Bitácora del Proyecto Lógica Combinatoria: Calculadora tomógrafo

Curso: Fundamentos de Arquitectura de Computadores

Integrantes: Bryan Stiphen Feng Feng

Fecha de inicio: 11 de marzo de 2025

Repositorio Git: https://github.com/Feng672/L-gica-Combinatoria-Calculadora-tomografo

1. Objetivos

• Diseñar un circuito combinatorio que realice una suma de 4 bits

- Mostrar el resultado de la suma en un display de 7 segmentos mediante un decodificador
- Diseñar un actuador que se habilite en dos rangos de valores lógicos no contiguos
- Conectar un arreglo de sensor al circuito combinatorio
- Diseñar un visualizador de LEDs conectado a los sensores

2. Materiales y herramientas

Componentes	Cantidad
DIP switches	1
Compuerta XOR (74LS86)	1
Compuerta AND (74LS08)	1
Decodificador 74LS47	1
Protoboard	1
Arduino (Fuente de 5V)	1
Display 7 segmentos (cátodo común)	1
Vibration motor	1
Transistor TIP120	1
Flip Flop D (74LS175)	
Diodo 1N4007	1
Jumpers	20+
Resistencias 220Ω	5
Resistencias 100Ω	5
Resistencias 2000Ω	4
Resistencia 1000Ω	1
Botón	1

3. Registro diario

Día 1: Diseño lógico

• Tareas:

- Definir el diseño del circuito combinatorio
- Definir las tablas de verdad
- Simplificar ecuaciones

Resultados

Mediante la herramienta de Lucidchart se diseñó el circuito combinatorio. Esta tiene 4 entradas y da como resultado la suma de A1A0+B1B0. El bit menos significativo se obtiene haciendo un XOR de los bits A0 y B0. Para obtener el bit más significativo se tiene que hacer un XOR del resultado del XOR de A1 y B1; y del resultado de un AND de A0 y B0.

Las tablas de verdad quedarían:

	X	OR	
A0	В0	Y0	
	0	0	0
	0	1	1
	1	0	1
	1	1	0

	XC)R	
A1	B1	S1	
	0	0	0
	0	1	1
	1	0	1
	1	1	0

	AN	ID	
A0	В0	S2	
	0	0	0
	0	1	0
	1	0	0
	1	1	1

	XC)R	
S1	S2	Y1	
	0	0	0
	0	1	1
	1	0	1
	1	1	0

De esta manera la ecuación para obtener Y1 y Y0 sería

$$A0 \oplus B0 = Y0$$
$$(A1 \oplus B1) \oplus (A0 \cdot B0) = Y1$$

Día 2: Diseño 7 segmentos

- Tareas:
 - Diseñar el módulo BCD
 - Conectar el módulo BCD al visualizador 7 segmentos
- Resultados:

Nuevamente con Lucidchart se diseñó la conexión a los 7 segmentos. Las salidas del circuito combinacional se conectarán con el flip-flop, el cual tendrá un botón controlando su reloj; por lo cual sus dos salidas solo se actualizarán cuando el botón envíe una señal y no cuando las entradas cambien. Luego el decodificador recibirá las dos entradas y las convertirá en 7 bits para representar en un 7 segmento el número en decimal, del 0 al 3.

