Automata and Grammars (BIE-AAG)

2. Deterministic and nondeterm. finite automata

Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

© Jan Holub, 2020

Deterministic finite automaton

Definition

Deterministic finite automaton is a quintuple $M=(Q,\Sigma,\delta,q_0,F)$, where

- Q is a finite set of states,
- Σ is a finite input alphabet,
- δ is a mapping from $Q \times \Sigma$ to Q,
- $q_0 \in Q$ is the initial state,

We stat in 1 state a goto a derivite set of STATE

Configuration of a finite automaton

Definition (Configuration of a finite automaton)

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton. Pair $(q,w)\in Q\times \Sigma^*$ is called configuration of finite automaton M. Configuration (q_0,w) is called initial configuration of finite automaton M, configuration (q,ε) , where $q\in F$, is called accepting configuration of finite automaton M.

STarts with a Carllete Sting (w) and and swith with with strong

Move of DFA

Definition (Move of DFA)

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a deterministic finite automaton. Let \vdash_M is a relation over $Q\times\Sigma^*$ (i.e., subset of $(Q\times\Sigma^*)\times(Q\times\Sigma^*)$) such that $(q,w)\vdash_M(p,w')$ iff w=aw' and $\delta(q,a)=p$ for some $a\in\Sigma$, $w\in\Sigma^*$. An element of relation \vdash_M is called a *move* in automaton M.

$$\vdash_M^k$$
 – the k -th power of relation \vdash_M $(\alpha_0, \beta_0) \vdash_M^k (\alpha_k, \beta_k)$ if

$$\exists (\alpha_i, \beta_i), 0 < i < k : (\alpha_i, \beta_i) \vdash_M (\alpha_{i+1}, \beta_{i+1}), 0 \le i < k$$

 \vdash_{M}^{+} – the transitive closure of relation \vdash_{M}

 \vdash_M^* – the transitive and reflexive closure of relation \vdash_M

$$(q, aw') \vdash_{M} (p, w') \text{ means } ((q, aw'), (p, w')) \in \vdash_{M}$$

$$(\chi_{\circ}, \beta_{\circ}) \vdash (\chi_{\circ}, \beta_{\circ}) \vdash (\chi_{\circ}, \beta_{\circ}) \vdash (\chi_{\circ}, \beta_{\circ})$$

$$= (\chi_{\circ}, \beta_{\circ}) \vdash^{3} (\chi_{\circ}, \beta_{\circ})$$

$$= (\chi_{\circ}, \beta_{\circ}) \vdash^{3} (\chi_{\circ}, \beta_{\circ})$$

Language accepted by DFA

Definition (Language accepted by DFA)

We say that string $w \in \Sigma^*$ is accepted by a deterministic finite automaton

 $M=(Q,\Sigma,\delta,q_0,F)$ if $\exists (q_0,w)\vdash_M^* (q,\varepsilon)$ for some $q\in F$.

 $L(M)=\{w:w\in\Sigma^*,\exists q\in F:(q_0,w)\vdash^*(q,\varepsilon)\}$ is the language accepted by DFA M.

(String $w \in L(M)$ if there exists a sequence of moves from the initial configuration (q_0, w) into an accepting configuration (q, ε) .)

bifit Can Process all the STRINGS

DFA Configuration

Example

Let $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_0\})$ be a DFA, for which the mapping δ is defined as:

$$\delta(q_0,0) = q_2, \quad \delta(q_1,0) = q_3, \quad \delta(q_2,0) = q_0,$$
 $\delta(q_3,0) = q_1, \quad \delta(q_0,1) = q_1, \quad \delta(q_1,1) = q_0,$
 $\delta(q_2,1) = q_3, \quad \delta(q_3,1) = q_2.$

The mapping δ can be written in the form of a table:

state	input symbol	
δ	0	1
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

DFA Configuration

Example (continued)

 $M: (q_0, 110101) \vdash (q_1, 10101) \vdash (q_0, 0101) \vdash (q_2, 101) \vdash (q_3, 01) \vdash (q_1, 1) \vdash (q_0, \varepsilon)$

