Сила прессования для заданной посадки с натягом

Исходные данные

 $d_{\rm e} \coloneqq 24$ ММ

в предыдущих шагах были вычесленны

 $D_{\varepsilon} \coloneqq 48$ $H_{\varepsilon} \coloneqq 45$ MM

ММ

 $\begin{array}{l} l_{\mathit{cm}}\!\coloneqq\!H_{\mathit{c}}\!=\!45\\ d\!\coloneqq\!D_{\mathit{c}}\!=\!48 \end{array}$ длина ступицы MM

посадочный диаметр вала MM

 $\begin{aligned} d_2 &\!\coloneqq\! 2.5 \cdot d_{\scriptscriptstyle \theta} \!=\! 60 \\ d_1 &\!\coloneqq\! d_{\scriptscriptstyle \theta} \!=\! 24 \end{aligned}$ наружный диаметр соединения MM

MM диаметр отверстия в вале

 $R_{a1} = 0.8$ параметры MKM $R_{a2} = 1.6$ шероховатости МКМ

1. Параметры заданной посадки (табл. 1.и.2):

d H7/s6

 $Es \coloneqq 25$ - верхнее отклонение отверстия, мкм

ei := 43 - нижнее отклонение вала, мкм es := 59 - верхнее отклонение вала, мкм

По ГОСТ 25347-82 в системе отверстия:

Таблица 1

Значения допусков, мкм

Интервал	Квалитет										
размеров, мм	3	4	5	6	7	8	9	10	11	12	13
Св.3 до 6	2,5	4	5	8	12	18	30	48	75	120	180
610	2,5	4	6	9	15	22	36	58	90	150	220
1018	3	5	8	11	18	27	43	70	110	180	270
1830	4	6	9	13	21	33	52	84	130	210	330
3050	4	7	11	16	25	39	62	100	160	250	390
5080	5	8	13	19	30	46	74	120	190	300	460
80120	6	10	15	22	35	54	87	140	220	350	540
120180	8	12	18	25	40	63	100	160	250	400	630
180250	10	14	20	29	46	72	115	185	290	460	720
250315	12	16	23	32	52	81	130	210	320	520	810

Таблица 2 Значения нижних отклонений вала еі, мкм (ГОСТ 25346-89)

Интервал	Все квалитеты										
размеров,мм	m	n	p	r	S	t	u	v	X	у	Z
Св.3 до 6	4	8	12	15	19	-	23	<u> </u>	28	-	35
610	6	10	15	19	23		28	- 1	34	2	42
1014	7	12	18	23	28	-	33	-	40	-	50
1418								39	45	-	60
1824	8	15	22	28	35		41	47	54	63	73
2430						41	48	55	64	75	88
3040	9	17	26	34	43	48	60	68	80	94	112
4050		10.000			9.000000	54	70	81	97	114	136
5065	11	20	32	41	53	66	87	102	122	144	172
6580	Same			43	59	75	102	120	146	174	210
80100	13	23	37	51	71	91	124	147	178	214	258
100120				54	79	104	144	172	210	254	310
120140	15	27	43	63	92	122	170	202	248	300	365
140160				65	100	134	199	228	280	340	415
160180				68	108	146	210	252	310	380	465
180200	17	31	50	77	122	166	236	284	350	425	520
200225				80	130	180	258	310	385	470	575
225250	8			84	140	196	284	340	425	520	640

2. Максимальный и минимальный натяги в соединении:

$$N_{min} = ei - Es$$

$$N_{min} = 18$$

$$N_{max} \coloneqq es$$

$$N_{max} = 59$$

MKM

3. Максимальный расчётный натяг:

3.1. Поправка на обмятие микронеровностей: При Ra>1,25 мкм k=5, при Ra <1,25 k=6.

