Duração: 1hora 55min.

P4 de Álgebra Linear I -2005.115 de junho de 2005

Nome:	Turma:		
Assinatura:	Matrícula:		

Questão	Valor	Nota	Revis.
1a	0.5		
1b	0.5		
1c	0.5		
1d	0.5		
2a	1.5		
2b	0.5		
2c	0.5		
3a	0.5		
3b	1.0		
3c	1.0		
3d	0.5		
4a	1.0		
4b	1.0		
4c	1.0		
Total	10.5		

Instruções

- \bullet É proibido usar calculadora. Mantenha o celular desligado.
- É **proibido desgrampear** a prova. Prova com folhas faltando ou rasuradas terá **nota zero.**
- Justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Respostas sem justificativa terão nota zero. Escreva de forma clara e legível.

1) Considere os pontos

$$A = (1, 0, 1), \quad B = (2, 2, 4), \quad e \quad C = (1, 2, 3).$$

- (1.a) Determine o ponto médio M do segmento AB.
- (1.b) Determine a equação cartesiana do plano π formado pelos pontos X equidistantes de A e B (isto é, $\operatorname{dist}(XA) = \operatorname{dist}(XB)$).
- (1.c) Determine o ponto D da reta

$$r = \{(3t - 5, t, 2t - 2), t \in \mathbb{R}\}\$$

que é equidistante aos pontos A e B, isto é, dist(AD) = dist(BD).

(1.d) Determine a equação cartesiana do plano ρ que contém os pontos $A, B \in C$.

(2.a) Determine a matriz na base canônica de uma transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

tal que

- $T((x+2y+2z=0)) = \{(t,0,t), t \in \mathbb{R}\},\$
- a imagem de T (denotada im(T)) é o plano x y z = 0 (lembre que im $(T) = \{u \in \mathbb{R}^3 \text{ tal que existe } v \in \mathbb{R}^3 \text{ tal que } T(v) = u\}$).
- (2.b) Para a transformação do item (a) determine o conjunto de vetores w tal que $T(w) = \bar{0}$.
- ${\bf (2.c)}$ Determine a forma matricial (na base canônica) de uma transformação afim

$$L \colon \mathbb{R}^3 \to \mathbb{R}^3$$
,

tal que

$$L((x+2y+2z=0)) = \{(1+t,0,1+t), t \in \mathbb{R}\}.$$

3) Considere uma transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ tal que a matriz de T na base canônica é

$$[T] = \left(\begin{array}{ccc} -1 & 2 & 3\\ 0 & 2 & 1\\ 0 & 1 & 2 \end{array}\right).$$

- (3.a) Determine uma forma diagonal D de T.
- (3.b) Determine uma base β de \mathbb{R}^3 tal a matriz de T na base β seja D.
- (3.c) Estude se existe uma base γ de \mathbb{R}^3 tal que a matriz de T na base γ seja

$$[T]_{\gamma} = \left(\begin{array}{ccc} -1 & 0 & 0\\ 0 & 1 & 1\\ 0 & 0 & 3 \end{array}\right).$$

Em caso afirmativo determine a base γ .

(3.d) Estude se existe uma base η de \mathbb{R}^3 tal que a matriz de T na base η seja

$$[T]_{\eta} = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{array} \right).$$

- 4) Considere o espelhamento E no plano π : x-2y-2z=0.
 - (4.a) Determine uma matriz R tal que

$$[E] = R \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} R^{t}.$$

(4.b) Determine a matriz [E] de E na base canônica.

Considere agora a base ortogonal β de \mathbb{R}^3 dada por

$$\beta = \{(1,0,1), (27,32,-27), (-32,54,32)\}.$$

(4.c) Determine a primeira coordenada do vetor (1,2,3) na base β , (isto é, se as coordenadas de (1,2,3) na base β são $(1,2,3)_{\beta}=(a,b,c)$, determine a).