Harbour.Space University: x^3 . Page 1 of 25

Harbour. Space University notebook : x^3

Compiled on April 7, 2023

Contents		4.15 Push Relabel		8 Geometry	21
1 Contest 2		4.16 SCC Gabow	. 13	8.1 Basics	2
1.1 template	5	Number Theory	13	8.2 Antipodal Points	2
2 Combinatorial 2		5.1 Chinese Reminder Theorem		8.3 Polygon Centroid	2
2.1 K - PIE		5.2 Diophantine		**	
2.2 Extended Binomial		5.4 Discrete Root		8.4 Circle	2
3 Data Structures 2		5.5 Divisor Sigma		8.5 Closest Pair Points	25
3.1 Venice Trick		5.6 Euler Phi			
3.2 Monotonic Queue		5.7 Extended GCD		8.6 Convex Cut	22
3.3 Monotonic Stack		5.8 Floor Sum	14	8.7 Convex Hull	25
3.4 Monotonic Stack - Hard		5.9 Floyd Cycle Finding	14		
3.5 DSU on trees		5.10 Harmonic Partition	15	8.8 Line Operations	22
3.6 Sparse Table 2D		5.11 Linear Congruence	15	8.9 Pick's theorem	25
3.7 DSU Rollback		5.12 Miller Rabin	15		
3.9 Implicit Treap		5.13 Pollard Rho	15	8.10 Point 3D	22
3.10 LiChao Tree		5.14 Mobius Mu		8.11 Point in Polygon	25
3.11 Link Cut Tree		5.15 Primitive Root		• •	
3.12 Mo's algorithm		5.16 Sieve	15	8.12 Polar Sort	23
3.13 Normal Treap		NT 1	10	8.13 Polygon Area	25
3.14 Ordered Stats	6	Numerical	16	**	
3.15 Persistent SegTree		6.1 Berlekamp Massey		8.14 Polygon Width	23
3.16 Rollback Trick		6.2 FFT		8.15 Rectilinear MST	25
3.17 Segment Tree		6.4 FWHT		8.13 Rectililear WS1	4.
3.18 Sparse Table		6.5 Gaussian Elimination			
5.19 Cartesian free		6.6 Golden Section Search		9 Various	23
4 Graph 7		6.7 Lagrange Interpolation			
4.1 Hungarian		6.8 Newton's Method		9.1 Divide and Conquer	23
4.2 Complementary Graph Components 8		6.9 NTT		9.2 Integer Division	23
4.3 Directed Euler Path		6.10 Simplex		~	
4.4 2-SAT		6.11 Simpson's Rule		9.3 Bit hacks	24
4.5 BCC Art Points		6.12 Xor Basis		9.4 Formulas	24
4.6 Bridges					
4.8 Dinic	7	Strings	19	9.5 Hash table	24
4.9 Euler Path	- 1	7.1 Aho-Corasick		9.6 Convex Hull Trick	24
4.10 Flow Lower Bound		7.2 Hashing			
4.11 HLD		7.3 KMP		9.7 SOS DP	24
4.12 Hopcroft Karp		7.4 Manacher		9.8 Gray code	24
4.13 LCA		7.5 Suffix Array		·	
4.14 MCMF		7.6 Z-Function	21	9.9 CMake	24

Harbour. Space University: x^3 . Page 2 of 25

```
1 Contest
```

```
1.1 template
#include <bits/stdc++.h>
using namespace std:
#pragma GCC optimize("03","0fast","no-stack-
protector","unroll-loops","omit-frame-pointer","inline")
//Optimization flags
#pragma GCC
option("arch=native","tune=native", "no-zero-upper") //Enable
#pragma GCC target("avx2") //Enable AVX
#define db(x) cerr << #x << ": " << x << '\n':
#define dbv(v) cerr << #v << ": ["; for(auto i:v) cerr << i <<
' ': cerr << "l\n":
#define dbp(p) cerr << #p << ": (" << p.first << ", " <<
p.second << ") ";
#define all(x) (x).begin(), (x).end()
using 11 = long long;
mt19937 64
rng(chrono::steadv clock::now().time since epoch().count());
int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cout << setprecision(9) << fixed;</pre>
    // clock() >= 2.5 * CLOCKS PER SEC
   return 0:
2 Combinatorial
2.1 K - PIE
//Count permutations with at least K fixed points:
//comb(n,k)*(n-k)!*f(k,k) +
//comb(n,k+1)*(n-(k+1))! * f(k+1,k) +
//comb(n,k+1)*(n-(k+2))! * f(k+2,k) ...
11 intersection value(11 N, 11 K) {
    if(N < K)return 0:</pre>
    if(K == 0) {
        if(N == 0)return 1;
        return 0:
   if((N-K)&1)return mod(-comb(N-1,K-1)):
    return comb(N-1,K-1);
2.2 Extended Binomial
// Solve sum 0 \le i \le n \ comb(n, i) * x^n * i^k
// if x = mod-1 then when N > K the ans is always 0
// otherwise just try bruteforce
11 extended binomial(ll n, ll x, int k) {
    //x != (MOD-1)
   x = mod(x):
    if(x == 0 && k == 0)return 1;
    x = (inv(x)+111)\%MOD:
   11 \text{ val} = inv(x), res = 0, pw = 1;
   for(int i = 0 : i <= k : i++) {
        res = (res + stirling2_dp(k,i)*pw)%MOD;
        pw = (pw*(n-i)\%MOD)*val\%MOD:
   }
```

```
res = res*gpow(x*inv((x+MOD-1)\%MOD)\%MOD.n)\%MOD;
   return res:
  Data Structures
3.1 Venice Trick
template<tvpename T>
struct VENICE SET {
   multiset<T> st:
   T = 0:
   void insert(T x) {
       st.insert(x - acum):
   void erase(T x) {
       st.erase(st.find(x - acum));
    void update(T x) {
       acum += x:
   }
   T getmin() {
       assert(st.size()):
       return *st.begin() + acum;
   T getmax() {
       assert(st.size());
       return *(--st.end()) + acum:
   }
   int size() {
       return st.size():
}:
3.2 Monotonic Queue
struct MONOTONIC QUEUE {
   deque<pair<T,int>> D;
   int sz = 0, pt = 0:
   void insert(T x) {
       sz++;
       while(!D.empty() &&
!F()(D.back().first,x))D.pop back();
       D.push back({x,pt++});
   void erase() {
       assert(sz): sz--:
       if(pt-D.front().second > sz)D.pop front();
   }
   T get() {
       assert(sz);
       return D.front().first;
   }
};
3.3 Monotonic Stack
struct MONOTONIC STACK {
   stack<pair<T,int>> S;
   int sz = 0:
   void insert(T x) {
```

sz++:

```
if(S.empty() || F()(x,S.top().first))S.push({x,sz});
    void erase() {
        assert(sz):
        sz--;
        if(S.top().second > sz)S.pop();
    int get() {
        assert(sz);
        return S.top().first;
   7
}:
3.4 Monotonic Stack - Hard
template<typename T, class F = less<T>, class G = less<T>>
struct MONOTONIC STACK {
    const T oo = (G()(-4e18, 4e18) ? 4e18 : -4e18);
    vector<pair<int,T>> S;
    vector<int> res:
    vector<T> vect:
    void insert(T x) {
        S.push_back({vect.size(),oo});
        vect.push back(x):
        if(res.size()) {
            if(F()(vect[S[res.back()].first] +
S[res.back()].second, vect[S.back().first]
            + S.back().second))res.push back(res.back());
            else res.push_back(res.size());
       } else res.push back(res.size());
    void update(T x) {
        if(vect.size() == 0)return;
        int best = -1:
        while(S.size() && G()(x,S.back().second)) {
            if(best == -1) best = S.back().first;
            else {
                if(F()(vect[S.back().first], vect[best]))best =
S.back().first:
            S.pop back();
            res.pop_back();
        if(best == -1)return;
        S.push_back({best,x});
        if(res.size()) {
            if(F()(vect[S[res.back()].first] +
S[res.back()].second, vect[S.back().first]
             + S.back().second))res.push back(res.back());
            else res.push_back(res.size());
       } else res.push back(res.size());
   T get() {
        assert(vect.size());
        return vect[S[res.back()].first] +
S[res.back()].second:
   }
};
```

Harbour. Space University: x^3 . Page 3 of 25

```
3.5 DSU on trees
void DSU ON TREE ADD(int):
void DSU_ON_TREE_DELETE(int);
void DSU ON TREE QUERY(int):
void DSU ON TREE(vector<vector<int>> &L. int root = 0) {
   int N = L.size();
   vector<int> sz(N), st(N), ft(N), ver(N);
   int contg = -1;
   function<void(int,int)> precal = [&](int nodo, int padre) {
        ver[++contg] = nodo;
        st[nodo] = contg;
        sz[nodo] = 1;
       for(auto v : L[nodo]) {
           if(v != padre) {
               precal(v,nodo);
                sz[nodo] += sz[v];
           }
        }
       ft[nodo] = contg;
   };
   precal(root,-1):
   function<void(int,int,bool)> DSUT = [&](int nodo, int
padre, bool keep) {
       int may = -1, big = -1;
        for(auto v : L[nodo])
           if(v != padre && sz[v] > mav)
                may = sz[v], big = v;
        for(auto v : L[nodo])
           if(v != padre && v != big)
                DSUT(v,nodo,0);
        if(big != -1)DSUT(big,nodo,1);
       for(auto v : L[nodo])
            if(v != padre && v != big)
                for(int i = st[v] ; i <= ft[v] ; i++)</pre>
                    DSU ON TREE ADD(ver[i]):
        DSU_ON_TREE_ADD(nodo);
        DSU_ON_TREE_QUERY(nodo);
        if(!keep)
            for(int i = st[nodo] : i <= ft[nodo] : i++)</pre>
                DSU ON TREE DELETE(ver[i]);
   };
   DSUT(root,-1,false);
3.6 Sparse Table 2D
template<typename T, class F = less<T>>
struct RMQ 2D {
   vector<vector<vector<T>>>> A;
   RMQ_2D(const vector<vector<T>> &arr) {
        if(!arr.size() || !arr[0].size())return;
        int N = arr.size(), M = arr[0].size();
       A.resize(N):
        for(int i = 0 ; i < A.size() ; i++) {</pre>
           A[i].resize(31-_builtin_popcount(N)+1);
            for(int j = 0 ; j < A[i].size() ; j++) {</pre>
                A[i][i].resize(M);
                for(int k = 0 ; k < A[i][j].size() ; k++)</pre>
```

```
A[i][j][k].resize(31-_builtin_popcount(M)+1);
       }
        for(int i = 0 ; i < N ; i++) {</pre>
            for(int j = 0 ; j < M ; j++)A[i][0][j][0] =</pre>
arr[i][j];
            for(int y = 1 ; y <= 31-_builtin_popcount(M) ;</pre>
v++)
                for(int j = 0; j+(1 << y)-1 < M; j++)
if(F()(A[i][0][j][y-1],A[i][0][j+(1<<(y-1))][y-1]))
                        A[i][0][j][y] = A[i][0][j][y-1];
                    else A[i][0][i][v] =
A[i][0][j+(1<<(y-1))][y-1];
        for(int x = 1 ; x <= 31-__builtin_popcount(N) ; x++)</pre>
            for(int i = 0; i+(1 << x)-1 < N; i++)
                for(int y = 0 ; y <= 31-__builtin_popcount(M);</pre>
y++)
                    for(int j = 0; j+(1 << y)-1 < M; j++)
if(F()(A[i][x-1][i][y],A[i+(1<<(x-1))][x-1][i][y]))
                            A[i][x][j][x] = A[i][x-1][j][y];
                        else A[i][x][j][y] =
A[i+(1<<(x-1))][x-1][j][y];
   T query(int x1, int y1, int x2, int y2) {
        if(x1 > x2)swap(x1,x2);
        if(v1 > v2)swap(v1,v2);
        int kx = 31- builtin popcount(x2-x1+1);
        int ky = 31-__builtin_popcount(y2-y1+1);
        T r1, r2;
if(F()(A[x1][kx][y1][ky],A[x1][kx][y2-(1<< ky)+1][ky]))r1 =
A[x1][kx][y1][ky];
        else r1 = A[x1][kx][y2-(1<< ky)+1][ky];
        if(F()(A[x2-(1<< kx)+1][kx][y1][ky],A[x2-(1<< kx)+1][kx]
[v2-(1<< ky)+1][ky])
            r2 = A[x2-(1 << kx)+1][kx][y1][ky];
        else r2 = A[x2-(1<< kx)+1][kx][y2-(1<< ky)+1][ky];
        if(F()(r1,r2))return r1:
        else return r2:
   }
};
3.7 DSU Rollback
struct DSU_WITH_ROLLBACKS {
    struct dsu save {
        int u, urank, v, vrank, comps;
        bool bipart, bipart_comp;
    };
    stack<dsu_save> op; vector<int> rnk;
    vector<bool> col, bip; bool bipartite; int comps;
    DSU WITH_ROLLBACKS() {}
    DSU_WITH_ROLLBACKS(int N) { init(N); }
```

```
void init(int N) {
        rnk.clear(), col.clear(), bip.clear();
        while (!op.empty())
            op.pop();
        rnk.resize(N), col.resize(N), bip.resize(N);
        for (int i = 0: i < N: i++) {</pre>
            rnk[i] = 1, col[i] = false, bip[i] = true;
        bipartite = true, comps = N;
    pair<int, bool> find(int x) {
        if (rnk[x] > 0) return \{x, col[x]\}:
        pair<int, bool> tp = find(-rnk[x]);
        tp.second ^= col[x]:
        return tp;
    void join(int a, int b) {
        pair<int, bool> ta = find(a), tb = find(b);
        a = ta.first, b = tb.first:
        if (a == b) {
            op.push({a, rnk[a], b, rnk[b], comps, bipartite,
bip[a]});
            if (ta.second == tb.second)
                bipartite = false, bip[a] = false;
            return:
        if (rnk[a] < rnk[b])
            swap(a, b):
        op.push({a, rnk[a], b, rnk[b], comps, bipartite,
bip[a]});
        comps--;
        rnk[a] += rnk[b];
        rnk[b] = -a:
        col[b] = col[b] ^ (ta.second == tb.second);
        bip[a] = bip[a] & bip[b];
    void rollback() {
        if (op.emptv()) return:
        dsu_save x = op.top(); op.pop();
        comps = x.comps, bipartite = x.bipart;
        rnk[x.u] = x.urank, col[x.u] = false, bip[x.u] =
x.bipart comp;
        rnk[x.v] = x.vrank. col[x.v] = false:
};
3.8 Fenwick Tree 2D
//Complexity (O(nlog^2)) first call fakeUpdate, prepare, and
//then start with real updates and queries. Computes sums
//a[i,j] for all i<I, j<J, and increases single elements</pre>
a[i,j]
struct FT {
    vector<ll> ft;
```

