١

ORIGINAL PAGE IS OF POOR QUALITY

ORBITER OMS AND RCS TECHNOLOGY

Rockwell International

INTRODUCTION

- ORBITER OMS AND RCS TANKAGE HAS BEEN HIGHLY SUCCESSFUL IN SHUTTLE FLIGHTS AS OF THIS WRITING (STS-1, 2, AND 3)
- OMS AND RCS TECHNOLOGY HAS PROVIDED A SUBSTANTIAL BASIS FOR FUTURE USES OF STORABLE PROPELLANTS
- UNDERSTANDING OF FLUID MECHANICS AND SCREEN FUNCTION
- SYNTHESIS OF LIGHT WEIGHT SUPPORT AND SCREEN STRUCTURES
- TANK QUALIFICATION IN HOSTILE ENVIRONMENTS
- SUCCESSFUL FLIGHT DEMONSTRATION OF FUNDAMENTAL MODES OF OPERATION -- TRANSLATION MANEUVERS AND REACTION CONTROL
- REMAINING TECHNOLOGY UNEXPLORED BY OMS AND RCS APPLICATIONS IS CENTERED ON ON-ORBIT PROPELLANT TRANSFER

ORIGINAL PAGE IS OF POOR QUALITY

OMS PROPELLANT TANKS

Rockwell international

XXX

O Z

(504 LBS)

289 KG

(831 LBS)

377 KG

OMS PROPELLANT ACQUISITION SYSTEM

PURPOSE

TO MAINTAIN PROPELLANT AT TANK OUTLET UNDER ZERO G CONDITIONS AND THEREBY ALLOW INITIAL FLOW TO START THE ENGINE; ALLOW PROPELLANT USAGE BY RCS UNDER LOW G

CHARACTERISTICS

PROVIDE PROPELLANTS, FREE OF UNDISSOLVED PRESSURANT GAS/PROPELLANT VAPOR, TO THE OMS/RCS ENGINES

PROVIDE CAPABILITY OF 10 OMS STARTS WITHOUT PROPELLANT SETTLING

PROVIDE 454 KG (1000 LBS) OF PROPELLANT TO THE RCS PER TANK SET

MAXIMUM STARTUP FLOW RATES KG/SEC (LBS/SEC)

		MINIMUM PROPELLANT (START WITHOUT
3.68 KG/SEC (8.12 LBS/SEC)	5.87 KG/SEC (12.95 LBS/SEC) 3.68 KG/SEC (8.12 LBS/SEC)	 RGS POD (7 THRUSTER/FEED)
3.28 KG/SEC (7.23 LBS/SEC)	5,41 KG/SEC (11.93 LBS/SEC) 3.28 KG/SEC (7.23 LBS/SEC)	• OMS POD (I ENGINE/FEED)

RCS ULLAGE BURN) WEIGHT:

17.7 KG (38.9 LBS)

TOTAL PER VEHICLE:

OMS PROPELLANT TANK CONFIGURATION LAUNCH MINUS 2 DAY REVIEW

Space Transportation System Development & Production Division Space Systems Group

Rockwell International

١

| Rockwell | International

Space Transportation System Development & Production Division

Space Systems Group

PROPELLANT ACQUISITION SYSTEM

ORIGINAL PAGE IS OF POOR QUALITY

OMS BURN

OMS START

RCS FEED

OMS PROPELLANT ACQUISITION SYSTEM OPERATING MODES

BUUST

Rockwell International

OMS PROPELLANT TANKS ACQUISITION SYSTEM DEVELOPMENT

- KEY PROBLEMS ENCOUNTERED
- FAILURE OF PLAIN DUTCH SQUARE WEAVE SCREEN DURING VIBRATION TESTING
- COINING AT EDGE OF SCREEN PANEL REDUCED WIRE CROSS-SECTION AND THEREFORE FATIGUE LIFE
- **EXCESSIVE NUMBER OF IN PROCESS REPAIRS**
- STRESS RELIEF OF TI WELDS OVER-STRESSED SCREENS
- SOLUTIONS
- ELIMINATED COINING AND EMPLOYED STRONGER TDDW
- REVISED FABRICATION PROCESS TO ELIMINATE STRESS RELIEF AFTER SCREEN PANEL INSTALLATION

