4 端口 USB3. 0 HUB 控制器芯片 CH634

手册 1 版本: 1.4 https://wch.cn

1、概述

CH634 是符合 USB3. 2 Gen1 协议规范的 4 端口 USB 超高速 HUB 控制器芯片,单芯片集成 4 口 USB HUB 和 USB PD 功能。CH634 具有独立的 SS HUB 控制器和 USB2. 0 HUB 控制器,内置 5 组 SS PHY、5 组 USB2. 0 PHY 和 2 组 PD PHY。CH634 芯片的上行端口支持 USB3. 0 超高速 5Gbps、USB2. 0 高速 480Mbps 和全速 12Mbps,下行端口支持 USB3. 0 超高速、USB2. 0 高速、全速和低速 1.5Mbps。

CH634W8G 内置两组 Type-C 双通道 USB3. 0 PHY 和双 PD PHY, 兼容 USB-C 线缆和连接规范, 原生支持 Type-C 正反插自适应, 原生支持 PDHUB 和 Type-C 电源 15W 快充。

CH634 支持高性能的并发处理 MTT 模式,采用工业级设计,外围精简,可应用于计算机和工控机主板、扩展坞、外设、嵌入式系统等场景。

下图为 CH634 的系统框图。

图 1-1 系统框图

2、特点

- 4 □ USB3. 2 Gen1 HUB 集线器,提供 4 个下行端口,支持 USB3. 2 Gen1 (5Gbps),并且向前兼容 USB3. 1、USB3. 0、USB2. 1、USB2. 0、USB1. 1、USB1. 0 协议规范
- USB3.2 Gen1 HUB 模块支持符合 USB3.2 Gen1 协议规范的 U0/U1/U2/U3 电源管理模式
- 部分型号内置两组自研的 Type-C 双通道 USB3.0 PHY,原生支持 Type-C 正插和反插
- USB2. 0 HUB 模块支持符合 USB2. 1 协议规范的 L0/L1/L2/L3 电源管理模式
- 支持低成本的 STT 或高性能的 MTT 模式, MTT 为每个端口配置独立的 TT 实现高速传输
- 内置两路 USB PD PHY, 原生支持 Type-C 电源 15W 快充, 支持 PDHUB 和扩展坞
- 支持 BC1. 2 充电协议和 CDP
- 兼容 USB Type-C 线缆和连接规范, 3 种 C 口工作模式, 支持下行双 C 口或上行 C 口
- 支持 GANG 整体联动电源控制和 GANG 整体过流检测
- 部分型号支持各端口独立电源控制和各端口独立过流检测
- 自研的 HUB 专用 USB PHY, 低功耗技术, 支持自供电或总线供电
- 部分型号支持 SMBus 总线,支持主板集成和管理
- CH634M、CH634W6C 和 CH634W8G 支持上行口交换功能, 便于 2 个 USB 主机管理多个 USB 设备
- 支持通过 1/0 引脚配置独立或整体控制、供电模式等功能
- 可通过外部 EEPROM、外部 FLASH 或内部 EEPROM 配置 HUB 芯片是否支持复合设备、不可移除设备、自定义 VID、PID、端口配置和 USB 厂商、产品、序列号字符串描述符等
- 内置信息存储器,针对行业特殊需求可批量定制厂商或产品信息及配置
- 集成了 3.3V 的 LDO 调压器和 1.2V 的 DC-DC 降压器,支持外部 5V 电源供电,外围精简
- 部分型号支持外加 Type-C 接口芯片 CH211 实现 28V 高压 PDHUB 和扩展坞
- 青稞 RISC-V 处理器内核、超速 USB、高速 USB、USB PD 等控制器和物理层收发器 IP 全自研,各模块紧密协同,效率高成本低,免除 IP 授权费
- 提供 QFN32、QFN46C5、QFN88 等多种封装形式

表 2-1 同簇型号功能对比

				ſ		1 3//// -	1-01 HEV1 P			-		
型号 功能	F	M	W5M	W6C	W6G	W6T	W7G	W7R	W7S	W7U	W7V	W8G
USB2+USB3 端口组合	4+2	4+4	4+4	4+4	4+4	4+4	4+4	4+4	4+4	4+4	4+4	4+4 +20
MTT 模式	√	√	√	√	√	√	√	√	√	√	√	√
独立过流 检测	×	×	√	√	×	√	√	√	√	2	√	√
整体过流 检测	√	√	√	√	√	√	√	√	√	√	√	√
独立电源 控制	×	×	√	√	×	√	√	√	1	2	√	√
整体电源 控制	√	√	√	√	√	√	√	√	√	√	√	√
I/0 配置 整体/独立	×	×	√	√	×	√	√	×	×	×	×	√
I/0 配置 电源控制 极性	×	×	×	×	√	√	×	×	×	×	1	×
I/0 配置 BC 充电	×	×	√	√	√	×	√	√	1	√	√	√
LED 指示灯	×	×	×	×	1	4	4+4	×	4	4+4+1	4	4
内部 EEPROM 配置信息	√	√	√	√	√	√	√	√	√	√	√	√

1		_				·						
外部 EEPROM	×	×	×	×	×	√	×	√ √	×	×	×	×
配置信息						•		•				
外部 FLASH	×	×	 	√	√	×	√ √	√ √	√	√	√	√
配置信息	^	^	~	~	~	^	~	~	~	~	~	~
SMBus 接口	√	√	,	√	×	√	√	√	×	√	,	,
配置信息	~	~	√	~	_ ^	~	~	~	^	~	√	√
定制配置	,	,	,	,	,	,	,	,	,	,	,	,
信息	√	√	√	√	√	√	√	√	√	√	√	√
上行口交换	×	√	×	√	×	×	×	×	×	×	×	√
Type-C 快充	~	,	~	~	,	\ \ \	\ \ \	\ \ \	· · ·	~	\ \	,
PDHUB	×	√	×	×	√	×	×	×	×	×	×	√
单 5V 供电	×	√	×	√	√	×	√	√	√	√	√	√
单 3. 3V		,		,	,		,	,	,	,	,	,
供电	×	√	×	√	√	×	√	√	√	√	√	√
3. 3V+1. 2V	,	,	,	,	,	,	,	,	,	,	,	,
双供电	√	√	√	√	√	√	√	√	√	√	√	√
QFN 引脚数	32	46	56	64	64	64	76	76	76	76	76	88
封装尺寸	4*4	5*5	7*7	8*8	8*8	9*9	9*9	9*9	9*9	9*9	9*9	10*10

3、引脚排列

封装形式	塑体尺寸	引脚节距		封装说明	订货型号
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线 32 脚	CH634F
QFN46C5	5*5mm	0. 4mm	15.7mil	WCH 四边无引线 46 脚	CH634M
QFN64	8*8mm	0. 4mm	15.7mil	四边无引线 64 脚	CH634W6G
QFN88	10*10mm	0. 4mm	15.7mil	四边无引线 88 脚	CH634W8G

