4. Üstel ve Logaritmik Fonksiyonlar

4.1 Üstel Fonksiyon

• Tanım. b reel sayısı b>0 ve $b\neq 1$ şartlarını sağlamak üzere

$$f\left(x\right)=b^{x}$$

şeklindeki fonksiyonlara üstel fonksiyon denir. Üstel fonksiyonların tanım kümeleri tüm reel sayılar kümesidir. Bir üstel fonksiyonun grafiği b nin durumuna göre temel olarak iki farklı şekildedir:

4.1 Üstel Fonksiyon

ullet Tanım. b reel sayısı b>0 ve b
eq 1 şartlarını sağlamak üzere

$$f(x) = b^x$$

şeklindeki fonksiyonlara üstel fonksiyon denir. Üstel fonksiyonların tanım kümeleri tüm reel sayılar kümesidir. Bir üstel fonksiyonun grafiği *b* nin durumuna göre temel olarak iki farklı şekildedir:

• Dikkat edilirse b > 1 olduğunda x artarken b^x artar, 0 < b < 1 olduğunda ise x artarken b^x azalır.

4.1 Üstel Fonksiyon

• Tanım. b reel sayısı b>0 ve $b\neq 1$ şartlarını sağlamak üzere

$$f(x) = b^{x}$$

şeklindeki fonksiyonlara üstel fonksiyon denir. Üstel fonksiyonların tanım kümeleri tüm reel sayılar kümesidir. Bir üstel fonksiyonun grafiği b nin durumuna göre temel olarak iki farklı şekildedir:

- Dikkat edilirse b>1 olduğunda x artarken b^x artar, 0< b<1 olduğunda ise x artarken b^x azalır.
- Her iki durumda da y=0 doğrusu (yani x ekseni)yatay asimptottur. Bunun sonucu olarak daima $f(x) = b^x > 0$ olacaktır.

• Yukarıdaki grafiklerden de görülebileceği gibi x in tüm değerleri için $b^x>0$ dır.

- Yukarıdaki grafiklerden de görülebileceği gibi x in tüm değerleri için $b^x > 0$ dır.
- Özel olarak b reel sayısı $e=2.718281\cdots$ irrasyonel sayısına eşit olduğunda $f\left(x\right)=e^{x}$ olur. Bu fonksiyon çok önemli bir üstel fonksiyondur.

- Yukarıdaki grafiklerden de görülebileceği gibi x in tüm değerleri için $b^x > 0$ dır.
- Özel olarak b reel sayısı $e=2.718281\cdots$ irrasyonel sayısına eşit olduğunda $f\left(x\right)=e^{x}$ olur. Bu fonksiyon çok önemli bir üstel fonksiyondur.
- Örnek. $f(x) = 4^x$ fonksiyonunun grafiğini çiziniz.

- Yukarıdaki grafiklerden de görülebileceği gibi x in tüm değerleri için $b^x > 0$ dır.
- Özel olarak b reel sayısı $e=2.718281\cdots$ irrasyonel sayısına eşit olduğunda $f\left(x\right)=e^{x}$ olur. Bu fonksiyon çok önemli bir üstel fonksiyondur.
- Örnek. $f(x) = 4^x$ fonksiyonunun grafiğini çiziniz.
- Çözüm. b = 4 > 1 olduğundan x ler arttığında y ler de artmalıdır. Bu durumda grafik aşağıdaki gibi olur:

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $10^{2-3x} = 10^{5x-6}$

4. Üstel ve Logaritmik Fonksiyonlar

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $10^{2-3x} = 10^{5x-6}$
 - $4^{5x-x^2} = 4^{-6}$

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $10^{2-3x} = 10^{5x-6}$
 - $4^{5x-x^2} = 4^{-6}$
 - $5^3 = (x+2)^3$

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $10^{2-3x} = 10^{5x-6}$
 - $4^{5x-x^2} = 4^{-6}$
 - $5^3 = (x+2)^3$
 - $6^4 = (2x 3)^4$

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $10^{2-3x} = 10^{5x-6}$
 - $4^{5x-x^2} = 4^{-6}$
 - $5^3 = (x+2)^3$
 - $6^4 = (2x 3)^4$
- Çözüm.

