Hauptklausur zu Mathematik 1 für Informatik

Peter Ochs, Oskar Adolfson

16. Februar 2022

Hilfsmittel: Stift, einseitig beschriftetes DIN A4 Blatt.

Zeit: 120min

Keine Garantie auf korrekte Aufgaben/Punktezahlen.

Aufgabe 1 [3+2+5=10]

Sei $z \in \mathbb{C}$.

- (a) Berechnen Sie z^8 für z = -1 + i in der Form z = a + ib.
- (b) Schreiben Sie $\frac{5}{i-2}$ in der Form z = a + ib.
- (c) Berechnen Sie z für $z^6 = -64$.

Aufgabe 2 [10]

Es gelte $f(x) = \frac{\sin(x)}{\sqrt{x}}$. Zeigen Sie, dass für alle $x \in (0, \infty)$ gilt

$$f''(x) + \frac{1}{x} \cdot f'(x) + \left(1 - \frac{1}{4x^2}\right) \cdot f(x) = 0.$$

Aufgabe 3 [2+3+2+3=10]

Für die Folge $(a_n)_{n\in\mathbb{N}}$ gelte $a_0=1$ und $a_{n+1}=\sqrt{1+a_n}$.

- (a) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ monoton ist.
- (b) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ beschränkt ist.
- (c) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert.
- (d) Bestimmen Sie den Grenzwert von $(a_n)_{n\in\mathbb{N}}$.

Aufgabe 4 [3+4+3=10]

g sei eine Folge von Funktionen mit $g_n = \frac{nx}{1+|nx|}$.

- (a) Zeigen Sie, dass g_n für alle $n \in \mathbb{N}$ stetig ist.
- (b) Bestimmen Sie die Grenzfunktion von g_n .
- (c) Zeigen Sie, dass die Folge nicht gleichmäßig konvergiert.

Aufgabe 5 [3+4+3=10]

Die Funktion f in \mathbb{R} sei zweifach stetig differenzierbar mit f(0) = f'(0) = 0 und $\forall x \in \mathbb{R} : f''(x) \geq 0$.

- (a) Zeigen Sie, dass $\forall x \in \mathbb{R} : f(x) \ge 0$.
- (b) Zeigen Sie, dass ein $c \in \mathbb{R}$ mit c > 1 existiert, sodass für alle $k \in \mathbb{R}, k \ge 1$ gilt

$$0 \le f\left(\frac{1}{k}\right) \le \frac{c}{k^2}.$$

(c) Zeigen Sie, dass die Reihe $\sum_{k=1}^{\infty} f\left(\frac{1}{k}\right)$ konvergiert.

Aufgabe 6 [6+4=10]

Eine Funktion f heißt konvex, wenn gilt

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y \in \mathbb{R}, \lambda \in [0, 1].$$

Eine Funktion f heißt strikt konvex, wenn gilt

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y \in \mathbb{R}, x \neq y, \lambda \in [0, 1].$$

- (a) Zeigen Sie, dass für eine konvexe Funktion f jedes lokale Minimum in f auch das globale Minimum in f ist.
- (b) Zeigen Sie, dass für eine strikt konvexe Funktion f sogar nur ein globales Minimum existiert.

Einschätzung: Schwierig. GeTeXt von Marvin Borner.