Úvod Atomické formuly

1. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Jozef Šiška Letný semester 2020/2021

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 1. prednášky

Úvod

O logike

O tomto kurze

Atomické formuly

Syntax atomických formúl

Sémantika atomických formúl

Zhrnutie

Úvod

Úvod

O logike

Čo je logika

Logika je vedná disciplína, ktorá študuje usudzovanie.

Správne, racionálne usudzovanie je základom vedy a inžinierstva.

Vyžaduje rozoznať správne úsudky z predpokladaných princípov a pozorovania od chybných úvah a špekulácií.

Správnosť úsudkov, zdá sa, nie je iba vec konvencie a dohody.

Logika skúma, aké sú zákonitosti správneho usudzovania a prečo sú zákonitosťami.

Ako logika študuje usudzovanie

Logika má dva hlavné predmety záujmu:

Jazyk zápis pozorovaní, definície pojmov, formulovanie teórií
Syntax pravidlá zápisu tvrdení
Sémantika význam tvrdení

Usudzovanie (inferencia)

odvodzovanie nových <mark>logických dôsledkov</mark> z doteraiších poznatkov.

Aký má vzťah s jazykom, štruktúrou tvrdení?

Jazyk, poznatky a teórie

Jazyk slúži na formulovanie tvrdení, ktoré vyjadrujú poznatky o svete (princípy jeho fungovania aj pozorované fakty).

Súboru poznatkov, ktoré považujeme za pravdivé, hovoríme *teória*.

Príklad 0.1 (Party time!)

Máme troch nových známych — Kim, Jima a Sarah.

Organizujeme párty a PO: chceme na ňu pozvať niekoho z nich.

Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Možné stavy sveta a modely

Jedna z otázok, ktoré si o teórii o party môžeme položiť, je: "V akých zostavách môžu noví známi prísť na párty tak, aby boli všetky podmienky splnené?"

Priamočiaro (aj keď prácne) to zistíme tak, že:

- 1. vymenujeme všetky možné stavy sveta (účasti nových známych),
- 2. zistíme, v ktorých sú všetky podmienky splnené.

K	J	S	PO	P1	P2	Р3	PO: Niekto z Kim, Jima, Sarah
n	n	n					príde na párty.
n	n	р					P1: Sarah nepôjde na párty,
n	р	n					ak pôjde Kim.
n	р	р					P2: Jim pôjde na párty,
р	n	n					len ak pôjde Kim.
р	n	р					P3: Sarah nepôjde bez Jima.
р	р	n					
р	р	р					

Možné stavy sveta a modely

Teória rozdeľuje možné stavy sveta (interpretácie) na:

🗲 stavy, v ktorých je nepravdivá.

Tvrdenie aj teória môžu mať viacero modelov, ale aj žiaden.

Príklad 0.2

Modelmi teórie P0, P1, P2, P3 sú dve situácie: keď Kim príde na párty a ostatní noví známi nie, a keď Kim a Jim prídu na párty a Sarah nie.

Logické dôsledky

Často je zaujímavá iná otázka o teórii — musí byť nejaké tvrdenie pravdivé vždy, keď je pravdivá teória?

V našom príklade:

Kto musí a kto nesmie prísť na párty, aby boli podmienky PO, ..., P3 splnené?

Logické dôsledky

Logickými dôsledkami teórie sú tvrdenia,

ktoré sú pravdivé vo všetkých modeloch teórie.

Príklad 0.3

Logickými dôsledkami teórie PO, P1, P2, P3 sú napríklad:

- Kim príde na párty.
- Sarah nepríde na párty.

Logických dôsledkov je nekonečne veľa, môžu nimi byť ľubovoľne zložité tvrdenia:

- Na party príde Kim alebo Jim.
- Ak príde Sarah, tak príde aj Jim.
- Ak príde Jim, tak nepríde Sarah.

:

Logické usudzovanie

Preskúmať všetky stavy sveta je často nepraktické až nemožné.

Logické dôsledky ale môžeme odvodzovať usudzovaním (inferovať).

Pri odvodení vychádzame z *premís* (predpokladov) a postupnosťou správnych úsudkov dospievame k *záverom*.

Príklad 0.4

Vieme, že ak na párty pôjde Kim, tak nepôjde Sarah (P1), a že ak pôjde Jim, tak pôjde Kim (P2).

- 1. Predpokladajme, že na párty pôjde Jim.
- 2. Podľa 1. a P2 pôjde aj Kim.
- 3. Podľa 2. a P1 nepôjde Sarah.

Teda podľa uvedenej úvahy:

Ak na párty pôjde Jim, tak nepôjde Sarah.

Dedukcia

Úsudok je správny (*korektný*) vtedy, keď vždy, keď sú pravdivé jeho premisy, je pravdivý aj jeho záver.

