

NORTH SYDNEY BOYS HIGH SCHOOL

2004 TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 2

Examiner: G. Rezcallah

General Instructions

- Reading time 5 minutes Working time 3 hours
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

· Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Ee
- O Mr Rezcallah
- O Mr Barrett

Student Number:

(To be used by the exam markers only.)

Question No	1	2	3	4	5	6	7	8	Total	Total
Mark	15	15	15	- 15	15	15	<u>15</u>	15	120	100

Marks

- Find: (a)
- $(i) \qquad \int \frac{x^4}{\sqrt{x^5 7}} dx \ .$

2

(ii) $\int \frac{1}{e^x + e^{-x}} dx$

2

Evaluate $\int_{0}^{6} x\sqrt{6-x} dx$ Using the substitution $u^{2} = 6-x$.

3

(i) Find the constants A and B such that (c)

$$\frac{1}{\cos x} = \frac{A\cos x}{1 - \sin x} + \frac{B\cos x}{1 + \sin x}$$

- 2
- (ii) Hence, find the exact value of the integral $\int_{0}^{\frac{\pi}{6}} \sec x dx$

2

2

Show that $\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$ Hence, evaluate the integral $\int_{0}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + e^{\cos x}} dx$.

QUESTION 2 Begin a new page.

	QUISTICIVE Definition page.	
		Marks
(a)	Consider the complex numbers $Z_1 = \sqrt{2} (1 + i\sqrt{3})$ and $Z_2 = 2\sqrt{6} (1 + i)$	
(i)	Express $z = \frac{Z_1}{Z_2}$ exactly in the form $x + iy$, where x and y are real.	2
(ii)	Write Z_1 , Z_2 and z in modulus/argument form.	2
(iii)	Hence, find the exact value of $\cos \frac{\pi}{12}$.	1
(iv)	On an Argand diagram draw the vectors \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OS} , to represent Z_1 , Z_2 and $Z_1 - Z_2$ respectively.	2
(b) ·	Indicate on an Argand diagram the region which contains the point P representing z when:	
	(i) $\operatorname{Re}(z+iz) \geq 2$	2
	(ii) $1 \le z-1-i \le 3 \text{where } z = x + iy$	2
(c)	By applying De Moivre's theorem and by also expanding $(\cos\theta + i\sin\theta)^5$, express $\sin 5\theta$ as a polynomial in $\sin\theta$.	4

(a) The diagram shows the graph of y = f(x) which passes through the origin and cuts the x axis at x = -2 and x = 4. The point $(1, 2^{1/4})$ belongs to the curve.

(i) Write down the equation of y = f(x).

2

10

On separate diagrams, sketch each of the following:

(ii)
$$y = -f(x)$$

(iii)
$$y = f(-x)$$

$$(iv) \quad y^2 = f(x)$$

$$(v) \quad y = |f(|x|)|$$

$$(vi) \quad y = \frac{1}{1 - f(x)}$$

(b) Consider in the set of complex numbers C:

w the cubic root of unity, x = a + b, $y = aw + bw^2$ and $z = aw^2 + bw$.

(i) Show that
$$1 + w + w^2 = 0$$

1

(ii) Prove that
$$x^2 + y^2 + z^2 = 6 ab$$

2

(a)

The ellipse E with equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$ has a directrix D as shown in the diagram. Point $R(x_0, y_0)$ lies on D.

PQ is the chord of contact from R where P is the point (x_1, y_1) .

- (i) Write down the equation of D and the coordinates of the focus S.
- (ii) Show that the tangent at a point $P(x_1, y_1)$ has an equation of

$$\frac{xx_1}{16} + \frac{yy_1}{9} = 1.$$

- (iii) Write down the equation of chord PQ and show that the focus S lies on PQ.
- (iv) Show that the angle subtended by PR at the focus S is 90°.
- (v) Hence, deduce that the points P, S, and R are concyclic... 1

QUESTION 4 (Continued)

Marks

(b)

(i) Sketch the graph of
$$f(x) = \sqrt{(x+1)^2} + \sqrt{(x-1)^2}$$
.

2

(ii) Hence, solve the equation
$$-2 \le \sqrt{(x+1)^2} + \sqrt{(x-1)^2} < 2$$

1

(c) The equation $x^3 + kx + r = 0$ has roots α, β , and γ .

Find the value of the expression $\alpha^3 + \beta^3 + \gamma^3$

QUESTION 5 Begin a new page.

Marks

(a) (i) A parabolic segment has height h and width 2a. Use Simpson's rule with three function values to show that the exact area of this segment is $\frac{4}{3}ah$.

2

2

In the diagram below, a tent has a circular base with centre O and radius a, and AOB is a diameter of the base. - The shaded area PMQR is a typical cross section of the tent perpendicular to AB, and meets AB at a point M distant x from O. The curve PRQ is a parabola with axis RM and QM = RM.

- (ii) Use part (i) to show that the shaded area PMQR is $\frac{4}{3}(a^2 x^2)$.
- (iii) Find the volume of the tent.
- (b) Factorise the polynomial $P(z) = z^4 2z^2 + 8z 3$ fully over C Given that $P(1 - \sqrt{2}i) = 0$.
- (c) (i) By considering the perfect square $(\sqrt{x} \sqrt{y})^2$ where x and y are positive, prove that $\frac{x+y}{2} \geqslant \sqrt{xy}$.
 - (ii) Hence, if \dot{a} , \dot{b} , \dot{c} and \dot{d} are positive numbers, prove that :

$$4(ab + bc + cd + da) \le (a + b + c + d)^{2}$$

QUESTION 6 Begin a new page.

Marks

1

2

9

(a) In the diagram, the shaded region is bounded by the y axis and the curves $y = \cos x$ and $y = \sin x$.

- (i) Show that the curves intersect at $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$
- (ii) The shaded region is rotated about the y axis.Find the exact value of the volume obtained by this rotation, using the method of cylindrical shells.
- (b) By considering the binomial expansion of $(1+i)^n$ Show that $1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \dots = 2^{\frac{n}{2}} \cos \frac{n\pi}{4}$
- (c) The normal at a point $P\left(x_1, \frac{9}{x_1}\right)$ on the rectangular hyperbola xy = 9 meets the curve again at another point A.
 - (i) Prove that the equation of intersection of the normal at P and the rectangular hyperbola is $x_1^3 x^2 + (81 x_1^4)x 81x_1 = 0$
 - (ii) Hence, prove that the coordinates of A are $\left(-\frac{81}{x_1^3}, -\frac{x_1^3}{9}\right)$
 - (iii) Let M be the midpoint of AP. Derive the cartesian equation of the locus of M. 3

QUESTION 7	Begin a new page.

Marks Consider the word SOCCER. (a) How many: 1 six-letter different arrangements (i) 2 selections of 4 letters (ii) can be made from the letters in the word SOCCER? (b) A particle of mass m is projected vertically upward under gravity in a medium in which the resistance is proportional to square of the velocity (mkv^2) , where k is a constant. Show that the terminal speed V in the medium is $\sqrt{\frac{g}{k}}$ 1 If the speed of projection is equal to the terminal velocity V in the medium, show that: (ii) the particle reaches a maximum height of $\frac{V^2}{2g} \ln 2$ above the point of projection. 3 (iii) the time taken to reach its maximum height is $\frac{\pi V}{4g}$ 4 (iv) the time t in the downward motion as a function of v is given by $t = \frac{1}{2\sqrt{gk}} \ln \left(\frac{V + v}{V - v} \right)$ 4

QUESTION 8 Begin a new page.

Marks

(a) If
$$I_n = \int_0^1 (1-x^2)^n dx$$
 for $n \ge 0$, show that $I_n = \frac{2n}{1+2n} I_{n-1}$ for $n \ge 1$.

Hence, find an expression for I_n in terms of n for $n \ge 1$.

(b)

Two circles intersect at C and D. ABCD is a cyclic quadrilateral in one circle. BC produced meets the other circle at E. C, F, E and D are concyclic points. AB produced meets EF produced at G.

