

TEST REPORT

Report No. : HST201611-6529-FCC

Product description: UHF digital wireless microphone

Model/Type: U-5296MH, U-5196MH, U-5298MH,

U-5198MH, U-6688MH, U-6788MH, U-7198MH, U-7298MH, U-8198MH, U-8288MH, U-8188MH, U-9198MH, U-9298MH, U-9188MH, U-9288MH, DW-11LT, DW-22LT, DigiCast-LT, DigiCast Duo-LT, U-2200MH, U-2100MH, U-4088MH, U-4288MH, U-4488MH, U-8488MH,

EMIC2300HT

Applicant's name: ENPING SHENGYI ELECTRONIC

CO., LTD.

Lab: Guangdong Huesent Testing & Inspection Technology Co., Ltd Add: No. 91, Dongguanzhuang Road, Guangzhou, Guangdong, China.

TEST REPORT

FCC Part 15.249: 2015

FCC ID: 2ABXZU-5296MH

Report Reference No. HST201611-6529-FCC

Tested by (+ signature) Lemon Fu

Review by (+ signature) Sandy Yu Sandy Yu

Approved by (+ signature)............ Robin Peng

Date of issue Nov. 11, 2016

Total number of pages 33 Pages

Testing Laboratory..... Guangdong Environment Radiation Monitoring Center

(Accredited by CNAS, Accredited Number: L5539)

FCC- Registration No: 667318 Renewal on Sep. 12, 2012

Address No. 860, South Guangzhou Avenue, Guangzhou, 510300 China

Applicant's name ENPING SHENGYI ELECTRONIC CO., LTD.

Address fl.2-5, Shi Zi Shi Bldg., Xinping Rd., North, Enping, Guangdong, China

Manufacturer's name: ENPING SHENGYI ELECTRONIC CO., LTD.

Address fl.2-5, Shi Zi Shi Bldg., Xinping Rd., North, Enping, Guangdong, China

Test specification.....: Entrusted testing

Standard...... FCC Part 15.249: 2015

Non-standard test method.....: N/A

Test item description: UHF digital wireless microphone

Trade Mark: N/A

Model/Type reference: U-5296MH

Ratings 3.0Vdc 2*AA Batteries

TABLE OF CONTENT

	TES	T REPORT	1
1	Test Sun	nmary	4
2	General	Information	5
	2.1	Client Information	5
	2.2	General Description of E.U.T.	
	2.3	Details of E.U.T.	
	2.4	Description of Support Units	
	2.5	Standards Applicable for Testing	
	2.6	Test Location	
	2.7	Deviation from Standards	
	2.8	Abnormalities from Standard Conditions	
3	Test Res	sults	7
	3.1	Radiation Interference	7
	3.1.1	I E.U.T. Operation	7
	3.1.2		
	3.1.3	B Test Procedure	8
	3.1.4		
	3.1.5		13
	3.1.6	Measurement Data for 15.249.d	15
	3.2	Occupied Bandwidth	
	3.2.1		
	3.2.2		
	3.2.3		
	3.2.4	Measurement Data	21
4	Photogra	aphs	22
	4.1	Radiated Emission Test Setup	22
	4.2	EUT Constructional Details	
	4.3	Antenna Photo	32
5	Equipme	ents Used during Test	33

1 TEST SUMMARY

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (9kHz to 25GHz)	FCC PART 15.249	ANSI C63.10:2013	In FCC PART 15.249	PASS
Occupied Bandwidth	FCC PART 15.215	ANSI C63.10:2013	In FCC PART 15.215	PASS
Conducted Emissions at Mains Terminals	FCC PART 15.207	ANSI C63.10: 2013: Clause 6.2	In FCC PART 15.207	N/A1
Frequency Stability	FCC PART 15.249	FCC CFR 47 Part 2.1055	In FCC PART 15.249.b)2)	N/A2

Note:

N/A1: Not applicable, since the EUT was solely powered by batteries.

N/A2: Not applicable, since the frequency stability test was only for the "fixed, point-to-point operation is permitted in the 24.05-24.25 GHz band" equipments.

