful in surgical application.

ADVANTAGE - The invention performs specific detection and analysis of biological analytes in vivo using a simplified, low cost set of components. The probe materials may be incorporated into the substrate, which may be a flat surface and which allows ink printing processes to be used to deposit the probe array materials at high speeds and at low cost. It can also be used anywhere there is the need for fast, precise localized detection and analysis of nucleotides, or proteins, either for diagnostic purposes, or to guide therapy which itself may be made more localized, and thus site-specific. Such uses are economical and have less impact on surrounding tissue that is free of disease. It allows the use of any agent that may change color as a result of the application of a local chemical to be read and includes without limitation such agents as litmus, photodynamic therapeutic agents, such as photofrin, fluorescent agents or dyes, staining dyes, or luciferin. It also permits analysis in a real time fashion without the need to remove and transport tissue specimens for later analysis.

DESCRIPTION OF DRAWING(S) - The figure shows a planar view of a **probe** array.

Array (11)

Chambers (13)

Frame (17)

pp; 13 DwgNo 1/6

Title Terms: DISPOSABLE; HIGH; DENSITY; OPTICAL; ARRAY; SURGICAL; APPLY; COMPRISE; EXCITATION; SOURCE; OPTICAL; DETECT; PROBE; OPTICAL;

PROPERTIES; **DETECT**

Derwent Class: B04; D16; P31

International Patent Class (Main): A61B-005/04

International Patent Class (Additional): A61B-005/05

File Segment: CPI; EngPI

17/5/21 (Item 21 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

013882306

WPI Acc No: 2001-366518/200138

Related WPI Acc No: 1992-141666; 1994-007124; 1996-009504; 1996-259512;

1998-062055; 2001-289391; 2002-146549

XRAM Acc No: C01-112352 XRPX Acc No: N01-267365

Detection of margins and dimensions of tumor tissue involves illuminating breast tissue, with illumination source emitting electromagnetic radiation, and administering dye

Patent Assignee: UNIV WASHINGTON (UNIW)

Inventor: HAGLUND M M; HOCHMAN D

Number of Countries: 001 Number of Patents: 001 Patent Family:

Patent No Date: Kind Applicat No Kind Date Week US 6241672 B1 20010605 US 90565454 Α 19900810 200138 B US 92894270 Α 19920608 US 9373353 Α 19930607 US 95477468 Α 19950607 US 97993733 Α 19971218

Priority Applications (No Type Date): US 95477468 A 19950607; US 90565454 A 19900810; US 92894270 A 19920608; US 9373353 A 19930607; US 97993733 A 19971218

Patent Details:

Patent No Kind Lan Pg Main IPC US 6241672 B1 26 A61B-005/00

Filing Notes
CIP of application US 90565454
CIP of application US 92894270
CIP of application US 9373353
Cont of application US 95477468
CIP of patent US 5215095
CIP of patent US 5438989
CIP of patent US 5465718
Cont of patent US 5699798

Abstract (Basic): US 6241672 B1

NOVELTY - Margins and dimensions of tumor **tissue** are **detected** by illuminating an area of interest with illumination source emitting electromagnetic **radiation**, and administering dye to the area of interest. Optical properties are then **detected**, and tumor is distinguished from non-tumor **tissue** based on the differences of the optical properties in the comparison data set.

DETAILED DESCRIPTION - **Detection** of margins and dimensions of tumor **tissue** involves illuminating an area of interest with illumination source emitting electromagnetic **radiation** (emr), and administering dye to the area of interest. Optical properties of the area of interest are **detected** after the administration of the dye, to acquire a subsequent data set. The subsequent data set is compared with a control data set representing the optical properties of the area of interest before the administration of the dye, to produce a comparison data set. Tumor is distinguished from non-tumor **tissue** based on the differences of the optical properties in the comparison data set. The differences in the optical properties represent different dynamics of dye perfusion in tumor and non-tumor **tissue**.

USE - The method is for **detecting** the presence of tumor **tissue**, such as underneath of intact skin or bone, or breast **tissue**. It is also for identifying and mapping the margins of solid tumors during surgical or diagnostic procedures, and for grading and characterizing solid tumor **tissue** to distinguish malignant from non-malignant tumor **tissue**.

