Joshua Chen

♦ https://joshchen.io ♦ jaycech3n ☐ josh@joshchen.io ♦ +43 660 77 20 855

I am an aspiring mathematician and theoretical computer scientist interested in the theory and semantics of dependent and homotopy type theory, as well as its applications to the foundations of mathematics and proof assistants. My training is in pure mathematics, with some industry experience in machine learning and natural language processing.

Research & Work

2017-present

University of Bonn, University of Innsbruck

Homotopy type theory in Isabelle

I am currently developing a homotopy type theory logic and related infrastructure and tools for the interactive proof assistant Isabelle, which is capable of formalizing large portions of the Homotopy Type Theory book. This work began as part of my Masters thesis and is under active development.

Source code: https://github.com/jaycech3n/Isabelle-HoTT. Preliminary report (Masters thesis): arXiv:1911.00399 [cs.LO].

2017-2018

Fraunhofer Institute for Intelligent Analysis and Information Systems

Machine learning and NLP for Copernicus EMS

I worked in the Knowledge Discovery group of the Fraunhofer IAIS, applying probabilistic models to analyze and classify topics in tweet corpora. I implemented targeted topic models in Java and also used Python for natural language processing of Twitter data. This work was part of the European Union's E2mC project—a pilot project using publicly-available social media data to support its Copernicus emergency management service.

2015

The Australian National University

Enumeration and visualization of planar trivalent graphs

I developed and implemented algorithms in Scala to enumerate and automatically draw certain classes of planar graphs. This was part of research in quantum algebra investigating subfactors and planar algebras. Code incorporated into the repository at https://bitbucket.org/scottmorrison/toolkit/.

2013-2014

The Australian National University

Temperley-Lieb categories and skein modules

Final year Honours research thesis in category theory, quantum algebra, and applications to low-dimensional topological invariants.

Available online at arXiv:1502.06845 [math.QA].

Nov 2012-Jan 2013

The Australian National University

Integer houses in cyclotomic fields

Selective international undergraduate research program. I investigated questions concerning the dimensions of objects in fusion categories with the aid of Wolfram Mathematica.

Theses

An Implementation of Homotopy Type Theory in Isabelle/Pure

Masters thesis. 2018. arXiv:1911.00399 [cs.LO]

In this thesis I present an implementation of a fragment of "book HoTT" as an object logic for the interactive

proof assistant Isabelle. I also give a mathematical description of the underlying theory of the Isabelle/Pure logical framework, and discuss various issues and design decisions that arise when attempting to encode intensional dependent type theory with universes inside a simple type-theoretic logical foundation.

The Temperley-Lieb categories and skein modules

Bachelors thesis. 2014. arXiv:1502.06845 [math.QA]

The theory of diagrammatic Temperley-Lieb categories is developed in order to construct examples of spherical fusion categories. I then use these to provide a more direct construction of Turaev-Viro skein modules for n-holed disks via their spines.

Education

Masters in Mathematics Oct 2015–Sep 2018	University of Bonn Advisor: Prof. Dr. Peter Koepke German GPA 1.9
B.Sc. (Honours) Mathematics Jun 2013–Jul 2014	The Australian National University Advisor: Assoc. Prof. Scott Morrison First Class Honours (GPA 80%)
B.Sc. Mathematics Feb 2010–Dec 2012	University of Canterbury Dean's Congratulations (GPA 8.64/9)

Teaching Assistance

2017-2018	Machine Learning (University of Bonn)
2017	Data Mining and Knowledge Discovery (University of Bonn)
2015	Engineering Mathematics 1B (University of Canterbury)
2014	Mathematics and Applications 1 (Australian National University)
2014	Mathematics and Applications 1 (University of Canterbury)
2013	Discrete Mathematics (University of Canterbury)

Selected Talks

2019	Dependent Types in Isabelle 4th Prague Inter-Reasoning Workshop, Czech Technical University, Prague
2019	Hybrid and alternative logics in Isabelle Doctoral program, Conference on Intelligent Computer Mathematics, Prague
2014	What is Mathematics? Outreach talk, ANU Open Day 2014, Canberra
2014	An Introduction to Topological Quantum Field Theory Australian Mathematical Sciences Student Conference, Newcastle
2014	The Temperley-Lieb categories and Turaev-Viro skein modules ANU MSI Honours Conference, Canberra

Awards

2013	ANU Mathematical Sciences Institute Honours Scholarship
2012	ANU Summer Research Scholarship
2011	University of Canterbury Peter Bryant Prize for Pure Mathematics
2010	University of Canterbury Dux Scholarship

Last updated November 8, 2019