

MODELO PED.018.01

Curso	Eng ^a Informática			Ano letivo	2018/20	2018/2019	
Unidade curricular/Módulo	Probabilidades e Estatística						
Ano curricular	20	Semestre	1º S	Data	24/01/2018	Duração	2h

2ª Frequência

Nota:	Justifique convenientemente as respostas e apresente todos os cálculos efetuados.
	Apresente os resultados com 4 casas decimais.

Nome: ______ N.º _____

1– O tempo de funcionamento (em horas), sem ocorrerem falhas, de um determinado tipo de servidores *WEB* (representado pela variável *X*) segue uma distribuição aproximadamente normal. Observaram-se 50 servidores durante o mesmo período de tempo e obtiveram-se os seguintes resultados:

$$\sum_{i=1}^{50} x_i = 3500 \ horas$$
 e $\sum_{i=1}^{50} (x_i - \bar{x})^2 = 1250 \ horas^2$.

(1,5) a) Construa um intervalo de confiança a 96,6% para a média do tempo de funcionamento (em horas), sem ocorrerem falhas, dos servidores em causa. O que pode concluir?

(2,5) b) Com base nos dados fornecidos, que nível de confiança deveria considerar se pretendesse obter um intervalo de confiança para a média com metade da amplitude do obtido na alínea anterior.

MODELO PED.018.01

Nome	e: N.º		
2 – A vida média das fontes de alimentação <i>XPTO</i> é de 7 anos com desvio padrão 1 ano. Do universo das fontes de alimentação <i>XPTO</i> selecionaram-se, aleatoriamente, 100 para avaliação.			
(1,0)	a) Qual a probabilidade da vida média amostral ser superior a 7,3 anos?		
(1,5)	b) Com base nas condições dadas, determine a de forma que $P(\overline{X} \ge a) = 0.0455$.		
(1,5)	c) Considerando 1000 amostras de dimensão 50, em quantas se poderá esperar média das fontes de alimentação <i>XPTO</i> seja inferior ou igual a 7,3 anos?	que a vida	

MODELO PED.018.01

N.º _____

3- No âmbito da última avaliação de um curso de engenharia informática concluiu-se que 25% dos alunos
não gostavam de programação. Como consequência destes resultados foram implementadas diferentes
estratégias para promover o interesse dos alunos pela programação. Recentemente recolheu-se uma

amostra aleatória de 200 alunos e observou-se que 45 alunos disseram que não gostavam de

Nome: _____

programação.

(3,0) a) Pretende-se averiguar se os resultados da amostra corroboram ou não as conclusões da última avaliação do curso. Para tal, efetue o teste de hipóteses adequado, através da determinação da região crítica, e diga o que pode concluir. (Use um nível de significância de 1,7%)

(2,0) b) Determine o valor-p do teste realizado na alínea anterior. O que pode concluir?

MODELO PED.018.01

Nome:	 N.º	

(3,5) 4- Uma dada empresa pretende averiguar, para um nível de significância de 0,5%, se a preferência pelos portáteis das marcas: *HDX* e *YFT* depende da faixa etária dos compradores. Com base numa amostra de 7000 compradores observaram-se os seguintes resultados:

Faixa Etária (anos) / Marca	HDX	YFT
≤ 25 anos	900	900
]25,50] anos	1200	1000
> 50 anos	1000	2000

Realize o teste adequado de forma a responder à questão apresentada.

MODELO PED.018.01

Nome:	N.º

(3,5) 5- Suponha que a distribuição do tempo (em meses) necessário para 160 programadores desenvolverem uma base de dados com determinadas especificações foi:

Tempo de desenvolvimento (meses)	Nº de programadores		
]0,30]	40		
]30,60]	55		
]60,120]	65		

Será que o referido tempo de desenvolvimento da base de dados se ajusta a uma distribuição Normal? Considere o nível de significância de 1% e assuma as seguintes probabilidades:

$$\hat{P}(0 < X \le 30) \cong 0,165; \ \hat{P}(30 < X \le 60) \cong 0,356 \ \hat{P}(60 < X \le 120) \cong 0,427$$
 que foram determinadas considerando $\hat{\mu} = 55,78125$ meses e $\hat{\sigma} = 30,51919$ meses.