 $M: (q_0, 11010) \vdash (q_1, 1010) \vdash (q_0, 010) \vdash (q_2, 10) \vdash (q_3, 0) \vdash (q_1, \varepsilon)$

 $L(M) = \{x: x \in \{0,1\}^* \text{ and the number of zeros and the number of ones in } x \text{ are even} \}$ BIE-AAG (2020/2021) – J. Holub: 2. Deterministic and nondeterm. finite automata – 7 / 34

DFA Configuration

Example

Given DFA $M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_0, q_1, q_2\})$ with δ defined as follows:

$$M: (q_0, abc) \vdash (q_0, bc) \vdash (q_1, c) \vdash (q_2, \varepsilon)$$

$$M\colon (q_0,abac) \vdash (q_0,bac) \vdash (q_1,ac) \vdash \textit{fail} \text{ as } \delta(q_1,a) = \emptyset$$

Deterministic finite automaton

Definition (Total DFA)

DFA $M = (Q, \Sigma, \delta, q_0, F)$ is called total if the mapping δ is defined for all pairs of state $q \in Q$ and symbol $a \in \Sigma$.

Algorithm Completion of DFA to be total.

Input: DFA $M=(Q,\Sigma,\delta,q_0,F)$.

Output: Total DFA $M' = (Q', \Sigma, \delta', q_0, F)$ such that L(M') = L(M).

1: $Q' \leftarrow Q \cup \{q_\emptyset\}$

hd > a new state $q_\emptyset
otin Q$ called "empty"

2: $\delta'(q,a) \leftarrow \delta(q,a)$, $\forall a \in \Sigma, q \in Q'$, if $\delta(q,a)$ is defined

3: $\delta'(q,a) \leftarrow q_{\emptyset}$, $\forall a \in \Sigma, q \in Q'$, if $\delta(q,a)$ is not defined

Adds Av Enlty State. All Thousitions Not defined
go to Enlty State and Thusition from My state
go to Enlty State

Deterministic finite automaton

Example

Given DFA $M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_0, q_1, q_2\})$ with δ defined as follows:

the resulting total DFA: M'

Nondeterministic finite automaton

Definition

Nondeterministic finite automaton (NFA) M is a quintuple $M=(Q,\Sigma,\delta,q_0,F)$, where

- Q is a finite set of states,
- Σ is a finite input alphabet,
- δ is a mapping from $Q \times \Sigma$ into the set of all subsets Q (denoted by 2^Q),
- $q_0 \in Q$ is the initial state,

The Maring leads To a Set of states in Stendof a single state

Move of NFA

Definition (Move of NFA)

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a nondeterministic finite automaton. Let \vdash_M is a relation over $Q\times\Sigma^*$ (i.e., subset of $(Q\times\Sigma^*)\times(Q\times\Sigma^*)$) such that $(q,w)\vdash_M(p,w')$ iff w=aw' and $p\in\delta(q,a)$ for some $a\in\Sigma$, $w\in\Sigma^*$. An element of relation \vdash_M is called a *move* in automaton M.

 \vdash_M^k – the k-th power of relation \vdash_M

 \vdash_{M}^{+} – the transitive closure of relation \vdash_{M}

 \vdash_M^* – the transitive and reflexive closure of relation \vdash_M

SAME as detaministic

Language accepted by NFA

Definition (Language accepted by NFA)

We say that string $w \in \Sigma^*$ is accepted by nondeterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ if $\exists (q_0, w) \vdash^* (q, \varepsilon)$ for some $q \in F$.

