Lexical Semantics

COMP90042 Natural Language Processing Lecture 9

Sentiment Analysis

- Bag of words, kNN classifier. Training data:
 - "This is a good movie." →
 □

 - "This is a terrible film." →
- "This is a wonderful film." → ?
- Two problems:
 - The model does not know that "movie" and "film" are synonyms. Since "film" appears only in negative examples the model learns that it is a negative word.
 - "wonderful" is not in the vocabulary (OOV Out-Of-Vocabulary).

Sentiment Analysis

- Comparing words directly will not work. How to make sure we compare word meanings instead?
- Solution: add this information explicitly through a lexical database.

Word Semantics

- Lexical semantics (this lecture)
 - How the meanings of words connect to one another.
 - Manually constructed resources: lexicons, thesauri, ontologies, etc.
- Distributional semantics (next)
 - How words relate to each other in the text.
 - Automatically created resources from corpora.

What Do Words Mean?

- Referents in the physical or social world
 - But not usually useful in text analysis
- Their dictionary definition
 - But dictionary definitions are necessarily circular
 - Only useful if meaning is already understood

```
red n. the color of blood or a ruby.blood n. the red liquid that circulates in the heart, arteries and veins of animals.
```

- Their relationships with other words
 - Also circular, but more practical

Word Senses

 A word sense describes one aspect of the meaning of a word

```
mouse<sup>1</sup>: .... a mouse controlling a computer system in 1968.
mouse<sup>2</sup>: .... a quiet animal like a mouse
bank<sup>1</sup>: ...a bank can hold the investments in a custodial account ...
bank<sup>2</sup>: ...as agriculture burgeons on the east bank, the river ...
```

Word Glosses

- Gloss: textual definition of a sense, given by a dictionary
- Bank:
 - financial institution that accepts deposits and channels the money into lending activities
 - sloping land (especially the slope beside a body of water)
- If a word has multiple senses, it is polysemous

Meaning Through Relations

- Another way to define meaning: by looking at how it relates to other words
- Synonymy: near identical meaning
 - vomit vs. throw up
 - big vs. large
- Antonymy: opposite meaning
 - long vs. short
 - big vs. little

Meaning Through Relations (2)

- Hypernymy: is-a relation
 - cat is an animal
 - mango is a fruit
- Meronymy: part-whole relation
 - leg is part of a chair
 - wheel is part of a car

Meaning Through Relations (3)

WordNet

- A database of lexical relations
- English WordNet includes ~120,000 nouns, ~12,000 verbs, ~21,000 adjectives, ~4,000 adverbs
- On average: noun has 1.23 senses; verbs 2.16
- WordNets available in most major languages (<u>www.globalwordnet.org</u>, <u>https://babelnet.org/</u>)
- English version freely available (accessible via NLTK)

WordNet Example

The noun "bass" has 8 senses in WordNet.

- 1. bass¹ (the lowest part of the musical range)
- 2. bass², bass part¹ (the lowest part in polyphonic music)
- 3. bass³, basso¹ (an adult male singer with the lowest voice)
- 4. sea bass¹, bass⁴ (the lean flesh of a saltwater fish of the family Serranidae)
- 5. freshwater bass¹, bass⁵ (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- 6. bass⁶, bass voice¹, basso² (the lowest adult male singing voice)
- 7. bass⁷ (the member with the lowest range of a family of musical instruments)
- 8. bass⁸ (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Synsets

- Nodes of WordNet are not words or lemmas, but senses
- There are represented by sets of synonyms, or synsets
- Bass synsets:
 - ▶ {bass¹, deep⁶}
 - ▶ {bass⁶, bass voice¹, basso²}
- Another synset:
 - {chump¹, fool², gull¹, mark⁵, patsy¹, fall guy¹, sucker¹, soft touch¹, mug²}
 - Gloss: a person who is gullible and easy to take advantage of

Synsets (2)

>>> nltk.corpus.wordnet.synsets('bank')

```
[Synset('bank.n.01'), Synset('depository_financial_institution.n.01'), Synset('bank.n.03'), Synset('bank.n.04'), Synset('bank.n.05'), Synset('bank.n.06'), Synset('bank.n.07'), Synset('savings_bank.n.02'), Synset('bank.n.09'), Synset('bank.n.10'), Synset('bank.v.01'), Synset('bank.v.02'), Synset('bank.v.03'), Synset('bank.v.04'), Synset('bank.v.05'), Synset('deposit.v.02'), Synset('bank.v.07'), Synset('trust.v.01')]
```

>>> nltk.corpus.wordnet.synsets('bank')[0].definition()

u'sloping land (especially the slope beside a body of water)'

>>> nltk.corpus.wordnet.synsets('bank')[1].lemma_names()

[u'depository_financial_institution', u'bank', u'banking_concern', u'banking_company']

Lexical Relations in WordNet

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$breakfast^1 ightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Instance Hypernym	Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Instance Hyponym	Has-Instance	From concepts to their instances	$composer^1 \rightarrow Bach^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 ightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follower^1$
Derivation		Lemmas w/same morphological root	$destruction^1 \iff destroy^1$

