Name:

Student ID:

Pre-tutorial 5 Questions (to be attempted before class on May 17th, 2019)

Chapter 8, Ex 20: Source-free RC circuit

The switch drawn in the circuit below has been closed for such a long time that any transients which might have arisen from first connecting the voltage source have disappeared.

a) Determine the circuit time constant

For £70 circuit is:

b) Calculate the voltage v(t) at $t=\tau, 2\tau$, and 5τ

For
$$\pm 70$$
: $\sigma(\pm) = Ae^{-\frac{t}{4}}$

$$= Ae^{-\frac{t}{4}} \frac{1}{4} \frac$$

$$v(r) = 4e^{-1}$$

= 1.47 V
 $v(2r) = 4e^{-2}$
= 0.54 V
 $v(5r) = 4e^{-5}$
= 0.027 V

Chapter 8, Ex 49: Driven RL circuit

The circuit shown below is powered by a source which is inactive for t < 0. Obtain an expression for i(t)valid for all t.

t70, natural function circuit:

int) =
$$I_0e^{-t/t}$$

int) = $I_0e^{-t/t}$

intt) = $I_0e^{-t/t}$

- $\frac{45\times10^{-3}}{20}$

= 2.25×10

$$i(o^{-1}) = i(o^{-1}) = 0$$
 $i(o) = 0.1 + I_0 = 0$

$$I_0 = -0.1$$

Tuts: 13 of 30

=2.25×10⁻³5

1/2 = HHH. 4 5"

At Tutorial 5 – Marked Question (17th May 2019)

Chapter 8, Ex 8: Source-free RL circuit

The switch in the circuit above has been closed a very long time. Calculate the voltage v as well as the energy stored in the inductor at:

a) The instant just prior to the switch being thrown open

$$\omega(o^{-}) = \frac{1}{2} L i^{2}$$

$$= \frac{1}{2} \times 2 \times 10^{-3} \times (4 \times 10^{-3})^{2}$$

$$= 16 \times 10^{-9} \text{ J}$$

b) The instant just after the switch is opened

 $\omega_{L}(0^{+}) = \frac{1}{2} \times 2 \times 10^{-3} \times (4 \times 10^{-3})^{2}$ = 16 × 10⁻⁹ J

Tuts: 14 of 30

$$v(8MS) = v(0^{+}) = 1.2V$$

 $i = I_{De} - t/r$

$$i = I_0e$$

$$= 4x10^{-3}e^{-110x16^{-3}t}$$

$$= 4x10^{-3}e^{-110x16^{-3}t}$$

$$= 110x10^{-3}$$

$$\omega$$
 (8,46) = $\frac{1}{2} \times 2 \times 10^{-3} \times (1.46 \times 10^{-3})^2$
= 2.7 × 10⁻⁹ J

Tuts: 15 of 30

At Tutorial 5 – Unmarked Question (17th May 2019)

Chapter 8, Ex 60: Driven RC circuit

The switch shown in the circuit below has been in position a since the original Battlestar Galactica aired on TV. It is moved to position b at time t = 0. Obtain expressions for i(t) and $v_c(t)$ valid for all values of t.

$$V_{C,F} = 6 \times \frac{149.9}{59.9} \text{ (voltage divider)}$$

$$= 5/50 = 0.1A$$

$$= 7/50 + 201e$$

$$= 7/50$$

· ひ((の) = ひ((o+)=8

Tuts: 17 of 30