

脉冲与数字信号

数码相机

数字电路应用

什么是脉冲信号? 什么是数字信号?

数字信号

模拟信号在时间和数值上均是连续变化的。

数字信号在时间和数值上均是<mark>离散的、不连</mark> 续变化的。 数字电路是处理数字信号的电路。

数字电路主要优点

- ◎构成数字电路的基本单元结构比较单一,只要能区分1态和0态就可正常工作。电路结构简单、稳定可靠、功耗小,便于集成。
- ◎数字电路<mark>数据处理能力强</mark>。不仅能完成数值运算、逻辑运算和判断,还可方便地 对数字信号进行保存、传输和再现。

一、脉冲信号

脉冲信号是指持续时间极短的电压或电流信号。

(a) 矩形波

(b) 尖脉冲

常见脉冲波形

(c) 锯齿波

矩形波和尖脉冲可以作为自动控制系统的开关信号或触发信号。

锯齿波可作为电视机、示波器的扫描信号。

矩形脉冲主要参数

$1.脉冲幅值<math>V_{\rm m}$

脉冲电压的最大值。

$2.脉冲上升时间<math>t_r$

脉冲前沿从 $0.1V_{\rm m}$ 上升到 $0.9V_{\rm m}$ 所需的时间。

$3.脉冲下降时间<math>t_f$

脉冲后沿从0.91/m下降到0.11/m所需的时间。

$4.脉冲宽度t_{w}$

由脉冲前沿0.51/m到脉冲后沿0.51/m之间的时间。

5.脉冲周期T

相邻两脉冲波对应点之间的间隔时间。

6.占空比**D**

脉冲宽度 t_w 与脉冲周期T之比。

矩形脉冲主要参数

二、数字信号

把脉冲的出现或消失用1和0来表示,这样一串脉冲就变成由一串1和0组成的代码,这种信号称为数字信号。

数字电路的输入信号和输出信号只有两种情况:高电平或低电平,且输出与输入信号 之间存在着一定的逻辑关系。

正逻辑: 高电平 $(3\sim5V)$ 为逻辑 1 ,低电平 $(0\sim0.4V)$ 为逻辑0。

负逻辑: 高电平为逻辑0, 低电平为逻辑1。

脉冲与数字信号

一、脉冲信号

脉冲信号是指持续时间极短的电压或电流信号。

脉冲信号主要参数

脉冲幅值 V_m 脉冲上升时间 t_r 脉冲下降时间 t_r

脉冲宽度 t_w 脉冲周期T 占空比D

二、数字信号

把脉冲的出现或消失用1和0来表示,这样一串脉冲就变成由一串1和0组成的代码,这种信号称为数字信号。

正逻辑

负逻辑

谢谢!

数制

选取一定的进位规则,用多位数码来表示某个数的值,即<mark>计数</mark>体制,简称数制。

常用数制有哪些?这些数制各有什么特点? 不同数制之间必何转换?

一、十进制数

- ◎十进制数有0、1、2、3、4、5、6、7、8、9共10个符号,这些符号称为数码。
- ◎相邻位的关系: 高位为低位的10倍, 逢十进一, 借一当十。
- ◎数码的位置不同,所表示的值就不同。

$$(139.58)_{10} = 1 \times 10^{2} + 3 \times 10^{1} + 9 \times 10^{0} + 5 \times 10^{-1} + 8 \times 10^{-2}$$

 10^2 、 10^1 、 10^0 、 10^{-1} 、 10^{-2} 是各位数码的位权(或权),十进制中位权是10的整数幂。

二、二进制数

- ◎二进制数仅有0和1两个不同的数码。
- ◎相邻位的关系:逢二进一,借一当二。
- ◎二进制的位权是2的整数幂。

$$(10101.01)_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

二、二进制数

二进制数的加减运算

【分析】二进制数加法运算法则是"逢

【分析】二进制数减法运算法则是"借一 当二"。

三、十六进制数

②十六进制数有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F共16个不同数码,符号A~F分别代表十进制数10~15。

- ◎相邻位的关系:逢十六进一,借一当十六。
- ◎十六进制的位权是16的整数幂。

$$(5BE)_{16} = 5 \times 16^{2} + B \times 16^{1} + E \times 16^{0}$$
$$= 5 \times 16^{2} + 11 \times 16^{1} + 14 \times 16^{0}$$

