Let

- $\delta(v)$ be the weight of the shortest path from start vertex s to v,
- $\delta_{fin}(v)$ be the weight of the shortest path from start vertex s to v among paths via finished vertices only (not in PQ), and
- p(v) be priority of v.

Dijkstra's algorithm maintains the loop invariants:

- 1. for each v in PQ, $p(v) = v.d = \delta_{fin}(v)$, i.e. considering only paths via finished vertices (vertices not in PQ),
- 2. for each v not in PQ, $v.d = \delta(v)$ over all paths, and v.pred is the vertex before v on the shortest path.

7

Initially (after lines 0-5):

- PQ contains all of V,
- s.d = p(s) = 0, and
- $v.d = p(v) = \infty$, for all $v \neq s$

so (1) and (2) are true.

8

Suppose (1) and (2) are true on line 6.

- Line 7 adds a new finished vertex u (moves from u ∈ PQ to u ∉ PQ).
- Before line 7 we had $p(u) = u.d = \delta_{fin}(u)$.
- Take artibtrary vertex $v \in PQ$. Before line 7 we had $p(v) = v.d = \delta_{fin}(v)$.
- If v adjacent to u:
 - look at the path $p_v = p_u + (u, v)$ where p_u is shortest via finished vertices to u
 - have $w(p_v)=w(p_u)+w(u,v)=\delta_{\mathit{fin}}(u)+w(u,v)=u.d+w(u,v)$
 - if $w(p_v) < v.d$ then it is the shortest via finished vertices to v
 - then condition on line 10 is true and we set $p(v) = v.d = w(p_v) = \delta_{fin}(v)$
 - otherwise, no change
 - so (1) is still true after line 13

(cont.)

- If v not adjacent to u:
 - Can we have a shorter path to v via finished vertices that looks like:

$$s \rightarrow ... \rightarrow x \rightarrow u \rightarrow y \rightarrow ... \rightarrow v$$
?

- No, because y is finished, so path from s to y must have been shortest.
- So no change means (1) still true after line (13)

Now to show $u.d = \delta(u)$.

- consider the time just before u is dequeued on line 7
- there is some (overall) shortest path p_u from s to u
- at some point p_u crosses from V PQ (finished vertices) to PQ (not finished vertices) for the first time via some edge (x,y) with $x \notin PQ$ and $y \in PQ$

$$p_u = \underbrace{s \to \dots \to x \to y}_{p_v} \to \dots \to u$$

- have $w(p_y) = \delta(y) = \delta_{fin}(y) = y.d = p(y)$ from (1)
- have both $u, y \in PQ$ and u dequeued first, so $p(u) \leq p(y)$
- then $u.d \le y.d = \delta(y) \le \delta(u)$ (p_u has added edges)
- :. $u.d = \delta(u)$

11