Intro to Symbolic Computation

CS 687 (Winter 2020) with Professor Arne Storjohann

University of Waterloo

Scribe : Saiyue Lyu

Contents

1	Basi	Basic Algebraic Operations 4					
	1.1	Overview	4				
	1.2	Representation of Integer	5				
	1.3	Addition of Integer	6				
	1.4	Representation and Addition of Polynomials	6				
	1.5	Complexity of Arithmetic Operations	6				
	1.6	Concrete Ring	6				
	1.7	Naive Upper Bound on Cost (up to multiplicative const) Operation	7				
	1.8	Reduction Modulo Many Primes/Moduli	9				
	1.9	Greatest Common Divisor	10				
	1.10	Extended Euclidean Algorithm	10				
		Cost Analysis of Extended Euclidean Algorithm	11				
		Applications of the EEA	12				
		Rational Number Reconstruction	12				
2	Eval	Evaluation and Multiplication of Polynomials 14					
	2.1	Motivation	14				
	2.2	Obvious Algorithm	15				
	2.3	Horner's Scheme	15				
	2.4	Non-scalar Complexity	15				
	2.5	Evaluation at a Known Polynomial	16				
	2.6	Polynomial Multiplications	16				
	2.7	Karatsuba	17				
	2.8	Polynomial Multiplications	18				
	2.9	Evaluation and Interpolation Related to Matrix-vector Product	19				
0	From Polynomial Multiplication to Integer Multiplication 24						
3	3.1	Overview	24 24				
			$\frac{24}{25}$				
	3.2	Useful Assumption about M					
	3.3	Fast Division With Remainder	25				
	3.4	p-adic Inversion Using Newton iteration	31				
4	The Chinese Remainder Algorithm 3						
	4.1	Overview	32				
	4.2	Small Refinement to Algorithm	33				
	4.3	Negative Numbers					
	4.4	Variations of Chinese Remaindering					
		Matrix Radix Representator	34				

	4.6	Incremental Chinese Remaindering	34					
5	Fast	Interpolation and Evaluation	35					
	5.1	CRT revisited	35					
	5.2	Recall Lagrange	35					
	5.3	Fast Multi-point Evaluation	35					
	5.4	Recall Lagrange Interpolation	37					
	5.5	Fast Multi-modular Reduction	37					
	5.6	Fast Chinese Remaindering	37					
	5.7	Complexity Summary	38					
	5.8	Fast EEA	38					
	5.9	"GCD-like" Operations	39					
	5.10	Radix Conversion	39					
	5.11	Rational Number Reconstruction	40					
	5.12	Computation in Ring \mathbb{Z}/ \dots	40					
6	Exact Linear Algebra Over $\mathbb{Z} \mathbb{Q} \mathbb{Z} x$ 41							
	6.1		41					
	6.2	Integer Matrix Determinant	42					
	6.3	Single Modular Approach	43					
	6.4	Multiple "Small" Modulii Approach						
	6.5	Non-singular System (Rationals) Solving						
	6.6		46					
	6.7	Solving via Power Series Inversion	46					
	6.8	Dixon's Algorithm	49					
7	The Resultant And A Modular GCD Algorithm in $\mathbb{Z}x$ 51							
	7.1	GCDs over $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$	51					
	7.2	Modular Algorithm for GCD over $\mathbb{Z}[x]$						
	7.3	The Resultant						
	7.4	Key steps of Modular GCD Algorithm						
	7.5	From Integer to Polynomials						
	7.6	Modular Algorithm For GCD Over $F[x,y]$						

List of Definitions

2.9.1 primitive n-th root of unity (n-PRU)
2.9.2 Discrete Fourier Transform (DFT)
2.9.3 support FFT
$3.1.1~{ m M(n)}$
7.1.1 gcd over R
7.1.2 UFD
7.1.3 Associates, lu, normal, contant, primitive root
$7.3.1 \text{ res}(f,g) \dots 55$

Chapter 1

Basic Algebraic Operations

1.1 Overview

Example 1.1.1 (Simplifying Rational Expressions)

$$f = \frac{x+1}{x-1} - \frac{x^3 + 2x + x^2 + 2}{x^3 + 2x - x^2 - 2} + \frac{x^2 + 3}{x-1}$$
$$g = \frac{(x-1)^2 - x^2 - 1 + 2x}{(x+y+2)^{100}}$$

One can define a 'normal' function by:

if the expression is zero, then it should return 0

if the expression is nonzero, then it returns $\frac{poly}{poly}$ in lowest terms.

$$normal(f) = \frac{x^2 + 3}{x - 1}$$
$$normal(g) = 0$$

Example 1.1.2

Solving Recurrences:

$$T(n) = \begin{cases} 2T(n/2) + n/2 & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

Give it to Maple, we get $T(n) = n(1 + \log_2 n)$

Example 1.1.3 (Symbolic Summation)

$$\sum_{i=0}^{n-1} i^4 = n(n-1)(2n-1)(3n^2 - 3n - 1)/30$$

Example 1.1.4

What is gcd of -15 and 6?

either -3 or 3.

For this course, $-3 = lu(-3) \cdot normal(3) = (-1) \cdot 3$, lu stands for leading unit.

Remark

Solution $A^{-1}b$ contains rational numbers even though input is only integers. Why? A Crammer's Rule

$$A^{-1}b = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

where $v_i = \frac{\det \text{ of A with column } i \text{ replaced by } b}{\det A}$

Remark

Let $A \in \mathbb{Z}^{n \times n}$, how "large" is det(A)?

Let $||A|| = \max_{i,j} |A_{ij}|$, Hadamard's bound gives $|det(A)| \le n^{n/2} ||A||^n$

$$\begin{array}{c|cccc}
N = \text{magnitude} & log_{10}N \\
10 & 2 \\
100 & 3 \\
1000 & 4
\end{array}$$

For example, $\log |det(A)| \in \mathcal{O}(n(logn + log||a||))$

1.2 Representation of Integer

Current computer based on architecture with 64 bits, i.e. word-size=64

For example, "unsigned long" in \mathbb{C} , can represent integer exactly in the range $[0, 2^{64} - 1]$

How to represent a larger number?

Use an array of word-size numbers. Any integer a can be represented as

$$a = (-1)^s \sum_{i=0}^n a_i 2^{64}$$

where $s \in \{0, 1\}$ and $0 \le a_i \le 2^{64} - 1$

For example, $532 = (-1)^0 \cdot (2 + 3 \cdot 10 + 5 \cdot 10^2)$

If we assume $0 \le n+1 < 2^{63}$, then we can encode a as an array $[s \cdot 2^{63} + n + 1, a_0, a_1, \cdots, a_n]$

Which is sufficient for all practical purposes.

Note: The length of a is given by $\lfloor log_{2^{64}}|a| \rfloor + 1 \in \mathcal{O}(log|a|)$ words.

1.3 Addition of Integer

Input: $a_0 + a_1\beta + \cdots + a_m\beta^m + \cdots + a_n\beta^n$ and $b_0 + b_1\beta + \cdots + b_m\beta^m$

Output: $c_0 + c_1\beta + \cdots +$

How large can $* + * \cdot \beta + \cdots$ be?

If $\beta = 2$, then $1 + 1 \cdot 2 + \cdots + 1 \cdot 2^m = 2^{m+1} - 1$

So $\sum_{i=0}^{n} (\beta - 1)\beta^{i} = \beta^{m+1} - 1$

How large is $a_0 + a_1 \beta + \dots + a_m \beta^m + (b_0 + b_1 \beta + \dots + b_m \beta^m) \le 2\beta^{m+1} - 2 = \beta^{m+1} - 2 + \beta^{m+1}$

For example, 111111+111111=1111110 in modulo 2

1.4 Representation and Addition of Polynomials

Example 1.4.1

 $a = 3x^2 + 12x + 2 \in \mathbb{Z}[x]$ with coefficients 3,12,2 come from \mathbb{Z}

Aside: a ring R has the operations $\{+, -, \times\}$ with an identity element 1 and usual rules for arithmetic (Commutativity, Distributivity, Associativity).

Addition of two polynomials with degree bounded by n costs at most (n+1) additions of ring elements from R

1.5 Complexity of Arithmetic Operations

Basic operation $\{+, -, \times, " \div "\}$ over a ring, where " \div " is not always possible. Note R is commutative with identity.

1.6 Concrete Ring

- $1) \mathbb{Z}$
- 2) Q
- 3) $\mathbb{Z}/(7) = \{0, 1, 2, 3, 4, 5, 6\}$, which is a field, i.e. all nonzero elements are invertible.

For example, 2+3=5, 3+5=1, $2 \cdot 3=6$, $2 \cdot 4=1$, then $2^{-1}=4$.

- 4) R[x], where R is any commutative ring (e.g. as above). For example, $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}/(p)[x]$.
- 5) $\mathbb{Q}(x)$, the field of rational functions

1.7 Naive Upper Bound on Cost (up to multiplicative const) Operation

operations
$$a, b \in R[x] \setminus \{0\}, n = \deg a, m = \deg b$$
 $a, b \in \mathbb{Z}$ bit operations $a + b$ $a + b + c$ $a + c$

For
$$a \in \mathbb{Z}$$
, $\lg a = \begin{cases} 1 & \text{if } a = 0 \\ 1 + \lfloor \log_2 |a| \rfloor & \text{otw} \end{cases}$

Addition

Over R[x], $(a_0 + \cdots + a_m x^m + \cdots + a_n x^n) + (b_0 + \cdots + b_m x^m) = c_0 + \cdots + c_m x^m + \cdots + c_n x^n$. If $m \le n$, exactly how many basic operations from R? m + 1! But realistically, what is the cost of a function C = add(a, b).

Over \mathbb{Z} , same idea in radix B expansion, but with carries. E.g., a=66599989, b=911,

66599989 911 66600900

Multiplication

First consider polynomials in R[x], $a = \sum_{i=0}^{n} a_i x^i$, $b = \sum_{i=0}^{m} b_i x^i$, then

$$c = a * b = \sum_{k=0}^{n+m} c_k x^k$$
, $c_k = \sum_{0 \le i \le n, 0 \le j \le m, i+j=k} a_i b_j$

Classical school method:

$$(a_2x^2 + a_1x + a_0) \cdot (b_3x^3 + b_2x^2 + b_1x + b_0)$$

$$= (a_0b_3x^3 + a_0b_2x^2 + a_0b_1x + a_0b_0) +$$

$$(a_1b_3x^4 + a_1b_2x^3 + a_1b_2x^2 + a_1b_0x) +$$

$$(a_2b_3x^5 + a_2b_2x^4 + a_2b_1x^3 + a_2b_0x^2)$$

cost is (n+1)(m+1) multiplications and nm additions exactly.

 $\Rightarrow \Theta(nm)$ arithmetic operations from R, if $\deg a, \deg b > 0$

Algorithm 1: Asido

```
Result: Too slow, cost is \Theta(a*(\lg ab))

//compute c=ab where a,b>0;

aa=a;

c=0;

while aa>0 do

c=c+b;

aa=aa-1;
```

Division With Remainder a = qb + r

Given $a, b \in R[x]$ or $a, b \in \mathbb{Z}$, express a = qb + r, where size(r) < size(b)

Example 1.7.1

a = 32125, b = 123,

$$32125 = 200 \cdot b + 7515$$

$$= 200b + 60b + 135$$

$$= 200b + 60b + b + 12$$

$$= 261b + 12$$

Polynomial Division

Given $a, b \in R[x]$ with $b \neq 0$, find $q, r \in R[x]$ such that $a = qb + r, \deg r < \deg b$

Assume lc(b), the leading coefficient of b is a unit, i.e. has an inverse in R

Example 1.7.2

Over \mathbb{Z} , the units are ± 1 . Over \mathbb{Q} , all nonzero elements are units.

Example 1.7.3

$$b = x^{2} + 2x + 1, a = 3x^{5} + 2x^{4} + x^{3} + x^{2} + 2x + 1$$

$$3X^{3} - 4X^{2} + 6X - 7$$

$$X^{2} + 2X + 1) \xrightarrow{3X^{5} + 2X^{4} + X^{3} + X^{2} + 2X + 1}$$

$$-3X^{5} - 6X^{4} - 3X^{3}$$

$$-4X^{4} - 2X^{3} + X^{2}$$

$$-4X^{4} - 2X^{3} + 4X^{2}$$

$$-4X^{4} + 8X^{3} + 4X^{2}$$

$$-6X^{3} + 5X^{2} + 2X$$

$$-6X^{3} - 12X^{2} - 6X$$

$$-7X^{2} - 4X + 1$$

$$-7X^{2} + 14X + 7$$

$$10X + 8$$

In general $(b_m x^m + \cdots)(a_n b_m^{-1} x^{n-m}) + r = a_n x^n + \cdots$, think of a 45 degree - half space of the whole square :)

Figure 1.1: Division

If $deg \, a = n$ and $deg \, b = m$, then $deg \, q = n - m$ and the cost of division with remainder is $\mathcal{O}((1 + deg \, b)(1 + deg \, q)) = \mathcal{O}((m+1)(n-m+1))$ arithmetic operations from R

1.8 Reduction Modulo Many Primes/Moduli

Suppose $a \in \mathbb{Z}$, $p_1, p_2, \cdots, p_k \in \mathbb{Z}_{>1}$ with $a < P := p_1 p_2 \cdots p_k$

Example 1.8.1

a = 581869302, P = (30)(17017)(12673) = 2 * 3 * 5 * 7 * 11 * 13 * 19 * 23 * 29 = 6469693230, what is the cost of computing $a \ rem \ p_1, \cdots, a \ rem \ p_k$?

The cost is bounded by $\mathcal{O}(k(\lg P)^2)$

More detailed, the cost is bounded by

$$\sum_{i=1}^k C(\lg a/p_i)(\lg p_i) = C \sum_{i=1}^k (\lg a/p_i)(\lg p_i)$$

$$\leq C \sum_{i=1}^k (\lg P)(\lg p_i) \quad \text{make simplification } \lg a/p_i \leq \lg a \leq \lg P$$

$$= C(\lg P) \sum_{i=1}^k (\lg p_i)$$

$$\leq C(1 + \log_2 P) \sum_{i=1}^k (1 + \log_2 p_i) \quad \text{by definition of } \lg$$

$$\leq C(2 \log P) \sum_{i=1}^k (2 \log p_i) \quad \text{if } x > 1, \text{ then } 1 + \log \lambda \leq 2 \log \lambda$$

$$\leq 4C(\log P)(\log p_1 p_2 \cdots p_k)$$

$$= 4C(\log P)(\log P)$$

which is $\mathcal{O}((\log P)^2)$, independent of k

Runtime Analysis in Naive Cost Model over $\mathbb Z$

- Introduce constant C from big \mathcal{O} bound
- Use sums
- $\lg a \le 1 + \log_2 a$ if a > 1
- if x > 1, then $1 + \log \lambda \le 2 \log \lambda$

1.9 Greatest Common Divisor

Unit: units in \mathbb{Z} are ± 1 , units in F[x] (a field) are all non-zero constant polynomials, for example, in $\mathbb{Q}[x]$, $3 \cdot \frac{1}{3} = 1$, but 3x + 1 does not have an inverse.

