³He library

vladislav.zavyalov@aalto.fi

November 1, 2015

Usage

This library provides constant and functions for various ³He properties. Supported Languages:

- Fortran-77. You should use he3.fh include file and libhe3 library for fortran programs. All functions and arguments are real*8. Use -fno-range-check compiler flag to allow NaN values.
- Fortran-90. You should include he3.f90h instead.
- C. You should use he3.h include file and libhe3 library in C programs. Lowercase names with underscore should be used (like he3_pf_). Type of arguments is always double*, type of returned value is double.
- Matlab, Octave. mex files are located in the matlab folder. Lowercase names should be used. In function arguments you can mix numbers with arrays or matrices of the same size. Example:

```
ttc=0:0.1:1; p=10;
I = he3_nu_b(p, ttc);
```

To build mex files you must run make octave, make matlab or make matlab64. Fixed rpath is used for the library. For building this documentation octave files are needed.

• Command line. You can use all the functions via a command line interface. To get a list of all functions run the program he3 without arguments:

> he3

To get information about specific function run the program with the function name as an argument:

```
> he3 he3_nu_b
```

You can use matlab-style vectors (value1:step:value2) to get a table of values (if step is missing then 20 points will be printed):

```
> he3 he3_nu_b 0.1:0.1:1 0
```

will give you Leggett frequency vs temperature at zero pressure.

Location

 $GIT:\ https://github.com/slazav/he3lib$

Constants

```
Avogadro constant N_A = 6.02214129 \cdot 10^{23} [1/\text{mol}]
const_na
                Boltsman constant k_B = 1.3806488 \cdot 10^{-16} \text{ [erg/K]}
const\_kb
                R-gas constant R = 8.314472 \cdot 10^7 \text{ [sgs]}
const_r
                Plank constant h = 6.62606957 \cdot 10^{27} \text{ [g cm}^2/\text{s]}
const_h
<code>const_hbar</code> \hbar = h/2\pi = 1.054571726 \cdot 10^{27} \; [g \; cm^2/s]
               Vacuum permeability \mu_0 = 1.2566370614 \, [G^*cm/A]
const_mu0
                \pi = 3.1415926535897932
const_pi
const_2pi
                <sup>3</sup>He atom mass, m_3 = 5.0079 \cdot 10^{-24} [g]
he3\_amass
                <sup>3</sup>He molar mass, \mu_3 = N_A m_3 = 3.0158 [g/mol]
he3\_mmass
                <sup>3</sup>He gyromagnetic ratio \gamma = 20378 [(G s)<sup>-1</sup>],
he3_gyro
```

Phase diagram

Vapor pressure and critical point are from the 1962 3 He scale of temperatures. Melting curve $P_m(T)$ at 0.9-250 mK, $T_c(P)$, $T_{AB}(P)$ and all tricritical points are from Greywall-86 temperature scale. Melting curve minimum is from PLTS-2000 temperature scale. Melting curve for higher temperatures is from Osborne, Abraham, Weinstock-1951 and Mills, Grilly-1955 with interpolation in the regions 0.25-0.5K and 1.5-2.0K. PLTS-2000 melting curve and critical points on it are also available. See more information in the source file he3_phase.f.

he3_pvap(T)	Vapor pressure [bar] vs temperature [K], $T=0.2-3.324~\mathrm{K}$
he3_pcr	Gas-liquid critical point pressure, 1.16317 [bar]
he3_tcr	Gas-liquid critical point temperature, $3.324~[\mathrm{K}]$
he3_pmelt(T)	Melting pressure [bar] vs temperature [K], $T = 0.0009 - 31$ K
he3_pm	Melting curve minimum pressure, 29.3113 [bar]
he3_tm	Melting curve minimum temperature, 0.31524 [K]
he3_pa	Superfluid trans. at melting curve, pressure, 34.3380 [bar]
he3_ta	Superfluid trans. at melting curve, temp., $2.491~[\mathrm{mK}]$
he3_pb	A-B trans. at melting curve, pressure, 34.3580 [bar]
he3_tb	A-B trans. at melting curve, temp., 1.932 $[mK]$
he3_ps	Neel transition at melting curve, pressure, 34.3905 [bar]
he3_ts	Neel transition at melting curve, temp., $0.9291~[\mathrm{mK}]$
he3_tc(P)	Superfluid transition temperature [mK] vs pressure [bar], $P=0-34.358~\mathrm{bar}$
he3_tab(P)	A-B transition temperature [mK] vs pressure [bar], $P=0-34.3609~{\rm bar,~below~21.22~bar~is~equal~to~he3_tc}$
he3_tabn	A-B-Normal point temperature, 2.2311 $[mK]$
he3_pabn	A-B-Normal point pressure, 21.22 [bar]
DI III 0000	1

