

Curso "Electromagnetismo"

Tema 4

Corrientes eléctricas estacionarias

José Emilio Prieto Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid

joseemilio.prieto@uam.es

Curso "Electromagnetismo"

Tema 4: Corrientes eléctricas estacionarias

Corriente eléctrica

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers" (5th edition), P.A. Tipler, G. Mosca

Corriente eléctrica

- Corriente eléctrica: carga eléctrica en movimiento
- Si pasa una cantidad de carga ∆Q en un tiempo ∆t, definimos la corriente eléctrica / como:

$$I \equiv \begin{bmatrix} \Delta Q \\ \Delta t \end{bmatrix}$$

más general:

$$I \equiv \begin{array}{c} dQ \\ dt \end{array}$$

Ley de Ohm

- Observación experimental (empírica):
 - Para muchos conductores (ej. metales) se verifica la ley de Ohm:

La corriente es proporcional a la diferencia de potencial aplicada

Ley de Ohm

- No todos los sistemas cumplen la ley de Ohm:
 - Contraejemplo: elementos semiconductores (diodos):

Resistencia eléctrica

- Ley de Ohm: La corriente l es proporcional a la diferencia de potencial aplicada V
 - → el cociente es una constante
- Definición: Resistencia eléctrica R:

Resistencia ↔ Resistividad

Para un conductor de longitud L y sección A, la resistencia
 R es proporcional a L e inversamente proporcional a A:

$$R = \rho \frac{L}{A}$$

• La resistividad ρ es una propiedad característica del material que nos dice cuán buen conductor es.

$$\rho = R \frac{A}{L}$$
 unidad: $[\rho] = \Omega$ m

Ley de Ohm en términos de *E*

• Definición: densidad de corriente j : corriente l por unidad de área A. Si la corriente es homogénea en A:

$$j \equiv {I \atop A}$$

de forma que:
$$I = jA$$

• En realidad, j es una magnitud vectorial y, en general, la corriente I se puede expresar como el flujo de la densidad de corriente j a través de una superficie transversal A :

$$I = \int j dA$$

Ley de Ohm en términos de *E*

• En campo *E* homogéneo:

$$V = El$$

• Def. de *R*;

$$R \equiv V \\ I$$

Rel. $R - \rho$;

$$R = \rho \frac{l}{A}$$

Rel. V – **E** para **E** cte

$$V = El$$

Ley de Ohm en términos de *E*

$$\rightarrow \begin{array}{c} l \\ \rho \\ A \end{array} = \begin{array}{c} E \, l \\ j \, A \end{array}$$

$$\rightarrow \left| \begin{array}{ccc} j & = & 1 \\ \rho & \end{array} \right| E$$

Definiendo la conductividad σ :

$$\sigma \equiv \begin{array}{c} 1 \\ \sigma \end{array} \rightarrow \begin{array}{c} j = \sigma E \end{array}$$

Ley de Ohm en términos del campo *E*

Resistividades de algunos materiales

TABLE 25-1 Resistivities and Temperature Coefficients Temperature Coefficient α Resistivity p at 20°C, K-1 Material at 20°C, Ω·m 3.8×10^{-3} Silver 1.6×10^{-8} 3.9×10^{-3} 1.7×10^{-8} Copper Aluminum 2.8×10^{-8} 3.9×10^{-3} 5.5×10^{-8} 4.5×10^{-3} Tungsten 10×10^{-8} 5.0×10^{-3} Iron 22×10^{-8} 4.3×10^{-3} Lead 0.9×10^{-3} Mercury 96×10^{-8} 100×10^{-8} 0.4×10^{-3} Nichrome 3500×10^{-8} -0.5×10^{-3} Carbon Germanium -4.8×10^{-2} 0.45 -7.5×10^{-2} Silicon 640 $10^8 - 10^{14}$ Wood $10^{10} - 10^{14}$ Glass Hard rubber $10^{13} - 10^{16}$ 5×10^{14} Amber 1×10^{15} Sulfur

- La resistividad ρ es una magnitud física que varía en muchos órdenes de magnitud de unos materiales a otros.
- Hay muy buenos conductores (metales) y muy buenos aislantes.
- Semiconductores: (Si, Ge): tienen resistividades intermedias y, más importante, son fácilmente manipulables

Movimiento de cargas en un conductor

$$a = \begin{bmatrix} F \\ m \end{bmatrix} = \begin{bmatrix} qE \\ m \end{bmatrix}$$

$$v = at = {qE \atop m} t \dots ?$$

- Las cargas se mueven en el campo *E* asociado a la diferencia de potencial *V* (ojo: hay *E* en el interior del conductor, pues *no es una situación estática*: ¡hay corriente!)
- En un campo constante E se ejerce una fuerza constante F = q E sobre la carga q. Por lo tanto, q se acelera con a constante y su velocidad v crecería indefinidamente con el tiempo... llegaría a ser superior a $c ... \rightarrow NO$ puede ser (!)

