Amendment and Response to Restriction Requirement dated June 16, 2009

Page 2

Amendments to the Claims:

This claim listing replaces all prior versions, and listings of claims in the application. Please amend the claims as follows:

- 1-39. (Canceled)
- 40. (Currently amended) Compounds of the general formula

$$O = \begin{bmatrix} Z^1 & Z \\ & & \\$$

wherein

is a group of one of the formulae

is a group of one of the formulae

A38

A39

Amendment and Response to Restriction Requirement dated June 16, 2009 Page 4

A40

A41

Applicants: Zumbrunn et al.

Application No. 10/550,778

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 5

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 6

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 7

-B-CO- is Asn; Cys; Gln; His; Met; Phe; Pro; Ser; Thr; Trp; Tyr; Sar; 4AmPhe; 3AmPhe; 2AmPhe; Phe(mC(NH₂)=NH); Phe(pC(NH₂)=NH); Phe(mNHC (NH₂)=NH); Phe(pNHC (NH₂)=NH); Phg; Cha; C₄al; C₅al; 2-Nal; 1-Nal; 4Cl-Phe; 3Cl-Phe; 2Cl-Phe; 3,4Cl₂Phe; 4F-Phe; 3F-Phe; 2F-Phe; Tic; Thi; Tza; Mso; Y(Bzl); Bip; S(Bzl); T(Bzl); hCha; hCys; hSer; hPhe; Bpa; Pip; OctG; MePhe; MeNle; MeAla; MeIle; MeVal; or MeLeu; or B is a group, having (L)-configuration, of formula

wherein R²⁰ is H; or lower alkyl; and R⁶⁴ is alkyl; alkenyl; aryl-lower alkyl; or heteroaryl-lower alkyl;

R¹ is hydrogen or lower alkyl;

 R^2 is H; lower alkyl; lower alkenyl; - $(CH_2)_mOR^{55}$ (where R^{55} is lower alkyl; or lower alkenyl); - $(CH_2)_mSR^{56}$ (where R^{56} is lower alkyl; or lower alkenyl); - $(CH_2)_mNR^{33}R^{34}$ (where R^{33} is lower alkyl; or lower alkenyl; or R^{33} and R^{34} taken together are - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mOCONR³³R⁷⁵ (where R³³ is H; lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are

- $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -; - $(CH_2)_2S(CH_2)_2$ -; or - $(CH_2)_2NR^{57}(CH_2)_2$ -; where R^{57} is H; or lower alkyl);

-(CH₂)_mNR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl; R⁸² is H; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -

 $(CH_2)_0N(R^{20})COR^{64}$ (where: R^{20} is H; or lower alkyl; R^{64} is lower alkyl; or lower alkenyl); $(CH_2)_0COOR^{57}$ (where R^{57} is lower alkyl; or lower alkenyl); $-(CH_2)_0CONR^{58}R^{59}$ (where R^{58} is lower alkyl; or lower alkenyl; or R^{58} and R^{59} taken together are $-(CH_2)_2-6-$; $-(CH_2)_2O(CH_2)_2-$; $-(CH_2)_2S(CH_2)_2-$; or

-(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀PO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or - (CH₂)_qC₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); R³ is H; lower alkyl; lower alkenyl; -(CH₂)_mOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_mSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)_mNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl; -(CH₂)_mOCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³

```
and R^{75} taken together are -(CH<sub>2</sub>)<sub>2-6</sub>-; -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-; -(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub>-; or -(CH<sub>2</sub>)<sub>2</sub>NR<sup>57</sup>(CH<sub>2</sub>)<sub>2</sub>-
; where R<sup>57</sup> is H; or lower alkyl); -(CH<sub>2</sub>)<sub>m</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup> (where R<sup>20</sup> is H; or lower alkyl; R<sup>33</sup> is
H; or lower alkyl; or lower alkenyl; R<sup>82</sup> is H; or lower alkyl; or R<sup>33</sup> and R<sup>82</sup> taken together are -
(CH_2)_{2-6}-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>o</sub>N(R<sup>20</sup>)COR<sup>64</sup> (where: R<sup>20</sup> is H; or lower alkyl; R<sup>64</sup> is lower alkyl; or lower alkenyl);
-(CH<sub>2</sub>)<sub>0</sub>COOR<sup>57</sup> (where R<sup>57</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>0</sub>CONR<sup>58</sup>R<sup>59</sup> (where R<sup>58</sup> is
lower alkyl; or lower alkenyl; and R<sup>59</sup> is H; lower alkyl; or R<sup>58</sup> and R<sup>59</sup> taken together are -
(CH_2)_{2-6}-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>0</sub>PO(OR<sup>60</sup>)<sub>2</sub> (where R<sup>60</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>0</sub>SO<sub>2</sub>R<sup>62</sup> (where R<sup>62</sup> is
lower alkyl; or lower alkenyl); or -(CH<sub>2</sub>)<sub>0</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup> (where R<sup>8</sup> is H; F; Cl; CF<sub>3</sub>; lower alkyl; lower
alkenyl; or lower alkoxy);
R<sup>4</sup> is H; lower alkyl; lower alkenyl; -(CH<sub>2</sub>)<sub>m</sub>OR<sup>55</sup> (where R<sup>55</sup> is lower alkyl; or lower alkenyl);
-(CH<sub>2</sub>)<sub>m</sub>SR<sup>56</sup> (where R<sup>56</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>m</sub>NR<sup>33</sup>R<sup>34</sup> (where R<sup>33</sup> is lower
alkyl; or lower alkenyl; R<sup>34</sup> is H; or lower alkyl; or R<sup>33</sup> and R<sup>34</sup> taken together are -(CH<sub>2</sub>)<sub>2-6</sub>-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>m</sub>OCONR<sup>33</sup>R<sup>75</sup> (where R<sup>33</sup> is H; or lower alkyl; or lower alkenyl; R<sup>75</sup> is lower alkyl; or R<sup>33</sup>
and R^{75} taken together are -(CH<sub>2</sub>)<sub>2-6</sub>-; -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-; -(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub>-; or -(CH<sub>2</sub>)<sub>2</sub>NR<sup>57</sup>(CH<sub>2</sub>)<sub>2</sub>-
; where R<sup>57</sup> is H; or lower alkyl); -(CH<sub>2</sub>)<sub>m</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup> (where R<sup>20</sup> is H; or lower alkyl; R<sup>33</sup> is
H; or lower alkyl; or lower alkenyl; R<sup>82</sup> is H; or lower alkyl; or R<sup>33</sup> and R<sup>82</sup> taken together are -
(CH_2)_{2-6}-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>m</sub>N(R<sup>20</sup>)COR<sup>64</sup>(where: R<sup>20</sup> is H; or lower alkyl; R<sup>64</sup> is lower alkyl; or lower alkenyl);
-(CH<sub>2</sub>)<sub>0</sub>COOR<sup>57</sup> (where R<sup>57</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>0</sub>CONR<sup>58</sup>R<sup>59</sup> (where R<sup>58</sup> is
lower alkyl; or lower alkenyl; and R<sup>59</sup> is H; or lower alkyl; or R<sup>58</sup> and R<sup>59</sup> taken together are -
(CH_2)_{2-6}-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57}: isH; or lower alkyl);
```

-(CH₂)_oPO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_oSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)_qC₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy);

 R^5 is lower alkyl; lower alkenyl; - $(CH_2)_0OR^{55}$ (where R^{55} is lower alkyl; or lower alkenyl); - $(CH_2)_0SR^{56}$ (where R^{56} is lower alkyl; or lower alkenyl); $(CH_2)_0NR^{33}R^{34}$ (where R^{33} is lower alkyl; or lower alkenyl; or R^{34} is H; or lower alkyl; or R^{33} and R^{34} taken together are - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀OCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are

-(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀NR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂₋₆-; - (CH₂)₂O(CH₂)₂-;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀N(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is alkyl; alkenyl; aryl; aryl-lower alkyl; or heteroaryl-lower alkyl); -(CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)₀CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl);

-(CH₂)_oPO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_oSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)_qC₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy);

 R^6 is H; lower alkyl; lower alkenyl; -(CH₂)_oOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_oSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)_oNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀OCONR³³R⁷⁵

(where R^{33} is H; or lower alkyl; or lower alkenyl; R^{75} is lower alkyl; or R^{33} and R^{75} taken together are

-(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀NR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀N(R²⁰)COR⁶⁴ (where R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); -(CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)₀CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or

-(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀PO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or - (CH₂)_qC₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); R⁷ is lower alkyl; lower alkenyl; -(CH₂)_qOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_qSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)_qNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are -(CH₂)₂₋₆-; - (CH₂)₂O(CH₂)₂-;

- $(CH_2)_2S(CH_2)_2$ -; or - $(CH_2)_2NR^{57}(CH_2)_2$ -; where R^{57} is H; or lower alkyl); - $(CH_2)_qOCONR^{33}R^{75}$ (where R^{33} is H; or lower alkyl; or lower alkenyl; R^{75} is lower alkyl; or R^{33} and R^{75} taken together are