•
$$10^{2-3x} = 10^{5x-6}$$

•
$$4^{5x-x^2} = 4^{-6}$$

•
$$5^3 = (x+2)^3$$

•
$$6^4 = (2x - 3)^4$$

- Çözüm.
 - $a^x = a^y$ ise x = y olacağından

$$2-3x=5x-6 \Longrightarrow x=1$$

$$10^{2-3x} = 10^{5x-6}$$

•
$$4^{5x-x^2} = 4^{-6}$$

•
$$5^3 = (x+2)^3$$

•
$$6^4 = (2x - 3)^4$$

• Çözüm.

• $a^x = a^y$ ise x = y olacağından

$$2-3x=5x-6 \Longrightarrow x=1$$

Eşitliğin sağlanabilmesi için

$$5x - x^2 = -6$$

olmalıdır. Bu ikinci dereceden denklem çözülürse $x_1=6$ ve $x_2=-1$ bulunur.

•
$$10^{2-3x} = 10^{5x-6}$$

•
$$4^{5x-x^2} = 4^{-6}$$

•
$$5^3 = (x+2)^3$$

•
$$6^4 = (2x - 3)^4$$

• Çözüm.

• $a^x = a^y$ ise x = y olacağından

$$2-3x=5x-6 \Longrightarrow x=1$$

Eşitliğin sağlanabilmesi için

$$5x - x^2 = -6$$

olmalıdır. Bu ikinci dereceden denklem çözülürse $x_1=6$ ve $x_2=-1$ bulunur.

• $a^{2x-1} = b^{2x-1}$ için a = b dir. Buna göre

$$5 = x + 2 \Longrightarrow x = 3$$

olur.

•
$$10^{2-3x} = 10^{5x-6}$$

$$4^{5x-x^2} = 4^{-6}$$

•
$$5^3 = (x+2)^3$$

•
$$6^4 = (2x - 3)^4$$

• Çözüm.

• $a^x = a^y$ ise x = y olacağından

$$2-3x=5x-6 \Longrightarrow x=1$$

Eşitliğin sağlanabilmesi için

$$5x - x^2 = -6$$

olmalıdır. Bu ikinci dereceden denklem çözülürse $x_1=6$ ve $x_2=-1$ bulunur.

• $a^{2x-1} = b^{2x-1}$ için a = b dir. Buna göre

$$5 = x + 2 \Longrightarrow x = 3$$

olur.

• $a^{2x} = b^{2x}$ için a = b ve a = -b dir. Buna göre

$$6 = 2x - 3 \Longrightarrow x_1 = \frac{9}{2}$$

$$-6 = 2x - 3 \Longrightarrow x_2 = -\frac{3}{2}$$

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $(x-3)e^x=0$

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $(x-3)e^x=0$
 - $3xe^{-x} + x^2e^{-x} = 0$

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $(x-3)e^x=0$
 - $3xe^{-x} + x^2e^{-x} = 0$
- Çözüm.

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $(x-3) e^x = 0$
 - $3xe^{-x} + x^2e^{-x} = 0$
- Çözüm.
 - $e^x = 0$ olamayacağından

$$x - 3 = 0 \Longrightarrow x = 3$$

olacaktır.

- Örnek. Aşağıdaki denklemleri çözünüz.
 - $(x-3) e^x = 0$
 - $3xe^{-x} + x^2e^{-x} = 0$
- Çözüm.
 - $e^x = 0$ olamayacağından

$$x - 3 = 0 \Longrightarrow x = 3$$

olacaktır.

Denklem düzenlenirse

$$3xe^{-x} + x^2e^{-x} = (3x + x^2)e^{-x} = 0$$

olur. $e^{-x} = 0$ olamayacağından

$$3x + x^2 = 0$$

 $x(3+x) = 0 \Longrightarrow x_1 = 0 \text{ ve } x_2 = -3$

olmalıdır.

4.2 Logaritmik Fonksiyon

• $f(x) = a^x$ üstel fonksiyonunun tersi **logaritmik fonksiyon** olarak adlandırılır ve $f(x) = \log_a x$ şeklinde gösterilir. a sayısı taban olarak isimlendirilir.

