Mathematics for Economists Kapitel 9 – Kontrolteori: Grundlæggende metoder

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus Universitet

Disposition Kapitel 9

- Introduktion (9.1, 9.2)
- Regularitetsbetingelser (9.3)
- Standardproblemet (9.4)
- Skyggepriser og den adjungerede funktion (9.6)
- Tilstrækkelige betingelser (9.7)
- Problemer udtrykt i nutidsværdi (9.9)
- Ubegrænset periode (9.11)

Et typisk kontrolproblem i økonomisk teori med ubegrænset periode har formen:

$$\max \int_{t_0}^{\infty} f(t, x(t), u(t)) e^{-rt} dt, \quad \dot{x}(t) = g(t, x(t), u(t)), \quad x(t_0) = x_0, \quad u(t) \in U.$$

Der er tit ingen bibetingelser på x(t) når $t o \infty$, men man kan f.eks. kræve at

$$\lim_{t o \infty} x(t) \geq x_1$$
 (x_1 er et fikseret tal)

Integralet i objektfunktionen konvergerer for hvert tilladt par (x(t),u(t)) hvis r er en positiv konstant, og hvis der findes et tal M således at $|f(t,x,u)| \leq M$ for hvert (x,u). Så holder alle betingelser for maksimumsprincippet (Teorem. 9.2.1), undtaget transversalitetsbetingelsen $p(t_1)=0$.

Bemærkning

I et problem med begrænset periode og $x(t_1)$ fri er transversalitetsbetingelsen $p(t_1)=0$. I problemet med ubegrænset periode og uden slutbetingelse er den "naturlige" transversalitetsbetingelse $p(t)\to 0$ når $t\to \infty$ ikke altid korrekt, men en god kandidat, der skal tjekkes.

Hamilton-funktionen udtrykt i fremtidsværdien er

$$H^{c}(t, x, u, \lambda) = f(t, x, u) + \lambda g(t, x, u)$$

med λ skyggeprisen udtrykt i fremtidsværdien.

Teorem (9.11.1, Tilstrækkelige betingelser med ubegrænset periode)

Antag at et tilladt par $(x^*(t), u^*(t))$, med eller uden slutbetingelse, opfylder de følgende betingelser med en funktion $\lambda(t)$ for hvert $t \ge t_0$:

- (a) $u^*(t)$ maksimerer $H^c(t, x^*(t), u, \lambda(t))$ ift. $u \in U$,
- (b) $\dot{\lambda}(t) r\lambda = -\partial H^c(t, x^*(t), u^*(t), \lambda(t))/\partial x$,
- (c) $H^c(t, x, u, \lambda(t))$ er konkav ift. (x, u),
- (d) $\lim_{t\to\infty} \lambda(t)e^{-rt}[x(t)-x^*(t)] \ge 0$ for hver tilladt x(t).

Så er $(x^*(t), u^*(t))$ optimalt.

Bemærkning - Malinvaud

Antag at slutbetingelsen er $\lim_{t \to \infty} x(t) \ge x_1$. Omskriv produktet i Teorem 9.11.1(d) som

$$\lambda(t)e^{-rt}(x(t)-x_1) + \lambda(t)e^{-rt}(x_1-x^*(t))$$
 (*)

Hvis de følgende tre betingelser er opfyldte, så er betingelsen (d) også opfyldt:

- (A) $\lim_{t\to\infty} \lambda(t) e^{-rt} (x_1 x^*(t)) \ge 0$;
- (B) der findes et tal M således at $|\lambda(t)e^{-rt}| \leq M$; for hvert $t \geq t_0$;
- (C) der findes et tal t' således at $\lambda(t) \geq 0$ for hvert $t \geq t'$.

Bemærkning

Antag at vi introducerer yderlige betingelser på x(t) i problemet. I dette tilfælde holder uligheden i Teoremet 9.11.1(d) kun for par $(x(t),x^*(t))$ der opfylder de yderlige betingelser.

Hvis vi derudover kræver, at $x(t) \ge x_1$ for hvert t, så er det tilstrækkelig at tjekke (A) og (C).