注: 1、0#引脚是 QFN 封装的底板, 是必要连接。

2、CH634F、CH634W5M、CH634W6T 内部没有 LDO 调压器和 DC-DC 降压器,需外部同时供电 3. 3V 和 1. 2V。其它型号内置 3. 3V 的 LDO 调压器和 1. 2V 的 DC-DC 降压器,外部单一供电 5V 或 3. 3V。

3、CH634F 的 4 个下行端口包含 2 个 USB3. 2 Gen1 和 2 个 USB2. 0; 其它型号包含 4 个 USB3. 2 Gen1 下行端口和 4 个 USB2. 0; 其中,CH634W8G 包含两组原生 Type-C/PD 正反插自适应端口。

4、客制引脚 CH634W5M、CH634W6C、CH634W6T、CH634W7G、CH634W7R、CH634W7S、CH634W7U、CH634W7V, 仅批量预定。其引脚排列、引脚定义和封装信息请参考《CH634DS2》手册。

4、引脚定义

表 4-1 USB 信号相关引脚功能描述

USB 信号引脚	引脚名称	类型(1)	功能描述
	UP_SS_TXA UP_SS_TXB	USB3	上行端口 USBSS 差分发送信号线 TX+/TX-或TX-/TX+(自动识别交叉)。
上行端口 USBSS 差分信号	UP_SS_RXA UP_SS_RXB	USB3	上行端口 USBSS 差分接收信号线 RX+/RX-或RX-/RX+(自动识别交叉)。
L 公豐口 USD2 A 苯八烷口	UP_HS_DP	USB2	上行端口 USB2. 0 差分信号线 D+。
上行端口 USB2. 0 差分信号	UP_HS_DM	USB2	上行端口 USB2. 0 差分信号线 D-。
】 1#下行端口 USBSS 差分信号	P1_SS_TXA P1_SS_TXB	USB3	1#下行端口 USBSS 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
1# [1] 编口 USBSS 左刀 旧号	P1_SS_RXA P1_SS_RXB	USB3	1#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
1#工行端口 11602 0 美八信日	P1_HS_DP	USB2	1#下行端口 USB2. 0 差分信号线 D+。
┃1#下行端口 USB2. 0 差分信号	P1_HS_DM	USB2	1#下行端口 USB2. 0 差分信号线 D-。
	P2_SS_TXA P2_SS_TXB	USB3	2#下行端口 USBSS 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
2#下行端口 USBSS 差分信号	P2_SS_RXA P2_SS_RXB	USB3	2#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
	P2_HS_DP	USB2	2#下行端口 USB2. 0 差分信号线 D+。
2#下行端口 USB2. 0 差分信号	P2_HS_DM	USB2	2#下行端口 USB2. 0 差分信号线 D-。
3#下行端口 USBSS 差分信号	P3_SS_TXA P3_SS_TXB	USB3	3#下行端口 USBSS 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
3#下门端口 00000 左刀旧与	P3_SS_RXA P3_SS_RXB	USB3	3#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
3#下行端口 USB2. 0 差分信号	P3_HS_DP	USB2	3#下行端口 USB2. 0 差分信号线 D+。
5# 1	P3_HS_DM	USB2	3#下行端口 USB2. 0 差分信号线 D-。
┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃ ┃	P4_SS_TXA P4_SS_TXB	USB3	4#下行端口 USBSS 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
4#下打骑口 USBSS 左分后与 	P4_SS_RXA P4_SS_RXB	USB3	4#下行端口 USBSS 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。
	P4_HS_DP	USB2	4#下行端口 USB2. 0 差分信号线 D+。
4#下行端口 USB2. 0 差分信号	P4_HS_DM	USB2	4#下行端口 USB2. 0 差分信号线 D-。
1#或 2#下行端口	PxC_SS_TXA PxC_SS_TXB	USB3	1#或 2#下行端口 Type-C 差分发送信号线 TX+/TX-或 TX-/TX+(自动识别交叉)。
Type-C 差分信号	PxC_SS_RXA PxC_SS_RXB	USB3	1#或 2#下行端口 Type-C 差分接收信号线 RX+/RX-或 RX-/RX+(自动识别交叉)。

表 4-2 CH634F 和 CH634M 引脚定义

引脚号(同名 CH634F	3引脚可参考) CH634M	引脚 名称	类型")	功能描述
-	9	VDD5	Р	5V 电源输入,建议外接 0.1uF 并联 10uF 退耦电容。如果 VDD5 电压小于 3.6V 则应短接 VDD33。
_	8	VSW	Р	DCDC 输出端, 需贴近引脚串接电感产生 1.2V 电

ı-				
				源,且 1.2V 电源需就近放置对地电容,建议用
				2. 2uH 电感且至少一个 10uF 电容。
_	10	VDD33	Р	3.3V LDO 输出端,模拟电源和 I/O 引脚电源输
	10	V DD33	'	入,建议外接 0.1uF 并联 10uF 退耦电容。
20		VDD22	D	模拟电源和 I/O 引脚电源输入,建议外接 0.1uF
30	_	VDD33	Р	并联 10uF 退耦电容。
	_	1/55/40	_	1. 2V 内核电源和 2#下行端口 1. 2V 电源输入, 建
29	7	VDD12	Р	议外接 0.1uF 或 1uF 退耦电容。
0	0,6	GND	Р	公共接地端,必须连接 GND。
14	28	UP_VDD12	Р	上行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。
				1#下行端口 1. 2V 电源输入, 外接 0. 1uF 退耦电
9	21	P1_VDD12	Р	容。
				3#下行端口 1.2V 电源输入, 外接 0.1uF 退耦电
_	_	P3_VDD12	Р	容。
-	39	P4P3_VDD12	Р	3#和 4#下行端口 1. 2V 电源输入, 外接 0. 1uF 退
				耦电容。
4	17	ΧI	1	晶体振荡器输入端,接外部 24MHz 晶体一端及对
				地电容。
3	16	XO	0	晶体振荡器反相输出端,接外部 24MHz 晶体另一
				端及对地电容。
13、12、16、	27、26、30、29	UP SS xxx	USB3	上行端口 USBSS 差分发送或接收信号线。
15				
17、18	31、32	UP_HS_xx	USB2	上行端口 USB2. 0 差分信号线。
8、7、11、10	20、19、23、22	P1_SS_xxx	USB3	1#下行端口 USBSS 差分发送或接收信号线。
5、6	24、25	P1_HS_xx	USB2	1#下行端口 USB2. 0 差分信号线。
27、28、25、 26	2、3、4、5	P2_SS_xxx	USB3	2#下行端口 USBSS 差分发送或接收信号线。
23、24	46、1	P2_HS_xx	USB2	2#下行端口 USB2. 0 差分信号线。
	41、40、43、42		USB3	3#下行端口 USBSS 差分发送或接收信号线。
21, 22	44 \ 45	P3_HS_xx	USB2	3#下行端口 USB2. 0 差分信号线。
	36、35、38、37		USB3	4#下行端口 USBSS 差分发送或接收信号线。
10 20			USB2	4#下行端口 USB2. 0 差分信号线。
19、20	33、34	P4_HS_xx	USDZ	
32	13	OVCUR#	1	整体模式下行端口过流检测输入引脚,低电平过
				流,内置上拉。
		SMBDAT	1/0	SMBus 总线数据信号线。
2	-	DWDEL:"		整体模式下行端口电源输出控制引脚,低电平开
		PWREN#	0	启。
				SMBus 总线时钟信号线。
				在上电期间作为配置引脚,用于配置 CH634F 芯
1	_	SMBCLK	1	片的 SMBDAT/PWREN#引脚功能,如果检测到外部
			-	有上拉电阻(如 4.7K 电阻),则配置为 SMBDAT 功
				能,否则配置为 PWREN#功能。
				外部复位输入,内置上拉电阻,低电平有效,不
31	14	RESET#	I	使用时可以悬空,建议短接 VDD33 防干扰。
		OMDDAT		·
		SMBDAT		通用 HUB 模式: SMBus 总线数据信号线。
_	18	SDA	1/0	PD-HUB 模式: 2 线串行接口的数据信号线,用于
		JUK		连接 CH211 芯片。
_	15	SMBCLK		通用 HUB 模式: SMBus 总线时钟信号线。

