Project 1 FYS3150

Ann-Silje Kirkvik

github.com/annsilje/fys3150

September 14, 2016

1 Introduction

This project will explore different numerical methods for solving linear second order differential equations of the form

$$-u''(x) = f(x), x \in (0,1), u(0) = u(1) = 0.$$
(1)

This problem can be rewritten into a set of linear equation Ax = b with the nice property that the design matrix A is tridiagnoal. This particular matrix even has an analytical solution, which enables the creation of tailored alogrithms that are fast and memory efficient compared to a brute force linear equation solver.

2 Description

Starting with a Taylor expansion of $u(x_i + h) = u_{i+1}$ and $u(x_i - h) = u_{i-1}$ and adding these togheter yields the three point formula for the second order derivative:

$$u''(x) = \frac{u_{i+1} + u_{i-1} - 2u_i}{h^2} + \mathcal{O}(h^2).$$

The numerical approximation $v_i''(x_i)$ to u''(x) is then

$$v_i''(x_i) = \frac{v_{i+1} + v_{i-1} - 2v_i}{h^2}.$$

Inserting this approximation into the original differential equation in 1 yields the following formula:

$$-\frac{v_{i+1} + v_{i-1} - 2v_i}{h^2} = f_i,$$

for a given set of grid points $(x_i, f_i(x_i))$ for i = 1, ..., n, where h = 1/(n+1) is the step length between each x_i . With the boundary conditions $v_0 = v_{n+1} = 0$ this becomes n linear equations:

$$2v_1 - v_2 = h^2 f_1$$

$$-v_1 + 2v_2 - v_3 = h^2 f_2$$

$$-v_2 + 2v_3 - v_4 = h^2 f_3$$

$$\vdots$$

$$-v_{n-1} + 2v_n - v_{n+1} = h^2 f_n$$

In matrix form this becomes $\mathbf{A}\mathbf{v} = h^2\mathbf{f}$ or

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & -1 & 2 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \\ v_n \end{bmatrix} = h^2 \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{n-1} \\ f_n \end{bmatrix}$$

This linear equation system can be solved numerically in at least three different ways:

- By LU-decomposition and backward substitution.
- With a tridiagonal solver and backward subtitution.
- With a analytical custom made solver and backward substitution.

2.1 LU-decomposition

LU-decomposition consists of finding a factorization A = LU such that L is a lower triangular matrix and U is an upper triangular matrix. For instance if A is a 4×4 matrix one such factorization is:

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \text{ and } \boldsymbol{U} = \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

Once this factorization is found the equation system $Av = LUv = h^2 f$ can be solved by setting $Ly = h^2 f$ and Uv = y and applying backward substitution twice.

2.2 Tridiagonal solver

A tridiagonal solver exploits the fact that only the diagonal elements and the elements directly above and below the diagonal is different from zero. The matrix A then has the form:

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & \cdots & \cdots & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & \cdots & 0 \\ 0 & a_3 & b_3 & c_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & a_n & b_n \end{bmatrix}$$

By performing Gauss elimination on the equation system it can be shown that the elements directly above the diagonal remains unchanged and the diagonal elements d_i become

$$d_i = b_i - a_i c_{i-1} / d_{i-1}$$
 with $d_1 = b_1$

The elements directly below the diagonal becomes zero, as is the goal of the Gauss elimination. The column vector elements w_i becomes

$$w_i = f_i - a_i w_{i-1} / d_{i-1}$$
 with $w_1 = f_1$

2.3 Custom solver

3 Solution

If $f(x)=100e^{-10x}$ the analytical solution to the differential equation in 1 is $u(x)=1-(1-e^{-10})x-e^{-10x}$.

3.1 Algorithm

3.2 Results

Steps (n)	Generic	Specific	G - S	LUD	G - LUD
10^{1}					-7.00×10^{-6} s
10^{2}	8.50×10^{-5} s	9.00×10^{-6} s	$7.60 \times 10^{-5} s$	$3.54 \times 10^{-3} s$	-3.45×10^{-3} s
10^{3}	2.40×10^{-4} s	8.00×10^{-5} s	$1.60 \times 10^{-4} s$	1.20s	-1.20s
10^{4}	$3.20 \times 10^{-4} \text{s}$	2.72×10^{-4} s	4.80×10^{-5} s		
10^{5}	3.19×10^{-3} s	2.49×10^{-3} s	$6.93 \times 10^{-4} s$		
10^{6}	2.81×10^{-2} s	2.59×10^{-2} s	2.23×10^{-3} s		
10^{7}	2.85×10^{-1} s	2.54×10^{-1} s	$3.06\times10^{-2}\mathrm{s}$		

Table 1: Run times for the different algorithms.

