

Report No.: EED32I00216506 Page 1 of 111

TEST REPORT

Product : Intelligent Vehicle Network Gateway

Trade mark : TN-IVS-8000 Model/Type reference : TN-IVS-8000

Serial Number : N/A

Report Number : EED32I00216506 **FCC ID** : 2AJDT-TNIVS8000

Date of Issue : Sep. 28, 2016

Test Standards : 47 CFR Part 2(2015)

47 CFR Part 22 subpart H(2015)

Test result : PASS

Prepared for:

ZHEJIANG THIRD NET CO., LTD.

6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road,
Binjiang District, Hangzhou, Zhejiang, china

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

Re

Tom - chen
Tom chen (Test Project)

Compiled by:

Approved by:

Kevin yang (Project Engineer)

Kevin lan (Reviewer)

Sep. 28, 2016

Sheek Luo (Lab supervisor)

Check No.: 2402635644

Page 2 of 111

2 Version

ersion No.	Date	Description
00	Sep. 28, 2016	Original

Page 3 of 111

3 Test Summary

LTE Band 5						
Test Item	Test Requirement	Test method	Result			
Conducted output power	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS			
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS			
99%&26dB Occupied Bandwidth	Part 2.1049(h)	Part 22.917(b) &KDB 971168 D01v02r02	PASS			
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b) &KDB 971168 D01v02r02	PASS			
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS			
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS			
Frequency stability	Part 2.1055/ Part 22.355	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS			

Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver. RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature. Humid: In this whole report Humid means humidity. Press: In this whole report Press means Pressure.

N/A: In this whole report not application

Remark:

The tested samples and the sample information are provided by the client.

Content

I COVER PAGE		•••••		1
TEST SUMMARY		•••••		3
4 CONTENT		••••••	•••••	4
	•••••			
5.1.1 For Radiated Emis. 5.2 TEST ENVIRONMENT	sions test setup			5 5
	•••••			
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF COMMENT OF SUPPORT OF SUPPORT OF THE SUPP	OF EUT I SUBJECTIVE TO THIS STANDARI RT UNITS ARDS FANDARD CONDITIONS QUESTED BY THE CUSTOMER FAINTY (95% CONFIDENCE LEVE	D		
RADIO TECHNICAL REQU	IREMENTS SPECIFICATION	l		11
APPENDIX B: 26DB BANDWID APPENDIX C: BAND EDGE APPENDIX D: CONDUCTED SI APPENDIX E: FREQUENCY ST APPENDIX F: FIELD STRENGT	DIATED POWER OF TRANSMITTER OTH AND OCCUPIED BANDWIDTH OF SPURIOUS EMISSION TABILITY H OF SPURIOUS RADIATION			17 27 33 99
PHOTOGRAPHS OF TEST S	ETUP			110
ANNEX A: APPENDIX A:	PHOTOGRAPHS OF EL	JT CONSTRUCTION	AL DETAILS.	111

Page 4 of 111

5 Test Requirement

5.1 Test setup

5.1.1 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1.30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:	((-(1)	(5,12)	(25)
Temperature:	24°C			
Humidity:	46% RH			
Atmospheric Pressure:	1010mbar	- 61	134	

5.3 Test Condition

Test channel:

LTE

LIE						
Test Mode	Test Frequency ID	Bandwidth (MHz)	Number [UL]	Frequency of Uplink(MHz)	Number [DL]	Frequency of Downlink(MHz)
/		1.4	20407	824.7	2407	869.7
	Low	3	20415	825.5	2415	870.5
	Range	5	20425	826.5	2425	871.5
LTE band 5		10	20450	829	2450	874
TX:824–849 MHz	Mid Range	1.4/3/5/10	20525	836.5	2525	881.5
RX: 869-894MHz		1.4	20643	848.3	2643	893.3
	High	3	20635	847.5	2635	892.5
	Range	5	20625	846.5	2625	891.5
		10	20600	844	2600	889

6 General Information

6.1 Client Information

Applicant:	ZHEJIANG THIRD NET CO., LTD.
Address of Applicant:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china
Manufacturer:	ZHEJIANG THIRD NET CO., LTD.
Address of Manufacturer:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china

6.2 General Description of EUT

Product Name:	Intelligent Vehicle Network Gateway
Model No.(EUT):	TN-IVS-8000
Trade Mark:	TN-IVS-8000
EUT Supports Radios application	GPS: 1575.42MHz Wlan 2.4GHz 802.11b/g/n(HT20&HT40) UMTS: Band II(1900MHz), Band IV(1700MHz), Band V(850MHz) WCDMA LTE: Band 2, Band 4, Band 5, Band 17
Power Supply:	DC 9-36V
Sample Received Date:	Aug. 01, 2016
Sample tested Date:	Aug. 01, 2016 to Sep. 27, 2016

6.3 Product Specification subjective to this standard

Frequency Band: LTE Band 5: TX: 824 MHz - 849 MHz RX: 869 MHz - 894MHz			
Modulation Type:	LTE Mode with QPSK,16QAM Modulation		
Sample Type:	Fixed production		
Antenna Type:	Temporary antenna		
Antenna Gain:	LTE Band 2: 1.5dBi, LTE Band 4: 1.5dBi, LTE Band 5: 1dBi, LTE Band 17: 1dBi		
Test Voltage:	DC 12V		

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
DC Source	QIEKESI	10209898	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Page 7 of 111

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0	DE a succession de	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3 Radiate	Dedicted Courieus amission tost	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
- 0.		3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

	(Communication	RF test syster	n	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-31-2015	12-29-2016
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54426112	04-08-2016	04-07-2017
DC Power	Keysight	E3642A	MY54426115	04-01-2016	03-31-2017
PC-2	Lenovo	R4960d		04-01-2016	03-31-2017
PC-3	Lenovo	R4960d		04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-1	158060004	04-01-2016	03-31-2017
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2016	03-31-2017
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2016	03-31-2017
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2016	03-31-2017
GSM Automatic test software	JS Tonscend	JS1120-3	(41)	04-01-2016	03-31-2017

	Radiated Spu	urious Emission	& Radiated E	mission	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	<u></u>	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/10711 112	(C.)	01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(°S)	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017

