

Derivada

0.1 Derivadas de Ordem Superior

A derivada de uma função f(x) é também uma função de x e denominada de f'(x), ou ainda, primeira derivada de f(x).

A derivada de f'(x), se existir, é chamada de segunda derivada de f(x), denominada por,

$$f''(x) = y'' = D_x^2 y = \frac{d^2 y}{dx^2}$$

Generalizando, a n-ésima derivada de f(x) é a derivada da (n-1)-ésima derivada de f(x) e denotada por

$$f^{(n)}(x) = y^{(n)} = D_x^n y = \frac{d^n y}{dx^n}$$

Exemplos:

a) Encontrar todas as derivadas da função definida por: $f(x) = 3x^4 - 2x^3 + x^2 + 10$.

Resolução:

$$f'(x) = 12x^3 - 6x^2 + 2x$$

$$f''(x) = 36x^2 - 12x + 2$$

$$f'''(x) = 72x^3 - 12$$

$$f^{(4)}(x) = 72$$

$$f^{(5)}(x) = 0 \quad \forall n \ge 5.$$

b) Dada a função $y = e^{kx}$ (k constante), encontre a expressão da sua derivada de ordem n.

Resolução:

Temos
$$y' = ke^{kx}$$

$$y'' = k^2 e^{kx}$$

$$y''' = k^3 e^{kx}$$

Dessa maneira, observa-se que $y^{(n)} = k^n e^{kx}$

Exercícios

1. Nos Exercícios a seguir, encontre as derivadas de primeira e segunda ordem da função dada:

1

a)
$$f(x) = 5x^3 + 8x^2 - 7x + 3$$
 b) $f(x) = 3x^8 + 5x^4$ c) $f(x) = \sqrt[3]{x} + \frac{2}{x^2}$

b)
$$f(x) = 3x^8 + 5x^4$$

c)
$$f(x) = \sqrt[3]{x} + \frac{2}{x^2}$$

d)
$$f(x) = \sqrt{3x+1}$$

e)
$$f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
 f) $f(x) = \sqrt[5]{10x + 7}$

f)
$$f(x) = \sqrt[5]{10x + 7}$$

g)
$$f(x) = e^{(x^2)}$$

$$f(x) = \sin^2 x$$

h)
$$f(x) = \sin^2 x$$
 i) $f(x) = \ln(x + \sqrt{4 + x^2})$

2. Nos exercícios a seguir, encontre a expressão para $f^{(n)}(x)$:

a)
$$f(x) = \frac{1}{x}$$

b)
$$f(x) = \sqrt{x}$$

c)
$$f(x) = \operatorname{sen}(x)$$

d)
$$f(x) = e^{-3x}$$

e)
$$f(x) = \frac{1}{1-x}$$

f)
$$f(x) = \frac{1+x}{1-x}$$

Aplicações da Derivada 1

Antes de passarmos para a próxima seção vamos relembrar as seguintes definições. Sejam f(x) uma função e A um subconjunto do domínio de f(x). Dizemos que f(x) é crescente (ou decrescente) em A, se quaisquer que sejam x_1 e x_2 em A,

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$
 $(f(x_1) > f(x_2)).$

1.1 Funções Crescentes e Decrescentes

O valor da primeira derivada pode ser interpretado como o coeficiente angular da reta de tangência a curva no ponto dado por (a, f(a)), e a derivada da função pode ser utilizada para a análise da taxa de crescimento de uma função.

Teorema 1: Seja f(x) uma função contínua em [a,b] e derivável em (a,b).

- i) Se f'(x) > 0 para todo $x \in (a, b)$ então f(x) é crescente em [a, b]
- ii) Se f'(x) < 0 para todo $x \in (a, b)$ então f(x) é decrescente em [a, b]

Exemplos

Determine os intervalos de crescimento e decrescimento, e esboce o gráfico das funções a seguir:

a)
$$f(x) = 2x + 3$$

$$f'(x) = 2$$

Como f'(x) = 2 > 0 em todo o domínio de f(x), logo f(x) é sempre crescente, ou seja, é crescente em todo o conjunto dos números reais

b)
$$f(x) = x^3 + x^2 - 5x - 5$$

 $f'(x) = 3x^2 + 2x - 5$

 $f'(x) = 3x^2 + 2x - 5 = 0 \Leftrightarrow x = \frac{-5}{3}$ e x = 1. Fazendo o estudo do sinal de f'(x) temos:

Portanto f(x) é crescente nos intervalos $\left]-\infty, \frac{-5}{3}\right[$ e $\left]1, \infty\right[$ e decrescente no intervalo $\left]\frac{-5}{3}, 1\right[$.

c)
$$f(x) = e^{-x^2}$$

$$f'(x) = e^{-x^2} \times (-2x)$$

 $f'(x) = e^{-x^2} \times (-2x) = 0 \Leftrightarrow x = 0$, pois e^{-x^2} é sempre positivo. Fazendo o estudo do sinal de f'(x) temos:

Portanto f(x) é crescente no intervalo $]-\infty,0[$ e decrescente no intervalo $]0,\infty]$.

