A note on the sampling variance of the predicted values under the null model By Guo-Bo Chen, 2020/06/24

Assuming y is the phenotype, $y \sim N(0,1)$; x_i is the standardized genotypes for the i^{th} locus, and $e \sim N(0,1)$, and heritability is zero. There are N individuals, and each individual has M genotypes.

- 7 The single-marker regression coefficient is estimated $\hat{b}_i = \frac{cov(y, x_i)}{var(x_i)} = cov(y, x_i)$.
- 8 Assuming the correlation between x_i and x_j is ρ_{ij} , and x_j can be decomposed as $x_j = \rho_{ij}x_i + \rho_{ij}x_j$
- 9 $\sqrt{1-\rho_{ij}^2}z$, in which z is a variable from standard normal distribution.

$$\hat{b}_{j} = \frac{cov(y, x_{j})}{var(x_{j})} = \frac{cov(y, \rho_{ij}x_{i} + \sqrt{1 - \rho_{ij}^{2}}z)}{var(x_{j})} = cov(y, \rho_{ij}x_{i}) + cov(y, \sqrt{1 - \rho_{ij}^{2}}z) = \rho_{ij}\hat{b}_{i} + \sqrt{1 - \rho_{ij}^{2}}\beta_{j}$$

12 Then

8

2

4 5

8

9

0

1

3

4 5

6

- $3 \qquad cov(x_i\hat{b}_i, x_j\hat{b}_j) = cov\left\{\hat{b}_ix_i, \left[\rho_{ij}\hat{b}_i + \sqrt{1 \rho_{ij}^2}\beta_j\right]x_j\right\} = cov(\hat{b}_ix_i, \rho_{ij}\hat{b}_ix_j) + cov\left(\hat{b}_ix_i, \sqrt{1 \rho_{ij}^2}\beta_jx_j\right)$
- $= \rho_{ij}^2 \hat{b}_i^2 + \rho_{ij} \sqrt{1 \rho_{ij}^2} \hat{b}_i \beta_j$
- 5 It should be noticed that $E[\rho_{ij}\sqrt{1-\rho_{ij}^2\hat{b}_i\beta_j}]=0$
- 6 As $\rho_{ij} \sim N(0,1)$, and given the sample size N, the sampling variance of $\rho_{ij} = \frac{1}{\sqrt{N}}$, and similar to \hat{b}_i^2 .
- 7 Eventually, $E[cov(x_i\hat{b}_i, x_j\hat{b}_j)] = \frac{1}{N^2}$
- 9 The variance of the predicted value $\tilde{y} = \sum_{i=1}^{M} \hat{b}_i x_i$ is
- $var(\tilde{y}) = \sum_{i=1}^{M} var(\hat{b}_{i}x_{i}) + \sum_{i=1}^{M} \sum_{j\neq i}^{M} cov(x_{i}\hat{b}_{i}, x_{j}\hat{b}_{j}) = \sum_{i=1}^{M} \hat{b}_{i}^{2} + \sum_{i=1}^{M} \sum_{j\neq i}^{M} \frac{1}{N^{2}} = \frac{M}{N} + \frac{M(M-1)}{N^{2}}$ $\approx \frac{M}{N} + \left(\frac{M}{N}\right)^{2}$

Summary of the prediction accuracy under the null distribution

	Dataset			
	Training	Test	Mixed	
$cov(\hat{y},y)$	$\frac{M}{N}$	0	$w\frac{M}{N}$	
$var(\hat{y})$	$\frac{M}{N}(1+\frac{M}{N})$	$\frac{M}{N}$	$\frac{M}{N} + w \left(\frac{M}{N}\right)^2$	
R^2	$\frac{M}{M+N}$	0	$\frac{w^2 \frac{M}{N}}{1 + w \frac{M}{N}}$	

- Notes: *M* is the number of markers, and *N* is the sample size of the training set, and *w* is the proportion of the samples in the test set but eventually from the training set.
- 6 $\lambda = N_{tst} \frac{R^2}{1-R^2}$ is the NCP for χ_1^2 .
- 7 For the test set, $\lambda_T = 0$, and its 95% confidence interval is $\sqrt{\lambda_T} \pm 1.96$.
 - For the mixed set,

Given $h^2 = 0$, the accuracy of prediction when testing containing $w \times N_{Tst}$ samples from training.

