

Challenges and Opportunities Building Open LLMs

Iz Beltagy

We need language models that are (truly) open!

Reproducible

Transparent

Accessible

Which one of these models is "Open"?

GPT4, ChatGPT, BARD

Llama, LLama2,

MPT, Falcon

Pythia, GPT-J .. (EleutherAl)

BLOOM

Do you want to use an existing LLM as a blackbox to build an application or

Research Language models and advance them?

Which one of these models is "Open"?

Wandb

logs

Ablations

VVIIICII O	willch one of these models is Ope						
					, , ,	,	
					•	,	
	SOTA	API	Model weights	Data	Training Code	F	
GPT4, ChatGPT, BARD	/	/	×	×	×		

X

This is the goal

Llama, LLama2,

Pythia, GPT-J .. (EleutherAI)

MPT, Falcon

BLOOM

Science of LMs:

 Open, documented, and reproducible: enable a larger, diverse AI community to understand, study, evaluate, and advance LMs and their components; narrow the private/public gap

LMs for Science:

- Advance scientific understanding and discovery by training on scientific text (eventually serve Semantic Scholar projects/users)
- Promote Al literacy through transparency and public demos

Target OLMo 1.0 releases

Open Data

- Pretraining data
- Demonstration data

Evaluation:

- Evaluation suite
- Tasks & efficiency

Training & Inference:

- Open training code
- Models @7B & 70B
- Inference code
- Instruction tuning

Public Demo & API

- Demo
- Human interaction& feedback

Model Impact

Impact License

Agenda

Model Construction

- 1. **Dolma**: Data to feed OLMo's appetite
- 100

- 2. Evaluation
- 3. **Training**

Model Adaptation: the Tülu model

What's next?

doma OLMo Data

Dolma: An Open Corpus of 3 Trillion Tokens for Language Model Pretraining Research

Luca Soldaini $^{\alpha*}$ Rodney Kinney $^{\alpha*}$ Akshita Bhagia $^{\alpha*}$ Dustin Schwenk $^{\alpha*}$

Hannaneh Hajishirzi $^{\alpha,\omega}$ Noah A. Smith $^{\alpha,\omega}$ Luke Zettlemoyer $^{\omega}$ Iz Beltagy $^{\alpha}$ Dirk Groeneveld $^{\alpha}$ Jesse Dodge $^{\alpha}$

Kyle Lo $^{\alpha*}$

 $^{\alpha}$ Allen Institute for Al $^{\beta}$ University of California, Berkeley $^{\chi}$ Carnegie Mellon University $^{\tau}$ Massachusetts Institute of Technology $^{\omega}$ University of Washington

Pretraining Dataset

Given all the text in the web and other sources, how to build your pretraining data

Design of pretraining dataset is understudied in the literature

- Not perfectly clear what makes a high-quality pretraining dataset

Not perfectly clear how pretraining data characteristics translate to downstream performance

What is Dolma?

DOLMA: Data to Feed OLMo's Appetite

Dataset for Pretraining OLMo

- \rightarrow Lots of text (3.1T tokens)
- → Large scale, high quality

Toolkit!

- → Transforms raw text to a pretraining corpus
- → Good design & performance
- → Common filters; fast global deduplication

Data Distribution & Features

Data mix:

- English only
- □ Web data
- Just enough code
- □ Diverse domains

2.6T	Web	Commoncrawl & C4
430B	Code	Stack
57B	Science	Semantic Scholar
8B	Knowledge	Wikipedia & books

Processing:

- Quality filtering:
 - □ toxicity detection; personal information identification, ...
- Deduplication
- Decontamination

Example of Processing: Web

How Closed LMs Prepare Their Data

Model	Num Tokens**	Data Provenance?	PII ID + filtering method	Toxicity ID + filtering method	Lang ID + filtering method	Quality filtering method	Dedup method	Decontam method
<u>LLaMA 2</u> (Jul 2023)	2T	~	~	?	~	?	?	?
PaLM 2 (May 2023)	?	~	V	~	~	~	?	V
<u>GPT-4</u> (Mar 2023)	?	?	?	~	?	?	?	V
<u>Claude</u> * (Mar 2023)	?	?	?	?	?	?	?	?
LLaMA (Feb 2023)	1.4T	~	?	?	~	~	~	?
GLM (Oct 2022)	400B	~	?	?	?	?	?	V
<u>OPT</u> (May 2022)	180B	~	?	?	~	?	~	?
<u>PaLM</u> (Apr 2022)	780B	~	?	?	~	~	~	?
Gopher (Dec 2021)	300B	~	?	~	~	V	~	V
<u>Jurassic-1</u> (Aug 2021)	300B	~	?	?	?	?	?	?
<u>GPT-3</u> (May 2020)	400B	~	?	?	?	~	~	V

