Introduction to Advanced Probability for Graphical Models

CSC 412
Elliot Creager
Thursday January 11, 2018

^{*}Many slides based on Kaustav Kundu's, Kevin Swersky's, Inmar Givoni's, Danny Tarlow's, Jasper Snoek's slides, Sam Roweis 's review of probability, Bishop's book, and some images from Wikipedia

Outline

- Basics
- Probability rules
- Exponential families
- Maximum likelihood
- Bayesian inference
 - Conjugate priors (time permitting)

Why Represent Uncertainty?

- The world is full of uncertainty
 - "What will the weather be like today?"
 - "Will I like this movie?"
 - "Is there a person in this image?"
- We're trying to build systems that understand and (possibly) interact with the real world
- We often can't prove something is true, but we can still ask how likely different outcomes are or ask for the most likely explanationx

Why Use Probability to Represent Uncertainty?

- Write down simple, reasonable criteria that you'd want from a system of uncertainty (common sense stuff), and you always get probability.
- Cox Axioms (Cox 1946); See Bishop, Section
 1.2.3
- We will restrict ourselves to a relatively informal discussion of probability theory.

Notation

- A **random variable X** represents outcomes or states of the world.
- We will write p(x) to mean Probability(X = x)
- Sample space: the space of all possible outcomes (may be discrete, continuous, or mixed)
- p(x) is the probability mass (density) function
 - Assigns a number to each point in sample space
 - Non-negative, sums (integrates) to 1
 - Intuitively: how often does x occur, how much do we believe in x.

Joint Probability Distribution

- Prob(X=x, Y=y)
 - "Probability of X=x and Y=y"
 - -p(x, y)

Conditional Probability Distribution

- Prob(X=x | Y=y)
 - "Probability of X=x given Y=y"

The Rules of Probability

Sum Rule (marginalization/summing out):

$$p(x) = \sum_{y} p(x, y)$$

$$p(x_1) = \sum_{x_2} \sum_{x_3} ... \sum_{x_N} p(x_1, x_2, ..., x_N)$$

Product/Chain Rule:

$$p(x,y) = p(y|x)p(x)$$

$$p(x_1,...,x_N) = p(x_1)p(x_2|x_1)...p(x_N|x_1,...,x_{N-1})$$

Bayes' Rule

One of the most important formulas in probability theory

$$p(x | y) = \frac{p(x, y)}{p(y)} = \frac{p(x, y)}{\sum_{x'} p(y | x') p(x')}$$

This gives us a way of "reversing" conditional probabilities

Independence

 Two random variables are said to be independent iff their joint distribution factors

$$p(x, y) = p(x)p(y)$$

 Two random variables are conditionally independent given a third if they are independent after conditioning on the third

$$p(x, y | z) = p(y | x, z)p(x | z) = p(y | z)p(x | z) \quad \forall z$$

• i.i.d. observations are an example of conditional independence

$$p(x_1...x_n | \theta) = \prod_{i=1} p(x_i | \theta)$$

Continuous Random Variables

 Outcomes are real values. Probability density functions define distributions.

– E.g.,

$$P(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

- Continuous joint distributions: replace sums with integrals, and everything holds
 - E.g., Marginalization and conditional probability

$$P(x,z) = \int_{y} P(x,y,z) = \int_{y} P(x,z \mid y) P(y)$$

Summarizing Probability Distributions

 It is often useful to give summaries of distributions without defining the whole distribution (E.g., mean and variance)

• Mean:
$$E[x] = \langle x \rangle = \int_{x} x \cdot p(x) dx$$

• Variance:

var(x) =
$$E[(x - E[x])^2]$$

= $\int (x - E[x])^2 \cdot p(x) dx = E[x^2] - E[x]^2$

Exponential Families

- Families of distributions with nice properties
 - e.g. They have a conjugate prior (we'll get to that later. Important for Bayesian statistics)
- Includes many standard distributions
 - Bernoulli, binomial/multinomial, Poisson, Normal (Gaussian), beta/Dirichlet,...
- But not all
 - Uniform, Cauchy

Definition

 All exponential families of distributions over x, given parameter η (eta) take the form

$$p(x|\eta) = h(x)g(\eta) \exp{\{\eta^T u(x)\}}$$

- To get a particular family of dist'ns, we specify
 - x-scalar/vector, discrete/continuous
 - η 'natural parameters'
 - -u(x) some function of x (natural statistic)
 - -h(x) base measure (often constant)
 - $-g(\eta)$ normalizer Why "exponential"? Note: $p(x|\eta) = \exp\{\eta^T u(x) + \ln h(x) + \ln g(\eta)\}$

$$1 = \int g(\eta)h(x)\exp\{\eta^T u(x)\}dx = g(\eta)\int h(x)\exp\{\eta^T u(x)\}dx$$