		SCL	0	PD-HUB 模式: 2 线串行接口的时钟信号线,用于连接 CH211 芯片。
_	- 12	PWREN#	I/0 (FT)	通用 HUB 模式:整体模式下行端口电源输出控制引脚,低电平开启。在复位期间作为配置引脚,用于配置通用 HUB 模式或 PD-HUB 模式,如果检测到外部有上拉电阻(如 4.7K 电阻),则配置为通用 HUB 模式,否则配置为 PD-HUB 模式。注:PD-HUB 模式下,下行端口电源输出控制引脚由 CH211 提供。
		HUB_CC		PD-HUB 模式:上行口 PD 协议通信引脚,用于连接手机/电脑等 USB 主机。
-	11	SUSP#	I/0 (FT)	通用 HUB 模式: SUSP 睡眠状态输出引脚, 高电平指示睡眠态, 低电平指示正常状态。如果芯片配置参数使能上行口交换功能, 则该引脚切换成上行口和下行 PORT1 口交换控制输入引脚, 悬空或上拉不切换, 输入低电平控制切换。
		PWR_CC	,	PD-HUB 模式:外供电端 PD 协议通信引脚,用于连接 Type-C 电源适配器。

表 4-3 CH634W6G 引脚定义

引脚号(同名引脚可参考)	引脚 名称	类型⑴	功能描述
20	VDD5	Р	DCDC 的电源输入,建议外接 10uF 对地电容。 3. 3V LDO 的 5V 电源输入,建议外接 1uF 电容。 如果 VDD5 电压小于 3. 6V 则应短接 VDD33。
19	VSW	Р	DCDC 输出端,需贴近引脚串接电感产生 1.2V 电源,且 1.2V 电源需就近放置对地电容,建议用 2.2uH 电感且至少一个 10uF 电容。
17	VFB	Р	DCDC 电压反馈端,建议外接 0.1uF 对地电容,且 直连 DC-DC 输出的 1.2V 电源。
21	VDD33/ V1033	Р	3.3V LDO 输出端和 IO 引脚电源输入,建议外接 0.1uF 并联 10uF 或 4.7uF 退耦电容。
35	AVDD33	Р	3. 3V 模拟电源输入,建议外接 0. 1uF 并联 10uF 或 4. 7uF 退耦电容。
27	DVDD12	Р	1. 2V 内核电源输入,建议外接 0. 1uF 或 1uF 退耦 电容。
54	V1033	Р	10 引脚电源输入,外供 3.3V,建议外接 1uF 或 0.1uF 退耦电容。
18	GND_DCDC	Р	DCDC 接地端,必须连接 GND。
0	GND	Р	公共接地端,必须连接 GND。
16	GND	Р	可选接地端,建议连接 GND。
40	UP_VDD12	P	上行端口 1.2V 电源输入,外接 0.1uF 退耦电容。
49、13、3、58	Px_VDD12	Р	1-4#下行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。
45	ΧI	I	晶体振荡器输入端,接外部 24MHz 晶体一端及对地电容。
44	X0	0	晶体振荡器反相输出端,接外部 24MHz 晶体另一

			端及对地电容。
39、38、42、41	UP_SS_xxx	USB3	上行端口 USBSS 差分发送或接收信号线。
37、36	UP_HS_xx	USB2	上行端口 USB2. 0 差分信号线。
48、47、51、50	P1_SS_xxx	USB3	1#下行端口 USBSS 差分发送或接收信号线。
52、53	P1_HS_xx	USB2	1#下行端口 USB2. 0 差分信号线。
12、11、15、14	P2_SS_xxx	USB3	2#下行端口 USBSS 差分发送或接收信号线。
9、10	P2_HS_xx	USB2	2#下行端口 USB2. 0 差分信号线。
2、1、5、4	P3_SS_xxx	USB3	3#下行端口 USBSS 差分发送或接收信号线。
6、7	P3_HS_xx	USB2	3#下行端口 USB2. 0 差分信号线。
57、56、60、59	P4_SS_xxx	USB3	4#下行端口 USBSS 差分发送或接收信号线。
63、64	P4_HS_xx	USB2	4#下行端口 USB2. 0 差分信号线。
			1#下行端口过流检测输入引脚,低电平过流;
33	0VCUR#	1	整体模式下行端口过流检测输入引脚,低电平过
			流。
			1#下行端口电源输出控制引脚,低电平开启;
			整体模式下行端口电源输出控制引脚,低电平开
			启。
34	PWREN#	0	PWREN#引脚在复位期间兼作配置引脚,用于配置
			电源控制引脚的输出极性,检测到悬空或高电平
			则 PWREN 引脚为输出低电平有效;检测到低电平
			则 PWREN 引脚为输出高电平有效。
24	RESET#	ı	外部复位输入,内置上拉电阻,低电平有效,
24	KL3L1#	'	不使用时可以悬空,建议短接 VDD33 防干扰。
28	SPI_MOSI	0	SPI 接口的数据输出。
		_	通用 HUB 模式: SPI 接口的片选输出。
		0	在复位期间作为配置引脚,内置上拉电阻,用于
31	SPI_SCS		配置通用 HUB 模式或 PD-HUB 模式,低电平配置
			为 PD-HUB 模式,悬空或高电平配置为通用 HUB
			模式。
	SPI_SCK	0	通用 HUB 模式: SPI 接口的时钟输出。
29	SCL	0	PD-HUB 模式: 2 线串行接口的时钟信号线, 用于
	OOL	0	连接 CH211 芯片。
	SPI_MISO	ı	通用 HUB 模式: SPI 接口的数据输入,内置上拉
30			电阻。
	SDA	1/0	PD-HUB 模式: 2 线串行接口的数据信号线, 内置
	OD/(., 0	上拉电阻,用于连接 CH211 芯片。
			通用 HUB 模式: USB 总线 VBUS 状态检测输入,应
	VBUS_DET	I	将 VBUS 电源通过两个电阻分压后接入该引脚;
25			不用此功能时,该引脚需短接 VI033。
	PWR CC	1/0	PD-HUB 模式:外供电端 PD 协议通信引脚,用于
			连接 Type-C 电源适配器。
	RSVD	ı	通用 HUB 模式: 保留引脚, 内置上拉电阻, 建议
26			悬空。
	HUB_CC	1/0	PD-HUB 模式:上行口 PD 协议通信引脚,用于连
		., •	接手机/电脑等 USB 主机。
			LED 睡眠状态输出引脚;
32	LED/CFG2	1/0	在复位期间作为配置引脚,用于配置是否使能 BC
			充电功能,悬空或高电平为使能 BC 充电,低电
			平为禁止 BC 充电,内置上拉电阻。

