## Lezione 9 - La Terza Forma Normale (3NF) - I

Prof.ssa Maria De Marsico demarsico@di.uniroma1.it



## Quali sono i problemi di uno schema mal progettato?



 Ritorniamo al nostro esempio di base di dati che contiene le informazioni sugli studenti e sugli esami sostenuti, e ripartiamo dalla soluzione «buona» trovata alla fine

### **Ipotesi 3**



## La base di dati consiste di quattro schemi di relazione:

- Studente (Matr, CF, Cogn, Nome, Data, Com)
- Corso (C#, Tit, Doc)
- Esame (Matr, C#, Data, Voto)
- Comune (Com, Prov)



- Studente (Matr, CF, Cogn, Nome, Data, Com)
- Poiché il numero di matricola identifica univocamente uno studente, ad ogni numero di matricola corrisponde:
- un solo codice fiscale ( Matr → CF )
- un solo cognome ( Matr → Cogn )
- un solo nome ( Matr → Nome )
- una sola data di nascita ( Matr → Data )
- un solo comune di nascita ( Matr → Com )
- Quindi un'istanza di Studente per essere legale deve soddisfare la dipendenza funzionale
  - Matr → Matr CF Cogn Nome Data Com



- Con considerazioni analoghe abbiamo che un'istanza di Studente per essere legale deve soddisfare la dipendenza funzionale
  - CF → Matr CF Cogn Nome Data Com
- Pertanto sia Matr che CF sono chiavi di Studente.



- D'altra parte possiamo osservare che ci possono essere due studenti con lo stesso cognome e nomi differenti quindi
- possiamo avere istanze di Studente che non soddisfano la dipendenza funzionale
  - Cogn →Nome

| Studente | Matr | CF  | Cogn    | Nome  | Data       | Com    |
|----------|------|-----|---------|-------|------------|--------|
|          | 01   | ••• | Rossi   | Mario | 1/1/1989   | Roma   |
|          | 02   | ••• | Bianchi | Paolo | 1/1/1989   | Roma   |
|          | 03   | ••• | Rossi   | Paolo | 30/11/1988 | Marino |
|          | 04   | ••• | Neri    | Paolo | 25/10/1988 | Marino |

# possiamo avere istanze di Studente che non soddisfano la dipendenza funzionale

 $Cogn \rightarrow Nome$ 

Cogn → Data

 $Cogn \to Com$ 

 $Nome {\rightarrow} Cogn$ 

... ecc.



Con considerazioni analoghe possiamo concludere che le <u>uniche</u> dipendenze funzionali non banali che devono essere soddisfatte da un'istanza legale di Studente sono del tipo

$$K \rightarrow X$$

dove K contiene una chiave (Matr o CF)

Vedremo che questa è una prima condizione che **però va ulteriormente rifinita** per arrivare ad una definizione precisa di Treza Forma Normale (3NF)



## Esame (Matr, C#, Data, Voto)

Uno studente può sostenere l'esame relativo ad un corso **una sola volta**; pertanto **per ogni esame** (identificato dallo studente e dal corso, quindi da Mat# C#) esiste

- una sola data (in cui è stato sostenuto)
- un solo voto

Quindi

ogni istanza legale di Esame deve soddisfare la dipendenza funzionale

Matr C#  $\rightarrow$  Data Voto



- Esame (Matr, C#, Data, Voto)
- D'altra parte uno studente può sostenere esami in date differenti e riportare voti diversi nei vari esami.
- Pertanto esistono istanze di Esame che non soddisfano una o entrambe le dipendenze funzionali

Matr → Data

 $Matr \rightarrow Voto$ 



- Esame (Matr, C#, Data, Voto)
- Inoltre l'esame relativo ad un certo corso può essere superato da diversi studenti in date diverse e con diversi voti.
- Pertanto esistono istanze di Esame che non soddisfano una o entrambe le dipendenze funzionali

C# → Data

 $C# \rightarrow Voto$ 

Pertanto Matr C# è una chiave per Esame (si vede facilmente che è anche l'unica chiave)

In seguito vedremo delle procedure **rigorose** per identificare la(le) chiavi.

