Travaux pratiques 1

La Segmentation bayésienne

Auteur:

Clément Fernandes

Professeur:

Wojciech Pieczynski

(clement.fernandes@telecom-sudparis.eu)

I) Une première idée des enjeux du problème

On considère un signal ne pouvant prendre que deux valeurs distinctes ω_1 et ω_2 et on suppose que ce signal est transmis à un destinataire distant par le biais d'un canal de transmission. L'ensemble des perturbations agissant sur ce canal est modélisé par une variable aléatoire gaussienne de telle sorte que lorsque ω_1 (resp. ω_2) est transmis, on observe, au niveau du récepteur, une variable aléatoire gaussienne de moyenne m_1 (resp. m_2) et d'écart-type σ_1 (resp. σ_2).

Pour modéliser le problème on considère donc deux processus aléatoires $X = (X_s)_{\forall s \in S}$ et $Y = (Y_s)_{\forall s \in S}$. Pour tout $s \in S$, X_s prend ses valeurs dans l'espace fini des classes $\Omega = \{\omega_1, \omega_2\}$ et Y_s dans R. Les réalisations de X sont inobservables et le problème de la segmentation est celui de l'estimation de $X = x = (x_s)_{\forall s \in S}$ à partir de l'observation $Y = y = (y_s)_{\forall s \in S}$, i.e. le signal numérique à segmenter. On s'intéresse ici au cas où les couples $(X_s; Y_s)$ sont indépendants (modélisation la plus simple). En réception, la stratégie de décision \hat{s} consiste à choisir la classe ω_1 ou ω_2 pour laquelle la densité de probabilité de l'observation est la plus grande (règle du maximum de vraisemblance):

$$\hat{s}(\mathbf{y}) = \omega_i \operatorname{si} p(\mathbf{y}|\omega_i) = \max_{i \in \{1,2\}} p(\mathbf{y}|\omega_i)$$

- 0. Le langage de programmation conseillé pour ce TP est python 3 (vous pouvez en choisir un autre, mais cela peut compliquer les choses). Il vous faut alors télécharger une version de python 3, puis installer les packages suivants :
 « numpy », et « matplotlib » à l'aide des commandes « pip install numpy » et « pip install matplotlib ».
- 1. On souhaite écrire le script premiere_idee_MV.py réalisant les opérations précédemment décrites et calculant le taux d'erreur obtenu. Pour cela on respectera les étapes suivantes :
 - a. Dans le fichier tools.py, compléter la fonction bruit_gauss2(X,cl1,cl2,ml,sig1,m2,sig2) qui bruite le vecteur X avec un bruit gaussien indépendant de moyenne m1 (resp. m2) et d'écart type sig1 (resp. sig2) pour la classe cl1 (resp. cl2). L'écriture cl1 (resp. cl2) fait référence à ω_1 (resp. ω_2) lorsque nous sommes dans le contexte de la programmation.
 - b. Dans le fichier tools.py, compléter la fonction classif_gauss2(Y,cl1,cl2,m1,sig1,m2,sig2) permettant de construire le signal segmenté X_est en classant les données du signal bruité Y dans les classes cl1 et cl2 suivant le critère précédent (on pourra utiliser la fonction norm.pdf qui se trouve dans scipy.stats).
 - c. Ecrire le script premiere_idee_MV.py dans lequel on acquiert le signal X par X = np.load("signal.npy"). On bruite alors le signal avec la fonction bruit_gauss2, on segmente le signal bruité suivant le critère précédent avec la fonction classif_gauss2 et on affiche sur un même graphique les courbes du signal original, du signal bruité et du signal segmenté.

Remarque : Pour récupérer directement les valeurs des classes dans le signal, on pourra inclure dans le script premiere_idee_MV.py les lignes suivantes :

$$cl1, cl2 = np.unique(X)$$

- 2. Dans le fichier tools.py, compléter la fonction taux_erreur(A,B) qui calcule et affiche le taux de signaux différents entre A et B et utiliser cette fonction dans premiere idee MV.py pour calculer le taux d'erreur de segmentation.
- 3. Afin de mesurer statistiquement l'erreur, il est nécessaire de moyenner celle-ci sur un grand nombre, T, de versions bruitées du même signal, simulées à paramètres constants.
 - a. Programmer à la suite du script premiere_idee_MV.py le calcul de cette erreur moyenne pour chaque valeur de T de 1 à 100, et tracer son évolution en fonction de T.
 - b. Que constate-t-on lorsque T devient grand?
 - c. Comment expliquer ce phénomène ?
 - d. Comment l'interpréter en termes de niveau de bruit ?

