Engenharia de Proteção

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 1

Objetivos

- Apresentar tópicos que devem ser considerados na especificação e no projeto de software seguro
- Discutir o gerenciamento de riscos de proteção e a derivação de requisitos de proteção de análise de riscos
- Descrever boas práticas de projeto para o desenvolvimento de sistemas seguros
- Explicar a noção de capacidade de sobrevivência de sistemas, e apresentar um método de análise da capacidade de sobrevivência

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Tópicos abordados

- Conceitos de proteção
- Gerenciamento de riscos de proteção
- Projeto para proteção
- Capacidade de sobrevivência de sistemas

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 3

Engenharia de proteção

- São ferramentas, técnicas e métodos para apoiar o desenvolvimento e a manutenção de sistemas que podem resistir aos ataques maliciosos, que tem a intenção de danificar um sistema baseado em computador ou seus dados.
- É um subcampo de um campo amplo de proteção de computadores.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Camadas de sistema

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 5

Proteção de aplicações/infra-estrutura

- A proteção de aplicações é um problema de engenharia de software em que o sistema é projetado para resistir aos ataques.
- A proteção de infra-estrutura é um problema de gerenciamento de sistemas, em que a infraestrutura é configurada para resistir aos ataques.
- O foco deste capítulo é a proteção de aplicações.

Conceitos de proteção

Tabela 30.1 Conceitos de proteção				
Termo	Descrição			
Ativo	Recurso de sistema que possui um valor e deve ser protegido.			
Exposição	Possível perda ou dano que pode resultar de um ataque bem-sucedido. Pode ser uma perda ou dano em dados ou uma perda de tempo e esforço, caso seja necessária uma recuperação depois de uma brecha de proteção.			
Vulnerabilidade	Ponto fraco em um sistema baseado em computadores que pode ser explorado para causar perda ou dano.			
Ataque	Exploração de uma vulnerabilidade do sistema. Geralmente, é externo ao sistema e constitui uma tentativa deliberada de causar algum dano.			
Ameaça	Circunstâncias com potencial para causar perda ou dano. Você pode pensar nelas como uma vulnerabilidade de sistema sujeita a ataque.			
Controle	Medida de proteção que reduz uma vulnerabilidade de sistema. A criptografia pode ser um exemplo de controle que reduz uma vulnerabilidade de um sistema fraco em controle de acesso.			

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 7

Exemplos de conceitos de proteção

labela :	30.2	Exemplos	ae	conceitos	ae	proteção

Termo	Descrição			
Ativo	Os registros de cada paciente que está recebendo ou recebeu tratamento.			
Exposição	Prejuízo financeiro potencial devido a futuros pacientes que não procurarão tratamento por não confiarem na clínica para manter seus dados. Prejuízo financeiro devido a ação jurídica movida pelo astro do esporte. Perda de reputação.			
Vulnerabilidade	Sistema fraco em senhas que permite aos usuários criarem senhas que podem ser descobertas. (Ds de usuário iguais a seus nomes.			
Ataque	A imitação de um usuário autorizado.			
Ameaça	Um usuário não autorizado ganhará acesso ao sistema descobrindo as credenciais (nome de login e senha) de um usuário autorizado.			
Controle	Um sistema de verificação de senhas que desautoriza senhas definidas pelos usuários que sejam nomes próprios e palavras normalmente incluidas em um dicionário.			

Ameaças de proteção

- Ameaças à confidencialidade de um sistema ou de seus dados.
- Ameaças à integridade de um sistema ou de seus dados.
- Ameaças à disponibilidade de um sistema ou de seus dados.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 9

Controles de proteção

- São controles que se destinam a assegurar que os ataques sejam mal sucedidos. É análogo à prevenção de defeitos.
- São controles que se destinam a detectar e repelir os ataques. É análogo à detecção e tolerância de defeitos.
- Controles que se destinam a apoiar a recuperação de problemas. É análogo à recuperação de defeitos.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Gerenciamento de riscos de proteção

