||| Trigonometry

Angle Measurement

 π radians = 180°

$$1^{\circ} = \frac{\pi}{180}$$
 rad

$$1 \text{ rad} = \frac{180^{\circ}}{\pi}$$

 $(\theta \text{ in radians})$

Right Angle Trigonometry

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$

$$\csc \theta = \frac{\text{nyp}}{\text{opp}}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\sec \theta = \frac{\text{hyp}}{\text{adi}}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

Trigonometric Functions

$$\sin \theta = \frac{y}{x}$$

$$\csc \theta = \frac{r}{v}$$

$$\cos \theta = \frac{x}{a}$$

$$\sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x}$$

$$\cot \theta = \frac{x}{y}$$

Graphs of Trigonometric Functions

Trigonometric Functions of Important Angles

θ	radians	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	_

Fundamental Identities

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\sin(-\theta) = -\sin\,\theta$$

$$\cos(-\theta) = \cos\,\theta$$

$$\tan(-\theta) = -\tan\,\theta$$

$$\sin\!\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

The Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

The Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Addition and Subtraction Formulas

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$an(x + y) = \frac{\tan x + \tan y}{1 - \tan x + \tan y}$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double-Angle Formulas

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

Half-Angle Formulas

$$\sin^2 x = \frac{1 - \cos 2x}{2} \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

Differentiation Rules

General Formulas

1.
$$\frac{d}{dr}(c) = 0$$

3.
$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$$

5.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 (Product Rule)

7.
$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$
 (Chain Rule)

2.
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

4.
$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$
 (Quotient Rule)

8.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 (Power Rule)

Exponential and Logarithmic Functions

9.
$$\frac{d}{dx}(e^x) = e^x$$

$$11. \frac{d}{dx} \ln|x| = \frac{1}{x}$$

$$\mathbf{10.} \ \frac{d}{dx}(a^x) = a^x \ln a$$

$$12. \ \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

Trioonometric Functions

$$13. \frac{d}{dx} (\sin x) = \cos x$$

16.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

17.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\mathbf{15.} \ \frac{d}{dx} (\tan x) = \sec^2 x$$

18.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Inverse Trigonometric Functions

19.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

22.
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

20.
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

23.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

21.
$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2}$$

24.
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

Hyperbolic Functions

25.
$$\frac{d}{dx} (\sinh x) = \cosh x$$

28.
$$\frac{d}{dx} (\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

26.
$$\frac{d}{dx}(\cosh x) = \sinh x$$

29.
$$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$$

$$27. \ \frac{d}{dx} (\tanh x) = \mathrm{sech}^2 x$$

30.
$$\frac{d}{dx} (\coth x) = -\operatorname{csch}^2 x$$

Inverse Hunerbolic Functions

31.
$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}$$

34.
$$\frac{d}{dx} \left(\operatorname{csch}^{-1} x \right) = -\frac{1}{|x| \sqrt{x^2 + 1}}$$

32.
$$\frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

35.
$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}}$$

33.
$$\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1 - x^2}$$

36.
$$\frac{d}{dx} \left(\coth^{-1} x \right) = \frac{1}{1 - x^2}$$