Associates : elements $a, b \in R$ are associate if there exists a unit $u \in R$ such that a = ub, and thus $u^{-1}a = b$, for example, 3 and -3 over \mathbb{Z} , $2x^2 + 3$ and $x^2 + \frac{3}{2}$ over \mathbb{Q} .

Zero Divisor: A zero divisor in R is an element $a \in R$ such that $\exists b \in R \setminus \{0\}$ with ab = 0, for example, in $\mathbb{Z}/(6)$, $2 \cdot 3 = 0$, then 2 and 3 are zero divisors.

Integral Domain : An integral domain is a ring with no zero divisors. For example, \mathbb{Z} , \mathbb{Q} , $\mathbb{Z}/(p)$ for p prime

Field: A field is an integral domain!!!!!!!

GCDs: Need not to always exists (depends on R), but GCDs do exists over \mathbb{Z} and over R[x] when R is a field.

LCM: Least Common Multiple is defined similar.

It is convenient to define gcd(a,b) and lcm(a,b) to be non-negative to make them unique.

Euclidean Domain : For exmaple, \mathbb{Z} , F[x]. Note q = a quo b, r = a rem b.

when $R = \mathbb{Z}$, d(a) = |a|, d(0) = 0, quo and rem are not unique over \mathbb{Z} , $7 = 5 \cdot 1 + 2 = 5 \cdot 2 - 3$.

when $R=F[x],\ F$ a field. $d(a)=deg(a),d(0)=-\infty,$ quo and rem are unique over F[x]

1.10 Extended Euclidean Algorithm

Input $a, b \in R, b \neq 0, R$ a Euclidean Domain

Output $s, t, g \in R$ such that sa + tb = g, where g is a gcd of a, b

Example 1.10.1

compute gcd of 91 and 63: $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 91 \\ 63 \end{bmatrix} = \begin{bmatrix} 63 \\ 28 \end{bmatrix}$, then 28 =rem (91,63), 1=quo(91,63)

$$\begin{bmatrix} 1\\1 & -2 \end{bmatrix} \begin{bmatrix} 63\\28 \end{bmatrix} = \begin{bmatrix} 28\\7 \end{bmatrix}, \text{ then } 7 = \text{rem } (63,28), 2 = \text{quo}(63,28)$$

$$\begin{bmatrix} 1 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 28 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$$

Let
$$Q = \begin{bmatrix} 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ 9 & -13 \end{bmatrix}$$
, then we have
$$\begin{bmatrix} -2 & 3 \\ 9 & -13 \end{bmatrix} \begin{bmatrix} 63 \\ 28 \end{bmatrix} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$$
, which gives $(-2) \cdot 63 + 3 \cdot 28 = 7$

Algorithm 2: Extended Euclidean Algorithm (EEA)

Input: $a, b \in R, b \neq 0, R$ is a ED, d(a) = d(b)

 $r_0 = a;$

 $r_1 = b;$

c = 0;

for $i \ge 10$ do

Compute q_i and r_{i+1} such that $r_{i-1} = q_i r_i + r_{i+1}$;

$$Q_i = \begin{bmatrix} 1 \\ 1 & -q_i \end{bmatrix};$$

$$Q_i \begin{bmatrix} r_{i-1} \\ r_i \end{bmatrix} = \begin{bmatrix} r_i \\ r_{i+1} \end{bmatrix};$$

Stop loop at i = l such that $r_{i+1} = 0$

end

Claim 1.10.1

 r_l is a $gcd(r_0, r_1)$

Proof

1) $r_l|r_0$ and $r_l|r_1$ 2) if $d|r_0$ and $r|r_1$, then $d|r_l$, for all $d \in R$.

Then
$$Q_lQ_{l-1}\cdots Q_1\begin{bmatrix}r_0\\r_1\end{bmatrix}=\begin{bmatrix}r_l\\0\end{bmatrix}$$

Let
$$R_i = Q_i Q_{i-1} \cdots Q_1 = \begin{bmatrix} s_i & t_i \\ s_{i+1} & t_{i+1} \end{bmatrix}$$

Then
$$\begin{bmatrix} s_l & t_l \\ s_{l+1} & t_{l+1} \end{bmatrix} \begin{bmatrix} r_0 \\ r_1 \end{bmatrix} = \begin{bmatrix} r_l \\ 0 \end{bmatrix}$$
, so $s_l r_0 + t_l r_1 = r_l$

Each
$$Q_i$$
 is invertible over R where $Q_i^{-1} = \begin{bmatrix} q_i & 1 \\ 1 & \end{bmatrix}$

Then each R_i is invertible over R, in particular, $\begin{bmatrix} r_0 \\ r_1 \end{bmatrix} = R_l^{-1} \begin{bmatrix} r_l \\ \emptyset \end{bmatrix}$

1.11 Cost Analysis of Extended Euclidean Algorithm

Consider R = F[x], assume $deg r_0 \ge deg r_1$

Cost of computing (q_i, r_{i+1})

Question : How many divisor steps l?

Answer: $1 \le \deg r_1$ since $-\infty = \deg r_{l+1} < \deg r_l < \cdots < \deg r_1$

Note Dividing r_{i-1} by r_i with remainder costs $C(\deg r_i + 1)(\deg q_i + 1)$ operations from F Key Observation:

$$\sum_{i=1}^{l} deg \, q_i = \sum_{i=1}^{l} (deg \, r_{i-1} - deg \, r_i)$$

$$= (r_0 - r_1) + (r_1 - r_2) + \dots + (r_{l-1} - r_l)$$

$$\leq deg \, r_0$$

Total cost (operation from F) is thus :

$$\leq \sum_{i=1}^{l} C(\deg r_{i} + 1)(\deg q_{i} + 1)
\leq \sum_{i=1}^{l} C(\deg r_{1} + 1)(\deg q_{i} + 1) \text{ since } \deg r_{i} \leq \deg r_{1}
\leq C(\deg r_{1} + 1)\sum_{i=1}^{l} (\deg q_{i} + 1)
\leq C(\deg r_{1} + 1)(\deg r_{0} + l)
\in \mathcal{O}((1 + \deg r_{0})(1 + \deg r_{1})) \text{ operations from } F$$

Extension: what is cost of computing?

$$Q_iQ_{i-1}\cdots Q_1 = \begin{bmatrix} & 1\\1 & -q_i\end{bmatrix} \begin{bmatrix} & 1\\1 & -q_{i-1}\end{bmatrix} \cdots \begin{bmatrix} & 1\\1 & -q_1\end{bmatrix} = \begin{bmatrix} s_l & t_l\\s_{l+1} & t_{l+1}\end{bmatrix}$$

Which is per multiplying R_i with Q_{i-1} , pretty similar as above, still $\mathcal{O}((1+\deg r_0)(1+\deg q_{i-1}))$

1.12 Applications of the EEA

- Computing over finite field $\mathbb{Z}/(p) = \{0, 1, \dots, p-1\}$
- Operations are $\{+, -, \times, / \text{ by nonzero}, \}$
- Given nonzero $a \in \mathbb{Z}/(p)$, use EEA to find $s, t \in \mathbb{Z}$ such that sa + tp = 1, then $sa \equiv 1 \mod p$, thus $s = a^{-1}$ in $\mathbb{Z}/(p)$

1.13 Rational Number Reconstruction

bounds $N, D \in \mathbb{Z}_+$ such that 2ND < m

For $-4/5 \equiv 40 \mod 51$ over rationals \mathbb{R} , 40 is called modular image.

Input: a modulos $m \in \mathbb{Z}_+$, an image $u \in \mathbb{Z}_{\geq 0}$ such that $0 \leq u < m$,

Output: A signed and reduced number n/d such that $n/d \equiv u \mod m$, $|n| \leq N, d \leq D$

Fact: there is a unique n/d if it exists, that satisfy the bounds.

Example 1.13.1 (Algorithm use EEA on m and u)

$$u = 40, m = 51, N = D = 5,$$

then
$$Q_6 \cdots Q_1 \cdot v = \begin{bmatrix} 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 51 \\ 40 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

We look at
$$R_3 = Q_3 Q_2 Q_1 = \begin{bmatrix} -3 & 4 \\ 4 & -5 \end{bmatrix}$$
, $R_3 v = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$

Then
$$(-3)51 + (4)40 = 7$$
, therefore $40 \equiv 7/4 \mod 51$

We look at
$$R_4 = Q_4 Q_3 Q_2 Q_1 = \begin{bmatrix} 4 & -5 \\ -7 & 9 \end{bmatrix}$$
, $R_4 v = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$,

then
$$4 \cdot 51 + (-5)40 = 4$$
, therefore $40 \equiv -4/5 \mod 51$

Chapter 2

Evaluation and Multiplication of Polynomials

2.1 Motivation

$$f(x) = 5x^{100} + 2x^{999} + \dots + 3x + 2I_n \in F[x]$$
 with $F = \mathbb{Z}/(7)$

Suppose
$$\alpha = \begin{bmatrix} 2 & 3 & 1 & \cdots & 6 \\ 6 & 3 & 0 & \cdots & 3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 3 & 2 & \cdots & 5 \end{bmatrix} \in F^{300 \times 200}$$

Question: What is the cost to evaluate $F(\alpha)$?

- Expensive operation is matrix multiplication (How many?)
- $\alpha^2, \alpha^3, \cdots \alpha^{1000}$
- Need 999 matrix multiplications

Today: Method that needs only 63 matrix multiplication.

Problem : R, a ring with binary operations $\{+, -, \times\}$. Given $n \in \mathbb{N}$, find algorithm that does polynomial evaluation.

Input: α , a_0 , \cdots , $a_n \in R$, where α is the evaluation

Output: $f(\alpha) \in R$, $f(x) = a_n x^n + \dots + a_1 x + a_0 \in R[x]$

Outline • Obvious Algorithm

- Horner's Scheme
- Non-scalar Complexity
- Paterson and Stockmeyer
- Karatsuba

2.2 Obvious Algorithm

- Compute α^2 , α^3 , \cdots , α^n . (cost n-1 multiplications)
- Compute $a_i \alpha^i$. (cost *n* multiplications)
- Add. (cost n additions)

2.3 Horner's Scheme

$$f(\alpha) = \left(\left((\cdots \left(\underbrace{a_n \alpha + a_{n+1}}_{\text{1multiplication, 1 addition}})\alpha + \cdots \right) \alpha + a_2 \right) \alpha + a_1 \right) \alpha + a_0$$

- \bullet Repeat n times
- \bullet *n* multiplications and *n* additions
- In 1954, Ostrowski asked if Horner's Scheme is optimal.

2.4 Non-scalar Complexity

Let $R = F[x, a_0, \dots, a_n, \alpha]$, ring of polynomials in indeterminants x, a_0, \dots, a_n

Scalar Operation : Addition of two elements of R.

Multiplication of elements of R by a fixed constant of F

Non-scalar Complexity: Multiplication of two input or non-scalar quantities.

Example 2.4.1 (Circuit for Horner's Scheme)

picture here!!!

Aside (Circuit Model is Useful)

Example 2.4.2 Compute dot product
$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$
 $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

picture here!!!

What does the depth of the circuit correspond to ? logn?

Question: Is Horner's rule optimal w.r.t non-scalar cost?

No! Victor Pan 1959

2.5 Evaluation at a Known Polynomial

Now let $f \in F[x]$ of degree n be fixed.

Example 2.5.1

$$f_1 = a_1 x + a_0$$
, $f_2 = a_2 x^2 + a_1 x + a_0$

picture here!!

The only non-scalar quantity is α

Question : What is the non-scalar cost (if α is the only input)?

So non-scalar quantities are those that involved α

Only counting multiplications of two non-scalars

Answer: For deg 1, it is 0, for deg 2, it is 1, etc.

Theorem 2.5.1 (Patterson and Stockmeyer 1973)

Let $f \in F[x]$ of degree n, then $f(\alpha)$ can be evaluated at any $\alpha \in F$ with $2\lceil \sqrt{n} \rceil - 1$ non-scalar (both operands involve α) multiplications

Scribe: Saiyue Lyu

Partition f into about $k \cong \sqrt{n}$ blocks of length $m \cong \sqrt{n}$

let
$$m = \lceil \sqrt{n} \rceil$$
, $k = 1 + \lceil \frac{n}{m} \rceil$

Example 2.5.2

if n = 8, then m = 3 (the length of each block) and k = 4 (upper bound on number of blocks)

$$f(x) = \underbrace{2x^8 + x^7 + 5x^6}_{F_2x^6} + \underbrace{2x^5 + 8x^4 + 2x^3}_{F_1x^3} + \underbrace{x^2 + x + 4}_{F_0}$$
$$= (2x^2 + x + 5)x^6 + (2x^2 + 8x + 2)x^3 + (x^2 + x + 4)$$

Algorithm : • Compute $\alpha, \alpha^2, \cdots, \alpha^n$

 $\cos t$ is m-1 non-scalar multiplication

• Compute $\beta_i = F_i(\alpha)$ for $0 \le 1 \le k-1$

cost is zero because all multiplications are by scalars.

• $f(\alpha) = \beta_{k-1}(\alpha^m)^{k-1} + \beta_{k-1}(\alpha^m)^{k-1} + \dots + \beta_0$

now use Horner's rule, cost k-1 non-scalar mults and some free adds

Total cost : $(m-1) + (k-1) \le 2\lceil \sqrt{n} \rceil - 1$ non-scalar mults

2.6 Polynomial Multiplications

Input: $f, g \in R[x]$ of degree n > 0

Standard Algorithm : • $f * g \text{ costs } \mathcal{O}(n^2) \text{ from } R$

• $(n+1)^2$ mults and n^2+1 adds

Example 2.6.1

$$(ax+b)(cx+d) = acx^2 + (ad+bc)x + bd$$

Let $n = 2^k, k \in \mathbb{N}, a, b \in R[x]$ with $\deg a < n, \deg b < n$ and m = n/2

Write: $a = (A_1 x^m + A_0)$ and $b = (B_1 x^m + B_0)$

Example 2.6.2

For
$$a = x^5 + 3x^4 + 2x^3 + x^2 + 3x + 5$$
, $n = 8$, $m = 4$, $a = (x+3)x^4 + (2x^3 + x^2 + 3x + 5)$
 $ab = A_1B_1x^n + (A_0B_1 + A_1B_0)x^m + A_0B_0$ (recall $n = 2m$)

Cost? Let T(n) be the cost of multiplying two polynomials of $deg < n = 2^k$, then

$$T(n) \le \begin{cases} 4T(\frac{n}{2}) + 4n & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$
$$= n(5n - 4)$$
$$\in \Theta(n^2)$$

2.7 Karatsuba

$$ab = A_1B_1(x^n - x^m) + (A_1 + A_0)(B_1 + B_0)x^m + A_0B_0(1 - x^m)$$

$$T(n) \le \begin{cases} 3T(\frac{n}{2}) + cn & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$
$$\in \Theta(n^{\log_2 3}) \text{ note } \log_2 3 \simeq 1.59$$

Theorem 2.7.1

$$T(2^k) \le 3T(2^{k-1}) + c2^k \implies T(2^k) \le 3^k - 2c2^k \text{ for } k \ge 1$$

Proof

By induction on k

Assume it is true for some $k-1 \ge 1$, prove for k

$$T(2^{k}) \le 3T(2^{k-1}) + c2^{k}$$

$$\le 3(3^{k-1} - 2c2^{k-1}) + c2^{k}$$

$$= 3^{k} - 2c2^{k}$$

Since $3^k = 3^{\log_2 n} = (2^{\log_2 3})^{\log_2 n} = 2^{(\log_2 3)(\log_2 n)} = n^{\log_2 3}$

About A1 Q2:

Consider $f, g \in R[x]$, deg f = n > 0, deg g = m > 0, naive cost $\mathcal{O}(nm)$ ring operations from R to compute fg, but what about Karatsuba?

