Revised/Additional Slides

EN.585.601, Module 2, Video 1, Rev 1

- ① Steady resting membrane potential is near E_K , $P_K > P_{Na}$, due to leak K^+ channels.
- 2 Local membrane is brought to threshold voltage by a depolarizing stimulus.
- Current through opening voltage-gated Na⁺ channels rapidly depolarizes the membrane, causing more Na⁺ channels to open.
- Inactivation of Na⁺ channels and delayed opening of voltage-gated K⁺ channels halt membrane depolarization.
- Outward current through open voltage-gated K⁺ channels repolarizes the membrane back to a negative potential.
- Persistent current through slowly closing voltage-gated K⁺ channels hyperpolarizes membrane toward E_K; Na⁺ channels return from inactivated state to closed state (without opening).
- Closure of voltage-gated K⁺ channels returns the membrane potential to its resting value.

END

Revised/Additional Slides

EN.585.601, Module 2, Video 1, Rev 1