BDC5101

Deterministic Operations Research Models

Zhenyu Hu Semester II, 2018/2019

Duality Theory

Motivating Example

Consider a nonlinear optimization problem:

$$z = \min_{x,y} x^2 + y^2$$

s. t. $x + y = 1$

Method of Lagrangian relaxation

$$g(p) = \min_{x,y} x^2 + y^2 + p(1-x-y)$$

- p is called the Lagrangian multiplier.
- The function $L(x, y, p) = x^2 + y^2 + p(1 x y)$ is called the Lagrangian.
- For any p, the relaxed problem provides a lower bound to the optimal value of the original problem.
- If p > 0, it penalizes the case when x + y < 1; if p < 0, it penalizes the case when x + y > 1.

Motivating Example

Relaxed problem

$$\min_{x,y} x^2 + y^2 + p(1 - x - y)$$

$$-\frac{\partial L}{\partial x}=2x-p=0, \frac{\partial L}{\partial y}=2y-p=0.$$

- $x = y = \frac{p}{2}$ and the optimal value is $g(p) = p \frac{p^2}{2}$.
- For any $p, g(p) \leq z$.
- We want to make g(p) as close to z as possible:

$$\max_{p} g(p)$$

- Optimal solution is p=1, and consequently $x=y=\frac{1}{2}$

Summary

Primal problem

$$z = \min_{x,y} x^2 + y^2$$

s. t. $x + y = 1$

 We call the problem of finding the tightest lower bound as the dual problem:

$$w = \max_{p} g(p)$$

- $w \leq z$
- w = z?

Duality in LP: Standard Form

Primal problem

$$min c'x$$

$$s. t. Ax = b$$

$$x \ge 0$$

Relaxed problem:

$$g(p) = \min_{x \ge 0} c'x + p'(b - Ax)$$
$$= p'b + \min_{x \ge 0} (c' - p'A)x$$

- If $c' p'A \ge 0'$, $\min_{x \ge 0} (c' p'A)x = 0$;
- Else, $\min_{x\geq 0}(c'-p'A)x=-\infty$.

Duality in LP: Standard Form

Dual problem

$$\max_{p} g(p)$$

- We want to enforce $c' p'A \ge 0'$, since otherwise $g(p) = -\infty$.
- Under $c' p'A \ge 0'$, g(p) = p'b.
- The problem can be rewritten as

$$max p'b$$

 $s.t. p'A \leq c'$,

with decision variables $p' = (p_1, ..., p_m)$.

- No constraint on p_j since we want penalize both the case $a'_j x > b_j$ and the case $a'_j x < b_j$

Variants

Primal problem

$$min c'x$$

$$s. t. Ax \ge b$$

$$x \ge 0$$

Standard form:

$$min \left[c' \ 0'\right] \begin{bmatrix} x \\ s \end{bmatrix}$$

$$s.t. \quad \left[A - I\right] \begin{bmatrix} x \\ s \end{bmatrix} = b$$

$$x \ge 0$$

Dual problem

$$max \quad p'b$$

$$s. t. \quad p'[A-I] \leq [c' \ 0'], \qquad max \quad p'b$$

$$s. t. \quad p'A \leq c', p \geq 0$$

Variants: Intuition on $p \ge 0$

Primal problem

$$min c'x$$

$$s. t. Ax \ge b$$

$$x \ge 0$$

Relaxed problem:

$$g(p) = \min_{x \ge 0} c'x + p'(b - Ax)$$

- Since $b_j - a_j'x \le 0$, we only need to penalize the case when $b_j - a_j'x > 0$. This can be achieved by restricting $p_j \ge 0$.

