Week 11: Assignment 11

The due date for submitting this assignment has passed.

Due on 2025-04-09, 23:59 IST.

1 point

Assignment submitted on 2025-04-09, 22:16 IST

For which of the following problems are RNNs suitable?	1
Generating a description from a given image.	
Forecasting the weather for the next N days based on historical weather data.	
Converting a speech waveform into text.	
☐ Identifying all objects in a given image.	
Partially Correct. Score: 0.67	
Accepted Answers:	
Generating a description from a given image.	
Forecasting the weather for the next N days based on historical weather data.	
Converting a speech waveform into text.	
2) Suppose that we need to develop an RNN model for sentiment classification. The input to the model is a sentence composed of	
output is the sentiments (positive or negative). Assume that each word is represented as a vector of length $100 imes1$ and the output lab	beis are one-not

encoded. Further, the state vector s_t is initialized with all zeros of size 30×1 . How many parameters (including bias) are there in the network?

3992

Yes, the answer is correct.

Score: 1

Accepted Answers: (Type: Numeric) 3992

3) Select the correct statements about GRUs	1 point
GRUs have fewer parameters compared to LSTMs	
GRUs use a single gate to control both input and forget mechanisms	
GRUs are less effective than LSTMs in handling long-term dependencies	
GRUs are a type of feedforward neural network	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
GRUs have fewer parameters compared to LSTMs	
GRUs use a single gate to control both input and forget mechanisms	
4) What is the main advantage of using GRUs over traditional RNNs?	1 point
They are simpler to implement	
They solve the vanishing gradient problem	
They require less computational power	
They can handle non-sequential data	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
They solve the vanishing gradient problem	
5) The statement that LSTM and GRU solves both the problem of vanishing and exploding gradients in RNN is	1 point
○ True	
False	
Yes, the answer is correct. Score: 1	
Accepted Answers: False	

What is the vanishing gradient problem in training RNNs?	1 point
The weights of the network converge to zero during training	
The gradients used for weight updates become too large	
The network becomes overfit to the training data	
The gradients used for weight updates become too small	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
The gradients used for weight updates become too small	
7) What is the role of the forget gate in an LSTM network?	1 point
To determine how much of the current input should be added to the cell state.	
To determine how much of the previous time step's cell state should be retained.	
To determine how much of the current cell state should be output.	
To determine how much of the current input should be output.	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
To determine how much of the previous time step's cell state should be retained.	
8) How does LSTM prevent the problem of vanishing gradients?	1 point
 Different activation functions, such as ReLU, are used instead of sigmoid in LSTM. 	
Gradients are normalized during backpropagation.	
The learning rate is increased in LSTM.	
Forget gates regulate the flow of gradients during backpropagation.	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
Forget gates regulate the flow of gradients during backpropagation.	

9) We are given an RNN with $ W =2.5$. The activation function used in the RNN is logistic. What can we say about $ abla=\left\ rac{\partial s_{20}}{\partial s_1} ight\ $	1 point
Value of ∇ is very high.	
Value of $ abla$ is close to 0	
Value of $ abla$ is 2.5	
○ Insufficient information to say anything.	
Yes, the answer is correct. Score: 1	
Accepted Answers: Value of ∇ is close to 0	
10) Select the true statements about BPTT?	1 point
The gradients of Loss with respect to parameters are added across time steps	
☐ The gradients of Loss with respect to parameters are subtracted across time steps	
The gradient may vanish or explode, in general, if timesteps are too large	
☐ The gradient may vanish or explode if timesteps are too small	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
The gradients of Loss with respect to parameters are added across time steps	
The gradient may vanish or explode, in general, if timesteps are too large	