MAD HW 05

- 1. How many vertices and how many edges do these graphs have?
 - (a) K_n
 - (b) C_n
 - (c) W_n
 - (d) $K_{m,n}$
- 2. How many subgraphs with at least one vertex does W_3 have?

A simple graph is called regular if every vertex of this graph has the same degree. A regular graph is called n-regular if every vertex in this graph has degree n.

- 3. For which values of n are these graphs regular?
 - (a) K_n
 - (b) C_n
 - (c) W_n
- 4. For which values of m and n is $K_{m,n}$ regular?
- 5. How many vertices does a regular graph of degree four with 10 edges have?
- 6. The complementary graph \bar{G} of a simple graph G has the same vertices as G. Two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. Describe each of these graphs.
 - (a) $\overline{K_n}$
 - (b) $\overline{K_{m,n}}$
 - (c) $\overline{C_n}$
- 7. If G is a simple graph with 15 edges and \bar{G} has 13 edges, how many vertices does G have?
- 8. Are the simple graphs with the following adjacency matrices isomorphic?

(a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$(c) \, \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array} \right], \left[\begin{array}{ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right]$$

9. Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.

MAD HW 05

10. Determine whether the given graph has a Hamilton circuit. If it does, find such a circuit. If it does not, give an argument to show why no such circuit exists.

11. determine whether the given graph is homeomorphic to $K_{3,3}$.

12. Use Kuratowski's theorem to determine whether the given graph is planar.

13. Determine whether the given graph is planar. If so, draw it so that no edges cross.