23	CFG1	I	4#下行端口功能配置; 在复位期间作为配置引脚,检测到低电平则禁用 4#下行端口;检测到浮空则设置 4#下行端口为不 可移除设备;检测到高电平则配置该引脚为 4#下 行端口过流指示灯。
22	CFG0	I	3#下行端口功能配置; 在复位期间作为配置引脚,检测到浮空则设置 3# 下行端口为不可移除设备;检测到高电平则配置 该引脚为 3#下行端口过流指示灯。
8、43、46、55、61、62	NC	_	空脚,建议悬空。

表 4-4 CH634W8G 引脚定义

引脚号(同名引脚可参考)	引脚 名称	类型⑴	功能描述
45	VDD5	Р	DCDC 的电源输入,建议外接 10uF 电容。
46	VDD5	Р	3.3V LDO 的 5V 电源输入,建议外接 1uF 电容。 如果 VDD5 电压小于 3.6V 则应短接 VDD33。
44	VSW	Р	DCDC 输出端, 需贴近引脚串接电感产生 1.2V 电源, 且 1.2V 电源需就近放置对地电容, 建议用 2.2uH 电感且至少一个 10uF 电容。
42	VFB	Р	DCDC 电压反馈端,建议外接 0.1uF 对地电容,且 直连 DC-DC 输出的 1.2V 电源。
47	VDD33	Р	3.3V LDO 输出端, 建议外接 $1uF\sim10uF$ 对地电容。
64	AVDD33	Р	3.3V 模拟电源输入,建议外接 0.1uF 并联 10uF 或 4.7uF 退耦电容。
31、87	V1033	Р	I/0 引脚电源输入,外供 3.3V,建议外接 1uF 或 0.1uF 退耦电容。
32、56	DVDD12	Р	1. 2V 内核电源输入,建议外接 0. 1uF 或 1uF 退耦 电容。
43	GND_DCDC	Р	DCDC 接地端,必须连接 GND。
0	GND	Р	公共接地端,必须连接 GND。
49	GND	Р	可选接地端,建议连接 GND。
84	UP_VDD12	Р	上行端口 1.2V 电源输入,外接 0.1uF 退耦电容。
69 (74) 、21 (26) 、16、6	Px_VDD12	Р	1-4#下行端口 1. 2V 电源输入,外接 0. 1uF 退耦电容。
66	ΧI	I	晶体振荡器输入端,接外部 24MHz 晶体一端及对地电容。
65	ХО	0	晶体振荡器反相输出端,接外部 24MHz 晶体另一端及对地电容。
83、82、86、85	UP_SS_xxx	USB3	上行端口 USBSS 差分发送或接收信号线。
80、81	UP_HS_xx	USB2	上行端口 USB2. 0 差分信号线。
75、76、72、73	P1_SS_xxx	USB3	1#下行端口 USBSS 差分发送或接收信号线。
68、67、71、70	P1C_SS_xxx	USB3	1#下行端口 Type-C 差分发送或接收信号线。
77、78	P1_HS_xx	USB2	1#下行端口 USB2. 0 差分信号线。
20、19、23、22	P2_SS_xxx	USB3	2#下行端口 USBSS 差分发送或接收信号线。
27、28、24、25	P2C_SS_xxx	USB3	2#下行端口 Type-C 差分发送或接收信号线。
29、30	P2_HS_xx	USB2	2#下行端口 USB2. 0 差分信号线。

15、14、18、17	P3_SS_xxx	USB3	3#下行端口 USBSS 差分发送或接收信号线。
12、13	P3_HS_xx	USB2	3#下行端口 USB2. 0 差分信号线。
5、4、8、7	P4_SS_xxx	USB3	4#下行端口 USBSS 差分发送或接收信号线。
9、10	P4 HS xx	USB2	4#下行端口 USB2. 0 差分信号线。
40	PWREN1#	0	1#下行端口电源输出控制引脚,低电平开启。
39	PWREN2#	0	2#下行端口电源输出控制引脚,低电平开启。
36	PWREN3#	0	3#下行端口电源输出控制引脚,低电平开启。
35	PWREN4#	0	4#下行端口电源输出控制引脚,低电平开启。
41	0VCUR1#	ī	1#下行端口过流检测输入引脚,低电平过流。
38	0VCUR2#	ı	2#下行端口过流检测输入引脚,低电平过流。
	OVCUR3#/		3#下行端口过流检测输入引脚,低电平过流;
37	SMBCLK	I	SMBus 总线时钟信号线。
	OVCUR4#/		4#下行端口过流检测输入引脚,低电平过流;
34	SMBDAT	1/0	SMBus 总线数据信号线。
			USB 总线 VBUS 状态检测输入,应将 VBUS 电源通
63	VBUS_DET	1	过两个电阻分压后接入该引脚;不用此功能时,
	_		该引脚需短接 VI033。
			在复位期间作为配置引脚,用于配置整体模式或
62	GANG_EN	1	独立模式,悬空或高电平为整体模式,低电平为
	_		独立模式,内置上拉电阻。
			芯片工作使能控制;
48	CHIP_EN	1	低电平控制芯片进入低功耗模式,高电平控制芯
	_		片进入正常工作模式。
61	SPI_SCS	0	SPI 接口的片选输出。
59	SPI_SCK	0	SPI 接口的时钟输出。
			SPI 接口的数据输出。
50	ODI MOOI	1.70	在复位期间作为配置引脚,用于配置是否使能 BC
58	SPI_MOSI	1/0	充电功能, 悬空或高电平为禁止 BC 充电, 低电平
			为使能 BC 充电,内置上拉电阻。
			SPI 接口的数据输入,内置上拉电阻。
/0	CDI MICO	١.	如果芯片配置参数使能上行口交换功能,则该引
60	SPI_MISO		脚切换成上行口和下行 PORT1 口交换控制输入引
			脚,悬空或上拉不切换,输入低电平控制切换。
57	DECET#		外部复位输入,内置上拉电阻,低电平有效,不
57	RESET#	I	使用时可以悬空,建议短接 VDD33 防干扰。
88	LED_B1	0	1#下行端口异常状态指示信号。
33	LED_B2	0	2#下行端口异常状态指示信号。
	LED B3/		3#下行端口异常状态指示信号。
2	_	0	在复位期间作为 C 口工作模式配置引脚 0, 配合
	FUN_CFG0		FUN_CFG1 引脚进行功能配置,参考表 5-3。
	LED_B4/		4#下行端口异常状态指示信号。
1	FUN_CFG1	0	在复位期间作为 C 口工作模式配置引脚 1, 配合
	I ON_OIGI		FUN_CFGO 引脚进行功能配置,参考表 5-3。
54	P1_CC1	1/0	1#下行端口 PD 协议通信引脚 CC1。
J4	11_001	(FT)	TH IT] J≠同口 IV 以及世口刀IM OU I 。
53	P1_CC2	1/0	 1#下行端口 PD 协议通信引脚 CC2。
J.	1 1_002	(FT)	〒〒17月2両口10円以及埋口刀///Ψ OU2。
52	P2_CC1	1/0	2#下行端口 PD 协议通信引脚 CC1。
52	FZ_001	(FT)	2世に江河町口「ロリが久世后づけりしし。