PLTS-2000 temperature scale:

he3_pmelt_plts(T)	PLTS-2000 melting presure [bar] vs temperature [K].
he3_pa_plts	Superfluid trans. at melting curve, pressure, 34.3407 [bar]
he3_ta_plts	Superfluid trans. at melting curve, temp., $2.444~[\mathrm{mK}]$
he3_pb_plts	A-B trans. at melting curve, pressure, 34.3609 [bar]
he3_tb_plts	A-B trans. at melting curve, temp., 1.896 [mK]
he3_ps_plts	Neel transition at melting curve, pressure, $34.3934~[\mathrm{bar}]$
he3_ts_plts	Neel transition at melting curve, temp., 0.902 [mK]

Fermi-liquid parameters

Argument is pressure, [bar] in the range 0 - 34.4. See more information in the source file he3_fermi.f.

Molar volume and heat capacity in normal ³He:

he3_vm(P) Molar volume
$$v_m$$
, [cm³/mol], Graywall-86 (from Wheatley-75)

he3-gammaf (P) R-gas constant
$$\gamma_f = C_V/RT$$
, [1/(K mol)], Greywall-86

Derived values, F_1^s parameter:

he3_rho(P) Density
$$\rho = \mu_3/v_m, \, [\mathrm{g/cm^3}]$$

he3_2n0(P)
$$2N(0) = \frac{\gamma_f}{v_m} \frac{3N_A}{k_B \pi^2}, [1/(\text{erg cm}^3)]$$

$$\mbox{he3_pf(P)} \qquad p_F = h \left(\frac{3}{8\pi} \; \frac{N_A}{v_m} \right)^{1/3}, \, [\mbox{g cm/s}] \label{eq:pf_P}$$

$$\label{eq:meff(P)} \text{he3_meff(P)} \quad m^\star = \frac{h^3}{8\pi} \; \frac{2N(0)}{p_F}, \, [\text{g}]$$

he3_mm(P)
$$m^{\star}/m_3$$

he3_vf(P)
$$v_F = p_F/m^*$$
, [cm/s]

he3_f1s(P)
$$F_1^s = 3(m^*/m_3 - 1)$$

he3_a(P) Average atomic spacing,
$$a = (v_m/N_A)^{1/3}$$
, Å

he3_gdk(P) Average dipolar coupling enegy,
$$g_d/k_B = \frac{2\pi\gamma^2\hbar^2}{3v_mk_B}$$
, [K]

he3_tfeff(P) Effective Fermi temperature,
$$T_{F_{eff}} = \frac{\pi^2}{2\gamma_f}$$
, [K]

Sound velocity in normal ${}^{3}\mathrm{He}$ and F_{0}^{s} parameter:

he3_c1(P) First sound velocity,
$$c_1$$
, [cm/s], measured, Wheatley-75

he3_f0s(P)
$$F_0^s = 3 \ m^{\star} m_3 \ c_1^2/p_F^2 - 1$$

Magnetic susceptibility in normal ${}^{3}\text{He}$ and F_{0}^{a} parameter:

he3_f0a(P) $F_0^a, Z_0/4$, from magnetic susceptibility measurements, Hensley-1993

$$\label{eq:lambda} \mbox{he3_chi_n(P)} \ \chi_N = \frac{2N(0)(\gamma\hbar)^2}{4(1+F_0^a)}.$$

Other fermi-liquid parameters:

he3_f1a(P) F_1^a , calculated from spin-wave velocities in ${}^3\mathrm{He}\text{-B}$, Zavjalov-2015

he3_f2a(P)
$$F_2^a$$
, currently is 0

he3_f2s(P)
$$F_2^s$$
, currently is 0

Pressure-dependent values:

