Movimiento Browniano

Ejercicios entregables - Semana 1

Lucio Santi lsanti@dc.uba.ar

10 de abril de 2017

Ejercicio. Este ejercicio es para caracterizar la σ -álgebra de Borel \mathcal{B} en $C([0,T],\mathbb{R})$.

- a) Sea (E,d) un espacio métrico separable y completo (polaco). Probar que todo abierto $U \subset E$ se puede escribir como unión numerable de bolas abiertas.
- b) Sea (E,d) un espacio métrico polaco. Probar que existen numerables bolas B_1, \ldots, B_n, \ldots tal que la σ -álgebra de Borel $\mathcal{B}(E)$ verifica

$$\mathcal{B}(E) = \sigma\left(\left\{B_n : n \in \mathbb{N}\right\}\right)$$

c) Para $\omega \in C([0,T],\mathbb{R})$ definimos $\pi_t(\omega) = \omega(t)$. Probar que $\pi_t : C([0,T],\mathbb{R}) \to \mathbb{R}$ es continua.

En $(C([0,T],\mathbb{R}),\|\cdot\|_{\infty})$ definimos la σ -álgebra de Kolmogorov,

$$\mathcal{K} = \sigma\left(\left\{\pi_t^{-1}(B) : t \in [0, T], B \in \mathcal{B}(\mathbb{R})\right\}\right)$$

- d) Probar que las bolas abiertas están en K.
- *e)* Probar que K = B.

Resolución.

a) Sea $U \subset E$ un conjunto abierto no vacío. Por ser (E,d) un espacio métrico separable, sabemos que existe $S \subset E$ numerable y denso, i.e., $S = \{s_1, \ldots, s_n, \ldots\}$ es tal que $U \cap S = V \neq \emptyset$. Podemos entonces escribir $U = V \cup W$, donde W es tal que no posee ningún subconjunto abierto (de lo contrario, un tal subconjunto X satisfaría $X \cap S \neq \emptyset$, de manera que $X \subset V$). Por ser U abierto, para cada $v = s_i \in V$, se tiene que existe $\epsilon_i > 0$ tal que $B_{\epsilon_i}(s_i) \subset U$. Sea $\epsilon = \inf \{\epsilon_n : n \in \mathbb{N}\}$. Dado $w \in W$, tenemos como antes que existe $\delta > 0$ tal que $B_{\delta}(w) \subset U$, de manera que debe existir por lo menos un $s_j \in V$ en $B_{\delta}(w)$. De no ser así, $B_{\delta}(w) \subset W$, pero ya argumentamos que W no puede tener subconjuntos abiertos. Sea $\beta = \min(\delta, \epsilon)^1$. Luego, por este mismo razonamiento, $s_j \in B_{\beta}(w)$ para cierto $j \in \mathbb{N}$, y $d(s_j, w) = d(w, s_j) < \beta \le \epsilon \le \epsilon_j \Rightarrow w \in B_{\epsilon_i}(s_i)$. Esto sugiere tomar en consideración las bolas

$$B_n = \{x \in E : d(s_n, x) < \epsilon_n\}$$

para cada $n \in \mathbb{N}$. Por todo lo anterior, se observa que $U = \bigcup B_n^2$.

b) TBD

¹Si $\epsilon = 0$ hay que cambiar la estrategia.

²Se ve claramente que mi argumento no utiliza la hipótesis de que (E,d) es completo. ¿Es realmente necesaria?

c) Sea $\omega_0 \in C([0,T],\mathbb{R})$, $\epsilon > 0$ y definamos $\delta = \epsilon/2$. Supongamos que, para cierta $\omega \in C([0,T],\mathbb{R})$, $\|\omega - \omega_0\|_{\infty} < \delta$. Entonces,

$$|\pi_{t}(\omega) - \pi_{t}(\omega_{0})| = |\omega(t) - \omega_{0}(t)|$$

$$\leq \sup \{|\omega(s) - \omega_{0}(s)| : s \in [0, T]\}$$

$$= \|\omega - \omega_{0}\|_{\infty}$$

$$< \delta$$

$$< \epsilon$$

De esto sigue que π_t es continua en cualquier ω_0 y, por lo tanto, continua en todo su dominio.

d) Sea $\omega \in C([0,T],\mathbb{R})$ y $B_{\varepsilon}(\omega)$ una bola abierta. Consideremos $S_{\varepsilon}(\omega) = \{\omega_0(t) : \omega_0 \in B_{\varepsilon}(\omega)\}$. Probar lo solicitado se reduce a probar que $S_{\varepsilon}(\omega)$ es abierto en \mathbb{R} : de ser así, $S_{\varepsilon}(\omega) \in \mathcal{B}(\mathbb{R})$, por lo que la σ -álgebra de Kolmogorov contendrá a $B_{\varepsilon}(\omega)$. Sea entonces $x \in S_{\varepsilon}(\omega)$. Esto implica que $x = \omega_1(t)$ para cierta $\omega_1 \in B_{\varepsilon}(\omega)$. Sea $\delta = \varepsilon - \|\omega - \omega_1\|_{\infty} > 0$. Vamos a ver que $B_{\delta}(x) \subset S_{\varepsilon}(\omega)$. Para ello, tomemos $y \in B_{\delta}(x)$ y consideremos la siguiente $\omega_2 : [0, T] \to \mathbb{R}$:

$$\omega_2(s) = \omega_1(s) + (y - x)$$

- En primer lugar, tenemos que $\omega_2(t) = \omega_1(t) + (y x) = \omega_1(t) + (y \omega_1(t)) = y$.
- Además, $\|\omega_1 \omega_2\|_{\infty} = |x y| < \delta = \epsilon \|\omega \omega_1\|_{\infty}$.
- Finalmente, $\|\omega \omega_2\|_{\infty} \le \|\omega \omega_1\|_{\infty} + \|\omega_1 \omega_2\|_{\infty} < \epsilon$.