Remark:

Model: U-5296MH, U-5196MH, U-5298MH, U-5198MH, U-6688MH, U-6788MH, U-7198MH, U-7298MH, U-8198MH, U-8288MH, U-8188MH, U-9198MH, U-9298MH, U-9188MH, U-9288MH, DW-11LT, DW-22LT, DigiCast-LT, DigiCast Duo-LT, U-2200MH, U-2100MH, U-4088MH, U-4288MH, U-4488MH, U-8488MH, EMIC2300HT

Only tested U-5296MH, since the other models listed above are electric identical with only difference being the model name and appearance (button's shape and location setting). "Location setting" means the plastic button may be set on different place.

		١		
e	ı	١	١	
	٠			

Channel	Frequency/ MHz
Lowest	902.3
Middle	915.36
Highest	927.7

The tests were carried out on the 3 samples with the typical frequency of lowest/ middle/ highest channels listed above.

Page 5 of 33 Report No.: HST201611-6529-FCC

2 GENERAL INFORMATION

2.1 Client Information

Applicant: ENPING SHENGYI ELECTRONIC CO., LTD.

Address of Applicant: fl.2-5, Shi Zi Shi Bldg., Xinping Rd., North, Enping, Guangdong, China

2.2 General Description of E.U.T.

EUT Name: UHF digital wireless microphone

Item No.: U-5296MH

Serial No.: Not supplied by client

2.3 Details of E.U.T.

Power Supply: 3.0Vdc 2*AA Batteries

Main Function: Wireless microphone system with an associated receiver for

transmitting voice.

Oscillating Frequency: Y1: 24.576MHz

Port: N/A

Frequency Range: 902.3 MHz to 927.7 MHz for all the models listed in the cover. One

channel for each microphone.

Modulation: FM; Emission designator: 252KF3E

Occupied bandwidth (99 % BW): 252kHz

Antenna Number & Type: One & Fixed on PCB; Gained: 0 dBi; Impedance: 50-Ohm;

Antenna length: 80mm; Antenna min distance to the shell: 1 mm

2.4 Description of Support Units

/

2.5 Standards Applicable for Testing

The standard used was 47 CFR Part 15.249: 2015

The EUT belongs to low power communication device transmitter, and it's an unlicensed low power auxiliary device.

Page 6 of 33 Report No. : HST201611-6529-FCC

2.6 Test Location

Guangdong Environment Radiation Monitoring Center

Address: No. 860, South Guangzhou Avenue, Guangzhou, 510300 China

Accredited by CNAS, Accredited Number: L5539

FCC- Registration No: 667318 Renewal on Sep. 12, 2012

2.7 Deviation from Standards

None.

2.8 Abnormalities from Standard Conditions

None.

3 TEST RESULTS

3.1 Radiation Interference

Test Requirement: FCC Part15.249, a) & FCC Part15.209

Test Method: ANSI C63.10:2013

Detector: Peak for pre-scan (The resolution bandwidth was 100 kHz and the

video bandwidth was 300 kHz up to 1.0GHz and 1.0 MHz with a

video BW of 3.0 MHz above 1.0GHz.)

Average detector if maximised peak within 6dB of limit

3.1.1 E.U.T. Operation

Operating Environment:

Temperature: 20°C Humidity:50% RH Atmospheric Pressure: 103 kPa

EUT Operation:

In the fundamental test, connecting the EUT to peripheral devices.

Test the EUT work normally in on mode during the whole test.

3.1.2 Test Setup

30MHz-1GHz emissions:

Page 8 of 33 Report No.: HST201611-6529-FCC

1 GHz to 40 GHz emissions:

3.1.3 Test Procedure

ANSI STANDARD C63.10-2013 6.5 Radiated emissions from unlicensed wireless devices in the frequency range of 30 MHz to 1000 MHz

An initial pre-scan was performed in the 3m chamber using the spectrum analyser in peak detection mode. Average measurements were conducted based on the peak sweep graph. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical polarities. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes and choose the worst case of X/ Y/ Z orthogonal planes for the final measurement.

