Data Mining and Business Intelligence

Lecture 8: Exponential Smoothing Models

Jing Peng
University of Connecticut

3/12/20

Agenda

- Midterm Survey
- Online class due to coronavirus
- Review of Lecture 7
- Forecasting
- Exponential Smoothing Models
- Applications

Midterm Feedback

- Relate math to real-life cases and explain business insights
- Outline some key points that we should master
- Slow down a bit and spend more time on practices
- Explain concepts more thoroughly and slowly
- Less dig into math
- More concepts than tools. Dive deeper into specific topics
- Provide non-SAS material (e.g., Python)
- More assignments

Stationarity

• What are the three properties of stationary time series?

• Can a stationary time series exhibit trend or seasonality?

Stationarity of AR(1) Model

$$Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t$$

- Is the model stationary if $|\phi_1| > 1$?
- Is the model stationary if $\phi_1=1$?

Multiple AR.R

- Is the model stationary if $\phi_1 = -1$?
- What if $|\phi_1| < 1$ but $\phi_0 > 1$?

Stationarity of MA(1) Model

$$Y_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

• Is the model stationary if $|\theta_1| > 1$?

Multiple MA.R

Which of the following statements are true?

- A random walk model has constant mean
- A random walk model has constant variance

multiple AR.R

- A random walk with drift model has constant mean
- A random walk with drift model has constant variance

Forecasting

Statistical Forecasting — The Math

- Forecast = Extrapolated Signal
- Confidence Interval = Extrapolated Signal +/- Uncertainty
- Example: $Y_t = \phi_0 + \phi_1 Y_{t-1} + \varepsilon_t$

Forecast = Extrapolated Signal

Model Evaluation Metrics

Root Mean Squared Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (Y_t - \widehat{Y}_t)^2}$$

Mean Absolute Percent Error:

MAPE =
$$\frac{1}{n} \sum_{t=1}^{n} |Y_t - \hat{Y}_t| / Y_t$$

Mean Absolute Error:

MAE =
$$\frac{1}{n} \sum_{t=1}^{n} |Y_t - \hat{Y}_t|$$

Evaluation Metrics

Akaike Information Criteria (AIC):

$$AIC = -2\log(L) + 2k$$

• Schwarz's Bayesian Information Criteria (SBC or BIC):

$$SBC = -2\log(L) + k\log(n)$$

- L represents the likelihood of the model
- \bullet k represents the number of parameters in the model
- *n* represents number of observations in the data

Evaluation Process

Fit Sample (Fit)

 Used to estimate model parameters for accuracy evaluation

Holdout Sample (Accuracy)

Used to evaluate model accuracy

Full = Fit + Holdout data is used to fit a final deployment model

Choosing the Holdout Sample

- Rules of thumb
 - Cover at least a complete seasonal period in holdout sample
 - Length of fit sample is 4 times more than number of parameters
 - Holdout sample often contains no more than 25% of the series
 - The holdout sample is always at the end of the series
- No holdout sample and base accuracy on the entire series
 - If unique behavior occurs within the holdout sample
 - If there is insufficient data to fit a model without the holdout sample

Exponential Smoothing Models

Exponential Smoothing

- Proposed in the late 1950s (Brown, 1959; Holt, 1957; Winters, 1960)
- Produce forecasts using weighted averages of past observations, with the weights decaying exponentially as the observations get older.
- Support data with trend and/or seasonality

Two Special ESM Models

Weights applied to past values to predict Y₉

- Sample mean: equal weights
- Random walk: all weight to the most recent observation

Example: Predicting Y₇

Prediction by sample mean: Prediction by random walk:

Simple Exponential Smoothing

$$\begin{split} \hat{Y}_{t+1} &= \omega Y_t + (1-\omega)\hat{Y}_t \\ &= \omega Y_t + (1-\omega)[\omega Y_{t-1} + (1-\omega)\hat{Y}_{t-1}] \\ &= \omega Y_t + \omega(1-\omega)Y_{t-1} + (1-\omega)^2\hat{Y}_{t-1} \\ &= \omega Y_t + \omega(1-\omega)Y_{t-1} + (1-\omega)^2[\omega Y_{t-2} + (1-\omega)\hat{Y}_{t-2}] \\ &= \omega Y_t + \omega(1-\omega)Y_{t-1} + \omega(1-\omega)^2Y_{t-2} + \omega(1-\omega)^3Y_{t-3} + \cdots \end{split}$$

Simple Exponential Smoothing

Weights applied to past values to predict Y₉

The larger the parameter, the more that the most recent values are emphasized.

What Happens if ω Approaches Zero

$$\begin{split} \hat{Y}_{t+1} &= \omega Y_t + (1-\omega)\hat{Y}_t \\ &= \omega Y_t + (1-\omega)[\omega Y_{t-1} + (1-\omega)\hat{Y}_{t-1}] \\ &= \omega Y_t + \omega(1-\omega)Y_{t-1} + (1-\omega)^2\hat{Y}_{t-1} \\ &= \omega Y_t + \omega(1-\omega)Y_{t-1} + (1-\omega)^2[\omega Y_{t-2} + (1-\omega)\hat{Y}_{t-2}] \\ &= \omega Y_t + \omega(1-\omega)Y_{t-1} + \omega(1-\omega)^2Y_{t-2} + \omega(1-\omega)^3Y_{t-3} + \cdots \end{split}$$

