Overheads: - Outline

Recap Monday: Predicting S_N2 vs S_N1 Reactions

Elimination Reactions

Nu⁻

⇒ also a base

 \Rightarrow Base removes H⁺ from β-C as LG leaves (concerted \Rightarrow one step)

Rate = $k[R-Br][OH^{-}]$ = bimolecular :: E2 reaction

What if there is more than one β -H?

⇒ form most stable alkene = most substituted

 \Rightarrow E2 = regioselective

Zaitsev's Rule: Most substituted alkene is favored

Exceptions to Zaitsev's rule:

Zaitsev: most stable alkene formed (usually = most sub'd)

2 If a very <u>bulky</u> base is used, steric hinderance leads to formation of <u>less</u> substituted alkene

$$H_3C - \overset{C}{C} - \overset{O}{C} - \overset{O}{C} \overset{\Theta}{K} = \text{potassium tert-butoxide} = \underbrace{\text{great}}_{\text{bulky base}} \text{ bulky base} = \text{bad Nubest base for E2, but gives less sub. C=C}$$

If there is a <u>poor</u> LG, base starts to remove H⁺ before LG starts to leave:

 $1^{\circ} > 2^{\circ} > 3^{\circ}$ reverse of C⁺ stability because R₃C- wants less e⁻s.

∴ get <u>less</u> substituted alkene if poor LG \Rightarrow reverse of C⁺ stability because R₃C- wants less e⁻s.

Elimination can also go by a 2-step mechanism: (like S_N1)

Rate = k[R-Br] \Rightarrow base not in RDStep, unimolecular \therefore E1

⇒ E1 favored if C+ stable: 3° R-Br > 2° >> \pm° no E1 for 1° Regiochemistry: Zaitsev still rules

which β -C will OH- attack?

no β-H here :: can't go

Competition between E1 & E2

- similar factors to $S_N 1/S_N 2$

1) Degree of Substitution:

1° R-Br E2 only (no C⁺)

2° R-Br / 3° R-Br

Br
$$CH_2$$
-Br

E1 or E2

NOTE: Unlike S_N2 , E2 <u>can</u> go with 3° R-Br since base goes to β -H, not to sterically hindered α -C \therefore ALL can do E2 (as long as there is a β -H!)

QUIZ #2 ends here