Prove that GFDA is a cyclic quadrilateral.

4

(c) A sequence is defined by the recurrence relationship: $U_1=1 \ \text{ and } U_{n+1}=\frac{1}{2}\Bigg[U_n+\frac{2}{U_n}\Bigg] \text{ when } n\ge 1 \ \text{, n a positive integer}$

(i) Prove by mathematical induction:
$$\frac{U_n - \sqrt{2}}{U_n + \sqrt{2}} = \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}}\right)^{2^{n-1}}$$

(ii) Hence, show that for n sufficiently large, $\,U_n\,$ is very close to $\,\sqrt{2}\,$

	proge 1-
Solution of NSBMS Ext. II - 20	page 1. PO4 HSC Toul. Suggested Macks.
Questian 1.	Suggested Macks.
(a) (i) [24 dz let u= 25.	-7
1 125-7 du=52	dz. I for correct substitu
Question 1. (a) (i) $\int \frac{x^{y} dx}{\sqrt{x^{5}-7}}$ let $u = 2^{5}$. $\int \frac{\int x^{y} dx}{\sqrt{x^{5}-7}} = \int \int \frac{du}{\sqrt{u}} = \int \frac{du}{\sqrt{u}} = \int \int \frac{du}{\sqrt{u}}$	dz. 1 for correct substitute of du correct modified primi
$= \frac{1}{5} 2 \frac{12}{5} + C = \frac{2}{5} \sqrt{25-7} + C$. I for correct answer a
(ii) $\int \frac{dx}{e^{x}+e^{-x}} = \int \frac{dx}{e^{x}+1} = \int \frac{e^{x}}{e^{x}} dx$	c. 1 for correct start and Substitution
$ \frac{\det u = e^{x}}{du = e^{x}dx} = \int \frac{du}{u^{2}+1} = \tan^{-1} \frac{du}{du} $	$u + C$ 1 for consect answer $e^{x} + C$. In terms of x .
. •	į .
(b) \(\nu \forall \delta \tau \delta \tau \delta \	=) x=6-4 ²
(b) $\int x \sqrt{6-x} dx$. $u^2 = 6-x$ $\int (6-u^2) \sqrt{u^2} \cdot (-2u \cdot du)$	- => dv = -2udu
((u ²) \(\frac{2}{2} \)	1 Por substitution do
(o-m) 14 - (-am. ma)	1 for substitution to obtain sin terms of u.
$= \int (6-u^2)(-2u^2) du = -2 \int (6u^2) du$	2-u4) du
	17 (- 11 - 12 - 12 - 12 - 12 - 12 - 12 -
$= -2 \left[\frac{6u^3 - u^5}{3} \right]_2 = 2 \left[2u^3 - u^5 \right]_2$	1 for finding primitive with correct bounds.
$= 2\left[2(2)^{3} - 2^{5}\right] - 2\left[16 - \frac{32}{5}\right] = \frac{96}{5}$	1 for correct answer.
$\frac{(i)}{\cos x} \frac{1}{1 - \frac{A \cos x}{1 + \sin x} + \frac{B \cos x}{1 - \sin^2 x}}$	ex (1-sinx) Award:
= 9 co/2 (1+ sin 2) + B co x (1	1-sinz) correct answer or
= A(1+Sinx) + B(1-Sinx)	carrect 2 equations in
cos x-	terms of A and B.
= (A+B) + (A-B) sin x-	2 1 2
A+B= 1) => AA=1 =>	2 marks for both
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A = \frac{1}{2}$ correct anomars $B = \frac{1}{2}$

page2-.

	1 0-7
NSBHS - Ext I Trial 2004 Solutions.	Marks.
π). π). π).	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Just 2 1- sinx 2 1+ sinx	
0 11/6 11/6	1
= 1 (- cos dx + 1 (cos dx	1 for correct substitution
$\frac{1}{2} \int \frac{\cos x}{1-\sin x} dx + \frac{\pi}{2} \int \frac{\cos x}{1+\sin x} dx$	to get the correct
$= -\frac{1}{2} \left[\ln \left(1 - \sin x \right) \right] + \frac{1}{2} \left[\ln \left(1 + \sin x \right) \right]_{D}^{\pi/L}.$	primitive in either
= - 1 fm (1-sinx) + 1 fm (1+on2)	
$ \frac{1}{2} \left\{ \ln \frac{(1+\sin x)}{1-\sin x} \right\}^{\frac{1}{1-\delta}} = \frac{1}{2} \ln \frac{(1+\frac{1}{2})}{(1-\frac{1}{2})} $	1 mark for correct
= 1 (m (1+sinx) = 1 m (1-1)	
	answer.
$=\frac{1}{2}\ln\frac{3}{4}=\frac{1}{2}\ln 3.=\ln \sqrt{3}.$	
d 1 d	
4	
$(d)(i) \int f(x) dx = \int f(a-x) dx.$	
- (a) (1)	
Let $u=a-x$ $\Rightarrow \int \int (a-x) dx = -\int \int (u) du \cdot x$ $du = -dx \qquad 0 \qquad a \qquad a$	Award:
	2 marks for correct
du=-dx o a a a	-proof
$au = -\delta x \qquad a \qquad$	
7	1 mark for any
$\frac{a}{\int f(x) dx} = - \int f(au) du = \int f(a-u) du$	minor step not
J+(2) 42 = - J + (2.11) au = J + (2.21) 2.2	shown in the proof
= \int f(a-x) dx.	
η/2 ο (N-×)	
$I = \int_{e^{3i\gamma_x} + e^{i\cos x}}^{\pi/2} dx = \int_{e^{3i\gamma_x} + e^{i\cos x}}^{\pi/2} dx = \int_{e^{3i\gamma_x} + e^{i\cos (\pi/2 - x)}}^{\pi/2} dx$	
$I = \frac{e}{e^{\sin x} + e^{\cos x}} \frac{dx}{e^{\sin \left(\frac{\pi}{2} - x\right)} + e^{\cos \left(\frac{\pi}{2} - x\right)}}$	
0 01/2 cosx	1 mark for correct
$\int_{-\infty}^{\infty} \frac{\cos x}{e^{\cos x} + e^{\sin x}} dx$	
Th 0 112	method using property.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 for correct answer.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$= \int_{(e^{j\ln N} + e^{i\omega j x})}^{0 \pi j x} dx = \int_{0}^{\pi j x} dx = \begin{bmatrix} x \\ y \end{bmatrix}_{0}^{\pi j x}$	
(Sink 1 closs)	
J (e Te)	
D:21=# => I= 1/4.	
	
