Modelos Lineares I

Regressão Linear Múltipla (RLM):

Inferência no modelo e Análise dos resíduos

(21^a e 22^a Aulas)

Departamento de Estatística (GET)

Professor: Dr. José Rodrigo de Moraes
Universidade Federal Fluminense (UFF)

Modelo de Regressão Linear Múltipla:

Como vimos:

$$\hat{\boldsymbol{\beta}} \sim N[\boldsymbol{\beta}, \sigma^2(X^{\cdot}X)^{-1}]$$

ou seja, o vetor $\,\hat{\beta}\,$ tem distribuição normal com:

$$E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta} \quad e \quad VAR(\hat{\boldsymbol{\beta}}) = \sigma^2(XX)^{-1}$$

A estimativa da matriz de variância-covariância é dada por;

$$V\hat{A}R(\hat{\beta}) = \hat{\sigma}^2(X^*X)^{-1}$$
, onde:

$$\hat{\sigma}^2 = \text{QMRes} = \frac{\text{SQRes}}{n-p} = \frac{\sum_{i=1}^{n} e_i^2}{n-p}$$

Modelo de Regressão Linear Múltipla:

Seja C_{kk} o k-ésimo elemento da diagonal principal da matriz $(X^*X)^{-1}$. Sabe-se que a variância do estimador de β_k , k=0,1,2,...,p-1 é dada por:

$$VAR(\hat{\beta}_k) = \sigma^2 C_{kk} \rightarrow DP(\hat{\beta}_k) = \sigma \sqrt{C_{kk}}$$

Como

$$Z = \frac{\hat{\beta}_{k} - \beta_{k}}{\sigma \sqrt{C_{kk}}} \sim N(0,1) \quad e \quad \chi^{2} = \frac{(n-p)QMRes}{\sigma^{2}} \sim \chi^{2}_{n-p},$$

temos que

$$T = \frac{\hat{\beta}_k - \beta_k}{\sqrt{V \hat{A} R \left(\hat{\beta}_k\right)}} = \frac{\hat{\beta}_k - \beta_k}{\sqrt{Q M Res} \sqrt{C_{kk}}} = \frac{\hat{\beta}_k - \beta_k}{\sqrt{Q M Res} \cdot C_{kk}} \sim T - Student \; com \; (n-p) \; g.l^*s$$

Teste de Significância Individual para o parâmetro β_k:

☐ Hipóteses a serem testadas:

$$\begin{cases} H_0: \ \beta_k = 0 \\ H_1: \ \beta_k \neq 0 \end{cases}$$

☐ Estatística de Teste:

$$T = \frac{\hat{\beta}_k}{\sqrt{V\hat{A}R\!\left(\!\hat{\beta}_k\right)}} \sim T_{n-p}$$

 $t_{\text{obs}} = \frac{\hat{\beta}_{\text{k}}}{\sqrt{\text{VAR}(\hat{\beta}_{\text{k}})}}$

Teste de Significância Individual para o parâmetro $\beta_{\textbf{k}}$:

☐ Região crítica:

 $RC = \left\{\,t \in \mathfrak{R} \ / \ t \leq -t_{_{\alpha/2,n-p}} \text{ ou } t \geq t_{_{\alpha/2,n-p}}\,\,\right\}$

ou equivalentemente:

 $RC = \{ t \in \Re / |t| \ge t_{\alpha/2, n-p} \}$

Teste de Significância Individual para o parâmetro β_k:

☐ Tomada de Decisão:

- $\begin{tabular}{ll} \blacksquare & Se \ t_{obs} \in \ RC \ rejeita-se \ H_0: β_k=0 ao nível de significância α, e \\ & conclui-se que existe relação linear significativa entre X_k e Y. \\ \end{tabular}$
- Se $t_{obs} \not\in RC$ não há evidências para rejeitar H_0 : β_k =0 ao nível de significância α , e conclui-se que não existe relação linear significativa entre X_k e Y.

OBS: Ou então, usar o método do p-valor:

p-valor $\leq \alpha$ =0,05 \rightarrow rejeita-se H₀ ao nível de 5%.

Voltando ao exemplo de aplicação: Modelo de Regressão Linear Múltipla com p-1=2 variáveis explicativas.

A tabela a seguir fornece o valor dos salários (em 100 UM), a idade (em anos) e o tempo de serviço (em anos) de n=25 funcionários de uma pequena empresa.