 $L(M) = \{w : w \in \Sigma^* \mid \exists q \in F, (q_0, w) \vdash^* (q, \varepsilon)\}$ is the language accepted by NFA M.

diferece with deterministic

DFA CAN Be Than Stormed to NFA AND ITS easier To crosse

NFA configuration

Example

Given NFA $M=(\{q,q_0,q_1,q_f\},\{0,1\},\delta,q,\{q_f\})$, where δ : $\delta(q,0)=\{q,q_0\}, \quad \delta(q,1)=\{q,q_1\}, \quad \delta(q_0,0)=\{q_0,q_f\}, \quad \delta(q_0,1)=\{q_0\}, \quad \delta(q_1,0)=\{q_1\}, \quad \delta(q_1,1)=\{q_1,q_f\}.$

 $L(M) = \{w : w \in \{0,1\}^* \text{ and } w \text{ ends with a symbol that has already appeared in } w \text{ at least once} \}$

NFA configuration

Example (continued)

For a string 1010 the automaton can perform the following sequence of moves: $(q, 1010) \vdash (q, 010) \vdash (q_0, 10) \vdash (q_0, 0) \vdash (q_f, \varepsilon)$.

Let us display all possible sequences of moves for string 1010.

Accessible state

Definition

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton. State $q\in Q$ is called accessible if there exists a string $w\in \Sigma^*$ such that there exists a sequence of moves that leads from the initial state q_0 into state q:

$$(q_0, w) \vdash^* (q, \varepsilon).$$

State that is not accessible is called *unreachable* state.

Accessible state

Algorithm Identification & removal of unreachable states.

Input: NFA $M = (Q, \Sigma, \delta, q_0, F)$.

Output: NFA M' without unreachable states such that L(M) = L(M').

- 1: $Q_0 \leftarrow \{q_0\}; i \leftarrow 0$
- 2: repeat
- $i \leftarrow i + 1$
- 4: $Q_i \leftarrow \{q : q \in \delta(p, a), p \in Q_{i-1}, a \in \Sigma\} \cup Q_{i-1}$
- 5: **until** $Q_i = Q_{i-1}$
- 6: $Q_a \leftarrow Q_i$ \rhd the set of all accessible states Q_a
- 7: $M' \leftarrow (Q_a, \Sigma, \delta', q_0, F \cap Q_a)$, where δ' : $\delta'(q, x) \leftarrow \delta(q, x)$, $\forall x \in \Sigma, \forall q \in Q_a$
- 8: return M'

Accessible state

Example

Given finite automaton $M=(\{p,q,r\},\{a,b\},\delta,p,\{r\})$, where δ :

$$\begin{array}{c|cccc}
 & a & b \\
\hline
p & p, r & r \\
\hline
q & r \\
\leftarrow & r & p, r & p
\end{array}$$

Using the algorithm we find out $Q_0 = \{p\}, Q_1 = \{p, r\}, Q_2 = \{p, r\}$. State q is unreachable.

 $M' = (\{p, r\}, \{a, b\}, \delta', p, \{r\}), \text{ where } \delta'$:

Useful/redundant state

Definition

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton. State $q\in Q$ is called *useful*, if there exists a string $w\in \Sigma^*$ such that there is a sequence of moves that leads from state q into a final state:

$$\exists p \in F : (q, w) \vdash^* (p, \varepsilon).$$

The state which is not useful is called a *redundant* state.

Useful/redundant state

Algorithm Identification of useful states and removal of redundant states.

Input: NFA $M = (Q, \Sigma, \delta, q_0, F)$, $L(M) \neq \emptyset$.

Output: NFA M' without redundant states such that L(M) = L(M').

- 1: $Q_0 \leftarrow F$; $i \leftarrow 0$
- 2: repeat
- $i \leftarrow i + 1$
- 4: $Q_i \leftarrow \{q : \exists p \in Q_{i-1}, p \in \delta(q, a), a \in \Sigma\} \cup Q_{i-1}$
- 5: **until** $Q_i = Q_{i-1}$
- 6: $Q_u \leftarrow Q_i$ \rhd the set of all useful states Q_u
- 7: $M' \leftarrow (Q_u, \Sigma, \delta', q_0, F)$, where δ' : $\delta'(q, x) \leftarrow \delta(q, x) \cap Q_u$, $\forall x \in \Sigma, \forall q \in Q_u$
- 8: return M'

Useful/redundant state

Example

Given finite automaton $M=(\{p,q,r\},\{a,b\},\delta,p,\{r\})$, where δ :