Suppose n > m, then the cost is $\mathcal{O}(n^{1.59})$, but if $m \in \mathcal{O}(n^{1/2})$, then naive cost is only $\mathcal{O}(n^{1.5})$. For example, if $m \in \mathcal{O}(n^{1/2})$, can show how to use karatsuba with cost $\mathcal{O}(n^{1.295})$.

Algorithm 3: About A1Q2

ebinarygcd := proc(a,b); local \bar{s} , \bar{t} , \bar{g} ; **if** modp(a,2) = 0 and modp(b,2) = 0 **then** $|\bar{s}\bar{t},\bar{g} := \text{ebinarygcd}(\frac{a}{2},\frac{b}{2})$

end

Want: $\bar{s}(a/2) + \bar{t}(b/2) = \bar{g}(=gcd(a/2,b/2))$ **Have:** sa + tb - g

Other cases : $\begin{bmatrix} s & t \\ -b/g & a/g \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} g \\ 0 \end{bmatrix}$

Non-scalar Complexity: only count multiplications where both operands depends on input quantities.

Polynomial evaluation: let $f = f_0 + \cdots + f_n x^n \in F[x]$ with degree n be fixed. Patterson&Stockmeyer, for fixed f, $f(\alpha)$ can be computed in $\mathcal{O}(\sqrt(n))$ non-scalar multiplications.

2.8 Polynomial Multiplications

Theorem 2.8.1

Given $a, b \in F[x]$, $deg \ a$, $deg \ b < n$, where n is the length bound for polynomials. Multiplying $a \cdot b$ has cost 2n-1 non-scalar (coefficients of polynomials we want to multiply: $a_0, \dots, a_{n-1}, b_0, \dots, b_{n-1}$) multiplications if $\#F \ge 2n-1$.

Idea: Use polynomial evaluation/interpolation

Example 2.8.1

Let a = 2+3x, b = 1+2x, have $deg \, ab = 2$, then need 3 evaluation points, let $u_0 = 0$, $u_1 = 1$, $u_2 = 2$, we have

$$a_{x=0} = 2$$
 $b_{x=0} = 1$ $(ab)_{x=0} = 2$
 $a_{x=1} = 5$ $b_{x=1} = 3$ $(ab)_{x=1} = 15$
 $a_{x=2} = 8$ $b_{x=2} = 5$ $(ab)_{x=2} = 40$

Let
$$L_0 = \frac{(x-1)(x-2)}{(0-1)(0-2)}, L_1 = \frac{(x-0)(x-2)}{(1-0)(1-2)}, L_2 = \frac{(x-0)(x-1)}{2-0)(2-1)}$$
, then
$$L_0(0) = 1 \quad L_0(1) = 0 \quad L_0(2) = 0$$

$$L_1(0) = 0 \quad L_1(1) = 1 \quad L_1(2) = 0$$

$$L_2(0) = 0 \quad L_2(1) = 0 \quad L_2(2) = 1$$

Let
$$c = 2L_0 + 15L_1 + 40L_2 = 2 + 7x + 6x^2$$

Proof

Choose $u_0, \cdots, u_{2n-2} \in F$

2.9 Evaluation and Interpolation Related to Matrix-vector ProdScribe: Saiyue Lyu

- (1) Evaluate $\alpha_i = a(u_i)$ and $\beta_i = b(u_i)$ for $i = 0, 1, \dots, 2n 2$
- (2) Compute $\gamma_i = \alpha_i \cdot \beta_i$ (2n 1 non-scalar multiplications)
- (3) Interpolate to get c = ab using Lagrange Formula

$$L_i = \prod_{i \neq j} \frac{x - u_j}{u_i - u_j} \in F[x] \text{ satisfies } L_i(u_k) = \begin{cases} 0 & \text{if } i \neq k \\ 1 & \text{otherwise} \end{cases} \text{ and } c = \sum_{0 \leq i \leq 2n-2} \gamma_i L_i$$

2.9 Evaluation and Interpolation Related to Matrix-vector Product

Given $a = a_0 + \cdots + a_{n-1}x^{n-1}$, define the **Vandermonde matrix**

$$VDM(u_1, \dots, u_n) = \begin{bmatrix} u_1^0 & u_1^1 & \dots & u_1^{n-1} \\ u_2^0 & u_2^1 & \dots & u_2^{n-1} \\ \vdots & \vdots & & \vdots \\ u_n^0 & u_n^1 & \dots & u_n^{n-1} \end{bmatrix}$$

Evaluation : compute $\alpha_1 = a(u_1), \dots, \alpha_n = a(u_n)$, then

$$VDM(u_1, \cdots, u_n) \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} a(u_0) \\ a(u_1) \\ \vdots \\ a(u_{n-1}) \end{bmatrix}$$

Interpolation: recall n evaluation points define a unique polynomial of degree < n:

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = VDM(u_1, \cdots, u_n)^{-1} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-1} \end{bmatrix}$$

Example 2.9.1

Polynomial multiplication via evaluation/interpolation Working over $F = \mathbb{Z}/(7)$, $f = 2x^2 + 3x + 1$, $g = x^2 + 5x + 2$, choose evaluation points 0,1,2,3,4, then

$$VDM(0,1,2,3,4) \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 2 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 6 & 1 \\ 1 & 2 \\ 0 & 5 \\ 3 & 3 \end{bmatrix}$$

pointwise multiplication: (fg)(0) = 2, (fg)(1) = 6, (fg)(2) = 2, (fg)(3) = 0, (fg)(4) = 2

interpolation :
$$VDM(0, 1, 2, 3, 4)^{-1} \begin{bmatrix} 2 \\ 6 \\ 2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \\ 6 \\ 2 \end{bmatrix}$$
, then $fg = 2 + 4x + 6x^2 + 6x^3 + 2x^4$

Definition 2.9.1 (primitive n-th root of unity (n-PRU))

Let $n \in \mathbb{N}$ and $w \in F$, F a field. then w is a **primitive n-th root of unity (n-PRU)** if (1) $w^n = 1$. (2) n is a unit in F. (3) $w^k \neq 1$ for $1 \leq k \leq n$. And n is an integer power, n is a unit in F.

Example 2.9.2

 $x^{403} + 2x^3 + x + 1 \in \mathbb{Z}_3[x]$, but $1 + 1 + 1 \equiv 0 \mod 3$

Example 2.9.3

- (1) $F = \mathbb{C}$, $w = e^{\frac{2\pi i}{8}}$ is an 8-PRU, -1 is a 2-PRU, i is a 4-PRU.
- (2) **Fermat Prime**, $m = 2^4 + 1 = 17$, 3 is a 16-PRU in $\mathbb{Z}/(17)$, 13 is a 4-PRU in $\mathbb{Z}/(17)$

Remark

- (1) if w is an n-PRU, then w^{-1} is also.
- (2) if n is even, then w^2 is a $\frac{n}{2}$ -PRU.

Example 2.9.4

13 is a 4-PRU in $\mathbb{Z}/(17)$, then $13^{-1} = 4$ is also a 4-PRU in $\mathbb{Z}/(17)$

13^{0}	13^{1}	13^{2}	13^{3}	13^{4}
1	13	16	4	1
4^0	4^1	4^2	4^3	4^4
1	4	16	13	1

Let w be a n-PRU in F, recall $\underbrace{w^0=1,w,w^2,\cdots,w^{n-1}}_{n \text{ distinct elements of } F}, w^n=1.$

$$\text{Define } V(w) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & w & \cdots & w^{n-1} \\ 1 & w^2 & \cdots & w^{2(n-1)} \\ \vdots & \vdots & & \vdots \\ 1 & w^{n-1} & \cdots & w^{(n-1)(n-1)} \end{bmatrix} = VDM(w^0, w^1, \cdots, w^{n-1}).$$

And
$$V(w^{-1}) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & w^{-1} & \cdots & w^{-(n-1)} \\ 1 & w^{-2} & \cdots & w^{-2(n-1)} \\ \vdots & \vdots & & \vdots \\ 1 & w^{-(n-1)} & \cdots & w^{-(n-1)(n-1)} \end{bmatrix}$$

Theorem 2.9.1

Let w be an n-PRU, then $V(w) \cdot V(w^{-1}) = nI_n$, where I_n is $n \times n$ identity.

Proof

$$\begin{split} u &= \left(V(w) \cdot V(w^{-1})_{ij} = (i\text{-th row of } (V(w)) \times (j\text{-th column of } V(w^{-1})\right) \\ &= \sum_{0 \leq k < n} w^{ik} w^{-kj} \\ &= \sum_{0 \leq k < n} (w^{i-j})^k \\ &= \begin{cases} \sum_k 1 & \text{if } i = j \\ \frac{w^{(i-j)n} - 1}{w^{i-j} - 1} & \text{otw} \end{cases} \\ &= \begin{cases} n & \text{if } i - j \\ 0 & \text{otw} \end{cases} \end{split}$$

Definition 2.9.2 (Discrete Fourier Transform (DFT))

Let $w \in F$ be an n-PRU, then DFT(w) (Discrete Fourier Transform) is the linear map $F^n \to F^n$

defined by
$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \mapsto \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix} = V(w) \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}, \text{ where } b_j = \sum_{0 \le k < n} a_k w^{jk}$$

Let $f = a_0 + \cdots + a_k x^k$, consider evaluating f(1) and f(-1)

Decompose
$$f(x) = \underbrace{(a_0 + a_2x^2 + a_4 + x^4 + \cdots)}_{f_{even}(x^2)} + x\underbrace{(a_1 + a_3x^2 + a_5x^4 + \cdots)}_{x \cdot f_{odd}(x^2)}$$

Then
$$f(1) = f_{even}(1) + f_{odd}(1)$$
 and $f(-1) = f_{even}(1) - f_{odd}(1)$

Then evaluate f at ± 1 reduced to evaluating two polynomials of $\frac{1}{2}$ degree at 1. $\frac{1}{2}2 = 1$, but number of evaluation points halved.

Consider starting 4 evaluation points: 1, i = w a 4-PRU, $-1, -i = (\pm 1, \pm i)$, evaluating f at $(\pm 1, \pm i)$ reduced to evaluating two polynomials of half the degree at (1, i). So we can apply one step of the recipe whenever we have n evaluation points of the form $(u_1, -u_1), \dots, (u_{n/2}, -u_{n/2})$.

Theorem 2.9.2

Let n be a power of 2. Let $w \in F$ be an n-PRU. Then DFT(w) can be computed in $\mathcal{O}(n \log n)$ field operations of from F.

Lemma 2.9.1

$$w^{n/2+i} = w^i$$

Example 2.9.5

w=2 is an 8-PRU in $\mathbb{Z}/(17)=\{-8,-7,\cdots,0,\cdots,7,8\}$

$$2^{0}$$
 2^{1} 2^{2} 2^{3} 2^{4} 2^{5} 2^{6} 2^{7}
 1 2 4 8 -1 -2 -4 -8
 4^{0} 4^{1} 4^{2} 4^{3}
 -1^{0} -1^{4}

Proof

Our goal is to compute (for $0 \le k < n$)

$$f(w^{k}) = \sum_{0 \le j < n} a_{j} w^{kj}$$

$$= \left(a_{0} + a_{2}(w^{2k})^{1} + a_{4}(w^{2k})^{2} + \cdots \right) + w^{k} \left(a_{1} + a_{3}(w^{2k})^{1} + a_{5}(w^{2k})^{2} + \cdots \right)$$

$$= f_{even}(w^{2k}) + w^{k} f_{odd}(w^{2k})$$

where $f_{even} = \sum_{0 \le i \le n/2} a_{2j} x^j$ and $f_{odd} = \sum_{0 \le i \le n/2} a_{2j+1} x^j$

Ans use the fact that $f(x) = f_{even}(x^2) + x f_{odd}(x^2)$ and that $w^{n/2+k} = -w^k$ for $0 \le k < n/2$.

Computing DFT(w)(f) reduced to

- (1) compute w^2, w^3, \dots, w^{n-1} . cost less than n evaluations.
- (2) compute $DFT(w^2)(f_{even})$ and $DFT(w^2)(f_{odd})$
- (3) $f(w^k) = f_{even}((w^2)^k) + w^k f_{odd}((w^2)^k)$ for $k = 0, 1, \dots, n-1$.

Cost: If T(x) is cost for size n, then $T(n) \leq 2T(n/2) + 3n$, which gives $T(n) \in \mathcal{O}(n \log n)$

Example 2.9.6

Example 2.9.6 w = 2 is an 8-PRU in $\mathbb{Z}/(17)$, let $f = a_0 + \cdots + a_7 x^7$, try to compute V(w) :

$$V(w) \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & -1 & -2 & -4 & -8 \\ 1 & 4 & -1 & -4 & 1 & 4 & -1 & -4 \\ 1 & 8 & -4 & 2 & -1 & -8 & 4 & 2 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -2 & 4 & -8 & -1 & 2 & -4 & 8 \\ 1 & -4 & -1 & 4 & 1 & -4 & -1 & 4 \\ 1 & -8 & -4 & -2 & -1 & 8 & 4 & 2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \end{bmatrix}$$

$$DFT(2)([a_0, \cdots, a_7]) \rightarrow \begin{cases} DFT(4)([a_0, a_2, a_4, a_6]) \rightarrow \begin{cases} DFT(-1)([a_0, a_4]) \\ DFT(-1)([a_2, a_6]) \end{cases} \\ DFT(4)([a_1, a_3, a_5, a_7]) \rightarrow \begin{cases} DFT(-1)([a_1, a_5]) \\ DFT(-1)([a_3, a_7]) \end{cases}$$

Theorem 2.9.3

Let F be a field, $n=2^k$, w in F an n-PRU, polynomials in F[x] of degree $<\frac{n}{2}$ can be multiplicated using $\mathcal{O}(n \log n)$ field operations.

Proof

Let
$$a = a_0 + \dots + a_{n/2-1}x^{n/2-1}$$
 and $b = b_0 + \dots + b_{n/2-1}x^{n/2-1}$.

2.9 Evaluation and Interpolation Related to Matrix-vector ProdScribe: Saiyue Lyu

Let
$$\bar{a} = \begin{bmatrix} a_0 \\ \vdots \\ a_{n/2-1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 and $\bar{b} = \begin{bmatrix} b_0 \\ \vdots \\ b_{n/2-1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, our goal is to compute \bar{c} where $c = ab$

$$\bar{c} = (DFT(w))^{-1}(DFT(w)(a)\cdots DFT(w)(b))$$
 pointwise multiplication for cdot

Use the fact that $DFT(w)^{-1} = \frac{1}{n}DFT(w^{-1})$.

