Domain Knowledge-Informed Self Supervised Representations for Workout Form Assessment

Paritosh Parmar^{1,2} Amol Gharat² Helge Rhodin ¹University of British Columbia ²FlexAl Inc.

Challenges of Fitness-AQA Dataset

Task Definition

Shortcomings of Current Work

But does not fare well in real-world, in-the-wild conditions

Contribution 1: Our Fitness-AQA Dataset

Fitness-AQA Dataset

Academic research is limited to controlled conditions

Dataset void: No suitable in-the-wild datasets available

Use off-the-shelf 2D/3D Pose Estimators

Good for simple, controlled conditions

Bad form

Detecting errors (Bad forms) in Workout Form in Real-World Scenarios

SCAN ME

Our Proposal

- Replace error-prone pose estimators with Self-Supervised Pose-sensitive representations learned from unlabeled real-world videos
- Map these self-supervised representations to errors-labels using smaller labeled datasets

Contribution 2: Quasi-Synchronizing Videos

Steps to Quasi-synchronize videos:

People record themselves by using their cellphone

cameras placed somewhere in the vicinity

occlusion from gym equipment

camera angles

illumination

clothing

- Track the weight to get trajectories along the time direction
- Normalize the amplitudes of these trajectories
- At any given amplitude, the people doing the same exercise would approximately be in the same pose

Contribution 3: Self-Supervised Pose Contrastive Learning

Contribution 3: Self-Supervised Motion Disentangling

 Objective: Separate local (irregular/erroneous) motion from global (regular) motion

People generally make errors when lifting the weight, as opposed to lowering them

> We leverage this asymmetricity

Exp. 1

Features	Accuracies (%)					
Extraction	KIE	CVRB	CCRB	SS	KFE	Avg.
HMR-TDM [21] Ours CVCSPC						

Exp. 3

lel Modality	r-score		
ioi modelloj	Elbow Err.	Knees Err	
2D Pose	0.4265	0.7131	
Image Image	$0.4145 \\ 0.4522$	0.5301 0.7203	
Video Video	0.4138 0.4552	0.8416 0.8452	
	Image Image Video	Elbow Err. 2D Pose 0.4265 Image 0.4145 Image 0.4522 Video 0.4138	

Exp. 4 — Xfer Repr.

Feature extraction model	Modality	F-score ↑		
rodulio esterdettori moder		Lumbar Err	. Torso Er	
OpenPose-TDM [2,27] (SQ \rightarrow B)	R) 2D Pose	0.5422	0.4060	
SimSiam [5] (SQ→BR)	Image	0.5934	0.4543	
Ours CVCSPC (SQ→BR)	Image	0.6057	0.4800	
Ours CVCSPC (OHP→BR)	Image	0.5760	0.4675	
Ours CVCSPC (SQ+OHP→BF	R) Image	0.6338	0.5261	

Pose Retrieval Exp.

Exp. 2

Feature extraction model	Modality	F'-score ↑		
	ivio dalloj	KIE	KFE	
OpenPose-TDM [2, 27]	2D Pose	0.4143	0.8123	
OpenPose-TDM* $[2, 27]$	2D Pose	0.3186	0.7968	
SPIN-TDM $[22, 27]$	3D Pose	0.2878	0.7761	
ImageNet [39]	Image	0.1923	0.7725	
SimSiam [5]	Image	0.2270	0.7868	
Ours PAD	Image	0.3180	0.7784	
Ours Vanilla PC	Image	0.4118	0.7965	
Ours CVCSPC	Image	0.5195	0.8286	
Kinetics [20]	Video	0.2970	0.8184	
VideoSpeed-1 [1]	Video	0.3095	0.8155	
VideoSpeed-2	Video	0.3617	0.8000	
VideoRot [18]	Video	0.3333	0.8138	
TemporalXform [17]	Video	0.3414	0.8319	
Ours TemporalXform-1	Video	0.3457	0.8097	
Ours TemporalXform-2	Video	0.2286	0.8184	
Ours MD	Video	0.4186	0.8338	
$\overline{\text{Ours MD} + \text{CVCSPC}}$	Image, Video	0.5263	0.8468	

Motion Disentangling for **Scoring Olympic Dives**

Model	SSL SoTA	[38] Ours	baseline	Ours MD
Sp. Corr.	0.7700	0	.5665	0.7763

Real-world videos

KIE,KFE: 1623 SS:3611

- People making errors under the impact of actual weights
- Occlusions
- Various types of clothing, background, illumination
- Unusual poses
- Severe to Subtle, Finegrained action errors
- Characteristics of exercises in the dataset:
- Compound exercises more likely to cause injuries than isolation exercises
- Upper & Lower bodies covered
- Targeting injury prone & complex joints: shoulders, knees, hips, spine, wrists