, , , , , , , , , , , , , , , , , , ,	1

	- page 3
NSBHS Trial Ext 2 Solutions.	·
Question 2.	Hacks.
(a) $Z_1 = \sqrt{2}(1+i\sqrt{3})$. $Z_2 = 2\sqrt{6}(1+i)$.	Award:
	2 marks for correct
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	z answer.
$-\sqrt{2}(1-i+i\sqrt{3}-i^2\sqrt{3})$	Z answer.
$= \sqrt{2} \left(1 - i + i\sqrt{3} - i^2\sqrt{3} \right)$ $= 2\sqrt{6} \left(1 - i^2 \right)$	V I mark for:
$= \frac{\sqrt{3} (1 - i + i\sqrt{3} + \sqrt{3})}{2\sqrt{6}} = \frac{1}{2\sqrt{3}}.$ $= \sqrt{6} (2)$	correct method, wrang
216 (3) 216 213	answer or
	1 societ and PZ
$\frac{-(1+\sqrt{3}+i\sqrt{3}-i)}{4\sqrt{3}}.$	showing (1-i).
$\frac{1+\sqrt{3}}{4+\sqrt{3}} + \frac{1}{4}(\sqrt{3}-1)$	1 (1-2)
4 V3 4 V3	
(ii) $Z_1 = \sqrt{2} (1 + i\sqrt{3})$ $\Gamma = \sqrt{1^2 + (\sqrt{3})^2} = 2$	·
$=2\sqrt{2}(1+i\sqrt{3}) = 2\sqrt{2} \text{ is } \frac{\pi}{3}.$	1 mark for
2 3	correct z, or z2
$Z_{2} = 2\sqrt{6} \left(1 + \dot{c}\right) = 2\sqrt{6} \times \left(\frac{1}{\sqrt{2}} + \frac{\dot{c}}{\sqrt{2}}\right) \times \sqrt{2}$	
$= 4\sqrt{3} \left(\frac{1}{2} + \frac{i}{\sqrt{2}} \right) = 4\sqrt{3} \text{ cis } \mathbb{I}.$	
$Z = \frac{Z_1}{Z_2} = \frac{2\sqrt{2} \operatorname{cis} \sqrt{1/3}}{4\sqrt{3} \operatorname{cis} \sqrt{1/4}} = \frac{\sqrt{2}}{2\sqrt{3}} \operatorname{cis} \left(\frac{\sqrt{1}}{3} - \frac{1}{14} \right)$	1 mark for correct
Z2 4 V3 Cis 1/4 2 V3 (3 4)	z according to zi
$= \frac{\sqrt{2}}{2\sqrt{2}} \text{ cis } \mathbb{I}.$	and Z2.
1.3	
$(11i) \begin{array}{c} z = \sqrt{2} \text{cis } \overline{\Pi} = \sqrt{2} \text{fos } \overline{\Pi} + i \text{ sin } \overline{\Pi} \\ = \sqrt{3} 12 2\sqrt{3} 12 \end{array}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1) I mark for
	I the correct
12 V2 4 4V3 / 2V2	/ expression (even
	If unsimplified).
- A - 10 21	representation of out and ob
$\begin{array}{c c} (W) & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	representation of off and ob
	I mark for BA.
Koh	

d

- page 4-. MSBHS Ext 2 Solutions. (b) (1) Re $(z+iz) \ge 2$. Marks. z+iz=z+iy+i(x+iy)mark for the correct line Re (z+ iz) = x-y 7,2. mark for the somet region . (ii) /2-(1+i)3 is a circle of centre (1,1) and r= 3 1 mark for identifying |2-(1+i)|= 1 is a circle of centre (1,1) and and showing the 2 circles with their correct antres and radii I mark for the shaded (c) (650 + isin 0)5. Let C = 650. S = sin 0. $(5 + 5 (3 + 10) (3 (45)^{2} + 10) (2 (45)^{3} + 5) (45)^{4} + (45)^{5}$ (5+5c4s i - 10c3s2 - 10c2s3 +5cs4 - iss mark for correct expansion. c5-10c3c2+5cs4++ (5c45-10c2s2+55) But (case + ising) = cas 50 + isin 50. (De Harre) I mark for De Horreckthy : sin 50 = 5c45 - 10c353 + 55 - 5 c 4 s - 10 (1-s2) s3 + 55 1 for correct sin 50 in terms of c and s. -5(1-52) 105 + 55 5(54-252+1) 5 - 1053 + 11 55. = 555 - 1053 + 55 - 1053 + 11 55 $= 165^{5} - 105^{3} - 105^{3} + 55$ = 16 sin 5 0 -20 sin 2 0 + 5 sin 0. I for correct answer. : sin 50 = 16 sin 50 - 20 sin 8 + 5 sin 8.

	- page 5
NS BHS Ext 2 - Solutions 2004	Hacks.
Question 3	
	I mark for quartic showing factors.
$\frac{q}{4} = -qa \Rightarrow a = -\frac{1}{4}$	
y=-1 × (x-4) (x+2) or-1 (x ² -2x ² -8x)	I for correct expression either factored or simplified form.
(ii) ' /	
y=-f(x)	correct graph: V
<i>y=f(x)</i>	
-41 A3	Award:
(iii) y = f(-x)	Correct graph VV
	substantially correct,
-4 -2 -1 2 2	but missing feature
,	
(in)	
	Award:
15-2	I mark for either:
	correct loop or correct
1 2 14 >× 1	er correct y = VF(x).
/2	
vertical tangents at x=0,4,-2	2 marks for correct graph including vertical tangents.

- page 6-. NSBHS Ext 2 - Solutions 2004 Harles. (v) First graph f(1x1) where the function is reflected 2 marks for correct
graph awarded se
that: about y axis is reflected about y axis. for x > 0 Then reflect any parts under x axis about x axis. I mark for y = f(1x1) y=|f(1=4 of y= f(1x1) about

x axis. (vi) y = 1 - f(x). 3 marks for correct graph of = I - F(x) 2 marks for substantially correct, but missing one of assymptotes. y= 1-f(x) 1 mark for correct

y = 1 - f(x) es

2 correct parts of the

A parts shaws

	- page 7
NSBHS Ext 2 - Solutions 2004	Harko.
(b) $z = a+b$. $y = aw + bw^2$, $z = aw^2 + bw$.	
(i) $w^3 = 1$ => $w^3 - 1 = 0$	
$(w-1) \left(w^2 + w+1 \right) = 0.$	V for correct method.
$\therefore \omega^2 + \nu + l = 0 \; .$	
$(ii) x^2 = (a+b)^2 = a^2 + b^2 + 2ab.$	
$y^2 = (aw + bw^2)^2 = a^2w^2 + b^2w^4 + 2abw^3$	
$\frac{-a^{2}w^{2} + b^{2}w + 2ab}{z^{2} - (aw^{2} + bw)^{2} - a^{2}w^{4} + 2abw^{2} + b^{2}w^{2}}$	
$z^{2} = (aw^{2} + bu)^{2} = a^{2}w^{4} + 2abw^{3} + b^{2}w^{2}$	
$= a^2 \omega + 2ab + b^2 \omega^2.$	
$x^{2}+y^{2}+z^{2}$ $= a^{2}+b^{2}+2ab+a^{2}w^{2}+b^{2}w+2ab+a^{2}w+2ab+b^{2}w$	- 0
$= a^{2} + b^{2} + 2ab + a^{2}w^{2} + bw + 2ab + a^{2}w + 2ab + b^{2}w$	12 V for worrest expansion
$= a^2 + a^2 \nu^2 + a^2 \nu + b^2 + b^2 \nu + b^2 \nu^2 + 6ah.$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I for showing and proving the given answer.
0 0 = 646.	Inc greek and an
,	
···	

	- page 8
NSBHS Extension 2 - 2004 Total solution	Harko.
Quanton A.	
$\frac{2^{2}+y^{2}-1}{(1)(1)(1)(1)(1)(1)} = \frac{2^{2}+y^{2}-1}{(1)(1)(1)(1)(1)} = \frac{2^{2}+y^{2}-1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1)} = \frac{1}{(1)(1)(1)(1$	
$9 = 16(1-e^2) \Rightarrow 9 = 1-e^2 \Rightarrow e^2 = 1-9 = 7$ 16 16 16 16	
e= V17 16 16 16	
Directrix $x = \frac{a}{e} = \frac{4}{\sqrt{7}} = \frac{16}{\sqrt{7}}$	V for court director.
· · · · · · · · · · · · · · · · · · ·	
S(ae,0) = S(4/7,0) = S(V7,0)	V for correct focus.
(h) £ f 4 = ± ·	
$\frac{\frac{16}{2x} + \frac{9}{3yy'} = 0}{\frac{2}{16}} \Rightarrow \frac{3yy'}{9} = -\frac{2}{2x}}{\frac{1}{16}}$	
16 9 9 16	
y'= -92 => M=-921.	V for worket m
y-y-m (x-21)	,
$y = y_1 = -\frac{9x_1}{16y_1} \left(x - x_1\right)$	
1699, - 169,2=-9×1× +9×,2	<u> </u>
$9x_1x + 16yy_1 = 9x_1^2 + 16y_1^2 \div 9x_16$	V for the correct
$\frac{x_1x + y_2y_1 - x_1^2 + y_1^2}{16} = \frac{x_1^2 + y_1^2}{16} = \frac{x_1x + y_2y_1}{16} = \frac{1}{9}.$	manipulation of the
16 9 16 9	
$\frac{x_1x_2 + y_2y_1}{y_1y_2} = \frac{y_1}{y_1}$	
(111) 20x + yoy - 1 is the chard PD equation.	in general.
16 9	in general.
R(x0,70) lies on D: x0= 16.	
ντ. x + 3ο3 · _ 4 · · · · · · · · · · · · · · · · ·	
1	
= + 450 = 1 is equation of PQ.	V for showing SEPQ.
b S(V7,0): LHC-17 + 0 = 1 - RHS: SEPQ.	
V7	
10 11 + 33 = 1 to the tangent.	
At $z = \frac{1}{12}$; $\frac{1}{12}$ $\frac{1}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{$	
$y = \frac{9}{5!} \left(\frac{1 - 21}{\sqrt{7}} \right) = \frac{9}{\sqrt{7} - 21} $	V For finding ye in
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
日 (元 / 万) /万岁, (万-21))	terms of y,

