DB-scan clustering

In [9]:

```
from sklearn.cluster import DBSCAN
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

In [4]:

```
dataset = pd.read_csv('/Users/myyntiimac/Desktop/Mall_Customers.csv')
X = dataset.iloc[:, [3, 4]].values
```

In [26]:

```
from sklearn.preprocessing import StandardScaler
X = StandardScaler().fit_transform(X)
```

In [27]:

```
# Perform DBSCAN clustering
dbscan = DBSCAN(eps=0.3, min_samples=5)
labels = dbscan.fit_predict(X)
```

In [28]:

```
# Get the number of unique clusters excluding noise points
unique_labels = np.unique(labels)
unique_labels = unique_labels[unique_labels != -1]
num_clusters = len(unique_labels)
num_clusters
```

Out[28]:

7

In [31]:

```
1
2
   # Generate random colors for the clusters
3
   colors = np.random.rand(num_clusters, 3)
5
   # Plot the clusters with random colors
   for label, color in zip(unique_labels, colors):
6
7
       cluster_data = X [labels == label]
8
       plt.scatter(cluster_data[:, 0], cluster_data[:, 1], c=[color], label=f'Clust
9
10
   # Plot noise points as black X's
11
   noise data = X [labels == -1]
   plt.scatter(noise_data[:, 0], noise_data[:, 1], marker='x', color='black', label
12
13
14
   # Set plot title and labels
15
   plt.title('DBSCAN Clustering')
   plt.xlabel('X')
16
17
   plt.ylabel('Y')
   plt.legend()
18
19
   # Show the plot
20
21 plt.show()
```

DBSCAN Clustering

In [39]:

```
dfl=pd.read_csv("/Users/myyntiimac/Desktop/new_dataframe.csv")
dfl.head()
```

Out[39]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1- 100)	Cluster	agguluramative
0	1	Male	19	15	39	2	4
1	2	Male	21	15	81	3	3
2	3	Female	20	16	6	2	4
3	4	Female	23	16	77	3	3
4	5	Female	31	17	40	2	4

In [40]:

```
1 df1["DBC"] = labels
```

In [41]:

```
1 df1.head()
```

Out[41]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster	agguluramative	DBC
0	1	Male	19	15	39	2	4	2
1	2	Male	21	15	81	3	3	0
2	3	Female	20	16	6	2	4	1
3	4	Female	23	16	77	3	3	0
4	5	Female	31	17	40	2	4	2

In [46]:

```
1 df1.to_csv('all_cluster.csv', index=False)
```

In [47]:

```
import os
1
2
3
   # Get the current working directory
   current_dir = os.getcwd()
6
   # Specify the filename
7
   filename = 'all_cluster.csv'
8
9
   # Combine the directory and filename to get the full file path
10
   file_path = os.path.join(current_dir, filename)
11
12
   # Print the file path
13
  print("File saved at:", file_path)
```

File saved at: /Users/myyntiimac/all_cluster.csv

In []:

1