Polynômes à une indtermine sur un corps K Gnralits MPSI 2

1 Dfinition

Définition 1.0.1

On appelle polynôme à une indtermine et à coefficients dans \mathbb{K} toute suite $(a_n)_{n\in\mathbb{N}}$ d'Iments de \mathbb{K} dont tous les termes sont nuls à partir d'un certain rang.

 $\mathbb{K}[X] = \{(a_n)_{n \in \mathbb{N}}, \ (\forall k \in \mathbb{N}, \ a_k \in \mathbb{K}) \text{ et } (\exists p_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant p_0 \Rightarrow a_n = 0_{\mathbb{K}})\}$

Définition 1.0.2

Soit $P \in \mathbb{K}[X], P \neq 0_{K[X]}$, tel que $P = (a_n)_{n \in \mathbb{N}}$

- On appelle degr de P, not deg(P), le plus grand entier n_0 tel que: $a_{n_0} \neq 0_{K[X]}$
- $Si \deg(P) = \overline{n_0, alors}$ on appelle coefficient dominant de $P a_{n_0}$.
- $Si \deg(P) = n_0$, alors P est unitaire $Si a_{n_0} = 1_{\mathbb{K}}$.

Convention: $deg(0_{\mathbb{K}[X]}) = -\infty$

Définition 1.0.3

Soit P un polynme à coefficients dans \mathbb{K} et non nul. On appelle <u>valuation de P</u>, not val(P), le plus petit indice n tel que $a_n \neq 0_{\mathbb{K}}$.

2 Structure algbrique

2.1 Addition

Propriété 2.1.1

Si $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$ sont deux polynmes de $\mathbb{K}[X]$, Alors $P + Q = (a_n + b_n)_{n \in \mathbb{N}}$ est un polynme de $\mathbb{K}[X]$

Propriété 2.1.2

 $(\mathbb{K}[X], +)$ est un groupe ablien.

Propriété 2.1.3

Soient P et Q deux polynmes de $\mathbb{K}[X]$.

- $deg(P+Q) \leq max(\{deg(P), deg(Q)\})$
- $Si \deg(P) \neq \deg(Q)$, $alors \deg(P+Q) = \max(\{\deg(P), \deg(Q)\})$

2.2 Loi externe

Définition 2.2.1

Soit $\lambda \in \mathbb{K}$ et $P = (a_n)_{n \in \mathbb{N}}$ un lment de $\mathbb{K}[X]$. $\lambda \cdot P = (\lambda \times a_n)_{n \in \mathbb{N}}$

Propriété 2.2.1

 $(\mathbb{K}[X], +, \cdot)$ est un espace vectoriel. C'est un sous-espace vectoriel de $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$

Propriété 2.2.2

 $\forall \lambda \in \mathbb{K}, \ \lambda \neq 0_{\mathbb{K}} \Rightarrow \deg(\lambda \cdot P) = \deg(P)$

2.3 Multiplication

Définition 2.3.1

Soient P et Q deux lments de $\mathbb{K}[X]$, avec $P = (a_n)_{n \in \mathbb{N}}$ et $Q = (b_n)_{n \in \mathbb{N}}$. On appelle produit de P par Q, not $P \times Q$, la suite $(c_n)_{n \in \mathbb{N}}$, de $\mathbb{K}[X]$, dfinie par:

$$\forall n \in \mathbb{N}, \ c_n = \sum_{\substack{(i,j) \in \mathbb{N}^2 \\ i+j=n}} a_i \times b_j$$

Propriété 2.3.1

 $(\mathbb{K}[X], +, \times)$ est un anneau commutatif.

Propriété 2.3.2

 $\forall (P,Q) \in \mathbb{K}[X]^2, \ \deg(P \times Q) = \deg(P) + \deg(Q)$

Corollaire 2.3.1

 $\mathbb{K}[X]$ est un anneau intgre.

Définition 2.3.2

- a_n s'appelle le coefficient de X^n dans P.
- $a_n X^n$ s'appelle le terme de degr n dans P.
- X s'appelle l'indtermine.

Propriété 2.3.3

 $(\mathbb{K}[X], +, \times, \cdot)$ est une algbre commutative sur \mathbb{K} :

- $(\mathbb{K}[X], +, \times)$ est un anneau commutatif.
- $(K[X], +, \cdot)$ est un espace vectoriel sur K
- $\forall (\lambda, P, Q) \in \mathbb{K} \times \mathbb{K}[X]^2, \ \lambda \cdot (P \times Q) = (\lambda \cdot P) \times Q = P \times (\lambda \cdot Q)$

2.4 Bases et familles libres

Propriété 2.4.1

La famille $(X^n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.

Donc tout lment de $\mathbb{K}[X]$ peut s'erire de manire unique comme combinaison linaire finie d'Iments de $(X^n)_{n\in\mathbb{N}}$.

Propriété 2.4.2

Soit $n \in \mathbb{N}$.

On note $\mathbb{K}_n[X] = \{P \in \mathbb{K}[X], deg(P) \leq n\}$

 $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $(\mathbb{K}[X],+,\cdot)$ dont une base est donne par $(X^i)_{i\in \llbracket 0,n\rrbracket}$

2.5 Autres Oprations

Définition 2.5.1
Soit
$$P = \sum_{r=0}^{N} a_n X^r$$
 et $Q \in \mathbb{K}[X]$
On dfinit le polynme compos $P \circ Q$ par:

$$p \circ Q = \sum_{r=0}^{N} a_n \, Q^n$$

Définition 2.5.2 Soit
$$P = \sum_{r=0}^{N} a_n X^r$$
 un polynme de $\mathbb{K}[X]$. On appelle polynme driv de P , not P' , le polynme:

$$P' = \sum_{r=1}^{N} a_n \, n \, n X^{n-1}$$