Indian Institute of Technology Delhi

MAL 111: Introduction to Analysis and Differential Equations

MAJOR TEST 2008-09 (I Semester)

Maximum Marks: 50

Time: 2 Hours

Give complete statements of the results used.

Justify all your answers.

(1) (a) Let X be the set of positive integers with metric

$$d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right|$$
 for all $m, n \in \mathbb{N}$.

Show that (X, d) is not a complete metric space.

- (b) Let (X, d_X) and (Y, d_Y) be two metric spaces and let A be a non-empty subset of X. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions such that f(x) = g(x) for every $x \in A$. Show that f(x) = g(x) for every $x \in \overline{A}$.
- (c) Show that every compact metric space has the Bolzano-Weierstrass property.

[2+3+5]

- (2) (a) Evaluate the limit $\lim_{x\to\infty} (1+\frac{1}{x^2})^x$.
 - (b) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. For $x \in [a,b]$, define

$$F(x) = \int_{a}^{x} f(t) dt.$$

Show that F is differentiable on (a, b) and F'(x) = f(x) for all $x \in (a, b)$.

(c) Find the length of one arch of the cycloid

$$x = a(t - \sin t), y = a(1 - \cos t).$$

[3+4+3]

(3) (a) Let

$$f(x,y) = \begin{cases} 0 & \text{if } xy \neq 0, \\ 1 & \text{if } xy = 0. \end{cases}$$

Show that $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist but f is not continuous at (0,0).

(b) Show that $(\frac{\pi}{3}, \frac{\pi}{3})$ is a critical point of the function

$$f(x,y) = \sin x \sin y \sin(x+y)$$
.

Investigate this function for extreme values at this point.

- (c) Find the extreme values of the function $f(x, y, z) = xy + z^2$ on the circle in which the plane y x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$. [2+4+4]
- (4) (a) Show that the function $f(x,y) = |\sin y| + x$ satisfies a Lipschitz condition in the y-variable on the whole xy-plane but $\frac{\partial f}{\partial y}$ does not exist when y = 0.
 - (b) Apply Picard's iteration to find approximate solutions to the problem

$$y' = x + y$$
, $y(0) = -1$.

Do three steps of iteration.

- (c) Find the general solution of the diffrential equation $y'' 5y' + 6y = x^4$.
- (d) Solve the diffrential equation $y^{(5)} y^{(4)} + 2y''' 2y'' + y' y = 0$.
- (c) Find the general solution of the equation $x^3y''' 3x^2y'' + 6xy' 6y = 24x^5$.

[4+3+5+3+5]