Feedback Control and Locomotion

What we saw last class: trajectory optimization

What we saw last class: trajectory optimization

TO: used to *plan* trajectories.

Now: let's execute them!

(Let's assume control inputs are

forces generated by thrusters)

Feedforward/open loop playback of control inputs has limitations!

- Drift is inevitable
 - modeling approximations, external factors, etc.

Open loop control

Feedforward terms Controller System Inputs System System Output

Different states need different actions

where spaceship should be at time t (\bar{x} - set point)

Feedback (closed loop) control

Different states need different actions

where spaceship should be at time t (\bar{x} - set point)

Simple strategies for feedback control

Feedback controller aims to eliminate e.

First attempt for our spaceship example:

$$F_f = F_{MAX} \frac{e}{|e|}$$

Bang-bang control

Simple strategies for feedback control

Feedback controller aims to eliminate *e*.

Second attempt:

$$F_f = k_p e$$

Proportional gain

Proportional Control

Note: changing k_p only affects the frequency of undamped oscillation, not the amplitude – think of it as an ideal spring!

Simple strategies for feedback control

Feedback controller aims to eliminate e.

Should F_f be the same if the spaceship had velocity \dot{x}_1 as if it has velocity \dot{x}_2 ?

Third attempt:
$$\mathbf{F}_f = k_p \mathbf{e} + k_d \dot{\mathbf{e}}$$
Derivative gain

Proportional-derivative (PD) Control

Simple strategies for feedback control

Feedback controller aims to eliminate *e*.

Assume there is a constant, unknown external force acting on the system. This leads to a *steady state error*.

Last attempt:

$$\boldsymbol{F_f} = k_p \boldsymbol{e} + k_i \int_0^t \boldsymbol{e}(\tau) d\tau + k_d \dot{\boldsymbol{e}}$$

Integral gain

Proportional-integral-derivative (PID) Control

Proportional-integral-derivative (PID) Control

Note 1: The integral term is often neglected, as it can cause unstable/unsafe responses.

Note 2: Various heuristics (Ziegler–Nichols, Åström–Hägglund method) exist for setting PID gains – generally based on observations of the system response.

Note 3: Simple systems are well-understood, so gains are easy to set according to analytic models: e.g. for critically damped (no oscillations) behavior, $k_d=2\sqrt{k_p}$

PD Control in action

http://www.matthewpeterkelly.com/tutorials/pdControl/index.html

What is it that a PD controller should output?

- What we've seen so far: (thruster) force
 - For complex systems, it is difficult to obtain desired behavior (e.g. critically damped response)
 - PD gains and overall behavior are dependent on system properties
 - a heavier spaceship needs different PD gains than a light one. If additional cargo is loaded on, or as fuel burns out, PD gains need to change. Not very convenient.
- An alternative: PD controller outputs target accelerations, use **model-based** methods (e.g. based on inverse dynamics) to generate forces:

$$\overline{\boldsymbol{a}} = k_p \boldsymbol{e} + k_i \int_0^t \boldsymbol{e}(\tau) d\tau + k_d \dot{\boldsymbol{e}}$$

$$F_f = m\overline{a}$$
 or even better
$$\frac{1}{a_iF_f} \frac{1}{2} (a - \overline{a})^T (a - \overline{a}) + O(a, F_f)$$
 subject to $F_f = ma$, $C(a, F_f) \geq 0$,

Another note on PD controllers

PD controllers look a lot like virtual springs

$$\overline{\boldsymbol{a}} = k_p \boldsymbol{e} + k_d \dot{\boldsymbol{e}} = k_p (\overline{\boldsymbol{x}} - \boldsymbol{x_t}) + k_d (\dot{\overline{\boldsymbol{x}}} - \dot{\boldsymbol{x}_t})$$

- Need small time steps (e.g. evaluate and apply new control signals with high frequency) for stability
- Can also formulate PD controllers implicitly:

$$\overline{a} = k_p(\overline{x} - x_{t+1}) + k_d(\dot{\overline{x}} - \dot{x}_{t+1})$$

