NTUEE DCLAB

LAB 3: 數位錄音機

Graduate Institute of Electronics Engineering National Taiwan University

Outline

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Introduction

- 數位錄音機
 - 運用麥克風與電腦喇叭連接 FPGA 板的 Audio CODEC 模組(內含 ADC 與 DAC)
 - 對音訊資料進行訊號處理
 - 對記憶體模組進行存取

Lab Requirements

- 需具備下列功能
 - 可錄音、播放
 - -播放時可以暫停、停止
 - 取樣值為16-bit signed,可錄製時間達32秒
 - 需支援快速播放(2, 3, 4, 5, 6, 7, 8 倍速)以及慢速播放(1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8 倍速)
 - 慢速播放時要包含零次內插與一次內插兩種模式
- Bonus (demo時與report中皆應清楚詳細說明)
 - 使用其它模組顯示錄音機運作狀態
 - 使用SDRAM增加可錄製時間
 - 以訊號產生器和示波器展示不同內插模式下的波形
 - 其他訊號處理功能等

Outline

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Audio Signal & Connectors

- An audio signal is representation of sound
 - Usually as an electrical voltage
- Connection on devices
 - Mic In , Line In and Line Out

- Phone connectors
 - Cylindrical in shape
 - With 2~4 contacts

Audio CODEC

WM8731

- IP for audio transmission
- 32kHz sampling rate
- 16-bit audio data input

Usage

- Initialize by setting registers via I²C interface
- After successful initialization, receive or transmit audio data via I²S interface

Initialization with I²C

- I²C (Inter-Integrated Circuit) protocol
 - Referred to as "I-squared-C"
- Serial Data Line (SDA)
 - Data being send
 - 1 bit at a time
- Serial Clock (SCL)
 - Control whether data is valid
 - 0 for data changing, 1 for data ready

Signal Name	1/0	Width	Description
I2C_SCLK	Output	1	I2C Clock
I2C_SDAT	Inout	1	I2C Data

I²C Protocol

- **S:** initiate data transfer
 - SDA pulls to 0 while SCL stays at 1
- Blue: SDA sets transfer bit when SCL is 0
- Green: data is sent when SCL is 1
- P: end of transfer
 - SDA pulls to 1 while SCL stays at 1

	起始	傳送(更改)	傳送(被讀取)	終止
SDA	$1 \rightarrow 0$	$X \rightarrow X'$	X'	$0 \rightarrow 1$
SCL	1	0	1	1

Appendix: I²C Protocol Explained

- 1. Start: Set SDA to low when SCL is high
- 2. When SCL is high, the data on SDA is valid. (At this time, the state of SDA cannot change)
- 3. When SCL is low, the state of SDA can change
- 4. An acknowledge (Ack) bit is appended to every 8-bit data transmission (see slides p.11)
- 5. Stop: After transmitting all commands, set SDA to high when SCL is high

Acknowledge

- For every 8 bits data sent
 - Set SDA to high impedance (1 cycle should be enough)
 - Allow receiver to return acknowledgment bit (0) to inform the transmitter that the data is correctly received

```
module inout port(oe, clk, SDA);
input oe; // output enable
input clk;
inout SDA;
logic a; // output data
logic b; // input data
assign SDA = oe? a: 1'bz;
always @(posedge clk) begin
    b \le SDA;
end
endmodule
```

Initialization Setting

Reset	0011_0100_000_1111_0_0000_0000
Analogue Audio Path Control	0011_0100_000_0100_0_0001_0101
Digital Audio Path Control	0011_0100_000_0101_0_0000_0000
Power Down Control	0011_0100_000_0110_0_0000
Digital Audio Interface Format	0011_0100_000_0111_0_0100_0010
Sampling Control	0011_0100_000_1000_0_0001_1001
Active Control	0011_0100_000_1001_0_0000_0001

Notes: for each 24-bit setting

- 1. Slave address is "0011010" (7-bit), and R/W is "0" (1-bit) for each setting in this lab
- 2. The total remaining data is 16 bits

Appendix: Detailed Initialization Setting

- Each command consists of 24 bits: slave address, Read/Write (R/W) bit, and 16-bit command code (see table)
- "Reset" command (prev. slide) might be optional based on experience; experimentation is recommended
- For further details, please refer to sup1_audiocodec.pdf

Left Line In	000_0000_0_1001_0111
Right Line In	000_0001_0_1001_0111
Left Headphone Out	000_0010_0_0111_1001
Right Headphone Out	000_0011_0_0111_1001
Analogue Audio Path Control	000_0100_0_000 1_0101
Digital Audio Path Control	000_0101_0_0000_ 0 000
Power Down Control	000_0110_0_ 0 00 0_0000
Digital Audio Interface Format	000_0111_0_0 1 00_ 0010
Sampling Control	000_1000_0_00 01_10 0 1
Active Control	000_1001_0_0000_000 1

WM8731 Audio Operations

Programmed to have 16-bit data (n = 16)

Signal Name	1/0	Width	Description
AUD_XCK	Output	1	Audio CODEC Chip Clock
AUD_BCLK	Inout	1	Audio CODEC Bit-Steam Clock
AUD_ADCLRCK	Inout	1	Audio CODEC ADC LR Clock
AUD_ADCDAT	Input	1	Audio CODEC ADC Data
AUD_DACLRCK	Inout	1	Audio CODEC DAC LR Clock
AUD_DACDAT	Output	1	Audio CODEC DAC Data

