FUNDAMENTALS OF LINEAR ALGEBRA

- Inner product and distance
- Orthogonality; orthogonal sets and bases
- Orthogonal projections and decompositions
- Gram-Schmidt process
- QR-factorisation

Approximate solutions of linear systems

- It often happens that a linear system Ax = b which arises from a particular application, does not have an exact solution.
- In many cases, an approximate solution $\hat{\mathbf{x}}$ that makes the smallest difference between between $A\hat{\mathbf{x}}$ and b is suitable.
- f a Such a solution is called a *least-squares solution* of ${f A}{f x}={f b}$.

To describe such solutions, we use the geometric concepts of length, distance and orthogonality for vectors in \mathbb{R}^n .

Inner product

Vectors in \mathbb{R}^n can be regarded as $n \times 1$ matrices, e.g.:

$$\mathbf{v} = \left[\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right] \qquad \mathbf{w} = \left[\begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right]$$

Their transposes are $1 \times n$ matrices:

$$\mathbf{v}^{\top} = [v_1 \dots v_n] \quad \mathbf{w}^{\top} = [w_1 \dots w_n]$$

Definition: The product $\mathbf{v} \cdot \mathbf{w} \equiv \mathbf{v}^{\top} \mathbf{w}$ is called the *inner product* or *scalar product* (or *dot product*).

$$\mathbf{v} \cdot \mathbf{w} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{vmatrix} w_1 \\ \vdots \\ w_n \end{vmatrix} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

The result is a 1×1 matrix, that is, a scalar.

Inner product and orthogonality

$$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + \ldots + v_n w_n$$

Theorem: $\forall \{\mathbf{v}, \mathbf{w}, \mathbf{x}\} \in \mathbb{R}^n$:

- $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- $(c \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c \mathbf{w}) = c (\mathbf{v} \cdot \mathbf{w})$
- $\mathbf{v} \cdot \mathbf{v} \geqslant 0$, and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Definition: Two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^n are called *orthogonal* to each other if $\mathbf{v} \cdot \mathbf{w} = 0$. The notation is $\mathbf{v} \perp \mathbf{w}$.

Note: $\forall \mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} \perp \mathbf{0}$ because $\mathbf{0} \cdot \mathbf{v} = 0 \ \forall \mathbf{v}$.

Norm and distance

Definitions:

- The length, or *norm*, of \mathbf{v} is: $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^{\top} \mathbf{v}}$. $\forall c$, $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$.
- A vector with a unit norm (length) is called a *unit vector*. If we divide a non-zero vector \mathbf{v} by its length $\|\mathbf{v}\|$ we will obtain a *unit* (or *normalised*) vector \mathbf{u} :

$$\|\mathbf{u}\| = \left\| \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\| = \frac{\|\mathbf{v}\|}{\|\mathbf{v}\|} = 1.$$

Definition: The distance between two vectors ${\bf v}$ and ${\bf w}$ in \mathbb{R}^n is

$$dist(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

Pythagorean theorem: If and only if $\mathbf{v} \perp \mathbf{w}$,

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2.$$

Definition: If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n then \mathbf{z} is said to be orthogonal to W.

The set of all vectors that are orthogonal to W is called the orthogonal complement of W and is denoted by W^\perp .

Example:

Let W be a plane through the origin in \mathbb{R}^3 and L be a line through the origin and perpendicular to W.

If $\mathbf{z} \in L$ and $\mathbf{w} \in W$ then $\mathbf{z} \cdot \mathbf{w} = 0$.

FIGURE 7

A plane and line through 0 as orthogonal complements.

Notes:

L consists of all vectors orthogonal to $\mathbf{w} \in W$ and W consists of all vectors orthogonal to $\mathbf{z} \in L$, so

$$L=W^{\perp}$$
 and $W=L^{\perp}$

A vector $\mathbf{x} \in W^{\perp}$ if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.

 L^\perp and W^\perp are subspaces of $\mathbb{R}^n.$

FIGURE 7

A plane and line through 0 as orthogonal complements.