ADVANTAGE - The inventive method can optically image and distinguish low grade tumors that cannot be distinguished by conventional magnetic resonance imaging (MRI) techniques. The produced image can be updated continually during surgical procedure by readministering the dye. The inventive method provides information in real time, thus it can be employed intraoperatively.

pp; 26 DwgNo 0/11

Title Terms: **DETECT**; MARGIN; DIMENSION; TUMOUR; **TISSUE**; ILLUMINATE; BREAST; **TISSUE**; ILLUMINATE; SOURCE; EMIT; ELECTROMAGNET; **RADIATE**;

ADMINISTER; DYE

Derwent Class: B04; P31; S03; S05

International Patent Class (Main): A61B-005/00

File Segment: CPI; EPI; EngPI

17/5/22 (Item 22 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

013773532 **Image available**
WPI Acc No: 2001-257743/200126

Related WPI Acc No: 2001-235153; 2001-257742

XRAM Acc No: C01-077617 XRPX Acc No: N01-183846

Non-invasive determination of the oxygen saturation of a mixture of a liquid and blood cells, e.g. in dialysis apparatus, comprises determining blood characteristics using the intensity of reflected light from the mixture

Patent Assignee: OPTOQ AB (OPTO-N)

Inventor: ENLUND G; LINDBERG L; VEGFORS M

Number of Countries: 094 Number of Patents: 004

Patent Family:

Patent No Kind Date Applicat No Kind Date Week 20000907 WO 200117421 A1 20010315 WO 2000SE1740 Α 200126 AU 200074664 20010410 AU 200074664 Α Α 20000907 · 200137 EP 2000963216 EP 1210008 Α1 20020605 Α 20000907 200238 WO 2000SE1740 Α 20000907 JP 2003508144 W 20030304 WO 2000SE1740 Α 20000907 200319 JP 2001521218 Α 20000907

Abstract (Basic): WO 200117421 A1

NOVELTY - Non-invasive determination of the oxygen saturation (SpO2) of a mixture of liquid and **blood** cells comprises:

- (a) directing light beams at the mixture;
- (b) determining **blood** characteristic(s) other than by analyzing the intensity of the **light** reflected from the mixture;
 - (c) determining SpO2 of the mixture; and, optionally
- (d) establishing whether the result of step (c) is relevant based on the result of step (b).

DETAILED DESCRIPTION - Non-invasive determination of oxygen saturation, SpO2, of a mixture of liquid and **blood** cells comprises:

- (a) directing light beams against the mixture;
- (b) determining **blood** characteristic(s) other than SpO2, including hemoglobin of the mixture, by analyzing the intensity of the **light** reflected from the mixture or, the intensity of the **light** reflected from the mixture in combination with the intensity of the **light** transmitted through the mixture;
- (c) determining the oxygen saturation, SpO2, of the mixture by analyzing the intensity of the **light** transmitted through the mixture; and, optionally
- (d) establishing whether the result of step (c) is relevant based on the result of step (b).

INDEPENDENT CLAIMS are also included for:

(1) an apparatus for accurate determination of SpO2 from a mixture of liquid and **blood** cells contained in a **light** pervious vessel comprising:

- (a) light sources for directing light beams against the vessel;
- (b) a means for determining a **blood** characteristic other than oxygen saturation, SpO2, including hemoglobin, and capable of analyzing the intensity of the **light** reflected from the vessel optionally in combination with the intensity of the **light** transmitted through the mixture;
- (c) a means for determining oxygen saturation, SpO2, of the mixture, preferably pulse-oximetrically, and capable of analyzing intensity of **light** transmitted through mixture; and optionally
- (d) a means for establishing whether the determined value of SpO2 is relevant with respect to the determined value of the **blood** characteristic; and
- (2) a computer program stored on a data carrier for performing the inventive method.

