

INTERNATIONAL AS FURTHER MATHEMATICS FM02

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

Mark scheme

January 2021

Version: 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2021 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q			Ansv	ver		Marks	Comments
1(a)	X	1.6	2.5	4.0	6.0	M1	At least 4 values correct to at least 1 dp
	Y	0.3	4.3	11.1	18.6	A 1	All 8 values correct to exactly 1 dp
						2	

Q	Answer	Marks	Comments
1(b)	See image below	B1	All points plotted \pm 2 squares
		B1ft	'their' line of best fit drawn Must be a single ruled line
	$Y \uparrow$		
	-20-		
	15-		

Q	Answer	Marks	Comments
1(c)(i)	"Their" intercept = b $b = -6$	B1ft	Note: numerically calculated value gives –6.1, graphical values likely to be between –5 and –7
	<i>"Their"</i> gradient = <i>a</i>	M1	Showing method for calculating the gradient
	a = 4	A1ft	Values between 3 and 5 accepted
		3	

Q	Answer	Marks	Comments
1(c)(ii)	$y^3 = 4\frac{x^2}{y} - 6$	B1ft	y^3 = 'their $a' \frac{x^2}{y}$ + 'their b' ACF , eg $y^4 = 4.2x^2 - 6.1y$
		1	

Q	Answer	Marks	Comments
1(d)	2^4 + 'their $a' \times 2$ – 'their $b' x^2 = 0$	M1	Substituting y=2 and attempts to make x^2 the subject. Answers in the range $2.4 < x < 2.9$ acceptable.
	x = 2.6	A1ft	1 dp answer
		2	

Question 1 To

Q	Answer	Marks	Comments
2(a)	(m+1)(m+2)-(-3)(m-3)=0	M1	Setting determinant = 0 PI
	$m^2+6m-7=0$	A 1	Obtaining correct quadratic.
	m = -7 and $m = 1$	A 1	
		3	

Q	Answer	Marks	Comments
2(b)	$\mathbf{MN} = \begin{bmatrix} 3 & -1 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 2 & p \\ 3 & p \end{bmatrix}$	M1	Condone one slip in MN
	$= \begin{bmatrix} 3 & 2p \\ 6 & p \end{bmatrix}$ $\mathbf{NM} = \begin{bmatrix} 2 & p \\ 3 & p \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -3 & 4 \end{bmatrix}$	M1	Condone one slip in NM
	$= \begin{bmatrix} 6-3p & -2+4p \\ 9-3p & -3+4p \end{bmatrix}$ $3 = 6-3p$ or $2p = -2+4p$ or $6 = 9-3p$ or $p = -3+4p$	М1	Equating at least one pair of elements
	p = 1	A 1	cso
		4	

Q	Answer	Marks	Comments
2(c)(i)	$det\begin{bmatrix} 2 & 2 \\ 3 & 2 \end{bmatrix} = -2$	B1	
		1	

Q	Answer	Marks	Comments
2(c)(ii)	The area has doubled	E1ft	Correctly explains the effect of their det N on the area
	But the orientation of the shape is reversed (changed)	E1ft	Correct explains the effect of the $det \mathbf{N} < 0$ on the orientation
		2	

|--|

Q	Answer	Marks	Comments
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{3 \times 4 + 2.3}{\sqrt{4 + 2.3^3}}\right)$ $\left[=3.55649\right]$	M1	PI Allow answers correct to 5 decimal places (rounded or truncated)
	$hf(x,y) = 0.1 \left(\frac{3 \times 4 + 2.3}{\sqrt{4 + 2.3^3}} \right)$		2.3 + their value of $hf(x,y)$
	= 0.3556487759		
	$y_2 = 2.3 + 0.3556487759 = 2.655648776$	A1ft	
	$y_3 = 2.655648776 + 0.1 \left(\frac{3 \times 4.1 + 2.655648776}{\sqrt{4.1 + 2.655648776^3}} \right)$	M1	
	=2.968662163	A1ft	Values to at least 5 decimal places (PI)
	2.9687	A 1	CAO
		5	

Question 3 Total	5	
------------------	---	--

Q	Answer	Marks	Comments
4(a)	f(3) = -22 and $f(4) = 59$	M1	
(α)	Change of sign and f is continuous on the interval so α is in the interval $3 < x < 4$	A1	Comment required to show candidate is indicating a change in sign implies a root.
		2	