四、二-十进制数的转换

1.二进制数转换为十进制数

转换方法是:把二进制数按权展开,再把每一位的<mark>位值相加</mark>,就可得到相应的十进制数,即乘权相加法。

【例3】将二进制数(10110)2转化为十进制数。

2.十进制数转换为二进制数

转换方法是: 把十进制数逐次地<mark>用2除取余数</mark>,一直到商为零,然后把全部余数按<mark>相反的</mark> 次序排列起来,就是等值的二进制数,即除2取余倒记法。

【例4】将十进制数(25)10转化为二进制数。

熟练掌握此方法后,对于小数值十进制数可以采用<mark>位权展</mark> 开法简化运算:

$$(25)_{10} = 16 + 8 + 1 = 2^{4} + 2^{3} + 0 + 0 + 2^{0} = (11001)_{2}$$

数制

一、十进制数

有0~9共10个不同的数码。相邻位的关系:逢十进一,借一当十。位权是10的整数幂。

二、二进制数

仅有0和1两个不同的数码。相邻位的关系:逢二进一,借一当二。位权是2的整数幂。

三、十六进制数

有0~9、A、B、C、D、E、F共16个不同数码。符号A~F分别代表十进制数10~15。相邻位的关系: 逢十六进一,借一当十六。 位权是16的整数幂。

四、二 - 十进制数的转换

- 1.二进制数转换为十进制数 乘权相加法
- 2.十进制数转换为二进制数 除2取余倒记法

谢谢!

码制

用数码表示特定对象的过程称为编码。

用于编码的数码称为代码。

各种编码的制式称为码制。

常用码制有哪些?这些码制有什么特点?

一、二进制代码

表示特定对象的多位二进制数称为二进制代码。

二进制代码与所表示的信息之间具有一一对应关系。

用n位二进制数可以组合成2n个代码。

若需要编码的信息有N项,则应满足 $2^n \ge N$ 。

二、BCD码

在数字电路的输入、输出中采用十进制数,电路处理时则采用二进制数。

用于表示1位十进制数的4位二进制代码称为二-十进制代码,简称BCD码。

由于4位二进制数可以组成2⁴=16个代码,而十进制数码只需要其中的10个代码。因此,在16种组合中选取10种组合方式,便可得到多种二-十进制编码的方案。

二、BCD码

8421BCD码:每1位二进制数的位权依次为2³、2²、2¹、2⁰,即8421。

5421BCD码: 每1位二进制数的位权依次为5、4、2、1。

三种常见的BCD码

-	11' TT /UI	1100043		
十进制数	8421 码	5421 码	余3码	
0	0000	0000	0011	
1	0001	0001	0100	
2	0010	0010	0101	
3	0011	0011	0110	
4	0100	0100	0111	
5	0101	1000	1000	
6	0110	1001	1001	
7	0111	1010	1010	
8	1000	1011	1011	
9	1001	1100	1100	

余3码:每个代码表示的二进制数比它所代表的十进制数 多3。

ASCII码字符表

$b_{3}b_{2}b_{1}b_{0}$	$b_7b_6b_5$							
$b_3 b_2 b_1 b_0$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	,	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	x
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	•	J	Z	j	z
1011	VT	ESC	+	;	K	[k	1
1100	FF	FS	,	<	L	١	1	1
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	0	<u> </u>	0	DEL

美国信息交换标准代码(ASCII码)

国际上最通用的一种<mark>键符码</mark>。用 7位二进制码表示128个十进制数、英 文大小写字母、控制符、运算符以及 特殊符号。

码制

一、二进制代码

表示特定对象的多位二进制数称为二进制代码。

用n位二进制数可以组合成2n个代码。

二、BCD码

用于表示1位十进制数的4位二进制代码称为二-十进制代码,简称BCD码。

8421BCD码: 每1位二进制数的位权依次为2³、2²、2¹、

20, 即8421。

5421BCD码

余3码

谢谢!

与门

用输入信号表示"条件",用输出信号表示"结果",而条件与结果 之间的因果关系称为逻辑关系。

能实现某种逻辑关系的数字电路称为逻辑门电路。

基本的逻辑关系有:与逻辑、或逻辑、非逻辑。

基本逻辑门电路有:与门、或门、非门。

什么是与逻辑关系?与逻辑关系的何表示? 与逻辑具有哪些逻辑功能? 与门电路是的何工作的?

