

양주시 어린이 교통사고 감소를 위한 안전 사고 취약지 및 교통 안전 강화 방안 도출

목차

1

서론

분석 배경

분석 목적 및 방향

2

본론

분석 프로세스

분석 데이터 및 정제 방안

분석 내용

3

결론

분석 결과

기대 효과

01. 서론 분석 배경 / 분석 목적 및 방향

어린이 교통사고 현황

<2020년, 민식이법 시행>

2019년 김민식 군 사망 이후 민식이법 시행 및 교통사고 강화대책 발표 <양주시 교통사고 현황>

<경기 지역과 양주시 교통사고 비교 >

2019-2020년 교통사고 건수 감소 정체

어린이 인구 비율이 비슷한 군집끼리 비교시 교통사고가 다소 많음

01. 서론 분석 배경 / 분석 목적 및 방향

분석 모델의 필요성

■ 어린이 보후구역 외 교통사고 건수

●: 교통사고 발생지 ●: 안전시설물 설치지

앙주시 설치한(설치예정) **안전시설물** 대부분은 **어린이 보호구역** 내에 우선순위로 설치되어 있음 어린이 보호구역 이외에도 교통 취약지 선정 후 안전시설물 설치 필요

분석 프로세스

어린이 교통안전 취약지역 분석 모델

데이터 수집

지자체 데이터 공공데이터

공간 데이터 분석

격자 데이터에 독립변수 데이터 매핑

머신러닝 회귀 모델

최적 회귀 모델 선택 후 취약지수 산출

공간 데이터 분석

취약지수 시각화 현재/잠재적 위험지대 추정

변환

R Studio

분석 데이터

공공 데이터

수집 데이터#	데이터 설명#	수집유형₽	데이터 #	데이터 #	
			수집 기관	기준일#	
경기 양주 5개년↔	사고일시, 위치, 사고	CSV↩	TAAS∈	2016~2020↩	
어린이 교통사고	유형, 🗸				
	가피해자 연령대 등↩				
<u>시</u> 군굿 어린이↩	<u>시군구별</u> 어린이←	CSV↩	TAAS←	2016~2020↩	
교통사고↩	사망자수, 부상자수↩				
교통량 데이터↩	5분단위 속도정보↩	SHP↩	국가교통정보센터↩	2021.7~2021.9	
초등학교 학구도	초등학교 통학구역4	SHP↩	교육부선	2020.5↩	
초등학교↩	이름, 설립연도, 주소	CSVċ	경기 데이터 드림↩	2020.4↩	
	등신				
어린이 보호구역	시설종류, 관할지역,↩	CSV↩	공공 데이터 포털↩	2021.8↩	
	CCTV <u>유</u> 뮸, 주소 등↩				
도로구간↩	도로명주소 도로구간	SHP↩	행정안전부↩	2021.8↩	
실폭도로↩	실폭 반영 도로 ↩	SHP↩	행정안전부↩	2021.8↩	
어린이↩	이름, 위치. 설립연도	CSVċ	공공 데이터 포털씓	2021.5↩	
공공 놀이터↩					
학원 ←	위치, 설립연도↩	CSV↩	경기도 교육청↩	2021.4↩	
교습소	위치, 설립연도↩	CSV↩	경기도 교육청↩	2021.4↩	
경기도 ↩	행정동별 인구수↩	CSV↩	행정안전부↩	2021.8↩	
인구데이터↩					

지자체 데이터

수집 데이터	데이터 설명#	수집유형₽	보유기관●	4
행정구역↩	행정구역 표시↩	SHP, CSV←	4	4
과속방지턱↩	과속방지턱 위치↩	SHP, CSV←	4	4
교통표지판↩	교통표지판 위치↩	SHP, CSV←	4	4
미끄럼방지턱↩	<u>미끄럼방지턱</u> 위치↩	SHP, CSV∈	4	4
신호등↩	신호등 위치←	SHP, CSV←	4	4
육교	육교 위치4	SHP, CSV←	4	4
자전거도로↩	자전거도로 위치↩	SHP, CSV←	양주시청↩	4
자전거보관소↩	자전거보관소 위치↩	SHP, CSV←	↔	4
횡단보도↩	횡단보도 위치↩	SHP, CSV←	÷	4
횡단보도 보안등↩	횡단보도 보안등 위치↩	SHP, CSV←	4	4
주정차 표지판↩	주정차 표지판 위치↩	SHP, CSV∈	4	4
주정차 금지구역↩	주정차 금지구역 위치↩	SHP, CSV←	4	4
<u>주정차</u> CCTV [←]	<u>주정차</u> CCTV 위치↔	SHP, CSV←	€	4
경기 양주 CCTV∈	경기 양주 CCTV 위치↩	CSV↩	←1	4

