Fundamentals of fMRI data analysis

Karolina Finc

Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Toruń

COURSE #1: Reproducible neuroimaging | 5th October 2020

My story

2014

Learning brain activity analysis in SPM.

Statistical Parametric Mapping: https://www.fil.ion.ucl.ac.uk/spm/

My story

2014

Learning functional connectivity & graph theory analysis in CONN & BCT.

Functional connectivity toolbox: https://web.conn-toolbox.org/
Brain Connectivity Toolbox: https://sites.google.com/site/bctnet/

Fast way to scientist's depression

Processing step	Reason	Options [suboptions]	Number of plausible option
Motion correction	Correct for head motion during scanning	 'Interpolation' [linear or sinc] 'Reference volume' [single or mean]	4
Slice timing correction	Correct for differences in acquisition timing of different slices	'No', 'before motion correction' or 'after motion correction'	3
Field map correction	Correct for distortion owing to magnetic susceptibility	'Yes' or 'no'	2
Spatial smoothing	Increase SNR for larger activations and ensure assumptions of GRF theory	'FWHM' [4 mm, 6 mm or 8 mm]	3
Spatial normalization	Warps an individual brain to match a group template	'Method' [linear or nonlinear]	2
High-pass filter	Remove low-frequency nuisance signals from data	'Frequency cut-off' [100 s or 120 s]	2
Head motion regressors	Remove remaining signals owing to head motion via statistical model	'Yes' or 'no' [if yes: 6/12/24 parameters or single time point 'scrubbing' regressors]	5
Haemodynamic response	Account for delayed nature of haemodynamic response to neuronal activity	'Basis function' ['single-gamma' or 'double-gamma'] 'Derivatives' ['none', 'shift' or 'dispersion']	6
Temporal autocorrelation model	Model for the temporal autocorrelation inherent in fMRI signals	'Yes' or 'no'	2
Multiple-comparison correction	Correct for large number of comparisons across the brain	'Voxel-based GRF', 'cluster-based GRF', 'FDR' or 'non-parametric'	4
Total possible			69,120

- Which software to select?
- Which method to select?
- Which option to select?

Fast way to scientist's depression cd.

Many results you've read in papers are false positives and are not reproducible.

BAD RESEARCH PRACTICES:

- Not sharing the data
- Not sharing the code
- P-hacking
- HARKing hypothesis after results are known

Practical quide to reproducibility

Incentives

- Significant results are easier to publish
- Journals are not very open to publish replications (what's new in this?)
- fMRI studies are expensive and time consuming (small sample sizes)
- Learning programming takes time and much effort
- Designing a good experiment and stating a good hypothesis takes time
- etc.

Open science

Open data

Open source

Open programming languages

Open source packages

Code sharing platforms

Jupyter notebook

Getting started with Jupyter notebooks

Goal of Project Jupyter is to "develop open-source software, open-standards, and services for interactive computing across dozens of programming languages".

More: https://en.wikipedia.org/wiki/Project_Jupyter

- Open terminal
- 2. Type "jupyter lab"
- 3. If you don't have it installed, go to website: https://jupyter.org/try

Getting started with Git/GitHub

Git - version control system that stores multiple versions of your files over time

GitHub - provides hosting for software development version control using Git

Example:

https://github.com/kfinc

- 1. Create an account using academic email! (for PRO access)
- 2. Install Git on your computer (or check if it's already installed)

What to install?

- 1. Git
- 2. Anaconda 3 (Python distribution)

- 3. FSL (optional)
- 4. MATLAB (optional)

Homework

1. GitHub Classroom

fMRI Q&A in Markdown

Deadline: 18-10-2020

2. Data Camp Classroom

https://www.datacamp.com/enterprise/advanced-f
mri-data-analysis/assignments

Introduction to Python

Deadline: 11-10-2020

Intermediate Python

Deadline: 18-10-2020

Next

fMRI data manipulation and plotting in Python