PROGRESII ARITMETICE

- **Def:** Se numeste **progresie aritmetica** un sir de numere reale in care fiecare termen se obtine din termenul anterior *adunand* o constanta numita ratie (r)
- **Proprietate** :trei numere a,b,c sunt in progresie aritmetica daca b e medie aritmetica intre a si c adica $b = \frac{a+c}{2}$

$$a_n = a_1 + (n-1)r$$

$$\bullet$$
 $S_n = \frac{n(2a_1 + (n-1)r)}{2}$ unde am noatat cu $S_n = a_1 + a_2 + a_3 + a_4 + ... + a_n$

PROGRESII GEOMETRICE

- <u>Def:</u> Se numeste <u>progresie geometrica</u> un sir de numere reale in care fiecare termen se obtine din termenul anterior *inmultind* cu o constanta numita ratie (q).
- **Proprietate** :trei numere a,b,c sunt in progresie geometrica cu termeni pozitivi daca b e medie geometrica intre a si c adica $b = \sqrt{ac}$

in general pentru o progresie geometica cu termeni oarecare a,b,c sunt in progresie geometrica daca b²=ac

$$\bullet$$
 $a_n = a_1 q^{n-1}$

•
$$S_n = a_1 \frac{(q^n - 1)}{q - 1}$$
 unde am noatat cu $S_n = a_1 + a_2 + a_3 + a_4 + ... + a_n$

PROBABILITATI

$$\bullet \text{ Probabilitatea} = \frac{nr.cazurifavorabile}{nr.cazuriposibile}$$

LOGARITMI

 $\bullet \log_a b = c$ revine la $b = a^c$

 $\log_a b - \log_a c = \log_a(\frac{b}{c})$

 $\log_a b^p = p \log_a b$

 $a^{\log_a b} = b$

 \odot daca a>1 functia log e crescatoare adica $\log_a b > \log_a c \Rightarrow b>c$

• daca a<1 functia log e descrescatoare adica $\log_a b > \log_a c \Rightarrow b < c$

EXPONENTIALA

$$a^x a^y = a^{x+y}$$

$$\bullet \frac{a^x}{a^y} = a^{x-y}$$

$$\bullet \frac{1}{a^x} = a^{-x}$$

COMBINARI

• Permutari de n se noteaza P_n

P_n=n! si reprezinta numarul de multimi ordonate ce se pot forma cu n elemente

ullet Aranjamente de n luate cate k se noteaza A_n^k

$$A_n^k = \frac{n!}{(n-k)!}$$
 reprezinta nr de submultimi ordonate de cate k elemente

ce se pot forma dintr-o multime cu n elemente

ullet Combinari de n luate cate k se noteaza C_n^k

$$C_n^k = \frac{n!}{k!(n-k)!}$$
 reprezinta nr de submultimi neordonate de cate k

elemente ce se pot forma dintr-o multime cu n elemente.

$$C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = 2^n$$

- Numarul tuturor sumultimilor unei multimi cu n elemente este 2ⁿ
- ullet Numarul submultimilor cu cate k elemente ale unei multimi cu n elemente este C_n^k

FUNCTII

- ullet Punctul A(a,b) se afla pe graficul functiei f daca f(a)=b
- Punctele de intersectie dintre graficele a doua functii f si g

se rezolva sistemul
$$\begin{cases} y = f(x) \\ y = g(x) \end{cases}$$

Solutiile (x,y) reprezinta coordonatele punctelor de intersectie.

• Inversa functiei f:

Daca
$$f(x) = y$$
 atunci $f^{-1}(y) = x$

• Intersectia cu Ox a graficului functiei f

se rezolva ecuatia f(x)=0

Daca x e o solutie a ecuatiei f(x)=0. Punctul A(x,0) e un punct de intersectie dintre axa Ox si graficul functiei f.

• Intersectia cu Oy a graficului functiei f

Se calculeaza f(0) daca 0 e in domeniu de definitie.

Punctul B(0,f(0)) reprezinta intersectie dintre axa Oy si graficul functiei f.

In cazul in care 0 nu se afla in domeniul de definitie al functiei, graficul functiei nu taie axa Oy.

