exercise 1:

Let S be the square $[0,1] \times [0,1]$ and f be the function defined almost everywhere on S by the formula $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$. Show by a direct calculation that $\int_S |f| = +\infty$.

exercise 2:

Using Fubini's theorem find

$$\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt,$$

for a > 0, b > 0.

exercise 3:

Let A = [0, 1] and $B = [b_1, b_2]$ be the intervals in \mathbb{R} such that $b_1 < b_2$.

- (i). Setting $F(z) = \int_{-\infty}^{z} 1_{B}$, sketch the graph of F.
- (ii). Show that $1_A * 1_B$ is piecewise linear, continuous, and has compact support (you may want to use the function F). Sketch the graph of $1_A * 1_B$.

exercise 4:

Let f and g be two measurable functions on \mathbb{R}^d valued in $[0, \infty]$. Let A and B be two measurable subsets of \mathbb{R}^d such that if $x \notin A$, f(x) = 0, and if $x \notin B$, g(x) = 0. Show that if $x \notin (A + B)$, f * g(x) = 0.

exercise 5:

- (i). Let X be a metric space and f and g to continuous functions on X valued in \mathbb{R} . Show that $\min(f,g)$ and $\max(f,g)$ are continuous functions on X. **Hint:** simplify $\max(f,g) + \min(f,g)$ and $\max(f,g) \min(f,g)$.
- (ii). Let f be in $L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$. Show that there is a sequence f_n in $C_c(\mathbb{R}^d)$ such that $f_n(x)$ converges to f(x) for almost all x in \mathbb{R}^d , $\int |f_n f|$ converges to zero and $|f_n(x)| \leq ||f||_{\infty}$, for all x in \mathbb{R}^d .
- (iii). With f_n and f as in the previous question and g in $L^1(\mathbb{R}^d)$ show that $\int f_n(x-y)g(y)dy$ converges to $\int f(x-y)g(y)dy$ for almost all x in \mathbb{R}^d .

exercise 6:

Let (X, \mathcal{A}, μ) be a finite measure space. Let f_n be a sequence of measurable functions on X and f a measurable function on X. We say that f_n converges to f in measure if for every positive ϵ ,

$$\mu(\{x \in X : |f_n(x) - f(x)| > \epsilon\})$$

converges to zero.

(i). Show that if f_n converges to f almost everywhere, then f_n converges to f in measure.

Is the converse true? (ii). Show that if f_n converges to f in L^1 norm, then f_n converges to f in measure. Is the converse true?