Assignment 1: Several variables calculus & differential geometry (MTH305A)

(1) For $x_0 \in \mathbb{R}^n$, define open ball

$$B_r(x_0) = \{ x \in \mathbb{R}^n : |x - x_0| < r \}.$$

A subset $\Omega \subset \mathbb{R}^n$ is called *open* (in \mathbb{R}^n) if for any $x_0 \in \Omega$ there exists r > 0 such that $B_r(x_0) \subset \Omega$. A subset $\Omega \subset \mathbb{R}^n$ is called *closed* (in \mathbb{R}^n) if $\mathbb{R}^n - \Omega$ is open.

- (i) Prove that an open ball is an open set.
- (ii) Which of the following is open or closed?
- (a) $\{(x,y) \in \mathbb{R}^2 | x > y\}$
- (b) $\{(x,y) \in \mathbb{R}^2 | |x| + |y| < 1\}$
- (c) $\{(x,y) \in \mathbb{R}^2 | 3x^2 + 2y^2 = 5\}$
- (d) $\{(x, y, z) \in \mathbb{R}^3 | x > 0, y > 0, z > 0\}$
- (e) $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$
- (2) Let f and g be integrable on [a, b].
 - (a) Prove that

$$\left| \int_{a}^{b} f \cdot g \right| \leq \left(\int_{a}^{b} f^{2} \right)^{\frac{1}{2}} \cdot \left(\int_{a}^{b} g^{2} \right)^{\frac{1}{2}}.$$

- (b) If equality holds, must $f = \lambda g$ for some $\lambda \in \mathbb{R}$? What if f and g are continuous?
- (3) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is called **norm preserving** if ||T(x)|| = ||x||, for all $x \in \mathbb{R}^n$; and **inner product preserving** if $\langle T(x), T(y) \rangle = \langle x, y \rangle$, for all $x, y \in \mathbb{R}^n$.
 - (a) Prove that T is norm preserving if and only if T is inner product preserving.
 - (b) Prove that such a linear transformation is 1-1 and T^{-1} is of the same sort.
- (4) If $x, y \in \mathbb{R}^n$ are nonzero, the angle between x and y, denoted by $\angle(x, y)$, is defined by

$$\angle(x, y) = arc \cos\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$$

The linear transformation T is called **angle preserving** if

$$\angle(T(x), T(y)) = \angle(x, y), \forall x, y \in \mathbb{R}^n.$$

- (a) Prove that if T is norm preserving, then T is angle preserving.
- (b) If there is a basis $\{x_i \mid i = 1, ..., n\}$ of \mathbb{R}^n and real numbers $\lambda_i, i = 1, ..., n$, such that $T(x_i) = \lambda_i x$. If $|\lambda_i|$'s are equal, does it imply that T is angle preserving?
- (5) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, show that $\exists M \in \mathbb{R}$ such that

$$||T(h)|| \leq M||h||, \forall h \in \mathbb{R}^n$$

- (6) Let $A \subset \mathbb{R}^n$ be a compact set and $B \subset \mathbb{R}^n$ be a closed subset. Show that: if $B \subset A$, then B is also compact.
- (7) Let $A \subset \mathbb{R}^n$. Show that A is compact if and only if A is closed and bounded.

1