Other Open Datasets

Dataset	Example language models	Tokens**	Sources	License	PII Filter	Toxicity Filter	Language	Quality Filtering	Dedup	Decontam
OSCAR (Jul 2019)	BLOOM (via ROOTS)	1.08B	Common Crawl	Varies by data subset*	0	0	Multilingual (152 langs)	0	•	0
<u>C4</u> (Oct 2019)	<u>T5, FLAN-T5</u>	156B	Common Crawl	ODC-BY	0	•	English	•	0	0
The Pile (Dec 2020)	GPT-I, GPT-NeoX, Pythia	300B	22 datasets e.g. Common Crawl, scientific text, books, code, Wikipedia, news	Varies by data subset	0	0	English	•	•	•***
ROOTS (Mar 2023)	BLOOM	341B	517 datasets e.g. Github, news, books, scientific text, Wikipedia	Varies by data subset	•	•	Multilingual (59 langs)	•	•	0
RedPajama (Apr 2023)	<u>LLaMa</u> reproduction	1.2T	Common Crawl, C4, Github, Arxiv, Books, Wikipedia, StackExchange	Varies by data subset	0	0	English	•	•	0
RefinedWeb (Jun 2023)	<u>Falcon</u>	600B****	Common Crawl	ODC-By 1.0	0	•	English	•	•	0
Ours (Dolma)	OLMo (Ongoing)	3.08T	Common Crawl, C4, peS2o, Gutenberg, Github, Wikipedia + Wikibooks	ImpACT MR	•	•	English	•	•	•

Results

• Top trending dataset during the two weeks following release

What's next? Dolma 2.0

More tokens

¾ Common Crawl to go; other general domain data providers

Better processing

• Revisit quality filters through content classifiers; improve other filters

Scientific text

o More books, more papers. Maybe multimodal?

Retrieval & other tools!

Improve Dolma codebase to enable more research

Open Research Questions

- What makes an "oracle" dataset?
- What is the perfect filtering and deduplication method?
- How to best mix domains?
- Where to find pretraining data that doesn't have copyright issues?

OLMo Evaluation

Pretraining Evaluation is different

Goals: tooling and evaluation to make sure pretraining is on the right track

- Evaluation for a trained model
 - Slow and detailed
 - Computationally expensive
 - Can involve human labeling and redteaming
 - e.g: HELM

- Pretraining Evaluation
 - Rapid lightweight evaluation
 - Runs in-loop for early detection of training issues
 - Goes beyond just training and validation loss
 - e.g: Catwalk (ours) and eleutherAl eval harness

Pretraining Evaluation is different

Pretraining Evaluation:

- Goes beyond just training and validation loss
 - Intrinsic evaluation (validation loss)
 - Good for model ablations. Why?

Because validation loss is super strongly correlated with downstream performance

- Extrinsic evaluation (downstream performance
 - Good for data ablations. Why?

Because validation loss is not comparable once the training data changes

Monitoring

Goals: tooling and evaluation to make sure pretraining is on the right track

What else to monitor other than validation loss and in-loop downstream eval?

- Optimizer state
- Gradients
- Params
- Activations
- Gradient clipping
- Learning rate
- Throughput
- Total tokens

Absolutely essential for debugging

Super helpful for reproducibility

Monitoring

Goals: tooling and evaluation to make sure pretraining is on the right track

Monitoring

Helps finding new insights

For your next project, remember to log everything and to release your wandb log

significant underestimate

OLMo Evaluation

Goals: tooling and evaluation to make sure pretraining is on the right track

Downstream evaluation

- New evaluation framework on <u>Catwalk</u>,
- <u>18+ core LLM evaluation tasks</u>, offline analysis, **QA** (MMLU, ARC,...), summarization (SciTLDR,...), misc. classification.
- In-the-loop evaluation, early detection of training issues.