P, bar	0	3	6	9	12	15	18	21	24	27	30	33
T_c , mK	0.929	1.290	1.560	1.769	1.934	2.067	2.177	2.267	2.339	2.395	2.438	2.474
T_{AB} , mK	_	_	_	_	-	_	_	-	2.217	2.137	2.056	1.969
v_m , cm ³ /mol	36.84	33.95	32.03	30.71	29.71	28.89	28.18	27.55	27.01	26.56	26.17	25.75
c_1 , m/s	182.9	227.4	259.9	285.8	307.9	327.3	344.8	360.6	375.2	389.2	402.9	416.1
γ_f , 1/(K mol)	2.784	2.981	3.158	3.321	3.475	3.625	3.772	3.918	4.065	4.211	4.355	4.496
ρ , g/cm ³	0.082	0.089	0.094	0.098	0.102	0.104	0.107	0.109	0.112	0.114	0.115	0.117
$2N(0), 10^{38}$	1.002	1.164	1.307	1.434	1.551	1.663	1.774	1.885	1.995	2.102	2.207	2.315
$p_F, 10^{-20} \text{ g cm/s}$	8.280	8.509	8.675	8.798	8.896	8.979	9.054	9.122	9.182	9.234	9.280	9.330
$m^{\star}, 10^{-23} \text{ g}$	1.401	1.584	1.744	1.887	2.018	2.144	2.269	2.392	2.515	2.635	2.753	2.872
m^\star/m_3	2.797	3.162	3.482	3.767	4.030	4.282	4.530	4.777	5.022	5.261	5.497	5.735
v_F , m/s	59.11	53.73	49.74	46.64	44.08	41.87	39.91	38.13	36.51	35.05	33.71	32.49
$\chi_N, 10^{-9}$	38.4	48.6	56.9	63.9	70.5	77.0	83.4	89.4	94.7	99.7	104.5	109.5
F_0^s	9.27	15.99	22.52	28.91	35.32	41.81	48.43	55.17	62.10	69.32	76.95	84.82
F_1^s	5.39	6.49	7.45	8.30	9.09	9.85	10.59	11.33	12.07	12.78	13.49	14.21
F_0^a	-0.70	-0.72	-0.73	-0.74	-0.75	-0.75	-0.75	-0.76	-0.76	-0.76	-0.76	-0.76
F_1^a	-0.60	-0.60	-0.61	-0.62	-0.62	-0.63	-0.64	-0.64	-0.65	-0.66	-0.66	-0.67
a, Å	3.940	3.834	3.761	3.708	3.668	3.634	3.604	3.577	3.553	3.533	3.516	3.497
$g_d/k_B,\mu\mathrm{K}$	114.5	124.3	131.7	137.4	142.0	146.0	149.7	153.1	156.2	158.8	161.2	163.9
$T_{F_{eff}}$, K	1.773	1.656	1.563	1.486	1.420	1.361	1.308	1.260	1.214	1.172	1.133	1.098
< W $>$	84.3	107.3	119.8	127.6	134.5	141.3	146.8	150.1	150.8	150.1	149.4	149.0
$<\!W_I\!>$	11.39	14.25	15.45	16.03	16.55	17.11	17.54	17.66	17.46	17.09	16.76	16.48
$\langle W_D \rangle$	24.83	31.59	35.27	37.55	39.54	41.47	43.05	43.96	44.12	43.86	43.63	43.46
$<\!\!W_L\!\!>$	-9.38	-16.79	-20.57	-22.68	-24.53	-26.41	-27.85	-28.34	-27.81	-26.70	-25.66	-24.73
γ_0	0.135	0.133	0.129	0.126	0.123	0.121	0.119	0.118	0.116	0.114	0.112	0.111
δ_0	0.295	0.294	0.294	0.294	0.294	0.294	0.293	0.293	0.293	0.292	0.292	0.292
w_0	1.204	1.206	1.208	1.210	1.212	1.213	1.214	1.214	1.215	1.216	1.217	1.218
λ_1^a	-0.111	-0.157	-0.172	-0.178	-0.182	-0.187	-0.190	-0.189	-0.184	-0.178	-0.172	-0.166
$\tau_N(0,T_c), \mu s$	0.603	0.230	0.133	0.092	0.070	0.056	0.047	0.040	0.036	0.034	0.032	0.030
$\Delta_{WC+}(T=0)/T_c$	1.771	1.795	1.813	1.825	1.834	1.843	1.850	1.856	1.861	1.866	1.870	1.875
$\chi_B(T=0)/\chi_N$	0.376	0.356	0.347	0.341	0.337	0.333	0.329	0.328	0.327	0.328	0.328	0.328
$\nu_B(T=0), kHz$	125.1	161.9	188.1	208.6	226.0	241.6	256.1	269.9	283.3	296.1	308.5	320.6
$c_{\perp}(T=0), cm/s$	2170	1940	1781	1661	1563	1479	1404	1338	1280	1228	1180	1136
$c_{\parallel}(T=0), cm/s$	2484	2220	2039	1901	1789	1692	1607	1531	1464	1404	1349	1299
P, bar	0	3	6	9	12	15	18	21	24	27	30	33

