Design of a traffic control system for cars

Multiple choice quiz

 Q1: Which requirements are considered? Select the right answer(s)

N°	Statement	Identifier*
1	The system is to control cars on a bridge connecting a mainland and an island	FUN-1
2	The system controls the entrance to the bridge at both ends of it	FUN-2
3	The system is equipped with two traffic lights with two colors : green and red	EQP-1
4	The driver shall pass only on a green traffic light	EQP-2
5	The system is equipped with four sensors with two states: <i>on</i> and <i>off</i>	EQP-3
6	The sensors are used to detect the presence of a car entering or leaving the bridge: "on" means that a car is willing to enter the bridge or to leave it	EQP-4
7	The number of cars on the bridge and island is limited	FUN-3
8	Two opposite cars are not allowed to pass the bridge at the same time	SAF-1

^{*} The identifiers are slightly different from those in Statement_study-case-car.pdf file. It does not matter, use these identifiers instead

- Q2: How many invariants are there?
- a) 1
- b) 2
- c) 3
- d) 4

 Q3: Find out the correct ML_out/inv1/INV Proof Obligation rule (type invariant)?

a)
$$(n+1) \in \mathbb{N}$$

c)
$$n \leq d$$

d)
$$n \in \mathbb{N}$$

$$e)$$
 $d \in \mathbb{N}$

f)
$$n > 0$$

g)
$$n > d$$

h)
$$n < d$$

<u>Warning:</u> use a blank space between characters only (in alphabetical order)

• Example: "a b e f" stands for $(n+1) \in \mathbb{N} \vdash d \in \mathbb{N} \land n > 0$

 Q4: What is the sequence of validated inference rules for the proof of ML_out/inv1/INV?

```
a) OR_R
```

- b) MON
- c) DEC
- d) P3
- e) *P*2

```
Warning: use a blank space after ";" only
• Example: "a; b; e" stands for OR_R; MON; P2
```

- Q5: What is the derived requirement on limitation?
- a) The number of cars on the bridge and island is limited but positive
- b) No cars can enter the island
- c) The number of cars on the bridge and island is limited
- d) The number of cars on the bridge and island is limited but lower than 10

• Q6: Find the 7 errors. Type the numbers in

```
ascending order
INITIALISATION =
        a := 0
                                             Example: 6; 7; 11; 13
        b := 10
        c := 0
        n := 10
ML_out =
                                 IL in ≙
        REFINES
                                          WHEN
         ML out
                                           a \in \mathbb{N}
        WHEN
                                           a > 0
         a+b < d
                                         THEN
        THEN
                                            a := a - 1
           n := n + 1
                                           c := c + 1
        END
                                          END
ML_in ≟
                                 IL_out =
        REFINES
                                          WHEN
          ML out
                                           a = 0
        WHEN
                                           b > 0
         c > 0
                                          THEN
        THEN
                                            b := b - 1
          c := c - 1
                                            c := c + 1
        END
                                          END
```

 Q7: Write down the invariant property expressing the requirement SAF-1

```
a) a g) > k) \wedge
b) b h) < l) \vee
c) c i) 0 m) \neq
d) d j) 1 n) \in
e) n
\frac{Example: "a h j" stands for a < 1}{a < 1}
```

 Q8: Find out the correct PO refinement rule ML_out/grd1/GRD_REF?

- a) 0 < d
- *b*) ⊢
- c) $n \leq d$
- d) $n \in \mathbb{N}$
- e) $d \in \mathbb{N}$
- f) n > 0
- g) n > d

- h) c = 0
- i) a + b < d
- i) a + b + c = n
- k) n < d
- I) $a=0 \ V \ c=0$
- m) $a \in \mathbb{N}, b \in \mathbb{N}, c \in \mathbb{N}$
- n) c > 0

<u>Warning:</u> use brackets and coma for hypotheses, and put them in alphabetical order

• Example: "(a, c, d) b e" stands for 0 < d, $n \le d$, $n \in \mathbb{N} \vdash d \in \mathbb{N}$

 Q9: Type the proof by applying inference rules for ML_out/grd1/GRD_REF

 Q10: Type the proof of the invariant preservation rule ML_in/inv1/INV_REF?

Appendix

- First Peano (P1) axiom is: $\vdash \mathbf{0} \in \mathbb{N}$
- Second Peano (P2) axiom is: $n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$
- and a derived second Peano axiom (P2') is: $n \in \mathbb{N}$, $0 < n \vdash n-1 \in \mathbb{N}$
- Third Peano (P3) axiom is: $n \in \mathbb{N} \vdash 0 \leq n$
- INC axiom is: $n \in \mathbb{N}$, $m \in \mathbb{N}$, $n < m + n + 1 \le m$
- DEC axiom is: $n \in \mathbb{N}$, $m \in \mathbb{N}$, $n \le m + n 1 \le m$

Appendix

$\frac{H \vdash P}{H \vdash P \lor Q} OR_R$	$\frac{H, P \vdash R \qquad H, Q \vdash R}{H, P \lor Q \vdash R} OR_L$
$\overline{P \vdash P} HYP$	${\perp \vdash P}$ CNTR
$\frac{H(F), E = F + P(F)}{H(E), E = F + P(E)} EQ_{LR}$	$\overline{\vdash E = E} EQL$
where P(E) is a predicate depending on an expression E (idem for H(E) and H(F))	

Appendix

$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q} NEG$	
$\frac{H, P, Q \vdash R}{H, P \land Q \vdash R} AND_L$	$\frac{H \vdash P H \vdash Q}{H \vdash P \land Q} AND_R$
${H,P,\neg P\vdash Q} NOT_L$	$\frac{H, P \vdash Q H, P \vdash \neg Q}{H \vdash \neg P} NOT_R$
$\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R} IMP_L$	$\frac{H,P \vdash Q}{H \vdash P \Rightarrow Q} IMP_R$