

ANNEE UNIVERSITAIRE 2022/2023

LUNDI 30/10/20

Durée: 1H30 Documents non autorisés.

Enseignant responsable: Mr BENZINA.H

Devoir de Contrôle

PHYSIQUE pour les COMMUNICATIONS

EXERCICES:

A t=300K, on a:

	$N_{\rm C}({\rm cm}^{-3})$	$Nv(cm^{-3})$	$n_i(cm^{-3})$
Silicium	2.8×10^{19}	1.04×10^{19}	1.5×10^{10}
Arséniure de Gallium	4.7×10^{17}	7.0×10^{18}	1.8×10^6

I)Déterminez le nombre total d'états d'énergie par unité de volume dans le silicium entre Ev et Ev-3kT à T=400K sachant que pour le silicium la masse effective des trous est $m_p = 0.56m_o$

Solution

(a) Silicium,
$$m_p^* = 0.56m_o$$

$$D_p(E) = \frac{4\pi (2m_p^*)^{3/2}}{h^3} \sqrt{E_v - E}$$

$$N = \frac{4\pi (2m_p^*)^{3/2}}{h^3} \int_{E_v - 3kT}^{E_v} \sqrt{E_v - E} \cdot dE$$

$$= \frac{4\pi (2m_p^*)^{3/2}}{h^3} \left(\frac{-2}{3}\right) (E_v - E)^{3/2} \Big|_{E_v - 3kT}^{E_v}$$

$$= \frac{4\pi (2m_p^*)^{3/2}}{h^3} \left(\frac{-2}{3}\right) \left[-(3kT)^{3/2}\right]$$

$$= \frac{4\pi \left[2(0.56)(9.11 \times 10^{-31})\right]^{3/2}}{(6.625 \times 10^{-34})^3} \left(\frac{2}{3}\right) (3kT)^{3/2}$$

$$= (2.969 \times 10^{55})(3kT)^{3/2}$$
At $T = 400 \, \text{K}$, $kT = 5.5253 \times 10^{-21} \, \text{J}$

$$N = (2.969 \times 10^{55}) [3(5.5253 \times 10^{-21})]^{3/2}$$

$$= 6.337 \times 10^{25} \, \text{m}^{-3}$$
ou $N = 6.34 \times 10^{19} \, \text{cm}^{-3}$

II) Le niveau d'énergie de Fermi pour un matériau particulier à T=300 K est de 5,50 eV. Les électrons de ce matériau suivent la fonction de distribution de Fermi-Dirac. (a) Trouvez la probabilité qu'un électron occupe une énergie à 5,80 eV. (b) Répétez la partie (a) si la température est augmentée à T=700 K. (On supposera que E_F est constante.) (c) Déterminez la température à laquelle il y a une probabilité de 2 % qu'un état de 0,25 eV au-dessous du niveau de Fermi est non occupé par un électron.

Solution:

(a) c'est un ca sou E-E_F>>3kT donc on utilise

$$f_E \approx exp\left[\frac{-(E-E_F)}{kT}\right] = exp\left[\frac{-(5.80-5.50)}{0.0259}\right]$$

(b)
$$kT = (0.0259) \left(\frac{700}{300} \right) = 0.060433 \text{ eV}$$

$$f_E = exp\left[\frac{-0.30}{0.060433}\right] = 6.98 \times 10^{-3}$$

(c) $1 - f_E \cong exp\left[\frac{-(E_F - E)}{kT}\right]$

$$(c)1 - f_E \cong exp\left[\frac{-(E_F - E)}{kT}\right]$$
$$0.02 = exp\left[\frac{-0.25}{kT}\right]$$

ou
$$\exp\left[\frac{+0.25}{kT}\right] = \frac{1}{0.02} = 50$$
$$\frac{0.25}{kT} = \ln(50)$$

ou

$$kT = \frac{0.25}{\ln(50)} = 0.063906 = (0.0259) \left(\frac{T}{300}\right)$$

Lequel donne $T = 740 \,\mathrm{K}$

III) (a) Les masses effectives des porteurs dans un semi-conducteur sont m_n=1,21 m_o et $m_p = 0.70 \text{ m}_o$.

Déterminez la position du niveau de Fermi intrinsèque par rapport au centre de la bande interdite à T=300K. (b) Répétez la partie (a) si m_n =0,080 m_o et m_p =0,75 m_o .

(a)
$$E_{Fi} - E_{milieu_gap} = \frac{3}{4} kT \ln \left(\frac{m_p^*}{m_n^*} \right)$$

= $\frac{3}{4} (0.0259) \ln \left(\frac{0.70}{1.21} \right)$
 $\Rightarrow -10.63 \text{ meV}$

$$\Rightarrow$$
 -10.63 me v

(b)
$$E_{Fi} - E_{milieu_gap} = \frac{3}{4} (0.0259) \ln \left(\frac{0.75}{0.080} \right)$$

 $\Rightarrow +43.47 \text{ meV}$

IV) A l'équilibre thermique, la valeur de p dans le silicium à T=300K est 2×10^{16} cm⁻³.

(a)Déterminer E_F-E_V.(b)Calculez la valeur de E_c - E_F. (c)Quelle est la valeur de n?

(d)Déterminer E_{Fi} - E_F.

