Государственный комитет Российской Федерации по высшему образованию Белгородский технологический институт строительных материалов Кафедра программного обеспечения ЭВМ

Утверждено методологическим советом института

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Методические указания к выполнению лабораторных работ для студентов специальности 22.04

Составители: Полунин А. И., канд. техн. наук, доц. Смышляева Л. Г., инженер

Рецензент Борзенков А. В., канд. физ.-мат. наук,

Лабораторная работа N1. Движение механических систем

Цель работы

- 1. Разработать математическую модель, описывающую поведение элементов механической системы (конкретный вариант табл. 1).
- 2. Разработать программу на основании математической модели и произвести расчёты.

Содержание работы

Дана механическая система (рис. 1). Первая балка имеет момент инерции относительно точки закрепления I_1 , массу m_1 , длину l_1 , вторая соответственно I_2 , m_2 , l_2 . Коэффициент упругости первой пружины K_1 , второй K_2 . Ось вращения второй балки находится на расстоянии $0,75l_2$ от её конца. Масса прикреплённого ко второй пружине элемент равна m_3 .

Анализируемая система имеет три степени свободы — двое угловых движений балок и линейное движение массы m_3 . Положение первой и второй балок будем характеризовать углами φ_1 и φ_2 , отсчитываемых против часовой стрелки от горизонтального положения, когда пружины находятся в свободном состоянии, т.е. не растянуты и не сжаты. Положение массы m_3 будем задавать координатой х. Начало её совпадает с центром масс при свободном состоянии пружин.

Дифференциальные уравнения, описывающее угловое движение балок, в общем случае имеют вид

$$\frac{{}^2\varphi}{{}^2t} = \frac{\sum M_i}{I} ,$$

а движение массы таз

$$\frac{^2X}{t^2} = \frac{\sum F_i}{m_3},$$

где M_i — момент, F_i — сила, действующие на элементы системы.

Найдём формулы для моментов сил, действующих на первую балку. Равнодействующая сил тяжести первой балки приложена на середине её длины

(рис. 2). Это силу разложим на две. Первая F_1 , перпендикулярная к балке, вызывает её угловое движение. Эта сила равна

$$F_1 = m_1 g \cos \varphi_1$$

где g — ускорение свободного падения.

Момент от этой силы

$$M_1 = -0.5F_1I_1$$
.

Знак «минус» ставится, потому что момент действует в отрицательном направлении. Вторая сила F_1 вызывает осевое сжатие балки. Считаем, что под действием этой силы длина балки не изменятся, поэтому влиянием силы F_2 на движение можно пренебречь.

Со стороны пружины на балку действует сила упругости, равная

$$F_{y1}=k_1\Delta l_1,$$

где Δl_1 — удлинение пружины.

Определим Δl_1 . Для этого введём вспомогательную систему координат $O_1X_1Y_1$, в которой определим координаты верхнего В и нижнего А концов первой пружины. Начало системы O_1 поместим на правом крае первой балки, когда она находится в свободном состоянии. Тогда

$$\begin{split} X_{1A} = & l_1 \cos \varphi_1 - l_1, y_{1A} = l_1 \sin \varphi_1, \\ X_{1B} = & 0.75 \, l_2 - 0.75 \, l_2 \cos \varphi_2, y_{1B} = n - 0.75 \, l_2 \sin \varphi_2. \end{split}$$

Длина деформированной пружины

$$d = \sqrt{(x_{1A} - x_{1B})^2 + (y_{1A} - y_{1B})^2},$$

а её удлинение

$$\Delta l_1 = d - n$$
.

Направление силы упругости пружины задаётся направляющим косинусом

$$\cos\alpha_1 = \frac{x_1 - x_1}{d}.$$

Проекция силы Fy₁, вызывающей вращение первой балки, равна

$$F_{B1}=F_{v1}\sin(\alpha_1-\varphi_1)$$
.

Данная формула справедлива и при $\varphi_1 < 0$, что можно проверить, построив рисунок действия сил для $\varphi_1 < 0$.

 $T_{O\Gamma Дa} M_1 = F_{B1} l_1$.

Найдём моменты сил, действующих на вторую балку.

Момент силы тяжести

$$M_2 = 0.25 l_2 m_2 g \cos \varphi_2$$
.

создает вращающий момент, направленный положительно.

На левый край балки действует сила упругости первой пружины. Модуль её равен модулю силы упругости, действующей на первую балку, а направлена она в противоположную сторону

$$F_{y2} = -F_{y1}$$
.

Величина момент этой силы

$$M_{y2} = F_{y1} \sin(\alpha_1 - \varphi^2) 0.75 l_2.$$

Знак "плюс" в формуле взят потому, что при положительном Δl_1 (удлинении) пружина стремится повернуть вторую балку в положительном направлении — против часовой стрелки.

Найдём зависимости для вычисления момента упругих сил, действующих на вторую балку со стороны второй пружины.

Перемещение верхнего края пружины при положительном угле φ_2

$$\Delta n_B = 0.25 l_2 \sin \varphi_2$$
.

Перемещение нижнего края $\Delta n_H = x$.

Суммарное удлинение второй пружины $\Delta l_2 = 0.25 l_2 \sin \varphi_2 + x$.

