ANSWER SCHEME TEST 3 SK015 Chemistry 1 Semester 1

Session 2023/2024

LECTURER'S COPY COFIDENTIAL

CHEMISTRY UNIT PAHANG MATRICULATION COLLEGE

ANSWER SCHEME TEST 3 CHAPTER 1, 2, 4, 5, 6 & 7

NO.	PART		S	SCHEME		MARKS	
1.	(a)	Average atomic	mass of Mg = $\frac{\sum}{\sum}$	$Q_i m_i$			
		C	Σ	ΣQ_{i}			
		@					
		$24.31 = \frac{(78.99 \times 23.985) + (X \times 24.986) + (11.01 \times 25.983)}{78.99 + X + 11.01}$			1	M1	
		X = 10.72 %					
		Percentage abur	ndance of $^{25}Mg =$	10.72 %		1	M2
	(b)						
		Mass C = $\frac{12.}{44.0}$	$\frac{0 \text{ g C}}{\text{g CO}_2}$ x 1.503 g 0	$CO_2 = 0.410 \text{ g}$			
			2				
		Mass H = $\frac{2.0}{18.0}$	$\frac{0 \text{ g H}}{\text{g H}_2 \text{O}} \times 0.414 \text{ g}$	$H_2O = 0.046 g$	- &	1	M3
			2			1	WIS
			of sample – (mas $g - (0.410 + 0.0)$	s of C + mass of 1 46) g	H)		
		= 0.545		, 0			
		Element	C	Н	0		
		Mass/g	0.410	0.046	0.545		
		Amount/mol	$\frac{0.410}{12.0} = 0.034$	$\frac{0.046}{1.0} = 0.046$	$\frac{0.545}{16.0} = 0.034$	1	M4
		Simplest	$\frac{0.034}{0.034} = 1$	$\frac{0.046}{0.034} = 1.35$	$\frac{0.034}{0.034} = 1$	1	M5
		ratio					1,15
			1 x 3 = 3	$1.35 \times 3 = 4$	1 x 3 = 3		
		Empirical formul	$\mathbf{a} = \mathbf{C_3H_4O_3}$			1	M6
	(c)	A 3.6	100				
		Assume; Mass					
		$\% \text{ w/w} = \frac{\text{mass of solute (g)}}{\text{mass of solution (g)}} \times 100 \%$					
					1	M7	
		$47.5 \% = \frac{\text{mass of solute}}{100 \text{ g}} \times 100 \%$				1,1,	
			100 g				
		∴ Mass so	lute (HBr) = 47.5 g		ا		
		@					
		Assume 47.5 g HBr in 100 g solution					
			_				

	$n_{\text{solute (HBr)}} = \frac{\text{Mass}_{\text{solute (HBr)}}}{\text{Molar mass}_{\text{solute (HBr)}}}$		
	Molar mass solute (HBr)		
	$n_{\text{solute (HBr)}} = \frac{47.5 \text{ g}}{(79.9 + 1.0) \text{ g mol}^{-1}}$		
	$\frac{11_{\text{solute (HBr)}}}{(79.9 + 1.0) \text{ g mol}^{-1}}$		
	= 0.587 mol	1	M8
	$Mass_{solution} = \rho_{solution} x V_{solution}$		
	$100 \text{ g} = 1.30 \text{ g cm}^{-3} \text{ x V}_{\text{solution}}$	1	
	$V_{\text{solution}} = 76.923 \text{ cm}^3$	1	M9
	n solute (HBr)		
	Molarity = $\frac{n_{\text{solute (HBr)}}}{V_{\text{solution }}(dm^3)}$		
	0.587 mol		
	$= \frac{0.587 \text{ mol}}{0.0769 \text{ dm}^3}$		
	= 7.63 M	1	M10
(d)	$MnO_4^{-}(aq) + SO_3^{2-}(aq) \rightarrow MnO_2(aq) + SO_4^{2-}(aq)$		+
(u)			
	Oxidation: $SO_3^{2-} \rightarrow SO_4^{2-}$ Reduction: $MnO_4^- \rightarrow MnO_2$ &	1	M11
	$(SO_{2}^{2} + H_{2}O_{1}) SO_{2}^{2} + 2H_{1} + 2O_{1}) \times 3$		
	$ (SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e) \times 3 (MnO_4^{-} + 4H^+ + 3e \rightarrow MnO_2 + 2H_2O) \times 2 $ &	1	M12
	$3SO_3^{2\text{-}}(aq) + 2MnO_4^{-}(aq) + 2H^+(aq) \rightarrow 3SO_4^{2\text{-}}(aq) + 2MnO_2(aq) + H_2O(\iota)$	1	M13
(e) (i)	n_{NH_3} available = 0.62 mol		
	n_{CO_2} available = 0.56 mol		
	From equation;		
	$2 \text{ mol NH}_3 \equiv 1 \text{ mol CO}_2$		
	$0.62 \text{ mol NH}_3 \equiv 0.31 \text{ mol CO}_2 \text{ (required)}$	1	M14
	Since mole CO ₂ available (0.56 mol) is more than		
	mole CO ₂ required (0.31 mol), CO ₂ present in excess.	1	M15
	\therefore NH ₃ is the limiting reactant.	1	M16
	@		
	1 mol $CO_2 \equiv 2$ mol NH_3		
	$0.56 \text{ mol CO}_2 \equiv 1.12 \text{ mol NH}_3 \text{ (required)}$		
	Since mole NH ₃ available (0.62 mol) is less than mole NH ₃ required (1.12 mol), NH ₃ present in limits.		
	mote 13113 required (1.12 mor), 13113 present in minus.		
	∴ NH ₃ is the limiting reactant.		<u> </u>

