Complete Algorithm for the Bisection Method

- Step #1: Choose x_l and x_u as two guesses for the root such that $f(x_l)f(x_u) < 0$, in other words, f(x) changes sign between x_l and x_u .
- Step #2: Estimate the root, x_m of the equation as the midpoint between x_l and x_u as, $x_m = \frac{x_l + x_u}{2}$
- Step #3: Now check the following
 - If $f(x_l)f(x_m)<0$ then the root lies between x_l and x_m then $x_l = x_l$ and $x_u = x_m$.
 - If $f(x_{\ell})f(x_m) > 0$ then the root lies between x_m and x_u then x_l = x_m and $x_u = x_u$.
 - If $f(x_{\ell})f(x_m) = 0$ then the root is x_m and stop the iteration.

Step #4: Find the new estimate of the root $x_m = \frac{x_\ell + x_u}{2}$

Step #5: Find the absolute relative approximate error as

$$\left| \in_{a} \right| = \left| \frac{x_{m}^{\text{new}} - x_{m}^{\text{old}}}{x_{m}^{\text{new}}} \right| \times 100$$

where,

= χ_m^{new} estimated root from present iteration

= $\mathcal{X}_{m}^{\mathrm{old}}$ estimated root from previous iteration

27

- Step #6: Compare the absolute relative approximate error $|\epsilon_a|$ with the pre-specified relative error tolerance ϵ_s
- Step #7: If $|\epsilon_a| > \epsilon_s$ then go to Step 3, else stop the algorithm.
- Note: one should also check whether the number of iterations is more than the maximum number of iterations allowed.
- If so, one needs to terminate the algorithm and notify the user about it.

An Exercise

- A ceramic company that makes floats for commodes. The floating ball has a specific gravity of o.6 and has a radius of 5.5 cm. You are asked to find the depth x to which the ball is submerged when floating in water.
- The equation that gives the depth to which the ball is submerged under water is given by

$$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$$

- Use the bisection method of finding roots of equations to find the depth to which the ball is submerged under water.
- Conduct three iterations to estimate the root of the above equation.
- Find the absolute relative approximate error at the end of ctivate Winderson to Go to Settings to

Boundary of the Solution

 From the physics of the problem, the ball would be submerged between x= o and x=2R where, R = radius of the ball

that is, $0 \le x \le 2R$ or $0 \le x \le 0.11$

Test for the boundaries of the root

- Lets us assume, $x_{\ell} = 0, x_{\mu} = 0.11$
- Check if the function changes sign between x_i and x_{ij} .

$$f(x_{\ell}) = f(0) = (0)^{3} - 0.165(0)^{2} + 3.993 \times 10^{-4} = 3.993 \times 10^{-4}$$
$$f(x_{\ell}) = f(0.11) = (0.11)^{3} - 0.165(0.11)^{2} + 3.993 \times 10^{-4} = -2.662 \times 10^{-4}$$

- Hence, $f(x_{\ell}) f(x_{\eta}) = f(0) f(0.11) = (3.993 \times 10^{-4})(-2.662 \times 10^{-4}) < 0$
- So there is at least one root between x_l and x_u that is between o and o.11.

Activate Wind Go to Settings to a

Iteration 1

• The estimate of the root is $x_m = (0+0.11)/2 = 0.055$

$$f(x_m) = f(0.055) = (0.055)^3 - 0.165(0.055)^2 + 3.993 \times 10^{-4} = 6.655 \times 10^{-5}$$
$$f(x_\ell) f(x_m) = f(0) f(0.055) = (3.993 \times 10^{-4}) (6.655 \times 10^{-4}) > 0$$

- Hence the root is bracketed between x_m and x_u that is between 0.055 and 0.11. So, the lower and upper limit of the new bracket is $x_l = 0.055$ and $x_u = 0.11$
- At this point, the absolute relative approximate error $|\epsilon_a|$ cannot be calculated as we do not have a previous approximation

