Contents

1	Metric space 1			
	1.1	Linear	metrics	1
		1.1.1	Metrics	1
		1.1.2	Inducing a topology	1
		1.1.3	Translation symmetry	1
	1.2	Specifi	ic groups	2
		1.2.1	The affine group	2
		1.2.2	The Euclidian group	2
		1.2.3	The Galilean group	2
		1.2.4	The Poincaré group	2
	1.3	Non-li	near norms	2
		1.3.1	$L_p \text{ norms } (p\text{-norms}) \dots \dots \dots \dots \dots \dots \dots$	2
	1.4			3
		1.4.1	Norms	3
		1.4.2	Angles	3

1 Metric space

1.1 Linear metrics

1.1.1 Metrics

We defined a norm as:

$$||v|| = v^T M v$$

A metric is the distance between two vectors.

$$d(u, v) = ||u - v|| = (u - v)^T M (u - v)$$

1.1.1.1 Metric space

A set with a metric is a metric space.

1.1.2 Inducing a topology

Metric spaces can be used to induce a topology.

1.1.3 Translation symmetry

The distance between two vectors is:

$$(v-w)^T M (v-w)$$

So what operations can we do now?

As before, we can do the transformations which preserve $u^T M v$, such as the orthogonal group.

But we can also do other translations

$$(v-w)TM(v-w)$$

 $v^TMv + w^TMw - v^TMw - w^TMv$

so symmetry is now O(3,1) and affine translations

1.1.3.1 Translation matrix

[[1,x][0, 1]] moves vector by x

1.2 Specific groups

- 1.2.1 The affine group
- 1.2.2 The Euclidian group
- 1.2.3 The Galilean group
- 1.2.4 The Poincaré group

1.3 Non-linear norms

1.3.1 L_p norms (p-norms)

1.3.1.1 L^P norm

This generalises the Euclidian norm.

$$||x||_p = (\sum_{i=1}^n |x|_i^p)^{1/p}$$

This can defined for different values of p. Note that the absolute value of each element in the vector is used.

Note also that:

 $||x||_2$

Is the Euclidian norm.

1.3.1.2 Taxicab norm

This is the L^1 norm. That is:

$$||x||_1 = \sum_{i=1}^n |x|_i$$

1.3.1.3 Angles

1.3.1.4 Cauchy-Schwarz

1.4 To linear forms

1.4.1 Norms

We can use norms to denote the "length" of a single vector.

$$||v|| = \sqrt{\langle v, v \rangle}$$

$$||v|| = \sqrt{v^* M v}$$

1.4.1.1 Euclidian norm

If M = I we have the Euclidian norm.

$$||v|| = \sqrt{v^*v}$$

If we are using the real field this is:

$$||v|| = \sqrt{\sum_{i=1}^n v_i^2}$$

1.4.1.2 Pythagoras' theorem

If n=2 we have in the real field we have:

$$||v|| = \sqrt{v_1^2 + v_2^2}$$

We call the two inputs x and y, and the length z.

$$z = \sqrt{x^2 + y^2}$$

$$z^2 = x^2 + y^2$$

1.4.2 Angles

1.4.2.1 Recap: Cauchy-Schwarz inequality

This states that:

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \dot{\langle} v, v \rangle$$

Or:

$$\langle v,u\rangle\langle u,v\rangle \leq \langle u,u\rangle\dot\langle v,v\rangle$$

1.4.2.2 Introduction

$$\begin{split} \langle v, u \rangle \langle u, v \rangle & \leq \langle u, u \rangle \dot{\langle} v, v \rangle \\ \frac{\langle v, u \rangle \langle u, v \rangle}{||u||.||v||} & \leq ||u||.||v|| \end{split}$$

$$\frac{||u||.||v||}{\langle v,u\rangle} \geq \frac{\langle u,v\rangle}{||u||.||v||}$$

$$cos(\theta) = \frac{\langle u, v \rangle}{||u||.||v||}$$