

Pre-processing of metabolomics data

Benjamin Thiombiano

Frans van der Kloet

Overview

Introduction

 METABOLOMICS,(HP)LC, MS

Preprocessing steps

 What can go wrong and how to fix it?

Example

Pre-processing metabolomics data

Metabolomics

Scientific study of chemical processes involving metabolites

Metabolites

- metabolic intermediates and products (usually <1500 Da in size)
 - Lipids, sugars, amino acids,
 - Exceptions: lipoproteins, albumin (can be detected with NMR)
- hormones and other signalling molecules
- secondary metabolites (in plant metabolomics; metabolites not related to growth, development and reproduction; e.g., antibiotics, pigments)

The **metabolome** represents the collection of all metabolites in a biological cell, tissue, organ or organism, which are the **end** products of cellular processes

Liquid chromatography (LC)

Analytical chromatographic technique for separating ions or molecules that are dissolved in a solvent.

Sample (solution) is in contact with a second solid or liquid phase

The different solutes will interact with the other phase to differing degrees due to differences in adsorption, ion-exchange, partitioning, or size.

This interaction allows the mixture components to be separated

(HP)LC: How does it work?

http://www.waters.com

Liquid Chromatograph: summary

1

MS is an analytical technique for the determination of the **composition** of a sample or molecule.

2

Used for elucidating the chemical structures of molecules, such as peptides and other chemical compounds.

3

The MS principle consists of ionizing chemical compounds to generate **charged molecules or molecule fragments** and measurement of their mass-to-charge ratios (m/z).

Mass Spectroscopy (MS)

Metabolomics: Hyphenated MS (e.g. LC - MS)

LC-MS:Measuring mass-spectra at regular time intervals

LC-MS data

The metabolomics workflow

Data pre-processing

m/z	Rt	Intensity	Start	End	Area	Metabolite
	(minutes)		(minutes)	(minutes)		
600.4	4	10000	3.5	4.4	50000	glucose
700.9	4.5	5000	3.6	4.6	10000	unknown
756.5	6	12056	5.6	6.4	34000	unknown
etc						

Peak table: list of peaks/metabolites

Correcting data from mass spectra

Data preprocessing

Need for correction (1)

Sample handling variation

- Preparation Inaccuracies
 - Weighing
 - Pipetting
- Gross errors
 - Forgotten to add (internal) standard
 - Wrong volumes added
 - Labelling errors

Chromatographic errors

- Carry-over and background effects
- Column aging
- Column changes
- Solvent changes

Need for correction (2)

Detector Limitations

- Low: at or just above LOQ
- High: detector saturation

Integration errors

- Wrong Peak
- Peak not in Window
- Inadequate peak integration method

01

Low level

- Mass correction
- Peak alignment

02

Sample level

- Integration
- Calibration lines
- Internal standards

03

Batch level

- Reference samples
- QC correction

Integrate the chromatogram

Extracted Ion Chromatogram of 510.3554 Da

Retention time (scans) ->

Notation = mz@rt, 510.3554@1.425 = a single feature!

Integrate = sum area under curve

Extracted Ion Chromatogram of 510.3554 Da

Retention time (scans) ->

Notation = mz@rt, 510.3554@1.425 = a single feature!

Or of course two peaks

Extracted Ion Chromatogram of 510.3554 Da

Retention time (scans) ->

Notation = mz@rt, 510.3554@1.425 = a single feature!

Integration errors

peaks are separated or combined

Is it a big problem?

Targeted analysis

- Over time the integration parameters for all peaks are optimized/finetuned.
 - Data is manually curated (~1-2 days per batch (150 samples))
- Software gets updates (feedback from users to vendor)

Untargeted analysis

 Yes, there is no luxury of knowing what to look for so no integration parameters to optimize.

We have peak areas, what about retention time?

Match peaks sample A with peaks sample B, C, (all samples)

Problem retention time shifts due to

- small variations
 - in temperature,
 - atmospheric pressure,
 - pH, time and composition of the samples
- column degradation

Retention time shifts

Retention time shifts

Automated tools (small local time shifts):

Warping / alignments methods like Correlation Optimized Warping (COW), Dynamic Time Warping (DTW), Parametric Time Warping (PTW) are available.

Global working procedure:

- -Split target spectrum up in multiple parts.
- -Shrink and stretch parts in such a way that similarity with reference spectrum is optimized.

Caveats when using hyphenated-MS

Each metabolite has its own response factor

 i.e. the signal depends on the number of molecules but also on the type of molecule. This depends on factors like solubility, ionizability, fragmentation, mass discrimination at detector level.

The response factor is matrix dependent

- Different samples have different matrices.
 - Two samples with the same concentration can have different responses.
- The matrix is not constant over time.
 - Because of the chromatography step the matrix of the sample changes continuously and another source of variation is introduced.

