Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection (NIPS2011)

Zhe Han 1401214342 iampkuhz@gmail.com

Outline

- Paraphrase identification(复述检测)
 - Definition
 - Common methods
- 本文的方法
 - Recursive Autoencoder
 - Dynamic Pooling
- 实验效果
 - 实验效果
 - 分析, 对比其他任务

Paraphrase identification

- definition
 - 给定一组句子, 判断其是否是复述
 - binary classification
- Microsoft Research Paraphrase Corpus (MSRP)
 - train: 4,076 sentence pairs (2,753 positive: 67.5 %)
 - test: 1,725 sentence pairs (1,147 positive: 66.5 %)
 - 2 个标注者, 83% 的一致性, 第三个人更正

Sample data

- Sentence 1: Amrozi accused his brother, whom he called "the witness", of deliberately distorting his evidence.
- Sentence 2: Referring to him as only "the witness", Amrozi accused his brother of deliberately distorting his evidence.
- Class: 1 (true paraphrase)

Paraphrase identification

- Common methods
 - lexical features
 - n-gram features, skip-gram fatures, ...
 - semantic features
 - POS tag, wordnet similarity, dependency tree relation, ...
 - classification
 - SVM, voted classifications
- Challenge
 - 没有提取句子的全局信息 (dependency features 利用不足)
 - 对句子涵义的特征提取不足 (没有真正理解句子)

This paper

Main method

- 利用 NYT 新闻训练每个单词的向量 (100 维)
- 对于每个句子 (多个单词向量) 采用训练一个递归的自动编码机, 得到一个句子级别的语义向量.
- 通过判断两个句子的语义向量的相似性得到语义相似性特征

- 递归的自动编码机 (Unfolding Recursive Autoencoder)
 - 抽取句子的语义向量,得到语法数上每个节点 (单词,短语)的向量
- Dynamic Pooling
 - 对于长度变化的两个句子, 抽取固定维数的特征

Unfolding Recursive Autoencoder

- Autoencoder
 - 不对所有层的参数进行一次性的优化, 而是一层层的优化

 - 对于之前得到的特征再跑一层神经网络,我们希望输入和输出尽可能相似(生成过程)
- Recursive Autoencoder
 - 进一步的, 对于深层的网络 (语法树), 递归使用同一个简单的 Autoencoder

Unfolding Recursive Autoencoder

Recursive Autoencoder	Unfolding Recursive Autoencoder
W_{e}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Recursive Autoencoder
- Comparison (on $y_2 > x_1 y_1$)
 - Neural network
 - minimum $\parallel y_2' y_2 \parallel$
 - Recursive Autoencoder
 - minimum $||[x'_1; y'_1] [x_1; y_1]||$
 - Unfolding Recursive Autoencoder
 - minimum $||[x'_1; x'_2; ...; x'_i] [x_1; x_2; ...; x_i]||$

Unfolding Recursive Autoencoder(RAE)

Recursive Autoencoder	Unfolding Recursive Autoencoder
₩ _d	W_d W_d W_d W_1 W_2 W_3 W_4
W_e W_e W_e W_e W_e	W_e W_e W_e W_e W_e

- 初始化每个单词的向量
 - 100 维, 可以通过 word2vec 或 glove 实现
- 得到句子的 constituency tree
 - 二叉

Figure: constituency tree

Figure: dependency tree

Unfolding Recursive Autoencoder(uRAE)

Recursive Autoencoder	Unfolding Recursive Autoencoder
∞∞ x₁' ∞∞ y₁' W _d y ₂	W_d W_d W_d W_d W_d
W_e W_e W_e W_e	$\begin{array}{c c} W_e & & y_1 \\ \hline W_e & & W_e \\ \hline \end{array}$

损失函数

- 对于左图的关系: $y_1 \to x_2 x_3, y_2 \to x_1 y_1$
 - 先正向(自底向上): 对于规则 $p \to c_1 c_2$, 有 $p = f(W_e[c_1, c_2] + b)$, 带 入两个关系 y_1, y_2 依次实例
 - 后逆向(自顶向下): 对于上面的规则 $[c_1'; c_2'] = f(W_d p + b_d)$, 如果 ci: co 不是叶节点。递归做
- 损失函数为 $E_rec(y_{(i,j)}) = ||[x_i; ...; x_j] [x'_i; ...; x'_j]||^2$
 - 对比 RAE: 逆向时只做一层, 损失函数为 $E_rec(p) = \| [c_1; c_2] - [c'_1; c'_2] \|^2$
- ・梯度下降求解 W_e, b, W_d, b_d

