Math 733 - Fall 2020

Homework 2

Due: 09/27, 10pm

Zijie Zhang

September 27, 2020

- 1. Proof. $\Rightarrow Y$ is measurable w.r.t. $\sigma(X)$
 - $Y = \mathbb{1}_{X^{-1}(B)}$ for some Borel set B and $f(X) = \mathbb{1}_B(X)$ then $Y(\omega) = \mathbb{1}_B(X(\omega)) = f(X(\omega))$.
 - $Y = \sum_{i=1}^n c_i \mathbb{1}_{X^{-1}(B_i)}(\omega)$ for some Borel sets B_i and $f(x) = \sum_{i=1}^n c_i \mathbb{1}_{B_i}(X)$ then

$$Y(\omega) = \sum_{i=1}^{n} c_{i} \mathbb{1}_{X^{-1}(B_{i})}(\omega) = \sum_{i=1}^{n} c_{i} \mathbb{1}_{B_{i}}(X(\omega)) = f(X(\omega))$$

• Sequential random variables Y_n , $\lim_{n\to\infty} Y_n = Y$ and f_n . Set $f(X) = \limsup_{n \to \infty} f_n(X)$,

$$f(X(\omega)) = \limsup_{n \to \infty} f_n(X(\omega)) = \lim_{n \to \infty} Y_n(\omega) = Y(\omega)$$

So, Y = f(X) where $f : \mathbb{R} \to \mathbb{R}$ is measurable.

 \Leftarrow Assume Y = f(X) where $f : \mathbb{R} \to \mathbb{R}$ is measurable.

Since X is a random variable on $(\Omega, \mathscr{F}, \mathbb{P})$, then $X : \Omega \to \mathbb{R}$ and $X^{-1}(B) \subseteq \mathscr{F}$ where B is any Borel set. $\sigma(X)$ is the σ -field generated by $X^{-1}(B)$. We know, $Y = f(X) : \Omega \to \mathbb{R}$ and $(f \circ X)^{-1}(B) = X^{-1} \circ f^{-1}(B)$.

Since f is measurable, so $f^{-1}(B)$ is also a Borel set. So, Y = f(X) is measurable w.r.t $\sigma(X)$.

Assume X and Y are random variables from (Ω, \mathcal{F}) to (S, \mathcal{S}) , then

$$\{\omega : f(X(\omega)) \in B\} = \{\omega : X(\omega) \in f^{-1}(B)\} \in \mathcal{F}$$

If and only if $f^{-1}(B) \in \sigma(X)$, Y = f(X) is measurable w.r.t $\sigma(X)$.

2. Proof.

$$\lim_{p \to \infty} E\left(X^{p}\right) = \lim_{p \to \infty} \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{p} \mathbb{P}\left(X = \frac{i}{n}\right)$$

We have

$$E(X^{p}) = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\lim_{p \to \infty} \left(\frac{i}{n} \right)^{p} \mathbb{P} \left(X = \frac{i}{n} \right) \right)$$
$$= \lim_{n \to \infty} \left(0 + \left(\frac{i}{n} \right)^{p} \mathbb{P} \left(X = \frac{i}{n} \right) \Big|_{i=n} \right)$$
$$= \mathbb{P}(X = 1)$$

So,
$$E(X^p) = \mathbb{P}(X = 1)$$
 as $p \to \infty$.

3. Proof.

(a) Consider Derangement formula

$$\mathbb{P}(X_n = 0) = \frac{D(n)}{n!}$$

where

$$D(n) = n! \cdot \sum_{k=2}^{n} \frac{(-1)^k}{k!}$$

Then

$$\mathbb{P}(X_n = 0) = \sum_{k=2}^{n} \frac{(-1)^k}{k!}$$

When $n \to \infty$,

$$\mathbb{P}(X_n = 0) \to \sum_{k=2}^{\infty} \frac{(-1)^k}{k!}$$

This is one of the expression of $\frac{1}{e}$.

$$\lim_{n \to \infty} \mathbb{P}(X_n = 0) = \frac{1}{e}$$

(b) Noticed that

$$\mathbb{P}(X_n = 1) = \frac{\binom{n}{1}D(n-1)}{n!} = \frac{D(n-1)}{(n-1)!} = \mathbb{P}(X_{n-1} = 0)$$

$$\mathbb{P}(X_n = 2) = \frac{\binom{n}{2}D(n-2)}{n!} = \frac{1}{2} \cdot \frac{D(n-2)}{(n-2)!} = \frac{1}{2}\mathbb{P}(X_n = 0)$$

$$\mathbb{P}(X_n = k) = \frac{\binom{n}{k}D(n-k)}{n!} = \frac{1}{k}\mathbb{P}(X_n = k-1)$$

So, we have

$$\mathbb{P}(X_n = k) = \frac{1}{k!} \cdot \mathbb{P}(X_n = 0)$$

$$E[X_n] = \sum_{k=0}^{n} k \cdot \mathbb{P}(X_n = k)$$

$$= \sum_{k=0}^{n} k \cdot \frac{1}{k!} \mathbb{P}(X_n = 0)$$

$$= \mathbb{P}(X_n = 0) \cdot \sum_{k=1}^{n} \frac{1}{(k-1)!}$$

$$= \sum_{k=2}^{n} \frac{(-1)^k}{k!} \cdot \sum_{k=1}^{n} \frac{1}{(k-1)!}$$

By the way, when n is large enough, $E[X_n] \to 1$.

4. Proof.

$$E[Y] = \int_{\Omega} y \cdot \mathbb{1}(Y > 0) d\mathbb{P}$$

$$E[Y^2] = \int_{\Omega} y^2 d\mathbb{P}$$

Consider the Integral form of Cauchy-Schwarz inequality.

$$\begin{split} \left(E[Y]\right)^2 &= \left(\int_{\Omega} y \cdot \mathbbm{1}(y>0) d\mathbb{P}\right)^2 \\ &\leqslant \int_{\Omega} \left(y \cdot \sqrt{\mathbbm{1}(y>0)}\right)^2 d\mathbb{P} \cdot \int_{\Omega} \left(\sqrt{\mathbbm{1}(y>0)}\right)^2 d\mathbb{P} \\ &\leqslant \mathbb{P}(Y>0) \cdot E[Y^2] \\ &\mathbb{P}(Y>0) \geqslant \frac{\left(E[Y]\right)^2}{E[Y^2]} \end{split}$$

5. Proof. \Leftarrow Assume that

$$g_j(x) = \sum_{i \in S} \mathbb{P}(X_j = x_j) \mathbb{1}_{\{x_j\}}(x) \ge 0$$

So we have

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{j=1}^n g_j(x_j) = \prod_{j=1}^n \mathbb{P}(X_j = x_j) = \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n)$$

By definition, they are independent.

 \Rightarrow If they are independent, we have

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{j=1}^{n} \mathbb{P}(X_j = x_j)$$

Let $g_j(x) = \mathbb{P}(X_j = x)$ for all $1 \leq j \leq n$, they are non-negative functions from S to \mathbb{R} .

6. Proof. Consider the expression of ω in binary. The probability of $X_n = 1$ means the probability that the nth decimal place is 1. By the definition and arbitrariness of ω , we know

$$\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(X_{n}=1\right)=\frac{1}{2}$$

That means,

$$X_n \sim \text{Bernoulli}(1/2), \ \forall n \in \mathbb{N}$$

And their independence is obvious.