# QAQ

记思杰爷爷教我重新做人一事 by zhongyuwei

# 前言

• 微积分怎么还需要学啊, 直接把求导公式背完不就完了吗

- James Stewart的Calculus
- 有些定义可能和普高教材冲突

### 目录

- 基本初等函数 & 一些概念
- 极限
- 无穷小量与一个重要极限
- 求导
- 积分
- •导数的应用
- 杂题

# 基本初等函数&一些概念

相信大家完全没有问题

# 基本初等函数

- 一次函数: y = mx + b
- 多项式:  $P(x) = \sum_{i=0}^{n} a_i x^i$
- 幂函数: y = x<sup>a</sup>
- 三角函数
- 指数函数:  $y = a^x$
- 对数函数:  $y = \log_a x$
- 有理函数(分式):  $\frac{P(x)}{Q(x)}$ , 其中P(x),Q(x)是多项式
- 代数函数:对多项式进行代数运算(加、减、乘、除、开根)得到的函数

# 基本初等函数

- 平移
- 对称
- stretch and shrink
- 复合:  $(f \circ g)(x) = f(g(x))$
- 作图: <del>使用 Geogebra 即可</del>
- 反函数:  $f(f^{-1}(x)) = x$

# 指数函数

• 表达式 $a^b$ 在b不为有理数时的意义(比如 $2^{\sqrt{2}}$ )?

# 指数函数

• 表达式 $a^b$ 在b不为有理数时的意义(比如 $2^{\sqrt{3}}$ )?

- $\Rightarrow A = \{ a^x \mid x \in Q, x < b \}, B = \{ a^x \mid x \in Q, x > b \}$
- •可以证明,存在唯一的一个实数q,满足q大于A中的所有数且q小于B中的所有数
- 于是我们规定 $a^b = q$
- 参考Calculus Unlimited的第10章(第134页)

# 自然常数e

- 是一个确定的实数, 近似值为2.71828182845 .....
- 是自然对数函数ln x 的底

# 邻域

- $U(a, \delta) = (a \delta, a + \delta)$
- 去心邻域:  $\dot{U}(a,\delta) = (a-\delta,a) \cup (a,a+\delta)$
- 有的地方可能会写为 $U^{\circ}$ 或者  $\mathring{U}$
- 左邻域: (a δ, a)
- 右邻域:  $(a, a + \delta)$

# 三角不等式

$$|a+b| \le |a| + |b|$$
$$|c-a| \ge |c| - |a|$$

没错就是卓说要压榨我们的那玩意

#### 引入

- 为什么要研究无限? 因为它尽管看似无理, 但却"有意义"
- 举例:
  - 割圆法求圆的面积,当多边形的边数趋近于正无穷
  - 求一段函数曲线下方部分的面积
  - 瞬时速度
  - 求函数切线
  - .....
- "无限"存在吗?并不。但是,就像刚才的 $2^{\sqrt{3}}$ 一样,我们可以强行规定一个点,让一个变化趋势在数轴上连续

#### 引入:一些图片



 $A_6$ 

 $A_7$ 

• • •

 $A_{12}$ 

• • •

 $A_5$ 

 $A_4$ 

FIGURE 2

 $A_3$ 





- $0 < |x a| < \delta$ 也就意味着x可以在a的两侧;
- $\lim_{x\to a} f(x)$ 与f(a)无关,比如下面这张图:







**FIGURE 2**  $\lim_{x\to a} f(x) = L$  in all three cases

• 极限有可能不存在,比如 $\lim_{x\to 0} \sin \frac{\pi}{x}$ 

• 但是, 如果极限存在, 那么极限唯一

### 半极限

- 与极限定义类似, 只是把邻域改成左邻域/右邻域
- 左极限:  $\lim_{x\to a^{-}} f(x) = L$ 若对于任意 $\varepsilon > 0$ 存在 $\delta > 0$ 使得 $0 < a x < \delta \Leftrightarrow |f(x) L| < \varepsilon$
- 右极限:  $\lim_{x\to a^+} f(x) = L$ 若对于任意 $\varepsilon > 0$ 存在 $\delta > 0$ 使得 $0 < x a < \delta \Leftrightarrow |f(x) L| < \varepsilon$

- 可能是这样翻译的吧
- 反正英文是Infinite Limits
- 引入: 试求出 $\lim_{x\to 0}\frac{1}{x^2}$

- 极限不存在,但是我们知道当 $x \to 0$ 的时候 $\frac{1}{x^2}$ 会不断变大
- 我们用符号 $\lim_{x\to a} f(x) = \infty$ 来表示这种情况
- 类似的符号还有 $\lim_{x\to a} f(x) = -\infty$ ,  $\lim_{x\to a^{-}} f(x) = \infty$ 等等
- •注意:这组记号既不代表极限存在,也不代表∞,-∞是一个数!

• 试给无穷极限下一个 $\varepsilon - \delta$ 的定义

• 记 $\lim_{x\to a} f(x) = \infty$ 若对于任意的M > 0存在一个 $\delta > 0$ 满足 $0 < |x-a| < \delta \Leftrightarrow f(x) > M$ 

• 我并不清楚这里为什么要求M > 0,如果有人会的话希望能苟富贵勿相忘教我一下 /kel

# 在无穷处的极限

- $\lim_{x \to \infty} f(x) = L$ 或者  $\lim_{x \to -\infty} f(x) = L$
- 分别要求f(x)是定义在 $(a, \infty)$ 和 $(-\infty, a)$ 上的函数
- $\varepsilon \delta$ 的定义非常类似
  - 对于任意的 $\varepsilon$ , 存在M > 0满足 $x > M \Leftrightarrow |f(x) L| < \varepsilon$ , 则称 $\lim_{x \to \infty} f(x) = L$

# 极限的四则运算

• 设c为一个常数, $\lim_{x\to a} f(x)$ ,  $\lim_{x\to a} g(x)$ 存在,则有:  $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$  $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$  $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$  $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0$ 

# 证明们

- 从极限的定义出发去证明
- 以第一个为例:

$$|f(x) + g(x) - \varepsilon| = \left| \left( f(x) - \frac{\varepsilon}{2} \right) + \left( g(x) - \frac{\varepsilon}{2} \right) \right| \le \left| f(x) - \frac{\varepsilon}{2} \right| + \left| g(x) - \frac{\varepsilon}{2} \right|$$

#### • 练习:

- 1. 证明 $\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$
- 2. 证明  $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ if } \lim_{x \to a} g(x) \neq 0$

# 证明们

#### • 练习1. 答案:

- 令 $\lim_{x \to a} f(x) = L$ 以及 $\lim_{x \to a} g(x) = M$
- $|f(x)g(x) LM| = |g(x)(f(x) L) + L(g(x) M)| \le |g(x)||f(x) L| + |g(x)g(x)||f(x) L|| + |g(x)g(x)||g(x) L|| + |g(x)g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)||g(x)|$ |L||g(x)-M|
- (上一步本质上是想办法让式子中出现|f(x) L|和|g(x) M|)
- 存在 $\delta_1 > 0$ 使得 $0 < |x-a| < \delta_1 \Leftrightarrow |g(x)-M| < \frac{\varepsilon}{2(|L|+1)}$  (取|L| + 1而不是|L|是 因为有可能|L|=0)
- 存在 $\delta_2 > 0$ 使得 $0 < |x a| < \delta_2 \Leftrightarrow |g(x) M| < 1$ ,此时|g(x)| < 1 + |M|• 存在 $\delta_3 > 0$ 使得 $0 < |x a| < \delta_3 \Leftrightarrow |f(x) L| < \frac{\varepsilon}{2(1+|M|)}$
- $0 < |x a| < \min(\delta_1, \delta_2, \delta_3) \Leftrightarrow |g(x)||f(x) L| + |L||g(x) M| < \frac{\varepsilon}{2(1 + |M|)} (1 + |B|)$ |M|) +  $\frac{\varepsilon}{2(1+|L|)}|L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

# 证明们

#### • 练习2. 答案

- 令 $\lim_{x \to a} f(x) = L$ 以及 $\lim_{x \to a} g(x) = M$
- 尝试证明 $\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$ :
  - $\bullet \ \left| \frac{1}{g(x)} \frac{1}{M} \right| = \left| \frac{M g(x)}{Mg(x)} \right|$
  - 存在 $\delta_1 > 0$ 使得 $0 < |x a| < \delta_1 \Leftrightarrow |g(x) M| < \frac{|M|}{2}$ ,此时 $\frac{|M|}{2} + |g(x)| > |M g(x)| + |g(x)| \ge |M|$ ,即 $|g(x)| > \frac{|M|}{2}$
  - 存在 $\delta_2 > 0$ 使得 $0 < |x a| < \delta_2 \Leftrightarrow |g(x) M| < \frac{|M|^2}{2} \varepsilon$
  - $0 < |x a| < \min(\delta_1, \delta_2) \Leftrightarrow \left| \frac{1}{g(x)} \frac{1}{M} \right| = \left| \frac{M g(x)}{Mg(x)} \right| < \frac{\frac{M^2}{2}\varepsilon}{\frac{M^2}{2}} = \varepsilon$

# 几个结论

- 1.  $\lim_{x \to a} c = c$
- $2. \lim_{x \to a} x = a$
- 3. 我证不来:  $\lim_{x \to a} x^n = a^n 以及 \lim_{x \to a} x^{\frac{1}{n}} = a^{\frac{1}{n}}$ , 其中n为整数
- 4. 我证不来:对于指数函数,对数函数,幂函数,三角函数,如果f(x)在a处有定义,那么 $\lim_{x\to a} f(x) = f(a)$