-(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_qNR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_qN(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); -(CH₂)_qCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl); and R⁵⁹ is H; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -

```
(CH_2)_{2-6-}; -(CH_2)_2O(CH_2)_2-; -(CH_2)_2S(CH_2)_2-; or
-(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl); -(CH_2)_2PO(OR^{60})_2 (where R^{60} is lower
alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>r</sub>SO<sub>2</sub>R<sup>62</sup> (where R<sup>62</sup> is lower alkyl; or lower alkenyl); or -
(CH<sub>2</sub>)<sub>0</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup> (where R<sup>8</sup> is H; F; Cl; CF<sub>3</sub>; lower alkyl; lower alkenyl; or lower alkoxy);
R<sup>8</sup> is H; F; Cl; CF<sub>3</sub>; lower alkyl; lower alkenyl; -(CH<sub>2</sub>)<sub>0</sub>OR<sup>55</sup> (where R<sup>55</sup> is lower alkyl; or lower
alkenyl); -(CH<sub>2</sub>)<sub>0</sub>SR<sup>56</sup> (where R<sup>56</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>0</sub>NR<sup>33</sup>R<sup>34</sup> (where R<sup>33</sup> is
lower alkyl; or lower alkenyl; R<sup>34</sup> is H; or lower alkyl; or R<sup>33</sup> and R<sup>34</sup> taken together are -(CH<sub>2</sub>)<sub>2</sub>.
6-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>0</sub>OCONR<sup>33</sup>R<sup>75</sup> (where R<sup>33</sup> is H; or lower alkyl; or lower alkenyl; R<sup>75</sup> is lower alkyl; or R<sup>33</sup>
and R^{75} taken together are -(CH<sub>2</sub>)<sub>2-6</sub>-; -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-; -(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub>-; or -(CII<sub>2</sub>)<sub>2</sub>NR<sup>57</sup>(CH<sub>2</sub>)<sub>2</sub>-
; where R<sup>57</sup> is H; or lower alkyl); -(CH<sub>2</sub>)<sub>0</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup> (where R<sup>20</sup> is H; or lower alkyl; R<sup>33</sup> is
H; or lower alkyl; or lower alkenyl; R<sup>82</sup> is H; or lower alkyl; or R<sup>33</sup> and R<sup>82</sup> taken together are -
(CH_2)_{2-6}-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>0</sub>N(R<sup>20</sup>)COR<sup>64</sup> (where R<sup>20</sup> is H; or lower alkyl; R<sup>64</sup> is lower alkyl; or lower alkenyl);
-(CH<sub>2</sub>)<sub>0</sub>COOR<sup>57</sup> (where R<sup>57</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>0</sub>CONR<sup>58</sup>R<sup>59</sup> (where R<sup>58</sup> is
lower alkyl; or lower alkenyl; and R<sup>59</sup> is H; or lower alkyl; or R<sup>58</sup> and R<sup>59</sup> taken together are -
(CH_2)_{2-6}-;
-(CH_2)_2O(CH_2)_2; -(CH_2)_2S(CH_2)_2; or -(CH_2)_2NR^{57}(CH_2)_2; where R^{57} is H; or lower alkyl);
-(CH<sub>2</sub>)<sub>0</sub>PO(OR<sup>60</sup>)<sub>2</sub> (where R<sup>60</sup> is lower alkyl; or lower alkenyl); -(CH<sub>2</sub>)<sub>0</sub>SO<sub>2</sub>R<sup>62</sup> (where R<sup>62</sup> is
lower alkyl; or lower alkenyl); or -(CH<sub>2</sub>)<sub>q</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup> (where R<sup>8</sup> is H; F; Cl; CF<sub>3</sub>; lower alkyl; lower
alkenyl; or lower alkoxy);
R<sup>9</sup> is lower alkyl; lower alkenyl; (CH<sub>2</sub>)<sub>e</sub>OR<sup>55</sup> (where R<sup>55</sup> is lower alkyl; or lower alkenyl);
-(CH<sub>2</sub>)<sub>a</sub>SR<sup>56</sup> (where R<sup>56</sup> is lower alkyl; or lower alkenyl); (CH<sub>2</sub>)<sub>a</sub>NR<sup>33</sup>R<sup>34</sup> (where R<sup>33</sup> is lower
alkyl; or lower alkenyl; R<sup>34</sup> is H; or lower alkyl; or R<sup>33</sup> and R<sup>34</sup> taken together are (CH<sub>2</sub>)<sub>2.6</sub>;
(CH2)2O(CH2)2-;
-(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub> ; or (CH<sub>2</sub>)<sub>2</sub>NR<sup>57</sup>(CH<sub>2</sub>)<sub>2</sub> ; where R<sup>57</sup> is H; or lower alkyl); -(CH<sub>2</sub>)<sub>e</sub>OCONR<sup>33</sup>R<sup>75</sup>
```

(where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are (CH2)26: (CH2)2O(CH2)2: (CH2)2S(CH2)2: or (CH2)2NR 57 (CH2)2: where R 57 is H; or lower alkyl): (CH₂), NR²⁰CONR³³R⁸² (where R²⁰ is H: or lower alkyl: R³³ is H: or-lower alkyl: or lower alkenyl: R⁸² is H: or lower alkyl: or R³³ and R⁸² taken together are (CH₂)_{2.6}: (CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-: or -(CH₂)₂NR⁵⁷(CH₂)₂-: where R⁵⁷ is H: or lower alkyl):-(CH₂) N(R²⁰)COR⁶⁴ (where R²⁰ is H: or lower alkyl: R⁶⁴ is lower alkyl: or lower alkenyl): (CH₂)₂COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower-alkenyl); (CH₂)₂CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl: or lower alkenyl: and R⁵⁹ is H: or lower alkyl: or R⁵⁸ and R⁵⁹ taken together are $(CH_2)_{2-6} \div (CH_2)_2 O(CH_2)_2 \div (CH_2)_2 S(CH_2)_2 \div or$ -(CH2)2NR⁵⁷(CH2)2: where R⁵⁷ is H: or lower alkyl): -(CH2)2PO(OR⁶⁰)2 (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_eSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or-(CH2), C6H4R8 (where R8 is H; F; Cl; CF2; lower alkyl; lower alkenyl; or lower alkoxy); R¹⁰ is lower alkyl; lower alkenyl; (CH₂)_aOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl): -(CH₂)₀SR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)₀NR³³R³⁴ (where R³³ is lower alkyl: or lower alkenyl: R34 is H; or lower alkyl; or R33 and R34 taken together are (CH2)26-; (CH2)2O(CH2)2-; -(CH2)2S(CH2)2-: or -(CH2)2NR⁵⁷(CH2)2: where R⁵⁷ is H: or lower alkyl): -(CH2)2OCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR^{\$7}(CH₂)₂-; where R^{\$7}: H is or lower alkyl): (CH₂) NR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl: R⁸² is H: or lower alkyl: or R³³ and R⁸² taken together are -(CH₂)_{2.6}: (CH2)2O(CH2)2-; -(CH-hS(CH-h-+ or -(CH-hNR 57 (CH-h-+ where R 57 is H; or lower alkyl):-(CH₂)_aN(R²⁰)COR⁶⁴(where R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂)_eCOOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)_eCONR⁵⁸R⁵⁹ (where R⁵⁸ is

lower alkyl; or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are $(CH_2)_{2,6}$ \div $(CH_2)_2O(CH_2)_2$ \div $(CH_2)_2S(CH_2)_2$ \div or -(CH2)2NR⁵⁷(CH2)2; where R⁵⁷ is H; or lower alkyl); (CH2)2PO(OR⁶⁰)2 (where R⁶⁰ is lower alkyl; or lower alkenyl); (CH2) SO2R62 (where R62 is lower alkyl; or lower alkenyl); or (CH2), C6H4R8 (where R8 is H; F; Cl; CF3; lower alkyl; lower alkenyl; or lower alkoxy); R¹¹ is H; lower alkyl; lower alkenyl; -(CH₂)_mOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_mSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)_mNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are -(CH₂)₂₋₆-; $-(CH_2)_2O(CH_2)_2$; $-(CH_2)_2S(CH_2)_2$; or $-(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); -(CH₂)_mOCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R^{75} taken together ar -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mNR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl; R⁸² is H; or lower alkyl; or R³³ and R⁸² taken together are - $(CH_2)_{2-6}$ -; $-(CH_2)_2O(CH_2)_2$; $-(CH_2)_2S(CH_2)_2$; or $-(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); $-(CH_2)_mN(R^{20})COR^{64}$ (where R^{20} is H; or lower alkyl; R^{64} is lower alkyl; or lower alkenyl); -(CH₂)_oCOOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)_oCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are - $(CH_2)_{2-6}$ -; $-(CH_2)_2O(CH_2)_2$; $-(CH_2)_2S(CH_2)_2$; or $-(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); -(CH₂)_oPO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_oSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)₀C₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); R¹² is H; lower alkyl; lower alkenyl; -(CH₂)_mOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_mSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)_mNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are -(CH₂)₂₋₆-; $-(CH_2)_2O(CH_2)_2$ -; $-(CH_2)_2S(CH_2)_2$ -; or $-(CH_2)_2NR^{57}(CH_2)_2$ -; where R^{57} is H; or lower alkyl); -(CH₂)_mOCONR³³R⁷⁵ (where R³³is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³

