NHT-3072-Mecânica Quântica I - Noturno - 2018.3

Lista 3

- 1. Considere os estados $|\psi_1\rangle$ e $|\psi_2\rangle$ com funções de onda: $\psi_1(x) = C_1 e^{ikx}$, $|x| \le a$, $\psi_1(x) = 0$, |x| > a, e $\psi_2(x) = C_2 e^{-\frac{x^2}{2\sigma^2}}$, $\sigma > 0$.
 - (a) Determine os valores de C_1 e C_2 .
 - (b) Calcule $\tilde{\psi}_1(p)$ e $\tilde{\psi}_2(p)$.
 - (c) Calcule $\langle X \rangle$ e $\langle P \rangle$ para os dois estados.
- 2. Considere uma particula movendo-se ao longo do eixo x confinada à região $0 \le x \le L$, i.e., a partícula está sujeita ao potencial:

$$V(x) = \begin{cases} 0 & 0 < x < L \\ \infty & x \le 0, x \ge L \end{cases}.$$

- (a) Encontre as auto-funções (i.e., os estados estacionários) e as auto-energias da Hamiltoniana que descreve a partícula sujeita a tal potencial.
- (b) Suponha que em t=0 o estado da partícula é $|\psi(0)\rangle = \frac{1}{\sqrt{2}}[|E_1\rangle + |E_2\rangle]$, com $|E_1\rangle$ e $|E_2\rangle$ sendo os auto-estados associados ao estado fundamental e primeiro estado excitado, respectivamente. Calcule $\psi(t,x) \equiv \langle x|\psi(t)\rangle$.
- (c) Calcule, como função do tempo, a densidade de probabilidade de encontrarmos a partícula em um ponto -L < x < L.
- 3. Vamos considerar agora a partícula movendo-se em duas dimensões.
 - (a) Primeiramente, considere que ela está confinada a se mover livremente no retângulo R definido por $0 < x < L_x$ e $0 < y < L_y$ (i.e., o potêncial agindo na partícula é 0 dentro do retângulo e infinito no resto do plano). Encontre as auto-funções (i.e., os estados estacionários) e as auto-energias da Hamiltoniana que descreve a partícula sujeita a tal potencial.
 - (b) Suponha agora que apliquemos um novo potencial à partícula que confine ela a se mover livremente dentro de uma região circular C de raio a em torno da origem (i.e., o potêncial agindo na partícula é 0 dentro do círculo C e infinito no resto do plano). Encontre as autofunções (i.e., os estados estacionários) e as auto-energias da Hamiltoniana que descreve a partícula sujeita a tal potencial [sugestão: use coordenadas polares e aproveite a simetria do sistema ao fazer a separação de variáveis.]
- 4. (EUF 2018.1-q3) Considere a dinâmica quântica de um feixe de partículas de massa m que se move exclusivamente ao longo do eixo x de um sistema de coordenadas, no sentindo de x positivo. Elas estão sugeitas a um potencial degrau ($V_0 > 0$)

$$V(x) = \begin{cases} 0 & , x < 0 \\ V_0 & , x > 0 \end{cases}.$$

(a) Se a eneriga total E de cada partícula é tal que $E > V_0$, encontre a forma geral da solução da equação de Schrodinger independente do tempo nas duas regiões do potencial.

- (b) Segundo a Mecânica Clássica, quando $E > V_0$ todas as partículas passam pelo degrau de potencial. Segundo a Mecânica Quântica, algumas partículas são refletidas. Qual é o percentual de partículas refletidas pelo degral de potencial para $E > V_0$?
- (c) Considere agora que $E < V_0$. Qual é a forma geral da solução da equação de Schrodinger indepente do tempo para x > 0?
- (d) Determine a probabilidade de reflexão quando $E=V_0/2$
- 5. Suponha que uma partícula de massa m está movendo-se ao longo do eixo x sujeita ao potencial $V(x) = -K\delta(x)$, onde K > 0 é uma constante.
 - (a) Encontre as condições de contorno para a função de onda e sua derivada em x = 0.
 - (b) Mostre que só existe um estado ligado para tal potencial e encontre sua energia e função de onda.
 - (c) Suponha que a partícula é agora enviada da esquerda para direita com uma energia E > 0. Encontre os coeficientes de transmissão e reflexão.
- Considere agora que a partícula do problema anterior está sujeita a um potencial delta duplo:

$$V(x) = -K \left(\delta(x-a) + \delta(x+a)\right)$$

Determine quantos estados ligados ortogonais esse potencial possui e quais são suas funções de onda e energias?

7. (EUF 2011.2-q8) Seja a função de onda de uma partícula em uma dimensão dada por $\Psi(x,t)$. A densidade de probabilidade $\rho(x,t)$ é definida como $\rho(x,t) \equiv \Psi^*(x,t)\Psi(x,t)$. O valor de $\rho(x,t)$ pode mudar no tempo devido ao fluxo de probabilidade saindo ou entrando na região, que se pode expressar como uma equação de continuidade

$$\frac{\partial \rho}{\partial t} = \frac{\partial j}{\partial x}$$

onde j(x,t) é a densidade de corrente de probabilidade.

(a) Dada a equação de Schrodinger,

$$i\hbar\frac{\partial\Psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right]\Psi(x,t)$$

escreva a derivada temporal de $\rho(x,t)$ em termos de Ψ e Ψ^* e suas derivadas espaciais.

- (b) Obtenha a forma explícita de j(x,t)
- (c) Ache a equação relacionando a derivada do valor esperado da posição, $\frac{d\langle x\rangle}{dt}$, com o valor esperado do momento, $\langle p\rangle$. Dica: use integração por partes e assuma que as funções Ψ e a sua deriva, $\frac{\partial\Psi}{\partial x}$, vão ao infinito mais rápido do que $\frac{1}{x}$.