51	P2_CC2	I/0 (FT)	2#下行端口 PD 协议通信引脚 CC2。
3、11、50、55、79	NC	_	空脚,建议悬空

注1: 引脚类型缩写解释:

USB3 = USB3.0 信号引脚;

USB2 = USB2.0 信号引脚;

I = 信号输入;

0 = 信号输出;

P = 电源或地;

NC = 空脚;

FT = 耐受 5V 电压。

5、功能说明

5.1 过流检测和电源控制

5.1.1 过流检测

CH634 部分型号支持两种过流保护模式:独立过流模式和整体过流模式,部分型号仅支持整体过流模式,如表 5-1 所示。

芯片型号	过流配置	过流模式	过流检测的采样引脚	参考图
CH634F	_	整体过流	0VCUR#	图 5-2
CH634M	_	整体过流	OVCUR#	图 5-2
CH634W6G	_	整体过流	0VCUR#	图 5-2
CH634W5M	EEPROM 默认配置/	独立过流	OVCUR1#, OVCUR2#, OVCUR3#,	图 5-1
CH634W6C	GANG_EN=高电平	独立过流	0VCUR4#	<u> </u> <u> </u> <u> </u> <u> </u>
CH634W6T	EEPROM 配置成整体			
CH634W7G	过流/GANG_EN=低电	整体过流	0VCUR1#	图 5-2
CH634W8G	平			
CH634W7R	EEPROM 默认配置	独立过流	OVCUR1#, OVCUR2#, OVCUR3#,	图 5-1
CH634W7S		生工 足加	0VCUR4#	国口口
CH634W7U	EEPROM 配置成整体	整体过流	OVCUR1#	图 5-2
CH634W7V	过流	正件U	OVOUR I#	图 3-2

表 5-1 过流保护控制说明

5.1.2 电源控制

CH634 部分型号支持两种电源控制模式:独立电源控制模式和整体电源控制模式,部分型号仅支持整体电源控制模式,如表 5-2 所示。

芯片型号	电源控制配置	电源控制 电源控制引脚		参考图
CH634F	-	整体控制	PWREN#	图 5-2
CH634M	_	整体控制	PWREN#	图 5-2
CH634W6C	_	整体控制	PWREN#	图 5-2
CH634W6G	_	整体控制	PWREN#	图 5-2
CH634W5M	EEPROM 默认配置/	独立控制	PWREN1#, PWREN2#, PWREN3#, PWREN4#	图 5-1
CH634W6T	GANG_EN=高电平	独址注前	(注: W5M 和 W6T 默认为高电平有效)	図 2-1
CH634W7G	EEPROM 配置成整体控制	整体控制	PWREN1#	图 5-2
CH634W8G	/GANG_EN=低电平	定件江村	(注: W5M 和 W6T 默认为高电平有效)	图 2-2
CH634W7R	EEPROM 默认配置	独立控制	PWREN1#, PWREN2#, PWREN3#, PWREN4#	图 5-1
CH634W7S	CCFRUM 秋火癿且	红红红巾	(注: W7V 默认为高电平有效)	図 2-1
CH634W7U	 EEPROM 配置成整体控制	敕 <i>休</i> 坎纠	PWREN1#	タ 5_2
CH634W7V	CCFRUM L.直风空冲狂的	置件任制	(注: W7V 默认为高电平有效)	图 5-2

表 5-2 电源控制说明

5.1.3 独立过流检测和独立电源控制

图 5-1 CH634 独立过流检测和独立电源控制

上图中,VBUS1-VBUS4 分别连接下行端口 1-4 的 VBUS 电源引脚。U4~U7 为 USB 限流配电开关芯片,内部集成了过流检测,用于 VBUS 电源分配管理。在 5V 没有外部供电的应用中,建议通过 ISET 外接电阻将限流设置在 1A 以下甚至 500mA。U4~U7 的 FLAG 引脚是开漏输出,需要分别通过电阻上拉。CH634 芯片的 OVCUR#引脚提供内置的弱上拉电流,所以可省掉电阻 R16、R18、R20 和 R22。部分型号 CH634 芯片的 PWRENx#引脚开启电源时输出为低电平,部分型号 CH634 芯片的 PWRENx#引脚开启电源时输出为低电平,部分型号 CH634 芯片的 PWRENx#引脚开启电源时输出为高电平(不适用上图),可通过 PWREN_POL 引脚进行配置或通过 EEPROM 进行参数配置。

5.1.4 整体过流检测和整体电源控制

图 5-2 整体过流检测和整体电源控制

U5 为 USB 限流电源开关芯片,例如 CH217 芯片或类似功能的芯片。默认配置下可以省掉 R11。C14 的容量可以根据需要选择。VBUS-ALL 同时连接下行端口 1-4 的 VBUS 电源引脚。U5 的限流设置值需考

虑 4 个下行端口及是否自供电。

5.2 复位

芯片内嵌有上电复位模块,一般情况下,无需外部提供复位信号。同时也提供了外部复位输入引脚 RESET#,该引脚内置有上拉电阻。

5.2.1 上电复位

当电源上电时,芯片内部 POR 上电复位模块会产生上电复位时序,并延时 T_{rpor} 约 25mS 以等待电源稳定。在运行过程中,当电源电压低于 V_{lor} 时,芯片内部 LVR 低压复位模块会产生低压复位直到电压回升,并延时以等待电源稳定。下图为上电复位过程以及低压复位过程。