Page 9 of 33 Report No.: HST201611-6529-FCC

3.1.4 Measurement Data

Copy from FCC Part 15.249.a)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

The second of th							
Fundamental	Field Strength						
Frequency	Fundamental	Harmonics					
MHz	millivolts/meter(mV/m)	microvolts/meter(uV/m)					
902 - 928	50	500					
2400 - 2483.5	50	500					
5725 - 5875	50	500					
24000 - 24250	250	2500					

Quasi-Peak measurement of carrier								
Frequency	Le	vel	Transducer	Limit	Margin			
MHz	dBuV/m		dB	dBuV/m	dB			
	V	Н			V	Н		
902.3 (L)	87.1	75.0	27.6	94	-6.9	-19.0		
915.36 (M)	87.8	71.2	27.8	94	-6.2	-22.8		
927.7 (H)	927.7 (H) 88.2		27.9	94	-5.8	-17.7		

Note:

50mV/m (94dBuV/m) for QP limit in band (902MHz to 928MHz).

The transducer factor = antenna factor + cable loss - preamplifier. In band 902MHz to 928MHz, preamplifier factor = 0 dB.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

Peak measurement of harmonics and spurious emission at lowest channel 902.3 MHz

Frequency		Level		Transducer	Limit	Min. Margin	
	MHz	dBu	V/m	dB	dBuV/m	d	В
		V	Н			V	Н
2 nd	1804.6	58.5	56.2	-2.6		-15.5	-17.8
3 rd	2706.9	46.1	48.1	-2.1		-27.9	-25.9
4 th	3609.2	<50	<50	0.3		< -24	< -24
5 th	4511.5	<50	<50	4.1		< -24	< -24
6 th	5413.8	<50	<50	1.0	74dB	< -24	< -24
7 th	6316.1	<50	<50	5.1		< -24	< -24
8 th	7218.4	<50	<50	5.0		< -24	< -24
9 th	8120.7	<50	<50	6.0		< -24	< -24
10 th	9023.0	<50	<50	7.3		< -24	< -24

Average measurement of harmonics and spurious emission at lowest channel 902.3 MHz

Frequency		Level		Transducer	Limit	Min. Margin	
	MHz	dBu	V/m	dB	dBuV/m	dB	
		>	Н			V	Н
2 nd	1804.6	44.5	44.0	-2.6		-9.5	-10.0
3 rd	2706.9	<40	<40	-2.1		< -14	< -14
4 th	3609.2	<40	<40	0.3		< -14	< -14
5 th	4511.5	<40	<40	4.1		< -14	< -14
6 th	5413.8	<40	<40	1.0	54dB	< -14	< -14
7 th	6316.1	<40	<40	5.1		< -14	< -14
8 th	7218.4	<40	<40	5.0		< -14	< -14
9 th	8120.7	<40	<40	6.0		< -14	< -14
10 th	9023.0	<40	<40	7.3		< -14	< -14

Peak measurement of harmonics and sr	ourious emission at middle channel 915.36 MHz

Frequency		Level		Transducer	Limit	Min. Margin	
	MHz	dBu	V/m	dB	dBuV/m	d	В
		V	Н			V	Н
2 nd	1830.72	58.9	56.7	-2.6		-15.1	-17.3
3 rd	2746.08	45.7	48.1	-2.1		-28.3	-25.9
4 th	3661.44	<50	45.7	0.3		< -24	-28.3
5 th	4576.80	<50	<50	4.1		< -24	< -24
6 th	5492.16	<50	<50	1.0	74dB	< -24	< -24
7 th	6407.52	<50	<50	5.1		< -24	< -24
8 th	7322.88	<50	<50	5.0		< -24	< -24
9 th	8238.24	<50	<50	6.0		< -24	< -24
10 th	9153.60	<50	<50	7.3		< -24	< -24

Average measurement of harmonics and spurious emission at middle channel 914.5 MHz

Average measurement of narmonics and spurious emission at middle charmer 914.5 MHz									
Frequency		Level		Transducer	Limit	Min. Margin			
	MHz	dBu	V/m	dB	dBuV/m	d	В		
		V	Н			V	Н		
2 nd	1830.72	44.3	44.2	-2.6		-9.7	-9.8		
3 rd	2746.08	32.7	37.0	-2.1		-21.3	-17.0		
4 th	3661.44	<40	38.6	0.3		< -14	-15.4		
5 th	4576.80	<40	<40	4.1		< -14	< -14		
6 th	5492.16	<40	<40	1.0	54dB	< -14	< -14		
7 th	6407.52	<40	<40	5.1		< -14	< -14		
8 th	7322.88	<40	<40	5.0		< -14	< -14		
9 th	8238.24	<40	<40	6.0		< -14	< -14		
10 th	9153.60	<40	<40	7.3		< -14	< -14		