FT () {}

11 Li. Ri:

```
FT(int n) : ft(n + 1) {}
    void update(int id, ll val){
        for (id ++; id < ft.size(); id += (id&-id)) ft[id] +=</pre>
val:
    11 querv(int id) { if (id < 0) return 0:</pre>
        11 \text{ res} = 0;
        for (id ++; id > 0; id -= (id&-id))
            res += ft[id]:
        return res; }
};
struct FT2D {
    vector<FT> fts; vector<vector<int>> ys; int szx;
    FT2D (int szx) : szx(szx + 1), vs(szx + 1), fts(szx +
1) {}
    void fakeUpdate(int x,int y) {
        for (x ++: x < szx: x += (x\&-x))
            vs[x].push back(v);
    }
    int index(int x,int y) {
        return lower_bound(ys[x].begin(), ys[x].end(), y) -
ys[x].begin();
    int index2(int x,int y) {
        return upper_bound(ys[x].begin(), ys[x].end(), y) -
ys[x].begin();
   }
    void prepare () { int count = 0;
        for (auto& vy : ys) {
            sort(vy.begin(), vy.end());
            fts[count++].ft.resize(vy.size() + 2);
        }
    void update (int x,int y, ll val) {
        for (x ++: x < szx: x += (x\&-x))
            fts[x].update(index(x, v), val):
    }
    11 querv(int x.int v) { 11 res = 0:
        for (x ++; x > 0; x -= (x\&-x))
            res += fts[x].query(index2(x, y) - 1);
        return res:
    }
};
3.9 Implicit Treap
struct Node {
    int prio, sz:
    Node *1, *r;
   ll val, sum;
    ll lazv:
    Node (11 val): 1(NULL), r(NULL), sz(1),
        prio(rng()), val(_val), lazy(0), sum(_val) {}
struct Treap {
    inline int size(Node *u) { return u ? u->sz : 0; }
    inline void push(Node *u) {
        if (u && u->lazy) {
```

```
// How u->lazv affects u
            u->val += u->lazy;
            u->sum += u->lazy * u->sz;
            if (u->1) u->1->lazy += u->lazy;
            if (u->r) u->r->lazy += u->lazy;
            u->lazv = 0:
        }
    }
    Node* update(Node *u){
        // Recompute u based on merging its children
        u \rightarrow sum = u \rightarrow val. u \rightarrow sz = 1:
        if (u->1) u->sum += u->1->sum, u->sz += u->1->sz:
        if (u->r) u->sum += u->r->sum, u->sz += u->r->sz;
    pair<Node*, Node*> split(Node* u, int k){
        if (!u) return { u, u };
        push(u);
        if (size(u->1) >= k){
            auto s = split(u->1, k);
            u->1 = s.second;
            return { s.first, update(u) }:
        auto s = split(u \rightarrow r, k - size(u \rightarrow l) - 1);
        u->r = s.first:
        return { update(u), s.second };
    Node* merge(Node *u. Node *v){
        if (!u || !v) return u ? u : v;
        if (u->prio > v->prio){
            push(u);
            u \rightarrow r = merge(u \rightarrow r, v);
            return update(u);
        }
        push(v):
        v->1 = merge(u, v->1):
        return update(v);
    Node* kth(Node *u, int k) {
        while (u \&\& size(u->1) + 1 != k){
            push(u):
            if (size(u->1) >= k) u = u->1;
             else k = size(u->1) + 1, u = u->r;
        }
        push(u);
        return u;
    }
3.10 LiChao Tree
template<typename T, class F = less <T>>
struct LiChaoTree {
    bool sz = true;
    struct node {
        T func; node *L = NULL, *R = NULL;
    } ST;
```

```
LiChaoTree(ll a. ll b) { Li = a. Ri = b: }
    void add function(T nw) {
        if (sz)ST.func = nw, sz = false;
        else li_chao_tree_update(nw, &ST, Li, Ri);
    T get(ll x) { assert(!sz):
        return li chao tree query(x, &ST, Li, Ri);
    void li_chao_tree_update(T nw, node *pt, ll l, ll r) {
        11 m = (1 + r) / 2;
        bool lef = F()(nw.f(1), pt->func.f(1));
        bool mid = F()(nw.f(m), pt->func.f(m));
        if (mid)swap(nw, pt->func);
        if (1 == r) return:
        if (lef != mid) {
            if (pt->L == NULL)pt->L = new node(), pt->L->func =
nw;
            else li chao tree update(nw, pt->L, l, m);
       } else {
            if (pt->R == NULL)pt->R = new node(), pt->R->func =
nw;
            else li_chao_tree_update(nw, pt->R, m + 1, r);
       }
    }
    T li_chao_tree_query(ll x, node *pt, ll l, ll r) {
        if (1 == r)return pt->func;
        11 m = (1 + r) / 2:
       T tp = pt->func;
        if (x <= m && pt->L != NULL) {
            T qu = li chao tree query(x, pt->L, l, m);
            if (F()(qu.f(x), tp.f(x)))tp = qu;
       } else if (pt->R != NULL) {
            T qu = li_chao_tree_query(x, pt->R, m + 1, r);
            if (F()(qu.f(x), tp.f(x)))tp = qu;
        return tp;
    }
};
struct line {
    11 m. n:
    11 f(11 x) { return m * x + n; }
}:
3.11 Link Cut Tree
// Usage: FOR(i,1,N)LCT[i]=new snode(i);
typedef struct snode* sn;
struct snode { ////// VARIABLES
 sn p, c[2]; // parent, children
  sn extra; // extra cycle node for "The Applicant"
  bool flip = 0; // subtree flipped or not
  int val, sz; // value in node, # nodes in current splay tree
  int sub, vsub = 0; // vsub stores sum of virtual children
  snode(int _val) : val(_val) {
```

```
p = c[0] = c[1] = extra = NULL; calc(); }
friend int getSz(sn x) { return x?x->sz:0; }
friend int getSub(sn x) { return x?x->sub:0; }
void prop() { // lazy prop
 if (!flip) return;
  swap(c[0],c[1]); flip = 0;
  for(int i = 0; i < 2; i++) if (c[i]) c[i] -> flip <math>^= 1;
void calc() { // recalc vals
  for(int i = 0 ; i < 2 ; i++) if (c[i]) c[i]->prop();
  sz = 1+getSz(c[0])+getSz(c[1]);
  sub = 1+getSub(c[0])+getSub(c[1])+vsub;
////// SPLAY TREE OPERATIONS
int dir() {
  if (!p) return -2;
 for(int i = 0; i < 2; i++) if (p->c[i] == this) return i;
 return -1; // p is path-parent pointer
} // -> not in current splay tree
// test if root of current splay tree
bool isRoot() { return dir() < 0; }</pre>
friend void setLink(sn x, sn y, int d) {
 if (y) y \rightarrow p = x;
 if (d >= 0) x -> c[d] = y; }
void rot() { // assume p and p->p propagated
  assert(!isRoot()); int x = dir(); sn pa = p;
  setLink(pa->p, this, pa->dir());
  setLink(pa, c[x^1], x); setLink(this, pa, x^1);
 pa->calc();
void splay() {
  while (!isRoot() && !p->isRoot()) {
   p->p->prop(), p->prop(), prop();
   dir() == p->dir() ? p->rot() : rot();
   rot():
  if (!isRoot()) p->prop(), prop(), rot();
  prop(); calc();
sn fbo(int b) { // find by order
  prop(); int z = getSz(c[0]); // of splay tree
 if (b == z) { splay(); return this; }
  return b < z ? c[0] \rightarrow fbo(b) : c[1] \rightarrow fbo(b-z-1):
////// BASE OPERATIONS
void access() { // bring this to top of tree, propagate
  for (sn v = this, pre = NULL; v; v = v \rightarrow p) {
    v->splay(); // now switch virtual children
   if (pre) v->vsub -= pre->sub:
   if (v->c[1]) v->vsub += v->c[1]->sub;
    v->c[1] = pre; v->calc(); pre = v;
  splay(); assert(!c[1]); // right subtree is empty
void makeRoot() {
  access(): flip ^= 1: access(): assert(!c[0] && !c[1]): }
```

```
////// QUERIES
  friend sn lca(sn x, sn y) {
    if (x == y) return x;
    x->access(), y->access(); if (!x->p) return NULL;
    x->splay(); return x->p?:x; // y was below x in latter case
  } // access at v did not affect x -> not connected
  friend bool connected(sn x, sn y) { return lca(x,y); }
  // # nodes above
  int distRoot() { access(); return getSz(c[0]); }
  sn getRoot() { // get root of LCT component
    access(); sn a = this;
    while (a\rightarrow c[0]) a = a\rightarrow c[0], a\rightarrow prop():
    a->access(); return a;
  sn getPar(int b) { // get b-th parent on path to root
    access(); b = getSz(c[0])-b; assert(b >= 0);
    return fbo(b):
  } // can also get min, max on path to root, etc
  ////// MODIFICATIONS
  void set(int v) { access(); val = v; calc(); }
  friend void link(sn x, sn y, bool force = 0) {
    assert(!connected(x,y));
    if (force) y->makeRoot(); // make x par of y
    else { y->access(); assert(!y->c[0]); }
    x->access(); setLink(y,x,0); y->calc();
  friend void cut(sn y) { // cut y from its parent
    v->access(): assert(v->c[0]):
    y \rightarrow c[0] \rightarrow p = NULL; y \rightarrow c[0] = NULL; y \rightarrow calc(); }
  friend void cut(sn x, sn y) { // if x, y adj in tree
    x->makeRoot(); y->access();
    assert(v->c[0] == x && !x->c[0] && !x->c[1]); cut(y); }
};
sn LCT[MX];
3.12 Mo's algorithm
void MO S ADD(int);
void MO_S_REMOVE(int);
11 MO S GET ANSWER():
vector<ll> MO S ALGORITHM(vector<pair<int,int>> &gueries) {
    int Q = queries.size();
    //M = N/sqrt(Q)
    const int BLOCK SIZE = 500;
    struct Query { int 1, r, id; };
    vector<Query> que(Q);
    for(int i = 0; i < Q; i++) {
        que[i].l = queries[i].first:
        que[i].r = queries[i].second;
        que[i].id = i;
    }
    sort(que.begin(),que.end(),[&](const Query &x, const Query
&v) {
        if(x.1/BLOCK SIZE != y.1/BLOCK SIZE)return x.1 < y.1;</pre>
        return (x.1/BLOCK\_SIZE&1) ? (x.r < y.r) : (x.r > y.r);
    int cur l = 0, cur r = -1;
    vector<ll> res(0):
```

```
for(Query q : que) {
        while(cur 1 > q.1) {
            cur_1--, MO_S_ADD(cur_1);
        while(cur r < q.r) {</pre>
            cur r++, MO S ADD(cur r):
        while(cur 1 < q.1) {</pre>
            MO_S_REMOVE(cur_1), cur_1++;
        while(cur_r > q.r) {
            MO S REMOVE(cur_r), cur_r--;
        res[a.id] = MO S GET ANSWER():
    return res;
3.13 Normal Treap
template<tvpename T>
struct treap {
    struct node {
        T key; int sz; int prior; node *1,*r;
        node(T \text{ key}) : 1(0), r(0), key(key), sz(1), prior(rng()) {}
    typedef node* pnode;
    pnode root:
    treap() : root(0){}
    int sz(pnode p) { return p ? p->sz : 0; }
    void update(pnode p) {
        if(p) p->sz=1+sz(p->1)+sz(p->r);
    //left subtree will contain elements less than or equal to
key
    void split(pnode p,T key,pnode &1,pnode &r) {
        if(!p) 1 = r = 0:
        else if(key<p->key) {
            split(p->1,key,1,p->1); r=p;
            split(p->r,key,p->r,r); l=p;
        update(p);
    void insert(T kev) {
        pnode add=new node(key); insert(root,add);
    void erase(T key) {
        int pos=order_of_key(key);
        if(pos && key==find_kth(pos))
            erase(root,key);
    ///returns the number of elements less than or equal to
the key
    int order_of_key(T key) { return order_of_key(root,key); }
```

Page 5 of 25

```
///returns the k-th(1-indexed) in the ordered set of keys
of the treap
   T find_kth(int k) {return find_kth(root,k);}
    int size() { return sz(root): }
    int order of key(pnode p,T key) {
        if(!p) return 0:
        if(p->key<=key) return</pre>
sz(p->1)+1+order_of_key(p->r,key);
        return order_of_key(p->1,key);
   T find_kth(pnode p,int k) {
        int pos=sz(p->1)+1:
        if(pos==k) return p->key;
        if(pos>k) return find kth(p->1.k):
        return find kth(p->r,k-pos);
   void insert(pnode &p,pnode it) {
        if(!p) p=it;
        else if(it->prior>p->prior) {
            split(p,it->key,it->l,it->r); p=it;
       } else {
            if(it->key<p->key) insert(p->1,it);
            else insert(p->r,it);
        }
        update(p):
   void merge(pnode &p,pnode 1,pnode r) {
        if(!1 || !r) {
            if(1) p=1;
            else p=r:
       } else if(l->prior>r->prior) {
            merge(1->r,1->r,r); p=1;
        } else {
            merge(r->1,1,r->1); p=r;
        update(p):
   }
   void erase(pnode &p.T kev) {
        if(p->key==key)
            merge(p,p->1,p->r);
        else if(kev<p->kev)
            erase(p->1,key);
        else
            erase(p->r,key);
        update(p);
   }
};
3.14 Ordered Stats
template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,
      tree_order_statistics_node_update>;
3.15 Persistent SegTree
typedef int T;
struct node{
   int 1, r;T v;
```

```
node () {}
};
vector<node> pool; int actual;
int next() {
    pool.push back(node());
    return actual ++:
struct pst {
    vector<int> versions; int n;
    pst(vector<T> &a) : n(a.size()) {
        versions.push_back(build(0, n - 1, a));
   T merge(T v1, T v2) { /*Merge v1 and v2*/ }
    void up(int p. T v) { /*How v affects pool[p].v*/ }
    int build(int 1, int r, vector<T> &a){
        int ans = next();
        if (1 == r){
            pool[ans].v = a[1];
            return ans:
        int mid = (1 + r) >> 1;
        pool[ans].l = build(l, mid, a):
        pool[ans].r = build(mid + 1, r, a);
        pool[ans].v = merge(pool[pool[ans].1].v,
pool[pool[ans].r].v):
        return ans:
    int clone(int p){
        int ans = next();
        pool[ans] = pool[p];
        return ans;
    void update(int ver, int pos, T v) {
        versions.push back(update(versions[ver], 0, n - 1,
pos, v));
   }
    void update(int pos, T v) {
        versions.push back(update(versions.back(), 0, n - 1,
pos, v));
    int update(int p, int l, int r, int pos, T v){
       p = clone(p);
        if (r == 1){
            up(p, v);
            return p;
        int mid = (1 + r) >> 1;
        if (pos <= mid) pool[p].l = update(pool[p].l, l, mid,</pre>
pos. v):
        else pool[p].r = update(pool[p].r, mid + 1, r, pos, v);
        pool[p].v = merge(pool[pool[p].1].v,
pool[pool[p].r].v);
        return p;
   T query(int t, int 1, int r) {
        return querv(versions[t], 0, n - 1, 1, r):
```

```
T query(int p, int 1, int r, int L, int R){
        if (L <= 1 && r <= R) return pool[p].v;</pre>
        int mid = (1 + r) >> 1:
        if (R <= mid) return query(pool[p].1, 1, mid, L, R);</pre>
        if (L > mid) return query(pool[p].r, mid + 1, r, L, R);
        return merge(query(pool[p].1, 1, mid, L, R),
                     query(pool[p].r, mid + 1, r, L, R));
};
3.16 Rollback Trick
template<typename F, typename Q, typename T, typename D>
struct ROLLBACK TRICK {
    typedef long long 11:
    vector<vector<T>> ST; vector<vector<Q>> arr; int N;
    void update(T &x, D &DS) { DS.join(x.first, x.second); }
    F query(Q &x, D &DS) { return DS.rnk[DS.find(x).first]; }
    void rollback(D &DS) { DS.rollback(); }
    void add_to_tree(int nodo, int 1, int r, int a, int b, T
&au) {
        if(r < a \mid \mid 1 > b) return;
        if(a <= 1 && r <= b) {
            ST[nodo].push back(qu); return;
        int mid = (1+r)/2:
        add_to_tree(nodo*2, 1, mid, a, b, qu);
        add to tree(nodo*2+1, mid+1, r, a, b, qu):
   }
    void add_query(T &qu, int 1, int r) {
        add to tree(1, 0, N-1, 1, r, qu);
    void dfs(int nodo, int 1, int r, vector<F> &ans, D &DS) {
        for(auto x : ST[nodo])update(x, DS);
        if(1 == r)
            for(auto x : arr[1])ans.push back(query(x, DS));
        else {
            int mid = (1+r)/2;
            dfs(nodo*2, 1, mid, ans, DS);
            dfs(nodo*2+1, mid+1, r, ans, DS);
        for(int i = 0 : i < ST[nodo].size() : i++)
rollback(DS):
   }
    vector<F> solve(vector<Q> &qu, vector<11> &querys,
        vector<T> &vect, vector<pair<11,11>> &ranges, D &DS) {
        assert(qu.size() == querys.size()),
            assert(vect.size() == ranges.size());
        vector<pair<11,11>> mp;
        for(int i = 0 ; i < querys.size() ; i++) {</pre>
            mp.push back({querys[i], i});
        for(int i = 0 ; i < ranges.size() ; i++) {</pre>
```

```
mp.push back({ranges[i].first, i+quervs.size()});
            mp.push back({ranges[i].second,
i+querys.size()+ranges.size()});
        sort(mp.begin(), mp.end());
        11 \text{ temp} = 0:
        int cont = 0;
        if(mp.size())temp = mp[0].first;
        for(int i = 0 ; i < mp.size() ; i++) {</pre>
            if(mp[i].first != temp)cont++;
            if(mp[i].second <</pre>
querys.size())querys[mp[i].second] = cont;
            else if(mp[i].second >= querys.size() +
ranges.size())
ranges[mp[i].second-querys.size()-ranges.size()].second =
cont:
            else ranges[mp[i].second-querys.size()].first =
cont:
            temp = mp[i].first;
        N = cont+1; ST.clear(), ST.resize(4*(N+4));
        for(int i = 0 ; i < vect.size() ; i++)</pre>
            add query(vect[i], ranges[i].first,
ranges[i].second):
        arr.clear(), arr.resize(N);
        for(int i = 0 ; i < querys.size() ; i++)</pre>
            arr[querys[i]].push_back(qu[i]);
        vector<F> ans;
        dfs(1, 0, N-1, ans, DS);
        return ans;
   }
3.17 Segment Tree
//Must implement merge_ function and push
//For use without lazy, remove stuff that contains if-lazy
template <typename Tnode, typename Tlazy>
struct ST{
    vector<Tnode> st; int sz;
    vector<Tlazy> lazy; Tlazy neutraL; // if-lazy
    ST (int n,Tlazy _neutraL) : sz(n), st(2*n),
                                lazy(2*n), neutraL( neutraL)
{} // if-lazv
   Tnode merge (Tnode a, Tnode b) {}
    void push (int nod,int l,int r){ /** IF-LAZY */
       int mi = (1 + r) >> 1:
        /// how lazy[nod] affects st[nod]
        if( 1 != r ){
           /// how lazy[nod] affects lazy[nod+1] and
lazy[nod+2*(mi-l+1)]
        lazy[nod] = neutraL;
   void build (vector<Tnode> &arr){build(0, 0, sz-1, arr);}
   void build (int nod,int 1,int r,vector<Tnode> &arr){
        if (1 == r) {
```

```
st[nod] = arr[1]:
            lazy[nod] = neutraL; // if-lazy
            return:
        }
        int mi = (1 + r) >> 1;
        build(nod+1.1.mi.arr):
        build(nod+((mi-l+1)<<1), mi+1, r, arr);
        st[nod] = merge (st[nod+1], st[nod+((mi-l+1)<<1)]);
        lazy[nod] = neutraL; // if-lazy
    void updateRange (int x,int y,Tlazy v) { /** IF-LAZY */
        updateRange(0, 0, sz-1, x, v, v):
    void updateRange (int nod.int l.int r.int x.int v.Tlazv v){
        push(nod, 1, r);
        if (1 >= x && r <= y) {
            lazv[nod] = v:
            push(nod, 1, r); return;
        int mi = (1 + r) >> 1;
        if (x <= mi) updateRange(nod+1, 1, mi, x, y, v);</pre>
        else push(nod+1, 1, mi);
        if (y > mi) updateRange(nod+((mi-l+1)<<1), mi+1, r, x,</pre>
v, v);
        else push(nod+((mi-l+1) << 1), mi+1, r):
        st[nod] = merge_(st[nod+1] , st[nod+((mi-l+1)<<1)]);
    void updatePoint(int id. Tnode val) {
        updatePoint(0, 0, sz - 1, id, val);
    void updatePoint(int nod,int l,int r,int id, Tnode val) {
        push(nod, l, r); // if-lazy
        if (1 == r) {
            st[nod] = val; return;
        int mi = (1 + r) >> 1:
        if (id <= mi) {</pre>
            updatePoint(nod+1, 1, mi, id, val):
            push(nod+((mi-l+1)<<1), mi+1, r); // if-lazy</pre>
            updatePoint(nod+((mi-l+1)<<1), mi+1, r, id, val):
            push(nod+1, 1, mi); // if-lazy
        st[nod] = merge_(st[nod+1], st[nod+((mi-l+1)<<1)]);
    Tnode query (int l,int r) {return query(0, 0, sz-1, 1, r);}
    Tnode query (int nod,int l,int r,int x,int y) {
        push(nod, 1, r); // if-lazy
        if (1 \ge x \&\& r \le v) return st[nod]:
        int mi = (1 + r) >> 1;
        if (y <= mi) return query(nod+1, 1, mi, x, y);</pre>
        if (x > mi) return query(nod+((mi-l+1) << 1), mi+1, r, x,
y);
        return merge_(query(nod+1, 1, mi, x, y),
                      query(nod+((mi-l+1)<<1), mi+1, r, x,
y));
```

```
};
3.18 Sparse Table
template <typename T, class F = less<T>>
struct RMO {
    vector<vector<T>> A:
    RMQ(const vector<T> &arr) {
        A.resize(arr.size());
        for (int i = 0; i < A.size(); i++)</pre>
            A[i].resize(31 - builtin clz(arr.size()) + 1).
A[i][0] = arr[i];
        for (int j = 1; j <= 31 - __builtin_clz(arr.size());</pre>
j++)
            for (int i = 0; i + (1 << j) - 1 < A.size(); i++)
                if (F()(A[i][j-1], A[i+(1 << (j-1))][j-
1])) A[i][j] = A[i][j - 1];
                else A[i][j] = A[i + (1 << (j - 1))][j - 1];
    T query(int a, int b) {
        if (a > b) swap(a, b);
        int k = 31 - builtin clz(b - a + 1):
        if (F()(A[a][k], A[b - (1 << k) + 1][k])) return
A[a][k];
        else return A[b - (1 << k) + 1][k]:
}:
3.19 Cartesian Tree
template<typename T. class F = less<T>>
int CARTESIAN_TREE(vector<vector<int>> &L, const vector<T>
&arr) {
    int N = arr.size():
    L.clear(); L.resize(N);
    stack<int> st; vector<int> parent(N,-1);
    for(int i = 0 ; i < N ; i++) {</pre>
        int last = -1:
        while(!st.empty() && F()(arr[i],arr[st.top()]))
            last = st.top(), st.pop();
        if(!st.empty())parent[i] = st.top();
        if(last >= 0)parent[last] = i:
        st.push(i);
    }
    int root = -1;
    for(int i = 0 ; i < N ; i++) {</pre>
        if(parent[i] == -1)root = i:
        else L[parent[i]].push back(i);
    return root;
4 Graph
4.1 Hungarian
// Description:
// - We are given a cost table of size n times m with n <= m.
// - It finds a maximum cost assignment, i.e.,
```

