



# Implementação Computacional de Restrição de Parâmetros Cosmológicos

Aluna: Luiza Olivieri Ponte - luizaolivieriponte@usp.br

Orientador: Elcio Abdalla - eabdalla@if.usp.br

SIICUSP - Instituto de Física da Universidade de São Paulo







### Métodos e Procedimentos



 Foram usados dados de Radiação Cósmica de Fundo (CMB) - Planck, e de Oscilações Acústicas de Bárion (BAO) - Sloan Digital Sky Survey (SDSS e SDSS-III) e 6dF Galaxy Survey (6dFGS) para inferir os parâmetros cosmológicos de interesse.

• O código UCLCI permitiu a criação de imagens para análise da restrição desses parâmetros, comparando 4 modelos de descrição do Universo que pressupõem a existência de interação entre energia e matéria escura, apresentados em Costa et al. (2017).





#### Métodos e Procedimentos



• Equações de continuidade satisfeitas pelos 4 modelos estudados:

$$\dot{\rho_c} + 3H \, \rho_c = a^2 \, Q_c^0 = +aQ$$

$$\dot{\rho_d} + 3H \, (1+\omega) \, \rho_d = a^2 \, Q_d^0 = -aQ$$

# Modelos fenomenológicos estáveis de interação entre energia e matéria escura

| Modelo | Q                              | w                 | λ                                    |
|--------|--------------------------------|-------------------|--------------------------------------|
| I      | $3\lambda_2 H \rho_d$          | $-1 < \omega < 0$ | $\lambda_2 < 0$                      |
| II     | $3\lambda_2 H \rho_d$          | $\omega < -1$     | $0 < \lambda_2 < -2 \omega \Omega_c$ |
| III    | $3\lambda_1 H \rho_c$          | $\omega < -1$     | $0 < \lambda_1 < -\omega/4$          |
| IV     | $3\lambda H (\rho_d + \rho_c)$ | $\omega < -1$     | $0 < \lambda < -\omega/4$            |

$$a = H/\mathbf{H}$$

$$\omega = P_d/\rho_d$$

$$Q = 3H(\lambda_1 \rho_c + \lambda_2 \rho_d)$$





### Resultados e Conclusões





#### Média dos parâmetros cosmológicos - CMB

| Parâmetro                 | ΛCDM   | Modelo 1 | Modelo 2 | Modelo 3 | Modelo 4 |
|---------------------------|--------|----------|----------|----------|----------|
| $H_0$                     | 67.21  | 67.49    | 100.70   | 83.06    | 77.47    |
| $\Omega_{\rm b} { m h}^2$ | 0.0224 | 0.0224   | 0.0224   | 0.0225   | 0.0224   |
| $\Omega_{\rm c} h^2$      | 0.120  | 0.113    | 0.120    | 0.119    | 0.120    |
| $100\theta_{S}$           | 1.042  | 1.042    | 1.042    | 1.042    | 1.042    |
| $ln(10^{10}A_s)$          | 3.061  | 3.070    | 3.036    | 3.056    | 3.005    |
| $n_s$                     | 0.965  | 0.965    | 0.970    | 0.969    | 0.966    |
| τ                         | 0.050  | 0.055    | 0.053    | 0.050    | 0.052    |
| $\lambda_{\mathbf{i}}$    | 0.2516 | -0.9809  | -1.9438  | -1.4715  | 0.0006   |
| $\omega_0$                | -      | -0.061   | 0.013    | 0.0003   | -2.256   |
| $\sigma_8$                | 0.818  | 0.856    | 1.050    | 0.942    | 0.843    |
| Age/Gyr                   | 13.81  | 13.80    | 13.43    | 13.57    | 13.40    |







#### Resultados e Conclusões





#### Média dos parâmetros cosmológicos - CMB + BAO

| Parâmetro                 | ΛCDM   | Modelo 1 | Modelo 2 | Modelo 3 |
|---------------------------|--------|----------|----------|----------|
| $H_0$                     | 68.06  | 68.61    | 68.51    | 68.65    |
| $\Omega_{\rm b} { m h}^2$ | 0.0225 | 0.0225   | 0.0224   | 0.0224   |
| $\Omega_{\rm c} h^2$      | 0.118  | 0.108    | 0.132    | 0.119    |
| $100\theta_{S}$           | 1.042  | 1.042    | 1.042    | 1.042    |
| $ln(10^{10}A_s)$          | 3.074  | 3.076    | 3.075    | 3.083    |
| $n_s$                     | 0.969  | 0.965    | 0.968    | 0.966    |
| τ                         | 0.053  | 0.051    | 0.056    | 0.049    |
| $\lambda_1$               | 0.0480 | -0.1051  | 0.1325   | 0.0002   |
| $\omega_0$                | -      | -0.996   | -1.068   | -1.040   |
| $\sigma_8$                | 0.817  | 0.896    | 0.762    | 0.834    |
| Age/Gyr                   | 13.78  | 13.78    | 13.78    | 13.79    |
|                           |        |          |          |          |





## <u>Agradecimentos</u>





- Professor Elcio Abdalla;
- Mestre Gabriel Amâncio Hoerning;
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq);
- Laboratório Nacional de Computação Científica (LNCC) pela disponibilização do Supercomputador Santos Dumont.



**Obrigada!** 





