# MATH 316 Lecture 3

## Ashtan Mistal

## May 12 2021

## Singular Points 1

Singular points are divided into two classes:

- Regular singular points, where we use the Frobenius series solution
- Irregular singular points, which are beyond the scope of the course

If we are to look at the ODE P(x)y'' + Q(x)y' + R(x)y = 0, and define the point  $x_0$  as a singular point, we have the following:

The Cauchy-Euler equation is

$$(x - x_0)^2 + \alpha(x - x_0)y' + \beta y = 0$$
 (1)

We know that  $y = (x - x_0)^r$  (As an example).

How do we make P(x)y'' + Q(x)y' + R(x)y = 0 look like (1)? If we multiply with  $(x - x_0)^2$  and divide by P(x), we may get something similar to the Cauchy-Euler.

Then, we get something like this:

$$(x - x_0)^2 y'' + \left\{ \frac{Q(x)}{P(x)} (x - x_0) \right\} (x - x_0) y' + \left\{ \frac{R(x)}{P(x)} (x - x_0)^2 \right\} y = 0$$
 (2)

Now, if  $\frac{Q(x)}{P(x)}(x-x_0)$  and  $\frac{R(x)}{P(x)}(x-x_0)^2$  are analytic at  $x=x_0$ , then the singularity is not worse than the singularity in the Cauchy-Euler equation (1), and  $x_0$  is a "regular singular point". Otherwise,  $x_0$  is an "irregular singular

If we start to write the Taylor series for (?),

$$\frac{Q(x)}{R(x)}(x-x_0) = p_0 + p_1(x-x_0) + \dots$$

$$\frac{Q(x)}{P(x)}(x - x_0) = p_0 + p_1(x - x_0) + \dots$$

$$\frac{R(x)}{P(x)}(x - x_0)^2 = q_0 + q_1(x - x_0) + \dots$$

Being analytic means that we need to be able to write the series.

An example of a singular point:



Here, x = 0 is a singular point. (We re-wrote the first equation as the second equation, I believe)

As  $x \longrightarrow x_0$ , our ODE becomes:  $(x - x_0)^2 y'' + p_0(x - x_0)y' + q_0 y = 0$ 

The corresponding Cauchy-Euler equation solution:  $y = (x - x_0)^r$ . We need to have finite  $p_0$  and  $q_0$ . If  $p_0$  and  $q_0$  are both finite, then  $x_0$  is a regular singular point. Otherwise, it is an irregular singular point.

For regular singular points, the solution we are going to write:

$$\underbrace{y(x) = (x - x_0)^r}_{*} \underbrace{\sum_{n=0}^{\infty} a_n (x - x_0)^n}_{\text{Correction}}$$

\*: The singular part of the solution to the corresponding Cauchy-Euler.

#### Example 1.1

$$x(1+x^2)y'' + 2xy' + (1+x^2)y = 0$$

Classify singular points. Here,  $p(x) = x(1+x)^2$ , Q(x) = 2x, and R(x) = $1+x^2$ . Singular points:  $\begin{cases} x=0\\ x=\pm i \end{cases}$  We need  $p(x_0)=0$  (Take a look at the left hand side if you don't understand!).

Classify them:

Classify them.
$$\begin{cases} \lim_{x \to x_0} \frac{Q(x)}{P(x)}(x - x_0) = p_0 \\ \lim_{x \to x_0} \frac{R(x)}{P(x)}(x - x_0)^2 = q_0 \end{cases}$$
For  $x_0 = 0$ , we have  $\lim_{x \to 0} \frac{2x}{x(1+x^2)}x = 0 = p_0$ 

$$\lim_{x \to 0} \frac{1+x^2}{x(1+x^2)}x^2 = 0 = q_0$$

Now for 
$$x_0 = i$$
: 
$$\lim_{x \to i} \frac{2x}{x(1+x^2)}(x-i) = \lim_{x \to i} \frac{2(x-i)}{(x-i)(x+i)} = \frac{1}{i} = p_0$$
$$\lim_{x \to i} \frac{1+x^2}{x(1+x^2)}(x-i)^2 = 0 = q_0$$

We see that because both  $p_0$  and  $q_0$  are finite, x = i is also a regular singular point.

Try for x = -i:

 $\lim_{x \to -i} \frac{2x}{x(1+x^2)}(x+i)$   $\lim_{x \to -i} \frac{1+x^2}{x(1+x^2)}(x+i)^2$ 

yeah uhhhh.... review how to calculate limits.

When we calculate  $x_0 = -i$ , we get:  $p_0 = -\frac{1}{i}$ , and  $q_0 = 0$ . Hence,  $x_0 = -i$ is also a regular singular point.

## $\mathbf{2}$ Radius of Convergence

The radius of convergence of the series solution is at least equal to the distance from the  $x_0$  to the nearest singular point. In the example that we solved:



$$y(x) = \sum_{n=0}^{\infty} a_n (x-1)^n$$

 $y(x)=\sum_{n=0}^\infty a_n(x-1)^n$   $\rho=1$  is the lower bound estimate.  $\rho$  is the radius of convergence. Imagine a circle of radius 1 (as it's the distance to the closest singular point)

#### 2.0.1An Example

$$x^2y'' + \alpha xy' + \beta y = 0$$

 $r_1, r_2$  are two positive roots

$$y = C_1 x^{r_1} + C_2 x^{r_2}$$

 $x_0 = 0$  is a singular point



Radius of convergence is infinite. This is a rare case.

### 3 Frobenius Series

EX:

$$6x^2(1+x)y'' + 5xy' - y = 0$$

$$P(x) = 6x^2(1+x), Q(x) = 5x, R(x) = -1$$

Singular points are x = 0 and x = -1.

For x = 0, let's find if it's irregular or regular:

$$\lim_{x\to 0} \frac{Q(x)}{P(x)}(x-x_0) = \lim_{x\to 0} \frac{5x}{6x^2(1+x)}x = \frac{5}{6} = p_0$$

$$\lim_{x\to 0} \frac{-1}{6x^2(1+x)}x^2 = \frac{-1}{6} = q_0$$
Therefore  $x_0 = 0$  is a regular singular point.

$$\lim_{x\to 0} \frac{-1}{6x^2(1+x)}x^2 = \frac{-1}{6} = q_0$$

$$(x - x_0)^2 y'' + \frac{5}{6}(x - x_0)y' - \frac{1}{6}y = 0$$

This is for  $x_0 = 0$ . Hence,  $x^2y'' + \frac{5}{6}xy' - \frac{1}{6}y = 0$ .

Corresponding Cauchy-Euler equation:

$$y = x^{r}$$
 and therefore  $[6r(r-1) + 5r - 1]x^{r} = 0$ .

$$y=x^r$$
 and therefore  $[6r(r-1)+5r-1]x^r=0$ .  
Hence  $6r^2-r-1=0 \longrightarrow r_{1,2}=\frac{1\pm\sqrt{1+24}}{12} \longrightarrow r_{1,2}=\frac{1}{2},\frac{-1}{3}$ 

Frobenius Series Solution about x = 0:

$$y(x) = x^{2} \sum_{n=0}^{\infty} a_{n} x^{n} = \sum_{n=0}^{\infty} a_{n} x^{n+r}$$

$$y' = \sum_{n=0}^{\infty} a_n(n+r)x^{n+r-1}$$

$$y'' = \sum_{n=0}^{\infty} a_n(n+r)(n+r-1)x^{n+r-2}$$

Now, we only need to replace y, y', y'' in the ODE:

$$6x^2(1+x)y'' + 5xy' - y = 0$$

$$6x^2y'' + 6x^3y'' + 5xy' - y = 0$$

# Convergence: ratio test

$$\sum_{m=0}^{\infty} C_m : \lim_{m \to \infty} \left| \frac{C_{m+1}}{C_m} \right| < 1$$

$$y(x) = \sum_{m=0}^{\infty} a_m x^{m+r}$$

Ratio test:

$$\lim_{m\to\infty}|\frac{a_{m+1}x^{m+r+1}}{a_mx^{m+r}}|=|x|\lim_{m\to\infty}|\frac{a_{m=1}}{a_m}$$

For this example:

$$|x| \lim_{m \to \infty} \left| \frac{a_{m=1}}{a_m}, a_m \right| = \frac{-6a_{m-1}(m+r-1)(m+r-2)}{(m+r)(6m+6r-1)-1}$$

$$|x| \lim_{m \to \infty} \frac{-6a_{m-1}(m+r-1)(m+r-2)}{(m+r)(6m+6r-1)-1} = |x| \cdot 1$$

121<

P = is at least equal to the distance between  $x_0 = 0$  & the nearest singular point, P = 1