EFFECT OF BULKHEAD SCREEN FAILURE TRANSLATION MANEUVERS

Y, Z TRANSLATION MANEUVERS

DEPENDING ON THE RELATIVE QUANTITIES

A HEAD DIFFERENCE (H) IS ESTABLISHED BETWEEN THE FORWARD AND AFT TANK COMPARTMENTS

LIQUID CAN FLOW OUT OF THE AFT COMPARTMENT ONLY AS FAST AS ITS VOLUME IS REPLACED BY IN FLOW OF HELIUM

HELIUM IN FLOW IS A FUNCTION OF THE EFFECTIVE FLOW AREA AND PRESSURE DIFFERENTIAL

THERE-MAXIMUM \triangle P IS 2068 N/M2 (0.3 PSI) AND DECREASES AS THE PROPELLANT IS TRANSFERRED. FORE, PROPELLANT IS TRANSFERRED AT A RELATIVELY SLOW RATE, EVEN WITH SIGNIFICANT SCREEN FAILURES

-X TRANSLATION MANEUVERS

HEAD EFFECTS EVEN LESS SEVERE

RESULTING EFFECTS

CREDIBLE SCREEN FAILURES WILL RESULT IN LITTLE PROPELLANT TRANSFER

ENGINE RESTARTS NOT AFFECTED

FAILURE

MAXIMUM BUBBLE DUE TO 4 OME STARTS (WITH PROPELLANT AT FAR END OF TANK) AND 99.8 KG (220 LBS) OMS/RCS USAGE IS 0.156 M 3 (5.5 FT 3) AFT COMPARTMENT IS 0.765 M 3 (27 FT 3)

BAND SCREEN - PROTECTS AGAINST START DYNAMICS AND STEADY STATE G LEVELS

PERFORATED PLATE - PROTECTS AGAINST STEADY STATE G LEVELS

EFFECT OF FAILURE - MINOR

- IF BUBBLE IS ADJACENT TO FAILED AREA DURING PROPELIA NT SLOSH, SOME BUBBLES WILL BE PULLED IN TO FEED SYSTEM DURING INITIAL START TRANSIENTS
- MAY RESULT IN A SHORT PERIOD (pprox 0.5 SEC) OF 2 PHASE FLOW ACCEPTABLE TO OMS ENGINE

ORIGINAL PAGE IS OF POOR QUALITY

- **FUNCTION**
- KEEPS BUBBLE IN GALLERY LEG SECTION
- GALLERY SCREENS BREAK DOWN AS TANK **EMPTIES**
- ARRESTOR SCREEN PREVENTS GAS FROM ENTERING SYSTEM UNTIL BAND SCREEN UNCOVERED

- **EFFECT OF FAILURE MINOR**
- SYSTEM HAS BEEN QUALIFIED FOR BUBBLE SIZES LARGER THAN THOSE EXPECTED FROM LOADING
- EXPULSION EFFICIENCY DEGRADED BY 1%

Space Transportation System Development & Production Division

4/78 - 7/79

TANK QUAL (TANK #2)
ACCEL, SHOCK, TRANSIENT, RANDOM VIB.

97/01 - 92/7

10/79 - 5/80

100 MISSION SHOCK/VIB TANK TESTS

AFA 26 ACOUSTIC FATIGUE TESTS

6 MISSION SHOCK/VIB TANK TESTS

4/80 - 7/81

4/74 - 7/76	8/75 - 4/76	10/75 - 4/77 (GRD)	4/77 - 8/77 (FLT)	3/76 - 7/76
SCREEN PANEL TESTS BUBBLE PT., WICKING/DEWICKING, FLOW AP, COMPATIBILITY STAINLESS STEEL SCREEN/TI FOIL WELD, REDUCED B.P. WITH N204 SCREEN REPAIR TECHNIQUE	ACQUISITION ASSEMBLY, REDUCED SCALE SETTLING DYN., FLUID CONTAINMENT W/OUTFLOW	ACQUISITION ASSEMBLY, FULL SCALE, SIM TANK SYSTEM PERFORMANCE, SCREEN CONTAINMENT WITH VIB.	FLOW TRANSIENT GAS INGESTION KC-135 LOW-G TESTS	ONE-HALF SCALE TANK, KC-135 LOW-G TESTS