# (应该) 可以直接用定义推出来

• 极限存在当且仅当左右极限存在且相等

#### • 应用:

- 证明:  $\lim_{x\to 0}|x|=0$
- 证明:  $\lim_{x\to 0} \frac{|x|}{x}$ 不存在
- 分段函数相关计算

# 一个定理

• f(x), g(x)为定义在某 $U^{\circ}(a)$ 上的函数,且对于所有 $x \neq a$ 都有f(x) = g(x),那么  $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ 

# 一个定理-练习

1. 
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

$$2. \lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t}$$

3. 
$$\lim_{t \to 0} \left( \frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right)$$

4. 
$$\lim_{x \to -6} \frac{2x+12}{|x+6|}$$

5. 
$$\lim_{x \to -2} \frac{2 - |x|}{2 + x}$$

# 一个定理-练习答案

- *1.* 2
- 2. 1 (分子有理化)
- 3.  $-\frac{1}{2}$  (分子有理化)
- 4. 不存在 (分别求左右极限)
- 5. 1 (令 $\delta$  < 2)

# 另一个定理

- f(x), g(x)为定义在某 $U^{\circ}(a)$ 上的函数,且对于所有 $x \neq a$ 都有  $f(x) \geq g(x)$ ,那么 $\lim_{x \to a} f(x) \geq \lim_{x \to a} g(x)$
- 把≥换成>也是成立的
- 练习: 证明上面的命题
- 提示: 考虑如何证明 $\forall x \neq a, f(x) > 0 \Rightarrow \lim_{x \to a} f(x) > 0$

# 另一个定理

- f(x), g(x)为定义在某 $U^{\circ}(a)$ 上的函数,且对于所有 $x \neq a$ 都有  $f(x) \geq g(x)$ ,那么 $\lim_{x \to a} f(x) \geq \lim_{x \to a} g(x)$
- 证明:
  - 考虑反证法
  - 设 $\lim_{x\to a} f(x) = L$ ,  $\lim_{x\to a} g(x) = M$ , 假设M > L
  - $\lim_{x \to a} [f(x) g(x)] = L M$
  - 则存在 $\delta > 0$ 满足 $0 < |x a| < \delta \Leftrightarrow |(f(x) g(x)) (L M)| < M L$
  - 因此  $f(x) g(x) (L M) \le |(f(x) g(x)) (L M)| < M L$
  - 也就是 f(x) g(x) < 0,与条件矛盾

# 夹逼定理

• 若f(x), g(x), h(x)为定义在某 $U^{\circ}(a)$ 上的函数,  $f(x) \leq g(x) \leq h(x)$ 且已知 $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ , 那么 $\lim_{x \to a} g(x) = L$ 

# 夹逼定理

#### • 证明:

- 不可以用上一个定理证明,因为上一个定理要求f(x), g(x) 在a处的极限存在,但是这个定理只要求f(x), h(x)的极限存在,我们可以由此推出 g(x)的极限存在。可以参考StackExchange上的这个回答
- 对于任意的ε:
  - 存在 $\delta_1$ 使得 $0 < |x a| < \delta_1 \Leftrightarrow -\varepsilon < f(x) L < \varepsilon$
  - 存在 $\delta_2$ 使得 $0 < |x a| < \delta_2 \Leftrightarrow -\varepsilon < h(x) L < \varepsilon$
  - 此时有 $-\varepsilon < f(x) L \le g(x) L \le h(x) L < \varepsilon$ , 也就是 $-\varepsilon < g(x) L < \varepsilon$
- 所以 $\lim_{x \to a} g(x) = L$

#### 夹逼定理-练习

#### 证明:

1. 
$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

$$2. \lim_{x \to 0} \left( x \left\lfloor \frac{1}{x} \right\rfloor \right) = 1$$

3. 
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{i+n^2}} = 1$$

#### 夹逼定理-练习答案

1. 
$$-1 \le \sin x \le 1$$

2. 
$$x - 1 < |x| \le x$$

3. 
$$\frac{n}{\sqrt{1+n^2}} \le \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{\sqrt{i+n^2}} \le \frac{n}{\sqrt{n+n^2}}$$

#### 连续性

- 如果 $\lim_{x\to a} f(x) = f(a)$ ,则称f(x)在a处**连续**
- 左连续:  $\lim_{x \to a^{-}} f(x) = f(a)$
- 右连续:  $\lim_{x \to a^+} f(x) = f(a)$
- 如果对于一个区间中的每个a,都有f(x)在a处连续(如果a是端点且f(x)在另一边没有定义,就只要求左/右连续),那么就称 f(x)**在这个区间上连续**
- 从图像上看, 连续函数的图像可以一笔画完

#### 定理们

- 若f,g是在a处连续的函数,c是一个常量,那么以下函数都是连续函数:
  - f+g
  - *f* − *g*
  - *cf*
  - fg
  - $\frac{f}{g}$  (if  $g(a) \neq 0$ )
- 证明可以直接用极限的四则运算法则

#### 定理们

- 若f(x)在b处连续,并且 $\lim_{x\to a} g(x) = b$ ,那么 $\lim_{x\to a} f(g(x)) = f\left(\lim_{x\to a} g(x)\right)$
- 也就是说lim 可以从外面挪到一个连续函数的里面去
- 练习:证明第一个命题

#### 定理们

- $\bullet \diamondsuit b = \lim_{x \to a} g(x)$
- 对于任意给定的 $\varepsilon$ :
  - 存在 $\delta_1 > 0$ 使得 $0 < |x b| < \delta_1 \Leftrightarrow |f(x) f(b)| < \varepsilon$
  - 存在 $\delta_2 > 0$ 使得 $0 < |x a| < \delta_2 \Leftrightarrow |g(x) b| < \delta_1$
  - 于是 $0 < |x a| < \delta_2 \Leftrightarrow |f(g(x)) f(b)| < \varepsilon$
- 证毕

#### 介值定理

• 如果f在区间[a,b]上连续, $f(a) \neq f(b)$ ,N 为 f(a), f(b)之间的任意一个数(不含f(a), f(b)),则存在 $c \in (a,b)$ 使得f(c) = N

• 我证不来 /kel

#### 又一个定理

• 如果定义在区间(a,b)上的函数f(x)是连续函数,那么 $f^{-1}(x)$ 也是连续函数

• 证明: 用介值定理说明f(x)在(a,b)上严格单调(这是反函数存在的条件)

#### 结论

- 以下函数在其定义域内都是连续函数:
  - 幂函数
  - 指数函数, 对数函数
  - 三角函数,反三角函数

• 证明: 请使用谷歌百度优先搜索 /xyx

#### 结论

• 
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

- $\lim_{x \to \infty} \frac{1}{x^r} = 0$ ,对于任意的r > 0
- $\lim_{x\to-\infty}e^x=0$
- $\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$ ,  $\bigvee X \lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$
- .....

• 推导留作练习

### 练习

1. 
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

$$2. \quad \lim_{x \to \infty} (x^2 - x)$$

$$3. \lim_{x\to 0^-} e^{\frac{1}{x}}$$

$$4. \quad \lim_{x \to \infty} \frac{x^2 + x}{3 - x}$$

$$5. \quad \lim_{t \to \infty} \frac{\sqrt{t} + t^2}{2t - t^2}$$

6. 
$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$$

7. 
$$\lim_{x \to \infty} \frac{1 - e^x}{1 + 2e^x}$$

8. 
$$\lim_{x \to 0} \frac{\sqrt[3]{1+cx}-1}{x}$$

9. 已知
$$|f(x)| \le x^2$$
恒成立,求证

1. 
$$f(0) = 0$$

2. 
$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = 0$$

#### 练习答案

$$1. \frac{3}{5}$$
 (上下同时除以 $x^2$ )

- $2. \infty (相当于x(x-1))$
- *3.* 0
- 4,  $-\infty$
- *5.* −1
- *6.* 1
- 7.  $-\frac{1}{2}$

- 8.  $\frac{c}{3}$
- 9. 使用夹逼定理

#### 题外话-自然常数e

- 复利问题:
  - 年利率为1
  - 一年发一次利息: (1+1)<sup>1</sup>
  - 一年发两次利息:  $\left(1+\frac{1}{2}\right)^2$
  - •
  - 一年发n次利息:  $\left(1+\frac{1}{n}\right)^n$
- 定义式:  $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$
- 年利率为x时:
  - $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n}{x}}\right)^{\frac{n}{x}x} = e^x$

## 无穷小量与一个重要极限

something f\*\*king interesting ©

重要极限: 
$$\lim_{x\to 0} \frac{\sin x}{x} =$$

$$1.\cos x < \frac{\sin x}{x}$$

如图, $\odot A$  是单位圆,AC 为一条过 A 的射线,它与 x 轴正方向的夹角为  $\theta$  。则:

- $\theta = \stackrel{\frown}{BC}$  (由弧度制的定义得)
- $\sin \theta = CH$
- $\tan \theta = EB$

于是
$$\theta = \widehat{BC} < CD + DB < ED + DB = EB = \tan \theta$$
  

$$\therefore \theta < \tan \theta \Rightarrow \theta < \frac{\sin \theta}{\cos \theta} \Rightarrow \cos \theta < \frac{\sin \theta}{\theta}$$



