Chapter 4. मेहाम २८ - वेदकें में खेलके हिंग

조합논리회로 설계

필요한 회로의 기능에 대한 설명부터 시작

- → 설명 문장을 전치표 or 부물 대유 표현으로 변란 (4-1 , 4-2)
- (화) → 부물함수에 대한 진대표로 표준 논리급의 함 (최소화전개)과 표준 논리합의 급 (최대항 전개)의 두 개의 표준 대한무 만을 수 있음 (4-3
 - → 포슨식을 간략화하면 AND와 OR HINE로 이루터진 퇴로를 구성한수 사음

4-1 설명문장을 부울식으로 변환

tb_elec_engineer@naver.com

(gm)

다음과 날이 작동하는 경보회로를 설계하고자 함

The alarm will Hig if the alarm switch is turned on and the door is not closed,

or it is after 6 P.M. and the window is not closed.

(경보스위치가 거쳐 이고 현관문이 털려 있거나 오후 6시가 지나서 창문이 털려 있으면 경보기가 물건다.)

- ① 문장의 각 구와 부물병수를 여관시킴 참일때 진기값 1 , 거짓일 때 진기값 0 ½ 가진다.
- ② 부물식으로 변환
 공= AB'+ CD'
- ③ 班 纳

4-2 설명 문장을 진리표로 변환

압력 A,B,C는 2진수 N의 첫번째, 두번째, 세번째 비트를 각각 나타낸다. 이 회국의 촬영은 N 〉 이 112 이면 두리 , N 〈이 112 이면 두=0 이다.

전기표로 변환

ABC	F	F'
000	0	1
001	0	1
010	0	1
011	1	0
100	1	0
101	1	0
110	1	0
111	1	0

① f=1인 경우를 대원으로 표현

⊕ A=1 , A'=0

$$f = 011 + 100 + 101 + 110 + 111$$

= A'BC + AB'C' + AB'C + ABC' + ABC
= A'BC + AB' (C'+C) + AB(C'+C)

$$= A'BC + AB' + AB$$

$$= (A+A')(A+BC)$$

3개와 발경과를 가져음

- ② f=0 인 경우를 대수시으로 표현 Φ A=0, A'=1 $f=(\underbrace{A+B+C}_{\times})(\underbrace{A+B+C'}_{\times})(\underbrace{A+B'+C}_{\times})$ $=(\underbrace{A+B}_{\times})(\underbrace{A+B'+C}_{\times})$ =A+B(B'+C)=A+BC

4-3 최소하과 최대하 전개

tb_elec_engineer@naver.com

1) 최소항이란? n 변수의 최소항은 그 변수가 그대로 or 보수 형태로 한번씩만 나타내는 n기를 문자되급

ex) A,B,C 세기 비년수의 최소항

네 변수의 최소항과 최대항을 진임표로 표시하기

십전수 값	ABC	철소항	최대항
0	000	A'B'C' = Mo	A+B+C = Mo
1	001	$A'B'C = m_i$	$A+B+C'=M_1$
2	010	A'BC' = M2	$A+B'+C=M_2$
3	oll	A'BC = M3	A+B'+C'=M
4	100	AB'c' = m4	A'+B+C=M4
5	101	AB'C = Ms	A'+B+c'=Ms
6	110	ABC' = M6	A'+B' +C = M6
7	111	ABC = mn	A'+B'+c'=Mn

※ 최소하 → 결과값 1이 참 (양논기) → 원리청태
 최대항 → 결과값 0이 항 (응논기) → 합의 형태

화소하 전개 = 표소 본대라의 하 : 최소하의 하으로 나타낼 수 있을 때

2) 최대하이란 ? n 변수의 최대하운 각 변수가 그대도 아 밝 형태로 한번씩만 나타나는 nnu 문자의 한

$$ex)$$
 f = (A+B+C) (A+B+C') (A+B'+C)

① 최소항 , 최대항 전개를 쉽게 구하는 방법

(gm)

10진수 기호 방식에서 N 변수 함수 수의 최소항 전 III 구어지면 최대항 전개는 최소항 목록에는 없는 10진 정수 (이 소 2 소 2 시) 들을 연대하여 면을 수 있다.

