— Voir correction —

Calculer les développements limités suivants

1) DL à l'ordre 3 en 0 de $e^{\sin x}$

3) DL à l'ordre 3 en 0 de $\frac{1}{1 + e^x}$

2) DL à l'ordre 3 en 0 de $(1+x)^{\frac{1}{x}}$

4) DL à l'ordre 3 en 0 de $\frac{\sin(x)}{e^x}$

------ Voir correction ---

Déterminer les limites suivantes à l'aide de développements limités

1) $\lim_{x \to +\infty} (2^{1/x} + 3^{1/x} - 5^{1/x})^x$

3) $\lim_{x \to 1} \frac{\sin 5\pi x}{\sin 4\pi x}$

 $2) \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$

4) $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$

Exercice 3 -

- Voir correction -

On considère la fonction $f: x \mapsto \frac{x e^x - \sin(x) - x^2}{\ln(1+x) - x}$.

- 1) Déterminer l'ensemble de définition de f.
- 2) Donner un développement limité d'ordre 2 en 0 de f.
- 3) Montrer que f est prolongeable par continuité en 0. On appelle g ce prolongement.
- 4) Montrer que g est dérivable en 0, et déterminer g'(0).
- 5) Déterminer l'équation de la tangente T en 0 au graphe Γ de g et préciser les positions relatives de Γ et de T au voisinage de 0

— Exercice 4 -

Voir correction —

On considère la fonction $f:x\longmapsto \begin{cases} &x^2\sin\left(\frac{1}{x}\right) &\text{si }x\neq 0\\ &0 &\text{si }x=0 \end{cases}$ définie sur $\mathbb{R}.$

- 1) Montrer que f est continue sur \mathbb{R} .
- 2) Montrer que f est dérivable sur \mathbb{R} , et préciser f'(0).
- 3) Montrer que f n'est pas \mathcal{C}^1 sur \mathbb{R} .

Exercice 5 -

——— Voir correction —

- 1) Soit f la fonction réelle de la variable réelle définie par $f(x) = \sqrt{x^2 9x + 8}$. Après avoir étudier l'ensemble de définition de f, déterminer deux asymptotes oblique en $+\infty$ et en $-\infty$ à \mathcal{C}_f , la courbe représentative de f.
- 2) Mêmes questions avec la fonction g définie par $g(x) = x \exp\left(\frac{2x}{x^2 1}\right)$.

Soit n un entier pair et soit $P: x \longmapsto \sum_{k=1}^{n} \frac{x^k}{k}$. Montrer que P n'a pas de racine multiple.

- Exercice 7 -

Soit P un polynôme à coefficients réels.

- 1) Montrer que si λ est une racine complexe de P, alors $\overline{\lambda}$ est racine de P avec la même multiplicité que λ .
- 2) Supposons que toutes les racines réelles de P soient de multiplicité paire. Montrer que n est pair.

TD 6 : Analyse réelle

- Voir correction —

(ENS 2021) On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par $u_n = \int_0^{+\infty} \frac{e^{-x}}{x+\frac{1}{x}} dx$.

- 1) Justifier que (u_n) est bien définie et étudier son sens de variations.
- 2) On définit, pour tout $n \in \mathbb{N}^*$, $v_n = \int_0^1 \frac{\mathrm{e}^{-x}}{x + \frac{1}{2}} \, \mathrm{d}x$ et $w_n = \int_1^{+\infty} \frac{\mathrm{e}^{-x}}{x + \frac{1}{2}} \, \mathrm{d}x$. Montrer que, pour tout $n \in \mathbb{N}^*$, $\frac{\ln(n+1)}{e} \le v_n$ et $0 \le w_n \le \frac{1}{e}$.
- 3) En déduire la limite de la suite (u_n)
- 4) On cherche maintenant à obtenir un résultat plus précis.
 - a) Montrer que l'intégrale $I = \int_0^1 \frac{1 e^{-x}}{x} dx$ est convergente.
 - b) Montrer que, pour tout $n \in \mathbb{N}^*$, $0 \le \int_0^1 \frac{1 e^{-x}}{x + \frac{1}{x}} dx \le I$
 - c) En déduire que $u_n \underset{n \to +\infty}{\sim} \ln(n)$.

Soit f la fonction définie par $f(x) = \int_{-\ln t}^{x^2} \frac{\mathrm{d}t}{\ln t}$.

- 1) Donner l'ensemble D des réels pour lesquels cette intégrale a un sens.
- 2) Montrer que f est dérivable sur D et que sa dérivée est $f'(x) = \frac{x-1}{\ln x}$. En déduire les variations de f.
- 3) Soit g la fonction définie par $g(x) = \int_{x}^{x^2} \frac{dt}{t-1}$. Montrer que f(x) g(x) tend vers 0 quand x tend vers 1, et en déduire la limite de f(x) quand x tend vers 1.
- 4) On prolonge alors f par continuité en 1 (on note encore f ce prolongement). Étudier la dérivabilité de f en 1.

Soit f une fonction définie et continue sur [0,1], à valeurs dans [0,1], dérivable sur [0,1], et vérifiant $f \circ f = f$. On note $a = \min \{ f(x) , x \in [0,1] \}$ et $b = \max \{ f(x) , x \in [0,1] \}$.

- 1) Justifier l'existence de a et de b.
- 2) Quelle est la restriction de f à [a, b]?
- 3) Quelles sont toutes les fonctions non constantes vérifiant toutes les hypothèses ci-dessus? On pourra considérer les valeurs de f'(a) et de f'(b).
- 4) Quelles sont toutes les fonctions f continues de [0,1] dans [0,1] vérifiant $f \circ f = f$?

Le coin des Khûbes

Soit f la fonction définie par :

$$f: \ \mathbb{R} \ \longrightarrow \ \mathbb{R}$$

$$x \ \longmapsto \ \left\{ \begin{array}{cc} \mathrm{e}^{-1/x} & \mathrm{si} \ x > 0 \\ 0 & \mathrm{si} \ x \leq 0 \end{array} \right.$$

- 1) Montrer que f est continue sur \mathbb{R}
- 2) Justifier que la restriction de f à $]0; +\infty[$ est de classe \mathcal{C}^{∞} .
- 3) Montrer que pour tout entier naturel $n \ge 1$ il existe un polynôme P_n tel que

$$\forall x > 0, \quad f^{(n)}(x) = P_n\left(\frac{1}{x}\right) e^{-1/x}$$

4) En déduire que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

* * Exercice 12

- Voir correction -

(D'après ESCP 1994) Pour tout entier naturel n, on pose

$$u_n = \int_0^1 x^n e^{1-x} dx$$

- 1) Calculer u_0 et u_1 .
- 2) a) Montrer que, pour tout entier naturel $n, \frac{1}{n+1} \le u_n \le \frac{e}{n+1}$.
 - b) Calculer la limite de la suite $(u_n)_{n\geq 0}$.
- 3) a) Exprimer, pour tout $n \ge 1$, u_n en fonction de u_{n-1} et de n.
 - b) En déduire que, pour tout entier $n \ge 0$, $u_n = n! \left(e \sum_{k=0}^n \frac{1}{k!} \right)$
- 4) Soit a un nombre réel et soit $(v_n)_{n\geq 0}$ la suite définie par les conditions :

$$v_0 = a$$
 et pour tout entier $n \ge 1$, $v_n = nv_{n-1} - 1$

Montrer que si $a \neq u_0$, la suite $(v_n)_{n\geq 0}$ est divergente.