Ak sú všetky úsudky v odvodení správne, záver je logickým dôsledkom premís a odvodenie je jeho *dôkazom* z premís.

Dedukcia je usudzovanie, pri ktorom sa používajú iba správne úsudky.

Logika študuje dedukciu, ale aj niektoré nededuktívne úsudky, ktoré sú vo všeobecnosti nesprávne, ale sú správne v *špeciálnych* prípadoch alebo sú *užitočné*:

- indukcia zovšeobecnenie;
- abdukcia odvodzovanie možných príčin z následkov;
- usudzovanie na základe analógie (podobnosti).

Kontrapríklady

Ak úsudok nie je správny, vieme nájsť kontrapríklad — stav sveta, v ktorom sú predpoklady pravdivé, ale záver je nepravdivý.

Príklad 0.5

Nesprávny úsudok:

Ak platia tvrdenia teórie o party, na party príde Jim.

Kontrapríklad:

Stav, kedy príde Kim, nepríde Jim, nepríde Sarah.

Teória je pravdivá, výrok "na party príde Jim" nie je pravdivý.

Ťažkosti s prirodzeným jazykom

Prirodzený jazyk je problematický:

- Viacznačné slová: Milo je v posluchárni A.
- Viacznačné tvrdenia: Videl som dievča v sále s ďalekohľadom.
- Ťažko syntakticky analyzovateľné tvrdenia:

Vlastníci bytov a nebytových priestorov v dome prijímajú rozhodnutia na schôdzi vlastníkov dvojtretinovou väčšinou hlasov všetkých vlastníkov bytov a nebytových priestorov v dome, ak hlasujú o zmluve o úvere a o každom dodatku k nej, o zmluve o zabezpečení úveru a o každom dodatku k nej, o zmluve o nájme a kúpe veci, ktorú vlastníci bytov a nebytových priestorov v dome užívajú s právom jej kúpy po uplynutí dojednaného času užívania a o každom dodatku k nej, o zmluve o vstavbe alebo nadstavbe a o každom dodatku k nim, o zmene účelu užívania spoločných častí domu a spoločných zariadení domu a o zmene formy výkonu správy; ...

– Zákon č. 182/1993 Z. z. SR v znení neskorších predpisov

Výnimky a obraty so špeciálnym ustáleným významom:
 Nikto nie je dokonalý.

Formálne jazyky

Problémy prirodzených jazykov sa obchádzajú použitím umelých formálnych jazykov.

- Presne definovaná, zjednodušená syntax (pravidlá zápisu tvrdení) a sémantika (význam).
- Niekoľko formálnych jazykov už poznáte: aritmetika, jazyky fyzikálnych a chemických vzorcov, programovacie jazyky, ...
- Problémy z reálneho sveta opísané v prirodzenom jazyku musíme najprv formalizovať, a potom naň môžeme použiť logický aparát.
- Formalizácia vyžaduje cvik, trocha veda, trocha umenie.

Formalizácia poznatkov

S formalizáciou ste sa už stretli — napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária.
$$k=3\cdot m$$
 Súčet Karolovho a Máriinho veku je 12 rokov. \Leftrightarrow Koľko rokov majú Karol a Mária? $k=12$

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

Príklad 0.6

Sformalizujme náš párty príklad:

P0: Niekto z trojice Kim, Jim, Sarah pôjde na párty.

P1: Sarah nepôjde na párty, ak pôjde Kim.

P2: Jim pôjde na párty, len ak pôjde Kim.

P3: Sarah nepôjde bez Jima.

Logika prvého rádu

Jazyk logiky prvého rádu (FOL) je jeden zo základných formálnych jazykov, ktorým sa logika zaoberá.

Do dnešnej podoby sa vyvinul koncom 19. a v prvej polovici 20. storočia — Gottlob Frege, Guiseppe Peano, Charles Sanders Peirce.

Výrokové spojky + kvantifikátory ∀ a ∃.

Dá sa v ňom vyjadriť veľa zaujímavých tvrdení, bežne sa používa v matematike.

$$\forall \varepsilon > 0 \; \exists \delta > 0 \dots$$

Logika prvého rádu a informatika

Informatika sa vyvinula z logiky (John von Neumann, Alan Turing, Alonzo Church, \dots)

Prvky logiky prvého rádu obsahuje väčšina programovacích jazykov:

- all(x > m for x in arr),
- select T1.x, T2.y from T1 inner join T2 on T1.z = T2.z where T1.z > 25,

niektoré (Prolog) sú priamo podmnožinou FOL.

Vo FOL sa dá presne špecifikovať, čo má program robiť, popísať, čo robí, a dokázať, že robí to, čo bolo špecifikované.

