

	classmate Date Page
	Usual Steps ① Standard form ② IBFS $\chi_1 = \chi_2 = \chi_3 = 0$ ③ Simplex Table ④ Findl answer: Z_{max} (If $Z \rightarrow Z'$ then final answer also $\neg Ve$) $\chi_1 \chi_2 S_1 S_2 $ Simplex Table format:
	Bosic Coefficients of RHS Ratio Voriable $\alpha_1 \alpha_2 \alpha_3 s_1 s_2 s_0$ Z S, S,
	Note: if x, x2 x2 = 0 in table for z there exists an olternate solution
*	NLPP Maxima Minima 1) Find $\frac{3z}{3x_1}, \frac{3z}{3x_2}, \frac{3z}{3x_3}$ 2) Put them = 0 & find x_1, x_2, x_3 3) Get Hassien Motrix 4) Find minors D ₁ , D ₂ , D ₃ \Rightarrow ++++ minima determinant \Rightarrow +-+- maxima 5) Calculate z by putting x_1, x_2, x_3
	$H = \begin{bmatrix} \frac{\partial z^2}{\partial x^2} \\ \frac{\partial z^2}{\partial x^2} \\ \frac{\partial z^2}{\partial x^3} \end{bmatrix}$

	classmate Date Page
lograngian method (For equality constraints) 1) Put in $L = f(x_1, x_2) - \lambda h(x_1, x_2)$ 2) Get $\frac{\partial L}{\partial x_1}$, $\frac{\partial L}{\partial x_2}$, $\frac{\partial L}{\partial x_3}$	
3) Put 0, get x_1, x_2, λ (Might need ex 4) Find Δ_3 5) $\Delta_3 \rightarrow +ve \rightarrow maxima$ $\Delta_3 \rightarrow -ve \rightarrow minima$ 6) Put x_1, x_2, λ get z	tra calculation) $ \begin{array}{c ccccc} \hline 0 & \frac{2h}{\partial x_1} & \frac{2h}{\partial x_2} \\ \hline 3 & = & \frac{2h}{\partial x_2} & \cos x_1 & 0 \\ \hline \frac{2h}{\partial x_2} & 0 & \cos x_2 \end{array} $
	ALL STATE OF THE STATE OF