Energy gap

BCS energy gap + trivial strong coupling correction + some values derived from energy gap. See more information in the source file he3_gap.f.

he3_bcsgap(ttc) BCS gap for 3He-B in T_c units, $\Delta_{\rm BCS}/k_BT_c$

Einzel approximation for BCS gap (0.5% accuracy, 70 times faster) he3_bcsgap_fast(ttc)

(Einzel-1991, f.68)

he3_trivgap(ttc, P) Trivial strong-coupling correction to the BCS gap

he3_todogap(ttc, P) Gap based on Todoschenko's measurements: linear interpolation in den-

sity between BCS value at zero bar and measured value 1.99 at melting

pressure + temperature behaviour as in he3_trivgap

he3_gap(ttc, P) Wrapper for the gap used everywhere in the lib (trivgap by default)

he3_yosida(ttc, gap, n)

Yosida functions $Y_n(T/T_c, \Delta) = \int_{-\infty}^{\infty} \left(\frac{\xi_k}{E_k}\right)^n \frac{1}{2T/T_c} \operatorname{ch}^{-2}\left(\frac{E_k}{2T/T_c}\right) d\xi_k$ Low temperature limit: $Y_n(T, \Delta) = 2\Gamma\left(\frac{n+1}{2}\right) \left(\frac{T}{\Delta}\right)^{\frac{n-1}{2}} \exp\left(-\frac{\Delta}{T}\right)$

Note: type of n parameter in fortran should be real*8 (this was done for standard function handling). If n is integer, result is unpredictable!

 $Y_q^{\parallel}(T/T_c,\Delta)$ he3_yosida_par(ttc, gap)

he3_yosida_perp(ttc, gap) $Y_q^\perp(T/T_c,\Delta)$

he3_z3(ttc, gap)

he3_z5(ttc, gap)

he3_z7(ttc, gap)

he3_lambda(ttc, gap)

B-phase normal component density: $\frac{\rho_B^n}{\rho_N} = \frac{(3+F_1^s)Y_0}{3+F_1^sY_0}$ he3_rho_nb(ttc, p)

B-phase susceptibility (ratio of he3_chi_n): $\frac{\chi_B}{\chi_N} = \frac{(1+F_0^a)(2+Y_0)}{3+F_0^a(2+Y_0)}$ he3_chi_b(ttc, p)

B-phase Cooper pair susceptibility (ratio of he3_chi_b): $\frac{\chi_B^p}{\chi_B} = \frac{2(1-Y_2)}{(2+Y_0)}$ he3_chi_bp(ttc, P)

Dipole energy and Legget frequency

Values are given according to Thuneberg's paper JLTP 122, p657 (2001). Temperature independent g_d parameter is restored from experimental data for Ω_B , measured in transverse and longitudinal NMR. See more information in the source file he3_dipole.f.

Dipolar energy:

$$F_D = \lambda_D \int (R_{ii}R_{jj} + R_{ij}R_{ji}) d^3r = 4\lambda_D \int \cos\theta (1 + 2\cos\theta) d^3r$$
$$\lambda_D = \Delta^2 g_d, \qquad \Omega_B = \gamma \sqrt{15\lambda_D/\chi_B}$$

Note: In old papers (Leggett, ...) $g_D/5$ is used instead of λ_G .

he3_gd(p)
$$g_d$$
, $[1/(\text{erg cm}^3)]$

he3_ld(p)
$$\lambda_D = \Delta^2 g_d$$
, [erg/cm³]

he3_nu_b(ttc, p) B-phase Leggett frequency
$$\nu_B = \frac{\gamma}{2\pi} \sqrt{15\Delta^2 g_d/\chi_B}$$
, Hz

he3_nu_b1(ttc, p) Less accurate formula without using
$$g_d$$
, Hz
$$\nu_B = \frac{1}{2\pi} \sqrt{\frac{3\pi}{2\chi}} \; \frac{\gamma^2 \hbar}{2} \; N(0) \; \Delta \log \frac{e_f}{\Delta}$$

Gradient energy and spin wave velocity

Gradient energy coefficients and derived values, including spin wave velocities. See more information in the source file he3_grad.f.