Rockwell international

FLIGHT USAGE OF OMS PROPELLANT

ORIGINAL PAGE IS OF POOR QUALITY

C		æ	PROPELLANT QUANTITY (0X + FU)	IT QUAN	TITY (0X + F	3			
TANKS) 3876	I-SIS-1			STS-2	-5			12	515-3	
KG LB KG TANKS 3876 8546 4258 759 1674 751 660 1455 649 240 530 - - - - - - 281 - - 281 1362 3002 1338 RCS 328 723 231		R P00	L P00	8	2	P00	_	P00	~	9
TANKS) 3876 8546 4258 759 1674 751 660 1455 649 240 530	LB	-	KG	18	KG	LB	KG	1.8	Ж 6	2
759 1674 751 660 1455 649 240 530 - 281 281 1362 3002 1338 RCS 328 723 231	TANKS) 3876 8546	58 9388	1168	8622	4201	9263	4018	8858	3999	8818
759 1674 751 660 1455 649 240 530 - 1362 3002 1338 RCS 328 723 231	D BY OMS	·								
660 1455 649 240 530 281 1362 3002 1338 RCS 328 723 231	1674	1655	189	1501	989	1499	742	1635	745	1643
240 530 281 281 1362 3002 1338 RCS 328 723 231	1455	1431	119	1346	119	1346	797	1692	177	1700
281 1362 3002 1338 RCS 328 723 231			,	١		·	•	•	•	•
281 1362 3002 1338 RCS 328 723 231	1	1	108	238	•	•	7 135	7 %	•	(
281 1362 3002 1338 RCS 328 723 231	1	1	216	476		•	~~~	₹	·	l
1362 3002 1338 RCS 328 723 231		81 619	186	410	152	335	•	•	•	•
RCS 328 723 231	3002	38 2950	1507	3322	1508	3326	1280	2822	1287	2838
	RCS 328 723	31 510	19	42	79	174	539	1188	507	1117
TOTAL USED 3349 7384 3250 7165	7384	50 7165	3328	7335	3030	0699	3463	7635	3310	7298
RESIDUAL 527 1162 1008 2223	1162	08 2223	583	1287	וזוו	2573	555	1223	689	1520

TOTAL PROPELLANT USED FROM RIGHT POD TANKS **LEFT POD TANKS**

9,595 Kg (21,153 LB)

10,140 Kg (22,354 LB)

OMS PROPELLANT TANK CERTIFICATION STATUS

DEVELOPMENT AND QUALIFICATION PROGRAMS HAVE BEEN SUCCESSFULLY COMPLETED CERTIFICATION COMPLETED FOR PERFORMANCE, STRUCTURAL INTEGRITY, LIFE, AND SERVICABILITY FOR ACQUISITION SYSTEM AND PRESSURE

VESSEL

FURTHER ANALYSIS REQUIRED FOR TANK SKIRT FATIGUE LIFE PENDING DEFINITION OF LOAD SPECTRUM

Rockwell International

RCS PROPELLANT TANKS

Space Transportation System
Development & Production Division
Space Systems Group