Theorem: Let **A** be an $m \times n$ matrix. Then

$$(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}$$
 and $(\operatorname{Col} \mathbf{A})^{\perp} = \operatorname{Nul} (\mathbf{A}^{\top})$

Proof: If \mathbf{x} is in $\operatorname{Nul} \mathbf{A}$, then \mathbf{x} is orthogonal to each row of \mathbf{A} given each row can be treated as vector in \mathbb{R}^n .

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Since the rows of \mathbf{A} span $\operatorname{Row} \mathbf{A}$, \mathbf{x} is orthogonal to $\operatorname{Row} \mathbf{A}$.

Conversely, if ${\bf x}$ is orthogonal to ${\rm Row}\,{\bf A}$, then ${\bf x}$ is certainly orthogonal to each row of ${\bf A}$, and hence ${\bf A}{\bf x}={\bf 0}$.

The statement $(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}$ is then true for any matrix including \mathbf{A}^{\top} . Therefore $(\operatorname{Col} \mathbf{A})^{\perp} = \left(\operatorname{Row}(\mathbf{A}^{\top})\right)^{\perp} = \operatorname{Nul} \mathbf{A}^{\top}$ because $\operatorname{Row} \mathbf{A}^{\top} = \operatorname{Col} \mathbf{A}$.

Orthogonal sets

Definition: A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is called an *orthogonal set* if each pair of vectors from the set is orthogonal:

$$\mathbf{v}_i \cdot \mathbf{v}_j = 0 \qquad \forall \ i \neq j$$

Example: Show that this set is orthogonal:

$$\mathbf{u}_1 = \left[\begin{array}{c} 3 \\ 1 \\ 1 \end{array} \right], \ \mathbf{u}_2 = \left[\begin{array}{c} -1 \\ 2 \\ 1 \end{array} \right], \ \mathbf{u}_3 = \left[\begin{array}{c} -1 \\ -4 \\ 7 \end{array} \right].$$

Solution: Consider all the possible pairs:

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 3 \cdot (-1) + 1 \cdot 2 + 1 \cdot 1 = 0$$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 = 3 \cdot (-1) + 1 \cdot (-4) + 1 \cdot 7 = 0$$

$$\mathbf{u}_2 \cdot \mathbf{u}_3 = -1 \cdot (-1) + 2 \cdot (-4) + 1 \cdot 7 = 0$$

Each pair is orthogonal, thus $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set.

Orthogonal sets

Theorem: If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\} \in \mathbb{R}^n$ is an orthogonal set of non-zero vectors, then S is a linearly independent set and hence it is a basis for the subspace spanned by S.

Proof: If the set is linearly dependent, for some c_i not all zero,

$$\mathbf{0} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_p \mathbf{u}_p$$

Multiply this relation by \mathbf{u}_1 from both the sides:

$$\mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$0 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2 (\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p (\mathbf{u}_p \cdot \mathbf{u}_1)$$
$$0 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

where only the first term remains since $\mathbf{u}_1 \perp \{\mathbf{u}_2, \dots, \mathbf{u}_p\}$. However $\mathbf{u}_1 \neq \mathbf{0}$ so $\mathbf{u}_1 \cdot \mathbf{u}_1 \neq 0$ and thus we must have $c_1 = 0$. Similarly $c_2, \dots c_p$ are also all zero. Thus S is linearly independent.

Orthogonal basis

Definition: An *orthogonal basis* for a subspace V of \mathbb{R}^n is such a basis for V which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

Theorem: Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ be an orthogonal basis for a subspace V of \mathbb{R}^n . For each $\mathbf{x}\in V$, the linear combination

$$\mathbf{x} = c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p$$
 has the weights $c_j = \frac{\mathbf{x} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$

Proof: Compute all the inner products, as in the previous proof

$$\mathbf{x} \cdot \mathbf{u}_j = (c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p) \cdot \mathbf{u}_j = c_j (\mathbf{u}_j \cdot \mathbf{u}_j)$$

