СПРАВОЧНЫЙ МАТЕРИАЛ

Свойства корня.

1.
$$\sqrt[n]{-a} = -\sqrt[n]{a}, n - нечетно$$

2.
$$\sqrt[n]{x^n} = \begin{cases} |x|, n-четно \\ x, n-нечетно \end{cases}$$

3.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
 $a \ge 0; b \ge 0, n \in \mathbb{N}$

4.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \qquad a \ge 0; b > 0, n \in \mathbb{N}$$

5.
$$\sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a}$$
 $a \ge 0; n \in \mathbb{N}; k > 0; k \in \mathbb{Z}$

6.
$$\sqrt[n]{a} = \sqrt[nk]{a^k}$$
 $a \ge 0; n \in \mathbb{N}; k > 0; k \in \mathbb{Z}$

7.
$$\sqrt[n]{a^k} = (\sqrt[n]{a})^k$$
 $a \ge 0; n \in N; k \in \mathbb{Z}$ (если $k \le 0$, то $a \ne 0$)

Свойства степеней.

1.
$$a^0 = 1$$
 $a \neq 0$

2.
$$0^{-x}$$
 – неимеетсмысла

3.
$$a^x \cdot a^y = a^{x+y}$$

4.
$$a^x : a^y = a^{x-y}$$

5.
$$(a^x)^y = a^{xy}$$

$$6. \quad (ab)^x = a^x \cdot b^x$$

$$7. \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

8.
$$a^{-x} = \frac{1}{a^x}$$
 $a \neq 0$

Формулы логарифмов.

1.
$$\log_a x = b \iff a^b = x$$
 $x > 0; a > 0; a \ne 1$

$$x > 0; a > 0; a \neq 1$$

$$2. \quad a^{\log_a x} = x$$

3.
$$\log_a 1 = 0$$

4.
$$\log_a a = 1$$

5.
$$\log_a x_1 \cdot x_2 = \log_a |x_1| + \log_a |x_2|$$

6.
$$\log_a \frac{x_1}{x_2} = \log_a |x_1| - \log_a |x_2|$$

$$7. \quad \log_a x^n = n \cdot \log_a |x|$$

8.
$$\log_b x = \frac{\log_a x}{\log_a b}$$

$$9. \quad \log_b x = \frac{1}{\log_x b}$$

10.
$$\log_a b \cdot \log_b a = 1$$

11.
$$\log_a x_1 \cdot \log_b x_2 = \log_a x_2 \cdot \log_b x_1$$

12.
$$\log_{a^n} x = \frac{1}{n} \cdot \log_{|a|} x$$

$$13. \ x^{\log_a y} = y^{\log_a x}$$

14.
$$\frac{\log_a x_1}{\log_a x_2} = \frac{\log_b x_1}{\log_b x_2}$$

$$15. \ a^{\sqrt{\log_a b}} = b^{\sqrt{\log_b a}}$$

ТРИГОНОМЕТРИЯ

Основные тригонометрические тождества

$$\sin^2 x + \cos^2 x = 1$$

$$tgx \cdot ctgx = 1$$

$$tgx = \frac{\sin x}{\cos x}$$

$$ctg = \frac{\cos x}{\sin x}$$

$$1 + tg^2 x = \frac{1}{\cos^2 x}$$

$$1 + tg^{2}x = \frac{1}{\cos^{2}x} \qquad 1 + ctg^{2}x = \frac{1}{\sin^{2}x}$$

Знаки sin, cos, tg, ctg

tg, ctg

Значения тригонометрических функций некоторых углов

lpha , рад	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$lpha^{\circ}$	0°	30°	45°	60°	90°	180°	270°	360^{0}
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}; \frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}; \frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
$tg \alpha$	0	$\frac{\sqrt{3}}{3};\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	не опр.	0	не опр.	0
$\operatorname{ctg} \alpha$	не опр.	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3};\frac{1}{\sqrt{3}}$	0	не опр.	0	не опр.

