Hanul Jeon

Cornell University

2022-04-29

Cornell Logic Seminar

This work is joint work with Richard Matthews (Leeds)

Table of Contents

- 1 Review: Large cardinals
- 2 Constructive set theories
- 3 Main results

Hanul Jeon

Measurable cardinals

- Defined in terms of ultrafilters
- Scott (1961) associated measurable cardinals with <u>elementary</u> embeddings:

Definition

Review: Large cardinals

0000000000

Let $M \subseteq V$ be a transitive class.

 j: V → M is an elementary embedding if j respects all first-order formulas, that is,

$$V \models \phi(\vec{a}) \iff M \models \phi(j(\vec{a})).$$

■ The <u>critical point</u> crit j of an elementary embedding $j: V \to M$ is the least ordinal moved by j.

Theorem (Scott 1961)

A cardinal κ is measurable if and only if it is a critical point of some elementary embedding $j \colon V \to M$.

Theorem (Scott 1961)

Measurable cardinals do not exist in L.

Generalizations of measurable cardinals were extensively studied by various people. (For example, Solovay-Reinhardt-Kanamori 1978).

Review: Large cardinals 0000000000

The attempt to find a stronger notion of large cardinal bore the notion now known as a Reinhardt cardinal.

Definition

A Reinhardt cardinal is a critical point of an elementary embedding $j \colon V \to V$.

Flying too close to the sun – Kunen Inconsistency

Kunen (1971) proved that Reinhardt's notion cannot be realized over ZFC:

Theorem (Kunen Inconsistency theorem, 1971)

Work over ZFC, there is no Reinhardt cardinals. In fact, there is no elementary embedding $j: V_{\lambda+2} \to V_{\lambda+2}$

It is still open whether a Reinhardt cardinal is compatible with ZF, that is, in the choiceless context.

Some difficulties in working without the axiom of choice:

- Not all cardinal correspond to an ordinal.
- Not all successor cardinal are regular.
- Constructions and proofs become harder.
- Needs to consider more before applying the known results.

Super Reinhardt cardinals

Definition

A cardinal κ is

- Super Reinhardt if for each ordinal α we can find an elementary embedding $j \colon V \to V$ such that $\operatorname{crit} j = \kappa$ and $j(\kappa) > \alpha$.
- A-super Reinhardt for a class A if for each ordinal α we can find an elementary embedding for A-formulas $j \colon V \to V$ such that $\text{crit } j = \kappa$ and $j(\kappa) > \alpha$.

Super Reinhardt sets were defined by Woodin in 1983, and extensively studied in the mid-2010s in the context of Woodin's HOD-dichotomy.

Totally Reinhardt cardinals

Definition

- We call $\underline{\operatorname{Ord}}$ is totally Reinhardt if for every class A we can find a cardinal κ which is A-super Reinhardt.
- κ is totally Reinhardt if $(V_{\kappa}, V_{\kappa+1}) \models \text{Ord is totally Reinhardt.}$

The Wholeness axiom

Before defining the Wholeness axiom, let us analyze the definition of a Reinhardt cardinal:

Definition

Review: Large cardinals

0000000000

ZFC with a Reinhardt cardinal is a theory comprising:

- Language: \in and a unary function symbol j,
- Axioms: Usual axioms of ZFC, with the elementarity of j, and Separation and Replacement for j-formulas.

Definition (Corazza 2000)

The Wholeness Axiom WA is obtained by restricting Replacement to formulas with no j.

We can further weaken WA as follows:

Definition

Review: Large cardinals

0000000000

The theory Basic Theory of Elementary Embedding (BTEE) is claim that $j: V \to V$ is a elementary embedding. BTEE does not subsume Separation and Replacement for *j*-formulas.

That is, we obtain BTEE by dropping Separation for *j*-formulas from WA.

IZF and CZF: A brief history

- (H. Friedman, 1973) Intuitionistic ZF (IZF) with the double-negation translation between IZF and ZF.
- Various attempts to formalize the foundation for Bishop-styled constructive mathematics.
- Myhill's constructive set theory CST.
- (Aczel, 1978) Constructive ZF and its type-theoretic interpretation.

Hanul Jeon

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$.
- **2** Pairing: $\{a, b\}$ exists.
- **3** Union: $\bigcup a$ exists.
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Replacement: $\{F(x) \mid x \in a\}$ exists if F is a class function.
- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists.
- **7** Regularity: Every set has a ∈-minimal element.
- 8 Infinity: \mathbb{N} exists.