Since $\mathbf{u}_j \neq \mathbf{0}$, then $\mathbf{u}_j \cdot \mathbf{u}_j \neq 0$ and we can find $c_j = \frac{\mathbf{x} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$

Orthogonal basis

Example: Find $[y]_{\mathcal{B}}$ in the orthogonal basis $\mathcal{B} = \{u_1, u_2, u_3\}$:

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix}; \quad \mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$$

Solution: To find the coordinates $[y]_{\mathcal{B}}$ we compute

$$\mathbf{y} \cdot \mathbf{u}_1 = 6 \cdot 3 + 1 \cdot 1 - 8 \cdot 1 = 11, \qquad \mathbf{u}_1 \cdot \mathbf{u}_1 = 3^2 + 1^2 + 1^2 = 11$$

$$\mathbf{y} \cdot \mathbf{u}_2 = -6 \cdot 1 + 1 \cdot 2 - 8 \cdot 1 = -12, \qquad \mathbf{u}_2 \cdot \mathbf{u}_2 = (-1)^2 + 2^2 + 1^2 = 6$$

$$\mathbf{y} \cdot \mathbf{u}_3 = -6 \cdot 1 - 1 \cdot 4 - 8 \cdot 7 = -66, \qquad \mathbf{u}_3 \cdot \mathbf{u}_3 = (-1)^2 + (-4)^2 + 7^2 = 66$$

Thus

$$\mathbf{y} = \frac{11}{11} \mathbf{u}_1 - \frac{12}{6} \mathbf{u}_2 - \frac{66}{66} \mathbf{u}_3$$
 and $[\mathbf{y}]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$

It is easy to find coordinates for an orthogonal basis.

For a non-orthogonal case we would need to solve a linear system.

Orthogonal projections

Given a non-zero vector $\mathbf{u} \in \mathbb{R}^n$, consider decomposing another vector $\mathbf{y} \in \mathbb{R}^n$ into the sum of two vectors, such that

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}, \qquad \hat{\mathbf{y}} = \alpha \mathbf{u}, \qquad \mathbf{z} \perp \mathbf{u}$$

Consider $\mathbf{z} = \mathbf{y} - \alpha \mathbf{u}$, which is orthogonal to \mathbf{u} if and only if

$$0 = \mathbf{z} \cdot \mathbf{u} = (\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u})$$

Hence

$$\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}, \qquad \hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \, \mathbf{u}$$

 $\hat{\mathbf{y}}$ is the *orthogonal projection* of \mathbf{y} onto \mathbf{u} , and \mathbf{z} is called the component orthogonal to \mathbf{u} .

Finding α to make $\mathbf{y} - \hat{\mathbf{y}}$ orthogonal to \mathbf{u} .

Orthogonal projections

The orthogonal projection $\hat{\mathbf{y}}$ does not depend on the length of \mathbf{u} . Indeed, if we replace \mathbf{u} by $\mathbf{u}' = \alpha \mathbf{u}$, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}'}{\mathbf{u}' \cdot \mathbf{u}'} \mathbf{u}' = \frac{\mathbf{y} \cdot (\alpha \mathbf{u})}{(\alpha \mathbf{u}) \cdot (\alpha \mathbf{u})} (\alpha \mathbf{u}) = \frac{\alpha (\mathbf{y} \cdot \mathbf{u})}{\alpha^2 (\mathbf{u} \cdot \mathbf{u})} \alpha \mathbf{u} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

Definition:

$$\hat{\mathbf{y}} \equiv \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \, \mathbf{u}$$

is the *orthogonal projection* of \mathbf{y} onto $L = \operatorname{Span}\{\mathbf{u}\}.$

Subspace $L = \operatorname{Span}\{\mathbf{u}\}$ is a line through \mathbf{u} and $\mathbf{0}$.

FIGURE 2

Finding α to make $\mathbf{y} - \hat{\mathbf{y}}$ orthogonal to \mathbf{u} .

