Assignment 2 Computational Models - Spring 2022

Exercise 1

Define the language L_n over alphabet $\sum_n = \{1, 2, ..., n\}$ to be the set of words which do not contain all the letters from \sum_n , now lets describe DFA $M = (Q, \sum, \delta, q_0, F)$ s.t M accept L_n .

$$Q = \{q_k | k \subseteq \{\Sigma_n\}\}, \Sigma = \Sigma_n, q_0 = q_\phi, F = \{Q/\{1, 2, 3 \dots n\}\}\}$$
$$\delta(q_k, \sigma) = \begin{cases} q_{k \cup \sigma} & \text{if } \sigma \notin \{k\}\\ q_k & \text{if } \sigma \in \{k\} \end{cases}$$

its sufficient to see that the following claim hold to proof M accept L_n

claim 0.1. the DFA M **not** accept w iff $\{\sigma : \sigma \in w\} = \{k_n\}$ when k_n is the set of all the letters from Σ_n

Proof. First lets notice that Q contain all the subset from Σ_n including the empty set witch correspond the empty world i.e $\{\sigma\}$ so in total we looking at $O(2^n)$ state for finite alphabet size n.

 $\Rightarrow w \notin L_m$ if $w \in \Sigma_n^*$ since M have only one state lets call it q_n which is not accepting state, hence $\hat{\delta}(q_0, w) = q_n$ we must go through at least n state to achieve q_n .

now using reduction on the number of district steps we done for $\hat{w} = \phi \ \delta(q_0, \phi) = q_0$ and for some $\hat{w}, \hat{\sigma}$ s.t

$$\hat{\sigma} \notin |\{\sigma : \sigma \in \hat{w}\}| = |k|, \hat{\delta}(q_0, \hat{w}) = q_k \Rightarrow \delta(q_k, \hat{\sigma}) = q_{k \cup \hat{\sigma}} = \hat{\delta}(q_0, (\hat{w}||\hat{\sigma})), \{\sigma : \sigma \in \hat{w}||\hat{\sigma}\}| = |k+1|$$

hence we done n district steps so $|\{\sigma : \sigma \in w\}| = n$ since M is DAG (except the self loops) w contain all the letters from the alphabet

 $\Leftarrow w := \forall \sigma \in \Sigma_n | \sigma \in \{w\}$ now lets look at the first $\sigma \in w$, so $\delta(q_0, \sigma) = q_\sigma \in Q$ if the next letter in w hold $\hat{\sigma} \neq \sigma, \delta(q_\sigma, \hat{\sigma}) = q_\sigma$ but we know that w have n district letters so in total we get

$$\hat{\delta}(q_0, w) = \hat{\delta}(q_{\sigma_1}, \underbrace{\hat{w}}_{\{\hat{w}\} = \{w/\sigma_1\}}) = \hat{\delta}(q_{\{\sigma_1, \sigma_2 \dots \sigma_k\}}, \underbrace{\hat{w}}_{\{\hat{w}\} = \{w/\sigma_1, \sigma_2 \dots \sigma_k\}}) = \delta(q_{\{w/\sigma_n\}}, \sigma_n) = q_n \notin F$$

hence $w \notin L_m$.

Exercise 2

When A,B regular languages over same alphabet. $A \diamond B = \{xy : x \in A \land y \in B \land |x| = |y|\}$ lets define

$$\Sigma = \{0, 1\}, A = L(0^*), B = L(1^*)$$

by assuming that $A \diamond B$ is regular language, using the property of regular language operation we get.

$$(A \diamond B) \cap \{0^*, 1^*\} = \{0^i, 1^i | i \ge 0\}$$

which lead to contradiction since $\{0^i, 1^i | i \geq 0\}$ is not regular language

