Cinématique

Antonio Falcó

Le diagramme du mouvement

Cinématique

Antonio Falcó

Cinématique

Antonio Falcó

Le diagramme du mouvement

Le diagramme du mouvement

Le diagramme du mouvement

Pour décrire le mouvement on utilise $(\mathbf{r}, \upsilon, \mathbf{a})$ la position, la vitesse et l'accélération. En général, on a $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ coordonnées (9 degrés de liberté).

La position et le déplacement

$$\mathbf{r}_1 = (x_2, y_2)$$
 et $\mathbf{r}_2 = (x_2, y_2)$, alors

$$\Delta \mathbf{r} := \mathbf{r}_2 - \mathbf{r}_1 = (x_2, y_2) - (x_2, y_2) = (x_2 - x_1, y_2 - y_1) = (\Delta x, \Delta y)$$

Définition (La vitesse approché)

Si la particule se trouve au temps t dans $\mathbf{r}(t)=(x(t),y(t))$ et au temps $t+\Delta t$ à $\mathbf{r}(t+\Delta t)=(x(t+\Delta t),y(t+\Delta t))$, où $\Delta t\approx 0$. Alors la vitesse approché à $[t,t+\Delta t]$ est

$$v = \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{(t + \Delta t) - t} = \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} = \frac{\Delta \mathbf{r}}{\Delta t}$$
$$= \left(\frac{x(t + \Delta t) - x(t)}{\Delta t}, \frac{y(t + \Delta t) - y(t)}{\Delta t}\right) = \left(\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}\right)$$

Définition (La vitesse instantané)

La vitesse instantanée au temps t est définie par

$$v(t) = \lim_{\Delta t o 0} rac{\Delta \mathbf{r}}{\Delta t} = \lim_{\Delta t o 0} rac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t} := rac{d}{dt} \mathbf{r}(t),$$

c'est-à-dire

$$v_x(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$
 et $v_y(t) = \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}$

Propriété

Le vecteur vitesse est tangent à la trajectoire.

Si on connaît l'angle θ alors et la norme de la vitesse $v = \| \boldsymbol{v} \|$ alors

$$\boldsymbol{\upsilon} = (\upsilon \cos \theta, \upsilon \sin \theta).$$

L'accélération

$$\begin{aligned} \boldsymbol{v}_1 &= (v_x^{(1)}, v_y^{(1)}) \text{ et } \boldsymbol{v}_2 = (v_x^{(2)}, v_y^{(2)}), \text{ alors} \\ \Delta \boldsymbol{v} &:= \boldsymbol{v}_2 - \boldsymbol{v}_1 = (v_x^{(2)}, v_y^{(2)}) - (v_x^{(1)}, v_y^{(1)}) \\ &= (v_x^{(2)} - v_x^{(1)}, v_y^{(2)} - v_y^{(1)}) = (\Delta v_x, \Delta v_y) \end{aligned}$$

Définition (L'accélération approché)

Si la particule se trouve au temps t avec une vitesse v(t)=(x(t),y(t)) et au temps $t+\Delta t$ à $v(t+\Delta t)=(v_x(t+\Delta t),v_y(t+\Delta t)),$ où $\Delta t\approx 0.$ Alors l'accélération approché à $[t,t+\Delta t]$ est

$$v = \frac{v(t + \Delta t) - v(t)}{(t + \Delta t) - t} = \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{\Delta v}{\Delta t}$$
$$= \left(\frac{v_x(t + \Delta t) - v_x(t)}{\Delta t}, \frac{v_y(t + \Delta t) - v_y(t)}{\Delta t}\right) = \left(\frac{\Delta v_x}{\Delta t}, \frac{\Delta v_y}{\Delta t}\right)$$

Définition (L'accélération instantané)

L'accélération instantanée au temps t est définie par

$$\begin{split} \mathbf{a}(t) &= \lim_{\Delta t \to 0} \frac{\Delta \upsilon}{\Delta t} = \lim_{\Delta t \to 0} \frac{\upsilon(t + \Delta t) - \upsilon(t)}{\Delta t} := \frac{d}{dt} \upsilon(t), \\ a_{\mathsf{x}}(t) &= \lim_{\Delta t \to 0} \frac{\Delta \upsilon_{\mathsf{x}}}{\Delta t} \text{ et } a_{\mathsf{y}}(t) = \lim_{\Delta t \to 0} \frac{\Delta \upsilon_{\mathsf{y}}}{\Delta t} \end{split}$$

Théorème

Si la vitesse reste constant, c'est-à-dire $\upsilon(t)=\upsilon(t_0)$ pour tout temps $t\geq t_0$. Alors l'accélération est nulle, c'est à dire $\mathbf{a}(t)=\mathbf{0}$ pour tout temps $t\geq t_0$.

Si la vitesse reste constant

$$\boldsymbol{v}(t+\Delta t)=\boldsymbol{v}(t)=\boldsymbol{v}(t_0)$$

et en conséquence

$$\mathbf{a}(t) = \lim_{\Delta t \to 0} \frac{\boldsymbol{v}(t + \Delta t) - \boldsymbol{v}(t)}{\Delta t} = \mathbf{0}.$$

Le diagramme du

Si l'accélération reste constant, c'est-à-dire $\mathbf{a}(t) = \mathbf{a}(t_0)$ pour tout temps $t \geq t_0$. Alors la vitesse est linéaire par rapport t:

$$\boldsymbol{v}(t) = \boldsymbol{v}(t_0) + (t - t_0)\boldsymbol{a}(t_0)$$

et la position est aussi déterminé par

$$\mathbf{r}(t) = \mathbf{r}(t_0) + (t - t_0) v(t_0) + \frac{1}{2} (t - t_0)^2 \mathbf{a}(t_0)$$

pour tout temps $t \geq t_0$.

Si l'accélération reste constant

$$\mathbf{a}(t)=\mathbf{a}(t_0)$$

on a

$$\mathbf{a}(t_0) = \frac{\upsilon(t_0 + \Delta t) - \upsilon(t_0)}{\Delta t}.$$

Si on prend $\Delta t = t - t_0$ on a

$$\mathbf{a}(t_0) = \frac{\upsilon(t) - \upsilon(t_0)}{t - t_0}.$$