Подпространства и ранг

Нехаенко П. А.

pavel.ushlepkov@yandex.ru ЯрГУ им. П. Г. Демидова

Постановка задачи

- Дать определения подпространству, их сумме и пересечению . Определить прямую сумму подпространств и составим необходимое и достаточное условие для её определения.
- Дать определение рангу матрицы. Описать его свойства.
- Определить критерии совместности и определённости системы линейных уравнений.
- Описать подпространство решений системы линейных уравнений.

Подпространства. Их сумма и пересечения.

Определение 1.

Непустое подмножество $L_1\subset L$ называется линейным подпространством, если L_1 замкнуто относительно операций сложения и умножения на число:

- 1) для любых $x, y \in L_1 \ x + y \in L_1$.
- 2) для любого $x \in L_1$ и любого $\alpha \in R$ $\alpha x \in L_1$.

Определение 2.

Сумма и пересечение подпространств L_1, L_2 линейного пространства L определяются следующим образом:

$$L_1 + L_2 := \{x \in L : x = x_1 + x_2, x_i \in L_i, i = 1, 2\},\$$

 $L_1 \cap L_2 := \{x \in L : x_i \in L_i, i = 1, 2\}.$

Теорема 1.

 $L_1 + L_2, \ L_1 \bigcap L_2$ — линейные подпространства L. Если основное пространство L конечномерно, то имеет место равенство

$$dim(L_1 + L_2) + dim(L_1 \cap L_2) = dim(L_1) + dim(L_2).$$
 (1)

Определение 3.

Сумма $S=L_1+L_2$ называется прямой, если для любого $x\in S$ представление $x=x_1+x_2,\ x_1\in L_1, x_2\in L_2,$ является единственным.

Теорема 2.

Сумма является прямой, то есть $S=L_1\bigoplus L_2$, тогда и только тогда, когда выполнено любое из следующих эквивалентных условий.

- 1. $L_1 \cap L_2 = 0$.
- 2. $dim(L_1 + L_2) = dimL_1 + dimL_2$.
- 3. Если $f_1, ..., f_l$ базис $L_1, g_1, ..., g_m$ базис L_2 , то $f_1, ..., f_l, g_1, ..., g_m$ базис $L_1 + L_2$.
- 4. Единственность разложения по L_1 и L_2 имеет место для нулевого вектора: если $x_1+x_2=0,\ x_1\in L_1,\ x2\in L_2,$ то обязательно $x_1=x_2=0.$

Ранг матрицы. Теорема о ранге. Методы вычисления и свойства ранга матрицы.

Определение 4.

Рангом матрицы A называется ранг системы её столбцов как элементов R^m , то есть размерность линейной оболочки системы столбцов $X_1,...,X_n$:

$$rg(A) := rg(X_1, ..., X_n) = dim \ lin(X_1, ..., X_n).$$

Теорема 3.

Ранг матрицы равен максимальному порядку r отличного от нуля минора этой матрицы.

(Для нулевой матрицы считаем r = 0).

Следствие

Для каждой $A \in M_{m,n} \ rg(A^T) = rg(A)$

Следствие:

- 1. Для $\mathbf{A} \in M_{m,n} rg(\mathbf{A}) \leq min(m,n)$.
- 2. Пусть $\mathbf{A} \in M_n$. $rg(\mathbf{A}) = n \iff |\mathbf{A}| \neq 0$.
- 3. Пусть $\mathbf{A} \in M_n$. Матрица A обратима \iff $rg(\mathbf{A}) = n$.
- 4. Если **AB** существует, то $rg(AB) \le min(rg(A), rg(B))$. 5. Пусть **B** $\in M_n$ и rg(B) = n. Если **AB** существует, то
- $rg(\mathsf{AB}) = rg(\mathsf{A})$. Тоже для произведения BA . 6. Для $A \in M_{m,k}, \mathsf{B} \in M_{k,n}$ $rg(\mathsf{A}) + rg(\mathsf{B}) \leq rg(\mathsf{BA}) + k$.
- 0. Для $\mathbf{A} \in M_{m,k}$, $\mathbf{B} \in M_{k,n}$ $rg(\mathbf{A}) + rg(\mathbf{B}) \le rg(\mathbf{B}A) + rg(\mathbf{B})$. 7. Для $\mathbf{A}, \mathbf{B} \in M_{m,n}$: $rg(\mathbf{A} + \mathbf{B}) \le rg(\mathbf{A}) + rg(\mathbf{B})$.
- 8. Если все произведения существуют, то rg(AB) + rg(BC) < rg(B) + rg(ABC).