重要极限:  $\lim_{x\to 0} \frac{\sin}{x}$ 

$$\lim_{x\to 0}\frac{\sin x}{x}$$

$$2. \frac{\sin x}{x} < 1$$

由图可得:

$$\sin \theta = CH < BC < \stackrel{\frown}{BC} = \theta$$

$$\therefore \sin \theta < \theta$$

$$\Rightarrow \frac{\sin \theta}{\theta} < 1$$



重要极限: 
$$\lim_{x\to 0} \frac{\sin}{x}$$

$$\lim_{x\to 0}\frac{\sin x}{x}$$

$$3. \lim_{x \to 0} \frac{\sin x}{x} = 1$$
  
由夹逼定理可证

$$egin{aligned} \cos heta < rac{\sin heta}{ heta} < 1 \ \lim_{ heta o 0} \cos heta = 1 \ \lim_{ heta o 0} 1 = 1 \end{aligned}$$



#### 推论

- $ax \rightarrow 0$ 的过程中:
  - $x \sim \sin x$
  - $x \sim \tan x$  (考虑 $\tan x = \frac{\sin x}{\cos x}$ )
  - $1 \cos x \sim \frac{x^2}{2}$
- 证明:  $1 \cos x \sim \frac{x^2}{2}$

#### 推论

$$egin{aligned} &\lim_{x o 0} rac{1 - \cos x}{rac{x^2}{2}} \ = &2 \lim_{x o 0} rac{1 - \cos x}{x^2} \ = &2 \lim_{x o 0} rac{(1 - \cos x)(1 + \cos x)}{x^2(\cos x + 1)} \ = &2 \lim_{x o 0} rac{\sin^2 x}{x^2(\cos x + 1)} \ = &2 \lim_{x o 0} \left( rac{\sin x}{x} 
ight)^2 \lim_{x o 0} rac{1}{1 + \cos x} \ = &2 \cdot 1 \cdot rac{1}{2} \ = &1 \end{aligned}$$

#### 无穷小量-定义

- •以0为极限的变量
- $\sharp \lim_{x \to 0} \sin x , \lim_{x \to \infty} \frac{1}{x}$
- 注:
  - 无穷小量是对于自变量的某一特定变化过程而言的
  - 无穷小量不是一个"很小的常量",但常数 0 例外( $\lim 0 = 0$ )

#### 计算性质

- 有限个无穷小量的和/差也是无穷小量
- 有限个无穷小量的乘积也是无穷小量
- 无穷小量与有界量的乘积也是无穷小量
- 无穷小量除去极限不为0的变量仍然是无穷小量

- 1, 2, 4可以直接用极限的四则运算法则推导
- 练习:证明第三条

#### 计算性质-证明

- 设 $\lim_{x\to a} f(x) = 0$ ,  $|g(x)| \le M$ 为一个有界的变量
- 那么对于任意的 $\varepsilon > 0$ ,存在 $\delta$ 满足 $0 < |x a| < \delta \Leftrightarrow |f(x)| < \frac{\varepsilon}{M}$
- 也就意味着 $|f(x)g(x)| = |f(x)||g(x)| < \frac{\varepsilon}{M}M = \varepsilon$

#### 无穷小量的商

• 两个无穷小量的和、差、积都是无穷小量,但是它们的商却不一定

- •设 $\alpha$ , $\beta$ 为自变量某一变化过程中两个无穷小量
- 若 $\lim_{\beta} \frac{\alpha}{\beta} = 0$ ,则称 $\alpha$ 为 $\beta$ 的高阶无穷小量(或 $\beta$ 为 $\alpha$ 的低阶无穷小量)
- 若 $\lim_{\beta} \frac{\alpha}{\beta} = A (A)$  一个常数),则称 $\alpha$ 为 $\beta$ 的同阶无穷小量;若 A = 1,则称 $\alpha$ 为 $\beta$ 的等价无穷小量,记为 $\alpha \sim \beta$

#### 替换定理

- 求两个无穷小量之**比**的极限的时候,可以用它们的等价无穷小量之比来代替
- 设 $\alpha$ ,  $\beta$ ,  $\alpha'$ ,  $\beta'$  为关于自变量某一变化趋势的无穷小量且 $\alpha \sim \alpha'$ ,  $\beta \sim \beta'$ , 且 $\lim \frac{\alpha'}{\beta'}$ 存在,则 $\lim \frac{\alpha}{\beta}$ 存在且 $\lim \frac{\alpha}{\beta'} = \lim \left(\frac{\alpha'\beta'\alpha}{\beta'\beta\alpha'}\right) = \lim \left(\frac{\alpha'}{\beta'}\right) \lim \left(\frac{\beta'}{\beta}\right) \lim \left(\frac{\alpha'}{\alpha}\right) = \lim \frac{\alpha'}{\beta'}$
- 替换定理只能用在两个无穷小量相除的情况,对于**两个无穷小量** 相加减的情况不能用替换定理,如 $\lim_{x\to 0} \frac{\tan x \sin x}{\sin^3 x} = \frac{1}{2}$

### 练习

1. 
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 2x}$$

2. 
$$\lim_{x \to 0} \frac{\arcsin x}{x}$$

#### 练习

1. 
$$\frac{3}{2}$$

2. 
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{u}{\sin u} = \lim_{u \to 0} \frac{u}{\sin u} = 1$$

# 求导

我只会求倒数哦^\_^

#### 切线问题

- 相信大家都会解一元二次方程

- 但方程并不是一个很好的描述切线的方法,并且有时候很难解, 比如说:
  - $xy = x^4 + 4x^3 + 8x^2 3a(0, -3)$ 这个位置的切线的斜率?

#### 切线问题

- 考虑用近似值逼近!
- 右图为让Q逼近P
- 一个很自然的想法:  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$
- 当然,也可以写作:  $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$
- 你可以认为我们重新定义了"切线",但是这种定义和原来通过几何的定义是等价的,因为你可以考虑在x > a所得到的值和x < a所得到的值之间有唯一一个实数





#### 瞬时速度问题

- 高一物理教我们用包含 $t_0$ 的一个很短的时间区间的平均速度来估算 $t_0$ 的瞬时速度
- 这个和前面的斜率问题是等价的(你可以想象区间的左端点和右端点逐渐逼近 $t_0$ )

#### 导数

- 因为很常用,所以这种极限有一个特殊的名字: 导数
- 定义函数f在a处的导数为 $f'(a) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$
- 也可以写作 $\lim_{x \to a} \frac{f(x) f(a)}{x a}$
- •导数可以表示切线的斜率、瞬时速度、瞬时的变化率……

• 小练习: 利用你的极限知识, 求f'(1), 其中 $f(x) = x^2 - 1$ 

#### 导数

- 注意到导数f'(a)可以看作一个关于a的函数
- 定义函数f的导数为 $f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$
- 求一个函数的导数的过程叫做求导

#### 导数的记号

• 导数: 
$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

- 有个很有用的记号:  $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$
- f(x)在a处的导数  $f'(a) = \frac{dy}{dx}\Big|_{x=a} = \frac{dy}{dx}\Big|_{x=a}$

(代码长文样: f'(a)=\left.\frac{dy}{dx}\right|\_{x=a}=\left.\frac{dy}{dx}\right]\_{x=a}

#### 可导

- 如果函数f 在a处的导数存在,则称f 在a处可导

#### 一个定理

- 如果f在a处可导,那么f在a处连续
- 注意逆命题不一定成立,反例是f(x) = |x|, a = 0
- 证明:
  - $\lim_{x \to a} f(x) = f(a) \Leftrightarrow \lim_{x \to a} f(x) f(a) = 0$
  - 利用极限的乘法法则算 $\lim_{x\to a}(x-a)\cdot f'(a)$

#### How Can a Function Fail to Be Differentiable



## 高阶导数 Higher Derivative

- 二阶导: (f')' = f'',也可以写作 $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ 或者y''
- 类似的,三阶导是 $f''', y''', \frac{d^3y}{dx^3}$
- n阶导是 $y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n}$

#### 导数的运算

$$\frac{d}{dx}[cf(x)] = c \cdot \frac{d}{dx}f(x)$$

$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$$

$$\frac{d}{dx}(c) = 0$$

可以从定义和极限的运算法则出发进行证明

## 导数的运算

$$\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv = u \cdot \Delta v + \Delta u \cdot v + \Delta u \cdot \Delta v$$

$$\frac{\Delta(uv)}{\Delta x} = u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x}$$

$$\frac{d}{dx}(uv) = \lim_{\Delta x \to 0} u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x} = u \frac{dv}{dx} + v \frac{du}{dx} + 0 \cdot \frac{dv}{dx}$$

$$\therefore \frac{d}{dx}[f(x)g(x)] = f(x) \frac{d}{dx}[g(x)] + g(x) \frac{d}{dx}[f(x)]$$

#### 导数的运算

$$\Delta\left(\frac{u}{v}\right) = \frac{u + \Delta u}{v + \Delta v} - \frac{u}{v} = \frac{v \cdot \Delta u - u \cdot \Delta v}{(v + \Delta v)v}$$

$$\frac{d}{dx} \left( \frac{u}{v} \right) = \lim_{\Delta x \to 0} \frac{v \frac{\Delta u}{\Delta x} - u \frac{\Delta v}{\Delta x}}{(v + \Delta v)v} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\therefore \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

# 多项式求导

• 已知 $f(x) = x^n (n \in \mathbb{Z})$ ,求证:  $f'(x) = nx^{n-1}$ 

## 多项式求导

证明1:

$$\frac{x^n - a^n}{x - a} = x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + xa^{n-2} + a^{n-1}$$

