Biochemical Skills 1 : Data Analysis

Linear Regression and calibration

Overview of topics

Week	Topic
	Introduction to module, statistics and RStudio including first figure Hypothesis testing, variable types; functions (inbuilt), different ways of getting data into RStudio, getting help in RStudio
	The normal distribution, summary statistics and confidence intervals, RStudio
	One- and two-sample t-tests
	More than two samples: One-way ANOVA
	Linear Regression and Calibration

Summary of this week

 This week we will consider situations where our explanatory variable is more continuous than categorical.

Learning objectives for the week

By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain the rationale behind regression (MLO 2)
- Apply (appropriately), interpret and evaluate the legitimacy of linear regression for data analysis in R (MLO 2 and 3)
- Summarise and illustrate with appropriate R figures test results scientifically (MLO 3)
- Use linear regression to develop and make 'reverse predictions' from a calibration (MLO 2 and 3)

Choosing tests

Explanatory variables to explain the response variable.

The type of test depends on the type of question and the type of data.

Not for linear methods

Regression

- Prediction
- One variable causes the other
- Axes matter
- We will consider linear regression only best fitting straight line:

$$y = \underline{b}_1 x + \underline{b}_0$$

Regression

Regression

- Null hypothesis can be expressed as:
 - $b_1 = 0$
 - x does not explain y
 - Regression line doesn't explain variance in y

Regression example

```
reg <- read.table("qtl.txt", header = T)
str(reg)
'data.frame': 10 obs. of 2 variables:
   $ QTL : int 2 4 1 5 9 4 10 5 7 7
   $ pheno: int 20 23 21 28 35 25 40 26 30 25</pre>
```

Percentage of phenotype and number of quantitative trait loci in crop plants

Regression example

Plot first

```
ggplot(data = reg, aes(x = QTL,y = pheno)) +
  geom_point()
```


Regression: example

lm(y ~ x)
response ~ explanatory

- > mod <- lm(data = reg, pheno ~ QTL)</pre>
- > summary(mod)

Using the data argument makes it easier

Regression: example

```
> mod <- lm(data = reg, pheno ~ QTL)</pre>
                                                 Summary information about
> summary(mod)
                                                          residuals
call:
lm(formula = pheno ~ QTL, data = reg)
Residuals:
  Min
          10 Median
                        30
                              Max
 -5.50 -0.50 0.00
                      1.25
                             3.50
                                  b_0 and b_1
                                                      y = 2x + 16.5
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.5000
                        1.8307 9.013 1.83e-05 ***
                        0.3026 6.609 0.000168 ***
          2.0000
QTL
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.61 on 8 degrees of freedom
Multiple R-squared: 0.8452, Adjusted R-squared:
                                                     0.8259
F-statistic: 43.68 on 1 and 8 DF, p-value: 0.0001677
```

Regression: example

```
call:
                                             Test: b_0 = 0
lm(formula = pheno ~ QTL, data = reg)
                                          Often not impt
Residuals:
  Min
         10 Median 30
                           Max
 -5.50 -0.50 0.00 1.25 3.50
                                                      Test: b_1 = 0
Coefficients:
                                                  Always of interest
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.5000
                      1.8307 9.013 1.83e-05 ***
           2.0000 0.3026 6.609 0.000168 ***
OTL
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
                                                      Test of 'model'
Residual standard error: 2.61 on 8 degrees of freedom
                                                      Same as b_1 = 0
Multiple R-squared: 0.8452, Adjusted R-squared: 0.825
F-statistic: 43.68 on 1 and pr. p-value: 0.0001677
                                                          in single
                         Proportion of y
                                                         regression
                         explained by x
```

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.5000    1.8307    9.013 1.83e-05 ***
QTL     2.0000    0.3026    6.609 0.000168 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.61 on 8 degrees of freedom
Multiple R-squared: 0.8452,    Adjusted R-squared: 0.8259
F-statistic: 43.68 on 1 and 8 DF, p-value: 0.0001677
```

Reporting the results:

The number of QTLs explained a significant amount of the variation in percentage of phenotype (ANOVA:

$$F = 43.7$$
; $d.f. = 1.8$; $p = 0.00017$). The regression line is

Give the statistical result

Give the line

Prediction

Using coefficientsFor a single x