Exercícios

1. Indique os intervalos em que a função f(x) é crescente ou decrescente e obtenha para que valores de x, f'(x) = 0. Esboce o gráfico de f(x).

a)
$$f(x) = 5 - 7x - 4x^2$$

b)
$$f(x) = \sqrt[3]{x^2}(8-x)$$

a)
$$f(x) = 5 - 7x - 4x^2$$
 b) $f(x) = \sqrt[3]{x^2}(8 - x)$ c) $f(x) = 2x^3 + x^2 - 20x + 1$

d)
$$f(x) = 6x^2 - 9x + 5$$
 e) $f(x) = x^2 \sqrt[3]{x^2 - 4}$ f) $f(x) = x^3 + \frac{3}{x}$

e)
$$f(x) = x^2 \sqrt[3]{x^2 - 4}$$

3

f)
$$f(x) = x^3 + \frac{3}{x^3}$$

2. Calcular os valores de x tais que f'(x) = 0.

a)
$$f(x) = \sqrt[3]{x^3 - 9x}$$
 b) $f(x) = \frac{x^2}{\sqrt{x+7}}$ c) $f(x) = \frac{2x-5}{x+3}$

3. Calcule os valores de x tais que f''(x) = 0.

a)
$$f(x) = e^{-x^2}$$
 b) $f(x) = \frac{x^3}{6} - x^2$ c) $f(x) = \ln x$

1.2 Concavidade e Pontos de Inflexão

Seja f(x) derivável no intervalo aberto (a, b) e seja p um ponto desse intervalo. A reta tangente em (p, f(p)) ao gráfico de f(x) é

$$y - f(p) = f'(p)(x - p)$$
 ou $y = f(p) + f'(p)(x - p)$.

Desse modo, a reta tangente em (p, f(p)) é o gráfico da função T(x) dada por

$$T(x) = f(p) + f'(p)(x - p)$$

Definição 1: Dizemos que f(x) tem a concavidade para cima no intervalo (a,b) se f(x) > T(x) quaisquer que sejam $x \in p$ em (a,b), com $x \neq p$.

Definição 2: Dizemos que f(x) tem a concavidade para baixo no intervalo (a,b) se f(x) < T(x) quaisquer que sejam x e p em (a,b), com $x \neq p$.

Definição 3: Sejam f(x) uma função e $p \in D_f$, com f(x) contínua em p. Dizemos que p é ponto de inflexão de f(x) se existirem números reais a e b, com $p \in (a,b) \subset D_f$, tal que f(x) tenha concavidade de nomes contrários em (a,p) e em (p,b).

Teorema: Seja f(x) uma função que admite derivada de $2^{\underline{a}}$ ordem no intervalo (a,b),

- i) Se f''(x) > 0 para todo $x \in (a,b)$ então f(x) tem concavidade para cima em (a,b)
- ii) Se f''(x) < 0 para todo $x \in (a, b)$ então f(x) tem concavidade para baixo em (a, b)

Exemplos:

a) Estude a concavidade e obtenha os pontos de inflexão da função $f(x)=x^3$. Faça um esboço do gráfico.

$$f'(x) = 3x^2 e f''(x) = 6x$$

 $f''(x) = 6x = 0 \Leftrightarrow x = 0$. Fazendo o estudo do sinal de f''(x) temos:

Portanto f(x) tem concavidade para cima no intervalo $]0, \infty[$ e concavidade para baixo no intervalo $]-\infty, 0]$.

4

b) Seja $f(x) = e^{-\frac{\pi}{2}}$. Estude a função com relação à concavidade e determine os pontos de inflexão e esboce seu gráfico.

$$f'(x) = e^{\frac{-x^2}{2}} \times (-x) e^{\frac{-x^2}{2}} \times (x^2 - 1)$$

 $f''(x) = e^{\frac{-x^2}{2}} \times (x^2 - 1) = 0 \Leftrightarrow x^2 - 1 = 0 \Leftrightarrow x = -1$ ou x = 1 pois $e^{-\frac{-x^2}{2}}$ é sempre positivo. Fazendo o estudo do sinal de f''(x) temos:

$$\frac{\downarrow}{\downarrow} \xrightarrow{-1} \xrightarrow{\downarrow} f(x)$$

Portanto f(x) tem concavidade para cima no intervalo $]-\infty,-1[$ e $]1,\infty[;$ e concavidade para baixo no intervalo]-1,1].

Exercícios: Discuta os tipos de concavidade e pontos de inflexão das funções.

a)
$$f(x) = x^3 - 2x^2 + x + 1$$

b)
$$f(x) = 3x^4 - 4x^3 + 6$$

c)
$$f(x) = x^3 + 10x^2 + 25x - 50$$

d)
$$f(x) = 8x^2 - 24x^4$$

e)
$$f(x) = \frac{(x+4)}{\sqrt{x}}$$

f)
$$f(x) = \frac{x}{x^2 + 1}$$