Movimiento de cargas en un conductor

- v no puede crecer indefinidamente $\rightarrow F$ sólo puede actuar durante un cierto tiempo. En promedio: tiempo promedio τ . Tras ese tiempo, la carga q sufre una colisión en la que pierde su velocidad y cede su energía al medio (calentamiento Joule).
- La corriente eléctrica siempre lleva asociada una pérdida de energía: proceso disipativo. Excepción: superconductividad
- Velocidad final (promedio) v_d de los portadores de carga q:

$$v_d = \frac{qE}{m} \tau$$

Analogía mecánica de la corriente eléctrica

 Bolas cayendo por la pendiente:

$$a = cte. \rightarrow v \sim t$$

- Hay colisiones tras un tiempo promedio r
- Debido a las colisiones

$$V_d = a \tau$$

 ¿Quién aporta la energía necesaria para mantener la corriente?

Analogía mecánica de la corriente eléctrica

 Un campo *E estático* no es suficiente (sólo daría una corriente transitoria muy breve)

- Para mantener una corriente hace falta un aporte externo continuo de energía.
- Es necesaria una fuente de alimentación que aporte una "fuerza electromotriz" (fem): una diferencia de potencial que se mantenga aún cuando pase una corriente.
- La energía puede ser de origen químico (pila), mecánico (generador eléctrico), luminoso (célula solar), etc.

Curso "Electromagnetismo"

Tema 4: Corrientes eléctricas estacionarias

Energía disipada por la corriente eléctrica

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers (5th edition), P.A. Tipler, G. Mosca

Potencia disipada por una corriente

• Al pasar de un potencial V_a a V_b , una carga (Δq) pierde una energía:

$$\Delta U = (\Delta q)(V_a - V_b)$$

$$\Delta U = (\Delta q)V$$

• Durante un tiempo (Δt):

$$\begin{array}{ccc} \Delta U & = & \Delta q \\ \Delta t & = & \Delta t \end{array}$$

 (ΔU) : energía potencial que se disipa en forma de calor durante Δt . **Potencia disipada**:

$$P = \frac{\Delta U}{\Delta t} = IV$$

Potencia disipada en una resistencia

$$P = IV$$

La caida de potencial V tiene lugar en una resistencia R:
 Por la definición de resistencia

$$R = \frac{V}{I}$$

• Tenemos distintas relaciones para la potencia *P* disipada por una resistencia *R*:

$$P = I^2 R = \frac{V^2}{R}$$

Unidades de potencia y energía

$$P = IV$$

$$[P] = [I][V] = A \cdot V = C/s \cdot J/C = J/s = W$$
(Watio)

$$P = \begin{bmatrix} W \\ t \end{bmatrix}$$

$$W = Pt$$

También: 1 J = 1 W s:

El trabajo y la energía se pueden medir en unidades de P × t :

Ejemplos:

- 1 W s = 1 J
- $1 \text{ W h} = 1 \text{ W} \cdot 3600 \text{ s} = 3600 \text{ J}$
- 1 kW h = $1000 \text{ W} \cdot 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$

Circuito eléctrico elemental

Formado por:

- Fuente de fem & ó V
- Resistencia R
- Conexiones formadas por conductores con R despreciables

Circula una corriente I:

Equivalentemente, en la resistencia *R* hay una caida de potencial *V*:

$$V = IR$$

Potencia P disipada:

$$P = VI$$

$$P = \frac{V^2}{R} = I^2 R$$

Resumen: Corriente eléctrica

- Corriente eléctrica: carga eléctrica en movimiento
- Si pasa una cantidad de carga ∆Q en un tiempo ∆t, definimos la corriente eléctrica / como:

$$I \equiv \begin{bmatrix} \Delta Q \\ \Delta t \end{bmatrix}$$

más general:

$$I \equiv \begin{array}{c} dQ \\ dt \end{array}$$

Resumen: Ley de Ohm

- Ley de Ohm: La corriente l es proporcional a la diferencia de potencial aplicada V
 - → el cociente es una constante
- Definición: Resistencia eléctrica R:

Resumen: Potencia disipada en una resistencia

Potencia P disipada por una resistencia R:

$$P = IV$$

Además, hay varias expresiones útiles:

$$P = IV = I^2R = \frac{V^2}{R}$$

Unidades:

$$[P] = [I][V] = A \cdot V = C/s \cdot J/C = J/s = W \text{ (Watio)}$$