Regression in Stata

Harvard MIT Data Center

Outline

- Introduction
- 2 Univariate regression
- Multiple regression
- Interactions
- 5 Exporting and saving results
- 6 Wrap-up

Topic

- Introduction
- 2 Univariate regression
- Multiple regression
- 4 Interactions
- 5 Exporting and saving results
- 6 Wrap-up

Download workshop materials

- Download materials from http://j.mp/stata-stats
- Extract materials from the StataStatistics.zip file
- Launch Stata and open the StataStatistics.do file

Organization

- Please feel free to ask questions at any point if they are relevant to the current topic (or if you are lost!)
- There will be a Q&A after class for more specific, personalized questions
- Collaboration with your neighbors is encouraged
- If you are using a laptop, you will need to adjust paths accordingly
- Make comments in your Do-file rather than on hand-outs
- Save on flash drive or email to yourself

Today's Dataset

- We have data on a variety of variables for all 50 states
- Population, density, energy use, voting tendencies, graduation rates, income, etc.
- We're going to be predicting SAT scores
- Univariate Regression: SAT scores and Education Expenditures
- Does the amount of money spent on education affect the mean SAT score in a state?
- Dependent variable: csat
- Independent variable: expense

Opening Files in Stata

- Look at bottom left hand corner of Stata screen
 - This is the directory Stata is currently reading from
- Files are located in the StataStatistics folder on the Desktop
- Start by telling Stata where to look for these
- * change directory cd "~/StataStatistics"
 - Use dir to see what is in the directory:

dir

```
-rw-r--r-- 1 izahn staff 3935 Jan 23 18:05 Regression in Stata.do
-rw-r--r-- 1 izahn staff 7816 Apr 5 17:14 StataStatistics.txt
-rw-r--r-- 1 izahn staff 13630 Jan 23 18:03 states.dta
```

- Load the data
- * use the states data set use states.dta

Steps for Running Regression

- Examine descriptive statistics
- Look at relationship graphically and test correlation(s)
- Run and interpret regression
- Test regression assumptions

Topic

- Introduction
- 2 Univariate regression
- Multiple regression
- 4 Interactions
- **5** Exporting and saving results
- 6 Wrap-up

Univariate Regression: Preliminaries

- We want to predict csat scores from expense
- First, let's look at some descriptives
- * generate summary statistics for csat and expense sum csat expense

Variable	Mean	Std. Dev.	Min	Max
csat	944.098	66.93497	832	1093
expense	5235.961	1401.155	2960	9259

Univariate Regression Preliminaries

- We want to predict csat scores from expense
- First, let's look at some descriptives
- * look at codebok codebook csat expense

```
csat.
                                                   Mean composite SAT score
                type: numeric (int)
               range: [832,1093]
                                                 units: 1
        unique values: 45
                                             missing .: 0/51
                mean: 944.098
             std. dev: 66.935
          percentiles:
                             10%
                                      25%
                                                50%
                                                         75%
                                                                   90%
expense
                                             Per pupil expenditures prim&sec
                type: numeric (int)
               range: [2960,9259]
                                                   units: 1
        unique values: 51
                                             missing .: 0/51
                mean: 5235.96
             std. dev: 1401.16
          percentiles:
                            10%
                                      25%
                                                50%
                                                         75%
                                                                   90%
                                     4351
                                               5000
                                                        5865
```

Univariate Regression Preliminaries

- Next, view relationship graphically
- Scatterplots work well for univariate relationships
- * graph expense by csat twoway scatter expense csat

Univariate Regression Preliminaries

- Next look at the correlation matrix
- * correlate csat and expense pwcorr csat expense, star(.05)

Not very interesting with only one predictor

Univariate Regression: SAT scores and Education Expenditures

regress csat expense

Linear Regression Assumptions

- Assumption 1: Normal Distribution
- The errors of regression equation are normally distributed
- Assumption 2: Homoscedasticity (The variance around the regression line is the same for all values of the predictor variable)
- Assumption 3: Errors are independent
- Assumption 4: Relationships are linear

Homoscedasticity

Testing Assumptions: Normality

- A simple histogram of the residuals can be informative
- * graph the residual values of csat predict resid, residual histogram resid, normal