Vo výpočtovej logike a umelej inteligencii sa FOL používa na riešenie rôznych ťažkých problémov (plánovanie, rozvrh, hľadanie a overovanie dôkazov matematických tvrdení, ...) simulovaním usudzovania.

Kalkuly — formalizácia usudzovania

Pre mnohé logické jazyky sú známe kalkuly – množiny usudzovacích pravidiel, ktoré sú

```
korektné – odvodzujú iba logické dôsledky,úplné – umožňujú odvodiť všetky logické dôsledky.
```

Kalkuly sú bežné v matematike

- na počítanie s číslami, zlomkami (kalkul elementárnej aritmetiky),
- riešenie lineárnych rovníc (kalkul lineárnej algebry),
- derivovanie, integrovanie, riešenie diferenciálnych rovníc (kalkul matematickej analýzy)

Sú korektné, ale nie vždy úplné.

Poznáte už aj jeden logický kalkul — ekvivalentné úpravy.

Úvod

O kurze

Čím sa budeme zaoberať v tomto kurze

Teoreticky

- Jazykmi logiky prvého rádu (FOL), jeho syntaxou a sémantikou
- Správnymi úsudkami v ňom a dôvodmi ich správnosti
- Korektnosťou a úplnosťou logických kalkulov
- Automatizáciou usudzovania

Prakticky

- Vyjadrovaním problémov vo FOL
 - Dokazovaním konkrétnych logických dôsledkov
 - Automatizovaním riešenia problémov
 - Manipuláciou symbolických stromových štruktúr (výrazov – formúl a termov)
 - Programovaním vlastných jednoduchých automatických dokazovačov

Filozoficky

- Zamýšľanými a nezamýšľanými významami tvrdení
- Obmedzeniami vyjadrovania a usudzovania

Prístup k logike na tomto predmete

Stredoškolský prístup príliš neoddeľuje jazyk výrokov od jeho významu a vlastne ani jednu stránku nedefinuje jasne.

V tomto kurze sa budeme snažiť byť presní.

Zdanlivo budeme o jednoduchých veciach hovoriť zložito

Pojmy z logiky budeme definovať matematicky

▶ ako množiny, postupnosti, funkcie, atď., ←-- Matematika (1), (3)

na praktických cvičeniach aj programami

▶ ako reťazce, slovníky, triedy a metódy. ← Programovanie (1), (2)

Budeme sa pokúšať dokazovať ich vlastnosti.

Budeme teda hovoriť o formálnej logike pomocou matematiky — *meta* matematika logiky, matematika o logike.

Organizácia kurzu – rozvrh, kontakty, pravidlá

Organizácia predmetu — rozvrh, kontakty a pravidlá absolvovania — sú popísané na oficiálnej webovej stránke predmetu:

https://dai.fmph.uniba.sk/w/Course:Mathematics_4

Atomické formuly

Jazyky logiky prvého rádu

Logika prvého rádu je trieda (rodina) formálnych jazykov.

Zdieľajú:

- časti abecedy logické symboly (spojky, kvantifikátory)
- pravidlá tvorby formúl (slov)

Líšia sa v mimologických symboloch — časť abecedy, pomocou ktorej sa tvoria najjednoduchšie — atomické formuly (atómy).

Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú pozitívnym jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti jednotlivých pomenovaných objektov.

Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- Jarka dala Milovi Bobíka v sobotu.
- Jarka nie je doma.
- Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú pozitívnym jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti jednotlivých pomenovaných objektov.

Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- 😆 Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- Jarka dala Milovi Bobíka v sobotu.
- Jarka nie je doma.
- 😢 Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

Indivíduové konštanty

Indivíduové konštanty sú symboly jazyka logiky prvého rádu, ktoré pomenúvajú jednotlivé, pevne zvolené objekty.

Zodpovedajú *približne* vlastným menám, jednoznačným pomenovaniam, niekedy zámenám; konštantám v matematike a programovacích jazykoch.

Príklady 1.2

Jarka, 2, Zuzana_Čaputová, sobota, π, \dots

Indivíduové konštanty a objekty

Indivíduová konštanta

- vždy pomenúva skutočný, existujúci objekt (na rozdiel od vlastného mena Zeus);
- nikdy nepomenúva viac objektov (na rozdiel od vlastného mena Jarka).

Objekt

- môže byť pomenovaný aj viacerými indivíduovými konštantami (napr. Prezidentka_SR a Zuzana_Čaputová);
- nemusí mať žiadne meno.

Predikátové symboly

Predikátové symboly sú symboly jazyka logiky prvého rádu, ktoré vyjadrujú vlastnosti alebo vzťahy.