5) a) Montrer que, pour tout entier naturel n,

$$u_n = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{u_{n+2}}{(n+1)(n+2)}$$

b) En déduire qu'il existe deux constantes c_1 et c_2 , que l'on déterminera, telles qu'on ait

$$u_n \underset{n \to +\infty}{=} \frac{c_1}{n} + \frac{c_2}{n^2} + o\left(\frac{1}{n^2}\right)$$

Correction des exercice

Correction de l'exercice 1 :

1) À l'ordre 3 au voisinage de 0 on a $\sin(x) = x - \frac{x^3}{6} + x^3 \varepsilon(x)$ et $e^u = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + u^3 \varepsilon(u)$. On compose ces deux DL en tronquant tous les termes d'ordre ≥ 4 :

$$e^{\sin x} = 1 + \left(x - \frac{x^3}{6} + o(x^3)\right) + \frac{1}{2}\left(x - \frac{x^3}{6} + o(x^3)\right)^2 + \frac{1}{6}\left(x - \frac{x^3}{6} + o(x^3)\right)^3 + o\left(\left(x - \frac{x^3}{6} + o(x^3)\right)^3\right)$$

$$= 1 + x - \frac{x^3}{6} + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$

$$= 1 + x + \frac{x^2}{2} + o(x^3)$$

Remarque : le terme d'ordre 3 est nul dans le DL de $e^{\sin x}$ (tout comme le terme d'ordre 2 est nul dans le DL de $\sin x$, on peut tout de même écrire $\sin x = x + o(x^2)$).

2) $\forall x \neq 0, (1+x)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln(1+x)\right)$. Or $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$ donc $\frac{1}{x}\ln(1+x) = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + o(x^3)$ est un DL de $\frac{1}{x}\ln(1+x)$ à l'ordre 3.

Si on retire 1 à cette epression elle tend vers 0 en 0 et en composant par le DL $\exp(u) = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + o(u^3)$ on obtient:

$$\exp\left(\frac{1}{x}\ln(1+x) - 1\right) = 1 + \left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4}\right) + \frac{1}{2}\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4}\right)^2 + \frac{1}{6}\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4}\right)^3 + o(x^3)$$

$$= 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \frac{1}{8}x^2 - \frac{x^3}{6} - \frac{1}{48}x^3 + o(x^3)$$

$$= 1 - \frac{1}{2}x + \frac{11}{24}x^2 - \frac{7}{16}x^3 + o(x^3)$$

d'où finalement en multipliant par e : $(1+x)^{\frac{1}{x}} = e - \frac{e}{2}x + \frac{11ex}{24}x^2 - \frac{7e}{16}x^3$

3) Au voisinage de 0 on a

$$\frac{1}{1+e^x} = \frac{1}{2+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)}$$

$$= \frac{1}{2} \times \frac{1}{1+\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{12}+o(x^3)}$$

$$= \frac{1}{2} \left(1 - \left(\frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{12}\right) + \left(\frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{12}\right)^2 - \left(\frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{12}\right)^3 + o(x^3)\right)$$

$$= \frac{1}{2} \left(1 - \frac{x}{2} - \frac{x^2}{4} - \frac{x^3}{12} + \frac{x^2}{4} + \frac{x^3}{4} - \frac{x^3}{8} + o(x^3)\right)$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{x^3}{48} + o(x^3)$$

4) Au voisinage de 0, $\sin(x) = x - \frac{x^3}{6} + o(x^3)$ et $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$. Ainsi.

$$\frac{1}{e^x} = \frac{1}{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)}$$

$$= 1 - \left(x + \frac{x^2}{2} + \frac{x^3}{6}\right) + \left(x + \frac{x^2}{2} + \frac{x^3}{6}\right)^2 - \left(x + \frac{x^2}{2} + \frac{x^3}{6}\right)^3 + o(x^3)$$

$$= 1 - x - \frac{x^2}{2} - \frac{x^3}{6} + x^2 + x^3 - x^3 + o(x^3)$$

$$= 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3)$$

Ainsi

$$\frac{\sin x}{e^x} = \left(x - \frac{x^3}{6} + o(x^3)\right) \times \left(1 - x + \frac{x^2}{2} - \frac{x^3}{6} + o(x^3)\right)$$
$$= x - x^2 + \frac{x^3}{3} + o(x^3)$$

Correction de l'exercice 2:

1) Attention: on ne peut pas utiliser le DL de $(1+x)^{\alpha}$ car α doit être constant, ici les exposants sont x et $\frac{1}{x}$ donc sont

Pour tout x > 0 on a $(2^{1/x} + 3^{1/x} - 5^{1/x})^x = \exp(x \ln(2^{1/x} + 3^{1/x} - 5^{1/x}))$

Cherchons la limite de $x \ln(2^{1/x} + 3^{1/x} - 5^{1/x})$ lorsque $x \to +\infty$.

$$2^{1/x} = \exp(\ln(2)/x) \text{ avec } \frac{\ln(2)}{x} \xrightarrow[x \to +\infty]{} 0 \text{ donc } 2^{1/x} = 1 + \frac{\ln(2)}{x} + o\left(\frac{1}{x}\right). \text{ De même, } 3^{1/x} = 1 + \frac{\ln(3)}{x} + o\left(\frac{1}{x}\right) \text{ et } 5^{1/x} = 1 + \frac{\ln(5)}{x} + o\left(\frac{1}{x}\right).$$

On en déduit que $2^{1/x} + 3^{1/x} - 5^{1/x} = 1 + \frac{\ln(2) + \ln(3) - \ln(5)}{x} + o\left(\frac{1}{x}\right) = 1 + \ln\left(\frac{6}{5}\right) \times \frac{1}{x} + o\left(\frac{1}{x}\right)$

