

Anfängerpraktikum 2015/2016

Leerlaufspannung und Innenwiderstand von Spannungsquellen

Durchführung: 08.12.15

Clara RITTMANN 1 Anja Beck 2

Betreuer: Max Mustermann

 $^{^{1}} clara.rittmann@gmail.com\\$

²anja.beck@tu-dortmund.de

Inhaltsverzeichnis

1	Theorie	2
2	Aufbau und Ablauf des Experiments	4
3	Auswertung	5
	3.1 Statistische Formeln	5
	3.1.1 Fehlerrechnung	5
	3.1.2 Regression	5
4	Diskussion	7

1 Theorie

¹ Wird in der Elektrotechnik ein Stromkreis betrachtet, so gilt das 2. Kirchhoffsche Gesetz

$$\sum_{n} U_i = \sum_{n} I_i Z_i \quad . \tag{1}$$

Wobei die U_i die angelegten Spannungen, Z_i die Impedanzen und I_i der Strom, der durch Z_i fließt ist. Für einen Stromkreis mit einer Spannungsquelle U und einem Lastwiderstand R_a gilt dann

$$U = IR_a$$

Wird ein solcher Stromkreis, an dem die Spannung U_0 anliegt, im Experiment betrachtet gilt diese Gleichung nicht für $U = U_0$. Das liegt daran, dass eine reale Spannungsquelle immer einen Innenwiderstand R_i hat, der den Stromfluss beeinflusst. Im Schaltbild und in der Rechnung kann eine solche reale Spannungsquelle wie eine ideale Spannungsquelle betrachtet werden, hinter der ein Widerstand der Größe R_i geschaltet ist (siehe Abbildung 1). Dann gilt wie gewohnt (1):

$$U_0 = IR_i + IR_a \quad . \tag{2}$$

Die angelegte Spannung U_0 wird auch Leerlaufspannung genannt. Die im Schaltbild als U_k bezeichnete Klemmspannung, ist hingegen die Spannung, die dann am eigentlichen Stromkreis anliegt. Sie kann mit (1)

$$U_k = IR_a = U_0 - IR_i \tag{3}$$

berechnet werden. Eine ideale Spannungsquelle müsste demnach einen Innen-

Abbildung 1: Reale Spannungsquelle in einem Stromkreis

widerstand von $R_i = 0$ haben, sodass $U_k = U_0$ gilt. Es ist zu beachten, dass es bei Generatoren zu Rückkopplungseffekten kommen kann, sodass für ihren Innenwiderstand ein differentieller Zusammenhang

$$R_i = \frac{\mathrm{d}U_k}{\mathrm{d}I} \tag{4}$$

 $^{^1\}mathrm{nach}$: Anleitung zu V301: Leerlaufspannung und Innenwiderstand von Spannungsquellen, Anfängerpraktikum TU Dortmund WS 2015/16, http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V301.pdf

gilt.

Die Leistung N, die an einen Widerstand R abgegeben wird ist definiert als

$$N = IU_R = I^2 R \quad . \tag{5}$$

Wird weiterhin ein Stromkreis mit nur einem Lastwiderstand betrachtet, gilt für den Strom nach (2)

$$I = \frac{U_0}{R_i + R_a},\tag{6}$$

sodass die Leistung am Lastwiderstand

$$N(R_a) = \left(\frac{U_0}{R_i + R_a}\right)^2 R_a \tag{7}$$

ist. Könnte der Innenwiderstand R_i Null sein, wäre es mit $R_a \to 0$ möglich beliebig hohe Leistungen zu erreichen. Das Maximum der Leistung wird bei $R_a = R_i$ erreicht. Eine dementsprechende Wahl von R_a wird Leistungsanpassung genannt.

2 Aufbau und Ablauf des Experiments

1. **Leerlaufspannung** Im ersten Messschritt wird die Leerlaufspannung, der im weiteren Verlauf verwendeten Monozelle, mit einem Voltmeter gemessen.

2. Klemmspannung einer Monozelle

- a) Mit der in Abbildung 2a dargestellten Schaltung wird jeweils die Klemmspannung U_k und der Strom I bei verschiedenen Lastwiderständen im Bereich von $0-50~\mathrm{k}\Omega$ gemessen. Hier ist zu beachten, dass das Voltmeter an der eingezeichneten Stelle angeschlossen wird, denn nur dort kann die Spannung gemessen werden, die in den Stromkreis eingespeist wird. Würde das Voltmeter beispielsweise nach dem Amperemeter (also zwischen den Punkten H und G) angeschlossen, würde es die Klemmspannung minus die Spannung, die am Amperemeter abfällt, messen.
- b) Die Klemmspannung kann auch mit Hilfe einer Gegenspannung bestimmt werden. Dazu wird eine Gegenspannung, die etwa 2 V größer ist, als die Leerlaufspannung hinter den Lastwiderstand (siehe Abbildung 2b) geschaltet. Auch hier findet die Messung der Klemmspannung U_k und des Stroms I bei verschiedenen Lastwiederständen im Bereich von $0-50~\mathrm{k}\Omega$ statt.

Abbildung 2: Messung der Klemmspannung

3. Klemmspannung eines RC-Generators Der Stromkreis 2a eignet sich auch zur Bestimmung der Klemmspannung einer Wechselspannungsquelle. Zunächst wird der 1 V-Rechteckausgang eines RC-Generators als Spannungsquelle verwendet. Wie bei den vorherigen Messungen werden wieder die Spannung U_k und der Strom I bei variablem Lastwiderstand, dieses Mal zwischen 20 und 250 Ω , gemessen. Die Messung wird für den 1 V-Sinusausgang des RC-Generators und einem Lastwiderstand von $0.1-5~\mathrm{k}\Omega$.

3 Auswertung

3.1 Statistische Formeln

3.1.1 Fehlerrechnung

Im folgenden wurden Mittelwerte von N Messungen der Größe x berechnet

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{8}$$

sowie die Varianz

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (9)

woraus die Standardabweichung folgt

$$\sigma_x = \sqrt{V(x)}. (10)$$

Die Standardabweichung des Mittelwertes, kürzer auch Fehler des Mittelwertes genannt, bezieht noch die Anzahl der Messungen mit ein. Mehr Messungen führen zu einem kleineren Fehler

$$\Delta_x = \frac{\sigma_x}{\sqrt{N}}.\tag{11}$$

3.1.2 Regression

Nachfolgend wird eine lineare Regression für Wertepaare (x_i, y_i) durchgeführt. Dafür müssen die Steigung

$$m = \frac{n \cdot \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(12)

und der y-Achsenabschnitt

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(13)

berechnet werden. Den jeweiligen Fehler erhält man mit

$$s_m^2 = s_y^2 \cdot \frac{n}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$
 (14)

$$s_b^2 = s_y^2 \cdot \frac{\sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} . \tag{15}$$

 $\boldsymbol{s}_{\boldsymbol{y}}$ ist hierbei die Abweichung der Regressionsgeraden in y-Richtung.

$$s_y^2 = \frac{\sum_{i=1}^n (\Delta y_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - b - mx_i)^2}{n-2}$$
 (16)

4 Diskussion