

A DICTIONARY OF CHEMICAL SOLUBILITIES INORGANIC

THE MACMILLAN COMPANY
NEW YORK · BOSTON · CHICAGO · DALLAS
ATLANTA · SAN FRANCISCO

MACMILLAN & CO., LIMITED LONDON · BOMBAY · CALCUTTA MELBOURNE

THE MACMILLAN CO. OF CANADA, LTD TORONTO

A

DICTIONARY

OF

CHEMICAL SOLUBILITIES

INORGANIC

FIRST EDITION

ЗΥ

ARTHUR MESSINGER COMEY, Ph.D.

SECOND EDITION

ENLARGED AND REVISED

BY

ARTHUR MESSINGER COMEY, Ph.D.

DIRECTOR, EASTEIN LABORATORY, E. I. DU PONT DE NEMOURS AND CO.

AND

DOROTHY A. HAHN, Ph.D.

PROFESSOR OF CHEMISTRY, MT. HOLYOKE COLLEGE

New York
THE MACMILLAN COMPANY
1921

All rights reserved

COPYRIGHT, 1921 By THE MACMILLAN COMPANY

Set up and printed Published February, 1921

PREFACE TO FIRST EDITION

For many years a need has been felt by chemists for a book which shall collect into convenient form for ready reference the various data concerning the solubility of chemical substances that have been published from time to time in chemical periodicals and elsewhere.

The first mention that can be found of such a plan was made in 1731, when Peter Shaw delivered Chemical Lectures in London, as may be seen from the following:—

EXTRACTS from Peter Shaw's Chemical Lectures, publickly read at London in 1731 and 1732. London. Second Edition, London 1755. 8vo.

Page 97. Experiment 1.—That Water as a Menstruum Jissolves more of one body and less of another.

[He shows that two ounces of water dissolve two ounces of Epsom salt, five drachms of common salt, and eight grains of cream of tartar. Only in the latter case much remained undissolved until boiled.]

"It might be proper for the further Improvement of Chemistry and Natural Philosophy to form a Table of the Time and Quantity wherein all the known Salts are dissolvable in Water. . . . Such a Table regularly formed might ease the Trouble of refining Salts, by shewing at once without future Trial or Loss of Time how much Water each Salt required to dissolve it for Clarification, Filtration, or Crystallization. It would likewise supply us with a ready and commodious Way of separating any Mixture of Salts, by shewing which would first shoot out of the Mixture upon Crystallization. . . . The same Table might also direct us to a ready and commodious Method of separating two Salts without waiting for Crystallization. . . ."

It was many years, however, before the scheme suggested by Peter Shaw was put into execution. Professor F. H. Storer published the first work that undertook to carry out the idea in its entirety, in 1864, in a book, which he entitled "First Outlines of a Dictionary of Solubilities of Chemical Substances," and which contained a compilation of nearly all the data on the subject published before 1860. It was at once recognized as a most valuable contribution to chemical literature; but for many years it has been difficult to obtain this work, as the limited edition which was published was soon wholly exhausted. Since then nothing has appeared on the subject except the brief tabulations found in various reference books, and no attempt has been made to cover the whole subject.

It is needless to state that the growth of chemical science since the publication of Professor Storer's book has been so enormous that that work has lost, at least to a great extent, the practical value it possessed thirty years ago. This growth has been indeed so great, and the data which have accumulated since 1860 so far surpass the earlier in volume, that a simple revision of Professor Storer's book was impracticable, and it therefore seemed best to start afresh.

With the facilities offered by the various scientific libraries at Harvard University, the Massachusetts Institute of Technology, and other libraries in Boston, it has been possible to collect nearly all the data relating to the subject. For the work before 1860 Professor Storer's work has been found invaluable.

The method pursued has been to form a preliminary list of compounds with more or less data by consulting the two most complete works on inorganic chemistry—Gmelin-Kraut's "Handbuch der anorganischen Chemie" and Graham-Otto-Michaelis's "Lehrbuch." These statements have been verified and elaborated by consulting the original memoirs in all the periodicals devoted to chemical literature which were obtainable. The "Jahresbericht der Chemie" also has been used extensively in tracing references, but the original memoirs have always been consulted and references given to them when possible.

It has been found impracticable to draw any distinction as to reliability between the various data given by different observers. It was manifestly impossible to attempt to verify experimentally the statements of those who have carried on the researches, for the most assiduous labor of many could only cover a small portion of the attested facts. Therefore, even when two statements are directly contradictory, both have been given with the authority for each. The only exception to this has been made when more recent discoveries have shown beyond any reasonable doubt the falsity of previous work. In this way some of the older manifestly inaccurate work has been omitted. In a majority of cases the more recent work may be considered to be the more accurate, but this is not the invariable rule. A Synchronistic Table of the more common periodicals is given in the Appendix, whereby it is easy to determine the date of the publication of a research to which reference is made.

It may be objected by the practical chemist that most of the work previous to 1850 might well have been omitted, but a great deal of this work possesses at least a historical value, and often furnishes facts which have not since been verified. Much of the earlier work, when obviously of less importance, has been printed in smaller type.

The aim has been to include in this volume all analyzed inorganic substances, that is, all substances which do not contain carbon, but exception has been made in the case of CO₂, CO, CS₂, the carbonates, cyanides, ferro-cyanides, etc., which are here included.

The work has been brought up to March, 1894, when this volume went to press, and the results of researches published since that time are not included in the present edition.

It is hoped that this book will fill to some extent the want that has been felt by chemists for a compilation of this nature. While it has been attempted to make the book as free from errors as possible, nevertheless it is naturally impossible to avoid many mistakes, and the compiler will be very grateful to those who may call his attention to any errors or omissions.

A. M. C.

PREFACE TO SECOND EDITION

During the twenty-five years which have elapsed since the publication of the first edition of this dictionary, a very large amount of work has been published in chemical periodicals, containing data concerning the solubility of inorganic chemical compounds. As it was impossible for the compiler of the first edition to devote the time necessary for the collecting of the published data, it was necessary to employ assistance, and Dr. Dorothy A. Hahn, Professor of Chemistry, Mt. Holyoke College, was engaged for this work—Dr. Hahn has collected the larger part of the material in this book, which work in spite of its arduous and tedious nature, she has performed in a most painstaking manner.

The compilation and arrangement of the data collected by Dr. Hahn, which devolved upon the original author, took much time. This, together with difficulties in printing, caused by the general conditions after the war, has delayed the publication until the present year, although the work was begun in 1916, and it has only been brought up to January 1st of that year.

Since the publication of the first edition of this work, Dr. Atherton Seidell has brought out two editions of his book, entitled "Solubilities of Inorganic and Organic Substances," which covers quite a different field, as he considers only quantitative data and those only for the commoner substances. Dr. Seidell has followed the plan in most cases where there are several available solubility determinations of a substance, of selecting and averaging the more reliable results, and embodying them in tables. Although this undoubtedly facilitates ready reference, it has seemed better to adhere to the original plan of the first edition, and to publish all the data in the form of the original authorities with references and dates, so that the user may be at liberty to use his own judgment in selection. Some few of the tables arranged by Dr. Seidell, however, have seemed to possess decided advantages over any other published data and they have been incorporated in the present volume. It is desired also to acknowledge indebtedness to Dr. Seidell's work for certain other tables where the original sources were not available to the present compilers.

The same plan and arrangement used in the first edition has been followed with certain elaboration, however, of the arrangement of data on the solubility of two or more salts in a solvent, which is explained in the Explanatory Preface.

Data published since the first edition on the cobalt and chromium ammonia compounds and those of the platinum group have been omitted, as it seemed that solubility data on those compounds possessed very little general interest.

As stated in the preface of the first edition, while every possible attempt has been made to avoid errors, it is manifestly impossible to avoid many mistakes in a work of this nature, and the compiler will be glad to have his attention called to any errors or omissions.

EXPLANATORY PREFACE

In order to reduce this volume to a convenient size the subject-matter has been abbreviated and condensed as far as seemed compatible with clearness; but it has been the aim not to use any abbreviations which are not at once intelligible without consulting the explanatory table. The more common chemical formulæ have been universally used, thereby saving a large amount of space without detracting from ready intelligibility to chemists.

The solubility of the substance in water is first given, the data being arranged chronologically in the longer articles. Then follow the specific gravities of the aqueous solutions, and also any data obteinable regarding their boiling-points; other physical data concerning solutions are not included. Following this is the solubility of the substance in other solvents—first the inorganic acids, then alkali and salt solutions, and finally organic substances.

Owing to the great increase of data, published during the last twenty years, on the simultaneous solubility of two or more salts in a given solvent, it has been found necessary to plan some arrangement, whereby such data can easily be found, and the plan adopted is as follows: The data for the solubility of two salts in a solvent is placed under the salt which comes first according to the alphabetical arrangement in this dictionary, and the order of the data on various salts under the same heading follows the alphabetical order of the salts considered. Thus the data on the solubility of NH₄Cl+BaCl₂, NH₄Cl+CuCl₂, and NH₄Cl+PbCl₂, and NH₄Cl+(NH₄)₂SO₄ are placed under Ammonium Chloride and arranged in the given order. Certain exceptions have been made to this rule, where the data directly concerns the solubility of a salt in a solution of another salt, in which case, it is placed under the former. Numerous cross references, however, are given, which it is hoped will avoid confusion.

In many cases no definite distinction can be drawn between the phenomera of solution and decomposition. At present the theory of solution is in a confused state, and until what really takes place when a substance dissolves is thoroughly understood no distinct line can be drawn. The whole subject is unsettled at the present time; for while many chemists believe in the so-called "dissociation" theory, yet the "hydrate" theory is not without its supporters. It is not my intention to discuss the theoretical side of the question, which has been so well treated in many recent works. It is, however, obvious that the phenomena are essentially different, when, for example, sodium carbonate is dissolved in water, in which case the original salt is deposited on evaporation, and when iron is dissolved in sulphuric acid, and the solution deposits a sulphate of iron. Yet it is still the custom to speak of iron as soluble in sulphuric acid, although it would be much more accurate to say that the sulphuric acid was decomposed by the iron. It has thus been found impracticable to draw a sharp line between solu-

tion and decomposition, and the term "soluble" has in general been used where a solution of some sort is formed by the action of the solvent.

The matter of alphabetical arrangement of chemical compounds, in the present somewhat confused state of chemical nomenclature, has been a difficult question to decide. The plan followed has been practically that of the standard Dictionaries of Chemistry, whereby the compounds of metals with one of the non-metallic elements have been classified under the metals, while the salts of the other acids (the oxygen acids so called and some few others) have been arranged alphabetically under the acids. Thus barium chloride is found under barium, while barium chlorate is found under chloric acid. No exception has been made in the case of the rare metals, as is usually the custom in Dictionaries of Chemistry. Double salts are to be found under the word which comes first alphabetically; thus, "common alum," potassium aluminum sulphate, is found under aluminum sulphate as aluminum potassium sulphate (under sulphuric acid), but ammonia chrome alum is found under ammonium sulphate as ammonium chromium sulphate. In the same way the double sulphate and chromate of potassium is found under potassium chromate (chromic acid), and not under potassium sulphate (sulphuric acid). The double chloride of ammonium and magnesium is found under ammonium chloride (ammonium), while the double chloride of potassium and magnesium is found under magnesium chloride (magnesium). An exception is made, however, in the case of double compounds of salts of oxygen acids with salts containing a single non-metallic element, in which case they are always found under the oxygen acid. Thus the double sulphate and chloride of lead, PbSO₁, PbCl₂, is found under lead sulphate (sulphuric acid), and not under lead chloride (lead).

The above method in some cases widely separates analogous compounds, but it was found to be the only practical way to a strictly alphabetical arrangement, which is no necessary in a book containing so many very short articles.

The ammonia addition-products furnished another difficulty. While their nature is more or less definitely understood in the cobalt, platinum, etc., compounds, and a definite nomenclature is in general use, there is an absolute lack of anything of the kind in the less definite compounds. It is good usage to speak of cuprammonium compounds, but how shall we designate the analogous cadmium compounds? "Cadmanmonium" has not yet received the sanction of chemists, and AlCl₃, NH₃ is a still worse case for naming. I have, therefore, not attempted to name these compounds, but classified them all under the salts to which the ammonia is added, affixing the word ammonia, thus: aluminum chloride ammonia, cadmium chloride ammonia, and also cupric chloride ammonia for the salt now almost universally known as cuprammonium chloride.

The ammonia compounds of cobalt, chromium, mercury, and the platinum metals are arranged alphabetically according to their universally accepted names, a list of which is given under each of those elements.

It has further been necessary to settle arbitrarily the question whether a substance should be considered as a double salt or a salt of a compound acid con-

taining one of the metals. For example, "fluosilicates" (or silicofluorides, as some may prefer) is the general name for the double fluorides of SiF₄ and a metal, but this unanimity in usage gradually disappears as the basic elements become more nearly alike, so that it is impossible to draw a line between such compounds and a compound such as the double chloride of magnesium and potassium, for which indeed the name "p. tassium chloromagnesate" has been proposed. The aim has been in all these cases to follow the best usage rather than make an absolutely homogeneous system of nomenclature out of the existing confusion.

In the matter of formulæ no attempt at uniformity has been made. Thus in the case above some chemists write the formula of the double chloride of magnesium and potassium as KMgCl₂, others as KCl, MgCl₃. The form here used has been in most cases that of the author from whom the data are taken.

The prefixes mono, di, tri, ortho, pyro, etc., have in general been disregarded in the alphabetical arrangement, and have ocen printed in italies. Exceptions to this have been made, however, in the cobalt, chromium, etc., ammonium compounds, and in a few others, as dithionic, perchloric, etc., acids. Cross references have been used, so as to prevent any confusion arising from lack of uniformity in this respect.

In the Appendix will be found formulæ and tables for the conversion of the degrees of various hydrometer scales into specific gravity, and a Synchronistic Table of the Periodicals to which references are most frequently made.

APBREVIATIONS

abs.—absolute.
atmos.—atmosphere.
b..-pt.—boiling-point.
comp.—compound.
conc.—concentrated.
corr.—corrected.
cryst.—crystallised, crystalline
decomp.—decompose, decomposes,
decomposition, etc.
dil.—dilute.
eutec.—eutectic.
insol.—insoluble.
M.—a univalent Metal.
Min.—Mineral.
mol.—molecule.

n.-pt.—melting-point.
ord.—ordinary.
n.-normal.
ppt., pptd., etc.—precipitate, precipitated, etc.
pt.—part.
sat.—saturated.
sl.—slightly.
sol.—soluble
sp. gr.—specific gravity.
supersat.—supersaturated.
t°=temperature in Centigrade degrees.
temp.—temperature.
tr. pt.—transition point.
vol.—volume.

ABBREVIATIONS OF REFERENCES

- A.—Annalea der Pharmacie, edited by Liebig and others, 1832–50; continued as Annalea der Chemie und Pharmacie, 1849–73; continued as Justus Liebig's Annalea der Chemie, 1874-1915+. 406 vols.
- 1874-1915+. 406 vols.

 A. ch.—Annales de Chimie et de Physique. Paris. 1st series, 1789-1816, 96 vols.; 2nd series, 1817-40, 78 vols., 3rd series, 1841-62 (6) vols.; 4th series, 1864-73, 30 vols.; 5th series, 1874-83, 30 vols.; 6th series, 1884-93, 30 vols., 7th series, 1893-1903, 30 vols.; 8th series, 1904-13, 30 vols.; 9th series, 1914+, 5 vols.

 Acta Lund.—Acta Universitatis Lundensis, or Lunds Universitets Års-skrift. Lund, 1364+Am. Chemist.—The American Chemist. New York, 1870-77. 7 vols.

 Am. Ch. J.—The American Chemical Journal, edited by Remsen. Baltimore, 1879-1913.

- Am. J. Sci.—American Journal of Science and Arts, edited by Sil'iman, Dana, and others. New Haven. 1st series, 1818-45, 59 vols.; 2nd series, 1840-70, 50 vols.; 3rd series, 1871-95, 50 vols; 4th series, 1890-1915 +, 40 vols. Also numbered consecutively, 190 vols.

Analyst.—The Analyst. London, 1876-1915+. 45 vols.

Ann. chim. farm. - Annali di chimica e di farmacologia. Milan. 1886-90. 5 vols.

Ann. des Mines. - Sec Ann. Min.

Ann. Min.—Annales des Mines. Paris. Ann. Phil.—Annales of Philosophy. London. 1st series, 1813–20, 16 vols.; new series, 1821-26, 12 vols.

Ann. Phys. -See Pogg. and W. Ann.

Apoth. Z.—Apotheker-Zeitung. Berlin.

Arb. Kais. Gesundheitsamt.—Arbeiten aus dem Kaiserlichen Gesundheitsamte.

Arch. Néer. Sc.-Archives Néerlandaises des Sciences exactes et naturelles.

Arch. Pharm.—Archiv der Fharmacie, continued from Archiv des Apothekervereins in Norddeutschland, which forms the 1st series 1st series, 1822-34, 50 vols.; 2nd series, 1835-72, 150 vols.; 3rd series, 1873-94+, 32 vols. Also numbered consecutively, which system is exclusively used after 3rd series, vol. 253 (1915).

Arch. sc. Phys. nat.—Archives des sciences physiques et naturelles de la Bibliothèque universelle de Génève.

A. Suppl.—Annalen der Chemie und Pharmacie. Supplement-Bande. Vol. i. 1861; vol. ii, 1862–63; vol. iii. 1864–65; vol. iv. 1865–66; vol. v. 1867; vol. vi. 1868; vol. vii. 1870; vol. viii. 1872.

B.—Berichte der deutschen chemischen Gesellschaft. Berlin, 1868–1915+. 48 vols.

Att. Acc. Linc.—Atti della reale accademia dei Lincei, rendconditi, etc.

B. A. B.—Sitzungsberichte der königlichen preussischen Akademie der Wissenschaften zu Berlin.

Belg. Acad. Bull.—Bulletin de l'Académie Royale des Sciences, des Lettres, et des Beaux-Arts de Belgique.

Berz. J. B.-Jahresbericht über die Fortschritte der physischen Wissenschaften, edited by Berzelius. 1822-47. 30 vols.

Br. Arch.—Archiv des Apothekervereins im nördlichen Teutschland, etc., edited by Brandes. 1st series, 1822-31, 39 vols., corresponds to 1st series of Arch. Pharm.

Bull. Acad. Crac.—Bulletin international de l'Académie des Sciences de Cracovie.

Bull. Ac. St. Pétersb.—Bulletin de l'Académie Impériale des Sciences de St. Pétersbourg. Bull. Soc.—Bulletin des Séances de la Société chimique de Paris. 2nd series, 1864-88, 50

vols.; 3rd series, 1889–1906, 36 vols.; 4th series, 1907–15+, 18 vols. Bull. Soc. chim. Belg.—Bulletin de la Société chimique Belgique.

Bull. Soc. ind. Mulhouse.—Bulletin de la Société industrielle de Mulhouse. 1828-49. 22 vols.

Bull. Soc. Min.—Bulletin de la société française de Minéralogie. 1878-1915+. 37 vols.

C. A.—Chemical Abstracts. American Chemical Society. New York.
C. C.—Chemisches Centralblatt, continued from Pharmaceutisches Centralblatt.
C. B. Miner.—Centralblatt für mineralogie, Geologie und Palæontologie. Berlin.
Chem. Ind.—Die Chemische Industrie, edited by Jacobsen. Berlin.
Chem. Soc.—Journal of the Chemical Society of London. 1st series, 1849—62, 15 vols.; 2nd series, 1863-78, 17 vols.; new series, 1878-1915+. The vols. are numbered consecutively from 1849. 1878 = vol. 32. Total, 108 vols.

Chem.-tech. Centr-Anz.—Chemisch-technischer Central-Anzeiger.

Chem. Weekbl.—Chemiker Weekblad.
Chem. Z.—See Ch. Z.
Chem. Zeitschr.—Chemische Zeitschrift.
Ch. Gaz.—The Chemical Gazette. London, 1843–59. 17 vols.
Ch. Kal.—Chemiker Kalender, edited by Biedermann.

Ch. Z.—Chemiker Zeitung.

Ch. Z. Repert.—Chemisches Repertorium Beiblatt zur Chemiker-Zeitung. Göthen.

Cim.—Il Čimento. Turin, 1852-54. 6 vols.

C. N.—The Chemical News. London, 1860–1915+. 112 vols.

Comm.—Commentar zur Pharmacopoca germanica by Hager. Berlin, 1883. Compt. chim.—Comptes-rendus mensuels des Travaux chimiques, edited by Laurent and Gerhardt. 1845-51. 7 vols.

C. R.—Comptes-rendus hebdomadaires des Séances de l'Académie des Sciences. Paris, 1835–1915+. 161 vols.

Crell. Ann - Chemische Annalen für die Freunde der Naturlehre, etc., edited by Crell. 1784-1803. 40 vols.

Dansk. Vid. For.—Oversigt over det kgl. danske Videnskabernes Selskabs Forhandlinger. Copenhagen.

Dingl.—Dingler's Polytechnisches Journal, edited by Dingler and others. 1820-1915+.

Edinb. Trans.—Transactions of the Royal Society of Edinburgh. 1788-1915+. 51 vols. Ed. J. Sci.—The Edinburgh Journal of Science. 1st series, 1824-29, 10 vols.; 2nd series, 1829-32, 6 vols. Continued as Phil. Mag.

Electrochem. Ind.—Electrochemical Industry (Oct., 1902, to Dec., 1904) later Electrochemical and Metallurgical Industry. New York.

Elektrochem Z.—Elektrochemische Zeitschrift. Berlin.

Eng. Min. J.—The Engineering and Mining Journal. New York.

Gazz. ch. it.—Gazzeta chimica italiana. Palermo, 1871–1915+. 45 vols. Gilb. Ann.—Annalen der Physik, edited by Gilbert. 1st series, 1799–1808, 30 vols.; 2nd series, 1809-18, 30 vols.; 3rd series, 1819-24, 26 vols. Also numbered consecutively. 76 vols. Continued as Pogg.

Gm.-K.-Gmelin-Kraut's Handbuch der anorganischen Chemie, 6te Auflage. 1877-1905.

7te Auflage, 1907–1915+. Gr.-Ot.—Graham-Otto's ausführliches Lehrbuch der anorganischen Chemie, 5te Auflage, by Michaelis. 1878-89.

Jahrb. Miner.—Jahrbuch für Mineralogie, Geologie und Palæontologie. Heidelberg. 1830–1832. Then. Neues Jahrbuch für Minerologie. Stuttgart.

Jahrb. d. Pharm.—Jahresbericht der Pharmacie. J. Am. Chem. Soc.—Journal of the American Chemical Society. New York, 1876-1915+. 37 vols.

J. Anal. Appl. Ch.—The Journal of Analytical and Applied Chemistry, edited by Hart. 1887-93. 7 vols.

J. B.—Jahresbericht über die Fortschritte der Chemie, u. s. w.

J. Chim. méd.—Journal de Chimie médicale, de Pharmacie, et de Toxicologie. 1st series, 1825–34, 10 vols.; 2nd series, 1835–44, 10 vols.; 3rd series, 1845–54, 10 vols.; 4th series, 1855–64, 10 vols.; 5th series, 1865–76. 12 vols.

Jena. Zeit.—Jenaische Zeitschrift für Medicin und Naturwissenschaften.

J. Pharm.—Journal de Pharmacie et de Chimie. Paris. 2nd series, 1815–41, 27 vols.; 3rd

J. Pnarm.—Journal de Pharmacie et de Chimie. Paris. 2nd series, 1815-41, 27 vols.; 3rd series, 1842-64, 46 vols.; 4th series, 1865-79, 30 vols.; 5th series, 1879-94; 6th series, 1895-1909, 30 vols.; 7th series, 1910-15+, 10 vols.

J. Phys.—Journal der Physik, edited by Gren. 1790-98. 12 vols. Continued as Gilb. Ann.

J. Phys. Ch.—The Journal of Physical Chemistry. Ithaca, N. Y.

J. pr.—Journal für praktische Chemie, edited by Erdmann, Kolbe, and v. Meyer. Leipzig. 1st series, 1834-69, 108 vols.; 2nd series, 1870-1915+. 92 vols.

J. russ. phys. Chem. Soc.—Journal de la Société physico-chemique russe. St. Pétersbourg.

J. Russ. Soc.—Journal of the Russian Chemical Society. St. Petersburg, 1869-1915+. 47 vols.

J. Soc. Chem. Ind.—Journal of the Society of Cl.

J. Soc. Chem. Ind.—Journal of the Society of Chemical Industry. London, 1882-1915+.

J. S. C. I.—See above.

J. Tok, Chem. Soc.—Journal of the Tokyo Chemical Society.

Kastn. Arch.—Archiv für die gesammte Naturlehre, edited by Kastner. Nuremberg, 1824-35. 25 vols.

Listy Chemické.—Listy Chemické, edited by Preis and others. Prague. Lond. R. Soc. Proc.—See Roy. Soc. Proc.

Lund. Univ. Arsk.—Lunds Universitets Ars-skrift. Lund.

M.—Monatshefte für Chemie und verwandter Theile der anderer Wissenschaften. Vienna. 1880-1915+. 36 vois.

M. A. B.—Sitzungsberichte der mathematisch-physikalischer Classe der kgl. bayerischen Akademie der Wissenschaften zu München.

Mag. Pharm.—Magazin der Pharmacie. 1823-31. 36 vols. Mém. Acad. St. Pétersb.—Mémoires de l'Académie Impériale des Sciences de Saint-Péters-

M. Ch.-See M.

Mem. Coll. Sci. Kyoto.—Memoirs of the Colloge of Science, Kyoto. Metall.—Metallurgie. Halle.

Miner. Jahrb.—Neues Jahrbuch fnr Mineralogie, etc. 1833-73. 40 vcls.

Miner Mag.—Mineralogical Magazine. London.

Miner Mitt.—Mineralogical Magazine. London.

Miner Mitt.—Mineralogische und petrographische Mitteilungen. Wien.

Monit. Scient—Le Moniteur Scientifique, editod by Quesnesville. Paris.

N. Arch. Sc. ph. nat.—Nouvelles Archives des Sciences physiques et naturelles. Geneva.

N. Cim.—Il nuovo Cimento. Pisa, 1855—61. 14 vols.

N. Edinb. Phil. J.—New Edinburgh Philosophical Journal. 1819-64. 90 vols.

N. Jahrb. Miner.— Neues Jahrbuch für Mineralogie. Stuttgart. N. Jahrb. Pharm.—Neues Jahrbuch der Pharmacie. 1796–1840. 42 vols. N. J. Pharm.—Neues Jaurnal der Pharmacie für Aerzte, etc., edited by Trommsdorff. 1817-34. 27 vols. N Rep. Pharm.—Neues Repertorium für Pharmacie. 1852-76. 25 vols.

Pharm. Centralbl. -- Pharmaceutisches Centralblatt. 1830-49. 20 vols. Continued as

Pharm. Era.—Pharmaceutical Era.

Pharm. J. Trans.—Pharmaceutical Journal and Transactions.

Pharm. Post.—Pharmaceutische Post. Wien.
Pharm. Vierteljb.—Pharmaceutische Vierteljahresberichte.
Pharm. Weekbl —Pharmaceutisches Weekblad.

Pharm. Ztg.--Pharmaceutische Zeitung.

Phil. Mag.—The Philosophical Magazine. London. 1st series, 1814-26, 26 vols.; 2nd series, 1827-32, 11 vols.; 3rd series, 1832-50, 37 vols.; 4th series, 1851-75, 50 vols.; 5th series, 1876-1900, 50 vols.; 6th series, 1901-1915+, 30 vols.

1'hil. Mag. Ann.—The Philosophical Magazine and Annals of Chemistry, etc. Corresponds to Phil. Mag. 2nd series.

Phil. Trans.—The Philosophical Transactions of the Royal Society of London. 1665–1915+. Phys. Rev.—The Physical Review.

Porg.—Annalen der Physik und Chemie, edited by Poggendorf. 1st series, 1824-43, 60 vols. 2nd series, 1844-53, 30 vols.; 3rd series, 1854-63, 30 vols.; 4th series, 1864-73, 30 vols.; 5th series, 1874-77, 10 vols. Continued as W. Ann.

Polyt. Centralbl.—Polytechnisches Centralblatt. 1st series, 1835-46, 12 vols.; 2nd series,

1847-73, 30 vols.

Proc. Am. A. S.—Proceedings of the American Association for the Advancement of Science.

Proc. Am. Acad.--Proceedings of the American Academy of Arts and Sciences. Boston, 1846–1915+. 50 vols.

Proc. Am. Phil. Soc.—Proceedings of the American Philosophical Society. Philadelphia. Proc. Chem. Soc.—Proceedings of the Chemical Society of London. Proc. K. Akad. Wet.—See Ver. K. Akad. Wet.

Proc. Soc. Manchester.—Proceedings of the Literary and Philosophical Society of Manchester.

Proc. Roy. Soc.—See Roy. Soc. Proc.

Q. J. Sci.—Quarterly Journal of Science. London, 1816-26. 22 vols.

Rass. Min.—Rassegna mineraria, metallurgica e chimica.

Real. Ac. Linc.—Atti di Reale Accademia dei Lincei. Rome.

Rend. Ac. Linc. See Att. Ac. Linc.

Rep. anal. Ch.—Repertorium der analytischen Chemie. 1881-87. 7 vols.

Rep. Brit. Assn. Adv. Sci.—Reports of the Meetings of the British Association for the Advancement of Science.

Repert.—See Rep. Pharm.

Répert. chim. appl.—Répertoire de Chimie pure et appliquée. Paris, 1858-63. 9 vols. Rep. Pharm.—Répertorium für die Pharmacie, edited by Buchner. 1st series, 1815-34, 50 vols.; 2nd series, 1835-48, 50 vols.; 3rd series, 1849-51, 10 vols. Continued as N. Rep.

Rev. gén. chim.—Revue génerale de chimie pure et appliquée.

Rev. Mét.—Revue de Métallurgie. Paris.

Roy. Soc. Proc.—Proceedings of the Royal Society of London. 1832-1915+. 92 vols.

Roy. Soc. Trans.—Abstracts of Philosophical Transactions of the Royal Society of London. 1832-54. 6 vols. Continued with Roy. Soc. Proc.

R. t. c.—Recueil des Travaux chimiques des Pays-Bas. Leiden, 1882-1915+. 34 vols.

Russ. Zeit. Pharm.—Pharmaceutische Zeitschrift für Russland.
Scheik Verhandel.—Scheikundige Verhandelingen en Onderzoekingen, edited by Mulder. Rotterdam, 1857-64. 3 vols.

Scher. J.—Allgemeines Journal der Chemie, edited by Scherer. 1798-1810. 17 vols. Con-

tinued as Schw. J.

Schw. J.—Journal für Chemie und Physik, edited by Schweigger. 1st series, 1811-20, 30 vols.; 2nd series, 1821-30, 30 vols.; 3rd series, 1831-33, 9 vols. Continued as J. pr.

Sill. Am. J.—American Journal of Science, edited by Silliman, etc. See Am. J. Sci.

Sitzungsb. böhms. Gesell.-Sitzungsberichte der königlichen böhmschen Gesellschaft der Wissenschaften in Prag.

Storer's Dict.—First Outlines of a Dictionary of Solubilities of Chemical Substances, by F. H. Storer. Boston, 1864.
Sv. V. A. F.—Ofversigt of kongl. Svenska Vetenskaps-Akademien Förhandlingar. Stock-

Sv. V. A. H.—Kongliga Svenska Vetenskaps-Akademiens Handlingar.

Sv. V. A. H. Bih.—Bihang till kongl. Svenska Vetenskaps-Akademiens Handlingar. Stock-

Techn. J. B.—Jahresbericht über die Fortschritte der chemischen Technologie, edited by Wagner, Fischer, etc.

Trans. Am. Electrochem. Soc. - Transactions of the American Electrochemical Society. Philadelphia.

Trans. Faraday Soc.—Transactions of the Faraday Society. London. Trans. Roy. Soc.—Philosophical Transactions of the Royal Society of London.

Ver. K. Akad. Wet.—Verslag Koninkle Akademie van Wettenschappen, Amsterdam.
W. A. B.—Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften zu Wien.

W. Ann.—Annalen der Physik und Chemie, edited by Wiedemann. Continuation of Pogg. 1877-1899. 69 vols. 4th series, 1900-1915+. 48 vols. W. Ann. Beibl.—Beiblätter zu Wiedemann's Annalen. Leipzig.

Z. anal.—Zeitschrift für analytische Chemie, edited by Fresenius. Wiesbaden, 1862-1915+. 54 vols.

Z. anorg.—Zeitschrift für anorganische Chemie, edited by Krüss. 1892-1915+. 93 vols. Z. B. H. Sal.—Zeitschrift für das Berg, Hütten, und Salinen-Wesen in dem preussischen Staate. Berlin. Staate. Berlin.

Zeit. angew. Ch.—Zeitschrift für angewandte Chemic. Berlin, 1887–1915+. 29 vols.

Zeit. Chem.—Zeitschrift für Chemie und Pharmacie. 1st series, 1858–64, 6 vols.; 2nd series, "N. F.," 1865–71, 7 vols.

Zeit. d. allgem. öster. Apothekerv.—Zeitschrift des allgemeinen österreichischen Apothekervereins.

Zeit. ges. Nat.—Zeitschrift für die gesammten Naturwissenschaften.

Zeit. Krist.—Zeitschrift für Krystallographie und Mineralogie. 1877–1915+. 51 vols.

Zeit. Pharm.—See Russ. Zeit. Pharm.

Z. Elektrochem.—Zeitschrift für Elektrochemie. Halle.

Z. Phys. Ch.—Zeitschrift für physikalische Chemie, edited by Oswald and van't Hoff. 1887-1915 + .90 vols.

Z. physiol. Chem.—Zeitschrift für physiologische Chemie. Strassburg.
Z. Ver. Zuckerind.—Zeitschrift des Verein der deutschen Zuckerindustrie.

A DICTIONARY OF CHEMICAL SOLUBILITIES INORGANIC

DICTIONARY

OF

CHEMICAL

INORGAN₁C

Actinium emanation.

Solubility coefficient of activium emanation

in H₂O at room temp, is 2.

If the solubility of actinium emanation in If the solubility of actinum emanation in H_2O is made = 1, the relative solubility of the emanation in sat. KC!+Aq=0.9; in conc. $H_2SO_4=0.95$; in ethyl alcohol=1.1; in amyl alcohol=1.6; in benzaldehyde=1.7; in benzere=1.8; in toluene=1.8; in petroleum=1.9; in CS=2.1 at 18°.

(Hevesy, Phys. Zeit. 1911, 12. 1221.)

Air, Atmospheric.

See also Nitrogen and Oxygen.

100 vols. $\rm H_2O$ at 15° and 760 mm. absorb about 5 vols. atmospheric air. (Saussure.)

1 vol. H_2O at t° and 760 mm. pressure absorbs V vols. atmospheric air reduced to 760 mm. and 0°.

t°	v	t°	v	t°	v
0	0.02471	7	0.02080	14	0.01822
1	0.02406	8	0.02034	15	0.01795
2	0.02345	9	0.01192	16	0.01771
3	0.02287	10	0.01953	17	0.01750
4	0.02237	11	0.01916	18	0.01732
5	0.02179	12	0.01882	19	0.01717
6	0.02128	13	0.01851	20	0.01701

(Bunsen's Gasometry.)

11. H₂O absorbs ec. N and O from air at to and 760 mm. pressure.

t°	cc.	cc.	cc.
	N	O	N+0
0	16.09	8.62	24.71
5	14.18	7.60	21.78
10	12.70	6.79	19.49
15	11.67	6.25	17.92
20	11.08	5.93	17.01

(Bunsen, Gasometr. Methoden, 2te Aufl. 209

11. H₂O absorbs cc. N and O from air at t° and 760 mm. pressure (drv).

t°	cc. N	ce. C	N+0	%0
10 15 20 25	15.47 13.83 12.76 11.78	7 87 7.09 6.44 5.91	23.34 20.92 19.20 17.69	33.74 33.86 33.55 33.40

(Roscoe and Lunt, Chem. Soc 55. 568.)

1 l. H_2O absorbs cc. N and O from air at t° and 760 mm.

t°	ce. N	cc. O	%0
0	19.53	10.01	33.88
6.0	16.34	8.28	33.60
6.32	16.60	8.39	33.35
9.18	15.58	7.90	33.60
13.70	14.16	7.14	33.51
14.10	14.16	7.05	33.24

(Pettersson and Sondén, B. 22. 1439.)

1 l. H_2O absorbs cc. N (0° and 760 mm.) from atmospheric air at t° and 760 mm. pressure (dry).

t°	cc. N	t°	cc. N	to	cc. N
0 2 4 6 8	19.14 18.20 17.34 16.54 15.81	10 12 14 16 18	15.14 14.53 13.98 13.48 13.03	20 22 24 25	12.63 12.27 11.95 11.81

(Hamberg, J. pr. (2) 33. 447.)

1 l. H2O absorbs cc. N from air at to and 760 mm. pressure.

t°	cc. N	t°	ec. N	to	oc. N
0	19.29	10	15.36	20	12.80
5	17.09	15	13.95	25	11.81

(Dittmar, Challenger Expedition, vol. 1. pt. 1.)

. 1	1. H ₂ O	sat.	with	air a	t t°	and	760	mm.	con-
	tains	cc.	O (re	d. to	0°	and	760	mm.).

t°	oc. O	t°	cc. O	t°	cc. O
0 1 2 3 4 5 6 7 8 9	10.187 9.910 9.643 9.387 9.142 8.907 8.682 8.467 8.260 8.063 7.873	11 12 13 14 15 16 17 18 19 20 21	7.692 7.518 7.352 7.192 7.038 6.891 6.730 6.614 6.482 6.356 6.233	22 23 24 25 26 27 28 29 30	6.114 5.999 5.886 5.776 5.669 5.564 5.460 5.357 5.255

(Winkler, B. 22. 1773.)

1 vol. H₂O absorbs 0.01748 vol. air at 24.05° and 760 mm. pressure. (Winkler, B. 21. 2851.)

Composition of the absorbed air between 0° and 24° is 34.91% O and 65.09% N (Bunsen); between 15° and 16°, 32.17% O and 67.83% N (König and Kranch, Z. anal. 19. 259); 32% O and 68% N (Regnault); at 0°, 35.1% O; 0°, 34.8% O; 20°, 34.3% O; 25°, 33.7% O (Winkler, B. 21. 2483). See also Roscoe and Lunt, and Pettersson and Sondén, page 1.

Solubility of atmos. oxygen and nitrogen in 1000 cc. H_2O at 760 mm. pressure (cale.).

Temp	Oxygen	Nitrogen	Temp	Oxygen	Nitrogen
	cc.	cc.		cc.	∘cc.
0.	10.19	18.45	29°	5 .33	10.30
	9.91	17.99	30	5.24	10.15
1 2 3 4 5 6	9.64	17.55	31	5.15	9.99
$\bar{3}$.	9.39	17.12	32	5.07	9.83
4	9.14	16.71	33	4.99	9.67
5	8.91	16.30	34	4.91	
6	8.68	15.91	35	4.83	9.37
·7	8.47	15.54	36	4.76	9.22
8	8.26	15.18	37	4.69	9.08
9	8.06	14.83	38	4.62	8.94
10	7.87	14.50	39	4.55	8.81
11	7.69	14.19	40	4.48	8.67
12	7.52	13.89	41	4.42	8.55
13	7.35	13.61	42	4.35	8.43
14	7.19	13.33	43	4.28	8.31
15	7.04	13.07	44	4.22	8.20
16	6.89	12.83	45	4.15	8.09
, 17	6.75	12.57	46	4.09	7.97
18	6.61	12.34	47	4.03	7.87
19	6.48	12.12	48	3.97	7.76
20	6.35	11.91	49	3.91	7.65
21	6.23	11.71	50	3.85	7.55
22	6.10	11.52	51	3.79	7.45
23	5.98	11.33	52	3.74	7.34
24	5.86	11.14	53	3.68	7.24
25	5.75	10.96	54	3.62	7.13
26	5.64	10.79	55	3.56	7.03
27	5.54	10.62	56	3.51	6.92
28	5.43	10.46	57	3.45	6.81

Solubility of atmos. etc.—Continued

Temp	Oxygen	Nitrogen	Temp	Oxygen	Nitrogen
٠.	cc.	cc.		cc.	cc.
58°	3.39	6.71	80°	1.97	4.03
59	3.34	6.60	81	1.89	3.88
60	3.28	6.50	82	1.81	3.73
61	3.22	6.39	83	1.73	3.57
62	3.16	6.27	84	1.65	3.41
63	3.10	6.16	85	1.57	3.24
64	3.04	6.05	86	1.48	3.07
65	2.98	5.94	87	1.39	2.89
66	2.92	5.82	88	1.30	2.71
67	2.85	5.70	89	1.21	2.52
68	2.79	5.59	90	1.11	2.32
69	2.73	5.47	91	1.02	2.12
70	2.66	5.35	92	0.92	1.91
71	2.60	5.23	93	0.81	1.70
72	2.53	5.10	94	0.71	1.48
73	2.47	4.98	95	0.60	1.25
74	2.40	4.85	96	0.48	1.01
75	2.33	4.72	97	0.37	0.77
76	2.26	4.59	98	0.27	0.52
77	2.19	4.45	99	0.13	0.27
78	2.12	4.32	100	0.00	0.00
79	2.04	4.18			

(Winkler, B. 1901, 34. 1440.)

Absorption of atmospheric air by H₂O at t° and 760 mm. pressure. β = coefficient of absorption. β_1 = "Solubility." (See under oxygen.)

t°	β	$oldsymbol{eta_1}$	t°	β	β_1
0	0.02881	0 02864	55	0.01253	0.01059
5	2543		60	1216	
10	2264	2237	65	1182	
15	2045		70	1156	
20	1869		75	1137	0705
25	1724	1671	80	1126	0600
30	1606		85	1119	0481
35	1503		90	1113	0343
40	1418	1315	95	1109	0185
45	1351	1224	100	1105	0000
50	1297	1140			

(Winkler, B. 1901, 34, 1409.)

Sea-water absorbs less O and N from air than pure $\rm H_2O$, but the ratio between O and N remains constant. In sea-water sat, with air at 6.22° the oxygen was 33.50% of the total gas absorbed. (Pettersson and Sondén.)

1 l. sea-water absorbs cc. N and O from air at t° and 760 mm. pressure.

t°	cc. N	cc. O	N +O	% 0
0	14.41	7.77	22.18	35.03
5	13.22	6.93	20.15	34.39
10	12.08	6.29	18.37	34.24
15	11.01	5.70	16.71	34.11

(Tornoë, Norwegian North Atlantic Exped. Chem. 18.) 1 l. sea water absorbs cc. N from air at to and 760 mm.

t°	cc. N	t°	ce. N	t°	. cc. N
$\frac{0}{5}$	15.60	10	12.47	20	10.41
	13.86	15	11.34	25	9.62

(Dittmar.)

11. sea-water absorbs cc. N (0° and 760 mm.) from atmospheric air at to and 760 mm. pressure (dry).

t°	cc. N	t°	ce, N	t°	cc. N
0 2 4 6 8	14.85 14.20 13.60 13.04 12.53	10 12 14 16 18	12.06 11.62 11.23 10.87 10.54	20 22 24 25	10.25 9.98 9.73 9.62

(Hamberg.)

Absorption of air which is free from carbonic acid by H_2SO_4 at 18° and 760 mm. $\alpha =$ coefficient of solubility.

H₂SÕ₄	α	H ₂ SO ₄	а
98%	0.0173	70%	0.0055
90%	0.0107	60%	0.0059
80%	0.0069	50%	0.0076

(Tower, Z. anorg, 1906, 50, 388.)

Absolute alcohol absorbs 0.11 vol. gas from air, ½ of which is O and ½, N. On mixing with an equal vol. H₂O, ½ of the dissolved gas is given off. (Döbereiner.) 100 vols. alcohol. (95.1 %) absorb 14.1 vols. air. (Robinet, C. R. 58, 608.)

absorb 6.8 vols. air. er " 6.89 " " 100 vols. petroleum

" " oil of lavender " benzene benzene " 14.0 " " oil of turpentine" 24.18 " "

(Robinet, l.c.)

1 vol. ether at 760 mm. pressure absorbs 0.290 vols. air at 0°; 0.287 vols. at 10°; 0.286 vols. at 15°. (Christoff, Z. phys. Ch. 1912, 79. 459.)

Alcohol. C₂H₅OH.

Sp. gr. of pure ethyl alcohol + Aq. at 25°.

alcohol	Sp. gr.	alcohol	Sp. gr.
0	0.997077	55	0.898502
$egin{smallmatrix} 2 \ 5 \end{bmatrix}$	0.993359	60	0.886990
	0.988166	65	0.875269
. 6	0.986563	70	0.863399
10	0.980434	75	0.851336
15	0.973345	80	0.839114
20	0.966392	85	0.826596
25	0.958946	90	0.813622
30	0.950672	95	0.799912
35	0.941459	98	0.791170
40	0.931483	99	0.788135
45	0.920850	100	0.785058
50	0.909852	_	_

(Osborne, McKelvy and Bearce, Bureau of Standards, Sci. Paper No. 197.)

Alum, Ammonia.

See Sulphate, aluminum ammonium.

Alum. Chrome.

See Sulphate, aluminum chromium.

Alum, Iron.

See Sulphate, aluminum ferric.

Alum, Potash,

See Sulphate, aluminum potassium.

Alumina.

See Aluminum oxide.

Aluminic acid, $H_2Al_2O_4 = Al_2O_3$, H_2O .

Aluminum hydroxide possesses acid properties, and salts corresponding to an acid of the above formula exist.

See Aluminum hydroxide.

Aluminates.

All aluminates are insol. in H2O except those of K and Na (Fremy) and Ba (Beckmann, J. pr. (2) 26, 385).

Barium aluminate, $BaAl_2O_4+4H_2O_1$

Sol. in 10 pts. H₂O; can be recryst, from alcohol. (Deville, J. pr. 87. 299.)

 $+5\mathbf{H}_2\mathrm{O}$. Sl. sol. in $\mathbf{H}_2\mathrm{O}$ with decomp.

(Allen, Am. Ch. J. 1900, 24. 313.)

+7H₂O. Sl. sol. in cold, not completely sol. in hot H₂O. Sol. in cold dil. HCl+Aq. (Beckmann, J. pr. (2) **26**. 385.)

Ba₂Al₂O₅+5H₂O. Sol. in 20 pts. H₂O by

boiling. (Beckmann, B. 14. 2151.) Insol. in alcehol.

Sl. sol. in "H₂O with decomp.; insol. in alcohol. (Allen, Am. Ch. J. 1900, 24. 311.)

 $Ba_3Al_2O_6+7-11H_2O$. Sol. in 15 pts. H_2O with decomp. into Ba₂Al₂O₅+5H₂O; insol. in alcohol. (Beckmann.)

Barium aluminate bromide, BaAl₂O₄, BaBr₂ $+11H_{2}O.$

Sol. in H₂O. (Beckmann, J. pr. (2) 26. 385, 474.7

Barium aluminate chloride, BaAl₂O₄, 3BaCl₂ +6H₂O.

Sol. in H₂O. (Beckmann, l.e.) BaAl₂O₄, BaCl₂+11H₂O. Sol. in H₂O. (Beckmann, l.c.)

Barium aluminate iodide, BaAl₂O₄, BaI₂. Sol. in H₂O. (Beckmann, l.c.)

Calcium aluminate, CaO, Al₂O₃,

Decomp. by H₂O but does not "set." Sol. in HCl; insol. in HNO₃, H₂SO₄, and HF. (Dufau, C. R. 1900, **131.** 543.)

Ca₂Al₂O₅+7H₂O. Slowly decomp. H₂O; sl. sol. in H₂O. (Allen, Am. Ch. J. 1900, 24. 316.)

Ca₂Al₂O₆. Insol. in H₂O; not decomp. by KOH+Aq; sol. in acids. (Tissier, C. R. 48. 627.)

+6H₂O.Ppt; sl. sol. in H₂O; insol. in alcohol. (Allen, Am. Ch. J. 1900, 24. 316.) 3Al₂O₃.4CaO+3H₂O. Ppt. (Friedel, Bull. Soc. Min. 1903, 26. 121; C. C. 1904, I. 430.)

Cobalt aluminate.

"Thenard's or Leithner's blue." Insol. in

CoAl₂O₄. Insol. in H₂O and acids. (Ebel-

Cobalt magnesium aluminate, [MgCo]Al₂O₄. "Spinel Blue." Insol. in H2O or HCl+Aq. (Ebelmen.)

Glucinum aluminate, GlAl₂O₄.

Min. Chrysoberyll. Not attacked by acids, but decomp. by KOH + Aq.

Iron (ferrous) aluminate, FeAl₂O₄.

Min. Hercynite. Not attacked by acids. Lithium aluminate, LiAlO₂.

Sol. in H₂O. (Weyberg, C. C. 1906, II. 1659.)

Lithium hydrogen aluminate, LiHAl₂O₄+ 5H₂O.

Sl. sol. in H₂O; decomp. on boiling. (Allen, Am. Ch. J. 1900, 24. 310.)

Magnesium aluminate, MgAl₂O₄.

Min. Spinel. Insol. in H₂O. Insol. in HNO₃+Aq; very sl. sol. in HCl +Aq; partly sol. in H₂SO₄ at boiling temp. (Abich, Pogg. 23. 316.)

Sol. by standing 2 hours at 210° with a mixture of 3 pts. H₂SO₄ and 1 pt. H₂O, or by boiling with this mixture together with HF. (Mitscherlich, J. pr. 81. 108.)

Sl. sol. in HCl, HF, and H₂SO₄; insol. in HNO₈. (Dufau, Bull. Soc. 1901, (3) **25**. 669.)

Manganous aluminate.

Insol, in H₂O and acids. (Ebelmen, A. ch. (3) **22.** 225.)

MnAl₂O₄. Insol. in HCl+Aq; readily attacked by HF, HNOs and H2SO4.

Decomp. by fusion with alkali chlorate, nitrate, oxide or carbonate. (Dufau, C. R. 1902, **135.** 963.)

Nickel aluminate.

Insol. in H2O.

Potasssium aluminate, K₂Al₂O₄+3H₂O.

Decomp. by dissolving in pure H2O with separation of Al₂O₈. (Fremy, A. ch. (3). 12. 362.) Can be recrystallised from water containing a little alkali, without decomposition. (Fremy.)

Insol. in alcohol.

Sodium aluminate, Na₂Al₂O₄.

Easily and completely sol. in cold H_2O . (Schaffgotsch, Pogg. 43. 117.)

+4H₂O. Insol. in alcohol. (Allen, Am. Ch. J. 1900, 24. 308.)

NacAl2Oc. Miscible with hot H2O, and as sol. as NaOH in cold H2O. Insol. in alcohol but decomp. thereby. (Tissier, C. R. 43. 102.)

Strontium aluminate, Sr₃Al₂O₆+6H₂O.

Sl. sol. in H₂O (with slow decomp. in Aq. solution). (Allen, Am. Ch. J. 1900, 24. 314.)

Thallium aluminate, Tl₄Al₂O₅+7H₂O.

Not completely sol. in, but slowly hydrolysed by H₂O.

Readily sol. in dil. acids and in the fixed alkalies.

Insol. in abs. alcohol. (Hawley, J. Am. Chem. Soc. 1907, 29, 303.)

Zinc aluminate, ZnAl₂O₄.

Insol, in acids or alkalies. Min. Gahnite (Automolite).

 $+xH_2O$. Sol. in KOH, and NH₄OH+Aq. (Berzelius.)

Aluminicoantimoniotungstic acid.

Ammonium aluminicoantimoniotungstate, $6(NH_4)_2O$, $2Al_2O_3$, $3Sb_2O_5$, $18WO_3+$ 17H₂O.

A shellac-like gum. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1856.)

Barium aluminicoantimoniotungstate, 5BaO, $2\text{Al}_2\text{O}_3$, $3\text{Sb}_2\text{O}_5$, $18\text{WO}_3+6\text{H}_2\text{O}$.

Somewhat insol. in dil. HCl. J. Am. Chem. Soc. 1908, 30. 1857.)

Silver aluminicoantimoniotungstate, 6Ag₂O, $2Al_2O_3$, $3Sb_2O_5$, $18WO_3+12H_2O$.

Sol. in NH₄OH+Aq but requires HNO₃ (1:10) to dissolve it. (Daniels, J. Am. Chem. Soc. 1908**, 30.** 1857.)

Aluminicoarseniotungstic acid.

Ammonium aluminicoarseniotungstate, $6(NH_4)_2O$, $2Al_2O_3$, $3As_2O_5$, $18WO_3$ +

14H₂O. Sparingly sol. in H₂O. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1854.)

Barium aluminicoarseniotungstate, $2Al_2O_3$, $3As_2O_5$, $18WO_3+12H_2O$.

Very sl. sol. in H₂O. Sol. in very dil. HCl or HNO₃. (Daniels,

J. Am. Chem. Soc. 1908, **30.** 1855.)

Cadmium aluminicoarseniotungstate, 4CdO, $2Al_2O_3$, $3As_2O_5$, $18WO_3+17H_2O_2$

Sol. in dil. mineral acids and in strong NH₄OH+Aq. 1908, **30.** 1855.) (Daniels, J. Am. Chem. Soc.

Aluminicomolybdic acid.

Ammonium aluminicomolybdate, 3(NH₄)₂O, Al_2O_3 , $12MoO_3+19H_2O$.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 696.)

+20H₂O. More sol. in H₂O than potassium

aluminicomolybdate. (Struve, Bull. Acad. St. Petersb. 12. 147.)

+22H₂O. (Marckwald, Dissert. 1835.)

Barium aluminicomolybdate, 4BaO, $\Lambda^{1}_{2}O_{3}$, $12MoO_{8}+14H_{2}O$.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 712.)

Lead aluminicomolybdate, $4P^{l_1}O$, Al_2O_3 , $12MoO_3+21H_2O$.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 712.)

Potassium aluminicomolybdate, $3K_2O$, Al_2O_3 , $12M_0O_3 + 20H_2O$.

1 pt. of the salt is sol. in 40.67 pts. $\rm H_2O$ at 17°. Very difficultly sol. in acids. (Struve.) $\rm H_3Al(MoO_4)_3$, 2KHMoO₄. Sol. in $\rm H_2O$. (Parmentier, C. R. **94**. 1713.)

Silver aluminicomolybdate, $4Ag_2O$, Al_2O_3 , $12MoO_3+16H_2O$.

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 712.)

Sodium aluminicomolybdate, 3Na₂O, Al₂O₃, 12MoO₃+22H₂O.

Efflorescent. Easily sol, in H₂O. (Gentele J. pr. **81.** 413.)

Aluminicophosphotungstic acid,

Ammonium aluminicophosphotungstate, $9(NH_4)_2O$, $2Al_2O_3$, $4P_2O_6$, $9WO_3+13H_2O$.

9(NH₄)₂O, 2Al₂O₃, 4P₂O₅, 9WO₃+13H₂O. Sl. sol. in cold and in hot H₂O. (Daniels, J. Am, Chem. Soc. 1908, **30**, 1851.)

Barium aluminicophosphotungstate, 4BaO, $2Al_2O_3$, $4P_2O_5$, $9WO_3+13H_2O$.

Sl. sol. in H₂O. Sol. in very dil. HCl or HNO₃. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1853.)

Silver aluminicophosphotungstate, $4Ag_2O$, $2Al_2O_5$, $4P_2O_5$, $9WO_3+6H_2O$.

Nearly insol, in H_2O . Sol. in NH_4OH and in dil. HNO_3 . Insol. in acetic acid. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1852.)

Zinc aluminicophosphotungstate, 5ZnO, 2Al₂O₃, 4P₂O₅, 9WO₃+11H₂O.

Sol. in dil. acids and in a large quantity of conc. ammonia when NH₄Cl is present. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1853.)

Aluminicotungstic acid.

Ammonium aluminicotungstate, $3(NH_4)_2O$, Al_2O_3 , $9WO_3+4H_2O$.

Sol. in conc. HNO₃ and in conc. HCl. When the solution in conc. HCl was boiled, a yellow colored ppt. separated. (E. F. Smith, J. Am. Chem. Soc. 1903, **25**. 1230.)

Ammonium silver alumininicotungstate, 11Ag₂O, 21(NH₄)₂O, 4Al₂O₃, 36WO₃.

The dry salt is insol. in pure H₂O, but

readily sol. in H₂O containing NH₃ or HNO₃. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1231.)

Barium aluminicotungstate, 8BaO, Al₂O₃, 9WO₃+7H₂O.

Not sol. in acids when dry. Somewhat decomp. by boiling with conc. HCl, HNO₃ or aqual legia. (Daniels, J. Am. Chem. Soc. 1908, **30**. 1848.)

Copper aluminicotungstate, 2CuO, Al₂O₃, 9WO₃+16½H₂O.

Sol. in large quantities of H₂O_F (Daniels, J. Am. Chem. Soc. 1908, **30**, 1847.)

Mercurous aluminicotungstate, 5Hg₂O, Al₂O₃, 9WO₃.

Sl. sol. in H₂O. Sol. in HNO₃(1:5). (Daniels, J. Am. Chem. Soc. 1908, **30**. 1849.)

Zinc aluminicotungstate, $1\frac{1}{2}$ ZnO, Al₂O₈, $9WO_3+8H_2O$.

Insol. in H₂O. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1850.)

ZnO, \hat{Al}_2O_3 , $9WO_3+20H_2O$. Sol. in H_2O . (Daniels.)

Aluminum, Al.

Less easily attacked than ordinary metals (iron, copper, lead, zinc, tin) by air, $\rm H_2O$, wine, beer, coffee, milk, oil, butter, fats, etc. Vinegar dissolves 0.349 g. from a sq. decimetre in 4 nonths, and 5 % NaCl+Aq, only 0.045 g. in the same time. (Ballaud, C. R. 114. 1536.)

The action of various substances contained in foods and drinks on compact Al as it occurs in utensils is very slight. Hard or soft water, whether cold or hot, showed no action in 8 days; 1% solutions of tartaric, tannic, and acetic acids had no action in same time, also 5% boric, carbolic, and salicylic acids. 4% and 10% acetic acid dissolved only 0.4 mg. of Al, while 10% acetic acid dissolved 2.1 mg. from a roughened piece of Al foil in 8 days. 1% soda solution dissolved 15 mg. in 8 days. (Rupp, Dingl. 283, 119.)

Similar results were obtained by Arche. (Dingl. 284. 255.)

Liquids which are ordinarily contained in foods and drinks do not attack sheet Al except in a very small degree. The following losses in weight in mg. by the action of the given liquids on 100 sq. centimetres sheet aluminum for 6 days were obtained:

, Liquids	Loss in mg.		
Claret			2.84
Hock		.	3.27
Brandy		. 1	1.08
5 % alcohol		i	0.61
5 % tartaric acid + Aq	•	.	1.69
1 % " "	•	.	$\frac{2.58}{3.58}$
5 % a cetic acid + Aq 1 % ""	•	٠	3.38 4.38

Liquids	Loss in mg	
5 % citric acid + Aq .		2.15
1 % " ;, 5 % lactic acid + Aq		1.90
% lactic acid+Aq		4.77
5 % butyric acid+Aq		1.31
conce		0.50
Геа		0
Beer		0
4 % boric acid + Aq		1.77
5 % carbolic acid +Aq.	•	0.23
1 % " " " '' '' '' '' '' '' '' '' '' '' ''	•	$0.49 \\ 6.35$

(Lunge, C.N. 65, 110.)

The apparent solubility of this metal in H₂O is due to the presence of minute quantities of Na. Absolutely pure Al does not lose any weight to H₂O and the H₂O remains perfectly clear. Also dil. acids remain perfectly clear. (Moissan, C. R. 1895, 121. 794–98; C. C. 1896, I. 193.)

Sl. attacked by H₂O at 80°. (J. Soc. Chen. Ind. 1904, **23.** 475.) (W. Smith,

Easily sol. in dil. or conc. HCl+Aqwhether hot or cold; also in HBr, HI, or HF+ Aq. Insol. in dil. H₂SO₄+Aq (de la Rive); sl. attacked by cold, easily by hot conc. H2SO4. Not attacked by HNO₃+Aq even when conc. and boiling (Wöhler); easily sol. in dil. H₂SO₄, or HNO₃+Aq in vacuo (Weeren, B. **24**. 1798); slowly sol. in 27 % HNO₃+Aq, 100 ccm. HNO₃+Aq requiring 2 months to dissolve 2 g. Al (Montemartini, Gazz. ch. it. **22**. 397); very sl. sol. in most organic acids, but solubility is increased by presence of NaCl.

Not attacked by dil. or conc. HNO3 at ord. temp. but attacked by hot HNO₃. Attacked by H₂PO₄. (Smith, J. Soc. Chem. Ind. 1904, **23.** 475.)

Completely sol. at 100° in two hours in HNO₃, sp. gr. 1.15–1.46. (Stillman, J. Am. Chem. Soc. 1897, **19**. 714.)

Very easily sol. in HNO₃ (contrary to the usual statement in text-books). (Woy, C. C. **190** , H. 94.)

Slowly attacked by HNO₃+Aq (20-25 %) at 25-30°. (Deventer, Chem. Weekbl. 1907,

Dil. HNO₃ or H₂SO₄ does not attack Al on account of formation of layer of gas. Action is increased by vacuum. Solutions of metallic chlorides, the metal of which is insol. and attaches itself to the Al (Pt, Au, Cu, Hg) increase the solubility, but when metal is soluble in the acid (Fe, Zn, etc.), there is no increase of solubility. (Ditte, C. R. 1890, **110.** 573.)

Violently attacked by dil. or conc. H₃PO₄+

Aq. (Winteler.)
Not attacked by solution of HCl in liquid HCN. (Kahlenberg, J. phys. Chem. 1902, **6.** 662.)

Very easily sol, in conc. or dil. KOH, or NaOH+Aq. Slowly attacked by NH₄OH+ I Insol. in H₂O, HCl+Aq, H₂SO₄+Aq, or

Aq (Wohler); sol. in BaO_2H_2+Aq (Beckmann, J. pr. (2) 26. 385); slowly sol. in CaO_2H_2

Sol. in excess of 10 % KOH+Aq and in NaOH and LiOH+Aq; sol. in hot conc. $Ba(OH)_2$, $Sr(OH)_2$ and $Ca(OH)_2 + Aq$. (Allen, Am. Ch. J. 1900, 24. 304-331.)

Attacked by hot conc. NH₄OH+A (Smith, J. Soc. Chem. Ind. 1904, 23. 475.) NH₄OH+Aq.

Sl. attacked by sulphates, or nitrates + Aq, but all chlorides, bromides, and iodides, except those of the alkalies and alkaline earths, even AlCl₃+Aq, dissolve the metal. Insol. in alum, or in NaCl+Aq, but sol. in alum+NaCl+Aq. (Tissier, C. R. **41**, 362); sol. in NaCl+Aq (Deville, A. ch. (3) **43**, 14); sol. in neutral FeCl₃+Aq in vacuo. (Weeren, B. **24**, 1798.) Violently attacked by CuCl₂+Aq. (Tommasi, Bull. Soc. (2) **37**, 443.)

Rapidly sol. in K₂S₂O₈+Aq, more slowly sol. in (NH) S₂O₂+Aq. (Levi Gazz ch. it.

sol. in (NH₄)₂S₂O₈+Aq. (Levi, Gazz. ch. it. 1908, 38. (1) 583.)

Attacked by (NH₄)₃PO₄+Aq. Sl. attacked by NaNO₃+Aq or KNO₃+Aq at 100°. (Smith, J. Soc. Chem. Ind. 1904, **23.** 475.)

Not affected by NH₄NO₃+Aq. (Hodgkinson, C. N. 1904, 90, 142,)

Attacked by POCl₃ at 100°. (Renitzer, B.

13. 845.) Insol. in liquid NH_3 . (Gore, Am. Ch. J. 1898, **20.** 826.)

Insol. in liquid CO2. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Attacked by NOCl. (Sudborough, Chem. Soc. 1891, **59**, 659,

92 %alcohol attacks Al less than H₂O. Pure Al is attacked less than commercial. (Hugounenq, J. Pharm. 1895, (6) 1. 537.)

Sol. in organic acids containing chlorides. (Smith, J. Soc. Chem. Ind. 1904, 23, 475.)

Acetic, tartaric and citric acids attack Al only at first. Metal is covered by layer of hydrox de but on addition of haloid salts, gradual solution ensues. (Ditte, C. R. 1898, **127.** 919.)

Not attacked by sugar + Aq. (Klein, C. R. **102.** 1170.)

Aluminum arsenide.

Decomp. by H₂O with evolution of AsH₃. (Wöhler, Pogg. 11. 160.)

Decomp. by H₂O. (Fonzes-Diacon, C. R. 1900, **130.** 1315.)

Aluminum boride, Al₂B₄.

Very slowly sol. in hot conc. HCl+Aq, and hot NaOH+Aq, but easily in moderately strong warm HNO₃+Aq. (Hampe, A. 183. **7**5.)

Al₂B₂₄. Not attacked by HCl, or KOH+ Aq. Scarcely attacked by boiling H₂SO₄. Hot cone. HNO₃+Aq dissolves gradually but completely. (Hampe, l. c.)

Aluminum borocarbide, Al₃C₂B₄₈.

KOH+Aq; slowly sol in hot conc. HNO₃+ Aluminum perbromide carbon bisulphide, Aq. (Hampe, 1. c.) Aq. (Hampe, l. c.)

Aluminum bromide, AlBr.

Anhydrous. Dissolved by H₂O with great violence and evolution of much heat. Very sol, in alcohol. More sol, in CS2 than AU. (Weber, Pogg. 103. 264.)

Sol. in SOCl₂. (Besson, C. R. 1896, 123.

Sol. in C₂H₅Br. (Plotnikoff, C. C. 1902, I'. 617.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328); (Eidmann, C. C. 1899, II 1014.)

Solubility of AlBr₃ in organic liquids.

Solvent	t°	· Mols. per 190	t°	Mols. per 100	t°	Mols. per 100
Benzo- phenone	48° 45 42 38 50 60 70 80 90 100 110 120	0 8.5 13.8 18.3 21 23.4 25.7 28.1 30.6 33.4 36.3 39.6	130° 140 142 140 130 120 110 100 90 80 70 60	48.4 50 52.1 54.5 56.7 58.6 60.3 61.7 62.9 64.1 65.1	50° 38 50 60 70 80 85 90 93 96	66.0 67.2 70.7 74.2 78.3 83.3 86.7 90.7 94.8 100
Ethylene bromide	10° 6 2 2 10	$0 \\ 8.4 \\ 16.0 \\ 22.9 \\ 28.4$	20° 30 40 50 60	33.9 40.1 47.2 55.1 63.6	70° 80 90 96	72.7 82.3 92.2 100
Benzoyl chloride	50 70	0 6.5 13.0 17.4 24.6 31.8 40 44.3	90 80 60 40 20 7	47 50.8 52.8 56 59.5 63.1 65.5 67.9	40° 60 70 80 90 96	72.6 79.4 83.9 89.2 95.8 100

(Menschutkin, Ann. Inst. Pol. P.-le-Gr., **13.** 1.)

+6H₂O. Very sol. in H₂O. +15H₂O. (Panfiloff, J. B. **1895.** 785.)

Aluminum antimony bromide, 2AlBr₃, 5SbBr₅ +24H₂O.

Hygroscopic. Decomp. by H₂O. (Weinland, B. 1903, 36. 258.)

Aluminum potassium bromide, AlBr₃, KBr. Sol. in H₂O. (Weber, Pogg. 103. 267.)

Aluminum bromide ammonia, AlBr₃, xNH₃. (Weber, Pogg. 103.

Decomp. by H₂O. 267.)

Sol. in ether, ethyl bromide, ethylene bromide and benzene; decomp. by H2O. (Plotnikoff, J. Russ. phys. Chem. Soc. 1901, 33. 91; C. C. 1901, I. 1193.)

ZAlBr₃, Br₄, CS₂. Sol. in ether and benzene: insol, in petroleum ether. (Plotnikoff, l. c.)

Aluminum bromochloride, AlCl₂Br.

Deliquescent. Somewhat less violently dissolved by H₂O than is AlBr₃. (v. Bartal, Z. anorg. 1907, 55, 154.)

+6H₂O. Deliquescent. Sol. in H₂O without evolution of heat. (v. Bartal, Z. anorg. 1907, 55. 155.)

Aluminum carbide, Al₄C₃.

Decomp. by fused KOH at 100°; insol, in furning HNO3 in the cold; decomp. by H2O, and dil. acids. (Moissan, Bull. Soc. 1894, (3) 11. 1012; C. R. 1894, 119. 16–20.) Insol. in acetone. (Naumann, B. 1904, 37.

4328.)

Aluminum chloride, basic, Al₆O₁₄H₁₀, HCl.

Easily sol. in H₂O. (Schlumberger, Bull. Soc. 1895, (3) **13.** 56.)

Aluminum chloride, AlCl₃.

Anhydrous. Very deliquescent. H₂O with a hissing noise and evolution of heat. Solution of AlCl₃ in H₂O loses HCl on evaporation, and AlCl₃ is finally wholly converted into Al₂O₃.

Sol. in 1.432 pts. H₂O at 15°. (Gerlach.) AlCl₃+Aq containing 19.15 % AlCl₃ boils at 103.4°; AlCl₃+Aq containing 38.3 % AlCl₃ boils at 112.8°. (Gerlach.)

Sp. gr. of AlCl₃+Aq at 15°.

%AlCla	Sp. gr.	%AlCls	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.0072 1.0144 1.0216 1.0289 1.0361 1.0435 1.0510 1.0585 1.0659 1.0734 1.0812 1.0890 1.0968 1.1047 1.1125 1.1207 1.1290 1.1372	22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	1.1709 1.1795 1.1881 1.1968 1.2058 1.2149 1.2241 1.2331 1.2422 1.2518 1.2615 1.2711 1.2808 1.2905 1.3007 1.3109 1.3211 1.3313
20 21	1.1537 1.1632	41	1.3522
		<u>'</u>	

(Gerlach, Z. anal. 8. 281.)

Sp. gr. at 20° of AlCl₂+Aq containing mg. mols. AlCl, per liter.

м.	Sp. gr.
0.01	1.00104
0.025	1.00282
0.05	1.00588
0.075	1.00870
0.10	1.01158
0.25	1.02911
0.55	1.05706
1.0	1.11054
1.5	1.16308
2.0	1.21378

(Jones & Pearce, Am. Ch. J. 1907, 38. 726.)

Sol. in 1 pt. strong alcohol at 12.5° (Wenzel); easily sol. in ether; sl. sol. in CS_2 ; insol. in ligroine or benzene.

Difficultly sol. in AsBr₈. anorg. 1902, 29. 374.) (Walden, Z.

Sol. in AlBr₈. (Isbekow, Z. anorg. 1913, **84.** 26.)

Insol. in liquid NH₃. (Franklin, Am. Ch. **J. 1898, 20.** 826.)

Insol. in CS2 at ord. temp. (Arctowski, Z.

anorg. 1894, 6. 257.)
Sol. in benzonitrile. (Naumann, B. 1914,

47. 1369.) Difficultly sol. in acctone. (Naumann, B.

1904, **37.** 4328.) Insol. in ethyl acctate. (Naumann, B. 1910, **43**. 314.)

Insol. in methylal. (Eidmann, C. C. 1899, II. 1014.)

Solubility of AlCl₂ in organic liquids.

boldonity of file is in organic inquites.						
Solvent '	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
Benzo- phenone	48° 44 39.5 50 60 70 80 90 100 110 120 125	0 8.5 13.8 18.3 21. 23.4 25.7 28.1 30.6 33.4 36.3 39.6	80	43.2 48.4 50 52.1 54.5 56.7 58.6 60.3 61.7 62.9 64.1 65.1	130° 140 150 160 170 180 185 190 192 194	66 0 67.2 70 7 74.2 78.3 83.3 86.7 90.7 94.8 100
Benzoyl chloride	$ \begin{bmatrix} -0.5^{\circ} \\ -4 \\ -7.5 \\ 0 \\ 20 \\ 40 \end{bmatrix} $	0 7.9 12.7 14.1 18.8 25.0	70 80 90	33.0 37.5 42.2 47.1 48.7 50.6	80° 70 60 40	52.9 55.1 57.2 61.0

(Menschutkin, Ann. Inst. Pol. P.-le-Gr., **13.** 1.)

 $+6H_2O.$ Very deliquescent; very sol. in H₂O. Sol. in 0.25 pt. H₂O. (Thomson.)

Sol. in 2 pts. abs. alcohol at ordinary temp.,

and 1.5 pts. at b.-pt. (Thomson.)

Completely insol. in a solution of ether in H₂O sat. with HCl. (Havens, Am. J. Sci. 1898, (4) 6, 46.

Aluminum ammonium chloride, AlCl₃, NH₄Cl. (Baud, A. ch. 1904, (8) 1. 46.)

Aluminum antimony chloride.

See Chlorantimonate, aluminum.

Aluminum barium chloride, 2AlCl₃, BaCl₂. (Baud, C. R. 1901, 133, 869.)

Aluminum calcium chloride, basic.

3CaO, CaCl₂, Al₂O₃+10H₂O. (Steinmetz, Z. phys. Ch. 1905, **52.** 466.)

10CaO, CaCl₂, 6Al₂O₃. Slowly decomp. by boiling H₂O. (Gorgeu, Bull. Soc. 1887, (2) **48.** 51.)

Aluminum calcium chloride, 4AlCl₃, 3CaCl₂ (Baud, A. ch. 1904, (8) 1. 51.)

Aluminum nitrosyl chloride, AlCl₃, NOCl.

Deliquescent, and decomp. by H₂O. (Weber Pogg, **118.** 471.)

Aluminum palladium chloride, AlCl₃, PdCl₂+ 10H₂O.

See Chloropalladite, aluminum.

Aluminum phosphorus pentachloride, AlCl₃, PCl₅.

Decomp. violently by H₂O. (Baudrimont.)

Aluminum phosphoryl chloride, AlCl₃, POCl₃. Deliquescent. Sol. in H₂O with decomp. Sol. in warm POCl₃, from which it separates on cooling. (Casselmann, A. 98, 220.)

Aluminum platinum chloride, AlCl₃, PtCl₂+ 15H₂O.

See Chloroplatinite, aluminum.

Aluminum potassium chloride, AlCl₃, KCl.

Slowly deliquescent. Sol. in H₂O with evolution of heat and decomp. (Degen, A. **18.** 332.)

Aluminum selenium chloride, 2AlCl₃, SeCl₄.

Sol. in H₂O with evolution of heat and separation of traces of selenium. (Weber. Pogg. **104.** 427.)

Aluminum sodium chloride, AlCl₃, NaCl.

Much less deliquescent than AlCls. Sol. in H₂O with evolution of heat. Upon evaporating, NaCl crystallises out. (Wöhler.)

Aluminum strontium chloride, 4AlCl₃, 3SrCl₂, (Baud, A. ch. 1909, (8) 1. 52.)

Aluminum sulphur chloride, 2AlCl₃, SCl₄. Decomp. by H₂O with evolution of much heat and separation of some sulphur. (Weber, Pogg, 104. 421.)
AlCl₃, SCl₄. Decomp. by H₂O. (Ruff, B.

1901, 34. 1757.)

Aluminum tellurium chloride, 2AlCl3, TeCl4. Very sol, in dil. H₂SO₄+Aq. (Weber, J. pr. **76.** 313.)

Aluminum chloride ammonia, AlCla, NHa. Sol. in H₂O. (Rose, Pogg, 24. 248.)

Completely sol. in H₂O. (Baud, C. R.

Man, 2NH₃. Very hygroscopic.
man, Am. Ch. J. 1895, 17, 750.)
AlCl₃, 3NH₃. Decomp. by H₂O.
AlCl₃, 5NH₃. M. pt. 380°
1901, 132, 128 (Still-

M. pt. 380°. (Baud, C. R.

AlCl₃, 6NH₃. Decomp. by H₂O. (Stillman, Am. Ch J. 1895, 17. 752.) Somewhat hygroscopic. (Baud, C. R. 1901, 132, 135.)

Aluminum chloride nitric oxide, [2AlCl₃, NO. Very hygroscopic. Decomp. rapidly in the air. Sol. in KOH+Aq. (Thomas, C. R. 1895, **121**. 130.)

Aluminum chloride phosphine, 3AlCl₃, PH₃. Decomp. by H₂O or NH₄OH+Aq. (Rose Pogg, 24. 295.)

Aluminum chloride hydrogen sulphide.

Deliquescent. Decomp. by H₂O or NH₄OH +Aq. (Wöhler.)

Aluminum chloride sulphur dioxide, AlCl₃, SO_2 .

Decomp. by H_2O , alcohol, or benzene. (Adrianowski, B. 12. 688.)

2AlCl₃, SO₂. (Baud, A. ch. 1904, (8) 1. 32.)

Aluminum cobalt, Co₃Al₃.

Sol. in strong acids. (Brunck, B. 1901, 34. 2734.)

Aluminum copper, Cu₄Al₉.

Sol. in aqua regia; decomp, by HCl. (Brunck, B. 1901, **34.** 2733.)

Aluminum fluoride, AlF₃.

Anhydrous. Not attacked by H₂O or acids, and only very slightly by boiling conc. H₂SO₄. Insol. in boiling KOH+Aq. (Deville, C. R. **42.** 49.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43**. 314.)

Insol. in acetone. (Naumann, B. 1904, 37.

+½H₂O. Insol. in H₂O. Sl. sol. in HF. (Baud, C. R. 1902, **135**. 1104.)

+H₂O. Completely but only sparingly sol. in H₂O. (Mazzuchelli, Real. Ac. Linc. 1907,

(5) 16, I. 775; Chem. Soc. 1907, 92, (2), 549.) +3½H₂O. Two modifications: (1) Fasily sol. in H₂O. Sol. in HF. (2) Insol. in H₂O. Sl. sol. in HF. (Baud, C. R. 1902, 135. 1104.)

 $+7H_2O$. Sol. in H_2O . (Deville, A. ch. (3) **61.** 329.)

Min. Fluellite.

+812H2O. Very efflorescent. Sat. solution contains 3.85 g. AlF₃ per 100 g. at 11° and 1.2 g. at -0.2° . (Mazzucchelli, Real. Ac. Linc. 1907, (5) 16, I. 775; Chem. Soc. 1907, (2) **92.** 549.)

Aluminum hydrogen fluoride, 3AlF₃, 2HF+ 5H₂O.

Sol. in H₂O; precipitated by alcohol. (Deville.)

2AlF₈, HF+5H₂O. (Deville, A, ch. (6) 61.

Aluminum ammonium fluoride, AlF₂, NH₄F. Somewhat sol. in H₂O; insol. in H₂O containing NH₄OH or NH₄F. (Berzelius, Pogg. **1.** 45.)

AlF₃, 2NH₄F+1.5H₂O. Sol. in 100 pts. H₂O at 16°. (Baud, C. R. 1902, **135**. 1338.) AlF₃, 3NH₄F. Nearly insol. in H₂O; easily sol. in dil. acids. (Petersen, J. pr. (2) **40**. 35.)

Quite easily sol. in H2O, but insol. in NH₄F+Aq. (Helmholt, Z. anorg. 3. 129.)

Aluminum barium fluoride.

Apparently not obtained in pure state. (Röder.)

Aluminum calcium fluoride, AlF_3 , $CaF_2 + H_2O$. Min. Evigtokite.

Aluminum calcium sodium fluoride, AlF₃, CaF₂, NaF+H₂O. Min. Pachnolite.

Aluminum cobaltous fluoride, AlF₃, CoF₂+ $7H_2O$.

Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, **22.** 272.)

Aluminum cupric fluoride, 2AlF₃, CuF₂.

Very slowly but completely sol. in H₂O. (Berzelius.)

 AlF_3 , $2CuF_2+11H_2O$. Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 272-76.) 2AlF₃, 3CuF₂+18H₂O. Sol. in dil. HF+Aq. (Weinland.)

Aluminum cupric hydrogen fluoride, AlF3, CuF_2 , $HF+8H_2O$.

Efflorescent in the air. Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 272.)

Aluminum iron (ferrous) fluoride, AlFa, $FeF_2 + 7H_2O$.

Sl. sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 270.)

Aluminum lithium fluoride.

Insol. in H₂O. (Berzelius.)

Aluminum magnesium fluoride.

2AlF₃, MgF₂ (?). (Röder.)

Aluminum nickel fluoride, AlF₂, NiF₂+7H₂O. St. sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 271.)

Aluminum potassium fluoride, AlF₃, 3KF. Very sl. sol. in acid solutions, and still less in H₂O. (Gay-Lussac and Thénard.) AlF₃, 2KF. As above.

Aluminum silicon fluoride. See Fluosilicate, aluminum.

Aluminum sodium fluoride.

2AlF₃, 3NaF. Min. Chiolite. AlF₃, 2NaF. Min. Chodneffite. AlF₃, 3NaF. Min. Cryolite. Sl. sol. in H₂O. Insol. in HCl+Aq. Decomp. by H_2SO_4 , or by boiling with NaOH+Aq.

Aluminum strontium fluoride.

As the Ba salt. (Röder.)

Aluminum thallous fluoride, 2AlF₃, 3TlF.

Ppt. Sl. sol. in H₂O. (Ephraim, Z. anorg. 1909, **61.** 243.)

Aluminum zinc fluoride, AlF₃, ZnF_2+7H_2O .

Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 272.)

2AlF₃, ZnF₂. Slowly but completely sol. in H₂O. (Berzelius.)

Aluminum hydroxide, Al₂O₃, H₂O $= Al_2O_2(OH)_2$.

Dehydrated by conc. acids, without dissolv-

ing. (Becquerel, C. R., 67. 108.)

Min. Diaspore. Insol. in HCl+Aq, and not attacked by boiling cone. H₂SO₄, unless

it has been ignited.

 Al_2O_3 , $2H_2O = Al_2O(OH)_4$. Pptd. Al hydroxide, when boiled twenty hours with H2O is insol, in acids and alkalies, and has the above composition. (St. Gilles, A. ch. (3) **46.** 57.)

Min. Bauxite.

Soluble modifications—(a) Meta-aluminum hydroxide From basic Al acetate. Sol. in H₂O and more readily in HC₂H₃O₂. aqueous solution is coagulated by traces of alkalies, many acids, and salts, while other acids and salts have no effect. Thus, 1 pt. H_2SO_4 in 1000 pts. H_2O_1 , added to 7000 pts. of above solution containing 20 pts. Al₂O₃, converts the liquid into a nearly solid mass. Citrie, tartaric, oxalic, chromic, molybdie, racemic, suberic, salicylic, benzoic, gallic, lactic, cinnamic, butyric, valeric, camphoric, pieric, uric, meconic, comenic, and hemipinic acids act in the same way. HCl and HNO₃ have far less action, 600 mols. being necessary to produce the same effect as 1 mol. H2SO4, while acetic, formic, boric, arsenious, pyro- nenschein.)

meconic, and opianic acids do not coagulate the solution, except when moderately conc. 1 pt. KOH in 1000 pts. H₂O coagulates 9000 pts. of the solution. NaOH, NH4OH, and

Ca(OH)₂ have the same effect.

The solution is not coagulated by acetates, unless added in large quantity, and even then the ppt. is redissolved when treated with H₂O. Nitrates and chlorides coagulate with difficulty; Na₂SO₄, MgSO₄, and CaSO₄+Aq, however, have as strong an action as a liquid containing the same amount of H₂SO₄. A teaspoonful of the solution introduced into the mouth solidifies at once from the action of the saliva. The ppt. formed by acids is not sol. in an ecessx of the acid, but by the long continued action of conc. H₂SO₄, especially if hot, the ppt. is dissolved; boiling conc. HCl+Aq also dissolves it, but less readily than H₂SO₄. The ppt. is sol. in boiling conc. KOH+Aq. The residue, when the solution is evaporated at 100°, has composition Al₂O₃, 2H₂O, and is insol. in acids. (Crum, Chem. Soc. **6**. 225.)

(b) By Dialysis. Sol. in H₂O, from which it is separated by extremely small amounts of various substances, as acids, ammonia, salts (especially K₂SO₄), caramel, etc. An excess of acid dissolves the coagulum. If the solution contains 0.5% Al₂O₃ or less, it may be boiled without change, but the hydroxide separates out suddenly when it is reduced to 12 its vol., and even very dil. solutions gelatinise spontaneously in a few days. The solution is not coagulated by alcohol or sugar.

(Graham, A. 121, 41.)

 Al_2O_3 , $3H_2O = Al(OH)_3$. Crystallised. Difficultly sol. in acids and alkalies. (Cossa, N. Cim. (2) 3. 228.) Insol. in boiling HCl+Aq. (Wöhler, A. 113. 249.) Sl. sol. in KOH+Aq; nearly insol. in cold H₂SO₄, HCl, HNO₃+Aq; very slowly sol. in hot HCl+Aq, more readily in hot H₂SO₄. (v. Bonsdorff, Pogg. 27. 275.) a-modification. Unstable. Changes into β-modification. Sol. in N-H₂SO₄ at ord. temp. Sol. in N-NaOH and in hot NaOH of concentration 5Na₂O, 100H₂O. (Russ, Z. anorg. 1904, 41. 226.)

 β -modification. Insol. in N-H₂SO₄ at ord. temp. Difficulty sol. in warm N-NaOH, but easily sol. in hot NaOH of concentration 5Na₂O, 100H₂O. Its solubility in NaOH increases with increase in concentration of the hydroxyl ions. (Russ.)

δ-modification. Easily sol. in conc. H₂SO₄; only sl. sol. in HCl, HNO₃ or acetic acids, or in alkali+Aq. (Tommasi, C. C. 1905, II.

Min. Gibbsite. Sol. in HCl+Aq, and dil. H₂SO₄+Aq. Readily sol. in conc. KOH, and NaOH+Aq.

Precipitated. Completely insol. in H₂O or H₂CO₃+Aq. Easily sol. in acids when freshly pptd., but solubility diminishes on standing. Easily sol. in KOH or NaOH+Aq. (Son-

Herz (Z. anorg. 25. 155) found that aluminum hydroxide which has been dried in a vacuum dessicator requires for solution in NaOH+Aq. 3 atoms Na to 1 atom Al. Slade (Z. Elektrochem. 1917, 17. 261) was unable to obtain this result. Herz says Slade's error is due to insufficient shaking of the solution. (Herz, Z. Elektrochem. 1911, 17. 403.)

New solubility determinations verify the statement of Herz (Z. anorg. 25, 155) that the solubility of Al(OH)₃ in NaOH+Aq is proportional to the concentration of NaOH. They do not, however, verify his statement that the ratio Na: Al in the solutions is always 3:1, for the author finds that the ratio Na: Al varies from 2:1 to 10:1 depending on the conditions of precipitation and the method and duration of drying of the Al(OH)₃. (Slade, Z. Elektrochem, 1912, 18. 1.)

Sl. sol. in NH₄OH+Aq when freshly pptd., but presence of NH, salts diminish its solubility, and it separates out completely after

long standing. (Fresenius.)

Somewhat sol, in NH₄OH+Aq, the more readily the larger the vol. of H₂O. Somewhat sol. in (NH₄)₂CO₃+Aq, but less than in NH₄OH+Aq. Sl. sol. in dil. NH₄Cl+Aq, unless that salt be in large excess. It is finally wholly pptd. if allowed to stand several days

18752 pts. NH₄OH+Aq (4 % NH₄OH) dissolve an amt. of Al(OH)₃ corresponding to one pt. Al₂O₃; NH₄Cl prevents this solubility almost comple cly. (Hanamann, Pharm. Viertelj. **12**. 527.)

Al(OH)₃, prepared by ppt. of a solution of Al(NO₃)₃ with NH₄OH, filtered and washed,

is insol. in NH₄OH+Aq.

Al(OH)₈ prepared by pptn. of a solution of potassium aluminate with NH₄Cl, is sol. in a large excess of NH₄OH if this is added to the ppt. at once. This modification which is sol. in NH₄OH is unstable and easily goes over into the modification which is insol, in NH₄OH. (Renz, B. 1903, **36.** 2751.)

Conc. (NH₄)₂CO₃+Aq does not dissolve Al(OH)₃, and not a trace is dissolved by boiling

with NH₄Cl+Aq. (Weeren, Pogg. **92.** 97.)
With NH₄F+Aq, it forms a double salt,
AlF₈, 3NH₄F, which is sol. in H₂O, but not in
NH₄F+Aq. (Helmholt, Z. anorg. **3.** 127.)

Insol. in (NH₄)₂S+Aq. (Malaguti and Durocher, A. ch. (3) 17. 421.) Fuchs found, on the contrary, that it is not wholly insol. in (NH₄)₂S+Aq. (Fresenius, Quant.) Insol. in FeCl₃+Aq. (Béchamp.)

Determinations of the solubility of aluminum hydroxide in AlCl₃+Aq show that part goes into solution to form a compound, while the greater part is in the colloidal form. (Fischer, Z. anorg. 1904, 40. 46.)

Only sl. sol. in conc. Al₂(SO₄)₃+Aq, but solubility increases with decrease in concentration of Al₂(SO₄)₃ until it reaches a maximum at a concentration of 32 % Al₂(SO₄)₃ at 20°, 28 % at 40°, and 38 % at 60°. With further decrease in concentration of Al₂(SO_{4)₃ comp. (Duboin, C. R. 1908, **146**, 1028.)}

the solubility of Al(OH), in Al₂(SO₄), diminishes. (Kremann, C. A. 1909. 2422.)

Sol. in Ba(OH)₂+Aq. (Rose.) Sol. in boiling Fe(NO₃)₃, Cr(NO₃)₃, B1(NO₈)₈, Hg(NO₃)₂, HgNO₃, SnCl₂, and SbCl₈ + Aq. (Persoz.)

Insol. in HCN or cold KCN+Aq; but sl.
sol. in hot KCN+Aq. (Rose.)

Insolvin KC₂H₃O₂+Aq. (Osann, 1821.) When moist, sol, in H₂SO₃+Aq, from which it is repptd. on boiling. (Berthier, A. ch. (3) **7.** 76.)

Somewhat sol. in NaC₂H₃O₂+Aq. (Mer-

cer.)

Not pptd. by NH4OH+Aq in presence of

Na citrate. (Spiller.)

Sol. in ethyl amine, amyl amine, sinkaline, ethyl picoline hydroxide, stibethylium hydroxide, triethyltoluenyl ammonium hydroxide+Aq. (Friedländer.)

Sol. in alkyl amines. (Renz, B. 1903, 36.

Insol. in acetone. (Naumann, B. 1904, 37. 4328.)

Sol. to a considerable extent in K₂C₄H₄O₆+

Aq. Very sl. sol. in cane sugar+Aq. (Ramsey.) Solubility in glycerine + Aq containing about 60 % by vol. of glycerine. 100 cc. of the solution contain 0.25 g. Al₂O₃. (Müller, Z. anorg. 1905, **43.** 322.)

Al₂O₃, 5H₂O. Insol. in H₂O, NH₄OH+ Aq and alcohol. Sol. in HCl and HNO₃+ (Zunino, Gazz. ch. it. 1900, 30 (1). Aq.

194.)

Al₂O₁₄H₁₀, "Trialuminum hydroxide."

Not sol. in conc. acids in the cold; not sol. in KOH (cold) and only sl. sol. in hot KOH. Characterized by its solubility in exactly one mol. dil. HCl. Dil. solutions do not gelatinize even on long standing. Conc. solution of NH4Cl and other salts cause ppt. which redissolves on addition of H₂O.

Alkalies and alkali carbonates decomp. the salt with HCl and ppt. trialuminium hydroxide. H2SO4 and sol. sulphates give insol. compds. with the hydrate. HNO₃ like HCl gives soluble compds, with the hydrate. (Structural formula given.) (Schlumberger, Bull. Soc. 1895, (5) 13. 41-65; C. C. 1895, I.

421.)

Aluminum iodide, AlI₃.

Anhydrous. Fumes on air and deliquesces. Sol, in H₂O with evolution of much heat. Sol. in CS2 and crystallizes from the hot sat. solution on cooling. (Weber.) Sol. in alcohol (Weber); ether and tetrachlormethane. (Gustavson.)

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, **84.** 26.)

+6H₂O. Very sol. in H₂O.

Aluminum mercuric iodide, AlI₈, HgI_2+8H_2O .

Very deliquescent; sol. in H2O without de-

amidophosphate and in NH_4OH+Aq . Insol. in $HC_2H_3O_2+Aq$.

Acid: As the neutral salt.

 $\begin{array}{c} \textbf{Hydroxylamine} \quad \textbf{amidophosphate,} \\ (NH_3O)HPO_3(NH_2). \end{array}$

Sl. sol. in H₂O. (Stokes.)

Lithium amidophosphate, LiHPO₃(NH₂). Sl. sol. in H₂O. (Stokes.)

Very sl. sol. in H_2O ; quite easily sol. in dil. NH_4Cl+Aq . Sol. in $HC_2H_3O_2+Aq$. (Stokes.) $MgH_2(PO_3NH_2)_2+3\frac{1}{4}H_2O$. Insol. in $NH_4Cl+\frac{Aq}{2}$. (Stokes.)

Manganese amidophosphate.

Neutral. Ppt. Acid. Sl. sol, in H₂O.

Nickel amidophosphate.

Neutral. Ppt. Sol. in HC₂H₃O₂ or NH₄OH+Aq.
Acid. Sl. sol. in H₂O.

Potassium amidophosphate, K₂PO₃(NH₂).

Very sol. in H₂O and not decomp. by boiling. (Stokes.)

KHPO₃(NH₂). Easily sol. in cold H₂O; insol. in alcohol. (Stokes.)

Silver amidophosphate, Ag₂PO₃(NH₂).

Almost insol, in H_2O . Sol, in HNO_3 or NH_4OH+Aq .

AgHPO₃($\dot{N}H_2$). Sl. sol. in H₂O; easily sol. in dil. HNO₃ or HC₂H₃O₂+Aq, also in NH₄OH+Aq.

Sodium amidophosphate, $Na_2PO_3(NH_2)$.

Not deliquescent; very sol. in H_2O ; pptd. from aqueous solution by alcohol. (Stokes.) NaHPO₃(NH₂)+ $\frac{1}{4}$ (?)H₂O. Nearly insol. in cold, and decomp. by hot H₂O. Insol. in alcohol.

Zinc amidophosphate.

Neutral. Perceptibly sol. in H₂O. Acid. Sl. sol. in H₂O; sol. in NH₄OH or HC₂H₄O₂+Aq.

Diamidophosphoric acid, PO(NH₂)₂OH.

Sol. in cold H₂O; almost insol. in alcohol; stable in the air but decomp. when heated and by boiling in aq. solution. (Stokes, Am. Ch. J. 1894, 16. 130.)

Barium diamidophosphate, \$\mathbb{P}O(NH_2)_2O]_2Ba. Very sol. in H₂O; insol. in alcohol; aq. solution decomp. slowly. (Stokes, Am. Ch. J. 1894, 16. 134.)

 $\begin{array}{ll} \textbf{Magnesium} & dia \textbf{midophosphate,} & [PO(NH_2)_2 \\ & O]_2Mg. \end{array}$

Sol, in H₂O; insol, in alcohol. (Stokes.)

Potassium diamidophosphate, PO(NH₂)₂OK. Sol. in H₂O; not deliquescent; insol. in alcohol. (Stokes.)

Silver diamidophosphate, PO(NH₂)₂OAg.

Very stable; insol. in H_2O . Very sol. in NH_4OH+Aq . (Stokes.)

Sodium diamidophosphate, $PO(NH_2)_2ONa$. Sol. in H_2O ; not deliquescent; insol. in alcohol. (Stokes.)

Diamidotrihydroxylphosphoric acid.

Silver diamidotrihydroxylphosphate, (AgO)₃P(NHAg)₂.

(Stokes, Am. Ch. J. 1894, **16**. 147.) (AgO) $_3$ P(NH $_2$)(NHAg). Insol. in cold H $_2$ O. (Stokes.)

 $(AgO)_3P(NH_2)_2$. Decomp. by cold H_2O . (Stokes.)

 $+2\mathrm{H}_2\mathrm{O}$. Decomp. by boiling $\mathrm{H}_2\mathrm{O}$. (Stokes.)

Amidoimidophosphoric acid.

Amidoheximidoheptaphosphoric acid, OH. PO. $(NH_2)[NH.PO(OH)]_b.NH.PO(OH)_2$ = $P_7N_7O_{1b}H_{16}$.

Known only in solution in H_2O . (Stokes, Am. Ch. J. 1898, **20.** 758.)

Silver diamidopyrimidophosphate, NH(PO.NH₂.OAg)₂.

Almost insol. in H_2O ; sol. in NH_4OH+Aq . (Stokes, Am. Ch. J. 1894, **16**. 136.)

Silver amidotetrimido pentaphosphate, $P_5N_5O_{11}H_3Ag_9$.

Ppt. (Stokes, Am, Ch. J. 1898, 20, 752.)

Silver amidoheximidoheptaphosphate, P₇N₇O₁₅H₉Ag₇.

Ppt.; decomp. by acetic acid. (Stokes, Am. Ch. J. 1898, **20.** 759.)

Sodium amidodiimidotriphosphate,

 $PO.ONa < \frac{NH.PO(ONa)_2}{NHPO(ONa)NH_2}$.

 $=P_3N_3O_7H_4Na_4+H_2O$. Unstable; sol. in H_2O ; insol. in alcohol. (Stokes, Am. Ch. J. 1896, **18**. 643.)

Sodium amidoheximidoheptaphosphate,

P7N7O15H9Na7.

Sol. in H₂O; pptd. by alcohol. (Stokes, Am. Ch. J. 1898, **20**. 758.)

Amidophosphimic acid.

Silver amidophosphimate, P(NH) NH₂(OAg)₂. Decomp. by heat; decomp. in contact with H₂O. (Stokes, Am. Ch. J.)894, 16. 139.) $(AgO)_2P(NAg)(NHAg).(?)$ Sl. sol. NH40H+Aq. (Stokes, Am. Ch. J. 1894, 16.) 149.)

Amidosulphonic acid, HOSO2NH2.

Easily sol. in H₂O, less easily in alcohol. (Berglund, B. 9. 252 and 1896.)

Very stable; less easily sol. in H2O than its

K salt. (Raschig, A. 241. 177.)
Stable in air. Non-deliquescent when cold.
Sol. in 5 pts. H₂O at 0° and in 2½ pts. H₂Q at 70°. Solution in H₂O can be boiled several minutes without decomp. Solubility is decreased by addition of H₂SO₄, so that if 1/5-1/4 pt. H₂SO₄ is added to H₂O₁, 100 pts. of the liquid dissolve only 3 pts. HOSO₂NH₂ in the cold. Pptd. from solution by HNOs or glacial acetic acid, but not by HCl. Solubility is decreased by presence of NaHSO4: (Divers and Haga, Chem. Soc. 1896, 69. 1641.)

Amidosulphonates.

Easily sol. in H₂O; sl. sol. in alcohol.

Aluminum amidosulphonate.

Very sol. in H₂O. (Berglund, Bull. Soc. (2) **29.** 422.)

Ammonium amidosulphonate, (NH₄)NH₂SO₃. Deliquescent. Sol. in H₂O; insol. in alcohol.

Ammonium silver amidosulphonate, $NH_4SO_3(NH_2)$, $AgSO_3(NH_2)$. (Ephraim & Gurewitsch, B. 1910, 43. 148.)

Barium amidosulphonate, Ba(NH₂SO₃)₂. Sol. in 3 pts. H₂O. (Berglund, l.c.)

Cadmium amidosulphonate, Cd(NH₂SO₃)₂+

Very sol. in H₂O. (B.)

Calcium amidosulphonate, $Ca(NH_2SO_3)_2$ + 4H₂O.

Very sol, in H_2O . (B.)

Cobalt amidosulphonate, Co(NH₂SO₃)₂+ 3H₂O. Sol. in H_2O . (B.)

Copper amidosulphonate, Cu(NH₂SO₃)₂+ 2H₂O. Sol. in H_2O . (B.)

Gold (auric) potassium amidosulphonate, $K_{3}Au_{2}(NSO_{3})_{3}$. Very sl. sol. in cold, more easily sol. in hot

H₂O. Sol. in dil. HCl+Aq. (Hofmann, B. 1912, **45**. 1735.)

Lead amidosulphonate, $Pb(NH_2SO_3)_2 + H_2O_4$ The most sol, of all amidosulphonates. (B.)

Lithium amidosulphonate. LiNH2SO2. Deliquescent, (B.)

Magnesium amidosulphonate.

Very sol. in H₂O.

Manganese amidosulphonate, Mn(NH₂SO₂)₂ + 8H₂O.

Very sol, in H₂O. (B.)

Mercuric amidosulphonate, basic, $Hg(HgOSO_8N\tilde{H}_2)_2$.

Insol. in 3.5 % HNO₃+Aq. Very sol. in 3 % HCl+Aq. (Hofmann, B. 1912, **45.** 1733. +2H₂O. Insol. in hot H₂O. Sol. in KOH+ Aq. (Divers and Haga, Chem. Soc. 1896, 69. 1649.)

Mercuric potassium amidosulphonate, KHgNSO₃.

Very sl. sol. in cold H₂O and cold dil. KOH +Aq. Sol. in 3 % HCl+Aq. (Hofmann, B. 1912, **45.** 1732.)

Mercuric sodium amidosulphonate, NaHgNSO₃.

Nearly completely sol. in hot H₂O. (Hoffmann, B. 1912, 45. 1734.)

Nickel amidosulphonate, Ni(NH₂SO₃)₂+ 3H₂O. Sol. in H_2O . (B.)

Potassium amidosulphonate, KNH₂SO₃. Sol. in H₂O. (Berglund.)

Potassium silver amidosulphonate, NHAgSO₃K+H₂O.

Decomp. by H_2O ; sol. in $NH_4OH + Aq$. (Hoffmann, B. 1912, 45. 1734.)

Silver amidosulphonate, AgNH₂SO₃. Sol. in 15 pts. H₂O at 19° (B.)

Sodium amidosulphonate, NaNH2SO3. Sol. in H₂O.

Strontium amidosulphonate, $Sr(NH_2SO_2)_2$ + 4H₂O. Sol. in H₂O.

Thallium amidosulphonate, TlNH2SO3. Sol. in H.O.

Uranyl amidoşulphonate. Sol. in H₂O. ,

Zinc amidosulphonate, $Zn(NH_2SO_1)_2 + 4H_2O_1$ Sol. in H₂O.

Amidosulphurous acid.

Ammonium amidosulphite, NH2. SO2. NH4.

Very deliquescent. Decomp. in the air with loss of NH₈. Sol. in H₂O with decomp. Sol, in anhydrous alcohol. Sl. sol, in dry. ether. (Divers, Chem. Soc. 1900, 77. 330.)

Ammonia, NH₈.

Very sol. in H₂O, with evolution of much

1 vol. H_2O absorbs 670 vols. (½ pt. by weight) NH₃ at +107 and 29.8 in. pressure; sp. gr. of solution =0.875. (Davy.)
At low temperatures H_2O absorbs more than ½ its

weight of NH₃, and sp. gr. of solution = 0.850. (Dalton.) 100 pts. H₂O absorb 8.41 pts. NH₃ at 24°; 5.96 pts. at 55°. (Osann.)

1 vol. H₂O absorbs 780 vols. NH₃, 6 vols. H₂O increasing to 10 vols. sat. NH₄OH +Aq; 1 vol. sat. NH₄OH +Aq contains 468 vols. NH₃. (Thomson.) 1 vol. H₂O absorbs 450 vols. NH₃ at 15°. (Dumas.)

1 vol. H2O absorbs 700 vols. NH2 at ordinary temper-

ature. (Otto.)

100 pts. H₂O absorb in NH₃ gas 47.7 pts. NH₄ by weight. (Berzelius.)

1 vol. H₂O absorbs 505 vols. NH₃ and vol. is in-

creased to 1.5 vol., and sp. gr. becomes 0.900. (Ure.)

1 vol. H_2O at 0° and 760 mm. absorbs 1177.3

vols, NH₃. (Sims.) 1 vol. H₂O at 0° and 760 mm. absorbs 1146

vols. NH₃. (Roscoe and Dittmar.) 1 vol. H₂O at 0° and 760 mm. absorbs

1049.6 vols. NH₃. (Carius.) 1 vol. H₂O at 0° and 760 mm. absorbs 1270 vols. NH₃. (Berthelot.)

1 vol. H₂O at 0° and 760 mm. absorbs 1050 vols. NH₃. (Bunsen.)

100 cc. H₂O absorb 64.50 g. (Raoult.)

Solubility of NH₂ in H₂O at 760 mm. and to: 1 g. H₂O absorbs g. NH₃, according to Roscoe and Dittmar (A. **122**. 347) (RD); and according to Sims (A. 118. 345) (S).

t°	g. NH ₃ RD	g. NH ₂	t°	g. NH _a RD	g. NH ₃
0 2 4 6 8 10 12 14 16 18 20 22	0.875 0.833 0.792 0.751 0.713 0.679 0.645 0.612 0.582 0.554 0.554 0.499	0.899 0.853 0.809 0.765 0.724 0.684 0.646 0.611 0.578 0.540 0.518 0.490	36 38 40 42 44 46 48 50 52 54 56 58	0.343 0.324 0.307 0.290 0.275 0.259 0.244 0.229 0.214 0.200 0.186	8 0 363 0 350 0 338 0 326 0 315 0 304 0 294 0 284 0 274 0 265 0 256 0 247
24 26 28 30 32 34	0.474 0.449 0.426 0.403 0.382 0.362	0.467 0.446 0.426 0.408 0.393 0.378	60 70 80 90 98 100		0.238 0.194 0.154 0.114 0.082 0.074

Solubility of NH₂ by vol. in H₂O at 760 mm. and to: 1 vol. H2O at 760 mm. and to dissolves V vols. NH, gas, vols. reduced to 0° and 760 mm.

t°	v	t° i	y .
0	1049.60	13	759.55
1	1020.78	14	743.11
2	993.26	15	727.22
$egin{array}{c} 1 \ 2 \ 3 \end{array}$	966.98	16	711.82
4	941.88	17	696.85
4 5	917.90	18	682.26
6	894.99	19	667.99
7	873.09	20	653. 99
8	852.14	21	640.19
9	831.98	22	626.54
10	812.76	23	612.98
11	794.32	24	7 599.46
12	776.60	25	585.94

(Carius, A. 99. 144.)

Solubility of NH₃ in H₂O at P mm. pressure and 0°: 1 pt. H₂O absorbs pts. NH₃ at P mm. pressure and 0°.

P	Pts. NH ₃	P	Pts. NH ₃
10	0.044	900 🖈	0.968
20	0.084	950	1.101
30	0.120	1000	1.037
40	0.149	1050	1.075
50	0.175	1100	1.117
75	0.228	1150	1.161
100	0.275	1200	1.208
125	0.315	1250	1.258
150	0.351	1300	1.310
175	0.382	1350	1.361
200	0.411	1400	1.415
250	0.465	1450	1.469
300	0.515	1500	1.526
350	0.561	1550	1.584
400	0.607	1600	1.645
450	0.646	1650	1.707
500	0.690	1700	1.770
5 5 0	0.731	1750	1.835
600	0.768	1800	1.906
650	0.804	1850	1.976
700	0.840	1900	2.046
750	0.872	1950	2.120
800	0.906	2000	2.195
850	0.937		• • • • •
W (2)	1 5		40 0 10 1

⁽Roscoe and Dittmar, A. 112. 349.)

In proportion as the temperature is higher, so much the more nearly does the solubility of NH2 in H2O conform to the law of Henry and Dalton, but only obeys it completely when the temperature is 100°, as is seen in the following table.

Solubility of NH₂ in H₂O at various pressures and temperatures: P=partial pressure, i. e. total pressure minus the tension of aqueous vapour at the given temperature; G=grams NH₃ dissolved in 1 g. H₂O at the given pressure; G at 760=grams NH₃ that would be contained in 1 g. H₂O if the solubility was proportional to the pressure.

P	₽°,		20°		40°		, 100°	
	G at P	G at 760	G at P	G at 760	at P	G at 760	G at P	G at 760
20	0.082	3.113						
30	0.117	2.960		1	1		1	
40	0.148	2.820		1	1	1	1	
60	0.169	2.522	0.119	1 513		3		l
80	0.240	2.280	0 141	1,337	5.052	0 497		70
100	0.280	2.127	0.158	1.200	0.064	0.490	1	• • • • •
120	0.316	2.000	0.173	1 095	0.076	0.483	1	
140	0.346	1 880	0.187	1.017	0.088	0.476		
160	0.375		0.202	0.962	0.099	0.470		
180	0 398	*1.684	0.207	0.918	0.109	0.462		
200	0.421	1.598	0.232	0.881	0.120	0.454		
250	0.472	1.434	0.266	0.810	9.145	0.440		
300	0.519	1.315	0.296	0.750	0.168	0.426		• • • •
350	0.563	1.223	0 325	0.795	0.191	0.414		• • • •
400	0.606	1.152	0.353	0.670	0.211	0.402		• • •,• •
450	0.650	1.100	0.378	0.638	0.232	0.399	*	
500	0.692	1.052	0.403	0.612	0.251	0.382		• • • •
5 5 0	0.732	1.012	0.425	0.587	0.269	0.372	· · · · ·	
600	0.770	0.975	0.447	0.566	0.287	0.363	• • • • • •	• • • • •
650	0.809	0.946	0.470	0.550	0.304	0.355		• • • • •
700	0.850	0.923	0.492	0.53	$0.304 \\ 0.320$	0.333	0.068	0.074
750	0.891	0.903	0.514	0.521	$0.320 \\ 0.335$	0.339	0.003	0.074
760	0.899	0.899	$0.514 \\ 0.518$	$0.521 \\ 0.518$	0.338	0.338	0.073	0.074 0.074
800	0.833	0.888	0.535	0.504	0.349	0.332	0.074	
850	0.980	0.876	0.556	$0.304 \\ 0.497$	$0.349 \\ 0.363$	0.332		0.074
900	1.029	0.869	0.574	0.485	$0.303 \\ 0.378$		0.083	0.074
950	1.023	0.862	$0.574 \\ 0.594$	0.475	$0.378 \\ 0.391$	0.319	0.088	0.074
1000	1.126	0.855	0.613	0.475	$0.391 \\ 0.404$	0.313	0.092	0.073
1050	1 177	0.852	0.632	0.457	0.414	0.307	0.096	0.073
1100	1.230	0.852	$0.652 \\ 0.651$	0.450	$0.414 \\ 0.425$	0.300	0.101	0.073
1150	1.283	0.848	0.669	0.430		$\begin{array}{c} 0.294 \\ 0.287 \end{array}$	0.106	0.073
1200	1.336	0.846	0.685	0.442	0.434	0.287	0.110	0.073
1250	1.338	0.844	0.000	0.428	$0.445 \\ 0.454$	$\begin{array}{c} 0.282 \\ 0.276 \end{array}$	0.115	0.073
1300	1.442	0.843	0.722	$0.428 \\ 0.422$	$0.464 \\ 0.463$	$0.270 \\ 0.271$	0.120	0.073
1350	1.496	0.843	0.741	0.422			0.125	0.073
1400	1.549	0.842	0.741	0.417	$\begin{array}{c} 0.472 \\ 0.479 \end{array}$	0.266	0.130	0.073
1450	1.603		0.780			0.260	0.135	0.073
1500	1.656	$0.840 \\ 0.839$	0.780	0.409	0.486	0.255		• • • • •
1600	1.758		0.804	0.406	0.493	0.250		• • • • •
1700		0.835		0.400	0.511	0.242		• • • • •
1800	1.861	0.832	0.881	0.394	0.530	0.237	• • • • • •	• • • • •
1900	1.966	0.830	0.919	0.388	0.547	0.231		• • • • •
2000	2.070	0.828	0.955	0.382	0.565	0.226		
2100	,		0 992	0 377	*0 579	0.220	• • • • • • • • • • • • • • • • • • • •	• • • • •
	• • • • •				0.594	0.215		

(Sims, A. 118. 346.)

0°. One gram H₂O dissolves

grams NH ₃	Temp.
0.947	⊸-3.9°
1.115	—10°
1.768	20°
2.781	30°
2.946	-40°
11	

(Mallet, Am. Ch. J. 1897, 19. 807. The solubility of NH₃ in H₂O does not follow Dalton's law at ord. temp., but does at temp. near 100°. (Konowaloff, J. Russ. Phys. Chem. Soc. 1894, 26. 48; Chem. Soc. 1896, 70 (2). 351.

Sp. gr. of NH₄OH+Aq.

%NH:	Sp. gr.	%NH3	Sp. gr.
32.3*	0.8750	14.53	0.9435
29.25	0.8857	13.46	0.9476
26	0.9000	12.40	0.9513
25.37*	0.9054	11.56	0.9545
22.07	0.9166	10.82	0.9573
19.54	0.9255	10.17	0.9597
17.52	0.9326	9.6	0.9616
15.88	0.9385	9.5*	0.9632

(H. Davy, Elements, 1, 241.)

Sp. gr. of NH₄OH+Aq at 16°, according to

Otto in his Lehrbuch.						
% NH ₃	Sp. gr.	% NH3	Sp. gr.			
12.000	0.9517	8.500	0.9650			
11.875	0.9521	8.375	0.9654			
11.750	0.9526	8.250	0.9659			
11.625	0.9531	8.125	0.9664			
11.500	0.9536	8.000	0.9669			
11.375	0.9540	7.875	0.9673			
11.250	0.9545	7.750	0.9678			
11.125	0.9550	7.625	0.9683			
11.000	0.9555	7.500	0.9688			
10.950	0.9556	7.375	0.9692			
10.875	0.9559	7.250	0.9697			
10.750	0.9564	7.125	0.9702			
10.625	0.9569	7.000	0.9707			
10.500	0.9574	6.875	0.9711			
10.375	0.9578	6.750	0.9716			
10.250	0.9583	6.625	0.9721			
10.125	0.9588	6.500	0.9726			
10.000	0.9593	6.375	0.9730			
9.875	0.9597	6.250	0.9735			
9.750	0.9602	6 125	0.9740			
9.625	0.9607	6.000	0.9745			
9.500	0.9612	5.875	0.9749			
9.375	0.9616	5.750	0.9754			
9.250	0.9621	5.625	0.9759			
9.125	0.9626	5.500	0.9764			
9.000	0.9631	5.375	0.9768			
8.875	0.9636	5.250	0.9773			
8.750	0.9641	5.125	0.9778			
8.625	0.9645	5.000	0.9783			

Solubility of NH₃ in H₂O at temps. below Sp. gr. of NH₄OH+Aq, according to Ure in Dict. of Arts.

% NH3	Sp. gr.	%NHa	Sp. gr.
27.940	0.8914	15.900	0.9363
27.633	0.8937	14.575	0.9410
27.038	0.8967	13.250	0.9455
26.751	0.8983	11.925	0.9510
26.500	0.9000	10.600	0.9564
25.175	0.9045	9.275	0.9614
23.850	0.9090	7.950	0.9662
22.525	0.9133	6.625	0.9716
21.200	0.9177	5.300	0.9768
19.875	0.9227	3.975	0.9828
18.550	0.9275	2.650	0.9887
17.225	0.9320	1.325	0.9945

Sp. gr., b.-pt., and vols.*gas in NH₄OH+Aq.

% NH:	Sp. gr.	Bpt.	Vols. gas in 1 vol. liquid
35.3 32.6 29.9 27.3 24.7 22.2	0.85 0.86 0.87 0.88 0.89 0.90	-3.3° +3.3° 10° 16.6° 23.3°	494 456 419 382 4 346 311 *
19.8 17.4 15.1 12.8 10.5 8.3 6 2 4.1 2.0	0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99	30 36.6° 43.3° 50° 56.6° 63.3° 70° 78.3° 86.1° 91.1°	311 * 277 244 211 180 147 116 87 57

(Dalton, in New System, 2. 422.)

Sp. gr. of NH₄OH+Aq sat. at t°.

t°	Sp. gr.	t°	Sp. gr.	t°	Sp. gr.
0 1 2 3 4 5 6 7	0.8535 0.8561 0.8587 0.8611 0.8635 0.8658 0.8681 0.8703	9 10 11 12 13 14 15 16	0.8746 0.8766 0.8785 0.8804 0.8823 0.8841 0.8858 0.8874	18 19 20 21 22 23 24 25	0.8903 0.8916 0.8928 0.8940 0.8952 0.8963 0.8974 0.8984
8	0.8725	17	0.8889		

(Carius, A. 99. 141.)

Sp. gr. of NH₄OH+Aq at 14°, according to Carius (A. **99**. 148).

% NH ₃	Sp. gr.	% NH ₃	Sp. gr.
$36.0 \\ 35.8 \\ 35.6 \\ 35.4$	$egin{array}{c} 0.8844 \\ 0.8848 \\ 0.8852 \\ 0.8856 \\ \end{array}$	35.2 35.0 34.8 34.6	0.8860 0.8864 0.8868 0.8872

^{*} By direct experiment. The other numbers were obtained by calculation, making no allowance for compensation.

Sp. gr. of NH4OH+Aq at 14°, etc.—Cont			, etc.—Cont.	sp. gr. of NH ₄ OH+Aq at 14, etc.—Cont.				
% NH:	Sp. gr.	% NH ₈	Sp. gr.	% NH:	Sp. g	F 9	NH:	Sp. gr.
34.4	0.8877	22 .2	0.9185	10.0	0.959	93	5.0	0.9790
34 2	0.8881	22.0	6.9191	9.8	0.960		4.8	0.9799
34.0	0.8885	21.8	0.9197	9.6	0.960	08	4.6	0.9807
33.8	0.8889	21.6	0.9205	9	0.961	6	4.4	0.9815
33.6	0 8894	21.4	.0.9209	9.2	0.962		4.2	0.9823
33.4	0.8898	21.2	0.9215	9.0	0.963	31	10	0.9831
33.2	0.8903	21.0	0.9221	8.8	0.96		3.8	0.9839
33.0	0.8907	20.8	0.9227	8.6	0.90	. 11 *	2.6	0.9847
32.8	0.8911	20.6	0.9233	8.4	0.96		3.4	0.9855
32.6	0.8916	20 4	0.9239	8.2.	0.966		3.2	0.9863
$\frac{32.4}{22.2}$	$0.8920 \\ 0.8925$	20.2 20.0	0.9245	8.0	0.967		3.0	0.9873
$32.2 \\ 32.0$	0.8929	19.8	$\begin{array}{c} 0.9251 \\ 0.9257 \end{array}$	7.8	0.967		2.8	0.9882
31.8	0.8934	19.6	0.9264	$7.6 \\ 7.4$	0.968 0.969		$\frac{2.6}{2.4}$	0.9890 0.9899
31.6	0.8938	19.4	0.9271	7.2	0.970		2.2	0.9907
31.4	0.8944	19.2	0.9277	$7.\overline{0}$	0.970		2.0	0.9915
31.2	0.8948	19.0	0.9283	6.8	0.971		1.8	0.9924
31.0	0 8953	18.8	0.9289	6.6	0.972		1.6	0.9932
30-8	0.8957	18.6	0.9296	6.4	0.973		1.4	0.9941
30.6	0.8962	18.4	0.9302	6.2	0.974		1.2	0.9950
30.4	0.8967	18.2	0.9308	6.0	0.974	9	1.0	0.9959
30.2	0.8971	18.0	0 9314	5.8	0.975	7	0.8	0.9967
30.0	0.8976	17.8	0.9321	5.6	0.976		0.6	0.9975
29.8	0.8981	17.6	0.9327	5.4	0.977	3	0.4	0.9983
29.6	0.8986	17.4	0.9333	5.2	0.978	1	0.2	0.9991
29.4	0.8991	17.2	0.9340	Hagan	alaa airraa	o toblo	in his f	Commontor
$\begin{bmatrix} 29.2 \\ 29.0 \end{bmatrix}$	0.8996 0.9001	17.0	0.9347					Commentar tically iden-
28.8	0.9006	16.8 16.6	0.9353 0.9360	tical with				noany luen-
28.6	0.9011	16.4	0.9366	oroar wron	unose ne.	ic given		
28.4	0.9016	16.2	0.9373		e attr o			
28.2	0.9021	16.0	0.9380	Strength	of NH ₄ O	H + Aq	of cert	tain sp. gr.
28.0	0.9026	15.8	0.9386			at 12°.		
27.8	0.9031	15.6	0.9393		1 kg. solu-	1 l. solu-	1 litre	consists of
27.6	0.9036	15.4	0 9400	Sp. gr.	tion con-		H ₂ () in	liquid NH3
27.4	0.9041	15.2	0.9407		tains g. NHa	tains g. NH ₃	cc.	in cc.
27.2	0.9047	15.0	0.9414				ļ	
27.0	0.9051	14.8	0.9420	0.870	384.4	334.5	535.5	
26.8	0.9057	14.6	0.9427	0.880	347.2	305.5	574.5	
$egin{array}{c} 26.6 \ 26.4 \end{array}$	0.9063	14.4	0.9434	0.890	311.6	277.3	612.7	387.3
26.2	$0.9068 \\ 0.9073$	14.2	0.9441	0.900	277.3	249.5	650.5	
26.0	0.9078	14.0 13.8	0 9449 0.9456	0.910	244.9	222.8	687.2	312.8
25.8	0.9083	13.6	0.9463	$\begin{array}{c} 0.920 \\ 0.930 \end{array}$	213.4 182.9	$196.3 \\ 170.1$	$ \begin{array}{c} 723.7 \\ 759.9 \end{array}$	$\begin{vmatrix} 276.3 \\ 240.1 \end{vmatrix}$
25.6	0.9089	13.4	0.9470	0.940	152.9	143.7	796.3	203.7
25.4	0.9094	13.2	0.9477	0.950	124.2	118.0	832.0	168.0
25.2	0.9100	13.0	0.9484	0 960	97.0	93.1	866.9	133.1
25.0	0.9106	12.8	0.9491	0.970	70.2	68.0	902.0	98.0
24.8	0.9111	12.6	0.9498	0.980	45.3	44.3	935.7	64.3
24.6	0.9116	12.4	0.9505	0.990	21.0	20.7	969.3	30.7
24.4	0.9122	12.2	0.9512	/XX7 1	· · · · · · · · ·	1 701	(2)	0.510.
24.2	0.9127	12.0	0.9520	(Wachs	smuth, A	rcn. Pha	ırm. (3)	8. 510.)
$\begin{bmatrix} 24.0 \\ 23.8 \end{bmatrix}$	0.9133	11.8	0.9527	~		TT 077 :		
$\frac{23.8}{23.6}$	$0.9139 \\ 0.9145$	11.6	0.9534		gr. of N			
23.4	0.9145	$\begin{array}{c c} 11.4 \\ 11.2 \end{array}$	$0.9542 \\ 0.9549$	(.	Most care	eiui exp	eriment	s.)
23.2	0.9156	11.0	0.9556	Sp. gr.	% NF	I. s	p. gr.	% NH ₃
23.0	0.9162	10.8	0.9563	~ ~ \$1.			L. 9.,	// -1449
22.8	0.9168	10.6	0.9571	0.990	2.1	5 0	.926	19.50
22.6	0.9174	10.4	0.9578	0.974	6.1	0 0	.916	22.50
22.4	0.9180	10.2	0.9586	0.950	12 5		.910	24.40
		· '						

So	gr.	of	NH.	+ HO.	An at	15°	Continued
----	-----	----	-----	-------	-------	-----	-----------

Sp. gr.	% NH:	Sp. gr.	% NH3
0 900	27.70	0.882	34.8
0.890	31.40	0.880	35.5
0 885	33.5		

(Grüneberg, Chem. Ind. 12. 97.)

The following table is calculated from the above by interpolation:—

Sp. gr.	% NH ₃	Sp. gr.	% NH ₃
0.995	1 05	0.935	16.90
0.990	2.15	0.930	18.35
0.985	3.30	0.925	19.80
0.980	4.50	0.920	21.30
0.975	5.75	0 915	22.85
0.970	7.05	0.910	24.40
0.965	8.40	0.905	$ \begin{array}{c c} 26.00 \\ 27.70 \\ 29.50 \\ \end{array} $
0.960	9.80	0.900	
0.955	11 20	0.895	
0.950	12.60	0.890	31.40
0.945	14.00	0.885	33.40
0.940	15.45	0.880	35.50

(Grüneberg.)

Sp. gr. of NH₄OH+Aq at 14°.

% HN ₃	Sp. gr.	% NH ₃	Sp. gr.
$\begin{array}{c} 31 \\ 23.8 \\ 20.4 \end{array}$	0.8933 0.9116 0.9246	15.6 11.7 5.1	0 9400 0.9536 0.9780

(Lunge and Smith, B. 17. 777.)

Sp. gr. of NH₄OH+Aq at 15°, according to Lunge and Wiernik (Zeit. f. angew. Ch. **1889**. 183).

(Most carefully worked out and calculated.)

Sp. gr.	% NH3	1 l. contains g. NH ₃	Correction for = 1°
1.000	0.00	0.0	0.00018
0.998	0.45	4.5	0.00018
0.996	0.91	9.1	0.00019
0.994	1.37	13.6	0.00019
0.992	1.84	18.2	0.00020
0.990	2.31	22.9	0.00020
0.988	2.80	27.7	0.00021
0.986	3.30	32.5	0.00021
0.984	3.80	37.4	0.00022
0.982	4.30	42.2	0.00022
0.980	4.80	47.0	0 00023
0.978	5.30	51.8	0.00023
0.976	5.80	56.6	0.00024
0.974	6.30	61.4	0.00024
0.972	6.80	66.1	0.00025
0.970	7.31	70.9	0.00025
0.968	7.82	75.7	0.00026

Sp. gr. of NH₄OH+Aq at 15°, etc.—Continued

Sp. gr.	% NH:	1 l. contains g. NH ₃	Correction for = 1°
0.966	8.33	80.5	0.00026
0.964	8.84	85.2	0.00020
0.962	9.35	89.9	0.00028
0.960	9.91	95.1	0.00029
0,958	10.47	100.3	0.00030
0.956	11.03	105.4	0.00031
0.954	11.60	110.7	0.00032
0.952	12.17	115.9	0.00033
0.950	12.74	121.0	0.00034
0.948	13.31	126.2	0.00035
0.946	13.88	131.3	0.00036
0.944	14.46	136.5	0.00037
0.942	15.04	141.7	0.00038
0.940	15.63	146.9	0.00039
0.938	16.22	152.1	0.00040
0.936	16.82	157.4	0.00041
0.934	17.42	162.7	0.00041
0.932	18.03	168.1	0.00042
0.930	18.64	173.4	0.00042
0.928	19.25	178.6	0.00043
0.926	19.87	184.2	0.00044
0.924	20.49	189.3	0.00045
0.922	21.12	194.7	0.00046
0.920	21.75	200.1	0.00047
0.918	22.39	205 6	0.00048
0.916	23.03	210.9	0.00049
0.914	23.68	216.3	0.00050
0.912	24.33	221.9	0.00051
0 910	24.99	227.4	0.00052
0.908	25.65	232.9	0.00053
0 906	26.31	$\begin{vmatrix} 238.3 \\ 243.9 \end{vmatrix}$	0.00054
0.904	26.98	243.9	0.00055
0.902 0.900	$27.65 \\ 28.33$	$249.4 \\ 255.0$	0.00056 0.00057
0.898	29.01	260.5	0.00057
0.896	29.69	266.0	0.00059
0.894	30.37	$\begin{bmatrix} 200.0 \\ 271.5 \end{bmatrix}$	0.00060
0.892	31.05	277.0	0.00060
0.892	31.75	282.6	0.00061
0.888	32.50	288.6	0.00062
0.886	33.25	294.6	0.00063
0.884	34.10	301.4	0.00064
0.882	34.95	308.3	0.00065
J.002		1	

 $\mathrm{NH_{3}}$ is much less sol. in KOH, or NaOH+Aq than in $\mathrm{H_{2}O}$.

Solubility of NH₃ in H₂O, and KOH+Aq of various strengths: 100 pts. solvent absorbs g. NH₃ at t° .

t°	H ₂ O	KOH +Aq 11.25% K ₂ O	KOH +Aq 25.25% K ₂ O
0 8	$90.00 \\ 72.75$	72 00 57 00	49.50 37.50
$\begin{array}{c} 16 \\ 24 \end{array}$	59.75 49.50	46.00 37.25	$28.50 \\ 21.75$

(Raoult, A. ch. (5) 1. 262.)

100 pts. sat. KOH+Aq dissolve only 1 pt. NH₃.

Solubility in NaOH+Aq is the same as in

KOH +Aq of the same strength.

NH₄Cl+Aq absorbs slightly less NH₃ than the same vol. H₂O. NaNO₃, and NH₄NO₃+Aq absorb almost the same amount NH₃ as the same vol. H₂O. (Raoult, *l.c.*)

Solubility of NH₃ in 100 pts. Ca(NC₃)₂+Aq.

t°	H ₂ O	$\begin{array}{c} \text{Ca}(\text{NO}_8)_2 + \text{Aq} \\ 28.38\% \text{Ca}(\text{NO}_8)_2 \end{array}$	$\begin{array}{c} \text{Ca}(\text{NO}_3)_2 + \text{Aq} \\ 59.03\% \text{Ca}(\text{NO}_3)_2 \end{array}$
0	90.00	96.25	104.50
8	72.75	78.50	84.75
16	59.75	65.00	70.50

(Raoult, l.c.)

Solubility in salt solutions at 25°C.

	Mols. NH2 soluble in 1 liter of			
Salt	.5-normal solution	1-normal solution	1.5-nor- mal solution	
KCl	0.930	0.866	0.809	
KBr	0.950	0.904	0.857	
KI	0.970	0.942	0.900	
KOH	0.852	0.716	0.607	
NaCl	0.938	0.889	0.843	
NaBr	0.965	0.916	0.890	
NaI	0.995	0.992	0.985	
NaOH	0.876	0.789	0.716	
LiCl	0.980	1.008	1045	
LiBr	1.001	1 040	1.090	
LiI	1.030	1.094	1.190	
LiOH	0.865	0.808	0.768	
KF	0.839	0.722	0.626	
KNO_3	0.923	0.862	0.804	
KNO ₂	0.920	0.855	0.798	
KCN	0 926	0.858	0.802	
KCNS	0.932	0.868	0.814	
12K2SO4 12K2SO3	0.875	0.772	0.678	
$\frac{1}{2}$ K ₂ SO ₃	0.865	0.768	0.675	
½K ₂ CO ₃	0.788	0.650	0.554	
12K2CO3 12K2CO3 12K2C2O4	0.866	0.771	0.675	
½K ₂ CrO ₄	0.866	0.771	0.675	
CH ₃ COOK	0.866	0.765	0.685	
HCOOK	0.868	0.760	0.678	
KBO_2	0.814	0.677	0.560	
$\frac{1}{2}$ K ₂ HPO ₄	0.860	0.749	0.664	
$^{1}2\mathrm{Na_{2}S}$	0.887	0.795	0.726	
KClO ₃ 0.25-norm.	0.927			
$KBrO_8 0.25$ -norm.	0.940			
KIO ₈ 0.25-norm.	0.951			

(Abegg & Riesenfeld, Z. phys. Ch. 1902, **40**.

Solubility	in	salts+Aq	at	35°	C.
------------	----	----------	----	-----	----

Salt	Concentration of the	Mols. NH ₃ soluble in 1 liter of solution
KCl	0.5 normal	0.923
NaCl	"	0.966
CH ₃ COOK	1.5	0.902
	"	0.902
⅓(C GOK)₃ KOH	"	0.870
NaOH	96	0.896
½K2CO3	0.426 normal	0.914
12Na COa	"	0.932

(Riesenfeld, Z. phys. Ch. 1903, 45. 462.)

The solubility of NH₃ in NaNO₃, NH₄NO₃ and in AgNO₃,2NH₃+Aq is nearly the same as in pure H₂O. (Konowaloff, C. C. **1898**, II. 659).

Distribution-coefficient of NH₃ between water and CHCl₃=26.3 at 20°; 24.9 at 25°; 23.2 at 30°.

The distribution-coefficient of NH₂ between CHCl₃ and a number of salt solutions has been determined for the purpose of studying the nature of metal-ammonia compounds in aqueous solution. (Dawson, Chem. Soc. 1900, 77. 1242.)

Distribution of NH₃ between H₂O and CHCl₃ at 18°.

NH ₂ concentration in aqueous solution. mols./litre•	NH ₃ concentration in CHCl ₃ solution. mols./litre
0.9280	0.03506
1.921	0.07703
$egin{array}{c} 2.064 \ 2.274 \ 2.590 \end{array}$	$egin{array}{c} 0.08350 \ 0.09317 \ 0.1083 \end{array}$
3.700	0.1639
4.333	0.1996

(Dawson, Z. phys. Ch. 1909, 69, 120.)

Distribution of NH₃ between hydroxides+Aq and CHCl₃ at 18°.

Aqueous solution	NH ₃ concentration in the aqueous solution. mols./litre	NH: concentration in the CHCl: solution. mols./litre.
0.2-N. KOH	1.949	0.0841
0.5-N. KOH	1.978	0.0951
0.2-N. NaOH	2.016	0.0869
0.5-N. NaOH	1.944	0.0907
0.2-N. ½Ba(OH) ₂	2.076	0.08905
0.5-N. ½Ba(OH) ₂	3.397	0.1560

(Dawson, l.c.)

Distribution of NH₃ between Cu(OH)₂+Aq and CHCl, at 18°.

Conc. of Cu(OH) ₂ equivalents/litre	NH; concentra- tion in aqueous solution. mols./litre	NH ₃ concentra- tion in CHCl ₃ solution. mols./litre
0.041 0.0705 0.081	$2.014 \\ 2.653 \\ 3.011$	0.07968 0.1087 0.1247

Dawson, l.c.)

Sol, in alcohol and ether.

Sol. in 3 pto. alcohol of 38°. (Boullay.) vol. alcohol of 0.829 sp. gr. absorbs about 50 vols. NHs. (Davy.)

Much less sol. in ethyl, propyl, or amyl alcohol than in H₂O. (Pagliano and Emo, Gazz. ch. it. 13. 278.)

Solubility of NH₃ in ethyl alcohol (absolute)

t°	% NH:	Pts. NH ₃ per 100 pts. alcohol
0 6 11.7 14.7 17 22 28.4	19.7 17.1 14.1 13.2 12.6 10.9 9.2	24.5 20.6 16.4 15.2 14.7 12.2

(de Bruyn, R. t. c. 11. 112.)

1 vol. abs. alcohol at 20° and 760 mm. pressure absorbs 340 vols. NH₃ gas. (Müller, W. Ann. 1891, **43.** 567.)

1 l. methyl alcohol sat. with NH₃ contains 218 g. NH₃ at 0° ; sp. gr. of solution = 0.770; coefficient of solubility = 425.0. (Delépine).

Solubility of NH₃ in alcohol at t°: weight NH₃ = weight NH₃ contained in a litre of solution sat. at 760 mm. and to; sp. gr. = sp. gr. of solution; C = coefficient of solubility.

Temp.	Degree of Alcohol	100°	90°	80°	70°	60°	50°
0°	Weight NH ₃ . Sp. gr C	130.5 0 782 209.5	146.0 0.783 245.0	206.5 0.808 390.0		246.0 0.830 504.5	304.5 0.835 697.7
10°	Weight NH ₃ . Sp. gr C	108.5 0.787 164.3	120.0 0.803 186.0	167.0 0.800 288.0		198.25 0.831 373 0	$\begin{array}{c} 227.0 \\ 0.850 \\ 438.6 \end{array}$
20	Weight NH ₂ . Sp. gr C	75.0 0.791 106.6	97.5 0.788 147.8	119.75 0.821 190.5	137.5 0 829 223.0	152.5 0.842 260.8	182.7 0.869 338.2
30°	$\begin{array}{cccc} Weight \ NH_3 & . \\ Sp. \ gr. & . & . \\ C & . & . & . \\ \end{array}$	$\begin{array}{c} 51.5 \\ 0.798 \\ 97.0 \end{array}$	$\begin{array}{c c} 74.0 \\ 0.791 \\ 186.7 \end{array}$	$\begin{array}{ c c c c }\hline 81.75 \\ 0.826 \\ 121.6 \\ \hline \end{array}$	100.3	129.5 0.846 211.6	$\begin{array}{c} 152.0 \\ 0.883 \\ 252.0 \end{array}$

(Delépine, J. Pharm. (5) 25. 496.)

Solubility of NH₃ in methyl alcohol (absolute) at to.

t°	% NH3	Pts. NH ₃ per 100 pts. alcohol		
0	29.3	41.5		
6	26.0	35.2		
11.7	23.5	30.7		
14.7	21.8	27.9		
17	20.8	26.3		
22	18.3	22.4		
$\frac{1}{28}.4$	14.8	17.4		

(de Bruyn, l.c.)

Readily sol. in ether.

Sol. in 0.4 vol. petroleum from Amiano. (Saussure.)

1 vol. oil of turpentine absorbs 7.5 vols. NH₃ at 16°.

16°.

1 vol. oil of rosemary absorbs 9.75 vols. NH₃ at 29°.

1 vol. oil of lavender absorbs 47 vols. NH. at 20°. (Saussure.)

1 vol. caoutchine absorbs 3 vols. NH₃. (Himly.)

Valerol absorbs much NH₃. (Gerhardt, A. ch. (3) 7. 278.)

1 vol. ether at 760 mm. pressure absorbs 17.13 vols. NH₃ at 0°; 12.35 vols. at 10° and 10.27 vols. at 15°. (Christoff, Z. phys. Ch. 1912, **79.** 459.)

+H₂O. Colorless crystals.

 $+\frac{1}{2}H_{2}O$. Large transparent crystals. (Rupert, J. Am. Chem. Soc. 1909, 31, 868.)

Ammonia, with metal salts.

For the ammonia addition-products of metal salts, see under the respective metal salts, except in the case of Co, Cr, Hg, and the 1 vol. oil of lemon absorbs 8.5 vols. NH₃ at Pt metals, for which see cobalt ammonium, chromium ammonium, etc., compounds, for further reference. New data on Co and Cr ammonium compounds and those of the Pt metals, published since the first edition, has not been included in the present edition.

Ammonium amalgam, NH4, xHg.

Decomp. by H₂O, but more easily in presence of naphtna, alcohol, or ether.

Ammonium azoimide, $N_4H_4 = NH_4N_8$.

Easily sol. in H₂O; sl., sol. in absolute alcohol, easily in 80% alcohol. Insol. in ether or benzene. (Curtius, B. **24.** 3344.)

Ammonium cobalt azcimide, NH N₃, CoN₆.

Rather sol. in H_2O . (Curtius and Rissorn, J. pr. 1898, (2) **58**. 302.)

Ammonium bromide, NH4Br.

Easily sol, in H₂O with absorption of much heat.

1 pt. NH₄Br dissolves in pts. H₂O at t°.

í.	P ⁺ 8. H ₂ O	to	Pts. H.O	t°	Pts. H ₂ O
10 16	1.51 1.39	30 50	1.23	100	0.78

(Eder, W. A. B. 82. (2) 1284.)

NH₄Br+Aq containing 41.09% NH₄Br is sat. at 15°. (Gerlach.)

Sp. gr. of NH₄Br+Aq at 15°.

% NH ₄ Br	Sp. gr.	% NH ₄ Br	Sp. gr.
5	1 0326	20	1.1285
10	1.0652	30	1.1921
15	1.0960	41 09	1.2920

(Eder.)

Sp. gr. of NH₄Br+Aq at 16°.

% NH ₄ Br	Sp. gr.	% NH ₄ Br	Sp. gr.
2	1.0119	22	1.1375
3	1.0181	23	1.1440
4	1.0242	24	1.1506
5	1.0303	25	1.1573
$\tilde{6}$	1.0364	26	1.1642
7	1.0425	$\tilde{27}$	1.1713
8	1.0486	28	1.1787
9	1.0547	$\widetilde{29}$	1.1862
10	1.0609	30	1.1938
11	1.0672	31	1.2018
12	1.0735	32	1.2098
$\overline{13}$	1.0798	33	1.2180
14	1.0862	34	1.2260
15	1.0926	35	1.2342
16	1.0988	36	1.2425
17	1.1051	37	1.2509
18	1.1115	38	1 2594
19	1.1181	39	1.2679
20	1.1246	40	1.2765
$\tilde{2}\tilde{1}$	1.1310	41	1.2850
	1.1010	47	1.2000

(Hager, Comm. 1883.)

25 g. NH₄Br+50 g. H₂O lower the temp. from 15.1° to -1.1° . (Rüdorff.)

Sol. in liquid NH₃ at -50°. (Moissan C. R. 1901, 133, 713.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J 1898, **20**. 826.)

Sl. sol. in alcohol.

1 pt. NH₄Br dissolves in 32.3 pts. alcohol (0.856 sp. gr.) at 15°; 9.5 pts. at 78°. (Eder, l.c.)

100 p.s. absolute methyl alcohol dissolve 12.5 pts. at 19°; 10° pts. absolute ethyl alcohol dissolve 3.22 pts. at 19°. (de Bruyn, Z. phys. Ch. 10. 783.)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent. G = g. NH_4Br in 10 cc. of the solution.

S = g. NH₄Br in 10 cc. of the solution. S = sp. gr. of the sat. solution at 25°/4°.

P	G	s
0.30	0.255	0.8065
4.37	0.299	0.8083
10.40	0.321	0.8117
41.02	0.506	0.8252
80.69	0.813	0.8501
84.77	0.847	0.8508
91.25	0.934	0.8551
100.00	0.983	0.8605

(Herz, Z. anorg. 1908, 60. 156.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NH_4Br in 10 cc. of the solution.

S = Sp. gr. of the sat. solution at 25°/4°.

P	G	s
9 11.11 23.8 65.2 91.8 93.75 100.	0.983 0.851 0.690 0.308 0.128 0.125 0.095	0.8605 0.8524 0.8426 0.8184 0.8097 0.8089 0.8059

(Herz, l.c.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P=% propyl alcohol in the solvent. G=g. NH₄Br in 10 cc. of the solution. S=Sp. gr. of the sat. solution at 25°/4°.

P	G	s
0 8.1 17.85 56.6 88.6 91.2 95.2	0.255 0.251 0.237 0.163 0.111 0.105 0.104	0.8065 0.8062 0.8052 0.8048 0.8042 0.8049 0.8059
100	0.095	0.8059

(Herz, l.c.)

Sol. in 809 pts. ether (0.729 sp. gr.). (Eder, l.c.)
Sol. in acetone. (Eidmann, C. C. 1899. II, 1014); (Naumann, B. 1904, 37. 4328.)

II, 1014); (Naumann, B. 1904, 37. 4328.)Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethylacetate. (Naumann, B. 1910, 43. 314.)

Ammonium tribromide, NH₄Br₈.

Gives off Br in air. Sol. in H₂O. (Roozeboom, B. 14. 2398.)

Decomp. in the air. Very sol. in H₂O. (Chattaway, Chem. Soc. 1915, 107. 106.)

Ammonium antimony bromide, 3NH₄Br, 2SbBr₃.

Easily sol. in abs. alcohol. (Caven, C. C. **1905**. II, 293.)

7NH₄Br, 3SbBr₃. Easily sol. in abs. alcohol. (Caven, C. C. **1905**. II, 293.)

See also Bromantimonate, ammonium.

Ammonium bismuth bromide, NH₄Br, BiBr₃ +H₂O.

Deliquescent. Decomp. by H₂O. Sol. in alcohol. (Nicklès, C. R. **51**. 1097.)

Ammonium cadmium bromide, NH₄Br, CdBr₂+½H₂O.

Sol. in 0.73 pt. H₂O, 5.3 pts. abs. alcohol, 280 pts. ether (sp. gr. 0.729), and 24 pts. alcohol ether (1:1). (Eder, Dingl. 221. 89.) Sol. in H₂O without decomp. between 1°

and 110.1°.

100 pts. of the solution contain at: 1° 14.8° 52.2° 110.1°

53.82 58.01 65.32 75.83 pts. of the salt. (Rimbach, B. 1905, **38.** 1555.)

4NH₄Br, CdBr₂. Sol. in 0.96 pt. H₂O, from which it is pptd. by alcohol or ether. (Eder.) Solubility in H₂O at t°.

Below 160° the salt is decomp. by $H_2()$; at 160° it is sol. in $H_2()$ 0 without decomp.

t°	100 pts. of the solution contain			Solid phase	
	Pts. Cd	Pts. Br	Pts. NH4		
13.0 44.5 76.4 123.5	14.72 14.94 15.01 14.60 15.50 14.70	51.48 53.85 55.28 59.50	6.85 7.35 7.80 8.45	66 66	

(Rimbach, B. 1905, 38. 1558.)

Not sol. in HBr+Aq without decomp. (Rimbach.)

Not sol. without decomp. in LiBr+Aq, See CaBr₂+Aq, MgBr₂+Aq, NiBr₂+Aq, or mide.

CoBr₂+Aq, even though very conc. solutions are used. Sol. without decomp. in ZnBr₂+Aq. (Rimbach, B. 1905, **38.** 1571.)

Ammonium chloromolybdenum bromide, 2NH₄Br, Cl₄Mo₃Br₂.

Decomp. by pure H_2O . Can be crystallized from HBr+Aq. Apparently sol. without decomp. in alcohol. (Blomstrand.)

Ammonium cuprous bromide.

4NH₄Br, Cu₂Br₂. Fairly stable in air. 2NH₄Br, Cu₂Br₂+H₂O. Fairly stable in air. (Wells, Z. anorg. 1895, **10.** 159.)

Ammonium cuprous bromide ammonia, NH₄Br, Cu₂Br₂, 3NH₃.

(Fleurent, C. R. 1891, **113**. 1047.)

Ammonium cupric bromide, $2NH_4Br$, $CuBr_2 + 2H_2O$.

Very sol. in H_2O . (de Koninck, B. 21. 777 R.)

Ammonium iridium bromide.

See Bromiridate, ammonium.

Ammonium iron (ferric) bromide, (NH₄)FeBr₄+2H₂O.

Very deliquescent; sol. in H_2O . (Walden, Z. anorg. 1894, **7.** 332.)

Ammonium lead bromide, 12NH₄Br, 7 PbBr₂ +7H₂O.

Decomp. on air, or with cold H_2O . (André, C. R. 96. 1502.)

6NH₄Br, PbBr₂+H₂O. Decomp. by cold H₂O. (A.)

7NH₄Br, PbBr₂+1½H₂O. Stable on air; decomp. by cold H₂O. (A.)

None of the above compounds exist. (Wells, Sill. Am. J. 146. 25.)

2NH₄Br, PbBr₂. Decomp. by H₂O. Sol. in conc. KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17.351.) NH₄Br, 3PbBr₂. (Wells.)

Ammonium magnesium bromide, .NH₄Br, MgBr₂+6H₂O.

Deliquescent. Sol. in H₂O. (Lerch, J. pr. (2) **28**, 338.)

Ammonium mercuric bromide, 2HgBr₂, NH₄Br.

Decomp. by H₂O into its constituent salts. (Råy, Chem. Soc. 1902, 81. 648.)

Ammonium molybdenum bromide, 2NH₄Br, MoBr₃+H₂O.

Easily sol. in H_2O . (Rosenheim, Z. anorg. 1905, **46**. 322.)

Ammonium molybdenum bromide chloride. See Ammonium chloromolybdenum bro-

Ammonium osmium bromide. See Bromosmate, ammonium.

Ammonium osmvl bromide, (NH₄)₂OsO₂Br₄. Sol. in H₂O. (Wintrebert, A. ch. 1903, (7) **28.** 95.)

Ammonium osmyl oxybromide, (NH₄)₂OsO₃Br₂.

(Wintrebert, A. ch. 1903 (7) 28. 117.)

Ammonium palladium bromide.

See Bromopalladate, ammonium, and Bromopalladite, ammonium.

Ammonium platinum promide. See Bromoplatinate, ammonium.

Ammonium rhodium bromide. See Bromorhodite, ammonium.

Ammonium selenium bromide. See Bromoselenate, ammonium.

Ammonium tellurium bromide. See Bromotellurate, ammonium.

Ammonium thallic bromide, NH₄Br, TlBr₃+ $2H_2O$.

Sol. in H₂O. (Willm.) Efflorescent. $+4H_2O$.

Sol. in H₂O. (Nicklès.)

 $+5H_2O$. Sol. in H_2O . (Nicklès.)

Ammonium stannous bromide (ammonium bromostannite), NH₄Br, SnBr₂+H₂O.

Sol. in H₂O. (Benas, C. C. **1884**. 958.) 2NH₄Br, SnBr₂. Sol. in H₂O. (Raymann and Preis, A. **223**. 323.)

 $+H_2O$. Sol. in H_2O . (Benas, *l.c.*) +2H₂O. (Richardson, Am. Ch. J. **14.** 96.)

 NH_4Br , $2SnBr_2(?)$. (Benas.)

Ammonium stannic bromide, 2NH₄Br, SnBr₄. See Bromostannate, ammonium.

Ammonium uranyl bromide, 2NH₄Br, UO₂Br₂ $+2H_2O_{\cdot}$

Very deliquescent, and sol. in H₂O. (Sendtner.)

Ammonium zinc bromide, 2NH₄Br, ZnBr₂. Deliquescent, and sol. in H₂O. (Bödeker,

J. B. **1860.** 17.) +H₂O. Very deliquescent, and sol. in H₂O.

(André, A. ch. (6) 3. 104.)

+xH₂O. (Ephraim, Z. anorg. 1908, **59.** 66.) 3NH₄Br, ZnBr₂. Sol. in H₂O. Decomp. only by great dilution. (Jones & Knight, Am. Ch. J. 1899, **22.** 136.)

 $+\mathrm{H}_{2}\mathrm{O}$. Not hygroscopic. (Ephraim, Z. anorg. 1908, **59**. 66.)

Ammonium bromide arsenic trioxide. See Arsenite bromide, ammonium.

Ammonium bromide mercuric chloride, NH4Br, 2HgCl2.

Ppt. (Rây, Chem. Soc. 1902, 81. 649.)

Ammonium bromide mercuric iodide, 2NH4Br, Hgl2.

Decomp. by H₂O. Sol. in alcohol without decomp. (Grossmann, B. 1903, 36. 1602.) 3NH₄Br, 2HgI₂. Decomp. by H₂O. Sol. in alcohol without decomp. (Grossmann, B. 1903. **36.** 1602.)

Ammonium leau bromochloride, NH₄Pb₂Br₄Cl.

Decomp. by H₂C. (Fonzes-Diacon, Bull.

Soc. 1897, (3) 17. 350.)
NH₄Pb₂Cl₄Br. Decomp. by H₂O. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 349.)

Ammenium bromochloroiodide, NH₄ClBrI. Very stable; so! in H₂O. (Chattaway, Chem. Soc. 1915, 107, 108.)

Ammonium lead bromoiodide, NH₄PbBrI₂+ 2H2O and NH4Pb2BrI4.

Decomp. by H₂O. Sol. in conc. KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 352.)

Ammonium bromiodobromide, NH₄BrIBr. Decomp. in the air. Sol. in ether. (Jackson, Am. Ch. J. 1900, 24. 28.)

Ammonium chloride, NH4Cl.

(Sal-ammoniac.) Not deliquescent. Sol. in H₂O with reduction of temp.

Sol. in 2.24 pts. H₂O. (Wenzel.) NH₄Cl +Aq sat. at 10° has sp. gr. =1.072. (T.) Sol. in 2.72 pts. cold, and 1 pt. boiling H₂O. (M. R.,

and P.)
Sol. in 3 pts. H_2O at 18.75°. (Abl.)
Sol. in 6 pts. cold, and 1 pt. boiling H_2O . (Fourercy.)
100 pts. H_2O at 18.75° dissolve 36.75 pts. NH4Cl.
NH4Cl+Aq sat. at its b.-pt. (114.2°) contains 88.9
pts. NH4Cl in 100 pts. of the solution. (Berzelius.)
100 pts. H_2O at 15° dissolve 33–36 pts.; and at 100°,
NH4Cl+Aq sat. at 15° has sp. gr. =1.075209, and
contains at least 31.88 pts. NH4Cl dissolved in every
100 pts. H_2O . (Michel and Krafft, A. ch. (3) 41. 478.)
NH4Cl+Aq sat. at 10° contains 23.8% NH4Cl.

NH4Cl+Aq sat. in the cold contains 14.3% NH4Cl. (Fourcroy.) Sol. in 1 pt. H₂O at 113.5°, b.-pt. of sat. solution. (Griffiths.)

Sol. in 2.7 pts. H₂O at 18.75°, forming a liquid of 1.08 sp. gr. (Karsten, 1840.) Sol. in 2.727 pts. H₂O at 10°. (Gren's Handbuch.) (Karsten, 1840.)

100 pts. H_2O at 718 mm. pressure and to dissolve pts. NH_4Cl .

NH₄Cl NH₄Cl NH₄Cl NH₄Cl 55.04 59.48 0 28.40 30 41.72 60 68.36 32.84 37.28 10 7Ŏ 46.16 72.80 77.24 100 20 l 50 50.60 80 63.92 110

(Alluard, C. R. 59. 500)

Solubility in 100 pts. H ₂ O at t°.							
t°	Pts. NH4C!	t°	Pts. NH,C!	t°	Pts. NH4Ci	t°	Pts. NH4CI
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	29.7 30.0 30.3 30.6 31.4 31.8 32.2 32.6 33.3 33.7 34.1 34.5 34.5 35.6 36.4 36.4 37.6 38.0 38.4 38.8 39.7 40.1	30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 51 52 53 54 55 56 57	41.4 41.8 42.2 42.7 43.6 44.0 44.4 44.9 45.8 46.2 46.7 47.1 47.6 48.5 49.9 50.9 51.3 51.3 52.8 53.2 53.7	60 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87	55.2 55.7 56.2 56.7 57.7 58.2 59.7 59.2 60.7 61.2 61.7 62.3 63.4 63.9 64.5 65.1 66.2 66.7 67.8 68.4 69.6	90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114 115 115.65	71.37.19.97.2.57.31.77.4.37.74.97.5.57.61.77.7.3.78.00.78.66.79.22.581.882.5.883.1885.7.885.4.885.17.87.3
28 29	40.5 40.9	58	54.2 54.7	88	70.2 70.7		oth as

(Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864. 57.)

Solubility in 100 pts. H₂O at t°.

t°	Pts. NH ₄ Cl	t°	Pts. NH ₄ Cl	t°	Pts. NH ₄ Cl
0	29.7	10.8	33.9	64.9	57.9
6.2	32.2	31.6	42.2	90.6	67.2

(Lindström, Pogg. 136. 315.)

 $NH_4Cl + Aq$ sat. at $13-16^\circ$ contains 26.16% $NH_4Cl.$ (v. Hauer, J. pr. **103.** 114.) Sol. in 2.72 pts. H_2C at 19° . (Schiff, A. **109.** 326.)

Sol. in 2.803 pts. H₂O at 15°. (Gerlach.) Sat. NH₄Cl+Aq at 75° contains 38.23% NH₄Cl. (Tschugaeff, Z. anorg. 1914, **86**. 161.) NH₄Cl+Aq sat. at 30° contains 29.5% NH₄Cl. (Meerburg, C. C. **1904**. II, 1362.)

Solubility in H₂O at t°.

	1000 mols. H_2O	100 g. H ₂ O
$\mathbf{t}^{\mathbf{o}}$	dissolve	dissolve
	mols. NH₄Cl	g. NH ₄ Cl
3.5	105.2	31.25
$25 \ 0$	129.7	38.5
50.0	167.0	49.6

(Biltz and Marcus, Z. anorg. 1911, 71. 169)

Solubility of NH4Cl in H2O at to.

Bolubilit	Solubility of NH4Ci in H2O at t.						
t°	g. NH ₄ Cl in 100 g. of the solution	Solid phase					
- 0.45 - 1.25 - 1.70 - 3.05 - 4.45 - 6.4 - 8.25 - 9.7 - 11.9 - 13.25 - 14.70 - 15.4	0.78 1.98 2.75 4.6 6.67 9.23 11.4 13.1 15.3 16.7 18.15	Ice					
±-16.0	±19.5	Ice+NH ₄ Cl					
$ \begin{array}{r} -15.0 \\ -12.2 \\ -10.9 \\ -7.4 \\ -5.7 \\ -2.3 \\ \pm -1.1 \\ 0 \end{array} $	19.7 20.0 20.3 21.1 21.7 22.3 22.6 22.7	NH4Cl "" "" "" "" "" "" "" "" "" "" ""					
73.6		2 27 909 \					

(Meerburg, Z. anorg. 1903, 37, 203.)

100 g. $\rm H_2O$ dissolve 29.5 g. NH₄Cl at 30.° (Schreinemakers, Arch. neer. Sc. (2) **15.** 17.)

Spec. gravity of NH₄Cl+Aq. G=according to Gerlach at 15° (Z. anal. 8. 281); S=according to Schiff at 19° (A. 110. 74).

		0 - 10		(/-
NHIC	Sp.	gr.	NH,CI	Sp. gr.	
رن ان	G	s &		G	s
1 2 3 4 5 6 7 8 9 10 11	1.00316 1.00632 1.00948 1.01580 1.01580 1.02180 1.02481 1.02781 1.03081 1.03370	1.0058 1.0087 1.0116 1.0145 1.0174 1.0203 1.0233 1.0263 1.0293 1.0322	18 19 20 21 22 23 24 25 26	1.05086 1.05367 1.05648 1.05929 1.06204 1.06479 1.06754 1.07029 1.07304 1.07375	1.0523 1.0551 1.0579 1.0606 1.0633 1.0660 1.0687 1.0714
12 13 14 15 16	1.03658 1.03947 1.04325 1.04524 1.04805	1.0380 1.0409 1.0438	29		1.0768 1.0794 1.0802 1.0846

For older determinations, see Storer's Dict.

Sp. gr. of NH₄Cl+Aq at 18°.

% NH ₄ Cl	Sp. gr.	% NH4Cl	Sp. gr.
5 10 15	1.0142 1.0289 1.0430	20 25 	1.0571 1.0710

(Kohlrausch, W. Ann. 1879, 1.)

Sp. gr. at 20°/4° of a normal solution of NH₄Cl=1.01454. (Haigh, J. Am. Chem. Soc. 1912, **34.** 1151.)

NH₄Cl+Aq containing 6.52% NH₄Cl has sp. gr. 20°/20° = 1.0195. (Le Blanc & Rohland, Z. phys. Ch. 1896, **19.** 272.)

Temp. of maximum density of NH ₄ Cl+Aq	g. mol. NH ₄ Cl in 1000 g. H ₂ O	
2.640°	0.1899	
0.055°	0.5407	

(de Coppet, C. R. 1900, 131, 178.)

Sp. gr. of dil. NH₄Cl+Aq at 20.004° and 731 mm. (corr.) Conc. = g. equiv. NH₄Cl per l at 20.004°.

Conc.	Sp. gr.
0.0009	1.000,000,0
0.0001	1.000,001,8
0.0002	1.000,003,7
0.0005	1.000,009,3
0.0010	1.000,018,5
0.0020	1.000,036,9
0.0050	1.000,091,3
0.0100	1.000,180,3

(Lamb and Lee, J. Am. Chem. Soc. 1913, **35**. 1688.)

Sp. gr. of dil. NH₄Cl+Aq.

NH ₄ Cl g. in 1000 g.	Sp. gr.
of solution	16°/16°
0	1.000000
0.4431	1.000150
0.9061	1.000304
1.8085	1.000606
3.5947	1.001196
7.7845	1.002562
15.3425	1.004994
31.2364	1.010018

(Dijken, Z. phys. Ch. 1897, 24. 107.)

B.-pt. of NH₄Cl+Aq, containing pts. NH₄Cl to 100 pts. H₂O. G=according to Gerlach (Z. anal. **26.** 439); L=according to Legrand (A. ch. (2) **59.** 436).

Bpt.	G	L	Bpt.	G	L
101° 102 103 104 105 106 107 108	6.5 12.8 19.0 24.7 29.7 34.6 39.6 45.0	7.8 13.9 19.7 25.2 30.5 35.7 41.3 47.3	109° 110 111 112 113 114 114.2 114.8	50.6 56.2 61.9 67.8 74.2 81.3	53.5 59.9 66.4 73.3 80.5 88.1 88.9
	-0.0	~	1	0	

Sat, NH₄Cl+Aq boils at 115.8° at 718 mm. pressure. (Alluard, C. R. 59. 500.)

NH₄Ci+Aq containing 74.2 pts. NH₄Cl to 100 pts. H₂O forms a crust at 113°; highest temperature observed, 114.8°. (Gerlach, Z. augl. 26. 426.)

NH₄Cl +Aq containing 10% NH₄Cl boils at 101.1°; 20% NH₄Cl, at 104.4°. (Gerlach.) NH₄Cl+Aq cont.sining 10.6% NH₄Cl gives off NH₈ at 37°. (Leeds, Am. J. Sci. (3) 7. 197.)

When NH₄Cl-| Aq is boiled, or even evap. on water bath, a little NH₃ is expelled. (Fresenius.)

30 pts. NH₄Cl mixed with 100 pts. H_2O lower the temp. from 13.3° to -5.1°, that is 18.4°. (Rüdorff, B. **2.** 68.)

Freezing-point of sat solution is -15.4, the same temp, which is caused by mixing 25 pts. NH₄Cl with 100 pts. snow. (Rüdorff, Pogg. 122, 337.)

Conc. HCl+Aq precipitates part of NH₄Cl from sat. NH₄Cl+Aq. (Vogel, J. pr. 2. 199.)

Solubility of NH₄Cl in HCl+Aq at 0°. NH₄Cl = mols. NH₄Cl (in milligrammes) dissolved in 10 cc. of the liquid; HCl= mols. HCl (in milligrammes) dissolved in 10 cc. of the liquid.

NH4Cl	HCl	Sum of mols.	Sp. gr.
46.125	0.0	46.125	1.076
43.6	2.9	46.5	1.0695
41.0	5.5	46.5	1.0705
39.15	7.85	47.0	1.0715
36.45	10.85	47.30	1.073
27.37	21.4	48.77	1.078
10.875	53.0	63.875	1.106
8.8	61.0	69.8	1.114

(Engel, Bull. Soc. (2) 45. 655.)

Solubility of NH₄Cl in HCl+Aq.

t°	HCl concentra- tion. g. mol. per 100 g. H ₂ O	Weight NH ₄ Cl dissolved in 1000 g. H ₂ O	Molecular solubility
0° " " 25°	0 14 12 1 0	298.40 286.43 271.23 245.35 395.10	5.59 5.36 5.08 4.60 7.40
"	1 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	380.85 366.00 339.05	$7.13 \\ 6.85 \\ 6.35$

(Armstrong & Eyre, Proc. R. Soc. (A.) 84.

Solubility in NH₄OH+Aq. NH₄Cl=mols. NH₄Cl (in mgs.) in 10 cc. solution; NH₃=mols. NH₃ (in mgs.) in 10 cc. solution.

NH ₄ Cl	NH ₈	Sp. gr.
46.125	0	1.076
45.8	5.37	1 067
45.5	12.025	1.054
45.125	23.4	1.044
44.5	38.0	1.031
44.0	47	1.025
43.625	54.5	1.017
43.125	80.0	0.993
44.0	90.0	0.992
44.375	95.5	0.983
49.75	130	0.953
60.0	169.75	0.931

(Engel, Bull. Soc. (3) 6. 17.)

 $NH_4Cl+BaCl_2$. 100 pts. H_2O dissolve 33.8 pts. $NH_4Cl+11.6$ pts. $BaCl_2$ at 20°. (Rüdorff, Pogg. 148. 467.)

Solubility of NH₄Cl and BaCl₂ in H₂O.

to.	Wt. pe	er 100	Solid phase		
t.	· NH ₄ Cl	BaCl ₂			
-16.2° 0 30 40 50	16.10 19.26 24.89 26.93 29.53	8.07 8.22 8.19 8.40 8.55	NH ₄ Cl+ BaCl ₂ .2H ₂ O		

(Schreinemakers, Chem. Weekbl. 1910, 7. 333.) See also BaCl₂+NH₄Cl under BaCl₂.

NH₄Cl+CdCl₂. Solubility of NH₄Cl and CdCl₂.

See Ammonium cadmium chloride.

NH₄Cl+CuCl₂. Solubility of NH₄Cl in H₂O at 30° in presence of varying amounts of CuCl₂.

% by wt. CuCl ₂	% by wt. NH4Cl	Solid phase
0 1.9 3.6 7.7 10.5 12.3 15.6 19.9 24.0 29.4 35.1 41.4 43.2	29.5 28.6 25.9 19.8 16.5 14.9 12.1 9.4 4.9 3.4 2.1 2.0	NH4Cl NH4Cl+CuCl ₂ , 2NH4Cl. 2H ₂ O CuCl ₂ , 2NH4Cl. 2H ₂ O
43.9	0.	CuCl ₂ . 2H ₂ O

(Meerburg, Z. anorg. 1905, 45. 3)

NH₄Cl+PbCl₂. Solubility of NH₄Cl and PbCl₂ in H₂O at 22°.

g. equivalent in 1000 g. H ₂ O		Solid phase
NH ₄ Cl	PbCl ₂	
0.0	0.0749	$PbCl_2$
0.1	0.0325	"
0.2	0.0194	. "
0.3	0.0153	66
0.4	0.0138	44
0.5	0.0130	"
0.52	0.0127	PbCl ₂ +NH ₄ Cl ₂ PbCl ₂
0.55	0.0123	NH ₄ Cl, 2PbCl ₂
0.6	0.0113	
0.65	0.0105	"
0.7	0.0099	"
0.8	0.0087	"
0.9	0.0083	"
1.0	0.0080	"
1.2	0.0075	"
1.5	0.0073	"
2.0	0.0077	"
2 .5	0.0092	٠٠
3.0	0.0112	44
4.0	0.0182	66
$\frac{1}{5}.0$	0.0296	"
6.0	0.0473	"
7.0	0.0774	41
7.29	0.0898	NH4Cl+NH4Cl,2PbCl2
7.29	0.0000	NH ₄ Cl
(D. "		(1 1011 PR 100)

(Brönstedt, Z. phys. Ch. 1911, 77. 132.)

Solubility of NH₄Cl and 2PbCl₂,NH₄Cl in H₂O at 100°.

١.	1120 40 100 .							
	NH ₄ Cl g. equivalent		Pb g. equ	Cl ₂ ivalent				
	in 1000 g. solution in 1000 g.		in 1000 g. solution in 1000 g. H ₂ O		Solid phase			
	1.277	.277 1.404		0.176	$\mathrm{NH_4Cl}\ + \mathrm{2PbCl_2.H_2O}$			

(Brönstedt, l. c.)

 $\rm NH_4Cl + MgCl_2.$ Solubility of $\rm NH_4Cl$ and $\rm NH_4MgCl_3.6H_2O.$

	In 10 mols.	000 g. H ₂ O	
t°	g. mols. NH,Cl	g. mols. MgCl ₂	Solid phase
3.5° 25 50	$ \begin{array}{r} \hline 27.5 \\ 42.1 \\ 62.9 \end{array} $	55.7 56.4 59.1	NH ₄ Cl+NH ₄ MgCl ₃ .6H ₂ O "

(Biltz and Marcus, Z. anorg. 1911, 71. 170.)

Solubility of NH₄MgCl₂. 6H₂O and MgCl₂. 6H₂O.

	In 1000	g. mol. H ₂ O	
t°	g. mol. NH ₄ Cl	g. mol. MgCl ₂	Solid phas
3.5° 25°	0.5 0.5		MgCl ₂ . 6H ₂ O +- NH ₄ MgCl ₃ . 3H ₂ O
50°	0.8	111.2	He.

(Biltz and Marcus, Z. anorg. 1911, 71. 170.)

 $NH_4Cl+NH_4NO_3$. 100 pts. H_2O dissolve 29.1 pts. $NH_4Cl+173.8$ pts. NH_4NO_3 at 19.5°. (Rüdorff, B. **6**. 482.)

NH₄Cl+Ba(NO₃)₂. 100 pts. H₂O dissolve at 18.5° —

	1	2 3		4	5	
NH ₄ Cl	36.7	38.6	38.06	39.18		
Ba(NO ₃) ₂		8.6	16.73	17.02	8.9	

2, sat. Ba(NO₃)₂+Aq treated with NH₄Cl; 3, sat. NH₄Cl+Aq treated with Ba(NO₃)₂; 4, simultaneous treatment of both salts with H₂O. (Karsten.)

 $_{18.5^{\circ}-}^{\rm NH_4Cl+KNO_3}$. 100 pts. $_{\rm H_2O}$ dissolve at

	1	2	3	4	5	6
KNO ₃ NH ₄ Cl	29.9	$\frac{-}{30.56}$ $\frac{44.33}{}$	${37.68}$ ${37.98}$	38.62 39.84	36.7	$\begin{array}{r} \\ 34.2 \\ 38.8 \end{array}$
		74 89	$\overline{75.66}$	$\frac{-}{78.46}$		$\overline{73.0}$

1 and 5, according to Mulder; 2, sat. KNO₃ +Aq treated with NH₄Cl; 3, sat. NH₄Cl+Aq treated with KNO₃; 4, simultaneous treatment of NH₄Cl and KNO₃ (Karsten); 6, by warming solution with excess of both salts and cooling to 14.8°. The amount of excess of one or the other salt has no influence. (Rüdorff.)

NH₄Cl+NaNO₃. Slowly sol. in sat. NaNO₃+Aq, at first to a clear solution, but afterwards NaCl separates out. (Karsten.)

NH₄Cl+KCl. 100 pts. H₂O dissolve—

		(Rüdorff) 15°			
KCl NH₄Cl	•	16.97 28.90	34.4	16.27 29.83	37.02

	(Rüdorff) 22°	(Mulder) At bpt.			
KCl NH₄Ci	19.1 30.4	58.5	21.9 67.7	87 3	

100 pts. sat. solution of NH₄Cl+KCl contain 30.61 pts. of the two salts at 13-16°. (v. Hauer, J. pr. 103. 114.)

NH ₄ Cl+NaCl.	100	pts.	H ₂ O	dissol	ve-

	10-200	(Mulder) 10° *	* 10°	(v. Hauer) 13–16°
NH₄Cl . NaCl .	35.8	19.504 30.00	33.3	18.8±20.3 24.6-26.1
		49.50		43.4-46.4

	(Kara 18.7	sten) 75°	(Rüdorff) 18.7°	, (Mulder) At bpt	j.
NH₄Cl NaCl	22 06 26.38		22.9 23.9	87 .3	$78.5 \\ 22.3$	40.4
	48.44		46.8		100.8	

Sp. gr. of sat. solution of NH₄Cl+NaCl is 1.179. (Karsten.) NH₄Cl+(NH₄)₂SO₄. 100 pts. H₂O dissolve 23.8 pts. NH₄Cl+46.5 pts. (NH₄)₂SO₄ at 21.5°. (Rüdorff, B. **6.** 484.)

Solubility in (NH₄)₂SO₄+Aq at 30°.

	Solid phase		
% by wt. (NH ₄) ₂ SO ₄	Sond phase		
44	(NH ₄) ₂ SO ₄		
$ \begin{array}{r} 36.15 \\ 28.6 \end{array} $	"		
25.69 25.81	(NH ₄) ₂ SO ₄ +NH ₄ Cl		
23.22	NH ₄ Cl		
16.33	"		
$\begin{vmatrix} 12.72 \\ 0 \end{vmatrix}$	"		
	(NH ₄) ₂ SO ₄ 44 36.15 28.6 25.69 25.81 23.22 21.3		

(Schreinemakers, Z. phys. Ch. 1909, 69. 562.)

NH₄Cl+CuSO₄. Sol. in sat. CuSO₄+Aq, at first to a clear solution, but a double sulphate of NH₄ and Cu soon separates. (Karsten.)

NH₄Cl+MgSO₄. Slowly and difficultly sol. in sat. MgSO₄+Aq with subsequent separation of double sulphate. (Karsten.)

 $NH_4Cl+K_2SO_4$. 100 pts. H_2O dissolve, at 18.75°—

		a	b	c	
K₂SO₄ NH₄Cl	10.8	11.1 38.2	13.26 37.94	13.28 37.92	36.7
		49.3	51.20	51.20	

In (a) NH₄Cl was added to sat. K_2SO_4+Aq . In (b) K_2SO_4 was added to sat. NH₄Cl+Aq. In (c) NH₄Cl and K_2SO_4 were treated together with H₂O. (Karsten.)

100 pts. H₂O at 14° dissolve 14.1 pts. $K_2SO_4 + 36.8$ pts. $NH_4Cl = 50.9$ pts. $K_2SO_4 +$ NH4Cl, under all conditions. (Rüdorff, Pogg. **148.** 565.)

100°pts. H₂O dissolve at b.-pt.-

		-	•	
K ₂ SO ₄ . NH ₄ Cl .		26.75	33.3-33.9 90.4-111.8	87 3
			123.7-145.7	

(Mulder.)

 $\rm NH_4Cl+Na_3Q_4$ $^{\prime\prime}$ 100 pts. $\rm H_2O$ dissolve 28.9 pts. $\rm NH_4Cl+24.7$ pts. $\rm Na_2SO_4$ if $\rm NH_4Cl+Aq$ sat. at 10° is sat. with $\rm Na_2SO_4$ at 11°.

100 pts. H₂O dissolve 31.8 pts. NH₄Cl+ 9.0 pts. Na₂SO₄, if Na₂SO₄+Aq sat. at 10° is sat. with NH₄Cl at 11°. (Mulder, J. B. **1866.** 68.)

Sol. in sat. Na₂SO₄+Aq. (Karsten.) Sol. in sat. ZnSO₄+Aq. (Karsten.)

Sl. sol. in liquid NH₃ at -50°. (Moissan,

C. R. 1901, 133, 713.)
 Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 826.)

Very sl. sol. in absolute alcohol.

100 pts. alcohol of 0.939 sp. gr. dissolve—at 4° 8° 27° 38° 56°

11.2 12.6 19.4 23.6 30.1 pts. NH₄Cl. (Gerardin, A. ch. (4) 5. 129.)

14 pts. boiling highest rectified spirit dissolve 1 pt. NH4Cl. (Wenzel.)

100 pts. alcohol of—
0.900 sp. gr. dissolve 6.5 pts. NH4Cl.
0.872 " " 4.75 " "
0.834 " " 1.5 " " (Kirwan.)

Though somewhat sol, in pure absolute alcohol, NH4Cl is absolutely insol, in alcohol in presence of methyl amine chlorides. (Winkles, A. 93. 324.)

100 pts. absolute methyl alcohol dissolve

3.35 pts. at 19°

100 pts. absolute ethyl alcohol dissolve 0.62 pt. at 19°. (de Bruyn, Z. phys. Ch. 10. 783.)

Solubility of NH₄Cl in methyl alcohol.

t°	Alcohol concentration, mol. g. alcohol for 1000 g. H ₂ ()	Solubility in 1000 g. H ₂ O	Molecular solubility
0° " " " 25° " "	0 14 1/2 1 3 0 1/4	298.40 297.35 296.55 292.65 283.15 395.10 394.75 393.85	5.59 5.57 5.55 5.47 5.30 7.40 7.39 7.37
• 66	3	$\frac{392.90}{386.20}$	$7.36 \\ 7.23$

(Armstrong and Eyre, Proc. R. Soc. Lond. (A) **84.** 127.)

Solubility of NH₄Cl in ethyl alcohol at 0°.

Alcohol concentration, mol. g. alcohol for 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0	298.40	5.59
!4	295.50	5.53
!2	291.95	5.47
1	286.40	5.37
3	266.25	4.99

(Armstrong and Eyre, l.c.)

See also ammonium cupric chloride.

Solubility of NH₄Cl in propyl alcohol.

t°	Alcohol concentration, mol. g. alcohol for 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0° 25°	0 14 12 1 0 14 12 1 12 1	298.46 295.40 291.30 284.00 395.10 393.50 390.80 384.80	5.59 5.53 5.45 5.32 7.40 7.37 7.32 7.21

(Armstrong and Eyre, l.c.)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

 $P = \frac{c}{c}$ methyl alcohol in the solvent. G = g. NH₄Cl in 10 cc. of the solution.

S = sp. gr. of the sat. solution at $25^{\circ}/4^{\circ}$.

P	G	s	_
0.00	0.0533	0.7908	
4.37	0.0583	0.7909	
10.40	0.0658	0.7910	
41.02	0.118	0.7957	
80.69	0.217	0.8020	
84.77	0.227	0.8026	
91 25	0.247	0.8040	
100.00	0.276	0.8062	

(Herz, Z. anorg. 1908, 60. 155.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent.

G = g. NH_4Cl in 10 cc. of the solution. S = Sp. gr. of the sat. solution at $25^{\circ}/4^{\circ}$.

P	G	s
0	0.276	0.8062
11.11	0.231	0.8035
23.8	0.182	0.8008
65.2	0 071	0.8005
91.8	0.026	0.8002
93.75	0 023	0.8000
100.00	0.018	0.8009(?)

(Herz, Z. anorg. 1908, 60. 157.)

Solubility in mixtures of propyl and ethy. alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NH₄Cl in 10 cc. of the solution. S = Sp. gr. of the sat. solution at $25^{\circ}/4^{\circ}$.

10 ob. 6-1		
P	G	S
0	0.0533	0.7908
$\begin{array}{c} 8.1 \\ 17.85 \end{array}$	0.0505	0.7910 0.7916
$\begin{array}{c} 56.6 \\ 88.6 \end{array}$	$0.0312 \\ 0.0210$	0.7962 ⁶ 0.7996
$\begin{array}{c} 91.2 \\ 95.2 \end{array}$	0.0203 0.0190	0.8001 0.8003
100	0.0177	0 8009

(Herz, Z. anorg. 1908, 60, 160.)

Insol, in ether and CS₂. (Fordos and Gélis, A, ch. (3) **32.** 393.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. anal. appl. Ch. 6. 184.)

Solubility of NH₄Cl in acetone + Aq at 25°. A = cc. acctone in 100 cc. acetone + Aq. NH₄Cl = millimols. NH₄Cl in 100 cc. of the solution.

Ą	NH ₄ Cl	Sp. gr.
()	585 1	1.0793
10	534.1	1.0618
20	464.6	1 0451
30	396.7	1.0263
40	328.5	0.99984
$egin{pmatrix} 46.5 \ ext{to} \end{pmatrix} egin{pmatrix} ext{lower} \ 2 ext{ phases} \end{bmatrix}$	283.7	0 97998
85.7 J upper	18.9	0.8390
90	9.4	0.8274

(Herz, Z. anorg. 1905, **45**, 263.)

Solubility of NH₄Cl in glycerine + Aq at 25°. G=g. glycerine in 100 g. glycerine + Aq. NH₄Cl = millimeter NH₄Cl in 100 gc of the

NH₄Cl = millimols. NH₄Cl in 100 cc. of the solution.

G	NH ₄ Cl	Sp. gr.
0 13.28 25.98 45.36 54.23 83.84	585.1 544.6 502.9 434.4 403.5 291.4 228.4	1.0793 1.0947 1.1127 1.1452 1.1606 1.2225 1.2617

(Herz, l.c.)

Insol. in acetone. (Naumann, B. 1904, 37. 4328.); (Eidmann, C. C. 1899. II, 1014.)

Insol. in anhydrous pyridine. Sol. in 97% pyridine+Aq, 95% pyridine+Aq and in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30, 1107.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

Very sol. in ethyl amine. (Shinn, J. phys. Chem. 1907, 11. 538.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

Insol, in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Sol. in formic acid. (Zanninovich-Tessarin, 7. phys. Ch. 1896, 19, 251.)

Ammonium antimony chloride, $SbCl_6(NH_4)_2$, $SbC_6(NH_4)_3$.

Ppt. Decomp. by H₂O. (Weinland, B. 1905, **38**, 1085.)

SbCl₆(NH₄), SbCl₅, NH₄OH. Very deliquescent; sl. sol. in 120 with decomp. (Weinland, B 1991, **34**, 2635.)

Ammonium antimonous chloride, NH₄Cl, SbCl₃.

Deliquescent. (Dehérain, C. R. **52.** 734), 2NH, SbCl₃+2H₂O. Permanent in dry rir; decomp. by much H₂O. (Poggiale.) 3NH₄Cl, SbCl₃+3H₂O. As above.

Ammonium antimonic chloride, 3NH₄Cl, SbCl₅.

Decomp. by \mathbf{H}_2 O. (Dehérain, C. R. **52**. 73±.)

4NH₄Cl, SbCl₅. Decomp. by H₂O. (D.)

See also Chlorantimonate, ammonium.

Ammonium antimony platinum chloride, $(Sb, Pt)Cl_6(NH_4)_2$.

Ppt. (Weinland, B. 1905, 38. 1084.)

Ammonium antimony tin chloride, (Sb,Sn)Cl₆(NH₄)₂.

Ppt. (Weinland, B. 1905, **38.** 1085.)

Ammonium arsenyl chloride, $2NH_4Cl$, AsOCl $+\frac{1}{2}H_2O$.

(Wallace, Phil. Mag. (4) 16. 358.)

Ammonium bismuth chloride, NH₄Cl, 2BiCl₃.
Deliquescent. (Dehérain, C. R. **54**, 724.)
2NH₄Cl, BiCl₃. Decomp. by H₂O. (Arppe.)

 $\begin{array}{l} \text{Pogg. 64. } 237.) \\ +2\frac{1}{2}\text{H}_2\text{O.} \quad (\text{Rammelsberg.}) \\ 3\text{NH}_4\text{Cl. } \text{BiCl}_3. \quad \text{Decomp. by H}_2\text{O.} \quad (\text{Arppe.}) \end{array}$

5NH₄Cl, BiCl₃. Decomp. by H₂U. (Arppe.)

Ammonium bismuth potassium chloride, 2NH₄Cl, BiCl₃, KCl. (Dehérain, C. R. **54**. 724.)

Ammonium cadmium chloride, NH₄Cl, CdCl₂.

Solubility of NH₄Cl, CdCl₂ in H₂O at t°.

t°	Pts. by weight in 100 pts. of solution		g. in 100 g. solution	Grams in 100 H _z O	Mols. H ₂ O ree salt dis- colved by 100 mols. H ₂ O	
				, -		
2.4°	13.44	14.26	2.24	29 %94	42.74	3.25
16.0	15.07	15.82	2.56	33.45	50.26	3.83.
41.2	17.46	18.61	2.89	38.96	63.83	4.86
63.8	19.73	20.92	3.34	43.99	78.54	5.98
					109.33	8.30
	(Rim	bach,	B. 18	97, 30 .	3076.)	,

+½H₂O. Sl. sol. in H₂O, alcohol, and wood spirit. (v. Hauer, W. A. B. 13. 449.)

4NH₄Cl, CdCl₂. Sol. in H₂O. (v. Hauer.) Decomp. by H₂O to NH₄Cl, CdCl₂. Decomp. increases with decrease of temp. At 3.9° approximately wholly decomp. to NH₄Cl, CdCl₂. At 113.9° very nearly all is 4NH₄Cl, CdCl₂. (Rimbach, B. 1897, **30**. 3077.)

Solubility of 4NH₄Cl, CdCl₂ in H₂O at t°.

t°	Pts. dissolved in 100 pts. by weight of solution.					
	Cd	Cl	NH.			
3.9 16.1 40.2 * 58.5 112.9 113.9	5.75 6.93 9.91 12.50 16.66 16.51	18.17 20.26 23.84 26.53 31.79 32.71	7.37 7.97 8.92 9.35 10.78 11.30			

(Rimbach, B. 1897, 30. 3071.)

Sol. without decomp. in 37.3% HCl(d = 1.19) and 24.8% HCl(d = 1.125). (Rimbach, B. 1905, **38.** 1569.)

Solubility of 4NH₄Cl,CdCl₂+NH₄Cl in H₂O at t°.

	In 100 pts. by wt. of the solution				sition of id phase
t°	Pts. by wt. Cd	Pts. by wt. Cl	Pts. by wt. NH ₄	Mol. % NH₄Cl	Mol. % Tetra- salt
1.0 13.2 40.1 58.2	2.82 2.76 3.16 3.51	17.11 18.84 22.56 25.21	7.82 8.71 10.49 11.72	59.0 74.0 71.0 69.0	41.0 26.0 29.0 31.0

(Rimbach, B. 1902, **35.** 1300.)

Solubility of 4NH₄Cl, CdCl₂+NH₄Cl, CdCl₂ in H₂O at t°.

	In 100 pts. by wt. of the solution			Compos the soli	ition of d phase
t°	Pts. by Pts. by Pts. wt. Cd wt. Cl wt. I		Pts. by wt. NH ₄	Mol. % Mono- salt	Mol. % Tetra- salt
1.1 14.0 40.7 58.5	5.34 7.12 10.24 12.50	17.62 19.86 23.82 26.53	7.27 7.84 8.85 9.35	49.6 47.0 77.0	50.4 53.0 23.0

(Rimbach, B. 1902, **35.** 1300.)

Sol. without decomp. in 50% LiCl+Aq, 33.3% CaCl₂+Aq and 50% MgCl₂+Aq. (Rimbach, B. 1905, **38.** 1569.)

Ammonium chloromolybdenum chloride, 2NH₄Cl, Cl₄Mo₃Cl₂+2H₂O.

Decomp. by pure H₂O; can be crystallized from HCI+Aq. (Blomstrand.)

Ammonium chromium chloride, 2NH₄Cl, CrCl₃+H₂O.

Sol. in H₂O with decomp. (Neumann, A. 244. 229.)

 $+6H_2O = 2NH_4Cl$, $[CrCl_2.4H_2O]Cl + 2H_2O$.

Hygroscopic. Decomp. by H₂O and by alcohol. (Weinland, B. 1907, **40**. 3770.)

Ammonium cobaltous chloride, NH₄Cl, CoCl₂ +6H₂O.

Deliquescent in moist air. Very easily sol. in H₂O. (Hautz, A. 66. 284.)

Ammonium cobaltous chloride ammonia, NH₄Cl, CoCl₂, NH₃. (F. Rose.)

Ammonium cuprous chloride, 4NH₄Cl.Cu₂Cl₂.

Decomp. in the air. 4NH₄Cl, 3Cu₂Cl₂. Decomp. by H₂O, not by alcohol. (Ritthausen, J. pr. **59**. 369.)

Fairly stable in air. (Wells, Z. anorg. 1895, 10. 158.)

Ammonium cupric chloride,

NH₄Cl, CuCl₂.

Solubility of NH₄Cl, CuCl₂ in absolute alcohol at 25°.

% CuCl	Solid phase	% CuCl	Solid phase
4.65	NH ₄ Cl+NH ₄ Cl,	12.90	NH ₄ Cl, CuCl ₂
4.74	CuCl ₂ NH ₄ Cl+NH ₄ Cl, CuCl ₂ NH ₄ Cl+CuCl ₂	34.92	NH ₄ Cl, CuCl ₂ +
6.45	NH4Cl, CuCl ₂	34.50	CuC ₁₂ , C ₂ H ₅ OH

(Foote and Walden, J. Am. Ch. Soc. 1911, **33**. 1032.)

 $+2H_2O$. Sol. in 2 pts. H_2O . (Hautz, A. **66**. 280.)

Does not exis t. (Meerburg, C. C. 1904. II, 1362.

2NH₄Cl, CuCl₂+2H₂O. Easily sol. in H₂O, also in alcohol, even when absolute. (Cap and Henry, J. pr. **13**. 184.)

Solubility of 2NH₄Cl, CuCl₂ in H₂O at t°.

g. 2NH ₄ Cl, CuCl ₂ in 100 g. of the solution	t°	Solid phase		
3.87	-1.5°	ice		
5.88	-2.48	"		
8.78	-3.95	"		
9.97	-4.60			
13.12	6.40	"		
15.84	-8.04	11		
17.64	9.24			
20.12	10.80	**		
±20 .3	±-11.0	ice +2NH ₄ Cl, CuCl ₂ .2H ₂ O		
20 . 4 6	10	2NH ₄ Cl, CuCl ₂ .2H ₂ O		
21.16	5	"		
22.02	0	**		
24.26	+12			
25 .95	20	"		
27.70	3 0	" .		
30.47	40	"		
33.24	50	"		
36.13	60	"		
39.25	70	44		
4 3. 3 6	80	"		
(Meerburg, Z. anorg, 1905, 45, 8)				

(Meerburg, Z. anorg. 1905, 45. 8.)

Somewhat sol. in liquid NH₃. (Franklin and Kraus, Am. Ch. J. 1898, **20**. 827.)

Is the only hydrate of 2NH₄Cl, CuCl₂ existing between —11° and +80°. (Meerburg, C. C. 1904. Il, 1362.) +3H₂O. (Bourgeois, Bull. Soc. 1898, (3)

19. 786.)

Ammonium cupric chloride ammonia, 2NH₄Cl, CuCl₂, 2NH₈.

Decomp. by H₂O, less easily by alcohol. Decomp. by acids. (Ritthausen.)

Ammonium indium chioride, 2NH4Cl, InCla $+H_2O$.

Easily sol. in H₂O. (Meyer.)

Ammonium iodine chloride, NH4Cl, ICla.

More sol, in H2O than KCl, ICls. (Filhol, J. Pharm. 25. 441; Berz. J. B. 20. (2) 110.)

Ammonium iridium trichloride. See Chloriridite, ammonium.

Ammonium iridium tetrachloride. See Chloriridate, ammonium.

Ammonium iron (ferrous) chloride, NH₄Cl, FeCl₂.

Easily sol. in H₂O; insol. in alcohol. (Wink-

Ammonium iron (ferric) chloride, 2NH4Cl, $FeCl_3 + H_2O$.

Deliquescent. Sol. in H₂O without decomp. (Fritzsche); sol. in 3 pts. H₂O at 18.75°. (Abl.) Sol. in H₂O. (Walden, Z. anorg. 1894, 1. 332.)

Ammonium iron (ferric) potassium chloride, NH_4Cl , $FeCl_3$, $KCl+1\frac{1}{2}H_2O$.

Min. Kremersite. Deliquescent.

Ammonium lead chloride, NH₄Cl, 2PbCl₂+ $3H_2O$.

Sol. in H₂O without decomp. (?). (André, C. R. 96, 1502.)

6NH₄Cl, PbCl₂+H₂O

 $9NH_4Cl$, $PbCl_2+1\frac{1}{2}H_2O$

9NH₄Cl, 2PbCl₂+2¹/₂H₂O. 10NH₄Cl, PbCl₂+H₂O. 11NH₄Cl, 2PbCl₂+3¹/₂H₂O. 18NH₄Cl, PbCl₂+4H₂O.

All these salts are decomp. by H₂O. (André A. ch. (6) 3. 104.)

Of the salts prepared by André, only one NH₄Cl, 2PbCl₂ exists. (Wells, Sill. Am. J. **146**. 25.)

Solubility determinations show that NH₄Cl, 2PbCl₂ is the only double salt formed at 25°. (Foote, Am. Ch. J. 1907, 37. 121.)

 NH_4Cl , $PbCl_2+\frac{1}{8}H_2O$. (Wells, *l.c.*)

Ammonium lead tetrachloride. See Chloroplumbate, ammonium.

(Franklin | Ammonium magnesium chloride, NH4MgCls $+6H_2O = NH_4Cl$, $MgCl_2 + 6H_2O$.

> Deliquescent. Very sol. in H₂O. Sel. in 6 pts. cold H₂O. (Fourcroy.)

> > Solubility in NH₄Cl+Aq at t°.

	Per 1000 Mol. H ₂ O		
t° .	Mol. NH4CI	Mol. MgCl2	
3.5° 25.0 50.0	27.5 12.1 62.9	55.7 56.4 59.1	

(Biltz, Z. anorg. 1911, 71, 170.)

 $4NH_4Cl_5MgCl_2+33H_2O$. Sol. in H₂Q. (Berthela and André, A. ch. (6) 11. 294.)

Animonium manganous chloride, NH4Cl, $MnC_1 + \frac{1}{2}H_2O_1$

Sol. in $1\frac{1}{2}$ pts. H_2O at ordinary temp. (Hautz, Λ . **66**. 280); does not exist. (Saunders, Am. Ch. J. **14**. 134.)

2NH₄Cl, MnCl₂+H₂O. Sol. in H₂O (Rammelsberg); does not exist. (Saunders.)

+2H₂O. Easily sol. in H₂O, but with decomp. into NH4Cl and MnCl₂. (Saunders.)

Animonium manganic chloride, 2NH4Cl, MnCla.

Sol. in H₂O; less sol. in NH₄Cl+Aq. (Neuman, M. 1894, **15.** 490.) stable.

+H₂O. Decomp. by H₂O. Sol. in HCl apparently without decomp. (Rice, Chem. Soc. 1898, **73.** 260.)

Ammonium mercuric chloride, 2NH₄Cl. HgCl₂+H₂O (sal alembroth).

Sol. in 0.66 pt. H_2O at 10° , and in nearly every proportion of hot H2O.

NH₄Cl, HgCl₂. Easily sol. in H₂O. +½H₂O. Easily sol. in H₂O. (Kane.) 2NH₄Cl, 3HgCl₂+4H₂O. Easily sol. in H₂O. (Holmes, C. N. 5. 351.) NH₄Cl, 2HgCl₂. Very sol. in H₂O. (Rây,

Chem. Soc. 1902, 81. 648.) NH₄Cl, 5HgCl₂. (Strömholm, J. pr. 1902, (2) **66.** 441.)

Ammonium mercuric sodium chloride, NH₄Cl, HgCl₂, 4NaCl (?).

Sol. in H₂O. (Kossmann, A. ch. (3) 27. 243.)

Ammonium molybdenum chloride, 2NH₄Cl, $MoCl_3 + H_2O.$

Very sol. in H₂O. Nearly insol. in alcohol and ether. (Chilesotti, C. C. 1903. II, 652.) See also Ammonium chloromolybdenum chloride.

Ammonium molybdenum chloride iodide.

See Ammonium chloromolybdenum iodide.

Ammonium molybdenyl chloride, 2NH Cl, $MoO_2Cl_2+2H_2O$.

(Weinland, Z. anorg. 1905, 44. 98.) 2NH₄Cl, MoOCl₈. Sol. in H₂O; insol. in

H₂O sat. with HCl. (Klason, B. 1901, 34. 149.

Ammonium nickel chloride, NH₄Cl, NiCl₂+ 6H₂O.

Deliquescent in moist air. Easily sol. in H₂O. (Hautz.) 4NH₄Cl, NiCl₂+7H₂O (?).

Ammonium osmium tetrachloride. See Chlorosmate, ammonium.

Ammonium osmium sesquichloride. See Chlorosmite, ammonium.

Ammonium osmyl chloride, (NH₄)₂OsO₂Cl₄. Sol. in H₂O. Decomp. by HCl. (Wintrebert, A. ch. 1903, (7) 28. 92.)

Ammonium osmyl oxychloride, $(NH_4)_2OsO_3Cl_2$.

Very sl. sol, in H₂O. Sol, in KOH+Aq with decomp. (Wintrebert, A. ch. 1903, (7) **28.** 116.)

Ammonium palladium chlorides.

Sec Chloropalladate, ammonium and chloropalladite, ammonium.

Ammonium rhodium dichloride, 4NH₄Cl, $RhCl_2+3\frac{1}{2}H_2O$.

Sol. in H₂O, but decomp, slowly. (Willm. **B. 16.** 3033.)

Does not exist. (Leidié, A. ch. (6) 17. 277.)

Ammonium rhodium trichloride.

See Chlororhodite, ammonium.

Ammonium rhodium chloride ammonium nitrate, Rh₂Cl₆, 6NH₄Cl, 2NH₄NO₃.

See Chlororhodite nitrate, ammonium.

Ammonium ruthenium trichloride.

See Chlororuthenite, ammonium.

Ammonium ruthenium tetrachloride.

See Chlororuthenate, ammonium.

Ammonium tellurium chloride.

See Chlorotellurate, ammonium.

Ammonium thallic chloride, 3NH₄Cl, TlCl₃. Easily sol, in H₂O. (Willm.) +2H₂O. Easily sol. in H₂O and alcohol. (Nicklès, J. Pharm. (4) 1. 28.)

Ammonium thorium chloride, 8NH4Cl, ThCl4 +8H₂O.

Sol. in H₂O. (Chydenius.)

Ammonium tin (stannous) chloride (ammonium chlorostannite), NH₄Cl, SnCl₂+H₂O. Decomp. by H_2O . Resembles K salt. (Richardson, Am. Ch. J. 14. 93.)

2NH₄Cl, SnCl₂+H₂O. Sol. in H₂O, but decomp. by boiling. (Rammelsberg.) Contains 2H₂O. (Richardson.)

4NH₄Cl, SnCl₂+3H₂O. Decomp. by H₂O. (Poggiale, C. R. 20, 1182.)

Does not exist. Richardson.)

Ammonium tin (stannic) chloride. See Chlorostannate, ammonium.

Ammonium titanium chloride, 2NH₄Cl, TiCl₄ $+2H_2O$.

Ppt.; decomp. in moist air; sol. in fuming HCl; insol. in ether. (Rosenheim, Z. anorg. 1901, **26.** 242.)

Ammonium titanium chloride, 3NH4Cl, TiCl4. Sol. in H₂O.

6NH₄Cl, TiCl₄. Sol. in H₂O. (Rose.)

Ammonium tungsten chloride, $(NH_4)_3W_2Cl_9 =$ 3NH₄Cl, 2WCl₃.

Easily sol. in H₂O. Nearly insol. in most organic solvents. (Olsson, B. 1913, 46. 577.)

Ammonium uranyl chloride.

Very deliquescent, and sol, in H₂O. (Peli-

2NH₄Cl₂(UO₂)Cl₂+2H₂O. Solution at 15° contains in 100 g. 3.51 g., NH₄, 40.67 g. UO₂ and 19.15 g. Cl, hence there is considerable decomp. (Rimbach, B. 1904, 37. 466.)

Ammonium vanadium chloride, 2NH₄Cl. VCl_3+H_2O .

Difficulty sol. in H₂O and alcohol. (Stähler, B. 1904, **37.** 4412.)

Ammonium zinc chloride, NH₄Cl, ZnCl₂+ 2H₂O.

Deliquescent. Very sol. in H₂O. (Hautz. A. **66.** 287.)

 $2NH_4Cl$, $ZnCl_2$. Sol, in H_2O . (Rammelsberg, Pogg. **94**. 507.)

+H₂O. Deliquescent in moist air. Sol. in ²/₃ pt. cold H₂O with absorption of heat. Sol. in 0.28 pt. hot H₂O (Golfier-Bassayre, A. ch. 70. 344); sol. in ½ pt. cold H₂O. (Hautz, A. 66. 287.)

3NH₄Cl, ZnCl₂. Sol. in H₂O. (Marignac.) +H₂O. (Berthelot, A. ch. (6) **11.** 294.) 4NH₄Cl, ZnCl₂. (Dehérain.)

 $6NH_4Cl$, $ZnCl_2+\frac{2}{3}H_2O$. (Berthelot, l.c.)

Ammonium chloride zinc oxychloride, 2ZnCl₂, 8NH₄Cl, ZnO.

Sol. in a little H_2O , but decomp. by excess. (André.)

3ZnCl₂, 10NH₄Cl, ZnO. As above. (André, A. ch. (6) 3. 88.)

Ammonium chloride antimony fluoride, NH4Cl, SbF3.

Easily sol. in H_2O . (de Haen, B. 21. 901 R.)

Ammonium chloride arsenic trioxide.

See Arsenite chloride, ammonium.

Ammonium chloride bismuth bromide, 3NH₄Cl, BiBr₂+H₂O.

Deliquescent; decomp. by H₂O. (Muir, Chem. Soc. **31.** 148.)

2NH₄Cl, BiBr₃+3H₂O. Decomp. by H₂O. (Muir.)

5NH₄Cl, 2BiBr₃+H₂O. Decomp. by H₂O. (Muir.)

Ammonium chloride chromic obychloride, $2NH_4Cl$, $CrOCl_3$.

Decomp. in the air. Sol. in conc. HCl without decomp. (Weinland, B. 1906, 39. 4045.)

Ammonium chloride cuprocupric thiosulphate, 2NH₄Cl, Cu₂O, CuO, 3S₂O₂.

See Thiosulphate ammonium chloride, cuprocupric.

Ammonium chloride lead iodide, 3NH₄Cl, PbI₁.

Decomp. with H_2O . (Behrens, Pogg. **62**. 252.)

 $4\dot{N}H_2Cl$, PbI_2+2H_2O . Decomp. with H_2O . (Poggiale, C. R. **20.** 1180.)

Ammonium chloride mercuric bromide, NH₄Cl, HgBr₂.

(Edhem-Bey, Dissert. 1885.)

Ammonium chloride platinum sulphite. See Chloroplatosulphite, ammonium.

See Chloroplatosulphite, ammonium.

Ammonium chloride tin (stannous) bromide,

 $2NH_4Cl$, $SnBr_2+H_2O$. Sol, in H_2O . (Raymann and Preis, A. **223**. 323.)

Ammonium dichloroiodide, NH₁Cl₂l.

Slowly decomp, when exposed to dry air at ord, temp. Very sol. in H_2O . (Chattaway, Chem. Soc. 1915, **107**. 107.)

Ammonium tetrachloroiodide, NH₄Cl₄I.

Decomp. in the air. (Chattaway, Chem. Soc. 1915, 107. 107.)

Ammonium lead chloroiodide, NH₄PbClI₂+ 2H₂O and (NH₄)₂PbCl₂I₂+2H₂O.

Sol. in KOH+Aq and in strong acids; decomp. by H₂O. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 348.)

Ammonium fluoride, NH₄F.

Abundantly sol. in H₂O; sl. sol. in alcohol. (Marignae, Ann. Min. (5) **15.** 221.)

Insol. in liquid NH₃. (Ruff and Geisel, B. 1903, **36**. 820.)

Almost insol. in liquid NH₃ at 50°. (Moissan, C. R. 1901, **133**. 713.)

Sol. in methyl alcohol. (Carrara, Gazz. ch. it. 1896, 26. 119.)

Ammonium hydrogen fluoride, NH₄F, HF. Deliquescent in moist air. Sol. in H₂O.

Ammonium antimony fluoride, 2NH₄F, SbF₃.

Deliquescent; sol. in 0.9 pt. cold H₂O.
Insol. in alcohol or other. (Flückinger, A.
34. 248.)

NH₄F, 4SbF₃. 3 pts. sol. in 2 pts. H₂O. (Read and Hauser, B. 1890, **23**. R. 125.) NH₄F, SbF₅. Easily sol. in H₂O. (Marignae, A. **1.5**. 239.)

Ammonium bismuth fluoride, 2NH₄F, BiF₃.

Insol. in H_2O . Rather difficultly sol. in acids. (Helmholt, 7 anorg. 3 115.)

Ammonic m cadmium fluoride, NH₄F, CdF₂.

Insel. in H₂O. Sol. in acids on boiling. (Helmhelt, Z. anorg. 3. 115.)

Ammonium chromium fluoride, 3NH₄F, CrF₃.

Easily sol. in H_2O . Sl. sol. in $NH_4F + Aq$. Petersen, J. pr. (2) **40**. 52.) $2NH_4F$, $CrF_3 + H_2O$. (Wagner, B. **19**. 896.)

Ammonium cobaltous fluoride, $2NH_4F$, $CoF_2 + 2H_2O$.

Sl. sol. in H₂O. (Wagner, B. **19.** 896.) Easily sol. in H₂O. (Helmholt, **Z**. anorg. **3.** 132.)

Ammonium columbyl fluoride.

See Fluoxycolumbate, ammonium.

Ammonium columbium fluoride oxyfluoride, $3NH_4F$, CbF_5 , $CbOF_3$.

See Fluoxycolumbate columbium fluoride, ammonium.

Ammonium copper fluoride, $2NH_4F$, CuF_2+2H_2O .

Insol. in H_2O . (Helmholt, Z. anorg. **3.** 115.)

Nearly insol. in H_2O but decomp. thereby. (Haas, Ch. Z. 1908, **32**. 8.)

Ammonium glucinum fluoride, $2NH_4F_1^{V}$ GlF₂. Sol. in H₂O. (Marignac, A. ch. (4) **30.** 51.) Very sol. in H₂O. (Helmholt, Z. anorg. **3.** 130.)

Ammonium iron (ferrous) fluoride, 2NH₄F, FeF₂. (Wagner, B. 19. 896.) NH₄F, FeF₂+2H₂O. (W.)

Ammonium iron (ferric) fluoride, 2NH₄F, FeF₃.

More sol. in H₂O than the corresponding K compound. Decomp. by boiling. (Nicklès, J. Pharm. (4) 7. 15.)

 $3NH_4F$, FeF₃. Sl. sol. in H_2O . (Marignac, A. ch. (3) **60**. 306.)

Easily sol. in acids. (Helmholt, Z. anorg. 3. 124.)

Ammonium manganic fluoride, 2NH₄F, MnF₄.

More sol. than the K salt. (Nicklès, C. R 65. 107.)

True composition is 4NH₄F, Mn₂F₆. (Christensen, J. pr. (2) **34**. 41.)

See also Fluomanganate, ammonium.

Ammonium manganyl fluoride.

See Fluoxymanganate, ammonium.

Ammonium molybdenum fluoride.

Insol. in H₂O. Sol. in HCl+Aq. (Berzelius.)

See also Fluomolybdate, ammonium.

Ammonium molybdenyl fluoride.

See Fluoxymolybdate, ammonium.

Ammonium nickel fluoride, 2NH₄F, NiF₂+ 2H₂O.

Sol. in H₂O. (Wagner, B. 19. 896.) Easily sol. in H₂O. (Helmholt, Z. anorg. 3.

Ammonium scandium fluoride, (NH₄)₃ScF₆.
Easily sol. in H₂O. Aqueous solution is not decomp. by boiling. Decomp. by acids. (R. I. Meyer, Z. anorg. 1914, 86. 275.)

Ammonium silicon fluoride.

See Fluosilicate, ammonium.

Ammonium silver fluoride, $2NH_4F$, $AgF + H_2O$.

Not hydroscopic. Sol. in H_2O ; sol. in conc. NH_4F+Aq . Sol. in alcohol. (Grützner, Arch. Pharm. 1900, **236.** 3.) 15 NH_4F , $AgF+4H_2O$. More deliquescent than NH_4F . (Böhm, Dissert. **1906.**)

Ammonium tantalum fluoride.

See Fluotantalate, ammonium.

Ammonium tantalyl fluoride.

See Fluoxytantalate, ammonium.

Ammonium tellurium fluoride, NH₄F, TeF₄.

Decomp. by H₂O. (Högbom, Bull. Soc. (2)

35. 60.)

Ammonium tin (stannous) fluoride, $2NH_4F$, SnF_2+2H_2O .

Sol. in H₂O. (Wagner, B. 19. 896.)

Ammonium tin (stannic) fluoride, 2NH₄F, SnF₄.

See Fluostannate, ammonium.

Ammonium titanium sesquifluoride.

See Fluotitanate, ammonium.

Ammonium titanyl fluoride.

See Fluoxypertitanate, ammonium.

Ammonium tungstyl fluoride.

See Fluoxytungstate, ammonium.

Ammonium uranyl fluoride.

See Fluoxyuranate, ammonium.

Ammonium vanadium sesquifluoride. See Fluovanadate. ammonium. Ammonium vanadyl fluoride.

See Fluoxyvanadate, ammonium.

Ammonium zinc fluoride, 2NH₄F, ZnF₂. Sol. in H₂O. (R. Wagner.)

 $+2\mathrm{H}_2\mathrm{O}$. Very al. sol. in $\mathrm{H}_2\mathrm{O}$. Easily sol. in dil. acids. (Helmholt.)

Ammonium zirconium fluoride.

See Fluozirconate, ammonium.

Ammonium fluoride manganic oxyfluoride, 2NH₄F, MnOF₂.

Precipitate. (Nicklès.)

Sec also Fluoxymanganate, ammonium.

Ammonium fluoride molybdenum trioxide, $2NH_4F$, MoO_3 .

Decomp. by H_2O . (Mauro, Gazz. ch. it. 18. 120.)

Ammonium fluoride tungsten oxyfluoride.

See Fluoxytungstate, ammonium.

Ammonium fluoride tungsten oxyfluoride ammonium tungstate, $4NH_4F$, WO_2F_2 , $(NH_4)_2WO_4$.

See Fluoxytungstate tungstate, ammonium.

Ammonium fluoride vanadium oxyfluoride.

See Fluoxyvanadate, and fluoxyhypovanadate, ammonium.

Ammonium hydroselenide, NH₄HSe.

Sol. in H₂O with decomp. (Bineau, A. ch. (2) **67**. 229.)

Ammonium hydrosulphide, NH₄SH.

Sol. in H₂O and alcohol. **Solutions** decomp. on air.

Ammonium hydroxide, $\mathrm{NH_4OH}.$

See Ammonia,

 $\begin{array}{ccc} \textbf{Ammonium} & \textbf{imidosulphamide,} \\ & (S_2O_4N_3H_4)NH_4. \end{array}$

(Hantzsch, B. 1905, **38.** 1033.)

Ammonium iodide, NH₄I.

Very deliquescent. Sol. in 0.60 pt. H_2O . (Eder, Dingl. 221. 89.)

Sp. gr. of aqueous solution of NH₄I at 18° containing—

10 20 30 40 50%NH₄I. 1.0652 1.1397 1.2260 1.3260 1.4415

(Kohlrausch, W. Ann. 1879, 1.)

NH₄I+Aq containing 12.51% NH₄I has sp. gr. $20^{\circ}/20^{\circ} = 1.0846$.

 $NH_4I + Aq$ containing 19.19% NH_4I has sp. gr. 20°/20° = 1.1359.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Very easily sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20**. 826.)

Very sol. in liquid NH₃ at -50°. (Moissan, C. R. 1901, **133**, 713.)

Sol. in SOCl₂. (Walden, Z. anorg. 1900. **25.** 216.)

Sol. in liquid SO2. (Walden, Z. arorg. 1902, 30. 160.)

Sol. in 4.0 pts. abs. alcohol. (Eder, '.c.) ether. (Eder, i.c.)

" 210 " 20 60 alcohol-ether (1:1). (Eder,

l.c.Sol. in acetone. (Eidmann, C.C. 1899, 11. 1014.); (Naumann, B. 1904, 37. 43∠8.)

Insol. in ethyl acetate. (Naumann, B. 1919. **43.** 314.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.)

Ammonium diiodide, NH₄I₂.

Sol. in alcohol, ether, CS_2 , and $KI + A_3$; less sol, in chloroform. (Guthrie, Chem. Soc. (2) 1. 239.)

Ammonium triiodide, NH₄I₃.

Sl. deliquescent. Sol. in little H₂O, but decomp. by much H2O. (Johnson, Chem. Soc. **33.** 397.)

Ammonium antimony iodide, NH₄I, SbI₃+ 2H₂O.

Decomp. by H₂O. (Nicklès, C. R. 51.

 $3NH_4I$, $4SbI_3+9H_2O$. Decomp. by H_2O , with separation of SbOI. Sol. in HC₂H₃O₂, HCl, and H₂C₄H₄O₆+Aq. Decomp. by CS_2 . (Schäffer, Pogg. 109. 611.)

3NH₄I, SbI₃+3H₂O. As above. 4NH₄I, SbI₃+3H₂O. As above.

Ammonium bismuth iodide, NH₄I, BiI₃+ H_2O .

Deliquescent; decomp. by H₂O. (Nicklès, C. R. 51. 1097.)

4NH₄I, BiI₃+3H₂O. As above. (Linau, Pogg. 111, 240.)

 $2NH_4I$, $BiI_3+2\frac{1}{2}H_2O$. Decomp. by H_2O , or MCl, MBr, or MI+Aq. (Nicklès, J. pr. (2) **39.** 116.)

Ammonium cadmium iodide, 2NH₄I, CdI₂+ 2H₂O.

Deliquescent. (Croft.)

Sol. at 15° in 0.58 pt. H₂O, 0.70 pt. abs. alcohol., 8.9 pts. ether (sp. gr. 0.729), and 1.8 pts. alcohol-ether (1:1). (Eder, Dingl. **221.** 89.)

100 pts. of the solution in H₂O contain 85.97 pts. of the salt at 14.5°. (Rimbach, B. 1905, **38.** 1563.)

 NH_4I , $CdI_2+\frac{1}{2}H_2O$. Sol. at 15° in 0.90 pt. H₂O, 0.88 pt. abs. alcohol, and 2.4 pts. ether (sp. gr. 0.729). (Eder, l.c.)

+H₂O. (Grossmann, Z. anorg. 1902, 33. 154.)

Ammonium chloromolybdenum iodide, $2NH_4I$, $Cl_4Mo_8I_2+2H_2O$.

Decomp. by H₂O. Cryst. from HI+Aq. (Blomstrand.)

Ammonium cuprous iodide, 2NH₄I, Cu₂I₂+

Decomp, on the air, or by H₂O, or alcohol. (Saglier, C. R. **104.** 1440.)

+1/2H₂O. Decomp. by H₂O with separation of Cu₂I₂. (Gossner, Zeit. Kryst. 1903, 38. 501.)

Ammonium cupric iodide ammonia, 2NH₄I, Cul2, 2NH3+2H2O.

Insol. in H₂O or alcohol; sl. sol, in NH₄OH

+6H₂O. Unstable. (Saglier, C. R. 104. 1440.)

NH₄I, 2Cul₂, 3NH₃. (Fleurent, C. R. 1891, **113.** 1047.)

Ammonium iridium diiodide, 2NH₄I, IrI₂.

Insol. in cold or hot H₂O, and in alcohol. Sel. in warm dil. acids. (Oppler.)

Ammonium iridium sesquiiodide.

See Iodiridite, ammonium.

Anınıonium iridium tetraiodide.

Sec Iodiridate, ammonium.

Ammonium lead iodide, NH,I, PbI₂+2H₂O.

Decomp. by much H₂O. (Wells, Sill. Am. J. **146.** 25.)

 $4NH_4I_3PbI_2+6H_2O_1$ Sl. sol. in H₂O.

(Mosnier, C. R. 1895, 120. 444.)

Sol. in H₂O with decomp. Sol. in strong KOH+Aq and in strong acids. (Fonzes-Diacon, Bull. Soc. 1897, (3) 17. 347.)

Ammonium magnesium iodide, NH₄I, MgI₂ +6H₂O.

Very deliquescent. (Lerch, J. pr. (2) 28. 338.)

Ammonium mercuric iodide, NH₄I, HgI₂+ H_2O .

Decomp. into its constituents by *H₂O. (Boullay, A. ch. (2) 34. 345.)

Sol. without decomp. in alcohol and ether. NH₄I, 2HgI₂. Decomp. by H₂O. Sol. in KI+Aq. Very sol. in alcohol, ether and nitrobenzol. (Löw, Zeit. Kryst, 51. 138.)

Ammonium silver iodide, 2NH₄I, AgI.

Deliquescent. Decomp. by H₂O. (Poggiale.)

Ammonium thallic iodide, NH₄I, TlI₈.

Sol. in H₂O. (Nicklès, J. Pharm. (4) **1.** 32.)

Ammonium tin (stannous) iodide, NH₄I, SnI₂.

Decomp. by small amt. H₂O but completely sol. in a large amt. (Boullay, A. ch. (2) 34. 376.)

 $+1\frac{1}{2}H_2O$. (Personne.)

Ammonium zinc iodide, 2NH₄I, ZnI₂.

Extremely deliquescent, and sol. in H₂O. (Rammelsberg, Pogg. 43. 665.)

NH₄I, ZnI₂+4½H₂O. Hydroscopic. (Ephraim, Z. anorg. 1910, 67. 384.)

Ammonium iodide arsenic trioxide. See Arsenite iodide, ammonium.

Ammonium cobalt nitride.

See Ammonium cobalt azoimide.

Ammonium ruthenium dihydronitrosobromide, NO.Ru₂H₂(NH₈)₆Br₃.2HBr.

Ppt. (Brizard, A. ch. 1900, (7) 21. 363.)

Ammonium ruthenium nitrosochloride, 3NH4Cl.2HCl.NORu2H2Cl3.

Ppt. (Brizard, A. ch. 1900, (7) 21, 354.)

Ammonium ruthenium dihydronitrosochloride, NO.Ru₂H₂(NH₃)₆Cl₃.2HCl.

Ppt. (Brizard, A. ch. 1900, (7) 21. 358.)

Ammonium peroxide, $(NH_4)_2O_2$.

M.-pt. -2°. Sl. sol. in ether without

decomp. (D'Ans, B. 1913, 46. 3076.) Sol. in alcohol; insol. in ether; decomp. slowly in aq. solution. (Melikoff, B. 1897, 30. 3145.)

Ammonium hydrogen peroxide, $(NH_4)_2O_2$, H₂O₂.

Decomp. at ordinary temp. (Melikoff, B. 1898, 31. 447.)

+H₂O. Unstable; deliquesces at ordinary temp.; sol. in alcohol; insol. in light petroleum. (Melikoff, B. 1898, **31**. 152.)

Ammonium selenide, (NH₄)₂Se.

Sol. in H2O with decomp. (Bineau, A. ch.

(2) 67. 229.)

Stable in the air. Sol. in H2O; aq. solution decomp. slowly. (Lenher and Smith, J. Am. Chem. Soc. 1898, 20. 277.)

Ammonium hydrogen selenide, NH₄HSe. Sol. in H₂O. (Fabre, C. R. 103. 269.)

Ammonium monosulphide, (NH₄)₂S.

Decomp. on air. Sol. in H₂O, but solution decomposes rapidly

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 826.)

Ammonium disulphide, $(NH_4)_2S_2$.

Sol, in H₂O with decomp.

Does not exist. (Bloxam, Chem. Soc. **1895**, **67**, 293.)

Ammonium tetrasulphide, (NH₄)₂S₄.

Easily sol. in H₂O. Conc. solution is stable, dil. solution decomp. on air. Easily sol. in alcohol without decomp., but solution decomp. on the air more rapidly than the aqueous solution. (Fritzsche, J. pr. 32. 313.) +1/4H2O. When dissolved in H2O, it is at

once dissociated with deposition of S. (Blox-

am, Chem. Soc. 1895, 67. 303.)

Ammonium pentasulphide, $(NH_4)_2S_5$.

Decomp. on air. Sol. in H2O with separation of S. Sol. in alcohol without decomp., but solution decomposes quickly on standing. (Fritzsche, J. pr. 32. 313.)

Rapidly decomp. by H₂O with separation of S. (Bloxam, Chem. Soc. 1895, 67. 298.)

+H₂O. Decomp. by H₂O with separation of S. (Bloxam, Chem. Soc. 1895, 67. 298.)

Ammonium heptasulphide, (NH₄)₂S₇.

More stable on air, and less easily decomposed by H_2O than $(NH_4)_2S_5$.

 $+1^{1/3}H_{2}O$. Decomp. by $H_{2}O$ with separation of S. Slowly attacked by dil. HCl+Aq. (Bloxam, Chem. Soc. 1895, 67. 307.)

Tetrammonium heptasulphide, $(NH_4)_4S_7+$ 4H2O.

Sol. in H₂O. Solution can be kept for a long time without depositing S. (Bloxam, Chem. Soc. 1895, 67. 298.)

Diammoniumenneasulphide, $(NH_4)_2S_9 +$ ½H₂O.

Decomposed by H₂O with separation of S. Not attacked by boiling dil. HCl+Aq on account of formation of a hard crust of S on the crystals. (Bloxam, Chem. Soc. 1895, **67.** 306.)

Tetrammonium enneasulphide, (NH₄)₄S₉.

Solution in H₂O deposits crystals of (NH₄)₂S₅ on standing. (Bloxam, Chem. Soc. 1895, **67.** 302.)

 $+3\frac{1}{2}H_2O$. Decomp. by H_2O with separation of S. (Bloxam, Chem. Soc. 1895, 67. 299.)

Ammonium polysulphides.

Conc. NH₃+Aq dissolves H₂S to form (NH₄)₂S,2NH₄SH. On dilution more H₂S is absorbed to form (NH₄)₂S₄NH₄SH, then (NH₄)₂S₅8NH₄SH, then (NH₄)₂S₅18NH₄SH and finally NH4SH. (Bloxam, Chem. Soc. 1895, **67.** 284.)

Ammonium copper sulphide. (NH₄)₂S. 2CuS₃ (?).

Sol. in warm H2O, but decomp. on standing. Warm KOH+Aq acts similarly; sl. sol. in NH₄OH+Aq, Na₂CO₃+Aq, or absolute alcohol. Insol. in ether. Decomp. by dil. acids. (Priwoznik, B. 6. 1291.)

Correct formula is NH₄CuS₄. Sl. sol. in H₂O. Decomp. by conc. and dil. acids. Easily sol. in NaOH. Sl. sol. in alcohol. (Biltz, B. 1907, **40**. 976.)

Ammonium gold polysulphide, AuS3NH4.

(Hofmann, B. 1903, 36. 3092; B. Ppt. 1904, **37.** 245.)

Ammonium iridium pentadecasulphide, $IrS_{15}(NH_4)_8$.

Ppt. (Hofmann, B. 1904, 37. 247.)

Ammonium palladium undecasulphide, $PdS_{11}(NH_4)_2 + \frac{1}{2}H_2O$.

Ppt. (Hofmann, B. 1904, 37, 248.)

Ammonium platinum pentade asulphide, $PtS_{16}(N1I_4)_2 + 2H_2O$.

Can be washed with CS2 without decomp. Sol. in alcohol. Insol. in ether. (Hofmann, B. 1903, **36.** 3091.)

Ammonium stannic sulphide.

See Sulphostannate, ammonium.

Ammonium telluride, NH, HTe.

Easily sol. in H₂O. (Bineau, A. ch. (2) 67. 229.)

Ammonium sulphide ammonia, (NII₄)₂S, 2NH₃.

Very anstable. (Bloxam, Chem. Soc. 1895, 67, 294.)

Ammonium acisulphomelid, (NSO.ONH4)8

(Hantzsch and Stuer, B. 1905, 38, 1039.)

Ammonplatindiamine comps.

See Platintriamine comps.

Ammondisulphonic acid, NH₈(SO₈H)₂.

Known only in its salts. (Claus, A. 158. 52 and 194.)

Contains 2 at. H less, and is identical with imidosulphonic acid NH(SO₂H)₂, which see. (Raschig, A. 241. 161.)

Ammontrisulphonic acid, NH₂(SO₃H)₃.

Known only in its salts. (Claus, A. 158. 52 and 194.)

Contains 2 at. H less, and is nitrilosulphonic acid N(SO₈H)₃, which see. (Raschig, A. 241.

Ammontetrasulphonic acid, NH(SO₂H)₄.

Known only in its salts. (Claus, A. 158. 52 and 194.)

Does not exist, but was impure nitrilosulphonic acid, which see. (Raschig, A. 241. 161.)

Anhydroarseniotungstic acid, H₈AsW₈O₂₈. See under Arseniotungstic acid.

Anhydrooxycobaltamine chloride,

$${\rm Co_2(NH_3)_{10}} \begin{bmatrix} {\rm Cl} \\ {\rm O(OH)} \end{bmatrix} {\rm Cl_4\!+\!H_2O}.$$

Easily sol. in H₂O, but decomposes after a few minutes; can be recrystallized from dil. HCl+Aq. Precipitated from sat. H₂O solution by conc. HCl+Aq, or alcohol. (Vortmann, M. Ch. 6. 404.)

 $\operatorname{Co_2(NH_3)_{10}}\left(\begin{array}{c} \operatorname{Cl} \\ \operatorname{OH} \end{array} \right) \operatorname{Cl_4}$. Sol. in $\operatorname{H_2O}$. (Vortmann.)

Anhydrooxycobaltamine chloride mercuric chloride, Co₂(NH₃)₁₀(ClO₂H)Cl₄, 3HgCl₂.

Can be recryst, from very dil, hot HCl+Aa.

- chloroplatinate, $Co_2(NH_8)_{10}(ClO_2H)Cl_4$, 2PtCia.

Can be recrystallized from H₂O containing HCl.

chloronitrate.

 $Co_2(NH_3)_{10}Cl(O.OH)(NO_3)_4+H_2O.$

Can be recrystallized from dil. HCl+Aq. $C_{(2)}(NH_8)_{10}Cl(O_{\cdot})H)Cl_2(NO_8)_2+H_2O_{\cdot}$

More easily sol. in H2O than the preceding comp.

-- chlorosulphate,

 $Co_2(NH_3)_{10}Cl(O,OH)(SO_4)_2$.

-dichromate, $[Co_2(NH_{k8})_{10}O.OH]_2(Cr_2O_7)_{\delta}$ +8H₂O.

Sl. sol. in II2O.

- nitrate, $Co_2(NH_d)_{10}(NO_3)(O.OH)(NO_3)_4$ $+\mathrm{H}_{2}\mathrm{O}.$

Sl. sol. in pure H₂O with immediate decomp. Can be recrystallized from H2O containing HNO₈.

- sulphate, $[Co_2(NH_8)_{10}O . OH]_2(SO_4)_5$ 2H₂SO₄+2H₂O.

Sl. sol. in cold H₂O. When crystallized from dil. H₂SO₄+Aq, is converted into-

 $[\text{Co}_2(\text{NH}_8)_{10}\text{O.OH}]_2(\text{SO}_4)_5, \text{H}_2\text{SO}_4 + 3\text{H}_2\text{O}_5$ which by further recrystallization from very dil. H₂SO₄+Aq becomes

 $[\text{Co}_2(\text{NH}_3)_{10}\text{O.OH}]_2(\text{SO}_4)_5 + 8\text{H}_2\text{O.}$ Sl. sol. in cold $\text{H}_2\text{O.}$ (Vortmann.)

Anhydrophospholuteotungstic acid, H₃PW₅O₂₈.

See under Phosphotungstic acid.

Antimonic Acid.

Metantimonic acid, HSbO₃.

Very sl. sol. in H₂O; sol. in conc. HCl+Aq: sl. sol. in dil. HNO₃+Aq; easily sol. in tartaric acid+Aq; easily sol. in hot KOH, or

NaOH+Aq; completely insol. in NH₄OH+Aq. (Fremy, A. ch. (3) **23.** 407.) Sl. sol. in H₂O. Very sl. sol. in KOH and K₂CO₃+Aq. Insol. in NH₄OH+Aq. Insol. in HNO3+H2SO4. Slowly sol. in cold, quickly in hot HCl+Aq. Sl. sol. in tartaric and oxalic acid and in KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21. 48.)

Insol. in acetone. (Naumann, B. 1904, 37.

Pyroantimonic acid, $H_4Sb_2O_7$.

More sol. in H₂O and acids than H₂SbO₄. Sol. in cold NH₄OH, or KOH+Aq. (Fremy.) Slowly sol. in cold H₂O.

5.88 g. Sb₂O₅ in 1 l. H₂O at 15° 8.55 " " 1 l. " 25° 21.30 " " 1 l. " " 60°

21.30 "

(Delacroix, J. Pharm. 1897, 6. 337-41.)

*Sl. sol. in H₂O. Very sl. sol. in KOH and K₂CO₂+Aq. Insol. in NH₄OH+Aq, and in HNO₈+H₂SO₄. Slowly sol. in cold, quickly in hot HCl+Aq. Sl. sol. in tartaric acid, oxalic acid and KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21. 48.)

Orthoantimonic acid, H₃SbO₄.

Sl. sol. in H₂O. Insol. in NH₄OH+Aq. Easily sol. in KOH+Aq. (Fremy.)

Does not exist. (Raschig, B. 18. 2745.) Has, however, been prepared by Daubrawa (A. 186. 110), Conrad (C. N. 40. 198), and Beilstein and Blaese (Bull. Ac. St. Petersb.

Very sol. in H₂O. (Delacroix, Bull Soc.

1899 (3) **21.** 1049.)

Very'sl. sol. in H_2O , in KOH and K_2CO_3+ Aq. Slowly sol. in cold, quickly in hot HCl + Aq. Insol. in NHOH+Aq, and in HNO3+ H₂SO₄. Sl. sol. in tartaric acid, oxalic acid and KHC₂O₄+Aq. (Senderens, Bull. Soc. **1899.** (3) **21.** 52.)

+½H₂O. (Beilstein and Blaese.)

According to Beilstein and Blaese only one antimonic acid, H3SbO4, exists.

Tetrantimonic acid, $Sb_2O_5 + 4II_2O = II_8Sb_2O_9$. Slowly sol. in cold H₂O.

Solution sat. at t° contains g. Sb₂O₅ per

litre-8.3 - 8.75g. Sb₂O₅ 5.88 21.3053.89Decomp. in solution by heating to 100° or long standing in the cold to Sb₂O₅, 3H₂O. (Delacroix, Bull. Soc. 1899, (3) 21. 1049.)

Insol. in H₂O. Very sl. sol. in KOH and K₂CO₃+Aq. Slowly sol. in cold, quickly in hot HCl+Aq. Insol. in NH₄OH+Aq. Insol. in HNO₃+H₂SO₄. Sl. sol. in tartaric acid, oxalic acid and in KHC₂O₄+Aq. (Senderens, Bull. Soc. 1899, (3) 21. 51.)

Hexantimonic acid, $Sb_2O_5 + 6H_2O =$ $H_{12}Sb_2O_{11}$.

Sol. in H₂O to the extent of 22 g. Sb₂O₅ per l. but on standing becomes turbid and a white powder is pptd. until finally only 3 g. Sb₂O₅ are dissolved per l. (Senderens, Bull, Soc. **1899**, (3) **21**, 48–49.)

Antimonates.

a. Antimonates. From HSbO₃. Some of the K and NH4 salts are sol. in H2O, the others are slightly sol. or insol.

β. Pyroantimonates. From H₄Sb₂O₇. As a class, insol. in H₂O, but decomp, thereby except in presence of large excess of alkali. (Fremy, A. ch. (3) 12. 499.)

Probably do not exist. (Beilstein and

Aluminum antimonate, Al_2O_3 , $3Sb_2O_5$ (?).

Ppt. Somewhat sol. in excess of Al salts +Aq. Insol. in K₄Sb₂O₇+Aq.

Ppt. (Beilstein and Blaese, Bull. Ac. St. Petersb. 33. 101.)

 $Al(SbO_8)_8 + 7H_2O = AlH_6(SbO_4)_8 + 4H_2O$.

Ppt. (B. and B.) Al_2O_3 , $Sb_2O_5 + 9H_2O$. Ppt. (Ebel, B. 22. 3043.)

Ammonium antimonate, $NH_4SbO_3+2H_2O_4$ Insol. in H₂O.

 $+2\frac{1}{2}H_2C$. Insol. in HBull. Soc. 1899, (3) **21.** 56.) Insol. in H₂O. (Senderons,

+6H₂O. See (NH₄)₂H₂Sb₂O₇+5H₂O.

Ammonium pyroantimonate, $(NH_4)_4Sb_2O_7$.

Known only in solution. $(NH_4)_2H_2Sb_2O_7+5H_2O.$

Sol. in H₂O, but decomp. by standing or boiling into insol. salt. Insol. in alcohol. (Fremy, J. pr. 45. 215). Composition is NH₄SbO₃+6H₂O, according to Raschig (B. **18.** 2743).

Barium antimonate, Ba(SbO₃)₂.

Ppt. Scarcely sol. in H₂O. Slowly sol. in $BaCl_2 + Aq$.

Somewhat sol. in H₂O. $+2\mathrm{H}_2\mathrm{O}$. Easily sol. in HCl+Aq. (Delacroix, Bull. Soc. 1899, (3) **21.** 1051.)

+5, or 6H₂O. Ppt.

BaSb₄O₇+5H₂O. Sol. in conc. HCl. (Delacroix, Bull. Soc. 1899, (3) 21. 1051.)

BaO, 3Sb₂O₅+5H₂O. Insol. in H₂O. Incompletely sol. in HCl. (Delacroix, l.c.) BaO, $4\text{Sb}_2\text{O}_6^*+15\text{H}_2\text{O}$. (Delacroix, l.c.) 9BaO, 10Sb₂O₅+18H₂O. Insol. in HCl+ Aq. (Delacroix, l.c.)

Bismuth antimonate, $BiSbO_4+H_2O$.

Insol. in H_2O : sol. in HCl+Aq. (Cavazzi, Gazz. ch. it. 15. 37.) $3Bi_2O_3$, $Sb_2O_5+H_2O$. Insol. in H_2O ; sol. in HCl+Aq. (Cavazzi.) 2Bi₂O₃, Sb₂O₅. As above. (Cavazzi.)

Cadmium antimonate, $Cd(SbO_3)_2+2H_2O$.

Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) **21.** 56.)

+3½H₂O. Very sol. in H₂O. Sol. in HCl

+Aq. (Ebel, Dissert. 1890.)

 $+5H_2O$. Insol. in H_2O . (Senderens, l.c.) $+6\mathrm{H}_2\mathrm{O}$. Ppt. Insol. in H_2O . (Ebel, B. **22.** 3043.)

Calcium antimonate, Ca(SbO₃)₂.

+5H₂O. Ppt. (Heffter, Pogg. **86.** 418.)

+6H₂O. Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 56.)

3CaO, 2Sb₂O₅+6H₂O. Min. Ullmanite.

Chromic antimonate, Cr(SbO₃)₃+14H₂O. Ppt. (Beilstein and Blaese.)

Cobaltous antimonate, $Co(SbO_3)_2 + 5H_2O$.

Insol, in H₂O. Loses 3H₂O in the presence $Al(SbO_3)_3 + 15H_2O = AlH_6(SbO_4)_3 + 12H_2O$, of H_2SO_4 and passes into $Co(SbO_3)_2 + 2H_2O$, also insol. in H2O. (Senderens, Bull, Soc.) 1899, (3) **21**. 55.)

+6H₂O. Ppt. (Ebel, B. 22. 3043)

+7H₂O. Sl. sol. in H₂O. Sl. sol. in boiling solutions of cobalt salts.

+12H₂O. Ppt. (Heffter, Pogg. 86, 448.)

Cobaltous hydrogen antimonate, CoH4(SbO4)2

(Gorgeul, Ann. Phys. Beibl. 1897, 21. 198.)

Cupric antimonate, 3CuO, 2Sb₂O₅.

Ppt. (Beilstein and Blaese.)

 $Cu(SbO_3)_2$. Insol. in H_2O , acids, or alkalies. (Berzelius.)

Insol. in H₂O. (Senderens, Bull. +2H₂O.

Soc. 1899, (3) **21**. 55.) +5H₂O. Ppt. (Ebel, B. **22**. 3043.) Insol. in H₂O. (Senderens, *l.c.*)

CuO, 2Sb₂O₅+9H₂O. Insol in H₂O. Sol in Sb₂O₅, 4H₂O+Aq. (Delacroix, Bub. Soc 1899, (3) **21**, 1054.)

2CuO $3\text{Sb}_2\text{O}_5 + 10\text{H}_2\text{O}$. Insol. in H_2O . Sol. in NH4OH and in trantimonic acid +Aq. (Delacroix, l. c.

CuO, $6\text{Sb}_2\text{O}_5 + 16\text{H}_2\text{O}$. (Delacroix, *l.c.*)

Cupric antimonate ammonia, Cu(SbO₃)₂, $4NH_3+4H_2O$.

Insol. in H₂O and NH₄OH+Aq. (Schiff, A. 123. 39.)

 $CuSb_2N_3H_{21}O_{12} = Cu(ONH_4)OH$,

2(NH₄SbO₃+2H₂O). (Raschig, B. **18.** 2743.) Cu(SbO₃)₂,3NH₃+9H₂O. (Delacroix, Bull. Soc. 1901, (3) **25.** 289.)

Glucinum antimonate, $Gl(SbC_3)_2+6H_2O$.

Somewhat sol. in hot H₂O. Easily sol. in warm HCl. (Ebel, Dissert. 1890.)

Iron (ferrous) antimonate.

Sl. sol. in H₂O. (Berzelius.)

Iron (ferric) antimonate.

Insol. in H_2O . (B.)

 Fe_2O_3 , $Sb_2O_5+7H_2O$. Ppt. (Ebel, B. 22. 3043.)

Fe₂O₃, 2Sb₂O₅+11H₂O. Ppt. (Beilstein and Blaese.)

 $Fe(SbO_3)_3 + 6\frac{1}{2}H_2O$. Ppt. (B. and B.)

Lead antimonate, basic, Pb₃(SbO₃)₂(OH)₄+ $2H_2O = Pb_3(SbO_4)_2 + 4H_2O$.

Min. Bleinerite, Bindheimite. $2Pb(SbO_3)_2$, $PbO+11H_2O$. Ppt. (B. and

Lead antimonate, $Pb(SbO_3)_2$.

Insol. in H₂O. Incompletely decomp. by acids. (Berzelius.)

Naples Yellow. Insol. in H₂O. +2H₂O. Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 57.)

+5H₂O. Ppt. (Ebel, B. 22. 3043.) +6H₂O. Ppt. (Beilstein and Blaese.)

 $+9H_2O$. Insol. in H_2O . (Senderens, l.c.)

Lead antimonate chloride, Pb(SbO₃)₂, PbCl₂. Min. Nadorite. Sol. in HCl, HNO3, and tartaric acid + Aq.

Lithium antimonate, LiSbO₈.

Sl soi, in cold, soi, in hot H2O, and crystaltizes on cooling. Much more sol. than NaSbO₂

+3H2O. Ppt. Sl. sol. in H2O. (Beilstein

and Blaese.)

Magnesium antimonate, $Mg(SbO_s)_2 + 12H_2O$. Sol. in hot, less sol in cold H₂O. (Heffter.) Sol in MgSO₄+Aq; insol in KSbO₂+Aq. (Berzelius.)

Manganous antimonate, M₁₁(ShO₃)₂.

Difficultly sol, in H₂O.

When heated, is sol. only in strong acids. +2H₂O. Insol. in H₂Q. (Senderens, Bull. Soc. 1899, (3) 21. 56.)

 $+5H_2O$. Ppt. (Ebal, B. 22. 3043.)

+6H₂O. Insol. in H₂O. (Senderens, l.c.) +7H₂O. Ppt. (Beilstein and Blaese.)

Mercurous antimonate.

Insol. in H₂O. (Berzehus.)

Mercuric antimonate, $Hg(SbO_3)_2$.

Insol. in H₂O, alkalies, and most acids. Sl. attacked by boiling H₂SO₄, and HCl+

Αq. +2H₂O. Insel. in H₂O. (Senderens, Bull.

Soc. 1899, (3) **21.** 55.) $+5H_2O$. Insol. in H_2O . (Senderens.) +6H₂O. Ppt. (Beilstein and Blaese.)

Nickel antimonate, Ni(SbO₃)₂+2H₂O₂

Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) **21.** 54.)

Insol. in H₂O. (Senderens.) $+5\mathrm{H}_2\mathrm{O}$.

+6H₂O.Ppt. Insol. in H₂O. (Heffter, Pogg. 86. 446.)

 $+12H_2O$. Sl. sol. in H_2O . (Heffter.)

Potassium antimonate, KSbO₃.

Insol. in H2O. Sol. in warm KOH+Aq, but separates nearly completely on cooling." boiling with H₂O, or by standing for a long time with cold H2O, it gradually dissolves as $2KSbO_8+5H_2O$, or $K_2H_2Sb_2O_7+4H_2O$, or $2KH_2SbO_4+3H_2O$.

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

+H₂O. Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) 21. 57.)

 $+1\frac{1}{2}H_{2}O'(=2KSbO_{3}+5H_{2}O)$ of Fremy). Easily sol. in H₂O, especially if warm. Solution is pptd. by NH₄Cl+Aq. (Fremy, A. ch. (3) 12, 499.)

 $+2\frac{1}{2}H_2O$. 100 pts. H_2O at 20° dissolve 2.81 pts. anhydrous salt; sp. gr. of solution sat. at $18^{\circ} = 1.0263$. Composition is given as K₂H₂Sb₂O₇+4H₂O. (Knorre and Olschewsky, B. 20. 3043.)

 $+3\frac{1}{2}H_2O$. Insol. in H_2O . (Senderens, l.c.)

 $+4\frac{1}{2}H_2O$. Sol. in H_2O . (Delacroix, J. Pharm. 1897, (6) 6. 533.)

 $2K_2O$, $3Sb_2O_5 + 10H_2O$. Sl. sol. in H₂O. $2K_2O$, $380_2O_5+10H_2O$. SI. sol. (Delacroix, J. Pharm. 1897, **6**. 337.) $+10H_2O$. (Delacroix, l.c.)

Potassium pyroantimonate, K₄Sb₂O₇.

Deliquescent; decomp. by boiling with H_2O into $KSbO_3+5H_2O$, by cold H_2O into $K_2H_2Sb_2O_7+6H_2O$. (Fremy.)

Does not exist. (Knorre and Olschewsky.) Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20**, 829.)

Insol. in acetone. (Naumann, B. 1904, 37.

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B. **1904**, **37**, 3601.)

Potassium hydrogen pyroantimonate, K₂H₂Sb₂O₇.

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

 $+2\frac{1}{2}H_2O$. (Senderens, Bull. Soc. 1899, (3) **21.** 57.)

+3½H₂O. Very difficultly sol. in hot or cold H₂O. (Knorre and Olschewsky, B. 18. 2358.)

+6H₂O. Quite difficultly sol. in cold H₂O. Not precipitated by NH₄Cl+Aq. Aqueous solution gradually decomposes. (Fremy.) +4H₂O. See 2KSbO₃+5H₂O.

antimonate sulphantimonate, Potassium $KSbO_8$, $K_8SbS_4 + 5H_2O$.

Decomp. on air, and with cold H₂O. Sol. in hot H₂O. (Rammelsberg.)

Silver antimonate.

Insol. in H₂O. (Berzelius.)

 $AgSbO_3 + 3H_2O = AgH_2SbO_4 + 2H_2O$. Easily sol. in NH4OH+Aq, when freshly pptd. (Beilstein and Blaese.)

 $+1\frac{1}{2}H_2O$. Ppt. (Ebel, B. **22.** 3043.)

Silver antimonate ammonia, AgH₂SbO₄, $2NH_3+H_2O$.

(Beilstein and Blaese.)

Sodium antimonate, NaSbO₃.

Sol. in much H₂O, but soon becomes decomposed into Na₂H₂Sb₂O₇.

 $+3\frac{1}{2}H_2O$, composition of Na₂H₂Sb₂O₇+ 6H₂O, according to Beilstein and Blaese.

1000 pts. H_2O dissolve 0.31 pt. $NaSbO_3+$

3½H2O at 12.3°

1000 pts. alcohol of 15.8% dissolve 0.13 pt. $NaSbO_8 + 3\frac{1}{2}H_2O$ at 12.3°.

1000 pts. alcohol of 25.6% dissolve 0.07 pt. $NaSbO_3 + 3\frac{1}{2}H_2O$ at 12.3°.

Somewhat more sol, when freshly precipitated.

Absolutely insol. in glacial HC₂H₈O₂.

Presence of NaOH or Na salts diminish solubility, while NH₄OH or K salts increase it peau, C. R. 1896, 123. 1066.)

slightly. (Beilstein and Blaese, Bull. Ac. St. Petersb. 33. 201.)

+4½H₂O. Sol. in H₂O. (Delacroix, Bull.

Soc. 1899, (3) 21. 1051.) $2\text{Na}_2\text{O}$, $3\text{Sb}_2\text{O}_5+10\text{H}_2\text{O}$. (Delacroix, l. c.) Na_2O , $3\text{Sb}_2\text{O}_5+11\text{H}_2\text{O}$. (Delacroix, l. c.)

Sodium pyroantimonate. Na₂H₂Sb₂O₇+ 6H₂O.

Boiling H_2O dissolves $\frac{1}{350}$ pt. of this salt. (Fremy.) 1000 pts. H_2O dissolve 2.5 pts. salt. (Ebel. B. 22, 3044.) See also NaSbO₃+ 316H2O.

+5H₂O. (Knorre and Olschewsky.)

Strontium antimonate, $Sr(SbO_3)_2 + 6H_2O$.

Ppt. Less sol. in H₂O than SrSO₄. (Heffter, Pogg. 86. 418.)

Thallous antimonate, $TlSbO_3 + 2H_2O =$ $TlH_2SbO_4+H_2O.$

Somewhat sol. in H₂O, when freshly precipitated; insol, when dried. (Beilstein and Blaese.)

Tin (stannous) antimonate, 2SnO, Sb₂O₅.

Ppt. (Lenssen, A. 114, 113.)

Sn(SbO₃)₂+2H₂O. Attacked with difficulty by acids or alkalies, most easily by hot cone. $\rm H_2SO_4$. (Schiff, A. **120**. 55.) $\rm 2SnO$, $\rm 3Sb_2O_b+4H_2O$.

SnO, 2Sb₂O₅.

Tin (stannic) antimonate.

Insol. in H_2O . (Levol, A. ch. (3) **1.** 504.)

Uranium antimonate, $5\mathrm{UO}_2$, $3\mathrm{Sb}_2\mathrm{O}_5 + 15\mathrm{H}_2\mathrm{O}$. Ppt. Sol. in hot conc. HCl+Aq, and in UCl_3+Aq . (Rammelsberg.)

Zinc antimonate, Zn(SbO₃)₂.

Very slightly sol. in H₂O (Berzelius); sol. in solutions of Zn salts.

+2H₂O. (Ebel, Dissert. **1890.**)

Insol. in H₂O. (Senderens, Bull. Soc. 1899, (3) **21**. 57.)

+5H₂O. Not wholly insol. in cold, moderately sol. in hot H₂O. (Ebel, Dissert. **1890.**) +6H₂O. Insol. in H₂O. (Senderens.)

Antimoniomolybdic acid.

Ammonium antimoniomolybdate, 5(NH₄)₂O, $4Sb_2O_5$, $7MoO_3+12H_2O$.

Readily sol, in hot H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Antimoniotungstic acid, 3Sb₂O₅, 4WO₃+ 11H₂O.

Sol. in H₂O. (Hallopeau, C. R. 1896, 123. 1068.)

Potassium antimoniotungstate, 3K₂O, 3Sb₂O₅, $4WO_3+4H_2O$.

Much more sol. in hot than in cold H₂O. Decomp. by HCl, H2SO4 and HNO3. (Hallo-

+16H₂O. Much more easily sol, in hot than cold H2O. Decomp. by HCl, H2SO4, and HNOs. (Hallopeau, l.c.) 6K₂O, 4Sb₂O₅, 12WO₃+25H₂O

Sl. sol. in H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Antimoniuretted hydrogen.

See Antimony hydride.

Antimonosomolybdic acid.

Ar monium antimonosomolybdate, 6(NH₄)₂O, $3Sb_2O_3$, $17MoC_3+21H_2O$.

Insol, in cold H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Antimonosophosphotungstic acid.

Potassium antimonosophosphotungstate,

 $12K_2O$, $5Sb_2O_3$, $6P_2O_5$, $22WO_3+48H_2O_5$ Nearly insol, in cold or warm H₂O. (Cibbs,) Am. Ch. J. 7. 392.)

Antimonosotungstic acid.

Ammonium antimonosotungstate. Sol. in H₂O.

Barium antimonosotungstate, 4BaO, 6Sb₂O₃, $22WO_8 + 36H_2O$.

Precipitate; very sl. sol, in hot H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Antimonous acid, HSbO₂.

(Long, J. Am. Chem. Soc. 1895, 17. 87.) $+1\frac{1}{2}H_2O$. Ppt. (Schaffner, A. **51.** 182.) H₃SbO₃. Ppt. (Clarke and Stallo, B. 13. 1793.)

Does not exist. (Guntz, C. R. **102.** 1472.) H₄Sb₂O₅. When freshly pptd., is sol. in dil. KOH, and NaOH+Aq. Scarcely sol. in NH₄OH+Aq, or in (NH₄)₂CO₃, or KHCO₃+

Completely sol. in K₂CO₃, and Na₂CO₃+ Aq, especially if warm. When recently pptd. is sl. sol. in succinic acid + Aq.

Calcium antimonite, CaSb₂O₄ (?).

Min. Romeite. Insol. in acids.

Cobaltous antimonite (?).

Sl. sol. in H₂O. (Berzelius.)

Cuprous antimonite, $Cu_6(SbO_3)_2$.

Insol. in H₂O. Sol. in acids; most easily in conc. HCl+Aq. (Hausmann and Stromeyer, Schw. J. 19. 241.)

Cupric antimonite (?).

Insol. in H₂O. (Berzelius.) CuSb₂O₅. Min. Ammiolite.

CuSb₂O₄. Sol. in HCl+Aq, tartaric and citric acids. (Harding, Z. anorg. 1899, 20. 238.)

Iron (ferrous) antimonite (?).

More sol. in H₂O than the antimonate. (Dumas.)

Potassium antimonite, K₂O, 3Sb₂O₃.

Easily decomp, by cold H₂O. Not decomp. by KOH+Aq containing over 20.9% K₂O. (Coriminbœuf, C. R. 115. 1305.)

+3H₂O. As above. (C.)

Potassium antimonite iodide, K₂O, 8Sb₂O₃, 2KI.

Insol, and not decomp, by cold or hot H₂O. Not decomp, by acide or alkalies. Aqua regia decomp. slowly. Tartaric acid dissolves gradually. (Grühl, Dissert. 1897.)

Sodium antimonite, NaSbO₂+3H₂O

Difficultly sol. in H₂O. (Terrell, A. ch. (4) 7. 380._j

 $2Na_2O$, $3Sb_2O_3+H_2O$. Decomp. by H_2O , but not by NaOH+Aq containing 94.3 g.

NaOH per l. (Corimanbœuf.)

Na₂O, 2Sb₂O₃. Decomp. by H₂O but not by NaOH+Aq containing 188.6 g. NaOH per l. (C.)

Na₂O, 3Sb₂O₃. Decomp. by H₂O, but not by NaOH+Aq containing 113.2 g. NaOH per l. (C.)

 $-\frac{1}{2}H_2() = NaH_2(SbO_2)_3$. (Terreil.)

Antimony, Sb.

Does not decomp. H₂O. Not attacked by HCl+Aq (Berzelius); slowly sol. in conc. HCl + Aq (Debray); slowly sol. in conc. warm HCl +Aq (Troost). Attacked by very conc. HCl +Aq culy when finely divided (Schützen-berger, Willm); very sl. attacked by dil. or conc. acid (Guntz). Not attacked by boiling HCl+Aq (Gmelin). By careful experiments, pure Sb is absolutely insol. in dil. or conc., hot or cold HCl+Aq, except when in contact with oxygen. (Ditte and Metzner, A. ch. (6) 29. 889.)

Insol. in dil. or cold conc., but sol. in hot cone. H₂SO₄. Oxidized but not dissolved by HNO₃+Aq. Easily and completely sol. in

aqua regia. Very slowly attacked by pure HNO₃+Aq of 1.51-1.42 sp. gr.: weaker acid has no marked action whether it contains NO₂ or not. HCl+ HNO₃ has no action if dil. or at low temp., but when even very dil. and KNO₂ is added, the

action will begin. (Millon, A. ch. (3) 6. 101.) Not attacked in 10 months by 2% HNO₃ +Aq. Sb is not dissolved by HNO₃+Aq of any concentration, a white powder being always left, which is insol, in HNO3+Aq or H₂O. (Montemartini, Gazz. ch. it. 22. 384.)

Insol. in alkalies + Aq. Somewhat sol. in distilled H₂O. More or less sol. in solutions of acids, alkalies and salts and in alcohol and ether. Only sl. sol. in a mixture of alcohol and ether. (Ruff and Albert, B. 1905, **38.** 54.)

Alkaline H₂O₂ converts Sb into antimonic acid, but neutral H2O2 is without action.

(Clark, Chem. Soc. 1893, 63. 886.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 826.)

Easily attacked by pyrosulphuryl chloride. | Solubility of SbBrs in organic liquids.—Cont. (Heumann and Köchlin, B. 16, 479.)

Sb is sol. in a mixture of HNO3 and tartaric acid or other polybasic acids. (Czerwek, Z. anal. 1906, 45. 507.)

Not attacked by a mixture of alcohol and ether. (Cohen, Z. phys. Ch. 1904, 47. 12.)

½ cc. oleic acid dissolves 0.0007 g. Sb in 6 days. (Gates, J. phys. Ch. 1911, 15. 143.) There are three modifications.

1. Ordinary gray metallic.

2. Black amorphous. Unstable at ord. temp. By boiling with H_2O is changed to metallic Sb.

3. Yellow. Very unstable. At -50° goes over rapidly into the ordinary black modification. Sol. in CS₂ at a little above -90°. (Stock, B. 1903, 37. 898.)

Unstable above -90°. (Stock, B. 1905, 38. 3837.)

Antimony arsenide, Sb₂As. (Descamps, C. R. 86. 1065.)

Antimony tribromide, SbBr₃.

Deliquescent; decomp. by H₂O.

Very sol. in liquid NH₃. (Gore, Am. Ch

J. 1898, **20.** 826.)

Very sol. in warm liquid AsBr₈, forming a solution with sp. gr. = 3.685 at 47°. (Retgers Z. phys. Ch. 1893, 11. 339.)

Sol. in S_2Cl_2 . (Walden, Z. anorg. 1900, 25 217.)

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913 84. 27.)

Easily sol. in PCl₃ and PBr₃. (Walden, Z anorg. 1900, 25. 211.) Sol. in alcohol and CS₂.

Sol. in ether forming two layers. (Hayes, J Chem. Soc. 1902, 24, 360.)

Sol. in acctone. (Naumann, B. 1904, 37 4328.)

Solubility of SbBr3 in organic liquids. Data in parentheses indicate labile equilibrium.

Solvent	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
Benzene	5.6° 4.5 15 25 35 45 55	0 1.9 3.0 4.3 6.0 8.6 12.1	65° 75 80 85 90 91.5 92.5	17.1 24.9 30.7 38.4 48.2 58.1 66.6	91.5° 90 85 90 92 94	73.7 76.7 84.9 91.4 94.8 100
Chlor- bensene	-45.2° -47 -40 -30 -20 -10	0 1.7 2.2 3.2 4.3 5.6	0° 10 20 30 40 50	7.2 9.2 11.8 15.4 20.8 28.1	60° 70 80 90 94	37.6 50.0 66.6 89.6 100
Brom- benzene	-31° -32 -25 -15 - 5	0 2.6 4.4 6.9 9.9 13.4	15° 25 35 45 55 65	17.4 22.2 22.7 34.4 42.6 52.6	75° 85 90 94	65.2 81.1 90.0 100

t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
-28.6° -30.5 -32 -20 -10 0	0 4.0 8.7 13.5 17.5 21.7	10° 20 30 40 50 60	26.3 31.5 37.3 43.7 50.7 58.5	70° 80 90 94	67.0 78.2 91.9 100
54.5° 51.5 48.5 55	0 6.3 12.8 18.7	65° 70 75 80	29.5 37.0 45.6 56.2	85° 90 94	68.9 85.2 100
88° 85 80 75 70	0 6.8 18.0 29.5 41.5	65° 70 75 80 85	52.0 59.1 66.5 74.4 83.0	90° 92 94	91.8 95.4 100
6° 1 - 4 - 9 -15 (-17)	0 8.6 17.0 24.0 29.7 (31.9)	—5° 5 15 25 35 45	32.3 35.3 38.8 42.8 47.4 52.8	55° 65 75 85 90 94	59.1 66.4 74.9 86.0 93.0 100
90° 85 80 75 70 65	0 8.1 16.2 24.2 31.8 38.5 44.3	55° 50 47.5 50 55 60 65	49.1 53.0 54.4 56.1 58.8 62.2 66.2	70° 75 80 85 90 94	70.8 76.0 81.7 87.8 94.2 100
-93° -93.5 -70 -50 -30 -10 -1	0 0.3 1.2 2.6 5.2 13.3 22.4	10° 20 30 (34) 40 50 60	28.8 36.7 47.5 (54.0) 51.5 56.3 62.3	70° 80 85 90 94	69.4 79.4 85.2 92.6 100
93° 60 40 20 10 0	0.1 0.4 1.0 2.3 3.9 6.4	10° 20 25 29 40 50	9.8 19.5 28.6 37.8 44.6 51.6	60° 70 80 85 90 94	59.8 67.4 77.4 85, 92.6 100
80°60403020105	0.4 1.2 3.4 5.5 9.5 17.2 24.3	(1.5°) (20) 0 10 20 30 40	(33.3) (23.3) 25.8 27.8 30.5 34.1 38.6	50° 60 70 80 90 94	44.3 51.5 61.5 73.5 90 100
-70° -50 -40 -30 -20 -17 (-15)	1.9 3.6 5.1 7.1 13.4 16.4 (19.4)	(—13°) —10 0 10 20 30 40	(24.9) 17 18.2 19.9 22.5 25.9 30.3	50° 60 70 80 90 94	35.8 43.3 54.0 68.5 90 100
	-28.6° -30.5 -32 -20 -10 -10 -54.5° -51.5 -48.5 -55 -55 -88° -85 -80 -75 -70 -6° -1 -4 -93° -93.5 -70 -10 -10 -93° -93.5 -70 -10 -10 -30 -40 -30 -30 -30 -30 -30 -30 -30 -30 -30 -3	-28.6° -30.5 -3232323233.5 -3233.5 -33.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-28.6° -30.5 -32 -32 -32 -32 -33 -32 -34 -37 -39 -31 -35 -31 -31 -32 -32 -33 -33 -33 -33 -33 -33 -33 -33

(Menschutkin, Ann. Inst. Pol. P. le Gr. 13. 1.)

Antimony bromide with MBr.

See Bromantimonate, M. Also below.

Antimony hydrogen bromide, SbBr₅, HBr+ 3H₂O.

Very hygroscopic. Decomp. by H_2O . (Weinland and Feige, B. 1903, 36. 256.) See Metabromantimonic acid.

Antimony caesium bromide, 2SbBr 5, 3CsBr+ 2H2O. Loses Br2 in the air. (Weinland, B. 1903,

36. 257)

Antimony calcium bromide, SbBrs, CaBr2+ 8H₂O.

(Benedict, Proce Ana Easily decomp. Acad. 1895, 30. 9.)

Antimony glucinum bromide, 3SbBr₅, 2GlBr₂ $+18H_{2}O.$

Hydroscopic. Easily decomp. (Weinland, B. 1903, 36. 258.)

Antimony magnesium bromide, SbBr₃, MgBr₂ $+8\dot{H}_2O$.

As Ca salt. (Benedict, Proc. Am. Acad. 1895, 30. 9.)

Antimony potassium bromide, 10SbBra. $23 \text{KBr} + 27 \text{H}_2\text{O}$.

(Herty, Am. Ch J. 1894, 16. 496.)

Antimony rubidium bromide, 28bBr₃, 3RbBr. Decomp. by H₂O; can be recryst, from dil.

HBr+Aq. (Wheeler, Z. anorg. 5. 258.) SbRb₂Br₆. Slowly loses Br₂ in the air. Decomp. by H₂O. (Weinland, B. 1903, 36. 259.)

10SbBr₃, 23RbBr (?). Cryst. from conc. HBr+Aq. (Wheeler.)

The composition assigned to this salt by Wheeler (Z. anorg. **5.** 253) is incorrect. (Ephraim, B. 1903, **36.** 1817.)

Antimony vanadium bromide, SbBr₃, VBr₄+ 7H₂O.

Hydroscopic. Decomp. by H₂O. Sol. in dil. HCl and in tartaric acid. (Weinland, B. 1903, 36. 260.)

Antimony bromide potassium chloride, SbBr₃, 3KCl+1½H₂Ō.

Slowly deliquescent. Very sol. in H₂O. Sat. solution contains 120.5 g. to 100 cc. H_2O , and has sp. gr. = 1.9.

Decomp. by much H₂O. (Atkinson, Chem. Soc. 43. 290.)

Does not exist. (Herty, Am. Ch. J. 1894, **16**. 497.)

See also Antimony chloride potassium bromide.

Antimony bromofluoride, SbF_bBr.

Decomp. by H₂O. (Ruff, B. 1906, 39.

Antimony trichloride, SbCl₃.

Deliquescent. Decomp. by H₂O with precipitation of SbOCl. This precipitation is prevented by tartaric, citric, or hydrochloric acid, or by conc. solutions of chlorides of alkalies and alkaline earths.

Solubility in H₂O 100 pts. SbCl₃ sol. in pts. H₂O at t°.

· fo	Pts. H ₂ O
0°	16.6
15°	12.3
20°	10.9
25°	10.1
30°	9.4
35°	8.7
40°	7.3
50°	5.2
60°	2.2

(Meerburg, Z. anorg. 1903, 33, 299.)

Solubility in HCl+Aq. 100 mol. H₂O disolve mol. SbCl₃ in presence of mol. HCl at 20°.

Mol. HCl	Mol. SbCl
0	72.1-72.8
2.4	73.0
6.5	67.5
8.4	· 67.6
8.6	66.5
9.8	65.0
12.2	65.3
29.6	54.5

(Meerburg, Z. anorg, 1903, 33, 304.)

Solubility in HCl+Aq.

	100 mol. H ₂ O dissolve at 20°					
Solid phase	1	2	3	4		
!	Mol. SbCls	Mol. HCl	Mol. SbOCl	Mol. HCl		
SbOCl	8.7 8.6 19.6 19.8	7.2 7 5 8.0 8.9	9.8 16.1 21.7 25.0 28.0	6.9 7.9 7.4 8.8 8.6		
$(\mathrm{SbOCl})_{\mathbf{x}_{3}}(\mathrm{SbCl}_{3})_{\mathbf{y}}$	37.5 44.0 63.7 69.1 66.1 69.8	8.7 6.8 6.2 5.6 4.6 5.3	32.0 35.8 59.5 61.0 62.7	7.9 7.9 6.4 6.5 4.4		
SbCl ₃ and (SbOCl) _x ,(SbCl ₃) _y	69.3 68 3	4.3 3.6				

1 & 2. (Meerburg, Z. anorg. 1903, **33**. 302.) 3 & 4. (Noodt, Z. anorg. 1903, **33**. 302.)

Somewhat sol. in liquid (CN)₂. nerszwer, Bull. Soc. 1901, (3) 28. 405.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, 20. 826.) Easily sol. in PCl₃ and PBr₃. (Walden, Z. anorg. 1900, 25. 211.)

Sol. in S_2Cl_2 . (Walden, Z. anorg. 1900, 25. 217.)

Easily sol. in AsBr₃. (Walden, Z. anorg. 1902, 29. 374.)

Sol. in alcohol without decomp. Very sol. in hot CS₂, but solubility diminishes rapidly on cooling. (Cooke, Proc. Am. Acad. 13. 72.)

Í g. SbCl₃ is sol. in 0.186 g. acetone at 18°. Sp. gr. of sat. solution 18°/4° = 2.216. (Naumann, B. 1904, **37.** 4332.)

Sol. in ethyl acetate. (Naumann, B. 1904,

37. 3601.)

1 pt. sol. in 16.97 pts. of ethyl acetate at 18°. Sp. gr. of sat. solution $18^{\circ}/4^{\circ} = 1.7968$. (Naumann, B, 1910, **43.** 320.) Sol. in benzonitrile. (Naumann, B. 1914,

47. 1369.)

Sol. in methylal. (Eidmann, C. C. 1899, II. 1014.)

Solubility of SbCl₃ in organic liquids. Data in parentheses indicate labile equilibrium.

Hant.							
Solvent	t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100	
Ben zene	5.6° 4 1 10 20 30 40	0 2.6 7.1 10.1 13.1 16.8 21.4	50° 60 70 75 77.5 79 77.5	27.2 34.7 45.2 53.1 58.7 66.6 73.4	75° 70 62 67.5 73	78.5 83.3 89.3 94.2 100	
Chlor- benzene	-45.2° -47 -40 -30 -20 -15	0 2.2 3.6 6.0 9.0 11.6	10°5 0 (4) 10 20	14.4 19.4 28.1 (41.1) 32.5 38.7	30° 40 50 60 70 73	47.1 56.2 66.6 78.7 94.3 100	
Brom- benzene	-31° -32.5 (-35) -30 -25 -20 -15 -10	0 3.4 (6.4) 4.8 7.6 10.7 14.1 17.8	-5° 0 3 (6) (7) 10 20 30	21.7 26.6 31.8 (41.9) (50.0) 36.4 43.2 50.8	40° 50 60 65 70 73	59.2 68.8 80.6 87.2 95.0	The state of the s
Iod- benzene	-28.6° -30 (-35) (-40) (-45) (-35) (-25) (-15)	0 2.4 (11.7) (29.8) (27.2) (30.9) (33.9) (37.2)	(—5)° —34.5 —25 —15 —5 (—3) 5 15	(40.7) 10.7 16.4 24.7 39.1 (47.2) 44.5 48.7	25° 35 45 55 65 70 73	53.9 60.4 67.5 76.2 87.4 95.0	
Paradi- chlor- benzene	54.5° 50 45 4 0	0 6.3 15.5 28.0	39.5° 45 50 55	39 .5 37 .5 46 .4 56 .0	60° 65 70 73	66.5 78.1 91.1 100	
Paradi-/ brom- benzene	88° 85 80 75 70	0 5.9 15.8 25.7 35.7	65° 60 49.5 55 60	45 4 53.8 64.9 72.5 79.8	65° 70 73	87 1 95.2 100	
Nitro- benzene	6° 2 -2 -6 -10 -14 (-18) -16.5	0 7.0 12.1 16.5 20.3 23.5 (26.2) 25.2	-13.5° -10.5 -7.5 -6.5 -6.5 -5 5	27.3 29.8 35.2 40.7 50.0 52.8 53.0 55.8	15° 25 35 45 55 65 70 73	59.2 63.0 67.6 72.8 79.0 87.2 92.7	

Solubility of SbCl₃ in organic liquids—Cont.

t t°	Mols. per 100	t°	Mols. per 100	t°	Mols. per 100
40	0 14.3 25.3 33.8 45.6 (53.6) (59.9) (62.2)	(—10°) (10) (27.5) (28.5) 27.5 25 (20) (10)	(57.7) (62.4) (44.5) (50.0) 55.0 60.2 (66.2) (73.5)	(0°) 20 30 40 50 60 70	(78.1) 65.2 68.8 73.2 78.5 85.8 95.2 100
e -93°947050403020	$\begin{array}{c} 0 \\ 0.5 \\ 1.4 \\ 3.3 \\ 5.1 \\ 7.2 \\ 10 \end{array}$	-10° 0 6 11 (-8) 20 30	14.4 22.1 28.6 35.7 (27.0) 40.5 47.6	40° 42 5 40 50 60 70 73	59.3 66.6 71.1 77.1 83.8 94.7
e = -93° -50 -30 -10 0 10 20 30	$\begin{array}{c} 0.1 \\ 0.6 \\ 1.1 \\ 3.6 \\ 5.6 \\ 9.4 \\ 16.8 \\ 27.2 \end{array}$	35° 39 37 35 (33) (15) (25) 37	36.4 50 57.7 61.8 (65.7) (37.8) (47.5) 66.6	(36.8)° (33) 40 50 60 65 70 73	(68.1) (65.7) 70.3 77.3 85.5 90.3 95.6 100
	(0.6) (2.8) (5.2) (8.8) (14.8) (25.1) (32.4) (43.3) (50) (51.1)	-70° -50 -40 -30 -20 -10 -5 0 5 7	0.2 1.5 3.0 5.5 9.7 16.2 20.5 26.2 35.6 41.6	8.5° 10 20 30 40 50 60 65 70 73	53.2 53.6 56.9 60.6 65.5 72 81 86.8 95.1
$\begin{array}{c c} -80^{\circ} \\ -70 \\ -60 \\ -50 \\ -40 \\ (-30) \\ (-25) \\ (-22) \\ (-20.5) \\ (-22) \end{array}$	3 5 4 8.4 12 4 17 9 (27.3) (34 4) (40.7) (50) (54)		(17.1) (22.8) 29.3 36.6 45.6 (52.3) (60.3) (66.6) (44.2) (44.9)	0° 10 20 30 40 50 60 65 70 73	46.3 48.8 52.5 57.3 63.4 71.4 81.7 88 95.5
	90° 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(Menschutkin, Ann. Inst. Pol. P.-le Gr., 13. 1.)

Antimony hydrogen trichloride, 2SbCl₃, HCl +2H₂O.

Deliquescent. Decomp. by H₂O.

Melts in crystal H_2O at 16° . (Engel, C. R. **106**. 1797.)

Antimony pentachloride, SbCl₅.

Deliquesces to $SbCl_5+4H_2O$, which can be crystallized out of a little H_2O . Decomp. by more H_2O into SbO_2Cl . Sol. in a large amt. of H_2O , if it is added all at one time. Precipitation by H_2O is also hindered by presence of tartaric, or hydrochloric acid.

+H₂O. Deliquescent. Sol. in chloroform. (Anschütz and Evans, A. 239. 285.)

+4H₂O. Insol. in chloroform. (Anschütz and Evans.)

Antimony pentachloride with MCl. See Chlorantimonate, M. See also below. Antimony hydrogen pentachloride, SbCl₅, HCl+4½H₂O.

"Metachlorantimonic acid" according to Weinland and Schmid, (Z. anerg. 1905, 44.

Very easily sol in H₂O, alcohol, acetone and glacial acetic acid. Aqueous solution decomp. on standing with separation of Sh₂O₅ but remains clear in presence of 10% HCl. (Weinland and Schmid, Z. anorg. 1905, **44**. 43.)

SbCl₅, 5HCl+10H₂O. Not delique scent. Decomp. by H₂O. Melts in crystal H₂O at about 55°. (Engel. C. R. 106. 1797.)

Antimony antimonyl chloride, SbCl₃, SbCCl.

More easily attacked by H₂O than SbOCl.
(Bemmelen, Z. anorg. 1903, **33**, 293.)

Antimony antimonyl potassium chloride, SbCl₈, SbOCl, 2KOL

Not deliquescent. Immediately decomp, by hot or cold H_2O ; sol. in hot glacial $HC_2H_3O_2$, or in HC_1 or parterie acid + A_G

or in HCl, or tartaric acid + Aq.
ius il. in KCl+Aq, hot or cold alcohol, CS₂,
or ligroine. (Benedikt, Proc. Am. Acad. 29.
217.)

Antimony antimony! rubidium chloride, SbCl₃, SbOCl, 2RbCl.

Sol. in very dil, HCl+Aq. (Wells, Am. J. Sci. 1897, (4) **3.** 463.)

Antimony barium chloride, $SbCl_3$, $BaCl_2 + \frac{3}{2}H_2O$.

Decomp. by H_2O .

Antimony cæsium chloride, SbCl₃, 6CsCl.

Decomp. by H₂O. Cryst. from dil. HCl+Aq. (Godeffroy, Arch. Pharm. (3) **12.** 47.) 2SbCl₃, 3CsCl. Decomp. by H₂O; sl. sol. in cold, easily in hot dil. HCl+Aq. This is identical with the above salt. (Saunders, Am. Ch. J. **14.** 152.)

SbCl₄, 2CsCl. Sol, in boiling conc. HCl+Aq without decomp. (Setterberg, Oef. Vet.

Akad. 1882, 6. 23.)

SbCl₅, CsCl. Cryst. from HCl+Aq without decomp. Decomp. by H₂O. (Setterberg, Oef. Vet. Akad. 1882, 6. 27.)

Antimony calcium chloride, SbCl₃, CaCl₂+8H₂O.

Easily decomp. (Benedict, Proc. Am. Acad. 1895, 30, 9.)

 $SbCl_6CaSbCl_5.OH+9H_2O.$ Deliquescent; sl. sol. in $H_2O.$ (Weinland, B. 1901, **34.** 2635.)

Antimony chromium chloride,

CrCl₃, 3SbCl₅+13H₂O. (Weinland.) should be

[SbCl₆]₃[Cr(OH₂)₆]+7H₂O; and CrCl₃, SbCl₅+10H₂O should be [SbCl₆][Cr(OH₂)₄Cl₂]+6H₂O. (Pfeiffer, Z. anorg. 1903, **36.** 349.)

pentachloride, SbCl₅, Antimony glucinum chloride, SbCl₅, GlCl₂+3H₂O.

Very hydroscopic. Decomp. by H₂O. Very easily sol. in HCl. (Ephraim, B. 1903, **36**, 1822.)

+4H₂O. Ppt. Decemp. by H₂O. Sol in HCl. (Ephraim, B. 1903, **36**, 1822.)

Antimony hydrazine chloride, $SbCl_8$, $3N_2H_5Cl$.

Sol. in conc. HCl+Aq; decomp. by H₂O. (Ferratini, C. A. 1912, 1613.)

Antimony lithium chloride SbGl, 2LiCl+5H,O.

Hydroscopic. Decomp. by H₂O. Very easily sol. in HCI. (Ephraim, B. 1903, **36.** 1821.)

+6H₂O. Decomp. by H₂O; easily sol. in HCl. (Ephraim, B. 1903, **36.** 1822.)

Antimony magnesium chloride, SbCl₃, MgCl₂ +5H₂O.

Hydroscopic. Decomp. by H₂O. Can be cryst. from IICl without decomp. (Ephraim, B. 1903, **36**. 1823.)

2SbCl₃, MgCl₂. Hygroscopic. Decomp. by H₂O. Very sol. in HCl. (Ephraim.)

SbCl₇MgSbCl₆MgOH+17H₂O. Hydrosopic. Sol. in H₂O with decomp. (Weinland, B. 1901, **34.** 2635.)

Antimony nitrosyl chloride, SbCl5, NOCl.

Very deliquescent; decomp. by pure H₂O; sol. in H₂O containing tartaric acid. (Weber, Pogg. **123**. 347.)

2SbCl₅, 5NOCl. Decomp. by H₂O. (Sudborough, Chem. Soc. **59**. 661.)

Antimony phosphorus chloride, SbCl₅, PCl₅.

Deliquescent. (Weber, Pogg. 125. 78.)

Antimony phosphoryl chloride, SbCl₅, ROCl₃.
Deliquescent. (Weber.)

Antimony platinum potassium chloride, (Sb, Pt)Cl₆K₂.

Ppt. (Weinland, B. 1905, **38.** 1086.)

Antimony potassium chloride, SbCl₈, 2KCl.
Sol. in H₂O without decomp. (Jacquelain

Sol. in H_2O without decomp. (Jacquelain, A. ch. (2) 66. 125.)

Not deliquescent. Immediately decomp. by hot or cold H₂O. Sol. in HCl, or tartaric acid+Aq. (Benedikt, Proc. Am. Acad. 29. 219.)

+2H₂O. Very efflorescent.

SbCl₃, 3KCl. Deliquescent. Decomp. by hot H₂O. (Poggiale.)

+2H₂O. (Romanis, C. N. **49**. 273.)

Not obtained by Benedikt (l.c.) 10SbCl₃,23KCl. True composition of above salts. Sol. in H₂O. (Herty, Am. Ch. J. 1894, 16. 495.)

SbCl₃, 2KCl is the only true compound, all

others being isomorphous mixtures. (Jordis, B. 1903, 36. 2539.)

2SbCl₄, 3KCl. Deliquescent. Decomp. by
H₂O. (Bosek, Chem. Soc. 1895, 67. 516.)

SbCl₅KSbCl₅KOH. Hydroscopic. Sol. in

H₂O with decomp. (Weinland, B. 1901, 34. · 2635.)

See also Antimony antimonyl potassium chloride.

Antimony rubidium chloride, SbCl₈, RbCl.

Decomp. on air or with H₂O. (Saunders, Am. Ch. J. 14. 162.)

2SbCl₃, RbCl+H₂O. Decomp. on air. (Wheeler, anorg. 5. 253.) SbCl₃, 6RbCl. Decomp. by H₂O. (Godef-

froy, Arch. Pharm. (3) 9. 343.)

Formula is 108bCl₃, 23RbCl (?). (Saunders

Am. Ch. J. 14. 159.)

10SbCl₃, 23RbCl (?). Decomp. by H₂O; sol. in HCl+Aq. (Saunders.)

Formula is 3SbCl₃,7RbCl. (Wells and

Foote, Am. J. Sci. 1897, (4) 3. 461.)
Composition assigned to this salt by
Saunders (Am. Ch. J. 14. 155) is incorrect. (Ephraim, B. 1903, 36. 1817.)

3SbCl₈, 5RbCl. As above. (Saunders.) Formula is 2SbCl₃, 3RbCl. (Wheeler.) Rb₂SbCl₆. Ppt. Decomp. by H₂O. (Weinland, B. 1905, 38. 1083.)

* Rb₂SbCl₆, **2**Rb₈SbCl₆. Ppt. Decomp. by H₂O. (Weinland, B, 1901, **34**. 2635.)

Antimony selenium chloride, SbCl₅, SeCl₄. Deliquescent. (Weber.)

Antimony selenyl chloride, SbCl₅, SeOCl₂. Very deliquescent. (Weber, Pogg. 125. 325.)

Antimony sodium chloride, SbCl₈, 3NaCl (?). Decomp. by much H₂O. (Poggiale.)

Antimony sulphur chloride, 2SbCl₅, 3SCl₂. Decomp. by H₂O.

SbCl₅, SCl₄. Sol. in dil. HNO₃+Aq. Mpt. 125-126° in an atmos. of chlorine. Violently decomp. by H₂O. (Ruff, B. 1904, **37.** 4515.)

Antimony thallium chloride, SbCl₂, 3TlCl.

Ppt. (Ephraim, Z. anorg. 1909, **61**. 249.) SbCl₄, TlCl. (Ephraim and Barteczko, Z. anorg. 1909, **61**. 251.)

2SbCl4, 2TlCl, TlCl3. Slowly decomp. by cold H₂O, (Ephraim and Barteczko, Z. anorg. 1909, 61. 253.)

Antimony trichloride ammonia, SbCl₃, NH₃. Not very deliquescent. Decomp. by H₂O.

Antimony pentachloride ammonia, SbCl₅, 6NH₈.

Decomp. by H₂O. (Persoz.)

Antimony pentachloride cyanhydric acid, SbCl₅, 3HCN.

Deliquescent: decomp. by H₂O. (Klein, A. 74. 85.)

Antimony pentachloride nitric oxide, 2SbCls. NO.

Decomp. by H₂O. (Besson, C. R. 108. 1012.)

Antimony pontachloride nitrogen peroxide, $3\mathrm{SbCl}_5$, $2\mathrm{NO}_2$.

Decomp. by H₂O. (Besson.)

Antimony pentachloride nitrogen sulphide, SbCl₅, N₄S₄.

Easily decomp. (Davis, Chem. Soc. 1906, **89.** 1577.)

Decomp. by cold H₂O, HCl, H₂SO₄ and warm alcohol, also by boiling with KOH+Aq. Almost insol, in organic solvents. (Wölbling, Z. anorg. 1908, **57**. 283.)

Antimony chloride potassium bromide, $SbCl_3$, $3KBr+1\frac{1}{2}H_2O$.

Very deliquescent. Decomp, by much H₂O. (Atkinson, Chem. Soc. 43, 289.)

2SbCl₃,3KBr+2H₂O. (Atkinson.) $SbCl_3$, $KBr + H_2O$. (Atkinson.)

Above are mixtures. (Herty, Am. Ch. J. 1894**, 16**. 497.)

See Antimony bromide potassium chloride.

Antimony chlorofluoride, SbCl₈F₂. (Swarts, Z. anorg. 1896, 12. 71.)

Antimony fluoiodide, SbF₅I.

Slowly decomp. by H₂O. (Ruff, B. 1906, **39.** 4321.)

(SbF_b)₂I. Sol. in H₂O with pptn. of I₂. (Ruff, B. 1906, 39. 4321.)

Antimony trifluoride, SbF₃.

Deliquescent. Sol. in H₂O.

Solubility in H₂O at t°.

t°	100 g. of the solution contain g. SbF ₈	100 g. H ₂ O contain g. SbF ₂
0° 20 22.5 25 30	79.37 81.64 81.91 83.12 84.93	384.7 444.7 452.8 492.4 563.6

(Rosenheim, Z. anorg. 1909, 61. 189.) Solubility in HF+Aq at 0°.

Normality of HF+Aq	100 g. H ₂ O of the HF solution dissolve g. SbF ₃
2 1 0.5	474.9 432.5 404.0

(Rosenheim, Z. anorg. 1909, 61, 192.)

Solubility of SbF ₈ in salts+Aq at 0°.				
Salt	Normality of salt solution	100 g. H ₂ O of the salt solution dissolve g. SbF ₄		
KCl	$egin{array}{c} 1 \\ 0.5 \\ 0.25 \\ 0.125 \end{array}$	461.8 44£.3 431.9 407.3		
КВr	1 0.5 0.25 0.125	* 448.7 450.0 455.6 417.2		
KNO ₃	$1 \\ 0.5 \\ 0.25 \\ 0.125$	458.2 451.0 418.3 401.4		
} 2K2SO4	$\begin{array}{c} 1 \\ 0.5 \\ 0.25 \end{array}$	419.9 408.5 406.6		
12K2C2O4	$\begin{matrix} 1 \\ 0.5 \\ 0.25 \\ 0.125 \end{matrix}$	465.7 481.2 451.3 405.2		
1/2(NH ₄)2C ₂ O ₄	0.5 0.25 0.125	431.9 442.3 433.3		
12K2C4H4O6	1 0.5 0.25 0.125	461.4 430.5 430.8 435.2		

(Rosenheim, Z. anorg. 1909, 61, 192.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 826.)

Antimony pentafluoride, SbF₅.

Sol. in H₂O. (Marignac, A. **145**. 239.) Very hydroscopic; bpt. 155°. Sol. in H₂O with hissing. (Ruff, B. 1904, **37**. 678.) $+2H_2O.$ (Ruff, B. 1904, 37. 679.)

Antimony pentafluoride diantimony fluoride, $Sb_3F_{11} = 2SbF_3$, SbF_5 . Hydroscopic; bpt. 390°. Easily sol. in H₂O. (Ruff, B. 1904, 37, 680.)

Antimony pentafluoride pentaantimony trifluoride, SbF₅, 5SbF₃.

B pt. 384° (corr.). (Ruff, B. 1904, 37.681.)

Antimony cæsium fluoride,

CsF,2SbF₃. CsF,3SbF₈. 4CsF,7SbF₈. CsF.SbF₂

2CsF,SbF₃.

(Wells, Am. J. Sci. 1901, (4) 11. 451.)

Antimony lithium fluoride, SbF2,

Sol. in more than 20 pts. H2O. (Flückinger, Pogg. 87. 245.) SbF₈, LiF. Eas Chem. Z. 13. 357.) Easily sol. in H₂O. (Stein.

Antimony potassium fluoride, SbF2, 2KF.

Sol. in less than 2 pts. boiling, and in 9 pts. cold H₂O. Insol. in alcohol or ether. SbF₃, KF. More sol. than SbF₃, 2KF. Sol. in 2.8 pts. H₂O. (Flückinger, Pogg. 87. 245.)

SbF₅. KF. Easily sol. in H₂O. SbF₅, 2KF+2H₂) Easily s Easily sol. in H2O. (Marignae, A. **145**, 239.)

Antimony sodium fluoride, SbF₈, 3NaF.

Sel. in 14 pts. cold, and 4 pts. boiling H₂O. Sol. in H₂ pts. cold, and 4 pts. bolling H₂O. Sol. in H₅. (Flückinger, Pogg. 87, 245.)
SbF₃, NaF. 100 pts. cold H₂O dissolve 93
pts. 100 pts. hot H₂O dissolve 166 pts. (Stein, W.,gners' J. B. 1887, 1160.)
4SbF₃, NaF. As NH₄ salt. (Raad and Hauser, B. 1890, 23. R. 125.)

SbF₅, 2NaF. Easily sol. in H₂O. (Marignac, A. 145. 329.)

Antimony thallium fluoride, TIF, SbF₈.

Sol. in H₂O without decomp. (Ephraim, E. 1909, **42**. 4458.)
"IF,2SbF₈. Sol. in H₂O without decomp.

(Ephraim.) TIF,3SbF₃. Sol. in H₂O without decomp. Decomp. by cold conc. H₂SO₄. (Ephraim.)

Antimony trifluoride ammonia, SbF₃, 2NH₃. Sl. sol. in liquid NH₈. (Ruff, B. 1906, 39. 4326.)

Antimony trifluoride ammonium chloride. SbF₃, NH₄Cl.

Easily sol. in H₂O. (de Haen, B. 21. 901 R.)

Antimony trifluoride ammonium sulphate, SbF₃, (NH₄)₂SO₄.

More sol. than K or Na salt. 1 pt. $\rm H_2O$ dissolves 1.4 pts. at 24° and 15 pts. at 100°. (de Haen, B. 21. 902 R.)

Antimony fluoride lithium chloride, SbF₃, LiCĺ.

Sol, in H₂O. (Stein, Chem. Z. 13. 357.)

Antimony pentafluoride nitrosyl fluoride, SbF₅, NOF.

Hydroscopic. Decomp. by H₂O. Sol. in liquid NH₃ with decomp. Sl. sol. in NOCl, SiCl₄, PCl₃, AsCl₃, SO₂Cl₂ and SOCl₂. (Ruff, Z. anorg. 1908, **58.** 334.)

Antimony trifluoride potassium chloride, SbF₃, KCl.

100 pts. H₂O dissolve 51 pts. at 24°, and 300 pts. at 100°. (de Haen, B. 21. 901 R.)

Antimony trifluoride potassium sulphate, SbF₃, K₂SO₄.

Sol. in H₂O. (de Haen.)

2SbF₃, K₂SO₄. Very sol. in H₂O. (Mayer, B. 1894, 27. R. 922.)

Antimony trifluoride sodium chloride, SbF₂, NaCl.

Easily sol. in H_2O . (de Haen, B. 21. 901 R.)

Antimony trifluoride sodium sulphate, SbF₃, Na₂SO₄.

Sol. in H₂O. (de Haen.)

Antimony fluoiodide, SbF,I.

Mpt. 80° ; slowly decomp. by H_2O . (Ruff, B. 1906, **39.** 4321.)

 $(\mathrm{SbF_6})_2\mathrm{I}$. Mpt. 110-115°; decomp. by $\mathrm{H_2O}$. (Ruff.)

Antimony fluosulphide, SbF₅S.

Very hygroscopic. Decomp. by H₂O. Sol. with decomp. in alcohol. Sol. in CCl₄. (Ruff, B. 1906, **39.** 4322.)

Antimony gold, Au₈Sb.

Insol. in equal pts. of HNC₃ and tartaric acids. (Roessler, Z. anorg. 1895, **9**. 72.)

Antimony hydride, SbH₃.

Scarcely sol. in H₂O. 1000 ccm. H₂O absorb 4.12 cc. SbH₃ at 10.5°. Decomp. by long contact with H₂O; also by conc. H₂SO₄ or KOH+Aq. (Jones, Chem. Soc. **29**. 641.)

Antimony trihydroxide, Sb_2O_3 , $2H_2O = Sb_2O(OH)_4$.

(Schaffner, A. 51. 182.)

Sb(OH)₃. Ppt. (Clarke and Stolla, B. **13**. **1787**.)

Does not exist. (Guntz, C. R. 102, 1472.) See Antimonous acid and antimony trioxide.

Antimony triiodide, ShI3.

Decomp. by H₂O or 80% alcohol. Sol. in HI+Aq; sol. in boiling CS₂, and in boiling benzene, but separates out on cooling. Almost insol. in CHCl₃. (Cooke, Proc. Am. Acad. (2) **5**. 72.)

Easily sol. in AsBr₃. (Walden, Z. anorg. 1902, **29**, 374.)

Sol. in warm AsBr₃. Sp. gr. of a solution sat. at 40°, which solidifies at 37°, =3.720. This dissolves further AsI₃, whereby the mpt. sinks to 31° and sp. gr. rises to 3.801. By mixing the latter solution with a solution of AsI₄ in CH₂I₂, a liquid can be obtained with a sp. gr. of 3.702 at 20°. (Retgers, Z. phys. Ch. 1893, 11. 340.)

Sol. in PCl₃. (Beckmann, Z. anorg. 1906, **51**. 110.)

Sol. in SO₂Cl₂. (Walden, Z. anorg. 1900, **25.** 215.)

Sol. in $SOCl_2$ and S_2Cl_2 . (Walden, Z. anorg. 1900, **25**. 216.)

Sol. in AsCl₃. (Walden, Z. anorg. 1900, **25**. 214.)

Sol. in SnCl₄. (Walden, Z. anorg. 1900, **25**. 218.)

Sol. in POCl₃. (Walden, Z. anorg. 1900, **25**. 212.)

Easily sol. in PCl₃ and PBr₃. (Walden, Z. anorg. 1900, **25**. 211.)

Partly sol. in, and partly decomp. by alcohol or ether. (M'Ivor, Chem. Soc. (2) 14, 328)

Insol, in oil of turpentine and CCl₄.

100 pts. methylene iodide dissolve 11.3 pts. SbI_s at 12°; sp. gr. of solution = 3.453. (Retgers, Z. anorg. 3. 343.)

Sol. in C_6H_6 . (Retgers, Z. phys. Ch. 1893, **11**. 334.)

Sol. in acetone. (Naumann, B. 1904, **37**. 4328.)

Antimony pentaiodide, SbI.

Very unstable. (Pendleton, C. N. 48. 97.)

Antimony barium iodide, Sbl₃, Bal₂+9H₂O.
Decomp. by H₂O. Sol. in HCl, HC₂H₃O₂, or H₂C₄H₄O₆+Aq. CS₂ dissolves out Sbl₃. (Schäffer, Pogg. **109**. 611.)

Antimony cæsium iodide, 2SbI₃,3CsI.

Sl. sol. in HI+Aq. Exists in two distinct forms. (Wells, Am. J. Sci. 1901, (4) 11. 455.)

Antimony potassium iodide, 2SbI₂, 3KI+3H₂O.

Decomp. by H_2O . Sol. in HCl, $HC_2H_3O_2$, or $H_2C_4H_4O_6+Aq$. CS₂ dissolves out SbI₃. (Schäffer, Pogg. **109**. 611.)

 SbI_3 , $2KI+2\frac{1}{2}H_2O$. Decomp. by H_2O . (Nicklès, J. Pharm. (3) **39.** 116.)

Antimony rubidium iodide, 2SbI3, 3RbI.

Decomp. by H₂O. (Wheeler, Z. anorg. 5. 259.)

Antimony sodium iodide, 28bI₃, 3NaI+12H₂O.

As 2SbI₃, 3KI. (Schäffer, Pogg. 109. 611.)

Antimony thallous iodide, 28bl, 3TII.

Decomp. by H₂O and by HCl+Aq, also by alcohol. (Ephraim, Z. anorg. 1908, **58.** 354.)

Antimony nitride, SbN.

Decomp. by heat. (Franz Fischer, B. 1910, 43. 1471.)

Antimony trioxide, Sb₂O₃.

Very sl. sol. in H₂O. Sol. in 8900–10,000 pts. H₂O at 100°; 55,000–61,100 pts. at 15°. (Schulze, J. pr. (2) **27**. 320.)

Sol. in HCl+Aq. Insol. in HNO₃+Aq, but not as insol. as metastannic acid. Sol. in cold fuming HNO₃ or H₂SO₄. Insol. in dil., but sol. in conc. alkalies, or alkali carbonates+

Sol. in cold NH₄Cl, or NH₄NO₃+Aq. Aq. Sol. in cold NH₄Cl, or NH₄NO₂+Aq. Sol. in 15 pts. boiling SbCl₃. (Schneider, Pogg. 108. 407.)

Sol. in HC2H3O2, or H2C4H4O6+Aq. and not pptd. from these solutions by H2O. Easily sol, in benzoic acid. Insol, in pyro artaric acid. Very sol. in KHC₄H₄O₆+Aq. Sol. in

Somewhat sol. in H₃PO₄+Aq. (Köhler, Dingl. 1885, **258.** 520.)

Insol. in liquid NH3. (Gore, Am. Ch. J

1898, **20.** 826.) Sol. in lactic acid. (Kretzschmar, Ch. Z. 1888, **12.** 943.)

Sol, in grape sugar solution to which Ca(OH)₂ has been added. (Vogel, B. 1885, **18**, R. 38.)

Insol. in acetone. (Naumana, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Sol. in glycerine in presence of alkalies. (Köhler, Dingl. 1885, 258. 520.)

Exists in a sol. colloidal modification. (Spring, B. 16, 1142.)

Min. Valentinite, Senarmontite. +H.O. Sec Antimonous acid.

Antimony tetroxide, Sb_2O_4 .

Insol. in H₂O. Slightly attacked by acids; hot cone. HCl+Aq acts only slightly. (Fresenius)

Min. Cervantite, Sl. sol. in HCl+Aq.

Antimony pentoxide, Sb₂O₅.

Insol. in H₂O. Easily sol. in HCl+Aq. Sl.

sol. in conc. KOH+Aq.
"Antimonoxyd" is sol. in glycerine in pres-

ence of alkalies.

100 g. glycerine, to which have been added 10 g. NaOH+Aq (1:1), dissolve 20.6 g. at b.-pt.; 20 g. NaOH+Aq (1:1), dissolve 36.0 g. at b.-pt.; 40 g. NaOH + Aq (1:1), dissolve 68.5 g. at b.-pt.; 80 g. NaOH+Aq (1:1), dissolve 93.0 g. at b.-pt.; 120 g. NaOH +Aq (1:1), dissolve 119.2 g. at b.-pt. (Köhler, Dingl. 258, 520.)

See also Antimonic acid.

Antimony nitrogen pentoxide, 2Sb₂O₅, N₂O₅. Not decomp. by H_2O . (Thomas, C. R. 1895, **120.** 1116.)

Antimony oxybromide.

See Antimonyl bromide.

Antimony oxychloride. See Antimonyl chloride.

Antimony oxyfluoride. See Antimonyl fluoride.

Antimony oxysulphide, Sb₂OS₂.

Min. Antimony blende (kermesite). Insol. in H₂O or dil. acids, except HCl+Aq. (Schneider, Pogg. 110. 147.)

Antimony palladium, Sb₂Pd.

Sl. sol. in equal pts. of HNO₂ and tartaric acids. (Roessler, Z. anorg. 1895, 9. 69.)

Antimony platinum, Sb₂Pt.

Insol. in equal pts. of HNOs and tartaric acids. (Roessler, Z anorg. 1895, 9. 67.)

Antimony phosphide, SbP.

Insol. in benzene, ether, or CS₂. (M'Ivor, B. 6. 1362.)

Antimony sclenide, SLSe.

(Chrétien, C. R. 1906, 142, 1341.)

Sb₈Se₄. (Chrétien, l.c.)

ShaSen (Chietien, l.c.)

Sb₂Se₃. Sol. in KOH+Aq. (Hofacker, A. **107.** 6.)

Sb₂Se₅. (Hofacker.)

Antimon; selenide, with M selenide.

See Selenoantimonates, M.

Antimony *trisulphide*, Sb_2S_3 (*Kermes*).

Insol. in H₂O and dil. acids.

1 l. $\rm H_2O$ dissolves 5.2 x 10-6 mols. pptd. $\rm Sb_2S_3$ at 18°. (Weigel, Z. phys. Ch. 1907, **58**.

Decomp. by conc. HNO₃ or H₂SO₄. in conc. HCl+Aq. Easily sol. in dil. KOH, NaOH, (NH₄)₂S, and K₂S+Aq. Sl. sol. in NH₄OH + Aq; very sl. sol. in (NH₄)₂CO₃+Aq; insol. in KSH+Aq. (Fresenius.)

Sol. in a mixture of 50 pts. H₂O and 18 pts. HCl (sp gr. 1.16) even when completely sat. with H₂S. (Lang and Carson, J. Soc. Chem. Ind. 1902, **21**. 1018.)
Sl. sol. in H₂SO₃+Aq. (Guerout, C. R.

1872, 75. 1276.)

Cryst. Sb₂S₃ is only sl. sol. in NH₄OH+ Aq (1 pt. in about 2000 pts. NH₃).

Pptd. amorphous Sb₂S₃ is appreciably more sol. (1 pt. in 600 pts. NH₃). (Garot, J. pr. 1843, **29.** 83.)

Sl. sol. in hot 2% Na₂B₄O₇+Aq, still less sol. in cold. (Materne, C. C. **1906**, II. 557.) Insol. in NH₄Cl+Aq.

Sol. in 14-15 pts. pure SbCl₃. (Schneider, Pogg. 108. 407.)

Slowly sol. in H₂C₄H₄O₆+Aq.

Sol. in boiling Na₃SbS₄+Aq.

Sol. in hot citric, tartaric and oxalic acids. Sl. sol. in malic, benzoic, picric and pyrogallic acids. Insol. in formic and acetic acids. Especially easily sol. in citric and oxalic acids with addition of KNO₃, KNO₂ or KClO₃. (Bolton, C. N. 1878, **37**. 86 and 99.)

Sol. in ethylamine sulphydrate + Aq.

Sol. in cold citric acid+ Min. Stibnite. Sol. in co. Aq. (Bolton, C. N. 37. 14.)

Soluble modification. Sb₂S₃ may be obtained in a colloidal state in aqueous solution containing 1 pt. Sb₂S₃ to 200 pts. H₂O. This can be boiled without decomp., but Sb₂S₃ is pptd, by acids and salts.

Table of	maximum	dilution	of solu	itions of
acids an	d salts whi	ch cause	pptn. c	of Sb ₂ S ₃ .

HC						1:270
H_2S	04					1:140
H_2C	2O4					1:45
K_2S	O ₄					1:65
(NI	I4)2	SO_4				1:130
Mg	SO4					1:1720
Mn	SO_{4}					1:2060
Na(וכ					1:135
BaC	l_2					1:2050
Mg	Cĺ,					1:5800
CoC	٦,					1:2500
KN	O ₃					1:75
Fe ₂	Cl_6					1:2500
Ba(NO	3)2				1:1250
$\mathbf{K_2} \mathbf{A}$	12(8	SO4)4				1:35,000
						1:800
K₂C	$r_2($	$SO_4)$				1:40,000
KS	bÕĊ	C ₄ H ₄ C)6			$1:18^{'}$
	(Se	hulze	e, J. p	or. (2)	27	'. 320.)

Antimony trisulphide with M₂S. See Sulphantimonites, M.

Antimony pentasulphide, Sb₂S₅.

Insol. in H₂O, or H₂O containing H₂S. Sol. in conc. HCl+Aq. Completely sol. in NH₄OH+Aq; traces dissolve in (NH₄)₂CO₃+ Aq. Easily sol. in KOH, or NaOH+Aq, or in alkali sulphides+Aq. Sol. in 50 pts. cold dil. NH₄OH+Aq. (Geiger.) Insol. in (NH₄)₂CO₃+Aq.

Insol. in cold, but sol. in hot alkali carbonates+Aq. (Berzelius.)

Insol. in Na₃SbS₄+Aq.

When boiled with alcohol, ether, CS₂, oil of turpentine, etc., portion of the S is dissolved out. (Berzelius.)

CS₂ dissolves about 5% of the sulphur. (Rammelsberg.)

Antimony pentasulphide with M₂S.

See Sulphantimonates, M.

Antimony sulphochloride, SbSCl₃.

Decomp. by moist air or H₂O. (Cloez, A. ch. (3) **30.** 374.)

SbS₂Cl. Easily attacked by acids; insol. in

CS₂. (Ouvrard, C. R. **116**. 1516.) Sb₂S₅Cl. (Ouvrard.) 2SbSCl, 3Sb₂S₃. Decomp. by dil. HCl+ Aq. (Schneider.)

SbSCl, 7SbCl₃. Deliquescent; decomp. by H₂O. (Schneider, Pogg. 108. 407.)

Antimony sulphofluoride, SbF₆S.

See Antimony fluosulphide.

Antimony sulphoiodide, SbSI.

Not attacked by H₂O, and decomp, only by conc. acids. Insol. in CS₂. (Schneider, Pogg. 110. 147.)

Sb₂S₃I₆. (Henry and Garot.)

Sb₂S₂I₃. Sol. in dry CS₂. Very easily decomp. (Ouvrard, C. R. 117. 108.)

Antimony sulphur dioxide, SbSO₂.

Ppt. (Faktor, C. C. 1900, I. 1211.)

Antimony telluride, SbTe.

Insol. in H₂O. Sb₂Te₃. Insol. in H₂O. (Oppenheim, J. pr. **71.** 277.)

Antimonyl bromide, SbOBr.

Insol. in CS₂. (Cooke, Proc. Am. Acad. 13. Sl. sol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 826.) Sb₄O₅Br₂. (M'Ivor, C. N. 29. 179.)

10Sb₄O₅Br₂, SbBr₃.

Antimonyl chloride.

From SbCl₃. SbOCl. Insol. in H₂O. Decomp. by boiling with H₂O; sol. in HCl+Aq. Insol. in alcohol or ether; sol. in CS2, CHCl3, or C₆H₆. (Sabanajew, Zeit. Ch. **1871**. 204.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 826.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Sb₄O₅Cl₂. Algaroth powder. Decomp. by H₂O. Sol. in HCl+Aq (Cooke, Proc. Am. Acad. 13. 1); tartaric acid+Aq. (Schäffer, A. **152.** 135.)

 $Sb_8O_{11}Cl_2$. (Cooke.)

Sb₈OCl₂₂.

Sb41O50Cl23

From SbCl₅. SbOCl₃. Deliquescent. Decomposed by H₂O. Sol. in H₂O. (Daubrawa, A. **184.** 118.)

Does not exist. (Anschütz and Evans, A. **239.** 285.)

Sb₃OCl₁₃. Deliquescent. Insol. in CS₂; easily sol. in tartaric acid+Aq. (Williams, C. N. 24. 224.)

 $Sb_3O_4Cl_7$. (Williams.) SbO_2Cl . Decomp. by hot H_2O into $HSbO_3$.

Antimonyl fluoride.

* From SbF₃. Sb₄O₃F₆. Not deliquescent. (Flückiger, Pogg. 87. 249.)

Antimonyl cæsium fluoride, SbF₄OH, CsF. (Wells, Am. J. Sci. 1901, (4) 11. 456.)

Antimonyl sodium fluoride, SbOF₃, NaF+ H₂O.

Deliquescent. Easily sol. in H₂O. (Marignac, A. 145. 239.)

Antimonyl iodide, Sb₄O₅I₂.

Difficultly sol. in solution of tartaric acid or tartrates. Decomp. by HCl, HNO3, or H_2SO_4+Aq . Easily sol. in alkalies, or $(NH_4)_2S+Aq$.

SbOI. Insol. in CS₂. (Cooke, Proc. Am. Acad. (2) 5. 72.)

Antimonyl sulphide.

See Antimony oxysulphide.

Argon, A.

100 cc. H₂O dissolve 4.05 cc. argon at 13.9°. Critical t.—121.6° under 50.6 atmos. Bpt.— 186.9°. Sp. gr. 19.9. (Rayleigh, C. N. 1897, 71. 51–62; 299–302; C. C. 1895. 467)

Coefficient of absorption in H₂O at 12° = 0.0394; at $13.9^{\circ} = 0.0405$. (Ramsay, Phil. Trans. 1895, 186. A. 225.)

Absorption by H2O at to.

t°	Coefficient of absorption
	0 0561
10	0 0438
20	0.0379
30	0.0348
40	0.0338
50	0 0343

Antroporf, Roy. Soc. Proc. 1910, 83. A. 430.)

Absorption of argon by H₂O at t° and 760 mm. pressure.

t,°	Coefficient of absorption
0°	0.05780
1	0.05612
5	0.05080
10	0.04525
15	0.04099
20	0.03790
25	0.05470
30	0.03256
35	0.03053
40	0.02865
45	0 02731
50	0.02567

(Estreicher, Z. phys. Ch. 1899, **31.** 184.)

1 l. H₂O at 38° absorbs 25.7 cc. A.

1 l. blood absorbs 25.3 cc. A. (Regnard and Schloesing, C. R. 1897, 124, 303.)

Not absorbed by members of the fatty series of organic compounds; with members of the aromatic series absorption was observed varying from 8% of the volume employed for benzene to 1% for aniline. (Berthelot, C. R. 1899, 129. 71.)

Arsenamide, As(NH₂)₃.

Insol. in liquid NH₃. Decomp. by H₂O. (Hugot, C. R. 1904, 139. 55.)

Arsenic, As.

Unaltered by pure H₂O. Insol. in HCl+ Aq if air is excluded, but sl. sol. in presence of air. Not attacked by dil. H₂SO₄+Aq. Oxidized by conc. H₂SO₄, HNO₃, or aqua regia. Not attacked at 20° by HNO₃, conc. or dil., or containing NO₂; nor by HNO₃+HCl, as long as they do not act on each other; but if treated with the above mixture in extremely dilute state, and a few drops of KNO₂+Aq | H₂O, or by boiling. (Gmelin.)

are added, the As is attacked at once. (Millon, A. ch. (3) 6. 101.)

Sol. in sea water; 0.009 mg. per liter off Brittany; 0.01 to 0.09 mg. per liter near Azores. (Gautier, C. R. 1903, 137. 232.) Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, 20, 827.)

Insol. in liquid NH3. (Hugot, A. ch. 1900, (7) 21. 31.)

lusol in NaOH, KCH, or NH₄OH+Aq. Sol. in S₂Br₂. (Hannay, Chem. Soc. (2) 11.

823.) Insol, in atcohol and ether.

Sol, in cartain fatty oils.

Insol, in methylene iodide. (Retgers, Z. anorg 3, 343.)

½ ceru, oleic acid dissolves 0.0032 g. As in 6 days. (Gates, J. phys. Ch. 1911. 15. 143.) Yellow modification. Very unstable. (Mc-Leod, C. N. 1894, 70. 139.)

Fairly stable in liquid air. (Thomson, Chem. Soc. 1906, **90.** (2) 745.)

100 ccm. CS2 dissolve at:

20° 12° 0° 46° $--15^{\circ}$ ---60° ς 6 4 2.0-2.5 1.0 g. As.

Less sol, in benzene and ethyl acetate. (Frdmann, Z. anorg. 1902, 32. 448.)

Arsenic acid. See page 59.

Arsenic bromide, AsBr₃.

Decomp. by H₂O. Completely sol. in about 3 pts. boiling H₂O, and much less, in presence of HBr. (Wallace, Phil. Mag. (4) **17.** 261.)

Sol. in CS₂

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, **84.** 26.)

Easily sol. in PCl₃ and PBr₃. (Walden, Z. anorg. 1900, 25. 211.)

Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, **25.** 217.)

Arsenic cæsium bromide, 2AsBr₃, 3CsBr.

Decomp. by H₂O; can be recryst, from conc. HBr+Aq. (Wheeler, Z. anorg. 4. 451.)

Arsenic rubidium bromide, 2AsBr₃, 3RbCl.

As the corresponding Cs comp.

Arsenic bromide ammonia, AsBr₃, 3NH₃.

Decomp. by H₂O. (Besson, C. R. 110. 1258.)

Arsenic bromide copper, 2AsBr₃,7Cu.

Stable toward hot H2O. Decomp. by KOH. (Hilpert and Herrman, B. 1913, 46. 2224.)

Arsenic bromide silver, AsBr₈, 3Ag.

Scarcely decomp. by cold H₂O. (Hilpert and Herrmann.)

Arsenic chloride, AsCl₃.

Miscible with little H₂O, and with alcohol. ether, and volatile oils. Decomp. by much olive oil. Somewhat sol. in HCl+Aq

Easily sol. in PCl₃ and PBr₃. (Walden,

Z. anorg. 1900, 25. 211.)

Sol. in liquid CN. (Centnerszwer, J. russ. phys. Ges. 1901, 33. 545.)

Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, 25. 217.)

Arsenic pentachloride, AsCl₅.

Fumes in the air with evolution of hydrogen chloride. Readily sol. in CS₂, and absolute other cooled to -30°. (Baskerville, J. Am. Chem. Soc. 1902, 24, 1070.)

Arsenic cæsium chloride, 2AsCl₃, 3CsCl.

Decomp. by H₂O. 100 pts. HCl+Aq (1.2 sp. gr.) dissolve 0.429 pt. salt. (Wheeler, Z. anorg. 4. 451.)

Arsenic iridium phosphorus chloride.

See Iridium phosphorus chloride arsenic chloride.

Arsenic rubidium chloride, 2AsCl₃, 3RbCl.

Decomp. by H₂O. 100 pts. HCl+Aq (sp. gr. 1.2) dissolve 2.935 pts. salt. (Wheeler, Z. anorg. 4. 451.)

Arsenic sulphur chloride, 2AsCl₃, 3SCl₂.

Decomp. by H₂O. (Rose.)

Above compound is a mixture. (Nilson, C. N. **81.** 81.)

Arsenic chloride ammonia, 2AsCl₃, 7NH₃.

Decomp. by cold H_2O , with evolution of NH₃. From the solution crystallizes As₄Cl₂ $N_2H_{10}O_8$.

Sol. in alcohol without decomp. (Rose, Pogg. 52, 62.)

Composition is AsCl₃, 4NH₃. (Besson, C. R. **110**. 1258.)

Arsenic chloride copper, 2AsCl₃,7Cu.

Somewhat decomp. by H₂O. Decomp. by KOH, or hot HCl. (Hilpert and Herrman, B. 1913, 46. 2224.)

Arsenic chloride silver, 2AsCl₃, 7Ag.

H₂O, NH₄OH and KOH split off Ag. (Hilpert and Herrmann.)

Arsenic trifluoride, AsF₃.

Sol, in H₂O with evolution of heat and decomposition. (Berzelius.)

Easily sol, in benzene. (Moissan, C. R. 99.874.)

Miscible with alcohol and ether. (M'Ivor, C. N. **30.** 169.)

Arsenic pentafluoride, AsF₅.

Sol, in H₂O, alkalies+Aq and liquid AsF₃ with evolution of heat. Absorbed by ether, alcohol and benzene with evolution of heat. (Ruff, B. 1906, 39. 67.)

Miscible with oil of turpentine, and with Arsenic potassium fluoride, AsF₅, KF+ ½H₂Ò.

 AsF_5 , $2KF+H_2O$.

AsF₅, AsOF₈, 4KF+3H₂O. (Marignac, A. 145. 237.)

Arsenic fluoride ammonia, 2AsF₃, 5NH₃.

Easily decomp. by H₂O. (Besson, C. R. **110.** 1258.)

Arsenic pentafluoride nitrosvl fluoride, AsF. NOF.

Decomp. by H₂O, fuming HCl, NaOH+Aq. dry ether and dry alcohol with evolution of NO. Sol. in conc. HNO₃, hot conc. H₂SO₄, boiling NOCl and AsF₃. Insol. in CCl₄ and CS₂. (Ruff, Z. anorg. 1908, **58**. 327.)

Arsenic trifluoride sulphur tetrachloride. 2AsF₃, SCl₄.

Very hydroscopic. Decomp. by H₂O and NaOH. Decomp. by thionyl chloride, CCl₄, CS₂, abs. alcohol and ether. Decomp. by ligroin, benzene and toluene. (Ruff, B. 1904, **37.** 4520.)

Arsenic hydride, AsH₃.

Sl. sol. in H₂O and alkali hydrates+Aq, with subsequent decomposition. H₂O absorbs 1/6 vol. AsH3. Decomp. by conc. acids. Absorbed rapidly by oil of turpentine, slightly by fixed oils, and not at all by alcohol, ether, or KOH+Aq. (Gmelin.)

Insol. in KOH+Alcohol. (Meissner.)

Not more sol, in alkaline solutions than in pure H₂O. (Berzelius.)

AsH. Solid. Insol. in H₂O, alcohol, ether, and CS₂. (Wiederhold, Pogg. 118. 615.)

Insol. in H₂O; sol. in methylene iodide, xylene, or in conc. KOH+Aq. (Retgers, Z. anorg. 4. 403.)

Arsenic hydride boron bromide, AsH₃, BBr₃.

Easily decomp. Decomp. by H₂O. Appreciably sol. in AsH₃ or BBr₃. Insol. in CS₂. (Stock, B. 1901, 34. 949.)

Arsenic diiodide, As_2I_4 .

Decomp. by H₂O or alkalies; easily sol, in alcohol, ether, chloroform, or carbon disulphide. (Bamberger and Phillip, B. 14. 2643.)

Not attacked by cold conc. H₂SO₄ or by cold fuming HNO₈. The latter oxidizes on warming. Decomp. by pyridine. Sol. in boiling acetic anhydride. (Hewitt and Winmill, Chem. Soc. 1907, 91, 962.)

Arsenic triiodide, AsI.

Sol. in 3.32 pts. boiling H₂O, and solution if boiled down deposits pure AsI₈, but if left to cool slowly, deposits crystals of As₂O₃ and AsOI.

Sl. sol. in HCl+Aq.
Sol. in POCl₃, PCl₃ and PBr₃. (Walden, Z. anorg. 1900, 25. 212.)

Sol, in PC's. (Beckmann, Z. anorg. 1906. **51.** 110.)

Sol. in SOCl₂, S₂Cl₂ and SO₂Cl₂. (Walden, Z. anorg. 1900, 25. 216.)

Sol. in SnCl₄. (Walden, l.c.) Easily sol. in AsBr₃. (Walden, Z. anorg 1902, **29.** 374.)

Sol, in AsCl₃. (Walden, Z. anorg. 1900, 25. 214.)

Sol, in alcohol without decomp.

Sol, in ether, benzene, chloroform, and CS₂ 100 pts. methylene iodide dissolve 17 4 pts. AsI₃ at 12°. (Retgers, Z. anorg. 3. 343.)

Arsenic pentaiodide, Asla.

More or less sol. in H₂O, alcohol, CHCi. ether and CS₂. (Sloan, C. N. 1882, **46**, 194.)

Arsenic cæsium iodide, 2Asl₃. 3CsI.

Decomp. by H₂O; sol. in conc. HI+Aq. (Wheeler, Z. anorg. 4, 451.)

Arsenic rubidium iodide, 2AsI₃, 3RbI.

As the corresponding Cs comp.

Arsenic sulphur iodide.

See Arsenic sulphoiodide.

Arsenic triiodide ammonia, 2AsI₃, 9NH₃.

Insol. in benzene. (Bamberger and Phillip. B. 14. 2643.)

AsI₃, 4NII₃. (Besson, C. R. **110**, 1258.)

Arsenic nitride, AsN.

Easily decomp. into As and N. (Hugot, C. R. 1904, **139**, 56.)

Decomp. by heat. (Franz Fischer, B. 1910, 43. 1471.)

Arsenic suboxide, $As_2()$ (?).

Insol. in H₂O; decomp. by dil. acids or NH₄OH+Ag.

Does not exist. (Geuther, A. **240**, 208.)

Arsenic trioxide, As₂O₃.

"White arsenic" exists in two modificaaAs₂O₃,—crystalline, cctahedral, paque, porcelaneous, etc.; βAs₂O₃,—amor-

phous, vitreous, "arsenic glass." The data concerning the solubility of As₂O₃ ire very contradictory, the reasons being that 1) the solubility of the two modifications is lifferent; (2) that the length of time necessary o effect solution differs in the two modificaions; and (3) that there is a tendency of the unorphous As₂O₃ to go over into the crystalme state during the process of solution. As₂O₃ is also not easily moistened, especially when in a pulverulent condition, which is not he case with the β modification. (Winkler, J. pr. (2) 31. 247.)

The older data are very unreliable, but possess a certain historical interest.

(Baumé); 80 pts. (Navier); 200 pts. (Asohof and Nasse, 1812); 640 pts. (Hagen, 179%) boiling H₂O.

12); 0.40 pts. (Hagen, 179%) boiling H₂O.

β (Guibort); in 22 pts. H₂O at 18.75°. (Abl.)

Sol. in 53.3 pts. H₂O at 18.75°. (Abl.)

Sol. in 30 pts. H₃O. (Nussembrock.)

After the solution in H₂O at 100° has been left stand-

ing st rdinary temperatures—

1 pt. As₂O₃ remains dissolved in 16 pts₄ H₂O at 16°, rd 20 pts. H₂O at 7° (Buch₂I₂); in 33 pts. H₄O at 7° (Klaproth), in 38.45 pts. H₂O after 3 days, 55 pts. H₄O after 8 days, 64.50 pts. H₄O after 2.3 weeks at 10° (Fischer); in 33.52 pts. if α.Λe₃O₄ was used, 55.06 pts. if βΛ_{8/2}O₄ was used (Guibort); in 38 pts. if αAs₃O₃ after 6 mouths. 53.71 pts. if βΛ_{8/2}O₃ after 48 hours (Taylor). When an excess of p verized As₃O₄ is left to digest for several gays with could H₂O—

1 pt. discovers in 5°; pts. (Bergman); in 80 pts. if α, and 1°2 pts. if β (Guibort); 96 pts at 10° (Spelman); 96 pts. at 35.5° (Fiahnemann); 320 pts. H₂O at 20° (Asched and Nasse, 1812.)

H₂O at 15.6° or below dissolves less than ½% As₂O₈. (Dalton.) ing et rdinary temperatures

(Dalton.)

(Dalton.)

To dissolve 1 pt. A₃₂O₃ in 12 pts. H₂O, it is necessary to boil an excess of A₅₂O₃ with H₂O; if 1 pt. A₅₂O₃ is boiled with 12 pts. H₂O, considerable remains undissolved; an¹ even with 1 pt. A₅₂O₃ to 50-60 pts. H₂O tong continued boiling is necessary to effect solution. If a clear solution saturated by long boiling with an excess of A₅₂O₃ is poured off and evaporated continuously to ½ its original bulk, no A₅₂O₃ separates cut, and the solution contains 1 pt. A₅₂O₃ to 6 pts. H₂O. (Fischer) (Fischer.)

100 pts. aqueous solution of 3 s2O3 sat. at 15° contain 0.96 pt. As2O3, and 9.68 pts. when sat. at 100°.

toin 0.96 pt. As₂O₃, and 9.68 pts. when sat. at 100°. (Guibort.)

If 1 pt. pulverized As₂O₃ be digested 10 days at 19–25° in 5–10 pts. H₂O. the solution contains 1 pt. As₂O₃ to 50 pts. H₂O. A solution of same strength is obtained in 25 days by digesting 1 pt. As₂O₃ in 40 pts. H₂O. If 1 pt. As₂O₃ be immersed in 80 pts. H₂O, the resulting solution centains 1 pt. As₂O₃ to 90 pts. H₂O; if in 100 pts. H₂O, 1 pt. As₂O₃ to 180 pts. H₂O; if in 100 pts. H₂O, 1 pt. As₂O₃ to 180 pts. H₂O; if in 100 pts. H₂O, 1 pt. As₂O₃ to 1200 pts. H₂O; and even when 1 pt. As₂O₃ to is digested at ordinary temperatures for several days with 16,000–100,000 pts. H₂O, a portion remains undissolved. Pulverized αAs₂O swas set aside with H₂O in closed bottles for 18 years; when 1 pt. As₂O₃ was present in 1000 pts. H₂O, a perfect solution was obtained; when 1 pt. As₂O₃ in 100 pts. H₂O, 0.015°/. As₂O₃ was undissolved; when 1 pt. As₂O₃ in 35 pts. H₂O, 0.35°/. As₂O₃ was undissolved, so that the solution contained 1 pt. As₂O₃ to 54 pts. H₂O. (Gmcfin.)

Porcelaneous modification (αAs₂O₃): 100 pts. H₂O at ordinary temperature dissolve 0.96 pt. Bas₂O₃ and 1.25 pts. αAs₂O₃ and 1.47 pts. αAs₂O₃; and when the temperature of this solution has fallen to 15°, the solution from βAs₂O₃ retains 1.78 pts. and that from αAs₂O₃ retains 1.29 pts. and that from αAs₂O₃ retains 1.78 pts. and (Guibort.)

βAs₂O₈ retains 1.78 pts., and that from αAs₂O₈ retains 2.9 pts. (Berzelius [citing Guibort].)

βAs₂O₃ dissolves more quickly and abundantly than αAs_2O_3 . The same amount H_2O which will take up 36–38 pts. βAs_2O_3 at 12– 13° will dissolve only 12-14 pts. aAs₂O₃, or 100 pts. H₂O dissolve 4 pts. βAs₂O₃ and 1.2-1.3 pts. aAs₂O₃. By long boiling with H₂O, αAs₂O₃ is converted into βAs₂O₃, and thus acquires the solubility of the latter, so that 100 pts. boiling H_2O can take up 11 pts. As_2O_3 . But at low temperature βAs_2O_3 is converted into aAs2O3 when in contact with H₂O, so that the solution becomes weaker after a while, and retains only the proportion of As₂O₈ corresponding to the solubility of aAs₂O₃. Comminution, which hastens the rate of solubility of aAs₂O₃ without increasing 1 pt. As_2O_3 is sol. in 10.55 pts. (Wenzel); 11.34 ts. (Fischer); 11.86 pts. in $\frac{1}{4}$ hour (Klaproth); 12.2 tos. (Bucholz); 15.0 pts. (Brandt; Bergman); 16.0 pts. (Vogel); 24 pts. (Lametheriè); 40 pts. (Pörner); 64 pts. by the friction or contact with H_2O . As₂O₃, which has been rendered opaque by NH₄OH, and that which has been crystallized from an aqueous solution, are equally sol. in H_2O . (Bussy, C. R. 24. 774; A. 64. 286.)

100 pts. H_2O dissolve 1.707 pts. $\beta \text{As}_2\text{O}_3$ in $2\frac{1}{2}$ years 100 pts. boiling H_2O dissolve 11.46 pts. $\beta \text{As}_2\text{O}_3$ in 3 hours, and 11.86 pts. in 12 hours; 10.14 pts. $\alpha \text{As}_2\text{O}_3$ in 3 hours, and 10.18 pts. in 12 hours. (Rose, Ann. Phys. (1) 36. 494.)

A cold sat polition which stood over excess of As₂O₃ for 10 months at 10–20° contains 1.2% As₂O₃; hot satisfolution a few days after saturation contains 2.25–2.50% As₂O₃. If trace of HCl is present, the solution contains 3.8% As₂O₃. Hot sat. solution of porcelain mod. of As₂O₃ contains 4 days after saturation 2.4% As₂O₃ at 24°; after 82 days at 14°, 1.5%; after 4 months at 12°, 1.3% As₂O₃. (Bacaloglo, J. pr. 83. 111.)

According to later experiments, 1 pt. αAs₂O₃ dissolves in 355 pts. H₂O in 1 day at 15°, while 1 pt. βAs₂O₃ dissolves in 108 pts. H₂O under the same conditions. 1 pt. αAs₂O₃ dissolves in 46 pts. H₂O, if solution is prepared at 100°, and allowed to stand 24 hours at 15° while 1 pt. βAs₂O₃ dissolves in 30 pts. H₂O under the same conditions. (Büchner, N. Rep. Pharm. 22. 265.)

100 pts. H₂O dissolve pts. αAs₂O₃ and βAs₂O₃ at ordinary temperature:

Time	αA82O3	βAs ₂ O ₃	-
1 hour 3 hours 6 hours 12 hours 24 hours 2 days 4 days 1 week 3 weeks	0.023 0.088 0.353 0.364 0.956 1.627 1.814 1.673 1.776	1.589 2.356 3.666 3.361 3.306 2.629 2.429 1.763 1.713	
$2\frac{1}{4}$ years	1.712	1.707	

In the solution of βAs_2O_3 , octahedral crystals were deposited on the sides of the vessel after 12 hours, which continued to increase. There was no such deposit in the case of αAs_2O_3 .

From the maxima in the above table, 100 pts. H₂O can dissolve 3.7 pts. β As₂O₃ and 1.7 pts. α As₂O₃ at ordinary temperature.

100 pts. boiling H₂O dissolve 11.46 pts. βAs₂O₃ and 10.140 pts. αAs₂O₃ in 3 hours; 11.86 pts. βAs₂O₃ and 10.176 pts. αAs₂O in 12 hours. (Cl. Winkler, J. pr. (2) 31. 247.) 100 pts. H₂O dissolve 1.75 pts. of a third

100 pts. H₂O dissolve 1.75 pts. of a third modification (hexagonal crystalline) at ordinary temperature, and 2.75 pts. at 100°. (Claudet, Chem. Soc. (2) 6. 179.)

βAs₂O₃ dissolves more rapidly in HCl+Aq than αAs₂O₃. (Schultz-Sellac, B. 4. 109.)

While 100 ccm. H_2O dissolve 0.8507 g. βAs_2O_3 at 18.5°, 100 ccm. H_2O containing 1.3195 g. HCl dissolve 1.1513 g. βAs_2O_3 ; containing 6.09 g. HCl, 1.2724 g. βAs_2O_3 . (Chodounsky, Listy Chemické, **13**. 114.)

100 ccm. H₂O dissolve 1.495 g. As₂O₃ at 15°. (Wood, Chem. Soc. 1908, **93**. 412.)

Solubility of crystalline As_2O_3 in H_2O . 1 l. of the sat. solution contains at: 2° 15° 25° 39.8° bpt.

12.006 16.566 20.384 29.302 60+g. As₂O₃ (Bruner, Z. anorg. 1903, **37**. 456.)

Much more easily sol, in many acids than in H₂O. Easily sol, in fuming H₂SO₄. (Schultz-Sellac.)

100 pts. dilute H₂SO₄+Aq of various strengths dissolve at t°.

t°	$egin{aligned} ext{Pts.} \ eta ext{As}_2 ext{O}_3 \end{aligned}$	t°	$egin{array}{c} ext{Pts.} \ oldsymbol{eta} ext{As}_2 ext{O}_3 \end{array}$	Ratios of amts. dissolved at 80°: 18.5°
80° 	1.0195 1.3664 1.1933	18.5°	$\begin{array}{c} 0.5422 \\ 0.7203 \\ 0.6522 \end{array}$	1.88:1 1.89:1 1.84:1

(Chodounsky, l.c.)

Decomp. by HNO₃ or aqua regia into As_2O_5 . Sol. in H_3PO_4+Aq . (Bergman.)

More sol. in HCl+Aq than in H₂SO₄, or HNO₃+Aq, and still less in HC₂H₃O₂+Aq. Solubility in HCl+Aq.

Conc. of HCl+Aq	Grams of As ₂ O ₃ per 100 cc. of solution
0 46N	1.52
0.98N	1.41
2 03N	1.17
3.13N	1.11
3.81 N	1.13
5.32 N	2.20
6.50 N	5.11
7.85 N	12.28
9.17 N	18.16

As the concentration of the acid increases, the solubility of the oxide decreases, a minimum being reached when the concentration of the solvent is about 3.2N. Beyond this point, an increase in the concentration of the solvent leads to a corresponding increase in the solubility. (Wood, Chem. Soc. 1908, 93. 413.)

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54**. 674.)

Easily sol, in cold $H_2C_2O_4+Aq$. (Bergman.)

When pulverized, it dissolves in hot H₂C₂O₄ +Aq, but separates out on cooling.

Easily sol. in hot benzoic acid +Aq.

Sol. in tartaric acid+Aq.

Easily sol. in alkali hydrates, or carbonates +Aq.

Easily sol. in NH₄ arsenite + Aq at 70-80°, crystallizing out on cooling. (Berzelius.)

Sol. in hot K2C2O4+Aq.

Sol. in AsCl₈. (Penney and Wallace.) More sol. in Na₂B₄O₇+A₁ than in H₂O. Very sl. sol, in absolute alcohol. (Vogel.)

Sol. in 80 pts. highly rectified spirit. (Wenzel.) When 1 pt. powdered As 02; 3 digested 30 days in 10-40 pts. alcohol, a solution is formed containing 1 pt. As 03; 0 60 pts alcohol; when 1 pt. As 03; 1 digested with 60-150 pts. alcohol, a solution is formed containing 1 pt. As 03; to 124-140 pts. alcohol. (Fischer.) Sol. in 70-80 pts. alcohol. (Thompson.)

Alcohol dissolves 0.446 pt. βAs_2O_3 . (Rose, A. Phys. (1) **52.** 455.)

100 pts. alcohol dissolve pts. As₂O₃:

Vol. % of alcohol	αAs ₂ O ₃ at 15°	aAs ₂ O ₃ at bpt. of alcohol	βA-2O2 at
56 79 81 86 88 100	1.680 1.430 0.715 0.025	4 895 4.551 3.197 3 402	0.504 0.540 0.565 0.717 1.060

(Girardin, J. Pharm, (3) 46, 269.)

100 pts. absolute alcohol dissolve 0.446 pt βAs_2O_3 in $2\frac{1}{4}$ years. (Winkler, J. pr. (2) 31. 347.)

Nearly insol. in ether.

100 pts. ether dissolve 0.454 pt. βAs_2O_3 .

(Winkler.)

Ether extracts 1 mg. As₂O₃ from sat. As₂O₃+Aq for every 15 cc. ether used; less is extracted when the solution is acidified with HCl, and almost none if acidified with

 H_2SO_4 or $H_2C_4O_6$. (Selmi, B. 13. 206.) αAs_2O_8 is sol. in 50 pts. boiling nitrobenzol. βAs_2O_3 is insol. in boiling nitrobenzol. (Auerbach, Z. anorg. 1903, **37.** 353.)

βAs₂O₃ dissolves in oil of turpentine, but aAs₂O₃ is insol. therein. aAs₂O₃ is very sl. sol, in benzene or petroleum ether, but more sol, in methyl alcohol, ethyl alcohol, ether, or chloroform. (Selmi.)

100 pts. CS_2 dissolve 0.001 pt. βAs_2O_3 in

21/4 years. (Winkler.)

Sl. sol. in the fatty oils. 1000 pts. castor-oil dissolve 1.33 pts. As₂O₃ at ordinary temperature, and 9 pts. at boiling temperature. 1000 pts. other oils dissolve 0.6-0.8 pt. As_2O_3 in the cold, and about 1.7 pts. on boiling. (Berzelius.)

Insol. in chinoline or aniline. (Hoffmann,

A. ch. (3) **9.** 143, 169.)

Moderately sol. in chinolin. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329); (Eidmann, C. C. 1899, II. 1014.)

Sol. in amyl alcohol and is divided between it and H₂O in the constant ratio of 1:5.47 at 25°. (Auerbach, Z. anorg. 1903, 37. 376.) | (Menzies and Potter, J. Am. Chem. Soc. 1912, Min. Arsenolite.

Arsenic trioxide pentoxide, 3As₂O₃, 2As₂O₅

Decomp. by $H_2 \cap .$ (Joly, C. R. 100. 1221.) $2A_{s_2O_{3_{11}}}A_{s_2O_5}+H_{2O}$. Decomp. by H_2O . (Joly.)

 As_2O_3 , $As_2O_5+H_2O$. (Joly.)

Arsenic tetroxide, As₂O₄.

SI, sol, in HO from which it is partially pptd, by alcohol. More early sol, in alkali carbonates or HCl+Aq., Most easily sol. in (Herbst, Dissert. NaOH or KOH 1894.)

Arsenic pentoxide. As 2 😘

Deliquescent in moist ai www wol, in H₂O, forming H₃AsO₄, which see. Easly sol. in alcohol; much more sol. in alcohol than As₂O₃. Very sl. sol. in the fatty oils, 100 pts. of oil dissolving 0.2 pt. As₂O₅ in the cold, and 1 pt. with partial decomp, on boiling." (Berzelius...

1000 pts. boiling poppy-oil dissolve 27 pts. As₂O₅; 1000 pts. boiling castor-oil dissolve 34 pts. As₂O₅. (Heimpel and Grundner.)

+4H₂O. Solubility in H₂O at t°.

t°	Pts. H ₈ AsO ₄ in100 pts. solution	t°	Pts. H:AsO4 in 100 pts. solution
-55° -50 -45 -40 -35 -30 -25 -20 -15 -10	69 9 70.9 71.9 72.9 73.9 74.9 75.9 76.9 77.9 78.9	$ \begin{array}{c} -5^{\circ} \\ 0 \\ +5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ \dots \end{array} $	80.0 81.0 82.1 83.3 84.7 86.3 88.0 90.1 92.8

(Menzies and Potter, J. Am. Chem. Soc. 1912, **34.** 1464.)

+5/3H2O. Solubility in H2O at t°.

t,°	Pts. H ₂ AsO ₄ in 100 pts. of solution
+10° 20 30 40 50	88.4 89.1 89.8 90.5 91.2 91.9
70 80 90 100 110 120 130	91.9 92.6 93.2 93.8 94.4 95.0 95.6 96.2 96.8

34. 1464.)

 $As_2O_5+4H_2O$ and $3As_2O_5+5H_2O$ are the only hydrates that can be isolated. (Menzies and Potter.)

See also Arsenic Acid.

Arsenic trioxide, with alkali haloid. See Arsenite, alkali haloid.

Arsenic sulphur trioxide, As 203, SO3.

Deliquescent's decomp. by H₂O. Chem. Soc. **55.** 157.) (Adie,

As₂O₃, 2SO₃. As above. (Adie.) As₂O₃, 3SO₃. (Weber, B. **19**. 3186.) As₂O₃, **48**O₃. As above. (Adie.) As₂O₄, 6SO₄. (Weber.) As₂O₄, 8SQ₄. As above. (Adie.)

Arsenic oxychloride, etc.

See Arsenyl chloride, etc.

Arsenic phosphide, AsP.

Decomp. by H₂O. Not attacked by cold H₂SO₄ or HCl, and only sl. sol. therein on warming. Easily decomp. by HNO₃, KOH, NaOH, BaO₂H₂+Aq. Insol. in alcohol, ether, chloroform; sl. sol. in CS₂.

P₂As₃O₂. Product of action of H₂O on above compound, which it resembles. (Janowsky, B. 6. 216.)

Arsenic monoselenide, As₂Se.

Insol, in most organic and inorganic solvents. Sol. very slowly in conc. HCl and H₂SO₄. Sol. in boiling alkali hydroxides+Aq. (Szarvasv, B. 1897, 30, 1245.)

Arsenic triselenide, As₂S₃.

Partially sol. in KOH+Aq if boiled with it for a long time. (Uelsmann, A. **116**. 123.)

. Arsenic pentaselenide, As₂Se₅.

Insol, in most solvents, as conc. HCl. Sol. in alkali hydrates and sulpho-hydrates +Aq.

(Szarvasy, B. 1895, **28**. 2655–2656.) Insol. in H₂O, in dil. acids and in conc. HCl. Sl. sol. in warm HNO3+Aq. Oxidized by cold furning HNO₃. Sol. in alkalies and in hot alkali carbonates+Aq. Insol. in alcohol, ether, CS₂, etc. (Clever, Z. anorg. 1895, 10. 129.)

Arsenic selenosulphide.

See Arsenic sulphoselenide.

Arsenic sulphide, As₃S.

Ppt. Insol. in NH₄OH or in colorless (NH₄)₂S+Aq. Sol. in yellow NH₄SH+Aq. (Scott, Chem. Soc. 1900, 77. 652.)

Arsenic disulphide, As₂S₂.

 $\begin{array}{lll} {\rm Min.} & {\it Realgar.} & {\rm Difficultly} & {\rm sol.} & {\rm in} & {\rm alkali} \\ {\rm sulphides + Aq.} & {\rm Partly} & {\rm dissolved} & {\rm by} & {\rm KOH} + \\ \end{array}$ Aq with decomposition. Sol. at 150° in a sealed tube in NaHCO₃+Aq, and crystallizes out on cooling, (Senarmont, A. ch. (3) 32. 158.)

Arsenic trisulphide, As₂S₃.

Insol. in H2O when prepared in the dry way, but when prepared moist is very liable to go into the colloidal modification mentioned below. Insol. in H_2O containing H_2SO_4 HNO₃, HCl, $H_2C_2O_4$, HC₂H₃O₂, $H_2C_4H_4O_6$, CO₂, NH₄Cl, KNO₃, (NH₄)₂SO₄, MgSO₄. (Bontigny.)

Insol. in H2O. Traces are dissolved by H_2S+Aq . Sl. decomp. by boiling with H_2O .

or long contact with cold H_2O . (Fresenius.) 1 l. H_2O dissolves 2.1×10^{-6} mols. pptd. As_2S_3 at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.)

Insol. in dil. acids. Insol. in cold, and scarcely attacked by hot conc. HCl+Aq.

Easily decomp. by HNO₃ or aqua regia. Easily sol. in cold KOH, NaOH, or NH4OH + Aq, also in alkali carbonates, or sulphates+

Aq. Sol. in hot KHSO₃+Aq. Sol. in citric acid, and alkali citrates+Aq.

Slowly sol, in cold 2\% Na₂B₄O₇+Aq. Easily sol. on heating. (Materne, C. C. 1906, H. 557.)

Insol. in CS₂.

Min. Orpiment.

As₂S₃ may also be obtained in a colloidal form, sol. in H₂O. Sat. solution contains 34.46% As₂S₃; it is decomp. by standing, but may be boiled without undergoing decomposition; most acids and many salts ppt. As S3 (Schulze, J. pr. (2) **25.** 431.)

The following solutions cause pptn. Tof As₂S₃ in a solution of the colloidal modification, when added in the given state of dilution: -

HCl+Aq				1:555
$HNO_3 + Aq$				1:276
H ₂ SO ₄ +Aq	•	•	•	$1:\overline{255}$
$H_2SO_3 + Aq$	•	•	•	1:138
$H_2C_2O_4 + \Lambda q$	•	•	•	1:65
112C2C4T-1Q	•	•	•	
H ₃ PO ₄ +Aq	•	•	•	1:26
$HC_2H_3O_2+A$	q	•	•	1:0.18
K_2SO_4+Aq				1:76
Na_2SO_4+Aq				1:129
$(NH_4)_2SO_4 + .$	$\mathbf{A}\mathbf{q}$			1:188
CaSO₄+Aq				1:2780
$MgSO_4 + Aq$				1:2630
$ZnSO_4 + Aq$				1:3330
$MnSO_4+Aq$		_		1:2860
NiSO ₄ +Aq	•	•	•	1:3440
FeSO ₄ +Aq	•	•	•	1:2380
$Al_2(SO_4)_3 + A$		•	•	1:52600
Tl_2SO_4+Aq	ч	•	•	1:799
112004 TAQ	•	•	•	
KCl+Aq	•	•	•	1:137
KBr+Aq			•	1:103
KI + Aq.	•			1:55
Lil + Aq		•		1:127
NaCl+Aq				1:212
NH₄Cl+Áq				1:207
BaCl ₂ +Aq				1:2860
CaCl ₂ +Aq				1:4370
$MgCl_2+Aq$	_			1:10000
				5000

FeCl ₃ +Aq			1:50000
AlCl ₈ +Aq			1:83000
CrCl ₈ +Aq			1:20000
KNO _a +Aq	,		1:84
NaNO ₃ +Aa.			1:117
NH4NO3+Aq			1:138
$Ba(NO_3)_2 + Ac$	7		1:2080
$KClO_3+Aq$.	-		1:88
$CaH_2(CO_3)_2 +$	$\mathbf{A}\mathbf{q}$		1:3120
$K_2C_2H_4O_6+A_6$	q -		1 · 85
$K_2C_2O_4+Aq$.		•	1:81
$NaC_2H_3O_2+A$.q		1:78
Urea+Aq .			1:25
$(\mathrm{NH_4})_2\mathrm{Fe}(\mathrm{SO_4})$		Aq	1:1160
$K_2Al_2(SO_4)_4+$			1:50000
$K_2 \text{Fe}_2 (\text{SO}_4)_4 +$			1:55500
$K_2Cr_2(SO_4)_4+$			1:25000
$K_4 \text{Fe}(\text{CN})_6 + A$			1:67
$K_3 \text{Fe}(\text{CN})_6 + A$	\mathbf{p}		1:81

Cold conc. solutions of boric, arsenious, tartaric, benzoic, and salicylic acids, also cane sugar, or chloral hydrate cause no pptn. Absolute alcohol and glycerine may also be mixed with the solutions without causing pptn. (Schulze, J. pr. (2) 25. 442.)

+6H₂O; decomp. completely into As₂S₃ under a pressure of 6000 to 7000 atmos. (Spring, Z. anorg. 1895, **10.** 186.)

Arsenic pentasulphide, As₂S₅.

Insol. in H₂O. Sol. in NH₄OH, KOH, NaOH+Aq, and solutions of alkali sulphides and carbonates. Sol. in BaO₂H₂, and CaO₂H₂

Sol. in citric acid, and alkali citrates+Aq. (Spiller.)

Alcohol dissolves out S on boiling. (Berzelius.)

Sol. in alkali arsenates+Aq. (Nilson, J. pr. (2) 14. 155.)

 $+\mathrm{H}_2\mathrm{O}$. (Nilson, l.c.)

Arsenic trisulphide, with M2S. See Sulpharsenites, M.

Arsenic pentasulphide, with M2S. Sec Sulpharsenates, M.

Arsenic sulphobromide, $AsS_2Br_3 = AsSBr +$

Decomp. by H₂O. (Hannay, Chem. Soc. **33.** 284.)

Arsenic sulphochloride, As₂S₅Cl.

Slowly decomp, by boiling H₂O. Sol. in hot AsCl₃ without decomp. (Ouvrard, C. R. 116. 1516.)

 $AsS_2Cl.$ Decomp. by H_2O . Sol. in NH₄OH, and alkali carbonates+Aq. (Ouvrard.)

AsS₂Cl. Slowly decomp. by boiling H₂O. Sol. in alkali carbonates and in NH₄OH+Aq. (Ouvrard, C. R. 1893, **116.** 1517.)

Arsenic sulphoiodide, AsSI.

Insol. in alcohol, chloroform or carbon disulphide. (Schneider, J. pr. (2) 23. 486.) Formula is probably As₂S₃, AsI₃.

Slowly attacked by HCl+Aq; somewhat more easily by HNO+Aq. "Easily sol. in KOH, or NH4OH+Aq. (Schneider, J. pr. (2) **34.** 505.)

2AsI₃, SI₆. Decomp. on air. (Schneider, J. pr. (2) **36**. 509.)

 $As_4S_5I_2$. Less sol. in CS_2 than AsI_3 . (Ouvrard, C. R. 117, 107.)

AsiSI4. (Ouvrard.) See also Arsenyl sulphoiodide.

Arsenic sulphoselenide, As₂SeS₂.

Easily sol, in cold NH₄SH+Aq. Nearly completely sol. in $(NH_4)_2CO_8+Aq$. W. Gerichten, B. 7. 29.)

As₂SSe₂. More difficultly sol. than the preceding comp. in NH₄SH+Aq. (v. Gerichten.)

As₂Se₂S₃. Sp. gr. = 6.402 at ca. 750°. Insol. in most solvents. Easily sol. in alkali hydroxides and sulphides + Aq. (Szarvasy, B. 1895, 28. 2661.)

 $As_2Se_3S_2$. Sp. gr. = 11.35 at 550-600°.

Insol. in most solvents. Fasily sol. in alkali hydroxides and sulphides+Aq. (Szarvasy, B. 1895, **28.** 2659.)

Arsenic telluride, As₂Te₂.

Sol. in HNO₃ and HNO₃+HCl+Aq. (Oppenheim, J. pr. 71. 266.)

As₂Te₃. As above. (Oppenheim.)

Arsenic acid, anhydrous, As₂O₅. See Arsenic pentoxide.

Metaarsenic acid, HAsO₃.

Slowly sol, in cold, quite easily sol, in hot H₂O, with considerable evolution of heat. and conversion into H₃AsO₄. (Kopp, A. ch. (3) **48.** 196.)

Orthoarsenic acid, H₃AsO₄.

Sol. in H₂O, with absorption of heat.

1 pt. As₂O₅ dissolves in 0.405 pt. H₂O at 12.5°, or 100 pts. $\rm H_2O$ dissolve 244.81 pts. As₂O₆ at 12.5°. (Vogel.) Sol. in 0.5 pt. $\rm H_2O$. (Thénard.) Sol. in 6 pts. cold $\rm H_2O$, and more quickly in

2 pts. hot H₂O. (Bucholz.)

100 pts. H_2O at 15.56° dissolve 150 pts. As₂O₅. (Ure's Dict.)

H₃AsO₄+Aq sat. at 15° contains 15% $\mathrm{As}_2\mathrm{O}_5$.

Sp. gr. of H_3AsO_4+Aq at 15°: a=sp. gr. if % is As_2O_5 ; b = sp. gr. if % is H_3AsO_4 .

%	а	ь	%	a	b
5	1.042	1.0337	45	1.540	1.3973
10	1.085	1.0690	50	1.635	1.4617
15	1.134	1.1061	55	1.742	1.5320
20	1.187	1.1457	60		1.6086
25	1.245	1.1882	65		1.6919
30	1.306	1.2342	70		1.7827
35	1.378	1.2840	75		
40	1.453	1.3382			

(Schiff, A. 113. 183, calculated by Gerlach, Z. anal. 27. 303.)

Sp. gr. of H_3AsO_4+Aq at 15° : a=sp. gr. if %is As_2O_5 ; b = sp. gr. if % is H_3AsO_4 .

-					
%	a	å b	%	a	ь
1	1.008	1.006	47	1.564	1.412
	1.016	1.013	48	1.582	1.425
2 3	1.023	1.019	49	1.601	1.437
4	1.023	1.026	50	1.620	1.457
					1.450
5	1.039	1.032	51	1.642	1.464
6	1.048	1.039	52	1.663	1.478
7	1.057	1.046	53	1.685	1.491
8	1.065	1.052	54	1.706	1.50^{1}_{5}
9	1.074	1.059	55	1.728	1.519
10	1.083	1.066	56	1.752	1.534
11	1.322	1.073	57	1.777	1 540
12	1.102	1.081	58	1.801	1.564
13	1.111	1.088	59	1.825	1 579
14	1.121	1.096	60	1.850	1.59_{4}^{3}
15	1.130	1.103	61	1.880	1.610
16	1.140	1.111	62	1.910	1.62_{6}^{0}
17	1.150	1.119	63	1.940	1 643
18	1.160	1.126	64	1.970	1 659
19	1.170	1.134	65	2.000	1.675
20	1.180	1.142		$\frac{2.000}{2.030}$	1.075
$\frac{20}{21}$			66	2.030	$1.69\overset{9}{3}$ $1.71\overset{9}{2}$
	1.191	1.150	67	2.060	
22	1.203	1.158	68	2.090	$1.73\tilde{0}$
23	1.214	1.167	69	$\frac{2}{2}, 120$	1.749
24	1.226	1.175	70	2.150	1.767
25	1.237	1.183	71		1.788
26	1.249	1.192	72		1.809
27	1.261	1.201	73		1.83°_{0}
28	1.274	1.210	74		1.851
29	1.286	1.219	75		1.875
30	1.298	1.228	76	. .	1.897
31	1.312	1.238	77		1.92_{1}
32	1.325	1.248	78		1.94_{6}
33	1.339	1.257	79		1.97°_{0}
34	1.352	1.267	80		1.995
35	1.366	1.277	81		2.020
36	1.381	1.288	82		2.045
37	1.396	1.299	83		$\frac{5.070}{2.070}$
38	1.411	1.309	84		2.095
39	1.426	1.320	85		$\frac{2.035}{2.120}$
40	1.441	1.331	86		$\frac{2.120}{2.149}$
41	1.458	$\frac{1.331}{1.342}$	87		
42	1.475	1.353	88		2 178
43	$\frac{1.475}{1.492}$				2.207
44	1.492	1.366	89		$\begin{array}{c} 2.178 \\ 2.207 \\ 2.236 \\ 2.265 \end{array}$
45		1.376	90		2.265
46	1.526	1.387	91		2.295
40	1.545	1.400			

(Kopp, calculated by Gerlach, Z. anal. 27.

See also Arsenic pentoxide.

Pyroarsenic acid, H₄A₈₂O₇.

Very deliquescent; easily sol. in H₂O with evolution of much heat, and conversion into $H_3As()_4$

Arsenates.

Arsenates of the alkali metals, and acid arsenates of the alkaline-earth metals are sol. in H₂O. Neutral and basic arsenates are

The neutral alless sol, in HC₂H₃O₂+Aq. kaline-earth arsenates are less sol. in NH4OH +Aq than in H₂O, but more sol. in NH₄Cl+ Aq (Field). The alkali arsenates are sol. in hot glycerine. (Lefèvre, C. R. 108. 1058.)

Aluminum arsenate, $Al_2(AsO_4)_2$.

Ppt. Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103, 273.) Insol. in acctone. (Naumann, B. 1904, 37.

4328.)

2Al₂O₃, 3As₂O₅. Nearly unattacked by boiling H₂O; sol. in dil. acids. (Lefèvre, A. ch. (6) **27.** 5.)

Aluminum potassium arsenate, $2Al_2O_3$, $3K_2O_5$ 3As₂O₅.

(Lefèvre.)

Aluminum sodium arsenate, $2Al_2O_3$, $3Na_2O_3$ 3As₂O₅.

(Lefèvre.)

Ammonium arsenate, $(NH_4)_3AsO_4+3H_2O$.

Difficultly sol. in H₂O. Less sol. in H₂O than $(NH_4)_2HAsO_4$. (Mitscherlich.) Insol. in liquid NH_3 . (Franklin, Am. Ch. J. 1898, **20.** 826.)

Ammonium hydrogen arsenate,

(NH₄)₂HAsO₄.

Effloresces, giving off NH₃; more sol. in H₂O than (NH₄)₃AsO₄. (Salkowsky, J. pr. **104.** 129.)

Insol. in acetone. (Eidmann, C. C. 1899. II. 1014.)

Ammonium dihydrogen arsenate.

NH₄H₂AsO₄.

Not efflorescent. Very sol. in H₂O.

Ammonium barium arsenate, NH₄BaAsO₄+ $^{1}_{2}H_{2}()$.

Sol, by 10 days' contact in 1391 pts. H₂O; in 18,832 pts. of a mixture of 1 pt. NH_4OH+ Aq and 3 pts. H2O; in 227 pts. of a solution of 1 pt. NH₄Cl in 10 pts. H₂O; and in 2169 pts. of a solution of 1 pt. NH4Cl in 10 pts. NH₄OH+Aq and 60 pts. H₂O. (Lefèvre.

NH₄OH + Aq and of present, A. ch. 1892, (6) **27**. 13.) A. ch. 1892, (6) **27**. 13.) (NH₄)₂BaH₂(AsO₄)₂. Efflorescent. Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (Bau-

mann, Arch. Pharm. 36. 36.)

Ammonium calcium arsenate, NH₄CaAsO₄+ 12H2O.

1000 pts. pure H₂O dissolve 0.20 pt. this salt; 1000 pts. NH4Cl+Aq (containing 50 pts. NH4Cl) dissolve 4.15 pts. this salt; 900 pts. $H_2O + 100$ pts. NH_4OH (sp. gr. = 0.880) dissolve 0.01 pt. this salt. (Field, Chem. Soc. 11.

Soluble by 10 days' contact in 2167 pts. H₂O easily sol. in mineral acids, including H₃AsO₄; at 15°; in 381 pts. NH₄Cl+Aq (1:7); in 43478 pts. NH₄OH+Aq (1:3); in 10570 pts. Ammonium magnesium arsenate, $NH_4Cl+NH_4OH+Aq(1:10:60)$. (Lefèvre,

A. ch. 1892, (6) 27. 13.) +6HO. Sol. in hot, very sl. sol. in cold Has; sl. sol. in NH₄Cl, and NH₄OH+Aq. (Wach, Schw. J. 12. 285.)

+7H₂O. (Bloxam, C. N. 54. 163.)

(NH₄)₂CaH₂(AsO₄)₂. Efflorescent. Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (Baumann, Arch. Pharm. 36, 36.)

 $\begin{array}{l} (NH_4)Ca_3H_2(AsO_4)_3 + 2H_2O. \\ (NH_4)Ca_6H_5(AsO_4)_6 + 3H_2O. \end{array}$ (Blozum, C. N. **54.** 163.)

Ammonium glucinum arsenate, NH4GlAsO4 $+4\frac{1}{2}H_{2}O.$

More stable than the corresponding potassium salt. (Bleyer, Z. anorg. 1912, 75. 291.)

Ammonium iron (ferric) dihydrogen arsenate, NH₄H₂AsO₄, FeAsO₄.

Hydrolyzed by H₂O.

Sol. in cold conc. HCl, hot HNO₃, hot dil. H₂SO₄, and in hot arsenic acid+Aq containing 75% arsenic pentoxide.

Sol. in hot conc. NH₄OH+Aq. Completely

hydrolyzed by caustic alkalies.

Insol. in conc. NH₄Cl+Aq and in 50% acetic acid. (Curtman, J. Am. Chem. Soc. 1910, **32**. 628.)

NH₄MgAsÕ₄.

Sl. sol. in H₂O₂₄ Sol. in acids. Anhydrous salt is sol. in 2784 pts. H₂O at 15°; in 15,904 pts. NH₄OH+Aq (1:3) (0.96 sp. gr.); in 1386 pts. NH₄Cl+Aq (1:70); in 886.7 pts. NH₄Cl+Aq (1:7); in 3014 pts. NH₄Cl (1 pt.)+NH₄OH (0.96 sp. gr.) (10 pts.)+Aq (60 pts.); in 32,827 pts. magnesia mixture. (Fresenius, Z. anal. 3. 206.)

Anhydrous salt is sol. in 4389 pts. NH4NO3 +Aq (1:50); in 2561.5 pts. KCl+Aq (1:165); in 1422 pts. ammoniacal solution of 3.5 g. tartaric acid in 250 cc. H2O; in 933.5 pts. ammoniacal solution of 2.5 g. citric acid in 250 cc. H₂O. (Puller, Z. anal. 10. 62.)

 $+\frac{1}{2}H_{2}O$.

Sol. in 2656 pts. H₂O at 15°; in 15,038 pts. $NH_4OH + Aq (1 < 3) (0.96 \text{ sp. gr.}); in 844 \text{ pts.}$ NH₄Cl+Aq (1:7); in 1315 pts. NH₄Cl+Aq (1:70); in 2871 pts. NH₄Cl (1 pt.)+NH₄OH (0.96 sp. gr.) (10 pts.) + Aq (60 pts.). (Fre-

1000 pts. pure H₂O dissolve 0.14 pt. salt; 1000 pts. NH₄Cl+Aq (containing 100 pts. NH₄Cl) dissolve 0.95 pt. salt: 900 pts. H₂O +100 pts. NH₄OH (sp. gr. 0.880) dissolve 0.07 pt. salt. (Field, Chem. Soc. 11. 6.) $+6\mathrm{H}_2\mathrm{O}$. Sl. efflorescent. Sl. sol. in $\mathrm{H}_2\mathrm{O}$.

Very sl. sol. in $NH_4OH + Aq$.

Solubility of NH₄MgAsO₄+6H₂O in H₂O and NH₄ salts+Aq. Grams salt dissolved in 100 g. solvent.

t°	H ₂ O	5% NH4NO3+Aq	5% NH4Cl+Aq	NH ₄ OH +Aq 1 pt. NH ₄ OH + Aq (0.96) +4 pts. H ₂ O	4% NH ₄ OH+ Aq+5% NH ₄ Cl+Aq	4% NH ₄ OH+ Aq +10% NH ₄ Cl+Aq
0°	0.03388	0.09216	0.08397	0.00874		
20	0.02066	0.11358	0.12284	0.00958	0.01331	0.03165
30		0.11758	0.11264			
40	0.02746	0.13936	0.19016	0.01173		
50	0.02261	0.18945	0.18889	0.01005		
60	0.02103	0.21115	0.21952	0.00902	0.04691	0.05353
70	0.01564	0.18880	0.22092	0.00949		
80	0.02364	0.18945	0.23144	0.00912		

(Wenger, Dissert. 1911.)

Ammonium manganous arsenate, $NH_4MnAsO_4+6H_2O$.

Nearly insol, in cold H₂O; easily sol, in dil. acids; insol. in alcohol. (Otto, J. pr. 2. 414.)

Ammonium sodium arsenate, NH₄NaHAsO₄ +4H₂O

Sol. in H₂O. (Uelsmann, Zeit. f. ges. Nat. **23.** 347.)

Ammonium sodium hydrogen arsenate, $(NH_4)_3Na_3H_6(AsO_4)_4+6H_2O_1$

Sol. in H₂O. (Filhol and Senderens, C. R. **94.** 649.)

Ammonium strontium arsenate, NH₄SrAsO₄ $+\frac{1}{2}H_{2}O$.

Sol. by 10 days' contact in 3229 pts. H₂O, in 11,586 pts. dil. NH4OH+Aq, in 199 pts.

of a mixture of 1 pt. NH4Cl in 7 pts. H2O and in 1519 pts. of a solution of 1 pt. NH₄Cl in 10 pts. NH₄OH+Aq and 60 pts. H₂O. (Lefèvre, A. ch. 1892, (6) 27. 13.)

Ammonium uranyl arsenate, NH₄(UO₂)AsO₄ $+xH_2O$.

Insol. in H₂O, HC₂H₃O₂, and saline solutions as NH₄Cl+Aq; sol. in mineral acids. (Puller, Z. anal. 10. 72.)

Ammonium vanadium arsenate,

 $NH_4(VO_2)_2AsO_4$, and $(NH_4)_2HAsO_4+$ $2(VO_2)_2H_2AsO_4$.

See Arseniovanadate, ammonium.

Ammonium arsenate tellurate.

See Arseniotellurate, ammonium.

Antimony arsenate (?).

Insol. in H₂O; insol. in acids after ignition, but when fresh is sol. in conc. boiling HCl+Aq, and sl. sol. in HNO₃+Aq. (Dumas.)

Barium arsenate, $Ba_8(AsO_4)_2$.

1000 pts. pure H₂O dissolve 0.55 pt. Ba₃(AsO₄)₂; 1000 pts. NH₄Cl+Aq (containing 50 pts. NH₄Cl) dissolve 1.95 pts. Ba₃(AsO₄)₂; 900 pts. H₂O+100 pts. NH₄OH+Aq (sp. gr. =0.88) dissolve 0.03 pt. Ba₃(AsO₄)₂. (Field, Chem. Soc. 11. 6.)

Sol. in cold HNO₃, and HCl+Aq (Berzelius); $H_2C_4H_4O_6$, and $HC_2H_3O_2+A_9$. (Anthon.)

Solubility in H₂O is not increased by pres-

ence of NH₄, Na, or K salts. (Laugier.)

Not pptd. in presence of Na citrate. (Spiller.)

+1½H₂O. (Salkowsky, J. pr. **104.** 129.)

Barium hydrogen arsenate, BaHAsO₄+ 1½H₂O.

Very sl. sol, in H₂O, but decomp, thereby into Ba₃(AsO₄)₂ and BaH₄(AsO₄)₂. (Berzelius.)

Sl. sol. in cold acids.

+H₂O. Sl. sol. in either BaCl₂+Aq or Na₂HAsO₄+Aq. (Maumené, J. B. 1864. **2**37.)

Barium tetrahydrogen arsenate, BaH₄(As()₄)₂ +2H₂O.

Easily sol. in H₂O. (Setterberg, Berz. J. B. 26. 206.)

Difficultly sol. in little, but decomp, by much H₂O. Easily sol in HCl+Aq, less easily in $HC_2H_3O_2+Aq$ (Hörmann, Dissert, 1879.)