General Relationship

min
$$\mathbf{c}'\mathbf{x}$$

 $s.t.$ $\mathbf{a}_i'\mathbf{x} \ge b_i, \quad i \in M_1$
 $\mathbf{a}_i'\mathbf{x} \le b_i, \quad i \in M_2,$
 $\mathbf{a}_i'\mathbf{x} = b_i, \quad i \in M_3,$
 $x_j \ge 0, \quad j \in N_1,$
 $x_j \le 0, \quad j \in N_2,$
 $x_j \quad \text{free}, \quad j \in N_3,$

max
$$\mathbf{p'b}$$

 $s.t.$ $p_i \ge 0, \quad i \in M_1,$
 $p_i \le 0, \quad i \in M_2,$
 p_i free, $i \in M_3,$
 $\mathbf{p'A}_j \le c_j, \quad j \in N_1$
 $\mathbf{p'A}_j \ge c_j, \quad j \in N_2$
 $\mathbf{p'A}_j = c_j, \quad j \in N_3$

Duality Theory

Dual of the dual is primal:

$$min c'x$$
s. t. $Ax \ge b, x \ge 0$

$$max p'b$$

$$s. t. p'A \leq c', p \geq 0$$

Weak duality:

$$p'b \leq c'x$$

- If the optimal value in the primal is $-\infty$, then the dual problem must be infeasible.
- If the optimal value in the dual is $+\infty$, then the primal problem must be infeasible.
- If x and p are feasible solutions to primal and dual and p'b = c'x, then they must be optimal.

Duality Theory

 Strong duality: If an LP has an optimal solution, then its dual also has a solution and the respective optimal value are equal.

	Finite optimum	Unbounded	Infeasible
Finite optimum	Possible	Impossible	Impossible
Unbounded	Impossible	Impossible	Possible
Infeasible	Impossible	Possible	Possible

Production Example Revisited

	TABLE 3	3.1	Data	for	the	Wyndor	Glass	Co.	problem
--	---------	-----	------	-----	-----	--------	-------	-----	---------

		ion Time h, Hours	
	Pro	duct] <u>-</u> .
Plant	1	2	Production Time Available per Week, Hours
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

LP formulation

$$max \quad 3 x_1 + 5x_2 \qquad max \quad c'x$$
 $s. t. \quad x_1 \leq 4 \qquad s. t. \quad Ax \leq b$
 $2x_2 \leq 12 \qquad x \geq 0$
 $3x_1 + 2x_2 \leq 18$
 $x_1 \geq 0, x_2 \geq 0$

Production with Resource Market

- Suppose there is a market where plant hours can be sold and bought.
- Production hour at plant i is priced at $p_i \ge 0$.

- Consider plant 3, for example
 - If $3x_1+2x_2 < 18$, the firm can sell $18 (3x_1 + 2x_2)$ hours at price p_3 to the market.
 - If $3x_1+2x_2 > 18$ The firm has to buy $3x_1+2x_2-18$ at price p_3 from the market.

Production with Resource Market

max
$$3 x_1 + 5x_2 + p_1(4 - x_1) + p_2(12 - 2x_2) + p_3 [18 - (3x_1 + 2x_2)]$$

s.t. $x_1, x_2 \ge 0$

$$max \quad c'x + \sum_{i=1}^{m} p_i(b_i - \sum_{j=1}^{n} a_{ij}x_j)$$

s. t.
$$x_j \ge 0, j = 1, ..., n$$

Production with Resource Market

$$max$$
 3 $x_1 + 5x_2 + p_1(4 - x_1) + p_2(12 - 2x_2) + p_3[18 - (3x_1 + 2x_2)]$

Rewrite as

$$max \quad 4p_1 + 12p_2 + 18p_3 + (3 - p_1 - 3p_3)x_1 + (5 - 2p_2 - 2p_3)x_2$$

- $p_1 + 3p_3$ can be interpreted as the market cost of producing product 1.
 - Think about the case all the resources are bought from the market.

At what price should the market price the plant hours?

Market Perspective

$$4p_1 + 12p_2 + 18p_3 + (3 - p_1 - 3p_3)x_1 + (5 - 2p_2 - 2p_3)x_2$$

- $4p_1 + 12p_2 + 18p_3$: purchasing cost
- $(3 p_1 3p_3)x_1 + (5 2p_2 2p_3)x_2$: opportunity cost

• $min_{p_1,p_2,p_3 \ge 0}$ [max $4p_1 + 12p_2 + 18p_3 + (3 - p_1 - 3p_3)x_1 + (5 - 2p_2 - 2p_3)x_2$]

Market Perspective

What happens if the market prices are such that

$$3 - p_1 - 3p_3 > 0$$

In this case, there is an arbitrage opportunity, the firm would set $x_1 \to \infty$.