	- page 9
NSBHS Extension 2 Total HSC - 2004.	Marta.
$\frac{q}{q} = \frac{q}{\sqrt{7} - \chi_1} - \frac{q}{\sqrt{7} - \chi_1}$	
$\frac{m_{\mathcal{R}} = \frac{q}{(\nabla_{7} - x_{1})} = \frac{q}{(\nabla_{7} - x_{1})} = \frac{q}{2(\nabla_{7} - x_{1})}$	
$\frac{16}{\sqrt{2}} - \sqrt{7}$ $\frac{16-7}{\sqrt{3}} = \frac{107-21}{9}$) I for gradient SP. or PS
	or PS
$m_{SR} = \frac{(F_1 - \chi_1)}{9},$	
9,	
$m_{PS} = \frac{y_1 - o}{x_1 - \sqrt{7}} = \frac{y_1}{x_1 - \sqrt{7}}$	
$\alpha_1 - \sqrt{7}$ $\alpha_1 - \sqrt{7}$	
m = (5.12 / 6.5)	1.18 . 4.
$m_{PS} \times m_{SK} = (f_1 - x_1) \times f_1 = -(x_1 - \sqrt{2}) = -1$	V for proving the
y_1 $(x_1-\sqrt{7})$ $(x_1-\sqrt{7})$	product of gradients
:. PS 1 SR => L PS R = 90°.	
(V) P, S, R are concyclic a's the L in	1
a semi-wale is 90° (with PR as	
13 10 WITH TRAS	
diameter).	
(b) (i) $f(x) = \sqrt{(x+1)^2} + \sqrt{(x-1)^2} = x+1 + x-1 $	
	Award: 2 marks for correct
y=2 /5000 V	graph
1	O for non Linear cure.
-2 -1 0 1 2.	
	I mark for part of
	the graph correct showing intercepts.
(ii) Impessible no real solution.	or for the correct
	or for the correct
$(\omega) x^3 + kx + c = 0$	I for correct (ii) answer .
	3 0 7
$x^3 + k\alpha + r = 0$ $\alpha + \beta + \delta = -b = 0$	
3+ kp+r=0	
$\beta^3 + k \gamma + \Gamma = 0$	I for correct method
$x^{2} + \beta^{2} + y^{3} + k(\alpha + \beta + \beta) + 3\Gamma = 0$	1
$\alpha^3 + \beta^2 + \beta^3 = -3\Gamma - k(\alpha + \beta + \delta)$	
	. 0
= -35.	I for correct answer.
	

- page 10 -

	NSBHS Extension 2 Total HSC 2004	Harks.
	Question 5:	
(a)	/ ih \ 5 0 h 0	
	$Area = H \left[y_1 + 4y_2 + y_3 \right]$	V for correct setting
	Area = $\frac{1}{3} \begin{bmatrix} y_1 + 4y_2 + y_3 \\ 0 & 2a \end{bmatrix}$ $= \frac{3}{3} \begin{bmatrix} 0 + 4h + c \end{bmatrix}$ $= \frac{3}{3} \frac{1}{4ah}$	V for correct application
	= 3 Lah.	of method leading to
(li)	3	J
	QH= Va2-x2 (Pythagoras theorm	
-	$0 \times H = QH = \sqrt{a^2 - x^2}$	V for QM or RM
	= Area of parabolo = 4 x QMx RM (from i).	
Ī	$= \frac{4}{3} \sqrt{h^2 - x^2} \sqrt{h^2 - x^2}.$	V for correct method being (i) to get the
	$-\frac{3}{4}(a^2-x^2)$.	given answer.
(ننز)	$V = \lim_{\Delta \to \infty} \frac{1}{4} \times \Delta \times $	-
	Ax-10 Iz-a a	
	$= \int_{-3}^{3} \frac{(a^2 - x^2) dx}{3} = 2 \int_{-3}^{3} \frac{(a^2 - x^2) dx}{3}$	V for correct integral
	-a 0 0 0 10 16 0	V for wrest answer
	$= \frac{8}{3} \left[a^{2}z - \frac{x^{3}}{3} \right]_{0}^{a} = \frac{8}{3} \left[a^{3} - \frac{a^{3}}{3} \right] = \frac{8}{3} \times \frac{2a^{3}}{3} = \frac{16}{9} a^{3}.$. · · ·
	z4-2z ² +8z-3.	
	P(1-12i) = 0 - the conjugate is a root = P(1+12i)=0	V for conjugate factor
		v qu. conjuguie que
	Sum = $1 - \sqrt{2}i + 1 + \sqrt{2}i = 2$ Product = $(1 - \sqrt{2}i)(1 + \sqrt{2}i) = 1 - 2i^2 = 3$.	
\neg	$\Rightarrow z^2 - Sz + P - 0 \Rightarrow z^2 - 2z + 3 = 0 \text{ is factor}.$	
	z² + 2z -1	
zł.	$-2z+3$ z^4 $-2z^2+8z-3$	V for correct answer
	$e^{z^4} = 2^3 \pm 3z^2$	of division
	$x^{2} - 5z^{2} + 8z - 3$	
		1921
	-z² +2z -3 ⊕z² +3-2⊕ 3	
	(A) = (A) = (A) =	

	- page 11
NSBHS Extension 2 Trial solutions - 2004	Harks.
Solving: z2 + 2z -1 = 0	
Solving: $z^2 + 3z - 1 = 0$ $z = -2 \pm \sqrt{4 - 4(-1)} = -2 \pm \sqrt{8} = -2 \pm 2\sqrt{2} \times 2$ $z = -1 \pm \sqrt{2}$.	
2 2	I doc correct real.
Z=-1± V2.	V for correct real factors.
- = (- () \	
(2) - (2-(1-12/2))(2-(1+12/2))(2-(-1+12))	
(2-(-112)	for factors ove
$ \therefore P(z) = \left(z - (1 - \sqrt{2})\dot{z}\right) \left(z - (1 + \sqrt{2}\dot{z})\right) \left(z - (-1 + \sqrt{2})\right) \left(z - (-1 - \sqrt{2})\right) = \left(z - 1 + \sqrt{2}\dot{z}\right) \left(z - 1 - \sqrt{2}\dot{z}\right) \left(z + 1 - \sqrt{2}\right) \left(z + 1 + \sqrt{2}\right). $	V C
(\(\omega\) \(\omega\) \(\omega\) \(\omega\)	V for correct start.
x +y - 2\frac{1}{2}y > 0.	
7+y 82V2y.	V for correct method
2+y ≥ 2√xy · 2+y · ≥ √xy ·	34.7.
(i) let $x = \frac{a+b}{a}$ $y = \frac{c+d}{a}$	
From (i) 2 + 4 > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
a+b+c+d > Vp+b (x+d).	√ for applying (i)
From (i) $\frac{2+4}{2} > \sqrt{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$	1. 11/3
a+b+c+d > Vac+ ad+bc+bd	
4 V 4	V for manipulation
Square both sides: (a+b+c+d)2, ac+ad+bc+bd x16	
16 4	· Paradeles Ha
(1) 12 1/20+ ad+lo+ld)	v for getting the result.
$(a+b+c+d)^{2} \Rightarrow 4(ac+ad+bc+bd).$ $\Rightarrow 4(ac+ad+bc+bd) \leq (a+b+c+d)^{2}.$	10001
: 4 (ac+ad+bc+bd) & (a+b+c+d).	
N.B: Jome students' solutions may be:	
a+b ≥ 2 √ab	
+ c+d 7, 2√cd	****
a+d >, 2 Tad	•
26 + 6+c+d) >, 2(Vab + Vbc + Vcd + Vad)	1 1 1 D
(a+b+c+d) >, (Vab+Vbc+Ved + Vad)	- Award I mark for this.
	.7(17

