B. Limit

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

You are given two polynomials:

- $P(x) = a_0 \cdot x^n + a_1 \cdot x^{n-1} + \dots + a_{n-1} \cdot x + a_n$ and
- $Q(x) = b_0 \cdot x^m + b_1 \cdot x^{m-1} + \dots + b_{m-1} \cdot x + b_m$

Calculate limit.

Input

The first line contains two space-separated integers n and m ($0 \le n$, $m \le 100$) — degrees of polynomials P(x) and Q(x) correspondingly.

The second line contains n+1 space-separated integers — the factors of polynomial P(x): a_0 , a_1 , ..., a_{n-1} , a_n (- $100 \le a_i \le 100$, $a_0 \ne 0$).

The third line contains m+1 space-separated integers — the factors of polynomial Q(x): b_0 , b_1 , ..., b_{m-1} , b_m ($-100 \le b_i \le 100$, $b_0 \ne 0$).

Output

If the limit equals $+\infty$, print "Infinity" (without quotes). If the limit equals $-\infty$, print "-Infinity" (without the quotes).

If the value of the limit equals zero, print "0/1" (without the quotes).

Otherwise, print an irreducible fraction — the value of limit , in the format "p/q" (without the quotes), where p is the — numerator, q (q > 0) is the denominator of the fraction.

Examples

input

- 2 1
- 1 1 1
- 2 5

output

Infinity

input

- 1 0
- -1 3 2

output

-Infinity

input

- 0 1
- 1 1 0
- _

output

0/1

input	
2 2	
2 1 6	
4 5 -7	
output	
1/2	
input	
<pre>input 1 1</pre>	
1 1 9 0	
1 1	
1 1 9 0	

Note

Let's consider all samples:

2

You can learn more about the definition and properties of limits if you follow the link: $http://en.wikipedia.org/wiki/Limit_of_a_function$