Using the algorithm we find out $Q_0 = \{r\}, Q_1 = \{p, r\}, Q_2 = \{p, r\}$. Therefore $Q_u = \{p, r\}$ and we see that q is redundant. $M' = (\{p, r\}, \{a, b\}, \delta', p, \{r\})$, where δ' :

$$\begin{array}{c|cccc} & a & b \\ \hline \rightarrow & p & r & p, r \\ \leftarrow & r & p & r \end{array}$$

Finite automata with ε -transitions

Definition

Nondeterministic finite automaton with ε -transitions is a quintuple $M=(Q,\Sigma,\delta,q_0,F)$, where Q,Σ,q_0,F are the same as in the definition of NFA. Mapping δ is defined as follows:

Finite automata with ε -transitions

Example

 $M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_2\})$, where δ :

$$\delta(q_0, a) = \{q_0\}, \quad \delta(q_0, \varepsilon) = \{q_1\},$$

 $\delta(q_1, b) = \{q_1\}, \quad \delta(q_1, \varepsilon) = \{q_2\},$
 $\delta(q_2, c) = \{q_2\}.$

In other cases $\delta(q, x) = \emptyset$.

Finite automata with ε -transitions

Definition

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA with ε -transitions. An element of relation $\vdash_M \subseteq (Q \times \Sigma^*) \times (Q \times \Sigma^*)$ is called *move* in automaton M. If $p \in \delta(q, a), \ a \in \Sigma \cup \{\varepsilon\}$, then $(q, aw) \vdash_M (p, w)$ for every $w \in \Sigma^*$.

Example

Finite automaton will perform the following sequence of moves for input string abc:

$$(q_0, abc) \vdash (q_0, bc) \vdash (q_1, bc) \vdash (q_1, c) \vdash (q_2, c) \vdash (q_2, \varepsilon).$$

ε -Closure

Definition

Function $\varepsilon\text{-}Closure: Q \mapsto 2^Q$ for a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ is defined as follows:

$$\varepsilon\text{-}Closure(q) = \{p: (q, \varepsilon) \vdash^* (p, \varepsilon), p \in Q\}.$$

Example

$$\varepsilon$$
-Closure $(q_0) = \{q_0, q_1, q_2\},\$
 ε -Closure $(q_1) = \{q_1, q_2\},\$
 ε -Closure $(q_2) = \{q_2\}.$

Removal of ε -transitions

Algorithm Convertion of NFA with ε -transitions into NFA without ε -transitions.

Input: NFA $M=(Q,\Sigma,\delta,q_0,F)$ with ε -transitions.

Output: NFA M' without ε -transitions such that L(M) = L(M').

- 1: $M' \leftarrow (Q, \Sigma, \delta', q_0, F')$
- 2: $\delta'(q, a) \leftarrow \bigcup_{p \in \varepsilon\text{-}Closure(q)} \delta(p, a)$, $\forall a \in \Sigma$
- 3: $F' \leftarrow \{q : \varepsilon\text{-}Closure(q) \cap F \neq \emptyset, q \in Q\}$
- 4: return M'

Removal of ε -transitions

Example

$$M' = (Q, \Sigma, \delta', q_0, F'), \text{ where } \\ \delta'(q_0, a) = \delta(q_0, a) \cup \delta(q_1, a) \cup \delta(q_2, a) = \{q_0\} \cup \emptyset \cup \emptyset = \{q_0\}, \\ \delta'(q_0, b) = \delta(q_0, b) \cup \delta(q_1, b) \cup \delta(q_2, b) = \emptyset \cup \{q_1\} \cup \emptyset = \{q_1\}, \\ \delta'(q_0, c) = \delta(q_0, c) \cup \delta(q_1, c) \cup \delta(q_2, c) = \emptyset \cup \emptyset \cup \{q_2\} = \{q_2\}, \\ \delta'(q_1, a) = \delta(q_1, a) \cup \delta(q_2, a) = \emptyset \cup \emptyset = \emptyset, \\ \delta'(q_1, b) = \delta(q_1, b) \cup \delta(q_2, b) = \{q_1\} \cup \emptyset = \{q_1\}, \\ \delta'(q_1, c) = \delta(q_1, c) \cup \delta(q_2, c) = \emptyset \cup \{q_2\} = \{q_2\}, \\ \delta'(q_2, a) = \emptyset, \ \delta'(q_2, b) = \emptyset, \ \delta'(q_2, c) = \{q_2\}.$$

