A Primer on Large Language Models

Soham Dan

Microsoft soham.dan@microsoft.com

Outline of the Presentation

- Language Models
- Types of Large Language Models
- Transformer Architecture
- Typical LLM Workflow
- In-Context Learning
- Reasoning by LLMs
- Tool Usage by LLMs
- LLM Agents

Explosion of Large Language Models

What are Language Models?

Language Modeling: How *likely* is the sequence $w_1w_2 \dots w_T$?

A language model estimates the probability $P(w_1, w_2, ..., w_T)$ of a sequence by factorizing it as:

$$P(w_1, w_2, ..., w_T) = \prod_t P(w_t | w_{\{< t\}})$$

 Various ways to model this conditional probability: n-gram models, feed-forward neural networks, recurrent neural networks, transformers.

Transformer Architecture

- Input Embedding: Converts discrete tokens into continuous vector representations.
- **Positional Encoding:** Since transformers lack a natural notion of sequence order, positional encodings are added.
- Self-Attention Mechanism:

Computes a weighted sum of all token representations in the sequence, where the weights are determined by the similarity between tokens.

• Output Projection: After processing through the stacked layers, a final linear projection maps the model's output to a probability distribution over the vocabulary.

Attention is All You Need, Vaswani et al, 2017.

Large Language Models

• Decoder-only LLMs: Decode (Generate) words one at a time for text generation.

Examples: GPT-family, most recent LLMs

Basic building block is the Transformer

Scaling Laws for Neural Language Models, Kaplan et al. 2020

Large Language Model Workflow

Instruction

Test Input

Zero Shot Instruction Demonstration Examples

Test Input

Few Shot

Instruction

Demonstration Examples

Test Input

Few Shot with Instruction

Basic Reasoning: Chain of Thought Prompting

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Chain of Thought

- multiple Chain of Thought
- Tree of Thought
- Graph of Thought ...

Model Output

A: The answer is 27.

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei et al, 2022.

Self Consistency on CoT

Chain of Thoughts can be used to fine-tune LLMs (eg: DeepSeek-V3 fine-tuned on synthetic CoTs)

Self-consistency improves chain of thought reasoning in language models, Wang et al, 2023

Tool Usage by LLMs

The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") → Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) \rightarrow 0.29] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.

The Brown Act is California's law [WikiSearch("Brown Act") → The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

RAG: **Retrieval Augmented Generation** involves a Retriever model to retrieve document(s) relevant to a query and a Generator model to generate the answer conditioned on the query and retrieved document.

Toolformer: Language Models Can Teach Themselves to Use Tool, Schick et al, 2023.

Agents: Interleaved Tool Use and Planning


```
(1d) ReAct (Reason + Act)
Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.
Act 1: Search[Apple Remote]
Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple ... originally designed to control the
Front Row media center program ...
Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search
Row next and find what other device can control it.
Act 2: Search[Front Row]
Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports',' Front Row
(software) ', ...]
Thought 3: Front Row is not found. I need to search Front
Row (software) .
Act 3: Search[Front Row (software)
Obs 3: Front Row is a discontinued media center software ...
Thought 4: Front Row (software) is controlled by an Apple
Remote or the keyboard function keys. So the answer is
keyboard function keys.
Act 4: Finish[keyboard function keys]
```

React, React + Reflexion, Plan and Solve ...

REACT: Synergizing Reasoning and Acting in Language Models, Yao et al, 2023.

Conclusion

 At large scales interesting emergent behavior of LLMs to do in-context learning, chain-of-thought reasoning and tool usage.

 Soft reasoning abilities combined with tool usage results in agents useful for various language and multimodal applications.