COMP90042

Workshop Week 04

Syllabus

1	Introduction and Preprocessing	Text classification
2	Lexical semantics	Distributional semantics
3	Part of Speech Tagging	Hidden Markov Models
4	Probabilistic Sequence Modelling	Context-Free Grammars
5	Probabilistic Parsing	Dependency parsing
	Easter holiday break	
6	N-gram language modelling	Deep learning for language models
		and tagging
7	Information Extraction	Question Answering
8	Topic Models	ANZAC day holiday
9	Information Retrieval Boolean	Indexing and querying in the vector
	search and the vector space model	space model, evaluation
10	Index and vocabulary compression	Efficient query processing
11	The Web as a Graph: Page-rank & HITS	Machine Translation (word based)
12	Machine translation (phrase based)	Subject review
	and neural encoder-decoder	

- ☐ Part of Speech (POS) tags
 - Examples
- ☐ Hidden Markov Models (HMMs)
 - ☐ Directed Probabilistic Graphical Models
 - ☐ A dynamic programming example
 - ☐ The Viterbi algorithm

- □ POS tag (by hand) the following sentence:
- ☐ Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Pierre	the
Vinken	board
,	as
61	a
years	nonexecutive
old	director
,	Nov.
will	29
ioin	

Major Penn Treebank tags

NN noun VB verb

JJ adjective RB adverb

DT determiner CD cardinal number

IN preposition PRP personal pronoun

MD modal CC coordinating conjunction

RP particle WH wh-pronoun

TO to

Penn treebank derived tags

NN: NNS (plural, wombats), NNP (proper, Australia), NNPS (proper plural, Australians)

VB: VBP (base, eat), VB (infinitive, eat), VBZ (3rd person singular, eats), VBD (past tense, ate), VBG (gerund, eating), VBN (past participle, eaten)

JJ: JJR (comparative, *nicer*), JJS (superlative, *nicest*)

RB: RBR (comparative, faster), RBS (superlative, fastest)

PRP: PRP\$ (possessive, my)

WH: WH\$ (possessive, whose), WDT(wh-determiner, who), WRB (wh-adverb, where)

- □ POS tag (by hand) the following sentence:
- ☐ Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Pierre	the
Vinken	board
,	as
61	a
years	nonexecutive
old	director
,	Nov.
will	29
ioin	

- □ POS tag (by hand) the following sentence:
- ☐ Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

NNP Pierre DT the NNP Vinken board NN IN as CD 61 DT JJ NNS nonexecutive years JJ old director NNNNP Nov. MD will CD 29 VB join

- ☐ Part of Speech (POS) tags
 - Examples
- ☐ Hidden Markov Models (HMMs)
 - ☐ Directed Probabilistic Graphical Models
 - ☐ A dynamic programming example
 - ☐ The Viterbi algorithm

The formula for directed PGMs

- ☐ Directed PGMs
 - = Directed Probabilistic Graphical Models

$$P(\text{all } r. v.) = \prod_{\text{every } r. v.} P(r. v. | \text{parents of } r. v.)$$

The formula for directed PGMs

- ☐ Directed PGMs
 - = Directed Probabilistic Graphical Models

$$P(\text{all } r. v.) = \prod_{\text{every } r. v.} P(r. v. | \text{parents of } r. v.)$$

$$P(A,B,C,D,E,F)$$

$$= P(A)P(B|A)P(C|B)$$

$$\cdot P(D|A,B)P(E|A,B,D)P(F|B,C)$$

HMMs are directed PGMs

- $\square W_1, W_2, W_3$ are words in a sentence
- $\square T_1, T_2, T_3$ are their POS tags (random variables)
- ☐ We define the joint distribution as follows:

$$P(T_1, T_2, T_3, W_1, W_2, W_3) = P(T_1)P(T_2|T_1)P(T_3|T_2) P(W_1|T_1)P(W_2|T_2)P(W_3|T_3)$$

HMMs are directed PGMs

- $\square W_1, W_2, W_3$ are words in a sentence
- $\square T_1, T_2, T_3$ are their POS tags (random variables)
- ☐ We define the joint distribution as follows:

■ But why the graph is like this?

$$P(T_1, T_2, T_3, W_1, W_2, W_3) = P(T_1)P(T_2|T_1)P(T_3|T_2) P(W_1|T_1)P(W_2|T_2)P(W_3|T_3)$$

The original graph (without any assumptions)

