AUFGABE 7: EXTENDED SCOPE 2

Bislang wurde die Rangfolge der einzelnen Aufgaben implizit durch eine geeignete zeitliche Anordnung umgesetzt. In dieser Aufgabe sollen diese nunmehr durch die von eCos zur Verfügung gestellten expliziten Synchronisationsmechanismen (ereignisgesteuert) durchgesetzt werden. Darüber hinaus soll das Oszilloskop um eine aperiodische Triggerfunktionalität erweitert werden.

1 Erweiterte Aufgabe

Kopieren Sie sich zunächst die Datei app.c aus Ihrer Implementierung von Aufgabe 6 "ExtendedScope" in die Vorgabe dieser Aufgabe. Passen Sie Ihr Aufgabensystem an die folgende leicht veränderte Version an:

	Bezeichnung	Periode ms	WCET ms
T_1	Abtastung Signal	4	0,5
T_2	Flankenerkennung	4	0,5
T_3	Analyse PDS	1000	?
T_4	Darstellung Signal	250	?
T_5	Darstellung PDS	1000	?

Übernehmen Sie die aperiodischen Aufgaben T_6 – T_8 direkt aus Ihrer bisherigen Implementierung.

1.1 Implementierung der Triggerfunktionalität:

Ein Trigger wird dazu verwendet die Ausgabe eines Oszilloskops auf die Frequenz des Signals zu synchronisieren und so eine stabile Anzeige des Signalverlaufs zu erreichen – d. h. das Signal "wandert" nicht mehr. Ziel ist es, Aufgabe T_2 um eine entsprechende Flankenerkennung für das vom ADC eingelesene Signal zu ergänzen.

Teilaufgabe 1.

Implementieren Sie die Flankenerkennung in t_2 so, dass sie bei einer fallenden oder steigenden Flanke ein Trigger-Ereignis erkennt. Anstatt eine einstellbare Pegelhöhe zu implementieren, können Sie davon ausgehen, dass eine steigende Flanke vorliegt, wenn der aktuelle Wert des Signals größer als 188 und der vorherige Wert kleiner als 188 ist. Der Zusammenhang für eine fallende Flanke verhält sich umgekehrt.

Die **Darstellung** im Trigger-Betrieb unterscheidet sich von der Bisherigen und **erfolgt** aperiodisch:

	Bezeichnung	Min. Zwischenankunftszeit ms	WCET ms
T_9	Darstellung Trigger	?	-

Teilaufgabe 2.

Implementieren Sie diese Aufgabe T_9 , welche die bis zum Trigger-Ereignis von T_1 aufgezeichneten Werte mittels ezs_plot() darstellt. Nutzen Sie *Events* um die Aufgaben T_1 und T_2 geeignet zu koordinieren. Beachten Sie hierbei, dass T_1 in jedem Fall weiter Daten aufzeichnen muss und somit T_9 nicht auf denselben Daten arbeiten kann. Nutzen Sie den *Mailbox-Mechanismus* von eCos um dieses Problem zu lösen. Ist ein periodisches Aufwecken der Aufgabe T_2 über einen Alarm notwendig? Antwort:

1.2 Steuerung der Funktionalität:

Um die Nutzung der Triggerfunktionalität konfigurierbar zu machen, soll die Oszilloskopsteuerung um folgende Kommandos erweitert werden:

Befehl	Parameter	Beschreibung
	<off, on=""> <rise, fall=""></rise,></off,>	Signaltrigger ein- / ausschalten Flanke auf die getriggert werden soll

Teilaufgabe 3.

Vervollständigen Sie nun die Steuerung der Oszilloskopfunktionen. Aus den neuen Kommandos ergeben sich zusätzliche Betriebsmodi – welche? Antwort:

Bei aktivierter Trigger-Funktion erfolgt die Anzeige (Zeitsignal) aperiodisch, sonst periodisch (Zeitsignal oder PDS).

Teilaufgabe 4.

Welche Vor- beziehungsweise Nachteile sehen Sie bei den zur Verfügung stehenden Mechanismen zur Bereitstellung von Ereignissen unter eCos? Was muss bei ihrer Verwendung beachtet werden?

™ Mailbox Events

Antwort:

1.3 Mögliche Entwurfsalternativen:

Teilaufgabe 5.

Das von uns vorgeschlagene Aufgabensystem und die implizite/explizite Umsetzung der enthaltenen Abhängigkeiten stellen nur eine Entwurfsmöglichkeit dar. Entwerfen Sie eine weitere Variante des kompletten Aufgabensystems und versuchen Sie hierbei die Abhängigkeiten auf eine andere Art und Weise umzusetzen. Welche Aufgaben müssen zwingend von Alarmen aktiviert werden? Welche lassen sich durch logische Abhängigkeiten realisieren? Antwort:

Teilaufgabe 6.

Bauen Sie Ihre Implementierung gemäß des zuvor gewählten Entwurfsmusters um. Sicher Sie zuvor die ursprüngliche Lösung für die Abgabe!

Hinweise

- Bearbeitung: Gruppe mit je drei Teilnehmern.
- Abgabezeit: 27.01.2017
- Fragen bitte an i4ezs@lists.cs.fau.de