27. Randwertprobleme (Einblick)

Sei $D \subseteq \mathbb{R}^2$, $I = [a, b] \subseteq \mathbb{R}$, $f : IxD \to \mathbb{R}$ eine Funktion. Wir betrachten das **Randwertproblem** (RWP):

$$\begin{cases} y'' = f(x, y, y') \\ \alpha_1 y(a) + \alpha_2 y''(a) = \gamma_a, \beta_1 y(b) + \beta_2 y''(b) = \gamma_b \end{cases}$$

mit $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_a, \gamma_b \in \mathbb{R}$.

Beispiel

Die Dgl $y'' = -\pi^2 y$ hat die allg. Lösung $y(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x)$ Die Dgl $y'' = -\pi^2 y + 1$ hat die allg. Lösung $y(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x) + \frac{1}{\pi^2}$

RWP (1)
$$\begin{cases} y'' = -\pi^2 y \\ y(0) = y(1) = 0 \end{cases} \quad (I = [0, 1])$$

 $0 = y(0) = c_1 \cos(\pi 0) + c_2 \sin(\pi 0) = c_1$

 $0 = y(1) = c_2 \sin(\pi 0) = 0$. D.h.: das RWP hat unendlich viele Lösungen: $y(x) = c \sin(\pi x)$ ($c \in$

RWP (2)
$$\begin{cases} y'' = -\pi^2 y + 1 \\ y(0) = y(1) = 0 \end{cases} \quad (I = [0, 1])$$

 $0 = y(0) = c_1 \cos(\pi 0) + c_2 \sin(\pi 0) + \frac{1}{\pi^2} = c_1 + \frac{1}{\pi^2} \implies c_1 = -\frac{1}{\pi^2}$ $0 = y(1) = -\frac{1}{\pi^2} \cos(\pi) + c_2 \sin(\pi) + \frac{1}{\pi^2} = \frac{2}{\pi^2}. \text{ D.h.: das RWP ist unlösbar.}$

RWP (3)
$$\begin{cases} y'' = -\pi^2 y \\ y(0) = y'(1) = 0 \end{cases} \quad (I = [0, 1])$$

 $0 = y(0) \implies c_1 = 0 \implies y(x) = c_2 \sin(\pi x)$

 $y'(x) = c_2\pi\cos(\pi x) \xrightarrow{x=1} c_2\pi\cos(\pi) = -c_2\pi \implies c_2 = 0$

 $\implies y = 0$ ist die eindeutig bestimmte Lösung des RWPs.

Beachte für später:

In Bsp(1) und (3): $f(x,y) = -\pi^2 y$

In Bsp(1) and (3), $f(x,y) = -\pi^2 y + 1$ In allen 3 Bsp'en: $|f(x,y) - f(x,\tilde{y})| = \underbrace{\pi^2}_{t} |y - \tilde{y}|$. ($\implies \exists \text{ kein } L \in [0,\pi^2) : |f(x,y) - f(x,\tilde{y})| \le \frac{\pi^2}{t} |y - \tilde{y}|$.

 $L|y-\tilde{y}|$)

Definition: Die Funktion $G: [0,1] \times [0,1] \to \mathbb{R}$ sei definiert durch:

$$G(x,t) := \begin{cases} t(x-1), \text{ falls } 0 \le t \le x. \\ x(t-1), \text{ falls } 0 \le x \le t. \end{cases}$$

Klar: $G \le 0$; $G(0,t) = G(1,t) = 0 \ \forall t \in [0,1]$. Übung: G ist stetig auf $[0,1] \times [0,1]$.

Hilfssatz 27.1

Gegeben: $h:[0,1]\to\mathbb{R}$ stetig. $\phi:[0,1]\to\mathbb{R}$ sei definiert durch

$$\phi(x) := \int_0^1 G(x, t)h(t)dt.$$

Dann: $\phi(0) = \phi(1) = 0, \phi \in C^2([0, 1] \text{ und } \phi'' = h \text{ auf } [0, 1].$

