Feature Engineering pour Machine Learning Prédictif

Importation des librairies

Entrée [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Importation du csv DVF

```
Entrée [2]:

dvf = pd.read_csv('Data/dvf.csv', sep=',', low_memory=False)
```

Partie 1 : Feature Engineering & Data Analysis round 2

Remarques:

Après le premier nettoyage le dataset n'est pas encore prêt à être joué avec un algorithme. Il faut faut déterminer les colonnes qui vont être corrélées avec la target. C'est-à-dire qu'il nous faut connaître les colonnes qui vont influencer le prix d'un bien immobilier. Pour cela on va tout d'abord ce remémorer la composition du dataframe.

Exploration des données

Entrée [3]:

```
dvf.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2224142 entries, 0 to 2224141

Data columns (total 17 columns):

#	Column	Dtype		
0	id_mutation	object		
1	date_mutation	object		
2	nature_mutation	object		
3	valeur_fonciere	float64		
4	adresse_nom_voie	object		
5	nom_commune	object		
6	code_departement	object		
7	id_parcelle	object		
8	nombre_lots	int64		
9	code_type_local	float64		
10	type_local	object		
11	surface_reelle_bati	float64		
12	nombre_pieces_principales	float64		
13	surface_terrain	float64		
14	longitude	float64		
15	latitude	float64		
16	id_bien	object		
dtypes: float64(7), int64(1), object(9)				

Entrée [4]:

memory usage: 288.5+ MB

```
dvf.describe()
```

Out[4]:

	valeur_fonciere	nombre_lots	code_type_local	surface_reelle_bati	nombre_pieces_princi
count	2.224142e+06	2.224142e+06	1.348953e+06	1.223008e+06	1.346962
mean	2.052168e+05	2.253525e-01	1.535372e+00	1.196465e+02	3.315520
std	2.292359e+06	7.998093e-01	8.871148e-01	5.772342e+02	1.988447
min	1.000000e-02	0.000000e+00	1.000000e+00	1.000000e+00	0.000000
25%	4.166666e+04	0.000000e+00	1.000000e+00	6.400000e+01	2.000000
50%	1.200000e+05	0.000000e+00	1.000000e+00	8.800000e+01	4.000000
75%	2.190000e+05	0.000000e+00	2.000000e+00	1.150000e+02	5.000000
max	1.750000e+09	3.300000e+02	4.000000e+00	2.778140e+05	1.120000
4					•

Remarques:

Le describe permet de voir les écarts au sein des des colonnes numériques.

On remarque ainsi une grande disparité des prix dans la colonne foncière, de 0.01€ à 1 750 000 000€. Il conviendra surement de faire des fourchettes de prix ou de réduire les données.

Entrée [5]:

dvf.isnull().sum()

Out[5]:

id_mutation	0
date_mutation	0
nature_mutation	0
valeur_fonciere	0
adresse_nom_voie	3087
nom_commune	0
code_departement	0
id_parcelle	0
nombre_lots	0
code_type_local	875189
type_local	875189
surface_reelle_bati	1001134
nombre_pieces_principales	877180
surface_terrain	348250
longitude	52559
latitude	52559
id_bien	0
dtype: int64	

Entrée [6]:

```
plt.figure(figsize=(14,8))
sns.heatmap(dvf.isnull())
```

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x21b2ab94cc0>

Remarques:

Cette requête nous informe sur le nombre de Null dans les colonnes, c'est-à-dire le nombre de lignes où les données ne sont pas renseignées.

On remarque alors qu'il en reste beaucoup, un traitement s'avère nécessaire pour éviter le bruit dans les données se qui conduira à des résultats faussés.

En conlusion:

Il faut:

- traiter les NaN : afin d'en faire une catégorie à part ===> comment / cb de cat
- voir pour ne garder que les colonnes qui sont corrélées à la target : valeur_fonciere
- supprimer les données nature_mutation qui ne sont pas égales à des Ventes pour coller au besoin du client
- créer une fourchette de prix

Récupération des données de vente seulement

Remarque:

Le nouveau dataframe n'a maintenant que les ventes de biens ce qui permet de coller au mieux à la demande du client qui est de "faire une estimation des biens de vente".

Traitement des NaN de la colonne type local

```
Entrée [10]:

dvf2['type_local'] = dvf2['type_local'].fillna('None')
```

Entrée [11]:

```
sns.catplot(x="type_local",y="valeur_fonciere",data=dvf2, kind='violin', height=10)
```

Out[11]:

<seaborn.axisgrid.FacetGrid at 0x21b2af94940>

Entrée [12]:

 $sns.catplot(x="type_local",y="valeur_fonciere",data=dvf2[dvf2['valeur_fonciere']<0.5],\ kindstand the context of the context$

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x21b2af81ba8>

Remarques

Dans la colonne type_local 'None' se rapprochent plus de 'Local industriel. commercial ou assimilé' on peut donc supposer que les 'None' en sont.

On peut également se poser la question des valeurs extrêmes de valeur_fonciere

Etude de la corrélation

- si le coefficient est proche de 1 c'est qu'il y a une forte corrélation positive
- si le coefficient est proche de -1 c'est qu'il y a une forte corrélation négative
- si le coefficient est proche de 0 en valeur absolue c'est qu'il y a une faible corrélation.

Entrée [18]:

```
dvf_corr = dvf2.corr().round(2)
plt.figure(figsize=(14,8))
sns.heatmap(data=dvf_corr, annot=True)
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x21b2ad16710>

Remarques:

- Correlation : La matrice montre une forte corrélation négative entre nombre_pieces_principales et code_type_local
- · Feature selection :
 - valeur_fonciere qui est la target
 - code_departement les départements seront regroupés en régions
 - nature_mutation
 - type_local
 - nombre pieces principales

Mise en place d'un DF final pour les algorithmes

Création de la colonne regions

```
Entrée [19]:
```

```
listeNordEst=['02','08','10', '51', '52', '54', '55', '57','59', '60', '62', '67', '68', '7 listeNordOuest=['14', '22', '27', '28', '29', '35', '36', '37', '41', '44', '45', '49', '50 listeSudEst=['01', '03', '04', '05', '06', '13', '18', '21', '25', '26', '38', '39', '42', listeSudOuest=['2A', '2B', '07', '09', '11', '12', '15', '16', '17', '19', '23', '24', '30' listeRegionParis=['75', '77', '78', '91', '92', '93', '94', '95'] listeDOMTOM=['971', '972', '973', '974']
```

Entrée [20]:

```
dvf2['regions']=np.where(dvf2['code_departement'].isin(listeNordEst), 'NordEst', dvf2['code
```

Entrée [21]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeNordOuest), 'NordOuest', dvf2['regions']
```

Entrée [22]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeSudEst), 'SudEst', dvf2['regions'])
```

Entrée [23]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeSudOuest), 'SudOuest', dvf2['regions'])
```

Entrée [24]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeRegionParis), 'RegionParis', dvf2['region
```

Entrée [25]:

```
dvf2['regions']=np.where(dvf2['regions'].isin(listeDOMTOM), 'DOMTOM', dvf2['regions'])
```

Entrée [26]:

```
dvf2.regions.unique()
```

Out[26]:

Entrée [27]:

dvf_prep=dvf2[['valeur_fonciere', 'regions', 'type_local', 'nature_mutation', 'nombre_pieces
dvf_prep

Out[27]:

	valeur_fonciere	regions	type_local	nature_mutation	nombre_pieces_principales
0	115000.0	SudEst	Local industriel. commercial ou assimilé	Vente	0.0
1	1.0	SudEst	Local industriel. commercial ou assimilé	Vente	0.0
2	1.0	SudEst	Local industriel. commercial ou assimilé	Vente	0.0
3	258000.0	SudEst	Appartement	Vente	5.0
4	175050.0	SudEst	Maison	Vente	5.0
2192869	570000.0	RegionParis	Appartement	Vente	2.0
2192870	7698200.0	RegionParis	Appartement	Vente	8.0
2192871	1007640.0	RegionParis	Appartement	Vente	3.0
2192872	626572.0	RegionParis	Appartement	Vente	3.0
2192873	46000000.0	RegionParis	Local industriel. commercial ou assimilé	Vente	0.0

2192874 rows × 5 columns

Entrée [28]:

```
dvf_prep.to_csv('dvf2.csv', index=False)
```

Gestion des Outliers de valeur_fonciere

Entrée [29]:

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x21b2b7c2ac8>

Entrée [30]:

```
dvf_prep.valeur_fonciere.describe()
```

Out[30]:

```
count
         2.192874e+06
         2.072833e+05
mean
         2.307654e+06
std
min
         1.000000e-02
         4.500000e+04
25%
50%
         1.216505e+05
         2.200000e+05
75%
         1.750000e+09
max
Name: valeur fonciere, dtype: float64
```

Remarques:

Que ça soit par le graphique ou par la méthode ".describe()" il ya une mise ne évidence claire d'une grande variation dans le prix de vente.

On peut donc choisir de ne prendre les valeurs qu'entre 45 000€ et 220 000€ ce qui correspond aux valeurs comprises entre le 1er et le 3ème quartile.

Les autres seront considérées comme des outliers.

Entrée [31]:

```
dvf_prep2 = dvf_prep.loc[dvf_prep['valeur_fonciere'].between(45000, 220000)]
dvf_prep2.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1103600 entries, 0 to 2192861
Data columns (total 5 columns):
    Column
 #
                                Non-Null Count
                                                  Dtype
_ _ _
    -----
                                -----
                                                  ____
 0
    valeur_fonciere
                                1103600 non-null float64
 1
    regions
                                1103600 non-null object
 2
    type_local
                                1103600 non-null object
    nature_mutation
                                1103600 non-null object
    nombre_pieces_principales 1103600 non-null float64
dtypes: float64(2), object(3)
memory usage: 50.5+ MB
Entrée [32]:
dvf prep2.to csv('dvf3.csv', index=False)
```