N_{Tr}	N_{Tst}	М	w	R^2 (theoretical)	R^2 (simulation)
	131			()	(======================================

1000	500	100	0.1	0.001	0.001 ± 0.0044
			0.25	0.006	0.006 ± 0.020
			0.5	0.024	0.024 ± 0.014
1000	500	1000	0.1	0.009	0.0089 ± 0.0096
			0.25	0.05	0.051 ± 0.019
			0.5	0.167	0.168 ± 0.03
2000	500	100	0.1	0.0005	0.00034 ± 0.0034
			0.25	0.0031	0.0032 ± 0.0062
			0.5	0.012	0.012 ± 0.0088
1000	500	5000	0.1	0.033	0.035 ± 0.018
			0.25	0.139	0.134 ± 0.023
			0.5	0.357	0.352 ± 0.034

3 When $h^2 \neq 0$

$$cov\left(\sum_{m=1}^{M} \hat{b}_m x_m, y\right) = h^2 + \frac{M}{N}$$

5 and

5

7

8

9 0

3

$$var\left(\sum_{m=1}^{M} \hat{b}_{m} x_{m}\right) = \sum \hat{b}_{m}^{2} var(x_{m}) + \sum_{m_{1}=1}^{M} \sum_{m_{2} \neq m_{1}}^{M} \hat{b}_{m_{1}} \hat{b}_{m_{2}} cov(x_{m_{1}}, x_{m_{2}})$$

$$= \left[h^{2} + \frac{M}{N}\right] + \sum_{m_{2}=1}^{M} \sum_{m_{2} \neq m_{3}}^{M} \left[b_{m_{1}} b_{m_{2}} + b_{m_{1}} e_{2} + b_{m_{2}} e_{1} + e_{1} e_{2}\right] cov(x_{m_{1}}, x_{m_{2}})$$

8 For $[b_{m_1}b_{m_2} + b_{m_1}e_2 + b_{m_2}e_1 + e_1e_2]cov(x_{m_1}, x_{m_2})$, assume all the markers are independent,

9
$$cov(x_{m_1}, x_{m_2}) = r_{m_1 m_2}$$
, and $E(r_{m_1 m_2}) = \frac{1}{\sqrt{N}}$.

$$[b_{m_1}b_{m_2} + b_{m_1}e_2 + b_{m_2}e_1 + e_1e_2]cov(x_{m_1}, x_{m_2}) = [b_{m_1}b_{m_2} + b_{m_1}e_2 + b_{m_2}e_1 + e_1e_2]r_{m_1, m_2}$$

$$1 E(b_{m_1}b_{m_2}r_{m_1,m_2}) = 0, E(b_{m_1}e_2r_{m_1}r_{m_2}) = b_{m_1}^2r_{m_1m_2}^2 = \frac{h^2}{M}\frac{1}{N}, E(b_{m_2}e_1r_{m_1}r_{m_2}) = b_{m_2}^2r_{m_1m_2}^2 = \frac{h^2}{M}\frac{1}{N}, \text{ and}$$

$$2 E(e_1 e_2 r_{m_1} r_{m_2}) = \frac{1}{N^2}$$

3 So,
$$\sum_{m_1=1}^{M} \sum_{m_2 \neq m_1}^{M} [b_{m_1} b_{m_2} + b_{m_1} e_2 + b_{m_2} e_1 + e_1 e_2] cov(x_{m_1}, x_{m_2}) = M(M-1)(\frac{2h^2}{MN} + \frac{1}{N^2}).$$

4 In total,
$$var\left(\sum_{m=1}^{M} \hat{b}_m x_m\right) = \left[h^2 + \frac{M}{N}\right] + M(M-1)\left(\frac{2h^2}{MN} + \frac{1}{N^2}\right) = h^2\left(1 + 2\frac{M}{N}\right) + \frac{M}{N}\left(1 + \frac{M}{N}\right).$$

