Blockchain Technologies

CIA TRIAD

- ➤ Confidentiality: Preserving authorized restrictions on information access and disclosure.
 - >A loss of confidentiality is the unauthorized disclosure of information.
- ➤ Integrity: Guarding against improper information modification or destruction.
 - A loss of integrity is the unauthorized modification or destruction of information.
- ➤ Availability: Ensuring timely and reliable access to information.
 - A loss of availability is the disruption of access to or use of information or an information system.

OTHER SECURITY REQUIREMENTS

- ➤ Authenticity: The property of being genuine and being able to be verified and trusted.
 - >This means verifying that users are who they say they are and that each input arriving at the system came from a trusted source.
- >Accountability: The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity.
 - We must be able to trace a security breach to a responsible party.
 - > Systems must keep records of their activities to permit later forensic analysis to trace security breaches or to aid in transaction disputes.

BASIC SITUATION IN CRYPTOGRAPHY Passive intruder Active intruder can just listens alter messages Decryption Encryption **Plaintext Plaintext** Communication Channel Algorithm, **D** Algorithm, E Ciphertext Encryption key: K Decryption key: K'

Passive attack: the attacker only monitors the traffic attacking the confidentiality of the data

 $C = E_K(P)$

Active attack: the adversary attempts to alter the transmission attacking data integrity, confidentiality, and authentication, system resources or affect their operations

CLASSIFICATION OF CRYPTOSYSTEMS

SYMMETRIC CIPHERS

- Stream cipher is one that encrypts a digital data stream one bit (or byte) at a time
 - > Example: autokey Vigenère system

- ➤ Block cipher is one in which the plaintext is divided in blocks and one block is encrypted at one time producing a ciphertext of equal length
 - ➤ 64 bits or 128 bits are typical blocklengths
 - ➤ Many modern ciphers are block ciphers

BLOCK CIPHERS STRUCTURE

> Block ciphers are built by iteration:

 $\triangleright R(k, m)$ is called a round function.

ADVANCED ENCRYPTION STANDARD

- ➤ AES competition
 - ➤ Started in January 1997 by NIST
 - ▶ 4-year cooperation between
 - > U.S. Government
 - ➤ Private Industry
 - > Academia
- ➤ Why?
 - ➤ Replace 3DES
 - >Provide a publicly disclosed encryption algorithm, available royalty-free, worldwide

THE FINALISTS

> MARS

>IBM

>RC6

RSA Laboratories

Rijndael

>Joan Daemen (Proton World International) and Vincent Rijmen (Katholieke Universiteit Leuven)

> Serpent

➤ Ross Anderson (University of Cambridge), Eli Biham (Technion), and Lars Knudsen (University of California San Diego)

> Twofish

>Bruce Schneier, John Kelsey, and Niels Ferguson (Counterpane, Inc.), Doug Whiting (Hi/fn, Inc.), David Wagner (University of California Berkeley), and Chris Hall (Princeton University)

VERSIONS OF AES

- ➤ Rijndael supports block sizes and key sizes of 128, 160, 192, 224 and 256 bits.
- Only 128-bit block size, and 128, 192, and 256 key sizes are specified in the AES.

Version	Key Size	Number of rounds
AES-128	128 bits	10
AES-192	192 bits	12
AES-256	256 bits	14

AES KEY SIZE

➤ Uses really big numbers

- ▶1 in 2⁶¹ odds of winning the lotto and being hit by lightning on the same day
- ≥292 atoms in the average human body
- ≥2¹²⁸ possible keys in AES-128
- ≥2¹⁷⁰ atoms in the planet
- > 2¹⁹⁰ atoms in the sun
- ≥ 2¹⁹² possible keys in AES-192
- ≥2²³³ atoms in the galaxy
- ≥2²⁵⁶ possible keys in AES-256