Definition 2.9.3 (support FFT)

We say F supports the FFT is F has a 2^l -PRU for any $l \in \mathbb{N}$.

Chapter 3

From Polynomial Multiplication to Integer Multiplication

3.1 Overview

Theorem 3.1.1

If F supports the FFT, then polynomials of degree at most n can be multiplicated in $\mathcal{O}(n \log n)$ field operations.

Theorem 3.1.2 (Schonhage & Strason)

Integer multiplication can be done in time $\mathcal{O}(n \log n(\log \log n))$

Theorem 3.1.3 (Cantor & Kaltofen, 1991)

Over any ring polynomials of degree n can be multiplied in $\mathcal{O}(n \log n(\log \log n))$ ring operations

Definition 3.1.1 (M(n))

A function $M: \mathbb{N}_{>0} \to \mathbb{R}_{>0}$ is a multiplication time for R[x], R a ring, if polynomials in R[x] of degree < n can be multiplicated using at most M(n) ring operations in R.

- Standard : $M(n) \in \mathcal{O}(n^2)$
- Karatsuba(1960) : $M(n) \in \mathcal{O}(n^{\log_2 3})$
- Cantor & Kaltofen (1991) : $M(n) \in \mathcal{O}(n(\log n)(\log \log n))$
- Schonhange & Strassen (1971): $M(n) \in \mathcal{O}(n(\log n)(\log \log n))$ word operations.
- Furer(2007) : $\mathcal{O}(n(\log n)k^{\log *n})$
- Harvey & VanderHoeven(2019) : $\mathcal{O}(n \log n)$

Analysis m terms of M adds information to cost estimates.

This is usually very different than naive method

3.2 Useful Assumption about M

Superlinearity:

$$M(n)/n \ge M(m)/m$$
 , if $n \ge m$
$$M(mn) \ge mM(n)$$

$$M(m+n) \ge M(n) + M(m)$$

$$M(n) \ge n$$

At Most Quadratic:

$$M(nm) \le m^2 M(n)$$

Example 3.2.1

$$M(cn) \in \mathcal{O}(M(n))n^3 + nM(n) \in \mathcal{O}(n^3)$$

3.3 Fast Division With Remainder

Let $a = a_0 + \cdots + a_n x^n$, $b = b_0 + \cdots + b_m x^m \in F[x]$, where $a_n, b_m \neq 0$ and $m \leq n$.

Goal : Find q(x) and r(x) such that a(x) = q(x)b(x) + r(x), $deg \, r < deg \, b$.

Let's assume $b_m = 1$

Reversion: Substitute $x = \frac{1}{y}$ and multiply by y^n . For $a = a_0 + \cdots + a_n x^n$, we have

$$y^{n}a(\frac{1}{y}) = y^{n}(a_{0} + a_{1}(\frac{1}{y}) + \dots + a_{n}(\frac{1}{y^{n}}))$$
$$= y^{n}a_{0} + y^{n-1}a_{1} + \dots + a_{n}$$
$$:= rev_{n}(a) = rev(a)$$

Reversion of equation a(x) + q(x)b(x) + r(x), we have

$$y^{n}a(\frac{1}{y}) = y^{n}(q(\frac{1}{y})b(\frac{1}{y}) + r(\frac{1}{y}))$$

$$rev_{n}(a) = rev_{n-m}(q) \cdot rev_{m}(b) + y^{n-m+1}rev_{m-1}(r)$$

Goal: Solve equation for unknown $rev_{n-m}(q)$

$$rev_n(a) = rev_{n-m}(q) \cdot rev_m(b) \mod y^{n-m+1}$$

Example 3.3.1

Over $F[x], F = \mathbb{Q}, n = 3, m = 1,$

$$\underbrace{\frac{2x^3 + x^2 + 3x + 4}_{a}}_{2} = \underbrace{\frac{(q_2x^2 + q_1x + q_0)}{q} \cdot \underbrace{(x - 1)}_{b} + \underbrace{r_0}_{r}}_{rev_3(a)} + \underbrace{\frac{(q_0y^2 + q_1y + q_2)}{q} \cdot \underbrace{(1 - y)}_{rev_1(b)} + y^3}_{rev_1(b)} \underbrace{r_{ev_0(r)}}_{rev_1(b)} + \underbrace{r_0}_{r_{ev_0(r)}}$$

$$\underbrace{r_{ev_2(q)}}_{rev_2(q)} = \underbrace{(1 - y)^{-1}(3y^2 + y + 1)}_{rev_1(b)} \mod y^3$$

Key idea: now work over a larger field F[[y]] (ring of infinite power series in Y, all infinite sums $c_0 + c_1 y + \cdots + \text{ with } c_i \in F$) instead of F[y] to make sense of $(1-y)^{-1}$. What is $(1-y)^{-1}$ in F[[y]]?

Remark

$$\frac{1}{y} = 1 + y + y^2 + \dots +$$

Example 3.3.2

$$(1)(1-y) \equiv 1 \mod y$$
$$(1+y)(1-y) \equiv 1 \mod y^2$$
$$(1+y+y^2)(1-y) \equiv 1 \mod y^3$$

Back to our main equation:

$$rev_2(q) = (1 - y)^{-1}(3y^2 + y + 1) \mod y^3$$

$$= (1 + y + y^2)(3y^2 + y + 1) \mod y^3$$

$$= 2 + 3y + 6y^2 \mod y^3$$

$$q = rev_2(rev_2(q))$$

$$= 2x^2 + 3x + 6$$

Claim 3.3.1

Let $g = g_0 + g_1 x + \cdots \in F[[x]]$ have constant coefficient $g_0 = 1$. For any $h \in \mathbb{Z}_{>0}$, \exists a unique $b \in F[x]$ with $\deg b < k$ such that

$$bg \equiv 1 \mod x^k$$

Proof

$$g = 1 + g_1 x + \dots + g_{k-1} x^{k-1} \mod x^k$$
, let $b = b_0 + \dots + b_{k-1} x^{k-1}$, then
$$(b_0 + b_1 + \dots + b_{k-1} x^{k-1})(1 + g_1 x + \dots + g_{k-1} x^{k-1}) \equiv 1 \mod x^k$$

Rewrite it in linear system:

$$\begin{bmatrix} 1 & & & & & & \\ g_1 & 1 & & & & & \\ g_2 & g_1 & 1 & & & \\ g_3 & g_2 & g_1 & 1 & & \\ \vdots & & & & & \\ g_{k-1} & g_{k-2} & g_{k-3} & g_{k-4} & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 & & & & & \\ b_1 & 1 & & & & \\ b_2 & b_1 & 1 & & & \\ b_3 & b_2 & b_1 & 1 & & & \\ \vdots & & & & & \\ b_{k-1} & b_{k-2} & b_{k-3} & b_{k-4} & \cdots & 1 \end{bmatrix} = I_k$$

$$\begin{bmatrix} 1 & & & & & \\ g_1 & 1 & & & & \\ g_2 & g_1 & 1 & & & \\ g_3 & g_2 & g_1 & 1 & & \\ \vdots & & & & & \\ g_{k-1} & g_{k-2} & g_{k-3} & g_{k-4} & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{k-1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Using linear algebra, the system has a unique solution for b.

Problem : Given $g = g_0 + \cdots \in F[[x]]$ and $k \in \mathbb{N}$, find $h \in F[[x]]$ such that

$$hq \equiv 1 \mod x^k$$

Let $h_0, h_1, \dots \in F[[x]]$ be such that

$$deg h_i < 2^i$$
 and $h_i g \equiv 1 \mod x^{2^i}$

Then $h_0 = 1$.

Example 3.3.3

if
$$g = 1 - x$$
, then $h_0 = 1$, $h_1 = 1 + x$, $h_2 = 1 + x + x^2 + x^3$

Since $g_0 = 1$, we always have $h_0 = 1$.

How can we compute h_{i+1} from h_i ?

Let $g^{-1} \in F[[x]]$ be the inverse of g, then

$$g^{-1} \equiv h_i \mod x^{2^i}$$

Multiply both sides by g, subtract right fro the left, have

$$1 - gh_i \equiv 0, \mod x^{2^i}$$

The LHS is divisible by x^{2^i} , set

$$r_i = \frac{1 - gh_i}{x^{2^i}} \in F[x]$$

Then $1 - gh_i = r_i \cdot x^{2^i}$ and $1 = gh_i + r_i x^{2^i}$, multiply both sides by g^{-1} ,

$$g^{-1} = h_i + x^{2^i} g^{-1} r_i$$

Take equation modulo $x^{2^{i+1}}$, have

$$h_{i+1} = h_i + x^{2^i} h_i r_i \mod x^{2^{i+1}}$$

= $h_i + h_i (1 - gh_i)$
= $2h_i - gh_i^2 \mod x^{2^{i+1}}$

We have proven:

$$h_0 = 1, \ h_i = 2h_i - gh_i^2 \mod x^{2^{i+1}} \text{ for } i > 0$$

Picture working modulo $x^{2^{i+1}}$

Theorem 3.3.1

$$h_0 = 1$$
, $h_i = 2h_i - gh_i^2 = h_i + h_i(1 - gh_i) \mod x^{2^{i+1}}$ for $i > 0$

Example 3.3.4

Given h_1 , compute h_2

Let
$$h_2 = \underbrace{1 + b_1 x}_{=h_i \text{ (have it)}} + \underbrace{b_2 x^2 + b_3 x^3}_{\text{goal computation}} \in F[x]$$

Theorem 3.3.2

$$h_2 = h_1 + h_1(1 - gh_1) \mod x^4$$

We rewrite the equation in matrix form:

Algorithm 4: Quadratic Newton Iteration

Theorem 3.3.3

If $n = 2^r$, then $h_r = g^{-1} \mod x^n$ can be computed in $\mathcal{O}(M(n))$ field operations.

Proof

Cost to be compute h_{i+1} is $\leq 2M(2^{i+1}+2\cdot 2^{i+1})$

Total cost is

$$2\sum_{i=0}^{r-1} \left(M(2^{i+1}) + 2^{i+1} \right)$$

$$=2\sum_{i=0}^{r-1} M(2^{i+1}) + 2\sum_{i=0}^{r-1} 2^{i+1}$$

$$S = \sum_{i=0}^{r-1} M(2^{i+1}) = M(2) + M(4) + \dots + M(2^r)$$

Superlinearity: use this to find that

$$M(ab) \ge aM(b)$$
 for any $a, b \in \mathbb{Z}_{\ge 1}$

$$2^r = 2^i 2^{r-i} \implies M(2^r) \ge 2^{r-i} M(2^i) \implies M(2^i) \le \frac{1}{2^{r-i}} M(2^r)$$

Therefore have

$$S = \sum_{i=1}^{r} M(2^{i})$$

$$\leq M(2^{r}) \sum_{i=1}^{r} \frac{1}{2^{r-i}}$$

$$= M(2^{r}) \sum_{i=0}^{r-1} \frac{1}{2^{i}}$$

$$\leq M(2^{r}) \sum_{i=0}^{\infty} \frac{1}{2^{i}}$$

$$\in \mathcal{O}(M(2^{r}))$$

Scribe: Saiyue Lyu

Corollary 3.3.1

Let $a, b \in F[x]$ with $deg \, a = n$, $deg \, b = m$, $n \ge m$, then $q = a \, quo \, b$ can be computed in M(n - m) operations from F.

q depends only on leading n - m + 1 coefficients of a and b.

Use recursion technique, then Newton iteration for rev(b) over F[[x]].

Corollary 3.3.2

For polynomials of degree at most n in F, division with remainder requires $\mathcal{O}(M(n))$ operations.

Remark

compute r = a - qb in time $\mathcal{O}(M(n))$

What about integers?

Input: $a.b \in \mathbb{Z}$

Output : $q \in \mathbb{Z}$ such that |a - qb| < |b|

Reversion does not work because of carries!!

Idea: Use numerical Newton iteration. Compute approximation of $\frac{1}{h}$ over \mathbb{R} .

Example 3.3.5

a = 3428374927932742, b = 13432422423, a quo b will have about 7 decimal digits.

$$g := \frac{b}{10^{11}} \cong 0.1343242242$$

$$\begin{array}{ll} h=10 & h\cdot g=1.343242242 \\ h=2h-gh^2=8.88218476133 & h\cdot g=0.8821847633 \\ h=2h-gh^2=7.341338287 & h\cdot g=0.9861185700 \\ h=2h-gh^2=7.443238215 & h\cdot g=0.9999807331 \\ h=2h-gh^2=7.444673281 & h\cdot g=0.999999629 \end{array}$$

Should be good enough

$$\frac{7.44467321}{10^{11}} \cdot a = \underbrace{2552323}_{=quo(a,b)}.122$$

Corollary 3.3.3

Can do arithmetic in R = F[x]/(p(x)) and $\mathbb{Z}/(p)$ in time

- $\mathcal{O}(M(\deg p))$ field operations from F, or
- $\mathcal{O}(M(\deg p))$ word operations from \mathbb{Z} .

3.4 p-adic Inversion Using Newton iteration

Algorithm 5: Integer Newton Iteration

Input: $f, g_0 \in R$ with $fg_0 \equiv 1 \mod p, l \in \mathbb{N}$ Output: $g \in R$ such that $gf \equiv 1 \mod p^l$ $r = \lceil \log l \rceil$; for $i = 1, \dots, r$ do $\mid g_i = (2g_{i-1} - fg_{i-1}^2) \mod p^{2^i}$ end return g_r ;

Example 3.4.1

 $R = \mathbb{Z}$, compute inverse of 5 modulo 6561=3⁸.

start with $g_0 = 1$ since $-1 \cdot 5 = 1 \mod 3$

$$g_1 = 2g_0 - 5g_0^2 = 2 \mod 3^2$$
 $2 \cdot 5 \equiv 1 \mod 3^2$ $g_2 = 2g_1 - 5g_1^2 = -16 \mod 3^4$ $-16 \cdot 5 \equiv 1 \mod 3^4$ $g_3 = 2g_2 - 5g_2^2 = -1312 \mod 3^8$

Scribe: Saiyue Lyu

Method 2: Euclidean

Compute
$$\begin{bmatrix} s & t \\ u & v \end{bmatrix} \begin{bmatrix} 5 \\ 6561 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Chapter 4

The Chinese Remainder Algorithm

4.1 Overview

R is a Euclidean Domain, let $m=m_0\cdots m_{r-1}$, where $gcd(m_i,m_j)=1, i\neq j$. gcd condition $\Rightarrow m=lcm(m_0,\cdots,m_{r-1})$

Theorem 4.1.1 (Chinese Remainder Theorem)

$$\frac{R}{(m)} \cong \frac{R}{(m_0)} \times \frac{R}{(m_1)} \times \dots \times \frac{R}{(m_{r-1})}$$

Example 4.1.1

 $m = 7 \times 11 \times 13 = 1001$, a = 1234, then

$$\mathbb{Z} \qquad \mapsto \qquad \mathbb{Z}/((1001) \qquad \cong \qquad (\mathbb{Z}/(7), \mathbb{Z}/(11), \mathbb{Z}/(13))$$

$$a \qquad \mapsto \qquad rem(a, m) \qquad \mapsto \qquad (rem(a, m_0), rem(a, m_1), \cdots, rem(a, m_{r-1}))$$

$$1234 \qquad \mapsto \qquad 233 \qquad \cong \qquad (2, 2, 12)$$

Example 4.1.2

If $m = 1001 = \times 11 \times 13$, $a = 233 \mod m$, $b = 365 \mod m$, then $a \mapsto (2, 2, 12)$ and $b \mapsto (1, 2, 1)$. then

$$rem(a+b,m): (2,2,12)+(1,2,1)=(3,4,0)\mapsto 598\mod 1001$$

 $rem(a*b,m): (2,2,12)*(1,2,1)=(2,4,12)\mapsto 961\mod 1001$

Goal: Given $v_0, v_1, \dots, v_{r-1} \in R$, find an $f \in R$ such that $f \mod m_i \equiv v_i$ for $0 \le i < r$.

$$m = m_0 \cdots m_{r-1}$$
 and $f = v_0 s_0(\frac{m}{m_0} + v_1 s_1(\frac{m}{m_1}) + \cdots + v_{r-1} s_{r-1}(\frac{m}{m_{r-1}}).$

Can we construct the s_i 's such that f is correct?

