Prédiction des clients à risque de cesser d'utilizer les services de SyriaTel

Projet de classification binaire

Auteur: Nael Yssa I.A Robert

Objectif du projet

- Prédire quels clients sont à risque de cesser d'utiliser les services de SyriaTel, afin que l'entreprise puisse mettre en place des actions pour réduire les pertes financières.
- Type de problème : Classification binaire (Churn = True/False)
- Public cible : secteur des télécommunications.
- Source de données : Kaggle

Étape 1 : Exploration des données

Jeu de données : 3333 clients, 21 colonnes (informations sur usage des services, plan international, appels au service client, etc.)

Méthodes utilisées pour l'exploration :

df.head(), df.info(), df.isnull().sum(), df['churn'].value_counts()

Analyse initiale:

- Pas de valeurs manquantes
- •Classes déséquilibrées : 2850 Non-Churn, 483 Churn (~14% churn)
- Vérification des types de données : numériques et catégorielles

Visualisation de la distribution de la variable cible(churn)

Étape 2 : Préparation des données

Objectif: Mettre les données sous une forme exploitable par les modèles de classification.

Méthodes utilisées :

- Encodage des variables catégorielles : pd.get_dummies()
- •Standardisation des variables numériques : StandardScaler().fit_transform()
- •Séparation en train/test sets avec stratification : train_test_split(..., stratify=0.3, random_state=1)

Actions:

- Encodage des variables catégorielles (One-Hot)
- •Standardisation ou normalisation des variables numériques
- •Séparation en train/test sets avec stratification pour maintenir la proportion de classes

Étape 3 : Construction des modèles

Objectif : Créer plusieurs modèles de classification pour prédire le churn.

Méthodes utilisées :

- Régression logistique : LogisticRegression(class_weight='balanced')
- Arbre de décision : DecisionTreeClassifier(class_weight='balanced')
- •Évaluation des performances : accuracy_score(), classification_report(), confusion_matrix()

Actions:

- •Régression logistique (simple et interprétable)
- Arbre de décision (capte les relations non linéaires)
- •Paramètre class_weight='balanced' pour gérer le déséquilibre

Résultats:

- Régression logistique
 - Accuracy: 0.747
 - Classe Churn: Precision 0.33, Recall 0.70, F1-score 0.45
 - Limitation : faible précision pour détecter les clients à risque (beaucoup de faux positifs).
- Arbre de décision initial
 - Accuracy : 0.892
 - Classe Churn: Precision 0.63, Recall 0.63, F1-score 0.63
 - Avantage : meilleure détection des clients à risque, capture les relations non linéaires.

Visualisation de la comparaison des f1_score de chacun des modèles

Visualisation de l'arbre de decision

Étape 4 : Optimisation de l'arbre de décision

•Meilleurs paramètres trouvés :

{'criterion': 'entropy', 'max_depth': 5, 'min_samples_leaf': 1, 'min_samples_split': 10}

•Résultats sur le test set :

•Accuracy: 0.891

•Classe Churn (clients à risque) : Precision 0.61, Recall 0.68, F1-score 0.64

•Confusion Matrix:

[[528 42] [31 66]]

- •Nombre total de clients identifiés comme à risque : 108 (66 vrais churn + 42 faux positifs)
- •Optimisation : meilleur compromis entre précision et rappel pour détecter les clients à risque.

Visualisation de l'arbre optimisé

Visualisation de la matrice de confusion de l'arbre optimisé

Recommandations

L'arbre de décision optimisé est le modèle **Améliorations possibles** le plus efficace pour Actions pour SyriaTel: prédire les clients à risque de churn. Ajouter plus de données Contacter les 108 clients Réévaluer régulièrement comportementales ou identifiés comme à le modèle pour démographiques pour risque avec des offres mieux détecter les maintenir la précision. ou un suivi personnalisé. clients à risque.

Conclusion

Le modèle optimisé permet à SyriaTel d'identifier les clients à risque de cesser d'utilizer ses services (churn) et de mettre en place des actions ciblées pour réduire les pertes financières.

MERCI ***