UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2018/1Prova da área I

1-6	7	8	Total

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

	(, 0 ,)
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} ight) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$ \vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right) $

Curvatura, torçao e aceleração:				
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (1.0 ponto) Considere as curvas C_1 , C_2 , C_3 e C_4 , com curvaturas κ_1 , κ_2 , κ_3 e κ_4 , respectivamente. Todas as curvas são circunferências ou reta. Na primeira coluna, marque o item que apresenta todas as curvas com curvatura constante e, na segunda, a magnitude das curvaturas no ponto de encontro entre todas as curvas.

Curvas com curvatura constante Curvatura no ponto de encontro de todas as curvas

() Somente C_4 .

() $\kappa_1 > \kappa_2 > \kappa_3 > \kappa_4$.

() Somente C_4 e C_1 .

() $\kappa_1 < \kappa_2 < \kappa_3 < \kappa_4$.

() Somente C_4 e C_2 .

(X) $\kappa_4 < \kappa_1 < \kappa_2 < \kappa_3$.

() Somente C_4 , C_3 e C_2 .

 $() \kappa_4 > \kappa_1 > \kappa_2 > \kappa_3.$

() Somente C_4 , C_2 e C_1 . (X) C_4 , C_3 , C_2 e C_1 .

() $\kappa_1 = \kappa_2 = \kappa_3 > \kappa_4$. $() \kappa_1 = \kappa_2 = \kappa_3 < \kappa_4.$

• Questão 2 (1.0 ponto) Considere três pontos sobre a curva ao lado, nomeados de P1, P2 e P3, dispostos respectivamente no sentido positivo da curva, e em cada ponto o esboço do triedro de Frenet-Serret. Considere um partícula se deslocando sobre a curva no sentido positivo com velocidade escalar estritamente crescente. Marque na primeira coluna o correto item sobre a aceleração da partícula e, na segunda, a correta afirmação sobre o sinal da torção em cada pedaço da curva.

Aceleração

- () A componente normal da aceleração é negativa.
- () A componente tangencial da aceleração é negativa.
- (X) A componente tangencial da aceleração é positiva.
- () A norma do vetor aceleração é constante em todos os pon-
- () A norma do vetor aceleração tem derivada zero em todos () A torção é zero nos pontos P_1, P_2 e P_3 . os pontos.

Torção

- () A torção é sempre positiva.
- (X) A torção é sempre negativa.
- () A torção é positiva entre P_1 e P_2 e negativa entre P_2 e P_3 .
- () A torção é negativa entre P_1 e P_2 e positiva entre P_2 e P_3 .

• Questão 3 (1.0 ponto) Considere os campos dados por $\vec{F} = x\vec{i} + xe^y\vec{j} + xyz\vec{k}$, $\vec{G} = \vec{\nabla} \left(\vec{F} \cdot \vec{F} \right)$ e C a circunferência de raio 2 no plano xy centrada na origem. Marque na primeira coluna o campo $\vec{G} \cdot \vec{i}$ e, na segunda, o valor de $\int_{G} \vec{G} \cdot \vec{dr}$.

(X)
$$2x \left(1 + e^{2y} + y^2 z^2\right)$$

()
$$2(1+e^{2y}+y^2z^2)$$

()
$$2y(e^{2y}+y^2z)$$

()
$$2z(1+2e^y+y^2z^2)$$

()
$$2y(x+2e^{2y}+yz^2)$$

$$(\)\ -1$$

$$(\)\ -2$$

• Questão 4 (1.0 ponto) Considere a superfície S aberta dada na figura ao lado, limitada pelo curva C. A superfície S é dada por uma função z=f(x,y), tem simetria axial em relação ao eixo z e o domínio de f é $[-1,1] \times [-1,1]$. A superfície S está orientada no sentido de \vec{k} e a curva C está positivamente orientada com respeito a S. Considere o campo $\vec{F}=(x+1)\vec{j}+10\vec{k}$ e as seguintes integrais:

$$A = \int_C \vec{F} \cdot d\vec{r}$$

е

$$B = \iint_{S} \vec{F} \cdot \vec{n} dS.$$

Marque na primeira coluna o correto sinal de A e, na segunda, o correto sinal de B.

Sinal de A

- (X) A > 0.
- () A = 0.
- () A < 0.
- () Embora $A \neq 0$, não é possível saber seu sinal.
- () Não há informações suficientes para estimar A.

Sinal de B

- (X) B > 0.
- () B = 0.
- () B < 0.
- () Embora $B \neq 0$, não é possível saber seu sinal.
- () Não há informações suficientes para estimar B.