Testing Assumptions: Homoscedasticity

rvfplot

Topic

- Introduction
- Univariate regression
- Multiple regression
- 4 Interactions
- **5** Exporting and saving results
- 6 Wrap-up

Multiple Regression

- Just keep adding predictors
- Let's try adding some predictors to the model of SAT scores

income % students taking SATs

percent % adults with HS diploma (high)

Multiple Regression Preliminaries

- As before, start with descriptive statistics and correlations
- * descriptive statistics and correlations sum income percent high pwcorr csat expense income percent high

Variable	Obs	М	ean S	Std. Dev.	Min	Max
income	51	33.95	657 (5.423134	23.465	48.618
percent	51	35.76	471 1	26.19281	4	81
high	51	76.26	078	5.588741	64.3	86.6
!		-		e percent	high	
csat						
expense	-0.4663	1.0000				
income	-0.4713	0.6784	1.0000)		
	-0.8758	0.6509	0.673	3 1.0000		
percent	-0.0750					

Multiple Regression

 regress csat on exense, income, percent, and high regress csat expense income percent high

	SS					Number of ob			
	400054 000					F(4, 46			
Model						Prob > F		0.0000	
tesidual	40659.9067	46	883.9110)16		R-squared	=	0.8185	
+						Adj R-square	d =	0.8027	
Total	224014.51	50	4480.29	902		Root MSE	=	29.731	
csat						[95% Conf		terval]	
+									
expense	.0045604	.0043	384 1	.04	0.304	0042641		.013385	
expense income	.0045604	.0043	384 1 947 0	.04	0.304 0.699	0042641 -1.848795	2	.013385	
expense	.0045604	.0043	384 1 947 0	.04	0.304	0042641	2	.013385	
expense income	.0045604 .4437858 -2.533084	.0043	384 1 947 0 477 -10	 1.04 0.39 0.32	0.304 0.699	0042641 -1.848795	2 -2	.013385	

Exercise 1: Multiple Regression

Open the datafile, states.dta.

- Select a few variables to use in a multiple regression of your own. Before running the regression, examine descriptive of the variables and generate a few scatterplots.
- Run your regression
- Examine the plausibility of the assumptions of normality and homogeneity

Topic

- Introduction
- Univariate regression
- Multiple regression
- 4 Interactions
- **5** Exporting and saving results
- 6 Wrap-up

Interactions

- What if we wanted to test an interaction between percent & high?
- Option 1: generate product terms by hand
- * generate product of percent and high gen percenthigh = percent*high
- regress csat expense income percent high percenthigh

	SS	df			Number of obs F(5, 45)	
Model					Prob > F	= 0.0000
Residual	36584.1091	45 812	2.980201		R-squared	= 0.8367
+-					Adj R-squared	0.8185
Total	224014.51	50 44	180.2902		Root MSE	= 28.513
					[95% Conf.	_
expense		.0042044		0.284	0039107	.0130256
income	.0887856	1.10374	0.08	0.936	-2.134261	2.311832
percent	-8.143002	2.516509	-3.24	0.002	-13.21151	-3.074493
high	.4240906	1.156545	0.37	0.716	-1.905311	2.753492
night i	0740000	.0330909	2.24	0.030	.0074441	.1407411
ercenthigh	.0740926				806.2695	1138.781

Interactions

- What if we wanted to test an interaction between percent & high?
- Option 2: Let Stata do your dirty work
- * use the # sign to represent interactions regress csat percent high c.percent#c.high
- * same as . regress csat c.percent##high

Source	SS	df			Number of obs		
Model Residual		3 6210 47 802.	0.6971 391885		Prob > F R-squared Adj R-squared	=	0.0000 0.8317
Total			0.2902		Root MSE		28.327
csat	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
percent		2.488388	-3.28	0.002	-13.16316	-3	. 151179
high c.percent#	.6674578	1.082615	0.62	0.541	-1.510482	2	. 845398
		.0324919	2.35	0.023	.0110619		1417924
c.high	.0764271	.0524919	2.00				

Categorical Predictors

- For categorical variables, we first need to dummy code
- Use region as example
 - Option 1: create dummy codes before fitting regression model
- * create region dummy codes using tab tab region, gen(region) // could also use gen / replace