证明2:

$$(x+h)^{n} - x^{n} = \sum_{i=0}^{n} {n \choose i} x^{i} h^{n-i} - x^{n} = n x^{n-1} h + \sum_{i=0}^{n-2} {n \choose i} x^{i} h^{n-i}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{n x^{n-1} h + \sum_{i=0}^{n-2} {n \choose i} x^{i} h^{n-i}}{h} = n x^{n-1} + \lim_{h \to 0} \sum_{i=0}^{n-2} {n \choose i} x^{i} h^{n-i-1} = n x^{n-1} + 0$$

$$\therefore f'(x) = n x^{n-1}$$

#### 指数函数求导

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h} = a^x f'(0)$$

可以证明当a = e时f'(0) = 1(参考<u>这个视频</u>) 所以 $(e^x)' = e^x$ 

#### 指数函数求导

- 换元,  $\Rightarrow y = e^h 1$ , 那么 $\ln(y + 1) = h$
- 发现当 $h \to 0$ 的时候 $y \to 0$

$$1. 复习: \lim_{x\to 0} \frac{\sin x}{x} = 1$$

2. 求证: 
$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

$$egin{aligned} &\lim_{ heta o 0} rac{\cos heta - 1}{ heta} \ &= \lim_{ heta o 0} rac{\cos heta - 1}{ heta} \cdot rac{\cos heta + 1}{\cos heta + 1} \ &= \lim_{ heta o 0} rac{-\sin^2 heta}{ heta(\cos heta + 1)} \ &= -\lim_{ heta o 0} rac{\sin heta}{ heta} \cdot \lim_{ heta o 0} rac{\sin heta}{\cos heta + 1} \ &= -1 \cdot rac{0}{1+1} = 0 \end{aligned}$$

- 背就完了
- 可以发现,所有的co-函数的导数都带负号
- 练习: 证明 $\sin x$ ,  $\cos x$ ,  $\tan x$ 的求导公式(其它的可以看这里)

#### **DERIVATIVES OF TRIGONOMETRIC FUNCTIONS**

$$\frac{d}{dx} (\sin x) = \cos x$$

$$\frac{d}{dx} (\cos x) = -\csc x \cot x$$

$$\frac{d}{dx} (\cos x) = -\sin x$$

$$\frac{d}{dx} (\sin x) = \sec x \tan x$$

$$\frac{d}{dx} (\tan x) = \sec^2 x$$

$$\frac{d}{dx} (\cot x) = -\csc^2 x$$

$$(\sin x)'$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \sin h \cos x - \sin x}{h}$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \cos x$$

$$(\cos x)'$$

$$= \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h}$$

$$= -\sin x$$

$$= (\frac{\sin x}{\cos x})'$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \sec^2 x$$

#### 链式法则

- 求导: f(g(x))
- 一个十分合理的想法是f(u)关于u的变化率×u关于x的变化率就是f(u)关于x的变化率,即 $\left[f(g(x))\right]'=f'(g(x))g'(x)$
- 这样写会更加直观一些:  $\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$  (尽管这并没有考虑到 $\Delta u = 0$ 的情况)

#### 链式法则

- 如果g在x处可导且f在g(x)处可导,则 $F = f \circ g$ 在x处可导且 F'(x) = f'(g(x))g'(x)
- (Leibniz的记号) 如果y = f(u)和u = g(x)都可导,那么 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
- 完整的证明又长又烦所以略了—(其实是因为我不会)—
- 可以参考 James Stewart Calculus 3.4 的最后一段 HOW TO PROVE THE CHAIN RULE

#### 链式法则的应用

• 求证:  $\frac{d}{dx}(a^x) = a^x \ln a$ 

#### 隐函数求导

例题:  $x^2 + y^2 = 25$ , 求y'

两边同时求导

$$2x + 2y \cdot y' = 0$$
$$y' = \frac{-2x}{2y} = -\frac{x}{y}$$

你可能会觉得这个结果看起来很奇葩,不过你可以把y'看作从 (x,y)到切线斜率的一个映射

#### 隐函数求导

例题:  $y = \sin^{-1} x$ , 求y'

$$\sin y = x$$

两边同时求导,得

$$y' = \frac{1}{\cos y} = \frac{\cos y \cdot y' = 1}{1} = \frac{1}{\sqrt{1 - x^2}}$$

#### 反三角函数求导公式

• 推导方式都是一样的,可以参考我的这篇博客

#### DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

$$\frac{d}{dx} (\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} (\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx} (\cos^{-1}x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} (\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx} (\tan^{-1}x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx} (\cot^{-1}x) = -\frac{1}{1 + x^2}$$

#### 练习

#### 求导:

1. 
$$x^3 + y^3 = 6xy$$

$$2. \sin(x+y) = y^2 \cos x$$

#### 答案

#### 求导

1. 
$$y' = \frac{2y - x^2}{y^2 - 2x}$$

2. 
$$y' = \frac{y^2 \sin x + \cos(x+y)}{2y \cos x - \cos(x+y)}$$

## 对数函数求导

• 求(ln x)'

#### 对数函数求导

两边同时求导,得

此外, 
$$(\log_a x)' = \frac{1}{x \ln a}$$

$$y = \ln x$$
$$e^y = x$$

$$e^{y} \cdot y' = 1$$
$$y' = \frac{1}{e^{y}} = \frac{1}{x}$$

## 幂函数求导!

• 求证: 当 $n \in \mathbb{R}$ ,  $(x^n)' = nx^{n-1}$ 

#### 幂函数求导!

$$y = x^{n}$$

$$\ln y = n \ln x$$

$$\frac{1}{y}y' = n\frac{1}{x}$$

$$y' = n\frac{y}{x} = nx^{n-1}$$

#### 你已经完全会求导了 | review

- 加减乘除
- 链式法则
- 隐函数求导
- 三角函数及其反函数的求导公式
- 幂函数、指数函数、对数函数的求导公式

#### 练习-第一组

- 1.  $\lim_{x\to 0} x \cot x$
- $2. \lim_{x \to 0} \frac{\sin 3x}{x}$
- 3.  $\lim_{x \to 0} \frac{\sin x}{x + \tan x}$
- 4.  $\lim_{x \to \frac{\pi}{4}} \frac{1 \tan x}{\sin x \cos x}$
- 5.  $(\sin(\cos(\tan x)))'$
- 6. 如右图

An arc PQ of a circle subtends a central angle  $\theta$  as in the figure. Let A( $\theta$ ) be the area between the chord PQ and the arc PQ. Let B( $\theta$ ) be the area between the tangent lines PR, QR, and the arc. Find

$$\theta \to 0^+$$
  $B(\theta)$ 

#### 答案

- *1.* 1
- *2.* 3
- $3. \frac{1}{2}$  (上下同时除sin x)
- 4.  $-\sqrt{2} \left(1 \tan x = \frac{1}{\cos x} (\cos x \sin x)\right)$
- 5.  $-\cos(\cos(\tan x)) \cdot \sin(\tan x) \cdot \sec^2 x$

## 答案

6. 
$$A(\theta) = \frac{r^2}{2}\theta - \frac{r^2}{2}\sin\theta$$
,  $B(\theta) = r^2\tan\frac{\theta}{2} - \frac{r^2}{2}\theta$ 

错误解法: 原式= 
$$\lim_{\theta \to 0^+} \frac{\theta - \sin \theta}{2 \tan \frac{\theta}{2} - \theta} = \lim_{\theta \to 0^+} \frac{\theta - 2\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \tan \frac{\theta}{2} - \theta} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\frac{\theta}{\sin \frac{\theta}{2}} - 2\cos \frac{\theta}{2}}{2 \frac{1}{(\cos \frac{\theta}{2}) - \frac{\theta}{\sin \frac{\theta}{2}}}} = \lim_{\theta \to 0^+} \frac{\theta}{\cos \frac{\theta}{2}} = \lim_{\theta \to 0^+} \frac{\theta}{\cos \frac{\theta}{2}} = \lim_{\theta \to 0^+} \frac{\theta}{\sin \frac{\theta}{2}} = \lim_{\theta \to 0^+} \frac{\theta}{$$

$$\lim_{\theta \to 0^+} \frac{1 - \cos\frac{\theta}{2}}{\sec\frac{\theta}{2} - 1} = 1$$

错误的原因: 带入 $\frac{\theta}{\sin\frac{\theta}{2}} = 2$ 

极限符号可以从连续函数的外面到里面去,但是不能够只带入一部分然后再把极限符号拿出来

正确的解法需要用到洛必达法则,最终的答案是2

- 求极限的技巧
  - $\infty \cdot \infty = \infty$
  - $\infty + c = \infty$ ,  $\infty + \infty = \infty$
  - 0+0=0, 0-0=0,  $0\cdot 0=0$
  - 但是, $\frac{0}{0}$ , $\frac{\infty}{\infty}$ , $0 \cdot \infty$ , $\infty \infty$ 为不定式,不能直接带入求值
- 极限符号可以从连续函数的外面到里面去,是指类似于这样的形式  $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

•  $\lim_{x \to a} \frac{\left(\lim_{x \to a} f(x)\right)}{g(x)}$  是不对的,比如 $\lim_{x \to 0} \frac{\frac{\sin x}{x} - \cos x}{\frac{x^2}{x}} = \frac{2}{3} \neq 1$ 