- O gerenciamento de riscos está relacionado à avaliação de possíveis perdas que poderiam ser resultados de ataques ao sistema, e ao balanço dessas perdas em relação os custos de procedimentos de proteção que podem reduzí-las.
- O gerenciamento de riscos deve ser dirigido por uma política de proteção organizacional.
- O gerenciamento de riscos envolve:
 - Gerenciamento de riscos preliminar;
 - · Avaliação de riscos de ciclo de vida.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 11

Avaliação de riscos preliminar

PEARSON Prentice Hall

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Análise de ativos

Tabela 30.3	Análise de ativos em um relatório de avaliação de riscos preliminar

Ativo	Valor	Exposição
Sistema de informações	Alto. Necessário para dar suporte a todas as consultas clínicas. Potencialmente crítico em segurança.	Alta. Prejulzo financeiro, na medida em que as consultas podem ser canceladas. Custos de restauração de sistema. Possível dano ao paciente se o tratamento não puder ser prescrito.
Banco de dados de pacientes	Alto. Necessário para apoiar todas as consultas clínicas. Potencialmente crítico em segurança.	Alta. Prejuízo financeiro, na medida em que as consultas podem ser canceladas. Custos de restauração de sistema. Possível dano ao paciente se o tratamento não puder ser prescrito.
Registro individual de paciente	Normalmente baixo, embora possa ser alto para pacientes específicos de perfil alto.	Baixos prejuízos diretos, mas possível perda de reputação.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 13

Análise de ameaças e de controle

 Tabela 30.4
 Análise de ameaças e controles em um relatório de avaliação de riscos preliminar

Ameaça	Probabilidade	Controle	Viabilidade
Usuário não autorizado ganha acesso como gerente de sistema e torna o sistema indisponível	Baixa	Permitir somente o gerenciamento do sistema com base em localizações específicas fisicamente protegidas.	Baixo custo de implementação, mas devem ser tomados cuidados com a distribuição de chaves e assegurar que estas estejam disponíveis no caso de uma emergência.
Um usuário não autorizado obtém acesso como usuário de sistema e acessa informações confidenciais	Alta	Requerer que todos os usuários se autentiquem usando um mecanismo biométrico. Fazer o log de todas as mudanças de informações de pacientes para acompanhar o uso do sistema.	Tecnicamente viável, mas uma solução de alto custo. Possível resistência do usuário. Simples e transparente de implementar e também dá suporte para a recuperação.

Requisitos de proteção

- As informações do paciente devem ser baixadas, no início de uma sessão clínica, para uma área segura do sistema cliente que é usado pelo pessoal clínico.
- As informações do paciente não devem ser mantidas em sistemas cliente depois que uma sessão clínica terminou.
- Um log deve ser mantido, em um computador separado do servidor de banco de dados, com todas as mudanças efetuadas no banco de dados de sistema.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 15

Avaliação de riscos de ciclo de vida

- É a avaliação de riscos enquanto o sistema está sendo desenvolvido, e após ele ter sido implantado.
- Mais informações são disponíveis plataforma de sistema, middleware, a arquitetura de sistema e a organização de dados.
- As vulnerabilidades que surgem das escolhas de projeto podem, portanto, ser identificadas.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Exemplos de decisões de projeto

- Usuários de sistema autenticados usando uma combinação de nome/senha.
- A arquitetura de sistema é cliente-servidor, com clientes acessando o sistema por meio de um web browser padrão.
- As informações são apresentadas como um formulário de Web editável.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 17

Vulnerabilidades de tecnologia

PEARSON Prentice Hall

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Projeto para proteção

- Projeto de arquitetura como as decisões de projeto de arquitetura afetam a proteção de um sistema?
- Boas práticas o que é aceito como boa prática quando se projeta sistemas seguros?
- Projeto para implantação qual apoio deve ser projetado nos sistemas para evitar a introdução de vulnerabilidades quando um sistema for implantado para uso?

