Knowledge Discovery and Data Mining

Supervised Learning

Xuan Song songx@sustech.edu.cn

Overview of **Machine Learning**

What is Machine Learning

What is Machine Learning

Machine learning ≈ look for function

Speech Recognition

)= "Nice to meet you!"

Image Recognition

Dialogue System

$$f($$
 "How are you" $)=$ "I am good"

How to find a function

Case study of house price prediction

У	=	f(

bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_baseny	r_built	yr_renovat
3	1.5	1340	7912	1.5	0	0	3	1340	0	1955	2005
5	2.5	3650	9050	2	0	4	5	3370	280	1921	0
3	2	1930	11947	1	0	0	4	1930	0	1966	0
3	2.25	2000	8030	1	0	0	4	1000	1000	1963	0
4	2.5	1940	10500	1	0	0	4	1140	800	1976	1992
2	1	880	6380	1	0	0	3	880	0	1938	1994
2	2	1350	2560	1	0	0	3	1350	0	1976	0
4	2.5	2710	35868	2	0	0	3	2710	0	1989	0
3	2.5	2430	88426	1	0	0	4	1570	860	1985	0
4	2	1520	6200	1.5	0	0	3	1520	0	1945	2010
વ	1 75	1710	7320	1	Λ	Ω	3	1710	n	1948	1994

The function we want to find by machine learning

Assume a function with unknown parameters

$$y = f($$

bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basen	yr_built	yr_renovat
3	1.5	1340	7912	1.5	0	0	3	1340	0	1955	2005
5	2.5	3650	9050	2	0	4	5	3370	280	1921	0
3	2	1930	11947	1	0	0	4	1930	0	1966	0
3	2.25	2000	8030	1	0	0	4	1000	1000	1963	0
4	2.5	1940	10500	1	0	0	4	1140	800	1976	1992
2	1	880	6380	1	0	0	3	880	0	1938	1994
2	2	1350	2560	1	0	0	3	1350	0	1976	0
4	2.5	2710	35868	2	0	0	3	2710	0	1989	0
3	2.5	2430	88426	1	0	0	4	1570	860	1985	0
4	2	1520	6200	1.5	0	0	3	1520	0	1945	2010
વ	1 75	1710	7320	1	n	Λ	3	1710	Λ	1948	1994

Domain knowledge

$$y = w_1 x_1 + w_2 x_2 + \dots + w_{12} x_{12} + b$$

y: prediction price

 x_i : *i*th column in house price table

 w_i , b: unkown parameters

Assume a function with unknown parameters

У	=	f	
J			٦

bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_baseny	/r_built	yr_renovat
3	1.5	1340	7912	1.5	0	0	3	1340	0	1955	2005
5	2.5	3650	9050	2	0	4	5	3370	280	1921	0
3	2	1930	11947	1	0	0	4	1930	0	1966	0
3	2.25	2000	8030	1	0	0	4	1000	1000	1963	0
4	2.5	1940	10500	1	0	0	4	1140	800	1976	1992
2	1	880	6380	1	0	0	3	880	0	1938	1994
2	2	1350	2560	1	0	0	3	1350	0	1976	0
4	2.5	2710	35868	2	0	0	3	2710	0	1989	0
3	2.5	2430	88426	1	0	0	4	1570	860	1985	0
4	2	1520	6200	1.5	0	0	3	1520	0	1945	2010
વ	1 75	1710	7320	1	Λ	Λ	ર	1710	Ω	1948	1994

Domain knowledge

model

$$y = w_1 x_1 + w_2 x_2 + \dots + w_{12} x_{12} + b$$

y: prediction price

 x_i : *i*th column in house price table

features

weight

 w_i , b: unkown parameters

bias

Define loss from training data

bedrooms bathrooms	sqft_livin	g sqft_lot	floors	waterfront vie	ew	condition	sqft_aboves	qft_baseny	r_built	yr_renovat
3 1	5 134	0 7912	1.5	0	0	3	1340	0	1955	2005