	(e) (ii)	$2 \text{ mol NH}_3 \equiv 1 \text{ mol (NH}_2)_2 \text{CO}$		
		$0.62 \text{ mol NH}_3 \equiv 0.31 \text{ mol (NH}_2)_2\text{CO (required)}$	1	M17
		Mass of $(NH_2)_2CO = 0.31 \text{ mol } x (2[14.0 + 2(1.0)] + 12.0 + 16.0) \text{ g mol}^{-1}$	1	M18
		$= 18.60 \mathrm{\ g}$	1	M19
	(e) (iii)	$2 \text{ mol NH}_3 \equiv 1 \text{ mol CO}_2$	4	7.500
		$0.62 \text{ mol NH}_3 \equiv 0.31 \text{ mol CO}_2 \text{ (required)}$	1	M20
		n_{CO2} remained = n_{CO2} available – n_{CO2} required = $0.56 \text{ mol} - 0.31 \text{ mol}$		
		= 0.36 mol - 0.31 mol = 0.25 mol	1	M21
		Mass _{CO2} remained after the reaction = $0.25 \text{ mol x } [12.0 + 2(16.0)] \text{ g mol}^{-1}$		
		= 11.00 g	1	M22
		TOTAL	22	
		MAX	21	
2.	(a) (i)	$\frac{1}{\lambda} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right), n_{1} < n_{2}$		
		@		
		$= (1.097 \times 10^7 \mathrm{m}^{-1}) \left(\frac{1}{1^2} - \frac{1}{3^2} \right)$	1	N/11
		$-(1.09/x10^{6} \text{ m})(\frac{1}{1^{2}} - \frac{3}{3^{2}})$	1	M1
		$\lambda = 1.02555 \times 10^{-7} \times 10^9 \text{ nm}$		
		= 102.55 nm	1	M2
	(a) (ii)	$E_n = -R_H \left(\frac{1}{n^2}\right)$		
		@		
		$= -2.18 \times 10^{-18} \left(\frac{1}{2^2}\right)$	1	M3
		(2^2)		
		$= -5.45 \times 10^{-19} \mathrm{J}$	1	M4
	(b) (i)	(n, l, m, s) : (3, 0, 0, -1/2) @ (3, 0, 0, +1/2)	1	M5
	(b) (ii)	4s and 3d orbital		
		y 4s	1	M6

