

RNA-seq analysis Analysis in R

Alexey Sergushichev

Overview of the day

- RNA-seq quantification from raw data to an expression table
- **♥** (RNA-seq analysis in R from an expression table to pathway analysis)
- ▼ Visual gene expression analysis in Phantasus

- Materials and slides are available at Google Drive
- ✓ Dockerfile and the scripts are available at https://github.com/ctlab/sysbio-training/tree/master/tomsk-scs-2021

Prepare

- **♥** Go to https://ctlab.itmo.ru/rstudio-sbNN/
- ✓ login: student
- password: sysbiopass
- Open the project from the previous module
- Open do_deseq2.R

Export expression values

- ▼ Run steps 0 & 1
- Export:
 - counts.txt
 - es.gct

ExpressionSet

- A single place to store both expression data and metadata
- exprs(es) expression matrix
- pData(es) or phenoData(es) sample metadata
- fData(es) or featureData(es) gene metadata
- experimentData(es) experiment metadata

Org.db packages

- Org.Mm.eg.db, Org.Hs.eg.db, ...
- Contain gene annotation data for an organism
- Functions:
 - mapIds()
 - columns()
 - keys()
 - select()

Normalization

- Run step 2
- Possible normalization for RNA-seq:
 - log2 + quantile
 - divide by median expression
 - DESeq2::getVarianceStabilizedData
 - DESeq2::rlog
 - log2 + limma::voom
- The saved gct file can be opened in Phantasus

PCA plot

Run step 3

Differential expression for RNA-seq

- DESeq2
- EdgeR
- kallisto/sleuth
- **...**
- Run step 4

Method Highly accessed Open Access Comprehensive evaluation of differential gene expression analysis methods for RNA-seg data Franck Rapaport¹, Raya Khanin¹, Yupu Liang¹, Mono Pirun¹, Azra Krek¹, Paul Zumbo²³, Christopher E Mason²³, Nicholas D Socci¹ and Doron Betel³⁴* * Corresponding author: Doron Betel dob2014@med.cornell.edu Author Affiliations 1 Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA 2 Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10021, USA 3 Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10021, USA 4 Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, 10021, USA For all author emails, please log on. Genome Biology 2013, 14:R95 doi:10.1186/gb-2013-14-9-r95

Pathway databases

- msigdbr
- reactome.db with fgsea::reactomePathways()
- a gmt file with fgsea::gmtPathways()
- KEGG pathways via KEGGREST
- Enrichr pathways http://amp.pharm.mssm.edu/Enrichr/#stats
- Gene Ontology via gage or Org.db packages

Pathway analysis

- fgsea
- DOSE/clusterProfiler:
 - fgsea-based and hypergeometric
- limma:
 - camera
 - roast
- gage
- Run step 5

GEOquery

- Works only for microarrays
- Not for all arrays there is "annotated" (i.e. curated) annotation
- RNA-seq datasets result in an empty matrix
 - Data can be loaded from ARCHS4 file

- Open do_limma.R
- Run everything

limma

Exercises

- Plot PCA
- Add batch information to the design, calculate differential expression. Are the results differ?
- Do pathway analysis with fgsea
- Do pathway analysis with camera()
 - compare results to fgsea

Summary

- There are several common RNA-seq pipelines: alignment-based and kallisto-like
- Multiple tools for downstream analysis
- Visualize and QC your data