Page 11 of 111

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	PART 22 (2015)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service
2	PART 24 (2015)	PART 24 – PERSONAL COMMUNICATIONS SERVICES Subpart E – Broadband PCS
3	PART 27 (2015)	PART 27 – MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Subpart C – Technical Standards
3	PART 2 (2015)	Frequency allocations and radio treaty matters; general rules and regulations
4	TIA-603-D-2010	Land Mobile FM or PM -Communications Equipment -Measurement and Performance Standards
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

est Nesults List.			1.00		
Test Requirement	Test method	Test item	Verdict	Note	
Part 2.1046(a)/Part 22.913(a)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)	
Part 2.1049(h)	Part 22.917(b) &KDB 971168 D01v02r02	99% &26dBOccupied Bandwidth	PASS	Appendix B)	
Part 2.1051/Part 22.917(a)/	Part 22.917(b) &KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix C)	
Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)/	TIA-603-D &KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix D)	
Part 2.1055/ Part 22.355	TIA-603-D &KDB 971168 D01v02r02	Frequency stability	PASS	Appendix E)	
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix F)	
Part 2.1046(a)/Part 22.913(a)	TIA-603-D &KDB		PASS	Appendix G)	

Report No. : EED32I00216506 Page 12 of 111

Appendix A: Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:		1:0	, ,					
	Freq	uency	Detector	RBW	VBW	Remark		
	30MH:	z-1GHz	peak	120kHz	300kHz	Peak		
	Above	e 1GHz	Peak	1MHz	3MHz	Peak		
Measurement	Test procedu							
Procedure:	 The EUT was powered ON and placed on a 1.5m hight table at a 3 meter fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test. The EUT was set 3 meters(above 18GHz the distance is 1 meter) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization. The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter. A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally 							
	field strer 7) The output 8) Steps 6) 3 9) Calculate ERP(EIRP	ngth level in so ut power into and 7)were ro power in dB dBm) = Pg(d	step 3) is obtained the substitution epeated with botom by the following Bm) – cable loss dBm) – cable loss	ed for this set antenna was h antennas p ng formula: s (dB) + anter	of conditions then measur olarized. nna gain (dBd	ed.)		
	where:							
	10) Test the I	EUT in the lo	utput power into west channel, th ures until all freq	e middle chai	nnel the High			
Limit:	Pg is the 10) Test the I 11) Repeat a	EUT in the lo	utput power into west channel, th ures until all freq	e middle chai	nnel the High			
Limit:	Pg is the 10) Test the I	EUT in the lo	utput power into west channel, th ures until all freq	e middle chai	nnel the High			
Limit:	Pg is the 10) Test the I 11) Repeat a	EUT in the lobove procedu	utput power into west channel, th ures until all freq	e middle chai	nnel the High			

Test Result

Channel Bandwidth: 1.4 MHz

Page 13 of 111

Channel Bandwidth: 3 MHz

			Channel	Bandwidth: 3 MHz		
NA 1 1 0	01 1	RB Confi	guration	A D [1D]	E: LID 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Modulation	Channel	Size	Offset	Average Power [dBm]	E.i.r.p [dBm]	Verdic
97		10	0	22.41	24.05	PASS
		1	7	22.48	24.03	PASS
		1	14	22.38	24.00	PASS
	LCH	8	0	21.56	23.99	PASS
		8	4	21.49	23.95	PASS
		8	7	21.45	23.91	PASS
		15	0	21.59	23.98	PASS
		1	0	22.78	23.35	PASS
		1:0	7	22.81	23.33	PASS
		1	14	22.58	23.30	PASS
QPSK	мсн	8	0	21.82	22.89	PASS
		8	4	21.71	22.81	PASS
		8	7	21.67	22.71	PASS
		15	0	21.79	22.85	PASS
	(67)	1	0	22.52	23.15	PASS
		1	7	22.52	23.15	PASS
		1	14	22.31	23.10	PASS
	нсн	8	0	21.58	22.88	PASS
20		8	4	21.71	23.91	PASS
		8	7	21.54	23.66	PASS
		15	0	21.52	23.64	PASS
		1	0	21.43	24.20	PASS
	_0	1	7	21.54	24.20	PASS
		1	14	21.28	24.19	PASS
	LCH	8	0	20.57	23.16	PASS
		8	4	20.57	23.16	PASS
		8	7	20.48	23.09	PASS
~		15	0	20.52	23.11	PASS
		1	0	21.71	23.24	PASS
		1	7	21.69	23.22	PASS
		1	14	21.55	23.11	PASS
16QAM	мсн	8	0	20.93	23.01	PASS
	(3)	8	4	20.80	22.92	PASS
	(62)	8	7 (20.70	22.82	PASS
		15	0	20.80	22.92	PASS
		1	0	21.46	23.27	PASS
7/2000		1	7	21.40	23.21	PASS
(1)		1	14	21.29	23.10	PASS
	нсн	8	0	20.62	22.99	PASS
		8	4	20.74	23.00	PASS
		8	7	20.56	22.65	PASS
		15	0	20.57	22.68	PASS

Channel Bandwidth: 5 MHz

			Channe	el Bandwidth: 5 MHz			
Madulatian	Channal	RB Conf	figuration	Average Device [dDee]	□ : v = [dD==1	\/a nali ad	
Modulation	Channel	Size	Offset	Average Power [dBm]	E.i.r.p [dBm]	Verdict	
		1	0	22.63	25.55	PASS	
		1	12	22.67	25.54	PASS	
		1	24	22.48	25.34	PASS	
	LCH	12	0	21.57	24.88	PASS	
		12	6	21.57	24.88	PASS	
		12	13	21.55	24.85	PASS	
		25	0	21.50	24.80	PASS	
		1	0	22.86	24.83	PASS	
		13	12	22.95	24.80	PASS	
		1	24	22.63	24.66	PASS	
QPSK	мсн	12	0	21.85	24.59	PASS	
		12	6	21.82	24.51	PASS	
		12	13	21.67	23.44	PASS	
	(3)	25	0	21.70	23.55	PASS	
	(67)	1	0	22.71	23.43	PASS	
		1	12	22.75	23.41	PASS	
		1	24	22.47	23.33	PASS	
	HCH	12	0	21.59	23.39	PASS	
		12	6	21.62	22.28	PASS	
C)		12	13	21.61	22.25	PASS	
		25	0	21.48	22.01	PASS	
		1	0	21.53	24.98	PASS	
	-0-	1	12	21.52	24.97	PASS	
		1	24	21.49	24.85	PASS	
	LCH	12	0	20.61	24.63	PASS	
		12	6	20.60	24.60	PASS	
		12	13	20.47	24.51	PASS	
		25	0	20.47	24.51	PASS	
		1	0	21.68	23.83	PASS	
		1	12	21.80	23.80	PASS	
		1	24	21.60	23.60	PASS	
16QAM	MCH	12	0	20.87	23.88	PASS	
	(3)	12	6	20.73	23.73	PASS	
	$(c^{(s)})$	12	13	20.69	23.69	PASS	
		25	0	20.74	23.27	PASS	
		1	0	21.51	23.17	PASS	
ESSENCE:		1	12	21.71	23.11	PASS	
		1.	24	21.52	23.03	PASS	
(1)	HCH	12	0	20.63	23.93	PASS	
		12	6	20.57	23.57	PASS	
		12	13	20.59	23.60	PASS	
	2	25	0	20.48	23.69	PASS	