En composant par $\ln(1+u) = u + o(u)$ on obtient que $\ln(2^{1/x} + 3^{1/x} - 5^{1/x}) = \ln\left(\frac{6}{5}\right) \times \frac{1}{x} + o\left(\frac{1}{x}\right)$ donc $x \ln \left(2^{1/x} + 3^{1/x} - 5^{1/x}\right) = \ln \left(\frac{6}{5}\right) + o(1)$ et ainsi $\lim_{x \to +\infty} x \ln \left(2^{1/x} + 3^{1/x} - 5^{1/x}\right) = \ln \left(\frac{6}{5}\right)$ et finalement par composition de limites, $(2^{1/x} + 3^{1/x} - 5^{1/x})^x \xrightarrow[x \to +\infty]{} \exp\left(\ln\left(\frac{6}{5}\right)\right) = \frac{6}{5}$

2)
$$\left(\frac{\sin x}{x}\right)^{1/x^2} = \exp\left(\frac{1}{x^2}\ln\left(\frac{\sin x}{x}\right)\right)$$
.
Or, $\frac{\sin x}{x} = \frac{1}{x}\left(x - \frac{x^3}{6} + o(x^3)\right) = 1 - \frac{x^2}{6} + o(x^2)$.

Il s'ensuit que $\ln\left(\frac{\sin x}{x}\right) = -\frac{x^2}{6} + o(x^2)$ par composition avec $\ln(1+u) = u + o(u)$ donc $\frac{1}{x^2}\ln\left(\frac{\sin x}{x}\right) = -\frac{1}{6} + o(1)$ donc $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2} = e^{-\frac{1}{6}}.$

3) On pose le changement de variable u = x - 1 et on étudie $\lim_{x \to 1} \frac{\sin(5\pi(u+1))}{\sin(4\pi(u+1))}$

On a $\sin(5\pi(u+1)) = \sin(5\pi u + \pi) = -\sin(5\pi u)$ et $\sin(4\pi(u+1)) = \sin(4\pi u + 4\pi) = \sin(4\pi u)$. Lorsque u tend vers 0 on a $\sin(5\pi u) \sim 5\pi u$ et $\sin(4\pi u) \sim 4\pi u$ donc $\lim_{u\to 0} \frac{-\sin(5\pi u)}{\sin(4\pi u)} = \frac{-5\pi}{4\pi} = -\frac{5}{4}$ donc $\lim_{x\to 1} \frac{\sin 5\pi x}{\sin 4\pi x} = \frac{1}{4\pi} = -\frac{5}{4\pi} = -\frac{5}{4\pi}$

4)
$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$
 donc $\frac{1}{\ln(1+x)} = \frac{1}{x\left(1 - \frac{x}{2} + o(x)\right)} = \frac{1}{x}\left(1 + \frac{x}{2} + o(x)\right) = \frac{1}{x} + \frac{1}{2} + o(1)$ donc $\frac{1}{\ln(1+x)} - \frac{1}{x} = \frac{1}{2} + o(1)$ et finalement $\lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x}\right) = \frac{1}{2}$.

Correction de l'exercice 3:

1) Pour tout réel x, f(x) est définie si et seulement si 1+x>0 et $\ln(1+x)-x\neq 0$.

Or, pour tout $x \ge -1$, $\ln(1+x) \le x$ avec égalité si et seulement si x=0 (on peut le prouver en étudiant la fonction $h(x) = x - \ln(1+x)$ par exemple).

Ainsi, f est définie sur $]-1;0[\cup]0;+\infty[$.

2) En 0 on a
$$\ln(1+x) - x = -\frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$$
 et $x e^x - \sin(x) - x^2 = x + x^2 + \frac{x^3}{2} + \frac{x^4}{6} - x + \frac{x^3}{6} - x^2 + o(x^4) = \frac{2x^3}{3} + \frac{x^4}{6} + o(x^4)$.

Ainsi,

$$f(x) = \frac{\frac{2x^3}{3} + \frac{x^4}{6} + o(x^4)}{-x^2 \left(\frac{1}{2} - \frac{x}{3} + \frac{x^2}{4} + o(x^2)\right))}$$

$$= -2\frac{\frac{2x}{3} + \frac{x^2}{6} + o(x^2)}{1 - \frac{2x}{3} + \frac{x^2}{2} + o(x^2)}$$

$$= -2\left(\frac{2x}{3} + \frac{x^2}{6} + o(x^2)\right)\left(1 + \frac{2x}{3} - \frac{x^2}{2} + \left(\frac{2x}{3} - \frac{x^2}{2}\right)^2 + o(x^2)\right)$$

$$= -\left(\frac{4x}{3} + \frac{x^2}{3} + o(x^2)\right)\left(1 + \frac{2x}{3} - \frac{x^2}{4} + \frac{4x^2}{9} + o(x^2)\right)$$

$$= -\left(\frac{4x}{3} + \frac{x^2}{3} + o(x^2)\right)\left(1 + \frac{2x}{3} - \frac{7x^2}{36} + o(x^2)\right)$$

$$= -\frac{4x}{3} - \frac{8x^2}{9} - \frac{x^2}{3} + o(x^2)$$

$$= -\frac{4x}{3} - \frac{11x^2}{9} + o(x^2)$$

- 3) D'après la question précédente, $\lim_{x\to 0} f(x) = 0$ donc on peut prolonger f en une fonction g continue définie sur $]-1; +\infty[$ par $g(x) = \begin{cases} f(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.
- 4) D'après la question 2, pour tout $x \neq 0$ on a $\frac{g(x)}{x} = -\frac{4}{3} \frac{11x}{9} + o(x)$ donc $\lim_{x \to 0} \frac{g(x) g(0)}{x 0} = -\frac{4}{3}$. Ainsi g est dérivable en 0et $g'(0) = \frac{-4}{3}$.
- 5) Puisque g(0) = 0, l'équation de la tangente en 0 à Γ est $y = -\frac{4}{3}x$. Dans le développement limité de g au voisinage de 0, le terme suivant $-\frac{4}{3}x$ est $-\frac{11x^2}{9}$ donc au voisinage de 0, la courbe Γ est située en dessous de T.

Correction de l'exercice 4 :

1) $x \mapsto \frac{1}{x}$ est continue sur $]-\infty;0[$ et sur $]0;+\infty[$, $x \mapsto \sin x$ est continue sur \mathbb{R} donc par composition $x \mapsto \sin\left(\frac{1}{x}\right)$ est continue sur $]-\infty;0[$ et sur $]0;+\infty[$. Enfin, $x \mapsto x^2$ est continue sur \mathbb{R} donc f est continue sur $]-\infty;0[$ et sur $]0;+\infty[$ comme produit de fonctions continues.

