# Задача 9-3. «Формула Торричелли»

### Часть 1. Дальность полета струи.

**1.1** В соответствии с формулой Торричелли скорость струи на выходе из отверстия равна

$$v = \sqrt{2gz} \ . \tag{1}$$

Так как сопротивление воздуха пренебрежимо мало, то горизонтальная составляющая скорости струи будет сохраняться. Поэтому дальность полета струи можно вычислить, как произведение горизонтальной скорости на время падения

$$S = v\tau. (2)$$

Вертикальное движение струи является равноускоренным с ускорением свободного падения, поэтому справедливо соотношение



Из которого легко найти время падения

$$\tau = \sqrt{2\frac{h-z}{g}} \ . \tag{4}$$

Подставляя формулы для скорости и времени падения в формулу (2), получим формулу для дальности полета струи:

$$S = v\tau = \sqrt{2gz}\sqrt{2\frac{h-z}{g}} = 2\sqrt{z(h-z)}.$$
 (5)

**1.2** В формуле (5) под корнем стоит квадратичная функция от z, которая обращается в нуль при z=0 и z=h. Так как парабола — симметричная кривая, то ее максимум находится по середине между нулями, т.е. при  $z'=\frac{h}{2}$ . Тогда максимальная дальность струи равна

$$S_{\text{max}} = 2\sqrt{\frac{h}{2}\left(h - \frac{h}{2}\right)} = h. \tag{6}$$

**1.3** По рисунку следует определить глубины, на которых находятся отверстия  $z_k$ , высоту Уровня воды h. Затем дальности струй рассчитываются по формуле (6). Результаты представлены в таблице 1.

Таблица 1.

| Номер струи <i>k</i> | Высота $h_k$ (см) | Глубина отверстия $z_k$ (см) | Дальность струи $S_k$ , (см) |
|----------------------|-------------------|------------------------------|------------------------------|
| 1                    | 80                | 14                           | 61                           |
| 2                    | 80                | 26                           | 75                           |
| 3                    | 80                | 41                           | 80                           |



# 1.4 Зависимости координат точек струи от времени описываются функциями

$$\begin{cases} x = vt \\ y = (h-z) - \frac{gt^2}{2} \end{cases}$$
 (7)

Из первого уравнения выразим  $t = \frac{x}{v}$  и подставим во второе, в результате получим уравнение траектории

$$y = (h - z) - \frac{g}{2v^2}x^2 = (h - z) - \frac{x^2}{4z},$$
(8)

где использована формула Торричелли для начальной скорости струи. Рисунок струй, рассчитанных по формуле (8), показан на рисунке.



## Часть 2. Время вытекания.

### 2.1 Качественное описание.

- 2.1.1 Очевидно, что вектор скорости  $\vec{V}$  движения уровня воды направлен вниз. При понижении уровня воды скорость вытекания, а, следовательно, и модуль скорости движения уровня воды уменьшаются. Поэтому вектор ускорения  $\vec{a}$  уровня воды направлен вверх.
- 2.1.2 Так как общий объем воды остается неизменным, то между скоростью вытекания v и скоростью опускания уровня V выполняется соотношение

$$\vec{a} \wedge \vec{v}$$

$$SV = sv$$
. (9)

Скорость вытекания определяется формулой Торричелли, поэтому искомая зависимость имеет вид

$$V_z = -\frac{s}{S}v = -\frac{s}{S}\sqrt{2gz} = -\sqrt{2\eta^2 gz} \ . \tag{10}$$

Знак минус указывает направление вектора скорости.

 $2.1.3\,$  Модуль скорость опускания уровня воды изменяется от максимального значения до нуля (при z=0). Графически это означает, что угол наклона касательной к графику зависимости координаты от времени уменьшается от максимального значения до нуля, когда уровень воды достигает нулевой отметки. Схематический график такой зависимости показан на рисунке.