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 19

Projeto de arquitetura

- Proteção
 - Como o sistema deve ser organizado de modo que ativos críticos possam ser protegidos contra ataques externos?
- Distribuição
 - Como os ativos de sistema devem ser distribuídos de modo que os efeitos de um ataque bem sucedido sejam minimizados?
- Conflitos potenciais
 - Se os ativos são distribuídos, são mais onerosos para proteger.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Proteção

- Proteção no nível de plataforma
- Proteção no nível de aplicação
- Proteção no nível de registro

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 21

Proteção em camadas Figura 30.4 Proteção no nível da plataforma Arquitetura de camadas Autenticação do sistema Autorização do sistema Gerenciamento de integridade de arquivos de proteção. Proteção no nível da aplicação Login de banco de dados Autorização de banco de dados Gerenciamento de transações Recuperação de banco de dados Proteção no nível do registro Autorização de acesso a registros Criptografia de registros Gerenciamento de integridade de registros Registros de pacientes PEARSON ©Ian Sommerville 2006 Engenharia de Software, 8ª. edição. Capítulo 30 Slide 22

Um sistema distribuído equitativamente Figura 30.5 Autenticação e autorização Autenticação e autorização Ativos distribuídos em um sistema de Sistema de negócios de Nova York Sistema de negócios de Londres negócios equitativo. Contas de usuários internacionais Contas de usuários do Reino Unido Contas de usuários internacionais Contas de usuários dos EUA Históricos de negócios Dados equitativos Históricos de Dados equitativos negócios dos EUA dos EUA do Reino Unido Dados de fundos Preços equitativos Dados de fundos Preços equitativos Autenticação e autorização Autenticação e autorização Sistema de negócios de Frankfurt Sistema de negócios de Hong Kong Contas de usuários

PEARSON Prentice Hall

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Históricos de

negócios de HK

Preços equitativos internacionais

Slide 23

Dados equitativos de HK

> Dados de fundos de HK

Diretrizes de projeto

Dados equitativos da Europa

Dados de fundos

Preços equitativos internacionais

- As diretrizes de projeto englobam boas práticas em projetos de sistemas seguros
- Diretrizes de projeto servem para dois propósitos:
 - Aumentam a consciência sobre questões de proteção em uma equipe de engenharia de software;
 - Podem ser usadas como base de um checlklist de revisão que é aplicado durante o processo de validação de sistema.

Diretrizes de projeto 1

- Basear as decisões de projeto em uma política de proteção explícita
- Evitar um ponto único de falha
- Falhar de maneira protegida
- Equilibrar proteção e usabilidade
- Estar ciente da possibilidade de engenharia social

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 25

Diretrizes de projeto 2

- Usar redundância e diversidade para reduzir riscos
- Validar todas as entradas
- Compartimentar seus ativos
- Projetar para implantação
- Projetar para capacidade de recuperação

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Projetar para implantação

- Implantação envolve a configuração de software para funcionar em seu ambiente operacional, a instalação do sistema e sua configuração para a plataforma operacional.
- Vulnerabilidades podem ser introduzidas neste estágio como um resultado de erros de configuração.
- Um projeto de apoio de implantação no sistema pode reduzir a probabilidade de vulnerabilidades serem introduzidas.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 27

Implantação de software

PEARSON Prentice Hall

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Apoio à implantação

- Incluir apoio para visualização e análise de configurações
- Minimizar privilégios default e, portanto, limitar o dano que poderia ser causado
- Localizar parâmetros de configuração
- Prover formas simples para reparar a vulnerabilidades de proteção

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 29

Capacidade de sobrevivência de sistemas

- Capacidade de sobrevivência é uma propriedade emergente de sistema que reflete a sua habilidade de continuar a fornecer serviços essenciais enquanto está sob ataque, ou depois que parte do sistema tenha sido danificada.
- A análise e projeto de capacidade de sobrevivência deve ser parte do processo de engenharia de proteção.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Disponibilidade de serviços

- Quais serviços de sistema são os mais críticos para um negócio?
- Como esses serviços poderiam ser comprometidos?
- Qual é a mínima qualidade de serviço que deve ser mantida?
- Como esses serviços podem ser protegidos?
- Se um serviço se torna indisponível, com que rapidez ele pode ser recuperado?