#### 练习-第二组

1. 
$$\left(x^{\sqrt{x}}\right)'$$

$$2. \left(\frac{x^{\frac{3}{4}}\sqrt{x^2+1}}{(3x+2)^5}\right)'$$

#### 答案

1. 
$$\ln y = \sqrt{x} \ln x \Rightarrow \frac{1}{y} y' = \frac{1}{2} x^{-\frac{1}{2}} \ln x + \sqrt{x} \frac{1}{x} \Rightarrow y' = y \left( \frac{\ln x + 2}{2\sqrt{x}} \right)$$

#### 2. 有两种做法

1. 
$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln(x^2 + 1) - 5 \ln(3x + 2) \Rightarrow \frac{1}{y} y' = \frac{3}{4} \frac{1}{x} + \frac{1}{2} \frac{1}{x^2 + 1} 2x - 5 \frac{1}{3x + 2} 3 \Rightarrow y' = y \left( \frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

2. 
$$x^{\sqrt{x}} = e^{\sqrt{x} \ln x}$$
, 然后用链式法则做即可

#### 指数增长/减少

- 假设你现在有一群兔子,你想知道它们繁殖一次之后会有多少只兔子
- 一个很合理的想法就是增加的兔子数量和当前的兔子数量成正比
- 也就是 $\frac{dy}{dt} = ky$
- 这个方程唯一解是 $y = y(0)e^{kt}$
- 放射性物质的衰减也有类似的方程, 只是k是个负常数

#### Linear Approximations

- $f(x) \approx f(a) + f'(a)(x a)$
- 道理想必大家都懂

• 高次的情况就是泰勒展开,可以自行查阅资料了解

#### 微分 differential

- A. 书上的定义: dx, dy都是differential; dx看作自变量, dy看作因变量,  $ext{c} z y = f'(x) dx$ 。注意区分于 $\Delta x$ ,  $\Delta y$ , 可参考<u>这个视频</u>
- B. 我的口胡(不保证正确):
  - dy相当于是 $\lim_{\Delta x \to 0} \Delta y$ ,当然也等于 $\lim_{\Delta y \to 0} \Delta y$
  - dx相当于是 $\lim_{\Delta x \to 0} \Delta x$ ,当然也等于 $\lim_{\Delta y \to 0} \Delta x$
  - 显然单独谈论dy, dx, dt之类的是没有意义的,你只够比较它们的比值,也就是"变化速率的比值";
  - (好像这样就联系上了求导的记号 $\frac{dy}{dx}$
  - 所以会有式子dy = f'(x)dx(这个也会联系上积分里面的换元积分法

#### 反导函数 antiderivative

- 如果对于区间I内的任意x都有F'(x) = f(x),那么就称F为f在I上的反导函数
- 可以证明, f(x)的所有的反导函数的差都是常数
- 所以f(x)在区间I的所有反导函数都可以写成F(x) + C

# 积分

我怀疑你游戏打多了并且我有证据

#### 面积?

• 还记得小学学的"面积"吗?







- 但是,对于边缘是弧线的图形,它的面积又是什么?
- 联系求导的知识,考虑用矩形分割逼近。



# 面积?







FIGURE 8







• 数学表达式?

FIGURE 9

# 黎曼和

- 定义一个区间[a,b]的**分割**P为一个有限的点列 $a < x_0 < x_1 < \cdots < x_n = b$ ,每个闭区间[ $x_i$ , $x_{i+1}$ ]叫做一个**子区间**
- 定义**取样分割**:在分割之后,从每个子区间取出一个取样点 $x_i \le t_i \le x_{i+1}$
- 定义 $\lambda = \max(x_{i+1} x_i)$
- •如果分割P是在分割Q的基础上加入了一些 $x_i$ 和 $t_i$ ,那么就称P是Q的精细化分割
- 黎曼和:  $\sum_{i=0}^{n-1} f(t_i)(x_{i+1} x_i)$

# 黎曼积分

- 黎曼积分就是当分割的λ越来越小的时候黎曼和趋向的极限
- 定义1: S = f(x) 在闭区间[a,b]上的黎曼积分,当且仅当对于任意的 $\varepsilon > 0$ ,存在 $\delta > 0$ 使得任意一个 $\lambda \leq \delta$ 的取样分割的黎曼和与S的差的绝对值小于 $\varepsilon$
- 定义2: S = f(x) 在闭区间[a,b]上的黎曼积分,当且仅当对于任意的 $\varepsilon > 0$ ,存在一个取样分割,使得任意一个比它精细的取样分割的黎曼和与S的差的绝对值小于 $\varepsilon$
- 这两个定义的等价的,参考wiki Riemann\_integral

# 黎曼可积

- f在[a,b]的黎曼积分存在,则称f是黎曼可积的
- •一个充分不必要条件: f在[a,b]只有有限个不连续点

- 我没看懂的充要条件: f在[a,b]黎曼可积当且仅当不连续点的集合的Lebesgue测度为0
- 请自行<del>google</del>百度

#### 定积分

- 定积分是一类很有用的极限
- 设 f 是定义在 [a,b] 上的函数,我们把 [a,b] 分成n 的等长的子区间,每个子区间的长度是 $\Delta x = \frac{b-a}{n}$ ,令 $x_i^*$  为第i个区间内的任意取样点,则f 从a到b的**定积分**为

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

• 如果这个极限存在,就称f在[a,b]上可积

#### 定积分的记号

- ∫ 是用来告诉你"要积分啦"
- dx, dt, du什么的是用来告诉你自变量是谁的
- 更加深入的理解是, dx, dt, du表示微分
- · 参考youtube上的这个视频

# 定积分的几何意义

• 在 x 轴 上 方 的 部 分 的 面 积 - 在 x 轴 下 方 的 部 分 的 面 积



FIGURE 6

$$\int_0^3 (x^3 - 6x) \, dx = A_1 - A_2 = -6.75$$

# 小练习

2. 求
$$\int_1^3 e^x dx$$
(不用算出结果

3. 证明: 
$$\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3}$$

#### • Hint:

$$\bullet \ \sum_{i=1}^n i = \frac{n(n+1)}{2}$$

• 
$$\sum_{i=1}^{n} i^2 = \frac{i(i+1)(2i+1)}{6}$$

# 小练习

1. 
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}$$

2. 
$$\int_{1}^{3} e^{x} dx = \lim_{n \to \infty} \sum_{i=1}^{n} e^{1 + \frac{2i}{n}} \frac{2}{n} = \lim_{n \to \infty} \frac{2}{n} \frac{e^{3 + \frac{2}{n}} - e^{1 + \frac{2}{n}}}{e^{\frac{2}{n}} - 1}$$

Now we ask the computer algebra system to evaluate the limit:

$$\int_{1}^{3} e^{x} dx = \lim_{n \to \infty} \frac{2}{n} \cdot \frac{e^{(3n+2)/n} - e^{(n+2)/n}}{e^{2/n} - 1} = e^{3} - e^{3}$$

3. 众所周知证明题的答案叫做略。

# 大练习

1. 
$$\int_0^1 \sqrt{1-x^2} \, dx$$

2. 
$$\int_{-5}^{5} (x - \sqrt{25 - x^2}) dx$$

• 提示: 考虑几何意义

# 大练习

- 1. 如图,答案是 $\frac{\pi}{4}$
- 2.  $\frac{25}{2}\pi$



# 定积分的性质

- 定义:  $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx, \quad 其中a < b$
- 此外,  $\int_a^a f(x)dx = 0$
- 下面的性质的证明可以考虑展开成∑

#### 引入

- (a) Draw the line y = 2t + 1 and use geometry to find the area under this line, above the t-axis, and between the vertical lines t = 1 and t = 3.
- (b) If x > 1, let A(x) be the area of the region that lies under the line y = 2t + 1 between t = 1 and t = x. Sketch this region and use geometry to find an expression for A(x).
- (c) Differentiate the area function A(x). What do you notice?

#### 引入

• 定义
$$g(x) = \int_a^x f(t)dt$$

• 那么
$$g(x+h) - g(x) \approx f(x)h$$

• 所以
$$\frac{g(x+h)-g(x)}{h} \approx f(x)$$

• 猜测
$$\lim_{h\to 0} \frac{g(x+h)-g(x)}{h} = f(x)$$



#### 微积分基本定理-第一部分

• 如果f在[a,b]上连续,那么 $g(x) = \int_a^x f(t)dt$ ,  $(a \le x \le b)$ 在[a,b]上连续且在(a,b)上可导,且g'(x) = f(x)

#### 证明

- 根据定义有 $\frac{g(x+h)-g(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t)dt$
- 现在考虑h > 0的情况
- 设f(u)为f(x)在[x,x+h]的最小值,f(v)为f(x)在[x,x+h]的最大值
- 根据定积分的性质,有 $f(u)h \leq \int_{x}^{x+h} f(t)dt \leq f(v)h$
- 也就是 $f(u) \le \frac{1}{h} \int_{x}^{x+h} f(t) dt \le f(v)$ ; 这个结论在h < 0的时候也可以同理证明
- 根据夹逼定理有 $\lim_{h\to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt = f(x)$

#### 微积分基本定理-第二部分

- 如果f在[a,b]上连续,那么 $\int_a^b f(x)dx = F(b) F(a)$ ,其中F是f的任意反导函数
- 这里的F(b) F(a)也可以写作 F(x) F(x) F(x) F(x)
- 证明:
  - 对于 $g(x) = \int_a^x f(t)dt$ 显然成立,因为 $\int_a^b f(x)dx = \int_a^b f(x)dx \int_a^a f(x)dx = g(b) g(a)$
  - 而其它的任意F(x)都满足其和g(x)的差为常数,F(b) F(a) = (g(b) + C) (g(a) + C) = g(b) g(a)