### **Ipotesi 3 (conclusioni)**



#### Per ciascun schema di relazione

- Studente (Matr, CF, Cogn, Nome, Data, Com)
- Corso (**C**#, Tit, Doc)
- Esame (Matr, C#, Data, Voto)
- Comune (Com, Prov)
  - ATTENZIONE!!! Stiamo continuando ad assumere che COM→Prov, cioè che non ci sono comuni omonimi (cosa che in realtà non è vera ...)

le uniche dipendenze funzionali non banali che devono essere soddisfatte da ogni istanza legale sono del tipo

$$K \rightarrow X$$

dove K contiene una chiave

#### Terza forma normale



Uno schema di relazione è in 3NF se

le uniche dipendenze funzionali non banali che devono essere soddisfatte da ogni istanza legale sono del tipo

$$K \rightarrow X$$

#### dove

- K <u>contiene</u> una chiave oppure
- X è contenuto in una chiave

Anche questa condizione richiede ancora di essere rifinita per giungere alla definizione <u>finale</u> di 3NF



#### Definizione

 Dati uno schema di relazione R e un insieme di dipendenze funzionali F su R, R è in 3NF se

$$\forall X \rightarrow A \in F^+, A \notin X$$

- A appartiene ad una chiave (è primo)
  oppure
- X contiene una chiave (è una superchiave)

#### Prima di continuare ... ricordiamo



Abbiamo notato alcune proprietà delle dipendenze funzionali anche prima di formalizzarle con gli assiomi di Armstrong ...

### Dipendenze funzionali banali



Dati uno schema di relazione R e due sottoinsiemi non vuoti X, Y di R tali che  $Y \subseteq X$  si ha:

ogni istanza r di R soddisfa la dipendenza funzionale  $X \rightarrow Y$ 

| R | A  | В  | С  | D  |
|---|----|----|----|----|
|   | a1 | b1 | c1 | d1 |
|   | a1 | b2 | c1 | d2 |
|   | a1 | b1 | c1 | d3 |

X→Y è soddisfatta

# Dipendenze funzionali (proprietà)



Dati uno schema di relazione R e un insieme di dipendenze funzionali F, si ha:

$$X \rightarrow Y \in F^+ \Leftrightarrow \forall A \in Y (X \rightarrow A \in F^+)$$

- $X \rightarrow Y$  deve essere soddisfatta da **ogni** istanza legale di R (è in F<sup>+</sup>!)
- Se  $t_1[X]=t_2[X]$  allora deve essere  $t_1[Y]=t_2[Y]$
- Ovviamente se  $A \in Y$  e  $t_1[A] \neq t_2[A]$ , non può essere  $t_1[Y] = t_2[Y]$
- Ovviamente se  $\forall A \in Y t_1[A] = t_2[A]$ , avremo  $t_1[Y] = t_2[Y]$

| R | A    | В  | С          | D  | <i>A</i> → <i>BC</i> ∈ <i>F</i> + |
|---|------|----|------------|----|-----------------------------------|
|   | (a1) | 61 | <b>c</b> 1 | d1 | ↓ ↑                               |
|   | a2   | b2 | c1         | d2 | <i>A →B∈F</i> +                   |
|   | (a1) | b1 | c1)        | d3 | $A \rightarrow C \in F^+$         |

#### Terza forma normale



#### Definizione

Dati uno schema di relazione R e un insieme di dipendenze funzionali F su R, R è in **3NF** se

$$\forall X \rightarrow A \in F^+, A \notin X$$

- A appartiene ad una chiave (è primo) oppure
- X contiene una chiave (è una superchiave)

#### Nota: Attenzione.

- Per quanto detto, è sbagliato scrivere ∀X → A ∈F, perché non sapremmo se e come valutare una dipendenza del tipo X → AB (due o più attributi a destra)
- Se sostituisco  $\forall X \rightarrow A \in F$ , con  $\forall X \rightarrow Y \in F$ , non so come comportarmi se Y contiene sia attributi primi che non primi



R=ABCD

 $F=\{A\rightarrow B, B\rightarrow CD\}$ 

La chiave è A infatti per ogni istanza legale (che deve soddisfare le dipendenze in F)