n d	- page 12	<u> </u>		- page 13 -
NSBHS Extension 2 - Maths Trial 2004.	Mario -	·	NSBHS Extension 2 - Maths Trial 2004	Marks.
Queton 6		<u>-</u>	200 Appreash to Q6 (a) (ii)	Marks to 96 a (ii)
a) 1) y = 510x = 605 2			(ii) After obtaining:	again-
Sinx = beth,		.) —	$V = 2\pi I \times (losx - sinx) dx$	I mark for correct A
$\frac{\cos x}{\tan x} = 1.$, _	= 21 The corner of the sinx dx	I made for correct V
∴. z= π/4.	V for showing -	· ,	1/4	·
$y = \sin \pi /_{0} = \frac{1}{\sqrt{2}}$ pt of \cap is $(\pi /_{0}, \frac{1}{\sqrt{2}})$			$T_{i} = \int x \cos x dx$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			o 11/4	
			= z sinz - sinz dz.	I mark for correct
94-9,		·	$\begin{bmatrix} -1 & 0 & 0 \\ x & sinx + coix \end{bmatrix}_{0}^{\pi/4} = \underbrace{\pi \times 1}_{U} + \underbrace{1}_{V2} -1.$	Integration by pur
+ y= 65.2L		·	- L 200 4 12 V2	
2172 0 1/4			$I_{x} = \int x \sin x dx$	
		-	$\frac{1}{2} = \int x \sin x dx dx$ $= \int x \cos x + \int \cos x dx$	
A= 21 × (42-51)			- T/.	I mark for correct
= 211 x (cox - sinx)	I for correct area.	· ·	$= \left[-x \cos x + \sin x \right]_{0}^{1/4} = -\prod_{i} x \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}.$	process:
$V = 2\pi \times (\cos x - \sin x) \Delta x$	y or wirea area.	·	$V = 2\pi \left[I_1 - I_2 \right]$	
T/u		(1)	$= 2\pi \left[\frac{\pi}{4} \times \frac{1}{f_2} + \frac{1}{4} - 1 + \frac{\pi}{4} \times \frac{1}{f_2} - \frac{1}{4} \right]$	
V= lim > 217 x (coix-sinx) Ax	. ,		[4 12 N2 4 12 N2]	
17/4 ×20	expression.		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I mark for correct
= \ \ 2 \pi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· · · · · · · · · · · · · · · · · · ·			ansher.
= 21 (x (10)x - Sinx) dx			= <u>π</u> - 2π.	
= 211 1 (1002 - 3112) (32		7.7	3cd approach to S:	00
Let $y = 2$ $v = \cos x - \sin x$			(ii) to get the valume I in one line:	
du = dx dr = (sinx + cos x) dx	start of Integration		27 [(x sinx + (24x) +/x (25x - 5inx)] T/4	
= uv - frdu.	by parts		27 [(x sinx + cosx) +(x cosx - sinx)]0	
$= x \left(\sin x + \cos x \right) - \int (\cos x - \sin x) dx$ $= x \left(\sin x + \cos x \right) - \left[-\sin x + \cos x \right].$			$= 2\pi \left[\frac{\underline{T}}{412} + \underline{J} - 1 + \underline{T} - \underline{J} \right].$	1
		1	[412 V2 412 V2	
$= x \left(\frac{\sin x + \cos x}{\sin x + \cos x}\right) + \sin x - \cos x$ $V = 2\pi \left[\left[x \left(\sin x + \cos x\right)\right]^{\pi/4} + \left[\sin x - \cos x\right]^{\pi/4}\right]$, ,	$= 2\pi \left[\frac{2\pi}{442} - 1 \right] = \frac{\pi^2}{\sqrt{2}} - 2\pi.$	/
V= 211 x (sinx + 103x) + sinx - 105x		.)	L'112 J V2	Nota.
= 21	/ for correct integration process.		N. B: Some students start wrong to get:	<u> </u>
$=2\pi$ π π $\frac{\sqrt{2}+\sqrt{2}}{2}$ $+\frac{\sqrt{2}-\sqrt{2}}{2}$ $+\frac{\sqrt{2}-\sqrt{2}}{2}$			2π/cosx (cosx - sinx) dx	to get Ti2/ , studer
$= 2\pi \left[\frac{\pi}{4} \times \sqrt{2} - 1 \right] = 2\pi \left[\frac{\sqrt{2\pi} - 4}{4} \right].$. —	and get the correct answer to	
<u> </u>	of for correct		that I which is π^2	will get 3 marks.
$= \prod \left[\frac{\sqrt{2}\pi - 4}{2} \right] \cdot \text{cubic unit.}$ $= \prod \left[\frac{\sqrt{2}\pi - 4}{2} \right] \cdot \text{cubic unit.}$ $= \prod \left[\frac{\sqrt{2}\pi - 4}{2} \right] \cdot \text{cubic unit.}$	y answer.		4	

		1.0
	NSBHS Extension 2 - Maths Trial 2004	Marko.
	200 Appreach to Q6 (a) (ii)	Marks to 96 a (ii) again-
(i	After obtaining in	again-
*	$V = 2\pi \int_{-\infty}^{\pi/4} (losx - sinx) dx$	I mark for correct A
,	$V = 2\pi \int_{-\infty}^{\pi/4} \frac{1}{x} (\cos x - \sin x) dx$ $= 2\pi \int_{-\infty}^{\pi/4} \frac{1}{x} \cos x dx - \int_{-\infty}^{\pi/4} \sin x dx$	1 '-
}	= 21 / × 60 × 42 - 1 = 50 × 42 - 1	I made for correct V.
	T (
	$T_1 = \int x \cos x dx$	
***************************************	$= \begin{bmatrix} x \sin x \end{bmatrix} - \int \sin x dx.$ $= \begin{bmatrix} x \sin x + \cos x \end{bmatrix}^{\frac{1}{1}/4} = \begin{bmatrix} x \frac{1}{2} + \frac{1}{4} & -1 \end{bmatrix}.$	
	- 12 SM2 - 13M2 AZ.	I mark for correct
	$= \int_{x} \sin x + \cos x = \int_{y} \frac{1}{\sqrt{2}} + \int_{y} \frac{1}{\sqrt{2}} = \int_{y} \frac{1}$	Integration by parts
	$I_2 = \int x \sin x dx$	
	$\frac{T_2 = \int x \sin x dx}{\int x \cos x} + \int \cos x dx$	
1		I mark for correct
	$- \left[- x \cos x + \sin x \right]_{0}^{\pi/4} - \left[- x \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right]_{0}^{\pi/4}$	Drocess .
	$V = 2\pi \left[I_1 - I_2 \right]$	
1)	- 25 [T x] + 1 - 1 + T x 1 - 1	
	$= 2\pi \left[\frac{\pi}{4} \times \frac{1}{12} + \frac{1}{12} - \frac{1}{12} + \frac{1}{12} \times \frac{1}{12} - \frac{1}{12} \right].$	
***************************************	$= 2\pi \left[\frac{2\pi}{4\sqrt{2}} - 1 \right] = 2\pi^2 - 2\pi$	I mark for correct
	- 4 V2 - 2 [2	answer.
	$=\frac{\pi^2}{6}-2\pi$.	
· ·		- OF
37	3rd approach to S:	
(''')	to get the volume I in one line:	
	27 [(x sinx + codz) +(x cosx - sinx)] =	<u>/</u>
***************************************	-2π $\left[\frac{T}{412} + \frac{1}{12} - 1 + \frac{T}{472} - \frac{1}{12}\right]$	
) ——		
)	$= 2\pi \frac{2\pi}{4472} -1 = \frac{\pi^2}{V_2} - 2\pi.$	V
		Nota.
-	N. B: Some students start wrong to get:	
·	211 (cosx (cosx - sinx) dx	to get 112/4, students
***************************************	and get the correct answer to	will get 3 marks.
	and get the correct answer to that & which is Π^2	
	7 4	