Axioms of IZF

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$.
- 2 Pairing: $\{a, b\}$ exists.
- 3 Union: $\bigcup a$ exists.
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists.
- **5** Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is b such that $\forall x \in a \exists y \in b \phi(x, y)$
- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists.
- **Set Induction**: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 Infinity: N exists.

Axioms of CZF

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$.
- 2 Pairing: $\{a, b\}$ exists.
- 3 Union: $\bigcup a$ exists.
- **4** Bounded Separation: $\{x \in a \mid \phi(x)\}$ exists if ϕ is bounded.
- 5 Strong Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is b such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$.
- **6** Subset Collection: There is a full subset of mv(a, b).
- Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 Infinity: \mathbb{N} exists.

Differences between IZF and CZF

Constructive set theories

I7F

- Full separation
- 2 Powerset
- 3 Impredicative
- 4 Equiconsistent with ZF

and more...

CZF

- Bounded separation
- Subset collection
- 3 Allows type-theoretic interpretation
- 4 Far more weaker than ZF

Large set axioms

Ordinals over constructive set theories are not well-behaved.

Examples (CZF)

- lacktriangle Every ordinal is well-ordered \Longrightarrow Excluded Middle for Δ_0 -formulas,
- lacktriangledown $\alpha \subseteq \beta$ does not imply $\alpha \in \beta$ or $\alpha = \beta$.
- We define large cardinal properties over constructive set theories by mimicking the structural properties of H_{κ} and V_{κ} .

Multi-valued functions

The notion of <u>multi-valued function</u> provides a syntactic sugar for Collection.

Definition (Multi-valued function)

Let A and B be classes. We call a relation R of domain A and codomain B a multi-valued function from A to B. (Notation: $R: A \Rightarrow B$)

Definition (Subimage)

If $R: A \Rightarrow B$ and $R^{-1}: A \Rightarrow B$, we write $R: A \Leftrightarrow B$, and we call B a subimage of R.

Multi-valued functions replace functions in CZF-context.

From Replacement to Strong Collection

Definition (Replacement)

If $F: a \rightarrow V$ is a first-order definable class function, then we can find a set image b of F.

Definition (Strong Collection)

If $R: a \Rightarrow V$ is a first-order definable class **multi-valued** function, then we can find a set **sub**image b of R. (That is, $R: a \Leftrightarrow b$.)

From Powerset to Subset Collection

Definition (Powerset, equivalent formulation)

For given sets a, b, we can find a set c such that...

If $f: a \to b$, then c contains an image of f. (i.e., $\operatorname{Im} f \in c$.)

Definition (Subset Collection, equivalent formulation)

For given sets a, b, we can find a set c such that...

If $r: a \Rightarrow b$, then c contains a **sub**image of r. (i.e., there is $d \in c$ such that $r: a \Leftrightarrow d$.)

With some pain, we can prove

Lemma (ZFC, regular cardinal)

A cardinal κ is regular if and only if for $a \in H_{\kappa}$ and $f : a \to H_{\kappa}$, we have $\text{Im } f \in H_{\kappa}$.

By mimicking the above result, we have

Definition (CZF, regular set)

A transitive set K is regular if $a \in K$, $r \in K$ and $r: a \Longrightarrow K$, then we can find some subimage $b \in K$ of r (that is, $r: a \leftrightarrows b$.)

Similarly, we can see

Lemma (ZFC, inaccessible cardinal)

A cardinal κ is inaccessible if and only if κ is regular and H_{κ} satisfies:

- **1** $\omega \in H_{\kappa}$, H_{κ} is closed under union and intersection, and
- 2 if $a, b \in H_{\kappa}$, then $c := \{ \operatorname{Im} f \mid f : a \to b \} \in H_{\kappa}$.

Definition (CZF, inaccessible set)

A set K is inaccessible if K is regular and

- **11** $\omega \in K$, K is closed under union and intersection, and
- 2 if $a, b \in K$, then we can find $c \in K$ such that we can always find a subimage of $r: a \Rightarrow b, r \in K$ from c.

Consistency hierarchy

Large sets and elementary embeddings

Let us consider elementary embeddings over CZF:

Definition

Let $j: V \to M$ be an elementary embedding. A set K is a <u>critical</u> point of j if K is the 'least' set lifted by j in the sense that

- j(x) = x for all $x \in K$, and
- $K \in j(K)$

Definition

A set K is <u>critical</u> if K is inaccessible and a critical point of an elementary embedding $j \colon V \to M$.