Summary of the prediction accuracy

Summary of the prediction accuracy						
	Dataset					
	Training	Test	Mixed			
$cov(\hat{y}, y)$	$h^2 + \frac{M}{N}$	h^2	$h^2 + w \frac{M}{N}$			
var(ŷ)	$h^2\left(1+2\frac{M}{N}\right)+\frac{M}{N}\left(1+\frac{M}{N}\right)$	$h^2 + \frac{M}{N}$	$wh^2 \frac{M}{N} + (h^2 + \frac{M}{N})(1 + w\frac{M}{N})$			
R^2	$\frac{\left(h^2 + \frac{M}{N}\right)^2}{h^2\left(1 + 2\frac{M}{N}\right) + \frac{M}{N}\left(1 + \frac{M}{N}\right)}$	$\frac{(h^2)^2}{h^2 + \frac{M}{N}}$	$\frac{\left(h^2 + w\frac{M}{N}\right)^2}{wh^2\frac{M}{N} + (h^2 + \frac{M}{N})(1 + w\frac{M}{N})}$			

Notes: *M* is the number of markers, and *N* is the sample size of the training set, and *w* is the

proportion of the samples in the test set but eventually from the training set.
$$\mathbb{R}^{2}$$

$$\lambda = N_{tst} \frac{R^2}{1 - R^2}$$

$$\lambda_0 = N_{tst} \frac{R_{tst}^2}{1 - R_{tst}^2} = \frac{N_{tst} \frac{(h^2)^2}{h^2 + \frac{M}{N}}}{1 - \frac{(h^2)^2}{h^2 + \frac{M}{N}}} = N_{tst} \frac{(h^2)^2}{h^2 + \frac{M}{N} - (h^2)^2}, \text{ under the null hypothesis of no mixed samples.}$$

$$\lambda_M = N_{tst} \frac{R_M^2}{1 - R_M^2}$$

$$\lambda_{M} = \frac{N_{tst}}{\frac{\left(h^{2} + w\frac{M}{N}\right)^{2}}{wh^{2}\frac{M}{N} + (h^{2} + \frac{M}{N})(1 + w\frac{M}{N})}}{1 - \frac{\left(h^{2} + w\frac{M}{N}\right)^{2}}{wh^{2}\frac{M}{N} + (h^{2} + \frac{M}{N})(1 + w\frac{M}{N})}} = \frac{N_{tst}}{\frac{wh^{2}\frac{M}{N} + (h^{2} + \frac{M}{N})(1 + w\frac{M}{N})}{\left(h^{2} + w\frac{M}{N}\right)^{2}}} \approx wN_{tst}$$

4 The p-value $\chi^2_{\lambda_0}(\lambda_M)$

- The statistical power given type I error rate of α is $1-\phi\left(\phi^{-1}\left(1-\frac{\alpha}{2}\right)+\sqrt{\lambda_0}-\sqrt{\lambda_1}\right)+\phi(\phi^{-1}\left(\frac{\alpha}{2}\right)+\sqrt{\lambda_0}-\sqrt{\lambda_1}).$
- 7

Given $h^2 = 0.5$, the accuracy of prediction when testing containing $w \times N_{Tst}$ samples from training.

N_{Tr}	N_{Tst}	М	W	R^2 (theoretical)	R^2 (simulation)
1000	500	100	0.1	0.427	0.432 ± 0.047
			0.25	0.439	0.448 ± 0.046
			0.5	0.462	0.456 ± 0.048
1000	500	1000	0.1	0.212	0.210 ± 0.035
			0.25	0.281	0.278 ± 0.035
			0.5	0.40	0.401 ± 0.034
2000	500	100	0.1	0.459	0.455 ± 0.044
			0.25	0.466	0.461 ± 0.048
			0.5	0.478	0.478 ± 0.052
1000	500	5000	0.1	0.118	0.118 ± 0.026
			0.25	0.236	0.238 ± 0.030
			0.5	0.439	0.439 ± 0.033