•

RCS TANK FUNCTION AND OPERATIONAL REQUIREMENTS

SERVICING

FILL TANKS WHILE INSTALLED IN ORBITER ON LAUNCH PAD

PROVIDE GAS ULLAGE FOR THERMAL EXCURSIONS

PROVIDE CAPABILITY TO LAUNCH OFF LOADED

FRCS TO 59% OF CAPACITY ARCS TO 65% OF CAPACITY

BOOST REQUIREMENT

WITHSTAND 100 MISSIONS OF BOOST RANDOM VIBRATION AND LIFTOFF TWANG

ARCS TANK PROPELLANT BURN-OFF TO 65% DURING POWERED BOOST PHASE

RCS CONTROL OPERATION

PROVIDE GAS FREE PROPELLANT DURING ANY COMBINATION OF THRUSTER STEADY STATE OR PULSE

OPERATION DURING EXPOSURE TO OMNIDIRECTIONAL ACCELERATION FIELDS

MATED COAST/EXTERNAL TANK SEPARATION

RETURN TO LAUNCH SITE - 3.4 L/SEC (54 GPM) FRCS AND 4.0 L/SEC (63 GPM) ARCS NORMAL MISSION 2.8 L/SEC (45 GPM)

ON-ORBIT

FRCS - 2.8 L/SEC (45 GPM) - 92% EXPULSION EFFICIENCY

• • ARCS - 4.0 L/SEC (63 GPM) - 68% EXPULSION EFFICIENCY

ENTRY - ARCS ONLY

LOW G - 2.8 L/SEC (45 GPM) TO 72% EXPULSION

LOW G - 2.3 L/SEC (36 GPM) TO 76% EXPULSION HIGH G - 2.3 L/SEC (36 GPM) TO 98% EXPULSION EFFICIENCY

Rockwell International

Space Transportation System Development & Production Division

١

Space Transportation & Systems Group

RCS PROPELLANT TANK KEY DEVELOPMENT PROBLEMS ENCOUNTERED

LOW G PERFORMANCE CERTIFICATION BY ANALYSIS

- GAS FREE EXPULSION ASSURED WHEN B.P. ≥ (△PSTART + △P S.S.) X SF DIRECT TEST NOT FEASIBILE WITHOUT ZERO G PROPELLANT LABORATORY
- △P START F(NUMBER OF THRUSTERS STARTING)
- △P S.S. =△PE +△PV +△PH +△PVIS
- TS × (LIMITED OPERATION WITH GAS INGESTION PERMITTED WHEN APREHEAL > (LAPS.S.) INITIAL PERFORMANCE CERTIFIED TO STEADY STATE REQUIREMENTS WITH 1.15 SF
 - MATH MODELS VALIDATED BY 1-G ELEMENT AND SUB ASSEMBLY TESTS
- UNEXPECTED EFFECTS OF START TRANSIENT ON TANK OPERATION CAUSED CAUTION LOW-G EXPULSIONS SIMULATED BY 1-G MASKED SCREEN TESTS
 - SF RAISED TO 1.5
- MISSION REQUIREMENTS REDUCED TO ACCOMMODATE START TRANSIENT CAPABILITIES TOTAL GAS INGESTION LIMITED TO 164 CC (10 IN³) PER MISSION
 - LIMITED FRCS THRUSTER USAGE TO 3 (WAS) 5
- LIMITED ARCS THRUSTER USAGE TO 5 (WAS) 7

 REQUIRES OVERFILL OF ARCS TANKS TO KEEP GAS OUT OF LOWER COMPARTMENT

ON-ORBIT SCREEN DRYOUT

- CAUSED BY CONVECTIVE MASS TRANSFER (PRESSURANT FLOW OVER SCREENS)
 - RESOLVED BY SWIRL DIFFUSER

RCS PROPELLANT TANK KEY DEVELOPMENT PROBLEMS (CONTINUED)

DEVELOPMENT OF PAD BUBBLE POINT VERIFICATION TECHNIQUE INHIBITED BY N204 SCREEN DRYOUT

SPECIAL CONTROLS AND TECHNIQUES DEVELOPED

SCREEN REPAIR TECHNIQUES REQUIRED TO SEAL PORE OPENINGS CREATED DURING MA NUFACTURING

- SILVER/TIN SOLDER USED
- MMH CONTAMINATED WITH FREON CORRODES SILVER SOLDER
- PRESENCE OF FREON CONTAMINATION QUALITATIVELY SCREENED WITH SOLDER REPAIR DOTS