## 2.2 Вспомогательная задача.

2.2.1 Тело будет двигаться равноускоренно с ускорением свободного падения g . Учитывая направления векторов начальной скорости и ускорения зависимости, проекции скорости  $V_y(t)$  и координаты y(t) от времени имеют вид:



$$V_{y}(t) = V_{0} - gt \tag{11}$$

$$y(t) = V_0 t - \frac{gt^2}{2} \tag{12}$$

График зависимости координаты от времени y(t) является параболой, ветви которой направлены вниз (см. рис)



2.2.2 Максимальная высота подъема тела  $h=z_{\max}$  определяется по известной формуле

$$h = \frac{V_0^2}{2g} \,. \tag{13}$$

2.2.3 Координаты z и y, и проекции скорости на эти оси связаны простыми геометрическими соотношениями

$$z = h - y$$

$$V_z = -V_y (14)$$

Подставляя найденные ранее зависимости в эти формулы, получим

$$V_{z}(t) = -V_{0} + gt \tag{15}$$

$$z(t) = \frac{V_0^2}{2g} - V_0 t + \frac{gt^2}{2} \tag{16}$$

2.2.4 Для нахождения зависимости проекции скорости тела на ось z от его координаты  $V_z(z)$  преобразуем формулу (16) к виду

$$z = \frac{V_0^2}{2g} - V_0 t + \frac{gt^2}{2} = \frac{1}{2g} \left( V_0^2 - 2gV_0 t + g^2 t^2 \right) = \frac{1}{2g} \left( V_0 - gt \right)^2 = \frac{V_z^2}{2g}.$$
 (17)

Из которого следует, что

$$V_z = \mp \sqrt{2gz} \,\,\,(18)$$

Причем знак «-» соответствует этапу подъема тела, знак «+» - его падению.

#### 2.3 Возвращение к вытеканию воды.

2.3.1 Сравним результаты решения вспомогательной задачи (п.2.2 на этапе подъема тела) и анализа процесса вытекания воды из сосуда (п.2.1). Для удобства сравнение проведем в Таблипе 2.

Таблица 2.

| Характеристика                                   | Вспомогательная задача                       | Вытекание воды             |
|--------------------------------------------------|----------------------------------------------|----------------------------|
| Начальная координата                             | $z_0 = h$                                    | $z_0 = h$                  |
| Модуль начальной скорости: Из формул (13) и (10) | $V_0 = \sqrt{2gh}$                           | $V_0 = \sqrt{2\eta^2 gh}$  |
| Зависимость скорости от координаты               | •                                            | $V_z = -\sqrt{2\eta^2 gz}$ |
| Зависимость координаты от времени                | $z = \frac{1}{2g} \left( V_0 - gt \right)^2$ | ???                        |

Как хорошо видно, эти задачи практически полностью эквивалентны друг другу! Отличие заключается только в величине ускорения. Из сравнения следует, что ускорение, с которым опускается уровень воды постоянно и равно

$$a = \eta^2 g \tag{19}$$

Поэтому и закон движения уровня воды в сосуде будет таким же, только с измененным ускорением (19):

$$z(t) = \frac{1}{2\eta^2 g} \left( V_0 - \eta^2 g t \right)^2 = \frac{1}{2\eta^2 g} \left( \sqrt{2\eta^2 g h} - \eta^2 g t \right)^2$$
 (20)

2.3.2 Время вытекания находится из формулы (20), в которой следует положить z=0

$$\sqrt{2\eta^2 gh} - \eta^2 g \tau = 0 \quad \Rightarrow \quad \tau = \frac{1}{\eta} \sqrt{\frac{2h}{g}} \,. \tag{21}$$

Оказывается, что время вытекания столба воды высотой h в  $\eta$  раз меньше, чем время падения с той же высоты.

2.3.3 При расчете следует учесть, что отношение площадей двух кругов пропорционально отношению квадратов их радиусов. Поэтому формула для расчета времени вытекания может быть записана в виде

$$\tau = \left(\frac{R}{r}\right)^2 \sqrt{\frac{2h}{g}} = \left(\frac{5.0}{0.1}\right)^2 \sqrt{\frac{2 \cdot 0.20}{9.8}} = 5.0 \cdot 10^2 c.$$
 (22)