Sufficient Statistics

- Vague definition: called so because they completely summarize a distribution.
- Less vague: they are the only part of the distribution that interacts with the parameters and are therefore sufficient to estimate the parameters.
- μ(x), the natural statistic in an exponential family, is also sufficient

Example 1: Bernoulli

Binary random variable -

$$X \in \{0,1\}$$

• $p(heads) = \mu$

$$\mu \in [0,1]$$

Coin toss

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1-x}$$

Example 1: Bernoulli

$$p(x|\eta) = h(x)g(\eta) \exp{\{\eta^T u(x)\}}$$

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp\{\ln\{\mu^{x} (1 - \mu)^{1 - x}\}\}$$

$$= \exp\{x \ln \mu + (1 - x) \ln(1 - \mu)\}$$

$$= (1 - \mu) \exp\{\ln\left(\frac{\mu}{1 - \mu}\right)x\}$$

$$p(x \mid \eta) = \sigma(-\eta) \exp(\eta x)$$

$$|\mu| = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp\{\ln\{\mu^{x} (1 - \mu)^{1 - x}\}\}$$

$$= \exp\{x \ln \mu + (1 - x) \ln(1 - \mu)\}$$

$$= (1 - \mu) \exp\{\ln\left(\frac{\mu}{1 - \mu}\right)x\}$$

$$|\mu| = \ln\left(\frac{\mu}{1 - \mu}\right) \Rightarrow \mu = \sigma(\eta) = \frac{1}{1 + e^{-\eta}}$$

$$g(\eta) = \sigma(-\eta)$$

Example 2: Multinomial

• $p(value k) = \mu_k$

$$\mu_k \in [0,1], \sum_{k=1}^M \mu_k = 1$$

- For a single observation e.g., die toss
 - Sometimes called Categorical
- $x_i \in \mathbf{O}$

- For multiple observations
 - integer counts on N trials

- $\sum_{k=1}^{M} x_k = N$
- Prob(1 came out 3 times, 2 came out once,...,6
 came out 7 times if I tossed a die 20 times)
 - = Prob($x_1=3, x_2=1,...,x_6=7$) with N=20

$$P(x_1,...,x_M \mid \mu) = \frac{N!}{\prod_{k=1}^{M} x_k!} \prod_{k=1}^{M} \mu_k^{x_k}$$

Example 2: Multinomial (1 observation)

$$p(x | \eta) = h(x)g(\eta) \exp{\{\eta^T u(x)\}}$$

$$P(x_1,...,x_M \mid \mu) = \prod_{k=1}^{M} \mu_k^{x_k}$$

$$= \exp\{\sum_{k=1}^{M} x_k \ln \mu_k\}$$

$$p(\mathbf{x} \mid \boldsymbol{\eta}) = \exp(\boldsymbol{\eta}^T \mathbf{x})$$

$$h(\mathbf{x}) = 1$$

$$u(\mathbf{x}) = \mathbf{x}$$

Parameters are not independent due to constraint of summing to 1, there's a slightly more involved notation to address that, see Bishop 2.4

Example 3: Univariate Gaussian

Gaussian (Normal)

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

Example 3: Univariate Gaussian

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

- μ is the mean
- σ^2 is the variance
- Can verify these by computing integrals. E.g.,

$$\int_{x \to -\infty}^{x \to \infty} x \cdot \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\} dx = \mu$$

Univariate Gaussian as Exp. Family

$$p(x \mid \eta) = h(x)g(\eta) \exp{\{\eta^T u(x)\}}$$

$$p(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}}(x - \mu)^{2}\right\}$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}}x^{2} + \frac{\mu}{\sigma^{2}}x + \frac{-1}{2\sigma^{2}}\mu^{2}\right\} =$$

$$= (2\pi)^{-\frac{1}{2}}(-2\eta_{2})^{\frac{1}{2}} \exp\left(\frac{\eta_{1}^{2}}{4\eta_{2}}\right) \exp\left\{\left[\frac{\mu}{\sigma^{2}} - \frac{-1}{2\sigma^{2}}\right]\left[\frac{x}{x^{2}}\right]\right\}$$

$$h(x) \qquad g(\eta) \qquad n^{T} \qquad u(x)$$

Example 4: Multivariate Gaussian

Multivariate Gaussian

$$P(x \mid \mu, \Sigma) = |2\pi \Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x - \mu)^T \sum^{-1}(x - \mu)\right\}$$

Example 4: Multivariate Gaussian

Multivariate Gaussian

$$p(x \mid \mu, \Sigma) = |2\pi \Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x - \mu)^T \sum^{-1}(x - \mu)\right\}$$

- x is now a vector
- μ is the mean vector
- Σ is the **covariance matrix**

Important Properties of Gaussians

- All marginals of a Gaussian are again Gaussian
- Any conditional of a Gaussian is Gaussian
- The product of two Gaussians is again Gaussian
- Even the sum of two independent Gaussian RVs is a Gaussian.
- Beyond the scope of this tutorial, but very important: marginalization and conditioning rules for multivariate Gaussians.