De todo esto sigue que $\omega_2 \in B_{\epsilon}(\omega)$ y que $y \in S_{\epsilon}(\omega)$, lo cual demuestra lo que deseábamos.

e) • Veamos primero que $\mathcal{B} \subseteq \mathcal{K}$. Al ser $(C([0,T],\mathbb{R}),\|\cdot\|_{\infty})$ un espacio métrico separable³, por el ítem (b) sabemos que existen numerables bolas abiertas $\{B_n\}_{n\in\mathbb{N}}$ tales que

$$\mathcal{B} = \sigma\left(\left\{B_n : n \in \mathbb{N}\right\}\right)$$

Ahora bien, valiéndonos del ítem anterior, tenemos que cada $B_n \in \mathcal{K}$. De esto sigue que $\mathcal{B} \subseteq \mathcal{K}$.

Ahora resta probar que $\mathcal{K} \subseteq \mathcal{B}$. Sea B un abierto en \mathbb{R} . Vamos a ver que $U_t = \pi_t^{-1}(B)$, $t \in [0,T]$, es abierto en $C([0,T],\mathbb{R})$, con lo que $U_t \in \mathcal{B}$. Sea $x \in B$ y sea $\varepsilon > 0$ tal que $B_{\varepsilon}(x) \subset B$. Sea además $\omega_0 \in C([0,T],\mathbb{R})$ tal que $\omega_0(t) = x \Rightarrow \omega_0 \in U_t$. Ahora consideremos una $\omega_1 \in B_{\varepsilon}(\omega_0)$ arbitraria. Luego,

$$|\omega_0(t) - \omega_1(t)| = |x - \omega_1(t)| \le ||\omega_0 - \omega_1||_{\infty} < \epsilon$$

En consecuencia, se tiene que $\omega_1(t) \in B_{\epsilon}(x) \subset B$, por lo que $\omega_1 \in U_t$.

Para completar la prueba de $\mathcal{K} \subseteq \mathcal{B}$, podría razonarse por inducción transfinita en $\mathcal{B}(\mathbb{R})$ argumentando lo siguiente:

- Dado B una unión numerable de conjuntos $\{\tilde{B}_n\}_{n\in\mathbb{N}}\in\mathcal{B}(\mathbb{R})$ tales que $\pi_t^{-1}(\tilde{B}_n)\in\mathcal{B}$ para todo n, se tiene que $B\in\mathcal{B}$, y
- Dado B un complemento de cierto $\tilde{B} \in \mathcal{B}(\mathbb{R})$ tal que $\pi_t^{-1}(\tilde{B}) \in \mathcal{B}$, se tiene que $B \in \mathcal{B}$.

Ejercicio. (1.6 - Mörters y Peres). Sea $\{B(t): t \geq 0\}$ un movimiento browniano standard. Probar que, casi seguramente,

$$\lim_{t \to \infty} \frac{B(t)}{t} = 0$$

³Referencia acá

Resolución. Sea $X_i = B(t-i+1) - B(t-i)$, $1 \le i \le \lfloor t \rfloor$. Por ser B un movimiento browniano, se tiene que $X_1, \ldots, X_{\lfloor t \rfloor}$ son variables aleatorias iid con $X_i \sim N(0, (t-i+1) - (t-i)) = N(0,1)$. Luego, valiéndonos de la Ley de los Grandes Números,

$$\frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} X_i \xrightarrow{\text{c.s.}} \mathbf{E}[X_i] = 0$$

cuando $t \to \infty$. A partir de la definición de X_i , tenemos:

$$\frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} X_i = \frac{1}{\lfloor t \rfloor} \sum_{i=1}^{\lfloor t \rfloor} B(t-i+1) - B(t-i)$$

$$= \frac{1}{\lfloor t \rfloor} \left(B(t) - B(r) \right)$$

$$= \frac{B(t)}{\lfloor t \rfloor} - \frac{B(r)}{\lfloor t \rfloor}$$

$$\xrightarrow{\text{c.s.}} 0$$

 $\begin{array}{l} \operatorname{con} r = t - \lfloor t \rfloor \text{. Pero } 0 \leq r < 1 \text{, con lo cual } \frac{B(r)}{\lfloor t \rfloor} \underset{t \to \infty}{\longrightarrow} 0 \text{. De esto se desprende que necesariamente } \frac{B(t)}{\lfloor t \rfloor} \underset{t \to \infty}{\longrightarrow} 0 \text{. A su vez, esto implica que } \left| \frac{B(t)}{\lfloor t \rfloor} \right| = \frac{|B(t)|}{\lfloor t \rfloor} \underset{t \to \infty}{\longrightarrow} 0 \text{. Luego,} \end{array}$

$$0 \le \frac{|B(t)|}{t} \le \frac{|B(t)|}{|t|} \xrightarrow[t \to \infty]{} 0$$

Se ve entonces que $\left|\frac{B(t)}{t}\right| = \frac{|B(t)|}{t} \xrightarrow[t \to \infty]{} 0$, de lo que se puede concluir que $\frac{B(t)}{t} \xrightarrow[t \to \infty]{} 0$, que es lo que se prentedía demostrar⁴.

⁴Dada $f: \mathbb{R} \to \mathbb{R}$ tal que $|f(x)| \underset{x \to \infty}{\longrightarrow} 0, -|f(x)| \le f(x) \le |f(x)| \Rightarrow f(x) \underset{x \to \infty}{\longrightarrow} 0.$