سوال ٣)

a) در این سوال ابتدا از کتابخانه sklearnبه کمک دستور datasets.load_iris) در این سوال ابتدا از کتابخانه علی مناسب را طبق صورت سوال انتخاب و به کمک بارگذاری می کنیم. کتابخانه matplotlib ، با دستور scatter رسم می کنیم.

b) در کد این سوال ابتدا ستون های گفته شده در صورت سوال را انتخاب می کنیم و در b ذخیره می کنیم:

```
X = [iris.data[:, [0, 1]] , iris.data[:, [0, 2]],
iris.data[:, [1, 3]]]
```

حال به کمک کتابخانه numpy این داده ها را در ماتریس های انتقال ضرب میکنیم و برای هر یک از داده های به صورت جداگانه در یک پلات نمایش می دهیم

```
for i in range(0,3) :
    fig , myplt = plt.subplots(4)
    for j in range(0,4):
        dot = np.dot(X[i],t_matrix[j])
        myplt[j].scatter(dot,dot,c=Y ,s=20)
plt.show()
```

در نهایت حاصل اجرای کد در این مرحله به صورت زیر خواهد بود، figure ها به ترتیب مربوط به ستون های (۲،۱) و (۲،۴) و (۲،۴) می باشد و نمودارها به تریب از بالا مربوط به T3,T2,T1 می باشد.

- c) برای داده اول ماتریس اول بهتر از بقیه عمل کرده ، برای داده دوم ماتریس سوم و برای داده سوم ماتریس چهارم بهترین عملکرد را داشته است
 - d) دقیقا همانند بخش اول به رسم نمودار ها می پردازیم. نمودار ها به ترتیب ذکرشده در صورت سوال می باشد.

و ۰ و ۳) برای هر کدام از داده ها ۴۹ ماتریس انتقال تست شد(برای هر درایه ۷ مقدار -۳ و ۰ و ۳) که بهترین آن ها به شرح زیر می باشد:

```
t matrix = [[1,-3],[-1,1],[3,-1]]
```

و نمودار ها به شکل زیر درآمدند:

سوال۷)

y x را به صورت خط به خط میخوانیم. سپس CSV را به صورت خط به خط میخوانیم. سپس A و (a حرکات مربوط به هر بازیکن را در آرایه player به این صورت ذخیره می کنیم.

```
players = []
for i in range(16):
    players.append([])
for d in data:
    players[int(d[1])].append([float(d[2]),float(d[3])])
```

حال به کمک کتابخانه statistics میاینگین x و y ها را به صرت زیر محاسبه می کنیم:

```
for p in players:
    x_mean.append(statistics.mean(np.array(p)[:,0]))
    y_mean.append(statistics.mean(np.array(p)[:,1]))
    id_player.append(counter_player)
    counter_player += 1
```

و در نهایت نمودار مکان میانگین برای بازیکنان به این صورت خواهد بود :

b) در این سوال نحوه خواندن داده ها و ساخت ماتریس player همانند بخش قبل است، در ادامه در یک حلقه به کمک کتابخانه statistics ماتریس میانگین و کوواریانس را برای هر یک از بازیکنان به شکل زیر محاسبه می کنیم:

```
for player in players :
    if len(player) > 1:

mean.append([statistics.mean(np.array(player)[:,0]), statistic
s.mean(np.array(player)[:,1])])
        number.append(player)

cov.append(np.cov(np.array(player)[:,0], np.array(player)[:,1]))
```

پس از محاسبه این پارامتر ها، به کمک توابع کتابخانه numpy به تولید نقاط توزیع گوسی می پردازیم و پس از تولید نقاط، به رسم heat-map مربوطه می پردازیم، کد این بخش به صورت زیر است :

```
counter =0
N_bins = 100
```

```
for player in range(len(mean)):
    x, y = np.random.multivariate_normal(mean[player],
cov[player], 5000).T
    plt.figure(counter)
    plt.hist2d(x, y, bins=N_bins, normed=False,
cmap='plasma')
    counter += 1
```

در زیر تصویر توزیع های هر یک از بازیکنان رسم شده است:

- c) با توجه به این که در فضای دو بعدی به دنبال احتمال یک نقطه هستیم، پس احتمال برای هر نقطه ای ۰ می باشد.
- d) بنده اصلا تا بحال حتی ۱ بازی فوتبال به طور کامل ندیده ام و به هیچ وجه با نقش های فوتبال آشنایی ندارم و تنها به کمک لینک داده شده و نظر کارشناسی اعضا خانواده برای بعضی از بازیکنان نقش هایش را انتخاب کرده ام:

شماره بازیکن	نقش
1	هافبک هجومی یا مهاجم وسط
۲	دفاع چپ
٣	,
*	-
۵	هافبک دفاعی

۶	بیرون در حال گرم کردن
γ	هافبک چپ
٨	دفاع چپ
٩	دفاع راست
1.	هافبک راست
11	بیرون در حال گرم کردن
17	بيرون ايستاده
١٣	دفاع آخر
14	هافبک وسط
۱۵	مهاجم نوک