Removal of ε -transitions

Example (continued)

 $F' = \{q_0, q_1, q_2\}$, because ε - $Closure(q_0) \cap F = \{q_2\}$, ε - $Closure(q_1) \cap F = \{q_2\}$, ε - $Closure(q_2) \cap F = \{q_2\}$.

The resulting automaton is deterministic if we identify one-element set with the element (i.e., $q_i = \{q_i\}$).

FA with multiple initial states

Definition

Nondeterministic finite automaton with set I of initial states is a quintuple $M=(Q,\Sigma,\delta,I,F)$, where

- \blacksquare Q, Σ, δ, F are the same as in the NFA definition,
- lacksquare I is a nonempty subset of the set of states, $I\subseteq Q$.

The sequence of moves of this finite automaton can start in any state $q \in I$.

FA with multiple initial states

Example

Given $M = (\{q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, \{q_1, q_2, q_3\}, \{q_4\})$, where δ : $\delta(q_1, a) = \{q_2\}$, $\delta(q_3, a) = \{q_4\}$, $\delta(q_2, b) = \{q_3\}$. In the other cases $\delta(q, x) = \emptyset$, where $x \in \{a, b\}$.

$$(q_1, aba) \vdash (q_2, ba) \vdash (q_3, a) \vdash (q_4, \varepsilon),$$

$$M: \qquad (q_2, ba) \vdash (q_3, a) \vdash (q_4, \varepsilon),$$

$$(q_3, a) \vdash (q_4, \varepsilon).$$

FA with multiple initial states

Example

 $M=(\{q_0,q_1,q_2,q_3,q_4,q_5\},\{a,b\},\delta,\{q_0,q_3\},\{q_2,q_5\})$, where δ :

$$M: \begin{array}{l} (q_0,aba) \vdash (q_1,ba) \vdash (q_1,a) \vdash (q_2,\varepsilon), \\ (q_3,bba) \vdash (q_4,ba) \vdash (q_4,a) \vdash (q_5,\varepsilon). \end{array}$$

Transform. to NFA with one initial state

Algorithm Transformation of NFA with multiple intial states to NFA with one initial state

Input: NFA $M = (Q, \Sigma, \delta, I, F), |I| > 1.$

Output: NFA M') such that L(M) = L(M').

- 1: $M' \leftarrow (Q', \Sigma, \delta', q_0, F')$
- 2: $Q' \leftarrow Q \cup \{q_0\}, q_0 \notin Q$
- 3: $\delta'(q_0, a) \leftarrow \bigcup_{q \in I} \delta(q, a), \forall a \in \Sigma$
- 4: $\delta'(q, a) \leftarrow \delta(q, a), \forall a \in \Sigma, \forall q \in Q$
- 5: $F' \leftarrow F$ if $F \cap I = \emptyset$
- 6: $F' \leftarrow F \cup \{q_0\}$, if $F \cap I \neq \emptyset$
- 7: return M'

Transform, to NFA with one initial state

Example

We construct an equivalent NFA with only one initial state:

$$M'=(Q',\Sigma,\delta',q_0,F')$$
, $Q'=\{q_0,q_1,q_2,q_3,q_4\}$, $\delta'(q_0,a)=\{q_2,q_4\}$, $\delta'(q_0,b)=\{q_3\}$, $F'=F=\{q_4\}$

Transform. to NFA with one initial state

Example

$$M' = (Q', \Sigma, \delta', q_6, F), Q' = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

 $\delta'(q_6, a) = \{q_1, q_4\}, \delta'(q_6, b) = \{q_4\}$
 $F' = F = \{q_2, q_5\}$ b