Barium arsenate, acid, BaO, 2As₂O₅+4H₂O. Very sl. sol, in H₂(). (Mitscherlich.)

Barium pyroarsenate, Ba₂As₂O₇.

Insol. in $\rm H_2O$, but decomp. thereby into BaHAsO₄+ $\rm H_2O$. (Lefèvre, C. R. 108, 1058.)

Barium potassium arsenate, BaKAs()₄.

Sl. decomp. by cold H2O; rapidly sol, in dil. acida. (Lefèvre, A. ch. (6) 27. 1.)

Barium sodium arsenate, BaNaAsO₄+ 9H₂O. (Joly, C. R. 1887, 104, 1702.)

Barlum arsenate chloride $3Ba_3(AsO_4)_2$, $BaCl_2$. Insol, in H₂O; sol, in dil. HNO₃+Aq. (Lechartier, C. R. 65. 172.)

Bismuth arsenate, basic, BiAsO₄, 3Bi₂O₃. Insol. in H₂O. Sol. in mineral acids. (Cavazzi, Gazz. ch. it. 14. 289.) 5Bi₂O₃, 2As₂O₅+8H₂O. Min. Rhagite. Easily sol. in HCl+Aq; sl. sol. in HNC₃+ Aq.

Bismuth arsenate, BiAsO₄+½H₂O.

Insol. in H₂O. Insol. in HNO₃+Aq in presence of H₃AsO₄, or alkali arsenates+Aq; (Salkowsky, J. pr. 104. sol. in HCl+Aq. 129.)

HNO₃+Aq. Not wholly insol. in

(Schneider, J. pr. (2) 20. 418.)

Insol. in Bi(NO₃)₃+Aq. (Dumas.)
Sol. in Bi(NO₃)₃+Aq. (Salkowsky.)
Insol. in conc. Bi(NO₃)₃+Aq containing a small quantity of HNO₃. (Schneider.)

Bismuth copper arsenate, Bi₂Cu₂₀As₁₀H₄₄O₇₀ $= Bi_2O_3$, 20CuO, $5As_2O_5 + 22H_2O$.

Min. Mixite. Decomp. by dil. HNO₃+Aq into insol. BiAsO4, and Cu3(AsO4)2, which goes into solution. (Dana.)

Bismuth uranyl arsenate, Bi₂(AsO₄)₂, 8BiO₃H₃, (UO₂)₃(AsO₄)₂.

Min. Walpuraite.

Cadmium arsenate, Cd₃(AsO₄)₂.

Ppt. (Salkowsky, J. pr. 104, 129.) 2CdO, As₂O₅. (Lefèvre, C. R. **110**. 405.) 5CdO, 2As₂O₅+5H₂O. Ppt. (Salkowsky.)

Cadmium pyroarsenate, Cd₂As₂O₇. (de Schulten.)

Cadmium hydrogen arsenate, CdHAsO4+ $H_2()$.

Decomp. by H₂O. (Demel, B. 12, 1279.) $CdH_4(AsO_4)_2 + 2H_2O$. Decomp. by excess of H₂O. (de Schulten, Bull. Soc. (3) 1, 473.)

Cadmium potassium arsenate, 2CdO, K₂O, As₂O₅.

(Lefèvre, C. R. **110**, 405.)

Cadmium sodium arsenate, CdO, 2Na₂O, $As_2()_5$

Slowly sol. in dil. acids. (Lefèvre, C. R. **110.** 405.) 2CdO, 4Na₂O, 3As₂O₅. (Lefèvre.)

Cadmium arsenate bromide, 3Cd₃(AsO₄)₂, $CdBr_{2}$.

Sol. in very dil. HNO₃+Aq. (de Schulten, Bull. Soc. (3) 1. 472.)

Cadmium arsenate chloride, 3Cd₃(AsO₄)₂, $CdCl_2$.

Sol. in very dil. HNO₃+Aq. (de Schulten.)

Cæsium arsenate, Cs_2O , $2As_2O_5+5H_2O$.

Ppt. (Ephraim, Z. anorg. 1910, 65, 246.)

Calcium arsenate, $Ca_3(AsO_4)_2 + 3H_2O$.

Ppt. Insol. in H₂O; sol. in H₃AsO₄+Aq. (Kotschoubey, J. pr. **49.** 182.)

Calcium pyroarsenate, $\mathrm{Ca_2As_2O_7}$.

Slowly decomp. by cold H₂O into CaHAsO₄ $+112H_2O$. (Lefèvre.)

Calcium hydrogen arsenate, CaHAsO₄+ 1/2H2O.

Insol. in H₂O. (Debray, A. ch. (3) 61. 419.) +H₂O. Min. Haidingerite. Easily sol in acids.

+2½H2O. Min. Pharmacolite. Fasily sol. in acids.

+3H₂O. Insol. in H₂O; sol. in HCl, HNO₃, or H₃AsO₄+Aq; also in (NH₄)₂SO₄ NH₄NO₃, $NH_4C_2H_3O_2$, and NH_4Cl+Aq . (Pfaff.)

Calcium tetrahydrogen arsenate, $CaH_4(AsO_4)_2$.

Sol. in H_2O . (Graham.) + H_2O . Sl. sol. in H_2O . Decomp. by much hot H₂O into H₃AsO₄ and Ca₃(AsO₄)₂. (Hörmann, Dissert. 1879.)

Calcium iron (ferric) arsenate, 6CaO, 4Fe₂O₃, $5As_2O_5 + 15H_2O$ (?).

Min. Arseniosiderite. Sol. in acids.

Calcium magnesium arsenate, Ca_bH₂(AsO₄)₄, $Mg_5H_2(AsO_4)_4+10H_2O$.

Min. Picropharmacolite. Easily sol. in acids.

 $Ca_3(AsO_4)_2$, $Mg_3(AsO_4)_2$. Sol. in HNO_3+ Aq. (Kühn.)

Min. Berzeliite. Sol. in HNO₃+Aq. $Ca_8Mg_6H_{14}(AsO_4)_{14}+49H_2O$. Min Wap-

Calcium potassium arsenate, CaKAsO₄. (Lefèvre, A. ch. (6) **27.** 5.)

Calcium sodium arsenate, CaNaAsO₄.

(Lefèvre, A. ch. (6) 27. 1.)

4CaO, 2Na₂O, 3As₂O₅. Not attacked by boiling H₂O; easily sol. in dil. acids. (Le-

Calcium uranyl arsenate, $Ca(UO_2)_2(AsO_4)_2 +$ 8H₂O.

Min. Uranospinite.

Calcium vanadium arsenate, CaHAsO4, $2(VO_2)H_2AsO_4+8H_2O$.

See Arseniovanadate, calcium.

Calcium arsenate chloride, Ca₃(AsO₄)₂, CaCl₂. Insol. in H₂O; sol. in dil. HNO₃+Aq. (Lechartier, C. R. **65.** 172.) $3Ca_3(AsO_4)_2$, $CaCl_2$. As above. (Lechartier.)

Cerous arsenate, CeHAsO₄.

Insol. in H₂O. Sol. in arsenic acid+Aq. (Berzelius.)

Ceric hydrogen arsenate, $Ce(HAsO_4)_2+$ $6H_2O$.

Ppt. Insol. in H₂O and dil. acids. (Barbieri, B. 1910, **43.** 2216.)

Ceric dihydrogen arsenate, $Ce(H_2AsO_4)_4$ + 4H₂O.

Sol. in conc. HNO₃. (Barbieri l. c.)

Chromic arsenate, 2Cr₂O₃, 3As₂O₅.

Insol. in H₂O and conc. boiling acids. (Lefèvre, A. ch. (6) **27**. 5.)

Chromic potassium arsenate, 2Cr₂O₃, 3K₂O₄ 3As₂O₅.

(Lefèvre.)

Chromic sodium arsenate, 2Cr₂O₃, 3Na₂O, 3As₂O₅. (Lefèvre.)

Cobaltous arsenate, basic, 4CoO, As₂O₅. Easily sol. in acids. (Gentele, J. B. 1851.

Co(CoOH)AsO₄. Insol. in H₂O; difficultly sol. in acids. (Coloriano.)

Cobaltous arsenate, $Co_3(AsO_4)_2 + 8H_2O$.

Ppt. Insol. even in boiling H₂O; easily sol. in HNO₃, HCl, and NH₄OH+Aq; sol. in H_3AsO_4+Aq (Proust); sol. in dil. $FeSO_4+Aq$. (Karsten, Pogg. 60. 266.)

Min. Cobalt bloom, Erythrite. Easily sol. in

5CoO, 2As₂O₅+3H₂O. Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103. 273.)

2CoO, As₂O₅. Sl. attacked by boiling H₂O; easily sol. in dil. acids. (Lefèvre.)

Cobaltous hydrogen arsenate, $CoH_4(AsO_4)_2$. Sol. in H₂C.

Cobaltous potassium arsenate, CoKAsO₄. (Lefèvre.)

Cobaltous sodium arsenate, CoNaAsO4. (Lefèvre.)

4CoO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Cobaltous vanadium arsenate. $Co(VO_2)_2H_2(AsO_4)_2+8H_2O$.

See Arseniovanadate, cobaltous.

Cobaltous arsenate ammonia, Co₃(AsO₄)₂, $NH_3 + 7H_2O$.

(Ducru, A. ch. 1901, (7) **22**. 185.) $Co_3(AsO_4)_2$, $2NH_3+6H_2O$. (Ducru, *l. c.*) $Co_3(AsO_4)_2$, $3NH_3+5H_2O$. (Ducru, *l. c.*)

Cuprous arsenate, 2Cu₂O, As₂O₅. (Hampe, Dissert. 1874.) $4Cu_2O$, As_2O_5 . (Hampe, l. c.)

Cuprous pyroarsenate, Cu₄As₂O₇. Sol. in NH₄OH or KOH+Aq. Ppt. (Reichard, B. 1898, 31. 2166.)

Cupric arsenate, basic, 8CuO, As₂O₅+ 12H₂O.

Min. Chalcophyllite. Easily sol. in acids and NH₄OH+Aq. 6CuO, As₂O₅+3H₂O. Min. Aphanesite,

Clioclasite. Sol. in acids and ammonia. 5CuO, As₂O₅+2H₂O. Min. Erinite. Sol. $\ln HNO_3 + Aq$.

+5H₂C. Min. Cornwallite. Sol. in acids, and NH₄OH+Aq. +9H₂Q. Min. Tirolite. 4CuO, As₂O₄+H₂O. Insol. in H₂O. (Debray, A. ch. (3) 61. 423.) Min. Olivenite. Sol. in acids, and NH₄OH+Aq; decomp. by hot KOH+Aq. +7H₂O. Min. Euchroite. Sol. in HNO₃+Aq. +4½H₂O. (Hirsch, C. C. 1891, I. 15.)

Cupric arsenate, $Cu_3(AsO_4)_2$.

Insol. in H₂(). Easily sol. in HCl+Aq; sl. sol. in other acids; sol. in NH₄OH+Aq. (Coloriano, C. R. 103. 273.)
Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

+4H₂O. Decomp. by hot H₂O. (Debray.) +5H₂O. Min. Trichalcite. Easily sol. in cold HCl+Aq.

Cupric arsenate, acid, 5CuO, 2As₂O₅.

Sol. in H₂SO₃+Aq. (Vogel.) +3H₂O. (Salkowsky.) +8, 9½, and 12½H₂O. (Hirsch.) CuHAsO₄+H₂O. Insol. in H₂O. (Coloriano.) +1½H₂O. Insol. in H₂O. (Debray, A. ch. (3) **61.** 419.) 8CuO, 3As₂O₅+12H₂O. (Hirsch.)

Cupric lead arsenate, 3CuO, PbO, As₂O₅+ 2H₂O.

Min, Bayldonite. Nearly insol, in HNO₃+

Cupric potassium arsenate, CuKAsO4.

Slowly sol. in NH₄OH+Aq; easily sol. in acids. (Lefèvre, A. ch. (6) **27.** 5.) 8CuO, K₂O, As₂O₆. Easily sol. in dil. acids. (Lefèvre.)

Cupric sodium arsenate, CuNaAsO4.

(Lefèvre.)

3CuO, Na₂O, 2As₂O₅. Very sol. in dil. acids. (Lefevre.)
2Cu₅(AsO₄)₂, NaH₂AsO₄+5H₂O. Ppt. (Hirsch_f C. C. **1891**, I. 15.)

(Hirsch, C. C. 1891, 1. 15.) 6Cu₃(AsO₄)₂, 2NaH₂AsO₄, Na₂HAsO₄+ 13½ H₂O, or 16H₂O. Ppt. (Hirsch.)

 $3\frac{7}{2}$ H₂O, or 16H₂O. Ppt. (Hirsch.) $3\text{Cu}_{4}(\text{AsO}_{4})_{2}$, $\text{Na}_{2}\text{HAsO}_{4}+9\frac{1}{2}\text{H}_{2}\text{O}$. Ppt. (Hirsch.)

4Cu₃(AsO₄)₂, Na₂HAsO₄+11H₂O. Ppt. (Hirsch.)

Cupric uranyl arsenate, $Cu(UO_2)_2(AsO_4)_2 + 8H_2O$.

(Werther, A. 68. 312.) Min. Zeunerite.

Cupric vanadium arsenate, Cu(VO₂)₂H₂(AsO₄)₂+3H₂O. See Arseniovanadate, cupric. Cupric arsenate ammonia, Cu₈(AsO₄)₂₁ 3NH₃+4H₂O.

Insol. in cold or hot H₂O. (Damour, J. pr. 37, 485.)

2CuO, As₂O₅, 4NH₈+3H₂O. Decomp. by H₂O. (Schiff, A. **123.** 42.)

Cupric arsenate calcium carbonate, 5CuO, As₂O₅, CaCO₃+4H₂O, or 9H₂O.

Min. Tyrolite. Easily sol. in acids, and NH₄OH+Aq.

Cupric arsenate sodium chloride, $2Cu_3(AsO_4)_2$, NaCl+ $7\frac{1}{2}H_2O$.

Decomp. by hot H_2O . (Hirsch, Dissert. **1891.**)

 $3\text{Cu}_{3}(\text{AsO}_{4})_{2}, 2\text{NaCl} + 13\frac{1}{2}\text{H}_{2}\text{O}. \\ +17\frac{1}{2}\text{H}_{2}\text{O}. \text{ (Hirsch, } \textit{l.c.)}$

 $+17\frac{1}{2}H_2O.$ (Hirsch, *l.c.*) 5Cu₃(AsO₄)₂, 3NaCl+23H₂O. (Hirsch.)

Didymium arsenate, Di₂H₃(AsO₄)₃.

Ppt. Insol. in H₂O; sl. sol. in weak acids. (Marignac, A. ch. (3) **38**. 164.) 5Di₂(AsO₄)₂, As₂O₅+3H₂O. Ppt.

Glucinum arsenate, Gl₃(AsO₄)₂.

Insol, in H_2O ; sol, in H_3AsO_4+Aq . (Berzelius.)

Glucinum hydrogen arsenate, GlHAsO4.

Obtained in impure state by heating As_2O_b with $Gl(OH)_2$ in a scaled tube at 220° . (Bleyer, Z. anorg. 1912, **75**. 287.)

Glucinum tetrahydrogen arsenate, $GlH_4(AsO_4)_2$.

Very hydroscopic. (Bleyer, Z. anorg. 1912, **75**. 287.)

Glucinum potassium arsenate, $KGlAsO_4$, $\frac{1}{2}GlO + 5H_2O$.

Unstable. Amorphous. Easily hydrolyzed, giving more basic salts. (Bleyer, Z. anorg. 1912, **75**. 289.)

Glucinum sodium arsenate, NaGlAsO₄,

Unstable. Easily hydrolyzed. (Bleyer, Z. anorg. 1912, **75**, 290.)

Iron (ferrous) arsenate, $\mathrm{Fe_3(A_8O_4)_2} + \mathrm{Fe_3(A_8O_4)_2}$

Ppt. Sl. sol. in NH_4OH+Aq . Insol. in $(NH_4)_3AsO_4+Aq$ or other NH_4 salts+Aq. (Wittstein.) +8H₂O. Min. Symplesite. Sol. in HCl+

+8H₂O. Min. Symplesite. Sol. in HCl+Aq.

Iron (ferric) arsenate, basic, $16\mathrm{Fe_2O_3}$, $A_{\mathrm{S_2O_5}}$ $+24\mathrm{H_2O}$.

Insol. in NH₄OH+Aq. (Berzelius.) $2\text{Fe}_2\text{O}_3$, $A\text{s}_2\text{O}_4$ + $12\text{H}_2\text{O}$. Insol. in NH₄OH+Aq. $3\text{Fe}_2\text{O}_3$, $2A\text{s}_2\text{O}_5$.

3Fe₂(AsO₄)₂, Fe₂O₆H₆+12H₂O. Min. Pharmacosiderite. Easily sol. in acids; decomp. by KOH+Aq. Iron (ferric) arsenate, Fe₂O₈, As₂O₅.

Ppt. Insol. in H₂O. Decomp. by hot H₂O. Sol. in HCl, H₂SO₄ and HNO₃. (Metzke, Z. anorg. 1898, 19. 473.)

+4H₂O. Min. Scorodite. Easily sol. in

+4H₂U. With. HCl+Aq; insol. in HNO₈+Aq. Theol in H₂O. When freshly pptd., sol. in NH₄OH+Aq. Sol. in HCl, or HNO₃+Aq. Insol. in HC₂H₃O₃, or NH₄ salts+Aq. (Wittstein.)

Sol. in warm H₂SO₃+Aq or (NH₄)₂SO₃+

Aq. (Berthier, A. ch. (3) 7. 79.)

Iron (ferric) arsenate, acid, Fe₂O₃,3As₂O₅ $+16.7 H_2 O.$

Ppt.; sl. sol. in acids with a yellow color, and in NH4OH+Aq with a red color. (Metzke, Z. anorg. 1898, **19.** 476.)

 $2Fe_2O_3$, $3As_2O_5+12H_2O$. Insol. in H_2O or

 $HC_2H_8O_2+Aq$.

Sol. in mineral acids.

Sol. only in cone. H3AsO4+Aq.

Sol. in (NH₄)₃AsO₄, and other NH₄ salts +Aq. (Wittstein.)

Sol. in NH₄OH+Aq. +22¹ H₂O. Ppt. Sl. sol. in acids with a yellow color, and in NH4OH +Aq with a red color. (Metzke, Z. anorg. 1898, 19. 475.)

Iron (ferroferric) arsenate, 6FeO, 3Fe₂O₃, $4As_2O_5 + 32H_2O$.

Insol. in H₂O. Sol. in HCl+Aq. Decomp. by KOH+Aq. (Wittstein, J. B. 1866, 243.)

Iron (ferric) lead arsenate, $5 \text{Fe}_2(\text{AsO}_4)_2$, $Pb_3(AsO_4)_2$.

Min. Carmine Spar. Carminite. Sol. in acids; KOH+Aq dissolves out As₂O₂. (Sandberger.)

Iron (ferric) potassium aisenate, 2Fe₂O₃, 3K₂O, 3As₂O₅.

Not attacked by boiling H₂O; easily sol, in dil. acids. (Lefèvre.)

 Fe_2C_3 , K_2O , $2As_2O_5$. (Lefèvre.)

Iron (ferric) sodium arsenate, Fe₂O₃, Na₂O₃ 2As₂O₅.

(Lefèvre.)

2Fe₂O₃, 3Na₂O, 3As₂O₅. (Lefèvre.)

Lanthanum arsenate, La₂H₃(AsO₄)₃.

(Frerichs and Smith.)

Doubtful. (Cleve, B. **11.** 910.)

Lead arsenate, basic, 15PbO,2As₂O₅ (?).

Ppt. (Strömholm, Z. anorg. 1904, 38. 446.)

Lead arsenate, $Pb_3(AsO_4)_2$.

Insol. in H₂O, NH₄OH, or NH₄ salts+Aq.

(Wittstein.)

Sol. in 2703.5 pts. HC₂H₈O₂+Aq containing 38.94% HC₂H₈O₂. (Bertrand, Monit. Scient. (3) 10. 477.)

Sol. in sat. NaCl+Aq. (Becquerel, C. R.

20. 1523.)

Not pptd. in presence of Na citrate. (Spiller.)

Lead pyroarsenate, Pb₂As₂O₇.

Insol. in H₂O or HC₂H₃O₂+Aq. Sol. in HCl, or HNO₂+Aq. (Rose.)

Decomp. by cold H₂O. (Lefèvre.)

 $+H_2O = PbHAsO_4$. Ppt. (Salkowsky, J. pr. 104. 109.)

Lead potassium arsenate, PhKAsO4.

(Lefèvre, A. ch. (6) 27. 5.)

Lead sodium arsenate, PhNaAsO4.

(Lettvre.)

4PbO, Na₂O, 3As₂O₅. Superficially decomp. by cold H₂O. (Lefèvre.)

Lead arsenate chloride, $3Pb_3(AsO_4)_2$, $PbCl_2$.

Sol. in dil. HNO₃+Aq. (Lechartier.) Min. Mimetite. Sol. in HNO₃, and KOH+

Lithium arsenate, Li₃AsO₄.

Ppt. Sol. in dil. acids and in HC₂H₃O₂+

Aq. (de Schulten, Bull. Soc. (3) 1. 479.) LiH₂AsC₄+³/₂H₂O. Decomp. by H₂O into H₂AsC₄ and Li₃AsO₄. (Rammelsberg, Pogg. **128.** 311.)

Magnesium arsenate, Mg₃(AsO₄)₂.

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

+7H₂O, +8H₂O, +10H₂O, and +22H₂O. (Grühl, Dissert. **1897.**)

+8H₂O. Min. Hörnesite. Insol. in H₂O; easily sol. in acids.

Magnesium hydrogen arsenate, MgHAsO₄.

 $+\frac{1}{2}H_2O$. Insol. in H_2O . (de Schulten, C. R. 100. 263.)

 $+5\mathrm{H}_2\mathrm{O}$. (Schiefer.) $+6\mathrm{I}_2^2\mathrm{H}_2\mathrm{O}$. Insol. in $\mathrm{H}_2\mathrm{O}$. 1000 pts. boiling

H₂O dissolve 1.5 pts. (Thompson.) Sol. in HNO₃+Aq before ignition, but insol, in acids after ignition. (Graham, A. 29. 29.)

+7H₂(). Min. Roesslerite. Sol. in HCl+ Aq.

Magnesium tetrahydrogen arsenate,

 $MgH_4(AsO_4)_2$.

Very deliquescent; sol. in H₂O. (Schiefer.)

Magnesium potassium arsenate, MgKAsO4.

Insol. in, but decomp. by cold H₂O. (Rose.)

Easily sol. in dil. acids. (Lefèvre.) +7H₂O. (Kinkelin, Dissert, **1893.**) 4MgO, 2K₂O, 3As₂O₅. Not attacked by boiling H₂O; slowly sol. in dil. acids. (Lefèvre.)

Magnesium potassium hydrogen arsenate, $KMgH(AsO_4)_2+xH_2O$.

Decomp. by H₂O. (Kinkelin, D sert. **1883.**)

Mg₃KH₂(A₅O₄)₈+5H₂O. (Chevron and Droixhe, J. B. **1888**, 523.)

Magnesium potassium sodium arsenate, $Mg_2KNa(AsO_4)_2+10H_2O$.

(Kinkelin, Dissert. 1883.)

Magnesium sodium arsenate, MgNaAsO₄.
Insol. in H₂O. Very sl. sol. in dil. acids. (Lefèvre.)

4MgO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Magnesium vanadium arsenate,

MgH₂(VO₂)₂(AsO₄)₂+9H₂O and MgHAsO₄, 2(VO₂)H₂AsO₄+9H₂O.* See Arseniovanadate, magnesium.

 $\label{eq:magnesium} \begin{array}{ll} \textbf{Magnesium} & \textbf{arsenate} & \textbf{chloride,} & Mg_3(AsO_4)_2, \\ & MgCl_2. \end{array}$

Insol. in H_2O ; sol. in dil. HNO_3+Aq . (Lechartier, C. R. **65**. 172.)

Insol. in H_2O , sol. in dil. HNO_3+Aq . (Lechartier.)

Manganous arsenate, basic, $6MnO_5$ As₂O₅+ $3H_2O$ (?).

Min. Chondroarsenite. Easily and completely sol. in dil. HCl, and HNO₃+Aq.

Manganous arsenate, $Mn_3(AsO_4)_2 + H_2O$.

Insol. in H_2O ; sl. sol. in acids. (Coloriano, C. R. 103. 273.)

5MnO, 2As₂O₅+5H₂O. Insol. in H₂O. (Coloriano.)

2MnO, As₂O₅. Sl. decomp. by cold H₂O, but rapidly on heating. (Lefèvre.)

MnHAsO₄+H₂O. Decomp. by boiling H_2Q into 5MnO, $2As_2O_5+5H_2O$. Sol. in HNO₃, H_2SO_4 , or H_3AsO_4+Aq .

Manganous tetrahydrogen arsenate, $MnH_4(\Lambda s(1_4)_2)$.

Deliquescent. Easily sol. in H₂O. (Schiefer.)

Manganous potassium arsenate, MnKAsO₄. (Lefèvre, A. ch. (6) 27. 5.)

Manganous sodium arsenate, MnNaAsO₄. Very sol. in dil. acids. (Lefèvre.) 2MnO, 4Na₂O, 3As₂O₅. Not attacked by boiling H₂O; very sol. in dil. acids. (Lefèvre.)

Manganous arsenate chloride, $Mn_{5}(AsO_{4})_{2}$, $MnCl_{2}$.

Insol. in H₂O; sol. in dil. HNO₃+Aq. (Lechartier, A. **58**. 259.)

Manganic arsenate, $Mn_2(AsO_4)_2+2H_2O_5$ Insol. in H_2O ; sol. in acids.

Mercurous arsenate, $(Hg_2)_3(AsO_4)_2$.

Insol. in H₂O; difficultly sol. in acids. (Coloriano, C. R. 103, 273.) Ppt. (Haack, C. C. 1890, II. 736.)

Hg₂(AsO₃)₂. Insol. in H₂O, HC₂H₃O₂, or alcohol. Decomp. by cold HCl+Aq. Sl. sol. in cold HNO₃+Aq, from which it is precipitated by NH₄OH as Hg₂HAsO₄. (Simon, Pogg. 41, 424.)

Mercurous hydrogen arsenate, Hg₂HAsO₄.

Insol. in H_2O , $HC_2H_3O_2$, or NH_4OH+Aq . Decomp. by cold HCl+Aq; sol. in cold HNO_3+Aq without decomp; very sl. sol. without decomp. in NH_4NO_3+Aq . (Simon, Pogg. **41**. 424.)

Mercuric arsenate, $Hg_3(AsO_4)_2$.

Ppt. Sol. in $H_3\Lambda sO_4$ or HNO_3+Aq . (Bergman.) Very sl. sol. in H_2O . Easily sol. in HCl+Aq. Sl. sol. in HNO_3+Aq . Insol. in H_3AsO_4+Aq . (Haack, C. C. **1890**, II. 736.)

Mercurous silver arsenate, Hg₂AgAsO₄.

Sol. in hot conc. HNO₃. (Jacobsen, Bull. Soc. 1909, (4) **5**. 948.)

Mercurous arsenate nitrate, Hg₃AsO₄, HgNO₃ +H₂O.

Insol. in H₂O or HC₂H₃O₂; sol. in HNO₃+Aq. (Simon, Pogg. **41**, 424.) 3Hg₃AsO₄, 2HgNO₅, 2Hg₂O. Ppt. (Haack.)

Molybdenum arsenate.

Ppt.

Nickel arsenate, basic, 5Ni(), As₂()₅.

Min. —— (Bergemann.)

Ni(NiOH)AsO₄. Difficultly attacked by acids or alkahes. (Coloriano, Bull. Soc. (2) • **45**. 241.)

5NiO, $2As_2O_5+3H_2O$. As above.

Nickel arsenate, Ni₃(AsO₄)₂.

Min. — (Bergemann.)

 $+xH_2O$. Insol in H_2O . Sol in H_3AsO_4 , and cone mineral acids. Easily sol, in NH_4OH+Aa .

+2H₂O. Insol. in H₂O; difficultly sol. in acids (Coloriano, Bull. Soc. **45.** 241.)

+8H₂O. Min. *Nickel-bloom, Annabergite*. Easily sol. in acids.

NiHAsO₄+H₂O. Sol. in H₂O. Difficultly attacked by acids. (Coloriano, C. R. 103. 274.)

Nickel potassium arsenate, 12NiO, 3K₂O, 5As₂O₅.

(Lefèvre.)

2NiO, K₂O, As₂O₅. Rapidly sol. in dil. acids. (Lefèvre.)

Nickel sodium arsenate, NiNaAsO4.

Very slowly sol. in dil. acids. (Lefèvre.) 4NiO, 2Na₂O, 3As₂O₅. (Lefèvre.)

Nickel arsenate ammonia,

 $\begin{array}{c} Ni_3(AsO_4)_2,NH_3+7H_2O,\\ Ni_3(AsO_4)_2,2NH_2+6H_2O,\\ Ni_3(AsO_4)_2,3NH_2+5H_2O. \end{array}$ (Ducru, C. R. 1900, 131, 703.)

Palladium arsenate (?).

Ppt.

Platinum arsenate (?).

Ppt. Sol. in HNO₃+Aq.

Potassium arsenate, K3AsO4.

Deliquescent. Very sol. in H2O. (Graham) Pogg. 32, 47.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Potassium hydrogen arsenate, K₂HAsO₄. Sol, in H₂O.

Potassium dihydrogen arsenate, KH₂AsO₄.

Sol. in 5.3 pts. H_2O at 6°, forming a solution of sp. gr. 1.1134. Much more sol. in hot H₂O. Insol. in alcohol.

Sol. in 26,666 pts. boiling conc. alcohol. (Wenzel.)

Potassium sodium hydrogen arsenate, $KNaHAsO_4 + 16H_2O_1$

Sol. in H_2O .

 $K_3Na_8H_6(AsO_4)_4+9H_2O$. Sol. in H_2O , and not easily decomp, thereby into its constituents. (Filhol and Senderens, C. R. 95. 343.)

Potassium strontium arsenate, KSrAsO₄. (Lefèvre, C. R. **108.** 1058.)

Potassium vanadium arsenate, K(VO₂)₂AsO₄ $+2\frac{1}{2}H_{2}O.$

See Arseniovanadate, potassium.

Potassium zinc arsenate, KZnAsO₄. (Lefèvre.)

Potassium arsenate sulphate.

See Arseniosulphate, potassium.

Rhodium arsenate (?).

Ppt.

Rubidium metaarsenate, RbAsO₃.

Sol. in H₂O. (Bouchonnet, C. R. 1907, **144.** 642.)

Rubidium arsenate, $Rb_3AsO_4+2H_2O$.

Very hydroscopic; sol. in H₂O to give an alkaline solution. Absorbs CO₂ from the air. (Bouchonnet, l.c.)

Rubidium pyroarsenate, Rb₄As₂O₇.

(Bouchonnet, l.c.)

Rubidium hydrogen arsenate, Rb₂HAsO₄+ $+H_2O$.

Absorbs CO₂ from the air. Very hydroscopic; sol. in H₂O. Insol. in alcohol. (Bouchonnet, l.c.)

Rubidium dihydrogen arsenate, RbH₂AsO₄.

Not hydroscopic. Very sol. in H_2O ; aq. solution is acid to litmus. (Bouchonnet, l.c.)

Silver arsenate, Ag₃AsO₄.

Insol. in H₂O. Sol. in acids; easily sol. in H₃AsO₄+Aq. (Joly, C. R. **103**. 1071.)

1 l. H₂O dissolves 0.0085 g. Ag₃AsO₄ at 20°. (Whitby, Z. anorg. 1910, 67, 108.)

Much less sol. in H₂AsO₄ than Ag₂PO₄. (Graham.)

Sol. in NH₄OH+Aq. (Scheele.)

Sol. in (NH₄)₂CO₃+Aq. Insol. in NH₄ sulphate, nitrate, or succinate+Aq. (Wittstein.)

Very sl. sol. in NH₄NO₃+Aq, more easily

in HC₂H₃O₂+Aq. (Graham.) Sol. in Na₂S₂O₃+Aq, but not so easily as Ag₈PO₄.

Not pptd. in presence of Na citrate. (Spiller.)

Insol. in liquid NH3. (Gore, Am. Ch. J. 1898, **20.** 829.)

Silver hydrogen arsenate, Ag₂HA₈O₄.

Decomp. by H₂O, with formation of Ag₃AsO₄. (Setterberg, Berz. J. B. **26**. 208.) AgH₂AsO₄. Decomp. by H₂O. (Joly, C. R. 103. 1071.)

Ag₂O, 2As₂O₅. Decomp. by H₂O. Rather sl. sol. in HNO₃+Aq. Very easily sol. in NH₄OH+Aq. (Hurtzig and Geuther, A. **111.** 168.)

Silver arsenate ammonia, Ag_3AsO_4 , $4NH_3$.

Easily sol. in H₂O. (Widmann, Bull. Soc. **(3) 20.** 64.)

Silver arsenate sulphate, 3Ag₂O, As₂O₅, SO₃.

Decomp. by H₂O, with separation of Ag₃AsO₄; decomp. by dil. H₂SO₄+Aq. (Setterberg, Berz. J. B. 26, 209.)

Sodium arsenate, Na₃AsO₄+12H₂O₄

Permanent in dry air. Sol. in 3.57 pts. H₂O remanent in dry air. Sol. in 3.57 pts. H₂O at 15.5°. (Graham.) 100 pts. H₂O at 15.5° dissolve 28 pts. Na₃AsO₄+12H₂O. (Berzelius.) Sol. in 3.75 pts. H₂O at 17°; or 100 pts. H₂O at 17° dissolve 26.7 pts.; or sat. Na₃AsO₄+Aq at 17° contains 21.1% Na₃AsO₄+12H₂O or 10.4% Na₃AsO₄, and has sp. gr. 1.1186. (Schiff, A. 113. 350.)

Melts in crystal H.O. at 25.5°

Melts in crystal H₂O at 85.5°.

Sp. gr. of Na₃AsO₄+Aq at 17°. $\% = \% \text{Na}_3 \text{AsO}_4 + 12 \text{H}_2 \text{O}.$

%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1 2 3 4 5 6 7 8	1.0053 1.0107 1.0161 1.0215 1.0270 1.0325 1.0380 1.0435	9 10 11 12 13 14 15 16	1.0490 1.0547 1.0603 1.0659 1.0716 1.0773 1.0830 1.0887	17 18 19 20 21 22	1.0945 1.1003 1.1061 1.1121 1.1179 1.1238

(Schiff, calculated by Gerlach, Z. anal. 8. 286.)

"Arseniate of soda" dissolves in 60 pts. boiling alcohol. (Wenzel.)

+4½H₂O. (Hall, Chem. Soc. **51.** 93.) +10H₂O. Efflorescent. (Hall.)

Sodium hydrogen arsenate, $Na_2HAsO_4+7H_4O$.

Not efflorescent. (Schiff.)

Solubility in Pb(NO₃)₂+Aq. A table is given which records the g. of As₂O₅ in 100 cc. of the filtrate. (Curry, J. Am. Chem. Soc. 1915, 37, 1685.)

+7½H₂O. (Lescoeur, C. R. 104. 1171.) +12H₂O. Efflorescent. Sol. in H₂O; sol. in 1.79 pts. H₂O at 14°; or 100 pts. H₂O at 14° dissolve 56 pts. Na₂HAsO₄+12H₂O. Sat. Na₂HAsO₄+Aq contains 35.9% Na₂HAsO₄+ 12H₂O, or 16.5% Na₂HAsO₄, and has sp. gr. = 1.1722. (Schiff, A. 113. 350.)

 $100~p^{\mu}s.~H_2O$ at 7.2° dissolve 22.268 pts. (Thompson.)

100 pts. H₂O dissolve 17.2 pts. Na₂HAsO₄+ 12H₂O at 0°, and 140 7 pts. at 30°. (Tilden, Chem. Soc. **45.** 409.)

Melts in crystal H₂O at 28°. (Tilden.)

Sp. gr. of Na_2HAsO_4+Aq at 14°. $C_0 = C_0Na_2HAsO_4+12H_2O$.

%	Sp. gr.	1 50	Sp. gr.	%	Sp. gr.
1	1.0042	15	1.0665	29	1 1358
2	1.0084	16	1 0712	30	1.1410
$\bar{3}$	1.0126	17	1.0759	31	1.1463
4	1.0168	18	1.0807	32	1.1516
5	1.0212	19	1.0855	33	1.1569
6	1.0256	20	1.0904	34	1 1623
7	1.0300	21	1.0953	35	1.1677
8	1.0344	22	1.1003	36	1.1731
9	1, 0389	23	1.1052	37	1.1786
10	1 ⁶ .0434	24	1 1103	38	1.1841
11	1.0479	25	1.1153	39	1 1896
12	1.0525	26	1.1204	40	1.1952
13	1.0571	27	1 1255		
14	1.0618	28	1.1306		

(Schiff, calculated by Gerlach, Z. anal. 8. 280.)

Insol. in alcohol. +13½H₂O. (Setterberg.)

Sodium dihydrogen arsenate, $NaH_2AsO_4+H_2O$.

More sol. in $H_2()$ than Na_3AsO_4 or Na_2HAsO_4 . (Schiff.) $+2H_2O$. Efflorescent. (Joly and Duffet, C. R. **102**, 1391.)

Sodium trihydrogen diarsenate, Na₃H₃(AsO₄)₂+3H₂O.

Sol. in H_2O . (Filhol and Senderens, C. R. **95.** 343.)

Sodium strontium arsenate, NaSrAsO4.

Not attacked by boiling H₂O. (Lefevre.) +9H₂O. Scarcely sol. in H₂O. (Joly, C. R. 104, 905.)

 $+18\mathrm{H}_2\mathrm{O}$. (Joly.)

Sodium uranyl arsenate, Na(UO₂)AsO₄. Ppt. (Werther, A. 68, 312.) Sodium zinc arsenate, NaZnAsO4.

Slowly sol. in dil. acids. (Lefèvre.) Na₂ZnAs₂O₇. As above. (Lefèvre.)

Sodium arsenate fluoride, Na₃AsO₄, NaF+ 12H₂O.

Sol. in 9.5 pts. H₂() at 25°, and 2 pts. at 75°. (Briegleb, A. **97.** 95.)

Sodium arsenate stannate, 6Na₂O, 2As₂O₅, SnO₂+50H₂O.

More difficultly sol. than sodium stannate. (Haeffely, Phil. Mag. (4) **10.** 290.) 5Na₂AsO₄, Na₂SnO₃+60H₂O. (Prandtl, B. 1907, **40.** 2133.)

Sodium arsenate sulphate, Na₈As₆O₁₉, 2Na₂SO₄.

Sol. in H₂O. (Mitscherlich.) Na₄As₂O₇, Na₂SO₄. (Setterberg.)

Sodium arsenate tungstate, $Na_4As_2O_7$, $Na_2W_3O_{10}+20H_2O$.

See Arseniotungstate, sodium.

Strontium arsenate, $Sr_3(AsO_4)_2$.

Not attacked by boiling H₂O; easily sol. in dil. acids. (Lefèvre, A. ch. (6) **27.** 5.)

Strontium pyroarsenate, Sr₂As₂O₇.

Decomp. by cold H_2O into $SrHAsO_4+1\frac{1}{2}H_2O$, (Lefèvre.)

Strontium hydrogen arsenate, SrHAsO₄+ 1½H₂O₃.

Insol. in cold, but decomp. by hot H₂O into a basic, and a sol. acid salt. 100 pts. H₂O at 15.5° dissolve 0.284 pt. (Thompson, **1831**.) Sol. in HC₂H₃O₂, and very easily in HCl+Aq. (Kotschoubey, J. pr. **49**. 182.) Sol. in HNO₄+Aq.

 $SrH_4(AsO_4)_2+2H_2O$. Partly sol. in H_2O . (Hörmann, Dissert. **1879**.)

Strontium vanadium arsenate, SrHAsO₄, $2(VO_2)H_2AsO_4+7\frac{1}{2}H_2O$.

See Arseniovanadate, strontium.

Strontium arsenate chloride, $3Sr_3(AsO_4)_2$, $SrCl_2$.

Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (Lechartier, C. R. **65.** 172.)

Thallous arsenate, Tl₃AsO₄.

Sol. in H₂O. (Willm, A. ch. (4) 5. 5.)

Thallous hydrogen arsenate, Tl₂HA₈O₄. Very easily sol. in H₂O. (Willm.)

Thallous dihydrogen arsenate, TlH₂AsO₄. Easily sol. in H₂O. (Willm.)

Thallic arsenate, TlAsO₄+2H₂O.

Insol. in H₂O; sol. in HCl+Aq; decomp. by NH₄OH, or KOH+Aq. (Willm.)

Thorium hydrogen arsenate, Th(HAsO₄)₂+ 6H₂O.

Insol. in H₂O or H₃AsO₄+Aq. (Berzelius.) Ppt.; insol. in H2O. (Barbieri, C. A. 1911. 3385.)

 $Th(H_2AsO_4)_4 + 4H_2O$. Decomp. by H_2O . (Barbieri, l. c.)

Tin (stannous) arsenate, SnHAsO₄+12H₂O. Insol. in H₂O. (Lenssen, A. **114.** 113.)

Tin (stannic) arsenate, 2SnO₂, As₂O₅.

Ppt. Insol. in H₂() and dil. HNO₃ + Aq. (Haeffely, Phil. Mag. (4) 10. 290.)

 $\operatorname{Sn}_3(\operatorname{AsO}_4)_4 + 6\operatorname{H}_2\operatorname{O}$. Insol. in $\operatorname{H}_2\operatorname{O}$; sol. in conc. HCl+Aq, and in aqua regia; msoi. in HNO₃+Aq or H₂SO₄. (Williams, Proc. Soc.

Manchester, 15. 67.)

Colloidal... Very slowly sol. in H₂O, from which it is pptd. by HCl, HNO₃, or H₂SO₄+ Aq; also by BaCl₂, CaCl₂, NH₄Cl, and FeCl₃+Aq, and by AgNO₃, or KI+Aq. Not pptd. by alcohol, HC₂H₃O₂, HgCl₂, Na₂CO₃, K₂CO₃, or (NH₄)₂CO₃+Aq. The pptd. jelly is readily sol. in conc. acids, and KOH, or NaOH+ Aq. (Williams, l.c.)

Tin (stannous) arsenate chloride, $Sn_3(AsO_4)_2$, $SnCl_2+2H_2O$.

Decomp. on air. (Lenssen, A. 114, 113.)

Titanium arsenate (?).

Insol. in H₂O. Sol. in titanic acid, arsenic acid, or HCl+Aq. Sol. in Ti salts+Aq. (Rose.)

Titanyl arsenate, 5TiO₂, 2As₂O₅.

Sol, in acids without decomp. Scarcely attacked by KOH or by NH₄OH+Aq. (Reichard, B. 1894, **27.** 1026.)

Uranous arsenate, $U_3(AsO_4)_2$.

Uranous hydrogen arsenate, $UH_2(AsO_4)_2 +$ 3H₂O.

Ppt. Sol. in HCl+Aq.

Uranyl arsenate, $(U()_2)HAs()_4+4H_2()$.

Insol. in H_2O , $HC_2H_3O_2$, and saline solutions, as NH_4Cl+Aq ; sol. in the mineral acids; sol. in K₂CO₃+Aq. (Werther, A. 68. 313.)

 $(UO_2)H_4(AsO_4)_2+3H_2O_{\bullet}$ (Werther.) (UO₂)₂As₂O₇. Insol. in H₂O; sol. in acids. $(UO_2)_3(AsO_4)_2 + 12H_2O.$ Min. Troegerite.

Vanadium dihydrogen arsenate, $(VO_2)H_2AsO_4$ +4H₂O.

Easily sol. in H₂O. (Friedheim, B. 23. 2600.)

See Arseniovanadic acid.

Vanadium zinc arsenate, $(VO_2)_2ZnH_2(AsO_4)_2$ $+5\frac{1}{2}H_2O_1$, and $2(VO_2)H_2AsO_4+6\frac{1}{2}H_2O_1$. See Arseniovanadate, zinc.

Vanadyl arsenate, $(VO)_2HAsO_4+H_2O$.

Very slowly sol, in H₂O; insol, in alcohol; easily sol. in HCl+Aq. (Berzelius.)

Composition given by Friedheim (B. 23.

Yttrium arsenate, YtHAsO4.

Ppt. Insol. in acetic, easily sol. in mineral acids.

Zinc arsenate, basic, 4ZnO, $As_2O_5+H_2O$.

(Friedel, J. B. 1866, 949.) Min. Adamite. Easily sol in dil. HCl+Aq, and is attacked by $HC_2H_3O_2$.

Zinc arsenate, $Zn_8(AsO_4)_2$.

(deSchulten, Bull Soc. (3) 2. 300.) +3H₂O. Ppt. Sol. in HNO₃, and H₃AsO₄ +Aq. (Köttig, J. pr. **48.** 182.) +8H2O.

Min, Köttigite.

Zinc arsenate, acid, Zn₅H₂(AsO₄)₄.
Easily sol. in cold HCl+Aq, less easily in cold HNO₃. Sol. in KOH, or NaOH+Aq (Gorguel, Dissert, 1894.)

+3H₂O. Insol. in H₂O; sol. in H₃AsO₄, or

HNO₃+Aq. (Mitscherlich.) +5H₂O. Sol. in dil. HCl+Aq. (Demel, B. 12. 1279.) Could not be obtained, (Coloriano, Bull. Soc. (2) 45. 709.)

2ZnO, As₂O₅. Very slowly decomp. by cold, rapidly by boiling H₂O. (Lefèvre.)

ZnHAsO₄+H₂O. Insol. in H₂O. (Debray, Bull. Soc. (2) 2. 14.)

Decomp. by hot H₂O into 4ZnO, As₂O₅+ H₂O. (Coloriano, C. R. 103. 273.) $Zn(ZnOH)_2As_2O_7+7H_2O$ (Gorgeul.)

Zinc arsenate ammonia, Zn₃(AsO₄)₂, 2NH₃+ 3H₂O.

Insol. in H₂O; sol. in acids, NH₄OH, or KOH+Aq. (Bette, A. 15. 141.)

Zirconium arsenate, $2ZrO_2$, $As_2O_5 + \frac{5}{2}H_2O =$ $(ZrO)HAsO_4 + \frac{3}{4}H_2O.$

Ppt. Insol. in H₂O or HCl+Aq. (Paykull, B. 6. 1467.)

Perarsenic acid.

See Perarsenic acid.

Arsenicotungstic Acid.

Ammonium vanadium arsenicotungstate. See Arsenicovanadicotungstate, ammonium.

Arsenicovanadicotungstic acid.

Ammonium arsenicovanadicotungstate $16(NH_4)_2O_1$, $5As_2O_3$, $15V_2O_3$, $26WO_3$ + 101H₂O.

Sl. sol. in cold, readily sol. in hot H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 308.)

Arsenimide, $As_2(NH)_3$.

Decomp. by H₂O. (Hugot, C. R. 1904, **139.** 56.)

Arsenioarsenic acid, 3As₂O₈, 2As₂O₅+

Decomp. by H₂O. (Joly, C. R. 100. 1221.) ${}^{3}\text{As}_{2}\text{O}_{3}$, ${}^{4}\text{As}_{2}\text{O}_{5} + {}^{4}\text{H}_{2}\text{O}$. Decomp. by ${}^{4}\text{H}_{2}\text{O}$. (Joly.) As_2O_3 , $As_2O_5+H_2O$. Decomp. by H_2O .

(Joly.) See also Arsenic trioxide pentoxide.

Arseniochromic acid.

Ammonium arseniochromate, $2(NH_4)_2O$, As_2O_5 , $4CrO_3+H_2O$.

Insol. in H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 280.)

3(NH₄)₂O, As₂O₆, 8CrO₃. Decomp. by recryst. from H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 281.)

Potassium arseniochromate, 2K₂O, As₂O₅, 4CrO₃.

Decomp. by recryst. from H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 275.)

 $2K_2O$, As_2O_5 , $4CrO_3+H_2O$. Decomp. by recryst, from H₂O. (Friedheim and Mozkin, l.c.

Arseniomolybdic acid, As₂O₅. 6MoO₃+

By recryst, from H₂O the comp. with 18H₂O is formed. (Pufahl, Dissert. 1888.)

 $+16H_{2}O$. Sol, in H₂O, (Debray.)

+18H₂O. Completely sol, in H₂O. Sp. gr. of sat. solution at 18.8° is 2.21. Easily sol. in abs. alcohol. Insol. in CS2, liq. hydrocarbons and CHCl₃. (Pufahl, l.c.)

 As_2O_5 , $7MoO_3+14H_2O$. (Seyberth, B. 7. 391.)

 As_2O_4 , $18MoO_3 + 28H_2O$. Very sol, in H_2O . Sp. gr. of sat. solution at $18.3^{\circ} = 2.45$ and 1 cc. contains 2.16 g. acid. Easily sol. in absolute alcohol; insol. in CS2, liquid hydrocarbons and CHCl₃. (Pufahl, *l.c.*)

Sol. in ether with subsequent separation into two layers. See Phosphotungstic acid. (Drechsel, B. 20, 1452.)

 $+38H_2O$. Efflorescent. When recryst. comp. with 28H₂O is formed. (Pufahl, l.c.) As₂O₅, $20\text{MoO}_3 + 27\text{H}_2\text{O}$. Sl. sol. in HNO₃ +Aq. (Debray, C. R. **78**. 1408.)

arseniomolybdate, Ammonium $(NH_4)_2O_7$ As₂O₅, 2MoO₃+3H₂O.

(Friedheim, Z. anorg. 1894, **6**, 28.)

+4H₂O. (Friedheim, l.c.)

 $(NH_4)_2O$, As_2O_5 , $6MoO_3+2H_2O$. Sl. sol. in cold H_2O ; sols in acids. (Debray.) $+4H_2O$. Sl. sol. in cold, very easily sol. in

hot H2O. (Pufahl, l.c.)

 $2(NH_4)_2O$, As_2O_5 , $6M_2O_3+6H_2O$. Sl. sol. H_2O . Cannot be recryst. therefrom. in H₂O. (Pufahl.)

+12H₂O. (Friedheim, Z. anorg. 1894, **6.**

 $3(NH_4)_2O$, As_2O_5 , $6MoO_3+4H_2O$. (Friedheim, l.c.)

 $+8H_2O$. (Friedheim, *l.c.*) $(NH_4)_2O_1$ $2H_2O$, $7M_0O_3$, $As_2O_5+4H_2O$.

Sol. in hot H₂O. (Seyberth, B. **7.** 391.) Not obtained. (Pufahl.) $7(NH_4)_2O$, $2As_2O_b$, $14M_0O_3+28H_2O$.

(Friedheim, *l.c.*)

 $5(NH_4)_2O$, As_2O_5 , $16MoO_3 + 5H_2O$. (Friedheim, Z. anorg. 1894, 6. 31.)

 $5(NH_4)_2O$, As_2O_5 , $16M_0O_3 + 9H_2O$. Nearly insol. in cold, sol. in boiling H₂O. Easily sol. in NH₄OH + Aq. (Gibbs, Am. Ch. J. **3**. 402.) +12H₂O. (Pufahl, l.c.)

 $2(NH_4)_2O_1$ $18\text{MoO}_3 + 17\text{H}_2\text{O}$. As_2O_5

(Pufahl, l.c.)

 $3(NH_4)_2O_3As_2O_5,18M_0O_3+14H_2O_5$ sol. in H₂O and alcohol. (Kehrmann, Z. anorg. 1894, 7. 421.)

3(NH₄)₂O, As₂O₅, 20MoO₃. Easily sol. in H₂O. (Debray, C. R. **78.** 1408.)

 $3(NH_4)_2O$, As_2O_5 , $24MoO_3+12H_2O$. Decomposed by H₂O, especially when boiling. Easily sol. in NH₄OH+Aq, less easily sol. in warm H₂SO₄ and boiling H₃AsO₄+Aq. Sl. sol. in molybdic acid+Aq, HNO3, and conc. NH_1NO_3+Aq . (Pufahl, $\hat{l}.c.$)

Barium arseniomolybdate, BaO, As₂O₅, $6M_0O_3 + 10H_2O_2$

Sl. sol. in H₂O. Partially decomp, by boiling. (Pufahl, l.c.)

3BaO, As_2O_5 , $6MoO_3$. Sl. sol. in H_2O . (Pufahl, l.c.)

3BaO, As₂O₅, 7MoO₃. Ppt. (Seyberth.) 3BaO, As_2O_5 , $18MoO_3$. Decomp. by H_2O . (Pufahl, l.c.)

Cadmium arseniomolybdate, CdO, 2H₂O, As_2O_5 , $6MoO_3+11H_2O_1$

(Pufahl.)

3CdO, $3\text{H}_2\text{O}$, $A\text{s}_2\text{O}_5$, $18\text{M}_0\text{O}_3 + 33\text{H}_2\text{O}$. (Pufahl.)

Cæsium arseniomolybdate, Cs2O, As2O5, 6MoO3.

Sl. sol. in H_2O . (Pufahl, l.c.) $4C_{s_2O}$, $A_{s_2O_{s_3}}$, $26M_{0}O_{3} + 15H_{2}O_{s_2}$ Ppt. (Ephraim, Z. anorg. 1910, 65. 246.)

Calcium arseniomolybdate, CaO, $6M_0O_3 + 10H_2O_1$

Rather difficultly sol, in cold H₂O. (Pufahl, l.c.)

3CaO, As₂O₅, 6MoO₃. As Ba salt. (Pufahl, *l.c.*)

3CaO, As_2O_5 , $18MoO_3+32H_2O$. Very sol. in H₂O. Solution sat. at 18° has sp. gr. = 2.163. (Pufahl, *l.c.*)

Cobalt arseniomolybdate, CoO, 2H₂(), As₂O₅, $6\text{MoO}_3 + 11\text{H}_2\text{O}$.

(Pufahl.)

3CoO, $3\text{H}_2\text{O}$, $4\text{s}_2\text{O}_5$, $18\text{MoO}_3 + 33\text{H}_2\text{O}$. (Pufahl.)

Cupric arseniomolybdate, CuO, 2H₂O, As₂O₅, $6\text{MoO}_8 + 15\text{H}_2\text{O}$. (Pufahl.)

3CuO, 3H₂O, As₂O₅, 18M₀O₃+34H₂O. (Pufahl.)

As2O5, Lithium arseniomolybdate, Li₂O, $6\text{MoO}_3 + 14\text{H}_2\text{O}$.

Very sol. in H₂O. (Pufahl, l.c.) 3Li₂O, As₂O₅, 18MoO₃+34H₂O. Solution sat. at 15° has sp. gr. of 2.481. (Pufahl, l.c.)

Magnesium arseniomolybdate, MgO, As, O5, $6M_0O_3 + 13H_2O_1$

Very sol. in H_2O . (Pufahl, l.c.) 3MgO, As₂O₅, 18MoO₃+36H₂O. Sol. in H₂O. (Pufahl, l.c.)

Manganese arseniomolybdate, MnO, 2H₂O. As_2O_5 , $6MoO_3+11H_2O$.

(Pufahl.) 3MnO, $3H_2O_1$, As_2O_5 , $18M_0O_3 - 33H_2O_2$

(Pufahl.)

Nickel arseniomolybdate, NiO, 2H₂O, As₂O₅, $6\text{MoO}_3 + 11\text{H}_2\text{O}$. (Pufahl.)

3NiO, $3H_2O$, As_2O_6 , $18MoO_3 + 34H_2O$. (Pufahl.)

Potassium arseniomolybdate, K₂O, As₂O₅, $2\text{MoO}_3 + 5\text{H}_2\text{O}$.

Sol. in H_2O . (Friedheim, Z. anorg. 2. 314.) K_2O , As_2O_5 , $6MoO_3+5H_2O$. Sol. in hot H₂O without decomp. (Friedheim, Z. anorg. 1892, **2.** 330.)

K₂O, As₂O₅, 18MoO₃+25H₂O. Easily sol. in cold H₂O. Decomp. on dilution. (Pufahl, l.c.)

 $3K_2O$, As_2O_5 , $18M_0O_3 + 26H_2O$. Easily sol. in H₂O, (Pufahl, l.c.)

3K₂O, As₂O₅, 20MoO₃. (Debray, C. R. **78**. 1408.) Insol. in H_2O .

 $3K_2O$, As_2O_5 , $24MoO_3+12H_2O$. Somewhat sol. in H₂O acidified with HNO₃. (Pufahl, l.c.

Rubidium arseniomolybdate, 3Rb₂O, 3As₂O₅, $5\text{MoO}_3 + 9\text{H}_2\text{O}$.

Easily sol. in H₂O. (Ephraim, Z. anorg. 1910, **65**. 241.)

 $\mathrm{Rb}_2\mathrm{O},\ \mathrm{As}_2\mathrm{O}_5,\ \mathrm{6MoO}_3.$ Sl. sol. in $\mathrm{H}_2\mathrm{O}.$ (Pufahl, l.c.)

4Rb₂O, As₂O₅, 18MoO₃+40H₂O. (Ephraim, Z. anorg. 1910, **65.** 241-4.) Pptd.

Silver arseniomolybdate, 3Ag₂O, As₂O₅, $6\text{MoO}_3 + x\text{H}_2\text{O}$.

(Pufahl, Leipzig, 1888.)

6Ag₂O, As₂O₅, 18MoO₃+22H₂O. Sl. sol. in H₂O. Very sol. in NH₄OH and in dil. HNO3. (Pufahl, l.c.)

 $7Ag_2O$, $2As_2O_5$, $36MoO_3+30H_2O$. Sl. sol. in cold, easily sol. in hot H2O strongly acidified with HNO_3 . (Pufahl, l.c.)

Sodium arseniomolybdate, Na₂O, As₂O₅, $2\text{MoO}_3 + 8\text{H}_2\text{O}$.

(Friedheim, Z. anorg. 1892, 2. 357.)

 Na_2O , As_2O_5 , $6MoO_3+12H_2O$. Very sol. in H₂O. Solution sat. at 19.8° has sp. gr. = 4 1.678. (Friedheim, *l.c.*)

 $3Na_2O$, As_2O_5 , $6MoO_8+11H_2O$, $+12H_2O$. and +13H₂O. Sl. sol, in cold H₂O. *(Pufahl.

3Na₂O₂, As₂O₅, 18MoO₃+24H₂O. Easily sol. in H₂O. (Pufahl, *l.c.*) +30H₂O. Sl. sol. in cold H₂O. (Pufahl,

Strontium arseniomolybdate, SrO, As₂O₅, $6\text{MoO}_3 + 10\text{H}_2\text{O}$.

As Ba salt. (Pufahl, l.c.)

3SrO, As₂O₅, 6MoO₃. As Ba salt. (Pufahl, l.c.) $3S_1O$, As_2O_5 , $18MoO_8+32H_2O$. Very sol. in H_2O . (Pufahl, *l.c.*)

Thallium arseniomolybdate, 6Tl₂O, As₂O₅, $18\text{MoO}_3 + x\text{H}_2\text{O}$.

Ppt. (Pufahl.)

 $3\text{Tl}_2\text{O}, 3\text{H}_2\text{O}, \text{As}_2\text{O}_5, 18\text{MoO}_3 + 3\text{H}_2\text{O}$. Ppt. (Pufahi.)

Zinc arseniomolybdate, ZnO, 2H₂O, As₂O₅, $6\text{MoO}_3 + 11\text{H}_2\text{O}$.

(Pufahl.)

3Zn(), As₂O₅, 18MoO₃+37H₂O. Very sol. in H₂O. (Pufahl.)

Arseniophosphovanadicotungstic acid.

Ammonium arseniophosphovanadicotungstate, 88(NH₄)₂O, 2As₂O₅, 12P₂O₅, $69V_2O_3$, $148WO_3+484H_2O$.

Sol. in H₂O. Insol. in alcohol and ether. (Rogers, J. Am. Chem. Soc. 1903, 25. 313.)

Arseniophosphovanadicovanadiotungstic acid.

Ammonium arseniophosphovanadicovanadiotungstate, $99(NH_4)_2O$, $2As_2O_5$, $12P_2O_5$, $6V_2O_3$, $66V_2O_5$, $191WO_3 + 522H_2O$.

Sl. sol. in cold H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 314.)

Arseniophosphovanadiotungstic acid.

Ammonium arseniophosphovanadiotungstate. $82(NH_4)_2O$, $3As_2O_5$, $12P_2O_5$, $52V_2O_5$, $201WO_3 + 567H_2O$.

Very sol. in warm H₂O. Insol. in organic solvents. (Rogers, J. Am. Chem. Soc. 1903, **25.** 312.)

Arseniosulphuric acid.

Ammonium arseniosulphate, $2(NH_4)_2O$,

 $A_{S_2O_5}$, $2SO_3 + 3H_2O$. Can be recryst. from H₂O. (Friedheim and Mozkin, Z. anorg. 1894, 6. 290.)

Potassium arseniosulphate, 2K2O, As2O5, $2SO_3+3H_2O$.

(Friedheim and Mozkin, Z. anorg. 1894, 6

 $5K_2O$, As_2O_5 , $8SO_3+6H_2O$. (Friedheim and Mozkin, Z. anorg. 1894, 6. 291.)

Sodium arseniosulphate. 2Na₂O. As₂O₅, $280_a + 3H_2O$

(Friedheim and Mozkin, Z. anorg. 1894, 6.

Arseniotelluric acid.

Ammonium arseniotellurate, 2(NH₄)₂O, As_2O_δ , TeO_3+4H_2O .

Sol. in H₂O. (Weinland, Z. anorg. 1901, $4(NH_4)_2O_5$, $3As_2O_5$, $2TeO_3+11H_2O_5$. Sol. in H₂O. (Weinland.)

Sodium arseniotellurate, 2Na₂O, As₂O_b, $2\text{TeO}_3 + 9\text{H}_2\text{O}$.

Ppt. (Weinland, l.c.)

Arseniotungstic acid, 3H2O, As2O5, 16WO3 $+32H_2O = H_3AsW_8O_{28} + 16H_2O$ hydroarsenioluteotungstic acid).

Sol. in H₂O. (Kehrmann, A. **245**. 45.) 3H₂O, As₂O₅, 19WO₃ (?). Sp. gr. of sat. solution in H₂O is 3.279. (Fremery, B. 17.

Is a mixture containing principally $H_3AsW_8O_{28}+16H_2O$. (Kehrmann.) As_2O_5 , $18WO_3+xH_2O$. Sol. in H_2O . (Kehrmann, Z. anorg. 1899, 22, 292.)

Aluminum ammonium arseniotungstate.

Aluminicoarseniotungstate, nium.

Ammonium arseniotungstate, 4(NH₄)₂(), $2H_2O$, As_2O_4 , $6WO_3+3H_2O$.

Sl. sol. in cold H₂O or HNO₃+Aq; easily sol. in boiling H₂O. (Gibbs, Proc. Am. Acad. **16.** 135.)

 $7(NH_4)$ O, As_2O_5 , $14WO_3$, $+17H_2O$. Very sl. sol. even in boiling H_2O . (Fremery, l.c.) $3(NH_4)_2O$, As_2O_5 , $16WO_3+16H_2O=(NH_4)_3AsW_8O_{28}+8H_2O$. Sol. in H_2O . (Kehrmann.)

 $5(NH_4)_2O$, As_2O_5 , $17WO_3 + 8H_2O$. Can be recryst. from H₂O without decomp. Decomp. by long boiling with H₂O. (Kehrmann, Z. anorg. 1899, **22.** 294.)

 $3(NH_4)_2O$, As_2O_5 , $18WO_5+14$, or $18H_2O$. Very sol. in cold H_2O . Can be recryst. from H₂O. (Kehrmann, l.c.)

 $3(NH_4)_2O$, As_2O_5 , $21WO_3 + xH_2O$ Easily sol. in H2O. Easily decomp. on recryst. (Kehrmann, l.c.)

 $3(NH_4)_2O$, As_2O_5 , $24WO_3+12H_2O$. More sol, in H2O than corresponding phosphotungstate. (Kehrmann, l.c.)

Barium arseniotungstate, 2BaO, As₂O₂, $16WO_8 + xH_2O$.

Sol. in H₂O. (Péchard, A. ch. (6) 22. 262.) 7BaO, As₂O₅, 22WO₃+54H₂O. Sol. ifi³ H₂O. Can be recryst, therefrom. (Kehr-those that give an insol, salt with the bases, mann, l.c.)

Potassium arseniotungstate, 3K₂(), 3H₂O, As₂O₅, 6WO₃.

Thsol, in H₂O. Readily sol, in alkali hydroxides+Aq. (Gibbs.) 3K₂O, As₂O₅, 16WO₃+16H₂O = K₃AsW₈O₂₈ +8H₂O. Sol, in H₂O. (Kehrmann.) 5K₂O, As₂O₅, 17WO₃+22H₂O. Scarcely

sol, in cold H₂O. (Kehrmann, Z. anorg. 1899, **22.** 295.)

 $3K_2O$, As_2O_5 , $18WO_3 + 14H_2O$. Efflorescent. (Kehrmann, l.c.) 3K₂O, As₂O₅, 19WO₃+16H₂O (?). Sol. in

H₂O. (Fremery.)

Silver arseniotungstate, ${ m Ag_5AsW_8O_{29}}$.

Insol. in H₂O (Kehrmann, A. 245. 55); perhaps identical with-

 $6Ag_2O$, As_2O_5 , $16WO_3 + 11H_2O$. Insol. in H₂O. (Gibbs.)

Sodium arseniotungstate, 3Na₂O, As₂O₅, $3WO_3 + 20H_2O$.

Very sol. in H₂O. (Lefort, C. R. **92.** 1461.)

Arsenious acid, HAsO₂.

Solubility of $HAsO_2$ in amyl alcohol +Aq, at

 $a_{\mathbf{w}} = \text{mol. of } HAsO_2 \text{ in } 1 \text{ l, of } H_2O.$ $a_a = \text{mol. of } HAsO_2 \text{ in } 11. \text{ of amyl alcohol.}$ h = partition coefficient.

ау	aa	h
0 0449	0.0082	5.48
0 0446	0.0083	5.38
0 0887	0.0164	5.41
0 0892	0.0161	5.53
0 1800	0.0324	5.55

(Auerbach, Z. anorg. 1903, 37, 356.)

Solubility of HAsO₂ in sat. H₃BO₃+Aq and amyl alcohol.

aw = mol. of HAsO2 in 1 l. of H2O. $a_a = \text{mol. of } HAsO_2 \text{ in } 1 \text{ l. of amyl alcohol.}$ h = partition coefficient.

аw	иа	h
$0.0859 \\ 0.1720$	$0.0161 \\ 0.0321$	5.33 5.35

(Auerbach, l.c.)

Insol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

See Arsenic trioxide.

Arsenites.

All arsenites, except those of the alkali metals, are partially or wholly insol. in H2O, but easily sol. in acids; several are sol. in (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl+Aq.

All basic arsenites are sol. in acids except Many are sol. in excess of As₂O₃+Aq.

Aluminum arsenite, Al₂O₃, As₂O₃.

Sl. sol. in boiling H₂O. Easily sol. in NaOH +Aq and in acids. (Reichard, B. 1894, 27. 1029.)

Aluminum arsenite iodide, All₃, 6As₂Q₂-16H₂O.

(Grühl, Dissert. 1897.)

Ammonium arsenite, NH₄AsO₂.

Very sol. in H₂O. (Luynes, J. pr. **72**. 180.) Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014); (Naumann, B. 1904, **37**. 4328.) (NH₄)₄AsO₃ (?). Sol. in H₂O. (Stavenhagen, J. pr. 1895, (2) **51.** 11.) (NH₄)₄As₂O₅. Very sol. in H₂O. Insel. in alcohol or ether. (Stein, A. **74.** 218.)

Could not be obtained. (Stavenhagen.)

Ammonium arsenite bromide, 2As₂O₃, NH₄Br. Sl. sol. in H₂O. (Rüdorff, B. **19**. 2679.)

Ammonium arsenite chloride, As₂O₃, NH₄Cl. Sl. sol. in H₂O. Sol. in warm dil. NH₄OH +Aq. (Rüdorff.)

Ammonium arsenite iodide, 2As₂O₃, NH₄I. Sl. sol. in boiling H₂O. Sol. in warm dil. NH₄OH+Aq. (Rüdorff.)

Antimony arsenite (?).

Ppt. Sol. in a small amount H₂O, but insol. in a large quantity. (Berzelius.) Completely sol. in KOH + Aq. (Reynolds.)

Barium arsenite, $Ba(AsO_2)_2$.

Easily sol, in H₂O when recently pptd., but insol. after being dried. Pptd. from aqueous solution by boiling. (Filhol, A. 68. 308.)

Only sl. sol. in H₂C. (Stavenhagen, J. pr. 1895, (2) **51**. 18.)

Ba₃(AsO₃)₂. Sl. sol. in cold H₂O; sol. in hot H2O and dil. acids. (Stavenhagen, J. pr. 1895, (2) **51.** 17.)

BaH₄(AsO₃)₂. Ppt. (Bloxam, Chem. Soc.

+34H₂O. Moderately sol. in cold, more easily sol, in hot H₂O. Insol, in alcohol. (Perper, Dissert. 1894.)

 $Ba_2As_2O_5+2H_2O$. Easily sol. in H₂O. (Stavenhagen, J. pr. 1895, (Ž) **51.** 18.)

+4H₂O. Sl. sol. in H₂O; also somewhat sol. in alcohol. (Stein, A. 74. 218.)

Sl. sol. in H_3AsO_4+Aq and BaO_2H_2+Aq . (Dumas.)

Sol. in NH₄Cl+Aq. (Wackenroder, A. 41. 316.)

Not pptd. from solutions containing Na citrate. (Spiller.)

BaAs₄O₇. Sol. in H₂O. Less sol. in alcohol. (Reichard, B. 1894, 27. 1033.)

Bismuth arsenite, $BiAsO_3 + 5H_2O$ (?).

Easily sol. in HNO₃+Aq. (Schneider, J_{*} p. (2) **20.** 419.)

Sl. sol. in H₂O. (Stavenhagen, J. pr. 1895, **(2) 51.** 35.)

Cadmium arsenite, $Cd_3(AsO_3)_2$.

Isl. sol. in H₂O; easily sol. in NH₄OH+Aq and dil. acids. (Stavenhagen, l.c.) Cd₂As₂O₅. Ppt. (Reichard, B. 1898, **31.**

Sol. in acids without decomp.; insol. in

alkalis. (Reichard, B. 1894, 27. 1033.) 5CdO, As₂O₂+12H₂O. Not attacked by KOH, Ba(OH), or alkali carbonates+Aq. Insol. in KCN + 4q. (Reichard, Ch. Z. 1902, **26.** 1/45.)

Cæsium arsenite bromide, As₂O₃, CsBr. Sol. in H₂O. (Wheeler, Z. anorg. 4. 451.)

Cæsium arsenite chloride, As₂Ø₃, CsCl. As above.

Cæsium arsenite iodide, As₂O₃, CsI. As above.

Calcium arsenite, Ca(AsO₂)₂.

Somewhat sol. in H₂O; sol. in Ca(OH)₂ Aq or As_2O_3+Aq . (Simon, Pogg. 47. 417.)

Ca₃(AsO₃)₂. Ppt. (Kühn, J. B. **1852**. 379.) Only sl. sol. H₂O; readily sol. in dil. acids. (Stavenhagen, l.c.)

Sol. in H₂O, insol. in alcohol. (Reichard, B. 1894, 27. 1036.)

3CaO, $2As_2O_3 + 3H_2O$. Sl. sol. in H_2O ; easily sol. in NH₄Cl+Aq; sol. in As₂O₃+Aq. (Stein.)

 $CaH_4(AsO_3)_2 + xH_2O$. Moderately sol. in H₂O. Insol. in abs. alcohol. (Perper, Dissert. 1894.)

Ca₂As₂O₅. Sl. sol. in H₂O; 1 pt. in 3000-4000 pts. H₂O. Alkali chlorides increase solubility slightly. (Stavenhagen, l.c.)

Sl. sol. in H2O; insol. in H2O containing CaO2H2. (Berzelius.)
Not pptd. in presence of 4000-5000 pts. H₂O. (Hart-

Not pptd. in presence of 4000-5000 pts. H₂O. (Harting, Lassaigne.)

Not pptd. from solutions containing NH₄ salts; and when pptd. is sol. in (NH₄)₂SO₄, NH₄NO₃, NH₄C₃H₃O₂, and NH₄Cl+Aq. (Gieseke and Schweigger.)

Sol. in NH₄AsO₂+Aq. (Schweigger.)

Sol. in CaCl₂+Aq. (Ordway.)

Easily sol. in dil. acids. Nct pptd. from solutions containing sodium citrate. (Spiller.)

Calcium arsenite iodide, CaI₂, 3As₂O₃+ 12H₂O.

Sl. sol. in H₂O. Decomp. on heating. (Grühl, Dissert. 1897.)

Chromic arsenite, CrAsO₃.

Sol. in H₂O, but slowly decomp. by boiling. (Neville, C. N. **34**. 220.)

Sol. in HCl; repptd. by NH₄OH+Aq; sol. in KOH+Aq. (Reichard, B. 1894, 27, 1028.)

Cobaltous arsenite basic, 7CoO, As₂O₃.

Very sol. in dil., difficultly sol. in conc. H₂SO₄. Sol. in conc. NaOH and in conc. NH₄OH+Aq. (Reichard, Z. anal. 1903, 42. 10.)

Cobaltous arsenite, 3CoO, As₂O₃.

Sol, KOH+Aq with decomp. (Identical with salt of Girard). (Reichard, B. 1894, 27.

+4H₂O. Sl. sol. in H₂O; easily sol. in acids. (Stavenhagen, J. pr. 1895, (2) 51. 39). 3CoO, $2As_2O_3+4H_2O$. Sol. in HNO₃. (Girard, C. R. 1852, 34. 918.)

 $\text{Co}_3\text{H}_6(\text{AsO}_3)_4$. Insol. in $\text{H}_2(\cdot)$; sol. in HNO_3 , HCl, or $\text{NH}_4\text{OH} + \text{Aq}$. (Proust.)

Only sol, in KOH, or NaOH+Aq when formed in a solution containing an excess of those reagents. (Reynoso, C. R. 31. 68.)

Co₂As₂O₅. Ppt. (Reichard, B. 1898, **31.** 2165.)

Sol. in HNO₃ and HCl+Aq. (Proust.)

Cupric arsenite, $Cu(As()_2)_2$.

(Avery, J. Am. Chem. Soc. 1906, 28, 1161.) Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 827.)

+H₂O. Sl. sol. in H₂O. (Stavenhagen,

+2H₂O. Sl. sol in H₂O; insol, in alcohol. *Stavenhagen, l.c.)

3CuO, As₂O₃. Ppt. (Stavenhagen, l.c.) 2CuO, As2O3. (Scheele's green.) Insol. in H₂O; sol. in KOH+Aq, NH₄OH+Aq, and in most acids. Formula is Cu₃(AsO₃)₂+ 2H₂O. (Sharples, C. N. 35, 89.)

Sol. in NH OH + Aq without decomp. Sol. in KOH+Aq with decomp. (Reichard, B. 1894, **27**, 1026.)

Insol. in pyridine. (Schroeder, Dissert. 1901.)

5CuO, As₂O₈. Insol. in H₂O, sol. in acids, NH₄OH + Aq and cone, MOH + Aq. (Reichard, Ch. Z. 1902, 26. 1142.)

xCuO, yAs₂O₃. Min. Trippkëite. Easily sol, in HNO₃ and in HCl+Aq.

Didymium arsenite, Di₂H₃(AsO₃)₃.

Ppt. (Frerichs and Smith, A. 191, 355.) Does not exist. (Cleve, B. 11, 910.)

Glucinum arsenite iodide, Gll_2 , $3As_2O_3+$ 8H₂O.

Decomp. by H₂O. (Grühl, Dissert, **1897.**)

Gold (aurous) arsenite, 3Au₂O,As₂O₃.

Decomp. by light. (Reichard, B. 1894, **27.** 1027.)

Gold (auric) arsenite, $AuAsO_3 + H_2O$.

Very sol. in H₂O, NH₄OH+Aq and dil. acids. (Stavenhagen, J. pr. 1895, (2) 51. 28.)

Iron (ferrous) arsenite, FeO, As₂O₃.

Decomp. in the air when moist; sol. in NH₄OH + Aq when freshly pptd. (Reichard, B. 1894, 27. 1029-30.)

 $Fe_2As_2O_5$. Ppt. Sol. in NH_4OH+Aq ; insol. in NH4 arsenite, or other NH4 salts+ Aq. (Wittstein.)

Iron (ferric) arsenite, basic, 4Fe₂O₃, As₂O₃+ 5H₂O.

Ppt. H₂O extracts As₂O₃. Sol. in conc. acids with separation of As2O3. Acetic acid is without action. (Bunsen and Berthold, 1834.)

Sol. in KOH, or NaOH+Aq.

Iron (ferric) arsenite, Fe₂O₃,As₂O₃.

Sol. in NH₄OH+Aq when freshly pptd. (Reichard, B. 1894, 27. 1030.)

Fe₄As₂O₉. Ppt. (Reichard, B. 1898, 31. 2170.)

+7H₂O. Sol. in NaOH, and KOH+Aq. "Ferric arsenite" is sl. sol. in Al₂(SO₄)₃+ Aq. (Kynaston, Dingl. 235. 326.)

Lanthanum arsenite, $La_2H_3(AsO_3)_3$.

Ppt. (Frerichs and Smith, A. 191, 355.) Does not exist. (Cleve, B. 11. 910.)

Lead arsenite, $Pb(AsO_2)_2 + xH_2O$.

Sl. sol, in H2O. Insol, in KOH, but sol, in NaOH+Aq. (Berzelius.)

Pb₂As₂O₅. Insol. in H₂O, NH₄OH, NH₄ arsenite, or other NH₄ salts+Aq. (Wittstein.)

 $Pb_3(AsO_3)_2$. Scarcely sol. in H_2O ; easily sol. in HNO₃, or HC₂H₃O₂+Aq. Boiling H₂O dissolves some As₂O₃. Not completely insol, in KOH+Aq. (Streng, A. **129.** 238.)

Sol, in acetic acid; insol, in H₂O in the presence of ammonium salts; sol. in NaOH+ Aq; sl. sol. in KOH+Aq. (Reichard, B. 1894, **27,** 1024.)

 $+ H_2O$. Sl. sol. in H_2O ; easily sol. in dil. acids. (Stavenhagen, J. pr. 1895, (2) 51, 33.

Lead arsenite chloride, Pb₅As₂O₈, 2PbCl₂,

Min. Ekdemite. Easily sol. in HNO3+Aq, and warm HCl+Aq.

Magnesium arsenite, Mg₃(AsO₃)₂.

Insol. in NH₄OH+Aq, but sol. in a large

excess of NH₄Cl+Aq. (Rose.)

Very sol. in boiling H₂O and in dil. acids. Sol. in NH₄Cl+Aq. (Reichard, B. 1894, 27. 1032.)

Very sol. in H₂O and dil. acids. (Stavenhagen, l.c)

 $Mg_2As_2O_5+4H_2O$. Hydroscopic. sol. in H₂O and acids. (Stavenhagen, l.c.)

 $3MgO_{1}2As_{2}O_{3}+3H_{2}O_{1}+15H_{2}O_{2}$ and +18H₂(). (Perper, Dissert. **1894.**)

Magnesium arsenite iodide, MgI_2 , $3As_2O_3+$ 12H₂O.

Moderately sol. in H2O. (Grühl, Dissert. 1897.)

Manganous arsenite, $Mn_3(AsO_3)_2 + 3H_2O$.

Sol. in H2O; insol. in alcohol; easily oxidized by moist air. (Stavenhagen, l.c.) 3MnO,2As₂O₃. (Reichard, B. 1894, 27. f 1032.)

 $Mn_3H_2As_4O_{10}+4H_2O$. Sl. sol. in H₂O. Very sol. in acids and alkali. (Stavenhagen,

Mn₅As₂O₈. Ppt. (Reichard, B. 1898, 31. 2165.)

Mercurous arsenite, Hg₂O,As₂O₃.

Decomp. by light. Decomp. by H2O. (Reichard, B. 1894, 27. 1022.)

Hg₃AsO₃. Only sl. sol. in H₂O; sol. in dil. acids. (Stavenhagen, J. pr. 1895, (2) 51. 24.)

Gradually and completely decomposed by H₂O. (Reichard, Ch. Z. 1902, **26**. 1143.)

Mercuric arsenite, Hg₃(AsO₃)₂.

Sl. sol. in H₂O. (Stavenhagen, l.c.)

Decomp. more easily by H₂O than is the mercurous comp. (Reichard, Ch. Z. 1902, **26.** 1143.)

2HgO, As_2 O₃. Not decomp, by boiling with H₂O. Undecomp. by boiling acids. Decomp. by KOH+Aq, K₂CO₃+Aq and NH₄OH+Aq. (Reichard, B. 1894, **27.** 1021.) Hg₅As₂O₈. Ppt. Decomp. by boiling H₂O. Very sl. sol. in H₂SO₄+HCl. (Reichard, B. 1898, **31.** 2170.)

Nickel arsenite, Ni₃(AsO₃)₂.

Insol, in H₂O; easily sol, in NH₄OH+Aq

Ppt. (Reichard, B. 1898, **31.** 2165.)

 $3NiO_{1}2As_{2}O_{3}$. Sol. in $NH_{4}OH + Aq$ (identical with salt of Girard). (Reichard, B. 1894, **27.** 1031.)

+4H₂O. Insol. in H₂O; sol. in NH₄OH+

Aq. (Proust.) Sol. in KOH+Aq. (Girard, C. R. **34**. 918.)

2NiO, As₂O₃. Insol. in H₂O; sol. in NH₄OH +Aq; sol. in KOH+Aq. (Reynoso, C. R. **31.** 68.)

Platinum arsenite, Pt₃(AsO₃)₄.

Sol. in H₂O and alcohol; very unstable. (Stavenhagen, l.c.)

Potassium arsenite, KAsO₂.

Sol. in H₂O; sl. sol. in alcohol. (Pasteur, A. **68.** 309.)

Insol. in ethyl acetate. 1904, **37.** 3601.) (Naumann, B.

Does not exist. (Stavenhagen, l.c.)

K₃A₅O₃. Very sol. in H₂O; sol. in alcohol. (Stavenhagen, l.c.)

 $K_4As_2O_5+6H_2O$. Very sol. in H_2O ; sol. in alcohol. (Stavenhagen, l.c.)

 $K_2A_{84}O_7+2H_2O$. Sol. in H_2O ; sl. sol. in alcohol. (Pasteur, A. 68. 309.)

Potassium arsenite bromide, $4As_2O_3$, 2KBr.

More sol. in H₂O than iodide. (Schiff and Sestini, A. 228. 72.)

2As₂O₃, KBr. (Rüdorff, B. 19. 2675.)

Potassium arsenite chloride, 2As₂O₃, KCl.

Much more quickly sol. in hot H₂O than bromide or iodide. (Rüdorff, B. 19. 2675.) As₂O₃, KCl. Decomp. by H₂O.

Potassium arsenite iodide, 3As₂O₃, 2KI+ H₂O.

Sl. sol. in cold H₂O; sol. in 20 pts. boiling, and 40 pts. cold H₂O. (Emmet, Sill. Am. J. (2) **18.** 583.)

6KAsO₂, 2KI+3H₂O. Sol. in H₂O and alcohol. Decomp. by acids. (Harms.)

2KH(AsO₂)₂, As₂O₃, 2KI. Sl. sol. in H₂O. (Harms, A. 91. 371.)

2As₂O₃, KI. Very difficultly sol. even in boiling H₂O. Very easily sol. in KOH+Ag, but much less so in K₂CO₃+Aq. (Rüdorff, B. 19. 2670.)

Sol. in 40 pts. cold, 20 pts. hot H₂O; sol. in kalies (Schiff and Sestini, A. **228**. 72.) alkalies

Potassium arsenite sulphate, K₃A₈O₃, 10K2SO4.

(Stavenhagen, Zeit. angew. ch. 1894, 8. 166.)

Rubidium arsenite, RbAsO₂.

Sol. in H₂O; aq. solution is alkaline to litmus. Insol. in alcohol. (Bouchonnet, C. R. 1907, **144.** 641.)

Rubidium arsenite bromide, As₂O₃, RbBr. Decomp. by H_2O . (Wheeler, Z. anorg. 4.

Rubidium arsenite chloride, As₂O₃, RbCl. As above.

Rubidium arsenite iodide, As₂O₃, RbI. As above.

Silver arsenite, Ag₃AsO₃.

Insol. in H₂O. Not pptd. in presence of 20,000 pts. H₂O. (Harting.)

1 l. H_2O dissolves 0.0115 g. Ag_3AsO_3 at 20°.

(Whitby, Z. anorg. 1910, 67. 108.)

Only sl. sol. in H2O and in dil. acids; readily sol, in NH₄OH+Aq and conc. acids. (Stavenhagen, l.c.)

Decomp. by light, by KOH+Aq and by NH₄OH+Aq. (Reichard, B. 1894, **27.** 1022-23.)

Easily sol. in HNO₃+Aq and other acids.

(Marcet.) More easily sol. in HC₂H₃O₂+Aq than Ag₃PO₄; sl. sol. in HC₂H₃O₂+Aq. (Santos, C. N. **38**. 94.)

Insol. in KOH+Aq. (Kühn, Arch. Pharm.

(2) **69.** 267.) Easily sol. in NH₄OH+Aq. (Marcet.) Insol. in NH₄OH+Aq, but sol. therein in presence of alkali nitrates. (Santos, l.c.)

Incompletely sol. in (NH₄)₂CO₃, (NH₄)₂SO₄, or NH₄NO₃+Aq. (Wittstein, Repert. 51. 41.)

Decomp. by NH₄Cl+Aq. Sol. in KAsO₂+ | Tin (stannous) arsenite, $Sn_3(AsO_3)_2$.

Aq. (Kühn, l.c.)
Not pptd. in solutions containing sol.

(Naumann, B. Sol. in methyl acetate. 1909, 42. 3790.)

Sl. sol, in methyl acctate. (Bezold, Dissert. 1908.)

Insol. in ethyl acetate. (Hamers, Dissert. 1906); (Naumann, B. 1910, 43, 314.)

+H₂O. Very sol. in H₂O, NH₄OH+Aq and in dil. acids. (Stavenhagen, J. pr. 1895, **(2) 51.** 29.)

2Ag₂O, As₂O₃. Ppt. (Pasteur, J. Pharm. (3) **13.** 395.)

Could not be obtained. (Stavenhagen, l.c.) $3Ag_2O_1$ $2As_2O_3$. Sol. in cold $HC_2H_3O_2+$ Aq. (Santos.)

Sol. in NH₄OH+Aq and in potassium arsenite+Aq. (Girard, C. R. **34**. 918.)

Ppt. (Reichard, B. 1898, **31.** 2167.) Could not be obtained. (Stavenhagen, l.c.)

Silver arsenite ammonia, $2Ag_2O$, As_2O_3 , 4NHs.

Insol. in H₂O or alcohol. (Girard.)

Sodium arsenites.

Correspond to potassium arsenites, but have not been obtained in crystalline form. All are very sol. in H₂O. (Pasteur, A. 68, 308.) Na₃AsO₃. Very sol. in H₂O. (Staven-

hagen, l.c.) Insol. in ethyl acetate. (Naumann, B. 1904, **37**. 3602.)

Sodium arsenite bromide, 2As₂O₃, NaBr. Decomp. by warm H₂O. (Rüdorff, B. 21. 3052.)

Sodium arsenite iodide, 2As₂O₃, NaI. Decomp, by hot H₂O₂ (Rüdorff.)

Strontium arsenite, $Sr_3(AsO_3)_2$.

Sol. in H_2O . (Stavenhagen, l.c.)

Sol. in H₂O, insol, in alcohol (identical with Stein). (Reichard, B. 1894, 27, 1036.)

 $Sr_2As_2O_5 + 2H_2O$. Quite easily sol, in H_2O . (Stein.)

Sl. sol. in H_2C , SrO_2H_2+Aq , or H_3AsO_4+ Aq. (Dumas.) Very sl. sol. in alcohol, (Stein.)

Easily sol, in H₂O and in acids. (Staven-

hagen, J. pr. 1895, (2) **51.** 17.) $Sr_2As_4O_9$. Moderately sol. in H_2O . (Reichard, B. 1894, 27, 1036.)

Strontium arsenite iodide, SrI_2 , $3As_2O_3$ + 12H.O.

As Ba comp. (Grühl, Dissert, 1897.)

Thallium arsenite, Tl₃As()₃.

Sl. sol. in H₂O and alcohol; easily sol. in acids, especially in dil. H2SO4. (Stavenhager, l.c.

Ppt.; decomp. by acids and alkali. (Reichard, B. 1898, 31. 2169.)

+2H₂O. Sl. sol. in H₂O. Easily sol. in dil. acids and alkalies. (Stavenhagen, l.c.)

Tin (stannic) arsenite, $Sn_3(AsO_3)_4 + 5!_2H_2O$.

Sl. sol. in H₂O. (Stavenhagen, *l.c.*) 5SnO₂, 2As₂O₃. Ppt. Sol. in acids without decomp. (Reichard, B. 1894, **27**, 1025.)

Sn₇As₂O₁₇. Ppt. (Reichard, B. 1898, 31. 2169.)

Uranium arsenite, UO₂, As₂O₃.

Insol. in NH₄OH+Aq; only sl. sol. KOH+ Sol. in acids. (Reichard, B. 1894, 27. 1029.)

Zinc arsenite, ZnO, As₂O₃.

Ppt. (Avery, J. Am. Chem. Soc. 1906, 28.

3ZnO, As₂O₃. Sol. in acids without decomp. Easily sol. in NH₄OH+Aq. (Reichard, B. 1894, 27, 1033.)

Arseniovanadic acid, As_2O_5 , $V_2O_5 + 2H_2O$.

Easily sol. in H₂O, but solution easily decomposes; crystallizes from H₂O with 10H₂O. Composition is vanadium dihydrogen arsenate (VO₂)H₂AsO₄. (Friedheim, B. **23**. 2600.)

+14, and +18H₂O. (Ditte, C. R. 102.

757.) Could not be obtained. (Friedheim.)
3As₂O₅, 2V₂O₆. (Berzelius.) Correct formula is as above. (Friedheim.)

3H₂O, 7As₂O₅, 6V₂O₅. (Gibbs, Am. Ch. J. 7. 209.) Could not be obtained. (Friedheim.)

 $3H_2O_5$, $5As_2O_5$, $8V_2O_5+24H_2O_5$ (Gibbs.) Could not be obtained. (Friedheim.)

Arseniovanadates.

According to Friedheim (Z. anorg, 1892, 2. 319) the arseniovanadates are double arsenates of VO2 and NH4.

Ammonium arseniovanadate, (NH₄)₂(),

 $As_2O_5 2V_2O_5 + 5H_2O.$

Efflorescent in dry air; sl. sol. in cold, decomp. by hot H_2O . Composition is ammonium divanadium arsenate = $(VO_2)_2(NH_4)AsO_4 + 2\frac{1}{2}H_2O_1$ (Friedheim, B. 23. 2600.)

Sl. sol. in cold H₂O. Somewhat more easily sol. in hot H2O with separation of V2O5. (Schmitz-Dumont, Dissert. 1891.)

2(NH₄)₂O, 3As₂O₅ 2V₂O₅, +4H₂O. Cannot be crystallized from H₂O. Composition is $+NH_4)_2HAsO_4+2(VO_2)_2H_2AsO_4$. (Friedheim)

Decomp. under H₂O to (NH₄)₂O, 2V₂O₅. As₂O₅+5H₂O. (Schmitz-Dumont, l.c.)

exist. (Friedheim, B. 23, 2605.)

 $\begin{array}{ll} \text{Calcium} & \text{arseniovanadate,} & 2\text{CaO}, & 3\text{As}_2\text{O}_{\mathfrak{d}}, \\ 2\text{V}_2\text{O}_{\mathfrak{d}} + 21\text{H}_2\text{O} = \text{CaHAsO}_4 + 2(\text{VO}_2) \\ & \text{H}_2\text{AsO}_4 + 8\text{H}_2\text{O}. \end{array}$

Can be crystallized in presence of variadic acid without decomp. (Friedheim.)
Efflorescent. Sol. in H₂O. (Schmitz-

Dumont, l.c.)

Cobalt arseniovanadate, CoO, As₂O₅, V₂O₅+ 9H₂O = Co(VO₂)₂H₂(AsO₄)₂+8H₂O. Sol. in H₂O. (Friedheim.)

Copper arseniovanadate, CuO, As_2O_b , $V_2O_b+4H_2O=Cu(VO_2)_2H_2(AsO_4)_2+3H_2O$. Sol. in H_2O . (Friedheim.)

 $\begin{array}{ll} \textbf{Magnesium} & \textbf{arseniovanadate,} & MgO, & \textbf{As}_2O_{\delta}, \\ & V_2O_{\delta}+10H_2O = (VO_2)_2MgH_2(AsO_{4})_2 + \\ & 9H_2O. \end{array}$

Sol. in H₂O. (Friedheim.)

Moderately sol. in H_2O . Solution decomp. on standing. (Schmitz-Dumont, l.c.) 2MgO, $3As_2O_5$ $2V_2O_5$, $+23H_2O = MgHasO_4$ $+2(VO_2)H_2AsO_4 +9H_2O$. Sol. in H_2O . (Fried-

heim.)
Sol. in H₂O but solution decomp. on evaporation. (Schmitz-Dumont, *l.c.*)

Potassium arseniovanadate, K_2O , As_2O_6 , $2V_2O_6+5H_2O=(VO_2)_2KAsO_4+2\frac{1}{2}H_2O$. Sol. in H_2O . (Friedheim.)

Sl. sol. in cold H₂O. Partially decomp. on heating. (Schmitz-Dumont.)

 $\begin{array}{cccc} \textbf{Strontium} & \textbf{arseniovanadate,} & 2SrO, & 3As_2O_5, \\ & 2V_2O_5 + 20H_2O = SrHAsO_4 + 2(VO_2)_2H_2 \\ & AsO_4 + 7\frac{1}{2}H_2O. \end{array}$

Sol. in H_2O . (Friedheim.) +21 H_2O . Easily sol, in H_2O . (Schmitz-Dumont.)

Zinc arseniovanadate, ZnO, As_2O_5 , $V_2O_5 + 6\frac{1}{2}H_2O = Zn(VO_2)_2H_2(AsO_4)_2 + 5\frac{1}{2}H_2O$. Sol. in H_2O . (Friedheim.) 2ZnO, $3As_2O_5$, $2V_2O_5 + 5H_2O$, and $+18H_2O$ $=ZnHAsO_4 + 2(VO_2)_2H_2AsO_4$, and $+6\frac{1}{2}H_2O$.

Arseniovanadicotungstic acid.

Sol. in H₂O. (Friedheim.)

Ammonium Arseniovanadicotungstate, $17(\mathrm{NH_4})_2\mathrm{O}$, $2\mathrm{As}_2\mathrm{O}$, $14\frac{1}{2}\mathrm{V}_2\mathrm{O}$, $29\mathrm{WO}_8+98\mathrm{H}_2\mathrm{O}$.

Sl. sol. in cold H₂O. Readily sol. in boiling H₂O. Insol. in alcohol, ether, benzene, CS₂, CHCl₃, acetone, nitrobenzene, aniline and acetic anhydride. (Rogers, J. Am. Chem. Soc. 1903, **25**. 307.)

Arseniovanadicovanadic acid.

Ammonium arseniovanadicovanadate, $5(\mathrm{NH_4})_2\mathrm{O}$, $12\mathrm{As_2O_5}$, $12\mathrm{VO_2}$, $6\mathrm{V_2O_5} + 7\mathrm{H_2O}$.

Sl. sol. in cold, sol. in hot $\mathrm{H}_2\mathrm{O}$, from which crystallizes—

 $4(NH_4)_2O$, $9As_2O_5$, $9VO_2$, $8V_2O_5+11H_2O$. Sol. in H_2O . (Gibbs, Am. Ch. J. **7.** 209.)

Arseniovanadicovanadiotungstic acid.

 $\begin{array}{l} \textbf{Ammonium arseniovanadicovanadiotung state,} \\ 17(NH_4)_2O, 2As_2O_6, 7V_2O_6, 4V_2O_3, 32WO_4\\ +73H_2O. \end{array}$

Sl. sol. in cold, readily sol. in boiling H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 310.)

Arsemovanadiotungstic acid.

Ammonium arseniovanadiotungstate, $18(\mathrm{NH_4})_2\mathrm{O}$, $2\mathrm{As_2O_5}$, $13\mathrm{V_2O_5}$, $39\mathrm{WO_3} + 88\mathrm{H_2O}$.

Sol. in H₂O. Insol. in organic solvents. (Rogers, J. Am. Chem. Soc. 1903, **25**. 306.)

Arseniuretted hydrogen, AsH₃.

See Arsenic hydride.

Arsenochromic acid.

Potassium arsenochromate, $K_4Cr_2As_2O_{16} + 12H_2O$.

Sol. in moderately conc. mineral acids. (Tarugi, C. C. **1897**, H. 724.) K₇Cr₃As₅O₂₂+24H₂O. Ppt. Sol. in dil. warm acids. (Tarugi.)

Potassium hydrogen arsenochromate, $K_4H_6Cr_3As_2O_{16}$. (Tarugi, C. C. **1897**, II. 724.)

Arsenosoarseniotungstic acid.

Potassium arsenosoarseniotungstate, $10K_2O$, $4As_2O_5$, As_2O_3 , $21WO_3+26H_2O$.

Precipitate. Sol. in a large amount of hot $\rm H_2O$. (Gibbs, Am. Ch. J. 7. 313.)

Arsenosomolybdic acid.

Ammonium arsenosomolybdate, $3(NH_4)_2O$, $5As_2O_3$, $12MoO_3+24H_2O$.

Sl. sol. in H₂O. (Gibbs, Am. Ch. J. 7. 313.)

Ammonium barium arsenosomolybdate, $3(\mathrm{NH_4})_2\mathrm{O}$, $2\mathrm{BaO}$, $5\mathrm{As_2O_3}$, $10\mathrm{MoO_3} + 50\mathrm{H_2O}$.

Ppt. (Ephraim, Z. anorg. 1910, 66, 57.)

Ammonium cupric arsenosomolybdate, (NH₄)₂O, CuO, 2As₂O₃, 4MoO₃+2H₂O, and 2(NH₄)₂O, CuO, 3As₂O₃, 6MoO₃+ 13H₂O.

Ppts. (Ephraim, Z. anorg. 1910, 66. 58.)

Barium arsenosomolybdate, 3BaO, 2As₂O₃, 8MoO₃+13H₂O.

Very sl. sol. in H₂O. (Gibbs.)

Copper arsenosomolybdate, 2CuO, 3As₂O₃, 6MoO₃. Sol. in H₂O. (Gibbs.)

Manganese arsenosomolybdate, 2MnO, $3As_2O_3$, $6MoO_3+6H_2O$, and $+15H_2O$. Insol. in H_2O . (Gibbs.)

Potassium arsenosomolybdate, 3K₂O, As₂O₃, 5M₀O₃+3H₂O.

Easily sol. in H₂O. (Ephraim, Z. anorg. 1910, 66.54.)

 $3K_2O$, As_2O_3 , $8MoO_3+18H_2O$. Easily sol. in H_2O . (Ephraim.)

Sodium arsenosomolybdate, Na_2O , As_2O_3 , $2MoO_3+6H_2O$.

Easily sol. in H₂O. (Ephraim, Z. anorg. 1910, 66.56.) 2Na₂O, As₂O₃, 4MoO₃+13H₂O. Ppt. (Ephraim.)

Zinc arsenosomolybdate, 2ZnO, 3As₂O₃, 6MoO₃+6H₂O.

Sol. in H₂O. (Gibbs.) Arsenosophosphotungstic acid.

Potassium arsenosophosphotungstate, 10K₂O,

14As₂O₃, $3P_2O_5$, $32WO_3+28H_2O$. Moderately sol. in cold, very reasily in hot H₂O. (Gibbs.) 7K₂O, $2As_2O_3$, $4P_2O_5$, $60WO_3+55H_2O$. Sol. in hot H₂O with decomp. (Gibbs.)

 $\begin{array}{c} \textbf{Potassium sodium arsenosophosungstate,} \\ 5K_2O, \quad Na_2O, \quad 2As_2O_3, \quad 2P_2O_5, \quad 12WO_3 + \\ 15H_2O. \end{array}$

(Gibbs, Am. Ch. J. 7. 313.)

Arsenosotungstic acid.

Ammonium arsenosotungstate, 7(NH₄)₂O, 2As₂O₃, 18WO₃+18H₂O.

Sol. in H₂O. (Gibbs.)

Barium arsenosotungstate, $4\mathrm{BaO}$, $\mathrm{As_2O_3}$, $9\mathrm{WO_3}{+}21\mathrm{H_2O}$.

Precipitate. Nearly insol. in H₂O. (Gibbs.)

Sodium arsenosotungstate, $9Na_2O$, $8As_2O_3$, $16WO_3+55H_2O$.

Very sol. in H_2O . (Gibbs, Am. Ch. J. 7. 313.)

Arsenyl bromide, AsOBr.

 H_2O dissolves out As_2O_3 ; insol. in alcohol. (Sérullas.) + H_2O . (Wallace, Phil. Mag. (4) 17. 122.) $As_8O_9Br_6=2AsBr_3$, $3As_2O_3+12H_2O$.

Arsenyl bromide with MBr. See Arsenite bromide, M.

Arsenyl chloride, AsOCl.

Sol. in H_2O with decomp. + H_2O . (Wallace, Phil. Mag. (4) **16.** 358.) As₃O₄Cl. (Wallace.)

Arsenyl chloride with MCl.

See Arsenite chloride, M.

Arsenyl potassium fluoride, AsOF₈, KF+ $_{2}$ O

(Marignac, A. 145, 237.)

Arsenyl iodide, $As_8I_2O_{11} = 2AsOI$, $3As_2O_3 + 12H_2O$.

Decomp. by H₂O. (Wallace, Phil. Mag. (4) 17. 122.)

Sl. sol. in cold H₂O, less sol. in alcohol. (Plisson, J. Pharm. 14. 46.)

Arsenyl iodide with MI.

See Arsenite iodide, M. .

Arsenyl sulphoiodide, As₁₃I₉S₆O₉.

Scarcely attacked by cold H₂O. Boiling H₂O extracts AsI₃. Decomp. by hot HNO₃ or H₂SO₄. Easily sol. in KOH, or NH₄OH + Aq. (Schneider, J. pr. (2) **36**. 513.)

Arsine.

See Arsenic hydride.

Atmospheric air.

See Air, atmospheric.

Auriamine, Au(OH)₂NH₂.

(Jacobsen, C. R. 1908, 146. 1214.)

Diauriamine, Au₂(OH)₄NH.

(Jacobsen, C. R. 1908, 146. 1214.)

Sesquiauriamine, NAu₃, NH₃.

Decomp. by H_2O into NAu_3 . (Raschig, A. 235. 341)

Auric acid, HAu₂O₄.

Sol. in HBr, or HCl+Aq. (Krüss, B. 19. 2546.)

Ammonium aurate.

See Auroamidoimide.

Barium aurate, BaAu₂O₄+5H₂O₄

Sl. sol, in H₂O. (Weigand, Zeit, angew. Ch.

1905, **19.** 139.) +6H₂O. Sl. sol. in H₂O. Sol. in dil. H₂SO₄ and in dil. HNO₃. Sol. in HCl. Decomp. by alcohol. (Meyer, C. R. 1907, **145.** 806.)

Calcium aurate (?).

Insol. in H_2O ; sol. in $CaCl_2+Aq$. (Fremy, A. ch. (3) **31**. 485.) $CaAu_2O_4+6H_2O$. As Ba salt. (Meyer, C. R. 1907, **145**. 806.)

Magnesium aurate (?).

Ppt. Insol. in H_2O ; sol. in $MgCl_2+Aq$. (Pelletier.)

Potassium aurate, $KAuO_2+3H_2O$.

Very sol. in H₂O, and easily decomp. (Fremy, A. ch. (3) **31.** 483.)

Sol. in alcohol; the solution in alcohol does not decomp. below 50°. (Figuier, A. ch. (3) 11. 364.)

Potassium aurate sulphite, $KAuO_2$, $2K_2SO_3 + 5H_2O$.

Sol. in H₂O with decomp. Nearly insol. in alkaline solutions. (Fremy, A. ch. (3) **31.** 485.)

Sodium aurate, Na₂Au₂O₄+2H₂O.

Sol. in H₂O. Sol. in dil. H₂SO₄, dil. HNO₃, and HCl with decomp. Decomp. by alcohol. (Meyer, C. R. 1907, **145**. 806.)

Strontium aurate, SrAu₂O₄+6H₂O. As Ba salt. (Meyer.)

Tis Da sait. (III Gyer.)

Auriimide chloride, Au(NH)Cl. (Raschig.)

Auriimide nitrate, $Au_2N_2H_2O$, $2HNO_3$, or AuN, $HNO_3 + \frac{1}{2}H_2O$, or $Au_2O(NH)_2$, $2HNO_3$.

Not deliquescent. Decomp. by hot H₂O into Au₂O(NH)₂. (Schottländer, J. B. **1884**. 453.)

Auroamidoimide, Au(HN)NH₂+3H₂O.

(Fulminating gold.) Insol. in $\rm H_2O$; not attacked by dil. acids; sol. in conc. acids, and in moderately dil. acids, when freshly precipitated. Insol. in alkalies or alcohol. Sol. in KCN+Aq.

Triauroamine, Au₃N+5H₂O.

Not decomp. by boiling dil. acetic acid, HNO₃, or H₂SO₄. (Raschig, A. 1886, **235**. 349.)

Auricyanhydric acid, HAu(CN)4+11/2H2O.

Easily sol. in H₂O, alcohol, or ether.

See also Bromauricyanides.

Chlorauricyanides.

Iodauricyanides.

Ammonium auricyanide, NH₄Au(CN)₄.

Easily sol, in H_2O or alcohol. Insol, in ether,

Cobaltous auricyanide, Co[Au(CN)₄]₂+9H₂O.

Sl. sol. in cold, easily in hot H₂O. Sl. sol. in alcohol. (Lindborn.)

Potassium auricyanide, KAu(CN)₄+1½H₂O.

Efflorescent. Sl. sol. in cold, easily in hot H₂O. Easily sol. in alcohol.

Silver auricyanide, AgAuCN₄.

Insol. in H_2O or HNO_3+Aq . Sol. in NH_4OH+Aq .

Diaurodiamine nitrate.

See Auriimide nitrate.

Aurobromhydric acid.

See Bromauric acid.

Aurobromic acid.

See Bromauric acid.

Aurochlorhydric acid.

See Chlorauric acid.

Aurochloric acid.

See Chlorauric acid.

Aurocvanhydric acid.

Aurocvanides with MCN.

See Cyanide, aurous with MCN.

Azinosulphonic acid.

Ammonium azinosulphonate, N₂SO₂NH₄. (Traube, B. 1914, 47, 944.)

Barium azinosulphonate, (N₂SO₃)₂Ba.

(Traube, B. 1914, 47. 944.)

Potassium azinosulphonate, N₂SO₂K.

Easily sol. in H₂O. Can be cryst. from hoiling abs. alcohol. (Traube, B. 1914, 47. 943.)

Sodium azinosulphonate, N₃SO₃Na.

(Traube, B. 1914, 47. 944.)

Azoimide, HN₃.

Miscible with H₂O and alcohol. (Curtius and Radershausen, J. pr. (2) 43. 207.)

Stable in aq. solution; decomp. slowly by dil. boiling HCl. (Curtius, J. pr. 1898, (2) 58. 265.)

For salts of HN₃, see azoimide of metal under metal.

Azoimide, hydroxylamine, N₃H₁2NH₂OH.

Sol. in H₂O. Gradually volatilizes at ord. temp. (Dennis, J. Am. Chem. Soc. 1907, 29. 22.)

Azophosphoric acid.

See Pyrophosphamic acid.

Deutazophosphoric acid.

See Pyrophosphodiamic acid.

Barium, Ba.

Decomp. by H_2O and abs. alcohol. (Guntz, C. R. 1901, **133**. 874.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 827.)

Barium amalgam, BaHg₁₃.

Stable in contact with liquid amalgam up to 30°. Can be cryst. from Hg without decomp. if temp. does not exceed 30°. (Kerp, Z. anorg. 1900, 25. 68.)

BaHg₁₂. Stable in contact with liquid amalgam from 30°-100°. Can be cryst. from Hg without decomp. at any temp. within these limits. (Kerp.)

Barium amide, $Ba(NH_2)_2$.

B.-pt. 280°. (Mentrel, C. C. 1903, I. 276.) Decomp. by H₂O. (Guntz and Mentrel, Bull. Soc. 1903, (3) 29. 578.)

Barium potassium amide.

See Potassium ammonobarate.

Barium ammonia, Ba(NH₃)6.

Takes fire in the air. Only sl. sol, in liquid NH_3 . Violently decomp. by H_2O . (Mentrel, C. R. 1902, 135. 740:)

Barium arsenide, Ba₃As₂.

Decomp. by H₂O. (Lebeau, C. R. 1899, **129.** 48.)

Barium azoimide, $Ba(N_3)_2$.

Very sl. hydroscopie; explosive.

12.5 pts. are sol. in 100 pts. H_2O at 0° 16.2 " " " 100 " H_2O " 10 16.2 H₂O " 10 5° H₂O " 15° 16.7 " " " " 100 " H₂O " 17° 17.3 " " " " 100 " 0.0172 pts. are sol, in 100 pts. abs. alcohol at

Insol. in ether. (Curtius, J. pr. 1898, (2)

58. 290.) See also Barium nitride.

Barium boride, BaB6

Sol. in fused oxidizing agents, not decomp. by H₂O; insol. in aq. acids; sl. sol. in cone. H₂SO₄, sol. in dil. and conc. HNO₃. (Moissan, C. R. 1897, 125, 634.)

Barium subbromide sodium bromide, BaBr, NaBr.

Decomp. by H_2O . (Guntz, C. R. 1903, **136.** 750.)

Barium bromide, BaBr₂, and $+2H_2O$.

100 pts. H₂O dissolve-0° 20° 40° 60° at 0° 40° 80° 100°

98 114 123 104 135 149 pts. BaBr₂.

Sat. BaBr₂+Aq contains at:

-20° −9° +7° 16° 19° 45.7 46.5 48.5 48.8 49.3 50.9%BaBr₂

71° 76° 77° 104° 145° 160° 175° $55.1\ 55.5\ 55.6\ 56.6\ 60.5\ 59.4\ 60.3\% BaBr_2$ (Etard, A. ch. 1894, (7) 2. 540.)

Sp. gr. of BaBr₂+Aq at 19.5° containing: 20 10 15 25 $30\% \mathrm{BaBr_2}$ 1.045 1.092 1.114 1.201 1.262 1.329

55%BaBr₂. 1.405 1.485 1.580 1.685 1.800 (Kremers, Pogg. 99. 444, calculated by Gerlach, Z. anal. 8. 285.)

BaBr₂+Aq containing 7.74% BaBr₂ has sp. gr. $20^{\circ}/20^{\circ} = 1.0716$.

 $BaBr_2+Aq$ containing 16.76% $BaBr_2$ has sp. gg. $20^{\circ}/20^{\circ}=1.1674$. (Le Blanc and Rohland, Z. phys. Ch. 1896,

19. 279.)

Sat. BaBr₂+Aq boils at 113°. (Kremers, Pogg. 99. 43.)

Solubility in BaI₂+Aq at t°.

<u>+</u> 0	Sat. solution	on contains
	%. BaBr2	% BaI2
16 16 +-60 135 135 170 210	4.7 5.0 5.5 9.3 9.0 11.0 14.9	57.9 59.0 66.0 67.3 67.2 67.4 67.7

(Etard, A. ch. 1894, (7) 3. 287.)

Very sol. in absolute alcohol. (Hünefeld.) 100 pts. absolute methyl alcohol dissolve 50 pts. BaBr₂ at 22.5°.

100 pts. absolute ethyl alcohol dissolve 3 pts. BaBr₂ at 22.5°. (de Bruyn, Z. phys. Ch. **10.** 783.)

Sat. solution in 87% alcohol contains 6% BaBr₂. (Richards, Z. anorg. 3. 455.)

100 pts. absolute methyl alcohol dissolve 45.8 pts. BaBr₂+2H₂O at 15°

100 pts. 93.5% methyl alcohol dissolve 27.3 pts. BaBr₂+2H₂O at 15°.

100 pts. 50% methyl alcohol dissolve 4 pts. BaBr₂+2H₂O at 15°. (de Bruyn, Z. phys. Ch. 10. 787.)

100 g. BaBr₂+CH₃OH contain 0.4 g. BaBr₂ at the critical temp. (Centnerszwer, Z. phys. Ch. 1910, **72.** 437.)

At 15°, 1 pt. by weight is sol. in: 36 pts. methyl alcohol, sp. gr. 0.709 " ethvl 0.8035652 " propyl 0 8085 (Rohland, Z. anorg, 1897, 15, 413.)

Nearly insol, in boiling amyl alcohol, 10 ccm, dissolving only an amt, equal to 1.3 mg BaO. (Browning, Sill. Am. J. 144, 459.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

Insol. in benzonitrile. (Naumann, B. 1914,

Difficultly sol, in methyl acetate. (Naumann, B. 1909, 42, 3789.) Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Barium cadmium bromide, BaBr₂, CdBr₂+ 4H₂O.

Sol. in H₂O. (v. Hauer, W. A. B. **20. 40**.)

Barium rhodium bromide.

See Bromorhodite, barium.

Barium bromide ammonia, ${
m BaBr}_2, {
m 8NH}_3$.

Decomp. by II₂O. (Joannis, C. R. 1905, **140.** 1244,)

Barium bromide hydrazine, BaBr₂, 2N₂H₄.

Hydroscopic. Very sol. in H₂(). Insol. in alcohol. (Franzen, Z. anorg. 1908, 60. 291.)

Barium bromofluoride, BaBr₂, BaF₂.

Insol. in and undecomp. by boiling alcohol. Sol. in HBr and in HNO3. Decomp. by H2O, hot H₂SO₄, dil. HCl, dil. HNO₃, or dil. acetic acid. (Defacqz, C. R. 1904, 138. 199.)

Barium carbide, BaC2.

Decomp. by H₂O. (Maquenne, C. R. 144. 360.)

Sp. gr. 3.75. Easily decomp. by H₂O and dil. acids. (Moissan, Bull. Soc. 1894, (3) 11. 1008.)

Barium carbonyl, Ba(CO)₂.

Sol. in H₂O. (Guntz and Mentrel, Bull. Soc. 1903, (3) 29. 586.)

Barium subchloride, BaCl.

Decomp. by H₂O. (Guntz, C. R. 1903, **136.** 751.)

Barium subchloride sodium chloride, BaCl, NaCl.

Decomp. by H₂O. (Guntz, C. R. 1903, **136.** 750.)

Barium chloride, BaCl₂, and $+2H_2O$.

Permanent in dry air.

100 pts. H_2O at t° dissolve (a) pts. $BaCl_2$ and (b) pts. $BaCl_2 + 2H_2O$.

t°	a	b	t°	а	ь
15.64	34.86	43.50	74.89	59.94	65.51
49 31	43.84	55.63	105.48	59.58	77.89

(Gay-Lussac, A. ch. (2) 11. 309.)

100 pts. H₂O at t° dissolve 32.62 +0.2711t pts. BaCl₂. (Kopp.)

100 pts. H2O dissolve pts. BaCl2+2H2O at to.

t°	Pts. BaCl ₂ +2H ₂ O	t°	Pts. BaCl ₂ +2H ₂ O
16.25 20 00 22 50 37.50	39.66 42.22 43.7 51.0	62.50 75.00 87.00 100	48.0 63.0 65.0 72.0
50 00	65 0		

(Brandes.)

Sol. in 2.67 pts. H₂O at 18.75°. (Abl.) 1 pt. BaCl₂ is sol. in 2.86 pts. H₂O at 15.5°, and 1.67 pts. at boiling temp. (M. R. and P.) 100 pts. H₂O at 15.5° dissolve 20 pts. BaCl₂, and 43 pts. at 87.7°. (Ure's Dict.)

Solubility in 100 pts. H2O at to.

t.°	Pts. BaCl ₂	l t°	Pts. BaCl ₂
0 12 2 38.4 62.75	31.1 33.9 41.2 47.7	77.5 95.65 102.5	51.9 57.7 58.9 59.7

(Nordenskiold, Pogg. 136. 316.)

100 pts. H2O dissolve pts. BaCl2 at to.

t°	Pts. BaCl ₂	t°	Pts. BaCl ₂
9 30 37	33.2 38.1 40.0	50 58 	43.7 45.9

(Gerardin, A. ch. (4) 5. 143.)

1 pt. $BaCl_2+2H_2O$ is sol. in 2.18 pts. H_2O at 21.5°, and the solution has sp. gr. = 1.2878. (Schiff, A. 109. 326.)

1 pt. anhydrous BaCl₂ is sol. in 2.86 pts. H₂O at 15°. (Gerlach.)

Solubility in 100 pts. H2O at to.

	· · · · · · · · · · · · · · · · · · ·			-	
t°	Pts. BaCl ₂	t°	Pts. BaCl ₂	t°	Pts. BaCls
. 0	30.9	36	39.7	71	49.7
1	31.2	37	40.0	72	50.0
1 2 3	31.5	38	40.2	73	50.3
3	31.7	39	40.5	74	50.6
4	31.9	40	40.7	75	50.9
4 5 6 7	32.2	41	41.0	76	51.2
6	32.4	42	41.3	77	51.5
7	32.6	43	41.6	78	51.8
8	32.8	44	41.9	79	52.1
ğ	33.1	45	42.2	80	52.4
10	33.3	46	42.5	81	52.7
11	33.5	47	42.7	82	53.0
12	33.8	48	43.0	83	53.3
13	34.0	49	43.3	84	53.6
14	34.2	50	43.6	85	54.0
15	34.5	51	43.9	86	54 3
16 17	34.7	52	44.2	87	54.6
17	35.0	53	44.4	88	55.0
18	35.2	54	44.7	89	55.3
19	35.5	55	45.0	90	55.6
20	35.7	56	45.3	91	55.9
21	36.0	57	45.6	92	56.2
22	36.2	58	45.9	93	56.6
23	36.5	59	46.2	94	56.9
24	36.7	60	46.4	95	57.2
25	37.0	61	46.7	96	57.6
26	37.2	62	47.0	97	57.9
27	37.5	63	47.3	98	58.2
28	37.7	64	47.6	99	58.5
29	38.0	65	47.9	100	58.8
30	38.2	66	48.2	101	59.2
31	38.5	67	48.5	102	59. 5
32	38.7	68	48.8	103	59.8
33	39.0	69	49.1	104	60.2
34	39.2	70	49.4	104.1	60.3
35	39.5				

(Mulder, calculated from his own and other observations. Scheik. Verhandel. 1864. 45.)

The saturated solution contains—

60.3 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.1°. (Mulder.)

60.1 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.4°. (Legrand.) .

61.8 pts. BaCl₂ to 100 pts. H₂O, and boils at 104.5°. (Griffith.)

59.58 pts. BaCl₂ to 100 pts. H₂O, and boils at 105.48° (Gay-Lussac); at 106° (Kremers).

54.1 pts. BaCl₂ to 100 pts. H₂O, and forms crust at 104.4°; highest temperature observed, 104.9°. (Gerlach, Z. anal. 26. 426.)

Sat. BaCl₂+Aq contains at:

100° 130° 144° 160° 180° 215° 37.3 37.5 38.9 40.7 43.1%BaCl₂ 36 (Etard, A. ch. 1894, (7) 2. 535.)

Aq. solution contains 27.6% BaCl₂ at 30°. (Shreinemakers, C. C. 1910, I. 9.)

Solubility of $BaCl_2+2H_2O$ in H_2O equals 1.745 mol.-litre at 30°. (Masson, Chem. Soc. 1911, 99. 1136.)

BaCl₂+Aq sat. at 8° has.sp. gr. 1.27. (Anthon.) BaCl₂+Aq sat. at 15° has sp. gr. 1.282. (Michel and Krafft.)

BaCl₂+Aq sat. at 18.1° has sp. gr. 1.285, and contains 44.31 pts. BaCl₂+ $2H_2O$ to 100 pts. H_2O . (Karsten.)

Sp. gr. of BaCl₂+Aq at 19.5°.

% BaCl ₂	Sp. gr.	% BaCl ₂	Sp. gr.
8.88	1.0760	27.53	$\frac{1.2245}{1.2837}$
18.24	1.1521	35.44	

(Kremers, Pogg. 99. 444.)

Sp. gr. of BaCl₂+Aq at 15°.

% BaCl ₂	Sp. gr.	% BaCl ₂	Sp. gr.
1	1.00917	14	1.13778
. 2	1.01834	15	1.14846
3	1.02750	16	1.15999
4	1.03667	17	1.17152
5	1.04584	18	1.18305
6	1.05569	19	1.19458
7	1.06554	20	1.20681
8	1.07538	21	1.21892
9	1.08523	22	1.23173
10	1.09508	23	1.24455
11	1.10576	24	1.25736
12	1.11643	25	1.27017
13	1.12711	₩	

(Gerlach, Z. anal. 8. 283.)

Sp. gr. of BaCl₂+Aq at 21.5°.

op. gr. or Daorg 11q at 21.0 .			
% BaCl ₂ +	Sp. gr.	% BaCl ₂ + 2H ₂ O	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12	1.0073 1.0147 1.0147 1.0222 1.0298 1.0374 1.0452 1.0530 1.0610 1.0692 1.0776 1.0861 1.0947	16 17 18 19 20 21 22 23 24 25 26 27	1.1302 1.1394 1.1488 1.1584 1.1683 1.1783 1.1884 1.1986 1.2090 1.2197 1.2304 1.2413
13	1.1034	28	1.2523
14 15	$egin{array}{c} 1.1122 \ 1.1211 \end{array}$	29 30	1.2636 1.2750
	100	1, 1	

(Schiff, calculated by Gerlach, l.c.)

Sp. gr. of BaCl₂+Aq at 18°.

% BaCl ₂	Sp. gr.	% BaCl ₂	Sp. gr.
5 10 15	$1.0445 \\ 1.0939 \\ 1.1473$	20 24 	1.2047 1.2559

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of BaCl ₂ +Aq at 20°.		
g. mols. BaCl ₂ per l.	Sp. gr.	
0.01 0.025 0.05 0.075	1.001878 1.00475 1.00929 1.01369 1.01766	
0.25 0.40	1.0456 1.0726	

(Jones and Pearce, Am. Ch. J. 1907, **38.** 701.) BaCl₂+Aq containing 6.94% BaCl₂ has sp. gr. 20°/20° = 1.0640.

BaCl₂+Aq containing 11.38% BaCl₂ has sp. gr. 20°/20° = 1.1086.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Sp. gr. of BaCl₂+Aq at 25°

op. gr. or Daois and no 20 .		
BaCl ₂ +Aq	Sp. gr.	
1-normal 1/2- " 1/4- " 1/ _e - "	1.0884 1.0441 1.0226 1.0114	

(Wagner, Z. phys. Ch. 1890, 5. 35.)

Sp. gr. of $BaCl_2 + Aq$.

t°	Concentration of BaCl ₂ +Aq	Sp. gr.
$25^{\circ} 22.8$	1 pt. BaCl ₂ in 3.684 pts. H ₂ O 1 " " 52.597 " "	1.2194 1.0145

(Hittorf, Z. phys. Ch. 1902, 39, 628.)

Temp. of Maximum Density.

Weight of BaCl ₂ in 1000 grams H ₂ O	Temp. of maximum density	Molecular reduc- tion of temp. of M. D.	
$0 \\ 6.73 \\ 10.42 \\ 20.83 \\ 41.72$	3.982° 3.207° 2.783° 1.572° —0.843°	23.94 23.88 24.04 24.04	

(De Coppet, C. R. 1897, **125**, 533.)

BaCl₂+Aq containing 10% BaCl₂ boils at 100.6°. (Gerlach.)

BaCl₂+Aq containing 20% BaCl₂ boils at 101.9°. (Gerlach.)

B.-pt. of $BaCl_2+Aq$ containing pts. $BaCl_2$ to 100 pts. H_2O . G=according to Gerlach (Z. anal. 26. 443); L=according to Legrand (A. ch. (2) 59. 452).

Bpt.	G	L
100.5° 101.0 101.5 102.0 102.5 103.0 103.5 104.0 104.4 104.5	6.4 12.7 19.0 25.3 31.6 37.7 43.7 49.5	11.0 19.6 26.2 32.5 38.6 44.5 50.3 56.0 60.1

Less sol. in H_2O containing HCl than in pure H_2O , and scarcely sol. in conc. HCl+Aq. (Berzelius.)

Solubility of BaCl₂ in HCl+Aq at 0°. BaCl₂=no. ½ mols. (in milligrammes) dissolved in 10 cc. of the liquid; HCl=no. mols. (in milligrammes) contained in the same quantity of liquid.

BaCl ₂	HCI	Sum of mols.	Sp. gr.
29.45	0	29.45	1.250
27.8	1.1	28.9	1.242
26.075 23.4	2.8 5.0	28.875 28.4	$\frac{1.228}{1.210}$
14.0	14.36	28.36	1.143
10.2	18.775	28.975	1.118
6.67	22.75	29.42	1.099
2.74	32.0	34.74	1.079
0.29	50.5	50.79	1 088

(Engel, Bull. Soc. (2) 45. 653.)

Sol. in about 8000 pts. conc. HCl+Aq. Sol. in about 20,000 pts. conc. HCl+Aq through which HCl gas was passed.

Practically insol. in conc. HCl+Aq containing ¹/₆ vol. ether. (Mar, Sill. Am. J. 143.

Solubility	in	HCl+Aa	at 30°.
~oidoiiioy	***	TTOI MY	at oo .

Composition of the solution			
% by wt. HCl	% by wt. BaCl ₂	Solid phase	
0 5.94	$\frac{27.6}{12.97}$	BaCl _{2, 2} H ₂ O	
11.55	3.85	"	
18.11	0.46	41	
32.35	0.00	٠.	
37.34	0.00	BaCl ₂ , 2H ₂ O+BaCl ₂ , H ₂ O	
38.63	0.00	BaCl ₂ , H ₂ O	

(Schreinemakers, Z. phys. Ch. 1909, 68. 89.)

Much less sol. in HNO₃+Aq than in H₂O, because Ba(NO₃)₂ is nearly insol. therein. (Wurtz.)

BaCl₂ is sol. in about—

4.00 pts. H₂O.

5.00 pts. NH₄OH +Aq (conc.).

5.33 pts. NH₄OH +Aq (1 vol. conc.: 3 vols. H_2O).

5.33 pts. HCl+Aq (1 vol. conc.: 4 vols. H_2O).

8.00 pts. HC₂H₃O₂+Aq (1 vol. commercial acid: 1 vol. H₂O).

 $6.00 \text{ pts. NH}_4\text{Cl} + \text{Aq (1 pt. NH}_4\text{Cl} : 10 \text{ pts. H}_2\text{O)}.$

 $^{6.00}$ pts. NH₄C₂H₃O₂+Aq (dil. NH₄OH+Aq neutralized by dil. HC₂H₃O₂+Aq.)

6.67 pts. $NaC_2H_4O_2+Aq$ (commercial $HC_2H_4O_2$ neutralized by Na_2CO_3 , and dil. with 4 vols. H_2O).

6.33 pts. $Cu(C_2H_3O_2)_2+Aq$. See Stolba (Z. anal. 2. 390).

5.67 pts. grape sugar (1 pt. grape sugar: 10 pts. H₂O). (Pearson, Zeit. Chem. **1869**. 662.)

BaCl₂+NH₄Cl. Solubility of BaCl₂ in NH₄Cl+Aq at 30°.

Composition of the solution		Solid phase
% NH4CI	% BaCl ₂	
0	27.6	BaCl ₂ .2H ₂ O
5.71	22 . 16 😘	"
10.06	18.36	"
13.84	15.42	"
20.00	10.89	
24.69	8.33	# (
25.79	7.95	BaCl ₂ .2H ₂ O+NH ₄ Cl
26.96	7.99	ii .
27.47	3.56	NH ₄ Cl
29.5	0	a a
/ Nal	-1	1 Ch 1000 88 699 \

(Schreinemakers, Z. phys. Ch. 1909, 66. 688.)

See also under Ammonium chloride.

Prof. 1 - Prof. (OH) Schribitary of Prof. in

BaCl₂+Ba(OH)₂. Solubility of BaCl₂ in BaO+Aq at 30°.

			1
	Composition of the solution		
i	% by wt. BaO	% by wt. BaCl ₂	Solid phase
	0	27.6	BaCl ₂ , 2H ₂ O
	$\begin{array}{c} 1.78 \\ 1.79 \end{array}$	$\begin{vmatrix} 27.42 \\ 27.31 \end{vmatrix}$	"BaCl ₂ , 2H ₂ O+BaCl(OH), 2H ₂ O
	1.75	27.41	"
	$2.33 \\ 2.50$		BaCl(OH), 2H ₂ O
	$\frac{3.27}{4.67}$	21.46 19.18	66
	4.86	18.97	BaCl(OH), 2H ₂ O+BaO, 9H ₂ O
	$\frac{4.29}{4.64}$	$18.83 \\ 18.77$	"
	4.65	18.10	P.O. 011 O
	4.62 4.60	18.04 17.08	BaO, 9H₂O
	4.58 4.45	$12.81 \\ 10.77$	66 66
	4.99	0.77	44

(Schreinemakers, Z. phys. Ch. 1909, 68. 88.)

Sol. in CuCl₂, NH₄Cl+Aq at 30°. (Schreine-makers, Z. phys. Ch. 1909, **66**. 688.)

The solubility data for the system BaCl₂+CuCl₂+KCl+Aq have been determined at 40° and 60°. (Schreinemakers, C. C. 1915, I. 933.)

BaCl₂+HgCl₂. Solubility of BaCl₂+ HgCl₂ in H₂O.

t°	Gms. per 100 g. solution		Solid phase
-	BaCl ₂	HgCl ₂	•
10.4°	23.58	50.54	BaCl ₂ ,2H ₂ O+HgCl ₂
10.4 10.4 10.4	$23.44 \\ 22.58 \\ 22.48$	$50.74 \\ 51.23 \\ 51.41$	BaCl ₂ ,3HgCl ₂ , 6H ₂ O
10.4 10.4 10.4	22.10 21.64	51.66 51.74	BaCl ₂ ,2H ₂ O+HgCl ₂
25.0	23.02	54.83	Dacie, ZireO Trigole

(Foote and Bristol, Am. Ch. J. 32, 248.)

	Te	mp. =30	1		Temp. $=0^{\circ}$
% HgCl2	% BaCl ₂	Solid phase	% HgCl2	% BaCl ₂	Solid phase
0	27.77	BaCl ₂ . 2H ₂ O	0	23.70	BaCl ₂ .2H ₂ O
2.90	27.56	"	14.25	24.0	"
7.09	27.47	4.6	36.20	24.89	"
12.98	26.99		46.12	24.07	BaCl ₂ , 3HgCl ₂ .6H ₂ O+
22.61	26.89	"	46.05	24.03	" BaCl, 2H, C
34.57	26.69	"	46.07	24.05	"
46.50	25.22	"	46.59	23.28	BaCl ₂ , 3HgCl ₂ .6H ₂ O
55.16	23.46	HgCl ₂ +BaCl ₂ .2H ₂ O	47.78	21.05	2 2
55.32	23.08		48.43	20.64	BaCl ₂ , 3HgCl ₂ .6H ₂ O+HgCl
55.19	22.98	"	48.49	20.71	"
48.97	17.87	HgCl_2	44.33	18.50	$HgCl_2$
41.30	14.26	· · ·	29.0	11.59	""
27.62	8.41	44	16.36	6.11	"
14.19	2.65	u	3.95	0	"
7.67	0	"			
1		ľ			Temp. =40°
		ı	56.57	22.98	BaCl ₂ .2H ₂ O+HgCl ₂

(Schreinemakers, Ch. Weekbl. 1911, 7. 202.)

BaCl₂+KCl. Sol. in sat. KCl+Aq, at first without pptn. The KCl is pptd. after a time until a state of equilibrium is reached.

100 pts. H₂O at 16.6° dissolve 33.8–27.2 pts. KCl and 18.2–34.9 pts. BaCl₂. (Kopp, A. **34**. **267**.)

100 g. sat. solution of BaCl₂+KCl contain 13.83 g. BaCl₂ and 18.97 g. KCl at 25°. (Foote, Am. Ch. J. **32**. 253.)

Solubility of BaCl₂+Ba(NO₃)₂ in H₂O. Both salts present in solid phase.

t°	Gms. pe solu	r 100 gms. ition	l,°	Gms. pe	r 100 gn _{is} . ution
	BaCl ₂	Ba(NO ₃) ₂		BaCl ₂	Ba(NO ₃₎₂
0 20 40 60	$22.5 \\ 24.5 \\ 26.5 \\ 28.5$	4.3 6.0 7.5 9.5	100 140 180 210	31 32 33 32	14 20 26 32

(Etard, A. Ch. (7) 2. 535.)

Very slowly sol. in sat. NaNO₃+Aq with separation of Ba(NO₃)₂.

Rapidly sol. in sat. KNO₃+Aq, forming Ba(NO₃)₂, which separates out. (Karsten.) BaCl₂+NaCl. BaCl₂ is sol. in NaCl+Aq at first without separation of NaCl, which, however, finally separates.

100 pts. H_2O dissolve, when both salts are in excess—

		1	2	3	4	5	6
NaCl BaCl ₂	· ·		$ \begin{array}{r} 4.1 \\ 34.5 \\ \hline 38.6 \\ \end{array} $	35.0		$ \begin{array}{r} 35.3 \\ 19.4 \\ \hline 54.7 \end{array} $	60.3

1, 2, and 3 are at 17°. (Kopp, A. **34.** 268.) 4, 5, and 6 are at b.-pt. (Mulder.)

Solubility of $BaCl_2+NaCl$. 100 pts. $H_2()$ dissolve pts. $BaCl_2$ and NaCl at t^2 .

10	Pts. BaCl ₂	Pts. NaCl	t°	Pts. BaCl ₂	Pts. NaCl
10	4.1	33.9	60	9.7	33.5
20	4.1	33.8	70	11.7	33.6
30	5.0	33.7	80	13.9	33.6
40	6.3	33.6	90	15.9	33.6
50	7.9	33.5	100	17.9	33.6

(Precht and Wittgen, B. 14, 1667.)

Solubility of BaCl₂+NaCl in HCl+Aq at 30°.

Solic	l phase, N	aCl	Solid phe	se, BaCl	2+2H ₂ O	
Sp. gr. of sat.	G. mo	l. litre	Sp. gr. of sat.	G. mollitre		
solution	HCI	NaCl	solution	HCI	BaCl ₂	
1.2018 1.1906 1.1801 1.1633	0.0000 0.4575 0.969	5.400 4.932 4.386	$1.2651 \\ 1.2147$	0.0000 0.4709 1.107	1.745 1.468 1.122	
1.1512 1.1427 1.1289	$ \begin{bmatrix} 1.786 \\ 2.412 \\ 3.052 \\ 4.152 \end{bmatrix} $	3.589 2.978 2.463	$1.1419 \\ 1.1068$	3 041	$0.861 \\ 0.592 \\ 0.307$	
1.1188 1.1258	5.950 7.205	1.628 0.630 0.268	1.0880 1.0895 1.1024	3.059 6.234	0.124 0.020 0.00	
			1.1609	10.25	0.00	

(Masson, Chem. Soc. 1911, 99. 1136.)

Solubility of BaCl ₂ +NaCl in HCl+	·Aa	at 30°.	
---	-----	---------	--

%HCl	%NaCl	%BaCl2	Solid phase
0	23.85 18.07	$\frac{3.8}{2.27}$	NaCl, BaCl ₂ .2H ₂ O
$\frac{4.84}{12.02}$	9.55	0 82	"
$\frac{17.20}{23.16}$	$\frac{4.65}{1.54}$	0.29 0.00	"
$28.66 \\ 36.51$	$0.47 \\ 0.12$	0.00 0.00	NaCl+BaCl ₂ . H ₂ O

(Schreinemakers, Arch. Néer. Sc. ex. nat. (2) 15. 91.)

Insol in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Solubility in alcohol: 100 pts, alcohol of given sp. gr. dissolve pts. of the anhydrous, and crystallized salt.

Sp. gr.	Pts. BaCl ₂	Pts. BaCl ₂ +2H ₂ ()
0 900	1 00	1 56
0.848	0 29	0 43
0 834	0.185	0 32
0.817	0.09	0.06

(Kirwan.)

Insol. in abs. alcohol, or below 19° in alcohol of over 91%. Dil. alcohol dissolves less $BaCl_2$ than corresponds to the amount of H_2O present. (Gerardin, A. ch. (4) **5.** 142.)

Solubility in 100 pts. alcohol at t°. D = sp. gr. of alcohol; S = solubility.

D = 0	9904	D =	0.9848	D =	0 9793	D=0.972	
t°	s	t°	s	t°	я	t°	ĸ
14 25	29.1 32.0	14 32	25.0 29.1	11	19.6 20.4	15 23	15.6 17.0
32 47	33 5 37 4	39 50	30.9 33 2	20 35	$\frac{21.7}{24.6}$	33 50	$\frac{19}{22} \frac{1}{0}$
60	39.8	63	37-6	45	26 8		

1) =	0.9573	D =	0.9390	D =(8967	D =	0.8429
t°	9	t°	8	t°	s	t°	s
13 24 34 39 50	10 11.4 12.9 13.8 15.2	12 23 31 37 47	6.5 7.2 8.3 9.0 10.1	12 30 47 	0.1 4.3 4.9	12 19 25 50 67	0.00 0.00 0.04 0.28 0.377

(Gerardin, A. ch. (4) 5. 142.)

Solubility in dil. alcohol of x% by weight at 15°.

Co alcohol Pts. BaCl₂, 2H₂O 30.25 23.7 18.0 12.8 9.3 3.4 0.5 (Schiff, A. **118**. 365.)

Sol. in 6885-8108 pts. 99.3% alcohol at 14.5° , and in 1857 pts. at ebullition. (Fresenius.)

Solubility of BaCl₂ in alcohol+Aq.

-t° alcohol BaCl ₂ Solid phase	
" 32.67 10.63 " " 50.16 5.68 " 66.72 2.23 " 92.53 0.05 " 94.83 0.07 BaCl ₂ .2H ₂ O+BaCl ₂ .1	I ₂O
" 32.67 10.63 " 50.16 5.68 " 66.72 2.23 " 92.53 0.05 " 94.83 0.07 BaCl ₂ .2H ₂ O+BaCl ₂ .1	I₂ O
" 66.72 2.23 " " 92.53 0.05 " " 94.83 0.07 BaCl ₂ .2H ₂ O+BaCl ₂ .I	I₂ O
" 92.53 0.05 " " 94.83 0.07 BaCl ₂ .2H ₂ O+BaCl ₂ .1	I ₂ O
" 94.83 0.07 BaCl ₂ .2H ₂ O+BaCl ₂ .1	I ₂ O
94.00 U.UI DaUI2.2H2U+BaUI2.1	I ₂ O
" 94.75 0.05 "	
" 94.60 0.07 "	
" 97 14 BaCl ₂ H ₂ O	
" 98.17 0.08 BaCl ₂ .H ₂ O+BaCl ₂	,
" 99.41 BaCl ₂	•
60° 0 31.57 BaCl ₂ .2H ₂ O	
" 16.68 20.16 "	
" 34.10 13.21 "	
" 66.02 2.82 "	
" 88.55 0.25 "	
" 90.11 0.09 BaCl ₂ .2H ₂ O+BaCl ₂ .1	O.F
" 90.39	0
" 93.95 BaCl ₂ .H ₂ O	

(Schreinemakers and Massink, Chem. Weekbl. 1910, 7, 213.)

100 pts. absolute methyl alcohol dissolve 2.18 pts. BaCl₂ at 15.5°, and 7.3 pts. BaCl₂, 2H₂O at 6°. (de Bruyn, Z. phys. Ch. 10. 783.) At 15° C. 1 pt. by weight is sol. in:—

78 pts. methyl alcohol of sp. gr. 0.790 7,000 " ethyl " " " 0.8035 100,000 " propyl " " " 0.8085 (Rohland, Z. anorg. 1897, **15.** 413.)

Absolutely insol. in boiling amyl alcohol. (Browning, Sill. Am. J. 144. 459.)

Absolutely insol. in acetic ether. (Cann, C. R. 102, 363.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

100 pts. by weight of glycerine dissolve 10 pts. BaCl₂ at 15.5°. (de Bruyn, Z. phys. Ch. **10.** 783.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.) (Eidmann, C. C. 1899, II. 1014.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol. in anhydrous pyridine, 97% pyridine+Aq. and 95% pyridine+Aq. Sl. sol. in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30. 1107.)

+H₂O. Solution of monohydrate sat. at 6° contains 31.57% BaCl₂. (Schreinemakers, Chem. Weekbl. 1910, 7. 213.)

2.5 grams of the monohydrate are sol. in 100 cc. of methyl alcohol at 14°. (Kirschner, Z. phys. Ch. 1911, 76. 176.)

Exact solubility in methyl alcohol cannot be determined as BaCl₂+H₂O separates out from a sat. solution of the dihydrate. (Kirschner, Z. phys. ch. 1911, **76**. 177.)

Barium cadmium chloride, BaCl₂,CdCl₂+ 4H₂O. Easily sol. in H₂O. (v. Hauer.)

Solubility	in	H_2O	at	ť°	
------------	----	--------	----	----	--

t° -	100 pts. solution contain pts.			100 g. of solution	100 g. H ₂ () dissolve	100 mols. H ₂ O dissolve mols. of
	Cl	Ba	Cd	contain g. salt	g. salt	anhydrous salt
22.5 32.9 41.4 53.4 62.0 97.8 108.3 109.2	15. 19 16. 18 16. 95 18. 21 18. 81 22. 48 23. 51 23. 69	14.71 16.09 16.81 18.13 18.74 22.00 22.79 29.95	11.98 12.40 13.05 13.95 14.73 17.57 18.53 18.67	41.88 44.59 46.87 50.30 52.28 62.05 64.83 65.31	72.06 80.73 88.01 101.21 109.56 163.50 184.33 188.27	3.32 3.72 4.06 4.66 5.05 7.53 8.49 8.67

(Rimbach, B. 1897, 30. 3083.)

BaCl₂.2CdCl₂+5H₂O. Quite difficultly sol. in H₂O. (v. Hauer.)

Solubility in H₂O at t°.

t°	100 pts. by wt. of solution contain pts. by wt.			100 g. of solution	100 g. H ₂ O dissolve	100 mols. H ₂ O dissolve mols. of
	Cl	Ba	Cd	contain g. salt	g. salt	anhydrous salt
22.6 41.3 53.9 62.2 69.5 107.2 107.2	16.89 18.15 18.78 19.66 20.18 23.31 23.16	11.00 11.77 12.41 12.83 13.09 14.87 14.93	17.71 19.22 19.85 20.59 21.20 24.11 24.39	45.60 49.14 51.04 53.08 54.47 62.29 62.48	83.82 96.62 104.25 113.13 119.64 165.18 166.53	2.63 3.03 3.27 3.55 3.76 5.19 5.23

(Rimbach, B. 1897, **30**, 3083.)

Barium mercuric chloride, basic, BaCl₂, HgO | Barium zinc chloride, BaCl₂, ZnCl₂+4H₂O. +6H₂O.

Decomp. by H₂O. (André, C. R. **104**. 431.)

Barium mercuric chloride, BaCl₂, 2HgCl₂+ 2H₂O.

Efflorescent in dry air; sol. in H₂O. (v. Bonsdorff, Pogg. 17. 130.)

The salt BaCl₂, 2HgCl₂+2H₂O described by Bonsdorff does not form under the conditions which he gives. (Foote, Am. Ch. J. 1904, 32. 251.)

 $BaCl_2,3HgCl_2+6H_2O$. Solubility determinations with mixtures of BaCl₂ and HgCl₂ show that these chlorides do not form a double salt at 25°, but that a transition temp. exists at about 17.2° below which the salt BaCl₂, 3HgCl₂+6H₂O forms. (Foote, Am. Ch. J. 1904, 32. 251.)

+8H₂O. Less sol. in H₂O than the Sr and Mg double salts. (Swan, Am. Ch. J. 1898, 20.

Barium rhodium chloride, 3BaCl₂, Rh₂Cl₆. See Chlororhodite, barium.

Barium stannous chloride, BaCl₂, SnCl₂+ 4H₂O.

Sol. in H₂O. (Poggiale, C. R. **20**. 1183.)

Barium stannic chloride.

See Chlorostannate, barium.

Barium uranium chloride, BaCl₂, UCl₄.

Decomp. by H₂O. (Aloy, Bull. Soc. 1899, (3) **21.** 265.)

Deliquescent, and sol. in H_2O . (Warner, C. N. 27. 271.)

Pptd. from warm solution only. (Ephraim, Z. anorg. 1910, 67. 381.)

+21/5H₂O. Pptd. from cold solution. (Ephraim.)

Barium chloride hydrazine, BaCl₂, 2N₂H₄. Hydroscopic. (Franzen, Z. anorg. 1908, **60.** 290.)

Barium chloride hydroxylamine, BaCl₂, 2NH₂OH.

Very sol. in H₂O. (Crismer, Bull. Soc. (3) **3.** 118.)

Barium chloride sulphuric anhydride, BaCl2, 2SO₃.

Decomp. by H₂O. (Schultz-Sellack, B. 4. 113.)

Barium chlorofluoride, BaClF.

Difficultly sol. in H₂O, but much more sol. than BaF2. Decomp. by H2O, so that when washed on filter, the filtrate contains more BaCl₂ than BaF₂. (Berzelius, Pogg. 1. 19.)

Insol. in and undecomp. by boiling alcohol; sol. in conc. HCl and HNO₈. Decomp. by hot H2O, hot H2SO4, dil. acetic acid, dil. HCl or dil. HNO₃. (Defacqz, C. R. 1904, 138. 198.)

Barium cyanamide, BaCN₂.

Decomp. by H₂O. (Frank, C. C. 1902, II. 774.)

Barium subfluoride sodium fluoride, BaF, NaF.

Decomp. by H₂O. (Guntz, C. R. 1903, 136, 750.)

Barium fluoride, BaF₂.

Scarcely sol. in H2O (Berzelius); less sol. in H2O than CaF2.

1 liter H₂O dissolves 1630 mg. BaF₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

1605 mg. are contained in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.)

Insol. in molten MnCl₂, MnBr₂, MnI₂, MnCl₂+BaCl₂, MnBr₂+BaBr₂ and MnI₂+

Bal₂. (Defacqz, A. ch. 1904, (8) 1. 356.) Easily sol. in HCl, HNO₃, or HF+Aq. (Gay-Lussac and Thénard.)

Sl. sol. in liquid HF. (Franklin, Z. anorg. 1905, **46.** 2.)

(Naumann, B. Insol. in ethyl acetate. 1910, 43, 314.)

Sol. in an aqueous solution of sodium citrate. (Spiller.)

Barium tin (stannic) fluoride.

See Fluostannate, barium.

Barium tellurium fluoride, BaF₂, 2TeF₄. Decomp. by H₂O. (Högbom, Bull. Soc. (2) **35.** 60.)

Barium titanium fluoride.

See Fluotitanate, barium.

Barium titanyl fluoride, TiO₂F₂, BaF₂. See Fluoxypertitanate and fluoxytitanate, barium.

Barium uranyl fluoride.

See Fluoxyuranate, barium.

Barium vanadyl fluoride.

See Fluoxyvanadate, barium.

Barium zirconium fluoride, 3BaF2, 2ZrF4+ 2H₂O.

Insoluble precipitate. (Marignac.)

See also Fluozirconate, barium.

Barium fluoiodide, BaF₂, BaI₂.

Decomp. by H₂O, dil. HCl, dil. HNO₃ or hot H₂SO₄. Sol. in HI and HNO₃. Insol. in and undecomp. by boiling alcohol. Decomp. by dil. acetic acid. (Defacqz, C. R. 1904, **138.** 199.)

Barium hydride, BaH.

Decomp. by H_2O or HCl+Aq. (Winkler, B. **24.** 1979.)

Decomp. by H₂O. (Guntz, C. R. 1901, **132**. 964.)

Barium hydrosulphide, BaS₂H₂.

Easily sol. in H₂O. Insol. in alcohol. +4H₂O. Sol. in H₂O, and the solution dissolves S. (Veley, Chem. Soc. 49. 369.)

Barium hydroxide, BaO2H2.

100 pts. cold H₂O dissolve 5 pts. BaO₂H₂. boiling

(Davy.)

100 pts. H₂O at 20° dissolve 3.45 pts. BaO. (Bineau, C. R. 41. 509.)

100 pts. H₂O at 13° dissolve 2.86 pts. BaO. " 17.9 (Osann.)

100 pts. H₂O dissolve pts. BaO at t°.

	-				
t°	Pts. BaO	t°:	Pts. BaO	40	Pts. BaO
0	1.5	30	5.0	60	18.76
5	1.75	35	6.17	65	24.67
10	2.22	40	7.36	70	31.9
15	2.89	45	9.12	75	56.85
20	3.48	50	11.75	80	90.77
25	4 19	55	14.71		

(Rosenthiel and Rühlmann, J. B. 1870. 314.)

100 pts. H₂O dissolve at 25° 55.08 millimols. $B\iota O_2H_2$. (Herz and Knoch, Z. anorg. 1904, 41. 315.)

Sp. gr. of BaO2H2+Aq.

C BaO	Sp. gr.	%BaO	Sp. gr.
30 19 2 6	1 6 1 3 1 03	1.8 0.9	1.02 1.01

(Dalton.)

Sp. gr. of BaO_2H_2+Aq at 18° containing 1.25% $BaO_2H_2=1.0120$; containing 2.5%=1.0253. (Kohlrausch, W. Ann. 1879, **6.** 41.)

Sp. gr. of BaO_2H_2+Aq at 80° .

Sp. gr.	BaO ₂ H ₂ by volume	BaO ₂ H ₂ by weight	Sp. gr.	BaO ₂ H ₂ by volume	BaO ₂ H ₂ by weight
1.514 1.500 1.479 1.458 1.450 1.413 1.400 1.375 1.368 1.350 1.338 1.312 1.301 1.301	58. 22 56. 31 54. 14 49. 38 48. 90 45. 99 45. 00 44. 22 42. 40 41. 45 38. 60 37. 30 35. 02 34. 02 31. 48	38. 45 37. 54 36. 60 33. 87 33. 72 32. 55 32. 14 31. 81 30. 30 28. 59 27. 88 26. 69 26. 69 24. 67	1.219 1.200 1.195 1.174 1.174 1.152 1.129 1.125 1.114 1.100 1.076 1.062 1.049 1.040 1.031	24.53 23.00 22.15 19.83 17.78 16.01 15.80 14.56 13.06 10.58 9.16 7.55 6.51 5.18	20.12 19.17 18.53 16.89 15.43 14.18 14.04 13.07 11.87 9.83 8.62 7.20 6.26 5.02 4.67
1.249 1.236	28.14 26.41	$\begin{vmatrix} 24.07 \\ 22.52 \\ 21.36 \end{vmatrix}$	1.015	3.90 3.37	3.84 3.34

(Haff, C. N. 1902, 86, 284.)

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, 20. 827.)
More sol. in NaCl+Aq, KNO₃+Aq, or NaNO₃+Aq than in H₂O. (Karsten.) Not precipitated by alcohol.

Sol. with combination in absolute alcohol B.-pt. of BaO₂H₂.8H₂O+Aq, etc.—Continued. and anhydrous methyl alcohol. Insol. in

(Naumann, B. 1904, 37. Insol. in acetone. 4329; Eidmann, C. C. 1899, II. 1014.)

Solubility in acetone+Aq at 25°. A = cc, acetone in 100 cc. acetone +Aq. $\frac{\text{BaO}_2\text{H}_2}{\text{BaO}_2\text{H}_2}$ = millimols. BaO_2H_2 in 100 cc. of the solution.

S = sp. gr. of the solution.

A	BaO ₂ H ₂	s
0	55.08	1.04790
10	31.84	1.01677
20	17.79	0.99268
30	9.10	0.97630
40	4.75	0.95605
50	1.54	0.93980
60	0.48	0.91790
70	0.08	0.89562

(Herz. Z. anorg. 1904, 41, 321.)

BaO₂H₂ is sol. in an aqueous solution of cane sugar (Hunton, Phil. Mag. (3) 11. 156); also in an aqueous sol. of mannite (Favre, A. ch. (3) 11. 76); sorbine (Pelouze); hot solution of quercite, separating on cooling (Dessaignes).

+3H₂O. Decomp. by H₂O free from carbonic acid. Sl. sol. in alcohol and ether.

(Bauer, Z. anorg. 1905, 47, 416.)

Solubility in H₂O the same as that of the comp. with 8H₂O. Insol. in alcohol and ether. (Bauer, Zeit. angew. Ch. 1903, **17**, 341.)

Nearly insol. in alcohol and ether. (Bauer,

Zeit. angew. Ch. 1903, 16. 349.)

+8H₂O. Sol. in 20 pts. cold, and 3 pts. boiling H₂O (Graham); 17.5 pts. H₂O at 15.5°, and in all proportions of hot H_2O . (Hope.) Sol. in 19 pts. H_2O at 15°, and 2 pts. at 100°. (Wittstein.)

If BaO₂H₂+8H₂O is heated it dissolves in the crystal H₂O and the solution has the

following bpts. %BaO 49.05 50.0552.4353.72 B.-pt. 103° 104° 105° 106° %BaO 55.35 57.4958.7461.44B.-pt. 107° 108° 108.5° 109°

BaO₂H₂+3H₂O separates at 109°. (Bauer, Zeit. angew. Ch. 1903, 17. 345.)

B.-pt. of BaO₂H₂.8H₂O+A₀ at 732 mm

D., 4	l m:	
Bpt.	Time	%BaO
78° (mpt.)	0	48.45
78	4'	48.45
103	6' 30"	49.05
104	6' 45"	50.05
105	7' 30"	52.43
106	9′ 25″	53.72
107	10′ 45″	55.35

Bpt.	Time	%BaO
108 108.5 109 109 108 105	12' 13' 17' 40" 17' 50" 18' 18' 45"	57. 49 58.74 61. 44 63.65 66.53 67.51 68.17

(Bauer, Z. anorg. 1905, 47. 407.)

Solubility in Ba(NO₃)₂+Aq at 25° Solution sat. with respect to both Ba(NO₃)₂ and BaO₂H₂, 8H₂O.

Sp. gr. 25°/25°	g. BaO as Ba(OH) ₂ in 100 g. H ₂ O	g. Ba (NO ₃) ₂ in 100 g. H ₂ O
1.1448	5.02	11.48
1.1371	4.93	10.21
1.1288	4.83	8.66
1.1220	4.72	7.55
1.1133	4.72	7.01
1.1062	4.65	6.82
1.1044	4.61	6 55
1.1010	4.64	6.08
1.0975	4.60	5.66
1.0949	4.55	5.46
1.0937	4,54	5.32
1.0885	4.52	4.44
1.0864	4.53	4.41
1.0840	4.52	4.04
1.0790	4.48	3.47
1.0774	4.46	3.14
1.0731	4.40	2.79
1.0711	4.42	2.53
1.0651	4.35	1.88
1.0626		
1.0640	4.35	1.45
1.0538	4.29	0.43
1.0512	4.29	0

(Parsons and Corson, J. Am. Chem. Soc. 1910, **32.** 1385.)

Solubility of Ba(OH)₂+8H₂O (solid phase) in MCl+Aq (mol. per litre of solution) at 25°.

Solution of	(Cl')	(OH')
LiCl " " KCl " " NaCl " " RbCl	0 0.75 1.42 2.30 0.86 1.75 3.40 0 0.73 1.43 2.82 1.25	0.555 0.745 0.937 1.336 0.645 0.660 0.555 0.630 0.699 0.806 0.648

(Herz, Z. anorg. 1910, 67. 366.)

% NasO	%BaO	Solid phase
0	4.99	BaO. 9H ₂ O
4.78	1.29	"
6.43	0.89	**
9.63	0.57	"
1.62	0.53	<i>F</i>
7.87	0.47	••
3.28	1.06	"
4.63	1.87	BaO.9H ₂ O+BaO.4H ₂ O
26.14	1.84	BaO. 4H ₂ O
7 72	1.75	111111111111111111111111111111111111111
8.43	1.58	46
9.24	1.34	BaO.4H ₂ O+BaO 2H ₂ O
2.12	0.82	BaO 2H ₂ O
4.72	0.59	(1)
1.09	0.57	BaO.2H ₂ O+NaOH.H ₂
2	0.57	NaOH, H ₂ O
· -	<u> </u>	NaOH.Hg-/
Schreine	makers,	Z. phys. Ch. 1909, 68. 84

Barium subiodide sodium iodide, BaI, NaI. Decomp. by H₂O. (Guntz, C. R. 1903, **136.** 750.)

Barium iodide, BaI2.

Not deliquescent. Very sol. in H₂O and alcohol. 100 pts. of anhydrous salt dissolve: at 0° 19.5° 30° 40° 60° 90° 106° 44 43 41 37 in 59 48 35 pts. H₂O. (Kremers, Pogg. 103. 66.)

Sp. gr. of Bal₂+Aq containing:

20 25 $30\% BaI_2$ 15 10 1.045 1.091 1.143 1.201 1.265 1.333

60%BaI. 45 1.412 1.495 1.596 1.704 1.825 1.970

(Kremers, Pogg. 111. 63, calculated by Gerlach, Z. anal. 8. 279.)

Easily sol. in alcohol. (Henry.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in acetone. (Naumann, B. 1904, **37**. 4328; Eidmann, C. C. **1899**, II. 1014.)

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3789.)

+2H₂O. At 15° C., 1 pt. by weight in sol. in: 22 pts. methyl alcohol sp. gr. 0.790 93 "" 0.8035307 " .. 0.8085

(Rohland, Z. anorg. 1897, 15. 413.)

+7H₂O. (Thomson, B. 10. 1343.)

The composition of the hydrates formed by BaI, at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by BaI: and of the conductivity and sp. gr. of Bal₂+Aq. (Jones, Am. Ch. J. 1905, 34, 306.)

Barium iodide, basic,*Ba(OH)I+9H₂O. See Barium oxyiodide.

Barium bismuth iodide, BaI₂, 2BiI₃+18H₂O. Deliquescent; decomp. by H₂O. (Linau, Pogg. 111. 240.)

Barium cadmium iodide, BaI₂, CdI₂+5H₂O. Deliquescent. (Croft.)

Barium mercuric iodide, BaI2, 2HgI2.

Decomp. by much H₂O. (Boullay.) Bal₂, Hgl₂. Sol. in H₂O. (Boullay.) Sp. gr. of sat. solution = 3.575-3.588. (Rohrbach, W. Ann. **20.** 169.) +5H₂O. (Duboin, C. R. 1906, **143.** 314.)

2BaI₂, 3HgI₂+16H₂O. (Duboin, C. Ř. 1906, **142**. 888.)

BaI₂, 5HgI₂+8H₂O. As the corresponding Ca salt. (Duboin, C. R. 1906, **142**. 888.) 3BaI₂, 5HgI₂+21H₂O. Very deliquescent. (Duboin, C. R. 1906, 142, 889.)

Barium stannous iodide.

Very sol. in H₂O. (Boullay.)

Barium zinc iodide, BaI₂, 2ZnI₂.

Deliquescent, and sol. in H₂O. (Rammelsberg.)

Very hydroscopic. +4H₂O. (Ephraim, Z. anorg. 1910, 67, 385.)

Barium nitride, Ba₃N₂.

Decomp. H₂O violently, not alcohol. (Maquenne, A. ch. (6) 29. 219.) BaN6.

See Barium azoimide.

Barium oxide, BaO.

Sol. in H₂O with evolution of heat. Easily sol. in dil. HNO₈, or HCl+Aq. Solubility in NaOH+Aq. See Barium hydroxide.

Solubility in Na₂O, HCl, +H₂O at 30°. (Schreinemakers, Z. phys. Ch. 1909, **68**. 98.) Solubility in Na₂O, NaCl, BaCl₂+Aq at 30°. (Schreinemakers.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20**. 827.) Sol. with combination in absolute alcohol and anhydrous wood-spirit. Insol. in ether.

Easily sol. in absolute methyl alcohol. 1 l. absolute ethyl alcohol sat. with BaO at 9° contains 213.8 g. BaO. (Berthelot, Bull. Soc. 8. 389.)

Sol. in methyl alcohol. (Neuberg and Neimann, Biochem. Z. 1906, 1. 173.)

Insol. in acetone. (Eidmann, C. C. 1899. II. 1014; Naumann, B. 1904, 37. 4329.) Insol. in methyl acetate. (Naumann, B.

1909, **42.** 3790.)

See also Barium hydroxide.

Barium peroxide, BaO2.

Insol. in H₂O: decomp. by boiling H₂O.

Sol. in acids with formation of hydrogen Barium sulphide, BaS. dioxide.

Forms hydrate with 8H₂O; also 10H₂O (Berthelot, A. ch. (5) 21. 157); also a compound BaO₂, H_2O_2 , which is very unstable, sl. sol. in cold H_2O , and insol. in alcohol or ether. (Schöne, A. 192. 257.)

 $_{*}+8\mathrm{H}_{2}\mathrm{O}$. 100 cc. pure $\mathrm{H}_{2}\mathrm{O}$ dissolve 0.168 $\mathrm{BaO}_{2}+8\mathrm{H}_{2}\mathrm{O}$; if $\mathrm{H}_{2}\mathrm{O}$ contains 0.3 g. Ba(OH)₂+8H₂O, only 0.102 g. BaO₂+8H₂O are dissolved; if 0.6 g. Ba(OH)₂+8H₂O only 0.019 g. BaO₂+8H₂O are dissolved. (Schöne, A. 1878, **192.** 266.)

Insol. in acetone. (Eidmann, C. C. 1899, 11. 1014; Naumann, B. 1904, 37. 4329.)

Barium oxybromide, $Ba(OH)Br + 2H_2O$.

Decomp. by H₂O. (Beckmann, J. pr. (2) **27.** 132.)

BaBr₂,BaO+5H₂O. Sl. sol. in H₂O. (Tassilly, C. R. 1895, **120**. 1340.)

Barium oxychloride, Ba(OH)Cl+2H₂O.

Decomp. by H₂O, (Beckmann, J. pr. (2) **26.** 388, 474.)

Barium mercury oxychloride, BaCl₂, HgO+ $6H_2O$.

Decomp. by H₂O. (André, C. R. **104.** 431.)

Barium oxyiodide, Ba(OH)I+9H₂O.

Decomp. by H₂O and alcohol. (Beckmann, B. 14. 2154.)

BaI₂,BaO+9H₂O. Sl. sol. in H₂O. (Tassilly, C. R. 1895, 120. 1340.)

Barium oxysulphides, Ba₇O₄S₃+58H₂O₅ $Ba_2OS + 10H_2O$, $Ba_4OS_3 + 28H_2O$.

Very unstable; decomp. by recrystallization into BaS2H2 and BaO2H2.

Barium phosphide, BaP2.

Decomp. by H₂O. (Dumas, A. ch. 32.

 Ba_8P_2 . Crystallized. Sol. in dil. acids; insol, in conc. acids; decomp. by H2O. Insol. in organic solvents at ord. temp. (Jaboin, C. R. 1899, 129, 765.)

Barium selenide, BaSe.

Sol. in H2O with decomp. Sl. sol. in H₂O. (Favre, C. R. 102, 1469.)

Barium silicide, Ba₂Si.

(Jüngst, C. C. 1905, I. 195.)

BaSi₂. Slowly decomp. by H₂O, not by NH₄OH+Aq. Rapidly decomp. by conc. NaOH. Sol. in HNO₃, H₂SO₄ and H₃PO₄ with evolution of spontaneously inflammable gas. Sol. in HF and HCl. Sol. in acetic acid without evolution of gas. (Moissan, Traité ch. min. 1904, III. 680.)

Decomp. rapidly in both hot and cold H₂O. A. ch. (6) 29. 397.) (Bradley, C. N. 1900, 82. 150.)

Sol. in H₂O with decomp. Crystallized. Decomp. by H₂O.

Attacked by cold conc. HNO₃. (Mourlot, A. ch. 1899, (7) 17, 521.)

Cryst. modification is less readily acted on by air and other reagents than the amorphous modification; sol. in fuse oxidizing agents. (Mourlot, C. R. 1898, 126. 645.)

+H₂O. (Neuberg and Neimann, Biochem. Z. 1906, 1. 174.)

+6H₂O. Slowly sol. in boiling H₂O, with decomp.; insol. in, but decomp. by boiling alcohol. (Schöne.)

Barium sulphide, $Ba_4S_7 + 25H_2O$ (?).

Sol. in H₂O. (Schöne, Pogg. **112**. 215.)

Barium trisulphide, BaS₃.

Sol. in large amount of boiling H₂O. (Schöne, Pogg. 112. 215.)

Barium tetrasulphide, $BaS_4 + H_2O$.

Easily sol, in H₂O, especially if hot; sol, in 2.42 pts. H_2O at 15° ; insol. in CS_2 or alcohol. (Schöne, Pogg. 112, 224.)

+2H₂O. (Veley, Chem. Soc. **49.** 369.)

Barium pentasulphide, BaS₅. Known only in solution.

Barium mercuric sulphide, BaS, HgS+5H₂O. Sol. in H₂O. (Wagner, J. pr. 98, 23.)

Barium nickel sulphide, BaS, 4NiS.

Sol, in warm conc. HCl. (Bellucci, C. A. **1909**, 293.)

Barium stannic sulphide.

See Sulphostannate, barium.

Barium uranyl sulphide, 6BaS, UO2S+ $xH_2()$ (?).

Decomp. by HCl+Aq. (Remelé, Pogg. **124.** 159. j

Baryta.

See Barium oxide, Ba().

Beryllium, Be.

For beryllium and its salts, see Glucinum and the corresponding salts.

Bismuth, Bi.

Not attacked by H2O. Very slowly attacked by HCl+Aq (Troost). Very sl. sol. in conc. HCl+Aq (Schützenberger, Willm). Not attacked by dil. HCl+Aq (Naquet and Hanriot). Very slowly attacked by cold HCl +Aq (Godeffroy). According to very careful experiments pure Bi is absolutely unattacked by hot or cold, dil. or conc. HCl+Aq except in presence of oxygen. (Ditte and Metzner, Not attacked by dil. H₂SO₄+Aq. Decomp.

by hot conc. H2SO4. Easily sol. in dil. or

conc. HNO₃+Aq, or aqua regia.

Not attacked by pure HNO₂+Aq of 1.52 to 1.42 sp. gr. at 20°; violently attacked by a more dil. acid, but the acid becomes concentrated thereby. Conc. HNO₈+Aq attacks only by heating or adding NO₂. (Millon, A. ch. (3) 6. 95.)

Insol. in liquid NH₈. (Gore, Am. Ch. J.

1898**, 20**. 827.)

½ ccm. oleic acid dissolves 0.0091 g. Bi in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Bismuth arsenide, Bi₃As₄.

(Descamp, C. R. 86, 1065.)

Bismuth dibromide, Bi₂Br₄.

Not known in a pure state. (Weber, Pogg. **107.** 599.)

Bismuth tribromide, BiBr₃.

Very deliquescent. Decomp. by H₂O. Sol. in alcohol or ether.

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, **84.** 27.)

Bismuth hydrogen bromide, BiBr₃, 2HBr+ 4H₂O.

Deliquescent.

Decomp. in the air. (Aloy, Bull. Soc. 1906, (3) **35.** 398.)

Bismuth cæsium bromide, 2BiBr₃, 3CsBr.

Ppt. Insol. in HBr.

Sol. in HCl and in HNO₃. (Hutchins, J. Am. Chem. Soc. 1907, 29, 33.)

Bismuth potassium bromide, BiBr₃,2KBr.

Decomp. by H₂O, (Aloy, Bull. Soc. 1906, (3) **35.** 398.)

Bismuth bromide ammonia, BiBr₃, 3NH₃.

Sol. in HCl+Aq.

BiBr₃, 2NH₃ (?).

2BiBr₃, 5NH₃. Not deliquescent; not decomp. by H2O; easily sol. in dil. acids. (Muir, Chem. Soc. 29. 144.)

Bismuth bromide potassium chloride,

 $K_2BiCl_3Br_2 + 1\frac{1}{2}H_2O$.

Decomp. by H₂O. (Atkinson, Chem. Soc. **43.** 289.)

Bismuth dichloride, Bi₂Cl₄.

Very deliquescent. Decomp. by H₂O, dil. acids, or conc. NH4Cl+Aq. (Weber, Pogg. 107. 596.)

Bismuth trichloride, BiCl₃.

Deliquescent. Decomp. by H_2O . Sol. in dil. HCl+Aq, and alcohol. Not decomp. by H_2O in presence of citrates. (Spiller.)

0.08 g. sol. in 100 ecm. liquid H₂S. (Antony, C. C. 1905, I. 1692.) Moderately sol. in liquid NH₃. (Gore, Am.

Ch. J. 1898, **20**. 827.)

1 g. BiCl₂ is sol. in 5.59 g. acetone at 18°.

Sp. gr. of sat. solution 18°/4° = 0.9194. (Naumann, B. 1904, 37. 4331.)

Sol. in acetone and in methylal. (Eidmann,

C. C. 1899, II. 1014.)

Sol. in benzonitrile. (Naumann, B. 1914,

47. 1369.)

724.)

Sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

1 pt. is sol. in 60.36 pts. ethyl acetate at 18°. Sp. gr at 18°/40°=0.9106. (Naumann, B. 1910, 43. 320.)

Sol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Bismuth chloride, Bi₂Cl₈ (?). Decomp. by H₂O. (Dehérain, C. R. 54.

Bismuth hydrogen chloride, 2BiCl₂, HCl+

3H2O. Not deliquescent. I (Engel, C. R. 106. 1797.) Decomp. by H_2O .

BiCl₃, 2HCl. (Jacquelain, A. ch. (2) 62. **3**63.)

Bismuth cæsium chloride, BiCl₃, 3CsCl.

Decomp. by H₂O. Sl. sol. in cold dil. HCl+ Aq, but easily sol. on warming. (Brigham, Am. Ch. J. 14. 181.)

2BiCl₃, 3CsCl. As above. (Brigham.) BiCl₃, 6CsCl. Easily sol. in H₂O and dil.

HCl+Aq. (Godeffroy, B. 8. 9.)

Does not exist. (Brigham.)

Bismuth hydrazine chloride, BiCl₃, 3N₂H₄HCl.

Sol. in acids, from which it is pptd, by H₂O. (Ferratini, C. A. **1912.** 1613.)

Bismuth nitrosyl chloride, BiCl₃, NOCl.

Very deliquescent. Decomp. by H₂O. (Sudborough, Chem. Soc. 59. 662.)

Bismuth potassium chloride, BiCl₃, KCl+ H₂O.

Decomp. by H₂O. Cannot be recryst. except from conc. BiCl3+HCl. Decomp. by HCl+Aq into BiCl₃, 2KCl+2H₂O. (Brigham, Am. Ch. J. 14. 167.)

BiCl₃, 2KCl. Decomp. by H₂O. (Arppe. Pogg. 64. 37.)

Deliquescent.

Sol. in H₂O with decomp, into the oxychloride when excess H2O is used. (Alov. Bull. Soc. 1906, (3) **35.** 397.)

+2H₂O. Decomp. by H₂O. (Jacquelain, J. pr. **14.** 1.)

Sol. in moderately conc. HCl+Aq. BiCl₃, 3KCl. Decomp. by H₂O. (Arppe.)

Does not exist. (Brigham.)

Bismuth rubidium chloride, BiCl₃, RbCl+

Decomp. by H₂O; sol. in dil. HCl+Aq, from which BiCls, 3RbCl crystallizes. (Brigham, Am. Ch. J. 14. 174.)

BiCls, 3RbCl. Decomp. by H₂O; sol. in dil.

HCl+Aq without decomp. (Brigham.) BiCl₈, 6RbCl. Decomp. by H₂O; sol. in HCl+Aq (Godeffroy, B. 8.9); does not exist. (Brigham.)

10BiCl₃, 23RbCl (?). As above. (Brigham.)

Bismuth sodium chloride, BiCl₃, 2NaCl+ H_2O .

+3H₂O. Decomp. by H₂O. (Arppe, Pogg. **64.** 237.)

BiCl₃, 3NaCl.

Bismuth thallous chloride, BiCl₃, 3TlCl.

Ppt. (Ephraim, Z. anorg. 1909, 61. 254.) BiCl₃, 6TlCl. Ppt. (Ephraim.)

Bismuth chloride ammonia, 2BiCl₃, NH₃.

Stable. (Dehérain, C. R. 54. 724.)

BiCl₃, 2NH₃. (D.) BiCl₈, 3NH₈. (D.)

Bismuth chloride nitric oxide, BiCl₈, NO.

Very hygroscopic. (Thomas, C. R. 1895, **121.** 129.)

Bismuth chloride nitrogen peroxide, BiCl₃,

Decomp. by moist air, but stable in dry air. (Thomas, C. R. 1896, **122**, 612.)

Bismuth chloride selenide. See Bismuth selenochloride.

Bismuth trifluoride, BiF₃.

Insol. in H₂O or alcohol. (Gott and Muir, Chem. Soc. 53. 138.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

Bismuth hydrogen fluoride, BiF₈, 3HF.

Deliquescent. Decomp. by boiling H₂O. (Muir, Chem. Soc. 39. 21.)

Bismuth gold, Au₃Bi.

Insol. in equal pts. of HNO₃ and tartaric acids. (Roessler, Z. anorg. 1895, 9.71.)

Bismuthous hydroxide, Bi(OH)₃.

Sol. in strong acids. Insol. in solutions of alkalies, alkali carbonates, (NH₄)₂CO₃, or NH₄NO₃; or of amyl amine (Wurtz). When recently pptd. is sol. in NH₄Cl+Aq, but | Sol. in HNO₈, and HI+Aq, from which it insol. in NH₄NO₈+Aq (Brett, **1837**). Not | is repptd. by H₂O or alcohol. Sol. in KI+Aq pptd. in presence of Na citrates (Spiller).

Solubility of freshly pptd. Bi(OH), in NaOH + Aq.

114011 114.						
g. NaOH per l.	g. Bi dissolved per l. at 20°	g. Bi dissolved per l. at 100°				
400 320 240 200 160	0.16 0.11 0.11 0.10 0.08	1.70 1.20 0.5 0.5				
120 80 40 20	0.07 0.04 trace 0	0.35 0.2 0.15				

(Moser, Z. anorg. 1909, **61.** 386.)

Solubility of freshly pptd. Bi(OH)₃ in KOH + Aq.

	•	
KOH per l. g.	g. Bi dissolved per l. at 20°	g. Bi dissolved per l. at 100°
560	0.14	1.65
448	0.11	1.20
336	0.11	
280	0.10	0.5
224	0.08	0.5
168	0.06	
112	0.03	0.3
56	trace	0.2
28	0	0.15

(Moser, Z. anorg. 1909, **61.** 386.)

Bi₂O₃, 2H₂().

Bi₂O₃, H₂O. (Muir, Chem. Soc. **32**. 131.) See also Bismuth trioxide.

Bismuth tetrahydroxide, Bi₂O₄, H₂O.

Bi₂O₄, 2H₂O. (Wernicke, Pogg. **141**, 109.)

Bismuthic hydroxide (Bismuthic acid), Bi₂O₅, H₂O.

Insol. in H₂O; easily decomp. by acids. (Fremy, A. ch. (3) **12.** 495.) Decomp. by H₂SO₄; not attacked by SO₂+Aq; neither dissolved nor decomp. by dil. HNO3+Aq, but slowly converted into an allotropic modification (?). Partially decomp. by conc. HNO3. Slowly but wholly dissolved by hot conc.

HNO₃. Sl. sol. in conc. KOH+Aq. (Arppe.) Sol. in about 100 pts. boiling KOH+Aq, so conc. that it solidifies on removing the lamp. (Muir, Chem. Soc. 51. 77.)

Bi₂O₅, 2H₂O. (Bödeker, A. **123**. 61.) Does not exist. (Hoffmann and Geuther.)

Bismuth iodide, BiI3.

Not attacked by cold H₂O, but by boiling, BiOI is formed. 100 pts. absolute alcohol dissolve 3½ pts. salt at 20°. (Gott and Muir, Chem. Soc. 57. 138.)

or KOH+Aq. (Rammelsberg.)

Sl. sol. in liquid NH ₄ . (Franklin, Am. Ch. J. 1898, 20. 627.) 100 g. absolute alcohol dissolve 3.5 g. BiI ₃ at 20°. (Gott and Muir, Chem. Soc. 57. 138.) Sol. in acetone. (Naumann, B. 1904, 37.
4328.) 100 pts. methylene iodide dissolve 0.15 pt. BiI ₃ at 12°, and very little more at higher temperatures. (Retgers, Z. anorg. 3. 343.) Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)
Bismuth hydrogen iodide, BiI ₃ , HI+4H ₂ (). (Arppe, Pogg. 44. 248.)
Bismuth cæsium iodide, 3CsI,2BiI ₃ . Very sl. sol. in H ₂ O. (Wells, Am. J. Sci. 1897, (4) 3. 464.)
Bismuth calcium iodide, 2BiI ₃ , CaI ₂ +18H ₂ (). Deliquescent; decomp. by H ₂ (). (Linau, Pogg. 111 . 240.)
Bismuth magnesium iodide, $2BiI_3$, Mgl_2+ $12H_2O$.
Deliquescent; decomp. by $H_2(\cdot)$. (Linau, Pogg. 111. 240.)
Bismuth potassium iodide, BiI3, 4KI.
Ppt. (Arppe, Pogg. 44 . 237.) BiI ₃ , 3KI. (Astre, C. R. 110 . 1137.) BiI ₃ , 2KI. Sol. in acetic ether. (Astre.) +4H ₂ O. Sol. in small amt. H ₂ O without
pptn., but decomp. by much H ₂ O. BiI ₃ , 2KI, HI. (Arppe.) 2BiI ₃ , 3KI+2H ₂ O. (Astre.) BiI ₃ , KI+H ₂ O. Decomp. by H ₂ O. (Nicklès, C. R. 51. 1097.) 2BiI ₃ , KI. Sol. in acetic ether. (Astre.)
Bismuth sodium iodide, BiI ₈ , NaI+H ₂ O. Deliquescent; decomp. by H ₂ O. (Nicklès, C. R. 51 , 1097.)
2BiI ₃ , 3NaI+12H ₂ O. As above. (Linau, Pogg. 111 , 240.)
Bismuth zinc iodide, 2BiI ₃ , ZnI ₂ +12H ₂ O. Very deliquescent. (Linau, Pogg. 111. 240.)
Bismuth iodide ammonia, Bil ₃ , 3NH ₃ . Decomp. by H ₂ O. (Rammelsberg.)
Bismuth iodide zinc bromide. Sol. in H ₂ O. (Linau, Pogg. 111. 240.)
Bismuth nitride. Explosive. (Fischer, B. 1910, 43. 1471.) BiN. Ppt. Decomp. by H ₂ O or dil. acids. (Franklin, J. Am. Chem. Soc. 1905, 27. 847.)
Bismuth dioxide, Bi ₂ O ₂ . Sol. in conc. HNO ₃ +Aq. Decomp. by strong acids, and boiling KOH+Aq. Decomp. by H ₂ O. (Tanatar, Z. anorg.)
Decomp. by H ₂ O. (Tanatar, Z. anorg.) 1901, 27. 438.)

Bismuth trioxide, Bi₂O₂, Insol. in H₂O. Sol. in conc. acids. Solubility of Bi₂O₂ in HNO₂+Aq at 20°.

In 100 g. of the liquid phase		Solid phase	
g. Bi ₂ Q:	g. N.O.	•	
0 321	0.963	Bi ₂ O ₃ . N ₂ O ₅ . 2H ₂ O	
0. 3 37	0.982	"	
3.54	4.68	"	
6.37	7.17	"	
13.67	12.50	éi	
14.85	13.31	"	
18.74	15.90	Bi ₂ O ₃ . N ₂ O ₅ . H ₂ O	
23.50	19.21	"	
23 50	19.29	"	
27.15	20.96	"	
28.11	21.64	"	
29.50	22.53	"	
30.19	22.90	"	
31.48	23.70	" "	
32.93	24.83	Bi ₂ O ₃ . N ₂ O ₅ . H ₂ O+	
32.80	24.86	Bi ₂ O ₃ · N ₂ O ₅ · N ₂ O ₇ · 10H ₂ O · Bi ₂ O ₃ · 3N ₂ O ₅ · 10H ₂ O	
32.67	24.70	Bi ₂ O ₃ .3N ₂ O ₅ .10H ₂ O.	
32.59	24.60	"	
32.24	24.68	"	
30.74	25.13	"	
29.83	25.30	"	
24.16	28.25	"	
16.62	35.40	"	
12.17	43.37	*	
11.66	46.62	"	
11.19	49 38		
11.19	50.20	"	
15.20	54.66	"	
20.76	53.75	44	
27.85	51.02	$\begin{array}{c} \operatorname{Bi}_2\operatorname{O}_3.3\operatorname{N}_2\operatorname{O}_5.10\operatorname{H}_2\operatorname{O} + \\ \operatorname{Bi}_2\operatorname{O}_3.3\operatorname{N}_2\operatorname{O}_5.3\operatorname{H}_2\operatorname{O}. \end{array}$	
8.58	68.28	$Bi_2O_3.3N_2O_5.3H_2O.$	
4.05	74.90	D12O3.3A2O3.3H2O.	

(Rutten, Z. anorg. 1902, 30. 386.)

Solubility of Bi₂O₂ in HNO₂+A₀ at t°.

t°	°cBi₂O₃		Solid phase
9°	20.8 24.02 31.09 31.2	17.1 19.1 23.8 23.9	$\begin{cases} Bi_2O_3, N_2O_5, H_2O \\ Bi_2O_3, N_2O_5, H_2O + \\ Bi_2O_3, 3N_2O_5, 10H_2O \end{cases}$
30°	34.2 28.2 16.1	$26.5 \\ 29.6 \\ 47.7$	Bi ₂ O ₃ .3N ₂ O ₅ .10H ₂ O
65°	5.55 27.62 40.80 37.82 35.73 4.59	7.44 22.46 31.60 35.80 47.02 77.90	Bi ₂ O ₃ . N ₂ O ₄ H ₂ O Bi ₂ O ₃ . N ₂ O ₅ . H ₂ O + Bi ₂ O ₃ . 3N ₂ O ₅ . 10H ₂ O Bi ₂ O ₃ . 3N ₂ O ₅ . 10H ₂ O Bi ₂ O ₃ . 3N ₂ O ₅ . 10H ₂ O + Bi ₂ O ₃ . 3N ₂ O ₅ . 3H ₂ O Bi ₂ O ₃ . 3N ₂ O ₅ . 3H ₂ O

(Rutten.)

11.5°

 20°

50°

65°

25.36

27.85

32.22

35.73 | 47.02

Solubility of Bi ₂ O ₃ in HNO ₃ +Aq at t°.			
t°	%Bi2O2	%N2O5	Solid phase
72° 75° 80°	37.23 36.74 39.75	47.76 47.91 45.16	Bi ₂ () ₃ , 3N ₂ () ₅ , 4H ₂ () ,, ,,
9° 20° 30° 50° 64° 65° 75.5° 72°	31.2 32.8 34.2 36.9 40.6 40.8 45.4 45.9	23.9 24.8 26.4 28.9 31.1 31.6 34.6 35.6	Bi ₂ O ₃ , 3N ₂ O ₅ , 10H ₂ O + Bi ₂ O ₃ , N ₂ O ₅ , H ₂ O
11 5°	25 36	52 57	Bi ₂ O ₃ .3N ₂ O ₅ 10H ₂ O +

(Rutten.)

Bi₂O₃ 3N₂O₅ 3H₂O

"

"

52.57

51.02

49.29

Solubility in NaOH+Aq at 25°.

Conc. of NaOH	g. Bi ₂ O ₃ in 100 cc. of solution.
Mol/l.	Mean result.
1.0 2.0 3.0 **	$0.0013 \pm 0.0002 \\ 0.0026 \pm 0.0002 \\ 0.0049 \pm 0.0005$

(Knox, Chem. Soc. 1909, **95**. 1767.)

Insol. in acctone. (Eidmann, C. C. 1899, II. 1014.)

Min. Bismite. Easily sol. in HNO₃+Aq. See also Bismuthous hydroxide.

Bismuth tetroxide, Bi₂O₄.

Sol. in conc. HCl+Aq, with evolution of Cl; in oxygen acids with evolution of O. Less easily sol. in conc. H2SO4 than in HNO3, or HCl+Aq.

Bismuth exide, Bi₄O₉ (?).

(Hoffmann and Geuther.)

Bismuth pentoxide, Bi₂O₅.

Sol. in dil. acids. Combines with H2O to form bismuthic hydroxide, which see. (Hasebroek, B. **20.** 213.)

Bismuth oxybromide, etc.

See Bismuthyl bromide, etc.

Bismuth palladium, PdBi₂.

Insol, in equal pts. HNO3 and tartaric acids. (Roessler, Z. anorg. 1895, 9. 70.)

Bismuth platinum, PtBi2.

Insol. equal pts. HNO3 and tartaric acids. (Roessler, Z. anorg. 1895, 9. 69.)

Bismuth phosphide, BiP.

(Cavazzi.)

Bismuth triselenide, Bi₂Se₃.

Insol. in H2O, alkalies, or alkali sulphides +Aq; sl. attacked by HCl+Aq; oxidized by HNO₃+Aq. (Schneider, Pogg. 94. 628.) Min. Frenzelite.

Bismuth potassium selenide.

See Selenobismuthite, potassium.

Bismuth selenochloride, BiSeCl.

Not attacked by H₂O; very sl. sol. in HCl+ Aq; easily and completely sol. with decomp. in HNO₃+Aq. (Schneider.)

Bismuth disulphide, $Bi_2S_2+2H_2O$ (?).

Insol. in H₂O. Decomp. by HCl+Aq.

Bismuth trisulphide, Bi₂S₃.

Insol. in H₂O.

1 l. H₂O dissolves 0.35 x 10⁻⁶ moles Bi₂S₃ at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)

Easily sol. in moderately dil. HNO3+Aq, and cone. HCl+Aq, with separation of S. Insol. in alkalies, alkali sulphides, Na₂S₂O₃, or KCN+Aq; insol. in NH₄Cl, or NH₄NO₃+Aq (Brett). Insol. in potassium thiotarbonate+Aq. (Rosenbladt, Z. anal. 26. 15.)

Insol. in alkali hydroxides or alkali hydro-

Insol. in $2N-(NH_4)_2S+Aq$.

 $0.0090\,g.\,\mathrm{Bi}_2\mathrm{S}_3$ is sol. in $100\,cc.\,N\!-\!\mathrm{Na}_2\mathrm{S}_2\!+\!$. Aq at 25°. (Knox, Chem. Soc. 1909, 95.

Somewhat sol. in Na₂S+Aq. 75 cc. of Na₂S+Aq (sp. gr. 1.06) dissolve an amt. of Bi₂S₃ corresponding to 0.031 g. Bi₂O₃. (Stillman, J. Am. Chem. Soc. 1896, 18, 683.)

Solubility in NasS+NaOH+Ac at 25°

rendentity in trago product TAQ at 20.			
Conc. of Na ₂ S	Conc. of NaOH	g. Bi ₂ S ₃ in 100 cc.	
Mol./L	Mol./l.	of solution	
0.5	1.0	0.0185	
1.0	1.0	0.0838	

(Knox, Chem. Soc. 1909, 95, 1763.)

Bismuth sulphide pptd. from acid solution is not dissolved by subsequent treatment with K₂S+Aq. (Stone, J. Am. Chem. Soc. 1896, **18.** 1091.)

Sol. in K₂S+Aq. (Ditte, C. R. 1895, **120.** 187.)

Solubility in K₂S+KOH+Aq at 25°.

Conc. of K ₂ S	Conc. of K()H	g. Bi ₂ S ₃ in 100 cc.
Mol./l.	Mol./l.	of solution
$0.5 \\ 1.0 \\ 1.25$	$\begin{array}{c} 1.0 \\ 1.0 \\ 1.25 \end{array}$	0.0240 0.1230 0.2354

(Knox, Chem. Soc. 1909, 95. 1763.)

Alkali sulphide	Conc. of alkali sulphide Mol./l.	g. Bi ₂ S ₂ in 100 cc. of solution
Na ₂ S	0.5 1.0 1.5	0.0040 0.0238 0.1023
K₂S	0.5 1.0 1.25	0.0042 0.0337 0.0639

(Knox, Chem. Soc. 1909, 95. 1762.)

Decomp. by $FeCl_3+Aq$. (Cammerer, C. C. **1891**, II. 525.)

Insol. in KCN+Aq. (Hoffmann, A. 1884, **223.** 134.)

Min. Bismuthinite. Easily sol. in HNO₃+Aq.

Bismuth cuprous sulphide, Bi₂S₃, Cu₂S.

Insol, in H₂O. Sol, with decomp, in HNO₃ +Aq. (Schneider, J. pr. (2) **40**, 564.) Min. *Emplectonite*.

Bismuth potassium sulphide, Bi₂S₂, K₂S. (Schneider, Pogg. **136**. 460.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Bi₂S₃4K₂S+4H₂O. Decomp. by H₂O. Very sol. in K₂S+Aq. Efflorescent in dry air. (Ditte, C. R. 1895, **120**. 186.)

See also Sulphobismuthite, potassium.

Bismuth silver sulphide, Bi₂S₃, Ag₂S.

Insol. in cold HCl, or HNO₃. Sol. in warm HNO₃ with separation of S, in boiling HCl with separation of H_2S .

Min. *Plenargyrite*, *Matildite*. (Schneider, J. pr. 1890, (2) **41.** 414.)

Bismuth sodium sulphide, Bi₂S₃, Na₂S. (Schneider.)

Bismuth sulphide telluride, Bi₂S₃, 2Bi₂Te₃. Min. *Tetradymite*. Sol. in HNO₃ with separation of S.

Bi₂S₂, 2Bi₂Te.

Min. Joseite. As above.

Bismuth sulphobromide, BiSBr₂.

(Muir and Eagles, Chem. Soc. 1895, **67.** 91.)

Bismuth sulphochloride, BiSCl.

Insol. in H₂O or dil. HCl+Aq. Sol. in conc. HCl, or HNO₃+Aq. Decomp. by alkalies+Aq. (Schneider, Pogg. **93.** 464.)

Bismuth sulphoiodide, BiSI.

Not attacked by boiling H_2O , and dil. acids. Decomp. by hot conc. HCl+Aq, and HNO_3+Aq . KOH+Aq dissolves out I_2 . (Schneider, Pogg. 110. 114.)

Bismuth telluride, Bi-Tea.

Min. Tetradymite. Sol. in HNO₃+Aq. See also Bismuth sulphide telluride.

Bismuthic acid, HBiO2.

See Bismuthic hydroxide.

Potassium bismuthate, KBiO₃.

Sol. in H₂O. (Arppe.) KH(BiO₃)₂. Insol. in H₂O.

Not decomp by boiling H₂O. (André, C. R. 113, 860.)

No salts of HBiO₂ can exist. (Muir and Carnegie, Chem. Soc. 51. 77.)

Bismuthicotungstic acid.

Ammonium bismuthicotungstate, $3(NH_4)_2O$, $2Bi_2O_5$, $11WO_3+10H_2O$.

A yellow oil which dries to a yellow glass. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1232.)

Potassium bismuthicotungstate, $3K_2O$, $2Bi_2O_3$, $11WO_3+15H_2O$.

A yellow oil which dried to a pale yellow glass. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1233.)

Strontium bismuthicotungstate, 3SrO, 2Bi₂O₃,11WO₃+11H₂O.

A yellow wax, insol. in pure H₂O, but sol. in H₂O containing a few drops HNO₃. (E. F. Smith, J. Am. Chem. Soc. 1903, **25**. 1233.)

Bismuthyl bromide, BiOBr.

Insol. in H₂O; sol. in moderately conc. HBr+Aq.

Insol. in H₂O. (Herz, Z. anorg. 1903, **36**. 348.)

 $Bi_8O_9Br_6$. Insol. in H_2O ; easily sol. in conc. HCl, or HNO_3+Aq ; less sol. in dil. HNO_3+Aq .

 $Bi_{11}O_{13}Br_7$. As the preceding comp. (Muir.)

Bismuthyl chloride, BiOCl.

Insol. in H₂O or dil. acids. Sol. in cone. HCl, or HNO₃+Aq.

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Insol, in acetone. (Naumann, B. 1904, 37. 4329.)

 $+H_2O$. (Heintz, Pogg. 63. 55.)

+3H₂O. (Phillips, Br. Arch. (1) **39.** 41.)* Bi₇O₉Cl₃. (Arppe.)

BiO₂Cl₃. Insol. in H₂O; sol. in hot HCl, or HNO₃+Aq. (Muir.)

Bismuthyl fluoride, BiOF.

Insol. in H₂O; sol. in HCl, HBr, or HI+Aq. (Gott and Muir, Chem. Soc. 33. 139.)
BiOF, 2HF. Insol. in H₂O.

Bismuthyl iodide, BiOI.

Not decomp. by H₂O or alkaline solutions. Sol. in HCl+Aq. Decomp. by HNO₃+Aq. (Schneider, J. pr. 79. 424.)
Insol. in KCl, or KI+Aq.
3BiOI,7Bi₂O₃. Sol. in dil. HCl; decomp.

by HNO₃; insol. in boiling H₂O and alkali. (Blyth, C. N. 1896, **74.** 200.)

Bil, 5Bi₂O₈. Ppt. Sl. sol. in HC₂H₃O₂+ Aq. Not decomp. by H₂O. (Fletcher and Cooper, Pharm. J. (3) 13. 254.)

4BiI₃, 5Bi₂O₃. Easily sol. in HCl+Aq. Decomp. by HNO₂+Aq. Sl. attacked by H₂SO₄; somewhat sol. in H₂C₄H₄O₆, and KHC4H4O6+Aq.

Sol. in (NH₄)₂S, and KOH+Aq. (Storer's Dict.)

Bismuthyl sulphide, Bi₆O₈S.

(Hermann, J. pr. 75. 452.)

Bi₂O₃S. Insol. in H₂O. C. C. **1889**, II. 641.) (Scherpenberg,

Bi₄O₃S.

Min. Karelinite.

Boracic acid.

See Boric acid.

Borax.

See Tetraborate, sodium.

Boric acid, anhydrous, B₂O₃. See Boron trioxide.

Metaboric acid, HBO₂.

Sol. in H₂O.

Sl. sol. in hot glacial acetic acid. (Holt. Chem. Soc. 1911, 100. (2) 720.)

Orthoboric acid, H₃BO₃.

Sol. in 33 pts. H_2O at 10° , 25° ... H_2O at 20° . 25 3 .. " 100°. (Berzelius.)

Sol. in 20 pts. H₂O at 18.75°. (Abl.) 100 pts. H₂O at 100° dissolve 2 pts. (Ure's Diet.)

1 pt. crystallized acid dissolves in-

25.66 pts. H₂O at 19°. 25° . 14.88 " " 12.6637.5°. " " 50°. 10.16" 62.5°. 6.12" 75°. 4.73 " " 3.5587.5°. 2.97 " " 100°.

Or, 100 pts. H₂O dissolve at-

19° 3.9 pts. H₃BO₃. 25° 6.8 4 " 37.5° 50° 7.8 " ٠. 9.8 " .. 62.5° 16.9 " .. 75° 21.0 " " 87.5° 28.0 " 100° 34.0 " 66

Or, sat. aqueous solution contains at-

3.75%H₃BO₃. 19° 25° 6.27 7.32 " " 37.5° 50° 8.96 " " 14.04 " " 62.5° 17.44." 75° 21.95 " " 87.5° 25.17 " " 100°

(Brandes and Firnhaber, Arch. Pharm. 7. 50.)

1 litre H₂O dissolves at—

19.47 g. H₃BO₃. 29.20 " 0° 12° 20° 39.92 " " 40° 69.91 " " 62° 114.16 " " 168.15 " " 80° 291.16 " 102°

(Ditte, C. R. 85, 1069.)

1 l. H₂O dissolves 0.901 mol. H₃BO₃ at 25°. (Herz, Z. anorg. 1910, **66**. 359.) 1 l. H₂O dissolves 0.898 mol. H₃BO₃ at 25°. Sp. gr. of the solution = 1.0168. (Müller, Z.

phys. Ch. 1907, **57.** 529.) 1 l. H₂O dissolves 0.887 mol. H₃BO₃ at 25° and 1.025 mol. at 30°. (Ageno and Valla,

Ist. Ven. (VIII) 14. II, 331.)

Solubility in H₂O at t°.

	•	
t'	g. H ₃ BO ₃ in 100 g. of the solution	
0	2.59	
12.2	3.69	,
21	4.90	
31	6.44	
40	8.02	
50	10.35	
60	12.90	
69.5	15.58	
80	19.11	
90	23.30	
99.5	28 10	
108	$\overline{36}.\overline{7}$	
115	45.0	
120	52.4	

(Nasini and Ageno, Z. phys. Ch. 1909, 69.

Solubility curve for orthoboric acid in H₂O at various temp. up to 120°. (Nasini and Ageno, Gazz. ch. it. 1911, 41. (1) 131.

Sp. gr. of $H_3BO_3 + Aq$ vat. at $8^\circ = 1.014$. (Anthon, A. 241.) Sp. gr. of $H_3BO_3 + Aq$ sat. at $15^\circ = 1.0248$. (Stolba, J. pr. 90. 457.)

Sp. gr. of H₈BO₈+Aq at 15°.

€′, H₃B()₃	Sp. gr.	%H3BO3	Sp. gr.
$\begin{array}{c} 1\\2\\3\\\end{array}$	1.0034 1.0069 1.0106	Sat. sol.	1.0147 1.015

(Gerlach, Z. anal. 28. 473.)

Sp. gr. of H₃BO₃+Aq at 18°.

%H₃BO₃ 0.776 1.92 2.88 3.612

Sp. gr. 1.0029 1.0073 1.0109 1.0131

(Bock, W. Ann. 1887, **30**, 638,)

Volatile with steam.

More sol. in dil. HCl+Aq than in H₂O, Sol. in warm conc. H₂SO₄, HCl, or HNO₃+Aq.

Solubility in HCl+Aq at 25°.

Millimols HCl in 10 ccm. of the solution	Millimois HaBOf in 10 ccm, of the sat, solution
7.0 13.7	9.01 7.69 6.66

(Herz, Z. anorg, 1910, 66, 359.)

Solubility of H₃BO₃ in HCl+Aq at 16°.

Normality of HCl	Normality of H ₃ BO ₂
0.	0.907
0.130	0.895
0.260	0.870
0.390	0.842
1.30	0.645
2.16	0.542
4.32	0.308
6.00	0.338
7.08	0 327
8.74	0.327
9.51	0.338

(Herz, Z. anorg. 1902, 33. 354.)

Solubility in HF+Aq at 26°.

(1) Titer of HF	(2) Titer after saturation with H ₃ BO ₃ at 26°	(3) Titer after addition of mannitol	(3)-(2) equals free boric acid
3.21n.	1.61	$\frac{2.36}{2.21}$	0.75
2.80n.	1.25(1.40?)		0.96(0.81?)

The values 0.75 and 0.81 represent the solubility of H₃BO₃ in the concentrations of fluorboric acid resulting from the original concentration of HF+Aq.

(Abegg, Z. anorg. 1903, 35. 145.)

Solubility of H₃BO₃ in acids+Aq at 26°.

Acid	Normality of the acid	Normality of HaBO
H ₂ SO ₄	0.548 2.74 5.48 8.75	0.746 0.518 0.312 0.092
HNO ₃	0.241 1.206 1.607 2.411 5.96 7.38	0.818 0.676 0.593 0.567 0.268 0.238

(Herz, Z. anorg. 1903, 34, 205.)

Solubility in KOH+Aq. See Borates, potassium. Solubility in NaOH+Aq. See Borates, sodium.

Solubility in LiCl+Aq at 25°.

Millimols LiCl in	Millimols H ₂ BO ₂ in 10 ccm.
10 cent of the solution	of the sat. solution
7.1 10.3 22.3 37.2	9.01 8.13 7.65 6.42 5.02

(Herz, Z. anorg. 1910, 66. 359.)

Solubility in KCl+Aq at 25°.

·	-
Millimols KCl in 10 ccm. of the solution	Millimols H ₂ BO ₂ in 10 ccm. of the sat. solution
1.9 7.9 15.6 30.6	9.01 9.20 9.44 9.80 10.75

(Herz.)

Solubility in RbCl+Aq at 25°.

Millimols RbCl in 10 ccm. of the solution	Millimols H ₃ BO ₃ in 10 ccm. of the sat. solution
	9.01
14.0	9.66
25.3	10.60

(Herz.)

Solubility in NaCl+Aq at 25°.

Millimols NaCl in	Millimols H ₂ BO ₂ in 10 ccm.	
10 ccm. of the solution	of the sat. solution	
8.2 15.2 29.4	9.01 8.49 8.25 8.20	

(Herz.)

Solubility in H₂O is increased by presence of KCl, KNO₃, K₂SO₄, NaNO₃ and Na₂SO₄.

In general the solubility in H₂O is increased by the presence of both electrolytes and nonelectrolytes. (Bogdan, C. C. 1903, II. 2.)

Sol. in borax+Aq. (McLauchlan, Z. anorg. 1903, 37. 371.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Unattacked and undissolved by liquid NO₂.
(Frankland Cham Soc 1901 **79** 1362)

(Frankland, Chem. Soc. 1901, 79. 1362.)
Sol. in 6 pts. alcohol (Wittstein), 5 pts. boiling alcohol (Wenzel). Only traces dissolve in anhydrous ether. (Schiff.) Sol. in 100 pts. ether. (Hager's Comm.) Sol. in several essential oils.

1 l. H₂O sat. with amyl alcohol dissolves 0.8952 mol. H₂BO₂ at 25°. (Auerbach, Z. anorg. 1903, **37**. 357.)

Bismuthyl iodide, BiOI.

Not decomp. by H_2O or alkaline solutions. Sol. in HCl+Aq. Decomp. by HNO_3+Aq . (Schneider, J. pr. 79, 424.)

Insol. in KCl, or KI+Aq.

3BiOI,7Bi₂O₃. Sol. in dil. HCl; decomp. by HNO₃; insol. in boiling H₂O and alkali. (Blyth, C. N. 1896, **74**. 200.)

Bil₈, 5Bi₂O₃. Ppt. Sl. sol. in HC₂H₃O₂+Aq. Not decomp. by H₂O. (Fletcher and Cooper, Pharm. J. (3) **13**. 254.)

4BiI₃, 5Bi₂O₃. Easily sol. in HCl+Aq. Decomp. by HNO₃+Aq. Sl. attacked by H₂SO₄; somewhat sol. in H₂C₄H₄O₆, and KHC₄H₄O₆+Aq.

Sol. in $(NH_4)_2S$, and KOH+Aq. (Storer's Dict.)

Bismuthyl sulphide, Bi₆O₃S.

(Hermann, J. pr. 75. 452.)

Bi₂O₃S. Insol. in H₂O. (Scherpenberg, C. C. **1889**, II. 641.) Bi₄O₃S.

Min. Karelinite.

Boracic acid.

See Boric acid.

Borax.

See Tetraborate, sodium.

Boric acid, anhydrous, B₂O₃. See Boron trioxide.

Metaboric acid, HBO₂.

Sol. in H₂O.

Sl. sol. in hot glacial acetic acid. (Holt, Chem. Soc. 1911, **100**. (2) 720.)

Orthoboric acid, H₃BO₃.

Sol. in 33 pts. H₂O at 10°.
" 25 " " 20°.
" 3 " " 100°.
(Berzelius.)

Sol. in 20 pts. H_2O at 18.75°. (Abl.) 100 pts. H_2O at 100° dissolve 2 pts. (Ure's Diet.)

1 pt. crystallized acid dissolves in-

25.66 pts. H₂O at 19° $ar{25}^{\circ}$. 14.88 12.66.. " 37.5° . " 10.16" 50°. " " 6.12 62.5° " 75°. 4.73" " 87.5°. 3.55" " 2.97 100°.

Or, 100 pts. H₂O dissolve at—

19°	3.9	pts.	H ₃ B() ₃
25°	6.8	-"	"
37.5°	7.8	"	44
50°	9.8	"	4.6
$62~5^{\circ}$	16.0	"	4.6
75°	21.0	"	"
87.5°	28.0	"	44
100°	34.0	"	44

Or, sat. aqueous solution contains at-

3.75%H₃BO₃. 6.27 " " 19° 25° $7.\overline{32}$ " 37.5° 50° " 8.96 " " 14.04 " " 62.5° " 17.44." 75° $21.\bar{95}$ " " 87.5° 25.17 " 100° "

(Brandes and Firnhaber, Arch. Pharm. 7. 50.)

1 litre H₂O dissolves at-

0° 19.47 g. H₃BO₃. 29.20 " " 12° " 39.92 " 20° " 40° 69.91 " 62° 114.16 " " 80° 168.15 " " 102 291.16 "

(Ditte, C. R. 85, 1069.)

1 l. H_2O dissolves 0.901 mol. H_3BO_3 at 25°. (Herz, Z. anorg. 1910, **66.** 359.)

1 l. H_2O dissolves 0.898 mol. H_3BO_3 at 25°. Sp. gr. of the solution = 1.0168. (Müller, Z. phys. Ch. 1907, **57.** 529.)

I l. H₂O dissolves 0.887 mol. H₃BO₃ at 25° and 1.025 mol. at 30°. (Ageno and Valla, Ist. Ven. (VIII) **14.** II, 331.)

Solubility in H2O at to.

t°	g. H ₃ BO ₃ in 100 g. of the solution	_
0	2.59	_
12.2	3.69	
21	4.90	
31	6.44	
40	8.02	
50	10.35	
60	12.90	
69.5	15.58	
80	19 11	
90	23.30	
99.5	28.10	
108	36.7	
115	45.0	
120	52.4	
	S=. I	

(Nasini and Ageno, Z. phys. Ch. 1909, **69**. 483.)

Solubility curve for orthoboric acid in H₂O at various temp, up to 120°. (Nasini and Ageno, Gazz. ch. it. 1911, **41**. (1) 131.

Sp. gr. of H_3BO_3+Aq sat. at $8^\circ=1.014$. (Anthon, A. 24. (241.))
Sp. gr. of H_3BO_3+Aq sat. at $15^\circ=1.0248$. (Stolba, J. pr. 90. 457.)

Sp. gr. of H₃BO₃+Aq at 15°.

CH3BO3	Sp. gr.	%H ₈ BO ₃	Sp. gr.
$\frac{1}{2}$	1.0034 1.0069 1.0106	Sat. sol.	1.0147 1.015

(Gerlach, Z. anal. 28. 473.)

Sp. gr. of H₃BO₃+Aq at 18°. %H₃BO₃ 0.776 1.92 2.88 3.612 Sp. gr. 1.0029 1.0073 1.0109 1.0131 (Bock, W. Ann. 1887, **30.** 638.)

Volatile with steam.

More sol. in dil. HCl+Aq than in H₂O₄. Sol. in warm conc. H₂SO₄, HCl, or HNO₄+Aq.

Solubility in HCl+Aq at 25°.

Millimols HCl in	Millimois H ₂ BO ₂ in 10 ccm.		
10 ccm. of the solution	of the sat. solution		
7.0 13.7	- 9.01 7.69 6.66		

(Herz, Z. anorg, 1910, 66, 359.)

Solubility of H₃BO₃ in HCl+Aq at 16°.

Normality of HCl	Normality of HaBOs	
0.	0.907	
0.130	0.895	
0.260	0.870	
0.390	0 842	
1.30	0.645	
2.16	0.542	
4.32	0.308	
6.00	0.338	
7.08	0.327	
8.74	0.327	
9.51	0.338	

(Herz, Z. anorg. 1902, 33. 354.)

Solubility in HF+Aq at 26°.

Titer of HF	(2) Titer after saturation with H ₃ BO ₃ at 26°	(3) Titer after addition of mannitol	(3)-(2) equals free boric acid	
3.21n.	1.61	2.36	0.75	
2.80n.	1.25(1.40?)	2.21	0.96(0.81?)	

The values 0.75 and 0.81 represent the solubility of H₃BO₃ in the concentrations of fluorboric acid resulting from the original concentration of HF+Aq.

(Abegg, Z. anorg. 1903, 35. 145.)

Solubility of H₂BO₃ in acids+Aq at 26°.

Acid	Normality of the acid	Normality of HaBC
H ₂ SO ₄	0.548 2.74 5.48 8.75	0.746 0.518 0.312 0.092
HNO ₃	0.241 1.206 1.607 2.411 5.96 7.38	0.818 0.676 0.593 0.567 0.268 0.238

(Herz, Z. anorg. 1903, 34. 205.)

Solubility in KOH+Aq. See Borates, potassium. Solubility in NaOH+Aq. See Borates, sodium.

Solubility in LiCl+Aq at 25°.

Millimols LiCl in	Millimols H ₂ BO ₂ in 10 ccm.
10 cg w of the solution	of the sat. solution
7.1 10.3 22.3 37.2	9.01 8.13 7.65 6.42 5.02

(Herz, Z. anorg. 1910, 66. 359.)

Solubility in KCl+Aq at 25°.

Millimols KCl in	Millimola HaBOs in 10 ccm.		
10 ccm. of the solution	of the sat. solution		
1.9 7.9 15.6 30.6	9.01 9.20 9.44 9.80 10.75		

(Herz.)

Solubility in RbCl+Aq at 25°.

Millimols RbCl in 10 ccm. of the solution	Millimols H ₃ BO ₃ in 10 ccm. of the sat. solution
	9.01
14.0	9.66
25.3	10.60

(Herz.)

Solubility in NaCl+Aq at 25°.

Millimols NaCl in	Millimols H ₂ BO ₂ in 10 ccm.		
10 ccm. of the solution	of the sat. solution		
8.2 15.2 29.4	9.01 8.49 8.25 8.20		

(Herz.)

Solubility in H₂O is increased by presence of KCl, KNO₃, K₂SO₄, NaNO₃ and Na₂SO₄.

In general the solubility in H_2O is increased by the presence of both electrolytes and nonelectrolytes. (Bogdan, C. C. 1903, II. 2.)

Sol. in borax + Aq. (McLauchlan, Z. anorg., 1903, 37. 371.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Unattacked and undissolved by liquid NO₂. (Frankland, Chem. Soc. 1901, **79**. 1362.)

Sol. in 6 pts. alcohol (Wittstein), 5 pts. boiling alcohol (Wenzel). Only traces dissolve in anhydrous ether. (Schiff.) Sol. in 100 pts. ether. (Hager's Comm.) Sol. in several essential oils.

1 l. H₂O sat. with amyl alcohol dissolves 0.8952 mol. H₂BO₃ at 25°. (Auerbach, Z. anorg. 1903, **37**. 357.)

Solubility of H ₂ BO ₃ in amyl alcohol +Aq at t°
$M = millimols H_2BO_3$ in 1 l. of H_2O .
$A = millimols H_3BO_3$ in 1 l. of alcohol.

t° [₩]	M	A
15°	607.2	176.4
	589.3	177.4
	589.0	177.1
	586.0	173.4
	427.4	127.6
	425.8	127.0
	289.1	84.9
	894.0	264.0
	372.0	110.0
	371.8	110.8
	011.0	110.0,
25°	301.2	85.7
	180.8	54.0
	49.15	15.45
	51.04	15.45
	26.02	8.05
35°	146.3	44.27

(Müller, Z. phys. Ch. 1907, 57. 514.)

Sp. gr. of amyl alcohol+Aq sat. with H₃BO₃.

g. water in 1 l. of alcohol + Aq	d25°/4°
32.481 35.465 37.339 42.479 45.175 45.636 47.883 51.461 52.043 59.270	0.82229 0.82324 0.82321 0.82321 0.82392 0.82447 0.82456 0.82454 0.82527 0.82585 0.82699
63.179 64.254 66.403 66.624 68.253 69.211 75.610	0.82739 0.82739 0.82779 0.82701 0.82670 0.82856 0.82884 0.82999(?)

(Müller.)

Solubility of H₃BO₃ in amyl alcohol and NaCl+Aq at 25°.

Water phase		Amyl alcohol phase			
NaCl normality mol. H ₈ BO ₃		Sp. gr. 25°/4° 1 l. contains			
vaci normanty	mor. 113DO3	14p. gr. 20/4	mol. H ₂ O	mol. amyl alcohol	mol. H₃BO;
0.00	0.880	0.8296	4.10	8.39	0 2640
0.945	0.866	0.8277	3.55	8.49	0 2638
1.490	0.850	0.8268	3.27	8.54	0.2689
1.865	0.844	0.8259	3.03	8.56	0.2724
2.355	0.833	0.8254	2.86	8.59	0.2850
2.845	0.827	0.8247	2.62	8.62	0.2877
3.06	0.810	0.8241	2.39	8.66	0.2891
3.48	0.810	0.8240	2.32	8.69	0.3006
3.57	0.807	0.8236	$\frac{2.15}{2.15}$	8.70	0.3066
4.01	0.801	0.8233	$\tilde{1}.99$	8.72	
4.28	0.798	0.8229	1.78	8.75	$0.3162 \\ 0.3210$

(Müller)

Solubility in hydroxy-compounds+Aq at 25°.

Organic substance added	Mol. of organic substance in 100 mol. of the mixture	Mol. of boric acid sol. in 1 l. of solution	Sp. gr. of the pure mixture	Sp. gr. of the mixture sat. with boric seid
Lactic acid	2.321 6.819 18.77 36.33	1.07 1.61 1.86 2.08	1.0252 1.0722 1.1405 1.2023	1.0444 1.0986 1.1635 1.2254
Glyceripe	24.64 46.75 67.71 90.58	1.208 2.132 2.96 3.78	1.1574 1.2370 1.2531	1.1707 1.2260 1.2526 1.2710

Solubility in hydroxy-compounds, etc.—Continued					
Organic substance added	Mol. of organic substance in 100 mol. of the mixture	Mol. of boric acid sol. in 1 l. of solution	Sp. gr. of the pure mixture	Sp. gr. of the mixture sat. with boric acid	
Mannitol	0.790 0.810 0.945 1.585	1 007 1 015 1 029 1 136	1.0244 1.0288 1.0475	1.0425 1.0433	
Dulcitol	0.065 0.130 0.260	0.8876 0.9078 0.9360	0.9995 1.0018 1.0060	1.0686 1.0212 1.0260	

(Müller.)

Solubility of H_3BO_3 in alconols+Aq at 25°. M = Mol, of alcohol in 100 mol, of alcohol+Aq. $H_3BO_3 = Mol$, of H_3BO_3 in 1, of the solution, $d_1 = Sp$, gr. of alcohol+Aq. $d_2 = Sp$, gr. of alcohol+Aq sat, with H_3BO_3 .

H-BO₃ Alcohol added М \mathbf{d}_1 id: 11.74 0.895Methyl alcohol 28.64 1.012 36.021.09843.95 1.161 52.311.307100 2.9000 7924 0.89048.996Ethyl alcohol 0.82922.280.80044.46 0.7290.70055.620.89379.8988.10 1.105 99.261.5270.78600.835323.660.6437n-Propyl alcohol 0.90430.919353.630.45690.82310.857083.65 0.57760.81330.8466100 0.9610.80100.8297i-Butyl alcohol 0.8840.99230.701.01242.150.8570.98530.00382.18 0.8570.98550.004671.4 0.3230.81730.835177.1 0.3470.81330.82200.42120.80810.819585.6100 0.69270.79840.8172i-Amyl alcohol 0.99430.4480.8831.0132 0.5201.0125 0.8800.9936 0.525^{1} 0.8800.99311.0123 67.262 0.25840.82320.82975.540.27220.81830.8253 83.40 0.31900.81420.8223100 0.57030.80680.8220

(Müller.)

¹ Water sat. with alcohol.

² Alcohol sat. with water.

Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Solubility in acetone+Aq at 20°.

A = ccm. acetone in 100 ccm. acetone+Aq.

H₃BO₃ = millimols H₃BO₃ in 100 ccm. of the solution.

A	H3BO3
0	79.15
20	81.71
30	83.35
40	82.74
50	81.61
60	76.40
76	67.62
80	55.05
100	8.06

(Herz, Z. anorg. 1904, 41. 319.)

100 g. pure anhydrous ether dissolve 0.00775 g. H_3BO_3 .

100 g. ether sat. with H_2O dissolve 0.2391 g. H_3BO_3 .

(J. A. Rose, Dissert. 1902.)

Sol. in 10 pts. glycerine. (Hager.)

100 pts. glycerine (sp. gr. 1.26 at 15.5°) dissolve pts. H₃BO₃ at t°.

t°	Pts. H ₃ BO ₃	t°	Pts. H ₃ BO ₃	t°	Pts. H ₃ BO ₃
0 10 20 30	20 24 28 33	40 50 60 70	38 44 50 56	80 90 100	61 67 72

(Hooper, Ph. J. Trans. (3) 13. 258.)

Solubility of H_aBO_3 in glycerine+Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq. H_aBO_3 =Millimols H_aBO_3 in 100 cc. of the solution.

G	H ₃ B() ₃	Sp. gr.
0	90.1	1.0170
$\begin{bmatrix} 7.15 \\ 20.44 \end{bmatrix}$	$\frac{90.1}{90.6}$	1.0379
31.55	$\frac{90.0}{92.9}$	1.0629 1.0897
40.95	97.0	1.1130
$\frac{48.7}{69.2}$	$103.0 \\ 140.2$	$1.1328 \\ 1.1871$
100	390.3	1.2719

(Herz, Z. anorg. 1905, 45. 268.)

Solubility of H₃BO₃ in organic acids+Aq at 26°.

Acid	Normality of the acid	Normality of H ₃ BO ₃
Acetic .	$0.570 \\ 2.85 \\ 5.70$	0.887 0.538 0.268

(Herz, Z. anorg. 1903, 34. 206.)

The solubility of H₃BO₃ in H₂O is increased by the presence of racemic acid.

Millimols racemic acid in 10 ccm. of the solvent	Millimols boric acid in 10 ccm, of the solution		
0 6.3	9.01 9.86		
$12.6 \\ 24.7$	10.46 11.65		

(Herz, Z. anorg. 1911, 70. 71.)

Solubility of H₃BO₃ in H₂O is increased by the presence of tartaric acid.

Millimols tartaric acid in 10 ccm. of the solvent	Millimols boric acid in 10 ccm, of the solution
0	9.01
7.5	10.00
15	10.70
30	12.07
30	12.07

(Herz, Z. anorg, 1911, 70, 71.)

Solubility in oxalic acid + Ag at 25°.

Millimols H ₃ BO ₃ in 10 ccm, of the sat, solution		
9.01 ···· 9.95		
10.80		
11.98		

(Herz, Z. anorg. 1910, 66. 93.)

Solubility in H_2O is increased by the presence of urea, acetone or propyl alcohol. (Bogdan, C. C. 1903, II. 2.)

Readily sol, in hot glacial acetic acid. (Holt Chem. Soc. 1911, 100 (2), 720.)

Sol. in 250 pts. benzene. (Hager.)

Solubility of H₃BO₃ in mannite+Aq at t°.

	Solid phase, H ₃ BO ₃						
t°	Mgmols. in 1 l.		ll to	Mg-mols in 1 l.			
	Mannite	H ₃ BO ₃		Mannite	H ₃ BO ₃		
25° "" "" "" "" "" "" "" "" "" "" "" "" ""	0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 1.043 1.409	0.887 0.951 1.015 1.039 1.071 1.102 1.142 1.173 1.244 1.404	30° "" "" "" "" "" "" "" "" "" "" "" "" ""	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	1.025 1.056 1.086 1.118 1.157 0.193 1.219 1.258		
"	1.781	1.521					

,0	Mg. mol	s. in 1 l.	
,	Mannite H ₂ BO ₂		
25°	1.075	0	
"	1.1424	0.2646	
"	1.259	0.468	
"	1.265	0.559	
"	1.354	0.794	
"	1.409	0 927	
	1.536	1.243	
	1.781	1.521	

(Ageno and Valla, Ist. Ven. (VIII) 14. 331.)

Distribution between H₂O and amyl alcohol at 25°.

w=concentration of H₃BO₃ in H₂O layer expressed in millimols.

a = concentration of H₃BO₂ in alcohol layer expressed in millimols.

w	a		
265.8	76.6		
196.5 159.6	59.5 47.5		
$\frac{126}{87.9}$	$\frac{37.1}{33.2}$		
75.2 64.6	22 7 19.76		

(Abegg, Z. anorg. 1903, **35**, 130.)

Partition of H₃BO₃ between water and mixtures of amyl alcohol and CS₂.

 $W = Millimols H_3BO_3$ in 10 ccm. of the aqueous layer.

 $G = Millimols H_3BO_3$ in 10 ccm. of the amyl alcohol— CS_2 layer.

Composition of the solvent mixture	G	w	W, G
75% by vol. amyl alcohol +25% by vol. CS ₂	0.145 0.275 0.429 0.589	0.624 1.198 1.844 2.565	4.31 4.36 4.30 4.45
50% by vol. amyl alcohol+ 50% by vol. CS ₂	0.145 0.259 0.364 0.555	0.756 1.353 1.946 2.889	5.47 5.21 5.34 5.22
25% by vol. amyl alcohol+ 75% by vol. CS ₂	0.085 0.175 0.264 0.384	0.699 1.467 2.165 3.129	8.24 8.40 8.12 8.14

(Herz, Z. Elektrochem. 1910, 16. 870.)

Distribution between HF+Aq and amyl alcohol at 25°.

· c=HF concentration (millimols).

a = H₂BO₂ concentration in alcohol layer (expressed in millimols).

 $\dot{\mathbf{w}} = \mathbf{H_4} \mathbf{BO_3}$ concentration in water layer (expressed in millimols).

* & - ?		
c	a.	′ w ′
500	14.3	71.2
"	19.2	99.2
44	25.3	144.2
44	114.3	979.0
250	30.1	144.5
4.6	37.0	194.8
4.4	56.8	321.5
"	108.0	652.0
125	39.0	170.5
"	47.2	214.0
(4	52.8	240.5
4.4	96.0	·442.0
62.5	30.4	111.2
44	39.4	151.8
"	65 (68?)	272.8
"	90.0	362.2

(Abegg, Z. anorg. 1903, 35. 131.)

See also Boron trioxide.

Pyroboric (tetraboric) acid, H₂B₄O₇.

Sol. in H₂O.

Sp. gr. of solutions of boric acid, calculated as $H_2B_4O_7$, containing—

6.3 1.27 1.91 2.54% H₂B₄O₇ 1.0034 1.0069 1.0106 1.0147 sp. gr.

Sat. solution at 15° has sp. gr. 1.015. (Gerlach, Z. anal. 28. 473.)

Insol. in hot glacial acetic acid. (Holt, Chem. Soc. 1911, 100. (2) 720.)

Borates.

No borate is quite insol. in H₂O; the alkali borates are very sol. The less sol. borates are easily decomp. by H₂O; the easily sol. salts are also decomp., but less quickly. The less sol. borates are easily sol. in H₂BO₃, HNO₃, etc. They are more sol. in H₂O containing tartaric acid or potassium tartrate than in pure H₂O. (Souberain.) The normal borates of the alkaline-earths are sol. to no inconsiderable extent in H₂O, and more readily in hot, than in cold H₂O. (Berzelius, Pogg. 34. 568.) All borates are insol., or sl. sol. in alcohol.

Aluminum borate, 2Al₂O₃, B₂O₃.

Min. Jeremciewite.

+3H₂O. Ppt. (Rose, Pogg. **91.** 452.) 3Al₂O₃, B₂O₃. Crystallized. Insol. ir HNO₃+Aq. (Ebelmen, A. ch. (3) **33.** 62.)

 $3Al_2O_3$, $2B_2O_3+7H_2O$. Ppt. (Rose, *l. c.*)

Ammonium borate.

The system (NH₄)₂O,B₂O₃,H₂O at 60° has

been studied by Sborgi. (Real. Ac. Linc. 1915 (5) **24.** I, 1225.)

 $2(NH_4)_2O_4B_2O_3+5H_2O_6$ (Sborgi.)

Ammonium diborate.

Difficultly sol. in acetone. (Naumann, B. **1904**, **37**, 4328.)

Ammonium tetraborate, $(NH_4)_2B_4O_7+4H_2O_7$ or perhaps $NH_4H(BO_2)_2+1\frac{1}{2}H_2O$.

Sol. in 12 pts. cold H₂O; decomp. by heat. (Rammelsberg, Pogg. 90. 21.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

+H₂O. (Arfvedson.)

Ammonium octoborate, $(NH_4)_2B_8O_{13}+6H_2O$. Sol. in 8 pts. cold, decomp. by boiling H_2O . (Rammelsberg, Pogg. 90. 21.) +4H₂O.

Sol. in H₂O with de-Min. Lardellerite.

Ammonium dekaborate, (NH₄)₂B₁₀O₁₆+ 6H₂O.

Permanent. Sol. in H₂O. (Rammelsberg.) +8H₂O. (Atterberg, Bull. Soc. (2) 22.

Ammonium dodekaborate, (NH₄)₂B₁₂O₁₉+ 9H₂O.

Sol. in hot H₂O. (Bechi, Sill, Am. J. (2) **17.** 129.)

Ammonium perborate, NH₄BO₃.

See Perborate, ammonium.

Ammonium calcium borate, (NH₄)₈CaB₄O₁₁ $= \text{CaB}_4\text{O}_7 + 4(\text{NH}_4)_2\text{O}_1$

(Ditte, C. R. **96**. 1663.)

Ammonium magnesium borate.

Sol in H₂O, decomp. by boiling. (Rammelsberg, Pogg. 49. 451.)

Ammonium zinc borate, 4(NH₄)₂B₄O₇, $Zn(BO_2)_2 + 5H_2()$.

(Ditte, C. R. **96**, 1663.)

Barium borate, $Ba(BO_2)_2$.

Ppt. (Ouvrard, C. R. 1906, 142, 283.) +2H₂O. (Atterberg.)

+4H₂O. (Benedikt, B. 7. 703.)

Sol. in 3,300 pts. 45% alcohol.

7,800 50 " " " 25,000 60 " **7**5 55,000

(Berg, Z. anal. 16. 25.)

+10H₂O. Sl. sol. in cold, more readily in hot H₂O, especially in presence of ammonium (Berzelius, Pogg. **34.** 568.) Sol. in sodium citrate+Aq. (Spiller.) Insol. in

wood spirit. (Ebelmen.) 2BaO,B₂O₃. Decomp. by H₂O forming *BaO, B₂O₃+4H₂O. (Ouvrard, C. R. 1906, **142.** 283.)

3BaO, B2O3. Easily sol. in mineral acids. Sl. attacked by dil. acetic acid. (Ouvrard, C. R. 1901, 132. 258.)
BaB₄O₁, Slowly sol. in warm dilute HNO₃

+Aq. (Ditte, C. R. 77. 892.)

+5H₂O. Sol. in 100 pts. cold, and more freely in hot H₂O. When freshly pptd. sol. in cold NH4Cl+Aq (Wackenroder, A. 41. 315); NH₄NO₃+Aq (Brett, Phil. Mag. (3) 10. 96); and BaCl₂+Aq (Rose).

 $BaB_6O_{10}+13H_2O$. (Laurent, A. ch. (2) 67.

215.) Ba₂B₂O₅. (Bloxam, Chem. Soc. 14. 143.)

5BaO, 2B₂O₃.

Ba₃B₁₀O₁₈+6H₂O. Sol. in 100 pts. cold H₂(). Easily sol. in ammonium nitrate, or chloride, or barium chloride+Aq. (Rose, Pogg. 87. 1.)

Ba₂B₆O₁₁. Easily sol. in warm dilute acids.

+6H₂O. $+7H_2O$.

+15H₂O. (Laurent, A. ch. (2) 67. 215.)

Barium borate bromide, 3BaO, 5B₂O₃, BaBr₂. (Ouvrard, C. R. 1906, **142**, 283.)

Barium borate chloride, 3BaO,5B₂O₃,BaCl₂. Unaffected by H₂O. Sol. in acids. (Ouv-

rard, C. R. 1906, **142.** 283.) Bismuth borate, $BiBO_3 + 2II_2O$.

Ppt. Sl. sol. in H₂O. Decomp. by H₂S. Not decomp. by KOH+Aq. (Vanino, J. pr. 1906, (2) **74.** 152.)

Cadmium borate, Cd₃(BO₃)₂.

Insol. in H₂O, easily sol. in dil. acids. Ouvrard, C. R. 1900, 130. 174.)

Cd(BO₂)₂. Difficultly sol. in H₂O (Stromeyer); insol. in H₂O, sol. in HCl+Aq (Odling); easily sol. in warm NH4Cl+Aq (Rose).

(Guertler, Z. anorg. 1904, 40. 242.) 3CdO, $2B_2O_3+3H_2O$. Ppt. Sl. sol. in

 H_2O . (Rose, Pogg. **88**. 299.) CdO, $2B_2O_3+2H_2O$. (Ditte, A. ch. 1883, (5) **30**. 255.)

CdO, $4B_2O_3+10H_2O$. Sol. in H_2O ; decomp. on heating. (Ditte, A. ch. 1883, (5) **30.** 255.)

Cadmium borate bromide, 6CdO, 8B₂O₃, CdBr₂.

Insol. in H₂O and fuming HCl or HBr+Aq. (Rousseau and Allaire, C. R. 1894, 119, 72)

Cadmium borate chloride, 6CdO, 8B2O3. CdCl₂.

(Rousseau and Allaire, C. R. 1894, 118. 1256.)

Cadmium borate iodide, 6CdO, 8B₂O₃,CdI₂. (Allaire, C. R. 1898, 127. 557.)

Cæsium borate, Cs₂B₆O₁₀.

Very sol. in H₂O, less in alcohol. (Reischle, Z. anorg. 4. 116.)

Calcium borate, Ca(BO₂)₂.

Sl. sol, in H₂O; insol, in alkali chlorides, or boiling conc. acetic acid+Aq; sol. in cold or hot solutions of ammonium salts, especially ammonium nitrate, in CaCl2+Aq, and also HNO2+Aq. easily sol. in dilute mineral acids at 50°. (Ditte, C. R. 80. 490, 561.)

+2H₂O.

+4H₂O; two modifications of which one is very unstable. (van't Hoff and Meyerhoffer, A. 1906, 351. 101.)

 $+6\mathrm{H}_2\mathrm{O}$. When warmed in H₂O it goes over into CaB₂O₄+4H₂O. (van't Hoff and

Meyerhoffer.)

Sol. in H₂O without decomp.; 1 l. solution contains 2 g. salt. (Ditte, C. R. 96. 1663.)

CaB₄O₇. Decomp. by H₂O₈. (Blount, C. N.

54. 208.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

(Ditte, C. R. 96, 1663.) +3H₂O.

Min. Bechitite. +4H₂O.

+6H2O. Min. Borocalcite. Sol. in acids.

 $CaB_6O_{10}, +4H_2O_{10}$

+8H₂O. Unstable. On standing in the solution in which it is formed it changes into CaB₆O₁₀ +4H₂O.

+12H₂O. Unstable. Goes over into $CaB_6O_{10} + 8H_2O$. (van't Hoff and Meyerhoffer, A. 1906, 351. 104.)

 ${
m CaB_8O_{13}+12H_2O.}$ (Ditte, C. R. **96.** 1663.) ${
m 2CaO,B_2O_3.}$ Insol. in ${
m H_2O,}$ sol. in dil. acids. (Ouvrard, C. R. 1905, 141. 353.)

Ca₂B₆O₁₁. (Ditte, C. R. **77**. 785.) +3H₂O. Min. Pandermite, Priceite. See $4CaO_{1} 5B_{2}O_{3} + 9H_{2}O_{2}$

+5H₂O. Min. Colemanite.

If all the Ca is in form of colemanite, the solution contains in 100 g., 4.8 g. H₃BO₃ and 0.1 g. CaO. (van't Hoff, B. A. B. 1907, 653.) $+7H_2O$.

+9H₂O. (van't Hoff and Meyerhoffer, A.

1906, **351.** 101.)

3CaO, B₂O₃. Easily sol. in dil. acids. (Ouvrard, C. R. 1901, **132.** 258.)

3CaO, $5\text{B}_2\text{O}_3 + 9\text{H}_2\text{O}$. (van't Hoff, B. A. B.

1906, II. 568.)

4CaO, $5\text{B}_2\text{O}_3 + 9\text{H}_2\text{O}$. True composition of Pandermite. (van't Hoff, B. A. B. **1906,** II. 572.)

Calcium iron (ferrous) borate silicate, $Ca_2FeB_2Si_2O_{10}$.

Min. Homilite. Easily sol. in HCl+Aq.

Calcium magnesium borate, CaO, MgO,

 $3B_2O_3+\bar{6}H_2O.$ Min. Hydroboracite. Somewhat sol. in H₂O. Easily sol. in warm HCl+Aq or HNO₃ +Aq. 3CaO, 3MgO, 4B₂O₃. (Ditte, C. R. 77.

Calcium sodium borate, 2CaO, Na₂O, 5B₂O₃ +8H₂O.

(van't Hoff, B. A. B. 1907, 303. $Ca_2B_{10}O_{18}$, $Na_3B_5O_9+15$, or $24H_2O$. Min. Natroborocalcite, Ulcxite. by boiling with H₂O. Sol. in acids. Decomp.

 $Ca_2Na_4B_{12}O_{22}+15H_2O$. Min. Franklandite. Sl. sol. in H₂O; easily sol. in HCl, and

Calcium borate bromide, 3CaO, 3B₂O₈, CaBr₂.

Sl. attacked by H2O. Very sol. in dilute acetic acid. (Ouvrard, C. R. 1905, 141. 1023.) 3CaO, 5B₂O₃, CaBr₂. Hardly attacked by cold H₂O or very dil. acetic acid. Sol. in strong acids, even when dilute. (Ouvrard, C. R. 1905, 141, 1023.)

Calcium borate chloride, Ca₃B₂O₆, CaCl₂.

Decomp. quickly by moist air or H₂O, slowly by absolute alcohol. (Chatelier, C. R. **99.** 276.)

3CaO, 3B₂O₃, CaCl₂. (Ouvrard, C. R. 1905, 141, 353.)

3CaO, 5B₂O₃, CaCl₂. Sl. attacked by cold H₂O and dil. acetic acid+Aq. Strong acids dissolve even when very dilute. (Ouvrard, C. R. 1905, **141.** 352.)

Calcium borate silicate, 2CaO, B₂O₃, 2SiO₂ $+H_2O.$

Sol. in HCl+Aq with sep-Min. Datolite. aration of gelatinous silica.

+2H₂O. Min. Botryolite.

CaO, B₂O₃, SiO₂. Min. Danburite. sl. attacked by HCl+Aq before ignition.

Chromous borate.

Precipitate. Sol. in free acids; insol. in borax+Aq. (Moberg.)

Chromic borate, $7\mathrm{Cr}_2\mathrm{O}_3$, $4\mathrm{B}_2\mathrm{O}_3$.

Insol. in H_2O ; sol. in excess of borax +Aq. (Hebberling, C. C. 1870, 122.)

Chromic magnesium borate, 3Cr₂O₃, 6MgO, 2B₂O₃.

Not attacked by acids. (Ebelmen, A. ch. (3) 33. 52.)

2Cr₂O₃, 9MgO, 3B₂O₃. (Mallard, C. **R**. **105.** 1260.)

Cobaltous borate, 3CoO, $2\text{B}_2\text{O}_3 + 4\text{H}_2\text{O}$.

Sl. sol. in H₂O. (Rose, Pogg. 88. 299.) 3CoO, $B_2\text{O}_3$. (Mallard, C. R. **105**. 1260.) 2CoO, $B_2\text{O}_3$. (Ouvrard, C. R. 1900, **130**. 337.)

Cobaltous borate bromide, 6CoO, 8B₂O₃, CoBr₂.

(Rousseau and Allaire, C. R. 1894, 119. 73.)

Cobaltous borate chloride, 6CoO, 8B₂O₃, CoCl2.

(Rousseau and Allaire, C. R. 1894, 118. 1257.)

Cobaltous borate iodide, 6CoO, 8B₂O₃, CoI₂. (Allaire, C. R. 1898, **127.** 557.)

Cuprous borate, 3Cu₂O, 2B₂O₃. (Guertler, Z. anorg. 1904, 38. 459.)

Cupric borate.

Composition depends on temperature and concentration of solutions. Boiling H₂O dissolves out all the boric acid. Sol. in acids; slowly sol. in hot conc. NH₄Cl+Aq.

Cu(BO₂)₂. Insol. in cold dil. acids, even HF. Slowly sol. in hot conc. HCl. Not attacked by alkalics or alkali carbonates+Aq. (Guertler, Z. anorg. 1904, **38**, 456.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Cupric borate ammonia, CuB₄O₇, 4NH₃+6H₂O. «

Efflorescent. Can be recrystallized from a little NH₄OH+Aq. (Pasternack, A. **151**. **227**.)

Didymium borate, DiBO₃.

Insol. in H₂O acidulated with HCl+Aq. (Cleve, Bull. Soc. (2) **43.** 363.)

Di₂(B₄O₇)₃. Insol. in H₂O; sol. in acids. (Frerichs and Smith, A. **191**. 355.)

Glucinum borate, basic, 5GlO, B₂O₃.

Insol. in H₂(); sol. in acids. (Krüss and Moraht, B. **23.** 735.)

Iron (ferrous) borate.

Ppt. H_2O dissolves out all the boric acid. (Tünnerman.)

Iron (ferric) borate, Fe₂(BO₂)₆+3H₂O.

Ppt. Insol. in H₂O.

Min. Lagonite. Sol. in acids.

2Fe₂O₃, 3B₂O₃. (Mallard, C. R. **105**. 1260.) 6Fe₂O₃, B₂O₃+6H₂O. Ppt. (Rose, Pogg. **89**. 473.)

 $9Fe_2O_3$, $B_2O_3+9H_2O$. Ppt. (Rose.)

Iron (ferric) magnesium borate, $3Fe_2O_3$, 6MgO, $2B_2O_3$.

Insol. in H₂O. Sol. in conc. HCl+Aq. (Ebelmen, A. ch. (3) **33.** 53.)

 $2Fe_2O_3$, 9MgO, $3B_2O_3$. (Mallard, C. R. **105.** 1260.)

Iron (ferroferric) magnesium borate, 3Mg(), FeO, Fe₂O₃, B₂O₃.

Min. Ludwigite. Slowly sol. in HCl+Aq, when finely powdered.

Iron (ferrous) borate bromide, 6FeO, 8B₂O₃, FeBr₂.

FeBr₂.
Slowly sol. in hot HNO₃+Aq. (Rousseau

Iron (ferrous) borate chloride, 6FeO, 8B₂O₃,

Slowly sol. in hot HNO₃+Aq. (Rousseau and Allaire, C. R. 116. 1195.)

Lanthanum borate, 2La₂O₃, B₂O₃.

and Allaire, C. R. 116. 1445.)

(Nordeńskjöld, Pogg. 114. 618.) La₂(B₄O₇)₃. Ppt. (Smith.)

Formula is $\text{La}_2\text{B}_6\text{O}_{15} + x\text{H}_2\text{O}$. (Cleve, B. 11. 916.)

Lead borate, basic,

Lead borate, $Pb(BO_2)_2 + H_2O$.

Insol. in H₂O. Easily sol. in dil. HNO₃, or boiling HC₂H₃O₂+Aq. Decomp. by H₂SO₄, HCl, also by boiling KOH, or NaOH+Aq. Insol. in alcohol. (Herapath, Phil. Mag. (3) **34**, 375.)

Sol. in NH₄Cl+Aq; sol. in sat. NaCl+Aq. 2PbO, 3B₂O₃+4H₂O. (Herapath.)

PbB₄O₇+4H₂O. Slightly sol. in pure H₂O, but insol. in solutions of Na salts as Na₂B₄O₇+Aq. (Soubeiran.)

Lead borate chloride, $Pb(BO_2)_2$, $PbCl_2 + H_2O$.

Insol. in cold, very slowly decomp. by hot H_2O into its constituents. Easily sol. in dil. hot HNO_3+Aq ; insol. in alcohol. (Herapath, Phil. Mag. (3) **34.** 375.)

Lead borate nitrate, $Pb(BO_2)_2$, $Pb(NO_3)_2 + H_2O$.

Insol. in alcohol. (Herapath.)

Lithium borate, LiBO₂.

Solubility in H₂O. 100 g. H₂O dissolve g. LiBO₂ at t°.

t°	g. LiB() ₂	ll t°	g. LiBO2
0	0.7 1.4 2.6	30	4.9
10		40	11.12
20		45	20.

(Le Chatelier, C. R. 1897, **124**. 1094.)

Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**, 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

+8H₂O. (Le Chatelier, Bull. Soc. 1899, (3) **21**. 35.)

+16H₂O. Effloresces in the air; slowly sol. in cold H₂O, rapidly in hot H₂O. (Le Chatelier, C. R. 1897, **124**. 1092.)

 $\text{Li}_2\text{H}_4(\text{BO}_3)_2 + 14\text{H}_2\text{O}$. (Reischle, Z. anorg. 4. 166.)

Li₂B₄O₇. Deliquescent; easily sol. in H₂O. (Arfvedson, A. ch. **10**. 82.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+5H₂O. Insol. in alcohol. (Filsinger, Arch. Ph. (3) **8.** 198.)

 Li_2O , $3\text{B}_2\text{O}_3+6\text{H}_2\text{O}$. Very sol. in H_2O : insol. in alcohol. (Filsinger.) Li₂O, 4B₂O₈. Insol. in H₂O. (Le Chatelier,

Bull. Soc. 1899, (3) 21. 35.)

+10H₂O. Sol. in H₂O; insol. in alcohol. (Filsinger.)

"Acid lithium borate" is less sol, than the tetraborate. (Gmelin.)

 Li_2O , $5\text{B}_2\text{O}_3 + 10\text{H}_2\text{O}$. (Dukelski, C. A. **1908.** 1089.

Magnesium borate, Mg(BO₂)₂.

(Ditte, C. R. 77. 893.)

+3H2O. Min. Pinnoite.

 $+4H_{2}()$. (Laurent, A. ch. (2) 67. 215.)

Insol. in cold or hot H2O; easily +8H₂O. sol. in HCl+Aq. Decomp. by conc. HCl +Aq into H₃BO₃ and MgCl₂. (Wöhler.)

MgB₄O₇+8H₂O. (Popp, A. Suppl. 8. 1.) MgO, 3B₂O₃+8H₂O. Very slowly sol. in H₂O. (Rose, A. **84.** 221.)

Sol. in 75 pts. cold H₂O. (Rammelsberg,

Pogg. 49, 445.)

2MgO, B_2O_3 . Insol. in H₂O, but sol. in Na $CO_3 + Aq$. (Guertler, Z. anorg. 1904, 40.

 $+H_2O$. Very sl. sol. in $^{1}/_{10}$ N HCl+Aq. (van't Hoff, B. A. B. 1907, 658.)

Min. Ascharite.

3MgO, B₂O₃. Insol. in H₂O; easily sol. in acids. (Ebelmen, A. 80, 208.)

Very sl. sol. in cold, but somewhat decomp.

by boiling H₂O. (Rammelsberg.)

+9H₂O. Somewhat sol. in cold H₂O. (Wohler, Pogg. 28, 525.) $3Mg(), 2B_2()_3.$

3MgO, 2B₂O₃. Sol. in warm H_2 SO₄ or HNO₄+Aq. (Ditte, C. R. 77. 893.) MgO, $6B_2$ O₃+ $18H_2$ O = Mg(BO₂)₂, 10HBO₂

+13H₂O. (Rammelsberg, Pogg. **49.** 445.) 3MgO, 4B₂O₃. Sol. in hot dil. acids; insol.

in acetic acid. (Ditte, C. R. **77.** 893.) 5MgO, $2B_2O_3+1\frac{1}{2}$, and $3H_2O$. Szübelyite. Difficultly sol. in HCl+Aq

9MgO, B₂O₃. (Mallard, C. R. **105.** 260.) Magnesium manganous borate, $3Mg_2B_2O_5$, $4Mn_2B_2O_b+7H_2O$.

Min. Sussexite. Sol. in HCl+Aq.

Magnesium potassium borate, KMg₂B₁₁O₁₉+ 9H₂O.

(Feit, Min. Kaliborite. Insol. in H₂O. Ch. Z. 1889, **13.** 1188.)

2MgO, 2K₂O, 11B₂O₃+20H₂O. Hoff and Lichtenstein, B. A. B. 1904, 936.)

Magnesium sodium borate, Mg₂B₆O₁₁, $Na_2B_4O_7 + 30H_2O_1$

Efflorescent. About as sol. in cold H₂O as borax; solution separates out a Mg borate on warming, which redissolves on cooling. Decomp. by boiling H₂O. (Rammelsberg.)

Magnesium strontium borate, 3MgO, 3SrO, $4B_2O_3$.

Easily sol. in dil. acids. (Ditte, C. R. 77. 895.)

Magnesium borate bromide, 2Mg.B.O.s. MgBr₂ or 6MgO, 8B₂O₃, MgBr₂.

· (Rousseau and Allaire, C. R. 1894, 119, 71.)

Magnesium borate chloride, 2Mg₈B₅O₁₅, MgCl₂.

Min. Boracite. Insol. in H2O; slowly sol. in acids. (Kraut.)

Stassfurthite. Easily sol. in warm acids. (Bischof.)

Magnesium borate iodide, 6MgO, 8B₂O₃, MgI₂.

(Allaire, C. R. 1898, **127.** 556.)

Magnesium borate phosphate, Mg(BO₂)₂, 2MgHPO₄+7H₂O.

Min. Luneburgite.

Maguesium borate sulphate, 2Mg₃B₄O₉, $3MgSO_4 + 12H_2O$.

Min. Magnesium sulphoborite. Sol. in mineral acids when ground. (Naupert, B. 1893, 26. 874.)

Manganous borate, MnB₄O₇ (?).

Insol. in H₂O (Berzelius); very sl. sol. in H₂O (Thomas, Am. Ch. J. 4. 358); decomp. by warm, slowly by cold H₂O. Sol. in MgSO. +Aq (Berzelius).

+3H₂O.(Endemann and Paisley, Zeit.

angew. Ch. 1903, 16. 176.)

+5H₂O. Ppt. (Endemann and Paisley.) Very hydroscopic. (Endemann, Am. Ch. J. 1903, 29. 72.)

3MnO, B₂O₃. (Mallard, C. R. 105. 1260.) Not attacked by H₂O. Very sol. in acids. (Ouvrard, C. R. 1900, 130. 336.)

3MnO, 2B₂O₃. (Mallard.) MnH₄(BO₃)₂. Very sl. sol. in H₂O. Solubility in 2% Na₂SO₄+Aq. At 18.5°, 0.77 g. MnH₄(BO₃)₂ are dissolved per litre; at 40°, 0.65 g.; at 60°, 0.36 g.; at 80°, 0.12 g. Solubility in 2% NaCl+Aq. 1 l. solution dissolves 1.31 g. salt at 18.2°; 0.6 g. at 59°; and 0.29 g. at 80°.

Solubility in 2% CaCl₂+Aq. 1 l. CaCl₂+Aq dissolves 2.91 g. salt at 17.6°; 2.44 g. at 43.0°; 2.25 g. at 61°; and 1.35 g. at 80°. (Hart-

ley and Ramage, Chem. Soc. 63. 129.)

Manganous borate bromide, 6MnO, 8B₂O₃, MnBr₂.

(Rousseau and Allaire, C. R. 1894, 119. 73.)

Manganous borate chloride, 6MnO, 8B₂O₃, MnCl₂.

(Rousseau and Allaire, C. R. 1894, 118. 1257.)

Molybdenum borate, MoO₂, 2B₂O₃ (?).

Insol. in H₂O; sol. in H₃BO₃+Aq. (Berzelius.)

Molybdenum borate, Mo₂O₃, B₂O₃.

Precipitate. Insol. in H2O; sl. sol. in a solution of boric acid. (Berzelius.)

See Boromolybdic Acid.

Nickel borate, $Ni(BO_2)_2 + 2H_2O$.

Insol. in H2O. Easily sol. in acids. Easily sol, in warm NH₄Cl+Aq. (Rose, Pogg. 88. 299.)

2NiO, B₂O₃+xH₂O. Easily sol. in acids. (Rose.)

3NiO, 2B₂O₃+5H₂O. Easily sol. in acids. (Rose.)

3NiO,B₂O₃. Not attacked by H₂O; sol. in acids. (Ouvrard, C. R. 1900, 130. 337.)

Nickel borate bromide, 6NiO, 8B₂O₃, NiBr₂. (Rousseau, C. R. 1894, 119, 73.)

Nickel borate chloride, 6NiO,8B₂O₃,NiCl₂. (Rousseau, C. R. 1894, **118**. 1257.)

Potassium borates.

Solubility of B₂O₂ in K₂O+A₀ at 30°.

Solution	contains	(1.1.1.1
% by wt. K2(% by wt. B2O2	Solid phase
47.50		KOH, 2H ₂ O
46.45	0.72	"
46.36	0.91	K_2O , B_2O_3 , $2.5H_2O$
40.51	1.25	- '''
36.82	1.80	"
36.72	1.85	"
32.74	3.51	"
29.63	6.98	"
26.89	12.12	"
24.84	17.63	"
23.30	18.19	K_2O , $2B_2O_3$, $4H_2O$
16.21	13.10	""
11 78	9.82	"
9.18	8.00	"
6.22	9.13	"
7.79	13.20	"
7.73	13.37	$K_2O_2 2B_2O_3, 4H_2O +$
		K ₂ O, 5B ₂ O ₃ , 8H ₂ O
7.81	13.28	1120, 02203, 01120
7.67	13.19	"
7.71	13.21	K ₂ O, 5B ₂ O ₃ , 8H ₂ O
7.63	13.28	1120, 01120
3.42	7.59	. "
1.80	4.15	46
0.80	3.05	cc
0.51	3.19	**
0.33	4.58	K_2O , $5B_2O_3$, $8H_2O +$
0.30	1,0	$B(OH)_3$
0.38	4.51	25(11)3
0.31	4.46	
0.28	4.36	$B(OH)_3$
	3.54	17(011)3
	1 0.01	1

At 30° only the three potassium borates K_2O , $B_2O_3+2.5H_2O$; K_2O , $2B_2O_3+4H_2O$ and K₂O, 5B₂O₃+8H₂O exist in stable form. (Dukelski, Z. anorg. 1906, **50.** 42.)

Potassium metaborate, KBO₂.

Sol. in small amount of H₂O. (Berzelius, Pogg. 34. 568.)

+11/4H2O. Only stabile hydrate. (Dukelski, Z. anorg. 1906, 50. 42.) $+1\frac{1}{2}H_2O$. (Atterberg, Bull. Soc. (2) 22.

350.)

Potassium tetraborate, K₂B₄O₇.

Very sol. in H₂O.

+4H₂O. (Atterberg, Bull. Soc. (2) 22. 350.)

Only stabile hydrate. (Dukelski, l. c.) +5H₂O. Very sol. in H₂O; more sol. than K₂B₆O₁₀ or K₂B₁₂O₁₉. $+6H_2O$. (Atterberg, l. ϵ .)

and Potassium hexaborate, $K_2B_6O_{10}+5$, 8H₂O.

Easily sol. in H₂O. Does not exist. (Dukelski, l. c.)

Potassium dekaborate, $K_2B_{10}O_{16} + 8H_2O$.

Sol. in H₂O. (Rammelsberg.) Only hydrate. (Dukelski.)

Potassium dodekaborate, $K_2B_{12}O_{19}+10H_2O$.

Sl. sol. in cold, very sol. in hot H_2O . (Laurent, A. ch. **67.** 215.) $= K_2 B_{10} O_{16}$. (Rammelsberg.)

Does not exist. (Dukelski.)

Potassium borate fluoride, KBO, KF.

Sol. in H₂O. (Schiff and Sestini, A. 228. 72.)

KBO₂, 2KF. Sol. in little, decomp, by much H2O. Insol. in H2O. (Schiff and Sestini, A. 228, 72.)

Rubidium borate, Rb₂B₄O₇.

Anhydrous. (Reischle, Z. anorg. 4. 166.) +6H₂O. Not deliquescent or efflorescent. Sol. in H₂O. (Reissig, A. **127**, 33.)

Samarium borate, SmBO₃.

Insol. in H₂O; sol. in HCl+Aq. (Cleve, Bull. Soc. (2) 43. 1670.)

Scandium borate, ScBO₃.

Sol. in dil. acids. (Crookes, Phil. Trans. 1910, 210. A. 364.)

Silver borate, AgBO₂.

St. sol. in H2O. By washing with H2O the boric acid is dissolved out. (Rose, Pharm. Centralbl. 1853, 205.)

Sol. with decomp. in Na₂S₂O₃+Aq (Her-

schel); sol. in NH₄NO₃+Aq if pptd. cold. 1 l. H₂O dissolves ca. 6 x 10⁻² gram-atoms at 25°. (Abegg and Cox, Z. phys. Ch. 1903, 46. 11.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

3Ag₂O, 4B₂O₃. (Rose, l. c.)

Sodium borates.

Solubility of B₂O₃ in Na₂O+Aq at 30°.

Solution	contains	
% by wt. Na ₂ O	% by wt. B ₂ O ₈	Solid phase
42.00		NaOH, H ₂ O
40.85	2.71	11120
41.37	5.10	14
38.85	5.55	Na ₂ O, B ₂ O ₃ , 4H ₂ O
34.44	3.73	11020, 1204, 12120
29.39	2.51	4
28.61	2.38	**
27.78	2.44	"
26.13	$\frac{1}{2.75}$	"
25.08	2.98	
23 00	3.82	
16.61	13.69	16
21.58	4.63	Na ₂ (), B ₂ O ₃ , 4H ₂ O-
		Na ₂ O, B ₂ O ₃ , 8H ₂ O
20.58	4.69	Na ₂ O, B ₂ O ₂ , 8H ₂ O
18.31	4.97	114217, 15202, (71220)
15.32	6.21	
13.25	8.18	
12.39	9.12	**
8.85	10.49	Na ₂ (), 2B ₂ () ₃ , 10H ₂ ()
5.81	6 94	1. ving. v, 2. B2(v3, 10112(v
4.00	4.76	1.
1.88	2.41	11
1.38	5.16	1.6
1.84	7 36	
2.02	7.79	
$\frac{2.40}{2.40}$	9.48	16
4.08	17.20	Na ₂ O, 2B ₂ O ₃ , 10H ₂ O
1.00		$+Na_2O, 5B_2O_3, 10H_2O$
3.79	15.84	Na ₂ O, 5B ₂ O ₃ , 10H ₂ O
3.47	13.30	11120, 01203, 101120
2.26	12.14	**
1 99	11.84	Na ₂ O, 5B ₂ O ₃ , 10H ₂ O
1 00	11.01	$+B(OH)_3$
1.86	11.78	B(OH) ₃
1.81	11.18	13,011)8
0.64	6.11	
	3.54	"
	1 0.04	t

At 30°, only the four sodium borates Na₂O, $B_2O_3+4H_2O$; Na_2O , $B_2O_3+8H_2O$; Na_2O , $2B_2O_3+10H_2O$; and Na_2O , $5B_2O_3+10H_2O$ exist as stable phases.

(Dukelski, Z. anorg. 1906, 50, 46.)

Sodium metaborate, NaBO₂.

Anhydrous. Easily sol. in H₂O, with evolution of heat.

 $+H_2O$. Easily sol. in H_2O . (Benedikt.) +2H₂O. Easily sol. in H₂O. (Benedikt,

B. 7. 703.)

+3H₂O. Easily sol. in H₂O. (Berzelius.) +4H₂O. Sl. efflorescent. Sol. in hot, less sol. in cold H₂O. Melts at 57° in its crystal H₂O. (Dukelski, Z. anorg. **50.** 42.)

+4½H₂O. (Atterberg, Z. anorg. 1906, 48. 370.)

 $+5\frac{1}{2}H_2O$. (Atterberg.)

 $+8H_2Q$. (Atterberg.) $+4H_2Q$ and $+8H_2Q$ are the only hydrates formed. (Dukelski.)

System Na₂O, B₂O₃, H₂O at 60° investitated by Sborgi. (Real. Ac. Linc. 1915, (5) **24.** I. 443.)

Sodium tetraborate, Na₂B₄O₇ (Borax).

 $100~g.~H_2O$ dissolve at: $5^{\circ}~10^{\circ}~21.5^{\circ}~30^{\circ}~37.5^{\circ}$

1.3 1.6 2.8 3 9 5.6 g. anhydrous salt.

45° 50° 54° 55° 56° 57°

8.1 10.5 13.3 14.2 15.0 16.0 g. anhydrous salt. (Horn and van Wagener, Am. Ch. J. 1903,

30. 347.) Insol. in ethyl acetate. (Naumann, B.

1910, **43.** 314.)

Sol. in amyl alcohol in the presence of metaarsenious acid and excess of H₃BO₅. (Auerbach, Z. anorg. 1903, 37, 358.)

+4H₂O. +5H₂O

100 g. H₂O dissolve at:

65° 70° 80° 90° 100°

22.0 24.4 31.4 40.8 52.3 g. anhydrous salt. (Horn and van Wagener, Am. Ch. J. 1903,

30. 347.) +6H₂O. Grows opaque in the air. (Bechi,

Sill. Am. J. (2) 17. 129.) +10H₂O. Only stabile hydrate. Dukel-

ski, Z. anorg. 50. 30.) Efflorescent on surface in dry air. Not efflorescent when free from Na₂CO₃. (Sims.)

Sol. in 12 pts. cold, and 2 pts. hot $\rm H_2O$. Sat. cold $\rm Na_2B_4O_7 + Aq$ contains 9.23%, and sat. hot $\rm Na_2B_4O_7 + Aq$ contains 33.3%, $\rm Na_2B_4O_7$. (Gmelin.) Sol. in 20 pts. cold. and 6 pts. boiling $\rm H_2O$. (Walson)

lerius.)

Roll. in 15 pts. H₂O at 18.75°. (Abl.)
100 pts. H₂O at 15.5° dissolve 5 pts.; at 65°. 40 pts.; at 100°, 166 pts. Na₂B₄O₇ +10H₂O. (Ure's Dictionary.)
100 pts. sat. Na₂B₄O₇ +Aq at 105.5° contain 52.5 pts.
Na₂B₄O₇ or 100 pts. H₂O dissolve 110.54 pts. Na₂B₄O₇, or 1 pt. Na₂B₄O₇ is sol. in 0.9047 pt. H₂O at 105.5°. (Griffith, Quar. J. Sci. 18. 90.)

Solubility in 100 pts. H₂O at t°.

t°	Pts. Na:B4O7	Pts Na ₂ B ₄ O ₇ +10H ₂ ()	t°	Pts. Na ₂ B ₄ O ₇	Pts. Na ₂ B ₄ O ₇ + 10H ₂ O
0 10	1.49 2.42	2.83 4.65	60 70	18.09 24.22	40.43 57.85
20	4.05	7.88	80	31.17	76.19
30	6.00	11.90	90	40.14	116.66
40 50	$ \begin{array}{r} 8.79 \\ 12.93 \end{array} $	17.90 27.41	100	55.16	201.43

(Poggiale, A. ch. (3) 8. 46.)

100 pts. H₂O dissolve 1.4 pts. Na₂B₄O₇ at

0°, and 55.3 pts. at 100°. (Mulder.)
Na₂B₄O₇+Aq sat. at 15° has sp. 1.0199, and contains 3.926 pts. Na₂B₄O₇ to 100 pts. H₂O. (Michel and Krafft, A. ch. (3) **41.** 471.)

Na₂B₄O₇+Aq sat. at 17° has sp. gr. = 1.0208. (Stolba, J. pr. 97. 503.)

Sp. gr. of $Na_2B_4O_7 + Aq$ at 15°.

NarB.O;	ος Na ₂ Β ₄ Ο ₇ +10H ₂ Ο	Sp. gr.	Na2B4O7	77. Na2B407 +10H4O	Sp. gr.
1	0.52	1.0049	4	2.11 2.64 3.17	1.0199
2	1.06	1.0099	5		1.0249
3	1.59	1.0149	6		1.0299

(Gerlach, Z. anal. 28, 473.)

Sp. gr. of Na₂B₄O₇+Aq sat. at $15^{\circ} = 1.032$. (Gerlach.)

Sat. Na₂B₄O₇+Aq boils at 105.5°, and contains 110.5 pts. Na₂B₄O₇ to 100 pts. H₂O.

(Griffith.)

Sat. Na₂B₄O₇+Aq forms a crust at 103°, and contains 60.14 pts. Na₂B₄O₇ to 100 pts. H₂O; highest temp. observed, 104.3°. (Gerlach, Z. anal. 26. 427.)

B.-pt. of Na₂B₄O₇+Aq containing pts. Na₂B₄O₇ to 100 pts. H₂O.

Bpt.	Pts. Na ₂ B ₄ O ₇	Bpt	Pts. Na ₂ B ₄ O ₇
100.5°	8.64	103.0°	61.2
101.0	17.2	103.5	75.4
101.5	26.5	104.0	90.8
102.0	37.5	104.5	109.0
102.5	48.5	104.6	112.3

(Gerlach, Z. anal. 26. 452.)

M.-pt. of $Na_2B_4O_7 + 10H_2O$ is 75.5°. (Tilden, Chem. Soc. 45. 407.)

Insol. in alcohol.

100 g. alcohol (0.941 sp. gr.) dissolve 2.48 g. at 15.5° (U. S. P.).

Sol in alcoholic solution of NaC₂H₃O₂, (Stromeyer.)

Sol. in 14.7 pts. glycerine of 1.225 sp. gr. (Vogel.)

Sol. in 1 pt. glycerine. (Schultze, Arch. Pharm. (3) 6. 149.)

100 g. glycerine dissolve 60.3 g. at 15.5° (U. S. P.)

Min. Tincal.

Sodium borate, $Na_2B_8O_{13}+10H_2O$.

Sol. in 5-6 pts. cold H₂O. (Bolley, A. 68. 122.) Perhaps sodium hydrogen tetraborate NaHB₄O₇+4½H₂O.

Na₂B₁₀O₁₆+10H₂O. Decor (Atterberg, Z. anorg. **48.** 370.) Decomp. by H₂O.

Stabile. (Dukelski, Z. anorg. 50. 42.) +11H₂O. (Laurent, C. R. 29. 5.)

Sodium borate fluoride, NaBO₂, 3NaF+ $4H_2O$.

Sol. in H₂O.

Basarow (B. 7. 112) considers this salt to Tin (stannous) borate (?). be a mixture.

 $Na_2B_4O_7$, $12NaF + 22H_2O$. Can be separated into its constituents by H2O. (Berzelius, Berz. J. B. 23. 96.)

Strontium borate, $Sr(BO_2)_2$.

(Ditte, C. R. 77, 788.)

Easily hydrated by H₂O forming SrO, B₂O₃ +2H₂O. Very sol. in dil. acetic acid. (Ouvrard, C. R. 1906, 142. 282.)

Insol. in acetone. (Naumann, B. 1904, 37.

4329.)

 $+2\mathrm{H}_2\mathrm{O}$. (Ouvrard, l.~c.)

 $+4{\rm H}_2{\rm O}$. (Ouvrard, l.~c.) +5 ${\rm H}_2{\rm O}$. 1 l. ${\rm H}_2{\rm O}$ dissolves 2.3 g. at 10°. (Ditte, A. ch. 1883 (5) 30. 253.)

SrB₄O₇. Insol. in H₂O; sol. in dil. acids. (Guertler, Z. anorg, 1904, **40**, 243.)

 $+4H_2O$. Sol. in 130 pts. boiling H_2O . 100 pts. H₂O at 100° dissolve 7.7 pts. (Ure's Dict.). Easily sol. in cold NH₄ salts+Aq; sol. in cold HNO₃+Aq.

2SrO,B₂O₃. Easily decomp, by H₂O forming B₂O₃, SrO, 4H₂O. Very sol. in acids. (Ouvrard, C. R. 1906, **142**, 282.)

3SrO, B₂O₃. Less easily attacked by H₂O

than Ca comp. Very sol. in mineral acids. Sl. attacked by dil. acetic acid. (Ouvrard, C. R. 1901, **132**. 258.)

 SrB_6O_{10} . Very sl. sol. in H₂O; sol. in acids. (Laurent.)

 $SrB_8O_{31} + 7H_2O$. Ppt. (Laurent.) +12H₂O. (Ditte.)

Sr₃B₄O₉. Sol. in cold mineral acids and acetic acid. (Ditte, C. R. 77. 785.)

2SrO, 3B₂O₃. Easily sol. in acids. (Ditte, l. c.)

Strontium borate bromide, 3SrO, 5B₂O₃, SrBr₂.

As the chloride. (Ouvrard, C. R. 1906, **142.** 283.)

Strontium borate chloride, 3Sr(), 5B₂()₃,

Sl. attacked by cold H₂O, not attacked by dilute acetic acid. (Ouvrard, C. R. 1906, 142. 282.)

Thallous borate, $TlBO_2 + \frac{1}{2}H_2O$.

Decomp. in the air. (Buchtala, J. pr. 1913, (2) **88.** 784.) $\text{Tl}_2\text{B}_2\text{O}_7$.

(Buchtala.)

Ppt. Sol. in boiling H2O; insol. $Tl_2B_4O_7$.

in cold dil. H₂SO₄+Aq. (Crookes.) +2H₂O. (Buchtala, J. pr. 1913 (2) **88.** 774.)

 $Tl_2B_6O_{10} + 3H_2O_{.}$ (Buchtala.)

 $Tl_2B_8O_{13}+4H_2O$. (Buchtala.) $Tl_2B_{10}O_{16} + 8H_2O.$ (Buchtala.)

 $Tl_2B_{12}()_{19} + 7H_2()$. (Buchtala.)

Thorium borate (?).

Precipitate. Insol. in H₂O and H₃BO₂+ Aq. (Berzelius.)

Ppt. (Wenzel.)

Divanadyl borate.

Insol. in H₂O; sol. in H₃BO₃+Aq. (Berzelius.)

Ytterbium borate, YbBO₂.

Insol. in conc. HCl; sol. in HF. (Cleve, Z. anorg. 1902, **32.** 148.)

Yttrium borate.

Precipitate. (Berlin, Pogg. 43, 105.)

Zinc borate, 3ZnO, 2B₂O₃.

(Mallard, C. R. 105, 1260.)

Decomp. by H_2O ; very sol. in dil. acids. (Ouvrard, C. R. 1900, 130, 336.) ZnO, 2B₂O₈+4H₂O. Sol. in H₂O with

decomp. (Ditte, A. ch. 1883, (5) **30**. 256.) 3ZnO, 4B₂O₃+H₂O. Ppt. (Holdermann, Arch. Pharm. 1904, **242**. 567.)

ZnO, 4B₂O₃+10H₂O. (Ditte, A. ch. 1883, (5) **30**, 256.)

9ZnO, 4B₂O₃+9H₂O. Sl. sol. in H₂BO₃ +Aq. (Rose, Pogg. 88. 299.)

3ZnO, B2O3. Insol. in mineral acids. le C. R. 114. 392.) Chatelier, C. R. 113, 1034.)

Zinc borate ammonia, ZnB_4O_7 , $4NH_3+6H_2O_1$. Easily sol. in NH₄OH, HC₂H₃O₂, H₂SO₄, HCl, and HNO₃+Aq. (Büchner, A. 151. 234.)

Zinc borate bromide, 6ZnO, 8B₂O₃, ZnBr₂. (Rousseau and Allaire, C. R. 116. 1446.)

Zinc borate chloride, 6ZnO,8B₂O₃,ZnCl₂. Insol. in HCl. (Rousseau, C. R. 1894, 118.

Zinc borate iodide, 6ZnO, 8B₂O₃, ZnI₂. (Allaire, C. R. 1898, 127, 556.)

Zirconium borate, (?).

Insol. in H₂O.

Perboric acid.

See Perboric Acid.

Boric phosphoric acid. See Phosphoboric acid.

Boric tungstic acid.

See Borotungstic acid.

Boric acid sulphur trioxide. See Borosulphuric acid.

Borimide, $B_2(NH)_3$.

Decomp. by H₂O; insol. in all indifferent solvents; sol. in liquid NH2+S to form a dark blue solution, (Stock, B. 1901, 34. 3044.)

Borimide hydrochloride, B₂(NH)₂,3HCl.

Decomp. by H₂O; insol. in all ordinary organic solvents. (Stock, B. 1901, 34. 3045.)

Borofluorhydric acid, HBF4.

See Fluoboric acid.

Borofluorides.

See Fluoborides.

Boromolybdic acid.

Stot. in H₂O. Decomp. by alcohol. (Berzelius.)

Boron, B.

(a) Amorphous. Somewhat sol. in pure H₂C, when not ignited. Salts and acids separate it out of aqueous solution. Upon evaporation of H2O solution a crust is formed, which is only partially sol. in H₂O. (Berzelius, Pogg. 2. 113.) Decomp. by hot H₂SO₄ and cold moderately conc. HNO₃+Aq. Strongly ignited amorphous B is much less easily attacked by reagents than freshly pptd., and is insol. in H₂O. (Berzelius.) Insol. in caustic alkalies + Aq; also in alcohol and ether.

Above boron was very impure. (Moissan,

Pure B is not attacked by acids, but has a strong reducing action on KMnO₄+Aq, FeCl₃ +Aq, etc. (Moissan, C. R. 114. 617.)

Does not melt at 1500°. Readily sol. in conc. acids, as H₂SO₄, HNO₃, H₃PO₄; very sl. sol. in hydracids; decomp. H₂O at red heat. (Moissan, A. ch. 1895, (7) **6.** 313-14.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

(b) Crystallized. 1. Insol. in H₂O, HCl, or KOH+Aq. Very slightly and slowly attacked by boiling cone. H₂SO₄. Gradually sol. in hot conc. HNO₃. Formula is Al₂B₂₄. (Hampe, A. **183.** 75.)

2. Very slightly attacked by conc. HCl or H₂SO₄; slowly but completely sol. in conc. HNO₃; insol. in KOH+Aq. Formula is

 $C_2Al_3B_{48}$. (Hampe.) C₂Al₃B₄₄. Crystalline. Insol. in a solution of CrO₃ in H₂SO₄. Insol. in hot conc. HCl and H₂SO₄. Sol. in hot conc. HNO₃. (Biltz, B. 1910, 43. 303.)

Boron tribromide, BBr₃.

Sol. in H₂O or alcohol with decomp. (Nicklès, C. R. 60. 800.)

Boron phosphorus bromide, BBr₃, PBr₃.

Decomp. by H₂O.

Sol. in CS2, and CHCl2. Decomp. by alcohol, ether, etc. (Tarible, C. R. 116. 1521.)
BBr₃, PBr₅. Sl. sol. in cold, easily in hot CS₂. (Tarible.)

Boron bromide ammonia, BBr₂, 4NH₂.

Decomp. by H₂O and alkalies. (Besson, C. R. 114. 542.)

Boron bromide phosphine, BBr3, PH3. Violently decomp. by H₂O. (Besson, C. R. **113.** 78.)

· Boron bromide phosphorus trichloride, 2BBr₃,PCl₈.

Decomp. by H₂O. Sol. in BBr₃, PCl₃, CS₂, and CHCl₃. Insol. in petroleum ether. (Tarible, C. R. 1901, 132, 84.)

Boron bromide phosphorus pentachloride, 2BBr₃,PCl₅.

Sol. in BBr2 and CS2; decomp. by H2O; insol. in light petroleum. (Tarible, C. R. 1901, **132.** 85.)

Boron bromide phosphorus diiodide, 2BBr₃, P2I4.

Sol. in BBr₃, CS₂, CHCl₂; insol. in light petroleum; decomp. by H₂O. (Tarible, C. R. 1901, **132.** 205.)

Boron bromide phosphoryl chloride, BBr₃, POCla.

Very easily decomp. (Oddo and Tealdi, Gazz. ch. it. 1903, 33. (2) 431.)

Boron bromoiodide, BBr₂I.

Decomp. violently by H₂O. (Besson, C. R. **112.** 100.) BBrI₂. (Besson, C. R. **112**. 100)

Boron bromosulphide, B₂S₃,BBr₃.

Decomp. by H₂O. (Stock, B. 1901, 34. 3040.)

Boron carbide, B₆C.

Very stable; insol. in HF and in HNO₃; sol. in KOH at red heat. (Moissan, Bull. Soc. 1894, (3) **11.** 1101.)

Insol. in acids; sol. in fused alkali. (Mois-

san, C. R. 184; 118. 559.) BC or B₂C₄. Insol. in all the usual solvents. (Müllhäuser, Z. anorg. 5. 92.)

Boron trichloride, BCl₃.

Rapidly absorbed by H₂O and alcohol with decomposition.

Boron nitrosyl chloride, BCl₃, NOCl.

Decomp. violently by H₂O. (Geuther, J. pr. (2) 8. 854.)

Boron phosphoryl chloride, BCl₃, POCl₃.

Decomp. immediately by H₂O. (Gustavson, Zeit. Chem. 1870. 521.)

Boron chloride ammonia, 2BCl₃, 3NH₃.

Decomp. by H₂O. (Berzelius, Pogg. 2.

Boron chloride phosphine, BCl₈, PH₃.

Decomp. by H₂O. (Besson, C. R. 110.

Boron chlorosulphide, B₂S₃,BCl₃.

Decomp. by H₂O. (Stock, B. 1901, 34. 3040.)

Boron trifluoride, BF3.

 $\rm H_2O$ absorbs 700 vols. BF3 gas to form a † san.)

liquid of 1.77 sp. gr. On boiling, 1/5 of the BF3 is given off, and a residue boiling at 165-200° with composition BF₃+2H₂O or HBO₂+3HF, is left. (J. Davy, A. ch. **86.** 178.) 1 ccm. H₂O absorbs at 0° and 762 mm. pres-

sure 1.057 ccm. BF₃.

1 vol. conc. H₂SO₄ of 1.85 sp. gr. absorbs 50 vols. BF₈.

Absorbed by alcohol with decomp.

Cold oil of turpentine absorbs 6.8% of BF₃.

Boron fluoride ammonia, BF₃, NH₃, BF₃, 2NH₃, and BF₃, 3NH₃.

Decomp. by H₂O.

Boron fluoride cyanhydric acid, BF₃, HCN. Very unstable. (Patein, C. R. 113. 85.)

Boron fluoride phosphine, $2BF_3$, PH_3 .

Very unstable at ordinary temp. Decomp. by H₂O. (Besson, C. R. **110**. 80.)

Boron hydride, BH₃.

Not obtained free from H. Sl. sol. in H₂O. (Jones, Chem. Soc. **35.** 41.)

See Cyclotriborene.

 B_4H_{10} . B.-pt. 16–17° at 760 mm. Very unstable. Takes fire spontaneously in the air.

Decomp. by H₂O, dil. HCl, and oxidized by cone. HNO₃ with explosive violence.

Absorbed by NaOH + Aq.

Decomp. by alcohol. Sol. in dry benzene. (Stock, B. 1912, **45.** 3562.)

 B_6H_{12} . B.-pt. 100° at atmospheric pressure. Decomp. by H_2O . With aqueous alkalies, hydrogen is evolved. (Stock, B. 1912, 45. 3565.)

B₈H. Insol. in HCl. Sol. in aqua regia and

Br₂+Aq. (Winkler, B. 1890, **23**. 778.)

B₁₀H₁₄. M.-pt. 99.5°; not attacked by cold or boiling H₂O. Sol. in dil. NaOH+Aq. Sol. in alcohol, ether, benzene, and CS₂. (Stock, B. 1913, 46. 3360.)

Boron iodide, BI3.

Very hygroscopic, and instantly decomp, by H_2O or alcohol. Very sol. in CS_2 , CCl_4 . C_6H_6 ; less sol. in PCl_3 , $AsCl_3$, and a great many organic liquids. (Moissan, C. R. 112. 717.)

Boron iodide ammonia, BI₃, 5NH₃.

Decomp. by H₂O. (Besson, C. R. 114. 542.)

Boron iodophosphide, BI₂P.

Very hygroscopic; decomp. by H₂O. Not attacked by cold conc. H2SO4, even if fuming, but on heating decomposition takes place. Very sl. sol. in CS₂. Insol. in benzene, PCl₃, or CCl₄. (Moissan, C. R. 113. 624.)

Less hygroscopic than BI₂P, but BIP. otherwise the properties are similar. (Mois-

```
Boron nitride, BN.
```

Insol. in H2O, conc. HNO3, conc. HCl+

Aq, or conc. solutions of alkalies.

Decomp. by hot conc. H₂SO₄ or HF. (Wöhler, A. 74. 70.)

Boron trioxide, B₂O₃.

Deliquescent. Sol. in H₂O with a large increase in temp. (Ditte, C. R. **85**, 1069.)

```
1 pt. dissolves-
      at 18.75° in 47.01 pts. H<sub>2</sub>O. ... 25° " 27.75" "
       44
                    "
                       18.73 "
                                     "
           37.5°
                       15.13 "
                    "
                                     "
           50°
                        9.29 "
           62.5°
                                     "
           75°
                        7.28 "
                    "
                        5.58 "
                                     "
          87.5°
       " 100°
                    "
                                     "
                         4.74
```

Or 100 pts. H₂O dissolve -

```
18.75°
                 2.13 pts. B<sub>2</sub>O<sub>3</sub>.
at
     25^{\circ}
                  3.60
     37.5°
                  4.24
                           46
                                  44
     50^{\circ}
                                  "
                  6.61
     62.5^{\circ}
                10.76
                                  "
     75°
                13.73
 " 87.5°
                           "
                                  "
                17.92
 " 100°
                           "
                                  "
                21.09
```

(Brandes and Firnhaber, Arch. Pharm. 7. 50.)

1 litre H₂O dissolves—

```
11.00 g. B<sub>2</sub>O<sub>3</sub>.
16.50 "."
      0°
\mathbf{at}
     12°
"
     20°
             22.49 "
                            ٠.
     40°
             39.50 "
                            "
     62°
             64.50 "
                            "
     80^{\circ}
             95.00 "
 " 102° 164.50 "
(Ditte, C. R. 85. 1069.)
```

Sat. H₂O solution boils at 100°. (Brandes and Firnhaber.)

Sat. H₂O solution boils at 103.3°. (Griffiths, Quar. J. Sci. **18**. 90.)

Sol. in acetic acid, hot conc. HCl+Aq, HNO₃, and H₂SO₄. From the three latter it separates on cooling or dilution with H₂O.

Solubility in Na2O+Aq at 30.

See Borates, sodium.

Solubility in K₂O+Aq at 30°.

See Borates, potassium.

Insol. in hot glacial acetic acid. Chem. Soc. 1911, 100. (2) 720.) (Holt,

Insol. in alcohol. (Graham.)

Sol. in alcohol. (Berzelius, Ebelmen.)

Sol. in oils.

See also Boric acid.

Boron trioxide potassium fluoride, B₂O₃, 2KF. Gradually sol. in H₂O. Decomp. by much H₂O. Insol. in alcohol. (Schiff and Sestini, A. 228. 82.)

Boron oxychioride, BOCl.

(Gustavson, Zeit. Chem. 1870. 521.) BOCl₈. Slowly decomp. by H₂O. (Councler, J. pr. (2) 18. 399.)

Oxychlorides of either the above formulæ do not exist; the true formula for boron oxychloride is $B_8O_{11}Cl_2$. (Lorenz, A. 247. 226.)

Boron phosphide, BP.

Insol. in H2O. Sol. in conc. boiling alkalies + Aq with decomp. Decomp. by HNO₃+Aq. (Besson, C. R 113. 78.)

Insul. in PCl2, AsCl2, SbCl2, CCl4, and in

fact in all known solvents.

Not attacked by boiling H₂O, conc. HCl, or HI+Aq. Sol. in conc. HNO₃ with decomp. on heating. Not attacked by cold H₂SO₄. (Moissan, C. R. 113. 726.)

B₅P₂. Not attacked by boiling conc. HNO₃

-- Aq. Insol. in all solvents. (Moissan.)

Boron phosphoiodide.

See Boron iodophosphide.

Boron selenide, B₂Se₃.

Violently decomp. by H₂O. (Sabatier, C. R. 112. 1000.)

Boron trisulphide, B₂S₃.

Decomp. with violence with H₂O. Combines with alcohol and ether. (Fremy, A. ch. (3) 38. 312.)

Insol. in most solvents, but sl. sol. in PCl. without decomp.; more sol. in SCl2, but does not crystallize from the solution. (Moissan, C. R. **115.** 203.)

Boron trisulphide ammonia, B₂S₃,6NH₃.

Ppt. (Stock, B. 1901, 34. 3042.)

Boron pentasulphide, B₂S₅.

Decomp. by H₂O and alcohol. (Moissan, C. R. **115.** 271.)

Borosulphuric acid, BOHSO₄+SO₃.

Decomp. by H₂O. (Schultz-Sellac, B. 4.

B(HSO₄)₃. Very deliquescent. Easily sol. in fuming H₂SO₄. (D'Arcy, Chem. Soc. 55.

SO₂(O.BO)₂. Hydroscopic. Deliquescent. Sol. in H₂O with decomp. Decomp. by cold

alcohols. (Pictet, Bull. Soc. 1908, (4) 3. 1121.) $(SO_3)_2B_2O_3$. Hydroscopic. Deliquescent. Sol. in H₂O with decomp. Decomp. by cold alcohols. (Pictet, Bull. Soc. 1908, (4) 3. 1121.)

Borononotungstic acid, $H_4B_2W_9O_{32} +$ $22H_2O = 9WO_3$, B_2O_3 , $2H_2O + 22H_2O$.

Sol. in less than 1/9 pt. H₂O, and as easily sol, in alcohol and ether. Sp. gr. of aqueous solution is somewhat under 3. (Klein, A. ch. **(5) 28.** 370.)

Aluminum borononotungstate, Al4(B2W4O22)2 +65H₂O.

Extremely sol. in H₂O. (Klein.)

Ammonium —, $(NH_4)_4B_2W_9O_{32}+18H_2O_{.}$ Quickly effloresces. (Klein.)

Barium borononotungstate. Ba₂B₂W₉O₈₂+ 19H₂O.

Sol. in 4 pts. cold, and less than ½ pt. hot H₂O. (Klein.)

Cadmium —, $Cd_2B_2W_9O_{32} + 18H_2O$.

Deliquescent.

100 pts. of salt dissolve in less than 8 pts. H₂O at 19°. Sp. gr. of solution is 3.28. (Klein.)

Sp. gr. of sat. solution at $15.6^{\circ}/4^{\circ} = 3.2887$; at $16.2^{\circ}/4^{\circ} = 3.2868$. (Kahlbaum, Z. anorg. 1902, **29.** 229.)

Calcium —, $Ca_2B_2W_9O_{32}+15H_2O$.

Sol. in $\frac{1}{10}$ pt. H_2O . Solution has sp. gr. = 3.10. (Klein.)

Cerium —, $Ce_4(B_2W_9O_{32})_3 + 57H_2O$.

Very sol, in H_2O ; sp. gr. of solution is over 3.

Chromium —, $Cr_4(B_2W_9O_{32})_3 + 74H_2O_{.}$

Very sol. in H₂O; sp. gr. of solution is 2.80. (Klein.)

Cobalt — -, $Co_2B_2W_9O_{32} + 18H_2O$.

Very sol. in H2O; sp. gr. of solution sat. at

19° = 3.36. (Klein.) 100 pts. H₂O dissolve 306.8 pts. anhydrous salt at 16.2°; 288 pts. at 18.5°; 299.7 pts. at 19.6°; 286 pts. at 21.8°.

Sp. gr. of solution sat. at $19.2^{\circ}/4^{\circ} = 3.1369$. (Kahlbaum, Z. anorg. 1902, **29**, 218.)

Copper —, $Cu_2B_2W_9O_{32}+19H_2O$.

25 pts. H_2O dissolve 100 pts. salt. Sp. gr. of solution = 2.6. (Klein.)

Lead — , $Pb_2B_2W_9O_{32} + 11H_2O$.

Sl. sol. in cold, easily sol. in hot H₂O. (Klein,)

Lithium -**–,** (?).

Very sol. in H2O. Sp. gr. of solution is

Magnesium —, $Mg_2B_2W_9O_{32}+22H_2O$. Very sol. in H₂O. (Klein.)

Manganous ---, Mn₂B₂W₉O₃₂+17H₂O.

100 pts. dissolve in 13 pts. H₂O. Sp. gr. of solution at $19^{\circ} = 3.15$. (Klein.)

Mercurous. ---, $3Hg_2O$, B_2O_3 , $9WO_3+$ 14H₂O (?).

Precipitate.

Insol. in H₂O (Klein.)

Sol. in 20,000 pts. dil. cold, and 1000 pts. boiling HNO₃+Aq of 1.42 sp. gr.

Nickel —, $Ni_2B_2W_9O_{32} + 18H_2O$.

Very sol. in H₂O; sp. gr. of sat. solution at $19^{\circ} = 3.32$.

400 pts. H₂O dissolve 261.6 pts. at 21.2° Sp. gr. $15.75^{\circ}/4^{\circ}$ of solution = 2.2959. (Kahlbaum, Z. anorg. 1902, 29. 218.)

Potassium borononotungstate, K₄B₂W₉O₃₂+ 13H₂O.

5 pts. salt dissolve in 8 pts. H₂O at 19° to form a solution of 1.38 sp. gr. The solution sat. at 100° has sp. gr. of over 2. (Klein.)

Silver —, $Ag_4B_2W_9O_{32}+14H_2O$.

Very sl. sol. in H₂O.

Sodium —, $Na_2H_2B_2W_9O_{32}+23H_2O$.

Very sol. in H₂O. Solution sat. at 19° contains 84 pts. salt to 16 pts. H₂O. (Klein.) $Na_4B_2W_9O_{32} + 12H_2O_1$. Sol. in less than $\frac{1}{3}$ pt. H₂O.

Thallium —, $Tl_2B_2W_9O_{32}+5H_2O$.

Sl. sol. in hot H₂O and nearly insol. in cold H₂O. (Klein.)

Uranyl —, $(U(O_3)_3(B_2W_9O_{30})_2 + 30H_2O$.

Very sol. in H₂O. (Klein.)

Sp. gr. of solution = 3.1.

Zinc —, $Zn_2B_2W_9O_{32}+2H_2O$.

Very sol. in H_2O . Sp. gr. of solution = 3.15. (Klein.)

Borodecitungstic acid.

Barium borodecitungstate, Ba₂B₂W₁₀O₃₅+ 20H2O.

Sol. in H₂O. (Klein, C. R. **99.** 35.)

Boroduodecitungstic acid, H₈B₂W₁₂O₄₃= 4H₂O, B₂O₃, 12 WO₃.

Known only in solution, which decomposes into borononotungstic acid and tungstic acid, when evaporated to a certain concentration. (Klein, C. R. 99, 35.)

Barium potassium boroduodecitungstate. 3BaO, K_2O , B_2O_3 , $12WO_3 + 28H_2O$.

Potassium —, $K_8B_2W_{12}O_{43} + 21H_2O_{12}O_{43}$

Sol. in H₂O. (Klein.) 2K₂O, 12WO₃, B₂O₃+18H₂O. Sol. in H₂O. (Klein.)

Boroquatuordecitungstic acid, H12B2W14O51 $=6H_2O$, B_2O_3 , $14WO_3$.

Has not been obtained in the free state. (Klein, A. ch. (5) **28.** 353.)

Barium boroquatuor decitungstate,

 $Ba_3B_2W_{14}O_{48} = 3BaO, B_2O_3,$ $14WO_3 +$ $5H_2O$.

Sl. sol. in H₂O. (Klein.)

Barium sodium —, 3½BaO, 1½Na $5H_2O$, B_2O_3 , $14WO_3 + 29H_2O$.

Potassium --, 3K₂O, H₂O, B₂O₃, 14WO₃+ 22H₂O.

Sol. in H₂O. (Klein.)

Silver ---, Ag₆H₂B₂W₁₄O₄₄7H₂O.

Nearly insol. in cold H₂O. (Klein.)

Sodium —, $Na_4H_8B_2W_{14}O_{51}+29H_2O$. Sol. in H₂O (Klein.)

Sodium strontium boroquatuordecitungstate, 3½SrO, 1½Na₂O, B₂O₃, 14WO₃+29H₂O. Decomp. by H₂O. (Klein.)

Boroundevigintitungstic acid.

Barium boroundevigintitungstate, 4BaO, B₂O₃, 19WO₃+30H₂O.

Can be cryst. from H₂O. (Ebenhusen, Dissert. **1905**.)

Poroquattuoretvigintitungstic acid, B₂O₃, 24WO₃+66H₂O.

Deliquescent. Somewhat more sol. in H₂O than B₂O₃, 28WO₃+62H₂O. Also more stable. (Copaux, C. R. 1908, **147**, 975.)

Barium boroquattuorelvigintitungstate, 5BaO, B₂O₃, 24WO₃+54H₂O

 $100~\rm pts.~H_2O$ dissolve 50 pts. salt. (Copaux. A. ch. 1909, (8) **17.** 217.) $_{6}$ BaO, B₂O₃, 24WO₃+58H₂O. (Copaux, *l. c.*)

Cadmium ----, 5CdO, B_2O_3 , 24WO₃+

Extremely sol. in H₂O. (Copaux, l. c.)

Calcium —, 5CaO, B_2O_3 , 24WO₃+44H₂O. Very sol. in H_2O . (Copaux, l. c.)

Lithium —, $15\text{Li}_2(0)$, B_2O_3 , $24\text{WO}_2 + 38\text{H}_2O$. (Copaux, l. c.)

Magnesium —, 5 MgO, $B_2 \text{O}_3$, $24 \text{WO}_3 + 42 \text{H}_2 \text{O}$.

Very sol. in H₂O. (Copaux, l. c.)

Mercurous —, 9Hg₂O, B₂O₃, 24WO₃+ 25H₂O. (Copaux, l. c.)

Potassium ---, $5K_2O$, B_2O_3 , $24WO_3+$

(Copaux, l. c.)

Sodium —, $5\text{Na}_2\text{O}$, $B_2\text{O}_3$, $24\text{WO}_3+5\text{H}_2\text{O}$. As $N\text{H}_4$ salt. (Copaux, l.~c.)

Boroquinquetvigintitungstic acid.

Potassium boroquinquetvigintitungstate, 5K₂O, B₂O₃, 25WO₃+34H₂O. (Ebenhusen, Dissert. **1905.**)

Boroduodetrigintatungstic acid, B₂O₃, 28WO₃+62H₂O.

Decomp. in boiling aqueous solution. (Copaux, C. R. 1908, 147, 975.)

Potassium boroduodetrigintatungstate, 6K₂O, B₂O₃, 28WO₃+42H₂O.

Decomp. by boiling alkalies. (Copaux, A. ch. 1909 (8), 17, 217.)

Borovanadic acid.

Sol. in H₂O. Easily decomp. (Guyard, Bull. Soc. (2) **25.** 354.)

Metabromantimonic acid, HSbBrs +3H2O.

Very hydroscopic. Loses Br₂ in the air. Decomp, by H₂O with separation of antimonic acid. (Weinland, B. 1903, **36**. 256.)

Antmonium metabromantimonate, NH₄SbBr₅+H₂O

Loses Br₂ in the air. Decomp. by H_2O . (Weinland, l. c.)

Iron (ferric) metabromantimonate, Fe(SbBr₆)₈ - 14H₂().

Very hydroscopic. Decomp. by H_2O . (Weinland, l. c.)

Lithium metabromantimonate, LiSbBr₆+4H₂O.

Very hydroscopic. Loses Br_2 in the air. Decomp. by H_2O . (Weinland, $l.\ c.$)

Nickei metabromantimonate, $Ni(SbBr_6)_2 + 12H_2O$.

Hydroscopic. Decomp. by H_2O . (Weinland, l. c.)

Potassium metabromantimonate, KSbBr₆+ H₂O.

Loses Br_2 in the air. Decomp. by H_2O . (Weinland, l. c.)

Bromarsenious acid.

See Arsenyl bromide.

Bromauric acid, HAuBr₄+3H₂O.

(Lengfeld, Am. Ch. J. 1901, **26**. 329.) +5H₂O. Very sol. in H₂O. (Thomsen, J. pr. (2) **13**. 337.)

+6H₂O. Sol. in ether and CHCl₂ without decomp. (Lengfeld, Am. Ch. J. 1901, 26. 329.)

Ammonium bromaurate, NH4AuBr4.

Ppt. (Gutbier, Z. anorg. 1914, 85. 358.)

Barium bromaurate.

Not deliquescent. Sol. in H₂O. (v. Bonsdorff, Pogg. 17. 261.)

Cæsium bromaurate, CsAuBr₄.

Sl. sol. in H₂O or alcohol. Insol. in ether. (Wells and Wheeler, Sill. Am. J. 144. 157.)
Ppt. (Gutbier, Z. anorg. 1914, 85. 360.)

Cerium bromaurate, CeAuBr₆+8H₂O. Sol. in H₂O. (Jolin, Bull. Soc. (2) **21.** 533.)

Didymium bromaurate, DiAuBr₆+9H₂O. Very deliquescent. Sol. in H₂O. (Cleve.)

Lanthanum bromaurate, LaAuBr₆+9H₂O. Sol. in H₂O. (Cleve.)

Magnesium bromaurate.

Deliquescent in moist air. (v. Bonsdorff.)

Manganese bromaurate.

Deliquescent. (v. Bonsdorff.)

Potassium bromaurate, KAuBr4.

Sl. sol. in H₂O. More sol. in cold alcohol than in H₂O. (v. Bonsdorff.) +2H₂O. Sol. in 5.12 pts. H₂O at 15°, 1.56 pts. at 40°, and 0.48 pt. at 67°. Decomp. by ether. Sl. sol. in KBr+Aq. (Schottländer, A. 217. 314.)

+5H₂O. Efflorescent. (v. Bonsdorff.)

Rubidium bromaurate, RbAuBr₄.

As casium bromaurate. Ppt. (Gutbier, Z. anorg, 1914, **85**, 359.)

Samarium bromaurate, SmAuBr₆+10H₂O. Very deliquescent. (Cleve, Bull. Soc. (2) **43**. 165.)

Sodium bromaurate, NaAuBr4.

Slowly sol, in H₂O. (v. Bonsdorff.)

Zinc bromaurate, Zn(AuBr₄)₂.

Very deliquescent. (v. Bonsdorff.)

Bromauricyanhdric acid.

Not known in free state.

Barium bromauricyanide, Ba[Au(CN)₂Br₂]₂ + 10H₂O.

Very sol. in hot or cold H2O, also in alcohol. (Lindborn, Lund, Univ. Arsk. 12, No. 6.)

Cadmium bromauricyanide, Cd[Au(CN)₂Br₂]₂ +6H₂O.

Very sol. in hot or cold H₂O, but solution is unstable. (Lindbom.)

Calcium bromauricyanide, Ca[Au(CN),Bro], $+10H_2C$.

Extremely sol. in H₂O and alcohol. (Lindbom.)

Cobalt bromauricyanide, Co[Au(CN)₂Br₂]₂+ 9H₂O.

Moderately sol. in H₂O. Less sol. than other bromauricyanides. (Lindbom.)

Potassium bromauricyanide, KAu(CN)₂Br₂ +3H₂O.

Sol. in H₂O and alcohol.

Sodium bromauricyanide, NaAu(CN)2Br2+ 2H₂O.

Very sol. in H₂O or alcohol.

Strontium bromauricyanide, Sr[Au(CN)₂Br₂]₂ $+xH_2O$.

Very sol. in H₂O or alcohol.

Zinc bromauricyanide, Zn[Au(CN)₂Br₂]₂+ 8H₂O.

Easily sol. in cold or hot H₂O.

Bromhydric acid, HBr.

Very sol. in H_2O .

The most concentrated HBr+Aq has a sp. gr. of 1.78, and contains 82.02% HBr. (Champion and Pellat, C. R. 70. 620.) This, or a weak acid on heating leaves a residue, which

distils unchanged at 125-125.5° under 785 mm. pressure, and contains 48.17% HBr (Topsoë); at 126° under 758 mm. pressure, and contains 46.83% HBr (Bineau); and has sp. gr. = 1.486 at 20° (Bineau); sp. gr. = 1.48 at 20° (Champion and Pellat); sp. gr. = 1.49 at 20° (Topsoë).

According to Roscoe (A. 116. 214) an acid of constant composition, obtained by boiling a stronger or a weaker acid, if distilled under 752-762 mm. pressure, contains 47.38-47.86%HBr, and boils at 126° at 760 mm. pressure; but the composition is dependent on the pressure, as, for example, under 1952 mm. pressure, the residue boils at 153°, and contains 46.3% HBr. (Roscoe.)

By conducting dry air through HBr+Aq an acid is obtained containing 51.65% HBr if at 16°, and 49.35% HBr if at 100° (Roscoe).

1 vol. H₂O dissolves 600 ± vols. HBr at 10°. (Berthelot, C. R. **76.** 679.)

1 pt. H₂O at t^c and 760 mm, pressure dissolves pts. HBr.

t°	Pts. HBr	ţ°.	Pts. HBr	t °	Pts. HBr
	2.550 2.473 2.390 2.335	$ \begin{array}{c c} -5 \\ 0 \\ +10 \\ +25 \end{array} $	2.280 2.212 2.103 1.930	+50 +75 +100	1.715 1.505 1.300

(Roozeboom, R. t. c. 4, 107.)

Absorption by 1 pt. H₂O at t° and p pressure in mm.

$$t^{\circ} = -25^{\circ}$$
.

p Pts. HBr	b	Pts. HBr
760 2.550 300 2.263 140 2.120	100 1 0.5	2.056 1.755 1.10

 $t' = -20^{\circ}$

p	Pts. HBr	P	Pts. HBr
760 375 180	2.473 2.267 2.119	130 20	2.056 1.850

 $t^{\circ} = -15^{\circ}$

р	Pts. HBr	P	Pis. HBr
$760 \\ 470 \\ 250$	2.390 2.266 2.119	175 102	2.056 1.980

 $t^{\circ} = -11.3^{\circ}$.

р	Pts. HBr	р	Pts. HBr
760 570	$2.350 \\ 2.265$	310 216	$2.118 \\ 2.055$

р	Pts. HBr	р	Pts HB
760	2.280	430	2.117
730	2.264	298	2.055

 $t^{\circ} = 0^{\circ}$.

p	Pts. HBr	p	Pis. HBr
760	2.212	380	$\frac{2.054}{1.085}$
540	2.116	5	

(Roozeboom, R. t. c. 4. 107.)

Sp. gr. of HBr+Aq.

Sp. gr.	℃ HBr	Temp.	Sp. gr.	% HBr	Temp.
1.055	7.67	14°	1.335	36.67	13°
1.075	10.19	14°	1.349	37.86	13°
1.089	11.94	14°	1.368	39.13	13°
1.097	12.96	14°	1.419	43.12	13°
1.118	15.37	14°	1.431	43.99	13°
1.131	16.92	14°	1.438	44.62	13°
1.164	20.65	14°	1.451	45.45	14°
1.200	24.35	13°	1.460	46 09	13°
1.232	27.62	13°	1.485	47.87	14°
1.253	29.68	13°	1.490	48.17	14°
1.302	33.84	13°			

(Topsoë, B. 3. 404.)

Sp. gr. of HBr+Aq at 14°.

'; HBr	Sp. gr.	' 5 HBr	Sp. gr.	% HBr	Sp. gr.
1	1 007	18	1.140	35	1.314
2	1 014	19	1.149	36	1.326
3	1.021	20	1.158	37	1.338
4	1.028	21	1.167	38	1.351
5	1.035	22	1.176	39	1.363
6	1.043	23	1.186	40	1.376
7	1.050	24	1.196	41	1.389
8	1.058	25	1.206	42	1.403
9	1.065	26	1.215	43	1.417
10	1.073	27	1.225	44	1.431
11	1.081	28	1.235	45	1.445
12	1.089	29	1.246	46	1.459
13	1.097	30	1.257	47	1.473
14	1.106	31	1.268	48	1 487
15	1.114	32	1.279	49	1.502
16	1.122	33	1.290		
17	1.131	34	1.302		

(Topsoë, calculated by Gerlach, Z. anal. 27.

Sp. gr. of HBr+Aq at 15°.

Se HBr	Sp. gr.	% НВг	Sp. gr.	% HBr	Sp. gr.
$\begin{array}{c} 5 \\ 10 \\ 15 \\ 20 \\ \end{array}$	1.038 1.077 1.177 1.159	25 30 35 40	1.204 1.252 1.305 1.365	45 50 	1.435 1.515

Only a "moderate degree of accuracy" is claimed for this table. (Wright, C. N. 23. 242.)

Sp. gr. of HBr+Aq at 15°.

#Br	Sp. gr.	HBr	Sp. gr.	HBr	Sp. gr.
1 2 3 4 5 6 7 8 9 10	1.0082 1.0155 1.0230 1.0305 1.038 1.046 1.053 1.061 1.069	18 19 20 21 22 23 24 25 26 27	1.145 1.154 1.163 1.172 1.181 1.190 1.200 1.209 1.219 1.229	35 36 37* 38 39 40 41 42 43 44	1.314 1.326 1.338 1.350 1.362 1.375 1.388 1.401 1.415
11 12 13 14 15 16 17	1.085 1.093 1.102 1.110 1.119 1.127 1:136	28 29 30 31 32 33 34	1.239 1.249 1.260 1.270 1.281 1.292 1.303	45 46 47 48 49 50	1.444 1.459 1.474 1.490 1.496 1.513

(Biel, C. C. 1882, 148.)

Absorbed by alcohol with formation of C₂H₆Br.

The composition of the hydrates formed by HBr at different dilutions is calculated from determinations of the lowering of the fr. pt. produced by HBr and of the conductivity and sp. gr. of HBr+Aq. (Jones, Am. Ch. J. 1905, **34**. 326.)

+H₂O. (Roozeboom, R. t. c. 5. 363.)

(Berthelot, A. ch. (5) 14. 369.) +2H₂O. (Pickering Chem. Soc.1894, **64** (2) 232. Mpt. —11.2°. (Pickering, *l. c.*)

+3H₂O. Mpt. -48.0°. (Pickering.) +4H₂O. Mpt. -55.8°. (Pickering.)

+5H₂O. (Pickering.)

Bromhydric cyanhydric acid, 3HBr. 2HCN.

Decomp. by H₂O and alcohol.

Insol. in ether. (Gautier, A. ch. (4) 17. 141.)

Bromic acid, HBrO₃.

Known only in aqueous solution.

Solution evaporated on water bath decomposes when it contains 4.26% HBrO₃. In vacuo, an acid containing 50.59% HBrO₃ corresponding to formula HBrO₃+7H₂O can be obtained.

Not decomp. by dil. HNO₃, or H₂SO₄+Aq. Conc. H₂SO₄ decomposes.

Alcohol and ether are quickly oxidized by HBrO₃.

Bromates.

Most of the bromates are very sol. in H₂O, a few are sl. sol., but none are insol., the least sol. being AgBrO₃ and Hg₂(BrO₃)₂.

Aluminum bromate, Al(BrO₃)₃.

Deliquescent. (Rammelsberg, Pogg. 55.

+9H₂O. Mpt. 62,3°. Less hygroscopic

than Al(ClO₃)₂. (Dobrosserdow, C. C. 1907. I, 1723.)

Ammonium bromate, NH₄BrO₈.

Decomposes spontaneously; sol. in H₂O. (Rammelsberg, Pogg. 52. 85.)

Barium bromate, Ba(BrO₃)₂.

Solubility of Ba(BrO₃)₂ in H₂O. 100 g. sat. Ba(BrO₃)₂+Aq at t° contain g. anhydrous Ba(BrO₈)₂.

t°	grams Ba(BrOs)2	t°	Grams Ba(BrOz)2
Eutectic point -0.034°±0.002° 0° -10° 20° 25° 30° 40°	0.280	50°	1.72
	0.286	60°	2.271
	0.439	70°	2.922
	0.652	80°	3.521
	0.788	90°	4.26
	0.95	98.7°	5.256
	1.31	*99.65°	5.39

^{*99.65°} is bpt. at 740 mm. = 100.39° at 760 mm.

(Anschütz, Z. phys. Ch. 1906, 56. 240.)

100 g. sat. $Ba(BrO_3)_2 + Aq$ contain 0.793 g. $Ba(BrO_3)_2$ at 25°. Sp. gr. of the solution at 25°/4°=1.0038. (Harkins J. Am. Chem. Soc. 1911, **33.** 1815.)

Solubility of Ba(BrO₃)₂ in salts+Aq at 25°. C = concentration of salt in salt + Aq in milliequivalents per l. $d_1 = \text{Sp. gr. at } 25^{\circ}/4^{\circ} \text{ of salt} + \text{Aq.}$

S=solubility of Ba(BrO₃)₂ in salt+Aq expressed in milliequivalents per l. $d_2 = sp.$ gr. at $25^{\circ}/4^{\circ}$ of $Ba(BrO_3)_2 + salt + Aq$.

ďι d_2 None 40.18 1.0038 KNO_3 25.0180.998543.861 0059 50.0321.0030 47.03 1.0081 99.970 1.003352.131 - 0120Ba(NO2)2 25.01836.771.00031.005950.039 34.74 1.00251.008399.97 1.0073 32.631.0132199.951.0183 30.951.0233KBrO. 24.9881.0001 26.531.004649.971 1.0031 17.371.006299.851.00938.761.0109 $Mg(NO_3)_2 | 100.0$ $52.57 \mid 1.0114$

(Harkins, J. Am. Chem. Soc. 1911, 33, 1815.)

+H₂O. Sol. in 130 pts. cold, and 24 pts. boiling H₂O. (Rammelsberg, Pogg. 52. 81.) Decomp. by H₂SO₄, or HCl+Aq. Insol. in acetone. (Eidmann, C. C. **1899**, II, 1014; Naumann, B. 1904, **37**, 4329.) Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Bismuth bromate.

Known only in solution, which decomp. on evaporation. (Rammelsberg, Pogg. 55. 76.)

Cadmium bromate, Cd(BrO₃)₂+H₂(). Sol. in 0.8 pt. cold H₂O. (Rammelsberg, Pogg. 55. 74.)

+2H₂O. (Topsoë, J. B. 1872, 164.)

Cadmium bromate ammonia, Cd(BrO₃)₂, 3NH₃.

(Rammelsberg, Pogg. Decomp. by H₂O. **55.** 74.) (Ephraim, B. $Cd(BrO_3)_2$, $4NH_3$. Ppt.

1915, **48.** 51.)

Calcium bromate, $Ca(Br(O_3)_2 + H_2(O_3)_2 + H_2(O_3)_2$

Sol, in 1.1 pts. cold H₂O. (Rammelsberg, Pogg. 52. 98.)

Cerous bromate, Ce(BrO₃)₃+9H₂O.

Easily sol, in H₂O. (Rammelsberg, Pogg.

Mpt. 49°; very sol. in H2O with decomp. (James, J. Am. Chem. Soc. 1909, 31, 914.)

Cobaltous bromate, $Co(BrO_3)_2 + 6H_2O$.

Sol. in 2.2 pts. cold H₂O; sol. in NH₄OH +Aq. (Rammelsberg, Pogg. 55, 71.)

Cupric bromate, basic, 6Cu(), Br₂(): +10H₂O. Ppt. (Rammelsberg, Pogg. 55, 78.)

Cupric bromate, $Cu(Br(O_3)_2 + 6H_2O)$.

Easily sol, in H₂O. (Rammelsberg, Pogg. **52.** 92.)

Cupric bromate ammonia, Cu(Br()₂)₂, 4NH₃. Completely sol. in a little H₂O, but decomp. by dilution.

Insol. in alcohol. (Rammelsberg, Pogg. 52.

Didymium bromate, Di(Br()₃)₃+9H₂() Sol. in H₂O. (Marignac.)

Dysprosium bromate, $Dy(Br(O_3)_3 + 9H_2(O_3)_3$ Mpt. 78°. Easily sol. in H2O. Difficultly

sol. in alcohol. (Jantsch, B. 1911, 44, 1275.) Erbium bromate, $Er(Br(O_3)_3 + 9H_2O_1)$

Very sol. in alcohol and H₂O.

Glucinum bromate.

Deliquescent.

Iron (ferrous) bromate, Fe(Br()₃)₂. Sol. in H₂O, but solution decomp. very

easily. Iron (ferric) bromate, 5Fe₂O₃, Br₂O₅+30H₂O.

Partially sol. in H₂O, with separation of a more basic salt. Sol. in HBO3+Aq. (Rammelsberg, Pogg. 55. 68.)

Lanthanum bromate, La(BrO₃)₃+9H₂O. Sol. in 31/2 pts. H2O at 15°. (Marignac, Ann. Min. (5) 15. 274.)

Mpt. 37.5° in its water of crystallization. 416 pts. are sol. in 100 pts. H₂() at 25°. (James, J. Am. Chem. Soc. 1909, 31, 913.)

Lead bromate, basic, 3PbO, Pb(BrO₈)₂+ 2H2O.

Ppt. (Strömholm, Z. anorg. 1904, 38. 441.)

Lead bromate, Pb(BrO3)2.

Sl. sol. in H₂O. 13.37 mlO⁻¹g. are contained in 1 liter of sat. solution at 20°. (Bottger, Z. phys. Ch. 1903, 46, 603.)

 $+H_2()$. Sol. in 75 pts. cold $H_2()$. (Rummelsberg, Pogg. 52.496.)

Lithium bromate, LiBrOs.

Very deliquescent, and sol, in H₂O. (Rammelsberg, Pogg. A. 55. 63.)

Not deliquescent. (Politilitzin, B. 23. 545 R.)

Sp. gr. of solution sat. at $18^{\circ} = 1.833$, and contains 60.4% LiBrO₃. (Mylius, B. 1897, 30. 1718.)

+ H.O. Not deliquescent. (Potilitzin.)

Magnesium bromate, $Mg(BrO_3)_2 + 6H_2()$.

Efflorescent. Sol. in 1.4 pts. cold H₂O at 15. Melts in its water of crystallization when heated. (Rammelsberg, Pogg. 52, 89.)

Mercurous bromate, basic, 2Hg₂O, Br₂O₅.

Insol. in warm H_2O . Sol. in $HNO_3 + Aq$. (Rammelsberg, Pogg. 55, 79.)

Mercurous bromate, Hg₂(BrO₃)₂.

Decomp. by H₂O into basic salt. Difficultly sol. in HNO₃+Aq; easily sol. in HCl+Aq. (Rammelsberg.)

Mercuric bromate, basic, 2HgO, $Br_2O_5 + H_2O$. Slowly decomp, by cold, quickly by hot H₂O into oxide and an acid salt.

Easily sol. in dil. acids. (Topsoë, W. A. B. 66, 2, 2,)

Mercuric bromate, HgBr()₃+2H₂().

Sol. in 650 pts. cold, and 64 pts. boiling H₂O. Sl. sol. in HNO₃+Aq. Easily sol. in HCl+Aq. (Rammelsberg, Pogg. **55.** 79.)

Mercuric bromate ammonia.

Sol. with decomp. in HCl+Aq. (Storer's

Neodymium bromate, Nd(BrO₃)₃+9H₂O.

Mpt. 66.7° . 146 pts. are sol. in 100 pts. H_2O at 25°. (James, J. Am. Chem. Soc. 1909, **31.** 915.)

Nickel bromate, $Ni(Br()_3)_2 + 6H_2O$.

Sol. in 3.58 pts. cold H₂O. (Rammelsberg, Pogg. **55.** 69.)

Nickel bromate ammonia, Ni(BrO₃)₂, 2NH₃.

Sol. in H_2O , with decomposition of the major portion. Insol. in alcohol. (Rammelsberg, l. c.)

Ni(BrO₃)₂, 6NH₃. Ppt. (Ephraim, B. ¹⁹¹⁵, **48. 50**.)

Potassium bromate, KBrO₃.

100 pts. H₂O dissolve 6.58 pts. KBrO₃ at 15° (Rammelsberg). 100 pts. H₂O dissolve 5.83 pts. KBrO₃ at 17.1° (Pohl. W. A. B. 6.

595); at 0°, 3.11 pts.; at 20°, 6.92 pts.; at 40°, 13.24 pts.; at 60°, 22.76 pts.; at 80°, 33.90 pts.;

at 100° 49.75 pts. KBrO₂. Sat. solution boils at 104°. (Kremers, Pogg. 97. 5.)

1 l. H₂O at 25° dissolves 0.4715 moles KBrO₂. (Geffcken, Z. phys. Ch. 1904, 49.

296.) 11. F.O dissolves 0.478 mol. KBO, at 25°. (Rothmund, Z. phys. Ch. 1909, 69. 539.)

Sp. gr. of KBrOa Aq at 19.5°.

%KBrO3	1	2	3	4	5
Sp. gr	1 009	1.016	1.024	1.031	1.039
%KBiO _z	6	7	8	9	10
Sp. gr	1.046	1.054	1.062	1.070	1.079

(Gerlach, Z anal. 8. 290.)

Solubility of KBrO₃ in salts+Aq at 25°.

	Moles of KBrOs sol. in 1 liter of				
Salt	.5- N	N	2N	3-N	4-N
	solution	solution	solution	solution	solution
NaN()3	$0.5745 \\ 0.5220$	0.6497	0.7680	0.9026	1.4031
NaCl		0.5616	0.6042	0.6244	0.640

(Geffcken, Z. phys. Ch. 1904, 49. 296.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Sl. sol. in alcohol. (Rammelsberg.) Insol. in absolute alcohol.

Solubility in organic compds. +Aq at 25°.

130144	mity in organic com	pus, inque 20.
	Solvent	Mol. KBrO2 sol. in 1 litre
	Water	0.478
0.5 - N	Methyl alcohol	0.444
	Ethyl alcohol	0.421
66	Propyl alcohol	0.409
46	Tert. amyl alcohol	0.383
4.	Acetone	0.425
44	Ether	0.395
4.6	Formaldehyde	0.397
"	Glycol	0.448
+ 6	Glycerine	0.451
4.6	Mannitol	0.451
"	Glucose	0.463
	Sucrose	0.431
"	Urea	0.477
4.6	Dimethyl pyrone	0.478
"	Ammonia	0.445
"	Diethylamine	0.384
"	Pyridine	0.415
44	Piperidine	0.396
"	Urethane	0.433
"	Formamide	0.473
"	Acetamide	0.445
44	Glycocoll	0.501
"	Acetic acid	0.456
"	Phenol	0.426
"	Methylal	0.405
"	Methyl acetate	0.420
	1.204.3.2.0000000	0.220

(Rothmund, Z. phys. Ch. 1909, 69. 539.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329.)
Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.)
Insol in methyl acetate (Naumann F

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Praseodynium bromate, $Pr(BrO_3)_3 + 9H_2O$.

Mpt. 56.5° . 190 pts. are sol. in 100 pts. H_2O at 25° . (James, J. Am. Chem. Soc. 1909, **31**. 914.)

Samarium bromate, $Sm(BrO_3)_3 + 9H_2O$.

Mpt. 75°. 114 pts. are sol. in 100 pts. H₂O at 25°. Very si. sol. in alcohol. (James, J. Am. Chem. Soc. 1909, **31**. 915.)

Scandium bromate.

(Crookes, Roy. Soc. Proc. 1908, 80, A, 518.)

Silver bromate, AgBrO₃.

1 pt. $\rm H_2O$ dissolves 0.00810 pt. AgBrO₃ at 24.5°. (Noyes, Z. phys. Ch. **6.** 246.) Sol. in 595.3 pts. $\rm H_2O$ at 25°.

Sol. in 320.4 pts. HNO₃+Aq (sp. gr. 1.21)

at 25°.
Sol. in 2.2 pts. NH₄OH+Aq (sp. gr. 0.96) at 25°. (Longi, Gazz, ch. it. 13. 87.)

1 l. H₂O dissolves 1.71 g. AgBrO₃ at 27°. (Whitby, Z. anorg. 1910, **67**, 108.)

Sl. sol. in H₂O. 1.59 x 10⁻⁴ g, are contained in 1 liter of sat. solution at 20°.

(Böttger, Z. phys. Ch. 1903, **46**, 603.) Insol. in HNO₃. (Löwig.) Easily sol. in NH₄OH+Aq.

Silver bromate ammonia, AgBrO3, 2NH3.

Decomp. in air or by H₂(). (Rammelsberg, Pogg. **52**. 94.)

Sodium bromate, NaBr()₃.

Sol. in 2.7 pts. $\rm H_2O$ at 15°. (Rammelsberg.) 100 pts. $\rm H_2O$ dissolve at— 0° 20° 40° 60° 80° 100° 27.54 34.48 50.25 62.5 75.75 90.9 pts. NaBrO₃.

(Kremers, Pogg. 94. 271.)

Easily forms supersaturated solutions. Sat. solution boils at 109°. (Kremers.) NaBrO₃+Aq containing 10.10% NaBrO₃

has sp.gr. 20°/20° = 1.0818. NaBrO₃+Aq containing 11.09% NaBrO₃

has sp. gr. 20°/20° = 1.0900. (Le Blanc and Rohland, Z. phys. Ch. 1896 19. 278.)

Sp. gr. of NaBrO₃+Aq at 19.5°.

%NaBrO ₃ .	5	10 1.083	15
Sp. gr	1.041		1.129
%NaBrO ₃ .	20	25	30
Sp. gr	1.178	1.231	1.289

(Kremers, Pogg. 97. 5, calculated by Gerlach, Z. anal. 8. 290.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Sodium bromate bromide, 3NaBr()₃, 2NaBr +3H₂O.

Decomp. by H₂O or alcohol. (Fritzsche.)

Strontium bromate, $Sr(BrO_8)_2 + H_2O$.

Sol, in 3 pts. H₂O (Rammelsberg, Pogg. **52**. 84); less sol, in H₂O than SrBr₂+6H₂O. (Löwig.)

Thallous bromate, TlBrO₃.

Sl. sol. in hot H₂O; easily sol. in HNO₃+Aq. (Oettinger.)

Easily sol. in H₂O and dil. acids. (Ditte, A. ch. (6) 21. 145.)

Terbium bromate, $Tb(BrO_3)_3 + 9H_2O$.

Not deliquescent. (Potratz, C. N. 1905, 92, 3.)

Thallous bromate, TlBrO₃.

1 l. $\rm H_2O$ at 39.75° dissolves 2.216 x $\rm 10^{\rm h2}$ g. mol. (Noves and Abbott, Z. phys. Ch. 1895, **16**, 130.)

Sl. sol. in H₂O. 3.46 x 10⁻¹ gram are contained in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46**, 603.)

Thallic bromate, Tl(BrO₃)₃+3H₂O.

Very hydroscopic. Fasily decomp. by H₂O. (Gewecke, Z. anorg. 1912, **75**. 275.)

Thulium bromate, $Tin_2(BrO_3)_6 + 18H_2O$.

Pptd. from sat. aqueous solution by 95% alcohol.

NH₄OH is the best precipitant. (James, J. Am. Chem. Soc. 1911, **33**, 1342.)

Tin (stannous) bromate (?).

Insol. in H_2O ; sol. in $HCl+A_0$.

Uranyl bromate, 4UO₃, 3Br₂O₅+16H₂O_.

Sol, in H₂O. (Rammelsberg.)

Yttrium bromate, $Y(Br(O_3)_3 + 9H_2(O_3)_3 + 9H_2(O_3)_3$

More easily sol. in H_2O than $Y(IO_3)_3$. Sl. sol. in alcohol. Insol. in ether. (Cleve.)

Mpt. 74° . 168 pts. are sol. in 100 pts. H_2O at 25°.

Sl. sol. in alcohol. (James, J. Am. Chem. Soc. 1909, **31**, 916.)

Zinc bromate, $Zn(Br()_3)_2 + 6H_2()$.

Sol. in 1 pt. cold H_2O . (Rammelsberg, Pogg. **52.** 90.)

Zinc bromate ammonia, Zn(BrO₃)₂, 2NH₃+3H₂O.

Decomp. by H_2O and alcohol. Sol. in NH_4OH+Aq . (Rammelsberg, Pogg. **52**. 90.) $Zn(BrO_3)_2$, $4NH_3$. Ppt. (Ephraim, B. 1915, **48**. 51.)

Perbromic acid.

See Perbromic acid.

14 44

Bromides.

Most bromides are sol. in H₂O, many in

alcohol, and some in ether.

AgBr and Hg2Br2 are insol. in H2O or acids; PbBr2 and TlBr are sl. sol. therein. Cu2Br2 is insol, in H2O, sol, in scids.

See under each element.

Bromine, Br₂.

1 pt. Br dissolves at 15° in 33 pts. H₂O.

(Löwig, Pogg. 14. 485.)
1 pt. Br dissolves at 15° in 31 pts. H₂O. (Dancer, Chem. Soc. 15. 477.)

Solubility of Br in 100 pts. H₂() at t°.

l°	Pts. Br.	t°	Pts. Br	٦°	Pts. Br
5	3.600	15	3.226	25	3.167
10	3.327	20	3.208	30	3.126

(Dancer, l. c.)

A sat. aqueous solution of Br contains 4.05% Br at 0°; 3.80% Br at 3°; 3.33% Br at 10°. (Roozeboom, R. t. c. 3. 29, 59, 73, 84.)

1 1. H₂O dissolves 34 g. Br at 25°. kin, Z. phys. Ch. 1896, **20**. 25.) (Jakow-

1 pt. is sol. in 30 pts. H_2O . (Dietze, Chem. Soc. 1899, **76** (2) 150.)

100 pts. H2O dissolve at:

10.34° 19.96° 30.17° 40.03° 49.85° 4.167 3.740 3.578 3.437 3.446 3.522 pts. bromine.

Liquid bromine as such is insol. in H_2O ; only the vapor dissolves. (Winkler, Ch. Z.

1899, **23**. 688.) 11. H₂O dissolves 33.95 g. Br₂ at 25°. (Mc-Lauchlan, Z. phys. Ch. 1903, 44. 617.)

Solubility of bromine vapor in H₂O at t°. **a** = coefficient of absorption.

			puon.
t°	a	t°	α
0	60.5	42	8.6
2	54.1	44	7.9
4	48.3	46	7.4
4 6	43.3	48	6.9
$\tilde{\mathbf{s}}$	38.9	50	6.5
10	35.1	52	6.1
12	31.5		5.8
		54	
14	28.4	56	5.4
16	25.7	58	5.1
18	23.4	60	4.9
20	21.3	62	4.6
22	19.4	64	4.4
24	17.7	66	4.2
26	16.3	68	4.0
28	15.0	70	3.8
30	13.8	72	3.6
32	12.7	74	3.4
34	11.7	76	3.3
36	10.9	78	3.1
38	10.1	80	3.0
40	9.4	II	١

(Winkler, Ch. z. 1899, 23, 688.)

Solubility of bromine vapor. (Mean of many determinations)

, Temp.	Pressure	Absorption coefficient
0.4	56-13mm.	60.53
9.94°	89-16	85 .22
20.46	138-9	20.87
30, : 8	179-12	13.65
40.31	229-26	9.22
50.25	274 - 53	6.50
60.04	314 -46	4.84
69.98	154 -54	3.82
80 22	396 74	2.94

Solubility of liquid bromine. (The mean of many determinations)

(1110	mea	11 01 111	any ut	20Grunn	lacioni	"
Temp.	0.°	10.347	19.96°	30.17°	40.03	49.85°
Pts. H ₂ O that dissolve 1 pt. Br ₂	24.0	26.74	27.94	29.10	29.02	28.38

Much less Br2 is sol. in ice cold H2Q in the presence of bromine hydrate.

Solubility in presence of bromine hydrate. (The mean of many determinations)

Temp.	00	5.12°
Pts. H ₂ O that dissolve 1 pt. Br ₂	42.39	26.26

(Winkler, Ch. Z. 1899, 23, 688–689.)

Solubility of Br₂ in H₂O at $25^{\circ} = 0.21$ mols. in 1 l. (Bray, J. Am. Chem. Soc. 1910, 32. 398.)

Sp. gr. of Br₂+Aq containing pts. Br in 1000 pts. solution.

Pts. Br.	Sp. gr.	Pts. Br.	Sp. gr.
10.72	1.00901 1.00931 1.00995 1.01223	18.74-19.06	1.01491
10.68		19.52-20.09	1.01585
12.05		20.89-21.55	1.01807
12.21		31.02-31.69	1.02367

(Slessor, N. Edin. Phil. J. 7. 287.)

Sp. gr. of Br_2+Aq at 32.5° .

G Br2 by weight	Sp. gr.
0.7214	0.999814
1.1172	1.002520
1.6448	1.006100
1.9956	1.008870
2.5960	1.013200

(Joseph, Chem. Soc. 1915, 107. 3.)

Sol. in conc. HCl, HBr, conc. solutions of bromides, and in liquid SO2. (Sestini, Zeit. Chem. 1868. 718.)

Much more sol. in HCl+Aq than in H₂O. 100 ccm. HCl+Aq of 1.153 sp. gr. dissolve 36.4 g. Br at 12°

More sol. in SrCl₂, and BaCl₂+Aq than in H₂O. (Berthelot, C. R. 100, 761.)

Bromine is not more sol. in KBr+Aq than in H₂O (?). (Balard.)

KBr+Aq containing 1 pt. KBr to 6 pts. H₂O takes up as much Br as it already contains; when this solution is heated the dissolved Br is separated. 1 pt. KBr+1 pt, H₂O takes up twice as much Br as it already contains, much heat being evolved. This solution loses Br on exposure to the air or when heated. (Löwig.)

Solubility of Br₂ in KBr+Aq.

g. Mols. KBr per l.	g. at. Br dissolved per l at 18.5°	g. at. Br dissolved per l. at 26.5°.
0.00	0.4448	0.4282
0.01	0.4634	0.4490
0.42	0.4823	0.4671
ŏ. 708	0.5049	0.4925
0.04	0.5243	0.5101
0.05	0.5431	0.5301
0.06	0.5668	0.5530
0.00	0.5895	0.5636
0.08	0.6059	0.5920
0.09	0.6301	0.5981
	0.6533	0.6488
0.1		0.8591
0.2	0.8718	
0.3	1.0549	1 0787
0.4	1.3124	1.2704
0.5	1.5436	1.4731
0.6	1.7712	1.6717
0.7	2.0006	1.9197
0.8	2.2354	2.1029
0.9	2.4851	2.3349

The above figures indicate that below a concentration of 0.1 g. mol. KBr per l. just enough Br is dissolved to form KBr₃, while above that concentration somewhat larger amounts of Br are dissolved, which is greater at the lower temp.

(Worley, Chem. Soc. 1905, 87. 1109.)

Solubility of Br₂ in NaBr+Aq at 25°.

	-	•
g. NaBr per l.	gatoms Br2 per l.	Sp. gr.
92.6	2.479	1.213
160.5	4.345	1.372
.205.8	6.195	1.515
255.8	8.575	1.678
319.7	13.65	1.997
.359.0	16.04	2.137
	19.23	2.327
408.3	20.85	2.420

(Bell, J. Am. Chem. Soc. 1912, 34. 14.)

Solubility in salts+Aq.
Solubility in 1 liter K₂SO₄+Aq at 25°.

K2SO4+Aq	g. Bromine
1-N 1/2-N 1/4-N 1/4-N 1/8-N 1/16-N	25.14 29.44 31.46 32.70 33.10

(Jakowkin, Z. phys. Ch. 1896, 20, 26.)

Solubility in 1 liter Na₂SO₄+Aq at 25°.

Na ₂ SO ₄ +Aq	g. Bromine
$1-N$ $R^{3}/_{2}-N$ $^{1}/_{4}-N$ $^{1}/_{8}-N$ $^{1}/_{16}-N$	25.07 20.20 31.33 32.94 33.26

(Jakowkin, l. c.)

Solubility in 1 liter NaNO₃+Aq at 25°.

NaNO3+Aq	g, Bronnne
$1-N$ $^{1}/_{2}-N$ $^{1}/_{4}-N$ $^{1}/_{8}-N$ $^{1}/_{16}-N$	28.80 31.35 32.62 33.33 33.74

(Jakowkin, l. c.)

Solubility in salts+Aq at 25°.

g. Br ₂ sol. in 1 liter
23.90 24.80 77.7 28.00 28.95 55.15 55.90 57.40 82.2

(McLauchlan, Z. phys. Ch. 1903, 44, 617.)

Solubility in HgBr₂+Aq at 25°.

10 cent of the polition	COMBULIT.
Millimols. Br ₂	Millimols, Hg
2.125	0.
2.204	0.0560
2.216	0.0793
2.226	0.1284
2.231	0.2120

(Herz and Paul, Z. anorg. 1914, 85. 215.)

1 l. N.NH₄C₂H₃O₂+Aq dissolves 340.5 g. Br₂ at 25°. (McLauchlan, Z. phys. Ch. 1903, 44. 617.)

Miscible in all proportions with liquid NO₂. (Frankland, Chem. Soc. 1901, **79**. 1361.)

More sol. in alcohol than in H₂O; miscible with ether, CS₂, CHCl₃. (Sestini, Zeit. Chem. **1868.** 718.)

Somewhat soluble in glycerine. (Pelouze.) Sol. in benzene (Mansfield); insol. in benzene (Moride, A. ch. (3) 39. 452). Sol. in warm chloral, bromal, and iodal. (Löwig, Pogg. 14. 485.) Sol. in SCl₂ (Solly), and SBr₂. Sol. in conc. HC₂H₃O₂+Aq. (Balard.) Sol. in aqueous solution of potassium, sodium, or calcium acetates. (Cahours.)

Solubility in	$\mathbf{CS_2}$.	
100 g. of the	sat. solution	n contain at:
95°	110.5°	116°
45.4	39.0	36.9 g. Br ₂ .
		1896, 11. 274.)
Cryst. from	CS ₂ at -9	0° in fine needles.
(Arctowski, Z.	anorg, 1895	. 10. 25.)

(Joseph, Chem. Soc. 1915, **107**. 3.)
Sp. gr. of Br. + nitrobenzone at 32.5°

p, gr. or pr ₂ +muron	enzene at 52.5,
C Br ₂ by weight	Sp. gr.
1.5643	1.20225
3.2323	1.21449
4 6462	1.22518
6 1826	1.25603
(Joseph, Chem. Soc	·. 1915, 107 : 3.)

Very sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.)

Sol. in acctone. (Eidmann, C. C. 1899, II, 1014; Naumann, B. 1904, 37, 4328.)

Partition of Br₂ between water and other solvents.

W=millimols Bromine in 10 ccm. of the aqueous layer.

G=millimols Bromine in 10 ccm. of the other layer.

other layer.			
Other solvent	G	W	G/W
CC14	1.949 7.008	0.0853 0.3085	$\begin{array}{c} -22.73 \\ 22.71 \end{array}$
	12.171	0.5300	$\frac{22.71}{23.13}$
	39.880	1.3132	30.32
	54.574	1.5560	35.01
75% by vol. CCl ₄	3.567	0.0985	37.06
$+25\%$ by vol. CS_2	7.304	0.1910	38.15
	10.833	0.2900	37.36
	13.922	0.3720	37.42
	17.230	0.4580	37.62
	25.637	0.6580	38.96
	40.625	0.9940	40.88
	54.035	1.2080	44.73
50% by vol. CCl ₄ +	3.592	0.0784	45.82
50% by vol. CS_2	6.820	0.1487	46.85
	10.148	0.2206	46.01
	13.866	0.3065	45.24
	16.616	0.3688	45.05
	42.975	0.8086	53.15
	55.965	0.9960	56.19
25% by vol. CCl4	5.753	0.0884	65.05
+75% by vol. CS ₂		0.1682	64.82
	26.724	0.4970	65.65
i	41.314	0.6331	65.26
	55.526	0.8520	65.17

Partition	of	Br_{2_t}	etc.—Continued

Other solvent	G	w	G/W
CS ₂	10.600 14.696 17.999 26.345 40.625	0.1015 0.1387 0.1910 0.2352 0.3467 0.5194 0.7160	76.35 76.44 76.98 76.54 75.99 78.21 79.66

(Herz, Z. El ktrochem, 1910, 16. 871.)

Partition coefficient for bromine between CS₂ and H₂O at 25°C.

A = concentration of the water layer. C = concentration of the CS_2 layer.

A	C	N = C/A
7.545	691.9	91.71
4.109	338.6	82.41
2.660	217.4	81.72
2.544	207.7	81.66
1.740	140.38	80.67
1.2878	103.7	80.51
0.8073	64.44	79.83
0.5046	39.64	78.38

Partition coefficient for bromine between CHBr₃ and H₂O at 25°C.

A = concentration of the water layer. C = concentration of the CHBr₃ layer.

A	C	N = C/A
5.424	373.6	68.88
3.838	264.7	68.80
2 . 368	161.5	68.19
1.348	90.17	66.90
0.766	50.49	65.84
0.366	23.62	64.85

Partition coefficient for bromine between CCl₄ and H₂O at 25°C.

A = concentration of the water layer. C = concentration of the CCl₄ layer.

A	C	N = C/A
14.42	545.2	37.82
10.80	372.2	34.44
7.901	252.8	32.01
7.163	225.8	31.52
6.803	218.5	32.12
5.651	172.6	30.54
3.216	94.84	29.48
2.054	58.36	28.41
1.266	35.92	28.37
0.7711	21.53	27.92
0.5761	15.72	27.26
0.4476	12 09	27.02
0.3803	10.27	27.00
0.2478	6.691	27.00

(Jakowkin, Z. phys. Ch. 1895, 18. 588.)

Partition of bromine between CCl, and salts+Aq.

A = concentration of Br in H₂O layer. C = concentration of Br in CCl₄ layer.

Partition of Br₂ between CCl₄ and NaNO₃+
Aq at 25°.

NaNO ₃ +Aq	A	C
1-N	7.905	316.7
$^{1}/_{2}$ -N	8.763	319.5
1/4-N	#9 . 033	315.7
1/s-N	9.200	316.7
1/16-N	9.399	319.3

(Jakowkin, Z. phys. Ch. 1896, 20, 25.)

Partition of Br₂ between CCl₄ and K₂SO₄+ Au at 25°.

K ₂ SO ₄ +Aq	A	(,
1-N $1/2-N$ $1/4-N$ $1/8-N$	5 982 6.843 7 354 7.585	255.4 253.4 252.8 250.3
$^{1}/_{16}$ -N	7.498	242.3

(Jakowkin, l, c.)

Partition of Br₂ between CCl₄ and Na₂SO₄+ Aq at 25°.

114 20 20 .					
Na ₂ SO ₄ +Aq	Ā	C			
1-N 1/2-N 1/4-N 1/4-N 1/8-N 1/16-N	5.934 6.838 7.402 7.609 7.713	254.6 253.4 254.4 252.8 251.2			

(Jakowkin, l. c.)

Crystallizes at 4° with 10H₂O,

Bromine chloride, BrCl.

Sol. in H₂O, CS₂, ether, etc.

Bromine fluoride, BrF₃.

Fumes in the air. Decomp. by H_2O . (Lebeau, C. R. 1905, **141**. 1019.)

Bromine oxides.

No oxides of bromine are known in the free state. See hypobronious, bromic, and per-bromic acids.

Bromiridic acid.

Ammonium bromiridate, (NH₄)₂IrBr₆.

Less sol. in cold H₂O than the K salt. (Birnbaum, Zeit. Chem. **1865**. 22.)

Very sol. in cold H₂O. (Gutbier, B. 1909, **42.** 3910.)

Cæsium bromiridate, C₈₂IrBr₆.

Sol. in H₂O. (Gutbier, B. 1909, 42, 3911.)

Potassium bromiridate, K2IrBr6.

Moderately sol. in cold, more easily in hot H_2O .

Insol. in alcohol or ether. Sol. in cold H₂O and in HBr+Aq. (Gutbier, B. 1909, **42**. 3910.)

Rubidium bromiridate, Rb₂IrBr₆.

Very sol. in cold H₂O. Sol. in hot dil. HBr+Aq. (Gutbier, B. 1909, **42.** 3911.)

Sodium bromiridate.

Deliquescent. Easily sol. in H₂O, alcohol, or ether.

Bromiridous acid, H₆Ir₂Br₁₂ +6H₂O.

Easily sol. in H₂O, alcohol, or ether. (Birnbaum, 1864.)

Ammonium bromiridite, (NH₄)₆Ir₂Br₁₂+H₂O.
Difficultly sol. in H₂O. (Birnbaum.)

Potassium bromiridite, K₆Ir₂Br₁₂+6H₂C. Efflorescent. Sol. in H₂C.

Silver bromiridite, Ag₆Ir₂Br₁₂.

Ppt. Insol. in H₂O or acids.

Sodium bromiridite, Na₆Ir₂Br₁₂+24H₂O. Efflorescent. Very sol, in H₂O.

Bromocarbonatoplatindiamine carbonate, ${\mathop{\rm CO}_3\atop {\rm Br_2}}[{\rm Pt}({\rm N_2H_6})_2]_2({\rm CO_3})_2 + 4{\rm H_2O}.$

Bromocarbonatoplatindiamine carbonate bromoplatindiamine nitrate,

 $\frac{\text{CO}_3}{\text{Br}_2}[\text{Pt}(\text{N}_2\text{H}_6)_2]_2(\text{CO}_3)_2, \ 2\text{Br}_2\text{Pt}(\text{N}_2\text{H}_6)_2}{(\text{NO}_3)_2}.$

Bromochloroplatindiamine chloride,

 $\frac{\mathrm{Br}}{\mathrm{Cl}} \, \mathrm{Pt}(\mathrm{N}_2\mathrm{H}_6)_2\mathrm{Cl}_2.$

Very sl. sol. in H₂O. (Cleve.)

---- chlorobromide, Br Pt N2H6Cl(?).

Very sl. sol. in H₂O.

Bromochlororoplatinic acid.

Potassium bromochloropletinate, K₂PtCl_bBr

(Pitkin, J. Am. Chem. Soc. 2. 408.) Mixture. (Herty, J. Am. Chem. Soc. 1896,

18. 130.)

K₂PtĆl₄Br₂. Sl. sol. in cold H₂O; much more sol. in hot H₂O. (Pitkin.)

Mixture. (Herty.) K₂PtCl₃Br₃. As above.

 K_2 PtCl₂Br₄. (Pigeon, A. ch. 1894, (7) **2.** 488.)

K2PtClBr5. (Pitkin.)

Bromochromic acid.

Potassium bromochromate, KCrO₃Br₂ = CrO₂(Br)OK.

Decomp. by H_2O . (Heintze, J. pr. (2) 4. 225.)

Dibromochromium chloride. $[Cr(H_2O)_4Br_2]Cl+2H_2O$.

Ppt. Nearly insol. in fuming HCl. (Bjerrum, B. 1907, 40. 2918.)

Bromohydroxyloplatindiamine bromide,

OH Pt(N2H6Br)2.

Very sl. sol, in H₂O. (Cleve.)

--- chloride, OH Pt(N₂H₆Cl)₂.

Sol. in H₂O (Cleve.)

--- nitrate, OH Pt(N₂H₆NO₃)₂.

Very sl. sol. in cold, moderately sol. in hot H₂O. (Cleve.)

Bromohydroxyloplatin monodiamine

nitrate, $\frac{Br}{OH} Pt \frac{(NH_3)_2NO_3}{NH_3NO_3} + H_2O$. Easily sol. in H_2O . (Cleve.)

Bromomercurosulphurous acid.

Ammonium bromomercurosulphite, NH₄SO₃HgBr.

Sol. in H₂O. (Barth, Z. phys. Ch. 9, 215.)

Potassium bromomercurosulphite, KSO₃HgBr.

As above. (B.)

Bromomolybdenum bromide,

 $Br_4Mo_3Br_2 = molybdenum \ dibromide$, MoBr₂.

Insol, in H₂O or acids, or even in boiling aqua regia. Easily sol, in dilute, decomp. by cone. alkalies + Aq. (Blomstrand, J. pr. 82. 436.)

Bromomolybdenum chloride, Br₄Mo₃Cl₂+

Insol. in acids. (Blomstrand.)

Bromomolybdenum chromate, Br₄Mo₃CrO₄+ 2H₂O.

Insol, in dil. acids. Sol, in hot cone, HCl +Aq. Insol. in alkali chromates+Aq. (Atterberg.)

Bromomolybdenum fluoride, Br₄Mo₃F₂+ 3H₂O.

Insol. in H_2C . (Atterberg.) •

Bromomolybdenum hydroxide, Br₄Mo₃(OH)₂.

Completely sol. in alkalies if not heated over 90°. (Atterberg.)

+2H₂O. +8H₂O.

Bromomolybdenum iodide hydroxide,

 $2Br_4Mo_3I_2$, $Br_4Mo_3(OH)_2 + 8H_2O$. Precipitate. (Blomstrand, J. pr. 77. 92.)

Bromomolybdenum molybdate, Br₄Mo₈MoO₄ Precipitate. (Atterberg.)

Bromomolybdenum phosphate,

Br₄Mo₃H₄(PO₄)₂.

Precipitate. Insol. in H₂O. (Atterberg.)

Bromomolybdenum sulphate, Br. Mo. SO. + 3H₂O.

Sl. sol. in boiling H₂SO₄. Precipitate. (Atterberg.)

Dibromomolybdous acid, MoOBr₂(OH) + 11/2H2O.

Sol. in H.O. Very hydroscopic. (Weinland Z. anorg. 1905, 44. 86.)

Tetrabromomolybdous acid, MoBr₄(OH)+ 2H₂O.

Sol. in H₂O. Hydroscopic. (Weinland, l. c.)

Diammonium pentebromomolybdite, $MoBr_5O(NH_4)_2$.

Hydroscopic. Sol. in H₂O. (Weinland, 1 c.)

Dicæsium pentabromomolybdite. MoBr₅OCs₂.

Hydroscopic. Sol. in H₂O. (Weinland,

Calcium tetrabromomolybdite, (MoBr₄O)₂Ca +7H₂O.

Hydroscopic. Sol. in H_2O . (Weinland, l.c.)

Monolithium tetrabromomolybdite.

 $MoBr_4(OLi) + 4H_2O$.

Hydroscopic. Sol. in H₂O. (Weinland, l. c.)

Magnesium pentabromomolybdite, $MoBr_5(OMg) + 7H_2O$.

Hydroscopic. Sol. in H₂O. (Weinland, l. c.)

Monopotassium tetrabromomolybdite, $MoBr_4(OK) + 2H_2O$.

Hydroscopic. Sol. in H₂O. (Weinland,

Dipotassium pentabromomolybdite,

MoBr_bOK₂.

Hydroscopic. Sol. in H₂O. (Weinland,

Dirubidium pentabromomolybdite, MoBr₅ORb₂.

Hydroscopic. Sol. in H₂O. (Weinland,

Bromonitratoplatindiamine nitrate,

Br No. Pt N. H. NO.

Decomp. by H₂O. (Cleve.)

- sulphate, $\frac{Br}{NO_3}$ Pt(N₂H₆)₂SO₄+H₂O. Sl. sol. in H₂O.

Bromonitritoplatinsemidiamine nitrite, NO₂Br₂Pt(NH₃)₂NO₂.

Sl. sol. in H₂O. (Blomstrand.)

Bromonitrous acid.

Platinum silver bromonitrite, PtAg₂Br₂(NO₂)₄. Ppt. (Miolati, Gazz. ch. it. 1900, **30.** 588.)

Bromopalladic acid.

Ammonium bromopalladate, (NH₄)₂PdBr₆.

Difficultly sol. in cold H₂O. Decomp. by hot H₂O and by hot conc. H₂SO₄. (Gutbier, B. 1905, **38**. 1907.)

Cæsium bromopalladate, Cs₂PdBr₆.

Difficultly sol. in cold H_2O . Decomp. by hot H_2O or by hot conc. H_2SO_4 . (Gutbier, l, c.)

Potassium bromopalladate, K₂PdBr₆.

Difficultly sol. in cold H_2O . Decomp. by hot H_2O or by hot conc. H_2SO_4 . (Gutbier, l, c.)

Rubidium bromopalladate, Rb₂PdBr₆.

Insol. in cold H_2O . Decomp. by hot H_2O or by hot conc. H_2SO_4 . (Gutbier, l. c.)

Bromopalladious acid.

Ammonium bromopalladite, (NH₄)₂PdBr₄.

Very stable. Sol. in H_2O . (Smith, Z. anorg. 1894, **6.** 381.)

Very sol. in cold H₂O.

Can be cryst. from a very small amount of hot H₂O. (Gutbier, B. 1905, **38**. 2387.)

Barium bromopalladite.

Not deliquescent. Sol, in H_2O . (v. Bonsdorff.)

Cæsium bromopalladite, Cs₂PdBr₄.

Very sol. in H_2O . (Gutbier, B. 1905, 38. 2388.)

Manganese bromopalladite, MnPdBr4.

Sol. in H₂O and alcohol. (v. Bonsdorff.) +7H₂O. Very sol. in H₂O. (Smith, Z. anorg. 1894, **6.** 382.)

Potassium bromopalladite, K₂PdBr₄.

Easily sol. in $\mathrm{H}_2\mathrm{O}$. (Joannis, C. R. 95. 295.)

Very stable. Sol. in H₂O. (Smith, Z. anorg. 1894, **6.** 381)

 $+2\mathrm{H}_2\mathrm{O}$. Unstable in the air. (Smith, l. c.)

Rubidium bromopalladite, Rb2PdBr4.

Can be cryst. from a very small amount of hot H₂O. (Gutbier, B. 1905, 38. 2388.)

Sodium bromopalladite, Na₂PdBr₄+4½H₂O. Very deliquescent. Sol. in H₂O. (Smith, l. c.)

Strontium bromopalladite, SrPdBr₄+6H₂O. Stable in the air. Very sol. in H₂O. (Smith, l. c.)

Zinc bromopalladite.

Sol. in H₂O. (v. Bonsdorff.)

Bromophosphatoplatindiamine phosphate, $BrPt(N_2H_6)_2+2H_2O$.

PO.

Sl. sol. in H₂O. (Cleve.)

Bromophosphoric acid.

Thorium bromophosphate, ThBr₄, $3(3ThO_2, 2P_2O_5)$.

Insol. in most acids and in fused alkali carbonates. Decomp. by long boiling with conc. H₂SO₄. (Colani, C. R. 1909, **149**. 208.)

Bromoplatinamine bromide,

Br₂Pt(NH₃Br)₂.

Sl. sol, in H_2C . (Cleve, Sv. V. A. H. 10, 9. 31.)

nitrite, Br₂Pt(NH₃NO₂)₂.

Very sl. sol. in H₂O. (Cleve.)

Bromoplatindiamine bromide,

 $Br_2Pt(N_2H_6)_2Br_2$.

Only sl. sol. in hot H_2O . (Cleve.)

---- chloride, Br₂Pt(N₂H₆)₂Cl₂. Very sl. sol. in H₂O. (Cleve.)

Sl. sol. in H₂C.

--- nitrate, Br₂Pt(N₂H₆NO₃)₂.

Sl. sol. in cold, rather easily sol. in hot H₂O. (Cleve.)

---- phosphate, $Br_2P(\{N_2H_6P()_2(OH)_2\}_2+2H_2O$.

Rather easily sol. in hot H₂O. (Cleve.)

Bromoplatin monodiamine nitrate,

 ${\rm Br_2Pt} {\rm \begin{subarray}{c} ({
m NH_3})_2{
m NO_3} \\ {
m NH_3NO_3} \end{subarray}} + {
m H_2O}.$ Easily sol. in ${
m H_2O}$.

Bromoplatinsemidiamine bromide, $\mathrm{Br_3Pt(NH_3)_2Br}$.

Sl. sol. in cold H₂O. (Cleve.)

Bromodiplatindiamine anhydronitrate,

 ${\rm Br_2Pt_2} \stackrel{(N_2H_6)_2(NO_3)_2.}{(NH_3NH_2)_2}$ Sol. in ${\rm HNO_3+Aq}$. Bromodiplatindiamine chloride, Br₂Pt₂(N₂H₆)₄Cl₄.

Ppt. (Cleve.)

mitrate, $Br_2Pt_2(N_2H_6)_4(NO_3)_4 + 2H_2O$. Moderately sol. in hot H_2O .

sulphate, $Br_2Pt_2(N_2H_6)_4(SO_4)_2+2H_2O$. Ppt. (Cleve.)

Bromoplatinic acid, H₂PtBr₆ +9H₂O.

Very deliquescent, and sol. in H₂O, alcohol, ether. chloroform, or acetic acid. (Topsoë, J. B. **1868**, 273.)

Ammonium bromoplatinate, $(NH_4)_2PtBr_3$. Sol. in 200 pts. H_2O at 15° . (Topsoé.) 100 pts. $(NH_4)_2PtBr_6+Aq$ sat. at 20° contain 0.59 pt. dry salt. (Halberstadt, B. 17. 2965.)

Barium bromoplatinate, BaPtBr₆+10H₂O. Sl. deliquescent. Very sol. in H₂O.

Cæsium bromoplatinate, Cs2PtBr6.

Sl. sol. in dil. HBr+Aq. (Obermaier, Dissert.)

Calcium bromoplatinate, CaPtBr₆+12H₂O. Sl. deliquescent. Very sol. in H₂O.

Cobalt bromoplatinate, CoPtBr₆+12H₂O. Deliquescent.

Copper bromoplatinate, CuPtBr₆+8H₂O. Very deliquescent; sol. in H₂O.

Lead bromoplatinate, PbPtBr6.

Easily sol. in H₂O, but decomp. by large amount.

Lead tetrabromoplatinate, [PtBr4(OH)2]Pb, PbOH.

Insol. in H_2O . (Miolati, C. C. **1900**, II. 810.)

Magnesium bromoplatinate, $MgPtBr_6+12H_2O$.

Not deliquescent.

Manganese bromoplatinate, MnPtBr₆+6H₂O.

Sol. in H₂O. +12H₂O. Sol. in H₂O.

Mercuric tetrabromoplatinate, [PtBr₄(OH)₂]Hg

Insol. in H₂O. (Miolati, C. C. **1900**, II. 810.)

Nickel bromoplatinate, NiPtBr₆+12H₂(). Deliquescent.

Potassium bromoplatinate, K₂PtBr₆. Sl. sol. in H₂O. Insol. in alcohol. (v. Bonsdorff, Pogg. **19.** 344.) Sol. in 10 pts. boiling H₂O. (Pitkin, C. N. 41. 218.)

100 pts. K₂PtBr₆+Aq sat. at 20° contain 2.02 pts. dry salt. (Halberstadt, B. 17. 2962.)

Praseodymium bromoplatinate, PrBr₂,PtBr₃ +10H₂O.

Desiguescent; very sol. in H₂O; sol. in HBr. (Von Schule, Z. avorg. 1898, 18. 353.)

Rubidium bromoplatinate, Rb₂PtBr₆.

Sl. sol. in iil. HBr | Aq. (Obermaier. Dissert.)

Silver bromoplatinate, Ag₂PtBr₆.

lnsol. in H₂O. (Miolati, C. C. 1900, II. 810.)

Silver tetrabromoplatinate, $[PtBr_4(OH)_2]Ag_2$. Ppt. insol. in H_2O . (Miolati, l. c.)

Sodium bromoplatinate, Na₂PtBr₆+6H₂O. Easily sol. in H₂O and alcohol.

Strontium bromoplatinate, SrPtBr₆+10H₂O. Sl. deliquescent. Very sol. in H₂O.

Thallium tetrabromoplatinate, [PtBr₆(OH)₂]Tl₂.

Insol. in H₂O. (Miolati, C. C. **1900**, II. 810.)

Ytterbium bromoplatinate, YbBr₃.3H₂PtBr₆ +30H₂O.

Ppt. (Cleve, Z. anorg. 1902, 32, 138.)

Zinc bromoplatinate, ZnPtBr₆+12H₂O. Sol. in H₂O.

Bromoplatinocyanhydric acid,

H₂Pt(CN)₄Br₂.

Sec Perbromoplatinocyanhydric acid.

Potassium bromoplatinocyanide, 5K₂Pt(CN)₄, K₂Pt(CN)₄Br₂+18H₂O. Sol. in H₂O.

Bromoplatinous acid.

Potassium bromoplatinite, K₂PtBr₄+2H₂O. Extremely sol. in H₂O. (Billmann and Andersen, B. 1903, **36.** 1566.)

Bromopurpureochromium bromide, BrCr(NH₃)₅Br₂.

Less sol. in H_2O than chloropurpureochromium chloride. (Jörgensen, J. pr. (2) **25.** 83.)

— bromoplatinate, BrCr(NH₃)₅PtBr₆. (Jörgensen, l. c.)

--- chloride, BrCr(NH₃)₅Cl₂.

More sol. in H_2O than the bromide. (Jörgensen, l. c.)

Bromopurpureochromium chromate, BrCr(NH₃)₅CrO₄.

Precipitate. (Jörgensen, l. c.)

--- nitrate, BrCr(NH₃)₅(NO₃)₂.

More sol. than bromide and less than chloride. (Jörgensen, l. c.)

Bromopurpureocobaltic bromide, CoBr(NH₃)₅Br₂.

Sol. in 530 pts. H₂O at 16°. Insol. in alcohol, NH₄B₇, KBr, or HBr+Aq. More sol. in hot H₂O containing a little HBr. (Jörgensen, J. pr. (2) **19.** 49.)

Bromopurpureocobaltic mercuric bromide, $CoBr(NH_3)_{\mathfrak{b}}Br_2,\ 3HgBr_3.$

More sol, in H_2O than the corresponding $HgCl_2$ salt. (J.)

--- bromoplatinate.

Very sl. sol. in cold H₂O. (J.)

--- chloride, CoBr(NH₃)₅Cl₂.

Difficultly sol. in cold H₂O, but much more easily than the bromide. Insol. in dil. HCl+Aq, and in alcohol.

---- mercuric chloride, CoBr(NH₂)₃Cl₂, 3HgCl₂.

Sl. sol. in H₂O.

--- chloroplatinate.

Nearly or quite insol. in H_2O . (J.)

---- chromate, CoBr(NH₃)₅CrO₄.

Nearly insol. in H₂O.

— dithionate, CoBr(NH₃)₅S₂O₆.

Nearly insol. in H₂O.

--- fluosilicate, CoBr(NH₃)₅SiF₆.

Very sl. sol, in cold H₂O; insol, in alcohol.

- nitrate, CoBr(NH₃)₅(NO₃)₂.

More sol. in H_2O than the bromide, but less than the chloride. Wholly insol. in dil. HNO_3+Aq or alcohol.

---- oxalate, $CoBr(NH_3)_5C_2O_4$.

Nearly insol. in H₂O.

—— sulphate, CoBr(NH₃)₅SO₄.

Can be crystallized from very dil. H₂SO₄+ Aq. Insol. in alcohol.

+6H₂(). Efflorescent.

Bromopurpureorhodium bromide, BrRh(NH₃)₅Br₂.

Much less easily sol. in H_2O than the chlorochloride. Insol. in dil. HBr+Aq and alcohol. (Jörgensen, J. pr. (2) **27**. 433.)

— bromoplatinate, BrRh(NH₃)₅PtBr₆. Almost insol. in H₂O.

--- fluosilicate, BrRh(NH₈)₅SiF₆.

Sl. sol. in H₂O. Sol. in boiling NaOH+Aq as roseo salt.

Bromopurpureorhodium nitrate, BrRh(NH₃)₅(NO₃)₂.

Sl. sol. in \$\vec{m}_2O\$, but much more sol. than the bromide.

Bromorhodous acid.

Ammonium bromorhodite, (NH₄)₂RhBr₅.

Sol. in H₂O. (Goloubkine, Chem. Soc. 1911, **100** (2) 45.)

Sol, in H₂O. (Gutbier, B. 1908, **41.** 215.)

Barium bromorhodite, BaRhBr.

Sol. in H₂O. (Goloubkine, l. c.)

Cæsium bromorhodite, Cs2RhBr5.

Difficultly sol. in H₂O. (Gutbier, l. c.)

Potassium bromorhodite, K2RhBr5.

Very sol. in H_2O . (Goloubkine, l. c.) Sol. in H_2O . (Gutbier, l. c.)

Rubidium bromorhodite, Rb2RhBr5.

Sol. in H₂O. (Goloubkine, l. c.) Difficultly sol. in H₂O. (Gutbier, l. c.)

Sodium bromorhodite, Na₂RhBr₅.

Very sol. in H_2O . (Goloubkine, l. c.)

Bromoruthenic acid.

Potassium bromoruthenate, K₂RuBr₆.

Very sol. in H₂O. (Howe, J. Am. Chem-Soc. 1904, **26.** 946.)

Potassium aquobromoruthenate,

 $K_2Ru(\bar{H}_2O)Br_5$.

Ppt. (Howe, l. c.)

Rubidium bromoruthenate, Rb₂RuBr₆.

Sol. in H_2O . (Howe, l. c.)

Rubidium aquobromoruthenate,

Rb₂Ru(H₂O)Br₅.

Ppt. (Howe, *l. c.*)

Bromoruthenious acid.

Cæsium bromoruthenite, CsRuBr₅+H₂O.

Ppt. (Howe, J. Am. Chem. Soc. 1904, 26. 945.)

Potassium bromoruthenite, K2RuBr5.

Very sol. in H_2O with decomp. Very sol. in dil. HBr. (Howe, l, c.)

Rubidium bromoruthenite, Rb₂RuBr₅+H₂O. Sol. in dil. HBr. (Howe, *l. c.*)

Bromoselenic acid.

Ammonium bromoselenate, (NH₄)₂SeBr₆.

Sol. in H_2O with decomp. (Muthmann and Schäfer, B. **26.** 1008.)

Cæsium bromoselenate, Cs2SeBr6.

Sl. sol. in H_2O . (Lenher, J. Am. Chem. Soc. 1898, **20**. 571.)

Potassium bromoselenate, K₂SeBr₆.

As NH₄ salt. (M. and S.)

Rubidium bromoselenate, Rb. SeBr.

Less sol. in H2O than K salt. (Lenher, l. c.)

