Calcul matriciel élémentaire Chapter 19

Exercice 1 (19.3)

Effectuer les produits des matrices.

1.
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
;

2.
$$\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix} \times \begin{pmatrix} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{pmatrix};$$

3.
$$\begin{pmatrix} a & b & c \\ c & b & a \\ 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a & c \\ 1 & b & b \\ 1 & c & a \end{pmatrix}$$
.

Exercice 2 (19.3)

On considère les matrices

$$A = \begin{pmatrix} 1 & 3 & 5 \\ -1 & 1 & 0 \end{pmatrix},$$

$$A = \begin{pmatrix} 1 & 3 & 5 \\ -1 & 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ -1 & 4 \end{pmatrix}, \qquad d = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

$$C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \\ -1 & 4 \end{pmatrix},$$

$$d = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Parmi les expressions suivantes, lesquelles sont définies? Calculer les.

$$2. AB + C$$

$$2. AB + C$$

3.
$$A + C^T$$

4.
$$C^TC$$

6.
$$d^T B$$

8.
$$d^T d$$

9.
$$dd^T$$
.

Exercice 3 (19.3)

On pose

$$A = \begin{pmatrix} -1 & 3 & 1 \\ 4 & 0 & 5 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 2 & 1 & 3 \\ -4 & 0 & 1 \\ 3 & -1 & -2 \end{pmatrix} \quad ; \quad C = \begin{pmatrix} -1 & 0 & 3 & -2 \\ 4 & 2 & 0 & 1 \\ 3 & 1 & -4 & -3 \end{pmatrix}$$

Vérifier sur cet exemple l'associativité du produit matriciel *ABC*.

Exercice 4 (19.3)

Déterminer, si possible, une matrice A et un scalaire x tels que

$$\begin{pmatrix} 1 & 7 \\ 5 & 0 \\ 9 & 3 \end{pmatrix} A = \begin{pmatrix} -4 & 14 \\ 15 & 0 \\ 24 & x \end{pmatrix}$$

Exercice 5 (19.3)

Soit $a = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{pmatrix}$. Calculer aa^T et a^Ta .

Exercice 6 (19.4)

Soit

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

une matrice (2, 2) telle que,

$$\forall B \in \mathcal{M}_{2,2}(\mathbb{K}), AB = BA.$$

Montrer que a = d, b = 0, c = 0. En déduire que les seules matrices vérifiant cette propriété sont les multiples scalaires de la matrice unité I_2 .

Pouvez-vous généraliser ce résultat aux matrices (3,3)? Aux matrices (n,n)?

Exercice 7 (19.4)

Pour toute matrice $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$, on définit la trace de A par

$$\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}.$$

- 1. Calculer Tr $\begin{pmatrix} -3 & 2 & 1 \\ 4 & 1 & 0 \\ 1 & -2 & 4 \end{pmatrix}$.
- **2.** Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Montrer

$$\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$$
 et $\operatorname{Tr}(\lambda A) = \lambda \operatorname{Tr}(A)$.

On dit que la trace est linéaire.

3. Montrer que pour toutes matrices $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$, on a

$$Tr(AB) = Tr(BA)$$
.

- **4.** Existe-t-il deux matrices A et B dans $\mathcal{M}_n(\mathbb{K})$ telles que $AB BA = I_n$?
- **5.** Trouver trois matrices A, B, C de $\mathcal{M}_2(\mathbb{R})$ telles que $\text{Tr}(ABC) \neq \text{Tr}(BAC)$.

Exercice 8 (19.4)

Soit $n \in \mathbb{N}^*$. Dans $\mathcal{M}_n(\mathbb{C})$, on considère les matrices $A = (a_{i,j})$ et J la matrice dont tous les termes sont égaux à 1.

Calculer le produit JAJ.

Exercice 9 (19.4)

Résoudre

$$A(X + B) - (C + D)X = A(A - X) - C(B + X)$$

où

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & -2 \\ -1 & 0 \end{pmatrix}.$$

Exercice 10 (19.5)

Soit A et B deux matrices (n, n) inversibles. En utilisant la définition de l'inverse d'une matrice, montrer que AB est inversible et

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Exercice 11 (19.5)

Soit deux matrices A et B telles que A et AB soient inversibles. On suppose

$$(AB)^{-1} = 2A^{-1}. (1)$$

Déterminer B.

Exercice 12 (19.5)

Soit
$$B = \begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix}$$
.
On pose $C = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$.

1. Résoudre le système de quatre équations donné par l'équation matricielle $BC = I_2$,

$$\begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 2. Vérifier alors que B est inversible en utilisant la définition de matrice inverse.
- 3. Vérifier à nouveau votre solution en calculant B^{-1} à l'aide du déterminant.

Exercice 13 (19.5)

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice unité 3×3 . En déduire que A est inversible et calculer son inverse.

Exercice 14 (19.5)

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
.

Calculer $A^3 - A$. En déduire que A est inversible puis déterminer A^{-1} .

Exercice 15 (19.5)

A étant une matrice de $\mathcal{M}_2(\mathbb{K})$, montrer qu'il existe α et β de \mathbb{K} tels que

$$A^2 - \alpha A + \beta I_2 = 0.$$

Quel est l'inverse de A si A est inversible ?

Exercice 16 (19.6)

On considère la matrice

$$M = \begin{pmatrix} 0 & a & b & c \\ 0 & 0 & d & e \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Calculer M^2 , M^3 , M^4 , M^5 . En déduire M^k pour $k \in \mathbb{N}$.

Exercice 17 (19.6)

On considère la matrice suivante

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$$

En écrivant $A = I_3 + B$, calculer les puissances de A.

Exercice 18 (19.6)

Soit $A \in \mathcal{M}_p(\mathbb{K})$. On suppose qu'il existe deux réels a et b tels que $A^2 = aA + bI_p$.

