Topologie et calcul différentiel

Table des matières

1.	Topologie des espaces vectoriels normés.	1
	1.1. Espaces vectoriels normés.	1
	1.2. Topologie des espaces vectoriels normés · · · · · · · · · · · · · · · · · · ·	1

1. Topologie des espaces vectoriels normés.

1.1. Espaces vectoriels normés.

Définition 1.1 (Norme). Soit E un espace vectoriel. On appelle norme sur E une fonction $\|\cdot\|: E \to \mathbb{R}$ vérifiant:

- (1) $\forall \lambda \in \mathbb{R}, \forall x \in E, ||\lambda x|| = |\lambda|||x||,$
- (2) $\forall x \in E, ||x|| = 0 \Rightarrow x = 0$,
- (3) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$.

Définition 1.2. Soit E un espace vectoriel et $\|\cdot\|$ une norme sur E. On appelle espace vectoriel normé un couple $(E, \|\cdot\|)$.

Proposition 1.3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, alors :

- $(1) \|0\| = 0,$
- $(2) \ \forall x \in E, \|x\| \ge 0,$
- (3) $\forall x, y \in E, ||x|| ||y|| \le ||x y|||$.

Démonstration.

- $(1) \|0_E\| = \|0_{\mathbb{R}} * 0_E\| = 0_{\mathbb{R}} * \|0_E\| = 0_{\mathbb{R}}.$
- (2) Soit $x \in E$, $||0|| = ||x x|| \le ||x|| + ||-x|| = 2||x||$ d'où $\forall x \in E$, $||x|| \ge 0$.
- (3) Soit $x, y \in E$. $||x|| = ||x + y y|| \le ||x y|| + ||y|| \Leftrightarrow ||x|| ||y|| \le ||x y||$ et $||y|| = ||y + x x|| \le ||y x|| + ||x|| \Leftrightarrow ||y|| ||x|| \le ||x y||$. Ainsi, $||x y|| \ge \max(||y|| ||x||, ||x|| ||y||) = |||x y||$.

Proposition 1.4. Soit $(E, \|\cdot\|)$, $F \subset E$ un sous-espace vectoriel. La restriction de $\|\cdot\|$ à F est une norme appelée norme induite.

П

1.2. Topologie des espaces vectoriels normés

Définition 1.5 (boule ouverte/fermée). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $a \in E, r > 0$. On appelle boule ouverte centrée en a de rayon r la partie $B(a,r) \coloneqq \{x \in E \mid \|x-a\| < r\}$, et boule fermée centrée en a de rayon r la partie $B_f(a,r) \coloneqq \{x \in E \mid \|x-a\| \le r\}$.

Définition 1.6 (Ouvert/fermé). Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Soit $U \subset E$, on dit que U est:

- (1) un ouvert de E si $\forall x \in U, \exists r > 0, B(x, r) \subset U$.
- (2) un fermé de E si U^c est un ouvert de E.

Proposition 1.7. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, alors

- (1) \emptyset et E sont ouverts et fermés.
- (2) Une union quelconque d'ouverts est un ouvert.

- (3) Une intersection finie d'ouverts est un ouvert.
- (4) Une union finie de fermés est un fermé.
- (5) Une intersection quelconque de fermés est un fermé.

Démonstration.

- (1) $\forall x \in \emptyset, \exists \varepsilon, B(x, \varepsilon) \subset \emptyset$ donc \emptyset est un ouvert et $\emptyset^c = E$ donc E est un fermé. De plus, $\forall x \in E, B(x, 1) \subset E$ donc E est un ouvert et $\emptyset = E^c$ est un fermé.
- (2) Soit $(O_i)_{i \in I}$ une famille d'ouverts. Soit $x \in \bigcup_{i \in \{1, ..., n\}} O_i$, alors $\exists j \in I, x \in O_j$. Or O_j est un ouvert donc $\exists r_j > 0$ tel que $B(x, r_j) \subset O_j \subset \bigcup_{i \in I} O_i$ donc $\bigcup_{i \in I} O_i$ est un ouvert.
- (3) Soit $(O_i)_{i \in \{1, ..., n\}}$ une famille d'ouverts. Soit $x \in \bigcap_{i \in \{1, ..., n\}}$ alors $x \in O_1, ..., x \in O_n$. Or $(O_1, ..., O_n)$ sont des ouverts de E donc $\exists (r_i)_{i \in I}$ tels que $B(x, (r_i)_{i \in \{1, ..., n\}}) \subset (O_i)_{i \in I}$. Posons $\varepsilon := \min(r_1, ..., r_n) > 0$. Alors $B(x, \varepsilon) \subset O_1 \cap ... \cap O_n$ donc $\bigcup_{i \in \{1, ..., n\}} C_i$ est un ouvert.
- (4) Soit $(C_1, ..., C_n)$ une famille de fermés. Alors $\left(\bigcup_{i \in \{1, ..., n\}} C_i\right)^c = \bigcap_{i \in \{1, ..., n\}} \left(C_i\right)^c$ qui est un ouvert. Ainsi $\bigcup_{i \in \{1, ..., n\}} C_i$ est un fermé.
- (5) Soit $(C_i)_{i \in I}$ une famille de fermés. Alors $\left(\bigcap_{i \in I} C_i\right)^c = \bigcup_{i \in I} C_i^c$ qui est un ouvert. Ainsi, $\bigcap_{i \in I} C_i$ est un fermé.

Définition 1.8 (Intérieur). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle intérieur de S l'ensemble $\mathring{S} := \{x \in E \mid \exists \varepsilon > 0, B(x, \varepsilon) \subset S\}$.

Définition 1.9 (Adhérence). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle adhérence de S l'ensemble $\overline{S} := \{x \in E \mid \forall \varepsilon > 0, B(x, \varepsilon) \cap S \neq \emptyset.\}$.

Définition 1.10 (Dense). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $S \subset E$. On dit que S est dense dans E si $\overline{S} = E$.

Proposition 1.11. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $S \subset E$.

- $(1) \ \overline{\overline{S^c}} = \left(\underline{\mathring{S}}\right)_c^c,$
- (2) $\mathring{S}^c = \left(\overline{S}\right)^c$,
- (3) $\check{S} \subset S \subset S$
- (4) \mathring{S} est le plus grand ouvert contenu dans S,
- (5) \overline{S} est le plus petit ouvert contenant S