Bromopyroselenious acid.

Ammonium bromopyposeienite, NH₄Br, 2SeO₂ +2H₂O.

More easily sol, in H₂O than corresponding Cl compound. (Muthmann and Schäfer, B, 1893, **26**, 1014.)

Potassium bromopyroselenite, KBr, 2SeO₂+ 2H₂O.

Sol. in H₂O. (Muthmann and Schäfer, B. 26, 1008.)

Bromosmic acid.

Ammonium bromosmate, (NH₄)₂OsBr₆.

Only sl. sol. in H_2O . (Rosenheim, Z. anorg. 1899, 21, 135.)

Cæsium bromosmate, Cs₂OsBr₆.

Nearly insol. in H₂O and dil. HBr. (Gutbier, B. 1913, **46.** 2103.)

Potassium bromosmate, K₂O₈Br₆.

Only sl. sol. in H₂O. (Rosenheim, l. c.)

Rubidium bromosmate, Rb₂OsBr₆.

Difficultly sol. in H_2O and in dil. HBr. (Gutbier, l. c.)

Silver bromosmate, Ag₂OsBr₆.

Ppt., insol. in H₂O. (Rosenheim, l. c.)

Sol. in H₂O. (Rosenheim, l. c.)

Bromostannic acid, H₂SnBr₆+8H₂O.

Very deliquescent. Sol. in H₂O. (Seubert, B. **20.** 794.)

Ammonium bromostannate, (NH₄)₂SnBr₆.

Very deliquescent, and sol. in H₂O. (Raymann and Preis, A. **223.** 323.)

Cæsium bromostannate.

Sol, in H₂O. (Raymann and Preis.)

Calcium bromostannate, CaSnBr₆+6H₂O.

Very deliquescent. Sol. in H_2O . (Raymann and Preis.)

Cobalt bromostannate, $CoSnBr_6 + 10H_2O$.

Deliquescent. (Raymann and Preis.)

Ferrous bromostannate, FeSnBr₆+6H₂O. Deliquescent. (Raymann and Preis.)

Lithium bromostannate, Li₂SnBr₆+6H₂O. Extremely deliquescent. (Leteur, C. R. 113. 541.)

Magnesium bromostannate, $MgSnBr_6 + 10H_2O$.

Deliquescent. (Raymann and Preis.)

Manganous bromostannate, MnSnBr₆+6H₂O.

Deliquescent. (Raymann and Preis.)

Nickel bromostannate. NiSnBr₆+8H₂O. Deliquescent. (Raymann and Preis.)

Potassium bromostanuate, W2SnBr4. Sol. in H4O (Topsoë.)

Rubidium bromostannate.

Sol, in H₂O. (Raymann and Preis.)

Sodium bromostannate, Na₂SnBr₅+6H₂O.

Not deliquescent, but extremely sol. in $H_2()$. (Seubert, B. 20. 796.)

Strontium bromostannate, SrSnBr₆+6H₂O.

Very hydroscopic, and sol. in H₂O. (Raymann and Preis.)

Bromosulphatoplatindiamine sulphate,

 $\begin{array}{c} Br > Pt(N_2H_6)_2SO_4 + H_2O. \\ SO_4 > Pt(N_2H_6)_2SO_4 + H_2O. \end{array}$

Rather easily sol. in hot H₂O.

Bromosulphobismuthous acid.

Cuprous bromosulphobismuthite, 2Cu₂S, Bi₂S₃, 2BiSBr.

Stable in the air and insol. in H₂O at ord. temp. Partially decomp. by boiling H₂O. Decomp. by mineral acids with the evolution of H₂S. (Ducatte, C. R. 1902, **134.** 1212.)

Lead bromosulphobismuthite, PbS,Bi₂S₃, 2BiSBr.

Insol. in H_2O . Decomp. by boiling H_2O . Decomp. by dil. mineral acids with evolution of H_2S . (Ducatte, $l. \ c.$)

Bromotantalum bromide, $(Ta_6Br_{12})Br_2 + 7H_2O$.

Stable in the air when in the solid state. Sol. in H₂O without decomp. Sol. in propyl alcohol. (Chapin, J. Am. Chem. Soc. 1910, **32**. 328.)

Bromotantalum chloride, $(Ta_6Br_{12})Cl_2 + 7H_2O$.

(Chapin, l. c.)

Bromotantalum hydroxide, $(Ta_6Br_{12})(OH)_2 + 10H_2O$.

Sl. sol. in HCl. Stable in the air below 100°.

Sol. in alcohol. Insol. in ether. (Chapin, l. c.)

Bromotantalum iodide, $(Ta_6Br_{12})I_2+7H_2O$. (Chapin, l. c.)

Bromotelluric acid.

Ammonium bromotellurate, (NH₄)₂TeBr₆.

Less sol. in H₂O than K salt. (Muthmann and Schmidt, B. 1893, **26.** 1011.)

Cæsium bromotellurate, Cs2TeBr6.

Decomp. by H₂O.

100 pts. HBr+Aq (sp. gr. 1.49) dissolve 0.02 pt. at 22°

100 pts. HBr+Aq (sp. gr. 1.08) dissolve

0.13 pt. at 22°.

Insol. in alcohol. (Wheeler, Sill. Am. J. **145.** 267.)

Potassium bromotellurate, $K_2\text{TeBr}_6+3H_2\text{O}$.

Sol. in little, decomp. by much H₂O. Hauer.)

Contains 2H₂O. (Wheeler, Sill. Am. J. **145.** 267.)

Efflorescent.

100 pts. HBr+Aq (sp. gr. 1.49) dissolve 6.57 pts. at 22°

100 pts. HBr+Aq (sp. gr. 1.08) dissolve 62.90 pts. at 22°.

Anhydrous. Stable on air. (Wheeler.)

Rubidium bromotellurate, Rb₂TeBr₆.

Sol. in a little hot H₂O, but H₂TeO₃ separates on cooling.

100 pts. HBr+Aq (sp. gr. 1.49) dissolve 0.25 pt. at 22°

100 pts. HBr+Aq (sp. gr. 1.08) dissolve 3.88 pts. at 22°. (Wheeler.)

Bromotetramine chromium bromide.

 $CrBr(NH_3)_4Br_2+H_2O$.

Easily sol. in H₂O. (Cleve.)

— chloride, $CrBr(NH_3)_4Cl_2+H_2O$. Sol. in H₂O. (Cleve.)

- sulphate, $CrBr(NH_3)_4SO_4+H_2O$. Easily sol. in H_2O . (Cleve.)

Bromotetramine cobaltic sulphate,

 $BrCo(NH_3)_4SO_4$, or $Br_2Co_2(NH_3)_8(SO_4)_2$. Sol. in H₂O. (Vortmann and Blasberg, B. **22.** 2652.)

Cadmium, Cd.

Not attacked by H₂O. Sol. in HCl, or dil. H₂SO₄+Aq, but more easily in HNO₃+Aq. Sol. in $HC_2H_3O_2+Aq$.

Chemically pure Cd like Zn is almost insol. in dil. acids, with the exception of HNO₂. (Weeren, B. 1891, 24. 1798.)

Sol. in HClO₃+Aq without evolution of H. (Hendrixson, J. Am. Chem. Soc. 1904, 26. **756.**)

Cadmium is sol. in molten CdCl₂ and can be recryst. therefrom. (Auerbach, Z. anorg. 1901, **28.** 42.)

From 4 g. Cd in 32 g. molten CdCl₂ at 650°, 2.197 g. were dissolved in ½ hr. (Helfenstein, Z. anorg. 1900, 23. 295.)

Moderately quickly sol. in $K_2S_2O_8+Aq$. More slowly sol. in $(NH_4)_2S_2O_8+Aq$. (Levi, Gazz. ch. it. 1908, **38** (1) 583.)

Sol. in (NH₈)₂S₂O₈+Aq without evolution of gas. (Turrentine, J. phys. Chem. 1907, 11.

627.)

Sol. in sulphostannates + Aq. (Storch, B. 1883, **16.** 2015.)

½ ccm. olde acid dissolves 0.0293 g. Cd in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Not attacked by sugar solution. (Klein and Berg, C. R. 102. 1170.)

Cadmium amalgam, Cd₂Hg₇.

Stable from 0°-44°. Can be cryst. from Hg without decomp, if temp, does not exceed 44°. (Kerp. Z. anorg. 1900, 25. 68.)

Cadmium amide, $Cd(NH_2)_2$.

Decomp. by H₂O. (Bohart, J. phys. Chem. 1915, **19.** 543.)

Cadmium arsenide, Cd₃As.

(Descamps, C. R. 86. 1022.)

Cd₃As₂. Sol. in dil. cold HNO₃. Attacked by aqua regia. (Granger, C. R. 1904, 138. 575.)

Cadmium azoimide, $Cd(N_3)_2$.

Ppt. (Curtius, J. pr. 1898, (2) 58. 294.)

Cadmium subbromide, Cd₄Br₇.

Decomp. by H₂O. (Morse and Jones, Am. Ch. J. 1890, **12.** 490.)

Cadmium bromide, CdBr₂.

Deliquescent. Very sol. in H₂O.

Solubility in H₂O at t°

t.°	% CdBr2	t.°	∵ CdBr₂
4	32.0	48	60 0
1	34.7	71	61.2
+1	36-3	104	61.8
2	36.0	155	63.7
9	41.9	170	65.2
14	46.0	215	69.9
25	52.6	232	70.1
35	59-6	245	71.5

Solid phase above 100° is $CdBr_2 + 1^{-1} H_2O$. (Étard, A. ch. 1894, (7) 2. 541.)

See also under CdBr2+H2O and CdBr2+ 4H₂O.

Sp. gr. of CdBr₂+Aq at 19.5° containing: 5 20 10 15 25 % CdBr₂, 1.260 1.043 1.090 1.141 1.199 30 35 40 $50 \% \text{ CdBr}_2$. 45 1.3261.4001.481 1.5781.680

(Kremers, calculated by Gerlach, Z. anal. 8. 280.)

CdBr₂+Aq containing 18.06% CdBr₂ has sp. gr. $20^{\circ}/20^{\circ} = 1.1378$.

CdBr₂+Aq containing 21.39% CdBr₂ has sp. gr. $20^{\circ}/20^{\circ} = 1.1666$.

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 282.)

Sp. gr. of $CdBr_2+Aq$ containing 35.84% $CdBr_2=1.4231$ at 19.4°/4°. (Hallwachs, W. Ann. 1899, 68, 27.)

Sp. gr. of CdBr₂+Aq at 18°/4°. 33.289 23.973 20.552 11.983 %CdBr2. 1.384 Sp. gr. 1.252 1.209 1.112 % CdBr2, 6.543 3.734 1.927 Śp. gr. 1.106 1.030 1.017 (de Muynck, W. Ann. 1894, 53. 561.)

*Sp. gr. of CdBr₂+Aq at 18°. % CdBr2 20 1.0072 1.0431 1.0907 1.1432 1.1991 Sp. gr. % CdBr2 35 Sp. gr. 1.2605 1.3296 1.4052 1.4915 1.5467 (Grotrian, W. Ann. 1883, 18. 193.)

Sp. gr. of CdBr₂+Aq.

% CdBr2	l 1°	Sp. gr. at to	Sp. gr. at 18°
0.0324	- 17.90	0.99901	0.99900
0.0748	$\begin{array}{c c} 22.75 \\ 17.23 \end{array}$	0.99702	0.99935
0.0748	21.50	0.99863	0.99935
0.154	17.67	1.00008	1.00002
0.253	23.10 17.23	0.99896 1.00119	0.00100
0. *00	22.95	0.99986	
0.506	$18.07 \\ 22.65$	0.00308 1.00212	1.00310
1.013	18.00		1.00750

(Wershofen, Z. phys. Ch. 1890, 5. 493.)

Sp. gr. of CdBr₂+Aq at 20°.

Normality of CdBr ₂ +Aq	%CdBr₂	Sp. gr.	
2.774	46.574	1.6198	
1.997	37.53	1.4469	
0.973	22.53	1.2293	
0.5138	12.46	1.1211	

(Forchheimer, Z. phys. Ch. 1900, 34. 29.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.) Sol. in AlBr₈. (Isbekow, Z. anorg. 1913,

84, 27.)

Sol. in HCl+Aq, HC2H3O2, alcohol, or ether. (Berthemot, A. ch. 44. 387.)

Sol. in 0.94 pt. H₂O, 3.4 pts. abs. alcohol, 250 pts. ether, and 16 pts. alcohol-ether (1:1)(Eder, Dingl. 221. 89.)

Anhydrous CdBr₂ is sol. in acetone. (Krug

and M'Elroy.)

1 g. CdBr₂ is sol. in 64.5 g. acetone at 18° . Sp. gr. of sat. solution $18^{\circ}/4^{\circ} = 0.8073$. (Naumann, B. 1904, 37. 4337.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Insol. in mustard oil. (Mathews, J. phys. Chem. 1905, 9, 647.)

Difficultly sol. in methyl acetate. (Nau-

mann, B. 1909, 42, 3790.) Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.) Sol. in chinoline. (Beckmann and Gabel,

Z. anorg. 1906, 51. 236.) 100 g. benzonitrile dissolve 0.857 g. CdBr₂ at 18°, (Naumann, B. 1914, 47. 1370.)

weight determined in piperidine. Mol. (Ferchland, Z. anorg. 1897, 15, 17.)

+H₂O. Solubility in H₂O.

100 g. of the sat. solution contain at: 40° 45° 60° 80° 100° 60.29 60.65 60.75 61.10 61.29 61.63 g. CdBr₂.

(Dietz, Z. anorg. 1899, 20. 261.)

+1½H₂O. (Étard, A. ch. 1894, (7) 2. 541.) Efflorescent. $+4H_2O$. (Rammelsberg, Pogg. 55. 241.)

Solubility in H₂O.

100 g. of the sat. solution contain at:

18° 30° 38° 37.92 48.90 56.90 61.84 g. CdBr₂. Sp. gr. of sat. solution at 18° = 1.683.

(Dietz, Z. anorg. 1899, 20. 261.)

100 g. sat. solution of CdBr2+4H2O in absolute alcohol contain 20.93 g. CdBr₂ at 15°.

100 g. sat. solution of CdBr₂+4H₂O in absolute ether contain 0.4 g. CdBr₂ at 15°. (Eder, Dingl. 221. 89.)

Cadmium hydrogen bromide.

Decomp. by H₂O. (Berthelot, C. R. 91. 1024.)

Cadmium cæsium bromide, CdBr₂, CsBr.

Easily sol. in H₂O. (Wells and Walden, Z. anorg. 5. 270.)

CdBr₂, 2CsBr. Decom above comp. (W. and W.) Decomp. by H₂O into CdBr₂, 3CsBr. Decomp. CdBr₂, CsBr. (W. and W.) by H₂O into

Cadmium potassium bromide, CdBr₂, KBr+ ½H2Ō.

Sol. in 0.79 pt. H₂O at 15°; pptd. by alcohol

and ether. (Eder, Dingl. 221. 89.) +H₂O. Sol. in H₂O without decomp. from 0.4°-112.5°. (Rimbach, B. 1905, 38, 1554.)

100 pts. of the solution contain at: 0.4° 15.8° 50° 112.5°

68.25 53.75 58.68 78.10 pts. of the salt. CdBr₂, 4KBr. Sol. in 1.40 pts. H₂O at 15°; pptd. by alcohol and ether. (Eder, Dingl. **221.** 89.)

Cannot be prepared in a pure state as it is decomp. by H₂O below 160°. (Rimbach, B. 1905, **38.** 1560.)

Cadmium rubidium bromide, CdBr₂, RbBr.

Sol. in H₂O without decomp. from 0.4° to 107.5°.

100 pts. of the solution contain at:

 0.4° 14.5° 49.2° 107.5°

32.65 58.5475.77 pts. of the salt. 41.87 (Rimbach, B. 1905, 38. 1556.)

CdBr2, 4RbBr. Sol. in H₂O without decomp. from 0.5° to 114.5°.

100 pts. of the solution contain at:

0.5° 13.5° 51.5° 114.5°

47.95 55.17 - 68.8279.04 pts. of the salt, (Rimbach, B. 1905, 38. 1561.)

Cadmitum sodium bromide, CdBr₂, NaBr+ 2½H₂O.

Sol. at 15° in 1.04 pts. H₂O, 3.7 pts. abs. alcohol, and 190 pts. ether (sp. gr. 0.729). (Eder, Dingl. **221.** 89.)

3CdBr₂, 2NaBr+6H₂O. Stable in conc. solutions and decomp. only by great dilution. (Jones and Knight, Am. Ch. J. 1899, 22. 134.)

Cadmium bromide ammonia, CdBr₂, 2NH₃. Can be crystallized out of warm NH₄OH+Aq. (Croft, Phil. Mag. 21. 356.)

CdBr₂, 3NH₃. (Tassily, C. R. 1897, **124. 1022**.)

CdBr₂, 4NH₃. Decomp. by H₂O. (Croft.)

Cadmium bromide cupric oxide, CdBr₂, 3CuO+3H₂O. (Mailhe, A. ch. 1902, (7) **27.** 383.)

Cadmium bromide hydrazine, CdBr₂, 2N₂H₄. Easily sol. in NH₄OH+Aq. (Franzen, Z. anorg. 1908, **60**. 280.)

Cadmium bromide hydroxylamine, CdBr₂, 2NH₂OH.

Sol. in hot H_2O with formation of a basic salt. Sol. in dil. acids. Insol. in alcohol and ether. (Adams, Am. Ch. J. 1902, **28**. 218.)

Cadmium subchloride, Cd₄Cl₇.

Decomp. by H₂O and by acids. (Morse and Jones, Am. Ch. J. 1890, **12.** 490.)

Cadmium chloride, CdCl₂.

Sol. at 20° 40° 60° 80° 100° in 0.71 0.72 0.72 0.70 0.67 pts. H₂O. (Kremers. Pogg: **103.** 57.)

Sat. CdCl₂+Aq contains % CdCl₂ at t°.

t°	%CdCl₂	t°	%CdCl₂
-7	43.5	120	63.0
$^{+1}_{6}$	$\begin{array}{c c} 47.6 \\ 49.7 \end{array}$	150 165	$\begin{array}{c} 64.8 \\ 68.2 \end{array}$
$\begin{array}{c} 7 \\ 10 \end{array}$	51.3 51.6	170 180	$\frac{68.4}{70.1}$
19	52.7	190	71.9
· 25 61	$52.9 \\ 57.9$	$ \begin{array}{c c} 200 \\ 235 \end{array} $	$72.0 \\ 76.0$
82	58.8	270	77.7

(Étard, A. ch. 1894, (7) 2. 536.)

100 mol. H₂O dissolve at:

19.3° 29.7° 40.1° 54.5°

10.94 12.74 13.15 13.16 mol. CdCl₂.

(Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, 37.

See also under $CdCl_2+H_2O$, $CdCl_2+2\frac{1}{2}H_2O$, and $CdCl_2+4H_2O$.

Sp. gr. of CdCl₂+Aq containing pts. CdCl₂ to 100 pts. H₂O.

13 26.9 41 pts. CdCl₂, 1.1068 1.2106 1.3100 55.8 72.5 114.2 pts. CdCl₂. 1.4060 1.5060 1.7266 (Kremers, Pogg. 103. 57.) CdCl₂+Aq containing 8.91% CdCl₂ has sp. gr. 20°/20°=1.0715. (Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 282.)

Sp. gr. of CdCl₂+Aq at room temp. containing:

% CdCl₂ 11.09 16.30 24.786 Sp. gr. 1.1093 1.1813 1.3199

(Wagner, W. Ann. 1883, **18**. 266.)

Sp. gr. of $CdCl_2+Aq$ at $18^{\circ}/4^{\circ}$. % $CdCl_2$ 57.524 41.547 29.977 Sp. gr. 1.852 1.515 1.330

% CdCl₂ 21.431 14.761 Sp. gr. 1.210 1.142

(de Muynck, W. Ann. 1894, 53. 561.)

Sp. gr. of CdCl₂+Aq at 18°.

% CdCl₂ Sp. gr. % CdCl₂ 5 10 15 1.0919 1.1443 1.0063 1.0436 25 30 35 20 Sp. gr. % CdCl₂ 1.4075 1.20071.26201.330545 40 50 Sp. gr. 1.4878 1.5775 -1.6799

(Grotrian, W. Ann. 1883, 18. 193.)

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Sp. gr. of CdCl₂+Aq.

%CdCl2	f.º	Sp. gr. at to	Sp. gr. at 18°
0 0503	17.59	0.99920	0.99910
	24.27	0.99781	
0.0999	17.70	0.99964	0.99958
0.200	$\frac{22.06}{18.31}$	0.99833	1.00044
0.200	24.00	0.99920	1.00044
0.399	16.86	1.00239	1.0022
	24.21	1.00083	
0.599	$17.49 \\ 25.12$	1.00406 1.00238	1.0039
0.769	25.12 17.58	1.00238	1.0057
0.100	21.76	1.00496	1.000
0.997	17.55	1.00754	1.0075
	19.65	1.00713	1

(Wershofen, Z. phys. Ch. 1890, **5.** 492.)

Sp. gr. of CdCl₂+Aq at t°.

t°	Normality of	g. CdCl ₂ in	Sp. gr.
	CdCl ₂ +Aq	100 g. of solution	t°/4°
20.5	3.80	44.42	1.5645
	2.61	34.22	1.3941
	1.76	25.90	1.2435
	1.29	19.91	1.1977
	0.93	14.88	1.1404
	0.52	8.84	1.0801

(Oppenheimer, Z. phys. Ch. 1898, 27. 454.)

**************	Sp. g	r. of Cd	Cl ₂ +Aq at t°.			Solubi	lity in N	aCl+Aq at t°.
t°	t° Concentration		entration of CdCl2+Aq Sp. gr.		t° 100 g. H ₂ O d) dissolve	
22	1 pt. Cd	ICl ₂ in 1	.3458 pts. H ₂ O	1.6128	t°	g. CdCl ₂	g. NaCi	Solid phase
18.7 17.2 16 17	1 " 1 " 1 "	" " 2 " " 5 " " 5	.7005 " " " 3.988 " " 4.18 " " 7.479 " " "	1.2896 1.0155 1.0152 1.0136	19.3	111.30 116.64	7 52	CdCl ₂ +2½H ₂ () CdCl ₂ +2½H ₂ O+CdCl ₂ , 2NaCl+3H ₂ O
22	1 "	" " 7	7.232 " "	1.0076		85.15 40.01	12.19 25 67	CdCl ₂ , 2NaCl+3H ₂ O
(:	Hittorf, 2	Z. phys.	Ch. 1902, 39. 6	28.)		5.96	36.76	CdClz, 2NaCl+3HzO+
							35.84	NaCl NaCl
	Solub	ility in 1	KCl +Aq at t°.		29.7	129.65 132.67	9.63	CdCl ₂ +2½H ₂ O CdCl ₂ +2½H ₂ O+CdCl ₂ .
_	100 g. H ₂ () dissolve				123.54	10.10	2NaCl+3H ₂ O CdCl ₂ , 2NaCl+3H ₂ O
t°	g. CdCl ₂	g. KCl	Solid pha-	se		106.16	12.92	44
						91.10	15 41 27 46	"
9.3	111.30 59.59	6.70	$\frac{\text{CdCl}_2 + 2^{\frac{1}{2}}}{\text{CdCl}_2 + 2^{\frac{1}{2}}\text{H}_2()}$	+CdCl ₂ ,		9.43	37.54	CdCl ₂ , 2NaCl +3H ₂ O + NaCl
	26.98	11.09	KCl+H ₂ c CdCl ₂ , KCl+				35.88	NaCl
	11.61	30.04	CdCl2, KCl+H2C		40 1	133.85		CIOL III O
	1 44	34.76	4KCl CdCl ₂ , 4KCl -		40 1		15.14	$CdCl_2 + H_2O$ $CdCl_2 + H_2O + CdCl_2$,
		33.94	KC1	T-18C 1	-	137.03	20.50	2NaCl+3H ₂ ()
	1.20				·	48 17 13.31	$\begin{vmatrix} 29.50 \\ 38.16 \end{vmatrix}$	CdCl ₂ , 2NaCl+3H ₂ O CdCl ₂ , 2NaCl+3H ₂ O+
).7	129 65 97.62	0.70	CdCl ₂ +31 ₂ 1			10.01	30.10	NaCl
	68.23	7.08	$\begin{array}{c} & \text{CdCl}_2 + 2\beta_2 1 \\ & \text{CdCl}_2 + 2\beta_2 \text{H}_2 \text{O} \end{array}$				36.18	NaCl
	(7 10	0.00	KCl+H₂0	0	54.5	133.90		CdCl ₂ +H ₂ O
	47.12 32.67	9.89 13.06	CdCl₂, KCl+	-H ₂ ()	01.0	140.42	19.10	CdCl2 + H2O + CdCl2,
	24.26	16.10						2NaCl+3H2O
	15.99	25.97				52 76	32.97	CdCl ₂ , 2NaCl+3H ₂ O
	15.47	33.58	CdCl2, KCl+H2C	+CdCl ₂ ,		22.53	39.C7	CdCl ₂ , 2NaCl+3H ₂ O+
	2.42	37.66	4KCl CdCl ₂ , 4KCl=				36.82	NaCl NaCl
		37.21	KCI	1001	A+ 3.1	5° CdCl	. +216H	2O →CdCl ₂ +H ₂ O and
) 1	133.85		(IdOL 17)	()	110 01	,	wai	
	92.15	2.70	CdCl ₂ + H ₂ CdCl ₂ + H ₂ O + 0 KCl + H ₂ C	CdCl ₂ ,	(Sudh	aus, Mir		b. BeilBd. 1914, 37.
	51.90		CdCl ₂ , KCl+		(
	37.91	15.21				ol. in St	${\rm Cl}_3$. (Klemensiewicz, C. A.
	24.45	21.73	**		1909,	2 69.)		
	18.97 19.92	$\frac{35.51}{27.62}$	0.101 1701 17					. (Franklin, Am. Ch.
	19.92	37.63	CdCl ₂ , KCl +H ₂ O	+CdCl ₂ ,		8, 20 . 82		other alachol furformat
•	2.98	40.45	4KCl CdCl ₂ , 4KCl -	-KCl	acetor	ohenone,	ethyl m	ethyl alcohol, furfurol, onochloracetate, ethyl
		40.36	KCl		cyana	cetate,	ethyl o	xalate, ethyl nitrate,
1.5	133.90		CdCl. + D	.()				uene, pyridine, piperi- Sol. in salicylic alde-
~.0	102.15	2 32	CdCl ₂ +H ₂ O+CdCl ₂ +H ₂ O+CDCL+H ₂ O+CDCL+	CdCl2,	hyde.	and quit (Lincol	n, J. phy	s. Chem. 1899, 3. 46 1.)
	44 01	10 20	KCl+H ₂ (<i>)</i>	ins	oi. In an	nyarous	ether. (Hampe, Ch.

| Add | 18.39 | CdCl₂, KCl+H₂O + CdCl₂, 4KCl | H₂O + CdCl₂, 4KCl + KCl | CdCl₂, 4KCl+KCl | CdCl₂, 4KCl+KCl | CdCl₂, 4KCl+KCl | CdCl₂, 4KCl+KCl | CdCl₂, 4KCl | CdCl₂, 4KCl | CdCl₂, 4KCl | CdCl₂, 4KCl | CdCl₂ at 15.5°. | 100 pts. absolute methyl alcohol dissolve 1.52 pts. CdCl₂ at 15.5°. (de Bruyn, Z. phys. Ch. 10. 783.) | 100 gt. CdCl₂+CH₃OH contain 1.5 gt. CdCl₂.

Ch. 1910, 72, 437.)

Somewhat sol. in acetone. (Krug and M'Elroy.)

Sol. in acetone; insol. in methylal. (Eidmann, C. C. 1899, II, 1014.)

Insol. in methyl acetate. (Naumann, B. **1909, 42.** 3790.)

Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Difficultly sol, in ethylacetate. (Naumann, **B.** 1910, 43. 314.)

Sol. in urethane. (Castoro, Z. anorg. 1899,

20. 61.)

At 18°, 100 g. benzonitrile dissolve 0.06332 g. CdCl₂. (Naumann, B. 1914, 47, 1370.) Insol. in toluene. (Baxter and Hines, Am. Ch. J. 1904, **31.** 222.)

Sol. in chinolin. (Bo Z. anorg. 1906, **51.** 236.) (Beckmann and Gabel,

+H₂O. Solubility in H₂O.

100 g. of the sat. solution contain at: 10° 20° 40° 60° 57.35 57.47 57.5157.7780° 100°

59.52 g. CdCl₂. 58.41 110° is bpt. of the sat. solution.

(Dietz, Z. anorg. 1899, **20**, 257.)

+21/2H2O. Solubility in H2O. 100 g. of the sat. solution contain at:

---10° U° 18° 30° 36° 44.35 47.37 52.53 56.27 57.91 g. CdCl₂. Sp. gr. of sat. solution = 1.741.

(Dietz, Z. anorg, 1899, **20**, 257.)

 $+4H_2O$. Solubility in H_2O . 100 g. of the sat. solution contain at: 0° --9° $+10^{\circ}$ $+15^{\circ}$ 43.58 49.39 55.58 59.12 g. CdCl₂. (Dietz, Z. anorg. 1899, **20**, 257.)

+5H₂O. (Worobieff, Z. anorg. 1898, 18. 386.)

Cadmium hydrogen chloride, CdCl₂, 2HCl+ 7H₂O.

Decomp. in air. (Berthelot, C. R. 91. 1024.)

Cadmium (æsium chloride, CdCl₂, 2CsCl.

Easily sol, in H₂O and dil. HCl+Aq; insol. in conc. HCl+Aq. (Godeffroy, B. 8. 9.) Nearly insol. in CsCl+Aq. (Wells and

Walden, Z. anorg. 5. 266.)
CdCl₂, CsCl. Sl. sol. in H₂O; nearly insol. in CdCl₂+Aq. (Wells and Walden.)

Cadmium calcium chloride, 2CdCl₂, CaCl₂+ 7H₂O.

Rather deliquescent, and very sol. in H_2O . When ignited is only sl. sol. in $\rm H_2O$ with evolution of heat. (v. Hauer, J. pr. 63. 432.) $\rm CdCl_2$, $\rm 2CaCl_2 + 12H_2O$. Very deliquescent. (v. Hauer.)

at the critical temp. (Centnerszwer, Z. phys. | Cadmium cobaltous chloride, 2CdCl2, CoCl2 +12H₂O.

Deliquescent. Sol. in H2O. (v. Hauer, W. A. B. **17.** 331.)

Cadmium cupric chloride, CdCl₂, CuCl₂+ 4H₂O.

Sol. in H₂O. (v. Hauer, W. A. B. 17. 331.)

Cadmium hydrazine chloride, CdCl2, N₂H₄HČl.

Unstable in the air when moist. Very sol. in H₂(); sl. sol, in alcohol; sol, in NH₃+Aq.

(Curtius, J. pr. 1894, (2) **50**. 334.) CdCl₂,2N₂H₄HCl+4H₂(). Very sol. in H₂O; sl. sol. in alcohol. (Curtius, J. pr. 1894, (2) **50.** 335.)

Cadmium iron (ferrous) chloride, 2CdCl2, $FeCl_2+12H_2O$.

Sol. in H₂O. (v. Hauer, W. A. B. **17.** 331.)

Cadmium lithium chloride, CdCl₂, LiCl+ 3½H2O.

Very deliquescent. Decomp. by solution in H_2O , but not in alcohol. (Chassevant, Λ . ch. (6) **30.** 39.)

Cadmium magnesium chloride, 2CdCl₂, $MgCl_2+12H_2O$.

Deliquescent in moist, stable in dry air. Easily sol, in H₂O with absorption of heat. Much more sol, in hot than in cold H_2O . (v. Hauer.)

Solubility in H₂O at t°.

to	G. Cd ₂ MgCl ₅ in 100 g. solution	G. Cd ₂ MgCl, m 100 g. H ₂ O	
2 4	45.61	83.86	
26.8	49.69	98.77	
45.5	53.51	115.10	
67.2	58.14	138.90	
121.8	65.48	189.69	

(Rimbach, B. 1897, 30. 3084.)

 $CdCl_2$, $2MgCl_2+12H_2O$. Very deliquescent. (v. Hauer.)

Cadmium manganese chloride, 2CdCl₂, $MnCl_2 + 12H_2O$.

Deliquescent in moist, efflorescent in dry air. Sol. in H₂O. (v. Hauer.)

Cadmium nickel chloride, CdCl₂, 2NiCl₂+ 12H₂O.

Sol. in H₂O. (v. Hauer, W. A. B. 20. 40.) 2CdCl_2 , $\text{NiCl}_2 + 12\text{H}_2\text{O}$. Sol. in H_2O . (v. Hauer.)

Cadmium potassium chloride, CdCl2, KCl+ ½H₂O.

Sol. in H₂O without decomp. (v. Hauer.)

+H₂O. 100 mol, H₂O dissolve at: 19.3° 29.7° 40.1° 54.5° 2.65 3.21 3.72 4.33 mol. CdCl₂, KCl+H₂O. (Sudhaus, Miner, Jahrb, Beil.-Bd, 1914, 37. 26.)

Solubility in H2O at to.

t°	G. CdKCl ₃ in 100 g. solution	G. CdKCl ₃ in 100 g. H ₂ O	
2.6 15.9 41.5 60.6	21.87 26.60 35.66 40.67	27.99 36. 4 55.34 68.55	
105.1	51.67	106.91	

(Rimbach, B. 1897, 30. 3079.)

CdCl₂, 2KCl. 100 pts. H₂O at 15.5° dissolve 33.45 pts. Sl. sol. in alcohol. (Croft, Phil. Mag. (3) 21. 356.)

Solubility in salts + Aq at 16°. CdCl₂, 2KCl is sol. without decomp. in the following salt solutions at 16°

Salt	Mols. salt in 100 mole	In 1 litt	Sp. gr. of the		
H ₂ O	CdCl ₂	KCl	RCl	solution	
LiCl CaCl ₂ KCl	$9.3 \\ 3.8 \\ 2.378$	0.270	0.663 1.080 3.195	4.483 1.887	1.1380 1.2333 1.214

(Rimbach, B. 1905, 38. 1568,)

CdCl₂, 4KCl. More CdCl₂, KCl. (v. Hauer.) More sol. in H₂O than

100 g. H₂O dissolve at:

19.3° 29.7° 40.1° 54.5°

41.65 49.05 57.55 69.91 g. CdCl₂, 4KCl. (Sudhaus, Miner, Jahrb. Beil.-Bd. 1914, 37.

Solubility in H₂O at t°.

10	100 pts. solution contain p		
1-	Cd	Cl	К
4.0	3.64	9.84	8.31
23.6	5.66	14.02	11.52
50.2	9.10	18.09	13.60
108.8	11.97	23.08	17.10
109.0	11 91	23.15	17.22

(Rimbach, B. 1897, **30.** 3080.)

Decomp. by H₂O.

Can be recryst, without decomp, from LiCl, CaCl₂, or MgCl₂+Aq. (Rimbach, B. 1905, **38**. 1565.)

The salt is sol. without decomp. in HCl+Aqcontaining 19.8 mole HCl per 100 mole H₂O at 16°.

1 l. of the solution contains 0.033 mole CdCl₂, 0.132 mole KCl and 8.828 mole HCl; sp. gr. of the solution = 1.1403. (Rimbach, B. 1905, **38**. 1568.)

Cadmium rubidium chloride, CdCl₂, 2RbCl. Sol. in H₂O and HCl+Aq. (Godeffrov, B.

CdCl2, RbCl. Solubility in H2O at to. 100 pts. by wt. of the solution contain pts. by wt. RbCl, CdCl₂.

10	Pts. RbCl, CdCl ₂
1.2	12.97
14.5	16.80
41.4	25.31
57.6	30:.83
103.9	46.62

CdCl₂, RbCl is sol. in H₂O without decomp. from 0-104°. (Rimbach, B. 1902, 35. 1303.)

CdCl₂, 4RbCl.

Solubility of CdCl₂, 4RbCl and CdCl₂, RbCl in H₂O at t°.

	In 100 pts. by wt. of the solution		Composition of the solid phase		
t,°	Pts. by wt. Cd	Pts. by wt. Cl	Pts. by wt. Rb	Mol% mono- salt	Mol% tetra- salt
0.7	0.65	6.52	14.73	30	70
8.8	1.07	7.37	16.13	24	76
13.8	1.32	7.86	16.93	16	84
42.4	3.21	11.35	22.45	14	86
59.0	4.61	13.41	25.31	33	67
108.4	8.94	18.57	31.15		

(Rimbach, B. 1902, 35. 1305.)

Decomp. by H₂O between 0° and 108°. (Rimbach, B. 1905, **38.** 1571.) Sol. in conc. HCl without decomp. (Rim

bach, B. 1905, 38. 1571.)

Not sol. in CaCl2+Aq and LiCl+Aq without decomp. (Rimbach, B. 1905, 38. 1571.)

Cadmium sodium chloride, CdCl₂, 2NaCl+ 3H₂O.

Sol. in 1.4 pts. H₂O at 16°. (Croft.) 100 mol. H₂O dissolve at:

19.3°	29.7°	40.1°	54.5°
3.93	4.29	4.73	5.18 mol. CdCl ₂ ,
			2NoCl+3HO

Stable between 19° and 55°.

(Sudhaus, Miner, Jahrb. Beil.-Bd. 1914, 37.

Sl. sol. in alcohol or wood alcohol. (Croft.)

Cadmium strontium chloride, 2CdCl₂, SrCl₂+ 7H₂O.

Sol. in H₂O. (v. Hauer.)

Cadmium chloride ammonia, CdCl₂, 2NH₃.

Nearly insol. in H₂O. (v. Hauer.)

 $CdCl_2$, $3NH_3 + \frac{1}{4}H_2C$.

 $CdCl_2$, $4NH_3 + \frac{1}{2}H_2O$.

CdCl₂, 5NH₃. (André, C. R. **104**. 908.) CdCl₂, 6NH₃. Difficultly sol. in cold H₂O. (Schüler, A. **87**. 34.)

Cadmium chloride cupric oxide, CdCl₂, 3CuO+3H₂O.

Not decomp. by H₂O. (Mailhe, A. ch. 1902, (7) 27. 378 and 174.)

Cadmium chloride hydrazine, CdCl₂, 2N₂H₄. Insol. in H₂O.

Sol. in NH₄OH+Aq. (Franzen, Z. anorg.

1908, **60**. 279.) +H₂O. Insol. in H₂O; easily sol. in NH₄OH+Aq. (Curtius, J. pr. 1894, (2) **50**. 345.)

Cadmium chloride hydroxylamine, CdCl₂, 2NH₂OH.

Sl. sol. in cold, somewhat more in warm H_2O . Very sol. in hydroxylamine +Aq. Very sl. sol. in alcohol and other organic solvents. (Crismer, Bull. Soc. (3) **3.** 116.)

Aq solution sat. at 20° contains about 1%. (Antonoff, C. C. 1905, II. 810.)

Cadmium fluoride, CdF₂.

Difficultly sol. in H₂O. Easily sol. in HF+

Aq. (Berzelius, Pogg. 1. 26.)
Very sol. in H₂O; insol. in 95% alcohol; sol. in HCl, H₂SO₄, or HNO₃+Aq with evolution of HF. (Poulenc, C. R. 116. 582.)

1 l. H₂O dissolves 0.289 mol. CdF₂ at 25°, or 100 cc. sat. aqueous solution contains 4.36 g. CdF₂ at 25°. (Jaeger, Z. anorg. 1901, 27. 35.)

1 l. of 1.08–N HF dissolves 0.372 mol. CdF_2 at 25°. (Jaeger, Z. anorg. 1901, **27.** 35.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

Cadmium ceric fluoride, CdF₂,2CeF₄+7H₂O.

Ppt. Decomp. by H₂O. (Rimbach, A. 1909, **368**. 106.)

Cadmium columbium fluoride.

See Fluocolumbate, cadmium.

Cadmium molybdenyl fluoride. See Fluoxymolybdate, cadmium.

Cadmium silicon fluoride. See Fluosilicate, cadmium.

Cadmium stannic fluoride.

See Fluostannate, cadmium.

Cadmium titanium fluoride. See Fluotitanate, cadmium.

Cadmium zirconium fluoride. See Fluozirconate, cadmium.

Cadmous hydroxide, CdOH.

Insol. in H₂O. Decomp. by acids into cadmic salt. (Morse and Jones, Am. Ch. J. **12**, 488.)

Cadmium hydroxide, CdO₂H₂.

Insol. in H₂O.

1 l. CdO_2H_2+Aq contains 0.0026 g. CdO_2H_2

at 25°. (Bodländer, Z. phys. Ch. 1898, 27. 66.)

Solubility in $H_2O = 2.6 \times 10^{-4}$. (Herz, Z. anorg. 1900, 24. 126.)

Sol. in acids; very sol. in NH₄OH+Aq; insol. in KOH, NaOH, Na₂CO₃, K₂CO₃, and

(NH₄)₂CO₃+Aq. Easily sol. in (NH₄)₂SO₄, NH₄Cl, NH₄NO₃,

and NH₄ succinate + Aq. (Wittstein.)
Freshly pptd. CdO₂H₂ is sol. in alkali haloids + Aq. (Bersch, Z. phys. Ch. 1891, **8**. 392.)

Solubility in NH₄OH+Aq increases with increase in concentration of NH₄OH. (Euler, B. 1903, **36.** 3401.)

Solubility in NH₄OH+Aq at 25°.

NH3 norm.	g. CdO per l.
0.5	0.24
1 0	0 62
1.8	1.33
4.6	4.92

(Bonsdorff, Z. anorg. 1904, 41, 187.)

Insol. in ethyl, and methyl amine+Aq. (Wurtz.)

Very sl. sol. in HCN + Aq even when freshly pptd. (Schüler, A. 87. 48.)

Not pptd. in presence of Na citrate (Spiller), and many non-volatile organic substances. (Rose.)

Cadmium iodide, Cdl₂.

Sol. in 1.13 pts. H_2O at 15°. (Eder, Dingl. **221.** 89.)

Sol. at 20° 40° 60° 80° 100° in 1.08 1.00 0.93 0.86 0.75 pts. H₂O. (Kremers, Pogg. **103.** 57.)

Sat. Cdl₂+Aq contains at:

 $+2^{\circ}$ $+10^{\circ}$ 13° 32° -4'' 24° 45.2 46.547.4° CdI2. 42.4 43.7 44.8 76° 94° 54° 64° 95° 135° 50.152.455.154.7 $62.9\% \text{ Cd1}_2$. 49.5140° 165° 185° 202° 202° 255° 73.473.284.5% CdI₂. 63.168.170.7

(Étard, A. ch. 1894, (7) 2. 545.)

Solubility in H₂O.

100 g. of the sat. solution contain at:

 $\begin{array}{ccccc} 0^{\circ} & 18^{\circ} & 50^{\circ} & 75^{\circ} & 100^{\circ} \\ 44.39 & 46.02 & 49.35 & 52.65 & 56.08 \ \mathrm{g.} \ \mathrm{CdI_{2}}, \\ & \mathrm{(Dietz, \ Z. \ anorg. \ 1899, \ \textbf{20}. \ 262.)} \end{array}$

Sp. gr. of Cd I_2 +Aq containing pts. Cd I_2 to 100 pts. H_2 ().

21.4 43.7 88.5 pts. CdI₂. 1.1681 1.328 1.6139

(Kremers, Pogg. 111. 60.)

Sp. gr. of CdI₂+Aq at 19.5° containing: 5 10 15 20 25 %CdI₂, 1.044 1.088 1.138 1.194 1.253

(Kremers, calculated by Gerlach, Z. anal. **8.** 285.)

Sp. gr. of CdI_2+Aq at 18° . % CdI_2 1 5 10 15 20 Sp. gr. 1.0071 1.0425 1.0883 1.1392 1.1943 % C_0 CdI_2 25 30 35 40 45 Sp. gr. 1.2550 1.3228 1.4000 1.4816 1.5741 (Grotrian, W. Ann. 1883, **18**. 193.)

Sp. gr. of CdI₂+Aq.

g.CdI2 per l.	Sp. gr.	g.CdI ₂ per 1.	Sp. gr.
98.85	1.08	289.5	$1.237 \\ 1.328$
197.7	1.162	400	

(Barbier and Roux, Bull. Soc. 1890, (3) 3. 425.)

Sp. gr. of CdI₂+Aq.

CdI2	t°	Sp. gr. at to	Sp. gr. at 18°
0 0429	17.68	0.99915	0.99908
	22.88	0.99807	
0.100	17.55	0.99965	0.99956
į	22.91	0.99363	
0.204	17.76	1.00052	1.0005
	22.79	0.99948	
0.399	17.40	0.00223	1.0021
	24.30	1.00082	1
0.600	18.00		1.0038
0.800	17.44	1.00564	1.0056
	23.11	1.00442	
1.00	18.00		1.0072

(Wershofen, Z. phys. Ch. 1890, **5.** 493.)

Sp. gr. CdI₂+Aq at 18°/4° containing: 31.123 13.677 9.559 % CdI₂. 1.338 1.125 1.086 (de Muynck, W. Ann. 1894, **53**. 561.)

 $CdI_2 + Aq$ containing $10.97\,\%$ CdI_2 has sp. gr. $20^{\circ}/20^{\circ} = 1.0982.$

 CdI_2+Aq containing 16.53% CdI_2 has sp. gr. 20°/20° = 1.1562.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 282.)

Sp. gr. of CdI₂+Aq at 20°.

Normality of CdI ₂ +Aq	% CdI2	Sp. gr.
1.924	44.53	1.5807
0.951	27.07	1.2837
0.447	14.40	1.1355
0.211	7.26	1.0630

(Forchheimer, Z. phys. Ch. 1900, 34. 29.)

 CdI_2+Aq containing 1 pt. CdI_2 in 2.2691 pts. H_2O at 17° has sp. gr. = 1.3341. (Hittorf, Z. phys. Ch. 1902, 39. 628.)

Sol. in sat. HI+Aq.

Sol. in warm NH₂OH+Aq.

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 827.)

Sl. col. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, 25. 217.)

Difficultly sol. in POCl₃. (Walden, Z. anorg. 1900, 25. 212.)

Nearly insol. in AsBr₃. (Walden, Z. anorg. 1902, 29, 374.)

Sol. in SO₂Cl₂. (Walden, Z. anorg. 1900,

25. 215.)
Sol. in 15 pts. alcohol. (Vogel, N. Rep.

Pharm. 12. 393.)
Sol. in 0.98 pt. abs. alcohol. (Eder, Dingl.

Sol. in 0.98 pt. abs. alcohol. (Eder, Ding. **221**. 89.)

Sp. gr. of CdI₂+alcohol.

%CdI₂ Sp. gr. 20°/20° 0 0.7949 7.28 0.8470

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 284.)

Sol. in 5.2 mols. methyl, 7 mols. ethyl, and 9.8 mols. propyl alcohol at 20°. (Timofejew, C. R. 112. 1224.)

Sol. in 3.6 pts. ether. (Eder, l. c.) Sol. in 2.0 pts. alcohol-ether (1:1). (Eder,

Very sl. sol. in anhydrous abs. ether. (Hampe, Ch. Z. 1887, 11. 847.)

100 g. of sat. solution in abs. ether contain 0.143 g. CdI₂ at 12°. (Tyrer, Proc. Chem. Soc. 1911, **27.** 142.)

Solubility in ether +Aq at 12°.

% H ₂ O in ether	% CdI2	% H₂O in ether	% CdI2	%H2O in ether	% CdI2
0.0 0.10 0.30	$0.143 \\ 0.78 \\ 2.07$	0.50 0.70 0.90	3.36 4.77 6.46	1.00 1.10 1.14	7.30 8.27 8.68

(Tyrer, Proc. Chem. Soc. 27. 142.)

Solubility in benzene at $16^{\circ} = 0.01\%$ " $35^{\circ} = 0.02\%$

Solubility in ethyl ether at 0° = 0.03% 15.5° = 0.04%

15.3 = 0.04% $20.3^{\circ} = 0.05\%$ gi. 1895. (3) **49.** 52.)

(Linebarger, Am. J. Sci. 1895, (3) **49.** 52.) Sol. in acetone. (Eidmann, C. C. **1899**, II. 1014.)

1 g. CdI₂ is sol. in 4 g. acetone at 18°. Sp. gr. of sat. solution 18°/4°=0.994. (Naumann, B. 1904, **37**. 4338.)

Sp. gr. of CdI₂+acetone.

%CdI2	Sp. gr. 20°/20°.
0 12.02	0.7998 0.8929
12.02	0,0020

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 284.)

Sol. in chinolin. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

100 g. benzonitrile dissolve 1.6295 g. CdI₂ ** at 18°. (Naumann, B. 1914, 47. 1370.)

Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.)

Sl. sol. in ethylamine. (Shinn, J. phys. Chem. 1907, 11. 538.) Insol. in CS₂. (Arctowski, Z. anorg. 1849,

6. 257.)

Solubility in methyl acetate = 0.7-1.5%; 2.1% at bpt. (Schröder and Steiner, J. pr. 1909, (2) 79. 49.)

Sol. in methyl acetate. (Naumann, B.

1909, 42. 3790.)

1 pt. is sol. in 54.3 pts. ethyl acetate at 18° The sat. solution has $D18^{\circ}/4^{\circ} = 0.9145$. (Naumann, B. 1910, 43. 318.)

Insol. in mustard oil. (Mathews, J. phys.

Chem. 1905, 9. 647.)

Mol. weight determined in piperidine. pyridine, methyl and ethyl sulphide. (Werner, Z. anorg. 1897, 15. 17.)

Cadmium hydrogen iodide, CdI_2 , $HI + 3H_2()$. Decomp. in air. (Dobroserdow, C. C. **1900,** II. 527.)

Cadmium cæsium iodide, CdI_2 , $CsI + H_2O$.

Sol, in H₂O without decomp. (Wells and Walden, Z. anorg. 5. 271.)

CdI₂, 2CsI. As above.

CdI₂, 3CsI. Decomp. by H₂O into the above salt.

Cadmium hydrazine iodide, CdI₂,2N₂H₄HI. Sol. in H₂O. (Ferratini, C. A. **1912.** 1612.)

Cadmium mercuric iodide.

Very sol, in H₂O. (Berthemot, J. Pharm. **14.** 613.)

CdI₂, 3HgI₂. Sol. in H₂O. Can be recrystallized in alcohol. (Clarke and Kebler, Am. Ch. J. 5. 235.)

Cadmium potassium iodide, CdI₂, KI+H₂O. Sol. in 0.94 pt. H₂O at 15°. (Eder, Dingl. 221. 89.)

 CdI_2 , $2KI + 2H_2O$. Deliquescent. tremely sol. in H₂O. Sol. at 15° in 0.73 pt. H₂O. Sl. sol, in alcohol and wood spirit, but less than CdI₂. (Croft.)

Sol. at 15° in 1.4 pts. absolute alcohol, 24.5 pts. ether (0.729 sp. gr.), and 4.5 pts. alcoholether (1:1). (Eder, l. ϵ .)

Sp. gr. of K₂CdI₄+Aq at 18°. %K₂CdI₄ Sp. gr. 1.0065 1.0384 1.0808 1.1269 1.1770

 $\%\mathrm{K}_{2}\mathrm{Cd}\mathrm{I}_{4}$ Sp. gr. $1.2313\ 1.2890\ 1.3557\ 1.4282\ 1.5065$ (Grotrian, W. Ann. 1883, 18. 193.)

	Sp. gr. of	K ₂ CdI ₄ +Ac	[·
%K2CdI4	t°	Sp. gr. at to	Sp. gr. at 18°
0.0328	18		0.99895
0.0596	18		0.99921
0.0804	18	ļ	-0.99938
0.100	17.12	0.99962	0.99945
	21.82	0 99872	
0.250	18		1.0007
0.500	18	İ	1.0027
1.003	17.32	1.0068	1.0067

(Wershofen, Z. phys. Ch. 1890, 5. 493.)

1.0061

Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Cadmium sodium iodide, CdI_2 , $2NaI + 6H_2()$.

Deliquescent. (Croft.)

20.63

Sol. at 15° in 0.63 pt. H₂O, 0.86 pt. abs. alcohol, and 10.1 pts. ether (sp. gr. 0.729). (Eder, Dingl. 221. 89.)

Cadmium strontium iodide, CdI₂, SrI₂+ 8H₂O.

Deliquesces in moist, effloresces in dry air; sol. in H₂O. (Croft.)

Cadmium iodide ammonia, CdI₂, 2NII₃.

Decomp. by H₂O. (Rammelsberg.)

CdI₂, 4NH₃. (Dawson and McCrae, Chem. Soc. 1900, 77. 1246.)

CdI₂, 6NH₃. Decomp. by H₂O; sol. in warm, less sol. in cold NH₄OH+Aq. (Rammelsberg.)

Cadmium iodide hydrazine, CdI₂, 2N₂H₄.

Easily sol. in warm NH₄OH+Aq. (Franzen, Z. anorg. 1908, **60.** 281.)

Cadmium iodide hydroxylamine, CdI2, 3NH₂OH.

Sol. in H₂O and alcohol. Insol. in ether. (Adams, Am. Ch. J. 1902, 28. 218.)

Cadmium iodide selenide, CdI₂, 3CdSe.

Easily decomp. (Fonzes-Diacon, C. R. 1900, **131.** 897.)

Cadmium iodosulphide, CdI, 2CdS.

Ppt. (Naumann, B. 1904, 37, 4338.)

Cadmium suboxide, Cd4O.

Decomp. by H₂O, acids and NH₄OH+ (Tanatar, Z. anorg. 1901, 27, 433.) Cd₂O. Properties as cadmous hydroxide.

(Morse and Jones.)

Cadmium oxide, CdO.

Insol. in H_2O . Sol. in acids. Sol. in $NH_4OH + Aq$. Insol. in $(NH_4)_2CO_3 + Aq$. Sol. in Easily sol. in NH₄Cl+Aq, less in NH₄NO₃+ Aq. (Brett, 1837.)

Insol. in KOH, NaOH, K₂CO₂, and Na₂CO₂ | Cadmium sulphide, CdS. +Aa.

Sec also Cadmium hydroxide.

Solubility in (calcium sucrate+sugar)+

1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 0.22 g. CdO.

1 l. solution containing 174.4 g. sugar and 14.1 g. CaO dissolves 0.48 g. CdO.

(Bodenbender, J. B. 1865. 600)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Cadmium peroxide, Cd_aO_b or $Cd_3O_5(?)$.

(Haas.)

 CdO_2 , $Cd(OH)_2$. (Kouriloff, A. ch. (6) 23. 431.)

Very stable towards H₂(). Insol. in NH₄OH +Aq. (Haas, B. 1884, **17**, 2253.) 4CdO₂, Cd(OH)₂. Ppt. Insol. in NaOH + Aq. (Eÿkmann, C. C. **1905**, I. 1629.) 5CdO₂,CdO+3H₂O. Ppt. (Teletow, C. A.

1912, 43.)

Cadmium oxybromide, CdO, CdBr₂+ H_2O .

Decomp. by H_2O . (Tassily, C. R. 1897, **124.** 1023.) +2H₂O. Stable in dry air; insol. in H₂O.

(Tassily, C. R. 1897, **124.** 1022.) +3H₂O. Slowly decomp. by H₂O. (Tas-

sily, C. R. 1897, 124. 1022.) +7H₂O. (Mailhe, C. R. 1901, **132.** 1561.)

Cadmium oxychloride, CdCl₂, CdO+H₂O.

Sl. sol. in hot H₂O. (Habermann, M. Ch. **5.** 432.)

+7H₂O. (Mailhe, Bull. Soc. 1901, (3) 25. 791.)

2CdO, CdCl₂. Insol. in H₂O, but slowly decomp. thereby. (Canzoneri, Gazz. ch. it. 1897, **27.** (2) 486.)

Cadmium oxyiodide, CdO, CdI₂+ H_2O .

Decomp. by H₂O. (Tassily, C. R. 1897, **124.** 1023.)

Stable in dry air; insol. in H₂O. +3H₂O. (Tassily, C. R. 1897, 124, 1022.)

Cadmium phosphide, Cd₃P₂.

Sol. in HCl+Aq with evolution of PH₃. (Stromeyer.)

Cd₂P. Sol. in conc. HCl+Aq. (Emmerling, B. 12. 152.)

Easily decomp. by acids. (Kulisch, A. 231.

CdP₂. Decomp. by boiling conc. HCl+Aq. (Renault, C. R. 76. 283.)

Cadmium selenide, CdSe.

Sol. in HCl+Aq. (Uelsmann, A. 116. 122.) Easily decomp. by acids. (Fonzes-Diacon, C. R. 1900, 131. 897.)

Insol. in H₂O.

Solubility in H₂O at 16-18° = 6.6 x 10⁻⁸ mols. per l. (Biltz, Z. phys. Ch. 1907, **58**. **2**91.)

! l. H₂O dissolves 9.00 x 10⁻⁶ mols. CdS

(artificial greenockite) at 18°

1 l. H₂O dissolves 8.86 x 10⁻⁴ mols. pptd. CdS at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.)

Difficultly sol. in hot dil. HCl+Aq. Easily sol. in cold conc. HCl+Aq. (Stromeyer.) Sol. in HNO₃+Aq (Meissner), and boiling dil. H₂SO₄+Aq (1:6). (A. W. Hoffmann, A. 115. 286.) Very sl. sol. in NH₄OH+Aq. Wackenroder, Repert. 46. 226.) Insol. in KOH, or (NH₄)₂S+Aq. Appreciably sol. in an acid solution of NH₄Cl. (Baxter and Hines, Z. anorg. 1905, 44, 160.)

Much more sol. in (NH₄)₂S+Aq than usually supposed. (Ditte, C. R. 85, 402.). Solubility increases by warming, and at 68° is twice that at ordinary temperatures. A sat. solution of (NH₄)₂S dissolves about 2 g. CdS to a litre. Alkali sulphides dissolve much less. (Ditte.)

Fresenius (Z. anal. 20. 236) could not confirm the above. According to Fresenius, CdS is not appreciably sol. in (NH₄)₂S+Aq.

Insol in Na₂SO₃ or KCN+Aq. (Fresenius.) Insol in NH₄Cl or NH₄NO₃+Aq. (Brett.) Sol. in alkali sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, -stannates+Aq. (Storch, B. 16. 2015.)
Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 827.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Min. Greenockite. Sol. in HCl+Aq.

Colloidal.—Solution of 4 g. colloidal C in a litre H₂O remains transparent several days. If it contains 11 g. CdS in a litre, it is completely coagulated in 24 hours. Solutions of salts of the following concentration cause an immediate coagulation in an aqueous solution of CdS containing 3.62 g. in a litre.

> KCl 1:1615KBr 1:727ΚI 1:57**KCN** 1:166 KClO₃. 1:1666 KNO₃. 1:1000 $K_2S_2O_6$ 1:5000 K_2SO_4 1:833K₃Fe(CN)₆ . 1:166K₄Fe(CN)₆ . <1:100 1:400K₂CrO₄ K2Cr2O7 1:3571NaCl 1:2666Na₂S₂O₃ 1:98NaHCO₃ 1:333 Na₂CO₃ 1:166 Na₂HPO₄ 1:202

N-O II ()	1 . 0451
$NaC_2H_8O_2$.	1:2451
Na benzoate	1:10.000
$(NH_4)_2C_2O_4$.	1:588
D. CI	
BaCl ₂	. 1:11,764
$Ba(NO_3)_2$.	1:8032
BaS_2O_6 .	. 1:5617
	1:41.666
$MgSO_4$	
MnSO ₄ .	1:22,222
CdSO ₄	1:250,000
$Cd(NO_3)_2$	1:285,714
$Pb(ClO_3)_2$.	1:209
$Pb(C_2H_3O_2)_2$. 1:147,058
$Hg(CN)_2$.	. < 1:20
$Al_2(SO_4)_3$.	1:232,558
Alum	1:192,377
Chrome alum	1:42,555
HCl	1:4807
	. 1:8000
H_2SO_4	
$HC_2H_3O_2$.	1:15
$H_2C_2O_4$.	1:23,255
Succinic acid	. <1:100
Tartaric acid	1:333
randante aete	. 1 . 900

(Prost, Belg. Acad. Bull. (3) **14.** 312; J. B. **1887.** 537.)

Cadmium pentasulphide, CdS₅.

Insol. in H₂O. (Schiff, A. **115.** 74.) Mixture of CdS and S. (Follenius, Z. anal. **13.** 412.)

Cadmium potassium sulphide, K₂Cd₃S₄. (Milbauer, Z. anorg. 1904, **42.** 439.)

Cadmium sodium sulphide, 3CdS, Na₂S. Decomp. by H₂O. (Schneider, J. pr. (2) 8. 29.)

Cadmium sulphoiodide.

See Cadmium iodosulphide.

Cadmium telluride, CdTe.

Not attacked by dif. acids. Attacked in the cold only by HNO₃. (Tibbals, J. Am. Chem. Soc. 1909, **31.** 908.)

Cadmic acid.

Potassium cadmate.

Insol. in H₂O, but gradually decomp. when in contact therewith. (Meunier, C. R. **63**. 330.)

Cæsium, Cs.

Decomp. H_2O with great violence. (Setterberg, A. **211.** 100.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Cæsium acetylide acetylene, Cs₂C₂, C₂H₂.

Insol. in C₆H₆ and in CHCl₃. (Moissan, C. R. 1903, **136**. 1218.)

Cæsium amide, CsNH₂.

Decomp. by H₂O. Very sol. in liquid NH₃. (Rengade, C. R. 1905, **140**. 1185.)

Cæsium ammonia, Cs,NH3.

Sol. in liquid NH₃. (Moissan, C. R. 1903, **136**. 1177.)

Cæsium azoimide, CsN₃.

Deliquescent. Stable in aq. solution. 224.2 pts. sol. in 100 pts. H_2O at 0° 307.4 ""...100 " H_2O "16° 1.0366 ""100 " abs. alċohol "16° Insol. in pure ether. (Curtius, J. pr. 1898, (2) 58. 283.)

Cæsium bromide, CsBr.

Ppt. (Chabrie, C. R. 1901, **132**, 679.) Sat. CsBr+Aq at 25° contains 55.23% CsBr. (Foote, Am. Ch. J. 1907, **37**, 125.)

Cæsium tribromide, CsBr₃.

Sol in H₂O; decomp. by alcohols. (Wells, Sill. Am. J. **143.** 17.)

Cæsium pentabromide, CsBr₅.

Very unstable. (Wells and Wheeler, Sill. Am. J. **144.** 42.)

Cæsium cobalt bromide, Cs₂CoBr₄.

Decomp. by H_2O . (Campbell, Z. anorg. 1894, **8**, 126.)

Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) **48.** 418.)

Cs₃CoBr₅. Decomp. by H₂O. (Campbell, Z. anorg. 1894, **8.** 126.)

Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) **48.** 418.)

Cæsium copper bromide, CsBr, CuBr₂.

Sol, in H₂O without decomp. (Wells and Walden, Z. anorg. **5.** 304.)
2 CsBr, CuBr₂. (W. and W.)

Cæsium iridium bromide.

See Bromiridate, cæsium.

Cæsium iron (ferric) bromide, CsFeBr₄.

Sol. in H_2O . (Walden, Z. anorg. 1894, **7.** 332.)

 $Cs_2FeBr_5 + H_2O$. (Walden, Z. anorg. 1894, **7.** 332.)

Cæsium lead bromide, CsBr, 2PbBr₂.

Nearly stable in aqueous solution. (Walden, Sill. Am. J. 145, 127.)

CsBr, PbBr₂. Decomp. by $H_2(\cdot)$. (Walden.)

4CsBr, PbBr₂. As above.

Solubility determinations show that the double salts formed by cæsium and lead bromides at 25° are CsPb₂Br₅, CsPbBr₃ and Cs₄PbBr₆. (Foote, Am. Ch. J. 1907, **37**. 125.)

Cæsium magnesium bromide, CsBr, $MgBr_2 + 6H_2O$.

Sol. in H₂O. (Wheeler and Campbell, Z. anorg. 5. 275.)

Cæsium mercuric bromide, CsBr, 2HgBr₂.

Not decomp. by H₂O. 100 pts. solution sat. at 16° contain 0.807 pt. CsBr, 2HgBr₂. Sl. sol. in hot strong alcohol, from which CsBr, HgBr₂ separates on cooling. (Wells, Sill. Am. J. 144. 221.)

CsBr, HgBr₂. Decomp. by H₂O into above salt. Sol. in alcohol without decomp. (Wells.) 2CsBr, HgBr₂. Decomp. by H₂O into CsBr, 2HgBr₂.

3CsBr, HgBr₂. As above.

Cæsium molybdenyl bromide, 2CsBr, MoOBra.

(Weinland and Knöll, Z. anorg. 1905, 44. 107.)

Cæsium nickel bromide, CsNiBra.

Decomp. by H₂O. (Campbell, Z. anorg. 1894, **8.** 126.)

Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) 48, 418.)

Cæsium osmium bromide.

See Bromosmate, cæsium.

Cæsium palladium bromide.

See Bromopalladate, cæsium and bromopalladite, cæsium.

Cæsium platinum bromide.

See Bromoplatinate, cæsium.

Cæsium ruthenium bromide.

See Bromoruthenite, cæsium.

Cæsium selenium bromide.

See Bromoselenate, cæsium.

Cæsium tellurium bromide.

See Bromotellurate, cæsium.

Cæsium thallic bromide, CsBr, TlBr₃.

Sol. in H₂O with decomp. (Pratt, Z. anorg. 1895, 9, 19.)

By recryst. from H₂O, forms 3CsBr, 2TlBr₃.

(Pratt, Am. J. Sci. 1895, (3) 49. 403.) 3CsBr, 2TlBr₃. Can be recryst, unchanged from H₂O. (Pratt, Am. J. Sci. 1895, (3) 49. 402.)

Cæsium tin (stannic) bromide.

See Bromostannate, cæsium.

Cæsium zinc bromide, 3CsBr, ZnBr₂.

Sol. in H₂O. (Wells and Campbell, Z. anorg. 5. 275.)

2CsBr, ZnBr₂. As above.

Cæsium bromide columbium oxybromide, 2CsBr. CbOBr₃.

Unstable in moist air. Decomp. by H₂O. (Weinland, B. 1906, 39. 3059.)

Cæsium bromochloride, CsBr2Cl.

Properties as CsBr₃. (Wells.) CsBrCl₂. As above. (Wells.)

Cæsium mercuric bromochloride, Cs₃HgCl₃Br₂.

Decomp. by H₂O finally to HgBr₂. (Wells. Sill. Am. J. 144. 121.)

Cs₂HgCl₂Br. As above. CsHgClBr₂. As above. CsHg₂ClBr₄. As above.

CsHg₅ClBr₁₀. As above.

Cæsium bromochloroiodide, CsBrClI.

More sol, in H₂O than in alcohol. Not decomp. at once by ether. (Wells.)

Cæsium bromoiodide, CsBrI₂.

Decomp. by H₂O. Sol. in alcohol. Decomp. by ether with residue of CsBr. (Wells, Sill. Am. J. 143. 17.) CsBr₂I. More sol. in H₂O than in alcohol.

Not decomp. by ether.

CsBr₂I+Aq sat. at 20° contains about 4.45% CsBr₂I. (Wells.)

Cæsium carbide, Cs₂C₂.

Decomp. by cold H₂O. (Moissan, C. R. 1903, **136**, 1221.)

Cæsium chloride, CsCl.

Very deliquescent; sol. in H₂O and alcohol.

Solubility of CsCl at to.

t°	Pts. by wt. of CsCl in 100 pts. solution
0.3	61.9
10	63.5
20	64.9
30	66.3
40	67.4

(Hinrichsen, Z. phys. Ch. 1904, **50**, 99.)

Solubility of CsCl at t°.

t°	% CsCl	ll to	% CsCl
0	61.7	60	69.7
10	63.6	70	70
20	65.1	80	71.4
30	66.4	90	72.2
40	67.5	100	73.0
50	68.0	119.4	74.4

(Berkeley, Trans. Roy. Soc. 1904, 203. A. 208.)

A normal solution of CsCl has sp. gr. at $25^{\circ} = 1.1076$. (Wagner, Z. phys. Ch. 1890, **5**. 36.)

Sp. gr. at 20°/4° of a normal solution of CsCl=1.125815. (Haigh, J. Am. Chem. Soc. 1912, **34**. 1151.)

Sp. gr. of CsCl+Aq.				
G. equiv. CsCl per l. at 18°	Sp. gr. at 6°/6°	Sp. gr. at 18°/18°	Sp. gr. at 30°/30°	
0.504 1.602 2.007 3.994	1.06556 1.12962 1.25705 1.50514	1.06483 1.12825 1.25452 1.50100	1.06452 1.12750 1.25307 1.49859	

(Clausen, W. Ann. 1914, (4) 44. 1071.)

Solubility of CsCl+FeCl₃ in H₂O at 21°.

Substance added		Pts. by weigh of sol	nt in 100 pts ution	
FeCl ₂ grams	CsCl grams	FeCl ₃	CsCl	
0	65	0	65.0	
0.6	11.6	0.45	55.18	
1.4	10.2	2.1	52.38	
2.2	8.8	5.24	51.44	
2.0	7.4	7.8	47.70	
3.8	6.0	8.93	41.15	
4.6	4.6	15.34	25.25	
5.4	2.8	21.65	14.96	
6.2	1.4	27.96	8 42	
35	0.2	48 71	0.94	
35	0	83,89	0	

(Hinrichsen, Z. phys. Ch. 1904, **50.** 96.)

Solubility of CsCl+HgCl2 in H2O at 25°.

Solution contains		C. U.J
% CsCl	% HgCl ₂	Solid phase
65.61	0.00	CsCl
65.78	0.215	$CsCl + Cs_3HgCl_5$
62.36	0.32	Cs_3HgCl_5
57.01	0.64	
52.35	1 23	"
51.08	1.44	Cs ₃ HgCl ₅ +Cs ₂ HgCl ₄
49.30	1.49	Cs ₂ HgCl ₄
45.95	1.69	1
45.23	1.73	Cs ₂ HgCl ₄ +CsHgCl ₃
38.63	1.32	$CsHgCl_3$
17.03	0.51	1
1.53	0.42	"
0.61	2.64	CsHgCl ₃ +CsHg ₂ Cl ₅
0.49	2.91	CsHg ₂ Cl ₅
0.40	3.78	CsHg ₂ Cl ₅ +CsHg ₅ Cl ₁₁
0.44	4.63	"
0.41	4.68	$CsHg_5Cl_{11}$
0.25	5.65	222830111
0.18	7.09	$CsHg_5Cl_{11}+HgCl_2$
0.00	6.90	HgCl ₂

(Foote, Am. Ch. J. 1903, 30. 340.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

100 g. solution in acetone sat. at 25° contain 0.032 g. CsCl. (Foote and Haigh, J. Am. Chem. Soc. 1911, **33.** 461.)

Solubility of CsCl+HgCl2 in acetone at 25°.

Solution	n contains	Solid phase
% HgCl2	% CsCl	pond phase
57.74	0.00	$HgCl_2$
57.79	0.13	$HgCl_2+CsHg_5Cl_{11}$
57.74	0.20	$CsHg_5Cl_{11}$
52.54	0.22	7,
49.83	0.32	"
44.32	0.50}	$CsHg_5Cl_{11}+CsHg_2Cl_5$
44.46	0.44	"
39.65	0.48	$CsHg_2Cl_5$
28.48	0.48	"
26.96	0.52	$CsHg_2Cl_b+CsHgCl_3$
27.32	0 61	"
21.50	0.46	$CsHgCl_3$
13.08	0.45	"
0.16	0.19	Mixtures of salts
0.17	0.25	"
0.02	0.11	"
0.00	0 032	CsCl

(Foote and Haigh, J. Am. Ch. Soc. 1911, **33**. 461.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Solubility in glycol at ord, temp. = 10.6-10.8%. (de Coninck, Belg. Acad. Bull. **1905.** 359.)

Insol. in anhydrous pyridine and in 97% pyridine+Aq. Sl. sol. in 95% pyridine+Aq and in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, **30**. 1107.)

Cæsium chromium chlcride, 2CsCl,CrCl_z+ H₂().

Stable in the air. Sol. in H_2O . (Wells, Z. anorg. 1895, 10. 182.)

2CsCl,CrCl₃+4H₂O; hydroscopic; very sol. in H₂O. (Wells, l. c.)

Cæsium tetra-aquochromium chloride, CrCl₂(OH₂)₄,Cl, 2CsCl.

Ppt. (Werner, B. 1901, 34. 1602.)

Cæsjum cobalt chloride, CsCoCl₃+2H₂O.

Decomp. by H₂O and alcohol. (Campbell, Z. anorg. 1894, **8.** 126.)

Cs₂CoCl₄. Decomp. by H₂O and by alcohol. (Campbell, Z. anorg. 1894, **8**. 126.)
Cs₃CoCl₅. Decomp. by H₂O and by alcohol. (Campbell, Z. anorg. 1894, **8**. 126.)

Cæsium cuprous chloride, CsCl, Cu_2Cl_2 .

 $\begin{array}{c} {\rm Decomp.\ by\ H_2O\ into\ CuCl_2,\ CsCl.\ \ (Wells,\\ Z.\ anorg.\ \textbf{5.}\ 306.)} \\ {\rm 3CsCl,\ Cu_2Cl_2.\ \ \ (Wells.)} \\ {\rm 6CsCl,\ Cu_2Cl_2.\ \ \ \ \ (Wells.)} \end{array}$

Cæsium cupric chloride, 2CsCl, CuCl₂.

Easily sol. in H₂O and dil. HCl+Aq; insol. in conc. HCl+Aq. (Godeffroy, B. 8. 9.)

Sol, in small amount H₂O without decomp. (Wells and Dupee, Z. anorg. 5. 300.)

+2H₂O. Efflorescent. (W. and D.) 3CsCl, 2CuCl₂+2H₂O. CsCl, CuCl₂. Sol. in H₂O without decomp. (W. and D.)

Cæsium gold chloride.

See Chloraurate, cæsium.

Cæsium iridium tetrachloride.

See Chloriridate, cæsium.

Cæsium iron (ferric) chloride, CsFeCl₄+ 1/2H2O.

Sol. in H₂O. Decomp. in the air. (Wal-

 $\begin{array}{c} \text{den, Z. anorg. 1894, 7. 332.)} \\ \text{Cs}_2\text{FeCl}_b + \text{H}_2\text{O.} \quad \text{Sol. in H}_2\text{O.} \quad \text{(Walden.)} \\ \text{Cs}_3\text{FeCl}_b + \text{H}_2\text{O.} \quad \text{Sol. in H}_2\text{O.} \quad \text{(Walden.)} \end{array}$

Cæsium lanthanum chloride, Cs₃LaCl₆+ 4H₂O.

Very hydroscopic. Easily sol. in H₂O. (R. J. Meyer, Z. anorg, 1914, **86**, 273.)

Cæsium lead chloride, CsCl, 2PbCl₂.

Nearly stable in aqueous solution. (Campbell, Sill. Am. J. 145. 126.)

CsCl, PbCl₂. Decomp. by H₂O. (Camp-

4CsCl, PbCl₂. As above. (Campbell.)

Cæsium lead tetrachloride.

See Chloroplumbate, cæsium.

Cæsium magnesium chloride, CsCl, MgCl₂+ 6H₂O.

Sol. in H₂O. (Wells and Campbell, Z. anorg. **5.** 275.)

Cæsium manganous chloride, CsCl, MnCl₂+ 2H₂O.

Not deliquescent; sol. in H₂O. (Saunders, Am. Ch. J. 14. 143.)

2CsCl, MnCl₂. (Godeffroy.)

 $+2\frac{1}{2}H_2O$. (Godeffroy.)

 $+3H_2O$. Sol. in H_2O . Conc. HCl+Aqprecipitates anhydrous salt from aqueous solution. (Godeffroy, B. 8. 9.)

The only salt which exists contains 2H₂O. (Saunders, Am. Ch. J. 14. 143.)

Cæsium manganic chloride, 2CsCl, MnCl₃.

Easily decomp. (Meyer and Best, Z. anorg. 1899, 22, 187.)

Cæsium mercuric chloride, CsCl, HgCl₂.

100 pts. solution sat. at 17° contain 1.406 pts. CsHgCl₃. Not decomp. by H₂O. Insol. in absolute alcohol, but sol. on diluting with ¹/₃ vol. H₂O. (Wells, Sill. Am. J. **144.** 221.) 2CsCl, HgCl₂. Easily sol. in H₂O and dil. HCl+Aq; insol. in conc. HCl+Aq. (Godeffroy.)

3CsCl, HgCl₂. Decomp. by H₂O; on recrystallizing from H₂O, CsCl, HgCl₂ is finally formed. (Wells, Sill. Am. J. 144. 221.)

CsCl, 5HgCl₂. Decomp. by H₂O. (Wells.) Solubility determinations show that the orly double salts of CsCl and HgCl2 which exist at 25° are Cs₃HgCl₅, Cs₂HgCl₄, CsHgCl₃, CsHg₂Cl₅, CsHg₅Cl₁₁. (Foote, Am. Ch. J. 1903. **30.** 340.)

Cæsium molybdenum chloride, C₈₂MoCl₅+ H₂C.

Sol. in H₂O. Nearly insel, in alcohol and ether. (Chilesotti, C. C. 1903, II. 652.)

Cæsium molybdenyl chloride, CsCl. $MoO_2Cl_2 + H_2O$.

Hygroscopic. Decomp. by H₂O. (Weinland and Knöll, Z. anorg. 1905, 44. 93.)

2CsCl, MoO₂Cl₂. Hygroscopic. Decomp. H₂O. (Weinland and Knöll, Z. anorg. by H₂O. 1905, 44. 92.)

2CsCl, $6MoO_2Cl_2+22H_2O$ Very hygroscopic. Decomp. by H_2O . (Weinland and Knöll, Z. anorg. 1905, **44**. 94.)

2CsCl, MoOCl₃. Only sl. sol. in H₂O. (Nordenskjöld, B. 1901, 34. 1573.)

Cæsium neodymium chloride, Cs₅NdCl₆+ 5H₂().

Very hydroscopic. Easily sol. in H₂O. (R. J. Meyer, Z. anorg. 1914, 86. 273.)

Cæsium nickel chloride, 2CsCl, NiCl₂.

As the corresponding Cu salt. CsNiCl₃. Decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) **48**. 418.)

Cæsium palladium dichloride.

See Chloropalladite, cæsium.

Cæsium palladium tetrachloride.

See Chloropalladate, cæsium.

Cæsium praseodymium chloride, Cs₃PrCl₆+ 5H₂Ó.

Very hydroscopic. Easily sol. in H₂O. (R. J. Meyer, Z. anorg. 1914, **86.** 273.)

Cæsium rhodium chloride.

See Chlororhodite, cæsium.

Cæsium ruthenium chloride.

See Chlororuthenite, cæsium and chlororuthenate, cæsium.

Cæsium oxyruthenium chloride, Cs₂RuO₂Cl₄.

Ppt.; decomp. by H₂O; sol. in cold HCl. (Howe, J. Am. Chem. Soc. 1901, 23, 779.)

Cæsium samarium chloride, Cs₃SmCl₆+ 5H₂O.

Easily sol. in H₂O. Very hydroscopic. (R. J. Meyer, Z. anorg. 1914, **86.** 273.)

Cæsium silver chloride, 2CsCl, AgCl.

Easily decomp. by H₂O. (Wells and Wheeler, Sill. Am. J. 144. 155.)

Cæsium tellurium chloride.

See Chlorotellurate, cæsium.

Cæsium thallic chloride, 2CsCl, TlCl₃.

By recryst, from H₂O forms 3CsCl, 2TlCl₃. (Pratt, Am. J. Sci. 1895, (3) 49. 398.)

+H₂O. Readily sol. in hot H₂O but 3CsCl, 2TlCl₃ cryst. from the solution. (Pratt, Am.

J. Sci. 1895, (3) **49.** 399.) 3CsCl, 2TlCl₃. Can be recryst. from H₂O without change. (Pratt, Am. J. Sci. 1895, (3) 49. 4(11,)

3CsCl, TlCl₃+2H₂O. Sol. in 36.4 pts. H₂O at 17° and 3 pts. at 100°. (Godeffroy, Zeitsch. d. allgem. österr. Apothekerv. 1880. No. 9.)

Cæsium tin (stannic) chloride.

See Chlorostannate, cæsium.

Cæsium titanium chloride, TiCl₃, 2CsCl+ H₂O.

Difficultly sol. in H₂O. (Stähler, B. 1904, **37.** 4409,)

Cæsium tungsten chloride, Cs₃W₂Cl₉.

Nearly insol. in cold H₂O.

Sol. in a hot mixture of equal pts. H₂O and conc. HCl.

Nearly insol. in conc. HCl. Sol. in very dil. NaOH+Aq.

Nearly insol, in most organic solvents. (Olsson, B. 1913, 46. 574.)

Cæsium uranous chloride, Cs₂UCl₆.

As K salt. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Cæsium uranyl chloridė, 2CsCl, (U()₂)Cl₂.

Sol. in H₂O. (Wells, Z. anorg, 1895, **10**. 183.)

100 pts. of the solution contain at 29.75° 56.07 pts. UO₂Cl₂, 2CsCl. (Rimbach, B. 1904, 37. 468.)

Pptd. from aq. solution by gaseous HCl. (Wells, Am. J. Sci. 1894, (3) 50. 251.)

Cæsium vanadium chloride, Cs₂VdCl₅+H₂O. Difficultly sol. in H₂O and alcohol. (Stähler, B. 1904, **37**. 4412.)

Cæsium zinc chloride, 3CsCl, ZnCl₂.

Sol. in H₂O. (Wells and Campbell, Z. anorg. 5. 275.)

2CsCl, ZnCl₂. Easily sol. in H₂O and dil. HCl+Aq. Insol. in conc. HCl+Aq. (Godeffroy.)

Cæsium chloride chromic oxychloride, 2CsCl, CrOCl₃.

Decomp. in the air.

Sol. in conc. HCl without decomp. (Weinland, B. 1906, 39. 4045.)

Cæsium chloride columbium oxychloride, 2CsCl, CbOCl₃.

Decomp. by H₂O. (Weinland, B. 1906, **39.** 3057.)

Cæsium chloroiodide, CsCl₂I.

Properties as CsBrCII. (Wells.)

CsCl4I. Sl. sol. in H2O, from which it can be recrystallized without decomp. (Wells and Wheeler.)

Cæsium mercuric chloroiodide, Cs₂HgCl₂I₂.

Decomp. instantly by H₂O to HgI₂. (Wells.)

Cæsium fluoride, CsF.

Ppt. (Chabrié, C. R. 1901, **132.** 680.) $+1\frac{1}{2}H_2C$. 100 g. H_2O dissolve 366.5 g CsF at 15°. (de Forcrand, C. R. 1911. **152**. 1210.)

Cæsium hydrogen fluoride, CsHF₂.

Ppt. (Chabrié, C. R. 1901, **132**, 680.)

Cæsium tantalum fluoride.

See Fluotantalate, cæsium.

Cæsium tellurium fluoride, CsF, TeF4.

Decomp. by H₂O. (Wells, Am. J. Sci. 1901, (4) **12.** 190.)

Cæsium titanium fluoride.

See Fluotitanate, cæsium.

Cæsium zirconium fluoride.

See Fluozirconate, cæsium.

Cæsium hydride, CsH.

Decomp. by H₂O with evolution of H₂. (Moissan, C. R. 1903, **136.** 589.)

Cæsium hydroxide, CsOH.

Very deliquescent, and sol. in H₂O. Sol. in alcohol.

79.41% CsOH is contained in a sat. aq. solution at 15°. (de Forcrand, C. R. 1909, 149. 1344.)

75.08% CsOH is contained in sat. aq. solution at 30°. (Schreinemakers, C. C. 1909, I.

Cæsium iodide, CsI.

Sol. in H₂O.

100 pts. H₂O dissolve 44 pts. CsI at 0°;

66.3 pts. at 14.5°; 160 pts. at 61°.

Sp. gr. of CsI+Aq sat. at 14°=1.393.

(Betekoff, Bull. Soc. Pétersb. (4) 2. 197.)

Cæsium periodide.

Solubility determinations show that CsI₂ and Csl₅ are the only periodides of cæsium existing between —4° and +73°. (Foote, Am. Ch. J. 1903, 29, 203.)

Cæsium triiodide, CsI₂.

1 ccm. sat. CsI+Aq dissolves 0.0097 g. CsI₃, and sp. gr. of solution is 1.154. Only sl. decemp. by solution in H₂O. Much more sol. in alcohol than in H₂O. Not immediately decomp. by ether. (Wells, Sill. Am. J. 143.)

Cæsium pentaiodide, CsI.

Cæsium cobalt iodide, Cs₂CoI₄.

Decomp. by H2O. (Campbell, Z. anorg.

Deliquescent: decomp. by H₂O and by alcohol. (Campbell, Am. J. Sci. 1894, (3) 48. 418.)

Cæsium lead iodide, CsPbI₂.

Sl. sol. in hot CsI + Aq. (Wheeler, Sill. Am. J. **145.** 129.)

Cæsium mercuric iodide, CsI, 2HgI₂

Decomp. by H_2O finally into HgI_2 . (Wells, Sill. Am. J. 144. 221.)

2CsI, 3HgI₂. Decomp. by H₂O finally into HgI_2 .

Csl, Hgl₂. As above.

2CsI, HgI₂. Decomp. by H₂O; insol. in alcohol.

3CsI, HgI₂. As above.

Cæsium silver iodide, CsI, AgI.

(Penfield, Z. anorg. 1, 100.)

CsI, 2AgI. More sol. in hot than in cold acetone. (Marsh, Chem. Soc. 1913, 103. 782.)

Cæsium tellurium iodide.

See Iodotellurate, cæsium.

Cæsium thallic iodide, CsI, TlI₈.

Decomp. by H₂O. (Pratt, Am. J. Sci. **1895**, (3) **49**, 403.)

Cæsium zinc iodide, 3CsI, ZnI₂.

Sol. in H₂O. (Wells and Campbell, Z. anorg. 5. 275.)

2CsI, ZnI₂. As above.

Cæsium oxide, Cs₂O.

Absorbs H₂O and CO₂ from the air. Decomp. by H₂O and by liquid NH₃. (Rengade, C. R. 1906, **143.** 593.)

Cæsium dioxide, Cs₂O₂.

Decomp. by H₂O. (Rengade, C. R. 1905, **140.** 1537.)

Cæsium trioxide, Cs₂().

Decomp. by H₂O. (Rengade, C. R. 1905, **140.** 1537.)

Cæsium tetroxide, Cs₂O₄.

Decomp. by H₂O. (Rengade, C. R. 1905, **140.** 1538.)

Cæsium sulphide, Cs₂S+4H₂O.

Deliquescent; very sol. in H₂O. (Biltz, Z. anorg. 1906, 48. 300.)

Cæsium disulphide, Cs₂S₂.

Anhydrous. Sol. in H2O. Hydroscopic. (Biltz, Z. anorg. 1906, 50. 72.)

+H2O. From Cs2S2+Aq. Hydroscopic. (Biltz, Z. anorg, 1906, 50, 72.)

Cæsium trisulphide, Cs₂S₃.

Anhydrous. Sol. in H2O. Not hydroscopic. (Biltz, Z. anorg. 1906, 50. 75.)

 $+H_2O$. From Cs_2S_3+Aq . anorg. 1906, **50.** 76.)

Cæsium tetrasulphide, Cs₂S₄.

Sol. in H₂O. Insol. in abs. alcohol. (Biltz, Z. anorg. 1906, 48. 305.)

Cæsium pentasulphide, Cs₂S₅.

Mpt. 2°. Not hydroscopic. Very sol, in cold 70% alcohol. (Biltz, B. 1905, **38.** 129.)

Cæsium hydrogen sulphide, CsHS.

Deliquescent: very sol. in H₂O. (Biltz. Z. anorg. 1906, 48. 300.)

Cæsium copper tetrasulphide, CsCuS₄.

Sl. sol. in cold H₂O.

Decomp. by conc. and dil. HCl, H₂SO₄ and

Sl. sol. in alcohol. (Biltz, B. 1907, **40**. 978.)

Calcium, Ca.

Decomp. H₂O violently. Slowly attacked by cold H₂SO₄. Dil. H₂SO₄+Aq or HCl+Aq attack violently and dissolve. Dil. HNO3+ Aq oxidizes, but fuming HNO₃ scarcely attacks even on boiling. (Bunsen and Matthiessen.) Not attacked by anhydrous alcohol. (Lies-Bodart and Jobin, A. ch. (3) 54. 364.)

Pure Ca is only very slowly decomp. by H₂O at ordinary temp.; sol. in HCl, HNO₃, H₂SO₄. (Moissan, C. R. 1898, **129**. 589.) Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 827.)

½ ccm. oleic acid dissolves 0.0334 g. Ca in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Calcium amalgam, Ca₃Hg₄.

Decomp. H₂O readily. (Feré, C. R. 1898, **127.** 619.)

CaHg₅. Rapidly decomp. in r (Schürger, Z. anorg. 1900, **25**. 425.) Rapidly decomp. in moist air.

Calcium amide, Ca(NH₂)₂.

(Moissan, A. ch. 1899, (7) 18. 326.)

Calcium ammonia, Ca, 4NH₃.

Decomp. at ordinary temp.; takes fire in contact with the air; sl. sol. in liquid NH₃. (Moissan, C. R. 1898, **127**. 691.) Ca.6NH₃. (Kraus, J. Am. Chem. Soc. **1908**, **30**, 665.)

Calcium arsenide, Ca₃As₂.

Decomp. by cold H₂O; insol. in cold furning HNO3; very sol. in hot HNO3. (Lebeau, C. R. 1899, 128, 98.)

Calcium azoimide, $Ca(N_3)_2$.

Hydroscopic; explosive. pts. sol, in 100 pts. at 0° 38.1 H₂O " " 100 ⁷⁷ 15.2 H_2O 45.00.211 " " " 100 " abs. alcohol " 16. Sol. in H₂O; decomp. when heated and on standing in the air. (Dennis, Z. anorg. 1898,

Insol. in pure ether. (Curtius, J. pr. 1898, **(2) 58.** 286.)

Calcium boride, CaB₆.

Not decomp, by H₂O at 250°; sol, in fused oxidizing agents.

Insol. in aq. acids; sl. sol. in conc. H₂SO₄; sol. in dil. or conc. HNO₃. (Moissan, C. R. **1897**, **125**. 631–32.)

Calcium bromide, CaBr₂.

Very deliquescent. 100 pts. H₂O dissolve-105° at 0° 20° 40° 60° 278 125 143 213 312 pts. CaBr₂. (Kremers, Pogg. 103. 65.)

Sat. CaBr₂+Aq contains at: —14° —7° --22° -5° -22° 50.2 52.6% CaBr₂ 52.552.650.511° 20° +8° 50° 53.155.155.757.162.6% CaBr₂ (Étard, A. ch. 1894, (7) 2. 540.)

Sp. gr. of CaBr₂+Aq at 19.5° containing: 20 25 %CaBr₂, 1.25? 1.139 1.194 1.044 1.089

40 45 50 % CaBr₂. 30 35 1.549 1.641 1.315 1.3851 461 (Kremers, Pogg. 99. 444, calculated by Gerlach, Z. anal. 8. 285.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Very sol. in alcohol. (Henry.) Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328.)

Sol. in methyl acetate. (Naumann, B. **1909**, **42**. 3790.)

Sol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

 $+4H_2O$. (Kuznetzov, C. A. 1911. 842.) +6H₂O.

Calcium manganous bromide, CaMnBr₄+ 4H₂O.

Sl. hydroscopic. Unstable. (Ephraim, Z. anorg. 1910, **67.** 377.)

Calcium mercuric bromide.

Decomp. by H₂O. (v. Bonsdorff.)

Calcium molybdenyl bromide, CaBr₂, $2\text{MoOBr}_3 + 7\text{H}_2\text{O}$.

(Weinland and Knöll, Z. anorg. 1905, 44. 112.)

Calcium stannic bromide.

See Bromostannate, calcium.

Calcium bromide ammonia, CaBr₂, 6NH₃, Sol. in H₂O. (Rammelsberg, Pogg. **55.** 239.)

Calcium bromide hydrazine, CaBr₂, 3N₂H₄.

Easily sol. in H₂O. (Franzen, Z. anorg. 1908, **60**. 288.)

Calcium bromofluoride, CaBr₂, CaF₂.

Decomp. by H₂O. (Defacqz, A. ch. 1904, (8) **1.** 357.

Calcium carbide, CaC₂.

Sp. gr. 2.22 at 18°. Insol, in fuming HNO₃ and cone. H₂SO₄ but readily decomp. by dil. acids and H2O. (Moissan, Bull. Soc. 1894, (3) **11.** 1005.)

Insol. in HCl in the cold, but decomp, at red heat. Strong min. acids do not act in the cold; sol, in glacial acetic in the cold; sol, in fuscd alkali. (Venable, J. Am. Chem. Soc 1895, **17.** 307–310.)

Calcium chloride, CaCl₂.

Very deliquescent. Very sol. in H₂() with evolution of heat.

Anhydrous CaCl₂ is sol. in 1.459 pts. H₂O. (Gerlach.) Anhydrous CaCl₂ is sol. in 1.58 pts. H₂O at 10.2°. (Kreiners, Pogg. **103**, 65.) Anhydrous CaCl₂ is sol. in 1.35 pts. H₂O at 20°; 0.83 pt. H₂O at 40°; 0.72 pt. H₂O at 60°. CaCl₂+6H₂O is sol. in 0.5 pt. H₂O at 0°, and 2.05 pt. at 16°. (Gmelin.)

CaCl2 is sol. in 1.5 pts. cold, and 0.8 pt. boiling H2().

(Foureroy.)
CaCl₂+Aq sat. in the cold contains 40.7% CaCl₂. CaCl2+Aq sat. at 12.5° contains 53.8% CaCl2.

100 pts. $H_2()$ dissolve 165.7 pts. $CaCl_2 + 6H_2O$ at 0°; 7141 pts. at 40°. (Tilden, Chem. Soc. **45.** 409.)

100 pts. H₂O dissolve 60.3 pts. CaCl₂ from CaCl₂+6H₂O at 0°, and solution has sp. gr. = 1.367. (Engel, Bull. Soc. (2) 47. 318.)

t°	Sat. solution contains % CaCl ₂	Sat. solution contains % CaCl ₂ +6H ₂ O
22	32.24	63.61
0	36.91	72.82
+ 7.39	38.77	76.49
13.86	41.03	80.95
19.35	42.50	83.85
23.46	44.15	87.11
24.47	45.33	89.44
27.71	46.30	91.35
29.53	50.67	99.97

(Hammerl, W.A.B. **72, 2.** 287.) Solubility in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂	t°	Pts. CaC l2
0	59.39	13.86	69.49
5	64.83	19.35	73.91
7.88	66.20	21.89	79.77

Hammerl, calculated by Bakhuis Rooze boom, R. t. c. 8. 5.)

Solubility in 100 pts. H2O at to.

Solubility in 100 pts. H ₂ O at t ² .					
I,o	Pts. CaCl ₂	l t°	Pts. CaCl ₂	ll t°	Pts. CaCl ₂
0	49.6	19	72	38	108
	50	20	74	39	109
$\frac{1}{2}$	51	21	75	40	110
3	52	22	77	41	111
4	53	23	79	42	112
5	54	24	80	43	113
6 7	55	25	82	44	114
7	56	26	84	45	115
8	57	27	87	46	116
9	58	28	89	47	117
10	60	29	91	48	118
11	61	30	93	49	119
12	62	31	96	50	120
13	63	32	98	51	121
14	65	33	100	52	122
15	66	34	103	53	123
16	68	35	104	54	124
17	69	36	105	55	125
18	71	37	107	56	126
57	127	72	137	87	145
58	128	73	138	88	146
59	129	74	138	89	147
60	129	75	139	90	147
61	130	76	139	91	148
62	131	77	140	92	149
63	131	78	141	93	150
64	132	79	141	94	150
65	133	80	142	95	151
66	133	81	142	96	152
67	134	82	143	97	152
68	135	83	143	98	153
69	135	84	144	99	154
70	136	85	144	179.5	325
71	136	86	145		

(Mulder, Scheik. Verhandel. 1864. 107.)

If solubility S=pts, anhydrous $CaCl_2$ in 100 pts, solution, S=32+0.2148t from -18° to $+6^\circ$; S=54.5+0.0755t from 50° to 120°. (Étard, C. R. 98. 1432.)

According to Bakhuis Roozeboom, the solubility of CaCl₂ varies according to the hydrate employed, and the following data were obtained as the result of very exact experiments.

Solubility of CaCl₂+6H₂O in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂	l to	Pts. CaCl ₂	t°	Pts. CaCl ₂
20 4	75.1	28.0	88.8	29.5	96.07
25.05	81.67	28.9	92.05	30.2	102.7

There are two modifications of $CaCl_2 + 4H_2C$, α and β .

Solubility of $CaCl_2+4H_2O\beta$ in 100 pts. H_2O at t° .

t°	Pts. CaCl ₂	t°	Pts. CaCl ₂
$18 \ 4$ $25 \ 0$ 30.0	103 3 108.8 114.1	35.0 38.4	122.74 127.50

Solubility of CaCl₂+4H₂Oa in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂	t°	Pts. CaCl ₂
22.0	92 67	35.95	107.21
24 7	95.59	40.00	115.3
29 8	100.6	45.00	129.9

Solubility of CaCl₂+2H₂O in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂	t°	Pts. CaCl ₂	t°	Pts. CaCl ₂
40 45 50 59.5 80.5	128.1 129.9 132.3 136.5 145.3	95.8 115 124 137	156.5 169.5 176.0 187.6	139 155 165 174	191.0 214.3 236.2 275.7

Solubility of CaCl₂+H₂O in 100 pts. H₂O at t°.

t°	Pts. CaCl ₂
191	306
235	331

(Bakhuis Roozeboom, R. t. c. 8.1.)

Sp. gr. of CaCl2+Aq.

CaCl ₂	Sp. gr.	CaCl ₂	Sp. gr.	CaCl ₂	Sp. gr.
3.95	1.03	20 85	1.18	34.57	1 33
7.66	1.06	23 93	1.21	36.49	1.36
11.23	1.09	26 86	1.24	38.31	1.39
14.42	1.12	29.67	1.27	40.43	1.42
17.60	1.15	32.35	1.30	41.91	1 45

(Richter.)

Sp. gr. of CaCl₂+Aq at 19.5° containing pts. CaCl₂ to 100 pts. H₂O.

Pts. CaC¹2	Sp. gr.	Pts. CaCl ₂	Sp. gr.
6.97	1.0545	36.33	1 2469
12.58	1.0954	50 67	1 3234
23.33	1.1681	62 90	1 3806

(Kremers, Pogg. 99, 444.)

Sp. gr. of CaCl₂+Aq. G=sp. gr. at 15° if % is CaCl₂, according to Gerlach; S=sp. gr. at 18.3° if % is CaCl₂+6H₂O, according to Schiff.

	w rounn.				
%	G	8	%	G	s
1	1.00852	1.0039	36	1.35610	1.1575
2	1.01704	1.0079	37	1.36790	1.1622
3	1.02555	1.0119	38	1.37970	1 1671
4	1.03407	1.0159	39	1.39150	1.1719
5	1.04259	1.0200	40	1.40330	1.1768
6	1.05146	1.0241	41		1.1816
7	1.06033	1.0282	42		1.1865
8	1.06921	1.0323	43		1.1914
9	1.07808	1.0365	44		1.1963
10	1.08695	1.0407	45		1.2012
11	1.09628	1.0449	46		1.2062
12	1.00561	1.0491	47		1.2112
13	1.10494	1.0534	48		1.2162
14	1.12427	1.0577	49		1.2212
15	1.13360	1.0619	50		1.2262
16	1.14332	1.0663	51		1.2312
17	1.15305	1.0706	52		1.2363
18	1.16277	1.0750	53		1.2414
19	1.17250	1.0794	54		1.2465
20	1.18222	1.0838	55		1.2516
21	1.19251	1.0882	56		1.2567
22	1.20279	1 0927	57		1.2618
23	1.21308	1.0972	58		1.2669
24	1.22336	1.1017	59		1.2721
25	1.23365	1.1062	60		1.2773
26	1.24450	1.1107	61		1.2825
27	1.25535	1.1153	62		1.2877
28	1.26619	1.1199	63		1.2929
29	1.27704	1.1246	64	• • • •	1.2981
30	1 28789	1.1292	65		1.3034
31	1.29917	1.1339	66		1.3087
32	1.31045	1.1386	67		1 3140
33	1.32174	1.1433	68		1 3193
34	1.33602	1.1480	69		1.3246
35	1 34430	1.1527	70	1	1.3300

(Calculated by Gerlach, Z. anal. 8, 283.)

Sp. gr. of $CaCl_2+Aq: a=no$, of half molecules in grammes dissolved in 1000 g. $H_2O;$ b=sp. gr. at 24.3° when $a=CaCl_2+6H_2O$ (½ mol. = 109.5 g.); c=sp. gr. at 24.3° when $a=CaCl_2$ (½ mol. = 55.5 g.).

a	b	С	a	b	c
1 2 3 4 5 6	1.041 1.076 1.106 1.133 1.157	1.043 1.084 1.122 1.159 1.193 1.227	7 8 9 10 11	1.198 1.214 1.229 1.242 1.255	1.258

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of CaCl₂+Aq at 18°.

% CaCl2	Sp. gr.	% CaCl2	Sp. gr.
5 10 15 20	1.0409 1.0852 1.1311 1.1794	25 30 35	1 2305 1 2841 1 3420

(Kohlrausch, W. Ann. 1879. 1.)

 $CaCl_2+Aq$ sat. at 0° has sp. gr. = 1.367. (Engel, Bull. Soc. 1887, (2) **47.** 318.)

Sp. gr. of CaCl₂+Aq at 9.5°C.

Mass of salt per unit mass of solution	Density of solution (g per ec.)
0 00191	1.00168
0.00381	1.00317
0.00570	1.00465
0.00759	1.00615
0.00947	1.00765
0.01320	1.01050

(McGregor, C. N. 1887, **55.** 6.)

Sp. gr. of CaCl2+Aq at 25°.

1.0446 1.0218 1.0105 1.0050

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Sp. gr. at 16°/4° of CaCl₂+Aq containing 12.1638% CaCl₂=1.10489. (Schönrock, Z. phys. Ch. 1893, **11.** 768.)

Sp.	gr.	of	CaCl ₂	+Aq	at	17	$.925^{\circ}$	C,
-----	-----	----	-------------------	-----	----	----	----------------	----

CaCl ₂	Sp. gr.	CaCl₂	Sp. gr.	CaĈl2	Sp. gr.
0.0	0.99869	13	1.11206	33	1.31562
0 1	0.99954	14	1.12130	34	1.32689
0.2	1.00037	15	1.13067	35	1 33821
0.3	1.00116	16	1.14016	36	1.34956
0.4	1.00201	17	1.14969	37	1.36100
0.6	1.00371	18	1.15926	38	1.37242
0.8	1.00539	19	1.16920	39	1.38400
1.0	1.00703	20	1.17910	40	1.39489
1.5	1.01127	21	1.18897	41	1.40641
2	1.01548	22	1.19901	42	1.41770
3	1.02386	23	1.20901	43	1.42882
4	1.03238	24	1.21918	44	1.44007
5	1.04089	25	1.22941	45	1.45124
6	1 04951	26	1.23969	46	1.46238
7	1 05822	27	1.25030	47	1.47329
8	1.06680	28	1.26092	48	1.48450
9	1.07569	29	1 27182	49	1.49573
10	1.08467	30	1.28271	50	1.50676
11	1.09373	31	1.29360	51	1.51778
12	1.10288	32	1.30461		

(Pickering, B. 1894, 27. 1385.)

Sp. gr. of CaCl₂+Aq at t°.

t"	Concentration of CaCl ₂ +Aq	Sp. gr.
20	1 pt. CaCl ₂ in 7.1045 pts. H ₂ O	1.1062
20	1 " " 164.25 " "	1.0032

(Hittorf, Z. phys. Ch. 1902, 39, 628.)

Sp. gr. of CaCl₂+Aq at 20°.

g. mols. CaCl ₂ per l.	Sp. gr.
0.010	1.000982
0.025	1.002539
0.050	1.004874
0.075	1.006814
0.10	1.008971
0.25	1.02267
0.50	1.04451
0.75	1.06641
1.00	1.08744

(Jones and Pearce, Am. Ch. J. 1907, 38. 696.)

Sat. CaCl₂+Aq forms a crust at 150°, and contains 178 pts. CaCl₂ to 100 pts. H₂O. (Gerlach.)

Sat. CaCl₂+Aq boils at 180°. (Rüdorff.)

B.-pt. of CaCl₂+Aq containing pts. CaCl₂ to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26. 440); L=according to Legrand (A. ch. (2) 39. 43).

Врі	G	L	Bpt.	G	L
101°	6.0	10	134°		117.2
102	11.5	16.5	135	119	
103	16.5	21.6	136		123.5
104	21.0	25.8	138		129.9
105	25.0	29.4	140	137.5	136.3
106	29.0	32.6	142	707	142.8
107	32.5	35.6	144		149.4
108	35.5	38.5	145	157	
109	38.5	41.3	146		156.2
110	41.5	44 0	148		163.2
111		46.8	150	178	170.5
112		49.7	152		178.1
113		52.6	154		186.0
114		55 6	155	200	
115	55.0	58.6	156		194.3
116		61.6	158		203.0
117		64.6	160	222	212.1
118		67.6	162		221.6
i 19		70.6	164		231.5
120	69.0	73.6	165	245	
121		76.7	166		241.9
122		79.8	168		252.8
123		82.9	170	268	264.2
124		86.0	172		276.1
125		89.1	174		285.5
126		92.2	1175	292	
128		98.4	176		301.4
130	101	104.6	178	305	314.8
130.4	102.67		179.5		325.0
132		110.9			

B.-pt. of CaCl₂+Aq.

% CaCl2	Bpt.	% CaCl2	Bpt.
5.6 10.3 14.5	101° 102 103	17.5 20.0	104° 105

(Skinner, Chem. Soc. 61. 340.)

Less sol. in HCl+Aq than in H_2O . HCl+Aq sat. at 12° dissolves 27% CaCl₂, which crystallizes out with $2H_2O$. (Ditte, C. R. **92**. 242.)

Solubility of CaCl₂ in HCl+Aq at 0°.

Sp. gr. of	g. per 100	cc. solution
solutions	CaCl ₂	HCI
1.367	51.45	0.0
1.344	46.45	3.32
1.326	42.80	5.83
1.310	36.77	10.66
1.283	29.84	15.84
1.250	20.12	23.05
1.238	11.29	34.62

(Engel, C. R. 1887, 104, 434.)

CaCl ₂ +CaO ₂ H ₂ .	Solubility of CaCl2+
CaO ₂ H ₂	in H ₂ O at 25°.

Oac 2112 III 1120 at 25.				
CaCl2	CaO ₂ H ₂	Solid phase		
5.02	0.101	CaO ₂ H ₂		
10.00	0.115	"		
12.94	0.128			
15.14	0.140	**		
17.20	0.145	14		
18.15	0.148	CaO ₂ H ₂ +CaCl ₂ , 4CaO.14H ₂ ()		
18.01	0.152	CaCl ₂ , 4CaO.14H ₂ ()		
21.02	0.147	••		
23.80	0.146	**		
24.33	0.147	"		
28.37	0.170	4.0		
29.54	0.180	"		
32.67	0.225	CaO ₂ H ₂ (?)		
33.21	0.245	CaCl ₂ , 4CaO.14H ₂ O		
33.72	0.254	CaCl ₂ , 4CaO.14H ₂ () +CaCl ₂ ,		
		CaO.2H ₂ ()		
34.36	0.173	CaCl ₂ , CaO.2H ₂ ()		
38.61	0.060	**		
41.32	0.048	**		
44.30	0.030	**		
44.60	0.029	CaCl ₂ , 6H ₂ O +CaCl ₂ , CaO.2H ₂ O		
44.77		CaCl ₂ .6H ₂ O		

(Schreinemakers and Figee, Chem. Weekbl. 1911, **8.** 685.)

See also under Calcium hydroxide

 $CaCl_2+KCl.$ 100 pts. H_2O dissolve 56 pts. $CaCl_2$ at 7°; 100 pts. H_2O dissolve 31 pts. KCl at 7°; 100 pts. H_2O dissolve 63.5 pts. $CaCl_2+4.9$ pts. KCl at 7°. (Mulder, J. B. **1866**. 67.)

CaCl₂+NaCl. 100 pts. H₂O dissolve 53 pts. CaCl₂ at 4°, and 56 pts. at 7°; 100 pts. H₂O dissolve 35.7 pts. NaCl at 4°, and 35.7 pts. at 7°; 100 pts. H₂O dissolve 57.6 pts. CaCl₂+2.4 pts. NaCl at 4°; 100 pts. H₂O dissolve 59.5 pts. CaCl₂+4.6 pts. NaCl at 7°. (Mulder, $l.\ c.$)

100 g. H₂O dissolve 72.6 g. CaCl₂+16.0 g.

NaCl at 15°. (Rüdorff.)

Sol. in sat. KNO₃+Aq. (Fourcroy.) Insol. in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, **54.** 674.) Insol. in liquid NH₃. (Franklin, Am. Ch. **4.** 1898, **20.** 827.)

Sol. in 1 pt. strong boiling alcohol. (Wenzel.)

Sol. in 8 pts. alcohol at 15°, and in 1 pt. spirits of wine. (Bergman.)

Sol. in 0.7 pt. boiling absolute alcohol.

Sol. in 1.43 pts. boiling absolute alcohol at 78.3°. (Graham.)

Solubility of CaCl2 in methyl alcohol.

CaCl₂ forms with methyl alcohol two complexes: CaCl₂.4CH₃OH and CaCl₂.3CH₃OH.

Solubility of CaCl₂, 4CH₃OH in CH₃OH.

t°	% by weight of CaCl2, 4CH3()H
0	33.3
10	37.6
20	42.2
30	47.0
40	52.0
50	57.3
55	60.0
56	61.3

Solubility of CaCl₂, 3CH₃OH in CH₃OH.

t°	% by weight of CaCl ₂ , 3CH ₃ OH
55	60.5
75	63.1
95	66.3
115	70.3
135	75.2
155	81.8
165	86.2
170	89.5
174	93.5
177 (mpt.)	100

(Menschutkin, Z. anorg. 1907, 52. 21.)

Solubility of CaCl₂ in ethyl alcohol. CaCl₂ forms with ethyl alcohol a complex, CaCl₂.3C₂H₆OH.

Solubility of CaCl₂.3C₂H₅OH in C₂H₅OH at t°.

t°	% by weight of CaCl ₂ .3C ₂ H ₅ OH	t°	% by weight of CaCl ₂ .3C ₂ H ₅ OH
0	34.8	80	86.8
20	46.0	85	89 2
40	58.7	90	91 9
60	73.0	95	96 2
70	80.8	97 mpt.	100

(Menschutkin, Z. anorg. 1907, 52. 23.)

Sp. gr. at $16^\circ/4^\circ$ of $CaCl_2+alcohol$ containing 5.668% $CaCl_2=0.83636$. (Schönrock, Z. phys. Ch. 1893, **11**. 768.)

B.-pt. of an alcoholic solution of CaCl₂.

% CaCl2	Bpt.	
2.4 5.39 8.01 9.93 15.94	$78.43^{\circ} + 0.70^{\circ}$ $78.43 + 2.15$ $78.32 + 4.18$ $78.43 + 5.55$ $78.43 + 11.75$	

(Skinner, Chem. Soc. 61, 340.)

Sl. sol. in propyl alcohol. (Berthelot.) 100 g. propyl alcohol dissolve 10.75 g. CaCl₂. (Schlamp, Z. phys. Ch. 1894, **14**, 276.) Sl. sol. in amyl alcohol. (Bouis.)

Pptd. from alcoholic solution by ether, (Döbbereiner,)

Sol. in wood-spirit; sol. in lignone (Liebig); insol. in lignone. (Gmelin.)

Insol. in acetone; sol. in butyl alcohol. (Wurtz.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)
Solubility in acetone + Aq at 20°.

CnCl₂ will salt out acetone from aqueous solution. The table shows the composition of the solutions at the points at which inhomogeneous solutions of CaCl₂, acetone and H₂O just become homogeneous at 20°. 100 g. of the solution contain:

(A) (II) (II) 20	. 100 g. 01 the b	Jan VIOII COIIIUII
g. CaCl ₂	g. H ₂ O	g. anetone
13 03	52.49	34.48
8 5	45.37	46.15
0.38	39.51	54.11
5 35	35.95	58.70
4 11	31.8	64.09
3.58	29.88	66.54
3.31	28.59	68.10
3.04	27.03	69.93
2.77	26.67	70.56
13.90	53.47	32.63
10.12	48.86	41.02
8 47	45.59	45.94
6.92	41.24	51.84
6.31	39.15	54.54
5 28	36.09	58 63
4.94	34.72	60.34
4.37	33.8	61.83
1.99	23.38	74.63
1.6	21.4	77.00
1.35	19.92	78.73
18.787	55.301	25.913
$12.443 \\ 10.70$	52.153 49.61	35.404 39.69
9.59	49.61	42.66
8.82	46.04	45.14
7.48	42.75	49.77
7.07	41.54	51.39
6.72	40.48	52.8
30.04	49.39	20.57
18.23	55.01	26.76
15.49	54.00	30.51
13.18	52.52	34.3
11.40	50.20	38.40
28.09	51.71	20.20
26.81	52.01	21.18
22.67	55.66	21.67
18.189	56.21	25.60
31.21	48.00	20.81
2.23	24.93	72.84
1.82	22.27	75.89
0.68	15.87	83.44
0.58	14.93	84.49
0.45	13.55	86.00
0.48	14.49	85.13
0.27	12.31	87.42
0.20	9.95	89.85
0.15	9.05	90.81
(E1.6.	T	~

(Frankforter, J. Am. Chem. Soc. 1914, 36. 1125.)

Sol. in many compound ethers, as ethyl acetate (Liebig), ethyl lactate (Strecker).

Sol. in considerable quantity in amyl sulphocyanide. (Medlock, Chem. Soc. 1. 374.)

Sol. in valyl. (Kolbe.)
Very sol. in conc. HC₂H₃O₂. (Liebig.)
Solubility of CaCl₂ in acetic acid.
CaCl₂ forms with acetic acid a complex,
CaCl₂, 4CH₃COOH.

Solubility of CaCl₂, 4CH₃COOH in CH₂COOH at t°.

· t°	% by wt. CaCl2, 4CH3COOH
11.1	42.0
30	47.6
35	50.0
40	54.7
45	63.0
50	69.5
60	79.5
65	84.5
70	91.2
73	100.0

(Menschutkin, Z. anorg. 1907, 54. 95.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sl. sol. in anhydrous pyridine.

Sol. in 97%, 95% and 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30. 1107.)

100 g. sat. solution of CaCl₂ in sat. sugar+Aq at 31.25° contain 42.84 g. sugar+25.25 g. CaCl₂, or 100 g. H₂O dissolve 135.1 g. sugar+79.9 g. CaCl₂ at 31.25°. (Köhler, Z. Ver. Zuckerind, 1907, 47.447.)

+H₂O. (Bakhuis Roozeboom.) See above. +2H₂O. (Bakhuis Roozeboom.) See above.

+4H₂O. Two modifications. (Bakhuis Roozeboom.) See above.

a and β modifications (a=stable form.) (Kuznetzov C. A. 1911, 842.)

(Kuznetzov, C. A. 1911, 842.) +6H₂O. Very deliquescent. Sol. in H₂O with absorption of much heat.

250 pts. CaCl₂+6H₂O with 100 pts. H₂O at 10.8° lower the temp. 23.2°. (Rüdorff, B. **2.** 68.)

Melts in crystal H₂O at 28° (Tilden, Chem. Soc. 45. 409); at 30.2° (Bakhuis Roozeboom.)

Sat. solution in H2O contains at: +4° —5° -22° --5° —17° 35.236.5% salt, 31.5 32.4 35.1 35° 49° 29° 55.1% salt, 37.9 42.1 **4**6.1 **49.0** 115° 63° 80° 104° 58.6% salt. 55.9 57.5 58.5 (Etard, A. ch. 1894, (7) 2. 532.)

Sat. solution of CaCl2+6H2O contains

44.77 g. CaCl₂ at 25°. (Schreinemakers and Figee, Chem. Weekbl. 1911, 8. 685.)
See also above.

Solubility of CaCl₂+6H₂O in ethyl alcohol+ Aq under addition of increasing amounts of CaCl₂.

Per cent of alcohol by volume	G. CaCl ₂ added	Grams CaCl ₂ in 5 cc. of solution
92.3		1.430
97.3		1.409
99.3		1.429
"	1	1.529
"	2	1.561
"	3	1.590
	4	1.641
	5	1.709

(Bödtker, Z. phys. Ch. 1897, 22. 510.)

Calcium hydroxylamine chloride, CaCl₂, 3NH₂OH, HCl.

(Antonow, J. Russ. Phys. Chem. Soc. 1905, **37.** 479.)

Calcium iodine trichloride, 2ICl₈, CaCl₂+8H₂O.

Hydroscopic. (Weinland, Z. anorg. 1902, **30.** 142.)

Calcium mercuric chloride, CaCl₂, 5HgCl₂+8H₂O.

Decomp. by cold H_2O , which dissolves out CaCl₂, but all dissolves on heating. (v. Bonsdorff, **1829**.)

CaCl₂, 2HgCl₂+6H₂O. Deliquescent. Very sol. in H₂O. (v. Bonsdorff.)

CaCl₂, 6HgCl₂+6H₂O. Very deliquescent. Decomp. by H₂O. (Strömholm, J. pr. 1902, (2) **66.** 521.)

Calcium lead chloride, basic.

See Calcium lead oxychloride.

Calcium magnesium chloride, CaCl₂, 2MgCl₂ +12H₂O.

Min. Tachhydrite. Deliquescent.

100 pts, H₂O dissolve 160.3 pts. at 18.75°. By dissolving 20 pts. in 80 pts. H₂O the temp. is raised 7.75°. (Bischof.)

 $\begin{array}{cccc} \text{Calcium mercuric} & \text{chloride, basic, } \mathrm{CaCl_2,} \\ & 2\mathrm{HgO} + 4\mathrm{H_2O.} \end{array}$

See Calcium mercuțic oxychloride.

Calcium thallic chloride, 2TlCl₃,CaCl₂+6H₂O.

Can be cryst. from H₂O. (Gewecke A. 1909, **366**. 222.)

Calcium tin (stannic) chloride. See Chlorostannate, calcium. Calcium uranium chloride, CaCl₂,UCl₄.

Decomp. by H₂O. (Aloy, Bull. Soc. 1899, (3) **21**. 265.)

Calcium zinc chloride.

CaZnCl₄+5½H₂O, and Ca₂ZnCl₆+6H₂O. Very hydroscopic. (Ephraim, Z. anorg. 1910, **67**. 379.)

Calcium chloride ammonia, CaCl₂, 8NH₃. Sol. in H₂O with decomp. (Faraday.)

Calcium chloride hydrazine, CaCl₂, 2N₂H₄(?). Ppt. (Franzen, Z. anorg. 1908, **60**, 288.)

Calcium chloride hydroxylamine, CaCl₂, NH₂OH+5H₂O.

Not hygroscopic. (Antonow, J. Russ. Phys. Chem. Soc. 1905, **37**, 479.) CaCl₂, 2NH₂OH.

 $+\mathrm{H}_2\mathrm{O}$. Aqueous solution sat. at 20° contains 56.6 pts. salt.

 $+2\mathrm{H}_2\mathrm{O}$. (Antonow, l. c.)

 2CaCl_2 , $3\text{NH}_2\text{OH} + 6\text{H}_2\text{O}$. (Antonow, *l. c.*) 2CaCl_2 , $5\text{NH}_2\text{OH} + 4\text{H}_2\text{O}$. (Antonow, *l. c.*)

Calcium chloride lead oxide, CaCl₂, 3PbO+3H₂O.

See Calcium lead oxychloride.

Calcium chloroferrite, CaO, CaCl₂, Fe₂O₃. Insol. in H₂O. (le Chatelier, C. R. **99.** 276.)

Calcium chlorofluoride, CaF₂, CaCl₂.

Decomp. by H₂O, by very dil. HCl, HNO₃ or acetic acid, by hot dil. or conc. H₂SO₄. Sol. in conc. HCl or HNO₃. Insol. in, and not decomp. by cold or boiling alcohol. (Defacqz, A. ch. 1904, (8) **1.** 355.)

Calcium cyanamide, basic, $CN_2(CaOH)_2 + 6H_2O$.

Sl. sol, in H_2O , (Meyer, J. pr. 1878, (2) **18**, 425.)

Calcium cyanamide, CaCN₂.

Decomp. by H_2O . (Meyer, J. pr. 1878, (2) **18.** 425.)

Calcium subfluoride, CaF.

Decomp. by H2().

Sol. in hot dil. HCl and somewhat sol. in dil. acetic acid.

Somewhat sol. in boiling absolute alcohol. (Wöhler, Z. anorg. 1909, **61**. 81.)

Calcium fluoride, CaF₂.

Sol. in 26,923 pts. H_2O at 15.5°. (Wilson, Ch. Gaz. 1850, 366.)

1 l. H₂O dissolves 16 mg. CaF₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50.** 356.)

16.3 mg. in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.)

When pptd. not completely insol. in H₂O; scarcely sol. in dil., more sol. in conc. HCl+ Aq; decomp. by conc. H2SO4; not decomp. by dil. alkaline solutions. (Fresenius.)

Not decomp. by conc. H2SO4 below 40°, but forms a transparent syrup. CaF2 is pptd. from this solution by addition of H2O.

Sol. in conc. HCl, and HNO, +Aq in the same way, but the liquid is not viscid. Very sl. sol. in HF. Boiling HCl+Aq dissolves lightly. Decomp. by boiling HNO₄+Aq.

Sol. in NH₄ salts+Aq. (Rose.)
Partly decomp. by boiling K₂CO₃, and
Na₂CO₃+Aq. (Dulong, A. ch. 82. 278.)

Insol, in liquid HF. (Franklin, Z. anorg. 1905, **46.** 2.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Min. Fluorite (Fluorspar). Calculated from electrical conductivity of CaF₂+Aq, 1 l. H₂O dissolves 14 mg. CaF₂ at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

Calcium hydrogen fluoride, CaH₂F₄+6H₂C. Decomp. by boiling H₂O. Sol. in HF+Aq. (Fremy, A. ch. (3) **47.** 35.)

Calcium tantalum fluoride.

See Fluotantalate, calcium.

Calcium stannic fluoride. See Fluostannate, calcium.

Calcium titanium fluoride. Sec Fluotitanate, calcium.

Calcium fluoiodide, CaF₂,CaI₂.

Very deliquescent. Decomp. by cold H₂O, more rapidly by hot H₂O, by dil. HCl, HNO₃, H₂SO₄ cone. H₂SO₄, and by alcohol and by ether if these reagents are not absolute. (Defacqz, A. ch. 1904, (8) 1. 358.)

Calcium hydride, CaH.

Decomp. by HCl+Aq. (Winkler, B. 24. 1975. (Moldenhauer, Z. anorg. 1913, **82**. 136.) CaH₂. Readily decomp. by H₂O and dil. acids, almost insol. in conc. acids. Insol. in benzene, turpentine and alkyl haloids. (Moissan, C. R. 1898, 127. 30-31.)

Decomp. H₂O and ether; sol. in dil. H₂SO₄ and HNO₃; almost insol. in conc. H₂SO₄ and HNO₃: (von Lengyll, C. C. 1898, II. 262.)

Insol. in CCl₄, CS₂, alcohols and ethers. No known solvent. (Moissan, C. C. 1903, I. 863.)

Calcium hydrosulphide, CaS₂H₂.

Cryst. with 6H₂O. Extremely sol. in H₂O and alcohol. 1/2 of its weight of H₂O at or- | Arch. Pharm. (3) 4. 558.)

dinary temp, more than suffices to hold it in solution. (Divers and Shimidzu, Chem. Soc. **45.** 271.)

Sp. gr. of aqueous solution containing 32% anhydrous CaS_2H_2 (64% $CaS_2H_2+6H_2O$) = 1.255; 37.5% CaS₂H₂ (75.5% CaS₂H₂+ $6H_2O) = 1.310$. (Divers and Shimidzu.)

Calcium hydroxide, CaO₂H₂.

See also Calcium oxide.

Sl. sol. in cold, and less in hot H₂O.

1 pt. ('a() dissolves at to in pts. H2O.

t°	Pts. H2()	Authority
20	450	Davy.
()	656	Phillips (A. Phil. 17, 107)
	700	Bergman (Essays, etc.).
13	785	Pavesi and Rotondi (B. 7. 817)
18	780	Bineau (A. ch. (3) 51, 290).
19.5	806	P. and R. (l. c.).
23	814	P. and R. (l. c.).
18 75	960	Abl.
54 4	972	Dalton (Syst. 2. 231).
15 6	778	Dalton (l. c.).
15 6	752	Phillips (l. c.).
15 6	731	Wittstein (Repert. Pharm. 1. 182).
15 6	741	Tichborne (Bull. Soc. (2) 17. 24).
100	1270	Dalton (l. c.).
100	1280	Phillips (l, c_i) ,
100	1330	Wittstein (l. c.).
100	1340	Tichborne $(l. c.)$.
100	1500	Bineau (l. c.).
100	1758	Tichborne (l. c.).

Solubility in H_2O . 1000 pts. CaO_2H_2+Aq sat. at to contain pts. CaO.

10 _	Pts. CaO				
τ.	From Nitrate	Marble	Hydrate		
0	1.362	1.381	1.430		
10	1.311	1.342	1.384		
15	1.277	1.299	1.344		
30	1.142	1.162	1.195		
45	0.996	1.005	1.033		
60	0.884	0.868	0.885		
00	0.562	0.576	0.584		

(Lamy, C. R. **86.** 333.)

Solubility of CaO₂H₂ in H₂O at t°.

t°	Pts. H ₂ O to 1 pt. CaO	Pts. CaO in 100 pts. H ₂ O	t°	Pts. H ₂ O to 1 pt. CaO	Pts. CaO in 100 pts. H ₂ O
0 10 20 30 40 50	759 770 791 862 932 1019	0.131 0.129 0.126 0.116 0.107 0.098	60 70 80 90 100	1136 1235 1362 1579 1650	0.088 0.080 0.073 0.063 0.060

(Maben, Pharm. J. Trans. (3) 14. 505.)

1 pt. CaO₂H₂ is sol. in 640 pts. H₂O at 19°. and 3081 pts. at 150°. (Shenstone and Cundall, Chem. Soc. 53. 550.)

1000 g. H₂O dissolve 1.251 g. CaO. (Carles,

Solubility of CaO₂H₂ in H₂O. 100 pts. H₂O dissolve pts. CaO at t°.

t°	Pts. CaO	t°	Pts. Ca()
20 40 60	0.1374 0.1162 0.1026	80 100	0.0845 0.0664

(Zahorsky, Z. anorg. 3. 34.)

t° 50° 55° 60° 65° 70° 75° 80° pts. H₂O 1044 1108 1158 1244 1330 1410 1482 (Herzfeld, C. C. **1897**, I, 932.)

t° 30 35 40 50 60 g. CaO 0.1219 0.1161 0.1119 0.0981 0.0879

t° 70 80 90 100 g. CaO 0.0781 0.074 0.0696 0.0597 (Guthrie, J. Soc. Chem. Ind. 1901, **20.** 223.)

 $\begin{array}{ccc} \text{Solubility in H_2O at high temp.} \\ 1 \text{ litre of the solution contains at:} \\ 120^\circ & 150^\circ & 190^\circ \\ 0.305 & 0.169 & 0.084 \text{ g. CaO.} \end{array}$

(Herold, Z. elektrochem. 1905, 11. 421.)

Solubility in H₂O at t°.

	t°	1 g. CaO is sol. in g. H2O at t°
	2	768.5
	10	786.8
	15	804.3
	20	826.4
	25	868.7
	30	908.2
	40	988.1
	.50	1083.0
	60	1179.0
Ses	70	1274.8
·\$'	80	1368.1

(Moody, Chem. Soc. 1908, 93, 1772.)

Sat. CaO₂H₂+Aq contains at:
95°
76°
0.0580
0.0705% by wt. CaO.
(Tschugaeff, Z. anorg. 1914, **86.** 159.)

100 g. sat. solution of CaO₂H₂ in H₂O at 25° contain 0.117 g. CaO₂H₂. (Cameron and Potter, J. phys. Ch. 1911, **15.** 70.)
Readily sol. in most acids.

Sol. in H₃BO₃+Aq at 30°. (Sborgi, Real. Ac. Linc. 1913, (5) **22.** I, 715 and 798.)
Sol. in NH₄Cl+Aq. Much more sol. in NaCl+Aq than in H₂O. (Rose.)

Solubility of CaO₂H₂ in NH₄Cl+Aq at 25°.

Concentration of NH ₄ Cl +Aq	Solubility of CaO ₂ H ₂ in
in millimols per liter	millimols per liter .
0.00	20,22
21.76	29,08
43.52	39,23
87.03	59,68

(Noyes and Chapin, Z. phys. Ch. 1899, **28.** 520.)

Solubility of CaO₂H₂ in CaCl₂+Aq. 100 pts. CaCl₂+Aq of given strength dissolve pts. CaO at t°.

t°	CaCl ₂ +Aq	CaCl ₂ +Aq	CaCl ₂ +Aq	CaCl ₂ +Aq	CaCl2+Aq	CaCl2+Aq
	5% CaCl ₂	10% CaCl ₂	15% CaCl ₂	20% CaCl ₂	25% CaCl2	30% CaCl2
20	0.1370	0.1661	0.1993	0.1857*	0.1661*	0.1630*
40	0.1160	0.1419	0.1781	0.2249	0.3030*	0.3684*
60	0.1020	0.1313	0.1706	0.2204	0.2989	0.3664
80	0.0936	0.1328	0.1736	0.2295	0.3261	0.4122
100	0.0906	0.1389	0.1842	0.2325	0.3710	0.4922

* In these cases, ppts. of 3CaO. CaCl₂+15H₂O were formed.

(Zahorsky, Z. anorg. 3. 34.)

Sec also CaCl₂+CaO₂H₂ under Calcium chloride.

Solubility in Ca(NO₃)₂+Aq at 25°.

Sp. gr. 25°/25°	g. CaO as Ca(OH); in 100 g. H ₂ ()	g. Ca(NO ₃₎₂ in 100 g. H ₂ O	Solid phase
1.0249	0.096	3.38	Ca(OH) ₂ Ca(OH) ₂ and solid solution
1.0484	0.109	8.52	
1.0940	0.125	13.42	
1.1383	0.181	20.73	
1.1840	0.187	28.98	CaO, xN ₂ O ₃ , yH ₂ O Solid solution CaO, xN ₂ O ₃ , yH ₂ O
1.2101	0.198	32.84	
1.2287	0.212	36.83	
1.2290	0.213	37.55	
1.2541	0.224	40.25	
1.2581	0.230	41.98	
1.2826	0.260	47.00	
1.2905	0.263	47.16	
1.3337	0.332	58.67	
1.3735 1.4195	0.429 0.545	69.40 83.03	Solid solution Ca(), xN ₂ () ₅ , yH ₂ O and Ca(N() ₃) ₂ , 3½H ₂ O
1.4840	0.449	99.70	Ca(NO ₃) ₂ , 3½H ₂ () Ca(NO ₃) ₂ , 3½H ₂ O and Ca(NO ₃) ₂ , 4H ₂ ()
1.5330	0.371	115.50	
1.5809	0.303	135.30	
1.5842	0.000	139.30	Ca(NO ₃) ₂ , 4H ₂ O

(Cameron and Robinson, J. phys. Chem. 1907, 11. 275.)

Solubility of CaO_2H_2 in $Ca(NO_3)_2+Aq$. Temp. =25°.

G. per	100 g. sat. ution	Solid phase
CaO	Ca(NO3)2	
0.1150	0	CaO ₂ H _c
0.0978	4.84	
0.1074	9.36	
0.1193	13.77	
0.1444	22.46	44
0.1650	27.83	
0.1030	32.94	
$0.1931 \\ 0.2579$	40.66	4.
0.3060	44.44	
$0.3000 \\ 0.2802$	45.28	Ca2N2O7.3H2O
0.2314	47.79	Ca2. V207.31120
	51.07	
0.1894	V	
0.1659	53.20	••
0.1486	55.25	"
0.0836	57.72	Ca(NO ₃)2.4H2O
0	57.98	

Temp. = 100° .

		1
0.0561	0	CaO2H2
0.0550	2.42	
0.0624	4.91	
0.1110	15.39	
0.1200	16.10	"
0.155	21.86	
0.269	33.03	
0.480	42.26	**
0.973	50.94	
1.261	53.75	
1.477	55.40	"
1.476	55.43	
1.491	55.65	
1.635	56.89	CaO ₂ H +Ca ₂ N ₂ O ₇ .2H ₂ O
1.686	57.03	Ca ₂ N ₂ O ₇ .2H ₂ O
1.596	57.91	
1.576	58.67	"
1.348	60.44	
1.167	62.82	
1.077	66.44	
1.141	69.12	16
1.252	70.60	Ca2N2O7.2H2O+Ca2N2O7.12H2O
1.203	70.40	Ca2N2O7.12H2O
1.103	71.44	
0.937	73.85	
0.849	75.74	**
0.815	76.94	
0.804	77.62	Ca(NO ₃) ₂
0.412	77.74	"
0	78.43	"

(Bassett and Taylor, Chem. Soc. 1914, 105. 1926.)

Solubility of CaO in KCl and NaCl+Aq. Curves are given which show that the solubility of lime in solutions of either NaCl or

KCl is a maximum for all temps, when the solution contains about 60 g, of salt per l. It is a minimum at any fixed temp, when the solution is sat., the solubility then being much less than in pure H₂O of the same temp. A solution of NaCl dissolves more lime at all temps, and concentrations than a corresponding solution of KCl. In all cases the maximum solubility of lime occurs when the temp, is lowest. With solutions of all concentrations the solubility decreases regularly as the temp increases. (Cabot, J. Soc. Chem. Ind. 1897, 16, 417-419.)

Solubility in KCl+Aq increases with increased quantities of KCl and then diminishes, becoming less than the solubility in H_2O alone. (Kernot, Gazz. ch. it. 1908, 38. (1) 532.)

KOH or NaOH+Aq containing 1 pt. KOH or NaOH in 100 pts. H₂O do not dissolve more than ¹/₅₀₀₅₀ pt. CaO₂H₂, but it is sol. in NH₄OH+Aq. (Pelouze, A. ch. (3) **33.** 11.)

Solubility in NaOH+Aq at t°.

G. NaOH per l	Solubility of CaO in g. per liter at				
	20°	50°	70°	100°	
0	1.17	0.88	0.75	0.54	
0.400	0.94	0.65	0.53	0.35	
1.600	0.57	0.35	0.225	0.14	
2.666	0.39	0.20	0.11	0.05	
5.000	0.18	0.06	0.04	0.01	
8.000	0.11	0.02	0.01	traces	
20.000	0.02	traces	0	0	

(d'Anselme, Bull. Soc. 1903, (3) 29. 936.)

Solubility of CaO in NaCl+NaOH+Aq.

G. NaCl per l.	G. CaO per l. of solution containing			
	No NaOH	0.89 g. NaOH per l.	4.09 g. NaOH per l.	
0	1.3	0.8	0.22	
5	1.4	0.9		
10	1.6	1.0		
25	1.7	1.1		
50	1.8	1.25		
75	1.9	1.4	0.55	
100	1.85	1.4		
150	1.65	1.25	0.44	
175	1.6	1.2		
182	1.6	1.2		
22 5	1.4	1.0		
250	1.3	0.9		
300	1.1	0.7	0.22	
500	1.1	0.1	0.42	

(Maigret, Bull. Soc. 1905, (3) 33. 631.)

Solubility of CaO₂H₂ in CaSO₄+Aq at 25°.

G. per 100 cc. sat. solution		Solid phase
CaSO ₁	CaO	74
0	0.1166	CaO ₂ H ₂
0.0391	0.1141	
0.0666	0.1150	**
0.0955	0.1215	"
0.1214	0.1242	**
0.1588	0.1222	CaO ₂ H ₂ +CaSO ₄ .2H ₂ O
0.1634	0.0939	CaSO _{4.2} H ₂ O
0.1722	0.0611	**
0.1853	0.0349	44
0.1918	0.0176	**
0.2030	0.0062	**
0.2126	0	••

(Cameron and Bell, J. Am. Chem. Soc. 1906, 28. 1220.)

Insol. in liquid NH $_{3}.\,\,$ (Franklin, Am. Ch. J. 1898, 20, 827.)

Alcohol dissolves traces.

Methyl alcohol forms colloidal solution containing 1.125 g. per l. (Neuberg and Rewald, Biochem. Z. 1908, **9.** 545.)

Insol. in ether.

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Insol. in acctone and in methylal. (Eidmann, C. C. 1899, Il. 1014.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Much more sol. in glycerine, or sugar +Aq than in H_2O .

Solubility of CaO in glycerine.

L.	•		
Wt. of glycerine in 100 ccm. of	Wt. Ca() contained in 100 ccm. of		of CaO to cerine
solution	liquid sat. with CaO	CaO	Glycerine
10.00	0.370	3.6	96.4
5.00	0.240	4.6	95.4
2.86	0.196	6.4	93.6
2.50	0.192	7.1	92.9
2.00	0.186	8.5	91.5
1.00	0.165	14.2	85.8

(Berthelot, A. ch. (3) 46. 176.)

 $1000~\rm g.~H_2O$ dissolve 1.251 g. CaO; 1000 g. $\rm H_2O+50~\rm g.$ glycerine dissolve 1.865 g. CaO; 1000 g. $\rm H_2O+100~\rm g.$ glycerine dissolve 2.583 g. CaO; 1000 g. $\rm H_2O+200~\rm g.$ glycerine dissolve 4.040 g. CaO; 1000 g. $\rm H_2O+400~\rm g.$ glycerine dissolve 6.569 g. CaO. (Carles, Arch. Pharm. (3) **4.** 558.)

Insol. in pure glycerine.

Solubility of CaO₂H₂ in glycerine + Aq at 25°.

G=g. glycerine in 100 g. glycerine +Aq. $\frac{1}{2}$ Ca(OH₂) = millimols sol, in 100 cc. glycerine +Aq.

G	½CaO2H2	Sp. gr.
. 0	4.3	1.0003
$\begin{array}{c} 7.15 \\ 20.44 \end{array}$	$\begin{array}{c c} 8.13 \\ 14.9 \end{array}$	$\frac{1.0244}{1.0537}$
31.55	22.5	$\frac{1.0842}{1.1137}$
$\begin{array}{c} 40.95 \\ 48.7 \end{array}$	40.1 44.0	1.1356
69.2	95 8	1 2027

(Herz and Knoch, Z. anorg. 1905, 46. 193.)

Solubility in glycerine+Aq at 25°.

So			
% Ca(OH)2	% glycerine	(%H ₂ ()	Sp. gr.
0.117 0.178 0.413 0.48 0.88 1.34	0 3.50 15.59 17.84 34.32 55.04	96.32 80.28 81.68 64.80 43.62	1.008 1.042 1.088 1.149

Solid phase in this system is CaO₂H₂, (Cameron and Patten, J. phys. Chem. 1911, **15.** 71.)

 $100~\rm pts.~sugar~dissolved~in~H_2O~dissolve~55.6~pts. CaO~(Osann);~50~\rm pts.~CaO~(Ure);~49.6~pts.~CaO~(Daniell);~29–30.6~pts.~CaO~(Hunton);~23~pts.~CaO~(Soubeiran.)$

Sugar solution at 100° takes up ¹4 mol. CaO for each mol. sugar, at 0°, if it contains not less than 25% of sugar, it takes up 2 mols. CaO to 1 mol. sugar. (Dubrunfaut.)

Amount dissolved is proportional to the density and temperature of the solutions.

Solubility of CaO in sugar +Aq

Pts. sugar dissolved in	Relation of	CaO to sugar
100 pts. H ₂ ()	Ca()	Sugar
40	21.0	79.8
37.5	20-8	79 2
35 0	20.5	79 5
32 5	20 3	79 7
30 0	20.1	79 9
27 5	19 9	80 1
25 0	19.8	80 2
22 5	19 3	80 7
20 0	18-8	81 2
17.5	18 7	81 3
15 0	18.5	81.5
12 5	18.3	81 7
10 0	18.1	81 9
7.5	16.9	83 1
5.0	15.3	84.7
2.5	13 8	86.2

(Peligot, C. R. 32. 335.)

100 g. solution of sugar sat. with CaO between 10° and 54.4° contain 22.5 to 23.5% CaO. (Hunton, 1837.)

Wt. of sugar in 100 ccm.	Wt. of CaO contained in 100 ccm. of		of CaO ugar
of solution	liquid sat, with Ca()	CaO	Sugar
4.850	1.031	17.5	82.5
2.401	0.484	16.8	83.2
2.000	0.433	17.8	82.2
1.660	0.364	18.0	82.0
1.386	0.326	19.0	81.0
1 200	0.316	20.8	79.2
1.058	0.281	21.0	79 0
0.960	0.264	21.6	78 4
0 400	0.194	32.7	67.3
0.191	0.172	47.4	52.6
0.096	0.154	61.6	78.4
0.000	0.148		

(Berthelot, A. ch. (3) 46. 176.)

Solubility in sugar + Aq at to.

t°	G. sugar in 100 ccm. of solution	G. CaO dissolved per 100 g sugar
16-17°	0.7814	37.9
	0 9120	32.3
	1.4000	30.5
	1.6930	28.9
	4.754	27.7
	5 730	27.1
	10.159	27.5
	11.200	27.2
	12.500	27.3
	13.930	27.9
	14.487	27.5
	16.410	28.0
15°	0.625	71.6
	0 964	53.4
	2 084	36.0
	3.028	32.3
	3.451	31.7
	4.168	30.2
	4.880	28.7
	5.73	28.3
	6.12	27.4
	6.25	27.7
	6.51	27.5
	7 55	27.9
	8.20	27.3

(Weisberg, Bull. Soc. 1899, (3) 21. 775.)

Solubility in sugar+Aq at 25°.

. Solution contains			
% Ca(OH)2	% sugar	% H ₂ O	Sp. gr.
0.117	0 '		0.983
0.188	0.62	99.19	1.000
0.730	4.82	94.50	1.021
1.355	7.50	91.12	1.037
2 31	9.87	87.85	1.051
3.21	11.90	84.89	1.067
4.57	15.10	-80.33	1.092
5.38	17.42	76.93	1.109
6 07	19.86	73.07	1 123

The solid phase in this system consists of a series of solid solutions with $Ca(OH)_2$ a limiting case.

(Cameron and Patter, J. phys. Chem. 1911, **15**, 70.)

Solubility of CaO in sugar+Aq at 80°.

€ sugar	% CaO	& Sugar	% CaO
4.90	0.117	19.50	0.358
9.90	0.189	24.60	0.458
14.75	0.230	29.70	1.017

Solid phase, CaO₂H₂.

(von Ginneken, Proc. Kon. Akad. v. Wetensch, Amsterdam, 1911, 14. 457.)

Solubility of CaO in mannite+Aq.

Wt. of mannite in	Wt. of CaO contained in 100 ccm. of	Relation of CaO to mannite	
100 ccm. of solution	liquid sat. with CaO	CaO	Mannite
9.60	0.753	7.3	92.7
4.80	0.372	7.2	92.8
2.40	0.255	9.6	90.4
1.92	0.225	10.5	89.5
1.60	0.207	11.4	88.6
1.37	0.194	12.5	87.5
1.20	0.193	13.9	86.1
1.07	0.190	15.1	84.9
0.96	0.186	16.2	86.8
0.192	0.155	44.6	55.4
0.096	0.154	61.6	38.4
0.000	0.148		{

(Berthelot, A. ch. (3) 46. 176.)

Solutions of CaO in sugar, mannite, or glycerine afford an abundant ppt. on being heated, but this redissolves on cooling. (Berthelot.)

Sol. in sorbite+Aq (Pelouze); sl. sol. in quercite+Aq. Sol. in monobasic Ca saccharate+Aq. (Peligot.) Much more sol. in gelatine+Aq than in pure $\rm H_2O$.

Calcium hydroxyhydrosulphide, $Ca(OH)SH + 3H_2O$.

Easily sol. in H₂O with almost immediate decomposition. Insol. in alcohol, but slowly

decomp. thereby. (Divers and Shimidzu, Chem. Soc. 45. 270.)

Calcium subiodide, CaI.

Decomp. by moisture. (Wöhler, Z. anorg. 1909, 61. 76.)

Calcium iodide, CaI₂.

Deliquescent. 100 pts. H₂O dissolve at 0° 20° 40° 43° 920 192 435 pts. CaI₂. 204228 286 (Kremers, Pogg. 103. 65.)

Sp. gr. of CaI₂+Aq at 19.5° containing: 20 25 10 15 30% CaI₂, 1.044 1.26 1.321 1.09 1.14 1.198

35 40 45 50 55 60% Cal2. 1.398 1.477 1.567 1.665 1.78 1.91 (Kremers, calculated by Gerlach, Z. anal. 8, 285.)

Sol. in absolute alcohol. (Gay-Lussac, A. ch. 91. 57.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

Sol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

+4H₂O.(Kuznetzov, C. A. 1911. 842.) +6H₂O. Sat. aq. solution contains at: $+7^{\circ}$ ---22° 19° 10° 61.6 65.065.1 66.3% salt.

51° 64° 130° 248° 69.4 81.3 87.1% salt. 75.9(Étard, A. ch. 1894, (7) 2. 543.)

+7H₂O. (Kuznetzov.)

Calcium periodide, CaI₃+15H₂O.

(Mosnier, A. ch. 1897, (7) 12. 401.) Cal. (Herz and Bulla, Z. anorg. 1911, 71. 255.)

Calcium mercuric iodide, CaI_2 , $HgI_2 + 8H_2O$.

Very deliquescent. Sol. in H₂O, alcohols, allyl iodide, aldehyde, acetic acid, ethyl oxalate and aniline. Sl. sol. in nitrobenzene. Completely insol. in CHCl₃, CCl₄, ethyl iodide, ethylene bromide, C₆H₆, monochlorbenzene and toluene. (Duboin, C. R. 1906, **142.** 573.)

3CaI₂, 4HgI₂+24H₂O. Sol. in H₂O with

pptn. of red HgI₂.

Very sol. in alcohols, glycerine, ethyl acetate, methyl and isobutyl propionate, allyl iodide, aldehyde, acetone, aniline and ethyl oxalate. Insol. or sl. sol. in nitrobenzene. Insol. in CHCl₃, C₆H₆, ethyl iodide, monochlorbenzene, etc. (Duboin, C. R. 1906, 142. 397.)

CaI₂, 2HgI₂.

Decomp. by H₂O. (Boullay.) Cal_2 , $5Hgl_2+8H_2O$. Decomp. by H_2O , B. 16. 997.)

alcohols, glycerine, aldehyde, and acetic acid; slowly by nitrobenzene and ethyl oxalate. Insol. in monochlorbenzene, toluene, CHCl₃ and ethylene bromide. (Duboin, l. c.)

Calcium silver iodide, CdI₂, 2AgI+6H₂O.

Immediately decomp. by H₂O. (Simpson, Roy. Soc. Proc. 27. 120.)

Calcium zinc iodide, CaI_2 , ZnI_2+8H_2O .

Very hydroscopic. (Ephraim, Z. anorg. 1910, 67, 384.)

Calcium iodide ammonia, Cal₂, 6NH₃. (Isambert, C. R. 66, 1259.)

Calcium nitride, Ca₃N₂.

Sol. in dil. acids: insol. in conc. (water free). acids. (Moissan, C. R. 1898, **127**, 499.)

Calcium oxide, CaO.

Decomp. by H₂O, with evolution of much heat, to form CaO₂H₂, which see for solubility in H₂C, etc.

Calcium peroxide, CaO₂.

Very sl. scl. in H_2O ; easily sol. in acids, and NH_4 salts +Aq. Insol. in $NH_4OH + Aq$. (Conroy, Chem. Soc. (2) **11**, 808.)

 $+2H_2O$. True composition is CaO_2H_2+ H₂O₂. (de Forcrand, C. R. 1900, **130**. 1390.) +8H₂O. Efflorescent. Difficultly sol. in H₂O with gradual decomp. Insol. in alcohol or ether. (Gay-Lussac and Thénard, A. ch. (2) **8.** 313.)

Calcium oxybromide, 3CaO, CaBr₂+16H₂().

Decomp. by H₂O and alcohol. Very easily sol. in hydracids and dil. HNO₃. (Tassily. C. R. 1894, **119.** 372.)

Calcium oxychloride, $Ca_4O_3Cl_2+15H_2O=$ 3CaO, CaCl₂+15H₂O.

Decomp. by H₂O or alcohol. (Rose.) Formula is Ca₂HO₂Cl+7H₂O. (Grimshaw.

C. N. 30. 280.) +16H₂O. Decomp. by H₂O into CaO₂H₂ and CaCl2 until a maximum of 85 g. CaCl2

are dissolved per litre. (Ditte, C. R. 91. 576.) 4CaO, $CaCl_2+14H_2O$. (Schreinemakers and Figee, Chem. Weekbl. 1911, 8. 685.) CaO, CaCl₂. (Schreinemakers and Figee.)

Calcium lead oxychloride, CaCl₂, CaO, 2PbO +4H₂O.

Sol. in H₂O with decomp. (André, C. R. **104.** 359.)

CaCl₂, 3PbO+3H₂O. (André.)

Calcium mercuric oxychloride, CaCl₂, 2HgO +4H₂O.

Decomp. immediately by H₂O. (Klinger,

Calcium oxyiodide, 3CaO, CaI₂+16H₂O.

Decomp. by H₂O, alcohol, and acids. Sol. in hydracids and in very dil. HNO3. (Tassily, C. R. 1894, 119. 372.)

Calcium oxysulphide, Ca₄O₃S₄+12H₂O = 3CaO, CaS₄+12H₂O.

Decomp. by H₂O. Not acted on by absolute alcohol. (Schöne, Pogg. 117. 77.) According to Geuther (A. 224. 178) = CaS₂,

2CaO+10, or 11H₂O. Sol. in dil. HCl+Aq with separation of S.

 $Ca_5O_4S_4 + 18H_2O = 4CaO$, $CaS_4 + 18H_2O$. Decomp. by H₂O, but not acted on by absolute alcohol. (Schöne, Pogg. 117. 82.)

According to Geuther (A. 224. 178) = CaS_3 , 3Ca()+14, or $15H_2O$.

 $Ca_6O_5S_5 + 20H_2O = 5CaO, CaS_5 + 20H_2O.$

(Rose, Pogg. 55. 433.)

Sol. in 400 pts. cold, decomp. by boiling H₂() (Buchner); sl. sol. in cold, much more in hot H₂O, but it is not deposited on cooling. Aqueous solution sat. at 6° -7.2° has sp. gr. = 1.0105 (Herschel); sol. in alcohol (Gay-Lussac); insol. in alcohol (Gmelin).

Calcium phosphide, CaP.

Decomp. in moist air or Deliquescent. with H₂O. Not attacked by conc. HNO₃, but decomp. by dil. HNO₃+Aq. (Thénard, A. ch. (3) **14.** 14.)

Ca₈P₂. Crystallized.

Decomp. by H_2O .

Not attacked by conc. H₂SO₄. Violently

attacked by dil. H₂SO₄.

Not attacked by abs. alcohol, ether, benzene or oil of turpentine. (Moissan, C. R. 1899, **128.** 792.)

Ca₂P₃. Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Calcium selenide, CaSe.

Sl. sol. in H₂O. Very easily decomp. (Fabre, C. R. **102.** 1469.)

Calcium silicide, CaSi2.

Slowly decomp. by H₂O; sol. in conc. H₂SO₄ and dil. HNO₃ with evolution of H₂. With cone. HCl it gives H₂, Si and silicon hydride; with dil. HCl, H₂ and a yellow substance. Sol. in alkali+Aq or NH₃+Aq with evolution of H₂. (Moissan, C. R. 1902, **134**. 505.) Two modifications:

(a) Only sl. sol. in HNO3; decomp. H2O to give an insol. ppt. on addition of HCl.

(b) Easily sol. in HNO₃ and acetic acid; decomp. HCl to give a ppt. which is sol. in KOH+Aq. (de Chalmot, Am. Ch. J. 1896, **18**, 320.)

Ca₃Si₂. Slowly decomp. by H₂O, rapidly by dil. acetic acid or by H2SO3+Aq without evolution of spontaneously inflammable gas. (Honigschmid, M. 1909, 30. 497.)

Decomp. by dil. min. acids, with evolution

of spontaneously inflammable gas. (Hackspill, Bull. Soc. 1908, (4) 3. 619.)

· Ca₆Si₁₀. Insol. in all solvents. Decomp. by boiling H₂O, by cone. HCl and by acetic acid. Sol. in dil. alkali and alkali carbonates +Aq. Hardly attacked by conc. H₂SO₄ or HNO₃. (Kolb, Z. anorg. 1909, **64**. 349.) HNO.

CairSi10. Easily decomp. by boiling with H₂O. Decomp. by dil. acetic acid, dil. or cone HCl. (Kolb, Z. anorg. 1909, **64.** 349 and 356.)

Calcium siliconitride, CaSi, N.

(Kolb., Z. anorg. 1909, 64, 363.)

Ca₂Si₃N₄. Slowly decomp. by boiling with H₂(), somewhat more rapidly with dil. NaOH +Aq. Slowly decomp. by conc. HCl. (Kolb,

Ca₁₁Si₁₀N₁₁. Completely decomp. by HCl. (Kolb, ι . c.)

Calcium sulphide, CaS.

500 pts. H_2O dissolve 1 pt. CaS completely; less H_2O dissolves out CaS_2H_2 and leaves CaO₂H₂. Very much H₂O decomposes completely into CaO₂H₂ and H₂S. (Béchamp, A. ch. (4) 16. 222.)

Not decomp. by H₂O, and only sl. sol. therein at ordinary temp. (Pelouze.) After 48 hours contact with CaS, 1 l. H₂O

contains at:

10° 18° 40° 60° 90° 0.230.48 0.150.30 0.33 g. CaS.

After boiling for 2 hours, 0.27 g. CaS is dissolved; addition of NaCl diminishes solubility, but Na₂SO₄ increases it. Lime-water dissolves at 14° 0.18 g. CaS, the same amount which H₂O dissolves at 60°. Milk of lime dissolves 0.55 g. at 60°. H₂O containing 3 to 79 g. Na₂O per litre dissolves only traces of CaS at 10°, but at 40–60°, or by boiling, a large amount of Na₂S is formed. (Kolb, A. ch. (4) 7. 126.)

Sol. in 12,500 pts. H₂O at 12.6°. (Scheurer-Kestner, Répert. chim. appl. 1862. 331.)

Sat. Na₂CO₂+Aq has scarcely any action on CaS, but a dilute solution has more action. (Kolb.)

Sol. in H₂O and sulphur, forming CaS₄. Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)
Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790. Insol. in ethyl acetate. (Naumann, B.

1904, 37. 3601.) Insol. in methylal. (Eidmann, C. C. 1899,

II. 1014.)

Sol. in 10 pts. glycerine. (Cap and Garot, J. Pharm. (3) 26. 81.)

Sol. in sugar+Aq. (Stolle, C. C. 1900, I. 1044.)

Calcium tetrasulphide, CaS₄.

Known only in solution.

Calcium pentasulphide, CaS5.

Sol. in H₂O and alcohol. (Berzelius.) Exists only in aqueous solution. (Schöne, Pogg. 117. 73.)

Calcium hydroxyl sulphide, Ca(OH)SH+ $3H_2O$

Easily sol. in H₂O with immediate decomp. and separation of Ca(OH)2. Insol. in alcohol, but slowly decomp, thereby. (Divers and Shimidzu, Chem. Soc. 45. 270.)

Calcium stannic sulphide.

See Sulphostannate, calcium.

Calomel.

See Mercurous chloride.

Carbamic acid.

Ammonium carbamate acid carbonate (commercial carbonate of ammonia).

See Carbonate carbamate, ammonium hydrogen.

(salts of hartshorn), 2NH₄HCO₃, NH₄CONH₂,

See Carbonate carbamate, ammonium hydrogen.

Carbazote silicon, C2SiN.

Insol. in acids, even HF; also in boiling KOH+Aq. (Schützenberger and Colson, C. R. **92.** 1508.)

Carbon, C.

Insol. in all solvents.

Diamond is unacted upon by KClO₃+fum. HNO₃; graphite forms graphitic acid by KClO₃+fum. HNO₃; amorphous carbon is sol. in KClO₃+fum. HNO₃. (Berthelot, A. ch. (4) **19.** 399.)

Diamond is sol. in molten iron at 1160°. Amorphous carbon is insol, in molten iron at 1160°, but becomes sol. therein by heating to 1400°. (Hempel, B. 18. 998.)
Insol. in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, 54. 674.)

Charcoal is insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 830.)

The quantity of carbon dissolved by iron diminishes by increasing phosphorus, falling by about 0.5% for each additional 2.0% of phosphorus. (Fettweis, Metallurgie, 1906, **3.** 60.)

Solubility in iron is reduced by the presence of tin and of sulphur. (Wüst, Metallurgie, 1906, **3.** 169.)

The solubility of C in iron is increased by the presence of chromium; 9.2% C dissolved when 62% Cr is present in the mixture. (Goerens, Metallurgie, 1907, 4. 18.)

Carbon boride, CB₆.

Insol. in boiling HNO3+Aq. (Joly, C. R. **97.** 456.)

Carbon suboxide, C_8O_2 .

B.-pt. +7° at 761 mm.

Sol. in H2O with formation of malonic acid. Slowly decomp, on standing in a sealed tube. (Diels, B. 1906, 39. 696.)

Carbon monoxide, CO.

Sol. in 50 vols. recently boiled H₂O. (Davy.) Sol. in 16 vols. H₂O. (de Saussure.) Sol. in 27 vols. H₂O. (Dalton.)

100 vols. H₂O dissolve 6.2 vols. CO at 18°. (de Saus-

Solubility of CO in H2O: 1 vol. H2O at to dissolves V vols. CO reduced to 0° and 760 mm.

t°	V	l t°	V	t°	V.
0	0.03287	7	0.02796	14	0.02466
1	0.03207	8	0.02739	15	0.02432
2	0.03131	9	0.02686	16	0 02402
3	0.03057	10	$\begin{bmatrix} 0.02635 \\ 0.02588 \end{bmatrix}$	17 18	$\begin{array}{c} 0.02374 \\ 0.02350 \end{array}$
4 5	$0.02987 \ 0.02920$	12	0.02584	19	0.02329
6	0.02857	13	0.02504	20	0.02312

(Bunsen's Gasometry, pp. 287, 128, 146.)

Coefficient of absorption = 0.032874— 0.00081632t+0.000016421t2. (Bunsen and Pauli, A. 93. 16.)

Solubility of CO in H₂O.

 β = Vol. CO absorbed by 1 vol. H₂O at a partial pressure of 760 mm.

 $\beta^1 = \text{Vol. CO}$ (reduced to 0° and 760 mm.) absorbed by 1 vol. of H₂O under a total pressure of 760 mm.

q = g. CO dissolved by 100 g. H_2O at a total pressure of 760 mm.

t°	β	β1	q
0	0.03537	0.03516	0.0044
5	0.03149	0.03122	0.0039
10	0.02816	0.02782	0.0035
15	0.02543	0.02501	0.0031
20	0.02319	0.02266	0.0028
$\overline{25}$	0.02142	0.02076	0.0026
30	0.01998	0.01915	1
	0.04000		0.0024
40	0.01775	0.01647	0.0021
50	0.01615	0.01420	0.0018
60	0.01488	0.01197	0.0015
70	0.01440	0.00998	0.0013
80	0.01430	0.00762	0.0010
90	0.01420	0.00438	0.0006
100	0.01410	0.00000	
100	0.01410	0.00000	0.0000

(Winkler, B. 1901, 34. 1416.)

Solubility in H2O at various pressures. V = Volume of the absorbing liquid. P = Hg pressure in metres. $\lambda = \text{Coefficient of solubility}$

v	t°	P	λ
30.830 ccm.	17.7	0.9202	0.02791
()().()()()		1.1438	0.02787
		1.4624	0.02786
		1.7986	0.02783
		2.3659	0.02782
j		2.8390	0 02776
.		3.2622	0.02771
		4.0114	0.02770
		4.6017	0.02763
		5.1953	0.02761
		5.8717	0.02756
		6.5462	0.02744
		7.0983	0.02738
		7.6470	0.02723
		8.0184	0.02715
31.939 ccm.	19.0	0 9176	0.02716
		1 1506	0.02717
		1.3897	0.02715
		1.7044	0.02712
		2.1239	0.02708
		2.7173	0.02701
1		3.2576	0.02693
		3.9311	0.02689
		4.4584	0.02680
		5 2470	0.02673
		6.0346	0.02665
1		6.6303	0.02654
1		7.1842	0.02636
l		7.9542	0.02617

(Cassuto, Phys. Zeit. 1904, 5, 236.)

Coefficient of absorption of CO in H₂O at 25° equals 0.0154. (Findlay and Creighton, Biochem. J. 1911, **5.** 294.)

Cuprous chloride in an hydrochloric acid or ammoniacal solution, and ammoniacal solutions of cuprous salts absorb large amounts of CO. (Leblanc, C. R. 30, 488.)

Cuprous chloride dissolved in HCl+Aq absorbs 15-20 vols. CO. (Berthelot, A. ch. (3)

Absorbed by KOH, NaOH, Ba(OH)2, and Ca(OH)₂+Aq; more readily by ether, alcohol, and wood spirit, with formation of formic acid. (Berthelot, A. ch. (3) **61.** 463.)

Sol. in HCN. (Böttinger, B. **10.** 1122.)

1 vol. alcohol absorbs 0.20443 vols. CO gas at all temperatures between 0° and 25°.

(Carius, A. 94. 135.)

100 vols. alcohol (0.84 sp. gr.) dissolve 14.5 vols. CO at 18°; 100 vols. rectified naphtha (0.784 sp. gr.), 20.0 vols. CO at 18°; 100 vols. oil of lavender (0.88 sp. gr.), 15.6 vols. CO at 18°; 100 vols. oilve oil (0.915 sp. gr.), 14.2 vols. CO at 18°; 100 vols. sat. KCl+Aq (1.168 sp. gr.), 5.2 vols. CO at 18°, 100 vols. sat. KCl+Aq (1.168 sp. gr.), 5.2 vols. CO at 18°. (de Saussure, 1814.) 1 vol. oil of turpentine absorbs 0.16-0.20 vol. CO. Ge Saussure.)
Sol. in ethor (Raunault)

Insol. in caoutchine.

Sol. in ether. (Regnault.)

Solubility % alcohol	in alco	ohol+Aq.	, '	,
by weight	0.00	9.09	16.67	23.08
Solubility	2.41	1.87	1.75	1.68
% alcohol				
by weight	28.57	33.3 3	50.00	
by weight Solubility	1.50	§ 1.94	3.20	
			89, 37. 52	4.)
Solubili	ty of (O in orga	nic solver	ıts.
Solv	ent	Solubility 20° C.	at Solut	oility at

Solvent	Solubility at 20° C.	Solubility at 25° C.
Glycerine	Not	٠,
•	measurable	
Water	0.02404	0.02586
Aniline	0.05358	0.05055
Carbon bisulphide	0 08314	0.08112
Nitrobenzene	0.09366	0.09105
Benzene	0.1707	0.1645
Glacial acetic acid	0.1714	0.1689
Amyl alcohol	0.1714	0.1706
Xylene	0.1781	0.1744
Toluene	0.1808	0.1742
Ethyl alcohol	0.1000	0.1112
(99.8%)	0.1921	C.1901
Chlorof orm	0.1954	0.1897
Methyl alcohol	0.1955	0.1830
Amyl acetate	0.2140	0.2108
Acetone	0.2225	0.2128
Isobutyl acetate	0.2365	0.2314
Ethyl acetate	0.2516	0.2419
(Just. Z. phys		

(Just, Z. phys. Ch. 1901, **37.** 361.) Solubility of CO in ether at $0^{\circ} = 0.3618$, and at $10^{\circ} = 0.3842$. (Christoff, Z. phys. Ch. 1912, 79, 459.)

Solubility of CO in organic mixtures. CO in benzene and naphthalene at 25°C

Per cent by weight of naphthalene	Per cent by weight of benzene	* Solubility of CO
0	100	0.174
11.52	88.48	0.164
11.65	88.35	0.163
23.98	76.02	0.149
23.60	76.40	0.148
32.35	67.65	0.142
32.74	67.26	0.143
33.79	66.21	0.141

(Skirrow, Z. phys. Ch. 1902, 41, 144.) * See under Oxygen.

CO in benzene and phenanthrene at 25° C.

er cent by weight of phenanthrene	Per cent by weight of benzene	Solubility of CO *
0	100	0.174
10.48	89.52	0.144
10.48	89.52	0.144
19.22	80.78	0.132
18.99	81.01	0.133
27.04	72.96	0.128
27.39	72.61	0.127

(Skirrow.)

CO	in	benzene	and	a-na	phthol	at	25°	C.
----	----	---------	-----	------	--------	----	--------------	----

Per cent by weight	Per cent by weight	Solubility of
of α-naphthol	of benzene	CO
0	100	0.174
3.48	96.52	0.149
6.75	93.25	0.145
6.59	93.41	0.144
12.10	87.90	0.139
11.81	88.19	0.139

(Skirrow.)

C() in benzene and β -naphthol at 25° C.

Per cent by weight of \$\beta\$ naphthol	Per cent by weight of benzene	Solubility of CO
0	100	0.174
2.06	97.94	0.158
4.14	95.86	0.151
4.36	95.64	0.149

(Skirrow.)

CO in benzene and nitrobenzene at 25° C.

Per cent by weight of nitrobenzene	Per cent by weight of benzene	Solubility of CO
0	100	0 174
14.5	85.5	0.162
14.12	85.88	0.162
28.18	71.82	0.152
28.14	71.86	0.152
40.58	59.42	0.140
40.63	59.37	0.140
54.9	45.1	0 126
54.9	45.1	0.127
83.33	16.67	0.101
83.2	16.8	0.102
100	0	0.093

(Skirrow.)

CO in benzene and aniline at 25° C.

Per cent by weigh of aniline	Per cent by weight of benzene	Solubility of CO
0	100	0.174
12.69	87.31	0.156
12.03	87.97	0.158
19.57	80.43	0.145
19.43	80.57	0.144
28.43	71.57	0.131
28.26	71.74	0.131
57.68	42.32	0.0945
57.38	42.62	0.0953
78.90	21.10	0.0689
78.80	21.20	0.0684
100	0	0.053

(Skirrow.)

CO in toluene and naphthalene at 25° C.

Per cent by weight	Per cent by weight	Solubility of
of naphthalene	of toluene	CO
0	100	0.182
7 13	92.87	0.169
7 10	92.9	0.171
15 10	84.9	0.161
15 13	84.87	0.161
22 75	77.25	0.153
22 58	77.42	0.154

(Skirrow.)

CO in toluene and phenanthrene at $25^{\circ}\,\mathrm{C}.$

Per cent by weight of phenanthrene	Per cent by weight of toluene	Solubility of CO
0	100	0 182
5.59	94.41	0.170
5.58	94.42	0.171
11.16	88.84	0.161
11.20	88.8	0.161
21.62	78.38	0.147
21.93	78.07	0.147

(Skirrow.)

CO in toluene and nitrobenzene at 25° C.

Per cent by weight of nitrobenzene	Per cent by weight of toluene	Solubility of CO
0	100	0.182
8.86	91.14	0.162
8.87	91.13	0.168
18.27	81.73	0 160
18.19	81.81	0.161
$26.82 \\ 26.76$	73.18 73.24	$0.151 \\ 0.151$
49 14	50.86	0.131
49.02	50.98	0 131
76.31	23.69	0 108
76.31	23 69	0.108
100	0	0.093

(Skirrow.)

CO in toluene and aniline at 25° C

Percent by weight of aniline	Per cent by weight of toluene	Solubility of CO
, 0	100	0.182
6.61	93.39	0.169
6.61	93.39	0.168
13.56	86.44	0.157
13.55	86.45	0.156
19.91	80.09	0.148
19 96	80.04	0.148
44 64	55.36	0.115
44.31	55.69	0.116
74.63	25.37	0.0768
75.03	24.97	0.0753
100	0	0.053

(Skirrow.)

Percent by weight of a-naphthol	Percent by weight of toluene	Solubility of CO
0	100	0.182
1.46	95.54	0.171
4.44	95.56	0.171
8.75	91.25	0.162
8.89	91.11	0.163

CO in acctone and uaphthalene at 25° C.

Per cent by weight of naphthalene	Per cent by weight of acetone	Measured vapor pressure	Solubility of CO
0	100	229.6	$\begin{array}{c} 0.238 \\ 0.199 \\ 0.187 \end{array}$
13 31	86.69	212.4	
27 40	72.60	196.6	

(Skirrow.)

CO in acetone and phenanthrene at 25°C.

Percent by weight of phenanthrene	Percent by weight of acetone	Measured vapor pressure	Solubility of CO
$\begin{array}{c} 0 \\ 12.77 \\ 25.04 \end{array}$	100 87 23 74.96	$\begin{array}{c} 229.6 \\ 218 \\ 207.5 \end{array}$	0.238 0.205 0.183

(Skirrow.)

CO in acctone and β -naphthol at 25° C.

Per cent by weight of β-naphthol	Per cent by weight of acctone	Measured vapor pressure	Solubility of CO
0	100	229.6	0.238
13 95	86.05	213	0.190
26/88	73 12	195	0.169
-			·

(Skirrow.)

CO in acetone and nitrobenzene at 25° C.

Per cent by weight of nitrobenzene	Per cent by weight of acetone	Measured vapor pressure	Solubility of CO
$0\\21.59\\53.20\\100$	100 78.4 46.8 0	229.6 201 152	0.238 0.207 0.157 0.093

(Skirrow.)

CO in acetone and aniline at 25° C.

Per cent by weight of aniline	Per cent by weight of acetone	Measured vapor pressure	Solubility of CO
$\begin{array}{c} 0 \\ 20.83 \\ 55.10 \\ 100 \end{array}$	100 79.17 44.9 0	229.6 192 120	0.238 0.179 0.110 0.053

(Skirrow.)

CO in acetic acid and nitrobenzene at 25° C.

Percent by weight of nitrobensene	Per cent by weight of acetic acid	Solubility of CO
0	100	0.173
21.65	78.35	0.156
51.03	48.97	0.130
100	0	0.093

(Ekirrow.)

CO in acetic acid and aniline at 25° C.

Per cent by weight of aniline	Per cent by weight of acetic acid	Solubility of CO
0 13.5 41.64 60.77 82.21	100 86.5 58.36 39.23 17.79	0.173 0.110 0.0699 0.0618 0.0580 0.053

(Skirrow.)

CO in methyl alcohol and glycerine at 25°C.

Per cont by weight of glycerine	Per cent by weight of methyl alcohol	Measured vapor pressure	Solubility of CO	
0 39.6 60.5 77.1 100	100 60.4 39.5 22.9	122 106 91 63	0.196 0.0964 0.0515 0.0246 very small	

(Skirrow.)

CO in acetone and chloroform at 25° C.

Per cent by weight of chloroform	Per cent by weight of acetone	Measured vapor pressure	Solubility of CO
0	100	229.6	0.238
$\begin{array}{c} 33.38 \\ 53.2 \\ \end{array}$	66.62	202	0.226
	46.8	179	0.219
$\frac{65.03}{73.46}$	34.97	167	0.220
	26.54	162	0.212
$\begin{array}{c} 79.83 \\ 87.3 \end{array}$	20.17	163	0.204
	12.7	168	0.207
94 4	5.6	178	0.205
100	0	188	0.207

(Skirrow.)

CO in acetone and carbon bisulphide at 25° C.

Per cent by weight of carbon bisulphide	Per cent by weight of acetone	Measured vapor pressure	Solubility of CO
0 8.18 18.02 49.46 62.6 74.05 85.51 96.42	100 91.82 81.98 50.54 37.4 25.95 14.49 3.58	229.6 306 367 443 457 457 433 382 356	0.238 0.236. 0.236. 0.227 0.210 0.187 0.144 0.114 0.0959

(Skirrow.)

O in benzene and ethyl alcohol at 25° C.

Per cent by weight of acetic acid	eight of weight of vapor		Solubility of CO	
0	100	95.9	0.174	
15.43	84.56	125	0.179	
52.34	47.66	119	0.181	
100	0	59	0.192	

(Skirrow.)

CO in chloroform and methyl alcohol at 25° C.

Per cent by weight of alcohol	Per cent by weight of chloroform	Measured vapor pressure	Solubility of CO	
0	100	188	0.207	
13	87	233	0.202	
100	0	122	0.196	

(Skirrow.)

CO in acetic acid and benzene at 25° C.

Percent by weight of acetic acid	Percent by weight of benzene	Measured vapor pressure	Solubility of CO
0 19.17 33.54 67.51 100	100 80.83 66.46 32.49	95.9 87.5 82 64.5 14	0.174 0.190 0.198 0.199 0.172

(Skirrow.)

CO in acetic acid and toluene at 25° C.

Per cent by weight of acetic acid	Per cent by weight of toluene	Measured vapor pressure	Solubility of CO
0 20.48 .56.89 74.71 100	100 79.52 43.11 25.29	9 31.6 28 25.6 14	0.182 0.190 0.195 0.191 0.172

(Skirrow.)

CO in acetic acid and chloroform at 25° C.

Per cent by weight of acetic acid	Per cent by weight of chloroform	Measured vapor pressure	Solubility of CO
0	100	188	0.206
26.67	73.33	144.5	0.207
56.46	43.54	88.5	0.196
100	0	14	0.172

(Skirrow.)

CO in carbon bisulphide and ethylene dichloride at 25° C.

Per cent by volume of carbon bisulphide	Per cent by volume of ethylene dichloride	Measured vapor pressure	Solubility of CO
0	100	77	0.147
25	75	231	0.159
49	51	294	0.160
81.6	18.4	338	0.140
100	0	356.5	0.083

(Skirrow.)

Coefficient of absorption for petroleum = 0.123 at 20°, and 0.134 at 10°. (Gniewasz and Walfisz, Zeit. phys. Ch. 1. 70.)

Carbon dioxide, CO_2 .

Gas.—

H₂O dissolves about its own vol. CO₂ at the ordinary temperature (the solution obtained being of 1.0018 sp. gr.) and pressure, and an additional vol. for the pressure

gr.) and pressure, and an additional vol. for the pressure of each additional atmosphere to which it is subjected. The power of H₂O to absorb CO₂ does not nerease in precisely the same ratio as the pressure. (Soubeiran.) 5 vols. CO₂ dissolve in 1 vol. H₂O at 7 atmos, pressure, and much greater pressure is necessary in order to increase the amount of gas dissolved, but up to 4 or 5 atmospheres the amount of gas dissolved is very nearly proportional to the pressure. (Courbe, J. Pharm. 26. 121.)

121.)
100 vols. H₂O at 12.78° absorb 116 vols. CO₂ (Cavendish); at 29.44°, 84 vols. CO₂ (Henry); at 15.56°, 106 vols. CO₂ (Saussure); at 15.56°, 108 vols. CO₂ (Henry); at 15.56°, 100 vols. CO₂ (Dalton).

100 vols. H₂O at t° C, absorb V vols. of CO₂ gas reduced to 60° F, and 30 in, pressure.

t°	V	t°	V
$egin{array}{ccc} 0 & & & 4 & 4 \\ 10 & & & 15 & 6 \\ 21.1 & & & & \end{array}$	175 72	26.7	68 60
	147.94	32 2	57 50
	122.27	37 8	50 39
	100.50	65 6	11 40
	83 86	100	trace

(Rogers, Am. J. Sci. (2) 6. 107.)

1 vol. H₂O at 5° absorbs somewhat more than 1 vol. CO₂; at 10° scarcely 1 vol., and still less at higher temp. CO₂+Aq sat. at 2° has 1.0015 sp. gr.; most of the CO₂ escapes upon exposing the solution to the air, the more quickly the higher the temperature. But as CO₂ diminishes, the remainder is more obstinately held, so that boiling for ½ hour is necessary to expel it completely. (Bergman.)

Solubility of CO_2 in H_2O . 1 vol. H_2O at t° and 760 mm. dissolves V vols. CO_2 gas reduced to 0° and 760 mm.

t°		t°	V	t°	V44
0	1.7967	7	1.3339	14	1.0321
1	1.7207	8	1.2809	15	1.0020
2	1.6481	9	1.2311	16	0.9753
3	1.5787	10	1.1847	17	0.9519
4	1.5126	11	1.1416	18	0.9318
5	1.4497	12	1.1018	19	0.9150
6	1.3901	13	1.0653	20	0.9014

(Bunsen's Gasometry, pp. 287, 128, 152.)

Coefficient of absorption = 1.7967—0.07761t + 0.0016424t². (Bunsen.)

Pressure kg/sq. cm.

b

Solubility in H2O at various pressures: P= pressure in atmospheres.

P	Vol. gas. in 1 ccm.		P	Vol. gas in 1 ccm.	
ı	at 0°	at 12.43°		at 0°	at 12.43°
1 5 10 15	1.797 8.65 16.03 21 95	1.086 5.15 9.65 13.63	20 25 30	26.65 30 55 33.74	17 11 20.31 23.35

(Wroblewski, C. R. 94, 1355.)

Absorption of CO2 in H2O at various pressures: P=pressure in mm.; V=vols. CO₂, reduced to 0° and 760° mm., absorbed by 1 vol. H₂O.

P	V	P	V
697.71	0.9441	2188.65	3 1764
809.03	1.1619	2369.02	3.4857
1289.41	1.8647	2554.00	3.7152
1469.95	2.1623	2738.33	4.0031
2002.06	2.9067	3109.51	4.5006

(Khanikoff and Longuinine, A. ch. (4) 11.

C = coefficient of absorption in H₂O at t^c and 760 inm.

1°	C	l to	C	t°	C
15.2	1.009	18.38	0.896	21	0 838
17 6	0.930	18.3	0.885	23	0.798

(Setschenow, Mém. Acad. St. Petersb. 22. Nos. 6, 7.)

Absorption coefficient of CO₂ in H₂O at 0° =1.7308. (Prytz and Holst, W. Ann. 1895, **54.** 136.)

> Absorption of CO₂ by H₂C at t°. $\alpha =$ coefficient of absorption.

t°	a	l t°	α
0	1 713	19	0 902
1	1.646	20	0.878
2	1.584	21	0.854
$\frac{2}{3}$	1.527	22	0.829
4	1 473	23	0.804
$\begin{matrix} 4 \\ 5 \\ 6 \end{matrix}$	1.424	24	0.781
6	1.377	25	0.759
7	1.331	26	0.738
8	1.282	27	0.718
9	1.237	28	0 699
10	1 194	29	0 682
11	1.154	30	0.665
12	1.117	35	0.592
13	1.083	40	0.530
14	1.050	45	0.479
15	1.019	50	0.436
16	0.985	55	0.394
17	0.956	60	0.359
18	0.928		

(Bohr, W. Ann. 1899, 68, 504.)

Solubility in H_2O at $25^\circ = 0.8255$; at $15^\circ =$ 1.070. (Geffcken, Z. phys. Ch. 1904, 49. 273.) '75 cc. H₂O absorb 0.1381 g. CO₂ at 15.5° and 720 mm. (Christoff, Z. phys. Ch. 1905, **53.** 329.)

Absorption-coefficient of CO₂ in H₂O at $20^{\circ}=0.877$, or 1000 g. H₂O dissolve 878 cc. CO₂. (Usher, Chem. Soc. 1910, 97. 72.) Solubility of CO₂ in H₂O = 1.158 at 12° and 0.825 at 25°. (Findlay and Shenn, Chem. Soc. 1911, 99. 1315.)

Absorption of CO₂ by H₂O at high pressure.

Amount of H_2O used $\begin{cases} a = 0.210 \text{ ccm}. \\ b = 0.102 \end{cases}$ b = 0.102 ccm.

000

V = ccm. of CO₂ absorbed by H₂O at t°, reduced to a pressure of 1 kg. per sq. em.

 $V_1 = \text{ccm. of CO}_2$ absorbed by 1 ccm. of H₂O.

30 40 50 60 70 80 40 50 60 70 80 90	11.77 14.82 18.96 22.90 27.18	13.57 20.00 24.64
50 60 70 80 90		$22.50 \\ 27.62 \\ 32.85$
100 110 120	10.88 12.24 14.46 16.80 19.74 22.74 26.21 28.92 30.20	9.798 13.72 15.28 17.46 22.67 21.16 27.85 28.79 33.90
60 70 80 90 100 110 120 130 140 150 160 170	8.965 10.11 11.05 12.63 13.63 14.88 16.40 17.93 19.56 20.58 22.07 22.78	6.395 9.591 10.85 12.40 16.31 15.78 16.89 17.71 17.49

Solubility of carbon dioxide in water at 25°. P. = Pressure in mm. Hg.

S.=Solubility calculated according to formula for which see the original article. (Findlay, Chem. Soc. 1910, 97. 538.)

P	s	P	s
743	0.816	1059	0.817
752	0.817	1064	0.819
800	0.815	1153	0.818
841	0.817	1243	0.819
955	0.816	1351	0.820
955	0.817	1351	0.820

(Findlay and Creighton, Chem. Soc. 1910, 97. 538.)

Solubility of carbon dioxide in water at 25°. P. ≜ Pressure in mm. Hg. S. = Solubility. See above.

P	s	P	8
755	0.826	1069	0 823
759	0.825	1084	0.825
836 `.	0.825	1210	0.825
841	0.826	1211	0.825
927	0.826	1350	0.824
934	0.824	1350	0.826

(Findlay and Creighton, Chem. Soc. 1912, **101.** 1460.)

Solubility of carbon dioxide in water at 25°. P=Pressure in mm. Hg.

S=Solubility. See above.

P	S	P	s
263	0.817	495	0.816
271	0.816	651	0.816
382	0.814	667	0.817
392	0.811	752	0.818
479	0.816	768	0.817

(Findlay and Creighton, Chem. Soc. 1913, 103. 638.)

Sl. sol. in HCl+Aq.

100 vols, $\rm H_2SO_4$ of 1.840 sp. gr. absorb 45 vols, CO₂, (de Saussure.)

(de saussure.)

HaSO4 of ordinary density at 15.56° and common pressure absorbs 94% of its vol. of CO2; fuming H₂SO4, 125%; the absorption for pure H₂O under the same conditions being 98%. (Rogers, Am. J. Sci. (2) 5.115.)

H₂SO₄ absorbs 7-10% CO₂. (Hlasiwetz, W. A. B. **20.** 193.)

Coefficient of absorption by conc. $H_2SO_4 = 0.932$, which is the same as that by H_2O ; but this diminishes on diluting, and is at its lowest limit 0.666, when the composition of the solution is H_2SO_4 , H_2O ; upon further dilution the coefficient of solubility gradually increases, and when 58 H_2O are present to 1 H_2SO_4 , the

coefficient of absorption is 0.857. (Setschenow, J. B. 1876. 46.)

Absorption of CO₂ by H₂SO₄+Aq.

Solution	Grams CO ₂ absorbed by 75 cc. at 15.5° and 720 mm.
1/2-N H ₂ SO ₄	0.1273
1-N H ₂ SO ₄	0.1179
2-N H ₂ SO ₄	0.1092
4-N H ₂ SO ₄	0.1003

(Christoff, Z. phys. Ch. 1905, 53. 329.)

Solution	Grams CO ₂ absorbed by 75 cc. at 15.5° and 720 mm.
2.5% H ₂ SO ₄ 5% " 10% " 20% " 30% " 40% " 45% " 70% "	0.1282 0.1179 0.0833 0.0755 0.0751 0.0713 0.0725 0.0918 0.1433

(Christoff, l. c.)

Coefficient of absorption for 96% H₂SO₄= 0.926 at 20.2°. (Bohr, Z. phys. Ch. 1910, **71.** 48.)

Absorption of CO₂ by acids.

M = Content in gram-equivalents per liter. S = Solubility (see under oxygen).

Absorption of CO₂ by HNO₃+Aq.

/1	S25°	S15°
0.472	0.8382	1.073
0.475	0.8366	1.075
0.557	0.8387	1.069
0.704	0.8447	1.080
1.382	0.8620	1.093
1.387	0.8622	1.093
1.860	0.8752	1.105
2.519	0.8839	1.109
2.539	0.8865	1.111

(Geffcken, Z. phys. Ch. 1904, 49, 273.)

Absorption of CO by HCl+Aq.

М	F25°	N15°
0.499	0.8047	1.041
0.511	0.8074	1.042
1.212	0.7973	1.020
1.249	0.7984	1.023
2.080	0.7951	0.9864
2.180	0.7951	1.009

(Geffcken.)

Absorption of CO2	by	H ₂ SO ₄	+Aq.	
-------------------	----	--------------------------------	------	--

		<u>0 :</u>
M	S25°	815
0.512 0.517 0.995 1.039 1.067 1.956 2.088 3.790 3.860	0.7923 0.7936 0.7693 0.7685 0.7672 0.7302 0.7273 0.6736 0.6747	1,016 1,016 0,9772 0,9775 0,9756 0,9175 0,9143 0,8354 0,8385

(Geffcken.)

In coffecting CO₂ gas in pneumatic operations, a saturated solution of common salt is better than H₂O for filling the trough. This solution will only absorb about 1/5 of the amount of CO₂ absorbed by pure H₂C. (de Saussure, l. c.)

100 vols. of the following solutions at 18° and ordinary pressure absorb vols. CO₂—

Vols. Sp. gr. CO₂
Sat. NaCl+Aq (containing 29% of NaCl₂ 1.212 32.9
Sat. NH₄Cl+Aq (containing 27.53% of NH₄Cl) Sat. KCl+Aq (containing 26% of KCl) Sat. CaCl₂+Aq (containing 40.2% of 1.168 61 1.402 26 3 K2SO4 +Aq (containing 9.42% of K2S()4) 1.077 62 Sat. Na₂SO₄+Aq (containing 11.14% of Na₂SO₄). 1.105 58 Na₁SO₄).
Sat. K₂Al₂(SO₄)₄ + Aq (containing 9.14% of K₂Al₂(SO₄)₄ + 24H₂(t).
Sat. KNO₃ + Aq (containing 20.6% of KNO₃).
Sat. Na₁NO₂ + Aq (containing 26.4% of Na₁NO₃). 1.047 70 1.139 57 1.206 - 45Sat. H₂C₄H₄O₆+Aq (containing 53.37% of H:C4H4O6 1.288 41 (de Saussure, Gilbert's Ann. Phys. 47, 167.)

About half as sol. in NaCl+Aq (15%) NaCl) as in H₂O.

Much more sol, in Na₂HPO₄+Aq or Na₂CO₃+Aq than in H₂O, the quantity dissolved increasing with the amount of salt in the solution. The solubility in these solutions depends on the coefficient of solubility in H₂O plus the product of a constant coefficient multiplied by the amount of salt in the solution; this constant equals 0.069 for Na₂HPO₄, and 0.088 for Na₂CO₃. (Fernet, A. ch. (3) 47. 307.)

Fernet's determinations are not accurate. (L. Meyer, A. Suppl. 2. 157.)

1 mol. Na₂HPO₄ in dil. Na₂HPO₄+Aq

absorbs 2 mols. CO₂. (Setschenow.) Solutions of salts of similar constitution are equivalent in regard to their power of absorption of CO₂, when they contain the same per-centage of crystal water. Experiments were made with solutions of alum, MgSO4, 7H2O, and ZnSO4, 7H2O, containing 10% of the The MgSO4 solution absorbed the greatest proportional amount of CO2, and the alum the least. The further rule was deduced that with salts of similar constitution and the same amount of crystal water, the absorptiometric equivalents are identical with the chemical equivalents. (Setschenow, B.

Salts can be divided into two classes. according as CO2 has chemical action on the sale or not. In the first case, i. e., when there is chemical combination or action of CO₂ on the sait in solution, the amount of CO₂ absorbed increases with increasing concentration of the solution; in the second case, however, the amount of CO2 decreases with the strength of the solution. Several salts can be arranged in a series as regards their power of absorption, beginning with that which has the greatest, as follows: Na₂CO₃, Na₂B₄O₇, Na₂HPO₄, NaC₂H₂O₂, Na₂C₆H₂O₇, Na₂C₂O₄, NaC₂H₂O₃, MNO₂, MCl, M₂SO₄. The division between the two classes occurs in this series at Na₂C₂O₄.

The matter is discussed at length in the (Setschenow, Memoires original papers. Acad. St. Petersb. 22. No. 3. Also further, Setschenow, ib. 34. No. 3, and 35. No. 7. See also Ostwald, Allgemeine Chemie, 2^{te}

Aufl. vol. 1, p. 629.)

Solubility of CO₂ in salts+Aquat 15.2°. $CO_2 = cc$. CO_2 (at 0° and 760 mm.) dissolved per cc. of salt solution.

