WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA Wykład 2: Aksjomatyczna definicja prawdopodobieństwa

Dla dowolnego zbioru X przez 2^X oznaczać będziemy rodzinę \mathcal{F}_X wszystkich podzbiorów zbioru X. Przypomnijmy, że moc tej rodziny wynosi $2^{|X|}$.

Definicja 1. Rodzinę $\mathcal{F} \subseteq 2^{\Omega}$ podzbiorów zbioru Ω nazywamy σ -algebrą jeśli spełnia poniższe warunki:

- (S1) $\Omega \in \mathcal{F}$;
- (S2) Jeśli $A \in \mathcal{F}$, to $A' \in \mathcal{F}$ (\mathcal{F} jest zamknięta na dopełnienia);
- (S3) Jeśli $A_1, A_2, \ldots \in \mathcal{F}$, to $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ (\mathcal{F} jest zamknięta na przeliczalne sumy).

Przykład 1. Dwie najłatwiejsze do zdefiniowana σ -algebry na zbiorze Ω to:

- (1) $\mathcal{F}=\{\emptyset,\Omega\}$ najmniejsze σ -algebra określona na Ω (2) $\mathcal{F}=2^{\Omega}$ największa σ -algebra określona na Ω

Definicja 2. Przestrzenia probabilistyczna nazywamy trójkę $(\Omega, \mathcal{F}, \mathbb{P})$, qdzie Ω jest zbiorem zdarzeń elementarnych, \mathcal{F} jest pewną σ -algebrą podzbiorów zbioru Ω , której elementy nazywamy zdarzeniami, na $tomiast \ \mathbb{P}: \mathcal{F} \to [0,1] \ jest \ \mathbf{funkcja} \ \mathbf{prawdopodobie} \ \mathbf{\acute{n}stwa} \ spelniajaca \ następujące \ aksjomaty:$

- (A1) $0 \leq \mathbb{P}(A) \leq 1$ dla każdego zdarzenia $A \in \mathcal{F}$;
- (A2) $\mathbb{P}(\Omega) = 1$;
- (A3) Dla dowolnego ciągu parami rozłącznych zdarzeń A_1, A_2, \ldots zachodzi $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$ (przeliczalna addytywność).

Przykład 2. Rozważmy rzut dwiema kostkami. Jako przestrzeń probabilistyczną dla tego eksperymentu możemy przyjąć trójkę $(\Omega, \mathcal{F}, \mathbb{P})$, gdzie $\Omega = \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}, \mathcal{F} = 2^{\Omega}, \mathbb{P}(A) = \frac{|A|}{|\Omega|}$.

Przykład 3. Rozważmy rzut monetą do momentu wyrzucenia pierwszego orła. Tym razem jako przestrzeń probabilistyczną dla tego eksperymentu możemy przyjąć trójkę $(\Omega, \mathcal{F}, \mathbb{P})$, gdzie $\Omega = \{\omega_1, \omega_2, \ldots\}, \mathcal{F} = 2^{\Omega}$, natomiast zdarzenie elementarne ω_i oznacza wyrzucenia orła po raz pierwszy w i-tym rzucie, $i=1,2,\ldots$ Wówczas funkcję prawdopodobieństwa definiujemy najpierw dla zdarzeń elementarnych jako $\mathbb{P}(\{\omega_i\}) = (1/2)^i$. Następnie możemy rozszerzyć te definicję na wszystkie zdarzenia $A \in \mathcal{F}$ w następujący sposób

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}).$$

Twierdzenie 1 (Własności funkcji prawdopodobieństwa).