분석 데이터 및 정제 방안

포인트 데이터

지자체 데이터

과속방지턱, 신호등 자전거 보관소, 육교, 횡단보도, 횡단보도 보안등, 주정차 표지판 및 cctv, 전체 cctv

공공 데이터

무인 교통 단속 cctv 학원 및 교습소 어린이 보호지정시설 용도별 건축물

라인 데이터

지자체 데이터

자전거도로, 주정차 금지구역

초등학교 통학로 데이터

지자체 데이터

인구정보 데이터

공공 데이터

초등학교 및 어린이집 초등학교 학구도

QGIS 3.16

Buffer Selectionbylocation routesforschool

정제 데이터

스쿨존 어린이 보호구역 통학생

도로 데이터

공공 데이터

도로 네트워크 데이터

QGIS 3.16

Interaction joinbylocationsummary

정제 데이터

도로폭, 도로길이 도로개수, 교차로

교통사고 데이터

공공 데이터

교통사고 데이터

데이터 - 필터

정제 데이터

교통사고 데이터

분석 내용 – 머신러닝 회귀분석

종속변수 독립변수 선정

종속변수: 어린이 교통사고

독립변수: 종속변수에게 유의한 영향을

미치는 변수 선정

머신러닝 회귀 모델 8가지 분석

Linear lasso, ridge, elastic net,
Stepwise linear, random forest,
xgboost, logistic

최적의 모델 선정

모델 선택 기준(mse, rmse, map, mape, r^2, aic, bic, roc_curve, accuracy, sensitivity 비교)

변수별 중요도 파악

선정된 모델들의 **변수들의 중요도**를 파악해 격자데이터 결합 후 **위험지수** 구함

현재 안전 취약지 선정

머신러닝 모델 유형별, 차량사고 유형별, 어린이 보호구역 내외별, 스쿨존 상위지역을 도출하여 현재 교통 안전 취약지 선정

잠재적 안전 취약지 선정

머시러닝 모델 중 겹치는 유의한 변수를 선정하여 비지도 학습을 통해 교통사고가 일어날 지역 예측

분석 내용 – 머신러닝 회귀분석

1. 종속변수 독립변수 선정

종속변수: 어린이 교통사고 건수

독립변수: 종속변수의 유의한 영향을 미칠 것 같은 56개 변수

2. 머신러닝 회귀 모델(8가지) 분석

모델 종류

Lasso
Ridge
Elastic net
Liner svr
Stepwiseline
Random Forest
Xgboost
logistic regression

선택 기준

Mse Rmse Map Mape R^2, adj R^2 Aic, Bic ROC_CURVE

종속변수(교통사고 건수) 표시

실측도로 기준으로 격자생성

격자 위 독립변수 표시

분석 내용 – 머신러닝 회귀분석

3. 최적의 모형 선택

Accuracy	Sensitivity	Specificity	Roc_curve_auc
0.883	0.75	0.8838	0.9011

Accuracy Sensitivity		Specificity	Roc_curve_auc	
0.8903	0.7083	0.8912	0.9012	

MSE	RMSE	MAE	R2	Adj R2
0.0077	0.0086	0.0925	0.551	0.549

			Xgbo	ost		
True positive rate	00 02 04 06 0.8 10	0.2	0.4 False pos	0.6	0.8	1.0

Accuracy	Sensitivity	Specificity	Roc_curve_auc
0.897	0.75	0.8976	0.925

MSE	RMSE	MAE	R2	Adj R2
0.0084	0.0917	0.0135	0.971	0.9709

분석 내용 – 머신러닝 회귀분석

4. 변수별 중요도 파악

각각의 모델에서 유의한 변수 뽑은 후 회귀계수 정리

5. 현재 교통 안전 취약지 선정

유의한 변수의 회귀계수를 가중치로 두어 격자별 취약지수 값 선정 취약지수가 높은 지역은 빨간색으로 표시

각 모델의 선택된 위험지역 중 겹치는 지역을 최종 현재 교통 안전 취약지로 선정

분석 내용 – 머신러닝 회귀분석

6. 잠재적 교통 안전 취약지 선정

<유의 변수 도출>

Nama	서면
Name	설명
academy2	경기도 양주 학원
across	경기도 양주 횡단보도
intersection	경기도 양주 교차로
Side_academy2_sum	인접격자 경기도 양주 학원
Side_across_sum	인접격자 경기도 양주 횡단보도
Side_carboad_sum	인접격자 경기도 양주 주정차 표지판 지역
Side_ intersection_sum	인접격자 경기도 양주 교차로
Side_ parkno _sum	인접격자 경기도 양주 주정차 금지구역
Side_schozone_sum	인접격자 경기도 양주 스쿨존

각 모델의 유의한 변수중 중복 변수를 필터링하여 최종 유의 변수로 도출함

<클러스터링>

Optimal number of clusters

개수 : id	열 레이블 🕝				
행 레이블 🔽	0	1	2	3	4
1	17095	60	11		1
2	34				
3	49	4	3	1	
4	1				
5	14				

알맞은 군집개수 선정 후 클러스터링을 통해 유사 지역 분류

<잠재적 위험지대 확인>

기존 어린이 사고가 일어난 지역을 제외하고 사고가 일어날 지역 선정

분석 결과 – 현재 교통 안전 취약지 : 가래비 3길

최근 5년간 교통사고 발생 건수: 2건

현재 도로 상황: 교통 통행량이 많지만 횡단보도만 존재.