Orthogonal projections

Example: Find orthogonal projection of y onto u and write y as the sum of two vectors, one in $\mathrm{Span}\{u\}$ and the other $\perp u$,

$$\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$$

Solution: First we compute $y \cdot u$ and $u \cdot u$:

$$\mathbf{y} \cdot \mathbf{u} = \mathbf{y}^{\top} \mathbf{u} = \begin{bmatrix} 7 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40,$$

 $\mathbf{u} \cdot \mathbf{u} = \mathbf{u}^{\top} \mathbf{u} = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20.$

Then the orthogonal projection and the orthogonal component are

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$
$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Geometric interpretation

For two orthogonal basis vectors $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^2$:

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$$
 with $c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$

The first term is the projection of y onto the line $\mathrm{Span}\{u_1\}$, and the second term is the projection of y onto the line $\mathrm{Span}\{u_2\}$.

Theorem: (the orthogonal decomposition theorem)

Let W be a subspace of \mathbb{R}^n .

Then $\forall \mathbf{y} \in \mathbb{R}^n$ there is a unique decomposition

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z},$$

where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is any orthogonal basis in W,

$$\hat{\mathbf{y}} = \sum_{i=1}^p \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \, \mathbf{u}_i$$

FIGURE 2 The orthogonal projection of y onto W.

and
$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

 $\hat{\mathbf{y}} \equiv \operatorname{proj}_W \mathbf{y}$ is called the *orthogonal projection* of \mathbf{y} onto W.

Notes:

- The uniqueness of the decomposition indicates that the orthogonal projection $\hat{\mathbf{y}}$ depends only on W but not on a particular basis used in W.
- If $\mathbf{y} \in W$ then $\operatorname{proj}_W \mathbf{y} = \mathbf{y}$.

Example: Let

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

The set $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. (indeed, $\mathbf{u}_1 \cdot \mathbf{u}_2 = -4 + 5 - 1 = 0$ so the vectors are orthogonal)

Decompose ${\bf y}$ into a vector in W and a vector orthogonal to W .

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \mathsf{and} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

Solution:

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2.$$

$$\mathbf{y} \cdot \mathbf{u}_1 = 2 + 10 - 3 = 9$$
 $\mathbf{y} \cdot \mathbf{u}_2 = -2 + 2 + 3 = 3$
 $\mathbf{u}_1 \cdot \mathbf{u}_1 = 4 + 25 + 1 = 30$ $\mathbf{u}_2 \cdot \mathbf{u}_2 = 4 + 1 + 1 = 6$

$$\hat{\mathbf{y}} = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

and

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}.$$

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}, \quad \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}.$$

The theorem ensures that $(\mathbf{y} - \hat{\mathbf{y}}) \in W^{\perp}$.

We can verify that $(\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{u}_1 = 0$ and $(\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{u}_2 = 0$.

The final decomposition is

$$\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix} + \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}.$$

Properties of projection

Theorem: (the best approximation theorem)

Let W be a subspace of \mathbb{R}^n , $\mathbf{y} \in \mathbb{R}^n$, and $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$.

Then $\hat{\mathbf{y}}$ is the point in W closest to \mathbf{y} in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \qquad \forall \, \mathbf{v} \neq \hat{\mathbf{y}}$$

Definition: The distance from a point y in \mathbb{R}^n to a subspace W is defined as the distance from y to the nearest point in W.

Notes:

- $oldsymbol{\hat{y}}$ is called the *best approximation* to $oldsymbol{y}$ by elements of W .
- In a sense, we approximate \mathbf{y} by a variable vector $\mathbf{v} \in W$. The distance from \mathbf{y} to \mathbf{v} , given by $\|\mathbf{y} \mathbf{v}\|$, can be regarded as the 'error' incurred by using \mathbf{v} in place of \mathbf{y} . This error is minimised when $\mathbf{v} = \hat{\mathbf{y}}$.

Properties of projection

Example: Find the distance from y to $W = \operatorname{Span}\{u_1, u_2\}$ where

$$\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}$$

Solution: Distance from \mathbf{y} to W is $\|\mathbf{y} - \hat{\mathbf{y}}\|$, where $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$.