- (W1) $\mathbb{P}(\emptyset) = 0$;
- (W2) Jeśli zdarzenia A_1, A_2, \ldots, A_n są parami rozłączne, to $\mathbb{P}(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mathbb{P}(A_i)$ (skończona addytyw $no\acute{s}\acute{c})$:
- (W3) $\mathbb{P}(A') = 1 \mathbb{P}(A);$
- (W4) Jeśli $A \subset B$, to $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$;
- (W5) Jeśli $A \subset B$, to $\mathbb{P}(A) \leq \mathbb{P}(B)$ (monotoniczność);
- (W6) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$;
- (W7) $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A \cap B)$;
- $(W8) \mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(A \cap C) \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).$

Przykład 4. Pokaż, że (W2) implikuje (W3) i (W4).

Zauważmy, że A i A' są zdarzeniami rozłącznymi, zatem na mocy (W2) mamy

$$\mathbb{P}(A) + \mathbb{P}(A') = \mathbb{P}(A \cup A') = \mathbb{P}(\Omega) = 1,$$

skąd otrzymujemy

$$\mathbb{P}(A') = 1 - \mathbb{P}(A).$$

Następnie załóżmy, że $A \subset B$. Zauważmy również, że zdarzenia $B \setminus A$ i A są rozłączne. Zatem na mocy (W2)

$$\mathbb{P}(B \setminus A) + \mathbb{P}(A) = \mathbb{P}((B \setminus A) \cup A) = \mathbb{P}(B),$$

skąd wnioskujemy, że

$$\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A).$$

Przykład 5. Pokaż, że (W4) implikuje (W5).

Załóżmy, że mamy dwa zdarzenia A i B takie, że $A \subset B$. Wówczas korzystając po kolei z własności (W4) oraz aksjomatu (A1) otrzymujemy

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \geqslant \mathbb{P}(A).$$

Przykład 6. Pokaż, że jeśi $\mathbb{P}(A) + \mathbb{P}(B) > 1$, to zdarzenia A i B nie mogą się wykluczać.

Załóżmy, że zdarzenia A i B wykluczają się, czyli $A \cap B = \emptyset$. Z własności (W2) oraz aksjomatu (A1) wynika wówczas, że

$$\mathbb{P}(A) + \mathbb{P}(B) = \mathbb{P}(A \cup B) \leqslant 1.$$

Sprzeczność!

Na poprzednim wykładzie zdefiniowaliśmy pojęcie niezależności zmiennych losowych. W dokładnie taki sam sposób definiujemy niezależność zmiennych losowych w dowolnych przestrzeniach probabilistycznych. Udowodnimy teraz twierdzenie z poprzedniego wykładu dotyczące zdarzeń niezależnych.

Twierdzenie 2 (Własności zdarzeń niezależnych).

- (1) Jeśli A i B są zdarzeniami niezależnymi, to A i B' są niezależne, A' i B są niezależne oraz A' i B' są niezależne.
- (2) Jeśli A_1, A_2, \ldots, A_n są niezależne oraz przyjmiemy konwencję, że $A^0 = A$, $A^1 = A'$ dla dowolnego zdarzenia A, wówczas dla każdego ciągu $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$, gdzie $\varepsilon_i \in \{0,1\}$ dla $i = 1, 2, \ldots, n$, zdarzenia $A_1^{\varepsilon_1}, A_2^{\varepsilon_2}, \ldots, A_n^{\varepsilon_n}$ są niezależne.

dowód. (1) Załóżmy, że zdarzenia A i B są niezależne. Pokażemy, że wówczas zdarzenia A i B' są też niezależne.

A zatem skoro A i B są niezależne, zachodzi $\mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A \cap B)$. Wykorzystując po kolei własności (W3) oraz (W4) otrzymujemy

$$\mathbb{P}(A) \cdot \mathbb{P}(B') = \mathbb{P}(A) \cdot (1 - \mathbb{P}(B)) = \mathbb{P}(A) - \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A) - \mathbb{P}(A \cap B) = \mathbb{P}(A \setminus A \cap B) = \mathbb{P}(A \cap B'),$$

skąd wnioskujemy, że zdarzenia A i B' są niezależne. Stosując to samo rozumowanie możemy pokazać, że również zdarzenia A' i B oraz A' i B' są niezależne.