- Questão 5 (1.0 ponto) Dado o campo conservativo $\vec{F} = (\cos(x) + 2xy^2z^2)\vec{i} + (2x^2yz^2)\vec{j} + (2x^2y^2z)\vec{k}$, marque na primeira coluna o pontecial $\phi(x,y,z)$ e, na segunda, o valor $\int_C \vec{F} \cdot d\vec{r}$, onde C é a curva $\vec{r} = \cos(\pi t)\vec{i} + \sin(\pi t)\vec{j} + 2t^2\vec{k}$, $0 \le t \le 1$.
 - (X) $sen(x) + x^2y^2z^2$.
 - () $\cos(x) + x^2y^2z^2$.
 - () $x^2y^2z^2$.
 - () $sen(x) + x^2 + y^2 + z^2$.
 - $() \operatorname{sen}(x)x^2y^2z^2.$

- () 0.
- (X) -2 sen(1).
- () $2 \sin(1)$.
- () 2 sen(1) + 2.
- $() -2 \operatorname{sen}(1) + 2.$

- Questão 6 (1.0 ponto) Considere o campo vetorial $\vec{F} = x\vec{i} + \vec{j} + z\vec{k}$ e a superfície S formada pelas seis faces do cubo de lado 8 ($x = \pm 4$, $y = \pm 4$ e $z = \pm 4$), orientada para fora. Chamamos de S_1 apenas a face y = -4 do cubo, orientado no sentido de $-\vec{j}$. Na primeira coluna marque o item que corresponde $\iint_{S_1} \vec{F} \cdot \vec{n} dS$ e, na segunda, $\oiint_{S} \vec{F} \cdot \vec{n} dS$.
 - () 0
 - (X) -64
 - () 64
 - () -512 () 512

- () 64
- () 512
 - (X) 1024
 - () 2048
 - () 4096

 \bullet Questão 7 (2.0 ponto) Calcule o valor de c para que a Hélice

$$\vec{r}(t) = a\cos(wt)\vec{i} + a\sin(wt)\vec{j} + ct\vec{k}, \qquad a > 0.$$

tenha torção máxima.

Solução: Começamos calculando a torção:

$$\vec{r}'(t) = -aw \operatorname{sen}(wt) \vec{i} + aw \cos(wt) \vec{j} + c\vec{k},$$

$$\vec{r}''(t) = -aw^2 \cos(wt) \vec{i} - aw^2 \operatorname{sen}(wt) \vec{j},$$

$$\vec{r}'''(t) = aw^3 \operatorname{sen}(wt) \vec{i} - aw^3 \cos(wt) \vec{j},$$

$$\vec{r}''(t) \times \vec{r}''(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -aw \operatorname{sen}(wt) & aw \cos(wt) & c \\ -aw^2 \cos(wt) & -aw^2 \operatorname{sen}(wt) & 0 \end{vmatrix} = aw^2 c \operatorname{sen}(wt) \vec{i} - aw^2 c \cos(wt) \vec{j} + a^2 w^3 \vec{k},$$

$$\|\vec{r}'(t) \times \vec{r}''(t)\| = \sqrt{a^2 w^4 c^2 + a^4 w^6} = aw^2 \sqrt{c^2 + a^2 w^2},$$

$$\vec{r}'(t) \times \vec{r}''(t) \cdot \vec{r}'''(t) = a^2 w^5 c$$

$$\tau = \frac{wc}{c^2 + a^2 w^2}$$

Agora, vamos derivar com respeito a c:

$$\frac{d\tau}{dc} = \frac{w(c^2 + a^2w^2) - 2wc^2}{(c^2 + a^2w^2)^2} = \frac{w(-c^2 + a^2w^2)}{(c^2 + a^2w^2)^2} = 0.$$

Isso implica em

$$-c^2 + a^2 w^2 = 0,$$

ou seja,

$$c = \pm aw$$
.

Observe que a torção pode ser negativa ou positiva, dependendo do sinal do produto wc. Como queremos a torção máxima, estamos interessados nos valores de wc positivos. Também, quando c=0 temos $\tau=0$ e, $\lim_{c\to\infty}\tau=0$, o que indica que τ passa por um máximo e um mínimo. Concluímos que o máximo acontece para o seguinte valor de c:

c = aw

 \bullet Questão 8 (2.0 ponto) Considere a superfície Saberta dada na figura ao lado, orientada no sentido côncavo-convexo. Seja Ca curva no plano z=0 que limita S. A equação da superfície Sé dada por

$$z^2 + 5z^3 + e^{-5z} = 3 - x^2 - y^2.$$

Considere o campo $\vec{F} = -(y+z)\vec{i} + x\vec{j} + z^2x\vec{k}$. Calcule

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS.$$

Dica: Use o teorema de Stokes.

Solução: Pelo teorema de Stokes, temos:

$$\iint_{S} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = \oint_{C} \vec{F} \cdot d\vec{r} = \iint_{D} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS,$$

Aqui, C é o corte da superfície S com o plano z=0, isto é,

$$0^2 + 5 \cdot 0^3 + e^0 = 3 - x^2 - y^2.$$

Logo, C é a circunferência $x^2 + y^2 = 2$. Também, D é o disco no plano z = 0, com limites satisfazendo $x^2 + y^2 \le 2$. Vamos usar a última expressão do lado direito para calcular o fluxo através da superfície:

$$\iint_{D} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS.$$

Assim, calculamos o ratocional do campo:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y - z & x & z^2 x \end{vmatrix} = (-1 - z^2)\vec{j} + 2\vec{k}.$$

Finalmente, temos

$$\iint_D \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = \iint_D ((-1-z^2)\vec{j} + 2\vec{k}) \cdot \vec{k} dA = 2 \iint_D 1 dA = 4\pi.$$