MS BHS Extension 2 - Trial 2004.	Marks.
(b) (1+i)2 = [12 cis 1/4] De Hoires then.	
Expanding (1+i)n	
1+(nC+)i+nC2i2+nC3i3+nC4+nC5i5+76i6+	
$= 1 + \binom{n}{1} \cdot \vec{a} - \binom{n}{2} - \binom{n}{3} \cdot \vec{a} + \binom{n}{4} + \binom{n}{5} \cdot \vec{a} - \binom{n}{4} + \cdots$	
(eneming i2=1, i3= i ; i47 (5) (6) (6)	
	V for expansion.
$= \frac{1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \dots + i \cdot \left[\binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \binom{n}{7} - \frac{n}{3}\right]}{\binom{n}{5} - \binom{n}{7} - \binom{n}{7}}$	
$2nt: (1+i)^{2} = (\sqrt{2})^{9} (\cos n\pi + i \sin n\pi) \qquad \text{as } f_{2} = 2^{4c}$	
= 2 1/2 con T + i 2 1/2 sin n T.	V for De Moirre's
	expansion
Eg hating real sides: $1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\dots-2^{n/2}\cos n\pi$.	
(2) + (4) - (6) + = 2 = 3,74	
(c) i) xy=9 = y= 9 - 9x ⁻¹ .	
1 9 -2 9	
$\frac{y-1/2}{2} = \frac{1}{2^2}$	
$\frac{y' - 9 \times^{-2} - 9}{x^2}$ $\frac{y}{y - y'} = \frac{x_1^2}{x_1^2} \left(x - x_1\right)$ $\frac{y}{y} = \frac{x_1^2}{x_1^2} \left(x - x_1\right)$	
$\frac{y-y}{7} = \frac{x_1}{7} \left(\frac{x-x_1}{2}\right)$	/ Branch about
$y = x_1^2 x - x_1^3 + y_1 \cdot \omega \text{ normal}$	I for normal equation
$y = \frac{x_1}{2}x - \frac{x_1}{3} + y_1 \cdot \text{ is normal.}$ To intersect hyperbola: $y = y$.	
To intersect Apperbola: y=J.	
$\frac{x_1^2}{q_1^2} \times -\frac{x_1^3}{2} + \frac{q}{1} = \frac{q}{x} \cdot but y_1 = \frac{q}{x_1}$	
	(D = 0 = eks = +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V for equating to
	get the given
$x_1^3 x^2 - x_1^4 x + 81x = 81x_1$	relation.
$ z_1^3 x^2 + (8l - x_1^4) x - 8l x_1 = 0. $	-
(ii) quadratic equations whose roots should be	
$x ext{ of } P ext{ and } A ext{ i.e. } x_p = x_p ext{ and } x_k = \alpha$.	
Use Sum = $-\frac{b}{a}$. GP = $-\frac{81\times1}{21^3}$. 0
$\frac{\chi_1 + \alpha = \frac{57+\chi_1}{2}}{2} : \alpha \cdot \chi_1 = 8 \times 1$	V for showing XA.
7/+ 1/- \$1 - 7/	[Accept substitution if fully shown]
$\frac{2}{2} + \frac{3}{2} + \frac{3}$	12-14 24000.7
$\frac{2\sqrt{1+\alpha} = -\frac{51}{2} + \frac{2}{1}}{\alpha_1^3} + \frac{2}{1} = \frac{2}{1} = \frac{2}{1}$ $\frac{2}{1} + \frac{2}{1} = $	
x_1^3 x_2 x_3 x_4 x_4 x_5 x_5	
(OR) (x-x,)(x,x+81) = 0 (Factoring)	

,	- pange 15-
NSBHS Ext. 2. Maths Trial - 2004.	narks.
$ \frac{(1ii)}{x_1^3} A \frac{\left(-81, -\frac{x}{x_1}\right)}{9} \frac{P\left(x_1, \frac{9}{x_1}\right)}{P\left(x_2, \frac{9}{x_1}\right)}. $	
and the second s	
$\frac{X = X_{M} = x_{A} + x_{P}}{2} = \frac{-81}{2} + \frac{x_{1}}{2} = \frac{-81 + x_{1}}{2x_{2}^{2}} \dots (1)$	
$\sqrt{11} - 2 + 81$	
$ \frac{Y - \frac{y_{1}}{y_{1}} = \frac{y_{A} + y_{p}}{2} = -\frac{x_{1}^{3}}{\frac{q}{q}} + \frac{q}{x_{1}} = -\frac{x_{1}^{3} + 81}{q x_{1}}}{2} - \frac{x_{1}^{3} + 81}{q x_{1}} $ $ \frac{Y - \frac{81 - z_{1}^{3}}{18x_{1}}}{18x_{1}} = \frac{2}{2} - \frac{x_{1}^{3} + 81}{q x_{1}} $ (2).	
Y 81 - 2, 4 2 (2).	I for both coordinates
19	of A.
	7 //
$\frac{(2) \forall - 8l - x_1}{(1) \times} \frac{18x_1}{18x_1} \frac{(x_1^{\vee} - 81)}{2x_1^3}$	
$\frac{Y = (8 x_1, y) \times \frac{2x_1^3}{18x_1} = -\frac{x_1^2}{9}$	
X 182, -(81-314) 9	
$\Rightarrow \tau_i^2 = -\frac{91}{9} . \tag{3}.$	√ getting z, in
37 1 = 17 · · · · · · · · · · · · · · · · · ·	terms of X and Y.
V 91 7 4 (3)	10003 4 1000 1
Using (2) again: $Y = 81 - x_1^4$ (3)	
(4, 7, 4)	
Square both sides: $y^2 = \frac{(81 - x_1^4)^2}{18^2 x_1^2}$	
out $x_1^2 = -\frac{91}{x}$ => $y^2 = (81 - (-\frac{91}{x})^2)^2$	V trying to get rid of
18 ² (-9Y)	x, in x,2=-9Y
1.2/ 0/\) 2	ય
$-\frac{18^2\left(-\frac{9Y}{X}\right)Y^2}{\left(81-\frac{81}{X^2}\right)^2}$	
X ² /	
$\frac{13^{2} (9) y^{3} - (81 x^{2} - 81 y^{2})^{2}}{\times} \times x^{4}.$	
× × **	
$(-18^2)(9)(y^3)x^3 = 81^2(x^2-y^2)^2 \div 9^{\frac{3}{2}}$	/ I for getting the relation.
$-4y^3x^3 = 9(x^2-y^2)^2$	the relation.
$\therefore 4 x^{3} y^{3} = -9 (x^{2} - y^{2})^{2}$	
$gr + 4x^{2}Y^{3} = 9(Y^{2} - x^{2})^{2}$	
<u> </u>	
	

- page 16-NSBHS Extension 2 - Maths Trial 2004. Harks Question 7: (a) SOCCER (1) 2 C's: 6! - 360 -V for 61 or answer (15) 2C's 4 different letters IC 30thers from S, O, C, E, R: 5C V for correct method OC, 4 others 4Co + 20's, 2 diff: 4 C2 5 C4 + 4C2 = 5+6=11 V for anyer. 4C2 + 4C1 + 4C0 = 11 N.B: If students wrote: 462, 262 + 261 x 463 + 260 x 464 = 15 -> they get only 1 mark. (b) (i) Downward Motion is the only motion to get the terminal velocity: mic = mg - mkn2 I mark to show $\ddot{z} = g - k N^2$ the correct downward Terminal releasing: = 0 ž=0. [No marks' for upward motion x]. =) $V^2 = A \cdot = V = \sqrt{\frac{2}{4}}$ is Terminal k velocity (ii) Howards: = - (g+kw2) V for correct mtn z (w dw g+ kn2 9+ kv2 2k V for correct integration