→ f'에 대한 최소항 전개는 f에 빠진 최소항을 포함 f'에 대한 최대항 전개는 f에 빠진 최대항들을 포함

$$E(X)$$
 $f(A_1B_1C) = M_3 + M_4 + M_5 + M_6 + M_n = \sum M (3,4,5,6,7)$
 $f'= M_3 + M_1 + M_2 = \sum M (0,1,2)$

$$f(A_1B_1C) = M_0M_1M_2$$

or $f' = 2\pi m_0 + M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_1 = \pi M (3.4.5.6.7)$

or $f = 2\pi m_0 + M_1 + M_2 + M_3 + M_4 + M_1 = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_1 = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + M_1$

4-4 F와 F'의 최소항과 최대항 관계

위 내용과 같음

3년수에 대한 산1표 →	ABC	F
	000	00
	001	ai
	010	az
	011	03
	100	04
	101	as
	110	as
	1 1 1	lan

세 변수 함수에 대한 최소항 전개

$$F = Q_0 M_0 + Q_1 M_1 + Q_2 M_2 + \dots + Q_n M_n = \sum_{i=0}^n Q_i M_i$$
 $\rightarrow Q_2 = 1$ 이연 최소량 M.는 전14에 포함
 $Q_2 = 0$ 이연 최소량에 포함 \times

세 변수하수에 대한 최대량 전기시

$$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2) + \dots + (a_n + M_n) = \prod_{i=0}^{n} (a_i + M_2)$$
 $\rightarrow a_{i-1}$ 이번 $(a_i + M_2) = 1$ 이므로 전개에 포함 χ
 a_{i-0} 이번 $M_i = 0$ 되었다.

F'의 최대항 전개

$$F' = \left[\sum_{i=0}^{n} \alpha_{i} m_{i} \right]' = \prod_{i=0}^{n} \left(\alpha'_{i} + M_{i} \right)$$

→ F의 최대항에 없는 모든 최대항은 F'의 최대항에 있다.

下四 到海 对洲

$$F' = \left[\prod_{i=0}^{n} (a_i + M_i) \right]' = \sum_{i=0}^{n} a'_i m_i$$

→ F의 최소하이 있는 모든 최소하은 F'의 최소하이 있다.

(gm)

▶ F와 F'의 최소항과 최대랑 전개 사이의 변란과정 일반화

구하고자하는 주어진 식 F의 최소함 f= \(\S_{m} \) (3, 4, 5, 6, 7)	F의 최소항 //	F의 최대항 F의 최소항에 없는 항들	F의 최소항에 없는 항등	F의 최대항 F의 최소항에 있는 2은 번호등
F의 절대하	F의 최대하에 없는	πM (0,1,2)	도m (0.1.2) 무의 회대장에 있는	π M (3,4, 5,6,7) F의 회대하에 있는
f=π M (0,1,2)	を を を を を を を を の の の の の の の の の の の の の	" "	같은 번호를 도 m (0,1,2)	でき TIM (3.4.5.6,円)

4-5 비란전 명세함수, 무관탕

ABC	F
000	1
001	X
010	0
0 1 1	1
100	0
101	0
110	X
1 1 1	1

- → ABC = 001 , 110 조합은 경로 나타나지 않아 F가 어떤 값을 가지더라도 상관했음 작수 F는 비용전 명세화되었다 라고 하며 A'B'C 와 ABC' 하들을 우관하 이라고 하며 X 로 포시한다
- 中 Fi 部子 學師 婚 物
 - O 두개 X에 O 항당
 - ② 程 X에 1, 두번째 X에 0 항망
 - ③ 程 X에 O, 두번째 X에 1 討당
 - 针 X에 1 該店

가장 간략한 결과를 선택!

