CH-232-A

Answers to ICS 2020 Problem Sheet #8

Blen Daniel Assefa

bassefa@jacobs-university.de

1.

a)
$$(\neg A \uparrow \neg B) \uparrow ((A \uparrow B) \uparrow C)$$
 $\uparrow is NAND$

$$= \neg((\neg(\neg A \land \neg B)) \land (\neg(\neg(A \land B) \land C)))$$

$$= \neg((A \lor B) \land ((A \land B) \lor \neg C))$$

$$= \neg(A \lor B) \lor \neg((A \land B) \lor \neg C)$$

$$\therefore (\neg A \land \neg B) \lor (\neg(A \land B) \land C)$$
b)

Α	В	С	$\neg A$	¬ B	¬ C	$(\neg A \uparrow \neg B)$	$(A \uparrow B)$	$((A \uparrow B) \uparrow C)$	$(\neg A \uparrow \neg B) \uparrow ((A \uparrow B) \uparrow C)$
0	0	0	1	1	1	0	1	1	1
0	0	1	1	1	0	0	1	0	1
0	1	0	1	0	1	1	1	1	0
0	1	1	1	0	0	1	1	0	1
1	0	0	0	1	1	1	1	1	0
1	0	1	0	1	0	1	1	0	1
1	1	0	0	0	1	1	0	1	0
1	1	1	0	0	0	1	0	1	0

minterms are:

 $m_0, m_1, m_3 \text{ and } m_5$

Minterm	Pattern	Used	Minterm	Pattern
m_0	000	✓	$m_{0,1}$	00-
m_1	001	✓	$m_{1,3}$	0-1
m_3	011	✓	$m_{1,5}$	-01
m_5	101	✓		

Sum of minterms = $(\neg A \land \neg B) \lor (\neg A \land C) \lor (\neg B \land C)$

Deriving it algebraically,

$$= (\neg A \land \neg B) \lor (\neg (A \land B) \land C)$$

$$= (\neg A \land \neg B) \lor (\neg A \lor \neg B) \land C)$$

$$\therefore (\neg A \land \neg B) \lor ((\neg A \land C) \lor (\neg B \land C))$$

2.

$$S = (A \dot{\vee} B \dot{\vee} C)$$

$$C_{out} = (A \wedge B) \vee (C_{in} \wedge (A \dot{\vee} B))$$

a)

	Α	В	C _{IN}	\mathbf{C}_{OUT}	S
m_0	0	0	0	0	0
m_1	0	0	1	0	1
m_2	0	1	0	0	1
m_3	0	1	1	1	0
m_4	1	0	0	0	1
m_5	1	0	1	1	0
m_6	1	1	0	1	0
m_7	1	1	1	1	1

I will consider the output where it is 1 for Disjunctive of Product terms.

Disjunctive of Product terms is:

$$\begin{aligned} &Carry_{out}(A,B,C_{in}) = \ m_3 + \ m_5 + m_6 + m_7 \\ &Carry_{out}(A,B,C_{in}) = \ (\neg A \land B \land C_{in}) \lor (A \land \neg B \land C_{in}) \lor (A \land B \land \neg C_{in}) \lor (A \land B \land C_{in}) \\ ∑ \ (A,B,C_{in}) = \ m_1 + \ m_2 + m_4 + m_7 \\ ∑ \ (A,B,C_{in}) = \ (\neg A \land \neg B \land C_{in}) \lor (\neg A \land B \land \neg C_{in}) \lor (A \land \neg B \land \neg C_{in}) \lor (A \land B \land C_{in}) \end{aligned}$$

b)

I will consider the output where it is 0 for Conjunction of Sum terms.