Jednoduché vety v slovenčine majú podmetovú (subjekt) a prísudkovú časť (predikát):

Jarka vidí Mila. podmet prísudok predmet podmetová časť prísudková časť

Do logiky prvého rádu prekladáme takéto tvrdenie pomocou predikátového symbolu vidí, ktorý má dva *argumenty* ("podmety"): indivíduové konštanty Jarka a Milo.

Úloha argumentu v predikáte je daná jeho poradím (podobne ako pozičné argumenty funkcií/metód v prog. jazykoch).

Arita predikátového symbolu

Predikátový symbol má pevne určený počet argumentov - aritu.

Vždy musí mať práve toľko argumentov, aká je jeho arita.

Dohoda 1.3

Aritu budeme niekedy písať ako horný index symbolu.

Napríklad beží 1 , vidí 2 , dal 4 , $<^2$.

Zamýšľaný význam predikátových symbolov

Unárny predikátový symbol (teda s aritou 1) zvyčajne označuje vlastnosť, druh, rolu, stav.

```
Príklady 1.4 \operatorname{pes}(x) \quad x \text{ je pes} \operatorname{\check{cierne}}(x) \quad x \text{ je \check{cierne}} \operatorname{be\check{z}\acute{ı}}(x) \quad x \text{ be\check{z}\acute{i}}
```

Binárny, *ternárny*, ... predikátový symbol (s aritou 2, 3, ...) zvyčajne označuje vzťah svojich argumentov.

```
Príklady 1.5  \begin{array}{ccc} \text{vid} \texttt{i}(x,y) & x \text{ vid} \texttt{i} y \\ & \text{dal}(x,y,z,t) & x \text{ dal(a/o) objekt} \ y \text{ objekt} \ z \text{ v čase} \ t \end{array}
```

Kategorickosť významu predikátových symbolov

V bežnom jazyku často nie je celkom jasné, či objekt má alebo nemá nejakú vlastnosť — kedy je niekto *mladý*?

Predikátové symboly predstavujú *kategorické* vlastnosti/vzťahy — pre každý objekt sa dá jednoznačne rozhodnúť, či má alebo nemá túto vlastnosť/vzťah s iným objektom či inými objektmi.

Význam predikátového symbolu preto často zodpovedá rovnakému slovenskému predikátu iba približne.

Príklad 1.6

Predikát mladší 2 môže označovať vzťah "x je mladší ako y" presne.

Predikát ${\tt mlad}{\acute{y}^1}$ zodpovedá vlastnosti "x je mladý" iba približne.

Nekategorickými vlastnosťami sa zaoberajú fuzzy logiky. Predikáty v nich zachytávajú význam týchto vlastností presnejšie.

Atomické formuly

Atomické formuly majú tvar

$$predik \acute{a}t(argument_1, argument_2, ..., argument_k),$$

alebo

$$argument_1 \doteq argument_2,$$

pričom k je arita $predik \acute{a}t$ u,

a $argument_1, ..., argument_k$ sú (nateraz) indivíduové konštanty.

Atomická formula zodpovedá (jednoduchému) výroku v slovenčine,

t.j. tvrdeniu, ktorého pravdivostná hodnota (pravda alebo nepravda) sa dá iednoznačne určiť.

laba and distance visit latera distance

lebo predikát označuje kategorickú vlastnosť/vzťah

a indivíduové konštanty jednoznačne označujú objekty.

Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

Vopred daný prvorádový jazyk (konštanty a predikáty) sa snažíme využiť čo najlepšie.

Príklad 1.7

Sformalizujme v jazyku s konštantami Evka, Jarka a Milo a predikátom vyšší 2 výroky:

 A_1 : Jarka je vyššia ako Milo.

 A_2 : Evka je nižšia ako Milo.

Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

Nie je to jednoznačný proces.

Vopred daný prvorádový jazyk (konštanty a predikáty) sa snažíme využiť čo najlepšie.

Príklad 1.7

Sformalizujme v jazyku s konštantami Evka, Jarka a Milo a predikátom vyšší 2 výroky:

 A_1 : Jarka je vyššia ako Milo. \rightsquigarrow vyšší(Jarka, Milo)

 A_2 : Evka je nižšia ako Milo. \rightsquigarrow vyšší(Milo, Evka)

Zanedbávame nepodstatné detaily — pomocné slovesá, predložky, skloňovanie, rod, ...: x je vyšší/vyššia/vyššie ako $y \rightsquigarrow vyšší(x, y)$.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme,

upravujeme predchádzajúce formalizácie.

Príklady 1.8

 A_1 : Jarka dala Milovi Bobíka.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Príklady 1.8

 A_1 : Jarka dala Milovi Bobíka.