Pour tout $x \neq 0$, $-1 \leq \sin\left(\frac{1}{x}\right) \leq 1$ donc $-x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2$ et ainsi $\lim_{x \to 0} f(x) = 0$ donc puisque f(0) = 0 on en déduit que f est continue en 0.

Finalement, f est bien continue sur \mathbb{R} .

2) f est dérivable sur \mathbb{R}^* comme produit et composée de fonctions dérivables, comme dans la question 1.

De plus, pour tout $x \neq 0$, $\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = x \sin\left(\frac{1}{x}\right)$.

Pour tout $x \neq 0$, $-1 \leq \sin\left(\frac{1}{x}\right) \leq 1$ donc $-|x| \leq x \sin\left(\frac{1}{x}\right) \leq |x|$ donc $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$. On en déduit que f est dérivable en 0 et que f'(0) = 0.

3) Pour tout $x \neq 0$, $f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \times \left(-\frac{1}{x^2}\right) \cos\left(\frac{1}{x}\right) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$.

Or, $2x \sin\left(\frac{1}{x}\right) \xrightarrow[x \to 0]{} 0$ et $\cos\left(\frac{1}{x}\right)$ n'a pas de limite lorsque $x \to 0$. En effet, si $x_n = \frac{1}{2\pi n}$ on a $\cos\left(\frac{1}{x_n}\right) = \cos(2\pi n) = \frac{1}{2\pi n}$

 $1 \xrightarrow[n \to +\infty]{} 1 \text{ et si } x_n = \frac{1}{(2\pi n + \pi)} \text{ on a } \cos\left(\frac{1}{x_n}\right) = \cos(2\pi n + \pi) = \cos(\pi) = -1 \xrightarrow[n \to +\infty]{} -1 \text{ ce qui contredit l'unicit\'e de la limite.}$

On en déduit que f'(x) ne tend pas vers f'(0) lorsque x tend vers 0 donc f' n'est pas continue en 0, donc f n'est pas \mathcal{C}^1 sur \mathbb{R} .

Correction de l'exercice 5 :

1) Pour tout réel x, f(x) est défini si et seulement si $x^2 - 9x + 8 \ge 0$. Or $x^2 - 9x + 8 = (x - 8)(x - 1)$ donc f est définie sur] $-\infty$; 1] \cup [8; $+\infty$ [.

Pour tout x dans l'ensemble de définition de f, on a

$$\sqrt{x^2 - 9x + 8} = |x|\sqrt{1 - \frac{9}{x} + \frac{8}{x^2}}$$

$$= |x|\left(1 - \frac{9}{2x} + o\left(\frac{9}{2x}\right)\right)$$
 d'après le DL de $\sqrt{1 + u}$ lorsque $u \to 0$

 \mathbf{m}

Ainsi, si x > 0 on a $f(x) = x - \frac{9}{2} + o(1)$ lorsque $x \to +\infty$ donc $f(x) - x + \frac{9}{2} \xrightarrow[x \to +\infty]{} 0$ donc la droite d'équation $y = x - \frac{9}{2}$ est asymptote oblique à la courbe de f en $+\infty$.

De même, si < 0 on a $f(x) = -x + \frac{9}{2} + o(1)$ donc la droite d'équation $y = -x + \frac{9}{2}$ est asymptote oblique à la courbe

2) Pour tout réel x, g(x) est défini si et seulement si $x^2 - 1 \neq 0 \iff x \neq 1$ et $x \neq -1$ donc g est définie sur $\mathbb{R} \setminus \{-1, 1\}$. En $+\infty$ et en $-\infty$ on a $\frac{2x}{x^2 - 1} = \frac{2}{x} \times \frac{1}{1 - \frac{1}{x^2}} = \frac{2}{x} \left(1 + \frac{1}{x^2} + o\left(\frac{1}{x^2}\right) \right) = \frac{2}{x} + \frac{2}{x^3} + o\left(\frac{1}{x^3}\right)$.

Ainsi, $\exp\left(\frac{2x}{x^2-1}\right) = 1 + \frac{2}{x} + o\left(\frac{1}{x}\right)$ donc $g(x) = x + 2 + o\left(2\right)$ et ainsi x + 2 est asymptote oblique à la courbe

Correction de l'exercice 6 : On a $P'(x) = \sum_{k=0}^{n-1} x^k$ donc pour tout $x \neq 1$, $P'(x) = \frac{1-x^n}{1-x}$

 $P'(1) = \sum_{k=0}^{n-1} 1 = n$ donc 1 n'est pas racine de P', et pour tout $x \neq 1$ on a $P'(x) = 0 \iff 1 - x^n = 0 \iff x = 1$ ou x = -1car n est pair.

Ainsi, (-1) est la seule racine de P'. Montrons que -1 n'est pas racine de P, c'est à dire que $\sum_{k=1}^{n} \frac{(-1)^k}{k} \neq 0$. Pour cela on

étudie la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

Les suites $a_n = \sum_{k=1}^{2n} \frac{(-1)^k}{k}$ et $b_n = \sum_{k=1}^{2n+1} \frac{(-1)^k}{k}$ sont adjacentes :

$$- \forall n \in \mathbb{N}^*, b_{n+1} - b_n = \frac{(-1)^{2n+3}}{2n+3} + \frac{(-1)^{2n+2}}{2n+2} = \frac{1}{2n+2} - \frac{1}{2n+3} > 0 \text{ donc } (b_n) \text{ est strictement croissante.}$$

$$\forall n \in \mathbb{N}^*, \ b_n - a_n = \frac{(-1)^{2n+1}}{2n+1} = -\frac{1}{2n+1} \xrightarrow[n \to +\infty]{} 0$$

Ainsi, $\forall n \geq 2$, $b_0 < b_n \leq a_n < a_1$ (et $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \lim_{n \to +\infty} u_n$ mais la limite ne nous sert pas ici).

On en conclut que $\forall n \geq 2$, $b_0 < u_n < a_1$ donc $-1 < u_n < -\frac{1}{2}$. Ainsi, $P(-1) \neq 0$.

Finalement, P n'a pas de racine multiple.

