SET 1

Code No: 13MTE1001

ADITYA INSTITUE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech. I Semester Regular/Supplementary Examinations, February-2016 OPTIMIZATION TECHNIQUES AND APPLICATIONS (THERMAL ENGINEERING)

Time: 3 hours Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

- 1. a) List out the applications of optimization in engineering.
 - b) Discuss about Uni-modal function
- 2. Using geometric programming solve the following problem Max $f(x) = 80x_1x_2 + 40x_2x_3 + 20x_1x_3 + 80/x_1x_2x_3$
- 3. Solve the following by using dynamic programming technique

Max
$$Z = 2x_1 + 5x_2$$

 $2x_1 + x_2 \le 430$
 $2x_2 \le 460$
 $x_1, x_2 \ge 0$

- 4. a) What are the operating characteristics of a queuing system.
 - b) What are the advantages of simulation.
- 5. Solve the following Integer programming problem

Max
$$Z = 5x_1+7x_2$$

 $-2x_1 +3x_2 \le 6$
 $6x_1 +x_2 \le 30$
 $x_1,x_2 \ge 0$ & Integers

- 6. a) Minimize the function f(x) = x(x-1.5) in interval (0,1) to within $\pm 10\%$ of initial interval using fibonacci method
 - b) Discuss about Integer programming problem, its classification and its applications.
- 7. a) Discuss about the random variables and their types.
 - b) Minimize $Z = -45x_1 100x_2 30x_3 50x_4$ subjected to

$$7x_1+10x_2+4x_3+9x_4 \le 1200$$

 $3x_1+40x_2+x_3+x_4 \le 800$
 $x_1, x_2,x_3,x_4 \ge 0$

- (a) Discuss the effect of changing the requirement vector from R.H.S values $[1200\ 800]$ to $[1500\ 1000]$
- 8. Solve the following linear programming problem by simplex method

$$\begin{aligned} \text{Max Z} &= 5x_1 + 3x_2 \\ 2x_1 + 4x_2 &\leq 12 \\ 2x_1 + 2x_2 &= 10 \\ 5x_1 + 2x_2 &\geq 10 \\ x_1, x_2 &\geq 0 \end{aligned}$$

Code No: 13MPE1001

SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech. I Semester Regular/Supplementary Examinations, February-2016

ELECTRICAL MACHINE MODELING AND ANALYSIS

(Power Electronics and Electric Drives)

Time: 3 Hours Max Marks: 60

Answer any FIVE questions All questions carry EQUAL marks

1.		Obtain the mathematical model of D.C series Motor.	[12M]
2.		Obtain the real time model of a two phase induction motor.	[12M]
3.		Derive the equations of three phase induction motor with	[12M]
		a) Synchronously rotating reference frame.b) Rotor reference frame.	
4.		Derive the voltage and torque equations in stationary reference frame for unsymmetrical induction motor.	[12M]
5.		Express the electromagnetic torque-current of a synchronous motor in terms of flux linkages.	[12M]
6.	a) b)	Explain the concept of Equal Area Criteria Compare actual and approximate transient torque characteristics of a synchronous machine	[6M] [6M]
7.		Explain the procedure of using transformation to obtain constant matrices of three phase induction motor.	[12M]
8.		Derive the Small signal equations of three phase Induction machine.	[12M]

1 of 1

SET-1 **Code No: 13MVL1001**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M. Tech. I Semester Regular/Supplementary Examinations, February-2016

DIGITAL SYSTEM DESIGN

(Common to VLSI System Design and Digital Electronics & Communication Systems)

Time: 3 hours Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

- 1. (a) Explain With an example, the use of ASM charts in the design of digital circuits. [6M] Differentiate VHDL with Verilog HDL with respect to various constructs [6M] (b) Operators and keywords. 2. (a) Implement the following Boolean function by Hazard free OR-AND network [4M] $F=\Sigma(0.2.6.7)$.
- 3. Derive by the path sensitization method the test vectors for SA-0 and SA-1 faults [6M] (a) at g and h in the network.

[8M]

Explain the differences between CPLD AND FPGA Architectures.

(b)

4.