Peak measurement	of harmonics and	d courious s	miccion a	at highast a	hannal 027 7MHz
reak illeasureillelli (JI Halliloilics alic	a Spullous e	#1111551U11 d	at HiluHest C	

Fre	quency	Le	vel	Transducer	Limit	Min. N	/largin
	MHz	dBu	V/m	dB	dBuV/m	dB	
		V	Н			V	Н
2 nd	1855.4	57.5	56.2	-2.6		-16.5	-17.8
3 rd	2783.1	<50	<50	-2.1		< -24	< -24
4 th	3710.8	<50	<50	0.3		< -24	< -24
5 th	4638.5	<50	<50	4.1		< -24	< -24
6 th	5566.2	<50	<50	1.0	74dB	< -24	< -24
7 th	6493.9	<50	<50	5.1		< -24	< -24
8 th	7421.6	<50	<50	5.0		< -24	< -24
9 th	8349.3	<50	<50	6.0		< -24	< -24
10 th	9277.0	<50	<50	7.3		< -24	< -24

Average measurement of harmonics and spurious emission at highest channel 927.7MHz

Fre	quency	Le	vel	Transducer	Limit	Min. N	Margin
	MHz	dBu	dBuV/m		dBuV/m	d	В
		V	Н			V	Н
2 nd	1855.4	44.1	44.4	-2.6		-9.9	-9.6
3 rd	2783.1	<40	<40	-2.1		< -14	< -14
4 th	3710.8	<40	<40	0.3		< -14	< -14
5 th	4638.5	<40	<40	4.1		< -14	< -14
6 th	5566.2	<40	<40	1.0	54dB	< -14	< -14
7 th	6493.9	<40	<40	5.1		< -14	< -14
8 th	7421.6	<40	<40	5.0		< -14	< -14
9 th	8349.3	<40	<40	6.0		< -14	< -14
10 th	9277.0	<40	<40	7.3		< -14	< -14

Note:

 $500\mu V/m$ (54dBuV/m) for AVG limit, and Peak limit= AVG limit + 20dB.

The transducer factor = antenna factor + cable loss - preamplifier. In band 1GHz to 18GHz, preamplifier factor = -30dB.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

Note:

The EUT's transmitting frequency range belonged to 902MHz to 928 MHz, and it is complied with the requirements of FCC Part 15.249.a).

The EUT was measured for both the Horizontal and Vertical polarities and performed a pretest three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

Page 13 of 33 Report No.: HST201611-6529-FCC

3.1.5 Radiated outside of the specified frequency bands

Copy from FCC Part 15.249.d)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Copy from FCC Part 15.209: Radiated emission limits, general requirements

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

The exceed the held et origin levels eposited in the following table.							
Frequency	Field Strength	Measurement Distance					
MHz	microvolts/meter(uV/m)	(meters)					
0.009 - 0.490	2400/F(kHz)	300					
0.490 - 1.705	24000/F(kHz)	30					
1.705 - 30.0	30	30					
30 - 88	100 **	3					
88 - 216	150 **	3					
216 - 960	200 **	3					
Above 960	500	3					

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Note:

Since the fundamental emissions peak and average values are shown on section 6.1.4 of this report, the general radiated emission limits in Section 15.209 is the lesser attenuation.

⁽d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Limits for the frequency bands of 902 M - 928 MHz

Fraguency	FCC Pai	FCC Part 15.209		
Frequency	Radiate	ed limits		
MHz	dBuV/r	dBuV/m@3m		
IVITZ	QP	AVG		
30 - 88	40	/		
88 - 216	43.5	/		
216 - 960	46	/		
960 - 1000	54	/		
Above 1000	74(PK)	54		

Frequency	15.249.	d) limits	
MHz	dBuV/m@3m		
IVITIZ	QP	AVG	
30 - 88	44	/	
88 - 216	44	/	
216 - 902	46	/	
928-960	46	/	
960 - 1000	54	/	
1000-9280	74(PK)	54	

Remark:

- RF line voltage (dBuV)= 20 log RF line voltage (uV)
 In the above table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.1.6 Measurement Data for 15.249.d

Test the EUT work normally in transmitting mode in mains.

