UIT2504 ARTIFICIAL INTELLIGENCE

2024/2025 Odd Semester

Knowledge and Reasoning: Introduction to Logic

Outline

- Knowledge-based agents
- Example: Wumpus world
- Logic in general syntax, interpretations, models, entailment, derivations
- Propositional Logic: syntax
- Propositional Logic: semantics
- Propositional Logic: Inference rules

Knowledge-based Agents

- •Knowledge base = set of sentences in a formal language
- •Knowledge-based agent comprises of domain specific knowledge base and domain independent inference mechanism to process knowledge
- Knowledge is in declarative form
- Suitable for partially observable environments where *hidden* information can be inferred

A simple knowledge-based agent

- Update internal representation of the world
- Infer hidden properties of the world
- Deduce appropriate actions

Example: Wumpus world

- Performance: +1000 for gold; -1000 if agent dies; -1 for each action; -10 for using arrow
- •Environment: Agent starts on
 [1,1]; No pit, gold, or Wumpus
 on [1,1]; Squares adjacent to
 Wumpus are smelly; Squares
 adjacent to pit are breezy; Glitter
 in the square having gold; agent ²
 can grab gold if in same square
- •Actions: Left turn, right turn, move forward, grab, shoot, climb
- •Sensors: Stench, Breeze, Glitter, Bump, Scream

Environment Characterization

- •Fully Observable?
- •Deterministic?
- •Episodic?
- •Static?
- •Discrete?
- •Single agent?

Environment Characterization

- •Fully Observable? No, only local perception
- Deterministic? Yes
- •Episodic? No
- •Static? Yes
- Discrete? Yes
- •Single agent? Yes

•Start at [1,1]; Perceive [None, None, None, None, None]

•Start at [1,1]; Perceive [None, None, None, None, None]

•Move Forward; Perceive [None, Breeze, None, None, None]

Move Forward; Perceive [None, Breeze, None, None, None]

•Move to [2,1]; Perceive [Stench, None, None, None, None]

•Move to [2,1]; Perceive [Stench, None, None, None, None]

•Move to [2,2]; Perceive [None, None, None, None, None]

•Move to [2,2]; Perceive [None, None, None, None, None]

•Move to [3,2]; Perceive [Stench, Breeze, Glitter, None, None]

Special Situation

Special Situation

- Logics are formal languages for representing and processing knowledge
- Syntax defines the well-formed sentences in the language
- Semantics defines the "meaning" of a sentence

- Example: x + y = 4 is a well-formed sentence. xy+4= is not!
- x and y can take values from a domain, say \mathbb{N} , the set of Natural numbers
- x = 10 and y = 2 is a possible world
 (interpretation) in which given sentence is false
- x = 2 and y = 2 is a possible world (interpretation) in which the sentence is true (such interpretations are called as models)

- Entailment means one thing follows from the other: $KB = \alpha$
- KB entails α iff α is true in all the interpretations where KB is true
- (x + y = 4) = (y = 4 x)
- Entailment is a relationship between sentences based on semantics

- M(KB): set of all models of KB
- $KB \models \alpha \text{ iff } M(KB) \subseteq M(\alpha)$
- Consider, for example, $(x + y = 4) = (y \le 4)$
- Inference in logic:
 KB ≟α

- Situation after detecting nothing in [1,1], moving right, breeze in [2,1]
- Consider interpretations for KB considering only pits
- 3 boolean choices imply 8 possible interpretations

C. Aravindan 24

KB: Rules of the Wumpus world + observations

KB: Rules of the Wumpus world + observations

$$\alpha_1$$
: [1,2] is safe $KB \stackrel{?}{\models} \alpha_1$

KB: Rules of the Wumpus world + observations

 α_1 : [1,2] is safe

 $KB \models \alpha_1$ can be proved by model checking!

SSN

C. Aravindan

KB: Rules of the Wumpus world + observations

 α_2 : [2,2] is safe KB $\stackrel{?}{\models} \alpha_2$

$$KB \stackrel{?}{\models} \alpha_2$$

KB: Rules of the Wumpus world + observations

 α_2 : [2,2] is safe

$$KB \not\models \alpha_2$$

C. Aravindan

Derivations

• KB $\vdash \alpha$ if α can be derived from KB using syntactic inference rules

$$x + y = 4$$

 $x + y - y = 4 - y$
 $x = 4 - y$

- Inference procedure is sound if every α derivable is entailed by KB
- Inference procedure is complete if every α that is entailed by KB can be derived from KB
- When we have sound and complete inference procedure, $KB \stackrel{?}{=} \alpha$ can be reduced to $KB \stackrel{?}{=} \alpha$

Questions?

What Next?

- Read Chapter 7
- We will continue with knowledge and reasoning
- Next few lectures will focus on propositional logic
- You can start reading sections 7.4 and beyond

