Computação Básica Fabricio Braz

L05Ex05 Tipo de Triângulo

Codifique um software que leia as medidas dos lados de 5 triângulos. Para cada triângulo imprimir a sua classificação (Nao e Tiangulo, Triangulo Equilatero, Isosceles ou Escaleno). Considere que o usuário informará valores positivos. Para obter o código da classificação utilize a função TipoTriangulo e EhTriangulo, cujas especificações seguem:

Nome: TipoTriangulo

Descrição: A partir das medidas dos lados de um triângulo, verifica o tipo do triângulo.

Entrada: (int) 3 valores

Saída: (int)

0 se não formam um triângulo.

1 se for um triângulo equilátero.

2 se for um triângulo isósceles.

3 se for um triângulo escaleno.

Para verificar se as medidas formam um triângulo chamar a função EhTriangulo.

Nome: EhTriangulo

Descrição: Verifica se as 3 medidas informadas permitem formar um triângulo. Para formar um triângulo é necessário que a medida de cada lado seja menor que a soma dos outros 2.

Entrada: (int) 3 valores.

Saída: (int)

1 se os 3 valores formarem um triângulo e

0 caso contrário.

Entrada

Cinco conjuntos de três valores int.

Saída

Para cada conjunto de três valores, representado os lados do triângulo, informar o tipo, conforme especificação, sucedido de quebra de linha.

Exemplos de entradas	Exemplos de saídas			
30 30 30	Triangulo Equilatero			
30 10 30	Triangulo Isosceles			
30 25 20	Triangulo Escaleno			
5 10 20	Nao e Triangulo			
16 17 29	Triangulo Escaleno			
11 18 20	Triangulo Escaleno			
13 13 13	Triangulo Equilatero			
17 11 20	Triangulo Escaleno			
15 15 31	Nao e Triangulo			
13 15 13	Triangulo Isosceles			

Este problema foi elaborado para ensino e docência. Quaisquer coincidências com problemas já existentes favor entrar em contato (fabraz@unb.br) para que as devidas providências sejam tomadas.

Computação Básica Fabricio Braz

L05Ex15 Substring

A secretaria da Faculdade do Gama da UnB precisa gerar uma lista com os nomes dos alunos aprovados como monitores de uma determinada disciplina. O problema é que cada item dessa lista contém uma string literal que engloba a matrícula do aluno, sucedida do nome do aluno. Para conseguir imprimir esse conteúdo, o assistente deverá fazer manualmente essa mudança.

A sua tarefa é codificar um software que facilite o trabalho do assistente. Ele deve ser capaz de receber uma string literal e a posição em que o conteúdo de interesse do assistente começa e imprimir este conteúdo na console.

O processamento da string deve ser realizado por uma função que receberá a string original e a posição onde se inicia o conteúdo de interesse. A partir desses parâmetros, ela retornará uma string, contendo apenas o conteúdo seguinte a posição. A função deve ser definida de forma a atender a chamada do exemplo a seguir¹:

char * nome = direitaDaString(mystring,index)

Entrada

As entradas consistem em uma string S e um inteiro positivo i referente a posição a ser assumida como o novo ponto de início da string.

Saída

A saída deve conter parte da string após o índice, sucedida de uma quebra de linha.

Exemplos de entradas	Exemplos de saídas
42092868Flavia 8	Flavia
2869755010Larissa 10	Larissa

Este problema foi elaborado para ensino e docência. Quaisquer coincidências com problemas já existentes favor entrar em contato (fabraz@unb.br) para que as devidas providências sejam tomadas.

¹O codigo que não seguir essa determinação terá o resultado de sua avaliação automática anulado.

Computação Básica Fabricio Braz

L05Ex16 Aftosa Dinâmica

A fazenda UnB necessita vacinar todo o seu gado contra febre aftosa. A quantidade total de vacina é calculada pela multiplicação do peso total do gado em Kg pela quantidade de vacina por Kg. Entretanto, a cada ano, o Ministério de Abastecimento e Pecuaria informa a idade mínima M em meses dos bovinos a serem vacinados. Ou seja, os bovinos que tiverem idade inferior a M não serão vacinados.

Você deve codificar um software que facilite o trabalho de vacinação na fazenda UnB. Nesse caso em especial, o seu software DEVE alocar dinamicamente a estrutura de dados que manterá a idade e o peso do bovino. Além disso, o cálculo da quantidade de vacina DEVE ser realizado por uma função, cuja chamada se apresente da seguinte forma¹:

 $double\ resultado = calcula Vacina(N, idade Bovinos, peso Bovinos, & M, QV)^2$

Entrada

A entrada consiste em uma série dados dos bovinos. A primeira linha da entrada contém o número inteiro positivo N, que indica a quantidade de bovinos. As linhas que seguem contém dois números inteiros positivos I e P, representando respectivamente a idade e o peso do bovino. Depois, deve-se ler o valor inteiro M, correspondente a idade mínima a ser considerada para vacinação. E, por fim, deve-se ler a quantidade QV de vacina por Kg.

Saída

A saída deve ser a mensagem "Total de vacina: V ml". Esta mensagem deve ser seguida de uma quebra de linha.

¹O codigo que não seguir essa determinação terá o resultado de sua avaliação automática anulado.

²Pelo exemplo da chamada pode-se definir a função. idadeBovinos e pesoBovinos são arrays unidimensionais.

Exemplos de entradas	Exempl	los	de saídas		
10	Total	de	vacina:	706	ml.
8 176					
2 36					
1 19					
19 399					
4 68					
4 88					
10 240					
18 414					
8 184					
5 75					
6					
0.5	То+о1	4.	vacina:	260	
22 330	TOUAL	ue	vacilia.	200	III .
8 136					
8 176					
12 180					
11 242					
21 525					
1 24					
6 144					
4 64					
4 76					
13 312					
16 384					
12 252					
5					
0.1					

Este problema foi elaborado para ensino e docência. Quaisquer coincidências com problemas já existentes favor entrar em contato (fabraz@unb.br) para que as devidas providências sejam tomadas.