

Geometry Workbook Solutions

Angles

MEASURES OF ANGLES

■ 1. Determine whether $\angle ABC$ is obtuse, acute, or right. Then find its supplement.

Solution:

 $\angle ABC$ is acute because it has a degree measure less than 90°. Its supplement is 140° degrees.

■ 2. $m \angle 1 = 35$. Find $m \angle 2$, $m \angle 3$, and $m \angle 4$.

 $m\angle 2=145$, $m\angle 3=35$, and $m\angle 4=145$. Because $\angle 1$ and $\angle 2$ are supplementary angles, $m\angle 2=180-35=145$. $\angle 1\cong \angle 3$ because they are vertical angles, and $\angle 2\cong \angle 4$ because they are vertical angles.

■ 3. Find x, y, and z if $m \angle 1 = 3x - 2$, $m \angle 2 = 2y$, $m \angle 3 = 2x + 8$, and $m \angle 4 = 4z$.

$$x = 10$$
, $y = 76$, and $z = 38$. Since $m \angle 1 = m \angle 3$,

$$3x - 2 = 2x + 8$$

$$x = 10$$

Since $m \angle 1 + m \angle 2 = 180$,

$$(3(10) - 2) + m \angle 2 = 180$$

$$28 + m \angle 2 = 180$$

$$m \angle 2 = 152$$

Because $m \angle 2 = m \angle 4$, $m \angle 4 = 152$. Then

$$2y = 152$$

$$y = 76$$

and

$$4z = 152$$

$$z = 38$$

■ 4. $\angle 5$ and $\angle 6$ are complementary angles. $m\angle 5=3x-6$ and $m\angle 6=2x-14$. Find the measures of $\angle 5$ and $\angle 6$.

 $m \angle 5 = 60$ and $m \angle 6 = 30$. Because the angles are complementary, we know

$$m \angle 5 + m \angle 6 = 90$$

$$3x - 6 + 2x - 14 = 90$$

$$x = 22$$

Then we can solve for the measures of each angle.

$$m \angle 5 = 3x - 6 = 3(22) - 6 = 60$$

$$m \angle 6 = 2x - 14 = 2(22) - 14 = 30$$

ADJACENT AND NONADJACENT ANGLES

■ 1. Name the angle adjacent to $\angle EFG$.

Solution:

 $\angle DFG$ and $\angle CFE$ are both adjacent to $\angle EFG$ because they share a common side.

■ 2. $m \angle 1 = 3x - 10$, $m \angle 2 = 2x - 20$, and $m \angle MNP = 60$. Find the value of x and $m \angle 1$, $m \angle 2$, and $m \angle 3$, given that \overline{NR} and \overline{NM} are opposite rays.

x = 18, $m \angle 1 = 44$, $m \angle 2 = 16$, and $m \angle 3 = 120$. From the figure, we know that

$$m \angle 1 + m \angle 2 = m \angle MNP$$

$$3x - 10 + 2x - 20 = 60$$

$$x = 18$$

Substituting x=18 into each expression gives $m \angle 1=44$, $m \angle 2=16$, and $m \angle 3=120$, because it forms a linear pair with $\angle MNP$.

■ 3. $m \angle 2 = 42$, $\angle 3 \cong \angle 4$, $\angle FAE$ is a right angle, and $\angle DAE$ is a straight angle. Find $m \angle 1$, $m \angle 3$, and $m \angle 4$.

 $m \angle 1 = 48$, $m \angle 3 = 45$, and $m \angle 4 = 45$. Since $\angle FAE$ is a right angle, $m \angle 3 + m \angle 4 = 90^\circ$. And because $\angle 3$ and $\angle 4$ are congruent, they must both have a measure of 45° . This leaves $m \angle 1 = 48$, so all angles sum to 180° .

■ 4. $\angle JVC$ and $\angle EVC$ are adjacent and complementary. Further, suppose $m\angle JVC = 2m\angle EVC$. Sketch a diagram of this situation and find the measure of each angle.

Solution:

 $m \angle JVC = 60$ and $m \angle EVC = 30$. A diagram of the figure looks like this:

ANGLES AND TRANSVERSALS

■ 1. Name a pair of corresponding angles.

Solution:

There are four possible correct answers:

∠7 and ∠4

∠6 and ∠2

∠5 and ∠1

 $\angle 8$ and $\angle 3$

■ 2. Find $m \angle 2$, $m \angle 6$, and $m \angle 5$ if $m \angle 3 = 105$.