Consider $f \mod m_0$

- all terms $m/m_1, \cdots, m/m_{r-1}$ will vanish
- want $v_0 s_0(\frac{m}{m_0}) \equiv v_0 \mod m_0$, i.e. $s_0(\frac{m}{m_0}) \equiv 1 \mod m_0$

• we can choose s_0 such that $s_0(\frac{m}{m_0}) + (*)m_0 = 1$

Example 4.1.3

 $m_0, m_1, m_2 = 7, 11, 13, v_0, v_1, v_2 = 2, 2, 12$

$$gcd(11*13,7) = 1 = (-2)(11 \times 13) + (41)(7) = 1 \Rightarrow L_0 = -2 \times (11 \times 13) = -286$$

 $gcd(7 \times 13, 11) = 1 = \cdots$,
 $gcd(7 \times 11, 13) = 1 = \cdots$,
 $L_1 = 4 \times (7 \times 13) = 364$
 $L_2 = -1 \times (7 \times 11) = -77$

So possibly f is given by

$$f = \underbrace{2}_{v_0} + \underbrace{(-2)}_{s_0} \times \underbrace{(11 \times 17)}_{m/m_0} + \underbrace{2}_{v_1} \times \underbrace{4}_{s_1} \times \underbrace{(7 \times 17)}_{m/m_1} + \underbrace{12}_{v_2} \times \underbrace{(-1)}_{s_1} \times \underbrace{(7 \times 11)}_{m/m_2}$$

$$= -768$$

$$\equiv 233 \mod 1001$$

4.2 Small Refinement to Algorithm

Compute $c_i = v_i \cdot s_i \ rem \ m_i$.

$$c_0 = 2 \times (-2) \mod 7 = 3, \ c_1 = 8, c_2 = 1$$

 $f = 3 \times (11 \times 13) + 8 \times (7 \times 13) + 1 \times (7 \times 11)$
 $= 1234$
 $\equiv 223 \mod 1001$

Claim 4.2.1

if each v_i in range $0, \dots, M_i - 1$, then the cost is $\mathcal{O}((\log m)^2)$ word operations.

- (a) compute $m = m_0 \cdots m_{r-1}$
- (b) compute m/m_i for $0 \le i < r$
- (c) compute s_i such that $s_i(\frac{m}{m_i}) + *m_i = 1$
- (d) compute f

Each step bounded by $\mathcal{O}((\log m)^2)$ word operations.

$$rem(a,m) \mapsto (rem(a,m_0), rem(a,m_1), \cdots, rem(a,m_{r-1}))$$

Theorem 4.2.1

Both directions of CRT can be computed in time $\mathcal{O}((\log m)^2)$ bit operations.

4.3 Negative Numbers

- CRT still holds.
- Just change "system of representatives" modulo m

Scribe: Saiyue Lyu

Example 4.3.1

modp and mods in Maple

Positive range : $0 \le mod p(a, m) \le m - 1$

Symmetric range : $-\lfloor \frac{m-1}{2} \rfloor \leq mods(a,m) \leq \lfloor \frac{m}{2} \rfloor$

mods(*,7) maps to $\{-3, -2, -1, 0, 1, 2, 3\}$

mods(*,6) maps to $\{-2,-1,0,1,2\}$

4.4 Variations of Chinese Remaindering

 $rem(a, m_0), rem(a, m_0, m_1), rem(a, m_0, m_1, m_2), \cdots$

4.5 Matrix Radix Representator

Let $0 \le a < m_0 m_1 \cdots m_{r-1} m_r m_i \in \mathbb{N}$, $m_i \in \mathbb{N}_{\ge 2}$ (not necessarily real prime).

Claim 4.5.1

We can write a uniquely as

$$a = a_0 + a_1 m_0 + a_2 m_0 m_1 + \dots + q_r m_0 \dots m_{r-1}$$

with $0 \le a_i < m_i$ for all i

This is a mixed radix representation

Example 4.5.1

$$m_0 = 7, m_1 = 11, m_2 = 13, 233 = 2 + (0)((7) + (3)(7 \times 11))$$

4.6 Incremental Chinese Remaindering

Compute
$$\underbrace{rem(f, m_0)}_{v_0}$$
, $\underbrace{rem(f, m_0 m_1)}_{v_0, v_1}$, $\underbrace{(f, m_0 m_1 m_2)}_{v_0, v_1, v_2}$

Input: $M, m \in \mathbb{Z}$ with $m \perp M$ and $V, v \in \mathbb{Z}$, $0 \leq V < M, 0 \leq v < m$.

Output: $f \in \mathbb{Z}$ such that $0 \leq f < Mn$, $f \equiv V \mod M$ and $f \equiv v \mod m$. e.g. $M = m_0 m_1 \cdots m_{r-1}, m = m_r$

Method 1 (A2Q1)

Let s, t be such that sM + tm = 1

Return $modp(v \times (s \times M) + V \times (t \times m), m \times M)$

Chapter 5

Fast Interpolation and Evaluation

5.1 CRT revisited

We can regard CRT as an incremental reduction.

Picture!!!!

5.2 Recall Lagrange

a = rem(f, m) where **Picture**

5.3 Fast Multi-point Evaluation

Given $f = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in R[x]$ with degree < n and $u_0, \dots, u_{n-1} \in R$. Find $f(u_0), \dots, f(u_{n-1})$

Evaluation Another View

Recall for $f \in F[x]$, rem(f, x - u) = f(u)

Example 5.3.1

$$(x^2 + 2x + 3)|_{x=1} = 6 = rem(x^2 + 2x + 3, x - 1)$$

$$\begin{array}{r}
X+3 \\
X-1 \overline{\smash) \begin{array}{r}
X^2 + 2X + 3 \\
-X^2 + X \\
\hline
3X+3 \\
-3X+3 \\
\hline
6
\end{array}}$$

$$m = (x - u_0) \cdots (x - u_{n-1}) \in R[x], u_i \neq u_j \text{ for } i \neq j$$

$$F[x]/(m) \qquad \to \qquad (F, \cdots, F)$$
Evaluation $\mapsto \qquad (f(u_0), \cdots, f(u_{n-1}))$
Interpolation $\leftrightarrow \qquad (v_0, \cdots, v_{n-1})$

Assume $n = 2^k$ for some k and degree of f < n

Main idea: Product tree

Figure 5.1: Product Tree

$$m = \underbrace{(m_0 m_1 \cdots m_{n/2-1})}_{M(k-1,0)} \underbrace{(m_{n/2} \cdots m_{k-1})}_{M(k-1,1)}$$

Cost of computing all the nodes?

$$\sum_{i=1}^{k} \frac{n}{2^i} M(2^i)$$

Superlinearity

•
$$M(n) \ge n$$
 • $M(n+m) \ge M(n) + M(m)$ • $M(mn) \ge mM(n)$

Cost of going down the subproduct tree?

Example 5.3.2

$$rem(F, m_0) = rem(rem(F, M(k-1, 0)) \cdots, m_0 m_1 m_2 m_3), m_0 m_1, m_0)$$

Let c be such that cM(n) operations are sufficient to divide a polynomial of length 2n with a polynomial of degree n.

$$c\sum_{i=1}^{k} 2^{k-i} M(2^i) \in \mathcal{O}(M(n)\log n)$$

5.4 Recall Lagrange Interpolation

$$m = \underbrace{(x - u_0)}_{m_0} \cdots \underbrace{(x - u_{n-1})}_{m_{n-1}}$$

Let

$$s_i = \left(\frac{m}{m_i}|_{x=u_i}\right)^{-1}$$
$$f = \underbrace{v_0 s_0}_{c_0}(m/m_0) + \dots + \underbrace{v_{n-1} s_{n-1}}_{c_{n-1}}(m/m_{n-1})$$

Idea: Use Product Tree

$$(c_0, c_1, c_2, c_3, \cdots, c_{n-2}, c_{n-1})$$
 [n tuple]
$$(M_0c_1 + M_1c_0, M_2c_3 + M_3c_2, \cdots, M_{n-2}c_{n-1} + M_{n-1}c_{n-2})$$
 [n/2 tuple]
$$(M_2M_1(M_2c_3 + M_3c_2) + M_1M_2(m_0c_1 + m_1c_0), \cdots)$$

Example 5.4.1

Picture!!

Cost : $\mathcal{O}(M(n) \log n)$ field operations.

Question: how to recover the s_i 's?

Consider formal derivative $m' = \frac{m}{x-u_0} + \cdots + \frac{m}{x-u_{n-1}}$

Example 5.4.2

$$Diff((x-1)(x-2)(x-3),x) = (x-2)(x-3) + (x-1)(x-3) + (x-1)(x-2)$$

Which gives $m'(u_i) = (\frac{m}{x-u_i})|_{x=u_i} = \frac{1}{s_i}$

Evaluation m' at n points u_0, u_1, \dots, u_{n-1} and repeat, which cost $\mathcal{O}(M(n) \log n)$

5.5 Fast Multi-modular Reduction

Let $m = m_0 m_1 \cdots m_{r-1}$ with $r = 2^k$, n = deg m, we can consider constructing a similar subproduct tree (same as Figure 5.1). The cost of computing nodes at level i from level i - 1 is

$$\sum_{d} M(d) \le M(\sum_{d} d) = M(\deg m)$$

Overall cost is $\mathcal{O}(M(n)\log r)$. Worst case $n = \deg m$

5.6 Fast Chinese Remaindering

Let
$$s_i = rem((\frac{m}{m_i})^{-1}, m_i), f = \underbrace{rem(v_0s_0, m_0)}_{c_0} \underbrace{\frac{m}{m_0}} + \underbrace{rem(v_1s_1, m_1)}_{c_1} \underbrace{\frac{m}{m_1}} + \cdots + \underbrace{rem(v_{r-1}s_{r-1}, m_{r-1})}_{c_{r-1}} \underbrace{\frac{m}{m_{r-1}}}_{m_{r-1}}$$

Question: How to get s_i 's?

Remark

 $a \equiv b \mod m_i \iff am_i \equiv bm_i \mod m_i^2$

This is a neat trick to compute the s_i 's

$$rem((\frac{m}{m_i})^{-1}, m_i) = rem((\frac{rem(m, m_i^2)}{m_i})^{-1}, m_i)$$

So we can use multi-modular reduction $m_0^2, m_1^2, \cdots, m_{r-1}^2$

Example 5.6.1

 $rem(210, 44100) = 210, rem(210, 1225) = 210, rem(210, 49) = 14, \frac{14}{7} = 2$

Then $mod p(\frac{1}{2}, 7) = 4 \implies 4 * (2 \cdot 3 \cdot 5) \mod 7 = 1$

5.7 Complexity Summary

Multiplication Time

- Over R[x], n bound on degree, ring operations from R
- Over \mathbb{Z} , n bound on word-size, word operations (same as bit operations)

$$M(n) \in \mathcal{O}(n^2), \mathcal{O}(n^{1.59}), \mathcal{O}(n^{1+\epsilon}), \mathcal{O}(n \log n(\log \log n))$$
 (for any $R)/\mathcal{O}(n \log n)$ (over \mathbb{Z} , New)

• Superlinear, at most quadratic

1)
$$n \le M(n)$$
 2) $M(n) + M(m) \le M(n+m)$ 3) $mM(n) \le M(mn) \le m^2 M(n)$

In time $\mathcal{O}(M(n))$, multiplication, inversion over F[[x]] modulo x^n , division with remainder (over F[x] and \mathbb{Z})

$$nM(n^2)$$
 V.S $n^2M(n)$

5.8 Fast EEA

sa + tb = y, recall

$$\underbrace{\begin{bmatrix} 1 \\ 1 & -4 \end{bmatrix}}_{Q_3} \underbrace{\begin{bmatrix} 1 \\ 1 & -2 \end{bmatrix}}_{Q_2} \underbrace{\begin{bmatrix} 1 \\ 1 & -1 \end{bmatrix}}_{Q_1} \underbrace{\begin{bmatrix} 91 \\ 63 \end{bmatrix}}_{=} = \begin{bmatrix} 7 \end{bmatrix} , \ \frac{91}{63} = 1 + \frac{1}{2 + \frac{1}{4}}$$

Assume WLOG that $|b| \leq |a|$ and $n = \log a$

- Schonhage 72 : Compute all Q_i matrices in time $\mathcal{O}(M(n)\log n)$
- Main ingredient is "Half-gcd" algorithm :

Input: a, b both n bits long

Output : Unimodular $\underbrace{\begin{bmatrix} * & * \\ * & * \end{bmatrix}}_{II} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$ down to at most n/2 bits long

Sketch of Half-gcd Algorithm

Write $a = a_1 2^{n/2} + a_0, b = b_1 2^{n/2} + b_0$

Compute "half-gcd" :
$$\begin{bmatrix} s_1 & t_1 \\ u_1 & v_1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} c_1 \\ d_1 \end{bmatrix} \text{ about } n/4 \text{ bits long}$$

get second subproblem
$$\begin{bmatrix} s_1 & t_1 \\ u_1 & v_1 \end{bmatrix} \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} = \begin{bmatrix} c_0 \\ d_0 \end{bmatrix}$$
 bounded by $3n/4$ bits long

Second Recursive call with next n/2 bits (combine subproblems to get U)

Let H(n) be time for half-gcd

$$H(n) = 2H(\frac{n}{2}) + \mathcal{O}(M(n)) \Rightarrow H(n) \in \mathcal{O}(M(n)\log n)$$

Let T(n) be the time to solve EEA

$$T(n) = T(\frac{n}{2} + \mathcal{O}(M(n)\log n) \Rightarrow T(n) \in \mathcal{O}(M(n)\log n)$$

5.9 "GCD-like" Operations

Introduce ad-h0c cost function

$$B(n) \in \mathcal{O}(M(n) \log n) \text{ OR } B(n) \in \mathcal{O}(n^2), \mathcal{O}(n^{1.59}), \mathcal{O}(n^{1+\epsilon})$$

In time $\mathcal{O}(B(n))$: extended gcd, evaluation/interpolation, multi-modular reduction Chinese remaindering, radix conversion(New), rational number reconstruction (New)

5.10 Radix Conversion

Given $f, p \in F[x]$, $\deg f = n$, $\deg p = m$, $k = \lfloor \frac{n}{m} \rfloor + 1$, find $a_0, \dots, a_{k-1} \in F[x]$ such that

$$f = a_0 + a_1 p + \dots + a_{k-1} p^{k-1}$$

with $deg a_i < deg p$.

