

Correction

Correction: Balsamo, G., et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing 2018, 10, 2038

Gianpaolo Balsamo ^{1,*}, Anna Agusti-Panareda ¹, Clement Albergel ², Gabriele Arduini ¹, Anton Beljaars ¹, Jean Bidlot ¹, Eleanor Blyth ³, Nicolas Bousserez ¹, Souhail Boussetta ¹, Andy Brown ¹, Roberto Buizza ^{1,4}, Carlo Buontempo ¹, Frédéric Chevallier ⁵, Margarita Choulga ¹, Hannah Cloke ⁶, Meghan F. Cronin ⁷, Mohamed Dahoui ¹, Patricia De Rosnay ¹, Paul A. Dirmeyer ⁸, Matthias Drusch ⁹, Emanuel Dutra ¹⁰, Michael B. Ek ¹¹, Pierre Gentine ¹², Helene Hewitt ¹³, Sarah P.E. Keeley ¹, Yann Kerr ¹⁴, Sujay Kumar ¹⁵, Cristina Lupu ¹, Jean-François Mahfouf ², Joe McNorton ¹, Susanne Mecklenburg ⁹, Kristian Mogensen ¹, Joaquín Muñoz-Sabater ¹, Rene Orth ¹⁶, Florence Rabier ¹, Rolf Reichle ¹⁵, Ben Ruston ¹⁷, Florian Pappenberger ¹, Irina Sandu ¹, Sonia I. Seneviratne ¹⁸, Steffen Tietsche ¹, Isabel F. Trigo ¹⁹, Remko Uijlenhoet ²⁰, Nils Wedi ¹, R. Iestyn Woolway ⁶ and Xubin Zeng ²¹

- European Centre for Medium-range Weather Forecasts (ECMWF), Reading RG2 9AX, UK; Anna.Agusti-Panareda@ecmwf.int (A.A.-P.); Gabriele.Arduini@ecmwf.int (G.A.); Anton.Beljaars@ecmwf.int (A.B.); Jean.Bidlot@ecmwf.int (J.B.); Nicolas.Bousserez@ecmwf.int (N.B.); Souhail.Boussetta@ecmwf.int (S.B.); Andy.Brown@ecmwf.int (A.B.); Carlo.Buontempo@ecmwf.int (C.B.); Margarita.Choulga@ecmwf.int (M.C.); Mohamed.Dahoui@ecmwf.int (M.D.); Patricia.Rosnay@ecmwf.int (P.D.R.); Sarah.Keeley@ecmwf.int (S.P.E.K.); Cristina.Lupu@ecmwf.int (C.L.); Joe.McNorton@ecmwf.int (J.M.); Kristian.Mogensen@ecmwf.int (K.M.); Joaquin.Munoz@ecmwf.int (J.M.-S.); Florence.Rabier@ecmwf.int (F.R.); Florian.Pappenberger@ecmwf.int (F.P.); Irina.Sandu@ecmwf.int (I.S.); Steffen.Tietsche@ecmwf.int (S.T.); Nils.Wedi@ecmwf.int (N.W.)
- Météo-France, Centre National de Recherches Météorologique, 31000 Toulouse, France; clement.albergel@meteo.fr (C.A.); jean-francois.mahfouf@meteo.fr (J.F.M.)
- Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK; emb@ceh.ac.uk
- ⁴ Scuola Superiore Sant'Anna, 56127 Pisa, Italy; roberto.buizza@santannapisa.it
- Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre-Simon-Laplace, Commissariat à l'énergie atomique et aux énergies alternatives, LSCE/IPSL/CEA, 91190 Gif sur Yvette, France; frederic.chevallier@lsce.ipsl.fr
- Meteorology Depart., University of Reading, Reading RG6 7BE, UK; h.l.cloke@reading.ac.uk (H.C.); r.i.woolway@reading.ac.uk (R.I.W.)
- National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA; meghan.f.cronin@noaa.gov
- 8 Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, VA 22030, USA; pdirmeye@gmu.edu
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), 2201AZ Noordwijk, The Netherlands; matthias.drusch@esa.int (M.D.); Susanne.Mecklenburg@esa.int (S.M.)
- ¹⁰ Instituto Dom Luiz, University of Lisbon, 1749-016 Lisbon, Portugal; endutra@fc.ul.pt
- 11 National Center for Atmospheric Research, Boulder, CO 80305, USA; ek@ucar.edu
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA; pg2328@columbia.edu
- ¹³ UK MetOffice, Exeter EX1 3PB, UK; helene.hewitt@metoffice.gov.uk
- ¹⁴ Centre National d'Etudes Spatiales, CESBIO, 31401 Toulouse, France; yann.kerr@cesbio.cnes.fr
- National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA; sujay.v.kumar@nasa.gov (S.K.); rolf.reichle@nasa.gov (R.R.)
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany; rene.orth@bgc-jena.mpg.de
- Naval Research Laboratory (NRL), Monterey, CA 93943, USA; Ben.Ruston@nrlmry.navy.mil
- ¹⁸ Eidgenössische Technische Hochschule (ETH), 8092 Zürich, Switzerland; sonia.seneviratne@ethz.ch

Remote Sens. 2019, 11, 941 2 of 3

- ¹⁹ Instituto Português do Mar e da Amosfera (IPMA), 1749-077 Lisbon, Portugal; isabel.trigo@ipma.pt
- Department of Environmental Sciences, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; remko.uijlenhoet@wur.nl
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA; xubin@atmo.arizona.edu
- * Correspondence: gianpaolo.balsamo@ecmwf.int; Tel.: +44-759-5331517
- † Current address: European Centre for Medium-Range Weather Forecasts (ECMWF), Shinfield Park, Reading RG2 9AX, UK.

Received: 4 April 2019; Accepted: 7 April 2019; Published: 18 April 2019

The authors wish to make the following corrections to this paper [1]: Update of Figure 1 and correct authorship to include Dr. Eleanor Blyth (CEH).

Figure 1. Example of usage of land surface temperature during dry episodes after a precipitation event. The plot shows a composite of the so-called Relative Warming Rate (RWR) as a function of the amount of precipitation during the preceding event for March–April–May (MAM, **left**) and June–July–August (JJA, **right**). RWR quantifies the increase in dry spell land surface temperature relative to air temperature, and is a measure for the evaporation regime of the land surface.

The authors wish to make the following corrections to this paper [2]:

Correction to the legend of Figure 15 to mention this is adapted from Rodriguez-Fernandez et al., 2018 ([2] and referenced as [182] in [1]).

The authors would like to apologize for any inconvenience caused to the readers by these changes.

References

- 1. Balsamo, G.; Agusti-Parareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Bousserez, N.; Boussetta, S.; Brown, A.; Buizza, R.; et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. *Remote Sens.* **2018**, *10*, 2038. [CrossRef]
- 2. Rodríguez-Fernández, N.J.; Mialon, A.; Mermoz, S.; Bouvet, A.; Richaume, P.; Al Bitar, A.; Al-Yaari, A.; Brandt, M.; Kaminski, T.; Le Toan, T.; et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. *Biogeosciences* **2018**, *15*, 4627–4645. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).