Vectors $\mathbf{u}_1, \mathbf{u}_2$ form an orthogonal basis for W, and

$$\mathbf{y} \cdot \mathbf{u}_1 = -5 + 10 + 10 = 15$$
 $\mathbf{y} \cdot \mathbf{u}_2 = -1 - 10 - 10 = -21$
 $\mathbf{u}_1 \cdot \mathbf{u}_1 = 25 + 4 + 1 = 30$ $\mathbf{u}_2 \cdot \mathbf{u}_2 = 1 + 4 + 1 = 6$

Then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{15}{30} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} - \frac{21}{6} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$

Properties of projection

$$\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$

Then

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

and the distance from ${f y}$ to W is

$$\|\mathbf{y} - \hat{\mathbf{y}}\| = \sqrt{0^2 + 3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$$

So, $\hat{\mathbf{y}}$ is the best approximation for \mathbf{y} within $\mathrm{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$; any other vector in $\mathrm{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$ will have a greater distance from \mathbf{y} .

Orthonormal set and basis

Each $y \in \text{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ can be decomposed into a sum of p projections onto mutually orthogonal one-dimensional subspaces.

Definition: A set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is called an *orthonormal set* if it is an orthogonal set of unit vectors.

If V is the subspace spanned by such a set, then $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an *orthonormal basis* for V, since this set is linearly independent.

The simplest example of an orthonormal set is the standard basis $\{e_1,\ldots,e_n\}$ for \mathbb{R}^n .

Any non-empty subset of $\{e_1, \ldots, e_n\}$ is orthonormal too, and forms an orthonormal basis for the corresponding sub-space.

Orthonormal basis and projection

Theorem: If $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_p]$, where $\{\mathbf{u}_1, \ \dots \ \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then:

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \ldots + (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p}$$
$$\operatorname{proj}_{W} \mathbf{y} = \mathbf{U}\mathbf{U}^{\top}\mathbf{y} \qquad \forall \mathbf{y} \in \mathbb{R}^{n}$$

Proof: By the definition of projection

$$\hat{\mathbf{y}} = rac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \, \mathbf{u}_1 + \ldots + rac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \, \mathbf{u}_p$$

and taking into account that the basis is orthonormal

$$\mathbf{u}_1 \cdot \mathbf{u}_1 = 1, \quad \mathbf{u}_2 \cdot \mathbf{u}_2 = 1, \quad \dots \quad \mathbf{u}_n \cdot \mathbf{u}_n = 1$$

we immediately obtain

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \ldots + (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p}.$$

Orthonormal basis and projection

Proof (contnuing):

From $\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p$ we see that $\operatorname{proj}_W \mathbf{y}$ is a linear combination of the columns of \mathbf{U} with the coefficients $(\mathbf{y} \cdot \mathbf{u}_1), (\mathbf{y} \cdot \mathbf{u}_2), \ldots (\mathbf{y} \cdot \mathbf{u}_p)$.

Denoting
$$\mathbf{x} = \begin{bmatrix} \mathbf{y} \cdot \mathbf{u}_1 \\ \mathbf{y} \cdot \mathbf{u}_2 \\ \vdots \\ \mathbf{y} \cdot \mathbf{u}_p \end{bmatrix}$$
 we can write $\operatorname{proj}_W \mathbf{y} = \mathbf{U} \mathbf{x}$.

In turn, the elements of x can be written as

$$\mathbf{u}_1^{\mathsf{T}}\mathbf{y}, \quad \mathbf{u}_2^{\mathsf{T}}\mathbf{y}, \quad \dots \quad \mathbf{u}_p^{\mathsf{T}}\mathbf{y}$$

which are the entries of $\mathbf{U}^{\top}\mathbf{y}$.

Thus $\mathbf{x} = \mathbf{U}^{\mathsf{T}} \mathbf{y}$ and so $\operatorname{proj}_W \mathbf{y} = \mathbf{U} \mathbf{U}^{\mathsf{T}} \mathbf{y}$.