图 5-3 上电期间复位

5.2.2 外部复位

外部复位输入引脚 RESET#已内置上拉电阻,如果外部需要对芯片进行复位,那么可以将该引脚驱动为低电平,复位的低电平脉宽需要大于 4uS。

5.3 总线供电与自供电

CH634 支持 USB 总线供电模式和自供电模式。总线供电来自 USB 上行端口,供电能力为 500mA 或 900mA、1. 5A 等多种标准,USB 线材内阻损耗和 HUB 自身消耗会降低对下行端口的供电能力,下行端口电压可能偏低。自供电通常来自外部电源端口,取决于外部电源供电能力。

由于自供电与总线供电的电压难以完全相等,所以 HUB 需要避免两者直接短接而产生大电流。另外,当 USB 上行端口断电后, HUB 也要避免自供电的外部电源向 USB 总线及 USB 主机倒灌电流。

5.3.1 单一 5V 供电方案

有 VDD5 引脚的 CH634 支持单一 5V 供电方案,使用内置的 LDO 和 DC-DC。额定 5V 从 VDD5 输入,提供给 LDO 调压器和 DC-DC 降压器,LDO 调压器产生 3. 3V 到 VDD33 再连接到 AVDD33 和 VIO33,DC-DC 降压器产生 1. 2V 连接到 VDD12 和 P*_VDD12 及 VFB,建议 1. 2V 电源经 LC 滤波后再提供给 P*_VDD12。3. 3V 电源的对地电容累计不小于 10uF,1. 2V 电源的对地电容累计不小于 10uF,建议双 10uF 电容并联,5V 电源的对地电容不小于 10uF。5V 供电支持较宽的电压范围,可低至 4V,建议 5V 电源加上 5. 5V 过压保护器件。

图 5-4 单一 5V 供电方案示意图

注:图中加粗的线表示电流较大,设计PCB时需要保证足够的线宽和过孔数量。

5.3.2 单一3.3V 供电方案

有 VDD5 引脚的 CH634 支持单一 3. 3V 供电方案,使用内置的 DC-DC。额定 3. 3V 连接到 AVDD33 和 VIO33 及 VDD33,同时,额定 3. 3V 从 VDD5 输入,提供给 DC-DC 降压器,DC-DC 降压器产生 1. 2V 连接到 VDD12 和 P*_VDD12 及 VFB,建议 1. 2V 电源经 LC 滤波后再提供给 P*_VDD12。3. 3V 电源的对地电容累计不小于 10uF,1. 2V 电源的对地电容累计不小于 10uF,建议双 10uF 电容并联。

图 5-5 单一 3.3V 供电方案示意图

注:图中加粗的线表示电流较大,设计PCB时需要保证足够的线宽和过孔数量。

5.3.3 3.3V+1.2V 双供电方案

没有 VDD5 引脚的 CH634 仅支持 3. 3V+1. 2V 双供电方案。额定 3. 3V 连接到 AVDD33 和 VI033,同时,额定 1. 2V (建议 1. 23V,参考 6. 2 节)连接到 VDD12 和 P*_VDD12。3. 3V 电源的对地电容累计不小于 10uF, 1. 2V 电源的对地电容累计不小于 10uF。

有 VDD5 引脚的 CH634 如需改用外部 3.3V+1.2V 双供电,可以参考单一 3.3V 供电方案去掉 VSW 引脚的电感,再外供额定 1.2V (建议 1.23V)。因为内置的 LDO 和 DC-DC 均未关闭,所以静态电流略大,

如需关闭内置 LDO 和 DC-DC,可联系技术人员,针对具体型号去除相关电源连接。

5.4 LED 指示灯

CH634 芯片部分型号提供了下行端口状态 LED 指示灯控制引脚,端口对应的绿灯亮起表明端口状态正常,绿灯熄灭表明端口无设备或挂起 Suspend,端口对应的红灯亮起表明端口异常。

图 5-6 为 CH634W7G 芯片的 8 灯模式应用示意图, 其中 LED1-4 分别为端口 1-4 的正常状态指示灯 (绿灯), 点亮表明端口有设备插入且端口正常, 熄灭表明端口无设备或挂起 Suspend。LED5-8 分别为端口 1-4 的异常状态指示灯(红灯), 点亮表明端口异常, 比如过流。

图 5-6 CH634W7G 芯片的 8 灯模式应用示意图

5.5 I/O 功能配置

CH634 芯片的部分功能可以通过 4 种方式进行配置:内置 EEPROM、外置 EEPROM、外置 SPI 接口 FLASH 和配置引脚。外部 EEPROM 和外置 SPI 接口 FLASH 的参数配置功能优先级高于内部 EEPROM 的参数配置功能,内部 EEPROM 的参数配置功能优先级高于引脚配置功能。配置引脚一般为复用引脚,在复位期间作为配置引脚,复位完成之后,再切换到对应的功能引脚。不同型号的具体配置引脚见对应的引脚说明列表。

CH634W8G 芯片具有 3 种 C 口工作模式,可通过 LED_B4/FUN_CFG1 和 LED_B3/FUN_CFG0 引脚进行配置选择。

C口工作模式	LED_B4/ FUN_CFG1 电平	LED_B3/ FUN_CFGO 电 平	功能描述
模式 0	1	1	上行口为 A 型接口, 下行口为 2 个 Type-C 接口+2 个 A 型接口, Type-C 接口支持正反插自适应。
模式 1	1	0	上行口为 Type-C 接口,下行口为 1 个 Type-C 接口+3 个 A 型接口, Type-C 接口支持正反插自适应。
模式 2	0	1	上行口为单面 Type-C 接口,下行口为 1 个 Type-C 接口+3 个 A 型接口,且支持 Type-C/PD 快充功能,应用于 PDHUB。

表 5-3 CH634W8G 芯片 C 口工作模式配置

5.6 参数配置接口

CH634 部分型号提供两线 I2C 接口(SCL 和 SDA)与外部 EEPROM 存储芯片通信, EEPROM 芯片地址为 0。CH634 部分型号提供四线 SPI 接口(SCS、SCK、MOSI 和 MISO)与外部 SPI 接口的 FLASH 存储芯片通

信。EEPROM 或 FLASH 中存储有自定义的厂商 ID、产品 ID、下行端口个数、下行端口的设备不可移除特性、USB 字符串描述符和功能配置等信息。

图 5-7 外部 EEPROM 连接示意图

图 5-8 外部 FLASH 连接示意图

CH634 内置信息存储器,针对行业特殊需求可以代替外部 EEPROM 或 FLASH 批量定制厂商或产品信息及配置,例如设置下行端口个数,设置下行端口的设备不可移除特性等。