4.2 Logaritmik Fonksiyon

- $f(x) = a^x$ üstel fonksiyonunun tersi **logaritmik fonksiyon** olarak adlandırılır ve $f(x) = \log_a x$ şeklinde gösterilir. a sayısı taban olarak isimlendirilir.
- \bullet a=10 ise bu logaritma adi logaritma olarak adlandırılır ve

$$f(x) = \log x$$

ile gösterilir.

4.2 Logaritmik Fonksiyon

- $f(x) = a^x$ üstel fonksiyonunun tersi **logaritmik fonksiyon** olarak adlandırılır ve $f(x) = \log_a x$ şeklinde gösterilir. a sayısı taban olarak isimlendirilir.
- ullet a=10 ise bu logaritma adi logaritma olarak adlandırılır ve

$$f(x) = \log x$$

ile gösterilir.

• a = e = 2.71... ise bu logaritma da **doğal logaritma** şeklinde adlandırılır ve

$$f(x) = \ln x$$

biçiminde gösterilir. Yani kısaca

$$\log_{10} x = \log x$$
 ve $\log_e x = \ln x$

şeklindedir.

• Logaritmik ve üstel fonksiyon arasındaki geçiş

$$a = b^c \iff c = \log_b a$$

bağıntısı yardımıyla olur.

Logaritmik ve üstel fonksiyon arasındaki geçiş

$$a = b^c \iff c = \log_b a$$

bağıntısı yardımıyla olur.

• Örnek. $f(x) = 2^x$ üstel fonksiyonunun tersini bulunuz.

Logaritmik ve üstel fonksiyon arasındaki geçiş

$$a = b^c \iff c = \log_b a$$

bağıntısı yardımıyla olur.

- Örnek. $f(x) = 2^x$ üstel fonksiyonunun tersini bulunuz.
- Çözüm. $y = 2^x$ olduğuna göre $x = \log_2 y$ dir. $x \longleftrightarrow y$ dönüşümü yapılırsa $f^{-1}(x) = \log_2 x$ elde edilir.

• Örnek. $f(x) = \left(\frac{1}{2}\right)^{3x-2}$ üstel fonksiyonunun tersini bulunuz.

- Örnek. $f(x) = \left(\frac{1}{2}\right)^{3x-2}$ üstel fonksiyonunun tersini bulunuz.
- Çözüm. $y = \left(\frac{1}{2}\right)^{3x-2}$ ise

$$3x - 2 = \log_{\frac{1}{2}} y$$

$$3x = 2 + \log_{\frac{1}{2}} y$$

$$x = \frac{2}{3} + \frac{1}{3} \log_{\frac{1}{2}} y$$

$$x = \frac{2}{3} - \frac{1}{3} \log_{2} y$$

olur. $x \longleftrightarrow y$ dönüşümü yapılırsa

$$f^{-1}(x) = \frac{2}{3} - \frac{1}{3}\log_2 x$$

olarak bulunur.

• Örnek. $f(x) = 3 - \log_5(2x - 1)$ logaritmik fonksiyonunun tersini bulunuz.

- Örnek. $f(x) = 3 \log_5(2x 1)$ logaritmik fonksiyonunun tersini bulunuz.
- Çözüm. $y = 3 \log_5 (3x 1)$ ise

$$\log_{5} (2x - 1) = 3 - y$$

$$2x - 1 = 5^{3 - y}$$

$$2x = 5^{3 - y} + 1$$

$$x = \frac{5^{3 - y}}{2} + \frac{1}{2}$$

$$x = \frac{125}{2} \left(\frac{1}{5}\right)^{y} + \frac{1}{2}$$

olur. $x \longleftrightarrow y$ dönüşümü yapılırsa fonksiyonun tersi

$$f^{-1}(x) = \frac{125}{2} \left(\frac{1}{5}\right)^{x} + \frac{1}{2}$$

olarak bulunur.

• $f(x) = \log_{h(x)} g(x)$ şeklindeki bir logaritmik fonksiyonun tanım kümesi aşağıdaki şartlarının hepsini aynı anda sağlayan reel sayılar kümesidir.

