SURFACE AC USTIC WAVE FILTER WITH DIFFERENT INPUT AND OUTPUT IMPE

Patent number:

JP2001144574

Publication date:

2001-05-25

Inventor:

WATANABE YOSHIHISA

Applicant:

TOYO COMMUN EQUIP CO LTD

Classification:

- international:

H03H9/145; H03H9/25;

- european:

Application number: JP19990320405 19991111

Priority number(s):

Abstract of JP2001144574

PROBLEM TO BE SOLVED: To obtain a means that differentiates the input impedance from the output of a longitudinally coupled duplex mode SAW filter and forms its input to be an unbalanced input circuit and its output to be a balanced circuit.

SOLUTION: The primary-ternary longitudinally coupled duplex mode SAW filter has three IDT electrodes on its piezoelectric substrate and a grating reflector placed on both sides. A line occupancy rate of the middle IDT is differentiated from the line occupancy rate of the IDT electrodes of the middle IDT, the electrode period of the IDT electrodes is finely adjusted so as to form the surface acoustic wave filter whose input impedance differs from the output impedance.

BEST AVAILABLE COPY

(12)公開特許公報 (A)

(11)特許出願公開番号

特開 2 0 0 1 — 1 4 4 5 7 4 (P 2 0 0 1 — 1 4 4 5 7 4 A) (43)公開日 平成13年5月25日(2001. 5. 25)

H 0 3 H 9/145 9/25 9/64 審查請求 未記 (21)出願番号 特願平	職別記号 請求 請求項の数 6 11-320405	OL		9/145 9/25 9/64	Z A D Z Z (全8頁)	テーマコード(参考) 5J097
9/25 9/64 審査請求 未記 (21)出願番号 特願平		OL		9/25	A D Z Z	5J097
9/64 審査請求 未記(21)出願番号 特願平		OL			D Z Z	
9/64 審査請求 未記 (21)出願番号 特願平		OL			z z	
9/64 審査請求 未記 (21)出願番号 特願平		OL			Z	
審査請求 未記 (21)出願番号 特願平		OL		9/64		
(21)出願番号 特願平		OL	. 0.30	·	(全8頁)	
	11-320405					
	11-320405	i			•	
(22)出願日 平成11:			(71)出願人		=	
(22)出願日 平成11:			東洋通信機株式会社			
	以11年11月11日(1999.11.11)			神奈川県	高座郡寒川岡	叮小谷2丁目1番1号
•			(72)発明者	渡辺 芳	久	
				神奈川県	高座郡寒川岡	叮小谷二丁目1番1号
				東洋通信	機株式会社P	ካ
			Fターム(参	考) 5J09'	7 AA11 AA33	BB03 BB14 CC02
					DD04 DD13	DD15 DD28 GG03
		1			KK01 KK04	
•						
					•	
		1				
	•					
		1				

(54) 【発明の名称】入出力インピーダンスを異にした弾性表面波フィルタ

(57)【要約】

【課題】 縦結合二重モードSAWフィルタの入出力インピーダンスを互いに異ならせると共に、入力側を不平 衡型、出力側を平衡型回路とする手段を得る。

【解決手段】 圧電基板に3つのIDT電極とその両側にグレーティング反射器を配置した1次-3次縦結合二重モードSAWフィルタであって、前記中央のIDT電極のライン占有率とその両側のIDT電極のライン占有率とを異ならせると共に、前記IDT電極の電極周期を微調整して入出力インピーダンスの異なる弾性表面波フィルタを形成する。

1

【特許請求の範囲】

【請求項1】 圧電基板の主面上に表面波の伝搬方向に 沿って3つのIDT電極を近接して配置すると共に、そ れらの両側にグレーティング反射器を配設した1次-3 次縦結合二重モードSAWフィルタにおいて、

前記1次-3次縦結合二重モードSAWフィルタにおける中央のIDT電極ライン占有率とその両側のIDT電極ライン占有率とを特徴とする入出力インピーダンスを異にした弾性表面波フィルタ。

【請求項2】 圧電基板の主面上に表面波の伝搬方向に 10 沿って3つのIDT電極を近接して配置すると共に、それらの両側にグレーティング反射器を配設した1次-3 次縦結合二重モードSAWフィルタを2段縦続接続したフィルタにおいて、

