2-AMALIY MASHG`ULOT

Simmetrik (mahfiy) kalitli shifrlash tizimlari

Almashtirish usullarining mohiyati — bir alfavitda yozilgan information simvollarni boshqa alfavit simvollari bilan ma'lum bit qoida boʻyicha almashtirishdan iboratdir. Bu guruhga mansub eng sodda usul sifatida toʻgʻridantoʻgʻri almashtirish usulini koʻrsatish mumkin. Dastlabki informatsiya yoziluvchi A₀ alfavitning s_{0i} simvollariga shifrlovchi alfavitning s_{1i} simvoli mos qoʻyiladi. Oddiy xolda ikkala alfavit ham bir xil simvollar toʻplamiga ega boʻlishi mumkin. Ikkala alvavitdagi simvollar oʻrtasidagi moslik ma'lum bir algoritm boʻyicha K simvollar uzunligiga ega boʻlgan dastlabki matn T₀ simvollarining raqamli ekvivalentlarini oʻzgartirish orqali amalga oshiriladi.

Monoalfavitli almashtirish algoritmi quyidagi qadamlar ketma-ketligi ko'rinishida ifodalanishi mumkin:

1-qadam: [1xR] o'lchamli dastlabki A_0 alfavitdagi har bir simvol $s_0 \in T(i=1, K)$ ni A_0 alfavitdagi s_{0i} simvol tartib raqamiga mos keluvchi h_{0i} (s_{0i}) soniga almashtirish yo'li bilan raqamlar ketma ketligi L_{0h} ni shakllantirish.

2-qadam: L_{0h} ketma-ketligining har bir sonini $h_{1i} = (k_1x \ h_{0i}(s_{0i}) + k_2)$ (mod R) formula orqali hisoblanuvchi L_{1h} ketma ketligining mos soni h_{1i} ga almashtirish yo'libilan L_{1h} sonlar ketma ketligini shakllantirish, bu yerda k_1 o'nlik koeffitsient, k_2 esa siljitish koeffitsienti. Tanlangan k_1 va k_2 koeffitsientlar h_{0i} va h_{1i} sonlarining bir ma'noli mosligini ta'minlashi lozim. $h_{1i} = 0$ deb olinganida $h_{1i} = R$ almashinuvi bajarilishi kerak.

3-qadam: L_{1h} ketma ketligining har bir soni $h_{Ii}(s_{1i})$ ni [1xR] o'lchamli shrifrlash alfavitining mos $s_{1i} \in T_1(i=1, K)$ simvoli bilan almashtirish orqali T_1 shifr matnini hosil qilish.

4-qadam: Olingan shifr matni o'zgarmas b uzunlikdagi bloklarga ajratiladi. Agar oxirgi blok to'liq bo'lmasa, blok orqasiga mahsus simvol-to'ldirgichlar joylashtirish (masalan, * simvolini).

Misol: Shifrlash uchun dastlabki ma'lumotlar: AYUPOV R.H., KABULOV V.K.

 $T_0 = <XUMOSIXINATU>$

А₀= <АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚҒХ>

А₁= <ОРЁЬЯТЭ-ЖМЧХАВДЙФККСЕЗПИЦГХЛЪШБУЮ КГН>

$$R=36$$
 $k_1=3$ $k_2=15$ $b=4$

Algoritmning qadamba-qadam bajarilishi quyidagi natijalarga olib keladi:

1-qadam: $L_{0h} = \langle 35,10,14,16,31,36,23,10,9,14,1,20,10 \rangle$

2-qadam: $L_{1h} = \langle 12,9,21,17,36,14,12,9,6,21,18,3,9 \rangle$

3-qadam: $T_1 = \langle XЖЕФНВХЖТЕҚЁЖ \rangle$

4-qadam: T₁ = <XЖЕФ HBXЖ TEKËЖ***>

Rasshifrovka qilishda bloklar birlashtirilib, K simvolli shifromatn T₁ hosil qilinadi. Rasshifrovka qilish quyidagi butun sonli tenglamani (tselochislennoe uravnenie) yechish kerak bo'ladi:

$$k_1 h_{01} + k_2 = n R + h_{1i}$$

Ushbu tenglamadagi **k**₁, **h**₁₁, **k**₂ va **R** butun sonlar ma'lum boʻlganda **h**_{0i} kattaligi **n** ni saralash orqali hisoblanadi. Bu muolajani shifromatnning barcha simvollariga tadbiq qilish uning rasshifrovka qilinishiga olib keladi. Almashtirish usulining kamchiligi sifatida dastlabki va berilgan matnlar statistik koʻrsatgichlarining bir xilligini koʻrsatish mumkin. Dastlabki matn qaysi tilda yozilganini bilgan xolda, kriptoanalitik axborotlarni statistik qayta ishlab, ikkala alfavitdagi simvollar orasidagi mos kelishliklarni aniqlashi va matnni rasshifrovka qilishi mumkin

Polialfavitli almashtirish usullari

Bu usullar yetarlicha yuqori darajadagi kriptoturg'unlikka ega va bunda dastlabki matn simvollarini almashtirish uchun bir necha alfavitlardan foydalanadilar. Rasman polialfavitli almashtirishni quyidagihca tasavvur qilish mumkin. N – alfavitli almashtirishda dastlabki A_0 alfavitdagi s_{01} simvoli A_1 alfavitdagi s_{11} simvoli bilan almashtiriladi va hakozo. s_{0N} simvolini s_{NN} simvoli bilan almashtirgandan so'ng $s_{0(N+1)}$ simvolining o'rnini A_1 alfavitdagi $s_{1(N+1)}$ simvoli oladi va xakozo.