а сила
$$F_{y3} = K_2 \Delta l_2$$
.

При положительном Δl_2 упругая сила создает момент, стремящийся повернуть вторую балку в отрицательном направлении

$$M_{y3} = -0.25 l_2 F_{y3} \cos \varphi_2$$
.

Найдём зависимости для вычисления сил, действующих на массу m. Со стороны второй пружины на массу действует сила

$$F_{y4} = -F_{y3}$$

направленная в отрицательном направлении оси X при положительном Δl_2 (удлинении).

Силы тяжести

$$F_3 = m_3 g$$
.

Полученные формулы позволяют составить систему дифференциальных уравнения движения:

$$\frac{\omega_1}{t} = \frac{M_1 + M_{y1}}{I_1}, \quad \frac{\omega_2}{t} = \frac{M_{y2} + M_2 + M_{y3}}{I_2},$$

$$\frac{V}{t} = \frac{F_{y4} + F_2}{m_3}, \frac{\varphi_1}{t} = \omega_1, \frac{\varphi_2}{t} = \omega_2, \frac{x}{t} = V,$$

где ω_1, ω_2 — угловые скорости первой и второй балок соответственно; V — линейная скорость.

Начальными условиями системы являются при t = 0:

$$\varphi_1 = \varphi_{10}, \varphi_2 = \varphi_{20}, x = x_0, \omega_1 = \omega_{10}, \omega_2 = \omega_{20}.$$

Варианты заданий

Таблица 1

№ вар	Схема	Исходные данные
1	2	3

2

$$\begin{split} &K_1 = 20000; \ k_2 = 10000; \\ &k_3 = 40000; \ n_1 = 1; \ m = 10; \\ &n_2 = 0.5; \ n_3 = 0.7. \end{split}$$

Продолжение табл.	1
ipedemine incin	-

1	2	3

3 /////// I,m,L L = 1.2; I = 0.5; m = 5; $K_1 = 20000; k_2 = 40000;$ $m_1 = 1$. k_2 k_1 m_1 4 I_1, m_1, L_1 $\rm I_2, m_2, L_2$ $I_1 = 1; I_2 = 3; m_1 = 10;$ $m_2 = 3$; $L_1 = 1$; $L_2 = 0.8$; n = 0.5; k = 4000. k 5 k I_2, m_2, L_2 I_1, m_1, L_1 $I_1 = 7; I_2 = 3; m_1 = 10;$ $m_2 = 5$; $L_1 = 1$; $L_2 = 1$; $n_1 = 0.7$; $n_2 = 1$; k = 40000; $k_1 = 1000$. k_1

1 2 3				
	1	2	3	

$$\begin{split} &I_1=5;\,I_2=2;\,m_1=10;\\ &m_2=6;\,L_1=1;\,k_1=7000;\\ &n_1=1.2;\,n_2=1;\,k_2=5000;\\ &L_2=L_1. \end{split}$$

$$\begin{aligned} k_1 &= 10000; \, k_2 = 15000; \\ m_1 &= 5; \, n_1 = 1; \, L_1 = 0.5; \\ L_2 &= 1; \, n_2 = 0.8; \, I = 1; \\ m &= 1. \end{aligned}$$

$$k = 10000; L = 1;$$

 $m_1 = 10; m_2 = 5.$

Продолжение табл. 1

П -	1
Продолжение табл	r I
продолжение таол	ι. Ι

1 2	3
-----	---

 m_1

I,m₂,L k

$$\begin{split} m_2 &= 20; \, I = 10; \\ L &= 1.8; \, n = 1; \\ k &= 10000; \, m_1 = 20. \end{split}$$

 m_1

 $\begin{aligned} k &= 500; \, I = 1; \, m = 10; \, L = 1; \\ k_1 &= 8000; \, m_1 = 10; \, n_1 = 0.5; \\ n_2 &= 1. \end{aligned}$

Окончание табл. 1

Содержание отчёта

- 1. Постановка задачи (конкретный вариант).
- 2. Математическая модель.
- 3. Текст программы.
- 4. Результаты отчётов (вывести на экран в виде графиков).

Лабораторная работа N2. Переходные процессы в электрических цепях

Цель работы

- 1. Разработать математическую модель для определения токов и напряжения в электрической цепи (конкретный вариант табл. 2).
- 2. Разработать программу на основании математической модели и произвести расчёты.

Содержание работы

В цепи, состоящей из трёх контуров (рис. 3), источник напряжения включается в момент времени t=0. Параметры элементов цепи постоянны. В момент времени t=0 напряжения на конденсаторах равны нулю, ток через индуктивности тоже равен нулю.

puc. 3

Обозначим токи в первом, втором и третьем контурах l_1 , l_2 , l_3 . Тогда на основании второго закона Кирхгофа получим:

$$\begin{split} &l_1R_1 \! + \! L_1 \! - \! \frac{l_1}{t} \! + \! \frac{1}{c_1} \int\limits_0^t l_1 \quad t \! - \! \frac{1}{c_1} \int\limits_0^t l_2 \quad t \! = \! E(t), \\ &\frac{1}{c_1} \int\limits_0^t I_2 \quad t \! + \! I_2R_2 \! + \! L_2 \! - \! \frac{I_2}{t} \! - \! L_2 \! - \! \frac{I_3}{t} \! = \! 0, \\ &L_2 \! - \! \frac{I_3}{t} \! - \! L_2 \! - \! \frac{I_2}{t} \! + \! \frac{1}{c_2} \int\limits_0^t I_3 \quad t \! + \! I_3R_3 \! = \! 0. \end{split}$$