Solution:

 $m \angle 2 = 75$, $m \angle 6 = 75$, $m \angle 5 = 75$. We know from the figure that $\angle 2$ and $\angle 3$ form a linear pair, making them supplementary. $\angle 2 \cong \angle 6$ because they are corresponding angles, and $\angle 6 \cong \angle 5$ because they are vertical angles.

■ 3. Find x and $m \angle 3$ if $m \angle 2 = 5x + 2$ and $m \angle 7 = 3x + 14$.

x = 20.5 and $m \angle 3 = 75.5$. From the figure we know that $\angle 2$ and $\angle 7$ are consecutive interior angles. Consecutive interior angles are supplementary.

$$m \angle 2 + m \angle 7 = 180$$

$$5x + 2 + 3x + 14 = 180$$

$$x = 20.5$$

Therefore,

$$m \angle 3 = 75.5$$

■ 4. Find the values of x and y if \overline{AB} and \overline{DC} are parallel lines, and if $m \angle 1 = 2x + y$, $m \angle 2 = 28$, and $m \angle 3 = x + 10$.

x=18 and y=116. We know from the figure that $\angle 2\cong \angle 3$ because they are alternate exterior angles. So we get

$$28 = x + 10$$

$$x = 18$$

and

$$2x + y = 152$$

$$2(18) + y = 152$$

$$y = 116$$

■ 5. \overline{MN} and \overline{KL} are parallel. \overline{GH} and \overline{IJ} are parallel. Find the values of a, b, c, and d.

Solution:

Given the angle measure of 50° , we know that $m\angle a=130^\circ$, because angle a is supplementary to the 50° angle. Angles b, c, and d are congruent to angle a, which means that $m\angle a=m\angle b=m\angle c=m\angle d=130^\circ$.

INTERIOR ANGLES OF POLYGONS

■ 1. Find the sum of the interior angles of a hexagon.

Solution:

720. Using the formula for the sum of interior angles, and the fact that there are 6 sides in a hexagon, we get

$$(n-2)180$$

$$(6-2)180$$

720

■ 2. Find the measure of each interior angle of a regular 15-gon.

Solution:

156. Using the formula for the sum of interior angles, and the fact that there are 15 sides in a 15-gon, we get

$$(n-2)180$$

$$(15-2)180$$

To find the measure of one interior angle, we divide the sum of all interior angles $2,340^{\circ}$ by the number of interior angles 15.

$$\frac{2,340}{15} = 156^{\circ}$$

 \blacksquare 3. Find the value of y. Then determine whether this a regular polygon.

Solution:

y = 65. This is not a regular polygon because the angle measures are 105, 85, 100, 105, 145.

The interior angles of a pentagon have a sum of 540° .

$$105 + y + 20 + 2y - 30 + 105 + 3y - 50 = 540$$

$$6y + 150 = 540$$

$$y = 65$$

 \blacksquare 4. Each interior angle measure of a regular polygon is 160° . Find the number of sides of this polygon.

Solution:

18 sides. From the formula for the measure of a single interior angle of a regular polygon, we get

$$\frac{(n-2)180}{n} = 160$$

$$(n-2)180 = 160n$$

$$180n - 360 = 160n$$

$$20n = 360$$

$$n = 18$$

EXTERIOR ANGLES OF POLYGONS

■ 1. Find the sum of the exterior angles of a decagon.

Solution:

 360° . By the Exterior Angle Theorem, we know that the sum of the exterior angles of a polygon is always 360° .

 \blacksquare 2. Each exterior angle of a regular polygon has measure of 30° . Find the number of sides of this polygon.

Solution:

12 sides. Since the exterior angles of any polygon sum to 360° , the number of sides must be given by

$$\frac{360^{\circ}}{n} = \frac{360^{\circ}}{30^{\circ}} = 12$$

 \blacksquare 3. Find the value of x.

x=53. All exterior angle measures are given, and the exterior angle at C must be 90° , since the interior angle there is also 90° . Because the exterior angles of any polygon always sum to 360° , we get

$$x + x + 90 + x + 32 + 2x - 27 = 360$$

$$5x + 95 = 360$$

$$x = 53$$

■ 4. Find $m \angle 1$, $m \angle 2$, and $m \angle 3$ based on the figure.

 $m \angle 1 = 84$, $m \angle 2 = 92$, and $m \angle 3 = 75$. Find $m \angle 2$ and $m \angle 3$ first because they form a linear pair with their adjacent angle. Then further find $m \angle 1$ by setting the sum of all exterior angles equal to 360° .

W W W . KRISTAKING MATH. COM