LAB S09 – CLUMP, YOU'RE GONE

Background:

An image can be represented as a grid of black and white cells. A *clump* in the image is defined as a group of connected black cells that touch on one side (Please note: cells are **not** connected if they only touch at a corner). The diagram below represents an image that contains two clumps; one of the clumps is a single cell.

A way to test whether a group of cells is a clump (within an image) is to ask:

- Can you move from any black cell in the group to any other black cell in the group by moving one square at a time, keeping on black cells the whole way?
- Each move must be up, down, left, or right; diagonal moves are not allowed.
- If you can, then the group of black cells is an *clump*.

Many drawing or graphic programs include erasing features. With such an eraser tool, a clump can be completely erased by double-clicking on that clump with a mouse.

This problem involves erasing a clump stored as a collection of black squares in a matrix image.

Assignment:

- 1. The first entry in the provided text file (*digital.txt*) is the number of pairs that follow (i.e., 55). Each subsequent line contains a pair of integers, separated by a blank space. Each pair is a row and column coordinate that specifies the location of a black cell in the starting grid. The row and column values range from 1 to 20.
- 2. Write a program that accomplishes the following:
 - a. Load the text file *digital.txt* representing the 20 x 20 grid of black and white squares.
 - b. Ask the user for the starting coordinate of an attempted erasure. If this starting coordinate is part of a clump, the program should erase the entire clump (change black to white).
 - c. Print out the grid afterwards.

Instructions:

- 1. The left hand image is the result of loading the data from *digital.txt*. After loading the data file, print out the image.
- 2. Erase any one of the clumps; print out the remaining two clumps.
- 3. Erase any one of the remaining two clumps; print out the single remaining clump.
- 4. Your code must be submitted to Canvas with a Googly Doc before Sunday, March 8 at 11:59 pm. Alternatively, you may show your code to Holm in class before the due date. If you submit through CANVAS, you must provide a sample output in your Googly Doc.

<pre>Image before an erasure:</pre>	<pre>Image after first erasure:</pre>	Image after second erasure
12345678901234567890	12345678901234567890	12345678901234567890
2	2	2
3 -@@@@@@@@@@@	3 -0000000000000	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	9	9
10@@@@@	10	10
11@@@@@	11	11
12@@@@@	12	12
13@@@	13	13
14@@@	14	14
15@@@@@	15	15
16	16	16
17	17	17
18	18	18
19	19	19
20	20	20