W podobny sposób możemy pokazać, że (2) również zachodzi. Rozważmy rodzinę zdarzeń A_1, A_2, \ldots, A_n , które są niezależne. Pokażemy, że zastępując którekolwiek ze zdarzeń A_i , $i=1,2,\ldots,n$, zdarzeniem A_i' , nasza rodzina nadal będzie niezależna. Bez straty ogólności możemy przyjąć, że zastępujemy zdarzenie A_n zdarzeniem A_n' . Wówczas korzystając z niezależności zdarzeń A_1, A_2, \ldots, A_n oraz własności (W3) i (W4) mamy:

$$\mathbb{P}(A_1) \cdot \ldots \cdot \mathbb{P}(A_{n-1}) \cdot \mathbb{P}(A'_n) = \mathbb{P}(A_1 \cap \ldots \cap A_{n-1})(1 - \mathbb{P}(A_n))$$

$$= \mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) - \mathbb{P}(A_1 \cap \ldots \cap A_{n-1})\mathbb{P}(A_n)$$

$$= \mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) - \mathbb{P}(A_1 \cap \ldots \cap A_{n-1} \cap A_n)$$

$$= \mathbb{P}((A_1 \cap \ldots \cap A_{n-1}) \setminus (A_1 \cap \ldots \cap A_{n-1} \cap A_n))$$

$$= \mathbb{P}((A_1 \cap \ldots \cap A_{n-1} \cap A'_n),$$

skąd otrzymujemy, że rodzina $A_1,A_2,\ldots,A_{n-1},A'_n$ również stanowi rodzinę zdarzeń niezależnych. Sukcesywnie zamieniając inne zdarzenia A_i w tej rodzinie na A'_i i powtarzając powyższe rozumowanie jesteśmy w stanie pokazać, że dla dowolnego ciągu $\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n$, gdzie $\varepsilon_i\in\{0,1\}$ dla $i=1,2,\ldots,n,$ $A_1^{\varepsilon_1},A_2^{\varepsilon_2},\ldots,A_n^{\varepsilon_n}$ jest rodziną zdarzeń niezależnych.

Twierdzenie 3 (Nierówność Boole'a). Dla dowolnego ciągu zdarzeń A_1, A_2, \ldots zachodzi

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mathbb{P}\left(A_i\right) \,.$$

dowód. Aby udowodnić nierówność Boole'a skorzystamy z aksjomatu (A3). W tym celu zdefiniujemy następujący ciąg zdarzeń losowych:

$$B_1 := A_1$$

$$B_2 := A_2 \setminus B_1$$

$$B_3 := A_2 \setminus (B_1 \cup B_2)$$

$$\vdots$$

$$B_k := A_k \setminus (B_1 \cup B_2 \cup \dots \cup B_{k-1})$$

$$\vdots$$

Wprost z definicji ciągu zdarzeń $(B_i)_{i\in\mathbb{N}_+}$ wynika, że

$$B_k := A_k \setminus (B_1 \cup B_2 \cup \cdots \cup B_{k-1}) = A_k \setminus (A_1 \cup A_2 \cup \cdots \cup A_{k-1}).$$

Ponadto każde ze zdarzeń B_i jest rozlączne z każdym zdarzeniem B_j , j < i. Zatem ciąg zdarzeń $(B_i)_{i \in \mathbb{N}_+}$ składa się z parami rozlącznych zdarzeń i możemy zastosować do niego aksjomat (A3). Co więcej, ponieważ dla każdego $i = 1, 2, \ldots$ zachodzi