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 31

Estratégias de capacidade de sobrevivência

- Resistência
 - Evitar problemas por meio da implementação de capacidades no sistema para repelir ataques.
- Reconhecimento
 - Detectar problemas por meio da implementação de capacidades no sistema para detectar ataques e falhas e avaliar os danos resultantes.
- Recuperação

©Ian Sommerville 2006

• Tolerar problemas por meio da implementação de capacidades no sistema para fornecer serviços enquanto está sob ataque.

Engenharia de Software, 8ª. edição. Capítulo 30

Método de capacidade de sobrevivência de sistema

Atividades principais

- Compreensão de sistema
 - · Revisar objetivos, requisitos e arquitetura.
- Identificação de serviços críticos
 - Identificar serviços que devem ser mantidos.
- Simulação de ataques
 - Inventar cenários de ataque e identificar componentes afetados.
- Análise de capacidade de sobrevivência
 - Identificar estratégias de capacidade de sobrevivência a ser aplicadas.

Capacidade de sobrevivência de sistemas de negócio

- Contas de usuário e preços equitativos replicados entre servidores e, assim, mais provisão de capacidade de sobrevivência é feita.
- O serviço principal a ser mantido é a capacidade de colocar pedidos de produtos.
- Os pedidos devem ser precisos e refletir as vendas/compras feitas pelo negociador.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 35

Análise de capacidade de sobrevivência

Tabela 30.5 Análise de capacidade de sobrevivência em um sistema de negócios equitativo

Ataque	Resistência	Reconhecimento	Recuperação
Usuário não autorizado envia pedidos maliciosos	Exigir uma senha de negócio diferente da senha de login para enviar pedidos	Enviar cópia do pedido por e-mail para um usuário autoritzado com número de telefone de contato (assim eles podem detectar pedidos maliciosos). Manter o histórico de pedidos do usuário e verificar padrões de transação incomuns.	fornecer mecanismo para 'desfazer' automaticamente as transações e restaurar contas de usuários. Ressarcir usuários por perdas devido às transações maliciosas. Proteger-se contra as consequências de perdas.
Corrompimento de banco de dados de transações	Exigir que os usuários privilegiados sejam autorizados a usar um mecanismo de autenticação robusto, como certificados digitais.	Manter cópias somente para leitura de transações de um escritório em um servidor internacional. Comparar periodicamente as transações para verificar se foram corrompidas. Manter checksum criptográfico em todos os registros de transações para detectar corrompimento.	Recuperar o banco de dados com base em cópias de back-up. Fornecer um mecanismo para reproduzir as transações de um período específico para recriar banco de dados de transações.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Pontos-chave

- A engenharia de proteção enfoca como desenvolver sistemas que podem resistir a ataques maliciosos.
- Ameaças de proteção podem ser ameaças à confidencialidade, à integridade ou à disponibilidade de um sistema e seus dados.
- O gerenciamento de riscos de proteção envolve a avaliação de perdas possíveis provenientes de ataques, e a derivação de requisitos de proteção para minimizar as perdas.
- Projeto para proteção envolve projeto de arquitetura, seguindo boas práticas de projeto e minimização de introdução de vulnerabilidades do sistema.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30

Slide 37

Pontos-chave

- Questões principais ao projetar uma arquitetura segura incluem a organização de estrutura para proteger ativos e distribuição de ativos para minimizar as perdas.
- Diretrizes gerais de proteção sensibilizam projetistas para questões de proteção, e servem como checklists de revisão.
- Visualização de configuração, localização de parâmetros e minimização de privilégios default ajudam a reduzir os erros de implantação.
- A capacidade de sobrevivência reflete a habilidade de um sistema em continuar a fornecer serviços enquanto está sob ataque, ou após uma parte do sistema ter sido danificada.

©Ian Sommerville 2006

Engenharia de Software, 8ª. edição. Capítulo 30