나 비완된 명세함수에 대한 최수랑 전대

최소화를 전개로 대 무관함 표시하는 방법

비완전 명세하수에 대한 최대하 전개

E= MM (514.2) . MD (1.6)

최대하을 전내함 때 무관하 포시하는 방법

11

tb_elec_engineer@naver.com

$$\Rightarrow \begin{array}{l} X(A,B,C,D) = \sum m(\Pi,10,11,13,14,15) \\ Y(A,B,C,D) = \sum m(2,3,5,b,8,9,12,15) \\ Z(A,B,C,D) = \sum m(1,3,4,6,9,11,12,14) \end{array}$$

ex 2) 6-3-1-1 2진수 부호화 10진수 모쥬 검출기를 설계 활력 (F)은 4개 일력 (A,B,C,D)이 비정사 부호조합일 때 1이 된다.

110

$$F = \sum m (2.6.10, 13.14.15)$$
= $A'B'CD' + A'BCD' + ABCD' + ABCD' + ABCD' + ABCD' + ABCD' + ABCD' + ABD(C'+C)$
= $A'CD' (8'+B) + ACD' (B'+B) + ABD(C'+C)$
= $A'CD' + ACD' + ABD$
= $CD' (A'+A) + ABD$
= $CD' + ABD$

- ex3) 킬로의 4개 입력 (A,B,C,D)은 8-4-2-1 2진수 부호화 10진수를 나타낸다. 입력에 의한 10진수가 3으로 정확히 나누어걸 때만 출격(3)이 소이 되는 힘조성계
 - SO있) 0,3,6,9 만 3으로 정확히 나누여짐

 ABCD = 0000,0011,0110,1001 일 때 로=1

tb_elec_engineer@naver.com

(gm)

10전두값	A	В	C	D		Z
0	0	0	0	0		1
1	0	0	0	1	1	0
2	0	0	1	0	1	0
3	0	0	1	1	-	1
4	0	1	0	0	1	0
5	0	I	0	l		0
6	0	1	١	0	-	1
П	0	l	1	1	-	0
8	l	0	0	0		0
9	Ĭ	0	0	į	-	Ĺ
,	(0	١	0	-	×
	t	0	İ	1	-	X
절대X	ł	I	0	0		X
1	Ī	1	0	1		×
\	1	I	ţ	0		X
	- (ļ	į	ł		×

4-기 2진수 덧셈기와 뺑셈기 날퀴

1) 덧셈기 (가난기) : 덧셈을 연산하는 장치

논리한로 → 반덧셈기 → 전닷네기 → 명견닷네기

(반덧셈기가 모여 전덗성기가 되고, 전덗성기가 모여 병결덧셈기가 됨)

반덧셈기 : 합격 274, 꽃격 27H

전닷범기: 입력 31배, 콜럼 27배

• 밴덧셈기

王山州山巨

$$S = AB' + A'B = A \oplus B$$

 $C = AB$

전기반기 진2표

_A	В	Cin	S	Cout
0	0	0	0	0
0	0	١	1	O
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	I	1	1

♥ Cin : 반가산기에서 바탕탕한 커니
Cout : 청가산기에서 서오 바탕하 케리

$$= (A \oplus B)' = (A'B + AB')'$$

$$= (A'B)' \cdot (AB')'$$

$$= (A+B') \cdot (A'+B)$$

$$=$$
 $AA' + AB + B'A' + B'B$

$$= AB + A'B'$$

$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}'$$

$$= C_{in} (A'B' + AB) + C'_{in} (A'B + AB')$$

$$= C_{in} (A \oplus B)' + C'_{in} (A \oplus B)$$

$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in} + ABC_{in}$$

= $(A'B + AB')C_{in} + AB(C'_{in} + C_{in})$
= $(A \oplus B)C_{in} + AB$

2) 백생기 (감산기)

tb_elec_engineer@naver.com

• 반감산기

	0	0	1	١
	0	1	0	1
D(Deduction)() 1	١	0
b (bottow)) O 임	1	0	0

Α	В	D	Ь
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

和小时

$$D = A'B + AB' = A \oplus B$$

$$b = A'B$$

