Kapittel 19: Litt mer kombinatorikk

Nettkurs

Boka

Pascals trekant

$$\begin{pmatrix} 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 7 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 2 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \begin{pmatrix} 8 \\$$

 Det at hvert tall i Pascals trekant er lik summen av de to tallene over, betyr at det går an å definere binomialkoeffisientene rekursivt, på følgende måte:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Binomialkoeffisienter - hvorfor kalles de det?

For å svare på det, må vi kunne ekspandere uttrykk på formen $(x + y)^n$. Følgende er alle slike uttrykk opp til n = 5:

$$(x+y)^{0} = 1$$

$$(x+y)^{1} = 1x^{1} + 1y^{1}$$

$$(x+y)^{2} = 1x^{2} + 2x^{1}y^{1} + 1y^{2}$$

$$(x+y)^{3} = 1x^{3} + 3x^{2}y^{1} + 3x^{1}y^{2} + 1y^{3}$$

$$(x+y)^{4} = 1x^{4} + 4x^{3}y^{1} + 6x^{2}y^{2} + 4x^{1}y^{3} + 1y^{4}$$

$$(x+y)^{5} = 1x^{5} + 5x^{4}y^{1} + 10x^{3}y^{2} + 10x^{2}y^{3} + 5x^{1}y^{4} + 1y^{5}$$

Koeffisientene – tallene foran uttrykkene på formen $x^{n-k}q^k$ – er tallene $\binom{n}{k}$ fra Pascals trekant. Disse tallene kalles «binomialkoeffisienter» fordi uttrykk på formen x + y kalles *binomer*, som er *polynomer* med to uttrykk.

$$(x+y)^n = \underbrace{(x+y)(x+y)\cdots(x+y)}_{n \text{ forekomster}}$$

- Hvis vi multipliserer ut dette, får vi 2^n ledd.
- Hvert av disse leddene er på formen $f_1 f_2 \dots f_n$.
- Hver faktor f_i enten er x eller y.
- Spørsmålet er hvor mange av disse leddene som er identiske.
- Svaret er at det er $\binom{n}{k}$ ledd hvor det er k forekomster av faktoren y.

$$(x + y)^4 = (x + y)(x + y)(x + y)(x + y)$$

Her får vi $\binom{4}{2}$ = 6 ledd med 2 forekomster av y:

xxyy, xyxy, xyyx, yxxy, yxyx, yyxx

Alle disse er lik x^2y^2 . Dette gjør av koeffisienten til x^2y^2 blir 6.

Systematisering av opptellingsproblemer

• Hvis man har 5 elementer i mengden og vil kun velge tre av dem, så er det flere måter å gjøre det på:

/ FICAA	ordnet utvalg	uordnet utvalg
med repetisjon	$5^3 = 5 \cdot 5 \cdot 5$	$\binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}$
uten repetisjon	5 P ₃ = $5 \cdot 4 \cdot 3$	$\binom{5}{3} = \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1}$

- Hvis vi har en mengde med fem elementer og skal gjøre et uordnet utvalg av tre elementer med repetisjon, er vi kun interessert i hvor mange ganger hvert element blir valgt.
- Her er generelle formlene for alle disse måter:

	ordnet utvalg	uordnet utvalg
med repetisjon	n^k	$\binom{n+k-1}{k}$
uten repetisjon	$^{n}P_{k}$	$\binom{n}{k}$

Et annet perspektiv

ullet En annen måte å beskrive det samme på, er ved å telle antall funksjoner f:K o N, hvor K har k elementer og N har n elementer.

	ikke identifisere K	identifisere K
alle funksjoner	\mathfrak{n}^k	$\binom{n+k-1}{k}$
injektive funksjoner	$^{\mathfrak{n}}P_{k}$	$\binom{\mathfrak{n}}{k}$