Dynamic Pooling

motivation

- 如何对两个长度变化的句子(而且很可能不一样)抽取固定维数的特征?
 - 长度为 n 的句子, cTree 有(2n-2) 个节点, 不同的句子对应的维数不同
- polling! 把不同长度的句子压缩(扩张)到相同的维数
 - (实验验证, 15 维最好, 略低于平均句子长度)

Dynamic Pooling

- method
 - 将向量 "等"分成 k(=15)份,原来的 (2n-1)*(2m-1) 维向量分成 k^2 块,从每块中提取最小值作为该块的值
 - 平均值掩盖了特异的特征,最小值(or最大值?)更容易体现其中一个的特异特征

 Zhe Han (icst@pku)
 Paraphrase
 2015 年 1 月 9 日
 11 / 14

Experiment result(2011)

features

• Dynamic pollinged matrix $S(\mathbb{R}^{15*15})$, three number features, sentence length, string mathes

Model	Acc.	F1
All Paraphrase Baseline	66.5	79.9
Rus et al. (2008) [16]	70.6	80.5
Mihalcea et al. (2006) [17]	70.3	81.3
Islam and Inkpen (2007) [18]	72.6	81.3
Qiu et al. (2006) [19]	72.0	81.6
Fernando and Stevenson (2008) [20]	74.1	82.4
Wan et al. (2006) [21]	75.6	83.0
Das and Smith (2009) [15]	73.9	82.3
Das and Smith (2009) + 18 Features	76.1	82.7
Unfolding RAE + Dynamic Pooling	76.8	83.6

		1		
Das and Smith (2009)	product of experts	supervised	76.1%	82.7%
Wan et al. (2006)	dependency-based features	supervised	75.6%	83.0%
Socher et al. (2011)	recursive autoencoder with dynamic pooling	supervised	76.8%	83.6%
Madnani et al. (2012)	combination of eight machine translation metrics	supervised	77.4%	84.1%

Analysis

QA

- Why use uRAE instead of RAE or Recursive.avg?
 - 多个单词组成的句子(高层节点),需要更多的单词信息,RAE 只关心 最近的 2 个儿子节点
 - Recursive.avg: 两个儿子向量的平均忽视了结构关系
 - 实验证明, Recursive.avg 找不出来; RAE 对 2 个单词组成的短语,识别其近义词效果很好; uRAE 对于 2-3 个单词组成的短语的效果很好,甚至 5 个单词组成的短语有些也可以正确找到。

Center Phrase	Recursive Average	RAE	Unfolding RAE
the U.S.	the U.S. and German	the Swiss	the former U.S.
suffering low	suffering a 1.9 billion baht	suffering due to no fault of	suffering heavy casual-
morale	UNK 76 million	my own	ties
to watch	to watch one Jordanian bor-	to watch television	to watch a video
hockey	der policeman stamp the Is-		
·	raeli passports		
advance to the	advance to final qualifying	advance to the final of the	advance to the semis
next round	round in Argentina	UNK 1.1 million Kremlin	
	_	Cup	
a prominent po-	such a high-profile figure	the second high-profile op-	a powerful business fig-
litical figure		position figure	ure
Seventeen peo-	"Seventeen people were	Fourteen people were	Fourteen people were
ple were killed	killed, including a prominent	killed	killed
	politician"		
conditions of	"conditions of peace, social	conditions of peace, social	negotiations for their
his release	stability and political har-	stability and political har-	release
	mony "	mony	

Analysis & Summary

- QA
 - Does deep RAE improve the acc?
 - No. Slow and worse. 过拟合,和两个儿子非常像,忽视了更深的叶节点,长的短语(>2) 效果非常差
- Summary
 - 非常漂亮
 - 特征的类别很少(4 类), 语义信息起到了很大的作用
 - (我自己) 21 种 feature, 77.2% (单一 SVM:76.8%)
 - 之前的文章,鲜有使用 semantic info。而且一般只用了 wordNet 的同义词/上位词,结合 dependency pair 进行判断,局限于单个 label,没有全局信息,对整体的效果提升没有这么显著
 - 利用文章的句子语义表述方法
 - 维基百科谓词归一:根据描述句子的相似性判断谓词是否表达同一意思