-> A planar graph with loops 3 n=7 Out of and parallel edges are called is faller Lo vetitices as a simple planer graph. (8-1) one 9mp. Remember porngra and Its - 9ng simple blenar graph (b) 3f < 2e with attend 2 edges, the N=vertice 2 = 2 ed a digree of every face (region (3) n-e+ x = 2 is at least 30 - 0 four color Theorem Euler's formula for disconne el degree (R)=3 of G is simple planas Re dig(R)=4 graph with Kcomponents 0 then, n-e+f=k+1 J R3 R4 tour color Theorem on deg(R3)=7 Every blanas graph is deg(R1) + deg(R2) + deg(R3) = 14 4- Colosable 3 + 4 + 7 3 +3 +3 =9 Using Using Greedy coloring algo. you might get wore than A but its not possible =) 9<2*7 [3f < 2e] Hamiltonian Cycle Euleris formula gy you form a cycle in I find min no of edges and a graph by passing vertice required to torm each restex exactly once lo faces whose min degreens in a simple connected planar -> A-graph with Lumitonia grapho Cycle called as hamiltonian -> 3(f) <2e grapho [e>15] [f=10] Using n-e+f=12 [faluris n-15+10=12 formla]

Max no of edges in planar graph > No need to cover any with A Vatres(e) = 3n-6 , An 33 the edges -> 9+ is not necessary that each graph is XX XX XX hamiltonian . Codercete X

...
Directed X

Bosh Directed X

... Meersay Cond" 1 Cycle must formed @ Each review covered exactly onceo Simple
Mueti
Pseudo
sectul simple
iruted Mueti
nixed Sy G(V, E) is a simple graph having n vertices and for each vertex UEV we have degres 7/1/2 then a is hamiltonian. edge (el.v) U-ru(dirata) SC -> Sufficient Cord" u: initial point, vi terminal oxend Us adjacent tope and a is adjacent Edge Cuts: - [Not require for from u. Gate] Cycle wheel Points to be write regarding Graph Theory - 8 -> Max- number of edges in an Kusatowskis Theorem: Graph is aydic undirected graph with planar if and only of, it doesn't enixentices equals to en-1'. Contain Sculgraph homeomosphic do K5 or K33. for On satio of chromatre > Max. no. of possible edger in an no. to chameta = 2 undirected graph with 'o' vertices and k' components = (a-k)*(a-k+1) - Let 4 be the non-planas -> Ks is smalled non-planar graph graph with min. possible no. of with a=5 and k=0 So, i) edges then gedges edges= (5×1)(5-1+1) and 6 vertices o

(il) vertices 10 edges and 5 octres)

No of Maniltonian cycles

in complete undirected

graph = (n-1):/2

York Theory Goaph is a triple of V. E and relation between them. \$1,2,33 -> set of vertices (1,2)(2,3) -> Order pain. - Goaph with multiple edges blu two vertices - Multi-graph. -- Simple grouph: Graph with no loops & multi edger. for every undirected simple graph > 1 A = AT @ Principle diagonal are all zeroes. [No 100p] Degree of vertex: sum of all the elements in rows Hand shaking lemma: Ever dew = 2 [F(G)] Degree of loop is 2. - Number of odd down are even . - Bren graph: All vertus with even degrees Namber of Simple graph = 2 nc2 Isomorphism: for simple graph of vertice in both graphs.

Bame no. of edges and vertice in both graphs. 11) Degree sequence must be some for botho Mii) Both have same adjacency notinx with différent order of rolos can be possibles

10) Same not of cycles

9n degree sequence arrange the degree of verties in either ascending or descending orders - 9 Sum of degree = odd, then no graph. -> 91 Sum of degree = even, then we can't say anything. -> Mavel - Hakimi Theorem = Och2logn) Min (d) and Max(D) degree: 8 < 21 F1 5 D -> A graph is also a sub-graph of its ocono - Induced sub-graph: Graph obtained after deleting. EX A B Defete D Oc - Path: A simple graph in which two verties are adjacent If they are conscentive in degree sequence once.

	Degree of each vertex is 2.
	-> We can achely soft for a 1 h and a very week the
	-> we can achelve path from cycle but not vice-versa, of complete graph (kn): Graph with (n-1) Neutices and M2 edges.
	- <u>Clique</u> : Set of pairoise adjacent verties.
	- Independent set: Set of pairwise non-adjacent vertices.
-	- Bipartik Graph: Graph whose vertices can be divide into
	Kym -> Complete with m, n vertices in both sets and mxn edges
-	-> A cyclic graph is bipartike if it has only evencycles
-	Max. no. of edges in a bipartite graph = n2 4
-	Regular Greeph: Greeph with all rections of same digrees
100	-> A complete graph is (n-1) regular.
2	-> Every cyclic graph is 2-regularo
	-> Noig edger in k-regular graph with n-vertices = (n+k)/2
-	-> Kyperube (Qx): Simple graph, Qx: k -> no of bits for vertex.
	on Ok, 2k rectices, k.2kt edges, dev)=k.
	we can make Ox wing two Ox-1.
-	Diameter: Max. path length in the given graph.
-	- Eccentricity: Max. distance of vertex from other vertexer.
-	Diameter; property of graph, Eccentricity: property of vertex.
	- Radius: Min. of eccentricity.
	Isolated: degree (1)=0. Pedant: degree (1)=1
	Dack: Conteins repeated vertex but edge can't repeat.
	Total: No repeated edges.
	Eulerian Graph: Greeph has a closed trial connecting all colgers wack that is closed covers each varlers
	A graph is culeriam if it has atmost one non-trivial
	Easy explaination at the end]
-	