사각지대로 보행자 및 자전거 탑승 어린이가 차와 충돌하여 사고난 지역

추가(재설치) 안전 시설물: 교통 단속 신호기, 횡단보도 신호등

분석 결과 – 현재 교통 안전 취약지 : 가래비 19길

최근 5년간 교통사고 발생 건수: 2건

현재 도로 상황: 인근 주택가로 교통 통행량 많지만 횡단보도만 존재,

과속방지턱 턱이 낮음, 신호표지판이 사거리에 설치되어 효과가 미미함

추가(재설치) 안전 시설물: 교통 단속 신호기, 횡단보도신호등, 양방향 과속방지턱 사거리 전 신호표지판(천천히) 재설치

분석 결과 – 현재 교통 안전 취약지 : 개나리 11길

최근 5년간 교통사고 발생 건수: 2건

현재 도로 상황: 남면초 인근으로 스쿨존 앞이 아니라 사고 발생 전후 로드뷰 비교했을 때 추가 안전시설물 설치 안함. 주정자 금지구역이나 불법 주정차 다소 많음 인근 주택가로 교통량은 많지만 <mark>횡단보도만 존재</mark>.

추가(재설치) 안전 시설물: 주정차 금지 표지판, 횡단보도 신호등, 교통 신호 제어기

분석 결과 – 현재 교통 안전 취약지 : 고읍남로 7길

최근 5년간 교통사고 발생 건수: 1건 + 인근 4건 (교통사고 다발 지역)

현재 도로 상황: 만송초 인근 지역이나 300M 반경에 속하지 못해 안전 시설물

미설치 지역. 주변 상업용 건물이 많아 아이들의 통행량 많음.

추가(재설치) 안전 시설물:교통사고 다발지 표지판, 삼각표지판(천천히)

분석 결과 – 현재 교통 안전 취약지 : 복지사거리

최근 5년간 교통사고 발생 건수 :4건 + 인근 3건 (교통사고 다발 지역)

현재 도로 상황: 2019년 도로 차선 확장 공사 진행 후 노란 바닥 횡단보도 없어짐.

차선이 많고 노상 및 상가 주차장이 많음. 신지초 근처에는 안전시설물이

설치되었으나 노면 어린이 보호구역 표시 지워짐.

추가(재설치) 안전 시설물:교통사고 다발지 표지판, 삼각표지판(천천히), 옐로카펫 교차로 전면 노란 바닥 횡단보도.

분석 결과 – 현재 교통 안전 취약지 : 삼숭로 38번길(양주자이 3단지 인근)

최근 5년간 교통사고 발생 건수 :4건 + 인근 3건 (교통사고 다발 지역)

현재 도로 상황: 2019년 도로 차선 확장 공사 진행 후 노란 바닥 횡단보도 없어짐.

차선이 많고 노상 및 상가 주차장이 많음. 신지초 근처에는 안전시설물이

설치되었으나 노면 어린이 보호구역 표시 지워짐.

추가(재설치) 안전 시설물:교통사고 다발지 표지판, 삼각표지판(천천히), 옐로카펫 교차로 전면 노란 바닥 횡단보도.

분석 결과 – 잠재적 교통 안전 위험 지역

개나리 6길

개나리 11길(사고지역) 근처로 사거리 밀집 구간. 사각지대여서 위험도가 높고 헌재 안전표지판 및신호등 미설치 구간

고암길 73(회천초 뒷 상가 골목)

회천초 근처 교통사고 다발지 근처로 주거용&상업용 건물 밀집 운전자나 보행자 시각이 사각지대에 막히고 cctv 미설치 구간 존재

옥정도로 7나길

옥정동 상업용 단지가 모여 있으며 도로 길이 좁고 교차로 구간이 많음. 교통량 및 아이들의 통행량이 많으나 횡단보도 신호등, 팬스 미설치 구간이 많음

분석 결과 – 스쿨존 위험지역

머신러닝 세 모델 모두 위험지역이라 선정한 곳과 안전 시설물 미설치 학교를 중심으로 선정하였다.

교통 안전 취약지수 상위 초등학교

스쿨존 내 어린이 교통사고 건수

교통 안전 취약지수 상위 초등학교

활용 방안

어린이 교통사고 발생지 특성 파악 가능

(학원가, 신호등 없는 횡단보도, 교차로, 주정차 표지판이나 CCTV 없는 주정차 금지구역 인근 학원가, 인근 스쿨존)

QGIS를 이용한 공간 시각화 결과물을 협업 부서가 활용 가능

스쿨존 위험지역 파악 가능

안전 취약지수를 통해 취약지수가 높은 스쿨존을 파악하여 안전시설물 재설치할 스쿨존 선정 가능 예산 효율성 늘 것으로 예상

현재/잠재적 교통 안전지 파악 가능

빅데이터를 근거로 한 교통 안전 취약지를 파악하여 안전 시설물 우선 설치지 및 재설치지 지역 선정 근거로 활용

취약지역 규제 단속 및 강화

안전 취약지수를 통해 취약지수가 높은 지역은 교통 안전 규제를 높여 운전자들이 경각심을 가지게 함.