Resolution to Sutner's Conjecture

William Boyles*

February 16, 2022

1 Introduction

Consider a game played on a simple graph G = (V, E) where each vertex consists of a clickable light. Clicking any vertex v toggles on on/off state of v and its neighbors. One wins the game by finding a sequence of clicks that turns off all the lights. When G is a 5×5 grid, this game was commercially available from Tiger Electronic as Lights Out.

Sutner was one of the first to study these games mathematically. He showed that for any G the initial configuration of all lights on is solvable [2]. He also found that when $d(G) = \dim(\ker(A+I))$ over the field GF(2), where A is the adjacency matrix of G, is 0 all initial configurations are solvable. In particular, 1 out of every $2^{d(G)}$ initial configurations are solvable, while each solvable configuration has $2^{d(G)}$ distinct solutions [2]. When investigating $n \times n$ grid graphs, Sutner conjectured the following relationship:

$$d_{2n+1} = 2d_n + \delta_n, \ \delta_n \in \{0, 2\}$$

 $\delta_{2n+1} = \delta_n,$

where $d_n = d(G)$ for G an $n \times n$ grid graph [2].

We resolve this conjecture in the affirmative. We use results from Sutner that give the nullity of a $n \times n$ board as the GCD of two polynomials in the ring $\mathbb{Z}_2[x]$ [3]. We then apply identities from Hunziker, Machiavelo, and Park that relate the polynomials $(2n+1) \times (2n+1)$ grids and $n \times n$ grids [1]. Finally, we use a result from Ore about the GCD of two products [4]. Together, these results allow us to prove Sutner's conjecture and describe exactly when δ_n is 0 or 2.

2 Preliminary Results

Sutner showed how to calculate d_n as the degree of the GCD of two polynomials in $\mathbb{Z}_2[x]$ [3].

Theorem 1 (Sutner). Let $f_n(x)$ be the degree n polynomial in the ring $\mathbb{Z}_2[x]$ defined recursively by

$$f_n(x) = \begin{cases} 1 & n = 0 \\ x & n = 1 \\ xf_{n-1}(x) + f_{n-2}(x) & otherwise . \end{cases}$$

Then for all $n \in \mathbb{N}$.

$$d_n = \deg \gcd (f_n(x), f_n(x+1)).$$

^{*}Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (wmboyle2@ncsu.edu)

This recursive definition gives a brute force approach to calculate $f_n(x)$. However, Hunziker, Machiavelo, and Park show the following identity that can make calculating certain $f_n(x)$ easier [1].

Theorem 2 (Hunziker, Machiavelo, and Park). Let $n = b \cdot 2^{k-1} - 1$ where $b, k \in \mathbb{N}$. Then

$$f_n(x) = x^{2^{k-1}-1} f_{b-1}^{2^{k-1}}(x).$$

In particular, we will use this result to relate $f_{2n+1}(x)$ and $f_{4n+3}(x)$ to $f_n(x)$.

Corollary 1. The following identities hold

$$f_{2n+1}(x) = x f_n^2(x)$$

$$f_{4n+3}(x) = x^3 f_n^4(x).$$

Proof. Notice that $2n + 1 = (n+1)2^{2-1} - 1$ and $4n + 3 = (n+1)2^{3-1} - 1$. Thus, our desired identities follow from Theorem 2.

Now that we have a way to express $f_{2n+1}(x)$ and $f_{4n+3}(x)$ as a product of $f_n(x)$ and a power of x, we simply need a way to express the GCD of products so we can calculate d_n . This is where a number-theoretic result from Ore comes in handy [4].

Theorem 3 (Ore). Let a, b, c, and d be integers. Let (a, b) denote gcd(a, b). Then

$$(ab,cd) = (a,c)(b,d) \left(\frac{a}{(a,c)},\frac{d}{(b,d)}\right) \left(\frac{c}{(a,c)},\frac{b}{(b,d)}\right).$$

Ore's result deals specifically with integers. However, because both the integers and $\mathbb{Z}_2[x]$ are Euclidean domains, the result will still hold.

3 Proof of Sutner's Conjecture

Finally, we are ready to prove Sutner's conjecture [2].

Theorem 4. For all $n \in \mathbb{N}$,

$$d_{2n+1} = 2d_n + \delta_n,$$

where $\delta_n \in \{0, 2\}$, and $\delta_{2n+1} = \delta_n$.

