Comunicaciones por satélite

Parte 2: Sistemas de comunicaciones

- Estación Terrena para enlaces por satélite
- · Tecnología de la estación terrena
- · Características de radiación y cobertura
- · Sistemas de rastreo
- · Normas relativas a la estación terrestre
- · Antenas en la estación terrestre
- Tamaño y ganancia de antena
- · Características de radiación y cobertura
- · Sistemas de rastreo
- · Normas relativas a la estación terrestre

Comunicaciones por satélite

Una estación terrena requiere las siguientes funcionalidades

- Capacidad técnica para establecer una comunicación inalámbrica hacia un satélite o grupo de satélites
- Capacidad para determinar la ubicación de los satélites
- Capacidad administrativa para la administración del recurso (tiempo, espectro, capacidad de canal, etc)
- Capacidad de interconexión con otras redes de comunicación en tierra.
- Capacidad de interactuar con los organismos de regulación.

Componentes del sistema satélital

Segmento Espacial

Segmento Terrestre

Componentes del sistema satélital

Segmento Terrestre:

- Antenas
- Convertidor de subida, convertidor de bajada (LNB, LNA, HPA)
- Moduladores, demoduladores
- •Sistemas de telemetría, control y seguimiento (TT&C)
- •Frecuencias de uso y esquema de acceso

Segmento Espacial:

- Antenas
- Convertidor de subida, convertidor de bajada (LNB, LNA, HPA)
- Moduladores, demoduladores
- Plataforma
- •Frecuencias de uso y esquema de acceso

Componentes del sistema satélital

Antenas

En los sistemas de comunicación vía satélite es necesario emplear antenas de alta ganancia o, implícitamente, altamente directivas.

El tipo de antena que cumple con estos requerimientos es la antena parabólica. Generalmente se emplean antenas que están formadas por elementos geométricos paraboloides, de acuerdo a la aplicación.

El elemento reflector primario o "plato", es determinado por la superficie que es necesaria para "captar" la debilísima radiación proveniente del satélite apuntado.

A mayor superficie de captación más potencia acumulada.

Ganancia de antena y patrón de radiación

Antenas sin reflector

decibel (dB): unidad de medida de pérdida o ganancia. La ganancia tiene valor positivo, la pérdida tiene valor negativo, y es definida por:

$$G_{dB} = 10 \cdot \log_{10}(G)$$

Ganancia de Antena: El relativo incremento en la radiación en el máximo punto se expresa en un valor en decibeles por encima del estándar, en este caso el modelo isotrópico, con la cual todas las antenas son referenciadas. La referencia es conocida como 0dBi. Una antena con una eficiencia de potencia radiada al doble deberá tener entonces una ganancia de 10*log(2/1) = 3dB.

$$G_{dbi} = 10 \cdot \log_{10}(G)$$

Patrón de radiación

El patrón de radiación de una antena provee información sobre la respuesta de la antena a una determinada dirección. La respuesta puede ser normalizada o en términos de ganancia de antena.

Escala normalizada

Ganancia de antena y patrón de radiación

- •Escala relativa a ganancia de antena
- •Patrón de radiación esférico (3-D)

Antenas con reflector parabólico:

Es el tipo de antena con la que se obtiene la mayor directividad y ganancia de antena posible.

- Permiten la focalización de la potencia en un haz angosto.
- Se requiere un soporte mecánico robusto para evitar las vibraciones.
- Requieren de un mecanismo de movimiento.
- Requieren de un diseño óptico eficiente para aumentar la ganancia.
- El uso en medios con movilidad (aviones, barcos, tren, camiones, etc.) requiere del uso de un sistema automático de control que permita compensar los movimientos.

Tx Interface	Waveguide 3' WR75	Waveguide 3' WR75	WR75 Flange
	Flange Flexible & Twistable Waveguide w/O ring groove	Flange Flexible and Twistable Waveguide	Flange Flexible and Twistable Waveguide
Rx Interface	WR75 Flange	WR75 Flange	WR75 Flange
Frequency Range: Rx	10.95 12.75 Ghz	10.95 12.75 Ghz	10.95 12.75 Ghz
Tx	13.75 14.50 Ghz	13.75 14.50 Ghz	13.75 14.50 Ghz
Gain (Midband): Rx	39.8 dBi	41.5 dBi	45.3 dBi
Tx	41.3 dBi	43 dBi	46.6 dBi
VSWR Rx & Tx	1.3:1	1.3:1	1.3:1 Tx / 1.5:1 Rx
Beamwidth: Rx	1.8° (3 dB), 3.3° (10 dB)	1.4° (3 dB), 2.4° (10 dB),	1.0° (3 dB), 2.4° (10 dB),
Tx	1.5° (3 dB), 2.8° (10 dB)	1.2° (3 dB), 2.1° (10 dB)	0.8° (3 dB), 2.1° (10 dB)
Radiation Pattern Compliance	FCC § 25.209	FCC § 25.209	FCC § 25.209
Antenna Noise Temperature	47K (20° EI), 46K (30° EI)	46K (20° EI), 43K (30° EI)	28K (20° EI), 23K (30° EI)
Cross Pol Isolation on Axis Rx & Tx (Minimur	n) 30 dB	30 dB	30 dB
Isolation port to port (Minimum): Rx	35 dB	35 dB	35 dB
Tx	80 dB	80 dB	80 dB

Ejemplos de antenas satelitales sin reflector:

Antenas para UHF y VHF.

