Estrategias de pivoteo en eliminación Gaussiana

MAT-251

Dr. Alonso Ramírez Manzanares
Depto. de Matemáticas
Univ. de Guanajuato
e-mail: alram@cimat.mx
web: http://www.cimat.mx/~alram/met_num/

web: http://www.cimat.mx/~airam/met_num/

Dr. Joaquín Peña Acevedo CIMAT A.C.

e-mail: joaquin@cimat.mx

Los métodos numéricos en el algoritmo de Eliminación Gaussiana

- Habiéndonos asegurado que el pivote nunca es cero, tenemos todo para resolver los sistemas desde el punto de vista teórico, pero no para la realidad "numérica".
- En la realidad es posible que el número de cálculos de orden O(n³) domine el resultado de los mismos.
- Para evitar lo anterior es necesario hacer intercambio de renglones incluso si el elemento pivote actual es diferente de cero: cuando hacemos el siguiente calculo, ¿qué pasa si el pivote es muy pequeño? $m_{ki} = \frac{a_{ki}}{a_{ii}}$
- $m_{\it ki}$ será mucho mas grande que 1 y el error de redondeo de todo un renglón será multiplicado por él. Además en la sustitución hacia atrás vamos a dividir por un valor muy pequeño: $x_i = \frac{a_{i,n+1} \sum_{j=i+1}^n a_{ij}}{x_i}$

Sea el SLE con solución exacta x₁=10.0 y x₂=1.00.

```
E_1: 0.003000x_1 + 59.14x_2 = 59.17,

E_2: 5.291x_1 - 6.130x_2 = 46.78
```

 Si lo resolvemos con aritmética de 4 dígitos con redondeo, y calculamos el primer factor

Lo cual nos lleva al sistema equivalente

Sea el SLE con solución exacta x₁=10.0 y x₂=1.00.

$$E_1$$
: $0.003000x_1 + 59.14x_2 = 59.17,$
 E_2 : $5.291x_1 - 6.130x_2 = 46.78$

 Si lo resolvemos con aritmética de 4 dígitos con redondeo, y calculamos el primer factor

$$m_{21} = \frac{5.291}{0.003000} = 1763.\overline{6},$$

Lo cual nos lleva al sistema equivalente

Sea el SLE con solución exacta x₁=10.0 y x₂=1.00.

$$E_1$$
: $0.003000x_1 + 59.14x_2 = 59.17,$
 E_2 : $5.291x_1 - 6.130x_2 = 46.78$

 Si lo resolvemos con aritmética de 4 dígitos con redondeo, y calculamos el primer factor

$$m_{21} = \frac{5.291}{0.003000} = 1763.\overline{6}, \approx 1764$$

Lo cual nos lleva al sistema equivalente

Sea el SLE con solución exacta x₁=10.0 y x₂=1.00.

$$E_1$$
: $0.003000x_1 + 59.14x_2 = 59.17,$
 E_2 : $5.291x_1 - 6.130x_2 = 46.78$

 Si lo resolvemos con aritmética de 4 dígitos con redondeo, y calculamos el primer factor

$$m_{21} = \frac{5.291}{0.003000} = 1763.\overline{6}, \approx 1764$$

Lo cual nos lleva al sistema equivalente

$$0.003000x_1 + 59.14x_2 = 59.17$$
$$-104300x_2 \approx -104400$$

Alonso Ramírez Manzanares

Métodos Numéricos

17.08

· Lo cual nos lleva a cometer los errores de aproximación:

$$x_2 \approx 1.001$$
,

$$x_1 \approx \frac{59.17 - (59.14)(1.001)}{0.003000} = -10.00$$

- ya que el error 0.001 está siendo aumentado por 59.14/0.003 = 20000.
- Esto fué en un sistema de 2x2, imagínense en sistemas de muchas ecuaciones.

Prueba de lo anterior en una hoja de cálculo

m21	1763.66667		
R(m21)	1764		
e1	0.003	59.14	59.17
e2	5.291	-6.13	46.78
e1*R(m21)	5.292	104322.96	104375.88
e2-e1*R(m21)	-0.001	-104329.09	-104329.1
		x2	1
		x1	9.99811
R(e1*R(m21))	5.292	104300	104400
e2-R(e1*R(m21))	-0.001	-104306.13	-104353.22
R(e2-R(e1*R(m21)))		-104300	-104400
		x2	1.00095877
		R(x2)	1.001
		a12*R(x2)	59.19914
		R(a12*R(x2))	59.20
		x1	-10

 Para evitar el problema anterior escogemos como pivote el valor más grande en valor absoluto que hay en la columna debajo de la diagonal:

$$|a_{pi}| = \max_{i \le k \le n} |a_{ki}|$$

- De tal forma que si i<>p, intercambiamos $\,(E_i) \leftrightarrow (E_p)\,$
- En el ejemplo anterior, aún utilizando representación de 4 dígitos, esto da como resultado:

• Para evitar el problema anterior escogemos como pivote el valor más grande en valor absoluto que hay en la columna debajo de la diagonal:

$$|a_{pi}| = \max_{i \le k \le n} |a_{ki}|$$

- De tal forma que si i<>p, intercambiamos $\,(E_i) \leftrightarrow (E_p)\,$
- En el ejemplo anterior, aún utilizando representación de 4 dígitos, esto da como resultado:

$$E_1$$
: $5.291x_1 - 6.130x_2 = 46.78$,

$$E_2$$
: $0.003000x_1 + 59.14x_2 = 59.17$.

