Homework #6

1. (Jackknife and Bootstrap, continuing from the previous h/w) Using your knowledge of the definition expected value complete the following: One needs to estimate θ , the frequency of days with 0 traffic accidents on a certain highway. The data are collected. During 40 days, there are 26 days with 0 accidents, 10 days with 1 accident, and 4 days with 2 accidents.

Statistician A estimates θ with a sample proportion $\hat{p} = 26/40 = 0.65$.

Statistician B argues that this method does not distinguish between the days with 1 accident and the days with 2 accidents, losing some valuable information. She suggests to model the number of accidents X by a Poisson distribution with parameter λ . Then we have $\theta = P\{X = 0\} = exp(-\lambda)$. She estimates λ with $\hat{\lambda} = \bar{X}$. Then $\hat{\theta} = exp(-\hat{\lambda})$. However, this estimator is biased.

(a) Now we have three competing estimators - \hat{p} , $\hat{\theta}$, and $\hat{\theta_{JK}}$. Use bootstrap to estimate their standard deviations.

```
set.seed(666)
accident \leftarrow sample( c(rep(0,26),rep(1,10),rep(2,4)) )
B <- 10000
n <- length(accident)</pre>
# estimations
p \leftarrow function(x) \{ return(mean(x == 0)) \} \# p.hat
theta <- function(x){return(exp(-mean(x)))} # theta.hat
theta.jk <- function(x){ # theta.hat.jk
  jk <- theta(x) - jackknife(x, theta) $ jack.bias
  return(jk)}
# container
p.boot <- theta.boot <- theta.jk.boot <- rep(NA,n)</pre>
# std. p.hat
for (i in 1:B){
  clone <- sample(accident, n, replace = T)</pre>
  p.boot[i] <- p(clone)</pre>
  theta.boot[i] <- theta(clone)</pre>
  theta.jk.boot[i] <- theta.jk(clone)</pre>
kable(cbind('$\\hat{Std}(\\hat{p})$' = sd(p.boot),
             \ \\hat{Std}(\\hat{\\theta})$' = sd(theta.boot),
             '$\\hat{Std}(\\hat{\\theta_{JK}})$' = sd(theta.jk.boot)),
      escape = F)
```

$\hat{Std}(\hat{p})$	$\hat{Std}(\hat{\theta})$	$\hat{Std}(\hat{\theta_{JK}})$
0.0760843	0.0680744	0.0683877

(b) Compare our three estimators of θ according to their bias and standard error. \hat{p} is an unbias estimator, but since it lose some valuable information, it has the highest

standard error among three estimators. $\hat{\theta_{JK}}$ slightly reduces the bias of the $\hat{\theta}$, but also increases the standard error at the meanwhile.

- 2. We will now consider the Boston housing data set, from the MASS library.
- (a) Based on this data set, provide an estimate for the population mean μ of medv, which is the median value of owner-occupied homes in \$1000s. Call this estimate $\hat{\mu}$.

```
mu.hat <- mean(Boston$medv)
mu.hat
## [1] 22.53281</pre>
```

The estimation: $\hat{\mu} = \sum_{i=1}^{n} medv_i = 22.53281$

(b) Provide an estimate of the standard error of $\hat{\mu}$ (as we know, $Std\bar{X} = \sigma/\sqrt{n}$).

```
n <- nrow(Boston)
s <- sd(Boston$medv)/sqrt(n)
s
## [1] 0.4088611</pre>
```

An estimate of the standard error of $\hat{\mu}$: $Std(\bar{X}) = \sqrt{\frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{n-1}} = 0.4088611$

(c) Now estimate the standard error of $\hat{\mu}$ using the bootstrap. How does this compare to your answer from (b)?

```
set.seed(666)
mu <- function(x,sample) {return( mean(x[sample]) )}</pre>
boot(Boston$medv, mu, R = 10000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
## Call:
## boot(data = Boston$medv, statistic = mu, R = 10000)
##
##
## Bootstrap Statistics :
                     bias
                              std. error
##
       original
## t1* 22.53281 0.001258636 0.4069227
```

The estimated standard error of $\hat{\mu}$ under bootstrap: $\hat{Std}(\bar{X}_{boot}) = 0.4058625$. It is very closed to the estimation in part (b).

(d) Based on your bootstrap estimate from (c), provide a 95 % confidence interval for μ . A popular approximation is $\hat{\mu} \pm 2S\hat{t}d(\hat{\mu})$. Compare it to the results obtained using R command t.test(Boston\$medv).

```
# bootstrap result
mu.boot <- boot(Boston$medv, mu, R = 10000)$t
cbind('lower bound' = mean(mu.boot)-2*sd(mu.boot),
      'upper bound' = mean(mu.boot)+2*sd(mu.boot))
        lower bound upper bound
##
## [1,]
           21.70625
                       23.35347
# t.test
t.test(Boston$medv)
##
   One Sample t-test
##
## data: Boston$medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
```

The 95% confidence interval for μ under bootstrap method is (21.71768, 23.35014), and that under t-test is (21.72953, 23.33608). Two intervals are very similar.

(e) Now, estimate M, the population median of medv with the sample median \hat{M} .

```
m.hat <- median(Boston$medv)
m.hat
## [1] 21.2</pre>
```

The sample median: $\hat{M} = 21.2$

(f) We now would like to estimate the standard error of \hat{M} , but unfortunately, there is no simple formula for computing the standard error of a sample median. Instead, estimate this standard error using the bootstrap.

```
m <- function(x,sample){return( median(x[sample]) )}
boot(Boston$medv, m, R = 10000)

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
##
## Call:
## boot(data = Boston$medv, statistic = m, R = 10000)
##
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 21.2 -0.01053 0.3747355</pre>
```

The estimated standard error $\hat{Std}(\hat{M}_{boot}) = 0.3761129$