Internal standards needed !!!

Own response factor

- 1 sample
- 4 peaks (A,B,C and D)
- Different area under the curves
- E.g. [D]>[A] & [C]>[D]

Different matrix effects

Sample 1

Sample 2

- 2 samples
- 4 peaks per sample
- same area under curve

•
$$[A]_1 != [A]_2$$

•
$$[B]_1 != [B]_2$$

•
$$[D]_1 != [D]_2$$

Internal Standards

Function

- Monitor and/or correct variation introduced between sampling, sample preparation and sample acquisition.
- Variation sources sample preparation: filtration, pipetting, centrifugation, derivatization, etc. etc.

How?

- Near identical chemical behavior as the analyte
- In mass spectrometry:
 - provides its own ions
 - usually a <u>stable-isotope labeled (C¹³ or N¹⁵)</u> compound as standard, or
 - isomers
 - homologues
 - structural analogs
- Sources of variation should affect both sample and IS the same

Example

- 1 sample
- 4 peaks (A,B,C and D)
- 4 Internal standards
- 4 Ratios !!

Effect IS

Uncorrected

Corrected with IS

Repeatability

Measure replicates

error bar of standard deviation measure in triplicate!

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

$$W = \frac{1}{s^2}$$

Correct for heteroscedasticity

$$(X^TX)\hat{\beta} = X^Ty \qquad (X^TWX)\hat{\beta} = X^TWy$$

$$(X^TWX)\hat{\beta} = X^TWy$$

Dynamic range vs. linear range

01

Low level

- Mass correction
- Peak alignment

02

Sample level

- Integration
- Calibration lines
- Internal standards

03

Batch level

- Reference samples
- QC correction

Extra normalization/correction needed still

IS **cannot** correct for dilution effects of the biosample e.g. urine

For many compounds no internal standard. Use 1 internal standard per class of compounds.

IS **cannot** correct for things like column degradation, different machinery etc.

Another type of normalization (over samples) needed:

- stable compound: concentration is constant for all study samples
- Use average samples as reference samples => QC samples
- hypothesis: reference samples should behave the same over time and ratio compound/IS should remain constant

QCs and replicates

Sample acquisition variation (experimental drift) => QCs

Sample preparation & acquisition variation => replicate samples

- injection replicates
- sample preparation replicates

QC correction

Quality Check (RSD QC samples)

Replicates measurements

Quality Check (replicates)

Summary: standard operating procedure for pre-processing MS data

- 1. Integration (semi) automatic integration
- Corrections:
 - a. Blank correction
 - b. Internal standard corrections
 - c. Intra and inter batch (QC) correction
- 3. Quality control
 - a. Create report
 - Detect, inspect and correct deviating samples.
 When necessary, repeat steps 1-3b until desired quality
 - c. Remove metabolites measured with insufficient quality from the data and export.
- 4. When possible and required: regression and quantification

So we can finally fill the peak table

m/z	Rt	Intensity	Start	End	Area	Metabolite
	(minutes)		(minutes)	(minutes)		
600.4	4	10000	3.5	4.4	50000	glucose
700.9	4.5	5000	3.6	4.6	10000	unknown
756.5	6	12056	5.6	6.4	34000	unknown
etc						

Peak table: list of peaks/metabolites

Example, What we want to do

Evaluate the effect of microbes on striga infection

Are physiological modifications occurring in the plant?

The tool was to use metabolomics analysis of roots

Peak integration with xcms

Effect of the band width in the distinction of peaks

Effect of sigma value width in the distinction of peaks

```
xcmsSet(, method, ppm , peakwidth, snthresh)
group (, method , bw, mzwid, minfrac, minsamp)
retcor(, method="loess", plottype, span)
```

Automated optimization of XCMS parameters

Which samples to use?

QCs or individual sample across your different conditions?

Automated optimization of XCMSparameters

Peak picking Parameters optimization

Retention time and grouping optimization

XCMS method	Parameters
xcmsSet(method = 'centWave')	min peakwidth, max peakwidth, ppm, mzdiff
xcmsSet(method = 'matchedFilter')	fwhm, step, steps, snthresh, mzdiff
retcor(method = 'obiwarp')	profStep, gapInit, gapExtend
group(method = 'density')	bw, mzwid, minfrac