Тригонометрические уравнения

Уравнение $\cos t = a$

1.
$$a = 1$$
, TO $t = 2\pi n, n \in Z$

2.
$$a = -1$$
, To $t = \pi + 2\pi n, n \in \mathbb{Z}$

3.
$$a = 0$$
, To $t = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

4.
$$a > 0$$
, To $t = \pm \arccos a + 2\pi n, n \in \mathbb{Z}$

5.
$$a < 0$$
, To $t = \pm (\pi - \arccos a) + 2\pi n, n \in \mathbb{Z}$

6. |a| > 1, то корней нет

Уравнение $\sin t = a$

1.
$$a=1$$
, To $t=\frac{\pi}{2}+2\pi n, n\in Z$

2.
$$a = -1$$
, To $t = -\frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$

3.
$$a = 0$$
, To $t = \pi n, n \in Z$

4.
$$a > 0$$
, To $t = (-1)^n \arcsin a + \pi n, n \in Z$

5.
$$a < 0$$
, To $t = (-1)^{n+1} \arcsin a + \pi n, n \in \mathbb{Z}$

6. |a| > 1, то корней нет

Уравнение tg = a

1.
$$a = 0$$
, To

$$t = \pi n, n \in \mathbb{Z}$$

2.
$$t = arctg a + \pi n, n \in \mathbb{Z}$$

Уравнение ctg = a

1.
$$a = 0$$
, To $t = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

2.
$$t = arcctg a + \pi n, n \in \mathbb{Z}$$

ПРОИЗВОДНАЯ Правила производной:

$$(U+E)'=U'+E'$$

$$(U \cdot E)' = U' \cdot E + U \cdot E'$$

$\left(\frac{U}{E}\right)' = \frac{U' \cdot E - U \cdot E'}{E^2}$ $\left(C \cdot U\right)' = C \cdot U'$

Формулы производной:

1.
$$(c)' = 0$$

$$2. \quad \left(x^n\right)' = n \cdot x^{n-1}$$

3.
$$\left(\frac{1}{r}\right)' = -\frac{1}{r^2}$$

$$4. \quad \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

5.
$$(k \cdot x + b)' = k$$

6.
$$(e^x)' = e^x$$

7.
$$(a^x)' = a^x \cdot \ln a$$

8.
$$(\sin x)' = \cos x$$

9.
$$(\cos x)' = -\sin x$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11.
$$(ctgx)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}; x \in (-1;1)$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}; x \in (-1;1)$$

14.
$$(arctgx)' = \frac{1}{1+x^2}; x \in R$$

15.
$$(arcctgx)' = -\frac{1}{1+x^2}; x \in R$$

16.
$$(\ln x)' = \frac{1}{x}$$

17.
$$(\log_a x)' = \frac{1}{x \cdot \ln a}$$

теория вероятностей.

Вероятность события A равна отношению числа **m** исходов испытаний, благоприятствующих наступлению события A, к общему числу **n** всех равновозможных несовместных исходов, т.е.

$$P(A) = \frac{m}{n}$$

ВЕКТОРЫ

Если началом вектора является точка $A(x_1, y_1, z_1)$, а концом точка $B(x_2, y_2, z_2)$, то координаты этого вектора вычисляются по формуле:

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

ИНТЕГРАЛЫ

1.
$$\int 0 \cdot dx = C$$

2.
$$\int 1 \cdot dx = x + C$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$4. \int \frac{1}{x} dx = \ln|x| + C$$