USE - The methods and apparatus are used for non-invasively determining oxygen saturation of a mixture of liquid and blood cells, in addition to measurements of blood characteristics, e.g. hemoglobin, in a dialysis apparatus, a cell saver, dialysis monitors, on a blood bag assembly, on a slaughterhouse device, or on a blood fractionation device. Alternatively, the methods and apparatus are used for non-invasively determining oxygen saturation of a mixture of liquid and blood cells in a mammal, preferably a human. The methods and apparatus may also be used to determine other blood characteristics e.g. the concentrations of various blood components such as hemoglobin, total hemoglobin, red blood cells, white blood cells, platelets, cholesterol, albumin, thrombocytes, lymphocytes, drugs and other substances, viscosity, blood pressure, blood flow, blood volume, blood cell illnesses, abnormal blood cell appearances, anemia, leukemia and lymphoma.

ADVANTAGE - The method provides pulse oximetry measurements with increased accuracy by reflection and transmittance measurements:

- (1) on central arterial **blood** vessels better reflecting the oxygenation than peripheral vascular beds;
- (2) on-line correction for hematocrit (the volume of **blood** cells per volume of **blood**) values affecting the accuracy; and
- (3) simultaneous results of oxygenation saturation and **blood** values (e.g. hematocrit) improving the quality and safety in patient monitoring (sic).

The method also provides more accurate oxygen saturation **detection** values. It does not involve an extra step of making the apparatus sterile before measuring or the requirement for disposable tips. It is less sensitive to variations in **blood** pressure, e.g. pulsative (systolic) pressure and there is no requirement for withdrawing **blood** from the vascular system thus removing the need for needles and syringes and also reducing the associated risks of AIDS or hepatitis transmission.

DESCRIPTION OF DRAWING(S) - The figure shows a flow model for ${\bf detection}$ of ${\bf light}$ reflection.

pp; 87 DwgNo 1/19

Title Terms: NON; INVADE; DETERMINE; OXYGEN; SATURATE; MIXTURE; LIQUID; BLOOD; CELL; DIALYSE; APPARATUS; COMPRISE; DETERMINE; BLOOD; CHARACTERISTIC; INTENSITY; REFLECT; LIGHT; MIXTURE

Derwent Class: B04; P31; S03

International Patent Class (Main): A61B-005/00; A61B-005/145 International Patent Class (Additional): G01N-021/55; G01N-033/49 File Segment: CPI; EPI; EngPI 17/5/25 (Item 25 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

013586826 **Image available**
WPI Acc No: 2001-071033/200108
Related WPI Acc No: 2003-787235

XRAM Acc No: C01-019857 XRPX Acc No: N01-053755

Disposable fluid processing set for treating blood or blood components, includes tube connecting primary and secondary chambers separated by holder during processing

Patent Assignee: BAXTER INT INC (BAXT); CERUS CORP (CERU-N); CIMINO G D (CIMI-I); CLARKE M S (CLAR-I); DEGHELDERE S (DEGH-I); HEI D J (HEID-I); METZEL P S (METZ-I); MOHIUDDIN M (MOHI-I)

Inventor: CIMINO G D; CLARKE M S; DE GHELDERE S; HEI D J; METZEL P S; MOHIUDDIN M; DEGHELDERE S; METZEL P

Number of Countries: 035 Number of Patents: 012

Patent Family:

Lui	che ramery.								
Pat	ent No	Kind	Date	Applicat No		Kind	Date	Week	
WO	200074806	A1	20001214	WO	2000US15065	Α	20000531	200108	. В
AU	200054551	Ą	20001228	AU	200054551	Α	20000531	200119	
BR	200011123	A	20020226	BR	200011123	Α	20000531	200223	
		•		WO	2000US15065	Α	20000531		
EΡ	1191990	A 1	20020403	ΕP	2000939469	Α	20000531	200230	
				WO	2000US15065	Α	20000531	•	
CN	1353623	A	20020612	CN	2000808380	Α	20000531	200262	
ZA	200108986	Α	20021127	ZA	20018986	Α	20011031	200305	
JP	2003501175	W	20030114	WO	2000US15065	Α	20000531	200306	
				JP	2001501335	Α	20000531		
US	20030085173	A1	20030508	U.S	99325599	Α	19990603	200337	
				US	2002267566	Α	20021008	•	
ΝZ	515445	Α	20030926	ΝZ	515445 .	A	20000531	200366	
				WO	2000US15065	Α	20000531		
ΑU	780452	B2 ·	20050324	ΑU	200054551	Α	20000531	200528	
IN	200101430	Р3	20051021	WO	2000US15065	Α	20000531	200580	
			•	IN	2001MN1430	Α	20011115		
CN	1148248	C	20040505	CN	2000808380	Α	20000531	200610	