- In a complete much kn. and all yerther are
Ichelled then no of cycles (distinct) of length m is
recoercial then no of opens constitution
n(m cm-1)! No et ways to keep m' people on a chalat table = m
2 people on a civalal table = (m
Adding an edge between two components reduces the components by to
the components by 10
> Deleting an edge increase the no. of components by
Every graph with 'n' vertice and k-edger have atteast n-k components.
Directed graph (digraph: 9+ can be simple or multi
graph.
-> Underlying graph: Treat an directed graph as underected
to make cash yestex connectedo
- A digraph can be strongly or weakly connected. If it is
weakly connected then we needed underlying graph.
- weathy connected E strongly connected.
> vertex, degrees: d+(v), d-(v) &- min
out degree in degree Δ - max
Ever d+(v) = E(G) = Ever d-(v)
\odot $S^{-}(G) \leq \frac{ E }{ V } \leq \Delta^{-}(G)$ \odot $S^{+}(G) \leq \frac{ E }{ V } \leq \Delta^{+}(G)$
> Xamber of perfect matching in knn = [n] [No. of one-onef]
- Mumber of perfect matching in kn = 2n! when 2n=
In the solution of perfect matching in the = 2n! when 2n= Lo of for odd no vertice for even vertices 11.2n no equation
- Matching: A matching in a graph is a set of non-loop
edges with no shared end points. In sufurated all vertex participated
Ala al Mamiltonian Cyclin a complete
No. of Hamiltonian Cyclin a complete undirected graph = [(n-1):/2]

Kurtowski Theorem: Greeph is planar if and only (38)
Kurtowski Theorem: Greeph is planar if and only (38) if it doesn't contain subgraph isomorphic
to K5 or K330
Max no of possible edges in an condinated arean with
'a' vertices and 'k' components = (a-k) (a-k+1)/2
> kg is smallest non-planar with a = 5. K=1
=> kg 95 smallest non-planar with a = 5, k=1
riax no of edges in planar - graph with in vertices & 3n-6
-> Max. no. of eages in an acyclic andirected graph with no. 3.
Let C. La
Let 9 be the non-planar graph with min. no. g- O edges O vertices
9 edges and 6 vertices (k33) to edges and 5 vertices (k5)
3/2 OK: sectio of chromatic no to diameter = 2/K
5 Every planar graph 95 4- Colorable according
to 4- color theorem. 5 Euler's formula. O 3+ < 2e for cycle O n-e+8 = 2 6+ < 2e Uff < 2e
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Maximal and maximum matching:
Maximal means you can't crosel more edges without disturbing the property. [Ma]
Maximeem is now among all maximal. [di]
Verlex Cover: Min. set of verlex to cover end point of every edge.
vertex cover > matching size
- min vertex cover [B] - NP. complete Problem.
1Ma1 < 1B1 < 21Ma1
In Kmin max Ma = 1 min B and B = onin (min)

Independent set: Set of pair of non adjacent verties. [q]
$9n \text{ kmn} = \text{max}(m_1 n)$
Edge Cover: Set of edges to were all the resties. [B']
A perfect matching form edges cover = 141/2
for each bipartite graph: \(\sigma' = B
an a company of the control of the c
In a graph: Q+B= INI
In a graph with 0 isolated vertex: x'+B'=1V)
Vertex cut and edge cut is the set of vertex or cologs to get more than one component in the graph. Vertex
get more than one component in the grapho
-> 90 complet graph we need to remove all (n-1) vertex.
-> In Cycle Connectivity is 2, so removed vertex should
non-adjacento
Connectivités of complete graph = 1V1-2
-> Connectivity of Kmn = min (min)
SK K
Chromatic no of Kmn = 2, odd leigth cycle = 3, even
length cycle = 2, complete graph = no
-> 9n Hamiltonsan cycle, cover every vertex exactly once
Planasity: Refer notes.
-> Max no of edge in an acyclic undirected graph with
n-vertices = n-1
-> 21 graph is xmarpher to it complement and call
complemently graph with colges = (10)(101-1) = nch-1)
-> 9ng connected planar simple graph has e edges
and 'v' vertices for 107,3 and no circuits of length 5
then essey
- Fuler Ck+/ Cycle: Closed walk wishs every edge present
- Graph conteins buler lkt called as tuler graph

A graph must have cule cht 94 94 has all vertices of even degree, but graph must be connected. - In planar-graph if total no. of bounded faces = n-1
then it has total in faces -> A graph which has no circuit of odd length and alleast 1 edge is 2-chromatico - tule ett have vertices of even degree only. for a given graph with not vertus let edges and K-components, 10-K < e < (V-K) (V-K+1) no. of vertices. no of vertices. -> No. of ways of splitting 'n'elements into two parts is 2n-1-1. Max no. of edges present in disconnected graph with in vertice = (n-1)(2) [Devide into (n-1) and $\pm \frac{7}{2}$ A connected grouph with n-vertices needs min. (n-1) edges. So we can avoid connectivity with (n-2) edges L be a lattice on a set A and operation of as (A, +) and S be a subset of A also satisfying (S, *) then A is totally ordered set o To find no. of equivalence relation find Both of no. no. of elements in set 95 "n". It IAI = 4 find B3. BnH = $\frac{B}{K=0}$ nCK BK and $\frac{B_0 = B_1 = 1}{B_2 = 29}$ $\frac{B_3 = 5}{B_3 = 5}$ with n-leaf node in binary tree no. of nodes

with digree 2 = n-10