- Se t<sub>1</sub>[A]= t<sub>2</sub>[A] allora t<sub>1</sub>[B]= t<sub>2</sub>[B] (la dipendenza deve essere soddisfatta) ... ma anche ...
- Se t<sub>1</sub>[B]= t<sub>2</sub>[B] allora t<sub>1</sub>[CD]= t<sub>2</sub>[CD] (la dipendenza deve essere soddisfatta) e quindi
- Se t₁[A]= t₂[A] allora t₁[CD]= t₂[CD] quindi A→CD ∈FA e per la regola dell'unione
- A→ BCD ∈F<sup>A</sup> ... e sappiamo che F<sup>A</sup>=F<sup>+</sup> ... quindi A→R ∈F<sup>+</sup> ... inoltre A è singleton quindi non ha sottoinsiemi ... quindi A è una chiave (vedremo poi come si trova la/le chiavi di uno schema)
- A è l'unica chiave perché B non determina A, e sia C che D non determinano altri attributi



R=ABCD F={A→B, B→CD} La chiave è A

Vediamo se R è in 3NF ... e valutiamo solo le dipendenze in F

- A→B è OK (A è superchiave)
- B→CD ? Secondo la definizione dobbiamo controllare le dipendenze X → A con A singleton
- ...ma ... B→C e B→D non sono in F ... ma in F<sup>+</sup> ... e allora?
  Significa che va tutto bene? NO

Infatti se consideriamo l'insieme giusto scopriamo che sia B→C che B→D violano la 3NF perché in entrambi i casi B non è superchiave ... quindi lo schema R non è in 3NF



R=ABCD

 $F=\{AC \rightarrow B, B \rightarrow AD\}$ 

La chiave è AC infatti per ogni istanza legale (che deve soddisfare le dipendenze in F)

- Se t<sub>1</sub>[AC]= t<sub>2</sub>[AC] allora t<sub>1</sub>[B]= t<sub>2</sub>[B] (la dipendenza deve essere soddisfatta) ... ma anche ...
- Se t<sub>1</sub>[B]= t<sub>2</sub>[B] allora t<sub>1</sub>[AD]= t<sub>2</sub>[AD] (la dipendenza deve essere soddisfatta) e quindi
- Se t₁[AC]= t₂[AC] allora t₁[AD]= t₂[AD] quindi AC→AD ∈F<sup>A</sup> e per la regola dell'unione e la riflessività
- AC→ ABCD ∈F<sup>A</sup> ... e sappiamo che F<sup>A</sup>=F<sup>+</sup> ... quindi AC→R ∈F<sup>+</sup> ... inoltre A da solo non determina altri attributi, quindi A→R ∉ F<sup>+</sup> lo stesso vale per C da solo... quindi AC è chiave (vedremo poi come si trova la chiave di uno schema)
- BC è un'altra chiave (B→AD e con l'aumento BC→ACD e B da solo determina solo AD e poi non possiamo applicare la transitività)
- ABC è una <u>superchiave</u>



R=ABCD F={AC→B, B→AD} Le chiavi sono AC e BC

Vediamo se R è in 3NF ... e valutiamo solo le dipendenze in F

- AC→B è OK (AC è superchiave)
- B $\rightarrow$ AD ? Secondo la definizione dobbiamo controllare le dipendenze  $X \rightarrow A$  con A singleton
- ...ma ... B→A e B→D non sono in F ... ma in F<sup>+</sup> ... e allora?
  Significa che va tutto bene? NO

Infatti se consideriamo l'insieme giusto scopriamo che B→A è OK perché A è parte di una chiave (primo) ma B→D viola la 3NF perché B non è superchiave (è solo <u>parte</u> di una chiave) e D non è parte di una chiave ... quindi <u>lo schema R non è in 3NF</u>

#### **Esempio 2 - Commento**



R=ABCD

 $F=\{AC \rightarrow B, B \rightarrow AD\}$ 

Se usiamo una definizione alternativa

- $\forall X \rightarrow Y \in F^+, Y \not\subset X$
- Y appartiene ad una chiave (è primo) oppure
- X contiene una chiave (è una superchiave)

B è parte di una chiave ma ... come facciamo a valutare la seconda condizione su B→AD visto che Y=AD, e A è primo (appartiene ad una chiave) ma D no?

Dovremmo dare una definizione **più complessa** che prevede di esaminare ogni attributo a destra singolarmente ... **e comunque** ... sappiamo di poter applicare sempre la decomposizione

Ma allora è più semplice ed elegante usare la definizione data.