Page 7 of 25

```
\max sum_{ij} c(i,j) x(i,j)
      where sum \{i \text{ in } [n]\}\ x(i,j) = 1,
          sum_{j} in [n] x(i,j) <= 1.
// Complexity: O(n^3)
template<typename T>
T max assignment(const vector<vector<T>> &a) {
    int n = a.size(), m = a[0].size();
    assert(n <= m):
    vector<int> x(n, -1), y(m, -1);
    vector<T> px(n, numeric limits<T>::min()), py(m, 0);
   for (int u = 0: u < n: ++u)
        for (int v = 0; v < m; ++v) px[u] = max(px[u].
a[u][v]);
   for (int u = 0, p, q; u < n;) {
        vector<int> s(n + 1, u), t(m, -1);
        for (p = q = 0; p \le q \&\& x[u] \le 0; ++p)
            for (int k = s[p], v = 0; v < m && x[u] < 0; ++v)
                if (px[k] + py[v] == a[k][v] && t[v] < 0) {
                    s[++q] = y[v], t[v] = k;
                    if (s[q] < 0)
                        for (p = v; p >= 0; v = p)
                            y[v] = k = t[v], p = x[k], x[k] =
                }
        if (x[u] < 0) {
           T delta = numeric limits<T>::max();
            for (int i = 0; i <= q; ++i)
                for (int v = 0: v < m: ++v) if (t[v] < 0)
                        delta = min(delta, px[s[i]] + py[v] -
a[s[i]][v]):
            for (int i = 0; i \le q; ++i)
                px[s[i]] -= delta;
           for (int v = 0; v < m; ++v)
                pv[v] += (t[v] < 0 ? 0 : delta);
        } else ++n:
   T cost = 0;
   for (int u = 0: u < n: ++u)
        cost += a[u][x[u]];
   return cost;
4.2 Complementary Graph Components
vector<vector<int>>
INVERSE GRAPH COMPONENTS(vector<vector<int>> &L) {
    int N = L.size():
    vector<vector<int>> adv(N). comps:
   vector<bool> in(N);
   list<int> ls:
   for(int i = 0 ; i < N ; i++)</pre>
        ls.push back(i);
    while(!ls.empty()) {
        queue<int> Q;
        vector<int> cmp:
        Q.push(*ls.begin());
        cmp.push back(*ls.begin());
        ls.erase(ls.begin());
```

```
while(!Q.emptv()) {
            int nodo = Q.front();
            Q.pop();
            for(auto v : L[nodo])
                in[v] = true:
            vector<list<int>::iterator> temp:
            for(auto it = ls.begin() ; it != ls.end() ; it++)
                if(!in[*it])
                    temp.push_back(it);
            for(auto x : temp) {
                ady[nodo].push_back(*x);
                adv[*x].push back(nodo):
                Q.push(*x);
                cmp.push back(*x):
                ls.erase(x);
            for(auto v : L[nodo])
                in[v] = false:
       }
        comps.push_back(cmp);
   }
    return comps;
4.3 Directed Euler Path
int CHECK EULER TOUR(int N, vector<pair<int,int>> &edge,
    bool undigraph, int troot = -1) {
    assert(troot == -1 \mid \mid (troot >= 0 \&\& troot < N)):
    vector<vector<int>> L(N);
    for(int i = 0 : i < edge.size() : i++) {</pre>
        assert(edge[i].first >= 0 && edge[i].first < N);</pre>
        assert(edge[i].second >= 0 && edge[i].second < N);
        if(undigraph) {
            L[edge[i].first].push back(edge[i].second);
            L[edge[i].second].push back(edge[i].first);
        } else {
            L[edge[i].first].push back(edge[i].second);
        }
    vector<int> ingree(N), outgree(N);
    vector<bool> mark(N):
    int total edge = 0;
    for(int i = 0 ; i < N ; i++) {</pre>
        total_edge += L[i].size();
        for(auto v : L[i]) {
            outgree[i]++;
            ingree[v]++:
        }
    int init = -1;
    vector<pair<int,int>> odd;
    for(int i = 0 : i < N : i++) {
        if(init == -1 && outgree[i])init = i;
        if(undigraph) {
            if(outgree[i]&1)odd.push_back({i,0});
        } else {
            if(outgree[i] != ingree[i])
```

```
odd.push back({i.outgree[i]-ingree[i]}):
       }
    }
    int root = -1;
    if(odd.size()) {
        if(undigraph) {
            if(odd.size() != 2)return -1;
            if(odd[0].first > odd[1].first)swap(odd[0],odd[1]);
            if(troot != -1) {
                if(troot == odd[0].first)root = troot:
                else if(troot == odd[1].first)root = troot;
                else return -1:
            } else root = odd[0].first;
       } else {
            if(odd.size() != 2)return -1;
            if(odd[0].second <
odd[1].second)swap(odd[0].odd[1]):
            if(odd[0].second == 1 && odd[1].second == -1) {
                if(troot != -1) {
                    if(troot == odd[0].first)root = troot:
                    else return -1;
                } else root = odd[0].first;
            } else return -1:
    } else {
        if(troot != -1)root = troot:
        else root = init;
    queue<int> Q;
    mark[root] = true:
    Q.push(root);
    int temp edge = 0;
    while(!Q.empty()) {
        int nodo = Q.front();
        Q.pop();
        temp edge += L[nodo].size():
        for(auto v : L[nodo]) {
            if(!mark[v]) {
                mark[v] = true:
                Q.push(v);
       }
    if(total_edge != temp_edge)return -1;
    return root;
vector<int> EULER TOUR(int N. vector<pair<int.int>> &edge.
    bool undigraph, int troot = -1) {
    vector<int> res:
    int root = CHECK_EULER_TOUR(N,edge,undigraph,troot);
    if(root == -1) {
```

Harbour. Space University: x^3 . Page 9 of 25

```
return res:
   }
    vector<vector<int>> L(N), id(N), inv(N);
    for(int i = 0 ; i < edge.size() ; i++) {</pre>
        if(undigraph) {
            L[edge[i].first].push back(edge[i].second):
            L[edge[i].second].push back(edge[i].first);
            id[edge[i].first].push back(i);
            id[edge[i].second].push_back(i+edge.size());
            if(edge[i].first == edge[i].second) {
                int sz = inv[edge[i].first].size();
                inv[edge[i].first].push back(sz+1):
                inv[edge[i].second].push back(sz);
            } else {
                int sz2 = inv[edge[i].second].size();
                int sz1 = inv[edge[i].first].size();
                inv[edge[i].first].push_back(sz2);
                inv[edge[i].second].push back(sz1);
            }
        } else {
            L[edge[i].first].push_back(edge[i].second);
            id[edge[i].first].push_back(i);
        }
    }
    vector<vector<bool>> mark(N):
    vector<int> ptr(N);
    for(int i = 0 ; i < N ; i++) {</pre>
        mark[i].resize(L[i].size()):
    stack<pair<int.int>> S:
    S.push({root, -1});
    while(!S.empty()) {
        int nodo = S.top().first;
        while(ptr[nodo] < L[nodo].size() &&</pre>
mark[nodo][ptr[nodo]])
            ptr[nodo]++:
        if(ptr[nodo] == L[nodo].size()) {
            res.push back(S.top().second):
            S.pop();
        } else {
            mark[nodo][ptr[nodo]] = true;
            if(undigraph)
                mark[L[nodo][ptr[nodo]]][inv[nodo][ptr[nodo]]]
= true:
            S.push({L[nodo][ptr[nodo]],id[nodo][ptr[nodo]]});
    }
    reverse(res.begin(),res.end());
    return res:
}
4.4 2-SAT
struct satisfiability twosat {
    int n: vector<vector<int>> imp:
    satisfiability_twosat(int n) : n(n), imp(2 * n) {}
    void add edge(int u, int v) { imp[u].push back(v); }
    int neg(int u) { return (n << 1) - u - 1; }</pre>
```

```
void implication(int u. int v) {
        add edge(u, v);
        add_edge(neg(v), neg(u));
    vector<bool> solve() {
        int size = 2 * n:
        vector<int> S, B, I(size);
        function<void(int)> dfs = [&](int u) {
            B.push_back(I[u] = S.size());
            S.push back(u);
            for (int v : imp[u])
                if (!I[v]) dfs(v):
                else while (I[v] < B.back()) B.pop_back();</pre>
            if (I[u] == B.back())
                for (B.pop back(), ++size; I[u] < S.size();</pre>
S.pop_back())
                    I[S.back()] = size:
        for (int u = 0: u < 2 * n: ++u)
            if (!I[u]) dfs(u):
        vector<bool> values(n):
        for (int u = 0: u < n: ++u)
            if (I[u] == I[neg(u)]) return {};
            else values[u] = I[u] < I[neg(u)];</pre>
        return values:
   }
};
4.5 BCC Art Points
struct graph {
    int n; vector<vector<int>> adj;
    graph(int n) : n(n), adj(n) {}
    void add_edge(int u, int v) {
        adi[u].push back(v): adi[v].push back(u):
    int add_node() { adj.push_back({}); return n++; }
    vector<int>& operator[](int u) { return adj[u]; }
vector<vector<int>> biconnected_components(graph &adj) {
    int n = adj.n;
    vector<int> num(n), low(n), art(n), stk:
    vector<vector<int>> comps:
    function < void(int, int, int&) > dfs = [&](int u, int p, int
&t)
        num[u] = low[u] = ++t; stk.push back(u);
        for (int v : adi[u])
            if (v != p) {
                if (!num[v]) {
                    dfs(v. u. t):
                    low[u] = min(low[u], low[v]);
                    if (low[v] >= num[u]) {
                        art[u] = (num[u] > 1 || num[v] > 2);
                        comps.push back({u});
                        while (comps.back().back() != v)
comps.back().push_back(stk.back()),
```

```
stk.pop_back();
                    }
                }
                else low[u] = min(low[u], num[v]);
    }:
    for (int u = 0, t; u < n; ++u)
        if (!num[u]) dfs(u, -1, t = 0);
    /// build the block cut tree
    function<graph()> build tree = [&]() {
        graph tree(0); vector<int> id(n);
        for (int u = 0: u < n: ++u)
            if (art[u]) id[u] = tree.add node();
        for (auto &comp : comps) {
            int node = tree.add node();
            for (int u : comp)
                if (!art[u]) id[u] = node;
                else tree.add edge(node, id[u]);
        return tree;
    };
    return comps;
4.6 Bridges
struct graph {
    int n: vector<vector<int>> adi:
    graph(int n) : n(n), adj(n) {}
    void add edge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push back(u);
    vector<int>& operator[](int u) { return adi[u]: }
};
vector<vector<int>> bridge_blocks(graph &adj) {
    int n = adi.n:
    vector<int> num(n), low(n), stk;
    vector<vector<int>> comps:
    vector<pair<int, int>> bridges;
    function<void(int, int, int&)> dfs = [&](int u, int p, int
&t) {
        num[u] = low[u] = ++t;
        stk.push_back(u);
        // remove if there isn't parallel edges
        sort(adj[u].begin(), adj[u].end());
        for (int i = 0, sz = adj[u].size(); i < sz; ++i) {</pre>
            int v = adj[u][i];
            if (v == p) {
                if (i + 1 < sz && adi[u][i + 1] == v)
                    low[u] = min(low[u], num[v]);
                continue:
            if (!num[v]) {
                dfs(v, u, t);
```

