Processamento Digital de Sinal

Teste 2

2012-2013

- 1. Considere que dispõe de um sinal de áudio digital amostrado a 8kHz e pretende aplicá-lo a um microfone com largura de banda de apenas 1kHz.
 - a) Quais os métodos de síntese de filtros IIR que estudou? Explicite os fundamentos e as vantagens/desvantagens de cada um deles.
 - b) Considere o método da transformação bilinear. Mostre que se o sistema contínuo é estável o sistema discreto também o é. Justifique.
 - c) Diga se é possível compactar a representação deste sinal e em caso afirmativo por que fator sem que haja perda de informação na reprodução do áudio com o referido microfone. Justifique.
 - d) Considere o filtro adequado à aplicação com ganho mínimo na banda passante de 0.707 e ganho máximo unitário. Considere uma banda de transição de 10% da banda passante, um ganho máximo na banda de rejeição de -30 dB e projete o filtro requerido. Justifique todos os passos que efetuar.
 - e) Apresente um programa comentado que sintetize o filtro em Matlab.
 - f) Explique como procederia para verificar o filtro. Apresente um programa em Matlab que permita efectuar essa verificação. Justifique.
 - g) Diga o que entende por um filtro FIR, classifique-o quanto à recursividade, apresente um exemplo o mais simples possível em termos de equação diferenças e apresente as suas vantagens relativamente aos filtros IIR.
 - h) Deduza, justificando todos os passos que efectuar, a resposta impulsional do filtro FIR desejado que não causa distorção harmónica.
 - Explique, recorrendo ao formalismo matemático adequado e justificando por que é que um filtro FIR apresenta sempre fase linear. Que implicações tem este facto ao nível da integridade de um sinal.
 - j) Considere os requisitos do filtro apresentados em d), suponha o filtro equiripple e diga qual a janela mais adequada à síntese do filtro. Justifique.
 - k) Usando o método que achar mais adequado sintetize um filtro FIR que permita servir a corrente aplicação. Justifique todos os passos que efctuar.

- Qual a ordem do filtro de ordrm mais baixa que permite efectuar o pretendido. Justifique.
- m) Apresente um programa comentado em Matlab que permita efectuar o pretendido na alínea j).
- n) Apresente um código comentado em Matlab que lhe permita fazer a verificação do filtro. Explique quais as principais características que devem ser verificadas.

TABLE 7.2 COMPARISON OF COMMONLY USED WINDOWS

Window Type	Peak Sidefobe Amplitude (Relative)	Approximate Width of Mainlobe	Peak Approximation Error 20 log ₁₀ δ (dB)	Equivalent Kaiser Window β	Transition Width of Equivalent Kaiser Window	$\left H_c(w)\right ^2 = \frac{1}{1 + \left(\frac{jw}{v}\right)^2}$
Rectangular	-13	4n/(M+1)	-21	0	$1.81\pi/M$	(jw_c)
Bartlett	25	8n;M	-25	1.33	$2.37\pi/M$	
Lanning	-31	$-8\pi iM$	44	3.86	$5.01\pi/M$	
lamming	. 41	$8\pi/M$	- 53	4.86	$6.27\pi/M$	
Blackman	57	$12\pi/M$	- 74	7.04	$9.19\pi/M$	

$$\beta = \begin{cases} 0.1102(A - 8.7); & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21); & 21 \le A \le 50 \\ 0.0; & A < 21 \end{cases}$$

$$M = \frac{-10\log(\delta_1 \delta_2) - 13}{2.324\Delta\Omega}$$

$$w[n] = \begin{cases} I_0 \left[\beta \left(1 - \left[\frac{n - \alpha}{\alpha} \right]^2 \right)^{\frac{1}{2}} \right] \\ I_0(\beta) \\ 0; \quad outros \ casos \end{cases}; \qquad 0 \le n \le M$$

$$A_e(\Omega) = P(\cos \Omega) = \frac{\sum_{k=1}^{L+1} d_k (x - x_k)^{-1}}{\sum_{k=1}^{L+1} d_k (x - x_k)}$$

$$w[n] = \begin{cases} 0.42 - 0.5\cos\left(\frac{2\pi n}{M}\right) + 0.08\cos\left(\frac{4\pi n}{M}\right); & 0 \le n \le M \\ 0; & outros \ casos \end{cases}$$

$$\delta = \frac{\sum_{k=1}^{N-2} b_k H_d(\Omega_k)}{\sum_{k=1}^{N-2} \frac{b_k (-1)^{k+1}}{W(\Omega_k)}}$$

$$w[n] = \begin{cases} 0.54 - 0.46\cos\left(\frac{2\pi n}{M}\right); & 0 \le n \le M \\ 0; & outros \ casos \end{cases}$$

$$b_k = \prod_{\substack{i=1\\i\neq k}}^{L+2} \frac{1}{x_k - x_i}$$

$$M = \frac{A - 8}{2.285 \Delta \Omega}$$

$$d_k = \prod_{\substack{i=1 \ i \neq k}}^{L+1} \frac{1}{x_k - x_i} = b_k (x_k - x_{L+2}) \qquad C_k = H_d(\Omega_k) - \frac{(-1)^{k+1} c}{W(\Omega_k)}$$