#### R=ABCD

 $F=\{AB \rightarrow CD, BC \rightarrow A, D \rightarrow AC\}$ 

Abbiamo tre chiavi, AB, BC, e DB infatti per ogni istanza legale (che deve soddisfare le dipendenze in F)

- Se t₁[AB]= t₂[AB] allora t₁[CD]= t₂[CD] (la dipendenza deve essere soddisfatta)
  ... quindi aggiungendo la riflessività AB→AB abbiamo che AB→R .. Inoltre
- A da solo non determina nulla (solo sé stesso per riflessività)
- B da solo non determina nulla (solo sé stesso per riflessività)
- ... quindi AB è chiave

Inoltre per ogni istanza legale (che deve soddisfare le dipendenze in F)

- In alternativa applichiamo Armstrong tanto sappiamo che F<sup>+</sup> = F<sup>A</sup>
- BC→A in F<sup>A</sup> + aumento BC→AB in F<sup>A</sup> + transitività con AB→CD ci porta
  BC→CD in F<sup>A</sup> quindi con la riflessività e l'unione BC→R in F<sup>A</sup>
- C da solo non determina nulla quindi BC altra chiave
- D da solo non arriva a B ma con B è un'altra chiave



R=ABCD

 $F=\{AB\rightarrow CD, BC\rightarrow A, D\rightarrow AC\}$ 

Abbiamo tre chiavi, AB, BC, e DB

Vediamo se R è in 3NF ... e valutiamo solo le dipendenze in F

- AB→CD è OK (AB è superchiave)
- BC→A ? è OK (BC è superchiave e inoltre A è primo)
- ...ma ... D→AC ?

D è solo PARTE di una chiave, e AC non è parte di nessuna chiave ... quindi? Dobbiamo concludere che lo schema non è 3NF? NO

Se applichiamo la decomposizione (quindi siamo in F<sup>+</sup>) possiamo considerare

D→A OK, A è primo!

D→C OK, C è primo

I due attributi a destra fanno parte di chiavi diverse ma sono ENTRAMBI primi, quindi lo schema E' 3NF

#### Terza forma normale



#### Definizione

Dati uno schema di relazione R e un insieme di dipendenze funzionali F su R, R è in **3NF** se

$$\forall X \rightarrow A \in F^+, A \notin X$$

- A <u>appartiene ad una chiave</u> (è *primo*) oppure
- X contiene una chiave (è una superchiave)
- •Nota: Attenzione.
- •La condizione  $A \notin X$  è **importante**. Infatti, per l'assioma della **riflessività**, se  $A \in X$  avremo sempre  $X \to A$  in  $F^A$  e quindi in  $F^+$ , anche quando A non è primo e X non è superchiave, e quindi se considerassimo questo tipo di dipendenze **nessuno** schema risulterebbe in 3NF



- R=AB
- F={A→B}
- La chiave è ovviamente A

Vediamo se R è in 3NF ... e valutiamo le dipendenze in  $F^+$ AB contiene la chiave ... OK  $F^+ = \{A \rightarrow B, AB \rightarrow AB, A \rightarrow A, B \rightarrow B ....\}$ A è chiave ... OK

B dovrebbe essere una violazione perché B non è parte della chiave né contiene la chiave!!!

Ma questo tipo di dipendenze (banali) si trova **SEMPRE** in *F*<sup>+</sup>

**QUINDI NON vanno considerate** 

# Terza forma normale (esempio: Ipotesi 3)



#### Ciascuno schema di relazione

Studente (Matr, CF, Cogn, Nome, Data, Com)

Matr → Matr CF Cogn Nome Data Com

CF→ Matr CF Cogn Nome Data Com

 $Matr \rightarrow CF$ 

CF→ Matr

- Corso (**C#**, Tit, Doc)  $C# \rightarrow C# \text{ Tit Doc}$
- Esame (Matr, C#, Data, Voto)
  Matr C# → Matr C# Data Voto
- Comune (Com, Prov)
  Com → Com Prov

è in 3NF

Stiamo continuando ad assumere che non ci sono comuni omonimi

# Cosa succedeva nelle altre ipotesi?



•Torniamo a considerare le altre ipotesi di decomposizione



La base di dati consiste di tre schemi di relazione:

- Studente (Matr, CF, Cogn, Nome, Data, Com, Prov)
- Corso (C#, Tit, Doc)
- Esame (Matr, C#, Data, Voto)



Studente (Matr, CF, Cogn, Nome, Data, Com, Prov)

Un'istanza di Studente per essere **legale** deve soddisfare le dipendenze funzionali:

- Matr → Matr CF Cogn Nome Data Com Prov
- •CF → Matr CF Cogn Nome Data Com Prov
- •Matr → CF
- •CF→ Matr

