Human Computer Interaction (HCI)

Input-Output Channels

Input-output channels

- Human input
 - Using senses
 - Sight, hearing, touch, taste and smell
 - Sight, hearing & touch have important role in HCI
- Human output
 - Motor control of effectors
 - Limbs (arms, legs), fingers, eyes, head and vocal system

2

Input-output channels

- Human input / output (Example)
 - User interacting with a PC using mouse and keyboard
 - Manipulating objects (icons, windows, etc.)
 - Receive information through vision mostly
 - Receive information through ears too (e.g. beep)
 - Provide output to PC through effectors (fingers, hands, etc.)

Vision

- Primary source of information
- Two stages in vision
 - Physical reception of stimulus (event)
 - Processing and interpretation of stimulus

4

The Eye - physical reception

- · Mechanism for receiving light and transforming it into electrical energy
- Light reflects from objects

The Eye - physical reception

- Two receptors in retina
- Rods
 - For peripheral vision
 - For low (dim) light vision
 - More densely packed at the outer parts (Edges) of our visual field
 - Detect changes in movement
- Cones
 - In normal lighting
 - Three types of cones for different wavelengths

 - This helps in colour vision
 Densely packed towards the center of our visual field
 - Help in reading and distinguishing

Visual Perception

- How we (eyes) perceive:
 - Size
 - Depth
 - Brightness
 - Colour
- Important for the design of effective visual interfaces!

Interpreting the visual signal

- Size, depth and relative distances?
- Visual angle:
 - Depends on the size of the object and its distance from the eye
 - Two objects: different size, same distance
 - Two objects: same size, different distances

Reading

- Several stages:
 - Visual pattern of the word is perceived
 - Decoded using internal representation of language
 - Interpreted using knowledge of syntax and semantics

13

Reading

- Reading involves "saccades" and "fixations"
- Saccades:
 - The fast movements of eyes in the same direction
 - Meaning: A rapid intermittent eye movement, as that which occurs when the eyes focus on one point after another in the visual field
- Fixations:
 - Stable movement of the eye (maintaining the visual gaze at single location)
 - Perception occurs during fixations

Reading

- What if we remove the word shape clues (e.g. capitalizing words)
 - "NEGATIVE CONTRAST IMPROVES READING FROM COMPUTER SCREEN"
 - "Negative contrast improves reading from computer screen"
 - Reading is **slower** in which case?

17

Reading

Reading Test

aocdcrnig to rseecrah at Cmabrigde Uinervtisy, it dseno't mttaer in waht oderr the Iterets in a wrod are, the olny irpoamtnt tihng is taht the frsit and Isat Itteer be in the rhgit pclae. The rset can be a taotl mses and you can sitll raed it whoutit a pboerlm. Tihs is bucseae the huamn mnid deos not raed ervey Itteer by istlef, but the wrod as a wlohe.

Can you read without difficulty?

Hearing

- Sound
 - Changes or vibrations in air pressure
- Sound characteristics:
 - Pitch sound frequency

low freq – low pitch , high freq – high pitch

Loudness

amplitude of the sound (greater amplitude = greater volume)

Hearing

- Sound's location
 - Factors involve in determining the location of sound:
 - 1. Two ears receive slightly different sounds
 - 2. Sound waves reflecting from the head have reduced intensity
- Humans can hear frequencies from 20Hz to 20kHz
 - Less accurate distinguishing high frequencies than low
- Auditory system filters sounds
 - Can attend to sounds over background noise

23

Hearing

- In interface design:
 - Warning sounds / Notifications
 - To convey information about the system state
 - User attention to a critical situation
 - Virus found / software updates (in Avast)...
 - Status information
 - Continuous state of a system (e.g. In hospitals)
 - Confirmation of an operation
 - Deleting a file
 - Supporting navigations with different sound effects

Touch / Haptic perception

- What if we cant "feel" ...
 - The shape of the glass while picking it?
 - Feet on the ground ?
 - "Speed and accuracy of action is reduced!"
- Key sense for visually impaired

Touch / Haptic perception

- Stimulus received via receptors in the skin:
 - Thermoreceptors heat and cold
 - Nociceptors
- pain
- Mechanoreceptors
- pressure
- Some areas more sensitive than others

Fingers and thumbs have the highest sensitivity

28

Touch / Haptic perception

- Kinesthesis awareness of body position and limbs
 - Affects comfort and performance e.g. touch typist
 - Awareness of relative position of fingers on keyboard
 - Tactile feedback from keyboard

29

Touch / Haptic perception

- In Virtual Reality (VR)
 - Games
- In Touch screens
 - Touch tables ...
- In Tangible User Interfaces (TUIs)
- E-commerce
 - The experience of shopping online!
 - Buying clothes / food etc...
 - Users need to feel surfaces and shapes

Reaction Time (Input Channels)

- Audio / Visual / Touch stimulus (event) occurs
- Time taken to respond to stimulus:
 - Reaction time + Movement time
- Movement time dependent on age, fitness etc.

31

Fitts' Law

• The time taken to hit (select) a screen target:

$$Mt = a + b \log_2(D/S + 1)$$

Where: Mt is time taken to move a pointing device to a target

a and b are constants

 $\ensuremath{\mathbf{D}}$ is Distance from starting point to the center of the target

S is Size of target (width of the target)

Fitts' Law

- This affects the type of the target we design
- Targets as large as possible
- Distances as small as possible