$$y = w_1 x_1 + w_2 x_2 + \dots + w_{12} x_{12} + b$$

= $3w_1 + 1.5w_2 + \dots + 2005w_{12} + b$

Real house price

$$\bar{y}$$

Define loss from training data

sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basenyi	_built	yr_renovat
1340	7912	1.5	0	0	3	1340	0	1955	2005
3650	9050	2	0	4	5	3370	280	1921	0
1930	11947	1	0	0	4	1930	0	1966	0
2000	8030	1	0	0	4	1000	1000	1963	0
1940	10500	1	0	0	4	1140	800	1976	1992
880	6380	1	0	0	3	880	0	1938	1994
1350	2560	1	0	0	3	1350	0	1976	0
2710	35868	2	0	0	3	2710	0	1989	0
	1340 3650 1930 2000 1940 880 1350	1340 7912 3650 9050 1930 11947 2000 8030 1940 10500 880 6380 1350 2560	1340 7912 1.5 3650 9050 2 1930 11947 1 2000 8030 1 1940 10500 1 880 6380 1 1350 2560 1	1340 7912 1.5 0 3650 9050 2 0 1930 11947 1 0 2000 8030 1 0 1940 10500 1 0 880 6380 1 0 1350 2560 1 0	1340 7912 1.5 0 0 3650 9050 2 0 4 1930 11947 1 0 0 2000 8030 1 0 0 1940 10500 1 0 0 880 6380 1 0 0 1350 2560 1 0 0	1340 7912 1.5 0 0 3 3650 9050 2 0 4 5 1930 11947 1 0 0 4 2000 8030 1 0 0 4 1940 10500 1 0 0 4 880 6380 1 0 0 3 1350 2560 1 0 0 3	1340 7912 1.5 0 0 3 1340 3650 9050 2 0 4 5 3370 1930 11947 1 0 0 4 1930 2000 8030 1 0 0 4 1000 1940 10500 1 0 0 4 1140 880 6380 1 0 0 3 880 1350 2560 1 0 0 3 1350	1340 7912 1.5 0 0 3 1340 0 3650 9050 2 0 4 5 3370 280 1930 11947 1 0 0 4 1930 0 2000 8030 1 0 0 4 1000 1000 1940 10500 1 0 0 4 1140 800 880 6380 1 0 0 3 880 0 1350 2560 1 0 0 3 1350 0	1340 7912 1.5 0 0 3 1340 0 1955 3650 9050 2 0 4 5 3370 280 1921 1930 11947 1 0 0 4 1930 0 1966 2000 8030 1 0 0 4 1000 1000 1963 1940 10500 1 0 0 4 1140 800 1976 880 6380 1 0 0 3 880 0 1938 1350 2560 1 0 0 3 1350 0 1976

$$e_n = |y_n - \overline{y_n}|$$

- (1) Loss: How good a set of value is?
- (2) Loss is a function of parameter(weight and bias).

$$Loss = \frac{1}{N} \sum_{n} e_n = L(weight, bias)$$

Optimization

Optimization

model $y = w_1^* x_1 + w_2^* x_2 + \dots + w_{12}^* x_{12} + b^*$

Prediction

Machine Learning Process

function with unknown parameters

Define loss from training data

Optimization

Video

Introduction to **Supervised Learning**

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

Supervised Learning

 Supervised learning is the machine learning task of learning a function that maps an input to an output based on example inputoutput pairs.

Supervised Learning

Two Tasks

 Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.

House Price Forecast:

Self-driving Car:

)= Steering Angle

- Types of Regression Algorithm:
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Support Vector Regression
 - Decision Tree Regression
 - Random Forest Regression

Price of a used car

Price of a used car

Step1: Model

$$y = wx + b$$

Function Set: f1, f2, f3...

x: attribute of car

y: price

w, b: parameters

Price of a used car

Step1: Model

$$y = wx + b$$

Function Set: f1, f2, f3...

x: attribute of car

y: price

w, b: parameters

Step2: Goodness of Function

$$L(f) = \sum_{n=1}^{10} (\bar{y}^n - f(x^n))^2$$
 Estimation error

attribute

car price

$$L(f) = \sum_{n=1}^{10} (\bar{y}^n - (b + wx^n))^2$$

Simple Linear Regression

Price of a used car

Step1: Model

$$y = wx + b$$

Function Set: f1, f2, f3...

x: attribute of car

y: price

w, *b*: parameters

Step2: Goodness of Function

$$L(f) = \sum_{n=1}^{10} (\bar{y}^n - f(x^n))^2$$
 Estimation error

attribute

16

car price

$$L(f) = \sum_{n=1}^{10} (\bar{y}^n - (b + wx^n))^2$$

Step3: Pick the "Best Function"

$$w^*, b^* = \arg\min_{w,b} L(w, b)$$

= $\arg\min_{w,b} \sum_{n=1}^{10} (\bar{y}^n - (b + wx^n))^2$

Classification

Classification

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.

