《计算机组成原理》实验报告

年级、专业、班级	2017级计算机科学与技术(卓越)01班	姓名	吕昱峰			
实验题目	实验四简单五级流水线 CPU					
实验时间	2019年11月8日	实验地点	A 主 404			
			□验证性			
实验成绩	优秀/良好/中等	实验性质	☑设计性			
			□综合性			
教师评价:						
□算法/实验过程正确; □源程序/实验内容提交; □程序结构/实验步骤合理;						
□实验结果正确; □语法、语义正确; □报告规范;						
其他:						
评价教师: 钟将						
实验目的						
 (1)掌握 <mark>流水线 (Pipelined) 处理器的</mark> 思想。						
(2)掌握单周期处理中 <mark>执行阶段的划分。</mark>						
(3)了解流水线处理器遇到 <mark>的冒险。</mark>						
(4)掌握 <mark>数据前推、流水线暂停等</mark> 冒险解决方式。						

报告完成时间: 2020年4月1日

1 实验内容

阅读实验原理实现以下模块:

- (1) Datapath, 所有模块均可由实验三复用, 需根据不同阶段, 修改 mux2 为 mux3(三选一选择器),以及带有 enable(使能)、clear(清除流水线)等信号的触发器, 了力 上去了 之 p:
- (2) Controller, 其中 main decoder 与 alu decoder 可直接复用, 另需增加地发源本水同阶段进行 信号传递
- (3) 指令存储器 inst_mem(Single Port Ram), 数据存储器 data_mem(Single Port Ram); 同实验三一致, 无需改动,
- (4) 参照实验原理,在单周期基础上加入每个阶段所需要的触发器,重新连接部分信号。实验给出 top 文件,需兼容 top 文件端口设定。
- (5) 实验给出仿真程序,最终以仿真输出结果判断是否成功实现要求指令。

2 实验设计

这一节,主要描述各个模块的功能、接口、逻辑控制方法(状态机控制方法)等。(红字为内容说明,请删除)

2.1 冒险处理模块

2.1.1 功能描述

简单描述实现的功能即可,一句话亦可(红字为内容说明,请删除)

2.1.2 接口定义

接口定义请使用表格,需要包括接口信号名、方向、宽度、含义(红字为内容说明,请删除)

表 1:接口定义模版

信号名	方向	位宽	功能描述
valid	Output	1-bit	If CPU stopped or any exception hap-
			pens, valid signal is set to 0.

3 实验过程记录

记录实验的过程,完成了什么样的工作,存在的问题包括哪些,解决方案如何等。subsubsection 名称自行设定。

4 实验结果及分析

需要仿真图一张, 控制台打印输出图一张, 要求仿真图中包含 pc、instr、rs、rt、rd、result 信号, 仿真图应在控制台打印输出 Simulation succeeded 时截图。控制台打印输出图为此时截图。

A Datapath 代码

其他模块不需要填写(红字为内容说明,请删除)

B Hazard 代码

其他模块不需要填写(红字为内容说明,请删除)

C Controller 代码

其他模块不需要填写(红字为内容说明,请删除)