DVA337

FABER

Formal Languages, Automata and Models of Computation

Lecture 12

Mälardalen University

2015

Content

Universal Turing Machine
Chomsky Hierarchy
Decidability
Reducibility
Uncomputable Functions
Rice's Theorem
Church-Turing Thesis

TURING MACHINES

Standard Turing Machine

Tape

Configuration

Instantaneous description: $ca q_1 ba$

Step 1

Step 2

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

$$\delta(q_1,a) = (q_2,b,R)$$

 $abq_1ac \rightarrow abbq_2c$

Head starts at the leftmost position of the input

 $q_0 w \mapsto, w input, w = abac in the example above$

The Accepted Language

For any Turing Machine M Any x_1 and x_2 $L(M) = \{w: q_0 w \mapsto x_1 q_f x_2\}$

Initial state

Final state

If head stops in a final state as at the beginning of string surrounded by blanks ... $\mapsto q_f w$, w = abac in the example above

Definition: turing machine as a function

A Turing machine computes a function

 $f: A \rightarrow B$ if for all $w \in A$, with

$$x = f(w), q_0 w \mapsto^* q_f x$$

Initial configuration

Final configuration

Recursive and Recursively Enumerable Languages

There are three possible outcomes of executing a **Turing machine** over a given input:

- Halt and accept the input; (halt in final)
- Halt and reject the input; or (halt in non-final)
- Never halt.

Recursively Enumerable Languages (semi decidable)

A language is **recursively enumerable** if there exists a Turing machine that accepts every string of the language, and does not accept strings that are not in the language.

Strings that are not in the language may be rejected or may cause the Turing machine to go into an infinite loop; semi-decidable.

Recursively Enumerable Languages

Given such a semi-decision procedure how can you construct an enumeration procedure (Turing machine)?

Recursive Languages (decidable)

A language is **recursive** if there exists a Turing machine that accepts every string of the language and rejects every string (over the same alphabet) that is not in the language. If a language L is recursive, then its complement is recursive.

As we get the answer YES/NO, recursive languages are decidable.

Non-Recursively Enumerable Languages

A language is non-recursively enumerable for which there exists no Turing machine.

Do they exist?

Recursively Enumerable Languages

Unrestricted Grammars

Productions

 $u \rightarrow v$

String of variables and terminals

String of variables and terminals

Example of unrestricted grammar

$$S \rightarrow aBc$$

$$aB \rightarrow cA$$

$$Ac \rightarrow d$$

Theorem

A language L is recursively enumerable if and only if it is generated by an unrestricted grammar.

Why this name?

Context-Sensitive Grammars

Productions

$$u \rightarrow v$$

String of variables and terminals

String of variables and terminals

$$|u| \leq |v|$$

The language $\{a^nb^nc^n\}$

is context-sensitive:

$$S \rightarrow abc \mid aAbc$$

$$Ab \rightarrow bA$$

$$Ac \rightarrow Bbcc$$

$$bB \rightarrow Bb$$

$$aB \rightarrow aa \mid aaA$$

How does

it work?

Theorem

A language L is context sensitive if and only if it is accepted by a Linear-Bounded automaton.

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use.

Linear Bounded Automaton (LBA)

All computation is done between end markers.

Observation

1. Every context-sensitive language is recursive (trivially by the existence of the LBA)

 Not every recursive language is context-sensitive (maybe not that surprising – LBAs have finite finite memory, while TMs have infinite)

The Chomsky Hierarchy

The Chomsky Language Hierarchy

Non-recursively enumerable

Universal Turing Machine

Limitation of Standard Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Better are reprogrammable machines.

Solution: Universal Turing Machine

Characteristics:

Reprogrammable machine

Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine

- ullet Description of transitions of M
- ullet Initial tape contents of M

We encode/describe Turing Machine M as a string of symbols.

Tape Contents Encoding

Alphabet Encoding

Symbols: a b c d \cdots \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow Encoding: 1 11 111 1111

State Encoding

States: q_1 q_2 q_3 q_4 ... \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow Encoding: 1 11 111 1111

Head Move Encoding

Move: L R \downarrow \downarrow Encoding: 1

Transition Encoding

Transition:
$$\delta(q_1,a) = (q_2,b,L)$$

Encoding: 10101101101
separator

Machine Encoding

Transitions:

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine M as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's.

Therefore:

The set of Turing machines forms a language:

Each string of the language is the binary encoding of a Turing Machine.

Language of Turing Machines

```
(Turing Machine 1)
L = \{ 010100101,
                           (Turing Machine 2)
    00100100101111,
     111010011110010101, (Turing Machine 3)
    .....}
```

Decidability

Consider problems with answer YES or NO.

Examples

- Does Machine M have three states?
- Is string W a binary number?
- Does DFA M accept any input?