→ dalaMiloviBobíka(Jarka)

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme,

upravujeme predchádzajúce formalizácie.

Príklady 1.8

 A_1 : Jarka dala Milovi Bobíka.

→ dalaMiloviBobíka(Jarka)

 A_2 : Evka dostala Bobíka od Mila.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Príklady 1.8

 A_1 : Jarka dala Milovi Bobíka.

→ dalaMiloviBobíka(Jarka) dalBobíka(Jarka, Milo)

 A_2 : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka)

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Príklady 1.8

 A_1 : Jarka dala Milovi Bobíka.

→ dalaMiloviBobíka(Jarka) dalBobíka(Jarka, Milo)

 A_2 : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka)

 A_3 : Evka dala Jarke Cilku.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Príklady 1.8

 A_1 : Jarka dala Milovi Bobíka.

→ dalaMiloviBobíka(Jarka) dalBobíka(Jarka, Milo)

 A_2 : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka)

A₃: Evka dala Jarke Cilku.

→ dalCilku(Evka, Jarka)

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Príklady 1.8

```
    A₁: Jarka dala Milovi Bobíka.
    → dalaMiloviBobíka(Jarka) dalBobíka(Jarka, Milo)
```

dal(Jarka, Milo, Bobík)

 A_2 : Evka dostala Bobíka od Mila.

→ dalBobíka(Milo, Evka) dal(Milo, Evka, Bobík)

A₃: Evka dala Jarke Cilku.

→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)

 A_4 : Bobík je pes.

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

Príklady 1.8

```
A<sub>1</sub>: Jarka dala Milovi Bobíka.

→ dalaMiloviBobíka(Jarka) dalBobíka(Jarka, Milo)
```

```
dal(Jarka, Milo, Bobík)
```

```
A_2: Evka dostala Bobíka od Mila.
```

```
→ dalBobíka(Milo, Evka) dal(Milo, Evka, Bobík)
```

```
A<sub>3</sub>: Evka dala Jarke Cilku.
```

```
→ dalCilku(Evka, Jarka) dal(Evka, Jarka, Cilka)
```

```
A_4: Bobík je pes.
```

```
→ pes(Bobík)
```

Minimalizujeme počet predikátov, uprednostňujeme flexibilnejšie, viacúčelovejšie (dal^3 pred $dalBobíka^2$ a $dalCilku^2$).

Dosiahneme

- expresívnejší jazyk (vyjadrí viac menším počtom prostriedkov),
- zrejmejšie logické vzťahy výrokov.

Podobné normalizácii databázových schém.

Atomické formuly

Syntax atomických formúl

Presné definície

Cieľom logiky je uvažovať o jazyku, výrokoch, vyplývaní, dôkazoch.

Výpočtová logika sa snaží automaticky riešiť konkrétne problémy vyjadrené v logických jazykoch.

Spoľahlivé a overiteľné úvahy a výpočty vyžadujú presnú dohodu na tom, o čom hovoríme definíciu logických pojmov (jazyk, výrok, pravdivosť, ...).

Pojmy (napr. atomická formula) môžeme zadefinovať napríklad

- matematicky ako množiny, n-tice, relácie, funkcie, postupnosti,...;
- informaticky tým, že ich naprogramujeme,
 napr. zadefinujeme triedu AtomickaFormula v Pythone.

Matematický jazyk je univerzálnejší ako programovací — abstraktnejší, menej nie až tak podstatných detailov.

Syntax atomických formúl logiky prvého rádu

Najprv sa musíme dohodnúť na tom, aká je syntax atomických formúl logiky prvého rádu:

- z čoho sa skladajú,
- čím vlastne sú,
- akú majú štruktúru.

Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

Definícia 1.9

Symbolmi jazyka $\mathcal L$ atomických formúl logiky prvého rádu sú mimologické, logické a pomocné symboly, pričom:

Mimologickými symbolmi sú

• indivíduové konštanty z nejakej neprázdnej spočítateľnej množiny $\mathcal{C}_{\mathcal{L}}$

• a predikátové symboly z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}}$.

Jediným logickým symbolom je ≐ (symbol rovnosti).

Pomocnými symbolmi sú (,) a , (ľavá, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné.

Pomocné symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_{\mathcal{L}}$ je priradená $\operatorname{arita} \operatorname{ar}_{\mathcal{L}}(P) \in \mathbb{N}^+$.

Abeceda jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky by ste povedali, že *abecedou* jazyka $\mathcal L$ atomických formúl logiky prvého rádu je $\Sigma_{\mathcal L} = \mathcal C_{\mathcal L} \cup \mathcal P_{\mathcal L} \cup \{ \doteq, \textbf{(,)}, \textbf{,} \}.$

V logike sa väčšinou pojem *abeceda* nepoužíva, pretože potrebujeme rozlišovať rôzne druhy symbolov.