What happens if the market prices are such that

$$3 - p_1 - 3p_3 \le 0$$

In this case, there is no arbitrage opportunity in selling product 1: profit earned from arbitrage

$$(3 - p_1 - 3p_3)x_1 = 0.$$

Market Perspective

•
$$min [max \ 4p_1 + 12p_2 + 18p_3 + (3 - p_1 - 3p_3)x_1 + (5 - 2p_2 - 2p_3)x_2]$$

min
$$4p_1 + 12p_2 + 18p_3$$

 $p_1 + 3p_3 \ge 3$,
 $2p_2 + 2p_3 \ge 5$,
 $p_1, p_2, p_3 \ge 0$
max $3x_1 + 5x_2$
 $s.t. x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0, x_2 \ge 0$

Solution

- We know primal solution is (2, 6) with optimal profit 36K.
- Is (0, 1.5, 1) an optimal solution to the dual?

min
$$4p_1 + 12p_2 + 18p_3$$
 max $3x_1 + 5x_2$
 $p_1 + 3p_3 \ge 3$,
 $2p_2 + 2p_3 \ge 5$,
 $p_1, p_2, p_3 \ge 0$ $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0, x_2 \ge 0$

Firm and the Market

$$max c'x$$

$$s. t. Ax \le b$$

$$x \ge 0$$

min
$$p'b$$
s.t. $p'A \ge c'$
 $p' \ge 0'$

Summary

 The primal problem: a firm seeks to maximize its profit by producing products from available resources.

 The dual problem: a market seeks to eliminate the arbitrage opportunities by choosing the right prices for resources.

Dual variables are also called shadow prices.

Profit Allocation Problem

■ TABLE 3.1 Data for the Wyndor Glass Co. problem

	per Bato	ion Time h, Hours duct	
Plant	1	2	Production Time Available per Week, Hours
1	1	0	4
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

$$(x_1, x_2) = (2, 6)$$
, optimal profit = 36 K

How to allocate the 36 K? (0.5, 0.5, 35)? (12, 12, 12)?
$$\frac{36}{34}(4, 12, 18) \approx (4.2, 12.7, 19.1)?$$

What if

- Producing on your own...
- Plant 1 and Plant 2 produce together

■ TABLE 3.1 Data for the Wyndor Glass Co. problem

		on Time h, Hours			
	Proc	luct			
Plant	1	2	Production Time Available per Week, Hours		
1	1	0	4		
2	0	2	12		
3	3	2	0 🕦		
Profit per batch	\$3,000	\$5,000			

$$(x_1, x_2) = (0, 0)$$
, optimal profit = 0

What if

Plant 1 and Plant 3 produce together

■ TABLE 3.1 Data for the Wyndor Glass Co. problem

	Producti per Batc	on Time h, Hours	
	Proc	luct	
Plant	1	2	Production Time Available per Week, Hours
1	1	0	4
2	0	2	0 🚱
3	3	2	18
Profit per batch	\$3,000	\$5,000	

$$(x_1, x_2) = (4, 0)$$
, optimal profit = 12 K

What if

Plant 1 and Plant 3 produce together

■ TABLE 3.1 Data for the Wyndor Glass Co. problem

Plant	Producti per Batc		
	Proc	luct	
	1	2	Production Time Available per Week, Hours
1	1	0	0 🚱 💂
2	0	2	12
3	3	2	18
Profit per batch	\$3,000	\$5,000	

$$(x_1, x_2) = (0, 6)$$
, optimal profit = 30 K

Cooperative Game: Stable Allocations

$$\begin{aligned} I_{1} + I_{2} + I_{3} &= 36 \\ I_{1} + I_{2} &\geq 0 \\ I_{1} + I_{3} &\geq 12 \\ I_{2} + I_{3} &\geq 30 \\ I_{1} &\geq 0 \\ I_{2} &\geq 0 \\ I_{3} &\geq 0 \end{aligned}$$