Correction de l'exercice 7 :

1) Soit $(a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1}$ les coefficients réels de P tels que $P(x) = \sum_{k=0}^n a_k x^k$. Supposons que $\lambda \in \mathbb{C}$ est racine de P. Alors $P(\lambda) = 0$ donc $\sum_{k=0}^{n} a_k \lambda^k = 0$. En passant au conjugué dans cette égalité

$$\sum_{k=0}^{n} a_k \lambda^k = 0$$

donc par propriété algébrique du conjugué :

$$\sum_{k=0}^{n} \overline{a_k} \overline{\lambda}^k = 0$$

Or les a_i sont réels donc $\forall i, \overline{a_i} = a_i$ et ainsi $\sum_{k=0}^n a_k \overline{\lambda}^k = 0$, c'est à dire $P(\overline{\lambda}) = 0$, $\overline{\lambda}$ est bien racine de P. Comme P est à coefficient réel, toutes les dérivées de P sont des polynômes à coefficients réels donc pour tout $k \geq 0$, $P^{(k)}(\lambda) = 0 \iff P^{(k)}(\overline{\lambda}) = 0$ d'où l'on déduit que $\overline{\lambda}$ a la même multiplicité que λ si λ est racine de P.

2) Soient $\lambda_1, \ldots, \lambda_r$ les racines réelles de P et $\mu_1, \ldots, \mu_p, \overline{\mu_1}, \ldots, \overline{\mu_p}$ les racines complexes non réelles de P. Notons k_{λ_i} et k_{μ_i} la multiplicité de ces racines.

Alors P se factorise sous la forme $P(x) = a_n \prod_{i=1}^r (x - \lambda_i)^{k_{\lambda_i}} \times \prod_{j=1}^p (X - \mu_j)^{k_{\mu_j}} \times \prod_{j=1}^p (X - \mu_j)^{k_{\mu_j}}$ car pour tout j, μ_j et $\overline{\mu_j}$ ont la même multiplicité.

Ainsi, $P(x) = a_n \prod_{i=1}^r (x - \lambda_i)^{k_{\lambda_i}} \times \prod_{j=1}^p [(X - \mu_j)(X - \overline{\mu_j})]^{k_{\mu_j}} = a_n \prod_{i=1}^r (x - \lambda_i)^{k_{\lambda_i}} \prod_{j=1}^p (X^2 - 2Re(\mu_j)X + |\mu_j|^2)^{k_{\mu_j}}$. Si toutes les racines réelles de P ont une multiplicité paire, alors le degré de ce polynôme est pair car pour tout j, $\deg(X^2 - 2Re(\mu_j)X + |\mu_j|^2)^{k_{\mu_j}}) = 2k_{\mu_j}$ est pair.

Correction de l'exercice 8 :

1) Pour tout $n \in \mathbb{N}$, $x \mapsto \frac{e^{-x}}{x + \frac{1}{n}}$ est continue sur $[0; +\infty[$. En $+\infty$ on a $x^2 \frac{e^{-x}}{x + \frac{1}{n}} \sim \frac{x^2 e^{-x}}{x} \sim x e^{-x} \xrightarrow[x \to +\infty]{} 0$ donc $\frac{e^{-x}}{x + \frac{1}{n}} = o\left(\frac{1}{x^2}\right)$. Ainsi l'intégrale $\int_0^{+\infty} \frac{e^{-x}}{x + \frac{x}{n}} dx$ converge par comparaison avec une intégrale de Riemann convergente. On en déduit que pour tout $n \in \mathbb{N}$, u_n est bien défini.

déduit que pour tout
$$n \in \mathbb{N}$$
, u_n est bien défini.
De plus, $\forall n \in \mathbb{N}, \forall x \in [0; +\infty[$, $\frac{1}{n+1} \le \frac{1}{n} \text{ donc } x + \frac{1}{n+1} \le x + \frac{1}{n} \text{ donc } \frac{1}{x + \frac{1}{n+1}} \ge \frac{1}{x + \frac{1}{n}} \text{ donc finalement}$:

$$\forall n \in \mathbb{N}, \forall x \in [0; +\infty[, \frac{e^{-x}}{x + \frac{1}{n}} \le \frac{e^{-x}}{x + \frac{1}{n+1}}]$$

On en déduit en intégrant :

$$\forall n \in \mathbb{N}, \quad u_n \leq u_{n+1}$$

donc (u_n) est croissante.

2) Pour tout $x \in [0; 1]$, $e^{-1} \le e^{-x}$ donc $\frac{e^{-1}}{x + \frac{1}{n}} \le \frac{e^{-x}}{x + \frac{1}{n}}$.

En intégrant sur [0;1], on obtient $\frac{1}{e} \left[\ln \left(x + \frac{1}{n} \right) \right]_0^1 \le v_n$. Or $\left[\ln \left(x + \frac{1}{n} \right) \right]_0^1 = \ln \left(1 + \frac{1}{n} \right) - \ln \left(\frac{1}{n} \right) = \ln \left(n + \frac{1}{n} \right) = \ln \left(n + \frac{1}{n} \right)$

De plus, pour tout $x \ge 1$, $\frac{e^{-x}}{x + \frac{1}{n}} \le e^{-x}$ donc $w_n \le \int_1^{+\infty} e^{-x} dx = \lim_{A \to +\infty} (e^{-1} - e^{-A}) = e^{-1}$ d'où $0 \le w_n \le \frac{1}{e}$ (w_n est l'intégrale d'une fonction positive sur $[1; +\infty[$ donc est positif.

- 3) Puisque $u_n = v_n + w_n$ d'après la relation de Chasles et que $w_n \ge 0$, on a $u_n \ge v_n \ge \frac{\ln(n+1)}{e}$ pour tout $n \in \mathbb{N}*$. Or $\lim_{n \to +\infty} \frac{\ln(n+1)}{e} = +\infty$ donc $\lim_{n \to +\infty} u_n = +\infty$.
- 4) a) $x \mapsto \frac{1 e^{-x}}{x}$ est continue sur]0;1] et au voisinage de 0 on a $\frac{1 e^{-x}}{x} = \frac{1 (1 x + o(x))}{x} = 1 + o(1)$ donc $\lim_{x \to 0} \frac{1 e^{-x}}{x} = 1$. Cette fonction se prolonge par continuité en 0 donc l'intégrale $\int_0^1 \frac{1 e^{-x}}{x} dx$ converge.
 - b) Pour tout $n \in \mathbb{N}^*$ et tout $x \in [0;1]$ $1 e^{-x} \ge 0$ donc $\frac{1 e^{-x}}{x + \frac{1}{n}} \ge 0$, et $\frac{1}{x + \frac{1}{n}} \le \frac{1}{x}$ donc $\frac{1 e^{-x}}{x + \frac{1}{n}} \le \frac{1 e^{-x}}{x}$, ainsi en intégrant sur [0;1] on obtient $0 \le \int_0^1 \frac{1 e^{-x}}{x + \frac{1}{n}} \le I$.
 - c) D'après l'encadrement précédent, on a

$$0 \le \int_0^1 \frac{1}{x + \frac{1}{n}} - v_n \le I$$

donc $0 \le \ln(n+1) - u_n \le I$.

