Income Class Prediction through Expenditure Allocation

Genesis Adam D. Mendoza

About the data

	Total Household Income	Region	Total Food Expenditure	Main Source of Income	Agricultural Household indicator	Bread and Cereals Expenditure	Total Rice Expenditure	Meat Expenditure	Total Fish and marine products Expenditure	Fruit Expenditure	
0	480332	CAR	117848	Wage/Salaries	0	42140	38300	24676	16806	3325	
1	198235	CAR	67766	Wage/Salaries	0	17329	13008	17434	11073	2035	
2	82785	CAR	61609	Wage/Salaries	1	34182	32001	7783	2590	1730	
3	107589	CAR	78189	Wage/Salaries	0	34030	28659	10914	10812	690	
4	189322	CAR	94625	Wage/Salaries	0	34820	30167	18391	11309	1395	

- Family Income and Expenditure Survey (2015) from the Philippine Statistics Authority.
- Includes total annual income, sources of income, items of expenditure, household characteristics, etc.
- Includes ~41,500 households.

- Philippine Institute for Development Studies (PIDS) income classification scheme (monthly)
 - Poor: [0,10957)
 - Low income: [10957, 21194)
 - Lower middle class: [21194, 43828)
 - Middle class: [43828, 76669)
 - Upper middle class: [76669, 131484)
 - High income: [131484, 219140)
 - Rich: [219140,∞)
- Does not take family size into account

Majority of Filipinos are **poor**.

- If we sort the total household income of each family and we take their cumulative sum, we will get its Lorenz curve.
- For example, 50% of the population holds just around 20% of the total income.

- The Gini coefficient is the area between the line of equality and the Lorenz curve.
- 0 means perfect income equality and 1 means perfect inequality.
- In the FIES (2015) dataset, we have calculated a Gini coefficient of 0.4438.

Expenditure allocation

```
1 #Extract the expenditure columns
 2 exp_cols = [col for col in raw_fies.columns if 'Expenditure' in col or 'expense' in col]
 3 tent_feat_cols = exp_cols
 4 fies tent = raw fies[tent feat cols]
 6 #Remove the redundant column
 7 fies_tent = fies_tent.drop(columns= ['Total Food Expenditure'])
 8 norm_fies = fies_tent.sum(axis = 1)
 9 fies = 100*fies_tent.div(norm_fies, axis = 0)
10
11 full = pd.DataFrame(raw fies['Income Class']).join(fies)
   grouped df = full.groupby('Income Class')[fies.columns].mean()
13
   plt.figure(figsize=(20, 7))
15 sns.heatmap(grouped_df, annot=True, cmap='YlOrRd_r', linewidths=.5, linecolor='black')
16 plt.ylabel('Income Class')
17 plt.xlabel('Expenditure Category')
18 plt.xticks(rotation=45, ha='right')
19 plt.savefig('ExpenditureAllocation.png', bbox_inches = 'tight', dpi = 400)
20 plt.show()
```

Expenditure allocation

- 30

- 25

- 20

- 15

- 10

```
1 forest model = RandomForestClassifier(random state=0)
 3 max_leaf_nodes = [node_val for node_val in range(1, 900, 1)]
 4 max_depth = [depth for depth in range(1, 300, 1)]
 6 random_grid = {'max_leaf_nodes': max_leaf_nodes, 'max_depth': max_depth}
   n_estimators = [estim for estim in range(1, 100, 1)]
    model random = RandomizedSearchCV(
        estimator=forest model.
10
11
        param_distributions={**random_grid, 'n_estimators': n_estimators},
       n iter=30, cv=3, verbose=3, random state=0, n jobs=-1
12
13 )
14
   pipeline = Pipeline(steps = [('preprocessor', preprocess), ('model', model random)])
16 pipeline.fit(x_train, y_train.values.ravel())
17
18  opt_estim = model_random.best_params_['n_estimators']
19  opt_nodes = model_random.best_params_['max_leaf_nodes']
20 opt_depth = model_random.best_params_['max_depth']
```

Fitting 3 folds for each of 30 candidates, totalling 90 fits
The optimal n_estimator is: 99
The optimal max_leaf_nodes is: 747
The optimal max_depth is: 32
The best score for the training data given the optimum parameters is 74.90%

- 80 20 train-test division
- We use a random forest classifier

```
final_model = RandomForestClassifier(random_state=0, n_estimators=opt_estim, max_leaf_nodes=opt_nodes, max_depth=opt_depth)
pipeline = Pipeline(steps = [('preprocessor', preprocess), ('model', final_model)])
pipeline.fit(x_train, y_train.values.ravel())
y_predict = pipeline.predict(x_test)

correct = np.array(y_test == y_predict).sum()/y_test.count()
print('The accuracy of prediction for spending habits is {:.2f}%'.format(correct*100))
```

The accuracy of prediction for spending habits is 74.39%

The model fails to classify higher classes accurately!

The model fails to classify higher classes accurately!

Synthesis

- The spending behavior of higher income classes are less unpredictable.
- The budget allocation for lower income classes are consistent.
- This may imply that the items with higher expenditure proportions must be the key areas to focus on if we want to address the effects of income inequality.

Bread and Cereals Expend	diture 2	0.369395
Total Rice Expend	diture 1	4.378163
Meat Expend	diture	4.232902
Total Fish and marine products Expend	diture	7.620689
Fruit Expend	diture	1.559692
Vegetables Expend	diture	3.954199
Restaurant and hotels Expend	diture	4.834301
Alcoholic Beverages Expend	diture	0.717937
Tobacco Expend	diture	1.715629
Clothing, Footwear and Other Wear Expend	diture	1.961966
Housing and water Expend	diture 1	5.861505
Medical Care Expend	diture	1.847219
Transportation Expend	diture	3.584264
Communication Expend	diture	0.744097
Communication Expens		
Education Expend	diture	1.257522
·		1.257522 4.270640
Education Expend	diture	
Education Expendence Miscellaneous Goods and Services Expendence	diture diture	4.270640

End