Příklad (Teoretický příklad 4)

Dokažte, že z každé prosté posloupnosti přirozených čísel $\{a_n\}_{n=1}^{\infty}$ lze vybrat (nekonečnou) rostoucí posloupnost.

 $\check{R}e\check{s}en\acute{\imath}$

Za k_1 zvolím 1. $\left\{a_{k_j}\right\}_{j=1}^1$ je zřejmě rostoucí. Pokračuji indukcí.

Nechť mám již vybráno k_i a posloupnost $\left\{a_{k_j}\right\}_{j=1}^i$ je rostoucí. Z toho, že je podposloupnost prostá, jistě existuje nejvýše a_{k_i} indexů x, pro které a_x nejsou větší než a_{k_i} . Jelikož a_{k_i} je konečné, mohu zvolit $k_{i+1} = \max\left\{x : a_x \leq a_{k_i}\right\} + 1$, tedy $a_{k_{i+1}} > a_{k_i}$.

Takto zkonstruovaná posloupnost $\left\{a_{k_j}\right\}_{j=1}^{\infty}$ je rostoucí a nekonečná podposloupnost $\left\{a_n\right\}_{n=1}^{\infty}$, tedy ta, kterou hledáme.