PRACTICAL SHEET - 10

CONTINUOUS PROBABILITY DISTRIBUTION

1. The variable X~N(45,10). Find the probability that

Solution:

$$(0) P(X \ge 60) = P\left(\frac{X - 45}{10} \ge \frac{60 - 45}{10}\right)$$

(ii)
$$P(40 < x < 56) = P(-0.5 < 2 < 1.1)$$

```
Rogsam
```

nudx <- seq.(from = 17 05, to = 8635, by = 77); mida f<-c(2,10,16, 54,43,44,24,13,6,5); f

NK-sum(f); N

mean e-sum(midz f)/N, mean

variance (-sum(((midz-mean) 2) of)/N; variance

sd (-squt(vauana); sd

d <- c(13.2, 20 4, 28 6, 36-3, 44, 51 7, 594, 67 1, 748, 825); l

cdf (-pnorm(d, mean, sd); edf

cat <- (10, cat, 1); cat

d (-duff (cap); d

ef t- round (N°d); ef

tf <- c(3,8,19,33,44,43,31,17,7,3);tf

of <- data frame (midz, f, tf); af

ef); af

Output

midx f tf
17.05 2 3
24.75 10 8
22.45 16 18
40.15 34 33
47.85 43 44

55 55 49 43 63 25 29 31

63.25 29 31 70.95 13 17

78.65 6 1

86-35 5

2. The following stable displays the frequency table of height of these in a doculity. Fit a normal distribution for the data.

f	2	209-286 286 286						
		20 7-266	286-363	363-44				
		lo	16		44-51.7	49		
	594-671	34 43		34				
			748-825	805-000				
	29							
	al	13	6	5				

Solution:

Class	Midvalue (21)	fi	21fi	2(1	242Pi
13.2-20.9	14.05	a	34-1	290 7025	581.405
20.9-28.6	24.75	10	247.5	612.5625	6125-625
28 6 - 36.3	32.45	16	519 2	1053-0025	16848.04
36.3 - 44	40.15	34	1365-21	1612:0225	54808-765
44-51.7	41.85	43	2057 55	2289-6225	98453.7675
517-594	55.55	49	2721.95	085.8025	151 204 - 3225
594-671	63.25	29	1834 . 25	4000 5625	116016.3125
671-74.8	70.95	13	922.35	5033 9025	65440.7325
74.8-82.5	78.65	6	4719	6185 8225	37114.935
82.5-90.2	86.35	5	431.75	1456.3225	37281.6125
		207	10605-65		583845. 5175

51.235

$$V(x)$$
, $\sigma^2 = \frac{1}{N} \sum_{i} \chi_i^2 f_i - (\mu_i)^2$
= 195.63

True class	Upper class Boundary (X)	2= (X-4)/6	(2)	10(2)	Expected frequisite
13.2-20-9	-00	- 00	0.5	0.015	3
109-28-6	209	-2.17	0.4850	0.0376	8
286-363	28-6	-162	0.4474	0.0897	(8
16-3-44	36-3	-1-07	0.3577	0.1592	33
44-517	44	-0.52	0.1985	0.2105	44
517-594	51-7	0.03	0.0120	0.207	43
594-621	594	0.58	0.2190	0.1518	31
671-748	67.1	1-13	0.3708	0.0827	17
74.8 - 82.5	14.8	168	0.4535	0.034	1
82.5 -90.2	82.5	2.24	0.4875	00125	3
	100	0	0.5/		

Program

pl<-pnorm(35,30,4)-pnorm(30,30,4); pl # p(30<x<35)

p2 4- 1- pnocm(40, 30, 4); p2 # P(x>40)

Output

pl = 0.3943502

P2 = 0.006209665 J

Program

p1 <- pnoem(2,0,1); p1 # p(x<2) p2<- pnosm(2.5,0,1) - pnosm(0.84,0,1); p2 # P(0.84<×<2.5) P3 <- 1- P1; P3 # P(x>2)

Output

pl = 0.9772499

P2 = 0.1942445

p3 = 0.02275013

- 4 Suppose X is a standard normal variate find
 - (1) P(X £2)
- (ii) P(0.84 4 X 425)
- (iii) P(X 2 2)

(1)
$$\Re(\times \le 2) = 0.5 + \Re(0 < \times < 2)$$

= 0.5 + 0.4772
= 0.9772

$$= 0.5 + P(0 < x < 2.5) - (0.5 + P(0 < x < 0.84))$$
$$= 0.5 + 0.4938 - 0.5 - 0.29955$$

Program

values <- enorm (20,5,2); values
mean (values)
var (values) # variance

Output

mean(values) = 4.709833

vas(values) = 5.314299)