$$\begin{aligned} & \text{\textbf{Beweis}} \\ & \phi(0) = \int_0^1 \underbrace{G(0,t)}_{=0} h(t) dt = 0; \phi(1) = \int_0^1 \underbrace{G(1,t)}_{=0} h(t) dt = 0 \\ & \forall x \in [0,1] : \phi(x) = \int_0^x G(x,t) h(t) dt + \int_x^1 G(x,t) h(t) dt = \int_0^x (tx-t) h(t) dt + \int_x^1 (xt-x) h(t) dt \\ & = x \int_0^x t h(t) dt - \int_0^x t h(t) dt + x \int_x^1 t h(t) dt - x \int_x^1 h(t) dt \\ & = x \int_0^1 t h(t) dt - \int_0^x t h(t) dt + x \int_1^x h(t) dt \\ & \implies \phi \text{ ist db auf } [0,1] \text{ und } \phi'(x) = \int_0^1 t h(t) dt - x h(x) + \int_1^x h(t) dt + x h(x) \\ & = \int_0^1 t h(t) dt + \int_1^x h(t) dt. \implies \phi \text{ ist auf } [0,1] \text{ 2 mal db und } \phi''(x) = h(t). \end{aligned}$$

Beispiel
$$\int_{0}^{1} G(x,t)dt = \underbrace{\int_{0}^{1} G(x,t)1dt}_{=:\phi(x)} \xrightarrow{27.1} \phi''(x) = 1 = \phi'(x) = x + c_{1}$$

$$\Rightarrow \phi(x) = \frac{1}{2}x^{2} + c_{1}x + c_{2}$$

$$0 = \phi(0) = c_{2}$$

$$0 = \phi(1) = \frac{1}{2} + c_{1} \Rightarrow c_{1} = -\frac{1}{2}$$

$$0 = \phi(0) = c_2$$

$$0 = \phi(1) = \frac{1}{2} + c_1 \implies c_1 = -\frac{1}{2}$$

$$\implies \int_0^1 G(x, t) dt = \frac{1}{2} x^2 - \frac{1}{2} x \ \forall x \in [0, 1].$$

Definition

 $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ sei stetig. Das RWP

(R)
$$\begin{cases} y'' = f(x, y) \\ y(0) = y(1) = 0 \end{cases}$$

heisst Dirichlet Randwert-Problem und obige Funktion G heisst die zu (R) gehörende Greensche Funktion.

Im Folgenden sei $X := C([0,1],\mathbb{R})$ und der Operator $T: X \to X$ definiert durch

$$(T_y)(x) := \int_0^1 G(x,t)f(t,y(t))dt(y \in X, x \in [0,1])$$

Aus 27.1: $(T_y)(0) = (T_y)(1) = 0, T_y \in C^2[0,1]$ und $(T_y)''(x) = f(x,y(x)) \ \forall y \in X \ \forall x \in [0,1].$

Satz 27.2

Sei $y \in X$.

$$y$$
 löst (R) auf $[0,1] \iff T_y = y$

Beweis

$$\begin{array}{l} \forall x \in I : y''(x) = f(x,y(x)) \stackrel{\text{s.o.}}{=} (T_y)''(x); \Psi(x) := y(x) - (T_y)(x) \\ \Longrightarrow \Psi'' = 0 \text{ auf } [0,1] \implies \Psi'(x) = c_1 \implies \Psi(x) = c_1 x + c_2 \\ \Psi(0) = y(0) - (T_y)(0) = 0 \implies c_2 = 0. \\ \Psi(1) = y(1) - (T_y)(1) = 0 \implies c_1 = 0. \\ \text{"\Leftarrow":} \\ \text{Sei } y = T_y \stackrel{27.1}{\Longrightarrow} y \in C^2([0,1]) \text{ und } y''(x) = (T_y)''(x) = f(x,y(x)) \ \forall x \in [0,1] \\ y(0) = (T_y)(0) \stackrel{\text{s.o.}}{=} 0 \\ y(1) = (T_y)(1) \stackrel{\text{s.o.}}{=} 0. \end{array}$$

Vorbetrachtung:

Sei
$$0 < c < \pi$$
, $\phi(x) := \cos c(x - \frac{1}{2})(x \in [0, 1])$.
 $\phi \in C([0, 1], \mathbb{R})$. $x \in [0, 1] \implies c(x - \frac{1}{2}) \in [-\frac{c}{2}, \frac{c}{2}] \subsetneq [-\frac{\pi}{2}, \frac{\pi}{2}]$
 $\implies \phi(x) > \frac{c}{2} > 0 \ \forall x \in [0, 1]$

Satz 27.3 (Satz von Lettenmeyer)

 $f:[0,1]\times\mathbb{R}\to\mathbb{R}$ sei stetig. Es sei $L\geq 0$ und es gelte: $|f(x,y)-f(x,\tilde{y})|\leq L|y-\tilde{y}|\ \forall (x,y),(x,\tilde{y})\in[0,1]\times\mathbb{R}.$ Ist $L<\pi^2$, so hat (R) auf [0,1] genau eine Lösung.

