Sets

- A set S is a collection of different objects, the elements of S
- We write $x \in S$ for 'x is an element of S'
- A set `can' be specified by
 (I) listing its elements, e.g. S = {1,3,7,18}
 (2) specifying a property, e.g. S = {x | P(x)}
- Sets can be finite e.g. {♣,♥} or infinite e.g. N
- The set with no elements is the empty set, notation Ø
- The `number' of elements in a set S is the cardinality of S, notation |S|

Sets

- A set S is a collection of different objects, the elements of S
- We write $x \in S$ for 'x is an element of S'
- A set `can' be specified by
 - (I) listing its elements, e.g. $S = \{1,3,7,18\}$
 - (2) specifying a property, e.g. $S = \{x \mid P(x)\}$
- Sets can be finite e.g. {♣,♥} or infinite e.g. N
- The set with no elements is the empty set, notation Ø
- The `number' of elements in a set S is the cardinality of S, notation |S|

P is a proposition over x, which is true or false

Sets - properties

- All elements of a set are different
- The elements of a set are not ordered
- The same set can be specified in different ways, e.g. $\{1,2,3,4\},\{2,3,1,4\},\{i\mid i\in\mathbb{N} \text{ and } 0 < i < 5\}$

Def. A \subseteq B iff all elements of A are elements of B

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$]

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$] [iff $\forall a \ (a \in A \Rightarrow a \in B)$]

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$] [iff $\forall a \ (a \in A \Rightarrow a \in B)$] logical formula

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$] [iff $\forall a \ (a \in A \Rightarrow a \in B)$] logical formula connective

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$] [iff $\forall a \ (a \in A \Rightarrow a \in B)$] $| logical \ connective | lo$

Def. A = B iff $A \subseteq B$ and $B \subseteq A$

Def. $A \subseteq B$ iff all elements of A are elements of B [iff for all a, if $a \in A$, then $a \in B$]

Def. A = B iff $A \subseteq B$ and $B \subseteq A$

Def. $A \subset B$ iff $A \subseteq B$ and $A \neq B$

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A A n B B

Def. Union (Vereinigung) A \cup B = {x | x \in A or x \in B}

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A n B

В

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

AAUB

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A A n B B

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

A A U B

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A ∩ B

В

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

Def. Direct product (Kartesisches Produkt)

$$A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$$

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

AAUB

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A A n B B

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A\B

Def. Direct product (Kartesisches Produkt)

$$A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$$

ordered pairs

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

AAUB

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A A n B B

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A\B

Def. Direct product (Kartesisches Produkt)

$$(A \times B) \times C \neq A \times (B \times C)$$

$$A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$$

ordered pairs

Def. Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

AUB

Def. Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

 $A \cap B$

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

В

Def. Direct product (Kartesisches Produkt)

$$(A \times B) \times C \neq A \times (B \times C)$$

$$A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$$

ordered pairs

Def. Powerset (Potenzmenge) $\mathcal{P}(A) = \{X \mid X \subseteq A\}$

Russell's paradox

- Let P be the set of all sets that are not an element of itself
- Hence, $P = \{ x \mid x \notin x \}$
- Is $P \in P$?
- Contradiction!

Russell's paradox

- Let P be the set of all sets that are not an element of itself
- Hence, $P = \{ x \mid x \notin x \}$
- Is $P \in P$?
- Contradiction!

The need for a universal set U $S = \{x \mid x \in U \text{ and } P(x)\}$

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

Given a universal set U

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

Given a universal set U

Def. Complement (Komplement) $A^c = \{x \mid x \in U \text{ and } x \notin A\}$

Def. Difference (Differenz) A \ B = $\{x \mid x \in A \text{ and } x \notin B\}$

A A \ B

Given a universal set U

Def. Complement (Komplement) $A^c = \{x \mid x \in U \text{ and } x \notin A\}$

Hence $A^c = U \setminus A$

Properties of sets

- I. $\emptyset \subseteq X$
- 2. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- 3. $X \cap Y \subseteq X$, $X \cap Y \subseteq Y$
- 4. $X \subseteq X \cup Y, Y \subseteq X \cup Y$
- 5. If $X' \subseteq Y'$ and $X'' \subseteq Y''$, then $X' \cap X'' \subseteq Y' \cap Y''$
- 6. If X' \subseteq Y' and X" \subseteq Y", then X' \cup X" \subseteq Y' \cup Y"
- 7. $X \cap Y = X \text{ iff } X \subseteq Y$
- 8. $X \cap X = X$ (idempotence)
- 9. $X \cup X = X$ (idempotence)
- 10. $X \cap \emptyset = \emptyset$

Properties of sets

- II. $X \cup \emptyset = X$
- 12. $X \cap Y = Y \cap X$ (commutativity)
- 13. $X \cup Y = Y \cup X$ (commutativity)
- 14. $X \cap (Y \cap Z) = (X \cap Y) \cap Z$ (associativity)
- 15. $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ (associativity)
- 16. $X \cap (X \cup Y) = X$ (absorption)
- 17. $X \cup (X \cap Y) = X$ (absorption)
- 18. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ (distributivity)
- 19. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ (distributivity)
- 20. X \ Y ⊆ X

Properties of sets

- 21. $(X \setminus Y) \cap Y = \emptyset$
- 22. $\times \cup Y = \times \cup (Y \setminus X)$
- 23. $X \setminus X = \emptyset$
- 24. $X \setminus \emptyset = X$
- 25. $\varnothing \setminus X = \varnothing$
- 26. If $X \subseteq Y$, then $X \setminus Y = \emptyset$
- 27. $(X^c)^c = X$
- 28. $(X \cap Y)^c = X^c \cup Y^c$ (De Morgan)
- 29. $(X \cup Y)^c = X^c \cap Y^c$ (De Morgan)
- 30. $X \times \emptyset = \emptyset \otimes X \times X = \emptyset$
- 31. $\varnothing \times X = \varnothing$
- 32. If $X \subseteq Y$, then $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$ 9