$$F_{\nabla} = \frac{1}{2} \Delta^{2} \left[K_{1}(\nabla_{j} R_{ak})(\nabla_{j} R_{ak}) + K_{2}(\nabla_{j} R_{ak})(\nabla_{k} R_{aj}) + K_{3}(\nabla_{j} R_{aj})(\nabla_{k} R_{ak}) \right]$$

 $K_1 = K_2 = K_3$ without fermi-liquid corrections, see VW7.23m he3_grad_K0(ttc, p)

he3_grad_c(ttc, p) c and δ parameters calculated with fermi-liquid corrections (Cross-1975), he3_grad_delta(ttc, p) see VW7.25. These values are used to calculate all other things:

see VW 7.25. These values are used to calculate all other things:
$$c = -\frac{\rho_s}{10} \frac{3 + F_1^a}{3 + F_1^s} \frac{1}{1 + F_1^a (5 - 3\rho_s/\rho)/15}, \qquad \delta = \frac{F_1^a \rho_s/\rho}{3 + F_1^s (1 - \rho_s/\rho)}$$

$$\label{eq:K12(ttc,p)} \begin{array}{ll} \text{he3_grad_K12(ttc,p)} & K_1=K_2=-\frac{2}{\Delta^2}\left(\frac{\hbar}{2m}\right)^2c, \qquad K_3=-\frac{2}{\Delta^2}\left(\frac{\hbar}{2m}\right)^2(1+\delta)c \\ \text{he3_grad_K3(ttc,p)} & \\ \end{array}$$

he3_grad_K(ttc, p)
$$K=2K_1+K_2+K_3, \qquad K'=K_2+K_3 \label{eq:K}$$
 he3_grad_Kp(ttc, p)

he3_grad_lg1(ttc, p) Thunebergs
$$\lambda_{G1}$$
, λ_{G2} and λ_{SG}^b :

he3_grad_lg1(ttc, p) Thunebergs
$$\lambda_{G1}$$
, λ_{G2} and λ_{SG}^b :
he3_grad_lg2(ttc, p)
he3_grad_lsgb(ttc, p)
$$\lambda_{G1} = \frac{1}{2}\Delta^2(K_2 + K_3), \qquad \lambda_{G2} = \frac{1}{2}\Delta^2K_1, \qquad \lambda_{SG}^b = \Delta^2K_2$$

he3_cpar(ttc, p) velocity of transverse spin waves parallel and perpendicular to the
$$l$$
 direction [cm/s]:

$$c_{\parallel}^{2} = \frac{\gamma^{2} \Delta^{2}}{\chi_{B}} K, \qquad c_{\perp}^{2} = \frac{\gamma^{2} \Delta^{2}}{\chi_{B}} (K - K'/2), \qquad c_{\parallel}^{2} / c_{\perp}^{2} \approx 4/3$$

he3_clpar(ttc, p) same for longitudinal waves [cm/s]:
$$C_{\parallel}^2 = \frac{\gamma^2 \Delta^2}{\chi_B} (K - K'), \qquad C_{\perp}^2 = \frac{\gamma^2 \Delta^2}{\chi_B} K, \qquad C_{\parallel}^2 / C_{\perp}^2 \approx 1/2$$

Other textural parameters

Values are given according to Thuneberg's paper JLTP 122, p657 (2001). High order Fermi liquid parameters (F_2^a, F_3^a) are set to 0. See more information in the source file he3_text.f.

Bulk terms:

$$F_{DH} = -a \int_{V} (\mathbf{n} \cdot \mathbf{H})^{2} d^{3}r$$

$$F_{DV} = -\lambda_{DV} \int_{V} [\mathbf{n} \cdot (\mathbf{v_{s}} - \mathbf{v_{n}})]^{2} d^{3}r \ll F_{HV} \text{ at } H \approx 200 \text{ Oe}$$

$$F_{HV} = -\lambda_{HV} \int_{V} [\mathbf{H} \cdot R \cdot (\mathbf{v_{s}} - \mathbf{v_{n}})]^{2} d^{3}r$$

Surface terms:

$$F_{SH} = -d \int_{S} [\mathbf{H} \cdot R \cdot \mathbf{s}]^{2} d^{2}r$$

$$F_{SG} = -\lambda_{SG} \int_{S} s_{j} R_{\alpha j} \frac{\partial R_{\alpha i}}{\partial r_{i}} d^{2}r$$

