Пруф общей тоеремы Тихонова

Мудрое Загадочное Дерево

канун экза

Определение 1 Пусть $(X_{\alpha}, \tau_{\alpha}), \alpha \in J$ - любое семейство топологических пространств. Рассмотрим $X = \prod_{\alpha \in J} X_{\alpha}$ - декартово произведение пространств, его элементы - последовательности элементов из X_{α} , индексированных элементами из J (то есть $\{x_1, x_2, ..., x_k, ...\}$, $x_k \in X_k$, $k \in J$). Пусть τ - самая слабая топология на X, для которой кажедая проекция $p_k \colon X \to X_k, \{x_1, x_2, ..., x_k, ...\} \mapsto \{x_k\}$ непрерывна. Такая слабейшая топология существует, так как это пересечение всех топологий, для которых проекции непрерывны. Тогда (X, τ) - тихоновское произведение с тихоновской топологией.

Теорема 1 (Тихонова)

Тихоновское произведение компактных пространств компактно.

- 1. Начальные сведения: кольца и идеалы
- 2. Теорема Александера о предбазе
- 3. Определение тихоновской топологии через предбазу
- 3. Сведение теоремы Тихонова к теореме Александера о предбазе **Доказательство.**

Определение 2 Пусть R - коммутатичное кольцо c единицей. Идеалом I в кольце R называется аддитивная подгруппа, замкнутая относительно умножения на на элементы кольца.

Очевидно, $\sum_{\lambda inK} \lambda r$ - идеал, порожденный, множеством $S \subset R$.

Множество всех подмножеств данного множества является кольцом относительно симметрической разности (сложения) и пересечения.

Теорема 2 (лемма Цорна для идеалов)

 $\varPi ycm$ ь I - идеал в кольце. Тогда существует максимальный идеал $I\subset I_1\subset$

Доказательство. □

3. Рассмотрим следующую предбазу на $X=\prod_{\alpha\in J}X_\alpha$: для любого индекса $i\in J$ и любого открытого множества $U\in X_i$ рассмотрим произведение

$$X_1 \times X_2 \times ... X_{i-1} \times U \times X_{i+1} \times ...$$

(вместо X_i стоит $U \subset X_i$). Покажем, что множество всех таких произведений является предбазой тихоновской топологии 1.

Пусть $\Gamma = \{X_1 \times X_2 \times ... X_{i-1} \times U \times X_{i+1} \times ... \mid i \in J, U \subset \tau_i\}$ - предполагаемая предбаза, Σ - множество пересечений всех элементов из Γ . Применим критерий базы топологического пространства:

1. Проекции, определенные на элементах предбазы, непрерывны: действительно, все проекции, кроме i-той, являются гомеоморфизмами слоев; i-тая проекция также непрерывна, поскольку U - открытое подпространство в X_i и все открытые в нем множества - следы открытых. Ограничение непрерывной функции непрерывно, поэтому проекция, определенная на пересечениях элементов из Γ , непрерывна. Значит, элементы предбазы открыты в смысле топологии Тихонова.