Channel Bandwidth: 10 MHz

			Channe	I Bandwidth: 10 MHz		
		RB Conf	figuration		F: (1D.)	
Modulation	Channel	Size	Offset	Average Power [dBm]	E.i.r.p [dBm]	Verdict
		1	0	22.41	24.71	PASS
		1	24	22.32	24.68	PASS
		1	49	22.60	24.60	PASS
	LCH	25	0	21.47	23.77	PASS
		25	12	21.47	23.77	PASS
		25	25	21.46	23.76	PASS
		50	0	21.41	23.71	PASS
		1	0	22.59	24.46	PASS
		1 3	24	22.76	24.44	PASS
		1	49	22.57	24.37	PASS
QPSK	MCH	25	0	21.79	24.11	PASS
		25	12	21.81	24.12	PASS
		25	25	21.64	23.64	PASS
	(1)	50	0	21.62	23.62	PASS
	(67)	1	0	22.68	24.66	PASS
		1	24	22.46	24.46	PASS
		1	49	22.50	24.50	PASS
	HCH	25	0	21.59	23.79	PASS
		25	12	21.61	23.89	PASS
G*)		25	25	21.51	23.61	PASS
		50	0	21.57	23.67	PASS
		1	0	21.41	24.91	PASS
	-0	1	24	21.42	24.90	PASS
		1	49	21.45	24.85	PASS
	LCH	25	0	20.52	22.31	PASS
		25	12	20.42	22.22	PASS
		25	25	20.35	22.10	PASS
		50	0	20.47	22.29	PASS
-(1)		1	0	21.53	23.71	PASS
		1	24	21.56	23.70	PASS
		1	49	21.50	23.55	PASS
16QAM	MCH	25	0	20.75	23.11	PASS
	(3)	25	12	20.65	22.02	PASS
	$(c^{(n)})$	25	25	20.64	22.01	PASS
		50	0	20.58	23.99	PASS
		1	0	21.72	23.10	PASS
F-14		1	24	21.34	23.99	PASS
		1.	49	21.33	23.97	PASS
(7)	HCH	25	0	20.56	22.01	PASS
		25	12	20.60	22.06	PASS
		25	25	20.64	22.06	PASS
	-0-	50	0	20.62	22.03	PASS

Report No. : EED32I00216506 Page 17 of 111

Appendix B: 26dB Bandwidth and Occupied Bandwidth

Test Result

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 1.4 MHz											
Modulation	Channel	RB Configuration Size Offset		Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict					
0501/	LCH	6	0	1.0794	1.254	PASS					
QPSK	MCH	6	0	1.0737	1.222	PASS					
	НСН	6	0	1.0772	1.258	PASS					
	LCH	6	0	1.0766	1.235	PASS					
16QAM	мсн	6	0	1.0791	1.255	PASS					
	НСН	6	0	1.0787	1.235	PASS					

Channel Bandwidth: 3 MHz

Channel Bandwidth: 3 MHz										
Modulation	Channel	RB Conf	iguration Offset	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict				
	LCH	15	0	2.6733	2.927	PASS				
QPSK	мсн	15	0	2.6761	2.965	PASS				
	HCH	15	0	2.6748	2.943	PASS				
	LCH	15	0	2.6816	2.989	PASS				
16QAM	MCH	15	0	2.6807	2.989	PASS				
	НСН	15	0	2.6799	2.969	PASS				

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5 MHz										
Modulation	Channel	RB Conf	iguration Offset	Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)	Verdict				
QPSK	LCH	25	0	4.4808	5.011	PASS				
QPSK	MCH	25	0	4.4708	4.922	PASS				
	НСН	25	0	4.4801	4.997	PASS				
	LCH	25	0	4.4697	4.997	PASS				
16QAM	мсн	25	0	4.4752	4.936	PASS				
	HCH	25	0	4.4830	4.982	PASS				

Channel Bandwidth: 10 MHz

Modulation

Channel

Verdict

26dB Bandwidth

(MHz)

		Size	Oliset	(1	MHz)	(MHz)		
	LCH	50	0		.9495	9.769)	PASS	
QPSK	MCH	50	0	8	.9173	9.707	7	PASS	
	НСН	50	0	8	.9353	9.846	6	PASS	
	LCH	50	0	8	.9353	9.777	7	PASS	
16QAM	MCH	50	0	8	.9356	9.669)	PASS	
	НСН	50	0	8	.9412	9.718	3	PASS	

Channel Bandwidth: 10 MHz

Occupied

Bandwidth

RB Configuration

Offset

Size

Test Graphs

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 3 MHz

Channel Bandwidth: 5 MHz

Channel Bandwidth: 10 MHz

Appendix C: Band Edge

Test Graphs

Channel Bandwidth: 1.4 MHz

(Channel Bandwidth: 1.4 MHz)_HCH_16QAM_6RB#0 Agilent 08:21:27 Jun 14, 2015 849.003 MHz -24.95 dBm 30 dBm #Atten 30 dB

Channel Bandwidth: 3 MHz

Channel Bandwidth: 5 MHz

#VBW 330 kHz

Span 2 MHz #Sweep 100 ms (601 pts)

enter 824.000 MHz Res BW 110 kHz

Channel Bandwidth: 10 MHz

Appendix D: Conducted Spurious Emission

Test Graphs

Channel Bandwidth: 1.4 MHz

Span 25.97 GHz Sweep 78.57 ms (3000 pts)

Copyright 2000-2006 Agilent Technologies

#VBW 3 MHz

Report No. . LLD321002103

Hotline: 400-6788-333

Hotline: 400-6788-333

Channel Bandwidth: 10 MHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix E: Frequency Stability