Gaussian marginalization visualization

Example 5: Maximum Likelihood For a 1D Gaussian

• Suppose we are given a data set of samples of a Gaussian random variable X, $D=\{x^1,...,x^N\}$ and told that the variance of the data is σ^2

What is our best guess of μ ?

*Need to assume data is independent and identically distributed (i.i.d.)

Example 5: Maximum Likelihood For a 1D Gaussian

What is our best guess of μ ?

• We can write down the likelihood function:

$$p(d \mid \mu) = \prod_{i=1}^{N} p(x^{i} \mid \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (x^{i} - \mu)^{2}\right\}$$

- We want to choose the μ that maximizes this expression
 - Take log, then basic calculus: differentiate w.r.t. μ,
 set derivative to 0, solve for μ to get sample mean

$$\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Example 5: Maximum Likelihood For a 1D Gaussian

Maximum Likelihood

ML estimation of model parameters for Exponential Family

$$p(D \mid \eta) = p(x_1, ..., x_N) = \left(\prod h(x_n)\right) g(\eta)^N \exp\{\eta^T \sum_n u(x_n)\}$$
$$\frac{\ln(p(D \mid \eta))}{\partial \eta} = ..., \text{set to 0, solve for } \nabla g(\eta)$$

$$-\nabla \ln g(\eta_{ML}) = \frac{1}{N} \sum_{n=1}^{N} u(x_n)$$

- Can in principle be solved to get estimate for eta.
- The solution for the ML estimator depends on the data only through sum over u, which is therefore called sufficient statistic
- What we need to store in order to estimate parameters.

Bayesian Probabilities

$$p(\theta \mid d) = \frac{p(d \mid \theta)p(\theta)}{p(d)}$$
• $p(d \mid \theta)$ is the likelihood function

- $p(\theta)$ is the **prior probability** of (or our **prior belief** over) θ
 - our beliefs over what models are likely or not before seeing any data
- $p(d) = \int p(d \mid \theta) P(\theta) d\theta$ is the normalization constant or partition function
- $p(\theta \mid d)$ is the posterior distribution
 - Readjustment of our prior beliefs in the face of data

- Suppose we have a prior belief that the mean of some random variable X is μ_0 and the variance of our belief is σ_0^2
- We are then given a data set of samples of X, d={x¹,..., x^N} and somehow know that the variance of the data is σ²

What is the posterior distribution over (our belief about the value of) μ ?

- Remember from earlier $p(\mu | d) = \frac{p(d | \mu)p(\mu)}{p(d)}$
- $p(d | \mu)$ is the likelihood function

$$p(d \mid \mu) = \prod_{i=1}^{N} P(x^{i} \mid \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (x^{i} - \mu)^{2}\right\}$$

• $p(\mu)$ is the **prior probability** of (or our **prior belief** over) μ

$$p(\mu \mid \mu_0, \sigma_0) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left\{-\frac{1}{2\sigma_0^2} (\mu - \mu_0)^2\right\}$$

$$p(\mu | D) \propto p(D | \mu) p(\mu)$$
$$p(\mu | D) = \mathbf{Normal}(\mu | \mu_N, \sigma_N)$$

where
$$\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2}\mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2}\mu_{ML}$$

$$\frac{1}{\sigma_N^2} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}$$

Prior belief Maximum Likelihood

Prior belief Maximum Likelihood Posterior Distribution

Conjugate Priors

- In the previous example, the prior, likelihood and posterior were all Gaussian. The Gaussian dist'n is *self-conjugate*.
- More generally, *conjugate priors* induce a *posterior* of the same form (the likelihood need not take this form).
 - E.g., Gamma is the conjugate prior of a Poisson likelihood
- For any member of the exponential family there exists a conjugate prior that can be written like

$$p(\eta \mid \chi, \nu) = f(\chi, \nu)g(\eta)^{\nu} \exp\{\nu \eta^{T} \chi\}$$

• Multiply by likelihood to obtain posterior (up to normalization) of the form $_{N}$

$$p(\eta \mid D, \chi, \nu) \propto g(\eta)^{\nu + N} \exp\{\eta^{T}(\nu \chi + \sum_{n} u(x_{n}))\}$$

- Notice the addition to the sufficient statistic $\overline{c_{n-1}}$
- v is the effective number of pseudo-observations.

Conjugate Priors - Examples

- Beta for Bernoulli/binomial
- Dirichlet for categorical/multinomial
- Normal for mean of Normal
- And many more...