Vortex term:

$$F_{LH} = \frac{\lambda_{LH}}{2\Omega} \int_{L} |\omega_s| [\mathbf{H} \cdot R \cdot \mathbf{l}]^2 d^3r$$

$$a = \frac{5g_d}{2} \left[\frac{\hbar \gamma/2}{1 + F_0^a (2 + Y_0)/3} \right]^2 \left(5 - 3 \frac{Z_3}{Z_5} \right), \, [\text{erg/cm}^3 \, \text{G}^{-2}]$$

$$\text{he3_text_d(ttc, p)} \qquad d, \, [\text{erg/(cm}^2 \, \text{G}^2)] - \text{GL extrapolation!}$$

$$\text{he3_text_ldv(ttc, p)} \qquad \lambda_{DV} = 5g_d \left(\frac{m^* v_F}{1 + F_1^s Y_0/3} \right)^2 \left(1 - \frac{3Z_5}{2Z_3} \right), \, [\text{erg/cm}^3 \, (\text{cm/s})^{-2}]$$

$$\text{he3_text_lhv(ttc, p)} \qquad \lambda_{HV} = \frac{\rho}{\Delta^2} \frac{1 + F_1^s/3}{(1 + F_1^s Y_0/3)^2} \left(\frac{\hbar \gamma/2}{1 + F_0^a (2 + Y_0)/3)} \right)^2 \left(Z_3 - \frac{9}{10} Z_5 + \frac{9}{10} \, \frac{Z_5^2}{Z_3} - \frac{3}{2} Z_7 \right)$$

$$\text{he3_text_lhv(ttc, p, omega)} \qquad \lambda_{LH} = \frac{\hbar}{2m} \Omega \lambda_{HV} \left(\ln \frac{R}{r} - \frac{3}{4} \right), \, [\text{erg/(cm}^3 \, \text{G}^2 \, \text{s})] - \text{counterflow part only!}$$

he3_text_lo(ttc, p, omega) lambda/omega used in the texture library: $\frac{\lambda}{\Omega} = \frac{5\lambda_{LH}}{2a\Omega}$, $(rad/s)^{-1}$

he3_text_xih(ttc, p, h) Magnetic length $\xi_H = \sqrt{65\lambda_{G2}/(8aH^2)}$

he3_text_xid(ttc, p) Dipolar length (according to Hakonen-1989) $\xi_D = \sqrt{13\lambda_{G2}/12\lambda_D}$. Note: in Thuneberg's paper $\xi_D = \sqrt{\lambda_{G2}/\lambda_D}$ is used.

he3_text_vd(ttc, p) Dipolar velocity (according to Thuneberg-2001) $v_D = \sqrt{2a/5\lambda_{HV}}$

Transport properties in the normal phase

See more information in the source file he3_transp_n.f.

Crossections and scattering factors:

he3_scatt_w(P) Scattering crossection < W > (Einzel-1978, f.82)

 $< W_I >$ (Einzel-1978, f.82) he3_scatt_wi(P)

 $< W_D >$ (Einzel-1978, f.82) he3_scatt_wd(P)

he3_scatt_w1(P) $< W_L > (Einzel-1978, f.71)$

he3_scatt_g0(P) Scattering factor $\gamma_0 = \langle W_I \rangle / \langle W \rangle$ (Einzel-1978, f.66)

Scattering factor $\delta_0 = \langle W_D \rangle / \langle W \rangle$ (Einzel-1978, f.67) he3_scatt_d0(P)

he3_scatt_w0(P) $w_0 = 1 - 3/2\gamma_0 + \delta_0$ (Einzel-1978, f.79)

he3_scatt_l1a(P) Scattering factor λ_1^a used in spin diffusion transport time. Can be neglected.

(Einzel-1978, f.74, p.350).

Normal state quasiparticle lifetime at the Fermi level, s. he3_tau_n0(ttc,p)

 $\tau_N(0,T) = \tau_N(0,T_c) \left(\frac{T_c}{T}\right)^2 = \frac{32E_F\hbar}{\langle W \rangle (\pi k_B T)^2}$ (Fingel 1991, 1992)

(Einzel-1991, p.325)

he3_tau_n_av(ttc,p) Thermal average of normal state quasiparticle lifetime, s.

