Lecture 6 PCA and SVD

Note by Samion Suwito on 2/6/25

Last Time

Symmetric and PSD/PD matrices

 $A\in\mathbb{S}^n \implies A=U\Lambda U^\intercal$ for diagonal Λ and orthogonal Λ

Orthonormal basis is a rotation of a basis and matrix A scales the basis

$$\{x:x^\intercal Ax\}\ A>0$$
 Represented as $x=\sum lpha_i u_i$
$$\left(\sum lpha_i u_i
ight)^\intercal x \left(\sum lpha_i u_i
ight) \leq 1$$

$$=\left(\sum lpha_i u_i
ight)^\intercal \left(\sum lpha_i \lambda_i u_i
ight)$$

$$=\sum \lambda_i lpha_i^2 \leq 1$$

The norm balls are elipsces and the lengths are inversely proportional to λ_i^2

PSD makes form a (convex) cone

$$\implies \text{if } A,B \geq 0 \implies \theta A + (1-\theta)B \geq 0 \ \forall \theta \in [0,1] \\ \text{if } A > 0 \implies \alpha A > 0 \ \ \forall \alpha > 0$$

The cone by the statements above define an *order* on set of PSD matrices called the lorner order. Namely for $A,B\geq 0$ if $A-B\geq 0$

Remark: A useful criterion for checking whether a matrix is PSD, is via "Schur Complements"

$$M = egin{bmatrix} A & X \ X^\intercal & B \end{bmatrix}$$

where B is invertible symmetric and A is symmetric.

Schur complement: $S := A - XBX^\intercal$.

Then $M>0\iff A>0$ and S>0 and $M\geq 0\iff A\geq 0$ and $S\geq 0$.

Principal Component Analysis

Application to PCA:

PCA is an "unsupervised" technique for data exploration/visualisation.

John Novembre: Map of Europe.

Sequenced the genomes of individuals in Europe. And was able to map the vectorised genomes to a map of Europe

Given centred data vectors $x^{(1)} \dots x^{(m)} \left(rac{1}{m} \sum_{i=1}^m x^{(i)} = 0
ight)$

Goal: Find a "direction" u (unit vector) that "best" explains data.

PCA approach:

$$\min_{u:\|u\|_2 \le 1} \sum_{i=1}^m \|\pi_{\mathrm{Sp}(\mathrm{u})}(x^{(i)}) - x^{(i)}\|_2^2$$

Choose one directional subspace that minimises this total error.

$$egin{aligned} &= \sum_{i=1}^m \left(u^\intercal x^{(i)} (u - x^{(i)})^\intercal
ight) \left(\left(u^\intercal x^{(i)}
ight) u - x^{(i)}
ight) \ &= \sum_{i=1}^m \left(u^\intercal x^{(i)}
ight)^2 - 2 \left(u^\intercal x^{(i)}
ight) \left(u^\intercal x^{(i)}
ight) + x^{(i)\intercal} x^{(i)} \ &\sum_{i=1}^m \| x^{(i)} \|_2^2 - u^\intercal \left(\sum_{i=1}^m x^{(i)} x^{(i)\intercal}
ight) u \end{aligned}$$

Therefore since the first part is constant the optimization problem of finding u is equivalent to

$$\max_{u:\|u\|_2=1} u^\intercal C u$$

Where
$$C = \sum x^{(i)} x^{(i)\intercal} = X X^\intercal$$
 .

Solution is going to be eigenvector with maximum eigenvalue. Therefore optimal u is eigenvector of C corresponding to $\lambda_{\max}(C)$

To visualise $two \ dimensions$ subtract $\pi_{\mathrm{Sp}(u^*)}(x^{(i)})$ from $x^{(i)}$ then repeat the procedure on new dataset $\tilde{x}^{(i)} = x^{(i)}\pi_{\mathrm{Sp}(u^*)}(x^{(i)})$ Next principal component turns out to be u^n corresp. Let $C = U\Lambda U^\intercal = \sum \lambda_i u^{(i)} u^{(i)\intercal}$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$ to "visualise" data in 2-dim and then plot points $\left(u^{(1)\intercal}x^{(i)},u^{(2)\intercal}x^{(i)}\right)_{i=1\ldots m}$