Conjunction of Sum terms is:

$$\begin{split} &Carry_{out}(A,B,C_{in}) = \ \textit{M}_{\textbf{0}}.\ \textit{M}_{\textbf{1}}.\ \textit{M}_{\textbf{2}}.\ \textit{M}_{\textbf{4}} \\ &Carry_{out}(A,B,C_{in}) = \ (A \lor B \lor C_{in}) \land (A \lor B \lor \neg C_{in}) \land (A \lor \neg B \lor C_{in}) \land (\neg A \lor \neg A \lor$$

c)

For Disjunctive of Product terms:

Since
$$\neg x = x \uparrow x$$
 then,
 $x \land y = (x \uparrow y) \uparrow (x \uparrow y) = \neg (x \uparrow y)$
 $x \lor y = (x \uparrow x) \uparrow (y \uparrow y) = \neg x \uparrow \neg x$

For the carry:

$$Carry_{out}(A, B, C_{in}) = m_3 + m_5 + m_6 + m_7$$

$$Carry_{out}(A, B, C_{in}) = (\neg A \land B \land C_{in}) \lor (A \land \neg B \land C_{in}) \lor (A \land B \land \neg C_{in}) \lor (A \land B \land C_{in})$$

$$m_3 = (\neg A \land B \land C_{in})$$

$$m_5 = (A \land \neg B \land C_{in})$$

$$m_6 = (A \land B \land \neg C_{in})$$

$$m_7 = (A \land B \land C_{in})$$

$$Carry_{out}(A, B, C_{in}) = (\neg A \land B \land C_{in}) \lor (A \land \neg B \land C_{in}) \lor (A \land B \land \neg C_{in}) \lor (A \land B \land C_{in})$$

$$= \neg(\neg((\neg A \land B \land C_{in}) \lor (A \land \neg B \land C_{in}) \lor (A \land B \land \neg C_{in}) \lor (A \land B \land C_{in}))$$

$$= \neg(\neg(\neg A \land B \land C_{in}) \land \neg(A \land \neg B \land C_{in}) \land \neg(A \land B \land \neg C_{in}) \neg(A \land B \land C_{in}))$$

$$= \neg(\neg A \land B \land C_{in}) \land (A \land \neg B \land C_{in}) \land (A \land B \land \neg C_{in}) \land (A \land B \land C_{in})$$

$$= (\neg A \land B \land C_{in}) \uparrow (A \land \neg B \land C_{in}) \uparrow (A \land B \land \neg C_{in}) \uparrow (A \land B \land C_{in})$$

$$\therefore (\neg A \land B \land C_{in}) \uparrow (\neg A \land \neg B \land C_{in}) \uparrow (A \land B \land \neg C_{in}) \uparrow (A \land B \land C_{in})$$

For the sum:

$$Sum (A, B, C_{in}) = m_1 + m_2 + m_4 + m_7$$

$$Sum (A, B, C_{in}) = (\neg A \land \neg B \land C_{in}) \lor (\neg A \land B \land \neg C_{in}) \lor (A \land \neg B \land \neg C_{in}) \lor (A \land B \land C_{in})$$

$$m_1 = (\neg A \land \neg B \land C_{in})$$

$$m_2 = (\neg A \land B \land \neg C_{in})$$

$$m_4 = (A \land \neg B \land \neg C_{in})$$

$$m_7 = (A \land B \land C_{in})$$

$$Sum (A, B, C_{in}) = (\neg A \land \neg B \land C_{in}) \lor (\neg A \land B \land \neg C_{in}) \lor (A \land \neg B \land \neg C_{in}) \lor (A \land B \land C_{in})$$

$$= \neg (\neg ((\neg A \land \neg B \land C_{in}) \lor (\neg A \land B \land \neg C_{in}) \lor (A \land \neg B \land \neg C_{in}) \lor (A \land B \land C_{in})))$$

$$= \neg (((\neg A \land \neg B \land C_{in}) \land (\neg A \land B \land \neg C_{in}) \land (A \land \neg B \land \neg C_{in}) \land (A \land B \land C_{in})))$$

$$= \neg ((\neg A \land \neg B \land C_{in}) \land (\neg A \land B \land \neg C_{in}) \land (A \land \neg B \land \neg C_{in}) \land (A \land B \land C_{in}))$$

$$= (\neg A \land \neg B \land C_{in}) \land (\neg A \land B \land \neg C_{in}) \land (A \land \neg B \land \neg C_{in}) \land (A \land B \land C_{in})$$

$$\therefore (\neg A \land \neg B \land C_{in}) \land (\neg A \land B \land \neg C_{in}) \uparrow (A \land \neg B \land \neg C_{in}) \uparrow (A \land B \land C_{in})$$