Test Result

Chann

Bandwidt	1. 4 IVI∏	4 (8.3)	Channel Bandy	width: 1.4 MU-		16.3	
			Volt				
	I		I			1	
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VL	TN	-0.57	-0.000694	± 2.5	PASS
	LCH	VN	TN	-0.26	-0.000312	± 2.5	PASS
		VH	TN	-3.63	-0.004406	± 2.5	PASS
		VL	TN	0.83	0.000992	± 2.5	PASS
QPSK	MCH	VN	TN	1.50	0.001796	± 2.5	PASS
		VH	TN	-0.19	-0.000222	± 2.5	PASS
		VL	TN	-1.79	-0.002108	± 2.5	PASS
	HCH	VN	TN	-1.33	-0.001568	± 2.5	PASS
		VH	TN	-1.07	-0.001265	± 2.5	PASS
	-07	VL	TN	-1.69	-0.002047	± 2.5	PASS
	LCH	VN	TN	-1.77	-0.002151	± 2.5	PASS
	(6)	VH	TN	-1.76	-0.002134	± 2.5	PASS
		VL	TN	1.69	0.002018	± 2.5	PASS
16QAM	мсн	VN	TN	0.99	0.001180	± 2.5	PASS
		VH	TN	0.47	0.000564	± 2.5	PASS
		VL	TN	-3.62	-0.004266	± 2.5	PASS
	HCH	VN	TN	-2.20	-0.002597	± 2.5	PASS
	'''	VH	TN	-2.50	-0.002951	± 2.5	PASS
		, , , , , , , , , , , , , , , , , , ,	Tempe		0.002001	1 = 2.0	17100
	Channe	Voltage	Temperature	Deviation	Deviation	Limit	., "
Modulation	1	[Vdc]	(℃)	(Hz)	(ppm)	(ppm)	Verdic
	(C)	VN	-30	0.20	0.000243	± 2.5	PASS
		VN	-20	-1.99	-0.002411	± 2.5	PASS
		VN	-10	-0.01	-0.000017	± 2.5	PASS
		VN	0	-2.90	-0.003521	± 2.5	PASS
	LCH	VN	10	-0.49	-0.000590	± 2.5	PASS
		VN	20	1.00	0.001214	± 2.5	PASS
		VN	30	-1.02	-0.001232	± 2.5	PASS
		VN	40	0.27	0.000330	± 2.5	PASS
		VN I	50	0.76	0.000919	± 2.5	PASS
	· ·	VN VN	50 -30	0.76 1.80	0.000919 0.002155	± 2.5	
		VN	-30	1.80	0.002155	± 2.5	PASS
QPSK		VN VN	-30 -20	1.80 1.32	0.002155 0.001573	± 2.5 ± 2.5	PASS
QPSK	Cil	VN VN VN	-30 -20 -10	1.80 1.32 0.43	0.002155 0.001573 0.000513	± 2.5 ± 2.5 ± 2.5	PASS PASS
QPSK	MCH	VN VN VN	-30 -20 -10 0	1.80 1.32 0.43 2.45	0.002155 0.001573 0.000513 0.002924	± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS
QPSK	MCH	VN VN VN VN VN VN	-30 -20 -10 0 10	1.80 1.32 0.43 2.45 -0.67	0.002155 0.001573 0.000513 0.002924 -0.000804	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS PASS
QPSK	мсн	VN VN VN VN VN VN VN	-30 -20 -10 0 10 20	1.80 1.32 0.43 2.45 -0.67 0.41	0.002155 0.001573 0.000513 0.002924 -0.000804 0.000496	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS PASS PASS
QPSK	МСН	VN VN VN VN VN VN VN VN VN	-30 -20 -10 0 10 20 30	1.80 1.32 0.43 2.45 -0.67 0.41 -0.60	0.002155 0.001573 0.000513 0.002924 -0.000804 0.000496 -0.000718	±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5	PASS PASS PASS PASS PASS PASS
QPSK	MCH	VN	-30 -20 -10 0 10 20 30 40	1.80 1.32 0.43 2.45 -0.67 0.41 -0.60 -0.54	0.002155 0.001573 0.000513 0.002924 -0.000804 0.000496 -0.000718 -0.000650	±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5	PASS PASS PASS PASS PASS PASS
QPSK	МСН	VN	-30 -20 -10 0 10 20 30 40 50	1.80 1.32 0.43 2.45 -0.67 0.41 -0.60 -0.54 0.99	0.002155 0.001573 0.000513 0.002924 -0.000804 0.000496 -0.000718 -0.000650 0.001180	±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5	PASS PASS PASS PASS PASS PASS PASS
QPSK	МСН	VN	-30 -20 -10 0 10 20 30 40 50 -30	1.80 1.32 0.43 2.45 -0.67 0.41 -0.60 -0.54 0.99 -1.04	0.002155 0.001573 0.000513 0.002924 -0.000804 0.000496 -0.000718 -0.000650 0.001180 -0.001231	±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5	PASS PASS PASS PASS PASS PASS PASS PASS
QPSK	МСН	VN	-30 -20 -10 0 10 20 30 40 50	1.80 1.32 0.43 2.45 -0.67 0.41 -0.60 -0.54 0.99	0.002155 0.001573 0.000513 0.002924 -0.000804 0.000496 -0.000718 -0.000650 0.001180	±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5 ±2.5	PASS PASS PASS PASS PASS PASS PASS PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32l00216506 Page 100 of 111