AES

CLASSIFICATION OF CRYPTOSYSTEMS

PROBLEMS WITH SYMMETRIC CIPHERS

- Key management: changing the secret key or establishing one is nontrivial.
 - ➤ Change the keys two users share (should be done reasonably often)
 - >Establish a secret key with somebody you do not know and cannot meet in person: (e.g., visiting secure websites such as e-shops)
 - > This could be done via a trusted Key Distribution Center (KDC)
 - ➤ Can (or should) we really trust the KDC?
 - "What good would it do after all to develop impenetrable cryptosystems, if their users were forced to share their keys with a KDC that could be compromised by either burglary or subpoena?" – Diffie, 1988
- Digital signatures: a mathematical scheme for demonstrating the authenticity of digital messages or documents

A BREAKTHROUGH IDEA

- ➤ Rather than having a secret key that the two users must share, each users has **two keys**
- > One key is secret and he is the only one who knows it
- ➤ The other key is public and anyone who wishes to send him a message uses that key to encrypt the message
- ➤ Diffie and Hellman's groundbreaking 1976 paper, "New Directions in Cryptography," introduced the ideas of public-key cryptography
- ➤ NSA claims to have known it since mid-1960s!
- Communications-Electronic Security Group (British counterpart of NSA) documented the idea in a classified report in 1970.

Martin Hellman & Whitfield Diffie

INVENTION OF PUBLIC KEY CRYPTOGRAPHY

Diffie and Hellman's invention of public-key cryptography and digital signatures revolutionized computer security

They received the 2015 ACM A.M. **Turing Award** for critical contributions to modern cryptography

THE IDEA OF PUBLIC-KEY CRYPTOGRAPHY

- Although the concept was proposed by Diffie and Hellman, no practical way to design such a system was suggested.
- ➤ Each user has two keys: one encryption key that he makes public and one decryption key that he keeps secret.
 - >Clearly, it should be computationally infeasible to determine the decryption key given only the encryption key and the cryptographic algorithm.
- Some algorithms (such as RSA) satisfy also the following useful characteristic:
 - ➤Either one of the two keys can be used for encryption the other one should then be used to decrypt the message.

STEPS IN PUBLIC-KEY SCHEME

- ➤ Each user generates a pair of keys to be used for encryption and decryption.
- ➤ Each user places one of the two keys in a public register and the other key is kept private.
- ➤ If B wants to send a confidential message to A, B encrypts the message using A's public key.
- >When A receives the message, she decrypts it using her private key
 - Nobody else can decrypt the message because that can only be done using A's private key.
 - > Deducing a private key should be infeasible.
- ➤ If a user wishes to change his keys generate another pair of keys and publish the public one: no interaction with other users is needed.

SOME NOTATION

- \triangleright The public key of user A will be denoted PU_A
- \triangleright The private key of user A will be denoted PR_A
- ➤ Encryption method will be a function E
- ➤ Decryption method will be a function D
- ➤If B wishes to send a plain message *X* to A, then he sends the ciphertext:

$$Y = E(PU_A, X)$$

The intended receiver A will decrypt the message:

$$D(PR_A, Y) = X$$

PUBLIC KEY SCHEME FOR CONFIDENTIALITY

ATTACK ON THE PUBLIC-KEY SCHEME

> Immediate attack on this scheme:

- \triangleright An attacker may impersonate user B: he sends a message $E(PU_A, X)$ and claims in the message to be B
- This was guaranteed in symmetric cryptosystems through knowing the key (only A and B are supposed to know the symmetric key)

The **authenticity** of user B can be established as follows:

- \triangleright B will encrypt the message using his private key: $Y = E(PR_B, X)$
- >This shows the authenticity of the sender because he is the only one who knows the private key
- > The entire encrypted message serves as a digital signature
- > Note: this may not be the best possible solution: ideally, digital signatures should be rather small so that one can preserve many of them over a long period of time

