Guehennec Victoria Note: 2/20 (score total : 2/20)

+93/1/38+

QCM THLR 4

	71 .10 . (1.1 1.1
Nom et prénom, lisibles :	Identifiant (de haut en bas) : □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
GUEHENNEC	
Victoria	
,	
plutôt que cocher. Renseigner les champs d'ide sieurs réponses justes. Toutes les autres n'en or plus restrictive (par exemple s'il est demandé s pas possible de corriger une erreur, mais vous incorrectes pénalisent; les blanches et réponse	e, ni dans les éventuels cadres grisés « ». Noircir les cases entité. Les questions marquées par « » peuvent avoir plunt qu'une; si plusieurs réponses sont valides, sélectionner la si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pouvez utiliser un crayon. Les réponses justes créditent; les s multiples valent 0. omplet: les 2 entêtes sont +93/1/xx+···+93/2/xx+.
Q.2 Le langage des nombres binaires premie	ers compris entre 0 et $2^{2^2} - 1$ est
non reconnaissable	sable par un automate fini à transitions spontanées par un automate fini nondéterministe e par un automate fini déterministe
Q.3 Le langage $\{ \mathfrak{S}^n \mid \forall n \in \mathbb{N} \}$ est	
non reconnaissable par automate	fini 🗌 fini 🛛 rationnel 🗌 vide
Q.4 Un automate fini qui a des transitions sp	pontanées
☐ n'accepte pas ε ⊠ n'est pas déte	
Q.5 Un langage quelconque est toujours inclus (\subseteq) dans un langage peut n'être inclus dans aucun langage d n'est pas nécessairement dénombrable peut avoir une intersection non vide avo	rationnel énoté par une expression rationnelle
\square L_1 est rationnel \square L_2 est region \square L_2	rationnel L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ 1, L_2 sont rationnels
Q.7 Si un automate de n états accepte a^n , al	ors il accepte
$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q$	$q \le n$ \bigcirc a^{n+1} \square $(a^n)^m$ avec $m \in \mathbb{N}^*$ $a^n a^m$ avec $m \in \mathbb{N}^*$
Q.8 Combien d'états au moins a un automate dont la n -ième lettre avant la fin est un a (i.e., a	e déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ $(a+b+c+d)^* a(a+b+c+d)^{n-1}$:
☐ Il n'existe pas. ⊠	2^n $\qquad \qquad \frac{n(n+1)(n+2)(n+3)}{4} \qquad \qquad$
Q.9 Déterminiser cet automate	$a \rightarrow b$ $a \rightarrow b$

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

0/2

-1/2

- \Box $T(Det(T(Det(T(\mathcal{A})))))$
- \square $Det(T(Det(T(Det(\mathscr{A})))))$

Fin de l'épreuve.