Перенесём производные в левую часть и подставим

$$Q_1 = \int_0^t I_1$$
 $t, Q_2 = \int_0^t I_2$ $t, Q_3 = \int_0^t I_3$ t

в полученные зависимости. Имеем систему уравнений:

$$L_1 - \frac{I_1}{t} = E(t) + \frac{Q_2}{c_1} - \frac{Q_1}{c_1} - I_1 R_1, L_2 - \frac{I_2}{t} - L_2 - \frac{I_3}{t} = \frac{-Q_2}{c_1} - I_2 R_2,$$

$$-L_2 \frac{dI_2}{t} + L_2 \frac{I_3}{t} = \frac{-Q_3}{c_2} - I_3 R_3, \frac{Q_1}{t} = 1, \frac{Q_2}{t} = I_2, \frac{Q_3}{t} = I_3.$$

Видим, что второе и третье уравнения имеют линейно зависимые левые части, поэтому разрешить эти уравнения относительно производных нельзя. Сложим второе и третье уравнения:

$$\frac{-Q_2}{c_1} - I_2 R_2 - \frac{Q_3}{c_2} - I_3 R_3 = 0.$$

Получили алгебраическую зависимость, связывающую токи и заряды в контурах. Ток во втором контуре:

$$I_2 = \frac{-Q_2}{c_1 R_2} - \frac{Q_3}{c_2 R_2} - \frac{I_3 R_3}{R_2}.$$

Введём новые переменные:

$$S_1 = I_1, S_2 = I_2 - I_3, S_3 = I_3.$$

Тогда $l_2 = S_2 + S_3$. Подставим новые переменные в систему уравнений. Вместо третьего уравнения используем полученную алгебраическую зависимость, разрешив её относительно какой-либо переменной, допустим S_2 .

$$\begin{split} &\frac{S_1}{t} = \frac{E(t)}{L_1} + \frac{Q_2}{c_1 L_1} - \frac{Q_1}{c_1 L_1} - \frac{S_1 R_1}{L_1}, \frac{S_2}{t} = \frac{-Q_2}{c_1 L_2} - \frac{\left(S_2 + S_3\right) R_2}{L_2}, \\ S_2 = &\frac{-Q_2}{c_1 R_1} - \frac{Q_3}{c_2 R_2} - \frac{S_3 R_3}{R_2} - S_3, \frac{Q_1}{t} = S_1, \frac{Q_2}{t} = S_2 + S_3, \frac{Q_3}{t} = S_3. \end{split}$$

Подставляя зависимость для S_2 в правые части уравнения, получим замкнутую систему из пяти дифференциальных уравнений, которую можно интегрировать численным методом при заданных начальных условиях.

Варианты заданий

Таблица 2

№ вар	Схема	Исходные данные
1	2	3

$$\begin{split} &C_1 = 5*10^{-6}; \ C_2 = 2*10^{-6}; \\ &C_3 = 2*10^{-6}; \ C_4 = 3*10^{-6}; \\ &L_1 = 10^{-2}; \ L_2 = 2*10^{-2}; \ L_3 = 10^{-2} \\ &R_1 = 10; \ R_2 = 5; \ R_3 = 8; \ U_1 = 10 \\ &U_2 = 12. \end{split}$$

$$\begin{split} &C_1 = 3*10^{-6}; \ C_2 = 4*10^{-6}; \\ &C_3 = 3*10^{-6}; \ C_4 = 4*10^{-6}; \\ &L_1 = 2*10^{-2}; \ L_2 = 3*10^{-2}; \\ &R_1 = 2; \ R_2 = 4; \ R_3 = 4; \\ &R_4 = 5; \ R_5 = 3; \\ &U_1 = 8; \ U_2 = 15. \end{split}$$

3

$$\begin{split} &C_1 = 2*10^{-6}; \ C_2 = 10^{-6}; \\ &L_1 = 10^{-2}; \ L_2 = 10^{-2}; \ L_3 = 10^{-2}; \\ &R_1 = 10; \ R_2 = 11; \ R_3 = 9; \\ &R_4 = 5; \ R_5 = 7; \\ &U_1 = 10; \ U_2 = 10. \end{split}$$

Продолжение табл. 2

		_ r 1	
1	2	3	
1	<u> </u>	3	

$$C_1 = 2*10^{-6}$$
; $C_2 = 2*10^{-6}$; $C_3 = 2*10^{-6}$; $C_4 = 3*10^{-6}$; $C_5 = 4*10^{-6}$; $C_6 = 3*10^{-6}$; $L_1 = 3*10^{-2}$; $L_2 = 3*10^{-2}$; $R_1 = 9$; $R_2 = 9$; $R_3 = 5$; $U_1 = 12$; $U_2 = 11$.

$$C_1 = 10^{-6}$$
; $C_2 = 2*10^{-6}$; $C_3 = 5*10^{-6}$; $C_4 = 10^{-6}$; $C_5 = 5*10^{-6}$; $L_1 = 2*10^{-2}$; $L_2 = 3*10^{-2}$; $L_3 = 4*10^{-2}$; $R_1 = 8$; $R_2 = 7$; $R_3 = 14$; $U = 14$.

