Degrés de liberté

3 translations:

 T_x T_z T_z

3 rotations:

 R_x R_z R_z

Champs de vecteurs des degrés de liberté

Degrés de liberté et degrés de liaison

degrés de liaison

transmission

degrés de liberté

guidage

degrés de liaison + degrés de liberté = 6

Champs de vecteurs des efforts transmissibles

Les champs de vecteurs associés à la liaison.

Les dé placements ciné matiquement admissible.

$$\begin{bmatrix} Rx & Tx \\ Ry & 0 \\ Rz & Tz \end{bmatrix} \qquad \{ V_{1/2} \} \begin{cases} \omega_{x \, 1/2} & V_{x \, 1/2} \\ \omega_{y \, 1/2} & 0 \\ \omega_{z \, 1/2} & V_{z \, 1/2} \end{pmatrix}_{(A; x, y, z)}$$

Les actions transmissibles.

$$\begin{bmatrix} Rx & Tx \\ Ry & 0 \\ Rz & Tz \end{bmatrix} \qquad \{\tau_{1/2}\} = \begin{cases} 0 & 0 \\ F_{xy/2} & 0 \\ 0 & 0 \end{cases}_{(A;x,y,z)}$$

Degré de liaison et liaison par ponctuelles associées

4 pieds = 4 degrés de liaison

4 > 3 (degrés de liaison pour un appui plan)

Mise en position

Considération du jeu dans une liaison.

longueur de guidage très courte

jeu radial adopté

rotulage

Tableau récapitulatif

Nom liaison	Nb degré de liberté	Matrice des degrés de liberté	Efforts transmissibles $\left\{F_{1>2} ight\}$	Mouvements cinématiquement admissibles $\left\{V_{1/2} ight\}$	Association de ponctuelles
liaison nulle	6 (0)	$\begin{bmatrix} Rx & Tx \\ Ry & Ty \\ Rz & Tz \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}_{\mathcal{R}} $	$ \begin{cases} \alpha & u \\ \beta & v \\ \gamma & w \end{cases}_{\mathcal{R}} $	
Liaison ponctuelle (A _A X)	5 (1)	$\begin{bmatrix} Rx & 0 \\ Ry & Ty \\ Rz & Tz \end{bmatrix}$	$ \begin{cases} X & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{\mathcal{R}} $		
Linéaire annulaire (A.X)	4 (2)	$\begin{bmatrix} Rx & 0 \\ Ry & 0 \\ Rz & Tz \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ Y & 0 \\ Z & 0 \end{bmatrix}_{\mathcal{R}} $	$ \begin{cases} \alpha & u \\ \beta & 0 \\ \gamma & 0 \end{cases}_{\mathcal{R}} $	
Linéaire rectiligne (Ą,,,,□=y)	4 (2)	$\begin{bmatrix} Rx & Tx \\ Ry & 0 \\ 0 & Tz \end{bmatrix}$	$ \begin{cases} 0 & 0 \\ Y & 0 \\ 0 & N \end{cases}_{\mathcal{R}} $ pour tout $M \in (A \times)$	$ \left\{ \begin{matrix} \alpha & u \\ \beta & 0 \\ 0 & w \end{matrix} \right\}_{\mathcal{R}} $ pour tout Me (Ax)	

Tableau récapitulatif

Appui plan (
$$\square$$
x) $\begin{bmatrix} Rx & 0 \\ 0 & Ty \\ 0 & Tz \end{bmatrix}$ $\begin{bmatrix} Rx & 0 \\ 0 & M \\ 0 & N \end{pmatrix}_{\mathcal{R}}$ $\begin{bmatrix} \alpha & 0 \\ 0 & v \\ 0 & w \end{pmatrix}_{\mathcal{R}}$ pour tout M pour tout M

Rotule de centre A $\begin{bmatrix} X & 0 \\ Ry & 0 \\ Rz & 0 \end{bmatrix}$ $\begin{bmatrix} Rx & 0 \\ Ry & 0 \\ Rz & 0 \end{bmatrix}$ $\begin{bmatrix} X & 0 \\ Y & 0 \\ Rz & 0 \end{bmatrix}_{\mathcal{R}}$ $\begin{bmatrix} \alpha & 0 \\ \beta & 0 \\ \gamma & 0 \\ Rz & 0 \end{bmatrix}_{\mathcal{R}}$ Rotule à doigt de centre A $\begin{bmatrix} 0 & 0 \\ Ry & 0 \\ Rz & 0 \end{bmatrix}$ $\begin{bmatrix} X & L \\ Y & 0 \\ Rz & 0 \end{bmatrix}_{\mathcal{R}}$ $\begin{bmatrix} 0 & 0 \\ \beta & 0 \\ \gamma & 0 \\ Rz & 0 \end{bmatrix}_{\mathcal{R}}$ $\begin{bmatrix} X & L \\ Y & 0 \\ Rz & 0 \end{bmatrix}_{\mathcal{R}}$ $\begin{bmatrix} \alpha & u \\ 0 & 0 \\ \gamma & M \\ Z & N \end{pmatrix}_{\mathcal{R}}$ pour tout M pour tout M M M M M M M pour tout M po

Tableau récapitulatif

Privot
$$(A,X) = 1$$

$$\begin{bmatrix} RX & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} X & 0 \\ Y & M \\ Z & N \end{bmatrix}_{\mathcal{R}} = \begin{bmatrix} \alpha & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}_{\mathcal{R}}$$
 pour tout $Me(A,X)$ pour to

Degré d'hyperstatisme

$$h = \Sigma n_s - 6 (n - 1) + m_u + m_i$$

n_s: nombre d'inconnues statiques = degré de liaison

n : nombre de pièces composant le mécanisme

m_{...}: nombre de mobilités utiles

m_i: nombre de mobilités internes

Si h<0, hypostatique.

Manque de contraintes

calcul avec aberrations.

Si h>0, hyperstatique.

Trop de contraintes

plus d'inconnues que d'équations.

Si h=0, isostatique.

Étude possible

Nombre cyclomatique

$$\gamma = 1 - n + 1$$

I : nombre de liaisons

n : nombre de pièces