En divisant par $\ln(n+1)$ on obtient $0 \le 1 - \frac{u_n}{\ln(n+1)} \le \frac{I}{\ln(n+1)}$ donc par encadrement $\lim_{n \to +\infty} (1 - \frac{u_n}{\ln(n+1)} = 0$ donc $\lim_{n \to +\infty} \frac{u_n}{\ln(n+1)} = 1$ d'où $u_n \sim \ln(n+1)$.

Or $\ln(n+1) = \ln(n) + \ln\left(1 + \frac{1}{n}\right) = \ln(n) + o(\ln(n))$ donc $\ln(n+1) \sim \ln(n)$, donc finalement $u_n \sim \ln(n)$.

Correction de l'exercice 9 :

1) La fonction $t \mapsto \frac{1}{\ln(t)}$ est définie pour tout t tel que $\ln(t)$ existe et $\ln(t) \neq 0$. Elle est donc définie sur $]0;1[\cup]1;+\infty[$.

Si $x \in]0;1[$, alors $x^2 \in]0;1[$ donc l'intégrale $\int_x^{x^2} \frac{\mathrm{d}t}{\ln t}$ a un sens. Si $x \in]1;+\infty[$, alors $x^2 \in]1;+\infty[$ donc $\int_x^{x^2} \frac{\mathrm{d}t}{\ln t}$ a aussi un sens. Finalement, cette intégrale a un sens si et seulement si $x \in]0;1[\cup]1;+\infty[$.

2) Pour une valeur $x_0 \in]0;1[$ fixée (respectivement $x_0 \in]1;+\infty[), f(x) = \int_{x_0}^{x^2} \frac{\mathrm{d}t}{\ln t} - \int_{x_0}^{x} \frac{\mathrm{d}t}{\ln t}$.

Or la fonction $t \mapsto \frac{1}{\ln t}$ est continue sur]0;1[et sur $]1;+\infty[$ comme inverse de fonction continue qui ne s'annule pas sur ces intervalles. Soit $F: x \mapsto \int_{x_0}^x \frac{\mathrm{d}t}{\ln t}$ définie sur]0;1[(respectivement sur]1;+ ∞ [. D'après le théorème fondamental de l'analyse, F est \mathcal{C}^1 sur]0;1[(respectivement sur $]1;+\infty[)$ et $F'(x)=\frac{1}{\ln x}$

Or pour tout $x \in]0;1[$ (respectivement $x \in]1;+\infty[)$ on a $f(x)=F(x^2)-F(x)$. Alors f est dérivable comme différence et composée de fonctions dérivables et $\forall x \in]0;1[\cup]1;+\infty[$, $f'(x)=2xF'(x^2)-F'(x)=\frac{2x}{\ln(x^2)}-\frac{1}{\ln(x)}=\frac{x}{\ln x}-\frac{1}{\ln x}=\frac{x}{\ln x}$ $\frac{x-1}{\ln x}$

Pour tout $x \in]0;1[, x-1 < 0 \text{ et } \ln(x) < 0 \text{ donc } f'(x) > 0 \text{ et pour tout } x \in]1;+\infty[, x-1 > 0 \text{ et } \ln(x) > 0 \text{ donc } f'(x) > 0 \text{$ f'(x) > 0, donc f est strictement croissante sur]0;1[et sur $]1;+\infty[$.

Note: la notation F est mal choisie ici car F n'est pas la primitive de f mais la primitive de $x \mapsto \frac{1}{\ln x}$... Attention à ne pas faire d'amalgame.

3) Pour tout $x \in]0; 1[\cup]1; +\infty[$, $f(x) - g(x) = \int_{x}^{x^{2}} \left(\frac{1}{\ln t} - \frac{1}{t-1}\right) dt = \int_{x}^{x^{2}} \frac{t-1-\ln t}{(t-1)\ln t} dt.$ Or, $t - 1 - \ln(t) = t - 1 - (t - 1) + \frac{(t - 1)^2}{2} + o((t - 1)^2)$ donc $t - 1 - \ln t \sim \frac{(t - 1)^2}{2}$, et $(1 - t) \ln t \sim (1 - t)^2$ d'où $\frac{1}{\ln t} - \frac{1}{t-1} \underset{t \to 1}{\sim} \frac{1}{2}$. On peut donc prolonger cette fonction par continuité en 1, et pour toute fonction φ continue sur]0;1] on a $\lim_{x\to 1} \int_x^{x^2} \phi(t) dt = \int_0^0 \phi(t) dt = 0$ par continuité de $x\mapsto \int_{x_0}^x \varphi(t) dt$.

Finalement on a donc bien $\lim_{x\to 0} (f(x) - g(x)) = 0$. Calculons g(x) explicitement:

$$\forall x \neq 1, \ \int_{x}^{x^{2}} \frac{dt}{t-1} = [\ln(t-1)]_{x}^{x^{2}}$$

$$= \ln(x^{2}-1) - \ln(x-1)$$

$$= \ln\left(\frac{x^{2}-1}{x-1}\right)$$

$$= \ln(x+1)$$

donc $\lim_{x \to 1} g(x) = \ln(2)$ donc $\lim_{x \to 1} f(x) = \ln(2)$.

4) Étudions la limite de $\frac{f(x) - \ln(2)}{x - 1}$ lorsque x tend vers 1.

$$\frac{f(x) - \ln(2)}{x - 1} = \frac{f(x) - g(x)}{x - 1} + \frac{g(x) - \ln(2)}{x - 1}$$

On a: $f(x) - g(x) = \int_{x}^{x^{2}} \frac{t - 1 - \ln(t)}{(t - 1)\ln t} dt$

Soit $\varepsilon > 0$. Puisque $\lim_{t \to 1} \frac{t - 1 - \ln(t)}{(t - 1) \ln t} = \frac{1}{2}$ comme on l'a vu à la question précédente, il existe donc un voisinage

 $]1-a, 1+a[\text{ de } 1 \text{ tel que } \forall t \in]1-a, 1+a[, \left|\frac{t-1-\ln(t)}{(t-1)\ln t} - \frac{1}{2}\right| < \varepsilon.$

Ainsi, pour x suffisamment proche de 1, on a $x \in]1-a, 1+a[$ et $x^2 \in]1-a, 1+a[$ donc par inégalité triangulaire

$$\left| \int_{x}^{x^{2}} \left(\frac{t - 1 - \ln(t)}{(t - 1)\ln t} - \frac{1}{2} \right) dt \right| \le \int_{x}^{x^{2}} \left| \frac{t - 1 - \ln(t)}{(t - 1)\ln t} - \frac{1}{2} \right| dt \le (x^{2} - x)\varepsilon$$

d'où:

$$\left| f(x) - g(x) - \int_{x}^{x^{2}} \frac{1}{2} dt \right| \le x(x - 1)\varepsilon$$

donc

$$\left| \frac{f(x) - g(x)}{x(x-1)} - \frac{1}{x(x-1)} \int_{x}^{x^2} \frac{1}{2} dt \right| \le \varepsilon$$

c'est à dire :

$$\left| \frac{f(x) - g(x)}{x(x-1)} - \frac{1}{2} \right| \le \varepsilon$$

On en déduit que $\lim_{x \to 1} \frac{1}{x} \times \frac{f(x) - g(x)}{x - 1} = \frac{1}{2}$ donc que $\lim_{x \to 1} \frac{f(x) - g(x)}{x - 1} = \frac{1}{2} \times 1 = \frac{1}{2}$.