 $\bar{\tau}_N = \left\langle \frac{\tau_N(0, T)}{1 + (\xi_k / \pi T)^2} \right\rangle = \frac{3}{4} \tau_N(0, T)$ (Einzel-1991, f.4-5)

Spin diffusion transport time for a normal Fermi-liquid, s he3_tau_nd(ttc,p)

 $\tau_{ND} = \tau_1 = \bar{\tau}_N / (1 - \lambda_1^a)$ (Einzel-1991, p.328)

Hydrodynamic spin diffusion in normal liquid, D_0 , cm²/s he3_diffn_hydr(ttc, p)

(Einzel JLTP84 (1991) f.23)

he3_diffn_perp(ttc, p, nu0) Perpendicular component of spin diffusion, reduced because of the

Leggett-Rice effect, D_N^{\perp} , cm²/s (Einzel JLTP84 (1991) f.22)

TODO: Temperature is measured in T_c units which is strange for the normal phase. Maybe it is better to use K of T_F units here.

Transport properties in the B phase

Values for he3_tau0, he3_tau_av, he3_diff_* are extended to $T > T_c$ region using normal phase functions. See more information in the source file he3_transp_b.f and in doc_tech/spin_diff.pdf.

Collision integral for Bogoliubov quasiparticles:

```
he3_coll_int(xi, ttc, gap, g0, d0) Full temperature range approximation
(Einzel, Wolfle, Hirschfeld, JLTP80 (1990), p.66)

he3_coll_int_lt(xi, ttc, gap, g0, d0) Collision integral for low temp (good for < 0.7T<sub>c</sub>)
(Einzel, JLTP84 (1991), f.76)

he3_coll_int_ht(xi, ttc, gap, g0, d0) Collision integral for high temp
(Einzel, JLTP84 (1991), f.75)
```

Bogoliubov quasiparticles lifetime and mean free path:

```
Lifetime at the Fermi level, s. 1/\tau(0) = \frac{I(0,T)}{\tau_N(0,T)},
he3_tau0(ttc, p)
                                (Einzel-1991, f.74,76. Einzel-1990 f.A1)
                                1/\tau, T \to 0 limit (does not depend on energy). (Einzel-1978, f.79)
he3_tau0lt(ttc, p)
                               Thermal average lifetime, s. 1/\bar{\tau} = \frac{1}{Y_0} \int_{-\infty}^{\infty} \frac{\phi_k \ d\xi}{\tau}
he3_tau_av(ttc, p)
                                (Einzel-1991, f.77)
he3_fpath(ttc, p)
                               Mean free path, cm
                                (Einzel JLTP32 (1978) f.84)
                               Spin diff. transport time, s. \tau_D^{\perp,\parallel} = \bar{\tau}/(1 - \lambda_1^a Y^{\perp,\parallel})
he3_tau_dperp(ttc, p)
he3_tau_dpar(ttc, p)
                                (Einzel-1991, f.90,96)
   Spin diffusion:
                                              Spin diffusion in hydrodynamic limit (\omega_L \tau \ll 1), D_{zz}^{\perp,\parallel}(\omega_L = 0),
he3_diff_hperp_zz(ttc, p)
he3_diff_hpar_zz(ttc, p)
                                              cm<sup>2</sup>/s. According to Einzel's paper (see f.105) nonhydrodynamic
                                              effects do not affect D^{\parallel}. In Mukharsky paper they do.
                                              (Einzel JLTP84 (1991) f.102)
he3_diff_perp_xx(ttc, p, nu0)
                                              Components of spin diffusion tenzor, cm<sup>2</sup>/s
he3_diff_perp_zz(ttc, p, nu0)
                                              (Bunkov et al, 1990 f.3; Einzel, 1991, f.108;
he3_diff_perp_xx_im(ttc, p, nu0)
                                              Markelov, Mukharsky, 1992, f.7,8)
he3_diff_perp_zz_im(ttc, p, nu0)
he3_diff_par_xx(ttc, p, nu0)
he3_diff_par_zz(ttc, p, nu0)
```

Problem with D^{\parallel} . According to Einzel-1991 (see f.105) nonhydrodynamic effects do not affect D^{\parallel} and you should use he3_diff_hpar_zz for any frequency. In Markelov-Mukharsky paper the result for D^{\parallel} is completely different (it is used in he3_diff_par_xx, _zz). D^{\perp} is the same in all papers. TODO:

Exchange coupling strength is in the $F_1^a=0$ limit. (small difference from normal phase values) How does he3_diff_perp_??_im extends to normal phase?

