Lab 3: Support Vector Machines

Aakash Saini(2018CSM1001)

March 29, 2019

1 Implementation of SVM:

1.1 Problem Statement

In this lab we implemented the Support Vector Machine using the CVOXPT package generating our own dataset. Three varieties of data - Linear separable data, Linear separable but overlapping and Circular separated dataset, were generated and three different kernels, Linear Kernel, Gaussian Kernel and Polynomial kernel, were used for our purpose.

2 Data generation and Train/Test set:

For this lab we need to generate three different datasets as above told. For each variety we generated points for two classes '+1' and '-1' each is having 100 points. Linear separable data is generated using the function $lin_seperable_data()$. Overlapped Linear separable data is generated using function lin seperable overlap data(). Circle separated data is generated in the function $circular_data()$. Data is splitted into the training set and Test-set in the function $split_train_test()$ and for each dataset 180 points are taken in the training set and rest 20 are taken for the test-set.

3 Observation and plots

All the following observations are taken on the width i.e., s = 5 and power i.e., q = 3.

• For linearly Separable Data :

Fig 1:LinearKernel

Fig 2:PolynomialKernel

Fig 3:GaussianKernel

- Accuracy Observed

* Linear Kernel: 100%

* Polynomial Kernel: 100%* Gaussian Kernel: 100%

• For Overlapped linearly Separable Data :

N 0 -2 -4 -4 -2 0 x1 2 4 6

Fig 1:LinearKernel

Fig 2:PolynomialKernel

Fig 3:GaussianKernel

- Accuracy Observed

* Linear Kernel: 100%

* Polynomial Kernel: 100%

* Gaussian Kernel: 95%

• For Circle Separable Data :

Fig 1:LinearKernel

Fig 2:PolynomialKernel

Fig 3:GaussianKernel

- Accuracy Observed

* Linear Kernel: 50%

 \ast Polynomial Kernel: 100%

* Gaussian Kernel: 80%