Namiesto abeceda jazyka $\mathcal L$ hovoríme množina všetkých symbolov jazyka $\mathcal L$ alebo len symboly jazyka $\mathcal L$.

Na zápise množiny $\Sigma_{\mathcal{L}}$ však ľahko vidíme, čím sa rôzne jazyky atomických formúl logiky prvého rádu od seba líšia a čo majú spoločné.

Príklady symbolov jazykov atomických formúl logiky prvého rádu

Príklad 1.10

Príklad o deťoch a zvieratkách sme sformalizovali v jazyku $\mathcal{L}_{\text{dz}},$ v ktorom

$$\mathcal{C}_{\mathcal{L}_{dz}} = \{ \mathrm{Bobík}, \mathrm{Cilka}, \mathrm{Evka}, \mathrm{Jarka}, \mathrm{Milo} \},$$

$$\mathcal{P}_{\mathcal{L}_{dz}} = \{ \mathrm{dal}, \mathrm{pes} \}, \quad \mathrm{ar}_{\mathcal{L}_{dz}}(\mathrm{dal}) = 3, \quad \mathrm{ar}_{\mathcal{L}_{dz}}(\mathrm{pes}) = 1.$$

Príklad 1.11

Príklad o návštevníkoch party by sme mohli sformalizovať v jazyku $\mathcal{L}_{\text{party}}$, kde

$$\mathcal{C}_{\mathcal{L}_{\mathsf{party}}} = \{ \mathtt{Kim}, \mathtt{Jim}, \mathtt{Sarah} \},$$
 $\mathcal{P}_{\mathcal{L}_{\mathsf{narty}}} = \{ \mathtt{pride} \}, \quad \mathrm{ar}_{\mathcal{L}_{\mathsf{narty}}} (\mathtt{pride}) = 1.$

Označenia symbolov

Keď budeme hovoriť o ľubovoľnom jazyku \mathcal{L} , často budeme potrebovať nejak označiť niektoré jeho konštanty alebo predikáty, aj keď nebudeme vedieť, aké konkrétne symboly to sú.

Na označenie symbolov použijeme *meta premenné*: premenné v (matematickej) slovenčine, pomocou ktorých budeme hovoriť o (po grécky *meta*) týchto symboloch.

Dohoda 1.12

Indivíduové konštanty budeme spravidla označovať meta premennými a,b,c,d s prípadnými dolnými indexmi.

Predikátové symboly budeme spravidla označovať meta premennými P, Q, R s prípadnými dolnými indexmi.

Atomické formuly jazyka

Čo sú atomické formuly?

Atomické formuly jazyka

Čo sú atomické formuly?

Definícia 1.13

Nech $\mathcal L$ je jazyk atomických formúl logiky prvého rádu.

Rovnostný atóm jazyka $\mathcal L$ je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal C_{\mathcal L}$.

Predikátový atóm jazyka $\mathcal L$ je každá postupnosť symbolov $P(c_1,\ldots,c_n)$, kde P je predikátový symbol z $\mathcal P_{\mathcal L}$ s aritou n a c_1,\ldots,c_n sú indivíduové konštanty z $\mathcal C_{\mathcal L}$.

Atomickými formulami (skrátene **atómami**) jazyka $\mathcal L$ súhrnne nazývame všetky rovnostné a predikátové atómy jazyka $\mathcal L$.

Množinu všetkých atómov jazyka $\mathcal L$ označujeme $\mathcal A_{\mathcal L}.$

Slová jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky by ste povedali, že jazyk $\mathcal L$ atomických formúl logiky prvého rádu nad abecedou $\Sigma_{\mathcal L}=\mathcal C_{\mathcal L}\cup\mathcal P_{\mathcal L}\cup\{\doteq,\textbf{(,)},\centerdot\}\text{ je množina slov}$

$$\begin{split} \{\, c_1 &\doteq c_2 \mid c_1 \in \mathcal{C}_{\mathcal{L}}, c_2 \in \mathcal{C}_{\mathcal{L}} \,\} \\ &\quad \cup \{\, P(c_1, \dots, c_n) \mid P \in \mathcal{P}_{\mathcal{L}}, \operatorname{ar}_{\mathcal{L}}(P) = n, c_1 \in \mathcal{C}_{\mathcal{L}}, \dots, c_n \in \mathcal{C}_{\mathcal{L}} \,\}. \end{split}$$

V logike sa jazyk takto nedefinuje, pretože potrebujeme rozlišovať rôzne druhy slov.

