Integrale generalizate. t = 1 + x dt = dx $\int = \int \frac{1}{3\sqrt{t}} dt = \int t = \frac{3}{3} dt = \frac{3}{3} dt$ => 37-conv $\frac{1}{1} \int_{3}^{3} \frac{1}{\sqrt{3}} dx = \lim_{x \to 3} \left(-6\sqrt{3} - x + \frac{2}{3} + (3-x)\sqrt{3} - x \right) = \frac{1}{3}$ $\frac{(44)}{3} \left(-6\sqrt{3} - \sqrt{12} + 2(3-\sqrt{13} - \sqrt{14} + 6\sqrt{3} - \sqrt{14} - 2(3-\sqrt{13} - \sqrt{14} + 6\sqrt{3} - \sqrt{14} - 2(3-\sqrt{14} - \sqrt{14} - \sqrt{14} - 2(3-\sqrt{14} - \sqrt{14} - \sqrt{14} - 2(3-\sqrt{14} - \sqrt{14} - \sqrt{14} - \sqrt{14} - 2(3-\sqrt{14} - \sqrt{14} - \sqrt{14} - 2(3-\sqrt{14} - \sqrt{14} - 2(3-\sqrt{14} - \sqrt{14} - 2(3-\sqrt{14} - 2(3-\sqrt{14$ $= 6 \sqrt{2} + 4 \sqrt{2} = 36 + 4 \sqrt{2} = 3 \sqrt$ $\frac{2}{2} \cdot \frac{1}{2} \cdot \frac{1}$ $\frac{1}{1} = \left(\frac{1}{\sqrt{x^2 + a^2}} \right) \times = \ln \left(x + \sqrt{x^2 + a^2} \right)$ $t = x^{2}$ $dt = ln(t+Jt^{2}+t^{2})$ dt = 2x dx