D'autre part on a $\frac{g(x) - \ln 2}{x - 1} = \frac{\ln(1 + x) - \ln 2}{x - 1} = \ln'(2) = \frac{1}{2}$ qu'on obtient comme limite d'un taux d'accroissement. Finalement, $\lim_{x \to 1} \frac{f(x) - \ln(2)}{x - 1} = \frac{1}{2} + \frac{1}{2} = 1$ donc f est dérivable en 1 et f'(1) = 1.

Correction de l'exercice 10

- 1) f est continue sur [a,b] qui est un intervalle fermé borné, donc f atteint son maximum et son minimum sur [a,b]. Il existe donc x_a tel que $\forall x \in [0,1], f(x_a) \leq f(x)$ et alors a existe et $a = f(x_a)$ et il existe $x_b \in [0,1]$ tel que $\forall x \in [0,1], f(x_a) \leq f(x)$ et alors a existe et $a = f(x_a)$ et il existe $x_b \in [0,1]$ tel que $\forall x \in [0,1], f(x_a) \leq f(x)$ et alors a existe et $a = f(x_a)$ et il existe $x_b \in [0,1]$ tel que $\forall x \in [0,1], f(x_a) \leq f(x)$ et alors a existe et $a = f(x_a)$ et il existe $a = f(x_a)$ et il existe $a = f(x_a)$ et alors $a = f(x_a)$ et il existe $a = f(x_a)$ et il existe $a = f(x_a)$ et il existe $a = f(x_a)$ et alors $a = f(x_a)$ et il existe $a = f(x_a)$ $f(x_b) \ge f(x)$ et alors b existe et $b = f(x_b)$.
- 2) Pour tout $y \in [a, b]$, puisque f est continue sur [a, b] et atteint les valeurs a et b, il existe d'après le théorème des valeurs intermédiaire un réel $x \in [a, b]$ tel que f(x) = y. On a alors f(y) = f(f(x)) = f(x) = y. Pour tout $y \in [a, b]$, f(y) = ydonc $f_{|[a,b]}$ est la fonction identité.
- 3) Supposons f non constante. Puisque a est le minimum de f et que c'est aussi un réel de [0,1] et que f(a)=a, alors ou bien a = 0 (a est une borne de l'intervalle), ou bien $a \in]0;1[$ et f'(a) = 0 (on ne peut pas avoir a = 1 sinon on aurait f constante égale à 1 car f est à valeurs dans [0,1]). Or a < b (car f non constante) et $f_{|[a;b]} : x \mapsto x$ donc $f'_{|[a;b]} = 1$ donc la dérivée à gauche de f en a vaut 1, donc f'(a) = 1. On en déduit finalement a = 0, et de la même façon b = 1.
- 4) Dans cette question on suppose seulement f continue.

Le résultat de la question 2 est alors une condition suffisante. En effet, s'il existe un intervalle $[a,b] \subset [0,1]$ tel que $\forall x \in [a,b], f(x) = x$ et tel que pour tout $x \in [0,1], f(x) \in [a,b],$ alors pour tout $x \in [0,1]$ on a f(f(x)) = f(x) car f est l'identité sur [a, b].

L'ensemble des fonctions continues de [0,1] dans [0,1] vérifiant $f \circ f = f$ est donc l'ensemble des fonctions définies par morceau de la forme

$$f(x) = \begin{cases} f_1(x) & \text{si } x \in [0, a] \\ x & \text{si } x \in [a, b] \\ f_2(x) & \text{si } x \in [b, 1] \end{cases}$$

avec $f_1(a) = a$ et $f_2(b) = b$, et f_1, f_2 à valeurs dans [a, b] et continues sur [0, a] et sur [b, 1] respectivement.

Correction de l'exercice 11:

1) f est continue sur $]-\infty;0]$ et sur $]0;+\infty[$ car sa restriction à chacun de ces intervalles est une fonction continue (par opérations usuelles).

Montrons que f est continue en 0:

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} 0 = 0$$

et $\lim_{\substack{x\to 0\\x>0}} \frac{-1}{x} = +\infty$ donc par composition $\lim_{\substack{x\to 0\\x>0}} f(x) = 0$. Ainsi $\lim_{x\to 0} f(x) = 0 = f(0)$ donc f est continue en 0.

- 2) La fonction $x \mapsto \frac{1}{x}$ est \mathcal{C}^{∞} sur $]0; \infty[$ et exp est \mathcal{C}^{∞} sur \mathbb{R} donc par composition $x \mapsto e^{-1/x}$ est \mathcal{C}^{∞} sur \mathbb{R} .
- 3) Pour n = 1, on a pour tout x > 0,

$$f'(x) = \frac{1}{x^2} e^{-1/x}$$

donc en posant $P_1(x) = x^2$ on a bien $f'(x) = P_1\left(\frac{1}{x}\right)e^{-1/x}$. La propriété est vraie pour n = 1. Supposons que pour un certain entier $n \ge 1$ on ait

$$\forall x > 0, \quad f^{(n)}(x) = P_n\left(\frac{1}{x}\right)e^{-1/x}$$

avec P_n un polynôme, alors $f^{(n)}$ est dérivable sur $]0; +\infty[$ comme composée et produit de fonctions dérivables et

$$\forall x > 0, \quad f^{(n+1)}(x) = -\frac{1}{x^2} P'_n\left(\frac{1}{x}\right) e^{-1/x} + \frac{1}{x^2} P_n\left(\frac{1}{x}\right) e^{-1/x}$$
$$= \frac{1}{x^2} \left(P_n\left(\frac{1}{x}\right) - P'_n\left(\frac{1}{x}\right)\right) e^{-1/x}$$

En posant $P_{n+1}(X) = X^2 P_n - X^2 P_n'$, alors P_{n+1} est bien un polynôme et on a :

$$\forall x > 0, \quad f^{(n+1)}(x) = P_{n+1}\left(\frac{1}{x}\right) e^{-1/x}$$

La propriété est donc vraie pour n+1. Par récurrence on en conclut qu'elle est vraie pour tout entier $n \ge 1$.