per cc. or sait solution.		
Salt	g. salt per l.	CO ₂
NH ₄ Cl	1	1.005
"	10	0.985
"	51.6	0.941
**	172	0.819
"	258	0.770
$\mathrm{NH_4NO_3}$	2.8	1.013
**	11.2	1.002
"	55	0.989
4.6	101	0.962
44	202.1	0.911
r.	404.3	0.807
**	810.4	0.612
$(NH_4)_2SO_4$	72.2	0.712
7,7	144.4	0.675
$Ba(NO_3)_2$	62 7	0.922
Ca(NO ₃) ₂	41.	0.923
$rac{ ext{Ca(NO_3)_2}}{ ext{LiCl}}$	16.72	1.035
"	50.15	0.808
44	125.4	0.596
• • •	250.8	0.497
44	501.5	0.120
$MgSO_4$	26.5	0.901
```	79.5	0.669
**	159.	0.441
"	<b>'318</b> .	0.188
KBr	83.9	0.908
٠.	167.7	0.819
• •	251.5	0.748
"	503.1	0.579
KI	319.1	0.777
-27	478.6	0.688
и	957.3	0.506
KSCN	326	0.691
	489	0.590
	400	0.080

Solubility	of CO.	in calta	<b>⊥</b> ∆ α	at 15 20-	-Cont
Somonico	OF A 11/0	111 SHILS	-AU	at 10.4 ~	-Conu.

Salt *	g, salt per l.	_{je} CO ₂
* KSCN	+ 978	0.387
KNO ₃	↑ 58.8	0.959
	117.5	0.890
. "	235.1	0.781
NaCl	12.9	0.978
"	64	0.760
(A) +	128	0.580
44	192	0.466
NaBr	115.1	0.775
44	460.3	0.364
* "	690.4	0.221
NaNO ₈	89.3	0.835
	125	0.762
"	208.4	0.621
"	416.8	0.385
* **	625.2	0.244
NaClO ₃	233.3	0.625
第一	349.9	0.506
"	699.8	0.257
$Na_2SO_4$	14.2	0.950
- 66	94.8	0.620
66 1877	284.4	0.234
$\mathbf{ZnSO}_{4}$	38.3	0.903
	76.7	0.783
₊ 14	230	0.474
4.	460	0.209

(Setschenow, A. ch. 1892, (6) 25. 226.)

 $\mathrm{CO}_2$  is not disengaged at ordinary temp. from  $\mathrm{H}_2\mathrm{O}_1$ , in which  $^{-1}/_{1000}$  pt. of  $\mathrm{CaCO}_3$  or  $\mathrm{MgCO}_3$  is held in solution thereby. These solutions have a great power of retaining  $\mathrm{CO}_2$  even at a boiling temp. or with diminished pressure, and they also absorb  $\mathrm{CO}_2$  from the air in much larger quantity than pure  $\mathrm{H}_2\mathrm{O}_1$ . (Bineau.)

BaCO₃ in H₂O also retains CO₂ even after

long boiling. (Storer.)

CO₂ is also absorbed from the air by Na₂CO₃, or K₂CO₃+Aq, especially if dilute.

Absorption of CO₂ by NaCl+Aq at t°.

a Coefficient of absorption for a 6.52% NaCl solution.

 $\alpha_1$  = Coefficient of absorption for a 17.62%. NaCl solution.

t°	α	$\mathbf{\alpha}_1$
0	1.234	0.678
5	1.024	0.577
10	0.875	0.503
15	0.755	0.442
20	0.664	0.393
25	0.583	0.352
30	0.517	0.319
35	0.460	0.288
40	0.414	0.263
45	0.370	0.235
50	0.335	0.215
55	0.305	0.198
60	1	0.183

(Bohr, W. Ann. 1899, 68, 504.)

Absorption of CO₂ by CsCl+Aq. M = Content in g. equiv. per l. S=Solubility. (See under Oxygen.)

| S = Solubility. (See under Oxygen.)
| M | S₂₅° | S₁₅° |
| 0.552 | 0.7771 | 1.001 |
| 0.554 | 0.7769 | 0.9995

(Geffcken, Z. phys. Ch. 1904, 49. 273.)

Absorption of CO₂ by KNO₃+Åq.

M	S25°	Sis°
NI	525	
0.536	0.7832	1.002
0.537	0.7818	0. <b>99</b> 97
1.022	0.7452	0.9439
1.033	0.7447	0.9421

(Geffcken.)

Absorption of  $CO_2$  by KI + Aq.

М	S ₂₅ °	Sis°
0.559	0.7678	0 9809
0.573	0.7676	0 9835
1.043	0.7236	0 9144
1.119	0.7166	0 9090

(Geffcken.)

### Absorption of CO₂ by RbCl+Aq.

M	S ₂₅ °	S ₁₅ °
$\begin{array}{c} 0.479 \\ 0.481 \\ 1.007 \\ 1.012 \end{array}$	0.7705 0.7698 0.7190 0.7157	0.9908 0.9910 0.921

(Geffcken.)

#### Absorption of CO₂ by KBr+Aq.

	-	
M	∺ ₂₅ °	Su°
$\begin{array}{c} 0.550 \\ 0.565 \\ 1.056 \\ 1.064 \end{array}$	0.7621 0.7619 0.7030 0.7068	0.9783 0.9766 0.9100 0.9065

(Geffcken.)

### Absorption of CO₂ by KCl+Aq.

М	S25°	S15°
0.423	0.7695	0.9892
0.432	0.7667	0.9865
1.045	0.6920	0.8875
1.058	0.6961	0.8910

(Geffcken.).

Absorption	of	CO ₂	by	salts-	+Aq.,,
------------	----	-----------------	----	--------	--------

1202-1	- 79
Salt	Grams CO, absorbed by 7 cc. of salt solution at 15.5 and 720 mm.
- N. I.D.	0.1280
1- N KBr	
1-N KNOs	0.1231
1-N KCl	* 0.1213 *
1-N KI	0.1.04
1-N LiCl	0.1087
1-N NaCl	0.1050
$1-N (NH_4)_2SO_4$	0.1093
1-N (NH) ₂ SO ₄ ,	ĺ
Fe ₂ SO + 24H ₂ O	0.0991
1-N K ₂ SO.	0.1002
1-N K ₂ SO ₄ ,	
$Al_2(SQ_4)_3 + 24H_2O$	0.1054
² / ₃ -N K SO ₄	0.1140
-N MgSO4	0.1209
1-N MgSO.	0.1047
2-N MgSO4	0.0656
4-N MgSO4	0.0527
2-N°CuSO	0.0751
2-N*ZnSO4	0.0720
2/3-N KHSO3	0.0720
2-N KHSO ₄	0.0999
1-N KH ₂ AsO ₄	0.0808
1-N KH ₂ PO ₄	0.0852
1/2-N·K2HAsO.	0.1111
1/2-N K2 <b>H</b> PO4	0.4989
1/46-N Na2B4U7	0.2205
1/40-N Na ₂ B ₄ O ₇ 1/8-N Na ₂ B ₄ O ₇ 1/4-N Na ₂ B ₄ O ₇	0.5317
1/4-N Na ₂ B ₄ O ₇	0.8511
1/4-N NaBO ₃	0.8124
1/4-N NH4HB2O4	0.7672
$N-Na_{2}PO_{4}+12H_{2}O$	0.5828
$N-Na_4P_2O_7+10H_2O$	0.8457
N-NaPO ₃	0.2081
N-KPO ₃	0.2618

(Christoff, Z. phys. Ch. 1905, **53**. 338–340.)

Solubility of CO₂ in KCl+Aq at 25°. Concentration, 7.45 g. in 100 cc. of solution, sp. gr. = 1.043.

Pressure 756 850 953 1116 1249 1362 Solubility 0.694 0.693 0.688 0.700 0.709 0.710

Concentration, 5 g. in 100 cc. of solution, sp. gr. = 1.031.

Pressure \$56 832 901 1050 1150 1223 Solubility 0.734 0.727 0.724 0.726 0.735 0.736

Concentration, 2.56 g. in 100 cc. of solution, Sp. gr. = 1.016.

Pressure 756 852 981 1079 1190 1362 Solubility 0.767 0.761 0.761 0.762 0.768 0.766 (Findlay and Creighton, Chem. Soc. 1910, Solubility of CO₂ in NH₄Cl+Aq at 25°.

Concentration (C) denotes number of grams of solute in 100 gc. of solution.

Density (D) equals the specific gravity of the solution.
Solubility S) calculated by formula given

Solubility (S) calculated by formula given in the original article.

" C	D.	S
2.35 5.05	1.005 1.013	9.791 0.754
8.24	1.022	0.732
$\frac{10\cdot 02}{17\cdot 09}$	1.027 1.045	0.712 0.665

(Findlay and Shenn, Chem. Soc. 1912, 101. 1461.)

Solubility of CO2 in KCl+Aquat 25°.

(,	D	8,
1 84	1.008	0.792
3.05	1.017	0.764
4.58	1.026	0.749
7.46	1.044	0.701

(Findlay and Shenn.)

Solubility of CO₂ in BaCl₂+Aq at 25°.

C	D	s
2.80	1.018	0.789
5.81	1.040	0.741
8.15	1.054	0.710
9.97	1.070	0.676

(Findlay and Shenn.)

Solubility of CO₂ in  $(NH_4)_2Fe(SO_4)_2+Aq$  at

C	D	S
$9.51 \\ 10.26 \\ 22.47$	1 052 1.057 1.124	0.641 0.629 0.460

(Findlay and Shenn.)

Solubility of CO₂ in solutions of sucrose at

C	D	s	
2.63 5.16 9.68 12.33	1.009 1.018 1.038 1.051	0.813 0.798 0.767 0.744	·

(Findlay and Shenn.)

Solubility of CO₂ in solutions of chloral hydrate at 25°.

C	D	s
5.08	1.019	0.815
10.12	1.041	0.795

(Findlay and Shenn.)

Ĵ.

100 vols. alcohol (0.803 sp. gr.) at 18° absorb 260 vols. CO_{2.2}
 100 vols. alcohol (0.840 sp. gr.) at 18° absorb 186

vols. CO₂. (de Saussure, l.c.)

Solubility of CO₂ in alcohol. 1 vol. alcohol at t° and 760 mm. dissolves V vols. CO₂ gas reduced to 0° and 760 mm.

t°	v	t°	v	t°	V
0 1 2 3 4 5	4.3295 4.2368 4.1466 4.439 3.9736 3.8908	9 10 11 12 13 14	3.5844 3.5140 3.4461 3.3807 3.3178 3.2573	18 19 20 21 22 23	3.0402 2.9921 2.9465 2.9034 2.8628 2.8247
6, 7, 8	3.7827 3.6573	15 16 17	3.1993 3.1438 3.0908	24	2.7890

(Bunsen's Gasometry, pp. 287, 128, 153.)

Coefficient of absorption = 4.32955—0.09395t =  $0.00124t^2$ . (Bunsen.)

Much less sol. in 30% alcohol than in pure alcohol or pure  $H_2O$ . (Müller, W. Ann. **37**. **24**.)

Solubility of CO2 in 99% alcohol at to.

 $\alpha$ =Coefficient of absorption, i. e., the no. of ccm. of CO₂ measured at 0° and 760 mm. which are absorbed at the given temp. and at an absorption pressure of 760 mm. by 1 ccm. alcohol.

 $a_1$  = Coefficient of absorption corrected for increase in the volume of the alcohol used due

to absorption of CO2.

-	t°	α	$a_1$
-	<del>65</del>	38.41	35 93
	25	8.75	8.61
	20	7.51	7.41
	15	6.59	6.51
	10	5.75	5.69
	5	5.01	4.96
	0	4.44	4.40
ho.	+5	3.96	3.93
	10	3.57	3.55
	15	3.25	3.23
	20	2.98	2.96
	25	2.76	2.74
	25 30	2.57	2.56
	35	$\frac{1}{2.41}$	2.39
	40	2.20	$\frac{1}{2}$ . 19
	45	2.01	2.00

(Bohr, W. Ann. 1900, (4) 1. 249.)

Solubility in 98.7% alcohol at to.

 $\alpha =$ Coefficient of absorption.

 $\alpha_1$  = Coefficient of absorption corrected for increase in volume of the alcohol used due to absorption of  $CO_2$ .

, t°	' a	<b>a</b> ₁
0	4.35	4.31
10 20	$5.43 \\ 7.25$	$5.38 \\ 7.16$
-30	$9.\overline{97}$	A 9.79
40 50	$14.25 \\ 21.28$	13.89 20.49
60	31.25	29 59
65 67	39.89 44.07	37, 22 4 <b>6, 3</b> 3

(Bohr, W. Ann. 1900, (4) 1. 253.)

Solubility in alcohol +Aq at t°.

t°	% by wt. of alcohol in the solvent	Solubility of CO ₂ in alcohol +Aq	Solubility of CO ₂ in H ₂ ()
$ \begin{array}{c} 1.4 \\ 3.2 \\ 9.2 \\ 13.8 \end{array} $	6.325	1.5864 *	1.6916
	4.464	1.4878	1.5652
	7.276	1.1829	1.2216
	2.870	1.0268	1.0385

(Langer, C. C. 1904, I, 1583.)

Solubility of CO2 in ethyl alcohol at 25°.

Concentration. 2.95 g. alcohol in 100 cc. of solution. Sp. gr. 25°/15° = 0.99308. Pressure 737 836 929 1073 1213 1338 Solubility 0.812 0.813 0.812 0.811 0.813 0,811

Concentration. 3.01 g. alcohol in 100 co of solution. Sp. gr.  $25^{\circ}/15^{\circ} = 0.99295$ . Pressure 745 823 937 1083 1226 1357 Solubility 0.814 0.812 0.815 0.813 0.812 0.812

Concentration. 8.83 g. alcohol in 100 cc. of solution. Sp. gr.  $25^{\circ}/15^{\circ} = 0.98342$ . Pressure 747 846 942 1090 1231 1360 Solubility 0.786 0.786 0.784 0.785 0.786 0.788 (Findlay and Shenn, Chem. Soc. 1911, 99. 1315.)

Solubility of CO₂ in organic solvents at low temperatures.

Solvent. Ethyl alcohol.

Pressure	Coefficient of absorption	Solubility
100	111.8	68.4
200	115.7	69.5
400	123.8	71.4
700	138.6	74.7

### Solubility of CO2 in organic solvents at low temperatures.—Continued

$t = -59^\circ$ ; sp. gr. = 0.856		
Pressure	Coefficient of absorption	Solubility
100	40.85	27 27
200	41.00	27.16
400	42.35	27.65
700	44.15	<b>2</b> 8.10

#### Methyl alcohol. Solvent.

Pressure	Coefficient of absorption	Solobility
#6	194.0	120.5
100	195.0	119 6
200	202.9	120.1
400	221.5	122.2
500	226.4	
740	260.0	126.8

### t°=--59°; sp. gr. =0.866

Pressure	Coefficient of absorption	Solubility
100	63.0	42.5
200	64.2	42.7
400	66.3	43.1
700	69.0	43.3

#### Solvent. Acetone.

### $t = -78^{\circ}$ ; sp. gr. = 0.900

Pressure	Coefficient of absorption	Solubility
50	311	196.6
100	322	198.1
200	344.5	201.5
400	400	208.8
640	487	215.7
700	545.5	

#### $t = -59^{\circ}$ ; sp. gr. = 0.879

Pressure	Coefficient of absorption	Solubility
100 200	97.8 101.2	67.2 68.0
460 700	106.6 118.8	$\frac{72.8}{72.8}$

### Solvent.—Ethyl acetate.

#### $t = -78^{\circ}$ ; sp. gr. = 1.017

	· · · · · · · · · · · · · · · · · · ·	
Pressure	Coefficient of absorption	Solubility
50 100 200 400 650	250.2 255.6 271.8 310.9 386.9	177.5 177.1 179.2 183.2 191.2

### Solubility of Co₂ in organic solvents at low temperatures.-Continued

t =59°; sp. gr. =0.994			
Pressure	Coefficient of absorption	Solubility	
100	85.3	65.6	
200	86.3	65.3	
400	91.6	66.7	
700	101.5	69.7	

#### Solvent. Methyl acetate.

_ 1	$=-78^{\circ}$ ; sp. gr. =1.056	
	Coefficient of	Solu

Pressure	Coefficient of absorption	Solubility
50	304.9	.224 . 1
100	315.0	224.3
200	337.4	223.1
400	389 3	225.6
650	498.1	231.2
-		

### t =--59°; sp. gr. =1.032

Pressure	Coefficient of absorption	Solubility
100	94.3	75.8
200	98.45	77.1
400	103.6	77.6
700	112.9	79.0

(Stern, Z. phys. Ch. 1912, 81. 468.)

Solubility of  $CO_2$  in ether at  $0^{\circ} = 7.33$ ; at  $10^{\circ} = 6.044$ ; at  $15^{\circ} = 5.46$ . (Christoff, Z. phys.) Ch. 1912, **79.** 459.)

Coefficient of absorption in chloroform is 0.20376 at 36.57 mm., and 4.43757 at 762 mm. pressure. (Woukoloff, C. R. 109. 62.)

100 vols. of following liquids absorb vols. CO2 at 18°-

į.	Sp. gr.	Vols. CO2
Ether	0.727	217
Rectified naphtha	0.784	169
Oil of turpentine	0.860	166
Oil of lavender (freshly distilled) .	0.880	191
Oil of thyme		188
Linseed oil	0.940	156
Olive oil	0.915	151
Gum-arabic +Aq (containing 25%)		
of the gum)	1.092	75
Cane-sugar +Aq (containing 25%		
of sugar)	1.104	72
(de Saussure, 1. e	·.)	

1 vol. oil of turpentine absorbs 1.7-1.9 vols. CQ2

(Saussure.)
1 vol. spirit at 10° absorbs 2 vols. CO₂. (de Saussure.)
1 vol. olive oil at 10° absorbs 1 +vol. CO₂. (de Saussure.) 1 vol. oil of turpentine at 10° absorbs 2 vols. CO2.

(Bergman.) 1 vol. caoutchine absorbs 11 vols. CO2. (Bergman.)

Coefficient of absorption for petroleum is 1.17 at 20° and 1.31 at 10° (Gniewasz and Walfisz, Zeit. phys. Ch. 1. 70.) 100 vols. petroleum absorb 70 vols. CO₂ at

10°. (Robinet, C. R. 58. 608.)

Solubility of  $CO_2$  in  $\frac{N}{2}$  solutions of various organic substances at  $20^{\circ}$ .

Substance	Sp. gr. of $\frac{N}{2}$ solution	Coeff. of absorp- tion	cc. CO ₂ dissolved in 1000 g. H ₂ O
Dextrose Mannite Glycerine Pyrogallol Hydrochinon Resorcin	1.0328 1.03031 1.01413 1.01718 1.00946 1.00958	0.792 0.782 0.843 0.853 0.857 0.901	841 833 864 894 928
Pyrocatechin Urethane Carbamide Thiocarbamide Antipyrine Acetamide Acetic acid N. Propylic acid	1.0107 1.0037 1.00715 1.00917 1.01339 1.005 1.0026 0.9939	0.868 0.869 0.864 0.859 0.859 0.879 0.868 0.869	908 907 884 885 935 906 893 902

(Usher, Chem. Soc. 1910, 97. 73.)

Absorption of CO₂ by ethyl alcohol.

Amount of alcohol used = 0.093 ccm. V = ccm. of CO₂ absorbed by the solvent at t° reduced to a pressure of 1 kg, per sq. cm.

at t°, reduced to a pressure of 1 kg. per sq. cm.  $V_1 = {\rm ccm.}$  of  $CO_2$  absorbed by 1 ccm. of the solvent.

Pressure kg/sq.cm.	t°	Gas volume ccm.	v	V ₁
30	20°	57.31	9.462	104.8
40		1	15.15	149.7
50			23.04	188.8
30	35°	60.05	7.114	77.87
. 40			10.52	113.1
50		Į.	14.73	144.5
60		1	19.63	173.0
70			27.39	210.8
40	60°	64.44	6.429	72.82
50		İ	9.023	97.09
60			12.27	122.5
70			15.64	145.2
80			19.11	167.9
90			20.64	180.7
100			23.88	195.7
50	100°	72.19	3.809	42.49
60			6.034	66.05
70			8.374	88.67
80		'	10.76	111.2
90			13.06	129.0
100			14.90	145.7
110			16.22	155.0
120			18.93	174.6
130			20.48	182.6
140			20.61	186 0

(Sander, Z. phys. Ch. 1912, 78. 524.)

Absorption of CO₂ by propyl alcohol.

Amount of alcohol used = 0.103 ccm.

V and V₁. See under absorption of CO₂
by ethyl alcohol.

Pressure kg/sq.cm.	t°	Gas volume ccm.	v	V ₁
20 30	20°	60.59	4.867 8.472	56.16 86.62
40			13.46	122.1
50			21.62	174.6
20	35°	62.96	3.493	40.00
30	00	02.00	6.307	64.08
40			9.296	98.16
50			13.99	122.8
60			18.90	<b>15</b> 9.9
70			35.03	228.2
80			49.23	269.6
20	60°	68.08	2.602	24.73
30			4.722	47.68
40			6.723	64.65
50			9.810	88.54
60			13.05	111.5
70			17 15	144.4
80			19 61	159.2
90			24.75	184.3
100			30 19	213 9
40	100°	76 27	2 592	26 50
50			5.669	54.19
60			8.025	74.51
70			10.44	92.17
80			13.13	107.7
90			15.72	132.3
100			17.10	144.7
110			20.95	163.5
120			23.55	175.4
		(Sander.	)	

Absorption of CO₂ by ether.

Amount of ether used = 0.131 ccm. V and  $V_1$ . See under absorption of  $CO_2$  by alcohol.

Pressure kg/sq.em.	í,°	Gas volume ccm.	v	V ₁
45 50 60	35°	62.06	42.62 46.81 57.83	205.6 217.3 241.6
50 60 70 80 90 100	60°	67.11	28.49 35.24 42.01 46.64 50.72 56.63	171.6 195.4 210.0 221.4 235.0 248.7
60 70 80 90 100	100°	71.03	12.57 20.00 26.34 32.16 35.70	101.0 134.6 142.8 166.4 175.4

(Sander.)

			h h		11	Liam of	(() h., abi		Claud
Absorption of CO ₂ by benzene.				] ———	tion of	CO ₂ by chl	<del></del>	.—Cont.	
V and	Amount of benzene used = 0.080 ccm. V and V ₁ . See under absorption of CO ₂ by				Pressure kg/sq.cm.	. t°	Gas volume ecm.	v	
Pressure kg/sq.cm.	t° 20°	Gas volume cem.	V 2.728 4.845	V ₁	50 60 70 80 90	1		11.16 13.74 16.65 19.50 22.23	99.06 118.1 134.5 149.3 165.5
20 30 40 50			9.618 18.70 30.10	71 16 125.3 192.4 264 3	30 40	100°	77.73	31.64 3.562 5.008	33.65 48.16
15 20 30 40 50 60 70	35°	58.17	2.225 3.373 6.879 11.56 17.09 25.73 35.80	39.94 48.65 94.59 138.3 186.6 243.1 269.0	50 60 70 80 90 100 110 120			7.106 8.701 10.37 12.05 13.88 14.89 16.35 17.77	63.78 77.24 91.02 103.00 121.2 121.5 130.7 140.7
20 30 40 50 60 70 80	60°	61.86	2.140 3.880 6.699 10.28 13.57 17.71 22.50	34.57 55.97 88.71 128.5 156.6 184.6 215.0	Amour V and by ethyl	v ₁ . alcoho		brombens e used =0	.113 ccm.
90 100			28.09 33.76	$246.6 \\ 284.4$	Pressure k //sq.cm-	t°	Gas volume ccm.	· · ·	V ₁
40 50 60 70	100°	73.75	2 822 3.981 6.440 8.398	46.52 58.46 91.27 119.6	20 30 40 50	20°	60.84	4.531 7.793 12.22 17.37	50.83 82.29 121.1 160.0
80 90 100 110 120			11.96 14.57 17.79 20 60 23.98	155.8 182.5 212.9 237.7 258.2	20 30 40 50 60	35°	63.96	3.947 5.782 8.508 11.96 16.00	43.38 62.69 90.43 116.4 146.0
-		(Sander.	)		70 80			22.56 41.26	$\frac{184.1}{233.9}$
Amour	nt of c V ₁ . Sohol.	of CO ₂ by hlorbenzene ee under ab	e used = 0 esorption	.106 ccm. of CO ₂ by	20 30 40 50 60	60°	69.16	2.650 3.714 5.971 7.406 9.718	30.58 46.15 62.64 77.19 98.73
$   \begin{array}{r}     \frac{\text{kg/sq.em.}}{20} \\     30 \\     40   \end{array} $		61.03	5.813 10.25 17.17	$ \begin{array}{r} V_1 \\ \hline 62.61 \\ 95.22 \\ 137.3 \\ 197.5 \end{array} $	70 80 90 100 110			10.27 13.99 16.70 20.06 23.13	108.4 131.4 144.3 169.7 190.6
20 30 40 50 60 70	35°	64.16	26.59 4.650 7.705 11.81 16.83 22.82 32.83	187.5 46.66 72.73 101.5 137.3 168.3 205.5	30 40 50 69 70 80 90	100°	77.48	2.970 4.032 5.833 7 239 8.330 9.714 11.14 12.79	30.56 41.49 59.64 72.64 82.56 92.86 107.1 118.0
20 30 40	60°	69.38	3.685 5.510 7.982	35.86 53.94 73.69	100 110 120		(Sander.	13.80 15.50	125.3 140.7

Amount of nitrobenzene used =0.164 ccm. V and  $V_1$ . See under absorption of  $CO_2$  by ethyl alcohol.

Pressure kg/sq.cm.	t°	Gas volume ccm.	V	V ₁
15	20°	57.65	5.459	41.60
20	,		7.354	57.12
30			12.14	92.50
40	l	1	15.93	115.9
50	١.,		21.71	155.9
20	35°	59.86	5.644	44.48
30	1		8.658	68.23
40			11.98	94.39
50			15.59	113.4
60			19.94	145.1
70	l i		25.57	179.6
680			34.95	227.0
20	60°	64.73	3.787	31.38
30			4.519	38.23
40			6.308	52.26
50			7.750	64.21
60		1	8.887	72.15
70	1		10.15	82.40
80			10.80	85.03
20	100°	75.52	2.749	24.67
30	l		4.162	41.00
40	l		5.393	50.36
50			6.832	63.80
60	1	<u> </u>	7.763	70.85
70			9.048	75.75
80 .	1		10.65	86.86
		(Sander	1	

(Sander.)

### Absorption of CO₂ by toluene.

Amount of toluene used = 0.114 ccm.  $\cdot$  V and V₁. See under absorption of CO₂ by ethyl alcohol.

Pressure kg/sq.cm	t°	Gas volume cem.	V	$V_1$
20 30 40 50	20°	59.97	7.420 13.31 23.25 45.10	57.91 103.3 155.9 235.8
20 30 40 50 60 70	35°	63.05	6.018 10.13 16.03 23.34 31.39 44.17	49.60 82.63 118.8 155.8 192.1 225.8
30 40 50 60 70 80 90 100	60°	68.17	6.735 9.885 13.98 18.00 22.66 26.60 31.66 38.86	54.67 78.67 104.6 128.1 150.1 171.9 191.5 210.0

### Absorption of CO2 by toluene.—Continued

Pressure kg/sq.cm.	t°	Gas volume ccm.	v	V ₁
30 40 50 60 70 80 90 100 110 120 130	100°	76.37	3.356 5.945 8.703 11.18 13.72 16.30 18.88 21.85 24.86 26.80 28.21	28.68 49.25 67.93 85.98 101.7 117.6 132.6 149.0 161.9 171.8 178.7

(Sander.)

### Absorption of CO₂ by ethyl acetate.

Amount of ethyl acetate used = 0.155 ccm. V and V₁. See under absorption of CO₂ by ethyl alcohol.

Pressure kg/sq.cm.	t°	Gas volume ccm.	V	V ₁
25 30 40	20°	60.30	29.43 $37.91$ $51.26$	158.6 188.2 227.9
30 40 50 60	35°	63.40	26.54 38.69 48.35 51.88	145.2 188.4 213.9 219.8
30 40 50 60 70 80	60°	68.55	18.12 25.67 33.21 40.12 45.47 49.16	108.0 140.5 165.2 186.7 201.1 223.4
40 50 60 70 80 90 100	100°	76.80	12.76 18.80 24.12 28.99 32.96 36.92 42.75	80.70 110.1 132.0 152.0 162.3 172.1 191.5

(Sander.)

## Absorption of CO₂ by CH₃COOH+CCl₄.

Solvent	cc. CO ₂ absorbed
1 mol. CH ₃ COOH 0.8 " CH ₃ COOH+	58.8
0.2 " CCl ₄ 0.5 " CH ₃ COOH+	61.0
0.5 " CCl ₄ 0.2 " CH ₃ COOH+	. 62.4
0.8 " CCl ₄ 1 " CCl ₄	$\begin{array}{c} 60.2 \\ 57.6 \end{array}$

(Christoff, J. phys. Ch. 1905, 53. 382.)

Absorption of CO ₂ byC ₂ H ₄ Cl ₂ +CS ₂ .					
Solvent	oc. CO2 absorbed				
1 mol. C ₂ H ₄ Cl ₂	209.7				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.4				
0.5 " C ₂ H ₄ Cl ₂ + 0.5 " CS ₂	140. J				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71.9 $19.9$				

(Christoff.)

Solubility of CO2 in organic solvents

change of solubility for 1° increase in temp.

	Sol-		Sol-	
Solvent	ubility	ubility	ubility	ds
Solvent	at	at	at	di
	25° C.	20° C.	15° C.	
Glycerine	0 0302			
Water	0 8256			
Carbon bisulphide			0 9446	-0.00747
Lodoben zene	1 301	1 371	1.440	-0.0139
Aniline	1 324	1 434	1.531	-0.0139
	1.381			
o-Toluidine		1.473		-0.0158
nı-Toluidine	1 436	1.581	1.730	-0.0244
Eugenol	1.539	1 653	1.762	-0.0223
Benzotrichloride	1 643			1 2200
Cumene	1 782	1 879	1.978	-0.0196
Carvene	1.802	1.921	2.034	-0.0232
Dichlorhydrin	1 810	1 917	2.020	-0.0210
Amyl alcohol	1 831	1.941	2 058	-0.0227
Brombenzene	1 842	1.964	2 092	0.0250
Isobuty! alcohol	1.849	1.964	2.088	-0 0239
Benzyl chloride	1.938	2 072	2.180	-0.0242
m-Xylene	2.090	2 216	2.346	-0.0256
Ethylene bromide	2.157	2.294	2.424	-0 0267
Chlorobenzene	2.265	2 420	2 581	0 0316
Carbon tetrachloride	2 294	2.502	2 603	-0 0309
Propylene bromide	2 301	2.453	2.586	-0.0281
Toluene	2.305	2.426	2.557	0.0256
Benzene	2 425	2 540	2.710	-0.0285
Amyl bromide	2.455	2.638	2 803	-0.0348
Nitrobenzene	2 456	2.655	2 845	-0.0389
Propyl alcohol	2 498		1	
Carvol	2 498	2.690	2.914	-0 0416
Ethyl alcohol (97%)	2.706	2 923	3.130	-0 0424
Benzaldehyde	2.841	3 057	3.304	-0.0463
Amyl chloride	2.910	3 127	3.363	-0.0455
Isobutyl chloride	3.105	3 388	3.659	-0.0554
Chloroform	3.430	3.681	3 956	-0.0526
Butyric acid	3.478	3.767	4.084	-0.0606
Ethylene chloride	3.525	3.795	4.061	-0.0536
Pyridine	3.656	3.862	4.291	-0.0635
Methyl alcohol	3.837	4.205	4.606	-0.0769
Amyl formate	4.026	4.329	4.646	-0.0620
Propionic acid	4.078	4.417	4.787	-0.0709
Amyl acetate	4.119	4.411	4.850	-0.0731
Glacial acetic acid				
Isobutyl acetate	4.679	5.129	5.614	0.0935
Acetic anhydride	4.691	4.968	010	-0.0554
Acetone	5.206	5.720	6.218	0.1012
COMME	6.295	6.921	1	-0.1252
Methyl acetate .	6.494		ı	

(Just, Z. phys. Ch. 1901. 37. 354.)

Absorption of CO₂ by sorganic substances+ Aq at 15°.

 $R = \frac{9}{20}$  of the organic substance in the solvent.  $\beta_{15}$  = Coefficient of absorption at 15°.

S ₁₅ ° = Solubility	at 15°.		
Organi, substance used	P	$oldsymbol{eta_{15}}^{\circ}$	Sıs°
Chloral hydrate	0 0 17.7 21.8 31.6 37.0 38.3 49.8 51.1 52.6 57.1 68.8 71.0 74.6 79.4	0.996 0.992 1.012- 0.885 0.860 0.803 0.790 0.761 0.765 0.765 0.765 0.780 0.797 0.812 0.848 0.903	1.056 0.935 0.908 0.848 0.825 0.802 0.812 0.807 0.808 0.824 0.857 0.895 0.953
Glycerine	0 0 26.11 27.69 43.72 46.59 62.14 73.36 77.75 87.74 90.75 96.64 99.26	1.003 1.013 0.785 0.800 0.639 0.620 0.511 0.449 0.430 0.422 0.404 0.415	1.064 0.829 0.845 0.675 0.655 0.540 0.474 0.454 0.427 0.438 0.438

(Hammel, Z. phys. Ch. 1915, 90. 123.)

Solubility of carbon dioxide in solutions of aniline at 25°.

I. Concentration, 0.206 g. aniline in 100 c. c. of solution.

P = Pressure.

S=Solubility calc. according to formula given in original article.

P	S	Р .	s
748	0.865	1053	0.855
808	0.855	1159	0.862
920	0.857	1243	0.860

II. Concentration, 0.425 g. aniline in 100 c. c. of solution.

Р	S	P	s
760	0.909	1150	0.897
816	0.897	1236	0.902
921	0.897	1380	0.908

Solubility of carbon dioxide in solutions of aniline at 25°.—Continued

III. Concentration, 0.566 g. aniline in 100 c. c. of solution.

P	S	P	s
760 823 941	$0.935 \\ 0.929 \\ 0.925$	1082 1223 1341	$\begin{array}{c} 0.923 \\ 0.924 \\ 0.930 \end{array}$

### IV. Concentration, 0.743 g. aniline in 100 c. c. of solution.

P	s	P	s
760	0.953	1063	0.940
895	0.941	1223	0.940
983	0.940	1302	0.942

(Findlay and Creighton, Chem. Soc. 1910, 97. 555.)

Solubility of CO₂ in CS₂ increases approx. proportionally with the pressure. The absorption is greater at lower temp, and less at higher temp. than is required by Dalton's law. (Woukoloff, C. R. 1889, 108. 674.)

### Absorption of CO₂ by sugar + Aq.

Sügar + Aq	Grams CO ₂ absorbed by 75 ec. of solution at 15.5° and 720 mm.
1/10-N sugar solution 1/2-N " " 1-N " "	0.1225 0.1089 0.0931

(Christoff, Z. phys. Ch. 1905, 53, 329.)

Absorption of CO₂ in sugar+Aq at 20°.

Cone. of solution	Sp. gr.	Coefficient of absorption
1/8 mol. per l. 1/4 " " " 1/2 " " " 1 " " "	$\begin{array}{c} 1.01518 \\ 1.03125 \\ 1.06372 \\ 1.12809 \end{array}$	$\begin{array}{c} 0.846 \\ 0.815 \\ 0.756 \\ 0.649 \end{array}$

(Usher, Chem. Soc. 1910, 97. 72.)

Liquid.—Not miscible with H₂O, though slightly sol. therein, or with fatty oils; miscible with alcohol, ether, CS₂, and the essential oils. (Thilorier, Mitchell.)

Unacted upon by H2O; sol. in alcohol, ethers, petroleum, oil of turpentine, and CS2.

(Mareska and Donny.)

Petroleum dissolves 5 to 6 vols. liquid CO₂. (Cailletet & C. R. 75. 1271.)

Sl. sol. in CS₂. (Cailletet.)
Solid.—When immersed in H₂O, rapidly volatilizes and dissolves. With alcohol or ether it forms a semi-fluid mixture. (Channing, Am. J. Sci. (2) 5. 186.)

Only slightly sol. in anhydrous ether, but may be mixed therewith to a paste. (Thil-

orier.)

Sol. in methyl chloride below -65° to the point of sat. without decomp. (Villard, C. R. 1895, **120.** 1413.)

+6H₂O. (Villard, C. R. 1894, 119. 369.)

#### Carbon selenide, C₄Se.

Sol. only in hot conc. H2SO4. (v. Bartal, Ch. Z. 1906, 30. 810.)

C_bSe. Insol. in H₂O, CS₂, and ether. Easily sol. in hot conc. H₂SO₄; sol. in conc. NaOH+Aq from which it is pptd. by HCl. (v. Bartal.)

#### Carbon silicide CSi.

(Carborundum.) Not attacked by any acids, even HF; sl. attacked by caustic alkalies or carbonates. (Acheson, C. N. 68. 179.)

Not attacked by KOH+Aq. (Schützenberger, C. R. 114, 1089.)

### Carbon monosulphide, CS.

Insol. in H₂O, alcohol, oil of turpentine, or benzene; somewhat scl. in CS₂ or ether; sol. in warm HNO₃; sol. in conc. KOH+Aq. (Sidot, C. R. 81. 32.)

Readily absorbed by alcohol and aniline. (Deninger, J. pr. 1895, (2) 51. 349.)

### Carbon disulphide, CS₂.

Very sl. sol. in H₂O.

1 l. H₂O dissolves 2-3 g. CS₂ (Ckiandi, Bull. Soc. 43. 562); 3.5-4.52 g. (Peligot, ib. 43. 563).

30 ccm. CS₂ shaken with 8690 ccm. H₂O at 20-23° for 18 days decreased 11 ccm. in 9 days and 1.4 ccm. in the next 3 days by diffused light, and 0.6 ccm. in the last 5 days (no light). Part of the CS₂ was decomp. and 7.85 ccm. were dissolved, therefore H₂O dissolves ¹/₁₀₀₀ of its weight CS₂. (Sestini, Gazz, ch. it. 1. 473.)

### Solubility of CS₂ in H₂().

100 pts. H₂O dissolve 0.203 pts. CS₂ at 12-13° " " " " 15-16° 0.191" " 25-27° 0.168" " " " 0.14530-33°. (Page, C. N. **41.** 195.)

Solubility of  $CS_2$  in  $H_2O$ . a=g.  $CS_2$  in 1000 ccm. solution at to

a	t°	a	t°	a	t°
2.04 1.99 1.94 1.87	0 5 10 15	1.79 1.69 1.55 1.37	20 25 30 35	1.11 0.70 0.14	40 45 49

(Chancel and Parmentier, C. R. 100. 773.)

100 g. H₂O dissolve at t°:

10 20 30 0.258 0.239 0.201 0.195 g. CS₂. (Rex, Z. phys. Ch. 1906, **55.** 365.)

Absorption of CS2 vapor by H2O at t°.		
to Coefficient of absorption		
0 10 20 30	3.573 2.189 1.346 0.799	

Calc. from data of Chancel and Parmentier, C. R. 100. 733.)

(Winkler, Z. phys. Ch. 1906, 55. 372.)

Vapors of CS₂ are most easily absorbed by alcoholic solution of KOH. Sl. absorbed by KOH+Aq, and very slowly by CuSO₄, Pb(C₂H₃O₂)₂+Aq, conc. H₂SO₄, or CaCl₂ in HCl+Aq. (Berthelot, A. ch. (3) **51.** 74

Solubility in alcohol. S=strength of alcohol in per cent by weight; P=pts. CS₂ which dissolve in 10 ccm. alcohol at 17°.

S	P	s	P
100 98.5 98.15 96.95 93.54	$18.20 \\ 13.20 \\ 10.00 \\ 7.00$	91.37 84.12 76.02 48.40 47.90	$5.00 \\ 3.00 \\ 2.00 \\ 0.20 \\ 0.00$

(Tuchschmidt and Follenius, B. 4. 583.)

Miscible with absolute alcohol, ether, ethereal and fatty oils, and liquid CO₂.

### Tricarbon disulphide, C₃S₂.

Insol. in H₂O; easily sol. in alcohol, ether, chloroform, benzene, and CS₂. The alcoholic and ethereal solutions decomp. on standing. (Lengyel, B. **26**. 2960.)

Sol. in alcohol with decomp. Sol. in CS₂ and in benzene. (Stock, B. 1912, **45**. 3575.)

Solid modification. Insol. in  $H_2O$  and ordinary solvents. Sol. in KOH+Aq. (Lengvel.)

### Carbon sulphoselenide, CSSe.

Mpt. -85°, bpt. +84°.

Decomp. by light. Not attacked by H₂O. Sol. in hot conc. HNO₃. Decomp. by Br₂ to an oil. Sol. in alcohol with decomp. Miscible with CS₂. (Stock, B. 1914, **47**. 150.)

### Carbon sulphotelluride, CSTe.

Mpt. -54°. Very unstable.

Miscible with CS₂ and benzene without decomp. (Stock, B. 1914, 47. 142.)

# Carbonatochloroplatindiamine carbonate chloroplatindiamine nitrate.

 $\begin{array}{l}
\text{CO}_{3} \left[ \text{Pt} \stackrel{\text{N}_{2}\text{H}_{6}}{\text{N}_{2}\text{H}_{6}} \right]_{2} (\text{CO}_{8})_{2}, \text{ Cl}_{2}\text{Pt}(\text{N}_{2}\text{H}_{6}\text{NO}_{8})_{2}. \\
\text{Precipitate.} \quad \text{(Cleve, J. B. 1867. 321.)}
\end{array}$ 

# Carbonatonitratoplatindiamine carbon-

ate,  $\frac{\text{CO}_3}{(\text{NO}_3)_2} [\text{Pt}(\text{N}_2\text{H}_6)_2]_2 (\text{CO}_3)_2$ .

Sol. in boiling H₂O. (Cleve.)

# Carbonatotetramine cobaltic bromide, $Co(NH_3)_4CO_3Br$ .

Much less sol. than chloride. (Jörgensen, Z. anorg. 2. 279.)

—— carbonate, [Co(NH₃)₄CO₃]₂CO₃ #3H₂O. Very sol. in H₂O. (Jörgensen.)

-- chloraurate, [Co(NH₃)₄CO₃]₂AuCl₄+ ¹₂H₂O.

Somewhat sol. in  $H_2O$ ; nearly absolutely insol. in alcohol. (Jörgensen.)

--- chloride, Co(NH₃)₄CO₃Cl.

Easily sol. in  $H_2\mathrm{O}$ ; insol. in alcohol. (Jörgensen.)

Nearly insol. in  $H_2O$  and alcohol. (Jörgensen.)

—— chloroplatinite, [Co(NH₃), CO₃], LCl₄.

Nearly insol. in H₂O; wholly in alcohol.
(Jörgensen.)

--- dithionate, [Co(NH₃)₄CO₃]₂S₂O₆.

--- iodide, Co(NH₃)₄CO₃I.

Much less sol. than bromide or chloride. (Jörgensen.)

—— nitrate, Co(NH₃)₄CO₃NO₃+½H₂O. Sol. in about 15 pts. cold H₂O; insol. in alcohol. (Jörgensen.)

—— sulphate, [Co(NH₃)₄CO₃]₂SO₄+3H₂O. Considerably less sol. in H₂O than the nitrate. (Jörgensen.)

### Carbonic acid, H₂CO₃ See Carbon dioxide.

### Carbonates.

Carbonates of Na, K, Rb, and Cs are easily sol. in H₂O; carbonates of Li and Tl are much less sol.; other carbonates are nearly or quite insol. All carbonates are sol. to some extent in H₂O containing CO₂. All carbonates, except those of NH₄, Rb, and Cs, are insol. in alcohol.

Sol. in those acids which are themselves sol. in H₂O, except HCN and H₂BO₂.

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 824.)

### Aluminum carbonate, basic.

 $5Al_2O_3$ ,  $6CO_2 + 37H_2O = 3Al(OH)_3$ ,  $Al_2(CO_3)_3 + 14H_2O$ . (Seubert, Z. anorg. 1893, 4. 67.) Al₂O₃, CO₂. (Parkmann, Sill. Am. J. (2)

**34.** 324.) 3Al₂O₃, 2CO₂+16H₂O. Danson, A. **72**. 120.) (Muspratt and

 $3Al_2O_3$ ,  $2CO_2+9H_2O$ . (Wallace, Chem. Gaz. 1858. 410.)

 $5Al_2O_3$ ,  $3CO_2 + 18H_2O$ . (Bley, J. pr. 39.

 $2Al_2O_3$ ,  $CO_2 + 6H_2O_1 = 10Al(OH)_3$ ,  $Al_2(CO_3)_3$ +3H₂O. Sol. in cold dil. acids. (Schlumberger, Bull. Soc. 1895, (3) 13. 46.)

+8H₂O. (Urbain and Renoul, J. Pharm. (4) **30.** 340,  $= 10 \text{Al}(OH)_3$ ,  $\text{Al}_2(CO_3)_3 + 9 \text{H}_2O$ . (Seubert, Z. anorg. 1893, 4. 67.)

 $Al_2O_3$ ,  $3CO_2+40H_2O$ . (Langlois, A. ch. (3 48. 505.)

All are precipitates, insol. in H₂O, sol. in acids, and give off CO₂ at slight heat.

There are no definite carbonates of aluminum. (Cameron, J. phys. Chem. 1908, 12. 572.)

### Aluminum ammonium carbonate, Al₂O₃, CO₂, $(NH_4)_2CO_3+4H_2C$ .

Precipitate. (Rose, Pogg. 91. 460.)

### Aluminum sodium carbonate, Al₂O₃, CO₂, $2Na_2CO_3+24H_2O$ .

Precipitate. Sol. in cold dil. acids. (Bley, J. pr. 39. 22.)

#### Ammonium carbonate, $(NH_4)_2CO_3+H_2O$ .

Sol. at 15° in its own weight H₂O. Solution in  $H_2O$  gives off gas at 70–75°, and boils at 75–80°. Sl. sol. in cold dil.  $NH_4OH+Aq$ , more sol. at ordinary temp. Insol. in conc.  $NH_4OH + Aq.$ (Divers, Chem. Soc. (2) 8. 171, 259, and 364.

Insol. in liquid NH $_3$ . (Franklin, Am. Ch. J. 1898, **20.** 826.)

Insol, in alcohol.

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

100 g. pure glycerine dissolve 20 g. (NH₄)₂CO₃ at 15°. (Ossendowski, Pharm. J. 1907, 79. 575.)

### Ammonium hydrogen carbonate, NH₄HCO₃.

Sol. at 15° in about 8 pts. H₂O. (Berthollet, J. Phys. 66. 168.)

Sol. at 12.8° in about 6 pts. H₂O. (J. Davy, N. Edinb. J. 16. 245.)

Solution decomp. on air or by gentle heat or by addition of the solid salt. (Berthollet.) 100 pts.  $\rm H_2O$  dissolve at 0°, 11.9 pts.; at 10°, 15.85 pts.; at 20°, 21 pts.; at 30°, 27 pts.

NH₄HCO₃. (Dibbits, J. pr. (2) 10. 417.)

Solubility of NH4HCO3 in NH4Cl+Aq, sat. with CO2, at to.

t.º	g. per 10	00 g. H ₂ O	Sp. gr. of sat.
t-	NH ₄ Cl	NH4HCO3	solution
0°	0 29.08	11.9 3.6	1.077
15°	0 2.99 6.06 8.51 11.68 18.30 26.93 33.25 34.35	18.64 16.29 14.22 12.69 11.68 9.33 7.73 6.64 6.42	1.064 1.063 1.062 1.062 1.065 1.069 1.076 1.085
30°	0 39.7	27.0 9.1	

(Fedotieff, Z. phys. Ch. 1904, 49, 168.)

Solubility of NH4HCO3 in NaHCO3+Aq, sat. with CO2 at t°.

,0	g. per 10	00 g. H ₂ ()	Sp. gr. of sat.
,	NaHCO ₃	NH ₄ HCO ₃	colution
0°	0 4.82	11.90 10.94	1 072
15°	0 5.92	18.64 17.06	1.064 1.090
30°	0 7.0	27.0 23.0	

(Fedotieff, Z. phys. Ch. 1904, **49.** 168.)

### Solubility of NH4HCO3 in NH4NO3+Aq at to.

t.º	g. per 10	00 g. H ₂ ()	Sp. gr. of sat.
1.	NH4NO3	NH4HCO	solution
0°	0 118	11.90 4.52	1.2625
15°	0 23.26 49.82 103.4 128.9 166.9	18.64 12.91 10.33 8.25 7.79 7.49	1.064 1.113 1.164 1.242 1.269 1.302
30°	0 231.9	26.96 12.57	

(Fedotieff and Koltunoff, Z. anorg. 1914, 85. 251.)

Insol. in alcohol. (J. Davy.) Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

### Ammonium dihydrogen carbonate. $(NH_4)_4H_2(CO_3)_3 + H_2O.$

Sol, in 5 pts. H₂O at 15°; decomp. by more HOO or by heat. (Divers, Chem. Soc. (2) 8. 171, 359, and 364.)

Sl. sol. in aicohol.

### Ammonium hydrogen carbonate carbamate. 2NH4HCUs, NH4CONH2. (Salts of hartshorn.)

1 pt. salt dissolves at:

Strong alcohol dissolves out carbamate, and the carbonate remains undissolved.

NH₄HCO₃, NH₄CO₂NH₂. (Commercial carbonate of ammonia.)

Sol. at 15° in 4 pts. H₂O, at 65° in 1½ pts. H₂O. (Divers.)

30 pts. salt +100 pts. H₂O lower temp, from 15.3° to 3.2°. (Rüdorff, B. 2. 68.)

Sol. in 1.667 pts. cold, and 0.833 pt. hot H₂O. (Fourcroy.)

100 pts. H₂() at 15.5° dissolve 33 pts.; at 100°, 100 pts. (Ure's Diet)
Sol. in 2 pts. H₂() at 15.5°, and in less than 1 pt. boiling H₂(); sat. solution at 15.5° contain. 33.3%, and sat. boiling solution 50%. (Abl.)
Sat. aqueous solution at 10° contains 15.7%. (Eller.)
Sat. aqueous solution at (?) contains 6.1%. (Mussephrous)

Sat. solution in the cold contains 37.5%. (Fourcroy.) Does not dissolve as such in H₂O; \(\bar{N}H_4\)2CO₃ dissolves out first, and \(\bar{N}H_4\)HCO₃ later. (Scanlan.)

Sp. gr. of carbonate of ammonia + Aq at 12°.

Deg. Tw.	Sp. gr. at 12°.	% Carb. ammon.	Change of sp. gr. for 1° C.
1	1.005	1.66	0.0002
$\frac{2}{2}$	1.010	3.18	0.0002
3	1.015	4.66	0.0003
4 5	1.020	6.04	0.0003
	1.025	7.49	0.0003
6	1.030	8.93	0.0004
7	1.035	10.35	0.0004
8	1.040	11.86	0.0004
9	1.045	13.36	0.0005
10	1.050	14.83	0.0005
11	1.055	16.16	0.0005
12	1.060	17.70	0.0005
13	1.065	19.18	0.0005
14	1.070	20.70	0.0005
15	1.075	22.25	0.0006
16	1.080	23.78	0.0006
17	1.085	25.31	0.0006

Sp. gr. of carbonate, of ammonia + Aq at 12°.—Continued

Deg. Tw.	Sp. gr. at 12°.	% Carb. ammon.	Change of sp. gr. for 1° C.
18 19 20 21 22 23 24 25 26 27	1.090 1.095 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135	26.82 28.33 29.93 31.77 33.45 35.08 36.83 38.71 40.34 42.20	0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
28 29	1.140 1.144	44.29 44.90	0.0007

Lunge, Chem. Ind. 1883. 2.)

Sp. gr. of aqueous solution of salt with composition 31.3% NH₃, 56.6% CO₂, 12.1% H₂O. 100 pts. of solution contain-9.9614.75 19.83 25.71 pts. salt 6.581.0219 1.0337 1.0497 1.0672 1.0863 sp. gr.

29.7435.85 40.23 44.90 pts. salt. 1.0995 1.1174 1.1297 1.1414 sp. gr. (J. H. Smith, Chem. Ind. 1883. 3.)

Conc. alcohol dissolves out carbamate and leaves carbonate. (Hünefeld, J. pr. 7. 25.) Insol. in acetone. (Naumann, B. 1904, 37. 4328.)

Ammonium cerous carbonate, (NH₄)₂CO₂,  $Ce_2(CO_3)_3+6H_2O$ .

Ppt. Very sl. sol. in conc. (NH₄)₂CO₈+Aq. (Meyer, Z. anorg. 1904, 41. 104.)

Ammonium chromous carbonate, (NH₄)₂CO₂,  $CrCO_3 + H_2O$ .

Decomp. by moist air; sol. in dil. HCl and H₂SO₄. (Baugé, C. R. 1896, **122**. 476.)

Ammonium cobaltous carbonate, (NH₄)₂CO₃,  $CoCO_3 + 4H_2O$ .

Permanent. Sol. in H₂O. (Deville, A. ch. (3) **35.** 460.)

 $(NH_4)_2O$ , 2CoO,  $4CO_2+9H_2O$ . Quickly decomp. on air; sol. in H₂O. (Deville.) +12H₂O. Sol. in H₂O.

Ammonium didymium carbonate, (NE₄)₂CO₂,  $Di_2(CO_3)_3 + 3H_2O$ . Insol. in H₂O. (Cleve.)

Ammonium dysprosium carbonate,  $NH_4Dy(CO_3)_3+H_2O.$ 

Only sl. sol. in H₂O. (Jantsch, B. 1911, 44. 1277.)

Ammonium glucinum carbonate, 2(NH₄)₂CO₃,  $3GlCO_{8}(?)$ .

Very sol. in cold, decomp. by hot H₂O. Nearly insol. in alcohol. (Debray.

Composition is (NH₄)₂CO₃, 2GlCO₃, Gl(OH)₂+2H₂O. (Humpidge, Royal Soc. Proc. 39. 1.)

Ammonium lanthanum carbonate, La₂(CO₃)₃,  $(NH_4)_2CO_8+4H_2O_1$ 

Ppt. (Meyer, Z. anorg. 1904, 41. 102.)

### Ammonium magnesium carbonate, $(NH_4)_2Mg(CO_3)_2+4H_2O.$

Sol. in 71 pts. H₂O with decomp.; more sol. in NH Sl+Aq. (Divers, Chem. Soc. 51. **196**.)

H₂O containing (NH₄)₂CO₃ dissolves very slightly; more sol. in H₂O containing NH₄Cl. (Favre, A. ch. (3) 10. 473.)

Ammonium magnesium hydrogen carbonate,  $(NH_4)_2Mg_2H_2(CO_3)_4 + 8H_2O$ , or  $12H_2O$ . Decomp. on air. (Deville, A. ch. (3) 35. **454**.)

### Ammonium neodymium carbonate, $(NH_4)_2CO_8$ , $Nd_2(CO_3)_8+4H_2O$ .

Ppt. Sl. sol. in conc. (NH₄)₂CO₃+Aq. (Meyer, Z. anorg. 1904, 41. 106.)

Ammonium nickel carbonate, NH4HCO3, NiCO₃+4H₂O.

Insol. in H₂O. (Deville, A. ch. (3) **35.** 452.)

### Ammonium praseodymium carbonate, $(NH_4)_2CO_3$ , $Pr_2(CO_3)_3+4H_2O$ .

Put. Insol. in (NH₄)₂CO₃+Aq. (Meyer, Z. anorg. 1904, 41. 105.)

Ammonium samarium carbonate,  $(NH_4)_2CO_3$ ,  $Sm_2(CO_3)_3 + 4H_2O$ .

Ppt.

Ammonium scandium carbonate, (NH₄)₂CO₃,  $2Sc_2(CO_3)_3+6H_2O$ .

Difficultly sol. in H2O. Sol. in cold alkalicarbonate+Aq, less sol. in hot. (R. Meyer, Z. anorg. 1910, 67. 410.)

### Ammonium tin (stannous) carbonate, $(NH_4)_2CO_3$ , $2SnCO_3 + 3H_2O$ .

Decomp. by cold H₂O. (Deville, A. ch. (3) **35.** 456.)

Ammonium uranyl carbonate, 2(NH₄)₂CO₃, UO₂CO₃.

Sol. at 15° in 20 pts. H₂O, more abundantly in H₂O containing (NH₄)₂CO₃. (Ebelmen.) Insol. in pure H₂O; sol. in H₂O containing (NH₄)₂CO₃. Solution is decomp. by boiling. (Berzelius.)

(Berthier, A. ch. (3) 7. Sol. in SO₂+Aq. 76.)

3(NH₄)₂CO₃, 2(UO₂)CO₃+4H₂O. H₂O. (Giolitti C. C. **1905**, II. 227.) Sol. in

Ammonium vanadyl carbonate, 3(NH₄)₂O,  $7VO_2$ ,  $5CO_2 + 16H_2O$ .

Sl. sol. in H₂O.

Sol. in acids and alkalies. (Koppel, Z. anorg. 1905, **45**. 350.)

Ammonium yttrium carbonate, (NH₄)₂CO₃,  $Y_2(C()_3)_3 + 2H_2O$ .

Insol. in (NH₄)₂CO₃+Aq. (Mosander.)

Ammonium zinc carbonate, basic, 3ZnO,  $NH_4OH$ ,  $2CO_2+H_2O$ .

Insol. in H₂O. (Kassner, Arch. Pharm. (3) **27.** 673.)

Ammonium zinc carbonate, (NH₄)₂CO₃, ZnCO₃.

Insol. in H₂O. (Deville.)

Quite sol. in H₂O; more sol. than (NH₄)₂CO₃, MgCO₃. Tolerably permanent in the air. Slowly decomp. by cold, rapidly by hot H₂O.

Very sol. in (NH₄)₂CO₃+Aq. Not attacked by alcohol. (Favre, A. ch. (3) 10. 481.)

Barium carbonate, BaCO₃.

Sol. in 4304 pts. cold, and 2304 pts. boiling

 $H_2O.$  (Foureroy.) Sol. in 47,620 pts.  $H_2O.$  (Bineau, A. ch. (3) **51.** 290.)

Sol. in 14,137 pts. H₂O at 16-20°, and 15,421 pts. at 100°. (Fresenius.)

Sol. in 12,027 pts. H₂O at 15°. (Kremers,

Pogg. 85. 247.)

Calculated from electrical conductivity of solution, 1 pt. BaCO₃ is sol. in 64,070 pts. H₂O at 8.8° and 45,566 pts. at 24.2°. (Hollemann, Z. phys. Ch. **12.** 125.)

### Solubility in H₂O at t².

t°	g. sol. in 100 g. H ₂ O
14	4.32 x 10-4
18	4.57 x 10 ⁻⁴
23	4.89 x 10 ⁻¹
27	5.22 x 10 ⁻¹
32	5.69 x 10 ⁻⁴
38	6.27 x 10 ⁻⁴

(Weissenberger, Z. phys. Ch. 1914, 88. 266.)

"Solubility product"=8.1 x 10-9 mol. l. (McCoy and Smith, J. Am. Chem. Soc. 1911, **33.** 473.)

Sol. in H₂CO₃+Aq. (See barium hydrogen carbonate.)

Easily sol. in dil. acids. Not acted upon by conc. HNO₈+Aq. Not decomp. by 1 pt. H₂SO₄+6 pts. ab-

solute alcohol. Slowly decomp. by 1 pt.

HNO3+6 pts. absolute alcohol. Slowly de-| Solubility of BaCO2 in 10% NaCl+Aq at to. comp. by 1 pt. H₂C₂O₄+6 pts. absolute alcohol.

Not decomp, by absolute alcoholic solutions of racemic, tartaric, citric, or glacial acetic acids. (Babington and Phillips, 1816.)

Almost completely insol, in H₂O containing NH₄OH and (NH₄)₂CO₂, when digested in such a solution and allowed to stand. 1 pt. BaCO₃ dissolves in 141,000 pts. of such a solution. (Fresenius.)

Not more sol. in NaCl+Aq than in H2O.

(Karsten.)

Sol. in cold NH4Cl, NH4NO3, or NH4 suc-

cinate+Aq. (Vogel, J. pr. 7. 453.) 2 mols. NH₄Cl dissolved in H₂O dissolve 1 mol. BaCO₃ by continued boiling. (Smith, Phil. Mag. J. 9. 540.)

Solubility in H₂O increases by addition of NH₄Cl, at first strongly, then less strongly and finally strongly again. (D'Agustino and Pellegrino, Gazz. ch. it. 1908, 38 (1) 532.)

Somewhat sol, in K₂CO₃+Aq. (Wacken-

roder, A. **24.** 30.)

Solubility of BaCO₃ in KCl+Aq at bpt. of solution

g. KCl per 100 g. solution	g. BaCO ₃ per 1000 ec. sat. solution
0 15	0.0847
1	0.1781
3	0.2667
10	0 4274
30	0.5550

(Cantoni and Goguelia, Bull. Soc. 1905, (3) **33**. 13.)

Solubility of BaCO₃ in NaCl+Aq at bpt. of solution

g. NaCl per 100 g. solution	g. BaCO ₃ per 1000 cc. sat. solution
0.15	0.0587
$\frac{1}{3}$	0.0787 0.1056
$\frac{10}{30}$	$0.1575 \\ 0.2784$

(Cantoni and Goguelia, l. c.)

Solubility of BaCO₃ in 10% KCl+Aq at t°.

t°	g. BaCO; per 1000 cc. sat. solution	
10	0.2175	
20	0.2408	
40	0.2972	
60	0.3491	
80	0.4049	

(Cantoni and Goguelia, l. c.)

t°	g. BaCO; per 1000 cc. sat. solution
10	0.1085
20	0.1126
40	0.1231
60	0.1303
80	0.1418

(Cantoni and Goguelia, I. c.)

Slowly sol. in conc. Na₂SO₄, MgSO₄, ZnSO₄, Ca(NO₃)₂, or CaCl₂+Aq, but insol. in ZnCl₂ +Aq. (Karsten.)

Sl. decomp. by boiling K₂SO₄+Aq.* *
Sl. decomp. in the cold by 1 pt. K₂SO₄+2

pts. Na₂SO₄+Aq.

Decomp. by salts of Al, Mn, Cr, Fe, U, Bi, Cd, Cu, Hg, Pb, Sni, Sni, Hg₂, Rh, Ir, Au, with pptn. of oxide of metal. (Rose, Tr.)

Pptn. of BaCO₃ is hindered by presence of

alkali citrates or metaphosphates.

Sol, in solutions of various salts, as in the case of calcium carbonate (see Calcium carbonate). The solvent power of these solutions for barium carbonate is somewhat less than for calcium carbonate.

Insol. in acetone. (Naumann, B. 1904, 37.

Insol. in methyl acetate. (Naumann, B. B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3602.)

Insol. in acetone and in methylal. (Eidmann, C. C. **1899**, II. 1014.)

Min. Witherite.

Barium hydrogen carbonate,  $BaH_2(CO_3)_2(?)$ . 100 pts. H₂O containing CO₂ dissolve 0.079

pt. BaCO₃. (Bineau.)

100 pts. H₂O containing CO₂ dissolve 0.17 pt. BaCO₃. (Lassaigne.)

100 pts. H₂O sat. with CO₂ under a pressure of 4-6 atmospheres dissolve 0.725 pt. BaCO₃. Upon evaporating, BaCO₃ is deposited. (Wagner, Z. anal. 6. 167.)

BaCO₃ is sol. in 833 pts. H₂O sat. with CO₂

at 10°. (Lassaigne.)

BaCO₃ is sol. in 830 pts. H₂O sat. with CO₂ at 10°. (Fourcroy.)
BaCO₃ is sol. in 1550 pts. H₂O sat. with CO₂

at 10°. (Bergman.)

100 cc. H₂O sat. with CO₂ dissolve 0.73 g. BaH₂(CO₃)₂. (McCoy and Smith, J. Am. Chem. Soc. 1911, 33. 473.)

Barium calcium carbonate, BaCO₃, CaCO₃.

Min. Barytocalcite, Bromlite. Sol. in dil. acids.

Barium uranyl carbonate, BaO, 2UO₃, 2CO₂ +5H₂O. Decomp. by  $H_2O$ . (Blinkoff. Dissert. 1900.)

+8H₂O. Decomp. by H₂O. (Blinkoff.)

Bismuth carbonate, basic, (BiO)₂CO₃+ 1/2H2O.

Insol. in  $H_2O$ ; sol. in acids. Insol. in  $CO_2+$ (Bergman.)

Completely sol. in (NH₄)₂CO₃+Aq; sl. sol. in K₂CO₃+Aq.; insol. in Na₂CO₃+Aq. (Laugier.)

Absolutely insol. in  $(NH_4)_2CO_3 + Aq$  unless H₃PO₄ or H₃AsO₄ are present. (Berzelius.) Insol. in (NH₄)₂CO₃, K₂CO₃, or Na₂CO₃+

Aq. (Rose.) Sol. in NH₄Cl+Aq. (Wackenroder.) Insol. in NH₄NO₈+Aq. (Brett.)

Sol. in CaCl₂+Aq. (Pearson.)

Min. Bismuthosphaerite.

3Bi₂O₃, CO₂. Min. Bismuthite. Easily sol. in acids.

4Bi₂O₃, 3CO₂+4½H₂O. spar. Easily sol. in acids. Min. Bismuth

### Bismuth potassium carbonate, Bi₂OK₄(CO₃)₄ $+H_2O.$

Decomp. by large quantities of  $H_2O$ . (Reynolds, Chem. Soc. 1898, 73. 266.)

#### Cadmium carbonate, CdCO₃.

Insol. in H₂O; easily sol. in acids; insol. in K₂CO₃, and Na₂CO₃+Aq; very sl. sol. in (NH₄)₂CO₃+Aq. (Fresenius.) Easily sol. in NH₄ sulphate, nitrate, and

succinate+Aq. (Wittstein.)
Sol. in KCN+Aq; sol. in cold NH₄Cl+Aq; less sol. in NH₄NO₃+Aq. (Brett, **1837**.)

Not prevented from pptn. by non-volatile organic substances. (Rose.)

Not pptd. from solutions containing sodium

citrate. (Spiller.)
Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

 $+\frac{1}{2}H_2O$ . (Lefort, J. B. **1847**. 346.) (Kraut, Z. anorg. 1897, 13. 14.)

### Cadmium carbonate hydrazine, CdCO₃, 2N2H4.

Easily sol. in cold NH₄OH + Aq. (Franzen, Z. anorg. 1908, **60.** 281.)

### Cæsium carbonate, Cs₂CO₃.

Very deliquescent, and sol. in H₂O. 100 pts. absolute alcohol dissolve 11.1 pts. Cs₂CO₃ at 19°; 20.1 pts. Cs₂CO₃ at boiling temp. (Bunsen.)

### Cæsium hydrogen carbonate, CsHCO₃. Not deliquescent. Sol. in H₂O.

Calcium carbonate basic, CaO, CaCO₃+H₂O. Hardened by H₂O, but not dissolved. (Raoult, C. R. 92, 189.)

### Calcium carbonate, CaCO₈.

More sol. in cold than in hot H2(). (Gmelin.) More sol. in cold than in hot  $H_4O$ . (Gmelin.) When recently pptd., sol. in 8834 pts. boiling, and 10,601 pts. cold  $H_2O$ ; much less sol. in  $H_2O$  containing NH₄OH and (NH₄) $_2$ CO₃, 65,246 pts. of which dissolve 1 pt. CaCO₃. (Fresenius (1846), A. 59. 122.) Sol. in 16,000 pts. pure  $H_2O$ . (Brandes, 1825.) Sol in 12,858 pts. pure  $H_2O$ . (Brandes, 1825.) Sol. \$65,247.)

Sol. in 16,000-24,000 pts. pure H₂O. (Bucholz.)

1 l. H₂O dissolves 34 mg. CaCO₃. (Chevalet, Z. anal. 8. 91; Hoffmann, Z. anal. 4. 414.) 1 l. H₂O may contain 0.016 g. CaCO₃. i. e., 1 pt. is sol. in 62.500 pts. H₂O. (Bineau, A.

ch. (3) **51.** 290.)

1 l. H₂O dissolves 0.02 g. CaCO₃, i. e., 1 pt. CaCO₃ is sol. in 50,000 pts. H₂O. (Peligot.) Solubility is much affected by CO2 of the air. 1 l. H₂O at 16° dissolves 13.1 mg. CaCO₃.

(Schlösing, C. R. 74. 1552.)

Calculated from electrical conductivity of CaCO₃+Aq, 1 pt. CaCO₃ is sol. in 99,500 pts. H₂O at 8.7°, and 80,040 pts. at 23.8°. (Hollemann, Z. phys. Ch. 12. 125.)

By continued boiling CaH₂(CO₃)₂, 36 mg. CaCO₃ remain in solution. (Weltzien, A. 136.

165.)

### Solubility in H₂O at different pressures.

Pressure in atmos	Solubility
. 1	1079
2	1403
4	1820
6	2109

(Engel, C. R. 101. 949.)

100 pts. H₂O dissolve 0.0005 pt. (calculated as CaO) from pptd. CaCO₃, and 0.0027 pt. from calcspar. (Lubavin, J. russ. Soc. 24. 389.)

1 l. H₂O dissolves 13 mg. CaCO₃ at 18°. (Kohlrausch, Z. phys. Ch. 1893, 12, 241.)

1 l. CO₂ free water dissolves 17.4 mg. CaO or 31.0 mg. CaCO₃. (Gothe, Ch. Z. 1915, **39.** 305.)

CaCO₃ dissolves in 9662 pts. H₂O at 12°.

(Pollacci, C. C. 1896, 11. 946.)

1 l. H₂O free from CO₂ dissolves 9.6 mg. CaCO₃. (McCoy and Smith, J. Am. Chem. Soc. 1911, **33.** 473.)

Found dissolved in 10,000 pts. sea water.

Pptd. amorphous CaCO₃ dissolves in 1600 pts. sea water. Pptd. crystalline CaCO₃ dissolves in 8000 pts. sea water. (Irvine and Young, Chem. Soc. 56. 344.)

Artificial sea water sat. with CO2 dissolves CaCO₃ corresponding to 57.27 mg. of com-

bined CC₂ per litre at 15°.

Sea water which contains 52-55 mg. neutral combined CO2 per litre must be sat. with CaCO₃. (Cohen, Chem. Soc. 1900, **78** (2) 725.)

For action of H₂CO₃+Aq, see Calcium hydrogen carbonate.

ing it. (Link, 1814.)

Unacted upon by conc. HNO2, even when boiling, as Ca(NC₃)₂ is insol. in conc. HNO₃

Not decomp, by mixture of 1 pt. H2SO, and 6 pts. absolute alcohol, but immediately by HNO₃+absolute alcohol.

Not decomp, by absolute alcoholic solutions of oxalic, racemic, tartaric, citric, or glacial acetic acids. (Babington and Phillips, 1816.)

linacted upon by glacial HC2H3O2, even

when boiling.

Freshly pptd. CaCO3 is sol. in cold NH4Cl+ Ag: but the solution becomes cloudy on exposure to air, a portion, however, of CaCG₃ remains dissolved, which cannot be pptd. even by boiling. If ppt. is washed and allowed to stand 24 hours, it is not as sol. in NH₄Cl as at first, but natural CaCO3 is not wholly insol. in NH₄Cl+Aq; it is, however, much less sol. than MgCO₃. (Vogel, J. pr. 7, 453.)
Sol. in boiling NH₄Cl+Aq with evolution

of NH₃. (Demarcay, 1834.)
When NH₄OH+Aq, incompletely sat. with CO₂, is mixed with CaCl₂+Aq, no ppt. occurs even during several days, if kept in a closed vessel; and only a slight ppt. if the mixture is exposed to the air, but CaCO3 is pptd. if the solution is boiled.

NH₄OH+Aq wholly sat. with CO₂ produces ppt. when mixed with CaCl₂+Aq, but pptn. is not complete until heat is applied. Also when an excess of CaCl2+Aq is added to a solution of crystallized carbonate of ammonia, only a portion of the CaCO₃ is pptd. until the solution is boiled. (Vogel, 1814.)

When  $CaCl_2 + Aq$  mixed with  $NH_4OH + Aq$ is exposed to an atmos. of pure CO2, no ppt. occurs for several hours, but CaCO3 is com-

pletely pptd. in several days. (Vogel.)
When recently pptd., readily sol. in NH₄Cl, and NH₄NO₃+Aq. (Brett, **1837**; Wacken-

roder, A. 41. 315.)

When recently When recently pptd., readily (NH₄)₂CO₃, (NH₄)₂SO₄, NH₄NO₃, sol. in NH₄Cl, and NH₄ succinate+Aq. (Wittstein.)

Sol. in NH₄C₂H₃O₂+Aq. (Thomson.) More sol. in NH₄Cl, or NH₄NO₃+Aq, or in neutral potassium, or sodium salts+Aq than in  $H_2O$ . (Fresenius.)

From solutions in NH4 salts, NH4OH, and (NH₄)₂CO₃+Aq precipitate CaCO₃ more completely than BaCO₃. (Fresenius.)
When boiled with NH₄Cl+Aq, CaCO₃ is

dissolved, and (NH₄)₂CO₃ given off.

Smith.)

CaCl₂+Aq prevents pptn. of CaCO₃ in the cold. as do also NH₄Cl, KCl, or NaCl+Aq, but it is pptd. when boiled, if the latter solutions are not too conc. K₂SO₄, KNO₃, (NH₄)₂SO₄, or Na₂SO₄+Aq have a similar effect. A large excess of (NH₄)₂CO₃+Aq when quickly added to CaCl2+Aq produces

Sol. in H₂SO₄, even when native. Sol. in no ppt. in the cold. Ne₂CO₂, or K₂CO₃+Aq acids generally. When treated with acids in closed vessels effervescence ceases on increase of pressure, but is renewed at once on remover (NH₂)₂SO₄, or 14.438 g. NH₄NO₅ to effect of the cold. Ne₂CO₃ or K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO₃ at K₂CO solution. (Bertrand, Monit. Sci. (3) 10. 477.) Less sol. in Na than in NH4 salts, but more

than in K salts. (Berthelot.) When NH₄OH+Aq, partially neutralized by CO₂, is mixed with CaO₂H₂+Aq, no cloudiness appears until the mixture is boiled; when more CO₂ has been added to NH₄OH+ Aq. a ppt. appears at first, which disappears and only reappears on addition of much CaO₂H₂+Aq; but NH₄OH+Aq does not dissolve pptd. CaCO₃. (Vogel.)

Solubility in NH salts + Aq at 25°.

NI' ₄ sait	Millimols NH4 salt per l.	Millimols CaO dis- solved per l.
NH4Cl	1000 500 250 125	6,770 5,008 3,724 2,743
NH4NO3	500 250 125 62.5	5.267 3.830 2.779 2.004
Triammonium citrate	500 250 125 62.5	66.87 39.80 22.64 14.92

(Rindell, Z. phys. Ch. 1909, 70. 454.)

Solubility of CaCO₃ in NH₄Cl+Aq at 12-18°. Time, 98 days.

g. per l. of sat. solution		
NH ₄ Cl	CaCOa	
53.5	0.423	
100	0.609	
200	0.645	

(Cantoni and Goguelia, Bull. Soc. 1905, (3) **33.** 27.)

Solubility of CaCO₃ in NH₄NO₃+Aq at 18°.

g. per l. of sat. solution		
NH,NO3	CaCO ₃	
0 5 10 20 40 80	0.131 0.211 0.258 0.340 0.462 0.584	
	1 0.001	

(Berju and Kosminiko, Landw. Vers. Sta. 1904, **60.** 422.)

CaO₂H₂+Aq dissolves a little CaCO₃. (Welter and Berthollet, 1789.)

CaO₂H₂+Aq retains a little CaCO₃ in solution at ordinary temperature, which is pptd. on boiling. (Eliot and Storer, Proc. Am. Acad. 1860, 5. 63.)

CaO₂H₂+Aq, mixed with dil. NaOH, KOH, or NH₄OH+Aq, gives no immediate ppt. when CO₂ is passed through it, unless boiled. Sol. in boiling MgCl₂+Aq even when dilute.

Not decomp. when boiled with K₂SO₄, Na₂SO₄, CaSO₄, MgSO₄, and Na₂B₄O₇+Aq; but parally decomp. by boiling with (NH₄)₂SO₄, K₂SO₃, Na₂SO₃, (NH₄)₂SO₃, Na₂HPO₄, (NH₄)₂HPO₄, K₂HPO₃, Na₂HPO₅, (NH₆)₂HPO₅, K₅HASO₄, Na₃ASO₄, K₂C₂O₄, (NH₆)₂C₂O₄, NaF, and K₂CTO₄+Aq. With Solts the decomposition is complete. the NH₄ salts the decomposition is complete. (Dulong, A. ch. 82. 286.)

Not decomp. by alkali sulphates+Aq.

(Malaguti.)

Precipitation of CaCO₃ is much hindered by alkali citrates or metaphosphates.

Solubility in KCl+Aq at 25°.

Sp. gr. 25°/25°	G KCl	CaCO ₃
1.000	0.00	0.0013
1.024	3.90	0.0078
$\frac{1.046}{1.072}$	$\frac{7.23}{11.10}$	$0.0078 \\ 0.0076$
1.092	13.82	0.0072
1.101	15.49	0.0076
1.122 1.133	$\frac{18.21}{19.84}$	$0.0070 \\ 0.0072$
1.179	26.00	0.0060

(Cameron and Robinson, J. phys. Chem. 1907, **11.** 578.)

Solubility in NaCl+Aq in contact with CO2 free air at 25°

C 179/179	g. per 1	00 g. H ₂ ()
Sp. gr. 25°/25°	NaCl	CaCO ₃
1.0079	1.60	0.0079
1.0314	5.18	0.0086
1.0466	9.25	0.0094
1.0734	11.48	0.0104
1.0949	16.66	0.0106
1.1346	22.04	0 0115
1.1794	30.50	0.0119

(Cameron, Bell and Robinson, J. phys. Ch. 1907, 11. 396.)

Solubility of CaCO₃ in NaOH+Aq.

Solvent	1 litre dissolves		
solvent	at 18°	at 95°-100°	
H ₂ O (a. 0.0001 n. NaOH (a. 0.001 n. NaOH (a. 0.01 n. NaOH	8.7 " "	20.7 mg. CaCO ₈ 9.6 "" 6.9 "" 5.7 ""	

(Le Blanc, Z. anorg. 1906, 51. 185.)

	Solubili	ty in	$K_2SO_4$	+Aq	at 25°.	_
2	 050/050	) c	· KaSO.	1	% Ca	o

Sp. gr. 25°/25°	% K2SO4	% CaCO3
1.010	1.60	0.0104
1.021	3.15	0.0116
1.033	4.73	0.0132
1.048	6.06	0.0148
1.061	7.85	0.0168
1.069	8.88	0.0192
1.083	10.18	0.0192
1.084	10.48	0.0188

(Cameron and Robinson, J. phys. Chem. 1907, **11.** 578.)

The solubility of CaCO₃ in Na₂SO₄+Aq in equilibrium with air steadily increases with increasing amounts of CaSO₄ in the solution up to saturation point of the CaSO₄. In the presence of solid CaSO₄ the solubility of CaCO₃ is much decreased. (Cameron and Scidell, J. phys. Chem. 1902, **6.** 56.)

See under CaH₂(CO₃).

Solubility in Na₂SO₄+Aq in contact with CO₂ free air at 25°.

g. per 100 g H ₂ O		
Na ₂ SO,	('a('O,	
0.97	0.0151	
1.65	0.0180	
4.90	0.0262	
12 69	0.0313	
14.55	0.0322	
19/38	0 0346	
23.90	0.0360	

(Cameron, Bell and Robinson, J. phys. Ch. 1907, **11**, 396.)

Solubility in salts + Aq.

g. salt added per litre	mg. CaO dissolved per litre			
0.000	17.4			
0.585 g. NaCl 1.17 g. " 2.93 g. "	20.05 $24.9$ $31.1$			
0.85 g. NaNO ₃	24.35			
1.70 "	27.7			
4.25 "	34.5			
0.805 g. Na ₂ SO ₄ , 10H ₂ O	25.95			
1.61 g. "	31.15			
4.03 g. "	40.7			
0.53 g. Na ₂ CO ₃	8.4			
1.06 g. "	7.2			
2.65 g. "	4.4			
0.55 g. CaCl ₂ , 6H ₂ O	9.0			
1.10 g. "	8.4			
2.75 g. "	8.4			

The solubility of CaCO3 in CO2-free water

is therefore increased by the addition of NaCl, NaNO₃ or Na₂SO₄, 10H₂O, but decreased by the addition of Na₂CO₂ or CaCl₂, 6H₂O.

(Gothe, Ch. Z. 1915, 39. 306.)

Sol. in ferric chloride or nitrate+Aq with evolution of CO2 and pptn. of Fe2C6H6 (Fuchs. 1831); also in chlorides or nitrates of Al, Mn, Cr, or U, but not in FeCl2+Aq.

Sol. in cold SnCl₄+Aq with pptn. of SnO₂. Insol. in conc. Na₂NO₄, MgSO₄, BaCl₂, MgCl₂, Pb(NO₃)₂, or AgNO₂+Aq. (Kar-

Abundantly sol, when freshly precipitated in CaCl₂+Aq, and MgSO₄+Aq. (Hunt.)

Absolutely insol. at 15-19° in Ba(12H2+ Aq; also on boiling.

11. H₂O containing 3-4 g. MgSO₄ dissolves 1-2 g. CaCO₃, and also 1 g. MgCO₃. (Hunt, Am. J. Sci (2) 26. 109.)

100 pts. NaCl+Aq (2.525% NaCl) dissolve 0.0037 pt. (calculated as CaO) pptd. CaCO₃, and 0.0053 pt. calespar. (Lubavin, J. russ. Soc. **24.** 389.)

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 827.)

Insol, in liquid  $CO_2$ , (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Alcohol dissolves traces of CaCO₃. (Gris-

Sol. in Na citrate+Aq. (Spiller.)

Sol. in Ca sucrate+Aq. (Barreswill.) Insol. in acetone. (Naumann, B. 1904, 37.

Insol, in acetone and in methylal. (Eidmann. C. C. 1899, II. 1014.)

Insol. in methyl acetate. (Naumann, B.

1909, **42.** 3790.) Insol. in ethyl acetate. (Naumann, B.

1910, **43.** 314.) Amorphous. Solubility in H₂O cannot be determined because of its instability. dall, Phil. Mag. 1912, (6) 23. 972.)

Min. Calcite. In contact with air free from

CO2, 1 l. H2O dissolves at:

0.01779 g. calcite. 0.01433 0.01504 (Kendall, Phil. Mag. 1912, (6) 23. 964.)

In contact with air containing 3.7 pts. CO₂ per 10,000, the solubility of calcite in H₂O was found to be 0.04608 g. per l. at  $25^{\circ}$  and 0.02925 g. per l. at  $50^{\circ}$ . (Kendall, Phil. Mag. 1912, (6) **23.** 973.)

Min. Aragonite. In contact with air free

from CO₂, 1 l. H₂O dissolves at:

25° 50° 100° 0.01528 0.01617 0.01902 g. aragonite. (Kendall, Phil. Mag. 1912, (6) 23. 964.) +5H₂O. Efflorescent. +6H₂O. (Pelouze.)

Calcium hydrogen carbonate, CaH₂(CO₃)₂.

Known only in aqueous solution. CaCO₂ dissolves in CO₂+Aq.

CaCO₃ is sol. in 1428 pts. H₂O sat. with CO₂ at 0°, and 1136 pts. at 10°. (Lassaigne, J. ch. med. 4, 312.) Bineau could dissolve, even in large quantities of H₂O sat. with CO₂ only 4°, ev. ugh CaCO₃ to form CaH2(CO2)

Chal dissolves in 994.5 pts 11₂O sat. with CO₂, while Iceland spar requires 3149 pts. (Bischof.) (ACO₂ is sol. in 1015 pts. H₂O sat. with CO₂ at 21° and 748.3 mm. (Warington, Chem. Soc. 6. 296.)

Solubility of CaCO₃ in CO₂+Aq at p pressure in atmospheres. CaO+CO2=mg. CO2 and CaO dissolved, corresponding to  $CaCO_3 = mg. CaCO_3.$ 

р	CaO+CO2	CaCO ₂
0.000504	60.96	74.6
0.000808	72 11	<b>85.0</b>
0.00333	123	137.2
0.03187	218.4	223.1
0.0282	310.4	296.5
0.05008	408.5	360
0.1422		533
0.2538	1072	663.4
0.4167	1500	787.5
0.5533	1846	885.5
0.7297	2270	972
0.9841	2864	1086

(Schlösing, C. R. 74. 1522.)

With high pressure, 1 l.  $H_2O$  containing  $CO_2$  dissolves at most 3 g.  $CaCO_3$ . This maximum is reached at 5° under 4 atmospheres' pressure; at 10-13° under 5 atmospheres; and at 20° under 7 atmospheres. (Caro, Arch. Pharm. (3) 4. 145.)

CaCO₃ is sol. in about 1000 pts. H₂CC₃+ Aq, and solubility is considerably increased

by Na₂SO₄ or MgSO₄.

1000 pts. H₂O sat. with CO₂ dissolve pts. Carrara marble at t°, and B=height of barometer in millimetres.

t°	В	Pts. CaCO ₃	t°	В	Pts. CaCO ₃
7.5	754	1.224	22.0	746	0.920
8.5	752	1.202	26.0	740	0.875
9.5	754	1.115	26.5	743	0.860
20.5	741	0.975	27.0	741	0.885
21.5	744	0.935	28.0	737	0.770

Or, from 7.5-9.5°, 1000 pts. H₂O sat. with CO₂ dissolve 1.181 pts. CaCO₃; from 20.5-22°; 0.9487 pt. CaCO_s; from 26-28°, 0.855 pt. CaCO₃.

Other varieties of CaCO₃ are dissolved as follows in 1000 pts. H₂O sat. with CO₂.

Variety	t°	В	Pts. CaCO ₃
Lüneburg chalk	18	740	0.835
Pptd. CaCO ₃	18	740	0.950
Iceland spar	18	735	1.970
Calcite	12	754	1.223
Traversella	12	754	.212
Dolomite, semi-trans-			
parent	11.5	749	0.654
Dolomite, opaque, in			
small crystals	11.5	755	0.725
Dolomite, opaque, in			
large crystals	11	746	.224
Dolomite, transparent.			
in large crystals .	11	749	1.073
Oolithic limestone	15	747	.252
Dolomitic limestone .	15.5	740	. 573

(Cossa, Z. anal. 8. 145.)

Solubility of  $CaCO_3$  in  $H_2O$  containing  $CO_2$  at various pressures.

CO₂ pressure in atm. 1 2 4 6 Solubility 1079 1403 1820 2109 (Engel, C. R. 1885, **101.** 951.)

1 l.  $\rm H_2O$  dissolves 0.3850 g.  $\rm CaH_2(CO_3)_2$  at 15°. (Treadwell, Z. anorg. 1898, **17**. 186.) 1 l. of sat.  $\rm CaH_2(CO_3)_2 + Aq$ , obtained from pure or impure limestone, contains 1.13-1.17 g.  $\rm CaCO_3$  at 15°. (Treadwell, Z. anorg. 1898, **17**. 189.)

Solubility of  $CaH_2(CO_2)_2$  in  $II_2O$  containing  $CO_2$  at 15°.

carbonic acid in gas at 0° and 760 mm.	Hg- partial pressure mm.	Free car- bonic acid mg.	mg. CaH ₂ (CO ₂ ) ₂ in 100 cc. of the solution	mg. Ca
8.94	67.9	157.4	187.2	46.2
6.04	45.9	86.3	175.5	43.3
5.45	41.4	52.8	159.7	39.4
2.18	16.6	48.5	154.0	38.0
1.89	14.4	34.7	149.2	36.8
1.72	13.1	24.3	133.1	32.9
0.79	6.0	14.5	124 9	30 8
0.41	3.1	4.7	82.1	20.3
0.25	1.9	2.9	59.5	14.7
0.08	0.6		40.2	9.9
			38.5	9.5
			38.5	9.5
			38.5	9.5
			·	

(Treadwell and Reuter, Z. anorg. 1898, 17. 185.)

1 l. H₂O sat. with carbonic acid dissolves 1.30 g. CaCO₃ at 13.2°; 1.45 g. at 2.8°. (Treadwell, Z. anorg. 1898, 17. 189.)
At 30° C. in equilibrium with the air, not

At 30° C. in equilibrium with the air, not more than 3 per cent of the calcium present is combined as CaCO₃. At lower temperatures and lesser concentrations the percentage of normal carbonate is even less, and practically all the calcium present is combined as Ca(HCO₃)₂. (Cameron and Briggs, J. phys. Chem. 1901, 5. 549.)

With pressures less than 4.5 atmospheres of CO₂ no other than normal calcium carbonate or a hydrate of the normal carbonate can exist as the solid phase at 0°. (Cameron,

J. phys. Chem. 1908, 12. 566.)

Solubility in H₂O in contact with air, containing CO₂ with varying partial pressures at t°.

P = partial pressure of CO₂.

P	g. p	er I.
ľ	Cat'O.	CO ₂
0.8	0 193	0.117
1.5	0.193	0.152
1.7	0.238	0.135
6.8	0.445	0.327
9.9	0.627	0.456
13.6	0.723	0.560
14.6	0.686	0.623
31.6	1.050	1.117

Р	g. p	r I.	
	CaCO,	CO3	
0.7	0.159	0.091	
1.6	0.177	0.111	
4.6	0.341	0.208	
7.8	0.446	0.301	
6.5	0.539	0.522	
0.1	0.743	0.715	
5.5	0.755	0.803	

1 - 230

P	д. р	er l.
Γ	CaCO ₃	$CO_2$
0 6 1.7 2.9 3.5 7 14.9 22.2 31.7	0 136 0 143 0 175 0 232 0 284 0 384 0 427 0 480	0.078 0.085 0.106 0.169 0.234 0.293 0.333 0.476

Similar results at 20°, 30°, and 35° are also given.

(Leather and Sen, Mem. Dept. Agric. (India) Chem. Ser. 1909, 1. 117; Seidell, Solubilities, 1919.) Solubility of calcite in H2O at 25°, in contact with CO₂ under varying pressures. P = approximate pressure of CO₂ in atmos-

pheres.

	g. per l. sa	t. solution	Callil mhan
P	H2C()2	Ca (HCO3)2	Solid phase
0.1 1.1 9.9 13.2 16.3 25.4	$\begin{bmatrix} 022 \\ 2.3 \\ 20.6 \\ 27.5 \\ 34.1 \\ 53.2 \end{bmatrix}$	0.67 1.58 3.62 4.04 4.21 4.22	CaCO ₃ " " Ca(HCO ₃ ) ₂

(McCoy and Smith, J. Am. Chem. Soc. 1911, **33.** 468.)

1 l. H₂O dissolves 2.3374 g. CaCO₃ at 5° under a CO₂ pressure of 2 atmos. (Ehlert, Z. Elektrochem. 1912, **18.** 727.)

Solubility data for calcite in H₂O containing CO₂, with and without the presence of salts are given by Seyler and Lloyd (Chem. Soc. 1909, **95.** 346.)

A critical analysis and recalculation of results of Schloesing and others is given by Johnston (J. Am. Chem. Soc. 1915, 37, 2001).

CaCO₃ is not dissolved by CO₂ and H₂O in presence of MgCO₃. (Leather and Sen, C. A. **1915.** 181.)

1 l. of 1/10-normal NaCl+Aq dissolves 0.3320 g. CaH₂(CO₃)₂ at 15°. (Treadwell and Reuter, Z. anorg. 1898, **17**. 193.)

Solubility of CaH₂(CO₃)₂ in NaCl+Aq sat. with carbonic acid at 15°, containing 5 g. NaCl per l. of NaCl+Aq.

Cocarbonic acid in gas at 0° and 760 mm.	mm. Hg = partial pressure	mg. free CO2	mg. CaH ₂ (CO ₃ ): in 100 cc. of the solution	mg. Ca
16.95	128.8	132.5	218.4	53.9
11.47	87.2	110.1	214.3	52.9
6.07	46.1	23.5	149.2	36.8
3.16	24.0	13.5	118.3	29.2
0.50	3.8	2.7	73.9	18.2
0.41	3.4	0.3	49.0	12.1
			34.9	8.6
			33.7	8.3
			32.9	8.1
			33.2	8.2

(Treadwell and Reuter, Z. anorg. 1898, 17. 193.)

Solubility in NaCl+Aq at 25° C. and in equilibrium with air.

Ca(	HCO ₃ ) ₂	NaC	CI .
Grams per liter	Reacting wts. per liter	Grams per liter	Reacting wts. per litre
0.1046	0.00065	0.000	0.000
0.1770	0.00110	9.720	0.168
0.2051	0.00128	21.010	0.362
0.2152	0.00134	30.301	0.522
0.2252	0.00140	50.620	0.872
0.2212	0.00138	69.370	1.195
0.2172	0 00135	98.400	1.695
0 1971	0.00123	147.400	2.540
0.1569	0.00095	234.500	4.040
0.1227	0.0007€	262.300	4.520

(Cameron and Seidell, J. phys. Chem. 1902, **6**. 51.)

|Solubility in various salts+Aq under a CO₂ pressure of 2 atmos. at 5°.

Salt	g. salt per 1000 g H ₂ O	g. CaCO ₂ sol. in 1 l. of solvent
H ₂ ()		2.3374
$MgCl_2 + 6H_2O$	6.08	2.3518
	50.0	3.4045
	86.0	4.0826
	350.0	3.3009
	700.0	2.7357
	1150.0	2.2054
	1725.0	1.7058
	2300 (sat.)	1.4060
NaCl	27 96	3.2796
	50.0	3.7399
	86.0	3.7828
	106.9	3.6900
	175.6	3.3495
	263.4	2.8107
	351.2	$2.1625 { m ~at ~8}^{\circ}$
$MgSO_4 + 7H_2O$	105.3 (14°)	2.1768
5 1. 1	sat. at 14°	0.91356
$\overline{\text{Na}_2\text{SO}_4 + 10\text{H}_2\text{O}}$	137.7 (14°)	1.4060
	sat. at 14°	1.9199
(Ehlert and Hen	pel, Z. Elek	trochem. 1912,

18. 727.)

Solubility of CaCO₃ in KCl+Aq at 25° sat. with CO₂ at atmospheric pressure.

% KCl	% CaCOs
3.90	0.145
7.23	0.150
11.10	0.166
13.82	0.165
15.49	0.167
18.21	0.154
19.84	0.140
26.00	0.126

(Cameron and Robinson, J. phys. Chem. 1907, 11. 579.)

Solubility in NaCl+Aq in contact with CO₂ at atmospheric pressure at 25°.

g. per 100 g. H ₂ O		
NaCl	CaCO3	
1.45	0.150	
5.69	0 160	
11.08	0.174	
15.83	0.172	
19.62	0.159	
29.89	0.123	
35.85	0.103	

(Cameron, Bell and Robinson, J. phys. Ch. 1907, **11**. 396.)

Solubility in K₂SO₄+Aq, sat. with CO₂ at atmospheric pressure and 25° temp.

% SO ₃	C CaO
0.69 1.37	0.69 0.69
1.67	0.47 *
$\begin{array}{c} 2.18 \\ 2.99 \end{array}$	0.30 * 0.24 *

* Solid phase, CaSO₄, K₂SO₄. (Cameron and Robinson.)

Solubility in Na₂SO₄+Aq at 24° in equilibrium with air.

Total Ca calc. as Ca(HCO ₃ ) ₂ . Grams per liter	Ca actually dissolved as Ca(HCO ₃ ) ₂ . Grams per liter	Na ₂ SO ₄ , Grams per liter
0.0925 0.1488 0.1729 0.2330 0.3240 0.3960 0.4580 0.5630 0.5910	0.0925 0.1488 0.1729+ 0.2210 0.3020 0.3440 0.3660 0.3940 0.4060	0.000 2.800 5.235 11.730 36.860 74.010 116.100 184.200 213.700
0.6650	0.4300	255.700 $255.900$

(Cameron and Seidell, J. phys. Chem. 1902, 6. 53.)

Data are also given for solubility of CaCO₃ in NaCl+Na₂SO₄+Aq, and CaCO₃+CaSO₄ in NaCl+Na₂SO₄+Aq. (Cameron, Bell and Robinson.)

Calcium copper uranium carbonate, CaCO₃, 3CuCO₃, 4U(CO₃)₂+24H₂O. Sol. in acids.

Calcium lead carbonate, xCaCO₃, yPbCO₃. Min. Plumbocalcite. Calcium magnesium carbonate, CaCO₃, MgCO₃.

Min. Dolomite. 1 l. H₂O sat. with CO₂ at 18° and 750 mm. dissolves 0.31 g. dolomite. (Cossa, B. 2. 697.)

Not obtained by evaporating solution, but can be crystallized from CO₂+Aq between 100° and 200°. (Hoppe-Seyler.)

Dolomite is dissolved by CO₂ and H₂O, but solution is prevented partially by CaCO₃, and wholly by MgCO₃. (Leather and Sen, C. A. **1915**. 181.)

Insol. in cold dil. acids. (Dolomieu, J. Phys. 39. 1.)

Insol. in cold acetic acid. (Forchhammer.)

Calcium potassium carbonate, CaK₂(CO₃)₂.

Decomp. by  $H_2O$ . (Reynolds, Chem. Soc. 1898, **73**. 265; Bütschli, C. A. **1907**. 2223).  $2CaCO_3$ ,  $3K_2CO_3+6H_2O$ . (Bütschli.)

Calcium sodium carbonate, CaNa₂(CO₃)₂.

Anhydrous. Decomp. by H₂O. +2H₂O. (Butschli, C. A. **1907.** 2223.) +5H₂O. Min. Gaylussite. Sparingly sol. in H₂O.

Calcium uranyl carbonate, CaCO₃, UO₂CO₃ + 20H₂O.

Min. Liebigite. Sol. in HCl+Aq. +xH₂O. Decomp. by H₂O. (Blinkoff, Dissert. **1900.**) 2CaO, 4VO₃, 3CO₂+24H₂O. Decomp. by H₂O. (Blinkoff, Dissert. **1900.**)

Calcium carbonate chloride, CaCO₃, CaCl₂+6H₂O.

Sol. in H₂() with immediate decomp. (Fritzsche, J. pr. 83, 213.)

Cerous carbonate,  $Ce_2(C(1_3)_3+5$ , and  $9H_2O$ .

Insol. in  $H_2O$ , and solution of  $CO_2$  in  $H_2O$ . (Vauquelin)

Somewhat sol. in (NH₄)₂CO₃+Aq. (Jolin.) Insol. in neutral salt solutions and neutral alkali carbonates+Aq; easily sol. in SO₂+ Aq. (Berthier, A. ch. (3) 7, 77.)

Ceric carbonate,  $Ce(CO_3)_2 + \frac{1}{2}H_2O$ .

Precipitate. (Hisinger, A. ch. **94**. 108.) Insol. in  $H_2O$ . Sol. in slight traces in  $Na_2CO_3+Aq$ ; sl. sol. in  $NaHCO_3+Aq$ , and in  $(NH_4)_2CO_3+Aq$ . (Rose.)

Cerous lanthanum carbonate fluoride.

Min. Batnasite, Hamartite, Hydroftuocerite. Slowly decomp. by HCl+Aq, easily by H₂SO₄.

Cerous potassium  $K_2CO_3+3H_2O$ . Ppt. (Jolin.) carbonate,  $Ce_2(CO_3)_3$ ,

Ce₂(CO₃)₃,  $K_2$ CO₃+12H₂O. Ppt. Sol. in 30%  $K_2$ CO₃+Aq. (Meyer, Z. anorg. 1904, **41**. 103.)

Perceric potassium carbonate, Ce₂O₃(CO₃)₃, 4K₂CO₃+12H₂O.

Crystalline. Sl. sol. in  $H_2O$  containing  $K_3CO_2$ ; sol. in dil.  $H_2SO_4$  with decomp. (Job, C. R. 1899, **128.** 1098.)

Cerous sodium carbonate, Ce2(CO3)3,  $2Na_2CO_3+2H_2O$ .

Ppt. (Jolin.)  $2C_{C_2}(CO_3)_3$ ,  $3Na_2CO_3+24H_2O(?)$ . Easily decomp. (Meyer, Z. anorg. 1904, 41. 103.)

### Chromous carbonate, C.CO.

Sol. in much H₂O; sl. sol. in KHCO₈+Aq. (Moberg, J. pr. 44, 328; Moissan, A. ch. (5) **21.** 199.)

Chromic carbonate, basic, Cr₂O₃, 2CO₂.

Precipitate. (Parkmann, Sill. Am. J. (2) **34.** 321.)

Cr₂O₃, CO₂+4H₂O. Insol. in H₂O; sol. in acids; when freshly pptd. is sol. in K₂CO₃, or i (NH₄)₂CO₃+Aq, and still more sol. in KOH +Aq. (Meissner.)

Insol. in ethyl acetate (Naumann, B. 1910, 43. 314); methyl acetate. (Naumann, B. 1909, **42.** 3790.)

2Cr₂O₃, CO₂+6H₂O. Precipitate. (Langlois, A. ch. (3) 48, 502.)

### Chromous potassium carbonate,

 $CrCO_3$ ,  $K_2CO_3 + 1\frac{1}{2}H_2O_2$ 

Sol. in H₂O when freshly prepared; slowly polymerizes; stable in dry air, decomp. in moist air; sol. in acids with decomp. (Bauge, C. R. 1898, **126.** 1568.)

### Chromous sodium carbonate, $CrNa_2(CO_3)_2$ + $H_2O_1$

Decomp. when heated. In Aq. solution, passes into the hydrate containing 10 mols.

H₂O. (Baugé, C. R. 1897, **125**, 1179.) +10 H₂O. Very sol. in cold H₂O; Aq. solution decomp, below 100°; effloresces in the air; sol. in HCl+Aq and H2SO4+Aq. (Baugé, concentration of CO2. C. R. 1897, **125.** 1178.)

Cobaltous carbonate, basic, 5CoO, 2CO₂+ 4H₂O.

Insol. in H₂O; sol. in (NH₄)₂SO₄, (NH₄)₂CO₃, NH₄NO₃, and NH₄Cl+Aq. Sol. in cold NH₄NO₃, and NH₄Cl+Aq.

(Brett, 1837.)

Sol. in  $CO_2+Aq$ , and acid alkali carbonates +Aq, from which it is pptd. on boiling. Very sl. sol. in conc. Na₂CO₃, or K₂CO₃+Aq; largely sol. in (NH₄)₂CO₃+Aq, and partly sol. in NH₄OH+Aq. (Berzelius.)

Not pptd. from solutions containing Na

citrate. (Spiller.) 4CoO, CO₂+4H₂O. Ppt. (Beetz.) +3H₂O. (Meigen, C. C. 1905, I. 1363.) Cobaltous carbonate, basic, 3CoO, CO₂+ 2H₂O.

(Meigen, C. C. 1905, I. 1363.)

3H₂O. (Rose, Pogg. 84. 551.)

3CoO, 2CO₂+4H₂O. (Bratin, Z. anal. 6.

2CoO. CO₂+3½H₂O. Converted into 5CoO,  $2\text{CO}_2 + 4\text{H}_2\text{O}$  by  $\text{H}_2\text{O}$ . (Beetz.)

### Cobaltous carbonate, CoCO₈.

Anhydrous. Not attacked by cold conc. HCl, or HNO₃+Aq. (Senarmont, A. ch. (3) **30.** 129.)

Jusol, in liquid NH₈. (Gore, Am. Ch. J. 1898, **20.** 827.)

Min. Sphærocobaltite. Sl. attacked by cold HNO₃, or HCl+Aq.

 $+\frac{2}{3}$ H₂O. Sol. in acids. (Deville, A. ch. (3) **33.** 95.)

+6H₂O. (Deville.)

Decomp. by H₂O with formation of a basic carbonate. (Berzelius.)

### Cobaltous potassium carbonate, CoCO₃. $K_2CO_3+4H_2O$ .

Decomp. by H₂O. (Deville, A. ch. (3) 33.

Ppt. Decomp. by H₂O. (Reynolds, Chem. Soc. 1898, 73. 264.)

 $CoCO_3$ ,  $KHCO_2 + 4H_2O$ . Decomp. by H₂O. (Deville.)

#### Cobaltous sodium carbonate, CoCO₃, Na₂CO₃ ---4H₂O, and 10H₂O.

Decomp. by  $H_2O$ . (Deville, A. ch. (3) 33. 75.)

### Cupric carbonate, basic.

The compounds produced by pptn. of copper solutions by carbonates are unstable and possess varying solubilities in solutions of CO₂. On treatment with solutions of CO₂, these substances pass over into an apparently stable compound possessing a definite solubility in solutions of CO2 of definite concentration, which solubility increases with the Solubility of this compound in various salts + Aq is recorded. (Free, J. Am. Chem. Soc. 1908, 30. 1374.)

8CuO,  $CO_2+5H_2O$ . (Deville, A. ch. (3)

6CuO, CO₂. (Field, Chem. Soc. 14. 70.)  $3CuO, CO_2 + 2H_2O.$  (Favre, A. ch. (3) 10. 119.)

5CuO, 2CO₂+6H₂O. (Struve.) 2CuO, CO₂+H₂O. Insol. in H₂O; easily sol. in acids, even H2SO2+Aq; sl. sol. in H₂CO₃+Aq, 30,720 pts. of the solution containing 1 pt. CuO. (Jahn.) Sol. in 4690 pts. H₂CO₃+Aq sat. at 4-6 atmos. pressure. (Wagner.) Sol. in 3833 pts. sat. H₂CO₃+Aq. (Lassaigne, J. ch. méd. 4. 312.)
Sol. in NH₄ salts+Aq. Partially sol. in

Na₂CO₃, or K₂CO₃+Aq, and more sol. in

Nation 3, or KHCO₃+Aq; sol. in  $(NH_4)_2CO_3$  Didymium carbonate,  $Di_2(CO_3)_3+H_2O$ , or +Aq. (Favre, A. ch. (3) 10. 18.)

Less sol. in (NH₄)₂CO₈+Aq than CuO in NH₄OH+Aq. (Thomson, 1831.) Sol. in KCN+Aq. (Berzelius.) Sol. in NH₄Cl, or NH4NO3+Aq. (Brett.)

Sol. in ferric salts with pptn. of Fe₂O₆H₆. Insol. in liq. NH₃. (Franklin and Kraus, Am. Ch. J. 1898, 20, 827.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, **B**. 1910, **43**. 314.)

Insol. in acetone (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.) Sol. in ethyl amine carbonate+Aq.

(Wurtz.)

Sol. in cane sugar + Aq. (Peschier, Report.) 1820, 6. 85.)

Not pptd. from solutions containing sodium (Spiller.) citrate.

Insol. in pyridine. (Schroeder, Dissert. 1901.)

Min. Malachit. Sol. in acids, and NH4OH

+Aq. +2H₂O. (Favre.) 8CuO, 5CO₂+7H₂O. (Gröger, Z. anorg. 1900, **24.** 137.)

3CuO,  $2CO_2 + H_2O$ . Insol. in  $H_2O$ . Sol. in NH₄CH+Aq, also in hot conc. NaHCO₃+ Aq. Min. Azurite.

Copper potassium carbonate, basic, 8CuO,  $2K_2CO_3$ ,  $7CO_2+17H_2O$ .

Ppt.; decomp. by H₂O. (Gröger, B. 1901, **34.** 430.)

Mixture. (Wood and Jones, C. A. 1907. 5CuO,  $4CO_2$ ,  $K_2CO_3 + 10H_2O$ . Decomp.

Cupric potassium carbonate, CuCO₃, K₂CO₃. Decomp. by H₂O. (Wood and Jones, C. A. 1907. 2667.)

by H₂O. (Deville, A. ch. (3) **33.** 102).

+H₂O. (Wood and Jones.)

Decomp. by H₂O. +4H₂O. (Reynolds, Chem. Soc. 1898, **73.** 263.)

Could not be obtained. (Wood and Jones.) 2CuCO₃, K₂CO₃+4H₂O. Decomp. by H₂O. (Wood and Jones.)

Cupric sodium carbonate, CuCO₃, Na₂CO₃. Not decomp. by cold H₂O. (Debray, C. R. **49.** 218.) +3H₂O.

Cupric zinc carbonate, 2CuO, 3ZnO, 2CO₂+  $3H_2O$ , or 3CuO, 9ZnO,  $4CO_2 + 8H_2O$ . Min. Aurichalcite. Easily sol. in HCl+Aq.

Cupric carbonate ammonia (cuprammonium carbonate), CuCO3, 2NH3.

Decomp. by H₂O. Insol. in alcohol and ether. Sol. in (NH₄)₂CO₃+Aq. (Favre, A. ch. (3) 10. 116.)

Insol. in H₂O. Only traces dissolve in CO₂ +Aq. Insol. in solutions of alkali carbonates or bicarbonates + Aq. (Marignac, A. ch. (3) 38. 166.) Very sl. sol. in conc. NH₄Cl+Aq. (Rose.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

+8H₂O. (Cleve, Bull. Soc. (2) 43. 363.)

Didymium potassium carbonate, Di₂(CO₃)₃,  $K_2CO_3+4H_2O$ .

Insol. in H₂O. (Cleve, Bull. Soc. (2) 43. 363.)

+12H₂O. (Cleve.)

Didymium sodium carbonate,  $2Di_2(C(1_3)_3)$ ,  $3\text{Na}_2\text{CO}_3 + 9\text{H}_2\text{O}$ .

Ppt. (Cleve.)

 $Di_2(CO_3)_3$ ,  $2Na_2CO_3+8H_2O$ . Ppt. (Cleve.)

Dysprosium carbonate,  $Dy_2(CO_3)_3 + 4H_2O$ . Insol. in H₂O. (Jantsch, B. 1911, **44.** 1277.)

Erbium carbonate,  $Er_2O_3$ ,  $2CO_2+2H_2O$ . Insol. in H₂O. (Höglund.)

Erbium sodium carbonate, Er₂(CO₃)₃,  $5\text{Na}_2\text{CO}_3 + 36\text{H}_2\text{O}$ . Efflorescent. Decomp. by H₂O.

Gadolinium carbonate, basic, Gd(OH)CO₃+  $H_2O$ .

Ppt. (Benedicks, Z. anorg. 1900, 22, 417.)

Glucinum carbonate, basic, 3GlO, CO₂; 4GlO, CO₂; 5GlO, CO₂+5H₂O, etc.

Not perceptibly sol. in H₂O or H₂CO₃+Aq. Decomp. by boiling H₂O. Easily sol. in acids. Sol. in NH4 salts, and KOH, or NaOH+Aq. carbonates, in alkali especially (NH₄)₂CO₃+Aq. (Vauquelin.) Sl. sol. in K₂CO₃+Aq. When solution in (NH₄)₂CO₃. is boiled, a more basic carbonate is pptd. (Rose.)

Glucinum carbonate, GlCO₃+4H₂O₁.

Efflorescent. Sol. in 278 pts. H₂O. (Klatzo, J. pr. **106.** 242.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 828.)

No definite carbonate of glucinum exists. (Cameron, J. phys. Chem. 1908, 12. 572.)

potassium carbonate, 3GICOs, Glucinum 2K₂CO₈.

Easily sol. in H₂O, but decomp. by boiling. (Debray.) Less easily sol. in alcohol.

### Indium carbonate, In₂(CO₃)₈.

Insol. in K₂CO₃, or Na₂CO₃+A\d. Sol. in (NH₄)₂CO₃+Ag. (Winkler, J. pr. 94. 1.)

### Iron (ferric) carbonate, basic.

 $9Fe_2O_{3_2}$   $CO_2+12H_2O$ . (Wallace, Chem. Gaz. 1858. 410.) 3Fe₂O₃, CO₂+4H₂O, and 8H₂O. (Barret, C. N. 1. 110.)

+6H₂O. (Wallace.) 2Fe₂O₃, CO₂+1½H₂O. (Rother, Pharm. J. Trans. (3) 4. 576.)

Fe₂O₃, CO₂. (Parkmann, Sill. Am. J. (2) **34.** 321.)

These and other similar basic salts are ppts... easily decomp. on standing into Fe₂O₆H₆.

#### Iron (ferrous) carbonate, FeCO₃.

Insol. in H₂O.

Sol. in acids, even in  $H_2CO_3+Aq$ .

See Carbonate, ferrous hydrogen. Min. Siderite, Spathic ore. Sl. attacked by dil. acids. Sol. in H₂CO₃+Aq under pressure.
Insol. in NH₄Cl, or NH₄NO₃+Aq. (Brett.)
+H₂O. Sl. sol. in H₂O; easily sol. in acids;

sol. in  $H_2CO_3+Aq$ . Sol. in NH₄Cl+Aq. Sol. in ferric salts+Aq with evolution of CO₂ and pptn. of Fe₂O₆H₆. Soluble in an aqueous solution of cane sugar.

### Solubility in salts+Aq free from CO₂.

	1	,
Salt	g. salt per 1(MM) g. H ₂ ()	1 l. of solvent dissolves g. FeCO ₃
NaCl	351.2	0.35042
MgCl ₂ + 6H ₂ ()	2300.0	4.2049
$\overline{\mathrm{Na_2SO_4}}$ $+10\mathrm{H_2O}$	137.7 sat. at +14°	0.70085 0.93444
$\frac{\mathrm{MgSO_4+}}{7\mathrm{H_2O}}$	105.3 sat. at +18°	1.4667 2.9334

(Ehlert, Z. Elektrochem. 1912, 18. 728.)

### Iron (ferrous) hydrogen carbonate, $FeH_2(CO_3)_2(?)$ .

Known only in aqueous solution. By conducting CO₂ at ordinary pressure through H2O, in which Fe is suspended, a solution containing 9.1 pts. FeCO_s to 10,000 pts. H₂O is obtained. (v. Hauer, J. pr. **81.** 391.)

100 pts. H₂CO₃+Aq dissolve 0.72 pt. FeCO₃. (Wagner.) FeCO₃ dissolves in 1381 pts. H₂O saturated

with CO₂, under a pressure of 4-6 atmospheres. (Wagner, J. B. **1867**. 135.)

1 1. H₂O dissolves 6.1907 g. FeCO₂ (pure)

under a CO2 pressure of 2 atmos. (Ehlert, Z. Elektrochem. 1912, 18. 728.)

Solubility in various salts + Aq in presence of CO₂ under pressure of 2 atmos.

	With CO2 of 2	atmos. pressure
rselt	g. salt per 1000 g. H ₂ O	1 l. of solvent dissolves g. FcC();
H ₂ O		6.1907
NaCl	50 106 9 175 6 263 4 351 2	
$rac{ ext{MgCl}_2 + }{6 ext{H}_2 ext{O}}$	86.9 700.0 1150.0 1437.5 1725.0 2300.0	5.8403 4.5553 4.4587 4.6934 5.3975 9.0524
Na ₂ SO ₄ +10H ₂ O	137.7 sat. at +14°	7.9428 9.5780
$\overline{{ m MgSO_4} + \atop { m 7H_2O}}$	105.3 sat. at +18°	6.2423 7.3922

(Ehlert, Z. Elektrochem. 1912, 18. 728.)

A bicarbonate of ferrous iron is not formed under pressures of CO₂ up to 5 atmospheres at 0°. (Cameron, J. phys. Chem. 1908, 12. 571.)

Iron (ferrous) magnesium carbonate, FeCO₃. MgCO₃.

Min. Pistomesite. FeCO₃, 2MgCO₃. Min. Mesitite.

#### Iron (ferrous) potassium carbonate, $FeK_2(CO_3)_2 + 4H_2O$ .

Ppt. Decomp. by H₂O. (Reynolds, Chem. Soc. 1898, 73. 265.)

Lanthanum carbonate,  $La_2(CO_3)_3 + H_2O_1$  $3H_2O_1$  and  $8H_2O$ .

Insol. in  $H_2O$ .  $CO_2+Aq$  dissolves traces. Insol. in (NH₄)₂CO₃+Aq.

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Min. Lanthanite.

Lanthanum potassium carbonate,  $La_2(CO_5)_3$ ,  $K_2CO_3+12H_2O$ .

Sol. in 30% K₂CO₃+Aq. (Meyer, Z. anorg. 1904, **41.** 101.)

Lanthanum sodium carbonate,  $2La_2(CO_3)_3$ ,  $3Na_2CO_3+20H_2O(?)$ .

Ppt. Easily decomp. (Meyer, Z. anorg. 1904, 41. 102.)

White Level. Insol, in  $H_2O$ . Nearly insol, in  $H_2CO_3+Aq$ , even under pressure. Sol, in dil., insol, in conc. KOH+Aq. Insol, in normal, or acid alkali carbonates +Aq. (Böttger.)

Sol. in cold dil. NH₄Cl+Aq. (Brett.) PbCO₃, PbO₂H₂. Very sl. sol. in H₂O. (Yorke.)

2PbCO₃, PbO₂H₂.

Solubility is less than 0.0002 millimol Pb in 1 liter H₂O at IS°. (Pleissner, C. C. **1907**, II. 1056.)

When not exposed to air, sol. in 32,000 pts.  $(NH_4)_2SO_4+Aq$  (0.2 g. per l.); 26,000 pts.  $KNO_3+Aq$  (0.2 g. per l.); 23,000 pts.  $CaCl_2+Aq$  (0.2 g. per l.); 4600 pts.  $NH_4NO_3+Aq$  (0.2 g. per l.); 4300 pts.  $H_2O$  sat. with  $CO_2$ .

When exposed to air in beakers, sol. in 43,000 pts.  $(NH_4)_2SO_4+Aq$  (0.2 g. per l.); 43,000 pts.  $KNO_3+Aq$  (0.2 g. per l.); 26,000 pts.  $CaCl_2+Aq$  (0.2 g. per l.); 26,000 pts.  $NH_4NO_3+Aq$  (0.2 g. per l.); 4300 pts.  $H_2O$  sat. with  $CO_2$  (0.2 g. per l.). (Muir, Chem. Soc. 31, 664.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

3PbO, 4Pb( O₃+2H₂O. Ppt. (Strömholm, **Z**. anorg, 1904, **38**, 446.)

#### Lead carbonate, PbCO₃.

Sol. in 50,551 pts. H₂O at ordinary temp. Sol. in 23,450 pts. H₂O with little ammonium acetate, carbonate, and free ammonia; and in somewhat less H₂O, containing much ammonium nitrate with carbonate and free ammonia. (Fresenius, A. **59.** 124.)

Calculated from electrical conductivity of PbCO₃+Aq, 1 l. H₂O dissolves 3 mg. PbCO₃ at 10°. (Kohlrausch and Rose, Z. phys. Ch.

**12.** 241.)

Solubility is 0.0002 millimol. Pb in 1 liter H₂O at 18°. (Pleissner, C. C. **1907**, 1I. 1056.) Sl. sol. in H₂O. 1.5 x 10⁻³ g. are contained in 1 l. of sat. solution at 20°. (Böttger, Z.

phys. Ch. 1903, 46. 604.)

Easily sol. in acids, even  $HC_2H_3O_2$ ; but not decomp. by conc.  $HNO_3+Aq$  on account of insolubility of  $Pb(NO_3)_2$  in  $HNO_3+Aq$ . Insol. in a mixture of 1 pt.  $H_2SO_4$  and 6 pts. absolute alcohol, or in an alcoholic solution of racemic or tartaric acids.

Insol. in H₂CO₈+Aq. (Jahn, A. **28.** 117.) Very sl. sol. in H₂CO₃+Aq, but solution is prevented by traces of various salts. (Tünnerman.) Sol. in 7144 pts. sat. H₂CO₃+Aq. (Lassaigne, J. ch. méd. **4.** 312.) H₂O sat. with CO₂ under 4-6 atmos. pressure dissolves only traces of Pb; 1000 pts. of solution containing 0.5 pt. PbCO₃. (Wagner, Z. anal. **6.** 167.)

Solubility of PbCO3 in H2CO3+Aq at 18°.

per l.
PLCO:
1.75
6
7
$\frac{8.2}{9.9}$
10.9
15.4

(Pleissner, C. C. 1907, H. 1056.)

Sol. in NH₄C₂H₃O₂+Aq, and NH₄Cl+Aq. (Weppen, **1837**.) Sol. in KOH+Aq; not absolutely insol. at ord. temp. in an excess of  $K_2$ CO₃, or Na₂CO₃+Aq, and still more sol. at  $100^\circ$ ; but absolutely insol. in NaHCO₅, KHCO₃, or (NH₄)₂CO₃+Aq. (Rose.) Insol. in NI₄OH+Aq; sol. in KOH or NaOH+Aq; decomp. by boiling Ca(NO₃)₂+Aq. (Berzelius.)

Sl. decomp. (Persoz), not at all decomp.

(Malaguti) by alkali sulphates + Aq.

Partially decomp. by boiling with  $K_2SO_4$ ,  $Na_2SO_4$ ,  $(NH_4)_2SO_4$ ,  $CaSO_4$ ,  $MgSO_4$ ,  $Na_2HPO_4$ ,  $Na_1NH_4HPO_4$ ,  $K_2SO_3$ ,  $Na_2SO_3$ ,  $(NH_4)_2SO_3$ ,  $Na_2HPO_3$ ,  $Na_2B_4O_7$ ,  $K_2AsO_4$ ,  $Na_3AsO_4$ ,  $K_2O_2O_4$ ,  $Na_2C_2O_4$ , NaF, and  $K_2CrO_4+Aq$ . With the  $NH_4$  salts, the decomp. is complete. (Dulong, A. ch. **82**. 290.)

Easily sol. in hot NH₄Cl+Aq. (Brett; Rose.)

When 1 mol. PbCO₃ is boiled with 1 mol.  $K_2C_2O_4$ , 15% of the PbCO₃ is decomp.; with 1 mol.  $K_2CO_3$ , 93.28% is decomp. (Malaguti.)

Not decomp. by K₂SO₄+Aq. (Rose.) Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**, 828.)

Sol. in an aqueous solution of acetates. (Mercer, 1844.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

Not pptd. in presence of Na citrate. (Spiller.)

Min. (erussite.

Lead sodium carbonate, 4PbCO₃, Na₂CO₃. Insol. in H₂O. (Berzelius, Pogg. 47, 199.)

Lead carbonate bromide, PbCO₃, PbBr₂. Insól. in H₂O. (Storer's Dict.) Lead carbonate chloride, PbCO₃, PbCl₂.

Insol. in H₂O. (Miller, Chem. Soc. (2) 8. 37.)

Min. Phosgenite. Easily soi. in acids.

Lead carbonate iodide, PbCO₃, PbI₂.
Insol. in H₂O. (Poggiale.)

Lead carbonate sulphate, PbCO₃, PbSO₄.

Min. Lanarkite. Sol. in HNO₃+Aq with residue of PbSO₄.

3PbCO₃, PbSO₄. Min. Leadhillite. As

above.

Lithium carbonate, Li₂CO₃

 $100~\rm pts.~H_2O$  dissolve 1 pt.  $\rm Li_2CO_3.~$  (Vauquelin, A. ch. 7. 284.)

100 pts. H₂O at 13° dissolve 0.769 pt. Li₂CO₂; at 102°, 0.778 pt. Li₂CO₂. (Kremers, Pogg. **99.** 48.)

100 pts. H₂O, cold or hot, dissolve 1.2 pts. Li₂CO₃. (Troost, A. ch. (3) **51**. 103.)

100 pts. H₂O dissolve 1.4787 pts. at 15°, 0.7162 pt. at 100°. (Draper, C. N. **55.** 169.)

100 pts. H₂O dissolve pts. Li₂CO₃ at t°.

16	Pts. LtzCOa	l 1°	Pts. Li ₂ CO ₃
0	1.539	75	0.866
10	1.406	100	0.728
20	1.329	102	0.796
50	1.181		

0.796 pt. is dissolved at  $102^{\circ}$  in less than  $\frac{1}{2}$  hour, and 0.955 in 1 hour. (Beketow, J. russ. Soc. **1884**, 591.)

Sat. solution at 15° has sp. gr. 1.014, and contains 1 g. Li₂CO₃ to 70 g. H₂O, while solution sat. at 0° has sp. gr. 1.0168 and contains 1 g. Li₂CO₃ in 64.6 g. H₂O. By long spontaneous evaporation at 15° a solution can be obtained of 1.0278 sp. gr. containing 1 g. Li₂CO₃ in 45.57 g. H₂O. (Flückiger, Arch. Pharm. (3) **25**. 549.)

By boiling for an instant with H₂O a solution is obtained, which has sp. gr. 1.0074 and contains 1 g. Li₂CO₃ to 139 g. H₂O. (Flückiger, Arch. Pharm. (3) **26.** 543.)

0.1687 mol. is sol. in 1 l.  $H_2O$  at 25°. (Rothmund, Z. phys. Ch. 1909, **69.** 531.)

Sat. Li₂CO₃+Aq contains at:

95° 75° 0.833% by wt. Li₂CO₃.

(Tschugæff, Z. anorg. 1914, 86. 159.)

Sat. solution boils at 102°. (Kremers.)

More sol. in CO₂+Aq than in H₂O. 100 J. 1898, **20**. 828.)

pts. sat. CO₂+Aq dissolve 5.25 pts. Li₂CO₂. (Troost.) See LiHCO₃. 'Sol, in NH₄ salts+Aq.

Solubility in salts + Aq at 25°.

C=concentration of salt solution in g-equiv. per l.

S=solubility of Li₂CO₃ in g.-equiv. per l.

Salt	(:	S
KNO,	0.25	0.3647
,	0.50	0.3688
	0.75	0.3676
	1.00	0.3656
	1 50	0.3490
	2.00	0.3268
KC!	0 10	0.3553
	0.25	0.3590
	0.50	0.3782
	0.75	0.3832
	1.00	0.3835
	1.50	0.3731
	2.00	0.3558
NaCl	0.10	0.3569
Naci	0 25	0.3691
	0 50	0.3867
	0.75	0.3956
		0.3946
	1.00	
	1.50	0.3901
Paris	2.00	0.3776
$K_2SO_4$	0.25	0.4028
$\overline{2}$	0.50	0.4356
-	1.00	0.4860
Na ₂ SO ₄	0.50	0.4411
$\frac{1}{2}$	1.00	0.4926
2	2.00	0.5534
NH ₄ Cl	0.10	0.3902
	0.25	0.4677
	0.50	0.5659
	0.75	0.6270
	1.00	0.6810
	1.50	0.7463
	2.00	0.7739
	4.00	0.7881
$\overline{(\mathrm{NH_4})_2\mathrm{SO_4}}$	0.25	0.5059
	0.20	0.7863
2	1.00	0.1803
	1.50	1.109
	2.00	1.109
KClO ₃	0.1	0.9500
VCIO3	0.1	0.3500
	0.2	0.3570
	0.4	0.3616

(Geffcken, Z. anorg. 1905, 43. 198.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**, 828.)

Solubility in organic compds. +Aq at 25°.
Solubility in $H_2O$ at $25^{\circ} = 0.1687$ mols. litre.

Solubility in H ₂ O	at 25° = 0.168	7 mols. litre.
Organic compd.	Normality of the solution	Mol. Li ₂ CO ₃ sol. in 1 l.
Methyl alcohol	0.250 0.5 1.0	0.1604 0.1529 0.1394
Ethyl alcohol	0.125 0.250 0.5 1.0	0.1614 0.1555 0.1417 0.1203
Propyl alcohol	0.125 0.250 0.5 1.0	0.1604 0.1524 0.1380 0.1097
Tertiary amyl alcohol	0.125 0.250 0.5 1.0	0.1564 0.1442 0.1224 0.0899
Acetone	0.125 0.250 0.5 1.0	0.1600 0.1515 0.1366 0.1104
Ether	0.125 0.250 0.5	0.1580 0.1476 0.1300
Formaldehyde	0.125 0.250 0.5 1.0	0.1668 0.1653 0.1606 0.1531
Glycol	0.125 0.250 0.5 1.0	0.1660 0.1629 0.1565 0.1472
Glycerine	0.125 0.250 0.5 1.0	0.1670 0.1647 0.1613 0.1532
Mannitol	0.125 0.250 0.5	0.1705 0.1737 0.1778
Glucose	0.125 0.250 0.5 1 0	0.1702 0.1728 0.1752 0.1778
Sucrose	0.125 0.250 0.5 1.0	0.1693 0.1689 0.1661 0.1557
Urea	0.125 0.250 0.5 1.0	0.1686 0.1673 0.1643 0.1605

Solubility in organic compds. +Aq. at 25°—Continued.

at 20	Communa	
Organic compd.	Normality of the solution	Mol. Li ₂ CO ₃ sol. in 1 l.
Thio-urea	0.125 0.250 0.5 1.0	0.1667 0.1643 0.1600 0.1523
Dimethyl-pyrone	$egin{array}{c} 0.125 \ 0.250 \ 0.5 \ 1.0 \ \end{array}$	0.1562 0.1460 0.1284 0.0992
Ammonia	0.125 0.250 0.5 1.0	0.1653 0.1630 0.1577 0.1466
Diethylamine	0.125 0.250 0.5 1.0	$\begin{array}{c} 0.1589 \\ 0.1481 \\ 0.1283 \\ 0.0937 \end{array}$
Pyridine	$egin{array}{c} 0.125 \ 0.250 \ 0.5 \ 1.0 \ \end{array}$	0.1592 0.1503 0.1347 0.1091
Piperidine	$egin{array}{c} 0.125 \\ 0.250 \\ 0.5 \\ 1.0 \\ \end{array}$	$\begin{array}{c} 0.1584 \\ 0.1488 \\ 0.1320 \\ 0.1009 \end{array}$
Urethane	0.125 0.250 0.5 1.0	0.1604 0.1525 0.1377 0.1113
Acetamide	0.250 0.5 1.0	0.1614 0.1520 0.1358
Acetonitrile	0.125 0.250 0.5 1.0	0.1618 0.1556 0.1429 0.1178
Mercuric cyanide	0.125 0.250	0.1697 0.1704

(Rothmund, Z. phys. Ch. 1909, 69. 531.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3601.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329; Eidmann, C. C. **1899**, II. 1014.)

Lithium hydrogen carbonate, LiHCO₃.

100 pts. H₂O dissolve 5.501 pts. at 13°.
(Bewad, B. 17. 406 R.)

Magnesium carbonate, basic,  $Mg_3C_2O_7 + 3H_2O = 3MgO$ ,  $2CO_2 + 3H_2O$  or  $2MgCO_2$ , MgO₂H₂+2H₂O. (Fritzsche, Pogg. 37. 31Ö.)

 $3MgCO_3$ ,  $Mg(OH)_2+5H_2O$ , Mg(OH)2+ Magnesia alba, 4H₂O, 4MgCO₃, Mg(OH)₂+5H₂O, or 5MgCO₃, 2Mg(OH)₂+7H₂O. Very sl. sol. in H₂O. Sol. in 10,000 pts.

hot or cold H₂O. (Bineau.)

Sol. in 2500 pts. cold, and 9000 pts. hot H₂O. (Fyfe.)

Sol. in H₂O containing CO₂. Very easily sol. in acids. Easily sol. in dil. HCl+Aq.

Easily sol. in NH4 sulphate, nitrate, or succinate+Aq, also in (NH₄)₂CO₃+Aq. (Witt-stein.) Sol. in cold Na₂CO₃, K₂CO₃, K₂SO₄, KCl, or KNO₃+Aq (Longchamp); also in NH₄Cl+Aq, separating out on heating. (Vogel, J. pr. 7. 455.) Slowly sol. in conc. BaCl₂, CaCl₂, or ZnSO₄+Aq. (Karsten.)

Sol. in MgSO₄+Aq. (Dulong.) Sol. in ferric salts+Aq with evolution of

CO₂ and pptn. of Fe₂O₆H₆. (Fuchs.) Sol. in boiling Co, Ni, Zn, Mn, or Cu

nitrates or chlorides + Aq. Min. Hydromagnesite, 4MgO,  $3CO_2 +$ 

+10H₂O. Sol. in considerable amount in  $H_2CO_3+Aq$  as  $MgH_2(CO_3)_2+Aq$ . (Engel, C. R. 100. 911.)

# Magnesium carbonate, MgCO₃.

A hydrous. Insol. in H₂O. 1 l. H₂O dissolves 106 mg. MgCO₃. (Chevalet, Z. anal. 8.91.) Sol. in 5071 pts. H₂O at 15°. (Kremers.) MgCO₃ combines with H₂O to form MgCO₃+3H₂O, and +5H₂O, which are less sol. in H₂O than anhydrous salt. (Engel, C. R. 101. 814.)

Very hydroscopic. About 20 g. are sol. in 1 l. H₂O. (Engel, C. R. 1899, **129.** 598.)

0.7156 g. are sol. in 1 l. H₂O at 15°.

0.627 g. are sol. in 1 l. H₂O at 15° with vapour pressure of CO₂ equal to zero.

6.977 grams are sol. in 1 l. H2O at 15° with vapour pressure CO₂ equal to 1 atmos. (Treadwell and Reuter, Z. anorg. 1898, 17. 202.)

94.4 mg. are sol. in 1 l. of CO₂-free water. (Gothe, Ch. Z. 1915, **39.** 306.)

Solubility in H₂O in equilibrium with Mg(HCO₃)₂ and CO₂.

System: MgCO₃, Mg(HCO₃)₂ and CO₂ at 30° C.

Total Mg (grams per liter)	Mg as MgCO ₈ (grams per liter)	Mg as Mg(HCOs)2 (grams per liter)
0.02410	0.01205	0.01205
0.13135	0.06820	0.06314
0.16087	0.08676	0.07411

Solubility in H2O in equilibrium with Mg(HCO₂)₂ and CO₂—Continued.

System: MgCO₃, Mg(HCO₃), and CO₂ at

Total Ms. (gram- atoms per liter)	Mg as MgCO ₃ Per cent	Mg as Mg(HCO ₃ ) ₂ Per cent
0.00100	50.00	50.00
0.00545	51.92	48.08
0.00667	53.93	46.07

Total salts		MgCO ₃		CO ₂ ) ₂
in solution Grams per liter	Grams per liter	Per cent	Grems per liter	Per cent
0.1144 0.6174 0.7479	0.0418 0.2368 0.3012	36.5 38.2 40.3	0.0726 0.3806 0.4467	63.5 61.7 59.7

In a solution near the saturation point and in equilibrium with atmospheric air upwards of 50 per cent of the magnesium is in the form of the normal carbonate. When the solution is brought in contact with the solid phase, the proportion of the base combined as normal carbonate falls to about 34 per cent, or lower. (Cameron and Briggs, J. phys. Chem. 1901, **5.** 552-3.)

For solubility in H₂CO₂+Aq, see Magnesium hydrogen carbonate.

Scarcely acted upon by HCl+Aq. (Senarmont.)

The solubility of MgCO₃ in NaCl+Aq when in contact with ordinary air increases with increasing concentration of NaCl up to a maximum, and then decreases. (Cameron and Seidell, J. phys. Chem. 1903, 7. 579.)

Solubility of MgCO₂ in salts+Aq in equilibrium with an atmosphere free from CQ2.

NaCl+Aq;  $t=23^{\circ}$ .

Weight of liter of solution	Grams NaCl per liter	Grams MgCOs per liter	Reacting weights NaCl per liter	Reacting weights MgCO ₂ per liter
996.92 1016.82 1041.09 1070.50 1094.53 1142.48 1170.14 1199.28	0.0 28.0 59.5 106.3 147.4 231.1 272.9 331.4	0.176 0.418 0.527 0.585 0.544 0.460 0.393 0.293	0.000 0.482 1.025 1.831 2.539 3.981 4.701 5.709	0.00210 0.00500 0.00630 0.00699 0.00650 0.00550 0.00470 0.00350

(Cameron and Seidell, J. phys. Chem. 1903, 7, 585.)

# Solubility of MgCO, in salts+Aq-Continued $Na_2SO_4+Aq$ : $t=24^\circ$ .

Weight of liter of solution	Grams Na ₂ SO ₄ per liter	Grams MgCO ₃ per liter	Reacting wts. Na ₂ SO ₄ per liter	Reacting wts. MgC() per liter
997.52	0.00	0.216	0.000	0.00258
1021.24	25.12	0.586	0.178	0.00700
1047.60	54.76	0.828	0.388	0.00990
1080.95	95.68	1.020	0.678	0.01219
1133.85	160.80	1.230	1.140	0.01470
1157.34	191.90	1.280	1.360	0.01530
1206.03	254.60	1.338	1.804	0.01600
1223.91	278.50	1.338	1.973	0.01600
1241.99	305.10	1.388	2.162	0.01660

t.	=	3	5	.5

Weight of liter of solution	Grams Na ₂ SO ₄ per liter	Grams MgCO ₃ per liter	Reacting weights Na ₂ SO ₄ per liter	Reacting weights MgCO ₃ per liter
995.15 1032.89 1067.23 1094.77 1120.38 1151.70 1179.82	0.32 41.84 81.84 116.56 148.56 186.70 224.00	0.131 0.577 0.753 0.904 0.962 1.047 1.088	0.296 0.579 0.826 1.052 1.323 1.587	0.00156 0.00689 0.00900 0.01080 0.01149 0.01251 0.01300
1179.32 1196.32 1236.52	247.20 199.20	1.100	1.751 2.120	0.01314 0.01350

# (Cameron and Seidell.)

## $Na_2CO_3 + Aq$ ; $t = 25^\circ$ .

Weight of liter of solution	Grams Na ₂ CO ₃ per liter	Grams MgCO ₃ per liter	Reacting weights Na ₂ CO ₃ per liter	Reacting weights MgCO ₃ per liter
996.84 1019.89 1047.72 1082.47 1118.91 1147.66 1166.05 1189.38	0.00 23.12 50.75 86.42 127.30 160.80 181.90 213.20	0.223 0.288 0.510 0.879 1.314 1.636 1.972 2.317	0.000 0.220 0.482 0.820 1.209 1.526 1.727 2.024	0.00266 0.00344 0.00620 0.01027 0.01570 0.01955 0.02357 0.02770

#### (Cameron and Seidell.)

# Solubility in salts+Aq.

g. salt added per litre	mg.MgCO3 dissolved per litre
0.0	94.4
0.585 g. NaCl	128,3
1.17 g. "	134,4
2.93 g. "	120,95
0.85 g. NaNO ₃	122.85
1.70 g. "	138.80
4.25 g. "	137.20

Solubility in salts+A	Aq.—Continued
g. salt added per litre	mg.MgCO3 dissolved per litre
0.805 g. Na ₂ SO ₄ , 10H ₂ O	145.05
1.61 g.	162.05
4.03 g. "	150.75
0.53 g. Na ₂ CO ₃	98.6
1.06 g. "	53.5
2.65 g. "	15.7
0.51 g. MgCl ₂ , 6H ₂ O	47.0
1.02 g.	39.5
2.55 g.	35.3

The solubility of Mg('O₈ in CO₂-free water is increased by the addition of NaCl, NaNO. or Na₂SO₄, 10H₂O but decreased by the addition of Na₂CO₃ or MgCl₂, 6H₂O.

(Gothe, Ch. Z. 1915, **39**. 306.)

Insol. in liquid NH3. (Franklin, Am. Ch. J. 1898, 20. 828.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

Insol. in methyl acetate (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Min. Magnesite. Very sl. attacked by warm conc. HCl+Aq. 100 pts. H₂O dissolve 0.0027 pt., calculated as MgO. (Lubavin.)

Solution in H₂O contains 0.018 g. Mg and

Solution in H₂O contains 0.018 g. Mg and 0.065 g. CO₂ per l. at 20°. (Wells, J. Am. Chem. Soc. 1915, **37**. 1705.)
Solution in H₂O containing 27.2 g. NaCl per l. contains 0.028 g. Mg and 0.086 g. CO₂ per l. at 20°. (Wells, J. Am. Chem. Soc. 1915, **37**. 1705.)
+H₂O. Decomp by appropriate in H₂O.

+2H₂O. Decomp. by suspension in H₂O into basic salt. (Engel, C. R. 100. 911.)

+3H₂O. Small quantities of this salt are wholly dissolved by much H₂O. (Bineau.) The solution contains in 100 pts. at-

 $6.5^{\circ}$ 

0.15 0.153 0.155 0.179 pts. MgCO₃+3H₂O. (Norgaard, 1850.)

Decomp. by boiling H2O into a basic insol. salt and CO₂. 100 pts. H₂O dissolve 0.1518 pt. at 19°. (Fritzsche, Pogg. 37. 304.)

Sol. in 48 pts. H₂O, and decomp. by large

amt. (Fourcroy.)
100 pts. H₂O dissolve 0.1518 pt. at 19°, or sol. in 658 pts. H₂O at 19°. (Beckurts, J. B. 1881. 212.)

100 pts. H₂O dissolve 0.0812 pt., calculated as MgO. (Lubavin, J. russ. Soc. 24. 389.)

Solution in H₂O contains 0.36 g. Mg and Chem. Soc. 1915, 37. 1707.) Solubility in  $H_2O$  sat. with  $CO_2$  has been determined at  $20^\circ$ ,  $25^\circ$ ,  $30^\circ$ ,  $34^\circ$  and  $39^\circ$  and

at CO₂ pressures corresponding with 0.5 to a little NaCl, dissolves 5 g. MgCO₂. (Hunt, 30.3% CO₂ in the gas phase. (Leather and Sill. Am. J. (2) 42. 49.)
Sen, Chem. Soc. 1915, 108 (2) 13.)
More sol. in cold alkali borates + Aq than

Easily sol. in acids, even when dil

Not decomp. by 1 pt. H₂SC₄+6 pts. alcohol, or by alcoholic solutions of glacial acetic, racemic, or tartaric acids, but is slowly decomp. by alcoholic solution of extric acid, or HNO₃+abs. alcohol. (Butini, 1827.)

100 pts. NaCl+Aq (2.525%) dissolve 0.1250 pt., calculated as MgO. (Lubavin.)

1% Na₂CO₃+Aq, when mixed with 1% MgSO₄+Aq, cause no ppt., but 1.5-2% solu-

tions ppt. this salt. (Brandes, 1825.)

More sol. in NH₄Cl+Aq than CaCO₂ Sol. in NH4NO3+Aq, but less easily than in NH₄Cl+Aq.

Solubility in KHCO₃+Aq at t°. Values are given in mol./litre

10	K	Mg	Solid phase
15°	0.0	0.0095	MgCO ₂ +3H ₂ O
1.,	0.6992	0.0033	MgC(77-31120
	0.0992 $0.1943$		1
		0 0167	" labile
	0 3992	0.0211	1
	0.2681	0.0192	MgCO ₃ +3H ₂ O+MgCO ₃
	0.7010		KHCO3+4H2O
	0.5243	0.0097	MgCO ₃ , KHCO ₃ +4H ₂ O ₄
	0.6792	0.0074	••
	0.9810	0.0028	"
25°	0.0	0.0087	MgCO ₃ +3H ₂ O
	0.0985	0.0115	"
	0.2210	0.0149	
	0.3188	0.0175	4.
	0.3434	0.0181	**
	0.4216	0.0205	" labile
	0.4985	0.0207	
	0.3906	0.0196	MgC()3+3h12()+MgC()3
	0.000	0.0130	KHCO ₃ +4H ₂ ()
	0.5893	0.0128	MgCO ₃ , KHCO ₃ +4H ₂ O
	0.6406	0.0117	" THE COS, TELECON, 1 41120
	0.788	0.0089	
	1.125	0.0061	44
	1.120	0.0001	
35°	0.0	0.0071	· MgCO ₃ +3H ₂ ()
	0.1092	0.0098	41
	0.2001	0.0132(?)	14
	0.2811	0.0142	44
	0 3704	0 0163	**
	0 4847	0 0177	**
	0 5807	0 0198	**
	0 5088	0 0184	MgCO ₃ +3H ₂ O+MgCO ₃
	5 0000	0 0101	KHCO ₃ +4H ₂ O
	0 6231	0 0153	MgCO ₃ , KHCO ₃ +4H ₂ O
	0 8435	0 0119	1 112008, 111003 741110
	A GEOD	O OTTA	

The experiments were performed in such a way as to prevent, as far as possible, loss of CO₂ from the solutions. (Auerbach, Z. Elektrochem. 1904, 10. 164.)

in hot. (Wittstein.)

Scl. in Na citrate + Aq.

+4H₂O. Efflorescent.

+5H₂O. Two modifications.

a. Plates. Sol. in 600 pts. H₂O at 0-7°; solution gradually separates out MgCO2+ 2H₂O. H₂CO₃+Aq sat. at 3-4 atmos. pressure dissolves 9% at 0-4°. MgSO₄+Aq dissolves 4% moist salt at 3 4°, and it is castly sol. in Na₂CO₃, or NaHCO₂+Aq. (Norgaard.)

β. Prisms. More efflorescent than a. Sol. in 600 pts. H₂O but not in MgSO₄, or Na₂CO₃ +Aq. Both forms are decomp, by boiling

H₂O. (Norgaard.)

# Magnesium hydrogen carbonate,

 $MgH_2(CO_3)_2(?)$ .

Known only in solution.

1 l. H₂CO₃+Aq sat. at 1 atmos. pressure dissolves 23.5 g. MgCO₃. (Bineau.)

1 l. carbonic acid water dissolves 0.115 g. magnesite at 18° and 0.75 m. pressure. (Cossa, B. 2. 697.)

1 pt. MgOC₃ dissolves in H₂O saturated with CO₂ at 5° and a pressure of—

5 6 atmospheres in 161 144 134 100.7 110 76 pts. H₂O (Merkel, Techn. J. B. 1867, 213.)

 $H_2CO_3+Aq$  sat. at 3–4 atmos. pressure and 0–4° dissolved 9% MgCO₃+5 $H_2O$ . (Norgaard.)

 $MgCO_3+3H_2O$  is sol. in 72.4 pts.  $H_2CC_3+$ * hgCO₃+Aq sat. at 20° and ord. pressure; 30.5 pts. H₂CO₃+Aq sat. at 2 atmos. pressure; 26.0 pts. H₂CO₃+Aq sat. at 3 atmos. pressure; 21.1 pts. H₂CO₃+Aq sat. at 4 atmos. pressure; 17.09 pts. H₂CO₃+Aq sat. at 5 atmos. pressure; (Beckurts, J. B. 1881. 212.)

1. H₂O sat. with CO₂ at p pressure and to dissolves g. MgCO₃.

p atmos.	t°	g. MgCO3	p mm.	t°	MgCO ₃
1.0	19.5	27.79	751	13.4	28.45
2 1	19.5	33.11	760	19.5	25.79
3.2	19.7	37.3	762	29.3	21.95
4.7	19.0	43.5	764	46	15.7
5.6	19.2	46.2	764	62	10.4
6.2	19.2	48.51	765	70	8.1
7.5	19.5	51.2	765	82	4.9
$9.\tilde{0}$	18.7	56.59	765	91	2.4
			765	100	2.4 0.0
	<u> </u>		765	100	0.0

(Engel and Ville, C. R. 93. 34.)

The low figures of other observers are due to their using basic carbonates. By very care-1 l. H₂O, containing 6% MgSO₄+7H₂O and ful experiments it was found that 1 l. H₂O

sat. with CO₂ at 1 atmos, pressure and to dis-| Solubility in NaCl+Aq at 23°C, in equilibsolved the following amts. of MgCO₃:

t°	MgCO.	t°	MgCO ₃	t°	MgCO ₃
3.5	35.6	18	22.1	40	22.1
12	26.5	30	15.8	50	9.5

(Engel, C. R. 100, 444.)

1.9540 g. are sol. 1 l. H₂O at 15°. (Treadwell and veuter, Z. anorg. 1898, 17. 202.)

MgH₂(CO₂)₂ is not stable except in the presence of free CO₂.
At 15° and 760 mm., a solution having the partial pressure of CO₂=0, contains 1.9540 MgH₂(CO₃)₂ and 0.7156 g. MgCO₃ per liter. (Treadwell and Leuter, Z. anorg. 1898, 17, 204.)

Solubility of MgII₂(CO₃)₂ in H₂O containing carbonic acid, at 15°.

% carbonic acid in the gas at 0° and 760 mm.	partial pressure mm. Hg	mg. free CO ₂	mg. MgH ₂ (CO ₃₎ , in 100 cc. ot the solution	mg. MgCO ₃ in 100 cc. of the solution	тв. Мв
18.86 5.47 4.45 1.54 1.35 1.07 0.62 0.60 0.33 0.21 0.14 0.03	143.3 41.6 33.8 11.7 10.3 8.2 4.7 4.6 2.5 1.6 1.1	119.0 86.6 223.5	1210.5 1210.5 1210.5 1076.6 762.9 595.2 366.3 341.7 263.2 222.9 216.9 203.3 196.0 203.6	77.3 76.5 80.7 70.1 75.8 74.8 77.1 71.0 71.1 68.5 70.2 62.5	201.6 201.6 201.6 201.6 201.6 149.2 122.4 86.5 78.8 65.5 59.4 56.6 52.9 52.0 51.1
• • •			195.4 195.4	61.6 64.1	51.1

(Treadwell and Reuter, Z. anorg. 1898, 17. 200.)

No bicarbonate of magnesium is formed under pressures of CO2 up to five atmospheres at 0°. (Cameron, J. phys. Chem. 1908, **12.** 570.)

A critical analysis and recalculation of results of Engel and others is given by Johnston (J. Am. Chem. Soc. 1915, 37. 2001.)

rium with an atmosphere of CO₂.

g. NaCl per liter	g. Mg(HC() ₈ ) ₂ per liter
7.0	30.64
<b>5</b> 6.5	30.18
119.7	27.88
163.9	24.96
224.8	20.78
306.6	10.75

(Cameron and Seidell, J. phys. Chem. 1903, **7.** 582.)

Solubility in Na₂SO₄+Aq at 23° C. in equilibrium with an atmosphere of CO₂.

Strength of Na ₂ SO ₁ +Aq	g. Mg(HCO ₃ ) ₂ in 100 ccm.
$\begin{array}{c} 0.0\\ 12\%\\ \text{saturated} \end{array}$	1.463 1.916 1.612

(Cameron and Scidell.)

# Magnesium potassium carbonate.

 $MgK_2(CO_3)_2 + 4H_2O$ .

Quickly decomp. by cold H₂O. (Deville, A. ch. (3) **33.** 87.) Ppt. Decomp. by H₂O. (Reynolds, Chem.

Soc. 1898, **73**, 264.)

MgKH(CO₃)₂+4H₂(). Insol. in H₂O, but decomp. thereby into an insol. basic Mg carbonate, and MgH₂(CO₃)₂ and KHCO₃, which dissolve. (Berzelius.)

Magnesium rubidium hydrogen carbonate,  $MgRbH(CO_3)_2+4H_2O$ .

Decomp. in the air. (Erdmann, A. 1897, **294.** 75.)

Magnesium sodium carbonate, MgCO₃, Na₂CO_δ.

Quickly decomp. with H2(). (Deville, A. ch. (3) **33.** 89.)

+15H₂O. (Norgaard.)

Magnesium sodium carbonate sodium chloride, MgCO₈, Na₂CO₃, NaCl.

Decomp. by H₂O. (de Schulten, C. R. 1896, **122.** 1427.)

#### Manganous carbonate, MnCO₃.

Permanent. Practically insol. in H2O. Sol. in H₂CO₃+Aq and in acids generally.

1 l. H₂O dissolves 0.065 g. at 25°. (Ageno and Valla, Att. Accad. Linc. 1911, **20**, II. 706.) Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.) Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.)

Min. Rhodochrosite.

+½, or 1H₂O. Insol. in H₂O. Sol. in acids. Sol. in H₂CO₃+Aq. 1 pt. MnCO₃ requires 2000 pts. H₂CO₂+Aq for solution.

(Lassaigne.) Sol. in 7680 pts. H₂O, and 3840 pts. H₂O containing CO₂. (Jahn.) When freshly precipitated is sol. in NH₄ salts+Aq. (Wittstein.) Not more sol. in H₂O containing Na₂CO₃ or K₂CO₃ than in pure H₂O. (Ebelmen.) Insol. in NH₄Cl, or NH₄NO₃+ Aq. (Brett.)
Sol. in ferric salts+Aq, with evolution of

CO₂ and pptn. of Fe₂C₆H₆. (Fuchs.)

Not pptd. in presence of Na citrate. (Spiller.)

# Manganous potassium carbonate, $MnK_2(CO_8)_2+4H_2O$ .

Ppt. Decomp. by H₂O alone. Sf. sol. in  $Mn(C_2H_3O_2)_2+Aq$  or  $K_2CO_3+$ Aq. (Reynolds, Chem. Soc. 1898, 73. 264.)

# Manganous carbonate hydroxylamine, $4\text{MnCO}_3$ , $3\text{NH}_3\text{O} + 2\text{H}_2\text{O}$ .

Sol. in acids. (Goldschmidt and Syngros, Z. anorg. 5. 138.)

# Mercurous carbonate, Hg₂CO₃.

Ppt. Decomp. by hot H₂O. Sol. in hot or warm NH4Cl+Aq, but less easily than mercuric carbonate; less sol. in NH4NO3+Aq. (Brett, 1837.)

Sl. sol. in K₂CO₃+Aq; partially sol. with decomp. in NH₄OH +Aq. (Wittstein.)

#### Mercuric carbonate, basic, 4HgO, CO₂.

Can be washed with cold H₂O without decomp. (Millon, A. ch. (3) **19.** 368.) 3HgO, CO₂. Insol. in cold H₂O. Sol. in CO₂+Aq; sl. sol. in K₂CO₃+Aq. Easily sol. in NH₄Cl+Aq. (Berzelius.)

Neodymium potassium carbonate, Nd₂(CO₃)₃,  $K_2CO_3+12H_2O$ .

Ppt. Sol. in 30% K₂CO₃+Aq. (Meyer, Z. anorg. 1904, 41. 105.)

Neodymium sodium carbonate,  $2Nd_2(CO_3)_3$ ,  $3Na_2CO_3 + 22H_2O(?)$ .

Ppt. Easily decomp. Sl. sol. in conc. Na₂CO₃+Aq. (Meyer, Z. anorg. 1904, 41. 106.)

Nickel carbonate, basic, 3NiO,  $CO_2 + 5H_2O$ . Min. Zaratite. Easily sol. in HCl+Aq. Pptd. nickel carbonate is a basic salt of varying composition. Insol. in H₂O or H₂CO₂ +Ao. Sol. in acids. Sol. in (NH₄)₂CO₃+Aq;

very sl. sol. in Na₂CO₂+Aq; sol. in warm NH₄Cl+Aq, and KCN+Aq. (Rose.) Not pptd, in presence of Na citrate. (Spiller.)

Nickel carbonate, NiCO₃.

1 I H₂O dissolves 0.0925 g at 25%. (Ageno and Valla, Att. Accad. Linc. 1911, 20, II. 706.)

Not attacked by cold conc. HCl, or HNO. -+Aq. (Senarmont, A. ch. (3) 30. 138.) +6H₂O. Sol. in acids. (Deville, A. ch.

(3) **35.** 446.) See also Carbonate, nickel, basic.

Nickel potassium carbonate, NiCO₂, K₂CO₂+ 4H₂O.

Ppt. (Deville, A. ch. (3) 33. 96.) NiCO₃, KHCO₄+4H₂O. Decomp. by H₂O, but may be washed by KHCO3+Aq without decomp. (Rose, Pogg. 84. 566.)

Nickel sodium carbonate, NiCO₃, Na₂CO₂+ 10H₂O.

Ppt. (Deville.)

Nickel carbonate hydroxylamine, 2Ni(OH)₂,  $4\text{NiCO}_3$ ,  $5\text{NH}_2\text{OH} + 7\text{H}_2\text{O}$ .

Ppt. (Goldschmidt and Syngros, Z. anorg. 1894, 5. 143.)

 $2\text{Ni}(OH)_2$ ,  $4\text{Ni}CO_3$ ,  $6\text{NH}_2OH + 6\text{H}_2O$ . Ppt. (Goldschmidt and Syngros.)

Palladious carbonate, PdCO₂, 9PdO+ 10H₂O.

Insol. in H₂O; partly sol. in NH₄OH+Aq; sl. sol. in Na₂CO₂+Aq; sol. in acids. (Kane, 1842.)

Potassium carbonate, K₂CO₃.

Deliquescent. Very sol. in H₂O with evolution of heat.

Sol. in 1.05 pts. H₂O at 3°; 0.962 pt. at 6°; 0.900 pt. at 12.6°; 0.747 pt. at 26°; and 0.490 pt. at 70°. (Osann.)

Jamin.)
Sol. in 0.92 pt. H₂O. (M. R. and P.)
Sol. in 0.922 pt. H₂O at 15°. (Gerlach.)
Sol. in 1 pt. H₂O. (Abl.)
100 pts. H₂O at 15.5° dissolve 100 pts. K₂CO₃. (Ure's Dict.)

Solubility in 100 pts. H₂O at t°.

t°	Pts. K ₂ CO ₃	t°	Pts. K ₂ CO ₃	t°	Pts. K ₂ CO ₃
0	83.12	40	106.20	80	134.25
10	88.72	50	112.90	90	143.18
20	94.06	60	119.24	100	153.66
30	100.09	70	127.10	135	205.11

(Poggiale, A. ch. (3) 8. 468.)

Solubility in 100 pts. H ₂ O at	H ₂ O at t°.	t°.	٠.
--------------------------------------------	-------------------------	-----	----

$t^{\circ}$ $\begin{vmatrix} Pts. \\ K_2CO_3 \end{vmatrix}$ $t^{\circ}$ $\begin{vmatrix} Pts. \\ K_2CO_3 \end{vmatrix}$ $t^{\circ}$	Pts.
112008	K ₂ CO ₃
0 89.4 46 119 91	148
1 94 47 120 92	149
2 97 48 120 93	
	150
	151
4 102 50 121 95	151
5 104 51 122 96	152
6 105   52   122   97	153
7   106   53   123   98	154
8   107     54   124   99	155
9   108   55   124   100	156
10   109   56   125   101	157
11   109   57   125   102	158
12   109   58   126   103	159
13   110   59   127   104	160
14   110   60   127   105	161
15   110     61   128   106	162
16   111   62   128   107	163
17   111   63   129   108	164
18   111   64   130   109	166
19   111   65   130   110	167
20   112   66   131   111	168
21   112   67   132   112	169
22   112   68   132   113	171
23   112   69   133   114	172
24   112   70   133   115	173
25   113   71   134   116	175
26   113   72   135   117	
27   113   72   135   117   27   135   118	176
	$\frac{178}{179}$
	181
	182
	184
	185
33   115   79   139   124	187
34   115   80   140   125	188
35   115   81   141   126	190
36   115   82   141   127	191
37   116   83   142   128	193
38   116   84   143   129	195
39   116   85   144   130	196
40   117     86   144   131	198
41   117     87   145   132	200
42   117   88   146   133	201
43   118   89   147   134	203
44   118   90   147   135	205
45   119	

(Mulder, Scheik. Verhandel. 1864. 97.)

112 g, are sol, in 100 g,  $H_2()$  at  $20^\circ.$  (Frankforter, J. Am. Chem. Soc. 1914,  $\pmb{36}.$  1106.)

Sp. gr. of K₂CO₃+Aq at 15°.

Sp. gr.	% K ₂ CO ₃	Sp. gr.
1.0048	11.748	1.1282
		1 1400 1 1520
1.0299	14.685	1 1642
1.0401	15.664	1 1766
1 0611	17.622	1 1892 1 2020
. 1 0719	18 601	1.2150
1.0940	20.539	1.2282 1.2417
1.1052 1.1166	21.538 22.517	1 2554 1 2694
	1.0048 1.0098 1.0108 1.0299 1.0401 1.0505 1.0611 1.0719 1.0829 1.0940 1.1052	1.0048 11.748 1.0098 12.727 1.0108 13.706 1.0299 14.685 1.0401 15.664 1.0505 16.643 1.0611 17.622 1.0719 18.601 1.0829 19.580 1.0940 20.539 1.1052 21.538

Sp. gr. of K2CO3+Aq at 15°-Continued.

% K2CO3	Sp. gr.	% K2CO3	Sp. gr.
23 496	1.2836	33 286	1.3915
24.475	1.2980	34 265	1.4030 1.4147
25.454 26.432	$\frac{1}{1}, \frac{3078}{3177}$	35 244 36,223	1.4147
27.412	1 3277	37 202	1.4384
28.391	1.3378	38 181	1.4504 1.4626
29 360 30 349	1.3480 1.3585	39 160 40 139	1.4020
31 328	1.3692	40 504	1.4812
32 807	1.3803		

(Tünnerman.)

Sp. gr. and boiling-point of  $\mathrm{K}_2\mathrm{CO}_3 + \mathrm{Aq}$ .

			1,		
°% K₂CO₃	Sp gr.	Bpt.	K₂CO₃	Sp. gr.	Bpt.
4 7 9 0 13 2 16 8 20.5 24 0 27 3 30 5 33 6	1 06 1 11 1 15 1 19 1 22 1 25 1 28 1 31 1 34	100 56° 100 56 101 11 101 11 101 66 102 22 102 78 103 33 104 44	43 3 45 8 48 8 52 1 56 0 60 4 65 5 71 8 79 2	1 46 1 50 1 54 1 58 1 63 1 70 1 80 1 95 2 15	109 44° 111 11 112 78 114 44 116 11 117 78 119 44 122 22 125 56
$\begin{array}{ccc} 36 & 2 \\ 39 & 0 \\ 41 & 7 \end{array}$	1 38 1 41 1 44	105 56 107 22 108 33	88 4	2 40 2 60	129 44 137 .78

(Dalton.)

Sp. gr. of K₂CO₃+Aq at 17.5°.

°7, K2CO₃	Sp gr.	K2CO3	Տթ. ցլ.	K∘CO _s	Sp. gr.
1	1.009	19	1.182	36	1.368
2	1 018	20	1.192	37	1.380
3	1.027	21	1.203	38	1.392
4	1.036	22	1,213	39	1.404
5	1.045	23	1.224	46	1.416
6	1.054	24	1.235	41	1.429
7	1.064	25	1.245	42	1.441
8	1 073	26	1.256	43	1.453
9	1.082	27	1.267	44	1.466
10	1.092	28	1.278	45	1.478
11	1.102	29	1.289	46	1.489
12	1.112	30	1.300	47	1.503
13	1.122	31	1.312	48	1.516
14	1.132	32	1.323	49	0.529
15	1.141	33	1.334	50	1.542
16	1.151	34	1.345	51	1.555
17	1.161	35	1.357	52	1.569
18	1.172				

(Hager, Comm. 1883.)

The sp. gr. increases or diminishes between 8° and 20° by a decrease or increase of temp. of 1° by the following amounts:—

Corr.
0.0007 0.0005 0.0003 0.0002

(Hager.)

Sp.	gr.	of	K	CO,	+Aq	at	15°.

% K2CO3	Sp. gr.	% K2CO2	Sp. gr.
1	1.00914	28	1.27893
2	1.01829	29	1.28999
$\begin{bmatrix} 2\\3 \end{bmatrix}$	1.02743	30	1.30105
4 5 6 7	1.03658	31	1.31261
5	1.04572	32	1 32417
6	1.05513	33	1.33573
7	1.06354	34	1.34729
8	1.07396	35	1.35885
8 9	1.08337	36	1.37082
10	1.09278	37	1.38279
11	1.10258	38	1.39476
12	1.11238	39	1.40673
13	.1.12219	40	1.41870
14	1.13199	41	1.43104
15	1.14179	42	1.44388
16	1.15200	43	1.44573
17	1.16222	44	1.46807
18	1.17243	45	1.48041
19	1.18265	46	1.49314
20	1.19286	47	1.50588
21	1.20344	48	1.51861
22	1.21402	49	1.53135
23	1.22459	50	1.54408
24	1.23517	51	1.55728
25	1.24575	52	1.57048
26	1.25681	52.024	1.57079
27	1.26787		

(Gerlach, Z. anal. 8. 279.)

Sp. gr. of K₂CO₃+Aq at 15°.

% <b>K</b> ₂ CO ₃	Sp. gr.	°6 K₂CO₃	Sp. gr.
5	1.0449	30	1.3002
10	1.0919	40	1.4170
20	1.1920	50	1.5428

(Kohlrausch, W. Ann. 1879. 1.)

K₂CO₃+Aq containing 10% K₂CO₃ boils at 100.8°

 $K_2(O_3+Aq$  containing 20%  $K_2CO_3$  boils at  $102.2^{\circ}$ 

K₂CO₃+Aq containing 30% K₂CO₃ boils at 104.5°

K₂CO₃+Aq containing 40% K₂CO₄ boils at 108.6° KCO + Aq containing 50% KCO boils at

K₂CO₃+Aq containing 50% K₂CO₃ boils at 115.2° (Gerlach.)

Sat. K₂CO₃+Aq containing 158 pts. K₂CO₃ to 100 pts. H₂O forms a crust at 126°; highest temp. observed 134.9°. (Gerlach, Z. anal. 26. 427.)

B.-pt. of K₂CO₃+Aq containing pts. K₂CO₃ to 100 pts. H₂O'. G=according to Gerlach (Z. anal. 26. 459); L=according to Legrand (A. ch. (2) 59. 438).

B. pt	G	· L
101°	11.5	13
102	22.5	22.5
103	32	31
104	40 ,	38.8
105	47.5	46.1
· 106	<b>54</b> .5	53.1
107	61	59.6
108	67	65.9
109	73	71.9
110	78.5	77.6
111	83.5	83.0
112	88.5	88.2
113	$\boldsymbol{93.5}$	93.2
114	98.5	98.0
1/5	103.5	102.8
116	108.5	107.5
117	113.5	112.3
118	117.5	117.1
119	122.5	122.0
120	127.5	127.0
121	132.5	132.0
122	137.5	137.0
123	142.5	142.0
124	147.5	147.1
125	152.5	152.2
126	158	157.3
127	163.5	162.5
128	169.5	167.7
129	175.5	172.9
130	181.5	178.1
131	187.5	183.4
132	193.5	188.8
133	199.5	194.2
133.3	202.5	100 6
134		199.6
135 .		205.0
When K ₂ C	O ₃ +Aq is sat.	with NH ₃ , two

When K₂CO₃+Aq is sat. with NH₃, two layers form. When K₂CO₃ is added to NH₄OH+Aq, it dissolves with formation of two layers and evolution of NH₃. The same takes place also when sat. K₂CO₃+Aq and NH₄OH+Aq are brought together. (Girard, Bull. Soc. (2) 43. 552.)

Solubility of K₂CO₃+KHCO₃ in H₂O at 0°.

g. Fer 100	Sp. gr.	
$\mathrm{K}_{2}\mathrm{CO}_{3}$	КНСО3	Sp. gr.
0.0 11.8 16.7 23.8 34.0 43.0 51.6 60.5 81.4	21.2 15.3 12.6 10.3 7.6 5.9 4.9 3.8 0.0	1.133 1.182 1.200 1.241 1.298 1.350 1.398 * 1.448 1.542

(Engel, A. ch. 1888, (6) 13. 348.)

Equilibrium between K₂CO₃ and KHCO₃ in H₂O and in contact with the air. System: K₂CO₃, KHCO₃, and CO₂ at 25° c.

Solid phase

Grams atoms K per liter	Amount of solution used for titration cc.	Amount K combined as K ₂ CO ₃ Per cent	Amount K combined as KHCO ₃ Per cent
0.393	5 5 :	77.5	22.5
0.553	2 5	83.9	16.1
1.025	022222222	86.8	13.2
1.865	$\frac{1}{2}$	91.4	8.6
2.820	$\frac{1}{2}$	89.0	11.0
3.710	· 2 2	88.6	11.4
4.310	1 1	89.6	10.4
5.695	1	88.7	11.3

(Cameron and Briggs, J. phys. Chem. 1901, **5**. 546.) 2,1

Solubility of  $K_2CO_3 + Na_2CO_3$  in  $H_2O$  at  $25^{\circ}$ .

	g. per 100 g. solution		100 g. ₂O	
K2CO3	Na ₂ CO ₃ ,	K2CO3	Na.CO3	Solid phase
52.82 52.0 50.0 49.0 46.5 46.2 41.0 37.7 31.0 29.8 25.2 22.4 19.8 19.1	0 1.0 2.6 4.6 4.3 5.2 6.3 7.0 10.5 11.3 14.1 16.6 18.7 19.7 23.2	112 110 7 108 7 105 5 94 6 94 8 77 6 68 3 53 0 50 5 41 4 36 8 32 1 31 2 24 5	0 2 2 5 7 10.0 8.8 10.6 11.8 12.6 17.9 19.1 23.2 27.3 30.3 32.1 37.6	K ₂ CO ₃ ,2H ₂ O K ₂ CO ₃ ,2H ₂ O +Na ₂ CO ₃ , K ₂ CO ₃ ,12H ₂ O Na ₂ CO ₃ , K ₂ CO ₃ ,12H ₂ O
14.5 10.8 10.7 4.7	22.8 22.7 22.4 21.9 22.71	23.1 16.2 16.0 6 4	36.4 34.0 33.5 29.8 29.37	+Na ₂ CO ₃ .10H ₂ () Na ₂ CO ₂ .10H ₂ ()

(Osa. a, J. Tok. Chem. Soc. 1911, 32. 870.)

In 1000	cem. H ₂ O	Solid phase
Na ₂ CO ₃	K ₂ CO ₃	Sond phase
28.35		Na ₂ CO ₃
354.2	150.03	"
369.7	226.6	**
363.0	243.5	$Na_2CO_3$ , $K_2CO_3.6H_2O$
330.8	282.7	**
273.8	344.9	"
187.2	483.9	"
130.0	921 5	"
137 9	982 6	66
112.3	1074.0	$Na_2CO_3$ , $K_2CO_3.6H_2O+$
		$\mathrm{Na_{2}CO_{3}}$
95.2	1085.1	"
25.5	1108.6	$K_2CO_2$
	1125.7	- ((

(Kremann and Zitek, M. 1909, 30. 317.)

Solubility of K₂CO₃+Na₂CO₃ in H₂O at 10°.

In 1000	cem. H ₂ O	60, 10 J. J
Na ₂ CO ₃	K ₂ CO ₃	Solid phase
119.8 176.4 108. 61.19	354.1 500.1 0052.9 1084.0	Na ₂ CO ₃ '' '' Na ₂ CO ₃ , K ₂ CO ₃ K ₂ CO ₃

(Kremann and Zitek, M. 1909, 30. 324.)

Solubility of K₂CO₃+KNO₃ in H₂O at 25.2°.

Mol. K₂CO₃	Mol. KNO ₃
0.00	3.217
0.59	2.62
1.35	1.97
2.10	1.46
2.70	1.14
3.58	0.79

Solubility of K₂CO₈+KNO₈ in H₂O at 10°.

In 1000	eem. H ₂ O	Collidl.	
KNO ₈ K ₂ CO ₃		Solid phrase	
208.9 26.62	1076.0 1084.0	KNO ₃ KNO ₃ , K ₂ CO ₃ K ₂ CO ₃	

(Kremann and Zitek, M. 1909, 30. 325.)

In 100	0 ccm. H ₂ O	0-1:1
KNO ₈	K ₂ CO ₃	Solid phase
376.85		KNO,
285.00	130.3	"
161.67	348.4	"
141.80	371.9	"
73.04	688.1	.,44
38.78	878.3	"
31.11	1112.2	KNO3, K2CO5

(Kremann and Zitek, M. 1909, 30. 316.) Solubility of K₂CO₃+KCl in H₂O at 30°.

K2CO₃	ксі	Solid phase
53.27 52.22 51.66 *: 1.64	0 1.03 1.07 : 26.22 28.01	K ₂ CO ₃ .1½H ₂ O K ₂ CO ₃ .1½H ₂ O+KCl KCl

* Author gives intermediary data. (de Waal, Dissert. 1910.)

K₂CO₃. 1½H₂O

* Author gives intermediary data. (de Waal, Dissert. 1910.)

53.27

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**, 828.)

Sol. in 9 pts. alcehol of 17° B. Insol. in absolute alcohol.

Not decomp. by 1 pt. H₂SO₄+6 pts. absolute alcohol. Not decomp. by 1 pt. HNO₃+6 pts. absolute alcohol. Not decomp. by an alcoholic solution of HCl, oxalic, racemic, tartaric, or glacial acetic acids, but is decomp. by alcoholic solution of citric acid.

Solubility in methyl alcohol. Composition of liquids in equilibrium with solid K₂CO₃ at t°.

	Ţ	pper lay	/er	Lo	Lower layer		
	K2CO2	нс≀нэ	ΗzO	K,CO3	СН3ОН	υžΗ	
t°	70.	Γ,6	7%	2,7	2%	200	
-30	21.7	42.2	36.1				
-20	13.8	52.1	34.1				
-20	12.4			44.2	8.2	47.6	
0	7.6	66.3	26.1	46.3	6.7	47	
0	7.4			46.6	6.6	46.8	
+17	6.2	69.6	24.2	48.3	5.7	46	
$^{+17}_{35}$	5.0	72.9	22.1		4.3	44.7	

(de Bruyn, Z. phys. Ch. 1900, 32. 63 and ff.) 2697).

Solubility in ethyl alcohol. Composition of liquids in equilibrium with solid K₂CO₃ at t°.

,	Upper layer			Lower layer		
*	K ₂ CO ₃	C ₂ H ₃ OH	ПэО	K ₂ CO;	С, С₁И₃ОН	H ₂ O
ť	55	દુક	زو	ي ک	్రో	20
-18	0.03	90.3	9.7	51.2	0.2	48.6
0	0.04	91.9	8.1	51.3	0.2	48.5 47.7
+17	$0.06 \\ 0.07$	$91.5 \\ 90.9$	8.4 9	52.1 53 4	$0.2 \\ 0.2$	46.4
35 50	0.07	91.8	$\frac{9}{8.1}$	55.3	0.2	44.5
75	0.12	91.4	8.5	57.9	2.0	40.9
10	0.15	J1. I	0.0	100.0		

(de Bruyn.)

Solubility in ethyl alcohol +Aq at 25°.

When K-CO is dissolved in ethyl alcohol

When K₂CO₃ is dissolved in ethyl alcohol + Aq two layers are formed, the compositions of which are as follows:

U	pper laye	er	Lower layer		
% alcohol	% H₂O	K ₂ CO ₃	% alcohol	% H₂O	K ₂ CO:
81.25 71.67 56.98 53.92 50.21 43.93 37.64 28.43	18.61 27.91 41.55 44.13 47.24 52.04 56.45 61.57	0.14 0.42 1.47 2.05 2.55 3.92 5.90 10.00	0.82 1.79 4.02 4.88 5.54 7.71 10.54 15.73	55.42* 61.61 65.73 66.87 67.06 67.56 67.40 66.38	43.76 36.60 30.25 28.25 27.41 24.74 22.06 17.90

(Cuno, W. Ann. 1909, (4) 28. 664.)

Solubility of K₂CO₃ in alcohol+Aq at 30°.

K ₂ CO ₃	% Alcohol	″ _c H₂O	Solid phase
53.27 53.09	0 0.1	46.73 46.81	K ₂ CO ₃ .1½H ₂ O
0.13	90.49	9.38	K ₂ CO ₃ .1½H ₂ O
0.04	99.92	0.04	K ₂ CO ₅ +K ₂ CO ₃ . 1½H ₂ O

* Solution separates into two layers. (de Waal, Dissert. Leiden, 1910.)

A full discussion of the solubility of K₂CO₃ in methyl, ethyl, propyl, isopropyl, and allyl alcohols is given by Frankforter and Frary (J. phys. Ch. 1913, 17. 402), and Frankforter and Temple (J. Am. Chem. Sec. 1915, 37. 2867)

K2CO8 will "salt out" acetone from aqueous solution. The table shows the composition of the solutions at the points at which inhomogeneous solutions of K₂CO₃, acetone and H₂O just become homogeneous at 20°. 100 g. of the solution contain:

<b>K₂C</b> O₃	g. H₂O	g. acetone	K₂ĈO₃	и Н 2()	g. acetone
$18.84 \\ 13.32$	$73.22 \\ 71.38$	7.94 15.30	$2.43 \\ 22.29$	55.36 72.81	$\frac{42.21}{4.90}$
11.83 10.13	70.34	17.83	17.86	73.12	9.02
8.24	69.03 67.31	20.84 24.45	15.81 14.39	72.53 71.89	11.66 13.72
$7.22 \\ 6.04$	65.99 64.39	$\begin{vmatrix} 26.79 \\ 29.57 \end{vmatrix}$	10.29	$69.46 \\ 54.05$	$20.25 \\ 44.04$
28.87 23.94	69.08 71.98	2 05 4 08	1.76 1.60	$52.86 \\ 51.60$	45.38 46.80
$\frac{21.52}{19.60}$	72.75 73.10	$\begin{bmatrix} 5.33 \\ 7.70 \end{bmatrix}$	1.29	49.57 47.86	49.14 51.06
6.46 5.91	65.34 64.65	$\begin{vmatrix} 28.20 \\ 29.44 \end{vmatrix}$	$0.94 \\ 0.75$	$46.73 \\ 44.72$	52.33 54.53
$\begin{array}{c} 5.60 \\ 5.04 \end{array}$	63.93 62.80	$30.47 \\ 32.16$	0.66 0.60	43.31 42.49	56.03 56.91
$\frac{4.50}{3.80}$	61.48 59.79	34.02 36.41	$0.54 \\ 0.50$	41.73 40.69	$57.73 \\ 58.81$
$\frac{3.18}{2.73}$	57.95 56.50	38.87 40.77	0.46	40.48	60.06

(Frankforter and Cohen, J. Am. Chem. Soc. 1914, 36. 1121.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **34.** 314.)

Sol. in phenol.

Sol. in 13.5 pts. glycerine of 1.225 sp. gr.

(Vogel, N. Repert. 16, 557.)

100 g. sat. K₂CO₃+sugar+Aq contains 22.44 g. K₂CO₃ and 56 g. sugar at 31.25° (Köhler, Z. Ver. Zuckerind. 1897, **47.** 447.)  $+H_2O$ 

 $+1\frac{1}{2}H_2O$ . Very deliquescent. (Pohl.) Deliquescent only in very moist air. (Städeler.)

Sol. in H₂O with evolution of heat. (Pohl.) Sol. at 17.6° with absorption of heat, at 32° with evolution of heat, and at 25° with neither absorption nor evolution of heat. (Berthelot, C. R. **78.** 1722.)

Sat. solution of K₂CO₃+1½H₂O in H₂O contains 53.27 g. anhydrous K₂CO₃ in 100 g. solution at 30°. (de Waal, Dissert. 1910.)

+2H₂O. Salt usually given as containing 1½H₂O contains 2H₂O. (Gerlach, Z. anal. **26.** 460.)

Sat. solution of K₂CO₃+2H₂O contains 112 g. anhydrous K₂CO₃ in 100 g. H₂O at 25°. (Osaka, J. Tok. Ch. Soc. 1911, 32. 870.)

+4H₂O. Not deliquescent in closed vessels. (Gerlach, l. c.)

Potassium hydrogen carbonate, KHCO₃. Not deliquescent.

Sol. in 3.5 pts. H₂O at 15°. (Redwood.) Sol. in 4 pts. H₂O at moderate temperatures. (Bergmann.) Sol. in 0.8333 pt. boiling H₂O (Pelletier); in 4 pts. cold, and 1.2 pts. boiling H₂O (M. R. and P's Pharm.). Sol. in 4 pts. H₂O at 18.75°. (Abl.) 100 pts. H₂O at 15.5° (abl.) 100 pts. H₂O at 10-11.2° dissolve 25.1 pts. KHCO₃, and the sp. gr. of solution is 1.1536. (Anthon. Dingl. 161. 216.)

100 pts. H₂O dissolve at-10°  $0^{\circ}$  $20^{\circ}$ 23.23 30.57 pts. KHCO₃, 19.61 26.91 50° 40°  $60^{\circ}$ 70° 34.15 37.92 41.35 45.24 pts. KHCO₃. (Poggiale, A. ch. (3) 8. 468.)

100 pts. H₂O dissolve pts. KHCO₃ at t°.

t.º	Pts. KHCO ₃	t°	Pts. KHCO ₃
$\begin{array}{c} 0 \\ 20 \end{array}$	22.4	40	45.2
	33.2	60	46.4

(Dibbits, J. pr. (2) 10. 417.)

Sp. gr. of KHCO₃+Aq at 15° containing 5% KHCO₃ = 1.0328; containing 10% KHCO₃ =1.0674. (Kohlrausch, Z. anal. 28. 472.)

Sol, in 1200 pts. boiling alcohol. (Berthollet.) Insol. in alcohol. (Dumas.)

100 pts. H₂O dissolve 19.3 pts. KHCO₃ and 8.3 pts. NaHCO₃ if the sat, solution of latter is sat. with former; and 26.1 pts. KHCO₃ and 6.0 pts. NaHCO₃, if the sat. solution of the former is sat. with the latter, all at 10°. (Mulder, J. B. 1866, 67.)

Insol. in sat.  $K_2CO_3 + Aq$ . (Engel, C. R. **102.** 365.)

Solubility of KHCO3+KNO3 in H2O in an atmosphere of CO₂.

1	litre	of the se	dution contain	s .	
at 14.5°			at 25 2°		
Mol KHCOs	Mol	KNO ₃	Mol. KHCO;	Mol. KNOa	
0.60	2	. 33	0.00	3.28	
0 39	_	. 17	0.89	2.84	
$\begin{array}{c} 0.76 \\ 1.16 \end{array}$		$.03 \\ .92$	$\frac{1.33}{1.91}$	$egin{array}{c} 2.65 \ 2.45 \end{array}$	
1.55		.81			

This case is complicated by the fact that KNO₃ is more sol. in H₂O sat. with CO₂ than in pure H₂O.

(Touren, C. R. 1906, **131.** 261.)

Insol. in benzonitrile (Naumann, B. 1914. **47.** 1370.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate (Naumann, B. 1910, 43. 314.)

Potassium praseodymium carbonate, K2CO2.  $Pr_2(CO_3)_3 + 12H_2O$ .

Ppt. Sol. in °0% K₂CO₃+Aq. (Meyer, Z. anorg. 1904, 41. 104.)

Potassium samarium carbonate, K₂CO₂,  $Sm_2(CO_3)_3 + 12H_2O$ .

(Cleve.)

Potassium silver carbonate, KAgCO₃.

Decomp. by H₂O. (de Schulten, C R₂ **105.** 811.)

Ppt. Decomp. by H₂O. (Reynolds, Chem. Soc. 1898, 73. 265.)

Potassium sodium carbonate, KNaCO₈-1-6H₂O.

Slightly efflorescent. Sol. in 0.75 pt. H₂O at 12.5°; in 0.54 pt. H2O at 15°.

Sat. solution at 15° has sp. gr. = 1.366.

(Stolba, J. pr. 94. 406.) Decomp. by recrystallizing from H₂O, but crystallizes undecomposed from sat. K₂CO₃+

Aq. Sol. in H₂O. (Osaka, C. A. **1911**, 2601.)

See K₂CO₃+Na₂CO₃ under Na₂CO₃. +3H₂O. (Kremann and Zite's, M. 1909.

30. 317.) Does not exist. (Osa¹/a.) K₂CO₃, 2Na₂CO₃+18H₂O. SI. efflorescent. Very sol. in H₂O. (Marignac.)

Potassium stannous carbonate, K₂CO₃,  $2\operatorname{SnCO}_3 + 2\operatorname{H}_2O$ .

Decomp. by H₂O. (Deville.)

Potassium uranyl carbonate, 2K₂CO₅, (UO2)CO3.

Sol, without decomp. in 13.5 pts. H₂O at 15°, and in somewhat less warm H₂O. Sol. in boiling H₂O with decomp

More sol in K₂CO₃, or KHCO₃+Aq than in  $H_2O$ . (Rose.)

Insol. in alcohol, (Ebelmen, A. ch. (3) 5. 189.)

Potassium zinc carbonate, 4K₂O, 6ZnO, 11CO₂+8H₂O,

Can be washed with cold H₂O without decomp. (Deville, A. ch. (3) 33. 99.)

Praseodymium carbonate,  $Pr_2(CO_5)_3 + 8H_2O$ . Sol. in H₂O. (von Schule, Z. anorg. 1898, **18.** 362.)

Prasecdymium sodium carbonate,  $2Pr_2(CO_3)_3$ ,  $3Na_2CO_3 + 22H_2O(?)$ .

Ppt. Easily decomp. (Meyer, Z. anorg. 1904, 41. 105.)

#### Radium carbonate.

Less sol. in H₂O than corresponding Ba comp. (Curie, Dissert. 1903.)

# Rubidium carbonate, Rb₂CO₃.

Very deliquescent, and sol. in H₂O. 100 pts. absolute alcohol dissolve 0.74 pt. Rb₂CO₃.

Rubidium hydrogen carbonate, RbHCO.

Not deliquescent. Easily sol. in H₂O. (Bunsen.)

Samarium carbonate,  $Sm_2(CO_2)_3 + 3H_2O$ .

Insol. in H₂O. (Cleve, Bull. Soc. (2) 43. 168.)

Samarium sodium carbonate,  $Sm_2(CO_3)_2$ , Na₂CO₂+16H₂Q.

Ppt. (Cleve.)

Scandium carbonate,  $Sc_2(CO_3)_2 + 12H_2O$ . (Clookes, Rov. Soc. Proc. 1908, 80, A. 518.)

carbonate,  $Sc_2(CO_3)_2$ , Scandium sodium 4Na₂CO₃+6H₂O.

Difficultly sol. in H₂O.

Sol. in cold, less sol. in hot alkali carbonates +Aq. (R. Meyer, Z. anorg. 1910, 67. 410.)

Silver carbonate, \log_2CO_3.

Somewhat sol. in H₂O. Sol. in 31,978 pts. H₂O at 15°. (Kremers, Pogg. 85. 248.) 1 g. Ag₂CU₂ dissolves in 2 l. boiling H₂O. (Joulin, A. ch. (4) 30, 260.)

Solubility in  $H_2O$  at  $25^\circ = 1.16 \times 10^{-4}$ mol./l. (Spencer and Le Pla, Z. anorg. 1910,

**65**. 14.)

1 l.  $H_2O$  at 25° dissolves 1.2 x 10-4 gram atoms of silver. (Abegg and Cox, Z. phys. Ch. 1903, **46.** 11.)

Insol. in H₂CO₃+Aq. (Bergman.) Sol. in 961 pts. H₂CO₃+Aq. (Lassaigne.) 1 l. sat.  $H_2CO_3+Aq$  dissolves 0.846 g.  $Ag_2CO_3$  at 15°. (Johnson, C. N. **54**. 75.)

Sol. in (NH₄)₂CO₃+Aq or NH₄OH+Aq; sl. sol. in K₂CO₃+Aq. (Wittstein.) Easily sol. in Na₂S₂O₃+Aq. (Herschel, **1819**.) Sol. in hot NH4Cl+Aq, and sl. sol. in NH4NO3+ Aq. (Brett, 1837.) Not pptd. in presence of Na citrate. (Spiller.) Decomp. by HCl+ Aq, and chlorides+Aq.

Somewhat sol. in conc. NaNO₈+Aq. (de Coninck, Belg. Acad. Bull. **1909**, 333.)

Insol. in liquid NH3. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol. in alcohol.

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

#### Silver carbonate ammonia.

Easily sol. in H₂O. Sol. in NH₄OH+Aq, from which it is precipitated by absolute alcohol. (Berzelius.)

Ag₂CO₃, 4NH₃. P₁ (Keen, C. N. **31**. 231.) Ppt. Insol. in alcohol.

### Sodium carbonate, Na₂CO₃.

Anhydrous. Sol. in H₂O with evolution of heat.

Sol. in 5.967 pts. H₂O at 15°. (Fresenius.) 100 pts. H₂O at 14.6° dissolve 7.74 pts. Na₂CO₃, or 20.64 pts. Na₂CO₃ 10H₂O is sol. in rather less than 1 pt. boiling H₂O (Thomson, 1831.) Sol. in 2 pts. H₂O. (Bergman.) Sol. in 2 pts. H₂O. (Bergman.)

Solubility in 100 pts. H ₂ O at t°.							
t°	Pts. Na ₂ CO ₃	Pts. Na ₂ CO ₃ +10H ₂ O	t°	Pts. Na ₂ CO ₃	Pts. Na ₂ CO ₃ +10H ₂ O		
0 10 20	7.08 16.66 30 83	21.52 61.98 123.12	25 30 104.6	35 90 35.90 48.50	171 33 241.57 420.68		

(Poggiale, A. ch, (3) 8, 468,)

Possesses four different degrees of solubility, according to different states of molecular constitution and degrees of hydration. (Löwel, A. ch. (3) 44. 330.)

Little more sol. at 34-38° than at 104°, but maximum of solubility is probably at 15°. (Löwel.)

Solubility of Na₂CO₃, Na₂CO₃+10H₂O, Na₂CO₃+7H₂O (a), and Na₂CO₃+7H₂O (b) in H₂O.

	Sat. soli Na ₂ CO ₃ conta	+10H ₂ O	Sat. solution of $Na_2CO_3+7H_2O$ (b) contains—		Sat. solution of Na ₂ CO ₃ +7H ₂ O (a) contains—			
t°	Pts. Na ₂ CO ₃ in 100 pts. H ₂ O	Pts. Na ₂ CO ₃ + 10H ₂ O in 100 pts. H ₂ O	Pts. Na ₂ CO ₃ in 100 pts. H ₂ O	Pts. Na ₂ CO ₂ + 7H ₂ O (b) in 100 pts. H ₂ O	Pts. Na ₂ CO ₃ + 10H ₂ O in 100 pts. H ₂ O	Pts. Na ₂ CO ₃ in 100 pts. H ₂ O	Pts. Na ₂ CO ₃ + 7H ₂ O (a) in 100 pts. H ₂ O	Pts. Na ₂ CO ₃ + 10H ₂ O in 100 pts. H ₂ O
0	6.97	. 21.33	20.39	58.93	84.28	31.93	112.94	188.37
10	12.06	40.94	26.33	83.94	128.57	37.85	150.77	286.13
15	16.20	63.20	29.58	100.00	160.51	41.55	179.90	381.29
20	21.71	92.82	38.55	122.25	210.58	45.79	220.20	556.71
25	28.50	149.13	38.07	152.36	290.91			
30	37.24	273.64	43.45	196.93	447.93			
38	51.67	1142.17						
104	45.47	539.63						

(Löwel, A. ch. (3) 33. 382.)

100 pts. H₂O at 14° dissolve 60.4 pts. Na₂CO₃+10H₂O; at 36°, 833 pts.; at 104°, 445 pts. Solubility increases to 36°, then diminishes. (Payen, A. ch. (3) 43. 233.)

There are apparently two maxima of solubility; the one occurring at 15°, or even lower, as warm solutions cool; the other at 34–38°, when cold solutions are warmed. (Payen, A. ch. (3) 44. 330.)

### Solubility in 100 pts. H₂O at t°.

t°	Pts. Na ₂ CO ₃	1°	Pts. Na ₂ CO ₃	t°	Pts. Na ₂ CO ₃		
0	7.1	22	23.8	43	46.2		
1	7.5	23	25.1	44	46.2		
$\frac{1}{2}$	7.8	24	26.5	45	46.2		
$\bar{3}$	8.4	25	28.0	46	46.2		
4	8.9	26	29.7	47	46.2		
5	9.5	27	31.6	48	46.2		
6	10.0	28	33.6	49	46.2		
7	10.6	29	35.8	50	46.2		
8	11.2	30	38.1	51	46.2		
9	11.9	31	41.4	52	46.2		
10	12.6	32	46.2	53	46.2		
11	13.3	32.5	59.0	54	46.2		
12	14.0	33	46.2	55	46.2		
13	14.8	34	46.2	56	46.2		
14	15.6	35	46.2	57	46.2		
15	16.5	36	46.2	58	46.2		
16	17.4	37	46.2	59	46.2		
17	18.3	38	46.2	60	46.2		
18	19.3	39	46.2	61	46.2		
19	20.3	40	46.2	62	46.2		
20	21.4	41	46.2	63	46.2		
21	22.6	42	46.2	64	46.2		
		1)	)		1		

Solubility in 100 pts. H₂O at t°-Continued

t°	Pts. Na ₂ CO ₃	ι°	Pts. Na ₂ CO ₃	t°	Pts. Na ₂ CO ₃	
65	46.2	79	46.2	93	45.6	
66	46.2	80	46.1	94	45.6	
67	46.2	81	46.1	95	45.6	
68	46.2	82	46.1	96	45.6	
69	46.2	83	46.0	97	45.5	
70	46.2	84	46.0	98	45.5	
71	46.2	85	45.9	99	45.5	
72	46.2	86	45.9	100	45.4	
73	46.2	87	45.8	101	45.4	
74	46.2	88	45.8	102	45.3	
75	46.2	89	45.8	103	45.3	
76	46 2	90	45.7	104	45.2	
77	46.2	91	45.7	105	45.1	
78	46.2	92	45.7			

(Mulder, Scheik. Verhandel. 1864. 129.)

Liable to form supersaturated solutions. Supersat. Na₂CO₃+Aq (2 pts. Na₂CO₃, 10H₂O: 1 pt. H₂O) may be kept in a flask closed with cotton wool. (Schröder.) When supersat. Na₂CO₃+Aq is exposed to low temperatures, the 10H₂O salt crystallizes

When supersat. Na₂CO₃+Aq is exposed to low temperatures, the 10H₂O salt crystallizes out; but under other circumstances two other salts are formed, each containing 7H₂O; one is four times as sol. at 10° as the 10H₂O salt, and the other twice as sol. See above. (Löwel, A. ch. (3) 33. 337.)

See also Na₂CO₃+H₂O, 7H₂O, and 10H₂O.

% Na ₂ CO ₃	Sp. gr.	% Na ₂ CO ₈	Sp. gr.
0.372	1.0040	7.812	1.0892
0.744	1.0081	8.184	1.0937
1.116	1.0121	8.556	1.0982
1.488	1.0163	8.928	1.1028
1.850	1.0204	9.300	1.1074
2.232	1.0245	9.672	1.1120
2.504	1.0286	10.044	1.1167
2.976	1.0327	10.416	1.1214
3.348	1.0368	10 788	1.1261
3.720	1 0410	11.160	1 1308
4.090	1.0452	11.532	1.135€
4 464	1.0494	11.904	1 1 1 0 4
4.836	1.0537	12.276	1 1452
5 208	1.0576	12.648	1.1500
5.580	1.0625	13.020	1 1549
5.972	1.0669	13,392	1.1598
6.324	1 0713	13.764	1 1648
6 396	1 0757	14 136	1.1698
6 768	1.0802	14.508	1 1748

(Tünnerman.)

Sp. gr. of Na₂CO₃+Aq at 15°.

%	Sp. gr. if % is Na ₂ CO ₃	Sp. gr. if % 18 Na ₂ CO ₄ +10H ₂ O	-
1	1.0105	1.004	
2	1.0210	1.008	
2 3 4 5	1.0315	1.012	_
4	1.0420	1.016	ls
5	1.0525	1.020	1
6	1.0631	1.023	1-
6 7	1.0737	1.027	1
$\dot{8}$	1.0843	1.031	1
$\ddot{9}$	1.0950	1.035	1
10	1.1057	1.039	1
îi	1.1165	1.043	1
12	1 1274	1.047	1
13	1.1384	1.050	1
14	1.1495	1.054	1
15	1,1100	1.058	1
16		1.062	-
17		1.066	
18	• • • •	1.070	
19		1.074	1-
$\overset{10}{20}$		1.078	١,
$\tilde{2}_{1}^{0}$		1.082	1 3
$\frac{21}{22}$		1.086	Ι,
$\frac{22}{23}$		1.090	
$\frac{20}{24}$		1.094	1 4
$\tilde{2}\tilde{5}$	• • • •	1.099	-
26		1.103	
<b>27</b>		1.106	1
28		1.110	1
$\tilde{29}$		1.114	
30		1.119	
31		1.123	İ
32		1.126	
33		1.130	1
34		1.135	
35		1.139	1
36		1.143	1
37		1.147	
38		1.150	
		1.100	

(Gerlach, Z. anal. 8. 279.)

Sp. gr. of Na₂CO₃+Aq at 17.5°...

NaiCO:	% Na₂CO₃ +10H₂O	Sp. gr.	Na ₂ CO ₃	% Na ₂ CO ₃ +10H ₂ O	Sp. gr.
1 2	2.70 5.40	1.010 1.020	9	24.30 27.00	1.095 1.105
3 4 5	8.10 10.18 13.50	1.031 1.041 1.052	11 12 13	29.70 32.40 35.10	1.116 1.127 1.137
6 7 8	16.20 18.90 21.60	1.063 1.073 1.084	14 15	37.80 40.50	1.148

(Hager.)

Sp. gr. of Na₂CO₃+Aq increases or diminishes by a change of temperature of 1° by the following amounts—

Corr.	% Na ₂ CO ₃
0.0004	13-15
0.00033	8-12
0.00026	3-7

(Hager, Comm. 1883.)

Sp. gr. of conc. Na₂CO₃+Aq at 30°.

Sp. gr.	Na ₂ ČO ₃	Na ₂ CO ₃ in 1 l.	Sp. gr.	Na ₂ CO ₃	Na ₂ CO ₃ in _s 1 l.
1.310	28.13	368.5	1.220	20.47	249.7
1.300	27.30	354.9	1.210	19.61	237.3
1.290	26.46	341.3	1.200	18.76	225.1
1.280	25.62	327.9	1.190	17.90	214.0
1.270	24.78	314.7	1.180	17.04	201.1
1.260	23.93	301.5	1.170	16.18	189.3
1.250	23.08	288.5	1.160	15.32	177.7
1.240	22.21	275.4	1.150	14.47	166.4
1.230	21.33	262.3	1.140	13.62	155.3

(Lunge, Chem. Ind. 1882. 320.)

Sp. gr. of Na₂CO₃+Aq at 23°.

l					
% Na ₂ CO ₃ +10H ₂ O	% Na ₂ CO ₃	Sp. gr.	% Na ₂ CO ₃ +10H ₂ O	Na ₂ CO ₃	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.370 0.741 1.112 1.482 1.853 2.223 2.594 2.965 3.335 3.706 4.076 4.447 4.817 5.188	1.0038 1.0076 1.0114 1.0153 1.0192 1.0231 1.0271 1.0309 1.0348 1.0388 1.0428 1.0468 1.0508 1.0548	16 17 18 19 20 21 22 23 24 25 26 27 28 29	5.929 6.299 6.670 7.041 7.412 7.782 8.153 8.523 8.894 9.264 9.635 10.005 10.376	1.0628 1.0668 1.0748 1.0748 1.0748 1.0836 1.0871 1.0912 1.0953 1.1035 1.1076 1.1117
15	5.558	1.0588	30	11.118	1.1200

Spa	Sher. of NA2CO3+Aq at 23°—Continued.					
% Na ₂ CO ₃ +10H ₂ O	Na ₂ CO ₃	Sp. gr.	%Nar CO ₃ +10 H ₂ O	% Na ₂ CO ₃	Sp. gr.	
31 32 33 34 35 36 37 38 39 40	11.488 11.859 12.230 12.600 12.971 13.341 13.712 14.082 14.530 14.824	1.1242 1.1284 1.1326 1.1368 1.1410 1.1452 1.1494 1.1536 1.1578 1.1620	41 42 43 44 45 46 47 48 49 50	15.195 15.556 15.936 16.307 16.677 17.048 17.418 17.789 18.159 18.530	1.1662 1.1704 1.1746 1.1788 1.1830 1.1873 1.1916 1.1959 1.2002 1.2045	

(Schiff, A. 113. 186.)

Sp. gr. of Na₂CO₃+Aq at 23.3°. a = number of grms.  $\times$  ½ mol. wt., dissolved in 1000 grms. H₂O; b = sp. gr. if a = Na₂CO₃, 10H₂O (½ mol. wt. = 143); c = sp. gr. if a = Na₂CO₃ (½ mol. wt. = 53).

a	ь	c	0	ь	e
1 2 3 4	1.048 1.086 1.117 1.142	1.052 1.100 1.145 1.187	5 6 7	1.163 1.182 1.198	1.226

(Favre and Valson, C. R. 79. 968).

Sp. gr. of Na₂CO₃+Aq at 18°.

% Na ₂ CO ₃	Sp. gr.	Na ₂ CO ₃	Sp. gr.
5 10	1.0511 1.1044	15	1.1590

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of Na₂CO₃+Aq.

gequivalents Na ₂ CO ₃ per l.	t°	Sp. gr. t°/t°.
0.002524	16.004	1.0001418
0.005041	16.026	1.0002844
0.01006	16.049	1.000568
0.02501	16.028	1.001413
0.04954	16.050	1.002789
0.10188	16.030	1.005699
0.24646	16.041	1.013598
0.002628	16.051	1.0001473
0.003948	16.088	1.0002216
0.009182	16.081	1.0005181
0.01830	16.089	1.001033
0.10842	16.042	1.006048
0.21570	16.055	1.011910
0.4297	15.14	1.02346
2.5015	16.05	1.12533

(Kohlrausch, W. Ann. 1894, 53. 26.)

Sp. gr. of  $Na_2CO_3+Aq$  at t°.  $H_2O$  at 4°=1.

t°	% Na ₂ CO ₃	Sp. gr.
60°	28.74 25.20 22.25 18.23 14.06	1.2971 1.2546 1.2191 1.1746 1.1277
80°	28.59 18.26	1.2807 1.1607

(Wegscheider, M. 1905, 26. 690.)

Sp. gr. of dil  $Na_2CO_3+Aq$  at  $20.004^\circ$ . Conc. = g. equiv.  $Na_2CO_3$  per l. at  $20.004^\circ$  and 730 mm.

Sp. gr. compared with  $H_2O$  at  $20.004^{\circ} = 1$ .

Conc.	Sp. gr.
0.0000	1.000,000,0
0.0001	1.000,005,6
0.0002	1.000,011,2
0.0004	1.000,022,5
0.0005	1.000,028,1
0.0010	1.000,056,3
0.0020	1.000,112,7
0.0040	1.000,225,8
0.0050	1.000,282,4
0.0100	1.000,564,8

(Lamb and Lee, J. Am. Chem. Soc. 1913, **35**. 1685.)

 $\begin{array}{c} Na_2CO_3 + Aq \ containing \ 5\% \ Na_2CO_3 \ boils \\ at \ 100.5^\circ; \ 10\% \ Na_2CO_3, \ at \ 101.1^\circ; \ 15\% \\ Na_2CO_3, \ at \ 101.8^\circ. \ \ (Gerlach.) \end{array}$ 

Sat. solution boils at 104.4° (Griffiths, 1825); 106° (Kremers); 104°. (Payen.) Sat. solution forms a crust at 104.1°, and contains 42.2 pts. Na₂CO₃ to 100 pts. H₂O;

highest temperature observed, 105°. (Gerlach, Z. anal. **26**. 427.)

B.-pt. of Na₂CO₃+Aq containing pts. Na₂CO₃ to 100 pts. H₂O. G=according to Gerlach (Z. anal. **26**. 458); L=according to Legrand (A. ch. (2) **59**. 426).

Bpt.	G	L	Bpt.	G	L
100.5° 101.0 101.5 102.0 102.5 103.0	5.2 $10.4$ $15.6$ $20.8$ $26.0$ $31.1$	7.5 14.4 20.8 26.7 32.0 36.8	103.5° 104.0 104.5 104.63 105.0	36.2 41.2 46.2  51.2	41.0 44.7 47.9 48.5

Less sol. in dil. NH₄OH+Aq than in H₂O. (Fresenius.)

See also under Ammonia.

Solubility of Na₂CO₃+NH₄Cl. See under Ammonium Chloride.

Solubility of Na₂CO₃+K₂CO₃. See under Carbonate, potassium.

The reciprocal solubility of sodium carbonate and sodium hydrogen carbonate in H₂O has been determined. (de Paepe, C. A. 1911, 2603, and 1912, 2723.)

Solubility of Na₂CO₃+NaHCO₃ in H₂O at 25°.

g. per 10	0 g. H ₂ ()	Solid phase
NaHCOs   Na2COs		вони равме
$0 \\ 2.1$	28.3 27.3	Na ₂ CO ₃ .10H ₂ O
$\frac{4.2}{5.7}$	$\frac{26.5}{19.2}$	Na ₂ CO ₃ .10H ₂ O+NaHCO ₃ NaHCO ₃
$\begin{array}{c} 7.3 \\ 9.0 \end{array}$	$\begin{array}{c} 12.4 \\ 6.2 \end{array}$	66
10.1	1.0	"

(de Paepe, Bull. Soc. Chim. Belg. 1911, 25.

g. per l.		Solid phase
NaHCO ₃	Na ₂ CO ₃	Sond phase.
98.7 50.8 27.6	$0.0 \\ 216.6 \\ 276.3$	NaHCO ₃ NaHCO ₄ + Na ₂ CO ₃ , NaHCO ₃ , 2H ₂ O Na ₂ CO ₅ , NaHCO ₄ , 2H ₂ O + Na ₂ CO ₃ .
0.0	276.4	10H ₂ () Na ₂ CO ₃ .10H ₂ O

(McCoy and Test, J. Am. Chem. Soc. 1911, **33.** 474.)

Equilibrium between Na₂CO₈, NaHCO₈ and CO2. See under Carbonate, sodium hydrogen.

Solubility of NaNO3 in Na2CO5+Aq at 10°.

In 1000	ccm. H ₂ O	0 1:41	
NaNO ₃ Na ₂ CO ₃		Solid phase	
805.0 704.8	87.5 119.8	NaNO ₃ NaNO ₃ , Na ₂ CO ₃ Na ₂ CO ₃	

(Kremann, M. 1909, 30. 325.)

Solubility of NaNO₃ in Na₂CO₂+Aq at 24.2°

In 1000	cem. H ₂ O	0.11.1	
NaNO:	Na ₂ CO ₃	Solid phase	
913.58 844.50	59.61	NaNO ₃	
627.75 $544.3$	217.85 246.30	NaNO ₃ +Na ₂ CO ₃ .7H ₂ O	
459.6	263.30	Na ₂ CO ₃ .7H ₂ O Na ₂ CO ₃ .10H ₂ O	
	28.55	Na ₂ CO ₃ .10H ₂ O	

(Kremann.)

Solubility of Na₂CO₂+NaBr in H₂O at 30°.

% Na ₂ CO ₃	% NaBr	Solid phase
27.98	0	Na ₂ CO ₂ .10H ₂ O
27.54	2.41	"
26.72	4.06	"
26.23	6.26	Na ₂ CO ₃ . 10H ₂ O +Na ₂ CO ₃ .7H ₂ O
23.40	11.00	Na ₂ CO ₃ .7H ₂ O
22.68	12.22	"
19.86	16.88	"
19.57	16.95	N92CO3.7H2O+N82CO3.H2O
18.11	19.32	Na ₂ CO ₃ .H ₂ O
8.45	35.39	
6.90	36.13	"
3.04	44.75	"
2.99	45.31	NaBr.2H2O +Na2CO2.H2O
2.60	45.68	NaBr.2H ₂ O
0	49.40	"

(Cocheret Dissert. 1911.)

Solubility of Na₂CO₃+NaHCO₃ in H₂O at Solubility in NaCl+Aq. 100 pts. H₂O dissolve pts. NaCl and pts. Na₂CO+10H₂O, when that salt is in excess at 15°.

Pts NaCl	Pts. Na ₂ CO ₃ +10H ₂ O	Pts. NaCl	Pts. Na ₂ CO ₃ +10H ₂ O
0.00 4.03 8.02 12.02	61.42 53.86 48.00 43.78	23.70 27.93 31.65 35.46	39.06 39.73 41.44 43.77
$\frac{16.05}{19.82}$	40.96 39.46	sat. 37.27	45.32

Solubility of anhydrous Na₂CO₃ in 100 pts. NaCl+Aq containing % NaCl at 15°.

% NaCl	Pts. Na ₂ CO ₃	% NaCl	Pts. Na ₂ CO ₃
0	16.408	12	10.488
1	15.717	13	10.244
2	15.060	14	10.041
3	14.438	15	9.880
4	13.851	16	9.762
5	13.299	17	9.686
6	12.783	18	9.655
7	12.305	19	9.667
8	11.864	20	9.725
9	11.461	21	9.828
10	11.097	22	9.997
11	10.773		

(Reich, W. A. B. 99, 2b. 433.)

Solubility of Na₂CO₃+NaCl in H₂O at 30°.

Na ₂ CO ₃	% NaCl	Solid phase
27.98 27.48 27.12 26.82 25.59 24.26	0 0.9 3.33 4.15 5.17 5.93	Na ₂ CO ₂ , 10H ₂ O "" "Na ₂ CO ₂ , 10H ₂ O + Na ₂ CO ₄ , 7H ₂ O Na ₂ CO ₃ , 7H ₂ O

#### Solubility of Na₂CO₂+NaCl in H₂O at 30°-Continued.

Na ₂ CO ₃	% NaCl	Solid phase
22.75 20.72 18.00 14.81 9.71 5.05	10.24 11.49 14.12 16.26 18.76 21.94 26.47	Na ₂ CO.7H ₂ O + Na ₂ CO ₃ H ₂ O Na ₂ CO ₃ .H ₂ O Na ₂ Cl + Na ₂ CO ₃ .H ₂ O Na ₂ Cl 

(Cocheret, Dissert. 1911.)

# Solubility of Na₂CO₃+NaI in H₂O at 30°.

% a ₂ 00s	% NaI	Solid phase
27.4	0	Na ₂ CO ₃ ,10H ₂ O
26.5	2.4	"
25.5	4.7	16
25.2	5.2	"
24.4	8.6	.,
24.3	9.5	Na ₂ CO ₃ .10H ₂ O + Na ₂ CO ₃ 7H ₂ O
23.0	11.2	Na ₂ CO ₃ .7H ₂ O
20.8	14.0	"
20.0	15.7	"
18.7	18.4	"
15.3	25.4	Na ₂ ,CO ₃ ,7H ₂ O ₇ Na ₂ CO ₃ ,H ₂ O
13.1	29.1	Na ₂ CO ₃ .H ₂ O .
10.4	33.3	11
6.4	40.4	
4.2	46.0	"
3.1	49.5	4.
2.7	51.0	"
1.5	54.6	"
0.9	57.6	"
0.6	61.2	"
0.3	65.6	NaI,2H ₂ O + Na ₂ CO ₃ ,H ₂ O
0.0	65.5	Na1.2H-O

(Cocheret, Dissert. 1911.)

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, 54. 674.)

Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20**. 829.) Insol. in alcohol. (Fresenius.)

Sl. sol. in absolute alcohol; apparently insol. in an alcoholic solution of soap. (Duffy, Chem. Soc. 5. 305.)

#### Solubility of Na₂CO₃ in ethyl alcohol at 20°.

Alcohol, wt. per cent	g. Na:CO3 per 100 g. solution
44	1.7
46	1.13
48	0.9
50	0.84
54	0.80

(Linebarger, A. Ch. J. 1892, 14. 380.)

# Solubility of Na₂CO₃ in alcohol+H₂O at 30°.

% Na2CO3	% alcohol	Solid phase
27.4	0	Na ₂ ('O ₃ .10H ₂ O
26.61	2.64	"
26.14*	3.41)*	"
1.38	44.81	16
0.62	52.99'	"
0.61	53.26	"
0.53	55.70	Na ₂ CO ₃ .10H ₂ O + Na ₂ CO ₃ .7H ₂ O
0.51	56.56	Na ₂ CO ₃ .7H ₂ O
0.47	62.61	"
0.40	63.20	"
0.15	72.80	44
0.11	73.06	Na ₂ CO ₂ ,7H ₂ O + Na ₂ CO ₃ ,H ₂ O
0.07	78.19	Na ₂ CO ₃ .H ₂ O
0.07	82.26	44
0.06	86.76	
0.06	90.95	
0.04	93.09	"
0.03	95.06	Nn ₂ CO ₃ .H ₂ O+Nn ₂ CO ₅
	95.65	Na ₂ CO ₃
	98.46	

* Conjugated liquid phases.

(Cocheret, Dissert. 1911.)

See also under Na₂CO₂+H₂O, +7H₂O and +10H₂O.

Not decomp. by 1 pt. H₂SO₄+6 pts. absolute alcohol.

Not decomp, by alcoholic solutions of racemic, tartaric, or glacial acetic acids; slowly decomp. by IINO3+absolute alcohol.

Solubility of Na₂CO₃+NaBr, NaCl and NaI in alcohol. Numerical data given by Cocheret (Dissert. 1911), reported in Tables annuelles internationales des Constants, etc.

# Solubility of Na₂CO₃ in propyl alcohol at 20°.

Alcohol, wt. per cent	g. Na ₂ CrO ₃ per 100 g solution
28	4.4
38	2.7
44	1.7
46	1.5
48	1 3
50	1.2
54	0.9
62	0.4

(Linebarger, A. Ch. J. 1892, 14, 380.)

A full discussion of the solubility of Na₂CO₃ in propyl, and allyl alcohol is given by Frankforter and Temple (J. Am. Ch. Soc. 1915, 37. 2697).

Insol. in CS₂. (Arctowski, Z. anorg. 1894, 257.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3602.)

Solubility in mixtures of pyridine and H₂O from -65° to +200°. Solubility curves are given. (Limbosch, Chem. Soc. 1909, 96 (2), 472.)

Insol. in acetone and in methylal. (Lidmann, C. C. 1899, II. 1014.)

100 g. glycerine (sp. gr. = 1.262) dissolve 98.3 g. Na₂CO₃ at 15–16°. (Ossendowski, Pharm. J. 1907, **79**. 575.)

100 g. sat. solution in glycol contain 3.28-3.4 g. Na₂CO₃. (de Coninck, Bull. Soc. Belg. 1907, 21. 141.)

100 g. sat. Na $_2$ CO $_3$ +sugar+Aq coptain 6.89 g. Na $_2$ CO $_3$ +64.73 g. sugar at 31.25°. (Kohler, Z. Ver. Zuckerind. 1897, **47**. 447.) + $H_2$ O. Takes up  $H_2$ O from the air. Less

sol. in H₂O at 104° than at 38°; at 15–20°, 100 pts. H₂O dissolve 52.4 pts. of this salt, cal-Insol. in alcohol. culated as Na₂CO₂. (Löwel.)

# Solubility in 100 pts. H₂O at t°.

Corrected t°. (Hydrogen scale)	Pts. anhydrous salt
29.86	50.53
29.89	50.75
31.80	50.31
35.17	49.63
35.37	49.67
35.66	49.37
35.86	49.44
36.45	49.36
36.90	49.29
37.91	49.11
38.92	49.09
40.94	48.51
40.93	48.52
43.94	47.98

(Wells and McAdam, J. Am. Chem. Soc. 1907, 29. 726.)

#### Solubility in alcohol + Aq.

Composition of the alcohol and water layers in contact with the solid phase Na₂CO₃+H₂O.

-	Alcohol layer			Water layer		
t°	%	%	%	%	%	%
	alcohol	salt	water	alcohol	salt	water
68	55.8	0.9	43.3	2.3	28.8	68.9
49	61.0	0.4	38.6	1.2	31.5	67.3
40	61.0	0.4	38.6	1.2	31.9	66.9
36	62.0	0.3	37.7	1.1	32.1	66.8
35	62.9	0.3	36.8	1.0	32.4	66.6

(Ketner, Z. phys. Ch. 1902, 39. 651.)

+3H₂O. (Schickendantz, A. **155**. 359.) +5H₂O. (Persoz, Pogg. **32**. 303.) Not efflorescent. Sol. in H₂O.

+6H₂O. (Mitscherlich, Pogg. 8. 441.) +7H₂O. Efflorescent. Two salts, 7H₂O (b) (= + 8H₂O of Thomson), and 7H₂O

(a). See also under Na₂CO₃.

Solubility in 100 pts. H₂O at t°.

Corrected t°. (Hydrogen scale)	Pts. anhydrous salt
30.35	43.50
31.82	45.16
32.86	46.28
34.37	48.22
84.76	48.98
35.15	49.23
35.17	49.34
35.62	50.08

(Wells and McAdam, J. Am. Chem. Soc. 1907, **29.** 726.)

Composition of the solutions which can be in equilibrium with Na₂CO₂+7H₂O₃ at different temperatures.

t°	% Na ₂ CO ₁
32.1	31.8
32.5	32.1
33.3	32.7
33.9	33.0
34.5	33.9

(Ketner, Z. phys. Ch. 1902, 39. 646.)

Composition of the alcohol and water layers in contact with the solid phase, Na₂CO₂+  $7H_2O\beta$ , at different temperatures.

Alcohol lay		yer	v	Vater lay	/er	
t°	% alcohol	% salt	% water	% al- cohol	% salt	% water
33.2 32.3 31.9 31.45 31.2	58.1 56.1 54.8 53.5 52.4	0.5 0.6 0.7 0.7 0.8	42.4 43.3 44.5 45.8 46.8	1.4 1.5 1.7	31.0 30.2 29.8 29.3 29.3	67.6 68.3 68.5

(Ketner.)

Composition of the two liquid layers which at different temperatures can be in metastabile equilibrium with Na₂CO₂+ 7H2OB.

	Alcohol layer			Water layer		
t°	% alcohol	% salt	% water	% al- cohol	% salt	% water
$28.9 \\ 26.6 \\ 23.0$	46.9 39.1 24.5	1.3 1.3 6.7	59.6	3.3	26.3 25.4 20.2	71.3

(Ketner.)

+10H₂O. Efflorescent. Sol. in 1.05 pts. H₂O at 23°, and sat. solution has sp. gr. 1.1995. (Schiff, A. 109. 326.)

Melts in crystal H₂O at 34°. (Tilden. Chem. Soc. 45, 409.)

See above under Na₂CO₂ for further data.

#### Solubility in 100 pts. H₂O at t°.

Corrected t°. (Hydrogen scale)	Pts. anhydrous salt
27.84	34.20
29.33	37.40
29.85	38.89
30.35	40.12
31.45	43.25
31.66	43.95
31.72	44.21
32.06	45.64

(Wells and McAdam, J. Am. Chem. Soc. 1907, **29.** 726.)

Sat. solution at 25° contains 29.37 g. anhyd. Na₂CO₂ in 100 g.  $\rm H_2O$ . (Osaka, J. Tok. Ch. Soc. 1911, 32. 870.)

Sat. solution at  $25^{\circ}$  contains 28.3 g. anhyd. Na₂CO₃ in 100 g. H₂O. (de Paepe, Bull. Soc. Chim. Belg. 1911, **25.** 174.)

Sat. solution at 30° contains 27.4–27.98 g. anhyd. Na₂CO₃ in 100 g. of the solution. (Cocheret, Dissert. 1911.)

Sat. solution at 25° contains 27.64 g. anhyd. Na₂CO₂ in 100 cc. of the solution. (McCoy and Test, J. Am. Chem. Soc. 1911, **33**. 474.)

Solubility in alcohol.

Composition of the alcohol and water layers in contact with the solid phase, Na₂CO₃+10H₂O, at different temperatures.

	Alcohol layer		Water laver			
t°	%	%	%	% al-	%	%
	alcohol	salt	water	cohol	salt	water
30.6	47.8	1.2	51.0	2.3	27.8	69.9
29.7	40.0	2.1	57.9	2.9	25.5	71.6
29.0	32.7	3.8	63.5	4.3	22.7	73.0
28.2	23.5	7.3	69.2	7.9	18.6	73.5

(Ketner, Z. phys. Ch. 1902, 39. 651.)

Solubility in alcohol +Aq.

Liquids which can be in equilibrium with Na₂CO₃+10H₂O at 21°.

% alcohol	% salt	% water
0	18.5	81.5
$\frac{6.2}{15.3}$	$\substack{12.7\\6.9}$	81.1 77.8
26.1	3.2	70.7
$\frac{39.2}{58.2}$	$\begin{array}{c} 1.2 \\ 0.2 \end{array}$	59.6
67.1	$0.2 \\ 0.1$	$\frac{41.6}{32.8}$
73.3	0.06	26.64

(Ketner.)

Composition of the alcohol liquids which can be in equilibrium with Na₂CO₃+10H₂O and Na₂CO₃+7H₂Oβ at different temperatures.

t°	% alcohol	% salt	% water
29°	62.3	C.3	37.4
26°	67.8	O.1	32.1
21°	73.3	C.06	26.6

(Ketner.)

See also under Na₂CO₃. +15H₂O. (Jacquelain, A. **80.** 241.)

# Sodium hydrogen carbonate, NaHCO₃.

100 pts. cold H₂O dissolve 7.7 pts. NaHCO₅. (Rose,

100 pts. com r₂O dissolve 7.7 pts. Native 7.5 (108c, Schw. J. **6**, 52.) 100 pts. H₂O at 11.25° dissolve 8.27 pts. NaHCO₄ to form solution of 1.0613 sp. gr. (Anthon, Dingl. **161**, 216.)

100 pts. H₂O dissolve at-0° 10°  $20^{\circ}$  $30^{\circ}$ 12.24 pts. NaHCO₂, 8.9510.04 11.1540°  $60^{\circ}$ 50° 16.69 pts. NaHCO₃. 15.5713.3514.45 (Poggiale, A. ch. (3) 8. 468.)

100 pts. H₂O dissolve pts. NaHCO₃ at t°.

	to	Pts. NaHCO ₃	t.º	Pts NaHCO ₃	t°	Pts. NaHCO ₃
-	0	6.90	21	9.75	42	13.05
	ĭ	7.00	22	9.90	43	13.20
	2	7.10	23	10.05	44	13.40
	$\frac{2}{3}$	7.20	24	10.20	45	13.55
	4	7.35	25	10.35	46	13.75
	4 5	7.45	26	10.50	47	13.90
	6	7.60	27	10.65	48	14.10
	7	7.70	28	10.80	49	14.30
	8	7.85	29	10.95	50	14.45
	9	8.00	30	11.10	51	14.65
	10	8.15	31	11.25	52	14.85
	11	8.25	32	11.40	53	15.00
	12	8.40	33	11.55	54	15.20
	13	8.55	34	11.70	55	15.40
	14	8.70	35	11.90	56	15.60
	15	8.85	36	12.05	57	15.80
	16	9.00	37	12.20	58	16.00
	17	9.15	38	12.35	59	16.20
	18	9.30	39	12.50	60	16.40
	19	9.40	40	12.70		
_	20	9.60	41	12.90		

(Dibbits, J. pr. (2) 10. 417.)

Experiments with solutions of sodium hydrogen carbonate show that they gradually decompose after a time. (Treadwell, Z. anorg. 1898, 17. 204.)

The source of error of many solubility determinations of this substance is due to loss of CO₂. Solutions exposed to the air lose CO₂. (McCoy, Am. Ch. J. 1903, 29. 438.)

1 l. sat. solution at 25° contains 98.4 g.

NaHCO₃. (McCoy and Test, J. Am. Chem. Soc. 1911, 33. 474.)

NaHCO₃+Aq sat. at 16° has sp. gr. = 1.06904. (Stolba.) Nearly insol. in sat. NaCl, or Na₂SO₄+Aq. (Balmain, B. **5**. 121.)

Equilibrium between Na₂CO₃ and NaHCO₃ in H₂O and in contact with the air.

System: Na₂CO₃, NaHCO₃, and CO₂.

Temperature, 25° C.

Gram atoms Na per liter	Amount solution used for titration ec.	Amount Na combined as Na ₂ CO ₄ Per cent	Amount Na combined as NaIICO ₃ Per cent
0.0044	50 50	8.7	91 3
0.0143	$\frac{20}{20}$	26.0	80.0
0.0562	10 10	37.3	62.7
0.2248	1C 10	59.3	40.7
0.8847	$\frac{2}{2}$	64.0	36.0
	3		

Temperature, 37° C.

Gram atoms Na per liter	Amount solution used for titration ce	Amount Na combine 1 as Na ₂ CO ₃ Per cent	Amount Na combined as NaHCO ₃ Per cent
0.0019	50 50	10.5	89.5
0.6071	20 20 20	21.1	78.9
0.0276	10 10	41.3	58 7
0.030	10 10 10	64.5	35.5
0 421	2	81-9	18.1
0.815	$\frac{2}{2}$	86.5	13.5
1.795	2+	83.4	16.6

Temperature, 50° C.

Gram atoms Na per liter	Amount solution used for titration cc.	Amount Na combined as Na ₂ CO ₃ Per cent	Amount Na combined as NaHCO ₃ Per cent
0.0017	50 25	22.2	77.8
0.0071	20 20	32.9	67 1
0.0266	10 20	50.7	49.3
0.1014	10 10	70.0	30.0
0.4066	$\begin{array}{c c} 10 \\ 2 \end{array}$	81.0	19.0
0.8068	2 2 2	86.8	13.2
1.7486	$\begin{array}{c c} 2.1 \\ 2 \end{array}$	87.1	12.9

	Tem	perature,	75°	C.
--	-----	-----------	-----	----

		2.1	
Gram htoms No per liter	Amount solution used for titration cc.	Amount Na combine l as Na ₂ CO ₃ Per cent	Amount Na combined as NaHCO: Per cent
0.003	50 25 25	25.7	74.3
0.019	20 20 20	34.8	$\boldsymbol{65.2}$
0.036	10 16	55.7	41.3
0.270	5 5	<b>79</b> .5	20.5
0.702	1	85.0	15.0
6.56	1 1	84.8	15.2

System: Na₂CO₃ and NaHCO₃ at 25° C.

Total salts	Na ₂ C	CO ₂	NaHCO2	
dissolved grams	Weight Grams	Per cent	Weight Grams	Per cent
0.3555 1.1053 4.0443 14.6558 56.3982	0.0203 0.1505 1.1041 7.0212 29.8223	5 71 13.62 27.30 47 91 52.88	0 3352 0.9548 2.9402 7.6346 26.5759	94.29 86.38 72.70 52.09 47.12

(Cameron and Briggs, J. phys. Chem. 1901, **5**. 540.)

100 g. alcohol of 0.941 sp. gr. dissolve 1.2 g. NaHCO₃ at 15.5°.

100 g. glycerol dissolve 8 g. NaHCO₃ at 15.5°. (Ossendowski, Pharm. J. 1907, **79**. 575.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)
Insol. in methyl acetate (Naumann, B.

Insol. in methyl acetate (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1910, **43**. 314.)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

# Sodium dihydrogen tricarbonate, $Na_4H_2(CO_a)_3+3H_2O$ .

More sol. than NaHCO₃, less sol. than Na₂CO₃ in  $\rm H_2O$ . (Rose, Pogg. **34**. 160.) 100 pts.  $\rm H_2O$  dissolve, calculated as  $\rm 2Na_2O$ ,  $\rm 3CO_2$ —

at 0° "10° 12.63 pts. 60° 29.68 pts. 32.55 70° 15.50 " 20° 80° 35.8" 18.30 " 30° " 90° 38.63 - " 21.15 " 40° " 100° 41.59 " 23.95 " " 50° 26.78

(Poggiale, A. ch. (3) 8. 468.)

| Min. Trona, Urao. See Na₃H(CO₂)₂+ |2H₂O. 212

Trisodium hydrogen carbonate, Na₃H(CO₃)₂ +2H₂O

Sol. in H₂O.

True formula of "Trona" and "Urao." (Zepharovich, Zeit. Kryst. 13. 135; de Mondesir, C. R. 104. 1505.)

Sodium thorium carbonate, 3Na₂CO₃,  $Th(CO_8)_2 + 12H_2O$ . Decomp. by H₂O. (Cleve.)

Sodium uranyl carbonate, 2Na₂CO₃,  $(UO_2)CO_3$ .

Slowly sol. in H₂O. Solution sat. at 15° has sp. gr. = 1.161. (Anthon, Dingl. 156, 207.)

Sodium yttrium carbonate, Na₂CO₃, Y₂(CO₃)₈  $+4H_2O$ .

Ppt. Not decomp. by cold H₂O. (Cleve.)

Sodium zinc carbonate, 3Na₂O, 8ZnO, 11CO₂  $+8H_2O = 3Na_2CO_3$ ,  $8ZnCO_3 + 8H_2O$ .

Sl. decomp. by pure H₂O. (Wöhler.) Less easily decomp. by H2O than most double carbonates. (Deville, A. ch. (3) 33.

 $Na_2O$ , 3ZnO,  $4CO_2+3H_2O$ . (Kraut, Z. anorg. 1897, 13. 13.)

Sodium carbonate sulphite, Na₂CO₃, 2Na₂SO₃  $+21H_{2}O.$ 

Sol. in hot H₂O, sl. sol. in cold H₂O. (Johnson, J. Soc. Chem. Ind. 1895, 14. 271.)

#### Strontium carbonate, SrCO₃.

Sol. in 18,045 pts. H₂O at ordinary temp. (Fresenius.)

Sol. in 12,522 pts. H₂O at 15°. (Kremers. Pogg. 85. 247.)

Sol. in 33,000 pts. H₂O. (Bineau, C. R. 41. 511.)

Less sol. in H₂O than SrSO₄. (Dulong.) Sol. in 1536 pts. boiling H₂O. (Hepe, Edinb. Trans. 4. 5.)

Calculated from electrical conductivity of SrCO₃+Aq, SrCO₃ is sol. in 121,760 pts. H₂O at 8.8° and 91,468 pts. at 24.3° (Hollemann, Z. phys. Ch. 12. 130).

1 l. H₂O dissolves 11 mg. SrCO₃ at 18°.

(Kohlrausch and Rose, Z. phys. Ch. 12. 241.) "Solubility product" = 15.67 × 10-10 mol.

litre. (McCoy and Smith, J. Am. Chem. Soc. 1911, 33. 473.)

Sol. in 833 pts. H₂CO₃+Aq at 10°. (Gmelin.)

Sol. in 56,545 pts. H₂O containing NH₄OH and (NH₄)₂CO₈.

Quite sol. in NH4Cl+Aq or NH4NO3+Aq, but reprecipitated on addition of NH₄OH and  $(NH_4)_2CO_3+Aq$ . (Fresenius.)

Partially decomp. by boiling with aqueous solutions of K₂SO₄, Na₂SO₄, CaSO₄, (NH₄)₂SO₄, MgSO₄, Na₂HPO₄, (NH₄)₂HPO₄,  $K_2SO_3$ Na₂SO₂,  $(NH_4)_2SO_3$ Na₂B₄O₇,

Na₂AsO₂, K₂AsO₂, K₂C₂O₄, Na₂C₂O₄, NaF, and K₂CrO₄. Decomp. is complete with the

NH₄ salts. (Dulong, A. ch. 82. 286.) Sl. decomp. by  $Na_2SO_4$ , or  $K_2SO_4+Aq$ . (Persoz.)

Easily sol. in NH4 chloride, nitrate, succinate+Aq, but less so than BaCO₃. (Fresenius.) Sol. in ferric salts+Aq, with pptn. of Fe₂O₆H₆. Sol. in Na citrate+Aq. (Spiller.) Not decomp, by a mixture of 1 pt. H₂SO₄ and 6 pts. absolute alcohol, or by alcoholic solutions of tartaric, racemic, citric, or glacial acetic acids; immediately decomp. by HNO₈+absolute alcohol, or H₂C₂O₄+ abs. alcohol.

Solubility of SrCO₃ in NH₄Cl+Aq.

% NH ₄ Cl	% SrCOs
5.35 10 20	0.179 0.259 0.358

(Cantoni and Goguelia, Bull. Soc. 1905, (3) **33.** 13.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann,

B. 1904, 37. 3602.) Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.) Min. Strontianite.

#### Strontium hydrogen carbonate.

SrCO₈ is sol. in 850 pts. of a sat. solution of CO₂ in H₂O.

Strontium uranyl carbonate, SrO, 2UO₃, 2CO₂  $+16H_{2}O$ .

As Ba comp. (Blinkoff, Dissert. 1900.)

#### Terbium carbonate.

Ppt. Insol. in excess (NH₄)₂CO₃+Aq. (Potratz, C. N. 1905, **92.** 3.)

# Thallous carbonate, Tl₂CO₃.

100 pts. H₂O dissolve pts. Tl₂CO₃ (C=according to Crookes; L=according to Lamy) at----

15.5° 18° 62° 100° 100.8° 4.2 5.23 27.212.8522.4 pts. Tl₂CO₃.  $\mathbf{L}$ 

Insol. in absolute alcohol (L), and ether (C). Insol. in acetone and pyridine. (Naumann, B. 1904, **37.** 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

# Thallous carbonate, acid, Tl₂O, 2CO₂.

Rather easily sol. in cold H₂O. (Carstan-

TIHCO₂. (Giorgis, Gazz. ch. it. 1894, 24. 474-479.)

Thallous carbonate platinocyanide, Tl₂CO₂, Tl₂Pt(CN)₄.

Sl. sol. in hot, insol. in cold H₂O. (Friswell, Chem. Soc. (2) 9. 461.)

Thorium carbonate, basic, 2ThO₂, CO₂+ 3H₂O.

Insol. in CO₂+Aq, but sol. in excess of alkali carbonates+Aq, if conc.

Tin (stannous) carbonate, 2SnO, CO₂.

Easily decomp. on air; insol. in H₂O or H₂CO₃+Aq. (Deville, A. ch. (3) **35.** 448.)

Uranyl carbonate, basic,  $5(UO_2)(OH)_2$ ,  $3(UO_2)CO_3 + 6H_2O$ .

Ppt. (Seubert and Elten, Z. anorg. 1893, 4. 80.)

Ytterbium carbonate, basic, Yb(OH)CO₃+ H₂O.

Ppt. (Cleve, Z. anorg. 1902, 32, 146.)

Ytterbium carbonate,  $Yb_2(CO_3)_3+4H_2O$ . Ppt. (Cleve, Z. anorg. 1902, **32**, 146.)

Yttrium carbonate,  $Y_2(CO_3)_3 + 3H_2O$ .

Insol. in H₂O; very sl. sol. in H₂CO₃+Aq. Sol. in SO₂+Aq and all mineral acids. Sol. in NH, salts, and alkali carbonates+Aq to some extent. More sol. in  $(NH_4)_2CO_3+\Lambda q$ than in K₂CO₃+Aq. (Berlin.) More sol. in (NH₄)₂CO₃+Aq than cerium, but 5 or 6 times less sol. than glucinum carbonate. (Vauquelin.) Sol. in large excess of KHCO₃+Aq. (Rose.) Slowly sol. in NH₄ salts+Aq. (Berzelius.)

Zinc carbonates, basic, 8ZnO, CO₂+2H₂O; 5ZnO, 2CO₂+3, or 7H₂O; 3ZnO, CO₂+ H₂O; 11ZnO, 4CO₂+14H₂O; 14ZnO, H₂O; 11ZnO, 4CO₂+14H₂O; 14ZnO, 5CO₂+9H₂O; 2ZnO, CO₂+H₂O; 8ZnO,  $3CO_2 + 5H_2O$ , etc.

All ppts. formed from Zn salts and carbonates + Aq. Sol. in 2000-3000 pts. cold H₂O, separates out on heating and does not redissolve on cooling. (Schindler.) Sol. in 20,895 pts. H₂O at 15°. (Kremers, Pogg. **85.** 248.) Sol. in 44,600 pts. H₂O at ord. temp. (Fresenius.)

Sol. in 1428 pts. sat. H₂CO₃+Aq. (Lassaigne.) Sol. in 189 pts. H₂CO₃+Aq sat. at 4-6 atmos. (Wagner, Z. anal. 6. 107.) Easily sol. in KOH, NaOH, NH₄OH, (NH₄)₂CO₃+ Aq, and in acids. Somewhat sol. in alkali bicarbonates and NH₄ salts+Aq. (Fresenius.) Sol. in hot (Fuchs), also cold (Brett, 1837) NH₄Cl+Aq; less sol. in NH₄NO₂+Aq. (Brett.)

Sol. in all NH₄ salts + Aq excepting  $(NH_4)_2S$ +Aq. (Terreil, Bull. Soc. (2) 9. 441.)

Insol. in Na₂CO₈, or K₂CO₈+Aq. Sol. in ferric salts+Aq with pptn. of Fe₂O₅H₅. (Fuchs, 1831.)

The carbonates described by Boussingault, Wackenroder, Rose, and probably all salts hetween ZnO, CO2 and 5ZnO, 2CO2 are mixtures. (Kraut, Z. anorg. 1897, 13. 1-15.)

3ZnO, CO2+2H2O. Min. Zinc bloom, Hydrozincite.

ZnCO₃, 3ZnO₂H₂. Min. Auricalcite.

## Zinc carbonate, ZnCO₃.

1 l. H₂O at 15 dissolves 0.01 g.; 1 l. H₂O dissol es 1.64 x 10-4 mols, or 0.206 g. ZnCO₃ at 25°. (Ageno and Valla, Att. acc. Linc.

at 25. Agento And 1911, **20**, II. 706.)

1 1. 5.85% NaCl +Aq dissolves 0.0586 g;

11. 7.45% KCl +Aq dissolves 0.0477 g. ZnCO₁. (Essen, Gm.-K. 4, 1. 680.)

Sol. in acids, KOH+Aq, and NH₄ salts+ Ag.

Sol. in H₂CO₃+Aq.

# Solubility in various salts + Aq.

Solvent	g. ZnCO ₃ sol. in 1 l. of the solvent
10% NaNO ₈ +Aq	0.058981 0.149000
sat. NaNO ₃ +Aq 5% NaCl+Aq	0.021730
10% NaCl+Aq sat. NaCl+Aq	0 046564 0 130380
$10\% \text{ Na}_2\text{SO}_4 + \text{Aq}$ sat. Na $_2\text{SO}_4 + \text{Aq}$	0.009313 0.015521

(Ehlert, Z. Elektrochem. 1912, 18. 728.)

Insol. in liquid NH₈. (Franklin, Am. Ch.

J. 1898, 20. 830.)
Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329.)

Insol. in methyl acetate (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Min. Calamine, Smithsonite.

Calamine is sol. in NH₄OH+Aq only in the presence of NH₄ salts. (Brandhorst, Zeit. angew. Ch. 1904, 17. 513.)

 $+\frac{1}{2}H_2O$ . (Mikusch, Z. anorg. 1908, **56**. 366.)

+H₂O. (Belar, Zeit. Kryst. 1890, 17. 126.)

#### Zinc carbonate ammonia, ZnCO₃, NH₃.

Slowly decomp. by H₂O, but not on the air, or by boiling with alcohol. (Favre, A. ch. **(3) 10. 474.)** 

Zinc carbonate hydroxylamine, ZnCO₃, 2NH₈O.

Insol. in H₂O. Decomp. by acids. (Goldschmidt and Syngros, Z. anorg. 5. 129.)

Zirconium carbonate, 3ZrO₂, CO₂+6H₂O.

Decomp. by hot H₂O, all CO₂ being given off. (Hermann.)

Sol. in alkali carbonates + Aq.

Percarbonic acid. See Percarbonic acid.

Carbonic anhydride, CO₂. See Carbon dioxide.

# Carbonophosphoric acid.

 $(K_2HPO_4)_2$ Potassium carbonophosphate. 2CO₂, 2KHCO₃.

Known only in solution. (Barillé, C. R. 190**3**, **137**, 566.)

## Carbonyl bromide, COBr₂.

Decomp. by H₂O. (Besson, C. R. 1895, **120.** 192.)

#### Carbonyl platinous bromide, CO, PtBr₂.

Sol. in H₂O with almost instant decomp. Sol. in absolute alcohol. (Pullinger, Chem. Soc. **59.** 603.)

Quite easily sol. in hot C₆H₆, insol. in ligroine, and can be crystallized from CCl4. Very easily sol, in HBr+Aq. (Mylius and Förster, B. 24. 2432.)

# Carbonyl bromochloride, COClBr.

Decomp. by H₂O. (Besson.)

### Carbonyl chloride, COCl₂.

Phosgene. Cold H₂O dissolves 1-2 vols. COCl₂ gas with slow decomposition. Alcohol decomp, immediately. Immediately absorbed by KOH, or NH₄OH+Aq. Very sol. in glacial  $HC_2H_3O_2$ , benzene, and most liquid hydrocarbons. (Berthelot, Bull Soc. (2) 13. 14.) Sol. in SCl₂.

1 vol. AsCl₃ absorbs 10 vols. COCl₂.

# Dicarbonyl cuprous chloride, Cu₂Cl₂, 2CO+

Decomp. by air. (Jones, Am. Ch. J. 1899, **22.** 305.)

# Carbonyl platinous chloride, 2COCl₂, PtCl₂. Sl. deliquescent. Easily sol. in H₂O without decomp.; sl. sol. in alcohol. Almost insol.

in CCl₄. (Pullinger, Chem. Soc. **59.** 600.)

Monocarbonyl platinous chloride, CO, PtCl₂. Decomp. by H₂O and alcohol; sol. in hot CCl₄. (Schützenberger, A. ch. (4) **15.** 100.) Sol. in conc. HCl+Aq. (Mylius and Förster.)

# Dicarbonyl platinous chloride, 2CO, PtCl₂.

Decomp. by H2O and alcohol. Sol. in CCl4. (Schützenberger.)

Decomp. by conc. HCl+Aq into CO and CO, PtCl₂. (Mylius and Förster.)

# Sesquicarbonyl platinous chloride, 3CO,

Decomp. by H2O or alcohol. Much more sol. in CCl₄ than 2CO, PtCl₂.

# Carbonyl platinous iodide, CO, PtI₂.

Not hygroscopic. Insol. in, but slowly decomp. by, H2O. Easily sol. in benzene or ether, also in alcohol, which decomp. on warming; sol. in HI+Aq. (Mylius and Förster.)

#### Carbonyl platinous sulphide, CO, PtS.

Easily decomp. Insol. in ordinary solvents. (Mylius and Förster.)

# Carbonyl sulphide, COS.

H₂O absorbs 1 vol. COS.

Absorption of COS by H₂O at t°.

t°	Coefficient of absorption
0 10 20 30	1.333 0.835 0.561 0.403

(Winkler, Z. phys. Ch. 1906, **55.** 351.)

1 ccm. H₂O at 13.5° and 756 mm. pres. dissolves 0.8 ccm. COS angew. ch. 1901, **14.** 867.) (Hempel, Zeit.

I cem, of a hydrochloric acid solution of Cu₂Cl₂ absorbs about 0.2 ccm. COS. (Hempel.)

# Carbonyl ferrocyanhydric acid.

 $H_3$ Fe(CO)(CN)₅.

Very sol. in H₂O; decomp. on heating. (Müller, A. ch. (6) **17.** 94.)

#### Cobalt carbonyl ferrocyanide.

Sl. sol. in H₂O; very sol. in dil. HNO₃+Aq. (M.)

# Cupric carbonyl ferrocyanide,

 $Cu_3[Fe(CO)(CN)_5]_2$ .

Insol. in H₂O, H₂SO₄, or dil. HNO₃+A₀.  $(\mathbf{M}_{\cdot})$ 

#### Iron (ferric) carbonyl ferrocyanide. FeFeCO(CN)₅.

Insol. in H₂O. Sol. in H₂C₂O₄+Aq. Insol. in acetic, lactic, succinic, tartaric, and citric acids+Aq, but easily sol. in the neutral salts of those acids. Insol. in KCl, or KNO₃+Aq, but sensibly sol. in Na₂HPO₄+Aq. Insol even on warming in very dil. H2SO4, or H2PO4. +Aq. (Müller.)

# Potassium carbonyl ferrocyanide, $K_3Fe(CO)(CN)_5+3\frac{1}{2}H_2O$ .

100 pts. H₂O dissolve 148 pts. at 16°. (Müller, C. R. 104. 992.)

# Silver carbonyl ferrocyanide,

AgaFe(CO)(CN)6.

Insol. in H₂O; sl. sol. in dil. H₂SO₄, HCl, or HNOs+Aq; scarcely attacked by onc. HC₂H₃O₂+Aq. (Müller.)

#### Sodium carbonyl ferrocyanide, $Na_{\bullet}Fe(CO)(CN)_{\bullet}+6H_{2}O.$

Sol. in H₂O. (Müller.)

# Uranyl carbonyl ferrocyanide, $(UO_2)_3[FeCO(CN)_5]_2 + 5H_2O$ .

Sl. sol. in H₂O, but more easily if H₂O is acidified with HC₂H₃O₂.

## Cericotungstic acid.

Ammonium cericotungstate, 2(NH₄)₂O,  $Ce_2O_2$ ,  $16WO_3 + 2H_2O$ .

Insol. in H₂O, but decomp, by boiling therewith. (Smith, J. Am. Chem. Soc. 1904, 26. 1481.)

## Cerium, Ce.

Decomp. pure H₂O very slowly at ordinary temp. Not attacked by cold conc. H2SO4 or red fuming HNO₃. Sol. in dil.  $H_2SO_4 + \Lambda q$ , HNO₃+Aq, and cone. or dil. HCl+Aq. (Hillebrand and Norton, Pogg. **155**. 633.)

### Cerous bromide, CeBr₃.

Anhydrous. As the chloride. (Robinson.

Proc. Řoy. Soc. 37, 150.)

Sol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**, 4328.) Sol. in methyl acetate. (Naumann, B.

1909, **42.** 3790.)  $+xH_2O$ . Very deliquescent. (Jolin.)

Cerium gold bromide, CeBr₃, AuBr₃+8H₂O. Sce Bromaurate, cerium.

Cerium carbide, CeC₂.

Decomp. by fused alkali nitrates, chlorates, hydroxides and carbonates; and by conc. H₂SO₄ on heating. Insol. in conc. HNO₃; decomp. by H₂O and dil. acids. (Moissan, C. R. 1896, **122.** 359.)

CeC₃. Not attacked by hot conc. acids. (Delafontaine, J. B. 1865. 176.)

#### Cerous chloride, CeCl₃.

Anhydrous. Deliquescent. Sol. in H₂C with hissing and evolution of heat; sol. in alcohol.

Sol. in acetone. (Eidmann, C. C. 1899, IJ. 1614; Naumann, B. 1904, 37. 4328.)

Difficultly sol. in methyl acetate. (Nau-

mann, B. 1909, **42.** 3790.) +7H₂O. Insol. in NH₄OH+Aq. (Dennis, Z. anorg. 1894, 7. 260.)

+7½H₂O. Deliquescent. (Berzelius.) Decomp. by boiling with H₂O. Sol. in 1 pt. H₂O at ord. temp. and 3-4 pts. alcohol. 1905, 43. 322.) (Dumas.)

#### Ceric chloride.

Known only in solution, which decomposes by slight heat. (Berzelius.)

#### Cerous mercuric chloride.

Not deliquescent. (v. Bonsderff.) CeCl₂, 4HgCl₂+10H₂O. Permanent: easily soi. in H2O. (Jolin, Bull. Sec. (2) 21. 533.)

#### Cerium stannic chloride.

See Chlorostannate, cerium.

## Cerous chloride zinc iodide.

Sol, in H₂C and alcohol. (Holzmann, J. pr. 84. 76.)

#### Cerous fluoride, C. F.

Insol. ppt. +12H2O.

# Ceric fluoride, CeF:

Insoluble precipitate. (Berzelius.) +H₂O Insol. in H₂O. (Brauner, B. 14. 1944.)

Ceric cobaltous fluoride, 2CeF₄, CoF₂+7H₂O. Ppt. Easily decomp. by H₂O. (Rimbach, A. 1909, **368**. 107.)

Ceric cupric fluoride, 2CeF₄, CuF₂+7H₂O. Ppt. Decomp. by  $H_2O$ . (Rimbach, l. c.)

Ceric nickel fluoride, 2CeF₄, NiF₂+7H₂O.

Put. Decomp. by H₂O. (Rimbach, l. c.) Ceric potassium fluoride, 2CeF4, 3KF+2H2O. Insol. in H₂O. (Brauner, B. 14. 1944; 15.

109.) Could not be obtained pure. (Rimbach, l. c.)

Ceric zinc fluoride, 2CeF₄, ZnF₂+7H₂O.

Ppt. Decomp. by H₂O. (Rimbach, l. c.)

Ceroceric fluoride, 2CeF₃, CeF₄. Min. Fluocerite.

#### Cerium hydride, CeH₂.

Decomp. by acids. (Winkler, B. 24. 873.) CeH₃. Decomp. in moist air; decomp. by hot or cold H₂O; sol. in acids with evolution of H₂O. Decomp. by alkalis. (Muthmann, A. 1902, **325**, 266.)

# Cerous hydroxide, $Ce_2O_3$ , $xH_2O$ .

Easily sol. in acids. Insol. in excess of alkali hydroxides + Aq. Sol. in (NH₄)2CO₂+

100 ccm. of a solution in glycerine + Aq containing about 60% by vol. of glycerine contain 7.9 g. Ce₂O₃. (Müller, Z. anorg.

Exists in two modifications: one insol. in

cold HCl+Aq; the other sol. in cold HCl+Aq. (Brauner, C. N. 1895, 71. 283.)

# Ceric hydroxide, 2CeO₂, 3H₂O.

Sci. in HNO₂ or H₂SO₄; also in HCl+Aq, forming cerous chloride and free chlorine. Insol. in hydrofluoric, acetic, or formic acids+Aq. Somewhat sol. in dil. HNO₃, or HCl+Aq. (Ordway, Am. J. Sci. (2) 26. 205.) Insol. in NH₄OH, KOH, and NaOH+Aq. Sl. sol. in alkali carbonates+Aq. (Dumas.)

Sl. sol. in (NH₄)₂CO₃+Aq. (Ordway.) 100 ccm. of a solution in glycerine+Aq containing about 60% by vol. of glycerine contain 0.08 g. CeO₂. (Müller, Z. anorg. 1905, 43. 232.)

# Cerous io Side, CeI2.

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328.)  $+9H_2O$ . Very deliquescent and sol. in  $H_2O$ . (Lange, J. pr. 82. 134.) Sol. in alcohol.

#### Cerium nitride, CeN.

Decomp. by H₂O and alkali. Sol. in mineral acids with formation of cerous and ammonium salts. (Muthmann, A. 1902, **325**. 272.)

#### Cerous oxide, Ce2O3.

When ignited, insol. in HCl+Aq; when long digested with H₂SO₄, is sol. in HCl+Aq with addition of alcohol.

#### Ceric oxide, CeO₂.

When ignited, is only dissolved in traces, even on heating, by HCl or  $HNO_3+Aq$ . Sol. in conc.  $H_2SO_4$  when warmed. Sol. in the cold in a solution of KI in HCl+Aq (Bunsen), in a mixture of HCl and  $FeCl_2+Aq$ , or any reducing substance.

#### Cerium peroxide, Ce₄O₉.

Insol. in boiling conc. acids. Sol. in H₂SO₄ by long digestion. (Popp, A. **131**. 361.)

Probably does not exist. (Rammelsberg, Pogg. **108**. 40.)

Ce₂O₅. (Hermann, J. pr. 30. 184.)

Probably does not exist. (Rammelsberg.) CeO₈+xH₂O. Sol. in HCl+Aq. (Popp, A. 131. 361); (Lecoq de Boisbaudran, C. R. 100. 605.)

 $CeO_2 + H_2O_2$ , according to Cleve (Bull. Soc. (2) 43. 57.)

#### Cerium oxycarbide, CeC₂, 2CeO₂.

Stable in the air. Slowly attacked by cold  $H_2O$ . With hot  $H_2O$  and with acids, it gives unsat. hydrocarbons. (Sterba, C. R. 1902, 184. 1058.)

#### Cerium oxychloride, CeOCl.

Slightly attacked by hot conc. HCl+Aq. Slowly sol. in conc. HNO₂+Aq. (Wöhler.)

Easily sol. in dil. acids. (Didier, C. R. **101**. 882.)

Cerium oxychloride tungsten trioxide, CeOCl, WO₃.

(Didier, C. R. 102. 823.)

#### Cerium selenide.

Insol. in H₂O; difficultly sol. in acids. (Berzelius.)

#### Cerium silicide, CeSi₂.

Insol. in H₂O, by which it is acted upon only very slowly.
Sol. in HCl and HF+Aq with evolution of

Not attacked by alkalis+Aq or NH₄OH+

Aq. Insol. in organic solvents. (Sterba, C. R. 1902, 135. 170.)

#### Cerium silicide, Ce₂Si₃.

Insol. in acids. (Ullik, W. A. B. **52, 2.** 115.)

# Cerium disulphide, Ce₂S₄.

Not decomp. by cold H₂O.

Slowly sol. in cold dil. H₂SO₄, HCl and acetic acid. Rapidly sol. in warm dil. H₂SO₄, HCl and acetic acid with decomp. (Biltz, B. 1908, 41. 3342.)

#### Cerium sesquisulphide, Ce₂S₃.

Insol. in, and not decomp. by, H₂O, but easily decomp. by the weakest acids. (Mosander); (Didier, C. R. 100. 1461.)

#### Monochloramine, NH₂Cl.

Easily sol. in  $H_2Q$ . (Raschig. Ch. Z. 1907, 31. 926.)

#### Chlortetramine comps.

See Chlorotetramine comps.

# Metachlorantimonic acid, HSbCl₆ + 4½H₂O.

Hydroscopic. Sol. in  $H_2O$  with decomp.; sol. in alcohol, acetone, and acetic acid. (Weinland, Z. anorg. 1905, **44.** 43.)

# Metachlorantimonic acid ammonia, HSbCl₆, 2NH₃.

Sol. in H₂O and in alcohol. (Weinland and Schmid, Z. anorg. 1905, **44.** 59.)

#### Aluminum metachlorantimonate, Al(SbCl_a)_a +15H₂O.

Hydroscopic. Sol. in dil. HCl+Aq. (Weinland, B. 1903,

**36**. 254.)

Ammonium metachlorantimonate, NH SbCl +H₂O.

Hydroscopic.

Sol. in H2O. Solution decomp. slowly when cold, rapidly on warming.

Sol, in dil. HCl. (Weinland, B. 1903, 30:

Cadmium metachlorantimonate ammonia, Cd(SbCl₆)₂, 7NH₈.

Ppt. (Weinland and Schmid, Z. anorg. 1905, 44. 56.)

Calcium metachlorantimonate, Ca(SbCl₆)₂+ 9H₂O.

Hydroscopic.

Sol. in dil. HCl+Aq. (Weinland, B. 1903, **36.** 253.)

Chromium metachlorantimonate, Cr(SbCl_o)₈ +13H₂O.

Hydroscopic.

Sol. in dil. HCl+Aq. (Weinland.)

Chromium orthochlorantimonate; CrSbCl₈+ 10H₂O.

Hydroscopic.

Sol. in dil. HCl+Aq. (Weinland.)

Cupric metachlorantimonate ammonia, Cu(SbCl₆)₂, 5NH₃.

(Weinland and Schmid, Z. anorg. 1905, 44. 55.)

Glucinum metachlorantimonate, Gl(SbCl₆)₂ +10H₂O.

Very hydrescopic.

Sol. in dil. HCl. (Weinland, B. 1903, 36.

Iron (ferric) orthochlorantimonate, FeSbCl₈ +8H₂O.

Hydroscopic.

Can easily be cryst. from dil. HCl+Aq. (Weinland.)

Lithium metachlorantimonate, LiSbCl₆+ 4H₂O.

Very hydroscopic.

Sol. in dil. HCl+Aq. (Weinland, l. c.)

Magnesium pyrochlorantimonate, MgSbCl₇ +9H₂O.

Hydroscopic.

Sol. in dil. HCl+Aq. (Weinland.)

Nickel metachlorantimonate ammonia, Ni(SbCl₆)₂, 6NH₃.

Sol. in H₂O. (Weinland and Schmid, Z. anorg. 1905, 44. 57.)

Potassium metachlorantimonate, KSbCl₆+ H₂O.

Hydroscopic. Sol. in H₂O. Solution decomp. slowly when cold, rapidly when warmed.

Sol. in dil. HCl+Aq. (Weinland, B. 1903. **36.** 250.)

Rubidium metachlorantimonate, RbSbCls. Hydroscopic.

Sol, in dil. HCl+Aq. (Weinland.)

Silve: metachlorantimonate ammonia. AgSbCl₄, 2NH₂.

Decomp. by (Weinland and H₂O. Schmid.)

Zinc melachlorantimonate ammonia, ... Zn(SbCl₆)₂, 4NH₂.

(Weinland and Schmid.)

Chlorarsenious acid.

See Arsenyl chloride.

Chlorauric acid, HAuCl₄+4H₂O.

Sol. in H₂O. alcohol. and ether.

Sol. in POCl₃. (Walden, Z. anorg. 1900, 25. 212.)

Difficultly sol. in PCl₃. (Walden.)

Cryst. with 3H₂O as stated by Weber and Schettlander and not with 4H2O as stated by Thomsen. (Schmidt, C. C. 1906, II. 855.)

Chloraurates.

All chloraurates are easily sol. in H₂O and in alcohol. (v. Bonsdorff, 1829.)

Ammonium chloraurate, NH₄AuCl₄+H₂O.

Very easily sol. in H₂O.

+2H₂O. Very easily sol. in H₂O.

Barium chloraurate,  $Ba(AuCl_4)_2 + xH_2O$ .

Deliquescent in moist air. Sol. in H₂O and alcohol. (v. Bonsdorff, Pogg. 17. 261.)

Cadmium chloraurate.

Not deliquescent. Sol. in H₂O and alcohol. (v. Bonsdorff.)

Cæsium chloraurate, CsAuCl4.

100 pts. aqueous sat. solution contain at:

10°  $20^{\circ}$  $30^{\circ}$ 40° 50°

0.50.8 1.7 3.2 5.4 pts. anhydrous salt,

60° 70° 80° 90° 100°

8.2 12.0 16.3 21.7 27.5 pts. anhydrous salt. (Rosenbladt, B. 19, 2538.)

+½H2O. (Wells and Wheeler, Am. J. (3) **44.** 157.)

Calcium chloraurate,  $Ca(AuCl_4)_2 + 6H_2O$ .

Deliquescent. Sol. in H₂O and alcohol. (v. Bonsdorff.)

Cerium chloraurate, CeCl₃, AuCl₃+10H₂O.

Extremely deliquescent. Easily sol, in H₂O ad absolute alcohol. (Holzmann, C. C. and absolute alcohol. 1863, 206.) +13H₂O. (Jolin, Bull. Soc. (2) 21. 534.)

Cobalt chloraurate, Co(AuCl₄)₂+8H₂O. Sol. in H₂O and alcohol. (Topsoë.)

Didymium chloraurate, DiCl₃, AuCl₃+10H₂O. Very deliquescent. (Cleve, Bull. Soc. (2) 43. 361.)

2DiCl₃, 3AuCl₃+20H₂C. (Cleve.)

Gadolinium chloraurate, GdCl₃, AuCl₃+ 10H₂O.

Sol. in H₂O. (Benedicks, Z. anorg. 1900, **22.** 404.)

Lanthanum chloraurate, LaCl₃, AuCl₃+5H₂O.
Deliquescent in moist air. Sol. in H₂O.
(Cleve, B. 8. 128.)

#### Lithium chloraurate, LiAuCl4.

100 pts. aqueous solution contain at:

10° 20° 30° 40°

53.1 57.7 62.5 67.3 pts. anhydrous salt,

50° 60° 70° 80°

72.0 76.4 81.0 85.7 pts. anhydrous salt. (Rosenbladt.)

+2H₂O. (Antony and Lucchesi, Gazz. ch. it. 1890, **20**. 601.)

+4H₂O. Not stable.

Sol. in H₂O and alcohol. (Fasbender, C. C. **1894**, I. 409.)

Magnesium chloraurate,  $Mg(AuCl_4)_2+8H_2O$ . Somewhat deliquescent. Sol. in  $H_2O$  and alcohol. (Topsoë.)  $+12H_2O$ .

Manganese chloraurate,  $Mn(AuCl_4)_2 + 8H_2O$ .

Deliquescent. Sol. in  $H_2O$  and alcohol. (Topsoë.)  $+12\overline{H}_2O$ .

Nickel chloraurate, Ni(AuCl₄)₂+8H₂O.

Deliquescent. Sol. in  $H_2O$  and alcohol. (Topsoë.)

# Potassium chloraurate, KAuCl₄.

Anhydrous. Very stable. (Lainer, W. A. B. 99, 2b. 247.)

100 pts. solution in H2O contain at:

10° 20° 30°

27.7 38.2 48.7 pts. anhydrous salt,

40° 50° 60°

59.2 70.0 80.2 pts. anhydrous salt. (Rosenbladt, B. **19.** 2538.)

Sol. in H₂O and alcohol; insol. in ether. (Fasbender, C. C. 1894, I. 409.)

1 pt. is sol. in 4 pts. 98% alcohol. (Fasbender, C. C. 1894, II. 609.)  $+2H_2O$ . Efflorescent.

+½H₂O.

Praseodymium chloraurate, PrCl₃, AuCl₂+ 10H₂O.

Very sol. in H₂O; sol. in conc. HCl. (von Schule, Z. anorg. 1898, **18**. 354.)

Rubidium chloraurate, RbAuCl4.

100 pts. sat. RbAuCl₄+Aq contain at:

10° 20° 30° 40° 50°

4.6 9.0 13.4 17.7 22.2 pts. anhydrous salt,

60° 70° 80° 90° 100°

26.6 31.0 35.3 39.7 44.2 pts. anhydrous salt. (Rosenbladt.)

1 pt. sol. in 54 pts. 98% alcohol. Insol. in ether. (Fasbender, C. C. **1894**, II. 609.)

Samarium chloraurate, SmCl₃, AuCl₃+ 10H₂O.

Deliquescent. Easily sol. in H₂O. (Cleve, Bull. Soc. (2) **43**. 165.)

Scandium chloraurate,  $3 \mathrm{SeCl_3}$ ,  $2 \mathrm{AuCl_3} + 21 \mathrm{H_2O}$ .

Very deliquescent. (Crookes, Phil. Trans. 1910, **210**. A, 365.)

Silver chloraurate, AgAuCl₄.

Decomp. in the air. Decomp. by H₂O, HCl and NH₃. (Herrmann, B. 1894, **27**. 597.)

Sodium chloraurate, NaAuCl₄+2H₂O.

Easily sol. in H₂O and absolute alcohol. 100 pts. aqueous solution contain at:

10° 20° 30°

58.2 60.2 64.0 pts. anhydrous salt,

40° 50° 60°

69.4 77.5 90.0 pts. anhydrous salt. (Rosenbladt.)

Easily sol. in NaCl+Aq.

Easily sol. in H₂O, alcohol and ether. (Fasbender, C. C. **1894**, I. 409.)

# Strontium chloraurate.

Sol. in H₂O. (v. Bonsdorff.)

Thallium chloraurate.

(Carstanjen.)

Ytterbium chloraurate, YbCl₃, AuCl₈+9H₂(). Ppt. (Cleve, Z. anorg. 1902, **32.** 138.)

Yttrium chloraurate, YtCl₃, 2AuCl₃+16H₂O. Very sol. in H₂O. (Cleve.)

Zinc chloraurate, Zn(AuCl₄)₂+8H₂O.

Sol. in H₂O. (Topsoë.)

 $+12H_2O$ . Sol. in  $H_2O$  and alcohol. (v. Bonsdorff.)

# Chlorauricyanhydric acid.

Barium chlorauricyanide, Ba[Au(CN)₂Cl₂]₂+ 8H₂O.

Very sol. in H₂O or alcohol. (Lindbom, Lund Univ. Arsk. 12. No. 6.)

Potassium chlorauricyanide, KAu(CN), Clo+ H₂O.

Very sol. in H₂O or alcohol.

Strontium chlorauricyanide, Sr[Au(CN)2Cl2]2 +8H₂O.

Sol. in H₂O.

Zinc chlorauricyanide, Zn[Au(CN)₂Cl₂]₂+ 7H₂O.

Very sol. in H₂O.

## Chlorhydric acid, HCl.

Liquid. Miscible with liquid CO₂, and H₂S. Gas. Absorbed by H₂O with production of much heat.

H₂O absorbs 400-500 vols, at ord, temp and pressure or a little less than 1 pt. by weight (Dalton.) vol. H₂O absorbs 480 vols, at 0°; sp. gr. of sat solu-

tion is 1 2109. (Davy.)

tion is 1 2109. (Davy.)

1 vol H₂O absorbs 417 822 vols. at 20°, the vol. increasing to 1.4438 vols.; 1 vol. of HCl+Aq then contains 311 vols. HCl, has sp. gr. 1.1958 and contains 40.39% HCl by weight. (Thomson, 1831.)

1 vol H₂O absorbs 464 vols. and sat. solution has 1.21 sp. gr and contains 42.4% HCl by weight. (Wittstin.)

H₂O sot. at 0° contains 480 times its vol. of HCl and sp. gr. = 1.2109; sat. at ord. temp. contains 38 3% of its weight in HCl, and sp. gr. = 1.192. (Berzelius.)

1 vol. H₂O absorbs V vols. HCl at t° and 760 mm pressure, and the liquid formed has the given sp. gr., and contains the given per cent HCl.

and contains the given per cent HCl.

t°	V	Sp. gr.	% HCl
0	525 2	1 2257	45 148
	494 7	1 2265	44 361
8	480 3	1 2185	43 828
12	471 3	1 2148	43 277
14	462 4	1 2074	42 829
18	451 2	1 2064	12.344
18 25	450 7	1 2056	42.283
23	435 0	1 2014	41 536

(Deicke, Pogg. 119, 156.)

At 760 mm. pressure 1 g. H₂O absorbs g. HCl at t°.

t°	g. HCl	t°	g HCl	t°	g. HCl
0 2	0.825 0.814	22 24	0.710 0.700	44 46	0.618 0.611
4 6 8	$0.804 \\ 0.793 \\ 0.783$	26 28 30	$egin{array}{c} 0.691 \ 0.682 \ 0.673 \ \end{array}$	48 50 52	0.603 0.596 0.589
10 12	0.772 0.762	32 34	0.665 0.657	54 56	0.582 0.575
14 16 18•	0.752 0.742 0.731	36 38 40	0.649 0.641 0.633	58 60	0.568 0.561
20	0.721	42	0.626		

(Roscoe and Dittmar.)

Conc. HCl+Aq loses HCl, and dil. HCl+ Ag loses H₂O on warming, until an acid of constant composition is formed, containing 20.18% HCl, with a sp. gr. of 1.101 at 15°, which can be distilled unchanged at 110°. (Bineau, A. ch. (3) 7. 257.)

The above is true if barometer is at 760 mm.. but the composition changes with the

pressure as follows--

Mm. Hg	% нсі	Mm. Hg.	% HCl	Mm. Hg	% HCl
50	20.2	800	20 2	1700	18.8
100	22.9	900	19.9	1800	18.7
200	22.3	1000	19.7	1900	18.6
300	21.8	1100	19.5	2000	18.5
400	21.4	1200	19.4	2100	18.4
500	21.1	1300	19.3	2200	18.3
600	20.7	1400	19.1	2300	18.2
700	20.4	1500	19.0	2400	18.1
760	20.24	1600	18.9	2500	18.0

(Roscoe and Dittmar.)

Conc. HCl+Aq gradually gives off HCl on the air until it has a sp. gr. 1.128 at 15°, and contains  $25.2^{c_l}_{c_l}$  HCl. (Bineau, l. c.)

According to Roscoe and Dittmar, this depends on the temperature. If a current of air is passed through HCl+Aq, acid or water is given off according as the acid is strong or weak, until an acid of constant composition for a given temperature is formed, as follows-

Temp.	% HCI	Temp.	% HCI	Temp.	% HCl
0°	25 0	35°	23.9	70°	22.6
5 10	$ \begin{array}{c c} 24.9 \\ 24.7 \end{array} $	40 45	$ \begin{array}{c c} 23.8 \\ 23.6 \end{array} $	75 80	$\begin{array}{c} 22.3 \\ 22.0 \end{array}$
$\begin{array}{c c} 15 \\ 20 \end{array}$	24.6 24.4	50 55	$23.4 \\ 23.2$	85 90	21.7 21.4
$\frac{25}{30}$	24.3 24.1	60 65	$\frac{23.0}{22.8}$	95 100	$21.1 \\ 20.7$

From the above it is seen that the acid which distils unchanged at a given pressure. that is, boils at a certain constant temperature, is identical with the acid which undergoes no change in composition by a current of dry air at the same temperature, and under the ordinary pressure, thus-

Mm. Hg	Bpt.	% HCl	Temp. of air current	% HCI
100 200 300 380 490 620	61–62° 76–77 84–85 91 97 103	22.8 22.1 21.7 21.3 20.9 20.6	62° 77 85 91 98	22.9 22.2 21.7 21.4 21.1

(Roscoe and Dittmar.)

Solubility of HCl in H₂O at 0° under different degrees of pressure. P=partial pressure in mn Hg, i. e., total pressure minus the tension of aqueous vapour at the given temp.; G=grammes of HCl dissolved in 1 g. H₂O at the pressure P and 0° temp.

P	G	P	G
60	0.613	350	0.751
70	0.628	400	0.763
80	0.640	450	0.772
90	0.649	500	0.782
100	0.657	550	0.791
110	0.664	600	0.800
120	Q.670	650	0.808
130	0.676	700	0.817
140	0.681	750	0.824
150	0.686	800	0.831
175	0₩697	900	0.844
200	0.707	1000	0.856
225	0.716	1100	0.869
250	0.724	1200	0.882
275	0.732	1300	0.895
300	0.738		

(Roscoe and Dittmar, A. 112. 334.)

1 vol.  $\rm H_2O$  absorbs 480 vols. HCl at 15° to form a solution containing 42.85% HCl with a sp. gr. of 1.215. (Hager.)

Solubility of HCl at low temperatures, and 760 mm. pressure.

		•	
t° .	Pts. HCl in 1 pt. H ₂ O	t°	Pts. HCl in 1 pt. H ₂ O
0 - 5 - 10 - 15 - 17	0.842 0.864 0.898 0.933 0.949	$   \begin{array}{r}     -18 \\     -19 \\     -20 \\     -21 \\     -24   \end{array} $	0.957 0.965 0.974 0.983 1.012

(Roozeboom, R. t. c. 1884, **3.** 79.)

Solubility in H₂O at t°.

t°	%HCl
	61.65 61.76 62.27 62.90 63.21 64.19 64.70
10 5 0 5 10 50 20	65.18 65.48 65.85 66.44 66.71 67.29 67.65

(Rupert, J. Am. Chem. Soc. 1909, 31. 860.)

Sn	œ	ωf	HC	+Aa.

Sp. gr.	% HCl	Sp. gr.	% HCI	Sp. gr.	% HCl
1.203	40.66	1.1285	27.21	1.0960	20.44
1.179	37.00	1.1197	25.52	1.0902	19.47
1.162	33.95	1.1127	24.03	1.0860	18.59
1.149	31.35	1.1060	22.70	1.0820	17.79
1.139	29.13	1.1008	21.51	1.0780	17 05

(Thomson, in his System, 2, 189.)

Sp. gr. of HCl+Aq.

Sp. gr.	% HCI	Sp. gr.	% HCl
1.21	42 43	1 10	20 20 -
$rac{1}{1}, rac{20}{19}$	40 80 38 38	1 09 1.08	$\frac{18}{16} \frac{18}{16}$
$\frac{1.18}{1.17}$	36 36 34 34	1 07	· 14 14 12 12
$rac{1.16}{1.15}$	32 32 30 30	1 05	$\frac{10}{8} \frac{10}{08}$
1.14 1.13	28 28 26 26	1 03 1 02	6 06 4 01
1.12	24 24 20 30	1 01	2 02

(Edm. Davy.)

Sp. gr. of HCl+Aq.

Sp. gr.	% HCl	Bpt	Sp. gr.	% HCl	Bpt.
1.199 1.181	34 01	490	1 094	16 08	111°
1.166	31 09 28 29	65 76	1 075 1 064	$\frac{13.16}{11.16}$	107
1 154 1.144	26 57 24 84	87 100	1 047 1 035	8 62 6 92	105 104
1.136 1.127	$\begin{array}{cccc} 23 & 25 \\ 21 & 06 \end{array}$	103 105	1 018 1 009	3 52 1 86	102 101
1.121	20.74	109			

(Kirwan and Dalton.)

Sp gr. of HCl+Aq at 15°.

e _b HCl	Sp. gr.	% HCI	Sp. gr.
2 22 3 80	1 0103	29 72	1 1504
6 26	1 0189 1 0310	31.50 34.21	1 1588 1 <b>47</b> 30
11.02 15.20	1.0557 1.0751	36 63 38 67	1. <b>178</b> 44 1.1938
18 67 20 91	1.0912 1.1048	40 51 41 72	1 2021 1 2074
23.72 25.96	1 1196 1 1308	43 09	1 2124

(Kolb, C. R. 74, 337.)

Sp. gr. of HCl+Aq at 15°.

op. gr. of the 17 Aq at 15.						
Sp. gr.	4. HCl	Sp. gr.	% HCl	Sp. gr.	% HCl	
1 2000	40 777	1 1620	32 621	1 1206	24 466	
1 1982	40 369	1 1599	32 213	1 1185	24 058	
1.1964 $1.1946$ $1.1928$	39 961	1 1578	31.805	1 1164	23 650	
	39 554	1.1557	31.398	1 1143	23 242	
	39 146	1.1536	30.990	1 1123	22 834	
1.1910 $1.1893$ $1.1875$	38.738	1 1515	30.582	1 1102	22 <b>42</b> 6	
	38.330	1.1494	30.174	1 1082	22 019	
	37.923	1 1473	29.767	1 1061	21 611	
1.1859 1.1846 1.1822	37 516 37 108 36 700	1.1452 1.1431	$\begin{bmatrix} 29.359 \\ 28.951 \end{bmatrix}$	1 1041 1 1020	21 203 20 796	
$\frac{1}{1}  \frac{1802}{1782}$	36 292 35 884	1.1410 1.1389 1.1369	$egin{array}{c} 28.544 \ 28.136 \ 27.728 \ \hline \end{array}$	1 1000 1.0980 1.0960	20.288 19.980 19.572	
1.1762	35 476	1.1349	$egin{array}{c} 27.321 \ 26.913 \ 26.505 \ \end{array}$	1.0939	19.165	
1.1741	35 068	1.1328		1.0919	18.757	
1.1721	34 660	1.1308		1.0899	18.349	
1.1701	34 . 252	1.1287	26 098	1.0879	17. 941	
1.1681	33 . 845	1.1267	25.690	1.0859	17. 534	
1.1661	33 . 437	1.1247	25.282	1.0838	17. 126	
1.1641	33.029	1.1226	24.874	1.0818	16.718	

Sp. gr. of HGl+Aq at 15°-Continued.					
Sp. gr.	% HCl	Sp. gr.	% HCI	Sp. er.	% HCI
1.0798 1.0778 1.0758 1.0738 1.0718 1.0697 1.0657 1.0637 1.0637 1.0577 1.0557 1.0557	16.810 15.902 15.494 15.087 14.679 14.271 13.363 13.456 13.409 12.641 12.233 11.825 11.418	1.0517 4.0497 1.0477 1.0457 1.0437 1.0417 1.0397 1.0357 1.0357 1.0318 1.0298 1.0279	19.602 10 194 9 768 9 379 8 971 8 563 8 155 7 747 7 340 6 932 6 524 6 116 5 709	1.0259 1.0239 1.0220 1.0200 1.0180 1.0160 1.0140 1.0120 1.0100 1.0080 1.0060 1.0040 1.0020	5.301 1.893 4.486 4.075 3.370* 3.262 2.854 2.447 2.039 1.631 1.224 0.816 0.408

(Ure, Handworterbuch.)

Sp. gr. of HCl+Aq. U=sp. gr. at 15.55° according to Ure; K=sp. gr. at 15° according to Kremers.

%HCI	U	K	%НС	U	K
1	1.005	1.005	22	1 109	1.111
2	1.010	1 010	23	1 114	1 116
3	1.015	1.015	24	1 119	1 121
4	1.020	1 020	25	1 124	1.126
5	1.025	1 025	26	1 128	1.131
<b>6</b>	1,030	1.030	27	1 133	1.136
<b>7</b>	1.034	1.034	28	1 138	1.141
8	1.039	1.039	29	1 143	1.146
9	1.044	1.044	30	1 147	1.151
10 11 12 13 14	1.048 1.053 1.059 1.064 1.069	1.048 1.053 1.059 1.065 1.070	31 32 33 34 35	1 153 1 157 1 163 1 169 1 174	1.157 1.163 1.169 1.179
15	1.074	1.075	36	1 179	
16	1.079	1.080	37	1 183	
17	1.084	1.085	38	1 188	
18	1.089	1.090	39	1 193	
19	1.094	1.095	40	1 197	
20	1.098	1.100	41	1 203	
21	1.104	1.105			

(Calculated by Gerlach, Z. anal. 8. 292.)

Sp. gr. of HCl+Aq at 15° (H₂O at  $0^{\circ} = 1$ ).

	<u> </u>		•		
<del>%</del> 1	Sp. gr.	HČI	Sp. gr.	o‰ HCi	Sp. gr.
0	0.9992	15	1.07539	30	1.15079
1	1.00503	16	1.08042	31	1.15581
<b>2</b>	1.01005	17	1.08545	32	1.16084
3	1.01508	18	1.09047	33	1.16587
4	1.02010	19	1.09550	34	1.17089
5	1.02513	20	1.10052	35	1.17592
6	1.03016	21	1.10555	36	1.18095
7	1.03518	22	1.11058	37	1.18597
8	1.04021	23	1.11560	38	1.191
9	1.04524	24	1.12063	39	1.196
10	1.05026	25	1.12566	40	1.200
11	1.05529	26	1.13068	41	1.204
12	1.06031	27	1.13571	42	1.208
13	1.06534	28	1.14074	43	1.212
14	1.07037	29	1.14516	١ ا	

(Kolb, recalculated by Gerlach, Z. anal. 27.

Sp. gr. of HCl+Aq at 15°.

- # [%] 1	Sp. gr.	HČI	Sp. gr.	HČI	8p. gr.
5	1.0244	20	1 0982	35	1.1739
10	1.0488	25	1.1234	40	1.1969
15	,1.0733	30	1.1488	41	1.2013

(Hager, Adjumenta varia, Leipzig, 1876.)

Sp. gr. of HCl+Aq at 15° (H₂O at 15°=1).

% HCl	Sp. gr.	%нсі	Sp. gr.
44.345 43.136 41.901 41.212 39.831 37.596	1.21479 1.21076 1.20430 1.20204 1.19703 1.18687	34.464 25.260 19.688 14.788 6.382	1.17138 1.12479 1.09675 1.07255 1.03150

(Pickering, B. 26. 277.)

Most accurate table.

Sp. gr. of HCl+Aq at  $15^{\circ}$  ( $H_2O$  at  $4^{\circ}=1$ ).

Sp. gr.	% HCl	Kg. HCl in 1 l.	Sp. gr.	% HCI	Kg.HCl in 1 l.
1.000	0.16	0.016	1.105	20.97	0.232
1.005	1.15	0.012	1.110	21.92	0.243
1.010	2.14	0.022	1.115	22.86	0.255
1.015	3.12	0.032	1.120	23.82	0.267
1.020	4.13	0.042	1.125	24.78	0.278
1.025	5.15	0.053	1.130	25.75	0.291
1.030	6.15	0.064	1.135	26.70	0.303
1.635	7.15	0.074	1.140	27.66	0.315
1.040	8.16	0.085	1.145	28.61	0.322
1.045	9.16	0.096	1.150	29.57	0.340
1.050	10.17	0.107	1.155	30.55	0.353
1.055	11.18	0.118	1.160	31.52	0.366
1.060	12.19	0.129	1.165	32.49	0.379
1.065	13.19	0.141	1.170	33.46	0.392
1.070	14.17	0.152	1.175	34.42	0.404
1.075	15.16	0.163	1.180	35,39	0.418
1.080	16.15	0.174	1.185	36.31	Q.430
1.085	17.13	0.186	1.190	37. <b>23</b>	0.443
1.090	18.11	0.197	1.195	38.16	0.456
1.095	19.06	0.209	1.200	39.11	0.469
1.100	20.01	0.220	• • • •		·
				787	

(Lunge and Marchlewski, Z. angew. Ch. 1891. 133.)

Sp. gr. of HCl+Aq at room temp,

% HCl	Sp. gr.
8.14	1.0370
16.125	1.0843
23.045	1.1138

(Wagner, W. Ann. 1883, 18. 264.)

N.W	CHIMITIDATE ACID						
	Relation of sp	Relation of sp. gr. of HCl+Aq at t° to sp. gr. at 19.5° = 1.0.					
t°	8.9 % HCl sp. gr. = 1.0401	16 6 % HCl sp. gr. =1.0704	25.5 % HCl sp. gr. = 1.101	35,8%, HCl sp. gr. =1.133	46.6 % HCl sp. gr. =1.1608		
0 19.5 40 60 80 100	0.99557 1.00000 1.00707 1.01588 1.02639 1.03855	0.99379 1.00000 1.00781 1.01665 1.02676 1.03801	0.99221 1.00000 1.00877 1.01794 1.02791 1.03867	0.99079 1.00000 1.00990 1.01969 1.02986 1.04059	0.98982 1.00000 1.01063 1.02180		

(Kremers, Pogg. 108. 115.)

Sp. gr. of HCl+Aq.

G. equivalents HCl per liter.	t°	Sp. gr. t°/t°
0.005036 0.01096 0.2008 0.04990 0.09885 0.19641 0.29247 0.48278 0.4994 4.994	17.111 17.125 17.148 17.138 17.133 17.162 17.147 17.140 17.28 17.35	1.0000943 1.0001892 1.0003775 1.000935 1.001843 1.003633 1.005382 1.008811 1.00908 1.08390

(Kohlrausch, W. Ann. 1894, 53. 28.)

Sp. gr. of a normal solution of HCl+Aq at 18°/4°=1.0165. (Loomis, W. Ann. 1896, **60.** 550.)

Sp. gr. of HCl+Aq at 19.5°, when p =per cent strength of solution; d=observed density; w=volume conc. in grams

y <b>D</b> .	d.	w
36.0* 29.97 24.35 18.55 12.22 *0.148 6.559 3.540 5.345	1.1818 1.1511 1.1207 1.0910 1.0587 1.0433 1.0305 1.0159 1.0246	0.4255 0.3450 0.2729 0.2024 0.1294 0.0954 0.0676 0.0360 0.0548
1.356	1.0051	0.0136

(Barnes, J. Phys. Chem. 1898, 2. 546.)

Sp. gr. of HCl+Aq at 18°/4°.

g. HCl in 100 g. of solution	Sp. gr.
0·12149	0.99928
0.060757	0 99900
0.040609	0.99887
0.030328	0 99881

(Jahn, Z. phys. Ch. 1900, 33. 567.)

Sp. gr. of HCl+Aq at 20°.

Normality of HCl+Aq.	% HCl.	Sp. gr.
8.42	27.10	1.1336
5.784	19.30	1.0936
3.77	12.94	1.0618
2.031	7.17	1.0334
1.588	5.65	1.0261
1.138	4.05	1.0187
0.523	1.90	1.0076

(Forehheimer, Z. phys. Ch. 1900, 34. 28.)

 $\begin{array}{cccccccc} M & 0.25 & 0.50 & 0.75 & 1.0 \\ \mathrm{Sp.~gr.} & 1.00425 & 1.00849 & 1.01264 & 1.01749 \end{array}$ 

M 1.5 2.0 Sp. gr. 1.02542 1.03414 (Jones and Pearce, Am. Ch. J. 1907, **38.** 730.)

HCl is not absorbed by conc. H₂SO₄+Aq, but in large amounts by anhydrous H₂SO₄. (Aimé.)

Absorption of HCl by H₂SO₄+Aq.

Temp. =  $17^{\circ}$ .

Sp. gr.	g. p	er l.	g. per 100 g.	
	HCI	H ₂ SO ₄	HCl	H ₂ SO ₄
1.211 1.220 1.220 1.235 1.260 1.305 1.355 1.430	517.8 487.3 478.8 455.3 418.0 371.4 306.6 215.3	22.7 58.0 99.3 161.7 273.2 417.7 638.2	42.7 39.9 39.2 36.9 33.2 28.5 22.6 15.0	1.86 4.75 8.04 12.8 20.9 30.8 44.6
1.545 1.580 1.660 1.735 1.815	96.7 51.3 10.3 1.89 1.24	917.6 1033.5 1224.0 1344.9 1615.3	6.26 3.25 0.62 0.11 0.068	59.4 65.4 73.7 77.5 89.0

Absorption of	of HC	by	H ₂ SO ₄ +Aq-Co	nt.
	Ten	າກະ	=40°	

Sp. gr.	g. į	oer l. 💮 🦖	g. per 100 g	
, p. gr.	HCl	H ₂ SO ₄	HČI	H ₂ SO ₄
1.185 1.195 1.210 1.255 1.255 1.340 1.400 1.520 1.575 1.650	421 4 416 4 392 1 346 3 325 4 247 4 161 6 50 9 18 5	42.2 70.0 107.7 211.2 236.3 383.7 619.4 929.3 1046.0	35.6 34.8 32.4 27.6 25.9 18.5 11.5 3.35	3.56 5.86 8.90 16.8 18.8 28.6 44.2 61.1 66.4
1.725 1.755 1.770	2.9 1.4 0.57 0.52	1207.6 1370.5 1428.4 1478.4	0.17 0.081 0.032 0.029	73.2 79.4 81.4 83.5

### Temp. $=70^{\circ}$ .

Sp. gr.	g. 1	per 1.	g. per 100 g.		
. P. G.	HCl	H ₂ SO ₄	HCl	H2SO4	
1.145	374.1	18.4	32.7	1 61	
1.150	357.3	38.9	31.1	3.38	
1.160	353.8	55.7	30.5	4.80	
1.180	341.3	93.6	28.9	7.93	
1.225	277.7	231.9	22.8	18.9	
1.230	274.3	246.4	22.3	20.0	
1.315	173.7	476.7	13.2	36.2	
1.380	96.5	661.8	6.99	48.0	
1.510	23 6	946.1	1 56	62.7	
1.560	8.4	1055.0	0.54	67.6	
1.700	0.86	1371.3	0.05	80.7	
1.745	0.62	1448.2	0.035	83.0	
1.745	0.57	1455.2	$0.03^{\circ}_{2}$	83.4	

(Coppadoro, Gazz. ch. it. 1910, 39. II, 626.)

100 pts. alcohol of 36° B absorb 68 pts. HCl at 12.5°. (Boullay.)

Alcohol of 0.836 sp. gr. dissolves 327 vols. HCl at 17.5° and 758 mm. pressure, and the solution has sp. gr.=1.005. (Pierre, A. ch. (3) 31. 135.)

Solubility of HCl in methyl alcohol (absolute)

at t°.					
t°	% HCl	t°	% HCl		
$-10.3 \\ 0$	54.6 51.3	18 31.7	46.9 43		

(de Bruyn, R. t. c. 11. 112.)

Solubility of HCl in ethyl alcohol (absolute) at t°.

t°	% HCl	t°	% нсі
$egin{array}{c} 0 \ 6.5 \ 11.5 \end{array}$	45.4	19.2	41
	44.2	23.5.	40.2
	42.7	32.0	38.1

(de Bruyn, l.c.)

Solubility of HCl in ether at t° and 760 mm.

t t	% HCl	∬ t°	% HCI
$-9.2^{6}$ $-5$ $0$ $+5$ $10$	37.51 37.0 35.6 33.1 30.35	15 20 25 30	27.62 24.9 22.18 19.47

(Schuncke, Z. phys. Ch. 1894, 14. 386.)

Sol. in glacial HC₂H₃O₂, ether, hexane, bonzene, xylene, etc.

Oil of turpentine absorbs 50% HCl. (Thénard.)

Oil of turpentine absorbs 163 vols. HCl at 22° and 724 mm.; isoterebenthene absorbs 34% at 24° and 724 mm.; metaterebenthene absorbs 17.7% at 24° and 724 mm. (Berthelot.)

Oil of lavender absorbs 68.7 vols. at 24°.

(Thénard.)
Oil of lavender absorbs 210 vols. without being saturated; oil of rosemary absorbs 218 vols. at 22°; sol. in 0.4 vol. petroleum.

(Saussure.) Absorbed by caprylic alcohol. (Bouis.) Fuming HCl+Aq is sol. in glycerine and miscible with conc.  $HC_2H_3O_2$ .

# Solubility of HCl in phenol+Aq at 12°.

Comp. of H ₂ O layer		Ccmp. of phenol layer		
4 HCl	% phenol	% на	% phenol	
0 3.1 6.6 8.0 10.7	7.45 6.6 .5.3 5.1 4.8	$0 \\ 0.09 \\ 0.2 \\ 0.36 \\ 0.52$	72 78 80.3 82.6 84.5	

Composition of solution in contact with solid phenol.

% H₂O	% HCl	% phenol
11.22 14.98 84.5 80.38 72.43 60.25	0 C.52 10.7 15.64 24.37 36.25	88.78 84.5 4.8 3.98 3.2

(Schreinemakers, Z. phys. Ch. 1912, 79. 553.)

+H₂O. F.-pt.-15.35°.

Very sol. in  $H_2O$  but only slightly sol. in HCl. (Rupert, J. Am. Chem. Soc. 1909, **31.** 866.)

+2H₂O. M.-pt.-17.4°

+3H₂O. M.-pt. -24.8°. (Pickering, B. 1893, **26**. 280.)

The composition of the hydrates formed by HCl at different dilutions is calculated

t. produced by HCl, and of the conductity and sp. gr. of HCl+Aq. (Jones, Am. Ch. J. 1905, **34.** 323.)

Chlorhydric cyanhydric acid, 3HCl, 2HCN.

Decomp. by HD or alcohol; sol. in HC₂H₃O₂. Insol. in ether, chloroform, or

acetic ether. (Claisen, B. 16. 309.) HCl, HCN. Sol. in H₂O, absolute alcohol, HC₂H₃O₂, and CHCl₃, with decomp.; decomp. is especially rapid in H₂O. (Gautier, A. ch. (4) 17. 130.)

# Chloric acid, HClO₃.

Known only in aqueous solution, which can be concentrated in vacuo to a sp. gr. of 1.282 at 14.2°, and then contains 40.10% HClOs, corresponding to HClO₃+7H₂O; if left longer in vacuo over H2SO4 an acid corresponding to HClO₃+4½H₂O is obtained. Aqueous solution of HClO₃ decomp. at 40°. (Kämmerer, Pogg. 138. 390.)

#### Chlorates.

All chlorates except mercurous chlorate are sol. in H2O; most of them are deliquescent; many are sol. in alcohol.

# Aluminum chlorate, $Al(ClO_8)_3 + 6H_2O$ .

Very hygroscopic. (Dobroserdow, C. C.

1904, II. 177.) +9H₂O. Very sol. in cold but much less

#### Ammonium chlorate, NH₄ClO₈.

Easily sol. in H2O; less sol. in alcohol. Much less sol. in H₂O at 0° than NaClO₃. (Storer.)

Very sl. sol. in absolute alcohol. (Wächter, J. pr. **30.** 321.)

# Barium chlorate, $Ba(ClO_3)_2 + H_2O$ .

Sol. in 4 pts. cold, and less hot H₂O. (Chevenix.)

100 pts. H₂O dissolve at: 0° 20° 40° 60 80° 100°

22.8 37.0 52.1 77.5 98.0 126.4 pts. Ba(ClO₃)₂.

100 grams sat. Ba(ClO₃)₂+Aq at t° contain grams anhydrous Ba(ClO₃)₂.

7/4			
<b>t°</b>	Grams Ba(ClO ₃ ) ₂	t°	Grams Ba(ClO2)2
Eutertic point2.749 ±0.004 0 +10 20 25 30 40	15.28 16.90 21.3 25.26 27.53 29.43 33.16	50 60 70 80 90 99.1 *104.6	36.69 40.05 43.04 45.90 48.70 51.17 52.67

^{*}  $104.6^{\circ}$  is bpt. at  $740 \text{ mm. pressure} = 105.0^{\circ}$ at 760 mm. pressure.

(Anschütz, Z. phys. Ch. 1906, 56. 238.)

Solubility	of	Ba(ClO	*) ₂	in	H ₂ O.
------------	----	--------	-----------------	----	-------------------

t°	g. Ba(ClO ₃ ) ₂ in 190 g. H ₂ O	Sp. gr.
0	25.5	1.195
20	39.3	1,274
40	55.9	1.355
60	74.1	1.433
80	92.1	1.508
100	113.2	1.580
105.6 *	120.	1.600

* Bpt. of sat. solution.

(Carlson, Dissert. 1910.)

Only slight traces dissolve in absolute alcohol. (Wächter, J. pr. 30. 334.)

Sol. in acetone. (Eidmann, C. C. 1899, II.

Difficultly sol, in acctone. (Naumann, B. 1904, 37. 4328.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethylacet ate (Naumann, B. 1910, 43. 314.)

#### Bismuth chlorate.

Known only in solution, which decomp. on evaporation.

## Cadmium chlorate, $Cd(ClO_3)_2 + 2H_2O$ .

Very deliquescent; sol. in H₂O and alcohol. * Melts in crystal H₂O at 80°. (Wächter, J. pr. 30. 321.)

Solubility in H₂O.

Sat. solution contains at:

$$\begin{array}{ccccc} -20^{\circ} & -15^{\circ} & 0^{\circ} & +18^{\circ} \\ 72.18 & 72.53 & 74.95 & 76.36 \\ 49^{\circ} & 65^{\circ} \\ 80.08 & 82.95\% \ \mathrm{Cd}(\mathrm{ClO_3})_2. \end{array}$$

gr. of solution containing 76.36%  $Cd(ClO_3)_2$  at  $18^\circ = 2.284$ . (Meusser, B. 1902, 35. 1422.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Cadmium chlorate ammonia, Cd(ClO₃)₂, 6NH₃.

Ppt. (Ephraim, B. 1915, 48. 49.)

# Cæsium chlorate, CsClOx.

100 g. H₂O dissolve at:

O٥ 8° 19.8° 30° 42.2° 2.46 3.506.289.5314.94 50°  $99^{\circ}$ 19.40 41.6576.5 g. CsClO₃. (Calzolari, Acc. Sc. med. di Ferrara, 1911, **85.** 150.)

## Calcium chlorate, $Ca(ClO_3)_2 + 2H_2O$ .

Deliquescent; very sol. in H₂O and alcohol. (Wächter, J. pr. **30.** 323.)

Melts in its water of crystallization at over 100°.

Sp. gr. of solution sat. at  $18^{\circ} = 1.729$ , containing 64% Ca(ClO₃)_{2,\tilde{\text{C}}} (Mylius B, 1897,

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 87, 4328.)

#### Chromic chlorate.

Easily sol, in H₂O. (Prudhomme, C. C. 1890, 1.668.)

Cobaltous chlorate, Co(ClO₃)₂+2H₂O.

(Meusser, B. 1902, 35. 1418.) +4H₂O. Solubility in H₂O.

Sat. solution contains at:

21° 35° 47° 61° 64.19 64.39 67.09 69.66 76.12% Co(ClO₃)₂.

gr. of solution containing 64.19%  $Co(ClO_3)_2$  at  $18^\circ = 1.861$ . (Meusser, B. 1902, 35. 1418.)

.+6H₂O. Very deliquescent. Sol. in H₂O and alcohol. Melts in crystal H₂O at 50°. (Wächter, J. pr. 30. 321.)

Solubility in H₂O. Sat. solution contains at:

--21°  $+10.5^{\circ}$ - 19° 53.30 53.6157.4561.83% Co(ClO₃)₂. (Meusser, B. 1902, **35.** 1418.)

Cupric chlorate, basic, Cu(ClO₃)₂, 3Cu(OH)₂. Insol. in H2O. Very sol. in dil. acids. Sol. in warm conc. Cu(ClO3)2+Aq, the solubility increasing with the conc. and temp. (Bourgeois, Bull. Soc. 1898, (3) 19. 950.)

Cupric chlorate,  $Cu(ClO_3)_2 + 4H_2O$ .

Solubility in H₂O.

Sat. solution contains at:

 $+0.8^{\circ}$  $45^{\circ}$ -31°  $-21^{\circ}$ 18° 54.5957.12 58.5162.1766.1759.6° 71°

69.42 76.9% Cu(ClO₃)₂.

Sp. gr. of the solution containing 62.17%  $Cu(ClO_8)_2$  at  $18^\circ = 1.695$ . (Meusser, B. 1902, **35.** 1420.)

 $+6H_2O.$ Very deliquescent. Easily sol. in H₂O and alcohol. Melts in its crystal H₂O at 65°. (Wächter, J. pr. 30. 321.)

Sp. gr. of Cu(ClO₈)₂+Aq at 15°. % Cu(ClO₃)₂ 2.106 4.778 6.945Sp. gr. 1.01620 1.03857 1.05714

% Cu(ClO₃)₂ 14.387 10.016 Šp. gr. 1.0844 1.12531

(Traube, Gm.-K. 5. 1, 921.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Cupric chlorate ammonia, Cu(ClO₃)₂, 4NH₃.

Ppt. Not hydroscopic. Insol. in alcohol. Cu(ClO₈)₂,6NH₃. Not hydroscopic. (Ephmm, B. 1915, 48. 46.)

Erbium chiorate, Er(ClO₂)₃+8H₂O.

Deliquescent. Sol. in H2O and alsohol.

Glucinum chlorate.

Known only in aqueous solution, which decomposes on evaporation.

# Ferrous chlorate.

Known only in solution.

Ferric chlorate, Fe(ClO₂)₃.

Sol. in H₂O.

Basic salt. Inso! in H2O.

Lanthanum chlorate, La(ClO₈)₂.

Deliquescent. (Cleve.)

Lead chlorate,  $Pb(ClO_3)_2 + H_2O$ .

Deliquescent; easily sol. in H₂O and alcohol.

(Wächter, J. pr. 30. 321.)

Sp. gr. of solution sat. at 18°=1.947 and contains 60.2% Pb(ClO₃)₂. (Mylius, B. 1897, **30**. 1718.)

100 g. H₂O dissolve 440 g. Pb(ClO₂)₂ at  $18^{\circ}$ ; sp. gr. of sat. solution = 1.63. (Carlson, Dissert. 1910.)

Lithium chlorate, LiClO₃+½H₂O.

Very deliquescent and sol. in  $H_2O$ . Very easily sol. in alcohol. Melts at  $50^{\circ}$  in ite

crystal water. (Wächter, J. pr. **30**, 321.) LiClO₃+Aq sat. at 18° contains **75**.8% LiClO₃. Sp. gr. = 1.815. (Mylius, B. 1897, 30. 1718.)

483 g. LiClO₃ dissolve in 100 g. H₂O at 15°; sp. gr. of solution = 1.82. (Carlson, Dissert. 1910.)

Contains 3H₂O, and is not deliquescent. (Lagorio, Zeit. f. Kryst. 15, 80.)

Salt is anhydrous. (Retgers, Z. phys. Ch. **5**. 449.)

Magnesium chlorate, Mg(ClO₃)₂.

128.1 g. Mg(ClO₃) dissolve in 100 g. H₃O at 19°; sp. gr. of solution = 1.59. (Carlson, Dissert. 1910.)

Sp. gr. of solution containing 56.5% Mg(ClO₃)₂ at 18°=1.564. (Meusser, l.c.)

Sp. gr. of solution sat. at  $18^{\circ} = 1.594$ , containing 56.3% Mg(ClO₃)₂. (Mylius, B. 1897, **30.** 1718.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

+2H₂O. Solubility in H₂O. Sat. solution contains at:

39.5° 61° 68°

65.37 69.46 70.69 73.71% Mg(ClO₃)₂, (Meusser, B. 1902, 35. 1416.)

+4H₂O. Solubility in H₂O. Sat. solution contains at:

42° 65.5° 63.82 69.12% Mg(ClO₃)₂. (Meusser, l.c.)

+6H₂O. Very deliquescent and sol. in H₂O. Very easily sol. in alcohol. Melts at 40° in its crystal water. (Wächter, J. pr. 30. 325.)

Solubility in H₂O.

Sat. solution contains at:

 $-18^{\circ}$  0%  $+18^{\circ}$  29° 35° 51.64 53.27 56.50 60.23 63.65%  $\rm Mg(ClO_{2})_{2}.$  (Meusser)

#### Manganous chlorate, Mn(ClO₈)₂.

Known only in solution which decomposes on even even example. (Wächter.)

#### Mercanous chlorate, Hg₂(ClO₃)₂.

a. Easily sol. in alcohol and  $\rm H_2O$ . (Wächter, J. pr. 30. 321.)

 $\dot{\beta}$ . Insol. in  $H_2\dot{O}$ ; easily sol. in  $HC_2H_3O_2+Aq$ . (Wächter.) Decomp. by boiling  $H_2O$ .

#### Mercuric chlorate, 2HgO, Cl₂O₅+H₂O.

Deliquescent. Decomp. by H₂O into oxide and an acid salt. (Wächter.)

Sol in 4 pts. cold H₂O. (Chevenix, 1802.)

#### Nickel chlorate, Ni(ClO₃)₂+4H₂O.

Solubility in H₂O.

Sat. solution contains at:

48.5° 55° 65° 79.5° 67.60 68.78 69.05 75.50% Ni(ClO₃)₂. (Meusser, B. 1902, **35**. 1419.)

+6H₂O. Deliquescent. Easily sol. in H₂O and alcohol. Melts in crystal H₂O at 80°. (Wächter, J. pr. 30. 321.)

Solubility in H₂O.

Sat. solution contains at:

-18° -8° 0° +18° 40° 49.55 51.52 52.66 56.74 64.47% Ni(ClO₃)₂.

Sp. gr. of solution containing 56.74%Ni(ClO₄)₂ at  $18^{\circ} = 1.661$ .

Goes over into  $4H_2O$  salt at 39°. (Meusser.) 156 g. Ni(ClO₃)₂ dissolve in 100 g.  $H_2O$  at 16°; sp. gr. of solution = 1.76. (Carlson, Dissert. 1910.)

Nickel chlorate ammonia, Ni(ClO₃)₂, 6NH₃. Ppt. (Ephraim, B. 1915, 48. 47.)

#### Potassium chlorate, KClO₈.

Sol. in H2O with absorption of heat.

Sol. in about 16 pts. cold, and in much less hot  $H_2O$ . (Chevenix, 1802.)

Sol. in 30.03 pts. H₂O at 0°; 17.85 pts. at 13.3°; and n 1.66 pts. at 104.78°. (M. R₀, and P_s.)

Sol. in 16 pts.  $\rm H_2O$  at 18.75°. (Abl.)  $\approx 100$  pts.  $\rm H_2O$  at 15.5° dissolve 6.2 pts.; at 100°, 40 pts. (Ure's Dict.)

100 pts. H2O dissolve pts. KClOs at to-

t° Pts. KClO ₃ : :	28	35 12 3	40	47 18.3	65 29.1
Pts. KClO ₃	9 5	12 3	14 4	18.3	29.1

(Gerardin.)

100 pts. H₂O dissolve pts. KClO₃ at t°.

t°	Pts. KClO ₃	t°	Pts. KClO₃
0	3 33	35 0	12 05
13.32	5 60	49 08	18 96
15.37	6 03	74 89	35 10
24.43	8 44	104 78	60 24

(Gay-Lussac, A. ch. 11, 314.)

#### 100 pts. H₂O dissolve pts. KClO₃ at t°.

t°	Pts. KClO ₃	t°	Pts. KClO3
0	$\frac{3.3}{56.5}$	130	88.5
100		180	190

(Tilden and Shenstone, Roy. Soc. Proc. 35. 345.)

t°	Pts. KClO₃	t°	Pts. KCN3
120 136	73.7 98.9	160 190	148 183

(Tilden and Shenstone, Phil. Trans. 1884. 23.)

Coefficient of solubility is  $3.2+0.109t+0.0043t^2$  between 0° and 35°. (Blarez, C. R. 112. 1213.)

#### Sat. KClO₈+Aq contains % KClO₃ at t°.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t°	% KClO ₃	t°	% KClO ₃
00   10.0	-0.3 +4.5 4.5 11 19 29 36 42	2.4 3.5 2.9 4.7 6.1 8.9 9.9 11.4	106 130 171 180 190 200 207 300	37.2 47.0 59.8 62.1 63.1 64.2 66.0 87.0

(Étard, A. ch. 1894, (7) 2, 528.)

	Solubility in H ₂ O.			
Temp.	% KClO ₃ in a sat. sol.	Pts, sol. in 100 pts, H ₂ ()	Pts. H ₂ O to 1-ptp/kClO ₂	
0°	3 06	3.14	31.8	
5	3.67	3.82	26.2	
10	4.27	4.45	22.5	
15	5.11	5.35	18.5	
20	6.76	7.22	13.6	
25	7.56	8.17	12.2	
<b>30</b>	8.46	9.26	10.8	
35	10.29	11.47	€.7	
40	11.75	13.31	7.5	
45	13.16	14.97	6.6	
50	15.18	17.95	56	
55	16 85	20.27	4.9	
60	18.97	23.42	4.2	
65	20.32	25.50	3.9	
70	22.55	29.16	3.4	
75	24.82	32.99	3 0	
80	26 97	36.93	2.6	
85	29.25	41.35	2.4	
90	31.36	46.11	$\frac{2.1}{1.0}$	
95	33.76	51.39	1.9	
100	35.83	55 54	1.8	

(Pawlewski, B. 1899, **32.** 1041.)

1 k KClO₃+Aq at 25° contains 675 millimols. KClO₃. (Calvert, Z. phys. Ch. 1901, **38**. 541.)

100 g. H₂O dissolve at:

80° 100° 104° *
37.7 56.5 59.9 g. KClO₃,
Sp. gr. 1.165 1.219 1.230

* Bpt. of sat. solution.

(Carlson, Dissert. 1910.)

100 g. H₂O dissolve at:

8° 19.8° 30° 99° 4.48 7.15 10.27 57.3 g. KClO₃. (Calzolari, Acc. Sc. med. di Ferrara, 1911, **85**. 150.)

Sat. KClO₃+Aq contains at:
53° 68° 81° 86° (?)
17.37 23.25 23.53 30.46% KClO₃.
(Tschugaeff, Z. anorg. 1914, **86**. 161.)

Sp. gr. of KClO₃+Aq, according to Kremer's experiments (Pogg. 96. 62), and Gerlach's calculations. (Z. anal. 8. 290.)

% KClOs	Sp. gr.	% KClOa	Sp. gr.
1	1.007	6	1.039
2	1.014	7	1.045
3	1.020	8	1.052
4	1.026	9	1.059
5	1.033	10	1.066

Sp. gr. of KClO₂+Aq²at 20° containing 1 mol. KClO₂ to 100 mols. H₂O=1.04122. (Nicol, Phil. Mag. (5) 16. 122.)

Sp. gr. of KClO₃+Aq at 15° containing 5% KClO₃=1.0316. (Kohlrausch, W. Ann. 1879. 1.)

B.-pt of KClO₃+Aq containing pts. KClO₃ to 100 pts. H₂O.

Pts. KClO ₃	Bpt.	Pts. KClO ₃	Bpt.
6 5 13.2 20.2 27.8 35.8	100.5° 101.0 101.5 102.0 102.5	41.6 53.4 62.2 69.2	103.0° 103.5 104.0 104.4

(Gerlach, Z. anal. 26. 450.)

Saturated solution boils at 105°. (Kremers.) Saturated solution boils at 104.2°, and contains 61.5 pts. KClO₃ to 100 pts. H₂O. (Legrand.)

Saturated solution boils at 103.3°, and contains 66.6 pts. KClO₃ to 100 pts. H₂O. (Griffiths.)

Saturated solution boils at 104.4°. (Gerlach, Z. anal. 26. 427.)

Sol. in pure HNO₃ without decomp., but decomp. at once by HNO₃ containing NO₂. (Millon, A. ch. (3) 6. 92.)

Sol. in sat. NH₄Cl+Aq without causing

pptn. 1 mol. (=129 pts.) KClO₃ dissolves in 2493 vols.  $H_2O$ ; in 2208 vols.  $H_2O$  when 1 mol. (=59 pts.) NaCl is added; in 2060 vols.  $H_2O$  with 2 mols. (=118 pts.) NaCl; and in 1910 vols.  $H_2O$  with 4 mols. (=236 pts.) NaCl.

(Gladstone, Chem. Soc. 15. 302.) KClO₃ is sol. in about—

29.50 pts. H₂O.

35.50 pts.  $NH_4OH + Aq$  conc. 39.00 pts. dil.  $NH_4OH + Aq$  (1 vol. conc.: 3 vols.  $H_2O$ ).

30.50 pts. HNO₃+Aq (1 vol. conc. HNO₃: 5 vols. H₂O).

33.0 pts. HCl + Aq (1 vol. conc. HCl: 4 vols.  $H_2O$ ).

48.00 pts. HC₂H₃O₂+Aq (1 vol. commercial HC₂H₃O₂:1 vol. H₂O).

31.50 pts.  $NH_4Cl+Aq$  (1 pt.  $NH_4Cl:10$  pts.  $H_2O$ ).

 $18.00 \text{ pts. NH}_4\text{NO}_3 + \text{Aq } (1 \text{ pt. NH}_4\text{NO}_3:10 \text{ pts. H}_2\text{O}).$ 

34.00 pts.  $NH_4C_2H_3O_2+Aq$  (dil.  $NH_4OH+Aq+dil$ .  $HC_2H_3O_2+Aq$ ).

32.50 pts.  $NaC_2H_3O_2+Aq$  (commercial  $HC_2H_3O_2+Na_2CO_3$ , diluted with 4 vols.  $H_2O$ ). 31.50 pts.  $Cu(C_2H_3O_2)_2+Aq$ . (See Stolba, Z. anal. 2.390.)

33.50 pts. canc-sugar (1 pt. canc-sugar : 10

pts. H₂O).

36.50 pts. grape-sugar (1 pt. grape-sugar: 10 pts. H₂O). (Pearson, Zeit. Chem. 1869. 662.)

Addition of K salts to sat. KClO₂+Aq ppts. KClO₃ in such a way, that the sum of the

KClO₃ remaining in solution and the K in the salt added, is a constant, which constant is equal to the solubility of KClO₃, so that the following formula represents the coefficiency of solubility of KClO₃ after addition of a K salt, 3.2+0.109t+0.0043t² – K of salt added. (Blarez, C. R. 112. 1213.)

Solubility of KClO₈+TlClO₈.

100 g. H ₂ O dissolve g. salts			
t°	g. TlClO ₃	g. KClO ₃	
0 15 50 100	2.8 10 12.67 57.3	3.3 1.5 16.2 48.2	

(Rabe, Z. anorg. 1902, 31. 156.)

Solubility of KClO₃ in KNO₃+Aq.

	·	
fato	g. pe	er I.
	KNO ₃	KClO₃
19.85	0.00 12.65 25.29 101.19 202.38	69.88 64.86 60.33 45.85 40.20
23.87	0.00 50.59	79.09 63.14

(Arrhenius, Z. phys. Ch. 1893, 11. 397.)

Solubility in KCl+Aq at 20° C.

G. KCl in G. KClO ₃ Sp. gr.	
0 71.1 1.050	
10 58 1.050	
20 49 1.050	
30 43 1.050	
40 39.5 1.054	
50 36.5 1.058	
60 34 1 064	
70 32 1.070	
80 30 1.075	
90 28 1.081	
100 27 1.086	
<b>110 25</b> 5 1.091	
120 24.5 1.098	
130 23.5 1.103	
140 22.5 1 108	
<b>150</b> 21.5 1.113	
160 21.0 1.119	
170 20.5 1.124	
180   20.0   1.130	
190   20.0   1.135	
200 20 1.140	
210 20 1.145	
220 20 1.150	
230   20   1.156	
240 20 1.161	
250   20   1.168	
(Winteler, Z. Elektrochem. 1900, 7. 361.	)

Solubility	in	KOH + Aq	at 25°.
------------	----	----------	---------

	` •
KOH +Aq	Millimols KClO ₂ per litre of the solulion
1/8-normal 1/4-normal	624 573

(Calvert, Z. phys. Ch. 1901, 38.,541.)

Solubility in H₂O₂ at 25°.

Concentration of H ₂ O ₂	Millimols KClO ₂ per litre
millimols per litre	of the solution
1260	730
1310	737

(Calvert, l.c.)

Solubility in ¼ normal KOH+Aq in presence of H₂O₂ at 25°.

Concentration of H ₂ O ₂	Millimois KClO ₃ per litre
millimols per litre	of the solution
15	578
276	584
954	616
1073	673

(Calvert, l.c.)

Moderately sol. in liquid NH₅. (Franklin,

Am. Ch. J. 1898, 20, 828.)

Neither dissolved nor attacked by liquid NO₂. (Frankland, Chem. Soc. 1901, **79.** 1361.) Sol. in 120 pts. alcohol of 83% at 16°. (Wittstein.)

Sol. in 120 pts. alcohol of 77.1%. (Poin, W. A. B. 6. 595.)

Insol. in absolute alcohol. (Gerardin)

Solubility of KClO₃ in dil. alcohol. D=sp. gr. of alcohol; S=solubility in 100 pts. alcohol at t°.

					*
D =	0 9904	1) =	0.9848	1) =	0.9793
(°	s	ι°	s	r _o	,5
13 21 25 30 35 44 50	4 9 6 3 7 5 9 1 10.2 13.6 16.2	14 26 39 47 55 65 66	4.7 7.1 9.3 12.8 16.1 22.3 22.5	14 26 38 46 51 63 65	3.2 5.4 7.9 10.8 12.2 17.5 19.0
D=	0.9726	D =	0.9573	D =(	0.9390
t°	8	t°	8	t _a	s
13 20	2.2	13	1.9	14.5	1.1

1				0.0011	17-0.	9090
	1°	8	t°	8	t.o.	s
-	13 20 33 43 56 59	2.2 3.3 5.8 7.2 11.4 12.9	13 20 29 36 55 60 63	1.9 2.7 3.6 4.3 7.9 9.7	14.5 28 40 50 62 67	1.1 2.2 3.4 4.3 6.6 7.6

Solubil	ity of	KClO ₃	in dil. a	lcohol	l—Continued.
---------	--------	-------------------	-----------	--------	--------------

D =	D =0.9111		D =0.8967		).8429
t°	s	t.°	s	t°	l .s
13 25 32 52	0.74 1.08 1.78 3.35	12 31 43 58	6.46 1.28 1.95 3.10	25 34 56 64	0 03 0.12 0.24 0.32

(Gerardin, A. ch. (4) 5. 148.)

#### Solubility of KClO₂ in alcohol +Aq.

of alanhal	g. KClO ₃ per	100 g. solution
wt. % alcohol -	t = 30°	t, =4()°
0	9.23	12.23
5	7.72	10.48
10	6.44	8.84
20	4.51	6.40
30	3.21	4.67
40	2.35	3.41
50	1.64	2.41
60	1.01	1.41
70	0.54	0.78
80	0.24	0.34
90	0.06	0.12

(Taylor, J. phys. Ch. 1897, 1. 301.)

Insol. in benzonitrile. 1914, 47. 1370.) (Naumann, B.

Very sl. sol. in acctone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

#### Solubility of KClO₂ in acctone +Aq.

wt. % acetone	g. KClO ₃ per 100 g. solution		
wt. 7c acetone	t =30°	t =40°	
0	9.23	12.23	
5	8.32	11.10	
9.09	7.63	10.28	
20	6.09	8.27	
30	4.93	6.69	
40	3.90	5.36	
50	2.90	4.03	
60	2.03	2.86	
70	1.24	1.68	
80	0.57	0.79	
90	0.18	0.24	

(Taylor, J. phys. Ch. 1897, 1. 301.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Solubility in glycol=0.9% at ord. temp. (de Coninck, Belg. Acad. Bull. 1905. 359.) 100 g. glycerol (sp. gr. 1.256) dissolve 3.54 g. KClO₈ at 15-16°. (Ossendowski, Pharm. J.

1907, 79. 575.)

Potassium silver chlorate, KClO₂, AgClO₃. (Pfaundler, W. A. B. 46, 2. 266.)

Rubidium chlorate, RbClO₂.

100 pts. H₂O dissolve 2.8 pts. at 4.7°; 3.9 pts. at 13°; 4.9 pts. at 18.2°; 5.1 pts. at 19°. (Reissig, A. 127. 33.)
100 g. H₂O dissolve 3.1 RbClO₃ at 15°;

sp. gr. of solution = 1.07. (Carlson, Dissert. 1910.)

100 g. H₂O dissolve at:

80  $G^{\circ}$ 19.8° 30° 2.138 3.07 5.36 8.00 g. RbClO₂,

42.2° 50° 99° 76° 34.12 62.8 g. RbClO₃. 12.48 15.98 (Calzolari, Acc. Sc. med. di Ferrara, 1911, 85. 150.)

Scandium chlorate.

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.)

Silver chlorate, AgClC₃.

Sol. in 10-12 pts. cold H₂O (Vauquelin); in 8-10 pts. cold, and 2 pts. hot H2O (Chevenix); in 5 pts. cold H2O (Wächter). Sl. sol. in alcohol (Chevenix); easily sol. in alcohol (Wächter).

Silver chlorate ammonia, AgClO₂, 2NH₃.

Easily sol. in H₂O or alcohol. (Wächter, 1843.)

Sodium chlorate, NaClO₃.

Deliquescent.

Sol. in 3 pts. cold and less hot H2O. (Wächter; Chevenix.) Sol. in 3 pts. H₂O at 18.75°. (Abl.) 100 pts. H₂O dissolve 35.5 pts. NaClO₃. (Ure's Dict.)

100 pts. H₂O dissolve at:

40°  $0^{\circ}$ 20° 60° 81.9 99 123.5 147.1 pts. NaClO₃,

100° 120° 175.6 232.6 333.3 pts. NaClO₃. (Kremers, Pogg. 97. 4.)

100 pts. H₂O dissolve 89.3 pts. NaClO₃ at 12°. (Schlösing.)

100 g. H₂O dissolve at:

0°  $-15^{\circ}$ 20° 40° **72** 79 101 126 pts. NaClO₂, Sp. gr. 1.380 1.389 1.430 1.472

> 100° 122° * 60° 80° 230 155 189

286 pts. NaClO₃. Sp. gr. 1.514 1.559 1.604 1.654

* Bpt. of sat. solution. (Carlson, Dissert. 1910.)  $\begin{array}{c} 100~g.~NaClO_8+Aq~contain~at:\\ 4.78°~19.85°~30.05°~35.10°~44.72°\\ 45.47~48.91~51.22~52.36~54.50~g.~NaClO_8.\\ (Le~Blanc~and~Schmandt,~Z.~phys.~Ch.~1911,\\ &\phantom{=}77.~614.) \end{array}$ 

Sp. gr. of NaClO₃+Aq, containing: 10 15 20 25 30 25% NaClO₃. 1.070 1.108 1.147 1.190 1.235 1.282 (Gerlach, Z. anal.  $\bf 8.$  290.)

Sp. gr. of  $NaClO_3 + Aq$  at  $20^\circ$  containing 1 mol.  $NaClO_3$  in 100 mols.  $H_2O = 1.03844$ . (Nicol, Phil. Mag. (5) **16**. 122.)

NaClO₃+Aq containing 7.23% NaClO has sp. gr. 20°/20° = 1.0496. (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 278.)

Rohland, Z. phys. Ch. 1896, 19. 278.)
Sat. solution boils at 132°, and temp. can be raised to 135° by supersaturation. (Kremers, Pogg. 97. 4.)

Easily sol. in liquid HF. (Franklin, Z.

anorg. 1905, **46.** 2.) NaClO₃+NaCl.

100 pts. H₂O dissolve 50.75 pts. NaClO₃+24.4 pts. NaCl at 12°; 100 pts. H₂O dissolve 249.6 pts. NaClO₃+11.5 pts. NaCl at 122°, and when cooled to 12° contain 68.6 pts. NaClO₄+11.5 pts. NaCl. (Schlösing, C. R. 73. 1272.)

Solubility in NaCl+Aq at 20° C.

G. NaCl in 1 litre	G. NaClOa in 1 litre	Šp. gr.	
5	668	1.426	
10	661	1.424	
15	653	1 423	
		1.421	
20	645	1.419	
$\frac{25}{20}$	638	1.419	
30	630		
35	622	1.417	
40	615	1.415	
45	607	1.414	
50	599	1.412	
55	590	1.411	
60	582	1.409	
65	574	1.408	
70	566	1.406	
75	559	1.405	
80	551	1.404	
85	544	1.402	
90	537	1.401	
95	529	1.399	
100.	522	1.398	
105	514	1 396	
110	507	1.394	
115	499	1.392	
120	491	1.391	
125	484	1.389	
130	476	1.387	
135	467	1.385	
140	459	1.383	
145	451	1.381	
	1 -32	1 501	

Solubility in NaCl+Aq at 20° C.—Continued

G. NaCl in 1 litre	G. NaClOs in 1 litre	Sp. gr.
150	442	1.379
155	432	1.377
16C	423	1.374
165	414	1.372
170	403	1.369
175	393	1.365
180	382	1.362
185	371	1.359
190	360	1.355
195	349	1,350
200	338	1.345
205	326	1.340
210	315	1.335
215	302	1.330
220	287	1.324
225	271	1.319
230	257	1,313
235	243	1.307
240	228	1.301
245	211	1.295
250	197	1.289
255	184	1,283
260	170	1.276
265	150	1.270
270	135	1.263
275	120	1.256
280	105	1.249
285	91	1.241
290	78	1.235
295	67	1.226
300	55	1.217

(Winteler, Z. Elektrochem. 1900, 7, 361.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Sol. in 34 pts. alcohol of 83% at 16° and in less hot alcohol. (Wittstein.)

Somewhat more easily sol, in alcohol than NaCl. (Berzelius.)

Solubility of NaClO₃ in alcohol. (g. NaClO₃ per l. of solution.)

	Alcohol		
t°	90 %	75 %	50 %
20 40 60 70	16.1 22.9 29.0	110.8 133.5 155.8 161.3	311.3 321.8 326.8

(Carlson, Dissert. 1910.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1910, **43**. 314.)

100 g. glycerol dissolve 20 g. NaClO₃ at 15.5°. (Ossendowski, Pharm. J. 1907, **79**. 575.)

Strontium chlorate, Sr(ClO₂)₂+5H₂O.

Very deliquescent, and sol. in H₂O. (Topsoë, W. A. B. **66, 2.** 29.)

Sp. gr. of solution sat. at 18° containing 63.3% Sr (ClO₈)₂ = 1.839. (Mylius, B. 1897. 30. 1718.)

Easily sol, in H₂O, less in alcohol, but more sol, in alcohol than SrCl₂. (Souchay, A 102.

Insol. in absolute alcohol. (Wächter.)

#### Thallous chlorate, TlClO₃.

Sol. in H₂O, but decomp. by heating.

100 pts.  $H_2O$  dissolve at:  $10^{\circ}$   $20^{\circ}$   $50^{\circ}$   $80^{\circ}$   $10^{\circ}$ 20° 50° 80° 100° 2.80 3.92 12.67 36.65 57.31 pts. TlClO₂. (Muir, Chem. Soc. 29, 857.)

1 l. TlClO₃+Aq sat. at 10° contains 25.637 g. TlClO₃. (Roozeboom, Z. phys. Ch. **8.** 532.) 1 l.  $H_2O$  dissolves 0.134 equivalents TICIOs at 20°; or 38.51 g. in 1 l. of the solution (mean of 10 experiments). (Noyes and Farrell, J. Am. Chem. Soc. 1911, 33, 1657.)

#### Solubility in Tl₂SO₄+Aq at 20°.

G. equiv. per l.		Solid phase
TICIO3	$\mathrm{Tl}_2\mathrm{SO}_4$	Solid phase
0.1058	0.1366	$TlClO_8 + Tl_2SO_4$

(Noyes and Farrell, l.c.)

#### Thallic chlorate, $Tl(ClO_8)_8 + 4H_2O$ .

Very deliquescent; sol. in H₂O. Decomp. slowly in the air. (Gewecke, Z. anorg. 1912, **75.** 273.)

#### Ytterbium chlorate.

Sol. in H₂O. (Popp, A. **131.** 179.)

#### Yttrium chlorate, $Y(ClO_8)_3 + 8H_2O$ .

Deliquescent. Easily sol. in alcohol. Sl. sol. in ether. (Cleve.)

#### Zinc chlorate, $Zn(ClO_3)_2 + 4H_2O$ .

Solubility in H₂O.

Sat. solution contains at:

55° +18°  $30^{\circ}$ 40° 66.52 67.66 69.06 75.44% Zn(ClO₃)₂.

gr. of solution containing 66.52%  $Zn(ClO_3)_2$  at  $18^\circ = 1.916$ .

(Meusser, B. 1902, **35**. 1417.)

More sol. in H₂O than chlorates of Mg, Co, Ni or Cu; less sol. than chlorate of Cd; more sol. than  $Zn(NO_3)_2$ . (Meusser, l.c.)

+6H₂O. Very deliquescent. Easily sol. in H₂O and alcohol. Melts in crystal H₂O at 60°. (Vauquelin, A. ch. 95. 113.)

Solubility in H₂O. Sat. solution contains at:

- 18° 67.32% Zn(ClO₃)2. 55.62 60.20 59.19(Meusser, l.c.)

Sp. gr. of solution sat. at 18° containing 65% Zn(ClO₂)₂=1.914. (Mylius, B. 1897, 30. 1718.)

Zinc chlorate ammonia, Z₁ (ClO₃)₂, 4NH₃.  $Zn(ClO_3)_2$ ,  $6NH_3$ . Ppt. (Ephraim, B. 1915. 48. 48.)

#### Perchloric acid

See Perchloric acid.

#### Chlorides.

Most chlorides are sol. in H₂O; a few, however, are insol. or nearly so therein, the chief of which are AgCl, Hg2Cl2, Cu2Cl2, PtCl2, and AuCi. Several chlorides are decomp. into insol. basic salts or hydroxides, either by the addition of H2O, as in the case of BiCl3 and SbCl₃, or on evaporating the aqueous solution,

as AlCl₃, ZnCl₂, MgCl₂, etc. Some chlorides are sol. in alcohol or ether.

See under each element.

#### Chlorine, Cl2.

The maximum solubility of Cl in H₂O is at 10° (Schönfeld); at 8-10° (Gay-Lussac); at 9-10° (Pelouze).

Solubility decreases from 9-0°; at 100° the solubility = 0. (Gay-Lussac.)

 $Cl_2 + Aq$  sat. at  $6^5$  has sp. gr. = 1.003. (Berthelot.)

1 vol. H2O at t° absorbs vols. Cl reduced to 0° and 760 mm. pressure.

_			· · · · · · · · · · · · · · · · · · ·	
	t°	Vols. Cl	t°	Vols. Cl
	10	2.5852	26	1.9099
	11	2.5413	27	1.8695
	12	2.4977	28	1.8295
	13	2.4543	29	1.7895
	14	2.4111	30	1.7499
	15	2.3681	31	1.7104
	16	2.3253	32	1.6712
	17	2.2828	33	1.6322
	18	2.2405	34	1.5934
	19	2.1984	35	1.5550
	20	2.1565	36	1.5166
	21	2.1148	37	1.4785
	22	2.0734	38	1.4406
	23	2.0322	39	1.4029
	24	1.9912	40	1.3655
	25	1.9504		
		1	•	,

(Schönfeld, A. 93. 26.)



## 1 vol. H₂O absorbs vols. Cl at t° (not corrected).

Vols. Cl	t°	Vols. Cl	t°	Vols. Cl	t°
1.43 1.52 2.08 2.17	0 3 6.5 7	3.04 3.00 2.37 1.61	8 10 17 35	1.19 0.71 0.15	50 70 100

(Gay-Lussac, A. ch. (3) 7. 124.)

'1 vol.  $\rm H_{2}O$  at 8° absorbs 3.04 vols. Cl, which is the maximum of solubility. At 50°, 1.09 vols, are absorbed; and at 0°, 1.5 vols. (Pelouze and Fremy.)

1 vol. H2O at to dissolves vols. Cl (not corrected).

t°	Vols. Cl	t°	Vols. Cl	t°	Vols. Cl
0	1.75-1.80	12	2.50-2.60	40	1.55-1.60
9	2.70-2.75	14	2.45-2.50	50	1.15-1.20
10	2.70-2.75	30	2.00-2.10	70	0.60-0.65

(Pelouze, A. ch. (3) 7, 188.)

1 vol. H₂O absorbs vols. Cl at t°.

t°	Vols. Cl	t°	Vols. Cl	t°	Vols. Cl
0	1.5 -1.6	9	2 65-2 70	14	2.6 - 2.65 $2.35 2.4$ $1.8 - 1.85$
5	2.05-2.1	10	2.9 -3.0	16	
8	2.5 -2 6	12	2 65-2 75	30	

(Riegel and Walz, Berz. J. B. 1846, 72.)

Solubility in  $H_2O: \alpha = \text{coefficient of solubility}$ .

t°	α	t°	α	t°	а
$6.9 \\ 8.4 \\ 9.3$	2.2931 2.5469 2.7135	10.1 11.2 13.7	2.8741 2.7267 2.5079	$21.7 \\ 32.1 \\ 36.7$	2.0422 1.5766 1.3802

(Goodwin, B. 15. 3040.)

Goodwin also gives tables for solubility of Cl in HCl and various chlorides, but they do not show evidence of accurate work. (A.M.C.)

Cl₂+Aq contains at 760 mm. pressure:

1.44% Cl at 0° 1.07% " " 6° 0.95% " " 9° 0.87% " " 12°

(Roozeboom, R. t. c. 1884, 3. 29.)

See also Cl₂+8H₂O.

Solubility of Cl₂ in H₂O.

 $\beta^1$  = Vol. of Cl (reduced to 0° and 760 mm.) absorbed by 1 vol. H₂O under a total pressure of 760 mm.

q=g. Cl₂ absorbed by 100 g. H₂O under a total pressure of 760 mm.

t°	$\beta^{_1}$	q	t°	$\boldsymbol{\beta}^{_1}$	q
10	3.095	0.980	25	1.985	0.630
11	2.996	948	26	1.937	615
12	2.900	918	27	1.891	600
13	2.808	889	28	1.848	587
14	2.720	861	29	1.808	574
15	2.635	835	30	1.769	562
16	2.553	809	35	1.575	501
17	2.474	784	40	1.414	451
18	2.399	760	45	1.300	415
19	2.328	738	50	1.204	386
20	2.260	716	60	1.006	324
21	2.200	698	70	0.848	274
22	2.143	680	80	0.672	219
$\overline{23}$	2.087	662	90	0.380	125
24	2.035	646	100	0.000	000
			1		

(Winkler, Landolt and Börnstein, Tab. 4th Ed. 1912, 597.)

1 l. HCl+Aq (38% HCl) dissolves 17.3 g. Cl; 1 l. HCl+Aq (33% HCl) dissolves 11 g. Cl; 1 l. HCl+Aq (3% HCl) dissolves 6.5 g. Cl. (Berthelot, C. R. 91. 191.)

Solubility of Cl₂ in HCl+Aq at 20–21° and 759–761 mm. pressure.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g. HCl per l.	g. Cl ₂ per l.	Coefficient of absorption	Solubility
313.401   12.03   3.5492   3.8224	3 . 134 6 . 248 9 . 402 12 . 540 15 . 670 31 . 340 62 . 680 94 . 020 125 . 360 156 . 700 188 . 040 219 . 380 250 . 720 282 . 060	5.30 4.94 4.76 4.85 5.10 5.81 6.38 7.19 7.76 8.58 9.23 9.93 10.68 11.87	1.5496 1.4483 1.3942 1.4200 1.4933 1.6736 1.8682 2.1044 2.2711 2.5095 2.7020 2.9243 3.1272 3.3278	1.6698 1.5607 1.5013 1.5292 1.6092 1.8033 2.0131 2.2677 2.4473 2.7043 2.9117 3.1312

(Mellor, Chem. Soc. 1901, 75. 227.)

Solubility of Cl in NaCl+Aq.  $\alpha = coefficient$  of solubility.

NaCl = 9.97%.

t°	α	t°	a
$7.9 \\ 11.9 \\ 15.4$	1.8115 1.5879 1.3684	18.8 22.6	1.2785 1.0081

### Solubility of Cl in NaCl+Aq.—Continued NaCl = 16.01%.

t°	α	t°	· a
6 11.6 16.4	1.5866 1.2227 1.0121	21.4 26.9	0 8732 0 7017

#### NaCl = 19.66%.

t°	α	t°	а
0 9.2 9.3 14.8	1.6978 1.2145 1.2068 0.9740	15.4 20.4 21.9	0.9511 0.7758 0.7385

(Kumpf, W. Ann. Beibl. 6. 276.)

Solubility of Cl in sat. NaCl+Aq at t° and 760 mm. pressure.

t°	Coefficient of absorption at 0° and 760 mm.	Solubility at 0° and 760 mm.
14.5 29.0	0.3607 0.3125	0.3898 0.3458
$60.0 \\ 82.0$	0.1332 0.6586	0.1625 0.0763

(Kohn and O'Brien, J. Soc. Chem. Ind. 1898, **17.** 1100.)

Sat. KCl+Aq absorbs ¹/₃ less Cl at 15° than pure H₂O. (Dettmer, A. **38**. 35.)

1 l. of a solution of CaCl₂ (1 pt. in 15 pts. H₂O) dissolves 2.45 g. Cl at 12°.

1 l. of a solution of MgCl₂ (1 pt. in 15 pts. H₂O) dissolves 2.33 g. Cl at 12°.

1 l. of a solution of MnCl₂ (1 pt. in 15 pts. H₂O) dissolves 2.00 g. Cl at 12°

Sl. sol. in  $KOH + \bar{A}q$ . (Fremy.)

Somewhat sol. in liquid NO₂. (Frankland, Chem. Soc. 1901, **79.** 1361.)

CCl₄ absorbs 10% of Cl₂ at 13°. (Perkins, Chem. Soc. 1894, 65. 20.)

1 mol. CrOCl₂ dissolves at 0°, 0.70 atom Cl; at-14°, 1.24 atoms; at-21°, 2.31 atoms; and at-24, 3.00 atoms Cl. (Roozeboom, R. t. c. 4. 379.)

Sulphuryl chloride absorbs 71 vols. Cl or 0.136 pt. Cl by weight at 6°. (Schulze, J. pr. (2) 27. 168.)

Insol. in benzene. (Moride.)

Sl. sol. in chloral and iodal. (Dumas.) Sol. in perchlorethylene. (Faraday.)

Sol. in a very large quantity of ether with decomp.

#### Coefficient of solubility of Cl2 in organic liquids at 15°.

. Substance	Coefficient of Solubility
Carbon tetrachloride Acetic anhydride Acetic scid (99.84%) " (90 vol. %) " (75 vol. %) " (65 vol. %)	51.7 39.6 36.7 25.3 16.43 13.43

(Jones, Chem. Soc. 1911, 99, 392.)

+8H₂O. Critical temp. of decomposition in open vessel =  $9.6^{\circ}$ ; in closed vessel =  $28.7^{\circ}$ .

Solubility in H₂O.

%  $Cl_2 = \%$  of  $Cl_2$  in  $Cl_2 + Aq$  sat. at t° and 760 mm. in presence of  $Cl_2 + 8H_2O$ .

t.º	% Cl2	10	% Cl ₂
0 3 6 9	0.505 0.64 0.709 0.900	12.5 20 28.5	1.10 1.82 3.50

(Roozeboom, R. t. c. 1884, 3. 57.)

#### Chlorine monoxide, Cl₂O.

Sol. in H₂O. At 0°, H₂O absorbs at least 200 times its volume of Cl₂O gas.

#### Chlorine trioxide, Cl₂O₃.

Decomp. on air at 57° with explosion.

H₂O absorbs 5-6 vols. Cl₂O₃. (Millon, A. ch. (3) 7. 298.)

H₂C absorbs at 8.5° and 753 mm. press. 8.591 vols. Cl₂O₃. (Brandan.)

100 g. H₂O dissolve at:

 $8.5^{\circ}$  and 752.9 mm. press. 4.7655 g.  $Cl_2O_3$ . 14° 756.3 5.0117 21° " " " " 7545.444793° " " " " 760 5.6508(Brandan, A. **151.** 340.)

Does not exist, and above data are for mixture of ClO₂ and Cl. (Garzarolli-Thurnlakh, A. **209.** 184.)

#### Chlorine tetroxide, ClO₂.

H₂O at 4° absorbs about 20 vols. ClO₂ with formation of HClO₂ and HClO₃.

H₂SO₄ at -18° absorbs about 20 vols. ClO₂. (Millon, A. ch. (3) 7. 285.)

#### Solubility of ClO₂ in H₂O.

t°	g. ClO ₂ per l.
1 -	>108.6
10.7	116.7
14.0	> 107.9

ray, Z. phys. Ch. 1906, 54, 569.)

#### $+8H_2O (\pm 1H_2O)$ .

#### Solubility in H₂O.

t°	t° g. ClO2 per l.		g. ClO ₂ per l.		
0.79*	26.98 27.59	10 15.3	60.06 60.06		
1 5.7	29.48 42.10	18.2	107.9		

^{*} Entertic.

(Bray.)

#### Chlorine oxide, Cl₆O₁₇.

Very easily decomp. (Millon, A. 46. 281.) Probably a mixture of ClO2 and O.

#### Chlorine heptoxide, Cl₂O₇.

Explosive; decomp. by H₂O; sol. in well cooled benzene with sl. decomp. (Michael, Am. Ch. J. 1909, 23, 447.)

#### Chloriridianamine chloride.

 $\operatorname{Cl_2Ir}^{\operatorname{NH_3NH_3Cl}}_{\operatorname{NH_3NH_3Cl}}$ 

Sl. sol. in cold, easily in hot H₂O. (Skoblikoff, A. 84. 275)

- nitrate,  $Cl_2Ir(N_2H_6NO_3)_2$ . Sol. in H₂O.

- sulphate,  $Cl_2Ir(N_2H_6)SO_4$ . Sl. sol. in cold, much more easily in hot H₂O.

#### Chloriridic acid.

#### Chloriridates.

Most of the chloridiates are very difficultly sol. in H₂O, but a little more sel. than the corresponding chloroplatinates. Insol. or nearly so in alcohol, but not so difficultly sol. as the chloroplatinates. (Rose.)

#### Ammonium chloriridate, (NH₄)₂lrCl₆.

Sol. in 20 pts. cold H₂O (Vauquelin); sl. sol. in cold, much more in hot H₂O (Claus) sol. in HCl+Aq (Soblewsky); insol. in cold NH₄Cl+Aq (Claus); insol. in alcohol (Berzelius).

100 pts. H₂O dissolve at:

14.4°  $26.8^{\circ}$ 39.4°

0.6990.9051.226 pts. (NH₄)₂IrCl₆,

52.2° 69.3°

1.608 2.130 2.824 pts. (NH₄)₂IrCl₆.

(Rimbach and Korten, Z. anorg. 1907, **52**. 407.)

#### Cæsium chloriridate, Cs2IrCl6.

Only sl. sol. in H₂O. (Delépine, C. R. 1908, **146.** 1268.)

#### Lithium chloriridate, Li2IrCl6.

Somewhat deliquescent; very sol. in H₂O. (Antony, Gazz, ch. it. 23, 1. 190.)

#### Potassium chloriridate, K₂IrCl₆.

Sl. sol. in cold H₂O; sol. in 15 pts. boiling Insol. in Cold 1120, Sol. in 10 pts. bonning H₂O; less sol. in H₂O containing HCl; insol. in alcohol or sat. KCl, and CaCl₂+Aq.

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 829.)

Rubidium chloriridate, Rb2IrCl6.

Very sl. sol. in H₂O. (Rimbach, Z. anorg. **1907, 52.** 408.)

Sodium chloriridate, Na₂IrCl₆+6H₂O.

Easily sol, in H₂O; sol, in alcohol of 0.837

#### Thallium chloriridate, Tl₂IrCl₆.

Decomp. by hot HCl forming  $Tl_3IrCl_6$ . (Delépine, C. R. 1909, **149**. 1073.)

#### Chloriridium pentamine comps.

See Iridopentamine chloro comps.

#### Chloriridosulphurous acid.

Potassium chloriridosulphite, K₄Ir₂Cl₂(SO₃)₄, 4KCl+12H₂C

Insol. in cold, decomp. by hot  $H_2O$ . K₄Ir₂Cl₂(SO₃)₄, 2K₂SO₃. Decomp. by H₂O. Cl₂Ir₂(SO₃)₂, 8KCl+4H₂O. Sol. in H₂O; insol. in alcohol. (Claus, J. pr. **42**. 354.)

#### Chloriridous acid.

Ammonium chloriridite, (NH₄)₃IrCl₆.

Decomp. by H₂O. (Delépine, C. R. 1908,

 $+1\frac{1}{2}H_2O$ . Sol. in  $H_2O$ . (Claus.)  $IrCl_5(H_2O)$  (NH₄)₂. (Delépine.)

Cæsium chloriridite, IrCl₅(H₂O)Cs₂. (Delépine.)

#### Lithium chloriridite, Li₃IrCl₆+12H₂O.

Deliquescent; sol. in H₂O and alcohol. (Delépine, C. K. 1914, **158.** 1277.)

#### Lithium sodium chloriridite, Li₂NaIrCl₆+ 12H₂O.

Stable in aq. solution in the presence of excess of lithium salt. (Delépine, C. R. 1914, **158.** 1278.)

LiNa₂IrCl₆+12H₂O. Stable in aq. solution in the presence of excess of sodium salt. (Delépine, C. R. 1914, 158, 1278.)

#### Potassium chloriridite, KaIrCla.

Decomp. by H₂O. (Delépine.) +3H₂O. Easily sol. in H₂O; insol. in alcohol; insol. in sat. KCl+Aq. (Berzelius.)  $IrCl_{\mathfrak{b}}(H_2O)K_2$ . (Delépine.)

## Rubidium chloriridite, IrCl₅(H₂O)Rb₂. (Delépine.)

#### Silver chloriridite, AgaIrCla.

Insol. in H₂O or acids; sl. sol. in NH₄OH+Aq.
Ppt. (Delépine, Bull. Soc. 1910, (4), **7.5**5.)

#### Sodium chloriridite, Na₂IrCl₆+12II₂O.

Efflorescent; sol. in ½ pt. H₂O. Insol. in alcohol. Melts in crystal H₂O at 50°.

#### Thallium chloriridite, Tl₂IrCl₆.

Sol. in hot HCl; pptd. on cooling. (Delépine, C. R. 1909, 149, 1073.)

#### Chlorotetramine chromium comps.

See Chlorotetramine chromium comps.

#### Chloro-azoimide, N₃Cl.

Sl. sol. in H₂O. (Raschig, B. 1908, 41. 4194.)

#### Chlorobromo comps:

See Bromochloro comps.

#### Chlorocarbonic acid.

See Carbonyl chloride.

## Chlorochromic acid. CrO₂OH

Known only in its salts. CrO₂Cl₂. See Chromyl chloride.

# $\begin{array}{ccc} \textbf{Ammonium} & \textbf{chlorochromate,} & NII_4CrO_3Cl = \\ & CrO_{2ONH_4.} \end{array}$

More sol. in H₂O than the K salt. (Peligot, A. ch. **52**. 283.)

#### Barium chlorochromate chloride, Ba(CrO₃Cl)₂, BaCl₂.

Deliquescent. Very sol. in H₂O. (Prätorius, A. **201**. 1.) +H₂O. Not deliquescent.

#### Calcium chlorochromate, Ca(CrO₃Cl)₂.

Deliquescent. (Peligot.) +5H₂O. Very deliquescent. (Prätorius.)

#### Chromous chlorochromate.

See Trichromyl chloride.

# Cobalt chlorochromate, Co(CrO₃Cl)₂+9H₂O. Deliquescent; melts at 40° in crystal H₂O. (Prätorius.)

#### Lithium chlorochromate, LiCrO₃Cl.

Sol. in  $H_2O$  acidified with HCl without decomp. (Löwenthal, Z. anorg. 1894, 6. 357.)

### Magnesium chlorochromate, Mg(CrO₃Cl)₂.

Deliquescent. (Peligot.)

+9H₂O. Less deliquescent than the other chlorochromates. (Prätorius, A. 201. 1.)

Very hydroscopic; sol. in H₂O acidified with HCl without decomp. (Löwenthal, Z. anorg. 1894, **6**. 359.)

### Nickel chlorochromate, Ni(CrO₃Cl)₂+9H₂O.

Deliquescent; melts in its crystal  $H_2O$  at  $46-48^{\circ}$  (Pratorius.)

## Potassium chlorochromate, KCrO₂Cl = CrO₂(Cl)OK.

Sol. in H₂O with decomp. Cryst. from H₂O containing HCl without decomp. (Peligot.)
Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

#### Sodium chlorochromate, NaCrO₃Cl.

Deliquescent. (Peligot.) +2H₂O. Deliquescent. (Prätorius.)

## Strontium chlorochromate, Sr(CrO₃Cl)₂+4H₂O.

Deliquescent; melts in crystal H₂O at 72°. (Prätorius.)

#### Thallous chlorochromate, TlCrO₃Cl.

Decomp. by  $H_2O$ . (Lachaud and Lepierre, C. R. 103. 198.)

#### Zinc chlorochromate, Zn(CrO₃Cl)₂+9H₂O.

Deliquescent; melts at 37.5° in crystal H₂O. (Prätorius.)

Very hydroscopic; very sol. in H₂O and acids. (Löwenthal, Z. anorg. 1894, **6.** 360.)

## Dichlorochromium bromide, [Cr(H₂O)₄Cl₂]Br.

Very deliquescent. Sol. in fuming HBr, in a mixture of equal volumes ether and fuming HBr, in alcohol and in acetone. (Bjerrum, B. 1907, **40**. 2919.)

#### Chlorochromotetrammonium comps.

See Chlcrotetramine chromium comps.

## Chlorocolumbium bromide, (Cb₆Cl₁₂)Br₂+7H₂O.

Sol. in a small quantity of cold H₂O. (Harned, J. Am. Chem. Soc. 1913, **35.** 1083.)

## Chlorocolumbium chloride, $(Cb_6Cl_{12})Cl_2 + 7H_2O$ .

Insol. in cold, sol. in boiling H₂O.
Not easily decomp. by boiling with NH₄OH.
Conc. HNO₃ decomp. a boiling solution of
this comp. Completely sol. in conc. alkalies.
(Harned, J. Am. Chem. Soc. 1913, **35.** 1080.)

Chlorocolumbium hydroxide, (Cb₆Cl₁₂) (OH)₂ +8H₂O.

Insol. in H2O. Sol. in acids and alkalies. (Harned, J. Am. Chem. Soc. 1913, 35. 1082.)

#### Chloroctamine cobaltic carbonate, $Cl_4Co_2(NH_3)_8CO_3+2H_2O$ .

Very sol. in H2O. (Vortmann and Blasberg, B. 22. 2651.)

 $Cl_2Co_2(NH_3)_8(CO_3)_2 + H_2O$ . (Vortmann and Blasberg.)

#### Chloroferrous acid.

Calcium chloroferrite, CaO, CaCl₂, Fe₂O₃. Insol, in H₂O. (le Chatelier, C. R. 99. 276.)

#### Dichlorofulminoplatinum, $Pt_4N_4Cl_2O_{12}H_{22}(?)$ .

Insol. in  $H_2O$ , (v. Meyer, J. pr. (2) 18. 305.)

#### Trichlorofulminoplatinum, Pt₄N₄Cl₃(OH)O₁₂H₂₄(?).

Insol. in H₂O; sol. in HCl+Aq. Meyer.)

## Tetrachlorofulminoplatinum,

 $Pt_4N_4Cl_4O_{12}H_{24}(?)$ Insol. in H₂O. (v. Meyer.)

Chlorohydroxylonitritoplatinsemidiamine nitrite, (OH)ClNO₂Pt(NH₃)₂NO₂. Easily sol. in hot H₂O. (Cleve.)

## Chlorohydroxyloplatindiamine bromide, $\begin{array}{c} OH\\CI \end{array}$ Pt $(N_2H_6Br)_2$ .

Sl. sol. in H₂O.

— carbonate,  $_{\text{Cl}}^{\text{OH}}$ Pt(N₂H₆)₂CO₃. Insol. in H₂O. (Cleve.)

--- chloride,  $_{\mathrm{Cl}}^{\mathrm{OH}}$   $_{\mathrm{Pt}(\mathrm{N_2H_6Cl})_2}^{\mathrm{Cl}}$ . Sl. sol. in  $_{\mathrm{12O}}^{\mathrm{Cl}}$  (Cleve.)

--- chromate,  $_{\mathrm{Cl}}^{\mathrm{OH}}\mathrm{Pt}(\mathrm{N_{2}H_{6}})_{2}\mathrm{CrO_{4}}.$ 

Nearly insol. in H₂O.

--- dichromate,  $\mathop{
m OH}\limits_{
m Cl} {
m Pt}({
m N}_2{
m H}_6)_2{
m Cr}_2{
m O}_7.$ Ppt. (Cleve.)

--- nitrate (Raewsky's nitrate), OH Pt(N2H6NO2)2.

Sl. sol. in cold, more easily in hot H₂O. (Gerhardt.)

#### Chlorohyposulphuric acid, S₂O₃Cl₄. See Sulphur oxytetrachloride.

Chloromanganic acid.

Se? Manganic hydrogen chloride.

Chloromercurosulphrous acid.

#### Ammonium chloromercurosulphite, NH₄SO₃HgCl.

Sol. in H₂O. (Barth, Z. phys. Ch. 9. 205.)

## Barium chloromercurosulphite,

Ba(SO₃HgCl)₂. Insol. in H₂O. (Barth.)

Potassium chloromercurosulphite, KSO₃HgCl. Sol. in H₂O. (Barth.)

#### Sodium chloromercurosulphite, NaSO3HgCl $+\mathrm{H}_{2}\mathrm{O}.$

Very sol. in H₂O. (Barth.)

#### Chloromolybdenum bromide, $Cl_4Mo_8Br_2+3H_2O$ .

Insol. in H₂O and dil. acids; sol. in alcohol. +6H₂O. At first easily sol. in H₂O, but a precipitate soon forms. Can be crystallized from dil. HBr+Aq. Sol. in alcohol and ether. (Blomstrand.)

#### Chloromolybdenum potassium bromide, $Cl_4Mo_3Br_2$ , $2KBr+2H_2O$ .

Decomp. by H₂O. Can be cryst. from HBr +Aq. (Blomstrand.)

#### Chloromolybdenum chloride, $Cl_4Mo_3Cl_2 =$ molybdenum dichloride, MoCl₂.

Insol. in H₂O; easily sol. in HCl+Aq or H₂SC₄+Aq; sl. sol. in HNO₂; sol. in NH₄OH +Aq, NaOH+Aq, or KOH+Aq, with separation of precipitate on boiling; sol. in alcohol and ether. (Blomstrand, J. pr. 77.

Very sol. in conc. HCl. (Rosenheim and Kohn, Z. anorg. 1910, 66. 2.)

 $+3H_2O$ . Insol. in  $H_2O$ .  $+4\frac{1}{2}H_2O$ . Insol. in  $H_2O$ . (Liechti and

Kempe, A. **170**. 351.) +6H₂O. Sol. in H₂O, alcohol, or ether. (Blomstrand.)

#### Chloromolybdenum hydrogen chloride, $Mo_3Cl_6$ , $HCl+4H_2O$ .

Sol. in H2O, but ppt. forms after a few minutes. (Rosenheim and Kohn, Z. anorg. 1910, 66. 5.)

#### Chloromolybdenum potassium chloride, Cl₄Mo₈Cl₂, 2KCl+2H₂O.

Decomp. by pure H₂O; can be recrystallized from HCl+Aq. (Blomstrand, J. pr. 77. 108.)

Chloromolybdenum hydroxide, Cl₄Mo₃(OH₂) +2H₂O.

Insol. in H₂O or alcohol. Easily sol. in strong acids if fresh, and washed only with cold H₂O. If washed with warm H₂O, it is less sol. in acids. If precipitated hot, is insol. in acids, even H₂SO₄ or fuming HNO₂. (Blomstrand, J. pr. 77. 100.)
+8H₂O.

Chloromolybdenum iodide, Cl₄Mo₃I₂+3H₂O.

Precipitate.

+6H₂C. Sol. in H₂O and alcohol.

Chloromolybdenum potassium iodide, Cl₄Mo₃I₂, 2KI+2H₂O.

Decomp. by  $H_2O$ . Recryst. from H1+Aq. (Blomstrand.)

Chloromolybdenum oxybromide, Cl₄Mo₃ OH +2H₂O.

Insol. in alcohol. (Blomstrand, J. pr. 77. 116.)

Chlcromolybdic acid,

 $MoOCl_3(OH) + 7H_2(O.$ 

Very hydroscopic. (Weinland, B. 1904, 37. 572.)

Diammonium tetrachloromolybdate, MoCl₄(ONH₄)₂+2H₂O.

Hydroscopic. Decemp. by H₂O. Sol. in dilute acids, alkalins and ammonia. (Weinland, Z. anorg. 1905, 44. 83.)

Cæsium chlorotrimolybdate, acid,

 $Mo_6O_{11}Cl_{14}(Cs_2O) + 22H_2O$ .

Hydroscopic. Decomp. by  $H_2O$ . Sol. in dilute acids, alkalies, and ammonia. (Weinland, l.c.)

Monocæsium trichloromolybdate, MoOCl₃(OCs)+H₂O.

Hydroscopic. Decomp. by H₂O. Sol. in dilute acids, alkalies and ammonia. (Weinland.)

Dicæsium tetrachloromolybdate, MoCl₄(OCs)₂.

Hydroscopic. Sol. in H₂O with decomp. Sol. in dilute acids, alkalies, and ammonia. (Weinland, Z. anorg. 1905, **44**. 83.)

Monopotassium trichloromolybdate, MoOCl₃(OK)+H₂O.

Hydroscopic. Decomp. by H₂O. Sol. in dilute acids, alkalies, and ammonia. (Weinland.)

Dipotassium tetrachloromolybdate, McCl₄(OK)₂+2H₂O.

Hydroscopic. Decomp. by H₂O. Sol. in dilute acids, alkalies, and ammonia. (Weinland.)

Potassium hydrogen chlorotrimolybdate,  $Mo_6O_{11}Cl_{14},\ K_2O+6H_2O.$ 

Hydroscopic. Decomp. by H.O. Sol. in dilute acids, alkalies, and ammonia. (Weinland.)

Monorubidium trichloromolybdate, MoOCl₃(ORb) + H₂O.

Hydroscopic. Decomp. by H₂O. Sol. in dilute acids, alkalies, and ammonia. (Weinland.)

Dirubidium tetrachloromolybdate, · MoCl₄(ORb)₂.

Hydroscopic. Decomp. by H₂O. Sol. in dilute acid, alkalies, and ammonia. (Weinland)

Chloronitratoplatinamine nitrite,

 $\frac{\text{Cl}}{\text{NO}_3}\text{Pt}(\text{NH}_3\text{NO}_2)_2.$ 

Easily sol. in H₂O.

Chloronitratoplatindiamine nitrate,

 $\frac{\text{Cl}}{\text{NO}_3}\text{Pt}(\text{N}_2\text{H}_6\text{NO}_3)$ 

Decomp. by  $H_2O$  with formation of  $\underset{OH}{\overset{Cl}{OH}}Pt[(NH_3)_2NO_3)]_2.$ 

sulphate,  $\underset{NO_3}{\text{Cl}} \text{Pt}(N_2H_6)_2\text{SO}_4 + \text{H}_2\text{O}$ . Sl. sol. in cold, more easily in hot  $\text{H}_2\text{O}$ .

Chloronitritotetramine cobaltic chloride, Cl(NO₂)Co(NH₃)₄Cl.

Not very sol. in cold  $H_2O$ . (Jörgensen, Z. anorg. 5. 195.)

Chloronitritoplatinsemidiamine chloride, Cl₂(NO₂)Pt(NH₃)₂Cl.

100 pts. solution in  $H_2O$  sat. at 18° contain 1.8 pts. salt; sat. at 100°, 6 pts.

Insol. in abs. alcohol or ether. Not decomp. by conc. HNO₃, HCl, or H₂C₂O₄+Aq, and by H₂SO₄ only at a high heat.

Formula given was PtN₆H₁₂Cl₆O₅. (Peyrone, J. B. **1855**. 421.)

nitrite, Cl₂(NO₂)Pt(NH₃)₂NO₂. Sol, in H₂O. (Blomstrand.)

Chlorophosphatoplatindiamine phos-ClPt(N₂H₆)₂

phate,  $PO_4$  +2H₂O.

Nearly insol. in cold, and only very sl. sol. in hot H₂O. (Raewsky.)

Chloronitrous acid.

Iridium potassium chloronitrite, Ir₂Cl₂(NO₂)₄, 6KCl.

Ppt.; decomp. by boiling H₂O. Sol. in cold H₂O. (Leidié, C. R. 1902, **134**. 1583.)

 $\rm Ir_{\it s}K_{12}Cl_{16}(NO_{\it s})_{\it s}+4H_{\it 2}O.$  Ppt. (Quennessen, C. R. 1905, **141**, 258.)

#### Chloropalladic acid.

#### Chloropalladates.

The chloropaliadates are generally very sol. in H₂O, and sol. in alcohol. (v. Bonsdorff, Pogg. 17. 264.)

Ammonium chloropalladate,  $(NH_4)_2PdCl_6$ . Sl. sol. in  $H_2O$ . (Berzelius.)

#### Barium chloropalladate.

Sol. in H₂O and alcohol. (v. Bonsdorff.)

#### Cadmium chloropalladate.

As above.

#### Cæsium chloropalladate, Cs₂PdCl₆.

Nearly insol. in cold H₂O. Decomp. by boiling with H₂O or by hot conc. H₂SO₄. (Gutbier, B. 1905, **38**. 2386.)

#### Calcium chlcropalladate.

Deliquescent; sol. in H₂O and alcohol. (v. Bonsdorff, **1829**.)

Glucinum chloropalladate, GlPdCl₅+8H₂O. Very hydroscopic, and sol, in H₂O.

## Magnesium chloropalladate, $MgPdCl_6+6H_2O$ .

Deliquescent; sol. in H₂O.

*Nickel chloropalladate, NiPdCl₆+6H₂O. Extremely deliquescent.

#### Potassium chloropalladate, K₂PdCl₆.

Sl. sol. in cold H₂O. Decomp. by long boiling with H₂O. Sl. sol. in dil. HCl+Aq without decomp. Insol. in NH₄Cl, KCl, or NaCl+Aq. Insol. in alcohol. (Berzelius.)

#### Rubidium chloropalladate, Rb₂PdCl₆.

Insol. in cold H₂O. Decomp. by boiling with H₂O or by hot conc. H₂SO₄. (Gutbier, B. 1905, **38**. 2387.)

Zinc chloropalladate, ZnPdCl₆+6H₂O. Very deliquescent. (v. Bonsdorff.)

#### Chloropalladous acid

Aluminum chloropalladite, Al₂Pd₂Cl₁₀+ 20H₂O.

Deliquescent. Sol. in H₂O, alcohol, or ether. (Welkow, B. 7. 804.)

## Ammonium chloropalladite, $(NH_4)_2PdCl_4+H_2O$ .

Easily sol. in  $H_2O$ . Insol. in alcohol. Sol. in  $NH_4Cl+Aq$ . (Claus.)

Easily sol. in  $H_2O$ . (Gutbier, B. 1905, 38. 2386.)

#### Barium chloropalladite.

Easily sol, in H₂O or alcohol.

#### Cadmium chloropalladite.

Not deliquescent.

#### Cæsium chloropalladite, Cs₂PdCl₄.

Can be cryst. from hot H₂O. (Gutbier, B. 1905, **38.** 2386.)

#### Calcium chloropalladite.

Deliquescent. Sol. in H₂O or alcohol.

### Glucinum chloropalladite, GlPdCl₄+6H₂O.

Very hygroscopic; very sol. in H₂O, alcohol, or ether. (Welkow.)

#### Magnesium chloropalladite.

Deliquescent. Easily sol. in  $H_2O$ . (v. Bonsdorff.)

#### Manganese chloropalladite.

Sol. in H₂O and alcohol.

#### Nickel chloropalladite.

Sol. in H₂O.

#### Potassium chloropalladite, K₂PdCl₄.

Much more sol. in hot than cold  $H_2O$ . (Joannis, C. R. 95. 295.) Sol. in NH₄OH+Aq. (Berzelius.) Sol. in cold sat. KCl+Aq. (Gibbs, Sill. Am. J. (2) 31. 70.) Insol. in alcohol. (Wollaston.) Somewhat sol. in alcohol of 0.84 sp. gr., but insol. in absolute alcohol; decomp. on boiling (Berzelius.)

## Rubidium chloropalladite, Rb₂PdCl₄.

Can be cryst. from hot  $H_2O$ . (Gutbier, B. 1905, 38. 2387.)

#### Sodium chloropalladite.

Deliquescent. Sol. in H₂O and alcohol.

#### Zinc chloropalladite.

Very deliquescent. Sol. in H₂O and alcohol. (v. Bonsdorff.)

## Chlorophosphoarsenioiridic acid, 2IrCl₃, 3H₃PO₃, 3H₃PO₄, 5H₂AsO₄(?).

Very sol. in H₂O. (Geisenheimer.)

#### Lead chlorophosphoarsenioiridate, 4IrCl₂, 3Pb₂H₂(PO₃)₂, 3Pb₃(PO₄)₂, 5Pb₂H₂(AsO₄)₂.

Insol. in H₂O.

## Chlorophosphoiridic acid, 2IrCl₃, 3H₂PO₄, 3H₂PO₅.

Very sol. in  $H_2O$ . Insol. in alcohol. (Geisenheimer, A. ch. (6) **23**. 254.)  $2IrCl_3$ ,  $3H_3PO_4$ . Sol. in  $H_2O$  and alcohol.

Ammonium chlorophosphoiridate, 2IrCl₂, 3(NH₄)₂PO₄, 3(NH₄)₂HPO₃.

Very deliquescent. Very sol. in H₂O. (Geisenheimer.)

Lead chlorophosphoiridate, 4IrCl₃, 3Pb₈(PO₄)₂, 3PbH₂(PO₃)₂.

Insol. in H₂O or acetic acid; very sol. in dil. HNO₃+Aq. (Geisenheimer.)

Silver chlorophosphoiridate, 2IrCl₂, 3AgH₂PO₄, 3AgH₂PO₃.

Insol, in  $H_2O$ . Sol, in  $HNO_3+Aq$ , and  $NH_4OH+Aq$ . (Geisenheimer.)

#### Chlorophosphoplatinic acid.

See Chloroplatinophosphoric acid.

#### Chlorophosphoric acid.

Thorium chlorophosphate, 3ThO₂, ThCl₄, 2P₂O₅.

Insol. in H₂O and acids; decomp. by boiling with H₂SO₄ and fusing with alkali carbonates. (Colani, C. R. 1909, **149**. 208.)

## Chloroplatinamine chloride, $\mathrm{Cl_2Pt}_{\mathrm{NH_3Cl}}^{\mathrm{NH_3Cl}}$

Sol. in about 700 pts.  $H_2O$  at 0°, and 33–34 pts. at 100°. Not attacked by boiling conc. HNO₃ or  $H_2SO_4$ . Sol. in boiling KOH+Aq with decomp. Sol. in NH₄OH+Aq. (Cleve, Sv. V. A. H. 10, 9, 30.)

- --- nitrite, Cl₂Pt(NH₃NO₂)₂. Sl. sol. in cold, easily in hot H₂O.
- --- nitrite silver nitrite,  $Cl_2Pt(NH_3NO_2)_2$ ,  $AgNO_2$ .

Easily sol. in hot, sl. sol. in cold  $\mathrm{H}_2\mathrm{O}$ . (Cleve.)

— nitritochloride, Cl₂Pt^{NH₃NO₂} Sol. in H₂O. (Cleve.)

Chloroplatindiamine bromide, Cl₂Pt(N₂H₆Br)₂.

Sl. sol. in hot H₂O. (Cleve.)

---- chloride (Gros' chloride), Cl₂Pt(N₂H₆Cl)₂.

Nearly insol. in cold, and only sl. sol. in hot  $H_2O$ . Sol. in hot conc. KOH+Aq, with decomp. (Grimm.)

comp. (Grimm.)
Sol. in cold KOH+Aq without decomp.
Nearly insol. in NH₄OH+Aq. (Buckton.)
+H₂O. (Raewsky.)

- chloroplatinate, NCl₂Pt(₂H₆Cl)₂, PtCl₄. Easily sol, in hot H₂O.
- chloroplatinite, Cl₂Pt(N₂H₆Cl)₂, PtCl₂. Sl. sol. in H₂O. (Cleve.)

Chloroplatindiamine chromate, Cl₂Pt₄(N₂H₆)₂CrO₄.

· Nearly insol. in H₂O. (Cheve.)

——dichromate, Cl₂Pt(N₂H₆)₂Cr₂O₇.

Sl. sol. in cold, more sol. in hot H₂O. (Cleve.)

--- nitrate (Gros' nitrate), Cl₂Pt(N₂H₆NO₂)₂.

Much more easily sol. in hot than in cold H₂O. Sol. in hot KOH+Aq with decomp.

Nearly insol. in conc. HNO₂+Aq.

--- nitritochloride, Cl₂Pt_{N₂H₆NO₂}

Ppt. (Jörgensen.)

---- phosphate.

See Chlorophosphatoplatindiamine phosphate.

--- sulphate, Cl₂Pt(N₂H₆)₂SO₄.

Sl. sol. in both cold or hot  $H_2O$ . (Cleve.)  $+xH_2O$ . Sl. sol. in cold, easily in hot  $H_2O$ . (Grimm.)

--- sulphocyanide,  $Cl_2Pt(N_2H_6)_2(CNS)_2 + H_2O$ .

Ppt. (Cleve.)

### Chloroplatin monodiamine chloride,

 ${\rm Cl_2Pt}_{\rm NH_3Cl.}^{\rm (NH_3)_2Cl}$ 

Quite easily sol. in H₂O. (Cleve.)

Chloroplatinsemidiamine carbonate chloride,  $2Pt(NH_3)_2Cl_2$ ,  $Pt_2(NH_3)_4Cl_2(CO_3)_{e}$ ,

Sl. sol. in H₂O; insol. in alcohol and ether. Decomp. by cold HCl+Aq. (Schon, Z. anorg. 1897, 13. 37.)

Chloroplatinsemidiamine chloride, Cl₃Pt(NH₃)₂Cl.

Sol. in 300 pts. H₂O at 0°, and 65 pts. at 100°. Not decomp. by conc. H₂SO₄. Sol. in KOH+Aq without decomp. (Cleve.)

Chloroplatinic acid, H₂PtCl₆+6H₂O.

Deliquescent. Sol. in H₂O, alcohol, or ether. +4H₂O. Deliquescent. (Pigeon, C. R. 112. 1218.)

PtCl₄, HCl+2H₂O. (Pigeon.)

Aluminum chloroplatinate, AlCl₃, PtCl₄+  $15H_2O$ .

Very sol, in H₂O and alcohol. (Welkow, B. 7. 304.)

Insol. in ether.

Ammonium chloroplatinate, (NH₄)₂PtCl₅.

Sl. sol. in cold, more easily in hot H₂O. (Fresenius.)

100 pts.  $H_2O$  dissolve 0.666 pt. at ord. temp. and 12.5 pts. at 100°. (Crookes, C. N. 9.37.)

Insol. in cold HCl+Aq. Separates out on cooling from solution in hot HCl, HNO₃, or H₂SO₄. (Fischer,)

Very sl. sol. in cold, easily in hot NH OH+ Aq. (Fresenius.)

Conc. NH₄Cl+Aq ppts. it almost completely from aqueous solution. (Böttger.)

Sol. in NH₄ succinate+Aq. (Döpping.) Less sol. in H₂PtCl₆+Aq than in H₂O. (Rogojski, A. ch. (3) 41. 452.)

Sol. in SnCl₂+Aq. (Fischer.) Very sol. with decomp. in KCNS+Aq. (Claus.)

At 15-20°, sol. in 26,535 pts. 97.5% alcohol, in 1476 pts. 76% alcohol, and in 665 pts. 55% alcohol. If free HCl is present, it is sol. in 672 pts. 76% alcohol. (Fresenius, A. 59. 118.) Insol, in absolute alcohol or ether.

#### Barium chloroplatinate, BaPtCl₆+6H₂O.

Permanent; sol. in H₂O; decomp. by alcohol. (v. Bonsdorff, Pogg. 17. 250.)

Barium monochloroplatinate, PtCl(OH), Ba+ H₂O.

Insol. in H₂O and in org. solvents. (Bellucci, C. C. 1903, I. 131.)

Barium pentachloroplatinate, OH.PtCl₅Ba+ H₂O.

(Miolati, Chem. Soc. 1900, 78. (2) 732.)

Cadmium chloroplatinate, CdPtCl₆+6H₂O.

Bonsdorff.)

#### Cæsium chloroplatinate, Cs₂PtCl₆.

100 pts. H₂O dissolve at:

⁵″ 0° 20°  $30^{\circ}$ 10° 0.024 0.050 0.0790.110 pts. Cs₂PtCl₆, 50° 60° 70° 40° 0.177 0.2130.251 pts. Cs₂PtCl₆, 0.142 90° 100° 80° 0.3320.291 0.377pts. Cs₂PtCl₆. (Bunsen, Pogg. 113, 337.)

Sol. in 1308 pts. H₂O at 15°, and 261 pts. at 100°. (Crookes, C. N. 9. 205.)

#### Calcium chloroplatinate, CaPtCl₆+8H₂O.

Deliquescent; easily sol. in H₂O. (v. Bonsdorff.)

Calcium monochloroplatinate, PtCl(OH)₅Ca  $+H_{2}O.$ 

Insol. in  $H_2O$  and in org. solvents. (Bellucci, C. C. 1903, I. 131.)

Cerium chloroplatinate,  $CeCl_2$ ,  $PtCl_4+13H_2O$ . Deliquescent; very sol. in H2O or alcohol; insol. in ether. (Marignac.)

3PtCl₄+8H₂O. 4CeCl₂, Deliquescent; easily sol, in H2O or alcohol; insol, in ether. (Holzmann, J. pr. 84. 80.)

Chromium chloroplatinate, CrCl₂, PtCl₄+ 10½H₂O.

Deliquescent. (Nilson, B. 9. 1056.)

 $+10 H_2 O$ . Very sol. in  $H_2 O$  and alcohol Nearly insol. in acetone. (Higley, J. Am Chem. Soc. 1904, 26.617.)

Cobalt chloroplatinate,  $CoPtCl_6+6H_2O$ .

Very deliquescent. (Jörgensen.)

Copper chloroplatinate, CuPtCl₆+6H₂O.

Deliquescent in moist air. (v. Bonsdorff.)

Didymium chloroplatinate, DiCl₃, PtCl₄+ 13H₂O.

Less deliquescent than the cerium salt (Marignac.)

+10½H₂O. Deliquescent. (Cleve, Bull Soc. (2) 43. 361.)

Erbium chloroplatinate, ErCl₃, PtCl₄+ 11H₂O.

Very deliquescent. (Cleve.)

Gadolinium chloroplatinate, GdCl₃, PtCl₄+ 10H₂O.

Ppt. (Benedicko, Z. anorg. 1900, 22. 204.)

Glucinum chloroplatinate, GlPtCl₆+8II₂O.

Deliquescent in moist air. Very sol. in H₂O, moderately in alcohol. Insol. in ether. (Welkow, B. 6. 1288.)

Indium chloroplatinate, 2InCl₃, 5PtCl₄+ 36H₂O.

Deliquescent. (Nilson.)

Deliquescent, and easily sol. in H₂O. (v. Iron (ferrous) chloroplatinate, FePtCl₆+ 6H₂O.

Deliquescent, (Topsoë.)

Iron (ferric) chloroplatinate, FeCl₃, PtCl₄+ 10½H₂O.

Deliquescent. (Nilson.)

Lanthanum chloroplatinate, LaCl₃, PtCl₄+ 13H₂O.

Deliquescent: extremely sol. in H.O. (Cleve.)

Lead chloroplatinate, PbPtCl₆+3H₂O.

Easily sol. in H₂O and alcohol (Topsoë), with decomp. (Birnbaum, Zeit. Ch. 1867. 520.)

Lead monochloroplatinate, [PtCl(OH),]Pb, Pb(OH)₂.

Ppt. (Bellucci, Chem. Soc. 1902, 82, II. 155.)

Lead pentachloroplatinate, basic, PtCl₅(OH)Pb, Pb(OH)₂.

(Miolati, Chem. Scc. 1900, 78. (2) 732.)

Lithium chloroplatinate, Li₂PtCl₆+6H₂O.

Extremely deliquescent (Jörgensen): efflorescent. Easily sol. in H2O, alcohol, or etheralcohol; insol. in ether. (Scheibler.)

Lithium pentachloroplatinate, OH.PtCl₅Li₂. Very hydroscopic. (Miolati, Chem. Soc. 1900, 78 (2) 732.)

Magnesium chloroplatinate, MgPtCl₆+6H₂O. Sol. in H₂O and abs. alcohol. +12H₂O. Sol. in H₂O.

Manganese chloroplatinate, MnPtCl₆+6H₂O Not deliquescent; sol. in H₂O. +12H₂O. Sl. efflorescent.

Nickel chloroplatinate, NiPtCl₆+6H₂O. Sol. in H2O.

Potassium chloroplatinate, K₂PtCl₆.

100 pts. H₂O dissolve at:

10° 20° 30° 40° 50° 0.74 0.90 1.12 1.41 1.76 2.17 pts. K₂PtCl₆, 80° 100° 70° 90° 60° 3.19 3.79 4.45 5.18 pts. K₂PtCl₆. 2.64 (Bunsen, Pogg. 113. 337.)

100 pts. H₂O dissolve 0.926 pt, at 15°, and 5.26 pts. at 100°. (Crookes, C. N. 9. 205.)

100 g. H₂O dissolve at:

16° 25° 0.4812 0.6718 0.8641 1.132 1.745 g. K₂PtCl₆. 59° 68° 78° 92° 2.396 2.913 3.589 4.484 g. K₂PtCl₆. (Archibald, J. Am. Chem. Soc. 1908, 30, 752.)

Not attacked by cold conc. H₂SO₄. (Las-

saigne.) Sl. sol. in cold, more easily in hot dil. acids. Less sol. in KCl+Aq than in H₂O, and nearly insol. in sat. KCl+Aq. (Schrötter, W. A. B. **50, 2.** 268.)

Solubility in KCl+Aq at 20°.

G. mol. KCl per l. of KCl+Aq.	G. K₂PtCl ₆ in 100 g. of solution.
0.00	0.7742
0.20	0.0236
0.25	0.0207
0.50	0.0109
1.00	0.0046
2.00	0.0045
.3.00	0.0043
4.00	0.0042
sat.	0.0034

(Archibald, J. Am. Chem. Soc. 1908, 30. 757.)

Solubility in NaCl+Aq at 16°.

G. mol. NaCl per litre of NaCl+Aq.	G. K ₂ PtCl ₆ in 100 g. of solution
0.00	0.672
0.05	0.700
0.10	0.729
0.25	0.758
0.50	0.775
0.75	0.791
1.00	0.805
2.00	0.834

Sol. in KOH+Aq. Insol. in cold or hot alkali carbonates or bicarbonates + Aq. (Rose. Easily sol. in warm Na₂S₂O₅+Aq. (Himly.) Sol. in NH₄Cl+Aq. (Brett.)

Sol. in NH4 succinate + Aq. (Döpping.) At 15-20°, sol. in 12,083 pts. absolute alcohol, in 3775 pts. 76% absolute alcohol, and in 105 pts. 55% absolute alcohol. (Fresen-

ius.)

Sol. in 1835 pts. 76% alcohol containing HCl at 15-20°. (Fresenius.)
Nearly absolutely insol. in alcohol containing ether.

Sol. in 42,600 pts. absolute alcohol. (Precht, Z. anal. 18. 509.)

1 l. methyl alcohol dissolves 0.072 g. at 20°. (Peligot, Monit. Sci. 1892, (4) 6. I, 873.)

Solubility in methyl alcohol+Aq at 20°.

% alcohol by wt.	G. K-PtCle in 100 g. of solution			
0	0.7742			
5	0.5350			
10	0.4120			
20	0.2642			
30	0.1831			
40	0.1165			
50	0.0625			
60	0.0325			
70	0.0182			
80	0.0124			
90	0.0038			
100	0.0027			

(Archibald, J. Am. Chem. Soc. 1908, 30, 755.)

Solubility in ethyl alcohol + Ag at 20°.

% alcohol by wt.	G. K ₂ PtCl ₆ in 100 g. of solution
0	0.7742
5	0.4910
10	0.3720
20	0.2180
30	0.1340
40	0.0760
50	0.0491
60	0.0265
70	0.0128
80	0.0085
90	0.0025
100	0.0009

(Archibald, J. Am. Chem. Soc. 1908, 30. 755.)

Solubility in isobutyl alcohol+Aq at 20°.

% alcohol	g. K ₂ PtCl ₆ in 100 g. of solution
0 8.20 sat.	0.7742 0.6250 0.3180

(Archibald, J. Am. Chem. Soc. 1908, 30, 757.) (Archibald, J. Am. Chem. Soc. 1908, 30, 755.)

Potassium pentachlorohydroplatinate, K₂(PtČl₅OH).

Easily sol. in H₂O. (Ruff, B. 1913. 46. 925.)

Praseodymium chloroplatinate, PrCl₃, PtCl₄ +12H₂O.

Very sol. in H₂O. Sol. in conc. HCl. (von Scheele, Z. anorg. 1898, 18. 353.)

Rubidium chloroplatinate, Rb₂PtCl₆.

100 pts. H₂O dissolve at:

0°	10°	20°
0.184	0.154	0.141 pts. Rb ₂ PtCl ₆ ,
30°	40°	50°
0.145	0.166	0.203 pts. Rb ₂ PtCl ₆ ,
60°	70°	80°
0.253	0.329	0.417 pts. Rb ₂ PtCl ₆ ,
<b>9</b> 0°	100°	
0.521	0.634	pts. Rb ₂ PtCl ₆ .
,	(Bunsen, Pe	ogg. <b>113.</b> 337.)

Sol. in 740 pts. H₂O at 15°, and 157 pts. at 100°. (Crookes, C. N. 9. 205.) Insol. in alcohol.

Samarium chloroplatinate, SmCl₃, PtCl₄+ 10½H₂O.

Deliquescent. Very sol. in  $H_2O$ . (Cleve, Bull. Soc. (2) **43.** 165.)

Silver chloroplatinate, Ag₂PtCl₆.

Ppt. Gradually decomp, by H₂O into AgCl and PtCl₄. (Jörgensen, J. pr. (2) **16.** 345.)  $Ag_2PtCl_4(OH)_2$ . Ppt.

Silver monochloroplatinate, [PtCl(OH)₅]Ag₂. Ppt. (Bellucci, Chem. Soc. 1902, 82. (2). 155.)

Silver pentachloroplatinate, (OH)PtCl₅Ag₂. Ppt.; stable in boiling H₂O. (Miolati, Chem. Soc. 1900, 78 (2). 732.)

Silver chloroplatinate ammonia, Ag₂PtCl₆, 2NH₃.

Insol. in H₂O. (Birnbaum.)

Sodium chloroplatinate, Na₂PtCl₆+6H₂O.

Easily sol. in H₂O. Sat. solution at 15° contains 39.77 g. Na₂PtCl₆ and has sp. gr. of 1.368. Sol. in NaCl+Aq. More sol. in absolute alcohol than in 95% alcohol. Sat. solution in abs. alcohol contains 11.90%; 95% alcohol, 6.34%. Mixture of equal parts of alcohol and ether dissolve 2.43%. Insol. in ether. (Precht, Z. anal. 18. 502.)

Sodium pentachloroplatinate, (OH)PtCl₅Na₂. Exists only in solution. (Miolati, l.c.)

Strontium chloroplatinate, SrPtCl₆+8H₂O. Very sol. in H₂O.

Strontium monochloroplatinate, PtCl(OH) Sr  $+H_2O.$ Insol. in H2O and org. solvents. (Bellucci, C. C. **1903**, I. 131.)

Thallium chloroplatinate, Tl₂PtCl₆.

Very sl. sol. in H₂O. Sol. in 15,585 pts. H₂O at 15°, and 1948 pts. at 100°. (Crookes.)

Thallium monochloroplatinate,  $[PtCl(OH)_{\delta}]Tl$ . Ppt. (Bellucci, Chem. Soc. 1902, 82. (2). 155.)

Thallium pentachloroplatinate, (OH)PtCl₅Tl₂. (Miolati, Chem. Soc. 1900, 78 (2). 732.)

Thorium chloroplatinate, ThCl4, PtCl4+ 12H₂O. Very deliquescent. (Cleve, Bull. Soc. (2). **21**. 118.)

Tin (stannic) chloroplatinate, SnCl₄, PtCl₄+ 12H₂O. (Nilson, B. 9. 1142.)

Ytterbium chloroplatinate, 2YbCl₃, PtCl₄+ 22H₂O, and +35H₂O.

Ppt. (Cleve, Z. anorg. 1902, **32**, 137.)

Vanadyl chloroplatinate, (VO)PtCl₄+ 10½H₂O.

Sol. in  $H_2O$ ; cryst. from  $PtCl_4+Aq$ . (Brauner, M. 3. 58.)

Yttrium chloroplatinate, 4YCl₃, 5PtCl₄+ 52H₂O.

Very deliquescent. (Cleve.) 2YCl₃, 3PtCl₄+30H₂O. (Nilson, B. 9. 1059. 2YCl₃, PtCl₄+21H₂O. (Nilson.)

Zinc chloroplatinate, ZnPtCl₆+6H₂O.

Deliquescent; sol. in H₂O and alcohol.

Zinc tetrachloroplatinate, ZnPt(OH)2Cl4+ 5H₂O.

Extremely sol. in H₂O and alcohol. (Miolati, Z. anorg. 1900, 22. 458.)

Zirconyl chloroplatinate, (ZrO)PtCl₈+12H₂O. (Nilson,)

Chloroplatinoanhydropyrophosphoric  $/P(OH)_2$ acid, ClPtP2O6H4=ClPt PO(OH)₂.

Not deliquescent. Sol. in H₂O. (Schützenberger, Bull. Soc. (2) 18. 154.)

Chloroplatinocyanhydric acid,  $H_2Pt(CN)_4Cl_2$ .

See Perchloroplatinocyanhydric acid.

Potassium chloroplatinocyanide, 5K2Pt(CN)4,  $K_2Pt(CN)_4Cl_2+21H_2O$ .

Sol. in H2O; insol. in alcohol.

Silver chloroplatinocyanide,  $Ag_2(PtCl_2(CN)_4)_2$ .

Ppt. (Miolati, C. C. 1901, I. 500.)

#### Chloroplatinophosphoric acid. ClaPtP(OH)3.

Very deliquescent, and sol. in H₂O. (Schützenberger, Bull. Soc. (2) 17. 493.)

Lead chloroplatinophosphate, Pba(Cl2PtrOa) +8H₂O.

Ppt.

 $Pb_3(Cl_2PtPO_3)_2$ ,  $2PbO+4H_2O$ . (Schützenberger, Bull. Soc. (2) 17. 494.)

Silver chloroplatinophosphate, Ag2HPO2. PtCl₂.

Ppt. (Schützenberger, Bull. Soc. (2) 17. 494.)

Chloroplatinodiphosphoric acid, PtCl₂,  $P_2(OH)_6$ .

Very deliquescent, and easily sol, in H₂O. (Schützenberger, Bull. Soc. (2) 18. 153.)

### Chloroplatinopyrophosphoric acid,

ClPt 
$$P(OH)_2$$
  
 $P(OH)_3$ .

Less deliquescent than chloroplatinodiphosphoric acid.

### Chloroplatinous acid, H₂PtCl₄.

Known only in solution.

Aluminum chloroplatinite, AlPtCl₅+10½H₂O. Very deliquescent; sol. in H₂O. (Nilson, J. pr. (2) **15.** 260.)

## Ammonium chloroplatinite, (NH₄)₂PtCl₄.

Sl. sol. in cold, easily in hot H₂O. Insol. in alcohol. (Peyrone, A. 55. 206.)

### Barium chloroplatinite, BaPtCl₄+3H₂O.

Not deliquescent; sol. in H₂O. Very sl. sol. in 93% alcohol.

#### Cadmium chloroplatinite ammonia, CdPtCl4, 4NH₃.

Insol. in H₂O or NH₄OH+Aq. Sol. in HCl+Aq. (Thomsen, B. 2. 668.)

#### Cæsium chloroplatinite, Cs2PtCl4.

Sl. sol. in cold, easily in hot H₂O.

100 pts. H₂O dissolve 3.4 pts. salt at 20° 6.73 " 40° " 8.68 " " 60° " " 10.92 " 80° " 12.10 " 100°. (Godeffroy, A. 181, 176.)

Ppt. Very sensitive to sun-Cs2PtCl5. light. Decomp. by H2O into the higher and lower chlorides. (Wöhler, B. 1909, 42. 4104.)

Calcium chloroplatinite, CaPtCl₄+8H₂O. Deliquescent; sol. in H₂O.

Cerium chloroplatinite, CeCl₂, 2PtCl₂+ 10½H₂O.

Deliquescent; easily sol. in H₂O. (Nilson, B. 9. 1847.)

Chromium chioroplatinite, Cr2Pt2Cl12+ 18H2O.

Deliquescent.

Cobalt chloroplatinite, CoPtCl₄+6H₂O.

Sl. deliquescent in moist, efflorescent in dry

Copper chloroplatinite, CuPtCl₄+6H₂O. Extremely deliquescent. (Topsöe.)

Copper chloroplatinite ammonia (cuprammonium chloroplatinite), Cu(NH₃)₄PtCl₄.

Insol. in H₂O or NH₄OH+Aq; easily sol. in H₂SO₄+Aq. (Millon and Commaille, C. R. **57.** 822.)

Didymium chloroplatinite, DiCl₃, 2PtCl₂+ 10H₂O.

Deliquescent; very sol. in H₂O. (Nilson.) 2DiCl₃, 3PtCl₂+18H₂O. As above. (Nil-

Erbium chloroplatinite, ErPtCl₅+13½H₂O.

Deliquescent.

Fr₂Pt₃Cl₁₂+24H₂O. Deliquescent in moist

Glucinum chloroplatinite, GlPtCl₄+5H₂O.

Deliquescent in moist air. Sol. in H2O in all proportions.

chloroplatinite, FePtCl.+ Iron (ferrous) 7H₂O.

Deliquescent. Rather sl. sol. in cold, very sol, in hot H₂O. (Nilson.)

Lanthanum chloroplatinite, La₂Pt₂Cl₁₂+18, and 27H₂O.

Deliquescent.

Lead chloroplatinite, PbPtCl₄. Insol. in cold H₂O.

Lithium chloroplatinite, Li₂PtCl₄+6H₂O. Sol. in H₂O.

Magnesium chloroplatinite, MgPtCl₄+6H₂O. Not very deliquescent; very sol, in H₂O.

142.)

Manganese chloroplatinite, MnPtCl₄+6H₂O. As the Mg salt.

Mercurous chloroplatinite.

Nickel chloroplatinite, NiPtCl₄+6H₂O. As the Co salt.

Potassium chloroplatinite, K₂PtCl₄.

Moderately sol. in H₂O; insol. in alcohol.

Rubidium chloroplatinite, Rb₂PtCl₄. Sl. sol. in cold; easily in hot H₂O.

Silver Poroplatinite, Ag₂PtCl₄.

Insol. in H₂O. NH₄OH+Aq dissolves out AgCl. (Lang.)

AgCl, PtCl₂(?). As above. (Commaille, Bull. Soc. (2) 6. 262.)

Silver chloroplatinite ammonia, Ag₂PtCl₄, 4NH₃. (Thomsen.)

Sodium chloroplatinite, Na₂PtCl₄+4H₂O. Deliquescent; very sol. in H₂O.

Strontium chloroplatinite, SrPtCl₄+6H₂O. Deliquescent. Very sol. in H₂O.

Thallium chloroplatinite, Tl₂PtCl₄. Very sl. sol. even in boiling H₂O.

Thorium chloroplatinite, Th₂Pt₃Cl₁₄+24H₂O. Very deliquescent.

Yttrium chloroplatinite,  $Y_2Pt_3Cl_{12}+24H_2O$ . Deliquescent.

Zinc chloroplatinite, ZnPtCl₄+6H₂O. Sl. sol. in cold, more easily in hot H₂O; insol. in alcohol.

Zinc chloroplatinite ammonia,  $ZnPtCl_4$ ,  $4NH_3$ .

Sl. sol. in  $H_2O$ ; easily sol. in HCl+Aq. Insol. in alcohol. (Thomsen, J. B. **1868**. 278.)

Zirconyl chloroplatinite, (ZrO)PtCl₄+8H₂O. (Nilson.)

Trichloroplatinous acid, H₂Pt(OH)Cl₃.
Sol. in H₂O. (Miolati, Z. anorg. 1902, **33**.
265.)

+H₂O. (Nilson, J. pr. (2) **15.** 260.)

Lead trichloroplatinite, PbPt(OH)Cl₃.
Ppt. (Miolati.)

Silver trichloroplatinite, Ag₂Pt(OH)Cl₃. Ppt. (Miolati.) Chloroplatosulphurous acid.

Ammonium chloroplatosulphite, acid, NH₄PtClSO₃, H₂SO₃+4H₂O. Sol. in H₂O. (Birnbaum, A. **152**. 149.)

Ammonium chloroplatosulphite chloride sulphite, NH₄PtClSO₃, (NH₄)₂SO₂, NH₄Cl.
Very deliquescent. (Birnbaum.)

Ammonium chloroplatosulphite sulphite, NH₄ClPtSO₃, (NH₄)₂SO₃+3H₂O. Sol. in H₂O. (Birnbaum.)

Barium chloroplatosulphite chloride ammonium chloride, Ba(ClPtSO₃)₂,
Ba(PtClSO₃)Cl, 6NH₄Cl+3H₂O.
Sol. in H₂O. (Birnbaum.)

Potassium chloroplatosulphite ammonium chloride, KPtClSO₃, 2NH₄Cl. Very deliquescent. (Birnbaum, A. **152**.

Potassium chloroplatosulphite chloride, KPtClSO₃, 2KCl.

Deliquescent; sol. in H₂O. (Birnbaum, A. **152.** 145.)

Potassium chloroplatosulphite ammonium potassium sulphite, KPtClSO₃, (NH₄)KSO₃+3H₂O.

Very deliquescent. (Birnbaum, A. 159. 120.)

Sodium chloroplatosulphite ammonium chloride, NaPtClSO₃, 2NH₄Cl.

Very deliquescent. (Birnbaum, A. 159, 117.)

Chloroplumbic acid, H2PbCl6.

Decomp. in solution on standing. (Gutbier, J. pr. 1914, (2) **90**. 497.)

Ammonium chloroplumbate, (NH₄)₂PbCl₆.

Ppt. Difficultly sol. in a small amount of  $\mathrm{H}_2\mathrm{O}$ . Solution decomp. slowly when cold, more rapidly when warmed.

Decomp. by a large amount of H₂O. Sol. without decomp. in 20% HCl. Decomp. by dil. acids and alkalis. (Elbs, Z. Elektrochem. 1903, 9. 778.)

Difficultly sol. in small amount of  $H_2O$  and solution decomp. slowly in the cold, more rapidly when warmed. Decomp. by a large amount of  $H_2O$ . (Gutbier, J. pr. 1914, (2) 90. 498.)

Sel. in cold HNO₃ without decomp. (Friedrich, M. 1893, 14. 511.)

Insol. in conc. NH₄Cl+Aq. (Nikoljukin, B. 18. 370 R.)

5NH₄Cl, 2PbCl₄. Not hygroscopic. Decomp. by H₂O with pptn. of PbO₂. Sol. in HCl+Aq and in cold HNO₃+Aq without

decomp. (Classen and Zahorski, Z. anorg. 4. Chloropurpureochromium ferrocyanide.

Composition is 2NH4Cl, PbCl4. rich, W. A. B. 102, 2b. 527.)

#### Cæsium chloroplumbate, Cs2PbCl6.

Nearly absolutely insol. in conc. CsCl+Aq in presence of Cl. (Wells, Z. anorg. 4.335.) 1 ccm. conc. HCl+Aq containing PbCl₄ dis-

solves 0.000049 g. Cs2PbCl6. (Wells, Z. anorg.

Reacts with H2C as the corresponding ammonium salt. (Gutbier, J. pr. 1914, (2) 90. 500.)

#### Potassium chloroplumbate, K₂PbCl₆.

Decomp. by H₂O; sol. in KCl+Aq. (Wells, Z. anorg. 4. 335.)

Readily decomp. in the air. (Gutbier, J. pr. 1914, (2) 90. 499.)

#### Rubidium chloroplumbate, Rb₂PbCl₆.

Decomp. by H₂O; sl. sol. in conc. RbCl+

Aq. (Wells, Z. anorg. 4. 335.)

1 ccm. conc. HCl+Aq. containing PbCl₄
dissolves 0.003 g. Rb₂PbCl₅. (Wells, Z. anorg. 4 341.)

Reacts with H₂O as the corresponding ammonium salt. (Gutbier, J. pr. 1914, (2) 90. 499.)

Decomp. by conc. H₂SO₄. Insol. in 96% alcohol. (Erdmann, A. 1896, 294. 76.)

#### Chloropurpureochromium bromide, CrČl(NH₃)₅Br₂.

Somewhat more easily sol. in H₂O than the chloride. (Jörgensen, J. pr. (2) 20. 105.)

#### --- chloride, CrCl(NH_a)₆Cl₂,

Difficultly sol. in cold, and decomp. by hot H₂O.

1 pt. dissolves in 154 pts. H₂O at 16° Insol. in conc. HCl+Aq. More sol. in dil. H₂SO₄+Aq than in H₂O. Sol. in NH₄OH+ Aq without decomp. (Jörgensen, J. pr. (2) 20. 105.)

mercuric chloride, CrCl(NH₃)₅Cl₂, 3HgCl₂.

Very difficultly sol. in H₂O. (Jörgensen.)

— chloroplatinate,  $CrCl(NH_3)_5(PtCl_6)$ .

Extremely difficultly sol, in H₂O. (Jörgensen.)

#### --- chromate, CrCl(NH₈)₅(CrO₄).

Sl. sol. in H₂O; sl. more sol. than chloropurpureocobalt chromate. (Jörgensen.)

#### — dithionate, $CrCl(NH_8)_6(S_2O_6)$ .

Very sl. sol. in cold, but much more easily in hot H₂O. (Jörgensen.)

## $[CrC!(NH_2)_4]_2$ Fe $(CN)_6+4H_2O$ .

Very difficultly sol. in cold H2O. (Jörgensen.)

-- fluosilicate, CrCl(NH₂)₅(SiF₆).

Very difficultly sol. in H₂O. Insol. in  $H_2SiF_1 + Aq$ . (Jörgensen, J. pr. (2) 20. 105.)

-- mercuric iodide, CrCl(NH₃), I₂, 2HgI₂.

Decomp. by H₂O; sol. in alcohol and warm

KCN+Aq. CrCl(NH₃), I₂, HgI₂. Very difficultly sol. in cold H2O; easily sol. in KCN+Aq. (Jörgensen, l.c.)

- nitrate, CrCl(NH₂)₅(NO₂)₂.

Sol. in 71 pts. II₂O at 17.5°. Insol. in HNO₃+Aq. (Jörgensen.)

--- oxalate, CrCl(NH₂)₅C₂O₄.

Very sl. sol. in cold H₂O. (Jörgensen, l.c.)

-- sulphate,  $CrCl(NH_3)_5SO_4+2H_2O$ .

Sol. in H₂O; precipitated by alcohol. (Jörgensen.)

— sulphate, acid,  $[CrCl(NH_2)_5]_4SO_4(HSO_4)_6$ . Quite sol. in H₂O. (Jörgensen, J. pr. (2) **20.** 185.)

- pentasulphide, CrCl(NH₃)₅S₅.

Very sl. sol. in cold, easily sol. in warm H₂O. Decomp. by dil. HCl+Aq. Insol. in alcohol. (Jörgensen.)

#### Chloropurpureocobaltic bromide, CoCl(NH₃)₅Br₂.

Properties resemble the chloride very closely. Sol. in 214 pts. H₂O at 14.3° (Jörgensen, J. pr. (2) 18. 205.)

mercuric bromide, 4CoCl(NH₃)₅Br₂, 9HgBr₂.

- bromoplatinate, CoCl(NH₃)₅Br₂, PtBr₄. Very sl. sol. in  $H_2O$ . (J.)

- carbonate,  $CoCl(NH_3)_5CO_3+4\frac{1}{2}H_2O$ . Efflorescent; very easily sol. in H₂O. (J.)

- chloride, CoCl(NH₃)₅Cl₂.

Very sl. sol. in cold, more easily in hot  $H_2O$ . Sol. in 244 pts. H₂O at 15.5°. (Claudet, Phil. Mag. J. (4) 2. 253.) In 287 pts. H₂O at 10.2° and 255 pts. at 11.5°. (Rose, Pogg. 20. 152.) 100 pts. H₂O dissolve 0.232 pt. CoCl₂, 5NH₂, at 0°, and 1.031 pts. at 46.6°. (Kurnakoff, J. Russ. Soc. 24. 629.)

Sl. decomp. by cold, completely by boiling H₂O; decomp. prevented by a little HCl. Pptd. from aqueous solution by alcohol, HCl.



or sat. KCl or NaCl+Aq; not decomp. by boiling HCl+Aq. (Claudet, l.c.) Nearly insol. in cold, but sol. in hot H₂O, to which a few drops of HCl have been added. Less sol. in dil. HCl+Aq than luteocobaltic chloride. (Rogojski, A. ch. (3) 41. 447.) Insol. in alcohol. (Gibbs and Genth.)

Chloropurpureocobaltic antimony chloride, 2CoCl(NH₃)₆Cl₂, SbCl₃.

Ppt, Decomp. by H₂O. (Gibbs.)

#### bismuth chloride.

Insol. in conc. HCl. Easily decomp. by H₂O. (Gibbs.)

mercuric chloride, CoCl(NH₃)₅Cl₂, 3HgCl₂.