Príklady atómov jazyka

Príklad 1.14

 $\label{eq:V_dz} \textit{V} \; \textit{jazyku} \; \mathcal{L}_{\textit{dz}}, \, \textit{kde} \; \mathcal{C}_{\mathcal{L}_{\textit{dz}}} = \{ \textit{Bobík}, \textit{Cilka}, \textit{Evka}, \textit{Jarka}, \textit{Milo} \},$

 $\mathcal{P}_{\mathcal{L}_{dz}} = \{ dal, pes \}, ar_{\mathcal{L}_{dz}}(dal) = 3, ar_{\mathcal{L}_{dz}}(pes) = 1,$ sú *okrem iných* rovnostné atómy:

Bobík = Bobík Cilka = Bobík
Evka = Jarka Bobík = Cilka

a predikátové atómy:

pes(Cilka) dal(Cilka, Milo, Bobík) dal(Jarka, Evka, Milo).

Atómy ako triedy

Atomické formuly

Sémantika atomických formúl

Vyhodnotenie atomickej formuly

Ako zistíme, či je atomická formula pes(Bobík) pravdivá v nejakej situácii (napríklad u babky Evky, Jarky a Mila na dedine)?

Pozrieme sa na túto situáciu a zistíme:

- 1. aký objekt b pomenúva konštanta Bobík;
- 2. akú vlastnosť p označuje predikát pes;
- 3. či objekt b má vlastnosť p.

Vyhodnotenie atomickej formuly

Ako môžeme tento postup matematicky alebo informaticky modelovať?

Potrebujeme:

- matematický/informatický model situácie (stavu vybranej časti sveta),
- postup na jeho použitie pri vyhodnocovaní pravdivosti formúl.

Ako môžeme matematicky popísať nejakú situáciu tak, aby sme pomocou tohto popisu mohli vyhodnocovať atomické formuly v nejakom jazyku logiky prvého rádu \mathcal{L} ?

Potrebujeme vedieť:

• ktoré objekty sú v popisovanej situácii prítomné,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka \mathcal{L} , ktoré objekty z domény majú vlastnosť označenú predikátom P,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
 ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
 ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
 ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých týchto objektov doména;
- jednoznačné priradenie významu všetkým indivíduovým konštantám a predikátom z jazyka $\mathcal L$
- interpretačná funkcia;
- pre každú indivíduovú konštantu c z jazyka £, ktorý objekt z domény konštanta c pomenúva,
- pre každý unárny predikát P z jazyka £,
 ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
 ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,
- tvoria n-árnu reláciu na doméne.

Štruktúra pre jazyk

Definícia 1.15

Nech $\mathcal L$ je jazyk atomických formúl logiky prvého rádu. <u>Štruktúrou</u> pre jazyk $\mathcal L$ nazývame dvojicu $\mathcal M=(D,i)$, kde D je ľubovoľná neprázdna množina nazývaná doména štruktúry $\mathcal M$; i je zobrazenie, nazývané interpretačná funkcia štruktúry $\mathcal M$, ktoré

- každej indivíduovej konštante c jazyka £ priraďuje prvok i(c) ∈ D;
- každému predikátovému symbolu P jazyka $\mathcal L$ s aritou n priraďuje množinu $i(P)\subseteq D^n$.

Dohoda 1.16

Štruktúry označujeme veľkými písanými písmenami $\mathcal{M}, \mathcal{N}, \dots$

Príklad štruktúry

Príklad 1.17

$$\mathcal{M} = (D, i), \quad D = \left\{ \mathbf{\dot{\downarrow}}, \mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{$$

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký **informatický** objekt zodpovedá štruktúre?

Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký informatický objekt zodpovedá štruktúre?

Databáza:

Predikátové symboly jazyka \sim veľmi zjednodušená schéma DB (arita \sim počet stĺpcov)

Interpretácia predikátových symbolov \sim konkrétne tabuľky s dátami

$\iota(pes^1)$
1
Ħ

.. 15

Štruktúry – upozornenia

Štruktúr pre daný jazyk je nekonečne veľa.

Doména štruktúry

- môže mať ľubovoľné prvky;
- nijak nesúvisí s intuitívnym významom interpretovaného jazyka;
- môže byť nekonečná.

Interpretácia symbolov konštánt:

- každej konštante je priradený objekt domény;
- nie každý objekt domény musí byť priradený nejakej konštante;
- rôznym konštantám môže byť priradený rovnaký objekt.

Interpretácie predikátových symbolov môžu byť nekonečné.