$$\begin{split} &C_1 = 6*10^{-6}; \ C_2 = 5*10^{-6}; \\ &C_3 = 6*10^{-6}; \\ &L_1 = 10^{-2}; \ L_2 = 10^{-2}; \\ &L_3 = 2*10^{-2}; \\ &R_1 = 6; \ R_2 = 10; \ R_3 = 7; \\ &U = 12. \end{split}$$

Продолжение табл. 2

1 ' '		
1	2	2
1	\angle	3

$$C_1 = 6*10^{-6}$$
; $C_2 = 5*10^{-6}$; $C_3 = 4*10^{-6}$; $L_1 = 10^{-2}$; $L_2 = 2*10^{-2}$; $L_3 = 3*10^{-2}$; $R_1 = 5$; $R_2 = 8$; $R_3 = 8$; $U = 10$.

$$\begin{split} &C_1 = 5*10^{\text{-}6}; \ C_2 = 3*10^{\text{-}6}; \\ &L_1 = 10^{\text{-}2}; \ L_2 = 10^{\text{-}2}; \\ &L_3 = 2*10^{\text{-}2}; \\ &R_1 = 10; \ R_2 = 11; \ R_3 = 8; \ R_4 = 9; \\ &U = 15. \end{split}$$

П	_	\sim
Продолжение	Tan	٠,
продолжение	raon.	_

		. , ,	
1	2	3	

$$\begin{split} &C_1 = 5*10^{\text{-6}}; \, C_2 = 5*10^{\text{-6}}; \\ &C_3 = 4*10^{\text{-6}}; \, C_4 = 6*10^{\text{-6}}; \\ &L_1 = 10^{\text{-2}}; \, L_2 = 2*10^{\text{-2}}; \\ &L_3 = 2*10^{\text{-2}}; \\ &R_1 = 7; \, R_2 = 7; \, R_3 = 8; \, R_4 = 9; \\ &U = 10. \end{split}$$

$$\begin{split} &C_1 = 6*10^{-6}; \ C_2 = 6*10^{-6}; \\ &C_3 = 7*10^{-6}; \ C_4 = 7*10^{-6}; \\ &C_5 = 5*10^{-6}; \ C_6 = 5*10^{-6}; \\ &L_1 = 2*10^{-2}; \ L_2 = 3*10^{-2}; \\ &R_1 = 8; \ R_2 = 8; \ R_3 = 9; \ R_4 = 9; \\ &U = 12. \end{split}$$

$$\begin{split} &C_1 = 6*10^{-6}; \ C_2 = 6*10^{-6}; \\ &C_3 = 6*10^{-6}; \ C_4 = 7*10^{-6}; \\ &C_5 = 7*10^{-6}; \\ &L_1 = 3*10^{-2}; \ L_2 = 3*10^{-2}; \\ &R_1 = 9; \ R_2 = 5; \ R_3 = 6; \\ &U_1 = 12; \ U_2 = 11. \end{split}$$

$C_1 = 5*10^{-6}$; $C_2 = 5*10^{-6}$;
$C_3 = 5*10^{-6}$;
$L_1 = 10^{-2}; L_2 = 10^{-2};$
$R_1 = 10; R_2 = 8; R_3 = 10;$
$U_1 = 15$; $U_2 = 16$.

Продолжение табл. 2

	·	 [
1	2	3

$$\begin{split} &C_1 = 7*10^{-6}; \ C_2 = 6*10^{-6}; \\ &C_3 = 6*10^{-6}; \\ &L_1 = 3*10^{-2}; \ L_2 = 3*10^{-2}; \\ &R_1 = 12; \ R_2 = 11; \ R_3 = 10; \\ &U = 16. \end{split}$$

$$C_1 = 4*10^{-6}$$
; $C_2 = 4*10^{-6}$; $C_3 = 5*10^{-6}$; $L = 10^{-2}$; $R_1 = 9$; $R_2 = 9$; $R_3 = 9$; $U = 10$.

$C_1 = 3*10^{-6}$; $C_2 = 10^{-6}$;
$C_3 = 2*10^{-6}$; $C_4 = 10^{-6}$;
$L_1 = 2*10^{-2}; L_2 = 2*10^{-2}$
$R_1 = 5$; $R_2 = 6$; $R_3 = 6$;
U = 12.