Insol. in cold, less sol. in hot H₂O than chloropurpureocobaltic chloride. Insol. cold furning HCl+Aq; sl. sol. in hot HCl+Aq, separating on cooling; sl. sol. in hot aqua regia; moderately sol. in hot HNO₈+Aq; partly sol. in cold conc. H₂SO₄, wholly on warming. Easily sol, in warm H₂C₂O₄+Aq. Insol. in HgCl₂+Aq.

Moderately sol. in NH₄OH+Aq or (NH₄)₂CO₃+Aq. (Carstanjen.) CoCl(NH₃)₅Cl₂, 2HgCl₂. Sl. sol. in cold, but much more easily in hot H₂O. (Gibbs, Proc. Am. Acad. 10. 33.)

- chloropalladite,  $CoCl(NH_3)_5Cl_2$ ,  $PdCl_2$ . Sl. sol. in cold, moderately sol. in hot H₂O. (Carstanjen.)
- chloroplatinate, CoCl(NH₃)₅Cl₂, PtCl₄. Nearly insol. in cold. Very sl. sol. in hot H₂O. (Gibbs and Genth, Sill. Am. J. (2) 23. 319.)
- chromate, CoCl(NH₃)₅CrO₄. Very sl. sol. in H₂O. (J.)
- dichromate, CoCl(NH₃)₅Cr₂O₇.

Much more easily sol, in H₂O than the neutral salt. (J.)

- dithionate, CoCl(NH₃)₅S₂O₆.

Very sl. sol. in cold, more easily in hot  $\mathbf{H}_{2}O.$  (J.)

– manganic fluoride.

Ppt. Sl. sol, in dil. HF+Aq. (Christensen, J. pr. (2) 35. 161.)

- fluosilicate, CoCl(NH₃)₅SiF₆. Very sl. sol. in HF+Aq.
- iodide,  $CoCl(NH_2)_5I_2$ .

Much more sol. in H₂O than bromide or chloride. Sol. in 54.5 pts. H₂O at 15.6°, and 50 pts. at 19.3°. (J.)

iodide. Chloropurpureocobaltic mercuric CoCl(NH₂)₅I₂, 2HgI₂.

Sl. sol. in H₂O. (J.) CoCl(NH₃)₅l₂, HgI₂. Very sl. sol. in cold  $H_2O.$  (J.)

- nitrate,  $CoCl(NH_3)_5(NO_3)_2$ .

Sol. in 80 pts. H₂O at 15°. Rather easily sol. in hot H₂O. (Jörgensen, J. pr. (2) 18. 209.)

- oxalate,  $CoCl(NH_3)_5C_2O_4$ . Sl. sol. in  $H_2O$ , (J.)

- pyrophosphate,  $CoCl(NH_3)_5(H_2P_2O_7)$ . Sl. and very slowly sol. in cold, much more

easily in warm H₂O. (J.)  $[CoCl(NH_3)_5]_2P_2O_7+xH_2O$ . Quite easily

sol. in H₂O.

diphosphopentamolybdate,

 $[\text{CoCl}(\text{NH}_3)_5]_2(5\text{MoO}_3, 2\text{HPO}_4).$ Ppt. Nearly insol. in pure H₂O; more sol. in dil.  $H_2SO_4 + Aq$  without decomp. (J.) [CoCl(NH₃)₅]₂(5MoO₃, 2NH₄PO₄). Ppt. As above.

- sulphate, CoCl(NH₃)₅SO₄.

Anhydrous. Slowly sol. in 128-131.9 pts. H₂O at 16°

+2H₂O. Sol. in 133.4 pts. H₂O at 17.3°. Rather easily sol. in hot H₂O, and much more rapidly than the anhydrous salt. (J.)  $[CoCl(NH_3)_5]_4SO_4(SO_4H)_6$ . Decomp. by

H₂O into neutral sulphate. Sol. in H₂SO₄.

tartrate, CoCl(NH₃)₅(C₄H₅O₆)₂+ 2½H2O.

Moderately sol. in H₂O; insol. in alcohol.

- thiosulphate,  $CoCl(NH_3)_5S_2O_3$ .

Nearly insol. in cold H₂O; very sl. sol. in boiling H₂O with partial decomp. (J.)

Chloropurpureoiridium comps.

See Iridopentamine comps.

Chloropurpureorhodium carbonate,  $ClRh(NH_3)_6CO_3+H_2O$ .

Easily sol. in H₂O. (Jörgensen.)

- chloride,  $ClRh(NH_3)_5Cl_2$ .

Sol. in 179 pts. H₂O at 17°, and more easily in hot H₂O. Sol. in conc. H₂SO₄ or boiling NaOH+Aq without decomp. Very sl. sol. in cold dil. HCl+Aq (1:1). Sl. sol. in hot HCl+Aq. Insol. in alcohol. (Jörgensen, J. pr. (2) 27. 433; 34. 394.)

- rhodium chloride, 3ClRh(NH₃)₅Cl₂, 2RhCl₃. Ppt. (Jörgensen, Z. anorg. 5. 75.)

#### Chloropurpureorhodium chloroplatinate, ClRh(NH_a),PtCl₆.

Insol. in cold H₂O. (J.)

#### - fluosilicate, ClRh(NH₈)₆SiF₆.

Very sl. sol, in cold H₂O. Sol. in NaOH ;. Aq as roseo satt. (J.)

## — hydroxide, $ClRh(NH_8)_5(OH)_2$ .

Known only in solution. (J.)

#### --- nitrate, ClRh(NH₈)₅(NO₈)₂.

Sl. sol. in cold H₂O, but more easily than the chloride. Sol, in boiling NaOH+Aq as roseo salt, (J).

#### --- sulphate, ClRh(NH₂)₅SO₄+2H₂C.

Sl. sol. in cold, more easily in hot  $H_2O$ . (J.) 4ClRh(NH₃)₅SO₄, 3H₂SO₄. Sl. sol. in cold, more easily in hot H₂(). (J.)

#### Chlororhodous acid.

#### Ammonium chlororhodite, (NH₄)₂RhCl₅+ H₂O.

(Gutbier, B. 1908, 41. 213.) Sol. in H₂O; insol. in alcohol. (Wollaston.) Not obtainable. (Leidić, A. ch. (6) 17. 275.)

(NH₄)₃RhCl₆+1½H₂O. Sol. in H₂O, but less easily than Na salt; insol. in alcohol. Sol. in dil. NH₄Cl+Aq. (Claus, J. B. 1855. 423.) (Gutbier, l. c.)

#### Ammonium chlororhodite nitrate, (NH₄)₂Rh₂Cl₆, 2NH₄NO₃.

Very sol. in H₂O. Decomp. by boiling with H₂O. Sl. sol. in HNO₃+Aq. (Leidié, C. R. **107.** 234.)

#### Barium chlororhodite, Ba₃(RhCl₆)₂.

Resembles the Na salt. (Bunsen, A. 146. 276.)

#### Cæsium chlororhodite, Cs₂RhCl₅+H₂O.

Difficulty sol. in H₂O. (Gutbier, B. 1908, **41**. 214.)

#### Lead chlororhodite, Pb₃(RhCl₆)₂.

Ppt. Insol. in H₂O. (Claus.) Not obtainable. (Leidié.)

#### Mercurous chlororhodite, Hg₂RhCl₆.

Ppt. Insol. in H₂O. (Claus.) Not obtainable. (Leidié.)

#### Potassium chlororhodite, K₂RhCl₅+H₂O.

Not efflorescent. Sl. sol. in H₂O. Sl. sol. in KCl—Aq. (Gibbs.) Insol. or sl. sol. in alcohol. (Berzelius.)

Salt is anhydrous. (Leidié.)

Contains 1H2O. (Seubert and Kobbé, B. **23.** 2556.)

Can be cryst, from H₂O containing a little HCl. (Gutbier, B. 1908, 41. 212.

K₂RhCl₆+3H₂O. Efflorescent. Sl. sol. in H₂O. Aqueous solution decomp. to above on standing. (Claus.)

Not obtainable. (Leidié.)
Also obtained by Seubert and Kobbé. (B. 23. 2556.)

+1 1/2 H₂O. (Leidié, C. R. 111. 106.)

## Rubidium chlororhodite, Rb₂RhCl₅+H₂O.

Difficulty sol in H₂O. (Gutbier, B. 1908, 41, 214.

#### Silver chlororhodite, AgaRhCla

Ppt. Insol. in H₂O. (Claus.) Not obtainable. (Leidié.)

#### Sodium chlororhodite, Na₆Rh₂Cl₁₂+18H₂O. NaRhCl₅+9H₂O.

Efflorescent. Sol. in 1.5 pts. H₂O. Melts in crystal H₂O at 50°. Insol. in alcohol.

 $+12\text{H}_2\text{O}$ . (Gutbier, B. 1908, **41.** 213.)

#### Chlororuthenic acid.

#### Ammonium chlororuthenate, (NH₄)₂RuCl₆.

Easily sol. in H₂O. (Claus.) Formula is (NH₄)₂Ru(NO)Cl₅. (Joly, C. R. 107. 994.)

Sol. in H₂O with decomp. Sol. in HCl. (Howe, J. Am. Chem. Soc. 1904, 26, 549.)

#### Ammonium aquochlororuthenate, (NH₄)₂Ru(H₂O)Cl₅.

Ppt. (Howe, J. Am. Chem. Soc. 1904, 26. 548.)

#### Cæsium chlororuthenate, Cs2RuCl6.

Sl. sol. in H₂O. Sol. in hot dil. HCl+Aq. (Howe, J. Am. Chem. Soc. 1901, 23, 784.)

#### Potassium chlororuthenate, K2RuCl6.

Very sol. in H₂O. Very sl. sol. in conc. NH₄Cl+Aq. Insol. in 70% alcohol. (Claus.) Formula is K₂Ru(NO)Cl₅. (Joly.) Very sl. sol. in cold H₂O. Insol. in pres-

ence of KCl.

Partially decomp. in hot aqueous solution. (Antony, Gazz. ch. it. 1899, 29. (2), 82.) Easily sol. in H₂O with rapid decomp. Sol. in HCl. (Howe, J. Am. Chem. Soc. 1904, 26. 548.)

## Potassium aquochlororuthenate,

K₂Ru(OH₂)Cl₅.

Sol. in H₂O. (Howe, J. Am. Chem. Soc. 1904, **26.** 547.)

#### Rubidium chlororuthenate, Rb:RuCls.

Sl. sol. in H₂O; sol. in hot dil. HCl+Aq. (Howe, J. Am. Chem. Soc. 1901, 23, 784.)

#### Chlororuthenious acid.

Ammonium chlororuthenite, (NH₄)₄Ru₂Cl₁₀. Sl. sol. in H₂O. Insol. in NH₄Cl+Aq or alcohol. (Claus, J. pr. 80. 282.)

Cæsium chlororuthenite, Cs₂RuCl₅+H₂O. Sl. sol. in H₂O; sol. in HCl+Aq. (Howe, J. Am. Chem. Soc. 1901, 23. 785.)

Potassium cblororuthenite, K₄Ru₂Cl₁₉.

M#derately sol. in cold, more easily in hot H₂O. Decomp. easily by heating. Insol. in conc. NH₄Cl+Aq. Insol. in 80% alcohol.

Rubidium chlororuthenite, Rb₂RuCl₅+H₂O. Sl. sol, in H₂O; sol, in HCl+Aq. (Howe, J. Am. Chem. Soc. 1901, 23, 786.)

Sodium chlororuthenite, Na₄Ru₂Cl₁₀.
Deliquescent. Sol. in H₂O or alcohol.

Trichlorosilicomercaptane.

See Silicon chlorohydrosulphide.

#### Chlorosmic acid.

Ammonium chlorosmate,  $(NH_4)_2OsCl_6$ . Sl. sol. in  $H_2O$ . Insol. in alcohol and  $H_2O$  containing HCl.

Potassium chlorosmate, K₂OsCl₆. Properties as the NH₄ salt.

Potassium amino chlorosmate, (NH₂)OsCl₃,2KCl. Ppt. (Brizard, A. ch. 1900, (7) **21**. 375.)

Potassium amino, chlorosmate hydrogen chloride, (NH₂)CsCl₃,2KCl,HCl.

Ppt. (Brizard, A, ch. 1900, (7) 21. 378.)

Silver chlorosmate, Ag₂OsCl₆.

Insol. in H₂O or HNO₃+Aq. (Claus and

Silver ch'orosmate ammonia, Ag₂OsCl₆, 2NH₅.
Sol. in much H₂O. Sl. sol. in KOH+Aq.
Easily sol. in KCN+Aq. (C. and J.)

Sodium chlorosmate, Na₂OsCl₆+2H₂O. Fasily sol. in H₂O or alcohol.

#### Chlorosmious acid.

Ammonium chlorosmite, (NH₄)₄Os₂Cl₁₀+3H₂O.

Easily sol. in H₂O and alcohol; insol. in ether. (Claus and Jacoby, J. pr. 90. 65.)

Potassium chlorosmite, K₆Os₂Cl₁₂+6H₂O. Very easily sol. in H₂O or alcohol. Insol. in ether. (C. and J.)

#### Chlorosmisulphurous acid.

Potassium hydrogen chlorosmisulphite, OsCl₄(SO_{2)₄K₆H₂. Ppt. (Rosenheim, Z. anorg. 1900, **24**. 422.)}

Sodium chlorosmisulphite, OsCl₂(SO₃)₄Na₆+10H₂O. Ppt. (Rosenheim, Z. anorg. 1900, **24**. 420.)

#### Chloropyroselenious acid.

Ammonium chloropyroselenite, NH₄Cl, 2SeO₂+2H₂O. Sol. in H₂O. (Muthmann and Schäfer, B. **26.** 1008.)

Potassium chloropyroselenite, KCl, 2SeO₂+ H₂O. As NH₄ salt. (M. and S.)

Rubidium chloropyroselenite, RbCl, 2SeO₂+2H₂O. As NH₄ salt. (M. and S.)

#### Chlorostannic acid, SnO(OH)Cl.

(Mallet, Chem. Soc. **35.** 524.) H₂SnCl₆+6H₂O. Extremely deliquescent; sol. in H₂O. (Scubert, B. **20.** 793.)

Ammonium chlorostannate, (NH₄)₂SnCl₆ (pink salt).

Sol. in 3 pts.  $H_2\Omega$  at 14.5°. Solution decomp. on boiling when dilute, but not when conc. (Bolley.)

Barium chlorostannate,  $BaSnCl_6+5H_2O$ . Sol. in  $H_2O$ . (Lewy, A. ch. (3) 16. 308.)

Cæsium chlorostannate, Cs2SnCl6.

Nearly insol. in conc. HCl+Aq. (Sharples, Sill. Am. J. (2) 47. 178.)

Calcium chlorostannate, CaSnCl₆+5H₂O. Very deliquescent. (Lewy, A. ch. (3) **16.** 308.)

Cerium chlorostannate, CeSnCl₇+9H₂O.
Deliquescent. Sol. in H₂O. (Cleve, Bull. Soc. (2) **31.** 197.)

Cobalt chlorostannate,  $CoSnCl_6+6H_2O$ . Sol. in  $H_2O$ . (Jörgensen.)

Didymium chlorostannate, DiCl₃, SnCl₄+ 10½H₂O.
Sol. in H₂O. (Cleve.)

Glucinum chlorostannate, GlSnCl₆+8H₂O.
Deliquescent. Sol. in H₂O. (Atterberg, Sv. V. A. Handl. **12.** No. 4. 14.)

Lanthanum chlorostannate, 4LaCl₃, 5SnCl₄+ 45H₂O.

Deliquescent. Sol. in H₂O. (Cleve.)

Lithium chlorostannate, Li₂SnCl₆+8H₂O.
Sol. in little H₂O without decomp., but decomp. by dilution. (Chassevant, A. ch. 6)
30. 42.)

Magnesium chlorostannate, MgSnCl₆+6H₂O. Very deliquescent. (Lewy.)

Manganous chlorostannate, MnSnCl₀+6H₂O.

Deliquescent in moist, efflorescent in dry air. (Jörgensen.)

Nickel chlorostannate, NiSnCl₆+6H₂O. Sol. in H₂O. (Jörgensen.)

Potassium chlorostannate, K₂SnCl₆. Sol. in H₂O.

Sodium chlorostannate, Na₂SnCl₆+6H₂O. Easily sol. in H₂O. (Topsoë, Gm. K. Handb. 6¹⁰ aufl. III. 149.)

Strontium chlorostannate,  $SrSnCl_6+8H_2O$ . Sl. deliquescent, and easily sol. in  $H_2O$ . (Topsoë.)

Yttrium chlorostannate, YCl₈, SnCl₄+8H₂O. Sol. in H₂O. (Cleve, Bull. Soc. (2) **31**.197.)

Zinc chlorostannate, ZnSnCl₆+6H₂O. (Biron, C. C. 1904, II. 410.)

#### Chlorosulphobismuthous acid.

Cuprous chlorosulphobismuthite, 2Cu₂S, Bi₂S₃, 2Bi₂Cl.

Stable in air and insol. in H₂O at ord. temp.

Decomp. by boiling H₂O.

Decomp. by mineral acids with evolution of H₂S. (Ducatte, C. R. 1902, **134**. 1212.)

Lead chlorosulphobismuthite, PbS,  $Bi_2S_3$ , 2BiSCl.

Stable in the air. Insol. in H₂O; decomp. by boiling H₂O; sol. in dil. acids with decomp. and evolution of H₂S. (Ducatte.)

Chlorosulphonic acid, HClSO₃.

See Sulphuryl hydroxyl chloride.

Chloropyrosulphonic acid.

Ammonium chloropyrosulphonate, ClS₂O₄NH₄.

Fumes in the air.
Decomp. by H₂O and alcohol. (Traube, B. 1913, 46. 2519.)

Sodium chloropyrosulphonate, ClS₂O₆Na.

Fumes in the air.

Decomp. by H₂O and alcohol. (Traube.)

Chlorosulphuric acid, HSO.Cl.

See Sulphuryl hydroxyl chloride. SO₂Cl₂. See Sulphuryl chloride.

Aluminum chlorosulphate, Al(SO₄)Cl+6H₂O. Very sol. in H₂O. Nearly insol. in abs. alcohol. (Recoura, Bull. Soc. 1902, (3) 27. 1155.)

Chromium chlorosulphate, CrClSO₄+5H₂O. *Green*. (Weinland, Z. anorg. 1905, **48**. 253.) (Recours, C. R. 1902, **185**. 164.) *Violet*. (Weinland, Z. anorg. 1905, **48**.

254.)

Very sol. in  $H_2O$ . Insol. in a mixture of alcohol and aceton. (Recoura, C. R. 1902, 135. 164.)

+8H₂O. Two isomeric modifications:
(a) Green needles. Easily sol. in H₂O.
(Weinland, Z. anorg. 1906, **48**, 251.)

(b) Violet plates. Easily sol. in H₂O. (Weinland.)

#### Chlorosulphurous acid.

Ammonium palladious trichlorosulphite, (NH₄)₃PdCl₂SO₃+H₂O₃

Easily sol. in  $H_2O$ . (Rosenheim, Z. anorg. 1900, 23. 30.

#### Chlorotelluric acid.

Ammonium chlorotellurate,  $(NH_4)_2$ TeCl₆. Sol. without decomp. in a small amt. of  $H_2O$ , but decomp. by much  $H_2O$  or alcohol.

Cæsium chlorotellurate, Cs2TeCl6.

Decomp. by H₂O. Sol. in dil. HCl+Aq. 100 pts. HCl+Aq (sp. gr. 1.2) dissolve 0.05 pt. at 22°.

100 pts. HCl+Aq (sp. gr. 1.05) dissolve 0.78 pt. at 22°.

Insol. in alcohol. (Wheeler, Sill. Am. J. 145. 267.)

#### Potassium chlorotellurate, K2TeCl6.

Deliquescent; decomp. by H₂O and absolute alcohol. (Berzelius.)

The most sol. in H₂O of the chloro- or bromo-tellurates. Easily sol. in dil. HCl+Aq; conc. HCl+Aq ppts. KCl. (Wheeler, Sill. Am. J. **145**. 267.)

#### Rubidium chlorotellurate, Rb₂TeCl₆.

Decomp. by H₂O. Much more sol. in dil. HCl+Aq than Cs₂TeTl₆.

100 pts. HCl+Aq (sp. gr. 1.2) dissolve 0.34 pt. at 22°.

100 pts. HCl+Aq (sp. gr. 1.05) dissolve, 13.99 pts. at 22°.

Sl. sol. in alcohol. (Wheeler.)

#### Chlorotetramine chromium bromide, ClCr(NH₃)₄(OH₂)Br₂.

Very easily sol. in  $H_2O$ . (Cleve, 1861, (Jörgensen, J pr. (2) 42. 210.)

### ---chloride, ClCr(NH₃) (OH₂)Cl₂.

Sol. in H₂O, but decomp. by boiling. Sol. in HCl+Aq, and this solution may be boiled without decomp. (Cleve.)

Sol. in 15.7 pts.  $H_2O$  at 15°. (Jörgensen, J. or 42, 208.)

pr. **42**. **20**8.)

---chromate, ClCr(NH₃)₄(OH₂)CrO₄.
Precipitate. (Cleve.)

——fluosilicate, ClCr(NH₂)₄(OH₂)SiF₆. Sl. sol. in H₂O. (Jörgensen, J. pr. (2) **42**. 218.)

— hydroxide, ClCr(NH₃)₄(OH)₂. Known only in solution. (Cleve.)

— iodide, ClCr(NH₃)₄(OH₂)I₂. Easily sol. in H₂O. (Cleve.)

— nitrate, ClCr(NH₃)₄(OH₂)(NO₃)₂. Very easily sol. in H₂O. (Cleve); (Jörgensen, J. pr. (2) **42**. 209.)

—— sulphate, ClCr(NH₃)₄(OH₂)SO₄. Very difficulty sol. in cold, more easily in hot H₂O. (Cleve.)

#### Chlorotetramine cobaltic bromide, ClCo(NH₈)₄(OH₂)Br₂.

More sol. in  $H_2O$  than chloride. Nearly insol. in HBr+Aq (1:1). (Jörgensen, J. pr. (2) **42.** 215.)

#### ---- chloride, ClCo(NH₃)₄(OH₂)Cl₂.

Sol. in about 40 pts. H₂O, and is identical with octamine cobaltic purpure ochloride of Vortmann. (Jörgensen, J. pr. (2) **42**, 211.)

---- chloroplatinate,  $ClCo(NH_3)_4(OH_2)PtCl_6 + 2H_2O$ .

Sl. sol. in H₂O. (Jörgensen.)

—— fluosilicate, ClCo(NH₈)₄(OH₂)SiF₆.

Sl. sol. in H₂O. Nearly insol. in H₂SiF₆+Aq. (Jörgensen, J. pr. (2) **42**. 219.)

sulphate,  $ClCo(NH_8)_4(OH_2)SO_4$ . Sol. in  $H_2O$ . (Jörgensen, J. pr. (2) **42.** 214.)

Chlorotitanic acid, TiCl₄,2HCl=H₂TiCl₆. Known only in solution. (Kowalewsky, Z. anorg. 1900, **25**. 192.)

#### Chlorous acid, HClO2.

Known only in aqueous solution. 100 g.  $\rm H_2O$  at 8.5° and 753 mm. pressure dissolve 4.7 g.  $\rm Cl_2O_3$ . Hydrate with 50.07-67.43%  $\rm H_2O$ , perhaps  $\rm HClO_2+H_2O$ , separates out at 0°. (Brandan, A. **151**. 340.)

Pure HClO₂ is not known even in solution.

(Garzarolli-Thurnlakh, A. 209. 184.)

#### Chlorites.

All chlorites are easily sol. in H₂O and alcohol, with gradual decomp.

#### Ammonium chlorite.

Known only in aqueous solution, which decomposes on evaporation or long standing.

#### Barium chlorite, Ba(ClO₂)₂.

Deliquescent; easily sol. in H₂O. Solution decomp. on evaporation. Easily sol. in alcohol. (Millon, A. ch. (3) 7. 298.)

#### Lead chlorite, Pb(ClO₂)₂.

Nearly insol. in cold H₂O, and only sl. sol. in hot H₂O. Sol. in KOH+Aq. (Garzarolli and Hayn, A. **209**. 203.)

Lead chlorite chloride, 6Pb(ClO₂)₂,4PbCl₂, PbO.

Rather difficulty sol. in H₂O. (Schiel, A. **109**. 317.)

#### Potassium chlorite, KClO₂.

Very deliquescent and sol. in  $H_2O$ . Sol. in alcohol of  $38^{\circ}$ . (Millon, A. ch. (3) **7.** 323.) Sol. in  $HClO_2+Aq$ .

#### Silver chlorite, AgClC₂.

Sol. in hot, less in cold H₂O. Easily decomp. by heating above 100°. Decomp. by weakest acids. (Millon, A. ch. (3) 7. 329.)

#### Sodium chlorite, NaClO₂.

Very deliquescent, and sol, in H₂O.

#### Strontium chlorite, Sr(ClO₂)₂.

Deliquescent and sol. in H₂O. Decomp. by slow evaporation. (Millon, A. ch. (3) 7. 327.)

### Chloroxyfulminoplatinum,

Pt₄N₄Cl(OH)O₁₂H₂₂.

Insol. in  $H_2O$ ; sol. in HCl+Aq. (v. Meyer, J. pr. (2) 18. 305.)

### Chloruranic acid, HUO₃Cl+2H₂O.

Sol. in  $H_2O$ ; sl. sol. in alcohol. (Mylius, B. 1901, **34**. 2776.)

Chromacichloride,  $Cr()_2Cl_2$ .

See Chromyl chloride.

#### Chromatoiodic acid.

See Chromoiodic acid.

Chromic acid, H₂CrO₄.

Very sol. in H₂O. (Moissan, C. R. **98.** 1851.)

Does not exist except in solution. (Field,

Chem. Soc. **61.** 405.)

The composition of the hydrates formed by  $H_2CrO_4$  at different dilutions is calculated from determinations of the lowering of the fr-pt. produced by  $H_2CrO_4$  and of the conductivity and sp. gr. of  $H_2CrO_4 + Aq$ . (Jones, Am. Ch. J. 1905, 34. 333.)

See also Chromium trioxide.

#### Chromates.

Chromates of the alkali metals and of Ca, Mg, and Sr are sol. in  $H_2C$ ; the others are generally insol. or sl. sol. in  $H_2O$ , but sol. in  $HNO_2+Aq$ .

Aluminum chromate, basic, Al₂O₃, CrO₃+7H₂O.

Easily sol. in NH₄OH+Aq, alum, or acetic acid+Aq. Insol. in NH₄Cl+Aq. (Farrie, Chem. Soc. 4. 300.)

Insol. as such as H₂O, but easily decompinto H₂CrO₄ and a basic insol. comp. Sol. in alkaline solutions and acids. Decomp. by many salts. (Eliot and Storer, Proc. Am. Acad. 5. 214.)

Aluminum sodium chromate silicate, 4Al₂O₅,5Na₂O,CrO₅,7SiO₂. (Weyberg, C. B. Miner, **1904**, 727.)

(Weyberg, O. B. Miller, 1904. 721.)

Ammonium chromate, basic,  $5(NH_4)_2O$ ,  $4CrO_3(?)$ .

Easily sol. in cold  $H_2O$ . (Pohl, W. A. B. 6. 592.)

Ammonium chromate, (NH₄)₂CrO₄.

Very sol. in H₂O; pptd. from aqueous solution by alcohol. (Malaguti and Sarzeau.) 100 g. H₂O dissolve 40.46 g. at 30°. (Schreinemakers, Chem. Weekbl. 1905, 1. 395.)

Sol. in H₂O without decomp. (Schreinemakers, C. C. 1905, II. 1067.)

*Sp. gr. of (NH₄)₂CrO₄+Aq at t°/4°. t° 13° 13.7° 19.6° % (NH₄)₂CrO₄ 10.52 19.75 28.04 Sp. gr. 1.0633 1.1197 1.1727 (Slotte, W. Ann. 1881, **14**. 18.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 826.)

Difficulty sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Ammonium dichromate,  $(NH_4)_2Cr_2O_7$ . Less sol. in  $H_2O$  than  $(NH_4)_2CrO_4$ . (Moser.)

100 g. H₂O dissolve 47.17g at 30°. 148. 1465.)

(Schreinemakers, Chem. Weekbl. 1905, 1. 395.)

\$\frac{t^{\circ}}{t^{\circ}}\$ Sp. gr. of \$(NH_4)_2\text{Cr}_2\text{O}_7 + Aq at \$t^{\circ}/4^{\circ}\$.

\$\frac{t^{\circ}}{\gamma_0}\$ \( \text{NH}_4)_2\text{Cr}_2\text{O}_7 \quad \text{6.85} \quad \text{13.00} \quad \text{19.93} \\
\text{Sp. gr.} \quad \text{1.0393} \quad \text{1.0782} \quad \text{1.1258} \\
\text{(Slotte, W. Ann. 1881, 14. 18.)}

Sol. in alcohol. (Ranitzer, Zeit. angew. ch. 1913, **26.** 456.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in acetone. (Naumann, B. 1904, 37.

7.72 7.

Ammonium trichromate, (NH₄)₂Cr₃O₁₀.

Not deliquescent, but very sol. in H₂O. (Siewert.)

Decomp. by  $H_2O$  into chromic acid and dichromate. (Jäger and Krüss, B. **22.** 2036.) Sol. in acetone. (Naumann, B. 1904, **37.** 4328.)

Ammonium tetrachromate, (NH₄)₂Cr₄O₁₈.

Deliquescent. Decomp. by  $H_2O$ . (Jäger and Krüss, B. 22, 2037.)

Ammonium hexachromate,  $(NH_4)_2Cr_6O_{19} + 10H_2O$  (?)

Very efflorescent. (Rammelsberg, Pogg. 94. 516.)

Ammonium barium chromate, BaCrO₄,(NH₄)₂CrO₄.

Ppt. Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1908, **58.** 414.)

Ammonium cadmium chromate, NH₄)₂O, 4CdO, 4CrO₃+3H₂O.

Ppt. Decomp. by boiling  $H_2O$ . Gröger, M. 1904, **25.** 533.

Ammonium cadmium chromate ammonia,  $(NH_4)_2CrO_4$ ,  $CdCrO_4$ ,  $1_2NH_3+1_2H_2O$ .

Decomp. by H₂O. (Gröger, Z. anorg. 1908, **58**. 418.)

(NH₄)₂Cd(CrO₄)₂, 2NH₃. Insol. in cold, decomp. by hot H₂O.

Sol. in dil. acids or in NH₄OH+Aq. (Briggs, Chem. Soc. 1903, 83. 395.)

Ammonium chromous chromate(?)

 $(NH_4)_2CrO_4, CrCrO_4 = (NH_4)_2Cr(CrO_4)_2$ . Difficultly sol. in  $H_2O$ . Insol. in alcohol, ether, chloroform, or glacial acetic acid. Easily sol. in conc. acids, from which it is separated on dilution. Decomp. by NaOH+Aq. (Heintze, J. pr. (2) 4. 220.)

Ammonium chromyl chromate, (3(NH₄)₂O, 2CrO₂,3CrO₃.

Nearly insol. in H₂O. (Pascal, C. R. 1909, 148, 1465.)

Ammonium cobaltous chromate. (NH₄)₂Co(CrO₄)₄+6H₂O.

A MARKET

Ppt. Easily decomp. (Briggs, Z. anorg. 1907, **56**. 247.) (NH₄)₂O, 4CoO, 4CrO₂+3H₂O. Insol. in H₂O. Sol. in cold dil. H₂SO₄. (Gröger, Z. anorg. 1906, **49**. 202.)

Ammonium cobaltous dichromate, CoCr₂C₇, (NH₄)₂Cr₂O₇+2H₂O.

Sl. hydroscopic; sol. in H₂O, insol. in alcohol. (Krüss, Z. anorg. 1895, **8.** 454.)

Ammonium cobaltous chromate ammonia, 3CoCrO₄,(NH₄)₂CrO₄, 2NH₃+3H₂O. Ppt.; decomp. by H₂O. (Gröger, Z. anorg. 1908, **58.** 422.)

Ammonium cupric dichromate, 2CrCr₂O₇,3(NH₄)₂Cr₂O₇+6H₂O. Sol. in H₂O. (Krüss, Z. anorg. 1895, **8.** 455.)

Ammonium cupric chromate ammonia, (NH₄)₂CrO₄,CuCrO₄,2NH₃.

Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1908, **58.** 420.)

Insol. in cold, decomp. by hot H₂O. Sol. in dil. acids or in NH₄OH+Aq. (Briggs, Chem. Soc. 1903, **83.** 394.)

Ammonium iron (ferric) chromate,  $(NH_4)_2CrO_4$ ,  $Fe_2(CrO_4)_3+4H_2O$ .

More easily decomp. by  $H_2O$  than  $K_2CrO_4$ ,  $Fe_2(CrO_4)_3+4H_2O$ . (Hensgen, B. 12. 1300.)  $6CrO_3$ ,  $5Fe_2O_3$ ,  $6(NH_4)_2O$ , and  $4CrO_3$ ,  $Fe_2O_3$ ,  $(NH_4)_2O+4H_2O$ . Ppts. (Lepierre, C. R. 1894, 119. 1217.)

Ammonium lithium chromate, NH₄LiCrO₄+ 2H₂O.

Not deliquescent. (Rammelsberg.)

Ammonium lead chromate, (NH₁)₂CrO₄, PbCrO₄.

Ppt. Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1908, **58**. 424.)

Ammonium magnesium chromate, (NH₄)₂CrO₄, MgCrO₄+6H₂O.

Much more sol. in H₂O than the corresponding sulphate. (v. Hauer.)

Sol. in H₂O. (Gröger, Z. anorg. 1908, **58**. 416.)

Ammonium manganous chromate, (NH₄)₂CrO₄, 2MnCrO₄.

Sol. in H₂O. (Hensgen, R. t. c. 3. 433.)

Ammonium nickel chromate, (NH₄)₂CrO₄, NiCrO₄+6H₂O.

Sol. in  $H_2O$ . (Gröger, Z. anorg. 1906, **51**. 353.)

Can be cryst. from H₂O under 40°. (Briggs, Chem. Soc. 1903, 83. 392.)

Ammonium nickel chromate ammonia, (NH₄)₂CrO₄, NiCrO₄, NH₃+H₂O.

Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1906, **51**. 354.)

(NH₄)₂Ni(CrO₄)₂, 2NH_{3.°} Insol. in cold H₂O. Decomp. by hot H₂O. Sol. in dil. acids or in NH₄OH+Aq. (Briggs, Chem. Soc. 1903, **83.** 393.)

+6H₂O. (Briggs, Proc. Chem. Soc. 1902, **18**. 254.)

Ammonium potassium chromate, NH₄KCrO₄.

Sol. in H₂O. (E. Kopp, C. N. **11**. 16.)
+H₂O. (Étard, C. R. **85**. 443.)
2(NH₄)₂CrO₄, 3K₂CrO₄. Very sol. in H₂O.
(Zehenter, M. 1897, **18**. 51.)

Ammonium silver chromate, (NH₄)₂CrO₄, 3Ag₂CrO₄.

Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1908, **58**. 423.)

Ammonium sodium chromate,  $NH_4NaCrO_4+2H_2O$ .

Very sol. in  $H_2O$ . (Zehenter, M. 1897, **18**. 54.)

Ammonium strontium chromate, (NH₄)₂CrO₄, SrCrO₄.

Ppt. Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1908, **58.** 415.)

Ammonium uranyl chromate,  $(NH_4)_2CrO_4$ ,  $2(UO_2)CrO_4+6H_2O$ .

Decomp. by boiling with H₂O. Sol. in acidulated H₂O. (Formanek, A. **257**, 106.) +3H₂O. (Formanek.)

Ammonium zinc chromate, (NH₄)₂O, 2ZnO, 2CrO₃+H₂O.

Decomp. by hot  $H_2O$ . (Gröger, M. 1904, **25**. 520.)

Ammonium zinc chromate ammonia,  $(NH_4)_2 Zn(CrO_4)_2$ ,  $2NH_3$ .

Insol. in cold, decomp. by hot H₂O. 2.Sol. in dil. acids or in NH₄OH+Aq. (Briggs, Chem. Soc. 1903, **83.** 394.)

4ZnCrO₄, 2(NH₄)₂CrO₄, 3NH₃+3H₂O. Ppt. Decomp. by H₂O. (Gröger, Z. anorg. 1908, **58**, 416.)

Ammonium dichromate chloride mercuric chloride, (NH₄)₂Cr₂O₇,2NH₄Cl,4HgCl₂+2H₂O.

Ppt. Sol. in cold, more sol. in warm H₂O_• (Strömholm, Z. anorg. 1912, **75**. 280.)

Ammonium dichromate chloride mercuric cyanide,  $(NH_4)_2Cr_2O_7$ ,  $4NH_4Cl$ ,  $6Hg(CN)_2+4H_2O$ .

(Strömholm, Z. anorg. 1913, 80. 157.)

#### Ammonium chromate chromyl fluoride, (NH₄)₂CrO₄, CrO₂F₂.

Sol. in H₂O. (Varenne, C. R. 91. 989.)

#### Ammonium chromate iodate.

See Chromoiodate, ammonium.

#### Ammonium dichromate mercuric chioride, $(NH_4)_2Cr_2O_7$ , $HgCl_2$ .

Cannot be recryst, from H₂O or HgCl₂-Aq, but from  $(NH_4)_2Cr_2O_7+Aq$ . (Jager and Krüss, B. 22. 2044.)

+H2O. (Richmond and Abel, Chem Soc. Q. J. 3. 199.)

Cannot be made to crystallize with H₂O. (Jäger and Krüss.)

3(NH₄)₂Cr₂O₇, HgCl₂. Decomp. by H₂O. (J. and K.)

 $4(NH_4)_2Cr_2O_7$ ,  $HgCl_2$ . Decomp. by  $H_2(\cdot)$ . (J. and K.)

(NH₄)₂Cr₂O₇, 3HgCl₂. (J. and K.) (NH₄)₂Cr₂O₇, 4HgCl₂. (J. and K.)

### Ammonium chromate phosphate.

See Phosphochromate, ammonium.

#### Ammonium chromate tellurate.

See Chromotellurate, ammonium.

#### Barium chromate, BaCrO₄.

Extremely sl. sol. in H₂O.

Calculated from electrical conductivity of BaCrO₄+Aq, 1 l. H₂O dissolves 3.8 mg. BaCrO₄ at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

When not ignited, BaCrO₄ is sol. in 86,957 pts.  $H_2O$ ; 22,988 pts.  $NH_4Cl+Aq$  (0.5%) Cru₃). When ignited, 160,000 pts. H₂O are necessary for solution. (Schweitzer, by Fresenius, Z. anal. 29. 414.)

Sol. in 23,000 pts. boiling H₂O. (Mescher-

zerski, Z. anal. 21. 399.)

3.5 mg. BaCıO4 are dissolved in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64, 168.)

Easily sol. in HNO₃,HCl, or chromic acid+ Aq, from which it is precipitated by NH₄OH,

or by dilution with H2O. (Bahr.)

Insol. in  $K_2Cr_2O_7+Aq$ . (Schweitzer.) Sol. in 49.381 pts. NH₄C₂H₃O₂+Aq (0.75 % salt) at 15°; in 23,355 pts. NH₄C₂H₃O₂+Aq (1.5% salt) at 15°; in 45,162 pts. NH₄NO₃ +Aq (0.5% salt) at 15°. (Fresenius, Z. anal. **29.** 418.)

Easily sol. in alkali tartrates, or citrates +

(Fleischer, J. pr. (2) 5. 326.)

0.22×10 4 g. equiv. BaCrO₄ are dissolved in 1 l. of 45% alcohol at ord. temp. (Guerini, Dissert, 1912.)

Insol. in acetic acid and in M₂Cr₂O₇+Aq. Partly sol. in a mixture of the two, except Soc. 31. 24.)

in presence of MC₂H₄Q₂. (Caron and Raquet, Bull. Soc. 1906, (3) **35**. 1064.)

*Not completely insol. in acetic acid. (Bau-

htgny, Bull. Soc. 1907, (4) 1. 58.) Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Insol, in methyl acetate. (Naumann, B. 1909 42. 3790.)

#### Barium dichromate, BaCr₂O₇+2H₂O.

Decomp. by H2O with separation of BaCrO₄. Sol. in H₂CrO₄+Aq. (Bahr, J. B. **1853**. 358)

Sol. in cold H2O with formation of BaCrO.

and CrOs.

Insol, in glacial acetic acid. (Mayer, B. 1903, **36.** 1742.)

#### Barium calcium chromate, BaCa(CrO₄)₂. (Beurgeois Bull. Soc. Min. 1879, 2. 124.)

### Barium potassium chromate, BaK₂(CrO₄)₂.

Decomp. by H₂O. (Gröger, Z. anorg. 1907, **54.** 186.)

Decomp. by H₂O. Stable in K₂CrO₄+Aq,

COLLUCA	******	5.						
2.181	pts.	K2CrO4	per	100	pts.	H ₂ O	at	11.5°
3.395	- "	""	- "	"	- "	"	"	27.5°
5.120	"	"	"	"	"	"	"	50.0°
7.119	"	"				"		76.0°
9.036	"	"	"	"	"	"	"	100.0°

(Barre, C. R. 1914, **158.** 497.)

### Barium potassium trichromate,

 $Ba_2K_2(Cr_3O_{10})_3 + 3H_2O$ . Extremely deliquescent. (Bahr.)

#### Bismuth chromates, basic.

These comps. are insol. in H₂O even in presence of H₂CrO₄; sol. in HCl or HNO₃+

Aq. (Löwe, J. pr. 67. 288.)

100 pts. H₂O dissolve 0.00008 pt. "bismuth chromate"; 100 pts. acetic acid dissolve 0.00021 pt. "bismuth chromate"; 100 : 100 pts. HNO₃+Aq (sp. gr.=1.038) dissolve 0.00024 pt. "bismuth chromate"; 100 pts. KOH+Aq (sp. gr.=1.33) dissolve 0.00016 pt. "bismuth chromate." (Pearson, Phil. Mag. (4) 11. 206.)

Not insol. in dil. HNO3+Aq unless K2CrO4 is present. Less sol, in hot NaOH+Aq than

(Storer.) PbCrO₄.

"Bismuth chromate" is insol. in acctone. (Naumann, B. 1904, 37. 4329.)

 $3Bi_2O_3$ ,  $2CrO_3 = 2(BiO)_2CrO_4$ ,  $Bi_2O_3$ . Insol. in  $H_2O$ ; sol. in  $HNO_3 + Aq$ .

 $Bi_2O_3$ ,  $CrO_3 = (BiO)_2CrO_4$ . Insol. in  $H_2O$ ; easily sol. in dil. HCl+Aq, less in dil. HNO, or H₂SO₄+Aq. (Muir.)

 $Bi_2O_3$ ,  $2CrO_3 = (BiO)_2Cr_2O_7$ . Insol, in H₂O.

 $+H_2O$ . 5Bi₂O_{3,}  $11\text{CrO}_3 + 6\text{H}_2\text{O}$ . (Muir, Chem. 3Bi₂O₅, 7CrO₃. Insol. in H₂O; easily sol. in mineral acids, especially HCl+Aq. Partly sol. in KOH+Aq.

Bismuth chromate, acid, Bi₂O₃, 4CrO₃+H₂O. Insol. in hot or cold H₂O. Sol. in dil. HCl or HNO₃+Aq. (Muir, Chem. Soc. 30. 17.)

Bismuth potassium chromate,  ${\rm Bi_2(CrO_4)_3}, \ {\rm K_2CrO_4}.$ 

Insol. in  $H_2O$ . Decomp. with hot  $H_2O$ .  $Bi_2O_3$ ,  $K_2O$ ,  $6CrO_3+H_2O$ . (Preis and Raymann, J. B. **1880.** 336.)

## Bromomolybdenum chromate. (Atterberg.)

Cadmium chromate, basic, 2CdO,  $CrO_3 + H_2O$ .

Very sl. sol. in H₂O; very slowly sol. in NH₄OH+Aq with combination. (Malaguti and Sarzeau, A. ch. (3) 9. 431.)
Composition as above. (Freese, B. 2. 478.)

### Cadmium chromate, CdCrO₄.

Insol. in  $H_2O$ ; sol. in acids; decomp. by heating with  $H_2O$ . (Schulz, Z. anorg. 1895, **10.** 153.)

Sol. in hot conc. CdSO₄+Aq. (Briggs, Z. anorg. 1907, **56.** 253.)

+2H₂O. Decomp. by boiling H₂O. (Schulz, Z. anorg. 1895, **10.** 153.)

#### Cadmium dichromate, CdO, 2CrO₃+H₂O.

Easily sol. in H₂O without decomp; hydroscopic. (Schulz, Z. anorg. 1895, **10**. 152.)

Easily sol. in  $H_2O$  but decomp. on evaporation. (Gröger, Z. anorg. 1910, **66.** 11.)

#### Cadmium trichromate, CdCr₃O₁₉+H₂O.

Deliquescent. (Gröger, Z. anorg. 1910, **66.** 12.)

## Cadmium chromate ammonia, CdCrO₄, 4NH₂+3H₂O.

Efflorescent. Decomp, by  $\rm H_2O.$  Sol. in NH₄OH+Aq; insol. in alcohol and ether. (Malaguti and Sarzeau.)

## Cadmium potassium chromate, $CdK_2(CrO_4)_2 + 2H_2O$ .

Ppt. Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1907, **54**. 189.)

3CdO,  $K_2O$ ,  $3CrO_8+3H_2O$ . Ppt. (Preis and Raymann, Sitzungsb. böhms. Gesell. **1880.**)

4CdO, K₂O, 4CrO₃+3H₂O. Ppt. Slowly decomp. by H₂O. (Groger, M. 1904, **25.** 533.)

## Cadmium potassium dichromate, CdCr₂O₇,K₂Cr₂O₇+2H₂O.

Sol. in H₂O; sl. hydroscopic. (Krüss, Z. anorg. 1895, 8. 454.)

Cadmium dichromate mercuric cyanide, CdCr₂O₇, 2Hg(CN)₂+7H₂O.

Sol. in H₂O without decomp. (Krüss, Z. anorg. 1895, **8.** 460.)

#### Cæsium chromate, Cs2CrO4.

(Chabrié, C. R. 1901, 132. 680.)

Aq. solution sat. at 30° contains 47%. (Schreinemakers, C. C. 1909, I. 11.)

#### Cæsium dichromate, Cs₂Cr₂O₇.

(Chabrié, C. R. 1901, 132. 680.)

Much more sol. in hot H₂0, than in cold. (Fraprie, Am. J. Sci. 1906, (4) 21. 309.)

Aq. solution sat. at 30° contains 5.2°.

(Schreinemakers, C. C. 1909, 1. 11.)

#### Cæsium trichromate, Cs₂Cr₃O₁₀.

Decomp. by  $H_2O$ . (Schreinemakers, Chem. Weekbl. 1908, **5**. 811.)

Sol. in H₂O. (Fraprie, Am. J. Sci. 1906, (4) **21.** 315.)

#### Cæsium tetrachromate, Cs₂Cr₄O₁₃.

Sol. in H₂O with decomp. (Schreinemakers, Chem. Weekbl. 1908, **5**. 811.)

#### Cæsium cobaltous chromate, Cs₂Co(CrO₄)₂+6H₂O.

(Briggs, Z. anorg. 1907, **56.** 248.)

## Cæsium magnesium chromate,

 $C_{82}Mg(CrO_4)_2 + 6H_2O$ . (Briggs, Chem. Soc. 1904, **85**, 680.)

## Cæsium nickel chromate, Cs₂Ni(CrO)₂ +6H₂O.

Sol. in cold H₂O without much change, but decomp. by warm H₂O. (Briggs, Chem. Soc. 1904, **85**. 679.)

#### Calcium chromate basic, Ca₂CrO₅+3H₂O.

Sol. in 230 pts. II₂O without decomp. (Mylius and Wrochem, Gm. K. 3. I, 1385.)

#### Calcium chromate, CaCrO₄.

Anhydrous. Very sl. sol. in H₂O. (Siewert, J. B. **1862**. 148.)

Aq. solution sat. at  $18^{\circ}$  contains 2.3% CaCrO₄; sp. gr.=1.023. (Mylius and Wrochem, B. 1900, **33**. 3688.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

 $+\frac{1}{2}H_2O$ . Aq. solution sat. at 18° contains 4.4% CaCrO₄; sp. gr. =1.044. (Mylius and Wrochem, B. 1900, **33**. 3688.)

#### +H₂O. Solubility in H₂O at t°.

t° 40° 60° 75° 90° 100° % CaCrO₄ 7.8 5.7 4.6 3.6 3.1 (Mylius and Wrochem, Gm.-K. 3. I, 1386.)

Sp. gr. of solution containing 9.6% by wt. CaCrO₄ at 18°=1.096. Wrochem, B. 1900, **33**, 3688.) (Mylius and

+2H₂O. Sol. in 241.3 pts. H₂O at 14°.

Sol. in 34 pts. H₂O. (Schwarz, Dingl. 198, 159.)

Solubility of two modifications in H₂O at t°. a modification.

O° 20° 30° 45° % CaCrO 14.75 14.22 13.8912.53

 $\beta$  modification.

0° 14° 18° 19.5° 30° 40° % CaCrO₄ 9.8 10 10.3 10.4 10.4 10.4 (Mylius and Wrochem, Gm.-K. 3. I, 1387.)

a modification. Sp. gr. of the solution containing 14.3% by wt. CaCrO₄ at 18° = 1.149. (Mylius and Wrochem, B. 1900, 33. 3688.)

 $\beta$  modification. Sp. gr. of the solution containing 10.3% by wt. CaCrO₄ at 18°=1.105. (Mylius and Wrochem, B. 1900, **33**. 3688.)

Easily sol. in H₂O containing CrO₃.

Insol. in absolute alcohol.

50 cc. of alcohol (29%) dissolve 0.608 g. CaCrO₄; 50 cc. of alcohol (53%) dissolve 0.44 g. CaCrO₄. (Fresenius, Z. anal. **30.** 672.) Sol. in acids and in dilute alcohol. (Caron and Raquet, Bull. Soc. 1906, (3) 35. 1064.)

#### Calcium dichromate, $CaCr_2O_7 + 3H_2O$ .

Very deliquescent. (Bahr, J. pr. 60. 60.) In sat. solution at 18°, 61% CaCr₂O₇ is present. (Mylius and Wrochem, Gm.-K. 3. I, 1387.) Sol. in acetone. (Naumann, B. 1904, 37.

4328.)

· Calcium potassium chromate, CaCrO₄, K₂CrÔ₄

(Barre, C. R. 1914, **158.** 495.)

 $+\mathrm{H}_{2}\mathrm{O}$ . Easily sol. in H₂O. (Duncan.) Insol. in H₂O when ignited.

+2H₂O. Easily sol. in H₂O, even after Insol. in alcohol. (Duncan, J. B. ignition. **1850.** 313.)

Formed below 45°. (Barre, C. R. 1914, **158.** 495.)

Sol. in cold H₂O. Sl. sol. in sat. K₂CrO₄+

Aq. (Gröger, Z. anorg. 1907, 54. 187.) Two modifications. Solubility of a Solubility of a modification is somewhat less than that of the  $\beta$  modification. (Wyrouboff, Bull. Min. 1891, 14. 255.)

Solubility of two modifications in H₂O at t°.

0° 15° Solubility of a 23.06 25.06β 23.01 24.45(Rakowski, C. C. 1909, I. 133.) 4CaCrO4, K2CrO4.

5CaCrO₄, K₂CrO₄. Sol. in much H₂O. (Bahr.)

Calcium chromate potassium sulphate,  $CaCrO_4$ ,  $K_2SO_4+H_2O$ .

Decomp. by H₂O. (Hannay, Chem. Soc. 32, 399.)

CaCrO₄, K₂SO₄, K₂CrO₄. As above. (H.)

#### Cerous chromate.

Insol in H₂U

Calcium strontium chromate, CaSr(CrO₄)₂. (Bourgeois, Bull. Soc. Min. 1879, 2. 123.)

Ceric dichromate, CeO₂, 2CrO₃+2H₂O.

Insol. in H2O; sol. in acids; decomp. completely by boiling H₂O. (Bricout, C. R. 1894, 118, 145.)

Chromic chromate,  $CrO_2 = Cr_2O_3$ ,  $CrO_3$ .

Insol, as such in H₂O, but decomp, thereby into CrO₃ and Cr₂O₃; decomp. by alkaline and many saline solutions. Easily sol. in dil. acids if recently pptd, but with difficulty if dried at a high temp. (Eliot and Storer, Proc. Am. Acad. 5. 207.)

 $Cr_5O_{12} = Cr_2O_3$ ,  $3CrO_3$ . Sol. in HCl+Aq. Very slowly sol, in HNO₃+Aq. Slowly decomp by H₂SO₄ or NH₄OH+Aq. Easily de-

comp. by KOH+Aq.

Does not exist. (Eliot and Storer, l.c.)

Cr₅O₁₅=3Cr₂O₃, 2CrO₃. Easily sol. in HCl or HNO₃+Aq: difficulty sol. in acetic acid. Easily sol. in KOH+Aq. (Traube, A. 66. 108.)

Existence doubtful.

 $C_{r_5}O_9 = 2C_{r_2}O_3$ ,  $C_7O_3$ . Insol. in all acids, even aqua regia; slowly attacked by a boiling conc. solution of alkali hydroxides. (Geuther and Merz, A. 118. 62.) Cr₃O₅, according to Wöhler.

Chromic cupric chromate, CuCr₄O₉, Cr₂O₃+ 12H₂O.

Insol. in  $H_2O$  and  $H_2SO_4$ . Sol. in HCl and  $HNO_3$ . (Rosenfeld, B. 1879, **12**. 957.) 6CuO,  $Cr_2O_3$ ,  $CrO_3+9H_2O$ . Insol. in  $H_2O$ . Sol. in acids. (Rosenfeld, B. 1879, **12**. 958.)

Chromic potassium chromate,  $Cr_2H_2(CrO_4)_2$ ,  $K_2CrO_4(?)$ .

Insol. in H₂O, alcohol, or acetic acid. Not attacked by cold HNO₃+Aq; sl. oxidized when hot. Insol. in cold, easily sol. in hot H₂SO₄. Sl. sol. in SO₂+Aq. Sol. in conc. HCl+Aq. (Tommasi, Bull. Soc. (2) 17. 396.)

Chromous potassium chromate,  $K_2CrO_4(CrO_2)_2 = K_2Cr(CrO_4)_2(?).$ 

Sat. cold solution in H₂O contains 9% of the salt. Insol. in alcohol and ether. (Heintze, J. pr. (2) **4.** 212.)

Cobaltous chromate, basic, 3CoO, CrO₃+

Ppt. Decomp. by H₂O. (Malaguti and

Sarzeau, A. ch. (3) 9. 431.)

True formula is 2CoO, CrO₃+2H₂O. (Freese, Pogg. 140. 252.)

4CoO,  $3\text{CrO}_3 + 2\text{H}_2\text{O}$ .

Decomp. by H₂O. (Gröger, Z. anorg. 1906, **49.** 203.)

#### Cobaltous chromate, CoCrO₄.

Much more sol. in H2O than NiCrO4. Easily sol. in hot dil. HNO₃+Aq. (Briggs, Z. anorg. 1909, 63. 327.)

+2H₂O. Ppt. (Briggs, Z. anorg. 1909, **63.** 328.)

Cobaltous dichromate,  $CoCr_2O_7 + H_2O$ .

Delignescent. Very sol. in H₂O. (Briggs, Z. anorg. 1907, 56. 247.)

Cobaltous potassium chromate, basic.  $K_2O$ ,  $4C_0O$ ,  $4C_1O_3 + 3H_2O$ .

Sol. in cold dil. H₂SO₄+Aq. (Gröger, Z. anorg. 1906, 49. 199.)

Cobaltous potassium chromate, K₂Co(CrO₄)₂ +2H₂O.

Decomp. by H₂O. (Gröger, Z. anorg. 1906, **49.** 200.)

Cupric chromate, basic, 3CuO, CrO₃+ 2H₂O.

Insol, in H₂O. Easily sol. in dil. HNO₃+ Aq and in NH₄OH+Aq. Decomp. by KOH +Aq. (Malaguti and Sarzeau, A. ch. (3) 9. 434.)

7ĆuO, 2CrO₃+5H₂O. Ppt. (Rosenfeld, B. 13. 1469.)

7CuO,  $CrO_3+5H_2O$ . Ppt. (R.)

Cobaltous dichromate mercuric cyanide.  $CoCr_2O_7$ ,  $2Hg(CN)_2+7H_2O$ .

Very stable. Sol. in H₂O. (Krüss, Z. anorg. 1895, 8. 458.)

#### Cupric chromate, CuCrO₄

Insol. in H2O; very sol. in chromic acid and in other acids; decomp. by boiling with H₂O. (Schulz, Z. anorg. 1895, **10**. 152.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 827.)

Cupric dichromate, basic, CuCr₂O₇, 2CuO. (Stanley, C. N. 54. 194.)

#### Cupric dichromate, CuCr₂O₇+2H₂O.

Deliquescent. Very easily sol. in H₂O, NH4OH+Aq, and alcohol. (Dröge, A. 101. 39.)

Aqueous solution is decomp. by boiling.

(Malaguti and Sarzeau, A. ch. (3) 9. 456.) Very hygroscopic. Very sol. in H₂O without decomp. (Schulz, Z. anorg. 1895, 10. 150.)

Cupric tetrachromate, CuCr₄O₁₃+2H₂O.

Deliquescent. Decomp. when its solution in H₂O is concentrated. (Gröger, Z. anorg. **1910, 66.** 15.)

Cupric lead chromate, 2(PbCrO₄, PbO), (2CuCrO₄, CuO).

Min. Vauguelinite. Sol. in acids.

Cupric potassium chromate, basic,  $KCu_2(OH)(CrO_4)_2 + H_2O$ .

Ppt. (Gröger, M. 1903, 24, 485.)

3CuO,  $K_2O$ , 3CrO₃+2 $H_2O$ . Nearly insol. in  $H_2O$ . Sol. in  $NH_4OH$  or  $(NH_4)_2CO_3+Aq$ . (Knop, A. 70. 52.)

Does not exist. (Rosenfeld, B. 13. 1472.) 4CuO, K₂O, 4CrO₃+H₂O. Decomp. by boiling H₂O. (Gerhardt.) +3H₂O. Decomp. by boiling H₂O. (Grö-

ger, Dissert. **1880.**)

Cupric potassium chromate ammonia, K₂Cu(CrO₄)₂, 2NH₃.

Very sol. in dil.  $NH_3+Aq$ .: decomp. by  $H_2O$ . (Briggs, Chem. Soc. 1904, **85.** 672.)

Cupric chromate ammonia, CuCrO₄, 4NH₃.

Decomp. by H₂O. Sol. in dil. NH₄OH+ (Parravano and Pasta, Gazz. ch. it. 1907, **37.** (2), 255.)

4CuCrO₄, 3NH₃+5H₂O. Sol. in Hall and NH4OH+Aq.; insol. in organic solvents; easily sol. in  $AgNO_3+Aq$ . (Schuyten, C. C. **1900**,

2CuCrO₄, 7NH₃+H₂O. Decomp. by **1**₂O. Very sol, in dil. NH₄OH+Aq. (Briggs, Chem. Soc. 1904, **85.** 673.)

3CuO, 2CrO₃, 10NH₃+2H₂O. Decomp. by H₂O; sl. sol. or insol. in alcohol, ether, or NH₄OH +Aq. (Malaguti and Sarzeau.)

Decomp. by hot H₂O; insol. in alcohol. (Böttger.)

Cupric dichromate ammonia, CuCr₂O₇,  $4NH_8+2H_2O$ .

Decomp. by H₂O. Sol. in dil. NH₄OH+ Aq. (Parravano and Pasta, Gazz. ch. it. 1907, 37. (2) 255.)

Cupric dichromate mercuric cyanide, CuCr₂O₇, Hg(CN)₂+5H₂O.

Not hygroscopic. Sol. in H₂O. (Krüss, Z. anorg. 1895, **8.** 461.)

Didymium chromate, Di₂(CrO₄)₃.

Sl. sol. in H₂O, easily in dil. acids. (Frerichs and Smith, A. 191. 353.) +7H₂O. (Cleve.)

Didymium potassium chromate, Di₂(CrO₄)₃, K₂CrO₄.

Precipitate. Decomp. by H₂O. (Cleve.)

Dysprosium chromate, Dy₂(CrO₄)₃ +10H₂O.

Very sl. sol. in H₂O. 1.0002 pt. is sol. in easily sol, in acids. (Frerichs and Smith, A. 100 pts. H₂O at 25°. (Jantsch, B. 191¹, 44.) 191, 355.)

Glucinum chromate, basic, GlCrO₄, 13GlO+ 23H₂O.

Ppt. Insol. in H₂O. (Creuzberg, Dingl. **163**. 449.) GlCrO₄, 6Gl(OH₂). Ppt. Insol. in H₂O. (Glassmann, B. 1907, 40. 2603.)

#### Glucinum chromate, GlCrO₄+H₂().

Decomp. by H₂O with separation of the basic chromate. (Glassmann, B. 1907, 40. 2603.)

Gold (auric) chromate, Au₂(CrO₄)₃,CrO₃. Ppt. (Orloff, Ch. Z. 1907, 31, 1182.)

Indium chromate.

Ppt. (Meyer.)

Indium dichromate.

Very sol. in H₂O. Known only in solution

#### Iron (ferric) chromate, basic.

Decomp. by H₂O. (Maus.)

Fe₂O₃, CrO₃. Insol. in H₂O, but decomp. thereby, or by saline solutions; easily sol. in Sol. in  $H_2CrO_4+Aq$ . (Eliot and Storer, Proc. Am. Acad. 5. 216.)

#### Iron (ferric) dichromate.

Sol. in H₂O and alcohol. (Maus, Pogg. 9. 132.)

Iron (ferric) potassium chromate, basic,

2CrO₃, 6Fe₂O₃, 3K₂O.

4CrO₃, 3Fe₂O₃, 4K₂O.

 $\begin{array}{c} 10 CrO_3, \ 6Fe_2O_3, \ 7K_2O. \\ 11 CrO_3, \ 3Fe_2O_3, \ 4K_2O + 9H_2O. \end{array}$ 

 $\begin{array}{l} 9CrO_3,\ 2Fe_2O_3,\ 6K_2O+6H_2O.\\ 9CrO_3,\ 2Fe_2O_3,\ 6K_2O+10H_2O.\\ \end{array}$ 

 $\begin{array}{l} 10\text{CrO}_3, 3\text{Fe}_2\text{O}_3, 6\text{K}_2\text{O} + 5\text{H}_2\text{O}. \\ 7\text{CrO}_4, 2\text{Fe}_2\text{O}_3, 2\text{K}_2\text{O} + 7\text{H}_2\text{O}. \\ 4\text{CrO}_3, \text{Fe}_2\text{O}_3, \text{K}_2\text{O} + 4\text{H}_2\text{O}. \end{array}$ 

6CrO₃, 2Fe₂O₃, 3K₂O.

 $16CrO_3$ ,  $4Fe_2O_3$ ,  $5K_2O + 8H_2O$ .

Above compounds are ppts., insol. in H₂O₂ alcohol and ether. (Lepierre, C. R. 1894, 119, 1215-18.

#### (ferric) potassium chromate, $Fe_2(CrO_4)_3$ , $K_2CrO_4+4H_2O$ .

Decomp. by much H₂O, conc. HCl, or  $NH_4OH + Aq.$ Not decomp, by alcohol. (Hensgen, B. 12. 1300.)

Iron (ferric) sodium chromate, basic, 5CrO₃, 7Fe₂O₃, 4Na₂O.

Ppt. (Lepierre, C. R. 1894, 119, 1217.)

Lanthamum chromate, La₂(CrO₄)₃.

Sl. sol. in cold, more easily in hot H2O;

+8H₂O. Ppt. (Cheve.)

Lanthanum potassium chromate.

(C: #e.)

Lead chromate, basic, 2Pb(), CrO₃ (chrome

Insol. in H₂O; acetic acid dissolves out ½ e PhO Sol in KOH+Aq. (Badams, the PbO Pogg. 3. 221.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

3PbO, CrO₂. (Hermann, Pogg. 28. 162.) +H2O. Ppt. (Strömholm, Z. anorg. 1904,

**38.** 443,) Min. Melanochreite, Phanicocroite. Sol. in acids.

PbO, PbCrO₄. Ppt. (S.)

#### Lead chromate, PbCrO₄.

Insol. in H₂O. Pptd, from Pb(NO₃)₂ in presence of 70,000 pts. H₂O. (Harting.)

Calculated from electrical conductivity of PbCrO₄+Aq, 1 l. H₂O dissolves 0.2 mg. PbCrO₄ at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

1 l. H₂O dissolves 1.2×10 ⁵ g. PbCrO₄ at (Hevesy, Z. anorg. 1913, 82. 328.)  $25^{\circ}$ .

Sol. in dil. H₂SO₄+Aq (Storer); sl. sol. in

dil. HNO₃+Aq. Sol. in 560 pts. HNO₃+Aq of 1.12 sp. gr.; in 150 pts. HNO₃+Aq of 1.225 sp. gr.; in 130 pts. HNO₃+Aq of 1.265 sp. gr.; in 80 pts. HNO₃+Aq of 1.395 sp. gr. (Storer's Dict.)

Solubility of PbCrO₄ in HNO₃+Aq. at 18°. (Millimols. per l.)

0.1N0.2N0.3N0.4N0.5060.8441.13 1.44

(Beck and Stegmüller, l.c.)

Easily decomp. by hot HCl+Aq. (Freseinus.)

#### Solubility of PbCrO₄ in HCl+Aq. (Millimols. per l.)

		0.2N				
18	0.186	0.393	0.654	1.07	1.56	2.25
25	0.239	0.485	0.839	1.32	4.06	2.95
37	0.357	0.744	1.31	2.10	3.28	4.69

(Beck and Stegmüller, Arb, K. Gesund, Amt. 1910, 34, 446.)

Insol. in HC₂H₃O₂+Aq. Easily sol. in KOH, or NaOH+Aq. 1 l. KOH+Aq (½ normal) dissolves 11.9 g. PbCrO₄ at 15°;16.2 g. at 60°; 26.1 g. at 80°;

38.5 g. at 102. (Lachaud and Lepierre, Bull.) Soc. (3) 6. 230.)

Insol. in NH₄Cl+Aq. (Brett, 1837.) Sol. in K₂Cr₂O₇+Aq; almost completely insol, in NH₄C₂H₃O₂, or NH₄NO₃+Aq.

Not pptd. in presence of Na citrate. (Spiller.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.) (Naumann, B. 1904,

Insol. in acetone. **37.** 4329.)

Min. Crocoite. Sol. in hot HCl+Aq; difficultly sol. in HNO₃+Aq; sol. in KOH+Aq.

#### Lead dichromate, PbCr₂O₇.

Decomp. by H2O.

+2H₂O. As above. (Preis and Raymann, B. **13.** 340.)

Lead lithium chromate, PbCrO₄, Li₂CrO₄. (Lachaud and Lepierre, C. R. 110, 1035.)

## Lead potassium chromate, PbCrO₄, K₂CrO₄.

Insol, in hot or cold H₂O or in alcohol. Dil. acids dissolve out K2CrO4. (Lachaud and Lepierre, C. R. 110. 1035.)

Decomp. by H₂O. Stable in contact with

solutions containing:

 $10^{\circ}$ 8.950 pts. K₂CrO₄ per 100 pts. H₂O at 27.5° 8.077 " " 37.5° 7.629 " " " " " " 50.0° 7.150 " " 66 " " "  $76.0^{\circ}$ 6.145" " " " " " 100.0° 4.940 (Barre, C. R. 1914, 158. 497.)

Lead sodium chromate, PbCrO₄, NaCrO₄. (Lachaud and Lepierre.) Sol. in  $H_2O(?)$ . PbCrO₄, 2PbO, Na₂CrO₄. (L. and L.)

#### Lithium chromate, Li₂CrO₄.

100 cc. of solution sat. at 18° contain 85 g. anhydrous salt. (Kohlrausch, B. A. B. **1897**. 90.)

99.94 pts. are sol. in 100 pts. H₂O at 30°. (Schreinemakers, C. C. 1905. II, 1486.)

+2H₂O. Very easily sol. in H₂O. (Ram-

+ΔΩ₂O. very easily sol. in H₂O. (Rammelsberg, Pogg. 128. 323.)
100 g. H₂O dissolve 111 g. salt at 20°. (Von Weimarn, C. C. 1911. II, 1300.)
Sp. gr. of solution sat. at 18° = 1.574, and contains 52.6% LiCrO₄. (Mylius and Wrochem, B. 1897, 30. 1718.)

#### Lithium dichromate, Li₂Cr₂O₇.

130.4 pts. are sol. in 100 pts. H₂O at 30°. (Schreinemakers, C. C. 1905. II, 1486.) +2H₂O. Deliquescent. Sol. in H₂O. (Rammelsberg.)

Lithium potassium chromate, K₂CrO₄,  $\text{Li}_2\text{CrO}_4 + \frac{1}{2}\text{H}_2\text{O}$ .

Hydroscopic. (Zehenter, M. 1897, 18. 54.) | ter.)

Magnesium chromate, MgCrO₄.

Sol. in H2SO4, and HCl; insol. in HNO8. (Dufau, C. R. 1896, 123. 888.)

Sp. gr. of MgCrO₄+Aq sat. at  $t^{\circ}/4^{\circ}$ . 13.6° 14.5° 21.86 27.71 12.31

% MgCrO₄ Sp. gr. 1.2170 1.0886 1.1641 (Slotte, W. Ann. 1881, 14. 19.)

Sol. in acetone. (Naumann, B. 1904, 37.

+7H₂O. Easily sol. in H₂O. (Vauquelin.) 100 cm. of solution sat. at 18° contain 60 g. MgCrO₄. (Kohlrausch, B. A. B. **1897.** 90.)

Sp. gr. of solution sat. at 18 = 1.422, and contains 42% MgCrO₄. (Mylius and Wrochem, B. 1897, **30**. 1718.)

 $+5\mathrm{H}_2\mathrm{O}$ . Very sol. in  $\mathrm{H}_2\mathrm{O}$ . (Wyrouboff, Bull. Soc. Min. 12. 60.)

#### Magnesium dichromate, Mg₂Cr₂O₇.

Sol. in H₂O.

Sl. sol. in alcohol. (Reinitzer, Zeit. angew. 1913, **26.** 456.)

Magnesium potassium chromate, MgCrO₄,  $K_2CrO_4+2H_2O_1$ 

100 pts. H₂O dissolve 28.2 pts. at 20°; 34.3 pts. at 60°. (Schweitzer.)

Sol. in H₂O. Sl. sol. in sat. K₂CrO₄+Aq.

(Gröger, Z. anorg. 1907, **54.** 188.)

Insol. in alcohol.

 $+6H_2O$ . Efflorescent. (Briggs, Chem. Soc. 1904, 85. 679.

## Magnesium rubidium chromate, $MgRb_2(CrO_4)_2+6H_2O$ .

(Briggs, Chem. Soc. 1904, 85, 679.) (Barker, Chem. Soc. 1911, 99. 1327.)

## Magnesium sodium chromate.

(Stanley, C. N. 54. 194.)

Manganous chromate, 2MnO, CrO₃+H₂O.
Ppt. Sol. in dil. H₂SO₄, or HNO₃+Aq. (Warrington and Reinsch, Schw. J. 3. 378.)

#### Manganous potassium chromate, MnCrO4. $K_2CrO_4+2H_2O_1$

Decomp. by H₂O. Sol. in dil. H₂SO₄. (Gröger, Z. anorg. 1905, 44. 459.) 2MnCrO₄, K₂CrO₄+4H₂O. Sol. in H₂O. (Hensgen, R. t. c. 3. 433.)

Mercurous chromate, basic, 4Hg₂O, 3CrO₃.

Very sl. sol. in cold, more in boiling H₂O. Sl. sol. in HNO₃+Aq. Decomp. by HCl+Aq. Sl. sol. in NH₄Cl+Aq or NH₄NO₃+Aq. (Brett.)

Does not exist. (Richter, B. 15. 1489.) 3Hg₂O, CrO₃. Sol. in HNO₃+Aq. (Rich-

3Hg₂O, 2CrO₈. Ppt. (Fichter, Z. anorg. 1912, 76. 350.)

#### Mercurous chromate, Hg₂CrO₄.

Very sl. sol. in cold, more readily in bot H₂O. Sl. sol. in dil. HNO₈+Aq; sol. in conc.  $HNO_3$ ; sol. in KCN + Aq; insol. in  $Hg_2(NO_3)_2$ 

+Aq. (Rose, Pogg. **53**, 124.) Less sol. in K₂CrO₄+Aq. than in H₂O. (Fichter, Z. anorg. 1912, **76**, 349.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

#### Mercuric chromate, basic, 2HgO, CrO₃

Sol. in HCl, and in HNO₃+Aq. (Geuther.) 3HgO, CrO₃. Sl. sol. in H₂O. (Millon.)

The only true compound. All others are mixtures of HgO or HgCrO4 with this compound. (Cox, Z. anorg. 1904, 40. 155.)

4HgO, CrO₃. Sl. sol. in H₂O. (Millon, Δ. ch. (3) **18.** 365.) 7HgO, 2CrO₃. Easily sol. in warm HNO₃,

when freshly precipitated. Easily sol. in HCl+Aq. (Geuther, A. 106, 247.)

Does not exist. (Freese, B. 2. 477.) Easily sol. in HCl+Aq. 5HgO, CrO₃. Very sl. sol. in HNO₃+Aq. Decomp. by H₂O into—

6HgO, CrO₃. Insol. in H₂O. (Jager and Krüss, B. **22**. 2049.)

#### Mercuric chromate, HgCrO₄.

Decomp. by H₂O and acids into basic salt. (Geuther.)

Sol. in acids. Sol. in warm NH₄Cl, or  $NH_4NO_3+Aq$ . Sol. in  $Hg(NO_3)_2$ , or  $HgCl_2+$ 

Insol. in ethyl acetate. (Naumann, B. 191**0, 43.** 314.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

#### Mercuric dichromate, HgCr₂O₇.

Ppt. (Gawalowski, C. C. 1906. II, 1307.)

## Mercurous potassium chromate,

 $Hg_2K_2(Cr()_4)_2$ .

Ppt.; decomp. by H₂O. (Gröger, Z. anorg. 19**07, <b>54.** 191.)

Mercuric chromate, basic, ammonia, 12HgO,  $3CrO_3$ ,  $2NH_3+3H_2O$ .

(Gröger, Z. anorg, 1908, 58, 420.)

Mercuric chromate HgCrO₄, ammonia,  $2NH_3+H_2O$ .

(Gröger, Z. anorg. 1908, **58.** 419.)

Mercuric chromate sulphide, 2HgCrO₄, HgS. Not attacked by weak acids. (Palm, C. C. **1863.** 121.)

Nickel chromate, basic, 4NiO, CrO₃+6H₂O. Insol. in H₂O; easily sol. in NH₄OH+Aq. (Malaguti and Sarzeau, A. ch. (3) 9. 451.)

3NiO, CrO₂+6H₂Q. Insol. in H₂O; sol. in NH₄OH + Aq. (Freese, J. B. 1869. 271.) 2NiO, CrO₂+6H₂O. As above. (Schmidt. A. **156.** 19.) 5NiO, 2CrO₈+12H₂O. As above. (Schmidt.)

Nickel chromate, NiCrO₄.

Not attacked by boiling H₂O.

Nearly insol, in hot dil. HNO₂. Slowly sol. in conc. HNO₃ and aqua regia.

Somewhat sol, in NH₄+Aq. (Briggs, Z. anorg. 1909, 68. 226.)

#### Nickel dichromate, 2NiCr₂O₇+3H₂O.

Slowly sol. in cold, rapidly sol. in hot H₂O. Deliquescent. (Briggs, Z. anorg. 1907, 56.

Nickel potassium chromate, NiCrO₄, K₂CrO₄  $+2H_{2}O.$ 

Decomp. by H₂O. (Gröger, Z. anorg. 1906, **51.** 353.)

+6H₂O.Efflorescent. (Briggs, Chem. Soc. 1904, **85.** 678.)

Nickel rubidium chromate, NiRb(CrO₄)₂+ 6H₂O.

Sl. efflorescent at ord. temp. (Briggs, Chem. Soc. 1904, 85. 678.)

#### Nickel chromate ammonia, NiCrO₄, 6NH₂+ 4H₂O.

Decomp. by H₂O. Quite easily sol. in NH₄OH+Aq of 0.96 sp. gr. (Schmidt.) Insol. in alcohol or ether.

#### Potassium chromate, K₂CrO₄, K₂Cr₂O₇, etc. System: K₂O, CrO₃, H₂O at 0°

Solid phase	100 g of the sat. solu- tion contain	
	g. Cr) ₃	g. K ₂ O
		31 18
$K_2CrO_4$	0 54	26 06
"	4.27	19.31
"	5.50	17.73
"	11.77	17.06
"	11.91	17.18
u	18.71	17.62
"	18.72	17.63
$K_2Cr()_4+K_2Cr_2()_7$	18.91	17.61
""	19.10	17.79
"	19.10	17.80
$K_2Cr_2O_7$	11.93	10.90
.6	8.93	8.07
"	3.13	1 87
"	3.00	1.41
. "	3.01	1.42
"	3.94	0.97
"	22.38	0.78
"	38.83	1.02
	40.10	1.26
"	40.41	1.36
46	41.70	1.22

## CHROMATE, POTASSIUM

System: K ₂ O, CrO ₃ , H ₂ O at 0°—Continued			Syst	tem: K ₂ O, 0	CrO ₈ , H ₂ () at 30°	
100 g. of the sat. solu-			100 g of the sat. solution contain		Solid phase	
tion co		Solid phase	g. K ₂ ()	g. CrOa		
g. K ₂ ()	g. CrO ₃		46.8		KOH, 2H₂O	
1.28	41.75	K ₂ Cr ₂ O ₇	26.89	0.94	K₂ĆrO₄	
1.40	42.10	"	22.25	3.06	"	
$\begin{bmatrix} 1.23 \\ 1.33 \end{bmatrix}$	$\begin{array}{c c} 42.11 \\ 42.16 \end{array}$	"	19.52	6.99		
1.31	42.10	"	18.65 18.60	$\frac{13.72}{17.00}$	"	
1.38	42.48	4.6	18.70	17.03	6.	
1.40	42.68	"	19.12	20.30	64	
1.47	42.93	$K_2Cr_2O_7 + K_2Cr_3O_{10}$	19.35	21.00	$K_2CrO_4+K_2Cr_2O_7$	
1.47	42.95	"	15.04	16.85	K ₂ Cr ₂ O ₇	
1.47	43.09	• • • • • • • • • • • • • • • • • • • •	14.77	16 51		
$\begin{bmatrix} 1.25 \\ 1.27 \end{bmatrix}$	44.52 44.95	K ₂ C _{T3} () ₁₀	$12.28 \\ 11.20$	$14.57 \\ 13.11$	6.	
1.18	45.84	"	4.98	10.48	16	
1.17	46.84	44	3.07	19.34	• •	
1.36	47.22	$K_2Cr_3O_{10}+K_2Cr_4O_{13}$	2.42	28.21	**	
1.36	47.31	<b>'·</b>	2.35	33.77	**	
1.40	47.67		2.30	36.78	* *	
1.24	48.23	$K_2C_{i_4}C_{13}$	2.30	40.41		
1.35 1.10	51 66 53.81		$\frac{2.50}{2.25}$	44 50 49 95	K ₂ Cr ₂ O ₇ +K ₂ Cr ₃ O ₁ K ₂ Cr ₃ O ₁₀ +K ₂ Cr ₄ O ₁	
1.08	55.63	44	1.35	53.39	$K_{2}Cr_{4}O_{13}$	
1.16	56.93	1.6	0.69	62 81	$K_2Cr_4O_{13}+CrO_3$	
0.96	57.63	"		62 52	$\mathbf{CrO}_{\mathbb{R}}$	
1.16	59.46	• • • • • • • • • • • • • • • • • • • •		1 711	2 1 1/ 1007 #	
0.91	59.87		(Koppel a		thal, Z. anorg. 190 <b>7, t</b>	
0.81	60.16			ئ	35.)	
$\begin{array}{c} 0.70 \\ 0.62 \end{array}$	$\begin{vmatrix} 61.76 \\ 61.77 \end{vmatrix}$	K ₂ Cr ₄ O ₁₃ +CrO ₃				
0.57	61.78		Sys	tem: K ₂ O, (	CrO ₃ , H ₂ O at 60°	
0.67	61.86	"	100 g. of th	e sat solu		
	61.51	CrO ₃		ontain	Solid phase	
	61.52		- Ić-()	g. CrO ₃	jana n	
	61.55	"	g, K ₂ ()			
	1		c. 50.0	2745	KOH, H₂O	
Koppel a	nd Blumen	thal, Z. anorg. 1907, 53.	$ \begin{array}{r} 32.98 \\ 21.05 \end{array} $	0 53 9.15	K ₂ CrO ₄	
	2	245.)	20.70	8.99		
			20.25	14.43	46	
			20.32	16.56	٠.	
Sve	stem: K.O	CrO ₃ , H ₂ O at 20°	20.67	21 94	"	
···y			$\begin{bmatrix} 20.72 \\ 20.68 \end{bmatrix}$	22.00	K ChO LE Ch O	
100 g, of t	he sat, solu-	1	$\frac{20.08}{20.55}$	23.49 23.74	$K_2CrO_4+K_2Cr_2O_7$ $K_2Cr_2O_7$	
	contain	Solid phase	14.53	20.82	11201207	
g. K ₂ ()	g. CrO ₃		13.36	20.93	44	
			10.01	21.24		
2.21	42.92	$K_2Cr_2O_7 + K_2Cr_3O_{10}$	10.01	21.24		
2.20	43.28	••	$8.39 \\ 7.65$	26.95 31.49	"	
$\frac{2.10}{2.02}$	44.02	K ₂ Cr ₃ O ₁₀	7.03	32 92	"	
$\frac{2.02}{2.01}$	45.28 46.24	"	6.86	39.64	"	
$\frac{2.01}{2.00}$	48.46	K ₂ Cr ₃ O ₁₀ +K ₂ Cr ₄ O ₁₃	7.06	49.84	K ₂ Cr ₂ O ₇ +K ₂ Cr ₃ O ₁	
1.94	48.62	K ₂ Cr ₄ O ₁₃	6.51	50.40	K ₂ Cr ₃ O ₁₀	
1.62	49.01	"	5.33	52.70	"	
0.62	62.80	$K_2Cr_4O_{13}+CrO_3$	5.49	52.79	"	
	·		5.06 5.12	53.42		
(Koppel a	and Blumer	thal, Z. anorg. 1907, <b>53</b> .	5.30	53.58		
		243.)				

	ne sat. solu- contain	botid phase	
g. K ₂ O	g. C1O3		
5.01	54.09	K2Cr3O10+K2Cr4O13	
4.06	54.73	K ₂ Cr ₄ O ₁₃	
3.29	54.91	16	
2.95	55.43	• •	
3.01	56.41	"	
2.50	58.05	"	
2.31	58.69	"	
2.00	60.69	".	
2.05	61.25	4.	
1.70	61.27	٠٠	
1.79	61.29	"	
1.57	62.57	"	
1.27 65.77		$K_2Cr_4O_{13}+CrO_3$	
65.12		$\mathrm{CrO}_3$	

(Koppel and Blumenthal, Z. anorg. 1907, **53**, 240.)

System: K₂O, CrO₃, H₂O at the cryohydric pt.

Cryohy drie pt.			Solid phase
11 50		g. CrO ₃	
-11.5° -30.0° -39.0°			$egin{array}{l} { m K_2Cr_0_4} + { m K_2Cr_2O_7} \ { m K_2Cr_2O_7} + { m K_2Cr_3O_{10}} \ { m K_2Cr_3O_{10}} + { m K_2Cr_4O_{13}} \end{array}$

(Koppel and Blumenthal, Z. anorg. 1907, **53**. 263-5.)

B.-pt. of solutions of  $CrO_3 + K_2O + Aq$ .

B. pt.	100 g. of the solution contain		Solid phase
	g. K ₂ O	g. CrO	
109° 105.8 106.8 104.8 114.0 127.0	30.01 23.8 24.3 16.4 16.8	11.92 25.3 30.5 35.6 59.2 71.2	K ₂ CrO ₄ K ₂ CrO ₄ +K ₂ Cr ₂ O ₇ K ₂ Cr ₂ O ₇ +K ₂ Cr ₃ O ₁₀ CrO ₃

(Koppel and Blumenthal, Z. anorg. 1907, 53. 255.)

### Potassium chromate, K₂CrO₄.

Easily sol. in H₂O.

Sol. in 2 pts.  $\rm H_2O$  at 18.75°. (Abl.) 100 pts.  $\rm H_2O$  at 15° dissolve 43.857 pts.  $\rm K_2CrO_4$ . and solution has sp. gr. of 1.3032. (Michel and Krafft, A. ch. (3) **41.** 478.)

1 pt. dissolves in 2.07 pts.  $H_2O$  at 15.5°. (Thomson.)

1 pt. dissolves in 1.75 pts. H₂O at 17.5°, and in 1.67 pts. H₂O at 100°. (Moser.)

100	pts. H ₂ C	dissoly	e at-	
0°	10°	20°	30°	
58,90	60.92	62.94	64.96 pts	. K ₂ CrO ₄ ,
40°	50°			
66.98	69,00	71,02	73,04 pts	s. K2CrO4,
80°	90°	100°		
75.06	77.08	79.10	pts	. K ₂ CrO ₄ .
	(Allu	ard, C.	R. <b>59.</b> 500.)	
100 1	ots, H ₂ O	dissolve	at	
0°	10°	$27.37^{\circ}$	42.1°	
61.5	62.1	66.3	70.3 pts. I	ζ ₂ CrO₄,
63	.6° 93	3.6° 1	06.1°	
			81.8 pts. K ₂ 0	CrO₄.

(Nordenskjöld and Lindström, Pogg. 136. 314.)

100 pts.  $K_2CrO_4+Aq$  sat. at 10–12° contain 37.14 pts. salt. (v. Hauer, J. pr. 103. 114.)

100 pts. H₂O at 19.5° dissolve 62.3 pts. K₂CrO₄, and solution has sp. gr. of 1.3787. (Schiff, A. **109**. 326.)

96° 120° 157° 42.6 44.0 45.4% K₂CrO₄.

(Étard, A. ch. 1894, (7) 2. 550.)

100 cc. sat. K₂CrO₄+Aq. contain 53 g. K₂CrO₄ at 18°. (Kohlrausch, B. A. B. **1897**. 90.)

100 pts. H₂O dissolve 64.91 pts. K₂CrO₄ at 30°, or 100 g. of solution contain 39.36 g. K₂CrO₄. (Schreinemakers, Chem. Weekbl. 1905, **1**. 837.)

#### 100 g. H₂O dissolve:

54.57 g. K₂CrO₄ at -11.37° (cryohydric pt.) 57.11 g. " 0° 65.13 g. " 30° 74.60 g. " 60°

74.60 g. " " 60° 88.80 g. " " 105.8° (b-pt. of sat. sol.)

(Konnel 7 anong 1007 53 262)

(Koppel, Z. anorg. 1907, **53.** 262.)

64.62 g. K₂CrO₄ are sol. in 100 g. H₂O at 25°. (Amadori, Real. Att. Linc. 1912, (5) **21**, I. 667.)

	Sp. gr. o	f K ₂ C	CrO₄+Aq	at 19	.5°.
% K.C.O.	Sp. gr.	% Kachoa	Sp. gr.	% K.CrO.	Sp. gr.
1 ** 2 3 4 5 6 7 8 9 10 11 12 13	1.0080 1.0161 1.0243 1.0325 1.0408 1.0492 1.0576 1.0663 1.0750 1.0837 1.0925 1.1014	15 16 17 18 19 20 21 22 23 24 25 26 27	1.1287 1.1380 1.1474 1.1570 1.1667 1.1765 1.1864 1.2066 1.2169 1.2274 1.2379 1.2485	28 29 30 31 32 33 34 35 36 37 38 39 40	1.2592 1.2700 1.2808 1.2921 1.3035 1.3151 1.3268 1.3386 1.3505 1.3625 1.3746 1.3868 1.3991
14	1.1195	0.1.0			

(Kremers, and Schiff, calculated by Gerlach, Z. anal. 8. 288.)

 $K_2CrO_4$  dissolved in 2 pts.  $H_2O$  has sp. gr., 1.28; 3 pts., 1.21; 4 pts., 1.18; 5 pts., 1.15; 6 pts., 1.12; 7 pts., 1.11; 8 pts., 1.10. (Moser.) Sp. gr. of sat. solution at  $8^\circ=1.368$ . (Anthon, 1837.)

Sp. gr. of sat.  $K_2CrO_4$ +Aq containing 24.26%  $K_2CrO_4$ =1.2335 at 18°/4°. (Slotte, W. Ann. 1881, **14.** 18.)

Sp. gr. of K₂CrO₄+Aq at 25°.

Concentration of K2CrO4 +Aq.	Sp. gr.
1-normal 1/2- " 1/4- " 1/8- "	1.0935 1.0475 1.0241 1.0121

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Sat. K₂CrO₄+Aq boils at 107°. (Kremers.) Sat. K₂CrO₄+Aq boils at 104.2° under 718 mm. pressure. (Alluard.)

Freezing point of sat.  $K_2CrO_4+Aq = -12.5^{\circ}$ . (Rüdorff.)

By dissolving K₂CrO₄ in 2 pts. H₂O, the temp. is lowered 10°. (Moser.)

100 pts. sat. solution of  $K_2CrO_4$  and  $K_2SO_4$  contain 37.14 pts. of the two salts at 10–12°. (v. Hauer, J. pr. 103. 114.)

Solubility of  $K_2CrO_4+K_2SO_4$  in  $H_2O$  at 25°. (G. per 100 g.  $H_2O_1$ )

K ₂ CrO ₄	K ₂ SO ₄	K ₂ CrO ₄	K2SO4
63.09 61.39 58.40 51.81 40.93 27.36	0.76 1.17. 1.84 2.36 3.33 4.82	20.83 14.65 7.81 4.36 1.94	5.75 7.12 8.98 10.25 10.86

(Amadori, Real. Att. Linc. 1912, (5) **21,** I 667.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

100 g. sat. solution in glycol at 15.4° contain 1.7 g. K₂CrO₄. (de Coninck, C. C. **1905**, II. 183.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3601.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899. II, 1014.)

+4H₂O. Easily sol. in H₂O and in NH₄OH +Aq. (Wesch, Dissert. **1909**.)

Potassium dichromate, K₂Cr₂O₇.

Sol. in  $H_2O$ , with slight absorption of heat. Less sol. in  $H_2O$  than  $K_2CrO_4$ .

Sol. in 9.6 pts. H₂O at 17.3°. (Thompson) 10 " " 18.7°. (Moser.)

100 pts.  $H_2O$  at 15° dissolve 9.126 pts.  $K_2Cr_2O_7$ , and solution has sp. gr. =1.0618. (Michel and Krafft, A. ch. (3) **41**.478.)

100 pts.  $H_2O$  dissolve pts.  $K_2Cr_2O_7$ . A = according to Alluard (C. R. **59**, 500); K = according to Kremers (Pogg. **92**, 497).

t°	A	K	1°	A	К
0 10	4 6 7.4	4.97 8.5	60 70	45.0	50.5
20 30	12.4 18.4	13.1	80	56.7 68 6	73.0
40	25.9	29.1	90 100	81.1 94.1	102 00
50	35 0				

Solubility in H₂O at high temperatures. 100 pts. H₂O dissolve pts. K₂Cr₂O₇ at t°.

to	Pts. K ₂ Cr ₂ O ₇	t°	Pts. K ₂ Cr ₂ O ₇
117	128 3	148	200.6
129	153 8	180	262 7

(Tilden and Shenstone, Phil. Trans. 1884. 23.)

Solubility of K₂Cr₂O₇ in H₂O at t°.

t°	% K2Cr2();	l to	% K2Cr2()7
1 +1 6 7 12 15 20 29 36 57	4 1 4 .3 5 .6 6 .1 7 .2 8 .5 10 .4 14 .2 16 .6 28 .2	92 97 104 120 130 150 157 178 215 291	42.8 44.0 48.0 52.0 54.4 60.8 62.8 66.6 76.9 89.7
61 65 70	$30.2 \\ 32.0 \\ 34.4$	312 360	91.8 97.4

(Étard, A. ch. 1894, (7) 2, 550.)

100 g. H₂O dissolve 10.1 g. K₂Cr₂O₇ at 15.5°. (Greenish and Smith, Pharm. J. 1901, 66. 774.)

100 pts. H₂O at 30° dissolve 18.12 pts. K₂Cr₂O₇. (Schreinemakers, Chem. Weekbl. 1905 1. 837.)

100 g. H₂O dissolve:

4.50 g. K₂Cr₂O₇ at -0.63° (cryohydric pt.) 4.64 g. 0° "

" " 30° 18.13 g. " " 60° 45.44 g.

" " 104.8° (b-pt. of sat. sol.) 108.2 g. (Koppel, Z. anorg. 1907, 53. 263.)

 $100~\rm c.c.$  sat. solution contain  $11.45~\rm g.$   $\rm K_2Cr_2O_7$  at  $20^\circ.$  (Sherrill and Eaton, J. Am. Chem. Soc. 1907,  $\pmb{29.}$  1643.)

100 g. sat. K₂Cr₂O₇ contain:

5.52 g. K₂Cr₂O₇ at 4.81° " 30.10° 15.17 " 35.33°

(Le Blanc and Schmandt, Z. phys. Ch. 1911, **77.** 614.)

100 g. sat. K₂Cr₂O₇+Aq. at 35.03° contains 17.72 g. K₂Cr₂O₇. (Le Blanc, Z. phys. Ch. 1913, **86.** 335.)

K₂Cr₂O₇ +Aq sat. at 8° has sp. gr. 1.065. (Anthon, 1837.)

Sp. gr. of  $K_2Cr_2O_7 + Aq$  at 19.5°.

% K2Cr2O7	Sp. gr.	Co K2Cr2O7	Sp. gr.
1	1.007	9	1.065
2	1.015	10	1.073
3	1.022	11	1.080
4	1.030	12	1.085
5	1.037	13	1.097
6	1.043	14	1.102
7	1.050	15	1.110
8	1.056		

(Kremers, calculated by Gerlach, Z. anal. 8. 288.)

Sp. gr. of  $K_2Cr_2O_7+Aq$  containing 4.71%  $K_2Cr_2O_7=1.0325$  at  $11^\circ/4^\circ$ ; containing 6.97%  $K_2Cr_2O_7=1.0493$  at  $10.6^\circ/4^\circ$ . (Slotte, W. Ann. 1881, 14. 18.)

Sat. K₂Cr₂O₇+Aq boils at 104° (Kremers); 103.4°. (Alluard).

Insol. in alcohol.

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol. in alcohol. (Reinitzer, Zeit. angew.

Ch. 1913, 26, 456.)

100 g. sat. solution in glycol contain 6 g. K₂Cr₂O₇. (de Coninck, Bull. acad. roy. Belg. 1905, 257.)

Insol. in benzonitrile. (Naumann, B.

1914, **47**. 1370.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899. II, 1014.)

Potassium trichromate, K₂Cr₂O₁₀.

Easily sol, in H₂O and alcohol. (Bothe, J. pr. **46.** 184.)

Not deliquescent; decomp. by H₂O₃ in chromic acid and K₂Cr₂O₇. (Jäger and Krüss,: B. 22. 2041.)

Potassium tetrachromate, K2Cr4O18.

Very deliquescent, and easily sol. in H₂O. (Schwarz, Dingl. 186. 31.)

Decomp. by H₂O. Not deliquescent. (Jäger and Krüss, B. 22. 2042.)

Potassium samarium chromate,  $K_2Sm_2(CrO_4)_4 + 6H_2O$ .

Precipitate. (Cleve.) Insol in ethyl acetate. 1904, **37.** 3601.) (Naumann, B.

Potassium sodium chromate, 3K₂CrO₄, Na₂CrO₄.

Sol. in H₂O. (v. Hauer, J. pr. 83. 359.) 64.2 pts. are sol. in 100 pts. H₂O at 14°. (Zehenter, M. 1897, 18. 49.)

Potassium strontium chromate, K₂Sr(CrO₄)₂. Ppt. Decomp. by H₂O. (Gröger, Z. anorg. 1907, **54.** 187.)

Decomp. by H₂O. Stable in contact with solutions containing:

at 11.5°, 2.914 pts. K₂CrO₄ per 100 pts. H₂O. at 27.5°, 4.123 " " " " " " " at 50°, 5.942 " " " " " " " " at 76°, 7.920 " " " " " " " " " at 100°, 9.784 " " " " " " " " " (Barre, C. R. 1914, 158, 496.)

Potassium thallium chromate, K2CrO4, Tl₂CrO₄.

(Lachaud and Lepierre, Bull. Soc. (3) 6. 232.)

+2H₂O. Rapidly hydrolyzed by H₂O unless a large excess of the CrO₄ ion is present. Readily sol. in dil. mineral acids.

Difficulty sol. in  $K_2Cr_2O_7+Aq$ . (Hawley, J. Am. Chem. Soc. 1907, 29. 304.)

Potassium uranyl chromate, K₂CrO₄,  $2(UO_2)CrO_4+6H_2O$ .

Decomp. by boiling with H₂O. Sol. in acidified H₂O. (Formanck, A. 257, 103.)

K₂CrO₄, (UO₂)CrO₄+H₂O; 2K₂CrO₄, 3(UO₂)CrO₄+7H₂O; 3K₂CrO₄, 4(UO₂)CrO₄+7H₂O; and K₂CrO₄, 3(UO₂)CrO₄+14H₂O. Precipitates. (Wiesner, C. C. **1882.** 777.)

Potassium ytterbium chromate, basic,  $2KYb(CrO_4)_2 + Yb(OH)_3 + 15\frac{1}{2}H_2O.$ Ppt. (Cleve, Z. anorg. 1902, 32. 151.)

Potassium yttrium chromate, K₂CrO₄, Y₂(CrO₄)₃+xH₂O. Ppt. (Cleve.)

Potassium zinc chromate, basic,  $K_2O$ , 5ZnO,  $4CrO_3+6H_2O$ , for  $K_2O$ , 4ZnO,  $3CrO_3+3H_2O$ .

Slightly sol. in cold, decomp. by hot H₂O. (Wöhler.)

 $K_2O$ , 4ZnO,  $3CrO_8+3H_2O$ . Insol. in cold, decomp. by hot  $H_2O$ . (Gröger, M. 1904, **25.** 520.)

Potassium zinc chromate,  $K_2Zn(CrO_4)_2+2H_2O$ .

Ppt. Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1907, **54**. 189.)

Potassium dichromate chloride mercuric chloride, K₂Cr₂O_{7,2}KCl,4HgCl₂+2H₂O. Solution in H₂O sat. at 20.5° contains 6.78% salt. Salt is much more sol. in hot H₂O. (Strömholm, Z. anorg. 1912. **75**. 278.)

Potassium chromate iodate.

See Chromoiodate, potassium.

Potassium chromate magnesium sulphate,  $K_2CrO_4$ ,  $MgSO_4+9H_2O$ .

Sol. in H₂O. (Étard, C. R. 85. 443.)

Potassium chromate mercuric chloride, K₂Cr()₄, 2HgCl₂.

Easily sol. in H₂O. Sol. in dil. HCl+Aq. (Darby.)

Potassium dichromate mercuric chloride,  $K_2Cr_2O_7$ ,  $HgCl_2$ .

Ether or absolute alcohol dissolves out  $HgCl_2$ . (Millon, A. ch. (3) **18.** 388.)

Can be crystallized from H₂O. (Jäger and Krüss, B. **22**. 2046.)

Potassium chromate mercuric cyanide,  $2K_2CrO_4$ ,  $3Hg(CN)_2$ .

Easily sol. in H₂O.

+H₂O. (Dexter.) Formula is K₂CrO₄, 2Hg(CN)₂. (Clarke and Sterne, Am. Ch. J. **3.** 352.)

Potassium dichromate mercuric cyanide, K₂Cr₂O₇, Hg(CN)₂+2H₂O.

Sol. in H₂O. (Wyrouboff, J. B. **1880**. 309.)

Potassium chromate phosphate.

See Phosphochromate, potassium.

Potassium chromate sulphate, K₂Cr()₄, 6K₂SO₄.

Easily sol, in H₂O. (Boutron-Chalard.)

Potassium chromate tellurate.

See Chromotellurate, potassium.

Rubidium chromate, Rb₂CrO₄. Sol. in H₂O. (Piccard, J. pr. 86. 455.)

Solubility in H ₂ O at t°.		
t°	% Rb ₂ CrO ₄	
7	36 65	

7	36.65
0	38.27
10 3	40.22
20	42.42
30	44.11
40	46.13
50	47.44
60.4	48 90

(Schreinemakers and Filippo, Chem. Weekbl. 1906, **3.** 157.)

Rubidium dichromate, Rb₂Cr₂O₇.

Sol. in  $H_2O$ . (Grandeau, A. ch. (3) 67 227.)

Very sl. sol. in  $H_2O$ ; 5% at  $10^\circ$ , 8% at  $26^\circ$ , 35% at  $60^\circ$ . (Wyrouboff, Bull. Soc. Min 1881 4, 129)

Min. 1881, **4.** 129.) 100 pts.  $H_2O$  dissolve 10.46 pts.  $Rb_2Cr_2O_7$ at 30°. The solution contains 9.47% salt. (Schreinemakers and Filippo, Chem. Weekbl. 1906, **3.** 157.)

Two forms of crystals. Figures denote pts. salt per 100 pts.  $H_2O$ .

Monoclinic form 4.45 8.00 16.52 Triclinic form 4.40 7.91 16.57 (Wyrouboff, Bull. Soc. 1908, (4) 3.7.)

Solubility of monoclinic and triclinic forms.

Temp.		salt in s. H ₂ O	Temp.	Pts. of 100 pt	salt in s. H ₂ O
т с пър.	Mono- clinic	Tri- clinic		Mono- clime	Tri- clinic
18° 24° 30°	5.42 6.94 9.08	4.96 6.55 8.70	40° 50° 60°	13.22 18.94 28.1	12.90 18.77 27.3

(Stortenbeker, C. C. 1907, H. 1588.)

Rubidium dichromate chloride mercuric chloride,  $Rb_2Cr_2O_7$ , 2RbCl,  $4HgCl_2+2H_2O$ .

Sol. in H₂O.

Solution sat. at  $20.5^{\circ}$  contains 5.35% salt. (Strömholm, Z. anorg. 1912, **75**. 284.)

Silver (argentous) chromate, Ag₄CrO₄.

Sol. in dil. acids. (Wöhler and Rautenberg.)

Existence very doubtful.

Silver chromate, Ag₂CrO₄.

Absolutely insol. in  $H_2O$ . Sol. in acids, ammonia, and alkali chromates+Aq. (Warington, A. 27. 12.)

Appreciably sol. in cold, and still more in hot H₂O. (Meineke, A. **261.** 341.)

100 ccm. H₂O dissolve 0.064 grain Ag₂CrO₄ at 100°; 100 ccm. H₂O containing 50 grains

of the following salts dissolve the given amts. of Ag₂CrO₄ at 100°: NaNO₃, 0.064 grain; KNO₃, 0.192 grain; NH₄NO₃, 0.320 grain; Mg(NO₃)₂, 0.256 grain. (Carpenter, J. E. C. I. **5.** 286.)

According to electrical conductivity of Ag₂CrO₄+Aq, 1 l. H₂O dissolves 28 mg. Ag₂CrO₄ at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

1 1. H₂O dissolves 25 mg. Ag₂CrO₄ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50**. 356.)

25 mg. are contained in 1 l. of sat solution at 18°. Solubility increases unusually rapidly with temp. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.)

Sol. in 26,378 pts. cold H₂O and 9116 pts. H₂O at 100°. (Koninck and Nihoul, Zeit. angew. Ch. 1891, 5. 295.)

1 l, H₂O dissolves 1.2×10 ⁴ gram, atoms of silver at 25°. (Abegg and Cox, Z. phys. Ch. 1903, **46**. 11.)

1 l. H₂O dissolves 0.029 g. Ag₂CrO₁ at 25°.

(Schäfer, Z. anorg. 1905, **45.** 310.) 1 l. H₂O dissolves 0.0256 g. Ag₂CrO₄ at 18°; 0.0341 g. at 27°; 0.0534 g. at 50°. (Whitby Z. anorg. 1910, **67**. 108.)

Sol. in hot NH₄OH+Aq of sp. gr. 094 (15.63% NH₃); sl. sol. in cold NH₄OH+Aq of sp. gr. 0.91 (24.99% NH₃). (Margosches, Z. anorg. 1904, 41. 73.)

Solubility of Ag₂CrO₄ in NH₄OH+Aq at 25°.

•	
Mols. NH ₄ OH per l.	Mols. ×10³ Ag₂CrO₄ per l.
0.01	2 004
0.02	4.169
0.04	8.595
0.08	17.58

(Sherrill and Russ, J. Am. Chem. Soc. 1907, **29.** 1662.)

Sl. sol. in very conc. K₂CrO₄+Aq. Practically insol. in AgNO₃+Aq. (Margosches.) Solubility of Ag₂CrO₄ in HNO₃+Aq at 25°.

Mols.	Millia	t. per l.	Solid Phase	
HNO ₃ per l.	Cr	Ag	Sond Phase	
0.01	3.157	6.315	Ag ₂ Cr() ₄	
0.015	3.730	11111	44	
0.02	4.177	8.356		
0.025	4.567		. "	
0.03	5.200		"	
0.04	5.803	11.62		
0.05	6.380		"	
0.06	6.833	<b>.</b>	"	
0.07	7.333		"	
0.075	7.477	14.85	" $+Ag_2Cr_2O_7$	
0.08	7.260	15.45		
0.10	5.647	19.01	**	
0.13	4.293	23.89	"	
0.14	3.948	25.63	"	

(Sherrill and Russ, J. Am. Chem. Soc. 1907, **29.** 1663.)

Insol. in liquid NH3, (Gore, Am. Ch. J. 1898, **20**, 829.)

11.65% alcohol dissolves 0.0129 g. Ag₂CrO₄ at ord. temp. (Guerini, Dissert. 1912.)

Insol. in H₂O containing acetic acid in presence of large excess of AgNO₃. (and Weed, Am. J. Sci. 1908, (4) 26. 85.) (Gooch

Pra tically insol: in glacial acetic acid but somewhat sol, in dil. acetic acid. It behaves in a similar manner toward propionic, lactic and other organic acids. The red modification is more sol, than the greenish-black. (Margosches, Z. anorg. 1906, 51, 233.)

Silver dichromate, Ag₂Cr₂O₇.

Sl. sol. in H₂O. Easily sol. in HNO₈, or

(Warington.) NH₄OH +Aq.

Decomp. by boiling with H₂O into CrO₃ and Ag₂CrO₄. (Jäger and Krüss, B. 22. 2050)

Decomp. by cold H2O. (Autenrieth, B. 1902, 35. 2061.)

1 pt. is sol. in 12,000 pts.  $H_2O$  at 15°. (Mayer, B. 1903, **36**. 1741.) Solubility in  $H_2O$  at  $25^{\circ} = 7.3 \times 10^{-3}$  atoms Ag per l. Decomp. by HNO₃+Aq (less than 0.06 N) with separation of Ag₂CrO₄. (Sherrill and Russ, J. Am. Chem. Soc. 1907, 29. 1674.)

Solubility of Ag₂CrO₇ in HNO₃+Aq at 25°.

Mols. HNO ₃ per l.	Milliat	Solid Phase	
Sivia. It. (va per i.	Cr	Ag	TRANS MADELIA
0	32 20	5.390	Ag ₂ CrO ₄ +
		0.101	Ag ₂ CrO ₇
0.01	25.06	6.131	1
0.02	20.21	7.148	"
0.04	13.59	9.529	"
0.06	11.10	11.10	Ag ₂ Cr ₂ O ₇
0.08	11.10	11.10	4.6
$0.08 + 0.1 \text{AgNO}_3$	6.624		**

(Sherrill and Russ, J. Am. Chem. Soc. 1907, **29.** 1664.)

Silver uranyl chromate, 2Ag₂CrO₄, UO₂CrO₄. Ppt. (Formánek, A. 257. 110.)

Silver chromate ammonia, Ag₂CrO₄, 4NH₃. Decomp. by H₂O. Sol. in warm conc. NH₄OH+Aq. (Mitscherlich, Pogg. 12. 141.)

Silver dichromate mercuric cyanide, Ag₂Cr₂O₇, Hg(CN)₂.

Sol. in cold H₂O; very sol. in hot H₂O without decomp. (Krüss, Z. anorg. 1895, 8. **456**.)

Ag₂Cr₂O₇, 2Hg(CN)₂. Scarcely sol. in cold, more readily in hot H₂O. Sol. in hot HNO₃+ Aq, separating on cooling. (Darby, Chem. Soc. 1. 24.)

Sodium chromate, basic, Na₄CrO₅+13H₂O. Sol. without decomp. in H₂O. Sat. solution at 30° contains 41.3%

(Schreinemakers, Z. phys. Ch. Na₄CrO_{5...} 1906, 55. 93.)

Deliquescent. Solubility in H2O at to. 0° 10° t.º 20.5° 33.87 % Na₄CrO₅ 35.58 38.05 27.7° 37° 35° % Na₄CrO₅ 40.09 44.09 45.13(Mylius and Funk, Gm.-K. 3. I, 1379.)

 $Na_4CrO_5+Aq$  sat. at 18° contains 37.50%  $Na_4CrO_{5_7}$  and has sp. gr. =1.446. (Mylius and Funk, B. 1900, **33**. 3688.)

#### Sodium chromate, Na₂CrO₄.

100 ccm. of solution sat. at 18° contain 54 g. Na₂CrO₄. (Kohlrausch, B. A. B. 1897. 90.)

Solubility in H₂O at t°.

t°	% Na ₂ CrO ₄
70	55.15
80	55.53
100	55.74

(Mylius and Funk, Gm.-K. 3. I, 1379.)

Na CrO₄+Aq sat. at 18° contains 40.10% Na₂CrO₄, and has sp. gr. = 1.432. (Mylius and Funk, B. 1900, 33. 3686.)

See also +4, 6, and  $10H_2O$ . Sp. gr. of  $Na_2CrO_4+Aq$  at  $t^\circ/4^\circ$ .  $t^\circ$  17.4° 17.1°  $20.7^{\circ}$ % Na₂CrO₄ Sp. gr. 5.7610.62 14.81 1.0576 1.11251.1644 (Slotte, W. Ann. 1881, **14.** 18.)

Sat. solution at 30° contains 46.62% Na₂CrO₄. (Schreinemakers, Z. phys. Ch. 1906, **55**. 93.)

#### Solubility in H₂O at t°.

%Na ₂ CrO ₄	t.º	%Na2C1O4
46.08	49.5	50.93
47.05	54.5	52.28
<b>47.98</b>	59.5	53.39
48.97	65	55.23
50.20		
	46.08 47.05 47.98 48.97	46.08 47.05 47.98 48.97 49.5 54.5 49.5 59.5 65

(Mylius and Funk, Gm.-K. 3. I, 1379.)

#### Solubility in H₂O at t°.

t°	% Na ₂ CrO ₄	Mols. H ₂ O to 1 mol anhy- drous salt	Mols, anhydrous salt to 100 mols, H ₂ O
28.9	46.47	10.37	9.64
29.7	46.54	10.34	9.67
31.2	47.08	10.12	9.88

(Salkowski, B. 1901, **34.** 1948.)

 $+6H_2O.$ 

#### Solubility in H₂O at t°.

t°	% Na ₂ CrO ₄	Mols. H ₂ O to 1 mol. anhy- drous salt	Mols. anhydrous salt to 100 mols. H ₂ O
17.7 19.2 21.2 23.2	43.65 44.12 44.64 45.27	11.60 11.40 11.16 10.88	8.62 8.77 8.96 9.19 9.37
$\begin{array}{c} 24.7 \\ 26.6 \end{array}$	$45.75 \\ 46.28$	$10.77 \\ 10.45$	9.57

(Salkowski, B. 1901, 34. 1948.)

 $+10 H_2 O$ . Deliquescent. (Kopp, A. 42. 99.) Easily sol. in  $H_2 O$ . Melts in crystal H₂O at 23°. (Berthelot.)

Sp. gr. of solution sat. at 18°=1.409, and contains 38.1% Na₂CrO₄. (Mylius and Funk, B. 1897, **30.** 1718.)

#### Solubility in H₂O at t°.

ť۶	%Na ₂ CrO ₁
() 10	24.04 33.41
$\tilde{18}.5$	41.65
$\begin{array}{c} 19.5 \\ 21 \end{array}$	$44.78 \\ 47.40$

(Mylius and Funk, Gm.-K. 3. I, 1379.)

Sp. gr. of solution at 18° containing 40.1%  $Na_2CrO_4 = 1.432$ . (Mylius, B. 1900, 33. 3688.)

Sl. sol. in alcohol. (Moser.)

100 g. absolute methyl alcohol dissolve 0.345 g.  $Na_2CrO_4$  at  $25^\circ$ . (de Bruyn, Z. phys. Ch. 10. 783).

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

#### Sodium dichromate, Na₂Cr₂O₇.

More sol. in H₂O than Na₂CrO₄.

#### Solubility in H₂O at t°.

t°	€ Na ₂ Cr ₂ O ₇
93° 98°.	81.19 81.25
	,

(Mylius and Funk, Gm.-K. 3. I, 1380.)

Sp. gr. of aqueous solution containing— 10 20 25% Na₂Cr₂O₇, 15 1.007 1.035 1.071 1.105 1.141 1.171

50 % Na₂Cr₂O₇. 1.208 1.245 1.280 1.313 1.343 (Stanley, C. N. 54. 194.)

Sp. gr. of sat. solution containing 63.92%  $Na_2Cr_2O_7$  at  $18^\circ = 1.745$ . (Mylius and Funk, B. 1900, **33**. 3688.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Sol. in acetone. (Naumann, B. 1904, 37.) 4328.)

+2H₂O. Deliquescent.

100 pts. H₂() dissolve at—

0° 15° 30° 80° 100° 139° 107.2 109.2 116.6 142.8 162.8 209.7 pts. salt.

(Stanley, C. N. 54, 194,)

#### Solubility in H₂O at t°

t°	% Na ₂ Cr ₂ O ₇
0	61.98
17	63.82
34.5	67.36
52	71.76
72	76 90
81	79.80

(Mylius and Funk, Gm.-K. 3. I, 1380.)

 $100 \,\mathrm{g}$ .  $\mathrm{H}_2\mathrm{O}$  at  $30^\circ$  dissolve  $197.6 \,\mathrm{g}$ .  $\mathrm{Na}_2\mathrm{Cr}_2\mathrm{O}_7$ , or sat. solution at 30° contains 66.4% Na₂Cr₂O₇. (Schreinemakers, Z. phys. Ch. 1906, 55, 97.)

100 ccm. of a solution of sodium dichromate in alcohol contain 5.133 g.  $Na_2Cr_2O_7 + 2H_2O$  at 19.4°. The solution decomp, rapidly. (Reinitzer, Zeit. angew. Ch. 1913, 26, 456.)

The composition of the hydrates formed by Na₂Cr₂O₇ at different dilutions is calculated from determinations of the lowering of the fr.=pt. produced by Na₂Cr₂O₇ and of the conductivity and sp. gr. of Na₂Cr₂O₇+Aq. (Jones, Am. ch. J. 1905, 34. 317.)

#### Sodium trichromate, NaCr₃O₁₀.

Deliquescent. Very sol. in H₂O. (Stanley, C. N. **54.** 194.)

 $+\mathrm{H}_2\mathrm{O}$ . Sat. solution at 30° contains 80% Na₂Cr₃O₁₀. (Schreinemakers, Z. phys. Ch. 1906, **55.** 94.)

Solubility in H₂O at t°. 0°  $15^{\circ}$  $55^{\circ}$ .  $99^{\circ}$ % Na₂Cr₃O₁₀ 80.03 80.44 82.68 85.78 (Mylius and Funk, Gm.-K. 3. I, 1380.)

Sp. gr. of sat. solution containing 80.6% $Na_2Cr_3O_{10}$  at  $18^\circ = 2.059$ . (Mylius and Funk, B. 1900, **33.** 3688.)

Sodium tetrachromate,  $Na_2Cr_4O_{13}+4H_2O$ .

Solubility in H₂O at t°.  $0^{\circ}$ 16°  $22^{\circ}$ % Na₂Cr₄O₁₃ 72.19 76.01 74.19 (Mylius and Funk, Gm.-K. 3. 1, 1380.)

Deliquescent.

Sat. solution at 18° contains 74.6% Na₂Cr₄O₁₃ and has sp. gr. = 1.926. (Mylius | Sol. in hot conc. HCl+Aq. Decomp. by dil. and Funk, B. 1900, 33. 3688.)

Sodium uranvl chromate, Na₂CrO₄.  $2(UO_2)CrO_4+10H_2O_1$ 

Easily sol, in H₂O. (Formánek, A. 257. 108.)

100 pts. of the solution in H₂O contain 52.52 pts. of the anhydrous salt at  $20^{\circ}$ . (Rimbach, B. 1904, 37. 482.)

Sodium chromate silicate, Na₂O, Cr₂O₃,  $2SiO_{2}+14H_{2}O_{1}$ 

Not decomp. by HCl+Aq. (Singer, Dissert. 1910.)

2Na₂O, 3Cr₂O₄, 6SiO₂. Not decomp. by boiling conc. acids except HF. (Weyberg, C. B. Miner, 1908. 519.) 5Na₂O, 2Cr₂O₃, 11SiO₂.

(Weyberg.) 3Na₂O, 2Cr₂O₃, 9.5SiO₂. (Weyberg.)

#### Strontium chromate, SrCrO₄.

Somewhat sol. in H2O. Sol. in 840 pts. H₂() (Meschezerski, Z. anal. 21. 399); sol. in 831.8 pts. H₂O at 15°. (Fresenius, Z. anal. 29.

100 cc. H₂O dissolve 0.4651% at 10°; 1% at 20°; 2.417% at 50°; 3% at 100°. (Reichard, Ch. Z. 1903, **27**. 877.)

Easily sol. in HCl, HNO₃, or H₂CrO₄+Aq. Sol. in 512 pts. 0.5% NH₄Cl+Aq at 15°. Sol. in 63.7 pts. 1% HC₂H₃O₂+Aq at 15°. Sol. in 348.8 pts. solution containing 0.75% NH₄C₂H₃O₂, 4 drops HC₂H₃O₂, and 6 drops

 $(NH_4)_2CrO_4+Aq.$ (Fresenius.) 100 ccm. NH₄Cl+Aq sat. at bpt. dissolve 1 g. SrCrO₄. (Dumesnil, A. ch. 1900, (7) 20.

125.)50 ccm. alcohol (29%) dissolve 0.0066 g. SrCrO₄.

50 ccm. alcohol (53%) dissolve 0.001 g. SrCrO₄. (Fresenius, Z. anal. **30**, 672.)

Strontium dichromate, SrCr₂O₇. Easily sol. in H₂O.

Strontium trichromate, SrCr₃O₁₀+3H₂O₁

Very deliquescent, and sol. in H₂O. (Preis and Raymann, B. 13. 340.)

Strontium chromate mercuric hydrogen chloride, SrCrO₄, 2HgCl₂, HCl.

According to Strömholm is SrCl₂, SrCr₂O₇,  $4 \text{HgCl}_2 + \text{H}_2\text{O}$ .

Recryst. from H₂O. (Imbert and Belugon. Bull. Soc., 1897, (3) 17. 471.)

2SrCrO₄, 6HgCl₂, HCl. (Imbert and Belu-

#### Thallous chromate, TlCrO₄.

100 pts. H₂O dissolve 0.03 pt. at 60°. (Rupp and Zimmer, Z. anorg. 1902, 33. 157.) Ppt. Insol. in cold moderately conc. HC₂H₃O₂+Aq, or in very dil. HNO₃+Aq, and very sl. sol. on boiling therewith. Dil. NH₄OH, and Na₂CO₃+Aq have the same action. Attacked by very dil. HCl+Aq  $H_2SO_4+Aq$ . (Carstanjen.)

11. KOH +Aq (112 g. per l.) dissolves about 3.5 g. Tl₂CrO₄ on boiling, which separates out on cooling.

Boiling conc. KOH+Aq (31% KOH) dissolves 18 g. Tl₂CrO₄ per litre. (Lepierre and Lachaud, C. R. **113**, 196.)

#### Thallous dichromate, Tl₂Cr₂O₇.

Insol. in H₂O, etc. Has the same properties as Tl₂CrO₄.

#### Thallous trichromate, Tl₂Cr₃O₁₀.

Sol. in 2814 pts.  $H_2O$  at 15°, and 438.7 pts. at 100°. (Crookes.)

#### Thallic chromate.

Ppt.

Thorium chromate, basic, Th(OH)₂CrO₄.

Ppt.; unstable in solution. (Palmer, Am. Ch. J. 1895, 17. 278.)

#### Thorium chromate, $Th(CrO_4)_2 + H_2O$ .

Ppt. Sol. in HCl and NH₄Cl+Aq. 1 pt. is sol. in 284 pts.  $\rm H_2O$  at 22°. (Palmer, Am. Ch. J. 1895, 17. 375 and 278.)

+3H₂O. Ppt. (Haber, M. 1897, **18**. 689.) +8H₂O. Insol. in H₂O. (Chydenius, Pogg. **119**. 54.)

#### Tin (stannous) chromate.

Ppt. Sol. in dil. acids. (Berzelius.)

#### Tin (stannic) chromate.

Ppt. (Leykauf, J. pr. 19. 127.)

Uranyl chromate, basic, UO₃, 2(UO₂)CrO₄ +8H₂O₂

Ppt. (Orloff, Ch. Z. 1907, **31.** 375.) UO₃, (UO₂)CrO₄+6H₂O. (Orloff.)

#### Uranvi chromate, (UO₂)CrO₄+3H₂O₂

1 pt. is sol. in 13.3 pts.  $\rm H_2O$  at 15°; slowly sol. in alcohol to give a solution which is decomp. on boiling. (Orloff, Ch. Z. 1907, **31**. 375.)

 $+11 H_2 O.$  Very sol. in  $H_2 O.$  (Formánek, A. **257.** 108.)

#### Yttrium chromate.

Deliquescent. Easily sol. in  $H_2O$ . (Berlin.)

Zinc chromate, basic, 4ZnO, CrO₃+3H₂O.

(Gröger, Z. anorg. 1911, **70.** 135.) +5H₂O. Insol. in H₂O; sol. in hot H₂CrO₄ +Aq; slowly sol. in NH₄OH+Aq. (Maloguti and Sorzey) A. ch. (3) **9** 431.)

lagutí and Sarzeau, A. ch. (3) 9. 431.) 3ZnQ, CrO₃+2H₂O. (Gröger.) 2ZnO₄, CrO₃+H₂O. (Briggs, Z. anorg.

2ZnO₃, CrO₃+H₂O. (Briggs, Z. anorg. 1907, **56**, 254.) +1½H₂O. Ppt. Insol. in H₂O. Sol. in hot H₂CrO₄+Aq. (Prüssen and Phildipona, A. **149**, 92.)

 $+2H_2O$ . Ppt. Not wholly insol. in  $H_2O$ . (Prüssen and Phillipona.) 3ZnO,  $2CrO_3+H_2O$ . (Gröger.)

#### Zinc chromate, ZnCrO₄.

Insol. in H₂O; very sol. in acids; decomp. by boiling with H₂O. (Schulze, Z. anorg. 1895, **10.** 154.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 830.)

Insol. in accione. (Naumann, B. 1904, **37.** 4329.)

+H₂O. (Gröger, Z. anorg. 1911, **70**. 135.)

#### Zinc dichromate, ZnCr₂O₇+3H₂O.

Hygroscopic.

Very sol, in  $H_2O$  and sl. decomp, by boiling, (Schulze, Z. anorg. 1895, **10**, 153.)

#### Zinc trichromate, ZnCr₃O₁₀+3H₂O.

Deliquescent; very sol. in H₂O. (Gröger, Z. anorg. 1910, **66**, 10.)

Zinc chromate ammonia,  $ZnCrC_4$ ,  $NH_3+H_2O$ .

Decomp. by  $H_2O$ . (Gröger, Z. anorg. 1908, **58**. 417.)

ZnCrO₄, 4NH₃+5H₂O. Decomp. by H₂O. Sol. in NH₄OH+Aq. Insol. in alcohol and ether. (Malaguti and Sarzeau, A. ch. (3) **9**. 431.)

 $+3\mathrm{H}_2\mathrm{O}$ . Efflorescent. Decomp. by  $\mathrm{H}_2\mathrm{O}$ . Easily sol. in dil. acids and  $\mathrm{NH}_4\mathrm{OH} + \mathrm{Aq}$ . (Bieler, A. **151**. 223.)

2ZnO, 3CrO₃, 10NH₃+10H₂O. Ppt. (Malaguti and Sarzeau.)

## Zinc dichromate mercuric cyanide, $ZnCr_2O_7$ , $2Hg(CN)_2+7H_2O$ .

Very sol, in  $H_2O$ . Stable in aqueous solution at  $100^{\circ}$ . (Krüss, Z. anorg. 1895, **8.** 460.)

#### Perchromic acid

See Perchromic acid.

Chromicomolybdic acid, Cr₂O₃, 12M₀O₃ +28H₂O.

Slowly sol. in H₂O. (Hall, J. Am. Chem. Soc. 1907, **29.** 708.)

Ammonium chromicomolybdate,  $3(NH_4)_2O$ ,  $Cr_2O_3$ ,  $12MoO_3+20H_2O$ .

Sol. in H₂O. (Strüve, J. pr. **61**, 457; Hall, J. Am. Chem. Soc. 1907, **29**, 695.) +26H₂O. (Marckwald, Dissert, **1895.**)

 $\begin{array}{ccc} \textbf{Ammonium} & \textbf{barium} & \textbf{chromicomolybdate,} \\ & (NH_4)_2O, & 22BaO, & Cr_2O_3, & 12MoO_3 + \\ & 20H_2O. & \end{array}$ 

(Hall, J. Am. Chem. Soc. 1907, 29, 707.)

 $\begin{array}{c} \textbf{Barium chromicomolybdate,} \quad 4\text{BaO}, \quad Cr_2O_8, \\ 12\text{MoO}_8 + 15\text{H}_2\text{O}; \quad 4\text{BaO}, \quad Cr_2O_3, \quad 12\text{MoO}_3 \end{array}$ +18H₂O;5BaO. Cr₂O₃  $12\text{MoO}_3 +$ 16H₂O.

Ppts. (Hall, J. Am. Chem. Soc. 1907, 29. 705.)

Lead chromicomolybdate, 4PbO, C12().  $12\text{Mo}()_3 + 22\text{H}_2()_1$  and  $+24\text{H}_2()_2$ . Ppts. (Hall, J. Am. Chem. Soc. 1907, 29. 706.)

Mercurous chromicomolybdate, 8Hg₂().  $Cr_2O_3$ ,  $12MoO_3 + 16H_2O$ . **29.** 707.)

Potassium chromicomolybdate, K₂O, Cr₂O₃, 3MoO₃.

Sol. in HCl+Aq with evolution of Cl. (Bradbury, Z. anorg. 1894, 7. 46.)  $3K_2O$ ,  $Cr_2O_3$ ,  $12M_0O_3 + 20H_2O$ . 38.51 pts. H₂O at 17°. (Strüve; Hall.) +24H₂O. (Hall.)

4K₂O, Cr₂O₃, 12MoO₃+15H₂O. (Hall, J. Am. Chem. Soc. 1907, 29, 709.)  $7K_2O_1$ ,  $2Cr_2O_3$ ,  $24M_0O_3 + 32H_2O_2$  (Hath.)

Silver chromicomolybdate,  $5Ag_2O$ ,  $Cr_2O_3$ , 12MoO₃+17H₂Ó.

Sodium chromicomolybdate, 3Na₂O,  $Cr_2O_3$ ,  $12MoO_3 + 21H_2O$ . Efflorescent. Easily sol. in H₂O. (Strüve.)

Chromic sulphuric acid. See Sulphochromic acid.

Ppt. (Hall.)

Chromicyanhydric acid,

 $H_3Cr(CN)_6(?)$ . Insol. in H₂O. (Kaiser, A. Suppl. 3, 163.)

Ammonium chromicyanide, (NH₄)₃Cr(CN)₆. Easily sol, in H₂O, (Kaiser, A. Suppl. 3. 163.)

Cupric chromicyanide,  $Cu_3[Cr(CN)_6]_2$ . Ppt. Insol. in dil. or conc. acids, except on heating. Insol. in NH₄OH, or KOH+Aq. (Kaiser.)

Lead chromicyanide, basic,  $3Pb(CN)_2$ , 2Cr(CN)₃, Pb(OH)₂.

Ppt. Sol. in HNO₃, NaOH+Aq, or Pb salts+Aq. (Kaiser.)

Potassium chromicyanide, K₃Cr(CN)₆. Very sol. in H₂O.

100 pts. cold H₂O dissolve 30.9 pts. salt. Insol. in absolute alcohol, but somewhat sol. in dil. alcohol.

Sol. in conc. H2SO4 without decomp. (Kaiser, A. Suppl. 3. 170.)

Silver chromicyanide, Ag₈Cr(CN)₆

Insol, in all solvents, excepting KCN+Aq. (Kaiser.)

Sol. in large excess of HCl+Aq. Sl. sol. in cold casily sol. in hot cone. HNO₃. Very sol. in cone. H₂SO₄. Insol. in hot or cold acetic acid. (Cruser, Dissert. 1896.)

Chromisulphocyanhydric acid. H₃Cr(SCN)₆

Known only in aqueous solution.

(Hall, J. Am. Chem. Soc. 1907, Ammonium chromisulphocyanide, (NH₄)₃Cr(SCN)₆+4H₂O.

Easily sol, in H₂O. (Rössler, A. **141.** 185.)

Barium chromisulphocyanide, Ba₃|Cr(SCN)₆]₂  $-16H_2()$ .

Deliquescent, and sol. in H₂O. (R₆)

Lead chromisulphocyanide, Pb₃[Cr(SCN)₆]₂,  $4PbO_2H_2+8H_2O$ .

Insol, in H₂O, but decomp, thereby into- $Pb_2[Cr(SCN)_5]_2$ ,  $4PbO_2H_2+5H_2O$ . Insol. in H₂O.

Potassium chromisulphocyanide, K₆Cr(SCN)₅  $+4H_2O$ . Sol. in 0.72 pt. H₂O, and 0.94 pt. alcohol.

Silver chromisulphocyanide,  $\Lambda g_6 Cr(SCN)_6$ . Insol. in H₂O or conc. HNO₃+Aq. Insol. in NH₄OH+Aq. Sol. in KCN+Aq.

Sodium chromisulphocyanide, Na₆Cr(SCN)₆ +7H₂O. Deliquescent; sol. in  $H_2O$ .

#### Chromium,

Two modifications—(a) Not attacked by H₂O. Easily sol. in cold HCl+Aq. Sl. sol. in dil. H₂SO₄+Aq. (Deville.) Easily sol. in a hot mixture of 1 pt H₂SO₄ and 20 pts. H₂O. (Regnault, A. ch. **62**. 357.) Easily sol. in warm conc. H₂SO₄. (Gmelin.) Very slowly sol. in hot HNO₃+Aq. (Vauquelin.) Insol. in dil. or conc. HNO₈+Aq. (Deville.) Very slowly (Richter), not at all (Berzelius) sol. in hot aqua regia. Easily sol. in HF+Aq. (β) Insol. in all acids, even aqua regia

(Fremy); probably contains Si.

Pure Cr is sol. in conc. H₂SO₄, HCl and dil.

HNO₃; sol. in HgCl₂+Aq. Insol. in fuming HNO₃ and aqua regia. (Moissan, C. R. 1894. 119, 187.)

Cr prepared by aluminothermic method is sol. in haloid acids to form chromic and chromous salts, even in absence of air. (Doring, J. pr. 1902, (2) 66. 65; 1906, (2) 73. 393.)

Aluminothermic Cr is active in contact,

with HCl, HBr, HI, HF, H2SO4, H2C2O4, i. e., sol. in cold conc. or warm dil, acids. Is inactive in contact with conc. HNO₃, H₂Cr₂O₄, HClO₃, HClO₄, H₃PO₄, KOH, citric, formic, acetic and tartaric acids. Cause attributed to a different electric state. (Hittorff, Z. phys. Ch. 1898, 25. 729.)

#### Chromium ammonia compounds.

See-

Bromotetramine chromium compounds, BrCr(NH₂)₄X₂.

Bromopurpureochromium compounds, BrCr(NH₃),X₂.

Chlorotetramine chromium compounds, ClCr(NH₈)₄X₂.

Chloropurpureochromium compounds, ClCr(NH₃)₅X₂.

Diamine chromium sulphocyanides,  $Cr(NH_8)_2(SCN)_4M$ .

Erythrochromium compounds,  $(HO)Cr_2(NH_3)_{10}X_2$ .

Iodopurpureochromium compounds,  $ICr(NH_3)_5X_2$ .

Iodotetramine chromium compounds, ICr(NH₃)₄X₂.

Luteochromium compounds,  $Cr(NH_3)_6X_3$ . Rhodochromium compounds,  $(HO)Cr_2(NH_3)_{10}X_5.$ 

Rhodosechromium compounds,  $(HO)_3Cr_2(NH_3)_6X_3$ .

Roseochromium compounds,  $Cr(NH_3)_5(OH_2)X_4$ .

Xanthochromium compounds.  $(HO_2)Cr(NH_3)_5X_2$ .

#### Chromium arsenide, CrAs.

Insol. in mineral acids. (Dieckmann, Z. anorg. 1914, 86. 294.) Cr₂As₃. Insol. in mineral acids. (Dieck-

mann.)

#### Chromium azoimide, CrN₃.

Pptd. by addition of alcohol and ether. Insol. in H₂O. (Curtius, J. pr. 1900, (2) **61**. 410.)

#### Chromium boride, CrB.

Insol. in HCl, dil. H₂SO₄, HF, HF+HNO₃. Sl. sol. in HNO3 and in aqua regia. (Wedekind, B. 1907, 40. 299.)

Sol, in cold dil. or conc. HCl, HF, and H₂SO₄. (Jassonneix, C. R. 1906, **143**. 1151.) Cr₈B₂. Sol. in conc. or dil. HF, HCl, H₂SO₄; insol. in HNO₈ or alkalis+Aq. (Jassonneix.)

#### Chromous bromide, CrBr₂

Sol. in H₂O. Not deliquescent in dry air. (Moissan, C. R. 92. 1051.)

#### Chromic bromide, CrBr₃.

Anhydrous. Insol. in H₂O, but dissolves at once in presence of the least trace of CrBr2. (Bauck, A. 111. 382.)

+6H₂O. Deliquescent. Very sol. in H₂O. H₂O dissolves more than 2 pts. crystals at ord, temp. Very sol. in alcohol. ether. (Recoura, C. R. 110. 1029.)

Insol. in alcohol. modification.

(Recoura, C. Ř. **110**. 1193.)

Very hygroscopic. Easily sol. in alcohol and acetone. Insol. in ether. (Werner, A. 1902, 322. 343.)

+8H₂O. Sol. in H₂O. (Varenne, C. R. 93. 727.)

### Chromium molybdenyl bromide,

CrMo₃O₄Br₄.

Apparently wholly insol. in dil. acids. Sol. in hot conc. HCl+Aq with decomp. Insol. in  $M_2CrO_4+Aq$ . (Atterberg.) Apparently wholly insol. in  $+2H_2O$ . dil. acids.

Sol, in hot conc. HCl+Aq with decomp. Insol. in M₂CrO₄+Aq. (Atterberg.)

#### Chromic rubidium bromide, CrBr₃, 2RbBr $+H_2O.$

Sol. in H₂O with decomp. (Werner, A. 1902, **322.** 345.)

#### Chromic bromide ammonia.

See Bromotetramine chromium bromide.

#### Chromous bromide hydrazine,

CrBr₂, 2N₂H₄.

Insol. in H₂O. Sol. in acids. Insol. in alcohol, ether and similar solvents. (Traube, B. 1913, **46.** 1507.)

#### Chromium carbide, Cr₄C.

(Moissan, C. R. 1894, **119**, 187.)

Cr₃C₂. Does not decomp. H₂O at ordinary temp. or at 100°; insol. in conc. HCl, HNO₃ and aqua regia; sol. in dil. HCl (slowly); insol. in fused KOH; sol. in fused KNO₃. (Moissan, Bull. Soc. 1894, (3) 117, 1016,)

#### Chromium iron carbide, 3Fe₃C, 2Cr₃C₂.

Decomp. by H₂O; sol. in gaseous hydracids; insol. in HNO and aqua regia. (Williams, C. R. 1898, 127. 484.)

## Chromium tungsten carbide, CW₂, 3Cr₃C₂.

Not attacked by acids.

Slowly attacked by fused KOH or alkali rbonates. Rapidly decomp. by fused carbonates. alkali nitrates or KČlO₃. (Moissan, C. R. 1903, **137.** 294.)

#### Chromous chloride, CrCl₂.

Deliquescent. Very sol. in H2O with evolution of much heat. (Moberg, J. pr. 29. 175.)

Practically insol. in ether. Moderately sol. in absolute alcohol, methyl alcohol, and acetaldehyde. (Rohland, Z. anorg. 1899, 21. 39.)

+1½H₂O. (Moissan, A. ch. (5) **25.** 40.) +2H₂O. (Knight and Rich, Chem. So. 1911, 99, 89.)

+3H₂O. (Knight and Rich.)

#### Chromous hydrogen chloride, 3CrCl₂, 2HCl+ 13H₂O

Decomp. by H₂O. (Recoura, C. R. 100.

Sl. sol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20, 827.)

#### Chromic chloride, CrCl₃.

Anhydrous.—Peach-blossom-colored fication. Insol. in pure H₂O (Peligot), but by long continued boiling of the finely divided salt with H₂O, traces are dissolved with Not decomp, by boiling conc. H₂SO₄, or other acids, even aqua regia.

Easily sol. with evolution of heat in H₂O containing only 1/40,000 pt. CrCl₂. (Peligot, J. pr. 36. 150). Also sol, in presence of traces of SnCl₂ (5 mg. SnCl₂ cause 1 g. CrCl₃ to dissolve), FeCl₂, Cu₂Cl₂, Na₂S₂O₃, and other reducing substances; chlorides without reducing properties have no effect. (Pelouze, A. ch. (3) 14. 251). TiCl₃ and SO₂ have similar solvent action. (Ebelmen, A. ch. (3) 20. 390); also Zn+dil. acids. (Moberg.)

Insol. in dil. alkalies+Aq; very slowly decomp, by boiling conc, alkalies or alkali

carbonates+Aq. (Fellenberg, Pogg. 50. 76.) Difficulty sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6**. 257.)

Insol. in acetone. (Eidmann, C. C. 1899. II, 1014.)

Practically insol. in absolute ethyl alcohol, methyl alcohol, acetaldehyde and ether.

(Rohland, Z. anorg. 1899, 21. 39.) Yellow. Sl. sol. in benzonitrile. mann, B. 1914, 47. 1369.) (Nau-

Violet modification. Very sol. in H₂O to form a green solution. (Moberg, J. pr. 44. 325.)

The violet mod. is almost insol. in H₂O but if 1/20,000 pt. chromous chloride is present, it is readily sol. (Rohland, Z. anorg. 1899, 21. 39.)

+4H₂O. Sl. deliquescent. Very sol. in H₂O, alcohol, and ethyl acetate. (Godeffroy, Bull. Soc. (2) 43. 229.)

+6H₂O. Deliquescent. Sol. in H₂O, but probably decomp. to CrOCl₂.

Practically insol. in ether. Moderately sol. in absolute ethyl alcohol, methyl alcohol and acetaldehyde. 1899, 21. 39.) (Rohland, Z. anorg.

"Monochlorochromic chloride" is sol. in ether and fuming HCl(1:1). (Bjerrum, B. 1906, 39. 1599.)

Green modification.

Solubility in H₂O at 25°.

25 g. green CrCl₂+6H₂O and 10 g. H₂O.

Time	Total Solu- bility in %		ion of the olution
	,,,	% violet salt	% green salt
1/4 hr. 1/2 hr. 1/2 hr. 4 hrs. 1 day 2 days 3 11 13 11 19 11	58.36 63.27 68.50 68.55	8 30 12 57 24 80 37 64 40 90 42 78 42 84 42 39 42 62	91.70 87.43 75.20 62.36 59.10 57.22 57.16 57.61 57.38

(Olie, Z. anorg. 1906, 51. 55.)

Solubility of green CrCl₃+6H₂O in H₂O at

10 g. CrCl₃+6H₂O and 4 g. H₂O.

	Total solubility	Compositi dissolved s		Solid
Time	in %	'¿ violet salt	% green salt	phase
7' 45' 2h 5' 48h * 11 dys.	63.69 66.24 69.53 69.33 70.81	12.87 21.43 34.53 45.27 45.27	87.13 78.57 65.47 54.73 54.73	Almost all dis- solved

* First 8 days at 35°.

(Olie, Z. anorg. 1907, 53. 276.)

Solubility of green CrCl₃+6H₂O in H₂O at 35°.

10 g.  $CrCl_3 + 6H_2O$  and 3.3 g.  $H_2O$ .

Time	Total solubil- ity in %	Composition of the dissolved substance		
	K 3 7 7 7 7	% violet salt	% green salt	
8' 38' 1 ^h 2 ^h 10' 4 ^h 23 ^h 72 ^h	65.85 66.74 66.21 68.90 70.79 71.34 70.79	16.47 25 02 25.45 31.47 36.28 42.95 42.88	83.53 74.98 74.55 68.53 63.72 57.05 57.12	

(Olie, l. c.)

If a solution saturated with the green hexahydrate below 32° is cooled, the decahydrate separates out; if the solution is saturated above 32°, both the decahydrate and hexahydrate separate out on cooling. (Olie, l. c.)

Violet modification.

Solubility in H₂O at 25°.

25 g. violet CrCl₃+6H₂O and 10 ccm. of a 35% solution of green CrCl₃+6H₂O.

Time	Total Solubility in ${}^c % = {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % {}^c % $	Composition of the sat. solution	
-		% violet salt	% green salt
11/6 hr.	65.49	84.05	15.95
5 "		84.47	15.53
29 ''		78 16	21.84
2 dys.	70.47	73.19	26.81
4 "		68.71	31.29
5 "	76.38	60.66	39.34
5 dys, 6 hrs.		60.36	39.64
6 dys.		65.10	34.90
8 "	73.26	65.80	34.20
10 "		58.08	41.92
12 "	71.14	41.40	58.60

(Olie, Z. anorg, 1906, **51**, 57.)

Solubility in H₂O at 25°. 25 g. violet CrCl₃+6H₂O and 10 g. H₂O.

Time	Total Solubility in G	Composition of the sat. solution		
k		% violet salt	% green salt	
1/6 hr.	61.99	98.47	1.53	
$\frac{4^{1}/_{2} \text{ hrs.}}{1 \text{ dy.}}$	63.88	$96.70 \\ 91.54$	3 30 8 46	
2 " . 4 " 5 "	70.68	83.37 69.11	$16.63 \\ 30.89$	
5 " 7 "	72.11	$62.20 \\ 62.72$	$\frac{37.80}{37.28}$	
8 " 12 "	• • •	54.63 46.39	$\frac{45.37}{53.61}$	
13 "	70.62	47 66	52.34	
26 "	70.02	48.55	51.45	

(Olie, *l. c.*)

+6½H₂O. Green modification. 100 pts. H₂O dissolve 130 pts. salt at 15°. Sol. in alcohol. (Recoura, C. R. 102. 518.)

Grayish-blue modification. Very sol. in H₂O. (Recoura, C. R. 102. 548.)

+10H₂O. Very deliquescent; melts in crystal H₂O at 6-7°. Very sol. in H₂O, alcohol, and ethyl acetate. (Godeffroy.)

Easily sol. in H₂O; can be recryst. from H₂O. Sol. in alcohol and ether. (Werner, B. 1906, **39**. 1827.)

Green modification.

Solubility of green CrCl₃+10H₂() in H₂O at

14.2 g. CrCl₃+10H₂O and 2.5 g. H₂O.

-	Total Time solubil'y		Composition of the dissolved substance		Solid phase
		in G	% violet salt	% green salt	_
	7'	61.35	8.71	91 29	CrCl ₃ +10H ₂ O
	20'	62.46	9.90	90.10	"
	1 ^h 55′	65.04	25.05	74.95	"
١.	4h 30′	67 41	$32 \ 90$	67.10	$ \text{CrCl}_8+6\text{H}_2\text{O} $
ĺ	$24^{ m h}$	69.44	42.93	57.07	all dissolved
	$28^{\rm h}$		31.78	68.22	$CrCl_3 + 10H_2()$
	$29^{\rm h}$	67.59	33.65	66.36	CrCl ₃ +6H ₂ O
	$48^{h}$	69 42	42.17	57.83	ü
-	$72^{\rm h}$	68.69	43.80	56.20	"
1		,			

(Olie, Z. anorg. 1907, 53, 275.)

The composition of the hydrates formed byCrCl₃ at different dilutions is calculated from determinations of the lowering of the fr. pt. produced by CrCl₂ and of the conductivity and sp. gr. of CrCl₃+Aq. (Jones, Am. Ch. J. 1905, **34.** 310.)

Chromic glucinum chloride, CrCl₃, GlCl₂  $+H_{9}()$ .

Sol. in H₂O with decomp. (Neumann, A. **244.** 329.)

Chromic lithium chloride, CrCl₃, 2LiCl+ 4H₂O.

Very hygroscopic.

Sol. in ice water but solution soon decomp. Easily sol. in alcohol. (Werner, B. 1901, **34.** 1603.)

 $[Cr(OH_2)Cl_5|Li_2+4H_2O]$ .

Very hygroscopic. Sol. in ice cold H₂O and in alcohol. (Werner, B. 1901, **34.** 1604.)

Chromic magnesium chloride, CrCl₂, MgCl₂  $+H_{2}O.$ 

Decomp. by H₂O. (Neumann.)

Chromic phosphoric chloride, CrCla, PCla. Decomp. by H₂O. (Cronander.)

Chromium platinum chloride. See chloroplatinate, chromium.

Chromic potassium chloride, CrCl2, KCl. Decomp, by H₂O. CrCl₃, 2KCl+H₂O. (Neumann, A. 244. 329.)

CrCl₃, 3KCl. Easily sol. in H₂O with decomp. (Fremy, A. ch. (3) 12. 361.)

Chromic rubidium chloride, CrCl₃, 2RbCl+ H₂O.

Decomp. by H₂O. (Neumann, A. 244. 329.)

Slowly sol, in cold, rapidly sol, in hot H₂O with decomp. (Werner, B. 1901, 34, 1603.) CrCl₃, 3RbCl+8H₂O. Unstable. Decomp.

by alcohol. (Werner, B. 1906, **39**, 1830.)

Chromic sodium chloride, CrCl₃, NaCl.

Sol, in H₂O. (Berzelius.) CrCl₃, 3NaCl. Sol. in H₂O. (Berzelius.)

Chromic thallium chloride, CrCl₃, 3TlCl.

Sol. with decomp. in H₂O. (Neumann, A.) 244. 329.)

#### Chromic chloride ammonia.

See Chlorotetramine chromium chloride.

Chromous chloride hydrazine, CrCl₂, 2N2H4.

Insol. in H₂O. Sol. in acids. Insol. in alcohol, ether and similar solvents. (Traube, B. 1913, **46.** 1506.

#### Chromic chloride ferric oxide.

Fe₂O₃ is easily sol. in dil., difficultly sol. in conc. CrCl₃+Aq. (Béchamp. A, ch. (3) **57.** 311.)

#### Chromous fluoride, CrF₂.

Sl. sol. in H2O, hot H2SO4 or dil. HNO3. Sol, in boiling HCl. Insol. in alcohol. (Poulenc, C. R. 1893, **116.** 254.)

#### Chromic fluoride, CrF₃.

Perfectly sol. in H₂O. (Berzelius.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

Insol, in methyl acetate. (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

 $+3H_2O$ . Insol. in  $H_2O$ . (Werner and Costachescu, B. 1908, 41. 4243.)

 $+3\frac{1}{2}H_2O$ . Sol. in  $H_2O$ . (Poulenc, C. R.

1893, **116.** 255.)

+6H₂O. Sl. sol. in H₂O. (Werner and Costachescu, B. 1908, 41. 4242.) +9H₂O. Violet modification.

Very sl. sol. in H2O. Insol. in alcohol. Sol. in HCl, and KOH+Aq. (Fabris, Gazz. ch. it. 20. 582.)

#### Chromium hexafluoride, CrF₆.

Decomp. by H₂O with evolution of heat. (Berzelius.)

Correct composition is CrO₂F₂. (Oliveri, Gazz. ch. it. 16. 218.)

Chromic cobaltous fluoride, CrF₃, CoF₂+ 7H₂O.

Easily sol. in  $H_2O$ . (Petersen, J. pr. (2) **40.** 60.)

Chromic cupric fluoride, CrCuF₅+5H₂O. Can be cryst. from HF+Aq. (Higley, J. Am. Chem. Soc. 1904, 26. 630.)

Chromic nickel fluoride, CrF₂, NiF₂+7H₂O. Somewhat more sol, in H2O than CrF2,  $CoF_2 + 7H_2O$ . (Petersen, J. pr. (2) **40.** 61.)

#### Chromic potassium fluoride, CrF₃, 3KF.

Nearly insol. in H₂O. (Christensen, J. pr. (2) **35**. 161.)

CrFs, 2KF+H.O. Nearly insol. in H₂O. Sol. it cond. HCl+Aq. (Christensen.)

Chromic sodium fluoride, CrF₃, 2NaF+H₂O. (Wagner, B. 19.896.)

#### Chromic thallous fluoride, 2CrF₃, 3TlF.

Sol. in hot  $H_2O$ , less sol. in cold. Sl. sol. in HF. (Ephraim, Z. anorg. 1909, **61.** 242.)

#### Chromic zinc fluoride, $CrF_3$ , $ZnF_2+7H_2O$ .

Can be cryst. from HF+Aq. (Higley, J. Am. Chem. Soc. 1904, 26. 630.) Colloidal solution is per

perfectly clear. (Biltz, B. 1902, 35, 4433.)

#### Chromous hydroxide, CrO₂H₂.

Decomp. by H₂O, especially if hot. (Peligot, A. ch. (3) 12. 539.)

Slowly sol, in cold conc. acids, even aqua regia; almost insol. in dil. acids. (Moberg, J. pr. 43. 119.)

Chromic hydroxide, Cr₂O₃, xH₂O, probably  $Cr_2O_6H_6$ .

Insol. in H₂O. Easily sol, in acids. Easily sol. in cold KOH, or NaOH+Aq; much less sol. in cold NH₄OH+Aq; the presence of NH₄Cl has no influence upon solubility in NH₄OH+Aq. (Fresenius.) Insol. in NH₄OH+Aq if it has been thoroughly washed.

Insol. in KCN+Aq, but sl. sol. in KCN+

HCN+Aq. (Rodgers, 1834.)

Gradually sol. in dil. FeCl₃+Aq; after three months, 2 mols. Cr₂O₆H₆ are dissolved by 1 mol. FeCl₃ without pptn. of Fe₂O₆H₆. (Béchamp, A. ch. (3) 57. 296.)

Alsl sol. in CrCl₃+Aq; in four months, 1½ mols. Cr₂O₆H₆ are dissolved by 1 mol. CrCl₃.

(Béchamp.)

Sol. in Cr(NO₃)₃+Aq, and clear solution formed as long as 3 mols. HNO₃ are present for 8 mols. Cr₂O₃. (Ordway, Sill. Am. J. (2) **27.** 197.)

Chromic hydroxide, pptd. by alkalies is easily sol, in excess of the reagent; after being dried in a vacuum, however, it is insol. in alkalies. (Herz, Z. anorg. 1901, 28, 344.)

Freshly pptd. it is sol. in aq. alkali, but it is readily changed into a modification which is insol. (Herz, Z. anorg. 1902, 31. 352.)

The solubility of chromic hydroxide in an

aqueous solution of red chromic chloride is not directly proportional to the concentration of the latter—a basic chloride is probably formed. (Fischer, Z. anorg. 1904, 40. 43.)

Not pptd. in presence of Na citrate. (Spiller.)

Insol. in amylamine+Aq; not pptd. in

presence of alkali tartrates, sugar, etc.  $Cr_2O_6H_6+4H_2O$ . Difficultly sol. in acids.

 $Cr_2O_6H_6+H_2O.$ Extremely hygroscopic. Exists in a soluble modification, obtained by dialysis; solution can be diluted with pure H₂O, but gelatinizes with traces of salts. (Graham, Roy. Soc. Trans. 1861. 183.) Cr₂O₂(OH)₂. Insol. in boiling dil. HCl+

Cr₂O(OH)₄ (Guignet's green). Scarcely sol. in boiling HCl+Aq. (Salvétat, C. R.

Guignet gave formula as  $2Cr_2()_3+3H_2()$ .

Chromochromic hydroxide,  $Cr_3O_4$ ,  $H_2O(?)$ . Slightly attacked by acids. (Peligot, A. ch. (3) **12.** 539.)

Chromous iodide, CrI₂.
Easily sol. in H₂O. (Moissan, A. ch. (5) **25.** 401.)

#### Chromic iodide, $Crl_3(?)$ .

Insol. in cold, sol. in hot H₂O, but no separation occurs on cooling. (Berlin.)

+9H₂O. Hygroscopic. Sol. in alcohol and acetone. Insol. in CHCl₃. (Higley, J. Am. Chem. Soc. 1904, **26.** 628.)

Chromous iodide hydrazine, CrI₂, 2N₂H₄. (Traube, B. 1913, **46.** 1507.)

#### Chromium nitride, CrN.

Insol. in dil. acids and alkalies, conc. HNO₃, HCl, or HF+Aq, even on heating. Slowly sol. in hot aqua regia or cold H₂SO₄. Sol. in cold solutions of alkali hypochlorites. (Ufer, A. 112. 281.)

Insol. in HCl, HNO₃ and aqua regia. (Férée, Bull. Soc. 1901, (3) **25.** 618.)

Unacted upon by acids at ordinary temper-

atures. (Smits, Chem. Soc. 1897, 72. (2) 33.) Cr₃N₂. Slowly attacked by conc. HNO₃ and by HNO3+HCl. All other reagents are without action. (Henderson and Galletly, J. Soc. Chem. Ind. 1908, 27. 387.)

CrN₃. See Chromium azoimide.

#### Chromous oxide, CrO.

Insol. in HNO₈ and dil. H₂SO₄+A₀. Sol. in HCl. (Férée, Bull. Soc. 1901, (3) **25.** 619.)

#### Chromic oxide, Cr₂O₃.

When ignited is nearly insol. in acids, but dissolves in H₂SO₄ by long boiling. Insol. in liquid HCl. (Gore.)

Insol. in acctone. (Fidmann, C. C. 1899.

II, 1014.)
Solubility in (calcium sucrate+sugar)+

1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 1.07 g. Cr₂O₃; 1 l. solution containing 296.5 g. sugar and 24.2 g. CaO dissolves 0.56 g. Cr₂O₃; 1 l. solution containing 174.4 g. sugar and 14.1 g. CaO dissolves 0.20 g. Cr₂O₃. (Bodenbender, J. B. 1865. 600.)

See also Chromic hydroxide.

+H₂O. The compound to which Bunsen gave the formula Cr₅O₆. Insol. in acids, but easily attacked by HNO3. (Férée, Bull. Soc. 1901, (3) **25.** 620.)

#### Chromochromic oxide, $Cr_3O_4 = CrO$ , $Cr_2O_3$ .

Known only in form of hydroxide, which

 $+3\mathrm{H}_2\mathrm{O}$ . Stable in dry air. Decomp. in moist air. (Baugé, C. R. 1898, **127**, 552.)  $\mathrm{Cr}_4\mathrm{O}_5$ , or  $\mathrm{Cr}_5\mathrm{O}_6$  (?). Insol. in acids or in aqua regia. (Bunsen, Pogg. **91**, 622.)

Not obtainable. (Geuther, A. 118. 66.) Formula is Cr₂O₃+H₂O. (Férée.)

#### Chromium trioxide, CrO₃.

Deliquescent, and very sol. in  $H_2O$ , to form solution of  $H_2CrO_4$  or  $H_2Cr_2O_7$ .

Solubility in H₂O at t°.

٥° 50° 990 15° % CrO₃ 62.0862.3864.5567.39

(Mylius and Funk, Gm. K. 3, 1, 1332.)

Sat. CrO₃+Aq contains at:

 $20^{\circ}$ 61.54 62.5265.12% CrO₃.

(Koppel and Blumenthal, Z. anorg. 1907, 53. 228.)

The system CrO₃-H₂O has been studied at temp. from  $0^{\circ}$ to  $-74^{\circ}$ . In the limits of concentration investigated, from 0-71.2%CrO₃, no hydrate of CrO₃ cryst. from the aq. solution. (Kremann, M. 1911, **32.** 622.)
Sat. CrO₃+Aq contains at:

82° 100° 115° 67.4 66 68.4% CrO₃.

(Kremann, M. 1911, 32. 620.)

~ .				
Solu	bility	in	$H_2O$	at.

t°	% by wt. CrO:	Solid phase.
0.9°	3.6	lce
1.9	7.8	u
-3.7	11.5	"
4.8	14.1	"
10.95	24.9	"
-11.7	25.2	44
-18.75	33.5	44
-25.25	39.2	× <b>6</b>
-43.5	49.1	"
-60	53.3	"
-20	61.7	$CrO_3$
0 .	62.24	"
+24.8	62.88	"
40	63.50	"
65	64.83	"
90	68.5	4.
122	70.7	4.6
193-196	100	"

Büchner and Prins, Z. phys. Ch. 1912, 81. 114.)

Sp. gr. of CrO₃+Aq at t°.

t°	≤p. gr.	⊊ CrO₃
16.0	1 0606	8 25
18.0	1.0679	8.79
14.5	1.0694	8.79
19 5	1 0957	12.34
19.0	1.1569	19.33
20.9	1.20269	31.83
20.1	1.20264	31.83
12.0	1.20714	31.83
35.0	1 20940	32.59
18.6	1.21914	32.59
15 2	1.22106	32.59
9.7	1.22384	32.59
22.0	1.3441	37.77
19.2	1.3448	37 82
22.0	1.34416	37.82
	1.7028	62.23

(Zettnow, Pogg. 143, 474.)

Sp. gr. of CrO₈+Aq (II₂CrO₄+Aq). M = according to Mendelejeff at 15°; Z=according to Zettnow, calculated by Gerlach (Z. anal. 27. 300).

CrO ₂	M	z	% CrOs	M	z
5 10 15 20 25 30	1.036 1.076 1.119 1.166 1.215 1.268	1.037 1.076 1.118 1.162 1.208 1.258	35 40 45 50 55 60	1.324 1.383 1.445 1.510 1.579	1.312 1.373 1.440 1.512 1.587 1.656

B.-pt. of CrO₃+Aq at ord. pressure.

Bpt.	G. CrO ₃ in 100 g. of the solution.
102°	10.81
104	24.08
107	36.47
110.5	45.15
116	54.56
120	61.54
127	71.24 sate solution

(Koppel and Blumenthal, Z. anorg. 1907, 53. 254.)

Sol. in H₂SO₄; the solubility is least when the acid contains 66% H₂SO₄ (Schrötter); 84.5% H₂SO₄ (Bolley).

Very sol. in H₂SO₄ of 1.85 sp. gr. Sl. sol.

in cold KHSO₄+Aq. (Fritzsche.)
The statement that CrO₃ is insol. in acids is incorrect. 2.85 g. (ignited) are sol. in HNO₃ to the extent of 2.58 g. 0.81 g. (ignited) are sol. in HNO₃ to the extent of 0.77 g. (Jovitschitsch, M. 1909, 30. 48.)

Practically insol. in POCl₃. (Walden, Z. anorg. 1910, **68**. 312.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Sol. in alcohol with decomp.

Sol. in anhydrous ether.

Sol. in acetic anhydride. (Fry, J. Am.

Chem. Soc. 1911, 33. 702.) Sol. in acetone. (Naumann, B. 1904, 4328.) Sol. in benzonitrile. (Naumann, B. 1914,

**47**, 1369.) Sol. in methyl acetate. (Naumann, B.

1909, **42**, 3790,) Difficultly sol. in ethyl acetate. mann, B. 1910, 43. 314.)

Chromium oxide,  $Cr_5O_9 = 2Cr_2O_3$ ,  $CrO_3$ .

 $Cr_{5}(O_{15} = 3Cr_{2}O_{3}, 2CrO_{3}, CrO_{2} = Cr_{2}O_{3}, CrO_{3}.$  $Cr_5O_{12} = Cr_2O_3$ ,  $3CrO_3$ .  $Cr_6()_{15} = Cr_2()_3, 4CrO_3.$ See Chromate, chromium.

### Chromium peroxide, Cr₂O₇(?)

More sol. in ether than in H₂O. Ether solution is somewhat more stable than aqueous solution. (Aschoff, J. pr. 81. 401.)

Formula is CrO₃, H₂O₂. (Moissan, C. R. **97.** 96.)

Chromium peroxide ammonia, CrO₄, 3NH₃.

Sol. in H₂O with partial decomp.

Sl. sol. in NH40H+Aq. Sol. with decomp. in 20% acetic acid. (Hofmann, B. 1905, 38. 3060.)

## Chromium tetroxide potassium cyanide,

CrO₄, 3KCN. Sol. in H₂O. Insol. in other ordinary solvents. (Wiede, B. 1899, 32, 381.)

#### * Chromic oxychloride.

From Cr₂O₈. Sol. in H₂O as long as 1 mol. CrCl₃ is present for 2½ mols. Cr₂()₆H₆. (Ordway, Sill. Am. J. (2) 27. 197.)

Cr₂O₃, 2CrCl₃. Sol. in H₂O. (Kletzinsky, Zeit. Ch. **1866**. 277.)

 $Cr_2O_3$ ,  $CrCl_8 = CrOCl$ . Anhydrous. Only partly sel. in  $H_2O$ .

+3H.Q. Very deliquescent, and sol. in O. (Peligot.)

H₂O.

Čr₂O₃,  $4CrCl_3+6H_2O = Cr_2OCl_4+2H_2O.$ (Peligot, J. pr. 37. 38.) +9H₂O = Cr₂OCl₄ + 3H₂O.Sol. in H₂O (Moberg); =  $Cr_2(OH)_2Cl_4 + 2H_2O$ . (Schiff, A. **124.** Ĭź7.)

 $Cr_2O_3$ ,  $7CrCl_3 = Cr_3OCl_7$ . Very sol. in  $H_2O$ with decomp. (Besson and Fournier, C. R.

1909, 148, 1194.)  $Cr_2O_3$ ,  $SCrCl_3+24H_2O$ . Sol. in  $H_2O$  (Moberg);  $=Cr_2(OH)Cl_5+4H_2O$ . (Schiff,  $l.\ c.$ ) ( $CrO_2$ ) $_3Cl_2$ . (Pascal, C. R. 1909, **148**.

1464.) Cr₆O₉Cl₄. Insol. in H₂O. (Pascal, C. R.

1909, **148.** 1464.) From CrO3.

See Chromyl chloride.

#### Chromic oxychloride potassium chloride, CrOCl₃, 2KCl.

Decomp, in the air.

Sol. in cone. HCl without decomp. (Weinland, B. 1906, **39.** 4043.)

#### Chromic oxychloride rubidium chloride, CrOCl₃, 2RbCl.

Decomp. in the air.

Sol. in conc. HCl without decomp. (Weinland, B. 1906, **39.** 4045.)

## Chromium oxyfluoride, CrO₂F₂.

See Chromyl fluoride.

#### Chromium phosphide, CrP.

Insol. in acids, but a trace dissolves in aqua regia. Insol. in HF+Aq. (Berzelius.) Not attacked by acids or by aqua regia. (Granger, C. N. 1898, 77. 228.)

Insol. in all acids except a mixture of HNO₃ and HF. (Maronneau, C. R. 1900, 130.

Insol, in mineral acids. (Dieckmann, Z. anorg. 1914, 86. 295.)

(Granger, C, R.

Insol. in aqua regia. (Granger 1897, **124**, 191.) Cr₂P₃. Insol. in mineral acids. mann, Z. anorg. 1914, **86**. 295.) (Dieck-

## Chromous selenide, CrSe.

(Moissan, C. R. 90. 817.)

#### Chromic selenide, Cr₂Se₃.

#### Chromic potassium selenide, K2Cr2Se4.

Insol, in HCl. Easily sol, in conc. HNO₃. (Milbauer, Z. anorg. 1904, 42. 451.)

#### Chromium silicide, Cr₂Si.

Sol, in fused KNO3: insol, in cold HCl and aqua regia.

Insol. in HF+Aq. (Moissan, C. R. 1895, **121.** 625.)

CrSi₂. Sol. in HF. Insol. in HCl and aqua regia. (Chalmot, Am. Ch. J. 1897, 19. 69.)

Ćr₃Si₂. Insol. in dil. HCl; sol. in warm conc. HCl and in HF; insol. in HNO₃ and H₂SO₄. (Lebeau, C. R. 1903, **136**. 1330.)

Cr₃Si. Sol. in HF; insol. in other acids; sol, in fused KOH and fused alkali nitrates and carbonates. (Zettel, C. R. 1898, 126. 834.)

#### Chromous sulphide, CrS.

Insol. in H₂O or K₂S+Aq. (Peligot.) Easily sol. in acids. (Moissan, C. R. 90. 817.)

Sol. in cold cone, acids.

Sol. in molten alkalies. (Mourlot, C. R. 1895, **121.** 944.)

Min. Daubrelite.

#### Chromic sulphide, Cr₂S₃.

Insol. in  $H_2O$  or alkali sulphides + Aq. Sl. attacked by  $HCl+\Lambda q$ . (W. Müller, Pogg. **127.** 404.)

HNO₃+Aq decomposes or not according to method of preparation. Easily decomp. by aqua regia.

Insol, in caustic alkalies + Aq. Insol, in  $K_2S + Aq$ , (Berzelius.)

#### Chromochromic sulphide, $Cr_3S_4 = CrS_1$ $\operatorname{Cr}_2S_3$ .

Insol, in H₂O, HCl, or dil. H₂SO₄+Aq. Easily sol. in HNO₃+Aq. (Gröger, W. A. B. **81.** (2) 531.)

Chromic zinc sulphide, Cr₂ZnS₄.

(Gröger, W. A. B. 1880, **81.** 534.)

#### Chromicyanhydric acid.

#### Cadmium chromicyanide, Cd₃[Cr(CN)₆]₂.

Readily sol. in an excess of KCN and in NH₄OH+Aq. Decomp. by conc. HCl, NH₄OH+Aq. Decomp. by conc. HCl, HNO₃ or H₂SO₄. Slowly decomp. by cold, rapidly by hot dil. HCl, HNO₃, or H₂SO₄. Quickly dissolved by aqua regia. Decomp. by boiling with Na₂O₂, by NaOH+Aq and by Na₂CO₃+Aq. Slowly decomp. by boiling acetic acid. (Cruser and Miller, J. Am. Chem. Soc. 1906, **28**. 1136.)

#### Cobaltous chromicyanide, $Co_3[C_1(CN)_6]_2$ .

Sol. in cold, readily sol. in hot conc. HCl Insol. in H₂O. (Moissan, C. R. 90. 817.) or H₂SO₄. Sl. sol. even in boiling conc.

HNO₃. Slowly sol. in cold dil. H₂SO₄, HCl Lithium chromisulphocyanide, or HNO₃. Readily sol. in boiling dil. HCl or Li₃Cr(SCN)₆+H₂O₅. H₂SO₄. Decomp. but not entirely dissolved by aqua regia. Readily sol. in an excess of Decomp. by NH4OH, NaOH or Decomp. by boiling with  $Na_2CO_3 + Aq$ . Na₂O₂: Insol. in cold or boiling acetic acid. (Cruser and Miller.)

#### Cuprous chromicyanide, Cu₃Cr(CN)₆.

Sol. in KCN, cold cone, or boiling dil HNO₃+Aq. Slowly sol. in cold cone. H₂SO₄, still more slowly sol. in dil. H₂SO₄ but rapidly sol. in hot dil. and conc. H₂SO₄. Readily decomp. by aqua regia. Decomp. by dil. or cone. HCl, slowly going into solution in the cold, but quickly on boiling. (Cruser and Miller.)

#### Cupric chromicyanide, Cu₃[Cr(CN)₆]₂.

Slowly sol. in cold dil. HCl, HNO3 or H2SO4: on boiling the first two readily dissolve it, but the H₂SO₄ dissolves it only slowly. Sol. in aqua regia or cold conc. H₂SO₄. Readily sol, in cold or hot cone, HCl. Decomp. by cold, dissolved by boiling HNO₃. Decomp. by boiling Na₂O₂+Aq. Decomp. by NH₄OH, NaOH or Na₂CO₃+Aq. Readily sol. in an excess of KCN+Aq. Insol. in cold acetic acid. (Cruser and Miller.)

#### Nickel chromicyanide, $Ni_3[Cr(CN)_6]_2$ .

Slowly sol, in cold, readily sol, in hot dil. HCl, HNO3 or H2SO4. Slowly sol. in cold, readily sol. in hot cone. H2SO4, HCl or Slowly decomp. by cold, rapidly by boiling aqua regia. Readily sol, in excess of KCN. Sol, in NH4OH+Aq. Decomp. by NaOH, Na₂CO₃+Aq or Na₂O₂+Aq. Insol. in cold, sl. sol, in boiling acetic acid, (Cruser and Miller.)

#### Potassium thallous chromicyanide, K₂TlCr(CN)₆.

(Fischer and Benzian, Ch. Z. 1902, **26**, 50.)

#### Thallous chromicyanide, Tl₃Cr(CN)₆.

Easily sol. in H₂O. (Fischer and Benzian, Ch. Z. 1902, 26, 50.)

#### Zinc chromicyanide, Zn₃[Cr(CN)₆]₂.

Insol. in H₂O. Sol. in excess of NH₄OH, NaOH and KCN+Aq. Decomp. by Na₂CO₃+Aq. Sol. in cold dil. HCl. Slowly sol. in dil. H₂SO₄ and in dil. HNO₃. By boiling with dil. acids a clear solution is quickly obtained. (Cruser, Dissert. 1906.)

#### Chromisulphocyanhydric acid.

#### Cæsium chromisulphocyanide, $C_{8}Cr(SCN)_6 + 2H_2O$ .

Less sol. in H₂O than K salt. (Osann, Dissert. **1907.**)

Extremely deliquescent. (Osann.)

#### Rubidium chromisulphocyanide, $Rb_3Cr(SCN)_6+4H_2O$ .

Appreciably less sol. in H₂O and alcohol than the K salt. (Osann.)

#### Chromocyandric acid, H₄Cr(CN)₆.

Sol. in H₂O Decomp, rapidly on air. (Moissan A ch. (6) 4. 144.)

#### Potassium chromocyanide, K₄Cr(CN)₆.

Very sol. in H₂O: 100 pts. H₂O dissolve 32.33 pts. at 20°. Much more sol. in hot H₂(). Insol. in alcohol, ether, benzene, or chloroform. (Moissan, A. ch. (6) 4. 136.)

Above salt was K₂Cr(CN)₆. (Christensen.) +3H₂O₂ (Christensen, J. pr. (2) **31.** 166.)

## Chromoiodic acid, CrO₂, HIO₃+2H₂O.

Deliquescent. (Berg, C. R. 104. 1514.)

Ammonium chromoiodate, CrO₃, NH₄IO₃+ H₂().

Moderately sol, in H₂O, (Berg.)

Lithium chromoiodate,  $CrO_3$ ,  $LiIO_3 + H_2O$ . Very sol. in H₂O. (Berg.)

#### Magnesium chromoiodate.

Sol. in H₂O. (Berg.)

#### Potassium chromoiodate, CrO₃, KIO₃.

Sol, in H₂O. (Berg.)  $+H_2O = KCrIH_2O_7$ . Sl. decomp. by  $H_2O_1$ . (Blomstrand, J. pr. (2) 40. 331.)

#### Silver chromoiodate, CrO₃, AgIO₃.

Sl. attacked by cold, rapidly decomp. by hot H₂O. (Berg, C. R. 111. 42.)

Sodium chromoiodate,  $CrO_3$ ,  $NaIO_3 + H_2O$ . Very sol. in  $H_2O$ , (Berg.)

#### Chromosulphocyanhydric acid.

#### Sodium chromosulphocyanide,

 $Na_3Cr(SCN)_5 + 10$ , or  $11H_2()$ .

Unstable.

Decomp. by H₂O. (Koppel, Z. anorg. 1905, 45. 360.)

#### Chromosulphuric acid, H₂Cr₂(SO₄)₄.

Sol. in H₂O in all proportions, but solution is easily decomp, on standing or boiling. (Recoura, Bull, Soc. (3) 9. 586.)

H₄Cr₂(SO₄)₅. As above.  $H_6Cr_2(SO_4)_6$ . As above.

Ammonium chromosulphate.  $(NH_4)_2Cr_2(SO_4)_4+5H_2O.$ 

Sol. in H₂O after a few minutes. (Recoura.)

Chromium potassium chromosulphate,  $[Cr_2(SO_4)_3CrO_4]K_2, [Cr_2(SO_4)_3(CrO_4)_2]K_4$ and  $[Cr_2(SO_4)_3(CrO_4)_3]K_6$ .

Sol, in H₂O. (Recoura, Bull. Soc. 1897, (3) **17.** 934.)

Potassium chromosulphate,  $K_2Cr_2(SO_4)_4$ + 4H₂O.

Sol. in H₂O in a few minutes. (Recoura, Bull. Soc. (3) 9. 590.)

Sodium chromosulphate,  $Na_2Cr_2(SO_4)_4$ + 10H.O.

As K salt. (Recoura.)

#### Chromotelluric acid.

Ammonium chromotellurate, 2(NH₄)₂O, 4CrO₃, TeO₃. Sol. in H₂O. (Berg, C. R. 1911, **152**. 1588.)

Potassium chromotellurate, 2K₂O, 4CrO₃, TeO₃.

Sl. sol. in cold H₂O without decomp. Sol. in boiling H₂O. (Berg, Bull. Soc. 1911, (4) 9. 583.)

Chromous acid,  $H_2Cr_2O_4 = Cr_2O_3$ ,  $H_2O$ .

Chromic hydroxide shows slightly acid properties, and salts corresponding to the above acid are known.

Aluminum ferrous magnesium chromite (chrome iron ore), (Fe, Mg)O,  $(Cr_2, Al_2)O_3$ .

Insol. in H2O or acids, even a mixture of H₂SO₄ and HF. (Ebelmen.)

Barium chromite, BaCr₂O₄.

Insol. in H₂O. (Gerber, Bull. Soc. (2) 27. 436.)

Barium tetrachromite, BaO, 4Cr₂O₃.

Undecomp. by steam at red heat; insol. in HCl, H₂SO₄, HNO₃; sol. in fused KOH+ KNO₃; decomp. in the air. (Dufau, C. R. 1896, **122**. 1126.)

Cadmium chromite, CdCr₂O₄ Not attacked by acids. (Viard, C. R. 109. 142.)

Calcium chromite, CaCr₂O₄.

Insol, in H₂O. (Gerber, Bull. Soc. (2) 27. 436.)

Insol. in HCl, HF, HNO₃, H₂SO₄; sol. in gaseous HCl and HF at red heat; sol. in fused KOH, KNO₃, KClO₃, K₂CO₃. (Dufau, C. R. 1895, **121**. 690.)

2CaO, Cr₂O₃. Insol. in H₂O, KOH, or NH₄OH+Aq; slowly decomp. by H₂CO₃, or M₂CO₃+Aq; insol. in sugar solution. (Pelouze, A. ch. (3) 33. 9.)
4CaO, Cr₂O₃. Attacked by H₂O. (Mois-

san, C. R. 1894, 119, 188.)

Cobaltous chromite, CoCr₂O₄.

(Elliot, Dissert, Göttingen, 1862.)

Cuprous chromite, Cu₂O, Cr₂O₃.

Insol. in HNO₃+Aq(sp. gr. 1.4). (Wöhler, Z. phys. Ch. 1908, **62.** 445.)

Cupric chromite basic, 5CuO, 4Cr₂O₃. (Wöhler, Z. phys. Ch. 1908, 62. 445.)

Cupric chromite, CuCr₂O₄.

Not attacked by HNO₃+Aq. (Persoz, A.) ch. (3) 25. 283.)

Not attacked by conc. HCl.

Insol. in dil. acids. (Wöhler, Z. phys. Ch. 1908, **62.** 446.)

CuO, 3Cr₂O₃. (Rosenfeld, B. 1879, 12.

Glucinum chromite, GlCr₂O₄.

Insol. in H₂O. (Mallard, C. R. **105.** 1260.)

Iron (ferrous) chromite (chrome iron ore).

See Chromite, aluminum ferrous magnesium.

Iron (ferroferric) chromite, FeO, Fe₂O₃, Cr₂O₃. Not attacked by HCl+Aq. (Ebelmen.)

Iron (ferrous) magnesium chromite.

Insol. in HCl+Aq. Scarcely attacked by H2SO4.

Lead chromite, PbCr₂O₄.

Ppt. Insol. in KOH + Aq. (Chancel, C. R. 43. 927.)

Lithium chromite, Li₂Cr₂O₄.

Very sl. sol. in acids. (Weyberg, C. C. **1906**, II. 1659.)

Magnesium chromite, MgO, 2Cr₂O₂.

Insol. in H₂O. (Nichols, Sill. Am. J. (2) 47. 16.)

MgCr₂O₂. Insol. in acids or alkalies, except boiling H₂SO₄. (Schweitzer, J. pr. 39. 259.)

Could not be obtained. (Viard, Bull, Soc. (3) **5.** 934.)

Easily attacked by boiling H₂SO₄+Aq. Less easily by HCl or HF+Aq not attacked by boiling HNO3. (Dufau, C. R. 1896, **123**. 886.)

2MgO, Cr₂O₃. Insol. in H₂O or acids. (Nichols.)

5MgO, 4Cr₂O₃. Insol. in acids. (Viard, C. R. 112. 1003.) 3 MgO,  $2\text{Cr}_2\text{O}_3$ . As above. (V.)

Manganese chromite, MnCr₂O₄.

(Ebelmen, A. Entirely insol. in acids. ch. (3) **33.** 44.)

Zinc chromite, ZnCr₂O₄.

Insol. in acids and alkalies. (Viard, C. R. **109.** 142.)

+xH₂O. (Chancel, C. R. **43.** 927.)

3ZnO, 2Cr₂O₃. As above. (Viard. C. R. **112.** 1003.)

6ZnO, 5Cr₂O₃. As above. (Gröger, M. 1904, 25, 8ZnO, 3Cr₂O₃. 520.)

#### Chromovanadic acid.

Ammonium chromovanadate,  $2(NH_4)_2O$ ,  $2CrO_3$ ,  $V_2O_5+7H_2O$ . Sol. in H₂O. (Ditte, C. R. **102**. 1105.)

Chromyl amide, CrO₂ (NH₂)₂. Sol. in H₂O. (Ohly, C. N. 1899, **80.** 134.)

#### Chromyl subchloride, (CrO₂)₅Cl₆.

Deliquescent, sol. in H2O with decomp., insol. in dry ether. (Pascal, C. R. 1909, **148.** 1463.)

#### Chromyl chloride (chlorochromic acid) CrO₂Cl₂.

Decomp. by H₂O with evolution of much heat. Sol. in glacial acetic acid without decomposition.

Sol. in CCl₄, C₆H₆, (mol. wt. det.). (Oddo, Gazz. ch. it. 1899, **29**. (2) 318; Chem. Soc. 1900, 78. (2) 75.)

#### Trichromyl chloride, Cr₃O₆Cl₂.

Deliquescent. Sol. in H₂O with gradual Sol. in conc. HCl+Aq. decomposition. (Thorpe, Chem. Soc. (2) 8. 31.)

Scarcely sol. in CS₂. Sol. in alcohol and ether. (Rawson, C. N. 1889, **59.** 185.)

#### Chromyl chlorides.

From Cr₂O₃. See Chromium oxychlorides.

#### Chromyl chloride nitrogen tetroxide, Cr₅Cl₅O₇, 2NO₂.

Sol. in H₂O with decomp. (Thomas, C. R. 1899, **129.** 828.)

#### Chromyl fluoride, CrO₂F₂.

Decomp. by H₂O with evolution of heat. (Oliveri, Gazz. ch. it. 16. 218.)

#### Clav.

See Silicate, aluminum, Al₂O₃, SiO₂+ 2**H₂**O.

#### Cobalt, Co.

Not attacked by H₂O.*

Sol. in dil. HCl, or H₂SO₄, or HNO₃+Aq. Conc. hot H₂SO₄, and HNO₃ decomp. with evolution of SO₂ or NO gas.

Exists also in passive state. See Iron. (Nickles, J. pr. 61. 186.)

Sol. 11 conc. KOH+Aq when in finely divided state. (Winkler, J. pr. 91. 211.)

Sol. in NH₄OH+Aq in presence of air. (Hodgkinson and Bellairs, C. N. 1895, **71.** 73.)

#### Cobalt ammonia compounds.

Anhydrooxycobaltamine compounds.

[Co(NH

Bromotetramine cobaltic compounds, BrCo(Nil₈)₄X₂.

Bromopurpureocobaltic compounds,

BrCo(NH₃),X₂. Carbonatotetramine cobaltic compounds,

 $(CO_3)Co(NH_3)_4X.$ 

Chlorotetramine cobaltic compounds, ClCo(NH₃)₄X₂

Chloropurpureocobaltic compounds,

ClCo(NH₂)₅X₅ Croceocobaltic compounds,

 $Co(NH_8)_4(NO_2)_2X$ 

. Decamine cobaltic sulphite,  $\mathrm{Co_2(NH_3)_{10}(SO_3)_3}$ 

Diamine cobaltic nitrites,  $Co(NH_3)_2(NO_2)_4M$ .

Dichrocobaltic compounds, Co(NH₃)₃X₃.

Flavocobaltic compounds,  $(NO_2)_2Co(NH_3)_4X$ .

Fuscocobaltic compounds,

 $(OH)Co(NH_3)_4X_2$ .

Iodotetramine cobaltic compounds, ICO(NH₃)₄X₂.

Luteocobaltic compounds, Co(NH₂)₆X₁.

Melanocobaltic compounds,  $[Co(NH_3)_3Cl_2]_2$ ,  $NH_2Cl$ 

Nitratotetramine cobaltic compounds.  $(NO_3)Co(NH_3)_4X_2$ 

Nitratopurpureocobaltic compounds, (NO), Co(NH₂), X₂.

Nitritocobaltic compounds,

 $(NO_2)Co(NH_3)_5X_2$ 

Octamine cobaltic compounds,  $Co_2(NH_3)_8 X_6.$ 

(=Tetramine cobaltic compounds, Co(NH₈)₄X₃.

Oxycobaltamine compounds,

 $Co_2(NH_3)_{10}(OOH)X_4$ 

Praseocobaltic compounds, Co(NH₃)₄X₃. Purpureocobaltic compounds,

 $Co(NH_8)_5X_3$ 

Roseocobaltic compounds,  $Co(NH_8)_{\delta}(OH_2)X_8$ 

Sulphatotetramine cobaltic compounds,

 $(SO_4)Co(NH_8)_4X$ . Sulphatopurpureocobaltic compounds,  $(SO_4)Co(NH_3)_4X$ .

"Tetramine cobaltic" compounds.  $Co(NH_3)_2X_3$ .

Xanthocobaltic compounds,  $(NQ_2)Co(NH_3)_5X_2$ .

#### Cobalt arsenide, CoAs.

As Co₃As₂. (Ducelliez, C. R. 1908, 147. 425.)

(Ducelliez, C. R. CoAs2. As Co₃As₂. 1908, 147. 425.)  $\text{Co}_2\text{As}_3$ . As Co₃As₂. (Ducelliez, C. R.

1908, 147. 425.)

Co₃As₂. Very sl. attacked by hot conc. HCl, less by H₂SO₄. Easily sol. in HNO₃ and agua regia. Sl. attacked by fused alkalies and alkali carbonates. (Ducelliez. C. R. 1908, 147. 425.) CoAs₈. Min. Skutterudite. Sol. in HNO₈

+Aq, with separation of As₂O₃.

#### Cobalt arsenide sulphide, CoAs₂, CoS₂.

Min. Cobaltite. Sol. in HNO3+Aq, with separation of S and As₂O₃.

Glaucodote. Completely sol. in HNO₃+

#### Cobalt azoimide, basic, Co(OH)N₃.

Insol. in H₂O. Sol. in  $HN_3+Aq$ . (Curtius, J. pr. 1898, (2) **58.** 300.)

Cobalt potassium azoimide,  $KN_3$ ,  $Co(N_3)_2$ . Sol. in H₂O; Aq. solution decomp. on boiling. (Curtius, J. pr. 1898, (2) 58. 301.)

#### Cobalt boride, Co₂B.

Attacked by HNO₃. (Jassonneix, C. R. 1907, **145**. 240.)

CoB. Decomp, by moist air and by alkali nitrates, chlorates, hydroxides and carbonates; decomp. by steam at red heat and by acids. (Moissan, C. R. 1896, 122, 425.) Not attacked by HCl; rapidly attacked

by HNO₃. Not attacked by dil. but decomp. by conc. H₂SO₄. Rapidly attacked by aqua regia. (Moissan, A. ch. 1896, (7) **9.** 272.)

CoB₂. (Jassonneix, C. R. 1907, 145. 241.)

#### Cobaltous bromide, CoBr₂.

Deliquescent. Sol. in H₂O, alcohol, and ether.

Sat. CoBr₂+Aq contains at: 59° 75° 97° 97° 59° 68.1% CoBr2. 66.7 66.8 * (Etard, A. ch. 1894, (7) 2. 542.)

Nearly insol. in AsBr. (Walden, Z. anorg. 1902, **29.** 374.)

Sol. in SO₂Cl(OH). (Walden.) Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51, 236.)

1g. CoBr₂ is sol. in 9.74g. methyl acetate at 18°. Sp. gr. 18°/4° of sat. solution = 1.013. (Naumann, B. 1909, **42**. 3792.)

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.)

Mol. weight determined in pyridine. (Werner, Z. anorg. 1897, 15. 24.)

+2, and 6H₂O. (Hartley, Chem. Soc. (2) **12.** 214.)

Cobaltous hydrazine bromide hydrazine, 2CoBr₂, 4N₂H₄HBr, N₂H₄(?).

Sol. in H₂O with decomp. (Ferratini, C. A. **1912**. 1613.)

## Cobaltous mercuric bromide, basic,

 $CoBr_2$ ,  $HgBr_2$ ,  $6CoO + 20H_2O$ .

(Mailhe, A. ch. 1902, (7) **27.** 369.)

#### Cobalt stannic bromide.

Sec Bromostannate, cobalt.

Cobaltous bromide ammonia, CoBr2, 6NH3. Sol. in H2O with residue of cobalt hydroxide. (Rammelsberg, Pogg. 55. 245.)

Cobaltous bromide hydrazine, CoBr₂, 2N₂H₄.

Decomp. by boiling with H₂O. (Franzen, Z. anorg. 1908, **60.** 270.)

#### Cobalt carbonyl, Co(CO)₄.

Insol, in  $H_2O$ . More or less sol, in  $CS_2$ , ether, alcohol and Ni(CO)4. Relatively stable with non-oxidizing acids. Quickly decomp. by oxiding acids. (Mond, Hirtz and Cowap. C. N. 1908, 98. 165.)

#### Cobaltous chloride, CoCl₂.

Deliquescent. Sol. in H2O with evolution of heat. 100 pts. H₂O dissolve 43.3 pts. CoCl₂ at 0°. (Engel, A. ch. (6) 17. 355.)

100 pts. sat. CoCl₂+Aq at t° contain pts. CoCl₂.

t o	Pts. CoCl ₂	t°	Pts. CoCl ₂	t°	Pts. CoCl ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 24 & 7 \\ 28.0 \\ 31.2 \\ 31.3 \\ 32.5 \end{array}$	25 34 41 45 49	34.4 37.5 39.8 41.7 46.7	56 78 94 96 112	48.4 48.8 50.5 51.2 52.3

(Étard, C. R. **113.** 699.)

Sp. gr. of CoCl₂+Aq containing— 10 12 20 25% CoCl2. 1.0496 1.0997 1.1579 1.2245 1.3002 Sat. solution, 1.3613.

(Franz, J. pr. (2) 5. 284.)

Sp. gr. of CoCl₂+Aq containing in 1000 g.  $H_2O$ , g.  $CoCl_2+6H_2O$ 119 g.(=  $\frac{1}{2}$  mol.) 238 594 357476 1.055 1.101 1.141 1.177 1.209 833 952 1071 1190

1.287

1.309

1.264

1.238

Ch. 6. 184.)

Containing g. CoCl₂ (anhydrous)- $65 \text{ g.} (= \frac{1}{2} \text{ mol.}) \ 130 \ 195 \ 260 \ 325$ 1.112 1.164 1.213 1.260 1.304 1.058 (Gerlach, Z. anal. 28. 466.)

Sp. gr. of CoCl₂+Aq at room temp. containing: 7.97

14.858 22.27% CoCl2. 1.26451.0807 1.1613 (Wagner, W. Ann. 1883, 18, 267.)

Sp. gr. of CoCl₂+Aq at 20° containing M g mols, of salt per liter.

0.0750.01 0.0250.05Sp. gr. 1.001159 1.003052 1.006065 1.009190

0.750.100.250.50Sp. gr. 1.012386 1.03049 1.05492 1.09118

1.0 2.01.5 1.17502 1.23637 Sp. gr. 1.11847 (Jones and Pearce, Am. Ch. J. 1907, 38, 711.)

Sp. gr. of CoCl₂+Aq. at 25°.

Concentration of CoCl ₂ +Aq.	Sp. gr.
1—normal	1.0571
1/9 "	1.0286
1/4 "	1.0144
1/, "	1.0058

Solubility in HCl+Aq at 0°.  $\frac{\text{CoCl}_2}{2} = \frac{1}{2}$  mols. CoCl₂ in mgs. in 10 ccm. of solution. HCl=mols. HCl in mgs. in ditto. H₂O  $= g. H_2O.$ 

$\frac{\text{CoCl}_2}{2}$	HC	CoCl ₂ +HCl	Sp. gr.	H ₂ O
62.4 58.525 50.8 37.25 12.85 4.75 12.0 25.0	0 3.7 11.45 25.2 55.0 74.75 104.5 139.0	62.4 62.2 62.25 62.45 67.85 79.50 116.5 164.0	1.343 1.328 1.299 1.248 1.167 1.150 1.229 1.323	9.36 9.34 9.27 9.13  8.46 7.5

(Engel, A. ch. (6) **17.** 355.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Sol. in alcohol.

Sat. solution in alcohol (0.792 sp. gr.) contains 23.66 % CoCl₂ and has sp. gr. = 1.0107. (Winkler, J. pr. 91. 209.)

Very sol. in ether. 100 pts, absolute ether dissolve only 0.021 g CoCl₂. (Bödtker, Z. phys. Ch. 1897, 22. 511.)

100 g. formic acid (95%) dissolve 6.2 g CoCl₂ at 20.2°. (Aschan, Ch. Z. 1913, 37. 1117.)

1g. CoCl₂ is sol. in 271g. methyl acetate at 18°. Sp. gr. 18°/4° of sat. solution = 0.938. (Naumann, B. 1909, 42. 3791.)

Difficultly sol. in ethyl acetate.

mann B. 1910, 43. 314.) 100 pts. acetone dissolve 8.62 pts. anhydrous CoCl2. (Krug and M'Elroy, J. Anal.

0.08 pts. sol. in 100 pts. ethyl acetate at 14° 0.26 " " 100 " " 79°. " " " 100 " ŏ° 9.11 acetone " " 100 " " 22.5°. 9.28(Laszczynski, B. 1894, 27, 2286.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

1 g CoCl₂ is sol. in 36.4 g. acetone at 18°. Sp. gr. of sat. solution 18°/4°=0.825. (Naumann, B. 1904, 37. 4334.)

100 g. acetonitrile dissolve 4.08 g. CoCl₂ at 18° (Naumann and Schier, B. 1914, 97. 249.) Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, **51.** 236.)

#### Solubility in pyridine at t°.

t°	G. CoCl ₂ sol. in 100 g. pyrtdine		
- 50.3	0.4200		
-45.0	0.4204		
-30.0	0.4224	CoCl ₂ , 6C ₅ H ₅ N	
19 6	0.4227	(10012, 00 gilsin	
10.0	0.4329		
0	0.4326	•	
+23.0	0.572		
25.0	0.578		
34.6	0.755		
37.6	0.760		
44.6	0.959		
47.2	1 029	CoCl ₂ , 4C ₅ H ₅ N	
51.0	1.122		
55.0	1.206		
60.0	1.342		
64.2	1.483		
68.0	1.597		
74.8	2.079		
78.2	2.330	CoCl ₂ , 2C ₅ H ₅ N	
79.8	2.488	COC12, 20311311	
88 0	3 397		
96 5	7.817		
98.8	8.862	CoCl ₂	
106.0	14.340	00019	
110.0	16.500	*	

(Pearce and Moore, Am. Ch. J. 1913, 50. 226.)

Mol. weight determined in piperidine. and pyridine. (Werner Z. anorg. 1897, 15. 18 and 23.)

Sol. in urethane. 1899, 20. 61.) (Castoro, Z. anorg.  $+H_2O.$ 

+2H₂O. Very deliquescent. (Bersch, J. B. 1867. 291.)

17.16 pts. sol. in 100 pts. acetone at 17.06 " " 100 " " " " " 25°.

(Laszczynski, B. 1894, 27. 2287.) +4H₂O. Deliquescent. (Bersch.)

Not deliquescent. +6**H**₂O. Easily sol. in H₂O.

Solubility of CoCl₂+6H₂O in ethyl alcohol +Aq at 11.5° under addition of increasing amounts of CoCl₂.

P=Percent of alcohol by volume. G=Grams of CoCl₂ added.

 $C_c = Grams of CoCl_2$  in 5 cc. of the solution.  $C_w = Grams of water in 5 cc. of the solution,$ calculated from

(1) the water content of the alcohol.

(2) the water of crystallization which had gone into solution.

the water held mechanically in CoCl₂ +6H₂O.

P	G	Cw	Cc
91.3	0.0	1.325	1.168
98.3	0.0	1.134	1.214
98.3	0.0	1.068	1.181
99.3	0.0	1.045	1.199
"	0.194	0 899	1 204
"	0.400	0.829	1.325
"	0.612	0.764	1.459
"	0.813	0.688	1.568
"	1.022	0.634	1.713
"	1.240	0.553	1.831
"	1.446	0.483	1.943
"	0.650	0.500	2.186

(Bödtker, Z. phys. Ch. 1897, 22. 508.)

Easily soluble in absolute ethyl alcohol. 100 pts. absolute alcohol dissolve at room temperature 56.20 pts. CoCl₂. Water precipitates CoCl₂+6H₂O from a solution of CoCl₂ in absolute alcohol. (Bödtker.)

100 pts. absolute ether dissolve 0.291g.  $CoCl_2 + 6H_2O$ . (Bödtker, Z. phys. Ch. 1897, **22.** 511.)

Anhydrous ethylene glycol dissolves 10.6% CoCl₂+6H₂O at 16.4°. (de Coninck, dissolves Chem. Soc. 1904, **86**, (2) 741.)

Cobaltous hydrazine chloride,  $CoCl_2$ ,  $2N_2H_4HCl+2\frac{1}{2}H_2O$ .

Sol. in H₂O. (Ferratini, C. A. 1912, 1613.)

Cobaltous iodine chloride, CoCl₂, 2ICl₃+ 8H₂O.

Decomp. by H₂O. Hygroscopic. (Weinland and Schlegelseparates ICl₈. milch, Z anorg. 1902, 30. 137.)

Cobalt lithium chloride, CoCl₂, LiCl+3H₂O. Very deliquescent: Sol. in H2O with decomp. Sol. in LiCl+Aq without decomp. Sol. in alcohol without decomp. (Chassevant, A. ch. (6) **30.** 27.)

Cobaltous mercuric chloride basic, CoCl2,  $HgCl_2$ ,  $6CoO + 20H_2O$ .

(Mailhe, A. ch. 1902, (7) 27. 369.)

Cobaltous mercuric chloride, CoCl₂, HgCl₂. Very deliquescent. (v. Bonsdorff.)

Cobaltous thallic chloride, 2TlCl₃, CoCl₂+ 8H₂O.

Hydroscopic; can be cryst. from H₂O. (Gewecke, A. 1909, 366, 222.)

Cobaltous tin (stannic) chloride, CoCl₂, SnCl₄ +6H₂O.

See Chlorostannate, cobaltous.

Cobaltous chloride ammonia, CoCl₂, 2NH₃. Decomp. by  $H_2O$ . (F. Rose.)

CoCl₂, 4NH₃. Decomp. by H₂O. Rose.)

CoCl₂, 6NH₃. Decomp. by H₂O. Sol. in dil. NH₄OH+Aq with ease, but difficultly in conc. NH₄OH+Aq. Insol. in absolute Insol, in absolute alcohol. (Fremy.)

Cobaltous chloride hydrazine, CoCl₂, 2N₂H₄.

Insol. in cold H₂O.

Slowly decomp, by cold, rapidly by hot H₂O. Easily sol, in dil, acids and NH₄OH+Aq.

(Franzen, Z. anorg. 1908, 60. 270.)

Cobaltous chloride hydroxylamine. CoCl₂, 2NH₂OH.

Decomp. in the air; sol. in H₂O. (Feldt, B. 1894, **27.** 403.)

Cobaltic chloride hydroxylamine, CoCl₃, 6NH₂OH.

Insol. in alcohol.

Sol. in acidified H₂() without decomp.: sol. in conc. H₂SO₄ without decomp. (Feldt, B. 1894, 27. 404.)

Cobaltous fluoride, CoF₂.

Sl. sol. in H₂O; insol. in alcohol and ether; slowly attacked by cold HCl, H₂SO₄, or HNO₈ +Aq. (Poulenc, C. R. 114. 1429.) Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **29.** 827.)

+2H₂O. Sol. in a little H₂O without decomp. Decomp. into oxyfluoride by boiling with much H₂O. Sol. in HF+Aq. (Berzelius.)

+4H₂O. Two modifications. Solubility of a mod. at ?° = 2.2328 %  $^{\prime\prime}$   $^{\prime\prime}$   $^{\prime\prime}$   $^{\prime\prime}$   $^{\prime\prime}$   $^{\prime\prime}$  = 2.3203 %.

(Costachescu, Ann. Sci. Univ. Jassy, 1912, **7,** 1, 10.)

Cobaltic fluoride, CoF₃.

Sol. in conc. H₂SO₄. (Barbieri, Chem. Soc. 1905, **88**, (2) 393.)

Cobaltous hydrogen fluoride, CoF₂, 5HF+6H₂O.

Easily sol. in H₂O and dil. acids. Sol. in NH₄OH+Aq with decomp. (Böhm, Z. anorg. 1905, **43**. 330.)

Cobalt columbium fluoride.

See Fluocolumbate, cobalt.

Cobaltous iron (ferric) fluoride, CoF₂, FeF₃+7H₂O.

Sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, **22**. 269.)

Cobaltous manganic fluoride,  $2CoF_2$ ,  $Mn_2F_1 + 8H_2O$ .

(Christensen, J. pr. (2) 34. 41.)

Cobalt molybdenyl fluoride. See Fluoxymolybdate, cobalt.

Cobaltous potassium fluoride, CoF2, KF.

Sl. sol. in H₂O; less in ethyl or methyl alcohol; insol. in amyl alcohol or benzene. Decomp. by hot H₂SO₄. (Poulenc, C. R. 114. 747.)

 $+H_2O$ . Sl. sol, in  $H_2O$ . (Wagner, B. 19. 896.)

CoF₂, 2KF.

Cobaltous sodium fluoride,  $CoF_2$ ,  $NaF + H_2O$ . Sol. in  $H_2O$ . (Wagner, B. 19. 896.)

Cobaltous stannic fluoride.

See Fluostannate, cobaltous.

Cobalt vanadium fluoride. See Fluovanadate, cobalt.

Cobaltous hydroxide, CoO₂H₂.

Insol. in H₂O. Sol. in acids. Insol. in KOH+Aq. Sol. in ammonium sulphate, chloride, nitrate, or succinate+Aq. (Brett.) Sol. in warm acetic acid; insol. in NH₄OH+Aq and cold NH₄Cl+Aq, but sol. in warm NH₄Cl+Aq. (de Schulten, C. R. 109. 266.)

Insol. in H₂O and dil. KOH+Aq; somewhat sol. in conc. KOH+Aq; easily sol. in NH₄ salts+Aq. (Fresenius.)

Easily sol. in KCN+Aq. (Rodgers, 1834.) Sol. in conc. K₂CO₂+Aq. (Gmelin.)

Not pptd. by KOH+Aq in presence of H₂C₄H₄O₆ or NH₄ citrate. (Spiller.)

Sol. in large amt. in boiling NH₄SCN+Aq. (Grossmann, Z. anorg. 1908, **58**. 269.) Insol. in methyl, or amyl amine +Aq.

(Wurtz.)
Many non-volatile organic substances pre-

Many non-volatile organic substances prevent its pptn.

Cobaltic hydroxide, 3Co₂O₈, 2H₂O. (Mills, Phil. Mag. (4) **35.** 257.)

Co₂O₃, 2H₂O. Decomp. by HCl+Aq;

gives brown solutions with cold HNO₃ or H₂SO₄+A₀, which soon decomp. (Wernicke, Pogg. **141**. 120.)

C₀₂O₆H₆=C₀₂O₈, 3H₂O. Sol. in warm HCl, HNO₃, and H₂SO₄, with decomp. (Proust.) Sol. in cold H₂PO₄, H₂SO₄, HNO₂, or HCl+ Aq, but decomp. on standing or warming.

(Winkelblech.)
Sol. in racemic, tartaric, oxalic, or citric

acid as cobaltous salt.

Sol. in conc. acetic acid without immediate decomp. (Remele). Solution is not decomp. by boiling. Sol. in warm.sat. (NH₄)₂C₂O₄+Aq with decomp.

Not attacked by cold or hot NH₄OH+Aq. Insol. in boiling NH₄Cl+Aq. Sol. when freshly pptd. in (NH₄)₂SO₃+

Aq. (Geuther, A. 128. 157.)

Cobaltocobaltic hydroxide, Co₃O₄, 3H₂O.

Inscl. in H₂O. Sol. in oxalic acid; solution decomp. by heat. Sol. in HCl+Aq with evolution of Cl. (Gibbs and Genth, Sill. Am. J. (2) 23. 257.)

 $\text{Co}_3\text{O}_4$ ,  $7\text{H}_2\text{O}$ : Sol. in weak acids, especially  $\text{HC}_2\text{H}_3\text{O}_2$  without decomp. (Fremy.)

Co₅O₇, 6H₂O. Min. Heterogenite. Sol. in dil. HCl+Aq with evolution of Cl.

Cobaltous iodide, CoI₂.

Deliquescent, and very sol. in H₂O.

100 pts. sat. CoI₂+Aq at t° contain pts. CoI₂.

t°	Pts. CoI ₂	t°	Pts. CoI ₂	1°	Pts. CoI ₂
$     \begin{array}{r}       -22 \\       -8 \\       -2 \\       +9     \end{array} $	52.4 56.7 58.7 61.4	14 25 34 46	61.6 66.4 73.0 79.0	60 82 111 156	79.2 80.7 80.9 83.1

(Étard, C. R. 113. 699.)

Sol. in  $SO_2(OCH_3)_2$ . (Walden, Z. anorg. 1902, 29. 388.

Sol. in SOCl₂. (Walden, Z. anorg. 1900, **25.** 216.)

Sol. in POCl₃. (Walden, Z. anorg. 1900, **25**. 212.)

Sol. in  $S_2Cl_2$ . (Walden, Z. anorg. 1900, 25. 217.)

Nearly insol. in AsBr₃. (Walden, Z. anorg. 1902, 29. 374.)

Sol. in AsCl₃. (Walden, Z. anorg. 1900, **25**. 214.)

Easily sol. in alcohol.

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.) (Naumann, B. 1904, **37.** 4328.) Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, **51.** 236.) Sol. in methyl acetate. (Naumann, B. 1909.

Sol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+2H₂O. +4H₂O. Very deliquescent. (Étard.)

+6H₂O. (Hartley, Chem. Soc. (2) 12. +9H₂O. Very hydroscopic. (Bolschakoff, C. C. 1898, J. 660.)

Cobaltous lead iodide, 2 CoI₂, PbI₂+3H₂O. Decomp. by H₂O. (Mosnier, A. ch. 1897, (7) **12.** 412.)

Cobaltous mercuric iodide, CoI₂, HgI₂+ 6H₂O.

Partially decomp. by H₂O.

Sol, in alcohol and acetone. (Dobroserdoff, C. C. 1901, II. 332.)

CoI₂, 2HgI₂+6H₂O. Decomp. by H₂O; sol. in alcohol and acetone. (Dobroserdoff, C. C. **1901.** II. 332.)

#### Cobaltous iodide ammonia, CoI₂, 4NH₃.

Decomp. by H₂O. Sol. in NH₄OH+Aq. (Rammelsberg, Pogg. 48. 155.) Col₂, 6NH₃. Insol. in NH₄OH+Aq.

(Rammelsberg.)

Cobaltous iodide hydrazine, CoI₂, 2N₂H₄.

SI, sol. in H₂O. Easily sol. in acids. (Franzen, Z. anorg. 1911, 70. 147.)

#### Cobaltic octamine compounds.

See Octamine cobaltic compounds.

#### Cobaltous oxide, CoO.

Insol. in H2O. Easily sol, in dil. or cone. HCl or HNO₃+Aq. Slowly sol. in cold, but easily in hot dil. H₂SO₄+Aq, acetic, or tartaric acid +Aq. Insol. in NH₄OH+Aq. Sol. in hot NH₄Cl +Aq, KOH, or NaOH+Aq.

Insol. in NH₄Cl or NH₄NO₃+Aq. (Brett, 1834.)

Insol. in K₂CO₃+Aq. Sol. in boiling Ce and Ni nitrates +Aq, with pptn. of the ox-

ides. (Persoz.)

Easily sol. in dil. acids, even tartaric, acetic, and oxalic acids. Not attacked by NH4OH+Aq. Sol. in 13% NH4Cl+Aq with evolution of NH₃; also in NH₄SCN+Aq. Sol. in warm conc. NaOH, and KOH+Aq. (Zimmerman, A. 232. 324.)

Solubility in (calcium sucrate + sugar) + Aq. 1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 1.56 g. CoO; 1 l. solution containing 296.5 g. sugar and 24.2 g. CaO dissolves 0.29 g. CoO. (Bodenbender, J. B. 1865. 600.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

See also Cobaltous hydroxide.

#### Cobaltic oxide, Co₂O₃.

Decomp. by most acids, even in the cold, with formation of cobaltous salts. Sol. in acetic acid without immediate decomp.

See also Cobaltic hydroxide.

Cobaltocobaltic oxide,  $Co_3O_4 = CoO$ ,  $Co_2O_8$ .

Insol. in boiling conc. HCl, HNO₃, or aqua regia. Sol. by long standing with H₂SO₄. (Gibbs and Genth, Sill. Am. J. (2) 23. 257.)

See also Cobaltocobaltic hydroxide.

 $Co_4O_5 = 2CoO, Co_2O_3.$  $Co_6O_7 = 4CoO, Co_2O_3.$ Not attacked by boiling dil.  $HNO_3$  or  $H_2SO_4 + Aq$ . (Beetz.)  $Co_8O_9 = 6CoO$ ,  $Co_2O_3 + 20H_2O$ . Sol. in dil.

acids, with residue of Co₂O₃, which dissolves on warming. (Gentele, J. pr. **69.** 131.) +8H₂O. As above, (Gentele.)

#### Cobaltous oxychloride, CoCl₂, 3CoO+ $3\frac{1}{2}H_2O$ .

Ppt. Very sl. sol. in H₂O. (Habermann, M. 5. 432.)

#### Cobaltous oxychloride hydroxylamine, CoOCL 2NH₂OH.

Insol. in H₂(); unstable; insol. in alcohol. (Feldt, B. 1894, **27.** 404.)

### Cobaltous oxyfluoride, CoO, CoF₂+H₂O.

Ppt. (Berzelius, Pogg. 1. 26.)

## Cobaltous oxviodide, CoO, CoI₂.

Insol. in H₂O. (Rammelsberg.)

#### Cobaltous oxysulphide, CoO, CoS.

Cold HCl+Aq dissolves out CoO; hot HCl+Aq decomp, with evolution of H₂S. (Arfvedson, Pogg. 1. 64.)

#### Cobalt phosphide, Co₂P.

Sol, in conc. HNO3. Slowly attacked by HCl and H₂SO₄. (Maronneau, C. R. 1900, **130.** 658.)

Sol. in HNO₄, aqua regia, and in fused alkalies. (Granger, Bull. Soc. 1896, (3) **15.** 1089.)

Co₂P₃. In ol. in HNO₃ and aqua regia; stable in the air even when heated. (Granger, Bull. Soc. 1896, (3) **15**. 1087.

Co₃P₂. Insol. in cone. HCl+Aq. Sol. in  $HNO_3 + Aq$ . (Rose, Pogg. 24. 332.)

#### Cobalt subselenide, Co₂Se.

Sol. in bromine water.

Only sl. attacked by boiling fuming HCl. (Fonzes-Diacon, C. R. 1900, 131, 704.)

## Cobalt monoselenide, CoSe.

(Little, A. 112, 211.)

#### Cobalt diselenide CoSe₂.

Sol. in  $Br_2 + Aq$ .

Only sl. attacked by boiling fuming HCl. (Fonzes-Diacon, C. R. 1900, 131, 705.)

#### Cobalt sesquiselenide, Co₂Se₃.

Sel. in Br₂+Aq.

Only sl. attacked by boiling fuming HCl. (Fonzes-Diacon, C. R. 1900, 131, 704.)

#### Cobalt selenide, Co₃Se₄.

Sol, in Br₂+Aq.

Only sl. attacked by boiling fuming HCl. (Fonzes-Diacon, C. R. 190, 131, 704.)

#### Cobalt silicide, Co₂Si.

Sol, in HF and aqua regia. Insol, in cold H₂O. Decomp. by steam at red heat, Sol. in fused alkali carbonates. C. R. 1895, **121**. 687.) (Vigouroux,

CoSi. Insol. in HNO₃ and H₂SO₄. Sol. in aqua regia and HCl, and in fused KOH. (Lebeau, C. R. 1901, **132**. 557.)

Not attacked by dil. or conc. HNO3, or conc. H2SO4. Sol. in agua regia and in conc. HCl.

Not attacked by dil. alkali hydroxides + Aq.; attacked by fused alkali. (Lebau, Bull.

Soc. 1901, (3), **25**. 540.) CoSi₂. Sl. sol. in hot cone. HCl and hot cone. alkali + Aq. Sol. in HF; insol. in HNO₃ and H₂SO₄. (Lebeau, C. R. 1902, 135. 476.)

#### Cobaltous sulphide, CoS.

Anhydrous. Fasily sol. in acids, even HC₂H₃O₂, but only slowly in the latter case. (Hjortdahl, C. R. 65. 75.)

Not attacked by cold dil. HCl+Aq. (Ebelmen, A. ch. (3) 25. 94.)

Min. Seypoorite.

 $+xH_2O$ . 1 l.  $H_2O$  dissolve  $41.62+10^{-6}$ moles CoS at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)

Sol. in conc. mineral acids; very sl. sol. in cold dil. acids; scarcely sol. in acetic acid. (Wackenroder.)

Sol. when still moist in  $SO_2+Aq$ . (Ber-) thier.)

Easily sol, in HNO₃, but only very sl. sol. in HCl+Aq. Not pptd. from very dil. acid solutions by H₂S.

Insol. in H₂O, alkalies, and alkali carbon-

ates, or sulphides + Aq. (Fresenius.) Insol. in NH₄Cl, and NH₄NO₃+Aq. (Brett.)

When pptd. by (NH₄)₂S+Aq, shows a brown colour in presence of 200,000 pts. H₂O. (Pfaff.)

Tartaric acid, etc. does not hinder the pptn. by (NH₄)₂S+Aq. (Rose.)

Sol. in potassium thiocarbonate + Aq. (Rosenbladt, Z. anal. 26. 15.)

Sol. in Na₂S_x or  $K_2S_x+Aq$ . (de Koninck, Zeit. angew. Ch. 1891. 202.)

#### Cobaltic sulphide, Co₂S₃.

Partially decomp. by HCl+Aq; sol. in HNO₃+Aq with decomposition.

Sl. attacked by HCl+Aq; and slowly even by aqua regia. (Schneider, J. pr. (2) 9. 209.)

Min. Cobalt pyrite.  $+xH_2O$ . Insol. in KCN+Aq. (Fleck, J. pr. 97. 303.) More sol. in HCl+Aq than  $\cos S_2$ . (Dingler, Berz, J. B. 10. 139.)

#### Cobaltoccbaltic sulphide, Co₃S₄.

Min. Linnwite. Sol. in warm HNO2+Aq, with residue of S.

#### Cobalt disulphide, CoS₂.

Not attacked by alkalies or acids except HNO₃ and aqua regia. (Setterberg, Pogg. 7.

#### Cobalt sulphide, Co₄S₃.

Easily sol, in hot HCl with evolution of H₂S (and H₂?). (Proust.)

#### Cobalt potassium sulphide, K₂Co₁₁S₁₀.

Slowly sol, in cold HCl and aqua regia. Quickly sol, in warm aqua regia.

Sol. in HF and H₂SO₄ only on warming. Insol. in (NH₄)₂S, organic acids, alkalies, 12% HCl+Aq and KCN+Aq. (Milbauer, Z. anorg. 1904, 42. 447.)

## Cobalt telluride, Colle.

(Fabre, C. R. **105.** 673.)

## Cobalt decamine sulphurous acid.

See Decamine cobaltisulphurous acid.

#### Cobaltic acid.

Potassium cobaltate,  $K_2Co_9O_{16}+2H_2O$ , or 3H₂().

Insol. in H₂O (Pebal, A. 100. 262), but decomp. by long boiling. Sol. in conc. acids.  $K_2O$ ,  $xCoO_3$ . Sol. in  $H_2O$ . (Winkler, J. pr. 91. 351.)

Does not exist. (Donath, W. A. B. 102, 2b.

## Cobalticyanhydric acid, $H_3Co(CN)_6 + \frac{1}{2}H_2O$ .

Deliquescent. Very sol. in H₂() and only sl. decomp. on boiling.

Sol. in HCl+Aq without decomp. even on boiling. Sl. sol. in conc., more sol. in dil. HNO₃+Aq. Not decomp. by boiling conc. HNO₃+Aq or aqua regia. Insol. in conc., sl. sol. in dil. H₂SO₄+Aq. Sol. in alcohol. Insol. in ether. (Zwenger, A. 162. 157.)

#### Ammonium cobalticyanide, (NH₄)₃Co(CN)₆ +½H2O.

Very sol. in  $H_2()$ ; sl. sol. in alcohol.

#### Ammonium barium cobalticyanide, $NH_4BaCo(CN)_6 + H_2O$ .

Sol. in H₂O. (Weselsky.)

#### Ammonium calcium cobalticyanide, $NH_4CaCo(CN)_6+10H_2O$ .

Sol. in H₂O.

Ammonium lead cobalticyanide.  $NH_4PbCo(CN)_6+3H_2O$ .

Sol. in 8.31 pts. H2O at 18°, and sl. sol. in 93% alcohol. (Schuler.)

Ammonium mercuric cobalticyanide,  $(NH_4)_6Co_2Hg(CN)_{14}+H_2O$ .

Sol. in H₂O with decomp. Insol. in alcohol. (Soenderop, Dissert. 1899.)

Ammonium sodium cobalticyanide, NH4Na2Co(CN)6.

Only sl. sol, in H₂O. (Weselsky, B. 2. 598.)

Ammonium strontium cobalticyanide,  $NH_4SrCo(CN)_6 + 9H_2O$ . Sol, in H₂O. (W.)

Barium cobalticyanide, basic, Ba₃[Co(CN)₆]₂, BaO₂H₂.

Not very stable. Cannot be recryst, without partial decomp. (W.)

Barium cobalticyanide, Ba₃[Co(CN)₆]₂+ 10H₂O.

Sl. efflorescent. Very sol. in H₂O. Insol. in alcohol.

Barium cobalticyanide chloride,  $Ba_3[Co(CN)_6]_2$ ,  $BaCl_2 + 16H_2O$ . Sol, in H₂O without decomp. (W.)

Barium lithium cobalticyanide, BaLiCo(CN)₆ +15H₂O.

The most, sol, of the double cobalticyanides. (Weselsky.)

 $\begin{array}{ccc} \textbf{Barium} & \textbf{potassium} & \textbf{cobalticyanide,} \\ \# & \textbf{BaKC}o(CN)_6 + 11H_2O. \end{array}$ Sol. in H₂O. (W.)

Bismuth cobalticyanide BiCo(CN)₆. Ppt. (Mathews, J. Am. Chem. Soc. 1900,

+5H₂O. Moderately stable with dil. min. acids; more stable with cone, acids than Cd or Zn comp.

Decomp. by NH₃ and alkalies. and Cuntze, Ch. Z. 1902, 26. 872.)

Cadmium cobalticyanide,  $Cd_3[Co(CN)_6]_2 +$ 7½H₂O.

Attacked by strong min. acids only when hot. Behaves as Zn salt, toward conc.

H₂SO₄ and dil. and conc. HCl. Insol. in K₃Co(CN)₆+Aq. Sol. in NH₄OH and NH₄Cl+Aq. (Fischer and Cuntze, Ch. Z. 1902, **26**. 873.)

 $\begin{array}{c} \text{Cadmium potassium cobalticyanide,} \\ \text{KCdCo}(CN)_{\text{6}}. \end{array}$ 

Not attacked by H₂O. (Fischer and Cuntze, Ch. Z. 1902, 26, 873.)

Cadmium sodium cobalticvanide, NaCdCo(CN)6.

(Fischer and Cuntze, Ch. Z. 1902, 26. 873.)

Cadmium cobalticyanide ammonia,  $Cd_3[Co(CN)_6]_2$ ,  $4NH_3+2H_2O$ .

Cd₃[Co(CN)₆]₂,  2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2 

Calcium potassium cobalticyanide,  $CaKCo(CN)_6 + 9H_2O$ . Sol. in  $H_2O$ . (W.)

Cobaltous cobalticyanide,  $Co_3[Co(CN)_6]_2 +$ 14H₂O.

Insol, in H₂O and acids. Sl. sol, in NH₄OH +Aq. Decomp. by KOH+Aq.

cobalticyanide,  $Cu_3[Co(CN)_6]_2 +$ Cupric 7H2O.

Insol. in H₂O and acids. Sol. in NH₄OH+ +Aq.

Cupric cobalticyanide ammonia,  $Cu_3[Co(CN)_6]_2$ ,  $4NH_3+7H_2O$ . Sol. in  $H_2O$ . (Zwenger.)

Lead cobalticyanide, basic, Pb₃[Co(CN)₆]₂,  $3\text{PbO}_{2}\text{H}_{2} + 11\text{H}_{2}\text{O}$ .

Insol. in H₂O or alcohol; somewhat sol. in hot  $Pb(C_2H_3O_2)_2+Aq$ . (Schuler.)

Lead cobalticyanide,  $Pb_3|Co(CN)_6|_2+4H_2O$ . Very sol. in H₂O. Insol. in alcohol. (Zwenger.)

+7H₂O. Sol. in 1.77 pts. H₂O at 18°, and 1.63 pts. at 19.° Insol. in absolute alcohol. Sl. sol. in 93% alcohol. (Schuler, W. A. B. **79.** 302.)

Lead potassium cobalticyanide, PbKCo(CN)₆  $+3H_2O$ .

Sol. in 6.74 pts. H₂O at 18° and much more easily in hot H2O. Insol. in absolute. sl. sol. in 93% alcohol. (Schuler.)

Lead cobalticyanide nitrate, Pb3[Co(CN)6]2,  $Pb(NO_3)_2 + 12H_2O$ .

Sol. in 16.91 pts. H₂O at 18°, 16.79 pts. at 19°, and much less hot H₂O.

Nearly insol. in 93% alcohol. (Schuler.)

Mercurous cobalticyanide, Hg₃Co(CN)₆.

Ppt. Decomp. by HCl. Not attacked by cold, but by hot cone. H₂SO₄. Not attacked by HNO₃, acetic or oxalic acid. Decomp. by alkalies+Aq. (Miller and Mathews, J. Am. Chem. Soc. 1900, 22, 64.)

Mercuric cobalticyanide, Hg₃[Co(CN)₆]₂. Sl. sol. in H₂O, decomp. by boiling. Insol, in alcohol and ether. Not attacked by HCl. (Soenderop, Dissert, 1899.)

Mercuric potassium cobalticyanide, K6HgCo2(CN)14.

Sol. in H2O with decomp. Insol. in alcohol. Sl. sol. in ether. (Soenderop, Dissert,

K₆Hg₈Co₄(CN)₂₄. (Soenderop, Dissert. 1899.)

Mercuric sodium cobalticvanide.  $Na_6Hg_3Co_4(CN)_{24}+4H_2()$ .

Extremely deliquescent. (Soenderop, Dissert, 1899.

Nickel cobalticyanide,  $Ni_3[Co(CN)_6]_2 +$ 12H₂O.

Insol, in H₂O and acids. Not attacked by illing HCl+Aq. Sol. in NH₄OH+Aq. boiling HCl+Aq. Decomp. by KOH + Aq.

Nickel cobalticyanide ammonia,  $Ni_{3}[Co(CN)_{6}]_{2}$ ,  $4NH_{3}+7H_{2}O$ . Insol. in H₂O.

Potassium cobalticyanide, K₃Co(CN)₆. Easily sol, in H₂O. Insol, in alcohol.

Potassium strontium cobalticyanide,  $KSrCo(CN)_6 + 9H_2O$ . Sol. in H₂O. (Weselsky.)

Potassium thallium cobalticvanide.  $K_3Tl_3[Co(CN)_6]_2$ .

More sol. in H₂O than corresponding K salt. (Fischer and Benzian, Ch. Z. 1902, 26. 49.)

Potassium zinc cobalticyanide,  $KZnCo(CN)_6 + 3H_2O$ .

(Fischer and Cuntze, Ch. Z. 1902, **26**, 873.)

Potassium cobalticyanide mercuric chloride, 2K₃Co(CN)₆, 3HgCl₂.

(Soenderop, Dissert. 1899.)

Potassium cobalticyanide mercuric iodide, 4K₈Co(CN)₆, Hgl₂.

Sol. in H₂O with subsequent decomp. Sol. in alcohol and ether with decomp. (Soenderop, Dissert, 1899.)

Silver cobalticyanide, Ag₈Co(CN)₆.

Insol. in H₂O and acids. Sol. in NH₄OH+

Silver cobalticyanide ammonia, Ag₃Co(CN)₆,  $NH_8 + \frac{1}{2}H_2O$ . Insol. in H₂O. (Zwenger.)

Sodium cobalticvanide, Na₂Co(CN)₆+2H₂O. Easily sol. in H2O; insol, in alcohol.

Sodium zinc cobelticyanide, NaZnCo(CN)6 +H.O.

(Fischer and Cuntze, Ch. Z. 1902, 26. 873.)

Strontium cobalticyanide, Sr₂[Co(CN)₆]₂+ 10H₂O.

Very sol. in H₂O. (Weselsky.)

Thallium cobalticyanide, TlaCo(CN)6. 100 pts. H₂O dissolve 3.6 pts. at 0°, 5.86 pts. at 9.5°, 10.04 pts. at 19.5°. (Fronmüller, B. **11.** 91.)

Yttrium cobalticyanide, YCo(CN)6+2H2O Nearly insol. in H₂O. (Cleve.)

Zinc cobalticyanide,  $Zn_3[Co(CN)_6]_2+12H_2O$ . Sol. in HCl+Aq and salt is pptd. by dilution with H₂O. Decomp. by H₂SO₄. Insol. in K₄Co(CN)₆+Aq. Sol. in NH₄OH and NH₄Cl+Aq. (Fischer and Cuntze, Ch. Z. 1902, **26**. 873.)

Zinc cobalticyanide ammonia,  $Zn_3[Co(CN)_6]_2$ ,  $5NH_3$ .

Decomp. by  $\rm H_2O$  and acids. (Fischer and Cuntze, Ch. Z. 1902, **26.** 873.)  $\rm Zn_3[Co(CN)_6]_2$ ,  $\rm 6NH_3$ . (Fischer and

Cuntze.)

(Fischer and Cuntze.) +3H₂O.  $Zn_3[Co(CN)_6]_2$ ,  $10NH_3+9H_2O$ . Decomp. by H₂O. (Fischer and Cuntze.)

Cobaltimolybdic acid.

Ammonium barium cobaltous cobaltimolybdate, ½(NH₄)₂O, 1½BaO, CoO, CoO₂,  $10\text{MoO}_3 + 18\frac{1}{2}\text{H}_2\text{O}$ .

Difficultly sol, in H₂O. (Friedheim and Keller, B. 1906, **39.** 4306.)

Ammonium cobaltous cobaltimolybdate,  $2(NH_4)_2O$ , CoO,  $CoO_2$ ,  $10 MoO_3 + 12H_2O$ . Much more sol, in H₂O than 3(NH₄)₂O, CoO, CoO₂, 12MoO₃+20H₂O. Sp. gr. of cold sat. solution = 1.096. (Friedheim and Keller.)

 $3(NH_4)_2O$ , CoO, CoO₂,  $12MoO_3+20H_2O$ . 100 cc. cold sat. aqueous solution contain 3 g. of the salt. Sp.gr. of the solution = 1.0234. Sol. in conc. HCl.

Decomp. by conc. H₂SO₄, by KOH+Aq and by NaOH+Aq. (Friedheim and Keller.)

Barium cobaltous cobaltimolybdate, 3BaO, CoO, CoO₂, 9MoO₃+25H₂O. Sl. sol. in H₂O. (Friedheim and Keller.) Cobaltous potassium cobaltimolybdate, CoO, 3K₂O, CoO₂, 10MoO₃+10H₂O. (Kurnakoff, Ch. Z. 1890, **14.** 113.)

+11H₂O. Sol. in conc. HCl. Decomp. by KOH+Aq and by NaOH+Aq. (Friedheim and Keller.)

 $3K_2O$ ,  $CoO_2$ ,  $12MoO_3+15H_2O$ . Sl. sol, in H₂O. Sol, in conc. HCl. Decomp. by KOH+Aq and by NaOH+Aq. (Friedheim and Keller.)

+20H₂O. (Kurnakoff, Ch. Z. 1890, 14, 113.)

## Potassium cobaltimolybdate,

 $3K_2O$ ,  $CoO_2$ ,  $9MoO_3 + 6\frac{1}{2}H_2O$ .

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 703.)

#### Cobaltinitrocyanhydric acid.

#### Potassium cobaltinitrocyanide, $K_4Co_2(CN)_9NO_2+3H_2O$ .

Very sol. in H₂O but quickly decomp. Insol. in alcohol. (Rosenheim and Koppel, Z. anorg. 1898, **17.** 68.)

#### Silver cobaltinitrocyanide,

 $\text{Co}_2\text{Ag}_5\text{NO}_2(\text{CN})_{10} + 6\text{H}_2\text{O}$ , and  $+21\text{H}_2\text{O}$ . (Rosenheim and Koppel.)

## $\begin{array}{ccc} \textbf{Sodium} & \textbf{cobaltinitrocyanide,} \\ & Na_6Co_4(NO_2)(CN)_{10} \! + \! 11H_2O. \end{array}$

Very deliquescent. Sol. in H₂O. (Rosenheim and Koppel.)

#### Cobaltisulphurous acid, H₆Co₂(SO₃)₆.

Not obtained in a solid state. (Berglund, Acta Lund. 1872.)

#### Cobaltisulphites.

The cobaltisulphites are insol, or at least very sl. sol. in H₂O. (Berglund, Acta Lund. **1872.** 23.)

Ammonium cobaltous cobaltisulphite,

 $(NH_4)_2SO_3$ ,  $2CoSO_3$ ,  $Co_2(SO_3)_3 + 14H_2O =$  $(NH_4)_2Co_2Co_2(SO_2)_6 + 14H_2O$ .

Scarcely sol. in H₂O, but decomp. thereby.

Easily sol. in acids, when finely divided; also in  $H_2SO_3 + Aq$ . (Berglund.)  $2(NH_4)_2SO_3$ ,  $CoSO_3$ ,  $Co_2(SO_3)_3 + 8H_2O = (NH_4)_4CoCo_2(SO_3)_6 + 8H_2O$ . As above. (Berglund.)

Barium cobaltisulphite. 3BaSO₃, Co₂(SO₃)₃+  $12H_2O = Ba_3Co_2(SO_3)_6 + 12H_2O$ .

Ppt. Insol. in H₂O. Not attacked by cold acids even H₂SO₄, but is decomp. by boiling therewirth. (Berglund, Acta Lund. 1872.)

Bismuth cobaltisulphite, Bi₂Co₂(SO₃)₆. Insol. in H₂O, dil. HNO₃, or HCl+Aq. (Berglund, Acta Lund. 1872. 31.)

Calcium cobaltisulphite, Ca₃Co₂(SO)₃)₆.

Ppt. Insol. in H₂O or HCl+Aq. (Berglund, Acta Lund. 1872, 30.)

Cobaltous cobaltisulphite Co₃Co₂(SO₃)₆ =  $3\text{CoSO}_3$ ,  $\text{Co}_2(\text{SO}_3)_3$ .

Ppt. (Berglund, B. 7, 470.)

#### Cobaltous potassium cobaltisulphite, CoK₄Co₂(SO₃)₆.

Insol. in H₂O. (Berglund.)

Silver cobaltisulphite, Co₂(SO₃)₃, 3Ag₂SO₃. Properties as the following comp. (Berglund.)

Silver cobaltous cobaltisulphite, CoSO₃,  $C_{O_2}(SO_3)_3$ ,  $2Ag_2SO_3+9H_2O$ .

Insol. in  $H_2()$ . Insol. in  $HNO_3+Aq$ . Decomp. by HCl or H₂S+Aq. (Berglund.)

#### Sodium cobaltous cobaltisulphite.

Decomp, by H₂O, so that it has not been obtained pure. (Berglund, Acta Lund. 1872, 29.)

#### Cobaltoctamine sulphurous acid.

See Octamine cobaltisulphurous acid.

## Cobaltocobalticvanhydric acid.

 $H_3Co_3(CN)_{11}$ .

Unstable. (Jackson and Comey, Am. Ch. J. 1897, 19, 277.)

#### Barium cobaltocobalticyanide, BaHCo₃(CN)₁₁+ $1\frac{1}{2}$ H₂().

Somewhat sol. in H₂O when pure. The crude salt is insol, even in hot  $H_2O$ . (Jackson and Comey.)

Cupric cobaltocobalticyanide, Cu₃Co₆(CN)₂₂  $+4H_{2}().$ 

Ppt. (Jackson and Comey.)

#### Potassium hydrogen cobaltocobalticyanide, $K_2HCo_3(CN)_{11} + 2H_2()$ .

Sl. sol. in cold, easily sol. in hot H₂O. Insol. in alcohol. (Jackson and Comey.)

KH₂Co₃(CN)₁₁+H₂O. Insol. in cold or hot H₂O when impure.

The pure salt is slowly sol. in cold H₂O. More sol. in warm H₂O. (Jackson and Comey.)

Silver cobaltocobalticyanide, Ag₃Co₃(CN)₁₁  $+\mathrm{H}_2\mathrm{O}$ .

Ppt. (Jackson and Comey, B. 1896, 29. 1021.)

Zinc cobaltocobalticyanide, ZnHCo₈(CN)₁₁ +3H₂O.

Ppt. (Jackson and Comey.)

#### Cobaltocyanhydric acid, H₄Co(CN)₆.

Very unstable. Sol. in H₂O. Insol. in alcohol.

#### Cuprous potassium cobaltocyanide, K₈CuCo(CN).

(Straus, Z. anorg. 1895, 9. 17.)

#### Potassium cobaltocyanide, K₄Co(CN)₅.

Decomp. on air. Very deliquescent, and sol. in H₂O. Insol. in alcohol and ether. (Descamps, Zeit. Ch. **1868**. 952.)

#### Cobaltous acid.

#### Barium cobaltite, BaCoO.

Insol. in H₂O or dil. HC₂H₄O₂+Aq. Sol. in HCl+Aq. (Rousseau, C. R. **109**. 64.) BaCo₂O₅. As above. (Rousseau.)

## Cobaltous potassium cobaltite, $3\text{CoO}_2$ , CoO, $\text{K}_8\text{O}$ .

Rapidly hydrolysed by H₂O.

Sol. in conc. HCl. (Bellucci, Chem. Soc. 1907, 92, (2) 354.)

#### Magnesium cobaltite, MgCoO₃.

Insol, in H₂O, NH₄OH, or (NH₄)₂CO₃+Aq. Easily sol. in NH₄Cl+Aq, from which it is pptd. by KOH+Aq. (Berzelius, Pogg. 33. 126.)

Sol. in HF, HCl, HNO₃+H₂SO₄; decomp. and partially dissolved by NH₄OH+Aq; quite stable when heated. (Dufau, C. R. 1896, **123**, 240.)

#### Potassium cobaltite.

According to Bellucci and Dominici the compounds formerly described are more or less decomp. by hydrolysis. (C. C. 1907. I, 1530.)

#### Sodium cobaltite.

Sol. in NaOH+Aq, but pptd. by diluting the solution.

## Columbic acid (Niobic acid), 3Cb₂O₅, 4H₂O, or 3Cb₂O₅, 7H₂O.

Easily sol. in HF; very sl. sol. in HCl+Aq, but is sol. in  $H_2O$  after being treated with HCl+Aq. Sol. in conc.  $H_2SO_4$ . Sol. in KOH+Aq. Insol. in NaOH+Aq, but becomes sol. in  $H_2O$  by being treated with NaOH+Aq. Sol. in boiling Na₂CO₂+Aq. (Rose, Pogg. 113. 109.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 830.) Cb₂O₅, 4H₂O.

 $Cb_2O_5$ ,  $7H_2O$ . (Santesson, Bull. Soc. (2) **24.** 52.)

# Aluminum columbate, Al₂O₃, 3Cb₂O₅+12H₂O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, **30**. 1652.)

Barium columbate, 7BaO, 6Cb₂O₄+18H₂O.
Ppt. (Bedford, J. Am. Chem. Soc. 1905, 27, 1218.)

#### Cadmium columbate, CdO, Cb₂O₅.

Sol. in boiling conc. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson, Z. anorg. 1896, 12, 199.)

+3½H₂O. Ppt (E. F. Smith, J. Am.

Chem. Soc. 1908, 30, 1652.)

Cæsium columbate, 4Cs₂O, 3Cb₂O₅+14H₂O. Very sol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 190S, 30. 1654.) 7Cs₂O, 6Cb₂O₅+30H₂O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 190S, 30. 1655.)

#### Calcium columbate, 2CaO, CbgOs.

Insol. in H₂O. (Joly, C. R. 81. 266.)

CaO, Cb₂O_b. Sol. in boiling conc. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson, Z. anorg. 1896, **12**. 198.)

#### Cobalt columbate, CoO, Cb₂O₅.

Sol. in conc. boiling H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson.)

#### Copper columbate, CuO, Cb₂O₅.

Sol. in boiling conc. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson)

 $+3\frac{1}{2}H_2O$ . Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, **30**. 1652.)

## Iron (ferrous) columbate, Fe(CbO₃)₂.

Min. Columbite. Insol. in acids.

#### fron (ferrous) columbate tantalate, $x \text{Fe}(\text{TaO}_3)_3, y \text{Fe}(\text{CbO}_3)_2.$

Min. Tantalite. Not attacked by acids. Fe(CbO₂)₂, 4Fe(TaO₂)₂. Min. Tapiolite.

Lithium columbate, 7Li₂O, 6Cb₂O₅+26H₂O.

Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, 30. 1655.)

#### Magnesium columbate, MgO, Cb₂O₅.

Sol. in boiling conc.  $H_2SO_4$ ; insol. in most acids; decomp. by KHSO₄ at red heat. (Larsson, Z. anorg. 1896, **12**. 196.)

+4H₂O. Precipitate. (Rammelsberg.) +7H₂O. Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, **30**. 1651.)

4MgO, Cb₂O₅. Insol. in H₂O. (Joly, C. R. 81. 266.)

3MgO, Cb₂O₅. As above.

#### Manganous columbate.

Insol. in H₂O. (Joly, C. R. **81.** 266,) 3MnO, 5Cb₂O₄. Sol. in boiling conc. H₂SO₄; insol. in most acids; decomp. by HKSO₄ at red heat. (Larsson, Z. anorg. 1896, **12.** 201.)

Potassium columbate, KCbO.

Sol. in H₂O. (Joly, in Fremy's Encyc. Ch.) K₂Cb₄O₇+5½H₂O. Insol. in H₂O. (Santesson.

 $K_2Cb_6O_{16}+5H_2O$ . Nearly insol. in  $H_2O$ .  $K_4Cb_2O_7+11H_2O$ . Insol. in H₂O. (Santesson, Bull. Soc. (2) 24. 53.)

 $K_4Cb_8O_{22}+11H_2O$ . (Santesson.)  $K_6Cb_4O_{12}+13H_2O$ . Sol. in  $H_2O$ .  $K_8Cb_9O_{10}+16H_2O$ . Efflorescent.

Efflorescent. Sol. in H₂O. (Marignac, A. ch. (4) 8. 20.)

Very sol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 1908, 30, 1652.)

 $K_{14}Cb_{12}O_{37}+27H_{2}O$ . Sol. in  $H_{2}O$ . Insol. in alcohol. (E. F. Smith.)  $K_{16}Cb_{14}O_{42}+32H_{2}O$ . Sol. in  $H_{2}O$ .

Potassium sodium columbate, 3K2O, Na2O,  $3\text{Cb}_2\text{O}_5 + 9\text{H}_2\text{O}$ .

Very slightly sol, in  $H_2O$ . Insol, in alkalies. (Marignac.)

Rubidium columbate, 3Rb₂O, 4Cb₂O₅+ 9½H₂O.

(E. F. Smith, J. Am. Chem. Soc. 1908, 30.

 $4Rb_2O.3Cb_2O_5+14H_2O.$  Very sol. in  $H_2O.$ (E. F. Smith.)

Silver columbate, Ag₂O, Cb₂O₅+2H₂O.

Ppt. (E. F. Smith.)

 $7 \text{Ag}_2 \text{O}$ ,  $6 \text{Cb}_2 \text{O}_5 + 5 \text{H}_2 \text{O}$ . Insol. in H₂O. (Bedford, J. Am. Chem. Soc. 1905, 27, 1218.)

Sodium columbate, NaCbO₃+3½H₂O.

Completely sol. in H₂O. (Rose). Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908,

**30.** 1651.) +2½H₂O. Sl. sol, in cold H₂O. Insol, in NaOH+Aq. (Santesson.)

2Na₂O, 3Cb₂O₅+9H₂O. Insol. in H₂O or

NaOH+Aq. (Santesson.)  $8Na_2O$ ,  $7Cb_2O_5$ . 1 pt. is sol. in 195–200 pts.

 $H_2O$  at 14-20°; in ether 75-80 pts. or in 103

pts. boiling water. (Rose.) 7Na₂O, 6Cb₂O₅+32H₂O. Very stable. Sol. in  $H_2$ O. (Bedford, J. Am. Chem. Soc. 1905, 27. 1217.)

Thorium columbate, 5Th₂O, 16Cb₂O₅.

Sol. in boiling conc. H₂SO₄; insol, in most acids; decomp. by HKSO4 at red heat. (Larsson, Z. anorg. 1896, 12. 202.)

Yttrium columbate, Y₂O₃, Cb₂O₅.

Insol. in H₂O. (Joly, C. R. 81. 1261.) Sol. in boiling conc. H2SO4; insol. in most acids; decomp. by HKSO4 at red heat. (Lars-

Zinc columbate, ZnO, Cb₂O₅.

Sol. in boiling conc. H₂SO₄; insol. in most acids; decomp. by HKSO, at red heat. (Larsson.)

7ZnO, 6Cb₂O₅ + 25H₂O. Insol. in H₂O. (Bedford, J. Am. Chem. Soc. 1905, 27. 1218.)

Zirconium columbate, ZrO₂, 5Cb₂O₅.

Sol. in boiling conc. H.SO.; insol. in most acids; decomp. by HKSO, at red heat. (Lars-

Percolumbic acid.

See Percolumbic acid.

Columbium (Niobium), Cb.

Scarcely attacked by HCl, HNO2, or aqua regia. Conc. H2SO4 dissolves easily on warm-

Sol. in fused oxidizing agents; sol. in hot conc. H2SO4 and in HF; also in HF+HNO3; insol. in other acids. (Moissan, C. R. 1901. **133.** 24.)

Columbium pentabromide, CbCr₅.

(Rose, Pogg. 104, 422.)

Columbium carbide nitride, 3CbC, 2CbN. (Joly, Bull. Soc. (2) 25, 506.)

Columbium trichloride, CbCl₃.

Not deliquescent; not attacked by H2O, but easily oxidised by HNO₃+Aq. Insol. in NH₄OH+Aq. (Roscoe, C. N. 37. 25.)

Columbium pentachloride, CbCl₅.

Decomp. by H₂O with separation of hydrate of Cb₂O₅. Sol. in cold HCl+Aq, forming a solution which soon gelatinises, and separates out Cb₂O₅ by heat or dilution; with hot HCl+Aq, forms a cloudy solution which does not gelatinise. Sol. in H2SO4 to form a clear liquid which gelatinises on heating. Sol. in KOH+Aq. Sol. in alcohol with slight residue. (Rose, Pogg. 104, 432.)

Columbium pentafluoride, CbF₅.

Very hydroscopic; sol. in H₂O without separation of columbic acid. (Ruff, B. 1909, **42**. 492.)

Columbium fluoride with MF.

See Fluocolumbate. M. Columbium hydride, CbH(?).

Insol. in HCl, HNO, and dil. H₂SO₄+Aq, even on boiling. Sol. in boiling conc. H₂SO₄ and in fused KHSO₄. Sol. in cold HF+Aq if not too dilute. Also attacked by KOH+Aq. (Marignac, N. Arch. Phys. Nat. 31. 89.)
Not attacked by boiling H₂O, or boiling

HCl. Oxidized by hot H₂SO₄. Insol. in boiling HNO₃. (Muthmann, A. 1907, **355.** 90.)

Columbium hydroxide  $Cb_2O_5$ ,  $xH_2O$ . See Columbic acid.

COPPER

#### Columbium nitride.

Not attacked by boiling nitric acid or aqua regia, but sol. in a cold mixture of HNO: and

HF. (Rose, Pogg, 111. 426.)
Cb₂N₅. Not attacked by boiling H₂O or
HCl. Insel in conc. HNO₃, and H₂SO₄.
Decomp. by fused KOH. Not attacked by

boiling with KOH+Aq. (Muthmarn, A. 1907, 355. 94.)

#### Columbium dioxide, Cb₂O₂.

Sol, when still moist in boiling dil. HCl+ Aq. Insol. in hot HNO₂; less sol. in aqua regia than in HCl+Aq. Sol. in conc. H₂SO₄ after long heating. (Rose.)
Insol. in H₂O, KOH, or conc. acids, even when boiling. (Delafontaine.)

#### Columbium trioxide, Cb₂O₃.

Insol. in acids except HF. (Smith, Z. anorg. 1894, 7. 28.)

#### Columbium tetroxide, Cb₂O₄.

Not attacked by cold or hot H₂O, HCl, HNO₂, H₂SO₄, or aqua regia. Slightly attacked by boiling KOH+Aq. (Delafontaine.)

#### Columbium pentoxide, Cb₂O₅.

When ignited insol. in hot conc. H₂SO₄. When it has not been ignited it forms a clear solution with H2SO4, which can be diluted without forming any precipitate. Pogg. 112. 549.)

Sol. in fused KHSO₄, which can be diluted with H2O without causing pptn. Insol. in HF.

#### Columbium oxybromide, CbOBr₃.

Decomp. by H₂O into Cb₂O₅ and HBr. Sol. in hot H₂SO₄ and conc. HCl+Aq. (Rose, Pogg. 104. 442.)

3H₂O, Cb₂O₄, HBr(?). Eas (Smith, Z. anorg. 1894, **7.** 97.) Easily sublimed.

#### Columbium oxybromide rubidium bromide, CbOBr₂, 2RbBr.

Unstable in moist air. Decomp. by H2O. (Weinland, B. 1906, 39. 3059.)

#### Columbium oxychloride, CbOCl₃.

Attracts H₂O from air without deliquescing and decomposed. Decomp. with H2O with evolution of heat. Insol. in hot or cold HCl+ Aq. Sol. by long contact with H₂SO₄ to a cloudy liquid, which clears up on warming, but soon separates out Cb₂O₅. Sol. in cold KOH+Aq and hot K₂CO₃+Aq. (Rose.) Sol. in alcohol, from which it is precipitated

by ether. (Blomstrand.) 3H₂O, Cb₂O₄, HCl. Sublimate. (Smith, Z. anorg. 1894, 7. 97.)

#### Columbium oxychloride rubidium chloride, CbOCl₃, 2ŘbCl.

Decomp. by H₂O. (Weinland, B. 1906, **39.** 3057.)

## Columbium oxyfluoride, CbOF.

(Joly, C. R. 81. 1266.)

#### Columbium oxyfluoride with MF.

Fluoxycolumbate, and Fluoxyhypocolumbate, M.

### Columbium oxysulphide, Cb₂OS₂.

Insol, in boiling HCl+Aq. Slowly decomp. into Cb₂O₄ by boiling with HNO₃ or aqua regia. Insol. in boiling dil. H₂SO₄+Aq. Converted into columbic sulphate, so in H₂O, by boiling conc. H₂SO₄. Si. sol. in not HF. Insol. in boiling K₂S+Aq. (Rose, Pogg. 111. 193.)

#### Copper, Cu.

Copper is not attacked by distilled H₂O, or by NH₄NO₃, KNO₃ or (NH₄)₂SO₄+Aq, or by a mixture of those salts in solution. (Muir, cited by Carnelly, Chem. Soc. 30. 1.)

Distilled H₂O has slight action on Cu. 100 ccm. H₂O dissolved from 2 sq. dcm. Cu from 0.035 mg. Cu in one hour up to 0.280 mg. in 72 hours. 100 ccm. H₂O dissolved 0.44 mg. from 6 sq. dcm. in 48 hours. Presence of solder diminishes solubility about one-half. At 90-100° the amount dissolved is about onehalf that at ord, temp. (Carnelley, Chem. Soc. 30. 1.)

100 ccm. distilled H₂O dissolved only 1 mg. Cu from 11.8 sq. cm. during a week, while air free from CO2 was conducted through the solution. When the air contained CO₂, 3 mg. were dissolved. (Wagner, Dingl. 221. 259.)

100 l. sea water dissolved 12.96 g. Cu from 1 sq. m. (Calvert and Johnson, C. N. 11. 171.)

Solubility in H₂SO₄.

Not attacked by dil. H₂SO₄+Aq. (Vogel, Schw. J. **32.** 301.)

Action of H₂SO₄ at ordinary temp, is very slight even after a long time. (Barruel, J. Pharm. 20. 13 [1834].)

H₂SO₄ has no action below 130°. (Calvert and Johnson, Chem. Soc. 19. 438.)

H₂SO₄ acts slightly even at 20.

16.3 g. H₂SO₄ (1.843 sp. gr.) dissolved the following amts. from 3 g. Cu, having a surface of 65 sq. cm. at the given temp.

Temp.	Time	% Cu dissolved
19°	14 days	About 6
60	120 min.	2.5
80	30 "	1.5
100	30 "·	3.1
124	30 "	22.7
130	30 "	32.6
137	30 "	35 0
150	30 "	69.2
170	10 "	51.92
195	2 "	53.5
220	1/2 "	70.57
270	few seconds	nearly 100

With dilute acid the action was much less violent, as is seen in the following table-

Tem.	Time	Acid	Sp. gr.	% Cu dissolved
100° 100 100 100 130 130 165 165	30 min. 30 " 30 " 30 " 30 " 30 " 30 " 30 " 30 "	H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , 2H ₂ O H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O H ₂ SO ₄ , H ₂ O	1.843 1.8295 1.780 1.620 1.843 1.780 1.620 1.843 1.780 1.620	2.380 0.585 0 32.6 1.18 0 70 16.5 2.7

(Pickering, Chem. Soc. 33. 112.)

Cu is very sl. attacked by cold HCl+Aq of 1.12 sp. gr., but somewhat more on warming. Even less sol. in dil. HCl+Aq. (Löwe, Z. anal. 4. 361.)

Sol. in warm conc. HI+Aq. (Rose.) Slowly attacked by H₂SO₂+Aq. (Causse,

Bull. Soc. (2) 45. 3.)

More or less sol. in all dil. mineral acids and also in organic acids, as acetic, tartaric, etc., when supply of air is afforded; but absolutely insol, in the latter acids when air is wholly excluded. The importance of this fact in the use of Cu cooking utensils is manifest. Easily attacked by ord. HNO₈+Aq.

With very conc. HNO₃+Aq (sp. gr. 1.52) it becomes passive, as in the case of Fe.

Pure dil. HNO₈+Aq of 1.07 sp. gr. or less does not attack Cu at 20°, but if NO2 or KNO2, is added the action begins at once. If HNO₃+Aq is more conc. the Cu is attacked.  $HNO_3+Aq$  of 1.108 sp. gr. begins to act at  $-2^\circ$ , and of 1.217 sp. gr. at  $-10^\circ$ .

HNO₂+Aq of 1.512 sp. gr. attacks Cu violently at 20°, but action soon ceases on account of formation of a crust of Cu(NO₃)₂, insol, in pure HNO₂. (Millon, A. ch. (3) 6.

Easily sol. in 2N-HClO₃+Aq at 50° (Hendrixson, J. Am. Chem. Soc. 1904, 26.

Not appreciably sol. in anhydrous HF.

(Poulenc, A. ch. 1894, (7) 2. 12.) When in contact with the air, Cu is soon

oxidised by acids, alkalies (especially NH4OH +Aq), and many fatty bodies.

Sol. in  $(NH_4)_2CO_3+Aq$ . (Traube, B. 18. 1887.)

Slowly sol. in NH₄OH+Aq. (Schönbein, B. A. B. **1856.** 580.)

Sol. in KI+Aq when warm and conc. (Rose.)

When finely divided, Cu is easily sol. in hot FeCl₃+Aq.

Action of dilute solutions of salts on solubility of Cu in H₂O.

100 ccm, solution of the following salts dissolve the amts. of Cu given below, from a surface of 1 sq. dcm. in 48 hours.

Salts	G. salt dissolved in 100 ccm. H ₂ O	Mg. Cu dis- solved	
H₂O		0.11	
KNO ₈	0.01 0.05 5.00	0.07 0.13 0.16	
NaNO ₈	0.05 5.00	0.18 0.19	
CaSO ₄	0.05	0.11	
K ₂ SO ₄ {	0.05 5.00	0.12 0.28	
MgSO ₄	0.05 5.00	0.16 0.34	
Na ₂ CO ₃	0.01 0.05 5.00	0.05 0.11 2.80	
K ₂ CO ₃	0.05 5.00	0.14 2.35	
NaCl	0.01 0.05 5.00	0.05 0.18 7.50	
KCl	5.00	8.17	
(NH ₄ ) ₂ SO ₄	0.05 5.00	0.66 28.50	
NH ₄ NO ₃	0.01 0.05 5.00	0.17 0.66 60.00	
NH ₄ Cl {	0.05 5.00	0.92 158.75	

At 100° the action of KNO₈, K₂SO₄, and NH₄NO₃ is diminished, while that of (NH₄)₂SO₄, Na₂CO₃, and NaCl is increased. Tables are also given for mixtures of the above salts. (Carnelley, Chem. Soc. 30. 1.)

Solubility of Cu in dilute salt solutions. 11.8 sq. cm. Cu were used, and the action continued one week, while air with or without CO₂ was passed through the solution continually.

100 ccm. solution of the following salts dissolved the given amts. Cu.

Salt	G. salt dis-	Mg. Cu dis-	Mg. Cu
	solved in	solved with-	clissored
	100 ccm. H ₂ O	out CO ₂	with CO ₂
NaCl KCl MgCl ₂ NH ₄ Cl K ₂ SO ₄ KNO ₃ Na ₂ CO ₃ NaOH CaO ₂ H ₂	0.50 0.50 0.83 1.00 1.00 1.00 0.923 sat.	4 4 5 904 0 0 0	115 115 112 138 4 3

(Wagner, Dingl. 221. 260.)

Distilled H₂O dissolved no Cu from 420 sq. mm. in 150 hours at ord. temp.

NH₄NO₃+Aq with less than 0.4 g. per litre

showed the same result.

KNO₃+Aq or (NH₄)₂SO₄+Aq containing 0.1 to 0.2 g. per litre dissolved no Cu.

H₂O containing carbonates+nitrates, carbonates + sulphates. or chlorides+nitrates also dissolved no Cu.

NH₄NO₃+Aq containing 0.4 g. per litre dissolved 3 mg. per litre after 150 hours contact.

From a surface of 2100 sq. m. of Cu, H₂O charged with CO2 at ord. pressure, and containing the following salts in solution, dissolved the given amts. Cu. in 120 hours.

Salt	G. salt dissolved in 1 l. H ₂ O	Mg. Cu dissolved
H ₂ O K ₂ CO ₃ C ₂ Cl ₂ NH ₄ NO ₃ NH ₄ NO ₃ K ₂ CO ₃ + NH ₄ NO ₃ K ₂ CO ₃ + NH ₄ NO ₃	0.2 0.2 0.02 0.04 0.1 0.02 0.2 0.04 0.2	1.0 0.2 1.80 1.40 1.40 1.00
CaCl ₂	$\left[\begin{array}{c} 0.2 \\ 0.2 \end{array}\right]$	3.6

From a surface of 2100 sq. m., H₂O charged with CO₂ at pressure of 6 atmos. dissolved 0.6 mg. in 48 hours.

H₂O when charged with CO₂ at 6 atmos. and

containing:
16 mg. NH₄NO₃ per litre, dissolved 0.8 mg. in 48 hours.

80 mg. NH4NO, per litre, dissolved 1.4 mg. in 48 hours.

40 mg. K₂CO₃, per litre, dissolved 1.2 mg in 48 hours. (Muir, Proc. Soc. Manchester, **15.** 31.)

Sol. in KCN+Aq. (Goyder, C. N. 1894,

A solution of  $(NH_4)_2S_2O_8$  containing 0.829 g. 1900, (7) 19. 54.)

in 110 cc. dissolves 0.2050-0.2279

(Turrentine, J. phys. Chem. 1907, 11. 625.) Sl. attacked by liquid NH₄. (Franklin, Am. Ch. J. 1898, 20, 827.)

Amts. Cu dissolved by action of various oils on 8 sq. in. Cu by 10 days' exposure and ubsequent 67 days

	Amt. Cu dis solved in 10 days	Amt. Cu dissolved in subsequent 67 days
Linseed oil . :	0.3000 grain 0.2200 "	0 2435 grain 0.0200 "
Colza oil Almond oil .	0.0170 " 0.1030 "	0.1230 " 0.1170 "
Seal oil Sperm oil .	0.0485 " 0.0030 "	0.0315 "
Castor oil . Neatsfoot oil	0.0065 "	0.0035
Sesame oil . Paraffine oil .	0.1700 " 0.0015 "	0.0015 "

(Watson, C. N. 36. 200.)

Qualitative results of the action of various oils on Cu are also given by Thompson. (C. N. **34.** 176, 200, 219.)

½ ccm. oleic acid dissolves 0.0157 g. Cu in 6 days. (Gates, J. phys. Chem. 1911, **15.** 143.)

Sol. in an alkaline solution of gelatine (3.54 %) copper gauze dissolved in 48 hours. (Lidoff, C. C. 1899, II. 471.)

Cuprous acetylide, Cu₂C₂.

Decomp. by heating with H₂O or KCN+ Aq. Decomp. by HNO₃. (Keiser, Am. Ch. J. 1892, **14.** 289.)

Not decomp. by H₂SO₄, NH₄OH, KOH + Aq or acetic acid, even on warming. dry salt is sol. in very dil. HCl+Aq without evolution of gas. Sol. in conc. KCN+Aq. (Böttger, A. 1859, 109. 356.)

Cupric acetylide, CuC₂.

Easily sol. in HCl. Turns brown in the air, and becomes insol. in acids. (Phillips, Z. anorg. 1894, 6. 241.)

 $3Cu_4C_8O + 2H_2O$ . Solubility as that of Cu₈C₁₇H₄O₃. (Söderbaum, B. 1897, 30. 764.)

 $Cu_8C_{17}H_4O_8$ . Insol. in  $H_2O$ .

When dry is violently decomp. by conc. H₂SO₄ or not too dil. HNO₃. Rapidly decomp. by warming with dil. acids, especially HCl.

Insol. in NH₄OH+Aq in absence of air,

partially sol. in presence of air.
Insol. in organic solvents. (Söderbaum, B. 1897, **30.** 762.)

Cuprous acetylide iodide, Cu₃C₂I, CuI.

Ppt. (Berthelot and Delépine, A. ch. Cuaric arsenide, Cu. As2.

(Reinsch, J. pr. 24. 244.)

Cu₄As₂. (Gehlen.)

Cu₂As₂. Ppt. Decomp. by acids. (Kane, Pogg. 44. 471.)

Cu₈As. Min. Domeykite. Insol. in HCl +Aq; sol. in HNO₃.

Cu₆As. Min. Algodonite. Min. Darwinite. Cu₀As.

### Cuprous azoimide, CuN₈.

Insol. in H₂O. (Curtius.)

Sensitive to sunlight. (Wöhler, B. 1913, **46.** 2053.)

Cupric azoimide, basic, CuO, CuN₆.

Insol, in H₂O. (Wöhler, B. 1913, 46, 2055.)

#### Cupric azoimide, CuN6.

Very explosive.

Very sl. sol. in H₂O. Decomp. by boiling with H₂O. (Curtius, J. pr. 1898, (2) 58. 296.)

#### Copper azoimide ammonia, CuN₅, 2NH₂.

Ppt. Insol. in H₂O. Easily sol. in dil. (Dennis, J. Am. Chem. Soc. 1907. 29, 19.)

Copper boride, Cu₂B₂.

(Marsden, J. B., 1880. 330.)

#### Cuprous bromide, Cu₂Br₂.

1 l.H₂O dissolves at 18°-20°:

0.4320 millimols bromine.

0.3157 cupric copper.

" 0.1061cuprous copper.

(Bodländer, Z. anorg. 1902, 31, 460.)

Sol. in HBr, HCl without decomp., or HNO₃+Aq with decomp., also in NH₄OH +Aq. Insol. in boiling conc. H₂SO₄ or +Aq.HC₂H₈O₂+Aq. (Berthemot, A. ch. 44. 385.) Sol. in H₂SO₂+Aq. (Lean and Whatmough, Chem. Soc. 1898, 73. 151.)

Sol. in NaCl, and  $Na_2S_2O_3+Aq$ . nault, C. R. **59.** 319.) (Re-

Solubility of Cu₂Br₂ in KBr+Aq All values recorded in millimols per litre.

KBr	Total copper	Cupric copper	Cuprous copper
25 40 60 80 100 120 500	0.119 0.200 0.310 0.423 0.5836 0.6934 8.719	0.012 0.013 0.025 0.012	0.107 0.187 0.285 0.411 0.5836 0.6934 8.719

(Bodländer and Storbeck, Z. anorg. 1902, 31. 462.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol. in acetone. (Naumann, B. 1904, 37, 4329; Eidmann, C. C. 1897, II. 1014.)

100 g. acetonitrile dissolve 3.86 g. Cu₂Br₂ at 18°. (Naumann and Schier, B. 1914, 47. 249.)

Sol. in pyridine. (Naumann, B. 1904, 37. 4609.)

weight determined in pyridine, Mol. methyl and ethyl sulphides. (Werner, Z. anorg. 1897, 15. 19, 26, and 28.)

#### Cupric bromide, CuBr₂.

Deliquescent. Very sol. in H₂O. Insol. in

benzene. (Franchimont, B. 16. 387.)
Very sl. attacked by cold or even hot
H₂SO₄. (Viard, C. R. 1902, 135. 169.)

Moderately sol. in liquid NH₃. (Horn, Am. Ch. J. 1908. 39. 219.)

100 g. 95% formic acid dissolve 0.16 g. at 21°. (Aschan, Ch. Z. 1913, **37.** 1117.)

100 g. acetonitrile dissolve 24.43 g. CuBr₂ at 18°. (Naumann and Schier, B. 1914, **47.** 249.)

Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Sol. in methyl acetate. (Naumann, B.

1909, 42. 3790.) Sol. in acetone. (Naumann, B. 1904, 37.

4328.) Sol. in acetone with a brown color. (Eidmann, C. C. 1899, II. 1014.)

 $+2\mathrm{H}_2\mathrm{O}(?)$ . (Berthemot, A. ch. 1830, **44.** 385.)

 $+4H_2O$ . Very sol. in  $H_2O$ . (Sabatier, Bull. Soc. 1894, (3) 11, 677.)

Cupric hydrogen bromide, CuBr₂, HBr+

Decomp. by H₂O. (Sabatier, Bull. Soc. 1894, (3) **11**, 681.)

+10H₂O. (Weinland and Knöll, Z. anorg. 1905, 44. 116.)

Cupric lithium bromide, CuBr₂, 2LiBr+6H₂O.

Very hydroscopic. (Sementschenko, Z. anorg. 1899, **19.** 336.)

Very hydroscopic; decomp. by H₂O. (Kurnakoff, C. C. 1899, I. 16.)

Cupric potassium bromide, CuBr2, KBr. Decomp. by H₂O. (Sabatier, Bull. Soc. 1894, (3) **11.** 683.)

Cuprous bromide ammonia, Cu₂Br₂, 2NH₂.

Stable when dry.

Easily sol. in HNO₃ and NH₄OH+Aq. Other mineral acids and acetic acid separate Cu₂Br₂. (Richards, Z. anorg. 1898, 17, 245.)

Cu₂Br₂, 6NH₃. (Lloyd.) Cu₂Br₂, 3NH₃. (Lloyd, J. phys. Chem. 1908, **12**. 399.)

Cupric bromide ammonia, CuBr₂, 2NH₃.

Sol. in NH₄Br+Aq without decomp. (Richards, B. 23. 3790.)

3CuBr₂, 10NH₃. Decomp. by H₂O, (Richards, Am. Ch. J. 15. 651.)

CuBr₂, 3NH₃. Completely sol. in a little

H₂O, but is decomp. by dilution. Insol. in alcohol. (Rammelsberg, Pogg. 55. 246.)

CuBr₂, 4NH₃+H₂O. 100 pts. H₂O dissolve 69.03 pts. CuBr₂, 4NH₃ at 25°. (Pudschies, Dissert.)

CuBr₂, 5NH₈. As above. (Rammelsberg.)

CuBr2, 6NH2. Sol. in small amts. of H2O. but decomp. on dilution. (Richards.)

Cupric bromide nitric oxide, CuBr₂, NO.

Decomp. by H₂O. (Manchot, B. 1914, **47**. 1607.)

#### Cuprous chloride, Cu₂Cl₂.

1.53 g. Cu₂Cl₂ dissolve in 100 g. H₂O at 21.5°; 1.55 g. at 26.5°. (Kremann and Noss, M. 1912, 33. 1206.)

Solubility of Cu₂Cl₂ in H₂O in an atmosphere of hydrogen.

Solubility is recorded in mg-atoms per l.

t ²	Total Cu	CuCl ₂ by analysis	Cl	Cu ₂ Cl ₂ calc.	Cu ₂ Cl ₂ by analysis
20.2 19.6 19.3	2.752 2.919 2.971 2.861	2.124 2.254 2.294 2.245	5.672 5.525 5.464 5.464	0.665 0.677	0.420 0.474 0.499

(Bodländer, Z. anorg. 1902, 31. 12.)

Solubility of Cu₂Cl₂ in H₂O in an atmosphere of CO2. Solubility is recorded in mg-atoms per l.

 $CuCl_2$ Cu₂Cl₂ Total Cu₂Cl₂ t٥ by analysis Cl by Cu calc. analysis 20.6 5.2350.5252.818 21.7  $\substack{2.243\\2.258}$ 2.8055.430 0.5620.5162.880 5.3120.3910 662 19.7 2.138 2.805 5.390 0.6670.336

#### (Bodländer, l. c.)

Sol. in conc. HCl+Aq; insol. in dil. HNO3, or H₂SO₄+Aq. Not attacked by cold conc. H₂SO₄, and only sl. on warming. (Rosenfeld, B. 12. 954.) Sol. in NH₄OH+Aq; sol. in hot NaCl, KCl, FeCl₃, ZnCl₂, MnCl₂, etc. +Aq. 1 mol. Na₂S₂O₃ in aqueous solution dissolves 1 mol. Cu₂Cl₂. (Winkler, J. pr. 88. 428.) Sol. in KI, I₂, KCN, or  $(NH_4)_2SO_4+Ag$ . (Repault C. R. 50, 558.) Aq. (Renault, C. R. 59. 558.)

Cu₂Cl₂ Solubility in HCl+Aq at 17°. ½ mols. CuCl₂ in mgs. in 10 ccm. solution. HCl = mols. HCl in ditto.

Cu ₂ Cl ₂	HCl	Sp. gr.
0.475 1.4 1.575 4.5 8.25 11.5	8 975 15.7 18.2 34.5 47.8 57.0	1.050 1.080 1.135

(Chatelier, calc. by Engel, A. ch. (6) 17. 377.)

Solubility of Cu₂Cl₂ in HCl+Ac at 0°.

Cu ₂ Cl ₂ 2	нсі	Sp.·gr.
1.5	17.5	1.049
2.9	26.0	1.065
8.25	44.75	1.132
15.5	68.5	1.261
33.0	104.0	1.345

(Engel, l, c.)

Freshly pptd. Cu₂Cl₂ is sol. in H₂SO₃+Aq. (Lean and Whatmough, Chem. Soc. 1898, **73.** 150.)

Sl. sol. in normal NH₄OH+Aq only by shaking several hours, a 0.02 normal solution of cuprous copper being obtained. (Gaus, Z. anorg. 1900, 25. 258.)

Insol. in Na₂S₂O₆+Aq. (Siewert, Gm. K. **5.** 1, 893.) Sol. in alkyl triphosphites. (Arbusoff, C. C. 1906, II. 750.)

Solubility in FeCl₂, 4H₂O+Aq at 21.5°.

In 10	0 g. H ₂ O	Solid phase
g. FeCl ₂	g. Cu ₂ Cl ₂	Solid phase
6.015 11.62 16.30 26.305 29.35 33.125 43.75 54 00 66.40 73.20 71.895 69.34 65.10	1.535 1.33 1.81 3.11 7.125 8.06 9.565 12.44 17.04 21.60 23.20 21.655 11.895	Cu ₂ Cl ₂ " " " " " " " Cu ₂ Cl ₂ +FeCl ₂ , 4H ₂ O FeCl ₂ , 4H ₂ O
		35 1010 00 1000

(Kremann and Noss, M. 1912, 33. 1208.)

#### Solubility of Cu2Cl2 in KCl+Aq at to. Determined in an atmosphere of CO₂.

t°	g. mol. KCl per l.	g. atoms Cu per l.
18.3	0.05	0.002411
16	0.1	0.004702
16	0.2	0.009458
19.2	1.0	0.0970
16.4	2.0	0.3840

(Bodländer and Storbeck, Z. anorg. 1902, 31

#### Solubility of Cu₂Cl₂ in KCl+Aq at t°. De termined in an atmosphere of CO₂. All values recorded in millimols per litre.

t° *	KCI	Cupric- copper	Total copper	Cuprous copper calc.	Cl
20°	0	2.222	2.851	0.629	5.436
19	1	1.901	2.385	0.484	5.287
19	2	1.571	2.150	0.589	5.614
19	2.5	1.421	1.955	0.534	6.015
19	3	1.523	1.983	0.460	6.247
16	5	1.008	1.522	0.514	7.525
18	10	0.475	1.236	0.761	11.735
20	15	0.322	1.344	1.022	16.437
19	20	0.324	1.446	1.122	21.356
19	30	0.1308	1.761	1.630	31.911
18	50	0.1088	2.411	2.302	
16	100	0	4.702	4.702	
16	200	0	9.485	9.485	
19	1000	0	97.0	97.0	
16	5000	0	384.0	384.0	• • • •
	·		<del>`</del>		

(Bodländer and Storbeck, Z. anorg. 1902, 31. 24.)

Solutions of 0.05 = 0.4 normal KCl dissolve Cu₂Cl₂ with the formation of KCuCl₂; those of higher concentration with the formation of K₂CuCl₃. (Bodländer and Storbeck, Z. anorg. 1902, 31. 41.)

#### Solubility of Cu₂Cl₂+KCl in H₂O at 22°.

	•5		
G. in 1 g. of solution		Solid Phase	
Cu ₂ Cl ₂	KCl .		
0.00115 0.00405 0.00861 0.0137 0.0219 0.0390 0.0484 0.0675 0.0719 0.0863 0.1043 0.1084 0.1021	0.0387 0.0656 0.0824 0.0984 0.1133 0.1406 0.1530 0.1639 0.1747 0.1839 0.2027 0.2018	Cu ₂ Cl ₂	
0.1204 0.1332	0.2095 0.2164	cc cc	

#### Solubility of Cu₂Cl₂+KCl in H₂O at 22°.— Continued

	G. in 1 g. of solution		Solid Phase	
	Cu ₂ Cl ₂	₿CI	Sond Phase	
	0.1621	0.2330	$\mathrm{Cu_2Cl_2}$	
	0.1723	0.2384	"	
	0.1907	0.2374	•	
ī	0.2148	0.2516		
•••	0.2145	0 2506	Cu ₂ Cl ₂ +Cu ₂ Cl ₂ , 4KCl	
	0.2149	0.2549	Cu ₂ Cl ₂ , 4KCl	
<b>,</b>	0.1548	0.2387	•	
Τ.	0.1473	0.2363		
	0.1399	0.2357	"	
_	0.1439	0.2389	"	
	0.1451	0.2363	"	
	0.1155	0.2320	"	
	0.1139	0.2350	"	
_	0.0953	0.2359	• •	
6	0.0735	0.2349	"	
7	0.0555	0.2389	"	
4	0.0453	0.2404	• • • • • • • • • • • • • • • • • • • •	
o	0.0366	0.2433		
1	0.0314	0.2503	"	
$\frac{4}{5}$ $\frac{5}{5}$ $\frac{5}{7}$	0.0285	0.2499	"	
0	0.0265	0.2523	"	
	0.0220	0.2628	"	
6	0.0193	0.2687	"	
1	0.0176	0.2698		
	0.0193	0.2703	Cu ₂ Cl ₂ , 4KCl+KCl	
	0.0160	0.2706	KCI	
	0.0124	0.2668	**	
	0.0058	0.2632	"	
	0.0000	0.2568	"	

(Brönsted, Z. phys. Ch. 1912, 80. 208.)

Solubility in NaCl+Aq. Sat. NaCl+Aq dissolves 16.9 % Cu₂Cl₂ at  $90^{\circ}$ ; 11.9 % at  $40^{\circ}$ ; and 8.9 % at  $11^{\circ}$ . 15 % NaCl+Aq dissolves 10.3 % Cu₂Cl₂ at  $90^{\circ}$ ; 6.0 % at  $40^{\circ}$ ; and 3.6 % at  $14^{\circ}$ . 5% NaCl+Aq dissolves 2.6 % Cu₂Cl₂ at  $90^{\circ}$ , and 1.1 % at  $40.^{\circ}$  (Hunt, Sill. Am. J. (2) **49**. 154.)

#### Solubility in NaCl+Aq at 26.5°.

In 100 g. H ₂ O		Solid phase	
Cu ₂ Cl ₂	NaCl	Sond phase	
1.55 3.15 7.30 40.60 49.10 57.21 41.40 18.70	10.80 20.70 27.00 36.48 44.14 55.95 50.90	Cu ₂ Cl ₂ " " " " Cu ₂ Cl ₂ +NaCl NaCl "	

(Kremann and Noss, M. 1912, 33, 1210.)

Solubility	of Cu ₂ Cl	in CuSO ₄ +	Aq at to.
Value	s recorded	in millimols	per l.

t°	Conc. of CuSO ₄	Cupric copper	Total copper	Cuprous copper calc.	CI
19.7 16.3 18.6 17.5 19.4 20.4 20.5 20.1	0.49375 0.9875 1.4812 1 975 2.4687 2.9625 4.9375	2.258 2.746 3.145 3.315 4.131 4.349 4.625 6.546	2.880 3.125 3.602 3.915 4.553 4.786 5.193 7.276	0 622 0.379 0.457 0.600 0.422 0.437 0.509 0.730	5.312 4.805 4.908 4.530 4.687 4.287 4.256 4.329

(Bodländer and Storbeck, Z. anorg. 1902, 31.)

Insol. in SbCl₃. (Klemensiewicz, Bull. Acad. Crac. 1908, 6, 485.) Sl. sol. in liquid NH₃. (Franklin, Am.

Ch. J. 1898, **20**, 827.) Insol. in alcohol.

Sl. sol. in ether. (Gehlen.)

Sol. in quinoline. (Beckmann and Gabel,

Z. anorg. 1906, 51. 236.)

Sol. in pyridine. (Schroeder, Dissert. 1901.)

Insol. in phosgene. (Eidmann, Dissert. 1899.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.) Insol. in acetone and in methylal.

mann, C. C. 1899, II. 1014.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insól. in ethyl acetate. (Alexander, Dissert. 1899.) (Naumann, B. 1904, 37. 3601.) Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

100 g. acetonitrile dissolve 13.33 g. Cu₂Cl₂ at 18°. (Naumann and Schier, B. 1914, 47. 249.)

Sol. in benzonitrile. (Naumann, B. 1914, **47**. 1369.)

Sol, in hot benzonitrile and other aromatic nitriles. (Werner, Z. anorg. 1897, 15.

Mol. weight determined in pyridine methyl and ethyl sulphides. (Werner, Z. anorg. 1897, 15. 19, 25 and 28.)

Min. Nantokite. Sol. in HCl, HNO3, or NH₄OH+Aq.

#### Cupric chloride, CuCl₂.

Deliquescent. 100 pts. H₂O dissolve 70.6 pts. CuCl₂ at 0°; 100 pts. CuCl₂+Aq contain 41.4 pts. CuCl₂. (Engel, A. ch. (6) 17. 350.)

100 pts. H₂O dissolve 76.2 pts. CuCl₂ at

100 pts. L₂C dissolve 70.2 pts. CuCl₂ at 16.1°, or 100 pts. CuCl₂+Aq sat. at 16.1° contain 43.25 pts. CuCl₂. (Rudorff, B. 6. 484.)
100 pts. CuCl₂+Aq sat. at 17° contain 43.06 pts. CuCl₂; at 31.5°, contain 44.7 pts. CuCl₂. Coefficient of solubility =41.4+
(Reighbor and Deventor 7 0.105t. (Reicher and Deventer, Z. phys. Ch. 5. 560.)

Sat. CuCl2+Aq. contains at:

-5° +12° 17° -20° 32° 37 38.8 39.3 39° 55° 68° 44.0 46.5 47.9 43.2% CuCl₂, 91° 41.7 73° 48.6 51.0% CuCl₂. (Etard, A. ch. 1894, (7) 2. 536.)

Sp. gr. of CuCl₂+Aq at 17.5°.

% CuCl2	Sp. gr.	% CuCl2	Sp. gr.
5	1.0455	25	1.2918
10	1.0920	30	1.3618
15	1.1565	35	1.4447
20	1.2223	40	1.5284

(Franz, J. pr. (2) 5. 274.)

Sp. gr. of CuCl₂+Aq at 22.9°, containing in 1000 g.  $H_2O$ , g.  $CuCl_2+2H_2O$ .

 $85.5 (-\frac{1}{2} \text{ mol.}) 171$ 255.5 g. CuCl₂+2H₂O,

1.057		1.108 1.18	54
$\frac{342}{1.197}$	$\frac{427.5}{1.238}$	$\frac{513}{1.275}$	g. CuCl ₂ +2H ₂ O,
$598.5 \\ 1.309$		$\frac{684}{1.341}$	g. CuCl ₂ +2H ₂ O,
$769.5 \\ 1.371$		$855 \\ 1.399$	g. CuCl ₂ +2H ₂ O,
$940.5 \\ 1.425$		$1.026 \\ 1.449$	g. $CuCl_2+2H_2O$ .

Containing CuCl₂ (anhydrous).

67.5 ( = 1.059	½ mol.)		$\begin{array}{c} 202.5 \\ 1.165 \end{array}$		270 g. CuCl ₂ , 1.213
337.5 1.257		405 1.299	$\frac{472.5}{1.30}$		g. CuCl ₂ .
540 1.379		607.5 1.416	$675 \\ 1.453$		g. CuCl ₂ .
	(Gerlack	n, Z. a	anal. 2	8.	468.)

Sp. gr. of  $CuCl_2 + Aq$  at  $0^\circ$ . S = pts.  $CuCl_2$ in 100 pts. solution;  $S_1 = mols$ . CuCl₂ in 100 mols. of solution.

S	81	Sp. gr.
39.4170	8.00	1.4797
35.3839	6.82	1.4173
$30.9255 \\ 26.1129$	$\begin{array}{c} 5.65 \\ 4.51 \end{array}$	1.3529 1.2881
20.6697	3.36	1.2204
14.5820	2.23	1.1494
8.0732	1.16	1.0796

(Charpy, A. ch. (6) 29. 25.)

Tables for 7°, 30.5°, 49.2°, and 65° are also given by Charpy.

Sp. gr. of CuCl₂+Aq at room temp., containing:

33.027% CuCl₂. 12.00621.349 1.33121.1037 1.2154(Wagner, W. Ann. 1883, 18. 273.)

Sp. gr.	at 20° of Cu mols. Cu	Cl ₂ +Ag con Cl ₂ per fiter.	taining M.	
Μ.	0.01	0.05	0.075	
Sp. gr.	1.001208	1.00637	1.009264	
Μ.	0.10	0.20	0.50	
Sp. gr.	1.012614	1.030991	1.051479	
Μ.	0.75		1.0	
Sp. gr.	1.090912		1.120249	
M.	1.5		2.0	
Sp. gr.	1.177618		1.234551	
(Jones and Pearce, Am. Ch. J. 1907, 38. 717.)				
Sp. gr. of CuCl ₂ +Aq at 25°.				

Concentration of CuCl ₂ +Aq.	Sp. gr.
1—normal  1/2— "  1/4— "  1/8— "	1.0624 1.0313 1.0158 1.0077

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Much less sol. in HCl+Aq than in H2O. 1 l. HCl+Aq containing 45 pts. HCl to 100 pts. H₂O dissolves only 290 g. CuCl₂ at 12°, whereas 1 l. H₂O at 12° dissolves 630 g. CuCl₂. (Ditte, C. R. 1881, **92**. 353.)

 $CuCl_2$ Solubility in HCl+Aq at 0°.

½ mols. in milligrammes in 10 ccm. solution. HCl=mols. HCl in ditto; H₂O = g. H₂O.

$\frac{\text{CuCl}_2}{2}$	нсі	Sum of equiv.	Sp. gr.	,H₂O
91.75	0	91.75	1.490	8.73
86.8	4.5	91.3	1.475	8.74
83.2	7.8	91	1.458	
79.35	10.5	89.85	1.435	8.64
68.4	20.25	88.65	1.389	8.56
50.0	37.5	87.5	1.319	8.47
22.8	70.25	93.05	1.231	8.21
23.5	102.5	126	1.288	7.56
26.7	128	154.7	1.323	6.77

(Engel, A. ch. (6) 17 351.)

Not decomp. by cold H₂ SO₄. Sol, in NH4Cl+Aq. Very sol. in conc. NaCl+Aq. (Boussingault.) Solubility of CuCl₂ in NH₄Cl+Aq at 30°.

NH4CI CuČl₂ Solid phase **2**9.5 0 NH₄Cl NH₄Cl+CuCl₂, 2NH₄Cl, H₂O CuCl₂, 2NH₄Cl, H₂O CuCl₂, 2NH₄Cl, H₂O+CuCl₂, 28.6 1.9 12.1 15.62.03 43.2  $2H_2O$ 43.95 CuCl₂, 2H₂O

(Schreinemakers, Z. phys. Ch. 1909, 66, 688.) See also NH₄Cl+CuCl₂ under ammonium chloride.

Solubility of CuCl ₂ +HgCl ₂ in H ₂ O at 35°.		
% HgCl2	% CuCl2	Solid Phase
0 21.03 37.30 44.47	44.47 33.50 26.07 23.31	CuCl ₂ , 2H ₂ O
50.47	21.50	CuCl ₂ +HgCl ₂

HgCl₂ 52.4419.4052.5418.46 " 52.81 18.06 " 51.03 14.73 " 49.50 5.94 " 23.872.64 8.51 8.51

(Schreinemakers and Thonus, Proc. K. Akad. Wet. 1912, **15.** 472.)

Solubility of CuCl₂+KCl in H₂O at t°.

		er g. lution	100	s. per mols. 20	
t°	As CuCl2	As KCI	CuCl,	KCI	
39.4	0 120	0.107	5 56	9 93	CuCl ₂ , 2KCl.2H ₂ O + KCl
60 4 79.1 90.5 93 7	$0.194 \\ 0.197$	$\begin{array}{c} 0 & 125 \\ 0 & 142 \\ 0 & 154 \\ 0 & 156 \end{array}$	7.71 11.1 14.9 16.2 17.5		CuCl ₂ , 2KCl.2H ₂ O+
50.1 52.9 60 2 72.6	0.232 0.233 0.241 0.246 0.255	0.059 0.062 0.066 0.063	13 7 14 8 15.8	5.44 6 90 7 63 8.49 8.35 11.6	CuCl ₂ , 3H ₂ O   CuCl ₂ , KCl+CuCl ₂ .  2H ₂ O  CuCl ₂ , 2KCl.2H ₂ O+
64.2 72.5			14.8	1.50	CuCl ₂ , ZKCl.ZH ₂ O + CuCl ₂ , KCl CuCl ₂ , KCl

(Meyerhoffer, Z. phys. Ch. 1890, 5, 102.)

100 g. H₂O dissolve 72.6 g. CuCl₂+16. 0 g NaCl. (Rudorff, B. 6. 684.)

Solubility of CuCl₂+NaCl in H₂O at 30°.

% NaCl	% CuCl2	Solid Phase
0	43.95	CuCl ₂ , 2H ₂ O
$\frac{3.10}{4.28}$	41.14 41.06	"
6.41	39.40	G GI LAT GI
$10.25 \\ 12.02$	$36.86 \\ 32.38$	CuCl ₂ +NaCl NaCl
$12.25 \\ 13.54$	$\frac{32.40}{28.64}$	"
15.34 $15.40$	$\frac{26.04}{23.72}$	u
$18.44 \\ 20.61$	$16.98 \\ 11.03$	"
$\frac{20.01}{26.47}$	0	"

(Schreinemakers and de Baat, Z. phys. Ch. 1909, 65, 586.)

			l	. / **	1 3-71731
Compos	ition of th	CuCl ₂ in CuSO ₄ +Aq at 30°.	Easily sol. in acetor J. Anal. Ch. 6. 184.) Insol. in benzene.	ne. ∴(Krug a	nd M'Elroy,
	lution	Solid phase	Sõlubility in	organic solve	ents.
by wt. CuCl ₂	% by w CuSO ₄		Solvent	t°	Sat. solution contains %
0 6.58 15.68 25.67 39.48 42.77	20.32 13.62 8.93 4.77 3.21 2.89	CuSO ₄ , 5H ₂ O  " CuSO ₄ , 5H ₂ O+CuCl ₂ , 2H ₂ O	Methyl alcohol	22 40 50 60	36.8 37.5 37.1 37.5
42.47 43.25 43.95	2.90 1.14 0	CuCl ₂ , 2H ₂ O  rs, Z. phys. Ch. 1909, <b>69.</b> 561.)	Abs. ethyl alcohol	0 19 20 38	32.0 35.7 35.9 38.5
		uid NH ₃ . (Gore, Am. Ch. J.)		. 50	41.7
1898, 2 Sl. s 1905, 4 Sol. : Sol. :	80. 827.) ol. in lic 16. 2.) in alcoh in 1 pt.	quid HF. (Franklin, Z. anorg. ol and ether. strong alcohol.	Propyl alcohol	-15 19 37 57 62	26.8 30.9 30.7 30.3 30.5
pts. Cu alcohol Bruyn,	uCl₂ at l dissolv . Z. phy	blute methyl alcohol dissolve 68 $15.5^{\circ}$ ; 100 pts. absolute ethyl e 53 pts. CuCl ₂ at $15.5^{\circ}$ . (de s. Ch. 10. 783.) er CuCl ₂ +2H ₂ O.	Allyl alcohol	$     \begin{array}{r}       -20 \\       -4 \\       \hline       27 \\       32     \end{array} $	23.4 23.6 22.9 23.3
Solubil	ity of C	uCl ₂ +KCl in absolute alcohol at 25°.  Solid Phase	N-butyl alcohol	0 23 37 55 84	15.2 15.8 15.7 16.1 16.2
$1.27 \\ 1.51$	$0.28 \ 0.28$	KCl+KCl, CuCl ₂		92 ·	16.7
$2.15 \ 5.25 \ 30.16 \ 34.17$	0.21	KCl, CuCl ₂ " KCl, CuCl ₂ +CuCl ₂ , C ₂ H ₅ OH	Ethyl formate	$ \begin{array}{c c} -20 \\ +24 \\ 37 \\ 50 \end{array} $	10.2 9.4 7.4 7.2
34.45 34.29 33.97	0.21 0.21 0.00	CuCl ₂ , C ₂ H ₅ OH	Ethyl acetate	+20 40 72	3.0 2.5 1.3
		lden, J. Am. Chem. Soc. 1911, 33. 1032.)	Acetone	$-20 \\ + 8$	18.4 18.8
CuCl ₂	KČ1	Solid Phase	Isopropyl alcohol	32 70 84	11.0 28.3 28.7
0.34	0.38	KCl+KCl, CuCl ₂ KCl, CuCl ₂	(Étard, A. ch.		· · · · · · · · · · · · · · · · · · ·
1.50 2.06 2.49 2.32	0.27	KCl, CuCl ₂ +CuCl ₂ , C ₃ H ₆ O	See also under CuC  1 g. CuCl ₂ is sol. in at 18°. Sp. gr. 18°/4	n 181 g. me	. solution =
(Foote	and Wa	alden, J. Am. Chem. Soc. 1911, 33. 1032.)	0.939. (Naumann, 1 1 g. CuCl ₂ is sol.	5. 1909, <b>42.</b> in 249 g. et	37937) thyl acetate

33. 1032.)

1 g. CuCl₂ is sol. in 249 g. ethyl acetate at 18°. Sp. gr. of sat. solution 18°/4° = 0.9055.

100 g. of sat. solution of CuCl₂ in ethyl alcohol contains 33.97 g. CrCl₂. (Foote and Walden, J. Am. Chem. Soc. 1911, 33. 1032.)

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

1 pt. sol. in 249.3 pts. etayl acetate at 10°. (Alexander, Dissert, 1899.

Solubility in acetone.

34.7 g. acetone dissolve 1 g. CuCl₂ at 18°. Sp. gr. of sat. solution 18°/4° = 0.8154. (Naumann, B. 1904, 37. 4329.)

1.40 pts. are sol. in 100 pts. acetone at 56°. (Laszczynski, B. 1894, 27. 2287.)

Sol. in acetone and methylal. 1 gram. dissolves in 34.08 grams of acetone at 18°. (Eidmann, C. C. 1899, II, 1014.)

100 pts. absolute ether dissolve 0.043 g. (Bödtker, Z. phys. Ch. 1897, 22. CuCl₂.

511.)

Mol. weight determined in pyridine and methyl sulphide. (Werner, Z. anorg. 1897, **15.** 20 and 25.)

100 g. sat. solution in acetonitrile contains 1.57 g. CuCl₂. 1914, **47.** 249.) (Naumann and Schier, B.

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in boiling dipropylamine. Z. anorg. 1897, 15. 34.) (Werner,

Sol. in urethane. (Ley, Z. phys. Ch. 1897, 22. 81); (Castoro Z. anorg. 1899, 20, 61.)

+H₂O. (Ditte, A. ch. (5) **22.** 551.) Sol. in H₂O with slight decomp. (Sabatier, Bull. Soc. 1895, (3) 13. 601.)

 $+2H_2O$ . Deliquescent. 100 g.  $H_2O$  dissolve 121.4 g.  $CuCl_2+2H_2O$  at 16.1°. (Rüdorff.)

Aq. sol. at 35° contains 9.689 Mol. % CuCl₂.
" 15° " 8.934 " % CuCl₂.

(Schreinemakers, C. C. 1911, II. 349.)

 $\text{CuCl}_2+2\text{H}_2\text{O}+\text{Aq}$ , sat. at 30° contains 43.95%  $\text{CuCl}_2$ . (Meerburg, C. C. 1904, II. 1362.)

43.95 g. anhydrous CuCl₂ are dissolved in 100 g. CuCl₂+Aq at 30°. (Schreinemakers, Arch. neer. Sc. 1910 [2], 15. 117.)

44.47% by weight anhydrous CuCl₂ is dissolved in H₂O at 35°. (Schreinemakers and Thonus, Verh. k. Akad. Wet. Amst. 1912, **21.** 333.)

Solubility of CuCl₂+2H₂O in ethyl alcohol +Aq at 11.5°.

Percent of ethyl alcohol by volume	Grams CuCl ₂ dissolved in 5 cc.
99.3	1.175
98.3	1.116
96.3	1.097
95.3	1.070
94.3	1.059

Anhydrous salt dissolves readily in absolute ethyl alcohol; CuCl₂+2H₂O is precipitated by H₂O.

Solubility of CuCl₂+2H₂O in ethyl alcohol+ Aq at 11.5° C. under addition of increasing amounts of CuCl₂.

P=Percent of ethyl alcohol by volume.

 $G = Grams \text{ of } CuCl_2 \text{ added.}$   $C_c = Grams \text{ of } CuCl_2 \text{ in 5 cc. of the solution.}$  $C_w = Grams of water in 5 cc. of the solution,$ calculated from

(1) the water content of the alcohol.

(2) the water of crystallization which had gone into solution.

(3) the water held mechanically in CuCl₂ +2H₂O.

P	G	Cw	Ce
89.3	0.000	0.794	1.137
90.3	"	0.744	1.122
91.3	"	0.695	1.104
92.3	"	0.648	1.090
94.3	"	0.561	1.096
95.3	4.	0.517	1.095
96.3	" .	0.478	1.116
97.3	"	0.440	1.140
98.3	"	0.396	1.194
99.3	"	0.369	1.208
"	0.223	0.330	1.295
"	0.444	0.290	1.395
"	0.665	0.270	1.506
"	0.887	0.247	1.639
"	1.106	0.223	1.772
"	1.324	0.205	1.921
"	1.540	0.191	2.086
"	1.739	0.179	2.236
"	1.957	0.164	2.400
	[	1	1

(Bödtker, Z. phys. Ch. 1897, 22. 506-507.)

100 pts. absolute ether dissolve 0.061 g.  $CuCl_2+2H_2O$ . (Bödtker, Z. phys. Ch. 1897, **22.** 511.)

0.11 pts. are sol. in 100 pts. ether at 16° " " 100 " 35°. 0.11 " 100 " acetone " " " ŏ°. 8.86 " " " 100 " " 13.5°. 8.92 (Laszczynski, B. 1894, 27. 2286 and 2287.)

Solubility in organic solvents at t°.

solubility in organic born	J.205 GC	٠.
Solvent	t°	Pts. of solvent required to dissolve 1 pt. CuCl ₂ +2H ₂ O at t°.
Pure methyl alcohol	20° 18.9	7.3 7.6
Ethyl alcohol (95°)	20.3 19.6	11.6 11.9
Pure acetone	22.1 20.0	43.6 44.2
90 pts. ethyl alcohol (98°) +10 pts. $_{\rm H_2O}$ "	21.8 23.0	9.0 8.5

Solubility in organic solvents	Solubility in organic solvents at t°.—Cont.		
Solvent	t°	Pts. of solvent required to dissolve 1 pt. CuCl2+2H2O at to	
80 pts. abs. alcohol +20 pts. H ₂ O	28.1 20.7	6.0	
80 pts. acctone +20 pts. H ₂ O	23.1 21.8	5.3 5.6	
80 pts. acetone +20 pts. methyl alcohol "	23.1 24.0	12.0 11.6	
10 pts, methyl alcohol +90 pts. ethyl alcohol (98°)	24.2 25.0	5.4 5.1	
20 pts. methyl alcohol +80 pts. ord. ether "	24.1 22.4	15.1 15.7	
80 pts. abs. alcohol +20 pts. ord. ether	24.1	8.8	
Comm. methyl alcohol	$egin{array}{c} 25.0 \ 23.9 \ 23.0 \ \end{array}$	8.5 5.4 5.6	
85 pts. pyridine +15 pts. H ₂ O	24.4 23.6	63.4 63.7	
60 pts. pyridine $+40$ pts. $H_2O$	27.3 28.0	26.7 26.2	
75 pts. $\alpha$ picoline +25 pts. H ₂ ()	26.1 25.1	51.6 52.3	
70 pts. a picoline +30 pts. H ₂ O	26.1	47.3	

(de Coninck, C. R. 1900, 131, 59.)

Solubility in organic solvents.

Sol. in propyl alcohol, hot glycol, hot glycerine, hot paraldehyde, hot crys. acetic acid, pure acetone, 30% methylamine + Aq, pure pyridine, pure α-picoline, acetonitrile; sl. sol. in isobutyl and amyl alcohols, crystallizable formic acid, ethyl acetate; insol. in cold glycol, cold glycerine, cold paraldehyde, benzaldehyde, cold crystallizable acetic acid, ord. ether, abs. ether, hot and cold CS₂, cold aniline, cold orthotoluidine, methylene chloride, ethyl iodide, propyl iodide, ethylene bromide, benzene, toluene, xylene, ligroin, nitrobenzene, cold piperidine and essence of terebenthine. (de Coninck, C. R. 1900, 131. 59.)

+5H₂O.

Aq. sol. at 35° contains 2.921 Mol. % CuCl₂.
15° " 1.11

(Schreinemakers, C. C. 1911, II. 349.)

Cuprous hydrogen chloride, CuCl,HCl. Sol. in H₂O. (Neumann, M. 1894, **15**. 493.)

Cupric hydrogen chloride, CuCl₂, HCl+3H₂O Decomp. by H₂O. Sol. in HCl+Aq below 0° .(Engel, C. R. **106**. 273.)

CuCl₂, 2HCl. Deliquescent. Very sol. in H₂O. (Alexander Dissert. 1899.) +5H₂O. Properties as above. (Sabatica C. R. 106. 1724.) CuCl₂3HCl. Sol. in H₂O. (Neumann M. 1894, 15. 493.)

Cupric gold (auric) chloride, CuCl₂, 2AuCl₃+6H₂O.

10% is sol. in H₂O at 18°. (Mylius, Zi anorg. 1911, **70.** 210.)

Cupric lithium chloride, CuCl₂, LiCl+2/2H₂O.

Decomp. on air. Decomp. by dissolving in H₂O. Sol. in conc. LiCl+Aq without decomp. Decomp. by alcohol. (Chassevant, A. ch. (6) 30. 33.) +2H₂O. (Meyerhoffer, W. A. B. 100, 2b. 621.)

Cupric mercuric chloride.

Easily sol. in H₂O. (v. Bonsdorff.)

Cupric mercuric potassium chloride, CuCl₂, 3HgCl₂, 6KCl+2H₂O.

Deliquescent in moist air. Sol. in boiling H₂O without decomp., and recrystallises if cooled slowly. Insol. in absolute alcohol. (v. Bonsdorff, Pogg. **33.** 81.)

Cuprous nitrosyl chloride, Cu₂Cl₂, 2NOCl.

Very deliquescent and sol. in  $H_2O$  with immediate decomp. (Sudborough, Chem. Soc. 59. 658.)

Cuprous potassium chloride, Cu₂Cl₂, 4KCl. Sol. in H₂O. (Mitscherlich, A. ch. **73**. 384.) For solubility data, see Cu₂Cl₂+KCl under cuprous chloride.

Cupric potassium chloride.

CuCl₂,KCl. (Meyerhoffer, Z. phys. Ch. 3. 336.)

Sol. in H₂O; only sl. sol. in conc. HCl+Aq. (Gröger, Z. anorg. 1899, 19. 330.)

CuCl₂, 2KCl+2H₂O. Sol. in H₂O and alcohol. (Berzelius, Pogg. 13, 458.)

The composition of the hydrates formed by this salt at different dilutions is calculated from determinations of the lowering of the fr. pt. produced by the salt and of the conductivity and sp. gr. of its aqueous solutions. (Jones, Am. Ch. J. 1905, 34. 322.)

For solubility data, see CuCl₂+KCl under cupric chloride.

Cupric rubidium chloride, CuCl₂, 2RbCl.

Easily sol. in H₂O and HCl+Aq. (Godeffroy, B. 8. 9.) +2H₂O. Sol. in H₂O. (Wyrouboff, J. B. 1887. 538.)

Cuprous sodium chloride.

Very sol. in H₂O.

24.5

#### Cupric sodium chloride.

Easily sol. in conc. NaCl+Aq. Sol. in alcohol of 0.837 sp. gr.

No double salt exists. (Schreinemakers and de Baat, Z. phys. Ch. 1909, 65. 586.)

Cupric thallic chloride, CuCl₂, 2TlCl₃. Sol. in H₂O. (Willm, A. ch. (4) 5. 55.)  $+6H_2O$ . Gan be cryst. from  $H_2O$ . (Gewecke, A. 1909, 366. 225.)

Cuprous chloride ammonia, Cu₂Cl₂, NH₃. (Lloyd, J. phys. Chem. 1908, 12, 399.) Ct. Cl., 2NH3. Decomp. by H2O or acids, not by alcohol. (Ritthausen, J. pr. 59. 369.)

Cu₂Cl₂, 3NH₃. (Lloyd, J. phys. Chem. 1908, **12**. 399.) Cú₂Cl₂, 6NH₃. (Lloyd, J. phys. Chem. 1908, **12.** 399.)

## Cupric chloride ammonia, CuCl₂, 2NH₃.

Decomp. by H₂O. (Kane, A. ch. **72**. 273.) CuCl₂, 4NH₃. Sol. in H₂O. (Bouzat, C. R. 1902, **135**. 294.)

+H₂O (Cuprammonium chloride). in H₂O and hot NH₄OH+Aq.

+2H₂O. Sol. in small amt. of H₂O. Cu(OH)₂ is pptd. by dilution. A. ch. 1903, (7) 29. 350.)

CuCl₂, 5NH₃. (Bouzat, A. ch. 1903, (7) 29.

**350**.) +1½H₂O. Sol. in H₂O. On dilution Cu(OH)₂ is pptd. Sol. in NH₄OH+Aq; solubility decreases as NH₃ concentration increases. (Bouzat, A. ch. 1903, (7) 29. 350.) Completely sol. in H₂O. CuCl₂, 6NH₃. (Rose, Pogg. 20. 55.) Sol. in H₂O but decomp. by great dilution

with pptn. of Cu(OH)2.

Insol. in liquid NH₃. (Bouzat, A. ch. **1903**, (7) **29**, 350.)

Cuprocupric chloride ammonia, Cu₂Cl₂, CuCl₂,  $4NH_3+H_2O$ .

Decomp. by H₂O or alcohol. Abundantly sol. in NH₄Cl+Aq, but with partial decomposition. (Ritthausen.)

Cupric chloride ammonia platinous chloride, Cocl₂, 4NH₃, PtCl₂.

See Platodiamine cupric chloride.

## Cuprous chloride carbon monoxide, Cu₂Cl₂, 2CO+4H₂O.

Very sol. in HCl (sp. gr. 1.19) with evolution of CO. Sol. in NH₄OH+Aq. (Man-

chot and Friend, A. 1908, 359. 110.)

2Cu₂Cl₂, CO+2H₂O. Insol. in H₂O. (Ber-

thelot, A. ch. 1856, (3) **46.** 488.) 4Cu₂Cl₂,3CO+7H₂O. Insol

Insol. in H₂O but decomp. therewith very quickly. Sol. in Cu₂Cl₂+HCl.

Cupric chloride hydrazine, CuCl2, 2N2H4. Easily decomp. (Hofmann and Marburg. A. **18**99, **305**, 222.)

Cuprous chloride mercuric sulphide, Cu₂Cl₂. 2HgS.

Insol. in H₂O; sol. in conc. hot HCl+Aq; not decomp. by boiling dil. H₂SO₄+Aq, but decomp. by conc. H₂SO₄. (Heumann, B. 7. 1390.)

## Cuprous fluoride, Cu₂F₂.

Insol. in H₂O or HF. Sol. in conc. HCl+ Aq, from which it is precipitated by H₂O. Insol. in alcohol. (Berzelius, Pogg. 1. 28.)

Decomp. by H₂O into sol. CuF₂. Sol. in boiling HCl+Aq and in HNO3+Aq. Only sl. attacked by warm H₂SO₄. (Poulenc, C. R. **116.** 1447.)

#### Cupric fluoride, CuF₂.

Easily takes up H₂O to form CuF₂+2H₂O. Sol. in HCl, HNO2, or HF+Aq. (Poulenc, C. R. **116.** 1448.)

## Solubility at 25° in HF+Aq.

Normality of HF+Aq.	g. atoms Cu in 1000 c. c. of solution
0.12	0.0307
0.28	0.1164 *
0.57	0.2494
1.08	0.388
2.28	0.463

Solubility is decreased by presence of KF. (Jaeger, Z. anorg. 1901, 27, 29.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

Insol. in methyl acetate (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann. B. 1910, 43. 314.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329.)

+2H₂O. Sl. sol. in cold, decomp. by hot H₂O. (Berzelius.)

# Cupric hydrogen fluoride, CuF₂, 5HF+5H₂O.

Deliquescent.

Easily sol. in H2O and dil. acids. Sol. in NH₄OH+Aq with decomp. (Böhm, Z. anorg. 1905, 43, 329.)

Cupric potassium fluoride, CuF2, 2KF.

Easily sol. in H₂O. CuF₂, KF. Very sl. sol. in H₂O; sl. sol. in dil. acids. (Helmholt, Z. anorg. 3. 115.)

Cupric rubidium fluoride, CuF2, RbF.

As the K salt. (Helmholt.)

Cupric silicon fluoride. See Fluosilicate, cupric.

'	•••	
Copper stannic fluoride.  See Fluostannate, copper.	,	
Copper tantalum fluoride.	** \$	
See Fluotantalate, copper.		₩.
Copper titanium fluoride.		
See Fluotitanate, copper.		
Copper tungstyl fluoride.		
See Fluoxytungstate, copper.		
Copper zirconium fluoride.  See Fluozirconate, copper.		
Cupric fluoride ammonia, Cu	1F ₂ , 4NH	.+

5H₂O.

Decomp. rapidly in the air.

Easily sol. in H₂O.

Decomp. by boiling with H2O with evolution of NHa.

Easily sol. in dil. acids. (Böhm, Z. anorg. 190**5**, **43**, 333.)

## Cuprous hydride, CuH.

Insol. in H₂O. Sol. in HCl+Aq. (Wurtz, C. R. 18. 102.)

Sor in warm conc. HCl with decomp. (Bartlett, Am. Ch. J. 1895, 17. 187.)

#### Cupric hydride, CuH₂.

Sol: in HCl with decomp. (Bartlett, Am. Ch., J. 1895, 17. 187.)

# Copper hydrosulphide, 7CuS, H₂S.

(Linder and Picton, Chem. Soc. 1892, 61. 120.)

9CuS, H₂S. (Linder and Picton.) 22CuS, H₂S. (Linder and Picton.)

## Cuprous hydroxide, $Cu_2O$ , $xH_2O$ .

Sol. in acids as cupric salt. Insol. in NaOH, or KOH + AqSol. in NH₄OH, and (NH₄)₂CO₃+Aq; sol. in  $Na_2S_2O_3+Aq$ .

Cuprocupric hydroxide, CuOH, 3Cu(OH)₂ +3H₂O.

Sol. in acids. (Francke, Dissert. 1907.)

## Cupric hydroxide, 3CuO, H₂O.

Insol. in H₂O or dil. alkalies. Easily sol.

in warm NH₄Cl+Aq. (Rose.)

Much more difficultly sol. than CuO₂H₂ in KOH+Aq. (Chodnew, J. pr. 28, 220.)

True composition is 6CuO, H₂O.

See also Cupric oxide. CuO₂H₂. Insol. in H₂O, but decomp. into 6CuO, H₂O by being boiled therewith. Extremely easily sol, in acids.

Sol. in NH₄OH, and NH₄ salts + Aq.

## Solubility in NH4OH 4Aq at 25°.

NH, nerm.	g. Cu per l.	equiv. CuO ₂ H ₂ per l.
2.63 2.00	3.05 2.12	0.096 0.067
32	1.08	0.034
2.540	6.26	0.197
1 965 1.280	6.28	0.166 0.129
0.973 0.870	3.36	0.106 0.097
0.540	2.36	0.074
0.391	2.04	0.064
$\begin{matrix}3.176\\2.070\end{matrix}$	8.06 5.72	0.253 0.180
1,272 9,451	4.75 2.54	0.149 0.080
0.320	2.13	0.067

The non-agreement of the results is due to the presence of different modifications of CuO2H2.

(Bonsdorff, Z. anorg. 1904, 41, 182.)

## Solubility in NH₄OH+Aq at 18°.

•	-
NH3 mols per l.	Cu g. atoms per l.
0.20	0.00054
0.50	0.0033
1.0	0.0109
1.5	0.0204
2.0	0.0314
2.5	0.0442
3.0	0.0548
4.0	0.0784
5.0	0.1041
6.0	0.1254
8.0	0.1599
9.96	0.1787
2.00	1 2.2.0.

(Dawson, Z. phys. Ch. 1909, 69. 111.)

Sol. in cold NaOH, or KOH+Aq (Proust): but CuO is pptd. on boiling (Berthollet); is (Chodnew, J. pr. 28. 220.) not pptd.

Insol. in NaOH or KOH+Aq unless they contain organic matter (Berzelius). This is contradicted by Volcker (A. 59. 34).

Entirely sol. in conc. KOH+Aq, but solution is decomp. by heating. (Fremy, A. ch. (3) 12. 510.)

Sol. in NaOH+Aq (70% NaOH). (Löw. Z. anal. 9. 463.)

The solubility in NaOH of CuO₂H₂, prepared either from CuSO4 or Cu(NO3)2, decreases with decrease in concentration of the base. The solubility of CuO2H2 in NaOH is only very slightly affected by the addition of sodium or potassium carbonate. (Fischer, Z. anorg. 1904, 40, 41.)

Solubility of crystalline CuO₂H₂ in ammoni- Solubility of crystalline CuO₂H₂ in ammoniacal Ba(OH), and NaOH solutions at

Solvent contains per litre	Cu concentra- tion g. atoms per l.
l mol. NH ₃ +0 mol. Ba(OH) ₂	
" +0.0025 "	0.00907
" $+0.005$ "	0.00801
" +0.01 "	0.00633
" +0.02 "	0.00526
2 mols. $NH_3+0$ mol. $Ba(OH)_2$	0.0314
" +0.01 "	0.0277
$1 \text{ mols. NH}_3 + 0 \text{ mol. Ba(OH)}_2$	0.0784
+0.01	0.0747
mol. NH _s +0 mol. NaOH	0.0109
* +0.01 "	0.00766
" $+0.02$ "	0.00655
" +0.03 "	0.00531
" +0.05 "	0.00456
" +0.10 "	0.00410

Solubility of crystalline CuO₂H₂ in ammoniacal salt solutions at 18°.

		acai sait soit	I LIOLIS at 10	•
ļ. <del></del>	Sc	olvent contains pe	er litro	Conc. of dis- solved Cu. g. atoms per l.
1 mg	ı. NH	(3		0.0109
		NH ₃ +0 01 mol.	(NH ₄ ) ₂ SO ₄	0.00129
0.00	14	+0.025	44	0.00511
0.1	mol.	NH3+0.01 mol.	(NH ₄ ) ₂ SO ₄	0.00326
0.2	**	+0.025	"	0.0108
		+0.05	"	0.0233
0.2	mol.	NH3+0.00 mol.	(NH ₄ ) ₂ SO ₄	0.00054
· · -	"	+0.01	**	0.00649
	**	+0.025	**	0.0175
	**	+0.05	**	0.0384
	44	+0.10	**	0.0690
0.5	mol.	NH ₃ +0.00 mol.	(NH ₄ ) ₂ SO ₄	0.0033
0.0	"	+0.01		0.0127
	**	+0.025	**	0.0284
	44	+0.05	**	0.0536
	**	+0.10	"	0.1013
	44	+0.20	"	0.1844
1.0	mol	NH ₈ +0.00 mol.	(NH ₄ ) ₂ SO ₄	0.0109
1.0	**	+0.01	` " "	0.0210
	14,	+0.025	**	0.0386
	**	+0.05		0.0660
	** **	+0.10		0.1185
t., '		+0.20	**	0.2275
	44	+0.40	"	0.4135
2	mol.	NH3+0.00 mol.	(NH ₄ ) ₂ SO ₄	0.0314
-	**	+0.01	` ,,	0.0462
	**	+0.025	**	0.0605
	**	+0.05	**	0.0886
	**	+0.10	"	0.1468
	**	+0.20	**	0.2591
	**	+0.40	**	0.4718
3	mol	NH ₃ +0.00 mol.	(NH4)2SO4	0.0548
-	"	+0.01	**	0.0672
	**	+0.025	**	0.0847
		+0.05	**	0.1156
_	_	.,		1

acal salt solutions at 18°-Continued

Solv	ent contains	per litre	Conc. of dis- solved Cu. g. atoms per l.
3 mol. N	H ₃ +0.10 mo	l. (NH4)28O4	0.1740
"	+0.20	"	0.2861
**	+0.40	**	0.5044
4 mol N	H ₃ +0.00 mol	(NH ₄ ) ₂ SO ₄	0.0784
"	+0.01	11	0.0922
**	+0.01	**	0.1101
	+0.05	**	0.1397
"	+0.03	**	0.1397
	+0.10	"	0.2002
	+0.40		0.5451
5 mol. N	$H_3+0.00 \text{ mo}$	I. (NH4)28U4	0.1041
	+0.01		0.1154
	+0.025		0.1320
**	+0.05	"	0.1639
**	+0.10		0.2239
**	+0.20	**	0.3415
44	+0.40	**	0 \$5615
1 mol. N	H ₃ +0 00 mo	l. Na ₂ SO ₄	0.0109
44	+0.025	**	0.0134
**	+0.10	**	0.0162
**	+0 20		0.0192
**	+0 40		0 0784
4 mol. N	H ₃ +0.10 mo	l. Na ₂ SO ₄	0.0994
	+0.20	"	0.1161

(Dawson, Chem. Soc. 1909, 95. 37

Sl. sol. in alkali carbonates + Aq, especially

KHCO₃ and NaHCO₃. (Berzelius.) *
Sol. in cold Na₂S₂O₃+Aq, but pptd. on warming. (Field, Chem. Soc. (2) 1. 28,) Partially sol, when freshly pptd. in KCN

+Aq. (Rodgers, 1834.)
Sol. in (NH₄)s₂O₅+Aq. (Moreau, Apoth.
Ztg. 1901, 16. 383.)
Sol. in MSCN+Aq.; more difficulty sol.
in NH₄SCN+Aq than ZnO₂H₂. (Grossmann, Z. anorg. 1908, 58. 269.)

Very col. in bydroxydoning. (Japanech

Very sol. in hydroxylamine. and Cohen, J. pr. 1905, (2), 72. 14.)
Insol. in acetone. (Eidmann, C. C.

II. 1014.)

Sol. in large amt. in  $NaC_2H_3O_2+Aq$ . Mercer, 1844.) Not pptd. in presence of Na citrate

ler.) Insol. in cane sugar + Aq, unless an alkali or alkaline earth is present. (Peschier.)

Recently pptd. CuO₂H₂ is easily sol, in cane sugar with NaOH, KOH, or CaO2H2 Aq; less sol. in presence of SrO₂H₂ or BaO₂H₂. (Becquerel.)

Not pptd. by KOH+Aq in solutions containing tartaric acid, cane sugar, and many other non-volatile organic substances.

Sol. in Ca, Ba, Sr, K or Na sucrates + Aq, and ppts. of double sucrates form when solutions of the first three bases are heated, but no ppt. forms in the last two cases even at 100°. (Hunton.)

Insol, in simple Ca, Ba, or K sucrates + Aq, but immediately sol. when an excess of cane sugar + Aq is present. (Peligot.)

Moderately sol. in amyl amine, easily sol. in methyl, less in ethyl amine. (Wurtz.)

Sol. in sorbine + Aq. (Pelouze.)

Not pptd, in presence of aromatic oyxacids or phenols of the ortho series. Thus in presence of salicylic acid, pyrocatechir, gallic acid, pyrogallic acid, etc., NaOH+Aq does not ppt. CuO₂H₂ from Cu solutions, but pptn. is not prevented by benzoic acid, resorcin, hydroquinone, etc. (Weith, B. 9. 342.)

Sol. in solutions of alkali salts of "spaltungeprodukte" of albumen. (Kalle and

Co, Pat. 1901.)

Sol. in starch emulsion which has become thin liquid in an alternating magnetic field. (Rosenthal, C. C. 1908, I. 593.)

CuO, 2H₂O. (Rubénovitch, C. R. 1899, 129. 336.)

CuO, 3H₂O. (Kosmann, Z. anorg. 1893, **3.** 373.) 2CuO, 3H₂O. (Cross, Gm.—K. 5. 1, 753.) 4CuO, H₂O. lnsol. in NH₄OH+Aq. (Mailhe, A. ch. 1902, (7) 27. 393.)

Cupric hydroxide ammonia, CuO2H2, 4NH3. Present in ammoniacal solution of CuO₂H₂. (Dawson, Z. phys. Ch. 1909, 69. 110.)

## Cuprous imide, Cu2NH.

Decomp. at 160° forming Cu₂N. Readily hydrolysed by H₂O.

Sol. in liquid NH₃ solutions of NH₄NO₃. (Franklin, J. Am. Chem. Soc. 1912, 34. 1502.)

#### Cuprous iodide, Cu₂I₂.

Insol. H₂O, or dil. acids. Calculated from electrical conductivity of Cu₂I₂+Aq, 1 l. H₂O dissolves about 8 mg. Cu₂I₂ at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

Sol. in conc. H₂SO₄. (Vitali, Gm.—K.

Sol. with difficulty in conc. HCl+Aq.

Decomp. by conc. HNO₃, or H₂SO₄. Insol.
in NaCl, KNO₃, Na₂SO₃, KBr, or NH₄Cl+
Aq. Sol. in NH₄OH, Na₂SO₃, KCN, or KI+ Aq. (Remault, C. R. 59. 558.)

Appreciably sol. in N/10 HCl. Practically insol. in N/10 H₂SO₄. (Moser, Z. anal. 1904,

Results of experiments on solubility of Cu₂I₂ in I₂+Aq in presence of acids and salts are given by Bray and MacKay.

Cu₂I₂ was found to be sl. sol. in H₂O but a considerable amt. dissolves in presence of  $I_2$ , owing to formation of  $CuI_2$  and  $CuI_3$ . (J. Am. Chem. Soc. 1910, 32. 1207.)

Solubility of Cu₂I₂ in I₂+Aq at 20°.

g. per l.		Cattl Dhase	
Ĉu	I	Solid Phase	
0.285	0.585	Cu ₂ I ₂	
0.482 0.583 *	1.305 1.922	"	
$0.678 \\ 0.756$	2.557 3.204	44	
0.844 0.898	3.954 4.436	"	
0.064	5.085		
1 032 1.090	$\frac{5.685}{6.282}$	¥1 .	
$\frac{1.112}{1.232}$	6.530 7 653	$Cu_2I_2+I_2$	
1.040 0.898	6.449 5.594	$I_2$	
0.718	4.711	"	
0.606 0.448	$3.856 \\ 2.949$	"	
$0.300 \\ 0.159$	$\frac{2.069}{1.230}$	ee %.	
0.925 * 1.658**	5.461 11.366	$Cu_2I_2+I_2$	
1.008	11.300		

* at 0°. ** at 40°.

(Fedotieff, Z. anorg. 1911, 69. 26.)

Solubility in NH₄Br+Aq at 20°.

NH ₄ Br+Aq.	g. Cu ₂ I ₂ in 1 l. of the solution
2-N 3-N 4-N	1.9068 3.6540 6.0588

(Kohn and Klein, Z. anorg. 1912, 77. 254.)

Sol. in FeCl₃+Aq. (Fleischer, C. N. 1869, **19.** 206.)

## Solubility in KBr+Aq at t°.

t°	KBr+Aq.	g. Cu ₂ I ₂ in 1 l. of the solution
19.5	2-N	1.4666
24.0	2-N	1.5576
19.5	3-N	3.4094
23.0	3-N	3.5949
22.0	4-N	7.1263
22.0	4-N	6.9768

The solutions undergo change in the course of a few days, iodine being set free; the solubility of the cuprous iodide is not markedly affected thereby.

(Kohn, Z. anorg, 1909, 63, 337.)

1 l. of a 0.2N solution of KI dissolves 0.000157 g. mol. Cu₂I₂. anorg. 1902, **31**. 475.) (Bodländer, Z. Very sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Insol. in CS2. (Arctowski, Z. anorg. 1894,

Practically insol, in methylene iodide.

(Retgers, Z. anorg. 1893, 3. 347.) Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in acetone (Naumann, B. 1904, **37.** 4329); (Eidmann, C. C. **1899**, II, 1014.) 100 g. acetonitrile dissolve 3.52 g. Cu₂I₂ at 18°. (Naumann and Schier, B. 1914, 47. 249.)

Min. Marshite. (Gm.—K. 5. 1, 945.)

Cupric iodide, CuI₂,

Exists only in very dil. aqueous solution. (Traube, B. 17. 1064.)

Copper periodide, Cul₄.

Sol. in H₂O. (Walker and Dover, Chem. Soc. 1905, 87. 1588.)

Copper ammonium iodide ammonia. See Cupriammonium iodide ammonia.

Cuprous mercuric iodide, Cu₂I₂, HgI₂. KI+Aq dissolves out HgI₂.

Cuprous mercuric iodide ammonia, CuI2, 2HgI₂, 4NH₂.

Decomp. by H₂O or acids. Sol. in a mixture of acetic acid and alcohol.

CuI₂, HgI₂, 4NH₃. As above. (Jörgensen, **J.** pr. (2) **2**. 347.)

Cupric nitrogen iodide, CuI₂, N₂H₄I₂. Decomp. by H₂O; or NH₄OH+Aq. (Guyard, C. R. 97. 526.)

Cupric thallic iodide ammonia, CuI2, 2TII3,

Decomp. slowly by H₂O. Sol. in NH₄OH+ Aq with decomp. Sol. in alcohol.

Cuprous iodide ammonia, Cu2I2, NH3.

Ppt. (Anderline, Gazz. ch. it. 1912, 42. I. 321.)

+4H₂O. Insol. in H₂O. Very sol. in NH₄OH+Aq. (Silberrad, Chem. Soc. 1905, **87**. 67.)

Cu₂I₂, 3NI 1908, **12**. 399.) 3NH₈. (Lloyd, J. phys. Chem.

Cu₂I₂, 4NH₃. (Levol, J. Pharm. 4. 328.) +H₂O. (Saglier, C. R. 104. 1440.) Cu₂I₂, 6NH₃. (Lloyd.)

Cupric iodide ammonia, CuI₂, 4NH₃+H₂O.

Decomp. by H₂O. Sol.in NH₄OH+Aq a cupric salt and Cu. Corwithout decomp. Not attacked by cold Aq into cuprous chloride.

alcohol or ether. (Berthemont, J. Pharm. **15.** 445.) (Pozzi-Escot, C. R. 1900, **130.** 90.) CuI2, 6NH3. Sol. in liquid NH3. (Horn; Am. Ch. J. 1908, 39. 205.)

3CuI₂, 10NH₂. Decomp. by H₂O. (Richards, Am. Ch. J. 1895, 17. 302.)

Sol. in liq. NH₃. (Horn, Am. Ch. J. 1908. 39. 204.)

Cupriammonium iodide ammonia, 3Cu(NH₈)₂I₂, 4NH₈.

Decomp. by air and by H₂O. (Richards, Am. Ch. J. 1895, 17. 302.

Copper periodide ammonia, 2CuI, I4, 5NH3  $+H_{\bullet}O.$ 

Because of its insolubility it cannot be recryst from any solvent. (Silberrad, Chem. Soc. 1905, **87.** 66.)

Copper tetraiodide, ammonia, CuI4, 4NH3. (Jörgensen, J. pr. (2) 2. 353.)

Copper hexaiodide ammonia, CuI₆, 4NH₈. Not decomp. in H₂O in closed vessels. (Jörgensen.)

Copper mercuric iodide ammonia, CuHg₈I₆, 5NH₈.

CuHgI₃, 2NH₃. Ppt. Decomp. by H₂O and by alcohol.

CuHg₂I₅, 3NH₃. Ppt. Decomp. by long washing with H₂O.

CuHg₂I₅, 4NH₃. Ppt. Decomp. by H₂O. Sl. attacked by abs. alcohol. CuI₂, HgI₂, 4NH₃. Ppt. (Anderline, Gazz. ch. it. 1912, **42**, (1) 321; C. C. 1912, II. 95.)

Copper nitride, Cu₆N₂.

Decomp. by dil. or conc. acids. Easily decomp. by H₂O when thely pow-Easily decomp. by 1120 will dered. (Rossel, C. R. 1895, 121. 942.)

Copper suboxide, Cu4O.

Not attacked by H₂O. Decomp. by dil. H₂SO₄+Aq into Cu and CuSO₄; dil. HCl+Aq has similar action. Not attacked by NH₄OH +Aq or NH₄OH+(NH₄)₂CO₂+Aq. (Rose, Pogg. 120. 1.)

Cu₂O. Not attacked by dil. or conc. min. acids, even aqua regia. Slowly sol. in HF+ Aq. (Bailey and Hopkins, Chem. Soc. 1890, **57.** 272.)

Is a solution of oxide in Cu. (Jordis, Zeit. angew. Ch. 1908, 21. 51.)

Cuprous oxide, Cu₂O.

Insol. in H₂O. Decomp. by H₂SO₄+Aq, H₂PO₄+Aq, or cold very dil. HNO₃+Aq into a cupric salt and Cu. Converted by HCl+

Solubility	or Cu ₂ O in	NA ₄ OA +A	Aq at 25°.	
Conc. of	total Cu	Cone. of	total NH1	
G. in 1000 g. of solution	G. mol. in 1000 g. of solution	G. in 1000 g, of solution	G. mol. in 1000 g. of solution	
Preparation I				

1 114 - of Clar O in MIT OIL 1 A - of OFO

of solution	solution	of solution	solution
Preparation I			
0.3593 0.5024 0.6869 0.6964 1.0144 1.0462 1.0557 1.2243 1.3229 1.4882 1.5105 1.6313 1.6981	0.00566 0.00791 0.01080 0.01095 0.01597 0.01645 0.01660 0.01924 0.02081 0.02340 0.02375 0.02565 0.02670	3.91 12.07 13.77 16.15 27.03 32.64 36.89 45.73 68.68 74.12 81.26 98.52 122.40	0.23 0.71 0.81 0.95 1.59 1.92 2.17 2.69 4.04 4.36 4.78 5.56 7.20
		1 1	

## Preparation II

(Donnan and Thomas, Chem. Soc. 1911, 99. 1791.)

Sol. in boiling NH₄Cl+Aq. (Rose.) Sl. sol. in excess of KOH+Aq. (Cho (Chodnew.) Sol. in conc. MgCl₂, and FeCl₂+Aq. (Hunt, C. R. 69. 1357.)

Sl. attacked by liquid NH3. (Gore, Am. Ch. J. 1898, **20.** 827.)

Min. Cuprite. Sol. in HCl, HNO3, and  $NH_4OH + Aq.$ 

Cupric oxide, CuO.

Insol. in H₂O. Easily sol. in acids. Sol. in H₂SO₂+Aq. Insol. in NH₄OH+Aq. but dissolves on addition of a few drops of acid or (NH₄)₂CO₃+Aq. Insol in dil, but sol in warm conc. NaOH, and KOH+Aq. (Low, Z. anal. 9. 463.)

CuO prepared at a low temp. is easily sol. in dil. acids, but when ignited is slowly sol. in boiling conc. acids, but moderately rapidly in a cold mixture of NH₄I+HCl. (Joannis, C. R. 1886, 102. 1161.)

Solubility in N-HNO₃. 1 l. of the solution contains 0.4802 g. atoms Cu at 25°. (Jaeger, Z. anorg. 1901, 27, 33.) Solubility of CuO in HF+Aq at 25°.

	Time	G. CuO in 10 ccm. of the solution
0.25N-HF	1½ hrs. 3¾ " 25¼ " 71½ " 170½ "	0.0431 0.0619 0.0812 0.0823 0.0907
N-HF (a)	5½ " 21½ " 52 " 201½ " 226½ "	0.3018 0.2797 0.2747 0.2339 0.2353
N-HF (b)	4½ " 44¼ " 117¾ " 167¾ "	0.3220 0.2930 0.2431 0.2219
2.02N-HF	1½ " 5 " 71½ " 156½ "	0.3646 0.4533 0.3583 0.3311

(Deussen, Z. anorg. 1905, 44, 421.)

Solubility of CuO in HF at 25°. Cu = g-atoms Cu in 1 l. of the solution.

HF normality	Cu
0.12	0.0307
0.28	0.1164
0.57	0.2494
1.08	0.388
2.28	0.463

(Jaeger, Z. anorg. 1901, 27. 29.)

Solubility of CuO in HF+KF at 25°. Cu = g-atoms Cu in 1 l. of the solution.

HF normality	Cu
0.12	0.0356
0.28	0.06437
0.57	0.1442
1.11(1.08)	0.2451
2.17(2.28)	0.2517

(Jaeger, l. c.)

Sl. sol. in large excess of KOH+Aq. Coninck, C. C. 1904, II, 65.)

Slowly sol. in boiling NH₄Cl+Aq, and

Slowly sol. in boiling NH₄Cl+Aq, and less easily in NH₄NO₃+Aq. (Rose.)
Sol. in boiling H₂O solutions of Al₂, Gl, U, Cr₃, Fe₂, or Bi nitrates and chlorides, Hg(NO₂)₂, Hg₂(NO₃)₂, SbCl₃, SnCl₂, and SnCl₄, with pptn. of oxides of the bases of those salts. Unacted upon by boiling H₂O solutions of Mn, Mg. Ni, Co, Zn, Ce, or

Fe nitrates or chlorides, AgNO₃, Pb(NO₃)₂, Cd(NO₃)₂, and HgCl₂. (Persoz.)

Pure CuO is very sl. sol. in NH₄OH+Aq

but the solution is greatly increased by the addition of NH₄ salts. (Muthmann, C. C. 1904. II, 410.)

Sol. in hot (NH₄)₂SO₄ or (NH₄)₂SO₂+Aq. (Jumau, Electrochem. Ind. 1908, 6. 258.)

15% dissolves in  $(NH_4)_2CO_3+Aq$  in 24 hrs. (Schnabel, Z. B. H. Sal. 1880, 28. 282.) Sl. attacked by liquid NH₁. (Franklin, Am. Ch. J. 1898, 20. 827.) Solubility in N-acetic acid. 1 l. of the solu-

tion contains 0.1677 g-atoms Cu at 25°. (Jaeger, Z. anorg. 1902, 27. 33.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Sl. sol. in benzamide. (Dessaignes, A. ch. 1852, (3), **34.** 146.)

Insol. in piperidine. 1852, **34.** 481.) (Cahours, C. R.

Sol. in acid amines as asparagin. (Piria, A. ch. 1848, (3), 22. 160.)

Sol. in amines alone or mixed with NH₃. (Lance, Dissert. 1905.)

Slowly sol. in Ca or any other alkali sucrate+Aq, but not in cane sugar+Aq. (Hunton.)

Solubility in (calcium sucrate+sugar)+Aq. 1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 10.26 g. CuO.

1 l. solution containing 296.5 g. sugar and

24.2 g. CaO dissolves 5.68 g. CuO.
1 l. solution containing 174.4 g. sugar and 14.1 g. CaO dissolves 3.47 g. CuO. (Bodenbender, J. B. **1865.** 600.)

Polypeptides in aqueous solution dissolve CuO by short boiling. (Fischer, B. 1906, 39.

 $+\frac{1}{6}H_2O = 6CuO + H_2O$ . Insol. in dil., but sol. in conc. KOH or NaOH +Aq.

Sol. in volatile oils.

See also Cupric hydroxide. Min. Melaconite. Sol. in HCl, or HNO2+ Aq.

Cuprocupric oxide,  $Cu_5O_3 = 2Cu_2O$ , CuO.

(Favre and Maumené.)

Cu₃O₂+H₂O = Cu₂O, CuO+H₂O. When freshly pptd., sol. in HCl+Aq, but insol. after drying. (Siewert, J. B. **1866**. 257.) Cu₄O₃ = Cu₂O, 2CuO. (Siewert.) All oxides of Cu except Cu₄O, Cu₂O, CuO,

and CuO₂ are mixtures. (Osborne, Sill. Am. J. (3) **32**. 33; Debray, C. R. **99**. 583.)

Copper dioxide,  $CuO_2 + H_2O$ .

Insol. in H₂O. Decomp. by acids with formation of cupric salt and H₂O₂. (Weltzien, A. 140. 207.)

Cuprous oxide ammonia (cuprosammonium oxide).

Known only in solution. (Wagner, C. C. **1863.** 239.)

Cupric oxide ammonia (cuprammonium hydroxide), 3CuO, 4NH₂+6H₂O.

Insol. in H₂O. (Kane, A. ch. 72. 283.) CuO, 4NH₁+4H₂O. Very deliquescent. Decomp. in the air and by H₂O. (Malaguti and Sarzeau, A. ch. (3) 9. 438.)

Cuprous oxybromide, Cu₂Br₂, CuO+H₂O. (Spring and Lucion, Bull. Ac. Belg. (3) 24. 21.)

Cupric oxybromide, CuBr₂, 3CuO+3H₂O.

Insol. in H₂O. Easily sol. in dil. acids or NH₄OH+Aq. (Brun, Č. R. 109. 66.)
Insol. in H₂O but decomp. by continued boiling. Sol. in conc. acetic acid, sl. sol. in conc. CuBr₂+Aq. Insol. in dil. KBr+Aq. (Richards, Proc. Am. Acad. 1890, 25. 215.)

Cupric oxybromide ammonia, 2CuO, CuBr₂,  $2NH_2+3H_2O$ .

(Kohlschütter and Pudschies, B. 1904, 37. 1159.)

Cuprous oxychloride, Cu₂Cl₂, CuO+3H₂O. (Spring and Lucion, Bull. Ac. Belg. (3) **24.** 21.)

Cupric oxychloride, CuO, CuCl₂+H₂O.

Decomp. by H₂O. (Rousseau, C. R. 1890, **110**. 1263.)

2CuO, CuCl₂. Insol, in H₂O. Sol. in HCl -Aq, from which it is reprecipitated by dilution with H2O.

+H₂O. (Kane, A. ch. 72. 277.)

(Gladstone, Chem. Soc. 8. 211.)  $+4\mathrm{H}_2\mathrm{O}$ . 3CuO, CuCl₂+2H₂O. (Miller and Kenrick, Trans. Roy. Soc. Can. 1901, (2) 8, III. 35.)

 $+3H_2O$ . (Dupont and Jansen, Bull.

Soc. 1893, (3), 9. 193.) +3½H₂O. Insol. in cold H₂O, sl. decomp. by boiling. (Reindel, J. pr. 106. 378.)

Insol. in boiling H₂O. (Habermann, W. A. B. **90.** 2. 268.)

+4H₂O. Sol. in alkaline solution of KNa tartrate. (Gröger, Z. anorg. 1902, 31. 327.) (Brunswick green). Insol, in H₂O. Easily sol. in acids.

Min. Atacamite. Sol. in acids, and NH4OH +Aq.

Sol. in cold sat. citric acid+Aq. (Bolton, B. 1880, **13.** 732.)

4CuO,  $CuCl_2+6H_2O$ . (Kane, Gm.-K. **5.** 1, 919.)

+8H₂O. Min. Tallingite. (Church, Gm. K. 5. 1, 919.)

5Cu(OH)₂, Cu₂Cl₂Cl(OH). Insol. in H₂O. Decomp. by hot H₂O. (Kühling, B. 1901, **34.** 2852.)

7CuO, 2CuCl₂+9H₂O. (Reindel.) 6CuO, CuCl₂+9H₂O. Insol. in  $H_2$ O. Sol. in acetic acid. (Neumann, Repert, 37. 304.) 8CuO, CuCl₂+12H₂O. Min. Footei (König, Zeit. Kryst. 1891, 19. 601.)

Cupric zinc oxychloride, ZnO, 2ZnCl2, 5CuO  $+6H_{2}O.$ 

(André, C. R. 1888, 106. 855.)

Cupric oxychloride ammonia, 2CuO, CuCla,  $2NH_3+3H_2O$ .

(Dehérain, Gm.—K. 5. 1, 932.)

Cupric oxyfluoride, CuO, CuF2+H2O.

Insol. in H₂O. (Berzelius.) (Balbiano, Gazz. ch. it. 14. 74.)

Cupric oxyfluoride ammonia (cuprammonium oxyfluoride), Cu(OH)F, 2NH₂,

(Balbiano, Gazz. ch. it. 14. 74.) 3CuO, CuI₂+xH₂O. (Tschiriwinski, Gm. -K, 5. 1, 1584.)

Cuprous oxyiodide, Cu₂I₂, CuO+H₂O. (Spring and Lucion, Bull. Ac. Belg. (3) **24.** 21.)

Cupric oxylodide, 2CuI₂, CuO +4H₂O.

Easily decomp. by H₂O. (Carnegie, Watts' Dict. II, 257.)

Copper oxysulphide, 2Cu₂S, CuO.

Insol. in H₂O. (Maumené, A. ch. (3) 18. 311.

5CuS, CuO. Ppt. (Pelouze.) 2CuS, CuO. Insol. in H₂O. CuS, CuO. Insol. in H₂O.

Above comps. do not exist. (Pickering, Chem. Soc. 33. 136.)

Copper phosphide, Cu₆P₂.

Easily sol. in HNO₃ or aqua regia; insol. in

HCl+Aq. (Rose, Pogg. 6. 209.)

Sol. in HNO3 and Br2+Aq. Decomp. by hot conc. H₂SO₄. (Rubénovitch, C. R. 1899, **128**. 1399.)

Cu₂P. Sol. in HNO₃+Aq. (Granger,

A. ch. 1898, (7), 14. 64.)

Crystallized. Completely sol. in hot HNO₃, aqua regia and HF+HNO₃. Slowly sol. in hot HCl or H₂SO₄. Not attacked by hot or cold HF or acetic acid. (Maronneau, C. R.

1899, **128.** 939.)

Cu₃P₂. Easily sol. in HNO₃. Sol. in hot conc. H₂SO₄. Sol. in conc. HCl+Aq before the phosphide has been heated. (Rose, Pogg.

Cu₂P₂. Easily sol. in HNO₃, or HCl+Aq. Sol. in NH₄OH+Aq. (Granger, Bull. Soc. (3) 9.661.)

Decomp. by HNO3; not readily sol. in HCl. Fasily attacked by Cl2 or Br4+ Aq. (Granger, C. R. 1895, **120**, 924.)

Cu₄P₂. (Granger, C. N. 1898, **77**. 229.) Very sol. in HNO₃ and Br₂+Aq. Decomp. by hot conc. H₂SO₄. (Rubénovitch, C. R. 1899, **129.** 338.)

Cupric zinc phosphide, 10Cu₄P₂, Zn₈P₂(?). (Hvoslef, A. 100. 99.)

Copper phosphoselenide, CuSe, P2Se.

Insol. in H₂O or HCl+Aq; sol. in HNO₂+ Insol. in cold alkalies, but decomp. slowly when heated therewith. (Hahn, J. pr. 93. 436.) 2CuSe, P.Se. Attacked only by fuming

(Hahn.) HNO3.

2CuSe, P₂Se₅. Sol. only in HNO₃+Aq. (Hahn)

Copper phosphosulphide, 2Cu₂S, P₂S.

Cu₂S, P₂S. (Berzelius.)

2Cu₂S, P₂S₃. (Berzelius.) CuS, P₂S. Insol. in H₂O and dil. HCl +Aq. Sol. in conc. HCl+Aq, from which it is precipitated by H₂O. (Berzelius, A. 46. 252.)

Cu₄PS₃. (Berzelius.)
Cu₄PS₃. Sol. in conc. HNO₃ and in aqua regia. Insol. in HCl. Not attacked by hot H₂SO₄ or conc. NaOH+Aq. (Ferrand, A. ch. 1899, (7), **17.** 407.)

Cuprous selenide, Cu₂Se.

Ppt. Sol. in HCl and in H2SO4.

Decomp. by HNO₃. Sol. in NH₄OH+Aq. (Fonzes-Diacon, C. R. 1900, **131**, 1207.) Sol. in KCN+Aq. (Heyn and Ba (Heyn and Bauer,

Metall. 1905, 3. 84.) Min. Berzelianite.

Cupric selenide, CuSe.

(Little, A. 112. 211.)

Ppt. Sol. in HCl and in H2SO4. Decomp. by HNO₃. (Fonzes-Diacon, C. R. 1900, 131. 1207.)

Cuprocupric selenide, Cu₃Se₂.

Min. Umangite. Sol. in HNO3. (Klockmann, Zeit. Kryst. 1891. 19, 270.)

Cuprous lead selenide, 3Cu₂Se, PbSe.

Min. Zorgite. Sol. in cold conc. HNO3+ Aq with separation of Se.

Cupric lead selenide, CuSe, PbSe.

Sol. in cold conc. HNO₃ with separation of (Karsten.)

CuSe, 2PbSe. As above. CuSe, 4PbSe. As above.

Cuprous silver selenide, Cu₂Se, Ag₂Se.

Min. Eucainite. Sol. in hot HNO3 with decomp. (Berzelius.)

Cuprous silicide, Cu₄Si.

Sol. in warm dil. or conc. HNO2. Only sl. sol. in HCl, H2SO4 and HF. Sol. in a mixture of HNO₃ and HF. Not attacked by solutions of alkalies. (Vigouroux, C. R. 1906, **142.** 88.)

u₂Si₃. Sol. in aqua regia and fused sodium potassium carbonate. (de Chalmot, Am. Ch. J. **1896**, 18, 95.)

Cu₂Si. Decomp. by water and moist air. and by acids and fused alkali. (Vigouroux, C. R. 1896, **122.** 319.)

## Cuprous sulphide, Cu₂S.

More sol. in H₂O than Ag₂S, but much less than PbS. (Bodländer, Z. phys. Ch. 1898. 27, 64.)

1 l. H₂O dissolves 3.1+10-6 moles Cu₂S at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)

Very slowly decomp. by dil. H₂SO₄ in presence of oxygen. (Thompson, Electrochem, Ind. 1904. 2, 225.)

Decomp. by conc. H₂SO₄. (Pickering, C. N

1878, 37, 37.)
Cold HNO₃+Aq dissolves out Cu and leaves CuS; hot HNO₂ dissolves with separation of S. Sl. sol. in boiling conc. HCl+Aq. Insol. in (NH₄)₂S+Aq.
5N-HCl dissolves Cu₂S very slightly

(0.0038 g. Cu in  $7\frac{1}{2}$  hrs.) but it is more sol. in presence of Cl, when 0.672 g, are dissolved in 7½ hours. (Egli, Z. anorg. 1902, **30.** 46.)

Sol, with exclusion of air in NH₄OH+Aq.

(Malzac, Pat. 1904.)
Insol. in acetone. (Naumann, B. 1904,
37. 4329; Eidmann, C. C. 1899, II. 1014.)
Min. Chalcocite. Completely sol. in warm HNO₃ with separation of S.

#### Cupric sulphide, CuS.

Almost absolutely insol. in H₂O; sol. in 950,000 pts. H₂O. When exposed to the air, dissolves in H2O as CuSO4. Easily sol. in boiling HNO₈ with separation of S. Difficultly sol. in hot conc. HCl+Aq. Insol. in dil. H₂SO₄+Aq (1:6). (Hoffmann, A. 115. 286.

Pptd. by H₂S or (NH₄)₂S+Aq in presence of 100,000 pts. H₂O (Pfaff), 200,000 pts. H₂O (Lassaigne), 15,000 pts. H₂O and 7500 pts. HCl, but with 40,000 pts. H₂O and 20,000 pts. HCl no colour is visible (Reinsch).

1 l. H₂O dissolves 3.51+10-6 moles CuS at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.) Insol. in H₂SO₈+Aq. (Guerout, C. R. 1872, **75.** 1276.)

Decomp. by conc. H₂SO₄. (Kliche, J. B.

**1890**, 593.) Sol. in (NH₄)₂CO₈+Aq. (Berzelius.) Sol.

in alkali bicarbonates +Aq.

Insol. in NH₄NO₃, or NH₄Cl+Aq. (Brett.) Insol. in acidified conc. alkali chlorides+ Aq. (Cushmann, Am. Ch. J. 1895, 17, 382.) Sol. in FeCl₈+Aq with separation of S (Cumenge and Wimmer, Dingl. 1883, 250.

Decomp. by boiling CuCl₂+Aq in presence of HCl or NaCl. (Raschig, Gm.-K. 5. 1, 819.)

Sol. in Fe₂(SO₄)₈+Aq in presence of large excess of air. (Ind. 1904, 2, 228.) (Thompson, Flectrochem.

Insol. in KOH, or K₂S+Aq, especially if boiling; appreciably sol. in colourless and even more readily in hot yellow (NH₄)₂S+Aq. Sl. sol. in Na₂S+Aq, more easily in NaSH+

Aq. (Becker, Sill. Am. J. (3) 33. 199.) 100 cc. sat. Na₂S+Aq (sp. gr. = 1.225) dissolve 0.0032 g. CuS. (Holland, Ann. Chim. Anal. 1897, **2**. 243.)

Sol. in K polysulphides (3-64%). (Prost, Bull. Soc. Belg. Chim. 1897. 103.)

Appreciably sol. in alkali polysulphides +

Aq. (Rössing, Z. anal. 1902, 41, 1.) Sol. in considerable quantity in alkali sulpharsenates, sulphantimonates, and sulphostannates + Aq. Therefore when a mixed ppt. of CuS and As₂S₃, Sb₂S₃, or SnS is treated with K₂S, a portion of the CuS is dissolved. (Wöhler, A. 34. 236.)

Sol. in alkali sulphovandates, or sulphotungstates+Aq. (Storch, B. 16. 2015.)
Sol. in alkali sulphomolybdates + Aq.

(Debray, C. R. 96. 1616.)

Insol. in K thiocarbonate + Aq. (Rosenbladt, Z. anal. 26. 15.)
Sol. in KCN+Aq.
Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 827.)

Insol, in methyl acetate (Naumann, B. 1909, **42**, 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Insol. in Na xanthogenate. (Ragg, Ch. Z. 1908, 32. 677.)

Solubility of CuS in sugar+Aq at to. g. CuS per l. of solution.

t°	10% sugar	30℃ sugar	50% sugar
17 5	0.5672	0.8632	0.9076
45	0.3659	0.7220	1.0589
75	1.1345	1.2033	1.2809

(Stolle, Z. Ver. Zuckerind, 1900, 50, 331.)

#### Min. Covellite.

Colloidal. Aqueous solution is stable when it contains 5 g. CuS in a litre; when it contains 4 or 5 times that amount it is decomposed in an hour.

Solutions of salts of the following concentration cause a precipitate in the above solution. Salts of univalent elements-

#### Salts of univalent elements—

K ₃ Fe(CN) ₆		1:62
K ₄ Fe(CN) ₆		1:127
$Na_2S_2O_3$		1:157
$Na_2CO_3$		1:200
$Na_2HPO_4$		1:252
$Na_2SO_4$		1:333
$K_2Cr_2O_7$		1:2083
KI .		1:80
KBr .		1:133
KClO ₂ .		1:166

Salts of univalent elements—Continued.	Cupric iron (ferric) sulphide, CuS, Fe ₂ S ₂ .
$NaC_2H_8O_2$ 1 : 221	
	Min. Cubanite.
$(NH_4)_2C_2O_4$ 1:255	
NaCl 1 : 400	Comment in an automotive market of the Com Co
Namuu, 1:2500	Copper iron potassium sulphide, K ₂ FeCu ₂ S ₄ .
	Sl. attacked by cold dil. HCl+Aq. De-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	comp. by warming. (Schneider, Pogg. 138.
NoC. H.O. 1:166	318.)
$K_2S_2O_6$	910.7
KCl 1:333	Copper iron sodium sulphide, Na ₂ FeCu ₂ S ₄ .
$KNO_8$ 1:500	
	Sl. attacked by cold dil., easily decomp. by
Salts of bivalent metals—	hot HCl+Aq. Schneider, Pogg. 138. 318.)
${ m BaS_2O_6}$ 1:2242	
$Cd(NO_3)_2$ 1:3483	Commented and the OCS COMME
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cuprous lead sulphide, 9Cu ₂ S, 2PbS.
$Ba(NO_3)_2$ 1:2677	3Cu ₂ S, 2PbS.
$BaCl_2$	2Cu ₂ S, 2PbS. Min. Cuproplumbite.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20020, 21 00. INIM. Caproplamone.
$Pb(ClO_3)_2$ 1:6988	
$CdSO_4$ 1:3442	Copper phosphorus sulphide.
$MnSO_4$ 1:5518	,
•	See Copper phosphosulphide.
Salts of trivalent metals—	1
Ammonia alum 1:31,896	Curais alatinum autabita
Chrome alum 1:58,889	Cupric platinum sulphide.
	See Sulphoplatinate, cupric.
$Al_2(SO_4)_8$ 1:90,909	
Acids—	C
Succinic 1 · 100	Cuprous potassium sulphide, 4Cu ₂ S, K ₂ S.
Ovolio 1 . 160	(Ditte, C. R. 98. 1429.)
Oxalic 1:162	
HCl 1 : 733	00 0
$H_2SO_4$	Cuprocupric potassium sulphide, 3Cu ₂ S ₄
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2\text{CuS}, \text{K}_2\text{S}.$
Acetic Not at all	Not decomp. by very dil. HCl+Aq, but easily by conc. HCl+Aq on warming.
Tartaric	easily by sone HCl Ag on warming
	easily by conc. nci+Aq on warming.
(Spring and de Boeck, Bull. Soc. (2) 58. 165.)	(Schneider, Pogg. 138. 311.)
Common and American Company	
Copper polysulphide, Cu ₂ S ₃ .	Copper potassium polysulphide, KCuS ₄ .
Amorphous. Ppt. Decomp. by boiling	
alcohol. (Rössing, Z. anorg. 1900, 25. 413.)	Sl. sol. in cold H ₂ O. Decomp. by hot
	H ₂ O. Decomp. by conc. and dil. HCl, H ₂ SO ₄ and HNO ₃ . Sl. sol. in alcohol.
Cu ₄ S ₅ . Amorphous. Ppt. can be boiled	H ₂ SO ₄ and HNO ₂ . Sl. sol. in alcohol.
with H ₂ O without decomposition. (Rössing,	(Biltz and Herms, B. 1907, 40. 977.)
Z. anorg. 1900, 25. 4, 11.)	2CuS, K.S. Decomp by H.O. NH.OH
Cu ₂ S ₅ . Ppt.; insol. in alkali sulphides;	2CuS ₃ , K ₂ S. Decomp. by H ₂ O, NH ₄ OH, or NH ₄ SH+Ag. (Priwoznik, B. <b>5</b> . 1291.)
decomp. by conc. HNO ₃ . (Bodroux, C. R.	
1000 100 1000	V Co C To ile al in II C 1 - in al
1900. 150. 1398.)	$K_2Cu_3S_{10}$ . Easily sol. in $H_2O$ . 1 g. is sol.
1900, 130. 1398.) Could not be obtained (Begging 7	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by
Could not be obtained. (Rössing, Z.	$K_2Cu_3S_{10}$ . Easily sol. in $H_2O$ . 1 g. is sol.
Could not be obtained. (Rössing, Z. anorg. 1900, 25, 414.)	$K_2Cu_3S_{10}$ . Easily sol. in $H_2O$ . 1 g. is sol. in less than 5 ccm. $H_2O$ . Rapidly decomp. by dil. acids, slowly by cone. acids. Sl. sol. in
Could not be obtained. (Rössing, Z. anorg. 1900, 25, 414.)	$K_2Cu_3S_{10}$ . Easily sol. in $H_2O$ . 1 g. is sol. in less than 5 ccm. $H_2O$ . Rapidly decomp. by
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S ₀ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S ₀ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by cone. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S _o . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by cone. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S _o . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by cone. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, <b>40</b> .
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S _b . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, <b>25</b> . 407.)	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, <b>40</b> . 978.)
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S ₂ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, <b>25</b> . 407.) Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ .	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, <b>40</b> . 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp.
Could not be obtained. (Rössing, Z. anorg. 1900, <b>25</b> . 414.) Cu ₂ S _o . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, <b>25</b> . 407.) Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, <b>40</b> . 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.) Cu ₂ S _o . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.) Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₈ +Aq of 1.2 sp. gr. (Schneider, J. pr.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, <b>40</b> . 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.) Cu ₂ S _o . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.) Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₈ +Aq of 1.2 sp. gr. (Schneider, J. pr.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.) Cuss Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, 25. 407.) Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, <b>40</b> . 978.)  Rb ₂ Cu ₄ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, <b>40</b> . 985.)
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  CusS., Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₂ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₄ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  CusS., Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₂ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₂ S+Aq,	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₄ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  Cu ₂ S., Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₂ S+Aq, a portion of it dissolves with difficulty and	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.
Could not be obtained. (Rossing, Z. anorg. 1900, 25. 414.)  Cu ₂ S ₂ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₂ S+Aq. a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.
Could not be obtained. (Rossing, Z. anorg. 1900, 25. 414.)  Cu ₂ S ₂ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₂ S+Aq. a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq
Could not be obtained. (Rossing, Z. anorg. 1900, 25. 414.)  Cu ₂ S ₁ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₂ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₂ S+Aq, a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32. 168.)	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₂ +Aq with separation of S.  Cu ₂ S, 3Ag ₂ S. Min. Jalpaite. As above.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  Cu ₂ S. Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₃ S+Aq, a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32. 168.)	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  Cu ₂ S., Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides + Aq. Decomp. by colorless alkali sulphides + Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₂ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₃ S+Aq, a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32. 168.)	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₃ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.  Cu ₂ S, 3Ag ₂ S. Min. Jalpaite. As above.  Cuprous sodium sulphide, Na ₃ S, Cu ₂ S.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  Cu ₂ S ₂ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ .  Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. when heated in a sealed tube with H ₂ S+Aq, a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32. 168.)  Cuprocupric iron (ferric) sulphide, Cu ₂ S, CuS, FeS.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.  Cu ₂ S, 3Ag ₂ S. Min. Jalpaite. As above.  Cuprous sodium sulphide, Na ₃ S, Cu ₃ S.  (Bodländer, Z. Elektrochem. 1905, 11. 181.)
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  Cu ₂ S _. . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ .  Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. When heated in a sealed tube with H ₂ S+Aq, a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32. 168.)  Cuprocupric iron (ferric) sulphide, Cu ₂ S, CuS, FeS.  Min. Bornite. Sol. in HCl+Aq with a	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.  Cu ₂ S, 3Ag ₂ S. Min. Jalpaite. As above.  Cuprous sodium sulphide, Na ₃ S, Cu ₃ S.  (Bodländer, Z. Elektrochem. 1905, 11. 181.)  Na ₃ S, 2Cu ₂ S. (Bodländer, Z. Elektrochem.
Could not be obtained. (Rössing, Z. anorg. 1900, 25. 414.)  Cu ₂ S ₂ . Ppt. Decomp. by H ₂ O. Sol. in alkali and barium polysulphides+Aq. Decomp. by colorless alkali sulphides+Aq. (Rössing, Z. anorg. 1900, 25. 407.)  Cuprous iron (ferric) sulphide, Cu ₂ S, Fe ₂ S ₃ . Decomp. by conc. HCl+Aq. Sol. in boiling HNO ₃ +Aq of 1.2 sp. gr. (Schneider, J. pr. (2) 38. 569.)  Min. Chalcopyrite. Insol. in HCl+Aq. a portion of it dissolves with difficulty and subsequent deposition of S. (Senarmont, A. ch. (3) 32. 168.)  Cuprocupric iron (ferric) sulphide, Cu ₂ S, CuS, FeS.	K ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. 1 g. is sol. in less than 5 ccm. H ₂ O. Rapidly decomp. by dil. acids, slowly by conc. acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 983.)  Cupric rubidium polysulphide, RbCuS ₄ .  As K salt. (Biltz and Herms, B. 1907, 40. 978.)  Rb ₂ Cu ₃ S ₁₀ . Easily sol. in H ₂ O. Decomp. by acids. Sl. sol. in alcohol. (Biltz and Herms, B. 1907, 40. 985.)  Cuprous silver sulphide, Cu ₂ S, Ag ₂ S.  Min. Stromeyerite. Sol. in HNO ₃ +Aq with separation of S.  Cu ₂ S, 3Ag ₂ S. Min. Jalpaite. As above.  Cuprous sodium sulphide, Na ₃ S, Cu ₂ S.  (Bodländer, Z. Elektrochem. 1905, 11. 181.)

Cuprocupric sodium sulphide, Cu₂S, CuS, Na₂S.

Scarcely decomp. by cold dil. HCl+Aq; conc. HCl+Aq decomp. easily on warming, without, however, dissolving all the Cu₂S. Completely decomp. by warm HNO₂+Aq. (Schneider, Pogg. 138. 315.)

Copper zinc sulphide, CuS, 3ZnS.

Copper sulphophosphide.

See Copper phosphosulphide.

## Cupric telluride, CuTe.

Cu₂Te₃. Insol. in H₂O. (Parkmann, Sill. Am. J. (2) 3. 335.)

Cu₂Te. (Brauner, M. 1889. 423.)

## Croceocobaltic bromide, Co(NH₂)₄(NO₂)₂Br.

Very sl. sol. in cold, easily in hot  $\rm H_2O$ . (Gibbs, Proc. Am. Acad. 10. 1.)

- ——chloraurate, 2Co(NH₃)₄(NO₂)₂Cl, AuCl₃.

  Difficultly sol. in H₂O.
- ---- chloride,  $Co(NH_3)_4(NO_2)_2Cl$ .

Very sl. sol. in cold easily in hot H₂O, but more sol. than the sulphate. (Gibbs.)

Can be recrystallised without decomp. with difficulty. (Gibbs and Genth, Sill. Am. J. (2) 24. 91.)

- —— periodide, Co(NH₂)₄(NO₂)₂I, I₂.

  Difficultly sol. in cold H₂O and alcohol.

  Decomp. by hot H₂O. (Gibbs.)
- nitrate, Co(NH₃)₄(NO₂)₂NO₃.

Sl. sol. in cold, easily sol. in hot  $H_2\mathrm{O}$  or dilacids. Much more sol. than the sulphate. (Gibbs.)

Sol. in about 400 pts. cold H₂O. (Jörgensen, Z. anorg. **5.** 163.)

--- nitrite cobaltic nitrite,  $3\text{Co}(\text{NH}_1)_4(\text{NO}_2)_2$ ,  $\text{Co}(\text{NO}_2)_3$ .

Somewhat sol. in  $H_2O$ . (Jörgensen, Z. anorg. 5. 178.)

— nitrite diamine cobaltic nitrite, Co(NH₈)₄(NO₂)₂, (NO₂)₂(NH₃)₂Co(NO₂)₂. Nearly insol. in cold, very sl. sol. in boiling H₂O. (Jörgensen.)

Croceocobaltic phosphomolybdate,

[Co(NH₃)₄ $(NO_2)_2$ ]₂O, 24MoO₃,P₂O₅. Sl. sol. in cold, easily in hot H₂O. (Gibbs, Am. Ch. J. 3. 317.)

--- sulphate,  $[Co(NH_3)_4(NO_2)_2]_2SO_4$ .

Very sl. sol. in cold or hot  $H_2O$ ; more easily in hot dil.  $H_2SO_4 + Aq$ .

Cuprammonium compounds.

See Copper compounds, ammonia.

Cuprotetrammonium tetraiodide.

See Cupric tetraiodide ammonia.

## Cupric acid.

Known only in solution. (Krüger, Pogg. 62. 445.)

## Calcium cuprate.

Decomp. by  $H_2O$  with evolution of oxygen. (Krüger and Crum, A. **55**. 213.)

## Cyanhydric acid, HCN.

Miscible with  $\mathrm{H}_2\mathrm{O}$ , alcohol, and ether with absorption of heat.

Sp. gr. of HCN+Aq.

% HCN	Sp. gr.	% HCN	Sp. gr.
1.60	0.9979	4.0	0.9940
1.68	0.9978	4.6	0.9930
1.77	0.9975	5.0	0.9923
2.0	0.9974	5.3	0.9914
2.1	0.9973	5.8	0.9900
2.3	0.9970	6.4	0.9890
<b>2</b> . <b>5</b>	0.9967	7.3	0.9870
2.7	0.9964	8.0	0.9840
3.0	0.9958	9.1	0.9815
3.2	0.9952	10.6	0.9768
3.6	0.9945	16.0	0.9570
0.0	0.9940	10.0	0.9570

(Ure, Quar. J. Sci. 13. 321.)

2HCN mixed with 3H₂O causes a diminution of temp. of 9.75°. (Bussy and Buignet, A. ch. (4) 3, 231.)

Miscible with volatile oils and other organic compounds.

## Cyanhydric iodhydric acid, HI, HCN.

Easily sol. in H₂O or alcohol, with rapid decomp. Sl. sol. in ether. (Gal, A. 138. 38.)

## Cyanides.

The alkali cyanides are easily sol. in  $H_2O$ ; those of the alkali-earths are less sol., while all others are insol. with the exception of  $H_3(CN)_2$ . All cyanides are sol. in KCN+Aq.

#### Ammonium cyanide, NH₄CN.

Unstable; easily sol. in H₂O and alcohol.

Ammonium cobaltic mercuric cyanide. See Cobalticyanide, ammonium mercuric.

Ammonium cuprous cyanide, NH4CN.  $Cu_2(CN)_2$ .

Ppt. Decomp. by acids.

+H₂O. Sol. in H₂O, less sol. in alcohol. Decomp. by acids and alkalies. (Treadwell and Girsewald, Z. anorg. 1904, 39. 90.)

2NH4CN, Cu2(CN)2. Sl. sol. in H2C, but decomp. by long boiling therewith. Sol. in HCN+Aq. (Dufau, A. 88. 278.)

Ammonium cuprous cyanide ammonia,  $NH_4CN$ ,  $2Cu_2(CN)_2$ ,  $NH_3$ .

(Treadwell and Girse-Easily decomp. wald, Z. anorg. 1904, 39. 90.)

+2H₂O. Insol. in cold, decomp. by boiling H₂O. Sol. in NH₄OH+Aq. (Fleurent, C. R. 1893, **116.** 191.)

NH₄CN, Cu₂(CN)₂, 3NH₃. Insol. in cold, sl. sol. in boiling H₂O without decomp. Sol. in NH₄OH+Aq. (Fleurent, C. R. 1891, 113.

 $NH_4CN$ ,  $2Cu_2(CN)_2$ ,  $2NH_3+2H_2O$ . (Fleurent, B. 25, 498R.)

Ammonium gold (aurous) cyanide NH₄CN, AuCN.

Easily sol. in cold or warm H2O or in alcohol. Insol. in ether.

Ammonium gold (auric) mercuric cyanide, basic, 3NH₄CN, 2Au₂O, Hg(CN)₂, HgO. (Schmidt, Ch. Z. 1896, **20**. 633.)

Ammonium mercuric silver cyanide, basic, NH₄CN, 2Ag₂O, 3AgCN, 4Hg(OH)CN+ ½H₂O.

(Schmidt, Z. anorg. 1895, 9. 431.)

Ammonium nickel cyanide, 2NH₄CN, Ni(CN)2.

Easily decomposed.

Ammonium tungsten cyanide. See Tungstocyanide, ammonium.

Ammonium zinc cyanide, 2NH₄CN, Zn(CN)₂. Sol. in H₂O.

Ammonium cyanide mercuric nitrate silver cyanide basic, 2Hg(OH)NO₈, 3NH₄CN, (Schmidt, Z. anorg. 1895, 9. 431.)

## Arsenic tricyanide, As(CN).

Decomp. by H₂O. Not attacked by cold conc. H2SO4. Decomp. on heating. (Guenez, C. R. 1892, 114, 1188.)

Barium cyanide, Ba(CN)24

Rather sl. sol. in H₂O, more easily in KCN +Aq. (Schulz, J. pr. 68, 257.)

10 pts. H₂O dissolve 8 pts., and 10 pts. 70% alcohol dissolve 1.8 pts. Ba(CN)₂ at 14. (Joannis, A. ch. (5) 26. 489.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

 $+2H_2O$ . Very deliquescent.

Ba(CN)₂, BaO. (Drechsel, J. pr. (2) 21.

Barium cadmium cyanide, Ba(CN),  $Cd(CN)_2+H_2O.$ 

Easily sol, in H₂O and in NH₄OH+Aq. Sl. sol. in alcohol. (Loebe, Dissert, 1902.) 2Ba(CN)₂, 3Cd(CN)₂+10H₂O. Sol. in H₂O. (Weselsky, B. 2. 590.)

Barium cobaltous cobaltic cvanide.

See Cobaltocobalticyanide, barium,

Barium cuprous cyanide, Ba(CN)₂, Cu₂(CN)₂. Sol. in H₂O without decomp. (Traube, Z. anorg. 1894, **8**. 21.) +H₂O. (Weselsky, B. **2**. 590.)

Could not be obtained. (Grossmann, Z.

anorg. 1905, **43**. 101.) +4H₂O. Decomp. by H₂O. (Grossmann,

Z. anorg. 1905, 43. 101.) 2Ba(CN)₂, Cu₂(CN)₂+6H₂O. Decombo. by H₂O. (Grossmann, Z. anorg. 1905, 43. 105.)

Barium gold (aurous) cyanide, Ba(CN)₂, 2AuCN+2H2O.

Sl. sol. in cold but easily sol. in hot H₂O. Sl. sol. in alcohol. (Lindborn, Lund Univ. Arsk. **12.** No.6.)

Barium iridium cyanide.

See Iridicyanide, barium.

Barium manganous cyanide, Ba(CN)₂, 2Mn(CN)2.

Ppt. (Descamps.)

See also Manganocyanide and Manganicyanide, barium.

Barium mercuric cyanide, (Ba(CN)₂,  $Hg(CN)_2+3H_2O$ .

Very hygroscopic. Very sol. in H₂O. (Grossmann, B. 1904, 37. 4142.)

Barium mercuric cyanide iodide, Ba(CN)2,  $HgI_2+6H_2O$ .

(Varet, C. R. 1895, **121.** 499.)

Barium palladium cyanide, Ba(CN)₂, Pd(CN)2+4H2O.

See Palladocvanide, barium.

Barium nickel cyanide, Ba(CN)₂, Ni(CN)₂+

Sol. in H2O; decomp. by acids with pptn. of Ni(CN)₂. (Weselsky, B. 2. 590.)

Barium silver cyanide, BaCN)2, 2AgCN+ H₂O.

Sol., in H₂O. (Weselsky, B. 2. 589.)

Barium zinc cyanide, Ba(CN)2, Zn(CN)2+ 2H₂O. Sol. in H₂O.

Cadmium cyanide, basic, CdO₂H₂, 2Cd(CN)₂

Sl. sol. in H₂O; insol. in alcohol. (Loebe, Dissert, 1902.)

Cadmium cyanide, Cd(CN)₂.

Sl. sol. in H₂O. 100 pts. H₂O dissolve 1.7 pts. Cd(CN)₂ at 15°. (Joannis.)

Easily sol. in acids; sol. in KCN+Aq. Sol. in warm NH₄OH+Aq, but insol. in (NH₄)₂CO₂+Aq. (Wittstein.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Cadmium calcium cyanide, Cd(CN)₂,  $4Ca(CN)_2+20H_2O$ .

Sol. in H₂O and in alcohol. (Loebe, Dissert. 1902.)

Cadmium chromic cvanide. See Chromicvanide, cadmium.

Cadmium cobaltic cyanide. See Cobalticvanide, cadmium.

Cadmium cuprous cyanide, 2Cd(CN)₂, Cu2(CN)2.

Permanent, Insol. in H₂O. Sl. sol. in cold, easily in warm HCl+Aq without decomp., except by long boiling. Insol. in NH₄OH, or NH₄ salts+Aq. (Schüler.)

Cadmium cupric cyanide, Cd(CN)₂, Cu(CN)₂. Very unstable.

Cadmium gold (aurous) cyanide, Cd(CN)₂, 2AuCN.

Nearly insol. in cold H₂O. Sl. sol. in boiling H₂O. Insol. in alcohol. (Lindbom.)

Cadmium mercuric cyanide, 2Cd(CN)₂,  $3Hg(CN)_2$ .

Permanent. Readily sol. in cold H₂O. (Schüler.)

Cadmium mercuric cyanide mercuric iodide,  $Cd(CN)_2$ ,  $Hg(CN)_2$ ,  $HgI_2+8H_2O$ .

Very sol. in H₂O. (Varet, Bull. Soc. (3) **5.** 8.)

+7H₂O. Sol. in H₂O and in NH₄OH+Aq. (Varet, C. R. 1890, 111, 679.)

Cadmium mercuric cyanide mercuric iodide, Cd(CN)₂, Hg(CN)₃, HgI₂+8H₂O. Very sol. in H₂O. (Varet, Bull. Soc. (3) **5.** 8.)

+7H₂O. Sol, in H₂O and in NH₄OH+Aq. (Varet, C. R. 1890, 111, 679.)

Cadmium mercuric cyanide mercuric iodide ammonia, Cd(CN)2, Hg(CN)2, HgI2, 4NH.

Very easily decomp. (Varet, Bull. Soc. (3) 6. 22,)

Cadmium molybdenum cyanide. See Molybdocvanide, cadmium.

Sol. in 3 pts. cold, and 1 pt. boiling H₂O. Insol. in absolute alcohol. (Rammelsberg.)

Cadmium sodium cyanide, Na₂Cd₂(CN)₆ +3H₂O

Sol. in H₂O and in alcohol. (Loebe, Dissert, 1902.)

Cadmium strontium cyanide, Cd(CN)2,  $2Sr(CN)_2 + 3H_2O$ .

Sol. in H₂O and in alcohol. (Loebe, Dissert. 1902.)

Cadmium tungsten cyanide, Cd₂W(CN)₈+ 8H₂O.

Nearly insol. in H2O.

Sl. sol, in dil. HCl. Sol, in conc. NH₄OH+

Insol. in organic solvents. (Olsson, Z. anorg. 1914, 88. 68.)

Cadmium cyanide dihydrazine,  $Cd(CN)_2$ ,  $(N_2H_4)_2$ .

Easily sol. in dil. acids. (Franzen, Z. anorg. 1911, 70. 152.)

Cæsium cuprous cyanide, CsCN, CuCN+ 1½H₂O.

H₂O separates CuCN. (Grossmann, Z. anorg. 1905, 43. 98.)

2CsCN, CuCN+H₂O. Sol. in H₂O.

(Grossmann, Z. anorg. 1905, **43.** 98.) 2CsCN, 3CuCN. Insol. in, and not decomp. by H₂O. (Grossmann, Z. anorg. 1905, **43.** 98.)

Cæsium tungsten cyanide.

See Tungstocyanide, cæsium.

Calcium cyanide,  $Ca(CN)_2$ .

Sol. in H₂O, but the solution is very unstable. (Schulz.)  $Ca(CN)_2$ ,  $3CaO + 15H_2O$ . Decomp. by H₂O. (Joannis, A. ch. (5) **26.** 496.)

Calcium cuprous cyanide, Ca(CN)₂, CuCN+ 4H₂O.

Easily decomp. by  $H_2O$ . Z. anorg. 1905, **43**. 106.)  $Ca(CN)_2$ ,  $3CuCN+8H_2O$ . (Grossmann. Immediately decomp. by  $H_2O$ . (Grossmann, Z. anorg. 1905, 43. 99.)

Calcium gold (aurous) cyanide, Ca(CN)₂, 2AuCN+3H₂O.

Easily sol, in hot or cold H₂O or in alconol, (Lindborn.)

Calcium manganous cyanide, Ca(CN)₂, 2Mn(CN)₂.

Ppt. (Descamps.)

See also Manganocyanide, calcium.

Calcium mercuric cyanide, Ca(CN)₂, 2Hg(CN)₂+8H₂O.

Very deliquescent. (Grossmann, B. 1904, 37, 4143.)

 $2Ca(CN)_2$ ,  $3Hg(CN)_2 + 6H_2O$ . Very sol. in  $H_2O$ . (Grossmann, B. 1904, **37**. 4143.)

Calcium mercuric cyanide iodide, Ca(CN)₂, HgI₂, Hg(CN)₂+7H₂O. (Varet, C. R. 1895, **121**. 499.)

Calcium nickel cyanide, Ca(CN)₂, Ni(CN)₂+ xH₂O. Sol. in H₂O.

Calcium tungsten cyanide.

See Tungstocyanide, calcium.

Calcium zinc cyanide,  $(Ca(CN)_2, Zn(CN)_2 + 3\frac{1}{2}H_2O$ .

Sol. in H₂O and in alcohol. (Loebe, Dissert. 1902.)

Cerous cyanide (?).

Ppt. Very easily decomp. (Behringer, A. 42, 139.)

Chromic cyanide, with MCN. See Chromicyanide, M.

Chromous potassium cyanide.

See Chromocyanide, potassium.

Cobaltous cyanide, Co(CN)₂+H₂O.

Insol in H₂O. Easily sol in NH₄OH+Aq, and KCN+Aq; also in (NH₄)₂CO₃, or NH₄ succinate+Aq; insol in NH₄NO₃, or NH₄Cl+Aq. (Wittstein.)

Cobaltous cyanide with 4MCN. See Cobaltocyanide, M.

Cobaltic cyanide with 3MCN. See Cobaltocyanide, M.

Cobalt gold (aurous) cyanide, Co(CN)₂, 2AuCN. Insol. in H₂O or cold HCl+Aq.

Cobalt hydrazine cyanide, (N₂H₄)₄Co(CN)₄.

Deliquescent. (France, Z. anorg. 1911, 70. 155.)

Cobaltous cyanide ammonia, Co(CN)₂, 2NH₃.

Unstable. (Peters, B. 1908, 41. 3178.)

Cuprous cyanide, Cu₂(CN)₂.

Insol. in H₂O and dil. acids. Sol. in NH₄OH, (N[†]₄)₂SO₄, or NH₄ succinate+Aq. and in hot NH₄Cl, or NH₄NO₂+Aq. Sol. in conc. HCl+Aq. Sol. in KCN+Aq. Easily sol. in conc. NH₄SCN or KSCN+Aq. Sl. sol. in NaSCN+Aq. (Grossmann, Z. anorg. 1903, 37. 408.)

Sl. sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Very sl. sol. in pyridine. (Schroeder, Dissert. 1902.)

Mol. weight determined in Wridine. (Werner, Z. anorg. 1897, 15. 20.)

Cupric cyanide, Cu(CN)₂.

Easily decomp. Insol. in H₂O.
Sol. in pyridine. (Schroeder, Dissert. 1901.)
Insol. in methyl acetate. (Naumann, B.
1909, 42. 3790.)

Cuprocupric cyanide, Cu(CN)₂, Cu₂(CN)₂+ 5H₂O.

Insol. in H₂O, but decomp. by boiling. Sol. in cold conc. HCl+Aq. Sol. in NH₄OH +Aq. (NH₄)₂CO₃+Aq, and in hot NH₄ sattle Aq. Easily sol. in KCN+Aq. +H₂O. Ppt. (Dufau.) +Cu(CN)₂, 2Cu₂(CN)₂+H₂O. Ppt.

Cuprous hydrazine cyanide,  $Cu_2(CN)_2$ ,  $N_2H_5CN$ .

Insol. in alcohol and H₂O. (Ferratini, C. C. **1912**, I. 1281.)

Cupric iridium cyanide. See Iridicyanide, cupric.

Cuprous lithium cyanide,  $Cu_2(CN)_2$ , LiCN+ $H_2O$ .

Gradually decomp. by H₂O. (Grossmann, Z. anorg. 1905, **43**. 97.)

Cuprous magnesium cyanide, Cu₂(CN)₂, Mg(CN)₂+11H₂O. Decomp. by H₂O. (Grossmann, Z. anorg. 1905, **43**. 103.)

Cuprous mercuric cyanide bromide, Cu(CN)₂, 2Hg(CN)₂, HgBr₂. Sol. in H₂O. (Varet, C. R. 1890, **110**. 148.)

Cupric molybdenum cyanide ammonia.

See Molybdocyanide ammonia, cupric.

Cuprous potassium cyanide,  $Cu_2(CN)_2$ , 2KCN.

Sl. sol. in H₂O, with partial decomp. De-

comp. by acids, but not by alkalies.

Decomp. by boiling H₂O. Sol. in NH₄OH +Aq. (Fleurent, C. R. 1893, 116. 191.)
Sol. without decomp. in conc. KSCN.
(Grossmann, Z. anorg. 1903, 37. 407.)

Sol. without decomp. in KCN+Aq. (Treadwer and Girsewald, Z. anorg. 1904, 38. 94.)

Cu₂(CN)₂, KCN+H₂O. Almost insol. in cold H₂O. 100 cc. H₂O dissolve 0.0594 g. at 120. 100 fet. 1120 thissolve 0.0594 g. at 15°. Decomp. by much hot H₂O with separation of Cu₂(CN)₂. Sol. in KCN +Aq or in NH₄OH+Aq. (Treadwell and Girsewald, Z. anorg. 1904, **38**. 93.)

3Cu₂(CN)₂, 4KCN. Sol. in H₂O.
Cu₂(CN)₃ 6KCN. Sol. in H₂O.

Cu₂(CN)₂, 6KCN. Sol. in H₂O.

# Cuprous potassium cyanide ammonia, Cu₂(CN)₂, KCN, NH₂.

(Treadwell and Girsewald, Z. anorg. 1904, 39. 88.)

Cuprous potassium cyanide potassium sulphocyanide, Cu₂(CN)₂, 4KCN, 2KSCN, H₂O.

Easily sol, in cold H₂O, (Itzig, B. 1902, **35.** 108.)

Cupric potassium cyanide, Cu(CN)₂, 2KCN. Sol. in 3/4 pt. H₂O at 15° and 1/3 pt. at 100% (Buignet, J. Pharm. 1859, (3), 35. 168.)

Cuprocupric potassium cyanide. Cu₂(CN)₂, Cu(CN)₂, 2KCN.

(Straus, Z. anorg. 1895, 9. 15.)

Cuprous rubidium cyanide,  $Cu_2(CN)_2$ , 2RLCN.

Sl. sol. in H₂O. Pure H₂O separates CuCN. (Grossmann, Z. anorg. 1905, **43.** 100.) 3Cu₂(CN)₂, 4RbCN. Sl. sol. in H₂O. Pure H₂O separates CuCN. (Grossmann, Z. anorg. 1905, 43. 98.)

Cuprous silver cyanide, Cu₂(CN)₂, 2AgCN. Ppt.

 $Cu_2(CN)_2$ , 6AgCN. Sol. in excess of  $Cu_2(CN)_2$ , KCN+Aq. (Rammelsberg.)

Cuprous sodium cyanide, Cu₂(CN)₂, 2NaCN. (Traube, Z. anorg. 1894, 8. 21.)

+4H₂O. Decomp. by H₂O. Sol. in excess of NaCN+Aq. (Grossmann, Z. anorg. 1905, **43**. 96.)

 $Cu_2(CN)_2$ , NaCN+2H₂O. Decomp. by H₂O. (Grossmann, Z. anorg. 1905, **43.** 96.) Cu₂(CN)₂, 4NaCN+6H₂O. Very sol. in H₂O without decomp. (Grossmann, Z. anorg. 1905, 43. 964)

 $Cu_2(CN)_2$ ,  $6NaCN+6H_2O$ . Very sol. in 484.)

H₂O without decomp. (Grossmann. anorg. 1905, 43, 96.)

Cuprous strontium cyanide, Cu₂(CN)₂,  $Sr(CN)_2 + 8H_2O$ .

H₂O separates Cu₂(CN)₂. (Grossmann, Z. anorg. 1905, 43. 103.)

Cuprous cyanide ammonia, Cu₂(CN)₂, 2NH₈.

Nearly insol. in cold H₂O. Easily sol. in NH₄OH+Aq in absence of oxygen. Insol. in alcohol and ether. Decomp. by hot H₂O and acids. (Treadwell and Girsewald, Z. anorg. 1904, 39. 87.)

Cuprocupric cyanide ammonia,  $Cu_2(CN)_2$ , Cu(CN)₂, 2NH₃.

(Malmberg, Arch. Pharm. 1898, 236. 256.) +H₂O. Sl. sol. in cold, decomp. by boiling H₂O. Sol. in NH₄OH+Aq. (Dufau, A. 88. **278.**)

 $Cu(CN)_2$ ,  $Cu_2(CN)_2$  3NH₃. (Mills, Z. Ch. **1867.** 545.)

Sl. decomp. by boiling H₂O. Sol. in NH₄OH+Aq and can be recryst. therefrom. Insol. in alcohol and ether. Decomp. by

alkalies and acids. (Treadwell and Girsewald, Z. anorg. 1904, 39. 96.)

Cu(CN)₂, Cu₂(CN)₂, 4NH₃. Insol. in cold, decomp. by hot H₂O. Sol. in NH₄OH, or

(NH₄)₂CO₃+Aq. (Treadwell and Girsewald, Z. anorg. 1904, 39. 92.)

2Cu₂(CN)₂, Cu(CN)₂, 2NH₃. Insol. in H₂O, alcohol and ether. Sol. in NH₄OH+Aq. Decomp. by boiling acids and alkalies. (Treadwell and Girsewald, Z. anorg. 1904, 39. 92.)

 $+{\rm H}_2{\rm O.}$  (Monthier, J. Pharm. 11. 257.) Cu(CN)₂, 2Cu₂(CN)₂, 4NH₃. (Hille kamp, A. 97. 218.) (Hillen-

Cu(CN)₂, 2Cu₂(CN)₂, 6NH₃. (Schiff and

Becchi, A. **134.** 33.) 2Cu(CN)₂, Cu₂(CN)₂, (Fleurent, C. R. **114.** 1060.)  $2NH_3+3H_2O$ .

2Cu(CN)₂, Cu₂(CN)₂, 4NH₃+H₂O. Correct formula for Cu(CN)₂, Cu₂(CN)₂, 4NH₃. (Bouveault, Bull. Soc. (3) 4. 641.)

Cuprous cyanide ammonium sulphocyanide,  $Cu_2(CN)_2$ ,  $3NH_4SCN$ .

Decomp. by H₂O. (Grossmann, Z. anorg. 1903, 37, 409.

Cupric cyanide hydrazine, Cu(CN)₂(N₂H₄).

Insol. in H₂O and cold dil. acids.

Sol. in warm dil. acids. (Franzen, Z. anorg. 1911, 70. 154.)

Cuprous cyanide mercuric iodide, Cu₂(CN)₂, HgI₂.

Sol. in H₂O. (Varet, Bull. Soc. (3) 4.

Cuprous cyanide potassium sulphocyanide, Cu₂(CN)₂, 3KSCN.

Decomp. by  $H_2O$ . (Grossmann, Z. 2 norg. 1903, 37. 409.)

Gold (aurous) cyanide, AuCN.

Insol. in H₂O, alcohol, or ether. Not attacked by dil., or conc. acids, ever boiling aqua regia.

Sol. in NH4OH+Aq, also in soluble cy-

anides +Aq.

Slowly decomp. by boiling KOH+AC, also by (NH₄)₂S+Aq.
Sol. in K₄Fe(CN)₆+Aq. (Bentel, Z. anorg. 1912, **78.** 152.)

Gold (auric) cyanide with MCN.

See Auricyanide, M.

Gold (auroauric) mercuric cyanide auric mercuric chloride, 4AuCN, Au(CN)₃, 5Hg(CN)₂, 7AuCl₃, 5HgCl₂. (Schmidt, Ch. Z. 1896, **20**. 633.)

Gold (aurous) potassium cyanide, AuCN, KCN.

Sol. in 7 pts. cold, and less than 0.5 pt. boiling H₂O. Sl. sol. in cold, and somewhat more sol. in boiling alcohol. Insol. in ether. (Himly, A. 42. 160.)

Decomp. by warm acids, even tartaric, and acetic acids.

Gold (aurous) sodium cyanide, AuCN, NaCN. Sl. sol. in cold, more easily in hot H₂O. Sl. sol. in alcohol. (Lindbom.)

Gold (aurous) strontium cyanide, 2AuCN,  $Sr(CN)_2+3H_2O$ .

As the Na salt.

Gold (aurous) zinc cyanide, 2AuCN, Zn(CN)₂.

Nearly insol. in hot or cold H₂O.

Insol. in cold HCl+Aq.

Gold (auric) cyanide auric mercuric chloride, Au(CN)₃, AuCl₃, 2HgCl₂. (Schmidt, Ch. Z. 1896, **20**, 633.)

Gold (auroauric) cyanide aurous mercuric chloride, 12AuCN, 3Au(CN)₈, 4AuCl, 2HgCl₂.

(Schmidt, Ch. Z. 1896, 20. 633.)

Gold (auroauric) cyanide mercuric chloride. 15AuCN, 2Au(CN)₅, 5HgCl₂. (Schmidt, Ch. Z. 1896, **20**. 633.)

Iridium cyanide, Ir(CN)₃.

Insol. in H₂O. Sol. in HCN +Aq.

Iridium cyanide with MCN. See Iridicyanide, M Lanthanum cyanide, La(CN)s.

Ppt. (Frerichs and Smith, B. 11. 910, 1151.)

Lcad cyanide, Pb(CN)₂.

Sl. sol. in cold, more in hot H₂O. Sol. in HNO₃+Aq, and KCN+Aq. Partially sol. in NH₄OH+Aq, and NH₄ salts+Aq. Not pptd. in presence of Na citrate. **

Above compound is 2PbO *Pb(CN)₂+H₂O. (Joannis, A. ch. (5) **26.** 204.)

2PbO, Pb(CN)₂+H₂O. Insol. in H₂O.

Lead tungsten cyanide.

Noe Tungstocyanide, lead.

Lead zinc cyanide, Pb(CN)₂, 2Zn(CN)₂.
Ppt. (Rammelsberg.)

Lead cyanide chloride, 2Pb(CN)₂, PbCl₂. Insol. in H₂O. (Grissom and Thorp, Am. Ch. J. 10. 229.)

Lithium mercuric cyanide mercuric iodide, 2Li(CN)₂, Hg(CN)₂, HgI₂+7H₂O.

Deliquescent; sol. in H₂O. (Varet, C. R., 111. 526.)

Magnesium cyanide, Mg(CN)2.

Known only in aqueous solution which decomposes on evaporation. (Schulz.)

Magnesium mercuric cyanide, 2Mg(CN)₂, 3Hg(CN)₂+5H₂O. (Grossmann, B. 1904, 37, 4143.)

Magnesium mercuric cyanide mercuric bromide, Mg(CN)₂, Hg(CN)₂, HgBr₂+8H₂O.

Very sol. in H₂O. (Varet, Bull. Soc. (3) 7. 170.)

Magnesium mercuric cyanide mercuric iodide, Mg(CN)₂, Hg(CN)₂, HgI+8H₂O.

Sol. in H₂O. (Varet, Bull. Soc. (3) 7. 170.)

Magnesium platinum cyanide. See Platinocyanide, magnesium.

Magnesium tungsten cyanide.

See Tungstocyanide, magnesium.

Manganous and manganic cyanides.

See Manganocyanhydric, and Mar

See Manganocyanhydric, and Manganicyanhydric acids.

Manganous strontium cyanide, 2Mn(CN)₂, Sr(CN)₂.

Ppt. (Descamps.)
See also Manganocyanide, strontium.

Manganous tungsten cyanide. See Tungstocvanide, manganous.

Manganic cyanide, with MCN. See Manganicyanide, M.

Manganous cvanide with MCN. See Manganocyanide, M.

Mercuric cyanide, basic, Hg(CN)₂, HgO.

Sl. sol. in cold, moderately sol. in hot H₂O. Sol. with decomp. in KOH, KCN, or KCl+

Aq. (Johnston.) Decomp. by H₂O over 80°. (Holdermann, Arch. Pharm. 1906, 244. 135.)

Cold H₂O dissolves about 1%, boiling H₂O about 5%. (Borelli, Gazz. ch. it. 1908, 38. (1), 361.

1.1% dissolves in H₂O at ord. temp. (Richard, J. Chim. Phys. (6) **18**. 555.)

At 1/100 mol. dissolve in 1 l. H₂O. At 25° 1/32 " " " At 90° 1/10 " " " (Borelli, Gazz. ch. it. 1908, 38. (1), 361.)

1000 cc. cold H₂O dissolve 1.35g. (Holdermann, Arch. Pharm. 1906, 244. 135.)

Less sed. in cold H₂O than Hg(CN)₂. (Pieverling, J. B. **1899**, 783.)

Somewhat sol. in dil. alcohol.

Practically insol. in alcohol, ether, C6H6 and all organic solvents. (Borelli, Gazz, ch. it. **190**8, **38**, (1), 361.)

Sol. in 110 pt. alcohol of 90° Bé. (Richard,

J. Chim. Phys. (6), 18. 555.) 3Hg(CN)₂, HgO. (Joannis, A. ch. (5) 26. 469.)

Moderately sol. in H₂O. Pharm. 1896, (6), 3. 186.) (Barthe, J.

Very sol, in hot, less sol, in cold H₂O. (Holdermann, Arch. Pharm. 1904, **242**, 32.) Easily sol. in HCl. (Joannis, A. ch. 1882, (5) **26.** 511.)

Hg(CN)₂, 3HgO. More sol. in H₂O than Hg(CN)₂, HgO.

Mercuric cyanide,  $Hg(CN)_2$ .

Moderately sol. in H₂O.

100 pts.  $Hg(CN)_2+Aq$  sat. at 101.1° contain 35 pts.  $Hg(CN)_2$ , or 100 pts.  $H_2O$  dissolve 53.85 pts.  $Hg(CN)_2$  at 101.1°. (Grif-

Sol. in 8 pts.  $H_2O$  at 15°. (Abl.)

Sol. in 11 pts. cold, and 2.5 pts. boiling H₂O. (Wittstein.)

8 g. are sol. in 100 g. H₂O at -0.45°. (Guthrie, Phil. Mag. 1878, (5) **6**. 40.)

100 g. H₂O dissolve 9.3 g. at 13.5°. (Timofeiev, Dissert. 1894.)

100 cc#sat. solution contain 9.3 g. at 20°. (Konowalow, J. russ. Soc. 1898, (4) 30. **367**.)

Solubility in  $H_2O$  at  $25^{\circ} = 0.44$  mol. 1. (Sherrill, Z. phys. Ch. 1903, 43. 735.)

1 l. H₂O dissolves 0.3956 mol. (Hofmann and Wagner, Z. Elektrochem. 1909, **15.** 444.) 100 g. H₂O dissolve 12.5 g. at 15°. (Marsh and Struthers, Chem. Soc. 1905, **87**, 1879.)

100 g. H₂O dissolve 11.27 g. at 25°. Sp. gr. of solution = 1.0813. (Herz and Anders, Z.

of solution = 1.0813. (Herz and Anders, 2. anorg. 1907, **52**. 164.)  $Hg(CN)_2 + Aq$  containing 7.23%  $Hg(CN)_2$  has sp. gr. 20°/20° = 1.0572.  $Hg(CN)_2 + Aq$  containing 9.07%  $Hg(CN)_2$  has sp. gr. 20°/20° = 1.0743. (Le Blanc and Rohland, Z. phys. Ch. 1896, 19.

Sp. gr. at  $16^{\circ}/4^{\circ}$  of  $Hg(CN)_2 + Aq$  containing 7.8921%  $Hg(CN)_2 = 1.06376$ ; containing 5.4037% = 1.04246; containing 7.5009% = 1.06049. (Schönrock, Z. phys. Ch. 1893, **11**. 770.)

Not decomp, by acids except hot conc.

H₂SO₄.

Sol. without decomp. in HNO₃+Aq. (Berzelius.)

1 l.  $NH_4OH + Aq$  (5.2%  $NH_3$ ) dissolves 204.3 g. at about 25°. (Konowalow.) Solubility in bases.

1 l. H₂O containing 0.3286 mols. KOH dissolves 0.5179 mols. Hg(CN)2.

1 l. H₂O containing 0.2350 mols. NaOH dissolves 0.4840 mols. Hg(CN)₂.

1 l. H₂O containing 0.4775 mols. NaOH dissolves 0.5977 mols. Hg(CN)₂.

1 l. H₂O containing 0.9475 mols. NaOH dissolves 0.79603 mols. Hg(CN)₂.

1 l. H₂O containing 0.970 mols. LiOH dissolves 0.6543 mols.  $Hg(CN)_2$ .

1 l. H₂O containing 0.480 mols. LiOH dissolves 0.5500 mols.  $Hg(CN)_2$ .

1 l. H₂O containing 0.243 mols. LiOH dissolves 0.4840 mols. Hg(CN)₂.

(Hofmann and Wagner, Z. Elektrochem. 1909, 15. 444.)

#### Solubility in KCN+Aq at 25°.

Concentration of KCN Mols, per litre	Solubility of Hg(CN) ₂ Mols. per litre
0.0493	0.4855
0.0985	0.5350
0.1970	0.627.

(Sherrill, Z. phys. Ch. 1903, 43. 719.)

Solubility in Na₂CO₃+Aq.

1 l. H₂O containing 0.4923 mols. Na₂CO₃

dissolves 0.4956 mols. Hg(CN)₂.

1 l. H₂O containing 0.2443 mols. Na₂CO₃ dissolves 0.4464 mols. Hg(CN)₂.

1 l. H₂O containing 0.1250 mols. Na₂CO₃ dissolves 0.4147 mols. Hg(CN)₂.

1 l. H₂O containing 0.0000 mols. Na₂CO₂ dissolves 0.3952 mols. Hg(CN)₂.

(Hofmann and Wagner, Z. Elektrochem, 1909, **15.** 444.)

Solubility in KNO, +Aq at 25%.

1 l. H₂O containing 0.95%4 mols. KNO₃ dissolves 0.5383 mols. Hg(CN)₂.