(a)

- (b) Find the test vectors of all SA0 and SA1 faults of the circuit function. [6M] F = x1x2 + x1x3'x4' + x2x4 using Kohavi algorithm
- Explain the signature analysis and testing for bridging faults with suitable [6M] Perform the analysis and explain the test pattern generation using PODEM [6M] (b)
- algorithm. 5. [12M]
- Minimize the following function implemented on PLA using IISC algorithm. f = 2120 + 0102 + 1121 + 0002
- 6. Distinguish between maximum folding and optimum folding. [6M] (a) With an example explain about minimization and folding of a PLA using SCF [6M] (b) method.
- 7. Discuss briefly about testable PLA design. (a) [6M] Explain about state identification experiments (b)
- [6M]
- Explain briefly about the following terms: [6M] (a) (i) Flow table (ii) Minimum closed covers
 - (b) Discuss about races, and hazards in connection with Asynchronous sequential [6M] machine design.

1 of 1 ***

Code No: 13MCS1001 SET-1 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech. I Semester Regular/Supplementary Examinations, February-2016

DATA STRUCTURES AND ALGORITHMS (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 hours Max. Marks: 60

Answer any FIVE questions All questions carry equal marks

	All questions carry equal marks										
1.		Define queue. Describe the Queue ADT.	[12M]								
2.	(a) (b)	Derive the time complexity of quick sort. Explain Multi-way Merge Technique	[6M] [6M]								
3.		Define Hash Function. Discuss about various collision resolution techniques in detail	[12M]								
4.	(a)	Explain insertion and deletion of an element in Binary search tree with the help of an algorithm.	[12M]								
5.		Explain various rotations used in AVL trees to balance the height of a binary tree.	[12M]								
6.	(a) (b)	Explain the procedure for all pairs shortest paths problem Write an algorithm for finding minimum cost of the graph using Kruskal's algorithm.	[6M] [6M]								
7.	(a) (b)	Give the control abstraction for Greedy Method. Explain Strassen's matrix multiplication algorithm with an example	[6M] [6M]								
8.	(a) (b)	Define the Graph Coloring Problem. Write the algorithm for Sum of subsets problem.	[6M] [6M]								

1 of 1

Code No: 13MSE1001 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I M.Tech. I Semester Regular/Supplementary Examinations, February-2016

ADVANCED MATHEMATICS

(STRUCTURAL ENGINEERING)

Time: 3 hours Max Marks: 60

Answer any FIVE questions All questions carry equal marks

1. Use the method of separation of variables to find the solution to

[12M]

$$u_{tt}+3u_t+u=u_{xx}$$
 , $0 < x < 1$
 $u(0,t)=0$, $u(1,t)=0$
 $u(x,0)=0$, $u_t(x,0)=x\sin(2\prod x)$

2. Solve the Laplace equation on semi-annulus

[12M]

$$\begin{array}{lll} \Delta u{=}0\;,\;\;1{<}r{<}2\;\;,\;\;&0{<}\theta{<}\prod\\ u(r,0)=u(r,\prod)=0\;\;,\;\;1{<}r{<}2\\ u(1,\theta)=Sin\theta\;,\;\;&0{<}\theta{<}\prod\\ u(2,\theta){=}0\;\;,\;&0{<}\theta{<}\prod \end{array}$$

3. Solve the problem $\Delta v = 0$ in the rectangle 0 < x < a, 0 < y < b with boundary conditions v(0,y) = v(a,y) = v(x,b) = 0; v(x,0) = g(x).

[12M]

4. For the variable X_1 , X_2 and X_3 it is given that $\sigma_1^2 = 2$, $\sigma_2^2 = \sigma_3^2 = 3$, $r_{12} = 0.7$,

 $r_{23} = r_{31} = 0.5$ Find $r_{23.1}$, $R_{1.23}$ and $b_{13.2}$.

[12M]

5. a. For the data given below fit a parabola of the form $y = ax^2 +bx+c$ for the following data

[6M]

 X
 1960
 1962
 1964
 1964
 1968

 Y
 125
 140
 165
 195
 230

[6M]

b. For the 10 observations on X and Y the following data were observed. Σ x = 130 , Σ y = 200 , Σ x² = 2288 , Σ y² = 5506 , Σ xy = 3467 obtain regression line of Y on X. Find Y when X = 16.

6. Find correlation coefficient for the following data

[12M]

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

7. Solve the following system of equation by LU-decomposition

[12M]

$$2x - 2y - 2z = -4$$
, $-2y+2z = -2$, $-x+5y+2z = 6$

8. Use Gaussian Elimination method to solve the following system of linear equations [12M] $2x_2 + x_3 = 8$, $X_1-2x_2-3x_3 = 0$, $-x_1+x_2+2x_3 = 3$.