$$5. \int a^x dx = \frac{a^x}{\ln a} + C$$

6.
$$\int \sin x dx = -\cos x + C$$

7.
$$\int cosxdx = sinx + C$$

8.
$$\int tgxdx = -\ln|\cos x| + C$$

9.
$$\int ctgxdx = ln|sinx| + C$$

$$10.\int \frac{1}{\cos^2 x} dx = tgx + C$$

$$11.\int \frac{1}{\sin^2} dx = -ctgx + C$$

	1 n	on.	2n	4n	€ n	cn cn	7 ⁿ	on	9 ⁿ	100
	1"	2 ⁿ	3 ⁿ	4 ⁿ	5 ⁿ	6 ⁿ	/"	8 ⁿ	9"	10 ⁿ
1 ⁿ	1	2	3	4	5	6	7	8	9	10
2 ⁿ	1	4	9	16	25	36	49	64	81	100
3 ⁿ	1	8	27	64	125	216	343	512	729	1000
4 ⁿ	1	16	81	256	625	1296	2401	4096	6561	10000
5 ⁿ	1	32	243	1024	3125	7776	16807	32768	59049	100000
6 ⁿ	1	64	729	4096	15625	46656	117649	262144	531441	1000000
7 ⁿ	1	128	2187	16384	78125	279936	823543	2097152	4782969	10000000
8 ⁿ	1	256	6561	65536	390625	1679616	5764801	16777216	43046721	100000000
9 ⁿ	1	512	19683	262144	1953125	1177696	40353607	134217728	387420489	1000000000
10 ⁿ	1	1024	59049	1048576	9765625	60466176	282475249	1073741824	3486784401	10000000000

MATEMATUKA ОСНОВНЫЕ СВЕДЕНИЯ

ТРЕУГОЛЬНИК Сумма внутренних углов:

 $\alpha + \beta + \gamma = \pi = 180^{\circ}$ Теорема косинусов: $b^2 = a^2 + c^2 - 2ac \cos \beta$.

 $a^2 = b^2 + c^2 - 2bc \cos \alpha$ $c^2 = a^2 + b^2 - 2ab \cos \gamma.$

Величина внешнего угла: $\alpha_1 = \beta + \gamma$, $\beta_1 = \alpha + \gamma$, $\gamma_1 = \alpha + \beta$

Теорема синусов: sinα sinβ slnγ (R - радиус описанной окружности).

Свойства средней линии:

 $OF = \frac{1}{2}AF$, $OE = \frac{1}{2}CE$,

b D K

Свойства биссектрис:

 $h_a:h_b:h_c = \frac{1}{a}:\frac{1}{b}:\frac{1}{c}$

Длина медианы, высоты и биссектрисы : проведенных из вершины В;

$$m_b = \frac{1}{2}\sqrt{2a^2 + 2c^2 - b^2}$$
,

$$h_b = \frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}, \ l_b = \frac{2\sqrt{acp(p-b)}}{a+c}$$

Площадь: $S = \frac{1}{2}ah_a$ $S = \frac{1}{2}ab \sin \gamma$.

 $S = \sqrt{p(p-a)(p-b)(p-c)}$ (формула Герона).

 $S = \frac{abc}{4R}$, S = pr, r - радиус вписанной окружности

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Теорема Пифагора: $a^2 + b^2 = c^2$ (a,b - длины катетов, с - длина гипотенузы).

 $a = c \sin \alpha = c \cos \beta =$ = b $tg\alpha$ = b $ctg\beta$

РАВНОБЕДРЕННЫЙ **ТРЕУГОЛЬНИК**

 $S = a^2 \sqrt{3}/4$.

ПАРАЛЛЕЛОГРАММ

Свойства сторон и углов: $\angle BAD + \angle ADC = \pi$, AB | CD, AB = CD, AD | BC, AD = BC, ZBAD = ZBCD, ∠ABC=∠ADC, Ceoŭcmea duazonaneŭ: AO = OC. BO = OD, $AC^2 + BD^2 = 2(a^2 + b^2)$.

ТРАПЕЦИЯ AD BC.

ОКРУЖНОСТЬ, КРУГ

Длина окружности. $l = 2\pi R$: Плошадь, $S = \pi R^2$. Дпина дуги $l_{AB} = 2\pi \mathbf{R} \cdot \phi / 360$, Площадь, $S_{OAB} = \pi R^2 \cdot \phi / 360$.