1 l. H₂O containing 0.4614 mols. KNO₃

dissolves 0.4619 mols. Hg(CN)2

1 l. H2O containing 0.0000 mols. KNO2 dissolves 0.3956 mols.  $Hg(CN)_2$ .

(Hofmann and Wagner, Z. Elektrochem. 1909, **15.** 444.)

Insol. in liquid CO2. (Büchner, Z. phys. Ch. 1906, 54. 674.)

Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Solubility of Hg(CN)2 in ethyl alcohol at to.

t° .	% HgCl2
0	8.3
10	8.8
20	9.25
30	9.8
40	10.3

(Timofeiev, Dissert. 1894.)

Solubility of  $Hg(CN)_2$  in methyl alcohol at  $t^c$ .  $Hg(CN)_2 = g$ .  $Hg(CN)_2$  in 100 g. of the solution.

t°	Hg(CN)2
0.0	26.10
14.7	29.17
23.4	32.01
27.4	31.77
31.7	32.53
38.1	33.29
44.5	34.05

(Dukelski, Z. anorg. 1907, 53. 337.)

100 pts. methyl alcohol dissolve 44.2 pts. Hg(CN)₂ at 19.5°; 100 pts. ethyl alcohol dissolve 2.09 pts. at 19.5°. (de Bruyn, Z. phys. Ch. 1892, 10. 784.)

Sol. in 2.5 pts. methyl alcohol at 14°; in 20 pts. ethyl alcohol at 15°. (Marsh, Chem. Soc. 1905, **87.** 1878.)

Solubility of Hg(CN)₂ in methyl alcohol+ Aq at 25°.

P=g. alcohol in 100 g. alcohol+Aq  $Hg(CN)_2 = millimols$ .  $Hg(CN)_2$  in 10 cc. of the solution.

Hg(CN)2	Sp gr.
4. 34 4. 37 4. 94 5. 40 6. 49 8. 13 9. 75	1.0813 1.0642 1.0484 1.0430 1.0426 1.0441 1.0484
	4.34 4.37 4.94 5.40 6.49 8.13

(Herz and Anders, Z. anorg. 1907, 52. 165.)

Solubility of Hg(CN)2 in ethyl alcohol+Aq at 25°.

P = g. alcohol in 100 g. alcohol + Aq.  $Hg(CN)_2 = millimols Hg(CN)_2$  in 10 cc. of tne solution.

1	Hg(CN)2	Sp. gr.
0	4.34	1.40813
20.18	3.47	1.0339
40.69	3.58	1.0006
70.01	3.80	0.9419
100	3.25	0.8552

(Herz and Anders, l. c.)

Solubility of Hg(CN), in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent.  $Hg(CN)_2 = g$ .  $Hg(CN)_2$  in 10 ccm. of the solution.

S  $25^{\circ}/4$  = Sp. gr. of the sat. solution.

P	Hg(CN)2	S 25°/4°
0 4.37 10.4 41.02 80.69 84.77 91.25	0.819 0.902 1.01 1.67 2.82 2.96 3.09 3.43	0.8552 0.8618 0.8707 0.9267 1.024 1.034 1.052 1.076

(Herz and Kuhn, Z. anorg. 1908, 58. 166.)

100 g. propyl alcohol dissolve 3.79 g.  $Hg(CN)_2$  at 13.5°. (Timofeiev, 1894.)

Solubility in mixtures of propyl and methyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $Hg(CN)_2$  in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

P	G	S 25°/4°	
0 11.11 23.8 65.2 91.8 93.97 96.6	3.43 2.952 2.448 1.048 0.504 0.423 0.398 0.344	1.0760 1.0327 0.9891 0.8800 0.8376 0.8385 0.8382 0.8283	
	1	ı	

(Herz and Kuhn, Z. anorg. 1908, 60.158.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $Hg(CN)_2$  in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

P	G	S 25°/4°
,0	0.819	0.8552
8.1	0.790	0.8549
17.85	0.730	0.8527
<b>56</b> .6	0.521	0.8386
88.6	0.387	0.8311
91.2	0.384	0.8306
95.2	0.364	0.8293
100	0.344	0.8283

#### (Herz and Kuhn, l. c.)

Sp. gr. at 16°/4° of Hg(CN)₂+alcohol, containing 8.2206 %Hg(CN)₂ = 0.85273; con-

taining 5.8652% = 0.8348 + ... Sp. gr. of  $16^{\circ}/4^{\circ}$  of  $Hg(CN)_2 + pyridine$  containing 29.6018%  $Hg(CN)_2 = 1.28155$ ; containing 23.2275% = 1.20198.

(Schönrock, Z. phys. Ch. 1893, 11. 771.)

1 l. ether dissolves 0.01 mol. at 25°. (Sherrill, Z. phys. Ch. 1903, 43. 735.).)

Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 84.)

100 g. glycerol dissolve 27 g. Hg(CN)₂ at 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.)

Nearly insol. in  $C_6H_6$ . (Sherrill, Z. phys. Ch. 1903, 43. 735.)

Sol. in methyl acetate. 1909, 42. 3790.) (Naumann, B.

100 g. boiling methyl acetate dissolve 3.2 g. (Steiner, Dissert, 1906.)

Solubility of Hg(CN)₂ in ethyl acetate+Aq at 25°.

P=g, ethyl acetate in 100 g. ethyl acetate +Aq. Hg(EN)₂ = millimols Hg(CN)₂ in 10 cc. of

the solution.

P	Hg(CN)2	Sp. gr.	
0	4.34	1.0810	
449	4.295	1.0797	
96.76	1.056	1.9374	
100	0.714	0.09097	

(Herz and Anders, Z. anorg. 1907, 52. 165.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Solubility in organic solvents at 18-20°. 100 g. tetrachlormethane dissolve 0.001 g.  $Hg(CN)_2$ .

100 g. Hg(CN)₂. bromoform dissolve 0.005

100 g. ethyl bromide dissolve 0.013 g.  $Hg(CN)_2$ 

100 g. ethylene dibromide dissolve 0.001 g. Hg(CN)2.

(Sulc, Z. anorg. 1900, 25, 401.)

100 g acetonitrile dissolve 9.58 g. Hg(CN): at 18°. (Naumann and Schier, B. 1914, 47. 249.)

Solubility in benzonitrile at 18°=1.093 g. in 100 g. (Naumann, B. 1914, 47. 1370.) Sl. sol. in ethyl amine. (Shinn, J. phys.

Chem. 1907, 11. 538.)

Very sol. in liquid methyl amine. (Gibbs, J. Am. Chem. Soc. 1906, 28. 1419.)
Sol. in paratoluidine. (Werner, Z. anorg. 1897, 15. 7.)

Mol. weight determined in pyridine and benzonitrile. (Werner, Z. anorg. 1897, 15. 20 and 32.)

100 g. pyridine dissolve 64.8 g.  $Hg(CN)_2$ at 18°. (Schroeder, Z. anorg. 1905, 44. 6.)

#### Solubility in pyridine.

Mols. per 00 Hg(CN) ₂	Temp. of Solidification	Mols. per 100 Hg(CN) ₂	Temp. of Solidification
7.1	9	22.9	45
8.7	11	23.7	46
10.1	12.3	25.3	53
10.4	12.2	26.0	54.5
11.3	13	26.6	56.6
12.9	13.5	27.5	68
13.8	14.5	27.7	70
15.8	16.5	29.0	86
15.9	20.5	32.0	111
17.3	22.5	33.8	122.5
18.4	28.5	34.4	125
19.3	32	38.3	141 * * a
20.6	38		****
22.3	42		٠٠٠٠ و ا

(Staronka, Anz. Ak. Wiss. Krakau,

#### Solubility in quinoline.

Mols. per	Temp of	Mols. per	Temp. of
100 Hg(CN);	Solidification	100 Hg(CN) ₂	Solidification
4.2	45°	13.2	137°
6.0	54	17.4	161
8.2	89(61)	22.5	180
9.2	99(61)	27.1	192

## (Staronka, l. c.) Solubility in aniline.

Mols. per 00 Hg(CN)2	Temp. of Solidification	Mols. per 100 Hg(CN) ₂	Temp. of Solidification
3.7 4.9 5.7 7.7 9.2	26° (?) 30.5(?) 35 (?) 38.5(?)	14.2 18.2 19.7 23.4	77° (?) 83.5(?) 84 (?) 88.5(?)

#### (Staronka, l. c.)

Mercuric nickel cyanide ammonia, 2Hg(CN)2,  $4Ni(CN)_2$ ,  $5NH_3+2H_2O$ .

(Papiermeister, Dissert. 1898.)  $5Hg(CN)_2$ ,  $18Ni(CN)_2$ ,  $8NH_3+15H_2O$ . (Papiermeister, Dissert. 1898.)

Mercuric potassium cyanide, Hg(CN)₂, 2KCN.

Sol. in 4.4 pts. cold H₂O; sl. sol. in alcohol; decomp, by acids.

 $100~{\rm g}.~{\rm H}_2{\rm O}~{\rm dissolve}~22.7~{\rm g}.$  (Fronmüller B. 1878, **11**. 92.)

Abundantly sol. in liquid NH3. (Franklin, Z. phys. Ch. 1909, 69. 295.)

Mercuric silver cyanide, basic, Hg(CN)2, HgO, 7AgCN.

Ppt. (Bloxam, B. 16, 2669.)

Mercuric silver cyanide mercuric sulphate,  $Hg(CN)_2$ , 2AgCN,  $HgSO_4+H_2O$ .

Mercuric sodium evanide, Hg(CN)₂, NaCN -112H2O.

Sol. in H₂O. (Grossmann, B. 1904, 37. 4141.)

Mercuric strontium cyanide,  $Hg(CN)_2Sr(CN)_2+5H_2O$ .

Very hygroscopic. Sol. in H₂O. (Grossmann, B. 1904, **37.** 4142.)

Mercuric strontium cyanide iodide, Sr(CN)₂  $HgI_2$ ,  $Hg(CN)_2+7H_2O$ . (Varet, C. R. 1895, **121**. 499.)

Mercuric thallium cyanide, Hg(CN)₂, 2TlCN. Easily sol. in H₂O. 100 pts. H₂O dissolve 7.9 pts. at 1°, and 10.3 pts. at 10°. (Fronmüller, B. **11**. 92.)

Mercuric zinc cyanide,  $4\operatorname{Zn}(\operatorname{CN})_2$ ,  $\operatorname{Hg}(\operatorname{CN})_2$ . Insol. in H₂O. (Dunstan, Chem. Soc. 6. 666.)

Mercuric zinc cyanide mercuric bromide ammonia, Hg(CN)₂, Zn(CN)₂, HgBr₂,

Decomp. by H₂O. Sl. sol. in cold NH₄OH +Aq. (Varet, C. R. 1889, 109. 810.)

Mercuric cyanide ammonia,  $Hg(CN)_2$ ,  $NH_3$ . Very sol. in H₂O, NH₄OH+Aq, and alcohol. (Varet, C. R. 1889, **109**, 903.) Sl. sol. in H₂O. (Schmidt, B. 1894, **27**.

 $8Hg(CN)_2$ ,  $2NH_3+\frac{1}{2}H_2O$ . Easily decomp. (Varet, Bull. Soc. (3) 6. 221.)

Mercuric cyanide bromide,  $Hg(CN)_2$ , HgBr₂.

Very sl. sol. even in boiling H₂O. (Prussia, Gazz. ch. it. 1898, 28, (2), 114.)

Mercuric cyanide barium bromide, 2Hg(CN)₂  $BaBr_2+6H_2O$ .

Easily sol. especially in hot H₂O and alcohol. (Varet, C. R. 1895, **121.** 398.)

Mercuric cyanide cadmium bromide,  $Hg(CN)_2$ ,  $CdBr_2+3H_2O$ .

Sol. in H₂O and NH₄OH+Aq. (Varet, Bull. Soc. (3) 5. 8.) 2Hg(CN)₂, CdBr₂+4.5 H₂O. Sol. in H₂O

and in NH₄OH+Ac (Varet, C. R. 1890, **111.** 680.)

Mercuric cyanide caumium bromide ammonia  $2\text{Hg}(\text{CN})_2$ , CdBr₂,  $4\text{NH}_3+2\text{H}_2\text{O}$ .

Decomp. by H-O Si. sol. in NH OH+Aq. (Varct, C. R. 1891, 112, 535.)

Mercuric cyanide calcium bromide,  $2\text{Hg}(\text{CN})_2$ ,  $\text{CaBr}_2 + 5\text{H}_2\text{O}$ .

Sol. in 1 pt. cold, and 0.25 pt. toiling  $\rm H_2O$ ; also in 2 pts. cold, and 1 pt. boiling 90% alcohol. (Custer.)

+7H₂O. (Varet, C. R. 1895, **121.** 399.)

Mercuric cyanide cupric bromide ammonia, 2Hg(CN)₂, CuBr₂, 4NH₃. Decomp. by H₂O; sl. sol. in NH₄OH+Aq.

(Varet, Bull. Soc. (3) 6. 221.)

Mercuric cyanide lithium bromide, 2Hg(CN)₂  $2\text{LiBr} + 7\text{H}_2\text{O}$ .

Deliquescent. (Varet, C. R. 111. 526.)

Mercuric cyanide magnesium bromide. See Magnesium mercuric cyanide mercuric bromide.

 $Hg(CN)_2$ , 2KBr. Very sol. in  $H_2O$ . (Harth, Z. anorg. 1897, 14. 351.)

Mercuric cyanide potassium bromide,  ${\rm Hg(CN)_2,~KBr+2H_2O.}$ 

Sol. in 13.34 pts. H₂O at 18°, and less than 1 pt. boiling H₂O. (Brett.)

Sol. without decomp. in hot dil. H₂SO₄, HNO₃, or HCl+Aq. (Brett.)
Contains 1½H₂O. (Berthelot, A. ch. (5)

**29.** 226.)

Mercuric cyanide sodium bromide, Hg(CN)2,  $NaBr + 1\frac{1}{2}H_2O$ .

Sol. in H₂O and alcohol.

Mercuric cyanide strontium bromide,  $2Hg(CN)_2$ ,  $SrBr_2+6H_2O$ .

Sol. in H₂O and in alcohol. (Varet, C. R. 189**5**, **121**. 399.)

Mercuric cyanide zinc bromide, HgBr.  $Hg(CN)_2$ ,  $Zn(CN)_2+8H_2O$ .

Sol. in H₂O and NH₄OH+Aq. (Varet. Bull. Soc. (3) 5. 8.)

Mercuric cyanide zinc bromide ammonia.  $HgBr_2$ ,  $Hg(CN)_2$ ,  $Zn(CN)_2$ ,  $4NH_3$ . As the corresponding chloride. (Varet.) Mercuric cyanide chloride, Hg(CN)₂, HgCl₂. Sol. in H₂O. Decomp. by alcohol, which dissolves out HgCla.

Mercuric cyanide ammonium chloride, Hg(CN)2, NH4Cl.

Sol. in H₂O and alcohol. (Poggiale.) Hg(CN)₂, 4NH₄Cl.

Mercuric cyanide barium chloride, 2Hg(CN)₂,  $BaCl_2+4H_2O$ .

Efflorescent. Easily sol, in H2O and alcohol +6H₂O. (Dexter.)

Mercuric cyanide barium chloride ammonia, 2Hg(CN)₂, BaCl₂, 4NH₃.

Decomp. by H₂O. Sl. sol. in NH₄OH+Aq. Varet, Bull. Soc. (3) 6. 221.)

Mercuric cyanide cadmium chloride, Hg(CN)₂, CdCl₂+2H₂O.

Sol. in H₂O and NH₄OH+Aq. (Varet, Bull. Soc. (3) 5. 8.)

Mercuric cyanide calcium chloride,  $2\text{Hg}(\text{CN})_2$ ,  $\text{CaCl}_2+6\text{H}_2\text{O}$ .

Efflorescent. Very sol. in  $H_2O$ . (Varet, C. R. 1895, 121. 349.)

Mercuric cyanide cerium chloride,  $3Hg(CN)_2$ ,  $CeCl_3 + 8H_2O$ .

Very sol. in H₂O. (Ahlén, Bull. Soc. (2) **27.** 365.)

Mercuric cyanide cobaltous chloride,  $Hg(CN)_2$ ,  $2CoCl_2+4H_2O$ .

Sol. in H₂O. (Poggiale.)  $2Hg(CN)_2$ ,  $CoCl_2 + 7H_2O$ . (Dexter.)

Mercuric cyanide cupric chloride, Hg(CN)₂, CuCl₂+6H₂O.

Efflorescent.

Sol. in H₂O and in NH₄OH+Aq. (Varet,

C. R. 1888, 107. 1002.)

2Hg(CN)₂, CuCl₂+6H₂O. Efflorescent.

Very sol. in H₂O and in NH₄OH+Aq.

(Varet, C. R. 1888, 107. 1002.)

Mercuric cyanide cupric chloride ammonia, 2Hg(CN)₂, CuCl₂, 4NH₃.

Decomp. by H₂O. Sl. sol. in cold NH₄OH +Aq. (Varet, Bull. Soc. (3) 6. 221.)

 $\begin{array}{cccc} \textbf{Mercuric} & \textbf{cyanide} & \textbf{didymium} & \textbf{chloride,} \\ & 3Hg(CN)_2, & DiCl_3+8H_2O. \end{array}$ Very sol, in H₂O. (Ahlén.)

Mercuric cyanide erbium chloride, 3Hg(CN)₂,  $ErCl_2 + 8H_2O$ .

Easily sol, in H₂O. (Ahlén.)

Mercuric cyanide hydrazine chloride, Hg(CN)₂, N₂H₄, HCl. Very sol. in H₂O.

(Fer-Nearly insol. in alcohol and ether. ratini, Gazz. ch. it. 1912, 42. (1), 154.)

Mercuric cyanide ferric chloride, 2Hg(CN)₂,  $FeCl_1 + 3\frac{1}{2}H_2O$ . (Dexter.)

Mercuric cyanide lanthanum chloride,  $3Hg(CN)_2$ ,  $LaCl_3+8H_2O$ . Very sol, in H₂O. (Ahlén.)

Mercuric cyanide magnesium chloride,  $2\text{Hg}(\text{CN})_2$ ,  $\text{MgCl}_2 + 2\text{H}_2\text{O}$ .

Easily sol. in H₂O and dil. alcohol. (Poggiale.)

Mercuric cyanide manganous chloride.  $Hg(CN)_2$ ,  $MnCl_2+3H_2O$ .

Efflorescent. Very sol. in H₂O. (Poggiale.)

Mercuric cyanide nickel chloride, Hg(CN)2,  $NiCl_2 + 6H_2O$ .

Deliquescent. Sol. in H₂O. (Poggiale.) 2Hg(CN)₂, NiCl₂+7H₂O. (Dexter.)

Mercuric cyanide chloride nickel chloride oxychloride, 11Hg(CN)2, 8HgCl2, 2NiCl2, 8Ni(OH)Cl+76H₂O.

(Papiermeister, Dissert. 1898.)

Mercuric cyanide potassium chloride, Hg(CN)₂, KCl+H₂O.

Sol. in 6.75 pts. H₂O at 18°. Sol. in alcohol.

Mercuric cyanide sodium chloride, Hg(CN)₂,

Easily sol. especially in hot H2O; insol. in alcohol. (Poggiale.)

Mercuric cyanide strontium chloride,  $2Hg(CN)_2$ ,  $SrCl_2+6H_2O$ .

Easily sol. in H₂O and dil. alcohol. (Varet, C. R. 1895, **121.** 349.)

Mercuric cyanide yttrium chloride, 3Hg(CN)₂  $YCl_8+8H_2O$ .

Easily sol. in H₂O. (Ahlén, Bull, Soc. (2) **27.** 365.)

Mercuric cyanide zinc chloride, 2Hg(CN)2,  $ZnCl_2+6H_2O$ .

 $\begin{array}{c} {\rm Efflorescent.~Sol.~in~H_2O.~(Kane.)}\\ {\rm HgCl_2,~Hg(CN)_2,~Zn(CN)_2+7H_2O.~Efflorescent.~~Very~sol.~in~H_2O.~(Varet,~Bull.} \end{array}$ Soc. (3) 5. 8.)

Mercuric cyanide zinc chloride ammonia, HgCl₂, Hg(CN)₂, ZnCl₂, 4NH₃.

Decomp. by H₂O. Sol. in NH₄OH+Aq. (Varet, Bull. Soc. (3) 6. 221.) Hg(CN)₂, Zn(CN)₂, HgCl₂, 6NH₃. (Varet, C. R. 106. 1080.)

Mercuric cyanide potassium chromate.

See Chromate mercuric cyanide, potassium.

Mercuric cyanide potassium ferrocyanide, 3Hg(CN)₂, K₄Fe(CN)₅+4H₂O.

Readily sol. in H₂O.

Mercuric cyanide hydrazine,  $Hg(CN)_2$ ,  $N_2H_4$ .

Very sol. in H₂O with partial decomp. (Hofmann and Marburg, A. 1899, **30b**. 215.) Hg(CN)₂, N₂H₄. Ppt. Franzen, Z. anorg. 1911, **70**. 154.)

Mercuric cyanide potassium hydrozide, Hg(CN)₂, KOH.

(Hofmann and Wagner, B. 1908, **41**. 321.) +1½H₂O. (Hofmann and Wagner, B 1908, **41**. 1630.)

2Hg(CN)₂, KOH+H₂O. Very sol. in H₂O. (Hofmann and Wagner, B. 1908, **41** 320.)

Mercuric cyanide sodium hydroxide, Hg(CN)₂.NaOH+1½H₂O or H₂O. (Hofmann and Wagner, B. 1908, **41.** 1631.)

Mercuric cyanide barium iodide,  $2Hg(CN)_2$ ,  $BaI_2+4H_2O$ .

Slowly deliquescent. Sol. in 16.5 pts. cold, and 0.4 pt. boiling H₂O. Sol. in 22.5 pts. cold, and 1.6 pts. hot 90% alcohol. Solution is decomp. on boiling. (Custer.)

Mercuric cyanide cadmium iodide,  $Hg(CN)_2$ ,  $Cd(CN)_2$ ,  $HgI_2+8H_2O$ .

See Cadmium mercuric cyanide mercuric iodide.

Mercuric cyanide cæsium iodide,  $Hg(CN)_2$ , CsI.

Recryst. from H₂O without decomp. Decomp. by acids. (Mathewson and Wells, Am. Ch. J. 1903, **30.** 433.)

Mercuric cyanide calcium iodide,  $2 \mathrm{Hg}(\mathrm{CN})_2$ ,  $\mathrm{CaI}_2 + 6 \mathrm{H}_2 \mathrm{O}$ .

Sl. efflorescent. More sol. in H₂O than corresponding Sr. comp. (Custer.)

Mercuric cyanide lithium iodide, Hg(CN)₂, 2Li(CN)₂, HgI₂+7H₂O.

See Cyanide, lithium mercuric mercuric iodide.

 $\begin{array}{cccc} \textbf{Mercuric} & \textbf{cyanide} & \textbf{magnesium} & \textbf{iodide,} \\ & & Hg(CN)_2, & Mg(CN)_2, & HgI_2 + 8H_2O. \end{array}$ 

See Cyanide, magnesium mercuric mercuric iodide.

Mercuric cyanide potassium iodide,  $Hg(CN)_2$ , KI.

Sol. in 16 pts. cold, and less hot  $H_2O$ . Sol. in 96 pts. cold alcohol of 34° Baumé. (Caillot.) Sl. sol. in ether. Decomp. by acids.  $3Hg(CN)_2$ ,  $2KI+\frac{1}{2}H_2O$ . (Berthelot.)

Mercuric cyanide sodium iodide, Hg(CN)₂, NaI+2H₂O.

Sol. in  $4\frac{1}{2}$  pts.  $H_2O$  at 18°, and  $6\frac{1}{7}$  pt. boiling  $H_2O$ .

Sol. in 2 pts. boiling, and 6½ pts. cold 90% alcohol. (Custer.)

Mercuric cyanide strontium iodide,  $2\text{Hg}(\text{CN})_2$ ,  $\text{SrI}_2 + 6\text{H}_2\text{O}$ .

Sol. in 7 pts. H₂O at 18°, and ½ pt. at b.-pt. Sol. in 4 pts. 90% elcohol at 18°, and ½ pt. at b. 1 t. (Custer.)

Mercuric cyanide zinc iodide, 2Hg(CN)₂, ZnI₂+6H₂O.

Efflorescent; sol. in H₂O.

Mercuric cyanide iodide potassium cyanide,  $HgI_{\star}$ ,  $Hg(CN)_2$ ,  $2\kappa CN$ .

Easily decomp. by dil. acids. (Rupp. Apoth. Ztg., 23. 374.)

Mercuric cyanide cadmium nitrate,  $2\text{Hg}(\text{CN})_2$ ,  $\text{Cd}(\text{NO}_3)_2 + 7\text{H}_2\text{O}$ .

Decomp. by  $H_2O$ , not by alcohol. (Nylander, J. B. **1859** 271.)

Lercuric cyanide cobalt nitrate,  $2\text{Hg}(C_sN)_2$ ,  $Co(NO_3)_2 + 7\text{H}_2O$ .

Decomp. by H₂O, not by alcohol. (Nylander.)

Mercuric cyanide copper nitrate,  $Hg(CN)_2$ ,  $Cu(NO_3)_2+5H_2O$ .

Decomp. by  $H_2O$ , not by alcohol. (Nylander.)

Mercuric cyanide ferrous nitrate,  $2Hg(CN)_2$ ,  $Fe(NO_3)_2+7H_2O$ .

Decomp. by H₂O, not by alcohol. (Nylander.)

Mercuric cyanide manganous nitrate,  $Hg(CN)_3$ ,  $Mn(NO_3)_2+5H_2O$ .

Decomp. by H₂O, not by alcohol. (Ny-lander.)

2Hg(CN)₂, Mn(NO₃)₂+7H₂O. As above

Mercuric cyanide nickel nitrate, 2Hg(CN)₂, Ni(NO₃)₂+7H₂O.

Decomp. by  $H_2O$ , not by alcohol. (Nylander.)

Mercuric cyanide silver nitrate,  $2Hg(CN)_2$ ,  $AgNO_8+2H_2O$ .

Sl. sol. in cold, more readily in hot H₂O. Sol. with decomp. in HNO₃+Aq. As sol. in alcohol as in H₂O.

Mercuric cyanide zinc nitrate,  $2Hg(CN)_2$ ,  $Zn(NO_3)_2+7H_2O$ .

Sol. in  $H_2O$  with decomp. Not decomp. by alcohol. (Nylander, J. B. 1859. 271.)

Mercuric cyanide nitrate silver cyanide, basic,  $Hg(NO_3)CN$ , 10AgCN,  $Hg(OH)NO_3$ .

(Schmidt, Z. anorg. 1895, 9. 431.)

Mercuric cyanide potassium selenocyanide, Hg(CN)₂, KSeCN.

Sl. sol. in cold, much more easily sol. in hot H₂O or alcohol. Traces dissove in ether. (Cameron and Davy, C. N. 44. 63.)

Mercuric cvanide nickel sulphate,  $Hg(CN)_2$ ,  $NiSO_4+9H_2O$ . (Papiermeister, Dissert, 1898.)

Mercuric cyanide ammonium sulphocyanide, Hg(CN)₂, NH₄SCN.

Easily sol, in hot H₂O. (Cleve, Bull. Soc. (2) **23.** 71.)

Mercuric cyanide barium sulphocyanide,  $2\text{Hg}(\text{CN})_2$ ,  $\text{Ba}(\text{SCN})_2 + 4\text{H}_2\text{O}$ .

Permanent. Sol. in hot II₂O. (Cleve.)

Mercuric cyanide cadmium sulphocyanide,  $2\text{Hg}(\text{CN})_2$ ,  $\text{Cd}(\text{SCN})_2 + 4\text{H}_2\hat{O}$ . Permanent. Sol. in hot H₂O. (Cleve.)

Mercuric cyanide calcium sulphocyanide,  $2\text{Hg}(\text{CN})_2$ ,  $\text{Ca}(\text{SCN})_2 + 8\hat{\text{H}}_2\text{O}$ . Sol. in  $H_2O$ . (Cleve.)

Mercuric cyanide cerium sulphocyanide,  $3Hg(CN)_2$ ,  $Ce(SCN)_3+12H_2O$ . Easily sol. in hot  $H_2O$ . (Jolin.)

Mercuric cyanide didymium sulphocyanide,  $3Hg(CN)_2$ ,  $Di(SCN)_3+6H_2O$ . Sl. sol, in cold, easily in hot H₂O. (Cleve.)

Mercuric cyanide erbium sulphocyanide,  $3\text{Hg}(\text{CN})_2$ ,  $2\text{Er}(\text{SCN})_3 + 12\text{H}_2\text{O}$ . Sl. sol. in cold, easily in hot H₂O. (Cleve.)

Mercuric cyanide lanthanum sulphocyanide,  $3\text{Hg}(\text{CN})_2$ ,  $\text{La}(\text{SCN})_3 + 12\text{H}_2\text{O}$ . Very sol. in H₂O. (Cleve.)

Mercuric cyanide magnesium sulphocyanide,  $2\text{Hg(CN)}_2$ ,  $\text{Mg(SCN)}_2+4\text{H}_2\text{O}$ . Permanent. Easily sol. in hot H₂O. (Cleve,),

Mercuric cyanide potassium sulphocyanide,  $\mathrm{Hg}(\mathrm{CN})_2,\ \mathrm{KSCN}.$ 

Permanent. Easily sol. in hot H₂O.  $+2H_2O$ . (Philip, Z. Ch. **1867.** 552.)

Mercuric cyanide rubidium sulphocyanide,  $Hg(CN)_2 Rb(SCN)$ .

Sol. in hot H₂O without decomp. (Grossmann, B. 1904, 37. 1259.)

Mercuric cyanide samarium sulphocyanide,  $3Hg(CN)_2$ ,  $Sm(SCN)_2+12H_2O$ . Easily sol. in H₂O. (Cleve.)

Mercuric cyanide sodium sulphocyanide,  $Hg(CN)_2$ ,  $NaSCN+2H_2O$ .

Efflorescent. Sol. in H₂O. (Cleve, Bull. Soc. (2) 23. 71.)

Mercuric cyanide strontium sulphocyanide,  $2\text{Hg}(\text{CN})_2$ ,  $\text{Sr}(\text{SCN})_2 + 4\text{H}_2\text{O}$ . Efflorescent. (Cleve.)

Mercuric cyanide yttrium sulphocyanide,  $3Hg(CN)_2$ ,  $Y(SCN)_3 + 12H_2O$ . Sl. sol. in warm, much less in cold H₂O. (Cleve.)

Mercuric cyanide zinc sulphocyanide,  $2\text{Hg(CN)}_2$ ,  $\text{Zn(SCN)}_2 + 4\text{H}_2\text{O}$ . Sl. sol. in H₂O. (Cleve.)

Mercuric cyanide zinc sulphocyanide ammonia,  $2 {\rm Hg}({\rm CN})_2$ ,  ${\rm Zn}({\rm SCN})_2$ ,  $3 {\rm NH_3}$ . Not efflorescent. Decomp. by H₂O.

Mercuric cyanide potassium thiosulphate,  $Hg(CN)_2$ ,  $K_2S_2\hat{O}_3$ .. Permanent. Sol. in H₂O. (Kessler.) +H₂O. (Fock and Kluss, B. **24.** 1355.)

Molybdenum hydroxyl potassium cyanide. K₃Mo(OH)₂/CN)₅. (Rosenheim and Koss, Z. anorg, 1906, 49) 155.)  $K_bMo(OH)_2(CN)_s$ . Very sol. in  $H_2O$ . (Rosenheim and Koss.)

Molybdenum cyanide with MCN. See Molybdocyanide M.

Molybdenyl potassium cyanide, MoO2(CN)2, 2KCN.

Very sol. in H₂O. Aqueous solution is stable in presence of alkalies.

Insol. in alcohol. (Péchard, C. R. 1894, **118.** 805.)

MoO₂(CN)₂, 3KCN. Sol. in H₂O. Insol. in alcohol. (Hofmann, Z. anorg. 1896, 12. 287.)

 $+H_2O$ . Sol. in  $H_2O$ . Insol. in alcohol. (Hofmann.) +4H₂O. Sol. in H₂O. Insol. in alcohol.

Nickel cyanide,  $Ni(CN)_2 + xH_2O$ .

(Hofmann.)

Insol. in H2O. Insol. in conc. HCl, H2SO4, or HNO₈+Aq, but decomp. by heating there-Sol. in NH4OH, warm (NH4)2SO4, or NH₄ succinate+Aq; also in KCN+Aq. Sl. sol. in NH₄Cl, or NH₄NO₃+Aq. (Wittstein.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

 $+3H_2O$ ,  $+3\frac{1}{4}H_2O$ ,  $+3\frac{3}{4}H_2O$ ,  $+4\frac{1}{4}H_2O$ . (Papiermeister, Dissert. and  $+5\frac{1}{4}H_2O$ . 1898.) (Hofmann and Höchtlen, B. +4H₂O.

1903, **36.** 1149.)

Nickel potassium cyanide, Ni(CN)2, 2KCN  $+H_2O$ .

Sol. in  $H_2O$ . Decomp. by acids with residue of insol.  $Ni(CN)_2$ .  $+\frac{1}{2}H_2O$ . (Rammelsberg.)

Nickel sodium cyanide, Ni(CN)2, 2NaCN+  $3H_2O$ .

Sol. in H₂O; decomp. by acids with residue of Ni(CN)2.

Nickel strontium cyanide, Ni(CN)₂, Sr(CN)₂  $+x\Pi_2()$ .

Sol. in H₂O. (Handl, J. B. 1859. 273.)

Nickel cyanide ammonia,  $Ni(CN)_2$ ,  $NH_3+$ ½H₂O.

Scarcely attacked by H₂O or dil. acids. Sol. in cone. H₂SO₄. Sol. in (NH₄)₂CO₃+ Aq, cone.  $NH_4OH + Aq$ .  $(NH_4)_2C_2O_4 + Aq$ ,  $(NH_4)_2S + Aq$ , and KCN + Aq. Decomp. by boiling with NaOH or KOH. (Bernoulli and Grether, Ch. Z. 1901, 25. 436.)

Nickel cyanide trahydrazine, Ni(CN)2,  $(N_2H_4)_3$ .

Ppt. (Franzen, Z. anorg. 1911, **70.** 155.)

Osmium cyanide,  $Os(CN)_2(?)$ .

Insol. in H₂O; not attacked by acids. See also Osmocyanhydric acid.

Osmium potassium cyanide.

See Osmocyanide, potassium.

Palladous cyanide, Pd(CN)₂.

Insol. in H2O. Insol. in dil. acids. Sol. in KCN or NH₄OH+Aq, also in conc. HCN

Platinous cyanide, Pt(CN)₂.

Insol. in H₂O, alkalies, or acids. Sol. in  $\mathbf{KCN} + \mathbf{Aq}$ . When freshly pptd., sol. in  $NH_4OH + Aq$ .

Platinous cyanide with MCN. See Platinocyanide, M.

Potassium cyanide, KCN.

Deliquescent. Very sol. in H₂O. 100 pts. KCN+Aq, sat. at b.-pt. 103.3,° contain 55 pts. KCN, *i. e.* 100 pts. H₂O dissolve 122.2 pts. KCN at 103.3.° (Griffiths.) KCN+Aq containing 3.25% KCN has sp. gr. =1.0154; 6.5% KCN, 1.0316. (Kohlrausch W. App. 1270. 1) rausch, W. Ann. 1879. 1.)

KCN+Aq containing 9.64% KCN has sp. gr.  $20^{\circ}/20^{\circ} = 1.0514$ .

KCN+Aq containing 14.42% KCN has sp. gr. 20°/20° = 1.0768. (Le Blanc and Rohland, Z. phy. ch. 1896, 19. 278.

Moderately sol. in liquid NH₃. (Franklin,

Ann. Ch. J. 1898, 20, 829.)

Almost insol. in absolute alcohol.

Sol. ii. 80 pts. 95% alcohol when boiling, and easily sol. in 35% alcohol. (Geiger, A. 1.

100 pts. absolute methyl alcohol dissolve 4.91 pts. at 19.5° 100 pts absolute ethyl alcohol dissolve 0.87 pt. at 19.5°. (de Bruyn, Z. phys. Ch. 10. 783.)

Însol. acetate (Naumann. in methyl B. 1909, 42, 3790); ethyl acetate. (Naumann,

B. 1904, **37.** 3601.)

100 g. glycerol disserve 32 g. KCN at 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.)

Sol. in CS₂ when pure. (Loughlin, J. B. 1875. 234.)

Wholly insol. in CS₂. (Moldenhauer, Z. anal. 16. 199.)

SI. sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Potassium chromium tetroxide pentacyanide,  $K_{5}[(CrO_{4})_{2}(CN)_{5}]+5H_{2}O.$ 

Very hygroscopic. Sol. in H₂O. (Riesenfeld, B. 1908, 41. 3548.)

Potassium chromium tetroxide dicyanide ammonia,  $K_2[CrO_4(CN)_2NH_3] + 5H_2O$ .

Hygroscopic in the air.

Easily sol. in H₂O and in NH₄OH+Aq. (Riesenfeld, B. 1908, 41. 3545.)

Potassium rhodium cyanide.

See Rhodocyanide, potassium.

Potassium ruthenium cyanide. See Ruthenocyanide, potassium.

Potassium silver cyanide, KCN, AgCN.

Sol. in 4.7 pts. H₂O at 15°, 4 pts. at 20°. and in much less at higher temp. Sol. in 25 pts. 85% alcohol. (Baup, A. ch. (3) 53. 464.)

Potassium silver sodium cyanide, 2KCN, NaCN, 3AgCN.

Sol. in 4.4 pts.  $H_2O$  at 15°, and 22 pts. 85% alcohol at 17°. (Baup.)

Potassium tungsten cyanide.

See Tungstocyanide, potassium.

Potassium uranyl cyanide,

 $(UO_2)(CN)_2$ , 2KCN Ppt. Sol. in H₂O. Sl. sol. in presence of large excess of KCN. (Aloy, A. ch. 1901, (7) **24**. 417.)

Potassium vanadium cyanide, K₃V(CN)₈.

Readily sol. in H₂O; decomp. slowly in neutral aq. solution, rapidly in acid aq. solution: insol. in alcohol. (Locke, Am. Ch. J. 1898. 20. 601.)  $K_4V(CN)_6+3H_2O$ . Sol. in  $H_2O$ . Insol. in alcohol and ether. (Petersen, Z. anorg. 1904, 38, 345.)

Potassium zinc cyanide, 2KCN, Zn(CN)₂. 100 pts. H₂O dissolve 11 pts. at 20°. (Sharwood, Eng. Min. J. 1904, 77, 845.)

Potassium cyanide molybdenum dioxide, 4KCN,  $MoO_2 + 5H_2O$ .

Sol. in H₂O. Insol. in alcohol. (Hofmann, Z. anorg. 1896, 12. 287.) +6H₂O. "Potassium dioxotetracyanomolybdate."

Very sol. in  $H_2O$ . (Winkler, Dissert.

1909.)  $+8H_{\bullet}O.$ (Rosenheim, Kohn and Garfunkel, Z. anorg. 1910, 65. 174.)

+10H₂O. Decomp. by conc. HCl, HNO₃ and H2SO4.

Not acted upon by cold dil. acids. (v. der Heide and Hofmann, Z. anorg. 1896, 12. 285.) 5KCN, MoO₂+8H₂O. Sol. in H₂O. Insol. in alcohol. (Kalischer, Dissert. 1902.)

Potassium cyanide molybdenum dioxide hydroxylamine, 4KCN, MoO₂, NH₂OH +H₂O.

Soli in H2O. Decomp. by dil. acids. (v. der Heide and

Hofmann, Z. anorg. 1896, 12. 282.)

Potassium cyanide molybdenum sulphide,  $6 \mathrm{KCN}, \ \mathrm{Mo_2S_3} + 5 \mathrm{H_2O}.$ 

Easily sol. in H₂O. Decomp. by dil. acids.

(Hofmann, Z. anorg. 1896, 12, 289.) Very sol. in H₂O. Slowly decomp. in the cold by dil. mineral acids. (v. der Heide and Hofmann, Z. anorg. 1896, 12. 289.)

Potassium cyanide molybdenum sulphocvanide, 2KCN, MoS₂(CN)₂.

(Péchard, C. R. 1894, 118, 806.) 5KCN, Mo₈S₄(CN)₈+7H₂O. Sol. in H₂O. Stable toward dil. acids and alkalies. (Hofmann, Z. anorg. 1896, 12, 289.)

Potassium cyanide molybdenum sulphoxy-cyanide, 4KCN, Mo₂SO(CN)₂+4H₂O. Sol. in H₂O. Stable toward dil. acids. (Hofmann, Z. anorg. 1896, 12. 289.)

Potassium cyanide nitrite, KCN, KNO₂+ ½H₂O.

Sol. in H₂O; decomp. slowly by H₂O; explosive. (Hofmann, Z. anorg. 1895, 10, 260-

Potassium cyanide sulphur dioxide, KCN,  $SO_2+H_2O$ .

Much more sol. in hot than cold H₂O. (Etard, C. R. 88, 649.)

Very sl. sol. KCN, HCN, 2SO₂+3H₂O. in cold H₂O; decomp. by hot H₂O. (Étard.)

Rubidium tungsten cyanide. See Tungstocyanide, rubidium.

Rhodium cyanide, Rh(CN)₃.

Ppt. Not decomp. by acids. Sol. in KCN+Aq. (Martius, A. 117. 361.)

Rhodium cyanide with 3KCN.

See Rhodicyanide, potassium.

Ruthenium cyanide with 4MCN. See Ruthenocvanide, M.

Silver cyanide, AgCN.

Sl. sol. in H₂O. 2.2+10⁻⁴ g. sol, in 1 liter of H₂O at 19.96°. (Böttger, Z. phys. ch. 1903, **46**. 603.)

1 l. solution in H₂O contains 0.000043 g. AgCN at 17.5°. (Abegg and Cox, Z. phys. Ch. 1903, **46.** 11.)

Solubility in  $H_2O$  at  $25^{\circ}=2.22+10^{-6}$ mol. per l. (Lucas, Z. anorg. 1904, 41. 198.) Insol. in dil. acids. Decomp. by conc.

acids. Not sol. to any extent in HCN + Aq. Freshly pptd. AgCN is not dissolved by cold dil. HNO₃, but is attacked by very dil. HNO3 on boiling. From dry AgCN is dissolved 5% by boiling 1 hour with 1% HNO: +Aq. Conc. HNO dissolves more. (Brunck,

B. 1901, 34. 1605.)
Sol. in NH₄OH+Aq. Sol. in boiling KCl, NaCl, CaCl₂, BaCl₂, or MgCl₂+Aq, but very slowly sol. therein at ord. temp. Sol. in Na₂S₂O₃, K₄Fe(CN)₆, (NH₄)₂CO₃, (NH₄)₂SO₄, NH₄NO₃, and NH₄ succinate+Aq, and in

large amt. of hot NH₄Cl+Aq. (Wittstein.) Sol. in KCN, NaCN, Ba(CN)₂, Ca(CN)₂, or Sr(CN)₂+Aq. Insol. in KOH, or NaOH +Aq. Sol. in conc. boiling AgNO₃+Aq. (Wöhler.)

Sol. in 431.7 pts. 5% NH₄OH+Aq (sp. gr. 0.998) at 12°; in 184.5 pts. 10% NH₄OH+ Aq (sp. gr. 0.96) at 18°. (Longi, Gazz, ch. it. 13. 87.)

Sl. sol. in Na citrate + Aq. Sol. in  $Hg(NO_8)_2 + Aq$ .

1 l. of a 3-N solution of AgNO₈ dissolves 1.216 g. AgCN at 25°. (Hellwig, Z. anorg. 1900, 25. 177.)

Very sol. in  $(NH_4)_2S_2O_8+Aq$ . (Rosenheim and Steinhäuser, Z. anorg. 1900, 25. 105.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 829.)

Sl. sol. in liquid HF. (Franklin, Z. anorg. 1905, **46.** 2.)

Abundantly sol. in quinoline at 60°. (Varet, C. R. 1893, **116.** 60.)

Sl. sol. in ethyl amine. (Shinn, J. phys. Chem. 1907, 11. 538.)

Insol. in methyl acetate. (Bezold, Dissert. 1906; Naumann, B. 1909, 42. 3790); ethyl

(Hamers, Dissert. 1906; Naumann, acetate. B. 1910, 43. 314.)

Silver hydrogen cyanide, AgCN, HCN. (Euler, B. 1903, 36. 1859.)

Silver sodium cyanide, AgCN, NaCN.

Sol. in 5 pts. H2O at 20° and in much less hot H₂O. Sol. in 24 pts. 85% alcohol at 20°. (Baup, A. ch. (3) **53**. 468.)

Silver thallous cyanide, AgCN, TlCN.

Easily sol. in H₂O. 100 pts. H₂O dissolve 4.7 pts. at 0°, and 7.4 pts. at 16°. (Fronmuller, B. 11. 92.)

Silver tungsten cyanide.

See Tungstocyanide, silver.

Silver cyanide ammonia, AgCN, NH₃.

Efflorescent. Decomp. on air. Very sol, in ammonia at -10°. (Joannis, C. R. 1894, **118.** 1151.)

Silver cyanide hydrazine, AgCN, N2H4.

Decomp. in the air.

Decomp. by H₂O. (Franzen, Z. anorg. 1911, **70.** 153.)

Silver cyanide nitrate, 2AgCN, AgNO₃. Decomp. by H₂O.

Sodium cyanide, NaCN.

Sol. in  $H_2O$  and 75% alcohol. +\frac{1}{2}H_2O, and 2H_2O. Very sol. in  $H_2O$ ; sl. sol. in alcohol. (Joannis, A. ch. (5) 26. 484.)

Sodium tungsten cyanide.

See Tungstocyanide, sodium.

Sodium zinc cyanide, NaCN, Zn(CN)₂+ 2½H₂O.

Much more sol. in H₂O than the corresponding K Zn salt. (Rammelsberg.) +8H₂O. (Loebe, Dissert. 1902.)

Sodium dioxide, cyanide molybdenum 4NaCN,  $M_0\text{O}_2+6\text{H}_2\text{O}$ .

(Winkler, Dissert. 1909.)

+14H₂O. Sol. in  $H_2O$ . (Rosenheim, Garfunkel and Kohn, Z. anorg. 1910, **65.** 174.)

Sodium cyanide molybdenum dioxide hydroxylamine, 4NaCN, MoO2, NH2OH  $+H_{9}O.$ 

As K comp. (Winkler, Dissert. 1909.)

Strontium cyanide,  $Sr(CN)_2 + 4H_2O$ .

Very unstable; very deliquescent, and sol. in H₂O. (Joannis, A. ch. (5) **26.** 496.)

Strontium tungsten cyanide. See Tungstocyanide, strontium. Strontium zinc cyanide, 2Sr(CN)2,  $3Zn(CN)_2 + H_2O$ .

Sol. in H₂O and alcohol. (Loebe, Dissert. 1902.)

Thallous cyanide, TlCN.

100 pts. H₂O dissolve 16.8 pts. at 28.5°. (Fronmüller, B. 6. 1178.)

Thallothallic cyanide,  $Tl_2(CN)_4 = TlCN_4$ TI(CN)s.

Easily sol, in H₂O.

100 pts. H₂O dissolve 27.3 pts. at 30°, 15.3 pts. at 12°, 9.7 pts. at 0°. (Fronmüller, B. 11.

Thallous tungsten cyanide.

See Tungstocvanide, thallous.

Thallous zinc cyanide, 271CN, Zn(CN)₂.

Easily sol. in H₂O. 100 pts. H₂O dissolve 8.7 pts. at 0°; 15.2 pts. at 14°; and 29.6 pts. at 31°. (Fronmüller, B. 11. 92.)

Tungsten cyanide with MCN.

See Tungstocyanide, M.

Zinc cyanide,  $Zn(CN)_2$ .

Insol. in H₂O and alcohol. Sol. in alkalies.

Easily sol. in KON-1. Salts+Aq. (Wittstein.)

Easily sol. in (NH₄)₂CO₃+Aq. (Gore.)

KOH+Aq. Solution is stable Sol. in KOH+Aq. Solution is stable when less than 1 mol. Zn(CN)₂ to 2 mols. KOH is present. When proportion is 1:1,  $ZnO_2H_2$  soon separates.

Sol. in dil. KCN+Aq. (Sharwood, J.

Am. Chem. Soc. 1903, 25. 587.)

Sl. sol. in conc. Zn salts+Aq. 1 l. conc.  $Zn(C_2H_3O_2)_2+Aq$  dissolves 4 g., and 1 l. conc.  $ZnSO_4+Aq$  dissolves 2 g.  $Zn(CN)_2$ . Insol. in HCN+Aq. Easily sol. in dil. acids. (Joannis.)

Very sol. in liquid NH₈. (Franklin, Am.

Ch. J. 1898, **20**. 830.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Zinc cyanide ammonia, Zn(CN)2, 2NH2.

Decomp. on air. (Varet, C. R. 105. 1070.)  $+H_2O$ . Decomp. on air. Decomp. by  $H_2O$ . Sol. in  $NH_4OH+Aq$ . (Varet.)

Zinc cyanide dihydrazine,  $Zn(CN)_2$ ,  $2N_2H_4$ . Decomp. by H₂O. (Franzen, Z. anorg 1911, **70.** 153.)

Cyanogen, CN.

H₂O absorbs 4½ vols. CN gas at 20°. Alcohol absorbs 23 vols., and ether 5 vols. at the same temperature. (Gay-Lussac.)

The solution gradually decomposes, but this is prevented by traces of acids.

0.221 mol. litre are dissolved in H₂O at 0°. (Naumann, Z. Electrochem. 1910, 16. 177.)

Oil of turpentine absorbs 5 yols. (Gay-Lussac.) Absorbed by many essential oils. Very sol. in CuCl₂+Aq.

Absorbed with decomp. by NH₄OH+Aq and other alkaline liquids.

Absorbed by aniline. (Jacquemain, C. R. **100.** 1006.)

## Cyclotriborene, B₃H₃.

Insol. in H2O. (Ramsay and Hatfield, Proc. Chem. Soc. 1901, 17. 152.)

## Decamine cobaltic sulphite,

 $Co_2(NH_3)_{10}(SO_3)_3 + 3H_2O.$ 

Sol, in H₂O. (Vortmann and Magdeburg, B. **22.** 2636.)

## Decamine cobaltisulphurous acid.

## Cobaltic decamine cobaltisulphite,

 $Co_2(NH_3)_{10}(SO_3)_6Co_2 + 8H_2O$ .

Ppt. (Vortmann and Magdeburg, B. 22. **2**635.)

## Sodium decamine cobaltisulphite,

 $Co_2(NH_3)_{10}(SO_3Na)_6 + 2H_2O$ .

Sol. in H₂O. (Vortmann and Magdeburg. B. 22. 2635.)

# Diamide, N₂H₄.

See Hydrazine.

## Diamine chromium sulphocyanhydric acid, $Cr(NH_3)_{12}(SCN)_3$ , $HSCN + H_2O$ .

Sol. in H₂O. (Nordenskiöld, Z. anorg. 1. 130.)

Diamine chromium diaguo sulphocyanide.  $Cr(NH_3)_2(SCN)_3 + 2H_2O$ .

Sol. in H₂O, from which it is pptd. by con. HCl+Aq. (Nordenskiöld, Z. anorg. 1. 137.)

# Ammonium diamine chromium sulphocy-anide, $Cr(NH_3)_2(SCN)_3$ , $NH_4SCN$ .

(Reinecke's salt.) Quite easily sol in H₂O, less in alcohol, and insol in benzene. Slowly decomp. by boiling H₂O or dil. acids. (Nordenskidld, Z. anorg. 1. 130.)

+H₂O. Insol. in absolute ether. (Christen-

sen, J. pr. (2) 45. 218.)

## Ammonium diamine chromium sulphocyanide iodide, Cr(NH₃)₂(SCN)₃, NH₄SCN, I.

- ---,  $[Cr(NH_3)_2(SCN)_3]_2$ , Barium -Ba(SCN)2. Sol. in H₂O and alcohol. (N.)

Cadmium diamine chromium sulphocyanide,  $Cd(SCN)_2$ ,  $[Cr(NH_3)_2(SCN)_3]_2 + H_2O$ .

Nearly insol. in cold, sl. sol. in hot H₂O. Sl. sol. in boiling alcohol. (Christensen, J. pr. (2) **45.** 371.)

Cupric —— ——, Cu(SCN)₂,  $[Cr(NH_3)_2(SCN)_3]_2$ .

Insol. in H₂O or dil. acids. (Reinecke, A. **126.** 116.)

## Luteocobaltic -----

 $C_0(NH_3)_6(SCN)_3[C_1(NH_3)_2(SCN)_3]_3$ . As good as insol, in cold H2O. Sl. sol, in

hot H2O and alcohol. (Christensen, J. pr. (2) **45.** 370.)

Mercuric — — ,  $[Cr(NH_3)_2(SCN)_3]_2$ ,  $Hg(SCN)_2$ .

Insol. in H₂O. (N.)

Insol. in H₂O and dil. acids. (Reinecke.)

Potassium —————,  $Cr(NH_3)_2(SCN)_3$ , KSCN.

Properties as the NH₄ salt. (N.) Cr(NH₃)₂(SCN)₃, KSCN, I. As the NH₄ salt. (N.)

Sodium —— ---, NaSCN, Cr(NH₃)₂(SCN)₃.

Sol. in H₂O, alcohol, and ether. (Reinecke.)

Diamine cobaltic nitrite ammonium nitrite, CO(NH₃)₂(NO₂)₃, NH₄NO₂.

Sol. in H₂O. (Erdmann.)

nitrite lead nitrite,

 $2\operatorname{Co}(\mathrm{NH_3})_2(\mathrm{NO_2})_3$ ,  $\operatorname{Pb}(\mathrm{NO_2})_2$ .

Sol. in hot H₂O with partial decomp.

 nitrite mercurous nitrite,  $2\text{Co}(\text{NH}_3)_2(\text{NO}_2)_3$ ,  $\text{Hg}_2(\text{NO}_2)_2$ .

Ppt. Not sol, in hot H₂O without decomp.

— nitrite potassium nitrite,  $Co(NH_3)_2(NO_2)_3$ ,  $KNO_2$ .

Sol. in H₂O. (Erdmann, J. pr. 97, 385.)

--- nitrite silver nitrite,  $Co(NH_8)_2(NO_2)_3$ , AgNO₂.

Ppt. Crystallises out of hot H₂O. (Erdmann.)

## nitrite thallium nitrite,

 $Co(NH_3)_2(NO_2)_3$ ,  $TINO_2$ . Crystallises out of hot H₂O without decomp.

Dichrocobaltic carbonate.

 $C_0(NH_3)_3(OH)CO_3+1\frac{1}{2}H_2O$ .

Sol. in H₂O. (Vortmann, B. **15.** 1901.)

Dichrocobaltic chloride, Co(NH₃)₃Cl₃+H₂G. Quite sol. in cold H2O, dil. acids, cone.

H2SO4, or dil. alcohol.

From solution in conc. H₂SO₄, the salt is precipitated by much HCl+Aq. Composition is Co(NH₂)₃(OH₂)Cl₃. (Jorgenson, Z. anorg. 5. 189.)

## - nitrate, $Co(NH_3)_3(NO_3)_3+4H_2O$ .

Deliquescent. Sol. in H2O. More sol. in dil. HNO₃+Aq than praseocobaltic nitrate. (Vortmann, B. 15. 1897.)

Anhydrous. Insol. in H2O as such, but converted into above salt thereby. (Jorgen-

sen, Z. anorg. 5. 186.)

- nitrite, Co(NH₂)₃(NO₂)₃.

Difficultly sol. in cold, but rather easily sol. in hot H2O.

--- sulphate,  $[Co(NH_3)_3]_2(SO_4)_3 + 6H_2O$ . Easily sol. in  $H_2O$ . (Vortmann, B. 15. 1900.)

— sulphite,  $[Co(NH_3)_3]_2(SO_3)_3 + H_2O$ .

Nearly insol. in cold, slowly decomp. by hot H₂O. Decomp. by acids or KOH+Aq. Insol. in cold, sol. in warm NH₄OH+Aq. (Kunzel, J. pr. (1) 72. 209.) According to Geuther (A. **128.** 157), is a double salt—

 $[Co(NH_3)_3]_2(SO_3)_3$ ,  $Co_2(SO_3)_3 + 2H_2O$ .

#### Didymium, Di.

Slowly decomp. by  $H_2O$ . Insol. in cold

cone, H₂SO₄. Sol, in dil. acids.
Compound of two elements, neodymium and praseodymium. (v. Welsbach, W. A. Б. **92.** 317.)

## Didymium bromide, DiBr₃+6H₂O.

Very deliquescent, and sol. in  $H_2O$ . (Cleve.)

Didymium nickel bromide, 2DiBr₃, 3NiBr₂+ 18H₂O.

Deliquescent. Very sol. in H₂O. (Frerichs and Smith, A. 191. 342.)

Didymium zinc bromide, DiBr₃, 3ZnBr₂+ 12H₂O.

Extremely deliquescent. Soc. (3) 43. 361.) (Cleve, Bull.  $2DiBr_3$ ,  $3ZnBr_2+36H_2O$ . (F. and S.)

#### Didymium chloride, DiCl₃.

Anhydrous.Deliquescent. Sol. in H₂O and alcohol. (Marignac.) +6H₂O. Deliquescent.

H₂O and alcohol. (Marignac.)

Didymium mercuric chloride, 2DiCl₃, 9HgCl₂+24H₂O.

More sol, in H₂O than the corresponding La salt. (Marignac.) DiCl₃, 4H Cl₂+11H₂O. Not deliquescent.

Easily sol. in H2O.

Didymium stannic chloride.

Sce Chlorostannate, didymium.

Didymium fluoride. DiF₃+ ${}^{1}2H_{2}O$ .

Precipitate. (Cleve.)

Didymium hydrogen fluoride, 2DiF₃, 3HF.

Precipitate. (Smith.)

Does not exist. (Cleve.)

Didymium potassium fluoride, DiF₃, KF+ H₂O.

Sol. in H₂O. (Brauner, B. 15. 114.)  $+1/_3H_2O$ . As above. (B.) 2DiF₃, 3KF+H₂O. As above. (B.)

Didymium hydroxide, Di₂O₆H₆.

Insol. in KOH, or NaOH+Aq, but is sl. sol. in  $NH_4Cl+Aq$ . (Rose.) See also Di₂O₃.

Didymium penthydroxide,  $DiO_4H_3 = Di_2O_5$ , 3H₂O,

Precipitate. (Brauner, B. 15. 113.)

Didymium zinc iodide, 2DiI₃, 3ZnI₂+24H₂O. Very deliquescent. (Frerichs and Smith.)

Didymium oxide, Di₂O₃.

With H2O slowly forms Di2O6H6#8

Sol. in conc., or dil. mineral acids (Marignac), and in acetic acid (Hermann). Sol. in

ammonium salts + Aq. Slightly more slowly sol. in conc. NH₄NO₃

+Aq than La₂O₃. (Damour and Deville.) A solution of NH₄NO₃ in H₂O that can dissolve 2.9 mols. La₂O₃ dissolves 1 mol. Di₂O₃. (Brauner, B. **15**. 114.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Didymium peroxide, Di₄O₉.

Sol. in acids with decomp. (Frerichs, B. 7. 799.)

Not obtained by Cleve. (B. 11. 910.) The contradictory statements concerning

the composition of Di peroxide are owing to the fact that praseodidymium is the only one of the constituents of Di which easily forms a peroxide. (v. Welsbach.)

## Didymium pentoxide, Di₂O₅.

Sol. in dil. HNO₈, or H₂SO₄+Aq in the cold without evolution of gas, but gas is evolved if treated with conc. acids. Insol. Easily sol. in  $\inf_{\bullet} HF + Aq$ . Sl. sol. in cold  $\inf_{\bullet} NH_4NO_3 + Aq$ . .) Didymium oxybromide, DiOBr. (Frerichs and Smith.)

Didymium oxychloride, DiOCl.

Anhydrous. Insol. in H₂O. (Smith.) +3H₂O. Sol. in cold dil. HNO₂+Aq. (Marignac.) Sl. sol. in HCl+Aq. (Hermann.)

Didymium oxysulphide, Di₂O₂S.

Insol. in H₂O. Sol. in HCl+Aq without residue. (Marignac.)

Didymium sulphide, Di₂S₈.

Insol. in  $H_2O$ . Decomp. by dil. acids. (Marignac, A. ch. (3) **38.** 159.) Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Disulphuric acid, H₂S₂O₇. See Disulphuric acid.

# Dithionic acid (Hyposulphuric acid), $H_2S_2O_6$ .

Known only in aqueous solution, which is stable only when dil. Can be evaporated in vacuo until sp. gr. = 1.347, but decomp. upon further evaporation. (Welter and Gay-Lussac, A. ch. 10. 312.)

#### Dithionates.

All dithionates are sol. in H₂O.

Aluminum dithionate, Al₂(S₂O₆)₃+18H₂O. Extremely deliquescent. Easily sol. in H₂O or absolute alcohol. (Klüss, A. **246**. 218.)

Aluminum ammonium dithionate, Al₂(S₂O₆)₃, (NH₄)₂S₂O₆+27H₂O.

Sl. deliquescent. Sol. in  $H_2O$ . (Klüss, A. **246.** 303.)

Ammonium dithionate, (NH₄)₂S₂O₆.

Very sol. in H₂O. Sol. in 0.79 pt. H₂O at 16°, with reduction of temp. Not decomp. on boiling. Insol. in absolute alcohol. (Heeren, Pogg. 7. 172.)

Contains ½H₂O. Sol. in 0.56 pt. H₂O at 19°. (Klüss, Å. **246.** 194.)

Ammonium cadmium dithionate, 2(NH₄)₂S₂O₆, CdS₂O₅+4½H₂O. Sòl. in H₂O. (Klüss, A. **246**, 298.)

Ammonium cobalt dithionate, 9(NH₄)₂S₂O₆, 2CoS₂O₆+16½H₂O. Sol. in H₂O. (Klüss.)

Ammonium cupric dithionate,  $(NH_4)_2S_2O_6$ ,  $2OuS_2O_6+8H_2O$ . Sol, in  $H_2O$ .

Ammonium ferrous dithionate, 3(NH₄)₂S₂O₆, Fe₂S₂O₆+6H₂O.

Sol. in  $H_2O$ . (Klüss, A. **246**. 300.)  $9(NH_4)_2S_2O_6$ ,  $2Fe_2S_2O_6+16\frac{1}{2}H_2O$ . Sol. in  $H_2O$ . (Klüss.)

Ammonium manganous dithionate,  $9(NH_4)_2S_2O_6$ ,  $2MnS_2O_6$ .

Sol. in H₂O. (Klüss, A. **246**. 301.)

Ammonium nickel dithionate,  $9(NH_4)_2S_2O_6$ ,  $2NiS_2O_6+16\frac{1}{2}H_2O$ .

Sol. in H₂O. (Klüss.)

Ammonium zinc dithionate,  $5(NH_4)_2S_2O_6$ ,  $ZnS_2O_6+9H_2O$ .

Easily sol. in  $H_2O$ . (Klüss, A. **246. 296.)**  $9(NII_4)_2S_2O_6$ ,  $2ZnS_2O_6+16\frac{1}{2}H_2O$ . Easily sol. in  $H_2O$ . (Klüss.)

Ammonium dithionate chloride,  $(NH_4)_2S_2O_6$ ,  $NH_4Cl$ .

Sol. in  $H_2O$ . (Fock and Klüss, B. 24. 3017.)

Barium dithionate, BaS₂O₆+2H₂O.

Not efflorescent. Sol. in 7.17 pts. H₂O at 8°, 4.04 pts. at 18°, and 1.1 pts. H₂O at 100°.

Insol. in alcohol. (Gay-Lussac, Heeren.) Sol. in 0.994 pt. H₂O at 102°, the boilingpoint of the sat. solution. (Baker, Bull. Soc. (2) **44.** 166.)

Insol. in methyl acetate. (Naumann, B. 1909. 42, 3790.)

+4H₂O. Very efflorescent. (Heeren.)

Barium magnesium dithionate,  $BaMg(S_2O_6)_2 + 4H_2O$ .

Sol. in H₂O. (Schiff, A. 118. 97.)

Barium rubidium dithionate,  $BaRb_4(S_2O_6)_{\boldsymbol{\imath}} + H_2O$ .

Sol. in H₂O. Solubility is diminished by presence of excess of Rb₂SO₄, but increased by BaS₂O₆. (Bodlander, Chem. Ztg. 14. 1140.)

Barium sodium dithionate,  $BaNa_4(S_2O_6)_3 + 4H_2O$ .

Sol. in H₂O. Decomp. by recrystallisation. (Kraut, A. **118**. 95.) +6H₂O. (Schiff.)

Barium dithionate chloride, BaS₂O₆, BaCl₂+4H₂O.

(Fock and Klüss, B. 23. 3001.)

Bismuth dithionate, basic,  $Bi_2O_3$ ,  $S_2O_6+$ +5 $H_2O$ .

Efflorescent. Insol. in H₂O, but decompthereby into the following salt. Easily sol. in dil. acids, especially HCl+Aq. (Klüss, A. **246.** 183.)

 $4 \text{Bi}_2\text{O}_3$ ,  $3\text{S}_2\text{O}_6+5\text{H}_2\text{O}$ . Insol. in  $\text{H}_2\text{O}$ . Sol. in dil. acids. (Klüss.)

Cadmium dithionate.

Deliquescent in moist air; very sol. in H2O. (Heeren, Pogg. 7. 183.)

Cadmium dithionate ammonia, CdS2Oe, 4NH₃.

Decomp. by alcohol; sol. in NH4OH+Ac. but decomp on heating. (Rammelsberg, Pogg. **58.** 298.)

Cæsium dithionate, Cs₂S₂O₆.

Easily sol. in H₂O. (Chabrié, C. R. 1901, **133.** 297 )

Calcium dithionate,  $CaS_2O_c+4H_2O$ .

Sol. in 2,46 pts. H₂O at 19°; 0.8 pt. at 100.° Insol. in alcohol. (Heeren, Pogg. 7. 178.) Insol, in acctone. (Naumann, B. 1904, **37.** 4329.)

Cerous dithionate,  $Ce_2(S_2O_6)_3 + 24H_2O$ . Very sol. in H₂O. (Jolin.) +3, and 5H₂O. (Wyrouboff.)

Chromic dithionate,  $Cr_2(S_2O_6)_3 + 18H_2O$ . Sol. in H₂O and alcohol. (Klüss, A. 246.  $3\dot{C}r_2O_3$ ,  $4S_2O_5+24H_2O$ . Easily sol. in  $H_2O$ or alcohol. Insol. in ether. (Klüss.)

Cobaltous dithionate, CoS₂O₆+6H₂O. Not deliquescent. Very sol. in H₂O. (Heeren.) +8H₂O. Sol. in 0.49 pt. H₂O at 19°. Sol. in absolute alcohol. (Klüss, A. **246.** 203.)

Cupric dithionate basic, 4CuO, S₂O₅+4H₂O. Very sl. sol. in H₂O. (Heeren, Pogg. 7. 18.)

Ínsol. in H2O; easily sol. in dil. acids. (Klüss, A. **246**. 208.)

 $+3H_2O$ . Insol. in  $H_2O$  and  $NaC_2H_3O_2+$ Aq; sol. in traces in conc. CuS₂O₆+Aq. Easily sol. in dil. acids, even HC₂H₃O₂, or  $H_2S_2O_6+Aq$ . (Klüss.)

Cupric dithionate,  $CuS_2O_6+4H_2O$ .

Not efflorescent. Very sol. in H₂O. Insol. in alcohol. (Heeren.) +5H₂O.

(Efflorescent. Sol. in 0.64 pt. H₂O at 18.5. (Klüss, A. 246. 204.)

Cupric dithionate ammonia, CuS₂O₆, 4NH₃. Difficultly sol. in cold H₂O, moderately sol. in H₂O at 40°. Decomp. by much H₂O or by heating the solution above 60°. Decomp. by HCl+Aq. (Heeren.)

Can be recryst. from NH₄OH+Aq. Sol. in liquid NH₃. (Horn, Am. Ch. J. 1908, **39.** 213.

CuS₂O₆, 9NH₃. Decomp. at ord. temp. in the air.

Insol. in liquid NH₃. (Horn, Am. Ch. J. 1908, **39.** 213.)

Didymium dithionate,  $Di_2(S_2O_5)_2 + 24H_2O$ . Extremely sol. in H₂O. (Cleve.)

Erbium dithionate,  $\text{Er}_2(S_2O_6)_8 + 18\text{H}_2O$ . Very sol, in H₂O or alcohol; insol, in ether. (Höglund.)

Glucinum dithonate, basic, 5GlO, 2S₂O₅+ 14H₂().

Easily sol, in H₂() and absolute alcohol. (Klüss, A. 246. 196.)

Iron (ferrous) dithionate,  $FeS_2O_6 + 5H_2O$ .

Very sol. in H₂O. Insol. in alcohol. Decomp. in aqueous solution into FeSO, by boiling. (Heeren, Pogg. 7. 181.)

 $+7 H_2O$ . Sol. in 0.59 pt.  $H_2O$  at 18.5°. (Klüss, A. 246. 198.)

Iron (ferric) dithionate, basic, 8Fe₂O₅, S₂O₅+ 20H₂O.

Insol. in H₂O or alcohol. Very sl. sol. in  $H_2S_2O_6+Aq$ ; easily sol. in  $H\dot{C}l+Aq$ . (Heeren.)

Contains  $14H_2O$ . (Klüss, A. **246**. 200.)  $3Fe_2O_3$ ,  $S_2O_5 + 8H_2O$ . Insol. in  $H_2O$ . Easily sol. in acids. (Klüss, A. 246. 201.)

Lanthanum dithionate,  $La_2(S_2O_6)_4 + 16H_2O_4$ and 24H₂O. Sol. in H₂O. (Cleve.)

Lead dithionate, basic, 2PbO,  $S_2O_5 + 2H_2O$ . Very difficultly sol. in H2O. (Heeren, Pogg. 7. 171.) 10PbO,  $S_2O_5+2H_2O$ . Sl. sol. in  $H_2O$ . (Heeren.)

Lead dithionate,  $PbS_2O_6+4H_2O$ .

Easily sol. in H₂O. (Heern.) Sol. in 0.869 pt. H₂O at 20.5°. (Baker, C. N. **36.** 203.)

Lead strontium dithionate, (Pb,Sr)S₂O₆+ 4H₂O. (Rammelsberg.)

Lithium dithionate, Li₂S₂O₆+2H₂O.

Sl. deliquescent, and easily sol. in  $H_2O$ . Insol. in alcohol. (Rammelsberg.)

Magnesium dithionate,  $MgS_2O_6+6H_2O$ .

Sol. in 0.85 pt. H₂O at 13°. Solution can be boiled without decomp. (Heeren, Pogg. **7.** 179.)

Sol. in 0.692 pt. H₂O at 17°. (Baker, C. N. **36.** 203.)

Manganous dithionate,  $MnS_2O_6+3H_2O$ .

Sol. in H₂O. (Kraut, A. 118. 98.) +6H₂O. Efflorescent. Sol. in H₂O. (Marignac, J. B. **1855.** 380.)

## Mercurous dithionate, Hg₂S₂O₆.

Sl. sol. in cold, decomp. by hot H₂O. (Rammelsberg.)

Mercuric dithionate, basic, 5 HgO,  $2 \text{S}_2 \text{O}_5$ . Sl. sol. in cold, decomp. by hot  $\text{H}_2 \text{O}$ . Easily sol. in  $\text{HNO}_3 + \text{Aq}$ . (Rammelsberg, Pogg. **59.** 472.)

Mercuric dithionate,  $HgS_2O_6+6H_2O$ . Decomp. by  $H_2O$  or on standing. (Klüss, A. **246**. 216.)

Nickel dithionate, NiS₂O₆+6H₂O.

Sol. in H₂O. (Topsöe.) Sol. in 0.897 pt. H₂O at 12°. (Baker, C. N. **36.** 203.)

Nickel dithionate ammonia, NiS₂O₆, 6NH₃. Can be recryst. from warm NH₄OH+Aq. Decomp. by H₂O. (Rammelsberg, Pogg. **58**. 295.)

Nickel dithionate hydrazine,  $NiS_2O_6$ ,  $3N_2H_4$ .

Unstable.

Sol. in  $NH_4OH+Aq$ . (Franzen, Z. anorg. 1908, **60**. 267.)

## Potassium dithionate, K₂S₂O₆.

Not deliquescent. Sol. in 16.5 pts. H₂() at 16°, and 1.58 pts. at 100°. Insol. in alcohol. (Heeren.)

Sol. in 2.65 pts.  $H_2O$  at 16°. (Dumas.) Sol. in 16.5 pts.  $H_2O$  at 16°; in 1.58 pts. boiling  $H_2O$ .

Insol. in alcohol. (Heeren, Pogg. 1826, 7. 72.)

 $\begin{array}{ll} \textbf{Praseodymium} & \textbf{dithionate,} & Pr_2(S_2O_{\scriptscriptstyle 0})_3 + \\ 12H_2O. & \end{array}$ 

Deliquescent; very sol. in  $H_2O$ . (von Schule, Z. anorg. 1898, **18**. 361.)

Rubidium dithionate, Rb₂S₂O₆.

Sol. in H₂O. (Topsöe and Christiansen.)

Ruthenium dithionate, RuS₂O₆.

Ppt. from aq. sol. by alcohol. (Antony, Gazz. ch. it. 1898, 28. 139-142.)

Silver dithionate,  $Ag_2S_2O_6+2H_2O$ .

Sol. in 2 pts.  $H_2O$  at  $16^\circ$ . Sol. in  $NH_4OH+$  Aq. (Heeren, Pogg. 7. 191.)

Silver sodium dithionate,  $AgS_2O_6$ ,  $Na_2S_2O_6$ +4 $H_2O$ .

Sol. in H₂O. (Kraut, A. 118. 96.)

Silver dithionate ammonia, Ag₂S₂O₆, 4NH₃. Sol. in H₂O without decomp. (Rammelsberg, Pogg. **58**. 298.) Sodium dithionate,  $Na_2S_2O_6+2H_2O$ .

Sol. in 2.1 pts.  $H_2O$  at  $16^\circ$ , and in 1.1 pts. boiling  $H_2O$ . Insol. in alcohol.

Funing HCl+Aq precipitates the salt from aqueous solution. (Heeren, Pogg. 7.

+6H₂O. (Kraut, A. 117. 97.)

Strontium dithionate,  $SrS_2O_6+4H_2O$ .

Sol. in 4.5 pts. H₂O at 16°, 1.5 pts. boiling H₂O. Insol. in alcohol. (Heeren, Pogg. **7.** 177.)

Thallous dithionate, Tl₂S₂O₆.

Very easily sol. in H₂O. (Werther.)

Thallous dithionate sulphate,  $3\text{Tl}_2\text{S}_2\text{O}_6$ ,  $\text{Tl}_2\text{S}_2\text{O}_4$ .

Sol. in H₂O. (Wyrouboff, Ann. Phys. Beibl. **8**, 802.)

Thorium dithionate,  $Th(S_2O_6)_2+4H_2O$  (?). Very unstable. (Klüss, A. **246**. 188.)

Tin (stannous) dithionate, SnS₂O₆.

Known only in solution. 8SnO,  $S_2O_5+9H_2O$ . Insol. in  $H_2O$ . Sol. in dil. acids, even dithionic acid +Aq. (Klüss, A. **246**. 186.)

Uranous dithionate, 6UO₂, S₂O₅+10H₂O.

Insol. in  $H_2O$ ; sol. in warm HCl+Aq. (Kluss, A. **246**. 191.) 7 $UO_2$ ,  $S_2O_6+8II_2O$ . As above.  $SUO_2$ ,  $S_2O_5+21H_2O$ . As above.

Divanadyl dithionate,  $(VO_2)_2S_2O_6$ . Sol. in H₂O. (Bevan, C. N. 38. 294.)

Yttrium dithionate, Y₂(S₂O₆)₃+18H₂O.

Not deliquescent. Easily sol. in H₂O, but difficultly sol. in alcohol. Insol. in ether. (Cleve, Bull. Soc. (2) **21.** 344.)

Zinc dithionate,  $ZnS_2O_6 + 6H_2O$ .

Very sol. in  $H_2O$ ; decomp. on boiling. (Heeren, Pogg. 7. 183.)

Zinc dithionate ammonia, ZnS₂O₆, 4NH₃.

Decomp. with H₂O; sol. in warm, less sol. in cold NH₄OH+Aq. (Rammelsberg, Pogg. **58**. 297.)

+H₂O. Ppt. (Ephraim, B. 1915, **48**. 640.)

Dysprosium, Dy.

(Lecoq de Boisbaudran, C. R. 102. 1005.)

Dysprosium chloride, DyCl₃+6H₂O.

Deliquescent, sol. in  $H_2O$ . (Urbain, C. R. 1908, 146. 129.)

## Europium.

## Europium chloride, EuCl2.

Sol, in H2O. Stable in very dil. aqueous solution, but decomp. when the solution is concentrated at 100°. (Urbain, C. R. 1911, **153.** 1157.)

## Erbium, Er.

Decomposes H₂O. (Höglund.)

The so-called element "erbium" can be further decomp, into simple substances. (Krüss, Z. anorg. 3. 353.)

## Erbium bromide, ErBr₃+9H₂().

Very deliquescent.

### Erbium chloride, ErCl₈+6H₂().

Deliquescent. Sol. in H2O and alcohol. (Hoglund.)

Erbium mercuric chloride, ErCl₃, 5HgCl₂+ rH2O.

Deliquescent. (Cleve.)

### Erbium fluoride, ErF₃.

Insol. in H₂O. Very sl. sol. in HF+Aq. (Höglund, Bull. Soc. (2) 18. 193.)

## Erbium hydroxide, Er₂O(OH)₄.

Insol. in KOH, or NaOH+Aq.

Easily sol. in acids. Decomp. ammonium salts by boiling therewith.

## Erbium iodide, Erl3.

Very deliquescent. Very sol. in H₂O and alcohol. Insol. in ether. (Höglund.)

## Erbium oxide, Er₂O₃.

Difficultly but completely sol. in warm HNO₃, H₂SO₄, or HCl+Aq. Decomp. NH₄ salts by boiling therewith.

## Erbium peroxide, Er₂O₅.

Precipitate. (Cleve, Bull. Soc. (2) 43. 53.)

#### Erbium sulphide.

Decomp. in moist air and with acids.

## Erythrochromium bromide,

 $HOCr_2(NH_3)_{10}Br_4 + H_2O.$ 

Very easily sol. in H₂O. Insol. in HBr+Aq. Sol. in NII₄OH+Aq. (Jörgensen, J. pr. (2) 25. 398.)

- bromide, basic, HOCr₂(NH₃)₁₀(OH)Br₄  $+H_2O.$ 

Very sol. in H₂O. (Jörgensen.)

- chloroiodide, HOCr₂(NH₃)₁₀ClI₄+H₂O. Sol. in H₂O and in alcohol. (Jorgensen.) (Fremy, l. c.)

# Erythrochromium chloroplatinate, $[HOCr_2(NH_3)_{10}]_2(PtCl_6)_5 + 10H_2O.$

Nearly insol. in H₂O. (Jörgensen.)

## - dithionate, basic,

 $HOCr_2(NH_3)_{10}(S_2O_6)_2(OH) + 2H_2O.$ Insol. in H2O. Easily sol. in very dil. HNO₃, FiBr, HCl+Aq. Sol. in conc. NH₄Cl +Aq. (Jörgensen.)

-- nitrate,  $HOCr_2(NH_3)_{10}(NO_3)_6 + H_2O$ .

Easily sol. in H₂O. Insol. in dil. HNO₃+Aq. Sol in conc. HNO₃ with decomp. Very s I. in dil. NH,OH+Aq. Insol. in alcohol. (Jörgensen.)

- nitrate, basic, HOCr₂(NH₃)₁₀(NO₃)₄OH  $+3\frac{1}{2}H_{2}O$ .

Sol. in cold H₂O. (Jörgensen.)

--- sulphate,  $[HOCr_2(NH_3)_{10}]_2(SO_4)_5$ . Nearly insol. in H₂O. (Jörgensen.)

## Tetraferriammonium, Fe₂N.

Sec Iron nitride.

#### Ferric acid.

#### Barium ferrate, BaFeO₄+H₂O.

Ppt. Can be boiled for some time with H₂O without decomp. Decomp. by mineral acids. Sol. in dil. acetic acid. (Fremy, A. ch. (3) **12.** 373.)

Insol, in H₂O; not readily acted upon by acids when dry. (Rosen, J. Am. Chem. Soc. 1895, **17**, 766.)

Ppt. Easily decomp. by acids. (Moeser, Arch. Pharm. 1895, **233.** 526.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

#### Calcium ferrate, CaF₂O₄.

Sol. in H₂O. (Rosell, J. Am. Chem. Soc. 1895, **17.** 760–69.)

#### Potassium ferrate, K₂FeO₄.

Very deliquescent. Easily sol. in cold H₂O with evolution of much heat. Decomp. by standing or warming. Decomp. by acids or alkalies. (Fremy, A. ch. (3) 12. 369.)
Sol. in H₂O; insol. in alcohol. (Moeser,

Arch. Pharm. 1895, 233. 524.)

Quickly decomp. by potassium tartrate or * racemate, sugar, or albumen without separation of Fe₂O₆H₆, by alcohol with separation of  $Fe_2O_6H_6$ . Potassium oxalate, acetate, formate, and benzoate, also citrate decomp. much more slowly. Insol. in conc. KOH+Aq. (Wackenroder, A. 33. 41.)

#### Sodium ferrate, Na₂FeO₄.

Sol. in H₂O and in conc. NaOH+Aq.

# Strontium ferrate, SrFeO4.

Sl. sol. in H₂O by which it is decomp. Decomp. by acids.

Sol. in aqueous solutions of Na aud K salts with partial decomp.

Insol. in sat. SrBr2+Aq., alcohol and ether. (Eidmann, B. 1903, 36, 2290.)

### Ferricomolybdic acid.

Ammonium ferricomolybdate. 3(NH₄)₂O.  $Fe_2O_3$ ,  $12MoO_3+19H_2O$ .

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. . 697.)

### Ferricyanhydric acid,

 $H_sFe(CN)_s$ , (or  $H_tFe_2(CN)_{12}$ ).

Easily sol. in H2O or alcohol. Solution decomposes slowly by standing, more rapidly by heating. Insol. in ether.

## Ferricyanides.

The alkali, and alkaline-earth ferricyanides are sol. in H₂O; the others are insol. The ferricyanides of metals, the oxides of which are sol. in NH4OH, or KOH+Aq, are themselves sol, in those reagents.

Ammonium ferricyanide, (NH₄)₃Fe(CN)₆+ 3H₂O.

Permanent. Readily sol. in H₂O (and alcohol?).

### Ammonium ferrous ferricyanide, $NH_4FeFe(CN)_6+1\frac{1}{2}H_2O$ .

Sol. in H₂O and not pptd. by alcohol from aqueous solution. More stable than the corresponding K salt.

Ammonium lead ferricyanide,  $NH_4PbFe(CN)_6 + 3H_2O$ .

Ammonium potassium ferricyanide,  $(NH_4)_2$ KFe $(CN)_6$ .

Sol. in H₂O. (Schaller, Bull. Soc. (2) 1.

Barium ferricyanide,  $Ba_{s}[Fe(CN)_{6}]_{2}+$ 20H2O.

Easily sol. in H₂O; insol. in alcohol. (Schuler, W. A. B. 77. 692.)

Barium potassium ferricyanide, BaKFe(CN)6 +3H₂O.

Permanent. Easily sol. in H₂O, less in alcohol.

Barium ferricyanide bromide, Ba₃[Fe(CN)₆]₂,  $2BaBr_2+20H_2O$ .

Easily sol. in H₂O. Boiling alcohol does not dissolve out BaBr₂. (Rammelsberg, J. pr. (2) **39.** 463.)

Bismuth ferricyanide,  $Bi_3[Fe(CN)_6]_5$ .

Insol. in H2O, but decomp. by boiling therewith. (Muir, Chem. Soc. 32. 40.)

Cadmium ferricvanide ammonia,  $Cd_{3}[Fe(CN)_{6}]_{2}$ ,  $6NH_{3}+3H_{2}O$ .

Effloresces to form—  $Cd_3[Fe(CN)]_2$ ,  $4NH_3+2H_2O$ . Integration  $H_2O$ . (Wyrouboff, A. hc. (5) 10. 413.) Insol. in

Calcium ferricyanide, Ca₃[Fe(CN)₆]₂+10, or 12H₂O.

Deliquescent. Sol. in H2O and dil. alcohol.

 $\begin{array}{ccc} \textbf{Calcium potassium ferricyanide,} \\ & \textbf{CaKFe}(CN)_{\delta}. \end{array}$ 

Sol. in H₂O.

Cerous ferricyanide, CeFe(CN)₆+4H₂O. Sol. in H₂O; easily decomp. (Jolin.)

Chromic ferricyanide (?). Ppt.

Cobaltous ferricyanide,  $Co_3[Fe(CN)_6]_2$ . Insol. in H₂O and HCl+Aq. Sol. in NH₄OH+Aq.

Cobaltous ferricyanide ammonia,  $Co_{3}[Fe(CN)_{6}]_{2}$ ,  $4NH_{3}+6H_{2}O$ .

Cobaltic ferricyanide ammonia.

See Luteo,- purpureo,- etc. cobaltic ferricvanide.

Cuprous ferricyanide,  $(Cu_2)_3[Fe(CN)_6]_2$ .

Sol. in NH₄OH+Aq; insol. in NH₄ salts+ Ag. (Wittstein.)

Cupric ferricyanide,  $Cu_3[Fe(CN)_6]_2$ .

Insol. in H₂O or NH₄ salts+Aq. Sol. in NH₄OH, and (NH₄)₂CO₃+Aq. (Wittstein.) Insol. in HCl+Aq.

Iron (ferrous) ferricyanide, Fe₃[Fe(CN)₆]₂+  $xH_2O$ .

(Turnbull's blue.) Properties as ferric ferrocyanide (Prussian blue), with which it is perhaps identical. (Gintl, Z. anal. 21. 110.)

Iron (ferrosoferric) ferricyanide

 $Fe_{13}(CN)_{36} = Fe_{4}^{11}Fe_{3}^{11}[Fe(CN)_{6}]_{6}.$ 

(Prussian green.) Insol. in H₂O or conc. HCl+Aq, but slowly decomp. by boiling therewith.

 $Fe_3(CN)_8 + 4H_2O = Fe_3^{II}Fe_2^{II}[Fe(CN)_c]_4 +$ 12H₂O. Properties as above. (Reynolds, Chem. Soc. 54. 767.)

Iron (ferrous) potassium ferricyanide,

 $KFe_2(CN)_6 = KFeFe(CN)_6 + 4$ , or  $3H_2O$ . (Soluble Prussian blue.) Sol. in H₂O, but insol. in salts+Aq or alcohol.

Salt of the same composition, called "Williamson's blue," is insol. in H₂O.

Lead ferricyanide, basic,  $Pb_{\delta}[Fe(CN)_{\delta}]$ ,  $3PbO_{2}H_{2}+11H_{2}O$ . (Schuler.)

Lead ferricyanide, Pb₃[Fe(CN)₆]₂+16H₂O.
Sl. sol. in H₂O; more sol. in hot, than coid
H₂O, but decomp. on boiling. (Gmelin.)
+4H₂O. Easily sol. in H₂O; sl. sol. ir
alcohol. (Schuler, W. A. B. 77. 692.)

Lead potassium ferricyanide, PbKFe(CN)s +3H₂O.
Sol. in 4.75 pts. H₂O at 16°, and the solution decomp. on standing. (Schuler.) +1½H₂O. Efflorescent. Much more sol.

in H₂O than the Pb salt. Insol. in alcohol. (Wyrouboff.)

 $\begin{array}{ccc} \textbf{Lead} & \textbf{ferricyanide} & \textbf{nitrate,} & Pb_{\textbf{2}}[Fe(CN)_{\epsilon}]_{\textbf{2}}, \\ & Pb(NO_{\textbf{3}})_{\textbf{2}} + 12H_{\textbf{2}}O. \end{array}$ 

Sol. in 13.31 pts. H₂O at 16°. (Schuler.) +11H₂O. (Joannis, A. ch. (5) **26.** 528.)

Magnesium ferricyanide, Mg₂[Fe(CN)₆]₂. Sol. in H₂O.

Magnesium potassium ferricyanide, MgKFe(CN)₆. (Reindel, J. pr. 103. 166.)

Manganous ferricyanide, Mn₈[Fe(CN)₆]₂. Insol. in H₂O, acids, NH₄OH, or NH₄ salts +Aq.

Mercurous ferricyanide, Hg₂Fe(CN)₆.

Ppt. (Fernekes, J. Am. Chem. Soc. 1906, 28, 604.)

Mercuric ferricyanide, Hg₃[Fe(CN)₆]₂.

Very sol. in  $H_2O$ . Solution quickly decomp. (Fernekes, J. Am. Chem. Soc. 1906, **28**. 603.)

Nickel ferricyanide ammonia,  $\mathrm{Ni}_3[\mathrm{Fe}(\mathrm{CN})_6]_2$ ,  $4\mathrm{NH}_3+\mathrm{H}_2\mathrm{O}$ .

Sol. in NH₄OH+Aq. (Reynoso, A. ch.(3) **30.** 254.)

Nickel ferricyanide, Ni₃[Fe(CN)₆]₂(?). Ppt. Insol. in HCl+Aq.

Potassium ferricyanide,  $K_3Fe(CN)_6$ , (or  $K_6Fe_2(CN)_{12}$ ).

Permanent. Easily sol. in H₂O.

100 pts. H₂O dissolve pts. K₈Fe(CN)₆ at t°.

t°	Pts. salt	t°	Pts. salt	t°	Pts. salt
4.4	33.0	15.6	40.8	100	77.5
10	36.6	37.8	58.8	104.4	82.6

(Wallace, Chem. Soc. 7. 80.)

100 pts.  $H_2O$  at 13° dissolve 38° pts., and the solution has sp. gr. = 1.1630. (Schiff, A. 113. 350.)

1 l. sat. solution in  $H_2O$  at 25° contains 385.5 g.  $K_3Fe(CN)_6$ . (Grube, Z. Electrochem. 1911, 20. 342.)

Sp. gr. of K₂Fe(CN)₆+Aq at 43°.

% sult	Sp. gr.	salt	Sp gr.	% salt	Sp. gr.
1 2 3 4 5 6 7 8 9	1.6051 1.0103 1.0155 1.0208 1.0261 1.0315 1.0370 1.0426 1.0482 1.0538	11 12 13 14 15 16 17 18 19 20	1.0595 1.0653 1.0712 1.0771 1.0831 1.0891 1.0952 1.1014 1.1076 1.1039	21 22 23 24 25 26 27 28 29 30	1.1202 1.1266 1.1331 1.1396 1.1462 1.1529 1.1596 1.1664 1.1732 1.1802

(Schiff.)

Sp. gr. of  $K_3Fe(CN)$ , +Aq at 25°.

Concentration of K₃Fe(CN) ₆ +Aq.	Sp. gr.
1—normal  1/2— "  1/4 "  1/8— "	1.0574 1.0289 1.0143 1.0092

(Wagner, Z. phys. Ch. 1890, 5. 37.)

Sat.  $K_3Fe(CN)_6+Aq$  boils at 104.4°. (Wallace.)

1 l. sat. solution at 25° of  $K_3Fe(CN)_6+K_4Fe(CN)_6$  contains 338.1 g.  $K_3Fe(CN)_6$  and 79.02 g.  $K_4Fe(CN)_6$ . (Grube.)

Solubility of K₃Fe(CN)₆+K₄Fe(CN)₆ in KOH+Aq at 25°.

g. per l.		
K ₅ Fe(CN) ₆	K ₄ Fe(CN)	
309	66.64	
	$55.19 \\ 35.95$	
	K ₃ Fe(CN) ₆	

(Grube.)

### Solubility in KOH+Aq at 25°.

KOH Normality	g. K3Fe(CN)6 per l.		
0.4687	342.7		
0.9628	302.3		
1.949	215.1		

(Grube, Z. Electrochem, 1914, 20. 342.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Insolvin absolute alcohol, and only sl. sol. in dil. alcohol.

Sol. in acetone. Naumann, B. 1904, 37.

Insol. in methyl, acetate (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1910, **43**. 314.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

### Potassium sodium ferricyanide, KNa₂Fe(CN)₅.

Sol. in  $H_2O$ , G  $K_2$ NaFe(CN) $_6$ . Sol. in  $H_2O$ .  $K_3$ Na $_5$ [Fe(CN) $_6$ ] $_2$ . Sol. in  $H_2O$ .  $+3H_2O$ .

Potassium ferricyanide iodide,  $K_3Fe(CN)_6$ , KI.

Very unstable.

## Silver ferricyanide, Ag₃Fe(CN)₆.

1 l.  $\rm H_2O$  dissolves 0.00066 g.  $\rm Ag_3F_{\rm c}(CN)_6$  at 20°. (Whitby, Z. anorg. 1910, 67. 108.) Sol. in NH₄OH, and hot (NH₄)₂CO₃+Aq, but insol in NH₄ salts+Aq. Insol in Hg(NO₃)₂+Aq. (Wackenroder,

A. 41. 317.)

Silver ferricyanide ammonia, 2Ag₃Fe(CN)₆,

 $3NH_3+\frac{1}{2}H_2O$ . Insol. in  $H_2O$ . Sol. in  $NH_4OH+Aq$ .

(Gintl.) 2Ag₃Fe(CN)₆, 5NH₃. (Carlo, Gazz. ch. it. 1910, **40**. (2) 477.)

### Sodium ferricyanide, $Na_3Fe(CN)_6+H_2O$ .

Deliquescent. Sol. in 5.3 pts. cold, and 1.5 pts. boiling H₂O. Insol. in alcohol, but not pptd. thereby from aqueous solution. (Bette.)

# Ferrinitrososulphydric acid.

See Ferroheptanitrososulphydric acid.

# Ferrocyanhydric acid, H₄Fe(CN)₆.

Sol. in H₂O and alcohol.

100 pts.  $\hat{H}_2O$  dissolve 15 pts. acid at 14°. (Joannis, A. ch. (5) **26.** 514.)

Insol. in ether, and much less sol. in etheralcohol than in alcohol. Insol. in conc. HCl+Aq.

### Ferrocvanides.

The ferrocyanides of the alkali and alkaline-earth metals are sol. in  $H_2O$ ; the others are insol., but sol. in alkalies+Aq in case the base is sol. therein.

# Aluminum ferrocyanide, $Al_4[Fe(CN)_6]_3 + 17H_2O$ .

Sl. sol. in H₂O.

Sl. sol. in HCl+Aq with partial decomp. (Wyrouboff, A. ch. (5) 8. 446.)

Ammonium ferrocyanide, (NH₄)₄Fe(CN)₆+
3H₂O.

Very sol, in H₂O; insol, in alcohol.

+H₂O. (Berzelius.)

# Ammonium cadmium ferrocyanide ammonia, (NH₄)₂Cd₃[Fe(CN)₆]₂, 2NH₃+H₂O.

Sol. in  $H_2O$ . (Wyrouboff, A. ch. (5) 10. 413.)

# Ammonium calcium ferrocyanide, (NH₄)₂CaFe(CN)₆.

Sl. sol. in H₂O. (Kunheim and Zimmerman, Dingl. **252.** 478.)

100 g. sat. solution in H₂O contain 0.258 g. at 16°. (Brown, J. phys. Ch. 1898, **2.** 51.)

# Ammonium cuprous ferro cyanide,

 $(NH_4)_2Cu_2Fe(CN)_6$ .

Insol. in H₂O and alcohol.

Decomp. in the air. (Messner, Z. anorg, 1895, 8, 382.)

### Ammonium cupric ferrocyanide, (NH₄)₂CuFe(CN)₆.

0...4

+xH₂O, Very unstable. Insol. in H₂O; decomp, by boiling H₂O. (Messner, Z. anorg, 1895, **8**, 384.)

### Ammonium lithium ferrocyanide, (NH₄)₂Li₂Fe(CN)₆+3H₂().

Sol. in  $H_2O$ . (Wyrouboff, A. ch. (4) **21.** 270.)

# Ammonium magnesium ferrocyanide, (NH₄)₂MgFe²(N)₆.

1l. sat. solution at 17° contains 2.48 g.  $(NH_4)_2MgFe(CN)_{\rm b}$  (Robinson, Chem. Soc. 1909, 95, 1353.)

# Ammonium manganous ferrocyanide,

 $(NII_4)_2MnFe(CN)_6$ .

Ppt. (Blum, Z. anal. 30, 284.)

# Ammonium potassium ferrocyanide, NH₄K₃Fe(CN)₆+3H₂O.

Easily sol. in cold, more easily in hot H₂O. Insol. in alcohol.

 $(NH_4)_2K_2Fe(CN)_6+3H_2O$ . Sol. in  $H_2O$ .

# Ammonium potassium ferrocyanide ammonium chloride, (NH₄)₃KFe(CN)₆, 2NH₄Cl.

Sol. in H₂O. (Étard, J. pr. (2) **31.** 430.)

# Ammonium ferrocyanide bromide, (NH₄)₄Fe(CN)₆, 2NH₄Br.

Permanent. Very sol. in H₂O.

# Ammonium ferrocyanide chloride, (NH₄)₄Fe(CN)₆, 2NH₄Cl+3H₂O.

Permanent. Very sol. in H₂O, but less so than NH₄Cl. (Bunsen.)

Antimony ferrocyanide, Sb₄[Fe(CN)₆]₃+
25H₂O.

Ppt. (Atterberg.)

Barium ferrocyanide, Ba₂Fe(CN), +6H₂O.

Permanent. Sl. sol. in H₂O.

Sol. in 584 pts. cold, and 116 pts. beiling H₂O (Duflos, **1832**); sol. in 1800 pts. cold H₂O (Porrett, **1814**); sol. in 1920 pts. cold and about 100 pts. beiling H₂O (Thomson); sol. in 2000 pts. cold, and 100 pts. beiling H₂O. (Ure's Dict.)

Sol. in 1000 pts. H₂O at 15°, and 100 pts. at 75°. (Wyrouboff, A. ch. (4) **16.** 292.)
Sol. in HNO₃, HCl, or conc. H₂SO₄+Aq.

Barium cupric ferrocyanide, BaCuFe(CN)₆.
Insol. in H₂O. (Messner, Z. anorg. 1895, 8. 389.)

# Barium potassium ferrocyanide,

 $BaK_{2}Fe(CN)_{6}+3H_{2}O$ .

Sol. in 38 pts. cold, and 9.5 pts. boiling H₂O (Duflos, **1832**); in 36.4 pts. H₂O at 14°, and 11.9 pts. at b.-pt. (Mosander.)

Not more sol. in NH₄Cl+Aq than in H₂O. Sol. in dil., insol. in conc. HCl+Aq. (Rose.) +5H₂O. Sol. in 300 pts. H₂O at ord. temp. (Wyrouboff.)

Bismuth ferrocyanide,  $Bi_2Fe(CN)_f + 5H_2()$  (?).

Sl. sol. in pure  $H_2()$ . (Wyrouboff.)  $Bi_4[Fe(CN)_a]_b$ . Ppt. (Muir, Chem. Soc. **31**. 657.)

Bismuth potassium ferrocyanide,  $BiKFe(CN)_6+7H_2O$ , or  $4H_2O$ . Ppt.

Cadmium potassium ferrocyanide,  $CdK_2Fe(CN)_6+H_2O$ .

Insol. in  $H_2O$ . Formula given by Wyrouboff is  $Cd_5K_6|Fe(CN)_6|_4+11H_2O(?)$ .

Calcium ferrocyanide, Ca₂Fe(CN)₆+12H₂O. Very sol. in H₂O. Sol. in 0.66 pt. H₂O at 90° and not pptd. by cooling, and is apparently less sol. in warm than cold H₂O. (Wyrouboff, A. ch. (4) **16.** 280.)

Calcium cuprous ferrocyanide, CaCu₂Fe(CN)₆. (Messner, Z. anorg. 1894, 8. 387.)

Calcium cupric ferrocyanide, CaCuFe(CN)₆.

Insol. in H₂O. (Messner, Z. anorg. 1895 8. 388.)

Calcium potassium ferrocyanide,  $CaK_2Fe(CN)_6$ .

Sl. sol, in H₂O. (Kunheim and Zimmerman, Dingl. 252, 478.)

+3H₂O. Sol. in 795 pts. H₂O at 15°, and 145 pts. at b-pt., with decomp. in the latter case.

Sol. in dil., insol. in conc. HCl+Aq. Sol. in HNO. of 1.2 sp. gr. (Mosander.)

Insol. in NH, Cl+Aq.

Calcium sodium ferrocyanide,  $CaNa_{cl}Fe(CN)_{cl}$ .

Sol. in H2O.

Calcium strontium ferrocyanide. CaSrFe(CN)₆+19H₂O,

Efflorescent. Sol. in about 3 pts. H₂O. (Wyrotboff, A. ch. (4) 21. 278.)

Cerium ferrocyanide, Ce₄[Fe(CN)₆]₃+ 30H₂().

Ppt. (Wyrouboff.)

Cerium potassium ferrocyanide, CeKFe(CN)₆+3H₂O.

Ppt. (Jolin.) +4H₂O. (Wyrouboff.)

Chromic ferrocyanide,  $\operatorname{Cr}_2[\operatorname{Fe}(\operatorname{CN})_{\mathfrak{s}}]_{\mathfrak{s}} + 20\operatorname{H}_2\operatorname{O}$ .

Cobaltous ferrocyanide,  $Co_2Fe(CN)_6 + 7H_2O$ .

Wholly insol. in H₂O. Sol. in H₂SO₄ with decomp. Insol. in HCl+Aq. Sl. sol. in NH₄OH+Aq. Sol. in (NH₄)₂CO₃+Aq. Insol. in NH₄Cl+Aq. Sol. in KCN+Aq.

Cobaltous ferrocyanide ammonia,  $Co_2Fe(CN)_5$ ,  $8NH_3+10H_2O$ .

Ppt. Decomp. on standing. (Curda, Z. Ch. 1869. 369.)

 $\text{Co}_2\text{Fe}(\text{CN})_6$ ,  $12\text{NH}_3+9\text{H}_2\text{O}$ . As above. (Curda.)

Cobaltous potassium ferrocyanide,  $CoK_2Fe(CN)_6$ .

Ppt. (Wyrouboff.)

 $\operatorname{Co}_5K_5[\operatorname{Fe}(\operatorname{CN})_6]_4$  (?). Ppt. Insol. only lin presence of an excess of  $\operatorname{K}_4\operatorname{Fe}(\operatorname{CN})_6$ . (Wyrouboff.)

Columbium potassium ferrocyanide,  $Cb_{16}K[Fe(CN)_{6}]_{2}+67H_{2}O$  (?).

Sol. in H₂O. (Wyrouboff.)

 $Cb_{12}K_2Fe(CN)_6 + 39H_2O$  (?). Sol. in  $H_2O$ . (W.)

 $(CbO)_5K_9[Fe(CN)_6]_6+10H_2O(?)$ . Ppt. (Atterberg.)

Cuprous ferrocyanide, Cu₄Fe(CN)₆.

Insol. in H₂O; sol. in NH₄OH+Aq; insol. in NH₄Cl+Aq.

Cupric ferrocyanide, basic, CuFe(OH)4(CN)4. Didymium potassium ferrocyanide, Ppt. (Bong, Bull, Soc. 23. 231.)

Cupric ferrocyanide,  $Cu_2Fe(CN)_6+7H_2O$ .

Insol. in H₂O or acids. Insol. in NH₄ salts+Aq. Sol. in NH₄OH+Aq. Sol. in (NH₄)₂C₂O₄+Aq and in KCN+Aq.

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, 20. 827.) +10H₂O. Sol. in excess of K₄Fe(CN)₆+ Aq, especially if hot. (Wyrouboff.)

Cupric ferrocyanide ammonia (cuprammonium ferrocyanide),  $Cu_2Fe(CN)_6$  $4NH_8+H_2O$ .

Insol. in H₂O or alcohol. Sol. in NH₄OH+ Aq. (Bunsen.)  $Cu_2Fe(CN)_6$ ,  $8NH_3+H_2O$ .

### Cuprous magnesium ferrocyanide, Cu₂MgFe(CN)₆.

Very unstable. Decomp. in air. Insol. in H₂O. (Messner, Z. anorg. 1895, **8.** 385.)

### Cupric magnesium ferrocyanide, CuMgFe(CN)₆.

Insol. in  $H_2O$ . Decomp by boiling  $H_2O$ . Very unstable. (Messner, Z. anorg. 1895, 8. 387.)

### Cuprous potassium ferrocyanide, $Cu_2K_2Fe(CN)_6$ .

Insol. in  $H_2O$ . Decomp. by boiling  $H_2O$ . Decomp. by acids. Insol. in alcohol. (Messner, Z. anorg. 1895, 8. 378.)

+1½H₂O. Insol. in H₂O, alcohol, or ether. Decomp. by acids. Sol. in KCN+Aq.

 $K_3Cu_2Fe(CN)_6+4H_2O$ . +5H₂O. (Wonfor.)  $_{1}+6H_{2}O.$  (Wyrouboff.)

### Cupric potassium ferrocyanide, K₂CuFe(CN)₆ +H₂O.

Insol. in cold, sl. decomp. by boiling H₂O.  $K_2Cu_3[Fe(CN)_6]_2 + 12H_2O$ . Ppt.

### Cuprous sodium ferrocyanide, Cu₂Na₂Fe(CN)₆.

Decomp. by boiling H₂O; insol. in alcohol: insol. in H₂O; decomp. by acids. (Messner, Z. anorg. 1895, 8. 373.)

### Cupric sodium ferrocyanide, CuNa₂Fe(CN)₆.

Insol. in cold H₂O. Decomp. by boiling H₂O. (Moissan, Z. anorg. 1895, 8. 376.)

## Cupric strontium ferrocyanide, CuSrFe(CN)₆.

Insol. in H₂O. (Messner, Z. anorg. 1895, **8.** 389.)

 $DiKFe(CN)_6 + 4H_2O$ .

Ppt. (Cleve.) +2H₂O. (Wyrouboff.)

Erbium potassium ferrocyanide, ErKFe(CN)6  $+xH_2O$ .

(Höglund.)

### Gallium ferrocvanide.

Sol, in boiling HCl+Aq. (de Boisbaudran, C. R. 99.526.)

Glucinum ferrocyanide, Gl₂Fe(CN)₆, 4GlO₂H₂  $+7H_2O$  (?).

Sol, in H₂O. (Atterberg.)

### Iron (ferric) ferrocyanide, $Fe_7(CN)_{18} =$ $Fe_4[Fe(CN)_6]_8+xH_2O.$

(Prussian blue.) Insol. in H2O, alcohol, ether, or oils. Decomp. slowly by boiling H₂O. Insol. in dil. mineral acids. Sol. in conc. HCl+Aq, and conc. H₂SO₄ without decomp. Sol. in H₂C₂O₄ or NH₄ tartrate+Aq. Insol. in NH₄OH+Aq. Decomp. by NaOH, or KOH+Aq. Not pptd. in presence of tartrates or citrates.

### Iron (ferrous) potassium ferrocyanide, FeK₂Fe(ĆN)₆.

Insol. in H₂O. Decomp. on air.

### (ferric) potassium ferrocyanide, FeKFe(CN).

Is probably ferrous potassium ferricyanide, which see.

# Iron (ferric) ferrocyanide ammonia, $Fe_{4}[Fe(CN)_{6}]_{3}$ , $6NH_{3}+9H_{2}O$ .

Insol. in NH4 tartrate+Aq.

Lanthanum potassium ferrocyanide,  $LaKFe(CN)_6+4H_2O$ . Ppt.

Lead ferrocyanide, Pb₂Fe(CN)₆+3H₂O.

Insol. in H₂O, acids, or NH₄OH+Aq. (Wyrouboff, A. ch. (5) 8. 480.)

Sl. sol. in conc. H₂SO₄, from which it is pptd. by H₂O. (Berzelius.)
Sol. in hot NH₄Cl, or NH₄ succinate +Aq;

insol. in other NH, salts+Aq. (Wittstein.) Insol. in NH₄Cl+Aq. (Brett.)

Not pptd. in presence of Na citrate. (Spiller.)

Lithium ferrocyanide, Li₄Fe(CN)₆+9H₂O. Deliquescent. Very sol. in H₂O.

### Lithium potassium ferrocyanide, $\text{Li}_2\text{K}_2\text{Fe}(\text{CN})_6 + 3\text{H}_2\text{O}$ .

Very sol. in H₂O. Sol. in 1.5 pts. H₂O at ord. temp. (Wyrouboff, A. ch. (4) 21. 274.) Sol. in 3 pts. cold H₂O. (Bette, A. 22. 148.)

### Magnesium potassium ferrocyanide, MgK₂Fe(CN)₆.

Sol. in 1575 pts. H₂O at 15°, and 238 pts. at 100°. Solution is decomp. by boiling. (Storer's Dict.)

1 l. sat. solution at 17° contains 1.95 g. MgK₂Fe(CN)₆. (Robinson, Chem. Soc. 1909, **75**. 1353.)

# Manganous ferrocyanide, $Mn_2Fe(CN)_6 \perp 7H_2O$ .

Insol. in H₂O. Sol. in HCl+Aq. Insol. in NH₄Cl, or NH₄NO₂+Aq.

# Manganic ferrocyanide, Mn₂Fe₃(CN)₁₂.

Insol. in H₂O. Easily decomp. in the air. Sol. in HCl. (Straus, Z. anorg. 1895, 9. 8.)

# Manganous potassium ferrocyanide, MnK₂Fe(CN)₆.

Ppt. (Berzelius.)

5Mn₂Fe(CN)₆, 4K₄Fe(CN)₆+4H₂O(?). Ppt. Sol. in dil. HCl+Aq. (Wyrouboff.)

### 

Insol. in  $H_2O$ . Appreciably sol. in  $K_4Fe(CN)_6+Aq$ . (Fernekes, J. Am. Chem. Soc. 1906, **28**. 87.)

# Molybdenum ferrocyanide, $Mo_4Fe(CN)_6 + 20H_2O(?)$ .

Very sol. in NH₄OH+Aq. (Wyrouboff.)  $Mo_2Fe(CN)_6+8H_2O$  (?). (W.)

 $+14H_2O$  (?). Very sol. in  $H_2O$ ; insol .in alcohol. (W.)

# $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

(Wyrouboff.)

 $K_2(MoO_2)_3[Fe(CN)_{6j_2}, 2MoO_3+20H_2O$  (?). (Atterberg.)

 $K_6Mo_2[Fe(CN)_6]_2$ ,  $2MoO_3+12H_2O$  (?). (Atterberg.)

# Nickel ferrocyanide, Ni₂Fe(CN)₆+11H₂O, or 14H₂O.

Ppt. Insol. in  $H_2O$  or HCl+Aq. Sol. in  $NH_4OH+Aq$ ; insol. in  $NH_4$  salts +Aq. Sol. in KCN+Aq.

# Nickel ferrocyanide ammonia, Ni₂Fe(CN)₆, 4NH₅+H₂O.

Completely insol. in H₂O and not attacked thereby; sol. in NH₄OH+Aq to form—
Ni₂Fe(CN)₆, 10NH₈+4H₂O. Decomp. by hot H₂O. (Reynoso, A. ch. (3) **30.** 252.)
Ni₂Fe(CN)₆, 2NH₈+4, and 9H₂O. Hygro-

scopic. Easily decomp. (Gintl, J. B. 1868. 304.)

 $Ni_2Fe(CN)_6$ ,  $8NH_4+4H_2O$ , Sol. in  $NH_4OH+Aq$ . (G.)

NH₄OH+Aq. (G.) Ni₂Fe(CN)₆, 12NH₂+9H₂O. Sol. in NH₄OH+Aq, but less so than the above compounds. (G.)

# Nickel potassium ferrocyanide, NiK₂Fe(CN)₆ ---3H₂O.

Ppt. (Wyrouboff.)

# Osmium ferrocyanide, Os₂Fe(CN)₆.

Ppt. (Martius, A. 117. 368.)

# Potassium ferrocyanide, K4Fe(CN)6.

Permanent. Easily sol. in cold, and more easily in hot H₂O.
Sol. in 4.23 pts. H₂O at 15°, or 100 pts. H₂O

dissolve 23.6 pts. salt at 15°. (Schiff, A. 113. 350.)

100 pts. H₂O dissolve 27.8 pts. at 12.2°; 65.8 pts. at 37.7°; 87.6 pts. at 65.5°; and 90.6 pts. at 96.3°. (Thomson.)

Sol. in 4 pts. cold, and 2 pts. boiling H₂O.

(Wittstein.)

100 pts. H₂O dissolve 29.2 pts. salt at 15°, and solution has sp. gr.=1.1441. (Michel and Kraft, A. ch. (3) 41. 478.)

Solubility of K₄Fe(CN)₆ in H₂O at t°. —2° 14°  $+7^{\circ}$ 30° 56° 31.7% 157° 10.8 15.4 75° 17.9 23.0 89° 98° 60° 34.0 41.9 42.6 46.8%39.1(Étard, A. ch. 1894, (7) 2. 546.)

 $K_4Fe(CN)_6+Aq$  sat. at 8° has sp. gr.= 1.13. (Anthon.)

Sp. gr. of K₄Fe(CN)₆+Aq at 15°.

% hydrous	Sp. gr.	% hydrous salt	Sp. gr.	% hydrous	Sp. gr.
1 2 3 4 5 6 7	1.0058 1.0116 1.0175 1.0234 1.0295 1.0356 1.0417	8 9 10 11 12 13 14	1.0479 1.0542 1.0605 1.0669 1.0734 1.0800 1.0866	15 16 17 18 19 20	1.0932 1.0999 1.1067 1.1136 1.1205 1.1275

(Schiff, A. 113. 199.)

Sp. gr. of K₄Fe(CN)₆+Aq at 25°.

Concentration of K4Fe(CN)6+Aq.	Sp. gr.
1—normal  1/2— "  1/4— "  1/8— "  1/16— "	1.0617 1.0300 1.0150 1.0074 1.0037

(Wagner, Z. phys. Ch. 1890, 5. 37.)

8,00	Solubility in KOH+Aq at 25°.					
KOH Normality		g. K ₄ Fe(CN) ₆ +3H ₂ O per l.				
*	0.09984 0.2496 0.4963 0.7036 0.9415 1.395 1.883	308. 5 283. 5 247. 1 217. 4 184. 8 132. 1 86. 12				

(Grube, Z. Electrochem, 1914, **20**, 342.)

 $\rm H_4Fe(CN)_6+NaCl+Aq$  sat. at 20° contains 26.6 g. NaCl and 17.8 g.  $\rm H_4Fe(CN)_6$  per 100 g.  $\rm H_2O$ ; sat. at 93° it contains 27.4 g. NaCl and 35.9 g. K₄Fe(CN)₆ per 100 g. H₂O.

(Conroy, J. Soc. Chem. Ind. 1898, **17**. 105.) K₄Fe(CN)₆+KCl+Aq sat. at 21° contains 27.2 g. KCl and 4.2 g. K₄Fe(CN)₆ per 100 g. H₂O; sat. at 99° it contains 39.6 g. KCl and 17.0 g. K₄Fe(CN)₆ per 100 g. H₂O. (Conroy.

 $K_4Fe(CN)_6+Na_2CO_3+Aq$ . sat. at 22° contains 29.9 g.  $Na_2CO_3$  and 26.7 g.  $K_4Fe(CN)_6$  per 100 g.  $H_2O$ ; sat. at 97° it contains 42.0 g. Na₂CO₃ and 27.5 g. K₄Fe(CN)₆ per 100 g. H₂O. (Conroy.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol, in alcohol even when dilute. Insol, in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Insol. in ethyl acetate. (Naumann, B. **1904**, **37**. 3601.)

Insol. in benzonitrile. 1914, **47.** 1370.) (Naumann, B.

Sol. in acctone. (Naumann, B. 1904, 37.

**4328.**) +3H₂O. 1 l. sat. solution in H₂O contains 319.4 g.  $K_4Fe(CN)_6+3H_2O$ . (Grube, Electrochem, Z. 1914, 20. 342.)

Two modifications with different solubilities.

25.0 g. of a modification are contained in

100 g. of solution at 20°. 24.6 g. of  $\beta$  modification are contained in

100 g. of solution at 20°. (Briggs, Chem. Soc. 1911, 99. 1024.)

32.0 g.  $K_4Fe(CN)_6$  (anhydrous) are dissolved in 100 g.  $H_2O$  at 25°. (Wagner, Z. phys. Ch. 1910, **71.** 428.)

### Potassium samarium ferrocyanide, $KSmFe(CN)_6 + 5H_2O$ .

Precipitate. (Cleve.)

### Potassium sodium ferrocyanide, $KNa_3Fe(CN)_6+12H_2O$ .

Sol. in H₂O.

 $K_2Na_2Fe(CN)_6+8H_2O$ . Easily sol. in  $H_2O$ .  $K_3NaFe(CN)_6+3H_2O$ . Permanent. Easily sol. in H₂O; insol. in alcohol.

### Potassium sodium ferrocyanide nitrate, K₂Na₂Fe(CN)₆, 4KNO₈. Sol. in H₂O. (Martius.)

# Potassium strontium ferrocyanide, $K_2SrFe(CN)_6+3H_2O$ .

Easily decomp. Sol. in H₂O; sl. sol. in alcohol. (Wyrouboff, A. ch. (4) 21. 276.)

# Potassium stannic ferrocyanide,

 $KSn_{3}[Fe(CN)_{6}]_{3}+68H_{2}O$  (?).

Ppt. (Wyrouboff.)  $K_4Sn_{10}[Fe(CN)_6]_{11}+230H_2O$  (?). (Atterberg.)

## Potassium titanium ferrocyanide,

 $K_3Ti_3[Fe(CN)_6]_2+11H_2O$  (?).

Ppt. Sol. in  $K_4Fe(CN)_6+Aq$ . boff.) K₄Fe(CN)₆,  $11\text{Ti}_2\text{Fe}(\text{CN})_6 + 43\text{H}_2\text{O}$ (?).

Ppt. (Wyrouboff.)  $\hat{K}_{2}(\hat{T}i\hat{O})_{3}[Fe(\hat{C}\hat{N})_{6}]_{2}+23H_{2}\hat{O}$ Ppt. (Atterberg.)

 $K_2(TiO)_{11}[Fe(CN)_6]_6 + 110H_2O$  (?). Ppt. (Atterberg.)

### Potassium tungsten ferrocyanide, $KW_2Fe(CN)_6 + 7H_2O$ (?).

Sol. in H₂O. (Wyrouboff.)  $K_2W_5Fe(CN)_6+20H_2O$  (?). Sol. in  $H_2O$ .

# Potassium uranium ferrocyanide,

 $K_2U_3[Fe(CN)_6]_2+6H_2O(?)$ .

Ppt. (Wyrouboff.)

 $K_2(UO_2)_3[Fe(CN)_6]_2 + 6H_2O$ . Ppt. (Atterberg.)

 $K_6(UO_2)_5[Fe(CN)_6]_4 + 12H_2O$ . Sol. in  $H_2O$ . (Atterberg.)

# Potassium vanadium ferrocvanide,

 $K_{18}V[Fe(CN)_6]_6 + 39H_2O$  (?).

Ppt. Sl. sol. in H₂O. (Wyrouboff.)  $K_6(VO)_5[Fe(CN)_6]_4+60H_2O(?)$ . Ppt. (Atterberg.)

### Potassium ytterbium ferrocyanide, $KYbFe(CN)_6 + 3H_2O$ .

Sol. in excess K₄Fe(CN)₆+Aq. (Cleve, Z. anorg. 1902, **32.** 140.)

# Potassium yttrium ferrocyanide,

 $KYFe(CN)_{\ell}+2H_2O$ .

Ppt. (Wyrouboff, A. ch. (5) 8. 444.)

# Potassium zinc ferrocyanide,

A. ch. (4) 16. 307.

 $K_4Zn_6[Fe(CN)_6]_4+12H_2O.$ 

Absolutely insol. in H₂O. (Wyrouboff, A. ch. (5) **8.** 485.)

# Potassium ferrocyanide carbonyl,

 $K_{8}Fe(CN)_{5}(CO) + 3\frac{1}{2}H_{2}O.$ See Carbonyl ferrocyanide, potassium.

# Rubidium ferrocyanide, Rb₄Fe(CN)₆+2H₂O. Sol. in less than 1 pt. H₂O at ord. temp. with great absorption of heat. (Wyrouboff,

Silver ferrocyanide, Ag₄Fe(CN)₆+H₂O.

Insol. in H₂O or dil. acids. Insol. NH4OH, or NH4 salts + Aq. Sol. in KCN

Decomp. by warm NH₄OH+A-. (Weith, Z. Ch. (2) 5. 381.)

Silver ferrocyanide ammonia,

 $Ag_4Fe(CN)_6$ ,  $2NH_3+H_2O$ .

(Wyrouboff.) + 6H₂O. (Gintl.)

Sodium ferrocyanide, Na₄Fe(CN)₆+12H₂O. Efflorescent. Less sol. in H₂O than K₄Fe(CN)₆. Sol. in 4.5 pts. H₂O at 12°.

(John.)

 $\stackrel{\smile}{100}$  pts.  $H_2O$  at 15.5° dissolve 22 pts. (Ure's Dict.)

100 pts. H₂O dissolve at:

20° 18° 42° 53° 30.2 77° 37.1 pts. 80° 16.7 17.875 58° 60° Na₄FeCN₆, 41.7 54.8 59.2 pts. Na₄FeCN₆, 42.598° 98.5°

96° 61.66.30 pts. Na₄FeCN₆. (Conroy, J. Soc. Chem. Ind. 1898, 17, 104.)

 $+10H_{2}O.$ 

100 pts. H₂O dissolve at:

20° 18° 42° 29.45 31.85 58.5 pts.  $Na_4Fe(CN)_6+10H_2O$ , 53° 58° 60° 75.9 88.4 90.2 pts. Na₄Fe(CN)₆+10H₂O, 80°  $96^{\circ}$  $129.5\ 146.0\ 157.0\ \text{pts.}\ \text{Na}_4\text{Fe}(\text{CN})_6 + 10\text{H}_2\text{O},$ 98° 161 0 pts.  $Na_4Fe(CN)_6+10H_2O$ . 156.5(Conroy.)

Strontium ferrocyanide,  $Sr_2Fe(CN)_6 + 15H_2O$ . Efflorescent. Sol. in 2 pts. cold, and less

than 1 pt. boiling H₂O. (Bette.) Excessively sol. in H₂O. (Wyrouboff, A. ch. (4) **16.** 280.)

+8H₂O, (Wyrouboff.)

Thallous ferrocyanide,  $Tl_4Fe(CN)_6+2H_2O$ .

100 pts. H₂O dissolve 0.37 pt. at 18°, and 3.93 pts. at 101°. (Lamy.) Sol. in KCN+Aq. (Kühlmann.)

Thorium ferrocyanide,  $ThFe(CN)_6 + 4H_2O$ . Ppt. (Cleve, Bull. Soc. (2) 24. 355.)

Tin (stannous) ferrocvanide,  $Sn_2Fe(CN)_6$ + 4H₂O.

Insol. in H₂O or acids; sl. sol. in NH₄OH+ Aq. (Wyrouboff.)

Tin (stannic) ferrocyanide, Sn₅[Fe(CN)₆]₂+ 18½H₂O (?). (Wyrouboff.)

Titanium ferrocyanide, Ti₇[Fe(CN)₆]₂ (?). Ppt. (Wyrouboff.)

Uranium ferrocyanide, UFe(CN)₆+10H₂O. Ppt. (Wyrouboff.)

Vanadyl ferrocyanide, (VO)₂Fe(CN)₆+ 11H₂O

Ppt. (Atterberg.)

Yttrium ferrocyanide, Y₄[Fe(CN)₆]₃.

Easily sol, in H₂O; insol, in alcohol. (Popp. A. 131. 179

Zinc ferrocyanide, Zn₂Fe(CN)₆+3H₂O.

Insol, in H₂O or acids.

Insol. in  $HCl+\Lambda q$ . (Lea, Sill. Am. J. (2) 31. 191.)

Sol. in NH₄OH, or NH₄ salts+Aq. (Wittstein.)

Insol. in NH₄Cl, or NH₄NO+Aq. (Brett.) as Sl. sol. in boiling K₄Fe(CN)₆, or K₃Fe(CN)₆

+Aq. (Gore.) Na₄Fe(CN)₆+NaCl+Aq sat. at 21° contains 29.0 g. NaCl and 5.8 g. Na₄Fe(CN)₆ per 100 g.  $H_2O$ ; sat. at 90° it contains 24.7 g. NaCl and 21.3 g. Na₄Fe(CN)₆ per 100 g.  $H_2O$ . (Conroy, J. Soc. Chem. Ind. 1898, **17**. 105.)

Nr₁Fe(CN)₆+Na₂CO₃+Aq sat. at contains 22.6 g. Na₂CO₃ and 6.5 Value of the contains 22.0 g.  $Na_2CO_3$  and 6.5 g.  $Na_4Fe(CN)_6$  per 100 g.  $H_2O$ ; sat. at  $95^\circ$  it contains 29.8 g. Na₂CO₃ and 36.8 g. Na₄Fe(CN)₆ per 100 g. H₂O. (Conroy.)

Very sl. sol. in liquid NH₃. Am. Ch. J. 1898, **20.** 830.) (Franklin.

Insol, in alcohol.

+4H₂O.Absolutely insol. H₂O. (Wyrouboff, A. ch. (5) 8. 485.) +8H₂O. (Weith, A. **147**. 329.)

+10H₂O. (Pebal, A. **233**. 165.)

Ferrotetranitrososulphydric acid,  $H_2S_2(NO)_4Fe_2$ .

Insol. in H₂O; sl. sol. in alcohol; more easily in ether; very sol. in CS₂ or CHCl₃. Not obtained in a pure state. (Pawel, B. **15.** 2600.)

Ethyl ferrotetranitrososulphide.  $(C_2H_5)S_2(NO)_4Fe_2$ .

Insol. in H₂O, difficultly sol. in alcohol, more easily in ether, and very easily in CS2, CHCl₈,  $C_2H_5I$ , or  $C_6H_6$ . (Pawel, B. 15. 2609.)

Ferrous —, FeS₂(NO)₄Fe₂.

More difficultly sol. in H₂O and alcohol than the hepta salt.

Sol. in ether.

Potassium —,  $K_2S_2(NO)_4Fe_2+4H_2O$ .

Sol. in H₂O. Easily sol. in alcohol; insol. . in ether. (Pawel, B. 15. 2600.)
True composition of "nitrosulphide of

142

iron and potassium" of Roussin. (A. ch. Rubidium ferroheptanitrososulphide, (3) 52. 297.) (Pawel, B. 13. 1949.) RbS₃(NO)₇ Fe₄.

## Sodium ferrotetranitrososulphide. $Na_2S_2(NO)_4Fe_2 + 8H_2O$ .

Sol. in H₂O; easily sol. in alcohol; insol. in ether. (Pawel.)

True composition of "nitrosulphide of iron and sodium" of Roussin. (Pawel.)

Thallium —,  $Tl_2S_2(NO)_4Fe_2$ .

Insol. in H₂O, alcohol, or ether. (Pawel.)

# Ferroheptanitrososulphydric acid, HS₃(NO)₇ Fe₄.

Insol. in H2O, alcohol, and ether. Easily sol. in CS₂ or CHCl₈. (Pawel, B. 15. 2604.) May be called Ferrinitrososulphydric acid.

### Ammonium ferroheptanitrososulphide, $NH_4S_3(NO)_7$ $Fe_4+H_2O$ .

Less easily sol. in H₂O than the K com-

pound. (Pawel, B. 15. 2600.) pound. (Pawel, B. 10. 2000.)
"Binitrosulphide of iron" of Roussin. Sol. in about 2 pts. boiling H₂O; very sl. sol. in cold H₂O. Very sol. in alcohols, methyl, ethyl, or amyl, and in HC₂H₃O₂. Miscible with ether. Insol. in CS2 or CHCl3.

Decomp. by conc. HCl, HNO₈, or H₂SO₄. Not attacked by H₂C₂O₄, or H₂C₄H₄O₆+

Aq. Insol. in NH₄OH, and KOH+Aq. (Roussin, A. ch. (3) 52. 286.)

Sol. in H2O. Insol. in alcohol. (Hofmann, Z. anorg. 1895, 9. 299.)

#### Barium -

Easily sol. in H₂O. (Pawel.)

Cæsium —,  $Fe_4(NO)_7 S_8Cs + H_2O$ .

Insol, in H₂O. Difficultly sol, in alcohol and ether. (Pawel.)
Sparingly sol. in H₂O. (Hofmann, Z. anorg. 1895, 9. 298.)

### Calcium ----.

Easily sol. in H₂O. (Pawel.)

Ferrous —,  $Fe[S_8(NO)_7 Fe_4]_2 + 8H_2O$ . More easily sol. in H₂O than Na salt. (Pawel.)

### Lead -

Difficultly sol. in H₂O. (Pawel.)

### Magnesium -

Easily sol. in H₂O. (Pawel.)

### Potassium —, KS₈(NO)₇ Fe₄.

Sol. in H₂O, alcohol, and very sol. in ether Barium ferrite, BaO, Fe₂O₃. with slight decomp. (Pawel, B. 15. 2600.)

Less soluble in H₂O than the NH₄ salt. (Pawel.) +H₂O. Ppt. (Hofmann, Z. anorg. 1895. 9. 298.)

Sodium —,  $NaS_3(NO)_7$   $Fe_4+2H_2O$ .

More sol. in H₂O than the potassium salt. (Pawel.)

Thallium —,  $TlS_8(NO)_7 Fe_4 + H_2O$ .

Very difficultly sol. in H₂O. More easily sol. in alcohol. (Pawel.) (Hofmann, Z. anorg. 1895, 9. 297.)

# Ferrodinitrosothiosulphonic acid.

Ammonium ferrodinitrosothiosulphonate,  $Fe(NO)_2S_2O_3NH_4+H_2O$ .

Can be cryst, from warm H2O without decomp. (Hofmann, Z. anorg. 1895, 8. 321.)

Cæsium —,  $Fe(NO)_2S_2O_3Cs$ .

Sparingly sol. in H₂O. (Hofmann.)

Potassium —,  $Fe(NO)_2S_2O_3K + H_2O$ .

Sl. sol, in H2O without decomp. at \$80°. Sol. in 50% alcohol.

Sol. in H₂SO₄ without decomp. mann).

Rubidium ——,  $Fe(NO)_2S_2O_3Rb+H_2O$ .

Less sol. in H₂O than the corresponding Na salt. (Hofmann.)

Sodium —,  $Fe(NO)_2S_2O_3Na + 2H_2O$ .

Closely resembles K salt, but is more sol. in H₂O and alcohol. (Hofmann.)

## Ferrotungstic acid.

Sol. in H₂O. (Laurent, C. R. **31.** 693.)

Ammonium manganous ferrotungstate 12(NH₄)₂O, 6MnO, 2Fe₂O₃, 3H₂O,  $45WO_3 + 81H_2O$ .

Sol. in H₂O. (Laurent.)

Barium ferrotungstate, 21BaO, 2Fe₂O₃,  $45WO_{8}+27H_{2}O.$ 

Sol. in H₂O. (Laurent.)

Potassium ferrotungstate, 9K2O, 2Fe2O3,  $12H_2O$ ,  $45WO_3 + 54H_2O$ . Sol. in  $H_2O$ . (Laurent.)

 $18K_2O$ ,  $2Fe_2O_3$ ,  $3H_2O$ ,  $45WO_3 + 54H_2O$ . (Laurent.)

#### Ferrous acid.

Ppt. (List, B. 11. 1512.)

# Calcium ferrite, 4CaO, Fe₂O₃.

Insol. in H₂O, or sugar+H₂O. Decomp. by the weakest acids, but not by boiling KOH+Aq. (Pelouze, A. ch. (3) 33. 5.)
CaO, Fe₂O₃. (List.)

3CaO, Fe₂O₃. Much less readily attacked by H₂O and acids than the silicates. (Hilpert, B. 1909, **42**. 4581.) 3CaO, 2Fe₂O₃. As above. (Hilpert, B.

 $3C_{2}(0)$ ,  $2Fe_{2}U_{3}$ . As above. (Hilpert, B. 1909, **42**, 4581.)

Calcium ferrite chloride, CaO, Fe₂O₃, CaCl₂. Not decomp. by H₂O. (Chatelier, C. R. **99**. 276.)

# Cupric ferrite, CuO, Fe₂O₃.

Ppt. (List.) +5H₂O. (List.)

Ferrous argentous ferrite, 2FeO,  $Ag_4O$ ,  $Fe_2O_8$  (?).

Easily decomp. by HCl+Aq. Not completely sol. in dil. HNO₈+Aq. Easily sol. in conc. HNO₈. Decomp. by acetic acid. (Rose, Pogg. 10. 323.)

# Magnesium ferrite, MgO, Fe₂O₃.

Insol, in  $H_2O$ . Not attacked by boiling conc. HNO₃. (Deville, C. R. **52**. 1264.) Min. Magnesioferrite. Difficultly sol. in HCl+Aq. (Rammelsberg, Pogg. **107**. 451.) +4H₂O. Ppt. (List, B. **11**. 1512.) 6MgO, Fe₂O₃+9H₂O. Ppt. +15H₂O. Min. Pyroaurite.

Manganous ferrite, MnO, Fe₂O₃. Ppt. (List.)

Nickel ferrite, NiO, Fe₂O₃. Ppt. (List.)

# Potassium ferrite, 3K₂O, 4Fe₂O₃.

Decomp. by H₂O, KOH+Aq, NaOH+Aq, etc., but only slowly by NH₄Cl+Aq. (Salm-Horstmar, J. pr. **55**. 349.)

Horstmar, J. pr. **55**. 349.)  $K_2Fe_2O_4$ . Decomp. by  $H_2O$ . (Rousseau and Bernheim, C. R. **107**. 240.)

Silver (argentous) ferrite, Ag₄O, Fe₂O₃ (?).

Decomp. by dil. HNO₃+Aq. (Rose, Pogg. 10. 323.)

## Sodium ferrite, Na₂O, Fe₂O₃.

Na₂O is dissolved out by H₂O. Easily sol. in dil. HCl+Aq. Not easily decomp. by NH₄Cl+Aq. (Salm-Horstmar.)

# Zinc ferrite, ZnO, Fe₂O₃.

Sol. in boiling conc. HCl+Aq. (Ebelmen, A. ch. (3) **33.** 47.) Min. Franklinite.

# Flavocobaltic compounds.

See also Xanthocobaltic compounds.

### Flavocobaltic chloraurate, (NO₂)₂Co(NH₂)₄AuCl₄.

More easily sol. than the chloroplatinate. Not wholly insol. in absolute alcohol. (Jörgehsen, Z. anorg. 5. 159.)

- As the chloroplatinite. (Jörgensen.)
- chloroplatinite, [(NO₂)₂Co(NH₂)₄]₂PtCl₄. Somewhat sol. in H₂O, and not insol. in 50% alcohol. (Jörger sen.)
- --- chroniate, [(NO₂)₂Co(NH₃)₄]₂Cr₂O₇. **
  Ppt. (Jörgensen.)

# - nitrate, $Co(NO_2)_2(NH_3)_4NO_8$ .

Sol. in about 33 pts. cold H₂O; insol. in HNO₃. (Jörgensen.)
Co(NO₂)₂/NH₃)₄NO₅, HNO₃. Decomp. by H₂O or alcohol. (Jörgensen.)

cobaltic nitrite,  $3(NO_2)_2Co(NH_8)_4$ ,  $Co_2(NO_2)_6+2H_2O$ .

Sl. sol. in  $H_2O$ . (Jörgensen, Z. anorg. 5. 179.)

# — - diamine cobaltic nitrite, (NO₂)₂Co(NH₈)₄, (NO₂)₂(NH₈)₂Co(NO₂)₂. Very sl. sol. in H₂O. (Jörgensen.)

—— sulphate, [(NO₂)₂Co(NH₃)₄]₂SO₄.
Sl. sol. in H₂O, more easily in HC₂H₃O₂+
Aq. (Jörgensen.)

### Fluoborhydric acid, HBF4.

Decomp. by  $H_2O$  very rapidly. (Landolph, C. R. **86**. 603.)

# Aluminum fluoboride, 2AlF₃, 3BF₃.

Sol. in  $H_2O$  only when acidulated; sol. in acids. (Berzelius.)

### Ammonium fluoboride, NH₄BF₄.

Easily sol. in H₂O. Sol. in 4 pts. H₂O at 16°, and 1.02-1.05 pts. boiling H₂O. (Stolba, Chem. techn. Cent. Anz. 7. 459.) Sl. sol. in alcohol.

# Barium fluoboride, Ba(BF₄)₂+2H₂O.

Deliquescent; easily sol. in H₂O; decomp. by alcohol. (Berzelius.)

### Cæsium fluoboride, CsBF4.

100 pts. H₂O dissolve 0.92 pt. CsBF₄ at 20°, and 0.04 pt. at 100°. (Godeffroy, B. 9. 1367.)
0.02 pts. are sol. in 100 pts. H₂O at 20°. (Erdmann, Arch. Pharm. 1894, 232. 21.)

### Calcium fluoboride, Ca(BF₄)₂.

Decomp. by H₂O, with formation of a sol. acid salt and an insol. basic salt. (Berzelius.)

# Cupric fluoboride, Cu(BF₄)₂.

Deliquescent, and very sol. in  $H_2O$ . (Berzelius.)

### Lead fluoboride, Pb(BF₄)₂.

Sol. in  $H_2O$ . Decomp. by boiling with  $H_2O$  or alcohol into an acid soluble, and a basic insoluble salt. (Berzelius.)

### Lithium fluoboride, LiBF4.

Hygroscopic. Easily sol. in H₂O. (Berzelius.)

### Magnesium fluoboride.

Easily sol. in H₂O. (Berzelius.)

### Potassium fluoboride, KBF4.

Sol. in 223 pts. H₂O at 20°. (Stolba.) Sol. in 70.4 pts. cold H₂O. (Berzelius.) Sol. in 15.94 pts. H₂O at 100°. (Stolba.) 1.43 pts. are sol. in 100 pts. H₂O at 20°. (Erdmann, Arch. Pharm. 1894, **232**. 21.)

Not more sol. in NH₄OH+Aq than in H₂O; sol. in hot KOH, NaOH, or M₂CO₃+Aq. (Berzelius.) More sol. in NH₄Cl+Aq. (Rose, Pogg. **80.** 276.) Insol. in 20% KC₂H₃O₂+Aq. (Stromeyer.) Insol. in cold, sl. sol. in boiling alcohol.

### Rubidium fluoboride, RbBF4.

100 pts. H₂O dissolve 0.55 pt. at 20°, and 1.0 pt. at 100.° (Godeffroy, B. 9. 1337.) 0.55 pts. are sol. in 100 pts. H₂() at 20°. (Erdmann, Arch. Pharm. 1894, 232. 21.)

# Sodium fluoboride, NaBF4.

Easily sol. in  $H_2O$ . Very sl. sol. in alcohol. (Berzelius.)

#### Yttrium fluoboride.

Sol. in H₂O with excess of acid. (Berze-

### Zinc fluoboride, $Zn(BF_4)_2$ .

Deliquescent. Sol. in H₂O. (Berzelius.)

# Fluoboric acid, HBF4.

See Fluoborhydric acid.

 $H_4B_2O_7$ , 3HF and  $H_4B_2O_9$ , 2HF (?). Fume on air, and are decomp. with  $H_2O$ . (Landolph, B. 12. 1583.)

 $\hat{H}BO_2$ , 3HF. Decomp. by  $H_2O$ . (Ber-

zelius, Pogg. 59. 644.)

Is either a mixture, or a solution of HBO₂ in HF, and is decomp. by distillation, and the salts are decomp. by recrystallisation. (Basarow, C. R. 78. 1698.)

### Potassium fluoborate, K₂B₂O₃F₂ (?).

Sl. deliquescent. Scarcely sol. in boiling alcohol. (Schiff, A. Suppl. 5. 175.)

See Boron trioxide potassium fluoride, B₂O₃, 2KF.

### Fluochromic acid.

Ammonium fluochromate, NH₄CrO₃F. Sol. in H₂O. (Varenne, C. R. **91.** 989.)

# Potassium fluochromate, KCrO₃F.

Efflorescent. Sol. in H₂O, with gradual decomp. (Streng, A. 129. 225.)

### Fluocolumbic acid.

See also Fluoxycolumbic acid.

Ammonium fluocolumbate fluoxycolumbate, (NH₄)₂CbF₃, 2CbOF₃, NH₄F.

Cadmium fluocolumbate, Cd₅H₅Cb₃F₃₀+ 28H₂O.

Insol. in, and decomp. by H₂O. (Streng.)

Cobalt fluocolumbate, Co₅H₅Cb₃F₂, +28H₂O. Insol. in, and decomp. by H₂O. (Streng.)

Copper fluocolumbate, Cu₂HCbF₁₀+9H₂O. Insol. in, and decomp. by H₂O.

Ferrous fluocolumbate,  $Fe_3H_4Cb_2F_{20}+19H_2O$ . As above.

Manganous fluocolumbate,  $Mn_{\delta}H_{\delta}Cb_{\delta}F_{\delta0}+28H_{2}O$ .

Mercuric fluocolumbate, Hg₃CbF₁₁+8H₂O. As above.

Nickel fluocolumbate,  $\mathrm{Ni_3H_4Cb_2F_{20}} + 19\mathrm{H_2O}$ . As above.

### Potassium fluocolumbate, K₂CbF₇.

Decomp. by solution in H₂O. (Marignac A. ch. (4) 8. 34.)

### Rubidium fluocolumbate, Rb₂CbF₇.

Sol. in  $H_2O$  and HF+Aq. Insol. in alcohol. (Pennington, J. Am. Chem. Soc. 1896, 18.58.)

Zinc fluocolumbate, Zn₅H₅Cb₃F₃₀+28H₂O.

Insol. in cold H₂O; decomp. by hot H₃O. (Santesson, Bull. Soc. (2) **24**. 52.)

### Fluodithionic acid.

# Cæsium monofluodithionate, S₂O_b(OH)FC₈₂+H₂O.

Easily sol. in H₂O with decomp. Sol. in HF; very unstable. (Weinland, Z. anorg. 1899, **21**. 66.)

# Potassium difluodithionate, $S_2O_5F_2K_2+3H_2O$ . Easily sol. in $H_2O$ with decomp.

Sol. in HF; very unstable. (Weinland.)

Rubidium difluodithionate, 3H₂O.

Easily sol. in H2O with decomp Sol. in HF; very unstable. (Weinland.)

# Fluogermanic acid, H2GeF6.

Known only in solution. (Winkler, J. pr. (2) **36.** 177.)

# Potassium fluogermanate, K₂GeF₆.

Sol. in 173.98 pts. H₂O at 18°. (Winkler.) Sol. in 184.61 pts. H₂O at 18°. (Krüss and Nilson, B. 20. 1696.)

Sol. in 34.07 pts. H₂O at 100. (Winkler.) Sol. in 38.76 pts. H₂O at 100.° (Krüss and Nilson.)

Insol. in alcohol.

### Difluoiodic acid.

Ammonium diffuoiodate, NH₄IO₂F₂.

Like K salt.

Sol. in 40% HF+Aq. anorg. 1899, **20.** 30.) (Weinland, Z.

Sol. in H₂O, Easily decomp. (Weinland, B. 1897, **30.** 868.)

Cæsium difluoiodate, CsIO₂F₂. (Weinland, Z. anorg. 1899, 20. 36.)

Cæsium hydrogen difluoiodate,  $CsIO_2F_2$ ,  $HIO_2F_2+2H_2O$ .

Efflorescent. Sol. in H₂O with decomp. (Weinland, Z. anorg. 1899, **22.** 257.)

### Potassium difluoiodate, KIO₂F₂.

Sol. in H₂O. Decomp. in moist air. (Weinland, B. 1897, **30**. 867. Decomp. in air. Sol. in H₂O with decomp. Sol. without decomp. in 40% HF+Aq. (Weinland, Z. anorg. 1899, 20. 31.

# Rubidium difluoiodate, RbIO₂F₂.

Resembles K salt. Sol. in HF+Aq. (Weinland, Z. anorg. 1899, 20. 35.)

### Rubidium hydrogen diffuoiodate, $RbIO_2F_2$ , $HIO_2F_2+2H_2O$ .

Sol. in 40-60% HF+Aq. (Weinland, Z. anorg. 1899, **22**. 260.)

# Sodium difluoiodate, NaIO₂F₂.

Decomp. by  $H_2O$ . (Weinland, B. 1897, 30. 868.)

Sol. in HF. (Weinland, Z. anorg. 1899, 20.

# Fluomanganic acid, H2MnF6.

Decomp. by H₂O. Sol. in alcohol and ether

S₂O₅F₂Rb₂+ | Ammonium fluomanganate, (NH₄)₂MnF₆. More sol. than the K salt. (Nicklès, C. R.

> **65.** 107.) True composition is  $(NH_4)_4Mn_2F_{10} = 4NH_4F$ ,  $Mn_2F_6$ . (Christensen, J. pr. (2) 34.

Cobalt fluomanganate, 2CoF2, Mn2F6+ 3H₂O.

Sol. in H₂O. (Christensen.)

Nickel fluomanganate, 2NiF₂,  $Mn_2F_6+$ 8H20 Sol. in H₂O Christensen.)

# Potassium fluomanganate, K₂MnF₆.

Difficultly sol. in H₂O. Decomp. by much H₂O. (Nicklès, C. R. **65.** 107.) Composition is  $K_4M_{112}F_{10}=4KF$ ,  $Mn_2F_6$ . Also with 2H₂O. (Christensen, J. pr. (2) 34. 41)

Decomp. by H₂O. Sol. in HCl, H₂SO₄ and HNO₃ with decomp. Can be recryst. from 40% HF+Aq. Insol. in acctic acid. (Weinland and Lauenstein, Z. anorg. 1899, 20, 41.)

Rubidium fluomanganate, Rb₂MnF₆+2H₂O. As the K salt. (Weinland and Lauenstein, Z. anorg. 1899, 20. 44.)

Silver fluomanganate,  $Ag_2Mn_2F_8+14H_2O$ . (Christensen, J. pr. (2) **34.** 41.)

Sodium fluomanganate, 4NaF, Mn₂F₆. Decomp. by much H₂O. (Christensen.)

Zinc fluomanganate, 2ZnF₂, Mn₂F₆+8H₂O. Sol. in H₂O. (Christensen.)

### Fluomolybdic acid.

See Fluoxyhypomolybdic, and Fluoxymolybdic acids.

Fluopalladous acid.

Potassium fluopalladite,

Sl. sol. in H₂O.

Sodium fluopalladite.

Sl. sol. in H₂O. (Berzelius.)

Fluoperboric acid.

Ammonium fluoperborate, NH₄OOB(F)OOB(F)OONH₄.

Ppt. Insol in ether. (Petrenko, C. C. 1902, I. 1191.)

Potassium fluoperborate,  $K_4B_4F_4O_{41}+H_2O$ .

Dry salt is rather stable.

Easily sol. in H₂O. Aqueous solution in absence of H₂O. (Nicklès, C. R. 65. 107.) decomp. rapidly when warmed; at ordinary temp. the decomp. proceeds slowly. Insol. in alcohol. (Melikoff, B. 1899, 32. 3350. KOOB(F)OOB(F)OK+1½H₂O. Ppt. Insol. in ether. (Petrenko, C. C. 1902, 1. 1191; J. Russ, phys. chem. Soc. 34. 37.)

### Fluopernranic acid.

Potassium fluoperuranate,  $K_4U_4F_6O_{15}+4H_2O=3UO_4KF$ ,  $UO_3F_2$ ,  $KF+4H_2O$ . Ppt. (Lordkipanidse, C. C. **1900**, II. 525.

Sodium fluoperuranate, UO₄NaF+5H₂O. Ppt. (Lordkipanidse, C. C. **1900**, II. 525.)

# Fluophosphamide, $PF_3(NH_2)_2$ . Sol. in $H_2O$ . (Poulenc, A. ch. (6) **24.** 566.)

## Fluophosphoric acid.

Monocæsium monofluophosphate, P(OH)_s(OCs)F.

Like the K salt. (Weinland, Z. anorg. 1899, 21.48.)

 $Monopotassium\ monofluophosphate,\ P(OH)_3(OK)F.$ 

Sol. in 40% HF+Aq; decomp. in the air. (Weinland, Z. anorg. 1899, 21, 44.)

### Potassium monofluophosphate, KHF.PO₃+H₂O.

Decomp. by H₂O; unstable. (Weinland, B. 1898, **31.** 124-125.)

# Monorubidium monofluophosphate, P(OH)₃(ORb)F.

Sol. in 40% HF+Aq. (Weinland, Z. anorg. 1899, 21, 47.)

### Rubidium monofluophosphate, RbHFPO₃+H₂O.

Decomp. by  $H_2O$ . (Weinland, B. 1898, 31. 124.)

### Fluoplatinic acid.

### Ammonium fluoplatinate.

Secomp. by  $H_2O$  to a sol. acid, and an insol. basic salt. Insol. in alcohol. (Berzelius.)

## Potassium fluoplatinate.

Deliquescent. Insol. in alcohol. Decomp. by H₂O. (Berzelius.)

### Sodium fluoplatinate.

Decomp. by H₂O. (Berzelius.)

# Fluor- and Fluoro-.

See Fluo-.

# Fluorhydric (Hydrofluoric) acid, HF or $H_2F_2$

Attracts H₂O from air with great avidity. Very sol. in H₂O with evolution of much heat.

Sat. solution has sp. gr. 1.25. (H. Davy.)
On boiling the aqueous solution an acid of constant composition is obtained, which boils at 120°, has sp. gr. 1.15, and contains 35.37% HF (Bineau, A. ch. (3) 7. 257.) The residual acid after boiling contains 36 to 38% HF, and by standing over CaO gives off HF until an acid containing 32.5 to 32.7% HF is formed. Weaker acids increase their strength to 32.2 to 32.4% HF, while an acid containing 32.5% HF remains unchanged. (Roscoe, A. 116. 218.)

Does not attack gutta-percha. Sol. in H₂SO₄.

Sp. gr. of HF+Ag at 15°.

Sp. gr.	Co HF	Sp. gr.	% HF	Sp. gr.	% HF	
1.01 1.02 1.03	2.90 5.80 8.70	1.10 1.11 1.12	29.00 31.90 34.80	1.19 1.20 1.21	55.10 58.00 60.90	
1.04 1.05 1.06 1.07	$egin{array}{c} 11.60 \ 14.50 \ 17.40 \ 20.30 \ \end{array}$	1.13 1.14 1.15 1.16	37.70 40.60 43.50 46.40	$egin{array}{c} 1.22 \\ 1.23 \\ 1.24 \\ 1.25 \\ \end{array}$	63.80 $66.70$ $69.60$ $72.50$	
1.08 1.09	$\begin{vmatrix} 23.20 \\ 26.10 \end{vmatrix}$	1.17.	$\begin{array}{c} 49.30 \\ 52.20 \end{array}$		• • •	

(Hart, J. Anal. Ch. 3, 372.)

Sp. gr. of HF+Aq at ord, temp.

1 : 6 : .		
Deg. Baumé	Sp. gr.	% HF
1	1 0059	2.32
2	1.0139	4.04
$\frac{2}{3}$	1.0211	5.76
4	1.0283	7.48
5	1.0356	9.20
6	1.0431	10.92
4 5 6 7	1.0503	12.48
8	1.0583	14.04
9	1.0661	15 59
10	1.074	17.15
11	1.082	18.86
12	1.0901	21.64
13	1.0983	24.42
14	1.1067	27.20
15	1.1152	29.98
16	1.1239	32.78
17	1.1326	35.15
18	1.1415	37.53
19	1.1506	39.91
20	1.1598	42.29
21	1.1691	44.67
22	1.1786	47.04
23	1.1883	49.42
24	1.1981	51.57
25	1.2080	53.72
26	1.2182	55.87
27	1.2285	58.02
	A - AAC-17	00.02

Sp.	gr. of	HF+Aq	at	ord.	temp	.—Continued.
-----	--------	-------	----	------	------	--------------

		44.100
Deg. Baumé	Sp. gr.	% HF
28	1.2390	60.17
29	1.2497	62.32
30	1.2605	64 47
31	1.2716	66.61
32	1.2828	68.76
33	1.2943	70.91
34	1.3059	73.06
35	1.3177	75.21
36	1.3298	77.36
37	1 3421	79 51
38	1.3546	81.66
39	1.3674	83-81
40	1.3804	85.96
41	1.3937	88.10
42	1.4072	90.24
43	1.4211	92/39
44	1.4350	94 54
45	1 . 4493	96-69

(Eckelt, Ch. Z. 1898, 22, 225.)

Sp. gr. of HF+Aq at 0°.

Sp. gr.	% нг	Sp. gr.
1.005	71.73	1.262
1.009	72.21	1.260
1.012	78.05	1.260
1.017	84.27	1.235
1.035	87.72	1.212
1.065	88.11	1.210
	88.82	1.207
		1.202
		1.200
		1.190
		1.185
		1.175
		1.165
		1.152
		1.135
		1.130
		1.095
		1.065
		1.035
		1.022
	100.05	1.0005
1.255		
	1.005 1.009 1.012 1.017 1.035	1.005 1.009 1.009 1.012 1.012 1.017 1.035 87.72 1.065 1.097 88.82 1.110 89.02 1.120 89.15 1.130 89.82 1.145 1.155 90.64 1.155 91.04 1.157 92.09 1.182 1.187 1.200 1.187 1.200 1.217 95.84 1.220 1.230 1.230 98.22 1.245 100.05

(Hill, Roy. Soc. Proc. 1909, 83. A. 144.)

Sp. gr. of HF+Aq at 18°.

% HF	Sp. gr.
0.484 1.504 2.48 • 4.80 7.75 15.85 24.47 29.83	1.003 1.005 1.009 1.017 1.028 1.058 1.087 1.103

(Hill.)

Aq. solution of sp. gr. 1.138 at 18° contains 43.2% HF and has a constant bpt. of 111° at 750 mm. (Deussen, Z. anorg. 1906, 49. 297.)

The strongest acid that can be obtained by distillation contains 48.17% HF and boils at 125-125.5°. (Gore.)

### Fluorides.

The alkali fluorides, also AgF and SnF2, are sol. in H2O; the fluorides of Fe, Sr, and Cd are sl. sol.; the others are insol. in H₂O. Most fluorider are sol. in acids, especially HF -Aq.

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 822.)

See under each element.

# Fluorine, F.

Decomposes H₂O and all organic solvent with great violence. (Moissan, C. R. 103. 202 and 256.)

Liquified at -185° to a yellowish liquid which does not dissolve glass nor ignite cooled Si, B, C, S, P, or Fe. (Moissan, C. R. 1897, **124.** 1202–1204.)

# Fluomolybdic acid.

Ammonium fluomolybdate,  $(NH_4)MoF_4+$  $H_2O$ .

Somewhat more sol. in H₂O than the K salt. Hydrolysed by H₂O. (Rosenheim, Z. anorg. 1905, **46.** 321.)

 $(\dot{N}H_4)_3Mo_2\dot{F}_9 + 2H_2O$ . (Rosenheim.)

Potassium fluomolybdate,  $KMoF_4+H_2O$ . Nearly insol. in H₂O. (Rosenheim.)

# Fluoselenic acid.

Ammonium monofluoselenate,

 $SeO_3(OH)F(NH_4)_2$ .

Not hygroscopic.

Easily sol. H₂O with decomp. Sol. in HF. (Weinland, Z. anorg. 1899, 21.

Tripotassium difluodiselenate,  $Se_2O_7F_2K_3H +$ H₂O.

Decomp. in the air; sol. in H₂O with decomp.; sol. in HF. (Weinland.)

Trirubidium difluodiselenate, Se₂O₇F₂Rb₃H  $+\mathrm{H}_2\mathrm{O}.$ 

Decomp. in the air; sol. in H₂O with decomp.; sol. in HF. (Weinland, Z, anorg. 1899**, 21.** 57.)

# Fluosilicic acid, H2SiF6.

Sp. gr. of  $H_2SiF_6+Aq$  at 17.5° ( $H_2O$  at 17.5° = 1.000).

% H2SiF6	Sp. gr.	% H2SiF6	Sp. gr
2	1.0161	20	1.1748
$rac{4}{6}$	1.0324 1.0491	22 24	1.1941 1.2136
8 10	1.0661 1.0834	26 28	1.2335 1.2537
12	1.1011	30	1.2742
14 16	1.1190 1.1373	$\begin{array}{c} 32 \\ 34 \end{array}$	$1.2951 \\ 1.3162$
. 18	1.1559		

(Stolba, J. pr. 90, 193.)

+2H₂O. Very deliquescent, and sol. in H₂O. (Kessler, C. R. 90. 1285.) Solution decomp. into HF and SiF, on evaporation, when it becomes concentrated.

### Fluosilicates.

Most of the fluosilicates are sol. in H₂O, but the alkali salts (especially K) and the Ba salt are only sl. sol. in H₂O.

# Aluminum fluosilicate, Al₂(SiF₆)₃.

Easily sol. in H₂O. After evaporating to dryness, the residue is slowly but completely sol. in H₂O. (Deville, A. ch. (3) **61**. 327.) Insol. in acetone. (Naumann, B. 1904, **37**.

### Aluminum fluosilicate silicate, Al₂SiF₁₀, 5Al₂SiO₅.

Min. Topaz. Insol. in acids.

### Ammonium fluosilicate, (NH₄)₂SiF₆.

Sol, in 5.38 pts. H₂O at 17.5° to form a solution of 1.0961 sp. gr.; sol. in 1.8 pts. hot H₂O; sol. in 45.5 pts. alcohol of 31%. (Stolba, C. C. 1877. 418.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)  $3NH_4F$ ,  $SiF_4 = (NH_4)_2SiF_6$ ,  $NH_4F$ . Sol. in

H₂O. (Marignac, Ann. Min. (5) 15. 221.)

#### Barium fluosilicate, BaSiF₆.

Sol, in 3802 pts. cold H₂O. (Fresenius, A. **59.** 120.)

Sol. in 3731 pts. H₂O at 17.5°; in 3315 pts. at 21°; in 1175 pts. at 100°. (Stolba, J. pr. 96.

Sol. in 640-733 pts. H₂O containing a little HCl. (Fresenius.)

488 pts. HCl+Aq containing 4.25% HCl dissolve 1 pt. at 22°. (Stolba.)

More sol. in HNO₃+Aq than in H₂O. (Fresenius.)

272 pts. HNO₃+Aq, containing 8% N₂O₅,

dissolve 1 pt. at 22°. (Stolba.)

1 pt. BaSiF₆ dissolves in 428 pts. sat.
NH₄Cl+Aq; in 589 pts. sat. NH₄Cl+Aq+ 1 pt. BaSiF₆ dissolves in 428 pts. sat. NH₄Cl+Aq+ in 589 pts. sat. NH₄Cl+Aq+ in 150 pts. of 85% at 20°; in 617 pts. of 92% 2 vols. H₂O. (Mallet, Sill. Am. J. (2) **28.** 48.) at 20°. (Stolba, J. pr. **102.** 7.)

1 pt. BaSiF, dissolves in 306 pts. sat. NH, Cl+Aq at 22°; in 361 pts. 15% solution of NH, Cl; in 563 pts. sat. boiling NaCl+Aq; in 349 pts. 10% solution of NaCl at boiling temp.; in 2185 pts. 10% solution of NaCl at 20°; in 1140 pts. 5% solution of NaCl at 20°. (Stolba.)

Nearly absolutely insol. in alcohol. (Fresenius.)

Solubility in a mixture of H₂O, alcohol (96%), HCl+Aq (20%), H₂SiF₆+Aq (3.7%). 1 pt. BaSiF₆ is sol. in pts. of solutions of given composition.

H ₂ O	Alcohol	HCl+Aq	H ₂ SiF ₆ +Aq	BaSiF ₆
50 74.1 70.8 77.95 73.0 97.09 75.0	50 25 25 20 25 0 25	$\begin{matrix} 0 \\ 0.9 \\ 4.2 \\ 0.9 \\ 0.9 \\ 1.25 \\ 0 \end{matrix}$	0 0 0 1.15 1.1 1.66	37,219 5,263 2,860 39,061 70,679 3,247 16,914

(Fresenius, Z. anal. 29. 143.)

### Cadmium fluosilicate, CdSiF₆+6H₂O.

Extremely sol. in H₂O. Easily sol. in 50% alcohol. (Engelskirchen, Dissert. 1903.)

### Cæsium fluosilicate, Cs₂SiF₆.

Sol. in 166 pts. H₂O at 17°, and much less h2t H₂O. Insol. in alcohol. (Preis, J. pr. **103.** 410.)

### Calcium fluosilicate, CaSiF₆+2H₂O.

Sl. sol. in, and partly decomp, by H₂O. Sol. in HF and HCl+Aq. Sol. in fluosilicic acid without decomp. Easily sol. in 60% alcohol. (Fleischer.)

# Cerium fluosilicate.

Very difficulty sol. in H₂O, acetic, or fluosilicic acids. Insol. in alcohol. (Stolba, C. C. 1874. 130.)

## Chromium fluosilicate.

Deliquescent. (Berzelius.) Efflorescent. Sol. in H₂O. (Berlin.)

# Cobaltous fluosilicate, CoSiF₆+6H₂O.

Easily sol. in H₂O. (Berzelius.)

# Cuprous fluosilicate, Cu₂SiF₆.

Insol. in H₂O. (Berzelius, Pogg. 1. 199.)

# Cupric fluosilicate, CuSiF₆+6H₂O.

Deliquescent in moist, efflorescent in dry

Sol. in 0.428 pt. H₂O at 17°. Sp. gr. of solution sat. at  $17^{\circ} = 1.6241$ .

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Contains 6½ H2O. (Stolba.) +5½H₂O. (Knop and Wolf.)

### Cupric fluosilicate phosphate, CuSiF6, $Cu_3(PO_4)_2$ .

Insol. in H2O, but easily sol. in dil. HCl+ (Thorpe and Rodger, Chem. Soc. 55. 320.)

### Glucinum fluosilicate.

Known only in solution.

Iron (ferrous) fluosilicate, FeSiF₆+6H₂O. Easily sol. in H₂O. (Berzelius.)

Iron (ferric) fluosilicate, Fe₂(SiF₆)₃. Sol. in H₂O. (Berzelius.)

# Lead fluosilicate, PbSiF₆+2H₂O.

Deliquescent. Easily sol. in H₂O. Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

+4H₂O. (Marignac.)

### Lithium fluosilicate, Li₂SiF₆+2H₂O.

100 pts. H₂O at 17° dissolve 73 pts. crystalline salt. (Marignac.)

100 pts. cold H₂O dissolve 52.6 pts. crystals. Sol. in dil. alcohol. (Stolba, J. pr. 91. 456.) 100 pts. alcohol of 46 vol. % dissolve about 4 pts., and 100 pts. alcohol of 79 vol. % dissolve about 0.4 pt. crystals. (Stolba, Z. anal **3**. 311.)

Insol. in ether or benzene.

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

### Magnesium fluosilicate, MgSiF₆+6H₂O.

Efflorescent. Sol. in 1534 pts. cold H₂O, forming a solution of 1.235 sp. gr. at 17.5° Separates out SiO₂ on warming, which nearly all redissolves on cooling. (Stolba, C. C. **1877.** 578.)

# Magnesium fluosilicate silicate, Mg₅Si₂F₁₈, xMg5Si2O9.

Min. Humite; Chondrodite. Gelatinises with HCl, or H₂SO₄+Aq.

Manganous fluosilicate,  $MnSiF_6+6H_2O$ . Sol. in H₂O. (Marignac, J. pr. **83**. 202.) 100 pts. dissolve in 71.4 pts. H₂O at

17.5°, and sp. gr. of solution = 1.44825. Much more sol. in hot H₂O, and less sol. in alcohol, the stronger the alcohol. (Stolba, C. C. 1883. 292.)

### Mercurous fluosilicate, Hg2SiF6.

Sl. sol. in H2O without decomp. (Lemaire. C. C. 1897, I. 1046.) +2H₂O. Sl. sol. in H₂O. More easily sol. in acidified H₂O, but precipitated by HCl+ Aq. (Berzelius.)

### Mercuric fluosilicate, basic, HgSiF₆, HgO+ 3H₂O.

Decomp. by H₂O, but sol. in weakest acids. (Berzelius, Pogg. 1. 200.)

Mercuric iluosilicate, HgSiF, + 3H₂O.

Deliquescent, and easily sol. in H2O. (Finkener, Pogg. 111. 246.)

### Nickel fluosilicate, NisiF₆+6H₂O.

Easily sol. in H2O. (Marignac, Ann. Min. (5) **15,** 262.)

# Potassium fluosilicate, K₂SiF₆.

Sol. in 833.1 pts. H₂O at 17.5°, and 104.8 pts. at 100°. (Stolba, J. pr. 103. 396.) Sol. in 3800 pts. cold, and more easily sol, in hot H₂O. (Fresenius.)

More sol. in HCl+Aq than in H₂O.

Sol. in 337 pts. HCl+Aq of 26.5% at 14°; in '07 pts. of 25.7% at 15°; in 340 pts. of 14.1 % at 14°; in 303 pts. of 13.6% at 15°; in 327 pts. of 9.6% at 14°; in 313 pts. of 9.2% at 15°; in 376 pts. of 2.7% at 14°; in 319 pts. of 2.4% at 15°; in 409 pts. of 1.8% at 14°. (Stolba, l. c.)

Sol. in 428 pts. sat., and 589 pts. dil. NH₄Cl+Aq. (Mallet.)

Much less sol. in K2SO4, KNO3, or KCl+ Aq, but more sol. in NH₄Cl+Aq than in H₂O. (Stolba.)

Sol. in 24,066 pts. K₂SO₄+Aq containing 9.92% K₂SO₄ at 17°; in 17,858 pts. containing 6% at 18°; in 19,530 pts. containing 5% at 17°; in 10,721 pts. containing 1% at 17°.

Sol. in 125,000 pts. KNO₃+Aq containing 18.4% KNO₃ at 15°; in 43,478 pts. containing 10.4% Al. 15°; in 1735 pts. containing 8.8% at 100°; in 35,814 pts. containing 4.3% at 15°; in 10,203 pts. containing 1.00% at 15°.

Sol. in 40,070 pts. KCl+Aq containing 25% KCl at 17°; in 38,352 pts. containing 18.4% at 17°; in 41,254 pts. containing 13.4% at 14°; in 24,032 pts. containing 6.7% at 12°; in 1200 pts. containing 0.65% at 17°; in 1095 pts. containing 0.45% at 18°.

Sol. in 358 pts. NH₄Cl+Aq containing 26.3 %NH4Cl at 17°; in 306 pts. containing 15% at 15°; in 339 pts. containing 10% at 15°; in 436 pts. containing 5% at 15°. (Stolba, J. pr. **103.** 306.)

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Insol. in liquid NH₃. (Gore, Am. ch. J. 1898, **20**. 829.)

Completely pptd. from aqueous solution by an equal vol. of alcohol.

Sl. sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.) Insol. in methyl acetate. (Naumann, B.

1909, **42.** 3790.)

### Rubidium fluosilicate, Rb₂SiF₆.

Sol. in 625 pts. H₂O at 20°, and 73.05-74.5 pts. at 100°. More sol. in acidified water. Insol. in alcohol. (Stolba, J. pr. 101. 1.) Insol. in H₂O. (Eggeling, Z. anorg. 1905, 46. 175.)

Less sol. in H₂O than K₂SiF₆. (Gossner, Zeit. Kryst. 1904, 38. 149.)

# Silver fluosilicate, Ag₂SiF₆+4H₂O.

Deliquescent. Easily sol. in H₂O. (Marignac, Ann. Min. (5) 15. 221.)

### Sodium fluosilicate, Na SiFa.

Much more sol. in H₂O than K₂SiF₆, es-

pecially in hot H₂O. Addition of acid does not increase solubility. (Berzelius.)
Sol. in 153.3 pts. H₂O at 17.5°, and 40.66 pts. at 100°. Easily forms supersaturated solutions. (Stolba, Z. anal. 11. 199.)

Much less sol. in NaCl+Aq than in H₂O. (Stolba, J. pr. 1865 (1) 96. 26.)

Precipitated completely from aqueous solu-

tion by alcohol. (Rose.) Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

# Strontium fluosilicate, SrSiF₆+2H₂O.

Sol. in cold  $H_2O$ , but decomp. somewhat on heating. Sol. in 31.06 pts.  $H_2O$ . (Fresenius.) Easily sol. in acidified  $H_2O$  without decomp. Sol. in alcohol.

Solubility in a mixture of H₂O, alcohol (96%), HCl+Aq (20%), H₂SiF₆+Aq (3.7%). 1 pt. SrSiF₆ is sol. in pts. of solutions of given composition.

H ₂ O	Alcohol	HCl+Aq	H₂SiF ₆ +Aq	SrSiF ₆
50. 74.1	50	0	0	15.29
74.1	25	0	0	82.93
70.8	25	4.2	0	50.9
77.95	20	0.9	1.15	55.0
73	25	0.9	1.1	82.97
75	25	0	0	147.4
95.24	25	2.04	2.72	7.3

(Fresenius, Z. anal. 29. 143.)

Thallous fluosilicate, Tl₂SiF₆+2H₂O. Very easily sol. in H₂O. (Kuhlmann.)

Thorium fluosilicate, Th(OH)₂SiF₆ (?). (Cleve.)

Tin (stannic) fluosilicate, SnF₄, SiF₄. Very easily sol. in H₂O. (Berzelius.)

# Uranyl fluosilicate.

Very sl. sol. in acids. (Berzelius.) Sol. in alcohol. (Stolba, Z. anal. 3. 71.)

### Vanadium fluosilicate.

Deliquescent. Sol. in H₂O. (Guyard, Bull. Soc. (2) **25.** 352.)

# Yttrium fluosilicate.

Insol. in pure, sol. in acidified H₂O. (Berzelius.)

Zinc fluosilicate, ZnSiF₆+6H₂O.

Very easily sol. in H₂O. (Berzelius.)

### Zirconium fluosilicate.

Sol. in H₂O. Solution clouds up on boiling. (Berzelius.)

### Fluostannic acid.

Ammonium fluostannate, (NH₄)₂SnF₆.

Sol. in H₂O. (Marignac, Ann. Min. (5) 15. 224.)

4NH₄F, SnF₄. Sol. in H₂O. (Marignac.)

## Barium fluostannate, BaSnF₆.

Slowly sol. in H₂O.

Sol. in 18 pts. H₂O at 18°.  $+3H_2O$ . (Marignac, Ann. Min. (5) 15. 246.) Decomp. by warming with H₂SO₄ with evolution of HF. (Emich, M. 1904, 25. 1912.)

Calcium fluostannate, CaSnF₆+2H₂O.

Sol. in H₂O. (Marignac, Ann. Min. (5) 15. 250.)

Cadmium fluostannate, CdSnF₆+6H₂O. Sol. in H₂O. (Marignac.)

Cobaltous fluostannate, CoSnF₆+6H₂O. (Gossner, Zeit. Kryst. 1907, 42. 482.)

Cupric fluostannate, CuSnF₆+4H₂O. Not deliquescent. (Marignac, Ann. Min. (5) **15.** 291.)

Lithium fluostannate, Li₂SnF₆+2H₂O. Sol, in H₂O. (Marignac, Ann. Min. (5) 15. 242.)

Magnesium fluostannate, MgSnF₆+6H₂O.

Not deliquescent. Sol. in H₂O. (Marignac, Ann. Min. (5) 15. 256.)

Manganous fluostannate, MnSnF₆+6H₂O. Slowly efflorescent. (Marignac.)

Nickel fluostannate, NiSnF₆+6H₂O. Sol. in H₂O. (Marignac, Ann. Min. (5) 15. 262.)

Potassium fluostannate, K₂SnF₆+H₂O.

Two modifications—(a) Thin plates. in 2.3 pts. H₂O at 100°, and in 15-16 pts. at Casium fluotantalate, CsTaF₆. (Marignac.)

(b) Octahedra. Sol. in 3 pts. H₂O at 100°, and 27 pts. at 18°. (Marignac.)

Sol. in hot H₂O. Can be cryst. from hot H₂O. With conc. H₂SO₄, HF is evolved. (Emich, M. 1904, 25. 911.)

Potassium hydrogen fluostannate, 3KF, HF. SnF4.

Sol. in H₂O. (Marignac.)

Silver fluostannate,  $Ag_2SnF_6 + 4H_2O$ .

Easily sol. in H₂O, Sl. deliquescent. (Marignac.)

Sodium fluostannate, Na₄SnF₆.

Sol. in 18-19 pts. H₂O at 20°. (Marignae.)

Strontium fluostannate, SrSnF₆+2H₂O.

Sol, in 5.5 pts. H₂O at 18°. (Marignac.)

Zinc fluostannate, ZnSnF₆+6H₂O. Sol. in H₂O. (Marignac.)

Fluosulphonic acid, HSO₃F. See Sulphuryl hydroxyl fluoride.

Ammonium fluosulphonate, FSO₃NH₄.

Easily sol. in H₂O from which it can be cryst.

Sol. in ethyl alcohol, more sol. in methyl alcohol. Can be cryst. from abs. alcohol. (Traube, B. 1913, **46.** 2528.)

Sodium fluosulphonate, FSO₃Na.

Hydroscopic.

Sol. in alcohol and acetone. (Traube.)

Fluosulphuric acid.

Tricesium difluodisulphate,  $S_2O_7F_2C_{83}H +$ 

As the K salt. (Weinland, Z. anorg. 1899, **21.** 53.)

Tripotassium diffuodisulphate.  $S_2O_7F_2K_8H+H_2O_1$ 

Sol. in HF; quite stable in_air; sol. in H₂O with decomp. (Weinland, Z. anorg. 1899, **21.** 51.)

Trirubidium difluodisulphate,  $S_2O_7R_2Tb_8H$ 

Sol. in HF. (Weinland, Z. anorg. 1899, 21. 53.)

Fluotantalic acid.

Ammonium fluotantalate, (NH₄)₂TaF₇. Very sol. in H₂O. (Marignac, A. ch. (4) 9. 272.)

(NH₄)₈TaF₈. (Balke, J. Am. Chem. Soc. 1905, 27. 1151.)

Can be recryst. from HF+Aq. (Balke.) Cs2TaF7. Can not be recryst. from H2O as it tends to go into CsF, TaF₅. (Balke, J. Am. Chem. Soc. 1905, 27, 1151.) 15CsF, TaF₅. Sl. sol. in H₂O. (Penning-

ton, J. Am. Chem. Soc. 1896, 18, 59.)

Calcium fluotantalate.

Difficulty sol. in H.O. (Berzelius.)

Cupric fluotantalate,  $CuTaF_7 + 4H_2O$ .

Deliquescent. Easily sol. in H₂O. (Marignac, A. ch. (4) 9. 294.

Lead fluotantalate.

Difficulty sol in H₂O. (Berzelius.)

Lithium fluotantalate, LiF, TaF_b+2H₂O.

Can be recryst, from conc. HF. (Balke, J. Am. Chem. Soc. 1905, 27. 1143.)

Potassium fluotantalate, K-TaF₇.

Sl. sol. in cold, much more easily in hot Decomposes, with formation of a H₂O. white precipitate on boiling. (Berzelius.)

Much more sol. in HF+Aq. 1 pt. of the salt is sol. in 200 pts. H₂O containing a trace of HF, and in 150-160 pts. of H₂O containing a little more HF. (Marignac, A. ch. (4) 9.

Potassium hydrogen fluotantalate, KF, HF, TaF₅ (?).

Sol. in H₂O. (Berzelius.)

Rubidium fluotantalate, Rb₂TaF₇.

Sol. in HF+Aq. (Pennington, J. Am. Ch. Soc. 1896, 18. 58.)

3RbF, 2TaFs. (Balke, J. Am. Chem. Soc. 1905, 27. 1151.)

Sodium fluotantalate, 3NaF, TaF₅.

Easily sol. in H₂O.  $Na_2TaF_7+H_2O$ . Sol. in  $H_2O$ . (Mariguage.)

Thallous fluotantalate, Tl₂TaF₇.

Sol. in H₂O. On boiling the aqueous solution tantalic acid separates.

Decomp. by conc. H₂SO₄. Difficultly sol. in cold, easily sol. in hot HF. (Ephraim. B. 190**9, 42.** 4461.)

Zinc fluotantalate,  $ZnTaF_7 + 7H_2O$ .

Very deliquescent. Sol. in H₂O. (Marignac, A. ch. (4) 9. 249.)

Fluotelluric acid.

Ammonium fluotellurate, NH₄TeF₅+H₂O.

Decomp. by H₂O. (Högbom, Bull. Soc. (2) 35. 60.)

1



**Barium** fluotellurate,  $Ba(TeF_b)_2 + H_2O$ . As above.

Potassium fluotellurate, KTeF.

As above.

TeO₃F₂K₂+3H₂O. Stable in dry air; only sl. sol. in H₂O with decomp.; sol. in HF. (Weinland, Z. anorg. 1899, 21. 61.)

Rubidium difluotellurate, TeO₃F₂Rb₂+3H₂O. Sl. sol. in H₂O with decomp. Sol. in HF. (Weinland, Z. anorg. 1899, **21.** 62.)

### Fluotitanic acid.

Known only in solution as titanium hydrogen fluoride.

Ammonium fluotitanate, (NH₄)₂TiF₆.

Sol. in H2O. (Marignae.) 3NH₄F, TiF₄. Sol. in H₂O. (Marignac.)

Ammonium fluosequititanate, 6NH₄F, Ti₂F₆. Easily sol. in H₂O. Sl. sol. in NH₄F+Aq. (Petersen, J. pr. (2) 40. 54.)

Insol. in NH₄F+Aq. (Piccini, C. R. 97. 1064.)

4NH₄F, Ti₂F₆. Properties as the corresponding K salt. (Piccini, B. 18. 257 R.)

### Barium fluotitanate, BaTiF₆.

Very sl. sol. in H₂O. More easily sol. in dil. HNO₃ or HCl. (Engelskirchen, Dissert.

 $+\frac{1}{2}H_2O$ . (Emich, M. 1904, **25.** 907.)

#### Cadmium fluotitanate, $CdTiF_6+6H_2O$ .

Extremely sol. in H₂O. Easily sol. in 50% alcohol. (Engelskirchen, Dissert. 1903.)

### Cæsium fluotitanate, Cs. TiFc.

More sol. in hot than cold H₂O and much more sol. than the Rb comp. (Engelskirchen, Dissert. 1903.)

More sol. in H₂O than 4CsF, TiF₄.  $Cs_{15}Ta\dot{F}_{20}$  and is not decomp. by pure  $H_2O$ . (Pennington, J. Am. Chem. Soc. 1896, 18. 60.}.

### Calcium fluotitanate, CaTiF₆+3H₂O.

Decomp. by pure H₂O. Sol. without decomp. in acidified H₂O. (Berzelius.)

Separates a precipitate with cold H₂O, which dissolves on heating. (Marignac, Ann. Min. (5) **15.** 250.)

### Cupric fluotitanate, CuTiF₆+4H₂O.

Sol. in pure H₂O with partial decomp.; easily and completely sol. in acidified H₂O. (Berzelius.)

# Cupric fluotitanate ammonium fluoride, CuTiF₆, NH₄F+4H₂O.

Efflorescent. Easily sol. in H₂C. (Marignac, Ann. Min. (5) 15. 267.)

Cupric fluotitanate potassium fluoride, CuTiF₆, KF+4H₂O.

As the above salt. (Marignac.)

Ferrous fluotitanate, FeTiF₆ +6H₂O.

Sol. in H₂O. (Weber, Pogg. 120, 287.)

### Ferric fluotitanate.

Decomp. by H₂O. (Berzelius.)

# Lead fluotitanate.

Easily sol. in H₂O. (Berzelius.)

Lithium fluotitanate, Li₂TiF₆+2H₂O.

Very sol, in H₂O. (Engelskirchen, Dissert, 1903.)

Magnesium fluotitanate, MgTiF₆+6H₂O.

Easily sol. in cold H2(). (Marignac, Ann. Min. (5) **15.** 257.)

Nickel fluotitanate, NiTiF₆+6H₂O.

Easily sol. in H₂O. (Weber, Pogg. 120. 282.)

# Potassium fluotitanate, K₂TiF₆.

Difficultly sol. in cold, much more easily in hot H₂O.

 $0^{\circ}$  pts.  $H_2O$  dissolve at:  $0^{\circ}$  3° 6°  $10^{\circ}$  14°

10° 14° 0.556 0.667 0.775 0.909 1.042 1.28 pts. K₂TiF₆. (Marignae, A. ch. (4) 8. 65.)

Sol. in 78.6 pts. H₂O at 21°. Sol. in acids. (Piccini, Gazz. ch. it. 1886, 16. 104.)

Sol. in 78 pts. H₂O at 20°; 9.4 pts. at 100°. By addition of small amount of HF, the solubility is increased. (Weiss and Kaiser, Z. anorg. 1910, 65. 354.)

Sol. in HF. (Marchetti, Z. anorg. 1895, **10**. 66.)

+H₂O. Much less sol. in H₂O in presence of KBr or KI. (Hall, J. Am. Chem. Soc. 1904, 26. 1246.)

Sol. in H₂O or HF with decomp. (Marchetti, Z. anorg. 1895, **10**. 66.)

## Potassium fluosesquititanate, 4KF, Ti₂F₆.

Scarcely sol. in H2O; sol. in dil. acids. (Piccini, B. 18. 257 R.)

### Rubidium fluotitanate, Rb₂TiF₆.

Very sl. sol. in cold, somewhat more sol. in hot H₂O. (Engelskirchen, Dissert. 1903.)

### Silver fluotitanate.

Very deliquescent. (Marignac.)

### Sodium fluotitanate, Na₂TiF₆.

Much more sol. in H2O than the corresponding potassium salt. (Marignac, Ann. Min. (5) 15. 238.)

Sodium hydrogen fluotitanate, Na₂TiF₆, NaHF₂.

Sol. in H₂O. (Marignac.)

Strontium fluctianate, SrTiF₆ +2H₂O.
Sol. in cold H.O. Solution clouds up on heating. (Marignac.)

Zinc fluotitanate, ZnTiF₆+6H₂O.
Sol. in H₂O. (Marignac, A. ch. (3) 60. 304.)

### Fluovanadic acid.

Ammonium fluovanadate, 3NH₄F, VF₃.

Moderately sol. in H₂O. More easily sol. in dil. acids. Nearly insol. in alcohol or MF +Aq. (Petersen, J. pr. (2) 40. 52.)

2NH₄F, VF₃+H₂O. Easily sol. in H₂O. Sl. sol. in alcohol. (Petersen.)

NH₄F, VF₃+2H₂O. As above. (Peterson)

Cadmium fluovanadate, CdF₂, VF₃+7H₂O. Very sl. sol. in H₂O. (Piccini and Giorgis, Gazz. ch. it. **22**, **1**. 89.)

Cobalt fluovanadate, CoF₂, VF₃+2H₂O.
Sol. in H₂O without decomp. (Petersen, l. c.)

Nickel fluovanadate, NiF₂, VF₃+2H₂O. As the Co salt. (Petersen.)

Potassium fluovanadate, 2KF, VF₃+H₂O. Sl. sol. in H₂O; easily sol. in acids. Insol. in KF+Aq. (Petersen, J. pr. (2) **40.** 51.)

Potassium fluovanadate fluoxyvanadate,  $4\mathrm{KF}$ ,  $\mathrm{VF}_3$ ,  $\mathrm{VOF}_3$ .

Easily sol. in  $H_2O$ , and still more easily in HF+Aq. Sl. sol. in KF+Aq. (Petersen, J. pr. (2) **40**. 274.)

Sodium fluovanadate, 5NaF, 2VF₃+H₂O. As the potassium salt. (Petersen.)

Thallous fluovanadate, TlF, VF₃+2H₂O.
Easily sol. in H₂O.
Sol. with decomp. in conc. H₂SO₄, dil.
HNO₃ or cold dil. HCl.
Insol in NOOH | Ac. (Enhance B. 1000)

Insol. in NaOH+Aq. (Ephraim, B. 1909, 42. 4460.)

2TIF, VF₃+H₂O. Easily sol. in H₂O. Sol. in conc. H₂SO₄, dil. HNO₃, or cold dil. HCl with decomp. Insol. in cold or hot NaOH+Aq. (Ephraim, B. 1909, **42**, 4461.)

Zinc fluovanadate, ZnF₂, VF₂+7H₂O.
Sl. sol. in cold H₂O. Decomp. on heating. (Piccini and Giorgis.)

Na₂TiF₆, Fluoxycolumbic acid.

Ammonium fluoxycolumbate, 3NH₄F, CbOF₄.

Cubic sali. Sol. in H₂O. (Marignac, A. ch. (4) 8. 38.)

2NH₄F, CbOF₃. Lamellar sali. Much more sol. in H₂O than 2KF, CbOF₃. (M.)

5NH₄F, 3CbOF₃+H₄O. Hexagonal sali.

(M.)

NH₄F, CbOF₃. Reciangular sali. (M.)

Ammonium fluoxycolumbate columbium fluoride, 3NH4F, CLOF2, CbF2.

(Marignac.)

Cupric fluoxycolumbate, CuF₂, CbOF₃+
4H₂O.

Sl. deliquescent. Sol. in H₂O. (Marignac, A. ch. (4) 8. 42.)

Potassium fluoxycolumbate, 2KF, CbOF₈+ H₂O.

Sol. in 12.5-13 pts. H₂O at 17-21°. Much more sol. in hot H₂O, or H₂O containing HF. (Marignac.)

3KF, CbOF₃. Decomp. by H₂O into above salt. (M.)

5KF,  $3CbOF_5 + H_2O$ . Sol. in  $H_2O$ . (M.) 4FF,  $3CbOF_5 + H_2O$ . Sol. in  $H_2O$ . (M.) 3KF,  $2Cb_2O_5 + 5H_2O$ . Sl. sol. in  $H_2O$ . (Petersen, J. pr. (2) **40**. 287.)

 $\text{KF}, \text{Cb}_2\text{O}_5 + 3\text{H}_2\text{O}. \text{Sl. sol. in H}_2\text{O}. \text{ (Peterson.)}$ 

tersen.)
2KF, 3CbO₂F. Insol. in H₂O. Sol. in HF.
(Krüss and Nilson, B. **20**. 1689.)
See also Fluoxypercolumbate, potassium.

Potassium hydrogen fluoxycolumbate, 3KF, HF, CbOF₃.

Sol. in H₂O. (Marignac.)

Sodium fluoxycolumbate, 2NaF, CbOF₂+
2H₂O.

Sol. in H₂O. NaF, CbOF₈+H₂O. (Marignac.)

Zinc fluoxycolumbate, ZnF₂, CbOF₂+6H₂O. Sol. in H₂O. (Marignac, A. ch. (4) 8. 41.)

Fluoxyhypomolybdic acid.

Ammonium fluoxyhypomolybdate, MoOF₈, 2NH₄F.

Decomp. by H₂O. (Mauro, Gazz. ch. it. 19. 179.)
3MoOF₁, 5NH₄F+H₂O. Decomp. by H₂O. (Mauro.)

Cupric fluoxyhypomolybdate,  $CuF_2$ ,  $MoOF_2+4H_2O$ .

Deliquescent. Sol. in H₂O. (Mauro, Real. Ac. Linc. 1892, 1. 194.)

MoOF₂, Potassium fluoxyhypomolybdate. 2KF+H₂O.

Sol. in H₂O with decomp.

Sol. in HF or HCl+Aq. bianco, Sazz. ch. it. 12.80.) (Mauro and Pana

3MoOF₃, 5KF+H₂O. Sol. in H₂O with decomp. (Mauro, Gazz. ch. it. 19. 179.)

Thallous fluoxyhypomolybdate, 2TlF, MoOF₂.

(Mauro, B. 1894, 27R. 109.)

Zinc fluoxyhypomolybdate, ZnF₂, MoOF₂+ 6H_{*}O.

Rapidly deliquescent. Sol. in H₂O. (Mauro, Real. Ac. Linc. 1892. 1. 194.)

Fluoxyhypovanadic acid. See Fluoxyvanadic acid.

# Fluoxymanganic acid.

Ammonium fluoxymanganate, (NH₄)₂MnOF₄. Precipitate. (Nicklès.)

Potassium fluoxymanganate, K₂MnOF₄. Precipitate. (Nicklès, C. R. 65. 107.)

Sesquifluoxymanganic acid.

Potassium sesquifluoxymanganate,  $K_4Mn_2OF_8 = 4KF, Mn_2OF_4$ . Precipitate. (Nicklès.)

### Fluoxymolybdic acid.

Gazz. ch. it. 18. 120.)

See also Fluoxyhypomolybdic, and fluoxypermolybdic acids.

Ammonium fluoxymolybdate, NH₄F, MoO₂F₂.

Sol. in H₂O. (Mauro, Gazz. ch. it. 20. 4 109.)

+H₂O. More sol. in H₂O than 2NH₄F, MoO₂F₂. (Delafontaine, N. Arch. Sci. ph. nat. 30. 250.)

Correct formula is 3NH₄F, MoO₂F₂. (Mauro, Gazz. ch. it. 18. 120.)

2NH₄F, MoO₂F₂. Much more sol. than 2KF, MoO₂F₂. (Delafontaine.) 3NH₄F, MoO₂F₂. Sol. in H₂O. (Mauro.) 5NH₄F,  $3\text{MoO}_2\text{F}_2 + \text{H}_2\text{O}$ . Sol. in H₂O. (Mauro, Gazz. ch. it. **20.** 109.)

Ammonium fluoxymolybdate molybdate,  $MoO_2F_2$ ,  $4N\dot{H}_4F$ ,  $(NH_4)_2MoO_4$ . Sol. in H2O, but with decomp. (Mauro,

Cadmium fluoxymolybdate, CdF₂, MoO₂F₂+

Sl. efflorescent. (Delafontaine, J. B. 1867. 236.)

Cobaltous fluoxymolybdate, CoF2, MoO2F2+ 6H_•O.

Sol. in H₂O. (Delafontaine, J. B. 1867. 236.)

Cupric fluoxymolybdate, "CuF2, MoO2F2+ 4H₂O.

Deliquescent. (Mauro, Real. Ac. Linc. **1892, 1.** 194.

Nickel fluoxymolybdate, NiF2, MoO2F2+ 6H₂O.

Sol. in H₂O. (Delafontaine, J. B. 1867. 236.)

Potassium fluoxymolybdate, 2KF, MoO₂F₂+ H₂O.

Easily sol. in boiling H₂O. Sol. in HF. Sol. in H₂O with decomp. (Marchetti, Z. anorg. 1895, **10.** 68.)

KF, MoO₂F₂+H₂O. Gradually efflorescent. (Delafontaine.)

Rubidium fluoxymolybdate, 2RbF, 2MoO₂F₂ +2H₂O.

Sol. in cold, more sol. in hot H₂O. (Delafontaine.)

Sodium fluoxymolybdate, NaF, MoO₂F₂+ ½H₂O.

Sol. in H₂O. (Delafontaine.)

Thallous fluoxymolybdate, 2TlF, MoO₂F₂+ H₂O.

Sol. in hot H₂O. (Delafontaine.)

Zinc fluoxymolybdate,  $ZnF_2$ ,  $MoO_2F_2+6H_2O$ . Sol. in H₂O. (Delafontaine.)

### Fluoxypercolumbic acid.

Potassium fluoxypercolumbate, 2KF, CbO₂F₂  $+H_2O.$ 

(Piccini, Z. anorg. 2, 21.)

Sol. in H2O with decomp

Sol. in HF. (Marchetti, Z. anorg. 1895, **10.** 67.)

### Fluoxypermolybdic acid.

Ammonium fluoxypermolybdate, MoO₂F₂, 3NH.F.

Sol. in H₂O. (Piccini, Z. anorg. 1. 51.)

Cæsium fluoxypermolybdate, MoO₃F₂, 2CsF  $+H_2O$ . (Piccini.)

Potassium fluoxypermolybdate, MoO₂F₂,  $2KF+H_2O$ .

Not very sol. in H₂O; more sol. in HF+ Aq without decomp. (Piccini.)

Rubidium fluoxypermolybdate,  $MoO_2F_2$ ,  $2RbF+H_2O$ .

Somewhat more sol. in H₂O than K salt. HF. (Marignac.) Easily sol. in HF+Aq. (Piccini,)

### Fluoxypertantalic acid.

Potassium fluoxypertantalate, 2KF,  $T_{PO_2}F_3 + H_2O$ .

Sol. in H₂O. (Piccini, Z. anorg. 2. 21.)

Fluoxypertitanic acid, TiO₂F₂, HF.

Known only in solution. (Precini, B. 18. 255 R.)

Ammonium fluoxypertitanate, TiO₂F₂, 2NH₄F.

Very unstable. (Piccini, Gazz. ch. it. 17. 479.)

 $TiO_2F_2$ ,  $3NH_4F$ . Sol. in  $H_2O$ . Sol. in  $H_2O_2$ . (Piccini, Z. anorg. 1895, 10

2TiO₂F₂, 3NH₄F. Sol. in H₂O. (Piccini, B. **18**, 698 R.)

Barium fluoxypertitanate, TiO₂F₂, BaF₂.

Precipitate. Easily sol. in acids. (Piccini, B. 18. 698 R.)

2TiO₂F₂, 3BaF₂. Insol. in H₂O; sol. in dil. acids. (Piccini, Gazz. ch. it. 17. 479.)

Potassium fluoxypertitanate, TiO₂F₂, 2KF. Sol. in H₂O. (Piccini, B. 21. 1391.) Sol. in H₂O₂. (Piccini, Z. anorg. 1895, 10. 438.)

# Fluoxypertungstic acid.

Potassium fluoxypertungstate, 2KF,  $WO_3F + H_2O$ .

(Piccini, Z. anorg. 2. 11.)

### Fluoxytantalic acid.

See also Fluoxypertantalic acid.

Ammonium fluoxytantalate, 3NH₄F, TaOF₂. Easily sol. in H₂O. The solution clouds up by standing or on warming. (Joly, C. R. 81. 1266.)

# Fluoxytitanic acid.

See also Fluoxypertitanic acid.

Barium fluoxytitanate, TiOF₂, BaF₂.

Insol. in H₂O; sol. in dil. acids. (Piccini, Gazz. ch. it. 17. 479.)

# Fluoxytungstic acid.

Ammonium fluoxytungstate, 2NH₄F, WO₂F₂. Very sol. in H₂O. (Marignac, A. ch. (3) **69**. 65.) NH₄F, WO₂F₂+H₂O. Decomp. by H₂O. Crystallises unchanged from H₂O containing HF. (Marignac.)

Ammonium fluoxytungstate tungstate, 4NE₄F, WO₂F₂, (NH₄)₂WO₄.

Incompletely sol. in H₂O. Residue dissolves in NH₄OH+Aq. (Marignac.)

# Cadmium fluoxytungstate.

Very sol. in H₂O. (Marignac.)

Cupric fluoxytungstate, CuF₂, WO₂F₂+4H₂O. Very sol. in H₂O. (Marignac, C. R. **55**. 888.

Cupric fluoxytungstate ammonium fluoride, CuF₂, WO₂F₂, NH₄F+4H₂O. Sol. in H₂O. (Marignac.)

### Manganese fluoxytungstate.

Very sol. in H₂O. (Marignac.)

Nickel fluoxytungstate, NiF₂, WO₂F₂+ 10H₂O.

Deliquescent. Very sol. in  $H_2O$ . (Marignac.)

Potassium fluoxytungstate, KF, WO₂F₂+ H₂O₂

Can be recrystallised without decomp. only from  $H_2O$  containing HF. (Marignac, A. ch. (3) 69. 70.)

2KF, WO₂F₂+H₂O. Difficultly sol. in cold, more easily in hot H₂O. (Berzelius.) Sol. in 17 pts. H₂O at 15°. (Marignac.) Can be recrystallised without decomp. from H₂O, or H₂O containing HF. (Marig-

nac.)
Sol. in H₂O with decomp. Sol. in HF.
(Marchetti, Z. anorg. 1895, 10. 71.)
See also Fluoxypertungstate, potassium.

Silver fluoxytungstate.

compound. (Berzelius.)

Very easily sol. in H₂O. (Marignac.)

Sodium fluoxytungstate, 2NaF, WO₂F₂.

More sol. in H₂O than the corresponding K

Thallous fluoxytungstate, TlF, WO₂F₂.

Insol. in H₂O. Decomp. by H₃O. (Ephraim and Heymann, B. 1909, **42**. 4463.) 2TIF, WO₂F₂. Insol. in H₂O but decomp. thereby. (Ephraim and Heymann, B. 1909, **42**. 4462.)

3TlF, 2WO₂F₂. Insol. in H₂O. Decomp. by acids. (Ephraim and Heymann, B. 1909, 42, 4462.)

Zinc fluoxytungstate, ZnF₂, WO₂F₂+10H₂O. Very sol. in H₂O. (Marignac.) Fluoxvuranic acid.

Ammonium fluoxyuranate, 3NH₄F, UO₂F₂. Easily sol, in H₂O, less in HF. Insol. in alcohol. (Bolton.)

100 g. solution sat. at 27° contain 10.11 g. salt.

100 g. solution sat. at 81.3° contain 20.71 g. salt.

(Bürger, Dissert. 1904.)

Barium fluoxyuranate, 3BaF₂, 2UO₂F₂+ 2H₂O.

Traces dissolve in hot H₂O. Easily sol. in dil. acids. (Bolton.)

Potassium fluoxyuranate, 3KF, UO₂F₂.

Sol. in 8 pts. H₂O at 21°. Insol. in alcohol and ether. (Bolton, J. pr. 99. 269.)

Does not exist. (Smithells, Chem. Soc. 43.

125.)

4KF, UO₂F₂. Insol. in H₂O. Easily sol. in dil. acids. (Ditte, C. R. 91. 115.) 5KF, 2UO₂F₂. (Baker, Chem. Soc. 35.

3KF,  $2UO_2F_2+2H_2O$ . (Baker.)

Sodium fluoxyuranate, NaF, UO₂F₂.

+2H₂O. Not efflorescent. +4H₂O. Insol. in H₂O and dil. acids. Sl. sol. in conc. HCl+Aq. Sol. in conc. H₂SO₄. (Bolton, J. B. 1866, 212.)

4NaF, UO₂F₂. (Ditte.)

Does not exist. (Smithells, Chem. Soc. **43.** 125.)

# Fluoxyvanadic acid.

Ammonium fluoxyvanadate, 12NH₄F, V₂O₅, 2VOF₃.

Easily sol. in H₂O, and not attacked by cold conc. H₂SO₄. (Baker, Chem. Soc. 33. 388.)

Formula is 3NH₄F, VO₂F. (Petersen, J. pr. (2) 40. 289.)

3NH₄F, VO₂F. Sol. in H₂O. (Petersen, l. c.)Much less sol. in H₂O in presence of NH₄F.

(Piccini and Giorgis, Gazz. ch. it. 27. 1. 65.) +H₂O. (Piccini and Giorgis, Gazz. ch. it. 1892, **22**. 55.)

3NH4F, VOF2. "Hypovanadate." Quite sol, in H₂O. Very sl. sol, in MF+Aq. Less sol. in alcohol than in H₂O. (Petersen, J. pr. (2) **40.** 195.)

2NH₄F, VOF₂. Sol. in H₂O. (Petersen.) +H₂O. (Piccini and Giorgis.) 7NH₄F, 4VOF₂+5H₂O. Very sol. in H₂O.

(Petersen.)

3NH4F, 2VO2F. Sol. in H2O without decomp. Sol. in conc. HF+Aq. (Piccini and Giorgis, Gazz. ch. it. 24. 1. 68.)

3NH₄F, 2VOF₈+H₂O. Sol. in H₂O with decomp.

V₂O₅, 2NH₄F. (Ditte, C. R. 106, 270.)

 $V_2O_5$ ,  $8NH_4F+4H_2O$ . As above.  $V_2O_5$ ,  $4NH_4F+4H_2O$ . As above. Sol. in H₂O.

fludioxvvanadate. Ammonium hydrogen 7NH4F, HF, 4VO2F.

Very sol. in H₂O. (Petersen, J. pr. (2) 40. 284.)

Ammonium hydrogen trifluoxyvanadate, 3HF, 9NH4F, 5VOF₃.

Easily sol. in H₂O. Sl. sol. in MF+Aq.

(Petersen, J. pr. (2) 40. 280.) 3NH₄F, 3HF, 2VOF₃. (Baker, Chem. Soc. 33. 388.) Sol. in H₂O.

Identical with 3HF, 9NH₄F, 5VOF₃. (Petersen.)

Barium fluoxyvanadate, BaF₂, VO₂F.

Ppt. (Ephraim, Z. anorg. 1903, 35. 79.)

Cadmium fluoxyvanadate, CdF₂, VOF₂+ 7H₂O.

"Hypovanadate." As the Co salt. (Piccini and Giorgis.)

Cobalt fluoxyvanadate,  $CoF_2$ ,  $VOF_2 + 7H_2O$ .

"Hypovanadate." Sol. in H₂O. (Piccini and Giorgis.)

Nickel fluoxyvanadate, NiF₂, VOF₂+7H₂O.

"Hypovanadate." As the Co salt. (Piccini and Giorgis.)

Potassium fluoxyvanadate, 7KF, 3VOF₂.

Very sl. sol. in H₂O and MF+Aq. Easily sol. in dil. acids. (Petersen, J. pr. (2) 40. 199.)

2KF, VOF₂. As above. (Petersen.) 2KF, 2V₂O₅+8H₂O. Sol. in H₂O and H₂SO₄. (Ditte, C. R. **105**. 1067.) 2KF, 3V₂O₅+5H₂O. As above.

2KF,  $4V_2O_5+8H_2O$ . As above. 4KF,  $V_2O_5$ . Less sol. than 4KF,  $3V_2O_5$ .  $+2H_2O$ , and  $+3H_2O$ . Sol, in  $H_2O$ .

4KF, 3V₂O₅+4H₂O, and +6H₂O. sol. than 2KF, 3V₂O₅+5H₂O. Less

8KF,  $V_2O_5+2H_2O_1$ , and  $+3H_2O_2$ . Sol. in H₂O.

Potassium trifluoxyvanadate, 2KF, VOFs.

Ppt. (Petersen, J. pr. (2) **40**. 272.) 6KF, V₂O₅, 2VOF₈+2H₂O. Sol. in H₂O. Insol. in cold conc. H₂SO₄. (Baker, Chem. Soc. 33. 300.)

Formula is 3KF, 2VO₂F. (Piccini and Giorgis.)

See also Fluovanadate fluoxyvanadate, potassium.

Potassium fludioxyvanadate, 2KF, VO₂F. Easily sol. in H₂O. (Petersen, J. pr. (2) 40. 278.)

3KF, VO₂F. As above. (Petersen.) 3KF, 2VO₂F. Sol. in H₂O; scarcely attacked by H2SO4. (Piccini and Giorgis.)

Potassium hydrogen fluoxyvanadate, 3KF, HF,2VOF₃.

Sol. in H₂O. (Petersen.)

Sodium fluoxyvanadate, 8NaF, 3VOF₂+ 2H₂O.

Sol. in H₂O. (Petersen, J. pr. (2) **40.** 200.) 3NaF, VO₂F, VOF₃ (?). Very easily occomp. (Piccini and Giorgis.) Very easily ae-2NaF, 2V₂O₄+10H₂O. (Ditte, C. R. **106**. 270.) Sol. in H₂O.

4NaF, V₂O₅. As above.

4NaF, 3V₂O₅+18H₂O. As above.

6NaF, V₂O₅+5H₂O. As above. 8NaF, V₂O₅+3H₂O. (As above.

# Thallous fluoxyvanadate, 2TlF, VOF₂.

Somewhat sol. in cold H₂O without decomp. Sol. in boiling H₂O with exception of a black residue, which is easily sol. in dil. H₂SO₄. (Ephraim, B. 1909, **42**. 4460.)

3TlF, 2VO₂F. Insol. in H₂O. Sol. in H₂O containing H2SO4. (Ephraim and Heymann, B. 1909, 42. 4459.)

Zinc fluoxyvanadate, ZnF₂, ZnO, 2VOF₃+ 14H₂O.

Decomp. on air; sol. in H₂O. (Baker, Chem. Soc. 33, 388.)

True composition is represented by the formula ZnF₂, VO₂F+7H₂O. (Petersen.) ZnF₂, VO₂F+7H₂O. Very sol. in Very sol. in H₂O.

(Piccini and Giorgis.) ZnF₂, VOF₂+7H₂O. "Hypovanadate." Sol. in cold H₂O, but decomp. by boiling; sol. in dil. HF+Aq. (Piccini and Giorgis.)

#### Fluozirconic acid.

Ammonium fluozirconate, (NH₄)₂ZrF₆.

Sol. in H₂O.

3NH₄F, ZrF₄. Sol. in H₂O. (Marignac.)

Cadmium fluozirconate, 2CdF₂, ZrF₄+6H₂O. Sol. in H₂O; can be recrystalised therefrom. (Marignac, A. ch. (3) 60. 257.)  $CdZrF_6+6H_2O$ . Sol. in  $H_2O$ . (Marignac.)

Cæsium fluozirconate, CsF, ZrF₄+H₂O.

Sol. in H₂O without decomp. Z. anorg. 1895, 10. 434.) 2CsF, ZrF4. Sol. in H2O without decomp. (Wells, Z. anorg. 1895, 10, 434.) 2Csf,  $3\text{ZrF}_4+2\text{H}_2\text{O}$ . Only sl. sol. in  $\text{H}_2\text{O}$ . (Wells, Z. anorg. 1895, 10. 434.)

Cupric fluozirconate, 2CuF₂, ZrF₄+12H₂O. Easily sol. in cold H₂O. (Marignac, A. ch. (3) 60. 296.)

3CuF₂, 2ZrF₄+16H₂O. Sol. in H₂O. (Marignac.)

Lithium fluozirconate, 2LiF, ZrF4.

(Wells, Am. J. Sci. 1897, (4) 3. **468**.)

4LiF, ZrF4+1/2H2O. Sol. in H2O with decomo. (Wells, Am. J. Sci. 1897, (4) 3. **4**69.)

Magnesium fluozirconate, MgZrF₆+5H₂O. Sol. in H₂O. (Marignac.)

Manganous fluozircor ate, MnZrF₆+5H₂O. Sol. in H.O. (Marignac, J. pr. 83. 202.)

Nickel fluozirconate, 2NiF₂, ZrF₄+12H₂O. Sol. in H₂O. (Marignac, A. ch. (3) 60. 291.)

NiZrF₆ +6H₂O. Sol. in H₂O. (Marignac.)

Nickel potassium fluozirconate, K2ZrF6,  $NiZ_rF_6+8H_2O.$ 

Sol. in H₂O. (Marignac.)

Potassium fluozirconate, Kl., ZrF₄+H₂O.

Much more sol. in hot, than cold H₂O. (Marignac.)

 $2K^{H}$ ,  $ZrF_4 = K_2ZrF_6$ . 100 pts.  $H_2O$  dissolve at 2°, 0.781 pt.; at 15°, 1.41 pts.; at 19.° 1.69 pts.; at 100°, 25.0 pts. K₂ZrF₆. (Marignac.)

Insol. in liquid NH₂. (Gore, Am. Ch. J. 1898, **20.** 829.) 3KF, ZrF4.

Sodium fluozirconate, 5NaF, ZrF₄.

100 pts. H₂O dissolve 0.387 pt. at 18°, and 1.67 pts. at 100°. (Marignac.) 2NaF, ZrF4. (Wells, Am. J. Sci. 1897, (4)

3, 469.) 5NaF, 2ZrF₄. Sol. in H₂O with decomp. (Wells.)

Tellurium fluozirconate, TeF, ZrF₄.

Sol. in H₂O without decomp. (Wells. Am. J. Sci. 1897, (4) 3. 470.) +H₂O. Sol. in H₂O without decomp. (Wells.)

3TeF, ZrF₄. Sol. in H₂O without decomp. (Wells.)

5TeF, 3ZrF4. Sol. in H2O without decomp. (Wells.)

Zinc fluozirconate,  $ZnZrF_6+6H_2O$ .

Sol. in H₂O. (Marignac.) 2ZnF₂, ZrF₄+12H₂O. Sol. in H₂O. (Marignac, A. ch. (3) 60. 257.)

Fulminating gold.

See Auroamidoimide.

Fulminating platinum. See Fulminoplatinum.

# Fulminating silver. See Silver nitride.

# Fulminoplatinum compounds.

Dichlorofulminoplatinum. Trichlorofulminoplatinum. Tetrachlorofulminoplatinum. Chloroxyfulminoplatinum.

### Fuscocobaltic chloride, Co(NH₃)₄(OH)Cl₂ $+H_{9}O.$

Sol. in H₂O, from which it is precipitated by NH₄Cl+Aq; decomp. by boiling H₂O; pptd. from aqueous solution by alcohol. (Fremy, C. R. 32. 501.)

--- nitrate,  $Co(NH_3)_4(OH)(NO_3)_2+H_2O$ . Sol. in H₂O. Properties as the chloride. (Fremy.)

--- sulphate,  $Co(NH_8)_4(OH)SO_4+1\frac{1}{2}H_2O$ . Sol. in H₂O. Ins (Fremy, C. R. 32. 501.) Insol. in NH₄OH+Aq. Insol, in H₂O. Sol, in conc. HCl+Aq, or

H₂SO₄, from which it is precipitated by H₂O₄ (Vortmann, N. 6. 412.)

# Fusible white precipitate.

See Mercuridiammonium chloride.

# Gadolinium, Gd. (Marignac, C. R. 102. 92.)

**22.** 403.)

Gadolinium bromide, GdBr₃+6H₂O. Sol. in HBr. (Benedicks, Z. anorg. 1900,

# Gadolinium chloride, $GdCl_3+6H_2O$ .

Somewhat deliquescent. Sol. in H₂O. (Benedicks.)

Gadolinium platinum chloride. See Chloroplatinate, gadolinium.

### Gadolinium fluoride, GdF₃.

Insol. in H2O; sl. sol. in hot HF. (Popovici, B. 1908, 41, 635.)

### Gadolinium hydroxide, Gd(OH).

Ppt. (Benedicks, Z. anorg. 1900, 22. 402.)

# Gadolinium oxide, Gd₂O₃.

Sol. in acids. (de Boisbaudran, C. R. 111.

Somewhat hydroscopic; easily sol. in acids. (Benedicks.)

#### Gallium, Ga.

Not decomp, by H₂O; easily sol. in cold HCl +Aq. Slowly sol. in warm dil. HNOs+ Aq. Not attacked by conc. HNO₈ free from crystal H₂O when warmed.

 $N_2O_3$  below 40–50°, and only slowly in presence of  $N_2O_3$ . (Dupré, C. R. 86. 720.) Easily sol. in cold or warm KOH+Aq. (de Boisbaudran, A. ch. (5) 10. 100.)

### Gallium bromide, GaBr₃.

Deliquescent, and sol. in H₂O.

# Gallium dichloride, GaCl₂.

Deliquescent, and decomp. by H₂O. (Nilson and Petersen, C. R. 107. 527.)

### Gallium chloride, GaCl₈.

Deliquescent, and very sol. in little H₂O. Decomp. by much H₂O, with formation of basic salt, which is slowly sol. in dil. HCl

### Gallium hydroxide.

Sol. in acids; sol. in KOH or NaOH+Aq, less easily in NH₄OH+Aq, even in presence of ammonium salts.

### Gallium iodide, GaI₈.

Deliquescent, and sol. in H₂O. (de Boisbaudran and Jungfleisch, C. R. 86. 578.)

Gallium suboxide, GaO (?).

Sol. in HNO₃+Aq. (Dupré.) Sol. in dil. H₂SO₄+Aq. ^{*}

Gallium oxide, Ga₂O₃. Sol. in acids.

Germanium, Ge. Insol. in HCl+Aq. Easily sol. in aqua gia. Decomp. by HNO₃+Aq to oxide. regia. Conc. H₂SO₄ decomp. to sulphate. Insol. in boiling KOH+Aq. (Winkler, J. pr. (2) 34. 177; 36. 177.)

Germanium tetrabromide, GeBr₄. Decomp. by H₈O. (Winkler.)

Germanium dichloride, GeCl₂. Decompl by H₂O. (Winkler.)

# Germanium tetrachloride, GeCl4.

Sinks in H₂O, and is gradually decomp. thereby. (Winkler, J. pr. 34. 177.) Insol. in and not attacked by hot conc. H₂SO₄. (Friedrich, W. A. B. 102, 2b. 540.)

# Germanium chloroform, GeHCls.

Decomp. by H₂O. Sol. in HCl+Aq. (Winkler.)

### Germanium tetrafluoride, GeF4.

Deliquescent, and sol. in H₂O. +3H₂O. Deliquescent. Melts in its

# Germanium potassium fluoride. See Fluogermanate, potassium.

# Germanium hydride, GeH₄.

Sl. sol, in hot HCl. Sol, in NaQCl+Aq. (Voegelen, Z. anorg. 1902, 30. 327.)

### Germanium tetraiodide, GeI4.

Deliquescent, and sol. in H₂O with decomp. (Winkler.)

### Germanium monoxide, GeO.

Not appreciably sol. in dil H₂SO₄+Aq. Easily sol. in HCl+Aq. Insol. in alkalies. (Winkler, J. pr. (2) 34. 177.)

Somewhat sol. in H2O; insol. in H2SO4+Aq, even when hot and conc. (van Bemmelen, R. t. c. 6. 205.)

### Germanium dioxide, GeO₂.

Not very difficultly sol. in H₂O.

Sol. in 247.1 pts. H₂O at 20°; in 93.3 pts. at 100°. (Winkler.)

Easily sol. in alkali carbonates or hydrates +Aq; sl. sol. in acids.

### Germanium oxychloride, GeOCl₂.

Insol. in H₂O; sol. in acids. (Winkler, J. pr. (2) **36.** 177.)

### Germanium monosulphide, GeS.

Sol. in 402.9 pts. H₂O. Sol. in conc. hot HCl+Aq. Sol. in KOH+Aq. Sol. (NH₄)₂S+Aq when precipitated. Insol. in (NH₄)₂S+Aq if crystalline. Also exists in a colloidal state. (Winkler.)

## Germanium disulphide, GeS₂.

Sol. in 221.9 pts. H₂O. Easily sol. in . KOH+Aq, or NH₄OH+Aq. Insol. in acids. Exists also in a colloidal state. (Winkler.)

### Glass.

Numerous and extensive researches have been made on the action of H2O and various solutions on glass. The older work has a certain historical interest, but only a brief statement of some of the more important results can be given here. For a very thorough résumé of the work before the year 1861, Storer's Dictionary, p. 555, should be consulted.

All glass is more or less attacked by H₂O the more easily the greater the amount of alkali present, the finer it is powdered, and the higher the temperature.

Glass, as that of a flask, is decomposed to a considerable extent by several days' boiling with  $\rm H_2O$ , a portion of the fixed alkali being dissolved, but when powdered glass is rubbed with distilled  $\rm H_2O$  in a morter, the  $\rm H_2O$  remains pure and exhibits no alkalinity. (Scheele.) Glass of alembics is partially dissolved by long boiling with  $\rm H_2O$ . (Lavoiser.)

H  $_2\rm O$  extracts potash or soda from glass together with

a portion of the silica, the decomposition taking place the more easily in proportion as the glass is richer in alkalies, more minutely divided, or the temperature of

nesture, more minutely divided, or the temperature of the water higher. (Bisohof, Kastn. Arch. 1. 443.) Powdered crown glass and some varieties of window glass ronder cold H₂O alkaline when in contact there-itt. (Dumas.)

190 pts. finely divided fint glass lose 7 pts. potash when boiled one week with H₂O. (Griffiths, Q. J. Sci. 20. 258.)

Retorts of ordinary or flint glass are partially dis-solved by H₂O when it is evaporated therein. (Chevreul, 1811.)

Finely powdered plate glass (Faraday, Pogg. 18. 569), and Thuringian potash glass (Ludwig, Arch. Pharm. 91. 47) redden moistened the meir papr.

The alkaliur reaction disappears by continued wash-

ing, but rappears when the glass is freshly rubbed.

Cold H₂O takes up SiO₂ as well as alkali from glass poyder. (Fuchs.)

Powdered lead glass gives up appreciable amounts of PbO to weakly acidified H₂O. (Pelouze.)

Powdered lead glass gives up appreciable amounts of PbO to weakly acidified H₂O. (Pelouze.)
When powdered white glass, containing 12.4% Na₂O, 15.5% CaO, and 72.1% SiO₂, is treated repeatedly with II₂O, more than 3% of the glass is dissolved, and the undissolved part gives up 1.5% CaO to HCl+Aq with effervescence. A glass containing more alkali, i. e. 61.3% Na₂O, 6.4% CaO, 77.3% SiO₂, lost with the same treatment 18.2%, and the residue gave up 2% CaO to HCl+Aq. (Pelouze, C. R. 43. 117.)
In the above case the fineness of the glass has an influence as well as its composition. When the same sample of glass was boiled 1 hour with H₂O, amounts were dissolved in the proportion 1: 4: 28, according as the glass was in form of a coarse, fine, or very fine powder. Glass of the composition of the above samples, as given by Pelouze, lost 10 and 32% respectively. If powdered glass is boiled with H₂O and CO₂ conducted into the solution, it is absorbed; if boiled with K₂SO₄, Na₂SO₄ is dissolved. (Pelouze.) Glass tubes are converted into a white crystalline mass by heating with H₂O several months to 75-150°; lead glass and Bohemian glass most easily. English crown glass least. A little H₂O attacks glass more than much H₂O.

than much H2O.

The action of H₂O is greatly increased by

finely pulverising the glass.

H₂O dissolved 10% of a glass containing 12% Na₂O, 15.5% CaO, and 72.5% SiO₂, and 32% of another glass containing 16.3% Na₂O, 6.4% CaO, and 77.3% SiO₂. (Vogel, B. A. Munchen, **1867**, 437.)

Action of H₂O on a glass containing 74%  $SiO_2$ , 8.6% CaO, 14% Na₂O, 0.6% K₂O, with traces of  $Al_2O_3$ , Fe₂O₃, MnO, and MgO.

By boiling with H2O a decrease of 3.9 mg. was observed for the first hour, which soon became constant at 2.2 mg. per hour. The action was then proportional to the time, and also to the surface in contact with the liquid. but independent of the amount of liquid evaporating.

The action decreases rapidly with the temperature, so that at 90-100° only ¼ as much glass is dissolved as by boiling H₂O. (Emmer-

ling, A. **150.** 257.)

When steam condenses in tubes of Na glass they are so strongly attacked that the H₂O has an alkaline reaction, but tubes of hard or Bohemian K glass are not so strongly attacked. (Tollens, B. 9. 1540.)

The effect of H₂O is so great as to impart a distinctly alkaline reaction to water condensing in a tube of ordinary glass. By condensing water in long tubes of various kinds of glass the following results were obtained.

<b>Q1</b>	SULTAN
I. Easily fusible Thuringian glass. Surface exposed = 324 sq. cm. After 2 hours, 62.0 mg. KOH were dis-	Action of H ₂ O on various kinds of Na glass.  1 g. of finely powdered glass was boiled 10-15  minutes in a silver disk with 100 ccm. Ho
solved. After 3 hours more, 36.0 mg. KOH were dis-	minutes in a silver dish with 100 ccm. $H_2O$ , and the per cent of $Na_2O$ (or $K_2O$ ) in the solution was determined.
solved. After 3 hours more, 33.2 mg. KOH were dis-	%Na ₂ O (K ₂ O)
solved. After 3 hours more, 20.8 mg. KOH were dis-	Orthoclase feldspar 0.17 Glass of a Bohemian combustion tube . 0.56
solved. After 3 hours more, 20.8 mg. KOH were dis-	" flask (German manuf.) . 0.69 " champagne bottle 1.7
solved. Or, in 14 hours, 172.8 mg. KOH were dis-	Natrolite
solved. II. Less easily fusible Thuringian glass.	Glass which was attacked by $H_2O$ under pressure 3.7
Surface exposed = 499 sq. cm. After 3 hours, 19.2 mg. KOH were dis-	Lead glass 3.8 Glass that broke easily 4.8 Glass tubing that became rough when
solved.  After 3 hours more, 15.2 mg. KOH were dissolved.	fused 6.1
After 3 hours more, 12.4 mg. KOH were dissolved.	Glass tubing that became opaque by fusing 14.35 Solid water glass
After 3 hours more, 11.2 mg. KOH were dissolved.	(Wartha, Z. anal. 24. 220.)
Or, after 12 hours, 58.0 mg. KOH were dissolved.	The relative ease by which various kinds of glass are attacked by $H_2O$ is shown by the
III. Combustion tubing of very difficultly fusible Bohemian glass. Surface exposed = 1130 sq. cm.	following table. The glass was powdered and heated on a water bath with exclusion of atmospheric CO ₂ .
After 3 hours 4.16 mg. KOH were dissolved.	Potassium water glass
After 3 hours more 4.16 mg. KOH were dissolved.	Yellow glass rich in alkali 34 Thuringian glass 19
After 3 hours more 4.16 mg. KOH were dissolved.  After 3 hours more 4.16 mg. KOH were dis-	Ditto from Tittel and Co. 8 Window glass 8 Lead glass from Jena 6
solved. Or, after 12 hours, 16.64 mg. KOH were dis-	Lead glass from Jena 6 Bohemian glass from Kavalier . 2.4 Lead crystal glass 1.4
solved.  IV. Easily fusible Bohemian glass. Sur-	Thermometer glass, 16IV, from Jena 1.0
face exposed = 1394 sq. cm. After 3 hours, 7.88 mg. KOH were dis-	Zinc glass, 362, from Jena . 0.8 Lead glass, 434, from Jena . 0.6
After 3 hours more, 8.56 mg. KOH were dis-	Lead glass, 483, from Jena . 0.2 Heaviest lead silicate, from Jena . 0.0
solved.  After 3 hours more, 1.97 mg. KOH were dissolved.	(Mylius, C. C. 1888, 1313.) Solubility of various kinds of glass in H ₂ O.
Or, after 9 hours, 24.32 mg. KOH were dissolved. (Kreusler and Henzold, B. 17. 34.) From the above the following table has	The amounts dissolved from various kinds of glass by heating 5 hours with H ₂ O were as
been calculated. 50 ccm. H ₂ O dissolves from a surface of	Yellow glass rich in alkali (13%
1000 sq. m. in 1 hour:— 96.0 mg. from easily fusible Thuringian	K ₂ O, 15% Na ₂ O)
glass. 12.8 mg. from less fusible Thuringian glass.	Glass from Tittel and Co. (7.1%
1.2 mg. from combustion tube of Bohemian glass.	Bottle glass from Schilling (4.2% K ₂ O, 11.9% Na ₂ O) 13.0 "
2.0 mg. from harder tube of Bohemian glass. (Kreusler and Henzold, B. 17. 34.)	Bohemian glass from Kavalier (13.3% K ₂ O, 11.4% Na ₂ O) 10.1 "
100 ccm. H ₂ O dissolves so much glass from a	Rhenish window glass (13.5% Na ₂ O) 8.4 "
mask every 2 seconds when in contact therewith that 0.1 ccm. 1/2 normal oxalic acid is neutralized thereby (Roblin Z and 22	$feld (12.1\% K_2O)$ 8.5 "
neutralised thereby. (Bohlig, Z. anal. 23. 518.)	Green bottle glass $(1.3\% \text{ K}_2\text{O}, 9.5 \% \text{ Na}_2\text{O})$ 6.5 "

0.6

Solubility of various kinds of glass in H2O-Continued.

Thermometer glass 16III from Jena (14.0% Na₂O, 7% Zn()) Lead glass, No. 483, from Jena (47% PbO, 7.3% K₂O). 6.4 mg. 3 3

Lead silicate

(Mylius and Forster, B. 22. 1100.)

By calculation from the electrical conductivity of the solutions formed, various data were obtained by Kohlrausch (B. 24. 3565). which showed that different varieties of glass were attacked in very different degree by cold H₂O, and, moreover, the amount dissolved was proportionately much greater during the first few minutes of treatment with H2O than afterwards, and, furthermore, the rate of decrease was much faster for good glass than poor. Increase of temperature increased the rate of solubility to a very great degree, the increase for 1° C. being about 17%. In 7 hours at 80° half as much was dissolved as in 6 months at 18°. Extensive tables are given. (Kohlrausch, B. 24. 3651.) See also Kohlrausch (W. Ann. 44.

A very extensive research on the action of H₂O on glass, with a historical review of the work previously done on the subject, has been published by Mylius and Forster. (Z. anal. 31. 241.) The general results may be summed

up as follows:

1. The solution of glass in H₂O is caused by a decomposition, by which free alkali is

2. The silicic acid of the glass is brought into solution by a secondary reaction of the free alkali in the solution.

3. The constituents of the solution change according to the conditions of the diges-

4. The amount of alkali going into solution from a given surface under certain conditions is a measure for the resistance of a glass under those conditions.

The rate of attack of glass surfaces by cold H₂O decreases rapidly with the length of time of digestion, and finally approaches a constant value.

6. The solubility increases very rapidly

with increase of temperature.

7. The ratio of the solubility of several kinds of glass is dependent on the tempera-

8. From glasses which show the same ease of attack unequal amounts of substance may be dissolved.

9. The solubility of a glass is influenced by the condition of the surface from "weathering" by prolonged exposure to the CO2 and H₂O of the air.

10. The poorer a glass is the less will its solubility decrease by prolonged treatment

with H₂O.

11. A good glass is essentially less easily

attacked after having been previously treated with H₂O.

12. After treatment with H₂O, glass surfaces have the property of fixing alkali from the solutions formed, and giving it up again by a subsequent treatment with H₂O.

13. Potassium glass is much more sol. than sodium glass (contrary to previous researches), but the difference decreases as

the glass becomes richer in CaO.

14. In glass flasks which are to be only slightly attacked by cold or hot H₂O, the CaO, alkalies, and SiO2 must stand in a fixed relation to each other.

15. Of the more common varieties of glass. lead flint glass is least sol. in H₂O, but its surface is corroded, and it is easily decomp.

by acids.

### (Mylius and Forster, Z. anal. 31. 241.)

Bottle glass containing much Al₂O₂ is easily attacked

From powdered flint glass, boiling HCl+Aq extracts K, but no Pb. (Griffiths.)
Bottles of flint glass with (NH4)₂CO₂+Aq became so fragile that on shaking pieces of glass were detached.

All glass is decomp. by HF, Conc. H₂PO₄ also attacks all glass.

conc. Har'04 also attacks all glass. Glass containing small amounts of SiO2 are attacked by HaSO4; poorer glass by boiling HCl, HNO2, and aqua regia. (Berzelius.)

conc. HNO2 does not act on flint glass at 145–150°.

(Sorby, C. R. 50. 990.)

Glass of ordinary chemical apparatus gives up traces of metals to HCl and HNO₃+ Aq, but hard Bohemian glass consisting of 75% SiO₂, 15%K₂O, 10% CaO, resists the action of warm conc. acids; also an easily fusible Na K glass with 77 % SiO₂, 7.7% K₂O, 5% Na₂O, 10.3% CaO, is not easily attacked. (Stas.)

KOH, and NaOH+Aq dissolve SiO₂ from glass the more easily the hotter and the more conc. the solutions are. (Müller.) NH4OH, and (NH₄)₂CO₃+Aq attack many kinds of glass, especially flint glass. CaO₂H₂ attacks glass appreciably at 45° and lower; still more strongly on boiling. (Lamy, A. ch. (5) 14.

The action of various solvents on the glass mentioned on page 359 in Emmerling's ex-

periments is as follows:

The action of HCl+Aq containing 0.2 to 3% HCl is practically null, but is increased either by dilution or concentration. A very small quantity (0.02%) HCl added to H₂O almost wholly prevents its action on glass. With HCl+Aq (11% HCl) a decrease of 4.2 mg. was noticed in the first hour, and only 3-4 mg. afterwards. The same is the case for HNO.+Aq in still greater degree, 0.008% HNO: sufficing to nearly counteract the solvent action of H₂O.

H₂SO₄+Aq has about double the solvent

effect possessed by H₂O.

Oxalic and acetic acids both diminish the solvent action of H₂O.

The addition of even traces (0.04%) of

Na₂CO₂ increases the solvent action, and this is further rapidly increased by an increase in the amount of Na₂CO₃. Na₂CO₃+Aq containing 1% Na₂CO₃ dissolves about 10 times as much as pure H₂O, i. e. about 35 mg. per

The above is also the case with KOH + Aq, but in even greater degree. KOH+Aq containing 0.025% KOH dissolved three times as much as pure H₂O.

(NH₄)₂CO₃+Aq has about the same action

as H₂O.

With NH₄OH+Aq (9% NH₈) 7 mg. decrease for the first hour, and 3 mg. afterwards The concentration of the was noticed. NH₄OH+Aq was apparently without effect. The addition of NH₄Cl decreases the solv-

ent action of H₂O proportionately to the amount added, but with new flasks large

amounts are dissolved.

With NH₄Cl+Aq (7%NH₄Cl) 4.2 mg. were dissolved in the first hour, and the amount dissolved gradually decreased to null after 24 hours on account of the liberation of HCl by the decomp. of NH₄Cl.

NaCl, KCl, KNO₃, and Na₂SO₄ show a similar behaviour to that of NH₄Cl.

Na₂HPO₄+Aq containing 0.4% Na₂HPO₄

has six times the solvent action of pure H₂O. but the action is not increased by further concentration.

In general, those salts the acids of which form insol. Ca salts, as Na₂CO₃, Na₂SO₄, Na₂HPO₄, (NH₄)₂C₂O₄, increase the solvent action of H₂O, and this effect is greater the more concentrated the solution. KNO, NH4Cl, and CaCl2 decrease the effect, and the stronger the solution the less is the action.

All Na glass with approximately the above composition has the same power of resistance against H2O; Bohemian K glass shows a greater resistance, especially against acids. (Emmerling, A. 150. 257.)

Action of various reagents on hard Bohemian glass. 100 ccm. substance dissolved mg. glass in 6 days at 100°.

> . 10.0 H₂S+Aq 8.7 Dil. (NH₄)₂S+Aq 52.5 Conc. (NH₄)₂S+Aq 47.2 Conc. NH₄OH+Aq 42.5 Dil. NH₄OH+Aq. . NH₄SH+Aq. (Cowper, Chem. Soc. 41. 254.)

Action of various solutions on glass of different composition. (The figures denote decrease in weight in mg. of a 100 ccm. flask.)

	Time	1	2	3	4	5	6	7	8	9	10
H ₂ O	5 hrs. 3 " 3 " 3 " 3 " 3 "	62  85  283	31 43  160	29 35 27 62 81 130	17 8 4 11 64 124	13 7 2 8 40 50	9 6 1 7 35 45	7 5 1 7 34 42	7 5 1 6 30 42	5 5 0 5 15 26	4 3 0 5 12 25

### Composition of above varieties of glass.

			1	2	3	4	5	6	7	8	9	10
SiO ₂			76.22		76.39				66.75			74.40*
Al ₂ O ₃ CaO	:	•	4.27	0.40 5.85	5.50		7.15	7.85	$1.31 \\ 13.37$	0.50 8.55	8.10	0.70 8.85
$ m K_2O$ $ m Na_2O$	:	•	19.51	$7.32 \\ 12.34$	$\frac{4.94}{12.67}$	$ \begin{array}{c c} 2.24 \\ 19.75 \end{array} $	6.64			4.86 11.97	$3.75 \\ 10.78$	4.40 11.65

It is seen that glass which resists the attack of H₂O also resists acids and alkalies, and that the relative resistance of all varieties to any of the solutions is the same. Therefore the action of H₂O may be accepted as a criterion for judging of the resistance of a glass to all solvents. Glass No. 10, in which the molecular ratio of SiO₂:CaO:K₂O(Na₂O) is 8: 1:1.5, is recommended as best suited for chemical uses. (Weber and Sauer, B. 25. 70.)

Mylius and Förster (B. 25. 97) recommend

a glass in which the molecular ratio of SiO₂: CaO: K₂O (Na₂O) is 7.2: 1: 1.1 as the best suited for chemical apparatus.

In an exhaustive research on the action of aqueous solutions on glass, which cannot be given in full on account of its great length, the following conclusions are reached:

1. Solutions of caustic alkalies act on glass much more strongly than H2O, dissolving all the constituents of the glass—that is, the glass as such. Very dilute solutions form an exception.

2. Of the caustic alkalies, NaOH+Ag has the strongest action, then come KOH, NH4OH, and BaO2H2+Aq in the order named.

3. Increase in temperature increases the

strength of the attack of alkalies very con-

siderably.

4. At high temperatures, the ease with which glass is attacked increases at first rapidly with the concentration of the alkali, but afterwards more slowly.

5. At ordinary temperatures very concentrated alkali solutions have less action on

glass than dil. solutions.

6. Solutions of pure alkalies, if not too conc., act less on glass than when contamin.

ated with small amounts of SiO2.

7. Alkali carbonates+Aq attack glass much more than H₂O, even when they are very dilute. The action corresponds less to that of the caustic alkalies than to that of other salts. With equivalent concentration, Na₂CO₂+Aq has a stonger action than K₂CO₃ +Aq.
8. The action of salt solutions on glass is a

compound one, depending both on the concentration and the kind of salt dissolved, and is made up of the action of the H₂O and the

salt in solution.

9. Each kind of attack is differently influenced by the composition of the glass.

10. Solutions of those salts, the acids of which form insol. Ca salts, have a stronger action than H₂O, and the action increases with the concentration.

11. Solutions of those salts, the acids of which form sol. Ca salts, have less action than H₂O, and the action decreases with the concentration. (Förster, B. 25. 2494.)

Data on this subject published since the first edition of this work have not been con-

sidered.

#### Glucinic acid.

## Potassium glucinate, K₂GlO₂.

Very deliquescent. Sol. in H₂C and acids. (Krüss and Moraht, B. **23.** 733.)

### Glucinum (Beryllium), Gl.

Not attacked by hot or cold H₂O. Sol. in cold dil. HNO₈+Aq. (Wöhler, Pogg. 13. 577.)

Sol. only in boiling conc. HNO₃+Aq.

(Debray, A. ch. (3) 44. 5.)

Sol. in dil. HCl+Aq. dil. and conc. H2SO4+ Aq, and KOH+Aq, but insol. in NH₄OH+Aq. (Wöhler, Debray.)
Sol. in hot HCl, hot conc. HNO₃, and hot

conc.  $H_2SO_4$ . (Lebeau, A. ch. 1899, (7), 16. 474.)

# Glucinium azoimide, GlN₂.

Decomp. by hot H₂O. (Curtius, J. pr. 1898, (2), **58**. 292.)

# Glucinum borocarbide, 3Gl₂C, B₆C.

Insol. in H₂O. Easily sol. in mineral acids especially HNO₈. (Lebeau, A. ch. 1899, (7) **16.** 481.)

C₄B₆Gl₆. Stable in air,

Easily sol, in mineral acids, conc. and dil. (Lebeau, C. R. 1898, 126, 1349.)

# Glucinum bromide, GlBr₂.

Sol. in H₂O with evolution of much heat. (Wöhler.)

Sol. in abs. alcohol (Lebeau, A. ch. 1899, (7) **16.** 484.)

### Glucinum carbide, 132C.

Decomp. by H₂O. Slowly attacked by cold or hot conc. HCl and HNO3. Gradually but completely sol. in dil. acids. (Lebeau, A. ch. 1899, (7) 16. 476.)

GIC₂. Not easily decomp. by strong acids. Easily sol. with decomp. in dil acids.

(Lebeau. C. R. 1895, 121, 497.)

### Glucinum chloride, GlCl₂.

Anhydrous. Fumes and deliquesces in air. Sol. in H2O with hissing and evolution of much heat. Easily sol. in alcohol.

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 828.)

Sol. in alcohol and ether. Sl. sol. in C.H., CHCl₃, Cl₄ and CS₂. (Lebeau, A. ch. 1899, **(7) 16. 493.)** 

(Naumann, B. 1904, Insol. in acetone. **37.** 4329.)

+4H₂O. Very hydroscopic. Easily sol, in H₂O and in alcohol. (Mieleitner, Z. anorg. 1913, 80. 73.)

# Glucinum chloride ammonia, GlCl₂, 4NH₃. (Mieleitner, Z. anorg. 1913, 80, 73.)

# Glucinum chloride iodine trichloride, 2ICl₃, GlCl₂+8H₂O.

Hygroscopic. (Weinland, Z. anorg. 1902, **30.** 140.)

Glucinum ferric chloride, GlCl₂, FeCl₈+H₂O. Decomp. by H₂O. (Neumann, A. 244. 329.)

Glucinum mercuric chloride, GlCl2, 3HgCl2+ 6H₂O.

Sol. in H₂O. (Atterberg, B. 6. 1288.)

Glucinum thallic chloride, 3GlCl2, 2TlCl2. Cryst. from HCl solution. (Neumann, A. **244. 34**8.)

Glucinum stannic chloride. See Chlorostannate, glucinum. Glucinum fluoride, basic, 2GlQ 5GlF2. Sol. in H₂O. (Lebeau, A. ch. 1899, (7) 16.

# Glucinum fluoride, GlF2.

Sol. in H₂O. Deliquescent. Insol. in anhydrous HF. Sol. C. R. 1898, **126**. 1421.) Sol. in alcohol. (Lebeau,

Sol. in H₂O in all proportions. Somewhat sol. in abs. alcohol. Easily sol. in 90% alcohol, also in a mixture of alcohol and ether. Insol. in anhydrous HF. (Lebeau, A. ch. 1899, (7) **16.** 484.)

# Glucinum potassium fluoride, GlF₂, KF.

Sl. sol. in H₂O. (Awdejew.) Much more sol. in hot than cold H₂O. (Berzelius.)
GlF₂, 2KF. Sol. in about 50 pts. H₂O at 20°, and 19 pts. boiling H₂O. (Marignac.)

# Glucinum sodium fluoride, GlF2, 2NaF.

Sol. in 34 pts. H₂O at 100°, and 68 pts. at 18°. (Marignac.)

### Glucinum hydroxide, GlO₂H₂.

Easily sol. in acids. Sol. in H₂SO₃+Aq. Sol. in CO₂+Aq; 100 ccm. sat. CO₂+Aq dissolve 0.0185 g. GlO. (Sestini, Gazz. ch.

Also sol. in KOH, NaOH, NH4OH, or (NH₄)₂CO₃+Aq, especially when freshly precipitated; also in Na₂CO₃, or K₂CO₃+Aq. (Debray.)

Insol. in NH₄OH+Aq containing NH₄Cl+

Aq. Very sl. sol. in Li₂CO₃+Aq. (Gmelin.)

Sol. in H₂SO₄+Aq. (Berthier.) Sol. in BaO₂H₂+Ao, from which it is pptd. by NH₄ salts, but not by boiling. Sol. in boiling NH₄Cl+Aq when freshly pptd. Sol. in NH₄F+Aq. (Helmholt, Z. anorg. 3.

130.)

### Solubility of GlO₂H₂ in NaOH+Aq.

G. Na in 20 ccm.	G. Gl. in 20 ccm.
0.3358	0.0358
0.6717	0.0882
0.8725	0.1175
1.7346	0.2847

(Rubenbauer, Z. anorg. 1902, 30. 334.)

When glucinum hydroxide is treated with alkali, more dissolves at first than corresponds with the true equilibrium under the prevailing conditions, for such solutions spontaneously deposit more or less glucinum hydroxide according to the concentration. (Rubenbauer.)

Solubility of freshly pptd. GlO₂H₂ in NaOH+ Ag at room temperature.

G. GIO dissolved in 1 l.
3.6 2.92 2.53 1.69 1.64 1.53 1.45

In the first two cases the values were obtained by adding to  $GlCl_2+Aq$  at 0°, ice cold NH₄OH and treating the ppt. with NaOH+Aq. In the remaining cases by dissolving basic GlCO, in HCl and pouring into NaOH+ Aq. (Haber, Z. anorg, 1904, 38, 386.)

Solubility of GlO₂H₂, which is one week old, in NaOH+Aq at t°.

NaOH	t°	G. GlO in 1 l.
1/2-N 1-N 2-N 1/2-N 1-N 2-N 1-N 2-N 1-N 2-N	20-23° 20-23° 20-23° 50-53° 50-53° 50-53° 100° 100°	0.060 0.170 0.570 0.080 0.230 0.900 0.080 0.290 1.020

(Haber.)

Solubility of GlO₂H₂ in NaOH+Aq at 25°.

G	mols.
Na	GI.
0. 268 0. 318 0. 446 0. 526 0. 563 0. 801 0. 854	0.0330 0.0492 0.0841 0.089 0.101 0.143 0.202

(Wood, Chem. Soc. 1910, 97. 884.) **

Insol. in NH₄OH+Aq and in alkyl amines. (Renz, B. 1903, 36. 2753.)

Sol. in GlSO₄+Aq. (Parsons, J. phys.

Chem. 1907, 11. 658.)

A form insol, in acids and alkalies can be obtained by sufficiently long heating in boiling H₂O, Na₂CO₃+Aq, NH₄OH+Aq, or solutions of NaOH or KOH so dil. that the GlO₂H₂ is either insol. or very sl. sol. therein. (van Oordt, C. C. 1906, I. 108.)

100 ccm. of glycerine + Aq containing about 60% by vol. of glycerine dissolve 0.1 g. GlO.

(Müller, Z. anorg. 1905, **43**. 322.)

Contains 1/3H2O (Schaffgotsch); 4/3H2O (Atterberg).

Solubility of GlO	2H ₂ , which has	been boiled with	alkali, in various solvents.
Alkali used	Time	Solvent	Solubility
10-N NaOH	2½ hrs.	0.39-N NaOH 0.97-N NaOH 2.0-N NaOH	1 mol. GlO ₂ H ₂ : 331 mole NaOH 1 mol. GlO ₂ H ₂ : 183 mole NaOH 1 mol. GlO ₂ H ₂ : 91.8 mole NaOH 1 mol. GlO ₄ H ₂ : 49 mole NaOH 1 mol. GlO ₄ H ₂ : 49 mole NaOH
NaOH NaOH	Long time 2 hrs.	10-N K ₂ CO ₂ Dil. HCl Hot conc. HCl Dil. acetic acid	Insol. Sl. sol. Slowly sol. Almost insol.
кон	Till flocculent ppt. appeared	1-N KOH i-N NaOH Warm dil. HCl	Insol. 🚅 " Sol.
1/2-N Na ₂ CO ₃ { 1/2-N Na ₂ CO ₃ for then 1/10-N Na ₂ CO ₃ for	3 hrs. 3 hrs. and 4 hrs.	1-N NaOH Dil. HCl 1-N NaOH Dil. HCl	Easily sol. Sl. sol. Slowly sol.
½-N K ₂ CO ₃ 10-N K ₂ CO ₃	6 hrs. Short time	10-N K ₂ CO ₃ 1-N NaOH Cold 10-N K ₂ CO ₃	Insol. Easily sol. Very slowly sol.
NH ₄ OH	5 hrs.	½-N NaOH	Very sl. sol.

### (Haber.)

# Glucinum iodide, GlI2.

Sol. in H₂O with evolution of much heat. (Wöhler.)

Decomp. in moist air and by H₂O.

Sol. in abs. alcohol. Insol. in most neutral organic solvents, as benzene, toluene, etc. (Lebeau, C. R. 1898, **126**. 1273.)
Insol. in C₆H₆, C₇H₅ and oil of turpentine.

Easily sol. in CS2. Sol. in anhydrous alcohols without evolution of heat. (Lebeau, A. ch. 1899, (7) **16.** 490.)

Glucinum iodide ammonia, 2GlI₂, 3NH₈. Pp. (Lebeau, A. ch. 1899, (7) 16. 492.)

# Glucinum oxide, GlO.

Crystalline. Insol. in acids except conc. H₂SO₄. (Ebelmen, C. R. **32**. 710.)

Amorphous. Absolutely insol. in  $H_2O$ . The higher the temp. to which the substance has been heated the more insol. is it in acids. Insol. in NH₄OH+Aq or (NH₄)₂CO₃+Aq. Insol. in conc. NH₄Cl+Aq, or KOH, and NaOH+Aq. (Rose.)

When obtained by ignition of GISO₄, it is very slowly but completely sol. in HCl, and

H₂SO₄+Aq. (Rose.)
Insol. in hydracids. Sol. in conc. H₂SO₄.
(Lebeau, C. R. 1896, **123**. 819.)
Insol. in liquid NH₃. (Gore, Am. ch. J.

1898, **20.** 828.)

Glucinum peroxide basic, 2GlO₂, 3GlO.

 $+8\frac{1}{2}H_{2}O$ . (Komarovski, Chem. Soc. 1913, **104** (2) 707.)

## Glucinum oxybromides.

Sol. in H₂O if three or less equivalents of base are present to one of acid; insol. if more of the base is present. (Ordway, Am. J. Sci. (2) **26.** 207.)

Glucinum oxychloride, Gl₂OCl₃=GlO, GlCl₂.

Insol. in H₂O.

 $3GlCl_2$ ,  $2GlO+2H_2O$  (?). Sol. in H₂O. (Atterberg.)

GlCl₂, 3GlO+3H₂O (?). Sol. in H₂O, but solution soon becomes cloudy and deposits a fine ppt. By boiling the solution it is decomp. into above salt, and GlCl₂, 12GlO₂H₂+ 10H₂O, which is insol. in H₂O; decomp. into GlO₂H₂ by washing. Sol. in acids. (Atter-

Glucinum oxyfluoride, 5GlF₂, 2GlO.

Readily sol. in H₂O. (Lebeau, C. R. 1898. **126.** 1419.)

### Glucinum phosphide.

Decomp. by H₂O. (Wöhler.)

### Glucinum selenide.

Sl. sol. in H₂O. (Berzelius.)

# Glucinum sulphide.

Slowly sol. without decomp. in H2O, but easily decomp. by acids. (Wöhler.)

### Gold. Au.

Gold which has been pptd. from AuCls+ Aq by FeSO, is sl. sol. in HCl. (Awerkiew,

Z. anorg. 1909, 61. 10.)
Not attacked by H₂O. Insol. in HNO₃ or HCl+Aq. Easily sol. in aqua regia or any mixture evolving Cl or Br. Sol. in selenic acid, or antimonic acid+Aq; less easily in arsenic acid +Aq. Sol. in mixtures of HCl and nitrates, or HNO₃ and chlorides; also in (NaCl+KNO₃+K₂Al₂(SO₄)₄)+Aq (?). Insol in H₂SO₄, except in presence of KMnO₄, HNO₃, or HIO₃. Sol. in a solution of I in ether in direct sunlight.

Sol. in solutions of ferric, and cupric salts.

Sol, in HCl+Aq containing H₂CrO₄,
H₂MnO₄, H₂SeO₄, H₂AsO₄, or FeCl₈. (Wurtz).
Attacked by fuming HCl (sp. gr. 1.178) at
ord. temp. in direct light, especially in the
presence of a trace of MnCl₂, but not attacked in the dark even in the presence of this salt. (Berthelot, C. R. 1904, 138. 1298.)

100 ccm, hot conc. HCl dissolve 0.008 g. yellow Au powder in 4 hours. (Hanriot and Raoult, C. R. 1912, 155. 1086.)

Upon boiling 25 and 50 cc. HCl+Aq (sp. gr. 1.178), dil. to 125 cc. with 250 mg. sheet Au 1/8 in. square, 0.009 in. thick, weighing 250 mg. for several hours, there was no loss of weight of Au. (McCaughey, J. Am. Chem. Soc. 1909, 31. 1263.)

From 5 g. finely divided ordinary yellow gold; 100 cc. HNO₃ of 22° B. dissolve 0.002 g. in 2 hrs.

100 cc. HNO₈ of 32° B. dissolve 0.0119 g.

in 2 hrs.

100 cc. HNO; of 36° B. dissolve 0.028 g. in 2 hrs.

100 cc. HNO₃ monohydrate dissolve 0.076 g. in 2 hrs. (Hanriot and Raoult, C. R. 1912. **155.** 1085.)

From 5 g. brown gold:

100 ccm. HNOs of 22° Baume dissolve 0.006 g. in 2 hrs

100 ccm.  $\overline{\rm HNO_3}$  of 32° Baume dissolve 0.039 g. in 2 hrs.

100 ccm. HNO₈ of 36° Baume dissolve 0.078 g. in 2 hrs.

100 ccm. HNO₃ monohydrate dissolve 1.540 g. in 2 hrs. (Hanriot and Raoult.)

Sl. sol. in boiling  $HNO_3$  (sp. gr. = 1.42). The solution deposits Au by standing several days. (Dewey, J. Am. Chem. Soc. 1910, 32. **320.**)

Best composition of aqua regia for dissolving Au is 200 cc. HCl (sp. gr. 1.1946) 45 cc. HNO: (sp. gr. 1.4) and 245 cc. H₂O. 1 pt. Au is sol. in 4.3 pts. of such a mixture. (Priwoznik, C. C. 1910, II. 1743.)

Sol. in 1 pt. HNO₃+4 pts. HCl as representing the most economical mixture. (Priwoznik, Chem. Soc. 1911, 100. (2), 484.)

Easily sol, in nitrosulphonic acid from sulphuric acid manufacture, when mixed with equal parts conc. HCl+Aq. (Bornträger, Rep. anal. Ch. 1887. 741.)

Sol. in hot conc. H₂SO₄ in the presence of MnO₂, Mn₂O₃, Mn₃O₄, PbO₂, Pb₂O₃, Pb₃O₄, CrO₃, CrO₄ and Ni₂O₃. Solution also takes place slowly in the cold. Sol. in hot H₂SO₄+ KMnO₄. Slowly sol. in cold, more rapidly in hot H₂SO₄+HNO₃. (Lenher, J. Am. Chem.

Soc. 1904, 26. 550.)

Sol. in a hot solution of crystalline telluric

acid in H₂SO₄ or H₃PO₄.

Sol. in hot H₃PO₄ in the presence of MnO₂, Mn₂O₃, Mn₃O₄, the higher oxides of lead, CrO₈, chromium tetroxide and nickelic Solution takes place more slowly in the cold. Sol. in hot H₃PO₄ in the presence of KMnO₄. Slowly sol. in a cold, more rapidly sol. in a hot mixture of H₃PO₄ and HNO₈.

Sol. in hot arsenic acid in the presence of MnO₂, Mn₂O₃ and Mn₃O₄. Am. Chem. Soc. 1904, **26.** 550.) (Lenher, J.

Gold leaf is not attacked by cold conc. H₂SeO₄, when completely free from halogens, but is dissolved by conc. II₂SeO₄ at 300° (Lenher, J. Am. Chem. Soc. 1902, 24. 354.)

Solubility of thin sheet Au in HCl solution of iron alum.

Time,			dissolved	
hours	1 g. Fe	1 g. Fe	2 g. Fe	2 g. Fe
	25 cc. HCl	50 cc. HCl	25 cc. HCl	50 cc. HC
	7	Гетр. 38-	43°.	
16	1.00	1.30	1.08	1.47
22	1.12	1.55	1.20	1.81
40	1.52	2.15	1.82	2.75
46	1.71	2.34	2.02	2.95
64	1.96	3.10	2.60	3.79
72	2.12	3.30	2.83	4.05
89	2.32	3.65	3.22	4.65
100	2.40	3.76	3.38	4.81
113	2.45	3.95	3.51	5.12
124	2.60	4.09	3.63	5.739
161	2.78	4.36	$\begin{bmatrix} 3.95 \\ 4.11 \end{bmatrix}$	5. <b>96</b>
185	2.90	4.49		6. <b>22</b>

	Т	emp. 98–	100°.	
$\begin{array}{c} 1 \\ 2 \\ 4 \\ 16 \\ 20 \\ 24 \\ 36 \\ 42 \\ 54 \\ 59 \end{array}$	1.13	0.78	1.15	1.27
	1.99	1.74	2.56	2.86
	3.46	3.31	4.55	5.06
	10.09	11.37	13.15	15.56
	12.20	13.72	15.59	19.41
	14.37	16.49	17.96	23.29
	17.38	23.27	22.07	31.73
	18.79	26.30	24.62	35.29
	20.94	31.39	29.49	42.11
	21.64	33.12	30.64	44.43

The solution contained the given amounts of Fe as iron alum, the sp. gr. of the HCl was 1.178, and the solutions diluted to 125 cc. (McCaughey, J. Am. Chem. Soc. 1909, 31. 1263.)

The solvent action of ferric salt occurs even in presence of a ferrous sait, but decreases with increase of concentration of ferrous salt. (McCaughey.)

Solubility of thin sheet Au in HCl solution of CuCl2.

Time.	Mg. Au dissolved					
hours	1 g. Cu 25 cc. HCl	1 g. Cu 50 cc. HCl	2 g. Cu 25 cc. HCl	2 g. Cu 50 cc. HCl		
υ ^λ ;	7	Гетр. 38-	43°.			
19 25 43 49½ 66½ 78 91	0.03 0.09 0.10 0.12 0.11 0.14 0.14	0 26 0.36 0.54 0.61 0.76 0.87 0.92	0.05 0.05 0.14 0.15 0.17 0.22 0.24	0 39 0.54 0.94 1.07 1.40 1.58 1.75		
102 139 163	$egin{array}{c} 0.16 \ 0.18 \ 0.23 \ \end{array}$	1.02 1.34 1.60	$egin{array}{c} 0.27 \ 0.32 \ 0.39 \ \end{array}$	$1.90 \\ 2.45 \\ 2.84$		

# Temp. 98-100°.

		1		
1	0.15	0.34	0.17	0.46
4	0.55	1.23	0.55	1.35
16	1.34	5.00	2.12	8 80
20	1.63	6.5?	2.78	11.86
<b>2</b> 6	2.17	9.13	3.59	15.70
38	3.13	13.98	5.07	23.14
43	3.61	16.54	5.77	26.62
48	4.07	19.26	6.26	30.80
60	4.82	26.37	7.47	39.09
	1	1		1

Conditions the same as above for HCl+ iron alum. (McCaughey.)

Finely powdered gold is sol. in conc HCl in the presence of alcohol, etc.
0.0302 g. Au. is sol. in 100 cc. HCl+100 cc.

CH₈OH.

0.0230 g. Au. is sol. in 100 cc. HCl+100 cc. CHCl₃.

0.0066 g. Au. is sol. in 100 cc. HCl+100 cc. C₂H₅OH.

0.0190 g. Au. is sol. in 100 cc. HCl+100 cc. C₆H₁₁OH.

0.0125 g. Au. is sol. in 100 cc. HCl+50 cc. CCl₂CH(OH)₂.

(Awerkiew, C. C. 1908, II. 1566.)

Solubility of Au which has been pptd. from AuCl+Aq by various precipitants in HCl+formaldehyde.

		7	
HCHO (40%) cc.n.	HCl (1.19) ccm.	Au dis- solved g.	Au used was pptd. from AuCl ₂ +Aq. by
150	150	0.0007	FeSO ₄ "sugar oxalic acid  FeSO ₄ oxalic acid  "sugar  FeSO ₄ HCHO
106	100	0.0006	
125	25	0.0008	
100	200	0.0009	
150	150	0.0003	
250	250	0.0002	
500	500	0.0008	
100	200	0	
100	200	0.0004	
100	200	6	
150	300	0.0004	
250	125	0.001	
150	75	0.0013	
100	200	0.0008	
100	200	0.0006	
180	540	0	FeSO ₄ sugar FeSO ₄
360	720	0.001	
360	720	0.0019	
209	400	0.0013	

in the last four cases the solubility was determined at the ordinary temp.; in the first sixteen the gold was boiled with the mixture of HCl and HCHO.

(Awerkiew, Z. anorg. 1909, 61. 3.)

# Solubility of Au in boiling HCl+ paraformaldehyde.

(CH ₂ O) ₃ g.	HCl (1.19) g.	Dissolved Au g.	Au used was pptd. from AuCl: +Aq. by
5	25	0.0005	FeSO ₄
5	25	0.0004	oxalic acid
25	125	0.006	sugar
20	400	0.0024	СНОН
20	400	0.0034	CH ₂ OH
20	400	0.003	ü
20	400	0.0065	sugar
20	400	0.0044	formic acid
20	400	0.0005	"
40	400	0.001	CH ₂ OH
20	300	0.0024	FeŠO₄
20	300	0.003	"
10	200	0.0008	CH ₂ OH
10	200	0.0006	oxalic acid
<b>60</b> .	120	0.0015	FeSO ₄

(Awerkiew.)

# Solubility of Au in boiling HCl+methyl alcohol.

CH ₃ OH (99%) ccm.	HCl (1.19) ecm.	Dissolved	Au used was pptd. from AuCl ₃ +Aq. by
100 150 150 25 50 50 50 50 100 1000 1000	100 150 150 25 50 50 50 50 100 1000 1000	0.0302 0.0043 0.028 0.001 0.0002 0.0005 0.0002 0.0015 0.002 0.00128 0.0281 0.0084 0.0066 0.005 0.005 0.0014 0.0005 0.0014	FeSO ₄ oxalic acid sugar CH ₄ OH oxalic acid CH ₄ OH oxalic acid FeSO ₄ oxalic acid FeSO ₄ " " " " " " " " " " " " " " " " " "
100 100 50	50 200	0.0008 0.0001	CH ₈ OH

(Awerkiew.)

# Solubility of Au in boiling HCl+ethyl alcohol.

C ₂ H ₅ OH (95%) cem.	HCl (1.19) ccm.	Dissolved Au g.	Au used was pptd. from AuCl ₃ +Aq. by
25 100 200 150 100 100 200 250 300 1000	50 200 400 50 300 100 200 250 300 1000	0.0006 0.0111 0.0017 0.0003 0.0004 0.0015 0.0055 0.0021 0.0197 0.007	FeSO ₄ " sugar " C ₂ H ₂ OH sugar FeSO ₄ CH ₃ OH
150	150	0.008	••

(Awerkiew.)

# Solubility of Au in boiling HCl+amyl alcohol.

C ₅ H ₁₁ OH g.	HCl (1.19) g.	Dissolved Au g.	Au used was pptd. from AuCl ₃ +Aq. by	
100 100	100 200	0.019 0.0048	FeSO ₄	
150 100	150 100	0.0024	sugar	
150 300	50 100	0.0032 0.0023	" FeSO ₄	
200 500	200 500	0.0067 0.028	$C_5H_{11}OH$ FeSO ₄	

(Awerkiew.)

# Solubility of Au in boiling HCl+phenol.

C ₆ H ₆ OH g.	HCl [†] (1.19) g.	Dissolved Au g.	Au used was pptd. from AuCls+Aq. by
10+25 10 20 25 25 50 25 25	100 40 50 100 150 200 250 250	0.001 0.0004 0.0003 0.0005 0 0.0005 0.0005 0.0012	C ₆ H ₅ OH oxalic acid FeSO ₄ HCOH FeSO ₄

(Awerkiew.)

# Solubility of Au in boiling HCl+chloroform.

CHCl₃ g.	HCl (1.19) g.	Dissolved Au g.	Au used was pptd. from AuCl _s + Aq. by
50	100	0.0009	FeSO ₄
100	100	0.023	"
100	100	0.0017	"
150	50	0.0012	"
200	400	0.0024	sugar
250	250	0.002	- 77
300	300	0.0106	u

(Awerkiew.)

10

Colloidal gold is sol. in dil. alkalies. (Paal, B. 1902, **35**. 2236.)

Rather quickly sol. in 10-15% solution I in K1+Aq.
Very slowly sol. in 5% solution of I in K1+

Aq.
Scarcely sol. in more dil. solution of I in KI+Aq.

Easily sol. in 10% NH₄I+I. Less easily sol. in 5% NH₄I+I. (Döring.)
Sol. in cold Na₂S+Aq when Na₂S is present

Sol. in cold Na₂S+Aq when Na₂S is present in proportion of 843 pts. Na₂S to 1 pt. Au. (Becker, Sill, Am. J. (3) 33. 199.)

In finely divided state Au is sol. in boiling KCN+Aq. Not attacked by boiling HgCl₁+Aq. (Vogel, J. pr. 20. 366.)

Solubility of Au (disks) in KCN+Aq with (A) oxygen passed through solution, and (B) agitated with oxygen.

. , .,	• • • • • • • • • • • • • • • • • • • •	<b>A</b>	
% KCN	g. Au dissolved in 24 hours		•
	A	В	-
1 5 20 50	$\begin{array}{c} 0.00845 \\ 0.01355 \\ 0.0115 \\ 0.00505 \end{array}$	0.0187 0.0472 0.0314 0.108	
50	0.00505	0.108	

(Maclaurin, Chem. Soc. 1893, 63. 729.)

The solution of Au in KCN+Aq is essentially hastened by sunlight. (Caldecott, Proc. Chem. Soc. 1904, 20. 199.)

The presence of oxygen is necessary for the solution of Au in KCN+Aq. The rate of solution of Au in KCN+Aq varies with the strength of the solution, being small for conc. solutions, increasing as the solution becomes more dilute, reaching a maximum at 0.25% KCN, and then again diminishing. (Maclaurin, Chem. Soc. 1895, 67. 211.)

Solubility of Au (strips) in dil. KCN+Aa.

% KCN	Mg. Au dissolved in 24 hours
0.010	
0:0005	0.043-0.07
0.001 0.10-0.23	
0:0016	0.16
0.002	0.44
0.00325	1.77
<b>0</b> %004	4.29
4* 0.008	48.43
0.016	74.96
0.0325	150 54
0.065	168.12

(Christy, Elektrochem. Z. 1901, 7. 205.)

Finely divided metallic gold is completely sol. at the ord. temp. in solutions of potassium ferrocyanide. Solution takes place very slowly even when the potassium ferrocyanide solution is boiling. (Beutel, Z. anorg. 1912, 78. 158.) Sol. in RbCl₄I+Aq.

(Erdmann, Arch.

Pharm. 1894, 232, 30.)

Not attacked by FeCl₂+Aq when air is excluded but very energetically attacked in presence of HCl and oxygen. (McIlhiney,

Am. J. Sci., 1896, (4), 2. 293.)

Not attacked by several days heating with SOCl₂ at 150°. At 200° there is sl. action in 10 days. (North, J. Am. Chem. Soc. 1912, **34.** 892.)

SO₂Cl₂ in excess dissolves pulverulent Au by several hours heating at 160°. (North, Bull. Soc. (4), 9. 647.)

Sol. in PCl₂. (Baudrimont, A. ch. (4) 2.

Easily sol, in acid solutions of thiocarbamide especially in presence of suitable (Moir, Chem. Soc oxidizing compounds. 1906, **89**. 1345.)

## Gold arsenide, AuAs.

H₂O or alcohol slowly extracts As; HNO₃+ Aq converts into Au and H.AsO. Sol. in aqua regia. Not attacked by cold, decomp. by hot conc. H₂SO₄. (Tivoli, C. C. 1887. 778; J. B. **1887.** 610.)

### Gold bismuthide, Au₂Bi.

Min. Maldonite. Sol. in aqua regia.

# Aurous bromide, AuBr.

Insol. in  $H_2O$ . (Thomsen, C. C. 1860. 606.)

Insol. in H₂O, HNO₃, H₂SO₄. Sol. in NH₄OH+Aq. with decomp. Decomp. by HBr and KBr+Aq. Sol. in KCN+Aq without decemp. Slowly decomp. by alcohol, ether, acetone and moist CHCla. (Lengfeld, Am. Ch. J. 1901, 26. 325.)

# Gold (aurcauric) bromide, Au₂Br₄.

Not deliquescent. E₂O or ether dissolves out AuBr₃. (Thomsen, C. C. 1860, 606.)

Does not exist. (Krüss, B. 20, 640.)

Existence is maintained by Petersen. (J. pr. (2) 46 334.)

### Auric bromide, AuBr₃.

Not deliquescent. Slowly sol. in H₂O, more readily in ether.

Can be recryst. from AsBrs, SbBrs, TiBrs or SnBr₂. (Lindet, Bull. Soc. 1886, (2) 45. 149.) Sol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Aurous phosphorus tribromide, AuBr., PBr. Decomp. by  $H_2O$ . (Lindet, J. pr. (2) 32.

Auric phosphorus pentabromide, AuBrs, rBr₅.

Decomp. by H₂O. (Lindet.)

Aurous bromide phosphorus trichloride, AuBr, PCl.

Decomp. by H₂O. (Lindet.)

### Auric praseodymium bromide, PrBr₈, AuBr₈+10H₂O.

Very sol. in H₂O; sol. in conc HBr. (Von Schule, Z. anorg. 1898, 18. 355.)

# Aurous bromide ammonia,

AuBr, 2NH₈.

Decomp. by H₂O and dil. HCl. Sol. in aqua regia. (Meyer, C. R. 1906, 143.281.)

# Gold carbide, Au₂C₂.

Ppt. Decomp. by boiling H₂O without colution of C₂H₂. Decomp. by HCl with evolution of C₂H₂. evolution of C₂H₂. (Mathews, J. Am. Chem. Soc. 1900, **22.** 110.)

#### Aurous chloride, AuCl.

Insol. in H₂O, but gradually decomp. thereby into Au and AuCl₂. (Thomsen, J. pr. (2) **13.** 341.)

Insol. in H₂O and dil. HNO₃.

Decomp. by conc. HNO₃ to Au and AuCl₂. Sol. in HCl, HBr and in sol. of alkali chloride and bromides, with decomp.

Decomp. by alcohol, ether and acetone. (Lengfeld, Am. Ch. J. 1901, 26. 324.)

Gold (auric) chloride, AuCla.

Deliquescent. Very tol. in H₂O. Sol. in 1.47 pts. H₂O. (Abl.) Sol. in conc. HCl, or HNO₃+Aq without decomp.

AsCl₂ dissolves about 22% at 160° and 2.5% at 15°. Solubility in SbCl₃ is about the same. Much less sol. in SnCl₄ or TiCl₄, SnCl₄ dissolving 4% at 160° and hardly a trace at 0°. Very sl. sol. in hot or cold SiCl4. (Lindet, Bull. Soc. (2) 45. 149.) Sl. sol. in liquid NH₈. (Franklin and Kraus,

Am. Ch. J. 1898, 20. 829.)

Sol. in alcohol with gradual decomp. (Gmelin.) Sol. in ether with decomp. in light or on long standing. Ether extracts AuCl₃ from AuCl₃+Aq (Proust). Sol. in volatile oils with gradual decomp.

Sol. in ether. (Mylius, Z. anorg. 1911, 70.

207.)

Very sol. in ether. (Willstätter, B. 1903, **36.** 1830.)

Completely sol. in ether. (Frank, C. C.. 1913, II. 541.)

Insol. in or decomp. by alcohol, ether, CS₂, C.H. oil of turpentine, pentane, hexane, CHCl₂, CCl₄, ethyl nitrate, nitrobenzol, ethyl acetate, ethyl propionate and pyridine. (Lenher, J. Am. Chem. Soc. 1903, 25. 1138.)

+2H₂O. (Thomsen.)

#### Auroauric chloride, Au₂Cl₄.

Decomp. by H₂O into AuCl₃ and AuCl. (Thomsen, J. pr. (2) 13. 357.)

Does not exist. (Krüss and Schmidt, J. pr. (2) **38.** 77.)

Existence is maintained by Christensen. (J. pr. (2) **46.** 328.)

Auric chloride with MCl. See Chloraurate, M.

Auric nitrosyl chloride, AuCl₃, NOCl.

Sol. in H₂O with decomp. (Sudborough, Chem. Soc. 59. 662.)

Aurous phosphorus trichloride, AuCl, PCla. Decomp. by H₂O. Sol. in about 100 pts. PCl₂ at 15°, and about 8 pts. at 120°. Sol. in AsCl₃. (Lindet, C. R. 101. 1492.)

Auric phosphorus pentachloride, AuCls, PCls. Decomp. by H2O. Nearly insol. in PCl3. Sol. in AsCl₃. (Lindet.)

Aurous potassium chloride, AuCl, KCl.

Decomp. by H₂O or HCl+Aq into KCl, KAuCl₄, and Au. (Berzelius.)

Auric potassium chloride.

" See Chloraurate, potassium.

Auric selenium chloride, AuCl₂, SeCl₄.

Decomp. by H₂O. Sol. in AsCl₃. (Lindet, C. R. 101. 1492.)

Gold (aurous) sodium chloride, AuCl, NaCl. Insol. in H2O. Sol. in alcohol. (Meillet, J. Pharm. 3. 447.)

Formula is 4NaCl, AuCl, AuCl. (Jörgensen.)

Auric sodium chloride.

See Chloraurate, sodium.

Auric sulphur chloride, AuCl₃, SCl₄.

Easily decomp. by H₂O. (Lindet, C. R. **101.** 1492.)

Aurous chloride ammonia, AuCl, NH.

Ppt. Unstable. (Diemer, J. Am, Chem. Soc. 1913, 35. 554.)

AuCl. 3NH₃. Decomp. by H₂O and dil. acids.

Sol. in aqua regia. Sol. in conc. H2SO4 with decomp. (Meyer, C. R. 1906, 143. 282.) AuCl, 12NH₃. (Meyer.)

Auric fluoride, AuF₈.

Verv unstable.

Is incapable of existence not only in presence of H2O but under the ordinary conditions met with in the laboratory and in nature. (Lenher, J. Am. Chem. Soc. 1903, 25. 1138.)

Auric hydroxide, AuO₂H₃.

Nearly insol. in most acids. Easily sol. in very conc. HNO₃+Aq (Proust), from which all AuO₃H₃ is separated by dilution (Fremy). Extremely sl. sol. in fuming HNO₃. Sol. in dil. HNO3+Aq when pure (Krüss, A. 237. 281). Not attacked by H₈PO₄. Insol. in HF. Sol. in HCl, or HBr+Aq (Fremy).

Sol. in H₂SeO₄+Aq. (Mitscherlich.) Sl. sol. in conc. H₂SO₄; somewhat sol. in  $HC_2H_2O_3+Aq$ . (Rose.)

Nearly insol. in cold KOH+Aq, but dissolved on boiling. Insol. in NH4OH+Aq or alkali carbonates + Aq (Rose). Sl. sol. in boiling CaCl₂+Aq, NaCl+Aq, BaCl₂+Aq (Pelletier). Sol. in NH₄CN, and KCN+Aq (Himly).

Sl. sol. in KCl, or NaCl+Aq. (Pelletier.) Sol. in K₄Fe(CN)₆+Aq at ord. temp. rapidly on boiling. (Beutel, Z. anorg. 1912, **78.** 154.)

AuO,  $OH = Au_2O_3$ ,  $H_2O$ . (Krüss.)

Auroauric hydroxide,  $Au_3O_2(OH)_2 = 3Au_2O_2$  $+2H_2O.$ 

Insol. in boiling conc. KOH+Aq. Decomp. by conc. HCl or HNO₈+Aq into Au and Au₂O₃, which dissolves. (Schöttlander, A. **217.** 336.)

Aurous iodide, AuI.

Insol. in cold, decomp. by hot H₂O, H₂SO₄, HCl, or HNO₃+Aq, with separation of Au. Decomp. immediately by ether, more slowly by alcohol.

Partially sol. in KI, FeI₃, or HI+Aq (Pelletier). Sl. attacked by NH₄OH, or NaCl+Aq at 35° (Fordos). Instantly decomp. by KOH+Aq.

#### Gold (auric) iodide, AuI.

Insol. in H₂O. Sol. in alkali iodides, and HI+Aq. Decomp. on air or by alkalies. (Johnston, Phil. Mag. J. 9. 266.)

#### Aurous iodide ammonia, AuI, NH₃.

Decomp. by H₂O or dil. acids. (Mayer, C. R. 1906, **143**. 281.)

Sol. in aqua regia. AuI, 6NH₃. (Meyer.)

## Aurous oxide, Au₂O.

Insol. in H₂O or alcohol. Decomp. by boiling with HCl+Aq into Au and AuCl₂. H₂SO₄, HNO₃, or HC₂H₂O₂+Aq do not attack. Sol. in cold aqua regia. Sol. in HI +Aq. Sol. in KOH, or NaOH+Aq when freshly precipitated. (Berzelius.)

According to Krüss (A. 237. 281) all hitherto prepared Au₂O is impure. Pure Au₂O is sol. in cold H₂O when freshly precipitated, from which hydroxide is precipitated by boiling. Partly sol. in HCl, or HBr+Aq. Sol. in KOH, or NaOH+Aq when freshly precipitated. Not affected by any other acid or solvent. (Krüss.)

The so-called solution of Au₂O in H₂O is in reality a coloidal suspension. (Vanino, B.

1905, 38. 462.)

#### Auric oxide, Au₂O₃. See Auric hydroxide.

Auroauric oxide, Au₂O₂. Sol. in cold HCl+Aq; forms insol. comp. with HF. (Prat, C. R. 70. 842.)

Obtained pure by Krüss (A. 237. 296.)

## Gold phosphide, Au₄P₆.

Not attacked by HCl+Aq. HNO₃ forms H₃PO₄ and leaves undissolved Au. (Schrötter, J. B. **1849**. 247.)
AuP. Decomp. on air or with H₂O. (Ca-

vazzi, Gazz. ch. it. 15. 40.)

Au₈P₄. Readily attacked by aqua regia or Cl₂+Aq. (Granger, C. R. 1897, **124**, 498.)

#### Gold purple (mixture of Au and SnO₂).

Insol. in H₂O. Easily sol. in aqua regia. HCl+Aq dissolves all Sn and leaves Au. Boiling HNO₃+Aq dissolves a little Sn. Insol. in boiling KOH+Aq (Berzelius).

KOH+Aq extracts excess of SnO₂, and the residue becomes sol. in H₂O, from which it is pptd. by NH₄Cl+Aq. (Figuier, A. ch. (3)

Sol., when still moist, in NH₄OH+Aq, but

insol. if it has been dried.

Obtained in colloidal state in aqueous solution containing 0.58 g. Au. and 5.41 g. SnO₂ | 26. (2) 350.)

in a litre. This solution may be concentrated without coagulation. The solution is coagulated by dil. HNO, or HCl+Aq, more easily by dil. H₂SO₄+Aq; also by KCl, HgCl₂, FeSO₄+Aq, and many other salts. Not cagulated by alcohol, but easily when ether is added to the alcohol. (Schneider, Z. anorg.

### Gold (auric) selenide, Au₂Se₂.

 $HNO_8+Aq$  dissolves out Se. Sol. in aqua regia or alkali sulph des + Aq. (Uelsmann, J. B. 1860. 90.)

### Aurous sulphide, Au₂S.

Easily sol. in H₂O when freshly prepared, but precipitated from aqueous solution by HCl, KCl, or NaCl Aq. When dried is msol. in H₂O.

Insol. in boiling dil. or conc. HCl, or H₂SO₄ +Aq. Easily sol. in aqua regia, HCl+Aq with KClO₃, etc. Slowly sol. in alkali monosulphides+Aq. Easily sol. in polysulphides +Aq.

Insol. in KOH+Aq. Sol. in KCN+Aq.

(Krüss, B. 20, 2369.)

Known also in colloidal state in aqueous solution containing 1.74 g. Au₂S per l. (Schneider, B. 24. 2241.)

#### Auric sulphide, Au₂S₃.

Insol. in H₂O and acids except aqua regia; sol. in alkali sulphides, or KOH+Aq. (Ber-

Does not exist (Krüss, B. 22. 2369), but has since been made by Antony and Luchesi (Gazz. ch. it. 20. 601). Insol. in HCl, or dil. HNO₃+Aq. Decomp. by conc. HNO₃, KOH, or NaOH +Aq with separation of Au. Sl. decomp. by NH₄OH +Aq. Easily sol. in KCN+Aq; decomp. by (NH₄)₂S+Aq. Sol. in cold Na₂S or K₂S+Aq; decomp. on boiling. (Antony and Luchesi, Gazz. ch. it. 21,

Insol. in ether. (Hofmann, B. 1904, 37.

246.)

#### Auroauric sulphide, Au₂S₂.

Insol. in H₂O or acids except aqua regia. Sl. sol. in cold alkali monosulphides + Aq, but easily sol. on warming. Sol. in cold polysulphides + Aq, but less in ammonium polysulphide than the other alkali polysulphides.

Not attacked by cold, but easily sol. in hot KOH+Aq. Sol. in KCN+Aq. (Hoffmann and Krüss, B. 20. 2704.)

Obtained also in colloidal state in aqueous solution containing 0.8 g. per l. (Schneider.) Insol. in Na₂S+Aq. sat. with S. (Ditte. A. ch. 1907, (8) 12. 273.)

## Aurous potassium sulphide, Au₂S, 3K₂S.

(Antony and Lucchesi, Gazz. ch. it. 1896.

Au₂S, 4K₂S+12H₂O. Very sol. in H₂O. (Ditte, C. R. 1895, **120**. 322.)

Gold silver sulphide, Ag, AuS2.

Ppt. (Lucchesi, Gazz. ch. it. 1896, 26. 350-53.)

Aurous sodium sulphide, NaAuS+4H₂O.

Sol. in H₂O and alcohol. (Yorke, Chem.

Soc. Q. J. 1. 236.) +5H₂O. Sol. in H₂O. (Ditte, C. R. 1895, **120.** 321.)

Na₃AuS₂. Sol. in H₂O. (Lucchesi, Gazz. ch. 4t. 1896, 26. 350-53.)

Au. S.  $2Na_2S+20H_2O$ . Very sol. in  $H_2O$ . (Ditte, C. R. 1895, **120**. 321.)

#### Gold telluride.

Ppt. (Berzelius, Pogg. 8. 178.)

Gold silver telluride, Au₂Te₂, Ag₂Te.

Min. Sylvanite. Sol. in HNO₃+Aq with separation of Au, in aqua regia with separation of AgCl.

3Ag₂Te, Au₂Te. Min. Petzite.

### Hartshorn, salts of.

See Carbonate carbamate, ammonium hydrogen.

#### Helium, He.

Coefficient of absorption for  $H_2O$  at  $18.2^{\circ} = 0.0073$ . (Ramsay, Z. phys. Ch. 1906, **55.** 347.)

Absorption of helium by H₂O at t° and 760 mm, pressure.

<b>.</b>		
t°	Coefficient of absorption	
0 0.5 5 10 15 20 25 30 35 40 45 50	0.01500 0.01487 0.01460 0.01442 0.01396 0.01386 0.01371 0.01382 0.01380 0.01387 0.01403	

(Estreicher, Z. phys. Ch. 1899, **31.** 184.)

Absorption by H₂O at t°.

t°	Coefficient of absorption
0	0.0134
10	0.0100
20	0.0138
30	0.0161
40	0.0191
50	0.0226

(Antropoff, Roy. Soc. Proc. 1910, 83. A 480.) Chem. Soc. 1897, 72 (2) 22.)

Completely insol. in benzene and in alcohol (Ramsay, Chem. Soc. 1895, 67. 684.)

Hexamine chromium compounds. See Luteochromium compounds.

Hexamine cobaltic compounds,  $\text{Co}_2(\text{NH}_8)_6X_6$ .

See Dichrocobaltic compounds.

See Dichrocobaltic compounds  $Co(NH_8)_6X_3$ .

See Luteocobaltic compounds.

Hexamine iridium chloride, Ir₂(NH₃)₆Cl₆. See Iridotriamine chloride.

#### Hexathionic acid, H₂S₆O₆.

Known only in aqueous solution, which decomposes rapidly, even in presence of free sulphuric acid. (Debus, A. 244. 76.)

#### Potassium hexathionate, K₂S₆O₄.

Sol. in H₂O, with rapid decomp. Not obtained in pure state. (Debus, A. 244. 76.)

Holmium, Ho.

#### Holmium oxide, Ho₂O₃.

(Cleve, C. R. 89. 478; 91. 328.)

Consists of at least two elements. (Lecoq de Boisbaudran, C. R. 102, 1005.)

Consists of seven elements. (Krüss and Nilson.).

Sesquihydraurylamine, (AuOH)₃N, NH₃=  $Au_3N_2+3H_2O$ .

Decomp. by boiling with  $H_2O$ . (Raschig, A. 235. 341.)

#### Hydrazidophosphoric acid.

#### Barium hydrazidophosphate, OP(N₂H₃)O₂Ba.

(Ephraim, B. 1911, 44. 3420.)

Lead hydrazidophosphate, OP(N₂H₃)O₂Pb. Easily sol. in HNO₃. (Ephraim.)

#### Potassium hydrazidophosphate, OP(N₂H₃)(OK)₂. (Ephraim.)

#### Sodium hydrazidophosphate, OP(N₂H₃)(ONa)₂.

Can be cryst. from dil. alcohol. (Ephraim.)

## Hydrazine, $N_2H_4 = NH_2 - NH_2$ .

Very sol. in H₂O. (Curtius, B. **20.** 1632.) Very hydroscopic; decomp. by H₂O; solvent for sulphur, KCl, KBr, KNO₃. (de Bruyn, R. t. c. 1894, **13.** 433-40; Chem. Soc. 1895, **68** (2) 347.)

Mixes in all proportions with alcohols; sl. sol. in organic solvents. (Lobry de Bruyn,

#### Hydrazine amidosulphonate, N₂H₄, HSO₃, NH₂.

Very sol. in H₂O. (Sabanejeff, Z. anorg. 1899, 20, 22.)

#### Hydrazine azoimide, N₂H₄, HN₃.

Deliquescent, Easily sol, in H₂O, Sl, sol, in alcohol, and can be crystallised therefrom. (Curtius, B. 24. 2344.)

### Hydrazine borate, $(N_2H_4)_2(B_2O_3)_6$ .

Sol. in H₂O. (Dschawachow, C. C. 1902, I. 1394.)

(N₂H₄)₂(H₂B₄O₇)₃. Sol. in H₂O. (Dschawachow, C. C. **1902**, I. 1394.) +5H₂O. Sol. in H₂O. (Dschawachow,

C. C. **1902.** I. 1394.)

+10H₂O. Ppt. (Dschawachow, C. C. 1902. I. 1394.)

#### Hydrazine cuprous bromide chloride, N₂H₅Cl, N₂H₅ Br, 3CuBr.

(Ranfaldi, Real Ac. Linc. 1906 (5) 15, II, 95.)

#### Hydrazine mercuric bromide, $HgBr_2$ , 2 ( $N_2H_4$ , HBr) + $H_2O$ .

Very sol, in H₂O, sol, in alcohol and acetone. Sl. sol. in acctic ether.

Insol. in ethyl ether. (Ferratini, C. A. **1912.** 1612.)

#### Hydrazine zinc bromide, 2N₂H₄HBr, ZnBr₂ +H₂O.

Very sol, in  $H_2O$ ; sol, in alcohol and acetone. (Ferratini, C. A. **1912.** 1612.)

#### Hydrazine carbonate.

Very deliquescent, but only sl. sol. in H₂O. Sl. sol. in alcohol. (Curtius and Jay, J. pr. 1889, (2) **39.** 41.)

#### Hydrazine zinc carbonate hydrazine, $Zn(CO_2, NH, NH_2)_2$ , $2N_2H_4$ .

Easily sol. in H₂O. (Ebler and Schott, J. pr. 1909, (2) **79**, 72.)

## Hydrazine chlorate, N₂H₄, HClO₃.

Very sol. in H₂O; sl. sol. in alcohol. Insol. in ether, CHCl₃ and benzol. Gazz. ch. it. 1907, 37, (2) 32.) (Salvadori,

#### Hydrazine dichlorate, N₂H₄, 2HClO₃.

Ppt. Decomp. in aq. solution. (Turrentine, J. Am. Chem. Soc. 1915, 37. 1123.)

#### Hydrazine cupric chloride, N₂H₅Cl, CuCl₂+ ½H₂O.

Decomp. by H₂O. (Ranfaldi, Real. Ac. | Very deliction. 1906, (5) **15**, II. 95.) | +2H₂O. Decomp. by H₂O. (Ranfaldi.) | (2) **42**. 536.)

Hydrazine mercuric chloride, N₂H₅Cl, HgCl₂. (Hoffmann and Marburg, A. 1899, 305. 221.)

## Hydrazine dithionate, N2H4, H2S2O6.

Sol, in H₂O; decomp, on standing in aq. solution. (Sabanejeff, Z. anorg. 1899, 20. 21.)  $2N_2H_4$ ,  $H_2S_2O_6$ . Sol. in  $H_2O$ . (Sabanejeff.)

### Hvdrazine fluosilicate, N2H4, H2SiF6.

Easily sol. in H₂.

Difficultly sol, in ethyl and methyl alcohol. (Ebler, J. pr. 1910, (2) 81. 552.)

## Hydrazine fluotitanate, $(N_2H_4)_2$ , $H_2TiF_6+$

Ppt. Sol. in H₂O. (Ebler, J.p r. 1910, (2) **81.** 555.)

### Hydrazine monohydrobromide, N₂H₄, HBr.

Very easily sol. in H₂O or hot alcohol. (Curtius and Schultz, J. pr. (2) 42. 537.)

#### Hydrazine dihydrobromide, N₂H₄, 2HBr.

Easily sol. in H₂O. Sl. sol. in alcohol. (Curtius and Schulz, J. pr. (2) **42.** 535.)

## Hy trazine monohydrochloride, N₂H₄, HCl.

Extremely sol. in H₂O. Sl. sol. in boiling absolute alcohol. (Curtius and Jay, J. pr. **(2) 39.** 38.)

#### Hydrazine dihydrochloride, $N_2H_4$ , 2HCl.

Easily sol. in cold  $H_2O$ ; sl. sol. in hot alcohol. (Curtius, l. c.)

Sol. in 2.67 pts.  $H_2O$  at 23°. Sp. gr. of sat. solution at  $20^\circ/4^\circ = 1.4226$ . (Schiff, Z. phys. Ch. 1896, **21.** 292.)

Sp. gr. of aqueous solution at 20°.

1 0	
% salt	Sp. gr.
25 20 15 10 5	1.1183 1.0923 1.0675 1.0436 1.0206

(Schiff, Z. phys. Ch. 1896, **21.** 292.)

Nearly insol. in hot absolute alcohol. (Curtius and Jay, J. pr. (2) 39. 37.)

#### Hydrazine dihydrofluoride, $N_2H_4$ , 2HF.

Easily sol. in H2O. Nearly insol. in alcohol. (Curtius and Schulz, J. pr. (2) 42. 533.)

Hydrazine monohydroiodide, N2H4, HI. Easily sol. in H₂O. (Curtius and Schulz.)

### Hydrazine dihydroiodide, N2H4, 2HI,

|Very deliquescent. Easily sol. in H₂O. Sl. sol. in alcohol. (Curtius and Schulz, J. pr.

#### Trihydrazine dihydroiodide, 3N2H4, 2HI.

Easily sol. in H₂O and alcohol. (Curtius and Schulz, J. pr. (2) 42. 540.)

#### Hydrazine hydroxide, N₂H₄, H₂O.

Miscible with H2O or alcohol, but not with ether, chloroform, or benzene. (Curtius and Schulz, J. pr. (2) 42. 530.)

#### Hydrazine hypophosphate, N₂H₄, H₄P₂O₆.

Sl. sol. in H₂O. 1.5 pts. dissolve in 100 pts. H₂. (Sabaneieff, Z. anorg. 1898, 17. 490?)

## Hydrazine hypophosphate ammonia, $N_2H_4$ , $H_4P_2O_6$ , $NH_8$ .

Sol. in H₂O. (Sabanejeff, Z. anorg. 1899, **20.** 23.)

#### Hydrazine mercuric iodide, $2N_2H_5I$ , $HgI_2+H_2O$ .

Very sol. in H₂O, alcohol, acetone, acetic ether.

Insol. in ether. Excess of H₂O decomp. (Ferratini, Gazz. ch. it. 1912, 42. (1), 172.)

#### Hydrazine zinc iodide,

 $ZnI_2$ ,  $2N_2H_4$ ,  $HI + \frac{1}{2}H_2O$ .

Very sol. in H₂O; sol. in alcohol and acetone. (Ferratini, C. A. **1912.** 1612.)

#### Hydrazine nitrate, N₂H₄, HNO₃.

Very sol. in H₂O; sl. sol. in abs. alcohol. (Sabanejeff, Z. anorg. 1899, 20. 24.)

#### Solubility in H₂O at t°.

+°	g. N ₂ H ₄ , HNO ₈ per 100 g.		
·	Sat. solution	H ₂ O	
10	63.63	174.9	
15	68.47	217.2	
20	72.70	266.3	
$\overline{25}$	76.61	327.5	
30	80.09	402.2	
35	83.06	490.3	
40	85.86	607.2	
45	88.06	737.6	
$\overline{50}$	91.18	1034.	
55	93.58	1458.	
60	95.51	2127.	

(Sommer, Z. anorg. 1914, 86. 85.)

N₂H₄, 2HNO₈. Very unstable.

Sol. in H₂O but solution cannot be concentrated beyond 30% without decomp.

Decomp. by abs. alcohol. Very sol. in hydrazine hydroxide+Aq. (Sabanejeff, Z. anorg. 1898, **20**. 25.)

#### Hydrazine nitrite, N₂H₄, HNO₂.

Very sol. in H₂O. Pptd. by ether from solution in alcohol; insol. in ether.

Very hydroscopic. (Sommer, Z. anorg. 1913, 83, 125.)

#### Hydrazine perchlorate, $N_2H_4$ , $HClO_4+2H_2O$ .

Sol. in 1.48 pts. H₂O at 30° and 34 pts. alcohol; crystallizes from boiling absolute alcohol. (Salvadori, Ch. Z. 31. 680.)

+3H₂O.

#### Solubility in H₂O at t°.

t°	% N ₂ H ₄ , HClO ₄	Sp. gr.
18	41.72	1.264
35	66.9	1.391

(Carlson, Dissert. 1910.)

#### Hydrazine diperchlorate, N₂H₄, 2HClO₄+ 2H₂O.

Efflorescent.

Deliquescent.

102 pts. salt sol. in 100 pts. H₂O at 29°.

2.8 pts. salt sol. in 100 pts. alcohol. 1.0 pt. ""100" ether.

(Turrentine, J. Am. Chem. Soc. 1915, 37. 1123.)

#### Hydrazine phosphate, N₂H₄, H₃PO₄.

Very sol. in H₂O. (Sabanejeff, Z. anorg. 1898, 17. 488.)

N₂H₄, 2H₃PO₄. Sol. in H₂O. (Sabanejeff.)

#### Hydrazine phosphite, N₂H₄, H₃PO₃.

Sol. in H₂O. (Sabanejeff, Z. anorg. 1898, 17. 468.)

#### Hydrazine hydrogen phosphite, $N_2H_4$ , $2H_3P()_3$ .

Less sol. in H₂O than the normal salt. (Sabanejeff.)

## Hydrazine selenate, N₂H₄, H₂SeO₄.

Sol. in H₂O with decomp. (Rimini, C. C. 1907, I. 86.)

## Hydrazine zinc selenate,

 $(N_2H_5)_2SeO_4$ ,  $ZnSeO_4$ .

Sl. sol. in H₂O but more sol. than Cu salt. (Rimini and Malagnini, Gazz. ch. it. 1907, **37**. (1), 265.)

## Hydrazine sulphocyanide, N₂H₄, HSCN.

Very deliquescent. Sol. in H2O and alcohol. (Curtius and Herdenreich, J. pr. 1895, [2] 52. **488.**)

## Hydrazine sulphate, N₂H₄, H₂SO₄.

Sol. with difficulty in cold, easily in hot H₂O. Insol. in alcohol. (Curtius, l. c.) 100 pts. H₂O dissolve 3.055 pts. salt at 22°.

(Curtius and Jay, J. pr. (2) 39. 39.) 2N₂H₄, H₂SO₄. Very deliquescent, and

sol. in H₂O. Insol. in alcohol. (Curtius, J. pr. (2) 44. 101.)

Hydrazine sulphite,  $(N_2H_4)_2H_2SO_8$ . (Sabanejeff, Z. anorg. 1899, **20**, 24.)

Hydrazine pyrosulphite, 2N₂H₄, H₂S₂O₅.
Sol. in H₂O with decomp.; insol. in alcohol. (Sabanejeff, Z. anorg. 1899, **20**. 23.)

Hydrazine thiosulphate,  $(N_2H_4)_2$   $H_2S_2O_4$ . Ppt. (Not pure.) (Ferratini, Gazz. ch. it. 1912, **42.** (1) 138.)

Hydrazine lead thiosulphate, PbS₂O₃, 2(N₂H₄)₂H₂S₂O₃+H₂O. Insol. in H₂O and alcohol. Sol. in HCl+Aq and in HNO₃+Aq. (Ferratini, C. A. **1912**. 1612.)

Hydrazine silver thiosulphate, Ag₂S₂O₃, (N₂H₄)₂H₂S₂O₃. Insol. in H₂O; sol. in NH₄OH+Aq and in HNO₃. (Ferratini.)

#### Hydrazine sulphinic acid.

Barium hydrazine disulphinate,  $Ba_2N_2(SO_2)_2$ .

Insol. in  $H_2O$ ; sol. in acids. (Ephraim, B. 1911, **44**. 390.)

Hydrazinesulphonic acid, N₂H₃SO₂OH.

Sol. in about 24 pts. H₂() at ord. temp. Decomp. by mineral acids; nearly insol. in alcohol and other organic solvents. (Traube, B. 1914, 47. 941.)

Ammonium hydrazinesulphonate,  $(N_2H_8SO_8)NH_4$ .

Deliquescent; decomp. by acids. (Traube.)

Barium hydrazinesulphonate,  $(N_2H_8SO_3)_2Ba+2H_2O$ .

Sol. in H₂O; pptd. by alcohol; decomp. by acids. (Traube.)

Calcium hydrazinesulphonate,  $(N_2H_3SO_3)_2Ca+H_2O$ .

Sol, in H₂O. Decomp. by acids. Insol, in alcohol. (Traube.)

Potassium hydrazinesulphonate, N₂H₃SO₃K. Decomp. by acids. (Traube.)

Silver hydrazinesulphonate, N₂H₃SO₃Ag. (Traube.)

Sodium hydrazinesulphonate, N₂H₃SO₃Na+H₂O. Decomp. by acids. (Traube.) Strontium hydrazinesulphopate,  $(N_2H_3SO_3)_2Sr+2H_2O$ .

Sol. in H₂O. Decomp. by acids. Insol. in alcohol. (Traube.)

Hydriodic acid, HI.

Sec Iodhydric acid.

Hydrebromic acid, HBr. See Bromhydric acid.

Hydrochloric acid, HCi. See Chlorhydric acid.

Hydrofluorboric acid, HBF₄.

See Fluoborhydric acid.

Hydrofluoric acid, HF.
See Fluorhydric acid.

Hydrogen, H₂. Sl. absorbed by H₂O.

Sol. in 150 pts.  $H_2O$ ; 1 vol.  $H_2O$  absorbs 0.016 vol. H. Recently boiled  $H_2O$  absorbs 1.53% H. (Henry, **1803.**) 100 vols.  $H_2O$  at 18° absorb 4.6 vols. H. (de Saussure, **1814.**)

1 vol.  $H_2O$  absorbs 0.0193 vol. H at 760 mm, and all temperatures between 0° and 23.6°. (Bunsen.)

LE ter work does not confirm the above statement.

Absorption of H by  $H_2O$  at t and 760 mm,  $\beta$  = coefficient of absorption;  $\beta_1$  = "solubility" (see under Oxygen).

	(see under Oxygen).		
t°	β	βι	
0	0.02153	0.02140	
	0.02134	0.02120	
2	0.02101	0.02100	
3	0.02097	0.02081	
4	0.02079	0.02062	
1 2 3 4 5 6	0.02061	0.02002	
8	0.02044	0.02025	
7	0.02027	0.02020	
e l	0.02010	0.01989	
8 9	0.02010	0.01989	
10	0.01994	0.01971	
11	0.01978	0.01934	
12			
13	0.01947	0.01920	
	0.01932	0.01904	
14	0.01918	0.01888	
15	0.01903	0.01872	
16	0.01889	0.01856	
17	0.01876	0.01840	
18	0.01863	0.01825	
19	0.01850	0.01810	
20	0.01837	0.01795	
21	0.01825	0.01781	
22	0.01813	0.017 <b>67</b>	
23	0.01802	0.01753	
24	0.01791	0.01739	
25	0.01780	0.01725	
26	0.01770	0.01712	

(Timofejeff, Z. phys. Ch. 6. 147.)

Absorption of H by H₂O at t° and 760 mm. Absorption of hydrogen by H₂O at t° and 760  $\beta$  = coefficient of absorption.

	•				
t°	β	to	β	t°	β
0	0.0203	16	0.0182	32	0.0161
1	0.0202	17	0.0180	33	0.0160
2	0.0200	18	0.0179	34	0.0159
3	0.0199	19	0.0178	35	0.0157
4	0.0198	20	0.0177	36	0.0156
5	0.0196	21	0.0175	37	0.0155
6	0.0195	22	0.0174	38	0.0154
7	0.0194	23	0.0172	39	0.0153
8	0.0192	24	0.0171	40	0.0152
9	0.0191	25	0.0170	45	0.0149
10	0.0190	26	0.0168	50	0.0146
11	0.0189	27	0.0167	60	0.0144
12	0.0187	28	0.0166	70	0.0146
13	0.0186	29	0.0164	80	0.0149
14	0.0184	30	0.0163	90	0.0155
15	0.0183	31	0.0162	100	0.0166

(Bohr and Bock, W. Ann. 44. 318.)

Absorption of hydrogen by H₂O at t° and 760 mm. pressure.  $\beta$  = coefficient of absorption.  $\beta_1 =$  "solubility" (see under Oxygen).

t°	β	$oldsymbol{eta}_{\mathfrak{l}}$
0	0.02148	0.02135
i	0.02126	0.02112
$ar{f 2}$	0.02105	0.02090
$\bar{\mathbf{a}}$	0.02084	0.02068
4	0.02064	0.02047
1 2 3 4 5	0.02044	0.02026
6	0.02025	0.02006
7	0.02007	0.01987
8 9	0.01989	0.01968
9	0.01972	0.01950
10	0.01955	0.01932
11	0.01940	0.01915
12	0.01925	0.01899
13	0.01911	0.01883
14	0.01897	0.01867
15	0.01883	0.01851
16	0.01869	0.01836
17	0.01856	0.01821
18	0.01844	0.01706
19	0.01831	0.01792
20	0.01819	0.01777
21	0.01805	0.01761
22	0.01792	0.01746
<b>2</b> 3	0.01779	0.01730
<b>24</b>	0.01766	0.01715
25	0.01754	0.01700
26	0.01742	0.01685
27	0.01731	0.01670
28	0.01720	0.01656
29	0.01709	0.01642
30	0.01699	0.01630
31	0.01692	0.01618
32	0.01685	0.01606
33	0.01679	0.01596
34	0.01672	0.01585
35	0.01666	0.01574

mm. pressure.—Continued.

t°	β	β1
36 ·	0.01661	0.01564
37	0.01657	0.01554
38	0.01652	0.01544
39	0.01648	0.01535
40	0.01644	0.01525
41	0.01640	0.01515
$\overline{42}$	0.01635	0.01504
$\frac{1}{43}$	0.01631	0.01493
44	0.01627	0.01482
45	0.01624	0.01475
46	0.01620	0.01460
47	0.01617	0.01449
48	0.01614	0.01437
49	0.01611	0.01425
50	0.01608	0.01413
52	0.01606	0.01392
54	0.01605	0.01369
56	0.01603	0.01343
58	0.01602	0.01316
60	0.01600	0.01287
62	0.01600	0.01256
64	0.01600	0.01223
66	0.01600	0.01188
68	0.01600	0.01150
70	0.01600	0.01109
73	0.01600	0.01065
74	0.01660	0.01017
76	0.01600	0.00966
<b>7</b> 8	0.01600	0.00912
80	0.01600	0.00853
82	0.01600	0.00790
84	0.01600	0.00723
86	0.01600	0.00652
88	0.01600	0.00575
90	0.01600	0.00494
92	0.01600	0.00407
94	0.01600	0.00315
96	0.01600	0.00216
98	0.01600	0.00111
100	0.01600	0.0000

(Winkler, B. 24. 99.)

Critical t,-232°. (Natanson, Z. phys. Ch. 1895, **17**. 43–48.)

Coefficient of absorption for  $H_2O = 0.01750$ Coefficient of absorption for  $H_2O = 0.01730$  at  $25^\circ$ ; 0.01905 at  $20^\circ$ ; 0.02059 at  $15^\circ$ ; 0.02213 at  $10^\circ$ ; 0.02366 at  $5^\circ$ . (Braun, **Z**. phys. Ch. 1900, **33**. 734.) Solubility in  $H_2O$  at  $25^\circ = 0.01926$ . (Geff-cken, Z. phys. Ch. 1904, **49**. 267.)

Coefficient of absorption for  $H_2O = 0.01810$  at 20.11.° (Hüfner, Z. phys. Ch. 1907, 57.

Solubility in  $H_2O$  at  $25^{\circ}=0.01962$ . (Drucker and Moles, Z. phys. Ch. 1910, 75. 417.)

Coefficient of absorption for H₂O at 15° = 0.01892; at 20°=0.01829. (Müller, Z. phys. Ch. 1912, 81, 493.)

Solubility of hydrogen in water at 25°. S=Solubility calculated according to formula, for which see original article. P = Pressure.

	2 2 2 0 0 0 0 0			
P	s	P	ន	
756 757 850 877 986 992	0.0199 0.0198 0.0200 0.0193 0.0194 0.0198	1095 1097 1244 1252 1380 1393	0.0195 0.0197 0.0202 0.0196 0.0196 0.0198	

(Findlay, Chem. Soc. 1912, 101, 1465.)

Absorption by H₂O at different pressures. P=Hg-pressure in metres.

 $\lambda = \text{coefficient of solubility.}$ 

Table I. Volume of the absorbing liquid = 32.32 ccm, T=19.5°.

0.9010         0.01798         3.392           0.9967         0.01796         4.140           1.0809         0.01799         4.662           1.2133         0.01800         5.470           1.3711         0.01794         5.958           1.5448         0.01791         6.650	
1.8002   0.01793   7.454 2.5208   0.01793   7.878	0.01776 0.01776 0.01761 5.0.01748 0.01725 7.0.01706 8.0.01674

Table II. Volume of the absorbing liquid = 32.007 ccm.  $T = 23^{\circ}$ .

P	λ	P	λ
1.1154 1.3758 1.7416 2.1712 2.8724 3.4115 4.0229	0.01736 0.01739 0.01733 0.01731 0.01734 0.01732 0.01728	4.6220 5.1130 5.9702 7.1920 7.4493 7.8696 8.1913	0.01716 0.01702 0.01687 9.01649 0.01631 0.01618 0.01603

(Cassuto, Phys. Zeit. 1904, 5. 235.)

Absorption of H₂ by acids +Aq. M = content in gram-equivalents per liter. S = solubility. (See under Oxygen.) Absorption of  $H_2$  by  $HNO_3+Aq$ .

M	S 25°
0.741	0.01851
0.753	0.01868
1.22	0.01812
1.45	0.01782
2.09	0.01739
2.96	0.01690
3.18	0.01667
3.22	0.01633
4.13	0.01611
4.23	0.01589

(Geffcken, Z. phys. Ch. 1904, 49. 267.)

Absorption of H2 by HCl+Aq.						
, M 8 25°						
0.426 0.432 1.063 1.302 1.802 1.928 2.338 2.438 2.835	0.01875 0.01868 0.01789 0.01732 0.01699 0.01688 0.01652 0.01627					

(Geffcken.)

Absorption of  $H_2$  by  $\frac{H_2SO_4}{2} + Aq$ .

M	S 25°
0.527	0.01869
0.562	0.01838
0.985	0.01780
1.122	0.01768
1.866	0.01642
1.905	0.01632
2.605	0.01575
$egin{array}{c} 3.045 \ 3.174 \ 3.962 \ 3.989 \end{array}$	$\begin{array}{c} 0.01496 \\ 0.01456 \\ 0.01422 \\ 0.01402 \end{array}$

(Geffcken.)

Solubility of H₂ in H₂SO₄+Aq at 20°.

% H ₂ SO ₄	λ 20°
0	0.0208
35.82	0.00954
61.62	0.00708
95.6	0.01097

(Christoff, Z. phys. Ch. 1906, 55. 627.)

Solubility of H2 in colloidal ferric hydroxide solution is practically the same as its solubility in pure H₂O.

Solubility of H₂ in a solution containing

18.11 g. Fe(OH)₃ per liter at  $25^{\circ} = 0.3085$ . Solubility of H₂ in a solution containing 18.309 g. Fe (OH)₃ per liter at  $25^{\circ} = 0.3083$ .

(Geffcken, Z. phys. Ch. 1904, 49. 299.)

Absorption of  $H_2$  by bases +Aq.

M = content in gram-equivalents per liter. S = solubility. (See under Oxygen.)

Absorption of H₂ by KOH+Aq.

M	S 25°
0.536	0.01658
0.715	0.01539
1.059	0.01378
1.056	0.01389
1.480	0.01195

(Geffcken, Z. phys. Ch. 1904, 49. 267.)

Absorp	tion of H ₂	by NaOH+Aq.	_	Abse	orption	a by s	salts-	⊦Aq.	
0.543 0.571 0.692 0.974		8 25°  0.01632 0.01608 0.01442 0.01409	Salt .	tı°	Sp. gr. salt + Aq. at t°1/4°	% salt	t°2	Absorption- coefficient at toz	Absorption- coefficient at 15° (Calculated).
1.059 1.137 1.850 3.400		0.01372 0.01348 0.01018 0.00648	KCI	15°	1.1294 $1.0794$ $1.0480$	$19.21 \\ 12.13 \\ 7.48$	$18.82 \\ 18.71 \\ 19.00$	0.00869 0.00985 0.01246 0.01447 0.01618	0.01012 0.01279 0.01489
3.430 4.687		0.00639 0.00483	KNO ₈	15°	[1.0936]	14.26	16.81	0.01373	
Solubilit		salts+Aq at 15°.		·	1.0295	4.73	17.82	0.01531	0.01683
Salt	% Salt	Coefficient of absorption	K ₂ CO ₈	15°	1.4395 $1.3112$ $1.2353$	$     \begin{array}{r}       41.81 \\       30.99 \\       24.13     \end{array} $	13.17 $12.77$ $12.62$	0.00162 0.00290 0.00470	0.00160 0.00285 0.00462 0.00761 0.01183
H ₂ O	0.00	0.01883			$egin{array}{c} 1.1555 \\ 1.0807 \\ 1.0405 \\ 1.0248 \end{array}$	16 47 8.83 4.53	12.51 $11.32$ $12.29$	0.00775 0.01216 0.01532 0.01675	0.00761 0.01183 0.01501
CaCl ₂	$\begin{array}{c} 3.47 \\ 6.10 \\ 11.33 \\ 17.52 \end{array}$		NaCl	15°	1.1817 1.1088 1.0807	23 84 14.78 11.09	13.48 13.17 13.80	0.00602 0.00938 0.01140 0.01565	0.00595 0.00925 01130
MgSO ₄	$ \begin{array}{r}     26.34 \\     \hline     4.94 \\     10.19 \end{array} $	0.00519 0.01501 0.01159	NaNO ₈	18°	1.2099	$\begin{vmatrix} 27 & 95 \\ 19.77 \\ 11.16 \end{vmatrix}$	17 36 17 40 17 65	0.00568 0.00797 0.01034 0.01345 0.01572	0.00810 0.01052 0.01370
LiCl	$ \begin{array}{r} 23.76 \\ \hline 3.48 \\ 7.34 \\ 14.63 \end{array} $	0.00499 0.01619 0.01370	Na ₂ CO ₃	15°		11.53 8.02 4 64	13 07 12 08 11 61	0 00851 0 01100 0 01420	0.00839
-K ₂ CO ₃	2.82	0.0099	Na ₂ SO ₄	18° 15°	1.1608 1.0768 1.0412	8.42	18 57	0 01223	0.00775 0.01254 0.01519
	8.83 $16.47$ $24.13$ $41.81$		LiCI	15°	·				0.00990 0.01370 0.01619
KCl	3.83 7.48 12.13	0.01489	MgSO4	15°	1.2679 1.1805 1.1064 1.0503	23.76 16 64 10 19 4.97	18.26 17.55 17.30 17.10	0 00487 0 00783 0 01140 0 01479	0.00499 0.00797 0.01159 0.01501
	19.21 22.92	0.01213 0.01012 0.00892	ZnS()4	18°	1 1961 1 1394	$\begin{vmatrix} 17 & 23 \\ 12 & 73 \end{vmatrix}$	18 22 17 95	0.00590 0.00940 0.01151 0.01495	0.01175
KNO ₈	4.73 8.44 16.59 21.46	0.01559 0.01311	CaCl ₂	15°	1.2150 1.1568 1.0981 1.0513	23.33 17.52 11.33 6.10	17.84 18.09 18.40	0.00821 0.01112 0.01419	0.00619 0.00839 0.01138 0.01450
NaNO ₈	5.57 11.16 19.77 37.45	0.01370 0.01052	AlCla	15°	1.0285 1.2647 1.1589 1.0914 1.0488	32.30	17.14	0.00525	0.01619 0.00533 0.00874 0.01210 0.01486
Na ₂ CO ₈	2.15 8.64 11.53	0.01385	C12H22O11	1	1.2184 1.1286 1.0672	47.65 30.08 16.67	13.80 14.19 14.10	0.00900 0.01292 0.01571	0.00892 0.01284 0.01561
Na ₂ SO ₄	4.58 8.42 16.69	0.01519 0.0154 0.00775	_ (Ster	ner, \	W. An	n. 189	94 (2)	, <b>52.</b> 29	)1.)

Solubility in salt solutions.

C=concentration of the solution in terms of normal.

a = coefficient of absorption.

Absorption of hydrogen by NH₄NO₈+Aq at 20°.

P	C	α
1.037	0.1308	0.01872
2.167	0.2765	0.01845
3.378	0.4363	0.01823
4.823	0.6333	0.01773
6.773	0.9069	0.01744
11.550	1.6308	0.01647

(Knopp, Z. phys. Ch. 1904, 48. 103.)

Absorption of hydrogen by KNO_a+Aq at 20"

P	C	α
1.244	0.1245	0.01835
2.094	0.2114	0.01818
4.010	0.4127	0.01785
5.925	0.6225	0.01743
7.742	0.8293	0.01667
13.510	1.5436	0.01436

#### (Knopp.)

Absorption of hydrogen by NaNO₂+Aq at 20°.

P	С	α
$\begin{array}{c} 1.041 \\ 2.192 \\ 4.405 \\ 6.702 \\ 12.637 \end{array}$	0.1236 0.2634 0.5416 0.8442 1.7394	0.01839 0.01774 0.01694 0.01518 0.01300

#### (Knopp.)

Absorption of hydrogen by KCl+Aq at 20°.

P	С	α
1.089 2.123 4.070 6.375 7.380 13.612	$\begin{array}{c} 0.1475 \\ 0.2907 \\ 0.5687 \\ 0.9127 \\ 1.0682 \\ 2.1222 \end{array}$	0.01823 0.01757 0.01661 0.01531 0.01472 0.01255

#### (Knopp.)

Absorption of H₂ by NaCl+Aq. at = coefficient of absorption at t°.

-								
Percent of NaCl in the solution	a25°	a20°	a15°	<b>a</b> 10°	a5°			
$\frac{3.798}{1.523}$	0.01395 0.01429	0.01623 0.01754	0.01665 0.01714 0.01760 0.01896	0.01769 0.01817 0.01876 0.02030	0.01861 0.01920 0.01977 0.02155			

(Braun, Z. phys. Ch. 1900, 33. 735.)

Absorption of H by BaCl₂+Aq. at° = coefficient of absorption at t°.

Percent of BaCl2 in the solution	a.25°	a20°	a15°	a10°	a5°
7.002 6 453 3.600 ± 3.201	0 01474 0 01562	0.01603	$0.01734 \\ 0.01839$	0.01833 0.01857 0.01971 0.01983	0.01957 0.02089

#### (Braun.)

1 vol. alcohol at t° and 760 mm absorbs V vols. II gas reduced to 0° and 760 mm.

t°	v	t°	v	t°	v
0	0.06925	9	0.04799	18	0.06690
$\frac{1}{2}$	0.06910 0.06896	10	0.06787 0.06774	19 20	0.06679 0.06668
$\frac{3}{4}$	0.06881 0.06867	12	0.06761 0.06749	21 22	0.06657 0.06646
$\frac{5}{6}$	0.06853 0.06839	14 15	0.06737 0.06725	23 24	0.06636 0.06621
$\frac{7}{8}$	0.06826 0.06813	16 17	0.06713 0.06701		• • • • • • •

(Bunsen's Gasometry, p. 286.)

One vol. alcohol absorbs 0.06925— $0.000148t + 0.000001t_2$  vols. H at to (Bunsen.)

Solubility in alcohol+Aq at 20° and 760 mm.

Wt. %	Vol. H ₂	Wt. %	Vol. H ₂
alcohol	absorbed	alcohol	absorbed
$\begin{array}{c} 0 \\ 9.09 \\ 16.67 \\ 23.08 \end{array}$	1.93 1.43 1.29 1.17	28.57 33.33 50 66.67	1.04 $1.17$ $2.02$ $2.55$

(Lubarsch, W. Ann. 1889, (2) 37. 525.)

#### Absorption of hydrogen by alcohol.

t°	Coeff. of absorption	t°	Coeff. of absorption
0	0.0676	13.4	0.0705
6.2	0.0693	18.8	0.0740

#### (Timofejeff.)

Solubility of H₂ in ethyl ether at t°.

t°	Solubility	
0	0.1115	
5	0.1150	
10	0.1195	
15	0.1257	

(Christoff, Z. phys. Ch. 1912, 79. 459.)

Coefficient of absorption in petroleum = 0.0582 at 20°, and 0.0652 at 10°. (Griewass and Walfisz, Z. phys. Ch. 1. 70.)

Absorption of hydrogen by chloralhydrate+ Ag at 20°.

•	•			
P	C	a		
4.911 7.69 14.56 18.77 29.50 32.00 38.42 49.79 60.12 63.90	0.310 0.504 1.030 1.397 2.530 2.845 3.770 6.000 9.120 10.700	0.01839 0.01802 0.01712 0.01653 0.01542 0.01518 0.01440 0.01353 0.01324 0:01307		
	l	l		

(Knopp, Z. phys. Ch. 1904, 48. 103.)

Absorption of H₂ by chloralhydrate+Aq.

 $t^{\circ}$  = temp. of the solution. P = % chloralhydrate in the solution.  $\beta t^{\circ}$  = coefficient of absorption at  $t^{\circ}$ .  $\beta 15^{\circ}$  = coefficient of absorption at 15°.

t°	P	βţ°	β15°
15.0	10.0	0.01740	0.01740
16.4	16.1	0.01719	0.01737
15.8	33.35	0.01475	0.01484
15.0	39.4	0.01470	0.01470
15.6	51.0	0.01300	0.01306
16.2	60.8	0.01281	0.01230
15.5	70.7	0.01282	0.01287
15.0	79.0	0.01320	0.01320
			β20°
19.4	15.5	0.01732	0.01724
17.4	28.3	0.01569	0.01540
18.7	46.56	0.01388	0.01375
16.5	52.0	0.01314	0.01280
17.0	63.0	0.01270	0.01243
17.2	66.0	0.01285	0.01260
17.9	68.0	0.01286	0.01270
18.3	78.4	0.01398	0.01380

(Müller, Z. phys. Ch. 1912, 81. 499.) Solubility of H₂ in glycerol+Aq.

√ t°	% glycerol	Coefficient of absorption
14	0 2.29 5.32 8.57 10.83 15.31	0.0193 0.0189 0.0186 0.0182 0.01815 0.01765
21	0 2.29 5.68 6.46 10.40 18.20	0.0184 0.0181 0.0177 0.0176 0.0171 0.0160

(Henkel, in Landolt-Börnstein, Tab. 4th Ed. 602.)

Absorption of H₂ by glycerine+Aq. t°=temp. of the solution. P = % glycerine in the solution. βt° = coefficient of absorption at t°  $\beta 15^{\circ}$  = coefficient of absorption at 15°.

t°	P	βt°	β15°
14.5	14.9	0.01654	0.01647
13.0	22.8	0.01532	0.01510
13.8	38.0	0.01226	0.01216
14.5	43.5	0.01117	0.01110
13.7	49.15	0.01019	0.01010
14.9	51.5	0.01026	0.01025
12.3	68.0	0.00822	0.00806
18.0	90.7	0.00853	0.00870

(Müller, Z. phys. Ch. 1912, 81. 496.)

Solubility of H₂ in glycerine +Aq at 25°. G = % by wt. glycerine in the solvent.

S=Solubility of H₂. P=corrected pressure at end of experiment in mm. Hg at 0°.

P	G	s
716.3 736.1 684.3 709.9 730.1 672.2 741.1	4.0 10.5 22.0 49.8 50.5 52.6 67.0	0.0186 0.0178 0.0154 0.0099 0.0097 0.0090 0.0067
$708.0 \\ 665.5 \\ 662.3 \\ 741.8$	80.0 82.0 88.0 95.0	0.0051 0.0051 0.0044 0.0034

(Drucker and Moles, Z. phys. 1910, 75. 417.)

Absorption of H₂ by glucose+Aq.  $t^{\circ} = temp.$  of the solution. P = % glucose in the solution.  $\beta t' = \text{coefficient of absorption at } t^{\circ}$ .  $\beta 20^{\circ}$  = coefficient of absorption at 20°.

t°	P	βt°	β20°
20.5 $20.5$ $21.1$ $21.8$ $21.2$	12.2	0.01595	0.01600
	20.7	0.01445	0.01450
	32.56	0.01243	0.01250
	45.8	0.01000	0.01015
	59.0	0.00775	0.00780

(Müller, Z. phys. Ch. 1912, 81, 494.)

Solubility in sugar+Aq at 15°.

% Sugar	Absorption Coefficient
16.67	0.01561
30.08	0.01284
47.65	0.00892

(Gordon, Z. phys. Ch. 1895, 18. 14.)

Absorption of H₂ by sucrose+Aq. to= temp. of the solution in the absorption

P = % sucrose in the solution.  $\beta t^{\circ} = \text{coefficient of absorption at } t^{\circ}$  $\beta_{15}^{\circ}$  = coefficient of absorption at 15°.

t°	P	βt°	β15°
12.7		0.01862	0.01892
19.3		0.01840	$\beta 20^{\circ} = 0.01829$
15.2 11.6 12 12.7 11.8 13.3 12.6	5.04 14.7 20.26 29.86 31.74 39.65 42.94	0.01723 0.01547 0.01500 0.01290 0.01220 0.01047 0.00956	0.01726 0.01510 0.01462 0.01257 0.01185 0.01033 0.00939

(Müller.)

Absorption of H₂ by propionic acid+Aq. at° = coefficient of absorption at t°.

Percent of propionic acid in the solution	α25°	a20°	a15°	a10°	α5°
9.763	0.01706	0.01788	0 01929 0 01925 0 01983 0 01987	0.02042 0.02093 0.02117 0.02120	0.02120 0.02181 0.02239 0.02221

(Braun, Z. phys. Ch. 1900, 33, 735.)

Absorption of H₂ by organic acids +Aq. M = content in gram-equivalents per liter. S =solubility.

Absorption of H₂ by CH₂COOH+Aq.

	· ·
M	S25°
0.517 0.528 1.160 1.20 1.963 1.980 3.178 3.220	0.01925 0.01923 0.01903 0.01895 0.01885 0.01882 0.01862 0.01858
4.157	0.01849

(Geffcken, Z. phys. Ch. 1904. 49. 267.)

Absorption of H₂ by CH₂ClCOOH+Aq.

M	S25°
0.527	0.01905
0.990	0.01852
1.773	0.01783

(Geffcken.)

Absorption of H by organic substances+

Aq at t°.
V=absorbed volume reduced to 0° and

a = coefficient of absorption.

Substance	Grams in 1 iter	Vol. of solution used in eem.	t°	ccm.	x
Glucose	174	409.94	20.28°	5.48	0.01516
Glucose	80.8		20.16°	6.12	0.01649
Glucose	41.45		20.00°	6.36	0.01759
Urea	60		20.17°	6.26	0.01703
Acetamide	59		20.11°	6.51	0.01795
Alanine	39	44	20.08°	5.67	0.01555
Glycocoll	75		20.16°	5.67	0.01577

(Hüfner, Z. phys. Ch. 1907, 57. 623-4.)

Solubility in organic solvents.

Solvent   Solubility at 25° C   Solubility at 20° C				
Water         measurable         0.01992         0.02000         —0.000018           Anilue         0.02849         0.03033         —0.00368           Amyl alcohol         0.03708         0.03533         +0.00035           Nitrobenzene         0.03753         0.03533         +0.00035           Carbon bisulphide         0.03753         0.03353         +0.00035           G'acial acetic         0.06330         0.06172         +0.000316           Benzene         0.07560         0.07071         +0.000978           Amyl acetate         0.07641         0.07027         +0.000212           Xylene         0.08185         0.07834         +0.000702           Ethyl acetate         0.08516         0.07874         +0.002702           Toluene         0.08742         0.08384         +0.000716           Ethyl alcohol         0.08935         0.08620         +0.00063           Methyl alcohol         0.09449         0.09287         +0.000866           Isobutyl acet         0.07858         0.09287         +0.000942           Poccastant         0.009442         0.009842         +0.000942	Solvent	Solubility at 25° C	bility at	
chloride value	Water Aniline Amyl alcohol Nitrobenzene Carbon bisulphide G'acial acetic Benzene Acetone Amyl acetate Xylene Ethyl acetate Toluene Ethyl alcohol (99.8%) Methyl alcohol Isobutyl acetate Chloroform Carbon tetra-	measurable 0.01992 0.02849 0.03708 0.03708 0.03753 0.06330 0.07560 0.07641 0.07738 0.08185 0.08742 0.09945 0.09758 no constant	0.03033 0.03533 0.03533 0.03538 0.06172 0.07071 0.07027 0.07432 0.07834 0.07877 0.08384 0.08620 0.09016	-0.000368 +0.00035 +0.00035 +0.00079 +0.000316 +0.000978 +0.001228 +0.000702 +0.000702 +0.000702 +0.000703 +0.00063 +0.000866

(Just, Z. phys. Ch. 1901, 37. 359.)

Extended investigations have been made by Findlay and Shen. (Chem. Soc. 1912, 101. 1465) on the effect of colloids on solubility of H₂ in H₂O. See original article.

Hydrogen arsenide. See Arsenic hydride.

Hydrogen peroxide, H₂O₂.

Miscible with H2O. Not stable in conc. solution. Aqueous solution gives up its H₂O₂** to ether. Ethereal solution is more stable than an aqueous solution of the same strength, and may be distilled without decomp. Miscible with alcohol.

Very stable in aq. solution of various conc. if perfectly free from impurity such as compds. of heavy metals, etc. (Woffenstein, B. 1894, 27. 3307.)

Coefficient of distribution between ether and H₂O determined at 3°, 7°, and 17.5° with varying quantities (1.7–5%) of H₂O₂. (Osipoff, C. C. 1903, II. 1265.)

As sol. in ether as in H₂O. A 50% solution

in H2O still contained about 25% H2O2 after

being shaken 6 times with large quantities of fresh ether.

Insol. is petroleum ether. (Brühl, B. 1895, **28.** 2855.)

+H₂O, and +2H₂O. Does not solidify at -20° (Wolffenstein, B. 1894, 27, 3311).

## Hydrogen phosphide, gaseous (Phosphine), PH₃.

Very slightly absorbed by H₂O.

Statements as to solubility in H₂O vary considerably.

(a) Difficultly inflammable gas— 1 vol. H₂O absorbs 0.1122 vol. PH₃. (Dybkowsky, J. B. 1866. 735.)

1 vol. H₂O absorbs 0.125 vol. PH₃. (H.

Davy.)

(b) Easily inflammable gas— 1 vol.*H₂O absorbs 0.018 vol. PH₃. (Gen-

gembre, Crell. Ann. **1.** 450.) 1 vol. H₂O absorbs 0.0214 vol. PH₃.

(Henry.)

1 vol. H₂O absorbs 0.025 vol. PH₃. (Davy.) 1 vol. H₂O absorbs 0.125 vol. PH₃. (Dalton, Ann. Phil. 11. 7.)

1 vol. H₂O absorbs 0.255 vol. PH₃. (Ray-

mond, Scher. J. 5. 389.)

1 vol.  $\rm H_2O$  dissolves 0.26 vols.  $\rm PH_3$  at 17°. (Stock, Böttger and Lenger, B. 1909, 42. 2855.)

Sol. in conc. H₂SO₄ without immediate ecomp. (Buff, Pogg. 16. 363.)

decomp. 1 vol. 50%  $\rm H_2SO_4$  dissolves 0.05 vol.  $\rm PH_3$ .

(S. B. and L.) Absorbed by CuSO₄+Aq and by Br.

(Berthelot.)

Absorbed rapidly by Cu₂Cl₂+Aq with formation of Cu₂Cl₂, 2PH₃, and Cu₂Cl₂, 4PH₃. (Riban, C. R. 88. 581.)

1 vol. alcohol of 0.85 sp. gr. absorbs 0.5 vol.; 1 vol. ether absorbs 2 vols. (Graham.)

Sol. in volatile oils; 1 vol. oil of turpentine absorbs 3.25 vols. (Graham.)

Several varieties of blood absorb PH₃.

#### Hydrogen phosphide, liquid, P₂H₄.

Insol. in H2O. Apparently sol. in alcohol and oil of turpentine, but solution is very quickly decomp. (Thénard, A. ch. (3) 145.)

#### Hydrogen phosphide, solid, P₄H₂.

Insol. in H₂O and alcohol. (Leverrier, A. ch. 60. 174.)

Insol. in all liquids except liquid PH₂. (Thénard, A. ch. (3) 14. 5.)

Instantly decomp. by HNO3, or H2SO4+ q. Sol. with decomp, in alcoholic solution of KOH. (Thénard.)

Somewhat sol. in liquid phosphorus. (Buck, Dissert. 1904.)

Insol. in all solvents.  $P_9H_2$ . (Stock, Böttger and Lenger, B. 1909, 42. 2851.)

P₁₂H₆. Sol. in liquid hydrogen phosphide and molten P. There are no other solvents which appreciably dissolve it. Insol. in liquid PH₃. (S. B. and L.)

Hydrogen selenide, H₂Se.

More sol. in H₂O than hydrogen sulphide. (Berzelius.)

Solubility coefficient of H₂Se at t°.

t°	Sol. Coeff.
4	3.77 vols.
9.65	3.43
13.2	3.31
22.5	2.70

(Forcrand and Fonzes-Diacon, C. R. 1902, 134. 171.)

Sol. in cold COCl₂. (Besson, C. R. 1869, **122.** 140.)

#### Hydrogen silicide.

See Silicon hydride.

#### Hydrogen sulphide, H₂S.

- (a) Liquid. Dissolves S on warming, which separates on cooling.
  - (b) *Gas*.

1 vol. H₂O absorbs 1.08 vols. H₂S at 10°. (Henry, 1803.)

1 vol. H₂O absorbs 2.53 vols. H₂S at 15°. (de Saussure, Ann. Phil. 6. 340.)

1 vol. H₂O absorbs 3 vols. H₂S at 11°. (Gay-Lussac

and Thénard.) 1 vol. H₂O absorbs 3.66 vols. H₂S at ord. temp.

1 vol. H₂O absorbs 2.5 vols. H₂S at ord. temp. (Dalton.)

1 vol. H₂O absorbs 4.3706-0.083687t+ 0.0005213t² vols. H₂S at temperatures between 2 and 43.3°. (Bunsen and Schönfeld, A. 93. 26.)

At 0° and about 820 mm. pressure, 1 ccm. H₂O absorbs 100 ccm. H₂S, while only about 4 ccm. are absorbed at ord. pressure. (de Forcrand and Villard, C. R. 106. 1402.)

1 vol. H₂O at 760 mm, pressure and t° absorbs V vols. H₂S, reduced to 0° and 760 mm.

t°	v	t°	v	t°	v
0	4.3706	14	3.3012	28	2.4357
ĭ	4.2874	15	3.2326	29	2.3819
$\overline{2}$	4.2053	16	3.1651	30	2.3290
3	4.1243	17	3.0986	31	2.2771
4	4.0442	18	3.0331	32	2.2262
5	3.9652	19	2.9687	33	2.1764
6	3.8872	20	2.9053	34	2.1277
7	3.8103	21	2.8430	35	2.0799
8	3.7345	22	1.7817	36	2.0332
9	3.6596	23	2.7215	37	1.9876
10	3.5858	24	2.6623	38	1.9430
11	3.5132	25	2.6091	39	1.8994
12	3.4415	26	2.5470	40	1.8569
13	3.3708	27	2.4909		
					·

(Schönfeld, A. 93. 26.)

Absorption coefficient of H2S in H2O (Prytz and Holst, W. Ann. at  $0^{\circ} = 4.6796$ .

1895, **54**, 137.) 1 l. H₂O dissolves 0.1604 mol. H₂S at 25° and 760 mm. (Pollitzer, Z. anorg. 1999, **64.** 145.)

#### Absorption of hydrogen sulphide by H₂O at t°.

t°	Coefficient of absorption
0°	4. 686
10°	3. 520
20°	2. 672

[Calc. fr. data of Fauser. (C. C. 1889, 1. 754.)

(Winkler, Z. phys. Ch. 1906, 55. 350.)

### Absorption of hydrogen sulphide by H₂O at t°.

t ^b	Coefficient of absorption
0	4.621
10 ·	3.362
20	2.554
30	2.014
40	1.642
50	1.376
60	1.176

(Winkler, Z. phys. Ch. 1906, 55. 350.)

## Solubility of H₂S in H₂O.

Layer rich in H2S		
t°	Mols. H ₂ S per 100 mols. H ₂ O	
0	0.4	
6	0.5	
17	0.8	
26	1.2	
29.5	1.6	

	Layer rich in H ₂ O
t°	Mols. H ₂ S per 100 mols. H ₂ O
29.4 28.5 26.9 26.3 23.8 23.3 22.9 17.2 13.7 11.4 5.3	96.3 96.9 97.3 97.5 98.1 98.2 98.8 99.1 99.25

(Scheffer, Proc. K. Ak. Amsterdam, 1911, 14 198.)

Difficultly sol. in conc. H₂SO₄ with decomp. Instantly decomp. by fuming HNO. Solubility of H.S in HI+Aq at 25° and 760 mm.

HI Mol. per l.	H ₂ S Mol. per l.
0.00	0.1004
1.01	0.111
1.51	0.113
1.93	0.125
2.65	0.130
2.64	0.138
3.42	0.142
4.38	0.163
5.005	0.165
5.695	0.181
6.935	0.197
* (9.21	0.267)

* Not exact.

(Pcllitzer, Z. anorg. 1909, 64. 145.)

#### Solubility in acids+Aq.

l=value of H2S dissolved in acid+Aq as

determined by titration.
lo = value of H₂S dissolved in H₂O as determined by titration.

 $t^{\circ} = 25^{\circ}$ .

Acid	l/lo
½-N.HCl	0.975
½-N.H ₂ SO ₄	0.905

(McLauchlan, Z. phys. Ch. 1903, 44. 615.)

Less sol. in NaCl, or CaCl₂+Aq than in H₂O. Sol. in CdCl₂+NH₄OH+Aq. (Crobaugh, Z. anorg. 1894, 5. 321.)

#### Solubility in salts+Aq.

l=value of H₂S dissolved in salt+Aq as

determined by titration.
lo = value of H₂S dissolved in H₂O as determined by titration.

 $t^{\circ} = 25^{\circ}$ .

Salt + Aq.	l/lo	Salt +Aq.	l/lo
2-N.K2SO4 12-N.(NH4)2SO4 N.NaCl N.KCl N.KCl N.NH4Cl N.NaNO2 N.KNO3	0.73 0.78 0.82 0.847 0.853 0.960 0.893 0.913 0.990	N.NH ₄ Br	0.855 0.890 0.91 0.930 0.935 0.945 1.00 0.98

(McLauchlan, Z. phys. Ch. 1903, 44, 615.)

#### Solubility of H₂S in NaSH+Aq. (g. mol. H₂S dissolved in 1 l.)

t°	0.05 g. mol.	0.1 g. mol.	0.2 g. mol.
	NaSH per l.	NaSH per l.	NaSH per l.
15 25 35 45	0.082 0.064	0.132 0.104 0.082	0.129 0.1035

## (Goldschmidt and Larsen, Z. phys. Ch. 1910, 71. 449.)

At 18° and ord, pressure, 100 vols, alcohol of 0.84 sp. gr. absorb 606 mols,  $H_2S$ . (de Saussure, 1814.)

1 vol. alcohol absorbs  $17.891-0.65598t+0.00661t^2$  als.  $H_2S$  between 0 and  $22^\circ$ . (Carius.)

## 1 vol. alcohol at to and 760 mm. absorbs V vols. H₂S reduced to 0° and 760 mm.

t°	v	t°	v	t°	v
0 1 2 3 4 5 6 7 8	17.891 17.242 16.606 15.983 15.373 14.776 14.193 13.623 13.066	9 10 11 12 13 14 15 16 17	12.523 11.992 11.475 10.971 10.480 10.003 9.539 9.088 8.650	18 19 20 21 22 23 24	8.225 7.814 7.415 7.030 6.659 6.300 5.955

#### (Carius, A. 94. 140.)

#### Solubility in alcohol + Ag at 25°.

Molecules of C ₂ H ₂ OH in 100 molecules C ₂ H ₅ OH +H ₂ O	Molecules H ₂ O in 100 molecules C ₂ H ₅ OH +H ₂ O	l/lo			
0.00 1.60 5.18 9.25 23.60 47.75	100 98 (?) 94.82 90.75 76.40 52.25	1.00 0.96 0.933 0.91 1.28 1.95			
* (100	U	2.16)			

^{*} Carius.

#### (McLauchlan.)

Sol. in methyl acetate (Marchand), ether (Highins).

Insol. in caoutchin.

Sol. in glycerine in less amount than in H₂O. If a certain vol. of H₂O dissolves 100 pts. H₂S, the same vol. of glycerine (1 pt. H₂O) dissolves only 60 pts. H₃S, but the solution is very stable. After standing a year there is no appreciable decomp. (Lapage, J. Pharm. (4) 5.256.)

According to Lindo (C. N. 57. 173), the solution in glycerine is no more stable than that in H₂O.

Sol. in CS₂.

Solubility in organic substances + Aq.

l=value of H₂S dissolved in organic substance+Aq as determined by titration.

lo = value of H₂S dissolved in H₂O as determined by titration.

 $t^{\circ}=25^{\circ}$ .

Solution	l/lo
$\begin{array}{c} N-NH_4C_2H_8O_2 \\ N-C_4H_6O_6 \\ 3-N-C_4H_6O_6 \\ N-(NH_2)_2CO \\ \text{pure } C_4H_6(OH)_3 \end{array}$	1.09 0.944 0.858 1.02 0.863

(McLauchlan, Z. phys. Ch. 1903, 44. 615.)

Solubility in acetic acid + Aq at 25°.

Molecules of CH ₃ CO()H in 100 molecules CH ₃ COOH +H ₂ O	Molecules of H ₂ O in 100 molecules CH ₃ COOH +H ₂ O	l/lo
0 8.85 16.7 21.0 35.5 53.5 55.7 67.8 81.0 98.58	100 91.15 83.30 79 64.5 40.5  32.2 19.0 1.42	1.00 0.98 0.955 1.00 1.035 1.21 1.29 1.40 1.83 3.81

#### (McLauchlan.)

## Hydrogen persulphide, H₂S₂ or H₂S₅.

Decomp. by contact with  $H_2O$ , in which it is apparently insol. Sol.in ether with subsequent decomp. Sol. in  $CS_2$ . (Thénard, A. ch. 48. 79.)

H₂S₂. Quickly decomp. by ether, acetic ether, ethyl, or amyl alcohol. H₂S has no

action

Conc. HCl, or HC₂H₃O₂+Aq have no action. Sol. in a solution of S in CS₂, and in liquid hydrocarbons.

Chloroform dissolves without decomp.

(Sabatier, C. R. 100. 1346, 1585.)

Alkalies, and K₂S+Aq decomp. instantly. Decomp. by H₂O, dil. and conc. HCl, conc. H₂SO₄, alkali and alcohol. Sol. in alcohol containing HCl but soon decomp. in this solution. Miscible in all proportions and without decomp. with benzene, ether and CS₂. (Bloch, B. 1908, **41**. 1977.)

Formula is H₂S₅. (Rebs, A. **246**. 356.) +7H₂O. Easily decomp. by heat. (de Forcrand and Villard, C. R. **106**. 1402.)

## Hydrogen trisulphide, H2S3.

Decomp. by H₂O, dil. and conc. HCl, conc. H₂SO₄, alkali and alcohol. Somewhat sol. in alcohol containing HCl, but slowly decomp. in this solution. Miscible with ether, benzene and CS₂ and these solutions are relatively stable. (Bloch, B, 1908, 41, 1974.)

#### Hydrogen telluride, H₂Te.

Sl. sol. in H₂O. Decomp. in the air. (Ernyei, Z. anorg. 1900, \$\infty\$. 313.)

## Hydrosulphuric acid, H2S. See Hydrogen sulphide.

Hvdrosulphurous acid, H₂SO₂. See Hyposulphurous acid.

### Hydroxylamic acid.

### Calcium hydroxylamate, Ca(ONH₂)₂.

Very explosive; decomp. by H₂O. (Ebler and Schott, J. pr. 1908, (2) 78, 323.)

#### Zinc hydroxylamate $Zn(ONH_2)_2$ .

Decomp. by H₂O. (Fbler and Schott.)

#### Zinc hydroxylamate, hydroxylamine, $Zn(H_2NO)_2$ , $3NH_3O$ .

Very unstable.

Insol. in abs. alcohol. (Ebler and Schott.)

#### Hydroxylamine, $NH_3O = NH_2(OH)$ .

Known only in solution.

Sol. in alcohol. (Lossen, J. pr. 96. 462.)

Prepared in free state by de Bruyn.

Very deliquescent, and sol. in H₂O and alcohol. Sl. sol. or insol. in CHCl₃, C₆H₅,

ether, or ethyl acetate.

Methyl alcohol at 5° dissolves 35%; ethyl alcohol at 15°, 15%; boiling dry ether, 1.2%; boiling ethyl acetate, 1.6%. (de Bruyn, R. t. c. **11.** 18.)

#### Hydroxylamine arsenate, AsO₄H₃(NH₃O)₂.

Sl. sol. in cold H₂O; sol. in hot H₂O from which it can be cryst. (Hofmann, A. 1899, **307.** 331.)

#### Hydroxylamine azoimide.

See Azcimide, hydroxylamine.

#### Hydroxylamine bromide, NH₂OH, HBr.

Very sol. in H₂O; insol. in ether by which it is pptd. from solution in alcohol. (Adams, Am. Ch. J. 1902, 28, 205.)

2NH₂OH, HBr. Easily sol. in H₂O; insol. in ether and ligroin. Sl. sol. in alcohol. (Adams.)

#### Hydroxylamine mercuric bromide hydroxylamine, 2NH₂OH, 2HBr, HgBr₂, 2NH₂OH.

Decomp. by H₂O and methyl alcohol. Readily decomp. by alkalies. (Adams.)

#### Hydroxylamine calcium, HO.Ca.ONH₂.

Partially decomp. by H₂O at ordinary temp. (Hofmann, Z. anorg. 1898, 16. 464.)

#### Hydroxylamine chloride, basic, NH₂(OH)Cl. NH_•OH.

Sol. in H₂O. Alcohol precipitates from aqueous solution. Insol. in ether. (Lossen.) Deliquescent; 2NH₈(OH)Cl, NH₂OH. very 30l. in H₂O, less in alcohol, and insol. in ether. (Lossen.)

#### Hydroxylamine chloride, NH₂(OH)Cl.

Not deliquescent. Very sol. in H2O and hot ordinary alcohol. Sl. sol. in absolute alcohol. Insol. in etler. (Lossen.)

Sol. in 1.2 pts. H₂O at 17°. (Schiff, Z. phys. Ch. 1896, **21.** 290.)

Sp. gr. of aqueous solution at 17°.

#### % salt sp. gr. 40 1.1852 28 1.1260 20 1.0888 14 1.0616 10 1.0437 7 1.0303 5 1 0214 3.5 1.0147

(Schiff, Z. phys. Ch. 1896, 21, 290.)

100 pts. absolute methyl alcohol dissolve 16.4 pts. at 19.75°; 100 pts. absolute ethyl alcohol dissolve 4.43 pts. at 19.75°. (de Bruyn, Z. phys. Ch. 10. 783.)

Somewhat sol. in alcohol. (Adams, Am.

Ch. J. 1902, **28.** 204.)

#### Hydroxylamine mercuric chloride, NH4OH, HCl, HgCl₂.

Very sol. in H₂O and alcohol. Less sol. in

ether. (Adams, Am. Ch. J. 1902, 28. 213.) 5(NH₂OH)₂, HCl, 2HgCl₂. Sol. in cold H₂O, alcohol and ether. More easily sol. in * methyl alcohol. Sol. in HCl. The slightest trace of alkali causes decomp. (Adams.)

#### Hexahydroxylamine cobaltic bromide. $[Co(NH_2OH)_6]Br_3.$

(Werner, B. 1905, 38. 897.)

#### Hexahydroxylamine cobaltic chloride. [Co(NH₂OH)₆]Cl₃.

Very stable toward HCl. (Werner, 1905, **38.** 895.)

#### Hexahydroxylamine cobaltic nitrate, $[Co(NH_2OH)_6](NO_8)_8$ . (Werner.)

Hexahydroxylamine cobaltic sulphate,  $[Co(NH_2OH)_6]_2(SO_4)_3 + 2H_2O.$ 

Easily sol. in H₂O. (Werner.)

#### Hydroxylamine columbate, CbO₆N₂H₁₈,

Explosive. Sl. sol. in H₂O. (Hofmann, Z. anorg. 1898, 16, 473.)

### Hydroxylamine dithionate, (NH₂OH)₂, H₂S₂O₅.

Sol, in H₂O; decomp. on heating the aq. solution. (Sabanejeff, Z. anorg. 1898, 17. 485.)

## Hydroxylamine fluosilicate, (NH₂O)₂, H₂SiF₆ +2H₂O.

Easily sol. in  $H_2O$ . Nearly insol. in methyl and abs. ethyl alcohol. (Ebler, J. pr. 1908, (2), 78. 338.)

Hydroxylamine fluotitanate, (NH₃O)₃, H₂TiF₆ Sol. in H₂O. Sl. sol. in methyl alcohol. (Ebler, J. pr. 1908, (2) **78**, 340.)

## Hydroxylamine hypophosphite, (NH₂OH)H₂PO₂.

Very sol. in  $H_2O$ . (Sabanejeff, Z. anorg. 1898, 17. 483.)

Sol. in H₂O and absolute alcohol. Insol. in ether. (Hofmann and Kohlschütter, Z. anorg. 1898, **16**, 469.)

## Hydroxylamine potassium hypophosphite, $(H_2PO_2)_2(NH_4O)_2K_2$ .

Easily sol. in  $H_2O$ , decomp. on heating; sol. in hot abs. alcohol. (Hofmann and Kohlschütter, Z. anorg. 1898, 16. 468.)

## Hydroxylamine hypophosphate, (NH₈OH)₂H₂P₂O₆.

Easily sol. in H₂O. (Sabanejeff, Z. anorg. 1898, 17, 489.)

#### Hydroxylamine iodide, NH₂OH, HI.

ydroscopic; sol. in methyl alcohol. Very crylosive. (Wolffenstein and Groll, B. 1901, 34, 2419.)

#### * Dihydroxylamine iodide, (NH2OH)2, HI.

Deliquescent. More sol. in  $H_2O$ , methyl and ethyl alcohol than the tri compound. Is decomp. when recryst. from these solvents. Insol. in ether. (Dunstan, Chem. Soc. 1896, 69. 841.)

#### Trihydroxylamine iodide, (NH2OH)3, HI.

Deliquescent in moist air. Sol. in  $H_2O$ , methyl and ethyl alcohol. Insol. in ether. (Dunstan.)

#### Hydroxylamine nitrate, NH₈(OH)NO₈.

Very sol. in  $H_2O$  and absolute alcohol. (Lossen.)

## Hydroxylamine orthophosphate, (NH₃OH)₃PO₄.

Sl. sol. in cold H₂O. (Lossen.)

Only sl. sol. in H₂O. (Hofmann, A. 1899, **307.** 330.)

Moderately sol. in  $H_2O$ . (Ross, Chem. Soc. 1906, **90**, (2) 19.)

Solubility in H₂O.

1 g. of aqueous solution contains at:

0.012 0.015 g. hydroxylamine phosphate,

0.019 0.027 g. hydroxylamine phosphate, 40° 50°

0.040 0.055 g. hydroxylamine phosphate,

0.077 0.102 g. hydroxylamine phosphate, 80° 90°

0.133 0.168 g. hydroxylamine phosphate. (Adams, Am. Ch. J. 1902, **28**, 204.)

(NH₃OH)H₂PO₄. Hygroscopic. Aq. solution is decomp. on heating. (Sabanejeff, B. 1897, **30.** 287.)

## Hydroxylamine phosphite, (NH₃OH)₂HPO₃.

Sol. in  $H_2O$  and absolute alcohol. (Hofmann and Kohlschütter, Z. anorg. 1898, **16**. 467.)

(NH₃OH)H₂PO₃. Sol. in H₂O. Insol. in alcohol. (Sabanejeff, Chem. Soc. 1900, 78, (2), 14.)

## Hydroxylamine phosphite ammonia, (NH₃OH)H₂PO₃, NH₃.

Sol. in H₂O. (Sabanejeff, Chem. Soc. 1900, 78, (2) 14.)

#### Hydroxylamine sodium, NaONH₂.

Very hygroscopic. (de Bruyn, R. t. c. 1892, **11**. 18.)

#### Hydroxylamine sulphate, (NH₂OH)₂SO₄.

Easily sol. in H₂O. Precipitated from concentrated aqueous solution by alcohol. (Lossen.)

Sol. in conc. NH₄OH+Aq. Insol. in alcohol and ether. (Preibisch, J. pr. 1873, (2) **7.** 480.)

Not deliquescent. Sol. in  $\frac{3}{4}$  of its wt. of  $H_2O$  at  $20^\circ$ . (Divers and Haga, Chem. Soc. 1896, **69**. 1665.)

1 g. of aqueous solution contains at:
-8° 0° +10°

 $0.307 \ 0.329 \ 0.366 \ g.$  hydroxylamine sulphate,  $20^{\circ} \ 30^{\circ} \ 40^{\circ}$ 

0.413 0.441 0.482 g. hydroxylamine sulphate, 50°  $60^{\circ}$   $90^{\circ}$ 

0.522 0.560 0.685 g. hydroxylamine sulphate. (Adams, Am. Ch. J. 1902, **28.** 203.)

Dry hydroxylamine sulphate is insol. in abs. and almost insol. in 95% alcohol. (Adams.)

For double salts, see under sulphuric acid. NH₂OH, H₂SO₄. Deliquescent. Sol. in H₂O. (Divers, Chem. Soc. 1895, **67**. 226.)

## Hydroxylamine tungstate, $4NH_2OH$ , $3WO_3+3H_2O$ .

Moderately sol. in H₂O. (Allen and Gottschalk, Am. Ch. J. 1902, 27. 338.)

Hydroxylamine uranate,  $UO_4(NH_3O)_2 + H_2O$ . Decomp. by heat. (Hofmann, Z. anorg. 1897, 15. 78.) Hydroxylamine uranate ammonia, UO4(NH3O)2, 2NH3. Decomp. by H₂O. (Hofmann, Z. anorg. 1897, **15.** 79.) Hydroxylamine metavanadate, VO₆N₅H₁₆. Decomp. by moisture. (Hofmann Z. anorg. 1898, 16. 472.) Hydroxylamine metavanadate ammonia, VO₃H, (NH₃O)₂, 2NH₃. Easily decomp. by H₂O and HCl. (Hofmann, Z. anorg. 1898, 16. 471.) Hydroxylamine monosulphonic acid, HONH(SO₃H). "Sulphazidic acid" of Fremy "Sulphydroxylamic acid" of Claus. Sol. in H₂O. Slowly decomp. on boiling. (Raschig, A. **241**. 161.) Ammonium hydroxylamine monosulphonate, . (OH)HN, SO₃NH₄. (Sabanéjeff, Z. anorg. 1898, 17. 491.) Monobarium ———, (HONHSO₃)₂Ba+  $H_2()$ . Easily sol. in H₂O. (Divers and Haga, Chem. Soc. **55.** 760.) Dibarium — —, Ba(HONSO₃)₂Ba+ H₂O. Nearly insol. in H₂O; sol. in HCl+Aq. (Divers and Haga, Chem. Soc. 55. 760.) Potassium ———, HONH(SO₃K). "Potassium sulphydroxylamate" of Claus. "Potassium sulphazidate" of Fremy. Sol. in cold H₂O. Easily sol. in bot H₂O without decomp. Insol. in alcohol. (Raschig. +H₂O. (Divers and Haga, Chem. Soc. 55. 760.) Hydroxylamine disulphonic acid,

 $HON(SO_3H)_2$ .

"Disulphydroazotic acid" of Claus. "Sulphazotic acid" of Fremy.

Not known in free state. (Raschig, A. 241.

Barium hydroxylamine disulphonate,  $Ba_8(NS_2O_7)_2+4H_2O$  and  $+8H_2O$ . Practically insol. in H₂O. Sol. in NH₄Cl+ Aq. (Divers, Chem. Soc. 1894, 65. 559.)

Barium potassium --- $Ba_8K_8H_4(NS_2O_7)_6+9H_2O.$ BaKNS₂O₇+H₂O.  $(HO)_2Ba_6K_4H(NS_2O_7)_5+H_2O.$ 

Ba₂K₃(NS₂O₇)₇+14H₂O. 3Ba(OH)₂, Ba₂K₃(NS₂O₇)₇. Above salts are all ppts. (Divers, Chem. Soc. 1894, 65. 561.)

Barium sodium hydroxylamine disulphonati  $B_{R_6}Na_3(NS_2O_7)_5 + 7H_2O$ .

 $Ba_9Na_2 NS_2O_7)_7 + 7H_2O.$ Ba18Na15(NS2O7)17-1 24H2O. Above salts are ppts. (Divers.)

Potassium —— —— ,  $HON(80_2K)_2 + 2H_2O$ . "Potussium disulphydroxyazotate" of Ciaus (A. 158. 75). Insol. in cold H₂O. Very unstable. Very difficultly sol. in H₂O, more easily in dil. KOH+Aq. (Raschig, A.

**241.** 161.) HON(SO₃K)₂, KON(SO₃K)₂+H₂O. True composition of potassium sulphazotate of Fremy. (Livers and Haga, Chem. Soc. 1900, **77.** 432.)

Potassium sodium -3K₃NS₂O₇, 2Na₃NS₂O₇+2H₂O. Sol. in H₂O.

 $6K_3NS_2O_7$ ,  $Na_3NS_2O_7$ ,  $H_3NS_2O_7+20H_2O$ . Sol. in H₂O.

 $K_2Na_{16}H_3(NS_2O_7)_7+5H_2O$ . Less sol. in H₂C than the others.

 $K_{15}Na_5H_4(NS_2O_7)_8+9H_2O$ . Sol. in  $H_2O$ . KNa₄H(NS₂O₇)₂+H₂O. Readily sol. in

H₂O.  $K_6NaH_2(NS_2O_7)_3 + 2H_2O$ . Moderately sol. in H₂O.

KNaHNS₂O₇+3H₂O. Sol. in H₂O. (Divers, Chem. Soc. 1894, 65. 552.)

Potassium strontium -----(HO, Sr)₃NS₂O₇, 8(SrKNS₂O₇, 2H₂O). Ppt. (Divers.)

Potassium hydroxylamine disulphonate nitrite, HON(SO₃K)₂, KNO₂.

Very sl. in H₂O. (Divers and Haga, Chem. Soc. 1900, 77, 433.)

 $K_bH(NS_2O_7)_2$ ,  $3KNO_2+H_2O$ . Decomp. by H₂O. (Divers and Haga.)

 $2KON(SO_3K)_2$ ,  $KNO_2+4.4H_2O$ . Very sol. in H₂O which decomp. it into its constituent salts. (Divers and Haga.)

+6H₂O. Very sol. in H₂O which decomp. it into its constituent salts. (Divers and Haga.)

 $2K_5H(NS_2O_7)_2$ ,  $7KNO_2+3H_2O$ . Decomp. by  $H_2O$ . (Divers and Haga.)  $3K_bH(NS_2O_7)_2$ ,  $7KNO_2$ . Decomp. by  $H_2O$ . (Divers and Haga.)

Potassium hydroxylamine disulphonate sodium chloride, 5K₂HNS₂O₇, 8NaCl+ 3H₂O.

Decomp. by H₂O. (Divers, Chem. Soc. 1894, **65.** 551.)

#### Sodium hydroxylamine disulphonate, HON(SO₈Na)₂.

Sol. in somewhat more than its own wt. of H₂O at 14°. (Divers, Chem. Soc. 1894, 65.

 $Na_2HNS_2O_7$ ,  $2Na_3NS_2O_7+3H_2O$ . Sol. in less than 1.5 pts. H₂O at 14°. (Divers.)

## Hydroxylamine isomonosulphonic acid, $NH_2$ , O, $SO_2$ , OH.

Very hydroscopic. Sol. in water; sol. in alcohol. (Sommer, B. 1914, **47**. 1226.) [Compare Raschig, A. 1887, **241**. 161.]

### Hydroxylamine isodisulphonic acid.

#### Ammonium hydroxylamine isodisulphonate, $(SO_3NH_4)ONH(SO_3NH_4)$ .

3 pts. are sol, in 2 pts. H₂O at 18°. Apt to form supersat. solutions. (Haga, Chem. Soc. 1906, **89.** 246.)

#### $D_i$ potassium -----, $K_2HS_2O_7N$ .

Only sl. sol. in cold  $H_2O$ . Easily sol. in boiling  $H_2O$ . Decomp. by hot dil. HCl. (Raschig, B. 1906, 39. 246.)

(Haga, Chem. Soc. 1906, 39. 243.)

 $Tripotassium ----, (SO_3K)ONK(SO_3K)$  $+2H_2O$ .

Very sol. in H₂O; ppt. by alcohol. (Haga.)

Disodium ———, (SO₃Na)ONH(SO₃Na). Wery sol. in H2O; insol. in alcohol by which it is ppt. from aqueous solution. (Haga.)

Trisodium -- ----, (SO₃Na)ONNa(SO₃Na)  $+2\mathrm{H}_{2}\mathrm{O}$ .

Sol. in H₂O; ppt. by alcohol. (Haga.)  $+3H_2O$ . Sol. in 1.3 pts.  $H_2O$  at  $20^\circ$ . Less sol. in NaOH+Aq. (Divers, Chem. Soc. 1894, 65. 546.)

## Hydroxylamine trisulphonic acid.

Ammonium hydroxylamine trisulphonate,  $2(SO_8NH_4)ON(SO_8NH_4)_2 + 3H_2O$ .

Sol. in 0.61 pts. H₂O at 16°. (Haga, Chem. Soc. 1904, **85.** 84.)

Potassium ——,  $2(SO_3K)ON(SO_3K)_2+$ 

1 pt. is sol. in 25.37 pts.  $H_2O$  at 18°. (Haga.)

Sodium — - ---,  $(SO_3Na)ON(SO_3Na)_2+$ 2H₂O.

Sol. in 2.84 pts. H₂O at 21.5°.

sulphonic acid, Dihydroxylamine  $(HO)_2N(SO_3H).$ 

"Sulphazinous acid" of Fremy. Known only in its salts. (Raschig, A. 241. 161.)

#### sulphonate. Potassium dihydroxylamine(HO)2NSO3K.

Not obtained in pure state; forms basic salt KONSO₃K, which is quite sol. in H₂O, and corresponds to "sulfazite de potasse" of Fremy (A. ch. (3) 15. 421).
Sol. in H₂O; insol. in alohol and ether.

(Fremy.)

### Hydroxyliodoplatindiamine sulphate, $(OH)IPt(NH_3)_4SO_4+H_2O.$

Very sl. sol., even in boiling H₂O. (Carlgren, Sv. V. A. F. **47.** 312.)

## Hydroxylonitratoplatindiamine nitrate,

 $\begin{array}{c} OH \\ NO_3 \\ Pt \\ N_2H_6NO_3. \end{array}$ 

Sl. sol. in cold, more easily in hot H₂O Very sl. sol. in H₂O containing HNO₃. (Cleve.)

- pyrophosphate,

 $\begin{bmatrix} OH_{NO_3}Pt_{N_2H_6}^{N_2H_6} \end{bmatrix}_2 P_2O_7 + H_2O.$ 

Very sl. sol. in H₂O. (Cleve.)

#### Hydroxyloplatinamine hydroxide, $(OH)_2Pt(NH_3OH)_2$ .

Insol. in H₂O. Easily sol. in dil. acids, even HC₂H₃O₂+Aq. Not decomp. by boiling KOH+Aq. (Gerhardt, Compt. Chem. **1849**. 490.)

#### Hydroxyloplatinamine nitrate, $(OH)_2Pt(NH_3NO_3)_2+2H_2O.$

Sl. sol. in cold, easily in hot H₂O; not attacked by cold HCl+Aq. (Cleve.)

— oxalate,  $(OH)_2Pt(NH_3)_2C_2O_4+H_2O$ . Sol. in hot H₂O.

sulphate,  $(OH)_2Pt(NH_3)_2SO_4+HO_{.2}$ Difficultly sol. in H₂O. (Cleve.)

#### Hydroxyloplatindiamine bromide. $(OH)_2Pt(NH_3)_4Br_2$ .

Sl. sol., even in boiling H₂O. (Carlgren, Sv. V. A. F. 47. 320.)

--- chloride, (OH)₂Pt(NH₃)₄Cl₂.

Sol. in 206 pts. cold, and 49 pts. boiling H₂O. (Carlgren, Sv. V. A. F. 47. 316.)

- chromate,  $(OH)_2Pt(NH_3)_4Cr_2O_7$ . Very sl. sol. in cold or hot H2O. (Carlgren, Sv. V. A. F. 47. 319.)

## Hydroxyloplatindiamine iodide, $(OH)_2Pt(NH_3)_4I_2$ .

Sl. sol. in hot or cold H₂O. (Carlgren.)

— nitrate,  $(OH)_2Pt(NH_3)_4(NO_3)_2$ .

Sl. sol. in cold, moderately sol. in hot H₂O. (Gerhardt, A. **76.** 315.)

Sol. in 343 pts. cold, and 38 pts. boiling H₂O. (Carlgren, Sv. V. A. F. 47, 318.)

— nitrite, (OH)₂Pt(NH₃)₄(NO₂)₂. Easily sol, in H₂O. (Carlgren.)

—— sulphate, (OH)₂Pt(NH₃)₄SO₄. Very sl. sol. in boiling H₂O. (Cleve.) +4H₂O. Efflorescent. (Carlgren, Sv. V. A. F. 47. 313.)

# $\label{eq:hydroxyloplatin} Hydroxyloplatin monodiamine nitrate, $$ (OH)_2PtNH_3NH_3NO_3.$

Very easily sol. in H₂O. (Cleve.)

## Hydroxyloplatinsemidiamine nitrate,

(OH)₃PtNH₃NH₃NO₃(?). Easily sol. in H₂O. (Cleve.)

--- sulphate,

(OH)₂PtNH₃NH₃ \frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fra

Sol. in hot H₂O.

# Hydroxylodiplatindiamine chloride, (OH)₂Pt₂(N₂H₆)₄Cl₄+H₂O.

Extremely sl. sol. in H₂O.

— nitrate, (OH)₂Pt₂(N₂H₆)₄(NO₃)₄. Very sl. sol. in cold, more easily in hot H₂O. (Cleve.)

phosphate,  $(OH)_2Pt_2(N_2H_6)_4(PO_4H)_2$ . Ppt.

sulphate,  $(OH)_2Pt_2(N_2H_6)_4(SO_4)_2 + 2H_2O$ .

Ppt. Nearly insol. in H₂O.

# Hydroxylosulphatoplatindiamine bromide, $(OH)Pt(N_2H_6)_2Br$ .

 $+2H_2O.$ 

Easily sol. in H₂O. (Cleve.)

— chloride, (OH)Pt(N₂H₆)₂Cl +2H₂O.

SO₄

Moderately sol. in cold, very sol. in hot H₂O.

Hydroxylosulphatoplatindiamine chloroplatinate,

$$2\begin{bmatrix} (OH)Pt(N_2H_6)_2Cl\\ & & \\ SO_4 \end{bmatrix}, PtCl_4+2H_2O.$$
Pot.

--- chromate.

$$\begin{bmatrix} (OH)Pt(N_2H_0)_2 \\ SO_4 \end{bmatrix} CrO_4 + 2H_2O.$$
Sl. sol. in H₂O.

--- dichromate, 
$$\begin{bmatrix} (OH)Pt(N_2H_0)_2 \\ & & \\ & & \\ SO_4 \end{bmatrix} \begin{bmatrix} Cr_2O_7. \\ \\ & \\ SO_4 \end{bmatrix}$$
Sl. sol. in H₂O.

---- sulphate,

 $\begin{bmatrix} (OH)Pt(N_2H_6)_2\\ & \checkmark\\ & SO_4 \end{bmatrix}_2 SO_4 + 3H_2O.$ S¹ sol. in H₂O. (Cleve.)

## Hypoantimonic acid.

Calcium hypoantimonate (?), Ca₂Sb₂O₈. Min. Romeite. Insol. in acids.

### Potassium hypoantimonate, K₂Sb₂O₅.

Sol. in hot H₂O. Sol. in 425 pts. boiling H₂O (Brandes). Sol. in boiling KOH+Aq (Berzelius).

K₂Sb₄O₉. Ppt.

#### Hypoboric acid.

#### Sodium hypoborate, NaOBH₃.

Deliquescent, decomp. in aq. solution at room temp. Decomp. by acids. Sl. sol. in alcohol with decomp. (Stock, B. 1914, 47. 821.)

#### Hypobromous acid, HBrO.

Known only in aqueous solution. Solution containing 6.21 pts. Br as HBrO in 100 ccm. H₂O decomposes at 30°. If dilute solution is distilled in vacuo, an acid containing 0.736 pt. Br as HBrO in 100 ccm. is obtained at first, but the distillate slowly grows weaker. Dil. solution, stable at ordinary temp., decomp. by heating over 60°. (Dancer A. 125. 237.)

#### Barium hypobromite.

Known only in solution.

#### Calcium hypobromite bromide.

Deliquescent, and sol. in H₂O with partial decomp. (Berzelius.)

#### Potassium hypobromite, KBrO.

Known only in solution.

#### Sodium hypobromite.

Known only in solution.

#### Strontium hypobromite.

Known only in solution.

### Hypochlorous acid, HClO.

Miscib with H₂O. Decomposes at 0° in the dark, more rapidly at higher temp. or in light. The stronger the solution the more rapid the decomposition. Moderately strong acid may be distilled without any considerable decomp., a stronger acid distilling over at first, and afterwards an acid weaker than the original acid. Very conc. or very dil. acids decomp. by distillation.

#### Ammonium hypochlorite.

Known only in aqueous solution, which decomposes at once.

## Barium hypochlorite.

Known only in solution.

### Calcium hypochlorite, Ca(OCl)₂+4H₂O.

Deliquescent, and sol. in H₂O. (Kinzgett, Chem. Soc. (2) **13.** 404.)

# Calcium hypochlorite chloride, etc. (bleaching powder), $Ca(OCl)_2$ , $CaCl_2$ , $Ca(OH)_2$ + $H_2O$ .

Not deliquescent. Sol. in  $H_2O$ . Alcohol does not dissolve out CaCl₂. Sol. in 20 pts.  $H_2O$  with a slight residue,

Correct formula is CaOCl₂ (Lunge and Schäppi; Kraut, A. **214.** 354), CaOCl (Stahlschmidt, B. **8.** 869), CaOCl, Cl (Odling).

CaCl₂ is dissolved out by alcohol. Formula = 2CaOCl CaCl+2H₂O. (Dreyfuss, Bull. Soc. (2) 41. 600.)

## Didymium hypochlorite, Di(OCl)₈.

Difficultly sol. in H₂O. Easily sol. in acids. (Frerichs and Smith, A. 191. 348.)

#### Lanthanum hypochlorite, La(OCl)₃.

Easily sol. in H₂O. (Frerichs and Smith.)

#### Lithium hypochlorite, LiClO.

Known only in solution. (Kraut, A. 1882, 214. 356.)

#### Magnesium hypochlorite.

Known only in solution.

## Potassium hypochlorite, KClO.

Known only in solution.

#### Silver hypochlorite, AgClO.

Very sol, in  $H_2O$ , and decomp. very quickly. (Stas, Acad. R. de Belg. 35. 103.)

### Sodium hypochlorite, NaClO.

Known only in solution.

## Hypoiodic acid, I₂O₄.

See Iodine textroxide.

#### Hypoiodous acid, HOI.

Known only in solution which decomp. on standing. (Taylor, C. N. 1897, 76. 97.)

## Calcium hypoiodite iodide, Ca(OI)2, CaI2.

Not very unstable. (Lunge and Shoch, B. 15. 1883.)

## Hyponitric acid, N₂O₄.

See Nitrogen tetroxide.

## Hyponitrous acid, HNO, or better H₂N₂O₂.

Known only in aqueous solution. Solution is quite stable. (van der Plaats, B. 10. 1507.) Very deliquescent; sol. in H₂O and alcohol; sol. in ether, chloroform, benzene; sl. sol. in petroleum ether. (Hantzsch and Kaufmann, A. 1896, 292, 323.)

#### Ammonium hyponitrite, (NH₄)₂N₂O₂.

Sol. in  $H_2O$  and in alcohol. (Jackson, C. N. 1893, **68**. 266.)

#### Ammonium hydrogen hyponitrite, NH4HN2O2

Easily sol. in  $H_2O$ . The solid salt slowly decomp. at ord. temp. into ammonia,  $H_2O$  and  $N_2O$ . (Hantzsch and Kaufmann, A. 1896, **292**. 328.)

#### Barium hyponitrite, BaN₂O₂.

Nearly insol. in, but gradually decomp. by  $H_2O$ . Sol. in conc. acids with evolution of  $N_2O$ , but sol. in dil.  $HC_2H_3O_2+Aq$  without decomp. (Zorn, B. 15. 1007.)

 $+4\dot{H}_2O$ . Sl. sol. in  $H_2O$ ; insol. in alcohol and ether. (Kirschner, Z. anorg. 1898, **16.** 424.)

+xH₂O. Efflorescent. (Maquenne, C. R. **108**. 1303.)

## Barium hydrogen hyponitrite, $BaH_2(N_2O_2)_2$ ,

Easily sol. in H₂O. (Zorn, B. 1882, 15. 1011.)

#### Calcium hyponitrite, CaN₂O₂+4H₂O.

Nearly insol. in H₂O; easily sol. in dil. acids. (Maquenne, C. R. 108. 1303.)

Sl. sol. in H₂O; insol. in alcohol. (Kirschner, Z. anorg. 1898, **16.** 426.)

Cupric hyponitrite, basic, CuN₂O₂, Cu(OH)₂. Insol. in H₂O; not decomp. by hot H₂O. Sol. in dil. acids and in ammonia. Decomp. by NaOH. (Divers, Chem. Soc. 1899, 75. 12... Insol. in H₂O. Sol. in dil. acids and in NH₄OH+Aq. (Kirschner, Z. anorg. 1898, **16.** 430.)

Cuprous hyponitrite,  $Cu_2N_2O_2 + 2H_2O$ . Ppt. (Kolotow, C. C. 1891, J. 1859.) Cannot be formed. (Divers, Chem. Soc. 1899, **75.** 121.)

Lead hyponitrite, basic, PbN₂()₂, PbO.

Insol. in H2O. Sol. in dil. acids from which it may be pptd. by NaOH+Aq or NH₄OH+ Aq. (Kirschner, Z. anorg. 1898, 16. 430.)

Lead hyponitrite, PbN₂O₂.

Insol. in H2O; sol. in dil. acids from which it may be pptd. by NaOH+Aq or NH₈+Aq. (Kirschner.)

Mercuric hyponitrite, basic, 3HgO, HgN₂O₂ +3H₂O.

Ppt. Sl. sol. even in boiling dil. HNO: Scarcely sol. in conc., very sol. in warm dil. HCl. (Ray, Chem. Soc. 1897, 71. 349.)

Mercurous hyponitrite, Hg₂N₂O₂.

Sol. in dil. HNO3 with slow decomp. (Ray, Chem. Soc. 1907, 91. 1404.)

Mercuric hyponitrite, HgN₂O₂.

Sol. in HCl, and in NaCl+Aq. Sl. sol. in very dil. alkali, (Divers, Chem. Soc. 1899, **75**. 119.)

Potassium hyponitrite, K₂N₂O₂.

Sol. in H₂O. (van der Plaats.)

Stable when dry.

Sol. in 90% alcohol, and sl. sol. in abs. alcohol. (Divers, Chem. Soc. 1899, 75, 103.)

Silver hyponitrite (nitrosyl silver),  $Ag_2N_2O_2$ .

Insol. in H₂O. Easily sol. in dil. HNO₂+

Hasol. In 1120. Eachly Sol. In Chi. 2016.

Aq or H₂SO₄+Aq.

Decomp. by H₃PO₄, H₂S, and boiling HC₂H₃O₂+Aq. (van der Plaats.)

Insol. in HC₂H₃O₂+Aq; sol. in NH₄OH +Aq. (Divers, C. N. 23. 206.)

Sol. in dil. HNO₃ and H₂SO₄ and in conc.

NH₄OH+Aq; decomp. by HCl. (Kirschner, Z. anorg. 1898, 16. 431.)

Sodium hyponitrite,  $Na_2N_2O_2+6H_2O$ . Sol. in H₂O. (van der Plaats.)

Strontium hyponitrite, SrN₂O₂.

Easily sol. in H₂O. (Roederer, Bull. Soc. 1906, (3) 35. 715.)
+5H₂O. Nearly insol. in H₂O; easily sol. decomposes by heating. (Salzer, A. 194. 34.)

in dil. acids. (Maquenne, C. R. 108. 1308.) Sl. sol. in H₂O, insol in alcohol. (Kirschner, Z. anorg. 1898, 16. 426.)

Hypophosphomolybdic acid, MosOs.  $7H_{\bullet}PO_{\bullet}+3H_{\bullet}O_{\bullet}$ 

Very sl. sol. in cold H₂O. Scarcely sol. in cold d'. H₂SO₄. Sol. in cold conc. H₂SO₄. Sol. in warm cone. HCl. Warm HNO. oxidizes forming clear solution. (Mawrow, Z. anorg. 1901, 28. 164.)

Ammonium hypophosphomolybdate, 2(NH₄)₂O, 2H₃PO₂, 8MoC₄+2H₂O.

Not very sol. in cold H₂O, readily in hot H₂O. (Gibbs, Am. Ch. J. 3. 402.)

Hypophosphoric acid, H₄P₂O₆.

Very deliquescent, and sol. in the least amount of H₂O. (Jolv, C. R. 101. 1058.) 100 cc. H₄P₂O₆+Aq, containing 4.1%P₂O₄ has sp. gr. = 1.036.

100 cc.  $H_4P_2O_6+Aq$ , containing 12.3%

P₂O₄ has sp. gr. = 1.122." (Salzer, A. 1878, **194.** 28.)

+H₂O. (Sanger, A. **232.** 14.) Does not exist. (Joly.)

+2H₂O. Appears to be the only stable hydrate between 0° and 60.°

Sänger's hydrate,  $H_4P_2O_6+H_2O_6$ Joly's anhydride could not be obtained. (Rosenheim, B. 1908, 41, 2711.)

Aluminum hypophosphate,  $Al_4(P_2O_6)_8$ + 23H₂O.

Easily sol. in mineral acids. Sol. in Na₄P₂O₆ +Aq. (Palm, Dissertation, Rostock, 1890.)

Ammonium hypophosphate, (NH₄)₄P₂O₆+ H₂O.

Sol. in 30 pts. H₂O. (Salzer, A. 194. 32.)

Ammonium hydrogen hypophosphate,  $(NH_4)_2H_2P_2O_6$ .

Sol. in 14 pts. cold, and 4 pts. boiling H₂O. (Salzer, A. **194.** 32.)

Ammonium trihydrogen hypophosphate, NH₄H₈P₂O₆.

Sol. in H₂O. (Salzer, A. **211.** 1.)

Ammonium magnesium hypophosphate,  $(NH_4)_2MgP_2O_6+6H_2O.$ 

Precipitate. (Salzer, A. 232, 114.)

Barium hypophosphate, Ba₂P₂O₆.

Very slightly sol., but not wholly insol. in H₂O. Very slightly sol. in acetic acid, but more soluble in hydrochloric, and hypophosphoric acids. (Salzer, A. 194. 34.)

Barium hydrogen hypophosphate, BaH, P.O.

Bismuth hypophosphate, Bi₄(P₂O₆)₈+8¹/₂H₂O.

Completely sol. in HCl+Aq, also in warm HNO₂+Aq. Insol. in boiling dil. H₂SO₄+Aq. Sl. sol. by long boiling with conc. H₂SO₄. (Palm, Rostock, **1890**.)

Cadmium hypophosphate, Cd₂P₂O₆+2H₂O. Insol. in H₂O. Sol. in dil. acids. (Drawe, B. 21. 3403.)

Cadmium potassium hydrogen hypophosphate, CdK₂(H₂P₂O₆)₂+2½H₂O. (Bausa, Z. anorg. 1894, 6. 147.)

Cadmium sodium hypophosphate, CdNa₂P₂O₆ +6H₂

Insol. in  $H_2O$ , but decomp. thereby. Sol. in dil. acids. (Drawe.)

Calcium hypophosphate,  $Ca_2P_2O_6+2H_2O$ . Insol. in  $H_2O$ ; difficultly sol. in  $HC_2H_3O_2$ ; easily sol. in  $H_4P_2O_6$ , or HCl+Aq. (Salzer, A. 194. 36.)

Calcium hydrogen hypophosphate, CaH₂P₂O₆+ 6H₂O.

Sol. in 60 pts. H₂O. (Salzer, A. 232. 114.)

Chromic hypophosphate,  $Cr_4(P_2O_6)_2+34H_2O$ . Sol. in HCl+Aq on sl. warming, also in  $HNO_3+Aq$ . Not completely sol. in dil.  $H_2SO_4+Aq$ , but completely sol. in conc.  $H_2SO_4$ . (Palm, Dissertation, Rostock, 1890.)

Cobaltous hypophosphate,  $\text{Co}_2\text{P}_2\text{O}_6+8\text{H}_2\text{O}$ . Insol. in  $\text{H}_2\text{O}$ . Easily sol. in acids. (Drawe, B. 21. 3403.)

Cobaltous potassium hypophosphate,  $CoK_2P_2O_6+5H_2O$ .

Ppt. (Bausa, Z. anorg. 1894, 6. 156.)

Cobaltous potassium hydrogen hypophosphate,  $CoH_2P_2O_6$ ,  $3K_2H_2P_2O_6+15H_2O$ .

Cobaltous sodium hypophosphate,  $CoNa_2P_2O_6 + 1\frac{1}{2}H_2O$ .

Insol. in  $H_2O$ , but decomp. thereby. Sol. in dil. acids. (Drawe, B. 21. 3403.)

Cupric hypophosphate, Cu₂P₂O₆+6H₂O.
Insol. in H₂O. Sol. in dil. acids. (Drawe, B. 21. 3403.)
Ppt. (Bausa, Z. anorg. 1894, 6. 145.)

Cupric potassium hydrogen hypophosphate, CuH₂P₂O₆, 3K₂H₂P₂O₆+15H₂O. Ppt. (Bausa, Z. anorg. 1894, 6. 152.)

Glucinum hypophosphate, Gl₂P₂O₆+7H₂O.

Insol. in H₂O. Moderately sol. in all mineral acids. (Palm, Rostock, **1890.**)

+3H₂O. (Rammelsberg.)

Iron (ferrous) hypophosphate,  $Fe_2P_2O_6+4\frac{1}{2}H_2O$ .

Insol. in H₂O. Sol. in cold HCl+Aq. Decomp. by hot HNO₃+Aq into Fe₄(P₂O₆)₅. Insol. in HNO₃+Aq. Insol. in boiling dil. H₂SO₄+Aq. Somewhat sol. in cold H₂SO₄, but a ppt. separates out on heating. (Palm, Rostock, **1890**.)

Iron (ferric) hypophosphate,  $\rm Fe_4(P_2O_6)_3 + 20H_2O.$ 

Easily sol. in HCl+Aq. Wholly insol. in  $HNO_3$ , and dil.  $H_2SO_4+Aq$ . Completely sol. in conc.  $H_2SO_4$  by warming a short time, but a ppt. separates out on boiling. (Palm.)

Lead hypophosphate, Pb₂P₂O₆.

Insol. in H₂O, HC₂H₃O₂, or H₄P₂O₆+Aq; sol. in dil. HNO₃+Aq. (Salzer.)

Lithium hypophosphate, Li₄P₂O₆+7H₂O.

Very sl. sol. in  $H_2O$ . (Salzer, A. **194.** 28.) Sol. in 120 pts.  $H_2O$  at ord. temp. (Rammelsberg, J. pr. (2) **45.** 153.)  $I_1i_2H_2P_2O_6+2H_2O$ . Deliquescent. (Ram-

 $11_2H_2P_2O_6+2H_2O$ . Deliquescent. (Rammelsberg.)

Magnesium hypophosphate,  $Mg_2P_2O_6+12H_2O$ .

Sol. in 15,000 pts. H₂O; sl. sol. in acetic, easily in hypophosphoric, or mineral acids. (Salzer, A. **232**. 114.) +24H₂O. (Rammelsberg.)

Magnesium hydrogen hypophosphate,  ${\rm MgH_2P_2O_6}{+}4{\rm H_2O}.$ 

Sol. in 200 pts. H₂O. (Salzer, A. 232. 114.)

Manganese hypophosphate,  $Mn_2P_2O_6+$  $2\frac{1}{2}H_2()$ .

Insol. in  $H_2O$ ; sol. in mineral acids, insol. in acetic acid. (Palm, Dissertation, Rostock, 1890.)

Manganous potassium hydrogen hypophosphate, MnH₂P₂O₆, K₂H₂P₂O₆+3H₂O. Ppt. (Bausa, Z. anorg. 1894, **6.** 150.)

Manganous sodium hypophosphate,  $Mn_2P_2O_6$ ,  $Na_4P_2O_6+11H_2O$ .

Insol. in H₂O; sol. in mineral acids. (Palm.)

Nickel hypophosphate, Ni₂P₂O₆+12H₂O. Insol. in H₂O. Sol. in dil. acids. (Drawe, B. 21. 3401.)

Nickel potassium hypophosphate, NiK₂P₂O₆+6H₂O. Ppt. (Bausa, Z. anorg. 1894, **6.** 155.)

Nickel potassium hydrogen hypophosphate, NiH₂P₂O₆, 3K₂H₂P₂O₆+15H₂O.

Ppt. (Bausa, Z. anorg. 1894, 6. 144.)

Nickel sodium hypophosphate, NiNa₂P₂O₆+

Insol. in H₂O, but decomp. thereby. Easily sol. in dil. acids. (Drawe.)

Potassium hypophosphate,  $K_4P_2O_1 + SH_2O_2$ Sol. in 1/4 pt. H₂O; insol. in alcohol. (Salzer, A. 211. 1.)

Potassium hydrogen hypophosphate,  $K_8HP_2O_6+3H_2O$ . Sol. in ½ pt. H₂O. (Salzer, A. 211. 1.)

Potassium dihydrogen hypophosphate,  $K_2H_2P_2O_6+3H_2O_1$ , and  $+2H_2O_2$ . Sol. in 3 pts. cold, and 1 pt. boiling  $H_2O$ . (Salzer, A. 211. 1.)

Potassium trihvdrogen hypophosphate. KH₃P₂O₆.

Sol. in  $1\frac{1}{2}$  pts. cold, and  $\frac{1}{2}$  pt. hot  $H_2O$ . (Salzer, A. **211**. 1.)

Potassium pentahydrogen dihypophosphate,  $K_8H_5(P_2O_6)_2+2H_2O$ .

Sol. in 2½ pts. cold, and 4/5 pt. boiling (Rose, Pogg. 12. 86.) H₂O. (Salzer, A. 211. 1.)

Potassium sodium hypophosphate,  $Na_{2}K_{2}P_{2}O_{6}+9H_{2}O.$ 

Sol. in about 25 pts. cold, and 3 pts. hot H₂O. (Bausa, Z. anorg. 1894, **6.** 158.)

Potassium zinc hydrogen hypophosphate,  $ZnH_2P_2O_6$ ,  $3K_2H_2P_2O_6+15H_2O$ . Ppt. (Bausa, Z. anorg, 1894, 6, 148.)

Silver hypophosphate, Ag₄P₂O₆.

Sl. sol. in H₂O. Easily sol. in HNO₃, or  $NH_4OH + Aq$ . Very sl. sol. in  $H_4P_2O_6 + Aq$ . (Salzer, A. 232. 114.)

Sodium hypophosphate, Na₄P₂O₆+10H₂O. Sol. in about 30 pts. cold, much more easily in hot H₂O. (Salzer.)

Sodium hydrogen hypophosphate, Na₂HP₂O₆ +9H₂O.

Sol. in 22 pts. H₂O. (Salzer.)

Sodium dihydrogen hypophosphate,  $Na_2H_2P_2O_6+6H_2O$ .

Sol. in 45 pts. cold, and 5 pts. boiling H₂O. More sol. in dil. H₂SO₄+Aq. Insol. in alcohol. (Salzer, A. 187. 331.)

Sodium trihydrogen hypophosphate, NaHaP2Os.

Sol. in H₂O. (Salzer, A. 211. 1.)

Sodium trihydrogen dihypophosphate, Very efflorescent. Sol. in 15 pts. cold H₂O. (Salzer, A. 211. 1.)

Thallium hypophosphate, Tl₄P₂O₃.

Sl. sol. in H₂O. Decomp. in sunlight. (Joly, C. R. 1894, 118. 650.)

Thallium hydrogen hypophosphate, Tl2H2P2O6.

Sol. in H₂O. (Joly.)

Zinc hypophosphate,  $Ln_2P_2O_6+2H_2O$ . Insol. in H₂O. Easily sol. in dil. acids. (Drawe, B. 21. 340°.)

Hypophosphorosomolybide acid.

Barium hypophosphorosomolybdate, BaO,  $Mo_7O_{20}$ ,  $3H_3PO_2+12H_2O$ .

Very sol. in H₂O and BaCl₂+Aq. (Mawrow, Z. anorg. 1902, 29. 156.)

Hypophosphorous acid, H₂PO₂. Very sol. in H₂O and alcohol. (Rose.)

Aluminum hypophosphite.

Not deliquescent, but very sol. in H₂O.

Ammonium hypophosphite, NH₄H₂PO₂.

Sol. in H₂O, less deliquescent than the potassium salt. (Wurtz, A. ch. (3) 7. 193.) Very sol. in absolute alcohol. (Dulong.) Moderately sol. in liquid NH₃. lin, Am. Ch. J. 1898, **20**. 826.)

Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**. 4328.)

Barium hypophosphite,  $Ba(H_2PO_2)_2 + H_2O_2$ . Sol. in 3.5 pts. cold, and 3 pts. boiling H₂O. Insol. in alcohol. (Wurtz, A. 43. 323.)

Bismuth hypophosphite, Bi(H₂PO₂)₃.

Ppt. (Vanino, J. pr. 1906, (2) 74. 150a) Sol. in acid  $Bi(NO_3)_3 + Aq$ .  $+\mathrm{H}_2\mathrm{O}$ . (Haga, Chem. Soc. 1895, 67. 229.)

Cadmium hypophosphite.

Sol. in H₂O. (Rose, Pogg. 12. 91.)

Calcium hypophosphite,  $Ca(PH_2O_2)_2$ .

Sol. in 6 pts. cold, and not much more sol. in hot H₂O. Insol. in strong, very sol. in weak alcohol. (Rose, Pogg. 9. 361.)

Calcium cobaltous hypophosphite.  $2Ca(PH_2O_2)_2$ ,  $Co(PH_2O_2)_2 + 2H_2O$ . Efflorescent. (Rose, Pogg. 12. 295.)

Calcium ferrous hypophosphite.

Sol. in H₂O. (Rose, Pogg. 12. 294.)

Cerous hypophosphite,  $Ce(PH_2O_2)_8 + H_2O$ . Sl. sol. in H₂O. (Rammelsberg, B. A. B. **1872.** 437.)

Chromium hypophosphite, Cr₂(OH)₂(H₂PO₂)₄.

Anhydrous. Insol. in H₂O or dil. acids.

+3H₂O. Sol. in H₂O. (Wurtz, A. ch. (3)

16. 196.)

Cobaltous hypophosphite,  $Co(PH_2O_2)_2 + 6H_2O$ .

Efflorescent. Easily sol. in H₂O. (Rose, Pogg. 12. 87.)

Cupric hypophosphite, Cu(PH₂O₂)₂.

Very sol. in H₂O, but very easily decomp. on heating. (Wurtz, A. ch. (3) **16**. 199.)

Glucinum hophosphite.

Sol. in H₂O. (Rose, Pogg. 12. 86.)

Iron (ferrous) hypophosphite,  $Fe(PH_2O_2)_2 + 6H_2O$ .

Sol. in H₂O. (Rose, Pogg. 12. 294.)

Iron (ferric) hypophosphite.

Difficultly sol. in H₂O or acids. Decomp. on boiling. Sl. sol. in H₂PO₂+Aq. (Rose.)

Lead hypophosphite, Pb(PH₂O₂)₂.

Difficultly sol. in cold, more easily in hot H₂O. Insol. in alcohol. (Rose, Pogg. 12. 288.)

Lithium hypophosphite, LiH₂PO₂+H₂O. Sol. in H₂O. (Rammelsberg, B. A. B. **1872.** 416.)

Magnesium hypophosphite,  $Mg(PH_2O_2)_2 + 6H_2O$ .

Efflorescent in dry air. Sol. in H₂O. (Rose.)

Manganous hypophosphite,  $Mn(H_2PO_2)_2 + H_2O$ .

Permanent. Very sol. in  $H_2O$ . (Wurtz, A. ch. (3) 16. 195.)

Mercurous hypophosphite nitrate, HgH₂PO₂, HgNO₃+H₂O.

Sl. sol. in H₂O with rapid decomp. Sol. in hot conc. HNO₃. (Haga, Chem. Soc. 1895, **67.** 227.)

Nickel hypophosphite, Ni(PH₂O₂)₂+6H₂O. Efflorescent. Sol. in H₂O. (Rammelsberg, B. **5.** 494.)

Nickel hypophosphite ammonia,

Ni(H₂PO₂)₂, 6NH₃. (Ephraim, B. 1913, **46.** 3111.)

Platinous hypophosphite Pt(PH₂O₂)₂. Insol. in H₂O, HCl, H₂SO₄+Aq, etc. Sol. in HNO₈+Aq. Insol. in alcohol. (Engel, C. R. **91**, 1068.) Potassium hypophosphite, KH₂PO₂.

Very deliquescent. Very sol. in H₂O. sol. in weak, less in absolute alcohol. Insol. in ether. (Wurtz, A. ch. (3) 7. 192.)
Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

Sodium hypophosphite, NaH₂PO₂+H₂O.

Very deliquescent. Somewhat less sol. than the K salt. Very sol. in absolute alcohol. (Dulong.)

