# Sistemas Embarcados (C213)

Prof. Samuel Baraldi Mafra



## Resposta Típica de Segunda Ordem



#### Exemplos:

- Posição de uma massa num sistema massa-mola-atrito,
- Deslocamento angular do eixo de um motor DC (modelo simplificado)
- Carga no capacitor de um circuito RLC série.



A forma padrão de um sistema de segunda ordem pode ser escrita como:

$$\frac{C(s)}{R(s)} = \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2} \tag{1}$$

O comportamento dinâmico do sistema de segunda ordem pode ser descrito em termos de dois parâmetros  $\zeta$  e  $w_n$ .

- ζ Coeficiente de Amortecimento
- ullet  $w_n$  Frequência natural não amortecida

### Influência de $w_n$



- $\zeta = 0$ : O sistema oscila indefinidamente.
- $0<\zeta<1$ : Os polos em malha fechada são complexos conjugados e a reposta é oscilatória ( subamortecido).
- $\zeta = 1$ : Criticamente Amortecido.
- $\zeta > 1$ : Superamortecido.





- Para um sistema de segunda ordem com resposta transitória aceitável, deve-se fazer  $0,4<\zeta<0,8.$
- Valores pequenos ( $\zeta < 0,4$ ) resultam em excessivo sobressinal na resposta transitória.
- Valores grandes ( $\zeta > 0, 8$ ) a resposta se torna muito lenta.
- Sobressinal e tempo de subida são conflitantes entre si, ou seja, eles não podem ser diminuídos simultaneamente.

Calcule os valores de  $\zeta$  e  $w_n$  para as seguingtes funções de transferência de malha fechada:

•

$$H(s) = \frac{121}{s^2 + 13.2s + 121} \tag{2}$$

•

$$H(s) = \frac{0.04}{s^2 + 0.02s + 0.04} \tag{3}$$

## Definição das Especificações da Resposta



- Tempo de atraso  $t_d$ : Tempo requerido para que a resposta atinja 50% do valor final;
- Tempo de subida  $t_r$ : Tempo requerido para que a resposta chegue ao valor final pela primeira vez.
- Tempo de pico  $t_p$ : Tempo requerido para que a resposta o primeiro pico de sobressinal;
- Máximo sobressinal  $M_p$ : Valor máximo do pico medido a partir da unidade (em sistemas normalizados). Em sistemas em que o valor final difere da unidade, é calculado como:

$$Mp = \frac{c(t_p) - c(\infty)}{c(\infty)} * 100\%$$
(4)

• Tempo de acomodação  $t_s$ : tempo necessário para que o sistema alcance valores entre 2% e 5% do valor final. Normalmente se utiliza uma tolerância de 2%

### Definição das Especificações

| Característica         | Símbolo | Fórmula                                                     |
|------------------------|---------|-------------------------------------------------------------|
| Tempo de Subida        | Tr      | $Tr = \frac{\pi - \beta}{\omega_d}$                         |
| Tempo de Pico          | Тр      | $Tp = \frac{\pi}{\omega_d}$                                 |
| Máximo<br>Sobressinal  | Мр      | $Mp = e^{-\left(\frac{\zeta}{\sqrt{1-\zeta^2}}\right).\pi}$ |
| Tempo de<br>Acomodação | Ts      | $Ts = \frac{4}{\zeta \omega_n}$                             |

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$
  $\sigma = \zeta \omega_n$   $\beta = tg^{-1} \frac{\omega_d}{\sigma}$ 

Para o sistema dinâmico representado por sua Função de Transferência H(s), determine as especificações de sua reposta ao degrau unitário em Malha Fechada.

$$H(s) = \frac{2}{s^2 + 0.56s + 2} \tag{5}$$

Para o sistema dinâmico representado por sua Função de Transferência H(s), determine as especificações de sua reposta ao degrau unitário em Malha Fechada.

$$H(s) = \frac{2}{s^2 + \sqrt{2}s + 2} \tag{6}$$

Considere o sistema de malha fechada dado por:

$$\frac{C(s)}{R(s)} = \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2} \tag{7}$$

Determine os valores de  $\zeta$  e  $w_n$  de modo que o sistema responda a uma entrada em degrau com aproximadamente 5% de sobressinal e tempo de acomodação de 2 segundos. (Tolerância de 2%)