Perplexity evaluation

- A new suite of perplexity tasks for ensuring progress on core LMing task.
- New techniques for data decontamination, ensuring reliability.

OLMo Model Training

Isn't LLM training a solved problem?

Llama-2 is out, can't we just follow their setup? No, because

- The design space is so huge. Every released model is a single datapoint in that space, but it is not the only nor the best point
- 2) Even if we want to blindly follow it, we can't because it is not open source
 - a) Data is not open source
 - b) Training code is not open source (hids low-level but important implementation details)
 - Training and optimization hyperparamters are not open source c)
 - d) Model and optimizer ablations are not open source
- 3) And even if it was, how are we going to learn to build the next model and keep advancing the field?

Compute

- Partnering with AMD and LUMI, a supercomputer in Finland
- Total 2M GPU hours
- AMD GPUs are good, but software has a few issues
 - MI250 is comparable to A100
- LUMI can be busy, especially with the global GPU shortage

Training: Highlights

- New training code, adaptable to AMD hardware and NVIDIA
 - Built a platform that ran dozens of data ablations at LUMI.
 - o 7B model is trained up to 400B model and still going
 - Results are on-par with comparable-size models

How are we doing? (downstream)

Current checkpoint 300B tokens Training towards 2T tokens

Are we on the path towards models that can do things?

More training tokens

task	num inst	random	Pythia-6.9b step80k	OLMo-medium v1-mix-step70k	•	MPT-7b	Llama-7b	XGen-7b 4k-base	Falcon-7b	
arc_challenge	299	25	38.8	43.8	44.2	46.5	44.5	45.8	47.	
arc_easy	570	25	58.8	61.1	61.9	70.5	57.0	67.0	70.4	
boolq	1000	50	63.2	64.6	61.1	74.2	73.1	73.6	74.6	
сора	100	50	77.0	85.0	84.0	85.0	85.0	80.0	86.0	
hellaswag	1000	25	59.9	70.4	63.8	77.6	74.5	67.2	75.9	
openbookqa	500	25	43.8	48.4	45.0	48.6	49.8	46.4	53.0	
piqa	1000	50	73.7	76.0	75.1	77.3	76.3	74.5	78.	
rte	277	50	52.4	49.5	60.7	62.8	53.1	57.8	61.7	
sciq	1000	25	90.0	88.4	91.1	93.7	89.5	92.6	93.9	
sst	872	50	52.2	54.1	62.3	75.8	53.0	56.0	49.1	
winogrande	1000	50	61.5	63.9	62.0	69.9	68.2	68.3	68.9	
wnli	71	50	50.7	46.5	38.0	47.9	56.3	52.1	47.9	
Average		39.6	60.2	62.6	62.4	69.2	65.0	65.1	67.3	
				Same #	of tokens					

Challenges - loss spikes

- Reduces model performance if it recovered
- Various mitigation strategies
- If configured correctly, 7B shouldn't have any
- Causes are plenty
 - Noisy data
 - Loss of precision
 - Model learning something new
 - ... others

Challenges - slow loss increase

- Not reported in the literature
- Known hyperparams for 300B-tokens params don't necessarily work for 2T params

Challenges - torch.permute is not random

- Weird waves in the training loss
- This means data is not IID
- Turns out torch.permute is not very random

Challenges - software issues with AMD GPUs

- torch.compile diverges on AMD
- torch.nn.LayerNorm(bias=None) sigfaults
- Triton is not supported

Challenges - numerical stability

- For speed, we use bf16
- Bf16 is better than fp16, but still suffers from loss of precision compared to fp32
- e.g: Alibi bias matrix
- Which parts of the model should run in fp32?
 - Torch autocast handles a lot but not enough
 - e.g. torch.all_reduce should be in fp32

Challenges - position embedding

- We still need position embedding that can extrapolate
- But doesn't inject position information in attention matrix as in Alibi

Wandb demo

Wandb demo

Summary

Summary

- We need Open LLMs
- Building LLMs is still challenging with lots of open questions
- Pretraining Dataset
- **Evaluation**
- **Training**
- Alignment, human feedback, continual learning

Thanks!