Linear Regression

Code ▼

Import Library

Hide

```
library(Metrics)
library(DAAG)
```

Get the data set

Hide

```
data_set <- read.csv("Advertising.csv", header=TRUE)</pre>
```

Summary of the data set

Hide

```
summary(data_set)
```

```
TV
                                 Radio
                                                               Sales
                                             Newspaper
Min. : 1.00
              Min. : 0.70 Min. : 0.000
                                            Min. : 0.30
                                                           Min. : 1.60
1st Qu.: 50.75
              1st Qu.: 74.38
                             1st Qu.: 9.975
                                            1st Qu.: 12.75
                                                           1st Qu.:10.38
Median :100.50 Median :149.75
                             Median :22.900
                                            Median : 25.75
                                                           Median :12.90
Mean :100.50 Mean :147.04
                             Mean :23.264
                                            Mean : 30.55
                                                           Mean :14.02
3rd Qu.:150.25
              3rd Qu.:218.82
                             3rd Qu.:36.525
                                            3rd Qu.: 45.10
                                                           3rd Qu.:17.40
Max. :200.00 Max. :296.40
                             Max. :49.600
                                            Max. :114.00
                                                           Max. :27.00
```

Hide

```
print(nrow(data_set))
```

[1] 200

Hide

```
print(ncol(data set))
```

[1] 5

Drop index column

Hide

Hide

SPLIT DATA SET INTO TRAINING AND TESTING

80% of the sample size

```
ind_split <- floor(0.80 * nrow(data_set))</pre>
```

Set seed to make your partition reproducible

```
set.seed(123)
train_ind <- sample(seq_len(nrow(data_set)), size = ind_split)

train <- data_set[train_ind, ]
test <- data_set[-train_ind, ]

View(train)
View(test)</pre>
```

LINEAR REGRESSION

```
lr_age <- lm(Sales~TV, data=train)
summary(lr_age)</pre>
```

```
Call:
lm(formula = Sales ~ TV, data = train)
Residuals:
  Min
       1Q Median 3Q
-8.3396 -1.9922 0.0219 2.0201 7.2355
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.069052 0.507788 13.92 <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.257 on 158 degrees of freedom
Multiple R-squared: 0.6134, Adjusted R-squared: 0.611
F-statistic: 250.7 on 1 and 158 DF, p-value: < 2.2e-16
                                                                          Hide
lr dist <- lm(Sales~Radio, data=train)</pre>
summary(lr dist)
Call:
lm(formula = Sales ~ Radio, data = train)
Residuals:
            1Q Median
                            3Q
   Min
                                   Max
-15.5706 -2.1136 0.8746 2.9348 8.3634
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.41474 0.64372 14.626 < 2e-16 ***
Radio
          0.19586
                    0.02325 8.426 2.08e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
lr_conv <- lm(Sales~Newspaper, data=train)
summary(lr_conv)</pre>
```

Residual standard error: 4.352 on 158 degrees of freedom Multiple R-squared: 0.31, Adjusted R-squared: 0.3056 F-statistic: 70.99 on 1 and 158 DF, p-value: 2.083e-14

PLOT GRAPH FOR RELATIONSHIP BETWEEN FEATURES AND TARGET

```
Hide
```

```
plot(train$Sales~train$TV, xlab="TV", ylab ="Sales")
abline(lr_age)
```


plot(train\$Sales~train\$Radio, xlab="Radio", ylab ="Sales")
abline(lr_dist)


```
plot(train$Sales~train$Newspaper, xlab="Newspaper", ylab ="Sales")
abline(lr_conv)
```


Calculate MSE for distance

```
lr_dist_1 <- lm(Sales~log(TV), data=train)
View(lr_dist_1)</pre>
```

Prediction on train

```
lr_train_1 <- predict(lr_dist_1, train)
lr_train_1</pre>
```