Q	Answer	Marks	Comments
4(b)	f(3.5) = -5.625 $3.5 < x < 4$ $f(3.75) = 17.816$ $3.5 < x < 3.75$	M1	Attempting to calculate f(mid-point) of at least two sets of values Statements can be implied through further calculations
	f(3.625) = 4.3142 $3.5 < x < 3.625$	A 1	
	f(3.5625) = -1.054 3.5625 < x < 3.625	A 1	
	$[\alpha =] 3.6 $ to 2 sf	A 1	
		4	

Question 4 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
5(a)	$\begin{bmatrix} 9k & 10k \\ -5k & 6 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	M1	Appropriate method of matrix multiplication used
	Used to obtain $9k-10k=1$ or $-5k-6=-1$		
	k = -1	A1ft	AG
		2	

Q	Answer	Marks	Comments
5(b)(i)	$\begin{bmatrix} -9 & -10 \\ 5 & 6 \end{bmatrix} \begin{pmatrix} x \\ -x \end{pmatrix} = \begin{pmatrix} -9x + 10x \\ 5x - 6x \end{pmatrix}$	M1	Correct matrix multiplication (with concluding statement) PI
	$= \begin{pmatrix} x \\ -x \end{pmatrix}$		
	y = -x is a line of invariant points	A1	
		2	

Q	Answer	Marks	Comments
5(b)(ii)	$\begin{bmatrix} -9 & -10 \\ 5 & 6 \end{bmatrix} \begin{pmatrix} x \\ mx + c \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ \Rightarrow $x' = -9x - 10mx - 10c$		
	$y' = 5x + 6(mx + c)$ Invariant lines $\Rightarrow y' = mx' + c$	М1	x' and y' , in terms of x , y , m , c
	5x + 6mx + 6c = m(-9x - 10mx - 10c) + c	М1	Use of $y' = mx' + c$
	$5(2m^{2} + 3m + 1)x + 5(2m + 1)c = 0$ $2m^{2} + 3m + 1 = 0 (2m + 1)c = 0$ $m = -1 \text{or } m = -\frac{1}{2}$	M1 A1	Attempt at solving equations where coefficients = 0 or compares coefficients Finding the correct values of m Must include $m = -\frac{1}{2}$
	If $m = -1 \Rightarrow c = 0$ $y = -x$		Fully correct line – no restriction on c
	if $m = -\frac{1}{2} \Rightarrow c$ can take any value $y = -\frac{1}{2}x + c$	A 1	Stating equations for invariant lines as $y = -x$ (given) and $y = -\frac{1}{2}x + c$
		5	

Question 5 Total	9	
------------------	---	--

Q	A	nswer	Marks	Comments
6(a)	First ball reco $\frac{3}{20}$ $\frac{5}{20}$ blue green	$\frac{12}{19}$ green $\frac{3}{19}$ red	M1 A1	two branches correct fully correct
			2	

Q	Answer	Marks	Comments
6(b)	$P(G_1 \mid B_2) = \frac{\frac{12}{20} \times \frac{5}{19}}{\frac{3}{20} \times \frac{5}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{12}{20} \times \frac{5}{19}}$	M1	Correct numerator: simplifies to $\frac{3}{19}$
	20 13 20 13 20 13	M1	Correct denominator: simplifies to $\frac{1}{4}$
	$=\frac{12}{19}$	A 1	AWRT 0.632
		3	

Question 6 Total	5	
Quostion o Total	•	

Q	Answer	Marks	Comments
7(a)	$\frac{n^2 - 1}{12} = 65.25$	M1	Forms correct equation
	n=28	A 1	
		2	

Q	Answer	Marks	Comments
7(b)	$P(X \ge 4) = (28-3) \times \frac{1}{28}$	M1	Uses correct formula for their n Alternative methods accepted eg $P(X \ge 4) = 1 - P(X < 4)$ $= 1 - P(X \le 3)$
	$=\frac{25}{28}$	A 1	AWRT 0.893
		2	

Q	Answer	Marks	Comments
7(c)	$Cov(X, Y) = -0.8\sqrt{65.25 \times 15}$ -25.028	M1	Uses covariance formula PI
	Var(2X - Y) = 2 ² Var (X) + Var (Y) - 2 × 2 Cov(X, Y)	M1	Applies variance formula
	= 376	A 1	AWRT
		3	