*regress csat on region regress csat region1 region2 region3

	SS		ŀ	1S		Number of obs F(3, 46)		
Model			27349	824		Prob > F		0.0000
	130911.908		2845.9			R-squared		0.3853
+						Adj R-squared	=	0.3452
Total	212961.38	49	4346.1	15061		Root MSE	=	53.347
csat	Coef.				P> t	[95% Conf.	In	terval]
					P> t 0.005			terval]
+-	-63.77564		592					
region1	-63.77564 -120.5278	21.35	592 385	-2.99	0.005	-106.7629	 - -7	20.7884

Categorical Predictors

- For categorical variables, we first need to dummy code
- Use region as example
 - Option 2: Let Stata do it for you
- * regress csat on region using fvvarlist syntax
- * see help fvvarlist for details

regress csat i.region

Source	SS	df	MS		Number of obs	
Model Residual	82049.4719 130911.908	46 2845	49.824 .91105		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3853 = 0.3452
Total	212961.38	49 4346			Root MSE	= 53.347
		a		P> t	Γ95% Conf.	T
csat	Coef.	Std. Err.			L95% Coni.	-
						-
						-
region						
region	-56.75214	23.13285	-2.45	0.018	-103.3161	-10.18813

Exercise 2: Regression, Categorical Predictors, & Interactions

Open the datafile, states.dta.

- Add on to the regression equation that you created in exercise 1 by generating an interaction term and testing the interaction.
- Try adding a categorical variable to your regression (remember, it will need to be dummy coded). You could use region or high25, or generate a new categorical variable from one of the continuous variables in the dataset.

Topic

- Introduction
- 2 Univariate regression
- Multiple regression
- 4 Interactions
- 5 Exporting and saving results
- 6 Wrap-up

Saving and exporting regression tables

- Usually when we're running regression, we'll be testing multiple models at a time
- Can be difficult to compare results
- Stata offers several user-friendly options for storing and viewing regression output from multiple models
- First, download the necessary packages:
- * install outreg2 package findit outreg2

Saving and replaying

- You can store regression model results in Stata
- * fit two regression models and store the results regress csat expense income percent high estimates store Model1 regress csat expense income percent high i.region estimates store Model2

Saving and replaying

- Stored models can be recalled
- * Display Model1 estimates replay Model1

Source	SS	df	MS		Number of obs	
Model Residual	183354.603 40659.9067	4 4583 46 883	38.6508 .911016		Prob > F R-squared	= 0.0000 = 0.8185
Total	224014.51	50 448	30.2902		Adj R-squared Root MSE	= 0.8027 = 29.731
csat	Coef.	Std. Err.		P> t		Interval]
	Coef.		t 1.04			Interval]
+						
expense	.0045604	.004384	1.04	0.304	0042641	.013385
expense income	.0045604 .4437858 -2.533084	.004384	1.04 0.39	0.304 0.699	0042641 -1.848795	.013385

Saving and replaying

- Stored models can be compared
- * Compare Model1 and Model2 coefficients estimates table Model1 Model2

Variable	Model1	Model2
expense	.00456044	00437502
income	.44378583	1.3061642
percent	-2.5330843	-2.9655142
high	2.0865991	3.5448038
- I		
region		
2		80.813342
3 I		33.612251
4		32.154215
i		
_cons	836.61966	724.82886

Exporting into Excel

- Avoid human error when transferring coefficients into tables
- Excel can be used to format publication-ready tables

outreg2 [Model1 Model2] using csatprediction.xls, replace

Topic

- Introduction
- Univariate regression
- Multiple regression
- 4 Interactions
- **5** Exporting and saving results
- 6 Wrap-up

Help Us Make This Workshop Better

- Please take a moment to fill out a very short feedback form
- These workshops exist for you-tell us what you need!
- ttp://tinyurl.com/StataRegressionFeedback

Additional resources

- training and consulting
 - IQSS workshops:
 - http://projects.iq.harvard.edu/rtc/filter_by/workshops
 - IQSS statistical consulting: http://rtc.iq.harvard.edu
- Stata resources
 - UCLA website: http://www.ats.ucla.edu/stat/Stata/
 - Great for self-study
 - Links to resources
- Stata website: http://www.stata.com/help.cgi?contents
- Email list: http://www.stata.com/statalist/