$$(0.5, 0.5, 35)$$

$$(12, 12, 12)$$

$$\frac{36}{34}(4, 12, 18) \approx (4.2, 12.7, 19.1)$$

More Players

Table 3: Resource vectors for group with 5 members

Resource vectors	Plant 1	Plant 2	Plant 3
1	0	0	0
2	1	0	3
3	2	0	6
4	0	4	4
5	1	8	5

$$\begin{split} I_1 + I_2 + I_3 + I_4 + I_5 &= 36 \\ I_2 + I_3 + I_4 + I_5 &\geq 36 \\ I_1 + I_3 + I_4 + I_5 &\geq 33 \\ I_1 + I_2 + I_4 + I_5 &\geq 30 \\ I_1 + I_2 + I_3 + I_5 &\geq 26 \\ I_1 + I_2 + I_3 + I_4 &\geq 19 \\ I_1 + I_2 + I_3 &\geq 9, \dots \\ I_1 + I_2 &\geq 3, \dots \\ I_1 + I_2 &\geq 3, \dots \\ I_1 &\geq 0, I_2 &\geq 3, I_3 &\geq 6, I_4 &\geq 10, I_5 &\geq 12.5 \end{split}$$

What is a stable allocation?

Allocation Based on Shadow Price: 3 players

min
$$4p_1 + 12p_2 + 18p_3$$

 $p_1 + 3p_3 \ge 3$,
 $2p_2 + 2p_3 \ge 5$,
 $p_1, p_2, p_3 \ge 0$

Table 1: Resource vectors for group with 3 members

Resource vectors	Plant 1	Plant 2	Plant 3
1	4	0	0
2	0	12	0
3	0	0	18

- (0, 1.5, 1) is the shadow price.
 - **Player 1:** $4 \times 0 = 0$
 - **Player 2:** $12 \times 1.5 = 18$
 - **Player 3:** $18 \times 1 = 18$
 - **Allocation:** (0, 18, 18)

Is it stable?

$$(I_1, I_2, I_3) = (0, 18, 18)$$

$$\begin{aligned} I_{1} + I_{2} + I_{3} &= 36 \\ I_{1} + I_{2} &\geq 0 \\ I_{1} + I_{3} &\geq 12 \\ I_{2} + I_{3} &\geq 30 \\ I_{1} &\geq 0 \\ I_{2} &\geq 0 \\ I_{3} &\geq 0 \end{aligned}$$

Allocation Based on Shadow Price: 5 players

$$\begin{aligned} & \min \ 4p_1 + 12p_2 + 18p_3 \\ & p_1 + 3p_3 \geq 3, \\ & 2p_2 + 2p_3 \geq 5, \\ & p_1, p_2, p_3 \geq 0 \end{aligned}$$

Table 3: Resource vectors for group with 5 members

Resource vectors	Plant 1	Plant 2	Plant 3
1	0	0	0
2	1	0	3
3	2	0	6
4	0	4	4
5	1	8	5

- (0, 1.5, 1) is the shadow price.
 - **Player 1:** $0 \times 0 + 1.5 \times 0 + 1 \times 0 = 0$
 - Player 2: $0 \times 1 + 1.5 \times 0 + 1 \times 3 = 3$
 - Player 3: $0 \times 2 + 1.5 \times 0 + 1 \times 6 = 6$
 - Player 4: $0 \times 0 + 1.5 \times 4 + 1 \times 4 = 10$
 - **Player 5:** $0 \times 1 + 1.5 \times 8 + 1 \times 5 = 17$
 - **Allocation:** (0, 3, 6, 10, 17)

Sensitivity Analysis

Motivation

- In practice, it is rarely sufficient to solve a single LP to arrive at good decisions.
 - The problem data may depend on some higher level decisions (strategic-level rather than operational-level)
 - Part of the problem data maybe controllable at an additional cost
 - Incomplete knowledge of problem data (randomness)

Sensitivity Analysis

 Possible changes in data require sensitivity analysis.

Sensitivity analysis: "What if" analysis

We put more focus on the optimal value

Production Example Revisited

LP formulation

$$v^* = \max 3x_1 + 5x_2$$

$$x_1 \le 4,$$

$$2x_2 \le 12,$$

$$3x_1 + 2x_2 \le 18,$$

$$x_1 \ge 0, x_2 \ge 0$$

Adding a Constraint

• What happens to v^* if we add a constraint?

$$v^* = \max 3x_1 + 5x_2$$

$$x_1 \le 4,$$

$$2x_2 \le 12,$$

$$3x_1 + 2x_2 \le 18,$$

$$x_1 + x_2 \le 10,$$

$$x_1 + x_2 \le 0, x_2 \ge 0$$

• When will $oldsymbol{v}^*$ not be affected by the additional constraint?