Príklad 1.18 (Štruktúra s nekonečnou doménou)

```
 \mathcal{M} = (\mathbb{N}, i) \quad i(\texttt{pes}) = \{2n \mid n \in \mathbb{N}\} \quad i(\texttt{dal}) = \{(n, m, n + m) \mid n, m \in \mathbb{N}\}   i(\texttt{Bobik}) = 0 \quad i(\texttt{Cilka}) = 1 \quad i(\texttt{Evka}) = 3 \quad i(\texttt{Jarka}) = 5 \quad i(\texttt{Milo}) = 0
```

Pravdivosť atomickej formuly v štruktúre

Ako zistíme, či je atomická formula pravdivá v štruktúre?

Definícia 1.19

Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk $\mathcal L$ atomických formúl jazyka logiky prvého rádu.

Rovnostný atóm $c_1 \doteq c_2$ jazyka \mathcal{L} je *pravdivý v štruktúre* \mathcal{M} vtedy a len vtedy, keď $i(c_1) = i(c_2)$.

Predikátový atóm $P(c_1, \dots, c_n)$ jazyka \mathcal{L} je pravdivý v štruktúre \mathcal{M} vtedy a len vtedy, keď $(i(c_1), \dots, i(c_n)) \in i(P)$.

Vzťah $atóm\ A$ je $pravdivý\ v\ štruktúre\ \mathcal{M}\ skrátene\ zapisujeme\ \mathcal{M} \models A.$ Hovoríme aj, že \mathcal{M} je $modelom\ A.$

Vzťah atóm A nie je pravdivý v štruktúre $\mathcal M$ zapisujeme $\mathcal M \not\models A$. Hovoríme aj, že A je nepravdivý v $\mathcal M$ a $\mathcal M$ nie je modelom A. Príklad 1.20 (Určenie pravdivosti atómov v štruktúre)

$$\mathcal{M} = (D, i), \quad D = \left\{ \mathbf{\dot{\downarrow}}, \mathbf{\dot{\downarrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}}, \mathbf{\dot{\uparrow}} \right\}$$

$$i(\text{Bobik}) = \mathbf{\dot{\uparrow}} \qquad i(\text{Cilka}) = \mathbf{\dot{\downarrow}} \qquad i(\text{Milo}) = \mathbf{\dot{\uparrow}}$$

 $i(pes) = \{ \Rightarrow \Rightarrow \}$ $i(\mathrm{dal}) = \left\{ \left(\mathring{\mathbf{Y}}, \overset{\bullet}{\mathbf{S}}, \overset{\bullet}{\mathbf{H}} \right), \left(\overset{\bullet}{\mathbf{A}}, \overset{\bullet}{\mathbf{A}}, \overset{\bullet}{\mathbf{H}} \right), \left(\overset{\bullet}{\mathbf{S}}, \overset{\bullet}{\mathbf{A}}, \overset{\bullet}{\mathbf{H}} \right) \right\}$

lebo $i(Cilka) = \mathbb{K} \neq \mathbb{K} = i(Bobík).$

Atóm pes(Bobík) je pravdivý v štruktúre \mathcal{M} , t.j., $\mathcal{M} \models \text{pes}(\text{Bobík})$,

lebo objekt $i(Bobík) = \forall$ je prvkom množiny $\{\forall i \in S\}$ = i(pes). Atóm dal(Evka, Jarka, Cilka) je pravdivý v \mathcal{M} . t.i., $\mathcal{M} \models dal(Evka, Jarka, Cilka)$.

lebo $(i(\text{Evka}), i(\text{Jarka}), i(\text{Cilka})) = \left(\underbrace{*}, \overset{\blacktriangle}{\blacktriangle}, \underbrace{*} \right) \in i(\text{dal}).$

Atóm Cilka \doteq Bobík nie je pravdivý v \mathcal{M} , t.j., $\mathcal{M} \not\models Cilka \doteq Bobík$

Atomické formuly

Zhrnutie

Zhrnutie

- Logika prvého rádu je rodina formálnych jazykov.
- Každý jazyk logiky prvého rádu je daný neprázdnou množinou indivíduových konštánt a množinou predikátových symbolov.
- Atomické formuly sú základnými výrazmi prvorádového jazyka.
 - Postupnosti symbolov $P(c_1, \dots, c_n)$ (predikátové) a $c_1 \doteq c_2$ (rovnostné).
 - Zodpovedajú pozitívnym jednoduchým výrokom o vlastnostiach, stavoch, vzťahoch, rovnosti jednotlivých pomenovaných objektov.
- Význam jazyku dáva štruktúra matematický opis stavu sveta
 - Skladá sa z neprázdnej domény a z interpretačnej funkcie.
 - Konštanty interpretuje ako prvky domény.
 - Predikáty interpretuje ako podmnožiny domény/relácie na doméne.
- Pravdivosť atómu určíme interpretovaním argumentov a zistením, či je výsledná n-tica objektov prvkom interpretácie predikátu, resp. pri rovnostnom atóme, či sa objekty rovnajú.