#### 不定积分

- f(x)的每一个反导函数都可以叫做f的不定积分,记为 $\int f(x)dx$
- 例如:  $\int x^2 dx = \frac{x^3}{3} + C$
- 而对于像 $f(x) = \frac{1}{x^2}$ 这样的函数,每个区间上的积分常数都可以不同,所以其一般形式应为

$$\int \frac{1}{x^2} dx = \begin{cases} -\frac{1}{x} + C_1 & (x > 0) \\ -\frac{1}{x} + C_2 & (x < 0) \end{cases}$$

# 很卡哇伊的一道题 ^\_^

What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \bigg]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

# 很卡哇伊的一道题 ^\_^

- 首先, 注意到 $f(x) \ge 0$ , 所以这个答案不可能是对的
- 微积分基本定理只能对连续函数应用,而f(x)在x = 0处并不连续
- 事实上,  $\int_{-1}^{3} \frac{1}{x^2} dx$ 不存在

# 小练习

$$1. \quad \lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^3}{n^4}$$

$$5. \int_0^{\frac{1}{\sqrt{3}}} \frac{t^2 - 1}{t^4 - 1} dt$$

2. 已知 
$$C(t) = \frac{1}{t} \left[ A + \int_0^t f(s) ds \right]$$
,  
求证: 对于满足 $C(T) = f(T)$   
的 $T$ ,  $C'(t) = 0$ 

3. 
$$\int \left(x^2 + 1 + \frac{1}{x^2 + 1}\right) dx$$

4. 
$$\int_0^{\frac{\sqrt{3}}{2}} \frac{dr}{\sqrt{1-r^2}}$$

# 答案

1. 
$$\int_0^1 x^3 dx = \frac{1}{4}$$

2. 
$$C(t)t = A + \int_0^t f(s)ds \Rightarrow$$

$$C'(t)t + C(t) = f(t) \Rightarrow$$

$$C'(t) = \frac{1}{t} (f(t) - C(t)) = 0$$

3. 
$$\frac{x^3}{3} + x + \tan^{-1} x + C$$

4. 
$$\left[\sin^{-1} x\right]_0^{\frac{\sqrt{3}}{2}} = \frac{\pi}{3}$$

5. 
$$\int_0^{\frac{1}{\sqrt{3}}} \frac{1}{t^2 + 1} dt = \left[ \tan^{-1} x \right]_0^{\frac{1}{\sqrt{3}}} = \frac{\pi}{6}$$

# 换元积分法

• 其实就是链式法则的逆

$$\int f'(g(x))g'(x)dx = f(g(x)) + C$$

- 也可以把dx看作微分来解释
- 设u = g(x),因为du = g'(x)dx(也就是 $du = \frac{du}{dx} \cdot dx$ )
- 所以 $\int f'(g(x))g'(x)dx = \int f'(u)du = f(u) + C$

# 举个栗子

$$\int 2x\sqrt{1-x^2}\ dx$$

$$\diamondsuit u = 1 - x^2, \quad \text{If } du = 2x \, dx$$

那么

$$\int 2x\sqrt{1-x^2} \, dx = \int \sqrt{u} \, du = \frac{2}{3}u^{\frac{3}{2}} + C = \frac{2}{3}(1-x^2)^{\frac{3}{2}} + C$$

# 再举个栗子

$$\int x^{3} \cos(x^{4} + 2) dx$$

$$\Leftrightarrow u = x^{4} + 2, \quad \iiint du = 4x^{3} dx$$

$$\int x^{3} \cos(x^{4} + 2) dx = \frac{1}{4} \int \cos u du = \frac{1}{4} \sin u + C$$

$$= \frac{1}{4} \sin(x^{4} + 2) + C$$

### 定积分的换元积分

如果g'在[a,b]连续,且f在u = g(x)构成的区间上连续,那么

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

这样做的好处在于省去了最后x带回u的步骤简单的证明:

- 令F为f的反导函数,则F(g(x))是f(g(x))g'(x)的一个不定积分
- 显然  $\int_a^b f(g(x))g'(x)dx = [F(g(x))]_a^b = F(g(b)) F(g(a))$
- 而另一方面,  $\int_{g(a)}^{g(b)} f(u) du = [F(u)]_{g(a)}^{g(b)} = F(g(b)) F(g(a))$

# 简单的栗子

• 
$$\Re \int_1^e \frac{\ln x}{x} dx$$

- $\Rightarrow u = \ln x$ ,  $\iiint du = \frac{1}{x} dx$
- $\int_{1}^{e} \frac{\ln x}{x} dx = \int_{0}^{1} u \, du = \frac{1}{2}$

# 练习题

1. 
$$\int x^5 \sqrt{1+x^2} \ dx$$

2. 
$$\int \tan x \, dx$$

3. 
$$\int (x+1)\sqrt{2x+x^2}dx$$

4. 
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$

$$5. \int \frac{\cos x}{\sin^2 x} dx$$

6. 
$$\int \frac{\sin 2x}{1+\cos^2 x} dx$$

7. 
$$\int \frac{1+x}{1+x^2} dx$$

8. 
$$\int x(2x+5)^8 dx$$

# 答案

1. 
$$u = 1 + x^2$$
;  $\frac{1}{2} \left( \frac{2}{7} u^{\frac{7}{2}} - 2 \cdot \frac{2}{5} u^{\frac{5}{2}} + \frac{2}{3} u^{\frac{3}{2}} \right) + C$ 

2. 
$$u = \cos x$$
;  $-\ln u + C = -\ln|\cos x| + C$ 

3. 
$$u = x^2 + 2x$$
;  $\frac{1}{2} \cdot \frac{2}{3} u^{\frac{3}{2}} + C$ 

4. 
$$u = \sqrt{x}$$
;  $\cos u + C$ 

5. 
$$u = \sin x; -\frac{1}{u} + C$$

6. 
$$u_1 = \cos x$$
,  $u_2 = 1 + u_1^2$ ;  $-\ln|u_2| = -\ln|1 + \cos^2 x|$ 

7. 
$$\int \frac{1}{1+x^2} dx + \int \frac{x}{1+x^2} dx = \tan^{-1} x + \frac{1}{2} \ln|1+x^2|$$

8. 
$$u = 2x + 5, dx = \frac{1}{2}du; \int \frac{u-5}{2}u^8 \frac{1}{2}du = \frac{1}{40}u^{10} - \frac{5}{36}u^9 + C$$

# 导数的应用

咕了。

#### 最值问题-定义

- f 为定义在D上的一个函数
- 如果 $\forall x \in D$ 有 $f(x) \leq f(c)$ ,那么称f(c)为f的绝对/全局最大值
- 如果 $\forall x \in D$ 有 $f(x) \geq f(c)$ ,那么称f(c)为f的绝对/全局最小值
- 如果存在一个包含c的开区间,使得所有在这个开区间内的x都满足 $f(x) \le f(c)$ ,那么称f(c)是一个相对/局部最大值
- 如果存在一个包含c的开区间,使得所有在这个开区间内的x都满足 $f(x) \ge f(c)$ ,那么称f(c)是一个相对/局部最小值



#### 最值定理 Extreme Value Theorem

最大值可能不存在,比如右图 (右图中的函数取值有上确界)



- 最值定理:如果f为定义在闭区间[a,b]上的连续函数,那么区间内存在两个数c,d,满足f(c)为全局最大值,f(d)为全局最小值
- 最值定理的条件是充分不必要的

#### 费马引理

- 设函数f 在 $x_0$ 的某邻域 $U(x_0)$ 内有定义,在 $x_0$ 处可导,并且对于任意的 $c \in U(x_0)$ 有 $f(c) \leq f(x_0)$ ,那么 $f'(x_0) = 0$
- 设函数f 在 $x_0$ 的某邻域 $U(x_0)$ 内有定义,在 $x_0$ 处可导,并且对于任意的 $c \in U(x_0)$ 有 $f(c) \ge f(x_0)$ ,那么 $f'(x_0) = 0$
- 费马引理是判断一个值是否是局部最值的必要不充分条件(即便 f'(c)存在! 反例是 $f(x) = x^3, c = 0$ )

• 感性理解就是,如果 $f'(x_0)$ 不等于0,那么从 $x_0$ 往左走或者往右走会让函数值变大/变小

#### 费马引理-证明

- 下面证明 $f(x_0)$ 为局部最大值的情况
- 因为f在 $x_0$ 处可导,所以 $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0^+} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0^-} \frac{f(x+h)-f(x)}{h}$
- 由于 $f(x_0)$ 是局部最大值,所以 $\lim_{h\to 0^+} \frac{f(x+h)-f(x)}{h} \le 0$ ,  $\lim_{h\to 0^-} \frac{f(x+h)-f(x)}{h} \ge 0$
- 所以 $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h} = 0$

#### 临界值

- 如果c在f的定义域内且f'(c)不存在或者f'(c) = 0,那么称c为f的一个**临界值**
- 如果c是f的局部最大值/最小值,那么c一定是f的一个临界值; 反之不一定成立

### 求f在[a,b]上的最值

- 1. 求出 f 在所有临界值的取值
- 2. 求出f在区间端点的取值
- 3. 这些取值中最大的就是全局最大值,最小的就是全局最小值

#### 罗尔定理 Rolle's Theorem

- 如果 ƒ 是满足下面条件的一个函数
  - *f* 在[*a*, *b*]上连续
  - *f*在(*a*, *b*)上可导
  - f(a) = f(b)
- 那么存在一个 $c \in (a,b)$ ,满足f'(c) = 0