- $f(x) = \log_{h(x)} g(x)$ şeklindeki bir logaritmik fonksiyonun tanım kümesi aşağıdaki şartlarının hepsini aynı anda sağlayan reel sayılar kümesidir.
 - **1** h(x) > 0

- $f(x) = \log_{h(x)} g(x)$ şeklindeki bir logaritmik fonksiyonun tanım kümesi aşağıdaki şartlarının hepsini aynı anda sağlayan reel sayılar kümesidir.
 - **1** h(x) > 0
 - **2** $h(x) \neq 1$

- $f(x) = \log_{h(x)} g(x)$ şeklindeki bir logaritmik fonksiyonun tanım kümesi aşağıdaki şartlarının hepsini aynı anda sağlayan reel sayılar kümesidir.
 - **1** h(x) > 0
 - **2** $h(x) \neq 1$
 - **3** g(x) > 0

- $f(x) = \log_{h(x)} g(x)$ şeklindeki bir logaritmik fonksiyonun tanım kümesi aşağıdaki şartlarının hepsini aynı anda sağlayan reel sayılar kümesidir.
 - **1** h(x) > 0
 - **2** $h(x) \neq 1$
 - **3** g(x) > 0
- Buna göre logaritmik fonksiyonun tanım kümesi bulunurken yukarıdaki şartları sağlayan kümeler ayrı ayrı bulunur ve bu kümelerin kesişim kümesi alınır.

• Örnek. $f(x) = \log_{\sqrt{2}} (4x - 20)$ fonksiyonunun tanım kümesini bulunuz.

- Örnek. $f(x) = \log_{\sqrt{2}} (4x 20)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.

- Örnek. $f(x) = \log_{\sqrt{2}} (4x 20)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- **1** $\sqrt{2} > 0$

- Örnek. $f(x) = \log_{\sqrt{2}} (4x 20)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- **1** $\sqrt{2} > 0$
- **2** $\sqrt{2} \neq 1$

- Örnek. $f(x) = \log_{\sqrt{2}} (4x 20)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- **1** $\sqrt{2} > 0$
- ③ 4x 20 > 0 ise 4x > 20 veya x > 5 olur. Demek ki fonksiyonunun tanım kümesi $(5, \infty)$ aralığıdır.

• Örnek. $f(x) = \log_{x-3}(x^2 - 81)$ fonksiyonunun tanım kümesini bulunuz.

- Örnek. $f(x) = \log_{x-3}(x^2 81)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.

- Örnek. $f(x) = \log_{x-3}(x^2 81)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- ① x 3 > 0 için x > 3

- Örnek. $f(x) = \log_{x-3}(x^2 81)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- **1** x 3 > 0 için x > 3
- $2 x 3 \neq 1$ için $x \neq 4$

- Örnek. $f(x) = \log_{x-3}(x^2 81)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- ① x 3 > 0 için x > 3
- $2 x 3 \neq 1$ için $x \neq 4$
- 3 $x^2 81 > 0$ ise x > 9 veya x < -9 olur.

- Örnek. $f(x) = \log_{x-3}(x^2 81)$ fonksiyonunun tanım kümesini bulunuz.
- Çözüm.
- ① x 3 > 0 için x > 3
- $2 x 3 \neq 1$ için $x \neq 4$
- 3 $x^2 81 > 0$ ise x > 9 veya x < -9 olur.
 - Her üçünü $(9, \infty)$ aralığı sağlar. Bu yüzden fonksiyonunun tanım kümesi $(9, \infty)$ aralığıdır.

4.3 Logaritmik Fonksiyonun Grafiği

• Genel olarak $f(x) = \log_a x$ fonksiyonunun grafiği a > 1 ve 0 < a < 1 için iki farklı şekilde olur. Soldaki grafikte $x_1 < x_2$ için $f(x_1) < f(x_2)$ iken (artan fonksiyon) sağdaki grafikte $x_1 < x_2$ için $f(x_1) > f(x_2)$ şeklindedir (azalan fonksiyon).

4.3 Logaritmik Fonksiyonun Grafiği

• Genel olarak $f(x) = \log_a x$ fonksiyonunun grafiği a > 1 ve 0 < a < 1 için iki farklı şekilde olur. Soldaki grafikte $x_1 < x_2$ için $f(x_1) < f(x_2)$ iken (artan fonksiyon) sağdaki grafikte $x_1 < x_2$ için $f(x_1) > f(x_2)$ şeklindedir (azalan fonksiyon).