一方の1次-3次縦結合二重モードSAWフィルタにおける中央のIDT電極のライン占有率と両側のIDT電極のライン占有率と両側のIDT電極のライン占有率とを互いに異ならせ、他方の1次-3次縦結合二重モードSAWフィルタにおける中央のIDT電極のライン占有率と両側のIDT電極のライン占有率とを互いに異ならせると共に、縦続接続する相互のIDT電極のライン占有率をほぼ等しくしたことを特徴とする入出力インピーダンスを異にした弾性表面波フィルタ。

【請求項3】 圧電基板の主面上に表面波の伝搬方向に 沿って2つのIDT電極を近接して配置すると共に、そ れらの両側にグレーティング反射器を配設した1次-2 次縦結合二重モードSAWフィルタにおいて、

前記2つのIDT電極のライン占有率を互いに異ならせたことを特徴とする入出力インピーダンスを異にした弾性表面波フィルタ。

【請求項4】 圧電基板の主面上に表面波の伝搬方向に沿って2つのIDT電極を近接して配置すると共に、それらの両側にグレーティング反射器を配設した1次-2 次縦結合二重モードSAWフィルタを2段縦続接続したフィルタにおいて、

前記第1の1次-2次縦結合二重モードSAWフィルタの2つのIDT電極のライン占有率を互いに異ならせ、前記第2の1次-2次縦結合二重モードSAWフィルタの2つのIDT電極のライン占有率を互いに異ならせると共に、縦続接続する相互のIDT電極のライン占有率 40をほぼ等しくしたことを特徴とする入出力インピーダンスを異にした弾性表面波フィルタ。

【請求項5】 前記ライン占有率の値を入力側から出力側にかけて単調に増加させるか、あるいは減少せしめたことを特徴とする請求項2及び4記載の入出力インピーダンスを異にした弾性表面波フィルタ。

【請求項6】 前記IDT電極のライン占有率の大きいものはライン占有率を小さくしたものより、電極周期を小さくしたことを特徴とする請求項1乃至5の入出力インピーダンスを異にした弾性表面波フィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は弾性表面波フィルタ に関し、特にフィルタ特性を損なうことなく、入出力の インピーダンスを互いに異ならせた弾性表面波フィルタ に関する。

[0002]

【従来の技術】近年、弾性表面波フィルタ(以下、SA Wフィルタと称す)は通信分野で広く利用され、高性 能、小型、量産性等の優れた特徴を有することから特に 携帯電話等に多く用いられている。図7は従来の1次、 3次縦モードを利用した1次-3次縦結合二重モードS AWフィルタ(以下、1次-3次二重モードSAWフィ ルタと称す)の構成を示す平面図であって、圧電基板5 1の主面上に表面波の伝搬方向に沿って3つの I D T電 極52、53、54を互いに近接配置すると共に、それ らの両側にグレーティング反射器55a、55b(以 下、反射器と称す)を配設して構成したものである。 I DT電極52、53、54はそれぞれ互いに間挿し合う 20 複数本の電極指を有する一対のくし形電極により構成さ れ、図中中央の I D T 電極 5 2 の一方のくし形電極は入 力端子INに接続され、他方のくし形電極は接地される。 さらに、両側のIDT電極53、54のそれぞれ一方の くし形電極は互いに連結されて、出力端子OUTに接続さ れると共に、他方のくし形電極はそれぞれ接地される構 成となっている。ここで、IDT電極52、53、54 の電極指幅をT1、スペース幅をT2、反射器55a、 55bの電極指幅をR1、スペース幅をR2と設定する と、IDT電極52、53、54及び反射器55a、5 5 b の電極周期Lτ、LRと、ライン占有率 η ι、η z はそれ ぞれ L_T =2 (T1+T2)、 L_R =2 (R1+R2) と、 $\eta_1 = T1/(T1+T2)$, $\eta_2 = R1/(R1+R)$ 2) と表される。

【0003】図7に示す1次-3次二重モードSAWフィルタの動作は、周知のように、IDT電極52、53、54によって励起される複数の表面液が反射器55a、55bの間に閉じ込められて音響結合し、IDT電極パターンにより1次と3次の2つの縦共振モードが強勢に励振されるため、適当な終端を施すことによりこれらの2つのモードを利用した1次-3次二重モードSAWフィルタとして動作する。なお、該二重モードSAWフィルタの通過帯域幅は1次共振モードと3次共振モードとの周波数差で決まることは周知の通りである。