A problem is decidable if some Turing machine solves (decides) the problem.

Decidable problems:

- Does Machine M have three states?
- Is string W a binary number?
- Does DFA M accept any input?

The Turing machine that solves a problem answers YES or NO for each instance.

The machine that *decides* a problem:

If the answer is YES
 then halts in a yes state

 If the answer is NO then halts in a no state

Turing Machine that decides a problem

YES and NO states are halting states

Some problems are undecidable:

There is no Turing Machine that solves all instances of the problem.

A famous undecidable problem:

The halting problem

The Halting Problem

Input: • (encoding of) Turing Machine M

• String *w*

Question: Does M halt on w?

Theorem

The halting problem is undecidable.

Proof

Assume to the contrary that the halting problem is decidable.

There exists Turing Machine *H* that solves the halting problem

Construction of H

Construct machine H'

If H returns YES then loop forever.

If H returns NO then halt.

H'

Construct machine \hat{H}

Input: w_M (machine M)

__ Itself!

If M halts on input w_M

Then loop forever

Else halt

Run machine \hat{H} with input itself

Input: $w_{\hat{H}}$ (machine \hat{H})

If \hat{H} halts on input $w_{\hat{H}}$

Then loop forever

Else halt

\hat{H} on input $w_{\hat{H}}$:

If \hat{H} halts then loops forever.

If \hat{H} doesn't halt then it halts.

CONTRADICTION!

This means that

The halting problem is undecidable.

END OF PROOF

Another proof of the same theorem:

If the halting problem was decidable then every recursively enumerable language would be recursive.

Theorem

The halting problem is undecidable.

Proof

Assume to the contrary that the halting problem is decidable.

There exists Turing Machine H that solves the halting problem.

Let L be a recursively enumerable language.

Let $\,M\,$ be the Turing Machine that accepts $\,L\,$.

We will prove that L is also recursive:

We will describe a Turing machine that accepts L and halts on any input.

Turing Machine that accepts L and halts on any input

Therefore L is recursive.

Since L is chosen arbitrarily, we have proven that every recursively enumerable language is also recursive.

But there are recursively enumerable languages which are not recursive.

Contradiction!

Therefore, the halting problem is undecidable.

A simple undecidable problem:

The Membership Problem

The Membership Problem

Input: • Turing Machine M

String W

Question: Does M accept w?

Theorem

The membership problem is undecidable.

Proof

Assume to the contrary that the membership problem is decidable.

There exists a Turing Machine H that solves the membership problem

Let L be a recursively enumerable language.

Let M be the Turing Machine that accepts L.

We will prove that L is also recursive:

We will describe a Turing machine that accepts L and halts on any input.

Turing Machine that accepts L and halts on any input

Therefore, L is recursive.

Since L is chosen arbitrarily, we have proven that every recursively enumerable language is also recursive.

But there are recursively enumerable languages which are not recursive.

Contradiction!

Therefore, the membership problem is undecidable.

Reducibility

Problem A is reduced to problem B

If we can solve problem ${\cal B}$ then we can solve problem ${\cal A}$.

Problem A is reduced to problem B

If B is decidable then A is decidable.

If A is undecidable then B is undecidable.

Example

the halting problem

reduced to

the state-entry problem.

The state-entry problem

- Inputs: •Turing Machine M
 - •State q
 - •String *w*

Question:

Does M enter state q on input w?

Theorem

The state-entry problem is undecidable.

Proof

Reduce the halting problem to

the state-entry problem.

Suppose we have an algorithm (Turing Machine) that solves the state-entry problem.

We will construct an algorithm that solves the halting problem.

Assume we have the state-entry algorithm:

We want to design the halting algorithm:

Modify input machine M

- Add new state q
- From any halting state add transitions to q

M' halts on state q

Algorithm for halting problem

Inputs: machine M and string w

- 1. Construct machine M' with state q
- 2. Run algorithm for state-entry problem with inputs: M', q, w

Halting problem algorithm YES State-entry Generate algorithm \mathcal{W} \mathcal{W}

We reduced the halting problem to the state-entry problem.

Since the halting problem is undecidable, it must be that the state-entry problem is also undecidable.

Another example

The halting problem

reduced to

the blank-tape halting problem.

The blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with a blank tape?

Theorem

The blank-tape halting problem is undecidable.

Proof

Reduce the halting problem to the

blank-tape halting problem.

Suppose we have an algorithm for the blank-tape halting problem.

We will construct an algorithm for the halting problem.

Assume we have the blank-tape halting algorithm

We want to design the halting algorithm:

Construct a new machine $\,M_{w}\,$

- On blank tape writes W
- Then continues execution like M

 M_{w}

step 1

if blank tape then write w step2

execute M

with input *W*

M halts on input string W

 $M_{\it W}$ halts when started with blank tape.