Abstract (Basic): WO 200074806 A1

NOVELTY - Processing set includes a primary chamber and a secondary chamber storing fluid to be treated and treated fluid respectively. A **tube** defining an open flow path connects the primary and secondary chamber. A holder separates the secondary chamber from primary during processing.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for biological fluid treatment method which involves collecting biological fluid in a collection container. Tube extending from collection container, defines an open flow path and has sealed end. The tube is connected with that of primary chamber of processing set. Biological fluid containing photochemical agent is passed to primary chamber from collection container. A source applies light energy to biological fluid for activating photochemical agent. The biological fluid is treated using the light energy. The progress of treatment is identified by the color change of photochemical agent and is indicated by the secondary chamber. After the completion of treatment,

biological fluid is passed from primary to secondary chamber. The primary chamber is separated from processing set. The biological fluid is held by absorbent material in primary chamber. The holding period of fluid is 30 seconds to 7 days. Air is introduced into chambers then biological fluid is passed to primary and secondary chambers.

USE - Used for treating biological fluids such as \mbox{blood} , \mbox{blood} components.

ADVANTAGE - Biological fluid is treated efficiently by the disposable processing set. As the indicator is provided, completion of the treatment process is **detected** easily and so reliability of operation is improved. As **light energy** is used for treatment, operating efficiency is improved and serviceability is improved. By passing **light energy** to biological fluid containing photochemical agent, pathogen inactivated biological fluid is attained.

DESCRIPTION OF DRAWING(S) - The figure shows the perspective view of biological fluid treatment apparatus.

Light box (10)
Housing (12)
Top panel (14)
Bottom panel (16)
Front and rear panels (17)
Side panels (18)
Door (24)
Control module (26)
Fluid treatment module (28)
Control panel (32)
pp; 75 DwgNo 1/22

Title Terms: DISPOSABLE; FLUID; PROCESS; SET; TREAT; BLOOD; COMPONENT; TUBE; CONNECT; PRIMARY; SECONDARY; CHAMBER; SEPARATE; HOLD; PROCESS

Derwent Class: B04; D22; J01; P34; S05

International Patent Class (Main): A61M-001/36; B01D-000/00; B01D-015/00

File Segment: CPI; EPI; EngPI

17/5/28 (Item 28 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

013084940 **Image available**
WPI Acc No: 2000-256812/200022

XRAM Acc No: C00-078388 XRPX Acc No: N00-190957

Combined blood glucose meter and insulin pump for diabetics includes an optics system receiving colorimetric data from a test strip, a meter display and manual or microprocessor controlled insulin delivery

Patent Assignee: AMIRA MEDICAL (AMIR-N) Inventor: DOUGLAS J S; ROE J N; YUM S I

Number of Countries: 088 Number of Patents: 002

Patent Family:

Applicat No Kind Date Week Patent No Kind Date WO 200013580 A1 20000316 WO 99US20978 Α 19990910 200022 B AU 9961427 Α 20000327 AU 9961427 Α 19990910