Since $1 - \omega \approx 1$, the ESM model degenerates to the sample mean model

ESM Parameters

ESM	Parameters	Component
Simple	ω	Level
Double	ω	Level/Trend
Linear (Holt)	ω, γ	Level,Trend
Damped-Trend	ω, γ, φ	Level,Trend,Damping

Smoothing Weights

- Level smoothing weight
- Y Trend smoothing weight
- ϕ Trend damping weight

Simple Exponential Smoothing Predictions

$$\widehat{Y}_1 = Y_0$$
 (starting value)

$$\widehat{Y}_2 = \omega Y_1 + (1 - \omega)\widehat{Y}_1$$

• • •

$$\widehat{Y}_{t+1} = \omega Y_t + (1 - \omega)\widehat{Y}_t$$

- The starting value Y_0 is often taken to be the mean of the first n observations. SAS TSFS uses n=6.
- Does not work well when there is a trend

Double Exponential (Holt) Smoothing

$$L_t = \omega Y_t + (1 - \omega)(L_{t-1} + T_{t-1}) \ 0 \le \omega \le 1$$

Level equation

$$T_t = \gamma (L_t - L_{t-1}) + (1 - \gamma) T_{t-1} \quad 0 \le \gamma \le 1$$

Trend equation

$$\hat{Y}_{t+m} = L_t + mT_t$$
 (m-period-ahead forecast)

Prediction equation

- Smoothing for both level and trend
- TSFS uses Double Exponential Smoothing to refer to a simpler model with only one smoothing parameter (see slide 22)
- Damped-trend smoothing: a third weight on T_{t-1}

Exponential Smoothing Models in the TSFS

continued...

Exponential Smoothing Models in the TSFS

Smoothing Model Specification		×		
Series: LEADPROD: Lead Production in Tons				
Model:				
Smoothing Methods:	Smoothing Weights:			
☐ Simple Smoothing ☐ Double (Brown) Smoothing	Level: Optimize			
Seasonal Smoothing Linear (Holt) Smoothing	Trend: Optimize			
Damped-Trend Smoothing Winters Method - Additive	Damping: Optimize			
Winters Method - Multiplicative	Season: Optimize			
Transformation:	Bounds: Zero-One/Additive 🔻			
OK Cancel Reset	Clear Help			

continued...

Seasonal Exponential Smoothing

ESM for Seasonal Data

Weights decay with respect to the seasonal factor.

ESM Parameters (Full)

ESM	Parameters
Simple	ω
Double	ω
Linear (Holt)	ω, γ
Damped-Trend	ω, γ, φ
Seasonal	ω, δ
Additive Winters	ω, γ, δ
Multiplicative Winters	ω, γ, δ

Smoothing Weights

- (a) Level smoothing weight
 - γ Trend smoothing weight
 - δ | Seasonal smoothing weight
 - ϕ Trend damping weight

The choice of Greek letter is arbitrary. The software uses names rather than Greek symbols.

Winters Method — Additive

$$L_t = \omega (Y_t - S_{t-p}) + (1 - \omega)(L_{t-1} + T_{t-1})$$

Level equation

$$T_t = \gamma (L_t - L_{t-1}) + (1 - \gamma) T_{t-1}$$

Trend equation

$$S_t = \delta(Y_t - L_t) + (1 - \delta)S_{t-p}$$

Seasonality equation

$$Y_{t+m} = L_t + mT_t + S_t$$
 (m-period-ahead forecast)

Prediction equation

p is the period of seasonality

Winters Method — Multiplicative

$$L_t = \omega(Y_t/S_{t-p}) + (1 - \omega)(L_{t-1} + T_{t-1})$$

Level equation

$$T_t = \gamma (L_t - L_{t-1}) + (1 - \gamma) T_{t-1}$$

Trend equation

$$S_t = \delta(Y_t/L_t) + (1 - \delta)S_{t-p}$$

Seasonality equation

$$Y_{t+m} = (L_t + mT_t)S_t$$
 (m-period-ahead forecast)

Prediction equation

p is the period of seasonality

Seasonal Exponential Smoothing Models in the TSFS

Smoothing Model Specification	×
Series: CONTRACTS: Construction Contraction Model: Seasonal Exponential Smoothing	
Smoothing Methods:	Smoothing Weights:
Simple Smoothing Double (Brown) Smoothing Seasonal Smoothing Linear (Holt) Smoothing Damped-Trend Smoothing	Level: Optimize Trend: Optimize Despise: Optimize
☐ Winters Method - Additive ☐ Winters Method - Multiplicative	Season: Optimize
Transformation: ▼	Bounds: Zero-One/Additive ▼
OK Cancel Reset	Clear Help

continued...

Applications

Fitting ESM for LEADPRD Data

- Models
 - Fit models automatically (use "Diagnose Series" to force SAS to fit all 42 predefined models)
 - Try all non-seasonal ESM models
 - Fit AR(1) and MA(1) models
- Time Series Diagnostics
- Model Residuals Diagnostics

Fitting Seasonal ESM for CONTRACTS Data

- Fit models automatically
- Fit seasonal ESM models
- Setup holdout sample and prediction horizon
- Change evaluation metrics and compare models
- Save predictions

When to Use?

- The prediction of ESM models quickly converges to the mean of time series (plus trend adjustment), not ideal for long-term prediction
 - Simple ESM: short-term prediction
 - Complicated ESM: moderate-term prediction

Readings

- Forecasting Chapter 2
- http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
- https://onlinecourses.science.psu.edu/stat501/node/363
- https://people.duke.edu/~rnau/411avg.htm