PAD SENSITIVITY TO SHOCK AND VIBRATION ENVIRONMENT UNKNOWN

- UNCERTAIN DURING HANDLING, TRANSPORTATION, AND BOOST ENVIRONMENTS
- PAD STRAIN GAGED AND SUBJECTED TO QUALIFICATION TEST ENVIRONMENTS
- STRESS AND FATIGUE ANALYTICAL MODELS UPDATED BASED ON RESPONSE DATA DURING **ENVIRONMENTAL TESTS**

TANK GIRTH WELD AND REPAIR

- SPECIAL TESTS WERE CONDUCTED TO VERIFY WELD STRESS/STRAIN CHARACTERISTICS OF MISMATCHED WELD LANDS
- TECHNIQUES WERE DEVELOPED TO REPAIR OR REPLACE INTERNAL PAD BY CUTTING TANK APART AND REPLACEMENT OF UPPER HEMISPHERE

Space Transportation System Development & Production Division Space Systems Group

١

FLIGHT USAGE OF RCS PROPELLANT

•

PROPELLANT QUANTITY (OX + FU)

			515-1			STS-2			STS-3	
		F	Ţ	R	Ł	7	æ	F	ļ	~
LOADED	KG	. 888	666	666	892	1001	1001	881	1000	666
	18	(1957)	(2203)	(2203)	(1961)	(5208)	(2208)	(1943)	(2205)	(2023)
ASCENT	KG	89	68.5	40	47	9	89	89	85	83
	1.8	(150)	(151)	(88)	(103)	(143)	(151)	(128)	(188)	(183)
ON-ORBIT	KG	186	102	128	202	536	503	177	333	359
	LB	(410)	(225)	(283)	(446)	(525)	(460)	(1700)	(735)	(167)
DE-ORBIT	KG	16	5.5	1.5	t	40	38	•	39	37
•	LB	(36)	(12)	(3)	•	(88)	(84)	•	(82)	(81)
FRCS DUMP	KG	•	ı	1	213	,	•	78	•	1
	LB	•	J	1	(1141)	•	1	(172)	•	•
. ENTRY	KG	8	243	228.5		413	418	•	261	260
	LB	•	(535)	(503)	•	(910)	(925)	•	(575)	(574)
TOTAL	KG	270	419	398	99/	754	733	206	718	739
	1.8	(266)	(623)	(878)	(1690)	(1663)	(1617)	(2000)	(1583)	(1629)
BUDGETED	y S	218	312	316	445	516	199	779	958	950
	LB	(480)	(689)	(269)	(385)	(1137)	(1237)	(1718)	(2112)	(5002)

STRUCTURAL QUALIFICATION

- TANK SHELLS QUALIFIED FOR 100 MISSION LIFE
- OV-102 PAD QUALIFIED FOR 17 MISSION LIFE
- OV-099. AND SUBS PAD BEING QUALIFIED TO 100 MISSION LIFE
- ARCS JULY 1982 FRCS JULY 1983

PERFORMANCE CERTIFICATION

- OV-102 TANKS CERTIFIED FOR LIMITED THRUSTER USAGE
- FRCS 2SS + 3P ARCS 1SS + 3P
- CAN BE RECERTIFIED TO 2SS + 4P
- · OV-099 AND SUBS TO BE CERTIFIED
- FRCS SAME AS OV-102
 - ARCS 1SS + 5P
- CERTIFICATION ANALYSES MARCH 1983 WSTF TEST - NOVEMBER 1982

Space Transportation System Development & Production Division

1

ORBITER OMS AND RCS TECHNOLOGY

CONCLUSIONS

 SUCCESSFUL FLIGHTS OF ORBITER HAVE PROVEN THE VIABILITY OF SURFACE TENSION DEVICES FOR SHUTTLE APPLICATION EXTRAPOLATION TO OTHER APPLICATIONS INVOLVING STORABLE PROPELLANTS SHOULD BE A SUBSTANTIALLY EASIER TASK BECAUSE OF OMS AND RCS TECHNOLOGY