Other

See more information in the source file he3_other.f.

he3_xigl(ttc, p) Extrapolated GL coherence length, cm

he3_vneq(ttc, p, omega, r) Equilibrium vortex number

Normal liquid beyond zero temperature limit

See more information in the source file he3_normal.f.

he3_cv_n(t, p) Normal phase heat capacity C_v , Greywall-1983

TODO: V_m

ROTA-specific functions and constants

See more information in the source files he3_rota.f and he3_const.f

rota_c_ns(t, i) Nuclear stage heat capacity [J/K] vs T[K] and I[A]

 $C_{ns} = 9.66 \cdot 10^{-5} [J/T^2] (0.113 [T/A] I/T)^2$

rota_fork_cal(w, p, n) Calibration of fork $n, T/T_c$, vs fork width w [Hz] and pressure P [bar]

 $w = a_n \exp\left(-\frac{\Delta_{\text{WC+}}(P, T/T_c)}{T/T_c}\right)$

 $a = \alpha_n \ p_F^4(P)$, where α_n is a geometrical factor

N=1: Fork K, calibration 30.4.2010, 29 bar, a = 11700 N=2: Fork E, calibration 30.4.2010, 29 bar, a = 17543

rota_rcell cell radius

rota_nmra field/current in nmrA solenoid [G/A]
rota_nmrb field/current in nmrB solenoid [G/A]

rota_nmra_q(f0) Q value of the nmrA spectrometer vs frequency rota_nmra_f(n) frequencies of nmrA spectrometer,kHz for n=1..8

rota_hmina_r effective radius of the HminA coil [cm]
rota_hmina_n number of turns of the HminA coil, 4

rota_hmina field/current in the center of HminA coil [G/A]

rota_hmina_mr quadratic radial term of the HminA field, [G/A/cm²]

rota_hmina_i0i effective HminA coil current divided by NMR current

rota_hmina_i0f effective HminA coil current divided by NMR frequency

rota_rrda radiation damping constant R_{RD} for the nmrA spectrometer

rota_Bza(I,Imin,r,z) Bz field profile of A spectrometer

Q-balls in the zero temperature limit

See more information in the source file he3_qball.f

qball_nu_b(P)	Leggett frequency [Hz]
<pre>qball_cpar(P) qball_cper(P)</pre>	Measured $c_{\parallel}, c_{\perp}, [\mathrm{cm/s}]$
qball_lg1(P) qball_lg2(P)	$\lambda_{G1}, \lambda_{G2}$ calculated using measured spin wave velocities.
qball_text_a(P)	measured textural parameter $a~[\mathrm{erg/cm^3~1/G^2}]$
qball_text_d(P)	measured textural parameter d [erg/(cm ² G ²)]
qball_text_lsg(P)	measured textural parameter λ_{SG}
qball_trd(P,f0,fr,fz)	τ_{RD} for the magnon condensate with given radial and axial frequencies (rota-specific) [s]

A model of the zero-temperature, zero-rotation condensate, based on spectra measurements (rota-specific):

 f_r^0 , f_z^0 , Hz a_r^0, a_z^0 , cm 600 0.08 P=0 bar P=0bar P=10 bar P=10 bar P=20 bar P=20 bar 0.07 500 0.06 400 a_z^0 0.05 300 0.04 200 0.03 100 0.02 0.01 500 550 600 650 700 750 800 850 900 500 550 600 650 700 750 800 850 900 f₀, kHz f0, kHz

Math

See more information in the source file he3_math.f

```
\begin{array}{ll} math\_ele(x) & Complete \ elliptic \ integrals \ E(x) \ and \ K(x) \\ math\_elk(y) & \\ loop\_bz(rloop,r,z) & Magnetic \ field \ of \ a \ current \ loop, \ Bz, \ Br \\ loop\_br(rloop,r,z) & \end{array}
```

These function have only fortran interface. Use he3_math.fh include file. Examples are in test_int folder.

```
real*8 math_dint(func, xmin, xmax, nx)
- simple integration of real*8 function (Gauss 2pt)

complex*16 math_cint(func, xmin, xmax, nx)
- integration of complex*16 function

real*8 math_dint2d(func, xmin, xmax, nx, ymin, ymax, ny)
- integration of 2D real*8 function

complex*16 math_cint2d(func, xmin, xmax, nx, ymin, ymax, ny)
- integration of 2D complex*16 function

real*8 math_dint_gk(func, xmin, xmax, nx, aerr)
- integrate real*8 function using Gauss-7pk+Kronrod-13pt

real*8 math_dint_gka(func, xmin, xmax, aerr_lim, rerr_lim)
- adaptive integration

real*8 math_dint2d_gk(func, xmin, xmax, nx, ymin, ymax, ny, aerr)
- integrate 2D real*8 function using Gauss-7pk+Kronrod-13pt
```