Harbour. Space University: x^3 . Page 10 of 25

```
low[u] = min(low[u], low[v]):
                if (low[v] == num[v])
                    bridges.push_back({u, v});
            else low[u] = min(low[u], num[v]);
        if (num[u] == low[u])
            comps.push back({});
            for (int v = -1; v != u; stk.pop_back())
                comps.back().push back(v = stk.back()):
       }
   }:
    for (int u = 0, t; u < n; ++u)
        if (!num[u]) dfs(u, -1, t = 0);
    // this is for build the bridge-block tree
   function<graph()> build tree = [&]() {
        vector<int> id(n):
        for (int i = 0; i < (int) comps.size(); ++i)</pre>
            for (int u : comps[i]) id[u] = i;
        graph tree(comps.size());
        for (auto &e : bridges)
            tree.add edge(id[e.first], id[e.second]);
        return tree:
   };
    return comps;
}
4.7 Centroid
int Centroid(vector<vector<int>> &Lcent. vector<vector<int>>
&L, int root) {
    int N = L.size():
   vector<bool> mk(N); vector<int> sz(N);
   Lcent.clear(); Lcent.resize(N);
   function<void(int.int)> DFS = [&](int nodo, int padre) {
        sz[nodo] = 1:
        for(auto v : L[nodo]) {
            if(v != padre && !mk[v]) {
                DFS(v, nodo); sz[nodo] += sz[v];
           }
       }
   };
   function<int(int,int,int)> centroid = [&](int nodo, int
padre, int tam) {
        for(auto v : L[nodo])
           if(v != padre && !mk[v] && sz[v] > tam/2)
                return centroid(v, nodo, tam);
        return nodo;
   };
   function<int(int)> solve = [&](int nodo) {
        DFS(nodo, -1):
        int cent = centroid(nodo, -1, sz[nodo]); mk[cent] =
true:
        for(auto v : L[cent])
            if(!mk[v]) Lcent[cent].push back(solve(v));
        return cent:
```

```
}:
    return solve(root);
4.8 Dinic
template<tvpename T>
struct dinic {
    struct edge {
        int src, dst; T cap, flow; int rev;
   };
    int n; vector< vector<edge> > adj;
    dinic(int n): n(n), adi(n) {}
    void add edge(int src, int dst, T cap) {
        adj[src].push_back({ src, dst, cap, 0, (int)
adi[dst].size() }):
       if (src == dst)
            adi[src].back().rev++:
        adj[dst].push back({ dst, src, 0, 0, (int)
adj[src].size() - 1 });
    vector<int> level, iter;
    T augment(int u, int t, T cur) {
       if (u == t)
            return cur:
        for (int &i = iter[u]: i < (int) adi[u].size(): ++i) {</pre>
            edge &e = adj[u][i];
            if (e.cap - e.flow > 0 && level[u] > level[e.dst])
{
                T f = augment(e.dst, t, min(cur, e.cap -
e.flow)):
                if (f > 0) {
                    e.flow += f:
                    adj[e.dst][e.rev].flow -= f;
                    return f;
        }
        return 0;
    int bfs(int s, int t) {
        level.assign(n, n);
        level[t] = 0;
        queue<int> Q:
        for (Q.push(t); !Q.empty(); Q.pop()) {
            int u = Q.front();
            if (u == s)
                break:
            for (int i = 0; i < (int)adj[u].size(); ++i) {</pre>
                edge &e = adj[u][i];
                edge &erev = adj[e.dst][e.rev];
                if (erev.cap - erev.flow > 0
                    && level[e.dst] > level[u] + 1) {
                    Q.push(e.dst);
                    level[e.dst] = level[u] + 1:
            }
        }
```

```
return level[s]:
   }
    const T oo = numeric_limits<T>::max();
    T max flow(int s. int t) {
       for (int u = 0; u < n; ++u) // initialize
           for (int i = 0: i < (int)adi[u].size(): ++i) {</pre>
                edge &e = adj[u][i];
                e.flow = 0;
       T flow = 0;
        while (bfs(s, t) < n) {
           iter.assign(n, 0);
           for (T f; (f = augment(s, t, oo)) > 0;)
               flow += f:
       } // level[u] == n ==> s-side
        return flow;
   }
};
4.9 Euler Path
vector<int> euler_path(const vector<vector<pair<int, int>>> &G,
int s = 0) {
    int n = G.size(), odd = 0, m = 0;
    for (int i = 0: i < n: ++i) {
        odd += G[i].size() & 1;
        m += G[i].size():
    vector<int> path;
    if (odd == 0 || (odd == 2 && (G[s].size() & 1) == 1)) {
        vector<int> pos(n); vector<bool> mark(m / 2);
        function<void(int)> visit = [&](int u) {
            for (int v, id; pos[u] < G[u].size();) {</pre>
                tie(v, id) = G[u][pos[u]++];
                if (!mark[id]) {
                    mark[id] = true:
                    visit(v);
               }
            path.push back(u);
       }:
        visit(s);
        reverse(path.begin(), path.end());
        if (path.size() != m / 2 + 1)
           path.clear();
   }
    return path;
4.10 Flow Lower Bound
template<tvpename T>
struct dinic {
    struct edge {
        int src, dst; T low, cap, flow; int rev;
   };
```

int n; vector<vector<edge>> adj;

Harbour. Space University: x^3 . Page 11 of 25

```
dinic(int n) : n(n), adi(n + 2) {}
   void add edge(int src, int dst, T low, T cap) {
        adj[src].push_back({ src, dst, low, cap, 0,
(int)adi[dst].size()});
        if (src == dst) adj[src].back().rev++;
        adj[dst].push_back({ dst, src, 0, 0, 0,
(int)adj[src].size() - 1});
   vector<int> level. iter:
   T augment(int u, int t, T cur) {
       if (u == t) return cur;
       for (int &i = iter[u]: i < (int) adi[u].size(): ++i) {</pre>
           edge &e = adj[u][i];
           if (e.cap - e.flow > 0 && level[u] > level[e.dst])
               T f = augment(e.dst, t, min(cur, e.cap -
e.flow)):
                   e.flow += f: adi[e.dst][e.rev].flow -= f:
                    return f:
               }
           }
       }
        return 0;
   }
   int bfs(int s, int t) {
       level.assign(n + 2, n + 2); level[t] = 0; queue<int> Q;
        for (Q.push(t); !Q.empty(); Q.pop()) {
           int u = Q.front(); if (u == s) break;
           for (edge &e : adj[u]) {
               edge &erev = adj[e.dst][e.rev];
               if (erev.cap - erev.flow > 0
                   && level[e.dst] > level[u] + 1) {
                    Q.push(e.dst); level[e.dst] = level[u] +
1;
               }
           }
        return level[s];
   const T oo = numeric limits<T>::max():
   T max flow(int source, int sink) {
        vector<T> delta(n + 2):
       for (int u = 0; u < n; ++u) // initialize
           for (auto &e : adi[u]) {
               delta[e.src] -= e.low;
               delta[e.dst] += e.low;
               e.cap -= e.low;
               e.flow = 0:
           }
       T sum = 0; int s = n, t = n + 1;
        for (int u = 0; u < n; ++u) {
           if (delta[u] > 0) {
                add edge(s. u. 0. delta[u]):
                sum += delta[u];
           }
```

```
else if (delta[u] < 0) add edge(u, t, 0,
-delta[u]);
        add_edge(sink, source, 0, oo); T flow = 0;
        while (bfs(s, t) < n + 2) {
            iter.assign(n + 2, 0):
            for (T f; (f = augment(s, t, oo)) > 0;) flow += f;
        if (flow != sum) return -1; // no solution
        for (int u = 0; u < n; ++u)
            for (auto &e : adj[u]) {
                e.cap += e.low: e.flow += e.low:
                edge &erev = adj[e.dst][e.rev];
                erev.cap -= e.low: erev.flow -= e.low:
        adj[sink].pop back(); adj[source].pop back();
        while (bfs(source, sink) < n + 2) {</pre>
            iter.assign(n + 2, 0);
            for (T f: (f = augment(source, sink, oo)) > 0:)
               flow += f:
        } // level[u] == n + 2 ==> s-side
        return flow:
   }
};
4.11 HLD
struct HLD {
    int N:
    vector<int> heavy, root, depth, pos, ipos, parent;
    int currentPos:
    int precal(const vector<vector<int>> &L, int nodo, int
padre) {
        parent[nodo] = padre, heavy[nodo] = -1;
        int size = 1, maxSubtree = 0;
        for(auto v : L[nodo]) {
            if(v != padre) {
                depth[v] = depth[nodo] + 1;
                int subtree = precal(L, v, nodo);
                if(subtree > maxSubtree)
                    heavy[nodo] = v, maxSubtree = subtree;
                size += subtree:
           }
        return size;
    void DFS(const vector<vector<int>> &L, int nodo, int padre)
        pos[nodo] = ++currentPos; ipos[currentPos] = nodo;
        if(heavy[nodo] != -1) {
            root[heavy[nodo]] = root[nodo];
            DFS(L, heavy[nodo], nodo);
       for(auto v : L[nodo]) {
            if(v != padre && v != heavv[nodo]) {
               root[v] = v;
                DFS(L, v, nodo);
```

```
HLD(const vector<vector<int>> &L, int ROOT = 0) {
        N = I..size():
        heavy.resize(N); root.resize(N); depth.resize(N);
        pos.resize(N): ipos.resize(N): parent.resize(N):
        depth[ROOT] = 0; currentPos = -1; root[ROOT] = ROOT;
        precal(L,ROOT,-1); DFS(L,ROOT,-1);
    vector<pair<int,int>> get paths(int u, int v) {
        vector<pair<int,int>> paths;
        for(; root[u] != root[v] ; v = parent[root[v]]) {
            if(depth[root[u]] > depth[root[v]])swap(u, v);
            paths.push back({pos[root[v]], pos[v]});
        if(depth[u] > depth[v])swap(u, v);
        paths.push_back({pos[u], pos[v]});
        return paths;
    int lca(int a, int b) {
        for (; root[a] != root[b]; b = parent[root[b]])
            if (depth[root[a]] > depth[root[b]]) swap(a, b);
        if (depth[a] > depth[b]) swap(a, b);
        return a;
    int go_up(int u, int k) {
        for(; pos[u] - pos[root[u]] < k ; u = parent[root[u]])</pre>
            k = pos[u] - pos[root[u]] + 1;
        return ipos[pos[u] - k];
    }
};
4.12 Hopcroft Karp
struct graph {
  int L, R; vector<vector<int>> adj;
  graph(int L, int R) : L(L), R(R), adj(L + R) {}
  void add edge(int u, int v) {
    adj[u].push_back(v + L);
    adj[v + L].push back(u);
  int maximum_matching() {
    vector<int> level(L), mate(L + R, -1);
    function<bool(void)> levelize = [&]() {
      queue<int> 0:
      for (int u = 0; u < L; ++u) {
        level[u] = -1;
        if (mate[u] < 0) {</pre>
          level[u] = 0;
          0.push(u):
      while (!Q.empty()) {
        int u = Q.front(); Q.pop();
```

for (int w : adj[u]) {

Harbour. Space University: x^3 . Page 12 of 25

```
int v = mate[w]:
          if (v < 0) return true;
          if (level[v] < 0) {</pre>
            level[v] = level[u] + 1:
            Q.push(v);
        }
      }
      return false:
    function<bool(int)> augment = [&](int u) {
      for (int w : adi[u]) {
        int v = mate[w]:
        if (v < 0 || (level[v] > level[u] && augment(v))) {
          mate[u] = w:
          mate[w] = u;
          return true:
      }
      return false;
    };
    int match = 0:
    while (levelize())
      for (int u = 0; u < L; ++u)
        if (mate[u] < 0 && augment(u))</pre>
          ++match:
    return match:
};
4.13 LCA
struct LCA {
    int LOG = 0:
    vector<vector<int>> T; vector<int> height;
    vector<bool> visited; int n;
    LCA(const vector<vector<int>> &adi. int root = 0) {
        n = adj.size(); int temp = n-1;
        while(temp)temp /= 2, LOG++;
        height.resize(n): visited.assign(n,false):
T.resize(n);
        for(int i = 0 ; i < T.size() ; i++)T[i].resize(LOG+1);</pre>
        T[root][0] = -1; DFS(adj,root); precal();
    void DFS(const vector<vector<int>> &adj, int nodo) {
        visited[nodo] = true;
        for(auto v : adi[nodo])
            if(!visited[v]) {
                T[v][0] = nodo; height[v] = height[nodo]+1;
                DFS(adj,v);
            }
    void precal() {
        for(int j = 1 ; j <= LOG ; j++)</pre>
            for(int i = 0 ; i < n ; i++)</pre>
                if(T[i][j-1] != -1)T[i][j] = T[T[i][j-1]][j-1]; | d[e.to]) {
                else T[i][i] = -1;
    }
```

```
int querv(int u, int v) {
        if(height[u] < height[v])swap(u,v);</pre>
        for(int i = LOG ; i >= 0 ; i--)
            if(height[u]-(1<<i) >= height[v])
                u = T[u][i]:
        if(u == v)return u:
        for(int i = LOG ; i >= 0 ; i--)
            if(T[u][i] != T[v][i])
                u = T[u][i], v = T[v][i]:
        return T[u][0];
    }
}:
4.14 MCMF
template <typename T, typename C>
class mcmf {
public:
    static constexpr T eps = (T) 1e-9;
    struct edge { int from; int to; T c; T f; C cost; };
    vector< vector<int> > g; vector<edge> edges;
    vector<C> d; vector<int> q;
    vector<bool> in queue: vector<int> pe:
    int n; int st, fin; T flow; C cost;
    mcmf(int n, int st, int fin): n(n), st(st), fin(fin)
        assert(0 \le st \&\& st \le n \&\& 0 \le fin \&\& fin \le n \&\& st
!= fin):
        g.resize(n); d.resize(n);
        in queue.resize(n): pe.resize(n):
        flow = 0: cost = 0:
    void clear flow() {
        for (const edge &e : edges) { e.f = 0; } flow = 0;
    void add(int from, int to, T forward cap, T backward cap, C
cost) {
        assert(0 \le \text{from } \&\& \text{ from } \le n \&\& 0 \le \text{to } \&\& \text{ to } \le n):
        g[from].push back((int) edges.size());
        edges.push back({from, to, forward cap, 0, cost});
        g[to].push_back((int) edges.size());
        edges.push back({to, from, backward cap, 0, -cost});
    bool expath() {
        fill(d.begin(), d.end(), numeric limits<C>::max());
        q.clear(); q.push_back(st); d[st] = 0;
        in queue[st] = true: int beg = 0: bool found = false:
        while (beg < (int) q.size()) {</pre>
            int i = q[beg++];
            if (i == fin) { found = true; }
            in queue[i] = false;
            for (int id : g[i]) {
                const edge &e = edges[id];
                if (e.c - e.f > eps && d[i] + e.cost <
                     d[e.to] = d[i] + e.cost; pe[e.to] = id;
                     if (!in_queue[e.to]) {
```

```
true:
                    }
               }
        }
        if (found) {
            T push = numeric limits<T>::max(); int v = fin;
            while (v != st) {
                const edge &e = edges[pe[v]];
                push = min(push, e.c - e.f); v = e.from;
            v = fin;
            while (v != st) {
                edge &e = edges[pe[v]]; e.f += push;
                edge &back = edges[pe[v] ^ 1];
                back.f -= push: v = e.from:
            flow += push: cost += push * d[fin]:
        return found;
    pair<T, C> max flow min cost() {
        while (expath()) {}
        return make pair(flow, cost):
};
4.15 Push Relabel
template<typename flow type>
struct goldberg_tarjan {
    struct edge {
        size t src, dst, rev;
        flow_type flow, cap;
    int n; vector<vector<edge>> adj;
    goldberg tarjan(int n) : n(n), adj(n) {}
    void add edge(size t src, size t dst, flow type cap,
flow type rcap = 0) {
        adj[src].push_back({ src, dst, adj[dst].size(), 0, cap
});
        if (src == dst) adj[src].back().rev++;
        adj[dst].push back({ dst, src, adj[src].size() - 1, 0,
rcap });
    flow type max flow(int source, int sink) {
        vector<flow_type> excess(n);
        vector<int> dist(n), active(n), count(2 * n);
        queue<int> q;
        auto enqueue = [&](int v) {
            if (!active[v] && excess[v] > 0) {
                active[v] = true:
                q.push(v);
```