Very sol. in H₂O, and somewhat less sol. in alcohol. (Rammelsberg, B. A. B. **1872.** 412.) Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Strontium hypophosphite,  $Sr(PH_2O_2)_2$ .

Very easily sol. in H₂O. (Dulong.) Insol. in alcohol. (Wurtz.)

Thallous hypophosphite, TlH₂PO₂.

Sol. in  $H_2O$ . (Rammelsberg, B. A. B. **1872.** 492.)

Uranyl hypophosphite,  $UO_2(H_2PO_2)_2+H_2O$ . Sl. sol. in  $H_2O$ . Easily sol. in HCl, or  $HNO_3+Aq$ . (Rammelsberg, Chem. Soc. (2) 11. 1.)

 $D_2$ vanadyl hypophosphite,  $V_2O_2(H_2PO_2)_4 + 2H_2O$ .

Insol. in cold, sl. sol. in hot H₂O. Sol. in hot dil. HCl, H₂SO₄ and HNO₃ and in warm conc. HCl and H₂SO₄. Insol. in oxalic acid. (Mawrow, Z. anorg. 1907, **55**. 147.)

Zinc hypophosphite,  $Zn(H_2P\Theta_2)_2 + H_2O$ .

Sol. in  $H_2O$ . +6 $H_2O$ . Efflorescent. (Wurtz, A. ch. (3) 16. 195.)

Zirconium hypophosphite, Zr(OPH₂O)₄+H₂O. Sensitive to light. Insol. in alcohol, by which it is pptd. from aqueous solution. (Hauser, Z. anorg. 1913, **84.** 93.)

Hypophosphotungstic acid.

Potassium hypophosphotungstate, 4K₂O, 6H₃PO₂, 18WO₃+7H₂O.

Precipitate. Sol. in hot, very sl. sol. in cold  $H_2O$ . (Gibbs, Am. Ch. J. 5. 361.)

Hyposulpharsenious acid.

Hyposulpharsenites, As₂S₂, M₂S.
Difficultly sol. in H₂O. (Berzelius.)
Do not exist. (Nilson, B. 4. 989.)

Hyposulphuric acid, H₂S₂O₆.

See Dithionic acid.

Hyposulphurous acid, H₂S₂O₃. See Thiosulphuric acid.

#### Hyposulphurous (Hydrosulphurous) acid, H₂SO₂.

Known only in dil. aqueous solution, which decomposes rapidly.

Correct formula is H₂S₂O₄, according to Bernthsen (A. 211, 285.)

More sol. in alcohol than in H₂O. (Rossler. Arch. Pharm. (3) 25. 845.)

### Ammonium hyposulphite, $(NH_4)_2S_4O_4$ .

Known only in solution. (Prudhomme. Bull. Soc. 1899, (3) 21. 326.)

#### Ammonium hydrogen hyposulphite, NH HS2O4.

Known only in solution. Bull. Soc. 1899, (3) 21. 326.) (Prudhomme.

Calcium hyposulphite, CaS₂O₄+1.5H₂O. Difficultly sol. in H₂O. (Bazlen, B. 1905, **38.** 1059.)

Magnesium hyposulphite, MgS₂O₄. (Billy, C. R. 1905, 140, 936.)

### Potassium hyposulphite, K₂S₂O₄+3H₂O.

Easily decomp.

Insol. in alcohol. (Bazlen, B. 1905, 38. 1058.)

#### Sodium hyposulphite, Na₂S₂O₄.

Anhydrous. Stable in dry air. (Bazlen, B. 1905, 38. 1061.)

100 g. H₂O dissolve 24.1 g. of the anhydrous salt at 20°. (Jellinek, Z. anorg. 1911, 70. 130.) +2H₂O. Solubility in H₂O.

11.6 g. of the solution contain at: 20° 1.91 g.  $Na_2S_2O_4$ 

10° 1.67 g. 1.49 g.

(Jellinek, Z. anorg. 1911, 70, 128.) Insol. in alcohol. (Bazlen, B. 1905, 38. 1058.)

Sodium zinc hyposulphite, Na₂S₂O₄, ZnS₂O₄. Less sol. in H₂O than ZnS₂O₄. (Bazlen, B. 1905, 38. 1060.)

## Strontium hyposulphite, SrS₂O₄.

Sol. in H₂O. (Moissan, C. R. 1902, 135. 653.)

## Zinc hyposulphite, ZnS₂O₄.

Easily sol. in H2O; about 1 pt. in 7 pts. H₂O. Forms supersat. solutions readily. (Bazlen, B. 1905, 38. 1060.)

Hypovanadic acid, V₂O₂(OH)₄. See Vanadium tetrhydroxide.

Hypovanadic acid, H₂V₄O₆. See Vanadous acid.

## Hypovanadic acid with vanadic acid. Sec Vanadicovanadic acid.

Imidodi netaarsenic acid.

#### Ammonium imidodimetaaresenate, (NH₄O₂As₂O₃NH.

(Rosenheim and Jacobsohn, Z. anorg. 1906, **5**0, 307.)

Imidochromic acid.

#### Ammonium imidochromate, NHCrO(ONH₄)₂.

Very sol. in H₂O with decomp. (Rosenheim and ⁷acobsohn, Z. anorg. 1906. **50**. 299.)

#### Ammonium potassium imidochromate, NH₄KCrO₄NH.

Decomp. on solution in H₂O. (Rosenheim, Z. anorg. 1906, 50. 302.)

Imidodiimidochromic acid.

#### Artmonium imidodiimido chromate, NH[CrO(NH)ONH4]2.

(Rosenheim and Jacobsohn, Z. anorg 1906, **50.** 303.)

Imidomolybdic acid.

## Potassium imidomolybdate, NKMoO(OK)₂.

Unstable in air.

Very hygroscopic. Very sol. in H₂O. (Rosenheim, Z. anorg. 1906, 50. 305.)

### Diimido diphosphormonamic acid,

$$HO-PO < NH > PO-NH_2.$$

Correct formula for pyrophosphotriamic acid of Gladstone. (Mente, A. 248. 241.)

#### Imidodiphosphoric acid,

$$HO-PO < {}_{NH}^{O} > PO-OH.$$

Correct name for pyrophosphamic acid. (Mente, A. 248. 251.)

Barium imidodiphosphate, Ba $\bigcirc > PO > NH$ .

Sl. sol. in H₂O. (Mente, A. 248. 243.)

Barium imidodiphosphate, basic

$$Ba \stackrel{O}{\underset{O}{=}} PO > PO > N - Ba - N \stackrel{PO - O}{\underset{PO - O}{=}} Ba + 2H_{2}O.$$

Ppt. (Mente.)

#### Ferric imidodiphosphate.

Sl. sol. in conc. acids. (Mente, A. 248. 241.)

Silver imidodiphosphate, Ag₈H₂P₂NO₆. Insol. in H₂O. (Stokes, Am. Ch. J. 1896, **18.** 660.) Ag4HP2NO6. Ppt. (Stokes.)

## Diimidodiphosphoric acid.

$$HO-PO<_{NH}^{NH}>PO-OH.$$

Correct name for pyrophosphodiamic acid. (Mente, A. 248. 241.)

## Barium diadodiphosphate,

244.)

## Sodium diimidodiphosphate, basic,

Sl. sol. in H₂O. (Mente, A. 248, 245.)

#### Diimidotriphosphoric acid.

Silver diimidotriphosphate, Ag₃H₄P₃N₂O₈. Insol. in  $H_2O$ . Very sol. in  $NH_4OH + Aq$ . Rather sl. sol. in dil. HNO3. (Stokes, Am.

Ch. J. 1896, **18**. 657.) Ag₅H₂P₈N₂O₈. Insol. in H₂O. Very sol. in  $NH_4OH + Aq.$ 

Decomp. by HNO₃. (Stokes.)

## Trisodium dimidotriphosphate,

P₈N₂O₈H₄Na₃.

Sol. in H₂O. Insol. in alcohol. (Stokes.)

## Trimidotetraphosphoric acid.

Silver triimidotetraphosphate.

Ag4H5P4N8O10.

Ppt. (Stokes, Am. Ch. J. 1898, 20, 755.)

## Sodium triimidotetraphosphate.

P4N3O10H5Na4.

Easily sol. in H₂O; insol. in sodium acetate solution and dil. alcohol. (Stokes, Am. Ch. J. 1898, 20. 754.)

## Imidosulphamide, NH2.SO2.NH.SO2.NH2.

"Sulphamide" of Traube.

Very sol. in H₂O with decomp. appreciably sol. in cold, easily sol. in hot methyl and ethyl alcohol. Insol. in C₆H₆, and CHCl₂. Sl. sol. in ether, cold and hot acetic ether and glacial acetic acid. Moderately stable toward alkalies. (Hantzsch and Stuer, B. 1905, 38. 1022.)

#### Ammonium imidosulphamide, NH4S2O4N3H4.

(Hantzch and Stuer.)

$$\begin{split} & \text{Imidosulphonic acid,} \\ & \text{H}_{\text{8}} \text{S}_2 \text{O}_{\text{6}} \text{N} = & \text{HN} < & \text{SO}_2 - & \text{OH} \\ & \text{SO}_2 - & \text{OH}. \end{split}$$

Ammondisulphonic acid of Claus. Known only in aqueous solution. (Divers and Haga, Chem. Soc. 61, 943.)

Very unstable. (Berglund, B. 9. 252.)

#### Ammonium imidosulphonate, basic, $(NH_4)N(SO_3NH_4)_2$

Sol. in 9 pts. of H₂O. Solution is stable.

Insol. in alcohol. Sl. sol. in warm conc. H2SO, without decomp. (Rose, Pogg. 1834, 32. 81.)

Much less sol. than the neutral salt. (Berg-

lund, B. 9. 255.)
="Parasulphatammon."

 $+H_2O$ . Gradually efflorescent. Sol. in  $H_2O$  with subsequent decomp. (Divers and Haga.)

Ammonium imidesulphonate, HN(SO₃NH₄)₂. Sol, in H₂O. (Raschig, A. **241**, 161.)

## Ammonium barium imidosulphonate,

 $NH_4BaN(SO_8)_2(?)$ .

Very sl. sol. in H₂O. (Divers and Haga.)  $(NH_4)_2Ba_5N_4(SO_8)_8+8H_2O$ . (D. and H.)

## Ammonium calcium imidosulphonate.

(Divers, Chem. Soc. 1892, 61, 968.)

#### Ammonium sodium imidosulphonate, $NH_4Na_5N_2(SO_3)_4 + 7H_2O_1$ , and $2\frac{1}{2}H_2O_1$ Very sl. sol. in NH₄OH+Aq. (Divers and Haga.)

Ammonium sodium imidosulphonate nitrate, HN(SO₃NH₄)₂, NaNO₈.

Very sol. in H₂O. (Divers and Haga.)

Barium imidosulphonate, Ba[N(SO₃)₂Ba]₂+ 5H₂O.

Sl. sol. in H₂O. (Berglund, B. 9. 255.) Sol. in dil. HNO₃+Aq without decomp. (Divers and Haga.)

HN(SO₃)₂Ba+H₂O. Moderately sol. in H₂O. (D. and H.)

#### Barium mercury imidosulphonate. $N_2Hg(SO_3)_4Ba_2$ .

Almost insol. in cold H₂O. (Divers and Haga, Chem. Soc. 1892, 61. 977.)

#### Barium sodium imidosulphonate, $Ba_{11}Na_8N_{10}(SO_8)_{20}+13H_2O.$

Sparingly sol. in H2O. Readily sol. in HNO₃ or HCl. (Divers, Chem. Soc. 1892, **61.** 967.)

Calcium imidosulphonate, Ca[N(SO₃)₂Ca]₂‡ | 6H₂O.

Sl. sol. in H₂O. (Berglund.)

## Calcium mercury imidosulphonate, $N_2Hg[(SO_3)_2Ca]_2$ .

Very sol. in  $H_2O$ . (Divers and Hags, Chem. Soc. 1896, **69**. 1629.)

## Calcium mercury imidosulphonate chloride, $(NS_2O_6Ca)_3Hg_2Cl+12H_2O$ .

Decomp. by H₂O. (Divers and Hage, Chem. Soc. 1896, **69.** 1629.)

#### Calcium sodium imidosulphonate, NaN(SO₃)₂Ca+3H₂O.

Sl. sol. in cold H₂O. (Divers and Haga, Chem. Soc. **61.** 968.)

## Lead imidosulphonate, $(PbOHSO_8)_2NPbOH$ .

Ppt. (Berglund.) Insol. in H₂O. (Divers and Haga.) (PbOH)₃N(SO₃)₂, PbO. Insol. in H₂O; easily sol. in dil. HNO₃+Aq. (D. and H.)

## Mercurous imidosulphonate, basic, $[Hg_2N(SO_3)_2Hg_2]_2O+6H_2O$ .

Much more sol. in dil. HNO₃ than mercuric salt. Sol. in cold conc. KI+Aq, leaving half Hg as metal. (Divers and Haga, Chem. Soc. 1896, **69**. 1631.)

## Mercuric imidosulphonate, basic, $\rm NH(SO_3,\,HgO)_2Hg.$

Easily decomp. (Divers and Haga.)

## Mercuromercuric imidosulphonate, [Hg^{It}N(SO₃)₂Hg¹₂]₂O+3H₂O.

(Divers and Haga.)  $[Hg^{t}N(SO_3)_2Hg_2^t]_2O$ ,  $[Hg^{t}N(SO_3)_2Hg_2$ ,  $Hg^{tt}N(SO_3)_2Hg_2^t]_O+6H_2O$ . (Divers and Haga.)

## Mercury sodium imidosulphonate, basic, $\mathrm{Hg_2ON}(\mathrm{SO_3})_2\mathrm{Na} + 2\mathrm{H_2O}$ .

Slightly efflorescent. Decomp. by long washing with H₂O. Much more readily sol. in HCl than in HNO₃ or H₂SO₄ and is wholly decomp. thereby. (Divers and Haga, Chem. Soc. 1892, **61**. 983.)

#### Mercury sodium imidosulphonate, $HgN_2(SO_3Na)_4+6H_2O$ .

Sparingly sol. in cold H₂O.
Readily sol in HNO₃ and in HCl.
Decomp. by HCl immediately, but not
by HNO₃. (Divers and Haga, Chem. Soc.
1892, **61.** 981.)

## Potassium imidosulphonate, basic, KN(SO₃K)₂+H₂O.

Sol. in H₂O. (Raschig, A. **241**. 161.) Less sol. than neutral salt. (Berglund.)

## Potassium imidosulphonate, HN(SO₂K)₂.

Sol. in H₂O. (Raschig, A. 241. 161.) = Potassium ammond:sulphonate of Claus. Difficultly sol. in cold H₂O, sol. in 64 pts. H₂O at 23°. (Fremy.) Gradually decomp. by boiling. (Claus.) Sl. sol. in H₂O. (Berglund, B. 9. 255.)

## Potassium mercury imidosulphonate N₂Hg(SO₃K)₄-4H₂O.

See Mercurimidosulphonic acid.

Silver imidesulphonate, AgN(SO₃Ag)₂. Sl. sol. in H₂O. (Berglund.)

#### Silver sodium imidosulphonate, NaN(SO₃Ag)₂.

Sl. sol. in H₂O. (Divers and Haga.) AgNa₂N(SO₃)₂. Sl. sol. in H₂O, but more sol. than the two preceding salts. (D. and H.)

## Sodium imidosulphonate, $HN(SO_3Na)_2 + 2H_2O$ .

Not efflorescent. Very sol. in H₂O. (Diver and Haga.)

 $N_aN(SO_3N_a)_2+12H_2O$ . Efflorescent. Sl. sol. in cold  $H_2O$ , but very sol. in hot  $H_2O$ . Sol. in 5.4 pts.  $H_2O$  at 27.5°. (Divers and  $H_{-}$ ga.)

#### Sodium strontium imidosulphonate, SrNaNS₂O₆+3H₂O.

Sl. sol. in  $H_2O$ . (Divers, Chem. Soc. 1896, **69**. 1625.)

#### Strontium imidosulphonate, $Sr[N(SO_3)_2Sr]_2+6H_2O$ .

Sl. sol. in H₂O. (Berglund.) +12H₂O. Somewhat sol. in hot H₂O. (Divers, Chem. Soc. 1896, **69.** 1623.)

#### Imidotrisulphoorthophosphoric acid, NH:P(SH)₃.

Insol. in CS₂ and readily decomp. by H₂O. (Stock, B. 1906, **39.** 1991.)

## Ammonium imidotrisulphoon thophosphate, NHP(SNH₄)₃.

Very hydroscopic.
Loses NH₃ in the air.
Somewhat sol. in liquid NH₃.
Decomp. by any other solvent in which it is sol. (Stock, B. 1906, 39. 1983.)

## Diammonium hydrogen imidotrisulphoorthophosphate, SHP(SNH₄)₂NH.

(Stock, B. 1906, **39.** 1983.)

# Ammonium dihydrogen SNH₄P(SH)₂NH.

(Stock.)

#### Disodium hydrogen imidotrisulphoorthophosphate, SHP(SNa)₂NH.

Very easily sol. in  $H_2O$ . Decomp. by  $H_2O$ . Somewhat sol. in methyl and ethyl alcohol. (Stock.)

## Diimidopentasulphopyrophosphoric acid, P₂S₆N₂H₆.

Not known in pure state. (Stock, B. 1906, 39. 1967.)

## Ammonium dimidopentasulphopyrophosphate, $S[P(SNH_4)_2NH]_2$ .

Very hydroscopic.

Sol. in cold H₂O with decomp. (Stock, B. 1906, 39. 1976.)

### Inidosulphurous acid.

## Ammonium imidosulphite, $HN(SO_2NH_4)_2$ .

Somewhat deliquescent.

Very unstable. Easily sol. in H₂O with decomp. into thiosulphate and amidosulphate.

Insol. in alcohol. (Divers and Ogawa, Chem. Soc. 1901, 79, 1100.)

#### Ammonium barium imidosulphite, Ba(SO₂NHSO₂NH₄)₂.

Sol. in  $H_2O$ . (Divers, Chem. Soc. 1901, **79.** 1102.)

## Potassium imidosulphite, NH(SO₂K)₂.

(Divers and Owaga, Proc. Chem. Soc. 1900, 16. 113.)

Very sol. in  $H_2O$ . (Divers, Chem. Soc. 1901, 79. 1101.)

## Imidosulphuryl amide, $S_2O_4N_8H_5 =$

 $SO_2 < NH_2 SO_2 < NH_2$ 

Sol. in NH₄OH+Aq. Decomp. by conc. HCl. Insol. in alcohol sat. with NH₂. (Mente, A. **248**. 265.)

#### Indic acid.

### Magnesium indate, MgIn₂O₄+3H₂O.

Ppt. Insol. in H₂O. Sol. in HCl+Aq. (Renz, B. 1901, **34.** 2764.)

#### Indium, In.

Does not decomp. hot H₂O.

Sol. in dil. HCl, and H₂SO₄+Aq. Decomp. by conc. H₂SO₄. Easily sol. in HNO₃+Aq. Insol. in acetic acid. Insol. in KOH+Aq. (Winkler, J. pr. 102. 273.)

Insol. in liquid NH₈. (Gore, Am. Ch. J.

1898, 20. 830.)

½ ccm. oleic acid dissolves 0.0039 g. In in 6 days (Gates I phys. Chem. 1911, 15

6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

#### Indium monobromide, InBr.

Decomp. by hot H₂O. Easily sol. in acids. Easily sol. in cold conc. HCl. (Thiel, Z. anorg. 1904, **40**. 328.)

#### Indium dibromide, InBr₂.

Decomp. by hot H₂O. Easily sol. in acids. (Thiel, Z. anorg. 1904, **40.** 329.)

#### Indium tribromide, InBr.

Deliquescent. Very sol. in H₂O.

#### Indium monochleiide, InCl.

Deliquescent. Decomp. by H₂O into InCl₃. and In. (Nilson and Pettersson, Chem. Soc. 43. 820.)

#### Indium dichloride, InCl2.

Deliquescent in moist air; decomp. by H₂O into InCl₃ and In. (Nilson and Pettersson, Chem. Soc. **43**. 818.)

#### Indium trichloride, InCl₃.

Very deliquescent; sol. in  $H_2O$  with hissing and great evolution of heat.

### Indium lithium chloride.

Extremely deliquescent. Sol. in  $H_2O$ . (Meyer, A. **150**. 144.)

## Indium potassium chloride, 3KCl, $InCl_3+1\frac{1}{2}H_2O$ .

Easily sol. in H₂O. (Meyer.)

## Indium trifluoride, InF₈+3H₂O.

Sol. in  $H_2O$ ; readily decomp. (Thiel, B. 1904, 37. 175.)

1 Í. H₂O dissolves 86.4 g. at 25°. Decomp. on boiling. (Thiel, Z. anorg. 1904, **40**. 331.) +9H₂O. Sl. sol. in cold H₂O.

Sol. in HCl and in HNO₈.

Insol. in alcohol and ether. (Chabrié, C. R. 1905, **140.** 90.)

#### Indium hydrosulphide.

Decomp. by acids. (Meyer.)

#### Indium hydroxide, In₂O₆H₆.

Sol. in acids; also in KOH, or NaOH+Aq but the solution clouds up on standing or boiling, with separation of In₂O₆H₆. Insol. in NH₄OH, or NH₄Cl+Aq.

Sl. sol. in NH₄OH+Aq. (Renz, B. 1904, 37. 2110.)

Sl. sol. in alkylamines but completely ppt. by addition of the hydrochloride of the base. (Renz, B. 1903, **36**. 2754.)

#### Indium monoiodide, InI.

Slowly decomp. in moist air. Not attacked by boiling  $H_2O$ .

Sol. in dil. HNO₃ in presence of AgNO₃. Very slowly sol. in cold, more rapidly sol. in

hot acids with evolution of H₂. Very sol. in sulphurous acid.

Insol. in alcohol. ether and chloroform. (Thiel, Z. anorg. 1910, 66. 302.)

#### Indium diodide, InI2.

(Thiel, Z. anorg. 1910, 66. 302.)

#### Indium triiodide, InI₂.

Deliquescent. (Meyer.) Sol. in CHCl₃. Decomp. by xylene. (Thiel, Z. anorg. 1904, 40. 330.)

#### Indium nitride, InN.

Decomp. by heat. (Franz Fischer, B. 1910, **43.** 1469.)

#### Indium monoxide, InO.

Gradually sol, in HCl+Aq. (Winkler, J. pr. **94.** 1.)

### Indium sesquioxide, In₂O₃.

Slowly sol. in cold, easily in hot acids. Four modifications:

(1) Yellow. Amorphous. Sol. in acids. Its hydroxide is insol. in ammonia and NH₄Cl.

(2) White. Amorphous. Insol. in acids.(3) White. Amorphous. Sol. in acids. Its hydroxide is sol. in ammonia, but pptd. by NH₄Cl.

(4) Crystallized. Crystalline modification is insol. in acids. (Renz, B. 1904, 37. 2112.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.)

Indium oxide,  $In_7O_9 = 3InO$ ,  $2In_2O_3$  (?).

(Winkler.)

 $In_4O_5 = 2InO$ ,  $In_2O_3$  (?). (Winkler.)

### Indium oxybromide (?).

Not decomp. by hot acids or alkalies. (Meyer, A. 150, 137.)

#### Indium oxychloride, InOCl.

Very sl. sol. in H₂O. (Thiel, B. 1904, 37. 176.)

Very sl. sol. in cold or hot dil. acids. Quickly sol. in hot conc. acids. (Thiel, Z. anorg. 1904, 40. 327.)

#### Indium triselenide, In₂Se₃.

Sol. in strong acids with evolution of H2Se. (Thiel, Z. anorg. 1910, 66, 315.)

#### Diindium sulphide, In₂S.

Sol. in acids. (Thiel, Z. anorg. 1904, 40. 326.)

#### Indium monosulphide, InS.

Easily sol. in HCl with evolution of H2S.

Indium sesquisulphide, In₂S₂. Partially sol. in (NH4) \$+Aq.

### Indium potassium sulphide, In₂S₂, K₂S.

Insol, in H₂O; decomp. by weak acids with separation of In₂S₃, sol. in conc. acids. (Schneider, J. pr. (2) 9. 209.)

Indium silver sulphide, In2S3, Ag2S. & Insol. in H₂O. (Schneider, l. c.)

Indium sodium sulphide, In₂S₂, Na₂S+2H₂O. Insel, ... H2O. (Schneider, l. c.)

#### Indium monotelluride, InTe.

Sol. in HNO3; insol. in HCl+Aq. (Thiel, Z. anorg. 1910, **66.** 318.)

Infusible white precipitate.

Dicodamine, NHI₂.

Decomp. by H₂O.

#### Iodammonium iodide, NIH₃I.

Decomp. by H₂O, caustic alkalies, and acids. Sol. in KI+Aq, alcohol, ether. CS₂, CLCl₂. (Guthrie, Chem. Soc. (2) 1. 239.)

#### Iodauric acid, HAuI4 (?).

Not known with certainty.

#### Ammonium iodaurate.

Deliquescent. Decomp. by H₂O. (Johnston, Phil. Mag. (3) 9. 266.)

#### Barium iodaurate.

Sol. in BaI₂+Aq.

Cæsium iodaurate, CsAuI4.

(Gupta, J.Am. Chem. Soc. 1914, 36. 748.)

#### Ferrous iodaurate.

Sol. in H₂O. (Johnston.)

#### Potassium iodaurate, KAuI.

Decomp. by H₂O. Sol. in KI, and HI+A. (Johnston.)

#### Sodium iodaurate.

Very deliquescent. (Johnston.)

Iodauricyanhydric acid, HAu(CN)₂I₂. Known only in its salts.

#### Barium iodauricyanide, Ba[Au(CN)₂I₂]₂+ 10H,O.

Sl. sol. in cold, easily in hot H₂O. Easily Sol. in HNO₃ with evolution of oxides of sol. in alcohol. (Lindbom, Lund. Univ. Arsk. nitrogen. (Thiel, Z. anorg. 1910, 66. 314.) 12. No. 6.) Calcium iodauricyanide, Ca[Au(CN)₂I₂]₂+ 10H₂O.

Not stable. (L.)

#### Cobalt iodauricyanide, Co[Au(CN)₂I₂]₂+ 10H₂O.

Most insol. of all iodauricyanides, and only sl. sol, in warm H2O. Easily sol, in alcohol.

#### Potassium iodauricyanide, KAu(CN)₂I₂+ H₂O.

Sl. sol. in cold, easily sol. in warm H₂O and alcohol. (L.)

## Strontium Chauricyanide, $Sr[Au(CN)_2I_2]_2 +$

Sl. sol. in cold, more easily in hot H₂O.

#### Iodhydric Acid, HI.

Very easily and quickly absorbed by II₂O, with evolution of much heat.

Solution is decomp, on exposure to the air. 1 vol. H₂O absorbs 450 vols. HI at 10°. (Thomson.)

I vol. H₂O absorbs 425 vols. HI at 10°. (Berthelot, C. R. 76, 679.)

Weak or strong solutions when boiled in an atmosphere of H leave a residue of constant composition, which distils unchanged at 126° (de Luynes), at 127° (Roscoe, Chem. Soc. 13. 146; Naumann; Topsoë), at 128° (Bineau, A. ch. (3) 7. 266); and has a sp. gr. of 1.67 (Naumann), of 1.70 (Bineau, de Luynes), of 1.708 (Topsoë); and contains 56.26 % HI (Bineau), 57.0% HI (Roscoe), 57.75% HI (Topsoë.)

By conducting dry H gas through the aqueous solution of HI, a constant residue is

obtained, containing 60.3-60.7% HI if temp. is 15-19°, and 58.2-58.5% HI if temp. is

100°. (Roscoe.)

Solubility of HI in H₂O at t°.

· · · · · · · · · · · · · · · · · · ·			
t°	% H1	Solid Phase	
-10	20.3	Ice	
-20	29.3	- "	
-30	35.1	"	
-40	39	"	
-50	42	**	
-60	44.4	"	
-70	46.2	"	
-80	47.9	Ice+HI, 4H ₂ O	
-60	52.6	$HI, 4H_2O$	
-40	59	"	
-35.5	64	"	
-40	65.5	"	
- 49	66.3	HI, 4H2O+HI, 3H2O	
-48	70.3	HI, 3H ₂ O	
-56	73.5	HI, 3H ₂ O+HI, 2H ₂ O	
-52	74	HI, 2H ₂ O	

(Pickering, B. 1893, 26. 2307.)

Solution in H2O sat. at 0° has sp. gr. -4.99 (de Luynes, A. ch. (4) 2. 385); 2.0 (Vigier).

Sp. gr. of HI+A

		· · · · · · · · · · · · · · · · · · ·
Sp. gr.	% ні	Temp.
1.017	2.286	13.5°
1.0524	7.019	13.5
1.077	10.15	13.5
1.095	12.21	13
1.102	13.09	13.5
$\frac{1.102}{1.126}$	15.73	13.5
1.164	19.97	13.5
1.191	22.63	13.8
1.225	25.86	13.8
1.2535	28.41	13.5
1.274	30.20	13.5
1.309	33.07	13
1.347	36.07	13
1.382	38.68	13
1.413	40.45	13
1 451	43.39	13
1.4865	45.71	13
1.528	48.22	13
1.542	49.13	13.5
1.5727	50.75	13
1.603	52.43	12.5
1.630	53.93	14
1.674	56.15	13.7
1.696	57.28	13
1.703	57.42	12.5
1.706	57.64	13.7
1.708	57.74	12
	0	<u> </u>

(Topsoe, B. 3. 403.)

Sp. gr. of HI+Aq at 15°.

% HI	Sp. gr.	% Н1	Sp. gr.	% HI	Sp. gr.
1	1.008	21	1.175	41	1.414
2	1.015	22	1.185	42	1.429
2 3	1.022	23	1.195	43	1.444
	1.029	24	1.205	44	1.459
4 5	1.037	25	1.216	45	1.475
6	1.045	26	1.227	46	1.491
6 7	1.053	27	1.238	47	1.508
8	1.061	28	1.249	48	1.525
9	1.069	29	1.260	49	1.543
10	1.077	30	1.271	50	1.561
11	1.085	31	1.283	51	1.579
12	1.093	32	1.295	52	1.597
13	1.102	33	1.307	53	1.615
14	1.110	34	1.320	54	1.634
15	1.118	35	1.333	55	1.654
16	1.127	36	1.346	56	1.674
17	1.137	37	1.359	57	1.694
18	1.146	38	1.372	58	1.713
19	1.155	39	1.386		
20	1.165	40	1.400		
	·'	<del>'</del>		<u> </u>	

(Topsoë, calculated by Gerlach, Z. anal. 27. 316.)

Sp. gr. of HI+Aq at 15°.					
% HI	Sp. gr.	% ні	Sp. gr.	% HI	Sp. gr.
5 * 10 * 15 20	1.045 1.091 1.138 1.187	25 30 35 40	1.239 1.296 1.361 1.438	45 50 52	1.533 1.650 1.700

Only a "moderate degree of accuracy" is claimed for this table. (Wright, C. N. 23.

+2H₂O. Mpt.-43°. (Pickering, B. 1893, **26. 2**308.)

+3H₂O. Mpt.-48°. (Pickering.) +4H₂O. Mpt.-36.5°. (Pickering.)

#### Iodic acid, HIO2.

Very sol, in  $H_2O$  and alcohol. 100 g.  $H_2O$  dissolve 286.1 g.  $HIO_3$  at 13.5°. Sp. gr. of  $HIO_8 + Aq. = 2.4256$ .

100 g. H₂O dissolve 293 g. HIO₃ at 18°. Sp. gr. of  $HIO_8 + Aq. = 2.4711$ .

(Groschuff, Z. anorg. 1905, 47. 337.)

#### Solubility of HIO3 in H2O at to.

Solid phase	t°	G. HIO3 in 100 g. of the solution	G. I ₂ () ₅ in 100 g. of the solution
ice	- 0.30	1.78	1.69
• 6	-0.67	4.35	4.13
"	-1.01	7.17	6.81
"	-1.90	17.66	16.75
"	-2.38	27.65	26.22
"	$-\frac{2.50}{4.72}$	54.19	51.42
"	-6.32	60 72	57.61
"	-12.25	71.04	67.40
44	-13.5	72.2	68.5
"	-15.0	73.8	70.0
44	19	76.2	72.3
ice+HIO,	14	72.8	69.1
HIO	0	74.1	70.3
11108	+16	75.6	
"	40		71.7
"		77.7	73.7
"	60	80.0	75.9
"	80	82.5	78.3
"	85	83.0	78.7
	101	85.2	80.8
HIO ⁸ +HI ⁸ O ⁸		86.5	82.1
$HI_3O_8$	125	87.2	82.7
**	140	88.3	83.8
	160	90.5	85.9

(Groschuff, Z. anorg. 1905, 47, 343.)

Sat. solution has sp. gr. 2.842 at 12.5°, and boils at 104.° (Ditte, B. 6. 1533.) Sat. solution has sp. gr. 2.1629 (1.874 pts.  $I_2O_5$  in 1 pt.  $H_2O$ ) at 13°, and boils at 100°. (Kammerer, Pogg. 138, 400.)

### Sp. gr. of HIO: +Aq at 15°.

% I ₂ Q ₄	Sp. gr.	% f.O.	Sp. gr.
1	1.0053	35	1.4428
5	1.0263	40	1.5371
10	1.0525	45	1.6315
15	1.1223	50	1.7356
20	1.2093	55	1.8689
25	1.2773	60	1.9954
30	1.3484	65	2.1269

#### (Kammerer.)

According to Thomsen (B. 7. 71) solutions of IIIO, have sp. gr.-

 $HIO_3 + 10H_2O = 1.6609$ .  $HIO_3 + 20H_2O = 1.3660$ .  $HIO_3 + 40H_2O = 1.1945$ .  $HIO_3 + 80H_2O = 1.1004$ .  $HIO_3 + 160H_2O = 1.0512$ .  $HIO_8 + 320H_2O = 1.0258$ .

H₂SO₄ at nearly boiling temp, dissolves 1/2

its weight of iodic acid. (Millon.) Solubility in HNO₂ containing 27.73% HNO₂.

.100 g. of the sat. solution contain at: 21 27 18 38 g. HIO₈.

Solubility in HNO, containing 40.88% HNO. 100 g. of the sat. solution contain at: 0° 20° 40° 60° 10 18 g. HIO₃. (Groschuff, Z. anorg. 1905, 47. 344.)

Less sol. in HNO₃ than H₂O; nearly insol. in anhydrous HNO₈. (Groschuff, Z. anorg. 1905, 47. 347.)

Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 830.)

Unattacked and undissolved by liquid NO2. (Frankland, Chem. Soc. 1901, 79. 1362.) Insol. in absolute alcohol. Alcohol of 35°

B. dissolves half its weight in HIO₃. (Kammerer.) +4½H₂O.

HIO₈, I₂O₅. (Grosschuff, Z. anorg. 1905, **47**. 343.)

#### Iodates.

The alkali iodates are sol. in H2O, the others are sl. sol. or insol. therein.

Aluminum iodate, Al(IO₈)₈ (?). Deliquescent. (Berzelius.)

#### Ammonium iodate, NH4IO₈.

Sl. sol. in H₂O. Sol. in 38.5 pts. H₂O at 15°, 6.9 pts .at 100°. (Rammelsberg, Pogg. 44. 555.)

Solubility	of	NHJO	in.	HIO	+Aa	at 30°.
------------	----	------	-----	-----	-----	---------

% HIO: in the solution	% NH 102 in the solution	Solid phase.
0	4.20	NH ₄ IO ₈
$2.54 \\ 4.52$	3.89 % 3.83	 NH4IO8+NH4IO3, 2HIO2
4.51 4.56	3.86 3.75	"
$\begin{array}{c} \textbf{4.73} \\ \textbf{6.57} \end{array}$	3.53 1.94	NH ₄ IO ₃ , 2HIO ₃
$8.45 \\ 9.12$	1.09 0.89	<i>ιι</i>
24.00 36.01	0.62	"
44.43 58.12	0.39	"
76.35 76.70	0.31	NH ₄ IO ₃ , 2HIO ₃ +HIO ₃
	١	11108

(Meerburg, Z. anorg. 1905, 45, 341.)

 $+H_2O$ . (Ditte, A. ch. (6) 21. 146.)

## Ammonium diodate, NH4H(IO3)2.

Sl. sol. in cold H₂O. (Ditte, A. ch. (6) 21. 145.)

## Ammonium triiodate, NH₄H₂(IO₈)₃.

Sol. in H₂O. (Blomstrand, J. pr. (2) 42. 335.)

See also solubility in HIO3, under Ammonium iodate. (Meerburg.)

#### Ammonium cobalt iodate.

Decomp. by H₂O. Insol. in alcohol. (Rammelsberg.)

## Ammonium manganic iodate, Mn(IO₃)₄, 2NH₄IO₃.

Ppt. Insol. in H₂O. Insol. in HIO₃. (Berg, C. Ř. 1899, **128.** 675.)

Ammonium oxydimercuriammonium iodate. See Oxydimercuriammonium ammonium iodate.

Ammonium tellurium iodate. See Iodotellurate, ammonium.

#### Ammonium iodate selenate. See Iodoselenate, ammonium.

## Barium iodate, $Ba(IO_3)_2$ .

Anhydrous salt is sol. in 1746 pts. H₂O at 15°, and 600 pts. H₂O at 100° (Rammelsberg, Pogg. 44. 577); in 3018 pts. H₂O at 13.5°, and 681 pts. H₂O at 100°. (Kremers, Pogg. 84. Solubility of Ba(IO₃)₂ in H₂O. 100 g. sat. Ba(IO₃)₂+Aq at t° contain g. anhydrous  $Ba(IO_3)_2$ .

t°	Grams Ba(IO ₃₎₂	t°	Grams Ba(IOs):	t°	Grams Ba(IO3)2
Eutectic point0.046° ± 0.002° +10° 20° 25°	0.008	30°	0.031	70°	0 093
	0 014	40°	0.041	80°	0 115
	0 022	50°	0.056	90°	0.141
	0 028	60°	0.074	*99.2°	0.197

*Bpt. at 735 mm. pressure = about 100° at 760 mm. pressure.

(Anschütz, Z. phys. Ch. 1906, 56. 241.)

1 l. sat. aq. solution contains 0.284 g. Ba(IO₃)₂ at room temp. (Hill and Zink, J. Am. Chem. Soc. 1909, 31, 44.)

1 l. H₂O dissolves 0.3845 g. Ba(IO₃)₂ at (Harkins and Winninghof, J. Am. Chem. Soc. 1911, 33. 1828.)

Easily sol. in cold HCl+Aq; difficultly sol. in warm HNO₃+Aq. (Rammelsberg.) Insol. in H₂SO₄. (Ditte.) 100 cc. NH₄OH+Aq (sp. gr.=0.90) dis-

solve 0.0199 g.  $Ba(IO_3)_2$ . (Hill and Zink.)

#### Solubility in salts+Aq at 25°.

C = concentration of salt in salt solution expressed in equivalents per l. S=solubility of Ba(IO₃)₂ in salts+Aq ex-

pressed in equivalents per l.

Salt	C	s
Ba(NO ₃ ) ₂	0.001 0.002 0.005 0.020 0.050 0.100 0.200	0.001362 0.001212 0.0009753 0.0006744 0.0006131 0.0005659 0.0005580
KNO ₃	0.002 0.010 0.050 0.200	0.001624 0.001820 0.002640 0.003190
KIO8	0.00010608 0.0005304 0.0010608	0.001510 0.001242 0.0009418

(Harkins and Winninghof, J. Am. Chem. Soc. 1911, **33**. 1829.)

Insol. in alcohol.

100 cc. 95% alcohol dissolve 0.0011 g.  $Ba(IO_3)_2$  at room temp. (Hill and Zink.) Insol. in acetone. (Eidmann, C. C. 1899.

II. 1014.)  $+H_2O$ . Sol. in 3333 pts. H₂O at 18°, and 625 pts. H₂O at 100°. (Gay-Lussac, A. ch. 91. 5.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

#### Barium manganic iodate, Mn(IO₃)₄, Ba(IO₃)₂.

Insol. in  $H_2O$ . Insol. in  $HIO_3$ . (Berg, C. R. 1899, **128**. 675.)

#### Bismuth iodate, basic.

Insol. in H₂O. Very difficultly sol. in HNO₂+Aq. (Rammelsberg, Pogg, **44**, 568.) Bi(IO₂)₂+1½H₂O. Insol. in H₂O.

#### Cadmium iodate, Cd(IO₃)₂.

Very sl. sol. in  $H_2O$ . Easily sol. in  $HNO_3$ , or  $NH_4OH+Aq$ . Sol. in  $Cd(C_2H_3O_2)_2+Aq$ . (Rammelsberg, Pogg. 44. 566.)  $+H_2O$ . Sl. sol. in  $H_2O$ . Very sol. in dil.  $HNO_3+Aq$ . (Ditte, A. ch. (6) 21. 145.)

Cadmium iodate ammonia,  $Cd(IO_3)_2$ ,  $2NH_5$ . Insol. in  $H_2O$ ; sol. in  $NH_4OH+Aq$ . (Ditte.) A. ch. (6) **21**. 145.)  $Cd(IO_8)_2$ ,  $2NH_8+H_2O$ . As above. (Ditte.

#### Cæsium iodate, CsIO₃.

100 pts. H₂O dissolve 2.6 pts. CslO₃ at 24°. Insol. in alcohol. (Wheeler, Sill. Am. J. 144. 123.)

2CsIO₃, I₂O₅. 100 pts. H₂O dissolve 2.5 pts. at 21°. Not decomp. by hot H₂O. (Wheeler.) 2CsIO₃, I₂O₅, 2HIO₃. Sl. sol. in cold H₂O. and decomp. thereby into 2CsIO₃, I₂O₅. (Wheeler.)

#### Cæsium iodate chloride, CsCl, HIO₃.

Decomp. by  $H_2O$  into  $2CsIO_3$ ,  $I_2O_5$ . (Wheeler.)

#### Cæsium hydrogen iodate periodate, HCsIO₃, IO₄+2H₂O.

Ppt. Sol. in dil. HNO₃. (Wells, Am. Ch. J. 1901, **26**. 280.)

### Calcium iodate, Ca(IO₈)₂.

100 pts. dissolve 0.22 pt. at 18°, and 0.986 pt. at 100°. (Gay-Lussac.) Sol. in conc. HCl+Aq. (Filhol.) Much more sol. in HNO₃+Aq than in H₂O. (Rammelsberg.) Insol. in H₂SO₄. (Ditte.) Scarcely sol. in sat. KIO₃+Aq. (Sonstadt, C. N. **29**. 209.)

 $+H_2O$ . Sat. solution contains at: 21° 35° 40°, 0.37 0.480.52 $0.54\% \, \text{Ca}(\text{IO}_8)_2$ 50° 60° 80° 100° 0.590.650.94% Ca(IO₃)₂. 0.79(Mylius and Funk, B. 1897, 30, 1724.)

+6H₂O. Efflorescent. Sol. in 253 pts. H₂O at 15°, and 75 pts. at 100°. (Rammelsberg.)

#### Sat. solution contains at:

.30° n° 10° 18° 0.250.17 0.42% Ca(IO₂)2, 0.1 40° 50° 54° 60° 0.891.36% Ca(IO₂)₂. 0.61 0.14(Mylius and Funk, B. 1897, 30. 1724.)

Much more sol, in HNO₃+Aq. Pptd. by alcohol from Ca(IO₃)₂+Aq.

Insol. in H₂SO₄. (Utte.)
Pptd. by alcohol from aqueous solution.
(Henry.)

#### Cerous iodare, Ce(IO₃)₃+2H₂O.

Sl. sol. in cold, easily sol. in hot H₂O and in acids (Holzmann, J. pr. 75. 321.)

Solubility in H₂O. 100 cc. of the sat. solution contain 0.1456 g. at 25°. (Rimbach, Z. phys. Ch. 1909, **67**. 199.)

Calc. from electrical conductivity of  $Ce(IO_s)_s + Aq.$ , 100 cc. of the sat solution contain 0.1636 g.  $Ce(IO_s)_s$  at 25°. (Rimbach, Z. phys. Ch. 1909, 67. 199.)

#### Ceric iodate, Ce(IO₃)₄.

Slightly hydrolyzed by H₂O. 0.34 g. is sol. in 100 cc. hot conc. HNO₂. (Barbieri, Chem. Soc. 1907, **92**. (2) 467.)

#### Cobaltous iodate, Co(IO₃)₂.

Anhydrous. Sol. in warm dil.  $H_2PO_4$ , or  $H_2SO_4+Aq$ . (Ditte, A. ch. (6) 21. 14.)

#### Solubility in H₂O

Form	Temp.	Co(I()2)2	Mols. of water free salt to 100 mols H ₂ O
Co(IO ₃ ) ₂ +4H ₂ O  " " " " " Co(IO ₃ ) ₂ +2H ₂ O "	0° 18° 30° 50° 60° 65° 0° 18° 30°	0.54 0.83 1.03 1.46 1.86 2.17 0.32 0.45 0.52	0.028 0.038 0.046 0.065 0.084 0.098 0.014 0.020 0.023
Co(IO ₃ ) ₂	50° 75° 100° 18° 30° 50° 75° 100°	0.52 0.67 0.84 1.02 1.03 0.89 0.85 0.75 0.69	0.025 0.030 0.038 0.045 0.046 0.040 0.036 0.033 0.031

(Meusser, B. 1901, 34. 2435.)

+H₂O. Sol. in 148 pts. H₂O at 15° and 90 pts. at 100°. Sol. in NH₄OH+Aq. (Rammelsberg, Pogg. 44. 561.)

Does not exist. (Meusser, B. 1901, **34.** 2434.)

 $+2H_2O$ . (Meusser.)  $+4H_2O$ . (Meusser.)

Cupric iodate, basic, 6CuO, 3I₂O₅+2H₂O. Insol. in H₂O₄, (Millon, A. ch. (3) 9. 400.) Mixture of CuO and Cu(IO₃)₂. (Ditte, A. ch. (6) 21. 175.) 2CuO, I₂O₅+H₂O. Slowly sol. in dil. ₂SO₄. (Granger and de Schulten, Bull. Soc. 1904, (3) **31.** 1027.)

#### Cupric iodate, Cu(IO₃)₂.

1 l.  $H_2O$  dissolves  $3.32 \times 10^{3}$  mol.  $Cu(IO_8)_2$ at 25°. (Spencer, Z. phys. Ch. 1913, 83. 295.)

Solubility in CuSO₄+Aq =  $3.28 \times 10^{3}$  mol.

per l. at 25°.

Solubility in  $KIO_3+Aq=3.29\times10^3$  mol. per l. at 25°. (Spencer.)

+H₂O. (Ditte.)

+2H₂O. Sol. in 302 pts. H₂O at 15°. and 154 pts. at 100°. Sol. in HCl+Aq or NH₄OH +Aq. (Millon.)

#### Cupric iodate ammonia, Cu(IO₃)₂, 2NH₃+ H₂O.

Insol. in H₂O. (Ditte, A. ch. (6) **21.** 145.) Cu(IO₃)₂, 4NH₃+2H₂O. Ppt. (Ephraim, B. 1915, 48. 52.)

+3H₂O. Partially sol. in H₂O. Sol. in NH₄OH+Aq. Insol. in alcohol. (Rammelsberg.)

Cu(IO₃)₂, 5NH₃. (Ephraim.)

 $Cu(IO_3)_2$ ,  $8NH_3+4H_2O$ . Sol. in  $H_2O$ . Sol. in NH₄OH+Aq. Insol. in alcohol. (Ditte, A. ch. (6) 21. 145.)

#### Decipium iodate, $Dp(IO_3)_3 + 3H_2O(?)$ .

Precipitate; scarcely sol. in H₂O. (Delafontaine.)

Didymium iodate,  $Di(IO_3)_8 + 2H_2O$ . Ppt. (Cleve.)

Erbium iodate,  $Er(IO_3)_3 + 3H_2O$ . Very sl. sol. in H₂O. (Hoglund.)

### Glucinum iodate.

Deliquescent.

## Indium iodate, $In(IO_1)_3$ .

1 pt. is sol. in 1500 pts. H₂O at 20°. 1 pt. is sol. in 150 pts. HNO₃ (1:5) at 80°. Sol. in HCl with decomp. Sol. in dil. H₂SO₄. (Mathers, J. Am. Chem. Soc. 1908, **30.** 213.)

## Iodine iodate, I(IO₂)₃.

Decomp. by H₂O or by alcohol. (Fighter, Z. anorg. 1915, 91. 142.)

#### Iron (ferrous) iodate.

Ppt. Sl. sol. in H₂O; more sol. in FeSO₄+ Aq. (Geiger, Mag. Pharm. 29. 252.)

Iron (ferric) iodate, Fe₂O₃, I₂O₅.

Insol. in acids. (Ditte, A. ch. (6) 21. 145.) Fe₂O₃, 2I₂O₅+8H₂O. Sol. in 500 pts. H₂O. Difficultly sol. in HNO₈+Aq. Sol. in FeCl₈+ (Geiger.)

 $3\text{Fe}_2\text{O}_8$ ,  $5\text{I}_2\text{O}_6 + 15\text{H}_2\text{O}$ . Sol. in HCl, or

HNO₃+Aq. (Rammelsberg.)

## Lanthanum iodate, $La(IO_3)_3+1\frac{1}{2}H_2O$ .

Sl. sol, in cold, easily sol, in hot H₂O. Very sol. in warm HCl+Aq. (Holzmann, J. pr. **75.** 349.)

100 cc. of the sat. solution in H2O contain 0.1681 g. at 25°. (Rimbach, Z. phys. Ch. 1909, 67, 199.)

Calc. from electrical conductivity of La(10₃)₃+Aq, 100 cc. of the sat. solution contain 0.1871 g. La(10₃)₃ at 25°. (Rimbach.)

Lead iodate, basic, 3PbO, Pb(IO₂)₂+2H₂O. Ppt. (Strömholm, Z. anorg. 1904, 38. 442.)

#### Lead iodate, Pb(IO₃)₂.

Very sl. sol. in H₂O (Pleischl), and difficultly sol. in HNO₃+Aq. (Rammelsberg.) Insol. in H₂O and H₂SO₄+Aq. Very sl. sol. in HNO₃+Aq, and wholly insol. therein after being heated to 100° (Ditte, A. ch. (6) **21.** 169.)

Sl. sol, in  $H_2()$ .  $1.83 \times 10^{-2}$  are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z.

phys. Ch. 1903, 46. 603.)

1 l. H₂O dissolves 19 mg. Pb(IO₃)₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.) 17.8 mg, are dissolved in 1 l. sat. solution

at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64.) 168.)

1 l. H₂O dissolves 0.0307 g. Pb(IO₃)₂ at 25°. (Harkins, J. Am. Chem. Soc. 1911, **33**. 1830.)

Solubility of  $Pb(IO_3)_2$  in salts +Aq at 25°.

C=concentration of salt in salt solution expressed in equivalents per l.

 $S = \text{solubility of } Pb(IO_3)_2 \text{ in salt solution}$ expressed in equivalents per l.

Salt	С	s
Pb(NO ₈ ) ₂	0.0001 0.001 0.010 0.100 0.500 3.0	0.0000870 0.0000411 0.0000185 0.000016 0.000028 0.000015
KNO ₃	0.002 0.010 0.050 0.200	0.0001141 0.0001334 0.0002037 0.0002544
KIO ₈	0.00005304 0.0001061	0.0000697 0.0000437

(Harkins and Winninghof, J. Am. Chem. Soc. 1911, **33.** 1830.)

Insol. in liquid NH₂. (Gore, Am. Ch. J. 1898, **20**. 828.)

#### Lithium iodate, LiIO₃+½H₂O.

Deliquescent, and very sol. in H₂O.

Sol. in 2 pts. cold, and not much less hot H₂O. Insol. in alcohol. (Rammelsberg, Pogg. 44. 555.)

Sp. gr. of solution sat. at 18°=1.538, containing 44.6% LiPO₃. 100 g. H₂O dissolve 80.3 pts. LiPO₃. (Mylius and Funk, B. i897, **30**. 1718.)

Insol. in methyl acetate. (Naumann, P. 1909, 42, 3790.)

 $+H_2O$ . Very deliquescent. (Ditte, A. ch. (6) **21.** 145.)

#### Magnesium iodate, $Mg(IO_3)_2$ .

Anhydrous. Insol. in  $H_2O$ . (Millon, A. ch. (3) 9. 422.)

 $+4H_2O$ . Very sol. in  $H_2O$ . (Ditte.) Sol. in 9.43 pts.  $H_2O$  at 15°, and 3.04 pts at 100°. (Berzelius.) Very sl. sol. in  $H_2O$ . (Serullas, A. ch. **45**. 279.) Easily sol. in dil.  $H_2SO_4+Aq$ . (Ditte.)

#### Sat. solution contains at:

0°	10°	$20^{\circ}$
6.8	<b>6</b> . $4$	$7.7\% \text{ Mg(IO}_3)_2$
$35^{\circ}$	63°	100°
8.9	12.6	$19.3\% \text{ Mg}(IO_3)_2$ .
(Mylius	and Funk, E	3. 1897 <b>, 30.</b> 1722.)

Sat. aq. solution at  $18^{\circ}$  contains 6.44% Mg(IO_a)₂ or 6.88 g. are sol. in 100 g. H₂O. Sp. gr. of sat. solution=1.078. (Mylius and Funk, B. 1897, **30**. 1718.)

+10H₂O. Sat. aq. solution contains at: 0° 20° 30° 35° 50° (m.pt.). 2.1 10.2 17.4 21.9 67.5% Mg(IO₂)₂. (Mylius and Funk, B. 1897, **30.** 1723.)

## Manganous iodate, $Mn(IO_3)_2 + H_2O$ .

Sol. in about 200 pts.  $H_2O$ . (Rammelsberg.)

Insol. in H₂O and HNO₃+Aq, even on boiling. Insol. in NH₄OH+Aq. (Ditte.)

#### Manganous manganic iodate,

 $Mn(IO_3)_4$ ,  $Mn(IO_3)_2$ . Insol. in  $H_2O$ . (Berg, C. R. 1899, **128**. 675.)

## Manganic potassium iodate,

 $Mn(IO_8)_4$ ,  $2KIO_8$ . Insol. in and only sl. attacked by  $H_2O$ . Insol. in  $HIO_8$ . (Berg, C. R. 1899, **128**. 374.)

## Mercurous iodate, Hg₂(IO₃)₂.

Insol. in boiling H₂O, or cold HNO₃+Aq. | 1 pt. KIO₃ of Easily sol. in dil. HCl+Aq. Sol. in very (Gay-Lussac.)

conc. HIO₃+Aq. (Lefort, J. Pharm. 1845. 5.)

## Mercuric iodate, Hg(IO₂)₂.

Insol. in H₂O or alcohol. (Millon, A. ch. o.) 18, 367.) Sol. in H₂O. (Berzelius.) Sol. in dil HCl. Aq. (Rammelsberg.)

in dil. HCl+Aq. (Rammelsberg.)

Nearly nsol. in H₂O. (Easily sol. in HCl, HBr, or HI+Aq; very sl. sol. in HNO₄+Aq; insol. in HF, H₂SiF₆, or HC₂H₃O₂+Aq. Sol. in alkali chlorides, bromides, iodides, cyanides, and cyanater+Aq; also in Na₂S₂O₃, dil. MnCl₂. and ZnCl₂+Aq. Insol. in KOH, NaOH, NH₄OH, Na₂S, Na₂B₄O₇, Na₂HPO₄, and the alkali chlorates, bromates, and iodates +Aq. (Cameron, C. N. 33. 253.)

#### Nickel iodate, Ni(IO₃)₂. Solubility in H₂O.

20145111J 12 22201					
Form	Temp.	Percent of Ni(IO ₂ ) ₂ in solu- tion	Mols. water free salt to 100 mols. H ₂ O		
Ni(IO ₂ ) ₂ +4H ₂ O  αNi(IO ₂ ) ₂ +2H ₂ O  α  βNi(IO ₃ ) ₂ +2H ₂ O  α  α  α  α  α  α  α  α  α  α  α  α  α	0° 18° 30° 18° 30° 50° 8° 18° 50° 75°	0.73 1.01 1.41 0.53 0.68 0.86 1.78 0.52 0.55 0.81 1.03	0.033 0.045 0.063 0.023 0.030 0.039 0.080 0.023 0.0245 0.035		
Ni(IO ₃ ) ₂ " " " "	100° 30° 50° 75° 100°	1.12 1.135 1.07 1.02 0.988	0.049 0.050 0.046 0.045 0.044		

(Meusser, B. 1901, 34. 2440.)

+H₂O. Sol. in 120.3 pts. H₂O at 15°, and 77.35 pts. at 100°. (Rammelsberg, Pogg. 44. 562.)

Sol. in HNO₃, and dil. H₂SO₄+Aq. (Ditte.)

Sol. in NH₄OH+Aq.

Does not exist (Meusser.)

 $+2H_2O$ . See Meusser above.  $+3H_2O$ . Insol. in  $H_2O$ . Sol. in HNO₂. (Ditte, A. ch. 1890, (6) **21.** 160.)

+4H₂O. See Meusser above.

## Nickel iodate ammonia, Ni(IO₃)₂, 4NH₃.

Sol. in NH₄OH+Aq. Insol. in alcohol. (Rammelsberg, Pogg. 44. 562.) Ni(IO₂)₂, 5NH₃. Ppt. (Ephraim, B. 1915, 48. 53.)

+3H₂O. (Ephraim.)

#### Potassium iodate, KIO3.

1 pt. KIO₂ dissolves in 13 pts. H₂O at 14°. (Gay-Lussac.)

## 1 pt. KIO, dissolves at:

0° in 21.11 pts. H₂O 20° " 12.29 " 40° " 7.76 " 60° " 5.40 " 80° " 4.02 " 100° " 3.10 "

Sat. solution boils at 102°. (Kremers, Pogg. 97. 5.)

Sp. gr. of KIO₈+Aq containing:

Stable at 10° in H₂O or potassium acetate +Aq. (Eakle, C. C. **1896**, II. 649.)

## Solubility of KIO₈ in HIO₈+Aq at 30°.

% HIO: in the solution	% KIO3 in the solution	Solid phase
0 0.64 0.66 0.65 0.65 0.67 1.14 1.69 2.02 3.34 5.00 7.09 8.04 3.47 4.80 6.45 9.35 12.04 17.50 53.64 62.52 76.40 76.70	9.51 9.48 9.52 9.46 8.90 6.6 4.57 3.63 3.10 2.14 1.32 1.0 0.85 3.57 2.90 1.35 0.64 0.44 0.30 0.52 0.68 0.72 0.80 0.80	KIO ₃ +KIO ₃ , HIO ₃ KIO ₃ +KIO ₃ , HIO ₃ "  KIO ₃ , HIO ₃ "  "  "  "  KIO ₃ +KIO ₃ , 2HIO  KIO ₃ , 2HIO ₃ (labile)  "  KIO ₃ , 2HIO ₃ "  "  KIO ₃ , 2HIO ₃ HIO ₃
	ł	

(Meerburg, Z. anorg. 1905, 45. 330.)

More sol. in KI+Aq than in  $H_2O$ . Sol. in warm  $H_2SO_4+Aq$ .

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol. in alcohol.

Insol. in methyl acetate (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1910, **43** 314.)

 $+\frac{1}{2}H_2O$ . (Ditte, C. R. 70. 621.)

#### Potassium hydrogen iodate, KH(IO₃)₂.

Sol. in 18.65 pts. H₂O at 17°. (Meineke, A. **261**. 360.)

Sol. in 75 pts. H₂O at 15°. Insol. in alcohol. (Serullas, A. ch. **22**. 181.)

See also Meerburg under KIO₈.

Potassium dihydrogen iodate, KH₂(IO₈)₂.
Sol. in 25 pts. H₂O at 15°. (Serullas, A. ch.
43. 117.)

See also Meerburg under KIO₈.

Potassium tellurium iodate.

See Iodotellurate, potassium.

Potassium uranyl iodate, KUO₂(IO₃)₃+3H₂O.

Decomp. by  $H_2O$ , dil. salt solutions and  $UO_2(NO_3)_2 + Aq$ . (Artmann, Z. anorg. 1913, 79. 340.)

Potassium iodate chloride, KH(IO₃)₂, 2KCl. Sol. in 19 pts. H₂O at 15° with decomp. Cold alcohol dissolves out KCl.

Potassium iodate molybdate,  $KIO_3$ ,  $MoO_3 + 2H_2O$ .

See Molybdatoiodate, potassium.

Potassium iodate selenate.

Sec Iodoselenate, potassium.

Potassium iodate sulphate, KIO₃ KHSO₄.

Decomp. by H₂O. (Marignac, J. B. **1856**.

299.)

 $\mathrm{KHIO_{5}}$ ,  $\mathrm{KHSO_{4}}$ . More sol. in  $\mathrm{H_{2}O}$  than  $\mathrm{KHIO_{5}}$ . (Serullas.)

Potassium iodate tungstate.

See Tungstoiodate, potassium.

Rubidium iodate, RbIO₃.

100 pts.  $H_2O$  dissolve 2.1 pts. RbIO₃ at  $23^{\circ}$ . Easily sol, in cold HCl+Aq. (Wheeler Sill. Am. J. **144**. 123.)

Rubidium hydrogen iodate, RbH(IO₃)₂.

Sl. sol. in cold, more readily in hot H₂O, RblO₃ separating on cooling. Insol. in alcohol. (Wheeler.)

 $RbH_2(IO_3)_3$ . As above. (Wheeler.)

Rubidium iodate chloride, RbIO₂, HCl, or HIO₂, RbCl.

Decomp. by cold  $H_2O$ . (Wheeler.) 3RbCl, 2HIO₃. Sol. in  $H_2O$ , from which RbIO₃ separates. (Wheeler.)

Rubidium iodate selenate.

See Iodoselenate, rubidium.

Samarium iodate, Sm(IO₃)₃+6H₂O. Precipitate. (Cleve.) Scandium iodate,  $Sc(IO_3)_3+10$ , 13, 15, and 18H₂O.

Nearly insol. in H₂O. (Crookes, Phil. Trans. 1910, 210. A, 361.)

# Silver iodate, AgIO₃.

 $1.89 \times 10^{-4}$  moles or  $5.36 \times 10^{-2}$  g. AgIO are sol, in 1 liter H₂O at 25°. (Noyes and Kohr, Z. phys. Ch. 1903, **42**. 338.)

Sl. sol. in  $H_2O$ .  $4.35 \times 10^{-2}$  g. are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46**, 603.)

1 l. H₂O dissolves 40 mg. AgIO₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50, 356.)

1 l. H₂O dissolves 0.0275 g. AgIO₃ at 9.43° 0.039 g. at 184°; 0.0539 g. at 26.6°. Solubility increases rapidly with temp. (Kohlrausch, Z. phys. Ch. 1908, 64, 168.)

1 l. H₂O dissolves 0.039 g. AgIO₃ at 20°. (Whitby, Z. anorg. 1910, 67, 108.)

Not completely insol. in H₂O. (Rose.) Sol. in NH₄OH+Aq; sol. in HNO₃+Aq. (Naquet, J. B. **1860**. 201.) Sol. in conc. KI+Aq.

(Ladenburg, A. **135.** 1.) Sol. in 27,700 pts. H₂O at 25°; in 42.4 pts. 5% NH₂OH+Aq at 25°; in 2.1 pts. 10% NH₂OH+Aq at 25°; in 1044.3 pts. 35% HNO₃+Aq (sp. gr. 1.21) at 25°. (Longi, Gazz. ch. it. 13. 87.)

# Solubility in HNO₃+Aq at 25°.

Normality HNO ₃	G. AgIO3 dissolved per l.
0.000	0.0503
0.125	0.0864
0.250	0.1075
0.500	0.1414
1.00	0.2067
2.00	0.3319
4.00	0.6985
8.00	1.5875

(Hill and Simmons, Z. phys. Ch. 1909, 67.

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 829.)

Insol. in methyl acetate. (Bezold, Dissert. 1906; Naumann, B. 1909, 42. 3790) ethyl acctate. (Hamers, Dissert. 1906; Naumann, B. 1910, 43. 314.)

Silver iodate ammonia, 2AgIO₂, 3NH₂+ 1½H₂O.

Very sol. in cold H₂O. (Ditte, A. ch. (6) **21.** 145.)

AgIO₃, 2NH₃. Sl. sol. in conc. NH₄OH+Aq. (Rosenheim, A. 1899, 308. 52.)

# Sodium iodate, NaIO₈.

100 pts. H₂O dissolve 7.25 pts. NaIO₂ at 14.5°. (Gay-Lussac.) 100 pts. H₂O dissolve 2.52 pts. at 0°; 9.07 pts. at 20°; 14.39 pts. at 60°; 27.7 pts. at 80°; 33.9 pts. at 100°. (Krem-| 202.)

ers, Pogg. 97. 5.) Sat. solution boils at 102° (Kremers), 105° (Ditte). *Sol. in warm H₂SO₄+Aq diluted with ½ vol. H₂O. Crystallizes out on standing over H₂SO₄. (Ditte.)

Solubility of NaIO, in HIO, +Aq at 30°.

% HIO3 in the solution	in the	Solid phase
0	9.36	NaIO:+1½H2O
1.98	9.52	
4.86	10 22	"
5 86	11.04	<b>*</b>
7.40	11.60	" labile
9.73	14.73	labile
6.76	11.18	NaIO ₃ +1½H ₂ O+
	,	Na ₂ O, 2I ₂ O ₅
6.66	11.28	1 14
7.80	10 30	Na ₂ O, 2I ₂ O ₅
9.15	9.00	, , , , , , , , , , , , ,
9.93	8.71	· ·
11.20	7.54	"
11.89	7.21	Na ₂ O, 2I ₂ O ₅ +NaIO ₃ , 2HIO ₃
11.75	7.18	(1
14.62	5.65	NaIO ₈ , 2HIO ₈
23.23	3.69	1108, 211108
$\frac{23.23}{32.68}$	2.91	"
40.91	2.64	l "
46.62	2.67	
		"
55.48	2.12	"
65.47	1.83	1
76.19	1.42	NaIO ₃ , 2HIO ₃ +HIO ₃
76.70	0	HIO ₃
	_	_

(Meerburg, Z. anorg. 1905, 45. 334.)

Insol. in alcohol. Sol. in dil. HC₂H₂O₂+ Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.) +1½H₂O. See Meerburg above.

Sodium diiodate, Na₂O, 2I₂O₅. See Meerburg under NaIOs.

Sodium triiodate, NaIO₈,  $2HIO_3 + \frac{1}{2}H_2O$ . Very sol. in H₂O. (Blomstrand, J. pr. (2) **42.** 337.)

See also Meerburg under NaIO₃.

Sodium iodate bromide, NaIO₃, 2NaBr+ 9H₂O.

Sol. in H₂O. (Rammelsberg.)

Sodium iodate chloride, NaIO₃, NaCl+4H₂O, and 2NaIO₃, 3NaCl+18H₂O. Cold H₂O dissolves out NaCl.

Sodium iodate iodide, NaIO₈, NaI.

Hot H₂O or alcohol dissolves out NaI.  $+8H_2O$ 

+10H₂O.

2NaIO₃, 3NaI+20H₂O. (Penny, A. 37.

Stable in a solution of NaI+NaOH+Aq. (Eakle, C. C. 1896, II. 650.)

Strontium iodate, Sr(IO₂)₂,

Anhydrous. Insol. in H₂SO₄ (Ditte); easily sol. in cold HCl+Aq. (Rammelsberg, Pogg. 44. 575.)

+H₂O. Difficultly sol. in H₂O.

+6H₂O. Sol. in 416 pts. H₂O at 15°, and 138 pts. at 100° (Gay-Lussac); 342 pts. at 15°, and 110 pts. at 100°. Difficultly sol. in warm HNO.+Aq. (Rammelsberg, Pogg. 44. 575.)

# Thallous iodate, TIIO₈.

Difficultly sol. in warm H₂O. (Oettinger.) Insol. in 120; difficultly sol. in HNO₃+Aq. (Rammelsberg.

Sl. sol. in H₂O.

0.58×10⁻¹ g. are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46.** 603.)

 $2.12 \times 10^{-3}$  mols. = 0.667 g. are sol. in 1 l. H₂O at 25°. (Spencer, Z. phys. Ch. 1912, 80. 707.)

Sol. in a little NH₄OH+Aq, also in boiling HNO₈, H₂SO₄, or HCl+Aq. Insol. in alcohol. (Oettinger.)

Very sl. sol. in H2O or dil. boil- $+\frac{1}{2}H_2O$ . ing acids. (Ditte, A. ch. (6) 21. 145.)

Thallic iodate, basic,  $Tl(OH)(IO_3)_2 + H_2O =$ Tl₂O₃, 2I₂O₅+3H₂O.

Insol. in H₂O; sol. in cold HCl+Aq, and warm dil.  $H_2SO_4+Aq$ . (Ditte, A. ch. (6) 21.

Thallic iodate,  $Tl(IO_3)_3+1\frac{1}{2}$   $H_2O$ .

Insol, in H₂O; sl. sol. in HNO₃+Aq. Decomp. by alkalies. (Rammelsberg.) +12H₂O. Difficultly sol. in H₂O. Easily sol. in dil. acids. (Gewecke, anorg. 1912, **75**, 275.) (Gewecke, Z.

Thorium iodate, Th(IO₃)₄, Precipitate. (Cleve.)

#### Tin (stannous) iodate.

Ppt. Sol. in SnCl₂+Aq; insol. in NaIO₃+

Tin (stannic) iodate. Ppt.

# Uranous iodate.

Very unstable. (Rammels-Precipitate.

#### Uranyl iodate, UO₂(IO₂)₂.

Sol. or insol. in HNO₃ and H₃PO₄+Aq, according to method of preparation. (Ditte.) +H₂O. Sl. sol, in HNO₂+Aq. (Rammelsberg.)

Ytterbium iodate,  $Yb(IO_3)_3+6H_2O$ .

Ppt. (Cleve, Z. anorg. 1902, 32. 136.)

Yttrium iodate,  $Y(1O_8)_3 + 3H_2O$ . Sol. in 190 pts. H₂O. (Berlin.)

Zinc iodate,  $Zn(IO_3)_2$ .

Anhydrous. (Ditte, A. ch. (6) 21. 145.) +2H₂O. Sol. in 114 pts. cold, and 76 pts. hot H₂O. (Rammelsberg, Pogg. 43. 665.)

Sol. in HNO₃, and NH₄OH+Aq. Exists also in a very sol. modification. (Mylius and Funk, B. 1897, **30.** 1723.)

# Zinc iodate ammonia, 3Zn(IO₃)₂, 8NH₃.

Decomp. by H₂O; sol. in NH₄OH+Aq, from which it is pptd. by alcohol. (Rammelsberg, Pogg. 44. 563.)

 $Z_{n}(IO_{3}^{5})_{2}, \overline{2NH_{3}}$ . Insol. in  $H_{2}O$ . (Ditte, A. ch. (6) 21. 145.)

 $Zn(IO_3)_2$ ,  $3NH_3+H_2O$ . Insol. in  $H_2O$ .

 $Zn(IO_3)_2$ , 4NH₃. (Ditte, A. ch. 1890, (6) **21.** 164.) (Ephraim, B. 1915, **48.** 53.)

# Periodic acid.

See Periodic acid.

#### Iodides.

The iodides are in general easily sol. in H₂O; exceptions are HgI₂, PbI₂, AgI, Cu₂I₂, and BiI₃, also the iodides of the Pt metals, all of which are insol. SnI₄, SbI₃, and TlI₄ are decomp. by H2(). Many iodides are more sol. in solutions of salts than in H₂O, and several are sol, in alcohol or ether.

See under each element.

# Iodine, I2.

Sol. in 5524 pts. H₂O at 0-12°. (Wittstein, J. B.

1887, 123.)
Sol. in 7000 pts. H₂O. (Gay-Lussac.)
Sol. in 3800 pts. H₂O at 15°. (Basse.
Sol. in 500 pts. H₂O. (Jacquelain.) at 15°. (Basse.) (Jacquelain.)

Sol. in 7196.4 pts. B2O at 18.75. (Abl.)

Pure H₂O dissolves 0.01519173 g. I per litre, or I is sol. in 6582 pts. H₂O at 6.3°. (Dossius and Weith, Zeit. Ch. **12**. 378.)

Sol. in about 4500 pts. H₂O. (Hager, Comm. 1883.)

Sol. in 7000 pts. H₂O. (Cap and Garot, J. Pharm. (3) 26. 80.)

1 l.  $\dot{H}_2\dot{O}$  at 25° dissolves 0.3387 g.  $I_2$ .

(Jakowkin, Z. phys. Ch. 1895, 18. 590.)

1 l. H₂O dissolves 1.342 millimols of iodine at 25°. (Noyes, Z. phys. Ch. 1898, 27. 359.)

When iodine is shaken with H₂O at 15°, 1

pt. dissolves in 3750 pts. H₂O; when iodine and H₂O are heated together and then cooled to 15°, 1 pt. iodine dissolves in 3500 pts.  $H_2O$ . At 30°, 1 pt. is sol. in 2200 pts.  $H_2O$ .

At 30°, 1 pt. is sol. in 2200 pts. H₂O. (Dietz, Chem. Soc. 1899, **76**, (2) 150.)
1 l. H₂O dissolves 0.279 grams I₂ at 25°. (McLauchlan, Z. phys. Ch. 1903, 44. 617.)

Solubility of I ₂ in H ₂ O at t°.	
t° g. I ₂ per l. H ₂ O	
18	0.2765
25	0.3395
35	0.4661
45	0.6474
55	0.9222

(Hartley, Chem. Soc. 1908, 93, 744.)

#### Solubility of I2 in HO at to.

t°	g. per l.	milliat. per l.
$0 \\ 20 \\ 40$	0.1649 0.2941 0.5684	1.30 2.30 4.56

(Fedotieff, Z. anorg. 1910, 69. 30.)

1.32 millimol I₂ are sol. in 1 l. H₂O. (Bray) J. Am. Chem. Soc., 1910, 32. 938.)

Calculated from electrical conductivity of sat.  $I_2 + Aq$ . 1 l.  $H_2O$  dissolves 0.0006383 mols.  $I_2$  at 0°. (Jones, J. Am. Chem. Soc. 1915, 37. **25**6.)

Conc. H₂SO₄, HCl, HNO₃, H₃PO₄, HC₂H₃O₂, tartaric, or citric acids+Aq dissolve I, but give it up to CS₂ on shaking therewith. (Tessier, Z. anal. 11.313.)

Sol. in 150 pts. H₂SO₄ on warming, but

crystallizes out in part on cooling. (Kraus.) Much more sol. in HBr+Aq than in pure H₂O; HBr+Aq of sp. gr. 1.486 dissolves

3-4%. (Bineau.) Sl. sol. in HCl+Aq. Easily sol. in even

dil. HI+Aq.

1 l. 0.001 N-HCl+Aq sat. with I2 contains 0.338 g. I₂. (Bray and Mackay, J. Am. Chem. Soc. 1910, **32.** 1919.)

1 l. 0.1 N-HNO₃+Aq sat. with I₂ contains 0.340 g. I₂. (Sammet, Ž. phys. Ch. 1905, **53.** 

1 l. 0.1 N-H₂SO₄+Aq sat. with I₂ contains 0.341 g. I₂. (Sammet.)

Sol. in H₂SO₈+Aq with decomp.

1 l. 0.9 N. H₃BO₃ dissolves 0.300 g. I₂ at (McLauchlan, Z. phys. Ch. 1903, 44. 617.)

100 cc. of a 10% solution of BaBr₂ dissolve 0.231 g.  $I_2$  at  $13.5^{\circ}$ . (Meyer, Z. anorg. 1902, 30. 114.)

100 cc. of a 10% solution of BaCl₂ dissolve 0.067 g. I₂ at 18.5°. (Meyer.)
100 cc. of a 10% solution of BaI₂ dissolve 6.541 g. I₂ at 13.5°. (Meyer.)

6.541 g. I₂ at 13.5.° (Meyer.) 100 cc. of a 10% solution of CaBr₂ dis-solve 0.274 g. I₂ at 13.5.° (Meyer.) 100 cc. of a 10% solution of CaCl₂ dissolve 0.078 g. I₂ at 18.5° (Meyer.)

100 cc. of a 10% solution of CaI₂ dissolve 8.062 g. I₂ at 13.5°. (Meyer.)

Easily sol. in boiling dil.  $HgCl_2+Aq.$ (Selmi.)

Solubility in HgCl₂+Aq at 25°.

10 cm. of the solution contain:	
millimols I2	millimols Hg
0.0134	0
0 1294	0.9444
0.1460	1.2442
0.1806	1.9542
0.2543	3.3460

(Herz and Paul, Z anorg, 1914, 85, 214.)

Sol. in solutions of soluble iodides.

100 pts. KI+200 pts. H₂O dissolve 153 pts. I; from this solution H₂O precipitates ½ the dissolved I. 100 pts. KI+400 pts. H₂O dissolve quickly 76.5 pts. I. If more water is present, the solution takes place more slowly. (Baup.)

CS₂ extracts the I from the above solutions.

Solubility of I in KI+Aq at 7-7.3°.

% KI in KI +Aq	Pts I dissolved	Sp. gr. of solution
1.802	1.173	1.0234
3.159	2.303	1.0433
$\frac{4.628}{5.935}$	$rac{3.643}{4.778}$	1.0668 1.0881
7.201	$\frac{4.778}{6.037}$	1.1112
8.663	7.368	1.1382
10.036	8.877	1.1637
$11.034 \\ 11.893$	$9.949 \\ 11.182$	1.1893 1.2110
12.643	12.060	1.2293

(Dossius and Weith, Zeit. Ch. (2) 5. 379.)

Solubility of I₂ in KI+Aq at room temperature, 14.5°-15.1°.

% KI	% I	I/KI
1.80	1.17	0.651
3.16	2.30	0.729
4.63	3.64	0.786
5.93	4.78	0.805
7.20	6.04	0.839
8.66	7.37	0.851
10.04	8.88	0.884
11.03	9.95	0.902
11.89	11.18	0.940
12.64	12.06	0.954

(Weith and Dossius, Z. phys. Ch. 1898, 26. 150.)

# Solubility of I2 in KI+Aq at 15°

% KI	ccm. 1/10-n. iodine in 5cmm. of the solution	I/KI
10 8 6 4 2	35.0 27.1 19.7 12.7 6.25 3.04 *	35.0 33.9 32.8 31.8 31.2 30.4

* Obtained with 1/100-normal iodine. (Bruner, Z. phys. Ch. 1898, 26. 151.)



# Solubility of I₂ in KI+Aq at 25°.

* Millimols KI per liter	Millimols dissolved iodine per liter
106.3	55.28
53.15	28.03
26.57	14.68
13.29	8.003
6.643	4.667
3.322	3.052
1.661	2.235
0.8304	1.814

(Noyes and Seidenstricker, Z. phys. Ch. 1898, **27.** 359.)

# Solubility in KI+Aq at 25°.

KI mol./l.	I G. atoms/l.
1.91	3.29
2.85	5.45
4.51	11.52
5.36	17.12
5.55	17.16

(Abegg, Z. anorg. 1906, 50. 427.)

## Solubility of I₂ in KI+Aq at 25°.

Millimol KI per l.	Millimol I ₂ dissolved
100	51.35
50	25.77
20	11.13
10	6.185
5	3.728
2	2.266
1	1.788

## Solubility in KI+Aq at 25°.

Sp. gr.		Analysis of liquid phase		of solid ether with mother uor
	% KI	% I	% KI	% I

## (a) In equilibrium with excess of KI.

(, 04					
1.733	60.39	0.0	1	0.0	
1.888	54.415	11.63	84.92	4.05	
2.066	49.045	23.085	85.94	6.32	
2.216	44.82	31.01	80.46	10.84	
2.539	38.065	44.56	78.56	15.23	
2.560	37.655	45.55	77.32	16.73	
2.665	35.805	49.61			
3.232	29.71	62.81	39.99	56.10	
3.246	27.92	66.45	38.78	56.27	

#### (b) In equilibrium with excess of I.

	-			
1.349	16.025	18.49	3.04	85.43
1.516	19.705	26.16	4.48	83.87
1.769	22.88	36.06	3.70	89.33
1.910	23.55	40.515	6.49	83.62
2.403	24.78	53.605	8.62	83.81
2.904	24.995	63.125	4.82	92.41
3.082	25.18	66.04	4.00	94.39

## (c) Invariant point. Excess of KI and I.

	26.05	68.06	1	1
3.316	25.96	68.06 68.01 68.16 68.13	16.14	83.77
	26.04	68.16		
	25.92	68.13	11.32	86.56

(Parsons and Whittemore, J. Am. Chem. 1911, **33.** 1934.)

#### Solubility in KI+Aq at 0°.

KI	KI+Aq		KI+Aq. sat. with I2		
Wt. norm.	Sp. gr. 0°/4°	G. l ₂ in 1 g. of solution	Sp. gr. 0°/4°		
0.09871 0.09861 0.04969 0.04966 0.01992 0.01983 0.00998 0.004991 0.004991 0.002000 0.002000 0.000999	(1.0123) 1.01231 (1.0061) 1.00610 1.00236 (1.0024) (1.0011) (1.0011) (1.0005) (1.0005) (1.0001) (0.9999)	0.01199 0.01199 0.006094 0.006083 0.002535 0.0025325 0.0013585 0.007609 0.0007577 0.0004137 0.0004015 0.0002839	(1.0219) 1.02187 (1.0109) 1.01089 1.00429 (1.0024) (1.0020) (1.0020) (1.0010) (1.0011) (1.0004) (1.0004) (1.0002)		
0.000992	(1.0000)	0.00028125	(1.0002)		

Values in parentheses are found by interpolation.

(Jones and Hartman, J. Am. Chem. Soc. 1915, 37. 247.)

1 mol. KI in alcohol dissolves 2 atoms I, (Bray and MacKay, J. Am. Chem. Soc. 1910, and the solution does not give up I to CS₂. 32, 919.) (Jörgensen, J. pr. (2) 2, 347.)

Soluk	oility in K	I+60%	alcohol a	t 25°.	Solubi		+40% : Continue	lcohol at	25°.—
Sp. gr.	Analysis ph	of liquid ase	phase ton	s of solid ether with mother uor	p. gr	Analysis pha		Analysis phase toge adhering	ther with mother
	% KI	% I	% 1	% KI		% KI	% 1	% KI	% I
(a)	In equilil	brium wit	h excess	KI.	71-	<u> </u>	<u> </u>	ith excess	
1.148	30.93	0.0	00.10	0.0	0.962	0.0	2.97	1 0.0	1.
$\begin{bmatrix} 1.191 \\ 1.285 \end{bmatrix}$	$29.87 \\ 28.39$	$\frac{4.51}{12.48}$	89.13 86.60	$\begin{bmatrix} 0.71 \\ 2.27 \end{bmatrix}$	1.292	8.45	28.70	1.85	84.51
1.368	28.00	18.60	87.30	3.21	1.581	12.56	40.63	ა 41	\$4.02
1.427	27.60	21.80	85.75	4.25	2 000	15.20	49.95	4.38	83.81
1.533	27.00	28.00	84 39	6.05	2.000 2.173	16.02 17.18	52.95 57.38	5.60 6.61	827.96 83.60
1.776	25.90	$40.52 \\ 52.42$	81.05	10.30 16.73	1.749	19.20	66.89	8.45	85.16
$2.250 \\ 2.507$	24.90 24.40	58.93	73.20	21.04	2.902		69.10	7.08	88.81
2.845	22.49	65.75	71.66	24.15	(c) I	nvariant 1	oint. E	xcess KI a	and I.
	21.50	68.95	70.04	26 42	3.246	22.50	70.79	19.48	76.24 *
(b	) In equil	ibrium w	ith exces	s I.		22.43	70.88	69.37	26.14
1.134	0.0	23.04	0.0	1	(Parson			n. Chem. S	Soc. 1910,
1.530	7.36	43.05	1.40	88.76	San alua		<b>32.</b> 1372	.)	
$\frac{1.721}{1.90}$	$10.60 \\ 12.44$	$49.38 \\ 55.33$	$\begin{bmatrix} 2.50 \\ 3.72 \end{bmatrix}$	88.21 87.10	See also	under KI			
$\frac{1.30}{2.11}$	13.74	59.26	4.41	86.60	Sol.		+nitrobe		Dawson,
2.22	15.20	62.66	5.80	85.20		Soc. 1902, ility in K		is the sa	me og in
2.80	17.72	69.10	7.15	85.49					me as m
2.99	19.30	71.90	7.45	88.96	H ₂ O. (Lami, C. A. <b>1909</b> . 1622.) Solubility of I ₂ in KBr+Aq at 25°.		25°		
	nvariant p		cess KI	and I.	l				
3.162	$20.11 \\ 20.03$	72.51 72.46	21.84	74.64	G.	KBr per l.		G. atoms I ₂	per l.
	20.00	12.10	21.01	KI+I		60.6		0.017	6
	20.05	72.54				106.9		0.027	
	19.98	72.44	7.40	89.81 I		175.9		0.041	
	20.08	72.51	20.61	74.09 KI+I	1	$229.8 \\ 281.9$		$0.053 \\ 0.062$	
	20.06	72.44	l l	121   1		330.6	1	0.071	
	20.05	72.48	33.46	63.19 KI		377.1		0.079	
(Parsons	s and Corl	iss, J. Am	. Chem.	Soc. 1910,		411.0		0.086	
,		<b>32.</b> 1370.		,	1	461.7 509.8	- 1	$0.094 \\ 0.100$	_
0.1	1 •1· · · ·	CT 1 40.01		. 050		548.0	ļ	0.106	
Solu	bility in I	11+40%	alcohol	at 25°.		567.9 sat	.	0.109	4
	Analysis	of liquid	Analys	is of solid	(Bell ar	d Buckle	v. J. Am	. Chem. S	oc 1912
Sv		of liquid ase	adheri	gether with ng mother	(= 410 41-		<b>34.</b> 13.)		
Sp. gr.		1 ~ -		quor.	. 8	Solubility :	in NaBr	+Aq at 25	s°.
	% KI	% I	% KI	% I.	G. 1	NaBr per l.		G. atoms I ₂	per l.
(a)	In equili	brium wi	th excess	KI.		96.4		0.026	 6
1.339	42.10	0.0	00.01	0.0	1	187.7	1	0.042	5
1.377 $1.455$	40.83 38.94	3.76 10.09	89.21	0.70 1.90		271.8		0.053	8
1.532	37.41	15.71	88.80 88.19	3.02	İ	357.4 422.4	1	0.059	
1.605	36.25	20.52	87.04	4.21		499.1		$0.063 \\ 0.064$	
1.655	35.38	24.44	86.08	5.11	]	569.9		0.064	
1.847	33.26	33.62	83.61	8.41		632.0		0.062	2
$2.024 \\ 2.169$	31.71 30.59	39.99 44.76	82.06 80.80	10.76 12.35		679.7 750.5		0.059	
2.558	28.56	55.30	75.90	18.63		750.5 756.1 sat	_   `	0.055 0.055	T ,
2.784	26.95	60.27	74.77	20.86					
• • •	24.52	65.93	72.98	23.61	(Bell ar	d Buckle	y, J. Am	. Chem. 8	loc. 1912,
• • •	23.04	69.93	72.45	25.04	l		<b>´34.</b> 13.)	N.	

9.70

100 cc. of a 10% solution of SrBr₂ dissolve  $0.270 \text{ g. } I_2 \text{ at } 13.50. \text{ (Meyer, Z. anorg. 1902,}$ **30.** 114.)

100 cc. of a 10% solution of SrCl₂ dissolve 0.066 g. I₂ at 18.5°. (Meyer.)
100 cc. of a 10% solution of SrI₂ dissolve 6.616 g. I₂ at 13.5°. (Meyer.)

Solubility in salts+Aq at 25°.

Salt +Aq	Grams I ₂ sol. in 1 liter	Salt +Aq	Grams I ₂ sol. in I liter
1/2-N.*N.*2.SO.4 1/2-N. K. SO.4 1/2-N. (N.M.) 2.SO.4 1/2-N. (N.M.) 2.SO.4 N. Na.NO.3 N. KNO.3 N. NH.4NO.8	0.160 0.238 0.246 0.257 0.266 0.375	N.NaCl N.KCl N.NH4Cl N.NaBr N.KBr N.NH4Br	0.575 0.658 0.735 3.29 3.801 4.003

(McLauchlan, Z. phys. Ch. 1903, 44, 617.)

1.14 g. are sol. in 100 ccm. liquid H₂S. (An-

tony, Gazz. ch. it. 1905, **35**, (1) 206.) Sol. in liquid NH₃. (Franklin, Am. ch. J. 1898, **20.** 822.)

Sl. sol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54**. 674.)

Sol. in liquid SO₂ (Sestini), and SO₂ (Weber).

100 pts. AsCl₃ dissolve 8.42 pts. I at 0°; 11.88 pts. I at 15°; 36.89 pts. I at 96°. (Sloan, C. N. **46.** 194.)

in liquid SO₂, AsCl₃, SO₂Cl₂, and acetaldehyde. (Walden, Z. phys. Ch. 1903, **43.** 407.)

Very sol. in liquid  $NO_2$ . (Frankland, Chem. Soc. 1901, 79. 1361.)

Sol. in 10-12 pts. alcohol. (Wittstein.)

Sol. in wood-spirit. (Playfair.) Abundantly sol. in amyl (Pelletan), and

hexyl alcohol (Bouis). Iodine is sol. in 20 pts. alcohol, 110 pts. oil, 7000 pts. H₂O, 100 pts. glycerine. (Cap and Garot, J. Pharm. (3) 26. 80.)

Solubility of  $I_2$  in  $C_2H_bOH+Aq$  at room temperature (14.5°—15.1°).

· ·	
Volumes of C ₂ H ₅ OH in 100 volumes of C ₂ H ₅ OH +H ₂ O	Ccm. of 1/10-normal iodine in 5 cc. of the solution
100 90 80 70 60 50 40 30 20	61.7 29.4 16.6 9.2 4.45 3.4 1.0 0.4 0.25 0.2

(Bruner, Z. phys. Ch. 1898, 26, 150.)

Solubility of I₂ in C₃H₇OH+Aq at room temperature (14.5°—15.1°).

Volumes of C ₂ H ₇ OH in 100 volumes of C ₂ H ₇ OH +H ₂ O	Cem. of 1/10-normal iodine in 5 cc. of the solution
100 90 80 70 60 50 40 30 20	58.8 36.0 23.6 16.1 10.7 6.4 3.7 1.56 0.42 0.19

(Bruner, Z. phys. Ch. 1898, 26, 150.)

Solubility in ethyl alcohol + Aq at 25°.

$\begin{array}{c} \text{Molecules of} \\ \text{C}_2\text{H}_6\text{OH in 100} \\ \text{molecules} \\ \text{C}_2\text{H}_6\text{OH} + \text{H}_2\text{O} \end{array}$	Molecules of H ₂ O in 100 molecules C ₂ H ₅ OH +H ₂ O	Normality of the iodine solution
0.0	100	0.0022
0.03	99.7(?)	0.0024
0.06	99.4(?)	0.0024
1.12	98.88	0.0023
1.83	98.27(?)	0.0025
9.40	90.60	0.0059
13.48	86.52	0.0111
23.80	76.20	0.0617
50.80	49.20	0.4326
100	0	1.590
	, ,	

(McLauchlan, Z. phys. Ch. 1903, 44, 627.)

Solubility in acetic acid +Aq at 25°.

Molecules of CH₃COOH in 100 molecules CH₃COOH +H₂O	Molecules of H ₂ O in 100 molecules CH ₂ COOH +H ₂ O	Normality of the iodine solution
0.0 6.98 16.40 31.90 55.70	100 93.02 83.60 68.10 44.30	0.0022 0.0049 0.0112 0.0331 0.0882 0.205

(McLauchlan, Z. phys. Ch. 1903, 44. 627.)

Very sol. in ether, chloroform, and bromoform.

Solubility in ether.

100 g. of the sat. solution contain at: -83° --90° ---108° 15.39 14.58 15.09 g. I₂.

(Arctowski, Z. anorg. 1896, 11. 276.)

About as sol. in all fatty oils as in CHCl2. etc. (Gruel, Arch. Pharm. 223, 431.)

can, Pharm. J. Trans.		Solubility of I ₂ in temperature	CS ₂ +CCl ₄ at room (14.5°—15.1°):
Solubility in CHCl ₃ .  100 g. of the sat. sol  -49° -55.5° -60°	lution contain at:	Volumes of CS ₂ in 100 volumes of CS ₂ +CCl ₄	Ccm. of 1/10-normal iodine in 5 cc. of the solution
0.188 0.144 0.129		100	69.1 56.9
Very sol. in methy Z. anorg. 3. 343.)	lene iodide. (Retgers,	80 70 60	48.6 40.7 33.9
Solubility of I ₂ in C temperature	₆ H ₆ +CHCl ₃ at room (14.5°—15.1°).	50 40	26.9 21.8
Volumes of C ₆ H ₆ in 100 volumes of C ₆ H ₆ +CHCl ₃	Ccm. of 1/10-normal iodine in 5 cc of the solution	30 <b>20</b> 10	17.7 13.25 10.2
100	41.05 38.8	0	8.1
90 80	34.6	(Br	uner.)
70 60 50	$egin{array}{c} 30.5 \\ 27.4 \\ 24.4 \\ \end{array}$	Solubility of I ₂ in C ₂ l temperature	H ₃ OH+CHCl ₃ at room (14.5°—15.1°).
40 30	$\frac{21.0}{19.2}$	Volumes of C ₂ H ₅ OH in	Ccm. of 1/10-normal iodine
20	17.8	100 volumes of C ₂ H ₅ OH + CHCl ₃	in 5 cc. of the solution
10	$\frac{16.0}{14.3}$	100	61.7
(Bruner Z phys	Ch. 1898, <b>26.</b> 147.)	90 80	$\frac{37.1}{34.2}$
Solubility of I ₂ in CS		70	30.7
	(14.5°—15.1°).	60	27.9
	·	50	26.1
Volumes of CS ₂ in 100 volumes of CS ₂ +CHCl ₃	Ccm. of 1/10-normal iodine in 5 cc. of the solution	40 30	$24.6 \\ 22.7$
		20	19.9
$\frac{100}{90}$	$\begin{array}{c} 69.4 \\ 62.7 \end{array}$	10	17.1
80	$\frac{62.7}{55.9}$	0	14.25
70	47.9	(Br	uner.)
60	42.0	(==	,
50	35.8 20.4	Solubility of I2 in C8	H7OH+CHCl ₃ at room
$\frac{40}{30}$	$\begin{array}{c} 30.4 \\ 25.3 \end{array}$	temperature	(14.5°—15.1°).
$\overset{\circ}{20}$	20.8	Volumes of CaH7OH in	la 11/10 1: 1:
10	17.0	100 volumes of C ₃ H;OH +CHCl ₃	Ccm. of 1/10-normal iodine in 5 cc. of the solution
0	14.3	- Ferreis	
(Bru	iner.)	100	58.8
Solubility of L. in (	C ₆ H ₆ +CCl ₄ at room	90	51.9 44.2
temperature	(14.5°—15.1°).	70	35.4
Volumes of C ₆ H ₆ in 100	Ccm. of 1/10-normal iodine	60	31.8
volumes of C ₆ H ₆ +CCl ₄	in 5 cc. of the solution	50	30.8
100	41.05	40 30	$ \begin{array}{c c} 27.9 \\ 25.3 \end{array} $
100 90	$\begin{array}{c} 41.05 \\ 37.2 \end{array}$	20	21.8
80	33.6	10	17.8
70	29.6	0	14.25
60	26.1	/D	uner.)
50	22.4	(DI	uner.)
$\frac{40}{30}$	$\begin{array}{c} 19.25 \\ 16.1 \end{array}$	Sol in acetone	Naumann, B. 1904, 37.
20	13.4	4328); (Eidmann, C.	C. 1999, II. 1014.)
10	10.75	Sol. in methyl acets	ate (Naumann, B. 1909,
0	8.1	<b>42.</b> 3790); ethyl ac	etate. (Naumann, B.
(Bri	ıner.)	1904, <b>37.</b> 3601.) Sol. in allyl musta	rd oil, phenyl mustard

oil, phenyl isocyanate, pyridine, and alcohol. (Mathews, J. phys. Chem. 1905, 9. 649.)

Solubility of I2 in glycerine + Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq.  $I_2=g$ .  $I_2$  in 100 cc. of the solution.

G I2 Sp. gr.  0 0.0304 0.9979 7.15 0.0342 1.0198 20.44 0.0482 1.0471 31.55 0.0621 1.0750 40.95 0.0875 1.0995 48.7 0.135 1.1207 60.2 0.278 1.1765 100 1.223 1.2646			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	I 2	Sp. gr.
	7.15 20.44 31.55 40.95 48.7	0.0342 0.0482 0.0621 0.0875 0.135 0.278	1.0198 1.0471 1.0750 1.0995 1.1207 1.1765

(Herz and Knoch, Z. anorg. 1905, 45, 269.)

1 l.  $N-NH_4C_2H_8O_2+Aq$  dissolves 0.440 g. I2 at 25°.

1 l. 0.7 N- $(NH_4)_2C_2O_4$ +Aq dissolves 0.980 g. I2 at 25°. (McLauchlan, Z. phys. Ch. 1903, 44. 617.)

Very sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Solubility in CS, at to

Solubility in CS2 at t.		
t°.	Grams iodine in 100 g. of sat. solution	
—100 — 95 — 90 — 85 — 80 — 75	$\begin{array}{c} 0.32 \\ 0.37 \\ 0.41 \\ 0.46 \\ 0.51 \\ 0.55 \end{array}$	
25 20 15 10 5 0 + 5 10 15 20 25 30 36 40 42	3.47 4.14 4.82 5.52 6.58 7.89 9.21 10.51 12.35 14.62 16.92 19.26 22.67 25.22	

(Arctowski, Z. anorg. 1894, 6. 404.)

1 l. CS₂ dissolves 230 g. I₂ at 25°.

1 l. CHBr₂ dissolves 189.55 g. I₂ at 25°.
1 l. CCl₄ dissolves 30.33 g. I₂ at 25°.
(Jakowkin, Z. phys. Ch. 1895, **18**. 590.)

Solubility in CS₂.

100 g. of the sat. solution contain at: -80° ---87° -94° --92.5°

0.5090.4400.378 g. I₂. 0.391(Arctowski, Z. anorg. 1896, 11. 274.)

When an aqueous solution of I is shaken with CS2, 400 pts. go into solution in CS2 for 1 pt. remaining in H₂O. (Berthelot and Jungfleisch, C. R. 69. 338.)

Abundantly sol. in methane. (Villard, A. ch. 1897, (7) 10. 387.)
Easily sol. in hot, less in cold naphtha.

(Pelletier and Walker.)

Sol. in about 8 pts. hot petroleum from

Amiano. (de Saussure.) Sl. sol, in cold, more readily in hot benzene. (Mansfield.) Easily sol, in benzene. (Moride, A. ch. (3) 39. 452.)

Solubility in benzene.

100 g. of the sat. solution contain at:

4.7° 10.5° 13.7°  $6.6^{\circ}$ 9.60 10.44 11.23 g. I₂. 8.08 8.63(Arctowski, Z. anorg. 1896, 11. 276.)

1 l. benzene sat. with iodine at 25° contains 139 g. iodine. Abegg, Z. anorg. 1906, 50. 409.)

1 l. nitrobenzene dissolves 50.62 g. I₂ at 16-17°. (Dawson and Gawler, Chem. Soc. 1902, 81. 524.)

Solubility of l₂ in nitrobenzene+iodides at room temp.

* *			
Salt	G. pe	G. per I.	
24.0	Salt	, I ₂	
KI	12.35	112.7	
"	45.56	295.7	
"	115.8	698.2	
"	155.2	943.6	
NaI	13.55	125	
44	57.7	393	
"	109.1	738	
"	228.	1251	
RbI	85.4	421	
"	217.5	1060	
LiI	84.1	642	
CsI	48.2	213	
"	223.	858	
$NH_4I$	69.5	482	
"	94.3	669	
$SrI_2$	106.5	599	
$BaI_2$	42.2	237	
"	158.5	809	
Aniline hydriodide	164	721	
Dimethyl aniline hydriodide	160	626	
Tetramethylammonium			
iodide	49.3	266	
"	51.4	280	
•	,	1	

(Dawson and Goodson, Chem. Soc. 1904, 85. **796.**)

Sol. in quinoline. (Beckmann and Gabel. Z. anorg. 1906, 51. 236.)

Easily sol. in oil of turpentine, but an explosion soon occurs. (Walker.)

Sol. in oil of mandarin. (Luca.)

Sol, in oil of arnica root. (Zeller.)

Very sol. in CS₂, lignone, furfurol, glycerine, aldehyde, chloral, warm retinole, toluene, salicylic acid, methyl nitrate, methyl salicylate, mercaptan, amyl carbamate, ethyl sulphydrate, allyl iodide, ethyl disulphocarbonate, carbon chloride, SCl₂, ICl₃, H₂S₅, chlorochromic acid, amyl valerianate, valerianic acid, warm butyric acid, creosote, aniline, quinoline, methylsalicylic acid. Quickly sol, in oil of dill, peppermint, sassafras, and tansy. Slowly sol, in oil of cloves, cinnamon, cajc put, and rue. Other essential oils decompose it. (Various authorities.)

Sol. in potassium croconate+Aq. (Gmelin.) Sol. in potassium antimony tartrate+Aq. 176 pts. H₂O+6 pts. potassium antimony tartrate dissolve 2.75 pts. I; 378 pts. H₂O +6 pts. potassium antimony tartrate dissolve 4.12 pts. I

More sol. in tannic acid than in H₂O. 1 pt. I is sol. in 450 pts. H₂O with 3.3 pts. tannic acid at 12°; 1 pt. I is sol. in 240 pts. H₂O with 0.015 pt. tannic acid at about 30°. (Koller, Zeit. Ch. **1866**. 380.)

200 g. H₂O containing 0.3 g. tannic acid dissolve 1.0 g. I. (Hager, Comm. 1883.)

Sol. in considerable quantity, especially on warming, in resorein, orcin, or phloroglucin+Aq, without coloration or formation of HI+Aq. These solutions withdraw 1 from CS₂ solution, and do not give it up on boiling, but on evaporation in vacuo the I is sublimed in a pure state. (Hlasiwetz, Z. anal. 6. 447.)

Partition coefficient for iodine between CS₂ and Aq at 25°C.

A = concentration of the water layer. C = concentration of the carbon bisulphide layer.

A	C	h = C/A
0.2571 0.2195 0.1947	167.6 140.2 122.0	651.8 638.7 626.4
0.1743 0.1605	$108.3 \\ 98.27$	$620.0 \\ 612.2$
$egin{array}{c} 0.1229 \ 0.1104 \ 0.0939 \end{array}$	73.23 65.81 55.29	595.8 596.0 590.5
0.0518	30.36	586.2

Partition coefficient for iodine between CHBr₃ and Aq at 25°C.

A = concentration of the water layer. C = concentration of the CHBr₃ layer.

A	C	g=C/A
0.2736	144.36	527.6
0.1752	85.11	485.7
0.1084	49.93	460.5
0.0757	32.65	431.7
0.0517	22.19	429.3

Partition coefficient for iodine between CCl₄ and Aq at 25°C.

A = concentration of the water layer. C = concentration of the CCl₄ layer.

A	C	h=C/A
0.2913	25.61	87.91
0.1984	16.54	85.51
0.1276	10.88	85.30
0.0818	6.966	85.13
0.0516	4.412	85.77

(Jakowkin, Z. phys. Ch. 1895, 18. 586-588.)

G. alcohol in 100 cc. of mixture	C sq. alcohol × 10 ³
30.5	1 29
26.7	0 76
22.9	0.49
19.1	0.34
16.3	0.28
11.4	0.23
7.6	0.20

(Osaka, Chem. Soc. 1905, 88. (2) 811.)

Division of iodine between CS₂ and Na₂SO₄+Aq at 25°.

A = concentration of I in  $H_2O$  layer. C = concentration of I in  $CS_2$  layer.

Na ₂ SO ₁ +Aq	A	С
1-N	0.1518	142.4
1/ ₂ -N	0.1809	141.7
1/ ₄ -N	0.2022	143.6
1/ ₈ -N	0.2138	142.4

Division of iodine between CS₂ and NaNO₃
+Aq.

	1	
Na NOa +Aq	A	С
1-N 1/2-N 1/4-N	0.1923 0.2090 0.2164	142.4 143.7 143.5

(Jakowkin, Z. phys. Ch. 1896, 20. 25.)

Partition between CHCl₃ and glycerine. C=millimols iodine in 10 g. CHCl₃ layer. W=millimols iodine in 10 g. glycerine layer.

С	W.	C/W
0.564	0.244	2.31
0.919	0.397	2.32
0.151	0.500	2.30

(Herz, Z. Elektrochem. 1910, 16. 870.)

Partition of I₂ between CHCl₃ and other Distribution of I₂ between glycerine and CCl₄ solvents.

C = millimols iodine in 10 ccm. of the CHCl₃ layer.

W = millimols iodine in 10 ccm. of the other layer.

Other Solvent	C	w	C/W
Water	0.338	0.0025	134.6
	1.546	0.0120	129.0
	2.318	0.0184	126.3
	3.207	0.0242	132.8
	3.439	0.0259	132.8
75% by vol. H ₂ O+	1.217	0.0183	66.32
25% by vol. glycerine	1.893	0.0290	65.33
	2.434	0.0367	66.31
	3.219	0.0483	66.65
50% by vol. H ₂ O+	1.217	0.0405	30.0
50% by vol. glycerine	1.835	0.0609	30.1
		[0.0782]	
	[3.294]	0.1020	32.2
25% by vol. H ₂ O+	1.188	0.116	10.25
75% by vol. glycerine	1.806	0.173	10.45
		0.249	10.66
		0.265	10.80
	3.400	0.312	10.93

(Herz, Z. Flektrochem. 1910, 16. 870.)

Distribution of I₂ between benzene and glycerine at t°.

 $M_1$  = concentration of  $I_2$  in benzene layer expressed in g.-mol. per l.

M₂=concentration of I₂ in glycerine layer expressed in g.-mol. per l.

		-	
	t°	$M_1$	M ₂
_	25°	0.00757 0.01610 0.02719 0.04024 0.06255 0.07923 0.10243 0.12201 0.13342 0.16734	0.001604 0.002664 0.004115 0.005794 0.00834 0.01033 0.01324 0.01559 0.01668 0.02081
•	40°	0.008545 0.01544 0.04432 0.095004 0.13271 0.18508	0.00181 0.002593 0.006242 0.012013 0.01632 0.02193
•	50°	0.00865 0.01523 0.02683 0.04413 0.0620 0.07832 0.10153 0.12166 0.13199 0.18438	0.00184 0.00253 0.00390 0.00576 0.00744 0.00942 0.01214 0.0145 0.01560 0.02122

(Landau, Z. phys. Ch. 1910, 73, 202.)

at to.

M₁ = concentration of I₂ in CCl₄ layer expressed in g.-mol. per l.

M₂ = concentration of I₂ in glycerine layer

t°	М1	M ₂
25°	0.002230	0.0014386
	0.0024113	0.0014595
	0.0048227	0.0027014
1	0.010452	0.005581
	0.038973	0.019959
	0.04598	0.023948
	0.05820	0.030097
40°	0.00227	0.00127
	0.00239	0.00138
1	0.00461	0.00272
1	0.01092	0.00482
	0.02540	0.01116
i	0.04091	0.01749
	0.06074	0.02701
50°	0.00257	0.00118
	0.00500	0.00225
1	0.01363	0.00596
i	0.02549	0.01050
- 1	0.04167	0.01693
1	0.06309	0.02502

(Landau, Z. phys. Ch. 1910, 73. 203.)

Distribution of I₂ between ether and ethylene glycol at to.

 $M_1 = concentration$  of  $I_2$  in ether layer, expressed in g.-mol. per l.

 $M_2 = concentration of I_2 in C_2H_6O_2$  layer, expressed in g.-mol. per 1.

t°	М 1	M 2		
0°	0.00843	0.00571		
	$0.03082 \\ 0.06551$	0.01713		
	0.08105	0.03736 0.04605		
	0.12528	0.07148		
	0.31511	0.17524		
25°	0.00870	0.00571		
	0.01677	0.01001		
	0.02710	0.01586		
	0.03046	0.01713		
1	0.06385	0.03594		
	0.11951	0.06725		
1	0.30820	0.17524		

(Landau, Z. phys. Ch. 1910, 73. 205.)

Iodine monobromide, 1Br.

Slowly sol. in H₂O with slight decomp. Sol. in CHCl₃, CS₂, ether, and alcohol. +5H₂O. (Löwig, Pogg. 14. 485.) Does not exist. (Bornemann, A. 189. 183.)

Iodine pentabromide, IBr₆(?).

Sol. in H₂O with separation of iodine. (Löwig, Pogg. 14. 485.)

Iodine monochloride, ICl.

Decomp. by H₂O; sol. without decomp. in alcohol, ether, and HCl+Aq.
Sol. in CS₂.

Iodine hydrogen chloride, ICl, HCl.

Unstable. Sol. in ether. (Schützenberger, C. R. 84. 389.)

Iodine trichloride, ICl3.

Deliquescent. With  $H_2O$ , a part is dissolved without decomp., and the rest is decomp. The aqueous solution contains more unchanged ICl₃, the more conc. it is. (Serullas.) Precipitated from aqueous solution by  $H_2SO_4$ . Sol. in HCl+Aq. Sol. in warm conc.  $H_2SO_4$  without decomp. Sol. in alcohol, and benzene. Decomp. by small amount of CS₂. (Christomanos, B. 10. 434.) Ether does not remove it from aqueous solution. (Serullas.)

Iodine lithium chloride, ICl₃, LiCl+4H₂O. See Lithium chloroiodide.

Iodine trchloride magnesium chloride,  $2ICl_3$ ,  $MgCl_2+5H_2O$ .

Very deliquescent and easily decomposed. (Filhol, J. Pharm. **25.** 442.)

+8H₂O. Hydroscopic. (Weinland, Z. anorg. 1902, **30.** 141.)

Iodine trichloride manganous chloride,  $2ICl_3$ ,  $MnCl_2+8H_2O$ .

Hydroscopie. (Weinland, Z. anorg. 1902, 30, 139.)

Iodine trichloride nickel chloride, 2ICl₃, NiCl₂+8H₂O.

Hydroscopic. CCl₄ dissolves out ICl₃. (Weinland, Z. anorg. 1902, **30.** 138.)

Iodine monochloride phosphorus pentachloride, ICl, PCl₅.

Very deliquescent; decomp. by H₂O.

Iodine potassium chloride, ICla, KCl.

Sol. in H₂O with decomp.

Ether dissolves out ICl₃. (Filhol, J. Pharm. 25. 433, 506.)

See Potassium chloroiodide.

Iodine sodium chloride, ICl₃, NaCl+2H₂O. See Sodium chloroiodide.

Iodine trichloride strontium chloride, 2ICl₃; SrCl₂+8H₂O.

Hydroscopic. (Weinland, Z. anorg. 1902, 30. 142.)

Iodine trichloride sulphur tetrachloride, ICla, SCl4.

Very deliquescent in air; decomp. by H₃O. Decomp, with formation of clear solution by dil. HNO₃+Aq. (Weber, Pogg. 128, 459.)

dil. HNO₃+Aq. (Weber, Pogg. 128. 459.) SCl₂. 2ICl₃. (Jaillard, J. B. 1860. 95.) Correct formula is as above. (Weber, l. c.) 2ICl₃, SCl₄. Sol. in SO₂Cl₂, SOCl₂, POCl₃, warm SCl₂, petroleum ether, ligroin, CHCl₃, CCl₄, CS₂ and abs. ether. (Ruff, B. 1904, 37. 4519.)

Iodine trichloride zinc chloride, 2ICl₂, ZnCl₂+ 8H₂O.

Unstable. Hydroscopic. (Weinland, Z. anorg. 1962, 30, 140.)

Iodine pentafluoride, IF 5.

Fumes in air; decomp. with H₂O. (Gore, C. N. 24, 291.)

Decomp. by H₂O into iodic acid and HF. Decomp. by solutions of the alkalies. (Moissan, C. R. 1902, 135. 564.)

lodine trioxide, I2O3.

Decomp. by H₂O. (Ogier, C. R. **85.** 957; . **86.** 722.)

Probably a mixture.

Iodine tetroxide, I₂O₄(?).

Insol. in cold, decomp. by hot  $H_2O$ ; insol. in alcohol. Decomp. by  $HNO_3+Aq$ . Sol. in  $H_2SO_4$ . (Millon, J. pr. 34. 319, 337.)

Iodine pentoxide, I₂O₅.

Very sol. in H₂O, and in dil. alcohol. Insol. in absolute alcohol, ether, CS₂, chloroform, and hydrocarbons.

Forms hydrates, iodic acid HIO₅, and  $3I_2O_5$ ,  $H_2O$ ; insol. in ordinary alcohol.

For sp. gr. of aqueous solution, see iodic acid.

Iodine oxides, I₁₀O₁₉, I₃O₁₃.

The compounds,  $I_{10}O_{19}$  (Millon, J. pr. 34. 336), and  $I_{8}O_{18}$  (Kämmerer, J. pr. 83. 81), are probably mixtures.

Millon's oxides are impure I₂O₄. (Kappeler, B. 1911, 44. 3496.)

Iodine sulphur oxide, 5I₂O₅, SO₃.

Decomp. by  $H_2O$ . (Kämmerer.)  $I_2O_5$ ,  $3SO_3$ . Decomp. by  $H_2O$ ; sl. sol. in hot  $SO_4$ . (Weber, B. 20. 86.) =  $(IO)_2(SO_4)_3$ . Iodyl sulphate (?).

Iodine oxyfluoride, IOF₃+5H₂O.

Fumes in the air. (Weinland, Z. anorg. 1908, 60. 163.)

Iodine sulphide, S2I2.

Sol. in CS₂. (Linebarger, Am. Ch. J. 1895, 17. 57.)

## Iodine sulphoxide, I₂SO₂(?).

Decomp. by H₂O. (Schultz-Sellack.) I₂(SO₂)₂(?). Decomp. by H₂O. (Weber, J. pr. (2) **25**. 224.) I₂(SO₂)₆(?). As above. (Weber.)

See also Iodosulphuric anhydride.

#### Iodiridic acid.

# Ammonium iodiridate, (NH₄)₂IrI₆.

Very easily sol, in cold H₂O, decomp. on warming. Insol. in alcohol. (Oppler, J. B. **1857.** 263.)

# Potassium iodiridate, K2IrI6.

Very easily sol, in H₂O. Insol. in alcohol.

# Sodium iodiridate, Na₂IrI₆.

Insol. in cold. sl. sol. in hot H₂O. Easily sol. in acids. (Oppler.)

#### Iodiridous acid.

Ammonium iodiridite,  $(NH_4)_6Ir_2I_{12}+H_2O$ . Very sol. in H₂O, but decomp. on warming. (Oppler.)

# Potassium iodiridite, K6Ir2I12.

Insol. in H₂O, or alcohol. Slowly sol. in acids: easily in warm alkalies + Aq.

Silver iodiridite, Ag₆Ir₂I₁₂. Ppt.

# Iodochloroplatindiamine chloride,

Pt(N2H6Cl)2.

Sl. sol. in H₂O.

### Iodochromic acid.

Potassium iodochromate, KCrO₂I. Decomp. by boiling H₂O. (Guyot, C. R. **73.** 46.)

See also Chromoiodic acid.

# Iodomolybdic acid.

See Molybdoiodic acid.

# Iodonitratoplatinmonodiamine bromide.

I NO Pt (NH ) 2Br (?).

Very sl. sol. in H₂O. (Cleve.)

# Iodonitritoplatindiamine nitrate,

I(NO2)Pt(N2H6)2(NO3)2. Quite easily sol. in hot H₂O. (Cleve.)

#### Iodopalladous acid.

#### Potassium iodopalladite.

Deliquescent. (Lassaigne.)

## Iodophosphoric acid.

See Phosphoiodic acid.

## Iodoplatinamine iodide, I₂Pt(NH₈I)₂.

Sol. in H₂O, especially easily if boiling. (Cleve.)

# Iodoplatindiamine iodide, I₂Pt(N₂H₆I)₂.

Sol. in H₂O, especially when hot. (Cleve.)

mercuric iodide, I₂Pt(N₂H₆I)₂, 2HgI₂.

Extremely difficultly sol. in cold H₂O; partly decomp. by boiling. (Jörgensen, Gm. K. 3. 1214.)

- nitrate,  $I_2Pt(N_2H_6NO_3)_2$ .

More sol, in hot than cold H₂O.

- sulphate,  $I_2Pt(N_2H_6)_2SO_4$ .

Very sl. sol. in H₂O. (Jörgensen, J. pr. (2) **15.** 429.)

# Iodoplatinsemidiamine iodide,

 $I_{s}Pt(NH_{s})_{2}I(?)$ .

Sl. sol. in H₂O. (Jörgensen, J. pr. (2) 16. 345.)

- periodide, I₃Pt(NH₃)₂I, I₂. Moderately sl. sol. in H₂O. (Cleve.)

Iododiplatinamine iodide, I₂Pt₂(N₂H₆)₂I₄. Insol. in H₂O.

# Iododiplatindiamine anhydroiodide,

 $I_2Pt_2(N_2H_6)_4OI_2$ .

Insol. in NH₄OH+Aq.

- anhydronitrate,  $I_2Pt_2(N_2H_6)_4O(NO_3)_2$ . Easily sol. in warm  $H_2SO_3+Aq$ . (Cleve.)

- iodide,  $I_2Pt_2(N_2H_6)_4I_4$ . Ppt.

- nitrate,  $I_2Pt_2(N_2H_6)_4(NO_3)_4+4H_2O$ . Sl. sol. in cold, moderately sol, in hot H₂O. (Cleve.)

- phosphate,  $I_2Pt_2(N_2H_6)_4[O_3P(OH)]_2$ . Nearly insol. in H₂O.

- sulphate,  $I_2Pt_2(N_2H_6)_4(SO_4)_2$ . Nearly insol. in H₂O.

platodiamine sulphate, I₂Pt₂(N₂H₆)₄SO₄,  $Pt(NH_3)_2SO_4$ .

Very sl. sol. in H₂O. (Carlgren Sv. V. A. F. **47.** 306.)

# Iodoplatinic acid, H₂PtI₆+9H₂O.

Deliquescent. Easily sol. in H₂O, with decomp. into PtI, and HI on standing or warming. (Topsoë.)

*

Ammonium iodoplatinate, (NH₄)₂PtI₅.

Easily sol. in H₂O. (Topsoë.) NH4I, PtI4. Sl. sol. in H2O; insol. in alcohol. (Lassaigne, A. ch. (2) 51. 128.)

#### Barium iodoplatinate, BaPtI.

Deliquescent, but less so than Na₂PtI₅ which it otherwise resembles. (Lassaigne.)

Calcium iodoplatinate, CaPtI₆+12H₂O. Not so deliquescent as Na salt.

Cobalt iodoplatinate,  $CoPtI_6 + 9H_2O$ . Very deliquescent.

Lead tetraiodoplatinate, [PtI₄(OH)₂]Pb, Pb(OH)2.

Ppt. (Belluci, C. C. 1902, I. 625.)

Magnesium iodoplatinate, MgPtl₆+9H₂O. Sol. in H₂O.

Manganese iodoplatinate, MnPtl₆+9H₂O. Very deliquescent.

Mercuric tetraiodoplatinate, [PtI₄(OH)₂]Hg. Ppt. (Belluci, C. C. 1902, I. 625.)

Nickel iodoplatinate, NiPtI₆+9H₂O. Very deliquescent.

#### Potassium iodoplatinate, K₂PtI₆.

Easily sol. in H2O. Insol. in alcohol. Not attacked by cold conc. H₂SO₄.

Silver tetraiodoplatinate, Pt[I₄(OH)₂]Ag₂. Ppt. (Belluci, C. C. 1902, I. 625.)

#### Sodium iodoplatinate, Na₂PtI₆+6H₂O.

Not deliquescent, but easily sol. in H₂O and alcohol. (Vauquelin.) Deliquescent. (Lassaigne.)

Thallium tetraiodoplatinate, [PtI₄(OH)₂]Tl₂. Ppt. (Belluci, C. C. 1902, I. 625.)

Zinc iodoplatinate, ZnPtI₈+9H₂O. Easily sol. in H₂O.

Iodoplatinocyanhydric acid, H₂Pt(CN)₄I₂. See Periodoplatinocyanhydric acid.

Silver iodoplatinocyanide, Ag₂(PtI₂(CN₄)₂. Ppt. (Miolati, Gazz. ch. it. 1900, 30. 588.)

Strontium iodoplatinocyanide platinocyanide,  $SrPt(CN)_4I_2$ ,  $10SrPt(CN)_4+xH_2O$ . (Holst.)

# Iodopurpureochromium chloride, ĬCr(NH₈)5Cl₂.

Quite sol. in H₂O. (Jörgensen, J. pr. (2) * **25.** 83.)

chloroplatinate, ICr(NH₂),PtCl₄. Precipitate. (Jörgensen, l. c.)

- iodide, ICr(NH_{8/8}I₂.

Difficultly sol. in H₂O. Insol. in HI, or KI+Aq: insol. in alcohol. (Jörgensen, l. c.)

- mitrate,  $ICr(NH_3)_5(NO_3)_2$ . Much less sol. in H2O than the chloride. (Jörgensen, i. c.)

Indopurpureocobaltic iodide, CoI(NH₃), I₂. (Claudet.)

Does not exist. (Jörgensen, J. pr. (2) 25.

# Iodopurpureorhodium chloride,

IRh(NH₃)5Cl₂.

Relatively easily sol. in H₂O; insol. in HCl  $+\Lambda q$  and alcohol. Insol. in KI+Aq. (Jörgensen, J. pr. (2) 27. 433.)

- fluosilicate, IRh(NH₂)₅SiF₆. Nearly insol, in cold H₂O.

- iodoplatinate, IRh(NH₃)₅PtI₆. Ppt.

- iodide, IRh(NH₃)₅I₂.

Very sl. sol. in cold H₂O; more sol. in hot H₂O; insol. in dil. HI+Aq, and alcohol. (Jörgensen, J. pr. (2) 27. 433.)

- nitrate,  $IRh(NH_3)_5(NO_3)_2$ .

Sl. sol. in H₂O, more easily sol. in hot H₂O: insol. in dil. HNO₃+Aq, and alcohol.

- sulphate,  $IRh(NH_3)_{\delta}SO_4$ , and  $+3H_2O$ . Sl. sol. in even hot H₂O. (Jörgensen.)

#### Iodoselenic acid.

Ammonium iodoselenate, 2(NH₄)₂O, I₂O₅  $2SeO_3 + H_2O$ .

Decomp. by H₂O. (Weinland, B. 1903, 36. 1400.)

 $2(NH_4)_2O_5$ ,  $3I_2O_5$ ,  $2SeO_2+5H_2O_5$ . H₂O with decomp.(?). (Weinland.)

Potassium iodoselenate, 2K₂O, I₂O₅, 2SeO₂+ H₂O.

Decomp. by  $H_2O$ . (Weinland.) 2 $K_2O$ ,  $3I_2O_{5}$ ,  $2SeO_3+5H_2O$ . Sol. in  $H_2O$ with decomp.(?) (Weinland.)

Rubidium iodoselenate,  $2Rb_2O$ ,  $3I_2O_5$ ,  $2SeO_3 + 5H_2O$ .

Sol. in H₂O. (Weinland.)

#### Iodostannous acid.

Data concerning solubility of SnI₂ in HI+Aq indicate formation of this compound. (Young, J. Am. Chem. Soc. 1897, 19. 853.)

# Iodosulphobismuthous acid.

Cuprous iodosulphobismuthite, 2Cu₂S, Bi₂S₈, 2BiSI.

Decomp. by  $H_2O$  at ord. temp. Decomp. by mine 1 acids with evolution of  $H_2S$ . (Ducatte, C. R. 1902, **134**. 1213.)

Lead iodosulphobismuthite, PbS,  $Bi_2S_8$ , 2BiSI. Insol. in  $H_2O$ . Partially decomp. by boiling  $H_2O$ . Decomp. by dil. mineral acids with evolution of  $H_2S$ . (Ducatte.)

# Iodosulphuric acid.

Ammonium iodosulphate, (NH₄)₂SO₃I₂(?). Very sol. in H₂O. (Zinno, N. Rep. Pharm. **20.** 449.)

 $\label{eq:mercuric} \begin{array}{ll} \mbox{Mercuric iodosulphate, $Hg_2(SO_4)I_2$.} \\ \mbox{See Mercuric sulphate iodide.} \end{array}$ 

Potassium iodosulphate, K₂SO₃I₂(?).

Sol. in 7.14 pts.  $H_2O$  at 15°. (Zinno, N. Rep. Pharm. 20. 449.)

Sodium iodosulphate, Na₂SO₃I₂+10H₂O.
Sol. in 3.64 pts. H₂O at 15° and in dil. alcohol. (Zinno, N. Rep. Pharm. 20. 449.)
Does not exist. (Michaelis and Koethe, B. 6. 999.)

#### Iodosulphuric anhydride, ISO₃.

Decomp. very violently by  $H_2O$ . (Weber, J. pr. (2) **25.** 224.)

Diodosulphuric anhydride, I₂SO₃.

Decomp. with H₂O, but not so violently as ISO₃. (Weber, J. pr. (2) **25**. 224.)

Iodotrisulphuric anhydride, I(SO₃)₃.

Decomp. by H₂O. (Weber, J. pr. (2) **25**. 224.)

# Iodotelluric acid.

Ammonium iodotellurate,  $(NH_4)_2O$ ,  $I_2O_5$ ,  $2TeO_3+6H_2O$ .

Sol. in  $H_2O$ . (Weinland, Z. anorg. 1901, 28. 52.)

 $(NH_4)_2O$ ,  $I_2O_5$ ,  $2TeO_8+8H_2O$ . Sol. in  $H_2O$ . (Weinland, B. 1900, **33**. 1017.)

### Cæsium iodotellurate, Cs₂TeI₄.

Insol. in CsI, or HI+Aq. Decomp. slowly by cold, rapidly by hot H₂O. (Wheeler, Sill. Am. J. **145**. 267.)

Potassium iodotellurate, K₂TeI₆+2H₂O.

Sl. efflorescent. Somewhat sol. in KI+Aq, and dil. HI+Aq. (Wheeler.)

K₂O, I₂O₅, TeO₅+3H₂O. Sol. in H₂O. Partially decomp. on recryst. from H₂O.

(Weinland, Z. anorg. 1901, 28. 53.) K₂O, I₂O₅, 2TeO₃+6H₂O. Sol. in H₂O

without decomp. (Weinland.)

## Rubidium iodotellurate, Rb₂TeI6.

Sl. sol. in HI, or RbI+Aq. Decomp. by H₂O. Somewhat sol. in alcohol. (Wheeler.) Rb₂O, I₂O₅, 2TeO₃+6H₂O. Sol. in H₂O. (Weinland.)

# Iodotetramine chromium iodide,

 $ICr(NH_3)_4I_2+H_2O$ .

Sol. in H₂O. Pptd. by alcohol. (Cleve.)

# Iodotetramine cobaltic sulphate,

 $ICo(NH_3)_4SO_4.$ 

(Vortmann and Blasberg, B. 22. 2652.)

## Iodotungstic acid.

See Tungstoiodic acid.

Iodous acid, I₂O₃.

See Iodine trioxide.

#### Iodovanadic acid, $I_2O_5$ , $V_2O_5+5H_2O$ .

Very easily sol. in  $H_2O$ .  $2V_2O_{\delta}$ ,  $3I_2O_{\delta}+18H_2O$ . (Ditte, C. R. **102.** 757.)

Ammonium iodovanadate,  $3(NH_4)_2O$ ,  $2V_2O_5$ ,  $5I_2O_5+20H_2O$ .

Sol. in H₂O. (Ditte, C. R. 102. 1019.)

Irididiamine compounds, Cl₂Ir(NH₃)₄X₂. See Chloriridiamine compounds.

Iridic acid.

Potassium iridate (?).

Sol. in H₂O and HCl+Aq.

# Iridicyanhydric acid, HaIr(CN)6.

Easily sol, in  $H_2O$ , still more easily in alcohol, less in ether. (Martius, A. 117. 369.)

Barium iridicyanide, Ba₃[Ir(CN)₆]₂+18H₂O.

Efflorescent. Easily sol, in hot or cold H₂O. Nearly insol, in alcohol. Not decomp. by acids.

Cupric iridicyanide ammonia, Cu₃Ir₂(CN)₁₂, 6NH₃+4H₂O.

Ppt. Decomp. in air. (Rimbach, Z. anorg. 1907, **52**. 413.)

Potassium iridicyanide, K₃lr(CN)₆. Easily sol. in H₂O.

Silver iridicyanide ammonia,  $Ag_3Ir(CN)_6$ ,  $2NH_3+3H_2O$ .

Ppt. Decomp. in the light. (Rimbach, Z. anorg. 1907, 52. 414.)

#### Iridium, Ir.

Insol. in all acids, including aqua regia, except when in finely divided state, as "iridium black," when it is sol. in aqua regia. (Claus, J. pr. **42.** 251.)

#### Iridium ammonia compounds.

See—
Chlorirididiamine comps.,  $ClIr(NH_3)_2X$ .
Iridotramine "  $Ir(NH_3)_4X_3$ .
Iridopentamine "  $Ir(NH_3)_4X_3$ .
Iridotetramine "  $Ir(NH_3)_4X_2$ .
Iridoaquopentamine "  $Ir(NH_3)_5(OH_2)X_3$ .
Iridosodiamine "  $Ir(NH_3)_2X_2$ .
Iridosodiamine "  $Ir(NH_3)_4X_2$ .

Iridium tribromide, IrBr₃+4H₂O.

Easily sol. in  $H_2O$ . Insol. in alcohol or ether. (Birnbaum.)

Iridium tetrabromide, IrBr₄, or H₂IrBr₆.

Deliquescent. Sol. in H₂O and alcohol. (Birnbaum.)

See Bromiridic acid.

 $\begin{array}{ccc} \textbf{Iridium} & \textbf{hydrogen} & \textit{sesquibromide,} & 3HBr, \\ & \textbf{IrBr}_3 + H_2O = H_3\textbf{IrBr}_6 + 3H_2O. \\ & \textit{See Bromiridous acid.} \end{array}$ 

Iridium sesquibromide with MBr. See Bromiridite, M.

Iridium tetrabromide with MBr. See Bromiridate, M.

Iridium phosphorous bromide, IrBr₃, 3PBr₃.

Partially decomp. by H₂O into a sol., and insol. modification. Sol. in PBr₃. (Geisenheimer.)

IrBr₃, 2PBr₃. Not easily attacked by H₂O. IrBr₄, 2PCl₃. See Iridium phosphorus chlorobromide.

# Iridium carbide, IrC₄(?).

(Berzelius.)

Stable toward H₂O, acids, and alcohol. (Strecker, B. 1909, **42**, 1773.)

Iridium monochloride, IrOl.

Insol. in acids and bases. (Wöhler, B. 1913 46. 1584.)

Jridium dichloride, IrCl2.

Insol. in acids and bases. (Wöhler, B. 1913, 46, 1585.)

Iridium trichloride, IrCls.

Insel. in acids or alkalies. (Claus, C. C. 1861, 690.)

Insol. in H₂O, acids and alkalies, (Leidié, C. R. 1829, **129**, **125**1.) +4H.O. Sol. in H₂O. (Claus.)

Iridium tetrachloride, IrCl₄, or H₂IrCl₆(?).
Deliquescent, and easily sol. in H₂O.

Iridium trichloride with MCl. See Chioriridite, M.

Iridium tetrachloride with MCl. See Chloriridate, M.

Iridium chloride with potassium chloride and sulphite.

See Chloriridosulphite, potassium.

Iridium phosphorus chloride, IrP2Cl9.

Insol. in cold H₂O. Sl. decomp. by hot H₂O. (Geisenheimer, A. ch. (6) **23.** 254.) IrP₂Cl₁₀. Very sol. in chloroform. (C.)

lrP₃Cl₁₂. Easily sol: in PCl₃, or CHCl₃, also in CS₂ with gradual decomp. Sl. sol. in cold H₂O. Decomp. by boiling into IrCl₃, 3H₃PO₄. Sl. sol. in benzene, ligroin and CCl₄. (Strecker, B. 1909, **42**, 1772.)

+H₂O. Insol. in PCl₃ at 100°. Very slowly sol. in boiling H₂O. (Geisenheimer, A.

ch. (6) **23.** 266.)

IrP₃Cl₁₅. Decomp. by H₂O into 2IrCl₈, 3H₃PO₃, 3H₃PO₄. Violently decomp. by alcohol. Sl. sol. in cold, more in hot POCl₃, without decomp. Very sol. in PCl₃ with decomp. into IrP₃Cl₁₂; similarly in PBr₃. Sol. in AsCl₃ with combination. Sol. in CS₂ with decomp. Sol. in SCl₂ with decomp. Sol. in SCl₂ with decomp. Insol. in CCl₄. Sol. in CHCl₃ with decomp. (Seisenheimer, A. ch. (6) 23. 254.)

# Iridium phosphorus arsenic chloride, 2IrP₃Cl₁₅, 5AsCl₃.

Sol. in H₂O with decomp. into corresponding acid. (Geisenheimer, C. R. 110. 1336.) IrCl₃, 2PCl₃, 2AsCl₃. Very sol. in H₂O with decomp. Sol. in AsCl₃; insol. in CCl₄. (Geisenheimer.)

Iridium phosphorus sulphur chloride, IrCla, 2PCla, 2SCl2.

Very sol. in sl. amt. H₂O, with decomp. into an acid analogous to chlorophospholridic acid. Sol. in SCl₂. (Geisenheimer.)



Iridium phosphorus chlorobromide, IrBr₄, 2PCl₈.

(Geisenheimer, C. R. 111. 40.)

Iridium dihydroxide, IrO₂, 2H₂O = IrO₄H₄.

Insol. in dil. HNO₃, or H₂SO₄+Aq. Slowly but completely sol. in HCl+Aq. Sol. in KOH, and NaOH+Aq. (Claus, J. pr. 39. 104.)

# Iridium sesquihydroxide, Ir₂O₆H₆.

Not attacked by acids, except slightly by conc. HCl+Aq. (Claus, C, C. 1861, 690.)

# Iridium triiodide, IrI3.

Very sl. sol. in cold, somewhat more in hot  $H_2O$ . Insol. in alcohol. (Oppler, J. B. 1857. 263.)

## Iridium tetraiodide, IrI4.

Insol. in H₂O or acids. (Lassaigne.) Sol. in solutions of iodides. (Oppler.)

# Iridium triiodide with MI.

See Iodiridite, M.

Iridium tetraiodide with MI. See Iodiridate. M.

# Iridium dioxide, IrO2.

Very sl. sol, in acids.

Freshly pptd. Sol. in conc. H₂SO₄, hot 2-N H₂SO₄, HNO₃, HCl. Insol. in 2-N KOH and sl. sol. in hot 1-N KOH.

Dried in a dessicator. Sol. in HCl. Insol. in H₂SO₄, HNO₃ and KOH.

Dried at 100°. Sol. in hot conc. HCl. Insol. in H₂SO₄, HNO₂ and KOH. (Wöhler, Z. anorg. 1908, **57**. 334.)

See also Iridium dihydroxide.

# Iridium trioxide, IrO3.

Unstable. (Wöhler, Z. anorg. 1908, 57. 340.)

# Iridium sesquioxide, Ir2O3.

Insol. in acids.

Sol. in conc. H₂SO₄, and hot conc. HCl. Forms colloidal solution with dil. HCl. Conc. HNO₃ converts it into the dioxide. Insol. in KOH+Aq. (Wöhler, Z. anorg. 1908, 57, 339.)

Iridium oxybromide,  $Ir_3Br_8O_2 = 2Ir\dot{B}r_4$ ,  $IrO_2$ . Not decomp. by  $H_2O$ . (Geisenheimer, A. ch. (6) 23. 286.)

# Iridium phosphide, Ir2P.

(Clarke and Joslin, Am. Ch. J. 5. 231.)

# Iridium sesquiselenide, Ir₂Se₃.

Insol. in HNO₂; slowly sol. in hot aqua regia. (Chabrié and Bouchonnet, C. R. 1903, **137.** 1060.)

# Iridium monosulphide, IrS.

Insol, in HNO₃+Aq, and very sl. sol. if at all in aqua regia. (Berzelius.)

Sol. in  $K_2S$ , and KSH+Aq.  $+xH_2O$ . Sl. sol. in  $H_2O$ ; sol. in cold  $HNO_8+Aq$ . Insol. in  $NH_4Cl+Aq$  or dil. acids. More sol. in  $K_2S+Aq$  than  $PtS_2$ . (Berzelius.)

# Iridium disulphide, IrS2.

Not attacked by H₂O, but decomp. when exposed moist in air. Not attacked by sat. HCl+Aq or by conc. HNO₃+Aq, but is oxidised by fuming HNO₃+Aq, and aqua regia. Insol. in NH₄ sulphides, or polysulphides+Aq. Slowly sol. in alkali polysulphides+Aq. (Antony, Gazz. ch. it. 23, 1. 190.)

#### Iridium sesquisulphide, Ir₂S₃.

Sl. sol. in H₂O. Sol. in HNO₃, or K₂S+Aq.

## Iridotriamine chloride, Ir(NH₃)₃Cl₃.

Sl. sol. in H₂O. Not attacked by boiling H₂SO₄. (Palmaer, B. **22.** 15.)

## Iridotetraamine chloride, Ir(NH₃)₄Cl₆.

Very sol. in H₂O. (Palmaer, B. 22. 15.)

----chlorosulphate,[Ir(NH₃)₄Cl₂]SO₄+ 4H₂O. (Palmaer.)

# Iridopentamine bromide, Ir(NH₂), Br₃.

Sol. in 352 pts.  $H_2O$  at 12.5°. (Palmaer, B. 23. 3817.)

bromochloride,  $Ir(NH_3)_5ClBr_2$ . Sol. in  $H_2()$ . (Palmaer, B. **24.** 2090.)

bromonitrite, Ir(NH₃)₅Br(NO₂)₅.
Sol. in 17.9 pts. H₂O at 18°. (Palmaer.)

--- bromosulphate,  $Ir(NH_3)_bBrSO_4+H_2O$ . Sol. in  $H_2O$ . (Palmaer.)

carbonate,  $[Ir(NH_8)_5]_2(CO_8)_3 + 3H_2O$ . Sol. in  $H_2O$ . (Claus, J. pr. 63. 99.)

--- trichloride, Ir(NH₃)₅Cl₃.

Sol. in 153.1 pts. H₂O at 15.1°. (Palmaer, B. 23. 3810.)

Sol. in hot H₂O containing HCl. (Claus, J. pr. 69. 30.)

---- chlorobromide, Ir(NH₃)₅ClBr₂.

Sol. in 213.6 pts. H₂O at 15°. (Palmaer.)

chloroiodide, Ir(NH₃)₅ClI₂.
Sol. in 104.5 pts. H₂O at 15°. (Palmaer.)

Iridopentamine chloronitrate, Ir(NH₈)₅Cl₈NO₈)₂.

Sol. in 51.54 pts. H₂O at 15.4°. (Palmaer.)

--- chloronitrite, Ir(NH₃)₅Cl(NO₂)₂.

Easily sol. in H₂O. (Palmera.)

—— chloroplatinate, Ir(NH₃)₅Cl₃, PtCl₄. Very sl. sol. in H₂O. (Palmear.)

--- hydroxide, Ir(NH₃)₅(OH)₃.

Known only in solution, which decomp. on evaporation. (Claus.)

mitrate, Ir(NH₃)₅(NO₃)₃.

Moderately sol. in H₂O. (Claus.)

Sol. in 349 pts. H₂O at 16°. (Palmaer.)

#### Iridoaquopentamine bromide, Ir(NH₃)_b(OH₂)Br₃.

Sol. in 4 pts. H₂O. Pptd. from aqueous solution by HBr+Aq. (Palmaer, B. **24**. 2090.)

--- chloride,  $Ir(NH_8)_5(OH_2)Cl_8$ .

Sol. in 1.2 to 1.5 pts. H₂O at ord. temp. Pptd. by HCl+Aq from aqueous solution. (Palmaer, B. **24**. 2090.)

nitrate, Ir(NH₃)₅(OH₂)(NO₃)₃.

Sol. in about 10 pts. H₂O at 17°. Pptd. from aqueous solution by HNO₃+Aq. (Palmaer.)

Iridonitrous acid, H₆Ir₂(NO₂)₁₂.

Easily sol. in H₂O. (Gibbs, B. 4. 281.)

Ammonium iridonitrite, (NH₄)₆Ir₂(NO₂)₁₂. Almost insol. in cold H₂O; decomp. by hot H₂O with evolution of N₂. Decomp. by hot conc. H₂SO₄ or HCl. Insol. in sat. NH₄Cl+Aq. (Leidié, C. R. 1902, **134**, 1583.)

Barium iridonitrite iridochloride, Ba₂Ir₂(NO₃)₁₂, Ba₃Ir₂Cl₁₂. Sol. in H₂O. (Lang.)

Mercuric iridonitrite, Hg₃Ir₂(NO₂)₁₂. Insol. in H₂O. (Gibbs, B. **4.** 280.)

Potassium iridonitrite, K₆Ir₂(NO₂)₁₂.
Sl. sol. in cold, more sol. in boiling H₂O.
Decomp. by hot HCl or H₂SO₄. Insol. in
KCl+Aq. (Leidié, Bull. Soc. 1902, (3) 27.

+2H₂O. Moderately sol. in H₂O.

937.)

Potassium iridonitrite iridochloride, K₆Ir₂(NO₂)₁₂, K₆Ir₂Cl₁₂. Sol. in H₆O.

Silver iridonitrite, Ag₆Ir₂(NO₂)₁₂.

Difficultly sol. in cold, more easily in het H₂O.

Sodium iridonitrite, Na₆Ir₂(NO₂)₁₂+2H₂O. Sl. sol, in H₂O. Sol, in cold H₂O. Decomp.

Sl. sol. in H₂O. Sol. in cold H₂O. Decomp, by hot couc. H₂SO₄ or HCl. (Leidié, C. R. 1902, **134** 1583.)

Sodium iridonitrite iridochloride, Na₄Ir₂Cl₂(NO₂)₈+2H₂O.

Sl. sol. in H₂O. (Gibbs.)

Na₆Ir₂(NO₂)₁₂, Na₆Ir₂Cl₆. Insol. in cold, sl. sol. in hot H₂O. (Lang.)

Iridosamine chloride, Ir(NH₃)₂Cl₂.

Nearly insol. in  $H_2O$ . (Skoblikoff, A. 84. 275.)

— sulphate,  $Ir(NH_8)_2SO_4$ . Easily sol. in  $H_2O$ . (Skoblikoff.)

Iridosodiamine chloride, Ir(N₂H₆)₂Cl₂.

Insol. in cold, decomp. by hot H₂O. (Skoblikoff.)

— nitrate,  $Ir(N_2H_6NO_3)_2$ . Easily sol. in  $H_2O$ .

sulphate, Ir(N₂H₆)₂SO₄.
Sl. sol. in cold, easily in boiling H₂O_• Sl. sol. in alcohol.

Iridosulphuric acid.

Potassium iridosulphate, K₆Ir₂(SO₄)₆.
Sol. in H₂O. (de Boisbaudran, C. R. 96. 1406.)

Iridosulphurous acid.

Ammonium iridosulphite, (NH₄)₆Ir₂(SO₃)₆+6H₂O.

Slightly sol. in H₂O. (Birnbaum, A. 136. 179.)

Potassium iridosulphite, K₆Ir₂(SO₃)₆+6H₂O. Slightly sol. in H₂O.

Sodium iridosulphite, Na₆Ir₂(SO₃)₆+8H₂O. Scarcely sol. in H₂O.

Iron, Fe.

Permanent in dry air; oxidises only slowly in moist air, but rapidly when in contact with air and H₂O simultaneously.

Fe does not rust in contact with air and

H₂O containing alkalies even in very small

amounts. (Payen, A. ch. 50. 305.)

Not attacked at ord, temp, by H₂O free from air. More easily oxidised by NH₄ salts +Aq than by H₂O when exposed to air simultaneously. (Persoz, A. ch. (3) 24. 506.)

Iron is slowly attacked by distilled H₂O in presence of air. 100 ccm. distilled water removed 29 mg. from 11.8 sq. cm. iron in one week, while air free from CO₂ was passed through the solution. In presence of CO₂, 54 mg. were removed. (Wagner, Dingl. 221.

CO₂ acts as a catalyst for the solution of Fe by H₂O. (Whitney, J. Am. Chem. Soc.

1903, 25. 294.)

Iron is most easily oxidised when it is exposed to air, and H₂O is deposited on it at the

same time in liquid form.

100 l. sea water dissolve 27.37 g. from 1 sq. metre Fe; 29.16 g. from 1 sq. metre steel; 1.12 g. from 1 sq. metre galvanised Fe. (Calvert and Johnson, C. N. 11). 171.)

Readily sol. in HCl, dil. H2SO4+Aq, and

most other acids.

Action of H₂SO₄+Aq (1:12) is very much accelerated by a few drops of PtCl₄+Aq; the addition of As₂O₃ arrests the action completely. Tartar emetic and HgCl₂ diminish the action, but do not arrest it. CuSO₄+Aq strongly accelerates the action, and Ag₂SO₄+ Aq also to a less extent.

In the case of HCl+Aq, the addition of small amts. of metallic salts also influences the action. Weak HC₂H₃O₂+Aq has but little action, and the addition of PtCl₄ increases it; As₂O₃ stops it; other solutions have no effect. With racemic and tartaric acids

the phenomena are the same.

With oxalic acid, PtCl₄ prevents the action. Saline solutions and even distilled H₂O, when mixed with PtCl₄, have slight solvent action. (Millon, C. R. 21. 45.)

Above phenomena are due to galvanic action from metal deposited on the iron.

(Barreswill, C. R. 21, 292.)

H₂SO₄ has only sl. action on cast-iron at ord. temp. with exclusion of air.

Weak acids have a strong action at higher

temperatures.

Charcoal pig-iron, and case-hardened castiron are much less attacked by weak acids at b.-pt. than other sorts of Fe. Scotch pig-iron is most strongly attacked.

99.8% H₂SO₄ has very sl. action on iron at ord. temp. when air is excluded. (Lunge, Dingl. 261. 131.)

Resistance against dil. H₂SO₄+Aq is greatly increased by increase in amt. of C if chemically combined, less so by P or Si. (Ledebur, Dingl. 223. 326.)

Passive Iron.—When Fe is treated with pure conc. HNO₈+Aq of 1.512-1.419 sp. gr., it soon becomes coated with a bluish or black coating, apparently FeO, and when thus in dil. acid, after a longer or shorter time,

covered Fe is not attacked by HNO₈+Aq of any strength at ord, temp, or at the temp. of a freezing mixture; but action occurs on heating. Nor is Fe attacked at ord. temp. by acid of 1.401 sp. gr. or even somewhat weaker acid, though action begins at once on heating. Very dil. HNO₃+Aq attacks Fe at ord. temp. with formation of NH₄NO₃ and Fe(NO₃)₂. The action of HNO₃+Aq is influenced by PtCl₄. If acid containing 4.5 equivalents of H O is diluted with 2.2 colequivalents of H₂O is diluted with 2-3 vols. H₂O, and then poured on Fe turnings, they dissolve at once with evolution of nitrous fumes and formation of ferric salt, but if to the acid one drop of PtCl, be added, only H gas is evolved, and NH4NO3 and Fe(NO3)2 are formed. (Millon, C. R. 21. 47.)

The more H₂() the acid contains the lower will be the temp. at which the Fe remains passive. Shaking the wire hastens the passivity. Contact with Pt, Au, or C does not prevent it. Fe wire becomes passive by remaining 10 min. in HNO₃ vapour. (Renard,

C. R. **79.** 159.)

Iron may be made passive by HClO₃, HBrO₃, HIO₃, H₂CrO₄, in the same way as by HNO₃.

Iron may also be made passive by moderate

Passivity occurs with HNO₃+Aq of 1.38 sp. gr. after a short time at 31°; but if temp. is , passivity does not occur.

Colourless HNO₃+Aq of 1.42 sp. gr. produces passivity at 55° but not at 56°. Red fuming HNO₃+Aq of 1.42 sp. gr. produces passivity at 82° but not at 83°. (Ordway, Sill. Am. J. (2) **40**. 316.)

The passivity of Fe is destroyed when it is placed in a magnetic field at a much lower temperature than when in normal condition. (Nichols and Franklin, Sill. Am. J. (3) 34.

Passivity depends on a coating of NO which hinders the action of the acid. All operations which remove this layer terminate the passivity, as shaking, rubbing, placing in a vacuum, etc. (Varenne, C. R. 89. 783.)

When Fe is plunged in HNO₃+Aq of 1.42 sp. gr. there is a sudden evolution of gas which ceases after 3 to 20 seconds, and the surface becomes bright. The same phenomena take place with a more dilute acid, if of not less than 1.32 sp. gr. In the latter case, there is an immediate evolution of gas, which suddenly ceases and the metal becomes bright, but soon the acid begins to act again at a single point, and the action gradually spreads over the whole surface; this, however, soon ceases again, and we have an "intermittent passivity.

If a part of a piece of iron is immersed in strong acid, the whole of it is made passive. This is explained by the NO spreading over

the whole surface by capillarity.

The passivity ceases when the Fe is placed

according to the dilution of the acid.—when the acid has sp. gr. = 1.30, after 11 days

1.28 " " " " 1.26 32 hours " " " 1.16 12

Iron may also be made passive by long standing in NO gas under pressure. (Varenne, C. R. 90. 998.)

Fe is made passive by a coating of Fe O₄, not by NO. (Schonbein, Pogg. 39. 342.) (Beetz, Pogg. 67. 286.) (Ramunn, B. 14.) 1430.)

Passivity may also be caused by NH₄NO₄ +Aq, ammoniacal AgNO₃+Aq, Fe(NO₃)₃, Fe(NO₃)₂, Al(NO₃)₃, Co(NO₃)₂, Ni(NO₃)₃, etc.+Aq instead of HNO₃+Aq. (Ramonn, B. **14.** 1933.)

Hardly attacked by either dil. or conc. acids when they are under high pressure. (Cailletet C. R. 68, 395.)

Iron is dissolved by HNO₂+Aq, even when very cone., but no gas is evolved and the process is very slow.

HNO₈+Aq of the following sp. gr. dissolves the given amts, from strips of pure Fe.

Sp. gr. of acid	Diminution of weight in 24 hours
1.28	0.82%
1.34	0.75
1.38	0.29
1.48	0.34
1.53	5.80

(Gautier and Charpy, C. R. 113. 1451.)

Insol. in liquid chlorine below 90°. (Lange, Zeit. angew. Ch. 1900, 13. 686.)

Insol. in liquid NH₃. (Gore, Am. ch. J. 1898, **20.** 828.)

Not attacked by alkalies.

Sol. in NaOH+Aq (34%) when air is blown through the liquid. (Zirnité, Ch. Ztg. 12.

NaOH+Aq attacks iron and steel. (Venator, Dingl. **261.** 133.)

NaOH+Aq has slight action on Fe between

15° and 100°. (Lunge, Dingl. 261. 131.)
Presence of alkalies prevent rusting entirely, and fats and oils greatly hinder it. (Wagner.)

Sol. in alkali hydrogen carbonates+Aq.

(Berzelius.)

Sat. NaCl+Aq has sl. but perceptible action on Fe. NH₄Cl+Aq has stronger action

than NaCl+Aq. (Lunge.) 100 ccm.  $H_2O$  containing 0.5 g. NaCl or KCl removed 42 mg, from 11.8 sq. cm. iron in one week, while air free from CO₂ was passed through the solution, and 72 mg. in presence of CO₂.

100 ccm. H₂O containing 1 g. NH₄Cl removed 45 mg., and 76 mg. respectively under

the above conditions.

100 ccm. H₂O containing 0.8 g. MgCl₂ re-

moved 49 mg., and 65 mg. respectively under the above conditions

Not attacked by 100 ccm. H₂O containing  $1 g. Na_2CO_3$ , or by  $CaO_2H_2+Aq$ . (Wagner,

Dingl. 221. 260.)

Action of KClO₃+Aq. KClO₄+Aq (6.3% KClO₃) oxidised 11.21 g. cast iron and 20.1 g. pure iron 'rom a surface of 1 sq. metre in 7 hours; KClO₃+Aq (25% KClO₃) oxidised 24.59 g. cast, and 44.90 g. pure Fe under above conditions; Ca(ClO₃)₂, CaCl₂+Aq (20° Baume) obtained 'v passing Cl through CaO₂H₂---Ac oxidisc 85 g. east, and 95 g. pure Fe under the above conditions. (Lunge and Deggeler, J. Soc. Chem. Ind. 4. 32.)

Easily sol, in organic acids.

# Comparative action of oils on Fe.

	Amount Fe dissolved
Neatsfoot oil	0.0875 grains
Colza "	0.0800 "
Sperm "	0.0460 "
Lard "	0.0250 "
Olive "	0.0062 "
Linseed "	0.0050 "
Seal "	0.0050 "
Castor "	0.0048 "
Paraffine "	0.0045 "
Aimond "	0.0040 "
"Lubricating" oil	0.0018 "

(Watson, C. N. 42. 190.)

½ ccm. oleic acid dissolves 0.0097 g. Fe in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Fe dissolves in albumen solution to the extent of 1 to 2 per cent. (Buchner, Arch. Pharm. (3) 20. 417.)

Attacked by sugar+Aq at 115-120°, also by inverted sugar or malt extract, not by glycerine or mannite+Aq. (Klein and Berg, C. R. **102.** 1170.)

Iron arsenide, FeAs₂.

Min. Löllingite. Sol. in HNO3+Aq with separation of As₂O₃.

Fe₈As₄. Min. Leucopyrite.

Iron arsenide sulphide, FeAs₂, FeS₂.

Min. Arsenopyrite. Sol. in HNO₃+Aq with separation of S and As₂O₃; wholly sol. in aqua regia; not attacked by HCl+Aq.

Iron boride, Fe₂B.

Decomp. by H2O. Sol. in hot dil. HCl or H₂SO₄ and in hot conc. HCl or H₂SO₄. Sol. in hot dil., or cold conc. HNO₃. (Jassonneix, C. R. 1907, **145**. 122.)

FeB. Sol. in molten alkali carbonates; not sol. in dil. or conc. H2SO4 in the cold; sol. in boiling H₂SO₄ and in HNO₃. (Moissan, Bull. Soc. 1895, (3) 13, 958.)

Stable in dry air. Decomp. by aqua regia,

but not readily sol, in conc. H₂SO₄ and HCl. (Moissan, C. R. 1895, **120**. 176.)

FeB₂. Decomp. by H₂O. Sol. in HNC and in hot conc. HCl. (Jassonneix, C. T. 1907, 145. 122.)

#### Iron (ferrous) bromide, FeBr₂.

Sol. in H₂O. Decomp. by heating on air. Sat. FeBr₂+Aq contains at:

---7° --21° 47.0 48.3 52.353.7% FeBr₂, 37° 50° 65° 95° 56.0 63.3% FeBr₂. 58.0 59.4(Étard, A. ch. 1894, (7) 2. 541.)

+4H₂O. Very sol. in H₂O; pptd. from cooled aq. solution. (Volkmann, C. C. 1894, II. 611.)

+6H₂O. Sol. in H₂O. (Löwig.)

+9H₂O. (Volkmann.)

# Ferric bromide, FeBr₃.

Deliquescent. Sol, in H₂O, alcohol, and ether. (Löwig.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

+6H₂O. Sol. in alcohol and ether. (Bolschakoff, C. C. 1898, II. 660.)

#### Ferrous mercuric bromide.

Deliquescent. (v. Bonsdorff.)

Ferric rubidium bromide, Rb₂FeBr₅+H₂O.

Sol. in H₂O. (Walden, Z. anorg. 1894, 7. 332.)

#### Ferrous stannic bromide.

See Bromostannate, ferrous.

Ferrous bromide nitric oxide 3FeBr₂, 2NO. Sol. in H₂O. Not isolated. (Thomas, C. R.

1896, 123. 944.)

#### Ferric bromochloride, FeCl₂Br.

Very deliquescent, and sol. in H₂O, alcohol, and ether. Notably sol. in chloroform, benzene, and toluene. Insol. in CS2. (Lenormand, C. R. 116. 820.)

#### Iron carbide, Fe₈C.

(Gurlt, J. B. 1856, 781.) Mixture of Fe and FeC4. (Tunner, Polyt. Centralbl. 1861. 1227.)

Fe₄C. (Karsten, J. pr. 40. 229.) Fe₃C. Sol. in hot conc. HCl; oxidized slowly by moist air. (Campbell, Am. Ch. J. 1896, **18.** 840–841.)

Fe₂C₂. (Rammelsberg, C. C. 1847. 60.)

# Iron molybdenum carbide, Fe₃C, Mo₂C.

Sol. in hydracids; insol. in HNO₃. (Williams, C. R. 1898, 127. 484.)

# Iron tungsten carbide, 2Fe₃C, 3W₂C.

Insol. in H₂O and hydracids; sol. in HNO₃ and H₂SO₄. (Williams, C. R. 1898, 127. 411.)

Iron carbonyl, Fe(CO)₅.

Slowly decomp. on air. Not attacked by dil. H₂SO₄, HNO₃, or HCl+Aq. Conc. HNO₃, Cl₂+Aq, or Br₂+Aq decomp. easily. Sol. in alcoholic solution of KOH or NaOH with subsequent decomp. Sol. in alcohol, ether, benzene, mineral oils, etc. (Mond and Langer, Chem. Soc. 59. 1090.)

Fe₂(CO)₇. Decomp. on air. Not attacked by H₂SO₄ or HCl+Aq. Sol. in alcoholic potash. Very much less sol. in organic solvents than Fe(CO)₅. (Mond and Langer.)

#### Ferrous chloride, FeCl₂.

Deliquescent. Easily sol. in H2O with evolution of heat, or in alcohol. Insol. in

ether. (Jahn.) Sol. in 2 pts. H₂O at 18.75°. (Abl.) Sol. in 1 pt. strong alcohol. (Wenzel.)

So, or, of FeCl₂ = Ag at  $15.5^{\circ}$ .

Sp. gr.         % FeCl ₂ % FeCl ₂ 4H           1.05         5.40         8.45           1.06         6.43         10.09           1.07         7.47         11.69           1.08         8.48         13.29           1.09         9.49         14.86           1.10         10.47         16.41           1.11         11.45         17.86           1.12         12.42         19.46           1.13         13.37         20.96           1.14         14.31         22.41           1.15         15.24         23.87           1.16         16.15         25.31           1.17         17.05         26.73	Sp. gr. of $FeCl_2 = Aq$ at 15.5°.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I ₂ O					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1.13     13.37     20.96       1.14     14.31     22.41       1.15     15.24     23.87       1.16     16.15     25.31       1.17     17.05     26.73						
$\begin{array}{c ccccc} 1.14 & 14.31 & 22.41 \\ 1.15 & 15.24 & 23.87 \\ 1.16 & 16.15 & 25.31 \\ 1.17 & 17.05 & 26.73 \end{array}$						
1.15     15.24     23.87       1.16     16.15     25.31       1.17     17.05     26.73						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1.17   17.05   26.73						
1.18   17.94   28.13						
$egin{array}{c cccc} 1.19 & 18.83 & 29.51 \\ 1.20 & 19.68 & 30.85 \\ \hline \end{array}$						
$egin{array}{c cccc} 1.22 & 21.39 & 33.53 \ 1.23 & 22.24 & 34.84 \ \end{array}$						
1.23 22.24 34.84 1.24 23.05 36.11						
1.25   23.86   37.38						
1.26 24.68 38.67						
1.27 25.44 39.87						
1.28 26.19 41.04						
1.29 26.98 42.29						
1.30 27.75 43.49						
1.31 28.49 44.65						
1.32 29.23 45.81						
1.33 29.96 46.94						
1.34 30.68 48.08						
1.35 31.39 49.18						
1.36 32.10 50.30						
1.37 32.79 51.39						
1.38 33.47 52.46						
1.39   34.14   53.50						
1.40 34.80 54.55						
1.41 35.46 55.57						
1.42 36.09 56.56						
1.43 36.73 57.55						
1.44 37.33 58.51						

(Dunn, J. Soc. Chem. Ind. 1902, 21. 390.)

Insol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Sol. in acetone; insol. in methylal. (Eidmann, C. C. 1899, II. 1014.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Sl. sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sol. in ethyl acetate. (Naumann, E. 1910, 43. 314.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Yellow modification is sol. in benzonitrile (Naumann, B. 1914, 47, 1369.)

Mol. weight determined in pyridine. (Werner, Z. anorg. 1897, 15. 21.)

+2H₂O. (Jonas.)

+4H₂O. Deliquescent. Easily sol. in alcohol. Sol. in 0.68 pt. cold H₂O. (Reimann, Mag. Pharm. 17. 215.)

Sat. aq. solution contains at:

16° 18°  $25^{\circ}$  $28^{\circ}$ 43° 40.5 40.9 41.0 42.544.4% FeCl2, 89° 53° 72° 96° 118° 50° 45.0 45.9 49.2 51.3 51.0 51.7% FeCl₂. (Étard, A. ch. 1894, (7) 2. 537.)

100 g. FeCl₂,  $4H_2O + Aq$  contain 17.54 g. Fe at 22.8°; 18.59 g. at  $43.2^{\circ}$ . (Boecke, N. Jahrb. Min. 1911, I, 61.)

More sol. in water containing NO than in pure H₂O. (Gay, Bull. Soc. (2) 44. 175.)
Sol, in hot HCl+Aq. (Sabatier, Bull. Soc. 1805. (3) 13. 599.)

Babatier could not obtain FeCl₂+6H₂O of **
Loccevr.]

Ferroferric chloride, Fe₃Cl₈+18H₂O.

Deliquescent. (Lefo t, J. Pharm. (4) 10. 85.)

Ferric chloride, Fe₂Cin or FeCl₃.

Very deliquement, and sol in H₂O with evolution of great heat.

100 mols. H₂O dissolve mols. anhydrous Fe₂Cl₆ at t°.

t°	Mols. Fe ₂ Cl ₆	t°	Mols. Fe ₂ Cl ₆
66 70 75	29.20 29.42 28.92	80 100 	29.20 29.75

(Roozeboom, Z. phys. Ch. 10. 477.)

See also hydrated salts below.

Solution in H₂O is decomp. into colloidal Fe₂O₃, xH₂O and HCl, upon heating if conc., and on simple standing if dil.

Krecke (J. pr. (2) 3. 286) gives the following table.

% Fe ₂ Cl ₆ in solution	Temp. at which Graham's colloidal hydrate is formed	Temp. at which Saint Gilles' colloidal hy- drate is formed	Temp. at which oxychlorides are formed	Temp. at which Fe ₂ O ₃ is formed
32 16 8 4 2 1 0.5 0.25 0.125 0.0625	$ \begin{array}{c} 100-130^{\circ} \\ 100-120 \\ 100-110 \\ 90-100 \\ 87 \\ 83 \\ 75 \\ 64 \\ 54 \\ 36 \end{array} \right\} \begin{array}{c} \operatorname{Fe_2Cl_6} \ \operatorname{re-} \\ \operatorname{formed} \ \operatorname{or} \\ \operatorname{cooling}. \end{array} $	100–130° "	90 87 	140° 120 110

## Sp. gr. of Fe₂Cl₆+Aq.

Sp. gr. of Fe ₂ Cl ₆ +Aq.							
Fe ₂ Cl ₆	Sp. gr. at 4.8°	Sp. gr. at 9.7°	Sp. gr. at 14.6°	Sp. gr. at 19.7°			
49.61 41.00 36.95 33.25 24.60 22.54 16.79 10.45 4.65 2.70	1.5609 1.4413  1.3381 1.2351 1.2140 1.1534 1.0939	1.5575 1.4387 1.3847 1.3359 1.2334 1.2129 1.1521 1.0930	1.5540 1.4361 1.3824 1.3339 1.2318 1.2107 1.1507 1.0918 1.0382 1.0221	1.5497 1.4335 1.3800 1.3317 1.2298 1.2090 1.1491 1.0901			

(Schult, from Gerlach, Z. anal. 27. 278.)

Sp. gr. of Fe₂Cl₆+Aq increases or diminishes between 8° and 24° for a decrease or increase of temp. of 1° by the following amts.

COLLE UD.		•	
% Fe ₂ Cl ₆	Corr.	% Fe2Cl6	Corr.
50-60 45-49 40-44	0.0008 0.0007 0.0006	30–39 20–29 10–19	0.0005 0.0004 0.0003

(Hager, l. c.)

	Sp. gr., c	of Fe ₂ (	Cl ₆ +Aq a	t 17.5	٠.	S	olubility o	of Fe ₂ Cl ₆	in HCl+Aq.
Fe ₂ Cl ₆	Sp. gr.	Fe ₂ Cls	Sp. gr.	Fe ₂ Cl ₆	Sp. gr.	t°	Sat. solution per 100 n	on contains nols. H ₂ O	Solid phase
1 2	1.0078 1.0146	21 22	1.1644 1.1746	$\begin{array}{ c c }\hline 41\\ 42\\ \end{array}$	1.3746 1.3870		mols. HCl	mols. FeCls	
3 4	1.0219	23 24	1.1848	43	1.3994 1.4118	30	0 5.92	$12.70 \\ 16.07$	
5	1.0365	25	1.1950 1.2052	44 45	1.4242	"	0	$20.90 \\ 10.90$	
6 7	1.0439 1.0513	$\begin{vmatrix} 26 \\ 27 \end{vmatrix}$	1.2155 1.2258	46   47	1.4367 1.4492	25	$\begin{bmatrix} 0 \\ 2.33 \end{bmatrix}$	23.72	
8	1.0587	28	1.2365	48	1.4617	20	0	$24.50 \\ 10.20$	
9 10	1.0661 1.0734	29   30	1.2464 1.2568	49   50	1.4742 1.4867	"	5.60	23.60	
11 12	1.0894	31 32	$1.2673 \\ 1.2778$	51 52	1.5010 1.5153	10	0	$\begin{array}{c} 25.70 \\ 9.10 \end{array}$	
13	1.0974	33	1.2883	53	1.5296	"	8.75 16.70	$8.00 \\ 16.65$	
14 15	1.1054 1.1134	34 35	$1.2988 \\ 1.3093$	54   55	$1.5439 \\ 1.5582$	"	13.80	23.35	
16	1.1215	36	1.3199	56	1.5729	0 "	$\begin{bmatrix} 0 \\ 7.52 \end{bmatrix}$	$8.25 \\ 6.51$	
17 18	1.1297 1.1378	37   38	1.3305 1.3411	57   58	$1.5876 \\ 1.6023$	"	13.37	6.33	
18 19	1.1378 1.1458	38 39	$\frac{1.3411}{1.3517}$	58 59	$1.6023 \\ 1.6170$	"	16.80 18.45	$\begin{array}{c} 8.70 \\ 10.23 \end{array}$	Fe ₂ Cl ₆ +12H ₂ O
20	1 1542	40	1.3622	60	1.6317	"	20.40	$15.40 \\ 16.00$	
	(Frai	nz, J.	pr. (2) <b>5.</b>	283.)		"	20.10 19.95	17.70	
	Sp. gr.	of Fe ₂ 0	Cl ₆ +Aq a	t 17.5	°.	"	19.00 18.05	$22.75 \\ 23.40$	
	Sp. gr.	Fe _i Cl	Sp. gr	Fe ₂ C	Sp. gr.	-10	0	7.40	
Fe ₂ Cl ₆	- Sp. gr.	Fe; Cl		Fe ₂ C	16	"	19.46 20.48	$10.37 \\ 20.54$	
1	1.008	21 22	$1.191 \\ 1.202$	41 42	1.428 1.441	-12.5	20.25 22.14	$21.56 \\ 16.69$	
3	1.025	23	1.212	43	1.454	15	0	6.98	
4 5	1.033	24 25	1.223	44 45	1.469 $1.481$	-20	$\begin{bmatrix} 21.30 \\ 0 \end{bmatrix}$	$9.65 \\ 6.56$	
6 7	1.051	26	1.245	46 47	1.494 1.507	11	7.50	4.90	
8	1.060 1.069	27 28	1.256 1.268	48	1.520	"	15.30 20.56	5.09 7.08	J
9 10	1.078	29 30	1.280	49   50	1.533	30	0	25 20	
11	1.095	31	1.304	51	1.560	"	$\begin{bmatrix} 4.25 \\ 0 \end{bmatrix}$	$\frac{27.80}{30.24}$	
$\begin{array}{c} 12 \\ 13 \end{array}$	1.104	32	1.316	52	1.573	25	$egin{array}{c} 0 \ 2.33 \end{array}$	$23.50 \\ 23.72$	
14 15	1.123	34 35	$1.340 \\ 1.352$	54 55	1.600 1.612	"	7.50	29.75	
16	1.140	36	1.364	56	1.624	20	0	$   \begin{array}{r}     31.50 \\     22.50   \end{array} $	
17 18	1.150	37	$1.376 \\ 1.390$	57 58	1.636	"	5.60	23.60	E CLASSIC
19	1.170	39	1.403	59	1.659	"	11.05 11.05	$29.20 \\ 29.20$	Fe ₂ Cl ₄ +7H ₂ O
20	1.180	40	1.415	60	1.670	15	$\begin{array}{c c} 0 \\ 10.75 \end{array}$	$32.00 \\ 23.50$	
a	•	- ,	Comm. 18	•	0.010	"	14.90	28.35	
	p. gr. of c					10	13.80 17.80	$23.35 \\ 27.75$	
Fe ₂ Cl	Sp. gr.	Fe ₂ Cl	Sp. gr.	Fe ₂ Cl	Sp. gr.	0	17.80 18.05	27.75 23.40	
60 61	1.669 1.679	65 66	$1.715 \\ 1.724$	70 71	1.758 1.766		19.50	25.93	•
62	1.688	67	1.733	72	1.774				
63 64	1.697 1.706	68 69	$\begin{vmatrix} 1.742 \\ 1.750 \end{vmatrix}$	73 74	1.782			•	
-		1	ger, l. c.)	1					

olubii	Sat. solution		+Aq.—Continued.		Sat. solutio per 100 m		1
t°	per 100 me		Solid phase	t°	mols. HCl	mols. FeCla	Solid phase
	mols. HCl	FeCl ₂		30	30.45	48.70	7 7 12
50	0	35.00	)	<u> </u>	17.15	36.75	
"	3.25	39.95		.,	31.20 35.80	43 49   47.80	
44	$\begin{vmatrix} 0 \\ 3.04 \end{vmatrix}$	33.50 33.80		"	32.60	49.93	
"	10.62	34.64		25	19.50	35.25	
"	11.50	35.60		16	20.60	35.34	1
"	10.70	38.00		",	31.34	41 58 43 00	
40	13.40	32.40 37.45			54.65	44.80	
33	0	31.00		20	21 25	34.25	1
"	15.70	37.06	Į.	"	28.81	37.57	Fe ₂ Cl ₆ +4H ₂ O
30	17 20	30.24		"	34.23 35.40	$\begin{array}{c c} 42.02 \\ 43.16 \end{array}$	
"	17.20 17.15	34.00 36.75		15	29.40	36.50	
25	0	29.00		- 1	33.60	40.03	
"	7.50	29.75	$Fe_2Cl_0+5H_2O$	10	24.50	32.75	
20	19.50	35.25   27.90		О	35.04 26.00	$\frac{39.95}{32.16}$	
20	11.05	29.20		ii.	34.60	38.11	
"	15.80	30.68		10	27.30	32.05	
"	21.25	34.25		20	33.56	$\frac{36.25}{32.76}$	i
15	14.90	$28.35 \\ 29.32$		"	32.65	35.44	
10	17.80	27.75		45	0	58.00	ì
"	18.80	28.70		"	31.28	50.08	
0	24.50	$\frac{32.75}{30.04}$		40	40.65	48.60	
"	$\begin{vmatrix} 24.12 \\ 26.00 \end{vmatrix}$	32.16		40	$\begin{vmatrix} 0 \\ 27.00 \end{vmatrix}$	58.00 50.80	
-10	24.95	29.60		"	42.01	48.64	$Fe_2Cl_6$
"	26.05	30.50		35	0 01	58.00	anhydrous
	27.30	32.05	<u>,                                      </u>	"	$\begin{vmatrix} 29.01 \\ 37.04 \end{vmatrix}$	$50.33 \\ 49.20$	
70	$\begin{vmatrix} 0 \\ 6.75 \end{vmatrix}$	44.0 50.00		30	0	58.00	
"	0	55.80		"	32.60	49.93	
65	0	42.50			34.40	49.72	<del>\</del>
"	$\begin{vmatrix} 10.25 \\ 3.75 \end{vmatrix}$	50.00   57.25		40	42.50 42.01	47.52 48.64	
"	0.10	59.00		35	39.47	46.57	
60	0	41.40		"	37.04	49.20	
"	14.25	50.00		30	40.21	42.54	1
"	10.70	$55.25 \\ 61.00$		"	38.20 35.55	44.70   47.30	
55	ŏ	40.64		"	34.40	49.72	
"	19.00	50.72		25	40.41	40.25	
"	16.71	53.60 62.00	Fe ₂ Cl ₆ +4H ₂ O	"	39.03	41.38   45.24	
50		39.92	1 62046 7 41120	20	39.50	39.25	Fe ₂ Cl ₆ , 2HCl,
"	3.25	39.95		"	35.40	43.16	4H ₂ O
"	21.24	49.33		10	38.62	37.48	
44	20.04	52.50   39.00	İ	"	37.46 36.30	38.33 38.70	
"	10.70	38.00		**	35.04	39.93	
"	14.80	38.70		0 "	37.27	36.60	
40	24.14	50.10 37.45		10	34.60 37.92	$\frac{38.11}{35.32}$	
"	13.40 27.00	50.80		"	34.54	36.00	
33	15.70	37.06		"	33.56	36.25	
"	29.20	42.70		20	37.80	34.50	,
"	31.08	46.85   47.65	1	"	34.10 32.56	34.84   35.44	1

Solubility of	Fe ₂ Cl ₄ i	n HCl+Ac	.—Continued.
---------------	-----------------------------------	----------	--------------

t <b>°</b>	Sat. solution per 100 m	on contains nols. H ₂ O	Solid phase
·	mols HCl	mols. FeCl ₃	Don't pause
-4.5	20.50	24.50	1)
"	20.66	25.74	
"	23.42	27.40	
6	29.10	24.73	
"	26.18	21.75	
"	24.41	21.50	<del> </del>
"	23.25	21.35	•
"	21.73	21.84	
"	19.73	25.50	
"	44.42	28.45	
"	28.20	27.04	
10	20.48	20.54	
"	24.90	18.94	
"	28.75	20.34	
"	31.42	28.53	Fe ₂ Cl ₆ , 2HCl,
"	28.25	30.25	8H ₂ O
"	26.05	30.50	01120
15	24.50	15.83	
15	28.40	31.89	
20	19.44	12.10	
"	22.83	11.63	
"	25.20	11.60	
"	27.20	11.31	
"	31.08	11.51	
"	34.13	12.90	
"	33.93	31.77	
"	30.08	32.76	
"	28.70	32.88	J
10	12.01	11.99	)
"	19.78	14.02	
"	20.95	16.20	
"	20.25	20.20	
"	17.73	20.70	
"	15.44	19.65	1
-12.5	22.14	16.69	1
15	21.30	9.65	
"	24.50	15.83	Fe ₂ Cl ₆ , 2HCl,
20	9.96	9.94	} 12H ₂ O
"	13.32	8.57	}
"	16.90	7.35	
"	18.97	7.16	İ
"	20.56	7.08	
"	23.40	7.20	
"	24.85	9.88	
"	25.20	11.60	1
"	25.40	12.37	
"	25.59	13.39	J

(Roozeboom and Schreinemakers, Z. phys. Ch. 1894, 15. 633.)

Solubility of Fe₂Cl₆+NH₄Cl. See NH₄Cl+Fe₂Cl₆ under NH₄Cl.

Solubility of Fe₂Cl₆ in CsCl. See CsCl+Fe₂Cl₆ under CsCl.

Solubility of FeCl₂+KCl in H₂O at 21°.

Substance added		Pts. by weight sol. in 100 pts. of solution		
FeCl ₃ grams	KCl grams	FeCla	KCl	
0 13 18 3 28 31 36.2 41.5 46.5 52 155	25 28 21 18.5 16 10.5 9 8 6 0.5	0 13.44 23.18 28.05 35.72 36.62 37.35 42.03 51.69	34.97 24.45 16.54 11.69 11.68 11.19 13.67 7.88 7.54	

(Hinrichsen and Sachsel, Z. phys. Ch. 1904, **50**. 95.)

FeCl₃+NaCl.

Solubility of FeCl₃+NaCl in H₂O at 21°.

Substance added		Pts. by weight sol. in 100 pts. of solution		
FeCl ₃ grams	NaCl grams	FeCl ₃	NaCl	
0 1.8 3.6 5.5 7.2 9.0 10.8 10.8	3.6 3.0 2.5 2.0 1.5 1.0 0.5	0 24.27 25.40 26.40 38.15 43.38 46.75 83.39	36.10 9.10 8.45 5.25 3.90 2.45 2.11	

(Hinrichsen and Sachsel, Z. phys. Ch. 1904, **50**. 94.)

Solubility of FeCl₃ in NaCl+Aq at t°.

1.0	Substance added		% of Fe in
	FeCl ₃	NaCl	the solution
10 10	40 60	20 20	15.2 15.2
10	100	20	15.16
$\begin{array}{c} 20 \\ 20 \end{array}$	60 80	$\begin{array}{c} 20 \\ 20 \end{array}$	$\begin{array}{c} 16.2 \\ 16.18 \end{array}$
$\frac{20}{30}$	100 70	20 30	$16.2 \\ 17.7$
30 30	90 110	30 30	17.6
50	30	20	17.67 23.5
50 40	45 35	20 30	$\begin{array}{c} 23.9 \\ 25.4 \end{array}$
40 30	50 30	30 20	25.5 23.8
30 17.6	45	20	24.0
17.6	30 50	20 20	$24.47 \\ 24.5$

(Hinrichsen and Sachsel, Z. phys. Ch. 1904, **50.** 95.)

Difficultly sol. in AsBr₃. anorg. 1902, 29. 374.) (Walden, Z.

Attacked by liquid NO2 in the presence of traces of moisture. (Frankland, Chem. Soc. 1901, 79. 1361.)

Sol. in liquid SO₂. (Walden, B. 1899, 32. 2864.)

Sol. in alcohol ether, acetic ether (Cann C. R. 102. 363), and acetone (Krug and M'Elroy, J. anal. Ch. 6. 184).
Sl. sol. in ethylamine. (Shinn, J. phys.

Chem 1907, 11. 538.)

Sol. in benzonitrile. (Naumann, B. 1914. **47.** 1369.)

(Naumann, B. Sol. in methyl acetate. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.)

1 g. FeCl₃ is sol. in 1.59 g. acetone at 18°. Sp. gr. of sat. solution  $18^{\circ}/4^{\circ} = 1.160$ . (Naumann, B. 1904, 37. 4333.)

Sol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

Sl. sol. in CS₂. (Arctowski, Z. anorg. 1894, **6**. 257.)

Mol. weight determined in pyridine. (Werner, Z. anorg. 1897, 15. 22.)

Subtimed. Sol. in AsCl₃, POCl₃, SO₂Cl₂ and PBr₃; sl. sol. in PCl₃. (Walden, Z. anorg. 1900, 25.

The salts with different amts. of crystal H₂O have different solubilities. (Roozeboom. +4H₂O. Melts in crystal H₂O at 73.5°.

100 mols. H₂O dissolve mols. Fe₂Cl₆ from  $Fe_2Cl_6+4H_2O$  at t°.

t°	Mols. Fe ₂ Cl ₆	t°	Mols Fe ₂ Cl ₆	t°	Mols. Fe ₂ Cl ₆
50	19.96	69	21.53	72.5	26.15
55	20.32	72.5	23.35	70	27.90
60	20.70	73.5	25.00	66	29.20

(Roozeboom, Z. phys. Ch. 10. 477.)

+5H₂O. Correct formula for +6H₂O salt.

100 mols. H₂O dissolve mols. Fe₂Cl₅ from Fe₂Cl₆+5H₂O at t°.

t°	Mols. Fe ₂ Cl ₆	t°	Mols. Fe ₂ Cl ₆	t°	Mols. Fe ₂ Cl ₆
12	12.87	30	15.12	55	19.15
20	13.95	35	15.64	56	20.00
27	14.85	50	17.50	55	20.32

(Roozeboom.)

Melts in crystal H₂O at 31° (Engel, C. R. 104. 1708); at 56° (Roozeboom). +6H₂O. Very deliquescent. Sol. in alcohol. Ether dissolves out Fe₂Cl₅.

M.-pt. is 31°. (Ordway.) Contains only 5H₂O. (Roozeboom.) +7H₂O. Melts in crystal H₂O at 32.5°.

100 mols. H₂O dissolve mols. F&Cl₆ from Fe₂Cl₆+7H₂O at t°.

t°	Mols Fe ₂ 'l ₆	t°	Mols. Fe ₂ Ol ₆	t°	Mols. Fe ₂ Cl ₆
20	11.35	32	13.55	30	15.12
27.4	12.15	32.5	14.99	25	15.54

(Roozepoom.)

+12H₂O. Less deliquescent than Fe₂Cl₆ or Fe₂Cl₃-5H₂O.

100 mols. H₂O dissolve mols. Fe₂Cl₄ from Fe₂Cl₆+12H₂O at t°.

1						
	1.5	Mols. Fe ₂ C ¹	t°	Mols. Fe₂Ol₅	t°	Mols. Fe ₂ Cl ₆
	55 41 27 0 10 20	2.75 2.81 2.98 4.13 4.54 5.10	30 35 36.5 37 36 30	5.93 • 6.78 7.93 8.33 9.29 10.45	27.4 20 10 8	11.20 12.15 12.83 13.70

(Roozeboom.)

Sol. in alcohol. Ether dissolves out Fe₂Cl₆. Melts in crystal H₂O at 37° (Roozeboom); at 35.5° (Ordway).

Ferric hydrogen chloride, FeCl₃, HCl+2H₂O. Decomp. by H₂O. (Sabatier, Bull. Soc. (2)

197.) More sol. in H₂O than FeCl₃. (Engel, C. R. **104.** 1708.)

For solubility, see FeCl₃+HCl, under ferric chloride.

+6H₂O. (Roozeboom and Schreinemakers.)

For solubility, see FeCl₃+HCl, under ferric chloride.

Ferrous lithium chloride, FeCl₂, LiCl+3H₂O. (Chassevant, A. ch. (6) 30. 17.)

Ferric magnesium chloride, FeCl₃, MgCl₂+

Deliquescent. (Neumann, B. 18. 2890.)

Ferrous mercuric chloride, FeCl₂, HgCl₂+ 4H₂O.

Deliquescent. (v. Bonsdorff.)

Ferric nitrosyl chloride, FeCl₃, NOCl. Very deliquescent. (Weber, Pogg. 118.

Ferric phosphoric chloride, FeCls, PCls. Decomp. by H₂O. (Baudrimont, A. ch. (4) Iron (ferrous) potassium chloride, FeCl₂, 2KCl+2H2O.

Sol. in H₂O. (Berzelius.)

Ferric potassium chloride, FeCl₃, 2KCl+ H₂O.

A little H₂O dissolves out FeCl₃. (Fritzsche J. pr. **18.** 483.) Sol. in H₂O. (Walden, Z. anorg. 1894, 71. 332.)

Ferric rubidium chloride, FeCl₃, 3RbCl.

Easily sol. in H2O. Insol. in HCl+Aq.

(Godefiroy, Arch. Pharm. (3) 9. 343.) FeCl₃, 2RbCl+H₂O. Decomp. by H₂O. (Neumann, A. 244. 329.) Sol. in H₂O. (Walden, Z. anorg. 1894, 7.

332.)

Ferric sulphur chloride, FeCl₃, SCl₄.

Very sensitive toward heat and moisture. (Ruff, B. 1904, 37. 4518.)

Ferric thallium chloride, FeCl₃, 3TlCl.

Decomp, by H₂O. Can be crystallised from HCl+Aq. (Wöhler, A. 144. 250.)

Ferrous chloride ammonia, 3FeCl₂, 2NH₃. Decomp. by H₂O. (Rogstadius, J. pr. 86.

FeCl₂, 6NH₃. Loses 4NH₃ at 100°. (Miller, Am. Ch. J. 1895, 17. 577.)

FeCl₂, 2NH₃. Decomp. in the air (Miller).

Ferric chloride ammonia, FeCl₃, NH₈.

Slowly deliquescent. Sol. in H₂O with evolution of heat. (Rose, Pogg, 24. 302.) FeCl₃, 6NH₃. Not deliquescent; not sol.

in H2O; sol. in HCl with decomp. (Miller. Am. Ch. J. 1895, 17. 577.)

Loses NH₃ to give FeCl₃, 5NH₃, and FeCl₃,

Ferric chloride cyanhydric acid, FeCl₃, 2HCN. Deliquescent. (Klein, A. 74, 85.)

Ferrous chloride nitric oxide, FeCl₂, NO.

Sol. in  $H_2O$  without evolution of gas. (Thomas, C. R. 1895, 121, 204.)  $+2H_2O$ . Sol. in cold  $H_2O$  without decomp.

(Thomas, C. R. 1895, 120, 448.) 2FeCl₂, NO. Very hydroscopic. (Thomas,

C. R. 1895, **121**. 129.)

10FeCl₂, NO. Very hygroscopic. (Thomas C. R. 1895, **121**, 128.)

Ferric chloride nitric oxide, Fe₂Cl₅, NO.

Very hygroscopic. Loses NO when exposed to the air.

Iron (ferrous) fluoride, FeF2.

Sl. sol. in H2O; insol. in alcohol and ether. Partly sol. in hot HCl+Aq; slowly sol. in cold, easily in hot HNO3; decomp. by H2SO4. (Poulenc, C. R. 115. 941.)

+8H₂O. Difficultly sol. in H₂O; more easily if it contains HF. (Berzelius.)

Ferroferric fluoride, FeF₃, FeF₂+7H₂O. Sol. in dil. HF+Aq. (Weinland, Z. anorg.

1899, 22. 268.)

Ferric fluoride, FeF₈.

Sl. sol. in H₂O; insol. in alcohol or ether. Sl. attacked by HNO₃, HCl, or H₂SO₄+Aq. (Poulenc, C. R. 115. 941.)

 $+4\frac{1}{2}H_2O$ . More sol. in hot than cold  $H_2O$ . Insol. in alcohol. (Scheurer-Kestner, A. ch. (3) **68.** 472.)

Ferric nickel fluoride,  $FeF_3$ ,  $NiF_2 + 7H_2O$ .

Sl. sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 268.)

Ferrous potassium fluoride, FeF₂, KF+2H₂O. (Wagner, B. 19. 896.) FeF₂, 2KF. Sl. sol. in H₂O. (Berzelius.)

Ferric potassium fluoride, FeF₃, 2KF.

Somewhat sol. in H₂O, especially if hot. (Berzelius.)

+H₂O. (Christensen, J. pr. (2) **35.** 164.) FeF₃, 3KF. Properties as above. (Berzelius.)

Ferric sodium fluoride, FeF₃, 2NaF+½H₂O. Rather easily sol. in H₂O. Solution decomp. on heating. Very sol. in FeCl₃+Aq. (Nickles, J. Pharm. (4) 10. 14.)

FeF₃, 3NaF. (Wagner, B. 19. 896.)

Ferric thallous fluoride, 2FeF₈, 3TlF.

Sol. in hot H₂O, less sol. in cold. sol. in HF. (Ephraim, Z. anorg. 1909, 61. 239.)

Ferrous titanium fluoride.

See Fluotitanate, ferrous.

Ferric zinc fluoride, FeF₈, ZnF₂+7H₂O.

Sl. sol. in dil. HF+Aq. (Weinland, Z. anorg. 1899, 22. 269.)

Ferrous hydroxide, FeO₂H₂.

Sol. in 150,000 pts. H₂O. (Bineau, C. R. **41.** 509.)

Insol. in KOH, or NaOH+Aq. Sol. in NH₄ salts+Aq. Sl. sol. in NaC₂H₃O₂+Aq. (Mercer.)

Not pptd. in presence of Na citrate. Insol. 2Fe₂Cl₆, NO. Very hygroscopic. In conin boiling cane sugar+Aq, but sl. sol. when tact with H₂O gives off NO. (Thomas, G. R. KOH has been added. Not pptd. in presence , of much  $H_2C_4H_4O_6$ . (Rose.)

Solubility in glycerine+Aq about 60% by vol. of glycerine. containing

100 ccm. of the solution contain 1.0 g. FeO. (Müller, Z. anorg. 1905, 43. 322.)

# Iron (ferric) hydroxides, Fe₂O₃, xH₂O.

Many indefinite compounds of Fe₂O₃ and H₂O are known, and uncertainty exists as to their composition.

According to van Bemmelen (R. t. c. 7. 106) there are probably no true definite compounds

of Fe₂O₃ and H₂O.

According to Tommasi (B. 12. 1924, 2334). there are two series of Fe hydroxides, a, red hydroxides, and  $\beta$ , yellow hydroxides.

a Hydroxides. Fe₂O₆H₆ (unstable),  $2H_2O$  (loses  $H_2O$  at  $50^\circ$ ), and  $Fe_2O_3$ ,  $H_2O$  (loses

H₂O at 92°

Sol. in dil. acids and in Fe₂Cl₅+Aq, and pptd. from the latter solution by Na₂SO₄, or

H₂SO₄+Aq.

β Hydroxides. Fe₂O₅H₅ (stable below 70°  $Fe_2O_3$ ,  $2H_2O$  (loses  $H_2O$  at  $105^\circ$ ),  $Fe_2O_3$ ,  $H_2O$ (loses  $H_2O$  at  $150^\circ$ ).

Sl. sol. in acids, and insol. in Fe₂Cl₆+Aq. (Tommasi.)

The following more or less uncertain data are given.

2Fe₂O₃, H₂O. Sol. in HCl+Aq. Very sl. sol. in HNO₃+Aq. (Davies, Chem. Soc. (2) **4. 69.**)

Min. Turgite.

Fe₂O₃, H₂O. Insol. in cold acids, difficultly sol. in warm HCl and H₂SO₄+Aq, and especially in warm HNO₃+Aq. (Schiff, A. 114. 199.) Min. Göthite.

2Fe₂O₃, 3H₂O. Sl. sol. in tartaric, citric, or acetic acids, but easily sol. in HCl+Aq.

(Wittstein.)

Scarcely attacked by conc. HNO₃, or HCl+ Aq. Sol. in acetic acid or dil. HNO₃, or HCl+Aq, from which solution it is pptd. by trace of alkali salts. (St. Gilles.)

Min. Limonite.

 $3\text{Fe}_2\text{O}_8$ ,  $5\text{H}_2\text{O}$ . (Muck.)

Fe₂O₃, 2H₂O. Easily sol. in HCl+Aq.

Min. Xanthosiderite.

Fe₂O₃, 3H₂O. Sl. sol. in acetic acid of 1.03 sp. gr., but easily sol. if of 1.076 sp. gr. Sol. in mineral acids. (Limberger, J. B. 1853. 70.)

Pptd.  $Fe_2O_3$ ,  $xH_2O = Fe_2O_6H_6(?)$ . Insol. in H₂O, or in solutions of the alkalies or NH₄ salts. When recently pptd. is easily sol. in acids. (Fresenius.)

Sl. sol. in NH₄OH, and NH₄ salts+Aq.

(Odling.)

Apparently insol. in NH₄Cl, or (NH₄)₂CO₃ +Aq. (Brett, 1837.)

Sl. sol. in conc., but insol. in dil. KOH+Aq. (Chodnew, J. pr. 28. 221.)

Sl. sol. in very conc. KOH+Aq free from (O₂. (Völcker, A. **59**. 34.) Not at all sol. in pure conc. KOH+Aq, solubility noticed by previous observers being aused by the presence of silicic acid. (Sandrock.)

Sl. sol. in conc. alkali carbonates + Aq. When freshly pptd., it is not acted upon by

conc. K₂CO₃+Aq. (Grotthaus.) Readily sol. in conc. (NH₄)₂CO₃+Aq, but pptd. by addition of H2O.

Sol. ir. excess of (NH₄)₂CO₃+Aq when pptd. by that reagent. (Wohler.)

Sol. in sol tions of the alkali bicarbonates.

(Berzelius.)

Sol. in aqueous solutions of water-glass. Ordway.

Immediately dissolved by H₂SO₂+Aq.

Sol. in NH₄F+Aq. (Helmholt Z. anorg. 3. 124.)

Sol. in conc. Al₂(SO₄)₃+Aq. (Schneider, B. 23. 1352.)

Sl. sol. in a solution of MgCO₂(?), (Bischof).

Insol. in ethylamine, or amylamine+Aq. (Wurtz, A. ch. (3) 30. 472.)

Sol. in boiling solution of Bi(NO₃)₃, with pptn. of Bi₂O₃. (Persoz.)

Sol. in Cr₂Cl₆+Aq; after 3 months 15 mols. Fe₂O₆H₆ were dissolved by 1 mol. Cr₂Cl₆. (Béchamp, A. ch. (3) **57.** 296.)

Insol. in fumaric acid, even when freshly

pptd. When recently pptd., it is easily sol. in KHC₄H₄O₆+Aq, but after drying it is difficultly sol. therein.

When moist easily sol. in  $H_2C_4H_4O_6+Aq$ , but after drying is scarcely sol, therein when cold, and only sl. sol. when hot. (Werther.)

Easily sol. in acetic, citric, and other acids.

(Wittstein.)

Solubility in glycerine+Aq containing about 60% by vol. of glycerine.

100 ccm. of the solution contain 0.8 g.

Fe₂O₃. (Müller, Z. anorg. 1905, 43. 322.) Easily sol. in aqueous solution of sucrates

of Ca, Ba, Sr, K, Na. (Hunton, 1837.) Unacted upon by cane sugar+Aq. (Glad-

stone.)

Sl. sol. in cane sugar + Aq, from which it is pptd. by  $(NH_4)_2S+Aq$ , but not by  $NH_4OH$ , or  $K_4FeC_6N_6+Aq$ . (Peschier.)

Solubility of Fe₂O₆H₆ in sugar solutions. 1 l. of sugar solution of given strength dissolves mg. of Fe₂O₆H₆.

% Sugar		Mg. Fe ₂ O ₆ H ₆	
% Sugar	at 17.4°	at 45°	at 75°
10 30 50	3.4 2.3 2.3	3.4 2.7 1.9	6.1 3.8 3.4

(Stolle, Z. Ver. Zuckerind. 1900, 50. 340.)

Not pptd. from solutions by alkalies or alkali carbonates in presence of many organic substances, as tartaric acid, sugar, etc.

Not pptd. by NH4OH from solutions containing Na₄P₂O₇. (Rose, Pogg. 76. 19.) Not pptd. by NH₄OH in presence of Na

citrate. (Spiller.)

Soluble. (a) By dialysis. Solutions containing 1% can be concentrated somewhat, whereupon they gelatinise. They also gelatinise by cold, or addition of traces of  $H_2 SO_4$ , alkalies, alkali carbonates or sulphates, or neutral salts, not, however, by HCl, HNO₃, alcohol, or sugar. (Graham, A. 121. 46.)

When a dil. solution of a solid organic acid, or an alkali, or salt is added to a dialysed solution of  $\text{Fe}_2\text{O}_6\text{H}_6$ , a coagulum sol. in  $\text{H}_2\text{O}$ is formed, but if the solutions are conc. the separating coagulum is no longer sol. in H₂O.

(Athenstädt, C. C. 1871. 822.)

(b) Pean St. Gilles' hydroxide, or meta-iron hydroxide. Sol. in H₂O. Pptd. from solution by traces of H₂SO₄, HCl, HNO₃+Aq, and alkalies; the ppt. is insol. in cold acids, but sol. in pure H₂O. (Pean St. Gilles, A. ch. (3) **46.** 47.)

See also table by Krecke in the article on

ferric chloride.

Iron (Ferroferric) hydroxide, Fe₃O₄, H₂O (?). Sol. in acids.

Fe₈O₄, 4H₂O. (Lefort.)

#### Ferrous iodide, FeI₂.

Very deliquescent. Sol. in H₂O. Solution

decomp. on evaporating.

+4H₂O. Very deliquescent; sl. sol. in H₂O; sol. in ether. (Jackson, Am. Ch. J. 1900, **24.** 19.)

+5H₂O. Deliquescent. Sol. in alcohol. Sol. in sugar + Aq, and solution is much more stable than aqueous solution. Easily sol. in glycerine.

Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.)

+6H₂O, and +9H₂O. Very sol.; pptd. from cooled aq. solution. (Volkmann, C. C. 1894, II. 611.)

# Ferric iodide, FeI₃.

Has not been isolated. Solution of I in  $FeI_2+Aq$  in the molecular ratio of  $I:FeI_2$ 

probably contains FeI_s.

Very sol. in liquid NH_s. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Ferrous mercuric iodide, FeI₂, 2HgI₂+6H₂O. As the corresponding Mg salt. (Duboin, C. R. 1907, 145, 714.)

# Ferrous iodide ammonia, FeI2, 6NH3.

Decomp. by H₂O. (Jackson, Am. Ch. J. 1900, **24.** 27.)

#### Ferrous mercuric iodide.

Very deliquescent. Decomp. by H₂O; sol. in HC₂H₃O₂ or alcohol.

#### Iron molybdenide, FeMo₂.

Attacked by HCl+Aq with difficultly Sol. in hot conc. H₂SO₄. (Steinacker.)

Iron nitride.

Easily decomp. by H₂O when finely powdered. (Rossel, C. R. 1895, **121**. 942.) Fe₂N. Easily sol. in HNO₃, HCl₂ or H₂SO₄

+Aq. Very slowly decomp. by H₂O. (Stahlschmidt, Pogg. 125. 37.)
Sol. in HCl with decomp.; decomp. by

steam and by H2S at 200°. (Fowler, C. N. 1894, 68. 152.)

Fe₅N₂. Probably the same as the above compound. (Rogstadius, J. pr. 86. 307.)

Iron nitrososulphantimonate, Fe S(NO) Sb2Ss. (Low, C. C. 1865. 948.)

Does not exist, but was impure sodium ferrotetranitrososulphide. (Pawel, B. 15. 2600.)

#### Iron nitrososulphides.

See Ferrotetranitrososulphydric acid and Ferroheptanitrososulphide, ammonium.

Fe₈S₅H₂(NO)₄. (Roussin, C. R. **46**. 224.) Fe₈S₃(NO)₄+2H₂O. (Porczinsky, A. **125**. 302.)

 $Fe_6S_5(NO)_{19}+4H_2O.$ (Rosenberg, B. 3. 312.)

The compound to which the above formula were given was impure, according to Pawel (B. 12. 1407 and 1949; 15. 2600), and contained more or less Na or NH4. Pawel considers the substance as NH₄ salt of ferroheptanitrososulphydric acid, which see.

 $Fe_3S_2N_5O_6+1\frac{1}{2}H_2O$ . Sol. in  $H_2O$ , alcohol, ether, CHCl₃, acetone and ethyl acetate. Insol. in benzene and light petroleum. (Marie,

C. R. 1896, 122. 138.)

Iron sodium nitrososulphide, 3Na₂S, Fe₂S₃, 2NO.

(Roussin.)

Na₈Fe₈S₉(NO)₁₈. (Rosenberg.)

Correct formula is Na₂S₂(NO)₄Fe₂, sodium ferrotetranitrososulphide.

Iron nitrososulphocarbonate,  $Fe_4S(NO)_6CS_2+$ 3H₂O.

(Low, C. C. 1865, 948.)

Correct formula is NaS₃(NO)₇Fe₄+2H₂O, sodium ferroheptanitrososulphide. B. **15.** 2600.)

#### Ferrous oxide, FeO.

Insol. in H₂O. Sol. in acids.

Easily sol. in HCl, and HNO₂+Aq; nearly insol. in H₂SO₄, even when heated. (Tissandier, C. R. 74, 531.)

#### Ferric oxide, Fe₂O₃.

Attacked by acids with difficulty, the more so the higher it has been heated. HCl+Aq is the best solvent, in which it is more quickly sol. by long digestion at a gentle heat than by boiling. (Fresenius.)

Most easily sol. in 16 pts. of a mixture of 8 pts. H₂SO₄ and 3 pts. H₂O. (Mitscherlich,

J. pr. **81.** 110.)

Solubility	of	Fe ₂ O ₈	in	HF	'+Aq	at	25°.	
------------	----	--------------------------------	----	----	------	----	------	--

	Time	G. Fe ₂ O ₈ in 10 ccm. of the solution
N-HF	4½ hrs. 21¾ " 45¾ "	0.1581 0.2235 0.2279
0.5N-HF	2 ³ / ₄ " 8 ¹ / ₂ " 23 ¹ / ₂ " 56 ¹ / ₂ "	0.0579 0.0884 0.1045 0.1162
0.25N-HF	2½ " 8¼ " 24¾ " 142½ "	0.0180 0.0345 0.0475 0.0534
equal amts. N-HF+N-HCl	234 " 8½" 2334 " 96 " 264 "	0.1011 0.1611 0.1976 0.2223 0 2297

(Deussen, Z. anorg. 1905, 44. 414.)

Solubility of Fe₂O₂ in HCl+Aq at 25°.

,	Time	G. Fe ₂ O ₃ in 10 ccm. of the solution
N-HCl	4¾ hrs. 21½ " 45½ "	0.0409 0.1230 0.2125
0.5N-HCl	$2\frac{3}{4}$ " $8\frac{1}{2}$ " $23\frac{1}{2}$ " $56\frac{1}{2}$ "	0.0126 0.0188 0.0382 0.0672
0.25N-HCl	2½ " 8½ " 24¾ " 142½ "	0.0040 0.0054 0.0120 0.0306
equal vol. N-HCl+N-NaF	284 " 8½ " 2384 " 7214 " 215 "	0.0444 0.0640 0.0743 0.0757 0.0766

(Deussen, l. c.)

Solubility of Fe₂O₃ in N-oxalic acid at 25°.

Time	G. Fe ₂ O ₂ in 10 ccm. of the solution
1¾ hrs.	0.0310
6¾ "	0.0790
22 "	0.1960
94 "	0.2326

(Deussen.)

Absolutely insol. in  $\mathrm{Br}_2+\mathrm{Aq}$ . (Balard.) Insol. in hot  $\mathrm{NH}_4\mathrm{Cl}+\mathrm{Aq}$ . (Rose.) Insol. in  $\mathrm{KOH}+\mathrm{Aq}$ . (Chodnew, J. pr. 28. 222.)

Stowly sol, in an aq. solution of calcium vdrogen carbonate. The velocity of the hydrogen carbonate. reaction may be much increased by the addition of small amounts of alkali sulphate or CaSO₄. (Robland, Z. anal. 1909, **48**. 629.) Insol. in benzonitrile. (Naumann, B. 1914,

**47.** 1370.) Insol. in acetone. Widmann, C. C. 1899. H. 1014; Namain, B. 1904, 37, 4329.)

Solubility in (calcium sucrate + sugar) + Aq. 1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 6.26 g. Fe₂O₃; 296.5 g. sugar and 24.2 g. CaO dissolves 4.71 g. Fe₂O₃; 174.4 g. sugar and 14.1 g. CaO dissolves 3.08 g. Fe₂O₃. (Bodenbender, J. B. **1865**. 600.)

Solubility of Fe₂O₃ in sugar solutions. 1 l. of sugar solution of given strength dissolves mg. Fe₂O₃.

% Sugar	mg. F	^2O3
% isugai	at 17.5°	at 45°
10	1.4	2.0
გა 50	1.4 0.8	1.1

(Stolle, Z. Ver. Zuckerind, 1900, 50. 340.)

Calcined.

Solubility of calcined Fe₂O₃ in acids at 25°.

	<del>-</del>	
Acid	Time	g. Fe ₂ O ₃ in 10 ccm. of the solution
N-HF	4½ hrs. 43½ " 129½ "	0.0889 0.2035 0.2194
N-HCl	4½ " 43½ " 139½ "	0.0224 0.1000 0.1910

(Deussen, Z. anorg. 1905, 44. 413.)

See also Ferric hydroxide.

Min. Hematite. Rather easily sol. in HCl +Aq, but not readily sol. in other acids.

Metairon oxide.

See Ferric hydroxides.

Ferroferric oxide, 6FeO, Fe₂O₃.

FeO, Fe₂O₃ = Fe₃O₄. With insufficient HCl +Aq for complete solution, FeO is dissolved and Fe₂O₃ left. (Berzelius.)
Insol. in HNO₂+Aq at the ordinary tem-

perature. (Millon.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Solubility of Fe₂O₄ in sugar solutions. 1 l. of sugar solution of given strength dissolves mg. Fe₂O₄.

% Sugar		mg. Fe ₈ O ₄	
70	at 17.5°	at 45°	at 75°
10 30 50	10.3 12.4 14.5	10.3 10.3 10.3	12.4 12.4 14.5

(Stolle, Z. Ver. Zuckerind, 1900, 50, 340.)

Min. Magnetite. Insol. in HNO₃, but sol. in hot HCI+Aq.

Iron sesquioxide zinc oxide, Fe₂O₃, ZnO. See Ferrite, zinc.

#### Ferric oxybromide.

Basic ferric bromides containing three equivalents, or less, of base to one of acid may be obtained dissolved in H₂O. (Ordway, Am. J. Sci. (2) 26. 202.)

The most basic soluble compound obtained by three months' digestion of Fe₂O₆H₆ with  $Fe_2Br_6+Aq$ , is  $Fe_2Br_6$ ,  $14Fe_2O_3$ . (Béchamp.)

#### Ferric oxychlorides.

(a) Soluble. Fe₂O₆H₆ dissolves in Fe₂Cl₆+ Aq. By digesting until the acid reaction of the chloride has disappeared a solution of Fe₂Cl₆, 2Fe₂O₃ is obtained. (Pettenkofer, Repert. (2) **41.** 289.)

By digesting for several days in the cold, Fe₂Cl₆,5Fe₂O₃ is obtained, and still more basic compounds by further addition of Fe₂O₆H₆. When the solution contains Fe₂Cl₅, 12Fe₂O₃ it gelatinises, but still dissolves completely in  $H_2O$ . The most basic soluble compound is Fe₂Cl₆, 20Fe₂O₃. (Béchamp, A. ch. (3) 57. 296.

If the digestion is carried on several weeks, a solution containing Fe₂Cl₆, 23Fe₂O₈ is obtained; this can be boiled and diluted without pptn., but Fe₂O₆H₆ is precipitated by the addition of very many salts. (Ordway, Sill. Am. J. (2) 26. 197.)

Solutions containing 10 or less molecules Fe₂O₂ to 1 mol. Fe₂Cl₆ can be dried without the oxychloride becoming insoluble. (Ord-

The above solutions do not become cloudy by boiling or diluting. (Phillips.)

A very dil. solution of Fe₂Cl₅, 10Fe₂O₈ remains clear after protracted boiling, and may be boiled without decomp. even when Fe₂Cl₆, 20Fe₂O₃ is present. (Béchamp.)

HNO₈, and HCl+Aq form precipitates in the above solutions, which are sol. on addition of more H₂O. H₂SO₄+Aq forms a precipitate insol. in H2O. (Béchamp.)

Fe₂Cl₅, 9Fe₂O₃ is easily sol. in H₂O, weak

tartaric acids, or a few drops of HCl, or HNO₈+Aq. (Jeannel, C. R. 46. 799.)

Solutions containing 5 mols. Fe₂O₃ to 1 mol. Fe₂Cl₆ are completely precipitated by K₂SO₄, Na₂SO₄, MgSO₄, KNO₃, NaNO₃, Zn(NO₈)₂, KCl, NaCl, NH₄Cl, CaCl₂, MgCl₂, ZnCl₂, KBr, or KSCN. (Béchamp.)

Ba(NO₃)₂ does not precipitate solutions of

less than 18-20 Fe₂O₃ to 1 Fe₂Cl₆.

Pb(NO₃)₂ or Pb(C₂H₃O₂)₂ do not precipitate solutions containing the compound Fe₂Cl₆, 12Fe₂O₃, but a mixture of the two salts causes complete precipitation.

Solution has been obtained containing 116 Fe₂O₃ to 1 FeCl₆, probably owing to a formation of soluble colloidal Fe₂O₃. (Magnier de

la Source, C. R. 90. 1352.)

Solubility determinations in the system Fe₂O₃, HCl and H₂O, show that at 25° no definite basic chloride is formed, but that the stable solid phase is one of a series of solid solutions containing Fe₂O₃, HCl and H₂O. (Cameron, J. phys. Chem. 1907, 11. 694.)

(Calieron, 3. phys. Chem. 1907, 11. 094.)

( $\beta$ ) Insoluble. Fe₂Cl₆, 6Fe₂O₂+9H₂O.

(1) By exposing FeCl₂+Aq to air. Insol. in H₂O; sl. sol. in HCl+Aq. (Wittstein.)

(2) From FeCl₂+Aq and HNO₃. Insol. in H₂O, and sl. sol. in HCl+Aq. (Béchamp.)

2Fe₂Cl₆, 25Fe₂O₃+41H₂O. Insol. in H₂O. (Béchamp.)

Fe₂Cl₆, 2Fe₂O₃+3H₂O. Decomp. by H₂O with residue of Fe₂O₃; sl. sol. in dil. acids.

(Rousseau, C. R. 110. 1032.) Fe₂Cl₆, 3Fe₂O₃. As above. (Rousseau, C. R. 113. 542.)

Ferric oxyfluoride, 3Fe₂O₃, 2FeF₃+4H₂O. Ppt. (Scheurer-Kestner.)

Ferric oxysulphide, Fe₂O₈, 3Fe₂S₈. (Rammelsberg.)

Iron phosphide, FeP.

Very slowly (Freese), not (Hvoslef, A. 100. 99) sol, in hot HCl+Aq. Still more insol, in

dil. H₂SO₄+Aq. (Freese.) Slowly sol. in HNO₃+Aq, and easily sol.

in aqua regia. (Struve.)

Insol. in ammonum citrate+Aq; sl. sol. in HCl. (Dennis, J. Am. Chem. Soc. 1894, **16.** 483.)

Slowly but completely sol. in HCl, Fe₂P. or dil. H₂SO₄+Aq. Sol. in hot conc. H₂SO₄, in HNO₃, and in aqua regia. (Freese, Pogg.

Insol. in all acids except in a mixture of HNO₃ and HF. (Maronneau, C. R. 1900, **130**. 657.)

Fe₈P₄. Very slowly sol. in hot conc. HCl+ 0.1 g. dissolves by 4 days' heating with HCl+Aq; 0.3 g. dissolves in hot conc. H₂SO₄ in 1½ hours; 0.4 g. in 2 hours in HNO₂+Aq. Quite easily sol. in aqua regia on warming. (Freese.)

alcohol, and glycerine; but solutions are pptd. Fe₂P₃. Insol. in HCl, HNO₃ and aqua by small amts. of H₂SO₄, M₂SO₄, citric or regia. Sol. in potassium hypobromite solu-

(Granger, Bull. Soc. 1896, (3) 15. tion. 1086.)

Fe₄P₂. Very slowly sol. in boiling HCl+ Aq. Easily sol, in HNO or aqua regia (Struve, J. B. 1860. 77.)

Mixture. (Freese, Pogg. 132, 225.)

Almost insol. in aqua regia. Sol. in fused

alkali. (Granger.)
Fe₈P. Nearly insol. in dil. acids; rapidly sol. in HNO₈ or aqua regia; decomp by conc. HCl, or KOII+Aq. (Schneider, J. B. 1986. 2026.)

Of the nine iron phosphides described the constitution has been established for only two, Fe₃P and Fe₂P.

Fe₂P. Sol. in conc. HCl. Fe₂P. Sol. in hot aqua regia. Insol. in other acids. (Le Chatelier, C. R. 1909, 149.

#### Iron selenide, Fe₂Se.

Not attacked by HNO₈ or acetic acid. Sl attacked by conc. HCl. Readily attacked Sol. in HF. (Vigouroux, by aqua regia. C. R. 1905, 141. 829.)

FeSe+xH₂O. Sol. in HCl, HNO₃, or HC₂H₃O₂+Aq. Insol. in alkalies, or (NH₄)₂S +Aq. (Reeb, J. Pharm. (4) 9. 173.)
Fe₃Se₃. Sol. in dil. HCl, or HNO₃+Aq with

evolution of H₂Se. Sol. in conc. HNO₃+Aq. (Little, A. 112. 211.)

Fe₈Se₄. Decomp. by fuming HNO₃. (Fonzes-Diacon, C. R. 1900, 130. 1711)

Fe₇Se₈. Decomp. by fuming HNO₃. (Fonzes-Diacon, C. R. 1900, **130**. 1711.)

FeSe₂. Insol. in conc. HCl; decomp. by fuming HNO₃. (Fonzes-Diacon, C. R. 1900, **130.** 1711.)

#### Iron silicide, Fe₄Si.

Difficultly sol. in HCl+Aq; easily sol. even ir dil. HF+Aq. (Hahn, A. 129. 57.)

Fe₂Si. Not easily sol. in conc. HCl and HNO₃ but readily sol. in HF. (Moissan, C. R. 1895, **121.** 623.)

Fe₁₀Si₉. Sol. in hot HCl+Aq only when

most finely powdered. (Hahn.) FeSi₂. Not attacked by conc. HF or H₂SO₄.

(Hahn.)

Sol. in cold HF. (de Chalmot, Am. Ch. J. 1897, 19. 123.)

Existence questioned by Jouve, (Bull. Soc. 1901, **25**. 290–293).

Fe₈Si₂. Sol. in HF and in fused KNO₈ and KNaCO₃. (de Chalmot, J. Am. Chem. Soc. 1895, 17. 924.)

# Iron semisulphide, Fe₂S.

Sol. in dil. acids with decomposition. (Arfvedson, Pogg. 1, 72.)

#### Ferrous sulphide, FeS.

Decomp. by dil. acids, with evolution of H₂S and without separation of S, except with HNO₃+Aq.

 $+xH_2O$ . Sl. sol. in H₂O, especially if hot. (Berzelius.)

1 l. H₂O dissolves 70.1 x 10⁻⁶ moles FeS at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)

Very violently decomp., even by dil. acids. Sol. in H₂SO₃+Aq. Insol in H₂S, or (NH₄)₂S +Aq. Sl. sol. in Na₂S, or K₂S+Aq. Sol. in Na₂S or K₂S +Aq. (de Koninck, Z. angew. Ch. 1891, 204.)

Insol. in NH₄NO₃, or NH₄Cl+Aq. (Brett.) Not completely pptd. in presence of Na citrate. (Spiller.)

Contrary to assertion of Persoz, it can be nearly completely pptd. in presence of Na₄P₂O₇ by (NH₄)₂S+Aq. (Rose, Pogg. 76.

Sol, in alkali sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, and -stannates. (Storch, B. 16. 2015.)
Sol. in KCN+Aq.

Insol, in liquid NH2. (Franklin, Am. Ch. J. 1898**, 20.** 828.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Solubility of FeS in sugar solutions. sugar of given strength dissolves mg. FeS.

% Sugar		mg. FeS	
70 15 digar	at 17.5°	at 45°	at 75°
10 30 50	3.8 7.1 9.9	3.8 9.1 19.8	$5.3 \\ 7.2 \\ 9.1$

(Stolle, Z. Ver. Zuckerind. 1900, 50. 300.)

Colloidal.—A very dilute solution has been obtained which coagulated very readily. (Winssinger, Bull. Soc. (2) 49. 452.)

#### Ferric sulphide, Fe₂S₃.

Decomp. by dil. HCl, or H₂SO₄+Aq with evolution of H2S, leaving a residue of FeS2.

+1½H₂O. Sol. in NH₄OH+Aq, also in alcoholic ammonia. Sl. sol. in (NH₄)₂S+very dil. Na₂S₂O₃+Aq. (Phipson, C. N. **30.** 139.)

#### Iron disulphide, FeS₂.

Insol. in dil. HCl, or H₂SO₃+Aq. Decomp. by HNO₃ or aqua regia with separation of S. Insol. in a 10% solution of alkali sulphide.

Min. Pyrite, Marcasite. Sol. in a mixture of Na₂S and NaOH+Aq, Na₂S+Aq, or mixture of Na₂S and NaSH+Aq; insol. in cold NaSH+Aq. Marcasite is more easily sol. in above than pyrite. (Becker, Sill. Am. J. (3) **33.** 199.)

#### Ferroferric sulphide, Fe₈S₉ or Fe₇S₈.

Min. Pyrrhotite. Sol. in dil. acids with a residue of S. Extremely slowly sol. in a 10% solution of alkali sulphides. (Terreil, C. R. **69.** 1360).

432

Lion (ferrous) nickel sulphide, 2FeS, NiS. Min. Pentlandite.

Ferrous phosphorus sulphide, FeS, P2S. (Berzelius.)

2FeS, P₂S₂. Slowly decomp. by H₂O. Insol. in boiling HCl+Aq; decomp. by aqua regia. (Berzelius, A. **46**. 256.)

Iron potassium sulphide (potassium sulphoferrite),  $K_2Fe_2S_4 = K_2S$ ,  $Fe_2S_3$ .

Insol. in cold or hot H2O. Violently attacked by dil. acids. Not decomp. by boiling with alkalies, alkali carbonates, or sulphides+ Aq. Decomp. by KCN, or Na₂S₂O₃+Aq. (Preis, J. pr. 107. 16.) K₂S, 2FeS. (Schneider, Pogg. 136. 460.)

Iron silver sulphide (silver sulphoferrite), **Ag₂S**, Fe₂S₃.

Not attacked by dil. HCl+Aq; decomp. by

conc. HCl+Aq. (Schneider.)

2Ag₂S, FeS₂. (Schneider, Pogg. 138. 305.)

Ag₂S, 3FeS, FeS₂. Min. Sternbergite. Decomp. by aqua regia.

Iron sodium sulphide (sodium sulphoferrite),  $Na_2Fe_2S_4+4H_2O$ .

Insol, in H₂O. Decomp. by very dil. acids. (Schneider, Pogg. 138. 302.)

Iron sulphophosphide, Fe₂PS₃.

Attacked by acids at 100°. Decomp. by boiling NaOH+Aq. (Ferrand, A. ch. 1899, **(7) 17.** 410.)

Ferrous telluride, FeTe.

Insol. in H₂O; sol. in acids. (Fabre, C. R. **105.** 277.)

#### Kermes.

See Antimony trisulphide.

"Knallplatin" compounds. See Fulminoplatinum compounds.

## Krypton, Kr.

#### Absorption by H₂O at t°.

t°	Coefficient of absorption det. by two series of experiments		
0	0.1249	0.1166	
10	0.0965	0.0877	
20	0.0788	0.0670	
30	0.0762	0.0597	
40	0.0740	0.0561	
50	0.0823	0.0610	

(Antropoff, Roy. Soc. Proc. 1910, 83. A. 480.) conc. HNO.

Lanthanic acid.

Barium metalanthanate, Ba(H,La,O1,)2. (Baskerville, J. Am. Chem. Soc. 1904, 26.

Lithium metalanthanate, LiH₉La₅O₁₅+2H₂O. (Baskerville.)

metalanthanate, KH₉La₅O₁₅+ Potassium 15H₂O.

Decomp. by H₂O. (Baskerville.)

Sodium metalanthanate, NaHoLaoO15+ 4H₂O.

Almost insol, in H₂O, but decomp, by it. (Baskerville.)

Disodium tetralanthanate, Na₂La₄O₇. Insol. in H₂O. (Baskerville.)

Lanthanicotungstic acid.

Ammonium lanthanicotungstate, 2(NH₄)₂O,  $La_2O_3$ ,  $16WO_3 + 16H_2O$ .

Ppt. Insol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 1904, 26. 1481.)

Barium lanthanicotungstate, 5BaO, La2Q2.  $16WO_3 + 16H_2O$ .

Ppt. (E. F. Smith.)

Silver lanthanicotungstate, 5Ag₂O, La₂O₃,  $16WO_3 + 4H_2O$ .

Very insol. in H₂O. (E. F. Smith.)

#### Lanthanum, La.

Slowly decomp. cold, rapidly hot H₂O. Not attacked by cold conc. H₂SO₄, but energetically by cold conc. HNO₃+Aq. Sol. in dil. acids. (Hillebrand and Norton, Pogg. 155. 633.)

Lanthanum bromide, LaBr₈+7H₂O.

Easily sol. in H₂O. Not very sol. in absolute alcohol. Insol. in ether. (Cleve, Sv. V. A. H. Bih. 2. No. 7.)

Lanthanum nickel bromide, 2LaBr₃, 3NiBr₂+ 18H₂O.

Deliquescent. (Frerichs and Smith, A. **191.** 355.)

Lanthanum zinc bromide, 2LaBr₃, 3ZnBr₂+ 36H₂O.

Very deliquescent. (F. and S.)

Lanthanum carbide, LaC2.

Decomp. by H₂O and dil. acids. (Pettersson, B. 1895, 28. 2422.)

Sol. in conc. H₂SO₄ and dil. acids; insol. in

Sol. in fused oxidizing agents; decomp. by H₂O at ordinary temps. (Moissan, C. R. 1896, 123, 149.)

Lanthanum chloride, LaCla

Anhydrous. Deliquescent. (Hermann.) Insol. in acetone. (Naumann, B. 1901. 37.

+7½H2O. Not deliquescent. (Zschiesche.) Easily sol. in alcohol. (Hermann.)

Lanthanum mercuric chloride, 2LaCl₃, HgCl₂  $+8/_{3}H_{2}O.$ 

Very sol. in H₂O. Not deliquescent. (Marignac, Ann. Min. (5) 15. 272.)

Lanthanum stannic chloride.

See Chlorostannate, lanthanum.

Lanthanum fluoride, LaF₈+-H₂O.

Precipitate. Sl. sol. in HCl+Aq. (Cleve.)

Lanthanum hydrogen fluoride, 2LaF, 3HF. Precipitate. (Frerichs and Smith, A. 191.

355.) Does not exist. (Cleve, B. 11. 910.)

Lanthanum hydride, La₂H₃.

Decomp. by dil. acids. (Winkler, B. 24. 1966.)

H₂H₃. Decomp. by H₂O. Sol. in acids with evolution of H₂. Decomp. by alkalis. (Muthmann, A. 1902, **325**. 266.) Decomp. by H2O. Sol. in acids

Lanthanum hydroxide, La₂O₆H₆.

Insol. in H₂O: easily sol. in acids: insol. in KOH, or NaOH+Aq.

(Baskerville, J. Am. Sol. in citric acid. Chem. Soc. 1904, 26, 49.)

Lanthanum zinc iodide, 2LaI₃, 3ZnI₂+27H₂O. Very sol. in H₂O. (Frerichs and Smith, A. **191.** 358.)

Lanthanum nitride, LaN.

Decomp. by H₂O with evolution of NH₃. Sol. in mineral acids. Decomp. by alkali. (Muthmann, A. 1902, 325. 275.)

Lanthanum oxide, La₂O₃.

Easily sol., even when ignited, in mineral, and acetic acids. (Hermann.)

Sol. in boiling conc. NH₄Cl+Aq. (Mosander.)

Sol. in cold conc. NH₄NO₈+Aq. (Damour and Deville.)

Insol. in  $(NH_4)_2CO_8+Aq$ . (Mosander.) Insol. in acetone. (Naumann, B. 1904, 37.

Lanthanum peroxide, La₄O₀.

Sol. in HCl, H₂SO₄, HNO₈, and HC₂H₃O₂+ Aq with decomp. (Cleve, Bull. Soc. (2) 43. 359.)

 $\text{La}_2\text{O}_5 + x\text{H}_2\text{O}$ . Unstable. Sol. in dil.  $H_2SO_4 + Aq$  with decomp. (Melikoff. anorg. 1899, 21. 71.)

Lanthanum oxybromide, LaOBr. Ppt. (Frerichs and Smith.)

Lanthanum oxychloride, 3La₂O₃, 2LaCl_{2. *}

Insel, in H₂O. Difficultly and slowly sol. in HCl, or HNO₂+Aq. (Hermann.) LaOCI. Boiling H2O dissolves only traces. (Frerichs and Smith.)

Lanthanum sulphide, L. 28.

Decomp. by H₂O and acids. (Didier.)

Lanthanum disulphide, LaS₂.

Decomp. by heat. (Biltz, Z. alorg, 1911. 71. 435.)

Lead. Pb.

Lead, in contact with H₂O and air free from CO₂, gives a solution of PbO which turns litrus blue and turmeric red, and is turned brown with H2S.

H₂O which has been boiled does not dissolve Pb if there is no access of air. When shaken up with six it dissolves 0.01 to 0.008% PbO in 2 hours. Pure spring water, containing 1½ grains salts in 2 pounds H₂O and no CO₂, when conducted though a lead pipe 150 feet.

no CO₂, when conducted though a lead pipe 150 feet. long, dissolves so much lead that it turns brown with H₂S. (Yorke, Phil. Mag. J. **5**, 82.)

CO₂ or small amts. of sults prevent the solution of Pb. 1 vol. H₂O with ¾4 vol. CO₂ dissolves only a trace of Pb. Spring H₂O, containing in 10 pounds 1.21 grains NaCl and CaCl₂, and 6.4 grains CaCO₂ dissolved in CO₂, does not dissolve load. (Yorke.)

If the amt. of salts in solution equals 8000 the amt. of H₂O, and especially if they are carbonates, very slight amts, of Pb are dissolved. (Christison, Phil. Mag. J. 21, 158.) very slight

CaCO₃ dissolved in CO₂ water decreases the solubility of Pb more than any other salt.

Distilled H₂O, quietly standing in a closed flask with lead and air free from CO₂, deposits white flocks of PbO₂H₂, and dissolves y₀b₀₀ pt. PbO. The solution has an alkaline r-action. (v. Bonsdorff, Pogg. 41. 305.) 48 Water of 3° hardness does not take up enough Pb to become injurious. (Clarke, J. B. 1856, 608.) Soluble carbonates increase the solubility of Pb in LHO (Nautier C. C. 1851, 608), corpositive (NHA) CO.

H₂O (Nevins, C. C. 1851. 608); especially (NH₄)₂CO₃. (Bottger.)

(Böttger.)
Presence of H₂SO₄ decreases the solubility of Pb. (Horsford, Chem. Gaz. **1849**, 247.)
H₂O containing K₂SO₃ takes up only a trace of Pb. (Wetzlar, Schw. J. 54, 324.)
Presence of sulphates diminishes (Christison), does not diminish (Graham, Miller, and Hoffmann), the action of H₂O on Pb.

CasO₄ protects Pb, but it is attacked by much gsO₄. (Nevins.)

MgSO₄. (Nevins.)
NaCl +Aq dissolves only a trace of Pb.
ados pt. of a chloride in H₂O is not sufficient to prevent the solubility of Pb in H₂O. (Christison.) Presence of chlorides increases the solubility. (Gra-

Ham, Miller, and Hoffmann; Nevins.)

Have containing KNOs does not corrode Pb.

Nitrates hinder the action of H₂O. (v. Bonsdorff.)

Nitrates increase the action of H₂O. (Graham, Miller, and Hoffman.) Nitrates have no influence. (Kersting.)

10 lbs. of H₂O dissolved the following amts. from Pb pipes in 24 hours: if distilled H₂O+ 1% Na₂CO₃, 0.38 grain Pb; if Duna water, 0.19 grain Pb; if canal water, 0.15 grain Pb; if distilled H₂O+1% NH₄NO₃, 0.15 grain Pb; if hard well water, 0.04 grain Pb; if distilled H₂O+1% KNO₃, 0.01 grain Pb. (Kersting Dingl. 169. 183.)

200 l. Manchester drinking water dissolved 2.094 g. from 1 sq. metre Pb in 8 weeks; 9 l. well water dissolved 1.477 g. from 1 sq. metre Pb in 8 weeks; 11 l. distilled H₂O containing are dissolved 110.003 g. from 1 sq. metre Pb in 8 weeks; distilled H₂O free from air dissolved 1.829 g. from 1 sq. metre Pb in 8 weeks; sea water dissolved 0.038 g. from 1 sq. metre Pb in 8 weeks. (Calvert and Johnson, C. N. 16. 171.)

A lead pipe taken up in Paris, which had been exposed to action of ordinary H2O for 200 years, was found perfectly smooth and uncorroded. (Belgrand, C. R. 77. 1055.)

Pb is attacked by all waters, hard or soft; even highly calcareous water dissolves some lead. (Mayençon and Bergeret, C. R. 78. 484.)

... Pure distilled H2O does not act on Pb, but extremely small quantities of NH3, HNO3, etc. cause as action; but for this action on Pb the presence of air and CO₂ is also required. (Stallman, Dingl. **180**. 366.)

100 ccm. distilled H₂O dissolved 3 mg, from 11.8 sq. cm. lead in one week when air without CO₂ was passed through the solution. 8 mg. were dissolved when the air contained CO₂. (Wagner, Dingl. 221. 260.)

Action of dil. salt solutions on lead. In 500 ccm. of the solutions containing salt, bright sheets of lead of 5600 sq. metres' surface were so suspended that the liquid reached all parts of the metal without hindrance, and the amts. dissolved determined after 24, 48, and 72 hours of action.

Salt	Grammes salt per	Dissolved Pb in mg. per litre		
	litre	after 24	48	72 hrs.
NH ₄ NO ₈	0.020	13.0		25
"	0.040	15.0		32
"	0.080	15.0		
∫KNO ₈ +	∫ 0.020			
\ NaNO₃	₹ 0.050	2.0	2.0	
(KNO ₃ +	$\int 0.040$			
$1 Na_2SO_4$	0.212	0.8	1.0	
KNO ₈ +	$\int 0.045$	1		
$K_2CO_3$	0.308			0.3
KNO ₂ +	∫ 0.070			
$\{ K_2SO_4 \}$	0.504			0.5
`CaSO,	0.252	0.4		0.8
	0.408	0.4	1.0	
$K_2CO_3$	0.310			0.2
u	0.516			0.2
CaCl ₂	0.250	0.5	0.5	0.5
u	0.510	0.3		0.4
$Na_2SO_4$	0.200			0.8
·	0.400			0.5
$1 \text{ NH}_4 \text{NO}_8 +$	(0.020			1
1 CaCl ₂	10.060			1.8
NH ₄ NO ₈ +	0.020			ļ
K ₂ CO ₂ +	{ 0.100		·	0.4
Na ₂ SO ₄	0.200			
Na ₂ SO ₄ +	0.200			ł
$\{K_2CO_3+$	0.040			0.1
CaCl2	0.100			l.
Water from L.	Katrine	1.0	1.0	1.5
Distilled water		2.0	2.0	3.0
		ŧ		1

(Muir, C. N. 25. 294.)

Action of salt solutions on 11.8 sq. cm. Pb in one week while air either with or without CO₂ was passed through the solution.

Solubility of Pb in salt solutions.

100 ccm, solutions containing the given amts. salts dissolve Pb in mg.:-

G. I.	g. salt in	mg. Pb dissolved			
Salt	100 ccm.	without CO2	with CO2		
KCl	0.5	21	12		
NaCl	0.5	21	12		
NH ₄ Cl	1.0	12	5		
MgCl ₂	0.83	20	35		
K ₂ SO ₄	1.0	0	0		
KNO ₃	1.0	14	20		
Na ₂ CO ₃	1.0	0			
NaOH	0.923	430			
$CaO_2H_2$	Saturated	137			

(Wagner, Dingl. 221. 260.)

Solubility of Pb in salt solutions.

25 sq. cm. were acted upon by a solution containing 0.2 g. salt in a litre for 21 days.

Three series of experiments were carried on. I. In corked flasks. II. In beakers covered with porous paper; diameter of mouth of beaker = 11.5 cm. III. In basins covered with porous paper; diameter of mouth of basin = 14.5 cm. IV. In corked flasks with constant current of air. V. In beakers half filled and covered with porous paper, the lead being suspended so that equal amts. of surface were above and beneath the liquid.

The amts. in mgs. of Pb dissolved were as follows:-

Salt used	I.	II.	III.	IV.	V.
NH ₄ NO ₃	1.8	4.0	16.0		
KNO ₈ .	1.6	0.5	6.0	1.5	
CaCl ₂ .	3.0	2.8	5.5	3.5	3.5
(NH ₄ ) ₂ SO ₄	0.7	1.3	16.0	5.0	2.5
Ř₂CÕ₃ .	0.3	0.3	0.7	0.6	0.3
Dist. H ₂ O	1.5	0.8	4.2	2.0	١

(Muir, Chem. Soc. 36. 660.)

 $\rm H_2O$  sat. with  $\rm CO_2$  dissolves 0.012 g. Pb to a litre in 3 days. (Marais, C. R. 77. 1529.) Action of  $\rm H_2O$  charged with  $\rm CO_2$  under 760 mm. pressure on Pb. 3 mg. of Pb were dissolved per litre in 24 hours, and the amt. was not increased by further action. The addition of 100 mg. K₂CO₃+20 mg. NH₄NO₃ to a litre prevented all action.

Action of H₂O charged with CO₂ under 6

atmos. pressure on Pb.
14.8 mg. were dissolved per l. in 24 hours, and 24 mg. per l. in 48 hours.

Action of various salt solutions added to above solution of CO₂ were as follows:—

LEAD

		mg. salt	mg. Pb dissolved		
		per l.	after 24 hrs.	after 48 hrs.	
K ₂ CO ₃		80	13.2	32.0	
K ₂ CO ₂		160		6.0	
CaCla		160	32.0	44.0	
NHANO		16	5.0		
NHANO		40	10.0	35.0	
Distilled H2	Ο.	1	14.8	24.0	

(Muir, C. N. 33. 125.)

The corrosion of Pb by ordinary distilled H₂O depends upon the presence of CO₂ and O₃ If the dissolved CO2 is double the amt. of the dissolved O, the action is most energetic. When CO₂ is wholly absent and O present, the action is very slight, and when the  $H_2O$  contains  $1\frac{1}{2}$  or more vol. %  $CO_2$  with normal amt. of oxygen, there is no visible corrosion. Pure distilled H2O containing neither O nor CO₂ has no action on Pb. In the above cases the greater part of the Pb remains in the form of a white ppt. or crust on the Pb, but in the case where O and CO2 are both present in the ratio of 1:2, very small amts. of Pb go into solution in a few days; the amt., however, diminishes on standing. As the amt. of CO₂ increases, the amt. of Pb dissolved in the H₂O also increases.

NH₄OH alone does not protect Pb from corrosion, but when in combination with CO₂

the action is much diminished.

CaO₂H₂, and NaOH+Aq attack Pb much more actively in absence of CO2 and presence of air. In absence of dissolved O neither CaO₂H₂ nor NaOH attacks Pb.

Na₂CO₃+Aq in absence of CO₂ attacks Pb slightly, but NaHCO₃+Aq has not the slight-

est action.

 $CaH_2(CO_8)_2 + Aq$  also has not the slightest action on Pb, and the presence of CaCO3 and CO₂ wholly prevents H₂O attacking Pb.

CaSO₄+Aq in presence of air forms a crust on Pb, but no Pb is found in solution, but if air is excluded there is no visible action. Presence of CO₂ causes a strong corrosive action.

H₂O containing CaSO₄ and CaH₂(CO₃)₂

does not attack Pb.

The above reactions are not in the least altered by the presence of moderate amts. of nitrates, chlorides, or ammonium, or organic compounds; but ammonium salts in excess have a strong solvent action on Pb. (Muller, J. pr. (2) **36.** 317.)

See also an extended report of the action of H₂O on Pb made to the Water Committee of Huddersfield, England, in 1886, by Messrs.

Crookes, Odling, and Tidy.

Very extended researches are published by Cornelley and Frew (Jour. Soc. Chem. Ind. 7. 15), of which only the general conclusions can be given here.

The action of slaked lime, limestone, sand calcium silicate, mortar, etc., was tested. The

results were as follows:-

1. In nearly all cases the corrosion is greater with free exposure to the air than when air is excluded. The difference is especially great in those cases where the greatest action on the lead takes place. Aluminum hydroxide and blue clay 'orm exceptions, and exert a greater corrosive action when air is excluded. In the case of CaCO₃, old mortar, CaSiO₂, or a mixture of CaCO₂ and CaO₂H₂, the exclusion or presence of air makes no appreciable differ-

KNO₃ -Aq shows a peculiar behaviour. In the presence of air it acts nearly as much on the Pb as pure  $H_2\mathrm{O}$ , but when air is excluded it exerts nearly as much retarding action as

CaSiO₈.

2. In the presence of air the action of H₂O on Pb is considerably increased by the presence of NH₄NO₈ or CaO₂H₄; with exclusion of air, by CaSO₄, also by a mixture of CaO₂H₂ and sand. All the other investigated substances, even KNO₃, hinder the action of H₂O on Pb either with or without exclusion of air.

3. CaO₂H₂+Aq exerts in all cases a much greater corrosive action than pure H2O, and although this action is diminished by sand yet fresh mortar very quickly destroys lead pipes when in contact therewith. Old mortar, on the other hand, and also CaSiO₃ and

CaCO₃, have a protective action.

4. The fact is very important that sand, CaCO₃, old mortar, CaSiO₃, and a mixture of sand and CaCO₃ afford considerable protection to lead against H₂O. A mixture of limestone and sandstone has more effect than the

two substances separately.

5. CaSiO₃ totally prevents the corrosive action of KNO₃ and NH₄NO₃, so that the lead is not attacked by solutions of those salts any more than by H₂O containing CaSiO alone. Sand, and a mixture of sand and CaCO₃ have a similar effect, but not to such a degree.

6. The protective influence of CaCO₂ does not appear to depend on the presence of CO2

and the formation of CaH₂(CO₈)₂.

7. MgCO₃ prevents the corrosion of Pb as much as CaSiO₃. (Carnelley and Frew, Jour. Soc. Chem. Ind. 7. 15.)

Pb in contact with Zn or Fe is protected thereby from the solvent action of H₂O, and in fact the action is nearly null. Sn, on the other hand, increases the action. This is of importance in regard to the use of tin-coated lead pipes.

The presence of Ca salts does not influence the action of the H₂O on Pb, hard or soft H₂O provided it contains CO2 having a strong corrosive action. Removal of air from H₂O diminishes the solvent action. Simple filtration will remove all Pb from H2O if suitable filters are used. (Flögel, J. B. 1883. 2645.)



Pure distilled H2O has strong corrosive action on Pb, which is very much weakened by addition of a solution of CaCO₃ in carbonic acid water, but the presence of sulphates increase the action. Pb is not appreciably attacked by H2O in presence of chlorides alone, |

but very strongly when CaSO₄ is also present. H₂O containing CO₂ also corrodes Pb. The conclusion was drawn that the absence of action of H₂O on Pb in lead pipes is due to the presence of traces of CaH₂(CO₃)₂. (Barbaglia and Gucci, C. C. 1888, 934.)

Solubility in H₂O containing various solids in solution.

Water used	Pts. of lead per 100,000					
Water used	1	2	3	4		
Water alone, unfiltered Water alone, filtered Water containing 0.049 g. NaCl per l., unfiltered """filtered Water containing 0.49 g. Na ₂ SO ₄ per l., unfiltered """filtered	8.19 3.00 1.36 0.68 3.41 2.05	12.98 4.09 2.73 1.50 6.83 3.41	8.19 2.07 0.68 0.67 2.05 1.64	4.09 2.32 4.04 1.36 1.84 1.77		
CaHCO ₈ +Aq containing 0.04 g, CaO as carbonate per l. CaHCO ₈ +Aq with NaCl CaHCO ₈ +Aq with Na ₂ SO ₄ CaSO ₄ +Aq containing 0.095 g. CaO as sulphate per l. CaSO ₄ +Aq with NaCl CaSO ₄ +Aq with Na ₂ SO ₄	2.45 2.05 2.18 6.83 5.46 4.78	3.14 3.41 3.32 6.83 6.57 5.87	2.63 2.35 2.05 3.41 3.51 3.69	5.70 3.40 3.16 1.35 1.50		

Column 1 gives the numbers for distilled water free from air; column 2 for distilled water aerated by agitation with air; column 3 for water continuously aerated by passing 1 litre of air through it per hour; column 4 for distilled water through which 1 litre of air and 400 cc. of CO₂ were passed per hour throughout the experiment. (Antony and Benelli, Gazz. ch. it. 1896, 26, (2) 97 and 352.)

Almost insol, in cold HCl+Aq, and only sl. attacked when boiling. Completely sol. in HNO₃+Aq if not too conc., but presence of H₂SO₄ or HCl diminishes the solvent power

to a great extent. (Rose.)
Granulated Pb is sl. sol. in conc. HCl+Aq; addition of PtCl4 makes the action very energetic. Dil. HCl+Aq may also be used with PtCl₄. (Millon, C. R. 21. 49.)

HCl+Aq of 1.2 sp. gr., with Pb, gives off H at ord. temp., more abundantly when heated. Evolution of H is hastened by placing Cu in contact with the Pb. (Stolba, J. pr. 94. 113.)

Quickly decomp. by hot HCl+Aq, slowly by cold. (Sharples, C. N. 50. 126.)

Scarcely acted upon by boiling conc. HCl+

Aq. Sol. in aqua regia. HNO₃+Aq is the best solvent, but Pb is as good as insol. in a mixture of HNO₃ and H₂SO₄. (Berzelius.)

Not acted upon by very conc. HNO₃+Aq. Pb is only sl. attacked by HNO₂+Aq of any strength below 15°. Above 15° it is most rapidly attacked by a rather weak acid. (Montemartini, Gazz. ch. it. 22. 397.) Action of H₂SO₄ on Pb.

H₂SO₄ of 1.842 sp. gr. dissolves 201 g. from 1 sq. metre pure lead at ordinary temp. (time?), and H₂SO₄ of 1.705 sp. gr. dissolves

solubility. (Calvert and Johnson, Chem. Soc. (2) **1.** 66.)

Strongly attacked by 99.8% H₂SO₄ at ord. temp. with exclusion of air. (Lunge, Dingl. **261.** 131.)

When 0.2 g. pure Pb was heated with 50 ccm. H₂SO₄ of 66° B. there was no appreciable action below 175°. At 230-250° all the Pb was suddenly converted into PbSO₄, which dissolved. (Bauer, B. 8. 210.)

Lead is slowly attacked by pure cold conc. H₂SO₄+Aq (99.78% H₂SO₄). Lead vessels which held the H₂SO₄ were gradually destroyed by long standing. (Napier and Tatlock, C. N. 42. 314.)

H₂SO₄+Aq (20%) does not evolve H under the same circumstances. (Stolba.)

Sol. in  $HC_2H_3O_2+Aq$  when in contact with the air.

Strong NH₄OH+Aq does not dissolve litharge; but lead immersed in NH₄OH+Aq 3 days gives an ammonia solution containing 0.0139% lead. (Endemann, Am. Ch. J. 1897, **19.** 892.)

Somewhat sol. in NaCl+Aq. (Reichelt. Dingl. 172. 155.)

NaCl+Aq attacks Pb at high temp. (Lunge, l. c.)

Action of KClO₈.  $KClO_8 + Aq$  (6.3% KClO₃) oxidised 64.31 g. Pb from 1 sq. metre surface by boiling 7 hours; KClO₈+Aq (25% KClO₃) oxidised 151.12 g. under same condi-Slight impurities in the lead lessen this tions; and Ca(ClO₃)₂, CaCl₂+Aq (20° Baume)

Ca(ClO₈)₂, CaCl₂+Aq  $(20^{\circ}$ tions; and Baume), obtained by passing Cl₂ through CaO₂H₂+Aq, oxidised 437.70 g. (Lunge and Deggeler, Jour. Soc. Chem. Ind. 4. 31.)

Insol. in liquid NH2. (Gore, Am. Ch. J.

1898, **20.** 828.)

Sol. in a solution of K in liquid NH₃. (Kraus, J. Am. Chem. Soc. 1907, 29. 1562.)

½ ccm. oleic acid dissolves 0.0592 g. Pb in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Solubility of Pb in petroleum.

If b.-pt. is under 230°, only slightest trace is dissolved in 4 months; if  $230-300^{\circ}$ , 0.0026%in 4 months; if over 300°, 0.0244% in 4 months in 4 months; if over 300°, 0.0244% in 4 months.

Solubility of Pb in commercial oil of turpentine and resin oil.

		% Pb d	issolved
	Temp.	in 8 days	in 14 days
Fresh oil of turpentine .	15-20°	sl. trace	0.0722
pentine	15-20	0.0522	0.1435
turpentine . Old oil of tur-	100	0.265	0.715
pentine Fresh oil of	. 100	0.982	1.851
turpentine .	130–150	0.938	2.045
pentine Fresh resin oil Old " Fresh " Old " Fresh " Old " Old "	130–150 15–20 15–20 100 100 130–150 130–150	1.738 trace 0.073 0.380 1.190 1.050 2.208	4.083 0.024 0.185 0.880 2.711 2.065 4.740

(Engler and Kneis, Dingl. 263. 193.)

Pb is strongly attacked by oil of turpentine. (Am. Chem. 4. 289.)

The fatty oils dissolve Pb in considerable amt. (Macadam, J. B. 1878. 1169.)

Not attacked by sugar+Aq. (Klein and Berg, C. R. 102. 1176.)

## Lead potassium amide.

See Potassium ammonoplumbite.

Lead azoimide, basic, PbO, PbN₆. Insol. in H₂O. (Wöhler, B. 1913, **46.** 2054.)

#### Lead azoimide, PbN₆.

Insol. in cold  $H_2O$ ; much less sol. in boiling  $H_2O$  than  $PbCl_2$ . 1 l.  $H_2O$  dissolves about  $\frac{1}{2}$ g. PbN₆. Easily sol. in warm  $HC_2H_8O_2+Aq$ . Insol. in conc. NH₄OH+Aq. (Curtius, B. 24. 3344.)

## Lead bromide, PbBr₂.

SL sol, in cold, more easily in hot H₂O. or in H₂O containing HCl, HNO₂, or HC₂H₃O₂

(Löwlg.) 1 l. H₂O dissolves 6 g. PbBr₂ at 10°; addition of HBr causes a ppt. which redissolves on further addition of HBr. 1000 pts. of a liquid containing 720 pts. HBr dissolve 550 g. PbBr₂. This solubility increases by heating. (Ditte, C. R. 92. 718.)

1 l. H₂O dissolves 26.28 millimols. PbBr₂ at 25.2°. (von Ende. Z. anorg. 1901, 26. 159).

Solubility in 100 g. H₂O at t°.

t°	G. PbBr₂
0	0.4554
15	0.7305
25	0.9744
35	1.3220
45	1.7457
55	2.1376
65	2.5736
80	3.3430
95	4.3613
* 100	4.7510

* By extrapolation.

(Lichty, J. Am. Chem. Soc. 1903, 25, 474.)

Sl. sol. in  $H_2O$ .

8.34 x 10 1 gram, are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. ch. 1903, **46.** 603.)

Solubility of PbBr₂ in HNO₃+Aq at 25.2°. S = solubility in millimols per litre.

HNO ₃ normal	s
0.001 0.01 0.051 0.04 KNO ₃ + 0.01 HNO ₃	39 .11 39 .87 42 .56 42 .77
,	

(von Ende, Z. anorg. 1901, 26. 162.)

Slowly sol. in cold, easily in warm NH4Cl, or NH4NO₈+Aq. (Wittstein.)

Not pptd. in presence of Na citrate. (Spiller.)

Insol. in H₂O containing Pb(NO₃)₂. (von Ende, Z. anorg. 1901, 26. 159.)

Insol. in benzene. (Franchimont, B. 16.

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 828.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate (Naumann, B. 1910, 43. 314.

Difficultly sol. in acetone. (Naumann, B. 1904, **37.** 4328.)

 $+3H_2O$ . (Ditte, l. c.)

Lead hydrogen bromide, 5PbBr2, 2HBr+ 10H₂O.

Sol. in HBr+Aq. (Ditte, C. R., 92. 718.)

Lead magnesium bromide, PbBr2, 2MgBr2+ 16H₂O.

Very deliquescent. Decomp. immediately by H₂O or alcohol. (Otto and Drewes, Arch. Pharm, 229. 585.)

## Lead potassium bromide (potassium bromoplumbite, PbBr₂, KBr+H₂O.

(Remsen and Herty, Am. Ch. J. 14. 124.) +-H₂O. (Wells, Sill. Am. J. 145. 129.) PbBr₂, 2KBr. Sol. in a little H₂O without decomp., but decomp. by an excess with separation of PbBr₂. (Lowig.) +H₂O. (Wells, Sill. Am. J. **145**. 129.)

2PbBr₂, KBr. (Wells.)

Lead potassium perbromide, K₈Pb₂Br₈+ 4H₂O.

Decomp. by H₂O and alcohol. (Wells, Z. anorg. 4. 340.)

Lead rubidium bromide, PbBr₂, 2RbBr+

(Wells, Sill. Am. J. **146.** 34.) 2PbBr₂, RbBr. (Wells.)

#### Lead sodium bromide.

Decomp. by H₂O. (Lowig.)

Lead bromochloride, PbBrCl = PbBr₂, PbCl₂.

Can be recrystallised from H₂O without decomp. (Iles, C. N. 43. 216.)

3PbCl₂, PbBr₂. Sol. in H₂O with decomp. Sol. in HCl and in HBr. Insol. in cold alcohol; sl. sol. in boiling alcohol. (Thomas, C. R. 1899, **128**. 1235.)

#### Lead bromoiodide, PbBrI = PbBr2, PbI2.

Decomp. by H₂O. Cryst. from a solution of PbI₂ in HBr. (Grissom and Thorp, Am. Ch. J. **10.** 229.)

3PbBr₂, PbI₂. Decomp. by H₂O. (Thomas C. R. 1899, 128. 1236.) 6PbBr₂, PbI₂. (G. and T.)

## Lead bromosulphide, PbBr₂, PbS.

Properties as chlorosulphide. (Parmentier.)

#### Lead chloride, PbCl₂.

Slowly sol. in 135 pts. H₂O at 12.5°, and in a much smaller quantity of hot H₂O. (Bischof.)
Sol. in 30 pts. H₂O at 18.75°. (Abl.)
100 pts. H₂O dissolve 4.59 pts. PbCl₂ at 15.5°. (Ure's

100 pts. H₂O dissolve 0.9712 pt. PbCl₂ at 20°. (Formánek, C. C. **1887**. 270.)

100 pts, H₂O dissolve 0.946 pt. PbCl₂ at 17.7°. (Bell, Chem. Soc. (2) 6. 355.) Sol. in 105.2 pts. H₂O at 16.5°. (Bell, C. N.

**16.** 69.)

100 pts. H₂O dissolve 0.8 pt. PbCl₂ at 0°; 1.18 pts. at 20°; 1.7 pts. at 40°; 2.1 pts. at 55°; 3.1 pts. at 80°. (Ditte, C. R. 92. 718.)
1 l. H₂O dissolves 38.80 millimols. PbCl₂ at

. (von Ende, Z. anorg. 1901, 26. 148.)

9.61 x 10-1 gram are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. ch. 1903, **46.** 603.)

Solubility in H₂O. 100 g H.O dissolve g PhCla at to

100 g. 1120 disso	ive g. 1 boly at v .
t°	G. PbCl ₂
0	0.6728
15	0.9090
25	1.0842
35	1.3244
45	1.5673
55	1.8263
65	2.1265
80	2.6224
95	3.1654
* 100	3.3420

* By extrapolation.

(Lichty, J. Am. Chem. Soc. 1903, 25, 474.)

33.6 millimols. Pb are dissolved in 1 liter H₂O at 18°. (Pleissner, C. C. **1907**, II. 1056.) 1 l. H₂O dissolves 77.76 milliequivalents PbCl₂ at 25°. Sp. gr. of the solution 25°/4° = 1.0069. (Harkins and Winninghoff, J. Am. Chem. Soc. 1911, 33. 1816.)

0.0388 mol. mg. PbCl₂ are sol. in 1 l. H₂O. (Kernot and Pomilio, Soc. R. Napoli, 1912,

(3), XVII, 353.)

A colloidal modification is sol. in hot water to give cryst. modification. (Van de Veide. Ch. Z. 1893, **17.** 1908.)

Solubility in H₂O is not much increased by

the addition of acids. (Fresenius.)
Sol. in conc. HCl+Aq, from which it is pptd. by H₂O, but less sol. in dil. HCl+Aq than in H₂O. (Berzelius.)

Sol. in 1636 pts. H₂O containing HCl.

(Bischof.)

Sat. solution of PbCl₂ in HCl+Aq of 1.116 sp. gr. contains 2.566% PbCl₂ at 16.5°.

Solubility in HCl+Aq. 100 pts. liquid containing pts. HCl of 1.1162 sp. gr. in 100 pts. H₂O dissolve pts. PbCl₂ at 17.7°.

Pts.	Pts.	Pts.	Pts.	Pts.	Pts.
HCl	PbCl ₂	HCl	PbCl ₂	HCl	PbCl ₂
1 2 3 4 5 6 7	0.347 0.201 0.165 0.145 0.131 0.107 0.100	8 9 10 15 20 30 40	0.099 0.096 0.093 0.090 0.111 0.151 0.216	50 60 70 80 90 100	0.356 0.559 0.933 1.498 2.117 2.900

(Bell, Chem. Soc. 21, 350.)

	Solubil	ity of P	bCl ₂ in	HCl.	
Amt. HCl in 100 pts.	Amou	nt PbCl2	dissolved liquid	in 1000	pts. of
H₂Ō	At 0°	At 20°	At 40°	.\t 55°	At 80°
0.0 5.6 10.0 18.0 21.9 31.5 46.0	8.0 2.8 1.2 2.4 4.7 11.9 29.8	11.8 3.0 1.4 4.8 6.2 14.1 30.0	17.0 4.6 3.2 7.2 10.4 19.0	21.0 6.5 5.5 9.8 12.9 24.0	31.0 12.4 12.0 19.8 23.8 38.0

(Ditte, C. R. 92, 718.)

 $PbCl_2 = \frac{1}{2}mols.$ Solubility in HCl+Aq at 0°. PbCl₂ in mgs. in 10 ccm. solution; HCl =

mols. HCl in ditto.

$\frac{\text{PbCl}_2}{2}$	HCl	PbCl ₂	HCl
0.42	0.	0.072	5.8
0.22	0.35	0.088	11.7
0.135	0.675	0.100	29.5
0.11	1.125	0.209	46.7
0.105	1.6	0.95	73.5
0.099	2.3	1.5	89.0
0.090	3.4	1.9	96.0
0.08	4.5	3.01	111.5

It is seen that very little HCl+Aq is sufficient to diminish solubility very considerably, and, that on further addition of HCl+Aq, the solubility is nearly constant, and increases finally very much when large amts. of HCl+Aq are present. (Engel, A. ch. (6) 17. 359.)

Solubility of PbCl₂ in HCl+Aq at 25°.

~ 014.011	0, 01		
G. HCl per l.	G. PbCl ₂ per l.	G. HCl per l.	G. PbCl ₂ per l,
0 0.5 1. 2.	10.79 9.0 7.6 6.0	3 6 10	5.0 3.1 1.8

(Noyes, Z. phys. Ch. 1892, 9. 623.) Solubility of PbCl₂ in HCl+Ag at 25.20°. S = solubility in millimols per litre.

- Dolab	arroy arr arra	minor por 111	
HCl normal	s	HCl normal	8
0.0000	38.80	0.3714	6.35
0.0009	38.66	0.5142	5.37
0.0022	38.20	0.7386	4.73
0.0030 0.0045 0.0091 0.0114	37.94 37.35 35.80	1.026 1.538 2.051	4.41 4.61 5.18
0.0114	34.99	2.564	6.25
0.0151	33.75	3.085	7.78
0.0226	31.46	3.718	8.16
0.0302	29.32	5.0	19.38
0.0452	25.46	7.5	65.86
0.0910	17.12	10.0	141.35
0.1850	10.12	12.05	164.3

(von Ende, Z. anorg. 1901, 26. 148.)

Solubility	of	PbCl ₂	in	HCl	at	18°.
------------	----	-------------------	----	-----	----	------

HCl Normality	G. PbCl ₂ per l.
0	9.34
0.0001	9.305
0.0002	9.300
0.0905	9.243
<b>0</b> . J <b>01</b> 02	9:200
0.0102	8.504
	1

(Pleissner, Arb. Kais. Gesundamt, 1907, 26. 384.)

Sol. in hot, insol. in cold conc. H₂SO₄. (Hayes.)

Sol. in dil. HNO₃+Aq, from which it is

pptd. by HCl+Aq. (Gladstone.)
Easily and completely decomp. by hot
HNO₃+Aq. (Wurtz.)

Solubility of PbCl₂ in HNO₃+Aq at 25.2°. S = solubility in millimols per litre.

HNO2 normal	s
0.001 0.01 0.051 0.04 KNO ₃ + 0.01 HNO ₃	38.87 39.71 42.92 43.36

(von Ende, Z. anorg. 1901, 26. 162.)

Solubility of PbCl₂ in NH₄Cl+Aq at 25.20°. S = solubility in millimols per litre.

NH ₄ Cl normal	s
0.25	9.47
0.50	7.11
1.0	4.35

(von Ende, Z. anorg. 1901, 26, 152.)

#### Solubility of PbCl₂+NH₄Cl at 22°.

G. equiv.	G. equiv. per	G. equiv.	G. equiv. per
per l. H ₂ O	100 cc. H ₂ O	per l. H ₂ O	100 cc, H ₂ O
NH ₄ Cl	PbCl ₂	NH ₄ Cl	PbCl ₂
0.0	7. 49 x 10 ³ 3. 10 1. 916 1. 508 1. 348 1. 263 1. 189 1. 092 1. 012 0. 956 0. 837 0. 793	1.0	0.758 x 10 ⁻³
0.1		1.2	0.707
0.2		1.5	0.671
0.3		2.0	0.695
0.4		2.5	0.812
0.5		3.0	0.968
0.55		4.0	1.502
0.6		5.0	2.338
0.65		6.0	3.580
0.7		7.0	5.628
0.8		7.29*	6.46

* Saturated.

(Brönsted, Cong. Appl. Chem. 1909, Sec. X. 110.)

(Demassieux, C. R. 1913, 156. 894.)

7.38

4.90

4.90

4.83 5.56 9.74

	Solubility	in NH ₄ Cl-	+Aa st t°	Much mor	e sol in Ho	gCl₂+Aq th	an in H ₀ O.
			1114 100.			After sub-	Calculated
t°	G. PbCl ₂ in 100 g. of the solution	G. NH ₄ Cl in 100 g. of the solution	Son phase	Grammes HgCl ₂ in 100 ccm.	Grammes PbCl ₂ dissolved	tracting amt. dissolved by H ₂ O alone	no. of grammes for 100 g.HgCl ₂
17°	0.89 0.21 0.16 0.14 0.076 0.078 0.078	0.0 0.96 1.43 2.40 3.48 4.23 4.93 12.36	PbCl ₂ eutectic-pt.  2PbCl ₂ , NH ₄ Cl	0 4 2 1 0.5 0.25 0.125	0.9712 1.8972 1.4874 1.2272 1.0808 1.0192 0.9926	0.9350 0.5208 0.2600 0.1134 0.0500 0.0226	23.37 26.04 26.00 22.68 20.00 18.08
	0.34 0.64 0.52	22.33 26.49 26.68	eutectic-pt.	l <u>.</u>	of PbCl ₂ in	C. <b>1887.</b> 27 Pb(NO ₃ ) ₂ + $\frac{1}{2}$ v. per l.	
	0.33 0.30 0.0	$26.91 \\ 27.03 \\ 27.14$	NH ₄ Cl	Pb(N	VO ₃ ) ₂	PbC	Cl2
50°	1.69	0.0	)	0.		0.07 0.08	
	1.08 0.67	$0.51 \\ 1.45 \\ 2.45$	PbCl ₂	(Noye	es, Z. phys.	Ch. 1892, 9.	623.)
		2.45 4.86 12.45 19.42 27.16	eutectic pt. 2PbCl ₂ , NH ₄ Cl	C = conce +Aq expre $d_1 = Sp. g$	entration of ssed in mill gr. of Pb(NC	$NO_8)_2 + Aq$ a $Pb(NO_8)_2$ in iequivalents $O_3)_2 + Aq$ at	$\begin{array}{c} { m Pb(NO_8)_2} \\ { m per l.} \\ { m 25}^{\circ}. \end{array}$
	$egin{array}{c} 3.31 \ 3.96 \ 2.65 \ 1.62 \ \end{array}$	31.90 33.56 33.62 33.88	eutectic pt.	expressed in	n milliequiv	Cl ₂ in Pb(l alents per l. of PbCl ₂ +P	.,
	0.32 0.0	$34.14 \\ 34.25$	NH ₄ Cl	C	d ₁	s	$d_2$
100°	3.10 2.02 1.85	0.0 1.32 5.33	PbCl ₂	20.020 50.063 99.660	1.0008 1.0045 1.0119	76.75 76.64 77.98	1.0095 1.0139 1.0210
	1.80	6.01 8.59	eutectic pt.	(Harkins a	nd Winning 1911, <b>33</b>	hof, J. Am. ( 3. 1816.)	Chem. Soc.
	1.98 4.54	$13.19 \\ 26.08$	2PbCl ₂ , NH ₄ Cl	Solubility of G. Pb(No		Pb(NO ₃ ) ₂ +	
	8.32 11.40 12.67	$   \begin{array}{r}     32.64 \\     36.29 \\     37.62   \end{array} $	eutectic pt.	0		1.0	9
	12.50 11.60 10.70	38.14 38.32 38.66	PbCl ₂ , 2NH ₄ Cl	6. 33.		$egin{array}{c} 1.1 \ 1.0 \ 1.1 \ \end{array}$	)5   1
	9.88 9.26 4.21	$40.22 \\ 41.90 \\ 42.91$	eutectic pt.	(Armstrong	and Eyre,	Proc. Roy. 3. 234.)	
	3.06 1.61	43.20 43.42 43.51	NH ₄ Cl	Solubility S=Solub	of PbCl ₂ ir	n KCl+Aq a imols per lit	at 25.20°.
	0.0	40.01	J	KCl normal	s	KCl normal	8
PbCl.	ese results 2, 2NH ₄ Cl on at temp	can only	the double salt exist in aqueous ve 70°.	0.0000 0.001	38.80 38.32	0.0999 0.5006	16.90 7.40

(von Ende, Z. anorg. 1901, 26. 151.)

0.7018

0.9991

0.9991

1.5018

2.0024

3.0036

37.85

37.02

37.02

35.28

32.16

22.62

0.0025

0.0049

0.0049

0.0099

0.0200

0.0599

## Solubility of PbCl₂+KCl in H₂O at 20°. Values = g. equivalents.

In 1000 g. solution	In 10	00 g. H ₂ O	Solid phase
PbCl ₂ KC	l PbCl ₂	KCl	, 1
	28.0	4.57	PbCl ₂ , KCl. ¹ / ₃ H ₂ O + KCl
16.56 3.6 15.50 2.5 14.76 2.5 13.96 2.6 13.16 2.4 13.08 2.4	18 23 . 42 05 21 . 50 91 19 . 85 77 18 . 66 66 17 . 48 47 16 . 17 45 16 . 06 40 15 . 80	3.96 3.73 3.50 3.33 3.03	PbCl ₂ , KCl. ¹ / ₃ H ₂ O
12.86 2.12.44 2.11.84 2.11.38 2.10.60 2.11.98 2.10.46 2.10.22 2.	84 10. 42 75 8. 92 26 8. 72 204 8. 56 24 8. 29 24 8. 11 23 8. 13 22 8. 10 55 8. 00 8. 28 8. 03 8. 13 8.  2. 86 2. 78 2. 77 2. 70 2. 64 2. 62 2. 55 2. 49 2. 41 2. 31 2. 20 1. 79 1. 472 1. 348 1. 347 1. 225 1. 152 1. 107 1. 068 1. 000 0. 943 0. 875 0. 833 0. 761 0. 602	2PbCl ₂ , KCl	
12.38 0.5 12.36 0.44 12.56 0.4 12.48 0.4 12.24 0.3 14.52 0.20 19.00 0.15	33 12.85 75 13.04 58 12.95 75 13.65 99 14.88	0.502 0.497 0.475 0.387 0.306	PbCl₂

(Brönsted, Z. phys. Ch. 1912, 80. 208.)

PbCl₂ is sol. in 120 pts. pure H₂O, but on adding 5% NaCl 437 pts. are required to effect solution. When PbCl, is digested with conc. NaCl+Aq, 1 pt. dissolves in 129 pts. of the liquid.

A study of the equilibrium between lead chloride and sodium chloride in aqueous solution at 13%, 50° and 100° shows that at none of these tends. do these chlorides form a double salt. (Demassieux, C. R. 1914, 158. 702.

## Solubility in salts+Aq at 25°.

Salt used	Concentration of the salt. Equivalents per liter	Solubility of PbCl ₂ Equivalents per liter
None	0	0.07770
HCI	0.05	0.04786
""	0.1	0.03243
"	0.2	0.01927
KCl	0.05	0.0482
""	0.1	0.0341
"	0.2	0.0219
$MgCl_2$	0.05	0.0503
" -	0.1	0.0350
CaCl2	0.05	0.0503
"	0.1	0.0355
"	0.2	0.0219
$Mr_1Cl_2$	0.05	0.0501
"	0.1	0.0349
,"	0.2	0.0217
$ZnCl_2$	0.2	0.0220
$CdCl_2$	0.05	0.0601
"	0.1	0.0481
"	0.2	0.0355

(Noyes, Z. phys. Ch. 1892, 9. 623.)

Sol. in KOH + Aq. (Rose.)

Less sol. in dil. salt solutions than in H2O especially CaCl₂+Aq; sol. in 534 pts. H₂O containing CaCl₂. (Bischof.)

More sol. in Na₂S₂O₃+Aq than in H₂O, but not as sol. as AgCl. (Herschell, **1819.**)

More sol. in NaC₂H₃O₂+Aq than in H₂O.

(Anthon.)

Easily sol. in NH4NO3+Aq.

Sl. sol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 828.)

Insol. in conc. alcohol. (Wittstein.) Insol. in 94% alcohol; very sl. sol. in cold or hot 76% alcohol.

Solubility in alcohol at 25°.

Alcohol = g. mol. alcohol in 1 l. of solvent.  $PbCl_2 = g$ . mol.  $PbCl_2$  in 1 l. of solution. 2

Alcohol 0.0172 0.0257 0.0298 0.0330 0.0338 PbCl₂

Alcohol 0.0367 0.0388  $PbCl_2$ 

(Kernot and Pomilio, Soc. R. Napoli, (3) 17. 353.)

Insol. in benzene. (Franchimont, B. 16. 387.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, 6. 257.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate (Naumann, B.

148

1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insol. in methylal. (Eidmann, C. C. 1899, II, 1014.)

Insol. in acetone. (Naumann, B. 1904, 37.

Glycerine dissolves 1.995% PbCl₂.

1 pt. glycerine+1 pt. H₂O dissolves 1.32%

1 pt. glycerine +3 pts. H₂O dissolves 1.0365 % PbCl₂.

Glycerine containing 87.5% H₂O dissolves 0.91% PbCl₂. (Piesse, B. 7. 599.) Solubility of PbCl₂ in mannite+Aq at 25°.

Mannite = g. mol. mannite in 1 l. of solvent.  $PbCl_2 = g$ .  $\blacksquare ol. PbCl_2 in 1 l. of solution.$ Mannite 0.0408 0.0403 0.0394 0.0384 0.0385 PbCl₂

Mannite 1/64 0.0377 0.0388

(Kernot and Pomilio, Soc. R. Napoli, (3) 17. 353.)

Min. Cotunnite.

## Lead tetrachloride, PbCl4.

Sol. in H₂O with subsequent decomp. (Rivot, Beudant, and Daguin, Ann. Min. (5) **4.** 239.)

Obtained in a pure state by Friedrich. Sol. in a little cold H₂O, but is decomp, by warming or diluting. Miscible with conc. HCl+ Aq; not attacked by conc. H₂SO₄ even on warming. (Friedrich, W. A. B. **102**, **2b**. 534.)

Lead tetrachloride with MCl. See Chloroplumbate, M.

Lead magnesium chloride, PbCl₂, 2MgCl₂+ 13H₂O.

(Otto Deliquescent. Decomp. by H₂O. and Drewes, Arch. Pharm. 228. 495.)

Lead potassium chloride (potassium chloroplumbite), PbCl₂, KCl.

(Remsen and Herty, Am. Ch. J. 14. 125.) Contains  $^{1}/_{8}$  H₂O. (Wells, Sill. Am. J. 145.) 130.)

See also Demassieux, PbCl₂+KCl under PbCl₂

2PbCl₂, KCl. (Wells.) See also Demassieux as above.

Lead rhodium chloride.

See Chlororhodite, lead.

Lead rubidium chloride, PbCl₂, 2RbCl+ ½H₂O.

(Wells, Sill. Am. J. 146. 34.) 2 PbCl₂, RbCl. (Wells.)

Lead sodium chloride.

Decomp. by H₂O.

Lead sodium tetrachloride, 2PbCl4, 9NaCl.

Very sol. in H₂O. (Sobrero and Selmi, A. ch. (3) 29. 165.)

See also Chloroplumbate, lead.

Lead thallous chloride, PbCl₂, 3TlCl.

Sl. sol. in cold, more in hot H2O. (Noyes,

Z. phys. Ch. 9. 622.) PbCl₂, TlCl. Ppt. 1909, **61**. 245.) (Ephraim, Z. anorg.

Lead chloride ammonia, 2PbCl₂, 3NH₈. (Rose, Pogg. 20. 157.)

Lead tetrachloride ammonia, PbCl₄, 4NH₈.

Pptd. from chloroform solution. (Matthews, J. Am. Chem. Soc. 1898, 20. 825.) PbCl₄, 2NH₃. Fumes in the air. Decomp.

by  $H_2O$ . (Matthews.)

Lead chloride arsenate, 3Pb₃(AsO₄)₂, PbCl₂. See Arsenate chloride, lead.

Lead chloride borate, Pb(BO₂)₂, PbCl₂+ H₂O.

See Borate chloride, lead.

Lead chloride carbonate.

See Carbonate chloride, lead.

Lead chloride chlorite.

See Chlorite chloride, lead.

Lead chloride with fluoride and iodide.

See Lead chlorofluoride and Lead chloroiodide.

Lead chloride phosphate.

See Phosphate chloride, lead.

Lead chloride phosphite, PbCl₂, Pb₂P₂O₅(?).

Ppt. (Berzelius.) Does not exist. (Rose.)

Lead chloride sulphate.

See Sulphate chloride, lead.

Lead chloride sulphide, PbCl₂, 3PbS.

See Lead chlorosulphide.

Lead chlorofluoride, PbClF.

Sl. sol. in H2O without decomp. Easily sol. in HNO₈+Aq. (Berzelius.)

Solubility in H₂O.

100 g. H₂O dissolve 0.0211 g. PbClF at 0°; 0.0370 g, at 25°; 0.1081 g, at 100°. (Starck, Z. anorg. Ch. 1911, 70. 174.) Solubility in HCl+Aq at 25°. Solution of PbClF in HCl+Aq containing

0.0535 g. equiv. per l. contains 0.0758 g. PbClF in 100 cc. of solvent.

Solution of PbClF in HCl+Aq containing

0.1069 g. equiv. per l. contains 0.1006 g. PbCIF in 100 cc. of solvent. (Starck.)

Solubility in acetic acid at 25°.

Solution of PbCIF in HC2H2O2 containing 0.0518 g. equiv. per l. contains 0.05129 g. PbClF in 100 cc. of solvent.

Solution of PbClF in HC2H2O2 containing 0.1055 g. equiv. per l. contains 0.0561 g PbClF in 100 cc. of solvent. (Starck.)

## Solubility in PbCl₂+Aq.

t°	G. equiv. per l. PbCl ₂	G. PbClF in 100 cc. of solvent
18° 25°	0.0100 0.0195 0.0495 0.00996 0.0196 0.0392	0.0020 0.0016 0.0002 0.0030 0.0008 0.0005

(Starck.)

Lead chloroiodide, 2PbCl₂, PbI₂.

Sol. in hot NH₄Cl+Aq. (Poggiale, J. pr. **35.** 329.)

PbCl₂, PbI₂. Sol. in hot HCl+Aq. (Engelhardt.)

Sol. in H₂O. (Thomas, C. R. 1898, 126. 1351.

#### Lead chloroselenide.

Decomp. by boiling H₂O and by conc. KOH+Aq. (Fonzes-Diacon, C. R. 1900, 130. 1133.)

#### Lead chlorosulphide, PbCl₂, 3PbS.

Partially decomp. by hot H₂O. Not attacked by dil., but decomp. by conc. HCl+ Aq. (Hünefeld, J. pr. 7. 27.)

PbS, PbCl₂. Decomp. by H₂O, acids, or alkalies. (Parmentier, C. R. 114, 298.)

ClPbS₂PbS₂PbS₂PbCl. Ppt. (Hofmann, B. 1904, 37. 250.)

#### Lead fluoride, PbF₂.

Very sl. sol. in H₂O, and not more in HF+ Aq. (Berzelius, Pogg. 1. 31.) 5.5 millimols are sol. in 1000 ccm. H₂O.

(Jaeger, Z. anorg. 1901, 27. 38.)

1 I. H₂O dissolves 640 mg. at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

641 mg. in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.) More sol. in HNO₃, or HCl+Aq. Sl. sol. in KF+Aq. (Herty, Am. Ch. J. **14.** 107.)

Sl. sol. in dil. HF+Aq; insol. in strong HF+Aq.

0.01302 g. atoms Pb are sol. in 1000 cc. HF. (Jaeger, Z. anorg. 1901, 27. 37.)

Insol. in liquid HF. (Franklin, Z. anorg. 1905, **46.** 2.)

Insol. in liquid NH₃. (Gore, Am. J. Ch. 1898, **20.** 828.)

Insol. in ethylacetate. (Naumann, B. 1910, 43. 314.) Insol. in acetone. (Naumann, B. 1904, **37. 4**329.)

Lead potassium fluoride, 3KF, HF, PbF. Decomp. H2O, stable in dry air. (Brauner, Z. anorg. 1394, 7. 7.).

Lead silicon fluoride. See Fluosilicate, lead.

Lead tantalum fluoride. See Fluotantalate, lead.

Lead titanium fluoride. See Fluotitanate, lead.

Lead fluoride sulphate. See Sulphate fluoride, lead.

Lead hydroxide, PbO₂H₂.

Not appreciably sol. in H₂O. (Jaeger, Z. anorg. 1901, 27. 38.)

1 l. H₂O dissolves 0.155 g. PbO₂H₂ at 20° and 100°. (Sehnal, C. R. 1909, **148**, 1396.)

## Solubility in NaOH+Aq.

G. Na in 20 ccm.	G. Pb in 20 ccm.
0.2024	0.1012
0.3196	0.1736
0.5866	0.3532
0.9476	0.4071
1.7802	0.5170

(Rubenbauer, Z. anorg. 1902, 30. 336.)

## Solubility of PbO₂H₂ in NaOH+Aq at 25°.

G. mol. per l.		Solid Phase
Na	Pb	Somi Thase
0.274 0.431 0.476 0.745 1.132 1.519	0.0181 0.287 0.319 0.489 0.711 0.101	PbO ₂ H ₂ " " " "

(Wood, Chem. Soc. 1910, 97. 884.)

Insol. in acetone. (Naumann, B. 1904, **37**. 4329.)

2PbO, PbO₂H₂=3PbO, H₂O. Sol. in 10,000 to 12,000 pts. H₂O. (Yorke.) Sol. in 7000 pts. H₂O. (v. Bonsdorff, Pogg. 41. 307.) 0.45 millimol. Pb are sol. in 1 liter H₂O at

18°. (Pleissner, C. C. **1907**, II. 1056.) Sol. in acids. Insol. in NH₄OH+Aq

in NaOH, or KOH+Aq. Sol. in hot NH4Cl+ Aq, and repptd. by NH,OH+Aq.

Solubility in KOH+Aq, according to Ditte (C. R. 94. 130). When KOH+Aq is gradu-

ally added to lead hydroxide suspended in H₂O, the lead hydroxide is at first dissolved proportional to the amount of KOH, until the strength reaches 200 g. KOH to 1 litre H₂O. The solubility then diminishes and increases again until 400 g. KOH are dissolved in 1 litre H₂O. The amorphous lead hydroxide is then converted into crystalline By further addition of  $2PbO(PbO_2H_2)$ . KOH the solubility is suddenly decreased, and then increases again. (Ditte.)

Sol. in triethyl toluenyl ammonium hy-

drate+Aq.

Sol. in sorbine + Aq. (Pelouze.)

Sol. in acetates+Aq. (Mercer.) Sol. in Ca, Ba, Sr, K, or Na sucrate+Aq. Not pptd. in presence of Na citrate + Aq. (Spiller.)

See also under Lead, and Lead oxide.

Lead perhydroxide, PbO₂, H₂O. See Lead peroxide.

## Lead imide, PbNH.

Decomp, by H₂O and dilute acids. (Franklin, Z. anorg. 1905, 46. 27.)

## Lead iodide, PbI2.

Sol. in 187 pts. boiling H₂O. (Berthemot.) Sol. in 1235 pts. H₂O at ord. temp., and 194

pts. at 100°. (Denot, J. pr. 1. 425.)
Sol. in 2400 pts. H₂O at 18.75°. (Abl.)
Sat. PbI₂+Aq at 20° contains 0.0017 pt.;
at 27°, 0.002 pt.; at 100°, 0.0039 pt. PbI₂.
(Lassaigne, J. chim. med. 7. 364.)

11. H₂O dissolves 0.6 g. PbI₂ at 10°. (Ditte,

C. R. 92. 718.)

1 l. H₂O dissolves 1.58 millimols PbI₂ at 25.2°. (Von Ende, Z. anorg. 1901, 26. 159.) 0.47×10⁻¹ gram are dissolved in 1 litre of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, 46. 603.)

Solubility in 100 g. H₂O at t°.

t°         G. PbI ₂ .           0         0.0442           15         0.0613           25         0.0764           35         0.1042           45         0.1453           55         0.1755           65         0.2183           80         0.3023           95         0.3960           * 100         0.4360		
15 0.0613 25 0.0764 35 0.1042 45 0.1453 55 0.1755 65 0.2183 80 0.3023 95 0.3960	t°	G. PbI ₂ .
	15 25 35 45 55 65 80 95	0.0613 0.0764 0.1042 0.1453 0.1755 0.2183 0.3023 0.3960

^{*} By extrapolation.

(Lichty, J. Am. Chem. Soc. 1903, 25. 474.)

0.0013 g. mol. PbI₂ are dissolved in 1 l. H₂O at 20°. (Fedotieff, Z. anorg. 1911, 73. 178.)

Not more sol. in HC₂H₈O₂+Aq than in H₂O, contrary to Henry. (Denot, l. c.)

Pptd. from aqueous solution by little HI+ Aq, but redissolved by the addition of more. (Ditte, C. R. 92. 718.)

Insol, in cold, sol, in hot HCl+Aq with decomp.

Solubility of PbI2 in HNO2+Aq at 25.2°. S=Solubility in millimols. per litre.

HNO ₃ normal	S
0.001 0.01 0.051 0.04 KNO ₃ + 0.01 HNO ₃	38.87 39.06 39.45 39.45
$0.04 \text{ KNO}_3 +$	

(von Ende, Z. anorg. 1901, 26. 162.)

Sol. in KOH+Aq. Sol. in conc. KI, NaI, BaI₂, SrI₂, CaI₂, and MgI₂+Aq, from which it is pptd. by H₂O. (Berthemot.)

Very sol. in KI+Aq, 2 mols. PbI₂ being dissolved for 1 mol. KI. (Boullay.)

Sol. in NH₄+Aq. Easily sol. in Na₂S₂O₃+Aq. (Werner, C. N. **53**. 51.) Not pptd. in presence of Na citrate. (Spil-

ler.)

Solubility in sat.  $I_2 + Aq$  at  $20^\circ = 0.00216$  g. mol. per l. Solid phase  $PbI_2+I_2$ . (Fedotieff, Z. anorg. 1911, **73**. 178.)

Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Sl. sol. in alcohol. (Henry.) Decomp. by boiling ether. (Vogel.)

100 g. formic acid dissolve 0.25 g. at 19.8°. (Aschan, Ch. Ztg. 1913, **37.** 1117.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, 257.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43**. 314.)

Insol. in acetone. (Naumann, B. 1904. **37.** 4329.)

0.02 pts. are sol. in 100 pts. acetone at 59°. 0.02 pts. are sol. in 100 pts. amyl alcohol at 133.5.

0.50 pts. are sol. in 100 pts. aniline at 13°. 1.10 pts. are sol. in 100 pts. aniline at 184°. (Laszczynski, B. 1894, 27. 2287.)

Solubility of PbI2 in pyridine at t°.		
t°	G. PbI ₂ per 100 g. pyridine	Solid phase
-37 -20 - 9	0.166 0.175 0.186	PbI ₂ , C ₅ H ₅ N
$+\   {\stackrel{0}{3}}{}_{6}$	0.200 0.215 0.225	" " PbI₂, C₅H₅N+
15 35	0.208 0.188	PbI ₂ , 2C ₅ H ₅ N PbI ₂ , 2C ₅ H ₅ N
57 77 92 98	$\begin{array}{c c} 0.190 \\ 0.228 \\ 0.290 \\ 0.340 \end{array}$	 
105 1 <b>0</b> 8 112	0.370 0.410 0.445	" "

40.

(Heise, J. phys. Ch. 1912, 16, 273.)

Lead hydrogen iodide,  $PbH_2I_4 = PbI_2$ , 2HI.

Cold H₂O dissolves out HI. Sol. in hot H₂O, from which crystallizes PbI₂. (Guyot, J. chim. med. 12. 247.)

+10H₂O. Decomp. by H₂O. (Berthelot, C. R. 91. 1024.)

Lead lithium iodide,  $PbI_2$ ,  $LiI + 5H_2O$ .

Loses 1 mol. H₂O at 95° and loses another mol. H₂O at 100°. (Bogorodski, C. C. 1894, II. 515.)

PbI₂,  $2LiI + 6H_2O$ . Sl. sol. in  $H_2O$ . (Mosnier, C. R. 1895, **120**. 446.)

Lead magnesium iodide, PbI₂, 2MgI₂.

Decomp. by H₂O and by alcohol. (Mosnier, A. ch. 1897, (7) **12.** 402.)

+16H₂O. Very hygroscopic. Decomp. immediately by H2O. (Otto and Drewes, Arch. Pharm. 229. 180.)

Lead nickel iodide, PbNi₂I₆+3H₂O.

Decomp. by H₂O. (Mosnier, A. ch. 1897, (7) **12.** 411.)

Lead potassium iodide (Potassium iodoplumbite), PbI₂, KI.

Permanent. Completely decomp. by H₂O. Unacted upon by cold, but completely decomp. by hot alcohol. (Boullay, A. ch. (2) 34. 366.) +2H₂O. The only salt that could be

obtained by Remsen and Herty (Am. Ch. J. **14.** 110.)

PbI₂, 2KI. Sl. sol. in boiling chloroform; easily sol. in strong KI+Aq, insol. in alcohol.

(Brooks, C. N. 1898, 77, 191.) +2H₂O. Decomp. by H₂O. (Berthelot, A. ch. (5) **29.** 289.)

Does not exist. (R. and H.) +4H₂O. (Ditte, C. R. 92. 134.) Does not exist. (R. and H.)

PbI₂, 4KI. Decomp. by H₂O; insol. in alcohol. (Boullay.) Does not exist. and H.)

3PbI2, (Berthelot, l. c.)  $4KI+6H_2O$ . Does not exist. (R. and H.)

Lead potassium periodide, K₂Pb₂I₈+4H₂O.

Decomp. by H₂O or alcohol. (Wells, Z. anorg. 4. 346.)

Lead rubidium iodide, PbI₂, RbI+2H₂O. (Wells, Sill. Am. J. 146, 34.)

Lead silver iodide, PbI₂, 2AgI.

(Ruff and Geisel, B. 1905, 38. 2663)

Lead silver iodide ammonia, PbI₂, 2AgI, 5NH3.

(Ruff and Geisel, B. 1905, 38, 2663.)

Lead sodium iodide, PbI2, NaI.

Decomp. by H₂O. (Poggiale, C. R. 20. 1180.)

 $+xH_2O$ . (Remsen and Herty, Am. Ch. J. 14. 124.)

PbI₂, 2NaI+6H₂O. Sl. sol. in H₂O. (Moisnier, C. R. 1895, **120.** 445.)

Lead iodide ammonia, PbI₂, 2NH₃,

Decomp. by H₂O. (Rammelsberg, Pogg. **48.** 166.)

Lead iodide carbonate.

See Carbonate iodide, lead.

Lead iodosulphide, PbS, 4PbI₂.

Decomp. by light, heat, acids and alkalies. (Lenher, J. Am. Chem. Soc. 1895, 17. 512.) Sol. in conc. HI; insol. in dil. HI+Aq. (Lenher, J. Am. Chem. Soc. 1901, 23, 681.) IPbS₂PbS₂PbI. Ppt. (Hofmann, B. 1904, **37.** 251.)

Lead suboxide, Pb₂O.

Decomp. by H₂O into PbO₂H₂. Decomp. by dil. H₂SO₄, HCl, HNO₃, HC₂H₃O₂+Aq, or alkalies, into PbO, which dissolves, and Pb, which dissolves or not, according to the reagent. Sol. in dil.  $Pb(NO_3)_2 + Aq.$ 

Lead monoxide (Litharge), PbO.

Sol. in 7000 pts. H₂O. (Horsford.)

Pure PbO is insol. in H₂O. (Brandecke, Repert. 53. 155; Siebold, Repert, 53. 174; Herbergen, Repert. 55. 55.) Sl. sol. in H₂O.

(Yorke, Phil. Mag. (3) 5. 82.) 0.31 millimoles Pb are dissolved in 1 liter H₂O at 18°. (Pleissner, C. C. 1907, II. 1056.) 1.71×10⁻² g. are dissolved in 1 litre of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46.** 603.)

Easily sol. in acids.

Sol. in KOH, or NaOH+Aq; also in CaO₂H₂+Aq.

Sol. in boiling Cu(NO₃)₂+Aq with pptn. of

Sol. in CaCl₂, and SrCl₂+Aq. (André. C. R. 104. 359.

Sol. in MgCl₂+Aq. (Voigt, Ch. Ztg. 13. 695.)

Sol. in boiling  $Cu(NO_3)_2 + Aq$  with pptn. of CuO.

Partially sol. in Cd(NO₃)₂, and Mn(NO₃)₂ +Aq with pptn. of CdO and MnO respectively.

Not acted upon by Mg, Ag, Co, Ni, or Ce

nitrates + Aq. (Persoz.) Very sol.  $\triangle$  Pb(C₂H₃O₂)₂+Aq. (Rochle-

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20**. 828.) Insol. in acetone. (Eidmann, C. C. **1899**,

II, 1014.)
When finely pulverised, sol. in cane sugar +Aq, but less than Pb₃O₄. (Peschier.) Sl. sol. in glycerine. Readily sol, in glucose

+Aq. (Persoz.)
Sol. in volatile oils. (Schweitzer.) Yellow modification.

## Solubility in H₂O at 22°.

	Solubility in g equiv. per litre
1. Yellow PbO, obtained by boiling lead hydroxide with 10% NaOH	1.03 x 10-4
2. Yellow PbO, obtained by heating 1 at 630°	1.05 x 10-4
3. Yellow PbO, obtained by heating at 740° red PbO,	1.00 x 10-4
formed by boiling lead hydroxide with conc. NaOH	•
4. Yellow PbO obtained by heating pure, commer- cial, yellow-brown PbO at 620°.	1.09 x 10-4

## (Ruer, Z. anorg. 1906, 50. 273.)

Obtained by boiling Red modification. lead hydroxide with conc. NaOH+Aq.

Solubility in  $H_2O_at 22^\circ = 0.56 \times 10^{-4}$ equiv. per l. (Ruer, Z. anorg. 1906, 50. 273.) Yellow-brown modification. Solubility in H₂O at  $22^{\circ}=1.10\times10^{-4}$  g. equiv. per litre. (Ruer, Z. anorg. 1906, **50**. 273.)

See also Lead.

Min. Massicot.

## Lead oxide (Red lead), Pb₈O₄.

Insol. in H₂O.

Converted by acids into PbO₂ and salts of monoxide.

Sol. in a large amt. of glacial acetic acid. (Berzelius.) Insol. in acetic acid. (Schonbein, J. pr. 74. 325.)

Solution in HC₂H₃O₂+Aq may decompose or not according to concentration of acid. When treated with an excess of HC₂H₃O₂+ Aq of 8° B, Pb₃O₄ is quickly dissolved, but the solution soon deposits PbO₂; this decomposition is facilitated by dilution. But if Pb₃O₄ is treated with a large excess of glacial HC2H8O2, it dissolves, and the solution is permanent if atmospheric air is excluded, and temp. does not rise above 40°. (Jacquelain, J. pr. 53. 152.)

Insol in acetone. (Eidmann, C. C. **1899**, 1014; Naumann, B. 1904, **37**. 4329.)

Easily sol. in cane sugar+Aq. (Peschier.) Min. Minium.

#### Lead sesquioxide, Pb₂O₃.

Insol, in H₂O or in KOH+Aq. Decomp. by strong acids into PbO₂ and corresponding salt of monoxide.

## Lead peroxide, PbO₂.

Insol. in H₂O. Sol. in acids, also in conc. cali hydroxides+Aq. The solutions in alkali hydroxides+Aq. The solutions in acids are very unstable, except when concentrated and kept at a low temperature.

Decomp. by cold HCl, HCN, HBr, and HI+ Aq. Not attacked by other acids when cold, but decomp. thereby when hot. Insol. in moderately conc. HNO₃, H₂SO₄, HC₂H₃O₂+Aq.

There are two forms of PbO₂, the amorphous and the crystalline.

1 l. of very cone. H₂SO₄ dissolves 10 millimols, crystalline PbO₂.

Solubility of amorphous PbO₂ in H₂SO₄+Aq at 22°.

99.5 millimols. PbO₂ are dissolved in 1 l. of

acid containing 1720 g. H₂SO₄.

4 millinols. PbO₂ are dissolved in 1 l. of acid containing 1097 g. H₂SO₄.

v = moles H₂SO₄ per mole of H₂O₄ c = millimols. PbO₂ dissolved in 1 litre.

v	c	v	e
$\begin{array}{c} 0.32 \\ 0.30 \\ 0.25 \end{array}$	$0.82 \\ 0.4 \\ 7.10^{-2}$	0.20 0.15 0.10	8.10 ⁻³ 5.10 ⁻⁴ 1.10 ⁻⁵

(Dolezalek and Finckli, Z. anorg. 1906, 51. 323-5.

Decomp. by NH₄OH+Aq. Sol. in conc. KOH, or NaOH+Aq. Sol. with decomp.

in  $Hg_2(NO_8)_2+Aq_8$ (Levol.)

Insol. in acetone. (Eidmann, C. C. 1899, II, 1014; Naumann, B. 1904, 37. 2943.) Min. Plattnerite.

Lead manganese peroxide, PbO₂, 4MnO₂. Ppt. (Gibbs and Parkmann, Sill. Am. J. (2) **39.** 58.)

Lead oxybromide, PbBr2, PbO.

Insol. in H₂O.

+1, 1½, and 3H₂O. (André, C. R. 96. 1502.)

6PbO, PbBr₂+2H₂O. Ppt. (Strömholm, | Lead phosphoselenide, PbSe, P₂Se. Z. anorg. 1904, 38, 436.)

## Lead oxychloride, 2PbCl₂, PbO+2H₂O.

(André, C. R. 96. 435.)

PbCl₂, PbO. Absolutely insol. in hot or cold H₂O. (André, A. ch. (6) 3. 108.)

Min. Matlockite.

+H₂O. Sol. in hot NaOH+Aq. (André.) 0.38 millimols. Pb are dissolved in 1 litre H₂O at 18°. (Pleissner, C. C. **1907**, II. 1055.) PbCl₂, 2PbO. Insol. in H₂O. Sol. in dil. KOH+Aq (about 110 g. in 1 l.) (Ditte, C. R.

**94.** 1180.)

Min. Mendipite. Easily sol. in HNO₃+Aq. +2H₂O. (Ândré, A. ch. (6) 3. 111.)

PbCl₂, 3PbO. Insol. in H₂O. (Döber-

+½H₂O. Ppt. (Strömholm, Z. anorg. 1904, **38.** 435.)

+2H₂O. 0.10 millimols. Pb are dissolved in 1 litre H₂O at 18°. (Pleissner, C. C. 1907, II. 1056.)

+3H₂O. Ppt. (André, C. R. 104. 359.) +4H₂O. Nearly insol. in H₂O. Sl. sol. in NaOH+Aq. (Vauquelin.)

PbCl₂, 5PbO. (Döbereiner.) 6PbO, PbCl₂+2H₂O. Ppt. (Strömholm, Z. anorg. 1904, 38. 434.)

PbCl₂, 7PbO. Cassel-yellow.

## Lead strontium oxychloride, 2PbO, SrCl₂+ 5H₂O.

(André, C. R. 104. 359.)

Lead oxychloride, iodide, PbCl₂, PbI₂, 4PbO. Min. Schwartzenbergite. Sol. in  $HNO_3+Aq$ .

#### Lead oxyiodide, PbI₂, PbO.

Insol. in boiling H₂O or KI+Aq. (Brandes, A. 10. 269.)

(Ditte, C. R. 92. 145.)

 $+\frac{1}{2}H_{2}O.$  $+H_{2}O.$ 

PbI₂, 2PbO. Pharm. **20.** 1.) Insol. in H₂O. (Denot, J.  $-H_2O$ 

PbI₂, 3PbO+2H₂O. Ppt. (Kühn, C. C. **1847.** 593.

PbI₂, 5PbO. Insol. in H₂O. (Denot.) +7H₂O. (Ditte, C. R. 92. 145.)

6PbO,  $PbI_2 + 2H_2O$ . Ppt. (Strömholm,

Z. anorg. 1904, 38. 437.) 9PbO, PbI₂+2H₂O. (Strömholm, Z. anorg. 1904, 38. 437.)

## Lead oxyperiodide, PbO, PbI₂I₈.

Decomp. by boiling  $H_2O$ . Sol. in dil.  $HC_2H_3O_2+Aq$ . (Gröger, W. A. B. 100, 2b. 415.)

#### Lead phosphide, PbPs.

Decomp. by H2O and dil. acids. (Bossuet, C. R. 1913, 157. 721.)

Insol, in H2O or HCl+Aq. Sol, in HNO2+

Insol. in cold, slowly decomp. by hot alkalies + Aq. (Hahn, J. pr. (2) 93. 436.)

2PbSe, P₂Se₂. Insol. in H₂O, HCl, or
HNO₃+Aq. Slowly sol. in red fuming

HNO₃. (Hahn.)

2PbSe, P.Ses. Decomp. by fuming HNO2. (Hahn.)

#### Lead selenide, PbSe.

Cold HNO₃+Aq dissolves Pb with separation of Se, which dissolves on warming. (Little, A. 112. 212.)

Min. Clo isthalite. Sol. in HNO₂+Aq with separation of Se, when warmed.

## Lead mercury selenide, (Pb, Hg)Se.

Min. Lehrbachite.

## Lead sulphide, PbS.

Very sl. sol. in H₂O.

1 l. H₂O dissolves 3.6×10⁻¹ moles. PbS at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.) 1 l: H₂O dissolves 3×10⁻⁴ g. PbS at **25°**.

(Hevesy, Z. anorg. 1913, 82. 328.)

Insol. in dilute acids; alkalies, and alkali sulphides + Aq. Decomp. with solution in moderately dil. HNO₃+Aq. With conc. HNO₃ or aqua regia, PbSO₄ is formed. Sol.

in hot cone. HCl+Aq.
11. H₂O sat. with H₂S dissolves 1.5×10-4 g. PbS at 25°. (Hevesy, Z. anorg. 1913, 82.

Insol. in NH₄Cl, or NH₄NO₃+Aq. (Brett.) Somewhat sol. in H₂S+Aq when heated therewith in a sealed tube. (Senarmont, A. ch. (3) **32.** 168.)

Insol. in potassium thiocarbonate +Aq. (Rosenbladt, Z. anal. 26. 15.)

Sol. in Na₂S₂O₃+Aq. (Waller, J. Anal. Ch. 5. 646.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Min. Galena, Galenite.

#### Lead polysulphide, PbS₅.

Ppt.; insol. in alkali sulphides; decemp. by conc. HNO₃. (Bodroux, C. R. 1900, 130. 1398.)

#### Lead platinum sulphide.

See Sulphoplatinate, lead.

Lead sulphide mercuric chloride, 3PbS. 4HgCl₂.

Decomp. by H₂O. (Levallois, C. R. 96. 1666.)

## Lead sulphobromide, chloride, or iodide. See Lead bromosulphide, etc.

## Lead disulphodiimide, PbN₂S₂, NH₃.

Ppt.

Very stable in the air or in a vacuum. Sol. in no solvent without decomp.

When rapidly heated it explodes very violently at 140°. (Ruff, B. 1904, 37. 1581.)

### Lead telluride, PbTe.

Insol. in H₂O. Sol. in cold HNO₃+Aq. (Rose, Pogg. 18. 68.)

Min. Altaite. Easily sol. in HNO₈+Aq.

## "Leucone."

Wöhler (A. 127. 268) gives this substance the formula  $H_{10}Si_{s}O_{10}$ , but it is identical with silicoformic anhydride,  $Si_{2}H_{2}O_{3}$ , which see.

#### Lime.

Quicklime, CaO. See Calcium oxide. Slaked lime, CaO₂H₂. See Calcium hydroxide.

## Lithium, Li.

Decomposes H₂O.

Lasily sol. in dil. acids. Slowly attacked by conc. H₂SO₄, rapidly by conc. HNO₃+Aq. Insol. in hydrocarbons. Sol. in liquid NH₃, but not so easily as K.

Sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 820.)

1 gram atom dissolves:

0° in 3.93 mol. liquid NH₈. -25° " 3.93 -50° " 3.93 :66 " " " ₩ —80° " 3.93 " " (Ruff, B. 1906, 39. 840.)

Sol. in ethylamine. Insol. in propylamine and in secondary and tertiary amines. (Kraus, J. Am. Chem. Soc. 1907, 29. 1561.)

#### Lithium amalgam, LiHg₆.

LiHg₅ is obtained at all temp, up to 100°, Can be cryst. from Hg without decomp. at any temp. below 100°. (Kerp, Z. anorg. 1900, **25.** 68.)

## Lithium amide, LiNH₂.

(Ruff, B. 1911, 44. 505.)

Decomp. slowly in the air.

Slewly decomp. by cold, rapidly by hot H₂O.

Slowly decomp. by HCl.

Slowly decomp. by cold, rapidly by hot abs. alcohol. (Titherley, Chem. Soc. 1894, **65.** 518.)

## Trilithium amide, Li₂NH₂.

Hydroscopic; decomp. by H₂O. (Dafert, M. 1910, **31**. 994.)

## Lithium ammonia, Li, NH₃.

Decomp. by H₂O at ordinary temp.; sol. in liquid NH3. (Moissan, C. R. 1898, 127. 689.)

Li, 3NH₈. (Moissan, C. R. 1901, 133. 716.)

#### Trilithium ammonium, Li₃NH₂.

Very hydroscopic, decomp. by H₂O. (Dafert, M. 1910, **31.** 992.)

## Lithium antimonide, Li₃Sb.

Decomp, by H₂O with evolution of H₂. Sol. in liquid NH₃. (Lebeau, C. R. 1902, **134.** 285.)

#### Lithium arsenide, Li₃As.

Decomp. by  $H_2O$ ; decomp. violently by fuming  $HNO_3$ . (Lebeau, C. R. 1899, 129. 50.)

## Lithium azoimide, LiN₃.

Deliquescent. Stable in aq. solution. 36.12 pts. are sol. in 100 pts. H₂O at 10°. 62.07 " " " 100 " H₂O " 15.5 " " " 100 " H₂O " 15.5°. " 100 " H₂O " 16°. " " 66.41 " 100 " " " " 20.26 abs. alcohol at 16°

Insol. in ether. (Curtius, J. pr. 1898, (2)

**58.** 277.)

+H₂O. Very hydroscopic; decomp. in the air. Very sol. in H₂O and alcohol. (Dennis, Z. anorg. 1898, 17. 18.)

#### Lithium bromide, LiBr.

Deliquescent.

100 pts. H2O dissolve at:

0° 34°  $59^{\circ}$ 82° 103° 222 244 143 196 270 pts. LiBr.

Sp. gr. of LiBr+Aq at 19.5° containing: 0 10 15 20 25 30% LiI 30% LiBr, 1.035 1.072 1.113 1.156 1.204 1.254

50 55% LiBr. 45 1,309 1,368 1,432 1,500 1,580

(Kremers, Pogg. 103. 65; 104. 133: Gerlach, Z. anal. 8. 285.)

g.-mol. LiBr dissolved Temp. of maximum density of LiBr+Aq. in 1000 g. H₂O.

1.921° 0.2941 $0.881^{\circ}$ 0.4383

(de Coppet, C. R. 1900, 131. 178.)

Moderately sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, 20. 828.)

Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Solubility in glycol at  $14.7^{\circ} = 37.5\%$ . (de

Coninck, Belg. Acad. Bull. 1905, 359.)
Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

Sol. in methyl acetate (Naumann, B. 1909, 42. 3789); ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Difficultly sol, in ethyl acetate. (Naumann, B. 1910, 43. 314.) +H₂O. 100 g. H₂O dissolve 209 g. LiBr

+H₂O. 100 g. H₂O dissolve 209 g. LiBr at 44°. (Bogorodski, C. C. **1894**, II. 514.) +2H₂O. (Bogorodski,)

+2H₂O. (Bogorodski.) +3H₂O. 100 g. H₂O dissolve 80 g. LiBr at —30°, and 122 g. at —10°. (Bogorodski.)

#### Lithium molybdenyl bromide, LiBr, MoOBr₃ +4H₂O.

Very hygroscopic. (Weinland and Knoll, Z. anorg. 1905, 44. 111.)

#### Lithium bromide ammonia.

LiBr, NH₈. Sol. in H₂O with decomp. LiBr, 2NH₈. " " " " " LiBr, 3NH₈. " " " " " " LiBr, 4NH₃. " " " " " "

(Bonnefoi, C. R. 1900, 130. 1395.)

#### Lithium carbide, LiC2.

Insol. in conc. acids.

Sol, in fused oxidizing agents; decomp. H₂O in the cold. (Moissan, C. R. 1896, **122**. 363.)

## Lithium subchloride, Li₂Cl.

Decomp. by  $H_2O$ . (Guntz, C. R. 1895, **121**. 945.)

#### Lithium chloride, LiCl.

Very deliquescent. Most deliquescent salt known to Berzelius. Very sol. in H₂O. Sol. in 1.315 pts. H₂O at 15°. (Gerlach.)

100 pts. H₂O dissolve at:
0° 20° 65° 80° 69° 140° 160°
63.7 80.7 104.2 115 129 139 145 pts. LiCl.
(Gerlach, Z. anal. **8.** 281.)

Sp. gr. of LiCl+Aq at 15° containing: 10 15 20% LiCl, 1.006 1.030 1.058 1.086 1.117 25 30 35 40% LiCl. 1.148 1.182 1.219 1.256 (Gerlach, Z. anal. 8. 281.)

Sp. gr. of LiCl+Aq at 18° containing: 5 10 20 30 40% LiCl. 1.0274 1.0563 1.115 1.181 1.255 (Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of LiCl+Aq at 25°.

Concentration of LiCl+Aq.	Sp. gr.
1-normal  1/2- ''  1/4- ''  1/8- ''	1.0243 1.0129 1.0062 1.0030

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp.	gr.	of	Li(	Cl	+	Aq	
-----	-----	----	-----	----	---	----	--

g. IACl in 1000 g.	Sp. gr. 16°/16°
0 2.3923 6.2360 10,1093	1.000000 * 1.001405 1.003647 1.005921

(Dijken, Z. phys. Ch. 1897, 24. 109.)

Sp. gr. of LiCl+Aq at 20°.

Nomality of LiCl+Aq	% LiCi	Sp. gr.
10.35	35.97	1.2230
7.17	26.40	1.1550
5.57	21.10	1.1215
2.98	11.83	1.0691
1.06	4.37	1.0232

(Forchheimer, Z. phys. Ch. 1900, 34. 25.)

Sp. gr. 20°/4° of a normal solution of LiCl = 1.022375. (Haigh, J. Am. Chem. Soc. 1912, 34. 1151.)

Sp. gr. of dil. LiCl+Aq at 20.004°. Conc.=g. equiv. LiCl per l. at 20.004°. Sp. gr. compared with H₂O at 20.004°1.

Conc.	Sp. gr.
0.0000 0.0001 0.0002 0.0005 0.0010 0.0020 0.0050 0.0100	1.000,000,0 1.000,002,5 1.000,005,0 1.000,012,6 1.000,025,3 1.000,050,5 1.000,125,8 1.000,251,0
	1

(Lamb and Lee, J. Am. Chem. Soc. 1913, 35., 1688.)

B.-pt. of LiCl+Aq.

% LiCl	Bpt.	% LiCl	Bpt
3.38	101°	16.66	107°
6.54	102	19.35	109
13.04	105 .	21.8	111

(Skinner, Chem. Soc. 61. 341.)

Sat. LiCl+Aq boils at 171°. (Kremers.)

B.-pt. of LiCl+Aq. P=pts. LiCl to
100 pts. H₂O.

	F				
Bpt.	P	Bpt.	P	Bpt.	P
101°	3.5	124°	48.5	147°	87.5
102	7	125	50	148	90
103	10	126	51.5	149	92.5
104	12.5	127	53	150	95
105	15	128	54.5	151	97.5
106	17.5	129	56	152	100
107	20	130	57.5	153	102.5
108	22	131	59	154	105
109	24	132	60.5	155	107.5
110	26	133	62	156	110.5
111	28	134	63.5	157	113.5
112	30	135	65	158	116.5
113	32	136	66.5	158.5	117.96
114	33.5	137	68	159	119.5
115	35	138	69.75	160	122.5
116	36.5	139	71.5	161	125.5
117	38	140	73.25	162	128.5
118	39.5	141	75	163	131.5
<b>1</b> 19	41	142	77	164	135
120	42.5	143	79	165	138.5
121	44	144	81	166	142.5
122	45.5	145	83	167	146.5
123	47	146	85	168	151

(Gerlach, Z. anal. 26, 437.)

#### Solubility of LiCl in HCl+Aq at 0°.

_				
Mg. mol. p	per 10 cc. tion	G. per 10 cc. of solution		Sp. gr. of
LiCl	HCl	LiCl	HCI	
120 95.5 67.0 58.0	$0.0 \\ 22.5 \\ 66.0 \\ 81.0$	51.0 41.4 28.5 24.6	$0.0 \\ 8.2 \\ 24.1 \\ 29.5$	1.255 1.243 1.249 1.251

(Engel, A. ch. (6) 13. 385.)

See also LiCl+H2O.

 $\mathbb{K}\mathbb{K}$ 

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 828.)

Sol. in absolute alcohol, ether, and alcoholether.

B.-pt. of alcoholic solution of LiCl.

% LiCl Bpt.	% LiCl	Bpt.
2.4 78.43°+0.70° 5.39 " +2.15 8.01 " +4.18	9.93 15.94	78.43°+ 5.55° " +11.75

(Skinner.)

Solubility in alcohol+Aq decreases to 40% alcohol+60% H₂O. Curve shows minimum at 30% H₂O to 70% alcohol. The sat. pure H₄O and pure alcohol solutions cooled to  $0^\circ$  deposit LiCl, H₂O and LiCl,  $4\text{C}_2\text{H}_6\text{O}$  respectively. (Pina de Rubies, C. A. **1914**. 743, **3006**.)

Solubility in ethyl alcohol.

Temp. 1.06° 5.07° 13.0° 25.0° 40.6° 62.6°
% LiCl 14 14 13 14 15 18
(Lemoine, C. R. 1897, 125. 605.)

20° 30° 40° 50° 60° 24.28 25.10 25.38 24.40 23.46 g. LiCl. The solid phase from 20°-60° is LiCl. (Turner and Bissett, Chem. Soc. 1913, 103 1907.)

## Solubility in ethyl alcohol+Aq at 25°.

100 g, of the solution contain				
G. C ₂ H ₅ OH	G. H₂O	G. LiCl		
0 5.96 11.07 17.46 18.56 22.16 26.29 28.97 29.27 30.10 30.51	55. 10 51. 52 48. 73 43. 90 43. 70 41. 17 39. 51 37. 42 36. 89 36. 64 35. 67	44.90 42.52 40.20 38.64 37.74 36.67 34.70 33.61 33.84 33.26 33.82		
32.79 38.40 49.27 50.32 53.50 58.15 59.78 63.09 70.24 70.70 70.74 79.26	34.95 31.58 24.67 24.04 20.94 18.47 17.46 14.83 8.66 8.26 7.78	32.26 30.02 26.06 25.64 25.56 23.38 22.76 22.08 21.10 21.04 21.48 20.74		

The solid phase in the mixtures which are richest in alcohol is LiCl; in the other mixtures the solid phase is LiCl+H₂O.

(Pina de Rubies, C. C. 1915, I. 521.)

Sp. gr. of LiCl in ethyl alcohol (LiCl,  $2C_2H_6O$ ).

% salt	Sp. gr. at 14°	Sp. gr. at 0°
$egin{array}{c} 0 \\ 5.2 \\ 10.1 \\ 14.6 \\ \end{array}$	0.797 0.839 0.871 0.903	0.809 0.851 0.881 0.903

(Lemoine, C. R. 1897, 125. 605.)

Solubility in methyl alcohol at t°.	
t° % LiCl in sat. solution	
1 23 50	26 27 30

(Lemoine, C. R. 1897, 125. 604.)

Sp. gr. of LiCl in methyl alcohol (LiCl, 3CH₄O). % salt 5.2 14.5 22.1Sp. gr. at 21.5° 0.836 0.910 0.974 Sp. gr. " 0° 0.854 0.9260.988 (Lemoine, C. R. 1897, 125. 604.)

15.86 g. are sol. in 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 276.)

Sol. in 15 pts. fusel oil. (Gooch, Am. Ch. J.

100 g. methyl alcohol dissolve 42.36 g. LiCl at 25°.

100 g. ethyl alcohol dissolve 25.83 g. LiCl

100 g. propyl alcohol dissolve 16.22 g. LiCl at 25°

100 g. isoamyl alcohol dissolve 9.03 g. LiCl

(Turner and Bissett, Chem. Soc. 1913, 103. 1909.)

Solubility of fused LiCl in alcohols at 25°.

Solvent	% LiCl
Water Ethyl alcohol Propyl alcohol Butyl alcohol Amyl alcohol Allyl alcohol Glycerine	45.0 2.475 3.720 9.56 8.26 4.20 4.14
Phenol (at 53°C)	1.89

(Patten and Mott, J. phys. Chem. 1904, 8. 158.)

100 pts. pyridine dissolve 7.78 pts. LiCl at 15°; 14.26 pts. LiCl at 100°. (Laszczynski, B. 1894, 27. 2288.)

Soluble in anhydrous pyridine, 97% pyridine+Aq, 95% pyridine+Aq, and 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. pyridine + Aq. (Kal Soc. 1908, 30. 1107.)

Difficultly sol. in methyl acetate (Naumann, B. 1909, 42. 3789); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Solubility in glycol at  $15^{\circ} = 11\%$ . (de

Coninck, Belg. Acad. Bull. 1905, 359.)
Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)
Sol. in ethylamine. (Shinn, J. phys. Chem.

1907, **11.** 538.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Solubility	of	LiCl	in	acetone.

Pts. sol. in 100 pts. acetone	t° .
4.60	0
4.40	12
4.11	25
3.76	46
3.12	53
2.14	58

(Laszczynski, B. 1894, 27. 2287.)

+H₂O. 12.536 millimols, are contained in 1 l. sat. solution at 25°. (Herz, Z. anorg. 1912, 73, 274.)

#### Solubility in HCl+Aq at 25°.

Millimols HCl in 10 ccm.	Millimols LiCl in 10 ccm.
6.30 10.53 17.64	135.36 134.14 126.52 122.58

(Herz, Z. anorg. 1912, 73. 274.)

+2H₂O. Sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.) +3H₂O. (Bogorodski, C. C. 1894, II. 514.)

Lithium gold chloride.

See Chloraurate, lithium.

Lithium manganous chloride, LiCl, MnCl₂+ 3H₂O.

Decomp. by H₂O; stable only in excess of LiCl. (Chassevant, A. ch. (6) 30. 10.)

Lithium mercuric chloride, 2LiCl, HgCl₂.

Very deliquescent and sol, in H₂O. (Harth, Z. anorg. 1897, 14. 323.)

Lithium nickel chloride, LiCl, NiCl₂+3H₂O. Deliquescent. Sol. in H₂O and alcohol. (Chassevant.)

Lithium thallic chloride, 3LiCl, TlCl₃+ 8H₂O.

Very deliquescent, Sol. in H₂O. (Pratt. Am. J. Sci. 1895, (3) 49. 404.)

Lithium stannic chloride.

See Chlorostannate, lithium.

Lithium uranous chloride, Li₂UCl₆.

As K salt. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Lithium uranium chloride, UCl4, 2LiCl.

Very hydroscopic; sol. in H₂O with decomp. Sol. in acetic acid. Decomp. by alcohol. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Lithium zinc chloride, LiCl, ZnCl₂+3H₂O.

Extremely deliquescent. (Ephraim, Z. anorg. 1908, 59. 68.

3LiCl, ZnCl₂+10H₂O (?). Not obtained in solid state. (Ephraim, Z. anorg. 1908, 59.

## Lithium chloride ammonia.

LiCl, NH₈.

LiCl, 2NH₈.

LiCl, 3NH₃. LiCl, 4NH₃.

Above salts are all decomp. by H₂O. (Bonnefoi, C. R. 1898, 127. 367-369.)

## Lithium chloroiodide, LiCl₄I+4H₂O.

Deliquescent. (Wells and Wheeler, Sill. Am. J. 144, 42.)

## Lithium fluoride, LiF.

Very difficultly sol. in H₂O. (Berzelius,

Pogg. 1. 17.)

Two crystalline forms. Only very sl. sol. in H₂O. Very sl. decomp. by H₂O at red

heat. (Poulenc, Bull. Soc. 1894, (3) 11. 17.) Sp. gr. of solution sat. at 18°=1.003 and contains 0.27% LiF. (Mylius, B. 1897, 30. 1718.)

Sol. in 800 pts. H₂O, and the presence of NH₄F and NH₃ decreases solubility to 1: 3500. (Carnot, Bull. Soc. 1889, (3) 1. 250.) Two crystalline forms are very sl. sol. in HCl; easily sol. in HNO₃. (Poulenc, Bull. Soc. 1894, (3) 11. 17.)

Two crystalline forms are insol. in 95%

alcohol. (Poulenc.)

Insol. in methyl acetate. (Naumann, B. **1909**, **42**. 3790.)

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

## Lithium hydrogen fluoride, LiHF₂.

Difficultly sol. in H₂O, but more easily than LiF. (Berzelius.)

## Lithium silicon fluoride. See Fluosilicate, lithium.

Lithium stannic fluoride. See Fluostannate, lithium.

Lithium tantalum fluoride. See Fluotantalate, lithium.

Lithium uranyl fluoride, UO₂F₂, 4LiF. (Ditte.)

Lithium zirconium fluoride. See Fluozirconate, lithium.

## Lithium hydride, LiH.

Not deliquescent. Decomp, by H₂O. (Guntz, C. R. 1896, 123, 997.)

## Lithium hydrosulphide, LiSH (?).

Deliquescent. Sol. in H₂O and alcohol. (Berzelius, Pogg. 6. 439.)

### Lithium hydroxide, LiOH.

Not so deliquescent as NaOH, and apparently not more sol. in hot than cold H2O. Gmelin, Gilb. 62. 399.)

Not deliquescent, (Arfvedson, A. ch. 10.

The solubility of LiOH in H₂O can be expressed by  $y = 6.6750 + 0.00346t + 0.0003t^2$ , where y = the percentage of Li₂O in a saturated solution. (Dittmar, Jour. Soc. Chem. Ind. 7. 730.)

#### Solubility of LiOH in H₂O at t°.

G. per 100 g. Solution		G. LiOH per	
-	I.i ₂ ()	LiOH	100 g. H ₂ O
0 10	6.67 6.74	10.64 10.80	12.7 12.7
$\frac{20}{25}$	6.86	10.30	12.8 12.9
30 40	$7.05 \\ 7.29$	11.27	12.9
50 60	7.56	11.68 12.12	13.0 13.3
80	7.96 8.87	12.76 14.21	13.8 15.3
100	10.02	16.05	17.5

(Seidell's Solubilities, 1st Ed. 174.)

A sat. aq. solution contains 7.09% LiOH. (Schreinemakers, C. C. 1905, II. 1486.)

Sp. gr. of LiOH+Aq at 18° containing: 1.252.5 7.5% LiOH. 1.0132 1.0276 1.0547 1.0804 (Kohlrausch, W. Ann. 1879. 1.)

Solubility in Li₈SbS₄+Aq at 30°.

	LiOH	Li ₃ SbS ₄	Solid Phase
-	11.4 9.1 2.3 2.1 2.1	0 8.3 29.9 48.3 52.1	LiOH, H ₂ O " LiOH, H ₂ O + Li ₃ SbS ₄ , 10H ₂ O Li ₃ SbS ₄ , 10H ₂ O
	$\begin{bmatrix} 1.4 \\ 0 \end{bmatrix}$	$\frac{51.8}{51.3}$	Li ₈ SbS ₄ , 10H ₂ O

(Donk, Chem. Weekbl. 1908, 5. 529, 629, 767.)

Sl. sol. in alcohol; insol. in alcohol-ether.

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37, 3601.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Cryst. also with  $H_2O$ , and  $\frac{1}{2}H_2O$ . (Göttig, B. 20. 2912.)

#### Lithium imide, Li2NH.

Decomp. at high temp. Insol. in toluene, benzene, ether and ethyl acetate. Decomp. CHCl₃. (Ruff, B. 1911, 44, 506.)

#### Lithium iodide, LiI.

Deliquescent.

Solubility in 100 pts. H₂O at:
0° 19° 40° 59° 75° 80° 99° 120°
151 164 179 200 263 435 476 588 pts. LiI.

Sp. gr. of LiI+Aq at 19.5° containing: 5 10 15 20 25 30% LiI, 1.038 1.079 1.124 1.172 1.224 1.280

35 40 45 50 55 60% Lil. 1.344 1.414 1.489 1.575 1.670 1.777 (Kremers, Pogg. **104**. 133; **111**. 60: Gerlach, Z. anal. **8**. 295.)

Sp. gr. of LiI+Aq at 18° containing: 5 10 15 20 25% LiI. 1.0361 1.0756 1.1180 1.1643 1.2138 (Kohlrausch, W. Ann. 1879. 1.)

Temp. of maximum density of LiI+Aq. 2.516° 0.039° g.-mol. LiI dissolved in 1000 g,  $H_2O$ . 0.1795 0.4666

(de Coppet, C. R. 1900, **131.** 178.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

100 g. methyl alcohol dissolve 343.4 g. LiI at 25°.

100 g. ethyl alcohol dissolve 250.8 g. LiI at 25°.

 $100~\mathrm{g}.$  propyl alcohol dissolve  $47.52~\mathrm{g}.$  LiI at  $25^{\circ}.$ 

100 g. isoamyl alcohol dissolve 112.50 g. LiI at 25°.

In the case of propyl alcohol the solid phase at 25° is LiI, 4C₃H₈O. (Turner and Bissett, Chem. Soc. 1913, **103**. 1909.)

Solubility in organic solvents at t°.

C=pts. by wt. of LiI in 100 ccm. of the sat. solution.

L=no. of liters which at the saturation temp. hold in solution 1 mol. LiI.

Solvent	t°	С	L
Furfurol Nitromethane	25° 25° 0°	45.86 2.519 1.219	0.292 5.32 10.98

(Walden, Z. phys. Ch. 1906, 55. 718.)

Solubility in glycol at 15.3°=28%. (de Coninck, Belg. Acad. Bull. 1905, 359.)

Sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in methyl acetate. (Naumann, B. 1909, 42, 3789.)

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sol. h. acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.)

+H₂O. Mpt. below 200°. (Bogorodsky, C. C. **1897**, II. 175.)

+2H₂O. Mpt. 86-88°. (Bogorodsky.) +3H₂O. Mpt. 75°. (Bogorodsky.)

Sol. in absolute alcohol without decomp. (Thirsoff, Chem Soc. 1894, 66. (2) 234.)

The composition of the hydrates formed by LiI at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by LiI and of the conductivity and sp. gr. of LiI+Aq. (Jones, Am. Ch. J. 1905, 34. 301.)

Lithium mercuric iodide, 2LiI, HgI₂+6H₂O.

Very deliquescent. Decomp. by H₂O. Very sol. without decomp. in alcohols, glycerine, acetone, fuming formic acid, acetic acid, ethyl acetate, ethyl oxalate, etc. Less sol. in nitrobenzene. Insol. in benzene and methyl iodide. (Duboin, C. R. 1905, 141. 1017.)

+8H₂O. Decomp. by H₂O. Very sol. in alcohols, glycerine, acetone, furning formic acid, acetic acid, ethyl acetate, etc. without decomp. Sl. sol. in nitrobenzene. Insol. in benzene and methyl iodide. (Duboin, l. c.)

+9H₂O. Hydroscopic. Sol. in alcohol and acetone without decomp. (Dobroserdoff, C. C. **1901**, I. 664.)

Lithium nitride, Li₃N.

Sol. in H₂O with decomp. (Ouvrard, C. R. 114. 120.)

Very hydroscopic. (Dafert, M. 1910, **31.** 987.)

Lithium oxide, Li₂O.

Slowly sol. in H₂O to form LiOH. See Lithium hydroxide.

Lithium peroxide, Li₂O₂.

(de Forcrand, C. R. 1900, 130. 1467.)

Lithium hydrogen peroxide, Li₂O₂, H₂O₂+ 3H₂O.

Sol. in H₂O. Insol. in alcohol. (de Forcrand, C. R. 1900, **130**. 1466.)

Lithium selenide, Li₂Se.

Sol. in H₂O. (Fabre, C. R. **103**. 269.) +9H₂O. Sol. in H₂O. (Fabre.)

Lithium silicide, LieSia.

Decomp. by H₂O and by dil. acids. Decomp. by aqueous solutions of alkalies with evolution of H₂. (Moissan, C. R. 1902, **134**. 1083.)

Lithium monosulphide, Li.S.

More sol, in H2O or alcohol than LiOH.

Luteochromium bromide, Cr(NH₃), Br₃.

Less sol. in H₂O than the chloride. (Jörgensen, J. pr. (2) 30. 1.)

- bromoplatinate,  $[Cr(NH_3)_6]_2(PtBr_6)_3 +$ 4H₂O.

Sl. sol. in H₂O. Insol. in alcohol. (Jörgensen.)

- chloride, Cr(NH₃)₆Cl₃+H₂O.

Efflorescent, and very sol. in H₂O. (Jörgensen.)

--- chloroplatinate.

(a)  $[Cr(NH_3)_6]_2(PtCl_6)_3 + 6H_2O$ . Nearly

completely insol. in  $H_2O$ . (Jörgensen.) (b)  $Cr(NH_2)_6Cl(PtCl_6) + 2\frac{1}{2}H_2O$ . Decomp. by  $H_2O$  into above; insol. in alcohol. (Jörgensen.)

(c)  $[Cr(NH_3)_6]_2Cl_4(PtCl_6) + 2H_2O$ . Decomp. by  $H_2O$  into (a). (Jörgensen.)

- mercuric chloride,  $Cr(NH_3)_6Cl_3$ ,  $HgCl_2$ . Decomp. by H2O: sl. sol. in dil. HCl+Aq:

insol. in alcohol.  $Cr(NH_3)_6Cl_3$ ,  $3HgCl_2+2H_2O$ . Decomp. by dil. HCl+Aq into above salt. (Jörgensen.)

--- chromicyanide,  $Cr(NH_3)_6Cr(CN)_6$ . Precipitate.

- cobalticyanide, Cr(NH₃)₆Co(CN)₆.

Nearly insol, in H₂O or in conc. HCl+Aq. (Jörgensen.)

- ferrocyanide,  $Cr(NH_3)_6Fe(CN)_6$ .

Very sl. sol. in cold H₂O or dil. acids. (Jörgensen.)

--- iodide, Cr(NH₃)₆I₃.

Sl. sol. in H₂O. (Jörgensen, l. c.)

- iodosulphate,  $Cr(NH_3)_6So_4I$ .

Sol. in H₂O; nearly insol. in dil. NH₄OH+ Ag or alcohol. (Jörgensen.)

--- nitrate,  $Cr(NH_3)_6(NO_3)_3$ .

Sol, in 35-40 pts. H₂O. Insol. in cold dil. HNO₂+Ag or alcohol. Can be crystallised out of H₂O containing a little HNO₃. (Jörgensen, J. pr. (2) 30. 1.)

 nitrate chloroplatinate,  $Cr(NH_3)_6(NO_3)PtCl_6+H_2O.$ 

Insol. in H₂O. Sol. in dil. H₂SO₄+Aq. (Jörgensen.)

mitratosulphate, Cr(NH₈)₆(NO₃)SO₄. Sol. in H₂O; insol. in alcohol. (Jörgensen.)

Luteochromium oxalate,  $[Cr(NH_2)_6]_2(C_2O_4)_3$ + 4H.O.

Nearly insol. in cold H₂O. (Jörgensen.)

- orthophosphate, Cr(NH₂). O₄+4H₂O. Sl. sol. in H₂O; easily sol. in dil. acids. (Jörgensen.)

sodium pyrophosphate,

 $Cr(NH_3)_6(NaP_2O_7) + 11\frac{1}{2}H_2O.$ 

Nearly insol. in cold H2O; wholly insol. in dil. NH4OH+Aq. (Jörgensen.)

- sulphate,  $[Cr(NH_3)_6]_2(SO_4)_3 + 5H_2O$ .

Quite sol. in H₂O; insol. in alcohol. (Jörgensen.)

---- sulphate chloroplatinate,

 $[Cr(NH_3)_6(SO_4)]_2PtCl_6.$ 

Nearly insol. in H₂O. (Jörgensen.)

Luteocobalt diamine chromium sulphocyanide.

See Diamine chromium luteocobalt sulphocyanide.

Luteocobaltic bromide, Co(NH₃)₆Br₃.

Sol. in H₂O. Precipitated from saturated H₂O solution by dil. HBr+Aq. (Jörgensen, J. pr. (2) **35.** 417.)

bromopermanganate,

Co(NH₃)₆Br₂(MnO₄).

Easily sol. in H₂O. (Klobb, A. ch. (6) 12.

- bromoplatinate, Co(NH₃)₆Br₃, PtBr₄+ H₂O.

Sl. sol. in H₂O; can be recrystallised from hot H₂O containing HBr. (Jörgensen.)

- bromosulphate,  $Co(NH_a)_6Br(SO_4)$ .

Nearly insol. in H₂O. Very sl. sol. in dil. NH₄OH+Aq. (Jörgensen.)

- carbonate,  $[Co(NH_3)_6]_2(CO_3)_8 + 7H_2O$ .

Efflorescent; easily sol. in  $H_2O$ . [Co(NH₃)₆]₂(CO₃)₃,  $H_2CO_3+5H_2O$ . Less sol. in  $H_2O$  than the neutral salt. (Gibbs and Genth.)

- chloride, Co(NH₈)₆Cl₃.

Sol. in 17.09 pts.  $H_2O$  at 10.5°; 16.81 pts. at 11.4°; 16.48 pts. at 12°; and more easily in hot  $H_2O$ . (F. Rose.)

100 pts. H₂O dissolve 4.26 pts. at 0°, and 12.74 pts. at 46.6°. (Kurnakoff, J. russ, Soc. **24.** 629.)

Not appreciably sol. in conc. HCl+Aq. (Jorgensen.)

Insol. in alcohol or solutions of the alkali chlorides. (Gibbs and Genth.)

Insol. in NH₄OH+Aq.

Aqueous solution is pptd. by alcohol, mineral acids, or alkali chlorides.

Luteocobaltic mercuric chloride,  $Co(NH_3)_6Cl_3$ ,  $HgCl_2+1\frac{1}{2}H_2O$ .

*Sol. in hot H₂O. (Krok, **1870.**) By recrystallizing from hot H₂O containing HCl is converted into-

Co(NH₃)₆Cl₃, 3HgCl₂+H₂O. Very sl. sol.

in cold H₂O. (Jörgensen.) Co(NH₃)₅Cl₃, 2HgCl₂+1₂H₂O. Sol. in hot H₂O, from which it crystallizes on cooling. Insol. in cold conc. HCl +Aq, and is pptd. from H₂O solution by HCl or alcohol. (Car-

stanjen.) Does not exist. (Jörgensen.)

+3H₂O. More easily sol. in cold H₂O and other solvents than the preceding comp. (Carstanjen, Berlin, 1861.)

Does not exist. (Jörgensen.)

- ---- stannous chloride, 2Co(NH₃)₆Cl₃,  $3SnCl_2+10H_2O$ . +8H₂O.
- chloraurate, Co(NH₃)₆Cl₃, AuCl₃.

Very sl. sol. in cold, more easily in hot H₂O containing HCl. (Gibbs and Genth, Sill. Am. J. (2) **23.** 330.)

- --- chloriodate,  $[Co(NH_3)_6Cl_2]_2I_4O_{11}+H_2O$ .
- chloriridite, Co(NH₃)₆, IrCl₆. Insol. in boiling H2O or dil. HCl+Aa. (Gibbs.)
- --- chloriridate, 2Co(NH₃)₆Cl₃, 3IrCl₄. Insol, in H₂O. (Gibbs.)
- chlorochromate, Co(NH₃)₆CrO₄Cl+  $3H_2O$ .

Sol. in H₂O. (Klobb, Bull. Soc. 1901, (3) **25.** 1027.)

- ---- chlorofluoride, Co(NH₃)₆Cl₂F. (Bohm, Z. anorg. 1905, 43, 339.)
- chloropalladite, 2Co(NH₃)₆Cl₃, 3PdCl₂. Easily sol. in dil. HCl+Aq. (Gibbs, Sill. Am. J. (2) 37. 58.)
- chloroperchlorate, Co(NH₃)₆Cl(ClO₄)₂. (Millosevich, Gazz, ch. it. 1901, 31. (2) 285.)
- chloropermanganate,  $Co(NH_3)_6Cl_2(MnO_4)$ .

Can be recrystallized from H₂O. (Klobb, C. R. 103. 384.)

chloropermanganate ammonium chloride,  $Co(NH_3)_6Cl_2(MnO_4)$ ,  $NH_4Cl$ . Easily sol. in H₂O. (Klobb.)

Luteocobaltic chloropermanganate potassium chloride, Co(NH₂)₆Cl₂(MnO₄), KCl.

Very easily sol. in H₂O, with decomp. into constituents; sol. in KCl+Aq. (Klobb.)

- chloropermanganate sodium chloride,  $Co(NH_3)_6Cl_2(MnO_4)$ , NaCl. Very sol, in H.O. (Klobb.)
- chloroplatinate, 2Co(NH₈)₆Cl₈, 3PtCl₄+ 6H₂O.

Can be recrystallized from much hot  $H_2O$ . (Gibbs and Genth.)

 $+21H_2O$ 

(Gibbs and Genth.)
(Wery sl. sol.  $Co(NH_3)_4Cl_3$ ,  $PtCl_4+\frac{1}{2}H_2O$ . Very sl. sol. in cold, decomp. by hot  $H_2O$  into—  $2Co(NH_3)_6Cl_3$ ,  $PtCl_4+2H_2O$ . By recrys-

tallizing from hot H₂O containing HCl this salt is converted into the above salt. (Jörgensen.)

chlororhodite.

Nearly insol, in boiling H₂O or dil. acids. Sol. in conc. HCl+Aq. (Gibbs, Sill. Am. J. (2) **37**. 57.)

- chlororuthenate,  $2\text{Co(NH}_3)_6\text{Cl}_3$ ,  $3\text{RuCl}_4$ . Sol. in dil. acids. (Gibbs.)
- -chloroselenate,  $Co(NH_2)_6ClSeO_4+3H_2O$ . Decomp. by H₂O. (Klobb, Bull, Soc. 1901, (3) **25.** 1029.)
- chlorosulphate,  $Co(NH_3)_6Cl(SO_4)$ . Sol. in H₂O. +3H₂O. Only sl. sol. in cold H₂O. (Klobb, Bull. Soc. 1901, (3) **25.** 1025.)
- ammonium chlorosulphate,  $[Co(NH_3)_6]_4Cl_2(SO_4)_5$ ,  $3(NH_4)_2SO_4+$ 6H₂O.

Decomp. by H₂O. (Klobb, Bull. Soc. 1901, (3) **25.** 1027.)

 chlorosulphate chloroplatinate, 2Co(NH₃)₆Cl(SO₄), PtCl₄.

Very sl. sol. in cold pure H₂O. Can be recrystallized out of H₂O containing HCl. (Krok.)

chlorosulphate mercuric chloride, Co(NH₃)₆Čl(SO₄), HgCl₂.

Scarcely sol. in pure H₂O, but can be crystallized from warm acidified H₂O. (Krok.)

chlorosulphite, Co(NH₃)₆(SO₃)Cl+ 3H₂O.

Sol. in H₂O. (Vortmann and Magdeburg, B. **22.** 2637.)

- chromate,  $[Co(NH_s)_6]_2(CrO_4)_s+5H_sO.$ Ppt. Sol. in hot H₂O.  $[Co(NH_3)_6]_2(Cr_2O)_3+5H_2O.$ _Moderately * sol. in hot H₂O.

Luteocobaltic chromicyanide, Co(NH₃)₆Cr(CN)₆.

Ppt. (Braun.)

¥

- ---- dithionate, basic, 4[Co(NH₃)₆(S₂O₆)(OH)], Co₂(S₂O₆)₂O. Sol. in H₂O and dil. alcohol.
- --- ferricyanide,  $Co(NH_3)_6Fe(CN)_6+\frac{1}{2}H_2O$ .

Insol. in H₂O. (Braun.)

- ---- fluoride,  $Co(NH_3)_6F_3$ .
- Sl. sol. in cold  $H_2O$ . Nearly insol. in acids. (Böhm, Z. anorg. 1905, **43**. 340.)
- hydrogen fluoride, Co(NH₃)₆H₃F₆. Sl. sol. in H₂O. Decomp. by hot H₂O. (Miolati and Rossi, Real. Ac. Linc. 1896, (5) **5.** II, 185.)
- hydrogen boron fluoride, Co(NH₃)₆F₈, 3BF₃, HF.

Cryst. from H₂O acidified with HF. Miolati and Rossi.)

---- molybdenyl fluoride, Co(NH₃)₆F₈, 2 MoO₂F₂.

Cryst. from  $H_2\mathrm{O}$  containing HF. (Miolati and Rossi.)

- —— silicon fluoride,  $Co(NH_3)_6F_3$ ,  $2SiF_4$ . (Miolati and Rossi.)
- titanium hydrogen fluoride, 2Co(NH₃)₆F₃, 3TiF₄, 2HF. (Miolati and Rossi.)
- tungstyl fluoride, Co(NH₃)₆F₃, 2WO₂F₂. (Miolati and Rossis )
- uranyl fluoride. Co(NH₃)₆F₃, UO₂F₂.

Can be cryst. from H₂O containing HF. (Miolati and Rossi.)

- ----- vanadyl fluoride, 2Co(NH₃)₆F₃, 5VO₂F, 7HF. Ppt. (Miolati and Rossi.)
- ----- fluoride nitrate, Co(NH₈)₈F(NO₈)₂. (Bohm, Z. anorg. 1905, **43**. 336.)
- hydroxide, Co(NH₈)₆(OH)₈. Known only in aqueous solution.

Luteocobaltic mercuric hydroxychloride, CoN₆H₁₄(HgCl)₃(HgOH)Cl₃.

 $\begin{array}{ccccc} Ppt. & Easily & decomp. & (Vortmann & and \\ Morgulis, & B. & 22. & 2644.) & \\ & CoN_6H_{14}(HgOH)_4Cl_3. & Ppt. & (V. & and & M.) \\ & CoN_6H_{16}(HgOH)_2Cl_3. & Ppt. & (V. & and & M.) \end{array}$ 

--- iodide, Co(NH₃)₆I₃.

Insol. in cold, but moderately sol. in hot H₂O.

According to Jörgensen, contains HNO₃ and has the formula  $Co_2(NH_3)_{12}I_4(NO_3)_2$ .

--- iodosulphate, Co(NH₃)₆l(SO₄).

Can be recrystallized from hot H₂O. Sl. sol. in warm, nearly insol. in cold H₂O. (Krok, B. 4. 711.)

mercuriodide, Co₂N₁₂H₂₅(HgI)₃I₆.

Ppt. (Vortmann and Borsbach.)
CoN₆H₁₆(HgI)₂I₃. Ppt. (V. and B.)

---- mercuriodide, basic,

 ${
m CoN_6H_{16}(HgOH)_2I_2(OH)}.$  Insol. in  ${
m H_2O}.$  Sl. sol. in  ${
m H_2O}.$  (Vortmann and Borsbach, B. **23**. 2804.)

— nitrate,  $Co(NH_3)_6(NO_3)_3$ .

Sol. in  $H_2O$ . Can be recrystallised from boiling  $H_2O$ . Sol. in about 60 pts.  $H_2O$ . Insol. in conc.  $HNO_3+Aq$ . (Jörgensen, J. pr. (2), **35**. 417.)

Almost insol. in acids. (Rogojski, A. ch.

(3), 41, 454.)

Insol. in NH₄OH, HCl, and HNO₃+Aq; decomp. by H₂SO₄+Aq. (Gibbs and Genth.) Co(NH₃)₆(NO₃)₃, HNO₃. Decomp. by H₂O or dil. alcohol. (Jörgensen, J. pr. (2), **44**. 63.)

— nitrate chloroplatinate,

Co(NH₃)₆(NO₃)Cl₂, PtCl₄+H₂O.

Not decomp. by H₂O. (Jörgensen.)

- nitratosulphate, Co(NH₃)₆(NO₃)(SO₄). Sol. in H₂O. (Jörgensen.)
- ----nitrite cobaltic nitrite,  $\operatorname{Co_2(NH_3)_{12}(NO_2)_6}, \operatorname{Co_2(NO_2)_6} = \operatorname{Co(NH_3)_6(NO_2)_6}\operatorname{Co}.$

Nearly insol. in  $H_2O$ . (Jörgensen.) Much less sol. in  $H_2O$  than the corresponding roseo salt. (Gibbs.)

---- diamine cobaltic nitrite, Co(NH₃)₆[Co(NH₈)₂(NO₂)₄]₃. Ppt. (Gibbs.)

= $Co(NH_3)_5[(NO_2)_2(NH_3)_2Co(NO_2)_2]_3$ . Nearly insol. in cold, sl. sol. in boiling  $H_2O$ . (Jörgensen, Z. anorg. **5.** 179.)

oxalate,  $[Co(NH_8)_6]_2(C_2O_4)_8+4H_2O$ . Insol. in hot or cold  $H_2O$ . Easily sol. in  $H_2C_2O_4+Aq$ .

- Luteocobaltic oxalate chloraurate, 2Co(NH₂)₄(C₂O₄)Cl, AuCl₃+4H₂O. Easily sol, in hot H₂O. (Gibbs.)
- —— perchlorate, Co(NH₃)₅(ClO₄)₅.

  (Millosevich, Gazz. ch. it. 1901, **31**, (2).
  285.)
- permanganate, [Co(NH₃)₈]₂(MnO₄)₃. Nearly insol. in H₂O. 100 pts. H₂O at 0° dissolve only 0.072 pt. salt. Moderately sol. in hot H₂O. (Klobb, A. ch, (6) 12. 5.)
- persulphate sulphate,  $[Co(NH_3)_6]_2S_2O_6(SO_4)_2$ .

Much less sol. in H₂O than the sulphate. Sol. in 641 pts. H₂O at 18.8° and in 632 pts. at 20°. Not easily sol. even in boiling H₂O. (Jörgensen, Z. anorg. 1898, 17. 459.)

---- orthophosphate,  $Co(NH_8)_5(PO_4) + 4H_2O$ .

Sl. sol, in cold H₂O. Easily sol, in dil. acids. (Jörgensen.)

 $(C_0(NH_3)_3)_3(PO_4)(PO_4H)_3+5\frac{1}{2}H_2O$  (?). Ppt. (Braun.)  $(C_0(NH_3)_3)_3(PO_4H)_3+4H_2O$ . Ppt. Easily

[Co(NH₃)₆]₂(PO₄H)₃+4H₂O. Ppt. Easily sol. in very dil. HCl+Aq. (Jörgensen.)

--- metaphosphate.

Ppt.

— pyrophosphate,  $[Co(NH_3)_6]_2P_4O_{13}+6H_2O$ .

(Gibbs, Am. Acad. Proc. 11. 29); or Co₂(NH₃)₁₂P₄O₁₃(ONa)₂ (Vortmann, B. 11. 2181); or Co(NH₂)₆(P₂O₇Na)+11½H₂O. (Jörgensen, J. pr. (2) 35. 438.)

Very nearly insol. in H₂O. With H₂O at 80° it is decomp. into—

 $[Co(NH_3)_6]_4(P_2O)_3+20H_2O$ . Less easily sol. than the preceding salt.

- —— pynophosphate, acid, Co(NH₃)₆(P₂O₇H). Wholly insol. in H₂O. Somewhat sol. in dil. HC₂H₃O₂+Aq. Easily sol. in HCl+Aq (Jörgensen.)
- --- sodium pyrophosphate,  $Co(NH_3)_6(P_2O_7Na) + 11\frac{1}{2}H_2O$ .

Ppt. Not wholly insol. in cold H₂O. Decomp. by hot H₂O. Less sol. in NH₄OH+ Aq than in H₂O. (Jörgensen.)
[Co(NH₂)₆]₄(P₂O₇)₃, 2Co(NH₃)₆(NaP₂O₇)

+39 H₂O. As above. (Jörgensen.)

- —— selenate, [Co(NH₆)]₂(SeO₄)₃+5H₂O. Very sol. in H₂O. (Klobb, Bull. Soc. 1901, (3) **25**. 1028.)
- ---- hydrogen selenate,  $[Co(NH_2)_6]H(SeO_4)_2+2\frac{1}{2}H_2O.$ Not decomp. by  $H_2O.$  (Klobb.)

Luteocobaltic ammonium selenate,  $[Co(NH_3)_6]_2(SeO_4)_3$ ,  $(NH_4)_3SeO_4+4H_2O$ .

Very sol. in  $H_2O$ .  $[Co(NH_6]_2(SeO_4)_3$ ,  $(NH_4)_2SeO_4+8H_2O$ . Very sol. in  $H_2O$ . (Klobb.)

- Decomp. by hot H₂O. (Miolati, Z. anorg. 1900, 23. 241.)
- mercuric sulphocyanide, Co(NH₄)₆(SCN)₄, 2Hg(SCN)₂. Decomp. by H₂O.

Cryst. from dil. NH₄SCN+Aq. (Miolati.)

—— platinum sulphocyanide,
[Pt(SCN)₄]₃[Co(NH₃)₆(SCN₂)]₂.
Decomp. by hot H₂O. (Miolati.)

— silver sulphocyanide, Co(NH₃)₆(SCN)₃, 2AgSCN. Decomp. by hot H₂O. (Miolati.)

—— sulphate, [Co(NH₂)₆]₂(SO₄)₃+5H₂O. Sl. sol. in cold, more easily in hot H₂O. +6H₂O. (Krok, B. 4. 711.)

--- hydrogen sulphate, Co(NH₃)₆H(SO₄)₂.

Decomp. by alcohol to sulphate. (Jörgensen, Z. anorg. 1898, 17. 458.)

4[(Co6NH₃)₂(SO₄)₃], 5H₂SO₄+10H₂O.

Very sol. in H₂O with decomp. into the normal sulphate.

When pulverized it seems to dissociate

When pulverized it seems to dissociate slowly in contact with abs. alcohol. (Klobb, Bull. Soc. 1901, (3) 25. 1025.)

- --- ammonium sulphate,  $[Co_6(NH_3)_6]_2(SO_4)_3$ ,  $(NH_4)_2SO_4+8H_2O$ . Sol. in  $H_2O$  with decomp. (Klobb.)
- cerium sulphate,  $[Co(NH_8)_5]_2(SO_4)_5$ ,  $Ce_2(SO_4)_3+1\frac{1}{2}H_2O$ .

Very sl. sol. in cold, and practically insol. in boiling  $H_2O$ . Sol. in acids. (Gibbs, Am, Ch. J. 15. 560.)

- ---- lanthanum sulphate, [Co(NH₈)₆]₂(SO₄)₃, La₂(SO₄)₃+H₂O. Sl. sol. in H₂O. (Wing.)
- thallic sulphate,  $[Co(NH_2)_6]_2(SO_4)_2$ ,  $Tl_2O(SO_4)_2+5H_2O$ .

  Decomp. by cold  $H_2O$ . (Gibbs.)

Very sl. sol. in  $H_2O$  with apparent decomp. Insol. in alcohol. (Jörgensen.)

Luteocobaltic sulphate chloraurate. Co(NH₂)₆(SO₄)AuCl₄.

Sl. sol. in H₂O. (Jörgensen.)

cobaltic sulphite,  $[Co(NH_2)_6]_2(SO_8)_8$ ,  $Co_2(SO_3)_8 + H_2O = dichrocobaltic$ phite,  $[Co(NH_3)_3]_2(SO_3)_3 + 2H_2O$ , which

 $[Co(NH_3)_6]_2(SO_8)_3$ ,  $2Co_2(SO_8)_8 + 15H_2O =$ diamine cobaltic sulphite, [Co(NH₈)₂]₂(SO₈)₂ +5H₂O, which see.

## Luteorhodium bromide, Rh(NH₃)₆Br₃.

Less sol. in  $H_2O$  than the chloride. (Jorgensen, J. pr. (2) 44. 51.)

— chloride, Rh(NH₃)₆Cl₃. Sol. in 7 to 8 pts. H₂O at 8°. (J.) +H₂O. Extremely efflorescent. (J.)

- rhodium chloride, Rh(NH₃)6Cl₃, RhCl₃. Sol. in H₂O. (Jörgensen, Z. anorg. 5. 174.)

- chloroplatinate, 2Rh(NH₃)₆Cl₃, 3PtCl₄+  $6H_2O$ .

Insol. in H₂O. Sol. in warm HCl+Aq. (J.)  $Rh(NH_3)_6Cl_3$ ,  $PtCl_4+\frac{1}{2}H_2O$ . Decomp. by  $H_2O$  into chloride and above salt. (J.)

- nitrate, Rh(NH₃)₆(NO₃)₃.

Sol. in 48 to 49 pts. H₂O at ord. temp. HNO₃+Aq diluted with 5 vols. H₂O ppts. the salt completely from aqueous solution. (Jörgensen, J. pr. (2) 44. 51.)

Rh(NH₃)₆(NO₃)₃, HNO₃. Decomp. by H₂O or dil. alcohol. (Jörgensen, J. pr. (2),

44. 63.)

- orthophosphate,  $Rh(NH_8)_6PO_4+4H_2O$ . Sl. sol. in cold H₂O. (J.)

sodium pyrophosphate, *[Rh(NH₃)₆]₂( $\vec{P}_2O_7$ )₃Na₂+23H₂O.

Nearly wholly insol. in H₂O. Wholly insol. in NH₄OH+Aq. (J.)

— sulphate,  $[Rh(NH_3)_6]_2(SO_4)_3 + 5H_2O$ . Sol. in 43 pts. H₂O at 20°. (J.)

### Magnesium, Mg.

Does not decomp.  $H_2O$  at ord. temp., but decomp. slowly at  $100^\circ$ .  $H_2O$  containing acids dissolves Mg easily. Sol. in cold dil.  $HC_2H_2O_2+Aq$ . Difficultly sol. in cold HC₂H₃O₂+Aq. Difficultly sol. in cold H₂SO₄+Aq. (Bunsen.) Cold nitrosulphuric Cold (Bunsen.) Cold acid does not attack. (Bunsen.) Cold NH₄OH+Aq, KOH+Aq, or NaOH+Aq do not attack. (Maak, Phippson.) Sol. in NH₄Cl or (NH₄)₂CO₈+Aq. (Wöhler.)

Very rapidly sol. in K₂S₂O₈+Aq and (NH₄)₂S₂O₈+Aq with violent evolution of gas. (Levi, Gazz. ch. it. 1908, **38.** (1), 583.) Attacked by aqueous solution of KCl, NH₄Cl, NaCl, LiCl, CuCl₂, CdCl₂, CoCl₃, PbCl₂, HgCl₂, FeCl₃, CrCl₃, PtCl₄, AuCl₃, CuSO₄, ZnSO₄, FeSO₄ and MnSO₄.

Sl. attacked by hot 30% CaCl₂+Aq, not by 30% McCl + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReCl. + Aq. ReC

by 30% MgCl₂+Aq, BaCl₂+Aq and SrCl₂+Aq. (Tommasi, Bull. Soc. 1899, (3), **21.** 886.) Not attacked by NH₄F+Aq, very slowly by solutions of BaCl₂, CaCl₂, KCl, K₃Fe(CN)₆, NaNO₃, Na₂S₂O₃ and Na₂HPO₄. Solutions of NaC₂H₃O₂, Na₂B₄O₂, alum and chrome alum attack vigorously. Solutions of (NH₄)₂CO₃, NH₄Cl, (NH₄)₂C₂O₄, (NH₄)₂S and Na₂CO₃ attack even more vigorously. (Mouraour, C. R. 1900, **130**. 140.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, 20. 828.)

Insol. in liquid HF. (Franklin, Z. anorg.

1905, 46. 2.)

Somewhat sol. in liquid NH3, if a clean metallic surface is in contact with the pure solvent. (Kraus, J. Am. Chem. Soc, 1907, **29.** 1561.)

½ccm. oleic acid dissolves 0.0104 Mg in 6 days. (Gates, J. phys. Chem. 1911,

**15.** 143.)

Magnesium arsenide, Mg₃As₂.

Decomp. on air. (Parkinson, Chem. Soc. **5.** 127.)

Magnesium azoimide,  $Mg(N_s)_2$ .

Decomp. by hot H₂O. (Curtius, J. pr. 1898, (2) **58.** 292.)

Magnesium boride, Mg9B2. Sol. in HCl+Aq. (Winkler, B. 23. 774.)

Magnesium bromide, MgBr₂.

Deliquescent. Very sol. in H₂O with evolution of heat.

Sat. MgBr₂+Aq contains at:

-18° +17°  $48^{\circ}$ 62° 97° 52 58 60.962.5 65.8% MgBr₂. (Étard, A. ch. 1894, (7), 2. 541.)

See also  $MgBr_2+6H_2O$ .

Sp. gr. of MgBr₂+Aq at 19.5° containing: 1.043 1.087 1.137 1.191 1.247 MgBr₂,

50 % MgBr₂. 40 45 1.377 1.451 1.535 1.625 1.31

(Kremers, Pogg. 108. 118, calculated by Gerlach, Z. anal. 8. 285.)

MgBr₂+Aq is sl. decomp. by evaporation.

Solubility of MgBr₂ in alcohols.

MgBr₂ forms with methyl alcohol a complex, MgBr₂, 6CH₃OH.

Solubility of MgBr2, 6CH3OH in CH3OH at to.

t°	% by weight of MgBr ₂ , 6CH ₂ OH	t°	% by weight of MgBr ₂ , 6CH ₂ OH
0 20 40 60 80 100 110 120	42.6 44.6 46.7 48.9 51.4 55.5 58.0 60.7	130 140 150 160 170 180 185 190 mpt.	63.6 66.8 70.2 74.0 78.5 84.5 88.0

(Menschutkin, Z. anorg. 1907, 52. 11.)

 $MgBr_2$  forms with ethyl alcohol a complex,  $MgBr_2$ ,  $6C_2H_4OH$ .

Solubility of MgBr₂, 6C₂H₅OH in C₂H₅OH at t°.

t°	% by weight of MgBr ₂ , 6C ₂ H ₅ OH	t°	% by weight of MgBr ₂ , 6C ₂ H ₅ OH
0 10 20 30 40 50 60 70 75	17.2 24.9 32.7 40.3 47.8 55.1 62.2 68.8 71.4	80 85 90 95 100 103 106 108.5 mpt.	73.8 76.2 78.7 82.3 86.7 90.0 94.4 100

(Menschutkin.)

 $MgBr_2$  forms with propyl alcohol a complex,  $MgBr_2$ ,  $6C_4H_7OH$ .

Solubility of MgBr₂, 6C₈H₇OH in C₈H₇OH at t°.

t°	% by weight of MgBr ₂ , 6C ₂ H ₇ OH	t°	% by weight of MgBr ₂ , 6C ₈ H ₇ OH
0	77.9	43	93.0
10	81.5	46	94.3
20	85.1	48	95.8
30	89.5	50	97.8
40	92.0	52 mpt.	100

(Menschutkin.)

MgBr₂ forms with isobutylalcohol a complex, MgBr₂, 6(iso)C₄H₂OH.

Solubility of MgBr₂, 6(iso)C₄H₄OH in C₄H₄OH at t°.

t°	% by weight of MgBr ₂ , fisoC ₄ H ₉ OH	t°	% by weight of MgBr2, 6isoC4H4OH
0 10 20 30 40 50	55.8 60.5 65.2 69.8 74.3 78.5	60 65 71 75 77 80 mpt.	82.4 84.2 88.0 92.0 94.6 100

(Menschutkin.)

 $MgBr_2$  forms with isoamylalcohol a complex,  $MgBr_2$ ,  $6(iso)C_5H_{11}OH$ .

Solubility of MgBr₂, 6(iso)C₆H₁₁OH in C₆H₁₁OH at t°.

ť°	% by weight of MgBr ₂ , 6isoC ₅ H ₁₁ HO	t°	% by weight of MgBr ₂ , 6isoC ₄ H ₁₁ OH
0	70.2	38	88.7
10	75.6	40	90.0
20	80.2	42	92.0
30	84.5	44	94.2
35	86.7	46 mpt.	100

(Menschutkin.)

Solubility in ether at to

Solubility in collect at V :			
t°	% MgBr2	% MgBr2, 2C4H10O	
- 8	0.6	1.08	
0	0.8	1.44	
+10	1.27	2.3	
14	1.64	2.95	
16	1.93	3.48	
18	2.3	4.14	
20	2.7	4.86	
22 mpt.	3.22	5.80	

(Menschutkin, Z. anorg. 1906, 49, 36.)

Solubility of MgBr₂, 2C₄H₁₀O in ether at t°. "Lower solution"=the melted MgBr₂, 2C₄H₁₀O which does not mix with the ether above.

t°	Composition of lower solution		Composition of the upper layer	
	% MgBr2	% MgBr ₂ , 2C ₄ H ₁₀ O	% MgBr2	% MgBr ₂ , 2C ₄ H ₁₀ O
-10	42.0 41.0	75.7	1.8	3.2
$+10^{0}$	40.1	$\begin{array}{c} 73.9 \\ 72.2 \end{array}$	$\begin{array}{c} 2.3 \\ 2.8 \end{array}$	4.1 5.0
20 30	39.3 38.7	70.8 69.8	$\begin{array}{c} 3.3 \\ 3.8 \end{array}$	5.9 6.8
40 50	38.2 37.8	68.8 68.0	4.3 4.7	7.7 8.5
60 70	37.6 37.6	67.7 67.7	5.1 5.4	9.2 9.7
80 90	37.8 38.1	68.0	5.6	10.0
90		68.6	5.7	10.2

(Menschutkin.)

Schubility of MgBr₂ in formic acid. MgBr₃ forms with formic acid a complex, MgBr₃, 6HCOOH.

Solubility of MgBr₂, 6HCOOH in HCOOH at t°.

't°	% by wt. MgBr2, 6HCOOH
0	49.8
20	57.5
40	65.1
60	73.1
70	78.1
80	86.0
86 🙍	95.0
88 mpt.	100

(Menschutkin, Z. anorg. 1907, 54. 90.)

Solubility of MgBr₂ in acetic acid. MgBr₂ forms with acetic acid a complex, MgBr₂, 6CH₂COOH.

Solubility of MgBr₂, 6CH₃COOH in CH₃COOH at t°.

• t°	% by wt. MgBr ₂ , 6CH ₃ COOH
17 30 50 60 70 80 85 90 100 105 110	0.3 1.5 4.5 7.9 16.2 38.5 49.5 57.7 71.8 80.0 89.5 100.0
LLE IIIpu.	100.0

(Menschutkin.)

Solubility of MgBr₂ in acetic anhydride. MgBr₂ forms with acetic anhydride a complex, MgBr₂, 6(CH₃CO)₂O.

Solubility of MgBr₂, 6(CH₃CO)₂O in (CH₃CO)₂O at t°.

, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
. t°	% by wt. MgBr ₂ , 6(CH ₃ CO) ₂ O	
0 30 60 90 120 130 135 136–137 mpt.	26.4 30.0 37.7 44.5 57.8 69.8 85.0	

(Menschutkin, Z. anorg. 1909, 61. 112.)

Solubility of MgBr₂ in acetone. MgBr₂ forms with acetone a complex, MgBr₂, 3CH₂COCH₃.

Solubility of MgBr₂, 3CH₃COCH₃ in CH₃COCH₃ at t°.

t°	% by wt. MgBr ₂ , 3CH ₃ COCH ₃
. 0	0.2
30	0.8
60	1.45
70	2.0
72	3.7
$7\overline{3}$	5.5
74	14.0
75	50.0
76	71.6
80	83.3
84	89.8
88	95.2
92 mpt.	100

(Menschutkin, Z. anorg. 1907, 53. 30.)

Solubility of  $MgBr_2$  in acetamide.  $MgBr_2$  forms with acetanide a complex,  $MgBr_2$ ,  $6CH_3CONH_2$ .

Solubility of MgBr₂, 6CH₃CONH₂ in CH₃CONH₂ at t°.

01130011112 00 0 .		
t°	% by wt. MgBr ₂ , 6CH ₃ CONH ₂	
50.5 70 90 110 130 150	56.0 57.8 60.5 65.0 71.5 80.0 85.5	
165	90.0	
169 mpt.	100.0	

(Menschutkin, Z. anorg. 1909, 61, 106.)

Solubility of MgBr₂ in acetanilide. MgBr₂ forms with acetanilide a complex, MgBr₂, 6CH₃CONHC₆H₅.

Solubility of MgBr2, 6CH3CONHC6H5 in CH3CONHC6H5 at t°.

t°	% by wt. MgBr ₂ , 6CH ₃ CONHC ₆ H ₆
107.5 140 170 185 195 200 205 209 mpt.	9.0 19.3 29.6 39.0 49.0 59.5 73.2

(Menschutkin, Z. anorg. 1909, 61, 109.)

Solubility of MgBr2 in aniline.

 $\begin{array}{ll} MgBr_2 \ forms \ with \ aniline \ three \ complexes; \\ MgBr_3, \quad 6C_0H_5NH_2; \quad MgBr_2, \quad 4C_6H_5NH_2; \\ MgBr_2, \ 2C_6H_5NH_2. \end{array}$ 

Solubility of these complexes in aniline. Solubility of MgBr₂, 6C₆H₅NH₂ in C₆H₅NH₂.

t°	% by weight of MgBr ₂ , 6C ₆ H ₅ NH ₂	
10	3.2	
30	3.9	
50	5.1	
70	7.5	
90	12.8	
100	18.5	
103.5	27.5	

#### Solubility of MgBr₂, 4C₆H₅NH₂ in C₆H₅NH₂.

t°	% by weight of MgBr ₂ , 4C ₈ H ₅ NH ₂
103 { 120 ; 140 160 180 200 220 230 237	24.0 24.3 24.9 26.0 28.3 33.5 45.0 55.0 76.3

## Solubility of MgBr2, 2C3H5NH2 in C6H5 NH2

t°	% by weight of MgBr ₂ , 2C ₆ H ₅ NH ₂
237	76.3
250	77.3
260	78.1
270	79.0

(Menschutkin, Z. anorg. 1907, 52. 159.)

Solubility of MgBr₂ in benzaldehyde. MgBr₂ forms with benzaldehyde a complex, MgBr₂, 3C₆H₅CHO.

Solubility of MgBr₂, 3C₆H₅CHO in C₆H₅CHO at t°.

t°	% by wt. MgBr ₂ , 3C ₆ H ₅ CHO	t°	% by wt. MgBr 3C ₆ H ₅ CHO
0 30 60 80 100 120 130	0.7 1.3 1.9 2.5 3.4 6.0 9.5	140 145 146 148 153 159 mpt.	17.8 37.5 65.0 84.5 93.2 100

(Menschutkin, Z. anorg. 1907, 53. 26.)

Solubility of MgBr₂ in methylal. MgBr₂ forms with methylal a complex, MgBr₂, 2CH₂(OCH₃)₂.

Solubility of MgBr₂, 2CH₂(OCH₃)₂ in CH₂(OCH₃)₂ at t°.

1 %	
t°,	% by wt. MgBr ₂ , 2CH ₂ (OCH ₈ ) ₂
20	0.3
40	0.45
60	0.6
80	0.75
100	0.9
106	1.1
106	86.2
168	90.8
110	95.4
112 mpt.	100

(Menschutkin, Z. anorg. 1907, 53. 32.)

Solubility of MgBr₂ in dimethylcarbinol. MgBr₂ forms with dimethylcarbinol a complex, MgBr₂, 4(CH₃)₂CHOH.

Solubility of MgBr₂, 4(CH₃)₂CHOH in (CH₃)₂CHOH at t°.

t°	% by weight of MgBr2, 4(CH3)2CHOH	t°	% by weight of MgBr ₂ , 4(CH ₂ ) ₂ CHOH
$\begin{array}{c} 0 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \end{array}$	40.0 42.2 45.0 48.5 53.3 59.0	110 120 130 136 138 139 mpt.	62.5 67.3 74.0 83.6 90.00

(Menschutkin.)

Solubility of MgBr₂ in trimethylcarbinol. MgBr₂ forms with trimethylcarbinol a complex, MgBr₂, 4(CH₃)₃COH.

Solubility of MgBr₂, 4(CH₃)₃COH in (CH₃)₃COH at t°.

t°	% by weight of MgBr ₂ , 4(CH ₂ ) ₃ COH	t°	% by weight of MgBr ₂ , 4(CH ₂ ) ₃ COH
24.4 25 35 45 55 60	0.06 $1.0$ $9.5$ $19.1$ $32.2$ $40.5$	65 70 75 77.5 79 80 mpt.	50.5 62.5 77.0 85.0 91.5

Menschutkin.)

Solubility of MgBr₂ in phenylhydrazine. MgBr₂ forms with C₆H₅NHNH₂ a complex, MgBr₂, 6C₆H₅NHNH₂.

'S	olubility	of M	gBr ₂ ,	6C ₆ H	NHNH2 t°.	ai
		$C_aH_aN$	HN	Hoat t	t°.	

OSIISITIIITI au u .		
t°	% by wt. of MgBr ₂ , 6C ₆ H ₆ NHNH ₂	
20	3.0	
40	7.0	
60	16.4	
80	33.0	
99	54.8	
100	54.8	
140	60.8	
180	68.4	
200	73.4	

(Menschutkin, Z. anorg. 1907, 52, 162.)

Solubility of MgBr₂ in urea.

MgBr₂ forms with urea a complex, MgBr₂, 6CO(NH₂)₂.

## Solubility of MgBr₂, 6CO(NH₂)₂ in urea at t²

t°	% by wt. MgBr ₂ , 6CO(NH ₂ ) ₂
108.5	24.2
115	29.8
120	35.0
125	41.6
127	45.5
130	60.0

(Menschutkin, Z. anorg, 1909, 61, 116.)

MgBr₂, 6CO(NH₂)₂ decomposes at 130° giving MgBr₂, 4CO(NH₂)₂.

#### Solubility of MgBr₂, 4CO(NH₂)₂ in urea at t°.

colubility of ing 212, 100 (11112)2 in drea at t		
t°	% by wt. MgBr ₂ , 4CO(NH ₂ ) ₂	
130 145 160 165 170 171	58.0 60.7 67.2 71.4 83.7 96.0	

(Menschutkin, Z. anorg. 1909, 61, 116.)

Solubility of MgBr₂ in urethane.

MgBr₂ forms with urethane a complex, MgBr₂, 6NH₂COOC₂H₅.

## Solubility of MgBr₂, 6NH₂COOC₂H₅ in NH₂COOC₂H₅ at t°.

1,122,000,022,000,000		
t° % by wt. MgBr. 6NH ₂ COOC ₂ H ₅		
35 50 70 80 85 90 *91.5	43.3 45.6 51.3 56.2 59.8 66.5 75.5	

Mpt. of MgBr₂, 6NH₂COOC₂H₅. (Menschutkin, Z. anorg. 1909, **61**. 113.)

MgBr₂, 6NH₂COOC₂H₅ decomposes 90.5-91° forming MgBr2, 4NH2COOC2H1.

## Solubility of MgBr2, 4NH2COOC2H5 in NH2COOC2H5 at to.

t°	% by wt. MgBr ₂ , 4NH ₂ COOC ₂ H ₅
91 100 110 115	69.4 73.8 80.0 84.1
120 123 mpt.	90.0

(Menschutkin.)

+6H₂O.

Solubility of MgBr₂+6H₂O in H₂O at t°.

t°	% by weight of MgBr ₂ + 6H ₂ O	t°	% by weight of MgBr ₂ +6H ₂ O
0 20 40 60 80 100	76.0 78.1 80.2 82.3 84.4 86.6	120 140 150 160 164 mpt.	89.0 92.0 94.9 98.0 100

(Menschutkin, Z. anorg. 1907, 52. 153.)

Sp. gr. of solution sat. at  $18^{\circ} = 1.655$ , and contains 50.8% MgBr₂. (Mylius and Funk, B. 1897, **30.** 1718.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Sol, in alcohol. Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

Difficultly sol. in methyl acetate. mann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B.

1910, **43**. 314.) +10H₂O. Sol. in H₂O. (Panfiloff, Chem. Soc. 26. 234.)

## Magnesium manganous bromide, MgBr₂, $2MnBr_2+12H_2O$ .

Deliquescent. (Saunders, Am. Ch. J. 14. 150.)

## Magnesium mercuric bromide, MgBr₂, HgBr₂ Deliquescent.

MgBr₂, 2HgBr₂. Not deliquescent.

Magnesium molybdenyl bromide, MgBr2,  $MoOBr_3 + 7H_2O$ .

(Weinland and Knoll, Z. anorg. 1905, 44. 112.)

## Magnesium potassium bromide, MgBr₂, 2KBr+6Ĥ₂O.

Easily sol. in H₂O, from which KBr crystallises at 75 to 87°. Alcohol dissolves out MgBr₂. (Löwig, Repert. 29. 261.)

Formula is MgBr₂, KBr+6H₂O. Deliquescent. (Lerch, J. pr. (2) 28. 338.)

## Magnesium stannic bromide.

See Bromostannate, magnesium.

## Magnesium chloride, MgCl₂.

Deliquescent. Very sol. in H₂O with evolution of heat. The solution decomposes on evaporation losing HCl, when less than 6 mols. H₂O are present to 1 mol. MgCl₂. (Casaseca, C. R. 37. 350.)

Anhydrous. Sol. in 1.857 pts. H₂O at 15°. (Gerlach.)

Sol. in 1 pt. cold  $H_2O$ . (Foureroy.) Sat.  $MgCl_2+Aq$  at 12.5° contains 64.8%  $MgCl_2$ . (Hassenfratz.) 100 pts.  $H_2O$  at 15.5° dissolve 200 pts.  $MgCl_2$ . (Ure's Dict.)

100 pts. H₂O dissolve 52.2 pts. MgCl₂ at 0° and sp. gr. of sat. solution = 1.3619 at 15°. (Engel, Bull. Soc. (2) 47, 318.)

1000 mols. H₂O dissolve 108 mols. MgCl₂ at 25°C. (Löwenherz, Z. phys. Ch. 1894, **13**. 479.)

100 mols. MgCl₂+Aq contain at t°: t° 67.5 68.5 68.7 79.5 79.95 Mol. MgCl₂ 11.58 11.92 11.71 12.28 12.39 t° 116.67 152.6 181-2 186 Mol. MgCl₂ 16.2 18.24 23.8 24.1-24.4 (Vant Hoff and Meyerhoffer, B. A. B. **1897**,

Solubility of MgCl₂ in H₂O at t°.

t°	MgCl₂	Solid phase
10	11.4	· Ice
20	16.	"
30	19.4	٠,
33.6	20.6	Ice+MgCl ₂ , 12H ₂ O
20	26.7	$MgCl_2$ , $12H_2O$
16.4	30.5	- "u
16.8	31.6	$MgCl_2$ , $12H_2O+$
		MgCl ₂ , 8H ₂ O
<b></b> 3.4	34.3	$MgCl_2$ , $8H_2O+MgCl_2$ .
	l	6H ₂ O
0	34.6	$MgCl_2$ , $6H_2O$
10	34.9	- "
20	35.3	"
22	35.6	. "
40	36.5	"
60	37.9	"
80	39.8	"
100	42.2	"
116.7	46.1	$MgCl_2$ , $6H_2O+MgCl_2$ ,
	l	4H ₂ O
<b>152</b> .6	49.1	MgCl ₂ , 4H ₂ O
181.5	55.8	$MgCl_2$ , $4H_2O+MgCl_2$ ,
	1	ŽH ₂ O
186	56.1	MgCl ₂ , 2H ₂ O
	·	<u> </u>

(Landolt-Börnstein, Tab. 5th Ed. 1912. 480.)

Sp. gr. of MgCl₂+Aq at 15°.

% MgCl₁	Sp. gr.	% MgCl1	Sp. gr.	% MgCl	Sp. gr.
$\frac{1}{2}$	1.0084 1.0169	13 14	1.1130 1.1220	25 26	1.2274 1.2378
3	1.0253	15	1.1311	27	1.2482
<b>4</b> <b>5</b>	1.0338 1.0422	16 17	1.1404 1.1498	28 29	1.2586 1.2690
6	1.0510	18	1.1592	30	1.2794
<b>7</b> 8	1.0597° 1.0684	19 20	1.1686 1.1780	31 32	1.2903 1.3012
9	1.0772	21	1.1879	33	1.3121
10 11	1.0859 1.0949	22 23	1.1977	34 35	1.3230 1.3340
12	1.1040	24	1.2175		1.5540

(Gerlach, Z. anal. 8. 281.)

Sp. gr. of MgCl₂+Aq at 18°.

% MgCl2	Sp. gr.	% MgCl2	Sp. gr.	% MgCl2	Sp. gr.
5 10	1.0416 1.0859	20 30	1.1764 1.2779	34	1.3210

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $MgCl_2+Aq$  at 0°. S=pts. salt in 100 pts. of solution;  $S_1=mols$ . salt in 100 mols. solution.

s	$S_1$	Sp. gr.
29.2056	7.230	1.2788
20.9293	4.762	1.1927
15.7989	3.423	1.1427
11.3249	2.355	1.1007
6.2008	1.233	1.0545

(Charpy, A. ch. (6) 29. 23.)

Sp. gr. of MgCl₂+Aq at 19.5°.

Pts. MgCl ₂ in 100 pts. H ₂ O	Sp. gr.	Pts. MgCl ₂ in 100 pts. H ₂ O	Sp. gr.
10.7	1.0826	35.3	1.2388
22.0	1.1592	51.5	1.3235

(Kremers, Pogg. 104. 155.)

[.] See also MgCl₂+6H₂O.

Sp.	gr.	of	MgCl ₂	+Aa	at	14°.
~ P .	D	•		i I 4	w	

% MgCl; +6H20	Sp. gr.	% MgCls +6H3O	Sp. gr.	% MgCl ₃ +6H ₃ O	Sp. gr.
0 1 2 3 4 5 6 7 8 9 10 11 12	0.9993 1.0033 1.0073 1.0113 1.0154 1.0194 1.0234 1.0274 1.031 1.0355 1.0395 1.0435	17 18 19 20 21 22 23 24 25 26 27 28 29	1.0682 1.0724 1.0765 1.0807 1.0891 1.0933 1.0976 1.1018 1.1061 1.1103 1.1146 1.1189	34 35 36 37 38 39 40 41 42 43 44 45 46	1.1407 1.1451 1.1495 1.1540 1.1584 1.1628 1.1673 1.1718 1.1763 1.1809 1.1855 1.1901 1.1948
13 14 15 16	1.0517 1.0558 1.0599 1.0641	30 31 32 33	1.1232 1.1275 1.1319 1.1363	47 48 	1.1995 1.2042

(Oudemans, Z. anal. 7. 420.)

Sp. gr. of MgCl₂+Aq at 24°.

% MgCl ₂ +6H ₂ O	Sp. gr.	Ç MgClı +6H20	Sp. gr.	% MgCl ₂ +6H ₂ O	Sp. gr.
2 4 6 8 10 12 14 16 18 20 22 24 26 28	1.0069 1.0138 1.0207 1.0276 1.0345 1.0415 1.0485 1.0556 1.0627 1.0698 1.0770 1.0842 1.0915 1.0988	30 32 34 36 38 40 42 44 46 48 50 52 54 56	1.1062 1.1137 1.1212 1.1288 1.1364 1.1441 1.1519 1.1598 1.1677 1.1756 1.1836 1.1918 1.2000 1.2083	58 60 62 64 66 68 70 72 74 76 78 80	1.2167 1.2252 1.2338 1.2425 1.2513 1.2602 1.2692 1.2783 1.2875 1.2968 1.3063 1.3159

(Gerlach, Z. anal. 8. 283. Calculated from Schiff.)

Sp. gr. of MgCl₂+Aq at 25°.

Concentration of MnCl ₂ +Aq.	Sp. gr.
1-normal  1/2-	1.1375 1.0188 1.0091 1.0043

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp. gr. of MgCl₂+Aq.

1/2 MgCl ₂ g. in 1000 g. of solution	Sp. gr. 16°/16°			
0 0.4400 0.8801 1.7780 3.4533 7.4691 14.7187 29.6307	1.000000 1.000372 1.000741 1.001458 1.002888 1.006219 1.012235 1.024647			

(Dijken, Z. phys. Ch. 1897, 24. 108.)

Sp. gr. of MgCl₂ at 20.1°.

p=per cent strength of solution; d=observed duesity; w=volume conc. in grams per cc.  $\left(\frac{\text{pd}}{100} = \text{w.}\right)$ 

р	d	w
28.83	1.2569	0.36237
25.59	1.2241	0.31327
20.31	1.1735	0.23842
15.79	1.1324	0.17877
10.185	1.0833	0.11033
8.058	1.0650	0.08583
5.919	1.0473	0.06198
3.913	1.0304	0.04022
3.903	1.0240	0.03210
1.743	1.0126	0.01765

(Barnes, J. Phys. Chem. 1898, 2. 546.)

Sp. gr. of MgCl₂+Aq at t°.

t°	Concentration of MgCl ₂ +Aq	
$\begin{array}{c} 23 \\ 24 \end{array}$	1 pt. MgCl ₂ in 8.1874 pts. H ₂ O 1 pt. " " 102.1 " "	1.0906 1.0065

(Hittorf, Z. phys. Ch. 1902, 39. 628.)

Sp. gr. of MgCl₂ at 0°.

 $\begin{array}{ll} G.\ MgCl_2\ in\ 100\ ccm.\ of\ solution\ 6.7158\ 9.9506\\ Sp.\ gr. & 1.0591\ 1.0845 \end{array}$ 

G. MgCl₂ in 100 ccm. of sol. 13.8111 20.004 Sp. gr. 1.1106 1.1605 (Bremer, C. C. **1902**, I. 293.)

Sp. gr. of  $MgCl_2+Aq$  at 20° containing M g. mols.  $MgCl_2$  per l. M 0.00493 0.007327 0.01 0.03104 Sp. gr. 1.000344 1.000524 1.000842 1.002756

M 0.50 0.75 0.9415 Sp. gr. 1.038496 1.056905 1.069617 (Jones and Pearce, Am. Ch. J. 1907, **38**, 699.)  $MgCl_2+Aq$  containing 10%  $MgCl_2$  boils at  $101.6^\circ;$  containing 20%  $MgCl_2$  boils at  $106.2^\circ;$  containing 30%  $MgCl_2$  boils at  $115.6^\circ.$  (Gerlach.)

Sat. MgCl₂+Aq forms a crust at 122.5° and contains 52.9 pts. MgCl₂ to 100 pts. H₂O. (Gerlach, Z. anal. 26, 426.)

B.-pt. of  $MgCl_2+Aq$ .  $P=pts. MgCl_2$  to 100 pts. H₂O.

Bpt.	P	Bpt.	P	Bpt.	P
101° 102 103 104 105 106 107	4.9 9.2 13.2 16.7 19.9 22.5 25.0	111° 112 113 114 115 116	34.6 36.6 38.4 40.2 41.8 43.4 44.9	121° 122 123 124 125 126 127	50.8 52.2 53.6 55.0 56.4 57.7 59.0
108 109 110	27.5 29.9 32.3	118 119 120	46.4 47.9 49.4	128 129 130	60.3 61.6 62.9

(Gerlach, Z. anal. 26. 440.)

B.-pt. of MgCl₂+Aq containing % MgCl₂.

% MgCl2	Bpt.	% MgCl2	Bpt.
4.6	101°	11.6	103°
8.4	102	14.3	104

(Skinner, Chem. Soc. 61. 341.)

Sol. in KCl+Aq at 50°. (Uhlig, C. C. 1913, II. 749.)

Sol. in 7 pts. alcohol at 15°. (Bergmann.) moderate heat. (.B)

100 pts. alcohol of given sp. gr. dissolve pts. MgCl2:

Sp. gr.	Pts. MgCl ₂	Sp. gr.	Pts. MgCl ₂
0.900	21 25	0.834	36.25
0 848	23 75	0.817	50.00

(Kirwan.)

 $MgCl_2+6H_2O$  is sol. in 5 pts. alcohol of 0.90 sp. gr. and in 2 pts. alcohol of 0.817 sp. gr. Sol. in 0.1828 pt. strong alcohol at 82.5°. (Wenzel.)

B.-pt. of an alcoholic solution of MgCl₂.

% MgCl ₂	Bpt.
5.56 8.53 9.62 13.84	78.43°+0.73° " +1.34 " +1.77 " +3.54

(Skinner, Chem. Soc. 61. 341.)

Even more sol. in acetic ether than CaCl₂. (Cann, C. R. 102. 363.)

Sol. in boiling amyl alcohol. (Riggs, Sill. Am. J. **144.** 103.)

Sl. sol. in anhydrous pyridine. Sol. in 97%, 95% and 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, 30. 1107.)

Insol. in CS₂. (Arctowski, Z. anorg, 1894, 6. 257.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Insol. in methyl acetate. (Naumann, B. 1909 42. 3790.)

 $+2H_2O.$ Very deliquescent. (Ditte, A.

ch. 1881, (5) 22. 560.) +4H₂O. (van't Hoff and Meyerhoffer.) +6H₂O. Deliquesc nt. Sol. in 0.6 Deliquescent. Sol. in 0.6 pt. cold, and 0.273 pt. hot H₂O, (Casaseca, l. c.)

Solubility in H₂O at t°.

t°	1000 mols H ₂ O dissolve mols MgCl ₂	100 g. H ₂ O dis- solve g. MgCl ₂
3.5	99.6	52.65
25.0	104.5	55.26
50.0	110.6	58.66

(Biltz and Marcus, Z. anorg. 1911, 71. 169.)

Solubility in KCl+NH₄Cl+Aq at 25° has been studied. (Biltz and Marcus, Z. anorg. 1911, 71. 178.)

When the solid phases are MgSO₄+6H₂O and MgCl₂+6H₂O, 1000 mols. H₂O dissolve 104 mols. MgCl₂ and 14 mols. MgSO₄ at 25°. (Löwenherz, Z. phys. Ch. 1894, 13. 480.)

Solubility of MgCl₂+6H₂O in (NH₄)MgCl₈+ 6H₂O+Aq at t°.

to.	Per 1000 mols H ₂ O		
· ·	Mols NH4Cl	Mols MgCl2	
$3.5 \\ 25.0 \\ 50.0$	0.5 0.5 0.8	99.5 103.8 111.2	

(Biltz and Marcus, Z. anorg. 1911, 71. 170.)

Solubility data of MgCl₂+KCl+MgKCl₃ are given by van't Hoff and Meyerhoffer. (Z. phys. Ch. 1899, 30. 64.)
+8H₂O. Pptd. from an aqueous solution

which contains about 10 mols. H₂O to 1 mol.

+12H₂O. Pptd. from an aq. solution which contains 1 mol. MgCl₂ in about 12.06 mols. of H₂O. (Bogorodsky, C. C. 1899, I. 246.)

Magnesium manganous chloride, MgCl₂,  $2MnCl_2+12H_2O$ .

Deliquescent. Very sol. in  $H_2O$  and alcohol. (Saunders, Am. Ch. J. 14. 148.)  $2MgCl_2$ ,  $MnCl_2+12H_2O$ . Ppt. Deliquesces in the air. (Gossner, C. C. 1904, I. 707.)

Magnesium mercuric chloride, MgCl₂, HgCl₂ +6H₂O.

Very deliquescent. More sol. than the following salt. (v. Bonsdorff, Pogg. 17. 133.) MgCl₂, 3HgCl₂+5H₂O. Sol. in H₂O without decomp. Easily sol, in alcohol. Bonsdorff.)

MgCl₂, Magnesium phosphoryl chloride, POCl.

Deliquescent. Sol. in H₂O with evolution of heat and decomposition. Very sl. sol. in warm POCl₃. (Casselmann, A. 98. 223.)

Magnesium potassium chloride, MgCl₂. 2KCl+6H₂O.

Deliquescent, forming a solution of MgCl₂, while KCl remains undissolved. 100 pts. H₂O dissolve 64.5 pts. at 18.75°. 20 pts. salt dissolved in 80 pm. H₂O lower the temp. 1.75°. (Bischof.) Alcohol dissolves out MgCl₂. Decomp. into the two salts by solution in H₂O. (Marcet.)

A sat. solution in contact with solid KCl and KCl, MgCl₂, H₂O at 50° contains 79.5 mol. MgCl₂ and 14.9 mol. KCl per 1000 mol. H₂O. A sat. solution in contact with solid MgCl₂, 6H₂O and KCl, MgCl₂, H₂O at 50° contains 111.9 mol. MgCl₂ and 1.2 mol. KCl per 1000 mol. H₂O. (Uhlig, Chem. Soc. 1913, **104.** (2) 775; C. B. Miner. **1913**, 417.)

Min. Carnallite.

Magnesium rubidium chloride, MgCl₂, RbCl +6H₂O.

Not decomp. by a small quantity of  $H_2O$ . (Feit and Kubierscky, Ch. Ztg. 16. 335.)

Magnesium sodium chloride, MgCl₂, NaCl+ 2H₂O.

Sol, in H₂O. (Poggiale.)

Magnesium thallic chloride, 2TlCl₃, MgCl₂+ 6H₂O.

Hydroscopic. Can be cryst. from H₂O. (Gewecke, A. 1909, 366, 224.)

Magnesium stannic chloride. See Chlorostannate, magnesium.

Magnesium vanadium chloride, MgCl₂, VCl₃  $+H_2O.$ 

Difficultly sol, in H₂O and alcohol. (Stähler, B. 1904, 37, 4412.)

Magnesium zinc chloride, MgCl2, ZnCl2+ 6H₂O.

Deliquescent; sol. in H₂O. (Warner, C. N. **27.** 271.)

Magnesium chloride ammonia, MgCl₂, 4NH₂. Easily decomp. (Clark, A. 78. 369.)

Magnesium chloride hydroxylamine, MgCl₂,  $2NH_2OH + 2H_2O$ .

100 g. of solution in  $H_2O$  contain 44.4% at  $20^\circ$ . (Antonow, J. Russ. Phys. Chem. Soc. 1905, 37.478.)

Magnesium fluoride, MgF₂.

1 l. H₂O dissolves 76 mg. MgF₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50.** 356.) 87 mg. are dissolved in 1 l. of sat. solution

at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64. 168.)

Scarcely sol. in acids. (Gay-Lussac and Thénard.) Insol. in excess of HF. When precipitated, is sol. in aqueous solution of ammonium and magnesium salts. Sol. in dil. HNO₈+Aq, from which it is precipitated by alcohol.

Insol, in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Min. Sellaite.

Magnesium potassium fluoride, MgF₂, KF.

Decomp, by H₂SO₄. (Duboin, C. R. 1895, **120.** 679.)

MgF₂, 2KF. Decomp. by H₂SO₄. (Du-

Magnesium sodium fluoride, MgF₂, NaF. Insol. in  $H_2O$ . (Geuther, J. B. 1865. 173.)

Magnesium stannic fluoride. See Fluostannate, magnesium.

Magnesium titanium fluoride. See Fluotitanate, magnesium.

Magnesium zirconium fluoride. See Fluozirconate, magnesium.

Magnesium hydrosulphide, MgS₂H₂.

Known only in aqueous solution, which decomposes on warming. Solution containing 16% MgS₂H₂ has sp. gr. 1.118 at 12°. (Divers and Shimidzu, Chem. Soc. **45**. 699.)

Magnesium hydroxide, MgO₂H₂.

MgO is sol. in 55.368 pts. H2O at ordinary temp, and

MgO is sol. in 55.308 pts. H₂O at ordinary temp², and also at 100°. (Fresenius, A. **59**, 117.) MgO is sol. in 5142 pts. H₂O at 15.5° (Fyfe); in 5800 pts. at 15.8° (Henry, J. Pharm. **13**, 2); in 7900 pts. (Kirwan); in 16.000 pts. (Dalton); in 100,000–200,000 pts. cold H₂O (Bineau); in 36,000 pts. boiling H₂O (Fyfe, Ed. Phil. J. **5**, 305.)

Calculated from electrical conductivity of MgO₂H₂+Aq, 1 l. H₂O dissolves 9 mg. MgO₂H₂ at 18°. (Kohlrausch and Rose, Z. phys. Ch. **12**. 241.)

Calculated from electrical conductivity, l. H₂O dissolves 00.076 g. MgO₂H₂ at 18°. (Dupré and Brutus, Z. angew. Ch. 1903, 16. 55.)

