Metrics

Peter

Friday, March 27, 2015

Overview:

This document is created to give a brief summary of the possibilities to use R for calculating and reporting the metrics of a department within operations. At this moment there are 3 main elements that are used to "grade" the performance of a department/team/agent, which will be discussed in this document, namely:

- Average number of cases handled per shift
- Average case Handle Time in minutes
- Customer Satisfaction scores

As an addition, several extra plots are added to show:

- The number of cases per language
- The handle time per language, split in Email and Chat
- The number of cases handled per agent grouped by language
- The waiting time (in queue) per language, split in Email and Chat

For this document 3 data sets are created:

- 1. Pay2 (cases and there main features)
- 2. CusSat (customer feedback per caseID, NoProduct, NoPolicy and NoAgent mean that there is dissatisfaction due to product, policy or agent.)
- 3. Time (time registating per agent, hours worked versus TA/sickness)

The 3 datasets look like:

```
Pay2 <- read.csv("C:/Users/User/Desktop/Pay2.csv", sep=";")
kable(head(Pay2), format = "latex")</pre>
```

CaseNumber	HandleTime	Wait	Language	Agent	Type
1	5	71	English	A1	Chat
2	3	25	Spanish	A2	Email
3	4	61	Spanish	A2	Chat
4	12	28	Italian	A4	Chat
5	7	68	Portuguese	A1	Chat
6	1	20	Portuguese	A2	Chat

```
CusSat <- read.csv("C:/Users/User/Desktop/CusSat.csv", sep=";")
kable(head(CusSat), format = "latex")</pre>
```

CaseID	Agent	Satisfied	NoProduct	NoPolicy	NoAgent
362541	A1	1	0	0	0
362598	A4	0	1	0	0
362613	A1	1	0	0	0
362674	A3	1	0	0	0
362710	A2	0	0	0	1
362769	A2	1	0	0	0

```
time <- read.csv("C:/Users/User/Desktop/Time.csv", sep=";")
Time <- data.frame(time)
kable(head(Time), format = "latex")</pre>
```

Date	Agent	Bruto.Hours	Time.Adjustement	Sick	Netto.Hours
21/05/2015	A1	8	0	0	8
21/05/2015	A2	8	0,5	0	7,5
21/05/2015	A3	8	0	0	8
21/05/2015	A4	8	2	0	6
22/05/2015	A1	8	0	8	0
22/05/2015	A2	8	1	0	7

The first element is the number of cases handled per shift.

```
EE <- Pay2 %>%
  group_by(Agent) %>%
  summarise(NumberOfCases = n())

TA <- Time %>%
  group_by(Agent) %>%
  summarise(Shifts = sum(Netto.Hours, na.rm=TRUE)/8)

length(Pay2$Agent); AveCasesperShift<- length(Pay2$Agent)/sum(TA$Shifts)</pre>
```

- The overall number of cases handled is 99, done in an overall number of netto shifts of 21.875.
- This results in an average of 4.5257143 cases per shift.

The number of cases separated by agent gives:

kable(EE)

Agent	NumberOfCases
A1	23
A2	31
A3	20
A4	25

The number of shifts separated by agent gives:

kable(TA)

Agent	Shifts
A1	4.000
A2	5.625
A3	6.250
A4	6.000

The average number of cases per shift per agents:

```
A1Cases<- length(Pay2$Agent[Pay2$Agent="A1"])
A2Cases<- length(Pay2$Agent[Pay2$Agent="A2"])
A3Cases<- length(Pay2$Agent[Pay2$Agent="A3"])
A4Cases<- length(Pay2$Agent[Pay2$Agent=="A4"])

A1Shift <- TA[1, 2]
A2Shift <- TA[2, 2]
A3Shift <- TA[3, 2]
A4Shift <- TA[4, 2]

ScoreA1 <- A1Cases/A1Shift
ScoreA2 <- A2Cases/A2Shift
ScoreA3 <- A3Cases/A3Shift
ScoreA4 <- A4Cases/A4Shift
```

- Agent 1 handled an average of 5.75 cases per shifts.
- Agent 2 handled an average of 5.5111111 cases per shifts.
- Agent 3 handled an average of 3.2 cases per shifts.
- Agent 4 handled an average of 4.1666667 cases per shifts.

A plot of cases per agent per type:

```
PP <- Pay2 %>%
  group_by(Agent, Type) %>%
  summarise(NumberOfCases = n())

ggplot(PP, aes(x=Agent, y=NumberOfCases, fill=Type)) +
  geom_bar(stat="identity") + coord_flip()
```


The second element is the Average Handle Time per case in minutes.

Below the overall average Handle Time and the Handle Time per agent:

```
mean(Pay2$HandleTime)

## [1] 6.060606

HH <- Pay2 %>%
   group_by(Agent) %>%
   summarise(avg_handle = mean(HandleTime, na.rm=TRUE))

kable(HH)
```

Agent	avg_handle
A1	6.521739
A2	5.000000
A3	7.250000
<u>A4</u>	6.000000

A boxplot of the overall handle time of the team versus handle time per agent:

Agent HandleTime

The third element is the Customer Satisfaction per Agent

The set goal for a 3 rating is to have equal or less than 3% dissatisfaction.

Below a table with the number of "satisfied/Not agent to blame" Customer reviews, versus the cases in which agent can be blamed.

And the same table expressed in percentages.

	0	1
$\overline{A1}$	0.9642857	0.0357143
A2	0.9629630	0.0370370
A3	0.9629630	0.0370370
A4	0.9259259	0.0740741

The number of cases per language:

```
YY <-Pay2 %>%
  group_by(Language) %>%
  summarise(lang_count = n()) %>%
  arrange(desc(lang_count))
kable(YY)
```

Language	lang_count
English	28
Portuguese	21
Russian	21
Spanish	14
Dutch	8
Italian	7

In a barchart:

```
y=table(Pay2$Language)
barplot(y, main="Cases per Language", xlab="Language", ylab="Number of cases")
```

Cases per Language

The handle time per language, split in Email and Chat:

```
a <- ggplot(Pay2, aes(y=HandleTime, x=Language, fill=Type)) + geom_boxplot()
a</pre>
```


The number of cases handled per agent grouped by language:

```
FF <-Pay2 %>%
  group_by(Agent, Language) %>%
  summarise(lang_count = n())

ggplot(FF, aes(x=Agent, y=lang_count, fill=Language)) +
  geom_bar(stat="identity") + coord_flip()
```


The waiting time (in queue) per language, split in Email and Chat:

```
b <- ggplot(Pay2, aes(y=Wait, x=Language, fill=Type)) + geom_boxplot()
b</pre>
```

