

## UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA

# RELATÓRIO DAS PRÁTICAS

ES238 - Eletrônica 1

Thalisson Moura Tavares

RECIFE, 06 DE AGOSTO DE 2021 Professor: Renato Mariz de Moraes

#### Sumário

- 1. Apresentação
- 2. Filtro ativo passa alta de primeira ordem
  - 2.1. Cálculos
  - 2.2. Simulação
  - 2.3. Lista
- 3. Considerações Finais

#### Seção 1. Apresentação:

O objetivo da prática é montar e simular um circuito com um filtro ativo passa alta de primeira ordem do tipo Butterworth. O circuito será projetado com as seguintes características: Frequência crítica de 2 Khz, um ganho de tensão na saída do amplificador operacional (Av) de 100 e a tensão de entrada (Vin) = 1 mV.



Seção 2. Filtro ativo passa alta de primeira ordem

### Seção 2.1. Cálculos:

$$f_{c} = 2kHz$$
 $A_{v} = 100$ 
 $V_{in} = 1mV$ 
 $R_{1} = 1k\Omega$ 
 $R_{2} = (A_{v} \times R_{1}) - R_{1} = (100 \times 1000) - 1000 = 99k\Omega$ 
 $C = 100n$ F Obs: Valor de capacitância muito utilizado em filtros
 $R_{3} = \frac{1}{2\pi \times f_{c} \times C} = \frac{1}{2\pi \times 2000 \times 100 \times 10^{-9}} = 795,77\Omega$ 
 $X_{C} = R_{3} = 795,77\Omega$  Obs: Na frequência de corte

## Seção 2.2. Simulação:



Figura 1 - Circuito Filtro passa alta



Figura 2 - fin = fc = 2kHz



Figura 3 - fin = 20Hz



Figura 4 - fin = 2Hz

#### Secão 2.3. Lista

1. Quando  $f_{in} = f_c = 2kHz$ , a relação entrada/saída é dada por:

$$\frac{V_{out}}{V_{in}} = A_v \frac{f_{in}/f_c}{\sqrt{1 + \left(\frac{f_{in}}{f_c}\right)^2}} = 100 \frac{2000/2000}{\sqrt{1 + \left(\frac{2000}{2000}\right)^2}} = 100 \frac{1}{\sqrt{2}} = 70,71$$

$$20 \log_{10}(70,71) = 36,99 dB$$

Como pode ser observado na figura 2 o ganho é de 36,99dB, o mesmo valor calculado.

2. Quando  $f_{in} = 20Hz$ , a relação entrada/saída é dada por:

$$\frac{V_{out}}{V_{in}} = A_v \frac{f_{in}/f_c}{\sqrt{1 + \left(\frac{f_{in}}{f_c}\right)^2}} = 100 \frac{20/2000}{\sqrt{1 + \left(\frac{20}{2000}\right)^2}} = 1$$

$$20 \log_{10}(1) = 0 dB$$

Como pode ser observado na figura 3 o ganho é de aproximadamente 0dB. Na figura o ganho mostrado é de 22mdB, mas isso se deve ao fato do eixo x não estar exatamente em 20Hz.

3. Quando  $f_{in} = 2Hz$ , a relação entrada/saída é dada por:

$$\frac{V_{out}}{V_{in}} = A_v \frac{\frac{f_{in}}{f_c}}{\sqrt{1 + \left(\frac{f_{in}}{f_c}\right)^2}} = 100 \frac{\frac{2}{2000}}{\sqrt{1 + \left(\frac{2}{2000}\right)^2}} = 0,1$$

$$20 \log_{10}(0,1) = -20 dB$$

Como pode ser observado na figura 4 o ganho simulado é de aproximadamente -20dB. Na figura o valor mostrado é de -19.97dB, mas como explicado no item anterior, isso é devido o ponteiro não estar exatamente em 2Hz.

### Seção 3. Considerações Finais

Como pode ser observado na seção anterior, os resultados da simulação foram como esperados. O filtro ativo passa alta simulado apresentou funcionamento como demonstrado na aula de filtros. Sendo assim, para uma frequência de entrada igual a frequência de corte (2kHz) o ganho foi de 36,99dB, o que corresponde a uma atenuação de -3dB, já que o ganho para altas frequências é de  $20 \log_{10}(100) = 40dB$ . Para uma frequência de entrada igual a 20Hz o ganho foi de 0dB, o que corresponde a uma atenuação de -40dB. E para uma frequência de entrada igual a 2Hz, o ganho foi de -20dB, o que corresponde a uma atenuação de -60dB. Um resumo dos valores obtidos é mostrado na tabela abaixo.

| Vin (mV) | Frequência (Hz) | Vout (mV) | Ganho (dB) | Atenuação |
|----------|-----------------|-----------|------------|-----------|
| 1        | 2               | 0,1       | -20        | -60dB     |
| 1        | 20              | 1         | 0          | -40dB     |
| 1        | 2000            | 70,71     | 36,99      | -3dB      |