ENSTA-Paris MS102

Elasticité linéaire

Travaux dirigés n°2 Comportement thermoélastique linéaire ***

Exercice 1 : Inversion de la relation $\underline{\sigma}$ - $\underline{\epsilon}$

On considère la loi de comportement élastique linéaire isotrope, écrite sous la forme

$$\underline{\underline{\sigma}} = \underline{\underline{\sigma}}_0 + \lambda (\operatorname{tr}\underline{\underline{\epsilon}})\underline{\underline{1}} + 2\mu\underline{\underline{\epsilon}} - (3\lambda + 2\mu)\alpha\tau\underline{\underline{1}}$$
 (1)

Montrer que relation peut être mise sous la forme

$$\underline{\underline{\epsilon}} = \frac{1+\nu}{E} (\underline{\underline{\sigma}} - \underline{\underline{\sigma}}_0) - \frac{\nu}{E} \operatorname{tr} (\underline{\underline{\sigma}} - \underline{\underline{\sigma}}_0) \underline{\underline{1}} + \alpha \tau \underline{\underline{1}}$$
 (2)

et exprimer (E, ν) en fonction de (λ, μ) .

Exercice 2 : Interprétation des coefficients élastiques

Soit $(0,\underline{e}_x,\underline{e}_y,\underline{e}_z)$ un repère orthonormé. On considère un cylindre de section S, d'axe $(0,\underline{e}_z)$ et de hauteur H, constitué d'un matériau élastique linéaire isotrope. Les contraintes initiales $\underline{\sigma}_0$ sont supposées nulles. On étudie l'équilibre de ce solide sous plusieurs cas de chargement.

- 1) Traction/compression: le solide est en équilibre sous l'action de forces surfaciques $\underline{T}=(F/S)\underline{e}_z$ en z=H, et $\underline{T}=-(F/S)\underline{e}_z$ en z=0. Le reste de la surface est libre de contraintes et il n'y a pas de forces volumiques.
- a) Déterminer l'expression de $\underline{\underline{\sigma}}$ en faisant l'hypothèse d'un champ de contraintes uniforme.
- b) Déterminer $\underline{\epsilon}$. En supposant que le cylindre est encastré en z=0, déduire le déplacement ξ , cherché sous la forme $\xi=\xi_x(x)\underline{e}_x+\xi_y(y)\underline{e}_y+\xi_z(z)\underline{e}_z$.
- c) Exprimer la variation de longueur du cylindre $\xi_z(H) \xi_z(0)$ en fonction de F/S. Interpréter E et ν . Que vaut ν dans le cas d'un matériau incompressible?
- 2) Dilatation thermique : le solide est soumis à une élévation de température uniforme τ , en l'absence de chargement mécanique. Calculer la variation de volume et interpréter α .
- 3) $Pression\ uniforme$: le solide est en équilibre sous l'effet d'une pression p uniforme sur toute la surface. Les forces de volumes sont nulles.
- a) Déterminer le champ de contraintes $\underline{\underline{\sigma}}$ dans le solide en faisant l'hypothèse d'un champ uniforme.
- b) Déterminer la variation de volume et interpréter le coefficient $K=E/3(1-2\nu)$. En déduire une restriction sur ν .
- 4) Torsion : on suppose que la section est circulaire de rayon R. On considère la transformation de torsion vue en MS101 :

$$\underline{\xi} = \eta r \frac{z}{H} \underline{e}_{\theta}$$

où η est un paramètre fixé tel que $\eta \ll 1$ et $\eta R/H \ll 1$ (petites transformations)

- a) Déterminer $\underline{\epsilon}$ puis $\underline{\sigma}$.
- b) Calculer les forces volumiques f et les forces surfacique \underline{T} à l'équilibre.
- c) Calculer le moment et la résultante des efforts surfaciques appliqués sur la section z=H. En déduire une interprétation de $\mu.$

Exercice 3 : Mesure des contraintes en un point d'une surface libre

Une pièce élastique homogène et isotrope, en état d'équilibre, présente une surface libre. Soit M un point de cette face et $(M,\underline{e}_1,\underline{e}_2,\underline{e}_3)$ un repère orthonormé tel que \underline{e}_3 soit dirigé selon la normale. On colle au point M une 'rosette', ensemble des trois jauges électriques fournissant les allongements unitaires dans les directions $\underline{e}_1,\underline{e}_2$ et $\frac{1}{\sqrt{2}}(\underline{e}_1+\underline{e}_2)$. On note respectivement A,B,C les allongements unitaires dans ces trois directions.

Déterminer les tenseurs $\underline{\epsilon}$ et $\underline{\sigma}$ en M.