ПРИЗМА

Призма - многогранник, две грани которого параллельны, а остальные пересекаются по параллельным прямым. | грани - основания призмы, остальные грани - боковые. Боковые грани - параплелограммы.

Параллелепипед - призма, основаниями которой являются параллелограммы.

Площадь поверхности:

где \$_осн - площадь основания призмы; S_{бок} - площадь боковой поверхности призмы: Sook = Pil;

Р - периметр перпендикулярного сечения; 1 – длина бокового ребра.

Объем: V = QH, $V = Q_1I$, где

Q - площадь основания; Н - высота призмы, Q - площадь перпендикулярного сечения

ПРЯМОУГОЛЬНЫЙ ПАРАЛЛЕЛЕПИПЕД

Свойства диагоналей: $AC_1 = BD_1 = CA_1 = DB_1 = d$ $d^2 = a^2 + b^2 + c^2$.

Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам. $S_{60K} = 2(ab + bc + ac)$ Объем: V = abc

Для куба: a = b = c, $d = a\sqrt{3}$, $S = 6a^2$, $V = a^3$

ПИРАМИДА

Площадь поверхности: $S_{\text{пир}} = S_{\text{бок}} + S_{\text{осн}}$, где S_{бок} - пл. бок. поверхн.; S_{осн} - пл. основания.

Объем: $V = \frac{1}{2} \mathbf{Q} \mathbf{H}$, где

Q – пл. основания: Н - высота пирамиды.

Правильная пирамида $S_{60x} = \frac{1}{2} Ph_{60x}$, гле

Р - периметр основания; h - высота боковой грани $Q = S_{60x} \cos \alpha$, где α – угол между боковой гранью и плоскостью основания.

Усеченная пирамида

Объем: $V = \frac{h}{2} (Q_1 + \sqrt{Q_1 Q_2} + Q_2)$, где

h - высота; Q₁, Q₂ - площади оснований. Для правильной усеченной пирамиды

 $S_{60K} = \frac{1}{2} (p_1 + p_2) h_{60K}$, где p_1, p_2 – периметры оснований: heek - высота боковой грани.

ЦИЛИНДР

Площадь боковой поверхности:

 $S_{60K} = 2\pi RH$

Площадь полной поверхности: $S_{unn} = 2\pi RH + 2\pi R^2;$

Объем:

 $V = \pi R^2 H$:

КОНУС

Площадь боковой поверхности:

 $S_{\text{for}} = \pi R I$

Площадь полной поверхности:

 $S_{ROH} = \pi R L + \pi R^2$

Объем: $V = \frac{1}{2} \pi R^2 H$

Усеченный конус

 $S_{ROH} = \pi R^2 + \pi r^2 + \pi (R + r) I$

 $V = \frac{1}{2}\pi H(R^2 + Rr + r^2).$

WAP

Шаровая поверхность или сфера геометрическое место точек пространства, равноудаленных от одной точки – центра сферы.

Шар - тело, ограниченное сферой.

Площадь поверхности:

 $S = 4\pi R^2$

Объем: $V = \frac{\pi}{2}\pi R^3$

Площадь сферического сегмента:

 $S = 2\pi RH$, где H - высота сегмента.

Объем шарового сегмента:

Объем шарового сектора:

Сечение сферы любой плоскостью – окружность.

Сечение шара любой плоскостью - круг.

Большой круг шара - круг проходящий через центр,

Малый круг шара - круг, образованный сечением шара плоскостью, не проходящей через центр.

СПРАВОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ШКОЛЬНИКОВ И СТУДЕНТОВ ПО МАТЕМАТИКЕ, ФИЗИКЕ, ХИМИИ, ИСТОРИИ, ФИЛОСОФИИ, АНГЛИЙСКОМУ, РУССКОМУ ЯЗЫКУ... ©ООО "БУКЛАЙН", ЛР № 065068, 2004 г.