Implicit PD controller

$$\overline{a} = k_p(\overline{x} - x_{t+1}) + k_d(\dot{\overline{x}} - \dot{x}_{t+1})$$

Let's work it out (noting that $\dot{x}_{t+1} = \dot{x}_t + h\overline{a}$; $x_{t+1} = x_t + h\dot{x}_{t+1}$)

$$\begin{array}{ll}
\dot{x}_{t+1} = \dot{x}_t + h \bar{a} \\
\dot{x}_{t+1} = \dot{x}_t + h \dot{x}_t + h^2 \bar{a}
\end{array}$$

$$\begin{array}{ll}
\bar{a} = -k_P (\dot{x}_{t+1} - \bar{x}) - k_d (\dot{x}_{t+1} - \bar{x}) \\
&= -k_P (\dot{x}_t + h \dot{x}_t + h^2 \bar{a} - \bar{x}) - k_d (\dot{x}_t + h \bar{a} - \dot{x})
\end{array}$$

$$\begin{array}{ll}
= -k_P (\dot{x}_t + h \dot{x}_t + h^2 \bar{a} - \bar{x}) - k_d (\dot{x}_t + h \bar{a} - \dot{x}) \\
&= -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) + h^2 \bar{a} \cdot k_P - k_d (\dot{x}_t - \dot{x}) + h \bar{a} \cdot k_d
\end{array}$$

$$\begin{array}{ll}
\vdots \quad \bar{a} + h^2 \bar{a} \cdot k_P + h \bar{a} \quad k_d = -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) - k_d (\dot{x}_t - \bar{x})
\end{array}$$

$$\begin{array}{ll}
\vdots \quad \bar{a} = -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) - k_d (\dot{x}_t - \bar{x})
\end{array}$$

$$\begin{array}{ll}
\vdots \quad \bar{a} = -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) - k_d (\dot{x}_t - \bar{x})
\end{array}$$

$$\begin{array}{ll}
\vdots \quad \bar{a} = -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) - k_d (\dot{x}_t - \bar{x})
\end{array}$$

$$\begin{array}{ll}
\vdots \quad \bar{a} = -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) - k_d (\dot{x}_t - \bar{x})
\end{array}$$

$$\begin{array}{ll}
\vdots \quad \bar{a} = -k_P (\dot{x}_t + h \dot{x}_t - \bar{x}) - k_d (\dot{x}_t - \bar{x})
\end{array}$$

 $\dot{X}_{t+1} = \dot{X}_{t} + h\bar{a}$ $\dot{X}_{t+1} = \dot{X}_{t} + h\dot{X}_{t} + h^{2}\bar{a}$

Implicit PD controller

$$\overline{a} = k_n(\overline{x} - x_{t+1}) + k_d(\dot{\overline{x}} - \dot{x}_{t+1})$$

Let's work it out (noting that
$$\dot{x}_{t+1} = \dot{x}_t + h\overline{a}$$
; $x_{t+1} = x_t + h\dot{x}_{t+1}$)

$$\overline{a} = \frac{k_p(\overline{x} - x_t) - hk_p\dot{x}_t + k_d(\dot{\overline{x}} - \dot{x}_t)}{1 + h^2k_p + hk_d}$$

Give it a try yourself!

We've seen some of the basics of feedback control

where spaceship should be (\overline{x}) at time t

Locomotion

Locomotion: biomechanical foundations

Locomotion: biomechanical foundations

Eadweard Muybridge, "Sallie Gardner" (1878)

Biomechanical studies shed light on the principles of animal locomotion

• Lots of very important lessons to be learned

See, for example, scaling laws

Biomechanical studies shed light on the principles of animal locomotion

 Gait: the pattern of movement of the limbs of animals (including humans) during locomotion

walk

Hildebrand Gait diagrams

Duty cycle: percentage of a stride a limb spends in stance phase. Walking gaits have duty cycles > 50%. Running gaits have duty cycles < 50%.

