Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	20 /05 /2020	Client

1 Input Parameters

Module	Tension Members Bolted Design		
Axial (kN) *	1000.0		
Length(mm) *	18000.0		
Section Size*	Ref List of Input Section		
Bolt Deta	ils		
Diameter (mm)*	[30.0, 36.0]		
Grade *	[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]		
Type *	Bearing Bolt		
Bolt hole type	Standard		
Bolt Ultimate Strength (N/mm2)	0.0		
Bolt Yield Strength (N/mm2)	0.0		
Slip factor (μ_f)	0.3		
Type of edges	a - Sheared or hand flame cut		
Gap between beam and support (mm)	0.0		
Are the members exposed to corrosive influences	False		
Safety Factors - IS 800:2007 Table 5 (Clause 5.4.1)			
Governed by Yielding	$\gamma_{m0} = 1.1$		
Governed by Ultimate Stress	$\gamma_{m1} = 1.25$		
Connection Bolts - Bearing Type	$\gamma_{mb} = 0.0$		

1.1 List of Input Section

Section Size*	['MCP 100', 'MC 100', 'LC 100', 'JC 100', 'MCP 125', 'MC 125*', 'MC 125', 'LC(P) 125
	', 'LC 125', 'JC 125']

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	20 /05 /2020	Client

2 Design Checks

2.1 Selected Member Data

1				
Section Size*		('MC 125*', 'Channels')		
Material *		E 250 (Fe 410 W)A		
Ultimate stren	Ultimate strength, fu (MPa)		410	
Yield Strengt	Yield Strength , fy (MPa)		250	
Mass	13.7	Iz(mm4)	4340000.0	
Area(mm2) -	1750.0	Iy(mm4)	638000.0	
A				
D(mm)	125	rz(mm)	49.8	
B(mm)	66	ry(mm)	19.1	
t(mm)	6.0	Zz(mm3)	69500.0	
T(mm)	8.1	Zy(mm3)	13600.0	
FlangeSlope	96	Zpz(mm3)	0.0	
R1(mm)	9.5	Zpy(mm3)	13600.0	
R2(mm)	2.4	r(mm3)	19.1	
Cy(mm)	19.2			

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	20 /05 /2020	Client

2.2 Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 30.0	
Hole Diameter (mm)		$d_0 = 33.0$	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	75	Row Limit (rl) = 2
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 33.0 = 56.1	60	
Spacing Check	depth = 2 * e + (rl - 1) * g $= 2 * 60 + (2 - 1) * 75$ $= 195$	89.8	Fail

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	20 /05 /2020	Client

2.3 Member Checks

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)	1000.0	$T_{dg} \text{ or } A_c = \frac{1 * A_g f_y}{\gamma_{m0}}$ $= \frac{1 * 1750.0 * 250}{1.1}$ $= 259.09$	Fail
Slenderness	$\frac{K*L}{r} \le 400$	$\frac{K*L}{r} = \frac{1*18000.0}{19.1}$ $= 942.41$	Fail