		3d _{xy} 3d _{yz} 3d _{xz} * Any 3d orbital with correct label	1	M7
	(b) (iii)	Hund's Rule	1	M8
	(c)	Actual electronic configuration of copper is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ . It is because fully-filled 3d orbital is more stable than partially-filled 3d orbital.	1 1	M9 M10
		TOTAL	10	
3.	(a) (i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (I & II correct)	M1
	(a) (ii)	Structure II is the most plausible structure because the negative formal charge is on the more electronegative nitrogen atom.	1 1	M2 M3
	(b)	Valence electrons: O: $3 \times 6 = 18$ - $\frac{4}{14}$ - $\frac{12}{2}$ 2 - $\frac{2}{0}$	1	M4
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	M5
		FC $O_1 = 6 - [2 + 1/2(6)] = +1$ FC $O_2 = 6 - [4 + 1/2(4)] = 0$ FC $O_3 = 6 - [6 + 1/2(2)] = -1$ $(0) (+1) (-1)$ xx $2 : O = O - O:$ $1 3$ written in structure	1	M6

(c)	NCl ₃ has higher boiling point than BCl ₃ because NCl ₃ is a polar molecule while BCl ₃ is a non-polar molecule. Dipole-dipole forces between NCl ₃ molecules is stronger than London forces @ dispersion forces between BCl ₃ molecule.	1	M15
	 * sp² hybrid orbital of O overlap end to end with 2p orbital of O to form 2σ bond and occupied one lone pair. * 2p orbital of O overlap side by side with 2p orbital of O to form 1π. 	1	M13
	Explanation:		
	* Correct shape and label of sp² hybrid orbital of O (Central atom) * Show e, label O, 2σ, 1π, 3 sp² orbital and 2p. * Molecular shape: V-shape @ Bent	1 1 1	M10 M11 M12
	Lone pair sp^2 σ sp^2 $2p$ $2p$ $2p$		
	Ground state of O_2 : $1 \checkmark 1 \checkmark 1 \checkmark 1$ $2s \qquad 2p$ $4 \checkmark 4 \checkmark$	1	M9
	Hybrid state of O_1^+ : \nearrow $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$	1	M8
	Excited state of O_1^+ : $\begin{array}{ c c c c c }\hline 2s & 2p \\ \hline \hline & & & \\\hline & & \\\hline & & & \\\hline & & $	1	M7
	Hybridisation process in O_3 : Central atom Ground state of O_1^+ : $1 \longrightarrow 1 \longrightarrow$		

	(d)	Copper, Cu is a metal while carbon, C is a non-metal.	1	M17	
		Conduction Conduction band			
		Valence band Valence band			
		Metal, Cu Non-metal, C			
		There is no band gap between valence band and conduction band in Cu. Whereas a large gap between valence band and conduction band in C.			
		Thus, electrons can move freely from valence band to conduction band of Cu to carry electricity while C does not.	1	M19	
		TOTAL	19		
		MAX	17		
4.	(a)	By using Boyle's Law:			
		$P_1V_1 = P_2V_2$ (1.2 atm) (120 mL) = P_2 (180 mL)	1	M1	
		$P_2 = 0.8 \text{ atm}$	1	M2	
	(b)	By using ideal gas equation:			
		$P_{CO_2}V = n_{CO_2}RT$			
		$P_{CO_2} = \frac{mRT}{VMr}$			
		$= \frac{(5.50 \text{ g})(0.08206 \text{ Latmmol}^{-1} \text{K}^{-1})(297.15 \text{ K})}{(297.15 \text{ K})}$			
		$= \frac{10.0 \mathrm{L})(44.0 \mathrm{gmol}^{-1})}{(10.0 \mathrm{L})(44.0 \mathrm{gmol}^{-1})} \qquad -6$	1	М3	
		= 0.305 atm			
		By using Dalton's Law:			
		$P_T = P_{air} + Pco_2 $ 760 torr = 1 atm			
		= 0.928 atm + 0.305 atm $705 torr = 0.928 atm$			
		$P_T = 1.23 \text{ atm}$	1	M4	
	(c) (i)	CH ₃ CH ₂ OH , CH ₃ OH , CH ₃ CHO Increasing vapour pressure	1	M5	
	(c) (ii)	The weaker the intermolecular forces of the liquid molecules, the higher the vapour pressure @ vice versa.	1	M6	
	(d) (i)	Phase diagram of water, H ₂ O has negative slope while phase diagram of carbon dioxide, CO ₂ has positive slope .	1	M7	

