Rishabh Solanki

81 Mill street, New Bedford, MA 02740, United States

□ (+1) 508-717-5407 | 🗷 rsolanki@umassd.edu | 🌴 rishabh01solanki.github.io | 🛅 rishabh01solanki

Research Interests

Compact objects, Supernovae, Accretion disks, Magnetohydrodynamics (MHD), numerical simulation, Al/machine learning, general relativity, Application of computational methodologies to data-intensive astrophysics.

Education

University of Massachusetts Dartmouth

MA, USA

M.S. IN PHYSICS, GPA 4.0

Sep. 2021 - expected May 2023

 Thesis: Comparison between an alpha disk and a magnetized model for a white dwarf merger evolution Advisor: Professor Robert Fisher

University of Petroleum and Energy Studies

Dehradun, India

Jul. 2014 - May 2018

B.S. IN AEROSPACE ENGINEERING, GPA 3.0

• Undergraduate thesis: *N-body simulations using Monte Carlo methods* Advisor: Professor Ugur Guven

Research Experience _____

Graduate Research Assistant

MA, USA

UMass Dartmouth Sep. 2021 - present

- Led a research effort to explore the evolution of magnetized White Dwarf mergers using fully Magnetohydrodynamics solution and comparing it with the alpha disk perscription (Shakura and Sunyaev, 1973).
- Developed and implemented modules in FLASH to simulate the merger evolution.
- Implemented astrophysical fluid dynamics by structuring calls to equation of state unit in FLASH.
- Reduced the spread of contact discontinuity in self similar standard tests such as Sod shock tube and BrioWu to 3 cells (Δx=1/512) by implementing a novel steepening algorithm based on Piecewise Parabolic Method (PPM) which led to a more resolved solution.
- Optimized the flow and architecture of various numerical solvers to provide faster run time.
- Rearchitected, refactored, and documented microphysics modules, enhancing and extending core capabilities and enabling new kinds of stellar models.
- Proficient in distributive computing and massively parallel programming including MPI and multi-threading. Modeled large scale simulations which used thousands of cores to achieve realistic outcomes closely matching to the observations.

Research Intern Dehradun, India

INSTRUMENTS RESEARCH AND DEVELOPMENT ESTABLISHMENT

Aug. 2018 - Sep. 2019

- Modeled and reduced the noise from the light curve data using gaussian processes.
- Developed and built upon existing code in Java and Python to obtain centroidal shift which led to refined modelling of refractive index parameter and improved the angular resolution from 3 arc-sec to 20 milliarc-sec.
- Led migration of image processing codes to Git/GitHub, facilitating easier integration into signal processing pipelines.

Undergraduate Research Assistant

Dehradun, India

University of Petroleum and Energy Studies

Sep. 2017 - Aug. 2018

- Developed a machine learning based Java applet that trained itself in real-time on orbital data which led to a predictive model for collision detection. Reduced runtime by 30% by implementing error-based step size control.
- Optimized the raw data set for better feature recognition which resulted in more accurate and precise collision predictions.

Skills

Frameworks FLASH, yt, Git

Programming Fortran, Python, Java

HPC MPI, Open MP, TACC-Stampede2, Carnie(UMass Dartmouth)

Languages English (fluent), Hindi (native)

Publications

1. "Comparison between an alpha disk and a magnetized model for a white dwarf merger evolution", Solanki, R., Mudalige, P., Fisher, R., Ugalino, M., Federrath, C. (In Preparation)

Teaching

Graduate Teaching Assistant

MA, USA

UMASS DARTMOUTH

Sep. 2021 - present

• Prepared and led weekly lectures, review sessions, and lab experiments for classes consisting of 100+ students in the undergraduate series, Physics for Science and Engineering.

• Graded exams and problem sets, working with professors to assign final grades.

Coursework.

Physics Classical Mechanics, Electromagnetism, Quantum Mechanics, Statistical Thermodynamics, General Relativity

Astronomy Stellar Structures, Orbital Mechanics

Mathematics Calculus, Differential Equations, Linear Algebra, Complex Analysis

Conferences/Workshops_____

XSEDE HPC Workshop: BIG DATA and Machine Learning

Virtual

PARTICIPANT

Aug 30, 2022

• Insights into the use of Machine learning and Big Data in large distributed systems.

Virtual Astronomy Software Talks (VAST)

Virtual

PARTCIPANT

Sep. 2022- Jun. 2023

• The VAST seminar series puts Astronomy softwares in the spotlight, allowing developers to share their libraries and projects with the community.

Extracurricular Activities

Hikes, Piano, Badminton, Chess, Website Design (UIX)