一、与逻辑关系

一、与逻辑关系

开关(A)与开关(B)串联在回路中,只有当两个开关都闭合时,灯(Y)才亮,只要有一个开关断开,灯(Y)就不亮。

当一件事情的几个条件全部具备之后,这件事情才能发生,否则不发生。这样的因果 关系称为<mark>与逻辑</mark>关系,也称<mark>逻辑乘</mark>。

逻辑函数表达式

 $Y=A\cdot B$ 或Y=AB

一、与逻辑关系

真值表: 将全部可能的输入组合及其对应的输出值用表格表示。

与逻辑真值表

输入		输出
A	\boldsymbol{B}	Y
0	0	0
0	1	0
(1)	<u>(0)</u>	0
(1)	(1)	(1)

开关闭合规定为1,断开规定为0; 灯亮规定为1,灯灭规定为0。

与逻辑功能: "有0出0,全1出1"。

二、与门电路

能实现与逻辑功能的电路称为与门电路,简称与门。

当输入端全为高电平 (1) 时,二极管VD1和VD2 都导通,则输出端为高电平 (1)。

当输入端有1个或1个以上为低电平(0)时,则二极管正偏而导通,输出端电压被下拉为低电平(0)。

与门电路图形符号

二极管组成的与门电路

与门

一、与逻辑关系

当一件事情的几个条件全部具备之后,这件事情才能发生,否则不发生。这样的因果关系称为与逻辑关系,也称逻辑乘。

与逻辑表达式: Y=A·B或Y=AB

与逻辑功能: "有0出0,全1出1"。

二、与门电路

二极管组成的与门电路

与逻辑真值表

输入		输出	
A	B	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

谢谢!

或门

什么是或逻辑关系? 或逻辑关系的何表示? 或逻辑具有哪些逻辑功能? 或门电路是的何工作的?

一、或逻辑关系

一、或逻辑关系

开关(A)与开关(B)并联在回路中,两个开关只要有一个闭合,灯(Y)就亮,只有当开关全部断开时,灯(Y)才不亮。

当决定一件事情的各个条件中,至少具备一个条件,这件事情就会发生,否则不发生。 这样的因果关系称为或逻辑关系,也称逻辑加。

逻辑函数表达式

$$Y=A+B$$

一、或逻辑关系

或逻辑真值表

输人		输出
A	В	Y

或逻辑功能: "有1出1,全0出0"。

二、或门电路

能实现或逻辑功能的电路称为或门电路,简称或门。

只要输入端有一个为高电平(1),则与该输入端相连的二极管导通,输出端 Y就为高电平(1)。

二极管组成的或门电路

或门

一、或逻辑关系

当决定一件事情的各个条件中,至少具备一个 条件,这件事情就会发生,否则不发生。这样的因 果关系称为或逻辑关系,也称逻辑加。

或逻辑表达式: Y=A+B

或逻辑功能: "有1出1,全0出0"。

二、或门电路

图形符号

二极管组成的或门电路

或逻辑真值表

输	输人	
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

谢谢!

非门

什么是非逻辑关系? 非逻辑关系的何表示? 非逻辑具有哪些逻辑功能? 非门电路是的何工作的?

一、非逻辑关系

一、非逻辑关系

开关(A)与灯(Y)并联,当开关断开时,灯(Y)亮;当开关闭合时,灯(Y)不亮。

事情和条件总是呈相反状态。这样的因果关系称为非逻辑关系,也称逻辑非。

逻辑函数表达式

$$Y=\overline{A}$$

一、非逻辑关系

非逻辑真值表

输入	输 出
A	Y
(1)	1
1	(1) (0)

非逻辑功能: "入0出1,入1出0"。

二、非门电路

能实现非逻辑功能的电路称为非门电路,又称反相器,简称非门。

输入端为<mark>高电平(1)时,三极管饱和导通,输出</mark>端 Y就为低电平(0);

输入端为低电平(0)时,三极管截止,输出端 Y 就为高电平(1)。

三极管组成的非门电路

非门

一、非逻辑关系

事情和条件总是呈相反状态。这样的因果关系称 为<mark>非逻辑</mark>关系,也称<mark>逻辑非</mark>。

非逻辑表达式: $Y=\overline{A}$

非逻辑功能: "入0出1,入1出0"。

二、非门电路

三极管组成的非门电路

非逻辑真值表

输 人	输 出
A	Y
0	1
1	0

谢谢!