

ZDV / bwNET 2.0 - Verteilte Netflow/IPFIX Sensorplattform im Kommunikationsnetz der Universität Tübingen

Benjamin Steinert, Gabriel Paradzik, Heinrich Abele Zentrum für Datenverarbeitung Universität Tübingen

▶ bwNET seit 2013, seit April 2024 aktuelles Projekt: bwNET 2.0

► Forschungsgruppen und Rechenzentren arbeiten eng zusammen:

Was will man mit bwNET erreichen?

Betrieb

- ► Fokus: Verlässlicher Betrieb
- ► Weiterentwicklung eher inkrementell oder evolutionär
- ► Geringes Zeitbudget für neue Ideen
- Neueste Ansätze aus Forschung /Industrie nicht immer bekannt

Forschung

- ► Fokus: Innovation
- ► Frühe Nutzung oder gar Entwicklung neuer Technologien
- ► Hohes Zeitbudget für neue Ideen
- Probleme des realen Netzbetriebs sind oft weit weg

Betrieb und Forschung sollen voneinander profitieren!

Ausschnitt von Projektthemen am ZDV

- ► Aufbau einer verteilten IPFIX Sensorplattform
- ► Datenschutzkonforme Bereitstellung von Betriebsdaten zur Forschung mit LSDF

- ► Sammlung, Nutzung und Teilen von Threat Intelligence Daten
- ► Technology Scouting: Streaming Telemetry (u.a. Stichwort **©PENCONFIG**)

Ausschnitt weiterer Projektthemen

- ► ML-basierte Staukontrolle & DDoS Erkennung @ KIT
- ► Network Digital Twin @ HKA
- ➤ Zero Trust, Zugriffskontrolle, Kontinuierliche Authentisierung @ UULM
- ► Speedtests & Segment Routing @ BelWü

IPFIX Sensorplattform - Konzept

➤ Ziel: Aufbau einer verteilten IPFIX Sensorplattform zur Erfassung von unsampled Flow-Daten bei 100+ Gbit/s

IPFIX Sensorplattform - Architektur

► Konkrete Architektur & Messpunkte

Flowmeter Technologien

- ➤ Nutzung von Server-basierten Flow-Sensoren mit effizienten Software-basierten Bausteinen, oder kleinen Appliance-basierten Flow-Sensoren
 - z.B. Yet Another Flowmeter (YAF) [1] mit ConnectX-6 und RYZEN 9 [2]
- ► Von klein bis groß, von 1 Gbit/s 100+ Gbit/s
- ► Verschiedene Capture Technologien verfügbar, umfangreicher Vergleich geplant:
 - libpcap [3]
 - PF_RINGTM (ntop) [4]
 - PF_RING ZC (Zero Copy) (ntop) [4]
 - NIC Treiber (z.B. mlx5)
 - AF_PACKET, AF_XDP
 - DPDK

[3] https://www.tcpdump.org/

[3] https://www.ntop.org/products/packet-capture/pf_ring/

https://mikrotik.com/product/ccr2004 1g 2xs pcie

https://mikrotik.com/product/ccr2216_1g_12xs_2xq

[2] https://www.primeline-solutions.com/de/supermicro-server-egino-13041s-b650-amd-epyctm-4004/

Capture Technologie: PF_RING (ZC)

► PF_RINGTM (ntop)

Application

PF_RING
Polling
mmap
Userland
Kernel

PF_RING

Circular
Buffer
NAPI
Polling

Device Driver

Vanilla PF_RING

► PF_RING ZC (Zero Copy) (ntop)

https://www.ntop.org/products/packet-capture/pf_ring/

Flowkollektoren & Datenanalyse

- ► Strukturierte Sammlung & Speicherung der Flowdaten
 - z.B. mit nfcapd [1], rwflowpack [2], GoFlow2 [3]
- ► Nutzung von Analysewerkzeugen zur Erkennung von Störungen oder Angriffen
 - z.B. nfdump [1], SiLK analysis suite [2], flowpipeline [4]
- ► Aufbau automatisierter Analyse-Pipelines
 - Zeitserienvorhersage und -Dekomposition
 - Anomalieerkennung
 - ML-basierte automatische Analyse und Korrelation
 - Nutzung von SIEM, SOAR, XDR, ... (?)
 - Nutzung von Open Source Threat Intelligence Quellen

Generated by ChatGPT

- [1] https://github.com/phaag/nfdump
- [2] https://tools.netsa.cert.org/silk/docs.html
- [3] https://github.com/netsampler/goflow2
- [4] https://github.com/BelWue/flowpipeline

Vision: Teilen von Bedrohungsdaten

► SammeIn/Nutzen/Bereitstellen von Threat Intelligence Feeds zwischen Standorten

- ➤ Sensorplattform weiter aufbauen
- ► (Automatisierte) Analyse-, Detektions- & Visualisierungs- & Sharing- Pipelines aufbauen
- ► Flowmeter Benchmarking inkl. Vergleich verschiedener Capture Technologien

► bwNET Umfrage – bitte ausfüllen

Benjamin Steinert, Gabriel Paradzik, Heinrich Abele Zentrum für Datenverarbeitung Universität Tübingen

{vorname.nachname}@uni-tuebingen.de

VIELEN DANK!

FRAGEN?

WERBUNG

- ► Was?
 - Linuxtag mit Vorträgen, Workshops, Messeständen, Bewirtung
- ► Wann?
 - 05. Juli 2025 ab 9:30 Uhr
- ► Wo?
 - Sand 14, 72076 Tübingen, Web: tuebix.org