4) Montrons par récurrence que pour tout entier n, $f^{(n)}$ est dérivable sur \mathbb{R} et que $f^{(n)}(0) = 0$.

f est dérivable sur $]-\infty;0]$ et sur $]0;+\infty[$. En 0, on a :

$$-\lim_{\substack{x\to 0\\x<0}} \frac{f(x)-f(0)}{x-0} = \lim_{\substack{x\to 0\\x<0}} 0 = 0$$

— Si
$$x > 0$$
, $\frac{f(x) - f(0)}{x - 0} = \frac{e^{-1/x}}{x} = \frac{1}{x} e^{-1/x}$ et $\lim_{X \to +\infty} X e^{-X} = 0$ par croissance comparée donc par composition de limites $\lim_{\substack{x \to 0 \\ x < 0}} \frac{f(x) - f(0)}{x - 0} = 0$.

On en déduit que f est dérivable en 0 et que f'(0) = 0.

Supposons que le résultat est vrai pour un entier n quelconque fixé. Alors

$$- \forall x < 0, f^{(n)}(x) = 0 \text{ par calcul de dérivée et } f^{(n)}(0) = 0 \text{ par hypothèse de récurrence, donc } \lim_{\substack{x \to 0 \\ x < 0}} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = 0$$

0.

- Si
$$x > 0$$
, $\frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \frac{1}{x} P_n\left(\frac{1}{x}\right) e^{-1/x} = X P_n(X) e^{-X}$ en posant $X = \frac{1}{x}$.

Or par croissance comparée
$$\lim_{X\to +\infty} X P_n(X) e^{-X} = 0$$
 car P_n est un polynôme, donc $\lim_{\substack{x\to 0\\x>0}} \frac{f^{(n)}(x) - f^{(n)}(0)}{x-0} = 0$

On en conclut que $f^{(n)}$ est dérivable en 0 (donc sur \mathbb{R}) et que $f^{(n)}(0) = 0$.

Par récurrence on en déduit finalement que le résultat est vrai pour tout entier n. On a donc bien $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

Correction de l'exercice 12:

1)
$$u_0 = \int_0^1 e^{1-x} dx = \left[-e^{1-x} \right]_0^1 = e - 1$$

 $u_1 = \int_0^1 x e^{1-x} dx = \left[-x e^{1-x} \right]_0^1 + \int_0^1 e^{1-x} dx = e - 2$

2) a) Soit $n \in \mathbb{N}$. Pour tout $x \in [0; 1]$, $0 \le x \le 1$ donc $0 \le 1 - x \le 1$ et donc $1 \le e^{1-x} \le e$. En multipliant par x^n et en intégrant sur [0; 1] on obtient donc :

$$\int_{0}^{1} x^{n} dx \le \int_{0}^{1} x^{n} e^{1-x} dx \le \int_{0}^{1} x^{n} e dx$$

d'où:

$$\boxed{\frac{1}{n+1} \le u_n \le \frac{\mathrm{e}}{n+1}}$$

- b) Comme $\lim_{n \to +\infty} \frac{1}{n+1} = \lim_{n \to +\infty} \frac{e}{n+1} = 0$ on en déduit par encadrement $\lim_{n \to +\infty} u_n = 0$.
- 3) a) Une intégration par partie donne pour tout entier $n \ge 1$:

$$u_n = \left[-x^n e^{1-x} \right]_0^1 + \int_0^1 nx^{n-1} e^{1-x} dx$$
$$= -1 + nu_{n-1}$$

b) Procédons par récurrence :

d'après la question précédente

- **Initialisation :** $u_0 = e 1$ d'après la question 1) et $e \sum_{k=0}^{0} \frac{1}{k!} = e 1$, donc l'égalité est vraie pour n = 0.
- **Hérédité :** Supposons l'égalité vraie pour un entier naturel n. Alors :

$$u_{n+1} = (n+1)u_n - 1$$

$$= (n+1)n! \left(e - \sum_{k=0}^n \frac{1}{k!} \right) - 1$$

$$= (n+1)! \left(e - \sum_{k=0}^n \frac{1}{k!} \right) - \frac{(n+1)!}{(n+1)!}$$

$$= (n+1)! \left(e - \sum_{k=0}^n \frac{1}{k!} - \frac{1}{(n+1)!} \right)$$

$$= (n+1)! \left(e - \sum_{k=0}^{n+1} \frac{1}{k!} \right)$$

l'égalité est alors vraie pour l'entier n+1. La propriété est donc héréditaire.

- Conclusion : Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $u_n = n! \left(e \sum_{k=0}^{n} \frac{1}{k!} \right)$.
- 4) Pour tout $n \ge 1$, $u_n v_n = nu_{n-1} 1 (nv_{n-1} 1) = n(u_{n-1} v_{n-1})$ donc par une récurrence immédiate :

$$\forall n \ge 1, \quad u_n - v_n = n!(u_0 - v_0)$$

Le terme de droite diverge si $u_0 \neq v_0$, et comme $(u_n)_{n\geq 0}$ converge on en déduit que $(v_n)_{n\geq 0}$ diverge

5) a) Appliquons deux fois la relation de récurrence à u_{n+2} :

$$\forall n \ge 0, \quad u_{n+2} = (n+2)u_{n+1} - 1$$
$$= (n+2)[(n+1)u_n - 1] - 1$$
$$= (n+2)(n+1)u_n - (n+2) - 1$$

donc en divisant par (n+2)(n+1):

$$u_n = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \frac{u_{n+2}}{(n+1)(n+2)}$$

b) On a

$$\frac{1}{n+1} = \frac{1}{n} \times \frac{1}{1+\frac{1}{n}}$$

$$= \frac{1}{n} \left(1 - \frac{1}{n} + o\left(\frac{1}{n}\right) \right)$$

$$= \frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

et

$$\frac{1}{(n+1)(n+2)} = \frac{1}{n^2} \times \frac{1}{1 + \frac{3}{n} + \frac{2}{n^2}}$$
$$= \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

De plus on a $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+2} = 0$ donc $\frac{u_{n+2}}{(n+1)(n+2)} = o\left(\frac{1}{(n+1)(n+2)}\right) = o\left(\frac{1}{n^2}\right)$.

Ainsi, d'après la question précédente et par somme :

$$u_n = \frac{1}{n} + o\left(\frac{1}{n^2}\right)$$

(c'est à dire $c_1 = 1$ et $c_2 = 0$).