};

g.push back(e.to): in queue[e.to] =

```
auto push = [&](edge &e) {
            flow type f = min(excess[e.src], e.cap - e.flow);
            if (dist[e.src] <= dist[e.dst] || f == 0) return;</pre>
            e.flow += f:
            adj[e.dst][e.rev].flow -= f;
            excess[e.dst] += f: excess[e.src] -= f:
            enqueue(e.dst);
        dist[source] = n: active[source] = active[sink] =
true;
        count[0] = n - 1; count[n] = 1;
        for (int u = 0: u < n: ++u)
            for (edge &e : adj[u]) e.flow = 0;
        for (edge &e : adi[source]) {
            excess[source] += e.cap; push(e);
        for (int u; !q.empty(); q.pop()) {
            active[u = q.front()] = false;
            for (auto &e : adi[u]) push(e):
            if (excess[u] > 0) {
                if (count[dist[u]] == 1) {
                    int k = dist[u]: // Gap Heuristics
                    for (int v = 0; v < n; v++) {
                        if (dist[v] < k)</pre>
                            continue:
                        count[dist[v]]--:
                        dist[v] = max(dist[v], n + 1);
                        count[dist[v]]++:
                        enqueue(v);
                    }
                } else {
                    count[dist[u]]--; // Relabel
                    dist[u] = 2 * n:
                    for (edge &e : adj[u])
                        if (e.cap > e.flow)
                            dist[u] = min(dist[u], dist[e.dst]
+ 1);
                    count[dist[u]]++:
                    enqueue(u);
            }
        flow type flow = 0:
        for (edge e : adj[source]) flow += e.flow;
        return flow:
   }
};
4.16 SCC Gabow
struct graph {
    int n; vector<vector<int>> adj;
    graph(int n) : n(n), adi(n) {}
    void add edge(int u, int v) {
        adi[u].push back(v):
    vector<int>& operator[](int u) { return adj[u]; }
};
```

```
vector<vector<int>> scc gabow(graph &adi) {
    int n = adj.n;
    vector<vector<int>> scc;
    vector<int> S. B. I(n):
    function<void(int)> dfs = [&](int u) {
       B.push back(I[u] = S.size()):
       S.push back(u);
       for (int v : adj[u])
            if (!I[v]) dfs(v);
            else while (I[v] < B.back()) B.pop back();</pre>
       if (I[u] == B.back()) {
            scc.push back({}):
            for (B.pop_back(); I[u] < S.size(); S.pop_back()) {</pre>
               scc.back().push back(S.back()):
               I[S.back()] = n + scc.size();
    };
    for (int u = 0: u < n: ++u)
       if (!I[u]) dfs(u):
    return scc; // in reverse topological order
5 Number Theory
5.1 Chinese Reminder Theorem
bool crt(ll k1, ll m1, ll k2, ll m2, ll &k, ll &m) {
    k1 %= m1;
    if (k1 < 0) k1 += m1:
    k2 %= m2:
   if (k2 < 0) k2 += m2;
    11 x, y, g;
    if (!find any solution(m1, -m2, k2 - k1, x, y, g)) {
       return false:
   }
   11 dx = m2 / g;
    ll delta = x / dx - (x \% dx < 0);
    k = m1 * (x - dx * delta) + k1:
    m = m1 / g * m2;
    assert(0 <= k && k < m):
    return true:
long long chinese remainder(vector<int> rem. vector<int> mod) {
    long long ans = rem[0],m = mod[0]; int n = rem.size();
    for(int i=1: i<n: ++i) {</pre>
       int a = modular inverse(m.mod[i]):
       int b = modular inverse(mod[i].m):
       ans = (ans*b*mod[i]+rem[i]*a*m)%(m*mod[i]);
       m *= mod[i];
   7
    return ans:
5.2 Diophantine
template<typename T>
bool find_any_solution(T a, T b, T c, T &x, T &y, T &g) {
   if (a == 0 && b == 0) {
```

if (c == 0) {

```
x = v = g = 0:
            return true;
       7
        return false:
    if (a == 0) {
        if (c % b == 0) {
            x = 0, y = c / b, g = abs(b);
            return true:
        return false;
   }
    if (b == 0) {
        if (c % a == 0) {
            x = c / a, y = 0, g = abs(a);
            return true;
        return false;
    g = extgcd(a, b, x, y);
    if (c % g != 0) {
        return false:
    T dx = c / a; c -= dx * a;
    T dv = c / b: c -= dv * b:
    x = dx + (T) (( int128) x * (c / g) % b);
    y = dy + (T) ((_int128) y * (c / g) % a);
    g = abs(g):
    return true;
    // |x|, |v| <= max(|a|, |b|, |c|) [tested]
template<typename T>
void shift solution(T & x, T & y, T a, T b, T cnt) {
    x += cnt * b. v -= cnt * a:
template<tvpename T>
T find_all_solutions(T a, T b, T c, T minx, T maxx, T miny, T
maxy) {
    if (!find any solution(a, b, c, x, y, g))
        return 0:
    a /= g, b /= g:
    T sign a = a > 0? +1 : -1, sign b = b > 0? +1 : -1;
    shift_solution(x, y, a, b, (minx - x) / b);
    if (x < minx)</pre>
        shift_solution(x, y, a, b, sign_b);
    if (x > maxx)
        return 0:
    T lx1 = x:
    shift_solution(x, y, a, b, (maxx - x) / b);
    if (x > maxx)
        shift solution(x, v, a, b, -sign b):
```

Page 13 of 25

```
Page 14 of 25
```

```
T rx1 = x:
    shift_solution(x, y, a, b, -(miny - y) / a);
    if (y < miny)</pre>
        shift_solution(x, y, a, b, -sign_a);
    if (y > maxy)
        return 0:
    T 1x2 = x;
    shift_solution(x, y, a, b, -(maxy - y) / a);
    if (y > maxy)
        shift_solution(x, y, a, b, sign_a);
    T rx2 = x:
    if (1x2 > rx2)
        swap(1x2, rx2);
    T lx = max(lx1, lx2), rx = min(rx1, rx2);
    if (1x > rx)
        return 0;
    return (rx - lx) / abs(b) + 1;
5.3 Discrete Log
// Solve a^x=b (mod M)
11 dlog(ll a, ll b, ll M) {
    map<11, 11> hash;
    11 n = euler_phi(M), k = sqrt(n);
    for(11 i = 0, t = 1; i < k; ++i) {
        hash[t] = i;
        t = mul(t, a, M);
   }
   ll c = pow(a, n - k, M);
    for(ll i = 0: i * k < n: i++) {
        if( hash.find(b) != hash.end())
            return i * k + hash[b];
        b = mul(b, c, M);
   }
    return -1:
5.4 Discrete Root
// Solve x^k=a \pmod{n}
vector<ll> discrete root(ll k, ll a, ll n) {
    if (a == 0)
        return {0};
    11 g = primitive_root(n);
    11 \text{ sq} = (11) \text{ sqrt}(n + .0) + 1;
    vector<pair<11, 11>> dec(sq);
    for (ll i = 1: i <= sq: ++i)
        dec[i-1] = \{pow(g, ll(i * sq * 1ll * k % (n-1)),
n), i};
    sort(dec.begin(), dec.end());
   11 any ans = -1;
    for (int i = 0: i < sq: ++i) {
        11 \text{ my} = 11(\text{pow}(g, 11(i * 111 * k \% (n - 1)), n) * 111
* a % n):
        auto it = lower_bound(dec.begin(), dec.end(),
make pair(my, 011));
        if (it != dec.end() && it->first == my) {
```

```
anv ans = it->second * sq - i:
            break;
       }
    }
    if (any ans == -1)
        return {}:
    ll delta = (n - 1) / gcd(k, n - 1);
    vector<11> ans;
    for (ll cur = any_ans % delta; cur < n - 1; cur += delta)</pre>
        ans.push back(pow(g, cur, n));
    sort(ans.begin(), ans.end());
    return ans:
5.5 Divisor Sigma
11 divisor sigma(ll n) {
    11 \text{ sigma} = 0, d = 1;
    for (; d * d < n; ++d)
       if (n % d == 0)
            sigma += d + n / d;
    if (d * d == n) sigma += d;
    return sigma:
vector<ll> divisor_sigma(ll lo, ll hi) {
    vector<ll> ps = primes(sqrt(hi) + 1);
    vector<ll> res(hi - lo), sigma(hi - lo, 1);
    iota(res.begin(), res.end(), lo);
    for (11 p : ps)
        for (11 k = ((10 + (p - 1)) / p) * p; k < hi; k += p)
            11 b = 1:
            while (res[k - lo] > 1 \&\& res[k - lo] \% p == 0) {
                res[k - lo] /= p;
                b = 1 + b * p;
            sigma[k - lo] *= b:
       }
    for (11 k = 10; k < hi; ++k)
       if (res[k - lo] > 1)
            sigma[k - lo] *= (1 + res[k - lo]);
    return sigma; // sigma[k-lo] = sigma(k)
5.6 Euler Phi
11 euler phi(ll n) {
    if (n == 0) return 0:
    for (11 x = 2; x * x <= n; ++x)
       if (n % x == 0) {
            ans -= ans / x:
            while (n \% x == 0)
                n /= x:
    if (n > 1) ans -= ans / n;
    return ans:
```

```
vector<ll> euler phi(ll lo. ll hi) {
    vector<ll> ps = primes(sqrt(hi) + 1);
    vector<ll> res(hi - lo), phi(hi - lo, 1);
    iota(res.begin(), res.end(), lo);
    for (11 p : ps)
        for (11 k = ((10 + (p - 1)) / p) * p; k < hi; k += p)
            if (res[k - lo] < p) continue;</pre>
            phi[k - lo] *= (p - 1);
            res[k - lo] /= p;
            while (res[k - lo] > 1 \&\& res[k - lo] \% p == 0) {
                phi[k - lo] *= p:
                res[k - lo] /= p;
    for (11 k = 10; k < hi; ++k)
        if (res[k - lo] > 1)
            phi[k - lo] *= (res[k - lo] - 1);
    return phi; // phi[k-lo] = phi(k)
}
5.7 Extended GCD
template<typename T>
T extgcd(T a, T b, T &x, T &y) {
    if (a == 0) {
        x = 0, y = 1;
        return b:
    Tp = b / a;
    T g = extgcd(b - p * a, a, y, x);
    x -= p * y;
    return g;
5.8 Floor Sum
// sum of (A * i + B) / M
11 solve(11 N, 11 M, 11 A, 11 B) { assert(M > 0);
    if (B < 0) {
        ll at least = (-B + M - 1) / M;
        return solve(N, M, A, B + at least * M) - N * at least;
    if (A == 0) return (B / M) * N;
    assert(0 \le B \&\& B \le M):
    if (A >= M) {
        return solve(N, M, A % M, B)+(A / M)*((N * (N - 1)) /
2);
    ll up = (A * (N - 1) + B) / M; ll val = N * up;
    val -= (B / A):
    return val - solve(up + 1, A, M, A - 1 - B);
5.9 Floyd Cycle Finding
pair<int,int> find_cycle() {
    int t = f(x0), h = f(t), mu = 0, lam = 1;
    while (t != h) t = f(t), h = f(f(h));
    h = x0:
```

```
h = f(t):
    while (t != h) h = f(h), lam++;
    return {mu. lam}:
5.10 Harmonic Partition
vector<pair<11.11>> HarmonicSeriesPartition(11 N) {
    vector<pair<11,11>> res;
   11 \text{ temp} = 0:
    for(ll i = 1, la ; i <= N ; i = la+1) {
       la = N/(N/i):
       res.push_back({temp+1,la});
        temp = la;
   }
    return res:
5.11 Linear Congruence
// Solve x=ai(mod mi), for any i and i, (mi.mi)|ai-ai
// Return (x0,M) M=[m1..mn]. All solutions are x=x0+t*M
// Note: be carful with the overflow in the multiplication
pair<11, 11> linear_congruences(const vector<11> &a, const
vector<ll> &m) {
   int n = a.size():
   11 u = a[0], v = m[0], p, q;
    for (int i = 1; i < n; ++i) {
       ll r = gcd(v, m[i], p, q);
       11 t = v:
        if ((a[i] - u) % r)
           return {-1, 0}: // no solution
        v = v / r * m[i];
        u = ((a[i] - u) / r * p * t + u) % v:
   }
   if (u < 0)
        11 += v:
    return {u, v};
5.12 Miller Rabin
bool witness(ll a, ll s, ll d, ll n) {
   11 x = pow(a, d, n):
   if (x == 1 || x == n - 1) return 0;
    for (int i = 0; i < s - 1; i++) {
       x = mul(x, x, n);
       if (x == 1) return 1;
        if (x == n - 1) return 0;
   }
    return 1;
bool miller rabin(ll n) {
   if (n < 2) return 0;
   if (n == 2) return 1:
    if (n % 2 == 0) return 0;
   11 d = n - 1, s = 0;
    while (d \% 2 == 0) ++ s, d /= 2:
   vector<ll> test = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37};
```

while (t != h) t = f(t), h = f(h), mu++:

```
for (11 p : test)
        if (p \ge n) break;
        else if (witness(p, s, d, n)) return 0;
    return 1:
5.13 Pollard Rho
// Note: n shouldn't be prime
ll pollard rho(ll n) {
   if (!(n & 1)) return 2;
    while (1) {
       11 x = (11) rand() \% n. v = x:
       11 c = rand() % n:
       if (c == 0 | | c == 2) c = 1:
        for (int i = 1, k = 2; i++) {
            x = mul(x, x, n);
            if (x >= c) x -= c: else x += n - c:
            if (x == n) x = 0:
            if (x == 0) x = n - 1; else x--:
            11 d = _{-gcd}(x > y ? x - y : y - x, n);
            if (d == n) break:
            if (d != 1) return d:
           if (i == k) { y = x; k <<= 1;}
       }
   }
    return 0;
5.14 Mobius Mu
ll mobius mu(ll n) {
   if (n == 0) return 0:
   11 \, \text{mu} = 1:
    for (11 x = 2: x * x <= n: ++x)
       if (n % x == 0) {
            mu = -mu, n /= x;
           if (n % x == 0) return 0:
    return n > 1 ? -mu : mu:
vector<ll> mobius mu(ll lo, ll hi) {
    vector<ll> ps = primes(sqrt(hi) + 1);
    vector<ll> res(hi - lo), mu(hi - lo, 1);
    iota(res.begin(), res.end(), lo);
    for (11 p : ps)
       for (11 k = ((10 + (p - 1)) / p) * p; k < hi; k += p)
{
            mu[k - lo] = -mu[k - lo]:
           if (res[k - lo] % p == 0) {
               res[k - lo] /= p;
                if (res[k - lo] % p == 0) {
                    mu[k - lo] = 0, res[k - lo] = 1;
            }
    for (ll k = lo; k < hi; ++k)
        if (res[k - lo] > 1)
            mu[k - lo] = -mu[k - lo]:
```

```
return mu: // mu[k-lo] = mu(k)
}
5.15 Primitive Root
// Note: Only 2, 4, p^n, 2p^n have primitive roots
11 primitive root(11 m) {
    if (m == 1) return 0;
    if (m == 2) return 1;
    if (m == 4) return 3;
    auto pr = primes(0, sqrt(m) + 1); // fix upper bound
   11 t = m;
    if (!(t & 1))
        t >>= 1:
    for (ll p : pr) {
       if(p > t) break:
        if (t % p) continue;
        do t /= p;
        while (t \% p == 0);
        if (t > 1 || p == 2) return 0;
    11 x = euler_phi(m), y = x, n = 0;
    vector<11> f(32);
    for (11 p : pr) {
       if (p > y) break;
        if (y % p) continue;
        do y /= p;
        while (v \% p == 0);
        f[n++] = p:
    if (y > 1) f[n++] = y;
    for (ll i = 1; i < m; ++i) {
        if ( gcd(i, m) > 1) continue;
        bool flag = 1;
        for (11 \ \bar{j} = 0; j < n; ++j) {
            if (pow(i, x / f[i], m) == 1) {
                flag = 0:
                break:
       7
        if (flag) return i;
    return 0:
5.16 Sieve
struct SieveOfEratosthenes {
    vector<int> primes, least, cnt, pw, phi, sigma, mu;
    SieveOfEratosthenes(int N) {
        if(N < 1)N = 1:
        least.resize(N+1), cnt.resize(N+1), pw.resize(N+1);
        phi.resize(N+1), sigma.resize(N+1), mu.resize(N+1):
        pw[1] = 0;
        least[1] = cnt[1] = phi[1] = sigma[1] = mu[1] = 1;
        for(int i = 4 ; i <= N ; i+=2) least[i] = 2;</pre>
        for(int i = 3 ; i*i <= N ; i+=2) {
            if(least[i] == 0) {
```

Page 15 of 25

```
for(int j = i*i ; j <= N ; j+=i*2) {</pre>
                   if(least[i] == 0)least[i] = i;
               }
           }
       for(int i = 2 : i <= N : i++) {
           if(least[i] == 0) {
               primes.push back(i);
               least[i] = i, cnt[i] = i, pw[i] = 1;
               phi[i] = i-1, sigma[i] = i+1, mu[i] = -1;
           } else {
               int x = i/least[i]:
               if(least[i] == least[x])cnt[i] =
cnt[x]*least[i], pw[i] = pw[x]+1:
               else cnt[i] = least[i], pw[i] = 1;
               if(i == cnt[i]) {
                   phi[i] = cnt[i]-cnt[i]/least[i]:
                   sigma[i] =
(cnt[i]*least[i]-1)/(least[i]-1):
                   mu[i] = 0:
               } else {
                   phi[i] = phi[i/cnt[i]]*phi[cnt[i]];
                   sigma[i] = sigma[i/cnt[i]]*sigma[cnt[i]];
                   mu[i] = mu[i/cnt[i]]*mu[cnt[i]];
               }
           }
       }
   }
```

6 Numerical

6.1 Berlekamp Massey

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int mod = 1e9 + 7;
void add_self(int & a, int b) { a += b; if(a >= mod) a -= mod;
void sub self(int & a, int b) { a -= b; if(a < 0) a += mod; }</pre>
int mul(int a, int b) { return (ll) a * b % mod: }
int my_pow(int a, int b) {
   int r = 1:
   while(b) {
        if(b \& 1) r = mul(r, a);
        a = mul(a, a):
       b >>= 1:
   }
   return r;
int my inv(int a) { return my pow(a, mod - 2); }
struct Massey { // Berlekamp-Massey by Errichto / Warsaw U
    vector<int> start, coef; // 3 optional lines
   vector<vector<int>> powers;
    int memo inv;
```

```
// Start here and write the next ~25 lines until "STOP"
    int L; // L == coef.size() <= start.size()</pre>
    Massev(vector<int> in) { // O(N^2)
        L = 0:
        const int N = in.size():
        vector<int> C{1}, B{1};
        for(int n = 0; n < N; ++n) {
            assert(0 <= in[n] && in[n] < mod): // invalid
input
            B.insert(B.begin(), 0);
            int d = 0:
            for(int i = 0; i <= L; ++i)</pre>
                add self(d, mul(C[i], in[n-i])):
            if(d == 0) continue:
            vector<int> T = C;
            C.resize(max(B.size(), C.size()));
            for(int i = 0; i < (int) B.size(); ++i)</pre>
                sub self(C[i], mul(d, B[i]));
            if(2 * L \le n) {
                L = n + 1 - L:
                B = T:
                d = mv inv(d);
                for(int & x : B) x = mul(x, d);
        assert(2 * L <= N - 2); // NO RELATION FOUND :(</pre>
        // === STOP ===
        for(int i = 1; i < (int) C.size(); ++i)</pre>
            coef.push_back((mod - C[i]) % mod);
        assert((int) coef.size() == L);
        for(int i = 0: i < L: ++i)
            start.push_back(in[i]);
        while(!coef.empty() && !coef.back()) { coef.pop back();
--L: }
        if(!coef.emptv()) memo inv = mv inv(coef.back());
        powers.push back(coef);
    vector<int> mul cut(vector<int> a, vector<int> b) {
        vector < int > r(2 * L - 1):
        for(int i = 0; i < L; ++i)</pre>
            for(int j = 0; j < L; ++j)
                add_self(r[i+j], mul(a[i], b[j]));
        while((int) r.size() > L) {
            int value = mul(r.back(), memo inv): //
div(r.back(), coef.back());
            const int X = r.size();
            add self(r[X-L-1], value):
            for(int i = 0; i < L; ++i)</pre>
                sub_self(r[X-L+i], mul(value, coef[i]));
            assert(r.back() == 0);
            r.pop back();
        }
        return r;
```

