CONTROL Y SUPERVISIÓN ALGORÍTMICA PARA LA PREVENCIÓN DE COLISIONES ENTRE ABEJAS ROBÓTICAS

Hamilton Smith Gómez Osorio

Universidad EAFIT Colombia hsgomezo@eafit.edu.co

Santiago Isaza Cadavid

Universidad EAFIT Colombia sisazac@eafit.edu.co

Mauricio Toro

Universidad EAFIT Colombia mtorobe@eafit.edu.co

RESUMEN

Las abejas robóticas son el futuro de la agricultura en su proceso de producción por lo que se hace necesario tener un control y supervisión de la ubicación de estas para evitar colisiones y así lograr el funcionamiento óptimo de las mismas. Estos problemas de colisiones también se presentan en la industria como videojuegos, finanzas entre otros.

INTRODUCCIÓN

Frente a la disminución de la población de abejas que se presenta actualmente y la importancia de estas en el proceso de polinización del sector agrícola se ve un riesgo futuro en los cultivo, por lo que es necesario encontrar una solución a dicho problema. Así nace la idea de crear abejas robóticas las cuales ayuden en este proceso y, para supervisar y controlar su funcionamiento, implementar una estructura de datos en la que por medio de un algoritmo se prevenga la colisión de las mismas.

2. PROBLEMA

Las abejas robóticas implementadas en la agricultura para el proceso de polinización pueden colisionar si están a menos de 100 metros de distancia de otras abejas por lo que es importante solucionar dicho problema para tener un funcionamiento óptimo y una mejora en los procesos.

3. TRABAJOS RELACIONADOS

Encontramos trabajos relacionados con la radiofrecuencia, algunos utilizados en el área de la computación gráfica, otros utilizados en el sector de la privacidad y el manejo de datos, todos relacionados con la colisión, en los que se intentaban prevenir o aprovecharse de ella para solucionar problemas mayores.

3.1 Sistema de identificación por radiofrecuencia $(RFID)_1$

Cuando hay varias etiquetas (usadas para almacenar la información) y lectores (lee, cambia y verifica la información de la etiqueta) en el mismo canal y transmisión de señal, se genera un problema de colisión debido a las interferencias mutuas entre las etiquetas y los lectores.

Solución: Un algoritmo anticolisión basado en una matriz y esquema de codificación.

Se establecen los datos decodificados en una matriz y luego el lector se encarga de procesar dichos datos por filas, se analizan por parejas y al encontrar una colisión se reemplaza por valor uno (1), en caso contrario se establece un cero (0). Luego de reemplazar las filas, se extraen las colisiones y se siguen analizando las siguientes filas hasta terminar

3.2 Volúmenes acotados para detectar colisiones 2

Muy utilizado en la computación gráfica a la hora de realizar videojuegos. Se basa en utilizar formas geométricas básicas encapsulando figuras complejas y utilizando la intersección de estas para determinar cuándo alguna colisiona con la otra; por medio de estas figuras se tiene control de los objetos cuando hay movimientos o cambios de perspectiva, de los más utilizados está AABB y OBB.

3.3 Verificación de claves por medio de colisión 3

Para acceder a determinado dominio se utiliza una estructura de datos matricial basada en el protocolo de Megrelishvili en la que se guardan los componentes y a la hora de analizarlos se establecen arreglos (vectores) los cuales son comparados con la cadena que fueron ingresados. Este proceso se hace por el total de la longitud de caracteres digitados y no individualmente. Cuando se encuentra una coincidencia, se dice que hubo una colisión en los datos ya que estos son idénticos y se permite el acceso.

V1 = V2

3.4 Eliminación selectiva de colisiones utilizando un algoritmo paralelo y de barrido. 4

Los problemas de colisión con grandes conjuntos de datos tienden a usar una gran cantidad de memoria caché y son difíciles de manejar. Al usar un algoritmo paralelo y de barrido, que se mejora con coherencia temporal y un barrido de doble eje, se logran manejar estos problemas mientras que el algoritmo también utiliza una estrategia de división de trabajo para cubrir el problema de una manera óptima y un de contexto para escenarios que involucran una consciencia del contexto de una agrupación intensa.

REFERENCIAS

- 1]. Liu, B. and Su, X. An Anti-Collision Algorithm for RFID Based on an Array and Encoding Scheme. Information, 2018, 2078-2489. Retrieved August 25, 2018 from EAFIT University: https://bit.ly/2PEzPhx
- [2]. Dinas, S. and Bañón J. M. A literature review pf bounding volumes hierarchy focused on collision detection. Ingeniería Competitiva, 2015, 49-62. Retrieved August 25, 2018, from EAFIT University: https://bit.ly/2BMI9sD
- [3]. Collision algorithms for breaking Megrelishvili protocol: Theory and numerical experiments in International Conference on Advanced Computer Science and Information Systems (Malang, Indonesia 2016), International Conference, 53. Retrieved August 25, 2018 from EAFIT University: https://bit.ly/2wghXkR
- [4]. Capannini, G and Laesson, T. Adaptative Collision Culing for Massive Simulations by a Parallel and Context-Aware Sweep and Prune Algoirthm. IEEE Transactions On Visualization And Computer Graphics, 2018, 2064-2077. Retrieved August 25, 2018, from EAFIT University: https://bit.ly/2wmr0ju