	159	1	79	14	195	170	50	118	43	
198	19	4	153	3						
5.6	43334 17	.6875	56 13.	716094	15.348648	17.790723	12.282012	12.787577	17.913278	15.98
6456	15.7604			-						
	90		91	188	185	92	137	99	72	
	7		196							
					17.358643	9.046485	8.624567	17.862363	14.168448	17.49
	11.7055									
					81	193	103	117	76	
	3		109							
					12.787577	7.110416	17.735415	15.071766	7.043421	16.82
	14.2744				0.0	1.55	5.0	105	1.60	
					23	155	53	135	162	
	30070 15				6 100617	16 011060	16 751660	10 016607	12 00 10 27	16.00
					6.10261/	16.211962	16./51669	10.016637	13.224937	16.22
	17.5316				1 11	^=	100	20	0.1	
	182			63	141	97	18/	38	21	
			60	13/657	12 625056	16.405635	15 070062	12 701000	16 796606	16 40
	17.8134	-			12.633036	16.403633	13.079963	12.701900	10.700090	10.49
					6	86	1 0 0	30	191	
	15		10 4		0	0.0	190	39	191	
					4 515322	16.319896	7 428771	10 607975	10 275882	13 58
	15.3511				4.010022	10.919090	7.420771	10.007373	10.275002	13.30
					52	22	89	169	110	
	87		35	127	J2	22	0,5	100	110	
-	-			099553	13.827689	17.104306	13.338731	16.734034	17.382570	12.01
	12.7825									
	40	1	12	30	12	31	132	121	64	
183	19	2	93	3						
16.95	50482 17	.1726	52 12.	486970	16.721641	17.904189	17.525932	15.128777	13.913927	11.61
8444	12.7424	58 16	.77447	74						
	96		71	67	177	79	85	37	8	
51	165		166							
15.6	79726 16	.4344	29 9.	414210	17.276759	2.699465	16.700300	17.550261	14.513007	16.44
7792	14.4167	74 17	.05750	9						
	98	1	73	140	200	84	46	17	62	
122	5	4	124	ŀ						
					17.018341	12.366437	15.945364	12.332891	17.469525	7.44
9077	16.1050	51 14	.60377	77						
	108		24	125	167	147	168	181	128	
	27									
					7.262299	17.147364	16.578902	15.520217	12.972393	14.19
9529	15.1716	-								
_					129	83	149	55	36	
	18									
					16.819676	12.732359	10.128479	17.489870	17.875483	10.59
9131	16.5456									
40-					1	123	172	154	131	
126	7	7	101	-						

```
17.144191 16.430602 16.913565 16.985390 16.883092 15.707603 15.861826 -5.079401 13.29
1002 8.897155 16.855799
176 11 68 20 144 3 29 156
44 130 80
17.690307 12.236207 15.074500 15.287113 13.983723 7.110416 17.282885 1.650853 16.58
0742 11.842088 14.377589
57 138 105 100 2 134
3.847313 17.646051 17.117115 14.960754 10.729684 16.811025
```

Prediction on test

```
Hide
lr pred 1 <- predict(lr dist 1, test)</pre>
1r pred 1
     10
              15 18
                          19
                                         28
                                                  33
                                                          45
                                                                   47
16.447792 16.528864 17.751686 12.410710 17.147364 13.704361 8.549467 13.398624 16.93
7099 14.988812 16.651843
              65
                      66 73
                                        75
                                                 82
                                                          95
                                                                  102
      61
              107
        106
11.430985 14.843505 12.399690 8.798983 16.698517 17.142604 14.084302 17.949416 16.21
3989 15.036041 8.534268
            114 115 119
                                   120
                                            133 136
     113
        148
                150
15.958389 16.630107 12.876240 14.683356 7.568692 4.381714 11.041674 16.329737 15.10
1735 17.196208 10.746758
    151 152
                     160
                              161
                                       174
                                                 175
17.742203 14.538264 14.860891 15.888405 15.796817 16.855799 17.781337
```

Calculate MSE

```
Hide

train_mse_1 = mse(train$Sales, lr_train_1)
print(train_mse_1)

[1] 11.48834

Hide

test_mse_1 = mse(test$Sales, lr_pred_1)
print(test_mse_1)
[1] 13.00607
```

Graph of test vs train mse

plotter <- c(train_mse_1, test_mse_1)
barplot(plotter, width = 0.02, xlab="data", names.arg = c("Train MSE", "Test MSE"), yl
ab="error", main="Error (TV Sales)")</pre>

Correlation (Subset Selection Method)

Prediction on train

```
Hide
```

```
lin_train <- predict(lin_gen, train)
lin_train</pre>
```

