Control of blood glucose

Peter Thorn

(1) Insulin-dependent reduction of blood glucose:

LIVER

(2) Insulin-dependent reduction of blood glucose

SKELETAL MUSCLE

(3) Insulin-dependent reduction of blood glucose:

adipocytes

Insulin action to stimulate fat storage

Insulin action on adipocyte:

- 1. Stimulates lipoprotein lipase, LPL, to increase uptake of fatty acids from chylomicrons and very lowdensity lipoprotein, VLDL
- 2. Stimulates glycogen production
- 3. Inactivates hormonesensitive lipase, to decrease lipolysis and increase triglyceride storage

Model for the control of glucagon secretion: cAMP

Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α -cell by lowering cAMP Amicia D. Elliott, Alessandro Ustione, David W. Piston

What is the main target for glucagon?