Gram-Schmidt process is an algorithm for producing an orthogonal or orthonormal basis for any non-zero subspace of \mathbb{R}^n .

This is easy to understand with an example.

Example: Consider a linearly independent set

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

which is a basis for a subspace W of \mathbb{R}^4 .

We aim to construct an orthogonal basis $\{v_1, v_2, v_3\}$ for W.

Solution:

Step 1: Let $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \operatorname{Span}\{\mathbf{x}_1\} = \operatorname{Span}\{\mathbf{v}_1\}$.

Step 2: Vector \mathbf{v}_2 is then produced by subtracting from \mathbf{x}_2 its projection onto the subspace W_1 . That is,

$$\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{W_1}(\mathbf{x}_2) = \mathbf{x}_2 - \mathbf{p} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \, \mathbf{v}_1.$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

For the ease of further calculations, renormalise \mathbf{v}_2 into \mathbf{v}_2' :

$$\mathbf{v}_2'=4\mathbf{v}_2=egin{bmatrix} -3\\1\\1\\1 \end{bmatrix} \quad ext{and then} \quad W_2=\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2'\}$$

Step 3: Produce v_3 by subtracting from x_3 its W_2 -projection:

$$\operatorname{proj}_{W_2}(\mathbf{x}_3) = \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$
$$= \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}.$$

Then $\mathbf{v}_3 = \mathbf{x}_3 - \operatorname{proj}_{W_2}(\mathbf{x}_3)$ is

$$\mathbf{v}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}; \qquad \mathbf{v}_{3}' = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$

Vector $\mathbf{v}_3 \in W$ given that \mathbf{x}_3 and $\operatorname{proj}_W \mathbf{x}_3$ are both in W.

Thus $\{\mathbf{v}_1, \mathbf{v}_2', \mathbf{v}_3\}$ is an orthogonal set in W and it is basis for W.

Theorem: Given a basis $\mathbf{x}_1, \dots, \mathbf{x}_p$ for a subspace W of \mathbb{R}^n , define

$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$
...

$$\mathbf{v}_p = \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \, \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \, \mathbf{v}_2 - \ldots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \, \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W.

In addition, $\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=\operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}$ for $1\leqslant k\leqslant p$.

Orthonormal basis is then obtained by normalising v_i to unit vectors.

Example: Construct an orthonormal basis for

$$\operatorname{Span}\left\{ \left[\begin{array}{c} 3\\6\\0 \end{array} \right], \left[\begin{array}{c} 1\\2\\2 \end{array} \right] \right\}$$

Solution:

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \underbrace{\frac{3 \cdot 1 + 6 \cdot 2 + 0 \cdot 2}{3^2 + 6^2 + 0^2}}_{\mathbf{I}} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$$

The corresponding orthonormal basis is

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}, \quad \mathbf{u}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Orthonormal matrices

Matrices with columns forming an orthonormal set are important for applications and computing algorithms for matrix computations.

The main properties of such (generally $m \times n$) matrices are:

Theorem: U has orthonormal columns if and only if $U^TU = I$.

Theorem: If **U** has orthonormal columns, then $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

- (a) $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$
- (b) $(\mathbf{U}\mathbf{x}) \cdot (\mathbf{U}\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- (c) $(\mathbf{U}\mathbf{x}) \cdot (\mathbf{U}\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$

Properties (a) and (c) say that the linear mapping $\mathbf{x}\mapsto \mathbf{U}\mathbf{x}$ preserves the length and orthogonality.

These properties are important for many computer algorithms.

Orthogonal matrices

The above theorems are particularly useful for square matrices.

Definition: An *orthogonal matrix* \mathbf{U} is a square invertible matrix such that $\mathbf{U}^{-1} = \mathbf{U}^{\top}$.

Notes:

- An orthogonal matrix has orthonormal columns.
- Any square matrix with orthonormal columns is orthogonal.
- An orthogonal matrix must have orthonormal rows too.

Example:

$$\mathbf{U} = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}.$$

is orthogonal because it is square and its columns are orthonormal.