Proof. Let (a,b) denote $\gcd(a,b)$. Applying the results from Theorems 1, 2, and 3,

$$\begin{aligned} d_{2n+1} &= \deg \left(f_{2n+1}(x), f_{2n+1}(x+1) \right) \\ &= \deg \left(x f_n^2(x), (x+1) f_n^2(x+1) \right) \\ &= \deg \left(x, x+1 \right) \left(f_n^2(x), f_n^2(x+1) \right) \left(\frac{x+1}{(x,x+1)}, \frac{f_n^2(x)}{(f_n^2(x), f_n^2(x+1))} \right) \left(\frac{x}{(x,x+1)}, \frac{f_n^2(x+1)}{(f_n^2(x), f_n^2(x+1))} \right) \\ &= \deg \left(f_n(x), f_n(x+1) \right)^2 \left(x+1, \frac{f_n^2(x)}{(f_n(x), f_n(x+1))^2} \right) \left(x, \frac{f_n^2(x+1)}{(f_n(x), f_n(x+1))^2} \right) \\ &= \deg \left(f_n(x), f_n(x+1) \right)^2 \left(x+1, \frac{f_n(x)}{(f_n(x), f_n(x+1))} \right) \left(x, \frac{f_n(x+1)}{(f_n(x), f_n(x+1))} \right) \\ &= 2d_n + \deg \left(x+1, \frac{f_n(x)}{(f_n(x), f_n(x+1))} \right) \left(x, \frac{f_n(x+1)}{(f_n(x), f_n(x+1))} \right). \end{aligned}$$

Notice that if we substitute x + 1 for x,

$$\left(x+1,\frac{f_n(x)}{(f_n(x+1),f_n(x))}\right)$$
 becomes $\left(x,\frac{f_n(x+1)}{(f_n(x),f_n(x+1))}\right)$.

Thus, we see that these two remaining GCD terms are either both 1 nor not 1 simultaneously. This means we can further simplify to

$$d_{2n+1} = 2d_n + 2\deg\left(x, \frac{f_n(x+1)}{(f_n(x), f_n(x+1))}\right).$$

So, we see that

$$d_{2n+1} = 2d_n + \delta_n$$
, where $\delta_n = 2 \deg \left(x, \frac{f_n(x+1)}{(f_n(x), f_n(x+1))} \right)$.

Thus, $\delta_n \in \{0, 2\}$.

What remains is to show that $\delta_n = \delta_{2n+1}$. Applying Corollary 1,

$$\begin{aligned} d_{4n+3} &= \deg \left(x^3 f_n^4(x), (x+1)^3 f_n^4(x+1) \right) \\ &= \deg \left(x, (x+1)^3 \right) \left(f_n^4(x), f_n^4(x+1) \right) \left(x^3, \frac{f_n^4(x+1)}{(f_n^4(x), f_n^4(x+1))} \right) \left((x+1)^3, \frac{f_n^4(x)}{(f_n^4(x), f_n^4(x+1))} \right) \\ &= \deg \left(f_n(x), f_n(x+1) \right)^4 \left(x^3, \frac{f_n^4(x+1)}{(f_n(x), f_n(x+1))^4} \right) \left((x+1)^3, \frac{f_n^4(x)}{(f_n(x), f_n(x+1))^4} \right) \\ &= \deg \left(f_n(x), f_n(x+1) \right)^4 \left(x^3, \frac{f_n^3(x+1)}{(f_n(x), f_n(x+1))^3} \right) \left((x+1)^3, \frac{f_n^3(x)}{(f_n(x), f_n(x+1))^3} \right) \\ &= \deg \left(f_n(x), f_n(x+1) \right)^4 \left(x, \frac{f_n(x+1)}{(f_n(x), f_n(x+1))} \right)^3 \left((x+1), \frac{f_n(x)}{(f_n(x), f_n(x+1))} \right)^3 \\ &= 4d_n + 3\delta_n. \end{aligned}$$

Also, from our work previously in this proof,

$$\begin{aligned} d_{4n+3} &= d_{2(2n+1)+1} \\ &= 2d_{2n+1} + \delta_{2n+1} \\ &= 2\left(2d_n + \delta_n\right) + \delta_{2n+1} \\ &= 4d_n + 2\delta_n + \delta_{2n+1}. \end{aligned}$$

For these two expressions for d_{4n+3} to be equal, we must have $\delta_{2n+1} = \delta_n$, as desired.

References

- [1] Markus Hunziker, António Machiavelo, and Jihun Park, Chebyshev polynomials over finite fields and reversibility of σ -automata on square grids, Theoretical Computer Science **320** (2004), no. 2, 465–483.
- [2] Klaus Sutner, *Linear cellular automata and the Garden-of-Eden*, The Mathematical Intelligencer **11** (1989), no. 2, 49–53.
- $[3] \ \underline{\hspace{1cm}}, \ sigma-automata \ and \ chebyshev-polynomials, \ Theoretical \ Computer \ Science \ {\bf 230} \ (1996), \ 49-73.$
- [4] Øystein Ore, Number theory and its history, p. 109, McGraw-Hill, 1948, Section 5-4, Problem 2.