O objetivo do estudo é estudar a relação entre Y e as seguintes variáveis explicativas:

- √ Idade (X₁)
- √ Tempo de serviço (X₂)

0

	continuação								
Func.	Salário	Idade	Tempo de serviço	Func.	Salário	Idade	Tempo de serviço		
1	35	48	15	16	17	21	1		
2	25	25	2	17	29	45	21		
3	22	23	1	18	27	40	17		
4	39	55	20	19	35	43	20		
5	23	40	8	20	19	23	5		
6	30	42	10	21	25	30	10		
7	26	24	4	22	29	31	13		
8	30	38	6	23	32	35	17		
9	38	49	19	24	28	34	15		
10	40	52	22	25	19	21	3		
11	45	57	25						
12	37	47	17						
13	43	48	25						
14	22	22	1						
15	27	48	7				9		

Modelo de Regressão Linear Múltipla (RLM): Análise dos resíduos e Avaliação das suposições básicas do modelo de RLM

Os métodos gráficos adotados no modelo de RLS para identificar violações das hipóteses também são válidos no caso do modelo de RLM.

Análises Gráficas:

➤ (1) Gráfico da variável dependente versus cada uma das variáveis explicativas → estudo da natureza e da força da relação entre as variáveis X_k's e Y e detecção de valores discrepantes ou atípicos (outliers). Modelo de Regressão Linear Múltipla (RLM):

Análise dos resíduos e Avaliação das suposições básicas do modelo de RLM - Análises gráficas (continuação):

- ➤ (2) Gráfico de cada variável explicativa versus cada uma das outras variáveis explicativas → identificação de colinearidade.
- ➤ (3) Gráfico dos resíduos versus cada uma das variáveis explicativas → avaliação da adequação do modelo de regressão em relação a cada variável explicativa, além de análise sobre possível variação na magnitude da variância dos erros do modelo no que se refere a cada variável explicativa.

Modelo de Regressão Linear Múltipla (RLM):

Análises Gráficas:

Análise dos resíduos e Avaliação das suposições básicas do modelo de RLM - Análises gráficas (continuação):

- ➤ (4) Gráfico dos resíduos versus os valores ajustados → análise da adequação do modelo de regressão, da hipótese de homocedasticidade e detecção de outliers.
- > (5) Histograma e/ou Gráfico dos Quantis (QQ-Plot) para os resíduos → avaliação da hipótese de normalidade dos erros.

Voltando ao exemplo de aplicação (modelo de RLM):

Figura 1.1: Gráfico de dispersão entre a idade e o salário dos funcionários.

15 dade (em anos)

Exemplo: Figura 4: Gráfico de dispersão entre o salário estimado e os resíduos estudentizados do modelo.

Modelo de Regressão Linear Múltipla (RLM):

Análise dos resíduos e Avaliação das suposições básicas do modelo de RLM

Considerações finais:

- Os métodos descritos para contornar ou resolver as violações no modelo de RLS são também adotados no modelo de RLM.
- As transformações das variáveis podem ser feitas segundo os princípios discutidos no modelo de RLS para contornar eventuais violações no modelo de RLM.
 - Transformações da variável resposta → Presença de heterocedasticidade (ou não normalidade).
 - Transformações das variáveis explicativas → Relações curvilíneas.

Modelo de Regressão Linear Múltipla (RLM): Análise dos resíduos e Avaliação das suposições

básicas do modelo de RLM

Quaisquer medidas usadas para contornar ou resolver possíveis violações devem ser examinadas através de gráficos de resíduos ou de outros métodos formais, de modo a avaliar a adequação do modelo para os dados transformados.

28

Aula prática – Exercício 1 ("Saidas"): Modelo de RLM com p-1=2 variáveis explicativas

A tabela a seguir fornece os salários semanais (em R\$), a escolaridade e a horas semanais de trabalho de uma amostra de n=15 empregados de uma companhia.

O objetivo do estudo é avaliar a relação entre o salário semanal e as seguintes variáveis explicativas:

- ✓ Anos de estudo;
- √ Hora semanal de trabalho.

29

Emp.	Anos de estudo	Hora semanal de trabalho	Salário semanal	
1	4	10	350	-
2	8	14	400	
3	12	16	470	
4	10	26	550	
5	15	31	620	
6	7	12	380	
7	6	13	290	
8	10	21	490	
9	11	26	580	
10	13	24	610	
11	12	23	560	
12	8	12	420	
13	11	19	450	
14	12	19	510	
15	5	11	380	

Aula prática - Exercício 1 ("Saídas"):

- a) Escreva a equação do modelo completo (contendo as variáveis X₁ e X₂) e descreva os seus termos e variáveis no contexto do problema.
- b) Ajuste o modelo especificado na letra (a), interprete as somas dos quadrados da tabela ANOVA e o coeficiente de determinação. O que você pode concluir ? Justifique a sua resposta.
- c) Avalie também para o modelo especificado na letra (a), a significância individual dos parâmetros dos modelo usando um teste estatístico de hipóteses apropriado a um nível de 5%. Você escolheria este modelo ? Justifique a sua resposta.
 OBS: Defina as 1) Hipóteses a serem testadas; 2) Estatística de teste; 3) Região Crítica; 4) Tomada de decisão.

