ΛΥΣΗ

α) i) Η υπερβολή με εξίσωση $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$, τέμνει τον άξονα x'x στα σημεία $A'(-\alpha,0)$ και $A(\alpha,0)$. Δίνεται A'(-4,0) και A(4,0), άρα θα έχουμε $\alpha=4$.

Οι ασύμπτωτες της υπερβολής $\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}=1$ είναι οι ευθείες $y=\frac{\beta}{\alpha}x$ και $y=-\frac{\beta}{\alpha}x$.

Δίνεται ότι οι ασύμπτωτες της υπερβολής $\,$ είναι οι ευθείες $y=\frac{3}{4}x$ και $y=-\frac{3}{4}x$,

άρα θα έχουμε $\frac{\beta}{\alpha}=\frac{3}{4}$ και επειδή $\alpha=4$, προκύπτει $\beta=3$.

ii) Οι εστίες της υπερβολής $\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}=1$ είναι τα σημεία $E'(-\gamma$, 0) και $E(\gamma$, 0).

Είναι

$$\gamma^2 = \alpha^2 + \beta^2$$

$$\gamma^2 = 4^2 + 3^2$$

$$y^2 = 25$$

$$\gamma = 5$$
.

Επομένως οι εστίες της υπερβολής είναι τα σημεία E'(-5,0) και E(5,0).

β)