```
int get(ll k) { // O(L^2 * log(k))
        if(k < (int) start.size()) return start[k];</pre>
        if(L == 0) return 0;
        k -= start.size():
        vector<int> vec = coef;
        for(int i = 0: (1LL << i) <= k: ++i) {
            if(i == (int) powers.size())
                powers.push back(mul cut(powers.back(),
powers.back())):
            if(k & (1LL << i))
                vec = mul_cut(vec, powers[i]);
       }
        int total = 0;
        for(int i = 0: i < L: ++i)
            add self(total, mul(vec[i],
start[(int)start.size()-1-i]));
        return total:
}:
int main() {
    // f[n] = 3 * f[n-1] + f[n-3] ---> coef: [3, 0, 1]
    vector<int> in{10, 0, 1, 0, 0, 1, 3, 9, 28, 87};
    Massey massey(in);
    for(int i = 0; i < 30; ++i) printf("%d ", massey.get(i));</pre>
    puts(""): // 10 0 ... 951398949 883208606 modulo 1e9+7
6.2 FFT
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
 int n = a.size(), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1): // (^ 10% faster if double)
  for (static int k = 2: k < n: k *= 2) {
    R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);
    for(int i = k; i < 2*k; i++)
      rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2]:
  vector<int> rev(n):
 for(int i = 0: i < n: i++)
    rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  for(int i = 0; i < n; i++)
   if (i < rev[i])</pre>
      swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k)
      for(int j = 0; j < k; j++) {
     // Cz = rt[j+k] * a[i+j+k]; // (25\% faster if
hand-rolled) /// include-line
      auto x = (double *)&rt[j+k], y = (double *)&a[i+j+k];
/// exclude-line
      C z(x[0]*y[0] - x[1]*y[1], x[0]*y[1] + x[1]*y[0]);
/// exclude-line
```

Harbour. Space University: x^3 . Page 17 of 25

```
a[i + i + k] = a[i + i] - z:
     a[i + j] += z;
   }
}
vector<double> conv(const vector<double>& a, const
vector<double>& b) {
  if (a.empty() || b.empty()) return {};
  vector<double> res((int)a.size() + (int)b.size() - 1);
  int L = 32 - __builtin_clz(res.size()), n = 1 << L;</pre>
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  for(int i = 0: i < (int)b.size(): i++)</pre>
   in[i].imag(b[i]);
  fft(in):
  for (C& x : in) x *= x;
  for(int i = 0; i < n; i++)</pre>
    out[i] = in[-i & (n - 1)] - conj(in[i]);
  for(int i = 0; i < (int)res.size(); i++)
   res[i] = imag(out[i]) / (4 * n);
  return res:
6.3 FFT Mod
template<int M> vector<ll> convMod(const vector<ll> &a. const
vector<ll> &b) {
  if (a.empty() || b.empty()) return {};
  vector<ll> res(a.size() + b.size() - 1);
  int B=32- builtin clz(res.size()), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  for(int i = 0; i < (int)a.size(); i++)</pre>
   L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  for(int i = 0; i < (int)b.size(); i++)</pre>
    R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R):
  for(int i = 0; i < n; i++){
    int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs):
  for(int i = 0; i < (int)res.size(); i++) {</pre>
    11 av = 11(real(out1[i])+.5), cv = 11(imag(outs[i])+.5);
   11 bv = ll(imag(outl[i])+.5) + ll(real(outs[i])+.5);
    res[i] = ((av \% M * cut + bv) \% M * cut + cv) \% M;
  return res;
6.4 FWHT
// Notes: if you use mod make sure 0 <= a[i], b[i] < mod when
vou call convolve
enum bit op { AND, OR, XOR };
namespace bitwise_transform {
    template<int P, typename T>
    inline void add(T &x, T y) {
```

```
if (P != 0 \&\& x >= P) x -= P;
    template<bit_op B, int P, bool inv = false, typename T>
    void transform(T a[], int n) {
        for (int len = 1: len < n: len <<= 1)
            for (int i = 0; i < n; i += len << 1)
                for (int j = i; j < i + len; ++j) {
                    T u = a[j], v = a[j + len];
                    if (B == AND) addP>(a[j], inv ? P-v : v);
                    if (B == OR) addP>(a[j + len], inv ? P-u
: u):
                    if (B == XOR)
                        add<P>(a[i], v).
                            add<P>(a[j + len] = u, P-v);
        if (B == XOR && inv) {
            int in = pow_mod(n, P-2, P);
            for (int i = 0; i < n; ++i) {
                if (P == 0) a[i] /= n:
                else a[i] = (11)a[i] * in % P;
       }
    template<bit_op B, int P = 0, typename T>
    vector<T> convolve(vector<T> a, vector<T> b) {
        int n = max(a.size(), b.size()), sz = 1;
        while (sz < n) sz <<= 1;
        a.resize(sz);
        b.resize(sz):
        transform<B, P>(a.data(), sz);
        transform<B, P>(b.data(), sz);
        for (int i = 0; i < sz; ++i) {
            if (P == 0) a[i] *= b[i];
            else a[i] = (ll)a[i] * b[i] % P;
        transform<B, P, true>(a.data(), sz);
        return a;
   }
6.5 Gaussian Elimination
int GAUSSIAN ELIMINATION(vector<vector<ld>> A, vector<ld> &ans)
    const ld EPS = 1e-9:
    int N = (int)A.size(), M = (int)A[0].size()-1;
    vector<int> where(M, -1);
    for(int col = 0, row = 0 ; col < M && row < N ; col++) {</pre>
        int sel = row:
        for(int i = row : i < N : i++) {</pre>
            if(abs(A[i][col]) > abs(A[sel][col]))
                sel = i:
        if(abs(A[sel][col]) < EPS)</pre>
```

continue:

```
swap(A[sel]. A[row]):
        where[col] = row;
        for(int i = row+1 ; i < N ; i++) {</pre>
            ld c = A[i][col]/A[row][col];
            for(int j = col ; j <= M ; j++)</pre>
                A[i][j] -= A[row][j]*c;
       }
        row++;
   }
    ans.assign(M, 0);
    vector<ld> vect(N);
    for(int i = 0 : i < N : i++)
        vect[i] = A[i][M];
    for(int i = M-1 : i \ge 0 : i--) {
       if(where[j] != -1)
            ans[i] = vect[where[i]]/A[where[i]][i];
       for(int i = 0 ; i < N ; i++)</pre>
            vect[i] -= ans[j]*A[i][j];
   for(int i = 0 ; i < N ; i++) {</pre>
       1d sum = 0:
        for(int j = 0 ; j < M ; j++)</pre>
            sum += ans[i]*A[i][i];
       if(abs(sum - A[i][M]) > EPS)
            return 0:
    for(int i = 0 ; i < M ; i++)</pre>
        if(where[i] == -1)
            return 2;
    return 1:
6.6 Golden Section Search
/*** Usage:
 double func(double x) { return 4+x+.3*x*x; }
 double xmin = gss(-1000,1000,func);
const double gold = (sqrt(5) - 1) / 2:
const double eps = 1e-7;
/// It is important for gold to be precise, otherwise we don't
necessarily maintain the inequality a < x1 < x2 < b.
double gss(double a, double b, double (*f)(double)) {
 double x1 = b - gold*(b-a), x2 = a + gold*(b-a);
 double f1 = f(x1), f2 = f(x2);
 while (b-a > eps)
   if (f1 < f2) { //change to > to find maximum
     b = x2; x2 = x1; f2 = f1;
     x1 = b - gold*(b-a); f1 = f(x1);
   } else {
      a = x1; x1 = x2; f1 = f2;
      x2 = a + gold*(b-a): f2 = f(x2):
 return a;
```

Harbour.Space University: x^3 . Page 18 of 25

6.7 Lagrange Interpolation

return x;

```
11 lagrange_interpolation_arithmetic
    (const vector <11> &y, 11 T, 11 a = 0, 11 d = 1) {
   T = mod(T), a = mod(a), d = mod(d);
   int N = (int) y.size() - 1;
   if (a == 0 && d == 1 && T <= N) return v[T]:
    vector <11> dp(N + 1, 1), pd(N + 1, 1);
   for (int i = 0: i < N: i++)
        dp[i + 1] = dp[i] * (T + MOD - (a + d * i) % MOD) %
MOD:
    for (int i = N: i > 0: i--)
        pd[i-1] = pd[i] * (T + MOD - (a + d * i) % MOD) %
MOD:
    vector \langle 11 \rangle fact(N + 1, 1), finv(N + 1, 1):
   for (int i = 1: i \le N: i++)
        fact[i] = fact[i - 1] * d % MOD * i % MOD:
    finv[N] = finv[N] * inv(fact[N]) % MOD;
    for (int i = N; i >= 1; i--)
        finv[i-1] = finv[i] * d % MOD * i % MOD:
   11 \text{ ret} = 0:
    for (int i = 0: i <= N: i++) {
        11 tmp = y[i] * dp[i] % MOD * pd[i] % MOD *
                finv[i] % MOD * finv[N - i] % MOD;
        if ((N - i) & 1)ret = (ret + MOD - tmp) % MOD:
        else ret = (ret + tmp) % MOD;
   }
    return ret;
ll lagrange_interpolation(vector <pair<11, 11>> p, 11 z) {
    int n = p.size(): 11 1, val = 0:
    for (int i = 0; i < n; i++) {
        p[i].first = mod(p[i].first):
        p[i].second = mod(p[i].second);
   z = mod(z):
    for (int i = 0; i < n; i++) {
        1 = p[i].second:
        for (int j = 0; j < n; j++)
            if (i != j)
                1 = 1 * (z + MOD - p[j].first) % MOD *
                    inv(p[i].first + MOD - p[j].first) % MOD;
        val = (val + 1) \% MOD;
   }
    return val;
6.8 Newton's Method
template < class F, class G>
long double NEWTON_METHOD(F f, G df, long double x) {
    for (int i = 0; i < 100; i++) {
        long double fx = f(x), dfx = df(x);
        x = x - fx / dfx;
        if (abs(f(x)) < 1e-12) break:
   }
```

11 modpow(ll b, ll e) { 11 ans = 1: for (: e: b = b * b % mod. e >>= 1) if (e & 1) ans = ans * b % mod;

6.9 NTT

```
return ans:
const 11 mod = (119 \ll 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 << 21 (same root). The last two are > 10^9.
void ntt(vector<ll> &a) {
  int n = (int)a.size(), L = 31 - builtin clz(n);
  static vector<ll> rt(2, 1):
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n):
   ll z[] = \{1, modpow(root, mod >> s)\};
   for(int i = k; i < 2*k; i++)
     rt[i] = rt[i / 2] * z[i & 1] % mod:
  vector<int> rev(n);
  for(int i = 0: i < n: i++)
   rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 for(int i = 0: i < n: i++)
   if (i < rev[i])</pre>
      swap(a[i], a[rev[i]]);
 for (int k = 1: k < n: k *= 2)
    for (int i = 0; i < n; i += 2 * k)
      for(int j = 0; j < k; j++) {
       ll z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
        a[i + j + k] = ai - z + (z > ai ? mod : 0);
        ai += (ai + z >= mod ? z - mod : z):
```

vector<ll> L(a), R(b), out(n); L.resize(n), R.resize(n): ntt(L), ntt(R);

int inv = modpow(n, mod - 2);

builtin clz(s), $n = 1 \ll B$:

if (a.empty() || b.empty()) return {};

for(int i = 0: i < n: i++)out[-i & (n - 1)] = (ll)L[i] * R[i] % mod * inv % mod; ntt(out): return {out.begin(), out.begin() + s};

vector<11> conv(const vector<11> &a. const vector<11> &b) {

int s = (int)a.size() + (int)b.size() - 1, B = 32 -

6.10 Simplex

7

```
const double eps = 1e-9, oo =
numeric limits<double>::infinity();
typedef vector<double> vec: typedef vector <vec> mat:
double SIMPLEX METHOD PD(vector <vector <double>> &A,
     vector<double> &b, vector<double> &c, vector<double> &x) {
    int n = c.size(), m = b.size();
```

```
vector <vector<double>> T(m + 1, vector<double>(n + m +
1)):
    vector<int> base(n + m), row(m); x.clear();
    for (int j = 0; j < m; j++) {
       for (int i = 0; i < n; i++)
            T[i][i] = A[i][i]:
       T[i][n + j] = 1; base[row[i] = n + j] = 1;
       T[i][n + m] = b[i];
    for (int i = 0; i < n; i++) T[m][i] = c[i];
    while (1) {
        int p = 0, q = 0:
        for (int i = 0; i < n + m; i++)</pre>
            if (T[m][i] <= T[m][p]) p = i:</pre>
        for (int j = 0; j < m; j++)
            if (T[j][n + m] \le T[q][n + m]) q = j;
        double t = min(T[m][p], T[q][n + m]);
        if (t >= -eps) {
            x.resize(n):
            for (int i = 0; i < m; i++)</pre>
                if (row[i] < n)x[row[i]] = T[i][n + m];</pre>
            // x is the solution
            return -T[m][n + m]; // optimal
        if (t < T[q][n + m]) \{ // tight on c -> primal update
            for (int j = 0; j < m; j++)
                if (T[j][p] >= eps)
                    if (T[j][p] * (T[q][n + m] - t) >=
                        T[q][p] * (T[j][n + m] - t)) q = j;
            if (T[q][p] <= eps) return oo;//primal infeasible</pre>
       } else { // tight on b -> dual update
            for (int i = 0; i < n + m + 1; i++)
                T[q][i] = -T[q][i];
            for (int i = 0; i < n + m; i++)
                if (T[q][i] >= eps)
                    if (T[a][i] * (T[m][p] - t)
                        >= T[q][p] * (T[m][i] - t)) p = i;
            if (T[q][p] <= eps) return -oo://dual infeasible
        for (int i = 0; i < m + n + 1; i++)
            if (i != p) T[q][i] /= T[q][p];
        T[q][p] = 1; // pivot(q, p)
        base[p] = 1; base[row[q]] = 0; row[q] = p;
        for (int j = 0; j < m + 1; j++)
            if (i != a) {
                double alpha = T[j][p];
                for (int i = 0; i < n + m + 1; i++)
                    T[j][i] -= T[q][i] * alpha;
    } return oo;
bool SIMPLEX METHOD INTEGER(vector <vector <double>> &A,
    vector<double> &B, vector<double> &C, long long &best,
    vector<long long> &solution) {
    vector<double> x; double v = SIMPLEX_METHOD_PD(A, B, C, x);
```

```
if (v == oo || v == -oo) return false;// Infeasible
    if ((long long) ceil(v) >= best)return true;
    for (int i = 0; i < (int) x.size(); i++) {</pre>
        double a = floor(x[i]):
        double b = ceil(x[i]);
        if (\min(x[i] - a, b - x[i]) \ge eps) {
            vector <vector<double>> NA = A;
            vector<double> NB = B; int vars = C.size();
            vector<double> nv(vars); nv[i] = -1;
            NA.push back(nv); NB.push back(-b);
            bool
ok=SIMPLEX METHOD INTEGER(NA.NB.C.best.solution):
            NA.pop_back(); NB.pop_back();
            nv[i] = 1: NA.push back(nv): NB.push back(a):
            ok | = SIMPLEX METHOD INTEGER(NA, NB, C, best, solution);
            return ok;
        }
    //Solution stored in x, assume that it will be integer.
   long long cur_value = (long long) round(v);
    if (cur value < best) {</pre>
        best = cur value:
        solution = vector<long long>(x.begin(), x.end());
   }
    return true:
6.11 Simpson's Rule
template<class F>
double simpson(F f, double a, double b, int n = 2000) {
    double h = (b - a) / (2 * n), fa = f(a), nfa, res = 0;
    for (int i = 0: i < n: ++i, fa = nfa) {
        nfa = f(a + 2 * h):
        res += (fa + 4 * f(a + h) + nfa); a += 2 * h;
   }
    res = res * h / 3; return res;
6.12 Xor Basis
struct XOR BASIS {
    vector <bitset< sz bset>> basis; int sz;int D;
    XOR_BASIS() { init(0); }
    XOR BASIS(int n) { init(n); }
    void init(int n) {
        D = n: sz = 0:
        basis.clear(); basis.resize(D);
    void insert(bitset < sz bset> mask) {
        for (int i = 0; i < D; i++) {</pre>
            if (mask[i] == 0)continue;
            if (basis[i].none()) {
                basis[i] = mask;
                sz++: return:
            }
            mask ^= basis[i]:
   }
}:
```