Abstract (Basic): WO 200013580 Al

NOVELTY - An insulin pump (5), catheter connection (10) and catheter (15) are incorporated in a case fitted with a blood glucose monitor (25), strip holder (30) and meter display (35). A lancing system (50) and test strip (55) collects and tests the **blood** sample. An optics system receives colorimetric data from the test. The insulin dose rate can be set manually by the dispensing button (45). A microprocessor can be incorporated to control the blood glucose detection and pump delivery. USE - For determination of glucose level in blood by diabetics and delivery of insulin based on the test result. ADVANTAGE - Provides an integrated sampling, monitoring and insulin delivery system which combines ease of use with portability to facilitate patient compliance with recommended testing routines, leading to improved overall health. Test strips are held in a storage compartment for protection from damage due to physical stress, moisture or light. Electronic calculation of insulin delivery frees the patient from treatment determinations. DESCRIPTION OF DRAWING(S) - The drawing shows an isometric view of the combined meter and insulin pump. Pump (5) Catheter connection (10) Catheter (15)**Blood** glucose monitor (25) Strip holder (30) Meter display (35) Dispensing button (45) Lancing system (50) Test strip. (55) pp; 19 DwgNo 2/3 Title Terms: COMBINATION; BLOOD; GLUCOSE; METER; INSULIN; PUMP; DIABETES; OPTICAL; SYSTEM; RECEIVE; COLORIMETRIC; DATA; TEST; STRIP; METER; DISPLAY; MANUAL; MICROPROCESSOR; CONTROL; INSULIN; DELIVER Derwent Class: B07; P31; P34; S03 International Patent Class (Main): A61B-005/00 International Patent Class (Additional): A61M-005/172; G01N-033/487 File Segment: CPI; EPI; EngPI 17/5/33 (Item 33 from file: 350) DIALOG(R) File 350: Derwent WPIX (c) 2006 Thomson Derwent. All rts. reserv. **Image available** 009488583 WPI Acc No: 1993-182118/199322 XRAM Acc No: C93-080604 XRPX Acc No: N93-140068 Trans-cutaneous bilirubin detector partic. for infants - comprises light -directing prism which is applied under constant pressure of plunger and spring Patent Assignee: KRONBERG J W (KRON-I); US DEPT ENERGY (USAT); WESTINGHOUSE SAVANNAH RIVER CO (WESE) Inventor: KRONBERG J W Number of Countries: 001 Number of Patents: 002 Patent Family: Patent No Kind Kind Date Applicat No Date Week

US N7663518

US 5259382

N

Α

19930501

US 91663518

19931109 US 91663518

Α

Α

19910304

19910304

199322

199346

Priority Applications (No Type Date): US 91663518 A 19910304

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

US N7663518 N G01N-000/00 US 5259382 A 7 A61B-005/00

Abstract (Basic): US N7663518 N

Detector comprises a hand-held body holding a prism (44) receiving light from the end of a fibre optic bundle (14) connected to a light source to direct it onto the skin and to direct reflected light back into the bundle. The bundle proximal end is trifurcate with one end connected to the source and two to electronic circuitry measuring the absorption of light wavebands absorbable and not absorbable by bilirubin.

Pref., two measurements are made, on the kneecap and forehead and these are compared. The body pref. carries a plunger (18) and spring (34) to apply pressure and reduce the effect of **light** absorption by **blood** haemoglobin. The force is pref. applied via an outer **tube** (36), this exposing a button (24) which is brightly **coloured** and has embossed blunt points for visual and tactile indication that the correct force has been applied.

USE/ADVANTAGE - Partic. for monitoring bilirubin levels in neonatal infants, provides accurate measurements with a non-invasive procedure.

Dwg.2/6

Title Terms: TRANS; CUTANEOUS; BILIRUBIN; **DETECT**; INFANT; COMPRISE; **LIGHT**; DIRECT; PRISM; APPLY; CONSTANT; PRESSURE; PLUNGE; SPRING

Derwent Class: B04; S03

International Patent Class (Main): A61B-005/00; G01N-000/00

File Segment: CPI; EPI

17/5/34 (Item 34 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2006 Thomson Derwent. All rts. reserv.

007137558

WPI Acc No: 1987-137555/198720

XRPX Acc No: N87-103088

Single optical fibre transducer driving and measuring circuit - has bi-directional couplers recording signal intensities and transmitting pulsing energy to wavelength multiplexer-demultiplexer

Patent Assignee: BECTON DICKINSON CO (BECT); DESERET MEDICAL INC (DESE-N)

Inventor: MERSCH S H

Number of Countries: 014 Number of Patents: 007

Patent Family:

Patent No Kind Date Applicat No Kind Date Week EP 222555 Α 19870520 EP 86308436 19861029 198720 Α AU 8665077 Α 19870514 198726 US 4936679 Α 19900626 US 85797299 19851112 199028 CA 1282251 С 19910402 199118 19910828 EP 222555 В 199135 DE 3681117 G 19911002 199141 ES 2026132 Т3 19920416 EP 86308436 Α 19861029 199226

Abstract (Basic): EP 222555 A