- **1.** Démontrer qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que, pour tout entier naturel n, $A^n = a_n A + b_n I_p$.
- **2.** En notant $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$, vérifier que $X_{n+1} = BX_n$ pour une certaine matrice $B \in \mathcal{M}_2(\mathbb{K})$.

On suppose que l'équation $r^2 - ar - b = 0$ possède deux racines distinctes r_1 et r_2 . On pose $P = \begin{pmatrix} 1 & 1 \\ -r_2 & -r_1 \end{pmatrix}$.

- 3. Démontrer que P est inversible et que $P^{-1}BP$ est diagonale ; les coefficients de cette dernière seront exprimés uniquement en fonction de r_1 et r_2 .
- **4.** En déduire une expression simple de a_n et b_n en fonction de n, r_1 et r_2 .

Exercice 19 (19.6)

Soit
$$A = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$
.

- 1. Calculer $U = (A I_3)(2A + I_3)$, $V = (2A + I_3)^2$, AU et AV.
- **2.** Déterminer trois réels a, b, c tels que $A = aU + bV + cI_3$.
- 3. En déduire, pour tout entier $k \ge 1$, une expression de A^k comme combinaison linéaire de U, V et A^{k-1} .
- **4.** En déduire que, pour tout entier $k \ge 1$, $B^k B^{k-1} = \frac{2}{3}U + \frac{(-2)^k}{6}V$, où B = -2A.
- **5.** En déduire, pour $n \in \mathbb{N}$, une expression de B^n , puis de A^n , comme combinaison linéaire de U, V et I_3 .

Exercice 20 (19.6)

Sur le plan d'une ville, on a n carrefours C_1, \ldots, C_n $(n \in \mathbb{N}^*)$. On définit une matrice $V \in \mathcal{M}_n(\mathbb{R})$ en posant V[i,j]=1 si une rue mène directement du carrefour C_i au carrefour C_j en automobile, sans passer par un autre carrefour ; V[i,j]=0 sinon. On convient V[i,i]=0.

- 1. Que dire de V si toutes les rues sont à double sens ?
- 2. Pour $k \in \mathbb{N}^*$, montrer que $V^k[i,j]$ le coefficient de la i-ème ligne et j-ème colonne de V^k est le nombre d'itinéraires de C_i à C_j empruntant k rues, distinctes ou non. On appelle k-chemins ces itinéraires.
- **3.** On suppose qu'il existe $N \in \mathbb{N}$ tel que $V^N = 0$. Montrer que, pour tout $i, j \in [1, n]$, le nombre total $\gamma_{i,j}$ de chemins de C_i à C_j est fini. On pose $\Gamma = \left(\gamma_{i,j}\right)_{1 \le i,j \le n}$. Montrer $\left(I_n + \Gamma\right) = \left(I_n V\right)^{-1}$.

Exercice 21 (19.7)

Résoudre l'équation d'inconnue A

$$\left(5A^T + \begin{pmatrix} 1 & 0 \\ 2 & 5 \end{pmatrix}\right)^T = 3A + \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}^{-1}.$$
 (1)

Exercice 22 (19.7)

Déterminer la matrice A si

$$\left(A^{-1}\right)^T = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}.$$

Exercice 23 (19.7)

Soit A un matrice (m, n) et B une matrice (n, n). Simplifier l'expression

$$(A^T A)^{-1} A^T (B^{-1} A^T)^T B^T B^2 B^{-1}$$

en supposant que les matrices inverses apparaissant dans l'expression sont bien définies.

Exercice 24 (19.7)

Soit A une matrice carrée (n, n).

- 1. Montrer que la matrice $A + A^T$ est symétrique et que la matrice $A A^T$ est antisymétrique.
- 2. Montrer que toute matrice carrée s'écrit comme la somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice 25 (19.7)

1. Soit $A = (a_{ij})$ un matrice (m, n) sur le corps \mathbb{R} . Calculer Tr (AA^T) . En déduire

$$AA^T = 0 \implies A = 0 \text{ et } A^T = 0.$$

2. Les matrices A, B, et C étant de dimensions convenables, prouver

$$BAA^T = CAA^T \implies BA = CA.$$

On se ramènera à la propriété précédente.

Exercice 26 (19.7)

Soit B une matrice (m, k). Montrer que la matrice $B^T B$ est une matrice symétrique (k, k).

Exercice 27 (19.8)

L'algorithme d'Euclide pour le calcul du pgcd $\delta > 0$ de deux entiers $u \geq v > 0$, peut être décrit ainsi. On définit, par récurrence à deux pas, une suite $(x_n)_{n \geq 0}$ en posant $x_0 = u$ et $x_1 = v$ et, tant que $x_i > 0$, $x_{i+1} = x_{i-1}$ mod x_i (le reste de la division euclidienne de x_{i-1} par x_i):

$$x_{i-1} = q_i x_i + x_{i+1}.$$

Il existe alors un entier k tel que $x_k \neq 0$ et $x_{k+1} = 0$; le pgcd de u et v est alors $\delta = x_k$. Démontrer que, pour $i \in [1, k]$,

$$\begin{bmatrix} x_i \\ x_{i+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -q_i \end{bmatrix} \begin{bmatrix} x_{i-1} \\ x_i \end{bmatrix}.$$

En déduire que $x_i = a_i u + b_i v$, où

$$\begin{bmatrix} a_i & b_i \\ * & * \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -q_i \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & -q_1 \end{bmatrix}.$$

Que valent les * de la deuxième ligne ? Donner une définition par récurrence mutuelle des suite $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$, puis une méthode de calcul des coefficients de Bézout $a,b\in\mathbb{Z}$ tels que $au+bv=\delta$.