• Her iki grafikte de y ekseni düşey asimptottur.

ullet Üstel ve Logaritmik fonksiyonların grafikleri y=x doğrusuna göre simetriktir.

• Örnek.

$$f(x) = \log_{\frac{1}{3}} x$$

fonksiyonunun grafiğini çiziniz.

• Örnek.

$$f(x) = \log_{\frac{1}{3}} x$$

fonksiyonunun grafiğini çiziniz.

• Çözüm. $0 < \frac{1}{3} < 1$ olduğundan fonksiyon azalandır. Bundan dolayı grafik aşağıdaki gibi olacaktır:

• Örnek. $f(x) = \log_a(x+b)$ fonksiyonunun grafiği aşağıdaki gibidir. a ve b yi bulunuz.

• Örnek. $f(x) = \log_a(x+b)$ fonksiyonunun grafiği aşağıdaki gibidir. a ve b yi bulunuz.

• Çözüm. Verilen grafik azalan bir logaritmik fonksiyona ait olduğundan tabanı (0,1) aralığındadır. Ayrıca $f(x) = \log_a(x+b)$ olduğundan

$$f(4) = 0 \Longrightarrow \log_a(4+b) = 0 \Longrightarrow 4+b = 1 \Longrightarrow b = -3$$

$$f(5) = -1 \Longrightarrow \log_a(5-3) = -1 \Longrightarrow 2 = \frac{1}{a} \Longrightarrow a = \frac{1}{2}$$

olur. Bu durumda fonksiyonun denklemi $f(x) = \log_{\frac{1}{2}}(x-3)$ olacaktır.

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- $\log_b b = 1$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- $\log_b b = 1$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- $\log_b 1 = 0$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- $\log_b 1 = 0$
- $\log_b b = 1$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- **2** $\log_b b = 1$

- $\log_{b^{x}} a^{y} = \frac{y}{x} \log_{b} a$ $\log_{b} a = \frac{1}{\log_{a} b}$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- **2** $\log_b b = 1$

- $\log_{b^{\times}} a^{y} = \frac{y}{x} \log_{b} a$ $\log_{b} a = \frac{1}{\log_{a} b}$
- $b^{\log_b x} = x$

Aşağıdaki özelliklerin her biri

$$a = b^c \iff c = \log_b a$$

- $\log_b 1 = 0$

- $\log_{b^{\times}} a^{y} = \frac{y}{x} \log_{b} a$
- $b^{\log_b x} = x$

• Örnek. Aşağıdakileri hesaplayınız.

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - log₁₆ 4

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - log₁₆ 4
 - $\log 125 + \log 8$

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - $\log_{16} 4$
 - $\log 125 + \log 8$
 - $\log_4 80 \log_4 20$

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - log₁₆ 4
 - $\log 125 + \log 8$
 - $\log_4 80 \log_4 20$
 - 3log₃ 6

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - log₁₆ 4
 - $\log 125 + \log 8$
 - $\log_4 80 \log_4 20$
 - 3log₃ 6
 - 4^{log₂ 3}

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - log₁₆ 4
 - $\log 125 + \log 8$
 - $\log_4 80 \log_4 20$
 - 3log₃ 6
 - 4 log₂ 3
- Çözüm.

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - $\log_{16} 4$
 - $\log 125 + \log 8$
 - $\log_4 80 \log_4 20$
 - 3log₃ 6
 - 4log₂ 3
- Çözüm.
 - $\log_3 9 = \log_3 3^2 = 2 \log_3 3 = 2$

- Örnek. Aşağıdakileri hesaplayınız.
 - log₃ 9
 - $\log_{16} 4$
 - $\log 125 + \log 8$
 - $\log_4 80 \log_4 20$
 - 3log₃ 6
 - 4log₂ 3

- $\log_3 9 = \log_3 3^2 = 2 \log_3 3 = 2$ $\log_{16} 4 = \log_{4^2} 4 = \frac{1}{2} \log_4 4 = \frac{1}{2}$

- log₃ 9
- $\log_{16} 4$
- $\log 125 + \log 8$
- $\log_4 80 \log_4 20$
- 3log₃ 6
- 4^{log₂ 3}

- $\log_{16} 4 = \log_{4^2} 4 = \frac{1}{2} \log_4 4 = \frac{1}{2}$
- $\log 125 + \log 8 = \log (125 \cdot 8) = \log 1000 = \log 10^3 = 3 \log 10 = 3$

- log₃ 9
- $\log_{16} 4$
- $\log 125 + \log 8$
- $\log_4 80 \log_4 20$
- 3log₃ 6
- 4log₂ 3

- $\log_{16} 4 = \log_{4^2} 4 = \frac{1}{2} \log_4 4 = \frac{1}{2}$
- $\log 125 + \log 8 = \log (125 \cdot 8) = \log 1000 = \log 10^3 = 3 \log 10 = 3$
- $\log_4 80 \log_4 20 = \log_4 \left(\frac{80}{20}\right) = \log_4 4 = 1$

- log₃ 9
- $\log_{16} 4$
- $\log 125 + \log 8$
- $\log_4 80 \log_4 20$
- 3log₃ 6
- 4log₂ 3

- $\log_{16} 4 = \log_{4^2} 4 = \frac{1}{2} \log_4 4 = \frac{1}{2}$
- $\log 125 + \log 8 = \log (125 \cdot 8) = \log 1000 = \log 10^3 = 3 \log 10 = 3$
- $\log_4 80 \log_4 20 = \log_4 \left(\frac{80}{20}\right) = \log_4 4 = 1$
- 6

- log₃ 9
- $\log_{16} 4$
- $\log 125 + \log 8$
- $\log_4 80 \log_4 20$
- 3log₃ 6
- 4 log₂ 3

• Çözüm.

•
$$\log_{16} 4 = \log_{4^2} 4 = \frac{1}{2} \log_4 4 = \frac{1}{2}$$

•
$$\log 125 + \log 8 = \log (125 \cdot 8) = \log 1000 = \log 10^3 = 3 \log 10 = 3$$

•
$$\log_4 80 - \log_4 20 = \log_4 \left(\frac{80}{20}\right) = \log_4 4 = 1$$

• 6

•
$$4^{\log_2 3} = 2^{2 \log_2 3} = 2^{\log_2 3^2} = 2^{\log_2 9} = 9$$

• Örnek. $3 \log_b 2 + \frac{1}{2} \log_b 25 - \log_b 20 = \log_b x$ denkleminden x i bulunuz.

- Örnek. $3 \log_b 2 + \frac{1}{2} \log_b 25 \log_b 20 = \log_b x$ denkleminden x i bulunuz.
- Çözüm.

$$3\log_b 2 + \frac{1}{2}\log_b 25 - \log_b 20 = \log_b x$$

$$\log_b 2^3 + \log_b \left(5^2\right)^{\frac{1}{2}} - \log_b 20 = \log_b x$$

$$\log_b 8 + \log_b 5 - \log_b 20 = \log_b x$$

$$\log_b \left(\frac{8 \cdot 5}{20}\right) = \log_b x$$

$$\log_b 2 = \log_b x$$

$$2 = x$$

• Örnek. $\log_3 x + \log_3 (x - 3) = \log_3 10$ denklemini çözünüz.

- Örnek. $\log_3 x + \log_3 (x 3) = \log_3 10$ denklemini çözünüz.
- Çözüm.

$$\log_3 x + \log_3 (x - 3) = \log_3 10$$

$$\log_3 [x (x - 3)] = \log_3 10$$

$$x (x - 3) = 10$$

$$x^2 - 3x - 10 = 0$$

$$(x + 2) (x - 5) = 0$$

denkleminden $x_1 = -2$ ve $x_2 = 5$ bulunur. Ancak $x_1 = -2$ verilen denklemin sağlamadığından denklemin kökü olamaz. (Yalancı kök!) Verilen denklemin tek kökü x = 5 tir.

• $y = \log_a f(x)$ fonksiyonunun işareti incelenirken a nın durumuna göre inceleme yapılır.

- $y = \log_a f(x)$ fonksiyonunun işareti incelenirken a nın durumuna göre inceleme yapılır.
 - *a* > 1 için

$$\log_a f(x) > \log_a g(x) \iff f(x) > g(x)$$

$$\log_a f(x) < \log_a g(x) \iff f(x) < g(x)$$

olmalıdır.

