PDEEC0049 / CMU 18782 MACHINE LEARNING | 2018/2019 – 1st Semester

Assignment 02

To be solved INDIVIDUALLY

Submit by 29 October 2018, 23h59 by email to jaime.cardoso@fe.up.pt

1. Regression.

Consider the following data

X ₁	X 2	y (output)	
368	15	1.7	
340	16	1.5	
665	25	2.8	
954	40	5	
331	15	1.3	

- a) What's the regression solution for $f(y)=w_1x_1+w_2x_2$?
- b) Trying to improve the fitting, we collect another feature x_3 :

3,				
X ₁	X 2	X 3	y (output)	
368	15	383	1.7	
340	16	356	1.5	
665	25	690	2.8	
954	40	994	5	
331	15	346	1.3	

What's now the solution for $f(y)=w_1x_1+w_2x_2+w_3x_3$? Is it unique?

c) In some contexts, it is interesting to introduce different costs per example in the error function: $L(w) = \frac{1}{2} \sum_{n=1}^{N} c_n (y_n - w_0 - w^t x_n)^2$

with
$$x_n, w \in \mathbb{R}^d$$
 and $c_n \in \mathbb{R}^+, w_0 \in \mathbb{R}$

Generalize the Probabilistic Interpretation as given in slide 11 of lecture 2 to motivate the given loss function.

JSC PAGE 1/2

Classification

- **2**. Consider the data in 'heightWeightData.txt'. The first column is the class label (1=male, 2=female), the second column is height, the third weight.
- a) Write a Matlab/Python function to model each class data as follows: assuming that height and weight are independent given the class, model the height using a histogram with bins breakpoints at every 10 cm (10, 20, 30, ..., 170, 180, 190, ...) and the weight with a Gaussian distribution with the mean and variance learnt from the data using maximum likelihood estimation.

You can use suitable functions in Matlab/Python like histcounts. The function should receive as input the training data and the test data, making prediction (male/female) for the test point.

b) Use the previous function to make predictions (male / female) for the following test points:

[165 80]^t, [181 65]^t, [161 57]^t and [181 77]^t.

c) What's the estimated p([165 80]^t | male)?

Fundamentals

- **3.** An experiment consists in randomly choosing values between 0 and 1 (a scalar in [0,1]) until the sum of the observed values is above 1.
 - a) In python/matlab simulate the execution of 1000000 experiments. What's the estimated number of values one needs to pick until the sum exceeds one?
 - b) [1 point only in 20] Compute analytically the expected value of the number of values one needs to pick until the sum exceeds one.

JSC PAGE 2/2