and R^{75} taken together are -(CH₂)_{2.6}-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mNR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl; R⁸² is H; or lower alkyl; or R³³ and R⁸² taken together are - $(CH_2)_{2-6}$ -; $-(CH_2)_2O(CH_2)_2$; $-(CH_2)_2S(CH_2)_2$; or $-(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); - $(CH_2)_mN(R^{20})COR^{64}$ (where: R^{20} is H; or lower alkyl; R^{64} is lower alkyl; or lower alkenyl); -(CH₂)_rCOOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)_rCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -; - $(CH_2)_2S(CH_2)_2$ -; or - $(CH_2)_2NR^{57}(CH_2)_2$ -; where R^{57} is H; or lower alkyl); -(CH₂)_rPO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_oSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)₀C₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); R¹³-is lower alkyl; lower alkenyl; -(CH₂)₀OR⁵⁵ (where R⁵⁵ isis lower alkyl; or lower alkenyl); -(CH₂)_qSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)_qNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are (CH₂)_{2.6}-; $(CH_2)_2O(CH_2)_2$ -(CH₂)₂S(CH₂)₂: or -(CH₂)₂NR⁵⁷(CH₂)₂: where R⁵⁷ is H; or lower alkyl): -(CH₂)₂OCONR³³R⁷⁵ (where R33 is H; or lower alkyl; or lower alkenyl; R75 is lower alkyl; or R33 and R75 taken together are $-(CH_2)_{2\cdot 6} \div -(CH_2)_2O(CH_2)_2 \div -(CH_2)_2S(CH_2)_2 \div or -(CH_2)_2NR^{57}(CH_2)_2 \div where \ R^{57} \ is \ H; \ or \ lower$ alkyl): (CH₂) NR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl; R82 is H; or lower alkyl; or R33 and R82 taken together are (CH2)26; (CH2)O(CH2)2-: -(CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); (CH₂)₆N(R²⁰)COR⁶⁴ (where: R²⁰ is H: or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂), COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)₆CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are (CH₂)_{2.6};

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 16

 $\begin{array}{l} (CH_2)_2O(CH_2)_2 \div (CH_2)_2S(CH_2)_2 \div \text{or } - (CH_2)_2NR^{57}(CH_2)_2 \div \text{where } R^{57} \text{ is H; or lower alkyl);} \\ (CH_2)_rPO(OR^{60})_2 \cdot (\text{where } R^{60} \text{ is lower alkyl; or lower alkenyl);} - (CH_2)_rSO_2R^{62} \cdot (\text{where } R^{62} \text{ is lower alkyl; or lower alkenyl);} \\ \text{lower alkyl; or lower alkenyl); or } - (CH_2)_qC_6H_4R^8 \cdot (\text{where } R^8 \text{ is H; F; Cl; CF}_3; \text{lower alkyl; lower alkenyl;} \\ \text{alkenyl; or lower alkoxy);} \end{array}$

 R^{14} is H; lower alkyl; lower alkenyl; $(CH_2)_mOR^{55}$ (where R^{55} is lower alkyl; or lower alkenyl); $(CH_2)_mNR^{33}R^{34}$ (where R^{33} is lower alkyl; or lower alkenyl); $(CH_2)_mNR^{33}R^{34}$ (where R^{33} is lower alkyl; or lower alkenyl; R^{34} is H; or lower alkyl; or R^{33} and R^{34} taken together are $(CH_2)_{2.6}$; $(CH_2)_2O(CH_2)_2$; $(CH_2)_2S(CH_2)_2$; or $(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); $(CH_2)_mOCONR^{33}R^{75}$ (where R^{33} is H; or lower alkyl; or lower alkenyl; R^{75} is lower alkyl; or R^{33} and R^{75} taken together are $(CH_2)_{2.6}$; $(CH_2)_2O(CH_2)_2$; $(CH_2)_2S(CH_2)_2$; or $(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); $(CH_2)_mNR^{20}CONR^{33}R^{82}$ (where R^{20} is H; or lower alkyl; R^{33} is H; or lower alkyl; or lower alkyl; or R^{33} and R^{32} taken together are $(CH_2)_{2.6}$; (CH_2)

-(CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or -(CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mN(R²⁰)COR⁶⁴ (where: R²⁰ is H; lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); -(CH₂)_oCOOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)_oCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkyl; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH₂)₂6;

-(CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or -(CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); -(CH₂)₆PO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₆SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)₆C₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy);

 R^{15} is lower alkyl; lower alkenyl; $(CH_2)_0OR^{55}$ (where R^{55} is lower alkyl; or lower alkenyl); $(CH_2)_0SR^{56}$ (where R^{56} is lower alkyl; or lower alkenyl); $(CH_2)_0NR^{33}R^{34}$ (where R^{33} is lower alkyl; or lower alkenyl; or R^{34} and R^{34} taken together are $(CH_2)_{2\cdot6}$; $(CH_2)_2O(CH_2)_2$;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂ ; where R⁵⁷ is H; or lower alkyl); -(CH₂)₆OCONR⁵³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken

together are

-(CH₂)_{2.6} ; (CH₂)₂O(CH₂)₂ ; (CH₂)₂S(CH₂)₂ ; or -(CH₂)₂NR⁵⁷(CH₂)₂ ; where R⁵⁷ is H; or lower alkyl): (CH2) NR20CONR33R82 (where R20 is H; or lower alkyl; R33 is H; or lower alkyl; or lower-alkenyl; R⁸² is H; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)_{2.6}; (CH2)2O(CH2)2-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); (CH₂)₂N(R²⁰)COR⁶⁴ (where R²⁰ is H: or lower alkyl: R⁶⁴ is lower alkyl: or lower alkenyl); -NR²⁰COlower alkyl (R²⁰=H; or lower alkyl); being particularly favoured; (CH₂) COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH2) CONR 58 R 59 (where R 58 is lower alkyl; or lower alkenyl; and R 59 is H; lower alkyl; or R58 and R59 taken together are (CH2)26: (CH2)2O(CH2)2: (CH2)2S(CH2)2: or-(CH2)2NR⁵⁷(CH2)2; where R⁵⁷ is H; or lower alkyl); (CH2)aPO(OR⁶⁰)2 (where R⁶⁰ is lower alkyl: or lower alkenyl): -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or (CH₂)₀C₆H₄R⁸ (where R⁸ is H; F; Cl: CF₂: lower alkyl; lower alkenyl; or lower alkoxy); R¹⁶ is lower alkyl: lower alkenyl: (CH₂) OR⁵⁵ (where R⁵⁵ is lower alkyl: or lower alkenyl): -(CH₂)₀SR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); (CH₂)₀NR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are (CH₂)_{2.6}; (CH2)2O(CH2)2+ -(CH2)2S(CH2)2: or -(CH2)2NR⁵⁷(CH2)2: where R⁵⁷ is H: or lower alkyl): -(CH2)2OCONR⁵³R⁷⁵

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀OCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are

 $\frac{(CH_2)_2 \cdot (CH_2)_2 O(CH_2)_2 \cdot (CH_2)_2 S(CH_2)_2 \cdot (CH_2)_2 NR^{57} (CH_2)_2 \cdot (CH_2)_2 \cdot (CH_2)_2 NR^{57} \cdot (CH_2)_2 \cdot (CH_2$

(CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); (CH₂)₀N(R²⁰)COR⁶⁴ (where R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)₀CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl;

and R⁵⁹ is H; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH₂)_{2.6}-; -(CH₂)_{2.0}(CH₂)₂-; (CH2)2S(CH2)2-; OF -(CH2)2NR⁵⁷(CH2)2: where R⁵⁷ is H: or lower alkyl): (CH2)2PO(OR⁶⁰)2 (where R⁶⁰ is lower alkyl; or lower alkenyl); (CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or (CH2) C6H4R8 (where R8 is H; F; Cl; CF2; lower alkyl; lower alkenyl; or lower alkoxy); and R¹⁷ is lower alkyl; lower alkenyl; (CH₂)_eOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_aSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); (CH₂)_aNR³³R³⁴ (where R³³ is lower alkyl: or lower alkenyl: R³⁴ is H: or lower alkyl: or R³³ and R³⁴ taken together are -(CH₂)_{2.6}: (CH2)2O(CH2)2+ -(CH2)2S(CH2)2-: or -(CH2)2NR⁵⁷(CH2)2 : where R⁵⁷ is H: or lower alkyl): (CH2)2OCONR³³R⁷⁵ (where R33 is H; or lower alkyl; or lower alkenyl; R75 is lower alkyl; or R33 and R75 taken together are -(CH) hat (CH) had (CH) had (CH) had (CH) had (CH) had (CH) had the correction of th alkyl): -(CH2)aNR20CONR33R82 (where R20 is H; or lower alkyl; R33 is H; or lower alkyl; or lower alkenyl; R82 is H; or lower alkyl; or R33 and R82 taken together are (CH2)2.6; (CH2)2O(CH2)2; (CH2)2S(CH2)2; or (CH2)2NR⁵⁷(CH2)2; where R⁵⁷ is H; or lower alkyl); (CH₂) N(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂),COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂),CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl: or lower alkenyl: and R⁵⁹-is H: lower alkyl: or R⁵⁸-and R⁵⁹-taken together are (CH₂)₂₋₆-; (CH₂)₂O(CH₂)₂-; (CH₂)₂S(CH₂)₂-; or (CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); (CH2), PO(OR⁶⁰)2 (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₂SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or (CH₂)₆C₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); R²⁰ is H: or lower alkyl: R¹⁸ is lower alkyl: R¹⁹ is lower alkyl; lower alkenyl; (CH₂), OR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_aSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); (CH₂)_aNR³³R³⁴ (where R³³ is lower alkyl: or lower alkenyl: R34 is H: or lower alkyl; or R33 and R34 taken together are (CH2)26:

$(CH_2)_2O(CH_2)_2$

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_pOCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are

-(CH₂)₂₋₆; (CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or -(CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); -(CH₂)_pNR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂₋₆; (CH₂)₂O(CH₂)₂;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); (CH₂)_pN(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂)_pCOOR⁵⁷ (where R⁵⁷: lower alkyl; or lower alkenyl); (CH₂)_pCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH₂)₂₋₆-; (CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_pPO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_pSO₂R⁶² (where R⁶² is lower alkyl; or lower alkyl; or lower alkyl; lower alkenyl; or lower alkoxy);

R²¹-is H; lower alkyl; lower alkenyl; (CH₂)₀OR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); (CH₂)₀NR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl); (CH₂)₀NR³³R³⁴ (where R³³ is lower alkyl; or lower alkyl; or R³³ and R³⁴ taken together are (CH₂)₂₋₆; (CH₂)₂O(CH₂)₂-;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷-is H; or lower alkyl); (CH₂)₆OCONR³³R⁷⁵ (where R³³-is H; or lower alkyl; or lower alkenyl; R⁷⁵-is lower alkyl; or R³³-and R⁷⁵-taken together are

 $\frac{(CH_2)_{2\cdot 6} \div (CH_2)_2 O(CH_2)_2 \div (CH_2)_2 S(CH_2)_2 \div or \cdot (CH_2)_2 NR^{57} (CH_2)_2 \div where \ R^{57} \text{ is H; or lower alkyl)};}{(CH_2)_2 \div (CH_2)_2 S(CH_2)_2 \div or \cdot (CH_2)_2 NR^{57} (CH_2)_2 \div where \ R^{57} \text{ is H; or lower alkyl)};}$

 $-(CH_{2})_{0}NR^{20}CONR^{33}R^{82} - (where R^{20} - is H; or lower alkyl; R^{33} - is H; or lower alkyl; or lower alkyl; or lower alkyl; or R^{33} - is H; or lower alkyl; or R^{33} - is H; or lower alkyl; or R^{33} - is H; or lower alkyl; or CH_{2})_{2} - (CH_{2})_{2}R^{57}(CH_{2})_{2} - ; where R^{57} - is H; or lower alkyl); (CH_{2})_{0}N(R^{20})COR^{64}$

(where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)_eCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are (CH₂)₂₋₆; (CH₂)₂O(CH₂)₂₋₇; -(CHb)2S(CHb)2-; or -(CH2)2NR 57 (CH2)2: where R 57 is H: or lower alkyl): (CH2)2PO(OR 60)2 (where R 60 is lower alkyl: or lower alkenyl): (CH2) SO2R⁶² (where R⁶² is lower alkyl: or lower alkenyl); or (CH2) C4H4R8 (where R8 is H: F: Cl: CF2: lower alkyl: lower alkenyl: or lower alkoxy): R²² is lower alkyl; lower alkenyl; (CH₂)_eOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)₂SR⁵⁶ (where R⁵⁶ is lower alkyl: or lower alkenyl): (CH₂)₂NR³³R³⁴ (where R³³ is lower alkyl: or lower alkenyl: R³⁴ is H: or lower alkyl: or R³³ and R³⁴ taken together are (CH₂)_{2.6}; (CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂: or -(CH₂)₂NR⁵⁷(CH₂)₂: where R⁵⁷ is H: or lower alkyl): -(CH₂)₂OCONR³³R⁷⁵ (where R33 is H; or lower alkyl; or lower alkenyl; R75 is lower alkyl; or R33 and R75 taken together are -(CH2)2-(alkyl): -(CH₂)₂NR²⁰CONR³³R⁸² (where R²⁰ is H: or lower alkyl: R³³ is H: or lower alkyl: or lower alkenyl: R⁸² is H: or lower alkyl: or R³³ and R⁸² taken together are -(CH₂)_{2.6}: (CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); (CH₂)₂N(R²⁰)COR⁶⁴(where R²⁰ is H: or lower alkyl: R⁶⁴ is lower alkyl; or lower alkenyl): (CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)₀CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are (CH₂)₂₋₆; (CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); -(CH2)aPO(OR60)2 (where R60 is lower alkyl; or lower alkenyl); -(CH₂)_eSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)_eC₆H₄R⁸ (where R⁸ is H; F; Cl; CF; lower alkyl; lower alkenyl; or lower alkoxy); R²³ is II: lower alkyl: lower alkenyl: -(CH₂)_eOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)₀SR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); -(CH₂)₀NR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R34-is H; or lower alkyl; or R33 and R34 taken together are (CH2)2.6;

(CH₂)₂O(CH₂)₂-;

(CH₂)₂S(CH₂)₂-; or (CH₂)₂NR⁵⁷(CH₂)₂ ; where R⁵⁷ is H; or lower alkyl); (CH₂)₀OCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are

- $(CH_2)_2$ ₆-; $(CH_2)_2O(CH_2)_2$ -; $(CH_2)_2S(CH_2)_2$ -; or $(CH_2)_2NR^{57}(CH_2)_2$ -; where R^{57} is H; or lower alkyl); $-(CH_2)_6NR^{20}CONR^{33}R^{82}$ (where R^{20} is H; or lower alkyl; R^{33} is H; or lower alkyl; or lower alkyl; or R^{33} and R^{82} taken together are $-(CH_2)_2$ ₆-; $-(CH_2)_2O(CH_2)_2$ -;

(CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); (CH₂)₆N(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); NR²⁰COlower alkyl (R²⁰=H; or lower alkyl) being particularly favoured; (CH₂)₆COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)₆CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are (CH₂)₂₋₆; (CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl); (CH₂)₆PO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl);

-(CH₂)_eSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)_qC₆H₄R⁸ (where R⁸ is H; F; Cl; CF₂; lower alkyl; lower alkenyl; or lower alkoxy);

R²⁴-is lower alkyl; lower alkenyl; (CH₂)₀OR⁵⁵-(where R⁵⁵-is lower alkyl; or lower alkenyl); -(CH₂)₀SR⁵⁶-(where R⁵⁶-is lower alkyl; or lower alkenyl); -(CH₂)₀NR³³R³⁴-(where R³³-is lower alkyl; or lower alkenyl; R³⁴-is H; or lower alkyl; or R³³-and R³⁴-taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷-is H; or lower alkyl); -(CH₂)₆OCONR³³R⁷⁵ (where R³³-is H; or lower alkyl; or lower alkenyl; R⁷⁵-is lower alkyl; or R³³ and R⁷⁵-taken together are