(a)
$$p = N_V \exp{-\frac{(E_F - E_V)}{kT}} \longrightarrow E_F - E_V = kT \ln{\left(\frac{N_V}{p}\right)}$$

= $(0.0259) \ln{\left(\frac{1.04 \times 10^{19}}{2 \times 10^{16}}\right)}$

$$= 0.162 \text{ eV}$$
(b) $E_c - E_F = E_g - (E_F - E_V)$

$$= 1.12 - 0.162 = 0.958 \text{ eV}$$

(c)
$$n = N_C \exp{-\frac{(E_C - E_F)}{kT}} - -> n = (2.8 \times 10^{19}) \exp{\left(\frac{-0.958}{0.0259}\right)}$$

= $2.41 \times 10^3 \text{ cm}^{-3}$

(d)
$$p = n_i \exp[(E_i - E_F)/kT] - -> E_{Fi} - E_F = kT \ln\left(\frac{p}{n_i}\right)$$

= $(0.0259) \ln\left(\frac{2 \times 10^{16}}{1.5 \times 10^{10}}\right)$
= 0.365 eV

V) Un matériau semi-conducteur particulier est dopé à $N_D = 2 \times 10^{14} \text{ cm}^{-3}$ et $N_A = 1,2 \times 10^{14} \text{ cm}^{-3}$. La concentration d'électrons à l'équilibre thermique s'avère être $n = 1,1 \times 10^{14} \text{ cm}^{-3}$. En supposant une ionisation complète, déterminer la concentration des porteurs intrinsèques et la concentration des trous à l'équilibre thermique.

Loi d'action de masse : $np=n_i^2$ (*)

Loi de neutralité électrique : -qn+qp-q N_A +q N_D =0 (**)

(*) $\rightarrow p = n_i^2/n$; avec (**) $\rightarrow n^2 - (N_D - N_A)n - n_i^2 = 0$

Dont la solution acceptable physiquement est :

$$n = \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2}$$

$$1.1 \times 10^{14} = \frac{2 \times 10^{14} - 1.2 \times 10^{14}}{2}$$

$$+ \sqrt{\left(\frac{2 \times 10^{14} - 1.2 \times 10^{14}}{2}\right)^2 + n_i^2}$$

$$\left(1.1 \times 10^{14} - 4 \times 10^{13}\right)^2 = \left(4 \times 10^{13}\right)^2 + n_i^2$$

$$4.9 \times 10^{27} = 1.6 \times 10^{27} + n_i^2$$

$$D'où: \quad n_i = 5.74 \times 10^{13} \text{ cm}^{-3}$$

$$p = \frac{n_i^2}{n} = \frac{3.3 \times 10^{27}}{1.1 \times 10^{14}} = 3 \times 10^{13} \text{ cm}^{-3}$$

VI) 1°)(a) La conductivité requise d'un échantillon de silicium de type n à T = 300 K doit être σ =10(Ω.cm)⁻¹. Quelle est la concentration d'impuretés requise ? (b) Un matériau en silicium de type p doit avoir une résistivité ρ = 0,20 (Ω.cm). Quelle est la concentration d'impuretés requise? Pour ce matériau Si, les mobilités sont, $\mu_n \approx 1050$ cm²/V-s; $\mu_n \approx 320$ cm²/V-s

2°)La distribution électronique en régime permanent dans le silicium peut être approchée par une fonction linéaire de x. La concentration maximale d'électrons se produit à x = 0 et est $n(0) = 2x10^{16}$ cm⁻³.

A x=0,012cm, la concentration d'électrons est de $5x10^{15}$ cm⁻³. Si le coefficient de diffusion électronique est D_n =27 cm²/s, déterminer la densité de courant de diffusion électronique.

Solution

1°)
$$\sigma \approx q \mu_n N_D$$

10 = (1.6 × 10⁻¹⁹). 1050. N_D

$$N_D = \frac{10}{(1.6 \times 10^{-19}).(1050)}$$
=5.9524x10⁺¹⁶ cm⁻³

(a)
$$\rho \approx \frac{1}{q\mu_p N_A}$$

 $N_A = \frac{1}{(1.6 \times 10^{-19})x320x0.20}$
=9.7656x10⁺¹⁴ cm⁻³.

$$J_{n} = eD_{n} \frac{dn}{dx} = eD_{n} \frac{\Delta n}{\Delta x}$$

$$J_{n} = \left(1.6 \times 10^{-19}\right) \left(27\right) \left[\frac{2 \times 10^{16} - 5 \times 10^{15}}{0 - 0.012}\right]$$

$$J_{n} = -5.4 \text{ A/cm}^{2}$$

VII)Dessiner le quadripôle équivalent d'une portion de ligne de transmission de longueur dz, et en utilisant les 2 lois de circuits, établir les équations d'évolution spatio-temporelle qui régissent la tension et le courant dans cette ligne de transmission.

III Ovadripole equivalent there portion de ligno de frausmission de Conqueur 2: 1/3/t) y Rd3 Ld3 N I(3+d3-t) U(31) M2 Gd3[] - Cd3 U(3+d3, 2) M' l'résistance lineigne L: self in du chance le neigne 6: conductance li reigne C: capacité l'ineigne tor des marlles : marle 11 4(3+d3,+)-4(3,+)--Rd, I--Lds dt 3 3 43 - (- R'I - L' DE) ds 5) | 2 = - R' I - L'OL | Los des hornds: noend N I(3+d3,+) = - Gd3 U