Bemerkung:

- (1) Die Beispiele am Anfang des Paragrafen zeigen, dass die Schranke π^2 optimal ist.
- (2) Allgemein kann man das RWP

$$\begin{cases} y'' = f(x, y) \\ y(a) = y(b) = 0 \end{cases}$$

(mit $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ stetig) betrachten. Dann ist π^2 durch $\frac{\pi^2}{(a-b)^2}$ zu ersetzen.

Beweis

Sei $c := (\frac{c+\pi^2}{2})^{\frac{1}{2}}$. Dann: $L < c^2 < \pi^2$, $q = \frac{L}{c^2}$, also q < 1.

Sei ϕ wie in der Vorbetrachtung. Wir versehen nun X mit folgender Norm:

$$||u||:=\max\{rac{u(x)}{\phi(x)}:0\leq x\leq 1\}\ (u\in X)$$
 gewichtete Max-Norm

Bekannt: $(X, ||\cdot||)$ ist ein BR (Par. 13). Wir werden zeigen:

$$||T_u - T_v|| \le q||u - v|| \ \forall u, v \in X.$$

Aus 11.2 folgt dann: T hat genau einen Fixpunkt. Aus 27.2 folgt dann die Behauptung.

Seien $u, v \in X$ und $x \in [0, 1]$. $|(T_u)(x) - (T_v)(x)| = |\int_0^1 G(x, t)(f(t, u(t)) - f(t, v(t))dt| \le \int_0^1 |G(x, t)|L|u(t) - v(t)|dt$

$$\int_{0}^{1} |G(x,t)| L|u(t) - v(t)| dt$$

$$= L \int_{0}^{1} |G(x,t)| \underbrace{\frac{|u(t) - v(t)|}{\phi(t)}}_{\leq ||u - v||} \phi(t) dt \leq L||u - v|| \int_{0}^{1} |G(x,t)| \phi(t) dt$$

27. Randwertprobleme (Einblick)

$$\frac{G \leq 0}{\tilde{z}} L||u-v|| \left(-\int_{0}^{1} G(x,y)\phi(t)dt\right)$$

$$= :g(x)$$

$$27.1 \implies g(0) = g(1) = 0, g \in C^{2}([0,1]) \text{ und } g'' = \phi. \text{ Dann: } g'(x) = \frac{1}{c}\sin c(x - \frac{1}{2}) + c_{1}$$

$$\implies g(x) = -\frac{1}{c^{2}}\cos c(x - \frac{1}{2}) + c_{1}x + c_{2} = -\frac{1}{c^{2}}\phi(x) + c_{1}x + c_{2}.$$

$$0 = g(0) = -\frac{1}{c^{2}}\phi(0) + c_{2} \implies c_{2} = \frac{1}{c^{2}}\cos\frac{c}{2} \quad 0 = g(1) = -\frac{1}{c^{2}}\phi(1) + \frac{1}{c^{2}}\cos\frac{c}{2} \implies c_{1} = 0$$

$$\implies g(x) = -\frac{1}{c^{2}}\phi(x) + \frac{1}{c^{2}}\cos\frac{c}{2}$$

$$\implies |(T_{u})(x) - (T_{v})(x)| \leq L||u-v||\frac{1}{c^{2}}(\phi(x) - \cos\frac{c}{2}) = \frac{L}{c^{2}}||u-v||(\phi(x) - \cos\frac{c}{2}) \implies \underbrace{|(T_{u})(x) - (T_{v})(x)|}_{=\phi(x)} \leq \frac{L}{c^{2}}||u-v||$$

$$\stackrel{L}{\Rightarrow} ||T_{u} - T_{v}|| \leq q||u-v||.$$

Satz 27.4 (Satz von Scorza-Dragoni)

Sei $I = [a, b] \subseteq \mathbb{R}$, $D := I \times \mathbb{R}$ und $f \in C(D, \mathbb{R})$ sei auf D beschränkt.