- $(CH_2)_{2\cdot 6}$ -; $(CH_2)_2O(CH_2)_2$ -; $(CH_2)_2S(CH_2)_2$ -; or $(CH_2)_2NR^{57}(CH_2)_2$ -; where R^{57} is H; or lower alkyl); $(CH_2)_6NR^{20}CONR^{33}R^{82}$ (where R^{20} is H; or lower alkyl; R^{33} is H; or lower alkyl; or lower alkyl; or R^{82} is H; or lower alkyl; or R^{82} is H; or lower alkyl; or R^{33} and R^{82} taken together are $(CH_2)_{2\cdot 6}$ -; $(CH_2)_2O(CH_2)_2$ -;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂ ; where R⁵⁷ is H; or lower alkyl); -(CH₂)₂N(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); NR²⁰COlower alkyl (R²⁰=H; or lower alkyl) being particularly favoured; (CH₂) COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)_eCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are (CH₂)_{2.6}; (CH₂)₂O(CH₂)₂; (CH₂)₂; or (CH2) NR⁵⁷(CH2) -: where R⁵⁷ is H: or lower alkyl): -(CH2) PO(OR⁶⁰) (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)_oSO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)_oC₆H₄R⁸ (where R⁸ is H; F; Cl; CF₂: lower alkyl; lower alkenyl; or lower alkoxy); R²⁵ is H; lower alkyl; lower alkenyl; -(CH₂)_mOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_mNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R^{34} taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mOCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R^{75} is lower alkyl; or R^{33} and R^{75} taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; - $(CH_2)_2S(CH_2)_2$ -; or $-(CH_2)_2NR^{57}(CH_2)_2$; where R^{57} is H; or lower alkyl); $-(CH_2)_mNR^{20}CONR^{33}R^{82}$ (where R^{20} is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl; R⁸² is H; or lower alkyl; or R³³ and R⁸² taken together are - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -; - $(CH_2)_2S(CH_2)_2$ -; or - $(CH_2)_2NR^{57}(CH_2)_2$ -; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mN(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); -(CH₂)_oCOOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)_oCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R^{59} taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₀PO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)₀C₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); R²⁶ is H; lower alkyl; lower alkenyl; -(CH₂)_mOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl);

-(CH₂)_mNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 23

 R^{34} taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R^{57} is H; or lower alkyl); -(CH₂)_mOCONR³³R⁷⁵ (where R^{33} is H; or lower alkyl; or lower alkenyl; R^{75} is lower alkyl; or R^{33} and R^{75} taken together are -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or

-(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mNR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkenyl; R⁸² is H; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)_mN(R²⁰)COR⁶⁴ (where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); -(CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CH₂)₀CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl; or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl);

- $(CH_2)_0PO(OR^{60})_2$ (where R^{60} is lower alkyl; or lower alkenyl); - $(CH_2)_0SO_2R^{62}$ (where R^{62} is lower alkyl; or lower alkenyl); or - $(CH_2)_qC_6H_4R^8$ (where R^8 is H; F; CI; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); or, alternatively, R^{25} and R^{26} taken together are - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -;

 $-(CH_2)_2S(CH_2)_2-$; or $-(CH_2)_2NR^{34}(CH_2)_2-$;

R²⁷ is H; lower alkyl; lower alkenyl; (CH₂)_eOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); (CH₂)_eSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); (CH₂)_eNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are (CH₂)₂₋₆; (CH₂)₂O(CH₂)₂;

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂ ; where R⁵⁷ is H; or lower alkyl); -(CH₂)₆OCONR³³R⁷⁵ (where R³³ is H; or lower alkyl; or lower alkenyl; R⁷⁵ is lower alkyl; or R³³ and R⁷⁵ taken together are

-(CH₂)₂6-; (CH₂)₂O(CH₂)₂-; (CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₆NR²⁰CONR³³R⁸² (where R²⁰ is H; or lower alkyl; R³³ is H; or lower alkyl; or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)₂₋₆-; (CH₂)₂O(CH₂)₂-;

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 24

-(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₂N(R²⁰)COR⁶⁴ (where R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); (CH₂)₀COOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)_eCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are (CH₂)₂₋₆-; (CH₂)₂O(CH₂)₂-; (CH2)2S(CH2)2 -: or -(CH₂)₂NR⁵⁷(CH₂)₂: where R⁵⁷ is H; or lower alkyl); (CH₂)₂PO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl: or lower alkenyl): -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or (CH2) C6H4R8 (where R8 is H: F: Cl: CF2: lower alkyl: lower alkenyl: or lower alkoxy): R²⁸ is lower alkyl; lower alkenyl; -(CH₂)_eOR⁵⁵ (where R⁵⁵ is lower alkyl; or lower alkenyl); -(CH₂)_eSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); (CH₂)_eNR³³R³⁴ (where R³³ is lower alkyl; or lower alkenyl; R³⁴ is H; or lower alkyl; or R³³ and R³⁴ taken together are -(CH₂)_{2.6}-; (CH2)2O(CH2)2-; -(CH2)2S(CH2)2 : or -(CH2)2NR 57(CH2)2 : where R 57 is H: or lower alkyl): -(CH2)2OCONR 33R 75 (where R33 is H; or lower alkyl; or lower alkenyl; R75 is lower alkyl; or R33 and R75 taken together are -(CH₂)₂₋₆ : (CH₂)₂O(CH₂)₂ : (CH₂)₂S(CH₂)₂ : or (CH₂)₂NR⁵⁷(CH₂)₂ : where R⁵⁷ is H: or lower alkyl): (CH₂) NR²⁰CONR³³R⁸² (where R²⁰ is H: or lower alkyl: R³³ is H: or lower alkyl: or lower alkenyl; R82 is H; or lower alkyl; or R33 and R82 taken together are (CH2)24: (CH2)2O(CH2)2; (CH2)2S(CH2)2; or (CH2)2NR⁵⁷(CH2)2; where R⁵⁷ is H; or lower alkyl); (CH₂)₂N(R²⁰)COR⁶⁴(where: R²⁰ is H: or lower alkyl: R⁶⁴ is lower alkyl: or lower alkenyl): (CH₂)_eCOOR⁵⁷ (where R⁵⁷ is lower alkyl; or lower alkenyl); (CH₂)_eCONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are-(CH2)26: (CH2)20(CH2)2: (CH2)28(CH2)2: or (CH2)2NR⁵⁷(CH2)2: where R⁵⁷ is H; or lower alkyl); (CH₂)_ePO(OR⁶⁰)₂ (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)₀C₆H₄R⁸ (where R⁸ is H; F; Cl; CF₃; lower alkyl; lower alkenyl; or lower alkoxy); and R²⁹ is lower alkyl: lower alkenyl: (CH₂) OR⁵⁵ (where R⁵⁵ is lower alkyl: or lower alkenyl): -(CH₂)_eSR⁵⁶ (where R⁵⁶ is lower alkyl; or lower alkenyl); (CH₂)_eNR³³R³⁴ (where R³³ is lower

```
Applicants: Zumbrunn et al.
Application No. 10/550,778
Amendment and Response to Restriction Requirement dated June 16, 2009
Page 25
```

alkyl; or lower alkenyl; R34 is H; or lower alkyl; or R33 and R34 taken together are (CH2)2-6; (CH2)2O(CH2)2-: -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; where R⁵⁷ is H; or lower alkyl); -(CH₂)₂OCONR³³R⁷⁵ (where R³³ is H: or lower alkyl: or lower alkenyl: R⁷⁵ is lower alkyl: or R³³ and R⁷⁵ taken together are (CH₂)₂₆; (CH₂)₂O(CH₂)₂; (CH₂)₂S(CH₂)₂; or (CH₂)₂NR⁵⁷(CH₂)₂; where R⁵⁷ is H; or lower alkyl): -(CH₂)₂NR²⁰CONR³³R⁸² (where R²⁰ is H: or lower alkyl: R³³ is H: or lower alkyl: or lower alkenvl: R⁸² is H: or lower alkyl; or R³³ and R⁸² taken together are -(CH₂)_{2.6}; (CH2)2O(CH2)2: (CH2)2S(CH2)2: or -(CH2)2NR⁵⁷(CH2)2; where R⁵⁷ is H; or lower alkyl); (CH₂)_aN(R²⁰)COR⁶⁴(where: R²⁰ is H; or lower alkyl; R⁶⁴ is lower alkyl; or lower alkenyl); NR²⁰COlower-alkyl (R²⁰=H: or lower alkyl) being particularly favoured: (CH₂) COOR 57 (where R⁵⁷ is lower alkyl; or lower alkenyl); -(CHL)_CONR⁵⁸R⁵⁹ (where R⁵⁸ is lower alkyl, or lower alkenyl; and R⁵⁹ is H; lower alkyl; or R⁵⁸ and R⁵⁹ taken together are -(CH2)26: -(CH2)2O(CH2)2: -(CH2)2S(CH2)2: or -(CH2)2NR⁵⁷(CH2)2-; where R⁵⁷ is H; or lower alkyl); -(CH₂), PO(OR⁶⁰); (where R⁶⁰ is lower alkyl; or lower alkenyl); -(CH₂)₀SO₂R⁶² (where R⁶² is lower alkyl; or lower alkenyl); or -(CH₂)₀C₆H₄R⁸ (where R⁸ is H; F; Cl: CF₂: lower alkyl: lower alkenyl: or lower alkoxy): R^{33} is H; alkyl, alkenyl; -(CH₂)_m(CHR⁶¹)_sOR⁵⁵; -(CH₂)_m(CHR⁶¹)_sNR³⁴R⁶³; $-(CH_2)_m(CHR^{61})_sOCONR^{75}R^{82}$; $-(CH_2)_m(CHR^{61})_sNR^{20}CONR^{78}R^{82}$; $-(CH_2)_o(CHR^{61})_sCOR^{64}$; $-(CH_2)_o(CHR^{61})_s-CONR^{58}R^{59}$, $-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2$; $-(CH_2)_0(CHR^{61})_s SO_2R^{62}$; or $-(CH_2)_0(CHR^{61})_s C_6H_4R^8$; R³⁴ is H; lower alkyl; aryl, or aryl-lower alkyl; R^{33} and R^{34} taken together can form: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-; R⁵⁰ is H; lower alkyl; or aryl-lower alkyl;