Algorithm for halting problem

Inputs: machine M and string w

- 1. Construct M_w
- 2. Run algorithm for blank-tape halting problem with input $M_{\it W}$

Halting problem algorithm

We reduced the halting problem to the blank-tape halting problem.

Since the halting problem is undecidable, the blank-tape halting problem is also undecidable.

Summary of Undecidable Problems

Halting Problem

Does machine M halt on input w?

Membership problem

Does machine M accept string w?

(In other words: Is a string w member of a

recursively enumerable language L?)

Blank-tape halting problem

Does machine M halt when starting on blank tape?

State-entry Problem:

Does machine M enter state q on input w?

Uncomputable Functions

Uncomputable Functions

A function is uncomputable if it cannot be computed for all of its domain.

Example

An uncomputable function:

$$f(n) = \begin{cases} \text{maximum number of moves until} \\ \text{any Turing machine with } n \text{ states} \\ \text{halts when started with the blank tape.} \end{cases}$$

Theorem

Function f(n) is uncomputable.

Proof

Assume to the contrary that f(n) is computable.

Then the blank-tape halting problem is decidable.

Algorithm for blank-tape halting problem Input: machine M

- 1. Count states of M: m
- 2. Compute f(m)
- 3. Simulate M for f(m) steps starting with empty tape
- If M halts then return YES otherwise return NO

Therefore, the blank-tape halting problem must be decidable.

However, we know that the blank-tape halting problem is undecidable.

Contradiction!

Therefore, function f(n) is uncomputable.

END OF PROOF

Rice's Theorem

Definition

Non-trivial property of recursively enumerable languages:

Any property possessed by some (not all) recursively enumerable languages.

Some non-trivial properties of recursively enumerable languages:

- L is empty
- L is finite
- ullet L contains two different strings of the same length

Rice's Theorem

Any non-trivial property of a recursively enumerable language is undecidable.

Rice's Theorem

If Ω is a set of Turing-acceptable languages that contain some but not all such languages, no TM can decide for an arbitrary Turing-acceptable language L if L belongs to Ω or not.

Now we will prove some non-trivial properties without using Rice's theorem.

Theorem

For any recursively enumerable language L it is undecidable whether it is empty.

Proof

We will reduce the membership problem to the problem of deciding whether \mathcal{L} is empty.

Membership problem: Does machine M accept string \mathcal{W} ?

Let M be the machine that accepts L L(M) = L

Assume we have the empty language algorithm:

We will design the membership algorithm:

First construct machine ${\cal M}_w$:

When M enters a final state, compare original input string with w.

Accept if original input is the same as w.

$w \in L$

 $L(M_w)$ is not empty

$$L(M_w) = \{w\}$$

Algorithm for membership problem

Inputs: machine M and string w

- 1. Construct M_w
- 2. Determine if $L(M_w)$ is empty

YES: then $w \notin L(M)$

NO: then $w \in L(M)$

Membership algorithm

We reduced the membership problem to the empty language problem.

Since the membership problem is undecidable, the empty language problem is also undecidable.

Theorem

For a recursively enumerable language L it is undecidable to determine whether L is finite.

Proof

We will reduce the halting problem to the finite language problem.

Let M be the machine that accepts L L(M) = L

Assume we have the finite language algorithm:

We will design the halting problem algorithm:

First construct machine $M_{\scriptscriptstyle \mathcal{W}}$.

Initially, simulates M on input w.

When M enters a halt state, accept any input (infinite language).

Otherwise accept nothing (finite language).

 $L(M_w)$ is not finite.

Algorithm for halting problem:

Inputs: machine M and string w

- 1. Construct M_w
- 2. Determine if $L(M_w)$ is finite

YES: then M doesn't halt on w

NO: then M halts on w

Machine for halting problem

We reduced the halting problem to the finite language problem.

Since the halting problem is undecidable, the finite language problem is also undecidable.

Theorem

For a recursively enumerable language L it is undecidable whether L contains two different strings of same length.

Proof

We will reduce the halting problem to the two strings of equal length- problem.

Let M be the machine that accepts L L(M) = L

Assume we have the two-strings algorithm:

two equal length strings

We will design the halting problem algorithm:

First construct machine M_w .

Initially, simulates M on input w.

When M enters a halt state, accept symbols a or b. (two equal length strings)

M halts on w

 M_w accepts $\it a$ and $\it b$

(two equal length strings)

Algorithm for halting problem

Inputs: machine M and string w

- 1. Construct M_w
- 2. Determine if $M_{\it W}$ accepts two strings of equal length

YES: then M halts on w

NO: then M doesn't halt onw

Machine for halting problem

We reduced the halting problem to the two strings of equal length – problem.

Since the halting problem is undecidable, the two strings of equal length problem is also undecidable.