Polygon Measurement

Short-answer questions involving length, angle, and area.

Careful Measurement with Eyeballs

Adjust the figures to fit the given conditions within **eyeball accuracy**. Enter the requested measurements.

Geogebra link: https://tube.geogebra.org/m/gjf28er6

Problem 1 In figure above, when point C is adjusted so that BC is perpendicular to AC, AC = 2.09.

Hint: When two lines are perpendicular, they cross to create four congruent angles.

Hint: Use the corner of a piece of paper.

Geogebra link: https://tube.geogebra.org/m/q32gyaud

Problem 2 In $\triangle ABC$ above, move point D to make the following measurements. Enter -1 if it is not possible.

(a) When \overline{BD} is a median, $AD = \boxed{2.25}$

Hint: A median is drawn from a vertex to the midpoint of the opposite side.

(b) When \overline{BD} is a angle bisector, $AD = \boxed{2.78}$.

Hint: An angle bisector cuts an angle in half. Focus near the vertex of the angle rather than near D.

(c) When \overline{BD} is a perpendicular bisector, $AD = \begin{bmatrix} -1 \end{bmatrix}$.

Hint: An perpendicular bisector cuts an segment in half and is perpendicular to it. Enter -1 if it is not possible.

Learning outcomes: Author(s): Brad Findell

(d) When	\overline{BD} is a altitude, $AD = \boxed{6.46}$.
Hint: the op	An altitude contains a vertex and is perpendicular to the line containing posite side. Enter -1 if it is not possible.
G	eogebra link: https://tube.geogebra.org/m/a888zyw2
Problem 3	3 In $\triangle ABC$ above, the height to base \overline{AC} is $\boxed{3.585}$.
	may move point D. A height is the length of an altitude, which must be ar to the line containing the chosen base.

 ${\bf Geogebra\ link:\ https://tube.geogebra.org/m/kta9hbuf}$

Problem 4 In $\triangle ABC$ above, the height to base \overline{AC} is 3.511.

 $\pmb{\text{Hint:}}$ You may move point D. A height is the length of an altitude, which must be perpendicular to the line containing the chosen base.