Question 7 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
8(a)	a = 0.175	B1	7/40 oe
	$G_X(t)=$		Finds $G_X(t)$ in terms of a or using
	$0.2t + at^2 + 0.1 t^4 + 3 a t^8$	M1	their value of <i>a</i>
	$G_X(t) = 0.2t + 0.175t^2 + 0.1t^4 + 0.525t^8$	A 1	oe
		3	

Q	Answer	Marks	Comments
8(b)	$G_{X+Y}(t) = $ $(0.2t + 0.175t^{2} + 0.1t^{4} + 0.525t^{8})$ $\times \frac{0.35 + 0.65t}{t}$	M1	Multiplies probability generating functions together
	$= 0.07 + 0.19125t + 0.11375t^2 + 0.035t^3 + 0.065t^4 + 0.18375t^7 + 0.34125t^8$	A1ft	Multiplies out their expression Implied by correct use of product rule
	$G'_{X+Y}(t) = 0.19125 + 0.2275t + 0.105t^2 + 0.26t^3 + 1.28625t^6 + 2.73t^7$	M1 A1	Attempts to differentiate 'their function' by reducing each power by 1 or attempts product rule Differentiates term by term or uses product rule correctly
	$E(X + Y) = G_{X+Y}(1) = 4.8$	A 1	AWRT 4.8 SC2 for using E(X+Y)=E(X)+E(Y)
		5	

Question 8 Total 8

Q	Answer	Marks	Comments
9(a)	LT^{-2}	B1	Correct dimensions
		1	

Q	Answer	Marks	Comments
9(b)	$[T] = MLT^{-2}$	B1	Correct dimensions of T
	$\left[\frac{2Mmg}{M+m}\right] = \frac{M^2LT^{-2}}{M}$	M1	Finds dimensions of RHS Condone correct use of units
	$= MLT^{-2}$ $\therefore \text{ Dimensionally consistent}$	A 1	Correct dimensions of RHS and conclusion Condone correct use of units
		3	

Question 9 Total	4	
------------------	---	--

Q	Answer	Marks	Comments
	$u = \sqrt{2gH}$ $h = kH$	B1 M1	Correct expression for <i>u</i> Uses ratio to find rebound height
10	$v = \sqrt{2gkH}$ $e = \frac{\sqrt{2gkH}}{\sqrt{2gH}}$	A1ft	Correct v Alternative $v = \sqrt{2gh}$
	$=\sqrt{k}$	A 1	Correct e May have $e = \frac{\sqrt{2gh}}{\sqrt{2gH}} = \sqrt{k}$

Question 10 Total	4	
-------------------	---	--

Q	Answer	Marks	Comments
11	$I = \int_0^{0.1} ct(0.1 - t) dt$	M1	Forms integral to find the impulse
	$I = \int_0^{0.1} ct(0.1 - t) dt$ $= c \left[\frac{t^2}{20} - \frac{t^3}{3} \right]_0^{0.1}$	A 1	Correct integration
	$= \frac{c}{c}$	A 1	Correct value for integral
	6000		
	$I = 0.04 \times 4 - 0.04 \times (-8)$ $[= 0.48]$	M1	Uses $I = mv - mu$ where different directions of u and v are recognised
	$\frac{c}{6000} = 0.48$	M1	Equates their result from their integration to their impulse
	<i>c</i> = 2880	A 1	Correct c
		6	

	Question 11 Total	6	
--	-------------------	---	--

Q	Answer	Marks	Comments
12	4 135° 6	М1	Draws a suitable vector triangle (PI)
	$\frac{\sin \alpha}{4} = \frac{\sin 135^{\circ}}{6}$ $\alpha = 28.13^{\circ}$	M1 A1	Applies sine rule to find unknown angle Correct angle to at least 2 significant figures
	$v^2 = 4^2 + 6^2 - 2 \times 4 \times 6\cos(180 - 135 - 28.13)$	M1	Uses cosine rule or sine rule to find magnitude of relative speed
	$v = 2.4629 \mathrm{ms^{-1}}$	A 1	Correct relative speed
	$t = \frac{2000}{2.4629} = 812 \text{ s}$	A 1	Correct time (812 s to 3 sf)

Question 12 Total 6
