Componentes Principales

Nicolás Kossacoff

Octubre 2024

1. Introducción

1.1. Transformación Lineal

Definimos una transformación lineal como una función $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y que cumple con dos propiedades:

- Sean v y w dos vectores en \mathbb{R}^n , se cumple que T(v+w)=T(v)+T(w).
- Para todo $\lambda \in \mathbb{R}$ y $v \in \mathbb{R}^n$, se cumple que $T(\lambda v) = \lambda T(v)$.

1.1.1. Matriz Asociada

Si T es una transformación lineal definida en un espacio de **dimensión finita**, entonces podemos asegurar que existe una **matriz asociada** A, tal que aplicar la transformación lineal a cualquier vector v es equivalente a multiplicarlo por dicha matriz, T(v) = Av.

1.2. Autovalores

Sea $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ una transformación lineal, decimos que $v \neq 0$ es un **autovector** de T con **autovalor** $\lambda_v \in \mathbb{R} - \{0\}$, si aplicarle la transformación lineal T es equivalente a multiplicarlo por su autovalor, $T(v) = \lambda_v v$.

Dado que T se encuentra definida en un espacio de dimensión finita, entonces tiene asociada una matriz A. Si A es una simétrica (i.e., A = A') y positiva (i.e. $z'Az > 0, \forall z \neq 0$), entonces tenemos una base ortonormal de autovectores para nuestro espacio vectorial.

Esto quiere decir que podemos construir cualquier vector en nuestro espacio utilizando una combinación lineal de los autovectores.

2. Componentes Principales

Componentes Principales es una técnica de reducción de dimensiones que se basa en construir una transformación lineal que lleve nuestro conjunto de datos de \mathbb{R}^p a \mathbb{R}^q , con $q \ll p$.

2.1. Definición

Sea $X \in \mathbb{R}^p$ un vector aleatorio con $E(X) = \mu$ y $Var(X) = \Sigma$. La matriz Σ es simétrica y positiva, por lo tanto, tenemos una base de autovectores ortonormales. Esto quiere decir que tenemos p autovectores de Σ , $\{\gamma_1, \ldots, \gamma_p\}$, asociados a un conjunto de autovalores, $\lambda_1 \geq \ldots \geq \lambda_p$ que podemos utilizar para construir cualquier vector dentro del espacio vectorial.

Dicho esto, podemos escribir a X como:

$$X = \mu + \sum_{j=1}^{p} \gamma_j' (X - \mu) \gamma_j = \mu + \sum_{j=1}^{p} \langle X - \mu, \gamma_j \rangle \cdot \gamma_j$$
 (1)

donde:

$$v = \sum_{j=1}^{p} \langle X - \mu, \gamma_j \rangle = (X - \mu) \gamma_1 + \ldots + (X - \mu) \gamma_p = v_1 + \ldots + v_p$$
 (2)

Las coordenadas de v, $\{v_1, \ldots, v_p\}$, son los componentes principales de la observación X (i.e., tenemos p componentes principales por observación, uno por cada feature).

Observación. La j-ésima componente principal, $v_j = \gamma'_j(X - \mu) = \langle X - \mu, \gamma_j \rangle$, es la proyección ortogonal de $(X - \mu)$ sobre la dirección del autovector γ_j .

2.2. Propiedades

Propiedad 1. Los componentes principales, $\{v_1, \ldots, v_p\}$, son no correlacionados y $Var(v_j) = \lambda_j$. Es decir:

$$Var(v) = diag(\lambda_1, \dots, \lambda_p)$$

De la Propiedad 1 se desprende que cada componente principal aporta información que los componentes anteriores no aportaron.

Propiedad 2. Sea H_0 el sub-espacio que generamos con los q primeros autovectores y sea H otro sub-espacio de la misma dimensión. Llamemos $\pi(X, H)$ a la proyección de X en el sub-espacio H. Entonces:

$$E[||X - \pi(X, H_0)||^2] \le E[||X - \pi(X, H)||^2]$$

Esta propiedad nos dice que los componentes principales nos dan el mejor ajuste lineal sobre sub-espacio de menor dimensión.

2.2.1. Relación con la varianza

Supongamos que queremos encontrar el vector a que genere la combinación lineal, a'X, con mayor varianza, es decir, cuya dirección aporta más información. Por propiedad de componentes principales se cumple que ese vector es el primer autovector, γ_1 , el cual está relacionado con el primer componente:

$$\max_{a} Var(a'X) = Var(v_1) \text{ s.a. } ||a|| = 1$$
(3)

Ahora, queremos encontrar el segundo vector con mayor varianza pero que no aporte la misma información que el vector anterior, γ_1 . Para eso planteamos el siguiente problema de maximización:

$$\max_{a} Var(a'X) = Var(v_2) \text{ s.a. } ||a|| = 1 \land Cov(a'X, v_1) = 0$$
 (4)

Al igual que antes, la solución a este problema de maximización es el segundo autovector, γ_2 . La Ecuación (4) se puede generalizar para los siguientes casos de la siguiente manera:

$$\max_{a} Var(a'X) = Var(v_k)$$

s.a.
$$||a|| = 1 \land Cov(a'X, v_j) = 0, \forall j \in [1, k-1]$$

2.3. Número de componentes

Por la Propiedad 1 sabemos que la varianza del componente principal v_j es igual a su autovalor λ_j . También sabemos que para obtener la varianza total simplemente tenemos que sumar los autovalores:

$$Var(v) = \sum_{j=1}^{p} \lambda_j = traza(\Sigma)$$

Una criterio para elegir la cantidad q de componentes principales que vamos a agregar es mirar la proporción de la variabilidad que está siendo explicada por esos componentes:

$$prop = \frac{\sum_{j=1}^{q} \lambda_j}{traza(\Sigma)}$$

2.4. Inferencia

En la práctica, la media poblacional (μ) y la matriz de covarianza (Σ) son desconocidos. En estos casos tenemos que estimarlos utilizando una muestra aleatoria

 X_1, \ldots, X_n , tal que:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$Q = \sum_{i=1}^{n} (X_i - \hat{\mu}) (X_i - \hat{\mu})'$$

$$\hat{\Sigma} = \frac{Q}{n}$$

Una vez calculada la matriz $\hat{\Sigma}$ podemos calcular los autovectores y calcular los componentes principales al igual que en la versión poblacional.