1) 9kHz~30MHz Test result

The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report.

2) 30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Test curves (with the Quasi-peak measurement and QP limit), 30M-1GHz, Horizontal & Vertical:

lowest channel 902.3MHz

Quasi-peak measurement: Horizontal

	2000 posit modern min 100 20000						
Frequency	Level	Transducer	Limit	Margin			
MHz	dBuV/m	dB	dBuV/m	dB			
30.0	17.3	17.9	44	26.7			
184.2	16.6	8.9	44	27.4			
447.4	24.4	16.6	46	21.6			
860.1*	29.4	23.0	46	16.6			
936.2*	29.8	24.2	46	16.2			
972.6	29.0	23.9	54	25.0			

Quasi-peak measurement: Vertical

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
30.0	16.5	17.9	44	27.5
184.1	13.4	8.9	44	30.6
444.2	22.4	18.8	46	23.6
900.4*	30.5	23.9	46	15.5
935.2*	30.5	24.2	46	15.5
981.7	30.3	23.7	54	23.7

Note:

^{*} means the frequency with max Quasi peak value for band-edge (frequency range of 802 MHz to 902MHz and 928 MHz to 1000 MHz, except for harmonics).

middle channel 914.5MHz

Quasi-peak measurement: Horizontal

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
30.0	17.1	17.9	44	26.9
188.1	13.6	8.9	44	30.4
447.2	21.5	16.6	46	24.5
854.1*	29.1	23.0	46	16.9
935.3*	29.7	24.2	46	16.3
972.8	29.1	23.9	54	24.9

Quasi-peak measurement: Vertical

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
30.0	16.8	17.9	44	27.2
184.3	13.8	8.9	44	30.2
448.3	26.5	18.8	46	19.5
880.4*	30.3	23.9	46	15.7
937.2*	34.5	24.2	46	11.5
967.7	31.7	23.7	54	22.3

Note:

The transducer factor includes antenna factor and cable loss.

highest channel 927.7MHz

Quasi-peak measurement: Horizontal

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
30.0	17.4	17.9	44	26.6
187.3	13.6	8.9	44	30.4
449.2	21.3	16.6	46	24.7
873.1*	29.0	23.0	46	17.0
936.3*	29.3	24.2	46	16.7
975.2	29.1	23.9	54	24.9

Quasi-peak measurement: Vertical

Frequency	Level	Transducer	Limit	Margin
MHz	dBuV/m	dB	dBuV/m	dB
30.0	17.1	17.9	44	26.9
182.1	18.4	8.9	44	25.6
453.5	31.2	18.8	46	14.8
900.2*	30.2	23.9	46	15.8
947.2*	30.8	24.2	46	15.2
978.7	29.3	23.7	54	24.7

Note:

^{*} means the frequency with max Quasi peak value for band-edge (frequency range of 802 MHz to 902MHz and 928 MHz to 1000 MHz, except for harmonics).

^{*} means the frequency with max Quasi peak value for band-edge (frequency range of 802 MHz to 902MHz and 928 MHz to 1000 MHz, except for harmonics).

Page 17 of 33 Report No. : HST201611-6529-FCC

3) 1 GHz~9.30 GHz Spurious Emissions .Average & PK Measurement

Horizontal & Vertical:

Average measurement at lowest channel: 902.3 MHz

Frequency	Lev	/el	Transducer	Limit	Mar	gin
GHz	dBuV/m		٩D	dBuV/m	dl	3
GHZ	Horizontal	Vertical	dB	ubuv/III	Horizontal	Vertical
1.136	39.5	38.1	-5.2		-14.5	-15.9
2.393	<40	<40	-3.4	54	< -14	< -14
2.562	<40	<40	-3.2		< -14	< -14
5.243	<40	<40	3.1	34	< -14	< -14
7.458	<40	<40	5.9		< -14	< -14
9.217	<40	<40	7.5		< -14	< -14

Note:

The transducer factor includes antenna factor and cable loss.

