Sapienza Training Camp 2020

Building an Image Search Engine

3 - 5 September, 2020

Instructor team

Dr. Mykhaylo Andriluka Google Research, Zurich

Alessandro Flaborea Sapienza University of Rome

Luca Franco Sapienza University of Rome

Prof. Dr. Fabio Galasso Sapienza University of Rome

Organization

- Website: <u>sapienza-training-camp2020.github.io</u>
- Getting started doc (<u>link</u>)
- Ask questions on Piazza (https://piazza.com/google/fall2020/tcse2020)

- Course format:
 - Competition on Kaggle
 - Lectures: 15-20 minute blocks with quiz in the end

Image search engine

Photo collection (e.g. pictures from the last vocation or a database of web images) Query: "Dog in glasses sitting in a basket on a bike"

Image search engine

Result: images in the collection ordered by relevance with respect to the query

Image search engine

Query: "Dog in glasses sitting in a basket on a bike"

dreamstime.com

Result: images in the collection ordered by relevance with respect to the query

Disclaimer: we will skip a lot of details

- Skip a lots of technical aspects related to implementation of the real search engine
 - o e.g. how to build a system that can store and index terabytes of data
- Focus on image content only
 - ignore the location where the photograph has been taken
 - ignore text of the webpage that contains the image
- Consider each photograph individually
 - we won't build models for places or specific people

Focus on "learning by doing"

- You will develop your own version of the "search engine" and participate in the in-class Kaggle competition (more about it later today)
- Lectures will closely follow the code you will use in your implementation
 - experiment with the code to learn what works best
- Lecture followed by a quiz to recall what you learned
 - quizzes are for you to test yourself (can take quiz multiple times)
 - best strategy: take a quiz after the lecture and then again 2-3 days later (test your memory)

Image from the photo collection

 I_k

Q Query: "dog in glasses sitting in a basket on a bike"

Image from the photo collection

 I_k

Q Query: "dog in glasses sitting in a basket on a bike"

Image from the photo collection

 I_k

Q Query: "dog in glasses sitting in a basket on a bike"

Image from the photo collection

 I_k

Q Query: "dog in glasses sitting in a basket on a bike"

Define similarity function. Order images according to similarity to the query.

Q Query: "dog in glasses sitting in a basket on a bike"

Define similarity function. Order images according to similarity to the query.

$$\sin(Q, T_1) > \sin(Q, T_2)$$

Image from the photo collection

 I_k

Q Query: "dog in glasses sitting in a basket on a bike"

$$\sin(Q, T_1) > \sin(Q, T_2)$$

Define similarity function. Order images

according to similarity to the guery.

Image from the photo collection

 I_k

Q Query: "dog in glasses sitting in a basket on a bike"

Define similarity function. Order images according to similarity to the query.

Q Query: "dog in glasses sitting in a basket on a bike"

Define similarity function. Order images according to similarity to the query.

$$\sin(Q, T_1) > \sin(Q, T_2)$$

Course schedule

Day 1 (Thursday, 3rd of September)

Module	Time	Quiz	Additional material	Notes
Introduction to the training camp	10:00 - 10:30	-	-	-
Computer vision and deep learning	10:30 - 11:30	-	Machine learning with Tensorflow2, Books: Deep learning, Deep learning with Python	-
Introduction to the Kaggle competition	13:30 - 14:00	-	-	-

Day 2 (Friday, 4th of September)

Module	Time	Quiz	Additional material	Notes
Neural Networks for Natural Language Processing (NLP)	13:30 - 15:00	-	Visualizing and Understanding Recurrent Networks, A Simple but Tough-to-Beat Baseline for Sentence Embeddings	-

Day 3 (Saturday, 5th of September)

Module	Time	Quiz	Additional material	Notes
Image captioning. Attention models in computer vision and NLP.	10:00 - 11:30	-	Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, Image captioning colab	-
Announcement of the Kaggle competition results. Short presentations by the competition winners.	17:00 - 17:30	-	-	-

for up-to-date schedule check the course webpage

sapienza-training-camp2020.github.io

Kaggle competition

- Competition is hosted on Kaggle (www.kaggle.com)
- You can participate in teams of at most 3 people
 - Organize yourself into teams
 - Register the team by sending an email to Prof. Galasso
- Two tracks: "Starter" and "Advanced"
 - "Starter" track is for those of you who already didn't yet attended a computer vision or machine learning class

 Saturday 4pm: end of the competition, winner announcement, short presentations by the winning teams

Kaggle competition

- Competition is based on the COCO Dataset: https://cocodataset.org/#explore
- The COCO dataset provides a set of images and their textual descriptions:

a close up of food on a plate being cut into slices someone has begun to cut the cake into slices. a cake with white Icing being sliced with a knife.

a large three layered cake with yellow filling sliced on a white plate

a cake on a plate, on the ground, with four slices cut.

Kaggle competition

- In the competition you will be given a set of images and a corresponding set of textual queries
- Your task:
 - o compare query with each of the images
 - generate list of images sorted by similarity to the query = implement image search!
- Don't panic! We will provide you with a starting code package :)
- More details today at 1:30pm

Looking forward to the next three days!

Good luck for the competition!

Take a quiz!