【0004】図8は、欧州デジタル携帯電話システムG SMの受信RFフィルタ用として設計した中心周波数84 7.5MHz、通過帯域幅25MHzの1次-3次二重モー ドSAWフィルタのフィルタ特性を示す図で、36°Y カットX伝搬LiTaO3基板51上に、中央のIDT 電極52を23.5対、両側のIDT電極53、54をそれ 50 ぞれ13.5対、反射器55a、55bの本数をそれぞれ15

4

0本、交差長 45λ 、電極膜厚Hを $6.5\%\lambda$ 、IDT電極及び反射器のライン占有率 η_1 、 η_2 をそれぞれ0.5、0.5、IDT電極と反射器との電極周期比(以下、電極周期比と称す) L_T/L_R を0.981とした場合の特性である。横軸は周波数(MHz)を、縦軸は挿入損失(Loss)を表示している。

[0005]

【発明が解決しようとする課題】図9はGSM携帯電話 器に用いられているRFフィルタ71の近傍を示すブロ ック回路図である。800MHz帯という高周波におい 10 ては、デバイスを含めた系のインピーダンスを50Ω系 に設計するのが一般的であり、前段の低雑音増幅器70 のインピーダンスも50 Ω に設定されおり、RF-SA Wフィルタ71の終端インピーダンスも50Ωに設計さ れている。携帯電話の小型化と低コスト化を図るため、 図9の破線で示す部分は近年ではIC化されたものが主 流となっており、後段のミキサ72の入力インピーダン ス Z は、必ずしも 5 0 Q ではなく半導体メーカーにより 50Ωから300Ωのものが供給されており、そのまま ではRF-SAWフィルタとのインピーダンス整合が実 20 現できない。上述のような場合には、両者のインピーダ ンスを整合させるため、インピーダンス整合回路74を 両者の間に挿入することになる。また、ミキサ72以降 の回路はセット内部のデジタル回路部等で生じるノイズ を軽減するために、平衡回路で設計されているので、不 平衡型RF-SAWフィルタ71を平衡型回路に変換す る不平衡型-平衡型変換回路73を、RF-SAWフィ ルタ71とインピーダンス整合回路74との間に挿入す る。尚、不平衡型ー平衡型変換回路73としてトランス を用いるのが一般的である。以上のように、従来の50 Ω終端の不平衡型RF-SAWフィルタをGSM用のR F回路に採用すると、上述のように不平衡型ー平衡型変 換回路73とインピーダンス整合回路74とが必要にな り、携帯電話器の形状が大きくなると共に、コストが増 大するという問題があった。

【0006】この問題を解決すべく、図10に示すような入出力インピーダンスの異なる平衡型1次-3次二重モードSAWフィルタと従来の1次-3次二重モードSAWフィルタの違いは、中央のIDT電極62の構成にある。即ち、図10に示40すように、両側のIDT電極63、64の一方のくし形電極を連結して入力端子INに接続し、他方のくし形電極はそれぞれ接地する。そして、IDT電極62の一方のくし形電極を接地すると共に、他方のバスバーをその中央部で分割し、分割された両方のバスバーからそれぞれ出力を取り出し、第1の出力OUT1と第2の出力OUT2としている。このような構成にすることにより、入力不平衡型一出力平衡型のフィルタを構成することが可能となると共に、出力インピーダンスを入力インピーダンスの4倍とすることができる。これはバスバーを中央で分割す50

ることにより、それぞれのインピーダンスが2倍となり、これを直列に接続した回路構成となるからである。【0007】しかしながら、上記の図10に示す平衡型1次−3次二重モードSAWフィルタにおいても、入力側のインピーダンス2inは任意のインピーダンスに設定できるものの、出力側インピーダンスZoutはZinに依存し、Zinの4倍以外の値に設定することはできない。即ち、要求される50 Ω から30 Ω の任意のインピーダンスに設定することはできないという問題があった。本発明は上記問題を解決するためになされたものであって、入力側インピーダンスを 要求される任意のインピーダンスに設定できる1次−3次二重モードSAWフィルタとを提供することを目的とする。

[0008]