NO EED	321002100					ra	ge 100 0
		VN	10	-0.82	-0.000961	± 2.5	PASS
		VN	20	-3.16	-0.003727	± 2.5	PASS
		VN	30	-2.30	-0.002715	± 2.5	PASS
	[VN	40	-2.10	-0.002479	± 2.5	PASS
	Ī	VN	50	-2.99	-0.003524	± 2.5	PASS
		VN	-30	-0.20	-0.000243	± 2.5	PASS
	[VN	-20	-2.05	-0.002480	± 2.5	PASS
	Ī	VN	-10	-1.37	-0.001665	± 2.5	PASS
	1:0	VN	0	-2.46	-0.002983	± 2.5	PASS
	LCH	VN	10	-0.97	-0.001180	± 2.5	PASS
		VN	20	0.30	0.000364	± 2.5	PASS
		VN	30	-0.19	-0.000225	± 2.5	PASS
	1 [VN	40	-2.49	-0.003018	± 2.5	PASS
		VN	50	-1.30	-0.001578	± 2.5	PASS
		VN	-30	0.36	0.000428	± 2.5	PASS
		VN	-20	-0.43	-0.000513	± 2.5	PASS
		VN	-10	1.13	0.001351	± 2.5	PASS
	1 [VN	0	1.56	0.001864	± 2.5	PASS
16QAM	MCH	VN	10	1.75	0.002086	± 2.5	PASS
		VN	20	1.95	0.002326	± 2.5	PASS
		VN	30	0.69	0.000821	± 2.5	PASS
		VN	40	2.20	0.002634	± 2.5	PASS
	[VN	50	1.43	0.001710	± 2.5	PASS
		VN	-30	-1.43	-0.001686	± 2.5	PASS
		VN	-20	-1.32	-0.001551	± 2.5	PASS
		VN	-10	-3.63	-0.004283	± 2.5	PASS
		VN	0	-2.06	-0.002428	± 2.5	PASS
	нсн Т	VN	10	-1.86	-0.002192	± 2.5	PASS
	-0	VN	20	-4.18	-0.004924	± 2.5	PASS
		VN	30	-2.06	-0.002428	± 2.5	PASS
	(6)	VN	40	-2.37	-0.002799	± 2.5	PASS
		VN	50	-0.44	-0.000523	± 2.5	PASS

Channel Bandwidth: 3 MHz

			Channel Band	width: 3 MHz+			
		6	Volt	age		100	/
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\mathbb{C})$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
	/°>	VL	TN	-4.59	-0.005563	± 2.5	PASS
	LCH	VN	TN	-4.45	-0.005389	± 2.5	PASS
	(0)	VH	TN	-4.63	-0.005615	± 2.5	PASS
		VL	TN	1.04	0.001248	± 2.5	PASS
QPSK	MCH	VN	TN	1.27	0.001522	± 2.5	PASS
		VH	TN	1.34	0.001608	± 2.5	PASS
		VL	TN	-0.97	-0.001148	± 2.5	PASS
	HCH	VN	TN	0.13	0.000152	± 2.5	PASS
		VH	TN	0.67	0.000793	± 2.5	PASS
		VL	TN	-1.29	-0.001560	± 2.5	PASS
	LCH	VN	TN	-0.26	-0.000312	± 2.5	PASS
16QAM		VH	TN	-3.28	-0.003968	± 2.5	PASS
	MCH	VL	TN	-0.27	-0.000325	± 2.5	PASS
	IVICH	VN	TN	3.36	0.004019	± 2.5	PASS

Report No. : EED32I00216506 Page 101 of 111

No. : EED3	32100216	506	(6)	<u> </u>	(6)	Pa	ge 101
		VH	TN	2.95	0.003523	± 2.5	PASS
		VL	TN	-2.27	-0.002684	± 2.5	PASS
	HCH	VN	TN	-1.09	-0.001283	± 2.5	PASS
		VH	TN	0.30	0.000354	± 2.5	PASS
		(6)	Tempe	erature		(0,))
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VN	-30	-1.77	-0.002149	± 2.5	PASS
	(3)	VN	-20	-3.86	-0.004679	± 2.5	PASS
	$(\mathcal{E}^{(n)})$	VN	-10	-2.90	-0.003518	± 2.5	PASS
		VN	0	-0.43	-0.000520	± 2.5	PASS
	LCH	VN	10	-1.63	-0.001976	± 2.5	PASS
		VN	20	-3.56	-0.004315	± 2.5	PASS
		VN	30	-4.28	-0.005181	± 2.5	PASS
		VN	40	-4.28	-0.005181	± 2.5	PASS
		VN	50	-4.13	-0.005008	± 2.5	PASS
		VN	-30	0.82	0.000975	± 2.5	PASS
		VN	-20	1.56	0.001864	± 2.5	PASS
	/°>	VN	-10	2.45	0.002924	± 2.5	PASS
		VN	0	0.59	0.000701	± 2.5	PASS
QPSK	MCH	VN	10	2.47	0.002958	± 2.5	PASS
		VN	20	2.03	0.002428	± 2.5	PASS
		VN	30	2.06	0.002463	± 2.5	PASS
		VN	40	0.06	0.000068	± 2.5	PASS
		VN	50	1.90	0.002274	± 2.5	PASS
		VN	-30	-0.17	-0.000203	± 2.5	PASS
		VN	-20	-1.32	-0.001553	± 2.5	PASS
		VN	-10	0.90	0.001063	± 2.5	PASS
	0	VN	0	-1.19	-0.001401	± 2.5	PASS
	HCH	VN	10	-2.86	-0.003376	± 2.5	PASS
	(0,)	VN	20	-2.55	-0.003004	± 2.5	PASS
		VN	30	0.67	0.000793	± 2.5	PASS
		VN	40	-1.63	-0.001924	± 2.5	PASS
		VN	50	-1.24	-0.001468	± 2.5	PASS
(1)		VN	-30	-0.79	-0.000953	± 2.5	PASS
		VN	-20	-1.06	-0.001282	± 2.5	PASS
		VN	-10	-0.82	-0.000988	± 2.5	PASS
		VN	0	-2.65	-0.003206	± 2.5	PASS
	LCH	VN	10	-1.65	-0.001993	± 2.5	PASS
	(2)	VN	20	-3.18	-0.003847	± 2.5	PASS
	(0)	VN	30	-3.20	-0.003882	± 2.5	PASS
		VN	40	-1.47	-0.001785	± 2.5	PASS
160 / 1/4		VN	50	-3.10	-0.003760	± 2.5	PASS
16QAM		VN	-30	-0.09	-0.000103	± 2.5	PASS
		VN	-20	2.69	0.003215	± 2.5	PASS
		VN	-10	-0.34	-0.000410	± 2.5	PASS
		VN	0	0.56	0.000667	± 2.5	PASS
	MCH	VN	10	1.30	0.001556	± 2.5	PASS
		VN	20	1.09	0.001300	± 2.5	PASS
	1:0	VN	30	1.19	0.001419	± 2.5	PASS
	(6.77)	VN	40	-0.77	-0.000923	± 2.5	PASS
		VN	50	3.12	0.003728	± 2.5	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32l00216506 Page 102 of 111