$$B_i \subseteq A_i$$

otrzymujemy

$$\mathbb{P}\left(B_{i}\right) \leqslant \mathbb{P}\left(A_{i}\right)$$

oraz

$$\bigcup_{i=1}^{\infty} B_i \subseteq \bigcup_{i=1}^{\infty} A_i.$$

Pokażemy, że powyższe zawieranie zachodzi również w drugą stroną, co oznacza, że oba zbiory są sobie równe. W tym celu weźmy dowolny element $x \in \bigcup_{i=1}^{\infty} A_i$. Niech k będzie najmniejszym indeksem takim, że $x \in A_k$ oraz $x \notin A_j$ dla j < k. Wówczas $x \in B_k = A_k \setminus (A_1 \cup A_2 \cup \cdots \cup A_{k-1})$, skąd wynika, że $x \in \bigcup_{i=1}^{\infty} B_i$. A zatem

$$\bigcup_{i=1}^{\infty} A_i \subseteq \bigcup_{i=1}^{\infty} B_i.$$

Ostatecznie, stosując aksjomat (A3) do ciągu zdarzeń $(B_i)_{i\in\mathbb{N}_+}$, otrzymujemy

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \mathbb{P}\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(B_i\right) \leqslant \sum_{i=1}^{\infty} \mathbb{P}\left(A_i\right).$$

Twierdzenie 4 (o ciągłości).

(1) Niech A_1, A_2, \ldots będzie wstępującym ciągiem zdarzeń, tzn. $A_1 \subseteq A_2 \subseteq \ldots$ Wówczas

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mathbb{P}(A_i).$$

(2) Niech A_1, A_2, \ldots będzie zstępującym ciągiem zdarzeń, tzn. $A_1 \supset A_2 \supset \ldots$ Wówczas

$$\mathbb{P}(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mathbb{P}(A_i).$$

Przestrzenie produktowe i warunkowe

Definicja 3. Niech $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ oraz $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ będą dwoma przestrzeniami probabilistycznymi. **Iloczynem** (**produktem**) tych przestrzeni nazywamy przestrzeń probabilistyczną $(\Omega, \mathcal{F}, \mathbb{P})$, gdzie $\Omega = \Omega_1 \times \Omega_2$, \mathcal{F} zawiera wszystkie zbiory postaci $A_1 \times A_2 \in \mathcal{F}_1 \times \mathcal{F}_2$, oraz funkcja prawdopodobieństwa \mathbb{P} spełnia warunek

$$\mathbb{P}(A_1 \times A_2) = \mathbb{P}_1(A_1) \cdot \mathbb{P}_2(A_2).$$

Definicję tę można uogólnić na dowolną skończoną lub przeliczalną rodzinę przestrzeni probabilistycznych.

Uwaga 1. W powyższej definicji \mathcal{F} jest σ -algebrą generowaną przez zbiory postaci $A_1 \times A_2$, czyli najmniejszą σ -algebrą, która zawiera wszystkie takie zbiory.

Przykład 7 (Schemat Bernoulliego). Niech $p \in (0,1)$ oraz $n \in \mathbb{N}_+$. Przypuśćmy, że powtarzamy n razy eksperyment losowy, w którym prawdopodobieństwo sukcesu wynosi p (a porażki 1-p) oraz wyniki poszczególnych prób nie mają na siebie nawzajem wpływu. Jeśli τ_k oznacza prawdopodobieństwo uzyskania dokładnie k sukcesów w n próbach, to

$$\tau_k = \binom{n}{k} p^k (1-p)^{n-k} \text{ dla } k = 0, 1, \dots, n.$$

Przykład 8 (Rozkład geometryczny). Powtarzamy eksperyment losowy, w którym prawdopodobieństwo sukcesu wynosi $p \in (0,1)$, do momentu osiągnięcia pierwszego sukcesu. Jeśli przez σ_k oznaczymy prawdopodobieństwo, że potrzebujemy na to k prób, to

$$\sigma_k = p(1-p)^{k-1}$$
 dla $k = 1, 2, \dots$

Przykład 9. Ile wynosi prawdopodobieństwo, że w dziesięciu rzutach monetą wypadną co najmniej trzy orły? Wykorzystamy schemat Bernoulliego, gdzie przez sukces rozumiemy wyrzucenie orła. Wówczas przyjmujemy p = 1/2 oraz n = 10. Szukane prawdopodobieństwo jest równe

$$1 - \tau_0 - \tau_1 - \tau_2 = 1 - \binom{10}{0} \left(\frac{1}{2}\right)^{10} - \binom{10}{1} \left(\frac{1}{2}\right)^{10} - \binom{10}{2} \left(\frac{1}{2}\right)^{10}.$$

