IN THE CLAIMS:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A quinoxaline derivative represented by a formula (1):

$$Ar^{1}$$
 R^{3} R^{6} N Ar^{4} R^{2} R^{4} R^{5} R^{8} R^{12} R^{10} R^{10} R^{10}

wherein in the formula, R^1 - R^{12} each independently represents a hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, an acyl group, a nitro group, a cyano group, an amino group, a dialkylamino group, a diarylamino group, a vinyl group, an aryl group, or a heterocyclic residue group; R^9 and R^{10} , R^{10} and R^{11} , and R^{11} and R^{12} are each independent or mutually bonded to form an aromatic ring; Ar^1 - Ar^4 each independently represents an aryl group or a heterocyclic residue group; Ar^1 , Ar^2 , Ar^3 and Ar^4 are each independent or Ar^1 and Ar^2 , and Ar^3 and Ar^4 are respectively mutually bonded directly, or Ar^1 and Ar^2 , and Ar^3 and Ar^4 are bonded via oxygen (O), sulfur (S) or a carbonyl group, and at least one of R^1 - R^4 are different from the others of R^1 - R^4 .

2. (Previously presented) A quinoxaline derivative represented by a formula (2):

$$R^{2}$$
 R^{3}
 R^{6}
 R^{4}
 R^{5}
 R^{7}
 R^{8}
 R^{8}
 R^{12}
 R^{10}
 R^{16}
 R^{15}
 R^{19}
 R^{18}
 R^{17}
 R^{19}
 R^{18}
 R^{17}
 R^{19}
 R^{18}
 R^{17}
 R^{19}
 R^{18}
 R^{17}
 R^{19}
 R^{19}
 R^{18}
 R^{17}
 R^{19}
 R^{19}

$$R^{34}$$
 R^{33} R^{35} Z R^{32} R^{36} R^{37} R^{38} R^{38} R^{31} R^{39} R^{39} R^{39}

wherein in the formula, X and Y each independently represents any of formulas (3) - (5); R¹ - R³⁸ independently represents a hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, an acyl group, a nitro group, a cyano group, an amino group, a dialkylamino group, a diarylamino group, a vinyl group, an aryl group, or a heterocyclic residue group; R⁹ and R¹⁰, R¹⁰ and R¹¹, and R¹¹ and R¹² are each independent or are mutually bonded to form an aromatic ring; Z represents oxygen (O), sulfur (S) or a carbonyl group.

3. (Previously presented) A quinoxaline derivative represented by a formula (6):

wherein in the formula, X and Y each is represented by either one of formulas (7) - (8); in the formula, R^9 - R^{12} independently represents a hydrogen atom, a halogen atom, a lower alkyl group, an alkoxy group, an acyl group, a nitro group, a cyano group, an amino group, a dialkylamino group, a diarylamino group, a vinyl group, an aryl group, or a heterocyclic residue group; R^9 and R^{10} , R^{10} and R^{11} , and R^{11} and R^{12} are each independent or mutually bonded to form an aromatic ring; Z represents oxygen (O), sulfur (S) or a carbonyl group.

4. (Previously presented) A quinoxaline derivative represented by a structural formula (10):

5. (Withdrawn) A quinoxaline derivative represented by a structural formula (11).

6. (Withdrawn) A quinoxaline derivative represented by a structural formula (12).

7. (Withdrawn) A quinoxaline derivative represented by a structural formula (13).

8. (Withdrawn) A quinoxaline derivative represented by a structural formula (14).

- 9. (Previously presented) An electric field light emitting device further comprising said quinoxaline derivative according to claims 1, 2, 3 and 4, between a pair of electrodes.
- 10. (Previously presented) An electric field light emitting device comprising a light emitting layer containing said quinoxaline derivative according to claims 1, 2, 3 and 4 and a phosphorescent material showing a light emission from a triplet excited state, between a pair of electrodes.
- 11. (Previously Presented) An electric field light emitting device according to claim 10, wherein a light emission spectrum of said phosphorescent material has a peak from 560 to 700 nm.
 - 12. (Previously presented) A host material comprising said quinoxaline derivative

according to claims 1, 2, 3 and 4.

- 13. (Previousply presented) An organic semiconductor device, wherein said quinoxaline derivative according to claims 1, 2, 3 and 4 is included in an active layer.
- 14. (Previously Presented) An electronic device employing said electric field light emitting device according to claim 10.
- 15. (Previously Presented) An electronic device according to claim 14, wherein the electronic device is any one of a personal computer, a portable telephone and a television receiver.
- 16. (Previously Presented) An electronic device further employing said organic semiconductor device according to claim 13.
- 17. (Previously Presented) An electronic device according to claim 16, wherein said electronic device is any one of a personal computer, a portable telephone and a television receiver.