Lecture 12: Cosines and Projections onto Lines (Section 3.2)

Thang Huynh, UC San Diego 2/7/2018

▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.

1

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.
- **Example.** The standard basis $\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\end{bmatrix}\right\}$ is an

orthogonal basis for \mathbb{R}^3 .

► Example. The set of the vectors $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is an

orthogonal basis for \mathbb{R}^3 ? (Do we need to check that the three vectors are independent?)

▶ Example. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V. Find $c_1, ..., c_n$ such that

$$\boldsymbol{w} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n.$$

▶ Example. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V. Find $c_1, ..., c_n$ such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n.$$

▶ Solution. Take the dot product of v_1 with both sides

$$\begin{split} \boldsymbol{v}_1 \cdot \boldsymbol{w} &= \boldsymbol{v}_1 \cdot (c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n) \\ &= c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 + c_2 \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 + \dots + c_n \boldsymbol{v}_1 \cdot \boldsymbol{v}_n \\ &= c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1. \end{split}$$

Hence,
$$c_1 = \frac{\mathbf{v}_1 \cdot \mathbf{w}}{\mathbf{v}_1 \cdot \mathbf{v}_1}$$
.

▶ Example. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V. Find $c_1, ..., c_n$ such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n.$$

▶ Solution. Take the dot product of v_1 with both sides

$$\begin{split} \boldsymbol{v}_1 \cdot \boldsymbol{w} &= \boldsymbol{v}_1 \cdot (c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n) \\ &= c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 + c_2 \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 + \dots + c_n \boldsymbol{v}_1 \cdot \boldsymbol{v}_n \\ &= c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1. \end{split}$$

Hence,
$$c_1 = \frac{v_1 \cdot w}{v_1 \cdot v_1}$$
. In general, $c_j = \frac{v_j \cdot w}{v_j \cdot v_j}$.

► Example. Express
$$\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$$
 in terms of the basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

- ► Example. Express $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in terms of the basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthonormal basis** if the vectors are orthogonal and have length 1.

- ► Example. Express $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in terms of the basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthonormal basis** if the vectors are orthogonal and have length 1.
- ► Example. The standard basis $\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix},\begin{bmatrix} 0\\1\\0\end{bmatrix},\begin{bmatrix} 0\\0\\1\end{bmatrix}\right\}$ is an orthonormal basis for \mathbb{R}^3 .

3

If v_1, \dots, v_n is an orthonormal basis of V, and w is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

If $\mathbf{v}_1,\dots,\mathbf{v}_n$ is an orthonormal basis of V, and \mathbf{w} is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

Example. Is the basis $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ orthonormal?

If $\mathbf{v}_1,\dots,\mathbf{v}_n$ is an orthonormal basis of V, and \mathbf{w} is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

► Example. Is the basis $\left\{\begin{bmatrix} 1\\-1\\0\end{bmatrix},\begin{bmatrix} 1\\1\\0\end{bmatrix},\begin{bmatrix} 0\\0\\1\end{bmatrix}\right\}$ orthonormal? If not, normalize the vectors to produce an orthonormal basis.

If v_1, \dots, v_n is an orthonormal basis of V, and w is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

- ► Example. Is the basis $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ orthonormal? If not, normalize the vectors to produce an orthonormal basis.
- **Example.** Express $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in terms of the basis

$$\left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$$

ightharpoonup Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{\boldsymbol{b}} = \frac{\boldsymbol{b} \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a}.$$

 \blacktriangleright Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{\boldsymbol{b}} = \frac{\boldsymbol{b} \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a}.$$

(Geometric meaning?)

 \blacktriangleright Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{\boldsymbol{b}} = \frac{\boldsymbol{b} \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a}.$$

(Geometric meaning?)

• The vector $\hat{\boldsymbol{b}}$ is the closest vector to \boldsymbol{b} , which is in span{ \boldsymbol{a} }.

 \blacktriangleright Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{b} = \frac{b \cdot a}{a \cdot a} a.$$

(Geometric meaning?)

- The vector \hat{b} is the closest vector to b, which is in span $\{a\}$.
- Characterized by the error $b^{\perp} = b \hat{b}$ orthogonal to span{a}.