Definicja 4. Jeśli $(\Omega, \mathcal{F}, \mathbb{P})$ jest przestrzenią probabilistyczną, a $B \in \mathcal{F}$ jest zdarzeniem, dla którego $\mathbb{P}(B) > 0$, wtedy możemy skonstruować przestrzeń warunkową $(B, \mathcal{F}_B, \mathbb{P}_B)$ przyjmując

$$\mathcal{F}_B = \{ A \cap B : A \in \mathcal{F} \},\$$

a dla każdego $A \in \mathcal{F}$

$$\mathbb{P}_B(A \cap B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $Prawdopodobieństwo \mathbb{P}_B(A)$ zwykle zapisujemy jako $\mathbb{P}(A|B)$ i czytamy jako prawdopodobieństwo (warunkowe) zdarzenia A pod warunkiem (zajścia) zdarzenia B.

Uwaga 2. Jeśli zdarzenia A i B są niezależne, to

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$
 i $\mathbb{P}(B|A) = \mathbb{P}(B)$.

zakładając, że $\mathbb{P}(A)$, $\mathbb{P}(B) > 0$ (bez tego założenia prawdopodobieństwa warunkowe nie są dobrze zdefiniowane).

dowód. Z definicji prawdopodobieństwa warunkowego oraz niezależności zdarzeń A i B mamy

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$$

Obserwacja 1. Przy założeniu, że $\mathbb{P}(A), \mathbb{P}(B) > 0$ mamy

$$\mathbb{P}(A) \cdot \mathbb{P}(B|A) = \mathbb{P}(B) \cdot \mathbb{P}(A|B) = \mathbb{P}(A \cap B).$$

A zatem

$$\mathbb{P}(B|A) > \mathbb{P}(B) \iff \mathbb{P}(A|B) > \mathbb{P}(A),$$

co można interpretować jako: zdarzenie A "sprzyja" zdarzeniu B wtedy i tylko wtedy, gdy zdarzenie B "sprzyja" zdarzeniu A.

Przykład 10. W trzykrotnym rzucie monetą wypadła nieparzysta liczba orłów. Ile wynosi prawdopodobieństwo, że wypadły dokładnie trzy orły?

A – nieparzysta liczba orłów, $A = \{OOO, ORR, ROR, RRO\}$

B – dokładnie trzy orły, $B = \{OOO\}$

 $\mathbb{P}(B|A)$ – prawdopodobieństwo, że wypadły dokładnie trzy orły, jeśli wiemy, że wypadła nieparzysta liczba orłów

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\frac{1}{8}}{\frac{4}{8}} = \frac{1}{4}$$

Przykład 11. Jaś strzela do tarczy tak długo aż trafi dziesiątkę po raz pierwszy. Prawdopodobieństwo trafienia dziesiątki w pojedynczym strzale wynosi 1/10. Z jakim prawdopodobieństwem Jaś odda dokładnie sześć strzałów, jeśli trzy pierwsze były pudłem?

A – pierwsze trzy strzały spudłowane

B – Jaś odda dokładnie sześć strzałów

Możemy zastosować tutaj rozkład geometryczny, gdzie przez sukces rozumiemy strzał w dziesiątkę, zatem przyjmujemy p = 1/10.

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \frac{\mathbb{P}(B)}{\mathbb{P}(A)} = \frac{\frac{1}{10} \left(1 - \frac{1}{10}\right)^5}{\left(1 - \frac{1}{10}\right)^3} = \frac{1}{10} \cdot \left(\frac{9}{10}\right)^2 = 0,081$$