Remarque : Désormais, tout calcul d'erreur s'entend au sens de l'erreur moyenne.

4. Tester la méthode avec les 6 signaux mis à votre disposition et les bruits du tableau ci-dessous :

m1	m2	sig1	sig2
120	130	1	2
127	127	1	5
127	128	1	1
127	128	0.1	0.1
127	128	2	3

5. Présenter les résultats de segmentation dans un tableau récapitulatif et s'en servir pour déterminer ce qu'est un fort ou un faible niveau de bruit.

II) Apport des méthodes bayésiennes de segmentation

On se propose maintenant d'appliquer un autre critère de décision, plus naturel que le précédent. Il consiste à choisir la classe ω_1 ou ω_2 qui a la probabilité la plus grande d'avoir été émise, compte tenu de la valeur observée par le récepteur. C'est ce que l'on appelle le **Maximum de la vraisemblance A Posteriori** (MAP). La fonction de perte, L, du MAP (qui coïncide, dans le cas de la classification bayésienne aveugle, avec celle du MPM) est définie par :

$$L(\omega_i, \omega_j) \to \begin{cases} 0 \text{ si } \omega_i = \omega_j \\ 1 \text{ sinon} \end{cases}$$

 $L(\hat{s}(Y), \omega)$ désigne alors la valeur, au point (ω, y) , de la fonction indicatrice du sousensemble de $\Omega \times Y$ sur lequel \hat{s} se trompe et $E[L(\hat{s}(Y), X)]$ la probabilité que \hat{s} se trompe. Ainsi dans ce cas la stratégie bayésienne \hat{s}_B est définie par :

$$\hat{s}_B = \begin{cases} \omega_1 \sin p(\omega_1|y) \ge p(\omega_2|y) \\ \omega_2 \sin n \end{cases}$$

Notons que \hat{s}_B peut aussi s'écrire :

$$\hat{s}_B = \begin{cases} \omega_1 \sin p(\omega_1) p(y|\omega_1) \ge p(\omega_2) p(y|\omega_2) \\ \omega_2 \sin on \end{cases}$$

ce qui permet de faire les calculs à partir de la loi de X a priori et des densités du bruit.

- 1. Compléter les fonctions suivantes dans le fichier tools.py:
 - a. calc_probaprio2(X, cl1, cl2) qui calcule la loi du processus **X** *a priori* à partir du signal d'origine **X**.
 - b. MAP_MPM2 (Y, cl1, cl2, p1, p2, m1, sig1, m2, sig2) qui classe les éléments du signal bruité Y suivant le critère du MAP (et du MPM!).
- 2. Programmer le script MAP_MPM2.py en s'inspirant du script précédent. Ce script chargera un signal, puis le bruitera avec la fonction bruit_gauss2, puis le segmentera avec la fonction MAP_MPM2. Tester la méthode de segmentation MAP_MPM2 avec les mêmes signaux et les mêmes bruits que précédemment. Présenter les résultats dans un tableau. Comparer et commenter.
- 3. Dans le fichier tools.py, compléter la fonction simul2 (n, cl1, cl2, p1, p2) qui simule un signal de taille n dont les composantes sont indépendantes et prennent les valeurs cl1 et cl2 avec les probabilités respectives p1 et p2.
- 4. Ecrire le script compare_MAP_MPM.py qui simule un signal X avec la fonction simul2, le bruite avec bruit_gauss2, puis le segmente avec les deux méthodes. Faire une étude en utilisant les bruits de la question I.4, et en faisant varier p1 et p2 (5 × 5 cas différents à segmenter par chaque méthode). Présenter les résultats obtenus dans un tableau. Comparer et commenter.