Применение понятия ранга к анализу систем линейных уравнений. Теорема Кронекера — Капелли. Критерий определённости.

С привлечением понятия ранга матрицы нетрудно дать необходимые и достаточные условия совместности и определённости произвольной системы линейных уравнений. Пусть дана система m уравнений с n неизвестными $x_1, ..., x_n$ и матрицей коэффициентов $\mathbf{A} = (a_{ij}) \in M_{m,n}$:

$$\begin{array}{rclcrcl}
a_{11}x_{1} & + & \cdots & + & a_{1n}x_{n} & = & b_{1}, \\
a_{21}x_{1} & + & \cdots & + & a_{2n}x_{n} & = & b_{2}, \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1}x_{1} & + & \cdots & + & a_{mn}x_{n} & = & b_{m}.
\end{array} (2)$$

Пусть $X_1,...,X_n$ — столбцы матрицы \mathbf{A},\mathbf{b} — столбец свободных членов. Обозначим через $\mathbf{A}|\mathbf{b}$ расширенную матрицу системы (2). Ясно, что всегда

$$rg(\mathbf{A}) \le rg(\mathbf{A}|\mathbf{b}) \le rg(\mathbf{A}) + 1.$$
 (3)

Теорема 4 (Кронекера – Капелли).

Система (2) является совместной тогда и только тогда, когда

$$rg(A|b) = rg(A).$$

Теорема 5.

Система линейных уравнений (2) является определённой тогда и только тогда, когда выполняются одновременно два равенства

$$rg(\mathbf{A}|\mathbf{b}) = rg(\mathbf{A}) = n.$$

Размерность и базис подпространства R^n , задаваемого системой линейных однородных уравнений. Фундаментальная система решений.

Рассмотрим систему линейных однородных уравнений

$$\mathbf{A} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}, \tag{4}$$

с данной матрицей коэффициентов $\mathbf{A} \in M_{m,n}$. Пусть $L \in \mathbb{R}^n$ определяется равенством

$$L := \{x = (x_1, ..., x_n) : x$$
удовлетворяет $(4)\}.$

Мы говорим, что *L задаётся системой уравнений (4) или является подпространством решений этой системы.* Исследуем задачу определения размерности и базиса *L*.

Теорема 6. $dim L = n - rg(\mathbf{A}).$

Определение 5.

Множество векторов, образующих базис в L, называется фундаментальная система решений

С каждой матрицей $A \in M_{m,n}$ можно связать два линейных подпространства R^n , которые здесь мы обозначим L_1 и L_2 . 1) L_1 — линейная оболочка строк матрицы \mathbf{A} . Размерность $dim\ L_1 = rg(\mathbf{A})$. Базис L_1 образует любая система из $r = rg(\mathbf{A})$ линейно независимых строк.

2) L_2 — подпространство решений системы линейных однородных уравнений. Размерность $dimL_2 = n - rg(\mathbf{A})$. Базис L_2 образует фундаментальная система решений данной системы уравнений.

Итоги:

- Даны основные определения, связанных с подпространством и рангом матрицы.
- Описаны свойства ранга матрицы.
- Найдены критерии совместности и определённости системы линейных уравнений, с использованием ранга.
- Было описано подпространство решений системы линейных уравнений и его размерность.

Литература

1. *Невский М. В. Определители* // Лекции по алгебре: Учебное пособие // Ярославль: ЯрГУ, 2002. с. 39 - 48 с.