		VN	-30	-2.92	-0.003443	± 2.5	PASS
		VN	-20	0.64	0.000760	± 2.5	PASS
		VN	-10	-1.73	-0.002042	± 2.5	PASS
		VN	0	-2.90	-0.003426	± 2.5	PASS
(6)	HCH	VN	10	-1.09	-0.001283	± 2.5	PASS
		VN	20	-2.43	-0.002869	± 2.5	PASS
		VN	30	-2.12	-0.002498	± 2.5	PASS
		VN	40	-1.70	-0.002009	± 2.5	PASS
	(3)	VN	50	-0.14	-0.000169	± 2.5	PASS

Channe

			Channel Band	dwidth: 5 MHz			
		_0.	Volt	age		_0.	
Modulation	Channel	Voltage [Vdc]	Temperature (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VL	TN	0.43	0.000519	± 2.5	PASS
	LCH	VN	TN	-1.42	-0.001713	± 2.5	PASS
	-0-	VH	TN	-2.16	-0.002614	± 2.5	PASS
	(30)	VL	TN	-0.17	-0.000205	± 2.5	PASS
QPSK	MCH	VN	TN	0.56	0.000667	± 2.5	PASS
		VH	TN	1.92	0.002292	± 2.5	PASS
		VL	TN	-1.42	-0.001673	± 2.5	PASS
	HCH	VN	TN	-2.86	-0.003380	± 2.5	PASS
		VH	TN	-1.89	-0.002231	± 2.5	PASS
57)		VL	TN	-1.93	-0.002337	± 2.5	PASS
	LCH	VN	TN	-1.59	-0.001921	± 2.5	PASS
16QAM		VH	TN	-0.17	-0.000208	± 2.5	PASS
	Ş	VL	TN	-1.04	-0.001248	± 2.5	PASS
	MCH	VN	TN	0.41	0.000496	± 2.5	PASS
	(62)	VH	TN	2.03	0.002428	± 2.5	PASS
		VL	TN	-1.52	-0.001791	± 2.5	PASS
	НСН	VN	TN	-0.50	-0.000591	± 2.5	PASS
		VH	TN	-2.47	-0.002924	± 2.5	PASS
			Tempe	erature			
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VN	-30	0.80	0.000969	± 2.5	PASS
		VN	-20	1.07	0.001298	± 2.5	PASS
	1:5	VN	-10	-3.28	-0.003964	± 2.5	PASS
	(65)	VN	0	-0.67	-0.000813	± 2.5	PASS
	LCH	VN	10	-0.97	-0.001177	± 2.5	PASS
		VN	20	-2.03	-0.002458	± 2.5	PASS
		VN	30	-1.92	-0.002319	± 2.5	PASS
QPSK		VN	40	-0.60	-0.000727	± 2.5	PASS
		VN	50	-2.36	-0.002856	± 2.5	PASS
		VN	-30	1.93	0.002309	± 2.5	PASS
		VN	-20	0.72	0.000855	± 2.5	PASS
	l Mon	VN	-10	-0.39	-0.000462	± 2.5	PASS
	MCH	VN	0	-0.67	-0.000804	± 2.5	PASS
	(4)	VN	10	0.83	0.000992	± 2.5	PASS
	(0)	VN	20	-0.54	-0.000650	± 2.5	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32l00216506 Page 103 of 111

No.: EED	321002165	006				Pa	ge 103 o
		VN	30	-0.49	-0.000581	± 2.5	PASS
		VN	40	0.90	0.001077	± 2.5	PASS
		VN	50	2.69	0.003215	± 2.5	PASS
		VN	-30	-1.57	-0.001859	± 2.5	PASS
		VN	-20	-0.96	-0.001132	± 2.5	PASS
	1 1	VN	-10	-1.53	-0.001808	± 2.5	PASS
		VN	0	-0.11	-0.000135	± 2.5	PASS
	нсн	VN	10	-1.09	-0.001284	± 2.5	PASS
	13	VN	20	-0.44	-0.000524	± 2.5	PASS
		VN	30	-3.03	-0.003583	± 2.5	PASS
		VN	40	-0.87	-0.001031	± 2.5	PASS
		VN	50	-0.77	-0.000913	± 2.5	PASS
		VN	-30	-2.00	-0.002423	± 2.5	PASS
		VN	-20	-1.72	-0.002077	± 2.5	PASS
		VN	-10	0.14	0.000173	± 2.5	PASS
		VN	0	0.36	0.000433	± 2.5	PASS
	LCH	VN	10	-3.32	-0.004015	± 2.5	PASS
		VN	20	-3.00	-0.003635	± 2.5	PASS
	-0	VN	30	-1.56	-0.001887	± 2.5	PASS
		VN	40	-2.12	-0.002562	± 2.5	PASS
	(0)	VN	50	-3.26	-0.003946	± 2.5	PASS
		VN	-30	2.69	0.003215	± 2.5	PASS
		VN	-20	2.02	0.002411	± 2.5	PASS
	1 1	VN	-10	-0.59	-0.000701	± 2.5	PASS
	1 1	VN	0	0.72	0.000855	± 2.5	PASS
16QAM	мсн	VN	10	0.56	0.000667	± 2.5	PASS
		VN	20	2.00	0.002394	± 2.5	PASS
		VN	30	-1.02	-0.001214	± 2.5	PASS
	-0	VN	40	0.06	0.000068	± 2.5	PASS
		VN	50	-0.76	-0.000906	± 2.5	PASS
	(0,)	VN	-30	-2.40	-0.002839	± 2.5	PASS
		VN	-20	-2.66	-0.003143	± 2.5	PASS
		VN	-10	-1.62	-0.001910	± 2.5	PASS
		VN	0	-0.51	-0.000608	± 2.5	PASS
	нсн	VN	10	-2.10	-0.002484	± 2.5	PASS
		VN	20	-3.79	-0.004478	± 2.5	PASS
		VN	30	-2.03	-0.002400	± 2.5	PASS
		VN	40	-3.26	-0.003853	± 2.5	PASS
		VN	50	-1.06	-0.001251	± 2.5	PASS