【課題を解決するための手段】上記目的を達成するため に本発明に係る入出力インピーダンスを異にした弾性表 面波フィルタの請求項1記載の発明は、圧電基板の主面 上に表面波の伝搬方向に沿って3つのIDT電極を近接 して配置すると共に、それらの両側にグレーティング反 射器を配設した1次-3次縦結合二重モードSAWフィ ルタにおいて、前記1次-3次縦結合二重モードSAW フィルタにおける中央のIDT電極ライン占有率とその 両側のIDT電極ライン占有率とを異ならせたことを特 徴とする入出力インピーダンスを異にした弾性表面波フ イルタである。請求項2記載の発明は、圧電基板の主面 上に表面波の伝搬方向に沿って3つのIDT電極を近接 して配置すると共に、それらの両側にグレーティング反 射器を配設した1次-3次縦結合二重モードSAWフィ ルタを2段縦続接続したフィルタにおいて、一方の1次 -3次縦結合二重モードSAWフィルタにおける中央の IDT電極のライン占有率と両側のIDT電極のライン 占有率とを互いに異ならせ、他方の1次-3次縦結合二 重モードSAWフィルタにおける中央の IDT電極のラ イン占有率と両側のIDT電極のライン占有率とを互い に異ならせると共に、縦続接続する相互のIDT電極の ライン占有率をほぼ等しくしたことを特徴とする入出力 インピーダンスを異にした弾性表面波フィルタである。 請求項3記載の発明は、圧電基板の主面上に表面波の伝 搬方向に沿って2つのIDT電極を近接して配置すると 共に、それらの両側にグレーティング反射器を配設した 1次-2次縦結合二重モードSAWフィルタにおいて、 前記2つのIDT電極のライン占有率を互いに異ならせ たことを特徴とする入出力インピーダンスを異にした弾 性表面波フィルタである。請求項4記載の発明は、圧電 基板の主面上に表面波の伝搬方向に沿って2つのIDT 電極を近接して配置すると共に、それらの両側にグレー ティング反射器を配設した1次-2次縦結合二重モード SAWフィルタを2段縦続接続したフィルタにおいて、

分かる。

5

前記第1の1次-2次縦結合二重モードSAWフィルタの2つのIDT電極のライン占有率を互いに異ならせ、前記第2の1次-2次縦結合二重モードSAWフィルタの2つのIDT電極のライン占有率を互いに異ならせると共に、縦続接続する相互のIDT電極のライン占有率をほぼ等しくしたことを特徴とする入出力インピーダンスを異にした弾性表面波フィルタである。請求項5記載の発明は、前記ライン占有率の値を入力側から出力側にかけて単調に増加させるか、あるいは減少せしめたことを特徴とする請求項2及び4記載の入出力インピーダンスを異にした弾性表面波フィルタである。請求項6記載の発明は、前記IDT電極のライン占有率の大きいものはライン占有率を小さくしたものより、電極周期を小さくしたことを特徴とする請求項1乃至5の入出力インピーダンスを異にした弾性表面波フィルタである。

[0009]

【発明の実施の形態】以下本発明を図面に示した実施の 形態に基づいて詳細に説明する。図1は本発明に係る入 出力インピーダンスを異にした1次-3次二重モードS AWフィルタの構成を示す図であって、圧電基板1の主 20 面上に表面波の伝搬方向に沿って3つの I D T電極2、 3、4を互いに近接配置すると共に、それらの両側に反 射器5a、5bを配設して構成したものである。IDT 電極2、3、4はそれぞれ互いに間挿し合う複数本の電 極指を有する一対のくし形電極により構成され、図中中 央のIDT電極2の一方のくし形電極は入力端子INに接 続され、他方のくし形電極は接地される。さらに、両側 のIDT電極3、4のそれぞれ一方のくし形電極は互い に連結されて、第1の出力端子OUT1に接続されると共 に、他方のくし形電極はそれぞれ連結されて第2の出力 30 端子OUT2に接続され、入力不平衡型-出力平衡型のフィ ルタを構成している。

