Application of low-rank approximation in nonlinear system identification

Ivan Markovsky

General setup: linearly parameterized discrete-time nonlinear systems

kernel:
$$R(\underbrace{w(t), w(t-1), \dots, w(t-\ell)}_{x(t)}) = 0$$

special case: input/output NARX system

$$\mathscr{B} = \left\{ w = \begin{bmatrix} u \\ y \end{bmatrix} \mid y(t) = f(u(t), w(t-1), \dots, w(t-\ell)) \right\}$$

linearly parameterized model \mathscr{B}_{θ}

$$R(x) = \sum \theta_i \phi_i(x) = \theta \phi(x), \qquad egin{array}{ll} \phi & -- & ext{model structure} \ \theta & -- & ext{parameter vector} \end{array}$$

Example: single-input single-output polynomially time-invariant model

$$\phi$$
 is a vector of monomials $\phi_i := \Pi_j x_i^{\scriptscriptstyle \mathrm{n}_{ij}}$

the structure ϕ is defined by the degrees matrix

$$\phi \leftrightarrow \mathbf{N} := [\mathbf{n}_{ii}] \in \mathbb{N}^{\mathbf{n}_{\phi} \times \mathbf{n}_{\chi}}$$

polynomially time-invariant (PTI) model class

Our goal is to find PTI model from data: $(w(1),...,w(T)) \mapsto \mathscr{B} \in \mathscr{P}_{\ell,n}$

- 1. structure selection: find ϕ
- 2. parameter estimation: find θ

```
\begin{array}{ll} \text{minimize} & \text{over } \theta \text{ and } \widehat{w} \quad \|w - \widehat{w}\| \\ \text{subject to} & \widehat{w} \in \mathscr{B}_{\theta} \end{array} \tag{NL SYSID}
```

Link to low-rank approximation

$$w \in \mathscr{B}_{ heta}$$
 \Leftrightarrow $R(x(t)) = \theta^{\top} \phi(x(t)) = 0, \quad \text{for } t = 1, \dots, T - \ell$ \Leftrightarrow $\theta^{\top} \left[\phi(x(1)) \quad \cdots \quad \phi(x(T - \ell)) \right] = 0$ \Leftrightarrow $\text{rank} \left(\Phi(w) \right) \leq n_{\phi} - 1$

(NLSYSID) ← low-rank approximation

minimize over
$$\theta$$
 and $\widehat{w} \| w - \widehat{w} \|_2$
subject to rank $(\Phi(\widehat{w})) \le n_{\phi} - 1$ (SLRA)

non-convex optimization problem

there are no efficient solution methods

heuristic method: ignore the structure of $\Phi(\widehat{w})$

minimize over $\theta \neq 0$ $\|\theta^{\top}\Phi(w)\|_2$ (LRA)

Structure selection via sparsity regularization

select "large" model class $\mathscr{P}_{\ell,n}$ and impose sparsity on θ

minimize over
$$\theta = \|\theta^{\top} \Phi(w)\|_2 + \gamma \|\theta\|_1$$

 γ controls the sparsity level

- $\gamma = 0$ \sim (LRA) \sim full θ

selected, so that # nonzero elements = given number

Perspectives / future work

bias correction procedure

Consistent least squares fitting of ellipsoids. Numerische Mathematik, 98(1):177-194, 2004

Adjusted least squares fitting of algebraic hypersurfaces. Linear Algebra Appl., 502:243–274, 2016.

conditions under which the ℓ_1 -regularizer "works"

benchmarking and comparison with alternative methods

Conic section fitting

the points $(x_1, y_1), \dots, (x_N, y_N)$ lie on a conic section \updownarrow

there are $A = A^{T}$, b, c, at least one of them nonzero, s.t.

$$\begin{bmatrix} x_i & y_i \end{bmatrix} A \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} x_i & y_i \end{bmatrix} b + c = 0, \quad \text{ for } i = 1, \dots, N$$

there is $\theta = \begin{bmatrix} a_{11} & a_{12} & a_{22} & b_1 & b_2 & c \end{bmatrix} \neq 0$, such that

$$\theta \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1 y_1 & \cdots & x_N y_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$$

Conic section fitting ←⇒ rank deficiency

the points $(x_1, y_1), \dots, (x_N, y_N)$ lie on a conic section

$$\mathscr{B}(\theta) = \{ w \mid w^{\top} A w + w^{\top} b + c = 0 \}$$

$$\uparrow \qquad \qquad \qquad \uparrow$$

$$rank \begin{pmatrix} \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1 y_1 & \cdots & x_N y_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{pmatrix} \leq 5$$

Examples

 $rank < 5 \quad \Longrightarrow \quad nonunique \ fit$

 $rank = 5 \quad \Longrightarrow \quad unique \ fit$

 $\mathsf{rank} = \mathsf{6} \quad \Longrightarrow \quad \mathsf{no} \; \mathsf{exact} \; \mathsf{fit} \; \mathsf{by} \; \mathsf{a} \; \mathsf{conic} \; \mathsf{section}$

Unstructured LRA is biased

easy to compute, but biased in the EIV setup

$$w = \overline{w} + \widetilde{w}$$
, where $\overline{w} \in \overline{\mathscr{B}}$ and $\widetilde{w} \sim N(0, \sigma^2 I)$

define
$$\Psi := \Phi(w)\Phi^{\top}(w)$$
 and $\bar{\Psi} := \Phi(\bar{w})\Phi^{\top}(\bar{w})$

goal: construct "corrected" matrix Ψ_c , such that

$$\mathbf{E}(\Psi_{\mathtt{C}}) = \bar{\Psi}$$

Derivation of the correction

Hermite polynomials $h_k(x)$ have the property

$$\mathbf{E}(h_k(\bar{x}+\widetilde{x})) = \bar{x}^k$$
, where $\tilde{x} \sim N(0,\sigma^2)$ (*)

with w = (u, y), the (i, j)th element of $\Psi = \Phi \Phi^{\top}$ is

$$\sum (\bar{u} + \tilde{u})^{n_{u,i} + n_{u,j}} (\bar{y} + \tilde{y})^{n_{y,i} + n_{y,j}}$$

then, by (*)

$$\phi_{c,ij} := \sum h_{n_{u,i}+n_{u,j}}(u)h_{n_{y,i}+n_{y,j}}(y)$$

has the desired property

$$\mathsf{E}(\psi_{\mathsf{c},ij}) = \sum \bar{u}^{n_{u,i}+n_{u,j}} \bar{y}^{n_{y,i}+n_{y,j}} =: \bar{\psi}_{ij}$$

Unbiased estimator

the corrected Ψ_{C} is an even polynomial in σ

$$\Psi_{c}(\sigma^2) = \Psi_{c,0} + \sigma^2 \Psi_{c,1} + \dots + \sigma^{2n_\psi} \Psi_{c,n_\psi}$$

estimate: $\Psi_{\rm c}(\sigma^2)\theta = 0$

computing simultaneously σ and θ is polynomial EVP