		@ Freezing/melting curve of H ₂ O slope to the left while freezing/melting curve of CO ₂ slope to the right		
	(d) (ii)	of CO ₂ slope to the right. It is because ice is less dense (occupy larger volume) than water. @ It is because solid H ₂ O is less dense (occupy larger volume) than liquid	1	M8
	(3) (444)	H ₂ O.		7.70
	(d) (iii)	The kinetic energy of the water vapour decreases .	1	M9
		TOTAL	9	
5.	(a)	$Qc = \frac{[SO_3]^2}{[SO_2]^2 [O_2]}$ $= \frac{(10)^2}{(0.010)^2 (0.010)}$	1	M1
		$= 1.0 \times 10^8$	1	M2
		Qc > Kc	1	M3
		The mixture is not at equilibrium because:	1	M4
		- the ratio of initial concentration of product is too large.	1	M5
		- product must be converted into reactant.	1	M6
		The reaction is proceeded from right to left .	1	M7
	(b)	This reaction is exothermic. Decreasing temperature causes the equilibrium position shift to right to re-establish the equilibrium. Therefore, the amount of SO ₂ and O ₂ decrease and the amount of SO ₃ increase until the equilibrium is reached.	1 1	M8 M9
		TOTAL	9	
6.	(a) (i)	$pH = -\log [H^+]$ $1.85 = -\log [H^+]$ $[H^+] = x = 0.0141 M$	1	M1
		$\begin{array}{ c c c c c c }\hline Concentration (M) & HNO_2(aq) & \rightleftharpoons & NO_2\text{-}(aq) & + & H^+(aq)\\\hline Initial & 0.235 & 0 & 0\\\hline Change & -x & +x & +x\\\hline Fig. 111 & 0.225 & 0.225\\\hline \end{array}$	1 (Eq + phase)	M2
		Equilibrium 0.235-x x x X $K_{a} = \frac{[NO_{2}^{-}][H^{+}]}{[HNO_{2}]}$ $= \frac{(0.0141)^{2}}{(0.235-0.0141)}$	1	M3
		(0.235-0.0141) = 9.00 x 10 ⁻⁴	1	M5

					MAX	14	
					TOTAL	15	
	$= 1.69 \times 10^{-6}$					1	M15
	$= 4 (7.5 \times 10^{-3})^3$						
	$=4s^3$						
	$=(2s)^2(s)$		@			1	M14
	$Ksp = [Ag^+]^2 [SO_4^{2-}]$		a				
	$\therefore s = 7.5 x$	10 ⁻³ M				1	M13
	$[Ag^+] = 2s = 1.5 \text{ x}$	10 ⁻² M					
	Change Equilibrium		- +2s - 2s	+s s			
	Concentration (Initial		$O_4(s) \rightleftharpoons 2Ag^+(s)$	aq) + SO ₄ ²⁻	(aq)	1	M12
(c)	25	→ Volu	ame of KOH (mL))		Eq. point)	
	2		07707			1 (Shape +	M11
	7 +					КОН)	
		quivalence p	point (pH > 7)			(pH & Vol	
						Axis 1	M10
(b)	рН						
	= 3.09	(0.2)	225)			1	M9
	$= -\log(9.00 \times 10^{-3})$		250) @			1	M8
	$pH = pK_a + \log \left[\frac{NOx}{HNOx} \right]$	$\left[\frac{2}{O_2}\right]$					
	Equilibrium	0.225	0	0.250	-	1	M7
	Change	-0.01	$\frac{(1 \text{ L})}{(1 \text{ L})} = 0.01$	+0.01	-		
(a) (ii)	Concentration (M) Initial	HNO ₂ (aq) 0.235	+ OH ⁻ (aq) \rightarrow $\frac{(0.01 \text{ mol})}{(1 \text{ L})} = 0.01$	$\frac{\text{NO}_2^{-}(\text{aq})}{0.240}$	$H_2O(\iota)$	1	M6

PREPARED BY:	REVISED BY:	APPROVED BY:
(NOR FARIHA BINTI AB GHANI)	(HEZELIN ELAYANA BINTI SHAIAN)	(FARALISA BINTI ABU SAMAH)
Head of Test 3 Developers	Head of Test 3 Reviser	Head of Chemistry Unit
Cop:	Cop:	Cop:
Date:	Date:	Date: