

yathartha.regmi@ttu.edu

(Sign out)

Home My Assignments
Grades Communication

Calendar

My eBooks

← PHYS 2401, section 201, Summer 2 2022

Mirrors and Lenses (Homework)

™ INSTRUCTOR **Keith West**Texas Tech University

Due Date

THU, AUG 4, 2022

11:59 PM CDT

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

A periscope (see figure below) is useful for viewing objects that cannot be seen directly. It can be used in submarines and when watching golf matches or parades from behind a crowd of people. Suppose the object is a distance p_1 from the upper mirror and the centers of the two flat mirrors are separated by a distance h.

(a) What is the distance of the final image from the lower mirror? (Use any variable or symbol stated above as necessary.)

behind the lower mirror

- (b) Is the final image real or virtual?
 - O real
 - O virtual
- (c) Is it upright or inverted?
 - \bigcirc upright
 - inverted
- (d) What is its magnification?

(e) Does it appear to be left-right reversed?

○ Yes

○ No

Need Help?

Read It

A concave spherical mirror has a radius of curvature of magnitude 21.0 cm.

(a) Find the location of the image for the following object distances. (If there is no image formed enter "NONE".)

object distance (cm)	image distance (cm)	location
39.4		Select ✓
21.0		Select
10.5		Select ✓

(b) For each case, state whether the image is real or virtual.

object distance (cm)	real/virtual
39.4	Select ✓
21.0	Select
10.5	Select

(c) For each case, state whether the image is upright or inverted.

object distance (cm)	real/virtual
39.4	Select 🗸
21.0	Select ∨
10.5	Select 🕶

(d) Find the magnification in each case. (If there is no image formed enter "NONE".)

object distance (cm)	magnification
39.4	
21.0	
10.5	

Need Help? Read It Master It

3. [-/6 Points]	DETAILS	SERPSE1	0 35.2.OP.005.MI.
MY NOTES	ASK YOUR TE	ACHER	PRACTICE ANOTHER

A convex spherical mirror has a radius of curvature of magnitude 46.0 cm.

(a) Determine the	osition of the virtual image and the magnification for object distances of <mark>37.0</mark>
cm. Indicate the lo	ation of the image with the sign of your answer.
image location =	cm
magnification =	
` '	osition of the virtual image and the magnification for object distances of 53.0
cm. Indicate the lo	ation of the image with the sign of your answer.
image location =	cm
magnification -	

Need Help? Read It Master It

The image of the coin in the figure is magnified by a factor of M = 2.3 times, and is a distance d = 4.0 cm from the lens. What is the focal length (in cm) of the lens?

6. [-/2 Points]	DETAILS	SERPSE1	0 35.4.OP.022.
MY NOTES	ASK YOUR T	EACHER	PRACTICE ANOTHER

The projection lens in a certain slide projector is a single thin lens. A slide 25.0 mm high is to be projected so that its image fills a screen 1.85 m high. The slide-to-screen distance is 3.06 m.

(a) Determin	e the focal	length	of the	projection	lens.
	mm				

(b)	How	far	from	the	slide	should	the	lens	of	the	projec	ctor	be	placed	to	form	the	image	on	the
scr	een?																			
			_																	

_		
ed Heln?	Read It	Watch It

mm

7. [-/4 Points] DETAILS SERPSE10 35.A.P.048. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER

Two converging lenses having focal lengths of $f_1 = 12.5$ cm and $f_2 = 18.0$ cm are placed a distance d = 49.5 cm apart as shown in the figure below. The image due to light passing through both lenses is to be located between the lenses at the position x = 33.0 cm indicated.

- (a) At what value of p should the object be positioned to the left of the first lens?
- (b) What is the magnification of the final image?
- (c) Is the final image upright or inverted?
 - O inverted
 - O upright
- (d) Is the final image real or virtual?
 - O real
 - virtual

Need Help? Read It

Submit Assignment

Save Assignment Progress

<u>Home</u> <u>My Assignments</u>

Copyright © 1998 - 2022 Cengage Learning, Inc. All Rights Reserved

TERMS OF USE PRIVACY