FUNCTIA DE GRADUL DOI

• Varful parabolei este $V\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$

-daca a > 0 varful este punct de **minim**

 $\frac{-\Delta}{4a}$ este valoare minima iar $\frac{-b}{2a}$ punct de minim

-daca a<0 varful este punct de maxim

 $\frac{-\Delta}{4a}$ este valoare maxima iar $\frac{-b}{2a}$ punct de maxim

- ullet Graficul functiei de gradul doi e tangent la axa Ox daca are $\Delta = 0$
- **⑤** Graficul functiei de gradul doi e situat deasupra axei Ox daca are $\begin{cases} \Delta < 0 \\ a > 0 \end{cases}$
- Relatiile lui Viette

Pentru ecuatia de gradul doi cu radacini x_1, x_2 au loc relatiile:

$$\begin{cases} x_1 + x_2 = \frac{-\ell}{a} \\ x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

- **©** Observatie $x_1^2 + x_2^2 = (x_1 + x_2)^2 2x_1x_2 = \left(\frac{-b}{a}\right)^2 2\frac{c}{a}$
- **Ecuatia cu radacini** x_1, x_2 este $x^2 Sx + P = 0$ unde $S = x_1 + x_2$ iar $P = x_1 \cdot x_2$

Ф

- o Conditia ca $a^2 + bx + c \ge 0 \ \forall x \in \square$ este $\Delta \le 0, a > 0$
- o Conditia ca $a^2 + bx + c \le 0 \ \forall x \in \square$ este $\Delta \le 0, a < 0$
- o Conditia ca $a^2 + bx + c > 0 \ \forall x \in \square$ este $\Delta < 0, a > 0$
- o Conditia ca $a^2 + bx + c < 0 \ \forall x \in \square$ este $\Delta < 0, a < 0$

•

- ightharpoonup Conditia ca ecuatia $a^2 + bx + c = 0$ sa aibe doua solutii reale este $\Delta > 0$
- ightharpoonup Conditia ca ecuatia $a^2 + bx + c = 0$ sa aibe doua solutii egale este $\Delta = 0$
- \triangleright Conditia ca ecuatia $a^2 + bx + c = 0$ sa nu aibe solutii reale este $\Delta < 0$

VECTORI IN PLAN

• Modulul vectorului
$$\vec{v} = a \cdot \vec{i} + b \cdot \vec{j}$$
 este $|\vec{v}| = \sqrt{a^2 + b^2}$

Produsul scalar a doi vectori
$$\vec{v} = a \cdot \vec{i} + b \cdot \vec{j}$$
 si $\vec{w} = c \cdot \vec{i} + d \cdot \vec{j}$ este $\vec{v} \cdot \vec{w} = a \cdot c + b \cdot d$

Suma a doi vectori
$$\vec{v} = a \cdot \vec{i} + b \cdot \vec{j}$$
 si $\vec{w} = c \cdot \vec{i} + d \cdot \vec{j}$ este $\vec{v} + \vec{w} = (a+c)\vec{i} + (b+d)\vec{j}$

© Conditia ca doi vectori sa fie coliniari doi vectori
$$\vec{v}$$
 si \vec{u} sunt coliniri daca exista a numar real astfel incat $\vec{v} = a \cdot \vec{u}$

♥Daca vectorii sunt dati sub forma
$$\vec{v} = a \cdot \vec{i} + b \cdot \vec{j}$$
 si $\vec{u} = c \cdot \vec{i} + d \cdot \vec{j}$ conditia de coliniaritate revine la $\frac{a}{c} = \frac{b}{d}$

© Daca
$$A(x_A, y_A)$$
 si $B(x_B, y_B)$ **atunci** $\overrightarrow{AB} = (x_B - x_A) \cdot \overrightarrow{i} + (y_B - y_A) \cdot \overrightarrow{j}$

② Daca
$$A(x_A, y_A)$$
 vectorul de pozitie al lui A este $\overrightarrow{OA} = x_A \cdot \overrightarrow{i} + y_A \cdot \overrightarrow{j}$ se mai noteaza $\overrightarrow{r_A}$

TRIGONOMETRIE

X	0	$\pi/6(30^{\circ})$	$\pi/4(45^{\circ})$	$\pi/3(60^{\circ})$	$\pi/2(90^{\circ})$
sinx	0	1_	$\sqrt{2}$	$\sqrt{3}$	1
		2	2	$\frac{\sqrt{3}}{2}$	
cos x	1	$\sqrt{3}$	$\sqrt{2}$	1	0
		2	2	2	
tgx	0	1_	1	$\sqrt{3}$	Nu
		$\sqrt{3}$			exista
ctgx	Nu	$\sqrt{3}$	1	1	0
	exista			$\sqrt{3}$	

$$\sin(180^\circ - x) = \sin x$$

•
$$\sin(180^{\circ} - x) = \sin x$$
 • $\cos(180^{\circ} - x) = -\cos x$

$$\sin(90^\circ - x) = \cos x$$

$$\cos(90^\circ - x) = \sin x$$

$$\cos(90^\circ - x) = \sin x$$

$$\sin^2 x + \cos^2 x = 1$$
 oricare ar fi x real

GEOMETRIE

Ecuatia dreptei AB:
$$\begin{vmatrix} x & y & 1 \\ x_A & y_A & 1 \\ x_B & y_B & 1 \end{vmatrix} = 0$$