Peak measurement at lowest channel: 902.3 MHz

Frequency	Lev	/el	Transducer	Limit	Mar	gin
GHz	dBuV/m		dB	dBuV/m	dB	
GHZ	Horizontal	Vertical	ив	ubuv/III		Vertical
1.136	43.3	43.2	-5.2	74	-30.7	-30.8
2.393	<50	<50	-3.4		< -24	< -24
2.562	<50	<50	-3.2		< -24	< -24
5.243	<50	<50	3.1		< -24	< -24
7.458	<50	<50	5.9		< -24	< -24
9.217	<50	<50	7.5		< -24	< -24

Note:

Average measurement at middle channel: 915.36 MHz

Frequency	Lev	/el	Transducer	Limit	Margin	
GHz	dBuV/m		40	dD: Allan	dB	
GHZ	Horizontal	Vertical	dB	dBuV/m		Vertical
1.087	39.1	38.9	-5.2	54	-14.9	-15.1
2.391	<40	<40	-3.4		< -14	< -14
2.614	<40	<40	-3.2		< -14	< -14
5.158	<40	<40	3.1		< -14	< -14
7.462	<40	<40	5.9		< -14	< -14
9.168	<40	<40	7.5		< -14	< -14

Note:

The transducer factor includes antenna factor and cable loss.

Peak measurement at middle channel: 915.36 MHz

Frequency Level Transducer Limit Margin							
Frequency	Le\	/ei	Transducer	Limit	iviar	gin	
GHz	dBuV/m		dB	dBuV/m	dB		
OFIZ	Horizontal	Vertical	dВ	abav/iii		Vertical	
1.087	43.6	43.7	-5.2	74	-30.4	-30.3	
2.391	<50	<50	-3.4		< -24	< -24	
2.614	<50	<50	-3.2		< -24	< -24	
5.158	<50	<50	3.1		< -24	< -24	
7.462	<50	<50	5.9		< -24	< -24	
9.168	<50	<50	7.5		< -24	< -24	

Note:

Average measurement at highest channel: 927.7 MHz

Frequency	Lev	/el	Transducer	Limit	Margin	
GHz	dBuV/m		٩D	dD. Allan	dB	
GHZ	Horizontal	Vertical	dB	dBuV/m		Vertical
1.064	39.2	38.3	-5.2		-14.8	-15.7
2.391	<40	<40	-3.4		< -14	< -14
2.612	<40	<40	-3.2	< -14 < -14	< -14	< -14
5.324	<40	<40	3.1	34	< -14	< -14
7.462	<40	<40	5.9		< -14	< -14
9.266	<40	<40	7.5		< -14	< -14

Note:

The transducer factor includes antenna factor and cable loss.

Peak measurement at highest channel: 927.7 MHz

Frequency	Lev	/el	Transducer	Limit	Margin	
GHz	dBuV/m		dB	dBuV/m	dB	
GHZ	Horizontal	Vertical	ив	ubuv/III		Vertical
1.064	43.4	43.3	-5.2	74	-30.6	-30.7
2.391	<50	<50	-3.4		< -24	< -24
2.612	<50	<50	-3.2		< -24	< -24
5.324	<50	<50	3.1		< -24	< -24
7.462	<50	<50	5.9		< -24	< -24
9.266	<50	<50	7.5		< -24	< -24

Note:

The transducer factor includes antenna factor and cable loss.

Note:

The EUT's transmitting frequency range belonged to 902MHz to 928 MHz, and it is complied with the requirements of FCC Part 15.249.d).

The EUT was measured for both the Horizontal and Vertical polarities and performed a pretest three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

Page 20 of 33 Report No.: HST201611-6529-FCC

3.2 Occupied Bandwidth

Test Requirement: FCC Part15.215
Test Method: ANSI C63.10: 2013

Detector: Peak for scan (The resolution bandwidth was 30kHz and the video

bandwidth was 10kHz, span was 2MHz)

maximised peak hold

3.2.1 E.U.T. Operation

Operating Environment:

Temperature: 25°C Humidity:45% RH Atmospheric Pressure: 1020mBar

EUT Operation:

Pre-test the EUT with 1k to 20kHz sine wave signal input(level: 0.3 Vp-p). And the max 99%BW was measured as the EUT with 20 kHz sine wave signal input.

3.2.2 Test Setup

3.2.3 Test Procedure

ANSI STANDARD C63.10-2013 6.9 Occupied bandwidth tests:

An initial pre-scan was performed in the 3m chamber using the spectrum analyzer in peak detection mode. Average measurements were conducted based on the peak sweep graph. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical polarities.