Report No. : EED32I00216506

Channel Bandwidth: 10 MHz

			Channel Band	width: 10 MHz			
100		-07	Volta	age		_0	
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VL	TN	0.14	0.000173	± 2.5	PASS
	LCH	VN	TN	0.54	0.000656	± 2.5	PASS
	- 0.00	VH	TN	0.31	0.000380	± 2.5	PAS
	(20)	VL	TN	0.79	0.000941	± 2.5	PAS
QPSK	MCH	VN	TN	0.76	0.000906	± 2.5	PAS
		VH	TN	0.19	0.000222	± 2.5	PAS
		VL	TN	2.30	0.002729	± 2.5	PAS
	HCH	VN	TN	-0.47	-0.000559	± 2.5	PAS
		VH	TN	0.74	0.000881	± 2.5	PAS
37)		VL	TN	0.16	0.000190	± 2.5	PAS
	LCH	VN	TN	1.13	0.001363	± 2.5	PAS
		VH	TN	2.63	0.003175	± 2.5	PAS
		VL	TN	-0.04	-0.000051	± 2.5	PAS
16QAM	MCH	VN	TN	0.59	0.000701	± 2.5	PAS
	(C_{i}, C_{i})	VH	TN	1.50	0.001796	± 2.5	PAS
		VL	TN	0.41	0.000492	± 2.5	PAS
	HCH	VN	TN	0.41	0.000492	± 2.5	PAS
		VH	TN	-0.13	-0.000153	± 2.5	PASS
		73	Tempe	erature		13	
Modulation	Channel	Voltage [Vdc]	Temperature (\mathbb{C})	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdi
		VN	-30	-0.69	-0.000828	± 2.5	PAS
		VN	-20	0.53	0.000638	± 2.5	PAS
	/3	VN	-10	2.73	0.003296	± 2.5	PAS
		VN	0	3.19	0.003848	± 2.5	PAS
	LCH	VN	10	0.23	0.000276	± 2.5	PAS
		VN	20	-0.04	-0.000052	± 2.5	PAS
		VN	30	0.62	0.000742	± 2.5	PAS
		VN	40	-0.79	-0.000949	± 2.5	PASS
		VN	50	-0.92	-0.001104	± 2.5	PAS
		VN	-30	-0.24	-0.000291	± 2.5	PASS
		VN	-20	-0.33	-0.000393	± 2.5	PAS
		VN	-10	0.10	0.000120	± 2.5	PASS
16O A M	-05	VN	0	-0.03	-0.000034	± 2.5	PAS
16QAM	MCH	VN	10	0.34	0.000410	± 2.5	PAS
	(0,)	VN	20	1.04	0.001248	± 2.5	PASS
		VN	30	0.24	0.000291	± 2.5	PASS
		VN	40	1.77	0.002121	± 2.5	PASS
		VN	50	-0.92	-0.001094	± 2.5	PASS
		VN	-30	0.62	0.000729	± 2.5	PASS
		VN	-20	1.54	0.001831	± 2.5	PASS
		VN	-10	2.49	0.002949	± 2.5	PASS
		VN	0	0.44	0.000525	± 2.5	PAS
	HCH	VN	10	1.24	0.001475	± 2.5	PASS
		VN	20	-0.82	-0.000966	± 2.5	PASS
	0,0		1 2 2 2			+	
	(6.7)	VN	30	1.34	0.001593	± 2.5	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32I00216506 Page 105 of 111

No.: EED	321002165	506			(0,)	Pa	ge 105 o
		VN	50	-0.10	-0.000119	± 2.5	PASS
		VN	-30	-0.03	-0.000035	± 2.5	PASS
		VN	-20	0.69	0.000828	± 2.5	PASS
(1)	1 [VN	-10	0.97	0.001173	± 2.5	PASS
(2)		VN	0	-0.40	-0.000483	± 2.5	PASS
	LCH	VN	10	2.39	0.002882	± 2.5	PASS
		VN	20	-1.30	-0.001570	± 2.5	PASS
	1 [VN	30	0.51	0.000621	± 2.5	PASS
	(3)	VN	40	0.16	0.000190	± 2.5	PASS
		VN	50	3.33	0.004021	± 2.5	PASS
		VN	-30	0.59	0.000701	± 2.5	PASS
		VN	-20	-1.14	-0.001368	± 2.5	PASS
	1 [VN	-10	1.92	0.002292	± 2.5	PASS
		VN	0	1.39	0.001659	± 2.5	PASS
QPSK	мсн	VN	10	0.47	0.000564	± 2.5	PASS
		VN	20	1.43	0.001710	± 2.5	PASS
		VN	30	2.25	0.002685	± 2.5	PASS
	1 [VN	40	1.86	0.002223	± 2.5	PASS
	/°>	VN	50	0.96	0.001146	± 2.5	PASS
		VN	-30	-0.94	-0.001119	± 2.5	PASS
		VN	-20	-0.40	-0.000475	± 2.5	PASS
		VN	-10	-0.01	-0.000017	± 2.5	PASS
		VN	0	2.95	0.003492	± 2.5	PASS
	нсн	VN	10	0.64	0.000763	± 2.5	PASS
	 	VN	20	-0.64	-0.000763	± 2.5	PASS
		VN	30	0.10	0.000119	± 2.5	PASS
	[VN	40	3.13	0.003712	± 2.5	PASS
		VN	50	-0.01	-0.000017	± 2.5	PASS
	100	•	-0-		-07		

Appendix F: Field strength of spurious radiation

		1	T	T T		1
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	120kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Measurement Procedure:	Scan up to 10 th harmond The technique used to antenna substitution mactual ERP/EIRP emises Test procedure as below: The EUT was powered Anechoic Chamber. The length, modulation modulation modulation frequency of the transfer.	find the Spurion tethod. Substitution levels of the ON and placed and the median control of the	us Emission ution method ne EUT. d on a 1.5m ne transmitte asuring rece	ns of the tra d was perfor hight table er was exte	nsmitter was rmed to detern at a 3 meter nded to its ma	the mine the fully aximum
	 The EUT was set 3 me interference-receiving antenna tower. The disturbance of the raising and lowering from 360° the turntable. After measurement was maded. Steps 1) to 3) were per and horizontal polarization. The transmitter was the 	antenna, which transmitter was om 1m to 4m the fundamer de. formed with the tion.	was mount s maximized ne receive an ntal emission e EUT and the	ed on the to d on the tes ntenna and n was maxi he receive	op of a variable treceiver dispute by rotating the mized, a field antenna in bo	e-height lay by rough strength th vertica
	the antenna was approached. A signal at the disturbate radiating cable. With be polarized, the receive a reading at the test receive a measured field strengt.	eximately at the unce was fed to oth the substitu antenna was ra biver. The level	same locat the substitu- tion and the ised and low of the signa	ion as the oution antenre receive an wered to ob	center of the trans of the trans of tennas horizontain a maximu was adjusted	ansmitte of a non- ontally om ontil the
	7) The output power into 8) Steps 6) and 7)were re 9) Calculate power in dBr ERP(dBm) = Pg(dEBR) =	peated with bo n by the followi Bm) – cable los Bm) – cable los	th antennas ng formula: s (dB) + ant	polarized. enna gain (dBd)	
	where: Pg is the generator ou 10) Test the EUT in the lov 11) The radiation measure operation mode,And fo 12) Repeat above procedu	vest channel, the ments are perforund the X axis	ne middle chormed in X, positioning	nannel the H Y, Z axis po which it is v	lighest chann ositioning for I vorse case.	
Limit:	Attenuated at least 43+10le	1		1 4 7		