Продолжение табл. 2

1 2 3	
-------	--

$$\begin{split} &C_1 = 2*10^{-6}; \ C_2 = 3*10^{-6}; \\ &C_3 = 3*10^{-6}; \\ &L_1 = 10^{-2}; \ L_2 = 2*10^{-2}; \\ &L_3 = 10^{-2}; \ L_4 = 2*10^{-2}; \\ &L_5 = 3*10^{-2}; \\ &R_1 = 8; \ R_2 = 8; \ R_3 = 7; \\ &R_4 = 7; \ R_5 = 9; \\ &U = 14. \end{split}$$

17

$$\begin{split} &C_1 = 10^{\text{-6}}; \, C_2 = 2*10^{\text{-6}}; \\ &C_3 = 2*10^{\text{-6}}; \, C_4 = 6*10^{\text{-6}}; \\ &L_1 = 3*10^{\text{-2}}; \, L_2 = 3*10^{\text{-2}}; \\ &L_3 = 4*10^{\text{-2}}; \, L_4 = 4*10^{\text{-2}}; \\ &R_1 = 10; \, R_2 = 10; \\ &U_1 = 14; \, U_2 = 14. \end{split}$$

$$\begin{split} &C_1 = 5*10^{\text{-6}}; \ C_2 = 5*10^{\text{-6}}; \\ &C_3 = 4*10^{\text{-6}}; \\ &L_1 = 10^{\text{-2}}; \ L_2 = 10^{\text{-2}}; \\ &R_1 = 5; \ R_2 = 5; \ R_3 = 7; \ R_4 = 10; \\ &U = 12. \end{split}$$

_	r		_	\sim
ı	lnoл	олжение	таол.	2

		_ ' '	
1	2	3	

$$\begin{split} &C_1 = 6*10^{\text{-6}}; \ C_2 = 5*10^{\text{-6}}; \\ &C_3 = 5*10^{\text{-6}}; \ C_4 = 4*10^{\text{-6}}; \\ &L_1 = 2*10^{\text{-2}}; \ L_2 = 10^{\text{-2}}; \\ &L_3 = 2*10^{\text{-2}}; \\ &R_1 = 8; \ R_2 = 8; \ R_3 = 9; \ R_4 = 8; \\ &U_1 = 10; \ U_2 = 12; \ U_3 = 14. \end{split}$$

$$\begin{split} &C_1 = 6*10^{-6};\ C_2 = 4*10^{-6};\\ &C_3 = 4*10^{-6};\ C_4 = 5*10^{-6};\\ &C_5 = 5*10^{-6};\\ &L_1 = 2*10^{-2};\ L_2 = 2*10^{-2};\\ &L_3 = 3*10^{-2};\ L_4 = 3*10^{-2};\\ &L_5 = 10^{-2};\\ &R_1 = 10;\ R_2 = 10;\ R_3 = 8;\ R_4 = 9;\\ &U = 12. \end{split}$$

$$\begin{split} &C_1 = 10^{-6}; \ C_2 = 10^{-6}; \\ &C_3 = 2*10^{-6}; \ C_4 = 10^{-6}; \\ &L_1 = 10^{-2}; \ L_2 = 2*10^{-2}; \\ &L_3 = 3*10^{-2}; \ L_4 = 10^{-2}; \\ &L_5 = 10^{-2}; \\ &R_1 = 10; \ R_2 = 8; \ R_3 = 7; \\ &R_4 = 6; \ R_5 = 10; \\ &U_1 = 15; \ U_2 = 14. \end{split}$$

Окончание табл. 2

1	2	3

$$\begin{split} &C_1 = 2*10^{-6}; \ C_2 = 2*10^{-6}; \\ &C_3 = 10^{-6}; \ C_4 = 10^{-6}; \\ &C_5 = 3*10^{-6}; \\ &L_1 = 4*10^{-2}; \ L_2 = 4*10^{-2}; \\ &R_1 = 5; \ R_2 = 6; \ R_3 = 7; \\ &U = 16. \end{split}$$

$$\begin{split} &C_1 = 3*10^{\text{-6}}; \ C_2 = 3*10^{\text{-6}}; \\ &C_3 = 2*10^{\text{-6}}; \ C_4 = 2*10^{\text{-6}}; \\ &L_1 = 10^{\text{-2}}; \ L_2 = 2*10^{\text{-2}}; \\ &L_3 = 2*10^{\text{-2}}; \\ &R_1 = 8; \ R_2 = 10; \ R_3 = 10; \\ &R_4 = 8; \ R_5 = 6; \\ &U_1 = 10; \ U_2 = 9; \ U_3 = 14. \end{split}$$

$$C_1 = 5*10^{-6}$$
; $C_2 = 6*10^{-6}$; $C_3 = 6*10^{-6}$; $C_4 = 5*10^{-6}$; $C_5 = 10^{-6}$; $L_1 = 2*10^{-2}$; $L_2 = 10^{-2}$; $L_3 = 3*10^{-2}$; $L_4 = 3*10^{-2}$; $R_1 = 5$; $R_2 = 6$; $R_3 = 6$; $R_4 = 9$; $U_1 = 12$; $U_2 = 15$.

Содержание отчёта

- 1. Постановка задачи (конкретный вариант).
- 2. Математическая модель.
- 3. Текст программы.
- 4. Результаты отчётов (вывести на экран в виде графиков).

Лабораторная работа N3. Оценка вероятностных характеристик фазовых координат систем

Цель работы

- 1. Изучить метод Доступова для оценки вероятностных характеристик фазовых координат систем.
- 2. Разработать программу для оценки вероятностных характеристик вектора X на момент времени t_k (конкретный вариант).

Содержание работы

Пусть анализируемая система описывается в общем случае системой дифференциальных уравнений:

$$\frac{X}{t} = F(t, X, V),$$

где X — вектор фазовых координат размерности n; V — вектор случайных величин размерности m.

Считаем, что математическое ожидание его равно нулю, т. е. $m_V=0$, он некоррелирован, т. е. $M(V_j,V_i)=0$, ($\neq j$), известны его дисперсии σ_{Vj} .