 \blacktriangleright Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{b} = \frac{b \cdot a}{a \cdot a} a.$$

(Geometric meaning?)

- The vector \hat{b} is the closest vector to b, which is in span $\{a\}$.
- Characterized by the error $b^{\perp} = b \hat{b}$ orthogonal to span{a}.
- To find the formula for \hat{b} , start with $\hat{b} = ca$. Find c such that

 \blacktriangleright Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{b} = \frac{b \cdot a}{a \cdot a} a.$$

(Geometric meaning?)

- The vector \hat{b} is the closest vector to b, which is in span{a}.
- Characterized by the error $b^{\perp} = b \hat{b}$ orthogonal to span $\{a\}$.
- To find the formula for \hat{b} , start with $\hat{b} = ca$. Find c such that

$$0 = (\boldsymbol{b} - \hat{\boldsymbol{b}}) \cdot \boldsymbol{a} = (\boldsymbol{b} - c\boldsymbol{a}) \cdot \boldsymbol{a} = \boldsymbol{b} \cdot \boldsymbol{a} - c\boldsymbol{a} \cdot \boldsymbol{a}.$$

It follows that $c = \frac{b \cdot a}{a \cdot a}$.

 \blacktriangleright Definition. The **orthogonal projection** of vector \boldsymbol{b} onto vector \boldsymbol{a} is

$$\hat{b} = \frac{b \cdot a}{a \cdot a} a.$$

(Geometric meaning?)

- The vector \hat{b} is the closest vector to b, which is in span{a}.
- Characterized by the error $b^{\perp} = b \hat{b}$ orthogonal to span $\{a\}$.
- To find the formula for \hat{b} , start with $\hat{b} = ca$. Find c such that

$$0 = (\boldsymbol{b} - \hat{\boldsymbol{b}}) \cdot \boldsymbol{a} = (\boldsymbol{b} - c\boldsymbol{a}) \cdot \boldsymbol{a} = \boldsymbol{b} \cdot \boldsymbol{a} - c\boldsymbol{a} \cdot \boldsymbol{a}.$$

It follows that $c = \frac{b \cdot a}{a \cdot a}$.

• b^{\perp} is also called the component of b orthogonal to a.

Example. What is the orthogonal projection of $x = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ onto

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
?

Example. What is the orthogonal projection of $x = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ onto

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
?

Example. What is the orthogonal projection of $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$ onto each

of the vectors
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$?

Recall that the projection of b onto the line through a is

$$\hat{b} = \frac{b \cdot a}{a \cdot a} a = \frac{a a^T}{\underbrace{a^T a}_{P}} b.$$

Recall that the projection of b onto the line through a is

$$\hat{\boldsymbol{b}} = \frac{\boldsymbol{b} \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a} = \underbrace{\frac{\boldsymbol{a} \, \boldsymbol{a}^T}{\boldsymbol{a}^T \boldsymbol{a}}}_{P} \boldsymbol{b}.$$

 $P = \frac{a a^T}{a^T a}$ is the projection matrix that multiplies b and produces \hat{b} .

Recall that the projection of b onto the line through a is

$$\hat{\boldsymbol{b}} = \frac{\boldsymbol{b} \cdot \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}} \, \boldsymbol{a} = \underbrace{\frac{\boldsymbol{a} \, \boldsymbol{a}^T}{\boldsymbol{a}^T \boldsymbol{a}}}_{P} \boldsymbol{b}.$$

 $P = \frac{a \, a^T}{a^T a}$ is the projection matrix that multiplies b and produces \hat{b} . (This is a column times a row—a square matrix—divided by the number $a^T a$.)

Recall that the projection of b onto the line through a is

$$\hat{b} = \frac{b \cdot a}{a \cdot a} a = \underbrace{\frac{a a^T}{\underline{a}^T \underline{a}}}_{P} b.$$

 $P = \frac{a \, a^T}{a^T a}$ is the projection matrix that multiplies b and produces \hat{b} . (This is a column times a row—a square matrix—divided by the number $a^T a$.)

▶ Example. The matrix that projects onto the line through a = (1, 1, 1) is

$$P = \frac{aa^{T}}{a^{T}a} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$

Properties of projection matrices

- ightharpoonup P is a symmetric matrix.
- ▶ Its square is itself: $P^2 = P$.
- ▶ The rank of P is 1.