- Crawl, Walk, Trot, Running Trot, Pace, Bound, Gallop, etc.
- First and foremost, speed and energetics
 - each gait has a particular speed at which the minimum calories per meter are consumed

- Crawl, Walk, Trot, Running Trot, Pace, Bound, Gallop, etc.
- First and foremost, speed and energetics
 - each gait has a particular speed at which the minimum calories per meter are consumed
- But other reasons as well
 - stability/robustness (e.g. dogs with long legs & short backs pace to prevent feet from stepping on each other)
 - comfort/accommodating injuries (some gaits need more spine movement than others)
 - Showing off?

Much, much more to learn from the field of biomechanics

Classification of postures

Much, much more to learn from the field of biomechanics

Classification of postures, limb types and specializations

Much, much more to learn from the field of biomechanics

• Classification of postures, limb types and specializations, structural design of skeletons and muscles, the functional role of soft tissues, etc...

AL of SDF

AL of DDFT

DDFT

Basics of Locomotion Control

Simulation Model

Joint Hierarchy

Actuators

Visualization Mesh

Physics-based Animation

Posture Control – PD control applied to individual joints

Now, that isn't to say that PD control isn't useful in some settings...

Now, that isn't to say that PD control isn't useful...

Now, that isn't to say that PD control isn't useful in some settings...

Now, that isn't to say that PD control isn't useful in some settings...

SIMBICON: Simple Biped Locomotion Control, Yin et al., Siggraph 2007

But we can do better than just posture control via PD servos

Whole-Body Control

$$\overline{a}_{com} = k_p e + k_d \dot{e}$$

Target linear/angular acceleration for the center of mass

q: acceleration in generalizedcoordinates

f: cartesian-space forces applied at points of contact

u: joint torques (control forces, in generalized coordinates)

K: friction cone (normal componentO, tangential component subject toCoulomb's law of friction)

 $|\overline{a}_{com} - a_{com}(\overline{q})|_2^2$ "keep head upright"

"track end effectors"

min $\{g_1, g_2, ..., g_n\}$ \overline{q}, u, f subject to

$$M\ddot{q} + C(q, \dot{q}) + J^T f = \begin{bmatrix} 0 \\ u \end{bmatrix}$$
"no control forces on root DOFs"

 $f \in K, u \in L$

$$J\ddot{q} + J\dot{q} = 0$$
Cartesian-space accelerat

Cartesian-space acceleration of points in contact with the ground should be 0 – no sliding!

Whole Body Control

Also known as Operational Space Control

Multiobjective Control with Frictional Contacts, Yeuhi Abe, Marco da Silva and Popovic', J. ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2007

Onwards to walking motions...

A footfall pattern manages the role of the limbs and therefore the decision variables, objectives and constraints added to the quadratic program that is solved by the locomotion controller.

Reacting to unanticipated perturbations

Planning vs reactive behaviors

Reacting to unanticipated perturbations

Simulating Balance Recovery Responses to Trips Based on Biomechanical Principles

Takaaki Shiratori, Brooke Coley, Rakié Cham, Jessica K. Hodgins Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation

Reacting to unanticipated perturbations

- Ideally we'd solve another Trajectory Optimization problem in real time
 - this strategy is also called Model Predictive Control (MPC), but generally too slow or too limited due to aggressive approximations
- Simple and very effective models for balance recovery (e.g. capture point methods, Raibert controllers) do exist

Simple model for foot placement adaptations

$$E = \frac{1}{2}mv^2 + mgh = \frac{1}{2}mv'^2 + mgl$$

$$d = d_f(v_d) + (v - v_d) \sqrt{\frac{h}{g}}$$

Trajectory optimization and whole-body control: the basic techniques used to control the world's most advanced robots

So, what's next?

Locomotion in complex environments

Compliance and morphological computation

So, what's next?

Complex maneuvers and rich physical interactions

Increasing the accuracy of our simulation models

That's all for today