 $P(T_1, T_2, T_3, W_1, W_2, W_3)$

 $P(T_1)P(T_2|T_1)P(T_3|T_2)$ $P(W_1|T_1)P(W_2|T_2)P(W_3|T_3)$

 $P(T_1, T_2, T_3, W_1, W_2, W_3) = P(T_1, T_2, T_3)P(W_1, W_2, W_3 | T_1, T_2, T_3)$

 $P(T_1)P(T_2|T_1)P(T_3|T_2)$ $P(W_1|T_1)P(W_2|T_2)P(W_3|T_3)$

always holds

Markov assumption

 $P(T_1, T_2, T_3, W_1, W_2, W_3) = P(T_1, T_2, T_3)P(W_1, W_2, W_3 | T_1, T_2, T_3)$

$$P(T_1)P(T_2|T_1)P(T_3|T_2)$$

 $P(W_1, W_2, W_3|T_1, T_2, T_3)$

$$P(T_1)P(T_2|T_1)P(T_3|T_2)$$

 $P(W_1|T_1)P(W_2|T_2)P(W_3|T_3)$

Markov assumption

 $P(T_1, T_2, T_3, W_1, W_2, W_3) = P(T_1, T_2, T_3)P(W_1, W_2, W_3 | T_1, T_2, T_3)$

$$P(T_1)P(T_2|T_1)P(T_3|T_2)$$

 $P(W_1, W_2, W_3|T_1, T_2, T_3)$

$$P(T_1)P(T_2|T_1)P(T_3|T_2)$$

 $P(W_1|T_1)P(W_2|T_2)P(W_3|T_3)$

A summary

- □ *Markov assumption*: Only fixed number k of recent tags are relevant (k is known as the *Markov order*; in above k=1)
 - $P(T_1, T_2, T_3) = P(T_1)P(T_2|T_1)P(T_3|T_2)$

- □ Limited dependency between words and their tags: Tags are assumed to capture the local context needed to explain the observations

- ☐ Part of Speech (POS) tags
 - Examples
- ☐ Hidden Markov Models (HMMs)
 - ☐ Directed Probabilistic Graphical Models
 - ☐ A dynamic programming example
 - ☐ The Viterbi algorithm

Max reward problem

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

$$\square$$
 Reward = 2 + 6 + 1 + 7 + 2 + 5 + 4 + 3 = 30

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

$$\square$$
 Reward = 2 + 6 + 1 + 7 + 2 + 5 + 4 + 3 = 30

$$seq = [1, 0, 1, 1]$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N00: S->N00 (1+4=5)
- Best path from S to N01: S->N01 (2+6=8)

$$alpha = \begin{bmatrix} ? & ? & ? & ? \\ ? & ? & ? \end{bmatrix}, backp = \begin{bmatrix} ? & ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N00: S->N00 (1+4=5)
- Best path from S to N01: S->N01 (2+6=8)

$$alpha = \begin{bmatrix} 5 & ? & ? & ? \\ 8 & ? & ? & ? \end{bmatrix}, backp = \begin{bmatrix} 0 & ? & ? & ? \\ 0 & ? & ? & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N10: ?
- Best path from S to N11: ?

$$alpha = \begin{bmatrix} 5 & ? & ? & ? \\ 8 & ? & ? & ? \end{bmatrix}, backp = \begin{bmatrix} 0 & ? & ? & ? \\ 0 & ? & ? & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- Best path from S to N10: ?
 - \square S->N00->N10 = 5 + 3 + 7 = 15
 - \square S->N01->N10 = 8 + 1 + 7 = 16
- ☐ Best path from S to N11:?

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N10: ?
 - \square S->N00->N10 = 5 + 3 + 7 = 15
 - \square S->N01->N10 = 8 + 1 + 7 = 16
- ☐ Best path from S to N11: ?

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N10: S->N01->N10 (8+1+7=16)
- ☐ Best path from S to N11: ?
 - \square S->N00->N11 = 5 + 2 + 1 = 8
 - \square S->N01->N11 = 8 + 4 + 1 = 13

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- Best path from S to N10: S->N01->N10 (8+1+7=16)
- ☐ Best path from S to N11: S->N01->N11 (8+4+1=13)

$$alpha = \begin{bmatrix} 5 & 16 & ? & ? \\ 8 & 13 & ? & ? \end{bmatrix}, backp = \begin{bmatrix} 0 & 1 & ? & ? \\ 0 & 1 & ? & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N20: ?
- Best path from S to N21: ?

$$alpha = \begin{bmatrix} 5 & 16 & ? & ? \\ 8 & 13 & ? & ? \end{bmatrix}, backp = \begin{bmatrix} 0 & 1 & ? & ? \\ 0 & 1 & ? & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- Best path from S to N20: S->N01->N10->N20 (24)
- Best path from S to N21: S->N01->N10->N21 (23)

$$alpha = \begin{bmatrix} 5 & 16 & 24 & ? \\ 8 & 13 & 23 & ? \end{bmatrix}, backp = \begin{bmatrix} 0 & 1 & 0 & ? \\ 0 & 1 & 0 & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- ☐ Best path from S to N30: ?
- Best path from S to N31: ?

$$alpha = \begin{bmatrix} 5 & 16 & 24 & ? \\ 8 & 13 & 23 & ? \end{bmatrix}, backp = \begin{bmatrix} 0 & 1 & 0 & ? \\ 0 & 1 & 0 & ? \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

- Best path from S to N30: S->N01->N10->N20->N30 (31)
- Best path from S to N31: S->N01->N10->N21->N31 (30)

$$alpha = \begin{bmatrix} 5 & 16 & 24 & 31 \\ 8 & 13 & 23 & 30 \end{bmatrix}, backp = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 4 & 7 & 5 & 4 \\ 6 & 1 & 5 & 3 \end{bmatrix}$$

■ Best path from S to E: S->N01->N10->N20->N30->E (31)

$$alpha = \begin{bmatrix} 5 & 16 & 24 & 31 \\ 8 & 13 & 23 & 30 \end{bmatrix}, backp = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- ☐ Part of Speech (POS) tags
 - Examples
- ☐ Hidden Markov Models (HMMs)
 - ☐ Directed Probabilistic Graphical Models
 - ☐ A dynamic programming example
 - ☐ The Viterbi algorithm
 - ☐ See the details in the notebook