WM8731 Audio Operations: I2S

Notes:

- Each LRCK cycle begins with an "empty cycle" (no data transfer)
- MSB (Most Significant Bit) is transmitted first for the 16-bit data
- After 16 bits, wait for the next LRCK before further transmission
- BCLK operates on the negative edge of the signal
- Only Left or Right channel can be used for recording/playing, not both simultaneously
- Recording and playback can use different channels (Left or Right)

Digital Audio Interface – Record

Digital Audio Interface – Play

Outline

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

NTU / DCS Lab

18

Memory Devices

Signal Name	1/0	Width	Description
SRAM_ADDR	Output	20	SRAM Address
SRAM_DQ	Inout	16	SRAM Data
SRAM_OE	Output	1	SRAM Output Enable
SRAM_WE	Output	1	SRAM Write Enable
SRAM_CE	Output	1	SRAM Chip Enable
SRAM_LB	Output	1	SRAM Lower Byte Control
SRAM_UB	Output	1	SRAM Upper Byte Control

Memory Devices

- 本實驗主要會使用到的為SRAM
 - 2MB organized as 1024K words by 16 bits
 - 以WM8731取樣頻率32kHz計算,單聲道可存32秒音訊
- 需要操作的訊號
 - SRAM_ADDR[19:0]決定要讀或要寫的位址
 - SRAM_DQ[15:0]為輸入輸出雙向皆可操作,寫值時直接用,讀值時要設成1'bz
 - SRAM WE N設定目前操作模式,O為寫,1為讀

```
assign o_SRAM_ADDR = (state_r == S_RECD) ? addr_record : addr_play[19:0];
assign io_SRAM_DQ = (state_r == S_RECD) ? data_record : 16'dz; // sram_dq as output
assign data_play = (state_r != S_RECD) ? io_SRAM_DQ : 16'd0; // sram_dq as input
assign o_SRAM_WE_N = (state_r == S_RECD) ? 1'b0 : 1'b1;
```

Outline

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

System Architecture

Work with WM8731

- I²C Module
 - 初始化WM8731
 - 使用100kHz clock運作
- I²S Modules
 - 接收與傳輸音訊,皆只需要處理其中一個聲道即可
 - 注意
 - 資料傳送前要先等一個cycle
 - 資料傳完後(16 cycles)後面還會有若干cycle才會切換LRC

Digital Signal Processing (DSP)

• 以signed訊號進行運算

```
logic signed [7:0] a, b, c;
c = $signed(a) + $signed(b);
```

Note: If you encountered significant noise during playback, verify that all DSP operations are using the correct data types

- 快速播放
 - Down sampling
 - 以不同取樣間格達到不同倍數加速
- 慢速播放
 - Up sampling
 - 零次內插(piecewise-constant interpolation)
 - 內插資料與前一資料點相同
 - 一次內插(linear interpolation)
 - 內插點為前後點線性組合

Clock

- 用 Qsys 合成 PLL (請參考Lab2_qsys_tuto: page 1~7, 26~34)
 - 輸入是原本的 50MHz
 - 輸出一個是給I²C用的100kHz,另一個是給WM8731用的12MHz
 - 請不要自己用counter寫除頻電路
- 當I²C初始化完成後,將 12MHz 的clock訊號送給AUD_XCLK, WM8731就會生成BCLK以及兩個LRCLK

assign AUD_XCK = CLK_12M; (In DE2-115.sv)

• I²S在收或傳資料時會需要用到BCLK控制,其他 DSP 跟控制用FSM從BCLK、12MHz或原本的50MHz則一使用即可

Clock

· Qsys接線範例

Outline

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Report regulations

Code Template

- DE2_115/
 - Design setup files
- Top.sv
 - 包含一些模組分割範例
 - I2cInitializer: 以I²C初始化WM8731
 - AudDSP: 負責快速與慢速播放資料點處理
 - AudPlayer: 以I²S將DSP處理後的音訊資料傳出
 - AudRecorder:以I2S接收音訊資料儲存到SRAM
 - 可以自行改變設計
- 建議事項
 - 設計testbench來單獨測試各個module運作情況
 - 確認無誤後才合併起來

Outline

- Introduction
 - Lab requirements
- Audio CODEC
- Memory devices
- Implementation
 - System architecture
 - Work with WM8731
 - Digital signal processing (DSP)
 - Clock
- Code template
- Submission
 - Report regulations

Report Regulations

- 內容應包含
 - File Structure
 - System Architecture (必須包含Data Path)
 - Hardware Scheduling (FSM or Algorithm Workflow)
 - Fitter Summary 截圖
 - Timing Analyzer 截圖
 - 遇到的問題與解決辦法,心得與建議
- 一組交一份,以pdf檔繳交
- 命名方式:teamXX_lab3_report.pdf
 - Ex: team01_lab3_report.pdf
- 繳交期限:demo當天午夜
 - 遲交每三天*0.7

Submission Rules

• 繳交檔案架構

```
team01_lab3
- team01_lab3_report.pdf
- src
     - < all of your verilog code >.v
```

- 將 teamXX_labX 資料夾包成一個 zip 後,上傳到NTU Cool, 一組繳交一份
- src 資料夾內的 Verilog 可自行命名,只要在 report 中有說明層級架構即可
- 繳交期限: demo 日當天 23:59 前
- 若未遵守繳交格式會酌情扣分

Questions?

NTUEE DCLAB 32