Sujet de Devoir : Fine-Tuning du Modèle Depth Anything avec LoRA

Objectif

L'objectif de ce devoir est de vous familiariser avec la technique de fine-tuning utilisant LoRA (Low-Rank Adaptation) sur le modèle Depth Anything. Vous devrez évaluer les performances du modèle fine-tuné en utilisant des mesures métriques appropriées.

Instructions

1. Préparation de l'Environnement:

- Installez les bibliothèques nécessaires, notamment PyTorch et les modules spécifiques pour LoRA.
- Téléchargez le modèle pré-entraîné Depth Anything : https://depth-anythingv2.github.io/.

2. Chargement des Données:

 Le dataset fourni sera un jeu d'images RGB et de nuages de points XYZ. Préparez ces données pour l'entraînement et la validation. Assurez-vous que les données sont correctement formatées et prétraitées.

3. Implémentation de LoRA:

- o Intégrez LoRA dans le modèle Depth Anything. Vous devrez modifier les couches du modèle pour inclure les matrices de faible rang nécessaires à LoRA.
- Assurez-vous que seules les matrices de faible rang sont entraînables, tandis que les autres paramètres du modèle restent gelés.

4. Fine-Tuning:

- o Entraînez le modèle sur votre jeu de données en utilisant LoRA. Utilisez des techniques de régularisation pour éviter le surapprentissage.
- o Sauvegardez les poids du modèle fine-tuné.

5. Évaluation des Performances :

- Évaluez les performances du modèle fine-tuné en utilisant des mesures métriques telles que l'accuracy, la précision, le rappel et le F1-score. Utiliser les métriques de référence dans le domaine de la prediction monoculaire de performance
- L'objectif est de faire en sorte que la depth map fournie par le modèle Depth
 Anything et le Z fourni par les nuages de points soient les plus proches possible.

6. Rapport:

 Rédigez un rapport détaillant les étapes suivies, les défis rencontrés et les résultats obtenus.

- Incluez des graphiques et des tableaux pour illustrer les performances du modèle.
- Pensez à écrire dans votre code toutes les métriques et les logs dont vous aurez besoin pour écrire votre rapport. Un rapport de 5 pages maximum est demandé.
- Vous pouvez utiliser toute librairie utile.

Livrables

1. Code Source:

- o Le code complet utilisé pour le fine-tuning du modèle avec LoRA.
- o Les scripts de prétraitement des données et d'évaluation des performances.
- o La spécification de l'environnement de lancement.

2. Rapport:

 Un document PDF contenant une description détaillée de votre approche, les résultats obtenus et une discussion sur les performances du modèle.

Évaluation

• Ce devoir sera noté. Assurez-vous de suivre les instructions et de fournir des résultats précis et bien documentés.

Ressources

- Documentation PyTorch
- Tutoriels sur LoRA
- Jeu de données : [Lien vers le jeu de données utilisé]

Temps de Calcul

 Chaque groupe aura à sa disposition 4 heures de temps de calcul sur un cluster de 4 GPU RTX 2080 Ti (Version Cuda 12.2)

Travail en Binôme

 Le travail sera réalisé en binôme. Chaque groupe devra collaborer pour compléter le projet.

Échéance

Le devoir doit être soumis avant le 13/01/2025.

Conseils

- Assurez-vous de bien comprendre le fonctionnement de LoRA avant de commencer l'implémentation.
- Testez votre code sur un sous-ensemble de données pour valider votre approche avant de l'appliquer à l'ensemble du jeu de données.

• Documentez votre code pour faciliter la compréhension et la reproduction de vos résultats.

Bonne chance et bon travail!