Question: the consistency strength of CZF with a critical cardinal.

Two scenarios

Hanul Jeon

Cornell University

Main results

•000000

A Lower bound

Theorem (J., Matthews, CZF)

Let K be a critical point of a Σ_0 -elementary embedding j: $V \to M$ such that K satisfies Δ_0 -separation. Then $K \models \mathsf{IZF}$.

(Note: the above theorem does not require Separation, Strong Collection or Set Induction for *i*-formulas.)

$\mathsf{Theorem}$

CZF with a critical set proves the consistency of ZFC + BTEE

Reinhardt embeddings

Definition

An inaccessible set K is a Reinhardt set if K is a critical point of $j \colon V \to V$.

Theorem

CZF with a Reinhardt cardinal proves Con(ZF + WA).

Go beyond the Reinhardtness

Definition

- An inaccessible set K is <u>super Reinhardt</u> if for every set a we can find an elementary embedding $j: V \to V$ such that K is a critical point of j and $a \in j(K)$.
- An inaccessible set K is <u>A-super Reinhardt</u> if for every set a we can find an A-elementary embedding $j: V \to V$ such that K is a critical point of j and $a \in j(K)$.

Theorem

CZF with a super Reinhardt set proves the consistency of ZF with a Reinhardt cardinal.

Main results

0000000

Definition

 \underline{V} is totally Reinhardt (abbr. V is TR) is the following claim: for every class A, there is an A-super Reinhardt set K.

Theorem

CZF with 'V is TR' proves all axioms of IZF. Furthermore, the following two theories are equiconsistent:

- CZF + 'V is TR,' and
- ZF + 'V is TR.'

(The exact definition for super/totally Reinhardt require the formulation of constructive second-order set theory (Appendix)

The proof divides into 2-3 main steps:

- Internal analysis of the given large set axioms. Usually produces a model of IZF + X.
- 2 Double-negation translation: Friedman-styled translation, Gambino's Heyting-valued model, or their combinations. The resulting lower bound is of the form Con(ZF + X)
- 3 If possible, derive the consistency strength in terms of ZFC with large cardinal axioms.

- 1 Non-trivial upper bounds for the consistency strength.
- 2 Better lower bounds. (For example, can we derive Con(ZFC + WA) from Con(ZF + WA)?)
- 3 Defining other large set notions (e.g., supercompactness and extendibles) and analyzing their consistency strength.
- 4 Questions regarding machinery in the paper, e.g., second-order constructive set theory.

Questions

Thank you!

Constructive second-order set theory

Definition (Constructive Gödel-Bernays set theory, CGB)

CGB is defined over the two-sorted languages (sets and classes) with the following axioms:

- Axioms of CZF for sets.
- Every set is a class, and every element of a class is a set.
- Class Extensionality: two classes are equal if they have the same set members.
- Elementary Comprehension: if $\phi(x, p, C)$ is a first-order formula with a class parameter C, then there is a class A such that $A = \{x \mid \phi(x, p, C)\}$.

Definition (CGB, Continued)

Class Set Induction:

$$\forall^1 A \big[[\forall^0 x (\forall^0 y \in x (y \in A) \to x \in A)] \to \forall^0 x (x \in A) \big].$$

■ Class Strong Collection: $\forall^1 R \forall^0 a [R: a \Rightarrow V \rightarrow \exists^0 b (R: a \Leftrightarrow b)].$

Definition (Intuitionistic Gödel-Bernays set theory, IGB)

IGB is obtained by adding the following axioms to CGB:

- Axioms of IZF for sets.
- Class Separation: if A is a class and a is a set, then $A \cap a$ is a set.

Note that CGB and IGB are conservative extensions of CZF and IZF respectively.

The definition of an elementary embedding $j \colon V \to M$ requires quantifying over formulas ϕ :

$$\phi(\vec{a}) \iff \phi^{M}(j(\vec{a})).$$

We resolve this problem by introducing the infinite conjunction Λ .

Definition (CGB with the infinite connectives, CGB_{∞})

 CGB_{∞} has the same axiom with CGB, but defined over the first-order intuitionistic logic with the infinite connectives \bigwedge and \bigvee .

Super Reinhardt sets and 'V is TR' are defined over CGB_{∞} . Also, CGB_{∞} is a conservative extension of CGB. (Back to main.)