 $k_1 \coloneqq 6$ - коэффициент, зависящий от Ra

 $k_2 \coloneqq 5$ - коэффициент, зависящий от $Ra_{_{_{\! 0}}}$

 $U_r := k_1 \cdot R_{a1} + k_2 \cdot R_{a1}$ $U_r = 8.8 \text{ MKM}$

$$\delta_{\mathit{pmax}} \coloneqq N_{\mathit{max}} - U_r$$

4. Коэффициенты жесткости деталей соединения:

 $E_{_{_{1}}} \! \coloneqq \! 2.1 \! \cdot \! 10^{5} \,$ МПа - модуль упругости первого рода (Юнга)

материала вала $E_{\underline{}} \coloneqq 2.1 \cdot 10^5 \ \ \textit{МПа} \qquad \text{- модуль упругости первого рода (Юнга)}$ материала втулки

 $\mu_{1} = 0.3$

- коэффициент Пуассона материала вала

 $\mu_{2} = 0.3$

- коэффициент Пуассона материала втулки

$$c_{_1}\!\coloneqq\!rac{1\!+\!\left(rac{d_1}{d}
ight)^2}{1\!-\!\left(rac{d_1}{d}
ight)^2}\!-\!\mu_{_1}$$
 - коэффициент деформации вала $c_{_1}\!=\!1.367$

$$c_2\!\coloneqq\!\frac{1\!+\!\left(\!\frac{d}{d_2}\!\right)^2}{1\!-\!\left(\!\frac{d}{d_2}\!\right)^2}\!+\!\mu_2\qquad\text{- коэффициент деформации втулки}\qquad c_2\!=\!4.856$$

Формула Лямэ:

$$P_{max} := \frac{\delta_{pmax}}{d \cdot \left(\left(\frac{c_1}{E_1} + \frac{c_2}{E_2} \right) \cdot 10^3 \right)}$$

 $P_{max} = 35.297$ МΠа

Таблица 3

Материал	Расчет прочнос:	Определение силы		
деталей	Сборка прессованием, f	Сборка нагревом, f	прессования, f_{π}	
Сталь-сталь	0,08	0,14	0,22	
Сталь-чугун	0,07	0,10	0,14	
Сталь(чугун)- бронза(латунь)	0,05	0,07	0,10	

Значения коэффициента трения в соединениях с натягом

$$f_{max}$$
:= 0.22 - коэффициент трения соединения

5. Сила прессования:

$$F_3 := \pi \cdot d \cdot l_{cm} \cdot P_{max} \cdot f_{max}$$
 $F_3 = 5.269 \cdot 10^4$ H

6. Максимально допустимый прочностью деталей натяг:

- $\sigma t_{_{1}}\!:=\!640$ предел текучести для вала, изготовленного из материала Сталь 40X
- $\sigma t_{_{_{2}}}\!\coloneqq\!220$ предел текучести для втулки, изготовленного из материала Сталь 3

$$Pt_{_{1}}\!\coloneqq\!\frac{\sigma t_{_{1}}}{2}\!\cdot\!\left(1-\!\left(\!\frac{d_{_{1}}}{d}\!\right)^{\!2}\right) \qquad \qquad Pt_{_{2}}\!\coloneqq\!\frac{\sigma t_{_{2}}}{2}\!\cdot\!\left(1-\!\left(\!\frac{d}{d_{_{2}}}\!\right)^{\!2}\right)$$

$$Pt_{_{1}} = 240 \quad \textit{M} \Pi \textit{a} \qquad \qquad Pt_{_{2}} = 39.6 \quad \textit{M} \Pi \textit{a}$$

$$Ptmin \coloneqq min\left(Pt_{_1}, Pt_{_2}\right)$$
 $Ptmin = 39.6$ МПа

$$[N]_{max} \coloneqq \frac{Ptmin \cdot \delta_{pmax}}{P_{max}} + U_r \qquad \qquad [N]_{max} = 65.12 \text{ MKM}$$

Максимальный натяг при данной посадке $extbf{d}$ $extbf{H7/s6}$ $extbf{N}_{max} = 59$ мкм

вывод:

Значит [N].max > N_{max} > N_{min} То есть обеспечивается необходимый наятг при данной посадке

и сила затяжки
$$F_{\scriptscriptstyle 3}\!=\!5.269 \cdot 10^4~H$$