Polialfavitli almashtirish algoritmlari ichida Viginer jadvali (matritsasi)

T_B ni ishlatuvchi algoritm eng keng miqyosda tarqalgan. Viginer jadvali [RxR]

o'lchamli kvadrat matritsadan iborat bo'lib (R - ishlatilayotgan alfavitdagi

simvollar soni), birinchi qatorda simvollar alfavit tartibida joylashtiriladi. Ikkinchi

qatordan boshlab, simvollar chapga bitta o'ringa siljitilgan xolda yoziladi. Siqib

chiqarilgan simvollar o'ng tarafdagi bo'shagan o'rinni to'ldiradi (tsiklik siljitish).

Agar bu jarayonda kirill alfavitidagi o'zbek alfaviti ishlatilsa, Viginer martitsasi

quyida keltirilganidek, (36x36) o'lchamga ega bo'ladi:

АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚҒХ_А ВБГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБ БГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБ ГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБВ ДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБВГ ЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚБХ_АБВГДЕ

_АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎҚҒХ

Shirflash takrorlanmaydigan M simvoldan iborat kalit yordamida amalga oshiriladi. Vijinerning to'liq matritsasidan [(M+1), R] o'lchamli shifrlash matritsasi T u ajratiladi. Bu matritsaning birinchi qatori va birinchi elementlari kalit simvollariga mos keluvchi qatorlardan iborat bo'ladi. Agar kalit sifatida <FŸ3A> so'zi tanlangan bo'lsa, shifrlash matritsasi T u quyidagi beshta qatordan iborat bo'ladi:

АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎК Г ГХ_АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎК ЎКГХ_АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЭЮЯ ЗИЙКЛМНОПРСТУФХЦЧШЭЮЯЎКГХ_АБВГДЕЁЖ АБВГЛЕЁЖЗИЙКЛМНОПРСТУФУПИШЭЮЯЎКГУ Viginer jadvali yordamida shifrlash algoritmi quyidagi qadamlar ketma ketligidan iborat:

1-qadam: Uzunligi M simvolli K kalitni tanlash.

2-qadam: Tanlangan K kalit uchun [(M+1), R] o'lchamli shifrlash matritsasi

 $T_{iii} = (b_{ii})$ ni qurish.

3-qadam: Dastlabki matnning har bir simvoli s_{0R} tagiga kalit simvoli k_m joylashtiriladi. Kalit keraklicha miqdorda takrorlanadi.

4-qadam: Dastlabki matn simvollari shifrlash matritsasi T_{iii} dan quyidagi qoida bo'yicha tanlangan simvollar bilan quyidagicha tartibda ketma ket almashtiriladi:

- K kalitning almashtiriluvchi s_{0R} simvoliga mos k_m simvoli aniqlanadi.
- 2. Shifrlash matritsasi T_{iii} dagi k_m= b_{ii} shart bajariluvchi i qator topiladi.
- 3. $\mathbf{s}_{0R} = \mathbf{b}_{ij}$ shart bajariluvchi j ustun aniqlanadi.
- 4. son simvoli bij simvoli bilan almashtiriladi.

5-qadam: Shifrlangan ketma-ketlik ma'lum uzunlikdagi (masalan, 4 simvolli) bloklarga ajratiladi.

Matnni rasshifrovka qilish esa quyidagicha ketma ketlikda amalga oshiriladi:

1-qadam: Shifrlash algoritmining uchinchi qadamidagidek, shifroformat tagiga kalit simvollari ketma ketligi yoziladi.

2-qadam: Shifromatndan $\mathbf{s_{1R}}$ simvollari va mos kalit simvollari $\mathbf{k_m}$ ketma ket tanlanadi. Shifrlash matritsasi $\mathbf{T_m}$ dagi $\mathbf{k_m} = \mathbf{b_{ij}}$ shartni qanoatlantiruvchi i qator aniqlanadi. i qatorda $\mathbf{b_{ij}} = \mathbf{s_{1R}}$ element aniqlanadi. Rasshifrovka qilingan matnda \mathbf{r} –o'rniga $\mathbf{b_{ij}}$ simvoli joylashtiriladi.

3-qadam: Rashsifrovka qilingan matn ajratilmasdan yoziladi. Xizmatchi simvollar esa olib tashlanadi.

Мисол:

K = <FЎ3A> kaliti yordamida T = <ПАХТА FAPAMИ> dastlabki matnni shifrlash va so'ngra rasshifrovka qilish talab etilsin. Shirflash va rasshifrovka qilish natijalari quyida keltirilgan:

Dastlabki matn: ПАХТА_FAPAMИ

Kalit: FЎЗАГЎЗАГЎЗА

Almashtirilgan so'nggi matn: МЎЯТҒЯЕАНЎФИ

Shifromatn: МЎЯТ ҒЯЕА НЎФИ

Kalit: ҒЎЗА ҒЎЗА ҒЎЗА

Rasshifrovka qilingan matn: ПАХТА _ FAРАМИ

Dastlabki matn: ПАХТА_FAPAMИ

Polialfavitli almashtirish usullarining kriptoturg'unligi oddiy almashtirish usullariga nisbatan sezilarli darajada yuqori, chunki ularda dastlabki ketma ketlikning bir simvollari turli simvollar bilan almashtirilishi mumkin. Ammo shifrning statistik usullarga bardoshliligi kalit uzunligiga bog'liq.