Find a model for class attribute as a function of the values of other

years at

Credit

Level of

attributes.

			# years at		110	⊏mpioyea	Education	address	Wo
id	Employed	Level of Education	present address	Credit Worthy	1 2	Yes No	Undergrad Graduate	7 3	
1	Yes	Graduate	5	Yes	3	Yes	High School	2	
2	Yes	High School	2	No					
3	No	Undergrad	1	No	•••	•••	•••	•••	
4	Yes	High School	10	Yes					
							Test S	ot	
							10310		
					Lear	'n	_		
II				Tra	Classi	ifier	Mode	ı	

Classification

- Base Classifiers
 - Logistic Regression
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks, Deep Neural Nets
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

• The linear regression model can work well for regression, but fails for classification.

 The linear regression model can work well for regression, but fails for classification.

Linear Regression output: any value

output: between 0 and 1

Logistic Regression Use Case

To predict if a student will be admitted based on his/her CGPA

Admission	CGPA
0	4.2
0	5.1
0	5.5
1	8.2
1	9.0
1	9.1

Retrieved from: https://www.youtube.com/watch?v=OCwZyYH14uw&ab_channel=edureka%21

Classification: Decision Tree

- They do classification: predict a categorical output from categorical and/or real inputs
- Decision trees are the single most popular data mining tool
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Mature, Easy-to-use software package freely available
- NO programming needed!

Example of Decision Tree

categorical categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Splitting Attributes Home Owner Yes No NO MarSt Married Single, Divorced Income NO < 80K > 80K YES NO

Model: Decision Tree

Start from the root of tree.

Test Data

			Defaulted Borrower
No	Married	80K	?

MarSt

> 80K

YES

Single, Divorced

Income

NO

< 80K

NO

Test Data

Married

NO

Test Data

Test Data

			Defaulted Borrower
No	Married	80K	?
,			

Assign Defaulted to "No"

Decision Tree Classification Task

Test Set

Decision Tree Based Classification

Advantages:

- Relatively inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant or irrelevant attributes (unless the attributes are interacting)

Disadvantages: .

- Due to the greedy nature of splitting criterion, interacting attributes (that can distinguish between classes together but not individually) may be passed over in favor of other attributed that are less discriminating.
- Each decision boundary involves only a single attribute

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Test Record

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

k Nearest Neighbor (kNN) Classification

□Requires the following:

- A set of labeled records
- Proximity metric to compute distance/similarity between a pair of records
 - -e.g., Euclidean distance
- The value of k, the number of nearest neighbors to retrieve
- A method for using class labels of K nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

One possible solution

Another possible solution

Other possible solutions

Which one is better? B1 or B2? How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

Non-linear SVM: Feature spaces

• General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Feature 1

Ensemble Techniques

- Construct a set of base classifiers learned from the training data
- Predict class label of test records by combining the predictions made by multiple classifiers (e.g., by taking majority vote)

Ensemble Techniques

- Why ensemble?
 - Suppose there are 25 base classifiers
 - Each classifier has error rate, ϵ = 0.35
 - Majority vote of classifiers used for classification
 - If all classifiers are identical:
 - Error rate of ensemble = ϵ (0.35)
 - If all classifiers are independent (errors are uncorrelated):
 - Error rate of ensemble = probability of having more than half of base classifiers being wrong

$$e_{\text{ensemble}} = \sum_{i=13}^{25} {25 \choose i} \epsilon^i (1-\epsilon)^{25-i} = 0.06$$

Boosting

- A family of methods:
 - AdaBoost (Freund & Schapire, 1996)

Training

- Produce a sequence of classifiers (the same base learner)
- Each classifier is dependent on the previous one, and focuses on the previous one's errors
- Examples that are incorrectly predicted in previous classifiers are given higher weights

Testing

 For a test case, the results of the series of classifiers are combined to determine the final class of the test case.

Example of a Good Classifier

Round 1 of 3

$$h_1$$
 $\epsilon_1 = 0.300$ $\alpha_1 = 0.424$

 D_2

Round 2 of 3

Round 3 of 3

 $\varepsilon_{3} = 0.344$

 α_2 =0.323

Final Hypothesis

Boosting

Resource of Machine Learning

- 李宏毅 机器学习2020
 - https://www.youtube.com/watch?v=c9TwBeWAj_U&ab_channel=Hung-yiLee
 - https://www.bilibili.com/video/av94519857/

End of Class 3