Solution 1:

For every employee **b** choose **the single cheapest offer that makes someone supervise b**.

If an employee receives no offer, she must be the root.

If more than one employee has no offers, a rooted tree cannot be built.

Algorithm (O(m))

Step	Action
1	Read n, m, arrays qual, applications.
2	For each triple (a, b, c) with qual[a] > qual[b] keep best[b] = min(best[b], c).
3	Feasibility Exactly one employee must lack an entry in $\frac{\text{best}}{\text{best.size}}$. Condition
4	Answer Sum of all best[b]; else -1.

Why it's good

Edges never point upward, so any solution can replace its edge into b with the cheapest one without affecting the rest of the tree; thus picking all local minima is globally minimal.

Corner cases

- n=1 (no edges needed) \rightarrow cost 0.
- Duplicate offers for same **b** → keep the smallest.
- Malformed data with upward edges → ignore (not in judge input, but harmless guard).

This was accepted on the first attempt

Solution 1: