# NEC

### NPN SILICON TRANSISTOR

## 2SC1845

**DESCRIPTION** 

The 2SC1845 is the best for use as the middle range amplifier in Hi-Fi stereo control amplifiers, power amplifiers, and etc.

**FEATURES** 

• High Voltage.

V<sub>CEO</sub> : 120 V

• Low Output Capacitance. Cob : 1.6 pF TYP. (VCB = 30 V)

• High hee.

 $h_{FE}$  : 600 TYP. ( $V_{CE}$  = 6.0 V,  $I_{C}$  = 1.0 mA)

NV: 25 mV TYP. (See test Circuit.) Super Low Noise.

#### **ABSOLUTE MAXIMUM RATINGS**

Maximum Temperatures

Storage Temperature .....-55 to +125 °C Junction Temperature .....+125 °C Maximum

Maximum Power Dissipation (Ta = 25  $^{\circ}$ C)

Total Power Dissipation ...... 500 mW

Maximum Voltages and Currents (Ta = 25 °C)

V<sub>CBO</sub> Collector to Base Voltage . . . . . . . . . 120 V V<sub>CEO</sub> Collector to Emitter Voltage ........ 120 V V<sub>EBO</sub> Emitter to Base Voltage . . . . . . . . . 5.0 V Collector Current . . . . . . . . . . . 50 mA lc 1<sub>B</sub>

Base Current ...... 10 mA



#### ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

| SYMBOL               | CHARACTERISTIC               | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS                                                                                                                                 |
|----------------------|------------------------------|------|------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| hFE1                 | DC Current Gain              | 150  | 580  |      | _    | V <sub>CE</sub> = 6.0 V, I <sub>C</sub> = 0.1 mA                                                                                                |
| hFE2                 | DC Current Gain              | 200  | 600  | 1200 | _    | $V_{CE} = 6.0 \text{ V, } I_{C} = 1.0 \text{ mA}$                                                                                               |
| fŢ                   | Gain Bandwidth Product       | 50   | 110  |      | MHz  | $V_{CE} = 6.0 \text{ V, } I_{E} = -1.0 \text{ mA}$                                                                                              |
| Cob                  | Output Capacitance           |      | 1.6  | 2.5  | pF   | $V_{CB} = 30 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$                                                                                           |
| NV                   | Noise Voltage                |      | 25   | 40   | mV   | $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}, R_{G} = 100 \text{ k}\Omega$<br>$G_{V} = 80 \text{ dB}, f = 10 \text{ Hz to } 1.0 \text{ kHz}$ |
| ICBO                 | Collector Cutoff Current     |      |      | 50   | nΑ   | V <sub>CB</sub> = 120 V, I <sub>E</sub> = 0                                                                                                     |
| IEBO                 | Emitter Cutoff Current       |      |      | 50   | nA   | $V_{EB} = 5.0 \text{ V, } I_{C} = 0$                                                                                                            |
| VBE                  | Base to Emitter Voltage      | 0.55 | 0.59 | 0.65 | V    | $V_{CE} = 6.0 \text{ V, } I_{C} = 1.0 \text{ mA}$                                                                                               |
| V <sub>CE(sat)</sub> | Collector Saturation Voltage |      | 0.07 | 0.30 | V    | $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$                                                                                                     |

#### Classification of h<sub>FE2</sub>

| ĺ | Rank  | Р         | F         | E         | U          |  |  |  |
|---|-------|-----------|-----------|-----------|------------|--|--|--|
|   | Range | 200 – 400 | 300 - 600 | 400 - 800 | 600 — 1200 |  |  |  |

hFE Test Conditions :  $V_{CE} = 6.0 \text{ V}$ ,  $I_{C} = 1.0 \text{ mA}$ 

#### TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)



0.1 L

0.05 0.1 0.2 0.5 1 2 I<sub>C</sub>—Collector Current—mA

#### NOISE FIGURE MAP.



#### NOISE VOLTAGE TEST CIRCUIT



 $\rm V_{CE} \buildrel 5$  V,  $\rm I_{C} = 1.0$  mA,  $\rm R_{G} = 100~k\Omega$  ,  $\rm G_{V} = 80~dB, FLAT(f=10~Hz~to~1.0~kHz)$