Допустим необходимо оценить вероятностные характеристики вектора X на момент времени t. Тогда, интегрируя систему аналитически или численным методом, можно получить зависимость фазовых координат от случайных величин:

$$X = \varphi(t, V).$$

Разложим эту функцию в ряд Тейлора по случайным величинам в окрестности точки V=0 с учётом вторых членов разложения:

$$X(t,V) = \varphi(t,0) + \sum_{i=1}^{m} \frac{\partial x}{\partial V_i} V_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial^2 \varphi}{\partial V_i \cdot \partial V_j} V_i V_j.$$

Осуществляя с этой функцией операцию вычисления математического ожидания, получим:

$$M(x) = \varphi(t,0) + \sum_{i=1}^{m} \frac{\partial x}{\partial V_{i}} M(V \dot{c} \dot{c} i) + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial^{2} \varphi}{\partial V_{i} \cdot \partial V_{j}} M(V \dot{c} \dot{c} i, V_{j}). \dot{c} \dot{c}$$

Так как по условию $M(V)=m_V=0$, $M(V_i,V_j)$, (i, j = 1, 2, ..., m) является диагональной корреляционной матрицей, то предыдущая зависимость примет вид:

$$M(X) = \varphi(t,0) + \frac{1}{2} \sum_{j=1}^{m} \frac{\partial^{2} \varphi}{\partial V_{j}^{2}} \sigma_{Vj}^{2}.$$

Отсюда видно, что для вычисления математического ожидания вектора X надо вычислить его значение при V=0 и значение вторых частных производных $\frac{\partial^2 \varphi}{\partial V^2}$.

Дисперсия вектора X может быть вычислена через его начальный момент второго порядка $M\left(X_{i}^{2}\right), (i=1,2,...,n),$ где X_{i} — компонента вектора X.

Действительно,

$$D(X_{i}) = M[(X_{i} - m_{X_{i}})^{2}] = M[X_{i}^{2} - 2X_{i}m_{X_{i}} + m_{X_{i}}^{2}] = M(X_{i}^{2}) - 2m_{X_{i}}M(X_{i}) + m_{X_{i}}^{2} = M(X_{i}^{2}) - m_{X_{i}}^{2}$$

Вычисление $M(X_i^2)$ можно осуществить так же, как и M(X). Для этого запишем выражение $X_i^2 = \varphi_i(t,V)$, (=1,2,...,n), где $\varphi_i(t,V) = \varphi_i^2(t,V)$.

Тогда
$$M(X_i^2) = \varphi_i(t,0) + \frac{1}{2} \sum_{j=1}^m \frac{\partial^2 \varphi_i}{\partial V_j^2} \sigma_{V_j}^2$$
.

Неудобством данных формул является необходимость вычисления частных производных $\frac{\partial^2 \varphi}{\partial V_i^2}, \frac{\partial^2 \varphi}{\partial V_j^2}$. Избежать этого можно следующим образом. Задаем L наборов случайных величин V:

$$V_{11}, V_{21}, V_{31, \dots}, V_{m1, \dots}, V_{12}, V_{22}, V_{32, \dots}, V_{m2, \dots}, V_{m1, \dots}, V_{1L}, V_{2L}, V_{3L, \dots}, V_{mL}.$$

	таолица з									
L	\mathbf{V}_1	V_2	V_3	• • •	V_{m}	X				
1	ξ_1	0	0		0	X_1				
2	0	ξ_2	0	• • • •	0	X_2				
3	0	0	ξ_3	• • • •	0	X_3				
•	•	•	•	• • • •	•	•				
m	0	0	0		ξ_{m}	X_{m}				
m+1	ξ_1	ξ_2	ξ3		ξ_{m}	X_{m+1}				
m+2	رځ-	- ٤ ₂	<u>-</u> گء		_ع_	X_{m+2}				

Тобиние 2

Тогда получим зависимости:

$$\alpha_{1}\xi_{1}+\alpha_{2}0+...+\alpha_{m}0+\alpha_{m+1}\xi_{1}-\alpha_{m+2}\xi_{1}=0,$$

$$\alpha_{1}0+\alpha_{2}\xi_{2}+...+\alpha_{m}0+\alpha_{m+1}\xi_{2}-\alpha_{m+2}\xi_{2}=0,$$

$$...$$

$$\alpha_{1}0+\alpha_{2}0+...+\alpha_{m}\xi_{m}+\alpha_{m+1}\xi_{m}-\alpha_{m+2}\xi_{m}=0,$$

или $\alpha_k + \alpha_{m+1} - \alpha_{m+2} = 0$, (k = 1, 2, ..., m). Коэффициенты ξ_k сокращены, так как не равны нулю.

Используем эти зависимости для вычисления α_k . Просуммируем последнюю зависимость по индексу k. Имеем:

$$\sum_{k=1}^{m} \alpha_{k} + m \alpha_{m+1} - m \alpha_{m+2} = 0.$$

Преобразуем это выражение следующим образом:

$$\sum_{k=1}^{m}\alpha_{k}+\alpha_{m+1}+\alpha_{m+2}-\alpha_{m+1}-\alpha_{m+2}+m\alpha_{m+1}-m\alpha_{m+2}=\mathrm{i}\sum_{k=1}^{m+2}\alpha_{k}+(m+1)\alpha_{m+1}-(m+1)\alpha_{m+2}.$$

Так как имеем условие $\sum_{i=1}^{L} \alpha_i = 0$, то получим $1 + (m-1)\alpha_{m+1} - (m+1)\alpha_{m+2} = 0$.

