MA2101 - Homework Solutions

Debayan Sarkar, 22MS002

August 6, 2023

Prove the following

1. For x < y, we have, $x < \frac{x+y}{2} < y$

Solution : Since x < y, we have $\frac{x}{2} < \frac{y}{2}$. Then, we have $\frac{x}{2} + \frac{x}{2} < \frac{y}{2} + \frac{x}{2} \Rightarrow x < \frac{x+y}{2}$ Similarly, we have $\frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2} \Rightarrow \frac{x+y}{2} < y$ Hence, $x < \frac{x+y}{2} < y$

2. If $x \le y + z$ for all z > 0, then $x \le y$.

Solution : Let $x,y\in\mathbb{R}$ such that $x\leq y+z$ for all z>0. We claim that, $x\leq y$. Let us assume to the contrary that, x>y. Then, we have x-y>0. Let $\epsilon:=x-y$. Also observe that, $x-y\leq z$ for all z>0. Let us set $z=\frac{\epsilon}{2}$. Then, $x-y\leq z\Rightarrow \epsilon\leq \frac{\epsilon}{2}\Rightarrow 1\leq \frac{1}{2}$. This is a contradiction. Hence, $x\leq y$. This proves our claim.

3. For 0 < x < y, we have $0 < x^2 < y^2$ and $0 < \sqrt{2} < \sqrt{y}$, assuming to existence of \sqrt{x} and \sqrt{y} . More generally, if x and y are positive, then x < y iff $x^n < y^n$ for all $n \in \mathbb{N}$.

Solution: Done. Shall type it later.

4. For 0 < x < y, we have $\sqrt{xy} < \frac{x+y}{2}$.

Solutions: We claim that the statment is true. Let us assume to the contrary that, $\frac{x+y}{2} < \sqrt{xy}$. Then, we have,

$$\frac{x+y}{2} < \sqrt{xy}$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^2 < xy$$

$$\Rightarrow \left(\frac{x+y}{2}\right)^2 - xy < 0$$

$$\Rightarrow \left(\frac{x-y}{2}\right)^2 < 0$$
(Using the result from Problem 2)

This is a contradiction since we know that $\alpha^2 \geq 0 \ \forall \alpha \in \mathbb{R}$. This proves our claim.