Анализ алгоритмов

Ульянов Михаил Васильевич

2019

Оглавление

1	Исторический очерк			
2	Cxe	Схема выбора алгоритмического обеспечения		
3	193	6 год Э.Л. Пост "Финитные комбинаторные процессы - формулировка 1"		
	3.1	Терминология		
	3.2	Общая проблема		
	3.3	Пространство символов		
	3.4	Работник (процессор)		
	3.5	Примеры		
	3.6	Гипотеза Поста		
	3.7	1984 Муравей Лэнгтона		

Глава 1

Исторический очерк

1. **1900**

Д. Гильберт - 23 проблемы 1931 - К. Гедель доказал теорему о неполноте

2. **1936**

А.Тьюринг, Э.Л.Пост - Теория алгоритмов (начало)

- формализация понятия
- общие свойства
- обнаружение алгоритмически неразрешимых задач

3. **1960e**

Теория сложности вычислений NPC $O(n^2)$ $O(n \cdot \ln(n))$

4. **Начало 1970**х

Практический анализ алгоритмов Д.Э. Кнут

Глава 2

Схема выбора алгоритмического обеспечения

Нет:

- А. Новый (метод разработки)
- В. Комбинированные элементы $(A_1 + A_2 + A_3)$

$$Q(q_1,...,q_m) = \sum \alpha_i q_i \to R^1 \text{ - комплексные оценки}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

$$a+ib = (c+id) = ^{det} (ac-bd) + i(bc+ad)$$

Глава 3

1936 год Э.Л. Пост "Финитные комбинаторные процессы - формулировка 1"

3.1 Терминология

Общая проблема = задача Конкретная проблема = индивидуальная задача

3.2 Общая проблема

Общая \rightarrow множество всех конкретных Решение общей \rightarrow решение каждой конкретной

3.3 Пространство символов

Конкретная проблема задается внешней силой путем пометки конечного числа символов.

3.4 Работник (процессор)

- $1. \rightarrow (R)$
- $2. \leftarrow (L)$
- 3. ✓ Поставить метку, если пусто
- 4. ξ Стереть, если есть
- 5. ? $\overset{\text{да}}{\overset{\text{нет}}{\to}} N^o$ строки $\overset{\text{нет}}{\overset{\text{нет}}{\to}} N^o$ строки
- 6. stop

3.5 Примеры

- 1. ξ
- 2. →

3.
$$\stackrel{\text{да}}{\underset{\text{het}}{\rightarrow}} 1$$

4. stop

3.6 Гипотеза Поста

- а) Программа применима к общей, если \forall конкретной нет коллизий в операциях 3,4
- b) программа заканчивается, если stop
- c) Если \forall конкретной внеш сила распознает правильный ответ, то $\Phi 1\Pi$ есть 1-решение общей
- d) Мы вправе рассматривать все более и более широкие формулы

пространство символов алфавита логически сводимы к формуле 1 набор инструкций

 $\mathbf{a} + \mathbf{b} = \Phi$ инитный 1 процесс

3.7 1984 Муравей Лэнгтона

$$W \to (B, R)$$

$$B \to (W, L)$$