Antenas *patch* en picosatélites.

Antenas de equipos portátiles

Tipos de Reflectores Parabólicos

Tipos básicos de antenas: a) Paraboloide. b) Cassegrain. c) off-set (fuera de foco).

Ejemplos de antenas satelitales con reflector:

Antena VSAT fija.

Antena VSAT portátil fija.

Antena VSAT para plataforma móvil.

Rendimiento de los platos

Para una antena parabólica, los tres factores que determinan su ganancia son: La superficie de la antena; a medida que se aumenta el tamaño del plato la superficie aumenta, se intercepta más radiación, aumentando la ganancia.

Al aumentar la frecuencia; la ganancia de la antena aumenta al aumentar la frecuencia, pues a mayores frecuencias las ondas son más puntuales y se concentran más en el foco, como líneas de luz.

La exactitud geométrica de la superficie del plato; hasta las más pequeñas irregularidades en la superficie del plato afectaran a la ganancia de la antena. Un plato liso es mejor que un plato con arrugas, especialmente cuando se trabaja a más altas frecuencias.

 η – Eficiencia de la antena (\sim 0.55)

d – Diámetro de la antena

 λ – Longitud de onda

 $c - 2.99x10^8$ m/s (velocidad de la luz)

 $f = c / \lambda - Frecuencia de la portadora en gigahertz$

 A_{t} =d $^{2}\pi/4$ – Area de apertura de la antena transmisora

$$G = \eta \left| \frac{\pi d}{\lambda} \right|^2 = \eta \frac{4\pi f^2 A_t}{c^2}$$

Elementos a considerar en la cobertura

- P Band: 0.225-0.39 GHz
- J Band: 0.35-0.53 GHz
- L Band: 0.39-1.55 GHz
- S Band: 1.55-5.2 GHz
- C Band: 3.9-6.2 GHz
- X Band: 5.2-10.9 GHz
- K Band: 10.9-36.0 GHz
- Ku Band: 15.35-17.25 GHz
- Q Band: 36-46 GHz
- V Band: 46-56 GHz
- W Band: 56-100 GHz

Primeros satélites, interferían con los enlaces terrestres (4/6 GHz)Sistemas para nuevas

generaciones de satélites

(14/16 GHz)

Consideraciones para establecer un enlace satelital

Absorción Atmosférica

- Factores que Contribuyen:
- Oxigeno Molecular
 Vapor de agua no condensado
 Lluvia
 Niebla y nubes
 Nieve

 Constante
 Dependen del clima
 Nieve
- Efectos dependientes de la frecuencia
- Picos de absorción del oxigeno Molecular a 60 GHz
- Picos de moléculas de agua a 21 GHz
- Decrementar el ángulo de elevación incrementara las pérdidas por absorción

Gráfica que muestra la atenuación provocada por la atmósfera

Atenuación atmosférica dependiente del ángulo de elevación

Atenuación en la banda C: Atenuación atmosférica, niebla densa y lluvia.

Efectos de atenuación en banda K

Limites de la atmósfera

Coberturas en un sistema satelital:

Cobertura Global Iluminación de la mayor proporción de tierra posible: 17.4º@20dBi

Cobertura de zona Cobertura de una región pequeña: 5º@30dBi

Cobertura de haz puntual Iluminación de un área muy pequeña: 1º ó 2º @ 40dBi

Cobertura por multi-haz Se hace cubrir un área más extensa con haces puntuales.

Cobertura Global

Cobertura por zona

Cobertura de haz puntual

Cobertura por multi-haz

Huellas de un satélite:

SATMEX 5: Banda Ku1

SATMEX 5: Banda C

ESPECIFICACIONES

Satmex 5	36 MHz Banda C	36 MHz Banda Ku
PIRE (dBW) en la orilla de la cobertura	39	Ku 1: 49.0 Ku 2: 46.0
G/T (dB/°K) en la orilla de la cobertura	-2	Ku 1: 0 Ku 2: -1.5
Densidad de flujo a saturación (dBW/m2)	-93	Ku 1: -93 Ku 2: -95
No. de transpondedores	24	24
Redundancia	30 TWTAs para 24 canales	32 TWTAs para 24 canales