Fetal NT Anomaly Detection using Deep Learning

Segmentation Performace Evaluation

Ananya Gupta Dayananda Sagar College Of Engineering 7/5/25

What is NT Detection?

Nuchal Translucency (NT) measurement in first-trimester ultrasound scans helps detect chromosomal abnormalities. Accurate segmentation of the NT region (shown in yellow below) is critical for diagnosis.

Why it matters

01

1 in 150 babies have chromosomal defects

02

Manual measurement has ±0.5mm error

03

this model aims reduces error to ±0.2mm

U-Net Architecture for NT segmentation

Layer Type	model	U-NET
input shape	224x224x3	256x256x3
Conv1	5x5x3 → 8 filters	3x3x3 → 64 filters
Downsampli ng	Not specified	MaxPool 2x2
Bottleneck	16→32 filters	256 filters
Upsamplig	Not present	UpSampling 2D
Skip Connection	No	256x256x3
Output	Fully Connected (64)	Conv2D (1 filter)

Key Features

- 1. Encoder-Decoder Structure:
 - \circ Encoder extracts features (64 \rightarrow 128 \rightarrow 256 filters).
 - \circ Decoder reconstructs details (256 \rightarrow 128 \rightarrow 64 filters).
- 2. Skip Connections:
 - Combines low-level and high-level features for precise segmentation.
- 3. Efficient Design:
 - 739k parameters (vs 6.1M in PDF's Page 2 model).
 - \circ Fully convolutional \rightarrow Handles variable input sizes.

u-net architecture image

Training Workflow for NT Segmentation

Training Details

- Input Size: 256x256x3 (3-channel ultrasound)
- Augmentation: Rotation(20°), Zoom(20%), Brightness(±20%)
- Batch Size: 4 (limited by GPU memory)
- **Optimizer**: Adam (default params)
- Loss: Binary Cross-Entropy
- **Epochs**: 50 (stopped early at epoch [41])
- Callbacks: Save best model, Early stopping (patience=5)

Pseudocode

```
Algorithm 1: U-Net Training for Fetal NT Segmentation
Input:
 • Training dataset DDD with 500 images (256×256×3)

    Validation dataset with 200 images

 • U-Net model with encoder-decoder architecture
Output:

    Trained U-Net model

BEGIN
Step 1: Initialize U-Net Model
 • Encoder: Convolutional layers with filters [64, 128, 256]
 • Decoder: UpSampling2D layers
Step 2: Train the Model
for epoch = 1 to 50 do
    - Apply data augmentation:
         - Rotation: ±20°
        - Zoom: \pm 0.2
        - Brightness adjustment: [0.8, 1.2]
    - Train in mini-batches (batch size = 4):
        - Compute loss: Binary Cross-Entropy
        - Update weights using Adam optimizer
    - Validate model and save best checkpoint
    - If validation loss plateaus for >5 epochs, STOP training
end for
Step 3: Post-processing Predictions

    Apply morphological operations: cv2.morphologyEx(MORPH_CLOSE)

Return: Trained U-Net Model
END
```

Why It Works

- Small batch size (4) prevents
 GPU 00M errors
- Early stopping at epoch [41] avoids overfitting
- Adam optimizer chose automatically:
- $-\beta 1=0.9$, $\beta 2=0.999$ (defaults)
- lr=0.001(from model.compile())
- Augmentation mimics real ultrasound variations

Training Curve

From Ultrasound To NT Measurement

```
[Ultrasound] \rightarrow [256x256]
[Preprocess] → Histogram Equalization (train_unet.py lines 24-30)*
[U-Net Encoder] \rightarrow 64\rightarrow128\rightarrow256 filters (from model.summary())
[U-Net Decoder] → UpSampling + Skip Connections (unet_model() function)
[Raw Mask] → Sigmoid Output (output layer in code)
[Post-Process] → Morph Closing + Noise Removal (evaluate_unet.py lines 35-45)*
[NT Thickness Measurement]
```


Visual Example

why this matters

- √ Hybrid Approach: Combines U-Net (train_unet.py) with traditional CV (evaluate_unet.py)
- ✓ Clinical Relevance: Skip connections preserve NT boundaries better than PDF's FCM
- ✓ Reproducible: Full code available (unet_best_model.h5 + evaluate_unet.py)

Qualitative Results and Clinical Relevance

metric table

Metric	My model	Baseline (threshold)
Dice Score	0.68	0.52
loU	0.52	0.38
Sensitivty	0.72*	0.58
Specificit y	0.98*	0.95
Precision	0.69*	0.47

Perfect ROC (AUC=1.0) suggests exceptional separability, but requires further validation on diverse datasets."

challenges faced

Key Challenges

1. Class Imbalance

- Only 5-8% of pixels were NT regions → Model biased toward background.
- Mitigation: Used weighted loss (BCE + Dice loss).

2. Ultrasound Artifacts

- Speckle noise, shadowing → False positives in predictions.
- Mitigation: Added morphological post-processing (closing + connected components).

3. Limited Training Data

- Only 1,234 samples from single hospital → Risk of overfitting.
- Mitigation: Used augmentation (rotation, zoom, brightness)

4. Variable Image Quality

○ Issue: Ultrasound images had inconsistent resolutions (e.g., 1.5–3MHz probes) → blurred NT boundaries.

Thank you