Домашнее задание от 56-ого дня карантина (the last but not the least)

Задача 20.3. Показать, что оператор $A: L_2[0, 1] \to L_2[0, 1]$,

$$(Ax)(s) = \int_{0}^{1} st(1-st)x(t)dt$$

является вполне непрерывным и найти его спектр.

Решение: Запишем оператор в более приятном виде

$$(Ax)(s) = s \int_{0}^{1} tx(t)dt - s^{2} \int_{0}^{1} t^{2}x(t)dt.$$

Образ единичного шара равномерно ограничен, так как

$$||Ax||^2 \leqslant \{(a+b)^2 \leqslant 2(a^2+b^2)\} \leqslant 2\int_0^1 s^2 ds \left(\int_0^1 tx(t)dt\right)^2 + 2\int_0^1 s^4 ds \left(\int_0^1 t^2x(t)dt\right)^2 \leqslant M,$$

так как все интегралы здесь равномерно ограничены.

$$\|(Ax)(\cdot+h) - (Ax)(\cdot)\|^2 \leqslant h \left\| \int_0^1 tx(t)dt \right\| + h \left\| (2s+h) \int_0^1 t^2x(t)dt \right\|$$

Обе нормы здесь равномерно ограничены, и потому $\|(Ax)(\cdot + h) - (Ax)(\cdot)\| \to 0$ равномерно по $x(\cdot)$.

Из критерия предкомпактности в L_2 следует полная непрерывность A.

Найдем теперь собственные значения A. При $\lambda = 0$ собственным подпространством является ортогональное дополнение к $\mathcal{L}\{t, t^2\}$.

Для нахождения ненулевых собственных значений запишем уравненение $Ax = \lambda x$:

$$s \int_{0}^{1} tx(t)dt - s^{2} \int_{0}^{1} t^{2}x(t)dt = \lambda x(s)$$

Домножая на s, интегрируя и чуть-чуть преобразуя, получим

$$\left(\frac{1}{3} - \lambda\right) \int_{0}^{1} tx(t)dt = \frac{1}{4} \int_{0}^{1} t^{2}x(t)dt$$

Домножая на s^2 первоначальное выражение, интегрируя и еще чуть-чуть преобразуя,

$$\frac{1}{4} \int_{0}^{1} tx(t)dt = \left(\frac{1}{5} + \lambda\right) \int_{0}^{1} t^{2}x(t)dt$$

Деля одно уравнение на другое $(\int\limits_0^1 tx(t)dt\neq 0,$ иначе $\lambda=0)$ и в последний раз чуть-чуть преобразуя, имеем

$$16(1-3\lambda)(1+5\lambda) = 15$$

Корни этого квадратного уравнения будут являться собственными значениями оператора A.

Задача 20.5. Пусть A — самосопряженный оператор. Доказать, что собственные векторы, соответствующие различным собственным, ортогональны.

Pewenue: Пусть $\lambda_1 \neq \lambda_2$, и x_1 и x_2 — соответствующие собственные векторы. Тогда

$$\lambda_1 \langle x_1, x_2 \rangle = \langle Ax_1, x_2 \rangle = \langle x_1, Ax_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle,$$

откуда $\langle x_1, x_2 \rangle = 0$, что и требовалось доказать.

Задача 20.11. Пусть A — самосопряженный оператор в \mathbb{H} , причем $\operatorname{im}(A - \lambda I) = \mathbb{H}$. Доказать, что $\lambda \in \rho(A)$.

Решение: $A - \lambda I$ также является самосопряженным (как сумма двух самосопряженных), поэтому $\ker(A - \lambda I) = \{0\}$. Но это означает, что оператор $A - \lambda I$ обратим, и, по теореме Банаха об обратном операторе, непрерывно обратим, откуда $\lambda \in \rho(A)$.

Задача 20.12. A — самосопряженный оператор, $\lambda \in \mathbb{R}, \ \lambda \in \rho(A)$. Доказать, что резольвента $R_{\lambda}(A)$ является самосопряженым оператором.

Решение: Рассмотрим произвольные $x, y \in \mathbb{H}$. Так как $B = A - \lambda I$ непрерывно обратим, $\operatorname{im} B = \mathbb{H}$, и x = Bz.

$$\langle R_{\lambda}x, y \rangle = \langle R_{\lambda}Bz, y \rangle = \langle z, y \rangle,$$
$$\langle x, R_{\lambda}y \rangle = \langle Bz, R_{\lambda}y \rangle = \langle z, BR_{\lambda}y \rangle = \langle z, y \rangle,$$

откуда и следует самосопряженность оператора R_{λ} .

Задача 20.15. Пусть A — вполне непрерывный самосопряженный оператор, \mathbb{H} — бесконечномерное гильбертово пространство. Пусть оператор A имеет конечное множество собственных значений $\lambda_1, \ldots, \lambda_n$. Доказать, что $\lambda = 0$ является собственным значением.

Peшение: Требуемое утверждение эквивалентно $\ker A \neq \{0\}$, поэтому достаточно найти нетривиальный элемент ядра A.

По теореме Гильберта-Шмидта вектор Ax можно разложить в ряд Фурье по собственным векторам A (обозначим их $x_1, \ldots x_n$):

$$Ax = \sum_{k=1}^{n} \langle Ax, x_k \rangle x_k = \sum_{k=1}^{n} \langle x, Ax_k \rangle x_k = \sum_{k=1}^{n} \lambda_k \langle x, x_k \rangle x_k$$

. Так как dim $\mathbb{H} = \infty$, найдется ненулевой вектор x, ортогональный всем собственным векторам (их конечное число), откуда Ax = 0, что и требовалось.