Activate Windo Go to Settings to act

Iteration 2

• Next estimate of the root is, $x_m = \frac{x_\ell + x_u}{2} = 0.082$

$$f(x_m) = f(0.0825) = (0.0825)^3 - 0.165(0.0825)^2 + 3.993 \times 10^{-4} = -1.622 \times 10^{-4}$$

$$f(x_{\ell})f(x_m) = f(0.055)f(0.0825) = (6.655 \times 10^{-5}) \times (-1.622 \times 10^{-4}) < 0$$

• Hence, the root is bracketed between x_1 and x_m that is, between 0.055 and 0.0825. So, the lower and upper limit of the new bracket is x_1 =0.055 and x_u =0.0825

Activate Wind Go to Settings to a

Iteration 2 (continued)

• The absolute relative approximate error $|\epsilon_a|$ at the end of Iteration 2 is

$$\left| \in_a \right| = \left| \frac{x_m^{\text{new}} - x_m^{\text{old}}}{x_m^{\text{new}}} \right| \times 100$$

- $|\epsilon_a|$ =33.33%
- Let us assume that acceptable error is less than 5%. But because the absolute relative approximate error after 2nd iteration is greater than 5%, so the error is not acceptable.

Iteration 3

 $x_m = 0.06875$

$$f(x_m) = f(0.06875) = (0.06875)^3 - 0.165(0.06875)^2 + 3.993 \times 10^{-4} = -5.563 \times 10^{-5}$$
$$f(x_\ell) f(x_m) = f(0.055) f(0.06875) = (6.655 \times 10^5) \times (-5.563 \times 10^{-5}) < 0$$

- Hence, the root is bracketed between and, that is, between 0.055 and 0.06875. So the lower and upper limit of the new bracket is $x_i = 0.055$ and $x_{ij} = 0.06875$
- The absolute relative approximate error $|\epsilon_a|$ at the ends of Iteration 3 is 20%
- Still the absolute relative approximate error is greater than
 5%

Activate Wind

Convergence after ten iterations

Table 1 Root of as function of number of iterations for bisection method.

Iterations	x _l	X _u	X _m	% error	f(x _m)
1	0.00000	0.11	0.055		6.655X10 ⁻⁵
2	0.055	0.11	0.0825	33.33	-1.622X10 ⁻⁴
3	0.055	0.0825	0.06875	20.00	-5.5.63X10 ⁻⁵
4	0.055	0.06875	0.06188	11.11	4.484X10 ⁻⁶
5	0.06188	0.06875	0.06531	5.263	-2.593X10 ⁻⁵
6	0.06188	0.06531	0.06359	2.702	-1.080X10 ⁻⁵
7	0.06188	0.06359	0.06273	1.370	-3.176X10 ⁻⁶
8	0.06188	0.06273	0.0623	0.6897	6.497X10 ⁻⁷
9	0.0623	0.06273	0.06252	0.3436	-1.265X10 ²⁶ⁱⁿ Go to Settings to
10	0.0623	0.06252	0.06241	0.1721	-3.077X10 ⁻⁷

Advantages of bisection method

- Since the method brackets the root, the method is quaranteed to converge.
- As iterations are conducted, the interval gets halved. So one can guarantee the error in the solution of the equation.

Drawbacks of bisection method

- The convergence of the bisection method is slow as it is simply based on halving the interval.
- If one of the initial guesses is closer to the root, it will take larger number of iterations to reach the root.
- If a function is such that it just touches the x-axis (Figure 6) such as $f(x) = x^2 = 0$

it will be unable to find the lower guess, x_l , and upper guess, x_u , such that

$$f(x_{\ell})f(x_{u}) < 0$$

Figure 6: The equation $f(x) = x^2 = 0$ has a single root and that cannot be bracketed

Drawbacks of bisection method

- A singularity in a function is defined as a point where the function becomes infinite.
- For functions where there is a singularity and it reverses sign at the singularity, the bisection method may not converge on the singularity (Figure 7). An example includes

$$f(x) = \frac{1}{x}$$

where x_l =-2 and x_u =3 are valid initial guesses which satisfy

$$f(x_{\ell})f(x_{u}) < 0$$

However, the function is not continuous and the theorem that a root exists is also not applicable.