c) Show that the converse is also true. For any mixed strategy that player 1 might play, there is a realization equivalent behavior strategy.

Suppose that player 1 plays the following mixed strategy σ_1 :

$$s_1^1 = (L, x, x)$$
 with probability $\sigma_1(s_1^1)$
 $s_1^2 = (L, x, y)$ with probability $\sigma_1(s_1^2)$
 $s_1^3 = (L, y, x)$ with probability $\sigma_1(s_1^3)$
 $s_1^4 = (L, y, y)$ with probability $\sigma_1(s_1^4)$
 $s_1^5 = (M, x, x)$ with probability $\sigma_1(s_1^5)$
 $s_1^6 = (M, x, y)$ with probability $\sigma_1(s_1^6)$
 $s_1^7 = (M, y, x)$ with probability $\sigma_1(s_1^7)$
 $s_1^8 = (M, y, y)$ with probability $\sigma_1(s_1^8)$
 $s_1^9 = (R, x, x)$ with probability $\sigma_1(s_1^9)$
 $s_1^{10} = (R, x, y)$ with probability $\sigma_1(s_1^{10})$
 $s_1^{11} = (R, y, x)$ with probability $\sigma_1(s_1^{11})$
 $s_1^{12} = (R, y, y)$ with probability $\sigma_1(s_1^{11})$

with
$$\sum_{k=1}^{12} \sigma_1(s_1^k) = 1$$
 and $\sigma_1(s_1^k) \ge 0$ for all $k \in \{1, \dots, 12\}$.

If player 2 uses the mixed strategy σ_2 , i.e. she plays the pure strategy (ℓ) with probability $\sigma_2(\ell)$ and the pure strategy (r) with probability $\sigma_2(r)$, the probability that we reach each terminal node will be

$$P(T_0) = \sigma_1(s_1^1) + \sigma_1(s_1^2) + \sigma_1(s_1^3) + \sigma_1(s_1^4)$$

$$P(T_1) = \left(\sigma_1(s_1^5) + \sigma_1(s_1^6)\right) \sigma_2(\ell)$$

$$P(T_2) = \left(\sigma_1(s_1^7) + \sigma_1(s_1^8)\right) \sigma_2(\ell)$$

$$P(T_3) = \left(\sigma_1(s_1^5) + \sigma_1(s_1^6)\right) \sigma_2(r)$$

$$P(T_4) = \left(\sigma_1(s_1^7) + \sigma_1(s_1^8)\right) \sigma_2(r)$$

$$P(T_5) = \left(\sigma_1(s_1^9) + \sigma_1(s_1^{11})\right) \sigma_2(\ell)$$

$$P(T_6) = \left(\sigma_1(s_1^{10}) + \sigma_1(s_1^{12})\right) \sigma_2(\ell)$$

$$P(T_7) = \left(\sigma_1(s_1^9) + \sigma_1(s_1^{11})\right) \sigma_2(r)$$

$$P(T_8) = \left(\sigma_1(s_1^{10}) + \sigma_1(s_1^{12})\right) \sigma_2(r).$$

Then the following behavior strategy for player 1 is realization equivalent:

$$\left(p_1 \ \mathbf{L} \ + p_2 \ \mathbf{M} + p_3 \ \mathbf{R} \ , \ q_1 \ \mathbf{x} \ + q_2 \ \mathbf{y} \ , \ r_1 \ \mathbf{x} \ + r_2 \ \mathbf{y} \ \right)$$

with

$$p_{1} = \sigma_{1}(s_{1}^{1}) + \sigma_{1}(s_{1}^{2}) + \sigma_{1}(s_{1}^{3}) + \sigma_{1}(s_{1}^{4})$$

$$p_{2} = \sigma_{1}(s_{1}^{5}) + \sigma_{1}(s_{1}^{6}) + \sigma_{1}(s_{1}^{7}) + \sigma_{1}(s_{1}^{8})$$

$$p_{3} = \sigma_{1}(s_{1}^{9}) + \sigma_{1}(s_{1}^{10}) + \sigma_{1}(s_{1}^{11}) + \sigma_{1}(s_{1}^{12})$$

$$q_{1} = \frac{\sigma_{1}(s_{1}^{5}) + \sigma_{1}(s_{1}^{6})}{\sigma_{1}(s_{1}^{5}) + \sigma_{1}(s_{1}^{6}) + \sigma_{1}(s_{1}^{7}) + \sigma_{1}(s_{1}^{8})}$$

$$q_{2} = \frac{\sigma_{1}(s_{1}^{7}) + \sigma_{1}(s_{1}^{8})}{\sigma_{1}(s_{1}^{5}) + \sigma_{1}(s_{1}^{6}) + \sigma_{1}(s_{1}^{7}) + \sigma_{1}(s_{1}^{8})}$$

$$r_{1} = \frac{\sigma_{1}(s_{1}^{9}) + \sigma_{1}(s_{1}^{11})}{\sigma_{1}(s_{1}^{9}) + \sigma_{1}(s_{1}^{10}) + \sigma_{1}(s_{1}^{11}) + \sigma_{1}(s_{1}^{12})}$$

$$r_{2} = \frac{\sigma_{1}(s_{1}^{9}) + \sigma_{1}(s_{1}^{10}) + \sigma_{1}(s_{1}^{11}) + \sigma_{1}(s_{1}^{12})}{\sigma_{1}(s_{1}^{9}) + \sigma_{1}(s_{1}^{10}) + \sigma_{1}(s_{1}^{11}) + \sigma_{1}(s_{1}^{12})}$$

To verify that this behavior strategy is realization equivalent, one needs to calculate the probability distribution over the terminal nodes given this behavior strategy.

Terminal node T_0 will be reached whenever player 1 chooses action L. The probability that player 1 plays L is $p_1 = \sigma_1(s_1^1) + \sigma_1(s_1^2) + \sigma_1(s_1^3) + \sigma_1(s_1^4)$ according to the behavior strategy. This corresponds to the probability $P(T_0)$ that we calculated for the mixed strategy σ_1 of player 1.

Terminal node T_1 will be reached whenever player 1 chooses action M, player 2 plays ℓ and player 1 chooses x at information set 2. Player 1 chooses M with probability of $p_2 = \sigma_1(s_1^5) + \sigma_1(s_1^6) + \sigma_1(s_1^7) + \sigma_1(s_1^8)$, player 2 plays ℓ with probability of $\sigma_2(\ell)$ and player 1 chooses x at information set 2 with probability q_1 . Hence the probability that these three actions are taken can be calculated by multiplying the three probabilities:

$$p_2\sigma_2(\ell)q_1 = \left(\sigma_1(s_1^5) + \sigma_1(s_1^6) + \sigma_1(s_1^7) + \sigma_1(s_1^8)\right)\sigma_2(\ell) \left(\frac{\sigma_1(s_1^5) + \sigma_1(s_1^6)}{\sigma_1(s_1^5) + \sigma_1(s_1^6) + \sigma_1(s_1^7) + \sigma_1(s_1^8)}\right)$$
$$= \left(\sigma_1(s_1^5) + \sigma_1(s_1^6)\right)\sigma_2(\ell)$$

which corresponds to the probability $P(T_1)$ that we calculated for the mixed strategy σ_1 of player 1.

Repeating this procedure for all terminal nodes yields that this behavior strategy is realization equivalent to the mixed strategy σ_1 .