5.7 SMBus 配置接口

Byte Count = N

Data byte 1

CH634 部分型号提供两线 SMBus 从机接口与外部主控芯片通信, SMBus 接口包含 SMCLK 和 SMDAT 两个引脚,通信地址为 0x20,支持块读和块写操作,每块最多为 32 个字节。外部主控可以通过 SMBus 接口对芯片内置的 EEPROM 进行读写操作。图 5-9 为块读示意图,图 5-10 为块写示意图。

Master-to-Slave Slave-to- Master 1 7 1 1 7 8 1 1 Slave Address Register Address S Slave Address A Rd 8 8 8 8 1

Data byte 2

Data byte N

P

Α

图 5-9 块读示意图

5.8 EEPROM 配置

CH634 支持从外部 EEPROM/FLASH 或内部 EEPROM 中加载厂商识别码 VID、产品识别码 PID、USB 字符串描述符和功能配置等配置信息,如果 EEPROM 中的信息无效,则自动装载默认配置信息。表 5-4 为内置/外置 EEPROM/FLASH 具体配置信息描述。保留字节或保留位,在写入操作时需要按照原先读取的值写入。

	表 5-4	内置/外置	≟EEPROM/FL	.ASH 配置信息
--	-------	-------	------------	-----------

偏移地址	参数简称	参数说明	默认值
00h	VID_L	厂商识别码 VID 的低字节。	86h
01h	VID_H	厂商识别码 VID 的高字节。	1 A h
02h	PID_L	产品识别码 PID 的低字节,默认为 A0h。 注: USB2.0 的 PID 为 A0h, USB3.0 的 PID 为 A1h。	A0h
03h	PID_H	产品识别码 PID 的高字节。	80h
04h	bcdDevice_L	bcdDevice 低字节,用于指示芯片封装型号; 固定,不可修改。	跟随 型号
05h	bcdDevice_H	bcdDevice 高字节,用于指示芯片版本; 固定,不可修改。	跟随 型号
06h	Fun_Cfg1	功能性配置字节 1。 Bit7: 供电模式选择;	跟随型号
07h	Fun_Cfg2	功能性配置字节 2。 Bit7: 保留; Bit6: 保留;	20h

		D:+5. (兄以).	1
		Bit5: 保留; Bit4: 保留;	
		Bit3: HUB 是否是 Compound Device;	
		0: 不是;	
) 1: 是;	
		· · · · · · · · · · · · · · · · · · ·	
		功能性配置字节 3。	
		Bit7-4: 保留;	
		Bit3:端口重映射功能控制;	
		0: 禁止(默认);	
08h	Fun_Cfg3	1: 使能。	00h
0011	Tun_orgo	Bit2-1: 保留;	0011
		Bit0:字符串描述符使能控制;	
		0: 禁止(默认);	
		1: 使能。	
		下行端口设备是否可移除控制。	
		Bit7-5: 保留;	
	Dev_	Bit4-1: 下行端口 4-1 的设备是否可移除;	跟随
09h	Removable	0: 可移除(默认);	型号
		1: 不可移除;	,
		Bit0: 保留, 必须为 0。	
		自供电模式下端口禁止。	
		Bit7-5: 保留;	
		Bit4-1: 下行端口 4-1 是否禁止;	
0Ah	Port_Dis_Sp	0: 使能(默认);	00h
		1: 禁止;	
		Bit0: 保留, 必须为 0。	
		总线供电模式下端口禁止。	
		Bit7-5: 保留;	
ODL	D+ D:- D-	Bit4-1: 下行端口 4-1 是否禁止;	001-
0Bh	Port_Dis_Bp	0: 使能(默认);	00h
		1: 禁止;	
		Bit0: 保留, 必须为 0。	
0Ch	MaxPwr_Sp	自供电模式下最大工作电流,单位为 2mA。	01h
0Dh	MaxPwr_Bp	总线供电模式下最大工作电流,单位为 2mA。	32h
0Eh	HubCurrent_Sp	自供电模式下 HUB 要求的最大电流。	01h
0Fh	HubCurrent_Bp	总线供电模式下 HUB 要求的最大电流。	32h
10h	Pwr_OnTime	下行端口上电到电源有效的延迟时间。	32h
11h	Language I D_H	语言 ID 高字节。	00h
12h	Language I D_L	语言 ID 低字节。	00h
13h	Vendor_StrLen	厂商字符串描述符长度。	00h
14h	Product_StrLen	产品字符串描述符长度。	00h
15h	SN_StrLen	序列号字符串描述符长度。	00h
16h-53h	Vendor String	厂商字符串描述符;	00h
1011 3311	Vendor String	Unicode 码格式的厂商字符串描述符。	0011
54h-91h	Product String	产品字符串描述符;	00h
J4H-7 H	Troudet String	Unicode 码格式的产品字符串描述符。	UUII
92h-CFh	Serial Number	序列号字符串描述符;	00h
7211-0Ff1	String	Unicode 码格式的序列号字符串描述符。	UUII
D0h	PortNum	下行端口个数,有效范围: 1-4。	跟随

			型号
D1h	bcdUSB_L	USB 版本低字节。 bcdUSB_L=0x00, USB2.00; bcdUSB_L=0x01, USB2.01; bcdUSB_L=0x10, USB2.10。	10h
D2h	Fun_Cfg4	功能性配置字节 4。 Bit7-2: 保留,写入时需要写入原读取的值; Bit1: 强制下行端口为全速模式; 0: 高速模式(默认); 1: 全速模式; Bit0: 指示灯功能使能配置; 0: 禁止(默认); 1: 使能。	00h
D3h	Fun_Cfg5	功能性配置字节 5。 Bit7: LED 指示灯极性配置;	跟型
D4-E3h	BOS UUID	BITI-U: 保留。 BOS 描述符中的 UUID 字段,占 16 个字节。	00h
E4-FEh	Reserved	保留。	00h
FFh	Switch_Ctl	上行口交换功能控制字节; 该字节默认为 00h, 写入 00h 则控制切换, 写入 80h 取消切换, 写入其他值无效。	00h

6、参数

6.1 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	°C
TJ	结温度范围	-40	100	Ç
Ts	储存时的环境温度	-55	150	°C
$V_{ t DD5}$	LDO 调压器和 DC-DC 降压器输入电源电压(Voos)	-0.4	5. 5	V
*V _{DD33}	工作电源电压(V _{DD33} /AV _{DD33})	-0.4	4. 0	V
V ₁₀₃₃	I/0 电源电压(V ₁₀₃₃)	-0.4	4. 0	V
*V _{DD12}	USB 模块电源电压(P*_VDD12)/内核电源电压(DVDD12)	-0.4	1. 5	V
$V_{\sf FB}$	DCDC 电压反馈端	-0.4	1. 5	V
$V_{\sf USB2}$	USB2. 0 物理信号引脚上的电压	-0.4	V _{DD33} +0. 4	V
V_{USB3}	USB3. 0 物理信号引脚上的电压	-0.4	V _{DD12} +0.4	٧
V	FT(耐受 5V)引脚上的输入电压	-0.4	5. 5	V
V_{IN}	其他引脚上的输入电压	-0.4	V ₁₀₃₃ +0. 4	V
V _{ESD (HBM)}	普通 I/O 引脚的 ESD 静电放电电压(HBM)		4K	V