R⁵⁷ is H; lower alkyl; lower alkenyl; aryl lower alkyl; or heteroaryl lower alkyl;

R⁵⁸ is H; lower alkyl; lower alkenyl; aryl; heteroaryl; aryl-lower alkyl; or heteroaryl-lower alkyl;

```
R<sup>59</sup> is H; lower alkyl; lower alkenyl; aryl; heteroaryl; aryl-lower alkyl; or heteroaryl-lower alkyl; or

R<sup>58</sup> and R<sup>59</sup> taken together can form; (CIL) at (CIL) C(CIL) at (CIL) S(CIL) are
```

 $\frac{R^{58} \text{ and } R^{59} \text{ taken together can form: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-;}{}$

R⁶⁰ is H; lower alkyl; lower alkenyl; aryl; or aryl-lower alkyl;

R⁶¹ is alkyl; alkenyl; aryl; heteroaryl; aryl-lower alkyl; heteroaryl-lower alkyl; - $(CH_2)_mOR^{55}$; - $(CH_2)_mNR^{33}R^{34}$; - $(CH_2)_mOCONR^{75}R^{82}$; - $(CH_2)_mNR^{20}CONR^{78}R^{82}$; - $(CH_2)_oCOOR^{37}$; - $(CH_2)_oNR^{58}R^{59}$; or - $(CH_2)_oPO(COR^{60})_2$;

R⁶² is lower alkyl; lower alkenyl; aryl, heteroaryl; or aryl-lower alkyl;

R⁶⁴ is H; lower alkyl; lower alkenyl; aryl; heteroaryl; aryl-lower alkyl; heteroaryl-lower alkyl; $\frac{-(CH_2)_p(CHR^{61})_sOR^{65}}{-(CH_2)_p(CHR^{61})_sOR^{75}}; \frac{-(CH_2)_p(CHR^{61})_sNR^{20}CONR^{78}R^{82}}{-(CH_2)_p(CHR^{61})_sNR^{20}CONR^{78}R^{82}};$

Z and Z^1 are chains of n and, respectively, n' α -amino acid residues whereby either n is 4 and n' is 6 or n is 5 and n' is 7, the positions of said amino acid residues in said chain Z being counted starting from the N-terminal amino acid and the positions of said amino acid residues in said chain Z^1 being counted starting from the C-terminal amino acid, whereby these amino acid residues are, depending on their position in the chains, Gly, or Pro, or of one of the types

```
-NR<sup>20</sup>CH(R<sup>72</sup>)CO-:
 C:
               -NR<sup>20</sup>CH(R<sup>73</sup>)CO-:
 D:
               -NR<sup>20</sup>CH(R<sup>74</sup>)CO-;
E:
               -NR<sup>20</sup>CH(R<sup>84</sup>)CO-; and
F:
               -NR<sup>20</sup>-CH(CO-)-(CH<sub>2</sub>)<sub>4-7</sub>-CH(CO-)-NR<sup>20</sup>-:
H:
               -NR<sup>20</sup>-CH(CO-)-(CH<sub>2</sub>)<sub>0</sub>SS(CH<sub>2</sub>)<sub>0</sub>-CH(CO-)-NR<sup>20</sup>-:
               -NR^{20}-CH(CO-)-(-(CH<sub>2</sub>)<sub>0</sub>NR<sup>20</sup>CO(CH<sub>2</sub>)<sub>0</sub>-CH(CO-)-NR<sup>20</sup>-:
               -NR<sup>20</sup>-CH(CO-)-(-(CH<sub>2</sub>)<sub>0</sub>NR<sup>20</sup>CONR<sup>20</sup>(CH<sub>2</sub>)<sub>0</sub>-CH(CO-)-NR<sup>20</sup>-: and
               -NR<sup>86</sup>CH<sub>2</sub>CO-:
I:
R<sup>71</sup> is lower alkenyl; (CH<sub>2</sub>)<sub>e</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>75</sup>; (CH<sub>2</sub>)<sub>e</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>75</sup>;
```

```
\frac{(CH_2)_{\rm e}(CHR^{61})_{\rm s}OCONR^{33}R^{75}}{(CHR^{61})_{\rm s}OCONR^{33}R^{75}}
 (CH<sub>2</sub>)<sub>6</sub>(CHR<sup>64</sup>)<sub>5</sub>COOR<sup>75</sup>; (CH<sub>2</sub>)<sub>6</sub>CONR<sup>58</sup>R<sup>59</sup>; (CH<sub>2</sub>)<sub>6</sub>PO(OR<sup>62</sup>)<sub>2</sub>; (CH<sub>2</sub>)<sub>6</sub>SO<sub>2</sub>R<sup>62</sup>; or
 -----(CH<sub>2</sub>)<sub>0</sub>-C<sub>6</sub>R<sup>67</sup>R<sup>68</sup>R<sup>69</sup>R<sup>70</sup>R<sup>76</sup>:
 R^{72} is H, lower alkyl; lower alkenyl; -(CH_2)_p(CHR^{61})_sOR^{85}; or -(CH_2)_p(CHR^{61})_sSR^{85};
 R^{73} is -(CH_2)_0R^{77}; -(CH_2)_0O(CH_2)_0R^{77}; -(CH_2)_0S(CH_2)_0R^{77}; or -(CH_2)_0NR^{20}(CH_2)_0R^{77};
 R^{74} is -(CH_2)_0NR^{78}R^{79}; -(CH_2)_0NR^{77}R^{80}; -(CH_2)_0C(=NR^{80})NR^{78}R^{79}; -(CH_2)_0C(=NR^{80})NR^{78}R^{80}; -(CH_2)_0C(=NR^{80})NR^{78}R^{80}; -(CH_2)_0C(=NR^{80})NR^{80}; -(CH_2)_0C(=NR^{80}
                  (CH_2)_nC(=NOR^{50})NR^{78}R^{79}:
                   -(CH_2)_0C(=NNR^{78}R^{79})NR^{78}R^{79}; -(CH_2)_0NR^{80}C(=NR^{80})NR^{78}R^{79}:
                  -(CH_2)_pN=C(NR^{78}R^{80})NR^{79}R^{80}; -(CH_2)_pC_6H_4NR^{78}R^{79}; -(CH_2)_pC_6H_4NR^{77}R^{80};
                  -(CH_2)_nC_6H_4C(=NR^{80})NR^{78}R^{79}; -(CH_2)_nC_6H_4C(=NOR^{50})NR^{78}R^{79};
                  -(CH_2)_0C_6H_4C(=NNR^{78}R^{79})NR^{78}R^{79}; -(CH_2)_0C_6H_4NR^{80}C(=NR^{80})NR^{78}R^{79};
                  -(CH_2)_pC_6H_4N=C(NR^{78}R^{80})NR^{79}R^{80}; -(CH_2)_pO(CH_2)_mNR^{78}R^{79}; -(CH_2)_pO(CH_2)_mNR^{77}R^{80};
                  -(CH_2)_tO(CH_2)_nC(=NR^{80})NR^{78}R^{79}; -(CH_2)_tO(CH_2)_nC(=NOR^{50})NR^{78}R^{79};
                  -(CH_2)_rO(CH_2)_nC(=NNR^{78}R^{79})NR^{78}R^{79}; -(CH_2)_rO(CH_2)_mNR^{80}C(=NR^{80})NR^{78}R^{79};
                  -(CH_2)_tO(CH_2)_mN=C(NR^{78}R^{80})NR^{79}R^{80}; -(CH_2)_tO(CH_2)_nC_6H_4CNR^{78}R^{79};
                  -(CH_2)_rO(CH_2)_pC_6H_4C(=NR^{80})NR^{78}R^{79}; -(CH_2)_rO(CH_2)_pC_6H_4C(=NOR^{50})NR^{78}R^{79};
                  -(CH_2)_{r}O(CH_2)_{n}C_6H_4C(=NNR^{78}R^{79})NR^{78}R^{79};
                  -(CH_2)_rO(CH_2)_pC_6H_4NR^{80}C(=NR^{80})NR^{78}R^{79}; -(CH_2)_rS(CH_2)_mNR^{78}R^{79};
                  -(CH_2)_rS(CH_2)_mNR^{77}R^{80}; -(CH_2)_rS(CH_2)_nC(=NR^{80})NR^{78}R^{79};
                  -(CH_2)_rS(CH_2)_nC(=NOR^{50})NR^{78}R^{79}; -(CH_2)_rS(CH_2)_nC(=NNR^{78}R^{79})NR^{78}R^{79};
                  -(CH_2)_tS(CH_2)_mNR^{80}C(=NR^{80})NR^{78}R^{79}; -(CH_2)_tS(CH_2)_mN=C(NR^{78}R^{80})NR^{79}R^{80};
                  -(CH_2)_tS(CH_2)_0C_6H_4CNR^{78}R^{79}; -(CH_2)_tS(CH_2)_0C_6H_4C(=NR^{80})NR^{78}R^{79};
                  -(CH_2)_rS(CH_2)_pC_6H_4C(=NOR^{50})NR^{78}R^{79}; -(CH_2)_rS(CH_2)_pC_6H_4C(=NNR^{78}R^{79})NR^{78}R^{79};
                  -(CH_2)_{1}S(CH_2)_{2}C_{6}H_{4}NR^{80}C(=NR^{80})NR^{78}R^{79}; -(CH_2)_{2}NR^{80}COR^{64}; -(CH_2)_{2}NR^{80}COR^{77};
                  -(CH_2)_0NR^{80}CONR^{78}R^{79}; or -(CH_2)_0C_6H_4NR^{80}CONR^{78}R^{79}:
R<sup>75</sup> is lower alkyl; lower alkenyl; or aryl-lower alkyl;
R^{33} and R^{75} taken together can form: -(CH<sub>2</sub>)<sub>2-6</sub>-; -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-; -(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub>-; or
                 -(CH<sub>2</sub>)<sub>2</sub>NR<sup>57</sup>(CH<sub>2</sub>)<sub>2</sub>-;
```