#### Inoltre

poiché ogni comune si trova in una sola provincia deve soddisfare la dipendenza funzionale

• Com  $\rightarrow$  Prov

Stiamo continuando ad assumere che non ci sono comuni omonimi



Studente (Matr, CF, Cogn, Nome, Data, Com, Prov)

Consideriamo la dipendenza funzionale

 $Com \rightarrow Prov$ 

è facile vedere che:

- Com non è una chiave per Studente (ci possono essere più studenti che sono nati nello stesso comune)
- Prov non appartiene ad alcuna chiave di Studente (le uniche chiavi sono Matr e CF)

Stiamo continuando ad assumere che non ci sono comuni omonimi



### Lo schema

Studente (Matr, CF, Cogn, Nome, Data, Com, Prov)

non è in 3NF



La base di dati consiste di un **unico** schema di relazione:

Curriculum (Matr, CF, Cogn, Nome, DataN, Com, Prov, C#, Tit, Doc, DataE, Voto)



 Curriculum (Matr, CF, Cogn, Nome, DataN, Com, Prov, C#, Tit, Doc, DataE, Voto)

Un'istanza di Curriculum per essere **legale** deve soddisfare le dipendenze funzionali:

- Matr → Matr CF Cogn Nome DataN Com Prov
  - CF → Matr CF Cogn Nome DataN Com Prov
    - $CF \rightarrow Matr$
    - Matr  $\rightarrow$  CF
    - Com  $\rightarrow$  Prov
    - $C# \rightarrow C#$  Tit Doc

Stiamo continuando ad assumere che non ci sono comuni omonimi

- Matr C# → DataE Voto
  - CF C# → DataE Voto



Pertanto le (uniche) chiavi di Curriculum (Matr, CF, Cogn, Nome, DataN, Com, Prov, C#, Tit, Doc, DataE, Voto) sono:

- Matr C#
- CF C#

Infatti ogni istanza legale di Curriculum soddisfa le dipendenze funzionali:

- Matr C# → Matr CF Cogn Nome Data Com Prov C# Tit Doc DataE
  Voto
- CF C# → Matr CF Cogn Nome Data Com Prov C# Tit Doc DataE
  Voto

## **Ipotesi 1** (conclusioni)



 Curriculum (Matr, CF, Cogn, Nome, DataN, Com, Prov, C#, Tit, Doc, DataE, Voto)

Consideriamo la dipendenza funzionale

Matr → Cogn

#### poichè:

- Matr non è una chiave per Curriculum (uno studente può aver sostenuto più esami – ricordiamo che per questo schema la chiave è Matr C# oppure C# Matr)
- Cogn non appartiene ad alcuna chiave di Curriculum (le uniche chiavi sono Matr C# e CF C#)

#### Curriculum non è in 3NF

**Nota**: basta identificare anche **UNA SOLA** dipendenza che viola le condizioni per la 3NF

# Considerazioni finali: dipendenze transitive



- Studente (Matr, CF, Cogn, Nome, Data, Com, Prov)
- Ad un numero di matricola corrisponde un solo comune di nascita (quello dello studente con quel numero di matricola): Matr → Com
- Un comune si trova in una sola provincia: Com  $\rightarrow$  Prov

#### Conclusione:

- ad un numero di matricola corrisponde una sola provincia:

 $Matr \rightarrow Prov$ 

(ricordiamo che poiché Com non è superchiave e Prov non è primo lo schema non è 3NF)

 La dipendenza funzionale Matr → Prov è una conseguenza delle due dipendenze funzionali

 $Matr \rightarrow Com \ e \ Com \rightarrow Prov$ 

Com → Prov viene detta

dipendenza transitiva

(vedremo in seguito la definizione formale)

# Considerazioni finali: dipendenze parziali



 Curriculum (Matr, CF, Cogn, Nome, DataN, Com, Prov, C#, Tit, Doc, DataE, Voto)

Ad un numero di matricola corrisponde un solo cognome (il cognome dello studente con quel numero di matricola):

• Matr  $\rightarrow$  Cogn

#### Quindi:

ad una coppia costituita da un numero di matricola e da un codice di corso corrisponde un solo cognome: Matr  $C\# \to Cogn$ 

La dipendenza funzionale Matr C#  $\rightarrow$  Cogn è una conseguenza della dipendenza funzionale Matr  $\rightarrow$  Cogn che viene detta

dipendenza parziale