Из условия $\sum_{i=1}^{L} \alpha_i V_{ji} V_{gi} = 0$ и табл. 4 имеем:

$$\alpha_{m+1} \xi_j \xi_g + \alpha_{m+2} (-\xi_j) (-\xi_g) = 0$$

или $\alpha_{m+1} + \alpha_{m+2} = 0$.

Получили два уравнения для определения α_{m+1} , α_{m+2} : $1+(m-1)\alpha_{m+1}-(m+1)\alpha_{m+2}=0$; $\alpha_{m+1}+\alpha_{m+2}=0$.

Решая её, получаем:

$$\alpha_{m+1} = \frac{-1}{2m}, \alpha_{m+2} = \frac{1}{2m}.$$

Тогда из уравнения $\alpha_k + \alpha_k - \alpha_{m+2} = 0$ получим $\alpha_k = \alpha_{m+2} - \alpha_{m+1}$ или $\alpha_k = \frac{1}{m}$, (k = 1, 2, ..., m).

Исходя из таблицы, зависимость $\sum_{i=1}^{L} \alpha_i V_j^2 = \sigma_{v_j}^2, (j=1,2,...,m)$ примет вид: $\alpha_j \xi_j^2 + \alpha_{m+1} \xi_j^2 + \alpha_{m+2} \xi_j^2 = \sigma_{v_j}^2 \text{ или } \frac{1}{m} \xi_j^2 = \sigma_{v_j}^2.$ Отсюда получим $\xi_j = \sigma_{v_j} \sqrt{m}, (j=1,2,...,m).$

Используя найденные зависимости для α_k , α_{m+1} , α_{m+2} , ξ_j , найдём формулы для вычисления математического ожидания вектора X:

$$M(X) = \sum_{i=1}^{m+2} \alpha_i X_i = \frac{1}{m} \sum_{i=1}^{m} X_i + \frac{X_{m+2} - X_{m+1}}{2m},$$

дисперсии

$$D(X_{j}) = \frac{1}{m} \sum_{i=1}^{m} X_{j,i}^{2} + \frac{X_{j,m+2}^{2} - X_{j,m+1}^{2}}{2m} - (M[X_{j}]).$$

Здесь $X_{j,i}$ –ij-ая компонента вектора \overline{X}_i .

Пример выполнения задания

Дана система дифференциальных уравнений, описывающих поведение анализируемой системы:

$$\begin{cases}
\frac{x_1}{t} = f(x_1, x_2, t) \\
\frac{x_2}{t} = \varphi(x_1, x_2, t)
\end{cases}$$

где $x_1, x_2 - \dot{c}$ фазовые координаты системы.

В качестве компонент вектора случайных величин V примем начальные условия для фазовых координат системы дифференциальных уравнений:

$$V^T = [x_{01}, x_{02}], (m=2).$$

Известны математическое ожидание m_1, m_2 и дисперсии σ_1^2, σ_2^2 фазовых координат на момент начала функционирования системы.

Оценим вероятностные характеристики фазовых координат на момент времени t_k , т. е. найдем m_{1k} , $m_{2k}u\sigma_{1k}^2$, σ_{2k}^2 .

1. Вычислим ξ_1 и ξ_2 :

$$\xi_1 = \sigma_1 \sqrt{m}, \ \xi_2 = \sigma_2 \sqrt{m}.$$

2. Зададим системы случайных величин:

	V_{1}	V_2
1	ξ_1	0
2	0	ξ_2
3	ξ_1	ξ_2
4	- ξ ₁	- ξ ₂

3. Зададим четыре набора начальных условий:

1)
$$\frac{x_{01}=m_1+\xi_1}{x_{02}=m_2+0}$$
; 3) $\frac{x_{01}=m_1+\xi_1}{x_{02}=m_2+\xi_2}$;

2)
$$\frac{x_{01}=m_1+0}{x_{02}=m_2+\xi_2}$$
; 4) $\frac{x_{01}=m_1-\xi_1}{x_{02}=m_2-\xi_2}$.

4. Интегрируем четыре раза систему дифференциальных уравнений, каждый раз используя новый набор начальных условий. В результате получим четыре набора фазовых координат за момент времени t_k .

1)
$$x_{11}$$
, x_{21} ; 3) x_{13} , x_{23} ; 2) x_{12} , x_{22} ; 4) x_{14} , x_{24} .