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 28

 R^{75} and R^{82} taken together can form: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-;

R⁷⁶ is H; lower alkyl; lower alkenyl; aryl-lower alkyl; -(CH₂)₀OR⁷²; -(CH₂)₀SR⁷²; -(CH₂)₀NR³³R³⁴; -(CH₂)₀OCONR³³R⁷⁵; -(CH₂)₀NR²⁰CONR³³R⁸²; -(CH₂)₀COOR⁷⁵; -(CH₂)₀CONR⁵⁸R⁵⁹; -(CH₂)₀PO(OR⁶⁰)₂; -(CH₂)_pSO₂R⁶²; or -(CH₂)₀COR⁶⁴;

 R^{77} is R^{87} -C₆ R^{67} R^{68} R^{69} R^{70} R^{76} ; or a heteroaryl group of one of the formulae

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 29

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 30

$$R^{82}$$
 R^{82} R

R⁷⁸ is H; lower alkyl; aryl; or aryl-lower alkyl;

 R^{78} and R^{82} taken together can form: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-;

R⁷⁹ is H; lower alkyl; aryl; or aryl-lower alkyl; or

 R^{78} and R^{79} , taken together, can be -(CH₂)₂₋₇-; -(CH₂)₂O(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-;

R⁸⁰ is H; or lower alkyl;

R⁸¹ is H; lower alkyl; or aryl-lower alkyl;

R⁸² is H; lower alkyl; aryl; heteroaryl; or aryl-lower alkyl;

 R^{33} and R^{82} taken together can form: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; or -(CH₂)₂NR⁵⁷(CH₂)₂-;

 R^{83} is H; lower alkyl; aryl; or -NR⁷⁸R⁷⁹;

 R^{84} is $-(CH_2)_pCONR^{78}R^{79}$; $-(CH_2)_pNR^{80}CONR^{78}R^{79}$; $-(CH_2)_pC_6H_4CONR^{78}R^{79}$; or $-(CH_2)_pC_6H_4NR^{80}CONR^{78}R^{79}$;

R⁸⁵ is lower alkyl; or lower alkenyl;

 R^{86} is R^{74} ; $-[(CH_2)_u-X]_1-(CH_2)_vNR^{78}R^{79}$; $-[(CH_2)_u-X]_1-(CH_2)_v-C(=NR^{80})NR^{78}R^{79}$; X is -O-, -NR²⁰-, -S-, -OCOO-, u is 1-3, t is 1-6, v is 1-3;

R⁸⁷ is phenyl, p-hydroxyphenyl, 2-naphthyl, 1-naphthyl, 4-chlorophenyl, 3-chlorophenyl, 2-chlorophenyl, 3,4-dichlorophenyl, 4-fluorophenyl, 3-fluorophenyl, 2-fluorophenyl, p-benzyloxyphenyl, p-biphenyl or p-benzylphenyl.

with the proviso that in said chains Z and Z^1 of n and , respectively, n' α -amino acid residues

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 31

- if n is 4 and n' is 6, the amino acid residues in positions 1 to 4 of Z and in positions 1' to 6' of Z¹ are:
 - P1: of type C or of type D or of type E or of type F, or the residue is Pro;
 - P2: of type E or of type F;
 - P3: of type F, or the residue is Pro;
 - P4: of type E;
 - P1': of type C or of type D or of type E or of type F, or the residue is Gly;
 - P2': of type D or of type C;
 - P3': of type F or the residue is Pro;
 - P4': of type D or of type C;
 - P5': of type E, or of type F or the residue is Pro; and
 - P6': of type E or of type F, or the residue is Pro; or
 - P3 and P3', taken together, can form a group of type H;

and

- if n is 5 and n' is 7, the amino acid residues in positions 1 to 5 of Z and in positions 1' to 7' of Z^1 are:
 - P1: of type C or of type D or of type E or of type F, or the residue is Pro;
 - P2: of type E or of type F;
 - P3: of type F, or the residue is Pro;
 - P4: of type F;
 - P5: of type E

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 32

- P1': of type C or of type D or of type E or of type F, or the residue is Pro;
- P2': of type F;
- P3': of type D or the residue is Pro;
- P4': of type E or of type F;
- P5': of type D, or the residue is Pro;
- P6': of type E or of type F, or the residue is Pro; and
- P7': of type E or of type I, or the residue is Gly; or
- P2 and P2' and/or P4 and P4', taken together, can form a group of type H;

at P7' also D-isomers being possible,

and pharmaceutically acceptable salts thereof.

41-46. (Canceled)

- 47. (Previously presented) Compounds according to claim 40, wherein B is a group, having (L)-configuration, of formula A8" as shown in claim 40 in which R⁶⁴ is n-hexyl; n-heptyl; 4-(phenyl)benzyl; diphenylmethyl, 3-amino-propyl; 5-amino-pentyl; methyl; ethyl; isopropyl; isobutyl; n-propyl; cyclohexylmethyl; n-butyl; phenyl; benzyl; (3-indolyl)methyl; 2-(3-indolyl)ethyl; (4-phenyl)phenyl; or n-nonyl.
- 48. (Previously presented) Compounds according to claim 40, wherein n is 4, n' is 6 and the α -amino acid residues in positions 1 to 4 of the chain Z and 1'-6' in chain Z¹ are:
 - P1: of type D or of type E or of type F, or the residue is Pro;
 - P2: of type E or of type F;
 - P3: of type F, or the residue is Pro;

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 33

- P4: of type E;
- P1': of type E or of type F, or the residue is Gly;
- P2': of type D;
- P3': of type F or the residue is Pro;
- P4': of type D;
- P5': of type E, or of type F or the residue is Pro; and
- P6': of type E or of type F, or the residue is Pro; or
- P3 and P3', taken together, can form a group of type H
- 49. (Previously presented) Compounds according to claim 40, wherein n is 5, n' is 7 and the α -amino acid residues in positions 1 to 5 of the chain Z and 1'-7' in chain Z¹ are:
 - P1: of type D or of type E or of type F, or the residue is Pro;
 - P2: of type E or of type F;
 - P3: of type F, or the residue is Pro;
 - P4: of type F;
 - P5: of type E
 - P1': of type D or of type E or of type F, or the residue is Pro;
 - P2': of type F;
 - P3': of type D or the residue is Pro;
 - P4': of type F;
 - P5': of type D, or the residue is Pro;
 - P6': of type E or of type F, or the residue is Pro; and
 - P7': of type E or of type I, or the residue is Gly; or
 - P2 and P2' and/or P4 and P4', taken together, can form a group of type H; at P7'also D-isomers being possible.

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 34

50. (Previously presented) Compounds according to claim 48, wherein the α -amino acid residues in positions 1 to 4 of the chain Z and the α -amino acid residues in positions 1' to 6' chain Z¹ are:

```
P1: Tyr, or Arg;
```

P2: Cit, or Arg;

- P3: Cys;

P4: Arg-NH₂;

- P1': Lys, orArg;

P2': Tyr;

- P3': Cys;

- P4': 2-Nal;

- P5': Arg;

- P6': Arg; and

Cys at P3 and P3' can form a disulfide bridge.