Case-control design 1

5

8

2 3

3

0

- For case-control studies, the accuracy can be measure by $AUC = \phi(\frac{\nu_s}{\sqrt{\sigma_{cs}^2 + \sigma_{cl}^2}})$, in which D_s is the 2
- 3 difference between the mean of the risk scores between the cases and controls, σ_{cs}^2 and σ_{cl}^2 are 4 sampling variance for risk scores for the cases and controls, respectively.
- 6 For a case-control study, which has N_{cs} cases and N_{cl} controls, the odds ratio of a locus can be 7 estimated as

$$OR = \frac{p_{cs}}{p_{cl}} \frac{q_c}{q_c}$$

- $OR = \frac{p_{cs}}{p_{cl}} \frac{q_{cl}}{q_{cs}}$ in which p_{cs} and p_{cl} are the frequency of the reference allele in the cases and controls, $q_{cs} = 1 p_{cs}$, and $q_{cl} = 1 p_{cl}$. $p_{cs} \sim N(p_{cs}, \frac{p_{cs}q_{cs}}{2N_{cs}})$, and $p_{cl} \sim N(p_{cl}, \frac{p_{cl}q_{cl}}{2N_{cl}})$. 9
- 0
- 1
- In prediction, $\beta = \log_e(OR)$ is used. When OR is close to 1, $\log_e(OR) \approx OR 1$. So we have $\beta \approx OR 1 = \frac{p_{cs} p_{cl}}{p_{cl}q_{cs}}$. The sampling variance for $\sigma_{\beta_i}^2 = (\frac{1}{2N_{cs}p_{cs}} + \frac{1}{2N_{cl}q_{cl}} + \frac{1}{2N_{cl}q_{cl}} + \frac{1}{2N_{cl}q_{cl}})$
- D_s can be calculated as below if the training and the testing are the same data.

$$D_{s} = \sum_{i=1}^{M} \beta_{i} (2p_{cs.i} - 2p_{cl.i}) = \sum_{i=1}^{M} \frac{2(p_{cs.i} - p_{cl.i})^{2}}{p_{cl.i}q_{cs.i}}$$

- 6
- $(p_{cs}-p_{cl})\sim N(p_{cs}-p_{cl},\frac{p_{cs}q_{cs}}{2N_{cs}}+\frac{p_{cl}^{l-1}q_{cl}}{2N_{cl}})$, but for a null locus, $p_{cs}\approx p_{cl}$, $(p_{cs}-p_{cl})\sim N(0,p_{cs}q_{cs},\frac{N_{cl}+N_{cs}}{2N_{cs}N_{cl}})$. $D_s\approx M\frac{N_{cl}+N_{cs}}{N_{cs}N_{cl}}$, which is determined by the number of loci and the numbers
- 8
- As the real genetic effect of each locus is zero, the estimated effect is due to sampling
- variance. $var(\hat{\beta}_i x_i) = var(e_i x_i)$.

$$1 \quad \sigma_{cs}^{2} = \sum_{i=1}^{M} var(x_{i}e_{i}) = \sum_{i=1}^{M} 2p_{cs.i}q_{cs.i}var(e) = \sum_{i=1}^{M} 2p_{cs.i}q_{cs.i} \left(\frac{1}{2N_{cs}p_{cs.i}} + \frac{1}{2N_{cs}q_{cs.i}} + \frac{1}{2N_{cl}p_{cl.i}} + \frac{1}{2N_{cl}p_{cl.i}} + \frac{1}{2N_{cl}q_{cl.i}}\right)$$

$$2 \quad = M \frac{N_{cl} + N_{cs}}{N_{cl}N_{cl}}$$

- $AUC = \phi\left(\frac{D_s}{\sqrt{\sigma^2 + \sigma^2}}\right) = \phi(T)$
- in which $T = \sqrt{\frac{M}{2} \frac{N_{cl} + N_{cs}}{N_{cs} N_{cl}}}$. 5 6
- For null model, if the testing set is independent from the training set, 7