Theorem: *QR* factorisation

An $m \times n$ matrix ${\bf A}$ with linearly independent columns can be factorised as ${\bf A} = {\bf Q}{\bf R}$, where ${\bf Q}$ is an $m \times n$ matrix with columns forming an orthonormal basis for ${\rm Col}\,{\bf A}$, and ${\bf R}$ is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Note: Since \mathbf{Q} is an orthonormal matrix, $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$.

Thus
$$\mathbf{Q}^{\top}\mathbf{A} = \mathbf{Q}^{\top}\big(\mathbf{Q}\mathbf{R}\big) = \big(\mathbf{Q}^{\top}\mathbf{Q}\big)\mathbf{R} = \mathbf{I}\mathbf{R} = \mathbf{R}$$
, so $\mathbf{R} = \mathbf{Q}^{\top}\mathbf{A}$.

Proof: The columns of ${\bf A}$ form a basis $\{{\bf a}_1,\ldots,{\bf a}_n\}$ for ${\rm Col}\,{\bf A}$.

An orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ for $\operatorname{Col}\mathbf{A}$ can be constructed by using the Gram-Schmidt process.

Then
$$\forall k = 1 \dots n$$
 $\mathbf{a}_k \in \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_k\} = \operatorname{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}.$

Therefore, there are constants r_{1k}, \ldots, r_{kk} , such that

$$\mathbf{a}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \ldots + 0 \cdot \mathbf{u}_n$$

In case $r_{kk} < 0$, multiply r_{kk} and \mathbf{u}_k by -1 so that all $r_{kk} > 0$.

Proof (continuing): Rewriting the same equation in vector form,

$$\mathbf{a}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \ldots + 0 \cdot \mathbf{u}_n$$

$$= egin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_n \end{bmatrix} egin{bmatrix} r_{1k} & dots \ r_{kk} & 0 \ dots \ 0 \end{bmatrix} = \mathbf{Qr}_k$$

From \mathbf{r}_k vectors, we form matrix $\mathbf{R} = \begin{bmatrix} \mathbf{r}_1 \dots \mathbf{r}_n \end{bmatrix}$. Then

$$\mathbf{A} = [\mathbf{a}_1 \dots \mathbf{a}_n] = [\mathbf{Q}\mathbf{r}_1 \dots \mathbf{Q}\mathbf{r}_n] = \mathbf{Q}\mathbf{R}$$

By construction, R is triangular with positive diagonal entries.

It can be shown that \mathbf{R} is invertible because the columns of \mathbf{A} are linearly independent (consider $\mathbf{R}\mathbf{x}=\mathbf{0}$ given that $\mathbf{A}\mathbf{x}=\mathbf{0}$).

Example:

Find a QR decomposition of:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Solution: Earlier we have found an orthogonal basis for $\operatorname{Col} \mathbf{A}$ as

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0\\-2\\1\\1 \end{bmatrix}.$$

Upon normalisation we obtain

$$\mathbf{Q} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}.$$

Then

$$\mathbf{R} = \mathbf{Q}^{\top} \mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}^{\top} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 1/2 & 1/\sqrt{6} \\ -3/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} \\ 0 & -2/\sqrt{12} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}.$$

Summary

- $f u \cdot v \equiv u^ op v = \sum_i u_i v_i$
- \bullet Norm $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ and distance $\mathrm{dist}(\mathbf{u},\,\mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$
- Orthogonal vectors, complements, sets, bases
- Orthogonal projections and decompositions
- The best approximation theorem
- ullet Gram-Schmidt process: ${f v}_1={f x}_1$, then

$$\mathbf{v}_i = \mathbf{x}_i + \sum_{j=1}^{i-1} \left(-\frac{\mathbf{x}_i \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j} \, \mathbf{v}_j \right) \qquad i = 2, \dots p$$

ullet ${f A} = {f Q}{f R}$ factorisation: ${f A} \xrightarrow{\mathsf{Gram-Schmidt}} {f Q}$, then ${f R} = {f Q}^{ op} {f A}$.