- $y = \log_a f(x)$ fonksiyonunun işareti incelenirken a nın durumuna göre inceleme yapılır.
 - *a* > 1 için

$$\log_a f(x) > \log_a g(x) \iff f(x) > g(x)$$

$$\log_a f(x) < \log_a g(x) \iff f(x) < g(x)$$

olmalıdır.

• 0 < a < 1 için

$$\log_a f(x) > \log_a g(x) \iff f(x) < g(x)$$

$$\log_a f(x) < \log_a g(x) \iff f(x) > g(x)$$

olmalıdır.

- $y = \log_a f(x)$ fonksiyonunun işareti incelenirken a nın durumuna göre inceleme yapılır.
 - *a* > 1 için

$$\log_a f(x) > \log_a g(x) \iff f(x) > g(x)$$

 $\log_a f(x) < \log_a g(x) \iff f(x) < g(x)$

olmalıdır.

• 0 < a < 1 için

$$\log_a f(x) > \log_a g(x) \iff f(x) < g(x)$$

 $\log_a f(x) < \log_a g(x) \iff f(x) > g(x)$

olmalıdır.

Logaritmik eşitsizlik çözümü yapılırken logratima fonksiyonun tanımı gereği

$$a > 0$$
, $a \neq 1$, $f(x) > 0$

olması gerektiği dikkate alınmalıdır.

• Örnek. Aşağıdaki eşitsizlikleri sağlayan reel sayı aralıklarını bulunuz.

- Örnek. Aşağıdaki eşitsizlikleri sağlayan reel sayı aralıklarını bulunuz.
 - **1** $\log (3x 6) < 1$

- Örnek. Aşağıdaki eşitsizlikleri sağlayan reel sayı aralıklarını bulunuz.

 - 1 $\log (3x 6) < 1$ 2 $\log_{\frac{1}{4}} (1 x^2) \ge 3$

- Örnek. Aşağıdaki eşitsizlikleri sağlayan reel sayı aralıklarını bulunuz.

 - 1 $\log (3x 6) < 1$ 2 $\log_{\frac{1}{4}} (1 x^2) \ge 3$
- Çözüm.

- Örnek. Aşağıdaki eşitsizlikleri sağlayan reel sayı aralıklarını bulunuz.

 - $\log_{\frac{1}{4}}(1-x^2) \ge 3$
- Çözüm.
 - ① $3x 6 > 0 \Longrightarrow x > 2$ olmalıdır. Diğer taraftan

$$\log (3x - 6) < \log 10 \Longleftrightarrow 3x - 6 < 10$$

$$x < \frac{16}{3}$$

olacağından eşitsizliğin çözümü $2 < x < \frac{16}{3}$ olur.

- Örnek. Aşağıdaki eşitsizlikleri sağlayan reel sayı aralıklarını bulunuz.
 - **1** $\log (3x 6) < 1$
 - $\log_{\frac{1}{4}}(1-x^2) \ge 3$
- Çözüm.
 - ① $3x 6 > 0 \Longrightarrow x > 2$ olmalıdır. Diğer taraftan

$$\log (3x - 6) < \log 10 \Longleftrightarrow 3x - 6 < 10$$

$$x < \frac{16}{3}$$

olacağından eşitsizliğin çözümü $2 < x < \frac{16}{3}$ olur.

$$\log_{\frac{1}{4}} \left(1 - x^2 \right) \ge \log_{\frac{1}{4}} \left(\frac{1}{4} \right)^3 \Longleftrightarrow 1 - x^2 \le \left(\frac{1}{4} \right)^3$$

$$x^2 \ge \frac{63}{64} \Longleftrightarrow x \ge \frac{\sqrt{63}}{8} \text{ veya } x \le -\frac{\sqrt{63}}{8}$$

olacağından eşitsizliğin çözümü $\left(-1,-\frac{\sqrt{63}}{8}\right]\cup\left[\frac{\sqrt{63}}{8},1\right)$ olur.

• Örnek. Aşağıdaki sayıları sıralayınız.

$$x = \log_2 3$$

$$y = \log_3 13$$

$$z = \log_5 3$$

• Örnek. Aşağıdaki sayıları sıralayınız.

$$x = \log_2 3$$

$$y = \log_3 13$$

$$z = \log_5 3$$

• Çözüm.

olduğundan y > x > z olur.