```
7 Strings
7.1 Aho-Corasick
template<typename T. typename F>
struct AHO CORASICK {
    vector<pair<int,int>> lim;
    vector<vector<int>> glink, words;
    vector<unordered map<F,pair<int,bool>>> tgo;
    vector<int> pt_string, dict_link, vtime, link, abi, ch, p;
    int cant string = 0, int sz = 0;
    bool ok match = false, ok link tree = false;
    void init() {
        lim.clear(), glink.clear(), words.clear(),
tgo.clear(), pt_string.clear();
        dict_link.clear(), vtime.clear(), link.clear(),
abi.clear(), ch.clear(), p.clear();
        cant_string = 0, sz = 0;
        ok match = false, ok link tree = false;
        new node (-1,-1);
    void build(vector<T> &vect) {
        init():
        for(int i = 0 : i < vect.size() : i++)</pre>
            add_string(vect[i]);
    int size() {return sz:}
    void new node(int tp, int tch) {
        tgo.emplace back(), dict link.push back(-1),
words.emplace back():
        link.push_back(-1), ch.push_back(tch),
p.push_back(tp);
    AHO CORASICK() { init(); }
    void add string(T cad) {
        int pt = 0:
        for(int i = 0 ; i < cad.size() ; i++) {</pre>
            F tch = cad[i]:
            auto it = &tgo[pt][tch]:
            if((*it).second == false) {
                (*it).second = true:
                (*it).first = sz;
                new node(pt, tch);
            pt = (*it).first;
        words[pt].push_back(pt_string.size());
        pt string.push back(pt);
    void build link tree() {
        ok link tree = true;
        glink.resize(sz):
        for(int i = 1; i < sz; i++) {
            glink[get_link(i)].push_back(i);
    void build match() {
```

```
ok match = true:
        if(ok link tree == false)build link tree();
        vtime.resize(sz), lim.resize(sz), abi.resize(sz+1);
        int ct = 0:
        function<void(int)> DFS = [&](int nodo) {
            vtime[nodo] = ++ct:
            for(auto v : glink[nodo]) DFS(v);
            lim[nodo] = {vtime[nodo], ct};
       }:
        DFS(0);
   }
    void abi_update(int x, int v) {
        while(x < abi.size()) {</pre>
            abi[x] += v: x += x\&-x:
    int abi_query(int x) {
        int res = 0:
        while(x) {
           res += abi[x]; x -= x&-x;
       }
        return res:
    int abi range(int a, int b) {
        return abi_query(b) - abi_query(a-1);
    vector<int> match(vector<T> vcad) {
        if(ok match == false)build match():
        vector<int> ups;
       for(auto cad : vcad) {
            int pt = 0;
            for(int i = 0 ; i < cad.size() ; i++) {</pre>
                pt = go(pt, cad[i]);
                abi update(vtime[pt], 1);
                ups.push_back(vtime[pt]);
            }
       }
        vector<int> res(pt string.size()):
        for(int i = 0 ; i < pt_string.size() ; i++)</pre>
            res[i] = abi range(lim[pt string[i]].first,
lim[pt string[i]].second):
        for(auto x : ups)
            abi_update(x, -1);
        return res:
    vector<int> match_offline(vector<T> vcad) {
        if(ok link tree == false)build link tree();
        vector<int> dp(sz);
        for(auto cad : vcad) {
            int pt = 0;
            for(int i = 0 ; i < cad.size() ; i++)</pre>
                pt = go(pt, cad[i]), dp[pt]++;
```

Page 19 of 25

```
function<void(int)> DFS = [&](int nodo) {
            for(auto v : glink[nodo]) {
                DFS(v), dp[nodo] += dp[v];
            }
        };
        DFS(0):
        vector<int> res(pt string.size());
        for(int i = 0 ; i < pt_string.size() ; i++)</pre>
            res[i] = dp[pt_string[i]];
        return res;
    int get_dictionary_link(int nodo) {
        if(dict link[nodo] == -1) {
            if(nodo == 0 || p[nodo] == 0)dict link[nodo] = 0:
            else {
                int v = get link(nodo);
                if(words[v].size())dict_link[nodo] = v;
                else dict link[nodo] = get dictionary link(v);
            }
        }
        return dict link[nodo];
    int get link(int nodo) {
        if(link[nodo] == -1) {
            if (nodo == 0 | | p[nodo] == 0) link[nodo] = 0:
            else link[nodo] = go(get_link(p[nodo]), ch[nodo]);
        return link[nodo]:
    }
    int go(int nodo, F tch) {
        auto it = &tgo[nodo][tch];
        if((*it).second == false) {
            (*it).second = true:
            (*it).first = (nodo == 0) ? 0 :
go(get_link(nodo),tch);
        return (*it).first;
    }
};
7.2 Hashing
// Hashing mod 2^64-1 (Approved by kactl and errichto and
// Use using H = unsigned long long; instead of H for mod 2^64
// Two hashes modulo primes below
// Use .get() instead of actual values to get the hashes
typedef unsigned long long ull:
struct H {
    ull x; H(ull x = 0) : x(x) {}
    H operator +(H o) { return x + o.x + (x + o.x < x); }
    H operator -(H o) { return *this + ~o.x; }
    H operator *(H o) { auto m = ( uint128 t)x * o.x:
        return H((ull)m) + (ull)(m >> 64); }
    ull get() const { return x + !~x; }
    bool operator ==(H o) const { return get() == o.get(); }
    bool operator <(H o) const { return get() < o.get(); }</pre>
};
```

```
static const H BASE = (11)1e11+3; // (order ~ 3e9; random also
struct HashInterval {
    vector<H> ha, pw;
    HashInterval(string& str) : ha(str.size()+1), pw(ha) {
        pw[0] = 1;
       for (int i = 0; i < str.size(); i ++) {</pre>
            ha[i + 1] = ha[i] * BASE + str[i]:
            pw[i + 1] = pw[i] * BASE;
        }
    }
    H hashInterval(int a, int b) { // hash [a, b]
        return ha[b + 1] - ha[a] * pw[b - a + 1]:
   }
H hashString(string& s){ H h;
    for(char c : s) h = h * BASE + c;
    return h:
// struct H for two hashes mod 2 primes
// use ull() to get values of hash in unsigned long long
template<int M, class B>
struct HA {
    int x: B b: HA(int x=0) : x(x), b(x) {}
    HA(int x, B b) : x(x), b(b) {}
    HA operator+(HA o){int y = x+o.x; return{y - (y>=M)*M,
b+o.b}:}
    HA operator-(HA o){int y = x-o.x; return{y + (y < 0)*M,
b-o.b}:}
    HA operator*(HA o) { return {(int)(1LL*x*o.x % M), b*o.b};
    explicit operator ull() { return x ^ (ull) b << 21; }</pre>
    bool operator==(HA o) const { return (ull)*this == (ull)o;
    bool operator<(HA o) const { return (ull)*this < (ull)o: }</pre>
typedef HA<1000000007, HA<1000000009, unsigned>> H:
static const H BASE(311, HA<1000000009, unsigned>(20003));
7.3 KMP
// pref[i] = the longest prefix of s that is a suffix of
s[0...i]
vector<int> prefix_function(const string &p) {
    int n = p.length();
    vector<int> pref(n + 1);
    for (int i = 0, j = pref[0] = -1; i < n; pref[++i] = ++j)
        while (j \ge 0 \&\& p[i] != p[j]) j = pref[j];
    return pref;
vector<int> knuth_morris_pratt(const string &s, const string
    int n = s.length(), m = p.length();
    vector<int> pref = prefix_function(p), matches;
    for (int i = 0, j = 0; i < n; ++i) {
        while (j \ge 0 \&\& s[i] != p[j]) j = pref[j];
        if (++i == m)
```

```
matches.push back(i - m + 1), i = pref[i]:
    }
    return matches;
}
7.4 Manacher
/** manacher[i] = length of the longest palindrome:
 of odd size and center i/2 if i is even
 of even size and centers i/2 and (i+1)/2 if i is odd*/
struct Manacher {
    vector<int> rad; vector<pair<int,int>> pal;
    Manacher(const T &s) {
        int N = 2*s.size(): rad.resize(N):
        for(int i = 0, j = 0, k; i < N; i += k, j =
\max(i-k,011)) {
            for(: i >= i && i+i+1 < N && s[(i-i)/2] ==
s[(i+j+1)/2]; j++);
            rad[i] = j;
            for(k = 1 ; i >= k && rad[i] >= k && rad[i-k] !=
rad[i]-k : k++)
                rad[i+k] = min(rad[i-k].rad[i]-k):
        for(int i = 0 ; i < N ; i++)</pre>
if(rad[i])pal.push back({(i-rad[i]+1)/2,(i+rad[i]-1)/2});
    bool is_pal(int b, int e) {
        if(b > e)swap(b,e);
        int n = rad.size()/2;
        return b >= 0 && e < n && rad[b+e] >= e-b+1;
    }
};
7.5 Suffix Array
/* Suffix array + lcp O(n log n) 1-indexed with trash at O
 * To compute SA of a vector, put -INFINITY at the end
 * and change string to vector
 * lcp[i] = lcp(s[sa[i-1]...], s[sa[i]...]) */
struct SA {
    int n:
    vector<int> sa, rank, lcp;
    SA(const string &s):
            n(s.size() + 1), sa(n), rank(n), lcp(n) {
        vector<int> tmpSa(n), bucket(n);
        iota(sa.rbegin(), sa.rend(), 0):
        sort(next(sa.begin()), sa.end(),
             [&](int i,int j) { return s[i] < s[j]; });
        for (int i = 1, j = 0; i < n; i ++) {
            rank[sa[i]] = rank[sa[i - 1]] +
                          (i == 1 \mid | s[sa[i - 1]] < s[sa[i]]):
            if (rank[sa[i]] != rank[sa[i - 1]])
                bucket[++i] = i:
        for (int len = 1; len <= n; len += len) {</pre>
            for (int i = 0: i < n: i ++) {
```

Page 20 of 25

```
int i = sa[i] - len:
               if (j < 0) j += n;
               tmpSa[bucket[rank[j]] ++] = j;
           bucket[0] = sa[tmpSa[0]] = 0;
           for (int i = 1, i = 0; i < n; i ++) {
               if (rank[tmpSa[i]] != rank[tmpSa[i - 1]] ||
                    rank[tmpSa[i] + len] != rank[tmpSa[i - 1]
+ lenl)
                   bucket[++i] = i;
                sa[tmpSa[i]] = j;
            copy(sa.begin(), sa.end(), rank.begin());
            sa.swap(tmpSa):
           if (rank[sa[n-1]] == n-1) break;
       for (int i = 0, j = rank[0], k = 0; i < n - 1; i ++, k
++) {
            while (k \ge 0 \&\& s[i] != s[sa[i-1] + k])
               lcp[j] = k--, j = rank[sa[j] + 1];
};
7.6 Z-Function
// z[i] = length of the longest common prefix of s and s[i..n]
vector<int> zfunction(const string &s) {
   int n = s.length();
   vector<int> z(n, n):
   for (int i = 1, g = 0, f; i < n; ++i)
       if (i < g \&\& z[i - f] != g - i)
           z[i] = min(z[i - f], g - i);
        else {
           for (g = max(g, f = i); g < n \&\& s[g] == s[g - f];
++g);
           z[i] = g - f;
    return z;
8 Geometry
8.1 Basics
typedef complex<double> point;
typedef vector <point> polygon;
#define NEXT(i) (((i) + 1) % n)
struct circle { point p; double r; };
struct line { point p, q; };
using segment = line;
const double eps = 1e-9;
// fix comparations on doubles with this two functions
int sign(double x) { return x < -eps ? -1 : x > eps; }
int dblcmp(double x, double v) { return sign(x - v); }
double dot(point a, point b) { return real(conj(a) * b); }
double cross(point a, point b) { return imag(conj(a) * b); }
double area2(point a, point b, point c) {
    return cross(b - a, c - a);
```

```
int ccw(point a, point b, point c) {
   b -= a: c -= a:
    if (cross(b, c) > 0) return +1; // counter clockwise
    if (cross(b, c) < 0) return -1: // clockwise
    if (dot(b, c) < 0) return +2; // c--a--b on line
    if (dot(b, b) < dot(c, c)) return -2: // a--b--c on line
    return 0:
namespace std {
    bool operator<(point a, point b) {</pre>
        if (a.real() != b.real())
            return a.real() < b.real():</pre>
        return a.imag() < b.imag();</pre>
    }
8.2 Antipodal Points
vector<pair<int, int>> antipodal(const polygon &P) {
    vector<pair<int, int>> ans: int n = P.size():
    if (P.size() == 2) ans.push back(\{0, 1\});
    if (P.size() < 3) return ans:
    int a0 = 0:
    while (abs(area2(P[n-1], P[0], P[NEXT(q0)]))
           > abs(area2(P[n - 1], P[0], P[q0])))
    for (int q = q0, p = 0; q != 0 && p <= q0; ++p) {
        ans.push_back({p, q});
        while (abs(area2(P[p], P[NEXT(p)], P[NEXT(q)])) >
            abs(area2(P[p], P[NEXT(p)], P[q]))) {
            a = NEXT(a):
            if (p != q0 || q != 0) ans.push_back({p, q});
            else return ans:
       }
        if (abs(area2(P[p], P[NEXT(p)], P[NEXT(q)])) ==
            abs(area2(P[p], P[NEXT(p)], P[q]))) {
            if (p != q0 || q != n - 1)
                ans.push_back({p, NEXT(q)});
            else
                ans.push_back({NEXT(p), q});
       }
    }
    return ans;
8.3 Polygon Centroid
point centroid(const polygon &P) {
    point c(0, 0);
    double scale = 3.0 * area2(P)://area2 = 2 * polygon area
    for (int i = 0, n = P.size(); i < n; ++i) {</pre>
        int i = NEXT(i):
        c = c + (P[i] + P[j]) * (cross(P[i], P[j]));
    return c / scale:
8.4 Circle
// circle-circle intersection
vector <point> intersect(circle C, circle D) {
```

```
double d = abs(C.p - D.p):
    if (sign(d - C.r - D.r) > 0) return {};
                                                 // too far
    if (sign(d - abs(C.r - D.r)) < 0) return {}; // too close</pre>
    double a = (C.r * C.r - D.r * D.r + d * d) / (2 * d):
    double h = sqrt(C.r * C.r - a * a);
    point v = (D.p - C.p) / d:
    if (sign(h) == 0) return \{C.p + v * a\}; // touch
    return \{C.p + v * a + point(0, 1) * v * h, // intersect\}
            C.p + v * a - point(0, 1) * v * h;
// circle-line intersection
vector <point> intersect(line L. circle C) {
    point u = L.p - L.q, v = L.p - C.p;
    double a = dot(u, u), b = dot(u, v).
        c = dot(v, v) - C.r * C.r:
    double det = b * b - a * c;
    if (sign(det) < 0) return {}:</pre>
                                            // no solution
    if (sign(det) == 0) return {L.p - b / a * u}; // touch
    return \{L.p + (-b + sqrt(det)) / a * u,
            L.p + (-b - sqrt(det)) / a * u};
// circle tangents through point
vector <point> tangent(point p, circle C) {
    // not tested enough
    double D = abs(p - C.p):
    if (D + eps < C.r) return {};</pre>
    point t = C.p - p;
    double theta = asin(C.r / D):
    double d = cos(theta) * D;
    t = t / abs(t) * d:
    if (abs(D - C.r) < eps) return \{p + t\};
    point rot(cos(theta), sin(theta));
    return {p + t * rot, p + t * conj(rot)};
bool incircle(point a, point b, point c, point p) {
    a -= p: b -= p: c -= p:
    return norm(a) * cross(b, c) + norm(b) * cross(c, a) +
        norm(c) * cross(a, b) >= 0:
    // < : inside, = cocircular, > outside
point three_point_circle(point a, point b, point c) {
    point x = 1.0 / conj(b - a), y = 1.0 / conj(c - a);
    return (y - x) / (conj(x) * y - x * conj(y)) + a;
/* Area of the intersection of a circle with a polygon
 Circle's center lies in (0, 0)
 Polygon must be given counterclockwise*/
#define x(t)(xa + (t) * a)
#define v(t) (va + (t) * b)
double radian(double xa, double ya, double xb, double yb) {
    return atan2(xa * yb - xb * ya, xa * xb + ya * yb);
}
double part
    (double xa, double va, double xb, double vb, double r) {
```

