

Objectives of This Unit

- Describe what is noise and its impact
- What is the signal to noise ratio
- Quantify and measure channel errors
- Analyze the impact of noise on channel capacity

Communications Impairments

- Various impairments that affect the signal
 - Attenuation Loss (covered)
 - Noise

Noise

- Noise is undesirable signal that impacts the quality of a desired signal
 - Analogy: Snow in analog video transmission
- In telecommunication networks noise comes from
 - Electromagnetic interference (EMI)
 - Heat in cables
 - System processing (inside the devices)
- Results in errors in transmissions

Question

Is noise random or deterministic?

Types of Noise: AWGN

Many types, most common one is Additive White Gaussian Noise (AWGN)

- White means: all frequency components are affected the same way
- Additive means: noise adds to the signal
- Ideal case
 - There will always be AWGN, but hopefully that is all there is

Impact of Noise on Digital Signals

- Received signal get affected by noise
- For reliable data transmission, receiver should interpret the received signal accurately
- Why digital systems preferred over analog?

Impact of Noise on Digital Signals

- Digital systems are more immune to noise.
 - Efficient repeaters (devices) can regenerate attenuated and noisy signals

Measuring Noise

- Measuring noise
 - Signal-to-Noise Ratio (SNR): (S/N)
 - Ratio between the received signal power (S) to noise power (N) at a receiver
 - $-SNR_{dB} = 10 \log_{10} (S/N)$
 - Measured in decibels

Signal-to-Noise Ratio

- Measure of "quality" of the received signal
 - Ratio of the signal power (S) to noise power (N) at a receiver:

SNR = S/N, where S and N in watts (W) or milliwatts (mW)

 $SNR_{dB} = 10 \log_{10} (S/N)$ in decibels (dB)

https://demonstrations.wolfram.com/FrequencySpectrumOfANoisySignal/

Signal-to-Noise Ratio

- Measure of "quality" of the received signal
 - Ratio of the signal power (S) to noise power (N) at a receiver:

SNR = S/N, where S and N in watts (W) or milliwatts (mW)

 $SNR_{dB} = 10 \log_{10} (S/N)$ in decibels (dB)

https://demonstrations.wolfram.com/FrequencySpectrumOfANoisySignal/

Measuring Power Ratios

 Example: A cell phone receives a signal with average power of 4W and noise power of 0.5W what is the SNR in dB?

$$-SNR = 4/0.5=8$$

$$- SNR (dB) = 10 log_{10} (S/N) = 10 log_{10} (4/0.5)$$

= 9.03 dB

Link Power Budget

- Balance sheet of gains and losses in a system
- Allows you to determine
 - Coverage of your communication link
 - How far can the signals go?
 - Transmit power
 - Receiver capability needed
 - Receiver sensitivity is the minimum power that receiver can detect
 - Received power should be greater than or equal to the receiver sensitivity for the receiver to be able to detect the signal

Basic Concept of Link Budget

Impact of Impairments

Channel impairments result in errors

- For digital communications, we measure performance by bit error rates
 - On average, how many bits you received in error
- Depends on attenuation, SNR, and other factors

Bit Error Rate or Probability of Bit Error

- Oversimplified view
 - Say we have 10 transmissions, each of 1000 bits
 - In the 10 transmissions, the receiver gets 999, 998, 1000, 995, 1000, 1000, 1000, 1000, 1000, 1000, 998 bits correctly, respectively
 - Total number of errors in the 10 transmissions, are (1 + 2 + 0 + 5 + 0 + 0 + 0 + 0 + 0 + 2)=10
 - Bit error rate = number of bit errors / total number of bits transmitted = 10/10,000
 - The bit error rate is 1/1000 or 10⁻³
 - On average 1 bit error for each 1000 bits transmitted

Tophat

SNR vs BER

What is the relationship between SNR and BER

Α

As SNR increases, BER increases

В

As SNR increases, BER decreases

Noise and Bit Error Rate

- Higher noise (lower SNR)=> results in more errors
- Bit error rates are very low in optical fiber links, higher on copper, and much higher on radio links
 - Due to their noise susceptibility
 - More susceptible to noise
 → lower SNR → higher error

Eb/No vs SNR

- Noise power spectral density (one sided) = No watts/Hz
- Energy per bit = Eb, & power = energy/time

SNR = Eb x bit rate / (No x Bandwidth)

Error Control Coding

- Systematically add redundant bits for error detection or correction
- Part of link layer, but sometimes part of physical layer
- Approaches to error control
 - Error Detection + ARQ (retransmission) → Link layer
 - Error Correction (FEC) → Physical layer

Channel Capacity

- Losses impact the rate at which information can be sent over a link
- Capacity (C) = Maximum rate at which data is communicated reliably over a channel
 - In bits per second
 - Reliably means with low errors
 - Capacity is function of the received signal power to noise power ratio (S/N) and the bandwidth

Channel Capacity

Shannon-Hartley Law: the capacity in an AWGN channel is

$$C = B \log_2 (1+S/N)$$

- B is bandwidth
- S/N is the received signal power to noise power ratio (magnitude value <u>not dB</u>)
 - Noise limits capacity
 - » Noisy channels → less information rate
- How to increase capacity?

Channel Capacity - Question

 A twisted pair telephone line has bandwidth of 4000 Hz and a SNR of 100. What is the channel capacity?

Final Answer: 26,635 bps

Channel Capacity - Example

 If the channel capacity is 20 Kbps, and bandwidth is 4 KHz, what is SNR of the channel?

Final Answer: SNR = 31

Channel Capacity - Example

• If the channel capacity is 20 Kbps, and bandwidth is 4 KHz, what is SNR of the channel?

C = B
$$\log_2$$
 (1+SNR) - > SNR = $2^{C/B} - 1 = 2^{20/4} - 1$
SNR = 31

Exercise

Bandwidth of:

```
- TV channel: 6 MHz (Mega is 10<sup>6</sup>)
```

- Single model fiber: 20 GHz (Giga is 10⁹)

If the signal to noise ratio in all channels is 2^{10} -1. What is the maximum bit rate (capacity) of each case?

Key Takeaway

- Signal to noise ratio measures the noise in a channel
- Noise could result in errors in communications
- Noise limits the capacity of the channel
 - Capacity is the maximum rate that can be transmitted over the channel with low errors
- Shannon theorem is used to obtain capacity
 - The channel capacity increases by increasing the signal to noise ratio or the bandwidth