Theorem. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

$$\boldsymbol{x} = \hat{\boldsymbol{x}} + \boldsymbol{x}^{\perp}_{\text{in } W}.$$

Theorem. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

$$x = \hat{x} + x^{\perp}$$

in W in W^{\perp}

 $\triangleright \hat{x}$ is the **orthogonal projection** of x onto W.

Theorem. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

$$\mathbf{x} = \underbrace{\hat{\mathbf{x}}}_{\text{in } W} + \underbrace{\mathbf{x}}_{\text{in } W^{\perp}}^{\perp}.$$

- $\triangleright \hat{x}$ is the **orthogonal projection** of x onto W.
- $\triangleright \hat{x}$ is the point in W closest to x.

Theorem. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

$$\label{eq:continuous_continuous_def} \mathbf{x} \, = \, \underbrace{\hat{\mathbf{x}}}_{\text{in } W} \, + \, \underbrace{\mathbf{x}}_{\text{in } W^{\perp}}^{\perp} \, .$$

- $\triangleright \hat{x}$ is the **orthogonal projection** of x onto W.
- $\triangleright \hat{x}$ is the point in W closest to x.
- $\triangleright \hat{x}$ If v_1, \dots, v_m is an orthogonal basis of W, then

$$\hat{\mathbf{x}} = \left(\frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 + \dots + \left(\frac{\mathbf{x} \cdot \mathbf{v}_m}{\mathbf{v}_m \cdot \mathbf{v}_m}\right) \mathbf{v}_m.$$

Theorem. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

$$\mathbf{x} = \underbrace{\hat{\mathbf{x}}}_{\text{in } W} + \underbrace{\mathbf{x}}_{\text{in } W^{\perp}}^{\perp}.$$

- $\triangleright \hat{x}$ is the **orthogonal projection** of x onto W.
- $\triangleright \hat{x}$ is the point in W closest to x.
- $\triangleright \hat{x}$ If v_1, \dots, v_m is an orthogonal basis of W, then

$$\hat{\mathbf{x}} = \left(\frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 + \dots + \left(\frac{\mathbf{x} \cdot \mathbf{v}_m}{\mathbf{v}_m \cdot \mathbf{v}_m}\right) \mathbf{v}_m.$$

▶ Once \hat{x} is determined, $x^{\perp} = x - \hat{x}$.

Example. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
, and $\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

- Find the orthogonal projection of *x* onto *W*.
- Write x as a vector in W plus a vector orthogonal to W.

▶ Definition. Let $v_1, ..., v_m$ be an orthogonal basis of W, a subspace of \mathbb{R}^n . The projection map $\pi_W : \mathbb{R}^n \to \mathbb{R}^n$, given by

$$\pi_W(\pmb{x}) = \left(\frac{\pmb{x} \cdot \pmb{v}_1}{\pmb{v}_1 \cdot \pmb{v}_1}\right) \pmb{v}_1 + \dots + \left(\frac{\pmb{x} \cdot \pmb{v}_m}{\pmb{v}_m \cdot \pmb{v}_m}\right) \pmb{v}_m$$

is linear (why?). The matrix P representing π_W with respect to the standard basis is the corresponding **projection matrix**.

▶ Definition. Let $v_1, ..., v_m$ be an orthogonal basis of W, a subspace of \mathbb{R}^n . The projection map $\pi_W : \mathbb{R}^n \to \mathbb{R}^n$, given by

$$\pi_W(\pmb{x}) = \left(\frac{\pmb{x} \cdot \pmb{v}_1}{\pmb{v}_1 \cdot \pmb{v}_1}\right) \pmb{v}_1 + \dots + \left(\frac{\pmb{x} \cdot \pmb{v}_m}{\pmb{v}_m \cdot \pmb{v}_m}\right) \pmb{v}_m$$

is linear (why?). The matrix P representing π_W with respect to the standard basis is the corresponding **projection matrix**.

Example. Find the projection matrix P which corresponds to orthogonal projection onto $W = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ in \mathbb{R}^3 . Then

find the orthogonal projection of $\mathbf{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$ onto W.