Step size (h)	Max relative $error(\epsilon)$	$log(\epsilon)$
9×10^{-2}	2.00329251	$6.94792080 \times 10^{-1}$
1×10^{-2}	1.09015546	$8.63203083 \times 10^{-2}$
1×10^{-3}	1.00890166	$8.86227046 \times 10^{-3}$
1×10^{-4}	1.00088902	$8.88626716 \times 10^{-4}$
1×10^{-5}	1.00008889	$8.88864595 \times 10^{-5}$
1×10^{-6}	1.00000923	$9.22752276 \times 10^{-6}$
1×10^{-7}	1.00000307	$3.07023540 \times 10^{-6}$

Table 2: Maximum relative error for each step length using the generic solver.

4 Conclusions

A Gauss elimintaion

Gauss elimination of the equation system $Av = h^2 f$, where a_{ij} is the matrix element of matrix A at row i and column j and R_i is row number i.

$$\begin{bmatrix} b_1 & c_1 & 0 & \cdots & \cdots & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & \cdots & 0 \\ 0 & a_3 & b_3 & c_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & a_n & b_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \\ v_n \end{bmatrix} = h^2 \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{n-1} \\ f_n \end{bmatrix}$$

Set $b_1 = d_1$, $f_1 = w_1$ and apply $R_2 = R_2 - R_1 * a_{j1}/a_{11}$.

$$\begin{bmatrix} d_1 & c_1 & 0 & \cdots & \cdots & 0 \\ 0 & b_2 - \frac{a_2 c_1}{d_1} & c_2 - \frac{a_2 * 0}{b_1} & 0 & \cdots & \cdots & 0 \\ 0 & a_3 & b_3 & c_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & a_n & b_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \\ v_n \end{bmatrix} = h^2 \begin{bmatrix} w_1 \\ f_2 - \frac{a_2 w_1}{d_1} \\ f_3 \\ \vdots \\ \vdots \\ f_{n-1} \\ f_n \end{bmatrix}$$

Set $d_2 = b_2 - a_2 c_1/d_1$, $w_2 = f_2 - a_2 w_1/d_1$ and apply $R_3 = R_3 - R_2 * a_{j2}/a_{22}$.

$$\begin{bmatrix} d_1 & c_1 & 0 & \cdots & \cdots & 0 \\ 0 & d_2 & c_2 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & b_3 - \frac{a_3 c_2}{d_2} & c_3 - \frac{a_3 * 0}{d_2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & a_n & b_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{n-1} \\ v_n \end{bmatrix} = h^2 \begin{bmatrix} w_1 \\ w_2 \\ f_3 - \frac{a_3 w_2}{d_1} \\ \vdots \\ \vdots \\ f_{n-1} \\ f_n \end{bmatrix}$$

Continuing this process for every row finally yields

$$\begin{bmatrix} d_1 & c_1 & 0 & \cdots & \cdots & 0 \\ 0 & d_2 & c_2 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & d_3 & c_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & 0 & d_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & \cdots & 0 & d_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ \vdots \\ v_{n-1} \\ v_n \end{bmatrix} = h^2 \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ \vdots \\ w_{n-1} \\ w_n \end{bmatrix}$$

With $d_i = b_i - a_i c_{i-1}/d_{i-1}$ and $w_i = f_i - a_i w_{i-1}/d_{i-1}$.

B Numerical vs Analytical solutions

Figure 1: Numerical solution using the generic tridiagonal solver compared to the analytical solution.

Figure 2: Error

Figure 3: Numerical solution using the tridiagonal solver tailored to this specific matrix compared to the analytical solution.

Figure 4: Numerical solution using the LU-decomposition and backward substitution compared to the analytical solution.