	- page 17-
NSBHS Maths Ext. 2. Trial Solution - 2004.	Marks.
$H = -\frac{1}{2k} \left[lng - ln \left(k V^2 + j \right) \right].$	
$= \frac{1}{2k} \left[\ln \left(k \sqrt{2} + g \right) - \ln g \right]$	
$=\frac{1}{2k}\ln\left(\frac{kV+1}{a}\right)$	V for correct
$= \frac{2k}{2k} \ln \left(\frac{kv^2 + j}{g} \right)$ $= \frac{1}{2k} \ln \left(\frac{kv^2 + j}{g} \right) \text{But } v^2 - g$ $= \frac{1}{2k} \ln \left(\frac{kv^2 + j}{g} \right)$	the given answer.
dk (g	J. J
$= \frac{1}{2k} \ln \left(\frac{k \times 3}{3} + 1 \right) = \frac{1}{2k} \ln 2.$	
Conger Approaches: is to find the general x equation and then sub w=0 to get H:	00
equation and then sub w=0 to get H:	OR V
approach:	
(b ii) r dar = - (g + k or 2)	
$ \frac{1}{\sqrt{y}} \frac{dy}{dy} = \int_{0}^{\infty} dx $	
g+kv+	V for corretzor
(2) - 1 () 2) 2	
$\frac{x = -1}{2k} \int \frac{2kv dv}{g + kv^2} = \frac{-1}{2k} \ln \left(g + kv^2 \right)^{\nu}$	
$= -\frac{1}{2k} \ln \left(\frac{g + k n^2}{g + k v^2} \right) - \frac{1}{2k} \ln \left(\frac{g + k v^2}{g + k n^2} \right).$	V for correct sien.
at max ht. a = 0	
$H = x - \frac{1}{2k} \ln \left(\frac{g + k v^2}{f} \right) \text{But} v^* = \frac{g}{k}.$	v for manipulation to
	y for manipulation to get correct given
$H = \frac{1}{2h} \ln \left(1 + \frac{1}{3} \times \frac{1}{2}\right) = \frac{1}{2h} \ln 2.$	
(b-ii) = \frac{\alpha}{\gamma+\beta^2} \tag{constants.}	or t
$\frac{(b-ii)}{(b-ii)} = \frac{\sqrt{av}}{g+kv^2}$	
$-z = \frac{1}{2k} \ln \left(g + k v^2 \right) + C$	V for cornect 2.
when x=0, V= \1. 0= 1 ln (g+k2) +C	
$C = -\frac{1}{2} \ln 3$. or $C = -\frac{1}{2} \ln (3 + k v^2)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V for correct sim
[dh /] dh (g+kV²)	
$x = \frac{1}{2k} \ln \left(\frac{2}{9 + kv^2} \right) \stackrel{or}{=} 2 = \frac{1}{2k} \ln \left(\frac{9 + kv^2}{9 + kv^2} \right)$	V for correct manipulation.
then showing when z=H, v=0 that	manipulation

	ipage 19
NSBHS Ext 2 - Trial Solutions 2004	Marks.
(N) Downward Hotion:	
$\ddot{s} = dx - g - k\alpha^2.$	
w talt	
$\int \frac{d\omega}{dku^2} = \int \frac{dt}{dt}$	V for correct expression
o v	
t= \(\frac{d\sigma}{(\frac{17}{2} - \frac{17}{6} - \frac{17}{6} + \frac{1}{6} \sigma}\)	
1	
3-kv2 V3-VEV V3+VEV	
a = lim 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	1 for correct
b= dim $v \rightarrow -\sqrt{2} (\sqrt{3} - \sqrt{k}v)$ $\sqrt{3} + \sqrt{k} \cdot \sqrt{3}$. $2\sqrt{3}$ $\sqrt{1} = \sqrt{3} \int \frac{dv}{\sqrt{3} - \sqrt{k}v} + \int \frac{dv}{\sqrt{3} + \sqrt{k} \cdot v}$	resolution of partial fractions.
1 Color Cdv Vn 7	fractions.
2Vg Vg-Vkr Jvg+Vkr	
- 1 [ln (Va - Vkor) + 1 ln (Va+ Vkor)]	
) arg Vk (Vg-Vkor) + 1 ln (Vg+Vkor)	
1 x 1 ln (Va + VE v)	V for integration expansion
avg Vk (Vg + VEN)	j
- 1 ln (vg + v) ln (v+v)	V for manipulation to get given answer
$=\frac{1}{2\sqrt{gk}}\ln\left(\frac{\sqrt{3}+v}{\frac{\sqrt{k}}{2}-v}\right)-\frac{1}{2\sqrt{gk}}\ln\left(\frac{V+v}{V-v}\right).$	To get given and
Vk.	08
2nd approach: (Longer).	1,2
$\frac{dv - g - kx^2 - kV^2 - kx^2 = k(Y^2 - x^2)}{dt}$	
$\frac{dt}{\sqrt{\frac{dv^2}{2}}} = \frac{\int_{0}^{t} \frac{dt}{\sqrt{\frac{t^2}{2}}} dt}{\sqrt{\frac{t^2}{2}}}$	V for correct expression.
$\frac{1}{\sqrt{2-N^2}} = \frac{1}{2\sqrt{1-N^2}} \left(\frac{1}{\sqrt{N-N^2}} + \frac{1}{2\sqrt{1-N^2}} \right) = \frac{1}{\sqrt{N-N^2}} \left(\frac{1}{\sqrt{N-N^2}} + \frac{1}{\sqrt{N-N^2}} \right) = \frac{1}{\sqrt{N-N^2}} \left(\frac{1}{\sqrt{N-N^2}} + \frac{1}{\sqrt{N-N^2}} \right) = \frac{1}{\sqrt{N-N^2}} \left(\frac{1}{\sqrt{N-N^2}} + \frac{1}{\sqrt{N-N^2}} + \frac{1}{\sqrt{N-N^2}} \right) = \frac{1}{\sqrt{N-N^2}} \left(\frac{1}{\sqrt{N-N^2}} + $	0-1
$\frac{1}{v^2} = \frac{1}{2v} \left[\frac{1}{V-\alpha v} + \frac{1}{2v} \right] \frac{1}{V+\alpha v}$	for worrest parkal
V - V + ln (V+vr) V	
$\frac{1}{\sqrt{2}} = \int \frac{dv}{\sqrt{2-v^2}} = \frac{1}{2V} \left[-\ln\left(V-v\right) + \ln\left(V+v\right) \right]^{V}$	1 for correct
$\frac{gt}{\sqrt{2}} = \frac{1}{2V} \left[\ln \left(\frac{V+vr}{V-vr} \right) \right]^{2V} - \frac{1}{2V} \ln \left(\frac{V+vr}{V-vr} \right) - \ln 1$	
$\frac{2t}{v^2} = \frac{1}{2v} \ln \left(\frac{V + v^2}{V - 4r} \right) \text{But } V = \frac{14}{12}.$	V for correct
$\frac{1}{t} = \frac{1}{2g} \ln \left(\frac{v_{+}v_{-}}{v_{-}v_{-}} \right) = \frac{1}{2g} \sqrt{\frac{1}{k}} \ln \left(\frac{v_{+}v_{-}}{v_{-}v_{-}} \right) = 1$	manipulation.
ag (V-r), ag Vh (V-r)	
t 2 1 m (Vrw).	