3.2.4 Measurement Data

Test for the EUT with switch ON. Input with 20 kHz AF, 50% modulation + 16dB.

Maximum Peak hold measurement for 915.36 MHz

Date: 11.NOV.2016 09:43:18

Frequency/ MHz	Δ FL- / kHz	Δ FL+ / kHz	-20dB	Occupied Bandwidth (99% of
			Bandwidth/ kHz	total power)/ kHz
915.36	-112	160	272	252

4 PHOTOGRAPHS

4.1 Radiated Emission Test Setup

4.2 EUT Constructional Details

U-5296MH

Page 31 of 33 Report No. : HST201611-6529-FCC

4.3 Antenna Photo

Antenna

Note:

The EUT was used permanently attached antenna, and it's complied with the requirements of section 15.203: antenna requirement.

5 EQUIPMENTS USED DURING TEST

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date	Cal. Due date
1	RF Generator	Rohde & Schwarz	SMB100A-B106	1.031	2016-5-10	2017-5-10
2	Spectrum Analyzer	Rohde & Schwarz	FSP30	EMC0001	2016-3-24	2017-3-24
3	EMI Test Receiver	Rohde & Schwarz	ESCI	EMC1002	2016-3-24	2017-3-24
4	2-Channel Power Meter	Rohde & Schwarz	NRP2	1.033	2016-5-10	2017-5-10
5	Audio Analyzer	Hewlett Packard	8903B	EMC0011	2015-11-5 2016-11-5	2016-11-5 2017-11-5
6	Power Sensor	Rohde & Schwarz	NRP-Z91	1.034	2016-5-10	2017-5-10
7	Power Sensor	Rohde & Schwarz	NRP-Z91	1.035	2016-5-10	2017-5-10
8	Temperature Chamber	Gongwen	GDS-250	SFT0009	2015-11-5 2016-11-5	2016-11-5 2017-11-5
9	D.C. Power Supply	KIKUSUI	PAN35-10A	SFT0319	2015-11-5 2016-11-5	2016-11-5 2017-11-5
10	Temperature Chamber	Gongwen	GDS-250	SFT0009	2015-11-5 2016-11-5	2016-11-5 2017-11-5
11	D.C. Power Supply	KIKUSUI	PAN35-10A	SFT0319	2015-11-5 2016-11-5	2016-11-5 2017-11-5
12	Humidity/ Temperature Meter	Anymetre	TH101B	SFT0063	2015-11-5 2016-11-5	2016-11-5 2017-11-5
13	Barometer	ChangChun	DYM3	SEL0088	2016-6-8	2017-6-8
		_			2015-11-5	2016-11-5
14	Multimeter	UNI-T	UT70A	EMC0017	2016-11-5	2017-11-5
15	Monopole Antenna	HST	N/A	EMC0089	2015-11-5 2016-11-5	2016-11-5 2017-11-5
16	Low loss coaxial cable	HST	2 m	EMC1008	2015-11-5 2016-11-5	2016-11-5 2017-11-5
17	Monopole Antenna	HST	N/A	N/A	2015-11-5 2016-11-5	2016-11-5 2017-11-5
18	Noise Generaror	Ningbo Zhongce	DF1681	EMC0009	2015-11-5 2016-11-5	2016-11-5 2017-11-5
19	Semi-Anechoic chamber	ETS•Lindgren	FACT3 2.0	ITL-100	2016-6-17	2019-6-17
20	EMI Test receiver	R&S	ESVS10	ITL-111	2016-1-19	2017-1-19
21	EXA Spectrum Analyzer	Agilent Technologies	N9010A	ITL-114	2016-1-19	2017-1-19
22	Biconilog Antenna	ETS•Lindgren	3142D	ITL-105	2015-1-24	2018-1-24
23	Pre Amplifier	HP	8447F	ITL-116	2016-1-19	2017-1-19
24	Wideband Amplifier Super Ultra	Mini-circuits	ZVA-183-S+	ITL-117	2016-1-19	2017-1-19
25	Horn Antenna	A-INFOMW	JXTXLB- 10180-N	ITL-110	2015-1-24	2018-1-24
26	Software	Audix	E3	ITL-109	/	1
27	Loop Antenna	BJ 2nd Factory	ZN30900A	EMC6001	2016-7-29	2019-7-29

End of report