Sequences with bounded lcm for consecutive elements

Wouter van Doorn

Abstract

Let $1 \le a_1 < a_2 < ... < a_k \le n$ be a sequence of positive integers, such that $\operatorname{lcm}(a_{i-1}, a_i) \le n$ for all i with $2 \le i \le k$. In [1, p. 34], it is conjectured that $k = O(\sqrt{n})$. In this short note, we will provide a proof of this conjecture.

Main result and proof

We can immediately state our main theorem.

Theorem. For any sequence $1 \le a_1 < a_2 < ... < a_k \le n$ of positive integers with $lcm(a_{i-1}, a_i) \le n$ for all i, we have $k < c\sqrt{n} + \log(2n)$, where the constant c is equal to $\sum_{i=1}^{\infty} \frac{1}{(j+1)\sqrt{j}} \approx 1.86$.

Proof. For $n \leq 4$, our upper bound for k is trivially true since we then have $c\sqrt{n} + \log(2n) > n \geq k$. So we may safely assume that n is at least 5. Define B_j to be $\max(a_i: a_i - a_{i-1} \leq j)$, if this exists and 0 otherwise. Note that $B_n = a_k \leq n$. We have the following upper bound on k, in terms of the B_j :

$$k \le \sum_{j=1}^{n} \frac{B_j - B_{j-1}}{j}$$

$$= \frac{B_n}{n} + \sum_{j=1}^{n-1} \frac{B_j}{j(j+1)}$$

$$\le 1 + \sum_{j=1}^{n-1} \frac{B_j}{j(j+1)}$$

On the other hand, we also have an upper bound on B_j ; if $a_{i-1} \ge \sqrt{jn}$, then:

$$n \ge \text{lcm}(a_{i-1}, a_i)$$

$$= \frac{a_{i-1}a_i}{\text{gcd}(a_{i-1}, a_i)}$$

$$> \frac{a_{i-1}^2}{a_i - a_{i-1}}$$

$$\ge \frac{jn}{a_i - a_{i-1}}$$

implying that $a_i - a_{i-1} > j$, and thus we must have that $B_j < \sqrt{jn} + j$. Using

this estimate, we obtain:

$$k < 1 + \sum_{j=1}^{n-1} \frac{\sqrt{jn} + j}{j(j+1)}$$

$$= 1 + \sum_{j=1}^{n-1} \frac{\sqrt{jn}}{j(j+1)} + \sum_{j=1}^{n-1} \frac{j}{j(j+1)}$$

$$= \sqrt{n} \sum_{j=1}^{n-1} \frac{1}{(j+1)\sqrt{j}} + \sum_{j=1}^{n} \frac{1}{j}$$

$$< c\sqrt{n} + \log(2n)$$

where the last equality uses the fact that $n \geq 5$. And this finishes our proof. \square

References

[1] P. Erdös, R.L. Graham, Old and New Problems and Results in Combinatorial Number Theory. L'Enseignement Math., Volume 28, Geneva, 1980. Also available here.