Teoría de Números

Nicholas Mc-Donnell

 $2 do \ semestre \ 2018$

Índice general

0.1. Funciones Aritméticas

0.1. Funciones Aritméticas

Definición 0.1.1 (Función Aritmética). $f: \mathbb{N} \to \mathbb{C}$

■ Es multiplicativa si

$$f(a \cdot b) = f(a) \cdot f(b) \quad \forall (a, b) = 1$$

• Es completamente multiplicativa si

$$f(a \cdot b) = f(a) \cdot f(b) \quad \forall a, b$$

Ejemplo: 0.1.1. (a) $\delta(n)$

- (b) $I_k(n) = n^k$
- (c) Función de Möbius:

$$\mu(n) =$$

- (d) $\sigma_k(n) = \sum_{d|n} d^k$
- (e) Función de Euler: $\phi(n)=\#\{1\leq k\leq n: (k,n)=1\}$

Definición 0.1.2 (Convolución). Sean f, g funciones aritméticas su convolución f * g:

$$(f * g)(n) = \sum_{a \cdot b = n} f(a) \cdot g(b)$$

Teorema 0.1.2 (Propiedades de la convolución). (a) (f*g)*h = f*(g*h)

- (b) f * g = g * f
- $(c)\ f*(g+h)=f*g+f*h$
- (d) $\delta * f = f$
- (e) $I_0 * \mu = \delta$
- (f) Si f y g son multiplicativas entonces f*g es multiplicativa

Demostración.

- (a) Tarea
- (b) Tarea
- (c) Tarea
- (d) Tarea

(e) $(I_0 * \mu)(1) = I_0(1) \cdot \mu(1) = 1 = \delta(1)$ Sea n > 1, sean $p_1, ..., p_l$ los factores primos distintos de n

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_l^{\alpha_l}$$

$$(I_0 * \mu)(n) = \sum_{a \cdot b = n} I_0(a)\mu(b)$$

$$(I_0 * \mu)(n) = \sum_{b \mid n} \mu(b) = \sum_{d \mid p_1 \cdot \dots \cdot p_l}$$

$$(I_0 * \mu)(n) = \sum_{\nu = 0}^{l} (-1)^{\nu} \binom{l}{\nu} = (1 \cdot 1)^l = 0 = \delta(n)$$

(f) f, g mult. Sean (a, b) = 1

$$(f * g)(a) \cdot (f * g)(b) = \left(\sum_{x \cdot y = a} f(x)g(y)\right) \left(\sum_{s \cdot t = a} f(s)g(t)\right)$$
$$(f * g)(a) \cdot (f * g)(b) = \sum_{x \cdot y = a} \sum_{s \cdot t = b} f(x \cdot s) \cdot g(y \cdot t)$$
$$(f * g)(a) \cdot (f * g)(b) = \sum_{u \cdot w = ab} f(u) \cdot g(w)$$
$$(f * g)(a) \cdot (f * g)(b) = (f * g)(ab)$$

Ejemplo: 0.1.3.

$$\sigma_k(n) = \sum_{d|n} d^k \cdot I_0(n/d) = (I_0 * I_0)(n)$$

Corolario (Fórmula de Inversión de Möbius). Sea f función aritmética. Sea $F = I_0 * f$ es decir: $F(n) = \sum_{d|n} f(d)$ entonces: $f = \mu * F$ es decir $f(n) = \sum_{d|n} \mu(d) \cdot F(n/d)$

Demostración.

$$\mu * F = \mu * (I_0 * f)$$

 $\mu * F = (\mu * I_0) * f = \delta * f = f$

Ejemplo: 0.1.4. $C_n = \mathbb{Z}/n\mathbb{Z}$

• Nro de generados: $\phi(n)$

• Subgrupos: exactamente, para d|n:

$$C_n \ge \left\langle \frac{n}{d} \right\rangle \simeq C_d$$

 \bullet Todo $x \in C_n$ genera algún subgrupo

$$\implies \sum_{d|n} \phi(n) = \#C_n = n$$

$$\therefore \phi(n) = \sum_{d|n} \mu(d) \cdot I_1(n/d)$$

$$\phi(n) = n \cdot \sum_{d|n} \frac{\mu(d)}{d}$$

$$\phi = \mu * I_1$$

Teorema 0.1.5 $(\Sigma \to \Pi)$. Sea f multiplicativa g no idénticamente a g. Entonces:

$$\sum_{d|n} f(d) = \prod_{p|n} (1 + f(p) + \dots + f(p^{v_p(n)}))$$

donde p varía sobre primos y $v_p(n) = exponente de p en n.$

Demostración. Expandir LD + Factorización Única + mult

Ejemplo: 0.1.6. (a)
$$\sigma_0 = \sum_{d|n} 1 = \prod_{p|n} (1+1+...+1) = \prod_{p|n} (v_p(n)+1)$$

(b)
$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d} = n \prod_{p|n} (1 - \frac{1}{p})$$