Integrating peaks with XCMS

Peaks grouping and retention time correction

With blank 3

Retention Time Deviation vs. Retention Time

Without blank 3

Retention Time Deviation vs. Retention Time

Peak filling

```
> NF[20:30,c(1, 4, 11:17)]
                    rt X20180525_n_sQR2sctrrexR1_1.7_01_16031 X20180525_n_sQR2sctrrexR2_1.22_01_16048 X20180525_n_sQR2sctrrexR3_1.38_01_16066
20 96.96011 287.774727
                                                                                                                                     34814.328
21 96.96942 157.536304
                                                                                                    NA
                                                                                                                                            NA
22 98.95580 4.749831
                                                                                                                                            NA
                                                            NA
                                                                                                    NA
23 99.92561 2.553982
                                                                                           154676.160
                                                            NA
                                                                                                                                            NA
24 100.93327 10.538675
                                                     11624.364
                                                                                                    NA
                                                                                                                                      5514.480
25 105.03429 194.506980
                                                     11866.985
                                                                                            10940.163
                                                                                                                                      5322.276
26 106.00448 2.110093
                                                    193953.852
                                                                                                    NA
                                                                                                                                            NA
27 107.05005 194.546324
                                                     37334.904
                                                                                             31172.820
                                                                                                                                     30155.342
28 107.05006 22.219764
                                                                                             7640.352
                                                                                                                                     9763.857
29 108.05331 194.066886
                                                      3146.069
                                                                                                                                     2208.936
                                                                                                    NA
                                                                                            13405.267
30 110.97551 3.565727
                                                                                                                                            NA
   X20180525_n_SQR2SCTRREXR4_1.54_01_16084 X20180525_n_SQR2SCTRREXR5_1.70_01_16102 X20180525_n_SQR2SCTRREXR6_1.84_01_16118
20
                                 44551.654
                                                                                                                 29900.289
21
                                                                                NA
                                                                                                                        NA
22
                                 28915.056
                                                                                NA
                                                                                                                        NA
23
                                                                                NA
                                                                                                                        NA
2/
                                  5550 5/0
                                                                                                                  278/ 212
```

> F[20:30,c(1, 4, 11:1	7)]					
mz r	t X20180525_n_SQR2SCTRREXR1_1.7_01_16031	X20180525_n_SQR2SCTRREXR2_1.22_01	16048 X20180525_n_SQR2SCT	RREXR3_1.38_01_16066		
20 96.96011 287.77472	7 66756.642	606	590.852	34814.328		
21 96.96942 157.53630	4 106684.157	858	382.441	69024.908		
22 98.95580 4.74983	1 15690.587	240	044.431	23407.734		
23 99.92561 2.55398	2 0.000	1546	576.160	0.000		
24 100.93327 10.53867	5 11624.364	127	45.939	5514.480		
25 105.03429 194.50698	0 11866.985	109	940.163	5322.276		
26 106.00448 2.11009	3 193953.852		0.000	0.000		
27 107.05005 194.54632	4 37334.904	311	72.820	30155.342		
28 107.05006 22.21976	4 19378.214	70	540.352	9763.857		
29 108.05331 194.06688	6 3146.069	20	36.717	2208.936		
30 110.97551 3.56572	7 0.000	134	105.267	0.000		
X20180525_n_SQR2SCT	RREXR4_1.54_01_16084 X20180525_n_SQR25C1	RREXR5_1.70_01_16102 X20180525_n_s	QR2SCTRREXR6_1.84_01_16118	X20180525_n_SQR2SSTRIREXR1	1_1.9_01_16033	
20	44551.654	47909.280	29900.289		63286.992	
21	82103.497	61709.321	50493.616		90679.990	
22	28915.056	15292.173	7929.404		8359.782	
23	110014.733	0.000	0.000		0.000	
2/	5550 5/10	8707 655	378/1 212		6561 /132	▼

Isotopes and adducts detection with

CAMERA

- ppm
- Adducts rules depending on the solvents and ionisation mode

Peak integration output

- Table of intensities associated to each single m/z and retention combination
- Application of corrections to get a final working table

indices	m/z	m/z min	m/z max	RTmin	RT	RTmax	S1	S2		Sn	Pcgroup	Adducts	isotopes
1													
2													
n													

Precleaning the output

Mass calibrant

Column washing with high organic solvent percentage

Corrections

a. Chromatography correction

	Number of rows
Initial table	7344
Chromatography	6198

120 < RT < 840

b. Internal/External standard corrections

	Number of rows
Initial table	7344
Chromatography	6198
Blanc correction	4758

 I_i sample > 4 I_i blank

Corrections

c. Intra and inter batch (QC) correction

$$CV = \frac{\sigma}{\mu}$$

	Number of rows
Initial table	7344
Chromatography	6198
Blanc correction	4758
QC correction	5 to 10 % peaks

Acknowledgements

Theo Reijmers (Venn Life Sciences) venn Life Sciences

Adrie Dane (Leiden University)

Antoine van Kampen (AMC)

Margriet Hendriks (DSM) DSM