$$\therefore (\neg A \land \neg B \land C_{in}) \uparrow (\neg A \land B \land \neg C_{in}) \uparrow (A \land \neg B \land \neg C_{in}) \uparrow (A \land B \land C_{in})$$

$$S = (A \dot{\vee} B \dot{\vee} C)$$

$$C_{out} = (A \wedge B) \vee (C_{in} \wedge (A \dot{\vee} B))$$

Since $\neg x = x \uparrow x$ then,

$$x \wedge y = (x \uparrow y) \uparrow (x \uparrow y) = \neg(x \uparrow y)$$

$$x \lor y = (x \uparrow x) \uparrow (y \uparrow y) = \neg x \uparrow \neg x$$

$$x \dot{\lor} y = (x \uparrow (x \uparrow y)) \uparrow (y \uparrow (x \uparrow y))$$

$$Sum (A, B, C_{in}) = ((A \lor B) \lor C)$$

$$= ((A \uparrow (A \uparrow B)) \uparrow (B \uparrow (A \uparrow B))) \lor C$$

$$\div \left(\left(\left(A \uparrow (A \uparrow B) \right) \uparrow \left(B \uparrow (A \uparrow B) \right) \right) \uparrow \left(\left(\left(A \uparrow (A \uparrow B) \right) \right) \uparrow \left(B \uparrow (A \uparrow B) \right) \right) \uparrow \left(C \uparrow \left(\left(\left(A \uparrow (A \uparrow B) \right) \right) \uparrow \left(B \uparrow (A \uparrow B) \right) \right) \uparrow C \right) \right)$$

$$C_{out}(A, B, C_{in}) = (A \wedge B) \vee (C_{in} \wedge (A \vee B))$$

$$= ((A \uparrow B) \uparrow (A \uparrow B)) \lor (C \land ((A \uparrow (A \uparrow B)) \uparrow (B \uparrow (A \uparrow B))))$$

$$= \left(\left(A \uparrow B \right) \uparrow \left(A \uparrow B \right) \right) \vee \left(\left(C \uparrow \left(\left(A \uparrow \left(A \uparrow B \right) \right) \uparrow \left(B \uparrow \left(A \uparrow B \right) \right) \right) \right) \uparrow \left(C \uparrow \left(\left(A \uparrow \left(A \uparrow B \right) \right) \uparrow \left(B \uparrow \left(A \uparrow B \right) \right) \right) \right) \right)$$

$$= \Big(\big((A \uparrow B) \uparrow (A \uparrow B) \big) \uparrow \big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big(\Big(\Big(C \uparrow \big((A \uparrow (A \uparrow B)) \uparrow (B \uparrow (A \uparrow B)) \big) \Big) \uparrow \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \uparrow \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big) \Big((A \uparrow B) \uparrow (A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big((A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big((A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big((A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big((A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big((A \uparrow B) \big) \Big((A \uparrow B) \big) \Big) \Big((A \uparrow B) \big) \Big((A \uparrow B)$$

$$\left(C \uparrow \left(\left(A \uparrow \left(A \uparrow B\right)\right) \uparrow \left(B \uparrow \left(A \uparrow B\right)\right)\right)\right) \uparrow \left(\left(C \uparrow \left(\left(A \uparrow \left(A \uparrow B\right)\right) \uparrow \left(B \uparrow \left(A \uparrow B\right)\right)\right)\right) \uparrow \left(C \uparrow \left(\left(A \uparrow \left(A \uparrow B\right)\right)\right)\right) \uparrow \left(C \uparrow \left(\left(A \uparrow \left(A \uparrow B\right)\right)\right)\right) \uparrow \left(C \uparrow \left(\left(A \uparrow A \uparrow B\right)\right)\right) \uparrow \left(C \uparrow \left(A \uparrow A \uparrow B\right)\right) \uparrow \left(C \uparrow A \uparrow A \uparrow B\right) \uparrow \left(C \uparrow A \uparrow A \uparrow B\right)$$

$$(B \uparrow (A \uparrow B)))))$$