$$D_{s} = \sum_{i=1}^{M} \beta_{i} (2\tilde{p}_{cs.i} - 2\tilde{p}_{cl.i}) = 0$$

- 9 in which \tilde{p} is the frequency in the testing set.
- The z score test for the different between two risk scores are $\frac{D_S}{\sqrt{\frac{\sigma_{CS}^2}{N_{CS}} + \frac{\sigma_{Cl}^2}{N_{Cl}}}} \approx T \sqrt{\frac{2\tilde{N}_{CS}\tilde{N}_{cl}}{\tilde{N}_{cl} + \tilde{N}_{cS}}}$, and 1
- $T \sim N(0, \sqrt{\frac{\widetilde{N}_{cl} + \widetilde{N}_{cs}}{2\widetilde{N}_{cl}\widetilde{N}_{cl}}})$, in which \widetilde{N}_{cs} and \widetilde{N}_{cl} are the numbers of cases and controls in the testing set.
- For significant test, the p-value is $\chi_1^2(\lambda)$, in which $\lambda = \left(\frac{D_S}{\sqrt{\sigma_{cc}^2 + \sigma_{cl}^2}}\right)^2 = M \frac{N_{cl} + N_{cs}}{2N_{cs}N_{cl}}$. 3

Inflation of AUC under the null for case-control study

illiadion of flod and	er the han for case ev	one of study		
Data	D_{s}	var(s)	AUC	
Training	$M\frac{N_{cl} + N_{cs}}{N_{cs}N_{cl}}$	$M\frac{N_{cl} + N_{cs}}{N_{cs}N_{cl}}$	$\phi(\sqrt{M\frac{N_{cl}+N_{cs}}{2N_{cs}N_{cl}}})$	
Testing	0	$M\frac{N_{cl} + N_{cs}}{N_{cs}N_{cl}}$	0.5	

MAF=0.5

N _{cs}	N_{cl}	М	λ	AUC	AUC (simulation)	AUC (simulation)
				(theory)	MAF=0.5	MAF=0.05~0.5
100	100	100	1	0.841	0.843 ± 0.018	0.838 ± 0.019
100	200	100	0.75	0.807	0.805 ± 0.020	0.808 ± 0.020
200	100	100	0.75	0.807	0.808 ± 0.019	0.809 ± 0.023
1000	1000	100	0.1	0.624	0.625 ± 0.0092	0.623 ± 0.0099
1000	1000	1000	1	0.841	0.842 ± 0.0064	0.842 ± 0.0078
1000	2000	100	0.075	0.608	0.608 ± 0.0070	0.608 ± 0.0078
1000	2000	1000	0.75	0.807	0.807 ± 0.0064	0.807 ± 0.0058

From GWAS meta-analysis to GWAS mega-analysis

$$\beta_{meta} = \frac{\sum_{i=1}^{C} \beta_i W_i}{\sum_{i=1}^{C} W_i}$$

4 in which
$$W_i = \frac{1}{\sigma_{\beta_i}^2} = n_i \frac{var(x_i)}{var(y_i)}$$

$$\beta_{meta} = \frac{\sum_{i=1}^{C} \frac{cov(x_{i}, y_{i})}{var(x_{i})} n_{i} \frac{var(x_{i})}{var(y_{i})}}{\sum_{i=1}^{C} n_{i} \frac{var(x_{i})}{var(y_{i})}} = \frac{\sum_{i=1}^{C} n_{i} \frac{cov(x_{i}, y_{i})}{var(y_{i})}}{\sum_{i=1}^{C} n_{i} \frac{var(x_{i})}{var(y_{i})}}$$

when $var(y_i) = var(y_j)$

$$\beta_{meta} = \frac{\sum_{i=1}^{C} n_i cov(x_i, y_i)}{\sum_{i=1}^{C} n_i var(x_i)}$$

8 when
$$var(x_i) = var(x_j)$$

$$\beta_{meta} = \frac{\sum_{i=1}^{C} n_i cov(x_i, y_i)}{nvar(x_i)} = \frac{\sum_{i=1}^{C} \omega_i cov(x_i, y_i)}{var(x)}$$

0 in which
$$\omega_i = \frac{n_i}{n}$$
.

0 in which
$$\omega_i = \frac{n_i}{n}$$
.
1 When $cov(x_i, y_i) = cov(x_j, y_j)$

$$\beta_{meta} = \frac{cov(x, y)}{var(x)} = \beta_{mega}$$