【0010】本発明の特徴はIDT電極2の電極周期及 びライン占有率と、IDT電極3、4の電極周期及びラ イン占有率とを互いに異ならしめたことにある。即ち、 IDT電極2の電極指幅をL1、スペース幅をS1、I DT電極3、4の電極指幅をL2、スペース幅をS2、 反射器5a、5bの電極指幅をR1、スペース幅をR2 とすると、IDT電極2、IDT電極3、4及び反射器 5 a 、 5 b の電極周期L_{1T}、L_{2T}及びL_Rは、それぞれL_{1T} $= 2 (L1+S1) , L_{2T}=2 (L2+S2)$ 及びL_R= 2 (R1+R2) と表され、ライン占有率 n1、 n2及び $\eta_R l l \eta_1 = L 1 / (L 1 + S 1), \eta_2 = L 2 / (L 2)$ +S2) 及びη_R=R1/(R1+R2)となり、電極 周期Lιτ、L2τ及びライン占有率 η ι、η 2とを互いに異な らしめたことである。尚、IDT電極2と、IDT電極 3あるいは4との最内側電極指の中心間間隔をLrr、I DT電極3、4と反射器5a、5bとの最内側電極指の 間隔を口とする。

【0011】図1に示す1次-3次二重モードSAWフ 50 て、それぞれのIDT電極の電極周期を合わせる、即ち

ィルタにおいては、中央のIDT電極指2のライン占有 率η1に比べて、IDT電極3、4のライン占有率η2を 小さく設定することにより、出力インピーダンスZout を入力インピーダンスZinに比べて大きくできるという 特徴がある。このように、1次-3次二重モードSAW フィルタを入力不平衡型-出力平衡型とし、入力インピ **ーダンスを50Ω、出力インピーダンスを図9に示した** ミキサ72のインピーダンスZと同一とすることによ り、従来、必要としていた不平衡型-平衡型変換回路7 3とインピーダンス整合回路74とを除去することがで き、高周波段を小型化できるとと共に、低コスト化する ことが可能となる。ここで、ライン占有率ηとSAW共 振子のインピーダンス Z との関係を簡単に説明する。3 6° タンタル酸リチウム圧電基板上にIDT電極とその 両側に反射器を配置して構成したSAW共振子のインピ ーダンスZと、IDT電極のライン占有率 n との関係

は、周知のように、図11の曲線のように表される。こ

の図の縦軸は、ライン占有率が50%のときのインピー ダンス2。で規準化して表示している。図11から明らか

なように、ライン占有率 η を 5 0 %より大きくすれば S

AW共振子のインピーダンスは規準値Zoより減少し、5

0%より小さくすればインピーダンスは増大することが

【0012】しかし、周知のように、ライン占有率ηを 変化させるとSAW共振子の共振周波数まで変動し、通 過帯域が劣化、例えば通過帯域が傾斜し、帯域幅の減少 する等が生ずる。これを防止する必要が生じた場合には ライン占有率に応じて、電極周期を補正すればよい。ラ イン占有率ηと共振周波数との関係を簡単に説明する。 図12に示す曲線は、基板に36° タンタル酸リチウム を用いたSAW共振子のライン占有率ηと規準化周波数 との関係を示す曲線で、ライン占有率 η を0.3から0.7ま で変化さた場合の規準化周波数(ライン占有率 n = 0.5 のときの周波数で規準化)の変動の様子を示す曲線で、 例えばライン占有率 η =0.5より η を小さくすると共振 周波数は増加し、大きくすると低下することが分かる。 これはライン占有率 η を0.5より小さくすることによ り、図13に示すようにその領域の伝搬速度が速くなる からであり、共振周波数 f は $f = V / \lambda$ (V:表面波の 速度、 λ:励起される表面波の波長≒電極周期 L) の関 係式より上昇することになる。

【0013】ここで、図1と図13とを用いてさらに詳しく説明する。図1において例えば、IDT電極2のライン占有率 η_1 を0.7、IDT電極3、4のライン占有率 η_2 を0.4と設定したとすると、標準のライン占有率0.5のときの表面波の伝搬速度(位相速度)Vsに比べてIDT電極2の領域では伝搬速度が ΔV_1 だけ減少し、IDT電極3、4の領域では伝搬速度が ΔV_2 だけ上昇する。そこで、それぞれのIDT電極領域の伝搬速度に合わせて、それぞれのIDT電極の質極周期を合わせる。即ち

8

IDT電極2の領域ではその電極周期を正規の配置より わずかに小さく、IDT電極3、4の領域では電極周期 をわずかに大きくすることによって、中央のIDT電極 2と両側のIDT電極3、4の周波数が一致するよう に、電極周期を微調整することが可能となる。

