

Learning Factorized Multimodal Representations

Yao-Hung Hubert Tsai*, Paul Pu Liang*, Amir Zadeh, Louis-Philippe Morency, Ruslan Salakhutdinov

Multimodal Representation Learning

Factorize representation into independent sets of factors

Experimental Setup: Datasets and Features

- Datasets in Human Multimodal Language
- Multimodal Personal Trait Recognition
- * Movie Reviews (POM)
- Multimodal Sentiment Analysis
- * Monologue Opinion Videos (CMU-MOSI)
- * Online Social Reviews (ICT-MMMO)
- * Product Reviews (MOUD and YouTube)
- Multimodal Emotion Recognition
- * Recorded Dyadic Dialogues (IEMOCAP)

• Multimodal Features

- **Language**: pre-trained Glove word embeddings
- Visual: facial action units from Facet
- Acoustic: MFCCs from COVAREP
- Aligned by P2FA

Language: And he I don't think he got mad when hah

MOUD | IEMOCAP | YouTube | POM Video Segment | Segment Level Segment Segment 903 # Speakers | $52 \rightarrow 1284$ $49 \rightarrow 243$ $5 \rightarrow 6373$ $10\rightarrow229$ $5 \rightarrow 41$ $10 \rightarrow 37$ $1 \rightarrow 1775$ $11 \rightarrow 59$ $20 \rightarrow 106$ $1 \rightarrow 1807$ $31\rightarrow686$ | Sentiment | Sentiment | Emotions | Personalities $\{\ell,v,a\} \stackrel{\mid}{=} \{\ell,v,a\} \stackrel{\mid}{=} \{\ell,v,a\} \stackrel{\mid}{=} \{\ell,v,a\} \stackrel{\mid}{=} \{\ell,v,a\}$ $\{\ell,v,a\}$

Multimodal Factorization Model (MFM)

Generation: Factorization over Joint Distribution

$$\begin{split} P(\hat{\mathbf{X}}_{1:M}, \hat{\mathbf{Y}}) &= \int_{\mathbf{F}, \mathbf{Z}} P(\hat{\mathbf{X}}_{1:M}, \hat{\mathbf{Y}} | \mathbf{F}) P(\mathbf{F} | \mathbf{Z}) P(\mathbf{Z}) d\mathbf{F} d\mathbf{Z} \\ &= \int_{\mathbf{F}_{\mathbf{y}}, \mathbf{F}_{\mathbf{a}\{1:M\}}} \Big(P(\hat{\mathbf{Y}} | \mathbf{F}_{\mathbf{y}}) \prod_{i=1}^{M} P(\hat{\mathbf{X}}_{i} | \mathbf{F}_{\mathbf{a}i}, \mathbf{F}_{\mathbf{y}}) \Big) \Big(P(\mathbf{F}_{\mathbf{y}} | \mathbf{Z}_{\mathbf{y}}) \prod_{i=1}^{M} P(\mathbf{F}_{\mathbf{a}i} | \mathbf{Z}_{\mathbf{a}i}) \Big) \Big(P(\mathbf{Z}_{\mathbf{y}}) \prod_{i=1}^{M} P(\mathbf{Z}_{\mathbf{a}i}) \Big) d\mathbf{F} d\mathbf{Z}, \end{split}$$
 with $d\mathbf{F} = d\mathbf{F}_{\mathbf{y}} \prod_{i=1}^{M} d\mathbf{F}_{\mathbf{a}i} \text{ and } d\mathbf{Z} = d\mathbf{Z}_{\mathbf{y}} \prod_{i=1}^{M} d\mathbf{Z}_{\mathbf{a}i}$

Inference: Joint-Distribution Wasserstein Distance

-Proposition 1: For any functions $G_y: \mathbf{Z_y} \to \mathbf{F_y}, G_{a\{1:M\}}: \mathbf{Z_{a\{1:M\}}} \to \mathbf{F_{a\{1:M\}}}, D:$ $\mathbf{F_y} \to \hat{\mathbf{Y}}$, and $F_{1:M} : \mathbf{F_a}_{\{1:M\}}, \mathbf{F_y} \to \hat{\mathbf{X}}_{1:M}$, we have Joint-Distribution Wasserstein distance $W_c(P_{\mathbf{X}_{1:M},\mathbf{Y}},P_{\mathbf{\hat{X}}_{1:M},\mathbf{\hat{Y}}}) =$

$$\inf_{Q_{\mathbf{Z}}=P_{\mathbf{Z}}} \mathbf{E}_{P_{\mathbf{X}_{1:M},\mathbf{Y}}} \mathbf{E}_{Q(\mathbf{Z}|\mathbf{X}_{1:M},\mathbf{Y})} \left[\sum_{i=1}^{M} c_{X_i} \left(\mathbf{X}_i, F_i \left(G_{ai}(\mathbf{Z}_{\mathbf{a}i}), G_y(\mathbf{Z}_{\mathbf{y}}) \right) \right) + c_Y \left(\mathbf{Y}, D \left(G_y(\mathbf{Z}_{\mathbf{y}}) \right) \right) \right],$$

where $P_{\mathbf{Z}}$ is the prior over $\mathbf{Z} = [\mathbf{Z}_{\mathbf{y}}, \mathbf{Z}_{\mathbf{a}\{1,M\}}]$ and $Q_{\mathbf{Z}}$ is the aggregated posterior of the proposed approximate inference distribution $Q(\mathbf{Z}|\mathbf{X}_{1:M}, \mathbf{Y})$.

Relaxed Generative-Discriminative Objective

Results on Multimodal Time Series Datasets

Ablation Studies

	Multimadal	المنامية ا	Footowized	Mad Casa
	Multimodal	Hybrid	Factorized	ModSpec.
Model	Disc.	GenDisc.	GenDisc.	Gen.
	Factor	Objective	Factors	Factors
$\mathbf{M}_{\mathbf{A}}$	no	no	<u>-</u>	_
$ m M_{B}$	yes	no	-	-
$ m M_{C}$	no	yes	l no	I -
$ m M_D$	yes	yes	l no	<u> </u>
$ m M_{E}$	yes	yes	yes	no
MFM	yes	yes	yes	yes

IMPORTANT:

(1) Multimodal discriminative factor (2) Modality-specific generative factors (3) Hybrid generative-discriminative objective

Analyzing Multimodal Representations

Code and Models: http://github.com/pliang279/factorized