Dann hat das Randwertproblem

$$\begin{cases} y'' = f(x, y) \\ y(a) = y(b) = 0 \end{cases}$$

eine Lösung auf I.

Beispiel

$$I = [0, \pi], \quad f(x, y) = \begin{cases} 1, & y \le -1 \\ -y, & |y| \le 1 \\ -1, & y \ge 1 \end{cases}$$

Wir betrachten das Randwertproblem

$$\begin{cases} y'' = f(x, y) \\ y(0) = y(\pi) = 0 \end{cases}$$

Sei $\alpha \in \mathbb{R}$, $|\alpha| \leq 1$ und $y_{\alpha}(x) := \alpha \sin x$, $|y_{\alpha}| \leq 1$, $y''_{\alpha}(x) = -\alpha \sin x = -y_{\alpha}(x) = f(x, y_{\alpha}(x))$, $y_{\alpha}(0) = y_{\alpha}(\pi) = 0$. Das heißt: Ein Randwertproblem wie in 27.4 muß *nicht* eindeutig lösbar sein.

Beweis

Wir führen den Beweis nur unter der zusätzlichen Voraussetzung:

$$\exists L > 0 : |f(x,y) - f(x,\tilde{y})| < L|y - \tilde{y}| \ \forall (x,y), (x,\tilde{y}) \in D$$

Sei $M \ge 0$ so, dass $|f| \le M$ auf D.

Sei $s \in \mathbb{R}$. Wir betrachten das Anfangswertproblem:

$$\begin{cases} y'' = f(x,y) \\ y(a) = 0, y'(a) = s \end{cases}$$

18.3 \Longrightarrow obiges Anfangswertproblem hat genau eine Lösung y_s auf I. §18 und 25.2 \Longrightarrow $|y_{s_1}(x) - y_{s_2}(x)| \le c|s_1 - s_2| \ \forall x \in I, s_1, s_2 \in \mathbb{R}$.

 $h(s):=y_s(b)\ (s\in\mathbb{R})$, damit $h:\mathbb{R}\to\mathbb{R}$ stetig. Ist $s_0\in\mathbb{R}$ und $h(s_0)=0$, so ist $y:=y_{s_0}$ eine Lösung des Randwertproblems.

$$\forall x \in I : y_s'(x) - s = y_s'(x) - y_s'(a) = \int_a^x y_s''(t)dt = \int_a^x f(t, y_s(t))dt$$

$$\implies y_s'(x) = s + \int_a^x f(t, y_s(t))dt$$

$$\implies y_s(b) = y_s(b) - y_s(a)$$

$$\stackrel{\text{MWS}}{=} y_s'(\xi)(b - a)$$

$$= \left(s + \int_a^\xi f(t, y_s(t))dt\right)(b - a)$$

$$= s(b - a) + \int_a^\xi f(t, y_s(t))dt(b - a)$$

$$\implies |h(s) - s(b - a)| = |\int_a^{\xi} f(t, y_s(t)) dt(b - a)| \le M(\xi - a) \le M(b - a) =: c$$

$$\implies -c \le h(s) - s(b - a) \le c \ \forall s \in \mathbb{R}$$

$$\implies s(b - a) - c \le h(s) \le c + s(b - a) \ \forall s \in \mathbb{R}$$

$$\implies h(s) \to \infty \ (s \to \infty) \ \text{und} \ h(s) \to -\infty \ (s \to -\infty)$$

Der Zwischenwertsatz liefert nun: $\exists s_0 \in \mathbb{R} : h(s_0) = 0$

Satz 27.5

Sei A > 0, $0 < B < \pi^2$, $f \in C([0,1] \times \mathbb{R}, \mathbb{R})$ und es gelte

$$|f(x,y)| \le A + B|y| \ \forall x \in [0,1], y \in \mathbb{R}$$

Dann hat das Randwertproblem

$$\begin{cases} y'' = f(x, y) \\ y(0) = y(1) = 0 \end{cases}$$

eine Lösung auf [0, 1]

Bemerkung: Die Schranke π^2 ist optimal:

$$\begin{cases} y'' = -\pi^2 y + 1 \\ y(0) = y(1) = 0 \end{cases}$$

ist unlösbar!