Singular Value Decomposition

Question: What is generalisation of Spectral theorem for generic $A \in \mathbb{R}^{n imes m}$

Theorem

Every $A \in \mathbb{R}^{m imes n}$ can be represented as:

$$A = U \Sigma V^\intercal$$

Where U is an $m\times m$ orthogonal matrix, V is an $n\times n$ orthogonal matrix and Σ is an $m\times n$ and $\sigma_i>0$ and r is rank(A)

$$\Sigma = egin{bmatrix} \sigma_1 & \dots & 0 & dots \ dots & \ddots & dots & 0 \ 0 & \dots & \sigma_r & dots \ \dots & 0 & \dots & 0 \end{bmatrix}$$

and $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$

"Compact SVD" = $A = U_r \Sigma_r V_r^\intercal$

Where $U_r=$ first r columns of U. V_r is first r columns of V_r and Σ_r is upper left most $r\times r$ of Σ .

$$egin{bmatrix} [U_r & U_{n-r}] egin{bmatrix} \Sigma_r & 0 \ 0 & 0 \end{bmatrix} [V_r & V_{n-r}]^\intercal = U_r \Sigma_r V_r^\intercal \end{split}$$

making compact SVD the same being full and also he doesn't care about which basis vectors you use.

Understanding the SVD

$$A=U\Sigma V^\intercal=U_r\Sigma_rV_r^\intercal=\sum_{i=1}^r\sigma_iu_iv_i^\intercal$$
 where x_i is the ith column of X $Av_i=\sigma_iu_i$

Then vectors v_i represent a basis in \mathbb{R}^n which gets sent by A to \mathbb{R}^m to $\sigma_i u_i$ where u_i is a basis of \mathbb{R}^m

Connection to Spectral Decomposition

 $A^\intercal A$ for generic $A \in \mathbb{R}^{m \times n}$ is symmetric matrix. So Is AA^\intercal . Using SVD we can write $A^\intercal A$ as

$$V\Sigma^\intercal U^\intercal U\Sigma V^\intercal = V\Sigma^\intercal \Sigma V^\intercal$$

And $\Sigma^{\intercal}\Sigma$ looks like $n \times n$ matrix

$$egin{bmatrix} \sigma_1^2 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \sigma_r^2 \end{bmatrix}$$

Giving the eigenvalues of $A^\intercal A$

Then $AA^\intercal=U\Sigma\Sigma^\intercal U^\intercal$ where $\Sigma\Sigma^\intercal$ is $m\times m$ diagonal ($\sigma_1^2,\ldots,\sigma_r^2,0,\ldots$) which is the spectral decomposition of AA^\intercal

Idea behind proof of SVD:

$$v_1 = rg\max_{v:\|v\|_2=1} \|Av\|_2$$

Write $u_1=rac{Av_1}{\sigma_1}$ and since we know $\|v\|_2=1$ where $\sigma_1=\|Av_1\|_2$ Now write $A'=A-u_1v_1^{\sf T}\sigma_1$, and repeat to find σ_2,v_2,u_2

Connection to Matrix Norms

Frobinias Norm =

$$\|A\|_F^2 = \sum_{ij} |A_{ij}|^2 = \operatorname{Tr}\left(A^\intercal A
ight) = \sum_{i=1}^n \lambda_i\left(A^\intercal A
ight) = \sum_{i=1}^r \sigma_i^2$$

Also by construction also: $\|A\|_2 = \sigma_1$

Nuclear Norm

$$\|A\|_* = \sum_{j=1}^r \sigma_i$$

Other Interpretations of Singular Values

For $A\in\mathbb{R}^{n imes m}$, the "condition number"is $\kappa(A)=rac{\sigma_1}{\sigma_n}$ and it measures sensitivity of solutions Ax=b when b varies. How much x changes when b changes.