Find the value of h.

C .37.

(*Hint*: Let PQ = x; QR = 21 - x.)

38.

(*Hint*: Let TU = x; SU = x + 11.)

39. O is the center of square ABCD (the point of intersection of the diagonals) and \overline{VO} is perpendicular to the plane of the square. Find OE, the distance from O to the plane of $\triangle VBC$.

Mixed Review Exercises

Given: $\triangle ABC$. Complete.

- 1. If $m \angle A > m \angle B$, then $BC > \frac{?}{}$.
- 2. If AB > BC, then $m \angle C \stackrel{?}{=} m \angle \stackrel{?}{=}$.
- 3. $AB + BC \stackrel{?}{\underline{\hspace{1em}}} AC$
- **4.** If $\angle C$ is a right angle, then $\frac{?}{}$ is the longest side.
- 5. If AB = AC, then $\angle \frac{?}{} \cong \angle \frac{?}{}$.
- 6. If $\angle A \cong \angle C$, then $BC = \frac{?}{}$.
- 7. If $\angle C$ is a right angle and X is the midpoint of the hypotenuse, then $AX = \frac{?}{} = \frac{?}{}$.

Challenge

Start with a right triangle. Build a square on each side. Locate the center of the square drawn on the longer leg. Through the center, draw a parallel to the hypotenuse and a perpendicular to the hypotenuse.

Cut out the pieces numbered 1-5. Can you arrange the five pieces to cover exactly the square built on the hypotenuse? (This suggests another proof of the Pythagorean Theorem.)