	1.0
NSRHS Ext 2 Hathe Tral 2004 Solution.	. Harks.
Queotion 8:	
(a) $I_n = \int_{-\infty}^{\infty} (1-x^2)^n dx$, n.z.e.	
$u = (1-x^2)^n \qquad dv = dx$	
$du = n \left(1 - x^2\right)^{n-1} \left(-2x\right) \qquad v = x.$	
$ \frac{\int_{-\infty}^{\infty} \left(1-x^2\right)^{n-1}}{\left[x\left(1-x^2\right)^{n-1}\right]_{0}^{\infty}} = n \int_{-\infty}^{1} \left(-2x\right) \left(1-x^2\right)^{n-1} dx $	P = h .) /
$= \left[\frac{1}{2} \left(\frac{1-\chi}{2} \right) \right]_{D} = \frac{1}{2} \left(\frac{1-\chi}{2} \right) \left(\frac{1-\chi}{2} \right) = \frac{1}{2} \left($	of later when of
- n , 2 , (-2/1-x ²) ^{q-1} d-	of integration of parts
$= 0 + 2n \left(x^2 \left(1 - x^2 \right)^{n-1} dx \right)$	
$= -2n \left\{ \left(-x^{2} \right) \left(1-x^{2} \right)^{n-1} dx \right\}$ $= -2n \left\{ \left(1-x^{2} - 1 \right) \left(1-x^{2} \right)^{n-1} dx \right\}$ $= -2n \left[\left(1-x^{2} \right)^{n-1} \left(1-x^{2} \right)^{n-1} dx \right]$	V for answer
$=-2a\int (1-x^2-1)(1-x^2)^{-1}dx$	1.1.
$= 2n \left(\frac{(1-x^2)(1-x^2)^{n-1}}{1-x^2} - \frac{(1-x^2)^{n-1}}{1-x^2} \right) dx$	
	V for wrest
$= -2n \left[\int (1-x^2)^n dx - \int (1-x^2)^{n-1} dx \right].$	manipulation to
= -2n [In - In]	get the relation.
$I_{n} = 2n I_{n} + 2n I_{n}$	
$I_{\alpha}(1+2\alpha) = 2\alpha I_{\alpha 1}$	
1	
In = 2n In-1 for n>1.	
(ii) $I_0 = \int_0^1 (1-x^2)^2 dx = \int_0^1 dx = [x]^1 = 1$.	
Jan	
$I_{1} = \frac{1}{20} \left[\frac{1}{2(n-1)} \right] \left[\frac{1}{2(n-2)} \right] \left[\frac{1}{2(n-2)} \right] \left[\frac{1}{2(n-2)} \right]$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V for correct resolution
(222) 2	+0 +0
$\frac{\left(\frac{2\times2}{5}\right)\times2\times1.}{5}$	
$T_n = 2^n \left[n(n-1)(n-2) \dots 3 \times 2 \times 1 \right]$	
$(1+2n)(2n-1)(2n-3)(2n-5)7\times5\times3\times1$	1
	for relation.
= 2 ⁿ n!	-
(2n+1) (2n-1) (2n-3) (2n-5) ·7×5×3×1	
toold Numbers	
For the smarkes odd numbers = (2n+1)!	
10 - 20 0! 22 2º n!	
$I_{0} = \frac{2^{n}}{(2n+1)!} = \frac{2^{n}}{(2n+1)!} \left(\frac{1}{(2n+1)!}\right)^{1}$	
a	L

	-page 21
NSBHS Ext 2 Haths Trial 2004 Solution	Marks.
98-6)	
B G	
4	
X	
1/2 ° F	
The state of the s	
Hodel Answer:	Award I mark for
let < DAB = z.	each of the reasons:
: LDCE = LDAB = xº (Extensor L of yelre	
guad. = opp. interior <)	
: < DFE = DCE = x (<s in="" on<="" same="" segment="" td=""><td>re=) \</td></s>	re=) \
: < DFG= 180°- x (GFE is ast. line)	
$\therefore < DA(+ + < DFG = x + (180-x)$	ν
[gr: < DFE = x = < DAG (Externor < theorem))	
. GFDA is a cyclic quadrilateral	V
since a pair of its epp. Is are supplement	ntan
· · · · · · · · · · · · · · · · · · ·	
(c)	2
Strali 2 4 Un S 7 Un+1/2 1+1/2	
1 5 1 5 2 1 5 2 1 2 2 2 2 2 2 2 2 2 2 2	
1=1 ; w= 11, - 12 = 1- 12 11, + 12	
8H5 - (1-12) - (1-12) - 1-15	V for 1± sten
RHS = $\left(1 - \sqrt{2}\right)^2 = \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}}\right) = 1 - \sqrt{2}$ $\left(1 + \sqrt{2}\right) = \frac{1 - \sqrt{2}}{1 + \sqrt{2}} = \frac{1 - \sqrt{2}}{1 + \sqrt{2}}$	dor 1- sten
step 2: If S(k) is true: Uk-1/2 = (1-12) item	
Un +12 (1+12)	
$\frac{V_{\text{H}}}{V_{\text{H}}} = \frac{V_{\text{H}}}{V_{\text{H}}} = \frac{1 - 12}{1 + 12}$	Award v for each
	imper tant step as sh
$\frac{2 \cos \beta}{u_{K+1} - \sqrt{2}} = \frac{1}{2} \left[\frac{u_{K} + \frac{2}{u_{K}}}{u_{K}} \right] - \sqrt{2} \frac{1}{u_{K} + \frac{2}{2} - 2n}$	<u>[2]</u>
$U_{K+1+12} = 2 \begin{bmatrix} u_k \\ \vdots \\ u_{k-1} \end{bmatrix} = \frac{-2}{2} \begin{bmatrix} u_k \\ \vdots \\ \vdots \\ u_{k-1} \end{bmatrix}$	7 1
$\frac{\mathcal{U}_{K+1}+\sqrt{2}}{\frac{1}{2}\left[\mathcal{U}_{K}+\frac{2}{\mathcal{U}_{L}}\right]+\sqrt{2}}+\sqrt{2}$	2/2
NR.	

	_ parge 22
NSBHS Ext 2 Maths Trial Solution.	Harks
$\frac{\mathcal{U}_{k+1} - f_2}{\mathcal{U}_{k}} = \frac{\mathcal{U}_{k}^2 + 2 - 2\sqrt{2} \mathcal{U}_{h}}{2\sqrt{2}}$	
$U_{k+1+\sqrt{2}} \qquad U_k^2 + 2\sqrt{2} U_k + 2$	
$= \left(\frac{\mathcal{L}_k - \sqrt{2}}{(\mathcal{L}_k + \sqrt{2})^2}\right)^2$	·
(Uk+V2)	V
$ \begin{cases} (U_{R} + \sqrt{2})^{2} \\ = \left(\frac{M_{K} - \sqrt{2}}{U_{K} + \sqrt{2}} \right)^{2} \\ = \left(\frac{1 - \sqrt{2}}{1 + \sqrt{2}} \right)^{2^{k-1}} \end{cases} $	
from assumption (MR + V2 1 - 2	
$= \frac{\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{2^{k-1}}}{\left(\frac{1+\sqrt{2}}{1+\sqrt{2}}\right)^{2^{k-1}}}$	
$= \frac{\left(\frac{1-\sqrt{2}}{1-\sqrt{2}}\right)^2}{\left(\frac{1-\sqrt{2}}{1-\sqrt{2}}\right)^2}$	
(1+12)	V
$= \frac{\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{2^{K-1}} \cdot 2}{\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{2^{K-1}}}$ $= \left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{2^{K-1}} \cdot 2$	
S(k+1) is true whenever S(k) is true.	
=> S(K) is true	
$\frac{-1}{1+\sqrt{2}} < 1 \qquad \frac{1+\sqrt{2}}{1+\sqrt{2}} < 1 \qquad \frac{1+\sqrt{2}}{1+\sqrt{2}}$	
As $n \to \infty$: ratio = $\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^2$	
str.	V for justification of why RHS -0
strice f <1, rome	of why KHS -> 0
-: Un-V2	
Un+ F2	V for showing the
: Un - V2 -> 0	for showing the answer Un -1/2.
· U2 52.	
Thus for a sufficiently Lage, Un- 2.	