5/1-17 358346

Performance Analysis of the HTTP Protocol on Geostationary Satellite Links

Hans Kruse
Ohio University
Mark Allman
NASA LeRC/Sterling Software
Jim Griner, Diepchi Tran
NASA LeRC

NASA Workshop June 2-4, 1998: Satellite Networks: Architectures, Applications, and Technology

Overview

- Network Reference Points
- The HTTP 1.0 and 1.1 Mechanisms
- Experimental Setup
- TCP and HTTP Configuration
- · Results and Future Work

Why HTTP

- The Obvious Answer: "Millions of Web Browsers..."
- · The not-so-obvious Answer:
 - HTTP is a very generic multi-file transfer protocol with content/encoding awareness
 - Very well optimized HTTP servers are available
 - HTTP contains intrinsic proxy support mechanisms that allow regional caching of data

3

Network Reference Points

Mans Eruse J. Warren McClure School of Communication Systems Management, Ohio University, http://disewww.csm.phigu.edu/ kruse.

Reference Points cont...

- Interface "a"
 - Very small number of users
 - Traffic is bursty, user wants good response time, protocols dominate performance
- · Interfaces "b" and "c"
 - Large and varying number of users
 - Traffic is more random, performance depends on protocols and congestion control; fairness is desirable

P Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University; http://diseases.com/ohiou.edu/ kruse

5

The HTTP 1.0 Mechanism

P Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University; http://ipswww.csm.ohiou.edu.kruse

The HTTP 1.1 Mechanism

Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University, http://dia.org/1/98/www.csm.ohiou.edu.

7

The Experimental Setup

kruse . 3 Wherein McClure School of Communication Systems Management, Ohio University, http://dishwww.csm.ohiou.edu/

TCP Configuration

- Standard BSD "reno" stack
- Large window support (RFC 1323)
 - experiment uses 8, 16, 64, and 96Kbytes
- Bug fixes in the NetBSD stack
 - Initial window starts with one segment
 - Acknowledgments are generated according to the standard

□ Plans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University; http://diabwww.csm.ohiou.edu.

C

HTTP Configuration

- Apache Server (HTTP 1.0 and 1.1)
 - Persistent connections in HTTP 1.0
- Netscape browser
- Netscape allows multiple connections
 - experiment uses 1, 4, 8, and 16
- Experimental HTTP 1.1 client
- Increased initial TCP window support

Web Pages

\$ Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University, http://diswww.csm.ohiou.edu. kruse

11

Comparing HTTP 1.0 and 1.1

Data Flow Comparison

The Larger TCP Initial Window

☼ Hans Kruse, J Warren McClure School of Communication Systems Management, Ohio University; http:///ibbwww.csm.ohiou.edu/kruse

What settings are important?

P. Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University: http://disawww.csm.ohiou.edu/kruse

15

Modeling Slowstart

- Based on Heideman, et al. (IEEE Transactions on Networking Vol. 5, No. 5, Oct 1997.
- Slowstart creates an exponential increase in the data flow, up to the channel bandwidth
- Delayed acknowledgements change the rate of increase
- HTTP 1.0 requires a little extra work, results for HTTP 1.1 are shown here.

Are there unknown effects?

© Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University; http:////http:///http:///http:////http:///http:///http:///http:///http:///http:///http:///http:///http:///http:///http:///http:///http:///http:///http://h

17

Maybe a few ...

Hans Kruse, J. Warren McClure School of Communication Systems Management, Ohio University, http:///phwww.csm.ohiou.edu/kruse

Implication for the Service Provider

/acts 3.79 100 26.41 14% 7.1 (1.536Mbps) /LeRC 3.00 49 16.36 9% 11.5 /oufr 6.89 491 71.23 38% 2.6 /Test 2.00 20 20 20 20 20 20 20 20 20 20 20 20 2	Page	Best Time (sec)	Size (Kbytes)	Rate KB/Sec	Utilization	No. of Users	Based on T1
/oufr 6.89 491 71.23 38% 2.6				· -	14%		(1.536Mbps)
/Test 2.00 20 2.6						11.5	Service
2.99 29 9.70 5% 19.3	/Test	2.99	491 29	9.70	38% 5%		

Desirable Configuration:

19

Conclusions and Future Work

- HTTP 1.1 pipelining outperforms HTTP 1.0.
- Performance of HTTP 1.1 can be readily modeled.
- Pipelining will create new application level problems.
- Examine the reference points "b" and "c" by introducing competing background traffic with the TCP flow under study.