Midterm 1

Matthew Tiger

November 11, 2015

Problem 1.a. Consider the process

$$X_t + 0.4X_{t-1} - 0.32X_{t-2} = Z_t - 0.8Z_{t-1} + 0.16Z_{t-2}.$$
 (1)

Determine whether the model is a stationary process.

Solution. The model $\{X_t\}$ is a stationary process if $\{X_t\}$ is a stationary solution of the equations (1). By the existence and uniqueness theorem of ARMA(p,q) processes, a stationary solution $\{X_t\}$ of the equations

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

that define the model exists if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0$$
 for all $|z| = 1$,

i.e. if and only if the roots of $\phi(z)$ do not lie on the unit circle.

For our model, we have $\phi_1 = -0.4$ and $\phi_2 = 0.32$ so that $\phi(z) = 1 + 0.4z - 0.32z^2$. Note that the roots of $\phi(z)$ are $z_1 = -1.25$ and $z_2 = 2.5$. As $|z_i| \neq 1$ for i = 1, 2, we conclude that the roots of $\phi(z)$ do not lie on the unit circle and that the model $\{X_t\}$ is a stationary process assuming that $\{Z_t\} \sim \text{WN}(0, \sigma^2)$.

Problem 1.b. Considering the model in problem 1.a, what is R_3 , i.e. the correlation matrix of size 3?

Solution. The covariance matrix of size 3 for our model $\{X_t\}$ is given by

$$\Gamma_3 = \begin{bmatrix} \gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(2) & \gamma(1) & \gamma(0) \end{bmatrix}$$

where $\gamma(h)$ is the autocovariance function of the process $\{X_t\}$. For an ARMA(p,q) process $X_t - \phi_1 X_{t-1} - \cdots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q}$, the autocovariance function $\gamma(h)$ satisfies the equations

$$\gamma(k) - \phi_1 \gamma(k-1) - \dots - \phi_p \gamma(k-p) = \sigma^2 \sum_{j=0}^{\infty} \theta_{k+j} \psi_j \quad \text{for } 0 \le k < 3$$

where $\psi_j - \sum_{k=1}^p \phi_k \psi_{j-k} = \theta_j$ for $j \geq 0$ and $\psi_j = 0$ for j < 0. For our process, this corresponds to the system of equations

$$\gamma(0) - \phi_1 \gamma(1) - \phi_2 \gamma(2) = \sigma^2 (\psi_0 + \theta_1 \psi_1 + \theta_2 \psi_2)
\gamma(1) - \phi_1 \gamma(0) - \phi_2 \gamma(1) = \sigma^2 (\theta_1 \psi_0 + \theta_2 \psi_1)
\gamma(2) - \phi_1 \gamma(1) - \phi_2 \gamma(0) = \sigma^2 \theta_2 \psi_0$$
(2)

where $\psi_0 = 1$, $\psi_1 = \theta_1 + \phi_1$, and $\psi_2 = \theta_2 + \phi_1^2 + \phi_1\theta_1 + \phi_2$. Using the parameters ϕ_j and θ_k defining our model, the system of equations (2) becomes

$$\gamma(0) + 0.4\gamma(1) - 0.32\gamma(2) = 2.1136\sigma^{2}$$

$$\gamma(1) + 0.4\gamma(0) - 0.32\gamma(1) = -0.992\sigma^{2}$$

$$\gamma(2) + 0.4\gamma(1) - 0.32\gamma(0) = 0.16\sigma^{2}$$

the solution of which is $\gamma(0) = 5\sigma^2$, $\gamma(1) = -4.4\sigma^2$, and $\gamma(2) = 3.52\sigma^2$. Thus, the covariance matrix Γ_3 is given by

$$\Gamma_3 = \sigma^2 \begin{bmatrix} 5.00 & -4.40 & 3.52 \\ -4.40 & 5.00 & -4.40 \\ 3.52 & -4.40 & 5.00 \end{bmatrix}.$$

Note that the correlation matrix $R_3 = (1/\gamma(0))\Gamma_3$. Therefore,

$$R_3 = \begin{bmatrix} 1.000 & -0.880 & 0.704 \\ -0.880 & 1.000 & -0.880 \\ 0.704 & -0.880 & 1.000 \end{bmatrix}.$$