【0014】図2は本発明に係る1次-3次二重モードSAWフィルタの第2の実施例であって、図1のものとは逆に両側のIDT電極13、14のライン占有率 η'2を0.7とし、中央のIDT電極12のライン占有率 η'1を0.4と小さくして、出力インピーダンスを増大させる。この手段によっても携帯端末のRFフィルタ近傍から不平衡型-平衡型変換回路73とインピーダンス整合回路74とを除去することが可能である。

【0015】図3は、欧州デジタル携帯電話システムG SMの受信RFフィルタ用に、図2の電極構成を用いて 設計した中心周波数847.5MH z、通過帯域幅25MH z、入出力インピーダンス50Ω-100Ωの1次-3 次二重モードSAWフィルタのフィルタ特性を示す図 で、36°YカットX伝搬LiTaO3基板51上に、 中央のIDT電極12を23.5対、両側のIDT電極1 3、14をそれぞれ13.5対、反射器15a、15bの本 数をそれぞれ150本、交差長30 A 、電極膜厚Hを6.5% λ、IDT電極12とIDT電極13、14及び反射器 15a、15bのライン占有率η'1、η'2及びη'Rをそ れぞれ0.4、0.7及び0.5、IDT電極と反射器との電極 周期比Lr/Lrを0.981(電極周期Lrとしてはライン占有 る。横軸は周波数 (MHz) を、縦軸は挿入損失 (Loss) を表示している。なお、ライン占有率 η を η = 0.5に設 定した場合から変化させているので、η=0.5のときの 電極周期で規準化してIDT電極12の電極周期は1.00 75、IDT電極13、14の電極周期は0.9925としてい る。また、電極指間間隔LTTは0.3%、IDT電極と反射 器の間隔Dは0.25 2 としている。このように構成したこ とにより入力インピーダンス50Ω、出力インピーダン ス100ΩのRFフィルタを実現することができた。

【0016】図4は本発明に係る第3の実施例を示すものである。図4に示すように、1次-3次二重モードフィルタAの中央のIDT電極22の一方のくし形電極を入力端子INに接続し、他方のくし形電極を接地する。さ 40 ちに、両側のIDT電極23、24の一方のくし形電極を連結して接地すると共に、他方のくし形電極は連結して中間出力とし、後述する次段の1次-3次二重モードフィルタA'の入力に接続する。該フィルタA'の両側のIDT電極23'、24'の一方のくし形電極を連結して、前記中間出力に接続すると共に、他方のくし形電極をそれぞれ接地する。さらに、フィルタA'の中央のIDT電極22'の一方のくし形電極を第1の出力のUT1と接続し、他方のくし形電極を第2の出力OUT1と接続し、他方のくし形電極を第2の出力OUT1と接続し、他方のくし形電極を第2の出力OUT1に接続することによって、2段縦続接続型の1次-3次二重モー 50

ドフィルタにおいても、入力不平衡型-出力平衡型を実 現したものである。

【0017】更に、入力側の1次-3次二重モードSA WフィルタAの入力インピーダンスを50ΩとすべくI DT電極22のライン占有率 n1を大きくすると共に、 縦続接続部よりみた中間出力インピーダンスを入力イン ピーダンスより高めるために、両側IDT電極23、2 4のライン占有率η2をη1より少し小さく設定する。そ して、次段の1次-3次二重モードSAWフィルタA' 10 の両側 I D T 電極 2 3 '、 2 4 'のライン占有率 η 3 を 縦続接続部のインピーダンスを整合させるために、ID T電極23、24の占有率n2とほぼ同一とした上で、 出力となる中央のIDT電極22'のライン占有率na をη₃より小さく設定し、出力インピーダンスZoutを増 大させる。このように入力INから出力OUT1、2にかけて 順次インピーダンスを増加させる手段をとると、各段の 1次-3次二重モードフィルタの設計が容易となると共 に、フィルタ特性の劣化、例えば通過域のリップルの増 加等を防止することができる。この場合も、ライン占有 20 率の大きいIDT電極についてはライン占有率の小さい ものより電極周期を小さく設定して各IDT電極の周波 数が一致するように構成することが望ましい。