```
> intercept <- mod$coefficients[1]
> slope <- mod$coefficients[2]
> slope * 4 + intercept
   QTL
   24.5
```

When QTL = 4, % phenotype explained = 24.5

More general –

```
> newdata <- data.frame(QTL = seq(2.5, 7.5,0.5))
> predict(mod, newdata)
1  2  3  4  5  6  7  8  9  10  11
21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 29.5 30.5 31.5
```

```
> newdata
    QTL
1    2.5
2    3.0
3    3.5
4    4.0
5    4.5
6    5.0
7    5.5
8    6.0
9    6.5
10    7.0
11    7.5
```

Regression figure

Percentage of phenotype

0 -

0

```
ggplot(data = reg, aes(x =QTL, y = pheno))+
  geom_point(size = 2) +
  xlim(0, 15) +
  ylim(0, 40) +
  xlab("Number of QTL") +
  ylab("Percentage of phenotype") +
  geom_smooth(method = lm, se = FALSE, colour = "black")+
  theme_bw()
```

15

10

Number of QTL

Assumptions of Regression

- Normality and homoscedascity of residuals
- y values are independent
- x is measured without error
- Linear regression assumes linear relationship

Testing the Assumptions Regression

- > hist(mod\$residuals)
- > shapiro.test(mod\$residuals)

Shapiro-Wilk normality test

data: mod\$residuals
W = 0.91739, p-value = 0.3357

> plot(mod, which = 1)

Small sample size but these look OK

Histogram of mod\$residuals

Linear regression for Calibration

- Regression
 - Set x measure y
 - Predict y for any value of x within range
- Calibration
 - Set x measure y
 - Predict unknown x from a measured y
 - AKA reverse /inverse regression
- Fundamentally the same

Calibration example: estimating protein concentration

- Make a calibration 'curve'
 - known concentrations of Bovine Serum Albumin
 (BSA in μg) diluted with Bradford assay reagent
 - Measure optical density at 595nm
 - Perform regression Conc ~ OD
 - Line is OD= slope * Conc + intercept
- Predict unknown conc from OD:
 - Conc = (OD intercept)/slope

Calibration example: estimating protein concentration

```
> standard <- read.table("../data/standard.txt", header=T)</pre>
> str(standard)'data.frame': 10 obs. of 2 variables:
'data.frame': 4 obs. of 2 variables:
 $ bsa : int 1 5 10 20
                                                 RStudio
 $ od595: num 0.085 0.305 0.487 0.726
                                                      Code View
                                                                Plots S
                                                 · 🚰 · 🔒 🔒 [ 🖈
                                                    areg lect example calibration.
                                                           ∀ Filter
                                                             od595 =
                                                      bsa
                                                               0.085
                                                    2
                                                               0.305
                                                    3
                                                          10
                                                               0.487
                                                               0.726
                                                          20
```

Calibration 'curve'

```
ggplot(data = standard,aes(x = bsa,y = od595)) +
    geom_point()+
    geom_smooth(method = lm,se = FALSE, colour = "black") +
    xlim(0,25) + ylim(0,1) +
    theme_bw(
```


Prediction

- Perform regression
- Access slope and intercept

- Evaluate for a particular OD
 - Suppose you measured absorbance at 0.4
 - Conc = (OD intercept)/slope

```
calib <- lm(od595 ~ bsa, data = standard)
```

```
(intercept <- calib$coef[1])
(Intercept)
  0.1078936
(slope <- calib$coef[2])
  bsa
  0.0325396</pre>
```

```
(0.4 - intercept) / slope
(Intercept)
  8.976951
```

Regression and Calibrations summary

- Regression relationship
 - quote regression equation and test result (either ANOVA or t)
 - may also quote r^2
 - if scatterplot included do show a fitted line
- Calibration
 - Calibration curve
 - Give the predicted concentration