● Panta dreptei AB

- o daca stiu doua puncte panta este $m_{AB} = \frac{y_A y_B}{x_A x_B}$
- o daca dreapta e data sub forma y=mx+n atunci m este panta
- o daca ecuatia e sub forma ax+by+c=0 panta este $\frac{a}{b}$
- Obs: dreptele verticale (x=a) nu au panta
- **E**cuatia unei drepte cand stiu un punct A si panta m este $y y_A = m(x x_A)$
- **©** Conditia de paralelism a doua drepte $d_1 \square d_2 \Leftrightarrow m_{d_1} = m_{d_2}$
- **Distanta dintre doua puncte** $|AB| = \sqrt{(x_A x_B)^2 + (y_A y_B)^2}$
- mijlocul segmentului AB este $M(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2})$
- **©** Conditia ca trei puncte A,B,C sa fie coliniare $\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0$
- **Punctul de intersectie dintre doua drepte** se determina rezolvand sistemul facut de ecuatiile lor.
- **Aria triunghiului** ABC este $S_{ABC} = \frac{|\Delta|}{2}$ unde $\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$
- **S** Aria triunghiului $S_{ABC} = \frac{baza \cdot inaltimea}{2}$
- Aria triunghiului echilateral cu latura l'este: $S = \frac{l^2\sqrt{3}}{4}$
- In triunghiul dreptunghic mediana e jumatate din ipotenuza
- **Aria triunghiului** ABC (Heron) $S_{ABC} = \sqrt{p(p-a)(p-b)(p-c)}$ unde $p = \frac{a+b+c}{2}$

• Aria triunghiului ABC=
$$\frac{BC \cdot AC \cdot \sin C}{2} = \frac{BC \cdot AB \cdot \sin B}{2} = \frac{AB \cdot AC \cdot \sin A}{2}$$

• Teorema lui Pitagora in triunghiul dreptunghic $b^2+c^2=a^2$

● Teorema cosinusului

$$BC^{2} = AC^{2} + AB^{2} - 2 \cdot AB \cdot AC \cdot \cos(\hat{A})$$

$$AC^{2} = AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos(\hat{B})$$

$$AB^{2} = AC^{2} + BC^{2} - 2 \cdot BC \cdot AC \cdot \cos(\hat{C})$$

- Teorema sinusurilor $\frac{BC}{\sin A} = \frac{AC}{\sin B} = \frac{AB}{\sin C} = 2R$ unde R raza cercului circumscris triunghiului
- Prima *bisectoarea* este bisectoarea cadranului 1 in reperul xOy si are ecuatia y=x.
- A doua *bisectoarea* este bisectoarea cadranului 2 in reperul xOy si are ecuatia y=-x.
- *Mediana* in trunghi este segmentul ce uneste un varf cu mijlocul laturii opuse
- Mediatoarea unui segment e perpendiculara pe mijlocul segmentului
- Inaltimea in tringhi e perpendiculara din varf pe latura opusa
- Bisectoarea este semidreapta care imparte un unghi in 2 unghiuri congruente.
- **②** In trunghiul dreptunghic $\sin = \frac{Cateta_opusa}{ipotenuza}$ $\cos = \frac{Cateta_alaturata}{ipotenuza}$

CONDITII DE EXISTENTA

$$\bullet$$
 $\sqrt{E(x)}$ $E(x) \ge 0$

- $\sqrt[3]{E(x)}$ exista oricare ar fi x real deci nu se pun conditii de existenta
- daca avem numitor, avem conditia numitor diferit de 0.
- $ext{arcsin } E(x)$ $-1 \le E(x) \le 1$
- \bullet arccos E(x) $-1 \le E(x) \le 1$
- tgE(x) $E(x) \neq \frac{\pi}{2} + 2k\pi$
- domeniul maxim de definitie se obtine din conditiile de existenta ale expresiei care da functia.