

伏安法测电阻 实验报告单

学 号: 2012604

姓 名: 苏可铮

年 级: 2020 级

学 院: 数学科学学院

完成日期: 2021 年 5 月 18 日

目录

实验目的	• 1
实验器材	
实验原理	
实验内容	
数据记录与处理	. 6
思考题	. 9

实验目的

- 学习使用伏安法(即电压表、电流表),测定定制电阻阻值;
- 学习使用伏安法(即电压表、电流表),测定非线性元件(二极管)通电特性;
- 理解并掌握欧姆定律;

实验器材

- 恒压电源
- 电流表
- 电压表
- 微安表
- 滑动变阻器
- 导线若干
- 定制电阻
- 二极管

实验原理

- 测金属膜电阻伏安特性
 - i 测 110Ω 金属膜电阻时,由于,

$$\frac{R_x}{R_U + R_x} = 12.8\%$$
 , $\frac{R_A}{R_x} = 2.2\%$

即电压表内接法误差 > 电压表外接法误差,故采用电压表外接法。

图 1: 测金属膜电阻伏安特性电路图

- 测晶体二极管正向伏安特性
 - i 测晶体二极管正向电阻时,由于,

$$\frac{R_x}{R_U + R_x} = 66.7\%$$
 , $\frac{R_A}{R_x} = 0.16\%$

即电压表内接法误差 > 电压表外接法误差,故采用电压表外接法。

图 2: 测晶体二极管正向伏安特性电路图

- 测晶体二极管反向伏安特性
 - i 测晶体二极管反向电阻时,由于,

$$\frac{R_x}{R_U + R_x} = 99.5\% \quad , \quad \frac{R_A}{R_x} = 0.0016\%$$

即电压表内接法误差 > 电压表外接法误差,故采用电压表外接法。

图 3: 测晶体二极管反向伏安特性电路图

实验内容

- 测金属膜电阻伏安特性
 - I 将恒压电源输出电压调为 1.50V, 电流表选择 15mA 档位, 电压表选择 1.5V 档位, 滑动变阻器在开始时划片居中
 - II 将电源连接在滑动变阻器全电阻上
 - III 从滑动端顺次接电流表与待测电阻,回连至滑动变阻器全电阻接脚
 - IV 最后连接电压表,注意外接法
 - V 推动滑动变阻器,确定电压表示数从零到电源输出电动势之间变化
 - VI 改变变阻器位置,测量 8-10 组数据
- 测晶体二极管正向伏安特性
 - I 将恒压电源输出电压调为 1.50V, 电流表选择 15mA 档位, 电压表选择 1.5V 档位, 滑动变阻器在开始时划片居中
 - II 将电源连接在滑动变阻器全电阻上
 - III 从滑动端顺次接电流表与待测电阻,回连至滑动变阻器全电阻接脚
 - IV 最后连接电压表,注意外接法
 - V 推动滑动变阻器,确定电压表示数从零到电源输出电动势之间变化
 - VI 改变变阻器位置,测量 8-10 组数据
- 测晶体二极管反向伏安特性
 - I 将恒压电源输出电压调为 1.50V, 选用微安表, 电压表选择 1.5V 档位, 滑动 变阻器在开始时划片居中
 - II 将电源连接在滑动变阻器全电阻上
 - III 从滑动端顺次接微安表与待测电阻,回连至滑动变阻器全电阻接脚
 - IV 最后连接电压表,注意外接法
 - V 推动滑动变阻器,确定电压表示数从零到电源输出电动势之间变化
 - VI 改变变阻器位置,测量 8-10 组数据

数据记录与处理

测金属膜电阻伏安特性

表 1: 测金属膜电阻伏安特性

U (V)	0.879	0.742	0.692	0.635	0.521	0.440	0.295	0.138
I (mA)	7.98	6.72	6.25	5.80	4.78	4.01	2.76	1.25

金属膜电阻伏安特性

图 4: 测金属膜电阻伏安特性电路图

计算待测电阻的平均值

$$\bar{R}_x = \frac{U_2 - U_1}{I_2 - I_1} - R_A = 110.104\Omega - 2.4\Omega = 107.704\Omega$$

根据表的精度得出仪器的绝对误差:

$$\Delta U = U_m \times K\% = 1.5 \times 0.5\% = 0.0075$$

$$\Delta I = I_m \times K\% = 0.015 \times 0.5\% = 0.000075$$

再由此计算电阻的测量误差:

$$\Delta R = \bar{R}_X r_X = \bar{R}_X \sqrt{(\frac{\Delta U}{U_1 - U_2})^2 + (\frac{\Delta I}{I_1 - I_2})^2} = 1.621\Omega$$

最终测量结果为: $R = \bar{R}_X \pm \Delta R = (107.704 \pm 1.621)\Omega$

测晶体二极管正向伏安特性

表 2: 测晶体二极管正向伏安特性

U (V)	1.072	0.961	0.941	0.889	0.841	0.815	0.788	0.721
I (mA)	10.81	8.75	8.32	7.49	6.79	6.39	5.92	4.87
U (V)	0.698	0.676	0.615	0.575	0.491	0.431	0.352	0.210
I (mA)	4.59	4.29	3.48	3.02	2.00	1.49	0.91	0.21

晶体二极管正向伏安特性

图 5: 测晶体二极管正向伏安特性电路图

测晶体二极管反向伏安特性

表 3: 测晶体二极管反向伏安特性

U (V)	-1.288	-1.045	-0.925	-0.850	-0.679	-0.579	-0.460	-0.392
I (μA)	-4.97	-4.65	-4.45	-4.32	-4.04	-3.82	-3.59	-3.40

图 6: 测晶体二极管反向伏安特性电路图

从图中读取数据得:

• 在 2.00mA 下的阻值: 2455.0000Ω

• 在 8.00mA 下的阻值: 1150.0000Ω

• 在-1.00V 下的阻值: 215053.7634Ω

思考题

1. 欲测 50Ω 左右的电阻 R_x , 现有直流电流表量程 30mA, 内阻 2.0Ω , 1.0 级; 直流电压表,一种量程为 1V, 内阻 2000Ω , 0.5 级; 另一种是 1.5V, 内阻 500Ω , 1.0 级; 可调直流电源。如果不采用修正方法,选哪两只电表精度最佳?

解 1. 若采用量程为 1V, 内阻 2000Ω , 0.5 级的电表,则需要采用电流表外接法,则方法误差为:

$$\delta_1 = \frac{R_A}{R_X} = 0.04$$

若采用量程为 1.5V, 内阻 500Ω , 1.0 级的电表,则需要采用电流表内接法,则方法误差为:

$$\delta_2 = \frac{R_X}{R_X + R_V} = 0.09$$

由于 $\delta_1 < \delta_2$, 则采用量程为 1V, 内阻 2000Ω , 0.5 级的电表。