WINTER - 2022

UNIT-1

Q.1 a) Show that $\neg(p \lor (\neg p \land q))$ and $(\neg p \land \neg q)$ are logically equivalent by developing a series of logical equivalence. **(6) b)** Let p(x) be the statement "x spends more than five hours every weekday in class", where the domain for x consist of all students. Express each of these qualifications in English

i) $\exists x \ p(x)$

ii) $\forall x p(x)$

iii) $\exists x \neg p(x)$

iv) $\forall x \neg p(x)$

(7)

Q.2 a) Use rules of inference to show that if $\forall x(p(x) \rightarrow (Q(x)))$ and $\forall x(p(x) \land R(x))$ are true then $\forall x(R(x) \land s(x))$ is true (6)

b) Determine whether each of the following form is a tautology or a contradiction or neither (7)

i) $(P \land Q) \rightarrow (P \lor Q)$

ii) $(P \lor Q) \land (\neg P \land \neg Q)$

iii) $(\neg P \land \neg Q) \rightarrow (P \rightarrow Q)$

iv) $(P \rightarrow Q) \land (P \land \neg Q)$

 $\mathbf{v)} \quad [P \land (P \rightarrow \neg Q) \rightarrow Q]$

UNIT-2

Q.3 a) Use a Venn diagram to illustrate the relationships

(6)

- i) $A \subset B$ and $B \subset C$
- **ii)**The set of all months of the year whose names do not contain the letter R in the set of all months of the year
- **b)** What are the Cartesian product

i) AxCxC,

ii) AxB

iii) BxC

iv) A³

Where A = $\{0,1\}$, B = $\{1,2\}$ and C = $\{0,1,2\}$

Q.4 a) Define with example.

(14)

(8)

i) Union

ii) Intersection

iii) Disjoint

iv) Differnece

v) Complement

vi) Subset

vii) Power set

UNIT-3

Q.5 a) Design a composition table for algebraic system (Z₆ +

6) & $(Z_6,*6)$ (6)

b) Show that, the set of all integers is a group with respect to addition. (7)

Q.6 a) Show that p(s), \cup) & p(s), \cap are Moniod, Where, S =non empty set and p(s) = power set of S set & also draw composition table for $\cup \& \cap$. (13)

UNIT-4

Q.7 a) Find the sum of product expansion for the function

F(x,y,z) = (x+y) Z(6)

b) Construct circuits that produce the following outouts (7)

i.
$$(x + y) \overline{X}$$

ii.
$$\overline{x}(\overline{y+z})$$

iii.
$$(x + y + z) (\overline{x} y \overline{z})$$

Q.8 a) Find the k-map for

(7)

i.
$$xy + xy$$

ii.
$$xy + xy$$

iii.
$$xy + xy + xy$$

b) Find the complement of every element of lattics (S \cap D) for \cap = 75, where D denote the relation of divisor (6)

UNIT-5

Q.9 a) Write is the value of the prefix expression

$$(+ - * 235 / \uparrow 234)$$
? (6)

b) Explain Huffman code algorithm with example. **(7)** Q.10 Use prim's & Krushal's algorithm to find minimum spanning tree in the weighted graph shown in figure (13)

UNIT-6

Q.11 a) Explain sufficient and necessary condition For Euler circuits and paths. (7)

b) Determine whether these two graphs are isomorphic (7)

Q.12 a) what is graph? Explain different types of graph with example (7)

b) Show that the graph G_1 and G_2 are all homeomorphic (7)