PUBLIC KEY SCHEME FOR AUTHENTICATION

CONFIDENTIALITY AND AUTHENTICATION

- >Still a drawback: the scheme on the previous slide authenticates but does not ensure confidentiality of the message
 - > Anybody can decrypt the message using B's public key
- >One can provide both authentication and confidentiality using the public-key scheme twice:
 - ➤ B encrypts X with his private key: $Y = E(PR_B, X)$
 - ► B encrypts Y with A's public key: $Z = E(PU_A, Y)$
 - \triangleright A will decrypt Z (and she is the only one capable of doing it):

$$Y = D(PR_A, Z)$$

A can now get the plaintext and ensure that it comes from B (B is the only one who knows his private key): decrypt Y using B's public key:

$$X = E(PU_B, Y)$$

CONFIDENTIALITY AND AUTHENTICATION

APPLICATIONS FOR PUBLIC-KEY CRYPTOSYSTEMS

- **1.Encryption/decryption**: sender encrypts the message with the receiver's public key.
- **2.Digital signature**: sender "signs" the message (or a representative part of the message) using his private key.
- **3. Key exchange**: two sides cooperate to exchange a secret key for later use in a secret-key (symmetric) cryptosystem.

REQUIREMENTS FOR PUBLIC-KEY CRYPTOSYSTEMS

- > Generating a key pair (public key, private key) is computationally easy.
- >Encrypting a message using a known key (his own private or somebody else's public) is computationally easy.
- >Decrypting a message using a known key (his own private or somebody else's public) is computationally easy.
- >Knowing the public key, it is computationally infeasible for an opponent to deduce the private key.
- ➤ Knowing the public key and a ciphertext, it is computationally infeasible for an opponent to deduce the private key.

DESIGNING A PUBLIC-KEY CRYPTOSYSTEM

- > Computationally easy usually means polynomial-time algorithm
- > Computationally infeasible more difficult to define:
 - > Usually means super-polynomial-time algorithms, e.g., exponential-time algorithms
 - Classical complexity analysis (worst-case complexity or average-case complexity) are worthless in cryptography: we must make sure a problem is difficult for almost all inputs and not just in the worse or in the average case

- ➤ Public-key cryptosystems usually rely on difficult math functions rather than S-P networks as classical cryptosystems:
 - > Aim: find a trap-door one-way function for encryption decryption will be the inverse

DIFFICULT MATH FUNCTIONS

 One-way function: easy to calculate in one direction, infeasible to calculate in the other direction (i.e., the inverse is infeasible to compute)

- ➤ One-way function has
 - ightharpoonup Computing Y = f(X) is easy
 - ► Computing $X = f^{-1}(Y)$ is infeasible

DIFFICULT MATH FUNCTIONS

- Trap-door function: difficult function that becomes easy if some extra information is known
- A trap-door one-way function has
 - Computing $Y = f_k(X)$ is easy, if k and X are known
 - Computing $X = f_k^{-1}(Y)$ is easy, if k and Y are known
 - Computing $X = f_k^{-1}(Y)$ is infeasible, if Y is known but k is not known

ONE-WAY AND TRAP-DOOR FUNCTIONS

- ➤ One-way function has
 - ightharpoonup Computing Y = f(X) is easy
 - ➤ Computing $X = f^{-1}(Y)$ is infeasible
- ➤ A trap-door one-way function has
 - ightharpoonup Computing $Y = f_k(X)$ is easy, if k and X are known
 - Computing $X = f_k^{-1}(Y)$ is easy, if k and Y are known
 - ightharpoonup Computing $X = f_k^{-1}(Y)$ is infeasible, if Y is known but k is not known
- A practical public-key scheme depends on a suitable trapdoor one-way function.

RSA

- ➤One of the first proposals on implementing the concept of public-key cryptography was that of Rivest, Shamir, Adleman 1977: RSA
- The RSA scheme works like a block cipher in which the plaintext and the ciphertext are integers between 0 and n-1 for some fixed n
 - > Typical size for n is 1024 bits (or 309 decimal digits)
 - > To be secure with today's technology size should between 1024 and 2048 bits
- ➤ Idea of RSA: it is a difficult math problem to factorize (large) integers
 - \triangleright Choose p and q odd primes, and compute n = pq
 - \triangleright Choose integers d, e such that $M^{ed} = M \mod n$, for all M < n
 - **Plaintext**: block of k bits, where $2^{k-1} \le n < 2^k$ − can be considered a number M with M < n
 - **Encryption**: $C = M^e \mod n$
 - **Decryption**: $C^d \mod n = M^{ed} \mod n = M$
 - **Public key**: $PU = \{e, n\}$ and **Private key**: $PR = \{d, n\}$

