Exercise 1:

We have: $t = y(w, x) + \varepsilon$

while $\varepsilon \approx N(0, \sigma^2)$

If $\mu(\varepsilon) \neq 0$ we just adjust bias of y: $\mu(\varepsilon) = 0$

 $\Rightarrow P(t) = N(t|y(w,x),\sigma^2)$

Suppose: $t_n = y(x_n, w) + \varepsilon$

$$\Rightarrow P(t_n) = N(t_n|y(x_n, w), \varepsilon^2)$$

Suppose: $t_n = g(x_n, w) + \varepsilon$ $\Rightarrow P(t_n) = N(t_n|y(x_n, w), \varepsilon^2)$ Generality: Maximum for all point, we use maximum likelihood function: $P(t|x, w, \beta) = \prod_{n=1}^{N} N(t_n|y(x, w), \beta^{-1})$

$$P(t|x, w, \beta) = \prod_{n=1}^{N} N(t_n|y(x, w), \beta^{-1})$$

Simplize:
$$\log(P(t|x, w, \beta)) = \sum_{n=1}^{N} (\log(N(t_n|y(x, w), \beta^{-1})))$$

$$= \frac{-\beta}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 + \frac{N}{2} \log(\beta) - \frac{N}{2} \log(2\pi)$$
Maximum likelihood:

Max
$$\log(P(t|x, w, \beta)) = -\text{Max } \frac{\beta}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$$

$$= \operatorname{Min} \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$$

We minimize $P = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2$ to find w

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}; t = \begin{pmatrix} t_1 \\ t_2 \\ \dots \\ t_n \end{pmatrix}; w = \begin{pmatrix} w_0 \\ w_1 \end{pmatrix}$$

By minimizing P, we can find w. P is called Mean Squared Error Loss(MSE):

$$L = \frac{1}{N} \sum_{n=1}^{N} (t_n - y(x_n, w))^2$$

we have:

$$y(x_n, w) = w_1 x_v + w_0$$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} w_1 x_1 & w_0 \\ w_2 x_2 & w_0 \\ \dots & \dots \\ w_n x_n & w_0 \end{pmatrix} = XW$$

$$t - y = \begin{pmatrix} t_1 - y_1 \\ t_2 - y_2 \\ \dots \\ t_n - y_n \end{pmatrix}$$

$$\Rightarrow L = ||t - y||_i^2 = ||t - Xw||_i^2 = (t - Xw)^T (t - Xw)$$

$$\frac{\partial(L)}{\partial(w)} = 2X^T(t - Xw) = 0$$

$$\Leftrightarrow X^T t = X^T X w$$

$$\Leftrightarrow w = (X^T X)^{-1} X^T t$$

Exercise 4:

We know that when the rows and columns are independent, then matrix A would be invertible and would have non-zero determinant.

We have an nxm matrix X

If n = m, It is enough for check $det(X) \neq 0$

if $n \neq m$ Precisely, When the rank of X is m (Which forces n >= m Observation: For $v \in \mathbb{R}^m$, Xv = 0 if and only if $X^T Xv = 0$. For the non-trivial implication. If $X^T Xv = 0$ then $v^T X^T Xv = 0$, that is $(Xv)^T Xv = 0$, Which implies that Xv = 0.

If rank(X) = m, this mean that X is one-to-one when acting on \mathbb{R}^m . So by the observation, X^TX is one-to-one, Which makes it Invertible (as it is square).

Conversely, If rank(X) < m there exist $v \in \mathbb{R}^m$ with Xv = 0, and X^TX can not Invertible.