1 General Topology

Definition 1.1 (Topology). A topological space is a set X with a collection of subsets \mathcal{U} , called open sets, such that

- 1. $\emptyset, X \in \mathcal{U}$.
- 2. The arbitrary union of open sets is open.
- 3. The finite union of open sets is open.

The complement X - U of an open set U is called closed.

Definition 1.2. Let (X, \mathcal{U}) , (X, \mathcal{V}) be topologies. \mathcal{U} is called stronger(finer) than \mathcal{V} if $\mathcal{V} \subset \mathcal{U}$, and weaker(coarser) if $\mathcal{U} \subset \mathcal{V}$.

Definition 1.3. A basis \mathcal{B} of a topology for X is a collection of subsets of X such that

- 1. For each $x \in X$ there is at least one $B \in \mathcal{B}$ with $x \in B$.
- 2. If $x \in B_1 \cap B_2$ then there exists a $B_3 \subset B_1 \cap B_2$ with $x \in B_3$.

We say that \mathcal{B} generates the topology \mathcal{U} if U is open iff for every $x \in U$ there exits $B \in \mathcal{B}$ with $x \in B \subset U$.

Lemma 1.4. Let \mathcal{B} be a basis for a topology \mathcal{U} on X. Then \mathcal{U} is equal to the collection of all unions of elements of \mathcal{B} .

Lemma 1.5. If \mathcal{C} is a collection of open sets, such that for each $U \subset X$ open, $x \in U$ there is $C \in \mathcal{C}$ such that $x \in C \subset U$, then \mathcal{C} is a basis for X.

Lemma 1.6. Let \mathcal{B} , \mathcal{B}' be bases for topologies \mathcal{U} , \mathcal{U}' respectively on X. Then the following are equivalent:

- 1. \mathcal{U}' is finer than \mathcal{U} .
- 2. For each $x \in B \in \mathcal{B}$, there is a $B' \in \mathcal{B}'$ with $x \in B' \subset B$.

Definition 1.7. A subbasis S for a topology on X is a collection of subsets whose union equals X. The topology generated by the subbasis is defined to be the collection of all unions of finite intersections of elements of S.