Similar for \mathbb{Z}

Example 5.10.1

$$a = 1234 = 2 + 1(7) + 4(7^2) + 3(7^3), p = 7$$

base7:[2,1,4,3], base10:[4,3,2,1]

In Maple : convert (1234,base 7) to [2,1,4,3]

Let $f \in R[x]$ and monic $p \in R[x]$, $\deg f = n$, $\deg p = m$. Let $k = 2^t$, t minimal such that $2^t \deg p \ge \lfloor \frac{n}{m} \rfloor + 1$

$$f = a_0 + a_1 p + \dots + a_{k-1} p^{k-1}$$

$$= a_0 + \dots + a_{k/2-1} p^{k/2-1} + \dots + a_{k-1} p^{k-1}$$

$$= \underbrace{(a_0 + \dots + a_{k/2-1} p^{k/2-1})}_{rem(f, p^{k/2})} + p^{k/2} \underbrace{(a_{k/2} + \dots + a_{k-1} p^{k/2-1})}_{quo(f, p^{k/2})}$$

We can precompute $p, p^2, \dots, p^{k/2}$ and solve the recurrence $T(n) \leq 2T(\frac{n}{2}) + \mathcal{O}(M(n))$

$$T(n) \in \mathcal{O}(B(n))$$

5.11 Rational Number Reconstruction

Given an image $a \in \mathbb{Z}$, a modulo $M \in \mathbb{Z}_+$, bounds $N, D \in \mathbb{Z}_+$ such that 2ND < M

Find : signed fraction $n/d \in \mathbb{Q}$ with $n \perp d$ and $a = \frac{n}{d} \mod M$ with $|a| < N, d \le D$

Notice if soln exists, it is unique

Cost : $\mathcal{O}(B(\log M))$ word operations

Example 5.11.1

 $\frac{1234}{56789} = 400799450 \mod 10^{10}$

In Maple : **iratrecon**($\underbrace{4007994506}_{a},\underbrace{10^{10}}_{M},\underbrace{10^{4}}_{N},10^{5}$) gives $\frac{1234}{56789}$

5.12 Computation in Ring $\mathbb{Z}/$

- a+b, a-b: $\mathcal{O}(\log p)$
- $a * b : \mathcal{O}(M(\log p))$
- Cost of a^{-1} : $\mathcal{O}(B(\log p))$.

Chapter 6

Exact Linear Algebra Over Z Q Zx

6.1 Motivation

Computing expected hitting time in absorbing Markov Chains

Input: $A \in \mathbb{Z}[x]^{186 \times 186}$, $\deg A = 11$. All entries of the form $cx^k(1-x)^{1-k}$, $0 \le k \le 11$, $c \in \mathbb{Z}$

Output : $\alpha \in [0,1]$ such that $f(\alpha)$ is minimized, where $f \in \mathbb{Q}(x)$ is the sum if all entries in $(I-A)^{-1}$

Remark

Sum of all entries in $(I-A)^{-1}|_{x=\alpha} = \text{Sum of all entries in } (I+A+A^2+\cdots)|_{x=\alpha}$

Method 1 (fail)

- Sub different values of x into (I A), e.g. $B = (I A)_{x=0.3}$
- ullet Compute $I+B+B^2+\cdots$ to high enough precision
- Sum up all entries to get an approximation of f(0.3)

Method 2 (fail)

- Compute $(I-A)^{-1}$ explicitly. e.g. if $n=2, B+(I-A)^{-1}=\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$
- Get f(x) = sum of entries

Method 3

Note that
$$f(x) = \begin{bmatrix} 1 & 1 & 1 & \cdots 1 \end{bmatrix} ((I - A)^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix})$$

e.g.
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} b_{11} + b_{12} \\ b_{21} + b_{22} \end{bmatrix} = b_{11} + b_{12} + b_{21} + b_{22}$$

Use evaluation/ interpolation to recover

$$f(x) = \frac{N(x)}{D(x)}, N(x), D(x) \in \mathbb{Z}[x]$$

Example 6.1.1
$$D(2) = \det(I - A)_{x=2}, N(2) = \begin{bmatrix} 1 & 1 & \cdots 1 \end{bmatrix} ((I - A)^{-1}|_{x=2}) D(2)$$

Integer Matrix Determinant

Given $A \in \mathbb{Z}^{n \times n}$

Goal: det A

What is $\det A$?

$$\det A = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}$$

 $|\det A|$ = volume of parallelepiled spanned by rows (columns) of A

Example 6.2.1
$$A_1 = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$

- A non-singular over \mathbb{Q} iff det $A \neq 0$
- $\det A \neq 0 \Rightarrow Ax = b$ has exactly one solution

Cramer's Rule: Let $x = A^{-1}b = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, then $x_i = \frac{\det B_i}{\det A}$ where B_i is A with column i replaces by b

Example 6.2.2

!!!!

How big is $\det A$?

Hadamard's Bound: volume maximized when vectors orthogonal

$$|\det A| \le \prod_{i=1}^n ||\operatorname{row}_i A||$$

Where $||\text{row}_i A|| = (A_{i1}^2 + \dots + A_{in}^2)^2$

We let $||A|| = \max |A_{ij}|$

Lemma 6.2.1

$$|\det A| \le n^{n/2} ||A||^n$$

Corollary 6.2.1

 $A \in \mathbb{Z}^{n \times n}$ nonsingular, $b \in \mathbb{Z}^{n \times 1}$, then

- denominators in $A^{-1}b$ bounded by $n^{n/2}||A||^n$
- numerators in $A^{-1}b$ bounded in magnitude by $n^{n/2}||A||^{n-1}||b||$

Remark

- word length of entries in A is $\log ||A||$
- word length of det A is $\mathcal{O}(n \log ||A|| + n \log n)$

Computing $\det A$: Gaussian elimination over \mathbb{Q}

- (e1) multiply a row of A by $c \neq 0 \Rightarrow \det A \rightarrow c \det A$
- (e2) swap two different rows $\Rightarrow \det A \to -\det A$
- (e3) add a multiple of one row to another \Rightarrow det A unchanged

Example 6.2.3

$$\begin{bmatrix} -34 & 4 & -34 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{2}{17} & 1 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{2}{17} & 1 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{2}{17} & 1 \\ 1 & \frac{68}{29} \\ \frac{270}{17} & 24 \end{bmatrix} to \begin{bmatrix} 1 & -\frac{2}{17} & 1 \\ 1 & \frac{68}{29} \\ \frac{84}{29} \end{bmatrix}$$

Then det $A = (-384/29 \times (-34) \times (174/17) = 4608$

$$\begin{bmatrix} -34 & 4 & -34 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} -34 & 4 & -34 \\ 0 & -384 & -816 \\ 33 & 12 & 57 \end{bmatrix}$$
(row2=-34row2-19row1)

6.3 Single Modular Approach

Choose a single number P such that $P > 2|\det A|$

Remark

If P > 2|a|, then a = mods(a)

- mop $A \in \mathbb{Z}^{n \times n} \Rightarrow A \in \mathbb{Z}^{n \times n}/(P)$
- compute det A over $\mathbb{Z}/(P)$
- reduce in symmetric range

Example 6.3.1 Hadamard's bound for $A = \begin{bmatrix} -34 & 4 & -34 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix}$: $|\det A| \le \lfloor 3^{3/2} 57^3 \rfloor = 962291 := \beta$

 $2\beta = 1924582$ choose P = 1924619 (first prime larger than 2β)

$$A = \begin{bmatrix} -34 & 4 & -34 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow (modp) \begin{bmatrix} 1924585 & 4 & 1924585 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix}$$

 $1415161 \times 1924585 \equiv 1 \mod P$

$$\begin{bmatrix} -34 & 4 & -34 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1924585 & 4 & 1924585 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1811406 & 1 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1811406 & 1 \\ 19 & 8 & 43 \\ 33 & 12 & 57 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1811406 & 1 \\ 19 & 8 & 43 \\ 1811422 & 24 \end{bmatrix}$$

Scribe: Saiyue Lyu

Then mods((226436 * 24 - 1811422 * 24)1924585, P)) = 4608

Cost: If $\log P \in \mathcal{O}(n(\log n + \log ||a||))$, the cost is

$$\mathcal{O}\left(n^3M\left(n(\log n + \log||A||)\right) + nB\left(n(\log n + \log||a||)\right)\right)$$
 word operations

Assuming standard arithmetic gives

$$\mathcal{O}(n^5(\log n + \log ||A||)^2)$$

Total size of input : $\mathcal{O}(n^2 \log ||A||)$

Total size of output : $\mathcal{O}(n(\log n + \log ||A||))$

Intermediate size : $\mathcal{O}(n^3(\log n + \log ||A||))$, which makes it a bad approach as it is larger than input output size

About A2:

Q3: if working modulo p be sure to use Maple's "Inert" function

Example 6.3.2

RemExpand, Normal, Gcd, Gcdex

 $Gcd(f,g,x) \bmod P_i$

The command $Gcdex(f,g,x,'s','t') \mod p$ will assign a and t such that $sf + tg \equiv gcd(f,g) \mod p$

- (a) Newton iteration steps showed look like $h_1 := Rem(Expand(\cdots) \mod p, x^2, x) \mod p$;
- (b) $revf := Normal(subs(x = \frac{1}{x}, f) * x^n) \mod p;$
- (c) Go ahead and use Gcdex as described above

Q1: see section 6.1. You know result is in range $\left[0,M_{m}\right]$ Summary of Single Modulo Approach:

- $B = \lfloor n^{n/2} \rfloor ||A||^n$, p = nextprime (2B+1)
- map $A \in \mathbb{Z} \Rightarrow Ap \in \mathbb{Z}_p$
- compute det Ap over \mathbb{Z}_p
- ullet reduce in symmetric range

Cost: $\mathcal{O}\left(n^3M\left(n(\log n + \log||A||)\right) + nB\left(n(\log n + \log||A||)\right)\right)$

If $M(n) = n^2$, then $\mathcal{O}(n^5(\log n + \log ||A||)^2)$ word operations. (large intermediate space)

6.4 Multiple "Small" Modulii Approach

- Choose $p = p_1 p_2 \cdots p_k$ such that p > 2B
- For $i = 1 \cdots k$, compute $A^i = rem(A, p_i)$, $d^i = det A^i$ over \mathbb{Z}_{p_i}
- Chinese Remainders to get d such that $d \equiv \det A \mod p$
- \bullet Reduce d in symmetric range

Lemma 6.4.1

Let $\beta \in \mathbb{Z}_+$, if $l = 6 + \ln \ln \beta$, then $\prod_{2^{l-1} 2\beta$

Example 6.4.1

 $\beta = 10^{10^{12}}$, $\log_1 0\beta = 10^{12}$, i.e. β has about a terabyte of decimal digits, which needs about 50 GB to store.

 $6 + \ln \ln 10^{12} < 35$, i.e. 35 bit prime numbers.

Thus the lemma says we can choose

- $\log p_i \in \Theta(\log n + \log \log ||A||)$
- $K \in \mathcal{O}\left(\frac{n(\log n + \log ||A||)}{\log n + \log \log ||A||}\right)$

Or (to simplify analysis), choose

- $\log p_i \in \Theta(\log n + \log ||A||)$
- $K \in \Theta(n)$

Compute d_i with $\mathcal{O}(n^3(\log n + \log ||a||)^2)$ word operations, reduction $\mod p_i$ has no effect since p_i is large.

Chinese Remainder images $\mathcal{O}((n(\log n + \log ||A||))^2)$ word operations.

Total cost (using standard arithmetic) : $\mathcal{O}(n^4(\log n + \log ||A||)^2)$

6.5 Non-singular System (Rationals) Solving

Input: $A \in \mathbb{Z}^{n \times n}$ and $b \in \mathbb{Z}^{n \times 1}$, det $A \neq 0$. WLOG, if A is rational, we can scale to \mathbb{Z}

Scribe: Saiyue Lyu

Output : Compute $A^{-1}b \in \mathbb{Q}^{n \times 1}$

Recall: $(\det A)A^{-1}b$ is over \mathbb{Z} and $||(\det A)A^{-1}b|| \le n^{n/2}||A||^{n-1}||b||$

Let $\alpha = \max(||A||, ||B||)$ for simplicity. Let $\beta = |n^{n/2}\alpha^n|$

Solving via Chinese Remaindering

- (1) Choose small primes p_1, \dots, p_k such that $p = p_1 \dots p_k > 2\beta$
- $\log p_i \in \Theta(\log n + \log \alpha)$ and $K \in \Theta(n)$
- (2) Compute $(modp(\det A, p_i), modp((\det A)A^{-1}b, p_i))$ for $i = 1, \dots, k$
- ullet issue: bad primes make A^{-1} singular, $\Theta(n)$ bad primes, choose more primes.
- (3) Chinese Remainder to get $(\det A, (\det A)A^{-1}b)$

Overall Cost : $\mathcal{O}(n^4(\log n + \log \alpha)^2)$ word operations using standard arithmetic.

$$\mathcal{O}(n^4(\log n + \log ||A|| + \log ||b||/n)^2)$$
 word operations

Potential Problem : A might become singular modulo p_i

Example 6.6.1 Assume $Ax = b \Rightarrow \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix} x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, where $d = \det A = 6$, $u = (\det A)A^{-1}b = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$

Computing using above approach:

$$p_1, p_2 = 3, 5, A^{(1)} = A \mod 3 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \in \mathbb{Z}_3^{2 \times n}, d^{(1)} = \det A^{(1)} = 0 \in \mathbb{Z}_3$$

$$u^{(1)} = adj(A^{(1)})b \in \mathbb{Z}_3^{n \times 1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, where $adj(A)$ always exists

$$adj(A) = \begin{cases} (\det A)A^{-1} & \text{if } A \text{ is invertible} \\ 0_{n \times n} & \text{if } \operatorname{rank} \leq n - 2 \\ \operatorname{nonzero\ matrix\ of\ rank} < n & \text{if } \operatorname{rank\ } A = n - 1 \end{cases}$$

Example 6.6.2
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$
, then $adj(A) = \begin{bmatrix} 6 & -4 \\ -3 & 2 \end{bmatrix}$

Idea: fix bad primes by replacing $(\det A)A^{-1}$ by adj(A), keep the result in Chinese Remainder such as x are considered valid solutions.

Solving via Power Series Inversion

Given:
$$f = f_0 + f_1 x + \cdots \in F[x], n \in \mathbb{Z}_+$$

Compute: $g = g_0 + \cdots + g_{n-1}x^{n-1} \in F[x]$ such that $gf \equiv 1 \mod x^n$

Newton Iteration: For $i = 0, \dots, \lceil \log_2 n \rceil$, compute $h_i \in F[x]$ s.t. $h_i f \equiv 1 \mod x^{2^i}$

Linear Variant : For $i = 0, 1 \cdots, n-1$, compute $g_0 = \frac{1}{f_0}$ and $g_i = (A2Q4)$ for i > 0

Problem Variation : Suppose f satisfies deg f := d << n and g such that deg g << n

$$[x \, x \, \cdots \, x] \underbrace{[x x \cdots x]}_{f} \equiv 1 \mod x^{n}$$

Goal: more efficient method to compute g in this setting.