6.2 电气参数 (测试条件: TA = 25°C, *VDD33 = V1033 = 3.3V, *VDD12 = 1.2V)

名称	参数说明		最小值	典型值	最大值	单位
$V_{ t DD5}$	LDO 调压器和 DCDC 降压器输入电源电压		4. 0	5. 0	5. 25	٧
*//	单一 3.3V 供电方案 脚情况下的工作电源	或芯片封装没有 VDD5 引 电压	3. 2	3. 3	3. 4	٧
*V _{DD33}	单一 5V 供电方案下的工作电压(LDO 调压器输出)		3. 2	3. 3	3. 4	٧
*V _{DD12}	USB 模块电源电压 (P*_V _{DD12}) /内核电源电压 (DV _{DD12})		1. 18	1. 23 (1)	1. 3	V
V ₁₀₃₃	1/0 引脚供电电压		3. 0	3. 3	3. 6	V
I _{SLP}	深度睡眠电源电流(不含 1.5KΩ上拉)			1. 7		mA
V	作中立检》中 区	标准 I/0 引脚	0		0.8	V
VIL	低电平输入电压	FT I/0 引脚	0		0.8	٧
V	 高电平输入电压	标准 I/0 引脚	2. 0		V ₁₀₃₃	V
V _{IH}	同电干制八电压	FT I/0 引脚	2. 0		5. 0	٧
V_{OL}	低电平输出电压	灌电流 5mA		0. 4	0. 6	V
V _{OH}	高电平输出电压	源电流 5mA	V ₁₀₃₃ -0. 6	V ₁₀₃₃ -0. 4		V
R_{PU}	上拉等效电阻			70		ΚΩ
R _{PD}	下拉等效电阻			70		ΚΩ

注: 1. *VDD12 电流较大, 考虑 PCB 走线压降损失, 建议额定 1. 2V 再加 20~60mV。

6.3 典型工作电流(测试条件: CH634W8G, T₁ = 25℃)

工仁口先拉尔女人粉		下行口连接设备个数 单一 5V 供电方案		3. 3V+1. 2V 双供电方案		
N1J □	迁按以苗门数	5V 电源	3. 3V 电源	1. 2V 电源	单位	
	睡眠状态	0. 50	0. 28	0. 30	mA	
USB3. 0	挂起状态	1. 9	1.5	1. 2	mA	
	1	88. 1	19. 6	234	mA	

	2	114	19. 6	308	mA
	3	141	19. 6	380	mA
	4	170	19. 6	450	mA
	睡眠状态	0. 50	0. 28	0. 30	mA
	挂起状态	0. 90	0. 82	1. 2	mA
HCD2 A	1	46	41	17	mA
USB2. 0	2	59	55	17. 1	mA
	3	73	71	17. 3	mA
	4	97	84	17. 5	mA

注: 单一 5V 供电方案只从 5V 消耗电流; 而 3. 3V+1. 2V 双供电方案分别从 3. 3V 和 1. 2V 消耗电流。

7、封装信息

说明:尺寸标注的单位是 mm (毫米)。 引脚中心间距是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm。

7.1 QFN32

7. 2 QFN46C5

7.3 QFN64

7.4 QFN88

8、应用

8.1 CH634W8G 芯片参考电路图

下图 8-1 为 CH634W8G 芯片工作在模式 0 的参考电路图。P1-P4 为 HUB 的 4 个下行 USB 口,其中 P1 和 P2 为 Type-C 接口,兼容 USB-C 线缆和连接规范,原生支持 Type-C 正反插自适应,P3 和 P4 为 A 型接口,P5 为 HUB 的上行 USB 口,P6 为外部供电 Type-C 接口。

U3 是低压降理想二极管 CH213,它具有简单的过流和短路保护功能,且保护响应更快,可以替代保险电阻 Fuse。主要用于避免 P6 外部电源向上行端口 P5 的 VDD5 倒灌,尤其是上行端口例如计算机关机而 P6 外部仍然供电时的情况。理论上 U3 可以换成肖特基二极管,但需要选择自身压降较低的器件,否则会降低下行端口 VBUS 的输出电压,在 300mA 负载电流时,肖特基二极管的压降约 0.3V,理想二极管的压降约 0.05V。由于 P6 自身及外部电源通常没有负载,所以一般不考虑 P5 向 P6 的倒灌。

CH634W8G 芯片默认工作在独立电源配电控制和独立过流检测模式,可通过 GANG_EN 引脚配置成整体电源配电控制和整体过流检测。U4-U7 是支持过流保护的 USB 配电开关芯片 CH217。图中 R17、R19、R22 和 R25 根据电源供电能力设置限流门限,USB 限流电源开关芯片的 FLAG#引脚可以产生过流或过温报警信号通知 HUB 控制器及计算机,CH634W8G 的 OVCUR#引脚已内置上拉电阻。

CH634W8G 芯片的 P1 和 P2 端口也可以作为 A 型接口使用,如果 USB3.0 信号线使用 PxC_SS_RXA、PxC_SS_TXA 和 PxC_SS_TXB,则 Px_CC2 引脚需要通过 5.1K 电阻接地;如果 USB3.0 信号线使用 Px_SS_RXA、Px_SS_RXB、Px_SS_TXA 和 Px_SS_TXB,则 Px_CC1 引脚需要通过 5.1K 电阻接地。

设计 PCB 时需考虑实际工作电流承载能力, VDD5、VBUS_OUT*、5V 和 P6 及各端口 GND 走线路径的 PCB 尽可能宽,如有过孔则建议多个并联。

在下行端口 USB 设备带电热插拔的瞬间,动态负载可能使 VBUS 和 5V 电压瞬时跌落,进而可能产生 LVR 低压复位,从而出现整个 HUB 断开再连接的现象。改进方法:①在规范允许范围内加大 5V 电源的电解电容(加大图示 C14 容量),缓解跌落;②加大 HUB 芯片电源输入端的电容(加大图示 C37容量,例如 22uF);③增强 5V 供电能力或改为自供电,另外,提升 USB 线材质量也会改善供电能力。

建议 5V 加过压保护器件, 建议所有 USB 信号加 ESD 保护器件, 例如 CH412K, 其 VCC 应接 3.3V。

图 8-1 CH634W8G 芯片参考电路图