#### 证明

#### 分情况讨论:

- f(x) = k: 显然成立
- 存在某个 $x \in (a,b)$ , f(x) > f(a): 根据最值定理, f(x)在[a,b] 一定有全局最大值; 而且根据条件, 全局最大值一定位于开区间 (a,b)内, 是一个局部最大值, 所以全局最大值处f(x)的导为0
- 存在某个 $x \in (a,b)$ , f(x) < f(a): 证明同上,全局最小值处的导为0

# 一个小应用

• 证明 $x^3 + x - 1 = 0$ 恰好只有一根

### 一个小应用

• 证明 $x^3 + x - 1 = 0$ 恰好只有一根

- 分为两步:
  - 存在根 (f(0) < 0, f(1) > 0)
  - 不存在多于一个根(罗尔定理)

#### 中值定理 The Mean Value Theorem

- 如果f是满足下面条件的一个函数:
  - *f* 在[*a*, *b*]上连续
  - *f*在(*a*, *b*)上可导
- 那么存在 $c \in (a,b)$ 满足 $f'(c) = \frac{f(b)-f(a)}{b-a}$





#### 中值定理-证明

• 定义一个新函数:

$$h(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right),$$



- 显然h在[a,b]上连续且在(a,b)上可导且h(a) = h(b) = 0
- 所以存在 $c \in (a,b)$ 满足 $0 = h'(c) = f'(c) \frac{f(b) f(a)}{b a}$ ,也就是说 $f'(c) = \frac{f(b) f(a)}{b a}$

### 一个定理

• 如果对于所有的 $x \in (a,b)$ 都有f'(x) = 0,那么f在(a,b)上是一个常函数

### 推论

• 如果对于所有的 $x \in (a,b)$ 都有f'(x) = g'(x),那么在(a,b)上f和g的差是常量,即f(x) = g(x) + c

### 小练习

- 证明:  $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
- 其中:
  - $\tan^{-1} x$ 的值域是 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
  - $\cot^{-1} x$ 的值域是 $(0,\pi)$

### 小练习

- 证明2(不保证正确):  $\forall \alpha \in \left(0, \frac{\pi}{2}\right), \cot \alpha = \tan\left(\frac{\pi}{2} \alpha\right); \forall \alpha \in \left(-\frac{\pi}{2}, 0\right), \tan(\alpha) = \cot\left(-\frac{\pi}{2} \alpha\right) = \cot\left(\frac{\pi}{2} \alpha\right)$

# 递增/递减测试 Increasing/Decreasing Test

- 如果在一个区间内有f'(x) > 0,那么f在这个区间内递增
- 如果在一个区间内有f'(x) < 0,那么f在这个区间内递减

• 证明: 利用中值定理, 和上一个定理类似

### 小小练习

• 求出 $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ 在哪些区间里递增,在哪些区间里递减

# 小小练习

• 
$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x^2 - x - 2) = 12x(x - 2)(x + 1)$$

| Interval                                | 12 <i>x</i> | x-2              | <i>x</i> + 1     | f'(x)            | f                                                                                                                 |
|-----------------------------------------|-------------|------------------|------------------|------------------|-------------------------------------------------------------------------------------------------------------------|
| x < -1 $-1 < x < 0$ $0 < x < 2$ $x > 2$ | -<br>+<br>+ | -<br>-<br>-<br>+ | -<br>+<br>+<br>+ | -<br>+<br>-<br>+ | decreasing on $(-\infty, -1)$<br>increasing on $(-1, 0)$<br>decreasing on $(0, 2)$<br>increasing on $(2, \infty)$ |

#### 一阶导数测试 The First Derivative Test

- c为连续函数f的一个临界值
  - 如果在c这个位置,f'从正的变成了负的,那么f在c有局部最大值
  - 如果在c这个位置,f'从负的变成了正的,那么f在c有局部最小值
  - 如果在c这个位置,f'没有变号,那么f在c既不是局部最大值也不是局部最小值
- 第三种情况的一个栗子:  $f(x) = x^3, c = 0$



### 证明(目害古月)

- 肯定能找出一个c的邻域,只包含了c这一个临界值
- 如果 f' 在 c 处从正的变成了负的,那么这意味着在 c 的左边 f 递增,在 c 的右边 f 递减,于是可以推出 f(c) 为局部最大值
- 逆命题:如果f(c)为局部最大值,由于这个邻域内不包含其它的临界值了,所以c的左边要么递增要么递减,c的右边也要么递增要么递减;但是如果左边递减或者右边递增的话,显然就不满足f(c)为局部最大值这一条件了。所以c的左边f递增(也就是导数大于0),c的右边f递减(也就是导数小于0)

# 小小小练习

• 求出 $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ 的局部最值

# 小小小练习



| Interval                | 12 <i>x</i> | x - 2 | x + 1 | f'(x) | f                                                 |
|-------------------------|-------------|-------|-------|-------|---------------------------------------------------|
| x < -1                  | _           | _     | _     | _     | decreasing on $(-\infty, -1)$                     |
| -1 < x < 0<br>0 < x < 2 | _           | _     | + +   | +     | increasing on $(-1, 0)$<br>decreasing on $(0, 2)$ |
| 0 < x < z $x > 2$       | +           | +     | +     | +     | increasing on $(2, \infty)$                       |
|                         |             |       |       |       |                                                   |

The granh of faharen in Figure 9 confirms the information in the short

### 秃-定义

• 如果f的图象在它在区间I中的所有的 "切线的上方,那么称f在区间I上凹 (concave upword) 【也可以用数学语言描述为 $f(x) \ge f(a) + f'(a)(x - a)$ 】



•注:上凸、下凸、上凹、下凹、凸、凹在不同的地方定义不太一样,请联系上下文理解





(b)

# 秃性测试 Concavity Test

- $\forall x \in I, f''(x) > 0 \Rightarrow f(x)$ 在I上凹
- $\forall x \in I, f''(x) < 0 \Rightarrow f(x)$ 在I下凹

• 根据图形的形状易证

### 证明-f''(x) > 0

考虑a > x的情况 由中值定理得

$$\exists c \in (x, a), f'(c) = \frac{f(a) - f(x)}{a - x}$$

$$\forall x \in I, f''(x) > 0 \Rightarrow f'(a) > f'(c)$$

$$\Rightarrow f'(a)(a - x) > f'(c)(a - x) = f(a) - f(x)$$

$$\Rightarrow f(x) > f(a) + f'(a)(x - a)$$

a < x的情况可以同理证明

### 拐点 inflection point

- 连续函数 ƒ 从上凹变到下凹或从下凹变到上凹的点
- 使切线穿过函数图象的点
- 二阶导变号的点





#### 二阶导数测试 The Second Derivative Test

- 函数f在c的某邻域内连续
  - 如果f'(c) = 0且f''(c) > 0,那么f在c处有局部最小值
  - 如果f'(c) = 0且f''(c) < 0,那么f在c处有局部最大值
- 这个测试在f''(c)不存在或者f''(c) = 0的时候会不工作

### 咳咳。。!

- 刚才说了的这一堆测试(凸性测试,一/二阶导数测试)除了用来求极值/推性质之外,还有一个作用就是方便作图
- 作图的技巧们:
  - 定义域
  - 与坐标轴的交点
  - 对称(奇偶性、周期性)
  - 渐近线
  - 增减性
  - 局部最值
  - 凹凸性/拐点

• 这么麻烦干嘛直接Geogebra不就完了

#### 不定式 Indeterminate Forms

- to + verb
- 指按照极限的规则带入之后未能有足够的信息确定极限值

• 比如 
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{0}{0}$$
,  $\lim_{x \to \infty} \frac{x^2}{e^x} = \frac{\infty}{\infty}$ 等等

• 摘自wiki: 常见的不定式有 $\frac{0}{0}$ , $\frac{\infty}{\infty}$ , $0\cdot\infty$ , $1^{\infty}$ , $\infty-\infty$ , $0^{0}$ , $\infty^{0}$ 

#### 引入

- 对于右下图中的两条直线,对于任何一个 a附近的x,  $\frac{m_1(x-a)}{m_2(x-a)} = \frac{m_1}{m_2}$ ; 所以  $\lim_{x\to a} \frac{m_1(x-a)}{m_2(x-a)} = \frac{m_1}{m_2}$
- 而对于*f*, *g*这样的曲线,只要放大的倍数足够,它们的形状就会趋近于右下图中的两条直线
- 所以合理猜想 $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$





### 洛必达法则 L'Hôpital's rule

- 如果下列条件成立:
  - 在a的某去心邻域上,f,g可导且 $g'(x) \neq 0$
  - $\lim_{x \to a} f(x) = 0 \land \lim_{x \to a} g(x) = 0$ 或者 $\lim_{x \to a} f(x) = \pm \infty$ ,  $\lim_{x \to a} g(x) = \pm \infty$
- 那么 $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$ (在右侧的极限存在或为无穷的情况下)

• 注: 洛必达法则对半极限或无穷处的极限也成立

### 对特殊情况的证明

- 下面证明 $\frac{0}{0}$ 的情况
- 如果f(a) = g(a) = 0,那么 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) f(a)}{g(x) g(a)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$
- 对于f(a), g(a)不等于0或不存在的情况,可以定义两个函数

$$F(x) = \begin{cases} f(x) \ (x \neq a) \\ 0 \ (x = a) \end{cases}, G(x) = \begin{cases} g(x) \ (x \neq a) \\ 0 \ (x = a) \end{cases}$$

