CS4495/6495 Introduction to Computer Vision

5A-L1 *Photometry*

Slides by Yin Li

Thanks to Srinivasa Narasimhan, Shree Nayar, David Kreigman, Marc Pollefeys

Photometry: Measuring light

Lights, surfaces, and shadows

Reflections

Refractions

Interreflections

Scattering

Surface appearance

- Image intensity = f (normal, surface reflectance, illumination)
- Surface reflection depends on both the viewing and illumination directions

Radiometry

Radiance (L): Energy carried by a ray

- Power per unit area perpendicular to direction of travel, per unit solid angle
- Units: Watts per square meter per steradian $(Wm^{-2}sr^{-1})$

Radiometry

Irradiance (E): Energy arriving at a surface

- Incident power in a given direction, per unit area
- Units: Wm^{-2}

Foreshortening: A simple observation

"Perpendicular light"

"Foreshortened light"

Radiometry

Irradiance (E): Energy arriving at a surface

- Incident power in a given direction, per unit area
- Units: Wm^{-2}

For a surface receiving radiance $L(\theta, \varphi)$ coming in from $d\omega$ the corresponding irradiance is

$$E(\theta, \varphi) = L(\theta, \varphi) \cos\theta \, d\omega$$

BRDF: Bidirectional Reflectance Distribution Function

Irradiance: Light per unit area incident on a surface
Radiance: Light from the surface reflected in a given direction,
within a given solid angle

BRDF: Bidirectional Reflectance Distribution Function

 $E^{surface}(\theta_i, \varphi_i)$: Irradiance at surface from direction (θ_i, φ_i) $L^{surface}(\theta_r, \varphi_r)$: Radiance from surface in direction (θ_r, φ_r)

BRDF: Bidirectional Reflectance Distribution Function

$$E^{surface}(\theta_i, \varphi_i)$$
: Irradiance at surface from direction (θ_i, φ_i)

 $L^{surface}(\theta_r, \varphi_r)$: Radiance from surface in direction (θ_r, φ_r)

BRDF:
$$f(\theta_i, \varphi_i; \theta_r, \varphi_r) = \frac{L^{surface}(\theta_r, \varphi_r)}{E^{surface}(\theta_i, \varphi_i)}$$

Important properties of BRDFs

Helmholtz Reciprocity:

$$f(\theta_i, \varphi_i; \theta_r, \varphi_r) = f(\theta_r, \varphi_r; \theta_i, \varphi_i)$$

Important properties of BRDFs

Rotational Symmetry (Isotropy):

$$f(\theta_i, \varphi_i; \theta_r, \varphi_r) = f(\theta_i, \theta_r, \varphi_i - \varphi_r)$$

BRDF's can be incredibly complicated...

Body (diffuse) Reflection:

- Diffuse Reflection
- Matte Appearance
- Non-Homogeneous medium
- Clay, paper, etc.

Body (diffuse) Reflection:

- Diffuse Reflection
- Matte Appearance
- Non-Homogeneous medium
- Clay, paper, etc.

Surface Reflection:

- Specular Reflection
- Glossy Appearance
- Highlights
- Dominant for Metals

Surface Reflection:

- Specular Reflection
- Glossy Appearance
- Highlights
- Dominant for Metals

Image Intensity =

Body Reflection +

Surface Reflection

- Only body reflection, and no specular reflection
- Lamberts law essentially a patch looks equally bright from every direction.

• Surface appears equally bright from all directions! (independent of \vec{v})

• Lambertian BRDF is simply a constant – the *albedo*: $f(\theta_i, \varphi_i; \theta_r, \varphi_r) = \rho_d$

• Surface Radiance: $L = \rho_d \, I \cos \theta_i = \rho_d \, I \, (\vec{n} \cdot \vec{s})$ source intensity

• Surface Radiance: $L = \rho_d \, I \cos \theta_i = \rho_d \, I \, (\vec{n} \cdot \vec{s})$

How about a mirror?

Reflection only at mirror angle

• All incident light reflected in a *single* direction (visible when $\vec{v} = \vec{m}$)

Mirror BRDF is simply a double-delta function:

$$f(\theta_i, \phi_i; \theta_v, \phi_v) = \rho_s \delta(\theta_i - \theta_v) \, \delta(\phi_i + \pi - \phi_v)$$

Surface Radiance:

$$L = I \rho_s \, \delta(\theta_i - \theta_v) \, \delta(\varphi_i + \pi - \varphi_v)$$

Surface Radiance:

$$L = I \rho_s \delta(\vec{m} - \vec{v}) \text{ or } I \rho_s \delta(\vec{n} - \vec{h})$$

$$(\vec{h} \text{ is the "half angle"})$$

Specular Reflection and *Glossy* BRDF

$$L = I \rho_{S} (\vec{m} \cdot \vec{v})^{k}$$

Specular reflection

Moving the light source

Changing the exponent

Phong Reflection Model

The BRDF of many surfaces can be approximated by:

Lambertian + Specular Model

Diffuse + Specular Reflection