Test Data: Above 1GHz QPSK

		Band 5	20407 channel/BV	V1.4(lowes	t channel)		· 5
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1346.929	151	336	-53.80	-13	-40.80	Pass	Н
1646.948	150	20	-50.66	-13	-37.66	Pass	Н
2412.718	155	174	-37.37	-13	-24.37	Pass	н (С
3598.087	150	50	-50.12	-13	-37.12	Pass	Н
6561.030	150	158	-46.11	-13	-33.11	Pass	Н
9157.857	156	91	-44.61	-13	-31.61	Pass	Н
1350.362	149	200	-54.91	-13	-41.91	Pass	V
1646.948	158	36	-48.74	-13	-35.74	Pass	V
2406.584	150	55	-39.25	-13	-26.25	Pass	V
4617.550	150	10	-48.86	-13	-35.86	Pass	V
6379.864	155	27	-45.88	-13	-32.88	Pass	V
11140.850	144	11	-43.94	-13	-30.94	Pass	V

		Band 5	20525 channel/BW	/1.4(middle	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1350.362	158	114	-54.64	-13	-41.64	Pass	Н
1672.296	150	100	-48.57	-13	-35.57	Pass	Н
2500.251	144	251	-50.45	-13	-37.45	Pass	н
3598.087	150	36	-48.82	-13	-35.82	Pass	н (С.)
6396.125	156	200	-45.23	-13	-32.23	Pass	Н
9985.762	150	78	-45.02	-13	-32.02	Pass	Н
1115.673	150	54	-55.85	-13	-42.85	Pass	V
1672.296	158	121	-53.50	-13	-40.50	Pass	V
2412.718	150	20	-36.59	-13	-23.59	Pass	V
4202.500	154	33	-50.18	-13	-37.18	Pass	V
6527.712	160	11	-46.18	-13	-33.18	Pass	V
11140.850	150	20	-43.93	-13	-30.93	Pass	V

		Band 5	20643 channel/BW	/1.4(highes	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1115.673	150	88	-56.49	-13	-43.49	Pass	Н
1693.716	154	224	-50.68	-13	-37.68	Pass	Н
2412.718	150	110	-40.17	-13	-27.17	Pass	H
4846.367	155	360	-49.96	-13	-36.96	Pass	Н (б
6478.053	148	78	-46.45	-13	-33.45	Pass	Н
12334.980	150	22	-42.99	-13	-29.99	Pass	Н
1198.095	150	59	-56.13	-13	-43.13	Pass	V
1693.716	150	10	-51.30	-13	-38.30	Pass	V
2412.718	154	45	-38.47	-13	-25.47	Pass	V
3607.257	150	110	-50.14	-13	-37.14	Pass	V
6544.350	155	64	-45.40	-13	-32.40	Pass	V
11933.470	148	20	-42.49	-13	-29.49	Pass	V

16QAM

		Band 5	20407 channel/BV	V1.4(lowest	: channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1346.929	155	336	-57.77	-13	-44.77	Pass	Н
1646.948	147	20	-54.01	-13	-41.01	Pass	Н
2481.231	150	11	-52.45	-13	-39.45	Pass	H C
3805.334	151	247	-49.84	-13	-36.84	Pass	н
6412.427	150	226	-46.41	-13	-33.41	Pass	Н
9441.913	156	89	-45.22	-13	-32.22	Pass	Н
1346.929	158	360	-55.25	-13	-42.25	Pass	V
1646.948	155	78	-49.50	-13	-36.50	Pass	V
2500.251	150	200	-50.80	-13	-37.80	Pass	V
4332.852	154	54	-49.56	-13	-36.56	Pass	V
6511.117	149	81	-46.13	-13	-33.13	Pass	V
11197.710	150	51	-44.79	-13	-31.79	Pass	V

		Band 5	20525 channel/BV	V1.4(middle	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1150.279	151	51	-56.72	-13	-43.72	Pass	Н
2024.074	158	77	-54.72	-13	-41.72	Pass	Н
3598.087	150	213	-49.52	-13	-36.52	Pass	Н
6478.053	150	20	-46.15	-13	-33.15	Pass	Н (г
9251.580	150	68	-45.08	-13	-32.08	Pass	Н
12303.620	148	200	-42.78	-13	-29.78	Pass	Н
1147.354	141	151	-57.09	-13	-44.09	Pass	V
2698.665	150	20	-51.88	-13	-38.88	Pass	V
4444.562	158	67	-49.57	-13	-36.57	Pass	V
6511.117	156	338	-46.16	-13	-33.16	Pass	V
9111.353	150	20	-45.88	-13	-32.88	Pass	V
11140.850	150	49	-44.38	-13	-31.38	Pass	V

		Band 5	20643 channel/BW	/1.4(highes	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1350.362	151	55	-56.62	-13	-43.62	Pass	Н
3128.013	150	11	-50.74	-13	-37.74	Pass	Н
4433.263	152	261	-49.50	-13	-36.50	Pass	Н
6527.712	148	200	-46.41	-13	-33.41	Pass	Н
8527.851	150	315	-45.39	-13	-32.39	Pass	H (G)
11169.240	153	78	-44.10	-13	-31.10	Pass	Н
1350.362	156	91	-57.20	-13	-44.20	Pass	V
1668.044	150	200	-53.28	-13	-40.28	Pass	V
3776.385	151	45	-49.35	-13	-36.35	Pass	V
5910.798	155	36	-47.49	-13	-34.49	Pass	V
7941.185	160	110	-46.47	-13	-33.47	Pass	V
10295.500	148	72	-45.07	-13	-32.07	Pass	V

Note:

¹⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 110 of 111

PHOTOGRAPHS OF TEST SETUP

Test model No.: TN-IVS-8000

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

(Please See Appendix A)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com