Exercise 3

(a) $L_1 = \{w : \#a(w) \ge \#b(w)\}\ \text{over } \Sigma = \{a, b, c\}$

 L_1 is not regular while assuming it is. for fix ℓ lets $w = b^{\ell}a^{\ell}$, $w \in L_1$ based on Pumping Lemma we can notice $|w| > \ell$, and for any patrion of w = xyz such that |y| > 0, $|xy| \le \ell$ hence y is in the form of b^k now lets look at

$$b^{\ell+k}a^{\ell} \Rightarrow \#_b(b^{\ell+k}a^{\ell}) > \#_a(b^{\ell+k}a^{\ell}) \Rightarrow b^{\ell+k}a^{\ell} \notin L_1$$

we got an contradiction hence L_1 is not regular

(b) $L_2 = \{w : |w| \in \mathbb{N}_{even} \land w = w^R\}$ over $\Sigma = \{0, 1\}$

 L_2 is not regular while assuming it is. for fix ℓ lets $w = 1^{\ell}001^{\ell}$, $w \in L_2$ based on Pumping Lemma we can notice $|w| > \ell$, and for any patrion of w = xyz such that |y| > 0, $|xy| \le \ell$ hence y is in the form of 1^k now lets look at

$$(1^{k+\ell}001^{\ell}) \neq (1^{k+\ell}001^{\ell})^R \Rightarrow 1^{k+\ell}001^{\ell} \notin L_2$$

we got an contradiction hence L_2 is not regular

(c) $L_3 = \{w : |w| \in \mathbb{N}_{even} \land w = w^R\}$ over $\Sigma = \{0\}$

 L_3 is regular language since we can be written as regular expression

$$L_3 = L((00)^*) = \{00\}^* = \{\epsilon, 00, 0000, \dots\}$$

(d) $L_4 = \{w : |w| \in \mathbb{N} \text{ s.t } |w| = n^3 \} \text{ over } \Sigma = \{0, 1\}$

 L_4 is not regular while assuming it is. for fix ℓ lets $w=0^{\ell^3}$, $w\in L_4$ based on Pumping Lemma we can notice $|xyz|>\ell$, and for any patrion of w=xyz such that $|y|>0, |xy|\leq \ell$. hence for some k,m such that $k+m\leq \ell$ this means that:

$$x = 0^k, y = 0^m, z = 0^{\ell^3 - k - m} \Rightarrow, xyz = 0^{\ell^3}$$

by our assumption for any $n \in \mathbb{N}$, $xy^nz = 0^{\ell^3 + m(n-1)} \in L_4$, lets choose n=2

since
$$1 \ge m \ge \ell$$
 we will get for some $t \Rightarrow \underline{t^3 = \ell^3 + m}$

but
$$t^3 \ge (\ell+1)^3 = \ell^3 + 3\ell^2 + 3\ell + 1 > \ell^3 + \ell \ge \ell^3 + m \Rightarrow t^3 > \ell^3 + m$$

we got an contradiction hence L_4 is not regular

Exercise 4

claim 0.2. For language L s.t L satisfies pumping lemma with pumping constant ℓ , L||L satisfies pumping lemma with pumping constant 2ℓ

Proof. Lets $w_1, w_2 \in L'$ i.e $w_1 \in L \land w_2 \in L$ and lets assume $|w_1 w_2| \ge 2\ell$ to imply the pumping lemma, now we can notice that there is 2 possible scenario

- $|w_1| \ge \ell$ hence we can write w_1 as $w_1 = xyz \Rightarrow$ and we can write w_1w_2 as $w_1w_2 = xyz||w_2|$ which stand with the lemma property
- $|w_1| < \ell$ so $|w_2| > \ell$ can write w_2 as $w_2 = xyz$ and $|xy| \le \ell \Rightarrow |w_1xy| \le 2\ell, |y| > 0$ we can write w_1w_2 as w_1x yz which stand with the claim property

Exercise 5

(a)

Lets L be a regular language over alphabet Σ . and we will proof the language L' define $L' = \{xyz : xy^Rz \in L\}$ is regular. since L is regular \Rightarrow exists some DFA that accept L $M = (Q, \Sigma, \delta, q_0, F)$ now lets define few new DFA's s.t:

- $M_{q_0,q_k} = (Q, \Sigma, \delta, q_0, q_k)$ for any $q_k \in Q$ this DFA will cover any path that accessible from q_0
- now lets look at $M_{q_k,q_j} = (Q, \sum, \delta, q_k, q_j)$ lets the language of M_{q_k,q_j} is define by $L(M_{q_k,q_j}) = \{w : \exists q_k, q_j \in Q | \text{ exists path s.t } q_k \leadsto q_j \}$, since $L(M_{q_k,q_j})$ is regular $\Rightarrow rev(L(M_{q_k,q_j}))$ is regular (Recitation 3 ex.1). for any $q_k, q_j \in Q$ lets define the following language $L(M_{q_k,q_j})^R$
- $M_{q_k,F} = (Q, \Sigma, \delta, q_k, F)$ for any $q_k \in Q$ this DFA will cover any path that end in F

claim 0.3.
$$L' = \bigcup_{q_i,q_i} L(M_{q_0,q_i}) || L(M_{q_i,q_i})^R || L(M_{q_i,F})$$

Proof.

$$w = xyz \in L' \Leftrightarrow xy^R z \in L \Leftrightarrow \exists \hat{\delta}(\hat{\delta}(\hat{\delta}(q_0, x), y^R), z) \in F_m \Leftrightarrow$$

$$\exists M_{q_0, q_i} : \hat{\delta}(q_0, x) \in F_{M_{q_0, q_i}} \land \exists L(M_{q_i, q_j})^R : y \in L(M_{q_i, q_j})^R \land \exists M_{q_j, F} : \hat{\delta}(q_j, z) \in F_{M_{q_j, F}} = F_m$$

$$\Leftrightarrow xyz \in \bigcup_{q_i, q_j} L(M_{q_0, q_i}) ||L(M_{q_i, q_j})^R||L(M_{q_j, F})$$

(b)

Lets L be a regular language over alphabet Σ . and we will proof the language L' define $L' = \{xy \in \Sigma^* : (x \in L) \text{ XOR } (y \in L)\}$ is regular. using the closure property of regular language

- $L = \{x \in \Sigma^* : x \in L\}$ and $\overline{L} = \{x \in \Sigma^* : x \notin L\}$ are regular.
- $\bullet \ L||\overline{L} = \{xy \in \Sigma^* : x \in L \land y \notin L\} \text{ and } \overline{L}||L = \{xy \in \Sigma^* : x \notin L \land y \in L\} \text{ are regular.}$
- $(L||\overline{L}) \cup (\overline{L}||L) = \{xy \in \Sigma^* : (x \in L \land y \notin L) \lor (x \notin L \land y \in L) = (x \in L) \text{ XOR } (y \in L)\}$ is regular

Exercise 6

(a)
$$\{w \in \Sigma^* : \#_0(w) \le 3\}$$

lets express the following as regular expression

$$\underbrace{1^*}_{I} \cup \underbrace{1^*01^*}_{II} \cup \underbrace{1^*01^*01^*}_{III} \cup \underbrace{1^*01^*01^*01^*}_{IV}$$

- (I) is the regular expression of the language that contain non zeros at all.
- (II) is the regular expression of the language that contain exactly 1 zero.
- (III) is the regular expression of the language that contain exactly 2 zero.
- (IV) is the regular expression of the language that contain exactly 3 zero. hence combine them all together will hold regular expression of the language that contain at most 3 zeros.

(b)
$$\{w \in \Sigma^* : |w| \mod 4 = 2\}$$

lets express the following as regular expression

$$\underbrace{(0 \cup 1)(0 \cup 1)}_{(I)} \underbrace{((0 \cup 1)(0 \cup 1)(0 \cup 1)(0 \cup 1))^*}_{II}$$

- (I) is the regular expression of the language that size is exactly 2.
- (II) is the regular expression of the language from size 0,4,8..

hence the concatenate of (I) and (II) will hold the $|w| \mod 4 = 2$ property