51. (Previously presented) Compounds according to claim 49, wherein the α -amino acid residues in positions 1 to 5 of the chain Z and the α -amino acid residues in positions 1' to 7' chain Z^1 are:

```
- P1: Tyr;
```

- P2: Arg;

- P3: Cit;

- P4: Cys;

- P5: Arg, or Arg-NH₂;

- P1': Lys;

- P2': Cit;

- P3': Tyr;

- P4': Cys;

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 35

```
    P5': 2-Nal, Trp, F(pNH<sub>2</sub>), or W(6-Cl);
```

- P6': Arg:

P7: DArg, Arg, Ac-Arg, iPr-Arg, (EA)G, (PrA)G, (BA)G, (EGU)G, (PrGU)G, or (BGU)G; and

Cys at P4 and P4' can form a disulfide bridge.

- 52. (Previously presented) A compound of formula I according to claim 40, wherein the template is ^DPro-^LPro, n is 5, n' is 7 and the amino acid residues in positions 1 to 5 of the chain Z and the amino acid residues in positions 1' to 7' chain Z¹ are:
 - P1: Tyr;
 - P2: Arg;
 - · P3: Cit;
 - P4: Cys;
 - P5: Arg-NH₂;
 - P1': Lys;
 - P2': Cit;
 - P3': Tyr;
 - P4': Cys;
 - P5': 2-Nal;
 - P6': Arg; and
 - P7': Arg;

Cys at P4' and P4 forming a disulfide bridge.

- 53. (Previously presented) A compound of formula I according to claim 40, wherein the template is ^DPro-^LPro, n is 5, n' is 7 and the amino acid residues in positions 1 to 5 of the chain Z and the amino acid residues in positions 1' to 7' chain Z¹ are:
 - Pl: Tyr;
 - P2: Arg;

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 36

```
- P3: Cit;
```

Cys at P4' and P4 forming a disulfide bridge.

54. (Previously presented) A compound of formula I according to claim 40, wherein the template is ^DPro-^LPro, n is 5, n' is 7 and the amino acid residues in positions 1 to 5 of the chain Z and the amino acid residues in positions 1' to 7' chain Z' are:

```
P1: Tyr;
```

-
$$P5$$
: Arg- NH_2 ;

Cys at P4' and P4 forming a disulfide bridge.

⁻ P4': Cys;

⁻ P5': 2-Nal

⁻ P6': Arg; and

- 55. (Previously presented) A compound of formula I according to claim 40, wherein the template is ^DPro-^LPro, n is 5, n' is 7 and the amino acid residues in positions 1 to 5 of the chain Z and the amino acid residues in positions 1' to 7' chain Z¹ are:
 - P1: Tyr;
 - P2: Arg;
 - P3: Cit;
 - P4: Cys;
 - P5: Arg-NH₂;
 - P1': Lys;
 - P2': Cit;
 - P3': Tyr;
 - P4': Cys;
 - P5': $Phe(pNH_2)$;
 - P6': Arg; and
 - P7': Arg;

Cys at P4' and P4 forming a disulfide bridge.

- 56. (Previously presented) A compound of formula I according to claim 40, wherein the template is ^DPro-^LPro, n is 5, n' is 7 and the amino acid residues in positions 1 to 5 of the chain Z and the amino acid residues in positions 1' to 7' chain Z¹ are:
 - P1: Tyr;
 - P2: Arg;
 - P3: Cit;
 - P4: Cys;
 - P5: Arg- NH_2 ;
 - P1': Lys;
 - P2': Cit;

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 38

- P3': Tyr;
- P4': Cys;
- P5': 2-Nal;
- P6': Arg; and
- P7': (PrA)G;

Cys at P4' and P4 forming a disulfide bridge.

- 57. (Previously presented) A compound of formula I according to claim 40, wherein the template is ^DPro-^LPro, n is 5, n' is 7 and the amino acid residues in positions 1 to 5 of the chain Z and the amino acid residues in positions 1' to 7' chain Z¹ are:
 - P1: Tyr;
 - P2: Arg;
 - P3: Cit;
 - P4: Cys;
 - P5: Arg;
 - P1': Lys;
 - P2': Cit;
 - P3': Tyr;
 - P4': Cys;
 - P5': 2-Nal;
 - P6': Arg; and
 - P7': Arg;

Cys at P4' and P4 forming a disulfide bridge.

58. (Previously presented) Enantiomers of the compounds of formulae I as defined in claim 40.

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 39

- 59. (Previously presented) Compounds according to claim 40, for use as therapeutically active substances.
- 60. (Previously presented) Compounds according to claim 59, for use as CXCR4 antagonists.
- 61. (Previously presented) A pharmaceutical composition containing a compound according to claim 40 and a pharmaceutically inert carrier.
- 62. (Previously presented) Compositions according to claim 61 in a form suitable for a mode of administration selected from the group consisting of oral, topical, transdermal, injection, buccal, transmucosal, pulmonary and inhalation.
- 63. (Previously presented) Compositions according to claim 61 in a form selected from the group consisting of tablets, dragees, capsules, solutions, liquids, gels, plaster, creams, ointments, syrup, slurries, suspensions, spray, nebuliser or suppositories.
- 64. (Previously presented) Compositions according to claim 62 in a form selected from the group consisting of tablets, dragees, capsules, solutions, liquids, gels, plaster, creams, ointments, syrup, slurries, suspensions, spray, nebuliser or suppositories.
- 65. (Previously presented) A method for treating and/or preventing a disorder selected from the group consisting of HIV infections, cancer and inflammatory disorders, the method comprising:

administering to a subject in need thereof a compound according to claim 40.

66. (Currently amended) A process for the manufacture of compounds according to any one of claim 40, which process comprises

Amendment and Response to Restriction Requirement dated June 16, 2009

Page 40

- (a) coupling an appropriately functionalized solid support with an appropriately N-protected derivative of that amino acid which in the desired end-product is in position 4 of Z if n is 4 or in position 5 of Z if n is 5, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- (b) removing the N-protecting group from the product thus obtained;
- (c) coupling the product thus obtained with an appropriately N-protected derivative of that amino acid which in Z of the desired end-product is one position nearer the N-terminal amino acid residue, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- (d) removing the N-protecting group from the product thus obtained;
- (e) repeating steps (c) and (d) until the N-terminal amino acid residue of Z has been introduced;
- (f) coupling the product thus obtained with a compound of the general formula

wherein

is as defined in claim 40 and X is an N-protecting group; or, alternatively,

(fa) coupling the product obtained in step (e) with an appropriately N-protected derivative of an amino acid of the general formula

HOOC-B-H

III

or HOOC-A-H

IV

wherein B and A are as defined in claim 40, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;

- (fb) removing the N-protecting group from the product thus obtained; and
- (fc) coupling the product thus obtained with an appropriately N-protected derivative of an amino acid of the above general formula IV and, respectively, III, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- (g) removing the N-protecting group from the product obtained in step (f) or (fc);
- (h) coupling the product thus obtained with an appropriately N-protected derivative of that amino acid which in the desired end-product is in position 1 of Z¹, any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- (i) removing the N-protecting group from the product thus obtained;
- (j) coupling the product thus obtained with an appropriately N-protected derivative of that amino acid which in the desired end-product is one position farther away from position 1 of Z^1 , any functional group which may be present in said N-protected amino acid derivative being likewise appropriately protected;
- (k) removing the N-protecting group from the product thus obtained;
- (l) repeating steps (j) and (k) until all amino acid residues of Z¹ have been introduced;
- (m) if desired, selectively deprotecting one or several protected functional group(s) present in the molecule and appropriately substituting the reactive group(s) thus liberated;
- (n) if desired, forming one or two interstrand linkage(s) between side-chains of appropriate amino acid residues at opposite positions of the β -strand region;
- (o) detaching the product thus obtained from the solid support and removing any protecting groups present on functional groups of any members of the chain of amino acid residues and, if desired, any protecting group(s) which may in addition be present in the molecule; and
- (p) if desired, converting the product thus obtained into a pharmaceutically acceptable salt or converting a pharmaceutically acceptable, or unacceptable, salt thus obtained into the corresponding free compound of formula I or into a different, pharmaceutically acceptable, salt.

- 67. (Previously presented) A process according to claim 66, but wherein an amino acid residue of type I is introduced by coupling with a leaving group-containing acetylating agent, followed by nucleophilic displacement with an amine of the formula H₂NR⁸⁶ which, if necessary, is appropriately protected.
- 68. (Previously presented) A process according to claim 67 wherein the leaving group in said leaving group-containing acetylating agent is bromo, chloro or iodo acetic acid.
- 69. (Previously presented) A modification of the process according to claim 66 for the manufacture of compounds according to claim 56 in which enantiomers of all chiral starting materials are used.
- 70. (Previously presented) A modification of the process according to claim 67 for the manufacture of compounds according to claim 56 in which enantiomers of all chiral starting materials are used.