

Otomatik Kontrol Sistemleri

Hafta 2

Doç. Dr. Volkan Sezer

- *Blok Diyagramlar
- *Kapalı ve Açık Çevrim Transfer Fonksiyonu Hesabı
- *Çıkışta Bozucu Etkisi

Blok Diyagramlar

Blok diyagramlar, sistemleri oluşturan parçaların ve sinyal akışlarının görsel ifadeleridir.

Sistemdeki değişkenler birbirlerine fonksiyonel bloklarla bağlanmaktadır. Genelde içlerine, sistem bileşenlerinin transfer fonksiyonları yazılır.

Sistemi analiz etmeyi oldukça kolaylaştırır. 4 temel elemandan oluşurlar:

- Bloklar
- Toplam noktaları (işaret + veya olabilir)
- Ayrılma noktaları
- Oklar (Sinyallerin yönü önemlidir)

Blok Diyagramların Bazı Özellikleri

© John Wiley & Sons, Inc. All rights reserved.

Girişleri aynı noktada ve çıkışları aynı toplam noktasında olan paralel bloklar toplanır

Blok Diyagramların Bazı Özellikleri

Kapalı ve Açık Çevrim Transfer Fonksiyonunun Blok Diyagramlar Yardımıyla Hesaplanması

R(s): Referans Giriş

E(s): Hata İşareti C(s): Çıkış İşareti U(s): Kontrol İşareti

B(s): Ölçüm İşareti

$$E(s) = R(s) - B(s) = R(s) - H(s)C(s)$$

$$U(s) = G_c(s)E(s) = G_c(s)[R(s) - H(s)C(s)]$$

$$C(s) = G_s(s)U(s) = G_s(s)G_c(s)[R(s) - H(s)C(s)]$$

Her şeyi C(s) ve R(s) cinsinden yazdığımıza göre, son denklem üzerinden gruplama işlemi yaparsak:

$$C(s) + C(s)[G_s(s)G_c(s)H(s)] = G_s(s)G_c(s)R(s)$$

$$C(s)[1 + G_s(s)G_c(s)H(s)] = G_s(s)G_c(s)R(s)$$

$$\frac{C(s)}{R(s)} = \frac{G_S(s)G_C(s)}{1 + G_S(s)G_C(s)H(s)}$$

Blok Diyagram - Örnek

X2 ile X1 arasındaki transfer fonksiyonunu bulalım (görüldüğü gibi kapalı çevrimdir)

Sistemde Bozucu Etki Varsa..

Ren-Hus (201) 6,00 6,00 = (20)

Ren(6,00) = (20) (1+Hus 6,006,00)

Bu durumda çıkış işaretini, süperpozisyon ilkesini kullanarak hesaplayabiliriz.

- *Sistem Modelleme Yaklaşımları (Transfer Fonksiyonu / Durum Uzay Gösterimi)
- *Durum Uzay Modeli
- *Transfer Fonksiyonundan Durum Uzay Modeli Hesaplama
- *Durum Uzay Modelinden Transfer Fonksiyonu Hesaplama

Sistem Modelleme

Sistem Modelleme

Frekans Domeni

Laplace dönüşümü yardımıyla transfer fonksiyonu elde edilir.

Yalnızca doğrusal(lineer) zamanla değişmeyen sistemlere uygulanabilir

Kararlılık ve geçici hal davranışı hakkında hızlı bilgi sağlar

Zaman Domeni

Durum Uzay Modeli elde edilir

- *Lineer/Nonlineeer
- *Zamanla değişen/değişmeyen
- *Çok giriş-çok çıkış/Tek giriş-tek çıkış
- *Sıfır veya sıfırdan farklı ilk duruma sahip

sistemlere uygulanabilir.

Durum uzayı matematik modeli, aşağıdaki matris-vektör denklemleriyle temsil edilir.

 $\dot{x} = Ax + Bu$

y = Cx + Du

X: Durum vektörü (n*1)

Y: Çıkış vektörü (q*1)

U: Giriş (kontrol) vektörü (p*1)

A,B,C,D: Durum-Uzay Matrisleri

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

* Durum vellsis' elenador, sidemi Florde l'édébilecal minimum

Sogidali durum degis le les aloras

Secilabli ve lineer boisses abaldi.

(inigir derede lepoilain soilini, endadour alori)

* Minimum down doesest, 4125 djerniget delleninin merlebesi troops donligemen pagdwirin deren cesi agridir.

energi depologen elenelering Segior Leder duran depolon! vorder. (Bir demede, Leponder + erdills)

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

Gelecekteki durumu tahmin edebilmek için, hangi değişkenleri bilmemiz yeterlidir?

