CSE 5523: HW2

Outline

- You are to implement:
 - Pocket algorithm (improved perceptron)
 - Linear Gaussian discriminative analysis
 - Nonlinear Gaussian discriminative analysis

Data

- Four data source
 - 2D linear
 - 2D noisy linear
 - 2D quadratic (circle)
 - MNIST (<5 vs. >=5)
- $X \in \mathbb{R}^{D \times N}$:
 - A column as an instance
- $Y \in \{+1, -1\}^{N \times 1}$

Data

- The data X are not appended with "1" yet.
- For feature transform for a 2D data instance $x \in \mathbb{R}^2$, we do

- \circ Again, you need to append "1" to the data $\phi(x)$ if you want to solve \widetilde{w} directly
- \circ In the homework, we have done $\phi(x)$ for you!

Accuracy

- Data = $\{(x_i, y_i \in \{+1, -1\})\}_{i=1}^N$
- Accuracy = $\frac{1}{N}\sum_{i=1}^{N}\mathbf{1}[\hat{y}_i==y_i]$, where \hat{y}_i is the prediction based on x_i

Pocket algorithm

Pocket algorithm

• Training data: $D_{tr} = \{ (x_i \in \mathbb{R}^D, y_i \in \{+1, -1\}) \}_{i=1}^N$

• Model: $sign(wx + b) = sign(\widetilde{w}^T \widetilde{x})$

Pocket algorithm

- Initialize $\widetilde{\boldsymbol{w}}$ and $\widetilde{\boldsymbol{w}}^{\text{best}} = \boldsymbol{0}$
- For t = 1:T
 - \circ Loop for all training examples \widetilde{x}_n (random order!)
 - Predict $\hat{y}_n = \operatorname{sign}(\widetilde{\boldsymbol{w}}^T \widetilde{\boldsymbol{x}}_n)$
 - If $\hat{y}_n \neq y_n$ > Update: $\widetilde{w} \leftarrow \widetilde{w} + \eta(y_n \widetilde{x}_n)$
 - \circ Evaluate $\widetilde{m{w}}$ on the "training data" and calculate the training accuracy
 - If training accuracy by \widetilde{w} is "higher" than the training accuracy by $\widetilde{w}^{\text{best}}$
 - $\widetilde{\boldsymbol{w}}^{\text{best}} \leftarrow \widetilde{\boldsymbol{w}}$
- Output $\widetilde{\boldsymbol{w}}^{\text{best}}$

See lecture 7 for extra details

Gaussian discriminant analysis

GDA

- Training data: $D_{tr} = \left\{ \left(\boldsymbol{x}_i \in \mathbb{R}^D, \ \mathbf{y}_i \in \{+1, -1\} \right) \right\}_{i=1}^N$
- Goal: construct $p(Y = c | \mathbf{x})$ for $\hat{y} = \max_{c \in \{+1, -1\}} p(Y = c | \mathbf{x})$
- Bayes' rules: $p(Y = c|x) \propto p(x|Y = c)p(Y = c)$
 - $\circ p(Y = c)$: Bernoulli
 - $\circ p(x|Y=c)$: multi-dimensional Gaussian

Nonlinear GDA

- p(x|Y=+1) and p(x|Y=+1) have their own covariance matrices $\pmb{\Sigma}_{+1}$, $\pmb{\Sigma}_{-1}$
- See slides 9, 10 for how to compute them
- See also your homework # 2

Linear GDA

• p(x|Y=+1) and p(x|Y=+1) share the same covariance matrix Σ

• Built upon the previous slide, given Σ_{+1} , Σ_{-1} and let N_{+1} , N_{-1} be the number of training examples per class, $\Sigma = \frac{N_{+1} \times \Sigma_{+1} + N_{-1} \times \Sigma_{-1}}{N}$

See your homework # 2 for how to compute it

Prediction (please do "log" to prevent overflow)

$$\max_{c \in \{+1,-1\}} p(Y = c | \mathbf{x}) = \max_{c \in \{+1,-1\}} p(\mathbf{x} | Y = c) p(Y = c)$$

$$= \max_{c \in \{+1,-1\}} \log p(x|Y=c) + \log p(Y=c)$$