

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

- $\bigcirc \hspace{0.1in} x^{(i) < j >}$
- $\bigcirc \ x^{< i > (j)}$
- $\bigcirc \ x^{(j) < i >}$
- $\bigcirc \ x^{< j > (i)}$

✓ Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

1 / 1 point

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

✓ Correct

- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

4. You are training this RNN language model.

1 / 1 point

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \ \mathsf{Estimating} \ P\big(y^{<1>},y^{<2>},\dots,y^{< t-1>}\big)$
- \bigcap Estimating $P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$
- $\bigcirc \ \, \text{Estimating} \, P \big(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>} \big)$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

 $5. \quad You \ have \ finished \ training \ a \ language \ model \ RNN \ and \ are \ using \ it \ to \ sample \ random \ sentences, \ as \ follows:$

1 / 1 point

What are you doing at each time step t?

- igcolon (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step. $% \label{eq:condition}%$
- $igcomes_i$ (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step. $% \label{eq:control_eq}$
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

✓ Correct Yes!

6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

- O Vanishing gradient problem.
- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.

7.	Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional
	activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

1 / 1 point

0 1

100

O 300

0 10000

✓ Corr

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

 $a^{< t>} = c^{< t>}$

1/1 point

GRU

$$\begin{split} \tilde{c}^{< t>} &= \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \\ \Gamma_u &= \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \\ \Gamma_r &= \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \\ c^{< t>} &= \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \end{split}$$

Alice proposes to simplify the GRU by always removing the Γ_u . i.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . i. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- igodeta Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Betty's model (removing Γ_r), because if $\Gamma_u pprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

✓ Correct

Yes. For the signal to backpropagate without vanishing, we need $e^{< t>}$ to be highly dependant on $e^{< t-1>}$.

9. Here are the equations for the GRU and the LSTM:

1 / 1 point

LSTM

GRU

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

left Γ_u and $1-\Gamma_u$

 $\bigcap \Gamma_u$ and Γ_r

 $\bigcap \ 1 - \Gamma_u$ and Γ_u

 \bigcap Γ_r and Γ_u

✓ Correct

Yes, correct!

you use a Unidirectional RNN or Bidirectional RNN for this problem?
O Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
O Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
$ \textcircled{\textbf{0}} \text{Unidirectional RNN, because the value of } y^{< t>} \text{ depends only on } x^{< 1>}, \dots, x^{< t>} \text{, but not on } x^{< t+1>}, \dots, x^{< 365>} $
$\bigcirc \ \ \ \ \text{Unidirectional RNN, because the value of } y^{< t>} \ \ \text{depends only on } x^{< t>}, \text{ and not other days' weather.}$
✓ Correct
Yesl