- 利用 $\lim_{x\to a} \frac{F(x)}{G(x)} \lim_{x\to a} \frac{f(x)}{g(x)}$ 可以得证
- 对于在无穷处的极限,可以用 $t = \frac{1}{x}$ 替代掉,也就是  $\lim_{t\to 0^+} \frac{f(\frac{1}{t})}{g(\frac{1}{t})}$

### 其它的不定式

• 不定乘积: 
$$fg = \frac{f}{\frac{1}{g}} = \frac{g}{\frac{1}{f}}$$
  
• 不定幂:  $f^g = e^{g \ln f}$ 

- 下图截自维基百科

| $0_0$        | $\lim_{x	o c}f(x)=0^+, \lim_{x	o c}g(x)=0$     | $\lim_{x	o c}f(x)^{g(x)}=\exp\lim_{x	o c}rac{g(x)}{1/\ln f(x)}$ | $\lim_{x	o c}f(x)^{g(x)}=\exp\lim_{x	o c}rac{\ln f(x)}{1/g(x)}$ |
|--------------|------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| $1^{\infty}$ | $\lim_{x	o c}f(x)=1,\ \lim_{x	o c}g(x)=\infty$ | $\lim_{x	o c}f(x)^{g(x)}=\exp\lim_{x	o c}rac{\ln f(x)}{1/g(x)}$ | $\lim_{x	o c}f(x)^{g(x)}=\exp\lim_{x	o c}rac{g(x)}{1/\ln f(x)}$ |
| $\infty^0$   | $\lim_{x	o c}f(x)=\infty,\lim_{x	o c}g(x)=0$   | $\lim_{x	o c}f(x)^{g(x)}=\exp\lim_{x	o c}rac{g(x)}{1/\ln f(x)}$ | $\lim_{x	o c}f(x)^{g(x)}=\exp\lim_{x	o c}rac{\ln f(x)}{1/g(x)}$ |

### 练习题

$$1. \lim_{x \to 0} \frac{\tan x - x}{x^3}$$

$$2. \quad \lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos x}$$

3. 
$$\lim_{x\to 0^+} (1+\sin 4x)^{\cot x}$$

$$4. \quad \lim_{x \to 0^+} x^x$$

### 练习题

5. 如果 
$$a, b, c, d$$
 为常数且  $\lim_{x \to 0} \frac{ax^2 + \sin bx + \sin cx + \sin dx}{3x^2 + 5x^4 + 7x^6} = 8$ ,求 $a + b + c + d$ 

6. 
$$a$$
取何值时下式成立:  $\lim_{x \to \infty} \left(\frac{x+a}{x-a}\right)^x = e$ 

7. 如图

Let  $f(x) = a_1 \sin x + a_2 \sin 2x + \cdots + a_n \sin nx$ , where  $a_1, a_2, \ldots, a_n$  are real numbers and n is a positive integer. If it is given that  $|f(x)| \le |\sin x|$  for all x, show that

$$|a_1+2a_2+\cdots+na_n|\leq 1$$

### 练习题

An arc PQ of a circle subtends a central angle  $\theta$  as in the figure. Let A( $\theta$ ) be the area between the chord PQ and the arc PQ. Let B( $\theta$ ) be the area between the tangent lines PR, QR, and the arc. Find



# 参考答案

- 1.  $\frac{1}{3}$  (P304)
- *2.* 0
- 3.  $e^4$
- *4.* 1
- 5. 杰哥说是a = 24, b + c + d = 0 具体见下一页 <del>(两个观察:</del>
  - 1. 如果 $a_1 \neq 0$ ,  $a_2 \neq 0$ ,  $\cdots a_n \neq 0$ , 那么 $\sin a_1 x + \sin a_2 x + \cdots \sin a_n x$ 与 $(a_1 + a_2 + \cdots + a_n)x$ 是等价无穷小量

- 2. 如果 $\sin bx + \sin cx + \sin dx$  被替换成 了(b+c+d)x且 $b+c+d\neq 0$ ,那么 极限不存在; 对于b,c,d中有= 0的数 的情况也是同理
- 6. 杰哥说是 $\frac{1}{2}$  (取对数之后是 $0 \cdot \infty$ 型,可以用洛必达)
- 7. 考虑 $\lim_{x\to 0} \left| \frac{f(x)}{x} \right|$

# 参考答案





## 参考答案

8. 
$$A(\theta) = \frac{r^2}{2}\theta - \frac{r^2}{2}\sin\theta$$
,
$$B(\theta) = r^2 \tan\frac{\theta}{2} - \frac{r^2}{2}\theta$$
原式=  $\lim_{\theta \to 0^+} \frac{\theta - \sin\theta}{2\tan\frac{\theta}{2} - \theta} = \lim_{\theta \to 0^+} \frac{\theta - 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\tan\frac{\theta}{2} - \theta}$ 

$$\lim_{x \to 0} \frac{x - 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\tan\frac{x}{2} - x}$$

$$= \lim_{x \to 0} \cos\frac{x}{2} \cdot \lim_{x \to 0} \frac{x - 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin\frac{x}{2} - x\cos\frac{x}{2}}$$

$$= \lim_{x \to 0} \frac{1 - \cos^2\frac{x}{2} + \sin^2\frac{x}{2}}{\cos\frac{x}{2} - \cos\frac{x}{2} + \frac{x}{2}\sin\frac{x}{2}} \quad (直接用洛必达法则)$$

$$= 2\lim_{x \to 0} \frac{1 - \cos^2\frac{x}{2} + \sin^2\frac{x}{2}}{x\sin\frac{x}{2}}$$

$$= 2\lim_{x \to 0} \frac{2\sin^2\frac{x}{2}}{x\sin\frac{x}{2}}$$

$$= 2\lim_{x \to 0} \frac{2\sin^2\frac{x}{2}}{x\sin\frac{x}{2}}$$

$$= 2$$

## 杂题

都是原题

0

- x是一个在[0,1]中随机的变量,x取值为某个 $c \in [0,1]$ 的概率正比于 $c^2$
- 求E(x)

0

- 设 $f(c) = P(x \le c)$
- 那么 $f(c) = \frac{\int_0^c t^2 dt}{\int_0^1 t^2 dt}$  (可以考虑用几何概型去理解)
- 求出 $\int_0^1 f(x) dx$ 就是答案

1

- 第i个人的分数是[ $l_i$ , $r_i$ ]中的随机实数
- 问每个人排在某一名的概率
- 数据范围是O(poly(n))可以过

- 如果取模的话,可以用微积分算
- 设 $f_i(x)$ 为恰好有i个人的分数小于等于x的概率,显然是个分段函数并且每段都是多项式
- 对 $f_i(x)$ 积分就能得到答案
- 可惜这样在不取模的时候会炸精度
- 标算是计算每个人最终在某个区间且这个区间内总共有k个人的概率,此时对于任意一个 $j \in [1,k]$ ,这个人排名为j的概率是 $\frac{1}{k}$
- 这样可以避开对次数很大的多项式积分

- source: CF1153F
- 有一个长度为l的线段
- 每次操作会随机选择两个端点(在[0,l]中独立随机两个实数), 然后覆盖一次这两个端点之间的线段
- 求操作n次后被覆盖了至少k次的部分的期望长度
- $1 \le k \le n \le 2000, 1 \le l \le 10^9$
- 答案对998244353取模

- 首先这个*l*显然是来逗你玩的,算出线段长度为1的答案然后乘上*l* 即可
- 一个坐标为x的点被覆盖了正好m次的概率是(考虑几何概型) $f(x) = \binom{n}{m} (2x(1-x))^m (1-2x(x-1))^{n-m}$
- 那么答案就是

$$\int_{0}^{1} \sum_{m>k} {n \choose m} (2x(1-x))^{m} (1-2x(x-1))^{n-m} dx$$

- 实际上有个简单好写(难理解)得多的方法
- 在l = 1的时候,被覆盖了大于等于k次的区间长度等价于随机选择一个点,这个点被覆盖了大于等于k次的概率
- 这样就转化成了要独立随机选择2n + 1个点,被覆盖的次数显然只与这2n + 1个点的排列方式有关,显然每种可能的排列方式出现的概率是一样的
- 这样就转化成了离散的问题
- dp即可
- 我的代码

• source: CF566C

给一棵树,树上点有点权 $w_u$ ,边有边权。定义dis(u,v)为 $u\to v$ 的路径上所有边的边权的和。定义 $f(u,v)=dis^{\frac{3}{2}}(u,v)$ ,定义 $g(u)=\sum_{v\in[1,n]}w_vf(u,v)$ 。你需要求出g(u)最小值,以及达到这个最小值的点。 $n\leq 2\times 10^5, 0\leq w_u\leq 10^8, 1\leq l_i\leq 10^3$ 

- 首先把距离的定义扩展到边上的任意一个点
- 当u固定、v在某一条路径上移动的时候,f(u,v)显然是个严格下凸的函数
- 凸函数带正权值求和之后仍然是凸函数,所以g(u)(在任意一条路径上移动的时候)是严格下凸的
- 所以可以直接爬山,实现的方式是点分,每次看往某个子树里面 走会不会变优秀
- 显然最多只会有一个子树满足走进去之后会严格更优秀,否则就 违背了严格下凸的性质(不能有多个局部最小值)

- 判断往某个子树内走是否会变优秀可以用导数
- 顺便提一句,这题边分不得,因为在加虚边的时候会破坏严格凸性
- 我的代码