NUMBER THEORY

- \triangleright Questions: How do we find d, e? How do we find large primes?
 - ➤ Answer: Number Theory!
- **Fermat's little theorem**: if p is prime and a is positive integer not divisible by p, then $a^{p-1} \equiv 1 \mod p$
- **Corollary**: For any positive integer a and prime p, $a^p \equiv a \mod p$
- Fermat's little theorem provides a necessary condition for an integer p to be prime the condition is not sufficient
 - > We will turn this theorem into a (probabilistic) test for primality
- \succ Fermat's theorem, as useful as it will turn out to be, it does not provide us with integers d, e we are looking for
 - > Euler's theorem (a refinement of Fermat's) does.

EULER'S TOTIENT FUNCTION

- \succ Euler's function associates to any positive integer n a number $\phi(n)$: the number of positive integers smaller than n and relatively prime to n
 - ▶ Obviously for a prime number p: ϕ (p) = p-1
- > It is easy to show that if $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ be the prime factorization of n,

then:
$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)...\left(1 - \frac{1}{p_k}\right)$$

- For prime numbers p and $q:\phi(pq)=(p-1)(q-1)$
- **Euler's theorem**: for any relatively prime integers a, n we have: $a^{\phi(n)} \equiv 1 \mod n$
- **Corollary:** For any integers a, k, n we have $a^{k\phi (n)+1} \equiv a \mod n$

BACK TO RSA

- Let p,q be two odd primes and n=pq. Then for any integers k,m with 0 < m < n, we have $m^{k(p-1)(q-1)+1} \equiv m \mod n$
- \succ Euler's theorem provides us the numbers d, e such that

$$M^{ed} = M \mod n$$

- We have to choose d, e such that $ed = k\phi(n) + 1$ for some k
- ightharpoonup Equivalently, $d \equiv e^{-1} \mod \varphi(n)$

RSA EXAMPLE

≻ Key generation

- \triangleright Select primes p = 17, q = 11
- \triangleright Compute n = pq = 187
- ► Compute $\phi(n) = (p-1)(q-1) = 160$
- > Select e = 7: gcd(7,160) = 1
- ► Compute $d = e^{-1} \mod \phi(n)$ using the extended Euclid's algorithm:

$$160 = 22 \times 7 + 6 \rightarrow 7 = 1 \times 6 + 1$$

 $1 = 7 - 1 \times 6 = 7 - 1 \times (160 - 22 \times 7) = 23 \times 7 - 1 \times 160$
 $\rightarrow 7^{-1} \mod 160 = 23$

- $PU = \{7,187\}$ is the public key
- $> PR = \{23,187\}$ is the private key

RSA EXAMPLE

> Encrypt M = 88: $88^7 \mod 187 = [(88^4 \mod 187)(88^2 \mod 187) (88 \mod 187)] = 11$

```
> Decrypt C = 11:
```

 $M = 11^{23} \mod 187 = [(11^{16} \mod 187)(11^4 \mod 187) (11^2 \mod 187) (11 \mod 187)]$

- $> 11^2 \mod 187 = 121$
- $> 11^4 \mod 187 = 121^2 \mod 187 = 55$
- $> 11^8 \mod 187 = 55^2 \mod 187 = 33$
- $> 11^{16} \mod 187 = 33^2 \mod 187 = 154$
- $M = 154 \times 55 \times 121 \times 11 \mod 187 = 88$
- The above algorithm is called **square-and-multiply algorithm** and often used for fast modular exponentiation.

EQUIVALENT SECURITY OF RSA

- ➤ Public-key cryptography complements rather than replaces symmetric cryptography
- There is nothing in principle to make public-key crypto more secure than symmetric crypto
- ➤ Public-key crypto does not make symmetric crypto obsolete: it has its advantages but also its (major) drawbacks such as speed
- > Due to its low speed, it is mostly confined to key management and digital signatures