Example 6.7.1

Re-analyse algorithm from A2Q4 in terms of n and d.

Claim 6.7.1

Let $f \in F[x]$ with $\deg f = d$, $f_0 \neq 0$, let h be such that $h \equiv f^{-1} \mod x^k$ for some $k \geq 0$, then $f^{-1} = h + f^{-1}rx^k$ (*) for some $r = r_0 + r_1 + \cdots \in F[x]$, $(1 + x + x^2 + \cdots = (1 - x)^{-1})$

Proof

Solve for unknown r, multiply both sides of (*) by f, then

$$1 = fh + rx^k \Rightarrow r = \frac{1 - fh}{x^k}$$

Corollary 6.7.1

 $deg r \leq deg f + deg h - k$. by assumption $h_0, \dots h_{k-1} = g_0, \dots, g_{k-1}$ where $g = f^{-1}$

Question: How to get g_k ?

Answer: Consider (*) modulo x^{k+1} , $g_k = g_0 r_0$

Goal: Solve Ax = b for $A \in \mathbb{Z}^{n \times n}$ (nonsingular) and $b \in \mathbb{Z}^{n \times 1}$ in $\mathcal{O}(n^3(\log n + \log ||a||)^2)$ bit operations

Revisit Newton Iteration

Given: $f \in F[x]$, deg f = d, $f_0 \neq 0$

Compute : $g = g_0 + g_1 x + \cdots \in F[x]$ such that $gf \equiv 1 \mod x^n$ for some n >> d

Suppose $h = rem(f^{-1}, x^k)$ for some k < n

Then $f^{-1} = h + f^{-1}(\frac{1-fh}{x^k}x^k \ (*) \ deg \, r < d$

Thus $f^{-1} \equiv h + rem(f^{-1}, x^l)rx^k \mod x^{k+l}$

- Newton Iteration has l = k, (*) becomes $f^{-1} = 2h hfh \mod x^{2k}$
- A2Q4 has l = 1, (*) becomes $f^{-1} = h + g_0$ $\underbrace{r_0}_{\text{coefficient of } x^{k+1} \text{ of } fh} x^k \mod x^{k+1}$
- New idea : use l = d and $rem(f^{-1}, x^d)$ at each iteration

Let $p \in \mathbb{Z}_+$, every element of $S := \{\frac{a}{b} : a, b \in \mathbb{Z}, b \perp p\}$ has a unique p-adic expansion $\frac{a}{b} = c_0 + c_1 p + \cdots$ such that $c_0 + c_1 p + c_{i-1} p^{i-1} \equiv \mod(\frac{a}{b}, p^i)$ for all i.

Example 6.7.2

modp(17/21, 10) = 7, modp(17/21, 100) = 77, modp(17/21, 1000) = 277

then
$$17/21 = 7 + 7 \times 10 + 4 \times 10^2 + 0 \times 10^3 + 9 \times 10^4 + 1 \times 10^5 + \cdots$$

Note we can represent truncated expansion $u := modp(\frac{a}{b}, p^i)$ as $(c_0, \dots, c_{i-1}) \in (\mathbb{Z}_p)^i$, i.e. i small integers (e.g $modp(17/21, 10^5) = (7, 7, 4, 0, 9))$ OR $c_0 + c_1p + \dots + c_{i-1}p^{i-1} \in \mathbb{Z}_{p^i}$, one large integer in range $[0, p^i - 1]$

Rational Number Reconstruction

Given an image $a \in \mathbb{Z}$, a modulus $M \in \mathbb{Z}_+$ and bounds $N, D \in \mathbb{Z}_+$ such that 2ND < M

Find signed fraction $\frac{n}{d} \in \mathbb{Q}$ with $n \perp d$, $a \equiv \frac{n}{d} \mod M$, $|n| \leq N$ and $d \leq D$

Example 6.7.3

 $17/21 \equiv 90477 \mod 10^5 \rightarrow \text{iteration}(90477, 10^2, 10^2, 10^5) \rightarrow 17/21$

Application to solve Ax = b

$$Ax = b \implies \begin{bmatrix} 3 & 5 & 1 \\ 2 & 4 & 3 \\ 1 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
, choose $p = 5$ (need $p \perp \det A$)

Compute p-adic expansion of $A^{-1}b$:

$$A^{-1}b \equiv \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} 5 + \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} 5^2 + \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} 5^3 + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} 5^4 \mod 5^5$$
$$\equiv \begin{bmatrix} 175 \\ 173 \\ 1737 \end{bmatrix} \mod 5^5 (= 3125)$$

Then in Maple :
$$map(iratrecon, \begin{bmatrix} 175 \\ 173 \\ 1737 \end{bmatrix}, 3125, 30, 30) = \begin{bmatrix} 25/18 \\ -11/18 \\ 8/9 \end{bmatrix}$$

• How to compute c_0 ?

Compute $B := rem(A^{-1}, p) = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 4 & 4 \\ 3 & 0 & 1 \end{bmatrix}$ (can find $\mathcal{O}(n^3)$ modulo p by first reducing A modulo p,

can choose prime randomly, highly probability that $p \perp \det A$ out of some $\mathcal{O}(n)$ primes

Note $BA \equiv I_3 \mod 5$, then $c_0 = mod p(Bb, 5)$

• How to compute c_1 ?

Ansatz: $A^{-1}b \equiv c_0 + c_1p \mod p^2$, need to solve this for c_1

Multiply both sides by A, we get:

$$b \equiv Ac_0 + Ac_1 p \mod p^2$$

$$b - Ac_0 \equiv Ac_1 p \mod p^2$$

$$Ac_1 \equiv \frac{b - Ac_0}{p} (:= r \in \mathbb{Z}^{n \times 1}) \mod p$$

$$Ac_1 \equiv r \mod p$$

$$c_1 \equiv A^{-1} r \mod p$$

$$c_1 \equiv Br \mod p$$

As before: $A^{-1}b = c_0 + A^{-1}rp$

6.8 Dixon's Algorithm

Choose a single small prime $p \in \mathbb{Z}$ such that $p \perp \det A$

Note $p \perp \det A \Rightarrow p^l \perp \det A$ for any l. We can choose p randomly. p can also be a prime power, e.g. $p = 2^{64}$

We will compute $c_0, c_1, \dots \in \mathbb{Z}_p^{n \times 1}$ such that $A^{-1}b = c_0 + c_1p + \dots$

p-adic solver: $A \in \mathbb{Z}^{n \times n}, b \in \mathbb{Z}^{n \times 1}, \text{ let } \alpha = \max(||A||^{\frac{n-1}{n}}, ||b||^{1/n})$

i.e. $\log \alpha = \mathcal{O}(\log ||A|| + \log ||b||/n)$

Pre-int: Let $M = \lfloor n^{n/2} \alpha^n \rfloor$, let $k \in \mathbb{Z}$ minimal s.t. $p^k > 2M^2$ $(k \in \Theta(n))$

- (1) Lint : $B \leq \text{inverse of } mod p(A, p) \text{ over } \mathbb{Z}_p$
- (2) Lift : for i=0 to k-1 do

//invariant :
$$A^{-1}b = c_0 + \cdots + c_{i-1}p^{i-1} + A^{-1}rp^i$$

$$c_0 = modp(B, modp(r, p), p) // \text{ compute over } \mathbb{Z}_p$$

$$r = \frac{r - Ac_i}{p} // \text{ compute over } \mathbb{Z} \text{ exact}$$

(3) Represent conversion:

$$u = c_0 + c_1 p + \dots + c_{k-1} p^{k-1}$$

return $map(iratrecon, u, p^k, M, M)$

Cost :(1) $\mathcal{O}(n^3(\log p)^2)$ word operations, compute modp(A,p) then $modp(A,p)^{-1}$ over $\mathbb{Z}/(p)$

- (2) $\mathcal{O}(kn^2(\log p)^2)$ word operations
- (3) $\mathcal{O}(n(k \log p)^2)$ word operations

Overall: $\mathcal{O}(n^3(\log n + \log \alpha)^2)$ word operations, use $k \in \Theta(n)$ and $\log p \in \Theta(\log n + \log \alpha)$

Implementation Notes:

- Scribe : Saiyue Lyu
- (1) can use radix $p=(p_1,\cdots,p_k)=(p_1p_1\cdots p_k)$ word-size primes, account for large entries of A
- (2) algorithm combines Chinese Remaindering and p-adic lifting
- (3) reduce "all" work to level 3 BLAS.

Chapter 7

The Resultant And A Modular GCD Algorithm in $\mathbb{Z}x$

7.1 GCDs over $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$

Question: do gcds in $\mathbb{Z}[x]$ always exist? how to compute gcds over $\mathbb{Z}[x]$? what is the relationship between gcds over $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$?

Definition 7.1.1 (gcd over R)

Let $a, b \in R$. then c is a gcd of a and b if

- 1) c|a and c|b. Note $a=cq_1,b=cq_2$ for $q_1,q_2\in R$
- 2) if d|a and d|b, then d|c, for all $d \in R$

Example 7.1.1

$$\gcd(15x + 30, 18x^2 + 6x - 60) = 3x + 6 \text{ with } q_1 = 5, q_2 = 6x - 10$$

 $\gcd(6,15)=3$

Example 7.1.2

Compute gcd(f,g) for $f,g \in \mathbb{Z}[x]$

$$f = -7x^3 + 22x^2 - 55x - 94, g = 89x^2 - 54x$$

Definition 7.1.2 (UFD)

R is a UFD if every element in R has a unique factorization into irreducible (up to unit and ordering)

Definition 7.1.3 (Associates, lu, normal, contant, primitive root)

Over \mathbb{Z} :

lu(a) = sign(a), normal(a) = |a|, thus always have $lu(a) = sign(a) \times normal(a)$

gcd(a,b) will return mean normalized gcd of a and b

Over $\mathbb{Z}[x]$:

Now let
$$f = f_n x^n + \dots + f_0 \in \mathbb{Z}[x]$$

Content of f is defined by $cont(f) := gcd(f_0, f_1, \dots, f_n) \in \mathbb{Z}$, note $cont(f_0) = gcd(f_0) = normal(f_0)$ primitive part of f defined by $f := cont(f) \times pp(f)$, cont(pp(f)) = 1

Example 7.1.3

$$f(x) = 18x^3 - 42x^2 + 30x - 6, g(x) = -12x^2 + 10x - 2$$

$$cont(f) = gcd(18, -42, 30, 6) = 6, cont(g) = gcd(-12, 10, -2) = 2$$

$$pp(f) = 3x^3 - 7x^2 + 5x + 1, pp(g) = -6x^2 + 5x - 1 \text{ (not normalized)}$$

Useful extension of cont and pp to $\mathbb{Q}[x]$

Let $f = (\frac{a_0}{b}) + (\frac{a_1}{b})x + \cdots + (\frac{a_n}{b})x^n \in \mathbb{Q}[x]$ with common denominator b

Example 7.1.4

$$cont(-3x - 9/2) = 3/2, pp(f) = f/cont(f) \in \mathbb{Z}[x]$$

Note since R[x] is a UFD, any two elements have unique gcd (up to leading unit), we extend lu to R[x] via lu(lc(f)).

 $f \in R[x]$ is normalized when its leading coefficient is , e.g. over $\mathbb{Z}[x]$, lc should be positive. gcd(f,g) is the unique normalized gcd in R[x]

Corollary 7.1.1

Let $f, g \in \mathbb{Z}[x]$ with h = gcd(f, g), then

- $(1) \ cont(h) = \gcd(cont(g), cont(g)) \ (2) \ pp(h) = \gcd(pp(f), pp(g))$
- (3) $h/lc(h) \in \mathbb{Q}[x]$ is the monic gcd of f and g in $\mathbb{Q}[x]$

Application to Computation : gcd over $\mathbb{Q}[x] \iff \text{gcd over } \mathbb{Z}[x]$

Lemma 7.1.1

$$pp(gcd_{\mathbb{Q}[x]}(f,g)) = gcd_{\mathbb{Z}[x]}(pp(f), pp(g))$$

Input: primitive $f, g \in \mathbb{Z}[x]$

Output: $h = gcd(f, g) \in \mathbb{Z}[x]$

- (1) Compute monic $v = gcd_{\mathbb{Q}[x]}(f,g)$ using EEA over $\mathbb{Q}[x]$
- (2) b = gcd(lc(f), lc(g))
- (3) Return $pp(bv) \in \mathbb{Z}[x]$ (numbers get bigger)

Example 7.1.5

$$f = 12x^2 + 20x + 3, g = -30x^2 - 47x - 3$$

- (1) $gcd_{\mathbb{Q}[x]}(f,g) = x + 3/2$
- $(2) \ gcd(lc(f), lc(g)) = 6$
- (3) $6 \cdot (x + 3/2) = 6x + 9$, thus pp(6x + 9) = 2x + 3

Example 7.1.6

Compute
$$gcd(f,g), f, g \in \mathbb{Z}[x], f = -7x^3 + 22x^2 - 55x - 94, g = 89x^2 - 54x$$

First try a modular approach, let p = 5

$$\bar{f} = modp(f, 5) = 3x^3 + 2x^2 + 1 \in \mathbb{Z}/(5)[x], \ \bar{g} = modp(g, 5) = 4x^2 + x \in \mathbb{Z}/(5)[x], \ gcd(\bar{f}, \bar{g}) = 1 \in \mathbb{Z}/(5)[x]$$

Suppose $h \in \mathbb{Z}[x]$ is a common divisor of f and g in $\mathbb{Z}[x]$, then $f = q_1 h$, $g = q_2 h$ for $q_1, q_2 \in \mathbb{Z}[x]$, then over $\mathbb{Z}/(5)[x]$ have

$$f \mod 5 \equiv (q_1 \mod 5)(h \mod 5), \ g \mod 5 \equiv (q_2 \mod 5)(h \mod 5)$$

Then $(h \mod 5) \mid (f \mod 5)$ and $(h \mod 5) \mid (g \mod 5)$, thus $h \mod 5$ is a constant

Suppose $A, b, c \in \mathbb{Z}^{100 \times 100}$, ||A||, ||B||, $||C|| \le 99$ and $B \equiv A^{-1}C \mod 2 \cdot 10^6$

Question : Does $B = A^{-1}C$?

Answer: Consider that $AB \equiv C \mod 2 \cdot 10^6$

$$||AB|| \le n \cdot 99^2 < 2 \cdot 10^6/2, \ ||C|| < 2 \cdot 10^6/2$$

Recall for $f = f_0 + f_1 x + \dots + f_n x^n \in \mathbb{Z}[x], ||f||_{\infty} = \max_i |f_i|, ||f||_1 = \sum_0 |f_i|$

Remark

For any $g, h \in \mathbb{Z}[x]$, we have

$$||gh||_{\infty} \le ||g||_1 ||h||_1$$

where gh is expensive to compute, but the RHS is cheaper to compute.