Hypernymy Chain

```
bass<sup>3</sup>, basso (an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                   => living thing, animate thing,
                      => whole, unit
                         => object, physical object
                            => physical entity
                               => entity
bass<sup>7</sup> (member with the lowest range of a family of instruments)
=> musical instrument, instrument
   => device
      => instrumentality, instrumentation
         => artifact, artefact
            => whole, unit
               => object, physical object
                   => physical entity
                      => entity
```

16

Word Similarity

Word Similarity

- Synonymy: film vs. movie
- What about show vs. film? opera vs. film?
- Unlike synonymy (which is a binary relation), word similarity is a spectrum
- We can use lexical database (e.g. WordNet) or thesaurus to estimate word similarity

Word Similarity with Paths

- Given WordNet, find similarity based on path length
- pathlen $(c_1, c_2) = 1 + \text{edge length in the shortest}$ path between sense c_1 and c_2
- similarity between two senses:

similarity between two words

$$\mathbf{wordsim}(w_1, w_2) = \max_{c_1 \in \text{senses}(w_1), c_2 \in \text{senses}(w_2)} \operatorname{simpath}(c_1, c_2)$$

Examples

$$simpath(c_1, c_2) = \frac{1}{pathlen(c_1, c_2)}$$

simpath(nickel,coin) = 1/2 = 0.5

simpath(nickel,currency)

$$= 1/4 = 0.25$$

simpath(nickel,money)

$$= 1/6 = 0.17$$

simpath(nickel,Richter scale)

$$= 1/8 = 0.13$$

Beyond Path Length

- Problem: edges vary widely in actual semantic distance
 - Much bigger jumps near top of hierarchy
- Solution 1: include depth information (Wu & Palmer)
 - Use path to find lowest common subsumer (LCS)
 - Compare using depths

$$simwup(c_1,c_2) = \frac{2*depth(LCS(c1,c2))}{depth(c1) + depth(c2)}$$

COMP90042

Examples

$$simwup(c_1,c_2) = \frac{2*depth(LCS(c1,c2))}{depth(c1) + depth(c2)}$$

simwup(nickel, money) = 2*2/(3+6) = 0.44

simwup(nickel, Richter scale) =

2*1/(3+6) = 0.22

Abstract Nodes

- But count of edges or node depth is still poor semantic distance metric
- Nodes high in the hierarchy is very abstract/general
- How do we make words that connect through very abstract nodes much less similar

▶ simwup(nickel,money) = 0.44

simwup(nickel, Richter scale) = 0.22

standard

Concept Probability

$$P(c) = \frac{\sum_{w \in \text{words}(c))} \text{count}(w)}{N}$$

- P(c): probability that a randomly selected word in a corpus is an instance of concept c
- words(c): set of all words that are children of c
- words(geological-formation) = {hill, ridge, grotto, coast, natural elevation, cave, shore}
- words(natural elevation) = {hill, ridge}

Example

 Abstract nodes higher in the hierarchy has a higher P(c)

0.0000189

hill

Similarity with Information Content

0.0000216

coast

26

Sentiment Analysis Revisited

- "This is a great movie." → [©]
- "This is a wonderful film." → ?
- Comparing words using WordNet paths work well if our classifier is based on word similarities (such as kNN)
- But what if we want sense as a general feature representation, so we can employ other classifiers?
- Solution: map words in text to senses in WordNet explicitly.

Word Sense Disambiguation

- Task: selects the correct sense for words in a sentence
- Baseline:
 - Assume the most popular sense
- Good WSD potentially useful for many tasks in NLP
 - In practice, often ignored because good WSD too hard
 - Active research area

Supervised WSD

- Apply standard machine classifiers
- Feature vectors typically words and syntax around target
 - But context is ambiguous too!
 - How big should context window be? (typically very small)
- Requires sense-tagged corpora
 - ▶ E.g. SENSEVAL, SEMCOR (available in NLTK)
 - Very time consuming to create!

Less Supervised Approaches

- Lesk: Choose sense whose dictionary gloss from WordNet most overlaps with the context
- The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.
- bank1: 2 overlapping non-stopwords, deposits and mortgage
- bank²: 0

bank ¹	Gloss:	a financial institution that accepts deposits and channels the	
		money into lending activities	
	Examples:	"he cashed a check at the bank", "that bank holds the mortgage	
		on my home"	
bank ²	Gloss:	sloping land (especially the slope beside a body of water)	
	Examples:	"they pulled the canoe up on the bank", "he sat on the bank of	
		the river and watched the currents"	30

Other Databases - FrameNet

- Based on frame semantics
 - Mary bought a car from John
 - John sold a car to Mary
 - Same situation (semantic frame), just different perspective
- A lexical database of frames, typically prototypical situations
 - E.g. "commerce_buy", "apply_heat"

FrameNet

- Includes lists of lexical units that evoke the frame
 - ▶ E.g. *cook*, *fry*, *bake*, *boil*, etc.
- Lists of semantic roles or frame elements
 - E.g. "the cook", "the food", "the container", "the instrument"
- Semantic relationships among frames
 - "apply_heat" is Causative of "absorb_heat", is Used by "cooking_creation"

Moving On To The Corpus

- Manually-tagged lexical resources an important starting point for text analysis
- But much modern work attempts to derive semantic information directly from corpora, without human intervention
- Distributional semantics!

Reading

• JM3 Ch 19.1-19.3, 19.4.1, 19.5.1