	159		179	1	4 195	170	50	118	43	
198		194		153						
10.25	53887	16.03	88942	8.901963	3 16.560754	18.042100	8.102846	6.614804	21.704741	12.87
3914	18.56									
					8 185	92	137	99	72	
					9 18.519984	4.451435	11.485607	23.992065	10.588046	15.65
	11.70				0.1	1.00	100	440		
					8 81	193	103	117	76	
	10500		1550		0 11 405460	4 40 41 71	17 676605	11 071161	11 500004	10 10
	12583 11.27				9 11.435460	4.4241/1	17.676685	11.9/1161	11.523394	19.18
			178		4 23	155	5.2	135	162	
	100				4 23	155	55	133	102	
					2 6.355815	15 567585	20 580087	11 616083	13 420535	14 94
	18.98				2 0.333013	13.307303	20.300007	11.010003	13.120333	11.91
					3 141	97	187	38	21	
	1		1,1			21	201	20		
					5 9.529010	12.733187	9.688995	15.488950	17.966850	16.34
4604	18.75	4653	18.19	96585						
	16		116	9.	4 6	86	190	39	191	
197		158		4						
20.6	68843	12.76	34998	21.00531	3 12.203368	14.996068	6.040480	9.836120	12.537198	8.23
8632	10.02	4273	17.42	21577						
	13		157	12	7 52	22	89	169	110	
25		87		35						
					1 9.430533	14.762188	11.472192	17.036110	19.780937	8.16
3559				54286						
					0 12	31	132	121	64	
						01 555005	15 516505	14 000000	10 064100	6 50
					9 17.377070	21.555095	15.516535	14.299/02	13.264109	6.52
4869	8.49				7 177	70	0.5	27	8	
5.1	1				, 1,,	7.9	0.5	37	O	
					5 19.996945	8 849654	20 723304	23 484198	12 172060	12 59
	11.14				2 23.33.03.10	0.013001	201,20001	20.101230	12.1.2000	12.03
					200	84	46	17	62	
122		54		124						
15.3	46233	7.61	9248	19.75823	7 15.258319	14.336082	15.125287	12.389571	22.744390	7.69
7225	19.76	7587	15.1	16731						
	108		24	12	5 167	147	168	181	128	
88		27		42						
7.13	16713	16.54	14847	19.22418	8 10.801032	15.381393	13.399484	10.669342	6.670135	15.39
1670	15.02									
					5 129	83	149	55	36	
		186			- 00		40			
					5 22.331899	10.126764	12.284259	20.414822	17.103847	9.76
2511	20.80				1 -	4.00	4.50	4 = -	4.0.1	
100					1 1	123	1/2	154	131	
126		/ /		TOT						

```
21.738289 21.109140 14.628366 20.312067 13.684279 14.250067 18.145484 10.458892 9.11
3810 4.488110 13.777416

176 11 68 20 144 3 29 156

44 130 80

24.695972 7.028543 12.098914 14.181279 8.719875 12.061925 19.418867 5.375004 13.96

5910 7.789136 9.681328

57 138 105 100 2 134

8.421019 20.694893 20.381963 16.818694 12.210241 19.166108
```

Prediction on test

```
Hide
lin pred <- predict(lin gen, test)</pre>
lin pred
      10
             15 18 19
                                        28
                                                 33
                                                          45
                                                                   47
                 59
12.580125 18.327971 23.078708 9.963320 17.067163 7.616252 8.776754 8.817358 16.15
6097 12.803428 21.816770
              65
                      66
                               73
                                        75
                                                 82
                                                          95
      61
                                                                  102
              107
        106
5.752485 16.931561 7.948238 10.358667 17.379461 14.610094 10.537224 22.896816 14.79
3306 17.752128 6.088061
          114 115 119
                                   120
                                           133
                                                    136
     113
        148
                150
13.981681 16.467475 15.223724 15.296465 6.810888 8.521026 14.033670 18.155479 9.78
6008 23.154312 9.821197
    151
          152
                     160
                              161
                                       174
                                                175
18.326298 9.899876 12.346657 14.184381 12.030651 13.812488 23.572416
```

Calculate MSE on subset

```
Hide

train_mse = mse(train$Sales, lin_train)
print(train_mse)

[1] 2.978008

Hide

test_mse = mse(test$Sales, lin_pred)
print(test_mse)

[1] 2.068075
```

Graph of test vs train mse for subset

plotter <- c(train_mse, test_mse)
barplot(plotter, width = 0.02, xlab="data", names.arg = c("Train MSE", "Test MSE"), yl
ab="error", main="Error (Subset)")</pre>

K fold cross validation

model = cv.lm(df, (Sales~TV+Radio+Newspaper), m=5)