# Chapter 1 - Random Number Generation

Generation of Random Vectors, A geometric interpretation

Prof. Alex Alvarez, Ali Raisolsadat

School of Mathematical and Computational Sciences University of Prince Edward Island

## Connecting General Densities to Uniform Distributions

The next result (Lemma 1.33 from the textbook) establishes a connection between distributions with general densities on  $\mathbb{R}^d$  and uniform distributions on  $\mathbb{R}^{d+1}$ .

**Lemma**: Let  $f: \mathbb{R}^d \to [0, \infty)$  be a probability density and let

$$A = \left\{ (x,y) \in \mathbb{R}^d \times [0,\infty) : 0 \le y < f(x) \right\} \subseteq \mathbb{R}^{d+1}$$

Then |A| = 1 and the following two statements are equivalent:

- a) (X, Y) is uniformly distributed on A
- b) X is distributed with density f on  $\mathbb{R}^d$  and Y = f(X)U where  $U \sim U[0,1]$  independently of X.

### Interpretation for One-Dimensional Densities

In the case d = 1 we can easily interpret the previous result.

This Lemma could be used in both directions as needed:

• First implication: Starting with a sample uniformly distributed over A, we can look at the first component and get a sample that follows density f(this is very related to the usual sampling rejection algorithm). Problem 2 from the homework uses this result.

### Interpretation for One-Dimensional Densities

In the case d = 1 we can easily interpret the previous result.

This Lemma could be used in both directions as needed.

- First implication: Starting with a sample uniformly distributed over A, we can look at the first component and get a sample that follows density f(this is very related to the usual sampling rejection algorithm). Problem 2 from the homework uses this result.
- Second implication: We can sample from density *f* and the uniform distribution to get a uniformly distributed sample over set *A*.

We could use the second implication in order to get uniformly distributed samples over an unbounded set A.

## Example: Uniform Sampling Under a PDF Curve

**Example**: Generate a sample of 100 random points uniformly distributed under the curve of the probability density function of a standard normal random variable.

### Algorithm:

- 1. Generate  $X \sim N(0, 1)$
- 2. Compute Z = pdf(X)
- 3. Generate  $Y \sim U[0, Z]$
- 4. Return (X, Y)

## Vectorized Implementation in R and Python

#### Code

# R Code

```
1  n <- 1000;
2  X <- rnorm(n);
3  Z <- dnorm(X)
4  Y <- runif(n,min=0, max=Z)
5  plot(X,Y)
```

### Python Code

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

n = 1000
X = np.random.normal(size=n)
Z = norm.pdf(X)
y = np.random.uniform(low=0, high=Z)

plt.scatter(X, Y)
plt.show()
```

You can program this with a "for" loop instead, but it would be less efficient.

# Visualizing the Uniform Sample Under a PDF

Generated Sample uniformly distributed over the region under the density function of a standard normal random variable.



# Remarks on the Uniform Sampling Method

### Remarks:

- This is a very straightforward method as long as we know how to sample from the density f.
- It can be applied also when  $d \ge 1$ , to both bounded and unbounded sets.
- By design the method only applies to sets A with |A|=1 (meaning that area equals 1 for d=1, volume equals 1 for d=2, etc.) but we can modify it to also take into account other sets where  $|A| \neq 1$ .

### Homework

1. Consider the probability density function given by  $f(x) = \frac{1}{(x+1) \ln 2}$  on [0, 1] and 0 otherwise. Define B as follows

$$B = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y < f(x) \right\}$$

and let A be the rectangle  $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y < 1/\ln 2\}$ We can see that  $B \subset A$ .

- a) Write a computer program that generates a random sample of 1000 uniformly distributed random points in *B*, by applying rejection sampling to uniformly distributed random points in *A*.
- b) Use the outcome from part a) to get a random sample of 1000 random numbers with probability density *f*.