

Trabajo de fin de grado

Control de dispositivos electromecánicos mediante una interfaz cerebro computador.

Tutor: José Ignacio Estévez Damas

Ingeniería Informática

Escuela Superior de Ingeniería y Tecnología

Anabel Díaz Labrador

20/07/2023

Índice

1.	Descripción del proyecto	3
2	Objetivos del proyecto	4
3	Estado del arte	5
4	¿Cómo funciona NextMind?	8
5	NextMind - Ventajas y desventajas	9
6	Tecnologías utilizadas	10
7	Integración Unity y ROS2	11
8	Casos de uso planteados	12
9	Desarrollo	13
10	D. Experimentación	21
11	Presupuesto	28
11	Conclusions and future lines	29
12	2. Bibliografía	31

Descripción del proyecto

- Desarrollar una interfaz gráfica que utilice una interfaz cerebro-computador (BCI por sus siglas en inglés) que permita controlar sistemas físicos en movimiento con componentes electromecánicos.
 - o Interfaz cerebro computador: NextMind.

Objetivos del proyecto

- Desarrollo de una interfaz de usuario para BCI
- Adaptación de la misma a un caso de uso concreto
- Estudio del BCI utilizando la interfaz gráfica

Conceptos previos

- Existen BCIs: Invasivos y no invasivos.
- Dentro de los no invasivos los más usados son los basados en electroencefalograma o EEG.
 - Es el registro de las fluctuaciones eléctricas de un gran conjunto de neuronas
- Dentro del EEG están los eventos de potenciales evocados o ERP
 - Son las señales del cerebro provocadas por un estímulo externo

NextMind está dentro de los potenciales evocados visuales en estado estacionario

(SSVEP)

Estado del arte

- Se han utilizado BCIs no invasivos en estudios
 - Casco SSVEP para el control de un robot móvil en un laberinto
 - Casco P300 para controlar un robot en remoto a través de internet
- Evolución de distintos cascos
 - Cascos enteros con electrodos que necesitan gel
 - Cascos enteros con electrodos sin gel (filtrado de ruido)
 - Casos centrados en zonas específicas del cerebro

Alternativa al BCI

- Eye tracker
 - Precisión y fácil de usar.
 - Dificultad de uso en exteriores, control sobre el movimiento ocular.

Estado del arte

Imagen del funcionamiento del estudio para controlar un robot en remoto a través de internet [5]

¿Cómo funciona NextMind?

NextMind

Ventajas

- Robustez en la detección del estímulo en la actividad cerebral
- Bajo precio
- Relativa comodidad de uso

Desventajas

- Producto cerrado. Adquisición por Snap Inc.
- Limitación en la programación a través de Unity.
- Falta de integración con los estándares abiertos de interfaces cerebro-computadora.

Tecnologías utilizadas

11

Integración Unity y ROS2

Windows

- Librería Ros2ForUnity.
- ROS2 en windows

WSL Ubuntu 20.04 y Windows

 Uso de la herramienta USBIP para la conexión del microcontrolador en la WSL.

11

Casos de uso planteados

Pan-tilt Artesanal

Robot móvil

Silla de ruedas robotizada (No disponible)

Entorno general del proyecto para el sistema Pan-Tilt

Componentes y materiales utilizados

Placa de desarrollo

- Microcontrolador: ESP32-WROOM-32D.
 - o Punto de acceso WiFi.
 - Nodo ROS2 usando micro-ROS.

Componentes y materiales utilizados

- Pan-tilt Artesanal:
 - 2 servomotores para la rotación en dos ejes distintos.
- Cámara.
 - Microcontrolador:
 - ESP32.
 - Reconocimiento QR
 - Comunicación vía HTTP

Interfaz gráfica: Control del Pan-Tilt

Interfaz gráfica: Feedback del Neurotag

Interfaz gráfica: Configuración

Pan-Tilt PWM: Inicialización de los servomotores

Duty_min = $(1ms/20ms) * (2^15 - 1) \approx 1638$

Duty_max = $(2ms/20ms) * (2^15 - 1) \approx 3277$

Pan-Tilt PWM: Cálculo del ángulo

Para calcular el duty correspondiente a un ángulo dado se usa la siguiente fórmula:

Muestra

Longitud del pelo	Tipo de pelo	Nota de Calibración	Luminosidad	Tiempo BCI	Número de errores	¿Pudo realizar la prueba?
Mediano/Corto	Rizado	2	Baja	05:50	4	Sí
Rapado/Calvo	Lacio	4	Media	06:32	5	Sí
Mediano/Corto	Rizado	3	Media	05:05	4	Sí
Rapado/Calvo	Lacio	1	Baja	10:00	2	No
Largo	Rizado	1	Baja	10:00	-	No
Rapado/Calvo	Lacio	5	Baja	03:51	0	Sí
Largo	Lacio	3	Baja	05:26	3	Sí
Mediano/Corto	Ondulado	2	Media	10:00		No
Rapado/Calvo	Lacio	3	Media	07:45	2	Sí
Rapado/Calvo	Lacio	2	Media	04:11	0	Sí
Largo	Rizado	4	Media	03:50	0	Sí
Mediano/Corto	Ondulado	5	Baja	02:08	0	Sí
Largo	Lacio	3	Media	03:39	1	Sí
Mediano/Corto	Lacio	3	Media	04:14	2	Sí
Mediano/Corto	Lacio	3	Media	04:58	5	Sí
Largo	Rizado	2	Media	05:19	2	Sí

Prueba Pan-Tilt

Prueba Pan-Tilt

4

Prueba Pan-Tilt: Resultados

Prueba Pan-Tilt: Resultados

Adaptación Interfaz Gráfica Robot

Adaptación Interfaz Gráfica Robot

4

Presupuesto

La licencia de Unity Pro tiene un costo de 185€/mes. Se está contabilizando el precio de 2 meses de trabajo.

Concepto	Coste por horas	Horas	Coste total
Documentación	75	60	4500€
Horas de investigación	75	100	7500€
Horas de ingeniería	75	160	12000€
Licencia de Unity Pro	-	J=1	370€
NextMind Dev Kit SDK	-	-	399€
ESP32-WROOM-32D	-	-	3,65€
M5Stack Timer Camera ESP32 OV3660	-	-	19,95€
Pan-Tilt Casero: 2 unidades de HiTec HS-645MG	-	-	39,9€
	Total	320	24832,5€

Tabla 9.1: Presupuesto del proyecto

Conclusions

Firstly, I have to highlight that all objectives have been met.

The results point to the effectiveness and adaptability of NextMind in various environments and situations.

- NextMind proved to be accessible and resilient, its performance not influenced by factors like hair presence and ambient light variations.
- It was observed that precise calibration and prior experience with BCI improve its efficiency, underscoring the need for familiarization with the technology.
- In terms of comfort, most users rated NextMind positively, indicating its potential for extended use.
- There are unknown factors that cause the system to not work well for certain individuals.

Future lines

- Explore more devices
 - The application of BCI can be expanded to other devices, such as a robotic chair, which would open up new possibilities for remote control of various appliances through the brain-computer interface.

Bibliografía

[1] Snapchat. (2022). GitHub - Snapchat/NextMind: Documentation (incl. tutorials, unity assets and API reference) for the NextMind SDK. GitHub. Recuperado 14 de julio de 2023, de https://github.com/Snapchat/NextMind

[2] ROS 2 Documentation: Humble Documentation. (2023). ROS 2 Documentation: Humble Documentation. Recuperado 14 de julio de 2023, de https://docs.ros.org/en/humble/index.html

[3] Datasheet ESP32-WROOM-32D. (2023). www.espressif.com. Recuperado 14 de julio de 2023, de https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_data sheet_en.pdf

[4] Wu, C., Chen, Y., Zaeni, I.A., & Chen, S. (2016). A new SSVEP based BCI application on the mobile robot in a maze game. 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), 550-553.

[5] Escolano, C., Antelis, J. M., and Minguez, J. (2012). A telepresence mobile robot controlled with a noninvasive brain–computer interface. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3):793–804

[6] Marichal, G.Ñ., Acosta, L., Toledo, J., Marichal, R. L., and Torres, S. (2004). A new approach in controlling the motors of a binocular camera head. International Mathematical Journal, 5-7:581–587.

Muchas gracias por su atención. Espero que les haya gustado mi presentación.

Contacto:

Email: alu0101206011@ull.edu.es