 Para evitar el problema anterior escogemos como pivote el valor más grande en valor absoluto que hay en la columna debajo de la diagonal:

$$|a_{pi}| = \max_{i \le k \le n} |a_{ki}|$$

- De tal forma que si i<>p, intercambiamos $\,(E_i) \leftrightarrow (E_p)\,$
- En el ejemplo anterior, aún utilizando representación de 4 dígitos, esto da como resultado:

$$E_1$$
: $5.291x_1 - 6.130x_2 = 46.78$,

$$E_2$$
: $0.003000x_1 + 59.14x_2 = 59.17$.

$$m_{21} = \frac{a_{21}}{a_{11}} = 0.0005670,$$

• Para evitar el problema anterior escogemos como pivote el valor más grande en valor absoluto que hay en la columna debajo de la diagonal:

$$|a_{pi}| = \max_{i \le k \le n} |a_{ki}|$$

- De tal forma que si i<>p, intercambiamos $\,(E_i) \leftrightarrow (E_p)\,$
- En el ejemplo anterior, aún utilizando representación de 4 dígitos, esto da como resultado:

$$E_1$$
: $5.291x_1 - 6.130x_2 = 46.78$,

$$E_2$$
: $0.003000x_1 + 59.14x_2 = 59.17$.

$$m_{21} = \frac{a_{21}}{a_{11}} = 0.0005670,$$
 $x_1 = 10.00$ and $x_2 = 1.000.$

Alonso Ramírez Manzanares

Métodos Numéricos

17.08

Valores m_{kj}

- Bajo este esquema de pivoteo parcial
 - ¿cuál es el valor máximo que pueden tener los valores m_{kj} ?

Estategías de pivoteo, pivoteo parcial escalado (pivoteo por columnas)

• En el mismo sistema que antes, pero ahora E₁ es escalado por 10000

```
E_1: 30.00x_1 + 591400x_2 = 591700,

E_2: 5.291x_1 - 6.130x_2 = 46.78
```

• Entonces para detectar el posible pivote más grande, normalizamos primero con respecto al coeficiente mas grande de la ecuación

y al buscar el pivote utilizamos

Estategías de pivoteo, pivoteo parcial escalado (pivoteo por columnas)

• En el mismo sistema que antes, pero ahora E₁ es escalado por 10000

$$E_1$$
: $30.00x_1 + 591400x_2 = 591700$,
 E_2 : $5.291x_1 - 6.130x_2 = 46.78$

• Entonces para detectar el posible pivote más grande, normalizamos primero con respecto al coeficiente mas grande de la ecuación

$$s_k = \max_{1 \le j \le n} |a_{kj}|.$$

y al buscar el pivote utilizamos

Estategías de pivoteo, pivoteo parcial escalado (pivoteo por columnas)

• En el mismo sistema que antes, pero ahora E₁ es escalado por 10000

$$E_1$$
: $30.00x_1 + 591400x_2 = 591700$,
 E_2 : $5.291x_1 - 6.130x_2 = 46.78$

• Entonces para detectar el posible pivote más grande, normalizamos primero con respecto al coeficiente mas grande de la ecuación

$$s_k = \max_{1 \le j \le n} |a_{kj}|.$$

y al buscar el pivote utilizamos

$$\frac{|a_{pi}|}{s_p} = \max_{i \le k \le n} \frac{|a_{ki}|}{s_k}$$

Pivoteo Total

• Si queremos asegurar en cada paso *i* que vamos a escoger el pivote más favorable podemos barrer la matriz de esta forma:

• Entonces, si el SEL es difícil de resolver esta es la solución propuesta, solo se debe de considerar que hay que agregar mas comparaciones. Aún así la complejidad queda de orden O(n³).

Alonso Ramírez Manzanares

Métodos Numéricos

17.08

Información de implementación

• Se pueden guardar los números $m_{k,i}$ debajo de la diagonal principal, de tal forma que los podemos usar para aplicarlos a diferentes vectores \boldsymbol{b} del sistema $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$.

 Nótese que los intercambios de renglones (y quizá de columnas) también deben de memorizarse. Cada vez que se intercambian renglones se tiene que tener cuidado de intercambiar toda la información.