PHYS12 CH22: Magnetism

Sections 22.1-22.8

Mr. Gullo

April, 2025

1/22

Learning Objectives

By the end of this presentation, you should be able to:

- Describe magnets, magnetic fields, and magnetism
- Understand magnetic field lines and their properties
- Calculate the force on charges and currents in magnetic fields
- Apply the right-hand rule for magnetic forces
- Explain the Hall effect and practical applications
- Calculate torque on current loops in magnetic fields

2 / 22

Outline

Magnets and Magnetic Fields

2 Magnetic Forces on Charges and Currents

Example Problems

3/22

Basic Concepts of Magnetism

Magnetism

Properties of magnets and their interaction with moving charges and currents.

- Magnetic poles: North and South
- Like poles repel, unlike poles attract
- Poles always occur in pairs—cannot be isolated
- North poles point toward Earth's geographic north

Ferromagnets and Electromagnets

Ferromagnetic Materials

- Materials with strong magnetic effects (iron)
- Form regions called domains
- Domains align to create permanent magnets
- Lose magnetism above Curie temperature

Electromagnets

- Use electric currents to create magnetic fields
- Field strength depends on current and coil turns
- Can be turned on and off

Magnetic Field Lines

Magnetic Field Representation

Magnetic fields are represented by field lines.

Properties of magnetic field lines:

- Field is tangent to the field line
- Line density shows field strength
- Lines never cross
- Lines form continuous loops

Magnetic Force Formula

The magnitude of the magnetic force on a moving charge:

$$F = qvB\sin\theta \tag{1}$$

where θ is the angle between velocity and field.

- SI unit: tesla (T)
- Force direction given by right-hand rule
- Force is perpendicular to v and B
- No force when v is parallel to B

Notation for vector pointing into the page

Notation for vector pointing out of the page

Applications of Force on Moving Charges

Circular Motion in Magnetic Field

Radius of a charged particle's circular path:

$$r = \frac{mv}{qB} \tag{2}$$

- Applications:
 - Mass spectrometers
 - Particle accelerators
 - Particle detectors
- Only affects moving charges

CH22 Magnetism

The Hall Effect

Hall Effect

Voltage created across a current-carrying conductor by a magnetic field.

Hall voltage:

$$\varepsilon = Blv$$
 (3

- B, I, and v must be
- perpendicularApplications:
 - Measuring magnetic fields
 - Hall effect sensors

Magnetic Force on a Current-Carrying Conductor

Force Formula

The magnetic force on a current-carrying conductor:

$$F = IIB\sin\theta \tag{4}$$

where I is current, I is length, B is field strength, and θ is the angle.

- Direction follows right-hand rule
- Maximum force when conductor is perpendicular to field
- No force when conductor is parallel to field
- Basis for electric motors

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ ⑤

13 / 22

Torque on a Current Loop: Motors and Meters

Torque Formula

The torque on a current-carrying loop:

$$\tau = NIAB \sin \theta \tag{5}$$

where N is turns, I is current, A is area, B is field strength.

- Maximum torque: loop parallel to field
- Zero torque: loop perpendicular to field
- Applications:
 - Electric motors
 - Measuring instruments

14 / 22

Problem

Calculate the force on an electron moving at 5.0×10^6 m/s perpendicular to a magnetic field of 0.50 T.

Mr. Gullo CH22 Magnetism April 2025 15 / 22

Problem

Calculate the force on an electron moving at 5.0×10^6 m/s perpendicular to a magnetic field of 0.50 T.

Solution

Given:

- Charge of electron: -1.60×10^{-19} C
- Velocity: 5.0×10^6 m/s
- Magnetic field: 0.50 T
- Angle: 90 (perpendicular)

15 / 22

Solution

Given:

- Charge of electron: -1.60×10^{-19} C
- Velocity: 5.0×10^6 m/s
- Magnetic field: 0.50 T
- Angle: 90 (perpendicular)

Using $F = qvB \sin \theta$:

16 / 22

Solution

Given:

- Charge of electron: -1.60×10^{-19} C
- Velocity: 5.0×10^6 m/s
- Magnetic field: 0.50 T
- Angle: 90 (perpendicular)

Using $F = qvB \sin \theta$:

$$F = (-1.60 \times 10^{-19} \text{ C})(5.0 \times 10^6 \text{ m/s})(0.50 \text{ T})(\sin 90)$$
 (6)

$$F = -4.0 \times 10^{-13} \text{ N} \tag{7}$$

The negative sign indicates force direction opposite to the right-hand rule.