【0018】図5は本発明に係る第4の実施例である1 次-2次二重モードSAWフィルタの構成を示す平面図 であって、圧電基板31の主面上に表面波の伝搬方向に 沿って2つのIDT電極32、33を近接配置すると共 に、それらの両側に反射器34a、34bを配設して構 成したものである。IDT電極32の一方のくし形電極 を入力端子INに接続すると共に、他方のくし形電極を接 30 地する。さらに、IDT電極33の一方のくし形電極を 第1の出力端子OUT1に接続すると共に、他方のくし形電 極を第2の出力端子OUT2に接続して、入力不平衡型一出 力平衡型の1次-2次二重モードSAWフィルタを構成 する。図5に示す1次-2次二重モードSAWフィルタ の動作は、周知のように、IDT電極32、33によっ て励起される複数の表面波が反射器34a、34bの間 に閉じ込められて音響結合し、IDT電極パターンによ り1次と2次の2つの縦共振モードが強勢に励振される ため、適当な終端を施すことによりこれらの2つのモー ドを利用した1次-2次二重モードSAWフィルタとし て動作する。

【0019】第4に示した実施例の特徴は、出力側を平衡型回路構成とすると共に、入力インピーダンスと出力インピーダンスとを互いに異ならせたことである。即ち、図5に示すように、IDT電極32のライン占有率n1よりもIDT電極33のライン占有率n2を小さく設定することにより、出力側のインピーダンスを増大させることができる。

【0020】図6は本発明に係る第5の実施例を示す平 面図であって、2段縦続接続1次-2次二重モードSA (6)

Wフィルタにおいて、入力不平衡型ー出力平衡型フィルタを構成したものである。上述したように、ライン占有率 n を入力側から順次小さくすることにより、入力インピーダンスよりも出力インピーダンスを増大することができる。

【0021】また、図10に示した電極構成の1次-3次二重モードSAWフィルタに本発明を適用してもよいことは云うまでもない。以上の実施例では圧電基板にタンタル酸リチウムを用いて説明したが、本発明はこれに限定する必要はなく、他の圧電材料、例えば、ニオブ酸 10リチウム、ランガサイト、四方酸リチウム等に適用できることは云うまでもない。

[0022]

【発明の効果】本発明は、以上説明したように構成したので、従来の1次-3次二重モードSAWフィルタをGSM携帯電話のRFフィルタとして用いる場合に必要としていた不平衡型-平衡型変換回路とインピーダンス整合回路とを除去することが可能となり、高周波段を小型化できると共に、低コスト化することができるという優れた効果を表す。

【図面の簡単な説明】

【図1】本発明に係る1次-3次二重モードSAWフィルタの構成を示す平面図である。

【図2】本発明に係る第2の実施例の1次-3次二重モードSAWフィルタの構成を示す平面図である。

【図3】本発明の第2の実施例の1次-3次二重モード SAWフィルタのフィルタ特性を示すシミュレーション 図である。

【図4】本発明に係る第3の実施例の縦続接続型1次-3次二重モードSAWフィルタの構成を示す平面図であ 30 る。

【図5】本発明に係る第4の実施例の1次-2次二重モードSAWフィルタの構成を示す平面図である。

【図6】本発明に係る第5の実施例の縦続接続型1次-2次二重モードSAWフィルタの構成を示す平面図である。

【図7】従来の1次-3次二重モードSAWフィルタの 構成を示す平面図である。

【図8】従来の1次-3次二重モードSAWフィルタのフィルタ特性を示すシミュレーション図である

【図9】GSM携帯電話システムに用いられているRFフィルタ近傍のブロック図である。

【図10】入力不平衡型ー出力平衡型1次-3次二重モードSAWフィルタの構成を示す平面図である。

【図11】ライン占有率と規準化インピーダンスとの関係を示す図である。

【図12】ライン占有率と規準化周波数との関係を示す 図である。

【図13】ライン占有率と表面波の伝搬速度との関係そ 示す図である。

【符号の説明】

1、11、21、31、41・・圧電基板

2、3、4、12、13、14、22、23、24、22'、23'、24'、32、33、42、43、42'、43'・・IDT電極

5 a、5 b、1 5 a、1 5 b、2 5 a、2 5 b、2 5' a、2 5' b、3 4 a、3 4 b、4 4 a、4 4 b、4 4' a、4 4' b・・グレーティング反射器

L1、L2、L'1、L'2、L3··電極指幅

S1、S2、S'1、S'2・・スペース幅

L_{TT}・・近接する I D T電極の最内側の電極指の中心間 間隔

30 D・・近接するIDT電極と反射器との間隔A、A'・・1次-3次二重モードSAWフィルタIN・・入力

OUT1、OUT2··出力

【図1】

【図2】

BEST AVAILABLE COPY