Remark

Suppose
$$f, g, h \in \mathbb{Z}[x]$$
 with $gh \equiv f \mod P$, if $||g||_1 ||h||_1 < P/2$ and $||F||_{\infty} < P/2$, then $gh = f$ (without the mod)

Back to the GCD problem, we have the key notations for $f \in R$ and R a UFD

- $f = lu(f) \cdot normal(f)$
- gcd means normalized gcd

Theorem 7.1.1 (Gauss's Thm)

R a UFD, then R[x] is a UFD

Let $f \in R[x]$, extend "lu" to R[x] via lu(f)=lu(lc(f)), and also $f=cont(f) \cdot pp(f)$

Example 7.1.7

$$f = 10x^{3} - 42x^{2} + 30x - 6, g = -12x^{2} + 10x - 2, \text{ then }$$

$$\operatorname{cont}(f) = \gcd(18, -42, 30, -6) = 6, \operatorname{pp}(f) = 3x^{3} - 7x^{2} + 5x - 1$$

$$\operatorname{and } \operatorname{cont}(g) = 2, \operatorname{pp}(g) = -6x^{2} + 5x - 1$$

$$\operatorname{gcd } \operatorname{over } \mathbb{Q}[x] : \gcd(f, g) = \operatorname{normal}_{\mathbb{Q}[x]} \left(\gcd_{\mathbb{Z}[x]}(\operatorname{pp}(f), \operatorname{pp}(g)) \right)$$

$$\operatorname{gcd } \operatorname{Over } \mathbb{Z}[x] : \gcd(f, g) = \gcd(\operatorname{cont}(f), \operatorname{cont}(g)) \cdot \gcd(\operatorname{pp}(f), \operatorname{pp}(g))$$

$$\operatorname{Theorem 7.1.2}$$

$$\gcd_{\mathbb{Z}[x]} \left(\operatorname{pp}(f), \operatorname{pp}(g) \right) = \operatorname{pp} \left(\operatorname{gcd}_{\mathbb{Q}[x]}(f, g) \right)$$

7.2 Modular Algorithm for GCD over $\mathbb{Z}[x]$

$$f, g \in \mathbb{Z}[x] \xrightarrow{\gcd \text{ over } \mathbb{Z}[x]} h = gcd(f, g) \in \mathbb{Z}[x] \xrightarrow{\mod p} \text{ normal } (h \mod p) \in \mathbb{Z}_p[x]$$

$$f, g \in \mathbb{Z}[x] \xrightarrow{\mod p} \bar{f}, \bar{g} \in \mathbb{Z}_p[x] \xrightarrow{\gcd \text{ over } \mathbb{Z}_p} gcd(\bar{f}, \bar{g}) \in \mathbb{Z}_p[x]$$

Does the diagram commute?

Example 7.2.1

$$f=3x^3+3x-x^2-1\in\mathbb{Z}[x],\ g=3x^2+5x-2\in\mathbb{Z}[x],\ h=\gcd(f,g)=3x-1\in\mathbb{Z}[x]$$
 Try modular approach : $\gcd(f\mod 7,g\mod 7)=x+2$ lc(h) mush divide $b:=\gcd(\operatorname{lc}(f),\operatorname{lc}(g))=3$ multiply image by b, reduce in symmetric range, take $p^p:3x+6\equiv 3x-1\mod 7$ But $\gcd(f\mod 5,g\mod 5)=x^2+1$ (degree too large , i.e. 5 is a bad prime)

Main question: For what prime does

$$normal_{\mathbb{Z}_p[x]} (gcd_{\mathbb{Z}[x]}(f,g) \mod p) = gcd_{\mathbb{Z}_p[x]} (f \mod p, g \mod p)$$

7.3 The Resultant

Polynomial multiplication is a linear map

Example 7.3.1

$$g = -2 + 5x + 3x^2 \in \mathbb{Q}[x], t = t_0 + t_1x + \dots \in \mathbb{Q}[x]$$

Infinite vector space q * t: Picture!

Let $f, g \in F[x]$ nonzero, $n = \deg f$, $m = \deg g$, then (-g)f + (f)g = 0

 $\gcd(f \mod 3, g \mod 3) = 1 \text{ (degree too small, i.e. 3 is a bad prime)}$

Lemma 7.3.1

 $gcd(f,g) \neq 1$ if and only if nozero s, t such that sf + tg = 0 with $deg s \le g$ and deg t < f

Proof

 $\Rightarrow deg h = gcd(f,g) > 0$, then (-g/h)f + (f/h)g = 0

 \Leftarrow assume sf + tg = 0 and $f \perp g$, then sf = -tg and f|t impossible if det t < deg f

View multiplication $\begin{bmatrix} f & g \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ as a linear map

$$f = 3x^3 - x^2 + 3x - 1$$
, $deg f = n = 3$, $g = 3x^2 + 5x - 2$, $deg g = m = 2$

$$\begin{bmatrix} 3 & 3 & & & \\ -1 & 3 & 5 & 3 & & \\ 3 & -1 & -2 & 5 & 3 \\ -1 & 3 & & -2 & 5 \\ & -1 & & & -2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_0 \\ t_2 \\ t_1 \\ t_0 \end{bmatrix} = \text{the vector representation of } sf + tg$$

Theorem 7.3.1

Let $f, g \in F[x]$ be nonzero, then

- (1) gcd(f, g) = 1 iff Syl(f, g) is invertible
- (2) if gcd(f,g) = 1 and $n + m \ge 1$, then EEA computes v such that $Syl(f,g)v = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$

Definition 7.3.1 (res(f,g))

res(f,g) = det Syl(f,g)

Corollary 7.3.1

Let $f, g \in F[x]$ be nonzero, TFAE

- $(1) \gcd(f, g) = 1$
- (2) $\operatorname{res}(f,g) \neq 0$ iff $\operatorname{Syl}(f,g)$ invertible
- (3) do not exist nonzero $s,t \in F[x]$ such that $sf+tg=0,\, deg\, s < deg\, g$ and $deg\, t < deg\, f$

Example 7.3.2

$$f = 3x^3 - x^2 + 3x - 1, g = 3x^2 + 5x - 2, h = gcd(f, g) = 3x - 1$$

$$\operatorname{res}(f,g) = 0, \ \operatorname{res}(f/h,g/h) = \operatorname{res}(\ x^2+1,x+2\) = \det \ \operatorname{Syl}\ (f,g) = \begin{vmatrix} 1 & 1 & \\ 0 & 2 & 1 \\ 1 & 2 \end{vmatrix} = 5$$

7.4 Key steps of Modular GCD Algorithm

Input : $f,g \in R[x]$

Output: h = gcd(f, g)

(1) Assume f, g are primitive

e.g. work with pp(f) and pp(g) deal with content separately

(2) Let $b := gcd(lc(f), lc(g)) \in \mathbb{Z}$

only choose moduli/primes p with $p \nmid b$

then p is "bad" iff $deg gcd(f \mod p, g \mod p) > deg h$

then we can choose p one big prime, or $p = p_1 \cdots p_k$ for small primes p_i

- (3) Compute $v := gcd(f \mod p, g \mod p) \in \mathbb{Z}/(p)[x]$; monic modular gcd, hopefully $v \equiv (1/lc(h))h \mod p$ $w := mods(b \cdot v, p) \in \mathbb{Z}[x]$; hopefully w = (b/lc(h))h over $\mathbb{Z}[x]$
- (4) Check that $w \mid bf$ and $w \mid bg$
- (5) Compute $f^*, g^* \in \mathbb{Z}[x]$ with max-norm < p/2 such that

$$f^*w \equiv bf \mod p$$
, $g^*w \equiv bg \mod p$ (7.1)

(6) Check that (6.1) holds without mod, if

$$||f^*||_1, ||w||_1 < p/2 \text{ and } ||bf||_{\infty} < p/2$$

$$||g^*||_1, ||w||_1 < p/2$$
 and $||bg||_{\infty} < p/2$

then return pp(w)

Otherwise, if (6.1) does not hold without mod, then

p was bad, i.e.
$$p \mid res(f/h, g/h)$$

And/Or p not bad enough

Example 7.4.1

$$f = 6x^3 + 9x^2 + 10x + 15$$
, $g = 10x^4 + 15x^3 + 4x^2 + 8x + 3$, $h = \gcd(6, 10) = 2$, $p = 227$

$$v = \gcd(f \mod p, g \mod p) = x - 112$$

$$w = mods(b * v, p) = 2x + 3$$

$$f^* = Quo(f, v, x) \mod p = 6x^2 + 10$$

$$g^* = Quo(g, v, x) \mod p = 10x^3 + 4x + 2$$

$$f^*w = \underbrace{(6x^2 + 10)}_{||\cdot||_1 = 6} \underbrace{(2x + 3)}_{||\cdot||_1 = 5} = 12x^3 + 18x^2 + 20x + 30 \mod 227$$

$$g^*w = \underbrace{(10x^3 + 4x + 2)}_{||\cdot||_1 = 16} \underbrace{(2x + 3)}_{||\cdot||_1 = 5} = 20x^4 + 30x^3 + 8x^2 + 16x + 6 \mod 227$$

Return pp(2x+3) = 2x+3

Pick p = 229

$$v = Gcd(f \mod p, g \mod p) \mod p = x^2 - 77x + 54$$

$$w = mods(b * v, p) = 2x^2 + 75x + 108$$

$$f^* = Quo(f, v, x) \mod p = 6x + 13$$

$$g^* = Quo(g, v, x) \mod p = 10x^2 + 98x - 89$$

$$f^*w = \underbrace{(6x + 13)(2x^2 + 75x + 108)}_{||\cdot||_1 = 185} = 12x^3 + 18x^2 + 20x + 30 \mod 229$$

$$g^*w = \underbrace{(10x^2 + 98x - 89)(2x^2 + 75x + 108)}_{||\cdot||_1 = 185} = 20x^4 + 30x^3 + 8x^2 + 16x + 6 \mod 229$$

Note the LHS norm is larger, i.e. step (5) fail.

Main Question: how to choose p?

Theorem 7.4.1

Let $f, g \in \mathbb{Z}[x]$ with $n = \max(\deg f, \deg g) \ge 1$ and $A = \max(||f||_{\infty}, ||g||_{\infty}|)$, let $h = \gcd(f, g) \in \mathbb{Z}[x]$, then

- (1) $|res(f/h, g/h)| \le (n+1)^n A^{2n}$
- (2) $||f/h||_1 \cdot ||\frac{b}{lc(h)}h||_1 \le (n+1)^{1/2} 2^n Ab$
- (3) $||g/h||_1 \cdot ||\frac{b}{lc(h)}h||_1 \le (n+1)^{1/2} 2^n Ab$

Option 1: Classical Approach

Let $B = b(n+1)^{1/2}2^n A$, choose p randomly in range 2B

7.5 From Integer to Polynomials

Recall Gauss's Thm, R a UFD leads to R[x] a UFD

$$R \to R[x] \to R[x,y] \to \cdots$$

Example 7.5.1

 $R = \mathbb{Z}_7[y]$, consider polynomials from R[x]

$$f = \underbrace{(6y^4 + 2y^3 + 3y^2)}_{f_2} x^2 + \underbrace{(3y^4 + 6y^2 + 2y)}_{f_1} x + \underbrace{(2y^3 + 2y^2)}_{f_0}$$

$$g = \underbrace{(3y^3 + 6y^2 + 3y)}_{g_3} x^3 + \underbrace{(2y^2 + 4y + 2)}_{g_2} x^2 + \underbrace{(2y^3 + 5y^2 + 3y)}_{g_1} x + \underbrace{(6y^2 + y + 2)}_{g_0}$$

$$cont(f) = gcd(f_2, f_1, f_0) = y^2 + y, cont(g) = gcd(g_3, g_2, g_1, g_0) = y + 1$$

$$pp(f) = (y^2 + 4y)x^2 + (4y^2 + 3y + 5)x + 5y, pp(g) = (y^2 + y)x^3 + (3y + 3)x^2 + (3y^2 + y)x + 2y + 3$$

$$\gcd \text{ computation}: \gcd_{R[x]}(f,g) = \underbrace{\gcd(cont(f),cont(g))}_{(y+1)} \cdot \underbrace{\gcd(pp(f),pp(g))}_{(yx+3)}$$

Now consider $f, g \in R[y]$ with $R = \mathbb{Z}_7[x]$, then

$$f = \underbrace{(6x^2 + 3x)}_{f_4} y^4 + \underbrace{(2x^2 + 2)}_{f_3} y^3 + \underbrace{(3x^2 + 6x + 2)}_{f_2} y^2 + \underbrace{(2x)}_{f_1} y$$

$$g = (3x^3 + 2x)y^3 + (6x^3 + 2x^2 + 5x + 6)y^2 + (3x^3 + 4x^2 + 3x + 1)y + 2x^2 + 2x^2 + 3x + 2x^2 + 2$$

$$cont(f) = 1, \ cont(g) = 1, \ pp(f) = f, \ pp(g) = g$$

$$\gcd \text{ computation}: \gcd_{R[y]}(f,g) = \underbrace{\gcd_R(\operatorname{cont}(f),\operatorname{cont}(g))}_{1} \cdot \underbrace{\gcd_{R[y]}(\operatorname{pp}(f),\operatorname{pp}(g))}_{xy^2 + (x+3)y + 3 = (y+1)(yx+3)}$$

7.6 Modular Algorithm For GCD Over F[x, y]

Input : Primitive $f,g\in F[x,y]=R[x]$ where R=F[y] and F a field.

$$deg_x f = n \ge deg_x g = m$$
 and $deg_y f, deg_y g \le d$

(1) No need for number theoretic bound

e.g.
$$deg_y h \le d$$
, $deg f/h = d - deg_y h$

(2) Easy to get bound on $deg_y res_x(f/h, g/h)$

$$deg_y res_x(f/h, g/h) \le (n+m)d$$

Example 7.6.1

$$f/h = (6y^2 + 3y)x + 3y^2, g/h = (3y + 3)x^2 + 2y + 3 \in \mathbb{Z}_7[y][x]$$

$$res_x(f/h, g/h, x) = det \, Syl_x(f/h, g/h)$$

$$= \begin{bmatrix} 6y^2 + 3y & 3y + 3 \\ 3y^2 & 6y^2 + 3y & 0 \\ 3y^2 & 2y + 3 \end{bmatrix} = y^2(y^2 + 2y + 3)(y + 2)$$

Algorithm:

- (1) Let $b = gcd(lc + x(f), lc_x(g)) \in R = F[y]$, let $L = d + 1 + deg_yb$, where $L > deg_yb\frac{h}{lc(h)}h$
- (2) Compute $v_i = b(\alpha_i) \cdot gcd(f(x, \alpha_i), g(x, \alpha_i))$ over F[x] for $L, \alpha_i \in F$ such that $y \alpha_i \nmid b$ i.e. detect (some) bad images and discard.
- (3) Once L consistent images computed, interpolate to get $v \in R[x]$ such that

$$v \equiv v_i \mod (y - \alpha_i)$$
 for $1 \le i \le L$

(4) Check such that $v \mid bf$ and $v \mid bg$