Enerji depolayan eleman sayısı genelde durum sayısını verir!

$$X = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$$

$$F - Kx = m\ddot{x} \qquad \ddot{x} = \frac{F}{m} - \frac{Kx}{m}$$

(Çıkış yalnızca pozisyon ise!)

V: (1), culs: V(1) den gulridel: deron drun usay nodelni olystring.

(1) ill cerede

1) ill cerede Kirchell gestinter Laure; V: (1) = R1, 1, (1) + L1. din + Vc (+)

$$\frac{\partial f_{i}(t)}{\partial t} = \frac{V_{c}(t)}{L_{1}} - \frac{E_{1}}{L_{1}} \hat{j}_{i}(t) + \frac{V_{i}(t)}{L_{1}}$$

2) 2. cerrede Kriby godinh love

$$\frac{di_2(t)}{dt} = -\frac{\rho_2}{L_2}i_2(t) + \frac{V_c(t)}{L_2}$$

3 adel every; depologer eleme oldre sore, 3. derece dral model Ya: 3 adet drum desizhi olnalidir

Geelde endillasin alimi ve lepsitein gerlimi dun degelen derd aliner

Amacımız, durum değişkenlerini ve durum değişkenlerinin türevlerini ve girişi içeren 1. derece diferansiyel denklemleri yazabilmektir.

$$\frac{\partial f_1(x)}{\partial t} = \frac{V(u)}{L_1} - \frac{R_1}{L_1} \hat{j}_1(u) + \frac{V(u)}{L_1}$$

$$\frac{di_{2}(t)}{dt} = -\frac{\rho_{2}}{L_{2}}i_{1}(t) + \frac{V_{c}(t)}{L_{2}}$$

(3) Repositedor Sela alin
$$\frac{dv_{c(t)}}{dt} = \frac{7}{(1+)} - \frac{1}{2} \frac{(t)}{C}$$

$$\frac{dv_{c(t)}}{dt} = \frac{7_{(1t)}}{C} - \frac{1_{2}(t)}{C}$$

$$\begin{bmatrix}
\hat{1}_{1} \\
\hat{1}_{2}
\end{bmatrix} = \begin{bmatrix}
-R_{1} \\
-R_{1} \\
-R_{1}
\end{bmatrix} \begin{bmatrix}
\hat{1}_{2} \\
\hat{1}_{2}
\end{bmatrix} + \begin{bmatrix}
\hat{1}_{2} \\
\hat{1}_{2}
\end{bmatrix} + \begin{bmatrix}
\hat{1}_{2} \\
\hat{1}_{2}
\end{bmatrix} \\
V_{1} \begin{bmatrix}
\hat{1}_{2}
\end{bmatrix} \\
V_{2} \begin{bmatrix}
\hat{1}_{2}
\end{bmatrix} \\
V_{3} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{4} \begin{bmatrix}
\hat{1}_{2}
\end{bmatrix} \\
V_{5} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\
V_{7} \begin{bmatrix}
\hat{1}_{3}
\end{bmatrix} \\$$

$$V_{c} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \vdots \\ v_{c} \end{bmatrix} + (0) V_{i} U_{i}$$

Durum Uzay Modelinden Transfer Fonksiyonu

Yukarıdaki son ifade, 1 giriş 1 çıkış bir sistem için transfer fonksiyonunu doğrudan verir.

Çok giriş ve/veya çok çıkışlı sistemler için ise, içerisinde transfer fonksiyonlarının olduğu bir «Transfer Matrisi» ortaya çıkar.

Transfer Fonksiyonundan Durum Uzay Modeli Hesaplama

Biçiminde verilen bir transfer fonksiyonunu, aşağıdaki gibi bir diferansiyel denklem olarak yazabiliriz. (Sıfırı olmayan transfer fonksiyonu)

Transfer Fonksiyonundan Durum Uzay Modeli Hesaplama

Hatırlatma: Bu işlemleri yapabilmek için, transfer fonksiyonunun sıfırı olmaması gerekmektedir.

Transfer Fonksiyonundan Durum Uzay Modeli Hesaplama-Örnek

Buradan durum uzay modeline geçiniz.

Transfer Fonksiyonundan Durum Uzay Modeli

Trooper donbyonna djusgelderlen about Sozolin: Vilc + Verc+Ve = Ve

Buradan durum uzay modeline geçiniz.

ill down degelenis citying (Ve) olon.

Xi = Ve
ilirci dun dysle: be, Eilyn lirevi olon.

Xi = Ve

= X, oldigna gira!

Dum dellenbris on selle gisderebilinis!
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -R \\ Lc & L \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ Lc \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$x_1 = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$$