dyno: Inferring, visualizing and interpreting trajectories

Wouter Saelens* 1 2, Robrecht Cannoodt* 1 2 3, Helena Todorov1 2 4, Yvan Saeys1 2

* Equal contribution ¹ Data mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium. ² Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium. ³ Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. 4 Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France

dyno is a toolkit for inferring, visualizing and interpreting trajectories in R

dyno.dynverse.org

Selecting the most optimal method(s)

Choice of method depends on the:

Expectations about the topology

Available computing resources Relative importance to particular trajectory aspects

Number of cells and features **Data**

Prior information (such as start cells)

Our app gives recommendations based on these criteria

Install locally in R: devtools::install_github("dynverse/dynguidelines")

Or go to: guidelines.dynverse.org

Recommandations are based on the results from our **benchmark**:

Robrecht Cannoodt @ Poster 1033 and benchmark.dynverse.org

Inferring trajectories

71 tools for trajectory inference

...and counting

...each with their own input/output interface

We developed a common input and output interface for 55 methods

Each method can be run with one line

infer_trajectory(dataset, "my_favorite_ti_method")

New methods can be included through

methods.dynverse.org

Input - Raw counts

- Normalised counts

- RNA velocity (soon!) - Default parameters

- Start cell(s)

- End cell(s)

- Cell groups

- Timecourse - # of end states

- # of branches - Marker genes

Common probabilistic trajectory model Cell positions Edges • • • • • • • • • • • Milestones Potential cell Delayed space

commitment

Annotating the trajectory

- Include additional information on top of the trajectory to make it **interpretable**
 - Rooting based on markers (or manually)
 - (soon!) Directionality of edges based on RNA velocity
- Labelling milestones based on markers (or manually)
- We welcome additional ideas about common operations

Examples:

Detecting differential expression

Various expression patterns can be detected

Visualizing the trajectory

Visualize a model in **multiple ways**