Adding a New Variable

• What happens to v^* if we add a variable?

$$v^* = \max 3x_1 + 5x_2 + 6x_3$$

$$x_1 + 2x_3 \le 4,$$

$$2x_2 + 4x_3 \le 12,$$

$$3x_1 + 2x_2 + 6x_3 \le 18,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Consider $(x_1, x_2, x_3) = (2,6,0)$. Is it a BFS?

Adding a New Variable

• When will v^* remain unchanged?

$$v^* = -min - 3x_1 - 5x_2 - 6x_3$$

$$x_1 + 2x_3 + x_4 = 4,$$

$$2x_2 + 4x_3 + x_5 = 12,$$

$$3x_1 + 2x_2 + 6x_3 + x_6 = 18,$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- Compute the reduced cost for nonbasic variable

$$x_3$$
 at $(x_1, x_2, x_3, x_4, x_5, x_6) = (2,6,0,2,0,0)$

Controllable Data Inputs

Available resources

Prices

Change in resource

• What happens to v^* if plant 1 has one more capacity?

$$v^* = \max 3x_1 + 5x_2$$

$$x_1 \le 4 + 1,$$

$$2x_2 \le 12,$$

$$3x_1 + 2x_2 \le 18,$$

$$x_1 \ge 0, x_2 \ge 0$$

Change in resource

 What happens to v* if plant 3 has one more capacity?

$$v^* = max \ 3x_1 + 5x_2$$

 $x_1 \le 4$,
 $2x_2 \le 12$,
 $3x_1 + 2x_2 \le 18 + 1$,
 $x_1 \ge 0, x_2 \ge 0$

How about 3 more capacity?

Change in resource

• What happens to v^* if plant 3 has 9 more capacity?

$$v^* = \max 3x_1 + 5x_2$$

$$x_1 \le 4,$$

$$2x_2 \le 12,$$

$$3x_1 + 2x_2 \le 18 + 9,$$

$$x_1 \ge 0, x_2 \ge 0$$

Relation with Shadow Price

Shadow price for the plant constraints

$$v^* = max \ 3x_1 + 5x_2$$
 $x_1 \le 4$, $\iff p_1 = 0$
 $2x_2 \le 12$, $\iff p_2 = 1.5$
 $3x_1 + 2x_2 \le 18$, $\iff p_3 = 1$
 $x_1 \ge 0, x_2 \ge 0$

Complementary slackness condition:

$$(b_j - a_j'x)p_j = 0$$

• What happens to v^* if the profit per batch for product 1 increases by 1K?

$$v^* = max (3 + 1)x_1 + 5x_2$$

 $x_1 \le 4$,
 $2x_2 \le 12$,
 $3x_1 + 2x_2 \le 18$,
 $x_1 \ge 0, x_2 \ge 0$

At least increase by 2K.

• What happens to v^* if the profit per batch for product 1 increases by 7K?

$$v^* = max (3 + 7)x_1 + 5x_2$$

 $x_1 \le 4$,
 $2x_2 \le 12$,
 $3x_1 + 2x_2 \le 18$,
 $x_1 \ge 0, x_2 \ge 0$

At least increase by 14K.

Sensitivity Report (Excel)

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$10	Batches Produced Hours Used Per Batch Produced	2	0	3	4.5	3
\$D\$10	Batches Produced Windows	6	0	5	1E+30	3

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$6	Plant 1 Hours Used	2	0	4	1E+30	2
\$E\$7	Plant 2 Hours Used	12	1.5	12	6	6
\$E\$8	Plant 3 Hours Used	18	1	18	6	6

Sensitivity Report (Gurobi)

```
#Print sensitivity information

print("\n Sensitivity information:")

for d in m.getConstrs():
    print(d.ConstrName, d.Pi, d.SARHSUp, d.SARHSLow)

print(d.ConstrName, d.Pi, d.SARHSUp, d.SARHSLow)
```

```
Sensitivity information:
Plant[0] 0.0 1e+100 2.0
Plant[1] 1.5 18.0 6.0
Plant[2] 1.0 24.0 12.0
```

Reference: http://www.gurobi.com/documentation/8.1/refman/linear_constraint_attribut.html