Mr. Gullo CH22 Magnetism April 2025 16 / 22

Problem

Find the radius of the circular path of a proton with speed 3.0×10^6 m/s in a magnetic field of 0.75 T when the proton velocity is perpendicular to the field.

 Mr. Gullo
 CH22 Magnetism
 April 2025
 17 / 22

Problem

Find the radius of the circular path of a proton with speed 3.0×10^6 m/s in a magnetic field of 0.75 T when the proton velocity is perpendicular to the field.

Solution

Given:

- ullet Mass of proton: $1.67 imes 10^{-27} \ kg$
- Charge of proton: 1.60×10^{-19} C
- Velocity: 3.0×10^6 m/s
- Magnetic field: 0.75 T

Mr. Gullo CH22 Magnetism April 2025 17 / 22

 Mr. Gullo
 CH22 Magnetism
 April 2025
 18 / 22

Solution

Given:

- Mass of proton: 1.67×10^{-27} kg
- Charge of proton: 1.60×10^{-19} C
- Velocity: 3.0×10^6 m/s
- Magnetic field: 0.75 T

Using
$$r = \frac{mv}{qB}$$
:

18 / 22

Solution

Given:

- Mass of proton: 1.67×10^{-27} kg
- ullet Charge of proton: 1.60×10^{-19} C
- $\bullet \ \ \text{Velocity:} \ \ 3.0 \times 10^6 \ \ \text{m/s}$
- Magnetic field: 0.75 T

Using
$$r = \frac{mv}{qB}$$
:

$$r = \frac{(1.67 \times 10^{-27} \text{ kg})(3.0 \times 10^6 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(0.75 \text{ T})}$$
(8)

$$r = 4.2 \times 10^{-2} \text{ m} = 4.2 \text{ cm}$$
 (9)

18 / 22

Example 3: "You do"

Problem

A straight wire carrying a 5.0 A current is placed in a uniform magnetic field of 0.25 T. If the wire is 10 cm long and makes an angle of 30° with the field, what is the magnetic force on the wire?

Mr. Gullo CH22 Magnetism April 2025 19 / 22

Example 3: "You do"

Problem

A straight wire carrying a 5.0 A current is placed in a uniform magnetic field of 0.25 T. If the wire is 10 cm long and makes an angle of 30° with the field, what is the magnetic force on the wire?

Hints

- Use $F = IIB \sin \theta$
- Convert length to meters
- Calculate sin(30)

19 / 22

Example 3: "You do"

Problem

A straight wire carrying a 5.0 A current is placed in a uniform magnetic field of 0.25 T. If the wire is 10 cm long and makes an angle of 30° with the field, what is the magnetic force on the wire?

Hints

- Use $F = IIB \sin \theta$
- Convert length to meters
- Calculate sin(30)

Answer (to check your work)

$$F = 0.125 \text{ N}$$

Key Equations

Magnetic Forces

$$F = qvB\sin\theta$$
 (Force on moving charge) (10)

$$r = \frac{mv}{qB}$$
 (Radius of circular path) (11)

$$\varepsilon = Blv$$
 (Hall emf) (12)

$$F = IIB \sin \theta$$
 (Force on current-carrying conductor) (13)

$$\tau = NIAB \sin \theta$$
 (Torque on current loop) (14)

Right-Hand Rule

Thumb: velocity/current direction, Fingers: magnetic field, Palm: force direction

20 / 22

Summary

- Magnets have north and south poles that cannot be isolated
- Like poles repel, unlike poles attract
- All magnetism arises from electric current
- Magnetic fields affect moving charges and currents
- The Hall effect creates voltage in conductors in magnetic fields
- Torque on current loops enables motors and meters

Applications

Electromagnets, motors, generators, particle accelerators, MRI, sensors

21/22

References

Textbook

OpenStax Physics, Chapter 22: Magnetism, Sections 22.1-22.8

Mr. Gullo CH22 Magnetism April 2025 22 / 22