```
double l = sqrt((xa - xb) * (xa - xb) +
            (ya - yb) * (ya - yb));
   double a = (xb - xa) / 1, b = (yb - ya) / 1,
        c = a * xa + b * va:
   double d = 4.0 * (c * c - xa * xa - ya * ya + r * r);
   if (d < eps) return radian(xa, va, xb, vb) * r * r * 0.5;
        d = sqrt(d) * 0.5; double s = -c - d, t = -c + d;
        if (s < 0.0) s = 0.0:
        else if (s > 1) s = 1;
       if (t < 0.0) t = 0.0:
        else if (t > 1) t = 1:
       return (x(s) * y(t) - x(t) * y(s) +
            (radian(xa, va, x(s), v(s)) +
            radian(x(t), y(t), xb, yb)) * r * r) * 0.5;
double intersection_circle_polygon(const polygon &P, double r)
   double s = 0.0:
   int n = P.size();;
   for (int i = 0; i < n; i++)
        s += part(P[i].real(), P[i].imag(),
                  P[NEXT(i)].real(), P[NEXT(i)].imag(), r);
   return fabs(s):
8.5 Closest Pair Points
double closest pair points(vector <point> &P) {
   auto cmp = \Pi(point a, point b) {
       return make pair(a.imag(), a.real()) <</pre>
            make pair(b.imag(), b.real());
   }:
   int n = P.size(); sort(P.begin(), P.end());
   set < point, decltype(cmp) > S(cmp);
   const double oo = 1e9: /*adjust*/ double ans = oo;
   for (int i = 0, ptr = 0; i < n; ++i) {
        while(ptr < i && abs(P[i].real()-P[ptr].real()) >= ans)
           S.erase(P[ptr++]):
        auto lo=S.lower bound(point(-oo, P[i].imag() -
ans-eps)):
        auto hi=S.upper bound(point(-oo, P[i].imag() +
ans+eps)):
        for (decltype(lo) it = lo; it != hi; ++it)
            ans = min(ans, abs(P[i] - *it));
       S.insert(P[i]):
   }
   return ans;
8.6 Convex Cut
/* Cut a convex polygon by a line and
 return the part to the left of the line */
polygon convex_cut(const polygon &P, const line &1) {
   polygon Q:
   for (int i = 0, n = P.size(); i < n; ++i) {</pre>
       point A = P[i], B = P[(i + 1) \% n];
```

```
if (ccw(1.p, 1.q, A) != -1) Q.push back(A):
       if (ccw(1.p, 1.q, A) * ccw(1.p, 1.q, B) < 0)
            Q.push_back(crosspoint((line) {A, B}, 1));
   }
    return Q;
8.7 Convex Hull
polygon convex_hull(vector <point> &P) {
    int n = P.size(), k = 0;
    vector <point> h(2 * n):
    sort(P.begin(), P.end());
    for (int i = 0; i < n; h[k++] = P[i++])
       while(k >= 2 && area2(h[k - 2], h[k - 1], P[i]) <=
())--k:
    for (int i = n - 2, t = k + 1; i \ge 0; h[k++] = P[i--])
       while(k >= t && area2(h[k - 2], h[k - 1], P[i]) <=
    return polygon(h.begin(), h.begin() + k - (k > 1));
8.8 Line Operations
bool intersectLL(const line &1. const line &m) {
    return abs(cross(l.g - l.p, m.g - m.p)) > eps//non-parallel
       | | abs(cross(l.g - l.p. m.p - l.p)) < eps://same line
bool intersectLS(const line &1, const segment &s) {
    return cross(l.q - l.p, s.p - l.p) * // s[0] is left of l
       cross(l.q - l.p, s.q - l.p) < eps;//s[1] is right of l
bool intersectLP(const line &1, const point &p) {
    return abs(cross(l.q - p, l.p - p)) < eps;</pre>
bool intersectSS(const segment &s, const segment &t) {
    return ccw(s.p, s.q, t.p) * ccw(s.p, s.q, t.q) <= 0 &&
       ccw(t.p. t.q. s.p) * ccw(t.p. t.q. s.q) <= 0:
bool intersectSP(const segment &s, const point &p) {
    return abs(s.p - p) + abs(s.q - p) - abs(s.q - s.p) < eps:
    // triangle inequality
    return min(real(s.p), real(s.q)) <= real(p) &&
       real(p) <= max(real(s.p), real(s.q)) &&
       min(imag(s.p), imag(s.q)) \le imag(p) &&
       imag(p) \le max(imag(s.p), imag(s.q)) &&
       cross(s.p - p, s.q - p) == 0;
point projection(const line &l. const point &p) {
    double t = dot(p - 1.p, 1.p - 1.q) / norm(1.p - 1.q);
    return 1.p + t * (1.p - 1.q);
point reflection(const line &1, const point &p) {
    return p + 2.0 * (projection(1, p) - p):
double distanceLP(const line &1, const point &p) {
    return abs(p - projection(1, p));
double distanceLL(const line &1, const line &m) {
```

```
return intersectLL(1, m) ? 0 : distanceLP(1, m.p);
}
double distanceLS(const line &1, const line &s) {
    if (intersectLS(1, s)) return 0:
    return min(distanceLP(1, s.p), distanceLP(1, s.q));
double distanceSP(const segment &s, const point &p) {
    const point r = projection(s, p);
    if (intersectSP(s, r)) return abs(r - p);
    return min(abs(s.p - p), abs(s.q - p));
double distanceSS(const segment &s. const segment &t) {
    if (intersectSS(s, t)) return 0;
    return min(min(distanceSP(s, t.p), distanceSP(s, t.g)).
               min(distanceSP(t, s.p), distanceSP(t, s.q)));
point crosspoint(const line &1, const line &m) {
    double A = cross(1.q - 1.p, m.q - m.p);
    double B = cross(l.q - l.p, l.q - m.p);
    if (abs(A) < eps && abs(B) < eps)
        return m.p; // same line
    if (abs(A) < eps)
        assert(false); // !!!PRECONDITION NOT SATISFIED!!!
    return m.p + B / A * (m.q - m.p);
8.9 Pick's theorem
typedef long long ll; typedef complex <ll> point;
struct segment {point p. q:}:
11 points on segment(const segment &s) {
    point p = s.p - s.q:
    return __gcd(abs(p.real()), abs(p.imag()));
// <Lattice points (not in boundary). Lattice points on
boundary>
pair <11. 11> pick theorem(polygon &P) {
    11 A = area2(P), B = 0, I = 0:
    for (int i = 0, n = P.size(); i < n; ++i)</pre>
        B += points_on_segment({P[i], P[NEXT(i)]});
    A = abs(A); I = (A - B) / 2 + 1; return {I, B};
8.10 Point 3D
const double pi = acos(-1.0);
//Construct a point on a sphere with center in origin and rad
struct point3d {
    double x, y, z;
    point3d(double x = 0, double y = 0, double z = 0):
        x(x), y(y), z(z) {}
    double operator*(const point3d &p) const {
        return x * p.x + y * p.y + z * p.z;
    point3d operator-(const point3d &p) const {
        return point3d(x - p.x, y - p.y, z - p.z);
```

Harbour. Space University: x^3 . Page 23 of 25

```
}:
double abs(point3d p) {
    return sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
point3d from polar(double lat, double lon, double R) {
   lat = lat / 180.0 * pi:
   lon = lon / 180.0 * pi;
   return point3d(R * cos(lat) * sin(lon),
                  R * cos(lat) * cos(lon), R * sin(lat)):
struct plane { double A, B, C, D; };
double euclideanDistance(point3d p, point3d q) {
    return abs(p - q);
/* Geodisic distance between points in a sphere
  R is the radius of the sphere */
double geodesic_distance(point3d p, point3d q, double r) {
    return r * acos(p * q / r / r);
const double eps = 1e-9;
// Find the rect of intersection of two planes on the space
// The rect is given parametrical
void planePlaneIntersection(plane p, plane q) {
    if (abs(p.C * q.B - q.C * p.B) < eps)
       return: // Planes are parallel
    double mz=(q.A * p.B - p.A * q.B) / (p.C * q.B - q.C *
    double nz=(q.D * p.B - p.D * q.B) / (p.C * q.B - q.C *
    double my=(q.A * p.C - p.A * q.C) / (p.B * q.C - p.C *
q.B);
    double ny=(q.D * p.C - p.D * q.C) / (p.B * q.C - p.C *
q.B);
    // parametric rect: (x, my * x + ny, mz * x * nz)
8.11 Point in Polygon
enum { OUT, ON, IN }:
int contains(const polygon &P, const point &p) {
   bool in = false;
   for (int i = 0, n = P.size(): i < n: ++i) {
        point a = P[i] - p, b = P[NEXT(i)] - p;
        if (imag(a) > imag(b)) swap(a, b);
        if (imag(a) \le 0 && 0 \le imag(b))
           if (cross(a, b) < 0) in = !in;
        if (cross(a, b) == 0 && dot(a, b) <= 0)
           return ON;
   }
    return in ? IN : OUT:
8.12 Polar Sort
int quad(point x) {
    if (x.imag() >= 0 && x.real() > 0) return 0;
   if (x.imag() > 0 && x.real() <= 0) return 1;
   if (x.imag() <= 0 && x.real() < 0) return 2;
   return 3:
```

```
vector <point> angular sort(vector <point> &v) {
    sort(all(v), [&](point &a, point &b) {
        if (quad(a) != quad(b)) return quad(a) < quad(b);</pre>
        return cross(a, b) > 0;
   }):
    return v;
8.13 Polygon Area
double area2(const polygon &P) {
    double A = 0;
    for (int i = 0, n = P.size(); i < n; ++i)
       A += cross(P[i], P[NEXT(i)]):
    return A:
8.14 Polygon Width
// Compute the width of a convex polygon
const int oo = 1e9; // adjust
double check(int a, int b, int c, int d, const polygon &P) {
    for (int i = 0: i < 4 && a != c: ++i) {
        if (i == 1) swap(a, b);
        else swap(c, d):
    if (a == c) { // a admits a support line parallel to bd
        double A = abs(area2(P[a], P[b], P[d]));
        double base = abs(P[b] - P[d]);
        return A / base:
    return oo:
double polygon width(const polygon &P) {
    if (P.size() < 3)
        return 0:
    auto pairs = antipodal(P);
    double best = oo:
    int n = pairs.size();
    for (int i = 0; i < n; ++i) {</pre>
        double tmp = check(pairs[i].first, pairs[i].second.
           pairs[NEXT(i)].first, pairs[NEXT(i)].second, P);
        best = min(best, tmp);
    return best:
8.15 Rectilinear MST
typedef long long ll: typedef complex<ll> point:
11 rectilinear mst(vector<point> ps) {
    vector<int> id(ps.size()); iota(id.begin(), id.end(), 0);
    struct edge { int src, dst; ll weight; };
    vector<edge> edges;
    for (int s = 0; s < 2; ++s) {
        for (int t = 0; t < 2; ++t) {
            sort(id.begin(), id.end(), [&](int i, int j) {
                return real(ps[i] - ps[j]) < imag(ps[j] -</pre>
ps[i]);
            });
```

```
map<11. int> sweep:
            for (int i: id) {
                for (auto it = sweep.lower_bound(-imag(ps[i]));
                    it != sweep.end(): sweep.erase(it++)) {
                    int j = it->second;
                    if (imag(ps[j] - ps[i]) < real(ps[j] -</pre>
ps[i]))
                        break:
                    ll d = abs(real(ps[i] - ps[j])) +
                            abs(imag(ps[i] - ps[j]));
                    edges.push_back({i, j, d});
                }
                sweep[-imag(ps[i])] = i;
            }
            for (auto &p: ps)
                p = point(imag(p), real(p));
        for (auto &p: ps)
            p = point(-real(p), imag(p));
    11 \cos t = 0:
    sort(edges.begin(), edges.end(), [](edge a, edge b) {
        return a.weight < b.weight;</pre>
    union find uf(ps.size()):
    for (edge e: edges)
        if (uf.join(e.src, e.dst))
            cost += e.weight:
    return cost;
   Various
9.1 Divide and Conquer
void DIVIDE AND CONQUER(int k, int L, int R, int optL, int
optR) {
    if(L > R)return;
    int m = (L+R)/2, opt = -1:
    dp[m][k] = oo;
    for(int i = optL : i <= min(m.optR) : i++) {</pre>
        11 t = dp[i-1][k-1] + w(i,m):
        if(dp[m][k] > t)dp[m][k] = t, opt = i;
    DIVIDE AND CONQUER(k,L,m-1,optL,opt);
    DIVIDE AND CONQUER(k,m+1,R,opt,optR);
9.2 Integer Division
inline 11 ceil(11 a, 11 b) {
    return a/b + ((a>0)^{(b>0)} ? 0 : a\%b != 0):
inline 11 floor(11 a, 11 b) {
    return a/b - ((a>0)^(b>0) ? a\%b != 0 : 0);
```

Harbour. Space University: x^3 Page 24 of 25

9.3 Bit hacks

- x & -x is the least bit in x.
- for (int x = m: x:) { --x &= m: ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K)) if (i & 1 << b) D[i] += D[i^(1 << b)]; computes all sums of

9.4 Formulas

- Pick's Theorem: $A = i + \frac{b}{2} 1$
- Euler's formula: vertices edges + faces = 2 (In connected planar graphs)
- $Catalan_n = \frac{1}{n+1} \cdot {2n \choose n} = {2n \choose n} {2n \choose n+1} = \frac{2n!}{n!(n+1)!}$
- $Catalan_n^{(k)} = \frac{k+1}{n+k+1} \cdot {2n+k \choose n}$ Count of balanced parentheses sequences consisting of n+k pairs of parentheses where the first K symbols are open brackets.
- Stirling Numbers of the First Kind:
 - unsigned s(n,k) counts the number of permutations of size n with k cycles.
 - $-s(n+1,k) = -n \cdot s(n,k) + s(n,k-1)$ (for unsigned just n instead of -n)
 - -s(0,0) = 1 and s(0,n) = s(n,0) = 0 for n > 0.
 - $-(x)_n = \sum_{k=0}^n s(n,k) \cdot x^k$ where $(x)_n = x(x-1)(x-2)...(x-n+1)$, so the Stirling numbers are the coefficients of the rising factorials polynomial.
- Stirling Numbers of the Second Kind:
 - Number of ways to partition a set of n objects into k non-empty subsets.
 - $-S(n+1,k) = k \cdot S(n,k) + S(n,k-1)$
 - $-S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$
- Euclides' Pythagorean triple: $a^2 + b^2 = c^2 \iff a = 2mn, b = c^2$ $m^2 - n^2$, $c = m^2 + n^2$
- $\sum_{d|n} \phi(d) = n$
- inv[i] = (MOD-MOD/i)*inv[MOD%i]

```
9.5 Hash table
```

```
#include <bits/extc++.h>
using namespace gnu pbds;
struct custom_hash {
    static uint64 t splitmix64(uint64 t x) {
        // http://xorshift.di.unimi.it/splitmix64.c
        x += 0x9e3779b97f4a7c15:
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^{\circ} (x >> 31):
    size t operator()(uint64 t x) const {
        static const uint64 t FIXED RANDOM =
chrono::steady_clock::nmow().time_since_epoch().count();
        return splitmix64(x + FIXED RANDOM);
    }
}:
gp_hash_table<long long, int, custom_hash> safe_hash_table;
9.6 Convex Hull Trick
typedef long long ll; typedef complex<ll> point;
11 cross(point a, point b) { return imag(conj(a) * b); }
///a_x*b_y-b_x*a_y
11 dot(point a, point b) { return real(conj(a) * b); } ///
a x*b x+a v*b v
11 area2(point a. point b. point c) { return cross(b - a. c -
a): }
namespace std {
    bool operator<(const point &a, const point &b) {</pre>
        return real(a) < real(b) || (real(a) == real(b) &&
imag(a) < imag(b));</pre>
const 11 oo = 0x3f3f3f3f3f3f3f3f3f:
struct dynamic hull {
    dynamic hull() : hulls() {}
    void add_point(point p) {
        hull h; h.add_point(p);
        for (hull & h : hulls)
            if (_h.empty()) {
                h.swap(h);
                break:
            else h = merge(h, _h), _h.clear();
        if (!h.empty()) hulls.emplace_back(h);
    11 max dot(point p) {
        11 best = -oo:
        for (hull &h : hulls)
            if (!h.emptv()) best = max(best, h.max dot(p));
        return best;
    }
private:
```

```
struct hull : vector<point> {
        void add point(point p) {
            for (int s = size(); s > 1; --s)
                if (area2(at(s-2), at(s-1), p) < 0) break;
                 else pop_back();
            push_back(p);
        11 max_dot(point p) {
            int lo = 0, hi = (int) size() - 1, mid;
            while (lo < hi) {
                mid = (lo + hi) / 2;
                if (dot(at(mid), p) <= dot(at(mid + 1), p))</pre>
                    lo = mid + 1;
                 else hi = mid:
            return dot(at(lo), p);
    static hull merge(const hull &a. const hull &b) {
        hull h; size_t i = 0, j = 0;
        while (i < a.size() && j < b.size())</pre>
            if (a[i] < b[j]) h.add_point(a[i++]);</pre>
            else h.add point(b[j++]);
        while (i < a.size()) h.add point(a[i++]);
        while (j < b.size()) h.add_point(b[j++]);</pre>
        return h;
    vector<hull> hulls:
};
9.7 SOS DP
for(int i = 0; i < (1 << N); ++i)
    F[i] = A[i];
for(int i = 0; i < N; ++i)
    for(int mask = 0; mask < (1<<N); ++mask)</pre>
        if(mask & (1<<i))</pre>
            F[mask] += F[mask^(1 << i)]:
9.8 Gray code
int g (int n) {
    return n ^ (n >> 1);
int rev_g (int g) {
 int n = 0;
 for (; g; g >>= 1)
    n ^= g;
  return n;
9.9 CMake
cmake_minimum_required(VERSION 3.24)
project(icpc)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -02
-Wl,-stack size,10000000")
set(filename)
```

Harbour. Space University: x^3 . Page 25 of 25

foreach(number RANGE 97 122 1)
 string(ASCII \${number} filename)

file(WRITE codes/\${filename}.cpp)
add_executable(\${filename} codes/\${filename}.cpp)

endforeach()