

Artificial Intelligence

Lab 11 Tasks

Name: Dua Amir

Sap ID: 47849

Batch: BSCS-6th semester

Lab Instructor:

Ayesha Akram

Al Lab 10 Spring 2025

Task1. Solution:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report, accuracy_score
from sklearn.preprocessing import LabelEncoder
# Load dataset
df = pd.read_csv("C:/Users/ACG/Downloads/public-data.csv")
# Clean and encode
df = df.replace( to_replace: " ?", pd.NA).dropna()
le = LabelEncoder()
for column in df.columns:
    if df[column].dtype == 'object':
        df[column] = le.fit_transform(df[column])
# Define features and label
X = df.drop( labels: "Salary", axis=1)
y = df["Salary"]
# Train-test split
X_train, X_test, y_train, y_test = train_test_split( *arrays: X, y, test_size=0.2, random_state=42)
# Train model
model = GaussianNB()
model.fit(X_train, y_train)
# Predict
y_pred = model.predict(X_test)
# Results
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nPredicted labels:", y_pred)
print("Actual labels: ", y_test.values)
print("\nClassification Report:\n", classification_report(y_test, y_pred))
```

AI Lab 10 Spring 2025

Output:

Accuracy: 0.760325502840473				
Predicted labels: Actual labels:				
Classification Report:				
pr	ecision	recall	f1-score	support
Θ	0.87	0.80	0.84	4942
1	0.50	0.63	0.56	1571
accuracy			0.76	6513
macro avg	0.69	0.72	0.70	6513
weighted avg	0.78	0.76	0.77	6513