Aula prática - Exercício 1 ("Saídas"):

d) Para o modelo escolhido (selecionado), calcule uma medida global de qualidade do ajuste, interprete as estimativas dos parâmetros do modelo e avalie a sua significância estatística, considerando o nível de 5%. Além disso, avalie as hipóteses de linearidade, normalidade, homocedasticidade e independência dos erros usando a análise gráfica dos resíduos estudentizados.

32

Aula prática – Exercício 2: Índice de distúrbio mental

Um estudo no condado de Alachua, Flórida, investigou o relacionamento entre certos índices de saúde mental e diversas variáveis explicativas, tais como o escore dos eventos vividos (X_1) e posição socioeconômica (X_2) . O interesse principal do estudo estava focado no índice de distúrbio mental (Y) que incorporou dimensões de sintomas psiquiátricos, incluindo aspectos de ansiedade e depressão. Escores maiores deste índice indicavam maior distúrbio mental. Com relação às duas variáveis explicativas mencionadas, os escores dos eventos vividos é uma medida composta da severidade dos principais eventos vividos que o indivíduo experimentou nos últimos três anos.

Aula prática – Exercício 2 (continuação): Índice de distúrbio mental

Esses eventos variavam de transtornos pessoais graves, como uma morte na família para eventos menos graves, como mudar-se de local de moradia. Assim essa medida, variou de 3 a 97 na amostra, sendo que um escore alto é indicativo de uma maior gravidade nos eventos vividos. Quanto a variável "posição sócio-econômica", é um índice composto baseado na ocupação, renda e nível educacional do indivíduo, mensurado numa escala que varia de 0 a 100, sendo que quanto maior o escore, maior o nível socioeconômico do indivíduo. Os dados do referido estudo são fornecidos na tabela a seguir:

ld	Distúrb. mental (Y)	Eventos vividos (X ₁)	PSE (X ₂)	ld	Distúrb. mental (Y)	Eventos vividos (X ₁)	PSE (X ₂)
1	17	46	84	21	27	60	70
2	19	39	97	22	28	97	89
3	20	27	24	23	28	37	50
4	20	3	85	24	28	30	90
5	20	10	15	25	28	13	56
6	21	44	55	26	28	40	56
7	21	37	78	27	29	5	40
8	22	35	91	28	30	59	72
9	22	78	60	29	30	44	53
10	23	32	74	30	31	35	38
11	24	33	67	31	31	95	29
12	24	18	39	32	31	63	53
13	25	81	87	33	31	42	7
14	26	22	95	34	32	38	32
15	26	50	40	35	33	45	55
16	26	48	52	36	34	70	58
17	26	45	61	37	34	57	16
18	27	21	45	38	34	40	29
19	27	55	88	39	41	49	45 3
20	27	45	56	40	41	89	75

Aula prática - Exercício 2 (continuação): Índice de distúrbio mental

- a) Represente usando gráficos apropriados a relação das variáveis consideradas no estudo. O que se pode concluir a partir desses gráficos ?
- b) Escreva a equação do modelo completo (contendo as variáveis X_1 e X_2) e descreva os seus termos e variáveis no contexto do problema.
- c) Ajuste o modelo definido na letra b), e use o teste de significância geral para responder a seguinte pergunta: Pelo menos uma das variáveis explicativas tem efeito estatisticamente significante ao nível de 5% ? OBS: É preciso definir as Hipóteses a serem testadas, a Estatística de teste, Região Crítica e Tomada de decisão).

Aula prática - Exercício 2 (continuação): Índice de distúrbio mental

- d) Ainda para o modelo definido na letra b), interprete as estimativas dos parâmetros do modelo e avalie a sua significância individual usando um teste estatístico apropriado, considerando um nível de 5%. Em sua opinião, o sentido das relações encontradas é o esperado? OBS: É preciso definir as hipóteses a serem testadas, a Estatística de teste, Região Crítica e Tomada de decisão).
- e) Calcule uma medida global de qualidade do ajuste do modelo final (interprete-a) e compare graficamente (e por meio de alguma medida apropriada) os índices de distúrbio mental observados e os estimados.

Aula prática - Exercício 2 (continuação): Índice de distúrbio mental

 f) Avalie as hipóteses de normalidade, homocedasticidade e independência dos erros usando a análise gráfica dos resíduos estudentizados.

48