5. Вычислим математические ожидания фазовых координат на момент времени t_k по следующим зависимостям:

$$m_{1k} = \frac{1}{m} (x_{11} + x_{12}) + \frac{(x_{14} - x_{13})}{2m} ;$$

$$m_{2k} = \frac{1}{m} (x_{21} + x_{22}) + \frac{(x_{24} - x_{23})}{2m} .$$

6. Вычислим дисперсии фазовых координат на момент времени t_k по следующим зависимостям:

$$\sigma_{1k} = \frac{1}{m} \left(x_{11}^2 + x_{12}^2 \right) + \frac{x_{14}^2 - x_{13}^2}{2m} - m_{1k}^2;$$

$$\sigma_{2k} = \frac{1}{m} \left(x_{21}^2 + x_{22}^2 \right) + \frac{x_{24}^2 - x_{23}^2}{2m} - m_{2k}^2.$$

Варианты заданий

Таблица 4

No	Система дифференциальных	Ø v 1	σ _{v2}	<i>m</i> ₁	m_{2}	f.
вар	уравнений	× 1	0 X 2	···1	1112	ι_{K}

1	2	3	4	5	6	7

0.5

1
$$\frac{x_1}{t} = \cos x_1 - x_2 \frac{x_2}{t} = \sin x_1 t + x_2$$

3 2 2 0.1 0.3 35
$$\frac{x_1}{t} = \sin(x_1 + x_2) \frac{x_2}{t} = x_1 t + 2x_2$$

4 3 1 1 0.5 30
$$\frac{x_1}{t} = 0.1^{x_1} + x_2 \frac{x_2}{t} = \cos x_1 - x_2$$

5
$$\frac{x_1}{t} = 0.2 \ln x_2 - x_1^2 \frac{x_2}{t} = x_1 x_2 t$$
 3 0.3 1 40

6
$$\frac{x_1}{t} = x_1 \sin t + x_2 \frac{x_2}{t} = x_1^2 + x_2 t$$
 2 0 0.3 38

7
$$\frac{x_1}{t} = \ln x_1 / t - 5x_2$$
 2 1 0.8 0.5 42 $\frac{x_2}{t} = (x_1 + x_2) / t$

Продолжение табл						е таол. 4
1	2	3	4	5	6	7

$$8 \quad \frac{x_1}{t} = \frac{\cos x_2}{t} + tx_1 \frac{x_2}{t} = x_2 - x_1^2 + t \qquad 1 \qquad 3 \qquad 0 \qquad 0.7 \qquad 35$$

$$9 \frac{\frac{x_1}{t} = \sin(x_1 + t) - i x_2 i}{\frac{x_2}{t} = \cos(x_1 + x_2)}$$

$$\frac{x_1}{t} = x_1 x_2 + \cos t - \frac{x_2}{t} = t + 2x_1 x_2$$

$$\frac{x_1}{t} = \cos x_1 + x_2 t - \frac{x_2}{t} = \frac{x_2}{x_1}$$

$$\frac{x_1}{t} = x_1 \cos x_2 - \frac{x_2}{t} = t \sin(x_1 + x_2)$$

$$\frac{x_1}{t} = x_1^3 - \sin x_2 - \frac{x_2}{t} = 2x_1 x_2 t$$

$$\frac{x_1}{t} = \ln x_2 - x_1 + t - \frac{x_2}{t} = \sin x_1 - x_2$$

$$\frac{x_1}{t} = \left(x_1 + x_2^2\right) / t - \frac{x_2}{t} = \cos x_1 - t x_2$$

$$\frac{x_1}{t} = \frac{\left|\sin x_1\right|}{t} - x_2^2 - \frac{x_2}{t} = x_1^2 + x_2$$

Окончание табл. 4

	Окончание табл. 4					
1	2	3	4	5	6	7
17	$\frac{x_1}{t} = \left \cos x_1 x_2\right - \frac{x_2}{t} = \sin x_1 t - 5x_2$	3	2	1	2	30
18	$\frac{x_1}{t} = \left \cos x_1\right + x_2 t - \frac{x_2}{t} = \left \sin x_2\right + x_1 t$	1	3	0	1	35
19	$\frac{x_1}{t} = \cos^{2}x_2 - x_1^2 - \frac{x_2}{t} = x_1 x_2 + t$	4	2	1	0.5	40
20	$\frac{x_1}{t} = 2\sin x_1 + x_2 t \frac{x_2}{t} = x_2^2 - \cos x_1$	3	4	2	0.8	28
21	$\frac{x_1}{t} = \ln x_1 t - x_2^3 \frac{x_2}{t} = \cos x_1 + \sin x_2$	4	1	0.3	1	37
22	$\frac{x_1}{t} = \cos x_1 - x_2^2 t \frac{x_2}{t} = \sin x_2 - x_1^2$	4	3	1	2	25
23	$\frac{x_1}{t} = e^{x_1} - \sin x_2 \frac{x_2}{t} = \cos(x_1 + x_2)$	2	4	0.5	2	30
24	$\frac{x_1}{t} = \ln(x_1 + t) - \cos x_2$ $\frac{x_2}{t} = \sin x_1 + x_2$	1	4	0.8	0	35

Содержание отчёта

- 1. Постановка задачи.
- 2. Математическая модель.
- 3. Текст программы

Александр Иванович Полунин Лариса Геннадьевна Смышляева

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Методические указания к выполнению лабораторных работ для студентов специальности 22.04

Ответственный за выпуск Одновалова Е. Н.

Подписано в печать 23.11.93.	Формат 60х84/16
Объем 2 учизд.л.	Тираж 100
Заказ 456	Бесплатно

Ротапринт Белгородского технологического института строительных материалов. 308012, г. Белгород, ул. Костюкова, 46.