Presence of CaO₂H₂ or CaSO₄ does not decrease the solubility. (Henry.) Presence of the salts of the alkali metals, especially ammonium salts, increase the solubility. Insol. in conc. Na₂SO₄, NaNO₃, NaCl, or KNO₈+Aq. (Karsten.) Sol. in NH₄OH+Aq, but insol. in KOH+Aq. (Odling.)

Easily sol. in acids. Sol. in an aqueous solution of sugar. Boiling alcohol dissolves

traces.

## Solubility of MgO₂H₂ in NH₄Cl+Aq at 29°.

onc. of CI+Aq ormal) required berated in 25 cc. ormal)		Normality of		Ğ. per l.	
SHE	Acid for li NH ₃	$MgO_2H_2$	NH4Cl	MgO ₂ H ₂	NH4Cl
0.7 0.466 0.35 0.23 0.17	0.09835 0.1108 0.09835 0.1108 0.1108	0.156 0.108 0.089 0.0638 0.049	0.388 0.250 0.172 0.106 0.0771	4.55 3.15 2.60 1.86 1.43	20.86 13.39 9.21 5.67 4.13

(Herz and Muhs, Z. anorg. 1909, 38. 140.)

## Solubility of MgO₂H₂ in NH₄NO₂+Aq at 29°.

Conc of NH ₄ NO ₈	Acid required	Norma	ality of	G. 1	oer l.
+Aq (Nor- mal)	ated NH ₃ in 25cc. (Normal)	MgO2H2	NH₄NO₃	Mg()2H2	NH4NO3
0.35 0.175	0.1108 0.1108	0.0833 0.0495	0.1834 0.076	2.43 1.45	14.69 6.09

#### (Herz and Muhs.)

Completely insol. in 16% NaCl+Aq in presence of 0.8 g. NaOH. (Maigret, Bull. Soc. (3) 33. 631.)

## Solubility of MgO₂H₂ in NaCl+NaOH+Aq.

G. NaCl per l.	G. MgO per l. of solution with added			
G. Naci pei i.	0.8 g. NaOH per l.	4.0 g. NaOH per l.		
125	0.07	0.03		
140 160	0.045 None	None		

## (Maigret.)

Freshly pptd. Mg(OH)₂ is sol. in Th(NO₃)₄ +Aq forming a colloidal solution. (Halla, Z. anorg. 1912, **79.** 262.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II, 1014.)

See also Magnesium oxide.

Min. Brucite. Sol. in cold citric acid+Aq. (Bolton, C. N. 37. 14.) 2MgO, 3H₂O. (Bender, B. 3. 932.)

#### Magnesium iodide, MgI₂.

Very deliquescent. Solubility in  $\rm H_2O$ . See MgI₂+6, and 8H₂O. Sp. gr. of MgI₂+Aq at 19.5° containing: 5 10 15 20 25 30% MgI₂, 1.043 1.088 1.139 1.194 1.254 1.32

35 40 45 50 55 60% MgI₂. 1.395 1.474 1.568 1.668 1.78 [1.915

(Kremers, Pogg. 111. 62, calculated by Gerlach, Z. anal. 8. 285.)

MgI₂+Aq decomp. slightly on evaporation. Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

Sol. in alcohol, ether, and wood-spirit.

Solubility of MgI2 in alcohols.

MgI₂ forms with methyl alcohol a complex, MgI₂, 6CH₂OH.

Solubility of MgI2, 6CH3OH in CH3OH at to.

t°	% by weight of MgI2, CH3OH	t°	% by weight of MgI ₂ , 6CH ₂ OH
0	49.6	120	66.2
20	52.6	140	69.5
40	55.3	160	73.2
60	58.0	180	
80 100	60.6 63.3	200	81.5

(Menschutkin, Z. anorg. 1907, 52. 15.)

MgI₂ forms with ethyl alcohol a complex, MgI₂, 6C₂H₅OH.

## Solubility of MgI2, 6C2H5OH in C2H5OH at to.

t°	% by weight of MgI ₂ , 6C ₂ H ₅ OH	t°	% by weight of MgI ₂ , 6 C ₂ H ₃ OH
0 20 40 60 80 100 110	21.9 33.2 44.4 55.3 65.5 74.7 78.8	120 130 135 140 143 145 146.5 mpt.	82.7 87.2 90.0 93.3 96.0 98.0

(Menschutkin.)

MgI₂ forms with dimethylcarbinol a complex, MgI₂, 6(CH₃)₂CHOH.

## Solubility of MgI₂, 6(CH₃)₂CHOH in (CH₃)₂CHOH at t°.

t°	% by weight of MgI ₂ , 6(CH ₃ ) ₂ CHOH	t°	% by weight of MgI ₂ , 6(CH ₃ ) ₂ CHOH		
10 30 50 70 90	57.1 60.0 63.3 67.0 71.2	110 120 130 136 138 mpt.	76.2 79.4 84.8 91.7		

(Menschutkin.)

#### Solubility of MgI₂ in ether at t°.

t°	% MgI2	% MgI ₂ , 2C ₄ H ₁₀ O
5.4 11.8	1.45 2.43	2.2 3.7
15.6 18.1	3.46 5.4	5.3
$20.4 \\ 22.2$	7.55 11.28	11.6 17.3

(Menschutkin, Z. anorg. 1906, 49. 41.)

t°		% MgI ₂	% MgI2, 2C4H10O
	*	in lower layer	
14.8 17.6 20 28.4 33 35	*	35.5 35.5 35.8 35.5 35.7 35.3	54.4 54.4 54.8 54.4 54.7 54.1

#### in upper layer

18.6 23.2 24.4	13.57 14.4 14.6	20.8 $22.1$ $22.4$
32.4	15.82	24.2

#### in solution when two layers mix

37.3 38.5 38.5 38.5	19.4 22.45 26.07 29.8	29.3 34.4 39.9 45.7
. † <b>3</b> 8	32.8	50.3

## (Menschutkin.)

Solubility of MgI2 in acetic acid.

MgI₂ forms with acetic acid a complex, MgI₂, 6CH₃COOH.

## Solubility of $MgI_2$ , $6CH_3COOH$ in $CH_3COOH$ at t°.

	or burnt Mal. 6CH-COOH
t-	% by wt. MgI ₂ , 6CH ₈ COOH
₩20	0.6
40	2.0
60	5.0
70	9.5
75	13.0
80	18.5
85	27.1
95	42.0
<b>₹ 105</b>	54.5
115	65.0
125	73.8
135	85.0
140	94.0
	0
$142 \; \mathrm{mpt}.$	100.0

(Menschutkin, Z. anorg. 1907, 54. 93.)

Solubility of MgI₂ in acetone.

 $MgI_2$  forms with acetone a complex,  $MgI_2$ ,  $6CH_3COCH_3$ .

Solubility of MgI₂, 6CH₃COCH₃ in CH₃COCH₃ at t°.

t°	% by wt. MgI ₂ , 6CH ₈ COCH ₈
0	4.9
30	6.7
50	8.3
60	10.2
70	15.2
80	28.6
85	40.0
90	59.2
95	80.0
100	92.5
105	98.5
106.5  mpt.	100

(Menschutkin, Z. anorg. 1907, 53. 30.)

Solubility of MgI2 in acetal.

 $MgI_2$  forms with acetal a complex,  $MgI_2$ ,  $2CH_3CH(OC_2H_5)_2$ .

## Solubility of MgI₂, 2CH₃CH(OC₂H₅)₂ in CH₃CH(OC₂H₅)₂ at t°.

t°,	% by wt. MgI ₂ , 2CH ₅ CH (OC ₂ H ₅ ) ₂
20 60 77 77 79 81 83 86 mpt.	0.15 0.45 0.6 92.0 93.7 95.5 97.3

(Menschutkin, Z. anorg. 1907, 53. 33.)

Solubility of MgI2 in acetamide.

 $\mathrm{MgI}_2$  forms with acetamide a complex,  $\mathrm{MgI}_2$ ,  $6\mathrm{CH}_2\mathrm{CONH}_2$ .

# Solubility of MgI₂, 6CH₃CONH₂ in CH₃CONH₂ at t°.

t°	% by wt. of MgI ₂ , 6CH ₃ CONH ₂
49 80 110 130 150 160 170 175 177 mpt.	56.5 - 63.4 70.5 76.0 82.1 85.5 90.8 96.2 100.0
	,

(Menschutkin, Z. anorg. 1909, 61. 108.)

Solubility of MgI₂ in acetonitrile.

MgI₂ forms with acetonitrile a complex,
MgI₂, 6CH₂CN.

Solubility of MgI₂, 6CH₂CN in CH₂CN at t°.

t,°	% by wt. MgI ₂ , 6CH ₃ CN
0	37.2
30	49.8
50	58.2
70	67.9
80	76.5
89	91.3

(Menschutkin, Z. anorg. 1909, 61. 110.)

Solubility of  $MgI_2$  in benzaldehyde.  $MgI_2$  forms with benzaldehyde a complex,  $MgI_2$ ,  $6C_6H_6CHO$ .

Solubility of  $MgI_2$ ,  $6C_6H_6CHO$  in  $C_6H_6CHO$  at t°.

t,°	% by wt. MgI2, 6C6H6CH0
, 0	3.2
20	3.8
40	5.3
60	7.7
80	11.0
100	18.5
110	26.5
120	40.0
125	53.0
130	74.5
133	86.0
136	94.2
139 mpt.	100

(Menschutkin, Z. anorg. 1907, 55. 28.)

Solubility of  $MgI_2$  in methyl acetate.  $MgI_2$  forms with methyl acetate a complex,  $MgI_2$ ,  $6CH_3COOCH_3$ .

Solubility of MgI₂, 6CH₃COOCH₃ in CH₃COOCH₃ at t°.

t°	% by wt. MgI ₂ , 6CH ₃ COOCH ₂
0	0.4
30	0.55
60	0.75
90	0.9
100	1.8
103	2.4
103	74.2
110	81.7
120	98.0
121 mpt.	100.0

(Menschutkin, Z. anorg. 1909, 61. 101.)

Solubility of MgI₂ in methyl acetate. MgI₂ forms with ethyl acetate a complex, MgI₂, 6CH₂COOC₂H₅.

Solubility of MgI₂, 6CH₂COOC₂H₅ in CH₂COOC₂H₅ at

't*	% by wt.MgI ₂ , 6CH ₃ COOC ₂ H ₆
0 20 40 50 55 60 65 70 75 78,5 mpt.	3.2 4.8 8.6 13.7 21.5 38.0 63.5 90.5 97.7

(Menschutkin.)

Solubility of MgI₂ in ethyl formate.

MgI₂ forms with ethyl formate a complex,
MgI₂, 6HCOOC₂H₅.

Solubility of MgI₂, 6HCOOC₂H₅ in HCOOC₂H₅ at t°.

t°	€ by wt. Mgl ₂ , 6HCOOC ₂ H ₅
0	15.1
$\begin{array}{c} 10 \\ 20 \end{array}$	$17.4 \\ 20.5$
30	25
40 50	$\begin{array}{c} 31.8 \\ 44 \end{array}$
60	68
$70.5 \mathrm{mpt}$ .	100

(Menschutkin.)

Solubility of  $MgI_2$  in isoamylacetate.  $MgI_2$  forms with isoamylacetate a complex,  $MgI_2$ ,  $6CH_3COO(iso)C_5H_{11}$ .

Solubility of MgI₂, 6CH₃COO(iso)C₅H₁₁ in CH₃COO(iso)C₅H₁₁ at t°.

t°	% by wt. MgI. 6CH.COO(iso)C.H11
0 20 40 45 50 55 57.5 60 mpt.	7.7 11.5 20.9 25.5 33.2 47.8 63.0

(Menschutkin.)

Solubility of MgI₂ in isobutyl acetate.

MgI₂ forms with isobutylacetate a complex, MgI₂, 6CH₂COOC₄H₂.

Solubility of MgI₂, 6CH₈COO(iso)C₄H₉ in CH₂COO(iso)C₄H₉.

t°	% by wt. MgI ₂ , 6CH ₃ COO(iso)C ₄ H ₉
0 20 40 50 60 70 75 80 85	10.5 13.6 17.6 20.4 24.9 33.7 40.5 52.0 89.0
87.5 mpt.	100.0

(Menschutkin.)

Solubility of MgI₂ in propyl acetate.

MgI₂ forms with propyl acetate a complex, MgI₂, 6CH₃COOC₃H₇.

Solubility of MgI₂, 6CH₃COOC₃H₇ in CH₃COOC₃H₇ at t°.

t°	% by wt. MgI₂, 6CH₃COOC₃H7
0	4.1
20	5.4
30	6.5
35	7.8
40	19.0
45	46.0
50	72.5
55	88.2
60	96.0
65 mpt.	100.0

(Menschutkin.)

Solubility of MgI₂ in urethane.

MgI₂ forms with urethane a complex, MgI₂, 6NH2COOC2H5.

Solubility of MgI₂, 6NH₂COOC₂H₅ in NH2COOC2H5 at to.

t°	% by wt. MgI ₂ , 6NH ₂ COOC ₂ H ₅
32 50 70 80 84 87 mpt.	51.8 59.4 70.7 78.8 85.0 100.0

(Menschutkin.)

 $+6H_2O.$ Solubility of MgI₂+6H₂O in H₂O at t°.

t° .	% by weight of MgI ₂ +6H ₂ O	t°	% by weight of MgI ₂ +6H ₂ O
43°	89.8	160°	91.7
80°	90.3	200°	93.4
120°	90.9	215°	94.3

(Menschutkin, Z. anorg. 1907, 52, 156.)

 $+8H_2O$ . Sp. gr. of solution of MgI₂+8H₂O sat. at 18° containing 59.7% MgI₂=1.909. (Mylius, B. 1897, 30. 1718.)

Solubility of MgI₂+8H₂O in H₂O at t°.

t°	% by weight of MgI ₂ +8H ₂ O
0 20 40 43.5	76.0 -81.0 88.0 90.8

(Menschutkin.)

+10H₂O. Sol. in H₂O. (Panfiloff, C. C. 1894, II. 610.)

Magnesium mercuric iodide, MgI₂, HgI₂.

Known only in solution. +9H₂O.Very deliquescent.

C. R. 1906, 142. 1338.) Very sol. in ethyl, methyl, propyl, butyl, isobutyl, amyl, isopropyl and allyl alcohols, ethyl, amyl, propyl and isobutyl acetates, ethyl cyanide and acetone. Sol. in benzyl alcohol. Decomp. by glycerine. Sl. sol. in ethyl benzoate, amyl benzoate, nitrobenzene. Decomp, by ethyl oxalate. Insol. in toluene. benzene, ethyl iodide, CHCl3, CCl4, ethylene bromide, monochlor and monobrombenzene.

(Duboin, A. ch. 1909, (8) 16. 276.) MgI₂, 2HgI₂. Decomp. by H₂O into HgI₂ and above compound, which remains in solu-

tion. (Boullay.)

+7H₂O. Sat. solution in H₂O at 17.8° has the composition MgI₂, 1.29 HgI₂, 11.06 H₂O. (Duboin, C. R. 1906, 142. 1338.)

Magnesium potassium iodide, MgI2, KI+ 6H₂O.

Deliquescent. (Lerch, J. pr. (2) 28. 338.) Very hygroscopic. (de Schulten, Bull. Soc. 1900 (3) 23. 158.)

Magnesium iodide ammonia, MgI₂, 6NH₃.

Practically insol. in liquid NH₃. (Franklin, J. Am. Chem. Soc. 1913, 35. 1459.)

Magnesium nitride, Mg₃N₂.

Decomp. by moist air or H₂O. Sol. in dil. or conc. HCl+Aq, or HNO₃+Aq. Sol. in warm H₂SO₄. Insol. in alcohol, ethyl iodide, or phosphorus oxychloride. (Briegleb and Geuther, A. 123. 236.)

Decomp. by H₂O. (Smits, R. t. c. 1894, **12.** 198.)

Easily decomp. H₂O when finely powdered. (Rossel, C. R. 1895, **121.** 942.)

Magnesium suboxide (?).

Decomp. H₂O. Sol. in dil. acids. (Beetz, Pogg. 127. 45.)

Magnesium oxide, MgO.

Sol. in 50,000-100,000 pts.  $H_2O$  (Bineau, C. R. **41**, 510); in 55,368 pts. cold or hot  $H_2O$  (Fresenius, A. **59**, 123); in 100,000-200,000 pts.  $H_2O$  (Bunsen); in 16,000 pts.  $H_2O$  at ord. temp. (Dalton); in 7900 pts.  $H_2O$  at ord. temp. (Kirwan); in 5760 pts.  $H_2O$  at  $15.5^\circ$ , and 36,000 pts. at  $100^\circ$  (Fyfe).

Calc. from electrical conductivity of MgO +Aq. 1 pt. MgO is sol. in 172,000 pts. H₂O at 18°. (Dupré, Zeit. angew. Ch. 1903, 16. 55.)

"Heavy" MgO is more sol. in H₂O than "light" MgO. The temp. of preparation affects the rate of solution, the rate being diminished as the temp. of preparation is increased. (Anderson, Chem. Soc. 1905, 87.

Easily sol. in acids, even in H₂SO₃+Aq. Solubility in P₂O₅+Aq at 25°.

Composition of the solution		Sp. gr. 25°/25°	Solid phase
G. MgO per l.	G. P ₂ O ₅ per l.	25 /25	
0.207 0.280 0.553 1.438 2.23 4.73 11.19 17.33 26.09 37.40 75.5 109.5 122.6 129.9 140.0 146.8 147.3 150.3 155.5 87.1 70.6	0.486 0.732 1.917 4.85 7.35 16.84 38.59 61.21 93.09 130.7 281.8 439.0 498.4 546.5 584.0 623.3 625.9 645.8 680.7 779.6 809.6 835.1	1.006 1.017 1.042 1.069 1.109 1.144 1.285 1.470  1.595 	MgHPO ₄ , 3H ₂ O MgH ₄ (PO ₄ ) ₂ , xH ₂ O
	1	1	1 '

(Cameron, J. phys. Chem. 1907, 11, 364.)

Sol. in NH4 salts, NaCl, or KCl+Aq. (Fresenius.)

Solubility in MgCl₂+Aq at 25°.

bordomey in 112 gorz ; 114 de 20 .		
% MgCl ₂	% MgO as Mg(OH)2	
2.36	0.00008	
4.47	0.00028	
6.79	0.00048	
9.02	0.00080	
13.14	0.00115	
15.15	0.00195	
17.53	0.00240	
18.52	0.00250	
22.04	0.00245	
23.78	0.00235	
25.13	0.00230	
26.88	0.00250	
28.34	0.00230	
29.80	0.00240	
30.04	0.00250	
34.22	0.0030	

(Robinson, J. phys. Chem. 1909, 13, 676.)

More sol. in K₂SO₄, and Na₂SO₄+Aq than

in H₂O. (Warrington.) Insol. in liquid NH₂. (Franklin, Am. Ch.

J. 1898, 20. 828.) Sol. in methyl alcohol to form a colloidal solution containing 1:6% MgO. (Neuberg and Rewald. (Biochem. Z. 1908, 9. 547.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3602.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

Solubility in (calcium sucrate+sugar)+

Aq.
1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 0.30 g. MgO; containing 296.5 g. sugar and 24.2 g. CaO dissolves 0.24 g. MgO; containing 174.4 g. sugar and 14.1 g. CaO dissolves 0.22 g. MgO. (Bodenbender, J. B. 1865. 600.)

See also Magnesium hydroxide.

Min. Periclasite.

## Magnesium peroxide, MgO₂.

Sol. in 14,550 pts. H₂O at 20°. (Foregger and Philipp, J. Soc. Chem. Ind. 1906, 25. 298.)

5MgO, 2MgO₂+3H₂O. 3MgO, 2MgO₂+3H₂O. 2MgO, 2MgO₂+3H₂O. 4MgO, 2MgO₂+3H₂O. Above salts are decomp. by H₂O. (Carrasco, Gazz. ch. it. 1909, 39, (1) 47.)

Magnesium oxybromide, MgBr₂, 3MgO+ 12H₂O.

Decomp. in the air and also by H₂O, alcohol and most reagents. (Tassilly, C. R. 1897, **125.** 607.)

#### Magnesium oxychloride, Mg₂OCl₂+16H₂O.

Easily decomp. by H₂O and alcohol.

(André, A. ch. (6) 3. 80.) +6H₂O. (André.) 2MgO, HCl, 5H₂O or 3MgO, MgCl₂+ 10H₂O. Solubility determinations show that this salt is the solid phase in equilibrium at 25° with solutions of MgCl₂ and MgO containing from 10-15% MgCl₂. (Robinson, J. phys. Chem. 1909, 13. 677.)

 $Mg_6O_5Cl_2+6$ , 8, 14, or  $17H_2O$ . Decomp. by H₂O, which dissolves out MgCl₂. (Bender, B. 3. 932.)

 $Mg_{11}O_{10}Cl_2+14$ , or  $18H_2O$ . (Krause, A. **165.** 38.

 $Mg_{10}\dot{O}_{9}Cl_{2} + 24H_{2}O = 9MgO_{2}$  $MgCl_2 +$ 24H₂O. H₂O removes all MgCl₂ by long digesting. (Bender, A. 159. 341.) +10, and 15H₂O. (Bender.)

## Magnesium oxysulphide, Mg₂OS.

(Reichel, J. pr. (2) 12. 55.)

Magnesium phosphide, Mg₂P₂.

Decomp. by H₂O, dil. HCl+Aq. or HNO₃+Aq. (Parkinson, Chem. Soc. **5**. (2) 125 and

Insol. in moderately dil. cold HCl+Aq, or boiling dil. H₂SO₄+Aq. Difficultly and slowly sol. in aqua regia. (Blunt, Chem. Soc. **3.** (2) 106.)

Decomp. by H₂O, HCl, conc. H₂SO₄ and by HNO₃. (Gautier, C. R. 1899, **128**. 1169.)

### Magnesium silicide, Mg₅Si₃.

Slowly decomp. by warm H₂O. Slowly decomp. by cold, rapidly by hot NH₄Cl+Aq. Decomp. by cold dil. HCl+Aq. (Geuther, J. pr. 95. 425.)

Mg₂Si. Decomp. by HCl+Aq with residue

of Si. (Wöhler, A. 107. 113.)

Slowly decomp. by H₂O at ord, temp. Violently decomp. by HCl. (Lebeau and Bossuet, C. R. 1908, 146. 284.)

### Magnesium sulphide, MgS.

Decomp. by H₂O. (Reichel, J. pr. (2) 12. 55.)

Sl. sol. in H₂O with rapid decomp. (Fremy.)

Sol. in acids with decomp.

Crustalline. Anhydrous. Only very sl. sol. in cold H2O. Sol. in HNO3 and H2SO4 at ord. temp. Sol. in PCl₃ and in chromyl chloride. (Mourlot, C. R. 1898, 127. 182.)

Magnesium polysulphide,  $MgS_x$ .

Known only in solution. (Reichel.)

# Magnus' green salt.

See Platodiamine chloroplatinite.

# Manganese, Mn.

Decomposes H₂O even in the cold, more rapidly when hot. (Regnault.)

Decomposes cold water violently. (Bun-

Sol. in all dil. acids. Slowly sol. in cold

 $H_2SO_4$ . (John.)

Insol. in cold, but rapidly sol. in hot H2SO4. Very easily sol. in dil. H₂SO₄, or HCl+Aq,  $HNO_3$ , or  $HC_2H_3O_2+Aq$ . (Brunner.)

Pure manganese is unaltered in dry air, even when finely powdered. Slowly attacked by cold, quickly by hot H₂O. Very sl. attacked by cold H₂SO₄, rapidly on warming; rapidly attacked by cold dil. H₂SO₄+Aq; violently by conc. HNO₃+Aq; and rapidly by dil. HNO₃, HCl, HC₂H₂O₂+Aq, and also NaOH+Aq. Sol. in NH₄Cl+Aq. (Preliginger W. A. B. 102, 2h. 350.) NaOH+Aq. Sol. in NH₄C linger, W. A. B. **102**, **2b**. 359.)

Insol. in liquid NH₈. (Gore, Am. Ch. J.

1898, **20.** 828.)

½ ccm. oleic acid dissolves 0.0276 g. Mn in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

### Manganese antimonide, MnSb.

(Wedekind, B. Sol. in hot agua regia. 1907, 40, 1266.)

# Manganese azoimide, basic, Mn(OH)N₈.

Only sl. sol. in H2O with decomp. (Curtius, J. pr. 1898, (2) **58.** 293.)

## Manganese bismuthide, MnBi.

Very sensitive towards acids with the exception of conc. HCl. (Wedekind, B. 1911, 44. 2665.)

## Manganese boride, MnB.

Attacked by cold H₂O and by acids. (Jas-

soneix, C. R. 1904, 139. 1210.)
Easily attacked by HCl, H₂SO₄ and HF with evolution of BH₃. (Wedekind, B. 1905, **38.** 1231.)

 $MnB_2$ . Sol. in acids, with evolution of  $H_2$ . (Troost and Hautefeuille, A. ch. (5) 9. 65.)

Slowly decomp. by H₂O. Sol. in dil. HCl and other dil. acids with evolution of BH₃. (Wedekind, B. 1905, 38. 1229.)

### Manganous bromide, MnBr₂.

Anhydrous. Very deliquescent. Sat. MnBr₂+Aq contains at:

21° +7° 11° 18° 38° 52.1 56.5 62.7 64.2% MnBr₂, 57.0 59.1

64° 76° 89° 97° 105°

68.2 70.1 69.7 69.2 70.2% MnBr₂. (Étard, A. ch. 1894, (7) 2. 541.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

 $+H_2O$ . (Lescoeur, A. ch. 1894, (7) 2. 104.)  $+4H_2O$ . More deliquescent than MnCl₂. Melts in crystal water when heated. (Berthemot.)

 $+6H_2O$  (Kuznetzoff, C. C. 1897, II. 329.)

# Manganous mercuric bromide.

Deliquescent.

# Manganous palladium bromide.

See Bromopalladite, manganous.

### Manganous stannic bromide.

See Bromostannate, manganous.

### Manganese carbide, MnC.

(Brown, J. pr. 17. 492.)

MnC2.

Mn₃C. (Troost and Hautefeuille, A. ch. (5) **9.** 60.)

Decomp. by H₂O and by dil. acids. (Moissan, C. R. 1896, **122**. 422.)

# Manganous chloride, MnCl₂.

Anhydrous. Deliquescent.

1.0063

		,4				~ ~~~		
10	100 pts. H ₂ O at t° dissolve pts. MnCl ₂ :					Sp. gr.	of MnCl ₂ +Aq a	t room temp.
***************************************	t° P	ts. MnCl ₂	t	Pt	s. MnCi ₂	%	InCl ₂	Sp. gr.
	.25	62.16 85.72 122.22	87. 106.	25 1	22.22 23.81	15. 30.	007 650 330 132	1.0960 1.1963 1.3372 1.4530
or, sat. MnCl ₂ +Aq at t° contains:						ner, W. Ann. 188		
	t°	% MnCl2	t	°   9	MnCl ₂		•	,
10		38.33	87.		55.0	Sp	gr. of MnCl ₂ +	Aq at t°.
	.25	46.15 55.0	106	25	55.32	t°	% MnCl2	Sp. gr.
	(Brandes, Pogg. 22. 263.)  See also below under +2H ₂ O, and +4H ₂ O.					14.5 14.5 14.0 14.5	5.0 11.99 14.98 19.92	1.0457 1.1076 1.1379 1.1891
Sp. g	r, of Mr is MnC	$Cl_2 + Aq a$ $l_2$ ; $b = sp$ .	t 15°. gr. if	a = sp.	gr. if %	14.0 14.6	23.10 28.51	$1.2246 \\ 1.2888$
	4H₂O.			70		(Lo	ng, W. Ann. 1880	0, <b>11.</b> 38.)
<u>%</u>	a	ь	%	8.	b	a		. 050
5	1.045	1.0285	40	1.443	1.250	1		iq at 25°.
10 15	1.091	$1.057 \\ 1.086$	45 50	1.514	1.290 1.331	Concentrat	ion of MnCl2+Aq	Sp. gr.
20 25 30	1.189 1.245 1.306	1.116 1.147 1.180	55 60 65	55 1.375 60 1.419		$\frac{1}{1}$		1.0513 1.0259 1.0125
25	1 279	1 914	70		1 500	17	_ "	1 0063

1.508

(Gerlach, Z. anal. 28. 476.)

1.214

35

1.372

# Solubility of MnCla+KCl in HaO at to

	Soldblift of MHC12+KC1 in 1120 at t.			
t°	% MnCl2	% KCl	Solid phase	
6	40.23 35.94	9.41 23.06	MnCl ₂ , 4H ₂ O MnCl ₂ , 4H ₂ O+MnCl ₂ , KCl, 2H ₂ O+KCl KCl	
28.4	44.46 43.28 38.65	8.66 13.79 26.91	MnCl ₂ , 4H ₂ O MnCl ₃ , 4H ₂ O+MnCl ₂ , KCl, 2H ₂ O MnCl ₂ , 4H ₂ O+MnCl ₂ , 2KCl, 2H ₂ O+KCl KCl	
52.8	50.14	6.01	MnCl ₂ , 4H ₂ O+MnCl ₂ , 2H ₂ O+MnCl ₂ , KCl, 2H ₂ O	
62.6	51.86 49.95 44.05 36.85	6.67 12.49 18.77 31.57	MnCl ₂ , 2H ₂ O MnCl ₂ , 2H ₂ O+MnCl ₂ , KCl, 2H ₂ O MnCl ₂ , KCl, 2H ₂ O+MnCl ₂ , 2KCl, 2H ₂ O MnCl ₂ , 2KCl, 2H ₂ O+MnCl ₂ , 4KCl KCl	

(Süss, Z. Kryst. Min. 1912, 51. 262.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

Solutions of	MnCl ₂ in	75%	alcohol	saturated	
at t° contain:					

(Wagner, Z. phys. Ch. 1890, 5. 38.)

1			
t°	% MnCl2	t°	% MnCl ₂
10 25	23.1 36.1	43.75 87.5 (Bpt.)	37.5 32.2

# Solutions of MnCl₂ in absolute alcohol saturated at t° contain:

t°   % MnCl ₂		t°	% MnCl2	
11.25	33.3	76.25	36.2	
37.5	33.3	(Bpt.)		

### (Brandes, l. c.)

MnCl₂ crystallises from above solutions on standing.

When 15-20 vols. ether are added to 1 vol. absolute alcohol sat. with MnCl₂, MnCl₂ is completely pptd. (Döbereiner.)

Insol. in oil of turpentine.

Sol. in ure ane. (Castoro, Z. anorg. 1899, **20.** 61.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B.

1910, **43**. 314.)

+H₂O. Solubility in HCl+Aq decreases with increasing amt. of HCl. It is greater when hot than cold, but is not inconsiderable even when HCl is conc. 1 l. conc. HCl+Aq sat. at 12° dissolves 190 g. MnCl₂ from MnCl₂ +H₂O. (Ditte, C. R. 1881, 92. 243.)

+H₂O. (Ditte, C. R., 1001, 52. 220.) +5/₃H₂O. MnCl₂+4H₂O effloresces to MnCl₂+5/₃H₂O in a dry atmosphere and under low pressure and not to MnCl₂+ 2H₃O. (Sabatier, Bull. Soc. 1894, (3) 11. 547.)

+2H₂O.

# Solubility in H₂O at t°.

t°	Pts. MnCl ₂ per 100 pts. H ₂ O	Sp. gr. of sat. solution
60	108.6 110.6	1.6108 1.6134
80	112.7	

(Dawson and Williams, Z. phys. Ch. 1899, **31**. 63.)

Sat. aqueous solution of  $MnCl_2+2H_2O$ . Contains 51.86%  $MnCl_2$  at  $62.6^\circ$ . (Süss. Z. Krist. 1912, **51.** 262.)

+4H₂O. Deliquescent.

### 100 pts. H₂O at to dissolve:

100 pts. 1120 at t dissolve.				
t°	Pts. MnCl ₂ +4H ₂ O	t°	Pts. MnCl ₂ +4H ₂ O	
8 31.25 62.5	151 265 641	87.5 106.25	641 656	

# (Brandes, l. c.)

Sol. in 0.8 pt. H₂O at 18.75°. (Abl.) Pptd. from solution in 9.17 mols. H₂O. (Kuznetzoff, C. C. **1899**, I. 246.) Sat. aq. solution contains at:

-22° -5° +7° 17° 19° 34.7 37.8 40.4 41.2 42.3% MnCl_s

35° 55° 57° 80° 100° 140° 44.4 48.2 50.0 51.0 53.7 54.7% MnCl₂. (Étard, A. ch. 1894, (7) **2.** 537.)

# Solubility in H2O at to.

t°	Pts. MnCl ₂ per 100 pts. H ₂ O	Sp. gr. of sat. solution
25	77.18	1 . 4991
30	80.71	1 . 5049
40	88.59	1 . 5348
50	98.15	1 . 5744
*57.65	105.40	1 . 6097

* Temp. of transition into MnCl₂+2H₂O. (Dawson and Williams, Z. phys. Ch. 1899, **31**. 63.)

Sat. aqueous solution of MnCl₂+4H₂O contains 40.23% MnCl₂ at 6°; 44.6% MnCl₂ at 28.4°. (Süss, Z. Krist. 1912, **51.** 262.)

### 100 pts. 75% alcohol dissolve at t°:

t°	Pts. MnCl ₂ +4H ₂ O	t°	Pts. MnCl ₂ +4H ₂ O
10	53	43.75	144
25	132	87.5	100 . 1

(Brandes, l. c.)

Insol. in absolute ether, which also does not abstract crystal H₂O.

Insol. in boiling oil of turpentine. (Brandes. Sol. in conc. HNO₃+Aq.

+5H₂O. (Müller-Erzbach, B. 1889, 22. 3181.)

 $+6\mathrm{H}_2\mathrm{O}$ . Pptd. from solution in 11.7 mols.  $\mathrm{H}_2\mathrm{O}$  at  $-2\mathrm{I}^\circ$ . (Kuznetzoff, C. C. 1899, I. 246.)

# Manganese trichloride, MnCl₃.

Immediately decomp. by H₂O; sol. in abs. ether and in abs. alcohol. (Holmes, J. Am. Chem. Soc. 1907, 29. 1285.)

### Manganese tetrachloride, MnCl₄.

Has not been isolated.

Sol. in H₂O, alcohol, or ether. (Nicklès, J. B. **1865**. 225.)

Composition is Mn₂Cl₆. (Christensen, J. pr. (2) **34.** 41.)

Manganese hydrogen tetrachloride (chloromanganic acid), MnCl₄, 2HCl.

Sol. in ether; decomp. by  $H_2O$ . (Franke, (2) **36**. 31.)

# Manganese heptachloride, MnCl₇(?).

Decomp. by  $H_2O$ . (Dumas, Berz. J. B. 7. 112.)

Has the formula MnO₈Cl (?). (Aschoff, J. pr. 81. 29.)

Manganous mercuric chloride, MnCl₂, HgCl₂ +4H₂O.

Deliquescent in moist air. Easily sol. in

H₂O. (v. Bonsdorff.) MnCl₂, 2HgCl₂. (Varet, C. R. 1896, **123**,

Manganous potassium chloride, MnCl₂, KCl  $+2\mathrm{H}_2\mathrm{O}$ .

Deliquescent. Very sol. in H₂O, but is (Remsen and Saunders, decomp. thereby. Am. Ch. J. 14. 129.)

MnCl₂, 2KCl+2H₂O. 1912, **51**. 262.) (Süss, Z. Kryst.

Manganic potassium chloride, MnCl₈, 2KCl+ H₂O.

Decomp. by H₂O. Sol. in HCl apparently without decomp. (Rice, Chem. Soc. 1898, **73.** 261.)

MnCl4, 2KCl. Very easily decomp. (Meyer and Best, Z. anorg. 1899, 22. 186.) MnCl₄, MnCl₃, 5KCl. Easily decom (Meyer and Best, Z. anorg. 1899, **22**. 185.) Easily decomp.

MnCl2, Manganous rubidium chloride. žRbCl.

(Godeffroy.)

+3H₂O. Easily sol, in H₂O. Insol. in alcohol; conc. HCl+ppt. anhydrous salt from aqueous solution. (Godeffroy, Arch. Pharm. (3) 12. 40.)

Contains only 2H₂O. (Saunders, Am. Ch. J. **14**. 139.)

Manganous thallic chloride, MnCl₂, 2TlCl₃+ 6H₂O.

Can be cryst. from H₂O. (Gewecke, A. 1909, **366.** 224.)

Manganous stannic chloride.

See Chlorostannate, manganous.

Manganous chloride hydrazine, MnCl₂, 2N₂H₄.

Ppt. (Franzen, Z. anorg, 1908, 60, 285.)

Manganous chloride hydroxylamine, MnCl2, 2NH₂OH.

Very stable; insol, in alcohol. (Feldt, B. 1894, **27.** 405.)

Manganous fluoride, MnF₂.

Only sol. in H₂O containing HF. zelius.)

Insol. in H₂O; decomp. by boiling with H₂O; sl. sol. in liquid NH₃; easily sol. in cold or hot conc. HNO₃ and HCl; slowly sol in dil. HCl; decomp. by fused K₂CO₃, KOH, KNO₃, and KClO₃; insol. in alcohol and 35. 161.)

ether. Slowly sol. in acetic acid. (Moissan. C. R. 1900, 130. 1160,

Insol. in liquid NE. (Gore, Am. Ch. J. 1898, **20**. 828.)

Insol. in acetone. (Naumann, B. 1904, 37.

Manganese trifluoride, MnF₈.

Completely sol. in a little H₂O, but decomp. by dilution or boiling. (Berzelius.)

+6H₂O. Efflorescent. (Christensen, J. pr.

(2) 35. 57.) Sol. in H₂SO₄, HCl, HNO₃; decomp. by H₂O: insol. in most organic solvents. (Moissan, C. R. 1900, 130. 626.)

Manganomanganic fluoride,  $Mn_3F_8+10H_2O$ . Sol, in a little H₂O, but decomp. by dilution. (Nicklès, C. R. 67. 448.)

Manganese tetrafluoride, MnF₄.

Not isolated. Sol. in absolute alcohol or ether; decomp. by H₂O. (Nicklès, C. R. 65.

Probably does not exist. (Christensen, J. pr. (2) **35.** 161.)

Manganese heptafluoride,  $MnF_7$  (?). Sol. in II₂O with decomp. (Wöhler.)

Manganese sesquifluoride with MF. See also Fluomanganate, M.

Manganic nickel fluoride, 2NiF₂, Mn₂F₆+ 8H₂O.

(Christensen, J. pr. (2) 34, 41.)

Manganic potassium fluoride, Mn₂F₆, 4KF+  $\bar{2}H_2O$ .

Decomp. by H₂O. Sol. in conc. HCl+Aq. dil. HNO3+Aq, conc. H2SO4+Aq, H3PO4+ Aq, H₂C₂O₄+Aq, H₂C₄H₄O₅+Aq, and dil. HF+Aq. (Christensen, J. pr. (2) **35.** 72.) MnF₄, 2KF. Difficultly sol. in H₂O. De-

comp. by much H2O. (Nicklès, C. R. 65. 107.)

True composition is Mn₂F₆, 4KF, also with 2H₂O. (Christensen, J. pr. (2) 34. 41.)

MnF₄, 4KF. (Nicklès.) See also Fluomanganate, potassium.

Manganic rubidium fluoride.

See Fluomanganate, rubidium.

Manganic silver fluoride, 2AgF, Mn₂F₆+ 14H₂O.

Sol. in HF+Aq. (Christensen, J. pr. (2) 34. 41.)

Manganic sodium fluoride, Mn₂F₆, 4NaF.

Decomp, by much H₀O. Not as sol, in HF +Aq as the K salt. (Christensen, J. pr. (2) Manganomanganic thallous fluoride, 5TlF, ŽMnF₃, MnF₂.

Decomp. by H₂O.

Sl. sol. in dil., easily sol. in conc. HF. Sol. in conc. HCl, dil. HNO₃, and cold or hot conc. H2SO4.

Sol. in warm H₂O₂ containing H₂SO₄. Sol. in dil. tartaric and oxalic acids. (Ephraim, B. 1909, 42, 4458.)

Manganous stannic fluoride. See Fluostannate, manganous.

Manganic zinc fluoride, 2ZnF₂, Mn₂F₆+8H₂O See Fluomaganate, zinc.

Manganous zirconium fluoride. See Fluozirconate, manganous.

Manganous fluoride ammonia, 3MnF₂, 2NH₃. (Moissan, C. R. 1900, 130. 1161.)

Manganous hydroxide, MnO₂H₂.

 $2.15 \times 10^{-5}$  g.-mol. are sol. in 1 l.  $H_2O$  at 18°. (Sackur, Z. Elektrochem, 1909, 15. 846.)

Solubility in  $H_2O = 0.6 \times 10^{-4}$  g. mol. (Herz, Z. anorg. 1899, 22. 284.)

1 l. H₂O dissolves 2 x 10⁻⁴ mol. MnO₂H₂. (Tamm, Z. phys. Ch. 1910, 74. 500.)

Very sl. sol. in H₂O or alkalies. (Fresens.) Easily sol. in acids. Insol. in NaOH, or KOH+Aq. Sol. in NH₄ salts+Aq. Insol. in NH₄OH+Aq in NH₄OH+Aq in presence of glycerine. (Donath, Dingl. **229**.

Not pptd. by NH₄OH+Aq in presence of H₂C₄H₄O₆; by KOH+Aq in presence of cane sugar; by KOH+Aq in presence of Na citrate.

Solubility of MnO₂H₂ in organic Na salts+

Aq. (0.5 normal.) Na tartrate, 0.0068 mol. per l. Na malate, 0.0042 Na citrate, 0.0126 " 66 66 (Tamm, Z. phys. Ch. 1910, 74. 496.) Min. Pyrochroite.

Manganomanganic hydroxide, Mn₃O₄, xH₂O. Not attacked by boiling NH₄Cl+Aq. Behaves towards acids as Mn₂O₃.

Manganic hydroxide, Mn₂O₃, H₂O.

Insol. in hot or cold dil. H2SO4+Aq. Sol. in conc. H₂SO₄ at somewhat over 100°. (Carius.)

Sol. in tertaric, oxalic, and malic acids, with subsequent decomp. Insol. in formic, acetic, benzoic, or hippuric acids. (Hermann, Pogg. **74.** 303.)

Insol. in NH₄Cl+Aq. Insol. in cane sugar

+Aq. (Peschier.)
Min. Manganite. Sol. in conc. HCl+Aq. Sl. sol. in conc. H₂SO₄.

Manganese dihydroxide, MnO₂, H₂O. See Manganous acid.

Manganous iodide, MnI₂.

Nearly insol. in AsBr₂. Anhudrous.

(Walden, Z. anorg. 1902, 29. 374.) Sol. in POCl₃. (Walden, Z. anorg. 1900, **25.** 212.)

Moderately sol. in liquid NH₃. (Franklin,

Am. Ch. J. 1898, **20.** 828.) +4H₂O. Very deliquescent, and sol. in H₂O. (Kuznetzoff, C. C. 1900, II. 525.) +9H₂O. (Kuznetzoff.)

Manganous mercuric iodide, MnI₂, 2HgI₂+ 6H₂O.

Decomp. by H₂O. Sol. without decomp. in alcohol and acetone. (Dobroserdoff, C. C. 1901, I. 363.)

 $3MnI_2$ ,  $5HgI_2 + 20H_2O$ .

A sat. solution in H2O at 17° has composition 1.4 MnI₂, HgI₂+10.22 H₂O and sp. gr. = 2.98. (Duboin, C. R. 1906, **142**. 1338.)

Very sol. without decomp. in methyl, propyl, isopropyl, isobutyl, and allyl alcohols, ethyl acetate and ethyl cyanide. Somewhat less sol. in amyl, propyl and isobutyl acetates, acetone, acetic acid, formic acid (with ppnt. of HgI₂), ethyl benzoate, ethyl oxalate, butyl alcohol, amyl alcohol and nitrobenzene. Sl. decomp. by glycerine. Insol. in ethyl nitrate, ethylene bromide, toluene, benzene, CHCl₃, CCl₄, ethyl iodide, monobrom- and monochlorbenzene. (Duboin, A. ch. 1909, (8), **16.** 278.)

Manganese nitride, Mn₃N₂,

Sol. in HNO₃ only on heating. HCl+Aq dissolves only in presence of Pt. Aqua regia dissolves slowly. H₂SO₄ acts only when hot and conc. Insol. in acetic acid. (Prelinger, M. 1894, **15.** 398.)

Mn₆N₂. Sol. in NH₄Cl+Aq and NH₄OH+Aq; insol. in HCl; sol. in HNO₃+Aq. with decomp. (Prelinger, M. 1894, **15**. 398.)
Mn₇N₂. Easily attacked by acids and al-

kalies. (Wedekind, B. 1908, 41. 3772.)

Manganous oxide, MnO.

Insol. in H₂O. Easily sol. in acids. Readily sol. in NH₄Cl+Aq.

Manganic oxide (Manganese sesquioxide), Mn₂O₃.

Decomp. by boiling with HNO₃+Aq into MnO, which dissolves, and MnO₂, which is insol. (Berthier); also by boiling with dil. H₂SO₄+Aq. (Turner.) Sol. in hot conc. H₂SO₄ or HCl+Aq. Sol. in cold HCl+Aq without decomp. If perfectly pure, is insol. in dil. H₂SO₄+Aq, but if it contains any MnO, it dissolves. (Rose.) Insol. in boiling NH₄Cl+Aq.

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Solubility in (calcium sucrate + sugar) +

Aq.

1 l. solution containing 418.6 g. sugar and 34.3 g. CaO dissolves 0.50 g.  $Mn_2O_3$ ; containing 296.5 g. sugar and 24.2 g. CaO dissolves 0.37 g. Mn₂O₃; containing 174.4 g. sugar and 14.1 g. CaO dissolves 0.32 g. Mn₂O₃. (Bodenbender, J. B. **1865.** 600.)

Min. Braunite.

Colloidal. Solution in H2O containing 0.21 g. to a litre is precipitated by  $KNO_3+Aq$  (1:1000);  $K_2SO_4+Aq$  (1:1100);  $(NH_4)_2SO_4+Aq$  (1:1500); NaCl+Aq (1:1580);  $MgSO_4$ +Aq (1:1500), NaC1+Aq (1:1500), NaSC1+Aq (1:58,823);  $MnSO_4+Aq$  (1:147,929);  $(NH_4)_2Al_2(SO_4)_4+Aq$  (1:362,318);  $K_2Cr_2(SO_4)_4+Aq$  (1:416,668); HC1+Aq (1:61,350);  $HC_2H_4O_2$  (1:17,262);  $H_2SO_4$  (1:62,500). (Spring and de Boeck, Bull. Soc. (2) 48, 170.)

# Manganomanganic oxide, Mn₃O₄.

Insol. in H₂O. Boiling dil. or conc. HNO₃+ Aq dissolves out MnO (Berthier); also boiling dil. H₂SO₄+Aq. (Turner.) Sol. in hot HCl +Aq.(Otto.) NH₄Cl+Aq dissolves out MnO. (Rose.) Sol. without decomp. in hot very conc. H₃PO₄+Aq, and cold conc. H₂SO₄, HCl, oxalic, and tartaric acids + Aq.

Min. Hausmannite.

# Manganese dioxide, MnO₂.

Min. Pyrolusite. Insol. in H₂O. Very slowly sol. in conc. H₂SO₄ with evolution of O2. Sol. in cold HCl+Aq; decomp. by hot HCl+Aq. Sol. in aqua regia. Sol. in  $SO_2+$  Aq or  $N_2O_3+Aq$ . (Karsten.)

Insol. in HNO₃, or dil. H₂SO₄+Aq, except in presence of organic reducing substances. Decomp. by citric acid, and more easily by

oxalic acid. (Bolton.)

Sl. sol. in hot conc., but insol. in dil. HNO₃ Aq. (Deville.) When pure it is insol. in cold dil. H₂SO₄+Aq, but if a small quantity of MnO is added much MnO₂ dissolves. (Carius.)

Not decomp. by boiling NH₄Cl+Aq.

Easily sol. in a mixture of nitrososulphuric acid and conc. HCl+Aq. (Bornträger, Rep. anal. Ch. 1887, 741.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Manganese oxides, Mn₃O₅, Mn₆O₁₁, etc. See Manganite, manganous.

### Manganese trioxide, MnO₃.

Deliquescent. Sol. in H₂O, with subse-Decomp. by ether. Sol. in quent decomp. conc. H₂SO₄. (Franke, J. pr. (2) 36. 31.)

# Manganese tetroxide, MnO₄ (?).

Sl. sol. in H₂O with decomp. Decomp. by H₂SO₄ or ether. (Franke, J. pr. (2) **36.** 166.) (Hahn.)

Manganese heptoxide, Mn₂O₇.

Very unstable: takes up H.O from air. Sol. in H₂O with evolution of heat and rapid decomposition. Sol. in conc. H2SO4 without decomp. (Aschoff.)

Manganere oxychloride, 3Mn₂O₃, MnCl₂.

Insol. in H₂O. (Saint-Gilles, C. R. 55, 329.) MnCl₂, MnO (?). (Gorgeu, A. ch. (6) 4.

MnO₃Cl. See Manganyl chloride.

Manganic oxyfluoride, MnOF₂,

Sol. in absolute ether.

MnOF₂, 2HF=fluoxymanganic acid. (Nicklès, C. R. **659**. 107.)

Manganic oxyfluoride potassium fluoride. See Fluoxymanganate, potassium.

Manganic sesquioxyfluoride potassium fluor-

See Sesquifluoxymanganate, potassium.

Manganous oxyiodide, MnI₂, MnO+6H₂O. Sol. in H₂O with decomp. (Kuznetzoff, C. C. **1913**, I. 1659.)

Manganese oxysulphide, MnO, MnS.

Sol. in acids. (Arfvedson, Pogg. 1. 50.)

Manganese phosphide, Mn₃P₂.

Insol. in dil. acids; sol. in hot conc. HNO₃. Wedekind, B. 1907, **40**. 1268.)

Sol. in aqua regia; insol. in HNO₃. (Grang-

er, C. R. 1897, 124. 191.) Mn₅P₂. HCl+Aq. dissolves out Mn₅P₂ and

leaves Mn₇P₂, which is sol. in HNO₃+Aq. (Wöhler and Merkel, A. **86**. 371.)

Not attacked by boiling H₂O or by HCl. Easily sol. in warm HNO₃ or aqua regia. (Wedekind and Veit, B. 1907, 40. 1268.)  $xMn_3P_2, yMn_4P_2$ . Easily sol. in aqua regia;

partly sol. in H2SO4 or HCl+Aq. (Struve, J. pr. **79.** 321.)

Mn₆P₂. Insol. in HCl+Aq. Sol. in HNO₃ +Aq. (Schrötter, W. A. B. **1849**, **1**. 305.)

Manganous phosphoselenide, MnS. P.Se.

Insol, in H₂O. Sol, in HCl+Aq or HNO₈+ Aq. Insol. in cold, sl. decomp. by hot alkalies +Aq. (Hahn, J. pr. 93, 436.)

2MnSe, P₂Se₃. Insol. in cold, slowly sol. in hot HCl+Aq. Not decomp. by alkalies. 2MnSe, P2Se3. Easily decomp. by acids.

### Manganese selenide, MnSe.

Decomp. by H₂O and min. acids. (Wedekind, B. 1911, 44. 2667.)

Cryst. Sl. decomp. by H₂O at 100°; easily sol, in dil. acids. (Fonzes-Diacon, C. R. 1900, **130.** 1025.)

### Manganese silicide.

Sol. in HF; only very sl. sol. in other acids. (Warren, C. N. 1898, 78. 319.)

Mg.Si₂. Sol. in HCl+Aq with evolution of SiH₄. (Wöhler, A. **106**. 54.)
Mn₂Si. Insol. in H₂O. (Vigouroux, C. R. 1895, **121**. 772.)

Easily sol. in HF. (Wedekind, B. 1911,

**44.** 2668.)

Easily sol. in dil. acids, HF and HNO₃. Insol. in KOH+Aq. (Vigouroux, A. ch. 1897, (7) **12.** 179.)

Easily sol. in HF when heated; in IICl when red hot. Sol. in dil. min. acids with decomp. (Vigouroux, C. R. 1895, 121. 772.)

Insol. in HNO₃; sol. in dil. or conc. HCl. Slowly decomp. by alkali hydroxides. (Lebeau, C. R. 1903, 136. 91.)

Mn₂Si. Easily sol. in molten alkali. (Vigouroux, C. R. 1895, **121**. 772.)

MnSi. Slowly attacked by hot conc. HCl.

Not acted upon by dil. or conc. HNO₈ or H₂SO₄. (Lebeau, C. R. 1903, **136**. 91.) MnSi. Not attacked by HNOs or H2SO4.

Easily sol. in cold HF; decomp. by conc. alkalies+Aq. (Lebeau, C. R. 1903, 136. 233.)

### Manganous sulphide, MnS.

Anhydrous. Insol. in  $H_2O$ . Sol. in weak

acids, even in acetic acid. 1 l.  $H_2O$  dissolves  $71.60 \times 10^{-6}$  moles MnS

at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.) Insol. in acetone. (Naumann, B. 1904, **37**.

Min. Alabandite. Sol. in HCl+Aq.

Green. Decomp. by boiling  $+\frac{1}{2}H_{2}O$ . with H2O. Sol. in weak acids, as acetic or sulphurous acid. Very sl. sol. in (NH₄)₂S+ Aq. (Wackenroder.)

Sol. in NH₄ salts+Aq. 100 ccm. of sat. NH₄Cl+Aq at 12° dissolve 0.43 g. MnS. (Clermont and Guyot, C. R. 85. 37.)

+3/2H2O. Flesh-colored. Less sol. in NH4 salts, or acetic acid+Aq than the preced-100 ccm. of sat. NH4Cl+ ing salt. Aq at 12° dissolve 0.088 g. (Clermont and Guyot.)

Neither green nor flesh-coloured MnS contains H₂O. (Antony and Donnini, Gazz. ch.

it. **23.** 560.)

MnS is not pptd. in presence of alkali citrates, tartrates, or grape sugar; cane or milk sugar do not prevent precipitation. (Spiller.) Not pptd. in presence of Na₄P₂O₇. (Rose.)

# Manganese sulphide, Mn₃S₄.

Decomp. by H2O. Sol. in cold dil. acids. (Gautier and Hallopeau, C. R. 1889, 108. 809.)

# Manganese disulphide, MnS₂.

(Senarmont, J. pr. 51. 385.) Min. Hauerite. Decomp. by hot HCl+Aq with separation of S.

Manganous phosphorus sulphide, MnS, P2S. Sol. in HCl+Aq with decomp. (Berzelius, A. 46. 147.)

# Manganous potassium sulphide, 3MnS, K2S.

Nearly insol. in water, alcohol, or ether. Easily sol. in acids. (Völcker, A. 59. 35.)

# Manganous sodium sulphide, 3MnS, Na₂S.

Insol. in H2O, alcohol, or ether. Sol. in dil. acids, and SO₂+Aq. (Völcker.) 2MnS, Na₂S. Decomp. by H₂O. (Schneider, Pogg. **151.** 446.)

## Manganese telluride, MnTe.

Decomp. by H₂O and min. acids. (Wedekind, B. 1911, 44. 2667.)

## Manganic acid, H₂MnO₄.

Known only in solution, which decomposes rapidly. (Franke, J. pr. (2) 36. 31.)

### Barium manganate, BaMnO₄.

Insol. in H₂O; decomp. by acids. (Mitscherlich.)

### Didymium manganate, Di₂(MnO₄)₃.

Insol. in H₂O. Sol. in H₂SO₄+Aq. (Frerichs and Smith, A. 191. 331.) Does not exist. (Cleve, B. 11. 912.)

## Lanthanum manganate, La₂(MnO₄)₈.

Ppt. (Frerichs and Smith, A. 191. 331.) Does not exist. (Cleve, B. 11. 912.)

Manganese manganate,  $Mn_2O_3$ ,  $MnO_8 =$ 3MnO₂.

See Manganese dioxide.

# Lead manganate, PbMnO₄+2H₂O.

Ppt. (Jolles, C. C. 1888, 58.)

### Potassium manganate, K₂MnO₄.

Sol. in water containing alkalies without decomp., but decomp. by pure H2O. Can be recrystallised from dil. KOH+Aq.

Solubility in KOH+Aq at t°.			
Solvent	t°	Mol. K ₂ Mn() ₄ in 1 l. of sat. solution	
2-N KOH	0 10 20 30 45	0.907 1.013 1.140 1.252 1.424	
4-N KOH	0 17 25 30 40 45 51 60 70 80	0.554 0.681 0.733 0.772 0.852 0.889 0.938 1.003 1.074 1.143	
6-N KOH	0 15 23 30 40 45 60 70 80	0.155 0.224 0.261 0.303 0.362 0.388 0.469 0.528 0.587	
8-N KOH	0 10 20 30 40 50 60 70 80	0.063 0.070 0.078 0.096 0.119 0.142 0.167 0.196 0.222	
10-N KOH	0 10 20 30 40 50 63 70 80	0.0145 0.0152 0.0160 0.0215 0.0305 0.0462 0.0620 0.0700 0.0830	

(Sackur, Z. Elektrochem. 1912, **18**. 724.) Sol. in ethyl acetate. (Naumann, B. 1910, **43**. 314.)

Potassium manganate permanganate,  $K_2MnO_4$ ,  $KMnO_4$ .

Sol. without decomp. in 20% KOH+Aq. (Gorgeu, A. ch. (3) **61.** 355.)

Sodium manganate, Na₂MnO₄+10H₂O.

Sol. in H₂O, with partial decomp. (Gentele, J. pr. 82. 58.)

Strontium manganate, SrMnO₄. Insol. in H₂O. (Fromherz.) Permanganic acid.

See Permanganic acid.

Manganicyanhydric acid, H₅Mn(CN)₆. Not known in the free state.

Barium manganicyanide, Ba₂[Mn(CN)₆]₂. Sol. in H₂O. (Fittig and Eaton.)

Barium potassium manganicyanide barium cyanide, 2KBaMn(CN)₀, 3Ba(CN)₂+

Decomp. by  $H_2O$ . (Lehmann, Dissert. 1898.)

Calcium manganicyanide,  $Ca_2[Mn(CN)_6]_2$ . Sol. in  $H_2Q$ . (Fittig and Eaton.)

Potassium manganicyánide, K₃Mn(CN)₆. Sol. in H₂O. (Christensen, J. pr. (2) **31.** 163.)

Sodium manganicyanide, Na₃Mn(CN)₆+ 2H₂O. Sol. in H₂O. (Fittig and Eaton.)

Manganimanganic acid.

Barium manganimanganate,  $Ba_3Mn_2O_8+H_2O$ .

Insol. in H₂O. Identical with Rosenstiehl's "basic barium manganate," (J. Pharm. 1864, 46. 344). (Auger and Billy, C. R. 1904, 138. 501.)

Lithium manganimanganate,  $\text{Li}_6 \text{Mn}_2 \text{O}_8 + \text{H}_2 \text{O}$ .

Insol. in H₂O. (Auger and Billy.)

Manganiperiodic acid, H₂O, Mn₂O₃, I₂O₇. Wholly insol. in H₂O, in hot dil. or conc. HNO₃ and in hot dil. H₂SO₄. (Price, Am. Ch. J. 1903, **30**. 182.)

Potassium manganiperiodate,  $K_2O$ ,  $Mn_2O_3$ ,  $I_2O_7$ .

Apparently entirely insol. and unchanged when boiled with H₂O, dil. or conc. HNO₃, or dil. H₂SO₄. (Price.)

Sodium manganiperiodate,  $Na_2O$ ,  $Mn_2O_3$ ,  $I_2O_7$ .

Apparently insol. and unchanged when treated with boiling H₂O, boiling dil. or conc. HNO₃ and boiling dil. H₂SO₄. (Price.)

Manganocyanhydric acid, H₄Mn(CN)₆.

Most easily decomp. Sl. sol. in alcohol. Insol. in ether. (Descamps, A. ch. (5) 24. 185.)



### Ammonium cuprous manganocyanide, (NH₄)₂Cu₂Mn(CN)₆.

Sol. in H2O; decomp. by acids and alkalies; very unstable. (Straus, Z. anorg. 1895, 9.

## Ammonium manganous manganocyanide,

 $NH_4CN, Mn(CN)_2 =$ (NH₄)₂MnMn(CN)₆.

Sol. in NH4CN+Aq. (Fittig and Eaton, A. **145.** 157.)

# Barium manganocyanide, Ba₂Mn(CN)₆. Sol. in cold H₂O. (Fittig and Eaton.)

# Calcium manganocyanide, Ca₂Mn(CN)₆.

Very deliquescent. Sol. in H₂O; insol. in alcohol. (Fittig and Eaton.)

# Cuprous potassium manganocyanide,

Cu₂K₂Mn(CN)₆.

Sol. in H₂O with al. decomp. Easily decomp. by acids and alkalies. (Straus, Z. anorg. 1895, 9. 12.)

### Cuprous sodium manganocyanide,

Cu₂Na₂Mn(CN)₆.

Sol. in H₂O with only sl. decomp. Partially decomp. by acids. (Straus.)

# Manganous potassium manganocyanide, KCN, $Mn(CN)_2 = K_2MnMn(CN)_6$ .

Ppt. Sol. in KCN+Aq.

### Potassium manganocyanide, $K_4Mn(CN)_6+$ 3H₂O.

Very efflorescent. Sol. in H₂O; decomp. by boiling.

### Potassium manganocyanide chloride, K₄Mn(CN)₆, KCl.

Easily sol, in H₂O. (Descamps.)

### Sodium manganocyanide, Na₄Mn(CN)₆+ 8H₂O.

Very efflorescent. Easily sol. in H₂O. (Fittig and Eaton.)

# Strontium manganocyanide, Sr₂Mn(CN)₆. As the Ba comp. (Descamps.)

# Permanganomolybdic acid.

See Permanganomolybdic acid.

# Permanganotungstic acid.

See Permanganotungstic acid.

# Manganosulphuric acid. See Sulphate, manganic.

# Manganous acid, $H_2MnO_3 = MnO_2$ , $H_2O$ . Insol. in $H_2O$ . (Franke, J. pr. (2) **36.** 451.) 2MnO₂, H₂O (?). Min. Wad.

# Barium manganite, BaO, 5MnO₂.

Sl. sol. in HCl+Aq, less sol. in HNO₃+Aq. (Rissler, Bull. Soc. (2) **30**. 111.)
BaO, 7MnO₂. (Rousseau, C. R. **104**. 786.)
BaO, 2MnO₂. Insol. in H₂O.
BaO, MnO₂. Insol. in H₂O. (Rousseau,

C. R. **102.** 425.)

Ba(H₂Mn₄O₁₀)₂. (Morawski and Stingl, J. pr. (2) **18.** 92.)

# Calcium manganite, CaO, 5MnO₂.

Easily sol. in HCl+Aq, less in HNO₃+Aq.

(Rissler.) 3CaO, MnO₂ (?). Decomp. by H₂O. Sol. in HCl+Aq with evolution of Cl. Scarcely sol. in cold HNO₃, but sol. on heating. (Du-

fau, A. ch. 1897, (7) **12.** 275.)

2CaO. MnO₂. Sol. in dil. min, acids. 2CaO, MnO₂. Sol. in (Rousseau, C. R. **116**. 1060.)

CaO, 2MnO₂. (Rousseau, C. R. **102**. 425.) CaO, 3MnO₂. CaO, MnO₂. Sol. in fuming HCl+Aq, but

not in dil. HNO₃+Aq. (Rousseau, C. R. 116. 1060.)

#### Chromium manganite, Cr₂O₃, $3MnO_2 =$ $Cr_2(MnO_3)_3$ .

Slowly decomp. by acids. (Gröger, Z. anorg. 1905, 44. 458.)

# Cobaltous manganite, CoO, $MnO_2+2H_2O$ .

Ppt. (Salinger, Z. anorg. 1903, **33.** 352.) +4H₂O. Ppt. (Salinger.)

### Cobalt copper manganite, CoO, CuO, 2MnO₂ $+4\Pi_{2}()$ .

Min. Asbolite. Sol. in HCl+Aq, with evolution of Cl.

### Cupric manganite, CuO, 4MnO₂.

(Gorgeu, Bull. Soc. 1903, (3) 29. 1167.) CuO, 8MnO₂+3H₂O. (Baubigny, C. R. 1897, 124, 955.)

### Cupric manganous manganite, 4CuO, MnO, $7\text{MnO}_2 + 8\text{H}_2\text{O}$ .

Ppt. (Salinger, Dissert. 1902.) Mn₂O₂, 3CuO. Sol. in HCl+Aq. (Schneider, Am. Ch. J. 9. 269.)

# Lead manganite, PbO, 5MnO₂.

Not attacked by conc. acids; sol. in aqua regia. (Rissler.)

# Magnesium manganite, 2MgO, MnO₂.

(Lemoine, Ann. Min. (7) 3. 5.)  $+x\mathrm{H}_2\mathrm{O}$ . (Vollard.)

### Manganous manganite, $Mn_3O_5 = MnO$ , 2MnO₂.

(Reissig, A. 103. 27.)  $Mn_6O_{11} = MnO$ ,  $5MnO_2$ . (Veley, Chem. Soc. 38. 581.)

3MnO₂, 2MnO. Decomp. by dil. H₂SO₄+ Aq. (Franke, J. pr. (2) 36. 166.) 3MnO₂, MnO+H₂O. Min. Varvicite.

Manganous zinc manganite, MnO, ZnO. MnO2.

(Gorgeu, Bull. Soc. 1903, (3) 29. 1168.) 2MnO, ZnO, 2MnO₂. (Gorgeu.)

Potassium manganite, K₂O, 2MnO₂.

Insol. in H₂O.

 $\begin{array}{l} K_2O, \ 5MnO_2. \\ K_2O, \ 7MnO_2 + 3H_2O. \\ K_2O, \ 7MnO_2 + 3H_2O = KH_3Mn_4O_{10}. \end{array}$  (Morawski and Stingl, J. pr. (2) 18. 91.)

(Wright and Menke, Does not exist. Chem. Soc. 37. 22.)

 $\begin{array}{l} {\rm K_2O,\ 10MnO_2.} \\ {\rm K_2O,\ 16MnO_2+6H_2O.} \end{array}$  Sol. in conc. HCl+ Ag. (Rousseau, C. R. 114. 72.)

Silver manganite, AgH₃Mn₄O₁₀.

(Morawski and Stingl, J. pr. (2) **18.** 92.) Ag₂MnO₃. Ppt. (Gorgeu, C. R. **110.** 958.)

Silver (argentous) manganite, Ag₄O,  $Mn_2O_3$  (?).

Insol. in cold dil. HNO₃+Aq, and separates Mn₂O₃ on warming. Insol. in NH₄OH+ Aq. (Rose, Pogg. 101, 229.)

Silver (argentoargentic) manganite, Ag₄O,  $2Ag_2O_1 Mn_2O_3$  (?). (Rose.)

Sodium manganite, Na₂O, 5MnO₂.

Insol. in H₂O. (Rousseau, C. R. 103. 261.) Na₂O, 12MnO₂. Insol. in H₂O. (Rousseau.)

 $+4H_2O$ . (Rousseau, C. R. **112.** 525.) Na₂O, 8MnO₂+5H₂O. (Rousseau.) Na₂O, 16MnO₂+8H₂O. (Rousseau.)

Strontium manganite, MnO₂, SrO.

Insol. in H₂O. 2MnO₂, SrO. Insol. in H₂O. (Rousseau, C. R. **101**. 167.)

MnO₂, 5SrO. Sol. in HCl, or HNO₃+Aq. (Rissler, Bull. Soc. (2) **30.** 110.)

Zinc manganite, ZnO, 5MnO₂.

Insol. in H₂O. (Rissler.) (Gorgeu, Bull. Soc. 1903, ZnO, 4MnO₂. (3) **29.** 1168.)

3ZnO, MnO₂+7½H₂O. (Salinger, Dissert. 27ZnO,  $2MnO_2+25H_2O$ . Insol. in  $H_2O$ .

(Salinger.)

Manganyl chloride, MnO₃Cl. Decomp. by H₂O. (Aschoff, J. pr. 81. 29.) Melanocobaltic chloride, Co₂(NH₂)₆Cl₄NH₂Cl, or,

Co2(NH3)6Cl5NH2.

Verw sl. sol. in cold H₂O or very dil. HCl+ Aq. Decomp. by long standing or warming. Cold conc. HCl or dil. H₂SO₄+Aq does not attack, but decomp. on warming. HNOs+ Aq decomp. on warming. Sol. in cold H₂SO₄ or NH,OH-Aq; from both solutions it can be precipitated by HCl+ Aq. (Vortmann, B. **10.** 1455.)

- chloroplatinate,  $(O_2(NH_3)_6NH_2Cl_5)$ . PtCl4.

Ppt. (Vortmann, B. 15. 1902.) Co₂(NH₂)₆NH₂Cl₃(OH)₂, PtCl₄. Ppt. (Vortmann.)

 mercuric chloride,  $Co_2(NH_3)_6(NH_2)Cl_3(OH)_2$ ,  $3HgCl_2+$ 

Ppt. Difficultly sol. in cold H2O, quite easily in warm H₂O acidified with HCl. (Vortmann.)

 chloride chromate,  $Co_2(NH_3)_6NH_2Cl_3Cr_2O_7+H_2O.$ Sol, in hot H₂O. (Vortmann.)

Mercurammonium comps. See Mercury ammonium comps.

Mercuriammonium bromide, Hg(NH2)Br. See Dimercuriammonium ammonium bromide.

Mercuriammonium chloride, Hg(NH₂)Cl. See Dimercuriammonium ammonium chloride.

Mercuriammonium oxydimercuriammonium chloride, 4Hg(NH₂)Cl, NH₂(HgOHg)Cl. (Millon.)

Correct composition is Dimercuriammonium ammonium chloride, NHg₂Cl, NH₄Cl, which see. (Balestra, Gazz. ch. it. 21, 2. 294.)

Hg(NH₂)Cl, 2NH₂(HgOHg)Cl. (Millon.) Correct composition is Dimercuriammonium mercuric chloride, 2NHg2Cl, HgCl24 H₂O, or Dimercuriammonium hydrogen chloride, NHg₂Cl, HCl. (Balestra.)

Mercuriammonium nitrate, 2NH₃, 2HgO,  $N_2O_5 = NH_2HgNO_3 + \frac{1}{2}H_2O_5$ 

Easily decomp. by HCl, or alkali sulphides+Aq. Sl. sol. in HNO+Aq. Insol. in H₂SO₄, NH₄OH, or KOH+Aq. (Mitscherlich.)

Is dimercuriammonium ammonium nitrate, NHg₂NO₃, NH₄NO₃+H₂O. (Pesci,

Gazz. ch. it. 20. 485.)

Mercuriammonium oxydimercuriammonium nitrate, 3HgO, 2NHs, N2Os = NH2HgNOs (NHg₂OH₂)NO₃+H₂O.

Decomp. by boiling with H₂O, which dissolves out NH₄NO₃. Sol. in NH₄NO₃+Aq containing NH₄OH. (Mitscherlich.)

Is dimercuriammonium ammonium nitrate, 3NHg₂NO₃, NH₄NO₃+2H₂O. (Pesci, Gazz. ch. it. 20. 485.)

Mercuriammonium oxydimercuriammonium sulphate, (NH₂Hg)₂SO₄, 3(NHg₂OH₂)₂SO₄.

Boiling H₂O dissolves out H₂SO₄. Gradually decomp. by boiling KOH+Aq. Completely sol, in NH₄Cl+Aq. Sol, in conc. or dil. HCl, or very dil. H₂SO₄+Aq. Insol, in conc. or dil. HNO3+Aq or conc. H2SO4. (Schneider.)

Correct formula is 7(NHg₂)₂SO₄, (NH₄)₂SO₄ +12H₂O, dimercuriammonium ammonium sulphate. (Pesci, Gazz. ch. it. **20.** 485.)

# Mercuridiammonium chloride (fusible white precipitate), Hg(NH₃)₂Cl₂.

Is dimercuriammonium ammonium chloride, Hg2NCl, 3NH4Cl, which see. (Rammelsberg J. pr. 38. 558.)

Mercuridiammonium mercuric chloride,  $Hg(NH_3)_2Cl_2$ ,  $HgCl_2$ .

Insol. in H₂O, but gradually decomp. by boiling therewith. (Rose, Pogg. 20. 158.) Partly sol. in H₂O. (Kane.)

# Mercuridiammonium iodide, Hg(NH₃)₂I₂.

H₂O extracts all the NH₃. Partly sol. in little alcohol. Partly sol. in ether without decomp. (Nessler.)

Correct composition is dimercuriammonium ammonium iodide, NHg₂I, 3NH₄I. (Pesci, Gazz. ch. it. 20. 485.)

Mercuridiammonium cupric iodide, 4NH₃, CuI₂, HgI₂.

Decomp. by H₂O. Sol. in alcohol+  $HC_2H_3O_2$ . (Jörgensen, J. pr. (2) **2.** 347.)  $2Hg(NH_3)_2I_2$ .  $CuI_2$ . (Decomp. by  $H_2O$ . (Jörgensen.)

# **Mercuri** diammonium iodide, $Hg(NH_3)_2I_2$ .

Decomp. by H₂O. Partly sol. in a little alcohol. Partly sol. in ether. (Nessler.)

Correct composition is dimercuriammonium ammonium iodide, NHg₂I, 3NH₄I. (Pesci.)

Mercuridiammonium mercuric iodide,  $Hg(NH_3)_2$ ,  $HgI_2$ , or  $NH_3$ ,  $HgI_2$ .

Decomp. by H₂O or dil. acids. (Caillot and Corriol, J. Pharm. 9. 381.)

Correct composition is dimercuriammonium ammonium mercuric iodide, 3NHg2I, 8NH₄I, 4HgI₂. (Pesci, Gazz. ch. it. 20.)

Mercuridiammonium sulphate, Hg(NH₈)₂SO₄.

Decomp. with H₂O.

Does not exist. (Pesci, Gazz. ch. it. 20.

485.) +H₂O. Decomp. by H₂O. Easily sol. in HCl, very dil. H₂SO₄+Aq, or HNO₈+Aq. Insol. in conc. HNO₃+Aq. Sol. in (NH₄)₂SO₄+Aq or NH₄Cl+Aq. Decomp. by KOH+Aq. (Schneider, J. pr. **75**. 136.)

Correct composition is (NHg₂)₂SO₄,

 $3(NH_4)_2SO_4+12H_2O_7$ dimercuriammonium

ammonium sulphate. (Pesci.)

# Dimercuriammonium acetate,

NHg₂C₂H₃O₂.

Insol. in H₂O or alcohol. Sol. in HCl or  $NH_4C_2H_3O_2+Aq$ . (Balestra, Gazz. ch. it. **22, 2.** 563.)

Dimercuriammonium ammonium acetate,  $NHg_2C_2H_3O_2$ ,  $3NH_4C_2H_3O_2+H_2O$ .

Deliquescent: sol. in a little H₂O without decomp., but decomp. into NHg₂C₂H₃O₂ and  $NH_4C_2H_3O_2$  by excess of  $H_2O$ . (Balestra.)

—— arsenate, NHg₂H₂AsO₄. (Hirzel, Zeit. Pharm. 1853. 3.)

-bromate, NHg₂BrO₃+1½H₂O. Ppt. (Rammelsberg, Pogg. 55. 82.)

Is oxydimercuriammonium bromate. (NH₂Hg₂O)BrO₃.

— bromide, NHg₂Br.

Insol. in H₂O or HNO₃. Sol. in HCl+Aq. (Pesci, Gazz. ch. it. 19. 509.)

Sol. in KI, or Na₂S₂O₃+Aq with evolution of NH₃. (Balestra, Gazz, ch. it. 22, 2, 558.) Sol. in ammoniacal solutions of ammonium salts and in aq. acids. (Franklin, J. Am. Chem. Soc. 1905, 27. 839.)

– ammonium bromide, NHg2Br, NH4Br. Decomp. by H₂O. (Pesci, Gazz. ch. it. 19.

511.) 4NHg₂Br, 5NH₄Br. Decomp. by H₂O. Insol. in (NH₄)₂CO₃+Aq. Sol. in conc. or dil. HCl+Aq. Insol. in HNO₃+Aq. (Pesci.) NHg₂Br, 3NH₄Br. Decomp. by H₂O. Easily sol. in HCl+Aq. Insol. in alcohol. (Pesci.)

Sol. in NH₄Br, NH₄Cl, or NH₄I+Aq;

sol. in KI, or Na₂S₂O₈+Aq.

- mercuric bromide, 2NHg₂Br, HgBr₂. Ppt. Sol. in HBr and in HCl. (Ray, Chem. Soc. 1902, 81, 649.)

- carbonate, (NHg₂)₂CO₃+2H₂O. Ppt. Not decomp. by KOH+Aq, but easily by K₂S, or KI+Aq. (Rammelsberg, J. pr. (2) 38. 567.)

Dimercuriammonium chloride, NHg₂Cl.

Not attacked by boiling H₂O. Sl. attacked by cold dil. HCl+Aq, but is gradually dissolved thereby. Decomp. by hot KOH+Aq.

Sol. in KI, or Na₂S₂O₃+Aq with evolution

of NH₃.

+H₂O. Nearly insol. in H₂O; easily sol. in HNO₃, and HCl+Aq. Not decomp. by KOH+Aq. Decomp. by KCl, NaCl, or KI+ Aq. (Rammelsberg, Pogg. 48. 181.)

## - hydrogen chloride, NHg₂Cl, 2HCl.

Correct composition of mercuric chloramide chloride. (Balestra, Gazz, ch. it. 21, 2. 299.)

Decomp. by H₂O.

NHg₂Cl, HCl. Decomp. by H₂O. (Balestra,  $\hat{l}$ . c.)

NHg₂Cl, 4HCl. Sol. in H₂O. (Rây, Proc. Chem. Soc. 1901, 17, 96.)

- ammonium chloride, NHg₂Cl, NH₄Cl. (Infusible white precipitate.)

Correct composition of what has been called mercuric chloramide, Hg(NH₂)Cl.

melsberg, J. pr. 38. 558.)
Insol. in cold, decomp. by hot H₂O. (Millon, A. ch. (3) 18. 413.) Sol. in 600 pts.
H₂O. (Wittstein.) Sol. in 719.98 pts. H₂O at 18.75°. (Abl.) Insol. in alcohol.

Sol. in acids, even in HC₂H₃O₂+Aq, also in NH4NO3, (NH4)2SO4, and NH4C2H3O2+

Aq. (Pelouze and Fremy.)
Sol. in warm NH₄Cl, or NH₄NO₃+Aq.

(Brett.)

Sl. sol. in alkali chlorides + Aq, which partially decomp. (Miahle, A. ch. (3) 5. 180.) Decomp. by KOH+Aq. Sol. in KI, or

Na₂S₂O₃+Aq, with evolution of NH₃. (Balestra.)

When freshly prepared is sol. in conc, NH₄OH+Aq. (Saha and Choudhuri, Z. anorg. 1910, 67. 359.)

Sol. in excess of (NH₄)₂HPO₄+Aq. Insol. in excess of Na₂HPO₄+Aq. (Carnegie and Burt, C. N. 1897, 76. 175.)

Insol. in excess of NH₄OH+Aq.

negie and Burt.)

NHg₂Cl, 3NH₄Cl (Fusible white precipi-

Correct composition of what has been called mercurid/ammoniumchloride, (Rammelsberg, J. pr. (2)  $Hg(NH_8)_2Cl_2$ . **38.** 558.)

Decomp. by hot H₂O. Sol. in acids, even HC₂H₃O₂+Aq. Not decomp. by cold, but by boiling KOH+Aq. (Weyl.)

Sol. in warm, less in cold NH₄OH+Aq. (Mitscherlich.)

Sol. in KI, or Na₂S₂O₃+Aq, with evolution

of NH₈. (Balestra.)

Sol. in 10% HNO₃, H₂SO₄ and acetic acid. (Hofmann and Marburg, A. 1899, **305.** 198.)

chloride. Dimercuriammonium mercuric 2NHg₂Cl, HgCl₂.

Insol. in, and not decomp. by boiling H2O, alkalies, conc. HNO2, or dil. H2SO4+Aq. Sol. in boiling HCl+Aq. (Mitscherlich, J. pr 19. 453.)

Si. decomp. by  $H_2O$ , readily by KOH + Aq. (Gaudechon, A. ch. 1911, (8) 22. 212.)

Ppt. So. in HBr. (Ray, Proc. Chem. Soc. 1902, 18. 86.)

- chloride ammonia, NHg₂Cl, ½NH₃. Decomp, by water and by NH4OH+Aq. (Gaudechon, A. ch. 1911, (8) 22. 212.)

— chromate.

Sec Oxydimercuriammonium chromate.

--- hydroxide, NHg₂OH.

Takes up H₂O to form NHg₂OH+H₂O or (NHg₂OH₂)OH, oxydimercuriammonium hydroxide, which also see.

Sol. in warm HCl or HNO₃+Aq.

-- iodate, NHg₂IO₃, 2NH₄IO₃.

Insol. in HNO₃. (Rammelsberg, J. pr. (2) **38.** 568.)

- iodide, NHg₂I.

Insol. in H₂O. Sol. in HCl+Aq. Decomp. by boiling with KOH+Aq or KCl+

Aq. (Weyl, Pogg. 121. 601.) Decomp. by hot KI, or Na₂S₂O₄+Aq. (Balestra.) Decomp. by dilute HCl. Sol. in ammonium salts+Aq. (Franklin, Z. anorg. 1905, 46. 21.)

 $+H_2O.$ SeeOxydimercuriammonium iodide.

– ammonium iodide, NHg₂I, 3NH₄I.

Correct composition of mercuridiammonium iodide, Hg(NH₃)₂I₂. (Pesci, Gazz. ch. it. **20.** 485.)

3NHg₂I, 8NH₄I, 4HgI₂. Correct formula for mercuridiammonium mercuric iodide,  $Hg(NH_3)_2I_2$ ,  $HgI_2$ . (Pesci.)

– nitrate, NHg₂NO₈.

Insol. in H₂O. (Rammelsberg, J. pr. (2) 38. 566.)

Sol. in KI, or Na₂S₂O₃+Aq, with evolution of NH₃. (Balestra, Gazz. ch. it. 22, 2. 560.) +H₂O. (Hofmann and Marburg, A. 1899,

305. 212.)

Sl. sol. in HNO₃. (Ray, Z. anorg. 1902, **33.** 209.)

- ammonium nitrate, NHg2NO3, NH4NO3

Correct formula for mercuriammonium nitrate, NH₂HgNO₃+½H₂O. (Pesci, Gazz. ch. it. 20, 485.)

NHg₂NO₈, 2NH₄NO₈+2H₂O. Correct for-

mula for oxydimercuriammonium ammonium nitrate, (NHg₂OH₂)NO₃, 2NH₄NO₃+H₂O. (Pesci.)

NHg₂NO₃, 3NH₄NO₃. Decomp. by cold H₂O; sol. in NH₄OH+Aq. (Pesci.) 3NHg₂NO₃, NH₄NO₃+2H₂O. Correct for-

mula for mercuriammonium oxydimercuriammonium nitrate, NH₂HgNO₈, (NHg₂OH₂)NO₃  $+\mathrm{H}_2\mathrm{O}$ . (Pesci.)

Dimercuriammonium nitrite, NHg₂NO₂.

Readily sol. in warm HCl or HBr. (Ray. Chem. Soc. 1902, 81. 648.)

+1/2H2O. Ppt. Sol. in HCl. (Ray, Proc.

Chem. Soc. 1902, 18. 85.) +H.O. (Hefmann and Marburg, A. 1899, 305. 212.)

---- oxide,  $(NHg_2)_2O$ .

Slowly decomp. by H₂O. Sol. in HCl, or

HNO₃+Aq. Decomp. by hot KOH, or KCl +Aq. (Weyl, Pogg. **121**. 601.) Sol. in KCN+Aq by heating 4-5 hours at 130°. Not completely sol. in HCl owing to formation of Hg₂Cl₂. (Gaudechon, C. R. 1907, 144. 1419.)

- phosphate,  $(NHg_2)_2PO_4$ ,  $2NHg_2OH +$ 10H₂O.

(Rammelsberg, J. pr. (2) 38. 567.) Sec Oxydimercuriammonium phosphate.

 ammonium salicylate, 2NHg₂C₆H₄OHCŎ₂, 5ŃH₄C₆H₄OHCO₂. Decomp. by H₂O. Sol. in NH₄C₂H₃O₂, HCl, or KI+Aq. (Balestra.)

- selenate,  $(NHg)_2SeO_4+2H_2O$ . Ppt. Insol in  $H_2O$ ; sol in  $NH_4OH+Aq$ . (Cameron and Davy, C. N. 44. 63.)

- sulphate,  $(NHg_2)_2SO_4+2H_2O$ .

Insol. in H₂O. Easily sol. in HCl+Aq. (Rammelsberg, J. pr. (2) 38. 565.) (Kane), insol. (Hirzel) in HNO₃+Aq. Sol.

Sol. in KI, or Na₂S₂O₃+Aq with evolution of NH₃. (Balestra.) + $H_2O$ . Insol. in  $H_2O$ ; sol. in HCl. (Ray, Chem. Soc. 1905, 87. 9.)

- ammonium sulphate,  $(NHg_2)_2SO_4$ ,  $3(NH_4)_2SO_4+4H_2O.$ 

Correct formula for mercuridiammonium sulphate, 2NH₃, HgO, SO₈+H₂O. (Pesci, Gazz. ch. it. **20.** 485.) 5(NHg₂)₂SO₄, 14(NH₄)₂SO₄+16H₂O.

(Pesci.)

 $7(NHg_2)_2SO_4$ ,  $(NH_4)_2SO_4+12H_2O$ . rect formula for mercuriammonium oxydimer- $(NHg_2H_2)_2SO_4$ curiammonium sulphate, 3(NHg₂OH₂)₂SO₄. (Pesci.)

Dimercuriammonium tartrate,  $(NHg_2)_2C_4H_4O_6+2\frac{1}{2}H_2O.$ 

Insol. in  $H_2O$ . Sol. in HCl, KI,  $Na_2S_2O_3$ ,  $NH_4C_2H_3O_2$ , or  $(NH_4)_2C_4H_4O_6+Aq$ . (Balestra, Gazz. ch. it. 22, 2. 563.)

ammonium tartrate, 2(NHg₂)₂C₄H₄O₆,  $(NH_4)_2C_4H_4O_6+H_2O.$ As above. (B.)

Trimercuriammonium sulphate,  $(NHg_2)(NHgH_2)SO_4+2\tilde{H}_2O.$ 

Decomp. by H₂O. (Millon.) Does not exist. (Pesci, Gazz. ch. it. 20. 485.)

Dimercuriarsonium mercuric chloride,  $AsHg_3Cl_3 = AsHg_2Cl$ ,  $HgCl_2$ .

Decomp. by H₂O. Decomp. by warm  $HNO_3 + Aq$ . (Rose, Pogg. 51. 423.)

Mercurimidosulphonic acid, (HO₃S)₄N₂Hg.

Very unstable. (Berglund, B. 9. 256.)

Barium mercurimidosulphonate,  $Ba_2(SO_3)_4N_2Hg+5H_2O$ . (Berglund, B. 9. 256.)

Cadmium —,  $Cd_2HgN_2(SO_3)_4+12H_2O$ . Unstable; sl. sol. in H₂O. (Berglund, Bull. Soc. (2) **25.** 452.)

Cobalt —,  $Co_2HgN_2(SO_3)_4+15H_2O$ . Sol, in H₂O, (B.)

Copper —,  $Cu_2HgN_2(SO_3)_4+15H_2O$ . Very sol. in H₂O. (B.)

Magnesium —,  $Mg_2HgN_2(SO_8)_4+15H_2O$ . Very sol, in  $H_2O$ . (B.)

Manganous —,  $Mn_2HgN_2(SO_3)_4+10H_2O$ . Unstable. (B.)

Mercuric —,  $(Hg_2O)_2HgN_2(SO_3)_4$ . Nearly insol. in H₂O. (B.)

Nickel ----,  $Ni_2HgN_2(SO_3)_4+15H_2O$ . (B.)

Potassium —,  $(KO_3S)_4N_2Hg+4H_2O$ . Precipitate. (Raschig, A. 241. 161.)

Potassium silver —, (AgSO₈)₂(KSO₃)₂HgN₂ +3H₂O₁Sl. sol. in H₂O. (Berglund.)

Sodium ----,  $(NaSO_8)_4HgN_2+5H_2O$ . More sol. in H₂O than K salt. (Berglund.)

Strontium —,  $Sr_2(SO_3)_4HgN_2+15H_2O$ . More sol. than Ba salt. (B.)

Zinc mercurimidosulphonate,  $Zn_2(SO_3)_4HgN_2+15H_2O.$ 

Very sol. in H₂O. (B.)

Dimercuriphosphonium mercuric bromide, 2PHg₂Br, HgBr₂.

(Lemoult, C. R. 1907, 145, 1176.)

Dimercuriphosphonium mercuric chloride, HgCl₂, PHg₂Cl.

(Lemoult, C. R. 1907, 145. 1176.)

+11/2H2O. Decomp. by hot, slowly by cold H₂O into Hg, HCl, and H₃PO₃. Decomp. by acids or alkalies. (Rose, Pogg. 40. 75.)

### Dimercuriphosphonium mercuric iodide, HgI2, PHg2I.

Slowly decomp. by cold or warm H₂O, quickly by MOH+Aq. Not attacked by HCl or H₂SO₄+Aq. Rapidly attacked by HNO₃ and aqua regia. (Lemoult, C. R. 1904, 139. 479.)

Dimercuriphosphonium mercuric nitrate,  $P_2Hg_3$ , 6HgO,  $Hg(NO_3)_2$ ], 3HgO.  $3N_{2}O_{5} = 2[PHg_{2}NO_{8}]$ (Rose, Pogg. 40. 75.)

Dimercuriphosphonium mercuric sulphate,  $P_2Hg_3$ , 6HgO,  $4SO_3+4H_2O=(PHg_2)_2SO_4$ ,  $3HgSO_4$ ,  $2HgO+4H_2O$ .

Sol. in aqua regia. (Rose, Pogg. 40. 75.)

### Mercuric acid.

Calcium mercurate (?).

(Berthollet, A. ch. 1. 61.)

### Potassium mercurate, K₂O, 2HgO.

Gradually decomp. by H₂O; less rapidly by absolute alcohol. (St. Meunier, C. R. 60. **557.**)

Sodium mercurate, Na₂O, HgO.

(Bettekoff, Bull. Soc. (2) 34. 328.)

# Mercuroammonium chloride.

 $Hg(NH_3)Cl.$ 

(Rose, Pogg. 20. 158.)

Mixture of Hg, HgNH₂Cl, and NH₄Cl. (Barfoed, J. pr. (2) 39. 201.)

- nitrate, (NHg₂H₂)NO₃, "Hahnemann's soluble mercury."

Sol. in hot HCl, and HC₂H₃O₂+Aq. Decomp. by NH₄OH+Aq, or NH₄ salts+Aq. Probably mixture of mercurous salts and Hg.

# Mercurodiammonium chloride,

 $Hg_2(NH_3)_2Cl_2$ .

Easily decomp. (Rose, Pogg. 20. 158.) Mixture of Hg, NH₂HgCl, and NH₄Cl. (Barfoed, J. pr. (2) 39. 201.) Mercurodiammonium fluoride,  $Hg_2(NH_3)_2F_2$  (?).

Decomp. by H₂O. (Finkener, Pogg. 110. 147.)

Mercurosulphonic acid.

## Mercurosulphonates, Hg(SO₃M)₂.

Correct composition for the double sulphites, HgSO₃, M₂SO₃. (Divers and Shimidzu, Chem. Soc. 49. 583; Barth, Z. phys. Ch. **9.** 195.)

# Mercuroxy-comps.

See Oxymercur- comps.

# Mercury, Hg.

Not attacked by H₂O. Not attacked by boiling cone. HCl or dil. H2SO4+Aq. Easily sol. in dil. or conc. HNO₃+Aq; also in HBr

Not attacked by pure HNO, unless heated, but readily attacked by cold dil. HNO₃+Aq containing NO. (Millon.)

Anhydrous H₂SO₄ attacks Hg gradually at ord. temp. (Berthelot, C. R. 1897, 125. 749.)

H₂SO₄ attacks only when hot and conc.

(Ditte, A. ch. 1890, (6) 19.68.)

Conc. H₂SO₄ does not attack dry or moist

Hg either with or without air. (Pitman, J. Am. Chem. Soc. 1898, 20. 100.)

H₂SO₄ attacks Hg at 20° if it contains 99.7%; does not attack if it contains only 95.6%. (Baskerville, J. Am. Chem. Soc. 1898, 20. 515.)

Insol. in H₂SO₃+Aq alone or in presence of HCl or dil. H₂SO₄. (Berthelot, A. ch. 1898, (7) 14. 198.)

Not attacked by HF+Aq at any temp.

(Gay-Lussac.)

HI dissolves Hg rapidly at ord. temp. (Norris and Cottrell, Am. Ch. J. 1896, 18. 99.)

More rapidly attacked by HBr+Aq than by HCl+Aq. Rapidly acted upon by HI in absence of O. (Bailey, Chem. Soc. 1888, **53**. 760.)

Not attacked by pure HCl+Aq, but in presence of O, Hg₂OCl₂+H₂O is formed. Action is apparently less in sunlight than in the dark. (Bailey, Chem. Soc. 1888, 53. 759.)

Small amts. of ferric salts hinder action of HNO₃ on Hg, but it is hastened by presence of Mn(NO₃)₂ or NaNO₃. (Ray, Chem. Soc. 1911, **99.** 1015.)

HNO₃ under 33% does not attack Hg if metal and acid are kept in motion and HNO2 is absent. (Veley, B. 1895, 28. 928.)

Rapidly sol. in HClO. (Balard, Dissert. 1834.)

Alkali chlorides + Aq in presence of air decomp. Hg; action is not increased by heat. (Miahle.)

Insol. in alkali chlorides+Aq in neutral or

alkaline solution. (Bhaduri, Z. anorg. 1897, **13.** 407.)

Very sol. in conc. solution of I in KI+Aq. (Varet, Bull. Soc. 1897, (3) 17. 451.)
Slowly sol. in KCl or KI+Aq in presence of air. (Palmaer, Z. phys. Ch. 1907, 59. 136.)
Slowly sol. in Na₂S+Aq in presence of air.

(Palmaer, Z. phys. Ch. 1907, 59. 137.) Hg is appreciably sol. in the sulpho salts of

Mo, W, V, As, Sb and Sn. (Storch, B. 1883, **16.** 2015.)

Persulphates in alkali or neutral solution attack Hg. (NH₄)₂S₂O₈ in NH₄OH solution has strongest action. This dissolves Hg by repeated shaking at high temp. (Tarugi, Gazz. ch. it. 1903, 33, (1) 127.)
Ingal, in Ken + Aq. (Elmer, J. pr. 1888, (2) 32, 442.)

(2) 3.442.)
Slowy sol. in KCN+Aq in presence of air. (Palmaer, Z. phys. Ch. 1907, 59. 136.)

Sol. in considerable quantity in 6% KCN+ Aq. (Goyder, C. N. 1894, 69. 268.)

Most sol. in K₄Fe(CN)₆+Aq when KOH is present. (Smith, J. Am. Chem. Soc. 1905, **27.** 544.)

Hg dissolves in Br₂ in the presence of KBr sl. faster than in I2 but in CuBr2 much more slowly. (Van Name and Edgar, Am. J. Sci.

1910, (4) **29.** 255.) Not attacked by PCl₃ even at 350°. (Moissan, A. ch. 1885 (6) **6**. 457.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 829.)

½ ccm. oleic acid dissolves 0.0075 g. Hg in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Mercurous acetylide,  $Hg_2C_2+H_2O$ .

(Burkard and Travers, Chem. Soc. 1902, **81.** 1271.)

Mercuric acetylide, basic, 2HgO, 3HgC₂+

(Burkard and Travers, Chem. Soc. 1902, 81. 1272.)

Mercuric acetylide, HgC₂.

Very sol. in HCl with evolution of H₂C₂.

(Keiser, Am. Ch. J. 1893, 15. 535.)

+1/3H₂O. Insol. in H₂O, alcohol and ether. Sol. in NH₄ acetate +Aq, and in KCN+Aq. Sl. attacked by cold HCl, easily by hot. Easily sol. in HNO₃. Dil. H₂SO₄ attacks slowly; conc. causes explosion. (Plimpton and Travers, Chem. Soc. 1894, 65. 267.)

Mercuric acetylide chloride, HgC₂, HgCl₂+

Not acted upon by dil. HCl. Decomp. by fuming HNO₃ or aqua regia. Insol. in alcohol and ether. (Keiser, Am. Ch. J. 1893, **15**. 538.)

Mercuric acetylide mercuromercuric chloride,  $HgC_2$ , HgCl,  $HgCl_2+H_2O$ .

Insol. in all ordinary solvents. (Biltz and Mumm, B. 1904, **37.** 4420.)

Mercurous amidofluoride, HgNH₂F.

Insol. in H₂O, HNO₃ and H₂SO₄. Sol. in dil. HCl

Probably dimercuriammonium ammonium fluoride, NHg₂F, NH₄F. (Böhm, Z. anorg. 1904, **43.** 327.)

Mercury ammonium comps.

See-

Mercuroammonium comps., NH₈HgR.

Dimercuroammonium comps., NH₂Hg₂R.

Mercurous chloramide, Hg(NH₂)Cl.

Dimercuriammonium comps., NHgR.

Mercuric chlor-, brom-, etc., amide,  $Hg(NH_2)R$ .

Mercuridiammonium comps., Hg(NH₃)₂R.

Mercuriammonium comps., HgNH₂R.

Dimercuridiammonium comps.,  $Hg_2N_2H_4R$ . Trimercuriammonium comps.,  $N_2H_2Hg_3R$ .

Oxydimercuriammonium comps., (NH₂Hg₂O)R.

Mercurous arsinchloride, AsHgCl.

Decomp. by H₂O. (Capitaine, J. Pharm. **25.** 559.)

Mercurous arsinchloride chloride, AsIIg₂Cl₂ =2AsHgCl,  $Hg_2Cl_2$  (?).

Decomp. by H₂O. (Capitaine.)

Mercurous azoimide, HgN₃.

Wholly insol, in H₂O. (Curtius, B. 24. 3324.)

1 l. H₂() dissolves 0.25 g. (Wöhler and Krupko, B. 1913, **46.** 2050.)

Mercuric azoimide, HgN6.

Sol. in H₂O especially when hot. (Berthelot and Vieille, Bull. Soc. 1894, (3) 11. 747.)

Moderately sol. in H₂O. (Wöhler and Krupko, B. 1913, 46. 2050.)

Mercuric bromamide, Hg(NH₂)Br.

Insol. in H₂O and alcohol. Sl. sol. in NH₄OH+Aq. (Mitscherlich, J. pr. 19. 455.) Correct composition is dimercuriammonium ammonium bromide, Hg2NBr, NH4Br, which see. (Pesci, Gazz. ch. it. 19. 511.)

Mercurous bromide, Hg₂Br₂.

Solubility in  $H_2O = 9.1 \times 10^{-7}$  g. equiv. per l. (Bodländer, Z. phys. Ch. 1898, 27. 61.) Solubility in  $H_2O = 7 \times 10^{-8}$  mols. per liter at 25°. (Sherrill, Z. phys. Ch. 193, 430. 735.)

Solubility in  $H_2O$  at  $25^{\circ} = 1.4 \times 10^{-7}$  equivalents per l. (Thompson, J. Am. Chem. Soc.

1906, 28. 762.)

Insol. in H₂O and dil. acids. Decomp. by HCl+Aq. Sol. in hot conc. H₂SO₄ with evolution of SO₂. Sl. sol. in hot HNO₃+Aq of 1.42 sp. gr. (Stromann, B. **20**. 2818.)

of 1.42 sp. gr. (Stromann, B. 20. 2818.)

Decomp. into Hg and HgBr₂ by boiling with NH₄Br, or NH₄Cl+Aq; also by ammonium carbonate or succinate, but not by ammonium sulphate or nitrate. (Wittstein.)

Sol. in Hg(NO₃)₂+Aq. (Wackenroder, A.

**41.** 317.)

Partially decomp. by alkali chlorides + Aq; when out of contact of air this decomp. is slight and HgBr₂ is formed, while in the air HgCl₂ is the resulting product. Much more rapidly decomp. in hot than cold solutions. (Miahle, A. ch. (3) 5. 177.)

A solution of HgBr in 0.1-N KBr contains

about 1 mg. Hg ions in 1300 l.

Insol. in alcohol.

Insol. in benzonitrile. (Naumann, B.

**1914**, **47**. 1370.)

Insol. in methyl acetate (Naumann, B. 1909, **42**, 3790); ethyl acetate. (Naumann, B. 1910, **43**, 314.)

Insol. in acetone. (Naumann, B. 1904, **37**. 4329); (Eidmann, C. C. **1899**, II. 1014.)

### Mercuric bromide, HgBr₂.

Sol. in 250 pts.  $\rm H_2O$  at ordinary temp., and 25 pts boiling  $\rm H_2O$ . (Wittstein.) Sol. in 240 pts.  $\rm H_2O$  at 18.75°. (Abl.)

Sol. in 94 pts.  $H_2O$  at 9°, and in 4–5 pts. at 100°. (Lassaigne, J. chim. méd. 12. 177.)

Solubility in g-equivalents per litre =  $2\times10^{-2}$ . (Bodländer, Z. phys. Ch. 1898, **27**. 61.)

1 l. H₂O dissolves about 4 g. at ord. temp. (Morse, Z. phys. Ch. 1902, **41**. 731.)

1 l. H₂O dissolves 0.017 mol. at 25°. (Jan-

der, Dissert. 1902.)

Solubility in  $\text{H}_2\text{O}$  at  $25^\circ = 0.017$  mol. liter. (Sherrill, Z. phys. Ch. 1903, **43**. 735.)

Solubility at ord. temp. = 0.8%; at bpt. = 8-9%. (Larine, J. Pharm. 1904, (6) 20.

450.)

Solubility in cold  $H_2O=4\%$ , but solution prepared by heating contains more Hg on account of decomp, into HBr and oxybromide. (Vicario, C. C. 1907, II. 1224.)

1 l.  $H_2O$  dissolves about 5-6 g. at ord. temp. (Gaudechon, A. ch. 1911, (8) 22. 212.)

11. aqueous solution at 25° contains 0.017 mol. (Herz and Paul, Z. anorg. 1913, 83. 431.)

Decomp. by warm HNO₃, or H₂SO₄+Aq. Sol. in warm H₂SO₄. (Ditte, A. ch. (5) **17**. 124.)

1 mol. is sol. in 1 mol. warm HI+Aq. in 1 mol. cold conc. HCl and in ½ mol. hot conc. HCl. (Löwig.)

Solubility of HgBr2 in KBr+Aq at 25°.

Mols. per liter				
" KBr	HgBr ₂			
0. 0.05 0.10 0.5 0.866 2 3	0.017 0.055 0.088 0.0359 0.611 1.407 2.096 2,339			

(Sherrill, Z. phys. Ch. 1903, 43. 705.) Solubility in various salts+Aq at 25°.

	In 10 ccm. c	of the solution
Salt	Millimols Hg Br ₂	Millimols salt
NaBr	0.17 0.78 2.85 5.40 12.76 15.50 23.06	0 1.18 5.96 11.42 24.48 29.97 52.46
KBr	0.17 0.98 4.72 13.60 19.30	0 2.09 7.70 23.80 34.70
$\mathrm{CaBr}_2$	0.17 1.17 6.76 13.58 27.66 36.66	0 0.72 6.45 18.92 24.79 37.54
$\mathrm{SrBr}_2$	0.17 1.04 4.71 9.02 17.70 22.38	0 0.62 3.28 6.68 14.01 18.72
BaBr ₂	0.17 3.70 5.40 7.59 14.78	0 2.74 3.96 5.79 10.96
/TT	170 177	1010 00 1011

(Herz and Paul, Z. anorg. 1913, 82. 434.)

Solubility in 0.1 – N Hg(NO₃)₂+Aq is about 20 g. per liter. (Morse, Z. phys. Ch. 1902, 41. 731.)

Sol. in KBr or NaBr+Aq. (Jander, Dissert. 1902.)

Solubility in 10 cc. Br₂+Aq at 25°.

Millimol Br₂ 0.753 1.797 2.231

"Hg 0.1844 0.1947 0.2120

(Herz and Paul, Z. anorg. 1914, 85. 215.)

### MERCURIC BROMIDE

Sat. solution in liquid SO₂ contains about 1.5% HgBr₂ at 159.4°. (Niggli, Z. anorg. 1912, **75**. 182.)

"Gore

Moderately sol, in liquid, NH₃. Gore, Am. Ch. J. 1898, 20, 829.)
Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, **84.** 27.)

1 ccm. of sat. solution in abs. alcohol at ord. temps, contains 0.0958 g. HgBr₂; at bpt. contains 0.1262 g. (Hamper, Ch. Z. 1887, 11. 905.)

# Solubility of HgBr₂ in alcohols+Aq at t°.

. 91		
Alcohol	t°	. G. HgBr ₂ per 100 g. alcohol
Medicalcohol	$egin{array}{c} 0 \\ 10 \\ 19 \\ 22 \\ \end{array}$	41.15 $49.5$ $66.3$ $60.9$
	39 65 97	71.3 90.8 139.1
Ethyl alcohol	0 10 19 39 65 89	25.2 26.3 29.7 31.9 44.5 66.9
Propyl alcohol	0 10 19 39 65 86.5	14.6 15.6 15.5 20.8 31.3 42.7
Isobutyl alcohol	0 10 23 39 65	4.61 5.63 6.65 9.58 15.80

### (Timofeiew, Dissert. 1894.)

Much more sol. than HgI2 in alcohol. 100 g. of solution sat. at 0° contain 13.33-13.05 g. HgBr₂; 16.53 g. at 25°; 22.63 g. at 50°. (Reinders, Z. phys. Ch. 1900, **32.** 522.)

Solubility of HgBr₂ in methyl alcohol+Aq at 25°.

P = g. alcohol in 100 g. alcohol +Aq.  $HgBr_2 = millimols$ .  $HgBr_2$  in 10 cc. of the solution.

P	HgBr ₂	Sp. gr.	P	HgBr ₂	Sp. gr.
10.60 30.77	$0.201 \\ 0.358$	1.0022 0.9857 0.9588 0.9508	64.00 78.05	1.90 4.07	0.9401 0.9386 0.9744 1.2275

(Herz and Anders, Z. anorg. 1907, 52. 165.) (Herz and Kuhn, Z. anorg. 1908, 58. 163.)

Solubility of HgBr2 in ethyl alcohol+Aq at 25°. P=g. alcohol in 100 g. alcohol+Aq.

HgBr₂=millimols. HgBr₂ in 10 cc. of the solution.

-		
P	HgBr2	Sp. gr.
0 20.18 40.69 70.01 100	0.167 0.187 0.440 1.829 6.337	1.0022 0.9717 0.9435 0.9214 0.9873

# (Herz and Anders.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $HgBr_2$  in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	01 0110 01101 01101	
P	G	S 25°/4°
0	5.02	1.227
11.11	4.728	1.1954
23.8	4.153	1.1524
65.2	2.530	1.0257
91.8	1.635	0.9437
93.75	1.586	0.9368
96.6	1.466	0.9275
100	1.873	0.9213

(Herz and Kuhn, Z. anorg. 1908, 60. 158.)

Solubility in mixtures of ethyl and propyl alcohol at 25°.

 $\begin{array}{l} P=\% \ \, \text{propyl alcohol in the solvent.} \\ G=g,\ HgBr_2 \ \text{in } 10 \ \text{ccm. of the solution.} \\ S=Sp.\ gr.\ \text{of the sat. solution.} \end{array}$ 

Р	G	S 25°/4°
0 8.1 17.85 56.6 88.6 91.2 95.2 100	2.28 2.225 2.106 1.763 1.476 1.464 1.406 1.378	0.9838 0.9802 0.9740 0.9487 0.9269 0.9239 0.9227 0.9213
200	1.0.0	0.0210

(Herz and Kuhn, Z. anorg. 1908, 60. 161.)

Solubility of HgBr₂ in mixtures of methyl and ethyl alcohol at 25°.

P=% methyl alcohol in the mixtures.  $HgBr_2=g$ .  $HgBr_2$  in 10 ccm. of the solution.  $S25^{\circ} 4^{\circ}=sp$ . gr. of the sat. solution.

P	$HgBr_2$	S 25°/4°
0 4.37 10.4 41.02 80.69 84.77 91.25	2.28 2.31 2.54 3.33 4.57 4.68 4.86 5.02	0.9873 0.9932 1.009 1.080 1.185 1.193 1.211 1.227

Cold sat. solution in anhydrous ether contains 0.00567 g, in 1 cc.; hot solution contains 0.032 g. (Hampe, Ch. Z. 1887, 11. 905.)

Solubility in organic solvents at 18°-20°. 100 g. chloroform dissolve 0.126 g. HgBr₂, 100 g. tetrachlormethane dissolve 0.003 g.

HgBr2. 100 g. bromoform dissolve 0.679 g. HgBr₂. 100 g. ethyl bromide dissolve 2.310 g. HgBr2.

100 g. ethylene dibromide dissolve 2.340 g. HgBr2.

(Sulc, Z. anorg, 1900, 25, 401.)

## Solubility in CS₂ at t°.

t°	100 pts. sat. solution contain pts. HgBr ₂
-10	0.049
5	0.068
0	0.087
+5	0.105
10	0.122
15	0.140
20	0.187
25	0.232
30	0.274

(Arctowski, Z. anorg. 1894, 6. 267.)

100 g. boiling methyl acetate (bpt. 56.2-

56.7°) dissolves 24 g. HgBr₂. (Schroeder and Steiner, J. pr. 1909, (2) 79. 49.)

1 g. HgBr₂ is sol. in 4.56 g. methyl acetate at 18°. Sp. gr. 18°,4° of sat. solution = 1.09. (Naumann, B. 1909, 42, 3795.)

100 g. anhydrous ethyl acetate or sat. with H₂O at 18° dissolve 130.5-135 g. HgBr₂. (Hamers, Dissert. 1906.)

Solubility of HgBr₂ in ethyl acetate+Aq at 25°.

P = g, ethyl acetate in 100 g, ethyl acetate

HgBr₂=millimols HgBr₂ in 10 cc. of the solution.

P	HgBr ₂	Sp. gr.
0	0.167	1.0022
4.39	0.159	1.0018
96.76	7.42	1.1159
100	3.93	1.0113

(Herz and Anders, Z. anorg. 1907, 52, 172.)

1 pt. HgBr₂ sol. in 7.66 pts. ethyl acetate at 18°. (Naumann, B. 1910, **43**. 315.) Easily sol. in acetone. (Oppenheim, B. 2.

Sol. in acetone. (Eidmann, C. C. 1899,

II. 1014.)

Acetone dissolves much more HgBr₂ than HgI2. 100 g. sat. solution at 25° contain 34.58 g. HgBr₂. (Reinders, Z. phys. Ch. 1900, 32. 514.)

Solubility in diethyl oxalate is much greater than that of HgI, and is equal to 12% at 100°. (Reinders, Z. phys. Ch. 1900, 32. 507.)
Solubility in benzene=0.0194 mol. per l. at 25°. (Sherrill, Z. phys. Ch. 1903, 43. 735.)

Sel. in allyl mustard oil. (Mathews, J. phys. Chem. 1905, 9. 647.)

Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Solubility in aniline.

S = temp. of solidification.

Mols. HgBr ₂ per 100	8	Mols. HgBr ₂ per 100	s	Mols. HgBr	s s
4.9 10. 12.5 14.9 19.7 23.4	9° 43.5 57 68 89 106	25.4 33.9 39.5 41.9 43.9 46.2	115.5° 117 108 113 118 121	49.6 54.9 58.8 64.0	123 124 134 133

(Staronka, Anz. Ak. Wiss, Krakau, 1910, 272.)

Solubility of HgBr2 in quinoline. S = temp, of solidification.

Mols. HgBr₂ 17.6 per 100 8.9 14.3 111° 88° 127° 134° (Staronka, Anz. Wiss. Krakau, 1910. 372.)

Mol. weight determined in ethyl sulphide. (Werner, Z. anorg., 1897, 15, 30.) +4H₂O. (Thomsen.)

Mercuric perbromide, HgBr₄.

(Herz and Paul, Z. anorg. 1914, 85. 216.)

Mercuric hydrogen bromide (Bromomercuric acid), HgBr₂, HBr=HHgBr₈. Decomp. by H₂O. (Neumann, M. 10. 236.)

Mercuric nickel bromide, basic, HgBr, NiBr₂, 6NiO+20H₂O. (Mailhe, A. ch. 1902, (7) 27, 369.)

Mercuric platinum bromide.

See Bromoplatinate, mercuric.

Mercuric potassium bromide, HgBr2, KBr. Sol. in H₂O, but decomp. by a large amount, with separation of one half of the HgBr₂. (v. Bonsdorff, Pogg. 19. 339.)

2HgBr₂, KBr+2H₂O. Permanent. Sol. in H₂O and alcohol. (v. Bonsdorff.)

Mercuric sodium bromide, HgBr₂, NaBr. Deliquescent. (v. Bonsdorff.)

(Varet, C. R. 1890, 111, 527.)

HgBr₂, 2NaBr. Very sol. in H₂O. (Vicario, J. Pharm. 1907, (6) **26.** 145.) 2HgBr₂, NaBr+3H₂O. Sol. in H₂Q and alcohol. (Berthemot.)

Mercuric strontium bromide, HgBr₂, SrBr₂.

Sol. in all proportions of H₂O. (Löwig, Mag. Pharm. 33, 7.)

2HgBr₂, SrBr₂. Decomp. by H₂O into HgBr₂ and HgBr₂, SrBr₂. (Löwig.)

## Mercuric zinc bromide.

Deliquescent in moist air. (v. Bonsdorff.)

xinc bromide cyanide ammonia.

Mercuric bromide ammonia, HgBr₂, 2NH₃.

Decomp. by boiling H₂O. Sol. in min. acids and acetic acid. (Naumann, B. 1910, 43.316.)

Mercuric bromide cadmium oxide, HgBr₂, CdO+H₂O. (Mailhe, A. ch. 1902, (7) 27. 371.)

Mercuric bromide cupric oxide, HgBr₂, CuO+3H₂O. (Mailhe, Bull. Soc. 1901, (3) **25.** 791.)

Mercuric bromide hydrazine,  $HgBr_2$ ,  $N_2H_4$ . (Hofmann and Marburg, A. 1899, 305. 215.)

Mercuric bromide potassium chloride, HgBr₂, 2KCl.

Decomp. by  $H_2O$ . (Harth, Z. anorg. 1897, 14. 345.)

Mercuric bromide zinc oxide, HgBr₂, ZnO+8H₂O.

(Mailhe, C. R. 1901, 132, 1274.)

# Mercuric bromoiodide, HgBrI.

Sol. in alcohol and ether. Can be recrystallised from ether without decomp. (Oppenheim, B. 2. 571.)

# Mercurous chloramide, Hg₂(NH₂)Cl.

Insol, in boiling H₂O or NH₄OH+Aq. (Kane, A. ch. (2) 72. 215.)

Mixture of Hg and HgNH₂Cl. (Barfoed, J. pr. (2), 39. 201.)

Mercuric chloramide, Hg(NH2)Cl.

Composition is dimercuriammonium ammonium chloride, Hg₂NCl, NH₄Cl, which see.

Mercuric chloramide oxymercuriammonium chloride, 4Hg(NH₂)Cl, (NHg₂OH₂)Cl. (Millon.)

Correct composition is dimercuriammonium ammonium chloride, NHg₂Cl, NH₄Cl, which see. (Balestra, Gazz. ch. it. **21.** (2) 294.)
Hg(NH₂)Cl, (NHg₂OH₂)Cl. (Millon.)

Hg(NH₂)Cl, (NHg₂OH₂)Cl. (Millon.) True composition is dimercuriammonium mercuric chloride, 2Hg₂NCl, HgCl₂+H₂O; or dimercuriammonium hydrogen chloride, NHg₂Cl, HCl. (Balestra.)

Mercuric chloramide chloride,  $Hg(NH_2)Cl$ ,  $HgCl_2$ .

Properties as mercuric chloramide. De-

comp. by cold HCl+Aq. (Millon.)

True composition is dimercuriammonium hydrogen chloride, NIIg₂Cl, 2HCl. (Balestra, Gazz. ch. it. 21. (2) 294.)

# Mercuric chloramide chromate,

2Hg(NH₂)Cl, HgCrO₄.

Decomp, by hot H₂O. Easily sol. in HNO₃ or HCl+Aq. (Jäger and Krüss, B. **22.** 2048.)

### Mercurous chloride, Hg₂Cl₂.

Almost absolutely insol, in cold, but gradually sl. decomp. by boiling H₂O.

Calculated from electrical conductivity of  $Hg_2Cl_2+Aq$ , 11.  $H_2O$  dissolves 3.1 mg.  $Hg_2Cl_2$  at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

1 l. H₂O dissolves 2 mg. Hg₂Cl₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50**. 356°.)

1 l. H₂O dissolves 1.4 mg. at 0.5°; 21 mg. at 18°; 2.8 mg. at 24.6°; 7 mg. at 43°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 150.)

When finely divided, is 10% more sol. than when coarsely crystalline. (Sauer, Z. phys. Ch. 1904, 47, 184.)

Solubility in  $H_2O = 0.8 \times 10^{-6}$  g. mol. (Ley, Z. Elektrochem. 1904, 10. 301.)

Sl. sol. with decomp. in boiling H₂O free from air, 20 cem. H₂O affording 0.002 g. HgCl₂ after boiling 1 hour with Hg₂Cl₂. (Miable, A. ch. (3) 5. 176.) Hg₂(NO₃)₂ + Aq containing 1 pt. Hg₂(NO₃)₂ to 250,000 pts. H₂O give ppt. of Hg₂Cl₂ with HCl+Aq. Sol. with decomp. in conc. HCl+Aq, hot HNO₃+Aq, aqua regia, or Cl₂+Aq. (Fresenius.) Insol. in cold dil. acids, but slowly sol. on heating.

The solubility of Hg₂Cl₂ in HCl+Aq increases slowly with time, and finally reaches a point where it increases very rapidly, which takes place sooner the more dil. the acid. Presence of Hg₂(NO₃)₂+Aq helps the solubility. (Why not oxidation to HgCl₂?)

(Varenne, C. R. 92. 1161.)

Solubility of Hg₂Cl₂ in HCl+Aq at 25°. Solid phase =  $Hg_2Cl_2+0.1$  g. Hg.

G. per l.  HCl Hg ₂ Cl ₂		Sp. gr. of
		solutions,
31.69 36.46 95.43 158.4 209.2 267.3 278.7 317.3	31.69 0.034 36.46 0.048 95.43 0.207 158.4 0.399 209.2 0.548 267.3 0.654 278.7 0.675	
364.6	0.673	1.132 1.153

(Richards and Archibald, Z. phys. Ch. 1902, **40.** 385.)

Cold conc. H₂SO₄ does not dissolve or decomp. Boiling H₂SO₄ dissolves with evolution of SO₂. (Vogel.)

Solubility of Hg₂Cl₂ in chlorides+Ag at 25°. Solid phase =  $Hg_2Cl_2+0.1$  g. Hg.

Salt	G. pe	r liter	Sp. gr. of
	NaCl	Hg ₂ Cl ₂	solutions
NaCl	5.85 58.50 119. 148.25 222.3 292.5	0.0041 0.041 0.129 0.194 0.380 0.643	1.040 1.078 1.093 1.142 1.188
BaCl ₂	104.15 156.22 208.30 312.54	0.044 0.088 0.107 0.231	1.088 1.134 1.174 1.263
CaCl ₂	39.96 55.5 111 138.75 195.36 257.52 324.67 432.9 499.5	0.022 0.033 0.081 0.118 0.231 0.322 0.430 0.518 0.510	1.064 1.105 1.151 1.205 1.243 1.315 1.358

(Richards and Archibald, Z. phys. Ch. 1902, **40.** 385.)

Sol. in cold HCN+Aq with separation of

Hg. Sol. in alkali chlorides+Aq. NH₄Cl+Aq dissolves out HgCl2 at ord. temp., much more at 40-50°. Dil. NH₄Cl+Aq decomposes more slowly than conc. Access of air hastens reaction. (Miahle.)

When heated several hours to 40-50°, 100 pts. NH₄Cl₊833 pts. H₂O form 0.75 pt. HgCl₂ from 25 pts. Hg₂Cl₂; 100 pts. NaCl₊ 833 pts. H₂O form 0.33 pt. HgCl₂ from 25 pts. HgCl₂ from 25 pts. HgCl₂ from 0.33 pts. HgCl₂ from 25 pts. HgCl₂; 100 pts. KCl₊833 pts. H₂O form pts. HgCl₂ from 25 pts. HgCl₂; 100 pts. KCl₊833 pts. H₂O form pts. cold, and 3 pts. warm H₂O. (Dumas.)

0.25 pt. HgCl₂ from 25 pts. HgCl₂; 100 pts. BaCl₂+833 pts. H₂O form 0.33 pt. HgCl₄ from 25 pts. Hg₂Cl₂. (Miahle, J. Pharm. 26.

Other chlorides act as NH₄Cl, only less

vigorously. (Pettenkofer.)

By boiling 1 pt. Hg₂Cl₂ 10 times with a solution of 1 pt. NaCl each time, the Hg₂Cl₂ is finally completely decomp. (Henne.)

Boiling BaCl2+Aq or CaCl2+Aq dissolve  $K_2SO_4+Aq$ KNO₂+Aq traces. KHC4H4O6+Aq do not dissolve. (Pettenkofer.)

Sol. in (NH₄)₂SO₄+Aq. Insol. in NH₄ nitrate, or succinate+Aq. (Wittstein.)

Sol. in hot IIg₂(NO₃)₂+Aq, and still more in hot Hg(NO₃)₂+Aq; on cooling it crystal-lises out completely. 25 g. Hg₂Cl₂ dissolve in 1.5 l. H₂O containing 50 g. Hg(NO₃)₂. (Debray, C. R. 70. 995.)
Sol. in PtCl₂+Aq.
Decomp. by NH₄OH+Aq.

Decomp. by KOH, or NaOH+Aq. Sol. in Na₂S₂O₃+Aq. (Faktor, 1905, I. 1524.)

Very sl. sol. in NH4 succinate. (Witt-

stein.) Insol. in SbCl₃. (Klemensiewicz, C. C. 1908, II. 1850.)

Very sol, in liquid  $NH_3$ . (Franklin, Am. Ch. J. 1898, **20**. 829.)

Insol. in alcohol or ether. More sol. in H₂O containing pepsin and an acid than in H₂O, and is not converted thereby into HgCl₂. (Torsellini, Ann. Chim. Ch. farm. (4) **4.** 105.)

Small amts. are sol. with decomp. in alcohol, ether and CHCl₈. 1 g. CHCl₈ dissolves 0.0046 g. Hg₂Cl₂. Pharm. 1884, **222**, 788.) (Maclagan, Arch.

Formic acid (95%) dissolves at 16.5° 0.02%; at 18°, 0.0003%. (Aschan, Ch. Z (Aschan, Ch. Z. 1913, 37. 1117.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Hamers, Dissert. 1906; Naumann, B. 1904, 37. 3602.)

Somewhat sol. in hydroxylamine hydrochloride. (Adams, Am. Ch. J. 1902, 28. 1216.) Insol. in benzonitrile. (Naumann, B. 1914,

**47.** 1370.) Insol. in acctone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

Solubility in organic solvents at 18-20°. 100 g. chloroform dissolve traces of HgCl.

100 g. bromoform dissolve 0.055 g. HgCl. 100 g. ethyl bromide dissolve traces of HgCl.

100 g. ethylene dibromide dissolve traces of HgCl. (Sulc. Z. anorg. 1900, 25, 401.)

Mercuric chloride, HgCl2. Permanent.

Sol. in 18.5 pts. H²O at 13.8°, and 2-3 pts. at 100°. (J. Davy, 1822.) Sol. in 3 pts. boiling H²O. (Wensel.) Sol. in 18.23 pts. H²O at 10°, and 3 pts. at 100°. (M. R. and P.) Sol. in 18.46 pts. at 18.75° (Abl.) Sol. in 16

man contract of				
100	$TT \cap$	J:1	4 TT//1	10
100 Dts.	n ₀ U	dissolve r	ts. HgCl2	at t : 3

	•-	**	100		
t°	Pts. HgCl ₂	t°	Pts. HgCl ₂	t°	Pts. HgCl ₂
0 10 20 30	5.73 6.57 7.39 8.43	40 50 60 70	9.62 11.34 13.86 17.29	80 90 100	24.30 37.05 53.96

(Poggiale, A. ch. (3) 8. 468.)

# Solubility of HgCl₂ in H₂O.

to	% HgCl2	t°	% HgCl2
<del>+</del> 1	3.9	80	23.6
4.5	4.8	87	28.2
4 <b>45</b> [™] 7.5	$\frac{4.8}{5.1}$	100 121	$   \begin{array}{r}     39.3 \\     59.7   \end{array} $
13.8	5.2	127	69.7
25.1	7.1	140	77.0
$\frac{29.5}{29.0}$	7.6	150	78.4
38.0 49	$9.9 \\ 11.3$	159 160	$   \begin{array}{c c}     80.2 \\     81.7   \end{array} $
61	15.1	165	81.8

(Étard, A. ch. 1894, (7) 2. 557.)

71.17 g.  $HgCl_2$  are sol. in 1 l.  $H_2O$  at 25°. (Morse, Z. phys. Ch. 1902, 41. 726.) Solubility at  $25^\circ = 0.267$  mol. in 1 l.  $H_2O$ .

(Jander, Z. Elektrochem. 1903, 8. 688.) Solubility in H₂O at 25° = 0.263 mol. liter.

(Sherrill, Z. phys. Ch. 1903, **43**. 735.)
Sat. HgCl₂+Aq at 25° contains 6.9%
HgCl₂. (Foote, Am. Ch. J. 1906, **35**. 238.)

HgCl₂+Aq contains 3.95 g. HgCl₂ in 100 g. of solution at 0°; 7.67 g. at 30°. (Schreine-

makers, Ch. Weekbl. 1910, 7. 202.)

HgCl₂+Aq sat. at (?) contains 6.8%

HgCl₂. (Abe, J. Tok. Chem. Soc. 1912, 33. **1087.**)

HgCl₂+Aq sat. at 35° contains 8.51% HgCl₂. (Schreinemakers and Thonus, Ver. K. Akad. Wet. Amsterdam, 1912, **21**. 333.)

1 l. aqueous solution sat. at 25° contains 0.265 mol. HgCl2. (Herz and Paul, Z. anorg. 1913, **82.** 431.)

H₂O dissolves 7.39% at 20°. Ch. Z. 1913, **37.** 1117.)

HgCl2+Aq sat. at 8° has 1.041 sp. gr. (Anthon, 1887.)

Sp. gr. of HgCl₂+Aq at 20°.

% HgCl ₂	Sp. gr.	% HgCl2	Sp. gr.
1 2 3	1.0072 1.0148 1.0236	4 5 · · ·	1.0323 1.0411

(Schröder, calculated by Gerlach, Z. anal. **27.** 306.)

Sp. gr. of HgCl₂+Aq at 15°.

HgCl ₂	<b>5</b> p. gr.	% HgCl2	Sp. gr.
8	1.071	11	1.1035
9	1.0815	12	1.115
10	1.095	13	1.127

(Mendelejeff, calculated by Gerlach, Z. anal. **27.** 306.)

### Sp. gr. of HgCl₂+Aq.

 %	Sp. gr.			
HgCl ₂	at 0°   at 10°		at 20°	at 30°
4.72 3.57 2.42 1.22	1.04070 1.03050 1.02035 1.01008	1.02018	1.02885	1.03566 1.02577 1.01585 1.00575

(Schröder, B. 19. 161 R.)

Sp. gr. of HgCl₂+Aq at room temp. containing:

0.2263.55% HgCl₂. 1.03281.0233 (Wagner, W. Ann. 1883, 18. 266.)

### Sp. gr. of HgCl₂+Aq at 25°.

Concentration of HgCl ₂ +Aq.	Sp. gr.
1/4-normal	1.0275
1/8- "	1.0138

(Wagner, Z. phys. Ch. 1890, 5. 39.)

Sp. gr. at 16°/4° of HgCl₂+Aq containing 4.5256% HgCl₂ = 1.03806.

Sp. gr. at 16°/4° of HgCl₂+Aq containing 4.2224% HgCl₂=1.03491. phys. Ch. 1893, **11**. 768.) (Schönrock, Z.

HgCl₂+Aq containing 6.04% HgCl₂ has sp. gr. 20°/20° = 1.0523.
HgCl₂+Aq containing 6.08% HgCl₂ has sp. gr. 20°/20° = 1.0526.

(Le Blanc and Rohland, Z. phys. ch. 1896, 19. 282.)

Sat. HgCl2+Aq boils at 101.1°. (Griffiths.)

### B.-pt. of HgCl₂+Aq

% HgCl2	Bpt.	% HgCl2	Bpt.
4.8	100.10°	11.04	100.20°
9.0	100.16	15.2	100.275

(Skinner, Chem. Soc. 61. 340.)

Solubility in HCl+Aq is greater than in H2O.

(Dumas.) Sol. in 0.5 pt. HCl +Aq of 1.158 sp. gr. at 23.3°, forming a solution of 2.412 sp. gr. (Davy, 1822.)

¥.				
Pts. HCl in 100 pts. H ₂ O	Pts. HgCl ₂ dissolved by 100 pts. liquid	Pts. HCF in 100 pts H ₂ O	Pts. HgCly dissolved by 100 pts. liquid	
0.0 5.6 10.1 13.8	6.8 46.8 73.7 87.8	21.6 31.0 50.0 68.0	127.4 141.9 148.0 154.0	

(Ditte, A. ch. (5) 22. 551.)

Solubility in HCl+Aq at 0°.  $\frac{\text{HgCl}_2}{2} = \frac{1}{2} \text{mols}$ .

HgCl₂ (in mgs.) in 10 ccm. solution; HCl =mols. HCl ditto; H₂O = grms. H₂O present.

HgCl ₂	HCl.	Sp. gr.	H ₂ O
9.7	4.3	1.117	9.704
19.8	9.9	1.238	9.340
$\begin{array}{c} 35.5 \\ 55.6 \end{array}$	$\begin{array}{c c} 17.8 \\ 26.9 \end{array}$	$1.427 \\ 1.665$	9.816 8.135
68.9	32.25	1.811	7.714
72.37	34.25	1.874	7.679
85.5	41.5	2 023	7.131
88.65	48.1	2.066	6.893 $6.431$
95.675	70.875	2.198	0.451

(Engel, A. ch. (6) 17. 362.)

Not decomp. by H₂SO₄ or HNO₃+Aq. Sol. in 630 pts.  $\rm H_2SO_4$ , and in more than 500 pts. hot  $\rm HNO_3+Aq$  of 1.41 sp. gr. without decomp. (J. Davy.) Sol. in H₂SO₄, HNO₃, HIO₃, or H₂CrO₄ without decomp. (Millon, A. ch. (3) **18**. 373.) Very sl. sol. in HNO₃, but not decomp. thereby. (Wurtz.)

### Solubility of HgCl₂ in NH₄Cl+Aq at 30°.

Comp	osition of phase	liquid	Calid above
HgCl₂	NH4C1	%H2O	Solid phase
0 15.68 22.80 31.96 42.45	29.5 27.56 26.91 26.16 25.05	$     \begin{array}{r}       70.5 \\       56.76 \\       50.29 \\       41.88 \\       32.50     \end{array} $	NH4Cl
50.05 50.60 53.08 55.97	24.79 24.31 22.77 21.42	25.16 25.09 24.15 22.61	{ NH ₄ Cl+H ₂ Cl ₂ , 2NH ₄ Cl, H ₂ O H ₂ Cl ₂ , 2NH ₄ Cl, H ₂ O "
58.91 58.89 56.83 56.38 55.83	20.06 19.98 18.86 18.50 17.70 17.13	21.03 21.13 24.61 25.12 26.47 27.17	HgCl ₂ , 2NH ₄ Cl, H ₂ O + HgCl ₂ , NH ₄ Cl, H ₂ O HgCl ₂ , NH ₄ Cl, H ₂ O ""
55.58	16.82	27.60	"

## Solubility of Hgel2 in NH4Cl+Ac at 30% Continued.

			• .
Composition of liquid phase			Solid phase
HgCh	NHICI	% H ₂ O	
55.55	15.04	28.51	HgCl ₂ , NH ₄ Cl, H ₂ O
55.85	15.35	28.80	••
56.71	14.22	29.07	"
57.04	14.10	28.86	HgCl ₂ , NH ₄ Cl, H ₂ O+
56.98	14.14	28.88	3HgCl ₂ , 2NH ₄ Cl, H ₂ O
56.83	13.90	29.27	3HgCl ₂ , 2NH ₄ Cl, H ₂ O
56.26	13.04	30.70	**
56.43	11 88	31.69	"
56.70	11.05	32.23	"
57.05	9.92	33.02	**
58.55	9.23	32.22	"
58.65	9.20	32.15	3HgCl ₂ , 2NH ₄ Cl, H ₂ O + 9HgCl ₂ , 2NH ₄ Cl
51.83	8.76	39.41	9HgCl ₂ , 2NH ₄ Cl.
46.00	7.52	46.48	"
39.02	6.28	54.70	
35.60	5.26	59.14	**
35.10	5.18	59.72	••
32.90	5.06	62.04	**
29.65	3.62	66.73	9HgCl ₂ , 2NH ₄ Cl+HgCl ₂
40.12	5.13	54.75	$HgCl_2$
21.00	2.29	76.71	** .
7.67	0	92.33	"

(Meerburg, Z. anorg. 1908, 59. 139.)

1 pt. sat. NaCl+Aq dissolves 1.29 pts.  $HgCl_2$  at 14°. (Voit, A. 104. 354.)

Sat. NaCl +Aq (20 grains H₂O +7 grains NaCl) dissolves 32 grains HgCl₂ at 15.5°, and 3 grains more on warming. Sp. gr. of solution =2.14. (Davy, **1822**.) Sat. KCl+Aq (21 grains H₂O+7 grains KCl) dissolves 8 grains HgCl₂ on being gently heated. (Davy.) Sat. BaCl₂+Aq (22 grains H₂O+8.7 grains BaCl₄+2H₂(9) dissolves 16 grains HgCl₂ at 15.5°, and 4 grains more on heating. Sp. gr. of solution =1.9. (Davy.) MgCl₂+Aq (31 grains HCl+Aq of 1.58 sp. gr. neutralised with MgO) dissolves 40 grains HgCl₂ and 25 grains more on gently heating. Sp. gr. of solution =

25 grains more on gently heating. Sp. gr. of solution =

2.83. (Davy.)
Sol. in sat. KCl. NaCl +Aq. and in MnCl₂, ZnCl₂, CoCl₂, FeCl₂. NiCl₂, and CuCl₂+Aq. (v. Bonsdorff, Pogg. 17, 123.)

The solubility in H₂O is greatly increased by the addition of cupric chloride. 8.5% HgCl₂ is sol. in pure H₂O and 52.8% HgCl₃ is sol. in 18.06% CuCl₂+Aq. (Schreinemakers, C. C. **1913**, I. 1858.)

# Solubility of HgCl₂+KCl at 25%.

Composition of solution		Composition of undissolved residue		Solid ph <b>ase</b>	
<b>K</b> Č1	% HgCl₂	% кСі	HgCl ₂	"H2O	
26.46 26.24	0 15,04	100	0 3.63		KCl KCl+2KCl, HgCl ₂ , H ₂ O •
$26.23 \\ 26.33 \\ 26.33$	15.02 15.02 14.92		26.15 52.01 61.04		11
23.74	18:91	34 61	61 66	3.73	2KCl, HgCl ₂ , H ₂ O
22.36 21.39 20.32	21.39 23.88 27.62	34.77 34.05	$62.02 \\ 61.84 \\ 65.24$	$\frac{3.21}{3.35}$	2KCl. HgCl ₂ .
20.32			00 24		H ₂ O + KČl, H ₂ Cl ₂ , H ₂ O
20.26 17.85	27.38 25.34	21.89	73 98 75.10	3 01	KCl, HgCl ₂ , H ₂ O
9 26 7.80	18.95 19.56	$\frac{21.02}{20.76}$	73.36 73.06	5 62 6.18	"
6.84 6.66	22.81	20.75 20.75 20.54	74.54	4.71 5.47	44
6.52	24.32 25.13	20 04	73.99 76 46	3. <del>4</del> 7	KCl, HgCl ₂ , H ₂ O+KCl,
$\substack{6.64\\6.27}$	25.16 25.11	12.09	80.60 83 20	4.71	2HgCl ₂₁ , 2H ₂ () KCl, 2HgCl ₂ ,
$\begin{array}{c} 5.77 \\ 4.68 \end{array}$	24.73 24.75	11.87	83.18 84.46	4.95	2H ₂ O ,, KCl, 2HgCl ₂ ,
4.66	25 17		93.58		2H ₂ O + HgCl ₂
4.69 0	24.82 6 90		98 50 100	.0.	$_{ m HgCl_2}$

(Foote and Levy, Am. Ch. J. 1906, 35. 239.)

### Solubility of HgClo+KCl at 20°

Solubility of IngCl2+KCl at 20°.			
G. per 100 g. H ₂ O		Solid phase	
KCl	$\mathrm{HgCl}_2$	manus piusso	
0 1.12 2.39 4.05 4.84 5.60 6.71 7.39 7.46 8.95 15 17.57 20.35 26.31 30.32 34.12 34.18 34.34 34.54 37.72 41.13 39.66 37.87	7.39 11.63 15.72 22.17 25.16 25.56 26.41 24.70 19.93 22.87 26.12 29 34.83 39.10 42.82 39.34 42.82 39.34 41.83 39.10 19.33 115.76 10.28	HgCl ₂ " " " " HgCl ₂ +2HgCl ₂ , KCl 2HgCl ₂ , KCl 2HgCl ₂ , KCl+HgCl ₂ , KCł " " " " " " " " " " " " " " " " " " "	
35.32	2.1	"	

(Tichomiroff, J. russ. Phys. Chem. Soc. 1907 39. 731.)

Solubility of HgCl₂+RbCl in H₂O. Solubility data are given showing double salts formed at 25° (Foote and Levy, l. c.)

Solubility in NaCl+Aq. 100 pts. NaCl+Aq containing given % NaCl dissolve g. HgCl₂.

25 120 142 196	% NaCl	g. HgCl ₂	g. HgCl ₂	g. HgCl ₂
10 58 68 110		at 15°	at 65°	at 100°
1 14 18 48 0.5 10 13 44	25 10 5 1	120 58 30 14	142 68 36 18	64 48

(Homeyer and Ritsert, Pharm. Ztg. 33. 738.)

# Solubility of HgCl₂+NaCl at 25%.

Composition of solution		Composition of undissolved residue		Solid phase	
NaČ1	% HgCl₂	% NaCl	% HgCl₂	% H₂O	Soliu pilase
26 5 18.66	0 51 35	100	0 16,39	.0	NaCl NaCl+NaCl, HgCl ₂ , 2H ₂ ()
18 71 18 64 18 87	51.32 51.42 51.26		$\begin{vmatrix} 21.98 \\ 65.45 \\ 71.25 \end{vmatrix}$		"
14.03	57 74	16 38 16 36	74.18	9 44	NaCl, HgCl ₂ , 2H ₂ ()
$\begin{vmatrix} 13 & 25 \\ 13 & 17 \\ 12 & 97 \end{vmatrix}$	$\begin{bmatrix} 62 & 16 \\ 62 & 59 \\ 62 & 50 \end{bmatrix}$	16 16 15 96	74 70 74 76 78 20	9 14 9 28	 NaCl, HgCl ₂ ,
13 14 13 15	62.48 62.55		88 64 90 83		2H ₂ O +HgCl ₂

(Foote and Levy, Am. Ch. J. 1906, 35. 239.)

105.0 g. HgCl₂ are sol. in 1 l. of 0.1-N Hg(NO₃)₂+Aq at 25°. (Morse, Z. phys. Ch. 1902, 4 . 726.)

# Solubility in MCl+Aq at 25°.

(1.1)	In 10 ccm. of the solution		
. Salt	Millimols HgCl ₂	Millimols salt	
LiCl	2.65 3.51 6.66 10.21 16.78 22.14 28.96 30.62	0 4.14 8.35 12.71 17.38 22.65 30.91 35.27	
NaCl	2. 65 3. 72 5. 08 7. 48 11. 92 20. 22 27. 54 34. 34	0 2.12 4.16 6.71 11.53 19.41 27.83 31.62	

Solubility in MCl+Aq at 25°.—Continued.			
2.1	In 10 ccm. of	In 10 ccm, of the solution	
Salt	Millimols HgCl2	Millimols salt	
KCl	2.65 3.55 3.81 8.36	0 1.74 2.21 6.83	
MgCl ₂	2.65 3.74 7.19 11.31 18.64 25.69 32.06	0 1.68 4.15 5.70 9.97 13.20 17.28	
CaCl ₂	2.65 3.64 7.66 11.08 18.11 26.45 33.04	0 1.90 4.02 6.56 9.64 14.29 17.23	
SrCl ₂	2.65 3.15 5.63 8.29 13.42 17.76 22.93	0 1.64 3.11 5.19 7.24 10.46 13.86	
BaCl ₂	2.65 6.97 11.67 16.20 26.45 53.48	0 3.85 5.72 7.76 13.36 30.30	

(Herz and Paul, Z. anorg. 1913, 82, 433.)

Solubility in H₂O is increased by presence of I₂. (Herz and Paul, Z. anorg. 1914, 85. 214.)

Solubility in H₂O is increased by presence of hydroxylamine hydrochloride. (Adams,

Am. Ch. J. 1902, 28. 213.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 829.)

Insol. in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, 54. 674.)

Abundantly sol. in H₂PtCl₄+Aq. (Nilson, B. 1876, 9. 1146.)

Sol. in 2.5 pts. cold alcohol (Richter); 3 pts. (Karl); 2.5 pts. alcohol of 0.833 sp. gr. at ordinary temp., and 1.167 pts. on boiling (Berzelius); 2 pts. alcohol of 0.816 sp. gr. at 15.5 (sp. gr. of solution =1.08) (J. Davy, Phil. Trans. 1822. 358).

At 10°, sol. in 2.57 pts. alcohol of 39° (Cartier), in 2.9 pts. alcohol of 38°; in 3.6 pts. alcohol of 35°; in 4.2 pts. alcohol of 30°; in 9.3 pts. alcohol of 22°; in 14.6 pts. alcohol of 14°. (N. E. Henry.)

Sol. in 25 mols. methyl, 13.1 mols. ethyl, and 20.3 mols. propyl alcohol at 8.5°; in (Herz and Anders, Z. anorg. 1907, 52. 170.)

16.2 mols. methyl, 12.4 mols. ethyl, and 18 mols. propyl alcohol at 20°; in 6.8 mols. methyl, 10.6 mols. ethyl, and 14.6 mols. propyl alcohol at 38.2°. (Timofejew, C. R, 112, 1224.)

100 pts. absolute methyl alcohol dissolve 66.9 pts. HgCl₂ at 25°; 100 pts. absolute ethyl alcohol dissolve 49.5 pts. HgCl₂ at 25°. (de Bruyn, Z. phys. Ch. 10. 783.)

At 15°, 1 pt. by weight is sol. in:—

13.53 pts H₂O. " methyl alcohol of sp. gr. 0.7990 " ethyl " " " 0.8100 1.5 " ethyl 2.5 " " " 0.8160 " propyl 6.3 (Rohland, Z. anorg, 1899, 18, 328.)

100 g. HgCl₂+CH₃OH contain 1.2 g. HgCl₂ at the critical temp. (Centnerszwer, Z. phys. Ch. 1910, 72. 437.)

Solubility of HgCl₂ in methyl alcohol+Aq at 25°.

P = g. alcohol in 100 g. alcohol +Aq. HgCl₂ = millimols HgCl₂ in 10 cc. of the solution.

P	$HgCl_2$	Sp. gr.
0 10.60 30.77 37.21 47.06 64.00	2.67 2.92 4.18 4.96 7.27 14.19	1.0565 1.0441 1.0420 1.0507 1.0809 1.2015
78.05 100	$\frac{21.11}{17.95}$	1.3314 1.2160

(Herz and Anders, Z. anorg. 1907, 52. 165.)

100 cc. 90% ethyl alcohol dissolve 27.5° g. HgCl₂ at 15.5°. Sp. gr. 15° of sat. solution = 1.065. (Greenish and Smith, Pharm. J. 1903, **71.** 881.)

100 g. 99.2% ethyl alcohol dissolve 33.4 g.  $HgCl_2$  at 25°. (Osaka.)

Solubility of HgCl₂ in ethyl alcohol+Ag at 25°.

P = g. alcohol in 100 g. alcohol +Aq. HgCl₂=millimols HgCl₂ in 10 cc. of the solution.

P	HgCl ₂	Sp. gr.
0 20.18 40.69 70.01	2.67 2.49 3.94 8.70 13.61	1.0565 1.0214 1.0180 • 1.0616 1.1067

# Solubility of HgCl, in ethyl alcohol+Aq at 25°.

% C2H5OH	% HgCl ₂	% C2H5()H	% HgCl2
0 5.08	6.80 6.65	45.84 49.86	15.36 18.18
14.49 21 26.25	$egin{array}{c} 6.41 \ 6.55 \ 7.31 \end{array}$	53.61 57.26 60.55	$21.40 \\ 24.51 \\ 27.67$
$31.53 \\ 36.85 \\ 41.36$	$8.51 \\ 10.32 \\ 12.69$	63.95 67.39	29.86 32.40

(Abe, J. Tok. Chem. Soc. 1912, 33. 1087.)

Solubility in alcohol is increased by presence of hydroxylamine hydrochloride. (Adams, Am. Ch. J. 1902, **28**. 213.)

Solubility of HgCl₂ in a mixture of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the mixture.  $HgCl_2 = g$ .  $HgCl_2$  in 10 ccm. of the solution. S = sp. gr. of the sat. solution.

P	HgCl ₂	S 25°/4°
C	3.686	1.107
4.37	3.943	1.130
10.4	4.261	1.157
41.02	5.837	1.294
80.69	6.167	1.321
84.77	5.782	1.288
91.25	5.385	1.254
00	4.862	1.216

(Herz and Kuhn, Z. anorg. 1908, 58, 161.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $HgCl_2$  in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

P	G	S 25°/4°
$0 \\ 11.11 \\ 23.8$	4.862 5.034 5.714	1.2160 1.2278 1.2848
65.2 $91.8$ $93.75$	4.228 2.509 2.323	1.1568 1.0090 1.0029
96.6 100	$egin{array}{c} 2.152 \ 2.003 \end{array}$	0.9851 0.9720

(Herz and Kuhn, Z. anorg. 1908, 60. 157.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $HgCl_2$  in 10 ccm. of the solution. S = Sp. gr, of the sat. solution.

P	G	S 25°/4°
0 8.1 17.85 56.6 88.6 91.2 95.2	3.686 3.667 3.406 2.711 2.166 2.160 2.087 2.003	1.1070 1.0988 1.0857 1.0272 0.9854 0.9824 0.9772 0.9720

(Herz and Kuhn, Z. anorg. 1908, 60. 160.)

Sp. gr. of HgCl₂+alcohol.

% HgCl2	Sp. gr. 25°/20°
0	0.7948
5.44	0.8346
6.52	0.8431

(Le Blane and Rohland, Z. phys. Ch. 1896, 19, 283.)

Sp. gr. of alcoholic solution of HgCl₂.

30°
0594
$\begin{array}{c} 141 \\ 227 \end{array}$
375 689
$024 \\ 329$
652 982

(Schröder, B. 19. 161 R.)

Sp. gr. at  $16^{\circ}/4^{\circ}$  of  $HgCl_2+ethyl$  alcohol containing 23.5489%  $HgCl_2=0.99885$ ; containing 11.8801%=0.88572. (Schönrock, Z. phys. Ch. 1893, 11. 768.)

Sp. gr. at 16°/4° of HgCl₂+amyl alcohol containing 10.9948% HgCl₂=0.89550. (Schönrock, Z. phys. Ch. 1893, **11**. 769.)

Sol. in 4 pts. ether (Karls); in 4.1 pts. (Henry); in 2.86 pts. ether of 0.745 sp. gr. (sp. gr. of solution=1.08); the solvent power is not increased by elevating the temp., and b.-pt. of ether is not raised. (J. Davy.)

Ether extracts  $HgCl_2$  from  $HgCl_2 + Aq$ . (Orfila); very slightly if  $HgCl_2 + Aq$  is dil. (Lassaigne.)

Very sl. sol. in pure ether. (Polis, B. 20. 717.)

6.35 pts. are sol. in 100 pts. ether at 0°. 6.44 "" " 100 " " " 18. 6.38 " " " 100 " " " 35.5. (Laszczynski, B. 1894, 27. 2286.)

Sol. in 7½-8 pts. ether. (Madsen, Ch. Z. Repert. 1897, 21. 169.)

Solubility in 100 cc. ether at 17° = 4.1-4.12 g. (Strömholm, J. pr. 1902, (2), 66. 450.)

g. (Strömholm, J. pr. 1902, (2), 66, 450.) The solubility of  $HgCl_2$  in  $H_2O$  is only sl affected by the presence of ether. An aqueous solution sat. with ether and  $HgCl_2$  contains about 10% less  $HgCl_2$  than a pure sat. aqueous solution. Partition coefficient for  $HgCl_2\frac{ether}{H_2O} = 4.9$  at  $0^\circ$ ; 3.02 at  $14.6^\circ$ ; 2.80 at

 ${\rm HgCl_2} \frac{{\rm einer}}{{\rm H}_2{\rm O}} = 4.9$  at  $0^{\circ}$ ; 3.02 at  $14.6^{\circ}$ ; 2.80 at  $16.8^{\circ}$ . (Strömholm, Z. phys. Ch. 1903, **44.** 70.)

Solubility of HgCl₂ in ether+Aq at 25°.

% Ether	% H ₂ ()	% HgCl2
87.86 1.2 5.2 5.4 5.4	5.22 93.6 90.5 91.8 93.1	6.92 $5.2$ $4.3$ $2.8$ $1.5$

(Abe, J. Tok. Chem. Soc. 1912, **33**. 1087.)

Solubility of HgCl₂ in ether+ethyl alcohol at 25°.

as A 1 1 as n as II as 11	1
% Alcohol % HgCl ₂ % Al	rohol 6 HgCl2
67.57, 32.43 27. 58.59 32.50 22. 51.02 37.39 15. 44.79 37.96 8. 38.69 38.24 0 32.84 37.75	48 34.08 20 28.55

(Abe.)

4 pts. ether dissolve 1 pt. HgCl₂, but 4 pts. ether+1.33 pts. camphor dissolve 1.33 pts. HgCl₂; 4 pts. ether+4 pts. camphor dissolve 2 pts. HgCl₂; 4 pts. ether+8 pts. camphor dissolve 4 pts. HgCl₂; 4 pts. ether+16 pts. camphor dissolve 8 pts. HgCl₂. (Karls, Pogg, **10**. 608.)

3 pts. alcohol dissolve 1 pt. HgCl₂, but 3 pts. alcohol+1 pt. camphor dissolve 2 pts. HgCl₂; 3 pts. alcohol+3 pts. camphor dissolve 3 pts. HgCl₂; 3 pts. alcohol+6 pts. camphor dissolve 6 pts. HgCl₂. (Karls, *l. c.*)

Solution can be obtained containing 25 pts. camphor, 16 pts. HgCl₂, and only 4 pts. alcohol. Sp. gr. of solution = 1.326. (Simon, Pogg. 37. 553.)

100 pts. acetone dissolve 60 pts.  $HgCl_2$  at 25°. (Krug and M'Elroy, J. Anal. Appl. Ch. 184.)

98.35 pts. HgCl₂ are sol, in 100 pts. acetone at  $0^{\circ}$ .

 $110.95~\rm pts.~HgCl_2~are~sol.~in~100~\rm pts.~acetone$  at  $10^{\circ}.$ 

126.80 pts. HgCl₂ are sol. in 100 pts. acetone at 18°. (Lasczynski, B. 1894, 27. 2287.)

1 g. HgCl₂ is sol. in 0.70 g. acetone at 18°. Sg. gr. of sat. solution 18°/4°=1.956.) (Naumann, B. 1904, **37**. 4334.)

Sat. solution in acetone contains 57.74 g. HgCl₂ in 100 g. solution at 25°. (Foote and Haigh, J. Am. Chem. Soc. 1911, **33**. 461.)

Sp. gr. at 26.7°/4° of HgCl₂+acetone containing 36.25% HgCl₂=1.1585. (Schönrock, Z. phys. Ch. 1893, 11. 769.

Sp. gr. of HgCl₂+acetone.

% HgCl2	Sp. gr. 20°/20°
0	0.8003
10.94	0.8847
21.05	0.9799

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 283.)

100 g. methyl acetate dissolve 46 g. at bpt. (56.5°). (Schroeder and Steiner, J. pr. 1909, (2) 79. 49.)

1 g.  $\text{HgCl}_2$  is sol. in 2.35 g. methyl acetate at 18°. Sp. gr.  $18^\circ/4^\circ$  of the sat. solution = 1.251. (Naumann, B. 1909, **42**. 3793.)

Solubility in ethyl acetate.

	s. ethyl acetate.	Pts. sol in 100 pts.
2	t°	Pts. HgCl ₂
	0	28.92
	13	29.03
	35	30.71
	48	31.87
ŧ	60	32.77
	83	35.98

(Laszczynski, B. 1894, 27. 2286.)

Solubility in ethyl acetate=1:3.466 at 18°. (Alexander, Dissert. 1899.)

Solubility of HgCl2 in ethyl acetate.

Temp.	0°	13°	30°	40.5°	50.2°
Mol. HgCl ₂ in 100 mols. C ₄ H ₈ O ₂	15.4	15.9	16.0	16.1	16.3

(Linebarger, Am. Ch. J. 1894, 16. 214.)

1 g.  $HgCl_2$  is sol. in 3.5 g. ethyl acetate at 18°. Sp. gr. of sat. solution  $18^{\circ}/4^{\circ}=1.110$ . (Naumann, B. 1904, 37. 3602.)

Solubi	Laty of E	IgCl ₂ in acetone a	ethyl t t°.	acetate and	Solvent	t°	Sat. solution contains % HgCl ₂
to.	Molecules HgCl ₂ sol. in 100 mol- ecules of ethyl acetate	Molecules HgCl ₂ sol. in 100 molecules of acetone	Sol	lid present in acetone	Ethyl alcohol	60 55 43 40 30	3.0 7.8 8.8 9.8 14.3
-15 $0$ $+10$ $10$ $17$ $25$	9.10 9.25  9.15	14.5 14.3 18.7 23.5 23.2 22.8	HgCl	HgCl ₂		$\begin{array}{c} -23 \\ -21 \\ -20 \\ -17 \\ -11 \\ -9 \\ -5 \end{array}$	18.6 19.1 21.9 22.1 24.7 27.0 29.7
	(Aten, 🍎 p	gCl₂ in et		<b>54.</b> 121.) cetate+Aq at		$\begin{array}{c c}  & 0 \\  & + 3 \\  & 7 \\  & 10 \\  & 14 \end{array}$	29.0 30.0 30.9 31.3 31.3
+Aq.	$Cl_2 = millir$			ethyl acetate 10 cc. of the		19 31 43 51 62	32.0 34.2 36.4 38.9 42.1
	P	HgCl ₂		Sp. gr.		63 68	42.5 44.7
	1.39 3.76	2.67 2.72 15.34 9.75		1.0565 1.0581 1.2371 1.1126		75 80 92 93 100	45.2 48.0 51.0 51.4 . 53.6
(Her	zand And	ers, Z. an	org. 19	907, <b>52.</b> 172.)		115 127 138	60.6 65.3 767.8
or 100	t. is sol. in ) g. ethyl : mann, B.	acetate di	ssolve	acetate at 18° 48.7 g. HgCl ₂ .	N-propyl alcohol	$ \begin{array}{c c} -32 \\ -22 \\ -14 \\ 0 \end{array} $	14.7 15.4 15.6 16.4
Eas glyce 685.)				l. in 14 pts. Scient. (3) 9.		$\begin{array}{c c} & 0 \\ +16 \\ & 41 \\ & 53 \end{array}$	16.5 18.2 23.8 27.9
(Mole		aquina, A		HgCl ₂ at 25°. oc. Eshan. fis		62 67 78	29.4 32.7 36.4
	Solubili	ty in orga	nic so	lvents		100 127	43.8 52.7
	Solvent	t	,•	Sat. solution contains % HgCl ₂	Allyl alcohol	$\begin{array}{c c} -21 \\ -1 \\ +8 \\ 22 \end{array}$	20.6 4 29.6 35.2 48.7
Meth	yl alcohol	+	34 20 115 2 12 36 51 62 64 74 00 27	7.6 11.5 12.8 18.7 23.2 27.6 53.1 61.0 63.6 63.7 64.3 68.7 75.2	Acetone	-23 -18 -15 -10 - 8 - 4 - 1 + 6 12 15 27 36	51.4 52.9 56.6 56.7 58.4 59.1 60.1 61.9 61.4 61.8 62.0 61.9

Solubility in organ	nic solvents.	
Solvent	t•	Sat. solution contains HgCl2
N-butyl alcohol	-21	12.4
	- 6	13.0
*	$\begin{array}{c} +9\\21 \end{array}$	14.3 15.9
	59	25.8
	82	33.1
sobutyl alcohol	<del>-11</del>	5.5
•	6	6.2
	0	6.7
	$+11 \\ 63$	7.5 19.3
	98	32.1
21	127	42.0
•	145	47.2
	155	50.4
Amyl alcohol	— <u>13</u>	8.6
	+26 50	8.9 14.0
	90	29.8
	106	35.1
Ether	<del>-47</del>	5.6
	-40	5.8
	-35 -30	$\begin{bmatrix} 6.1 \\ 5.9 \end{bmatrix}$
	-30 -19	5.6
¥	0	5.8
	+13	5.8
	83	8.4
	100 115	8.7 9.0
Ethyl formate	-20	29.6
Emylatormate	$-20 \\ -3$	29.0
	+24	30.0
	+46	31.0
Ethyl acetate	50	39.6
	-20	$\frac{40.5}{40.2}$
	$-14 \\ -6$	40.2
	ŏ	39.5
	+ 7	39.9
	19	40.2
	45	41.6 44.0
	100	47.8
	131	50.1
	150	57.0
	180	59.3
Methyl acetate	-20	42.0
	$+24 \\ 55$	40.3 41.5
Amyl-acetate	$\frac{1}{1} + 22$	18.3
a'	48	18.5
Ethyl butyrate	+20	12.6
	55	13.5
	71	15.1

Solubility	in	organic	solvents.	.—Continued

Solvent	t°	Sat. solution contains % HgCl ₂
Acetic acid	+21	2.7
,	22	3.0
, ,	33	5.0
	43	6.0
	50	6.7
	61	8.0
	87	11.0
	95	12.0
	95	12.5
	115	16.0
	116	17.0
	127	20.0
	145	26.3
	182	44.8
	207	55.2
Formic acid	21	2.0
	50	3.2
	90	7.3

Very sl. sol. in propionic and isobutyric acids.

(Étard, A. ch. 1894, (7) 2. 557 et seq.)

# Solubility of HgCl₂ in organic solvents at t°.

Solvent	t°	% HgCl ₂
CHCl3	$-20.5 \\ +44.2$	0.01 0.12
C ₆ H ₆	+6.5 18.0 34.1 54.1 69.0	0.26 0.53 0.64 1.02 1.39
C ₂ H ₄ Cl ₂	0 12.5 20.8 25.3 30.2 33.0 45.9	1.33 1.55 1.68 1.73 1.92 2.05 2.42
CH ₂ COOC ₂ H ₅	0 6.5 26.1 38.5 45.3	22.8 22.7 22.8 23.5 26.4

Dukelski, Z. anorg. 1907, 53. 329.

A Same	143	ENCONIC	· OI
Solubility of HgCl ₂ in at	mixed organ	nic solvents	So
Solvent	l t°	% HgCl2	
C ₆ H ₆ +C ₂ H ₆ OH	-2.5 0.0 6.0 20.5 20.65 24.5 34.5 54.4 54.5	15.20 15.40 16.38 18.40 18.50 19.33 21.34 24.84 24.42	C ₂
C ₆ H ₆ +2C ₆ H ₅ OH	-5.2 0 +9.1 20.9 24.4 36.5 53.7 74.0	19.45 20.13 21.65 23.57 24.19 26.53 31.27 38.74	CI-
CHCl ₃ +C ₂ H ₆ OH	$\begin{array}{c} -20.5 \\ -12.0 \\ 0.0 \\ +8.0 \\ 23.0 \\ 38.5 \\ 44.2 \\ 45.6 \end{array}$	3.82 4.43 4.89 5.37 7.12 8.51 9.51 9.98	2C
CHCl₂+2C₂H₅OH	$\begin{array}{c} -20.5 \\ 0.0 \\ +8.0 \\ 23.0 \\ 38.5 \\ 44.2 \end{array}$	6.60 7.69 8.96 10.66 12.50 14.40	Hg
CHCl ₈ +CH ₅ OH	12.0 0.0 +8.0 23.0 24.9 30.6 38.5	1.73 3.51 5.63 10.15 10.71 11.40 12.02	Hg Hg Hg
CHCl ₃ +2CH ₃ OH	-12.0 0.0 +8.0 23.0 24.9 30.6 38.5	3.33 6.73 8.21 16.56 18.45 19.70 20.83	
CCl₄+2CH₃OH	0.0 7.7 24.9 30.6 .35.5	5.20 6.69 14.06 19.40 20.50	

36.1

48.5

21.80

21.90

Solubility	of	HgCl ₂	in	mixed	organic	solvent
,				ontinue		

at t — Communaea.					
Solvent	t°	HgCl ₂			
C ₂ H ₄ Cl ₂ +CH ₃ OH	0.0 12.5 20.8 25.3 30.2 33.0 37.4 45.9	13.33 21.30 29.23 34.78 36.87 37.01 37.95 39.36			
CH ₈ COOC ₂ H ₅ +C ₆ H ₆	0.0 6.5 25.7 27.6 35.5 45.3	9.62 9.62 9.78 9.78 10.81 13.69			
CH ₃ COOC ₂ H ₅ +CHCl ₃	$egin{array}{c} 0.0 \\ 26.1 \\ 36.1 \\ 46.0 \\ 48.5 \\ \end{array}$	3.34 4.07 4.78 5.38 5.10			
2CH ₃ COOC ₂ H ₅ +CCl ₄	0.0 10.3 25.7 27.6 38.5 45.3	9.24 9.05 9.32 9.50 9.89 11.70			

(Dukelski, Z. anorg. 1907, **53**. 335.)

Solubility in organic solvents at 18°/20°. 100 g. chloroform dissolve 0.106 g. HgCl₂. 100 g. tetrachlormethane dissolve 0.002 g.

HgCl₂.

100 g. bromoform dissolve 0.486 g. HgCl₂.

100 g. ethyl bromide dissolve 2.010 g.
HgCl₂.

 $\begin{array}{c} {\rm HgCl_2.} \\ 100~{\rm g.~ethylene~dibromide~dissolve~1.530~g.} \\ {\rm HgCl_2} & ({\rm Sulc.~Z.~anorg.~1900,~25.~401.}) \end{array}$ 

Solubility of HgCl₂ in various organic solvents at 25°.

G. = g. HgCl₂ dissolved in 1 mol. of solvent.

Solvent	G. HgCl ₂
Ethylene chloride Tetrachlorethane Chloroform Dichlorethylene Pentachlorethylene Trichlorethylene Perchlorethylene Carbon tetrachloride	1.216 0.146 0.120 0.110 0.039 0.036 0.012 Trace

(Hofman, et al., B. 1910, 43. 188.)

Very sl. sol. in nitromethane at ord. temp. Very sol. on warming. (Bruner, B. 1903, 36. 3298.)

Solubility in CS2 at t°.				
t°	100 pts. sat. solution contain pts. HgCl ₂			
$     \begin{array}{r}       -10 \\       -5 \\       0 \\       +5 \\       10 \\       15 \\       20 \\       25 \\       30 \\    \end{array} $	0.010 0.014 0.018 0.022 0.026 0.032 0.042 0.053 0.063			

(Arctowski, Z. andrg. 1894, 6, 267.)

0.030 g. is dissolved in 100 g. sat. solution in CS₂ at 8°. (Arctowski, Z. anorg. 1894, 6. 256.)

Formic acid (95%) dissolves 2.1% at 19°. (Aschan, Ch. Z. 1913, **37.** 1117.)

Sol. in molten urethane. (Castoro, Z. anorg. 1899, 20. 61.)

Sol, in ethyl sulphocyanate. (Kahlenberg, Z. phys. Ch. 1903, **46.** 66.)

Solubility of HgCl₂ in benzene.

100 pts. C6II6 dissolve at:-41° 15° 55° 84°

0.540.620.851.80 pts. HgCl₂.

(Laszcynski, B. 1894, 27. 2287.)

Solubility in  $C_6H_6=0.0197$  mol./l. at 25°. (Sherrill, Z. phys. Ch. 1903, 43. 735.)

Sol. in C6H6, toluene, xylene, and other aromatic hydrocarbons. Insol. or only sl. sol. in petroleum other, hexane, decane and CS₂. (Gulewitsch, B. 1904, **37.** 1563.)

Sol. in p-toluidine. (Werner.) Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, **51**, 236.)

Solubility of HgCl₂ in pyridine. t = point of fusion.

Solid Phase =  $HgCl_2$ ,  $2C_5H_5N$ .

t°	% HgCl₂	t°	HgCl ₂	t°	HgCl ₂
$\begin{array}{r} -32.8 \\ -21.9 \\ +0.02 \\ 12.58 \\ 18.78 \\ 23.60 \\ 27.23 \\ 31.05 \end{array}$	2.76 7.86 13.14 17.34 19.78 21.59 22.65 24.46	40.90 50.10 60.03 70.15 70.8 74.6 75.2 76.4	29.29 34.94 40.36 46.44 45.77 48.00 48.38 49.15	78.0 78.7 80.2 82.5 89.0 90.8 94.1	49.72 50.37 51.52 52.40 56.45 57.01 60.09

Solubility of HgCl₂ in pyridine.—Continued. t = point of fusion.

· Solid Phase = HgCl₂, C₅H₅N.

t°	HgCl ₂	t°	HgCl2	t°	HgCl
74.7 83.5 86.5 87.3	48.38 50.53 52.37 52.02	90.61 75.0° 99.5 99.5 100.5	53.50 56.45 56.07 57.01 57.84	104.1 104.2 104.7 107.	60.09 60.72 58.97 63.06

Solid Phase = 3HgCl₂, C₅H₅N₂

t ^o	HgCl ₂	t°	HgCl:	t°	HgČl2
94.7 95.2 106.4 109.8	60.72 60.77 61.93 62.58	113.6 114.0 115.7 118.2	63.06 63.18 63.37 64.09	124.2 129.4 145.5	65.00 65.63 69.66

(McBride, Z. phys. Ch. 1910, 14, 196.)

Solubility in pyridine.

S = temp. of solidification.

۱						
	Mols. per 100	s	Mols. per 100	s	Mols. per 100	s
	5.8 5.9 10.2 14.1 21.4 25.0	19 18.5 39.5 52 74.5 83	27.0 28.6 30.3 31.2 33.1 35.1	87 (98) 91.5 92 108 115.5	38.5 41.0 43.2 44.0 47.5 52.8	130 137 142 143.5 159 173

(Staronka, Anz. Ak. Wiss. Krakau, 1910.

Sp. gr. at 16°/4° of HgCl₂+pyridine containing 17.53% HgCl₂ = 1.1523; containing 6.57% (Schönrock, Z. phys. Ch.  $HgCl_2 = 1.0388$ . 1893, **11.** 768.)

Mol. weight determined in benzonitrile. methyl- and ethyl-sulphide. (Werner, Z.

anorg. 1897, **15. 31.** 26 and 30.)
Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Easily sol. in oil of turpentine and other essential oils; sl. sol. in cold benzene, but much more on heating, crystallising on cooling. (Franchimont, B. 16. 387.)

Easily sol. in boiling creosote.

Insol. in olive oil. Insol: in oils and fats but sol. when first dissolved in alcohol, free ether or anhydrous ketones. (Glock, Ch. Z. Repert. 36, 315.)

Extracted from HgCl2+Aq by volatile oils.

Mercuric hydrogen chloride (Chloromercuric acid), HgCl2, HCl=HHgCl3.

Decomp. by H₂O. (Boullay, A. ch. 34. 243.)

Easily decomposed. (Neumann, M. 10. 236.)

HgCl₂, 2HCl+7H₂O. (Ditte, A. ch. (5) 22. 551.) Decomp. by H₂O. 3HgCl₂, 4HCl+14H₂O. As above. 2HgCl₂, HCl+6H₂O. As above. 4HgCl₂, 2HCl+9H₂O. As above. 3HgCl₂, HCl+5H₂O. As above.

Mercuric hydrazine chloride, HgCl₂, 2(N₂H₄, HCl).

Very sol. in H₂O. More sol. in hot alcohol than in cold; decomp. by HNO₃. (Curtius, J. pr. 1894, (2) **50**. 332.)

Mercuric nickel chloride, basic, HgCl₂, 6NiO, NiCl₂+20H₂O, and HgCl₂, 7NiO, NiCl₂.

(Mailhe, A. ch. 1902, (7) 27. 369.)

Mercuric nickel chloride.

Deliquescent. (v. Bonsdorff.)

Mercuric nitrosyl chloride, HgCl₂, NOCl. Sol. in H₂O without effervescence. (Sudborough, Chem. Soc. 59, 659.)

Mercuric phosphoric chloride, 3HgCl₂, 2PCl₅. Decomp. and dissolved by H2O. (Baudrimont, A. ch. (4) 2. 45.)

Mercuric potassium chloride, 2HgCl₂, KCl+ 2H₂O.

Very easily sol. in warm H₂O. A clear solution at 18° is filled with crystals at 15°. Sl. sol. in alcohol. (v. Bonsdorff, Pogg. 17. 122.)

HgCl₂, KCl+H₂O. Easily sol. in H₂O; sl. sol. in alcohol. (v. Bonsdorff, Pogg. **19**. 336.) HgCl₂, 2KCl+H₂O. As above.

Solubility determinations show that the double salts formed by mercuric and potassium chlorides at 25° are:

2KCl, HgCl₂+H₂O.

KCl, HgCl₂+H₂O. Can be recryst. without decomp

KCl, 2HgCl₂+2H₂O. Gives HgCl₂ on recryst. from H₂O. (Foote and Levy, Am. Ch. J. 1906, **35.** 237.)

Mercurous rhodium chloride.

See Chlororhodite, mercurous.

Mercuric rubidium chloride, HgCl₂, RbCl.

Sol. in H₂O. HgCl₂, 2RbCl. Sol. in H₂O and HCl+Aq. (Godeffroy, Arch. Pharm. (3) 12. 47.) +2H₂O. Sol. in H₂O. (Godeffroy.) 2HgCl₂, RbCl. Sol. in H₂O. (Godeffroy.)

Solubility determinations show that at 25° there exist five double mercuric rubidium chlorides with the following formulas:

RbCl, 5HgCl₂. Gives HgCl₂ on recryst. from H2O.

3RbCl, 4HgCl₂+H₂O. Gives RbCl, 5HgCl₂ on recryst from H₂O. RbCl, HgCl₂+H₂O. Gives 3RbCl, 4HgCl₂ on recryst. from H₂O.

3RbCl, 2HgCl₂+2H₂O. Gives 3RbCl. 4HgCl₂ on recryst. from H₂O. 2RbCl, HgCl₂+H₂O. Gives 3RbCl. 4HgCl2 on recryst from H2O.

(Foote and Levy, Am. Ch. J. 1906, 35. 241.)

Mercurous silver chloride, HgCl, AgCl.

(Jones, J. Soc. Chem. Ind. 1893, 12. 983.) 2HgCl, AgCl. Min. Bordosite. J. Soc. Chem. Ind. 1893, **12**. 983.) (Jones, 3HgCl, AgCl. (Jones, Chem. Soc. 1910, **97.** 338.)

Mercuric sodium chloride, HgCl₂, NaCl.

Sp. gr. at  $16^{\circ}/4^{\circ}$  of aqueous solution containing 14.937% salt = 1.13310; containing 11.0736% = 1.09528. (Schönrock, Z. phys. Ch. 1893, 11. 782.)

+H₂O. (Linebarger, Am. Ch. J. 1893, 15. 344.)

 $+1\frac{1}{2}H_2O$ . Sol. in 0.33 pt.  $H_2O$  at 15°. (Schindler, Repert. 36. 240.)

Extremely easily sol. in alcohol. (Voit.) Sol. in 275 pts. ether. Ether dissolves the undecomposed salt out of H₂O solution. (Lassaigne, A. ch. 64. 104.)

HgCl₂, 2NaCl. Deliquescent. Very sol. in H₂O. (Voit, A. 104. 354.)

2HgCl₂, NaCl. Decomp. by H₂O in dil. solution. Sol. in acetone and acetic ether.

(Linebarger, Am. Ch. J. 1893, **15**. 344.) Solubility determinations show that the only double salt formed by mercuric and sodium chlorides between 10.3° and 25° is NaCl, HgCl₂+2H₂O. Can be recryst. from H₂O. (Foote and Levy, Am. Ch. J. 1906, 35. 237.)

Mercuric strontium chloride, basic, SrCl₂,  $HgO + 6H_2O$ .

Decomp. by H₂O. (André, C. R. 104. 431.)

Mercuric strontium chloride, 2HgCl₂, SrC +  $2H_2O$ .

Easily sol. in H₂O. (v. Bonsdorff.) 3HgCl₂, SrCl₂+5-6H₂O. Very sol, in H₂O. (Swan, Am. Ch. J. 1898, 20. 632.)

Mercurous sulphur chloride.

See Mercurous sulphochloride.

Mercuric thallous chloride, HgCl₂, TlCl. Easily sol. in H₂O. (Jörgensen, J. pr. (2) **6.** 83.)

Mercurous stannous chloride, Hg₂Cl₂, SnCl₂. Decomp. by H₂O. (Capitaine, J. Pharm. **25.** 549.)

Mercuric yttrium chloride, 3HgCl₂, YCl₃+ 9H₂O.

Deliquescent. Very sol. in H₂O. (Popp. A. 131. 179.)

Mercuric zinc chloride, HgCl₂, ZnCl₂.

Very sol. in H₂O. (Harth, Z. anorg. 1897, 14. 323.)

2HgCl₂, ZnCl₂. (Varet, C. R. 1896, **123**. 122.)

Mercuric zinc chloride ammonia, HgCl₂, 4ZnCl₂, 10NH₃+2H₂O.

Insol. in boiling  $H_2O$ , but decomp. thereby. (André, C. R. 112. 995.)

 $HgCl_2$ ,  $2ZnCl_2$ ,  $6NH_3 + \frac{1}{2}H_2O$ . As above. (André.)

Mercuric chloride ammonia, HgCl₂, 12NH₃ Sl. sol. in ammonia. (Franklin, Am. Ch. J. 1900, 23. 300.)

 $\begin{array}{cccc} \textbf{Mercuric chloride cadmium oxide,} & HgCl_2, \\ & CdO + H_2O. \end{array}$ 

(Mailhe, A. ch. 1902, (7) 27. 371.)

Mercuric chloride cobaltous oxide,  ${\rm HgCl_2}, \ 3{\rm CoO} + {}^{1}\!/_{\!2}{\rm H_2O}.$ 

(Mailhe, C. R. 1901, 132. 1274.)

Mercuric chloride cupric oxide, HgCl₂, 3CuO +H₂O.

(Mailhe, Bull. Soc. 1901, (3) 25. 791.)

Mercuric chloride hydrazine, HgCl2, N2H4.

Very unstable. Decomp. by H₂O. Pptd. from alcohol solution by H₂O; very sol. in min. acids with decomp.

Easily sol. in HCl or HNO₃. Decomp. by alkalies. Somewhat sol. in acetic acid. (Hofmann, B. 1897, **30**. 2020.)

Mercuric chloride hydroxylamine, HgCl₂, 2NH₂OH.

Completely sol. in methyl and ethyl alcohol; insol. in ether; decomp. by H₂O and NaOH+Aq. Sol. in NH₂OH,HCl+Aq. (Adams, Am. Ch. J. 1902, **28.** 210.)

Mercuric chloride lead oxide,  $HgCl_2$ ,  $2PbO + 2H_2O$ .

(Mailhe, A. ch. 1902, (7) 27. 372.)

Mercuric chloride strontium chromate, 2HgCl₂, HCl, SrCrO₄.

Sol. in  $H_2O$  without decomp. (Imbert, Bull. Soc. 1897, (3) 17. 471.)

Mercuric chloroiodide, 2HgCl₂, HgI₂.

Sol. in H₂O. (Liebig.)

HgCl₂, HgI₂. Sl. sol. in hot H₂O with partial decomp. More easily sol. in alcohol. (Köhler, B. **12**, 1187.)

Mercurous fluoride, Hg₂F₂.

Decomp. by H₂O with separation of Hg₂O.

Mercuric fluoride, HgF₂+2H₂O.

Decomp. by cold H₂O, with separation of HgO. Sol. in dil. HNO₂+Aq, and HF+Aq. (Finkener, Pogg. 110. 628.)

Mercurous hydrogen fluoride, Hg₂F₂, 4HF+4H₂O.

Deliquescent. Easily sol, in H₂O. Sol, in dil. acids and dil. HF. (Böhm, Z. anorg. 1905, **43**, 327.)

Mercurous silicon fluoride.

See Fluosilicate, mercurous.

Mercurous fluoride ammonia, Hg₂F₂, 2NH₃. Stable on air. (Finkener, Pogg. 110. 142.)

Mercurous hydroxide, HgOH.

Nearly insol. in cold, sol. in hot  $H_2O$ . Sol. in NaOH+Aq. (Bhaduri, Z. anorg. 1897, 13. 410.)

Mercurous iodamide, Hg₂(NH₂)I.

(Rammelsberg, Pogg. 48, 184.)

Is a mixture of Hg and Hg(NH₂)1. (Barfoed.)

Mercurous iodide, Hg₂I₂.

Sol. in over 2375 pts. H₂O. (Saladin, J. chim. méd. 7. 530.)

Solubility in  $H_2O = 2.6 \times 10^8$  g.-equiv. per liter (calculated). (Bodländer, Z. phys. Ch.

1898, 27. 58.) Solubility in  $H_2O = 3 \times 10^{-10}$  mols. per litre at 25°. (Sherrill, Z. phys. Ch. 1903, 43. 735.)

at 25°. (Sherrill, Z. phys. Ch. 1903, **43**. 735.) Sol. in Hg(NO₃)₂+Aq. (Stromann, B. **20**. 2815.)

Sol. in KI+Aq. Easily sol. in Hg₂(NO₈)₂+Aq. Sol. in NH₄OH+Aq. Sol. in hot NH₄Cl+Aq, but less than HgI₂. Less sol. in NH₄NO₃ than in NH₄Cl+Aq. (Brett.) Partially sol. with separation of Hg and

Partially sol. with separation of Hg and formation of HgI₂, in cold KI+Aq, hot NaI, CaI₂, SrI₂, BaI₂, MgI₂, ZnI₂, and NH₄I+Aq; in warm NaCl, KCl and NH₄Cl+Aq, and slowly in hot HCl+Aq. (Boullay, A. ch. (2) **34**. 358.)

Decomp. by alkali chlorides + Aq. (Miahle, A. ch. (3) 5. 177.)

Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Not wholly insol. in alcohol, ether, or chloroform. (Maclagan, Rep. anal. Ch. 1884. 378.) Decomp. by boiling alcohol; 1000 g. boiling alcohol decomp. about 3.15 g. Hg₂I₂. (François, C. R. 1896, 121. 890.)

Boiling alcohol decomp. Hg₂I₂ to Hg and HgI₂ which dissolves until 0.220 g. HgI₂ are contained in 100 g. alcohol. (François, C. R. 1896, **121**. 889.)

Insol. in cold ether. (François, J. Pharm.

1897, (6), **6.** 445.)

Insol. in methylene iodide. (Retgers, **Z**. anorg. **3.** 345.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Phenol at 180° decomp, it into Hg and HgI₂ until a state of equilibrium is reached with

2.75 g. HgI₂ to 100 g. phenol, above which alcoholic solution of HgCl₂. (Boullay, A. ch. point HgI is sl. sol. (0.05 g. in. 100 g.) in (2) 34. 346.) Decomp. by cold an by hot. Equilphenol-HgI₂ mixture. aniline more rapidly than by hot. Equilibrium is reached when 26.35 g. HgI₂ are present to 100 g. aniline at bpt. of aniline. Aniline containing more than 26 g. Hgl₂ to 100 g. dissolves HgI in considerable quantity. (François, C. C. 1896, I, 470.) Sl. sol. in benzonitrile. (Naumann, B.

1914, 47. 1369.)

Sl. sol. in allyl mustard oil. (Mathews, J. phys. Chem. 1905, 9, 647.)

### Mercuric iodide, Hgl₂.

Sol. in 150 (?) ps. H₂O. (Würtz)

1 l.  $H_2O$  at  $17.5^{\circ}$  dissolves 0.0403 g.  $HgI_2$ . (Bourgoin, A. ch. (6) 3, 429.)

Sol. in about 6500 pts. H₂O. (Hager.)

According to calculation from electrical conductivity of HgI2+Aq, HgI2 is much less sol., 1 l. H₂O dissolving only 0.5 mg. HgI₂ at 18°. (Kohlrausch and Rose, Z. phys. Ch. **12**. 241.)

1 l. H₂O dissolves 0.054 g. HgI₂ at 22°. (Rohland, Z. anorg. 1898, **15**. 412.) 1 l. H₂O at 25° dissolves about 0.06 g.

(Morse, Z. phys. Ch. 1902, **41.** 731.) 1 l. H₂O at 18° dissolves 4 x 10⁻⁶ mol. (Abegg, Z. Elektrochem. 1903, 9. 553.)

Solubility in H₂O at 25°=0.00013 mol. liter. (Sherrill, Z. phys. Ch. 1903, **43**. 735.)

1 l. H₂O dissolves 0.4 mg. HgI₂ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50**, 356.) 1 l. H₂O at 18° dissolves 0.2 to 0.4 mg.

(Kohlrausch, Z. phys. Ch. 1908, **64.** 168.) The yellow modification is always deposited

from solution even in the presence of an excess of the red form. (Gernez, C. R. 1903, **136.** 1323.) Sol. in many acids, especially in HCl, and

HI+Aq. Insol. in HC₂H₃O₂+Aq. (Berthemot.) Scarcely sol. in dil. HNO3+Aq.

Not attacked by cold H₂SO₄, decomp. by hot. (Ditte, A. ch. 1879, (5) 17. 124.)

Sat. solution in H₂SO₃+Aq contains at critical temp. (158.2°), 0.7% HgI₂. (Niggli, Z. anorg. 1912, 75. 182.)

Sol. in hot (NH₄)₂CO₃, (NH₄)₂SO₄, cold NH₄Cl, NH₄NO₃, or ammonium succinate+

Aq. (Wittstein.)
Sol. in HgCl₂, Hg(NO₃)₂, or Hg(C₂H₃O₂)₂+
Aq. Easily sol. in Na₂S₂O₃+Aq. Easily sol. in soluble iodides+Aq. More sol. in hot than in cold NaI or KI+Aq. When conc., 1 mol. KI in hot solution dissolves 3 mols. HgI₂, but a portion separates on cooling. Bal2, SrI2, MgI₂, and CaI₂ act in the same way. Easily sol. in cold, more sol. in hot ZnI₂+Aq, 2 mols. HgI₂ being dissolved to 1 mol. ZnI₂. In NH₄I +Aq, 3 mols. HgI₂ are dissolved to 2 mols. NH₄I. Abundantly sol. in hot KCl, NaCl, NH4Cl+Aq, but separates out on cooling, and the trace remaining may be pptd. by H₂O, 2 g. KCl in solution dissolves 1.166 g. Hgl₂. Sol. in HgCl₂+Aq, and very easily sol. in (Dunningham, Chem. Soc. 1914, 105. 368.)

### Solubility in MI+Aq at 25°.

boldonity in MITA at 20.				
Salt	In 10 ccm. o	f the solution		
	Millimols HgI2	Millimols salt		
NaI	4.12 6.22 9.45	7.94 13.85 22.25		
KI	1.27 1.80 5.10 7.00 12.24	3.03 3.90 10.34 15.54 25.19		
CaI ₂	0.50 2.61 4.40 4.58 17.06	0.53 2.52 4.68 4.84 17.99		
$\mathrm{SrI}_2$	2.12 3.20 5.82 6.94	2.54 3.55 5.39 6.08		
$\mathrm{BaI}_2$	0.59 7.42 8.98 14.62	0.99 7.48 9.78 15.08		

(Herz and Paul, Z. anorg. 1913, 82, 434.)

### Solubility of HgI₂+KI in H₂O.

Temp = 20°.					
% KI	% HgI2	Solid phase			
50.9 44.4 39 37.4 37.8 35.1 35.5 26.7 26.6 23.7 14.9	19.3 32.4 48 53.6 52.6 52.2 51.2 50.3 49.4 40.2 22.5	KI  "  KI+KHgI ₈ KHgI ₈ KHgI ₃ , H ₂ O  KHgI ₈ +HgI ₂ HgI ₂ "			

### Temp. $=30^{\circ}$

60.6	KI KI+KHgI, KHgI, " " " " KHgI, H ₂ O
------	-----------------------------------------------------------------------

Very sol. in KSCN+Aq. (Philipp, Pogg. 1867, **131.** 93.)

Sol. in 1.09 pts. cryst. Na₂S₂O₃+Aq. (Eder and Ulm, M. 1882, **3**. 197.)

Very sol. in hot CaCl₂+Aq, less sol. in BaCl₂, KCl and NaCl+Aq. (Lea, Z. anorg. 1896**, 12.** 341.)

Solubility in normal  $Hg(NO_3)_2 + Aq =$ 48.0 g. per litre. (Morse, Z. phys. Ch. 1902,

**41.** 731.) Extremely sol. in cold conc. NH₄Br+Aq. (Grossmann, B. 1903, 36. 1602.)

Sol. in alkali sulphites+Aq. (Barth, Z.

phys. Ch. 1892, 9. 215.) Sol. in  $Ca(OCl)_2 + Aq$ ; sol. in KOH + Aq.

(Melsens, A. ch. (3) 26. 222.)

Sol. in liquid SO2. (Walden and Centnerszwer, C. C. 1902, I. 344.)

Very easily sol, in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Sol. in SOCl₂, S₂Cl₂, SO₂Cl₂, warm AsCl₃, PBr₃, warm POCl₃. (Walden, Z. anorg. 1900, **25.** 212.)

Easily sol. in AsBr₃. (Walden, Z. anorg.

1902, **29.** 374.)

Insol, in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, **54**. 674.)

More sol. in alcohol than in H₂O. 1 l. H₂O containing 10% of 90% alcohol dissolves 0.08 g. HgI₂. 1 l. of alcohol of 80° B. dissolves 2.851 g. HgI2, 1 l. absolute alcohol dissolves 11.86 g. HgI₂. (Bourgoin, A. ch. (6) **3.** 429.)

Sol. in 130 pts. cold, and 15 pts. hot 90%

alcohol. (Hager.)

100 pts. absolute methyl alcohol dissolve 3.16 pts. at 19.5°; 100 pts. absolute ethyl alcohol dissolve 2.09 pts. at 19.5°. (de Bruyn, Z. phys. Ch. 10. 783.)

0.00842 pt. is sol. in 1 pt. alcohol at 15°: (Gautier and Charpy, C. R. 1890, 111. 647.)

100 g. methyl alcohol dissolve 3.7 g. HgI₂ at 19°; ethyl alcohol, 1.86 g.; propyl alcohol, 1.25 g.; isobutyl alcohol, at 22.5°, 0.51 g.

(Timofeiew, Dissert. 1894.)
At 15-20°, 100 g. methyl alcohol dissolve 3.24 g. HgI₂; ethyl alcohol, 1.42 g.; propyl alcohol, 0.826 g. (Rohland, Z. anorg. 1898, **15**. 412.)

Solubility of HgI₂ in ethyl alcohol + Aq at 25°. A = g. alcohol in 100 g. alcohol +Aq.  $Hgl_2 = millimols$ .  $Hgl_2$  in 100 cc. of the solution.

A	$HgI_2$	Sp. gr.
.00	3.86	0.80325
95.82	2.56	0.80950
92.44	1.92	0.81536
86.74	1.38	0.82996
78.75	0.935	0.84654
67.63	0.45	0.87214

(Herz and Knoch, Z. anorg. 1905, 45. 266.)

Solubility of HgI2 in methyl alcohol+Aq at 25°.

P = g, alcohol in 100 g, alcohol + Aq.  $HgI_2 = millimols$ .  $HgI_2$  in 10 cc. of the solution.

P	HgI ₂	Sp. gr.
0 47.06 64.00 78.05 100	0.0013 0.0098 0.0347 0.0981 0.571	0.9187 0.8834 0.8519 0.81 <b>5</b> 5

(Herz and Anders, Z. anorg. 1907, 52, 165.)

Solubility of  $HgI_2$  in ethyl alcohol +Aq at 25°.

P = g, alcohol in 100 g, alcohol +Ag.  $HgI_2 = millimols$ .  $HgI_2$  in 10 cc. of the solu-

P	HgI2	Sp. gr.
70.01	0.061	0.8636
100	0.386	0.8032

(Herz and Anders, Z. anorg. 1907, 52. 170.)

At 15°, 1 pt. by weight is sol. in:— 24813 pts. H₂O.

30.8 pts. methyl alcohol of sp. gr. at 0.7990. " 0.8100. 70.3 " ethyl " " 0.8160. 121.0 " propyl

(Rohland, Z. anorg. 1899, 18, 328.)

Solubility of HgI2 in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the mixtures.  $HgI_2 = g$ .  $HgI_2$  in 10 ccm. of the solution. S  $25^{\circ}/4^{\circ}$  = Sp. gr. of the sat. solution.

P	$HgI_2$	S 25°/4°
0	0.180	0.8038
4.37	0.193	0.8039
10.4	0.208	0.8046
41.02	0.232	0.8077
80.69	0.289	0.8131
84.77	0.296	0.8140
91.25	0.298	0.8146
100	0.316	0.8156

(Herz and Kuhn, Z. anorg. 1908, 58. 164.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $HgI_2$  in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

P	G	S 25°/4°
0	0.316	0.8156
23.8	0.304	0.8155
91.8	0.169	0.8101
93.75	0.167	0.8110
96.6	0.153	0.8108
100	0.142	0.8116

(Herz and Kuhn, Z. anorg. 1908, 60. 158.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g.  $HgI_2$  in 10 ccm. of the solution. S=Sp. gr. of the sat. solution.

P	G	S 25°/4°
8.1 17.85 56.6 91.2 95.2	0.180 0.173 0.165 0.155 0.152 0.144 0.142	0.8038 0.8036(?) 0.8043 0.8075 0.8099 0.8108 0.8116

(Herz and Kuhn, Z. anorg, 1908, 60, 161.)

Solubility in 100 pts. amyl alcohol equals:

at 13°. " 71°. " 100°. 0.66 pts. at 3.66

5.30 "

" 133.5°. " 9.57

(Laszcynski, B. 1894, 27. 2287.)

Sp. gr. at 16°/4° of HgI₂+alcohol contain-1.8358% HgI₂=0.80718; containing 1.7119% = 0.80597.(Schönrock, Z. phys. Ch. 1893, 11. 770.)

Somewhat sol. in ether. Sol. in 77 pts. (Saladin.) Sol. in 60 pts. ether. ether.

(Hager.)

Sol. in cold ether. (François, J. Pharm.

1897, (6) **6.** 445.) Very sl. sol. in anhydrous ether. (Hampe.)

0.62 pt. is sol. in 100 pts. ether at 0°. 0.97 pt. is sol. in 100 pts. ether at 36°.

(Laszcynski, B. 1894, 27. 2286.)

Solubility in ether = 0.3% at ord. temp. (Marsh, Chem. Soc. 1910, 97. 2299.)

Nearly insol. in ether. (Dunningham, Chem. Soc. 1914, 105. 368.)

Data are given on the system HgI₂+KI+

ether. (Dunningham.)

Solubility at 23° in chloroform = 0.071%; in ether = 0.551%; in acetone = 2.005%: in ethyl alcohol = 2%; in methyl alcohol = 3.975%; in benzene = 0.247%. (Beckmann and Stock, Z. phys. Ch. 1895, 17. 130.)

Cl. 1 L :1:4	•			~+	10
Solubility	ın	orgame	ROIVERIUS	μı	υ.

Solvent	t°	100 g. of the solvent dissolve g. HgI ₂
Chloroform Tetrachlormethane Ethylene dichloride Isobutyl chloride Ethyl bromide Methyl alcohol Ethyl alcohol Isopropyl alcohol Isobutyl alcohol Methyl formate Ethyl formate Methyl acetate Ether Acetone Acetone Acetal Chloral Epichlorhydrin Hexane Benzene Ethyl acetate	61 75 85.5 69 38 66 78 81 ca. 100 36–38 52–55 56–59 35 ca. 100 96 ca. 100 67 80 74–78	0.163 0.094 1.200 0.328 0.773 6.512 4.325 2.266 2.433 1.166 2.150 2.500 0.470 3.249 2.000  6.113 0.072 0.825 4.200
	1	·

(Sulc, Z. anorg. 1900, 25, 402.)

Solubility in organic solvents at 18-20°. 100 g. chloroform dissolve 0.040 g. HgI₂. 100 g. tetrachlormethane dissolve 0.006 g.

HgI2.

100 g. bromoform dissolve 0.486 g. HgI₂. 100 g. ethyl bromide dissolve 0.643 g.

100 g. ethyl iodide dissolve 2.041 g. HgI₂. 100 g. ethylene dibromide dissolve 0.748 g. HgI₂.

(Sulc, Z. anorg. 1900, **25.** 401.)

1 pt. ethylene bromide dissolves 0.00553 pts. HgI2 at 15°. (Gautier and Charpy, C. R. 1890, **111**, 647.)

100 pts. methylene iodide CH₂I₂ dissolve 2.5 pts. HgI₂ at 15°, 16.6 pts. at 100°, and 58

pts. at 180°. (Retgers, Z. anorg. 3, 252.)

1 l. sat. solution in CCl₄ at 15° contains
0.170 g. HgI₂. (Dawson, Chem. Soc. 1909, 95. 874.)

Sol. in 340 pts. glycerine. (Fairley, Monit. Scient. (3) 9. 685.)

100 pts. acetone dissolve 2.09 pts. HgI₂ at (Krug and M'Elroy, J. Anal. Ch. 6.

84.) Sol. in acctone and in methylal. (Eidmann, C. C. 1899, II, 1014.)

Solubility in 100 pts. acetone equals:

- 1°. 18°. 2.83 pts. HgI₂ at

3.36 " " " 40°. 4.73

" " " 58°. 6.07

(Laszczynski, B. 1894, **27.** 2287.)

100 g. methyl acetate solution, sat. at 18°, contain 1.10 g. HgI2. (Bezold, Dissert. 1906.)

647.)

100 g. boiling methyl acetate slowly dissolve 2.3 g. HgI₂. (Schroeder and Steiner, J. pr. 1909, (2) **79.** 49.)

# Solubility in ethyl acetate at to.

Pts. sol. in 100 pts. ethyl acetate	t <b>°</b>
1.49	2
$1.56 \\ 1.64$	$\substack{+17.5 \\ 21}$
2.53 3.19	$\frac{40}{55}$
4.31	76

^{* (}Laszczynski, B. 1894, **27.** 2286.)

100~g. ethyl acetate anhydrous, or sat. with  $\rm H_2O$  at 18°, dissolve at 18°, 14.70 g.  $\rm Hg\,I_2.$  Solubility increases somewhat with temp. (Hamers, Dissert. 1906.)

Solubility of HgI2 in ethyl acetate + Aq at 25°.

P = g, ethyl acetate in 100 g, ethyl acetate

 $HgI_2 = millimols$ .  $HgI_2$  in 10 cc. of the solution.

Р	IlgI2	Sp. gr.
4.39 96.76 100	$egin{array}{c} 0.0028 \ 0.412 \ 0.241 \end{array}$	0.9973 0.9063 0.9011

(Herz and Anders, Z. anorg. 1907, 52. 172.)

1 pt. is sol. in 68.03 pts. ethyl acetate at 18°. (Naumann, B. 1910, 43. 316.)

Solubility in diethyl oxalate is 12.5% at bpt. and 2.5% at 100°. (Reinders, Z. phys. Ch. 1900, **32.** 507.)

### Solubility in CS₂ at t°.

t°	100 pts. sat. solution contain pts. HgI ₂	
$     \begin{array}{r}       -10 \\       -5 \\       0 \\       +5 \\       10 \\       15 \\       20 \\       25 \\       30     \end{array} $	0.107 0.141 0.173 0.207 0.239 0.271 0.320 0.382 0.445	

(Arctowski, Z. anorg. 1894, 6. 267.)

Solubility in CS₂.

100 g. of the sat. solution contain at: --93° --116° -86.5°

0.017 g. HgI₂. 0.0240.023(Arctowski, Z. anorg. 1896, 11. 274.)

0.0028 pt. is sol. in 1 pt. CS2 at 15°. (Gautier and Charpy, C. R. 1890, 111. 647.)

1 l. sat. solution in CS₂ at 15° contains 3.127 g. HgI₂. (Dawson, Chem. Soc. 1909, 95. 874.)

Very sol. in liquid methylamine. (Gibbs, J. Am. Chem. Soc. 1906, 28, 1419.)

Abundantly sol. in methylamine. (Fitzgerald, J. phys. (hem. 1912, 16. 633.)

Somewhat sol, in allyl mustard oil. (Mathews, J. phys. Chem. 1905, 9. 647.)

Sol. in Sb(CH₈)₄I+Aq.

Very sl. sol. in Na citrate+Aq. (Spiller.) 1 pt. C6H6 dissolves 0.00217 pts. HgI2 at 15°. (Gautier and Charpy, C. R. 1890, 111.

Solubility in 100 pts. benzene equals:

0.22 pts. at 15°. 0.88 " " 60°.

0.88 " " 65°. 0.95

" " 84° 1.24

(Laszczynski, B. 1894, 27. 2284.)

1 l. C₆H₆ dissolves 0.00493 mol. HgI₂ at 25°. (Sherrill, Z. phys. Ch. 1903, 43, 735.)

100 g. boiling phenol dissolve 10 g. HgI₂. (François, C. R. 1895, **121**. 769.)

Sl. sol, in phenol with 20% H₂O. Not very sol. in acctic acid at 119°, in amyl acetate at 133°, in amyl bromide at 119°. Rather sol. in diethyl oxalate at 186°, in ethylene bromide at 131°, in amyl alcohol at 137°, in amyl iodide at 150°, in CHBr₃ at 151°, in iodobenzol at 190°, in oil of turpentine at 160°. Very sol. in benzaldehyde at 179°, in methylene iodide at 182°. (Reinders, Z. phys. Ch. 1900, **32.** 506.)

1000 pts. oil of bitter almonds dissome 4 pts. Hgl₂ at ord. temp.; 1000 pts. olive oil, 4 pts.; 1000 pts. poppy oil, 10 pts.; 1000 pts. nut oil, 15 pts.; 1000 pts. castor oil, 20 pts.; 1000 pts. lard oil, 4. 5 pts.; 1000 pts. vaseline, 2.5 pts.; 1000 pts. benzene, 4 pts. Sol. in phenol. (Mehn, Pharm. J. 3. 327; B. 19. 8 R.)

Solubility in aniline.

S = Temp. of solidification.

Mols. per 100	S	Mols. per 100	s	Mols. per 100	s
5.9 8.2 10.3 14.9 16.6	12° 22.5 29 41.5 45	19.9 25.8 29.3 31.7 32.4	48.5° 53.5 105 122 (55)	33.0 35.6 37.5 39.2	128° 140 147 156

(Staronka, Anz. Ak. Wiss. Krakau, 1910. 372.)

## Solubility of HgI2 in aniline at t°.

to   g. HgI ₂   Solid phase    -6.5   23.35   HgI, 2C ₆ H ₅ NH ₂    +0.4   28.69   "  17.8   42.85   "  21.1   47.55   "  26.9   55.47   "  30.1   62.05   "			
+0.4   28.69   " 17.8   42.85   " 21.1   47.55   " 26.9   55.47   "	t°	per 100 g.	Solid phase
36.2 75.80 " 42.9 96.49 " 46.8* 128.1 63.6 163.6 " 70.82 184.1 76.2 201.6 95.9 246.7 108.* " 115.7 281.8 137.2 285.2 "  "HgI ₂ (red) " "HgI ₂ (red) +HgI ₂ (yellow) HgI ₂ (yellow)	+0.4 17.8 21.1 26.9 30.1 36.2 42.9 46.8* 48.8 63.6 70.82 76.2 95.9 108.* 115.7	28.69 42.85 47.55 55.47 62.05 75.80 96.49  128.1 163.8 184.1 201.6 246.7  281.8 285.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
181.1   279 199.1   863.2   "			u

^{*} Transition point.

(Pearce and Fry. J. phys. Ch. 1914, 18, 667.)

Very sol, in boiling alcoholic solution of aniline. (Vohl, Dissert. 1871.)

Abundantly sol. in hot benzonitrile and other aromatic nitriles. (Werner, Z. anorg. 1897, **15**. 7.)

Sol. in benzonitrile (0.98 g. in 100 g. at 18°). 20 times more sol. by addition of 5 g. KI to 100 cc. benzonitrile. (Naumann, B. 1914, 47. 1375.)
Sol. in pyridine. (Naumann, B. 1904, 37.

4609.)

Solubility of HgI₂ in pyridine.

S = temp. of solidification.

Mols. per 100	s	Mols. per 100	s	Mols. per 100	s
5 9.8 15.14 19.3 26.3 29.6	10° 42.5 66.5 83 102.5 107	34.6 38.0 43.0 46.7 48.5 50.6	107° 103 97 88.5 89	51.3 51.6 52.7 53.2 55.4 57.9	93.5° 96 108 109 122 135

(Staronka, Anz. Ak. Wiss. Krakau, 1910. 372.)

Sp. gr. at 16°/4° of HgI₂+pyridine containing 10.43% HgI₂=1.1482; containing 7.99%=1.1053. (Schönrock, Z. phys. Ch. 1893, 11. 770.)

Solubility of HgI2 in quinoline. S = temp. of solidification.

Mols. per 100	s	Mols. per 100	s	Mols. per 100	s
4.7	100°	29.8	151°	43.0	165°
9.1	115.5	31.4	153	46.1	167
13.2	133.5	35.4	156	48.8	170
23.1	138	37.7	160	49.5	169.5
26.7	145	41.6	165	54.4	166.5

(Staronka, Anz. Ak. Wiss. Krakau, 1910. 372.)

Mol. weight determined in pyridine, methyl- and ethyl-sulphide. (Werner, Z. anorg. 1897, 15. 20.)

More or less sol, at high temp, in petroleum (bpt. 160-230°), bromnaphthalene, pyridine, toluidine and amyl alcohol. (Reinders, Z. phys. Ch. 1900, 32. 503.)

Yellow modification.

100 g. of sat. solution in acetone at 25° contain 3.0 g. HgI₂. (Reinders, Z. phys. Ch. 1900, **32.** 514.)

Red modification.

Solubility in alcohol equals:

0.717-0.724 g. in 100 g. solution at 0° 1.044-1.084 g. " 50°. 2.10-2.20 g.

(Reinders, Z. phys. Ch. 1900, 32. 522.)

100 g. of sat. solution in acetone at 25° contain 1.95 g. HgI₂. (Reinders, Z. phys. Ch. 1900, **32.** 514.)

HgI2 is moderately sol. in abs. alcohol at its b.-pt. The solution has a decided yellow color. On cooling, yellow crystals separa out. They soon change to the red modifica-

Readily sol. in hot amyl alcohol. Yellow crystals separate from the solution when cooled.

Readily sol, in allyl alcohol, forming a yellow solution, from which yellow crystals separate on cooling.

Sl. sol. in acetone, giving a yellow solution. On cooling yellow plates separate from the solution and rapidly turn red.

Sol in phenol at 150° C. Solution has yellow color and yellow crystals separate out on cooling.

Readily sol. in boiling benzene. Saturated solution is yellow. The yellow iodide separates out on cooling, and changes rapidly to the red.

Sol. in toluene giving yellow solution, from which yellow crystals separate on cooling.

They rapidly change to red.

Readily sol. in naphthalene at temperatures above its transition point. Solution is yellow and on cooling yellow crystals separate out. Readily sol. in hot pseudo-cumene giving

a yellow solution. On cooling gives yellow crystals.

Readily sol. in ethyl iodide giving very

yellow solution, from which yellow crystals separate on cooling, which change to red

rapidly.

Only sl. sol. in ethyl bromide, giving yellow solution from which yellow crystals separate on cooling, which change rather slowly to the red.

Sparingly sol, in isopropyl bromide.

Moderately sol in isobutyl bromide, giving a pink solution from which yellow crystals separate on cooling, which change slowly to red.

Sl. sol. in ethylidene chloride. On sudden cooling at 18° the iodide crystallizes out in yellow plates, which quickly change to red.

Sparingly sol. in propyl chloride, giving a pink solution, from which yellow crystals

separate on cooling.

Readily sol. in ethyl cyanide, giving a yellow solution. On cooling yellow crystals separate and rapidly change to red.

Moderately sol. in benzene cyanide, giving a deep yellow solution. On sudden cooling the solution deposits yellow crystals, which rapidly turn red.

Rapidly sol. in benzoic acid at high tem-

peratures.

Sparingly sol. in ethyl acetate, giving yellow solution.

Sol. in ethyl propionate.

Very sol. in ethyl butyrate, giving a yellow solution. On cooling the iodide crystallized from the solution.

Sl. sol. in ethyl isobutyrate.

Readily sol. in methyl salicylate, giving

a yellow solution.

Sparingly sol. in phenyl salicylate, giving yellow solution. On cooling yellow crystals separate out, which gradually change to red. (Kastle, Am. Ch. J. 1899, 22. 474.)

# Mercuromercuric iodide, $Hg_4I_6 = Hg_2I_2$ , $2HgI_2$ .

Insol. in H₂O or alcohol. Partially sol. in KI+Aq, in hot NaCl, and NH₄Cl+Aq, and in hot HCl+Aq, though very slowly. (Boullay, A. ch. (2) **34.** 345.

#### Mercury periodide, HgI.

Sol. in KI+Aq. Decomp. by cold  $H_2O$  or alcohol. (Jörgensen, J. pr. (2) **2.** 347.)

Crystallises from HI+Aq. (Boullay.) Easily decomp. (Neumann, M. 10. 236.) 3HgI₂, 2HI+H₂O. (François, Dissert. 1901.)

# Mercuric nickel iodide, HgI₂, NiI₂+6H₂O.

Sol. in alcohol, ether, and acetone; not decomp. by H₂O. (Dobroserdoff, C. C. **1901**, II. 332.)

 $2HgI_2$ ,  $NiI_2+6H_2O$ . Hydroscopic; decomp. by  $H_2O$ ; sol. in acetone and ether. (Dobroserdoff, C. C. **1901**, II. 332.)

Mercuric potassium iodide,  $HgI_2$ ,  $KI + 1\frac{1}{2}H_2O$ .

Deliquescent (v. Bonsdorff). Permanent; decomp. by  $H_2O$  into 2KI,  $HgI_2$ , and  $HgI_2$  (Boullay); sol. in alcohol, ether, and conc.  $HC_2H_2O_2$ , but decomp. by other acids (Berthemo₆, J. Pharm. 14. 186). Sp. gr. of sat. solution in  $H_2O = 2.4$  to 3.1.

+H₂O. Sol. in H₂O with decomp. Can be cryst. from alcohol. Very sl. sol. in dry ether. Very sol. in wet ether. (Marsh, Chem.

Soc. 1910, **97.** 2297.)

HgI2, 2KI. Sol. in H2O. (Thomsen and

Bloxam, Chem. Soc. 41. 379.)

Sat. solution of KI+HgI₂ in H₂O at 22.9° contains 8.66% K, 22.49% Hg and 52.48% I, corresponding to 0.22 mol. K, 0.11 mol. Hg and 0.45 mol. l. (Duboin, C. R. 1905, **141**. 385.)

Sp. gr. at 16°/4° of aqueous solution containing 12.2875% salt=1.10148; containing 12.2371%=1.1038; containing 7.9843%=1.06491. (Schönrock, Z. phys. Ch. 1893, **11**. 782.)

Sol. in methyl acetate. (Bezold, Dissert.

1906.)

Sol. in ethyl acetate. (Alexander, Dissert. 1899; Hamers, Dissert. 1906.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4328.)

Sol. in methyl acetate (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3601.)

+2H₂O. Sol. in alcohol, ether and acetone; decomp. by H₂O. (Pawlow, C. C. **1901**, I. 363.)

Solubility determinations show that KHgI₃ and KHgI₃+H₂O are the only double salts formed at 20°-30°. See HgI₂+KI under HgI₂. (Dunningham, Chem. Soc. 1914, **105**, 368.)

## Mercuric rubidium iodide, HgI2, RbI.

Sol. in alcohol; decomp. by H₂O. HgI₂, 2RbI. Very easily sol. in H₂O.

(Grossmann, B. 1904, **37.** 1258.)

Very sol. in acetic acid and alcohol; decomp. by H₂O. Stable in aq. solution in the presence of an excess of RbI. (Erdmann, Arch. Pharm. 1894, 232. 30.)

#### Mercuric silver iodide, HgI₂, 2AgI.

(Wegelius and Kilpi, Z. anorg. 1909, **61.** 416.)

## Mercuric sodium iodide, HgI2, NaI.

Deliquescent, and decomp. by much H₂O. (v. Bonsdorff, Pogg. 17. 266.)

Sol. in alcohol; decomp. by H₂O.

HgI₂, 2NaI. Deliquescent; sol. in H₂O and alcohol. (Boullay.)

Sat. solution of NaI+HgI, in H₂O at 24.75° contains 4.59% Na, 25% Hg, and 58.25% I, corresponding to 0.20 mol. Na,

0.12 mol. Hg, and 0.45 mol. I. (Duboin, C. R. **1905**, **141**. 385.)

 $+4H_{\circ}O.$ Extremely deliquescent, boin, C. R. 1906, 143. 314.)

Mercuric strontium iodide, HgI₂, SrI₂ (?).

Sol. in H₂O without decomp. (Boullay.) +8H₂O. As Ca salt. (Duboin, C. R. 1906, 142, 573.)

2Hgl₂, Srl₂ (?). Decomp. by much H₂O into sol. Hgl2, SrI2 and insol. HgI2. (Boul-

Mercuric thorium iodide, 5HgI₂, ThI₄+ 18H₂O.

 $\begin{array}{cccc} \mbox{Very deli} \begin{tabular}{ll} \mbox{Very deli} \begin{tabular}{ll} \mbox{Quescent.} & Easily decomp. by \\ \mbox{H}_2\mbox{O}. & (\mbox{Duboin.}) & 16.282.) \\ \mbox{5HgI}_2, \mbox{2ThI}_4 + 21\mbox{H}_2\mbox{O}. & (\mbox{Duboin.}) \\ \mbox{2HgI}_2, \mbox{ThI}_4 + 12\mbox{H}_2\mbox{O}. & (\mbox{Duboin.}) \\ \mbox{2HgI}_2, \mbox{ThI}_4 + 12\mbox{H}_2\mbox{O}. & (\mbox{Duboin.}) \\ \mbox{2HgI}_2, \mbox{2HgI}_2, \mbox{2HgI}_3, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \mbox{2HgI}_4, \$ 

#### Mercuric zinc iodide.

Deliquescent. Decomp, by H₂O. Bonsdorff.)

## Mercuric iodide ammonia, HgI₂, 2NH₃.

Decomp. by NH3 giving NHg2I and NH4I. (François, C. R. 1900, 130. 333.)

Stable only in the presence of excess of ammonia. Gives off NH3 in the air. (Francois, J. Pharm. 1897, (6) 5, 388; C. C. 1897, I. 1088.)

## Mercuric iodide hydrazine, HgI₂, N₂H₄.

Decomp. by H2O. (Hofmann and Marburg, A. 1899, **305.** 215.)

## Mercuric iodide rubidium bromide,

HgI₂, 2RbBr. * Decomp. by H₂O.

Sol. in alcohol without decomp. (Grosmann, B. 1903, 36. 1603.)

Mercuric iodide silver chloride, HgI₂, 2AgCl. Insol. in  $H_2O$ . (Lea, Sill. Am. J. (3) 7.

## Mercury iodoantimonide, Hg₃Sb₄2HgI₂.

Sol. in HNO₃ aqua regia and hot H₂SO₄ insol. in HCl. (Granger, C. R. 1901, 132. 1116.)

#### Mercury nitride, Hg₃N₂.

Gradually decomp. by H₂O. Decomp. by conc. HNO₃, or HCl+Aq. (Hirzel, J. B. **1852.** 419.)

Not attacked by cold, but decomp. by hot

dil. H₂SO₄.

Sol. in acids + Aq.

Sol. in ammoniacal solutions of ammonium salts.

Insol. in excess of KNH₈. (Franklin, Z. anorg. 1905, **46.** 18.)

Sol. in ammonia solutions of ammonium salts and in aq. acid solutions.

Very explosive. (Franklin, J. Am. Chem. Soc. 1905, 27. 835.)

HgN₂.

See Mercurous azoimide.

HgN6.

See Mercuric azoimide.

## Mercurous oxide, Hg₂O.

Insol. in H₂O. Insol. in dil. HCl or HNO₃ +Aq. Sol. in warm conc. IIC2H3O2+Aq. Sol. in 150,000 pts. H₂O. (Bhaduri, Z.

anorg. 1897, 13. 410.)

Decomp, by H₂O or weak bases (Rose),  $(NH_4)_2CO_3+Aq$  (Wittstein), KNO₈+Aq (Rose), KI+Aq (Berthemot), or conc. NH₄Cl+Aq (Pagenstecher) into HgO and Hg, or HgCl₂, etc.

Sl. decomp. by alkali chlorides+Aq with HgCl₂, of which dissolves. formation

(Miahle.)

Sl. sol. in alkali cyanides + Aq. Insol. in KOH, and NaOH+Aq. Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol, in alcohol and ether.

## Mercuric oxide, HgO.

Sol. in 20,000 to 30,000 pts. H₂O. (Bineau, C. R. 41. 509.)

Sol. in 200,000 pts. H₂O. (Wallace, Ch. Gaz. 1858. 345.)

Ordinary coarse HgO is sol. in H2O to the extent of 50 mg. per l. at 25°, but when finely powdered the solubility increases to 150 mg. per l. (Hulett, Z. phys. Ch. 1901, **37.** 406.)

Red modification is:— Sol. in 19,500 pts. H₂O at 25°; in 2,600 pts. H₂O at 100°. (Schick, Z. phys. Ch. 1903, **42.** 172.)

1 l. II₂O dissolves 50 mg, red modification of HgO at 25°. (Hulett, Z. phys. Ch. 1901, **37.** 406.)

Yellow modification is:

Sol. in 19,300 pts. H₂O at 25°; in 2400 pts. at 100°. (Schick, Z. phys. Ch. 1903, 42. 172.)

Sol. in acids. Insol in H₃PO₄ or H₃AsO₄+

Aq. (Haack, A. **262**. 190.) Scarcely attacked by H₂C₂O₄+Aq. (Millon, A. ch. (3) 18. 352.)

## Solubility of HgO in HF at 25°.

Hg=g.-atoms Hg in 1 l. of the solution.

HF normal	Hg
0.12	0.01258
0.24	0.0247
0.57	0.0629
1.11	0.1168
2.17	0.2586

(Jaeger, Z. anorg. 1901, 27. 26.)

Solubility of HgO in HF is decreased by the addition of KF, which proves the nonexistence of complex fluorides. (Jaeger.)

Insol. in H₈A₈O₄, H₂PO₄ and in primary and secondary alkali salts of these acids. (Haack, A. 1891, 262. 190.)
Sol. in hot NH₄Cl+Aq, less in NH₄NO₃+

Aq. (Brett.) Insol. in KOH, or NaOH+Aq.

Decomp. by alkali chlorides + Aq into HgCl₂, which dissolves. (Miahle, A. ch. (3) **5.** 177.)

Sol. in Fe(NO₃)₃, and Bi(NO₃)₃+Aq with pptn. of oxides. Sol. in KI+Aq. (Persoz.) Very sol. in acid sulphites + Aq. (Barth,

**Z**. phys. Ch. 1892, **9.** 192.)

Completely sol. in conc. CaCl2, BaCl2, MgCl₂, and SrCl₂+Aq. (André, C. R. 1887,

**104.** 431.)

Solubility in Ag salts+Aq. 100 g. Ag₂SO₄ in aqueous solution dissolve 13 g. HgO. Solubility in AgNO₈+Aq is 15.6:100; in Ag acetate+Aq is 1.137:100. ch. it. 1911, **41.** (2) 545.) (Finci, Gazz.

Much less sol. in KCl and NaCl+Aq

than in H₂O. (Schoch.)

Sol. in U(NO₈)₈, Al(NO₃)₃ and Fe(NO₃)₃+

Aq. (Mailhe, A. ch. 1902, (7) 27. 373.)
Very sl. sol. in cold Hg(CN)₂+Aq, abundantly sol. at 75° with evolution of HCN. (Barthe, J. Pharm. 1896, (6) 3. 183.)

Sol. in cold or hot alcoholic NH₄SCN in large amounts. (Fleischer, A. 1875, 179. 225.

Completely sol. in KI+Aq. (Jehn, Arch.

Pharm. 1873, 201. 97.)

Solubility of red or yellow modification in N/50 KCl+Aq is about 25% greater than in pure  $H_2O$ . (Schick, Z. phys. Ch. 1903, 42. **168**.)

Insol. in liquid HF. (Franklin, Z. anorg.

1905, **46**, 2.)

Insol. in liquid NII₃. (Gore, Am. Ch. J. 1898, **20**. 829.)

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898**, 20.** 829.)

Sol. in alcoholic solution of hydroxylamine hydrobromide below 0°. (Adams, Am. Ch. J. 1902, **28.** 216.)

Insol. in alcohol.

Sol. in trichloracetic acid+Aq. (Brand, J. pr. 1913, (2) 88. 342.)

Insol. in acetone and in methylal. (Eid-

mann, C. C. 1899, II. 1014.)
Insol. in acetone. (Naumann, B. 1904,

When freshly pptd., is insol. in acetone+Aq. even on warming, but easily sol. if liquid is made alkaline by NaOH. Insol. in acetophenone even after long warming at 100°. Sol. in acctaldehyde and much H₂O and a little NaOH. (Auld and Hantzsch, B. 1905, **38.** 2680.)

Sol. in formamide. (Fischer, Arch. Pharm.

1894, **232.** 329.)

Very sol. in ethylene diamine. For 1 mol. | Mitt. (2) 2. 177.)

HgO, 7-10 mols. ethylene diamine are necessarv. (Traube and Löwe, B. 1914, 47, 1910.) Easily sol. in benzamide. (Dessaignes, A. ch. 1852, (3) **84.** 146.)

When freshly pptd., is sol. in picric acid + Aq. (Varet, C. R. 1894, 119. 560.)
Sol. in alkaline solution of phenol disulphonic acid. (Lumiére and Chevrotier, C. R. 1901, 132. 145.)

Sol, in nucleic acid+Aq when freshly

pptd. (Schweckerath, Pat. 1899.)
Sol. in gum arabic+Aq. (Peschier, J. Pharm. 1896, (6) **3.** 509.)

## Mercuric oxybromide, HgBr₂, HgO.

(Andre, A. ch. (6) 3. 123.)

HgBr₂, 2HgO. (André.) HgBr₂, 3HgO. (a) Yellow. Insol. in cold, sl. sol. in hot H2O. Easily sol. in alcohol. (Löwig.)

(b) Brown. Insol. in dechol. (Rammelsberg, Pogg. 55. 248.)

HgBr₂, 4HgO. (André.)

Insol. in ord. solvents. Decomp. by alkalies and acids. (Fischer and von Wartenburg, Ch. Z. 1902, 26. 894.)

2HgBr₂, 7HgO. Readily decomp. by acids and alkalies. (Fischer and von Wartenburg.)

#### Mercurous oxychloride, Hg₂O, 2HgCl.

Min. Eglestonite.

Decomp. by hot HCl and by HNO₃. (Moses, Am. J. Sci, 1903, (4) **16**. 253.)

#### Mercuric oxychloride,

HgO, HgCl₂. Less sol. than HgCl₂, but not isolated. (Thümmel.) Decomp. by cold H₂O. (André, A. ch. (6) 3. 118.)

HgO, 2HgCl₂. Decomp. by warm H₂O or cold alcohol into 2HgO, HgCl₂. (Thümmel,

Arch. Pharm. (3) 27. 589.)

Decomp. by H₂O. Not decomp. by al-

cohol. (Arctowski, Z. anorg. 1895, **9.** 178.)

2HgO, HgCl₂. Two modifications.

A. Red. Insol. in H₂O; decomp. by alkali carbonates, or chlorides+Aq into 4HgO, HgCl₂.

Acted upon by cold alkali carbonates and alkali chlorides + Aq. (Schoch, Am. Ch. J. 1903, **29.** 335.)

Not decomp. by H₂O at ord. temp. (Thummel.)

Very sl. sol. in cold, completely sol. in hot H₂O. (Haack, A. 1891, **262**. 189.)
A small amt. of HNO₃ converts it into a

white powder; more HNO₃ dissolves it. (Haack, A. 1891, **262**. 189.)

B. Black. Not decomp. by alkali chlorides,

or carbonates+Aq. (Thümmel.)
Not affected by boiling alkali carbonates or alkali chlorides + Aq. (Schoch, Am. Ch. J. 1901, 29. 335.)
Insol. in cold and hot H₂O and alcohol.

Sol. in acid. (Van Nest, Dissert. 1909.) Not changed by H₂O. (Blaas, Miner.

Sol. in HNO₃ or HCl+Aq. (Blaas.) Not changed by alcohol. (Blaas.) +½H₂O. (Rây, A. 1901, **316**. 255.) 3HgO, HgCl₂. Decomp. by warm H₂O. (Thümmel.) Not attacked by cold H₂O. (André.) Ppt. (Tarugi, Gazz. ch. it. 1901, **31**. 313.) Decomp. by H₂O. Not decomp. by alcohol. (Arctowski, Z. anorg. 1895, 9. 178.) Three modifications. a. Prisms. Decomp. by boiling H₂O. b. Brick-red, amorphous. c. Yellow plates. (Schoch, Am. Ch. J. 1903, 29. 337.) Yellow plates. Decomp. by hot H₂O, Na₂CO₃ or NaOH+Aq. Sol. in KHCO₃+Aq. Insol. in cold dil. HNO₃. (Tarugi.)

4HgO, HgCl₂. Decomp. by H₂O. Not decomp. by alcohol. (Arctowski, Z. anorg. 1895, **9**. 178.) Two modifications. A. Yellow plates. Easily sol. in acids. Insol. in alcohol and her. Decomp. by KOH. (Dukelski, Z.

anorg. 1906, 49. 336.)

B. Brown, amorphous.

Easily sol. in acids. Decomp. by KOH. Insol. in alcohol and ether. (Dukelski,

Z. anorg. 1906, 49. 336.) 5HgO, HgCl2. (Millon.)

Does not exist. (Thummel.) 6HgO, HgCl₂. Does not exist. (T.) +H₂O. Insol. in cold H₂O. (Roucher, A. ch. (3) 27. 353.)

Does not exist. (T.)

7HgO, 4HgCl₂. (Roucher.) Does not exist. (T.)

Mercuromercuric oxychloride, Hg₂OCl.

Min. Terlinguaite.

Decomp. by HCl and HNO₃.

Slowly decomp. by cold acetic acid when (Hillebrand and Schaller, powdered. Am. Chem. Soc. 1907, 29. 1190.)

Mercuric strontium oxychloride, HgO, SrCl₂ +6H₂O.

Decomp. by H₂O. (André, C. R. 104. 431.)

Mercuric oxyfluoride, HgO, HgF₂+H₂O. Decomp. by H₂O. Sol. in dil. HNO₃+Aq. (Finkener.)

Mercuric oxyiodide, 3HgO, HgI₂. Decomp. by H₂O. Sol. in HI+Aq. (Weyl, Pogg. 131. 524.)

Mercuric oxyphosphide, Hg₅P₂O₄.

Decomp. by H₂O. (Partheil and van Haaren, Arch. Pharm. 1900, 238. 35.)

Mercuric oxyselenide, 2HgSe, HgO.

Easily sol. in aqua regia. (Uelsmann, A. **116**. 122.)

Mercury phosphide, Hg₈P₂.

Insol. in H₂O, HNO₃, or HCl+Aq. Easily sol. in aqua regia. (Granger, C. R. 115. 229.) Hg₃P₄. (Granger, C. N. 1898, 77. 229.)

Mercury phosphochloride, P2Hg3, 3HgCl2+

See Dimercuriphosphonium mercuric chloride.

Mercury phosphosulphide, 2HgS, P2S.

HgS, P2S.

 $2 \tilde{H} g S$ ,  $P_2 S_3$ . (Berzelius.)

3HgS, P₂S₃. (Baudrimont, C. R. 55. 323.) 2HgS, P₂S₅. (Berzelius, A. 47. 256.)

Mercuric selenide, HgSe.

Sol, in cold aqua regia when crystalline. When precipitated shows the same properties towards solvents as mercuric sulphide. (Reeb J. Pharm. (4) 9. 173.)

Min. Tilmannite. Sol. only in aqua regia.

Mercuric selenochloride, 2HgSe, HgCl₂.

Insol. in boiling HCl, HNO₃, or H₂SO₄+ Aq. Easily sol. in aqua regia and a mixture of H₂SO₄ and conc. HNO₃+Aq. (Uelsmann, J. B. 1860. 92.)

Mercurous sulphide, Hg₂S.

Insol. in  $H_2O$ , dil.  $HNO_3$ , hot  $NH_4OH$ , or  $(NH_4)_2S+Aq$ . Sol. in KOH+Aq with separation of Hg. (Rose.)

Does not exist; only mixtures of Hg and HgS are formed. (Barfoed, J. pr. 93. 230.) See also Baskerville, J. Am. Chem. Soc.

1903, **25.** 799.)

Not attacked by HNO₃ below 0°, but attacked by dil. HNO₃ and HCl+Aq when temp, is increased. Sol. in Na₂S or K₂S but Hg soon ppts. (Antony and Sestini, Gazz. ch. it. 1894, 24, (1) 194.)

Mercuric sulphide, HgS.

Insol. in H₂O.

Pptd. as a brown coloration in presence of 20,000 pts. H₂O, and as a green coloration in presence of 40,000 pts. H₂O. (Lassaigne.) Much less sol, in H₂O than Ag₂S or Cu₂S.

(Bodländer, Z. phys. Ch. 1898, 27. 64.)

1 l. H₂O dissolves 0.05×10-6 mols HgS at

18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)
Sol. in cold conc., and in hot dil. HI+Aq or
HBr+Aq. (Kekulé, A. Suppl. 2. 101.) Very
sl. decomp. by hot conc. HCl+Aq. Not attacked by hot HNO₈+Aq. Sol. in cold aqua

Not attacked by 4-N HNO₃ or 4-N HNO₃ +4-N H₂SO₄ at ord. temp. even after many days. By action of a mixture of equal volumes of 4-N HNO₃ and conc. H₃SO₄, there was slight action on pptd. HgS after 14, more action after 62 days. If HgS is boiled with the 4-N acids, oxidation takes place most rapidly with 4-N HNO₃, then the mixture 66.7% 4-N H₂SO₄+33.3% 4-N HNO₃, then 33.3% 4-N H₂SO₄+66.7% 4-N HNO₃, and lastly 4-N H₂SO₄ alone. (Moore, J. Am. Chem. Soc. 1911, 33. 1094.)

Cold conc. H₂SO₄ does not attack red or

black HgS, but they are attacked by hot acid. (Berthelot, A. ch. 1898, (7) 14. 198.)

Freshly pptd. HgS is insol. in dil. KCN+

Aq. (Berthelot.)
Sol. in K₂S+Aq, but readily only in presence of free alkali. (Brunner, Pogg. **15.** 596.)
Insol. in boiling KOH+Aq.

NaSH+Aq. Very sl. sol.

Sol. in KSH or NaSH+Aq. Very sl. sol. in cold yellow (NH₄)₂S+Aq. Insol. in KCN

or Na₂S₂O₃+Aq. (Fresenius.)

Easily sol. in conc. Na2S or K2S+Aq, even in absence of KOH or NaOH. Insol. in (NH₄)₂S+Aq. Sol. in CaS, BaS, or SrS+Aq. Insol. in NaSH or KSH+Aq. (de Koninck, Z. angew. Ch. 1891. 51.)

Solubility in NaSH is very small in comparison with that in Na₂S+Aq. Trans. Faraday. Soc. 1908, **4.** 30.) (Knox,

Solubility in BaS is practically equal to

that in Na₂S. (Knox.)

All cryst. modifications are sol. in conc. K₂S and in conc. Na₂S+Aq. (Allen and Crenshaw, Am. J. Sci. 1912, (4) 34. 368.)

Sol. in potassium thiocarbonate+Aq.

(Rosenbladt, Z. anal. 26. 15.)

Sol. in alkali sulpho-molybdates, -tungstates, -vanadates, -arsenates, -antimonates, and -stannates. (Storch, B. 16. 2015.)

1 l. BaS₂H₂+Aq containing 50 g. Ba dissolves no HgS in the cold, but 50-60 g. at

40-50°

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 829.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014.) Insol. in pyridine. (Schroeder, Dissert.

1901.)

Insol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Exists in a colloidal state, sol. in  $H_2O$ .

(Winnsinger, Bull. Soc. (2) 49. 452.)

Min. Cinnabar. Insol. in H₂O, alcohol,

dil. acids. or alkaline solutions.

Decomp. by hot dil. HNO₃+Aq. Not decomp. by HCl+Aq, but easily by hot H₂SO₄ or aqua regia. Easily sol. in CuCl₂+

Aq. (Karsten.) Sol. in a mixture of Na₂S and NaOH when present in the proportion of HgS: 2Na₂S.

Sol. in pure Na₂S+Aq or in mixtures of Na₂S and NaSH+Aq. Insol. in cold NaSH+ Aq, but sol. on warming with evolution of H₂S. (Becker, Sill. Am. J. (3) **33.** 199.)

Insol. in acetone. (Krug and M'Elroy.) Cinnabar is easily sol. in 20% HBr+Aq. (Rising and Lenher, J. Am. Chem. Soc. 1896, **18.** 96.

Sol. in S₂Cl₂. (Smith, J. Am. Chem. Soc. 1898, **20.** 291.)

## Mercuric platinum sulphide.

Sce Sulphoplatinate, mercuric.

Mercuric potassium sulphide, K2S, 2HgS.

Decomp, into its constituents by H₂O: decomp. by HCl, and HNO₃+Aq, and by hot KOH, and NH4OH+Aq. (Schneider, Pogg.

127. 488.) K₂S, H₂S+5H₂O. Decomp. by H₂O or

(Weber, Pogg. 97. 76.) alkalies.

 $+H_2O.$ (Ditte.) +7H₂O. Sol. in K₂S+Aq. (Ditte, C. R. 98, 1271.)

 $K_2S$ ,  $5HgS+5H_2O$ . Easily decomp. by  $H_2O$ . (Ditte.)

Mercuric sodium sulphide, HgS, Na₂S+ 8H₂O.

Decomp. by H₂O or alkalies.

5HgS, 2Na₂S+3H₂O. Decomp. by H₂O. (Knox, Trans. Faraday Soc. 1908, **4.** 36.)

Mercuric sulphobromide, 2HgS, HgBr₂.

Insol. in H₂O. Not attacked by boiling HNO₃ or H₂SO₄. (Rose.)

Mercuric sulphochloride, 2HgS, HgCl₂.

Insol. in H₂O, cold or hot, dil. or conc. HNO₃, H₂SO₄, or HCl+Aq. (Rose, Pogg. 13. 59.)

Decomp. by hot aqua regia.

By boiling with dil. HNO₃, H₂SO₄ and HCl, Hg and Cl go into solution. (Hamers, Dissert. 1906.)

Insol. in H₂O and H₂SO₄. Partly sol. in HCl and HNO₃; easily sol. in aqua regia. (Alexander, Dissert. 1899.)

Sol. in aqua regia. (Denigès, Bull. Soc. 1915, (4) **17.** 356.)

3HgS, HgCl₂. Properties as the above comp. (Poleck and Goercki, B. 21. 2415.)
4HgS, HgCl₂. As above. (P. and G.)
5HgS, HgCl₂. As above. (P. and G.)
Insol. in alkali subhides and in fuming

HNO₅; decomp. by NaOBr+Aq and by KOH. (Bodroux, C. R. 1900, **130**, 1399.)

Sl. sol. in solutions of alkali sulphides unless

heated. (Berzelius.)

Easily sol. in alkali sulphides + Aq; slowly sol, in alkalies or alkali hydrosulphides+Aq. (Atterberg, J. B. 1873, 258.)

Mercurous sulphotetrachloride, Hg₂SCl₄.

Decomp. by H2O with separation of S. HgCl₂ going into solution. (Capitaine, J. Pharm. 25. 525.)

Mercuric sulphofluoride, 2HgS, HgF₂.

Decomp. by boiling H₂O. Not decomp. by hot HCl or HNO₃+Aq, but gives HF with hot H₂SO₄+Aq. (Rose, Pogg. 13. 66.)

Mercury sulphodimide, HgN₂S, NH₃. Ppt. (Ruff, B. 1904, **37.** 1585.)

Mercuric sulphoiodide, HgS, HgI2.

Ppt. (Rammelsberg, Pogg. 48. 175.) 2HgS, HgI₂. (Palm, C. C. 1863. 121.) Insol. in min. acids with exception of aqua regia. (Hamers, Dissert. 1906.)

Mercuric sulphoiodide ammonia, 2HgS,  $HgI_2$ ,  $NH_3$ .

(Foerster, Ch. Z. 1895, 19. 1895.)

## Mercuric telluride, HgTe.

Min. Coloradoite. Sol. in boiling  $HNO_3 + Aq$  with separation of  $H_2TeO_3$ .

## Metastannic acid.

See Stannic acid.

# Molybdatoiodic acid.

See Molybdoiodic acid.

## Molybdenum, Mo.

Not attacked by HCl, HF, or dil. H₂SO₄+Aq. Sol. in conc. H₂SO₄. Very easily sol. in aqua regia. Oxidised by HNO₃+Aq either to molybdenum oxide, which dissolves in HNO₃, or, if HNO₃ is in excess, to molybdic acid, which remains undissolved.

Attacked by HNO₃+Aq containing 3-70% HNO₃, but only slowly by 70% acid, with formation of insol. white powder; much more vigorously by 50% acid, in which case a clear solution is formed. (Montemartini, Gazz. ch. it. 22. 384.)

Not attacked by alkalies+Aq. (Bucholz,

Scher, J. 9. 485.)

With a sp. gr. 9.01, the metal is malleable and sol. in a mixture of HF and HNO₃; sol. in fused KClO₃. (Moissan, Bull. Soc. 1895, (3) 13. 966.)

Ductile Mo is moderately quickly attacked by HNO₃, H₂SO₄ and HCl. (Fink, Met.

Chem. Eng. 1910, 8. 341.)

Not immediately attacked by cold dil. HNOs. Not attacked by dil. and conc. H₂SO₄. Boiling dil. HCl+Aq does not attack; conc. dissolves traces by long heating. Sol. in aqua regia. (Lederer, Dissert. 1911.)

Sol. in aqua regia. (Lederer, Dissert. 1911.) Dil. HCl dissolves 20.3% Mo at 110° in 18 hrs. More slowly sol. in HCl (sp. gr.

1.15).

Insol. in dil. H₂SO₄ at 110°. Slowly sol. in conc. H₂SO₄ (sp. gr. 1.82) at 110°, rapidly sol. at 200°–250°.

Slowly sol. in conc. HNO₃ (sp. gr. 1.40), rapidly sol. in dil. HNO₃ (sp. gr. 1.15).

Rapidly sol. in hot aqua regia. Insol. in hot or cold HF. (Ruder, J. Am. Chem. Soc. 1912, 34. 388.)

Insol. in KOH+Aq. Sol. in fused KOH. (Ruder, J. Am. Chem. Soc. 1912, 34, 389.)
Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 828.)

#### Molybdenum acichloride.

See Molybdenyl chloride.

Molybdenum amide, OH.MoO2.NH2.

Very unstable. Insol. in abs. alcohol. (Fleck, Z. anorg. 1894, 7. 353.)

Molybdenum amide nitride,  $Mo_5N_{19}H_4 = 4MoN_2$ ,  $Mo(NH_2)_2$ .

Not attacked by HCl, or dil. HNO₈+Aq. (Uhrlaub.)

Molybdenum amidochloride, Mo₂(NH₂)₂Cl₃.

Insol. in H₂O and dil. acids. (Rosenheim, Z. anorg. 1905, **46**. 317.)

#### Molybdenum amidochloride ammonia, Mo₂(NH₂)₃Cl₃, 10NH₃.

Unstable in the air. (Rosenheim, Z. anorg. 1905, 46. 319.)

## Molybdenum boride, Mo₃B₄.

Moderately attacked by hot conc. acids and vigorously by hot aqua regia. (Tucker and Moody, Chem. Soc. 1902, 81. 17.)

Molybdenum dibromide, MoBr₂ = Mo₃Br₄Br₂. See Bromomolybdenum bromide.

## Molybdenum tribromide, MoBr₃.

Not decomp. by H₂O. Boiling conc. HCl, and cold dil. HNO₃+Aq do not attack appreciably. Dil. alkalies act slowly, but decomp. with separation of Mo₂O₃ on boiling. (Blomstrand, J. pr. **82**. 435.)

#### Molybdenum tetrabromide, MoBr₄.

Rapidly deliquescent, and easily sol. in H₂O. (Blomstrand, J. pr. 82. 433.)

#### Molybdenum bromochloride, etc.

See Bromomolybdenum chloride, etc.

#### Molybdenum bronze.

See Molybdate molybdenum oxide, sodium.

#### Molybdenum carbide, Mo₂C.

Insol. in HNO₃. (Moissan, Bull. Soc. 1895, (3) **13**. 967.)

MoC. Does not decomp. H₂O even at 500-600°. Slowly attacked by hot HCl, HF and hot conc. H₂SO₄. Easily decomp. by HNO₃. Not attacked by NaOH+Aq or KOH+Aq. (Moissan and Hoffmann, C. R. 1904, **138**. 1559.)

## Molybdenum carbonyl, Mo(CO)6.

Quickly attacked by bromine. Sol. in ether or benzene. (Mond, Hirtz and Cowap, Chem. Soc. 1910, 97. 808.)

# Molybdenum dichloride, MoCl₂=Mo₃Cl₄Cl₂. See Chloromolybdenum chloride.

Molybdenum trichloride, MoCl₈.

Insol, in H₂O or boiling conc. HCl+Aq. Easily sol., especially when heated, in HNO₃ +Aq. Sol. in H₂SO₄. Decomp. by NH₄OH, KOH, or NaOH+Aq.
Sl. sol. in alcohol. (Leichti and Kempe.)
Practically insol. in alcohol and ether. (Hampe, Ch. Z. 1888, 12. 5.)

#### Molybdenum tetrachloride, MoCl₄.

Deliquescent. Hisses with little H2O, but only partly sol. in more H₂O. Only sl. sol. in conc. HCl+Aq. Sol. in H₂SO₄ or HNO₃+ Aq. Partly sol. in alcohol and ether. (Liechti and Kempe.)

#### Molybdenum pentachloride, MoCl₅.

Very deliquescent. Sol. in H2O with extreme evolution of heat. Sol. in HCl, HNO3, or H2SO4+Aq.

When freshly prepared, is incompletely sol. in H₂O, but after standing is easily sol, with hissing. (Kalischer, Dissert. 1902.)

Sol. in a small amt. of conc. HCl. (Hampe, Ch. Z. 1888, **12.** 5.)

Sol, in absolute alcohol or ether. (Liechti and Kempe.)

Sol. in CHCl₃ and in CCl₄. Sol. with hissing in many organic solvents (ethers, alcohols, ketones, aldehydes, acids, acid esters, acid anhydrides, amines). Sol. in cinnamic alde-

hyde. (Kalischer, Dissert. 1902.)

Molybdenum hydroxyl chloride, Mo(OH)₂Cl₂. Easily sol. in H₂O. (Debray, C. R. 46. 1101.)

Molybdenum tetrachloride phosphorus pentachloride, MoCl4, PCl5.

Sol. in H₂O

MoCl₄, 2PCl₅. Sol. in H₂O. (Cronander, Bull. Soc. (2) 19. 500.)

Molybdenum phosphorus pentachloride, MoCl₅, PCl₅.

Easily decomp. (Smith and Sargent, Z. anorg. 1894, 6. 385.)

Molybdenum phosphoryl chloride, MoCl₅, POCl₃.

Decomp. by  $H_2O$ ; insol. in  $CS_2$ ; sol. in C₆H₆ and CHCl₈.

Molybdenum trichloride potassium chloride. Efflorescent. Decomp. with H₂O. (Ber-

MoCl₃, 3KCl. Very sol. in H₂O. Nearly nsol, in alcohol and ether. (Chilesotti, C. C.

**1903,** II. 652.)

+2H₂O. Fairly easily sol. in cold H₂O without any apparent decomp. Decomp. in aqueous solution, slowly in the cold but rapidly on boiling. This decomp, is prevented by the presence of HCl.

Sl. sol. in conc. HCl. (Henderson, Proc. Chem. Soc. 1903, 19. 245.)

Molybdenum rubidium chloride, Rb₂MoCl₅  $+H_{2}O$ 

Sol. in H₂O. Nearly insol. in alcohol and ether. (Chilesotti, C. C. 1903, II. 652.)

Molybdeham pentachloride nitrogen sulphide, MoCls, NaSa.

Decomp. in moist air. (Davis, Chem. Soc. 1906, **89**, (2) 1575.)

## Molybdenum hexafluoride, MoF6.

Decomp. by a little H2O with separation of blue oxide. Sol. in large amount of H₂O forming a colorless solution.

Absorbed by alkalies and NH₄OH+Aq. (Ruff, B. 1907, 40. 2930.)

Molybdenum fluoride with MF. See Fluomolybdate, M.

Molybdenum potassium trifluoride (?). Precipitate. Sol. in HCl+Aq.

Molybdenum potassium tetrafluoride (?). Sl. sol. in H₂O. (Berzelius.)

## Molybdenum sesquihydroxide, Mo₂O₆H₆.

Difficultly sol, in acids. Insol, in KOH, NaOH, NH₄OH, or K₂CO₃+Aq. Somewhat sol. in (NH₄)₂CO₃+Aq, but pptd. on boiling. (Berzelius.)

#### Molybdenum hydroxide, Mo₃O₈, 5H₂O.

Easily sol. in H₂O. Insol. in CaCl₂, NH₄Cl, or NaCl+Aq. Sl. sol. in alcohol. (Berzelius.)

#### Molybdenum dihydroxide, $MoO_2$ , $xH_2O$ .

Slowly and not abundantly sol. in H₂O from which it is precipitated by NH4Cl and other salts. Gelatinises by standing in closed vessels or by evaporating on the air. Sol. in the ordinary acids. Insol. in KOH, or NaOH +Aq. Sol. in alkali carbonates+Aq.

#### Molybdenum diiodide, MoI₂.

Insol. in H₂O and alcohol. Sl. attacked by cold H₂SO₄ or HNO₃. (Guichard, A. ch. 1901, (7) **23.** 567.)

Sl. decomp. H₂O at ordinary temp. Slowly sol. in H₂SO₄ and HNO₈. (Guichard, C. R. 1896, 123, 822,)

Molybdenum tetraiodide (?).

Completely sol. in water. (Berzelius.)

Molybdenum nitride, MosNs, and MosNs. (Uhrlaub.)

See Molybdenum amide.

Mo₃N₂. (Rosenheim, Z. anorg. 1905, 46.

Molybdenum monoxide, MoO.

Known only as hydroxide. (Blomstrand, J. pr. 77. 90.)

Molybdenum sesquioxide, Mo₂O₃.

Insol, in acids or alkalies.

See Molybdenum sesquihydroxide.

#### Molybdenum dioxide, MoO₂.

Insol. in HCl or HF+Aq. Sl. sol. in conc. H₂SO₄. HNO₃ oxidises to MoO₃. Not attacked by KOH+Aq. (Ullik, A. 144. 227.) Sl. sol. in KHC₄H₄O₆+Aq.

#### Molybdenum trioxide, MoO₃.

Sol. in 500 pts. cold, and much less hot  $H_2O$ . (Bucholz.)

Sol. in 960 pts. hot H₂O. (Hatchett.)

Sol. in 570 pts. cold, and much less hot H₂O.

Sol. in acids before ignition. Insol. in acids, but sl. sol. in acid potassium tartrate+Aq after ignition. Sol. in alkalies or alkali carbonates+Aq. Sol. in NH₄OH+Aq.

See also Molybdic acid.

Min. Molybdite. Sol. in HCl+Aq.

## Molybdenum oxide, Mo₂O₅.

Sol. in  $H_2SO_4$  and HCl; only sl. sol. in  $H_2SO_4$ . (Klason, B. 1901, **34**. 151.) +3 $H_2O$ . Sl. sol. in  $H_2O$  (2 g. in 1 l.). Insol. in  $NH_4Cl+Aq$ . Insol. in caustic alkalies, somewhat sol. in  $NH_4OH$ . Much more sol. in  $M_2CO_3 + Aq$  and in  $(NH_4)_2CO_3 + Aq$ . (Klason, B. 1901, **34.** 150.)

 $Mo_4O_{10}+3H_2O$ . (Smith and Oberholtzer,

Z. anorg. 1893, 4. 243.)  $Mo_4O_{11}+6H_2O$ . Sol. in  $H_2O$ . (Bailhache,

C. R. 1901, 133. 1212.)  $Mo_5O_{14}+6H_2O$ . Very sol. in  $H_2O$ . (Guich-

ard, C. R. 1900, **131**. 419.)

Mo₇O₂₀. Sol. in H₂O. (Junius, Z. anorg.

1905, **46**, 447.)

 $Mo_{20}O_{41} + 21H_2O = Mo_2O_5$ ,  $18MoO_2 + 21H_2O$ . Easily sol. in  $H_2O$ . Insol. in NH₄Cl +Aq. (Klason, B. 1901, 34. 160.)

 $Mo_{26}O_{77} + 24H_2O = Mo_2O_5$ ,  $24MoO_8 +$ 24H₂O. (Klason, B. 1901, 34. 159.)

 $3\text{Mo}_2\text{O}_3$ ,  $2\text{Mo}_7\text{O}_{24} + 18\text{H}_2\text{O}$ . Sol. in H₂O. (B.)

It is probable that the five blue oxides of molybdenum described by Klason (B. 34, 148, 158) and Bailhache are either the blue oxide Mo₅O₁₄ prepared by the author or mixtures of this compd. with molybdenum trioxide. (Guichard, C. R. 1902, 134. 173.)

Mo₈O₁₂. Not attacked by ammonia; easily oxidised by HNO₈+Aq. Not attacked by HCl or H₂SO₄+Aq. (Wöhler, A. 110. 275.) Formula is Mo₈O₈, according to Wöhler, but Muthmann (A. 238. 108) has shown that

correct formula is Mo₅O₁₂.

Not attacked by boiling alkalies, HCl, or dil. H₂SO₄+Aq. Sol. in conc. H₂SO₄, with and Rautenberg, A. 109. 374.)

subsequent decomp. Sol. in aqua regia, and Cl₂+Aq. (Muthmann.)

Sol. in H₂O. (Muthmann, A. MosOs. **238.** 108.)

Min. Ilsemannite (?).

+5H₂O. Moderately sol. in H₂O. (Marchetti, Z. anorg. 1899, 19. 393.) Mo₅O₇. (v. d. Pfordten, B. **15**. 1925.)

## Molybdenum trioxide ammonia, MoO₈, 3NH₈.

Unstable in air. Very sol. in H₂O with evolution of ammonia. (Rosenheim, Z. anorg. 1906, 50. 303.)

 $3M_0O_8$ ,  $NH_3 + \frac{1}{2}H_2O$ . True composition of commercial molybdic acid. (Klason, B.

1901. **34.** 156.)

NH₄H₃M_{0,5}O₁₂. Very sl. sol. in cold, easily sol, in hot H2O with partial decomp. (Klason, B. 1901, **34.** 156.)

 $3\text{MoO}_3$ ,  $3\text{NH}_3+7\text{H}_2\text{O} = (\text{NH}_4)_3\text{H}_3\text{Mo}_3\text{O}_{12}$  $4\text{H}_2\text{O}$ . True composition of Rammelsberg's +4H₂O.  $3(NH_4)_2O$ ,  $7M_0O_8+12H_2O$ . (Klason, 1901, 34. 155.)

4MoO₃, NH₃+6H₂O. Very sl. sol. in cold, very easily sol. in hot H2O. An insol. modification with less H2O gradually cryst. out. (Mylius, B. 1903, **36**, 639.)

 $4\text{MoO}_3$ ,  $2\text{NH}_3 + 3\text{H}_2\text{O}$ . (Klason, B. 1901, **34.** 156.)

Very sl. sol. in  $6\text{MoO}_3$ ,  $3\text{NH}_3 + 5\text{H}_2\text{O}$ . cold, more easily sol. in hot H₂O, with partial decomp. (Klason, B. 1901, 34. 156.)

 $12\text{MoO}_3$ ,  $3\text{NH}_8 + 12\text{H}_2\text{O}$ . (Klason, B.

1901, **34**. 158.)

12MoO₃, 3NH₃, 12H₂O+3MoO₃, 8H₂O. Moderately sol. in boiling H₂O. (Klason.)  $15\text{MoO}_3$ ,  $3\text{NH}_3+6\text{H}_2\text{O}$ . Insol. in  $\mathbf{H}_2$ O.

(Klason.) 4MoO3, MoO2, 2NH3+7H2O. Slowly sol. in H₂O; fairly stable, gradually decomp. by dil. acids. (Hofmann, Z. anorg. 1896, 12. 280.)

Molybdenum trioxide ammonia hydrogen peroxide, 18MoO₃, 14NH₃,  $3H_2O_2+$ 18H₂O.

Sol. in  $H_2O$ . Sp. gr. of sat. solution = 1.486 at 17.4°. (Baerwald, B. 1884, 17. 1206.)

Molybdenum oxybromide. See Molvbdenvl bromide.

Molybdenum oxychloride. See Molybdenyl chloride.

Molybdenum oxyfluoride.

See Molybdenyl fluoride.

Molybdenum oxyfluoride with MF.

See Fluoxymolybdate, M, and Fluoxyhypomolybdate, M.

Molybdenum phosphide, Mo₂P₂.

Gradually sol. in hot HNO₃+Aq. (Wöhler

## Molybdenum selenide, MoSes.

Not obtained pure. (Uelsmann, A. 116.

#### Molvbdenum silicide.

Sol. in HF; only very sl. sol. in other acids. (Warren, C. N. 1898, 78. 319.)

MoSi₂. Insol. in all min. acids; sol. in a warm mixture of HF+HNO₃. (Defacqz, C. R. 1907, **144.** 1425.)

Insol. in min. acids; sol. in HF+HNO₈. Unattacked by 10-20% KOH+Aq. Decomp. by fused NaOH. (Hönigschmid, M. 1907, **28**. 1020.)

Not attacked by boiling HNO₃, aqua regia or HF. (Watts, Trans. Am. Electrochem. Soc. 1906, 9. 106.)

Mo₂Si₃. (Vigouroux, C. R. 129. 1238.)

## Molybdenum disulphide, MoS₂.

Insol. in H2O. Easily sol. in aqua regia. Easily oxidised by HNO₃. Sol. in boiling H₂SO₄. Sl. attacked by KOH+Aq. (Berzelius.)

Sol. in HNO₃+Aq, Min. Molybdenite. with separation of MoO3; sol. in aqua regia; very sl. sol. in H₂SO₄.

## Molybdenum trisulphide, MoS₃.

Somewhat sol, in H₂O, especially if hot, but pptd. by an acid. Difficultly sol. except when boiled with KOH+Aq. Sl. sol. in solutions of alkali sulphides unless heated. (Berzelius.)

Easily sol. in alkali sulphides+Aq; slowly sol. in alkalies or alkali hydrosulphides + Aq. (Atterberg, J. B. 1873. 258.)

#### Molybdenum tetrusulphide, MoS₄.

Not decomp. by hot H₂O or acids. Sl. sol. in cold alkali sulphides +Aq, but easily by boiling. (Berzelius.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 828.)

#### Molybdenum sesquisulphide, Mo₂S₃.

Insol. in HCl and H₂SO₄; sol. in hot conc. HNO₃ and aqua regia. (Guichard, C. R. 1900, **130.** 138.)

Molybdenum sulphide with MS.

Sec Sulphomolybdate, M.

#### Molybenum sulphochloride, Mo₅S₈Cl₉.

Insol. in H₂O and alkalies. Slowly sol. in conc. HNO₃. (Smith and Oberholtzer, Z. anorg. 1894, 5. 67.)

# Molybdenyl monamide, NH₄MoO₄ or $MoO_2 < OH \\ NH_2 + H_2O.$

(Rosenheim, Z. anorg. 1905, 46. 318.)

Molybdenyl bromide, MoO₂Br₂.

Deliquescent, and sol, in H₂O with slight evolution of heat.

Mo₂O₃Br₄. Unstable in air. (Smith and Oberholtzer, Z. anorg. 4. 236.)

#### Molybdenyl potassium bromide, MoOBra, 2KBr

(Weinland, Z. anorg. 1905, 44. 109.) MoOBr₃, KBr+2H₂O. (Weinland (Weinland. anorg. 1905, 44. 110.)

Molybdenyl rubidium bromide, MoOBra, 2RbBr.

(Weinland, Z. anorg. 1905, 44. 108.)

## Molvdenvl chloride, MoO₂Cl₂.

Sol. in H₂O and alcohol.

Abundantly sol. in abs. alcohol. Not very sol. in abs. ether. (Hampe, Ch. Z. 1888, 12. 23.)

+H₂O. Composition settled by mol. wt. determinations. Dissociates in alcohol and in H₂O. (Vaudenberghe, Z. anorg. 1895, 10.

Very hygroscopic. Sol. in acctone, ether and alcohol. (Vaudenberghe, l. c.)

MoOCl₄. Deliquescent. Sol. in little H₂O with violent action. More H₂O decomposes. (Puttbach, A. 201. 123.)

Formula is Mo₉O₈Cl₃₂, according to Blomstrand (J. pr. 71. 460)

Mo₂O₃Cl₄. (Püttbach, l. c.) Mo₂O₃Cl₆. Deliquescent. Sol. in H₂O with very slight evolution of heat and subsequent formation of precipitate. (Blomstrand.)

Sol. in acids. (Püttbach, A. 201. 129.) Deliquescent, and sol. in H₂O. Mo₂O₃Cl₅. (Blomstrand.)

Insol. in HCl and cold H₂SO₄. Mo₃Q₅Cl₈. Sol. in hot H₂SO₄ and HNO₈. (Püttbach, A. 201. 123.)

Mo₃O₃Cl₇. Difficultly sol. in HCl. Easily sol. in HNO₃, and alkalies+Aq. (Püttbach.)

# Molybdenyl potassium chloride, $MoO_2Cl_2$ , $KCl+H_2O$ .

(Weinland, Z. anorg. 1905, 44. 97.)

+2H₂O. (Weinland, Z. anorg. 1905, 44. 96.)

6MoO₂Cl₂, 2KCl+6H₂O. (Weinland, Z. anorg. 1905, **44.** 97.)

MoOCl₃, 2KCl+2H₂O. Sol. in H₂O. (Nordenskjöld, B. 1901, 34. 1573.)

Ppt. (Henderson, Proc. Chem. Soc. 1903, **19.** 245.)

## Molybdenyl rubidium chloride, MoO₂Cl₂, RbCl+H₂O.

MoO₂Cl₂, 2RbCl. (Weinland, Z. anorg. 1905, **44.** 95.)

 $MoOCl_3$ , 2RbCl. Sl. sol. in  $H_2O$ . Less sol. than K salt. (Nordenskjöld, B. 1901, 34. 1573.)

## Molybdenyl fluoride, MoO₂F₂.

Decomp. rapidly in moist air. (Schulze, J. pr. (2) 21. 442.)

Very hydroscopic. Sol. in a little H₂O giving a blue solution; in more H₂O giving a colorless solution

Sol. in AsCl₂, SiCl₄, SO₂Cl₂ and PCl₃. On warming these solutions, gas is evolved.

Insol. in toluene. Nearly insol. in ether, CHCl₃, CCl₄, and CS₂. Sol. in warm pyridine and in ethyl and methyl alcohol. (Ruff, B. **1907**, **40**. 2934.)

MoOF₄. Very hydroscopic. Decomp. by H₂O and conc. H₂SO₄. Decomp. by alcohol. Sol. in ether and CHCl₃ with evolution of gas. Insol. in toluene. Very sl. sol. in benzene and CS₂. (Ruff, B. 1907, **40**. 2932.)

Mo₂O₃F₄. Deliquescent. Easily sol. in HF

+Aq, not in H₂O. (Smith and Oberholtzer.)

## Molybdenyl fluoride with MF.

See Fluoxymolybdate, M, and Fluoxyhypomolybdate, M.

## Molybdenyl hydroxide, MoO(OH)₃.

2 g. are sol. in 1000 cc.  $\rm H_2O$ ; insol. in  $\rm H_2O+NH_4Cl$ ; only sl. sol. in  $\rm NH_4OH$  and alkali carbonates + Aq. (Klason, B. 1901, **34.** 151.)

## Molybdic acid, H₂MoO₄.

(Ullik, A. 144. 217.)

Nearly insol. in H₂O. (Vivier, C. R. 106.

Very sparingly sol. in cold H₂O, more sol. in hot H₂O. (Rosenheim and Bertheim, Z. anorg. 1903, 34, 435.)

a-modification.

Solubility of MoO₃, H₂O (a-modification) in H₂O at t°.

1000 g. H₂O dissolve g. MoO₃.

t°	G. MoO ₃	t°.	G. MoO ₃
14.8 15.2 24.6 25.6 30.3 36.0 36.8	2.117 2.131 2.619 2.689 2.973 3.085 3.295	42.0 45.0 52.0 60.0 70.0 80.0	3.446 3.661 4.184 4.685 4.231 5.212

(Rosenheim and Davidsohn, Z. anorg. 1903, **37.** 318.)

MoO₃, (β modification)  $H_2O$ . From MoO₃, 2H₂O at 60°-70°. (Rosenheim and Davidsohn.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Easily sol. in H₂SO₄. (Ruegenberg and Smith, J. Am. Chem. Soc. 1900, **22**. 772.)

H₄MoO₅. Sol. in H₂O and acids. (Millingk.)

Very sol. in H₂O. (Mylius, B. 1903, 36, 638.)

Solubility of MoO₃, 2H₂O in H₂O. 1000 g. HO dissolve g. MoOa at to.

t°,	G. MoO₃	t°	G. MoO ₈
18	1.066	59	11 . 258
23	1.856	60	12 . 057
30	2.638	66	17 . 274
40	4.761	70	20 . 550
48	6.360	74.4	20 . 904
50.2	6.873	75	20 . 920
54	7.855	79	21 . 064

(Rosenheim and Bertheim, Z. anorg. 1903, 34. 430.)

Solubility of MoO₈, 2H₂O in ammonium salts +Aq at t°.

1000 g. of the solvent dissolve g. MoO₃.

Solvent	t°	G. MoO ₃
10% (NH ₄ ) ₂ SO ₄ 10% NH ₄ HSO ₄ "	29.6 $31.5$ $41.8$ $49.7$	19.27 27.53 34.36 37.69

(Rosenheim and Davidsohn, Z. anorg. 1903, **37.** 315.)

 $H_6MoO_6$  (?). Known only in solution. H₂Mo₂O₇. Easily sol. in H₂O. (Ullik.)  $H_2Mo_4O_{13}$ . Easily sol. in H₂O. H₂Mo₈O₂₅. Easily sol. in H₂O. (U.) Molybdic acid also exists in a colloidal modification, sol. in H₂O. (Graham, C. R. **59**. 174.)

## Molybdates.

The normal molybdates of the alkali metals are easily sol. in H2O, while the others are sl. sol. or insol. therein.

The trimolybdates are sl. sol. in cold, but very easily sol. in hot H₂O.

The tetramolybdates are easily sol. in  $H_2O$ .

## Aluminum molybdate, Al₁₀Mo₂O₂₁.

Precipitate. (Gentele, J. pr. 81. 414.) Contains aluminum hydroxide and sulphate. (Struve, J. pr. **61.** 441.)

#### Aluminum ammonium molybdate.

See Aluminicomolybdate, ammonium.

Aluminum barium molybdate.

See Aluminicomolybdate, barium.

Ammonium molybdate, (NH₄)₂MoO₄.

Efflorescent through loss of NH₃; decomp. by H₂O into acid salt. (Svanberg and Struve.) Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 826.)

 $(NH_4)_2Mo_2O_7$ . Sol. in  $H_2O$ . + $H_2O = NH_4HMoO_4$ . Sol. in  $H_2O$ . Sol. in 2-3 pts.  $H_2Q$ . (Brandes; Mauro, Gazz. ch. it. 18. 120.)

 $(NH_4)_6Mo_7O_{24} + 4H_2O$ . (Commercial am-

monium molybdate.)

Not efflorescent. Sol. in H2O. (Delafontaine, N. Arch. Sc. ph. nat. 23. 17.)

According to Struve and Berlin =  $(NH_4)_4Mo_5O_{17}+3H_2O.$ 

According to Marignae and Delffs = The true composition of (NH₄)HMoO₄. commercial ammonium molybdate is (NH₄)₁₀Mo₁₂O₄₁. (Junius, Z. anorg. 1905, **46.** 428.)

+12H₂O. More sol. than the above. (Rammelsberg, Pogg. 127. 298.)

Insol. in acetone. (Krug and M'Elroy, J. Anal. Appl. Ch. 6. 184.)

(NH₄)₁₀Mo₁₂O₄₁. True formula for commercial ammonium molybdate (Sand and Eisenlohr, Z. anorg. 1907, 52. 68.)

+7H₂O. (Junius, Z. anorg. 1905, 46. 428.)  $(NH_4)_4Mo_5O_{17}+H_2O$ . (Jean, C. R. 78. 436.)

(NH₄)₂Mo₂O₁₉+H₂O. Very difficultly sol. in cold, easily sol. in hot H₂O. (Berlin, J. pr. **49.** 445.)

Easily sol. in NH₄OH+Aq. (Kämmerer,

J. pr. (2) 6. 358.)

 $(NH_4)_2O$ ,  $4MoO_8$ . Practically insol. in cold, sl. sol, in hot H₂O. (Westphal, Dissert. 1995.)

+2H₂O. Very difficultly sol. in cold, rather easily sol. in hot H₂O. (Berlin.)

100 cc. H₂O dissolve 3.5200 g. at 15°; sp. gr. =1.03; 3.6711 g. at 18°; sp. gr. =1.04; 4.5961 g. at 32°; sp. gr. =1.05. (Wempe, Z. anorg. 1912, 78. 258.)

 $+2\frac{1}{2}H_2O$ . (Junius, Z. anorg. 1905, 46. 440.) (Rosenheim,

 $(NH_4)_2O$ ,  $8M_0O_3 + 13H_2O$ . Z. anorg. 1897, 15. 188.)

 $(NH_4)_2O$ ,  $9M_0O_3+17H_2O$ . (Westphal, Dissert. 1895.)

Sec also Molybdenum trioxide ammonia.

Ammonium barium molybdate,  $3(NH_4)_2O$ , 3BaO,  $14MoO_3+12H_2O$ . (Westphal, Dissert. 1895.)

Ammonium bismuth molybdate, NH₄Bi(MoO₄)₂.

(Riederer, J. Am. Chem. Soc. 1903, 25. 914.)

Ammonium cadmium molybdate ammonia,  $(NH_4)_2Cd(MoO_4)_2$ ,  $2NH_8$ .

Decomp. by H₂O.

Sol. in dil. NH₄OH+Aq. (Briggs, Chem. Soc. 1904, 85. 674.)

Ammonium cerium molybdate,  $(NH_4)_6CeMo_{14}O_{48} + 24H_2O.$ Sol. in H₂O. (Barbieri, C. A. 1909. 293.) Ammonium chromic molybdate. See Chromicomolybdate, ammonium.

Ammonium cobaltous molybdate,  $3(NH_4)_2O$ ,  $7MoO_3$ , 3CoO,  $7MoO_3 + xH_2O$ .  $5[C(NH_4)_2O, 7MoO_3], 7[3CoO, 7MoO_3]+$  $xH_2O$ 2[3(NH, 20, 7MoO₃], 3[3CoO, 7MoOsl  $+xH_2O$ 3[3(NH₄)₂O, 7MoO₃], 5[3CoO, 7MoO₈l  $+xH_2O$  $3(NH_4)_2O$ ,  $7MoO_3$ , 5[3CoO,  $7MoO_2]+$  $xH_2O$ .  $9[2(NH_{\star})_{2}O, 5MoO_{3}], 5[2CoO, 5MoO_{3}] +$ 118 H₂O. 2CoO.

4(NH₄),O,  $15\text{MoO}_3 + 20\text{H}_2\text{O}$ . (Marckwald, Dissert. 1895.)

Ammonium cobaltous molybdate ammonia,  $(NH_4)_2Co(MoO_4)_2$ ,  $2NH_3$ .

Decomp. by H₂O. Sol. in dil. NH₄OH+Aq. (Briggs, Chem. Soc. 1904, 85. 674.)

Ammonium cobaltic molvbdate. See Cobaltimolybdate, ammonium.

Ammonium cupric molybdate, (NH₄)₂O, CuO,  $5\text{MoO}_3 + 9\text{H}_2\text{O}$ .

Sl. sol. in cold, sol. in boiling H₂O without decomp. (Struve.)

Ammonium cupric molybdate ammonia,  $(NH_4)_2Cu(MoO_4)_2$ ,  $2NH_3$ .

Sol. in dil. NH4OH+Aq. Decomp. by H₂O. (Briggs, Chem. Soc. 1904, **85.** 673.)

Ammonium ferric molybdate,  $3(NH_4)_2MO_2O_7$ ,  $Fe_2(MoO_4)_6 + 20H_2O$ .

Sol. in H₂O. (Struve.)

See also Ferricomolybdate, ammonium.

Ammonium lanthanum molybdate,  $(NH_4)_6La_2Mo_{14}O_{48}+24H_2O.$ Sol. in H₂O. (Barbieri, C. A. 1909. 293.)

Ammonium lithium molybdate, NH₄LiM₀O₄  $+H_2O.$ 

(Traube, N. Jahrb. Miner. 1894, I. 194.)

Ammonium magnesium molybdate, (NH₄)₂O.  $MgO, 2MoO_3 + 2H_2O = (NH_4)_2MoO_4,$  $MgMoO_4+2H_2O$ .

Easily sol. in H₂O. (Ullik, A. 144. 344.)

Ammonium manganous molybdate,  $2(NH_4)_2O$ , MnO,  $3MoO_8+5H_2O$ .

Decomp. by boiling H₂O. (Marckwald,

Dissert. 1895.) (NH₄)₂O, 2MnO, 6MoO₃+16H₂O. comp. by boiling H2O. (Marckwald, Dissert. 1895.)

**526** 

(NH₄)₂O, 3MnO, 6MoO₃+16H₂O. comp. by boiling H2O. (Marckwald, Dissert. 1895.)

 $3(NH_4)_2O$ , 2MnO,  $12MoO_3+22H_2O$ . (Marckwald, Dissert. 1895.)

Ammonium manganic molybdate. See Permanganomolybdate ammonium.

Ammonium mercuric molybdate.

Sol. in HCl+Aq. Sol. in boiling NH₄Cl+Aq, separating out on cooling. Sol. in hot  $(NH_4)_2SO_3 + Aq.$  (Hirzel.)

Ammonium molybdenum molybdate.  $(NH_4)_2$  2MoO₂,  $4MoO_3 + 9H_2O$ .

Easily sol. in H₂O, but the solution soon becomes cloudy. (Rammelsberg, Pogg. 127. 291.)

Ammonium neodymium molybdate,  $(NH_4)_3NdMoO_{24}+12H_2O.$ 

Ppt. (Barbieri, C. C. 1911, I. 1043.)

Ammonium nickel molybdate,

 $(NH_4)_2O$ , 3NiO,  $9MoO_8 + 25H_2O$ .

Very sl. sol. in cold, sol. in hot H₂O without decomp. (Marckwald, Dissert. 1895.)

3(NH₄)₂O, 2NiO, 10MoO₃+14H₂O. Very sl. sol. in cold, sol. in hot H₂O without decomp. (Marckwald, Dissert. 1895.)

5(NH₄)₂O, 3NiO, 16MoO₃+16H₂O. (Hall, J. Am. Chem. Soc. **1907**, 29, 702.)

6(NH₄)₂O, 3NiO, 16MoO₃+29H₂O. Very sl. sol. in cold, sol. in hot H₂O without decomp. (Marckwald, Dissert. **1895**.)
8(NH₄)₂O, 6NiO, 31MoO₃+63H₂O. Very sl. sol. in cold, sol. in hot H₂O without decomp.

comp. (Marckwald, Dissert. 1895.) 3(NH₄)₂O, 9NiO, 34MoO₃+120H₂O. Very sl. sol. in cold, easily sol. in hot H₂O without

decomp. (Marckwald, Dissert. 1895.)

Ammonium nickelic molybdate. See Nickelimolybdate, ammonium.

Ammonium nickel hydrogen molybdate,  $(NH_4)_4H_6[Ni(MoO_4)_6]+5H_2O.$ 

See Nickelomolybdate, ammonium hydro-

Ammonium praseodymium molybdate,  $(NH_4)_8 PrMoO_{24} + 12H_2O$ .

Ppt. (Barbieri, C. A. 1911. 1884.)

Ammonium samarium molybdate,  $(NH_4)_8SmMoO_{24} + 12H_2O$ .

Ppt. (Barbieri, C. A. 1911. 1884.) Ammonium sodium molybdate, 7(NH₄)₂O,

 $2Na_2O$ ,  $21MoO_3 + 15H_2O$  (?). Easily sol. in H₂O. (Delafontaine, J. pr.

**95.** 136.  $7(NH_4)_2O$ ,  $3Na_2O$ ,  $25MoO_3+30H_2O$  (?). (Delafontaine.)

(NH₄, Na)₂O, 3MoO₃+H₂O. (Mauro, Gazz. ch. it. **11**. 214.) Sol. in H₂O.

Ammonium thorium molybdate. See Thoromolybdate, ammonium.

Ammonium titanium molybdate. See Titanomolybdate, ammonium.

Ammonium vanadium molybdate. See Vanadiomolybdate, ammonium.

Ammonium zinc molybdate. Sol. in H₂O. (Berzelius.)

Ammonium zirconium molybdate. See Zirconomolybdate, ammonium.

Ammonium molybdate hydrogen dioxide,  $18\text{MoO}_3$ ,  $7(\text{NH}_4)_2\text{O}$ ,  $3\text{H}_2\text{O}_2 + 11\text{H}_2\text{O}$ . Sol, in H₂O. (Bärwald, B. 17. 1206.)

Barium molybdate, basic, 2BaO, MoO₃+  $H_2O(?)$ .

Insol. in H2O. Sol. in dil. HCl+Aq or  $HNO_3 + Aq$ . (Heinc, J. pr. 9. 204.)

Barium molybdate, BaMoO₄.

Difficultly sol. in H₂O; sol. in dil. HCl, and HNO₃+Aq. (Svanberg and Struve.) Sol. in 17,200 pts. H₂O at 23°. More sol. in

 $NH_4NO_3+Aq$  than in  $H_2O$ . (Smith and Bradbury, B. **24**. 2930.) +3 $H_2O$ . (Westphal, Dissert. **1895.**) Ba $Mo_3O_{19}+3H_2O$ . Sl. sol. in  $H_2O$ .

 $Ba_3MoO_{24}+9H_2O$ . Appreciably sol. in H₂O. (Jörgensen.)

Svanberg and Struve = According to  $Ba_2Mo_5O_1 + 6H_2O$ .

+12H₂O or 5BaO, 12MoO₃+20H₂O. (Junius, Z. anorg. 1905, **46.** 433.)

 $+22\mathrm{H}_2\mathrm{O}$ . Ppt. (Westphal, Dissert. 1895.)

BaO,  $4\text{MoO}_3 + 3\frac{1}{2}\text{H}_2\text{O}$ . Ppt. (Wempe, Z. anorg. 1912, 78. 320.)

+12H₂O. Ppt. (Rosenheim, Z. anorg. 1913, 79. 299.)

BaMo₉O₂₈+4H₂O. Insol. in cold or hot H₂O or HNO₃+Aq. Extremely slightly decomp. by H₂SO₄, or H₂SO₄+HNO₃, or HCl+ Aq. (Svanberg and Struve.)

Barium paramolybdate, 5BaO, 12MoO₂+ 10H₂O.

Ppt. Sol. in excess of BaCl₂+Aq. (Junius, Z. anorg. 1905, 46. 433.)

Barium tetramolybdate,  $BaH_2(Mo_4O_{13})_2+$ 17H₂O.

Insol. in cold, apparently decomp, by hot H₂O, a small part dissolving, and the rest forming an insol. residue. (Ullik, A. 144. 336.)

Insol. in cold and hot H₂O. +14H₂O. (Wempe, Z. anorg. 1912, 78. 320.) (Felix, Dissert. BaO,  $8\text{MoO}_8 + 17\text{H}_2\text{O}$ .

1912.)

Barium chromic molybdate. See Chromicomolybdate, barium.

Barium cobaltic molybdate. See Cobaltimolybdate, barium.

Barium manganic molybdate. See Permanganomolybdate, barium.

Barium nickelic molybdate. See Nickelimolybdate, barium.

Barium nickel hydrogen molybdate,  $Ba_2H_6[Ni(MoO_4)_6] + 10H_2O.$ See Nickelomolybdate, barium hydrogen.

Barium vanadium molybdate. See Vanadiomolybdate, barium.

Barium molybdate hydrogen dioxide, 8BaO,  $19\text{MoO}_{3}, 2\text{H}_{2}\text{O}_{2} + 13\text{H}_{2}\text{O}$ .

Precipitate. (Bärwald.)

Bismuth molybdate, Bi₂O₃, 3MoO₃. Somewhat sol. in H₂O. Sol. in 500 pts. H₂O and in the stronger acids. (Richter.)

Bromomolybdenum molybdate. See under Bromomolybdenum comps.

Cadmium molybdate, CdMoO₄.

Insol. in H₂O; sol. in NH₄OH+Aq, KCN+ Aq, or acids. (Smith and Bradbury, B. 24. 2390.)

CdO, H₂O, 8MoO₃+6H₂O. Decomp. by boiling with H2O. (Wempe, Z. anorg. 1912, **78.** 323.)

Cæsium molybdate, Cs₂O, 3MoO₃+H₂O. (Ephraim and Herschfinkel, Z. anorg. 1909, **64.** 270.)

Cs₂O,  $5\text{MoO}_8 + 3\text{H}_2\text{O}$ (Ephraim and Herschfinkel, Z. anorg. 1909, 64. 270.) +3½H₂O. Very sl. sol. in cold, easily sol. in hot H₂O. (Wempe, Dissert. 1911.)

 $2Cs_2O$ ,  $5MoO_3+5H_2O$ . (Ephraim and Herschfinkel, Z. anorg. 1909, **64**. 271.) 3Cs₂O, 10MoO₃+3H₂O. (Ephrain

(Ephraim and (Ephraim and

Herschfinkel, Z. anorg. 1909, **64.** 271.) Cs₂O, 16MoO₃+8H₂O. (Ephrain Herschfinkel, Z. anorg. 1909, **64.** 271.) 3Cs₂O, 10MoO₃+3H₂O. (Ephrain (Ephraim and Herschfinkel, Z. anorg. 1909, 64. 271.)

Cæsium tetramolybdate, Cs₂O, 4MoO₂. Only sl. sol. in H₂O. (Muthmann, B.

1898, **31**. 1841.) +2H₂O. Sl. sol. in H₂O. (Muthmann, B. 1898, **31**. 1841.)

+3H₂O. Easily sol. in cold or hot H₂O. (Wempe, Z. anorg. 1912, 78. 317.)

+5H₂O. Very sol. in cold and hot H₂O. (Wempe, Dissert. 1911.) Cs₂O, MoO₃, Cs₂O, 3MoO₃+4.5H₂O. Sol. in H₂O. (Wempe, Z. anorg. 1912, 78. 317.)

Cæsium paramolybdate, 5Cs₂O, 12MoO₂+ 11H.O.

Efflorescent. Easily sol, in H₂O. (Wempe, Z. anorg. 1912, 78. 317.)

Calcium molybdate, CaMoO₄.

Insol. precipitate. (Ullik.)
Sl. sol. in H₂O; insol. in alcohol. (Smith and Bradbury, B. **24**. 2930.)
-H₂O. (Westphal, Dissert. **1895**.)

+2H₂O. (Westphal, Dissert. 1895.)

+6H₂O. Difficultly sol. in cold, easily in hot H₂O. (Ullik, A. 144. 231.) CaMo₄O₁₂+9H₂O. Easily sol. in cold H₂O.

CaO, 2H₂O, 12MoO₃+21H₂O. Efflorescent. Sl. sol. in cold, easily sol. in hot H₂O. (Wempe.)

Calcium hydrogen tetramolybdate,  $CaH_2(Mo_4O_{13})_2 + 17H_2O$ .

Sl. sol. in cold, easily sol. in hot H₂O with decomp. (Ullik.)

+16H₂O. Insol. in cold, difficultly sol. in hot H₂O. (Wempe, Z. anorg. 1912, 78. 318.)

Cerium molybdate, Ce₂(MoO₄)₈.

Precipitate. Insol. in H₂O; sol. in acids. (Cossa, B. 19. 536 R.)

Chromic molybdate.

Insol. in H2O, but sol. in acids. Sol. in NH4 molybdate+Aq. (Berzelius.) See also Chromicomolybdic acid.

Chromic molybdate, with M. molybdate. See Chromicomolybdate. M.

Cobaltous molybdate, CoMoO₄.

Decomp. by alkalies and strong acids. (Berzelius.)

+H₂O. Sl. sol. in pure, easily sol. in acidified H₂O. (Coloriano, Bull. Soc. (2) 50. 451.)

CoO, 2MoO₃+2H₂O. (Marckwald, Dissert. **1895.**)

6½H₂O. Sl. sol. in H₂O. (Marckwald.) CoMo₂O₁₀+10H₂O. Very sl. sol. in cold, but very easily sol. in hot  $H_2O$ . (Ullik, W. A. B. 55, 2. 767.)

Cobaltic potassium molybdate. See Cobaltimolybdate, potassium.

Cobaltous sodium molybdate,  $Na_2O$ , 2CoO,  $6MoO_8+18H_2O$ .

(Marckwald, Dissert. 1895.) 2Na₂O, CoO, 7MoO₃+20H₂O. Sol. in cold H₂O without decomp. Decomp. on

heating. (Marckwald.)

3Na₂O, 2CoO, 12MoO₃+27H₂O. (Marckwald.)

3Na₂O, 3CoO, 14MoO₃+50H₂O. Sol. in much cold H₂O. (Marckwald.)

4Na₂O, 6CoO, 25MoO₃+68H₂O. (Marckwald.)

Cobaltous molybdate ammonia, CoMoO₄,  $2NH_8+H_2O$ .

Sol. in H₂O. (Sonnenschein, J. pr. 53. 340.)

Cupric molybdate, basic, 4CuO, 3MoO₃+ 5H₂O.

Insol. in H.O. (Struve, J. B. 1854. 350.)

Cupric molybdate, CuMoO4.

Sl. sol. in H₂O; decomp. by acids and alkaline solutions.

 $CuMo_3O_{19}+6\frac{1}{2}H_2O$ . Easily sol. in cold

 $H_2O$ . (Ullik, A. **144**. 233.) +9 $H_2O$ . Very sl. sol. in cold, and extraordinarily easily sol. in hot H₂O. (Ullik.)

Cupric molybdate ammonia,  $CuMoO_4$ ,  $2NH_3+H_2O$ .

Gives off NH₃ at ord. temp. Decomp.

by H₂O. Sol. in dil. NH4OH+Aq from which it can be cryst. (Briggs, Chem. Soc. 1904, 85. 674.) CuMoO₄, 4NH₃. Decomp. by H₂O. Sol. (Jörgensen, Ch. Z.

in dil. NH₄OH+Aq. Repert, 1896, 20, 225.)

Didymium molybdate, Di₂(MoO₄)₈.

Ppt. Insol. in H₂O. (Cossa, B. **19.** 536R.)  $Di_2O_3$ ,  $6M_0O_3 + 3H_2O(?)$ . Precipitate. (Smith.)

Glucinum molybdate, basic, 2GlO, MoO₃+ 3H₂O.

Nearly insol. in H₂O. (Atterberg, J. B. **1873.** 258.)

Glucinum molybdate, GlO, MoO₃+2H₂O.

Sol. in  $H_2O$  with decomp. (Rosenheim, Z. anorg. 1897, 15. 307.) GIMoO₄,  $\dot{\text{M}}_{\text{0}}\text{O}_{\text{2}} + x\dot{\text{H}}_{\text{2}}\text{O}$ . Easily sol. in

H₂O. (Atterberg.)

Gold (auric) molybdate (?).

Sl. sol. in H₂O. Sol. in HCl, and HNO₃+ Aq. (Richter.)

Hydroxylamine potassium molybdate.  $M_0O_4H_2(NH_8O)_8(NH_2OK)$ .

Easily sol. in H₂O; pptd. by alcohol. (Hofmann, A. 1899, 309, 324.)

Indium molybdate,  $In_2(MoO_4)_3 + 2H_2O$ .

Ppt. Insol. in H₂O. (Renz, B. 1901, 34. Easily sol. in HCl. 2765.)

Iron (ferrous) molybdate, FeMoO₄.

Insol. in H₂O. (Schultze, A. 126. 55.)

Iron (ferric) molybdate, Fe₂O₃, 4MoO₃+ 7H₂O.

Nearly insol. in H₂O. Slowly sol. in cold, easily in hot HCl, or HNO₃+Aq. Dil. acids gradually dissolve out Fe₂O₃ in the cold. When ignited, difficultly sol. in all solvents. (Steinacker.)

Fe₂O₃, 5Mo()₃+16H₂O. Very sl. sol. in H₂O. (Struye, J. B. **1854**. 346.)

2Fe₂O₃, 7MoO₃+34H₂O. Ppt. (Hall. J. Am. Chem. Soc. 1907, 29. 704.)

Ferric potassium molybdate, Fe₂O₃, 3K₂O,  $12\text{MoO}_3 + 20\text{H}_2\text{O} = 3\text{K}_2\text{Mo}_2\text{O}_7$  $Fe_2(Mo_2O_7)_3 + 20H_2O$ .

Sol. in H₂O. (Struve.)

Lanthanum molybdate,  $LaH_3(MoO_4)_3 =$  $La_2O_3$ ,  $MoO_3+3H_2O$ . (?)

Precipitate. (Smith.)

Lead molybdate, PbMoO₄.

Insol. in  $H_2O$ . Sol. in warm  $IINO_8+Aq$ ; decomp. by H₂SO₄; sol. in conc. HCl+Aq, or KOH+Aq.

Min. Wulfenite. As above.

Lithium molybdate, Li₂MoO₄.

Moderately sol, in cold, and only sl. more sol, in hot II₂O. (Ephraim, Z. anorg. 1909, **64.** 259.)

 $+\frac{2}{4}$ H₂O. Easily sol. in H₂O.

 $5Li_2O$ ,  $5MoO_3 + 2H_2O$ . 46.13 g. are present in 100 ccm. of the aqueous solution at 20°, and sp. gr. of the solution = 1.44. (Wempe,

Z. anorg. 1912, **78**. 309.) Li₂O, 2MoO₃+5H₂O. Sol. in cold, easily sol. in hot H₂O. (Ephraim, Z. anorg. 1909,

 $Li_2O$ ,  $3MoO_3+H_2O$ . Easily sol. in warm  $H_2O$ . (Wempe, Dissert. 1911.)  $+4H_2O$ . (Wempe.)

 $+4\frac{1}{4}H_2O.$ (Wempe.)

 $+7H_2O$ . Nearly insol. in cold, sol. in hot H₂O. (Ephraim, Z. anorg. 1909, 64. 258.)

2Li₂O, 3MoO₃. Sl. sol. in H₂O. (Ephraim, Z. anorg. 1909, 64. 258.)

Lithium paramolybdate, 3Li₂O, 7MoO₃+ 12H₂O.

Sol. in H₂O. (Rosenheim, Z. anorg. 1897, **15.** 181.)

+28H₂O. Easily sol, in cold and hot H₂O. (Ephraim, Z. anorg. 1909, 64. 258.)

Lithium tetramolybdate, Li₂O, 4MoO₃+7H₂O.

Sol. in cold H₂O. (Ephraim, Z. anorg. 1909, 64. 258.) Li₂O, H₂O, 8MoO₈+10H₂O. Easily sol. in hot H₂O. (Wempe, Z. anorg. 1912, 78. 308.)  $\text{Li}_2\text{O}$ ,  $3\text{H}_2\text{O}$ ,  $16\text{M}_2\text{O}$  +  $6\frac{1}{2}\text{H}_2\text{O}$ . sol. in warm H₂O. (Wempe, Z. anorg. 1912, **78.** 308.)

Lithium potassium molybdate, KLiMoO4+ H₂O.

(Traube, N. Jahrb. Miner, 1894, I. 194.)

Magnesium molybdate, MgMoO₄.

Min. Belonesia. Insol. in HCl+Aq. (Scacchi, Zeit. Kryst. 1888, 14. 523.)

+5H₂O. Easily sol. in cold, but still more

sol. in hot H₂O. (Delafontaine.)

Sol. in 12-15 pts. cold H₂O. (Brandes.) +7H₂O. Easily sol. in hot or cold H₂O. (Ullik.)

 $MgMo_8O_{19}+10H_2O$ . Difficultly sol. in cold, very easily in hot H₂O. (Ullik)

Magnesium paramolybdate, Mg₃Mo₇O₂₄+ 20H₂O.

Quite sol, in cold, more easily in hot  $H_2O$ . (Ullik.)

Magnesium tetramolybdate,  $MgO, H_2O, 8MoO_3+19H_2O.$ 

Magnesium hydrogen tetramolybdate,  $MgH_2(Mo_4O_{13})_2 + 19H_2O$ .

Easily sol. in cold H₂O. (Ullik, A. 144.

335.) Sl. sol. in cold, easily sol. in hot H₂O. (Wempe, Dissert. 1911.) +20H₂O. Ppt. (Wempe, Z. anorg. 1912,

Magnesium hydrogen octomolybdate,  $MgH_2(Mo_8O_{25})_2 + 29H_2O$ .

**78.** 323.)

Very difficultly sol. in cold, very easily sol. in hot H₂O. (Ullik, W. A. B. 60, 2. 314.)

Magnesium potassium molybdate, MgMoO₄,  $K_2M_0O_4+2H_2O$ .

Slowly sol. in cold, easily in hot H₂O. (Ullik, A. **144.** 343.)

Manganous molybdate,  $MnMoO_4+H_2O$ .

Insol. in H2O. Sl. sol. in pure, easily sol. in acidified H₂O. Decomp. by alkalies or alkali carbonates + Aq. (Coloriano, Bull. Soc. **(2) 50.** 451.)

+⁵/₈ $H_2O$ . (Marckwald, Dissert. 1895.) +10H₂O. (Marckwald.)

Manganic potassium molybdate.

See Permanganomolybdate, potassium.

Manganic silver molybdate. See Permanganomolybdate, silver.

Mercurous molybdate, Hg₂Mo₂O₇. Decomp. by H₂O. (Struve, J. B. 1754. | (Amadori, Att. acc. Linc. 1912, 21, I. 467. 350,)

Sol. in 500-600 pts. H₂O; decomp. by HNO₈+Aq. (Hatchett.)

Molybdenum molybdate.

See Molybdenum oxides, Mo₃O₇, Mo₄O₉,

Neodymium molybdate, Nd₂(MoO₄)₈.

Very al. sol. in H₂O.

1 pt. is sol. in 53790 pts. H₂O at 28°. 1 " " 32466 " H₂O "75°.

(Hitchcock, J. Am. Chem. Soc. 1895, 17. 532.)

Nickel molybdate, NiMoO₄+ $^2/_3$ H₂O, + $^3/_4$ H₂O and  $+5H_2O$ .

(Marckwald, Dissert. 1895.)

 $NiO, 3MoO_3 + 18H_2O$ . Si. sol. in cold; easily sol. in hot H₂O.

I. in hot H₂O. (Marckwald.) 5NiO, 14MoO₈+57H₂O, and +70H₂O. Sl. sol. in cold; easily sol. in hot H2O. (Marckwald.)

Nickel potassium molybdate, 3NiO, 5K₂O 16MoO₃+21H₂O.

Can be cryst. from  $H_2O$ . (Hall, J. Am. Chem. Soc. 1907, 29. 701.)

Nickelic potassium molybdate.

See Nickelimolybdate, potassium.

Nicke, potassium hydrogen molybdate,  $K_4H_6[Ni(MoO_4)_6]+5H_2O.$ 

See Nickelomolybdate, potassium hydrogen.

Nickel sodium molybdate, 2NiO, Na₂O.  $6\text{MoO}_3 + 17\text{H}_2\text{O}$ .

Sol. in cold H₂O without decomp. but decomp. on warming. (Marckwald, Dissert. 1895.)

Nickel molybdate ammonia, NiMoO4, 2NH3  $+\mathrm{H}_{2}\mathrm{O}.$ 

Decomp. by H₂O. (Sonnenschein, J. pr. **53.** 341.)

Potassium molybdate, K₂MoO₄.

Deliquescent in moist air. Very sol. in H₂O. Insol. in alcohol. (Svanberg and Struve, J. pr. 44. 265.)

184.6 grams are sol. in 100 grams H2O at 25°. (Amadori, C. A. 1912. 2878.)

Solubility of K₂MoO₄+K₂SO₄ at 25°...

G. per 100 g. H ₂ O		G. per 1	00 g. H ₂ O	
K ₂ SO ₄	K ₂ MoO ₄	K2SO4	K2MoO4	
0 0.46 0.72 0.98 1.27	184.6 180.7 177. 127.2 107.5	1.50 2.13 3.95 8.55 12.10	99.49 45.89 17.48 4.73 0	

+¾H₂O. Easily sol. in H₂O. (Wempe, Dissert. 1911.)

 $K_2O$ ,  $8M_0O_3 + 13H_2O$ . Easily sol. in warm H₂O. (Wempe, Dissert. 1911.)

Nearly insol. in  $K_2O$ ,  $10M_0O_3 + 9H_2O$ . 100 g. H₂O dissolve hot and cold H₂O. 0.682 g. at 100°. (Felix, Dissert. 1912.) +15H₂O. Sol. in H₂O. (Felix.)

 $5K_2O$ ,  $12MoO_8+8H_2O$ . Sl. sol. in cold H₂O. (Junius, Z. anorg. 1905, **46.** 439.)

#### Potassium trimolybdate, K₂Mo₃O₁₀.

Difficultly sol, in cold, but much more easily in hot H₂O. When ignited is absolutely insol.

in H₂O. (Syanberg and Struve.) +2H₂O. Junius, Z. anorg. 1905, **46**. 439.) Sl. sol. in cold, easily sol. in hot  $H_2O$ . (Wempe, Dissert. 1911.)

+23/4H₂O. Easily sol. in H₂O. (Wempe,

Dissert. 1911.)

+3H₂O. Very sl. sol. in cold, more easily sol. in hot H₂O. (Wempe, Dissert. 1911.) Practically insol. in H₂O. +11H₂O.(Westphal, Dissert. 1895.)

#### Potassium hydrogen tetramolybdate, $K_6H_4[H_2(Mo_2O_7)_6]+18H_2O.$

Sl. sol. in cold H₂O. Decomp. by boiling H₂O. (Rosenheim, Z. anorg. 1913, **79.** 298.) KHMo₄O₁₈+6H₂O. Decomp. by H₂O. (Ullik.)

#### Potassium paramolybdate, K₆Mo₇O₂₄+ $4H_2O$ .

Decomp. even by cold H₂O. (Delafontaine.)

Formula is  $K_8Mo_9O_{31}+6H_2O$ , according to Svanberg and Struve (?).

## Potassium selenium molybdate. See Selenomolybdate, potassium.

Potassium sodium molybdate, K₂MoO₄,  $2Na_2MoO_4+14H_2O$ .

Very easily sol. in cold, still more easily in hot H₂O. (Delafontaine.)

## Potassium vanadium molybdate. See Vanadiomolybdate, potassium.

Potassium zinc molybdate. Sol. in H₂O. (Berzelius.)

Potassium molybdate hydrogen dioxide,  $6K_2O_16M_0O_8$ ,  $4H_2O_2+13H_2O_2$ Sol. in H₂O. (Bärwald, C. C. 1885. 424.)

## Potassium molybdate sulphocyanide, KSCN, $K_2Mo_3O_{10}+4H_2O$ .

Decomp. by H₂O. Sol. in dil. HCl+Aq. (Péchard, C. R. 1894, 118, 806.)

Praseodymium molybdate, Pr₂(MoO₄)₃.

Very sl. sol. in  $H_2O$ 

1 pt. is sol. in 65820 pts. H₂O at 23°. 1 " " 69800 " " 75°.

(Hitchcock, J. Am. Chem. Soc. 1895, 17. 530.)

## Rubidium molybdate, Rb₂O, MoO₈,

Hygroscopic. (Ephraim, Z. anorg. 1909. **64.** 263.)

Rb₂O, 2MoO₃+2H₂O. Easily sol. in H₂O. (Ephraim, Z. anorg. 1909, **64**. 263.)

 $Rb_6Mo_7O_{24}+4H_2O$ . Very sl. sol. in cold, much more easily sol. in hot H₂O. (Delafontaine, N. Arch. Sc. phys. nat. 30. 233.)

(Ephraim, Z. anorg. 1909, 64. 263.)  $+4^{2}/_{8}H_{2}O$ . (Wempe, Dissert. 1911.)

 $2\text{Rb}_2\text{O}$ ,  $7\text{MoO}_3+5\text{H}_2\text{O}$ . Very sl. sol. in cold, very easily sol. in hot  $\text{H}_2\text{O}$ . (Wempe.)  $5\text{Rb}_2\text{O}$ ,  $7\text{MoO}_3+14\text{H}_2\text{O}$ . (Ephraim and Herschfinkel, Z. anorg. 1909, 64. 268.)

 $3Rb_2O$ ,  $8MoO_3+6H_2O$ . (Ephraim and

Herschfinkel, Z. anorg. 1909, 64. 269.)  $5Rb_2O$ ,  $12MoO_3 + H_2O$ . 100 cc.  $H_2O$  dissolve 1.941 g. at 24°. (Wempe, Z. anorg. 1912, 78. 258.)

Rb₂O, 3MoO₃. Insol. in H₂O. (Muthmann, B. 1898, **31**. 1839.) +H₂O. (Muthmann, B. 1898, **31**. 1839.)

+3H₂O. Sl. sol. in cold, easily sol. in hot H₂O. (Wempe, Dissert. **1911.**)

6½H₂O. (Ephraim and Herschfinkel, Z.

anorg. 1909, 64. 269.)

2Rb₂O, 3MoO₃+4H₂O. Sl. sol. in cold, easily in hot  $H_2O$ . (Wempe, Dissert. 1911.)  $Rb_2O$ ,  $4MoO_3$ . Difficultly sol. in cold, easily in hot  $H_2O$ . (Wempe, Z. anorg. 1912,

**78.** 312.) +½H₂O. Practically insol. in H₂O. Very sol. by addition of NH3. (Ephraim and

Herschfinkel, Z. anorg. 1909, **64**. 266.) +2.5H₂O. Insol. in H₂O. (Ephraim, Z. anorg. 1909, **64**. 263.)

+4H₂O. Sol. in cold, more easily sol. in hot H₂O. (Wempe, Z. anorg. 1912, **78**. 312.) Rb₂O, MoO₃, Rb₂O, 3MoO₃+5H₂O. Sol. in cold or hot H₂O. (Wempe, Z. anorg. 1912,

**78**. 312.)  $Rb_2O$ ,  $H_2O$ ,  $8MoO_3+3H_2O$ . Difficultly sol. in cold, easily in hot  $H_2O$ . (Wempe, Z. anorg. 1912, **78**. 312.)

 $R\bar{b}_2O$ ,  $11MoO_8+5.5H_2O$ . Ppt. (Ephraim.

Z. anorg. 1909, **64.** 263.)

Rb₂O, 13MoO₈+4H₂O. Ppt. (Ephraim.) Rb₂O, 18MoO₃. Ppt. (Ephraim.)

## Samarium molybdate, Sm₂(MoO₄)₃. Insol. in H₂O. (Cleve.)

#### Samarium sodium molybdate, $Na_2Sm_2(MoO_4)_4$ .

Insol. in H2O. Easily sol. in warm dil. HNO₃+Aq. (Cleve.)

Silver (argentous) molybdate, Ag₄O, 2M₀O₃. Sol. in HNO₈+Aq. KOH+Aq dissolves MoO₃ and Ag₄O separates out. Not decomp. by dil. NH4OH+Aq. (Wöhler and Rautenberg, A. 114. 119.)

Does not exist. (Muthmann, B. 20 983.)

Silver (argentic) molybdate, Ag₂MoO₄.

Somewhat sol. in H₂O; less when HNO₂ is present. (Richter.)

Very sl. sol. in pure H₂O; easily sol. in H₂O acidulated with HNO₃. (Struve and Svanberg.)

Sol. in KCN or NaOH+Aq. (Smith and 437.)

Bradbury.)

Ag₂O, 2MoO₃. Sl. sol. in H₂O. Sol. in

KCN+Aq. (Junius, Dissert. 1905.) 2Ag₂O, 5MoO₃. Somewhat sol. in H₂O. (Svanberg and Struve, J. B. 1847-48. 412.)

Ag₂O, 4MoO₃+6H₂O. Sl. sol. in H₂O with decomp. (Wempe, Z. anorg. 1912, 78, 322.)

Silver thorium molybdate.

See Thoromolybdate, silver.

Silver molybdate ammonia, Ag₂MoO₄, 4NH₃. Sol. in H₂O with rapid decomposition. (Widmann, Bull. Soc. (2) 20. 64.)

Silver molybdate hydrogen dioxide, 13Ag₂O, 2H₂O₂, 32MoO₃.

Ppt. (Bärwald, B. 17, 1206.)

Sodium molybdate, Na₂MoO₄.

Anhydrous. Easily and completely sol. in H₂O.

+2H₂O. Sol. in H₂O. +10H₂O. Efflorescent.

#### Solubility in H₂O at t°.

Solid phase	t°.	Per cent of anhydrous salt;	Mols, H ₂ O to 1 mo!. of anhydrous salt	Mols. of anhydrous salt to 100 mols.
Na ₂ MoO ₄ , 10 ₂ HO	0	30.63	25.92	3.86
"	4	33.83	22.38	4.47
· · · · · · · · · · · · · · · · · · ·	6	35.58	20.72	4.83
"	90	38.16	18.54	5.39
Na ₂ MoO ₄ , 2H ₂ O	10	39.28	17.70	5.65
it	15.5	39.27	17.70	5.65
"	32.	39.82	17.30	5.78
"	51.5	41.27	16.28	6.14
"	100	45.57	13.67	7.32

(Funk, B. 1900, 33. 3699.)

Insol. in methyl acetate. (Naumann, B. **1909**, **42**. 3790.)

Na₂Mo₂O₇. After ignition, very difficultly sol. in cold, and very slowly sol. in hot H₂O. (Syanberg and Struve.)

+H₂O. Easily sol. in H₂O.

 $+3\frac{1}{2}H_2O$ . Easily sol. in cold or hot  $H_2O$ . (Wempe, Dissert. 1911.)

+4Ĥ₂Ó. Easily and completely sol. in cold H₂O. (Ullik.)

+6½H₂O. Sl. sol. in cold, very easily sol. ir. not H₂O. (Wempe, Dissert. 1911.)

+7H2O. Difficultly sol, in cold H2O, but more easily than the corresponding K salt. 100 pts. H₂O dissolve 3.878 pts. at 20° and 13.7 pts. at 100°. (Ullix, A. 144. 244.)

 $+9H_2O$ . Easily sol. in cold, very easily sol. in hot  $H_2O$ . (Wempe.)

+11H₂O. (Junius, Z. anorg. 1905, 46.

"Na₂O, 7McO₃ Easily set in cold, very

easily sol. in hot H₂O. (Ott, Dissert. 1911.) +2011₂O. (Westphal, Dissert. **1895.**)

+22H₂O. Efflorescent. Easily sol. in H₂O. (Ullik, A, **144.** 219.)

Na₂O,  $8MoO_8+\frac{1}{2}H_2O$ . Very sol. in cold or hot  $H_2O$  (Wempe, Dissert. **1911**.)

+4H₂O. Insol. in H₂O. (Ullik, W. A. B. **60, 2.** 312.)

 $+15H_2O$ . (Rosenheim, Z. anorg. 1897, 15. 188.)

 $Na_2O$ ,  $10MoO_3+6H_2O$ . Very sl. sol. in H₂O. 100 g. H₂O dissolve 0.842 g. at 100°. (Felix, Dissert. **1912**.)

+7H₂O. (Felix.) Nearly insol. in hot and cold H₂O. (Rosenheim, Z. anorg. 1903, 37. ر.323

+12H₂O. Difficultly sol. in H₂O. +21H₂O. Abundantly but slowly sol. in cold  $H_2O$ . = NaHNa₅O₁₆+10H₂O. (Ullik.) 5Na₂O, 12MoO₃+8H₂O. Sl. sol. in cold, easily sol. in hot H₂O. (Wempe, Dissert. 1911.)

 $+20H_2O$ . Sl. sol. in cold, easily sol. in

hot H₂O. (Wempe, Dissert. **1911**.) +36H₂O. (Junius, Z. anorg. 1905, **46**. 436.) +44H₂O. Sl. sol. in cold, easily sol. in hot H₂O. (Wempe, Dissert. 1911.)

Sodium tetramolybdate,  $Na_2Mo_4O_{13}+6H_2O$ . Difficultly sol. in cold, easily in hot H₂O.

(Ullik.) 100 cc. H₂O dissolve at 21°, 28.39 g. of the salt. Sp. gr. of the solution = 1.47. (Wempe, Z. anorg. 1912, 78. 306.)

 $+17H_2O$ . (Felix, Dissert. 1912.) Na₆H₄[H₂(Mo₂O₇)₆]+21H₂O. Slowly sol. in cold, easily sol. in hot H₂O. (Rosenheim, Z. anorg. 1913, **79.** 298.)

NaHMo₄O₁₈+8H₂O. Very sol cold H₂O. (Ullik, A. **144**. 333.) NaHMo₈O₂₆ + 4H₂O. Insol. Very sol. in hot or

(Ullik.)

Sodium manganous molybdate, 2Na₂O, MnO,  $6\text{MoO}_3 + 19\text{H}_2\text{O}$ .

(Marckwald, Dissert. 1895.)

Sodium molybdate molybdenum oxide, Na₂Mo₅O₁₅.

Insol. in H₂O. Sol. in HNO₃ and aqua regia. Insol. in HCl and in H2SO4. Sol. in

(Stavenhagen and Engels, B. 1895, alkalies. 28, 2280.)

#### Strontium molybdate, SrMoO₄.

Sl. sol. in H₂O. (Schultze.)

Sol. in 9600 pts. H₂O at 17°. (Smith and

Bradbury, B. 24. 2930.)

SrO,  $3\text{MoO}_3 + \frac{1}{2}\text{H}_2\text{O}$ . Scarcely sol. in cold, easily in hot  $\text{H}_2\text{O}$ . (Wempe, Dissert. **1911**.) SrO,  $\text{H}_2\text{O}$ ,  $8\text{MoO}_3 + 6\text{H}_2\text{O}$ . Scarcely sol. in cold, easily in hot  $\text{H}_2\text{O}$ . (Wempe, Dissert.

**2SrO**,  $3H_2O$ ,  $20M_0O_3 + 21H_2O$ . Ppt. (Wempe, Z. anorg. 1912, 78. 321.)

## Thallous molybdate, Tl₂MoO₄.

Insol. in H2O. Sol. in alkalies. Insol. in alcohol. (Oettinger, J. B. 1864, 254.)

Sl. sol. in hot or cold H₂O. (Ullik, J. B. 1867, 234.)

8Tl₂O, 11MoO₃. Sol, in hot H₂O. (Fleming, J. B. **1868**, 250.) 3Tl₂O, 8MoO₃. (Fleming.)

Thallous tetramolybdate,  $Tl_2O$ ,  $4MoO_3+H_2O$ . Sl. sol. in H₂O with decomp. (Wempe, Z. anorg. 1912, 78. 322.)

## Thallous paramolybdate, 5Tl₂O, 12MoO₃.

Insol, in H₂O. Easily sol, in mineral acids and in alkali hydroxides and carbonates. (Junius, Z. anorg. 1905, 46. 432.)

#### Tin (stannic) molybdate.

Insol. in H₂O. Sol. in dil. or conc. HCl+ Aq, or in KOH + Aq. Not decomp. by  $HNO_3$ +Aq. (Berzelius.)

#### Uranous molybdate.

Precipitate. Sol. in HCl+Aq. Decomp. by KOH+Aq.

U(MoO₄)₂. (Lancien, C. C. 1908, I. 1763.)

## Uranyl molybdate, $(UO_2)MoO_4$ .

Insol. in H₂O, methyl and ethyl alcohol, ether, acetic acid, CHCl₃, C₆H₆ and C₇H₈. Sol. in mineral acids. (Lancien, C. C. 1907,

2UO₂, 3MoO₃ (?). Insol. in H₂O. Sol. in strong acids and (NH₄)₂CO₈+Aq. zelius.)

3UO₃, 7MoO₃. Insol. in hot and cold H₂O. Insol. in NaOH, KOH, and NH₄OH+Aq. Sol. in all min. acids and decomp. by an excess of H₂O. Insol. in acetic acid. (Lancien, C. C. 1908, I. 1763.)

UO₃, 8MoO₃. (Lancien.) +13H₂O. Insol. in HNO₃. (Lancien.)

Ytterbium molybdate, Yb₂O₃, 7MoO₃+6H₂O. Insol. in hot H₂O. (Cleve, Z. anorg. 1902, **32.** 152.)

2Yb₂O₃, MoO₃. Ppt. (Cleve.)

#### Yttrium molybdate.

Insol. in H₂O. Sol. in HNO₃+Aq. (Ber-

#### Zinc molvbdate, ZnMoO4.

Difficultly sol. in H2O; easily in acids.

(Schultze, A. 126. 49.)

+H₂O. Sl. sol. in H₂O. Easily sol. in dil. acids. (Coloriano, Bull. Soc. (2) 50. 451.) ZnMo₃O₁₉+10H₂O. Very difficultly sol. in cold, but extraordinarily easily sol. in hot H₂O. (Ullik, W. A. B. **55**, **2**. 767.)

## Zinc tetramolybdate, ZnMo₄O₁₈+8H₂O.

Easily sol. in cold H₂O. (Ullik.)

ZnO, H₂O, 8MoO₃+14H₂O. Ppt. (Wempe, Z. anorg. 1912, 78. 324.)

Zinc molybdate ammonia, ZnMoO₄, 2NH₈+

(Sonnenschein, J. pr. 53. 339.)

#### Permolybdic acid.

See Permolybdic acid.

## Molybdic sulphuric acid, MoO3, SO3.

Deliquescent. (Schultz-Sellack, B. 4. 14.) Very deliquescent. Very se (Muthmann, A. 1886, 238. 126.) Very sol. in H₂O.  $MoO_3$ ,  $3SO_3 + 2H_2O$  (?).

#### Molybdocyanhydric acid, H₄Mo(CN)₈+ 6H₂O.

Easily sol. in H₂O and abs. alcohol. Solutions are stable at ord. temp. (Rosenheim and Garfunkel, Z. anorg. 1910, 65. 168.)

Cadmium molybdocyanide, Cd₂Mo(CN)₈+ 8H₂O.

Insol. in H₂O. (Rosenheim.)

Cadmium molybdocyanide ammonia,  $Cd_2Mo(CN)_8$ ,  $4NH_3+2H_2O$ .

(Rosenheim.)

#### Cupric molybdocvanide ammonia. $Cu_2Mo(CN)_8$ , $4NH_3+7H_2O$ .

(Rosenheim.)

Potassium molybdocyanide, K₄Mo(CN)₈+ 2H₂O.

Very sol. in H₂O. (Rosenheim.)

Thallous molybdocyanide, Tl₄Mo(CN)₈. Very sl. sol. in H₂O. (Rosenheim.)

Molybdoiodic acid,  $HIO_3$ ,  $H_2MoO_4+H_2O$ .

Easily sol. in H₂O. (Blomstrand, J. pr. (2) **40.** 320.)

I₂O₅, 2MoO₃+2H₂O. Very sol. in H₂O. Insol. in cold, sol. in hot HNO₃. Sol. in alcohol. (Chrétien, A. ch. 1898, (7) **15.** 402.)

Ammonium molybdoiodate, NH₄IO₈, H₂MoO₄.

Somewhat more sol. than K salt. (Blomstrand.)

 $(NH_4)_2O$ ,  $I_2O_5$ ,  $2MoO_3$ . Very sl. sol. in cold  $H_2O$ . More sol. in hot  $H_2O$ . (Rosen-

heim and Liebknecht, A. 1899, **308**. 50.) +H₂O. 1 l. H₂O dissolves 5.39 g. salt at 15°; 30.94 g. at 100°. More sol. in dil. HNO₃ +Aq. (Chretien, A. ch. 1898, (7) 15. 409.)  $3(NH_4)_2O$ ,  $(I_2O_5, 2MoO_3)_4+6H_2O$ . (Chré-

Barium molybdoiodate, BaO, I₂O₅, 2M₀O₈ +

4.23 g. are sol. in 1 l. H₂O at ord, temp. (Chrétien.)

Cadmium molybdoiodate, acid, 3CdO. (I2O5,  $2\text{MoO}_{8})_{5}+16\text{H}_{2}\text{O}.$ 

Sl. sol. in H₂O. (Chrétien.)

Calcium molybdoiodate, CaO, I₂O₅, 2MoO₈+ 6H₂O.

1 l. H₂O dissolves 7.8 g. of the salt at 15°; 20.89 g. at 90°. (Chrétien.)

Cobaltous molybdoiodate, CoO, I₂O₅, 2MoO₃ | Silver molybdoiodate, Ag₂O, I₂O₅, 2MoO₃+ +6H₂O.

5.11 g. are sol. in 1 l. H₂O at 15°; 22.27 g. at 100°. (Chrétien.)

Cobaltous molybdoiodate acid, CoO, (I₂O₅,  $2\text{MoO}_3)_5 + 18\text{H}_2\text{O}$ .

Very sol. in H₂O. (Chrétien.)

Cupric molybdoiodate, CuO, I₂O₅, 2MoO₃+ 3H₂O.

1 l. H₂O dissolves 10.63 g. of the salt at 15°; 25.55 g. at 100°. (Chrétien.)

Lithium molybdoiodate, Li₂O, I₂O₅, 2MoO₃+ 2½H₂O.

197.83 g. are sol. in 1 l. H₂O at 15°. Sol. in dil. HNO₃+Ag. (Chrétien.)

Magnesium molybdoiodate, MgO, I₂O₅,  $2\text{MoO}_8+6\text{H}_2\text{O}$ .

1 l. H₂O dissolves 3.85 g. of the salt at 15°; 18.2 g. at 100°. (Chrétien.)

Manganous molybdoiodate, 3MnO, (I₂O₅,  $2\text{MoO}_{3}$ )₄+9H₂O.

1 l. H₂O dissolves 17.05 g. of the salt at 15°; 55.05 g. at 100°. (Chrétien.)

Nickel molybdoiodate, NiO, I₂O₅, 2MoO₃+ 6H₂O.

5.43 g. are sol. in 1 l. H₂O at 15°; 21.8 g. at 100°. (Chrétien.)

2NiO,  $2I_2O_5$ ,  $3MoO_8+23H_2O$ . Easily sol.  $H_2O$ . Not decomp. by acids. (Maass, in H₂O. Dissert. 1901.)

Nickel molybdoiodate, acid, 2NiO, (I₂O₅,  $2\text{MoO}_8)_5 + 15\text{H}_2\text{O}$ .

Very sol. in H₂O. (Chrétien.)

Potassium molybdoiodate,

KHO2iO2MoO3OH, or KIO3, MoO3+ 2H₂O.

Ppt. S1. sol. in H2O. (Blomstrand, J. pr. (2) 40, 320.)

K₂O, I₂O₅, 2MoO₃. Only sl. sol. in cold H₂O; sol. on long boiling. 4.48 grs. are sol. in 1 l. H₂O at 12°. (Compare Blomstrand: not identical.) (Resenheim, A. 1899, 308. 50.)

+H₂O. Sl. sol. in H₂O. 3.45 g. are sol. in 1 l. H₂O at 15°; 28.38 g. at 100°. More sol. in dil. HNO₃+Aq. (Chrétien, A. ch. 1898, (7) **15.** 404.)

Potassium molybdoiodate, acid.

 $\begin{array}{c} (I_2O_5,\,2\mathrm{MeO_3})_5,\,4\mathrm{K}_2\mathrm{O}+7\mathrm{H}_2\mathrm{O},\\ (I_2O_5,\,2\mathrm{MeO_3})_3,\,2\mathrm{K}_2\mathrm{O}+13\mathrm{H}_2\mathrm{O},\\ (I_2O_5,\,2\mathrm{MeO_3})_2,\,\mathrm{K}_2\mathrm{O}+4\mathrm{H}_2\mathrm{O},\\ \end{array}$ 

 $(I_2O_5, 2MoO_3)_3, K_2O + 7H_2O.$  $(I_2O_5, 2MoO_3)_4, K_2O+5H_2O.$ 

(Chrétien.)

1½H₂O.

Insol. in H₂O.

4Ag₂O₅, 4I₂O₅, 3MoO₃. Sol. in H₂O containing HNO₃. (Chrétien.)

Sodium molybdoiodate, Na₂O, I₂O₅, 2MoO₃+  $H_2O$ .

Sl. sol. in  $H_2O$ . Sol. in  $HNO_3$  with decomp. (Chrétien, C. R. 1896, **123**. 178.)

1 l. H₂O dissolves 6.97 g. of the salt at 15°; 22.75 g. at 90°.

1 l. HNO₃+Aq (1:10) dissolves 23.78 g. of the salt at ord. temp. (Chrétien, A. ch. 1898, (7) **15.** 410.)

+2H₂O. Only sl. sol. in cold H₂O; sol. on long boiling. 3.35 grams are sol. in 1 l. H₂O at 12°. (Rosenheim, A. 1899, 308. 50.)

Strontium molybdoiodate, SrO, I₂O₅, 2MoO+ 3H₂O.

Very sol. in H₂O. (Chrétien, A. ch. 1898, (7) **15.** 415.)

Strontium molybdoiodate, acid, 3SrO, (I₂O₅,  $2\text{MoO}_{8})_{4}+15\text{H}_{2}\text{O}.$ 

1 l. H₂O dissolves 2.94 g. of the salt at 15°; 13.64 g. at 100°. (Chrétien.)

Uranyl molybdoiodate, 2UO₃, 4I₂O₅, 3MoO₃+ 3H₂O. (Chrétien.)

Zinc molybdoiodate, ZnO, I₂O₅, 2MoO₈+ 5H₂O.

1 l. H₂O dissolves 4.08 g. of the salt at 15°; 16.25 g. at 100°. (Chrétien.)

Zinc molybdoiodate acid, ZnO,  $(I_2O_5, 2MoO_8)_8 + 16H_2O$ .

Very sol. in H₂O. (Chrétien.)

## Molybdopèriodic acid.

Sol. in H₂O. (Blomstrand, Sv. V. A. H. Bih. **1892**. No. 6.)

 $4(NH_4)_2O$ ,  $1_2O_7$ ,  $8M_0O_3+7H_2O$ . Very sl. sol. in cold  $H_2O$ . (Blomstrand.)

Ammonium sodium  $\stackrel{\cdot}{\longrightarrow}$ , 2(NH₄)₂O, Na₂O, I₂O₇, 2MoO₃+10H₂O.

Very sl. sol. in H₂O. (B.)

Very sl. sol. in H₂O. (B.)

Calcium —, 5CaO, I₂O₇, 12MoO₃+26H₂O. Extremely sol. in H₂O. (Blomstrand.) 4CaO, I₂O₇, 12MoO₃+21H₂O. Less sol. in H₂O than above salt.

Lithium —,  $5 \text{Li}_2\text{O}$ ,  $1_2\text{O}_7$ ,  $12\text{MoO}_3 + 30\text{H}_2\text{O}$ . Not so efflorescent as Na salt. Sol. in  $\text{H}_2\text{O}$ . (B.)  $+18\text{H}_2\text{O}$ .) (B.)

Manganous sodium —, 2MnO, 3Na₂O, I₂O₇, 12MoO₃+32H₂O. Sol. in H₂O. (B.)

Potassium —,  $5K_2O$ ,  $I_2O_7$ ,  $12MoO_3+$  $12H_2O$ .

Not efflorescent. (Blomstrand.)

Sodium —, 5Na₂O, I₂O₇, 12MoO₃+34H₂O. Efflorescent. Very sol. in H₂O. (Blomstrand, Sv. V. A. H. Bih. **1892**. No. 6. 24.) +26H₂O. Not efflorescent. Very sol. in H₂O. (Blomstrand.)

Sodium strontium —, Na₂O, 4SrO, I₂O₇, 12MoO₃+20H₂O. Sol. in H₂O. (B.)

Molybdophosphoric acid. See Phosphomolybdic acid.

# $\mathbf{Molybdo} sub$ phosphoric acid.

Sodium molybdosubphosphate, Na₂[P(Mo₂O₇)₃]+8H₂O. Ppt. (Rosenheim, Z. anorg. 1913, 84. 222.)

#### Molybdophosphorous acid.

Potassium molybdophosphite, K₂[HP(Mo₂O₇)₃]+11H₂O. Difficultly sol. in cold H₂O. (Rosenheim, Z. anorg. 1913, **84.** 219.)

Sodium molybdophosphite,

 $Na_{2}[HP(Mo_{2}O_{7})_{3}]+11H_{2}O.$ 

Sl. sol. in  $H_2O$ . (Rosenheim, Z. anorg. 1913, **84**. 218.)

Molybdophosphovanadic acid.

See Phosphovanadiomolybdic acid.

## Molybdoselenious acid.

Ammonium molybdoselenite,  $4(NH_4)_2O$ ,  $3SeO_2$ ,  $10MoO_3+4H_2O$ .

More sol. in hot than cold H₂O; insol. in alcohol. (Péchard, A. ch. (6) 30. 403.)

Ammonium potassium molybdoselenite,

 $2(NH_4)_2O$ ,  $2K_2O$ ,  $3SeO_2$ ,  $10MoO_8 + 5H_2O$ .

Very sol. in  $H_2\mathrm{O}$ ; insol. in alcohol. (Péchard.)

Barium molybdoselenite, 4BaO,  $3SeO_2$ ,  $10MoO_3+3H_2O$ .

Sl. sol. in cold, easily in warm  $H_2O$ . (Péchard.)

Potassium molybdoselenite,  $4K_2O$ ,  $3SeO_2$ ,  $10MoO_3+5H_2O$ .

Very sol. in  $H_2O$ ; insol. in alcohol. (Péchard.)

Sodium molybdoselenite,  $4Na_2O$ ,  $3SeO_2$ ,  $10MoO_3+15H_2O$ .

Very efflorescent, and sol. in H₂O; insol. in alcohol. (Péchard.)

Molybdosilicic acid.

See Silicomolybdic acid.

Molybdosilicovanadic acid.

See Silicovanadiomolybdic acid.

Molybdosulphuric acid.

Appreciably sol. in  $H_2O$ . (Hoffmann, Dissert. 1903.)

Ammonium molybdosulphate, (NH₄)₂O, 2MoO₈, SO₈+4H₂O, and +9H₂O.

Decomp. by H₂O. (Weinland, Z. anorg.

1907, **54.** 261.) (NH₄)₂O, 2MoO₃, 3SO₃+10H₂O. (Weinland.)

Ammonium molybdenyl molybdosulphate, (NH₄)₂O, MoO₂, 7MoO₃, SO₃+xH₂O.

3NH₂, MoO₂, 7MoO₃, SO₃+10H₂O. Very sol. in H₂O. Very sl. sol. in NH₄ salts+Aq. Very stable toward alkali+Aq. (Péchard, C. R. 1893, **116**. 1441.)

5NH₃, MoO₂, 7MoO₃, SO₃+8H₂O. (Péchard, C. R. 1893, **116**. 1441.)

Potassium molybdosulphate,  $K_2O$ ,  $2MoO_3$ ,  $SO_3+2H_2O$ .

 $\rm K_2O,\,2MoO_3,\,SO_3+6H_2O.$   $\rm K_2O,\,2MoO_3,\,3SO_3+6H_2O.$  (Weinland, Z. anorg. 1907, **54.** 260.)

Potassium molybdenyl molybdosulphate, K₂O, MoO₂, 7MoO₃, SO₃+8H₂O. (Hoffmann, Dissert. **1903.**)

## Molybdosulphurous acid.

Ammonium molybdosulphite,  $4(NH_4)_2O$ ,  $3SO_2$ ,  $10MoO_3+6H_2O$ .

Sl. sol, in cold, more easily in hot H₂O. Insol, in alcohol. (Péchard, A. ch. (6) 30, 396.)

3(NH₄)₂O, 8MoO₃, 2SO₂+5H₂O. Sl. sol. in cold, easily sol. in warm H₂O. Easily decomp. by H₂O, and can be recryst. only in presence of an excess of sulphurous acid. (Rosenheim, Z. anorg. 1894, 7. 177.)

Ammonium potassium molybdosulphite, 2(NH₄)₂O, 2K₂O, 3SO₂, 10M₀O₃+9H₂O. Sl. sol. in cold H₂O. Decomp. on warming. (Péchard.)

Barium molybdosulphite, 2BaO,  $5MoO_3$ ,  $2SO_2+10H_2O$ .

(Rosenheim, Z. anorg. 1897, 15. 185.)

Cæsium molybdosulphite,  $2Cs_2O$ ,  $5MoO_8$ ,  $2SO_2+6H_2O$ .

Unstable. As K salt. (Rosenheim.)

Potassium molybdosulphite,  $4K_2O$ ,  $3SO_2$ ,  $10M_0O_3+10H_2O$ .

Very sl. sol. in  $H_2O$ , but decomp. on warming. (Péchard.)

2K₂O, 5M₀O₃, 2SO₂+H₂O. (Rosenheim.)

Rubidium molybdosulphite,  $2Rb_2O$ .  $5MoO_8$ ,  $2SO_2 + \frac{1}{2}H_2O$ .

As K salt. (Rosenheim.)

Sodium molybdosulphite,  $4Na_2O$ ,  $3SO_2$ ,  $10MoO_3+12H_2O$ .

Very sol, in cold H₂O; insol, in alcohol. (Péchard.)

 $+16 \rm{H}_2()$ . Very efflorescent. (Péchard.)  $2 \rm{Na}_2O$ ,  $5 \rm{MoO}_3$ ,  $2 \rm{SO}_2 + 8 \rm{H}_2O$ . In dry state it gradually gives off  $\rm{SO}_2$  and soon effloresces. (Rosenheim.)

Strontium molybdosulphite, 2SrO,  $5MoO_8$ ,  $2SO_2+12H_2O$ .

(Rosenheim.)

Molybdotitanic acid.

See Titanomolybdic acid.

Molybdous acid.

Magnesium molybdite,  $Mg_2Mo_3O_8=2MgO$ ,  $3MoO_2$ .

Not attacked by KOH, and HCl+Aq. (Muthmann, A. 238. 108.)

Zinc molybdite, Zn₂Mo₀O₂ = 2ZnO, 3MoO₂. Easily sol. in aqua regia. (Muthmann, A. **238**. 108.)

Molybdovanadates.

See Vanadiomolybortes.

Neodymicotungstic acid.

Ammonium neadymicotungstate,  $3(NH_4)_2O$ ,  $Nd_2O_3$ ,  $16WO_3+20H_2O$ .

Difficultly sol. in  $H_2O$ . (E. F. Smith, J. Am. Chem. Soc 1904, **26**, 1480.)

Barium neodymicotungstate, 6BaO, Nd₂O₃, 16WO₃+17H₂O. Insol. in H₂O. (E. F. Smith.)

## Neodymium.

See also under Didymium.

Neo lymium bromide, NdBr₃. (Matignon, C. R. 1905, **140**. 1638.)

Neodymium carbide, NdC2.

Decomp. by  $H_2O$ ; insol. in conc. HNO₃; decomp. by dil. HNO₃. (Moissan, C. R. 1900, **131**. 597.)

Neodymium chloride, NdCl₃.

100 g.  $\rm H_2O$  dissolve 98.68 g. NdCl3 at 13°; 140.4 g. at 100°.

Sp. gr. at 15°/4° of the solution sat. at 13° = 1.74. (Matignon, A. ch. 1906, (8) **8.** 249.)

44.5 g. are sol. in 100 g. abs. alcohol at 20°. 1.8 g. " " " pyridine at 15°.

Insol. in ether, CHCl₃, quinoline, toluidine, etc. Sl. sol. in aniline and in phenylhydrazine. (Matignon, A. ch. 1906, (8) 8. 266.)

 $+6\mathrm{H}_2\mathrm{O}$ . Deliquescent. At 13°, 100 pts.  $\mathrm{H}_2\mathrm{O}$  dissolve 246.2 pts, of the hydrated salt.

At 100°, 100 pts. H₂O dissolve 511 pts. of hydrated salt.

Sat. solution at 13° has a sp. gr.  $15^{\circ}/4^{\circ} = 1.741$ . (Matignon, C. R. 1901, 133. 289.)

Neodymium chloride ammonia, NdCla

Decomposes on heating into NdCl₂+NH₂; +2NH₂; +4NH₃; +5NH₃; +8NH₃; and +11NH₃. (Matignon, C. R. 1906, **142**. 1043.)

## Neodymium hydroxide.

Sol. in citric acid. (Baskerville, J. Am. Chem. Soc. 1904, 26. 49.)

Solubility in glycerine+Aq containing about 60% by vol. of glycerine. 100 ccm. of the solution contain 4.5 g. neodymium oxide. (Müller, Z. anorg. 1905, 43. 322.)

## Neodymium hydride, NdH₂ (?).

Slowly attacked by boiling H₂O. Sol. in acids with violent evolution of H₂. (Muthmann, A. 1904, 331. 58.)

# Neodymium iodide, NdIs.

(Matignon, C. R. 1905, 140. 1638.)

## Neodymium nitride, NdN.

Decomp. in moist air with evolution of NH₈. (Mutemann, A. 1904, 331. 59.)

## Neodymium oxide, Nd₂O₃.

Easily sol. in acids. (v. Welsbach, M. 6.

## Neodymium oxychloride, NdOCl.

(Matignon, C. R. 1905, 140. 1638.)

## Neon, Ne.

Less sol. than argon in H2O; sol. in liquid oxygen. (Ramsay, B. 1898, 31, 3118.)

## Absorption by H₂O at t°.

$\mathbf{t}^{\mathbf{o}}$	Coefficient of absorption
0	0.0114
10	0.0118
20	0.0147
30	0.0158
40	0.0203
50	0.0317

(Antropoff, Roy. Soc. Proc. 1910, 83. A, 480.)

## Nickel, Ni.

Not attacked by H₂O. Very slowly sol. in dilute H₈PO₄, H₂SO₄, or HCl+Aq. (Tup-

puti, A. ch. 78. 133.)

Very easily attacked by HNO₃+Aq, and difficultly by hot H₂SO₄. When pure, is converted into passive condition by conc. HNO₃.

(Nickles, C. R. 38. 284.)

Very sl. attacked by cold acids, except

HNO₃+Aq. (Tissier, C. R. 50. 106.)

Not attacked by NaOH+Aq. (Venator, Dingl, **261.** 133.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20, 828.)

#### Nickel amide, $Ni(NH_2)_2$ .

Decomp. by H₂O; slowly sol. in min. acids. Insol. in liquid NH₃. (Bohart, J. phys. Chem. 1915, **19.** 560.)

#### Nickel antimonide, NiSb.

Insol. in HCl+Aq; easily sol. in HNO₈+ Aq. (Christofle, 1863.)

Insol. in acids: easily Min. Breithauptite. sol. in aqua regia.

Ni₃Sb₂. (Christofle.)

#### Nickel antimonide sulphide, $NiSb_2$ , $NiS_2 =$ NiSbS.

Min. Nickel glance, Ullmannite.

Decomp. by HNO₃+Aq; completely sol. in agua regia with separation of S.

#### Nickel arsenide, NiAs.

Min. Niccolite. Sol. in conc. HNO₃+Aq with separation of As₂O₃; more easily sol. in aqua regia.

Min. Chloanthite, Rammelsbergite. NiAs2. Sol. in HNO3+Aq.

Ni₃As₂. Sol. in HNO₃ and in aqua regia. Readily attacked by fused alkali. (Granger, C. R. 1900, **130.** 915.)

#### Nickel arsenide sulphide, NiAs₂, NiS₂.

Min. Gersdorffite. Partly sol. in HNO3+ Aq with separation of S and As₂O₃; not attacked by KOH+Aq.

#### Nickel azoimide, basic, Ni(OH)N₃

Insol. in  $H_2O$ . (Curtius, J. pr. 1898, (2) **58.** 300.)

#### Nickel azoimide, $NiN_6 + H_2O$ .

Sol. in H₂O; insol. in alcohol and ether. (Curtius, J. pr. 1900, (2) 61. 418.)

Nickel potassium azoimide, Ni(N₃)₂, KN₃ (?). Sol. in H₂O. (Curtius, J. pr. 1898, (2) 58. 302.)

#### Nickel boride, Ni₂B.

Attacked by HNO₃. Slowly sol. in HCl. (Jassoneix, C. R. 1907, 145. 240.) Slowly sol, in hot

NiB. Decomp. by moist air and by alkali nitrates, chlorates, hydroxides and carbonates; decomp. by steam at red heat. Not attacked by HCl. Easily attacked by HNO₃ and aqua regia; by H₂SO₄ only on heating. (Moissan, C. R. 1896, 122, 425.

NiB₂. (Jassoneix, C. R. 1907, **145**. 241.)

### Nickel bromide, NiBr₂.

Deliquescent. Slowly sol. in H₂O. Sat. NiBr₂+Aq contains at: 21° -6° +19° 38° 38° -21° ∔19° 47.1 51.7 58.9% NiBr2, 56.6

58° 77° 98° 100° 60.5 60.3 61.0 60.7% NiBr₂. 61.0 (Étard, A. ch. 1894, (7) 2. 542.)

Somewhat hygroscopic. Nearly insol. in cold H₂O but begins to dissolve appreciably at 50°, and somewhat more rapidly at 90°, but even at that temp. 1 g. requires 1-2 hours for solution. HNO₃ does not appreciably hasten solution. (Richards and Cushman, Z. anorg. 1898, 16. 169.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

+3H₂O. Deliquescent. Very sol. in H₂O, HCl+Aq, NH₄OH+Aq, alcohol, and ether. (Berthemot, A. ch. 44. 389.)

(Bolschakoff, C. C. 1897, II. +6H₂O. 331 and 726.)

(Bolschakoff, C. C. 1897, II. +9H₂O.726 and 331.)

## Nickel stannic bromide.

See Bromostannate, nickel.

## Nickel bromide ammonia, NiBr₂, 6NH₆

Sol. in little H₂O, but decomp. by more. (Rammelsberg, Pogg. 55. 243.)

Sol, in warm conc. NH4OH+Aq; insol. in cold. (Richards and Cushmann, Z. anorg. 1898, 16. 175.)

Nickel bromide cupric oxide, NiBr₂, 3CuO+ 4H₂O.

Not decomp, by H₂O. (Mailhe, A. ch. 1902, (7) **27.** 377.)

## Nickel bromide hydrazine, NiBr₂, 2N₂H₄.

Easily sol. in dil. acids and NH₄OH+Aq. NiBr₂, 3N₂H₄. Sol. in dil. acids. (Franzen, Z. anorg. 1908, 60. 263-4.)

#### Nickel carbonyl, Ni(CO)4.

Insol. in H2O; not attacked by dil. acids or alkalies or conc. HCl+Aq. Easily sol. in conc. HNO₈+Aq and in aqua regia. Sol. in alcohol, benzene, and chloroform. (Mond, Langer, and Quincke, Chem. Soc. 57. 749.)

Sol. in hydrocarbons, especially oil of tur-pentine. (Berthelot, C. R. 1891, 112. 1346.)

Sol. in acetone, toluene, methyl and ethyl alcohol, etc. (Lenher and Loos, J. Am. Chem. Soc. 1900, 22. 114.)

## Nickel chloride, NiCl₂.

Anhydrous. Not immediately sol. in H2O, but gradually dissolves on boiling or by addition of HCl+Aq. Deliquesces on air, and is then easily sol. in  $H_2O$ . Sol. in  $NH_4OH+Aq$ . Sol. in alcohol. Sol. in hot HCl+Aq only slowly.

Sp. gr. of NiCl₂+Aq containing:

20 25% NiCl₂. 10 15 1.0493 1.0995 1.1578 1.2245 1.3000 (B. Franz, J. pr. (2) 5. 285.)

Sp. gr. of NiCl₂+Aq containing, in 1000 grms. H₂O, g. NiCl₂+7H₂O at 23.1°:

128 g.  $(=\frac{1}{2} \text{ mol.})$  256 512 384 1.149 1.187 1.107 1.057 640 768 896 1024 1.220 1.249 1.276 1.301

Containing g. NiCl₂ (anhydrous): 65 g.  $(=\frac{1}{2} \text{ mol.})$  130 195 260 325 1.061 1.119 1.176 1.230 1.284 1.335

Gerlach, Z. anal. 28. 468.)

Sp. gr. of NiCl2+Aq at room temp. containing:

30.40% NiCl₂. 22.69 Ĭ1.449 1.2264 1.3371 1.1v93 (Wagner, W. Alin. 1883, 18. 269.)

Sp. gr. of NiCl₂+Aq at 25°.

Concentration of NiCl2+Aq	Sp. gr.
1-nermal 1/2- " 1/4- " 1/8- "	1.0591 1.0308 1.0144 1.9067

(Wagner, Z. phys. Ch. 1890, 5. 39.)

Insol, in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 828.) 100 pts. absolute alcohol dissolve at room temperature 10.05 pts. NiCl₂. (Bödtker, Z. phys. Ch. 1897, **22**. 511.)

Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, **51.** 236.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.) Solubility in glycol = 16.1-16.3%. Coninck, C. C. **1905**, II. 1234.) (de

Sl. sol. in benzonitrile. (Naumann. B.

1914, 47, 1369.) Anhydrous NiCl₂ is insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.) +H₂O. (Baubigny.)

1 l. sat. HCl+Aq at 12° contains 40 g. NiCl₂ dissolved from NiCl₂, H₂O. (Ditte.) +2H₂O. (Sabatier, Bull. Soc. (3) 1. 88.)

 $+6\mathrm{H}_2\mathrm{O}$ . Deliquescent in moist, efflorescent in dry air; sol. in H2O with evolution of heat. Sol. in 1.5 to 2 pts. H₂O. Easily sol.

in alcohol. (Tupputi.)
1 l. H₂O dissolves 600 g. NiCl₂+6H₂O. (Ditte, A. ch. 1879, (5) 22. 551.)

Sat. aq. solution contains at:

—17° --16°  $+10^{\circ}$ 18° 29.7 31.037.338.5% NiCl₂,

78° 38° 59° 96° 46.7% NiCl₂. 41.9 45.046.6 (Étard, A. ch. 1894, (7) 2. 539.)

Solubility of NiCl₂+6H₂O = 37.53% NiCl₂ at 25°. (Foote, J. Am. Chem. Soc. 1912, 34. 882.)

100 pts. absolute alcohol dissolve at room temperature 53.71 pts. NiCl₂+6H₂O. (Bödtker, Z. phys. Ch. 1897, **22.** 511.) 588 W

+7H₂O. 100 g. absolute alcohol dissolve 2.16 g. NiCl₂+7H₂O at 17° and 1.4 g. at 3°. (de Bruyn, R. t. c. 1892, **11**. 156.)

Nickel hydrogen chloride,  $3NiCl_2$ ,  $2HCl+1\frac{1}{2}H_2O$ .

(Reitzenstein, Z. anorg. 1898, 18. 270.)

Nickel rubidium chloride, NiCl₂, 2RbCl. Easily sol. in H₂O and HCl+Aq. (Godeffroy, B. 8. 9.)

Nickel thallic chloride, NiCl₂, 2TlCl₃+8H₂O. Deliquescent. Can be cryst. from H₂O. (Gewecke, A. 1909, **366**. 221.)

Nickel tin (stannous) chloride,  $NiCl_2$ ,  $SnCl_2 + 6H_2O$ .

Sol. in H₂O. (Jörgensen.)

Nickel tin (stannic) chloride. See Chlorostannate, nickel.

Nickel chloride ammonia, NiCl₂, 2NH₃.

Sol. in  $H_2O$ , decomp. on boiling; insol. in alcohol.

NiCl₂, 3NH₃+3H₂O. (André, C. R. 1888, **106.** 937.)

NiCl₂, 6NH₃. Sol. in cold H₂O without decomp. Insol. in alcohol. Very sl. sol. in conc. NH₄OH+Aq.

Nearly insol. in a sat. solution of NH₄Cl in NH₄OH+Aq. (Sörensen, Z. anorg. 1894, **5.** 363.)

Nickel chloride cupric oxide, NiCl₂, 3CuO+4H₂O.

Not decomp. by  $H_2O$ . (Mailhe, A. ch. 1902, (7) **27**, 377.)

Nickel chloride hydrazine, NiCl₂, 2N₂H₄.
Sol. in dil. acids and NH₃+Aq. (Franzen, Z. anorg. 1908, 60. 262.)
NiCl₂, 3N₂H₄. Sol. in dil. acids. (F.)

#### Nickel fluoride, NiF₂.

Sol. in about 5000 pts. H₂O; insol. in alcohol and ether. Not attacked by HCl, HNO₃, or H₂SO₄ even when hot. (Poulenc, C. R. **114**. 1426.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 828.)

+2H₂O. Decomp. by pure H₂O. Sol. in H₂O acidulated with HF. (Berzelius.) +3H₂O. (Clarke, Sill. Am. J. (3) **13**. 291.)

Nickel hydrogen fluoride, NiF₂, 5HF+6H₂O.
Easily sol. in H₂O and dil. acids. Sol. in NH₄OH+Aq with decomp. (Böhm, Z. anorg. 1905, **43**. 330.)

Nickel potassium fluoride, NiF₂, KF. +H₂O. Sol. in H₂O. (Wagner, B. 19. 896.)  $\mathrm{NiF}_2$ ,  $\mathrm{2KF}$ .  $\mathrm{Sl.\ sol.\ in\ H}_2\mathrm{O}$ . Scarcely sol. in methyl or ethyl alcohol or benzene. (Poulenc, C. R. 114. 747.)

Nickel potassium zirconium fluoride. See Fluozirconate, nickel potassium.

Nickel manganic fluoride. See Fluomanganate, nickel.

Nickel sodium fluoride, NiF₂, NaF+H₂O. Sol. in H₂O. (Wagner, B. **19**. 896.)

Nickel stannic fluoride.

See Fluostannate, nickel.

Nickel titanium fluoride. See Fluotitanate, nickel.

Nickel tungstyl fluoride. See Fluoxytungstate, nickel.

Nickel vanadium fluoride. See Fluovanadate, nickel.

Nickel zirconium fluoride. See Fluozirconate, nickel.

Nickel fluoride ammonia,  $5NiF_2$ ,  $6NH_8+8H_2O$ .

Insol. in cold  $H_2O$ . Decomp. by hot  $H_2O$ . Easily sol. in dil. acids. (Böhm, Z. anorg. 1905, 43. 334.)

Nickelous hydroxide, 4NiO₂H₂, H₂O.

Very sl. sol. in  $H_2O$ . Sol. in acids. Insol. in KOH or NaOH+Aq. Somewhat difficultly sol. in (NH₄)₂CO₃ or NH₄OH+Aq, but easily sol. in presence of NH₄ salts. Sol. in NH₄ salts+Aq. Sol. in KCN+Aq. (Rodgers, **1634.**)

Sol. in boiling NH₄Cl+Aq.

## NiO₂H₂. Solubility in NH₄OH+Aq at 25°.

NH ₃ norm.	G. Ni per l.	G. NiO ₂ H ₂ per l.
1	0.084	0.00287
2	0.170	0.00579
3	0.257	0.00875
4	0.360	0.01227
4.911	2.580	0.0879
3.900	1.780	0.0607
2.101	0.835	0.0284
0.602	0.158	0.0054

The non-agreement of the results is due to the formation of different modifications of  $NiO_2H_2$ .

(Bonsdorff, Z. anorg. 1904, 41. 185.)

Solubility in NH₄OH+Aq. Conc. of Ni = 0.014N in 1N NH₄OH+Aq. ""=0.036N" 2N NH₄OH+Aq.

(Starck, B. 1903, 36. 3840.)

Sol. in hot NH4F+Aq. (von Helmolt, Z anorg. 1893, **3.** 133.)

Insol. in methyl or amyl amine. (Wurtz.) Not pptd. in presence of Na citrate. (Spiller.)

Not pptd. in presence of a large number of non-volatile organic substances, particularly  $H_2C_4H_4O_6$ . (Rose.)

## Nickelonickelic hydroxide, Ni₃O₄, 2H₂O.

Sol. in acids; insol. in H₂O and alkalies. (Dudley, J. Am. Chem. Soc. 1896, 18, 901.)

## Nickelic hydroxide, Ni₂O₃, 2H₂O (?).

(Wernicke, Pogg. 141. 122.)

Ni₂O₃, 3H₂O (?). Sol. in acids as nickelous salts. Not attacked by boiling KOH or NaOH+Aq. Slowly sol. in HC₂H₃O₂+Aq. Sol. in NH₄OH, and NH₄ salts+Aq. (Od-

#### Nickel iodide, NiI₂.

Deliquescent and sol. in H₂O. (Erdmann, J. pr. 7. 254.)

Sat. Nil₂+Aq contains at:

Easily sol. in +6H₂O. Deliquescent. H₂O. (Erdmann.)

#### Nickel iodide ammonia, NiI₂, 4NH₃.

(Rammelsberg, Pogg. 48. 119.)

NiI₂, 6NH₃. Decomp. by H₂O Sol. in warm dil. NH₄OH+Aq. Very sl. sol. in conc. NH₄OH+Aq. (Erdmann.)

## Nickel iodide hydrazine, NiI₂(N₂H₂)₂.

Insol. in H₂O. Sol. in acids. (Franzen, Z. anorg. 1911, 70. 150.)

#### Nickel suboxide, $Ni_3O_2+H_2O$ .

Insol. in H₂O; sol. in HCl and H₂SO₄ and HNO₈; also in KCN+Aq. (Moore, C. N. 1895, 71. 81.)

## Nickelous oxide, NiO.

Insol. in H2O. Sol. in conc. acids, except when crystalline, when it is scarcely attacked by acids. (Ebelmen, C. R. 33. 256.)

Very sl. sol. in boiling NH₄Cl+Aq. (De-

marçay.)

Very slowly sol. in NH₄OH+Aq. Insol. in

KOH, and NaOH+Aq.

Sol. in min. acids, especially HCl+Aq, tacke when warmed; insol. in HC₂H₂O₂, NH₄Cl, 232.)

and NH4SCN+Aq. Insol. in conc. NaOH+ Aq. (Zimmerman, A. 232. 324.)

1 l. solution containing 418.6 g. sugar and 34.3 g CaO dissolves 0.29 g. NiO. (Bodenbendér, J. B. 1865. 600.)

Min. Bunsenite.

#### Nickelonickelic oxide, Ni₃O₄.

Sol. in acids. (Baubigny, C. R. 87, 1082.) +2H₂O. Insol. in H₂O, and in alkalies+ Aq. Sol. in acids. (Dudley, J. Am. Chem. Soc. 1896, 18. 901.)

6NiO, Ni₂O₃-H₂C (Schönhein, J. pr. 93.

## Nickelia oxide, Ni₂O₃.

Sol. in HNO3,  $H_2SO_4$  or HCl+Aq with decomp., also in  $NH_4OH$  and  $(NH_4)_2CO_3+$ Aq. (Winkelblech, A. 15, 259.)

### Nickel perovide, Ni₃O₅ (?).

(Bayley, C. N. 39. 81.)

Correct composition is Ni₂O₃. (Carnot, C. R. **108**. 610.)

Ni₄O₇ (?). (Wicke, Zeit. Ch. **1865**. 303.) NiO₄. (Hollard, C. R. 1903, **136**. 230.)

#### Nickel oxychloride.

Sl. sol. in H₂O. (Berzelius.) N.Cl₂, SNiO+13H₂O. (Raoult, C. R. 69. 826.)

#### Nickel oxylodide, $NiI_2$ , $9NiO+15H_2O$ .

Insol. in H₂O. Sol. in HNO₃+Aq or acetic acid. Insol. in NH4OH+Aq. Alcohol dissolves out NiI₂. (Erdmann.)

#### Nickel oxyselenide.

Almost insol, in boiling HCl; decomp, by HNO₃. (Fonzes-Diacon, C. R. 1900, 131. 557.)

#### Nickel phosphide, Ni₂P.

Sol. in HNO₈+Aq and aqua regia; insol. in

HCl+Aq. (Struve, J. pr. 79. 321.) Sol. in aqua regia and in HNO₃; sol. in fused alkali. (Granger, Bull. Soc. 1896, (3) **15.** 1089.)

Easily sol. in HNO₃. (Granger, C. N. 1898.

**77.** 229.)

When prepared by heating phosphorus, copper and nickel in electric furnace, is insolatin all acids except a mixture of HNO₃ and HF. (Maronneau, C. R. 1900, **130**. 657.)

NiP₂. Sol. in HNO₃; decomp. by fused aOH. (Jolibois, C. R. 1910, **150**. 107.) NaOH. NiP₃. Sol. in HNO₃; decomp. by fused

NaOH. (J.)Insol. in HNO₈, HCl and aqua Ni₂P₈. regia; stable in the air even when heated (Granger, Bull. Soc. 1896, (3) 15. 1086.)

Ni₃P₂. Not attacked by HCl. Easily attacked by HNO₈. (Rose, Pogg. 1832, 24. N₅P₅. Sol. in HNO₅, aqua regia and in fused alkali. (Granger, C. R. 1896, 123. 177.)

#### Nickel phosphosulphide, Ni₂PS₂.

Decomp. by hot H₂O or by aqua regia. Sl. attacked by HNO₃. (Ferrand, A. ch. 1899, (7) **17.** 417.)

## Nickel semiselenide, Ni₂Se.

Almost insol, in boiling HCl; decomp, by HNO3. (Fonzes-Diacon, C. R. 1900, 131. 557.)

#### Nickel selenide, NiSe.

Insol. in H₂O, dil. or conc. HCl+Aq; slowly sol. in NO₃+Aq; easily in aqua regia. (Little, A. 112. 211.)

Almost insol. in boiling HCl; decomp. by (Fonzes-Diacon, C. R. 1900, 131. HNO₈. 557.)

NiSe₂. (Fonzes-Diacon.)

Ni₂Se₃

Almost insol. in boiling HCl: Ni₃Se₄ decomp. by HNO_a. (Fonzes-Diacon.)

#### Nickel silicide, Ni₂Si.

Sol, in HF and aqua regia; insol, in cold H₂O; decomp. by steam at red heat; sol. in fused alkali carbonates. (Vigouroux, C. R. 1895, 121. 687.)

#### Nickel semisulphide, Ni₂S.

Sol. in HNO₃+Aq, with residue of S. Difficultly sol. in conc. HCl+Aq; insol. in dil. HCl+Aq. (Arfvedson, Pogg. 1. 65; Gautier, C. R. 108. 1111.)

Does not exist. (Bornemann, C. A. 1908. 1686.)

#### Nickel monosulphide, NiS.

Anhydrous. Insol. in H₂O, HCl, or H₂SO₄ +Aq. Sol. in HNO₃+Aq or aqua regia. Min. Millerite.

 $+xH_2O$ . Insol. in  $H_2O$ , but decomp. by H₂O in contact with the air (Clermont and Guiot, C. R. 84. 714), or by boiling with H₂O. (Geitner, A. 139. 354.)

When pptd. with (NH₄)₂S, is somewhat sol. in H₂O. 11. H₂O dissolves 39.87×10 ⁶ moles NiS at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.)

Very sl. sol. in dil. HCl+Aq, and still less

in HC₂H₃O₂+Aq. (Fresenius.) More sol. in HNO₃+Aq, and easily in aqua

Somewhat sol. in NH4OH+Aq or solutions of alkali sulphides. Insol. in NH4SH+Aq. (Fresenius.)

Sol. at moment of formation in Na₂S but not in (NH₄)₂S+Aq. (Villiers, C. R. 1894, **119**. 1**2**64.

Sol. while yet moist in H₂SO₃+Aq. (Ber-

When recently pptd., sol. in KCN+Aq.

(Haidlen.)

Pptd. in presence of non-volatile organic substances as tartaric acid, etc. (Rose.)

Sol. in potassium thiocarbonate + Aq. (Rosenbladt, Z. anal. 26. 15.)

Exists in a colloidal form in a very dil. solution. (Winnsinger, Bull. Soc. (2) 49. 452.) a modification:

Very sol, in 2N-HCl+Aq sat, with H₂S.

β modification:

0.033 g. is sol. in 1 l. 2N-HCl+Aq sat. with  $H_2S$ ; very sol. in 2N-HCl+Aq. γ modification:

Insol. in 2N-HCl+Aq sat. with H2S. 0.013 g. is sol. in 2N-HCl+Aq. C. C. 1914, I. 19.)

## Nickel sulphide, Ni₃S₂.

(Bornemann, C. A. 1908. 1686.)

Ni₃S₄. (Bornemann.)

Ni₆S₅. (Bornemann.)

Ni₄S₅. Min. Polydymite. Insol. in HCl+ Sol, in HNO₈+Aq with separation of S. Aq. Sol. in HNO₃+Aq with Sopration Ni₆S₇. Min. Beyrichite. Sol. in HCl+Aq.

## Nickel disulphide, NiS₂.

(Fellenberg, Pogg. 50, 75.)

Does not exist. (Bellucci, C. A. 1909. 293.)

## Nickel potassium sulphide, 3NiS, K₂S.

Insol. in H₂O. (Schneider, J. pr. (2) 9. 209.)

K₂Ni₁₁S₁₀. Not attacked by hot (NH₄)₂S; slowly attacked by HCl or cold aqua regia; quickly by hot aqua regia. HF and H₂SO₄ dissolve only on heating. Insol. in organic acids, alkalies and 12% HCl, also in KCN,  $AgNO_3$  or  $CuSO_4 + Aq$ . (Milbauer, Z. anorg.) 1904, **42**. 447.)

#### Nickel telluride, Ni₂Te₃.

Min. Melonite. Sol. in HNO₃+Aq. NiTe. (Fabre, C. R. 105. 277.)

## Nickelicotungstic acid.

Ammonium nickelicotungstate, 2(NH₄)₂O,  $2Ni_{2}O_{3}$ ,  $8WO_{3}+14H_{2}O$ .

(Rogers and Smith, J. Am. Chem. Soc. 1904, **26.** 1476.)

 $3(NH_4)_2O$ ,  $Ni_2O_3$ ,  $16WO_3 + 22H_2O$ . Very sl. sol. in H₂O. (Rogers and Smith.)

Barium nickelicotungstate, 19BaO, Ni₂O₈, 16WO₃.

Ppt. Very insol. in H₂O. (E. F. Smith.)

#### Nickelimolybdic acid.

Barium nickelimolybdate, 3BaO, NiO₂,  $9\text{MoO}_{8} + 12\text{H}_{2}\text{O}$ .

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 702.)

 $\begin{array}{ccc} \textbf{Potassium} & \textbf{nickelimolybdate,} & 3K_2O, & NiO_2, \\ & 9MoO_3 + 6\frac{1}{2}H_2O. & \end{array}$ 

Very insol. even in hot H₂O. (Hall.)

## Nickelomolybdic acid.

Ammonium hydrogen nickelomolybdate,  $(NH_4)_4H_6[Ni(MoO_4)_6]+5H_2O$ .

Sl. sol. in  $H_2O$ , easily in dil. acids. (Barbieri, C. A. 1915. 897.)

Barium hydrogen nickelomolybdate, Ba₂H₆[Ni(MoO₄)₆]+10H₂O.

Ppt. (Barbieri.)

Potassium hydrogen nickelomolybdate, K₄H₆[Ni(MoO₄)₆]+5H₂O.

Sl. sol. in H₂O, easily in acids. (Barbieri.)

Silver hydrogen nickelomolybdate,  $Ag_4H_6[Ni(MoO_4)_6]+3H_2O$ .

Insol. in H₂O; sol. in NH₄OH, or HNO₃+Aq. (Barbieri.)

#### Nickelonickelous acid.

Potassium nickelonickelite, K₂Ni₂O₄ or K₂O, NiO, NiO₂.

(Hofmann and Hiendlmaier, B. 1906, 39. 3186.)

 $\begin{array}{ll} \mbox{Sodium} & \mbox{nickelonickelite,} & Na_2\,Ni_3O_6 = Na_2O, \\ & NiO, \,\, 2NiO_2. \end{array}$ 

(Bellucci and Rubegni, C. C. 1907, I. 794.)

## Nickelous acid.

Barium dinickelite, BaO, 2NiO₂.

Unstable; decomp. by cold H₂O; slowly and very rapidly by hot H₂O. (Dufau, C. R. 1896, **123**. 496.)

#### Niobium, Nb.

For niobium and its compounds, see columbium, Cb, and the corresponding compounds.

## Nitramide, NH₂NO₂.

Decomp. by conc. H₂SO₄. Easily sol. in H₂O, alcohol, ether and acetone. Less sol. in benzol. Almost insol. in ligroin. (Thiele and Lachman, A. 1895, **288**. 297.)

Sol. in ether, insol. in petroleum ether. Very unstable; decomp. by hot H₂O. (Thiele and Lachman, B. 1894, 27. 1909.)

Nitratochloroplatinamine comps.

See Chloronitratoplatinamine comps.

Nitratocobalt octamine comps. See Nitratocotamine cobaltic comps.

# Nitratooctamine cobaltic carbonate,

(NO₃)₂Co₃(NH₃)₈(CO₃)₂+H₂O. Less sol. than other octainine carbonates. (Vortmann and Blasberg, B. 22. 2650.)

--- chloride, (NO₃)₂Co₂(NH₃)₈Cl₄+4H₂Q. (Vortmann and Blasberg, B. **22**. 2652.)

--- iodide, (NO₃)₂Co₂(NH₂)₈I₄+2H₂O.
(Vortmann and Blasberg.)

---- nitrate.

See Octamine cobaltic nitrate.

741₂O. (Vorthlam and Blasberg, B. **22.** 2652.)

# Nitratoplatinamine nitrate,

 $(N\bar{O}_3)_2 Pt(NH_3NO_3)_2$ .

Sl. sol. in cold, more easily in hot  $H_2O$ ; easily sol. in dil,  $HNO_3+A_{11}$ . (Cleve.)

— nitrite,  $(NO_3)_2Pt(NH_3NO_2)_2$ . Fasily sol. in  $H_2O$ . (Cleve.)

# Nitratoplatindiamine chloride,

(NO₃)₂Pt(N₂H₆Cl)₂+H₂O.

Moderately sol. in cold, very easily in hot  $H_2O$ .

chromate,  $(NO_3)_2Pt(N_2H_6)_2CrO_4$ . Nearly insol. in  $H_2O$ . (Cleve.)

---- dichromate,  $(NO_3)_2Pt(N_2H_6)_2Cr_2O_7$ . Sl. sol. in  $H_2O$ .

mitrate, (NO₃)₂Pt(N₂H₆NO₃)₂. Sol. in H₂O, Insol. in HNO₃+Aq.

---- phosphate,  $NO_3Pt(N_2H_6)_2+H_2O$ . V  $PO_4$ 

Very sl. sol. in H₂O. (Cleve.)

Nitratodiplatindiamin e nitrate, (NO₃)₂Pt₂(N₂H₆)₄(NO₃)₄. Sol. in H₂O with decomp.

# Nitratopurpureocobaltic bromide, $Co(NO_3)(NH_3)_5Br_2$ .

Resembles the chloride in its properties. (Jorgensen, J. pr. (2) 23. 227.)

# 542

# Nitratopurpureocobaltic carbonate, $Co(NO_3)(NH_8)_5(CO_8) + H_2O$ .

Less sol. in H₂O than other purpureocarbonates. (Vortmann and Blasberg, B. 22. 2648.)

## chloride, Co(NO₃)(NH₃)₅Cl₂.

Sl. sol, in cold H₂O, but more than nitrate; more easily sol, in hot H₂O, but is converted into roseo salt. Insol in HCl+Aq or alcohol. (Jörgensen, J. pr. (2) 23. 227.)

# mercuric chloride,

Co(NO₃)(NH₃)₅Cl₂, HgCl₂.

Not wholly ♠nsol. in H₂O. (Jörgensen.)

Ppt. Nearly insol. in cold  $H_2O$ . (Jörgensen.)

## ---- dichromate.

Si. sol. in  $H_2O$ , but more easily than the neutral salt. (Jörgensen.)

---- dithionate,  $Co(NO_3)(NH_3)_{\delta}S_2O_6$ .

Very sl. sol. in cold, more easily in hot  $H_2O$ . (Jörgensen.)

## nitrate, $Co(NO_3)(NH_3)_5(NO_3)_2$ .

Sol, in 273 pts. H₂O at 16°. Much more sol. in hot H₂O containing HNO₃. (Jörgensen, J. pr. (2) **23**. 227.)

cobaltic nitrite,  $3\text{Co(NO}_3)(\text{NH}_3)_5$ ,  $2\text{Co(NO}_2)_6+2\text{H}_2\text{O}$ .

Very sl. sol, in  $H_2O$ . (Jörgensen, Z. anorg. **5. 176**.)

---- diamine cobaltic nitrite, Co(NO₃)(NH₃)₅
(NO₂)₄Co(NH₃)₂.

Ppt. (Jörgensen.)

oxalate, Co(NO₃)(NH₃)₅C₂O₄.

Ppt.

--- sulphate, Co(NO₃)(NH₃)₅SO₄+H₂O.

Rather difficulty sol in cold H₂O. (13)

Rather difficultly sol. in cold  $H_2O$ . (Jörgensen.)

# Nitratopurpureorhodium chloride, (NO₃)Rh(NH₃)₅Cl₂.

Sl. sol. in cold H₂O, but more easily than the nitrate. (Jörgensen, J. pr. (2) 34. 394.)

— dithionate, (NO₃)Rh(NH₂)_bS₂O₆+H₂O. Nearly insol. in cold H₂O. (Jörgensen.)

## Nitratopurpureorhodium nitrate, (NO₃)Rh(NH₃)₅(NO₃)₂.

Very sl. sol. in cold H₂O. Insol. in alcohol. (Jörgensen.)

## Nitric acid, HNO3.

Miscible with H₂O. When HNO₃+Aq is distilled at 760 mm. pressure, an acid containing 68% HNO₃ is formed, which boils at 120.5° under 735 mm. pressure. By distilling at 150 mm. pressure the acid contains 67.6% HNO₃; at 70 mm. (b.-pt. 65-70°) the acid contains 66.7% HNO₃. The percentage of HNO₃ in the liquid obtained by passing dry air into HNO₃+Aq containing 64-68% HNO₃ varies with the temp.; the higher the temp. the greater the percentage of HNO₃. (Roscoe, Chem. Soc. 13. 150.)

HNO₃+Aq of 1.51 sp. gr. contains 67° N2O₈.

" 1 42 " " 54

" 1 35 " " 44 4

" 1 315 " " 38.6

(Dalton.)

HNO₃+Aq of 1.298 sp. gr. contains 36.75% N₂O₅.

(Kirwan.) HNO₃+Aq of 1,298 sp. gr. contains 48%. (Davy.) HNO₃+Aq of 1,298 sp. gr. contains 32-33%. (Berthollet.)

For Ure's table of sp. gr. of HNO₃+Aq, see Watt's Dict.. 1st ed.

Sp. gr. of HNO₂+Aq at 0° and 15°

ŀ	sp. gr	. 01 HNU ₈	+Aq at o a	ma 15
	⁷ ⁄ ₆ HNO₃	% N ₂ O ₅	Sp. gr. at 0°	Sp. gr. at 15°
	100.00	85.71	1.559	1.530
l	99.84	85.57	1.559	1.530
l	99.72	85.47	1.558	1.530
١	99.52	85.30	1.557	1.529
١	97.89	83.90	1.551	1.523
l	97.00	83.14	1.548	1.520
l	96.00	82.28	1.544	1.5
l	95.27	81.66	1.542	1.514
l	94.00	80.57	1.537	1.509
1	93.01	79.72	1.533	1.506
	92.00	78.85	1.529	1.503
ı	91.00	78.00	1.526	1.499
l	90.00	77.15	1.522	1.495
١	89.56	76.77	1.521	1.494
l	88.00	75.43	1.514	1.488
	87.45	74.95	1.513	1.486
l	86.17	73.86	1.507	1.482
١	85.00	72.86	1.503	1.478
	84.00	72.00	1.499	1.474
ĺ	83.00	71.14	1.495	1.470
l	82.00	70.28	1.492	1.467
l	80.96	69.39	1.488	1.463
	80.00	68.77	1.484	1.460
	79.00	67.71	1.481	1.456
	77.66	66.56	1.476	1.451
	76.00	65.14	1.469	1.445
	75.00	64.28	1.465	1.442
	74.01	63.44	1.462	1.438
		,		

Sp. g	Sp. gr. of HNO ₃ , etc.—Continued.			Sp. gr.	of HN	O ₈ +Aq	at 15°.	a=%	b = sp.
н Мо.	N₂O.	Sp. gr. at 0°	Sp. gr. at 15°	gr. if	% is N	$_{2}O_{5}$ ; $_{6}c =$	sp.gr. 1	f % is I	INO ₈ .
HNO ₈	N 2O8		4	а,	p x a	, с	a	b	c
73.00	62.57	1.457	1.435	1	1.007	1.006	51	1.372	f.323
72.39	62.05	1.455	1 432	3	1.014	1.012	52	1.378	1.329
71.24	61.06	1.450	1.429		1.021	1.018	53	1.385	1.835
69.96 6 <b>9</b> .20	60.00 59.31	1.444 1.441	1.423	4	1 927	1.024	54	1.390	1.341
68.00	58.29	1.435	1.414	5	1.034	1.029	55	17396	1.346
67.00	57.43	1.430	1.410	6 7	1.040	1 035 1.040	56 57	1.401	$1.356 \\ 1.358$
66.00	56.57	1.425	1.405	8	1.047	1.045	58	$1.407 \\ 1.413$	1.363
65.07	55.77	1.420	1.400	9	1.061	1.05	59	1.418	1.369
64.00	54.84	1.415	1.395	10	1 069	1.057	60	1.423	1.374
63.59	54.50	1.413	1.393	11	1.076	1.064	61	1.427	1.380
62.00	53.14	1.404	1.386	12	1.083	1.070	62	1.432	1.386
61.21	52.46	1.400	1.381	13	1.091	1.077	63	1.436	1.390
$60.00 \\ 59.59$	51.43 51.08	1.393	$1.374 \\ 1.372$	14	1.098	1.083	64	1.440	1.395
58.88	50.47	$\frac{1.391}{1.387}$	1.368	15	1.104	1.089	65	1.445	1.400
58.00	49.71	1.382	1.363	16 17	$ \begin{array}{c} 1.112 \\ 1.20 \end{array} $	1.095	66	$1.449 \\ 1.452$	1 405 1 410
57.00	48.86	1.376	1.358	18	1.126	1.100 1.106	68	1.457	1.414
56.10	48.08	1.371	1.353	19	1.134	1.112	69	1.461	1.419
55.00	47.14	1.365	1.346	26	1.141	1.120	70	1.466	1.422
54.00	46.29	1.359	1.341	21	1.149	1.126	71	1.470	1.427
53.81	46.12	1.358	1.339	22	1.156	1.132	72	1.474	1.430
53.00	45.40	1.353	1.335	23	1.165	1.138	73	1.478	1.435
<b>52</b> .33 <b>50</b> .99	$44.85 \\ 43.70$	$1.349 \\ 1.341$	$1.331 \\ 1.323$	24	1.172	1.145	74	1.482	1,439
<b>49</b> .97	42.83	1.334	1.317	$\frac{25}{26}$	1.180	$1.151 \\ 1.159$	75 76	$1.486 \\ 1.490$	1.442 1.445
49.00	42.00	1.328	1.312	27	1.187 1.195	1.166	77	1.494	1.449
48.00	41.14	1.321	1.307	28	1.202	1.172	78	1.499	1.452
47.18	40.44	1.315	1.398	29	1.211	1.179	79	1.503	1.456
46,64 45.00	39.97	1.312	1.295	30	1.218	1.185	80	1.507	1.460
	38.57	1.300	1.284	31	1.225	1.192	81	1.511	1.463
43.53	37.31	1.291	1.274	32	1.232	1.198	82	1.515	1.467
$\frac{42.00}{41.00}$	$36.00 \\ 35.14$	$rac{1.280}{1.274}$	$1.264 \\ 1.257$	33	1.240	1.204	83	1.519	1.470
40.00	34.28	1.267	1.251	34	1.248	$1.210 \\ 1.218$	84	$1.523 \\ 1.527$	<b>1.474</b> 1.478
39.00	33.43	1.260	1.244	35 36	$1.255 \\ 1.264$	$1.216 \\ 1.225$	85 86	1.530	1.481
37.95	32.53	1.253	1.237	37	1.271	1.230	87	1.000	1.484
36.00	30.86	1.240	1.225	38	1.280	1.236	88		1.488
35.00	29.99	1.234	1.218	39	1.286	1.244	89		1.491
<b>33</b> .86	29.02	1.226	1.211	40	1.295	1.251	90	·	1.495
32.00	$27.43 \\ 26.57$	$rac{1.214}{1.207}$	1.198 1.192	41	1.304	1.257	91		1.499
$\frac{31.00}{30.00}$	$\begin{array}{c c} 20.57 \\ 25.71 \end{array}$	$\frac{1.207}{1.200}$	1.185	42	1.312	1.264	92 93		$1.503 \\ 1.506$
29.00	24.85	1.194	1.179	43 44	1.318 1.325	$1.270 \\ 1.276$	93		1.500
28.00	24.00	1.187	1.172	45	1.332	1.284	95		1.512
27.00	23.14	1.180	1.166	46	1.340	1.290	96		1.516
25,71	22.04	1.171	1.157	47	1.346	1.298	97		1.520
23.00	19.71	1.153	1.138	48	1.352	1.304	98		1.523
20.00	17.14	1.132	1.120	49	1.360	1.312	99		1.526
$\begin{array}{c} 17.47 \\ 15.00 \end{array}$	$14.97 \\ 12.85$	$1.115 \\ 1.099$	1.105 1.089	50	1.366	1.316	100	• • • •	1.530
13.00	11.14	1.085	1.077	(Kolb	calculat	ed by C	erlach	Z. anal	8, 292
11.41	9.77	1.075	1.067	(11010,		•	•		
$\overline{7.72}$	6.62	1.050	1.045		Sp. gr.	of HNC	γ ₈ +Aq ε	it 17.5°.	
4.00	3.42	1.026	1.022	%	0-	%	O	%	Qn
2.00	1.71	1.013	1.010	% N₂O₅	Sp. gr.	N2Os	Sp. gr.	% N₂O₅	Sp. gr.
0.00	0.00	1.000	0.999	E	1.032	9	1.060	13	1.089
(	Kolb. A. cl	n. (4) <b>10.</b> 14	0.)	5 6	1.032	10	1.068	14	1.096
(		(-)	/	7	1 045	11	1.075	15	1 104

% N₂O₅	Sp. gr.	% N2O₅	Sp. gr.	% N₂O₅	Sp. gr.
5	1.032	9	1.060	13	1.089
6	1.038	10	1.068	14	1.096
7	1.045	11	1.075	15	1.104
8	1.053	12	1.082	16	1.111

Sp. gr. of HNO ₃ , etc.—Continued.					Most ac	curate tabl	e.		
% N2Os		1% N2Os	)	1% N2()5					O at $4^{\circ} = 1$ .
17	1.118	40	1.294	63	1.434	· · · · · · · · · · · · · · · · · · ·	<del>                                     </del>	,,,	Kg. HNO ₃
18 *	1.125	41	1.301	64	1.438	Sp. gr.	% N ₂ O ₅	% HNOs	in 1 l.
19	1.132	42	1.308	65	1.442	1.000	0.08	0.10	0.001
20 21	1.147	43 44	$1.315 \\ 1.323$	66	1.447	1.005	0.85	1.00	0.010
$\tilde{2}\tilde{2}$	1.115	45	1.330	68	1.456	1.010	1.62	1.90	0.019
23	1.163	46	1.338	69	1.460	1.015	2.39	2.80	0.028
24	1.170	47	1.345	70	1.465	1.020	3.17	$\frac{3.70}{4.60}$	0.038
25 26	1.178 1.186	48 49	$1.352 \\ 1.358$	71	1.469 1.472	1.025 1.030	$\frac{3.94}{4.71}$	5.50	0.047
$\frac{20}{27}$	1.194	50	1.364	72 73	1.476	1.035	5.47	6.38	0.066
28	1.201	51	1.371	74	1.480	1.040	6.22	7.26	0.075
29	1.209	52	1.377	75	1.484	1.045	6.97	8.13	0.085
30	1.217	53	1.383	76	1.488	1.050	7.71	8.99	0.094 0.104
$\begin{array}{c} 31 \\ 32 \end{array}$	1.224 1.232	54 55	$1.389 \\ 1.394$	77 78	1.492	1.055 1.060	$8.43 \\ 9.15$	$9.84 \\ 10.68$	0.104
33	1.239	56	1.400	79	1.500	1.065	9.87	11.51	0.123
34	1.247	57	1.406	80	1.504	1.070	10.57	12.33	0.132
	1.255	58	1.412	81	1.508	1.075	11.27	13.15	0.141
736	1.263	59	1.416	82	1.512	1.080	11.96	13.95	0.151
37 38	$1.271 \\ 1.279$	60	1.421	83	1.516 $1.519$	1.085 1.090	$12.64 \\ 13.31$	$\begin{array}{c} 14.74 \\ 15.53 \end{array}$	$0.160 \\ 0.169$
39	1.287	62	$1.426 \\ 1.430$	84   85	1.523	1.095	13.99	16.32	0.179
		11	1	11	1.020	1.100	14.67	17.11	0.188
			mm. 188			1.105	15.34	17.89	0.198
	Sp. gr	. HNO ₈	+Aq at	17.5°.		1.110	16.00	18.67	0.207
% N2Os	Sp. gr.	1% N2O6	Sp. gr.	% N2O	Sp. gr.	1.115 1.120	16.67 17.34	$19.45 \\ 20.23$	0.217 0.227 *
10		40	1 000	70	1 405	1.125	18.00	21.00	0.236
10	1.068	40 50	1.293	70 80	1.465	1.130	18.66	21.77	0.246
\$5 20	1.140	60	1.417	85	1.514	1.135	19.32	22.54	0.256
30 30	1.217					1.140	19.98	23.31	0.266
/Has	l	monto	varia, L	oingig	1976 \	1.145 1.150	$20.64 \\ 21.29$	$24.08 \\ 24.84$	0.276 0.286
				_	1010.)	1.555	21.94	25.60	0.296
			$O_3 + Aq$	<del></del>		1.160	22.60	26.36	0.306
% HN		p. gr.	% HNC		p. gr.	1.165	23.25	27.12	0.316
$\frac{1}{2}$		$00581 \\ 01136$	26 27		15869 16660	1.170	23.90	27.88	0.326 0.336
3		01713	28		17371	1.180	$24.54 \\ 25.18$	$\begin{array}{c} 28.63 \\ 29.38 \end{array}$	0.347
4		02286	29		18073	1.185	25.83	30.13	0.357
5		02851	30		18830	1.190	26.47	30.88	0.367
*** <b>6</b>		03439	31		19552	1.195	27.10	31.62	0.378
7 8		04019 04592	32		$20276 \\ 20635$	1.200 1.205	27.74 28.56	$\frac{32.36}{33.09}$	0.388
9		05234	34		21300	1.210	28.99	33.82	0.409
10		05746	35		22013	1.215	29.61	34.55	0.420
11		06330	36		22675	1.220	30.24	35.28	0.430
12		06951	37		23347	1.225	30.88	36.03	0.441
13 14		07581 08126	38		$23980 \\ 24510$	$1.230 \\ 1.235$	$31.53 \\ 32.17$	$36.78 \\ 37.53$	0.452 0.463
15		08843	40		25235	1.240	32.82	38.29	0.475
16		09500	41		25850	1.245	33.47.	39.05	0.486
17	1.	10102	42	1.	26475	1.250	34.13	39.82	0.498
18		10725	43		27125	1.255	34.78	40.58	0.509%
19 20		$11321 \\ 12024$	44 45		28895 28450	1.260 1.265	35.44 36.09	41.34 42.10	0.521 0.533
20 21		$12024 \\ 12714$	46		29110	1.270	36.75	42.10	0.544
22		13349	47		29780	1.275	37.41	43.64	0.556
23	1.	13890	48		30443	1.280	38.07	44.41	0.568
24		14460	49		31101	1.285	38.73	45.18	0.581
25	1	15164	50	1	31722	1.290 1.295	39.39 40.05	45.95 46.72	0.593
(	Squires,	Pharm	. Era, Ja	n. <b>1891</b>		1 20.00	10.12	1 0.000	

Sp. g	Sp. gr. of HNO ₃ , etc.—Continued.					
Sp. gr.	% N ₂ O ₅	% HNO3	Kg. HNO			
1.300	40.71	47.49	0.617			
1.305	41.37	48.26	0.630			
1.310	42.06	49.07	0.643			
$\frac{1.315}{1.320}$	42.76	49.89	0.656			
$\frac{1.320}{1.325}$	$43.47 \\ 44.17$	50.71	0.669			
$\frac{1.325}{1.330}$	44.89	$51.53 \\ 52.37$	$0.683 \\ 0.697$			
1.335	45.62	53.22	0.037			
1.340	46.35	54.07	0.725			
1.345	48.07	54.93	0.739			
1.350	47.82	55.79	0.753			
1.355	48.57	56.66	0.768			
1.360	49.35	57.57	0.783			
1.365	50.13	58.48	0.798			
1.370	50.91	59.39	0.814			
1.375	51.69	60.30	0.829			
$egin{array}{c} 1.380 \ 1.385 \end{array}$	$52.52 \\ 53.35$	61.27	$0.846 \\ 0.862$			
1.390	54.20	$62.24 \\ 63.23$	0.802			
1.395	55.07	64.25	0.896			
1.400	55.97	65.30	0.914			
1.405	56.92	66.40	0 933			
1.410	57.86	67.50	0.952			
1.415	58.83	68.63	0.971			
1.420	59.83	69.80	0.991			
1.425	60.84	70.98	1.011			
1.430	61.86	72.17	1.032			
1.435	62.91	73.39	1.053			
$egin{array}{ccc} 1.440 \ 1.445 \end{array}$	$64.01 \\ 65.13$	74.68 75.98	$1.075 \\ 1.098$			
1.450	66.24	77.28	1.121			
1.455	67.38	78.60	1.144			
1.460	68.56	79.98	1.168			
1.465	69.79	81.42	1.193			
1.470	71.06	82.90	1.219			
1.475	72.39	84.45	1.246			
1.480	73.76	86.05	1.274			
$\frac{1.485}{1.490}$	$75.18 \\ 76.80$	87.70 89.60	$1.302 \\ 1.335$			
1.495	78.57	91.60	1.369			
1.500	80.65	94.09	1.411			
1.501	81.09	94.60	1.420			
1.502	81.50	95.08	1.428			
1.503	81.91	95.55	1.436			
1.504	82.29	96.00	1.444			
1.505	82.63	96.39	1.451			
1.506	82.94	96.76	1.457 1.464			
$1.507 \\ 1.508$	83.26 83.58	97.13 97.50	1.470			
1.509	83.87	97.84	1.476			
1.510	84.09	98.10	1.481			
1.511	84.28	98.32	1.486			
1.512	84.46	98.53	1.490			
1.513	84.63	98.73	1.494			
1.514	84.87	98.90	1.497			
1.515	84.92	99.07	1.501			
1.516	85.04	99.21 99.34	1.504 1.507			
$1.517 \\ 1.518$	85.15 85.26	99.46	1.510			
1.519	85.35	99.57	1.512			
1.520	85.44	99.67	1.515			
(Lunge and Rey, Z. f. angew. Ch. 1891. 165.)						

Sp. gr. of N-HNO₃+Aq at  $18^{\circ}/4^{\circ} = 1.0324$ . (Loomis, W. Ann. 1896, **60.** 550.)

Sp. gr. (reduced to a vacuum) of HNO₃ from 78-100% concentration at  $4^{\circ}/4^{\circ}$ ,  $14 \cdot 2^{\circ}/4^{\circ}$  and  $24 \cdot 2^{\circ}/4^{\circ}$ .

CT HIND	Sp. gr.					
ς HNO₃	4°/4°	14.2°/4°	24.2°/4°			
78.22 79.14 79.59 81.97 84.90 85.21 85.80 87.55 87.90 89.73	1.47129 1.47496 1.49391 1.49495 1.49581 1.50211	1.45504 1.46011 1.46680 1.47820 1.48491 1.49125	1.43964 1.44372 1.45092 1.46224 1.46891			
92.34 94.04 95.62 96.64 97.33 98.07 99.97	1.51804 1.51949 1.52192 1.52510 1.53212 1.54212	1.49123 1.49968 1.50149 1.50358 1.50632 1.50911 1.51298 1.52236	1.48264 1.48516 1.48677 1.48887 1.49137 1.49543 1.50394			

(Veley and Manley, Chem. Soc. 1903, 83. 1016.)

Sp. gr. at  $20^{\circ}$  of  $\text{HNO}_3 + \text{Aq}$  containing M g. mols.  $\text{HNO}_3$  per liter. M 0.025 0.05 0.075 0.10 Sp. gr. 1.000926 1.001798 1.002653 1.003496 M 0.25 0.5 0.75 1.0 Sp. gr. 1.008481 1.01686 1.02503 1.0336 M 2.0 Sp. gr. 1.0670 (Jones and Pearce, Am. Ch. J. 1907, **38**, 732,)

For sp. gr. of  $HNO_3+H_2SO_4$ , see under  $H_2SO_4$ .

Partition coefficient for HNO₃ between ether and H₂O is increased by the addition of nitrates. (Tanret, C. R. 1897, **124**. 464.)

The hydrates described by Erdmann do not exist. There are only two authentic hydrates, the mono- and the tri-hydrate. (Küster, Ch. Z. 1904, 28. 132.)

The composition of the hydrates formed by HNO₃ at different dilutions is calculated from determinations of the lowering of the fr-pt. produced by HNO₃ and of the conductivity and sp. gr. of HNO₃+Aq. (Jones, Am. Ch. J. 1905, **34**. 328.)

## Dinitric acid, $H_2N_4O_{11} = 2N_2O_5$ , $H_2O$ .

Fumes on air. Miscible with  $H_2O$ , with evolution of much heat. (Weber, J. pr. (2) 6.342.)

#### Nitrates.

All nitrates are sol, in H₂O except a few basic compounds. Most nitrates are insol, in

conc. HNO₂+Aq; many are sol. in alcohol; some are sol. in glycerine.

Aluminum nitrate, basic,  $2Al_2O_8$ ,  $3N_2O_6+$ 3H₂O.

Sol. in H₂O. (Ordway, Sill. Am. J. (2) 26. 203.)

Basic aluminum nitrates containing 2 mols. or less of Al₂O₃ to one of N₂O₅ may be obtained sol. in H₂O, but the compounds containing more than 2 mols. Al₂O₃ are insol. in H₂O. (Ordway, l. c.)  $2Al_2O_3$ ,  $N_2O_5+10H_2O$ . (Ditte, C. R. 110.

Al₆O₁₄H₁₀, HNO₃. Sol. in H₂O. (Schlumberger, Bull. Soc. 1895, (3) **13**. 59.)

## Aluminum nitrate, $Al(NO_3)_3 + 9H_2O$ .

Deliquescent. Very sol. in H₂O, HNO₃+ Aq, or alcohol. (Berzelius.)

Melts in its crystal H₂O at 72.7°. (Ordway. Sol. in 1 pt. strong alcohol. (Wenzel.) Difficultly sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

## Ammonium nitrate, NH₄NO₈.

Deliquescent.

Sol. in 0.502 pt.  $\rm H_2O$  at 18°. (Karsten.) Sol. in 0.54 pt.  $\rm H_2O$  at 10°. (Harris, C. R. 24. 816.) Much more sol. is hot than cold  $\rm H_2O$ . (Harris.) Sol. in 2 pts.  $\rm H_2O$  at 15.5° and 0.5 pt. boiling  $\rm H_2O$ . (Fourcroy.)

Sol. in 1 pt. cold, and 0.5 pt. boiling  $H_2O$ . (Foureroy.) Sol. in 0.5 pt.  $H_2O$  at 18°. (Berzelius.) Sol. in 2 pts.  $H_2O$  at 18°. (Abl.)

Decomp. by boiling  $H_2O$ .

t°	Pts. NH ₄ NO ₃	t°	Pts. NH ₄ NO ₃	t°	Pts.
	07		NH4NO8		NH₄ÑO₃
0	97	24	205	48	351
1	101	25	210	49	358
3	105	26	216	50	365
3	109	27	221	51	372
4	113	28	226	52	379
5	117	29	232	53	387
6	121	30	238	54	395
7	125	31	244	55	402
7 8	130	32	250	56	410
9	134	33	256	57	418
10	139	34	262	58	425
11	143	35	268	59	433
12	148	36	274	60	441
13	152	37	280	61	449
14	157	38	286	62	457
15	161	39	292	63	465
16	166	40	298	64	473
17	170	41	304	65	481
18	175	42	311	66	490
19	180	43	317	67	499
20	185	44	324	68	508
21	190	45	331	69	517
22	195	46	337	70	526
23	200	47	344		• • •

(Mulder, Scheik. Verhandel. 1864. 95.)

100 pts. H₂O dissolve 183 pts. NH₄NO₈ at 19.5°. (Mulder.)

#### Solubility in H₂O at t°.

t°	Specific gravity of the saturated solution	Mols. of NH ₄ NO ₂ soluble in 100 mols. of water
12.2	1.2945	.34.50
20.2	1.3116	43.30
23.0	1.3159	46.57
25.0	1.3197	48.19
27.7	1.3257	51.67
28.0	1.3260	51.86
30.0	1.3299	54.40
30.2	1.3308	54.61
31.9	1.3348	57.20
32.1	1.3344	57.60
32.7	1.3356	57.90
34.0	1.3375	58.89
35.0	1.3394	59.80
35.1	1.3397	60.00
35.6	1.3408	60.62
36.0	1.3412	61.00
36.6	1.3420	
37.5	1.3432	62.90
38.0	1.3438	63.60
38.5	1.3440	64.10
39.0	1.3448	65.09
39.5	1.3460	65.88
40.0	1.3464	66.80

(Müller and Kaufmann, Z. phys. Ch. 1903, **42**. 499.)

## Solubility in H₂O at t°.



t°	G. NH ₄ NO ₂ per 100 g.		Solid phase
	solution	water	
0 12.2 20.2 25.0 30.0 32.1 35 40 50 60 70 80 90	54.19 60.53 65.80 68.17 70.73 71.97 72.64 74.82 77.49 80.81 83.32 85.25 88.08	118.3 153.4 192.4 214.2 2241.8 256.9 265.8 297.0 344.0 421.0 499.0 580.0 740.0	NH ₄ NO ₃ , rhomb. β  " " " " " " " " NH ₄ NO ₃ , rhomb. β + rhomb. α NH ₄ NO ₃ , rhomb. α " " " " " " " " " " " " " " " " " " "
100	89.71	871.0	"

(Seidell's Solubilities 1st ed. 28. Calc. from Müller & Kauffmann, see above, and Schwarz, Ostwald's Lehrb., p. 425.)

100 g. NH₄NO₈+Aq contain:

54.19 g. NH₄NO₈ at 0°. " 30° 70.10 g. " 84.03 g. " 70°.

(de Waal, Dissert. Leiden, 1910.)

70.19 g.  $NH_4NO_3$  are contained in 100 g.  $NH_4NO_3+Aq$  sat. at 30°. (Schreinemakers and de Baat, Arch. neer. Sc. 1911, (2) 15. 415.)

60 pts. NH₄NO₈ mixed with 100 pts. H₂C lower the temperature from 13.6° to -13.6°, that is 27.2°, but if the initial temperature is  $\theta^{\circ}$  it will fall only to  $-16.7^{\circ}$ , the freezing-point of the mixture. (Rüdorff, B. 2. 68.)

Sp. gr. of NH₄NO₈+Aq at 18°.

Pts. NH ₄ NO ₈	Pts. H ₂ O	Sp. gr.
80	1806	1.0180
80	900	1.0331
80	360	1.0743

(Thomsen and Gerlach, Z. anal. 28, 520.)

Sp. gr. of NH₄NO₃+Aq at 15°.

% NH ₄ NO ₈	Sp. gr.	% NH4NO3	Sp. gr.
5	1.0201	30	1.1304
10	1.0419	40	1.1780
20	1.0860	50	1.2279

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of NH ₄ NO ₃ +Aq at 17.5°.						
% NH4NO3	Sp. gr.	% NH4NO8	Sp. gr.			
1	1.0042	33	1.1454			
	1.0085	34	1.1502			
$\bar{3}$	1.0127	35	1.1550			
$egin{array}{c} 2 \ 3 \ 4 \end{array}$	1.0170	36	1.1598			
	1.0212	37	1.1646			
5 6 7	1.0255	38	1.1694			
7	1.0297	39	1.1742			
8	1.0340	40	1.1790			
9	1.0382	41	1.1841			
10	1.0425	42	1.1892			
11	1.0468	43	1.1942			
12	1.0512	44	1.1994			
13	1.0555	45	1.2045			
14	1.0599	46	1.2096			
15	1.0642	47	1.2147			
16	1.0686	48	1.2198			
17	1.0729	49	1.2249			
18	1.0773	50	1.2300			
19	1.0816	51	1.2353			
20	1.0860	52	1.2407			
21	1.0905	53	1.2460			
22	1.0950	54	1.2514			
23	1.0995	55	1.2567			
24	1.1040	56	1.2621			
25	1.1085	57	1.2674			
26	1.1130	58	1.2728			
27	1.1175	59	1.2781			
28	1.1220	60	1.2835			
29	1.1265	61	1.2888			
30	1.1310	62	1.2942			
31	1.1358	63	1.3005			
32	1.1406	64	1.3059			

(Gerlach, Z. anal. 27. 310.)

Sp. gr. of NH₄NO₃+Aq.

% NH4NOs!	'Sp. gr. 16°/16°
0.6419	1.000000 1.000271
1 4101 2.7501 5.4890	1.000593 1.001153 1.002300
11.7981 $23.4480$ $47.9500$	1.004916 1.009758 1.019952

(Dijken, Z. phys. Ch. 1897, 24, 107.)

Sp. gr. 20°/4° of a normal solution of NH₄NO₈ =1.039435; of a 0.5-normal solution1=.014505. (Haigh J. Am. Chem. Soc. 1912, **34**. 1151.)

B.-pt. of NH₄NO₂+Aq containing pts. NH₄NO₃ to 100 pts. H₂O. G = according to Gerlach (Z. anal. **26**. 445); L = according to Legrand (A. cr. (2) 59, 426,)

	Bpt.	G	Ĺ	Bpt.	G	L
	101°		10	140°	682	770.5
	102	$\frac{20}{30}$	$\frac{20.5}{31.3}$	141	$719 \\ 737$	840.6
	103 104	41	$\frac{31.3}{42.4}$	142 143	765	840.0
	104	52	53.8	143	703	915.5
	105	$6\overline{3}$	65.4	145	823	l
	107	$\frac{0.3}{74}$	77.3	146	853	995.5
	108	85	89.4	147	883	990.0
	109	96	101.9	148	914	1081.5
	110	108	114.9	149	945	
	111	120	128.4	150	977	1173.5
	112	132	142.4	551	1009	
	113	145	156.9	152	1043	1273
	114	158	172	153	1079	
	115	172	188	154	1116	1383
	116	187	204.4	155	1155	<b>.</b>
	117	202	221.4	156	1196	1504
	118	217	238.4	157	1238	
	119	232	256.8	158	1281	1637
	120	248	275.3	159	1325	
	121	265	2::	160	1370	1775
	122	283	314	161	1417	::•
İ	123	301	:::	162	1464	1923
	124	319	354	163	1511	
	125	337		164	1558	2084
	126	356	396	165	1606	
	127	376	440.2	166	1653	
	128	396	440.2	167	1700	
	129	417 439	487.4	168	1748	
	130	459 461	487.4	169	1796	• • • •
	131 132	484	537.3	170 180	1844 2400	
	133	507	001.0	190	3112	8
	134	530	590	200	4099	• • •
	135	554	000	210	5618	• • • •
	136	578	645	220	8547	• • • •
	137	603		230	16950	
	138	629	705.5	240	0000	
	139	655	. 55.5		~	
	100	550		1		

* Very sol. in HNO₃+Aq. (Schulz, Zeit. Ch. **1869**. 531.)

#### Solubility of NH4NO3 in HNO3.

Solution temp.	% by wt. NH4NO3	Solid phase
+8°	21.1	NH ₄ NO ₃ , 2HNO ₃ (solution in HNO ₃ )
23.0	28.7	"
28.5	34.5	"
29.5*	38.8	(solution in NH ₄ NO ₃ )
27.5	44.6	"
27.0	45.8	"
23.5	49.4	"
23.0	5 0	"
17.5	54.0	"
16.5	54.3	"
4.0	45.8	NH4NO3, HNO3 labile
		(solution in HNO ₃ )
9.5	49.4	
11.0	51.7	"
11.5	52.7	"
12.0	54.3	"
12.0	54.7	66
11.5	57.6	(solution in NH ₄ NO ₃ )
11.5	54.0	NH ₄ NO ₃ (labile)
14.5	54.3	
17.0	54.7	stable
26.0	55.9	4,
<b>27</b> .0	56.2	
33.5	57.5	
49.0	60.4	
79.0	68.1	
	1	

* Mpt. of NH₄NO₃, 2HNO₃. (Groschuff. Z. anorg. 1904, **40**. 6.)

#### Solubility of NH₄NO₃ in NH₄OH+Aq.

Grams of NH ₄ NO ₈	Grams of NH ₈	Molecules of NH4NO3 in 100 molecules NH4NO3+ NH3	Temperature at which the solu- tions are in equilibrium with the solid phase
		100.	about 168°
0.7578	0.0588	74.2	109.8
0.6439	0.0665	67.3	94.0
4.2615	0.7747	53.8	68.8
0.7746	0.1857	47.0	35.9
0.9358	0.2352	45.9	33.3
0.7600	0.2607	38.3	0
0.9675	0.3515	36.9	10.5
0.8308	0.3700	32.3	-30.0
0.9526	1.2457	13.9	-44.5
1.3918	4.4327	6.25	<b>-</b> −60
0	100	0	about -80

(Kuriloff, Z. phys. Ch. 1898, 25. 109.)

NH₄NO₃+NH₄Cl. 100 pts. H₂O dissolve 29.1 pts. NH₄Cl and 173.8 pts. NH₄NO₃. (Rüdorff, B. 6. 484.) Sol. in sat. NH₄Cl+Aq with pptn. of NH₄Cl until a state of equilibrium is reached.

(Karsten.)

Addition of KClO₃ to NH₄Cl+Aq prevents pptn. of NH₄Cl, and dissolves any NH₄Cl that may have been pptd. (Margueritte, C. R. 38. 306.)

See also under Ammonium chloride. NH₄NO₈+KNO₃.

#### 100 pts. H₂O dissolve:

	At 9° (1) (2)		At 11° (3) (4)		At 15° (6)	
KNO ₃ NH ₄ NO ₃	20.2	40.6 88.8	143	<b>2</b> 6.0	46.2 130.4	161

2, Sat. at 11° with NH₄NO₃ and then at 9° with KNO₃; 5, sat. at 11° with NH₄NO₃ and then at 15° with KNO₃. (Mulder.)

Sol. in sat. HNO₃+Aq without causing ppt. (Karsten); with separation of KNO₃ (Rüdorff). Composition of solution is dependent on the

relative excess of the salts present. (Rüdorff.) 100 pts. H₂O dissolve 77.1 pts. NaNO₃ and 162.9 pts. NH₄NO₃ at 16°. (Rüdorff, B. **6.** 484.)

If a sat. solution of NH₄NO₃+Aq at 11° is sat. with Ba(NO₃)₂ at 9°, 100 pts. H₂O dissolve:

(Mulder.)

#### Solubility of NH, NO₃+AgNO₃ in H₂O at t°.

t°	AgÑO ₃	NH4NO3	Solid phase
- 7.3°	47.1	0	Ice +AgNO 3, rhomb.
10.7	44.52	8.43	. "
-14.9	42 0	16.80	Ice +AgNO ₃ , NH ₄ NO ₃ +AgNO ₃ rb.
-14.8	39.51	18.79	Ice + AgNO3, NH4NO3
-18.7	15.99	37.30	Ice+AgNO3, NH4NO3 +NII4NO3 B. rb.
17.4	0	41.2	Ice+NH ₄ NO ₃ , β.rb.
0	50.36	19.59	AgNO ₃ , NH ₄ NO ₂ + AgNO ₃ , rb.
18	55.36	22.06	
30	58.89	23.42	
55	63.32	26.12	
109.6	67.9	32.1	. "
0	22.13	44.87	AgNO ₃ , NH ₄ NO ₃ + NH ₄ NO ₃ β. rb.
18	27.07	49.22	**
30	29.76	52.50	"
40	32.68	52.22	AgNO2, NH4NO2+ NH4NO2 a rb.
55	36.60	52.38	**
101.5	47.5	52.5	AgNO ₃ , NH ₄ NO ₃ +

(Schreinemakers and de Baat, Arch. néer. Sc. 1911 (2) 15. 414.)

Solubility	in	$NH_4NO_3$	and	AgNO ₈	in	$H_2O$
•		at 30	o°.	-		

Composition of the solution		Solid phage
NH4NO8	AgNO ₈	jone phacs
0 6.59 15.62 23.40 23.45 24.33 26.22 28.86 34.47 39.60 45.49 52.11 52.89 54.12 58.64 63.59	73. 0 69. 08 63. 27 58. 84 58. 93 57. 93 52. 45 45. 85 41. 09 29. 77 29. 86 29. 65 27. 75 21. 31 12. 51	AgNO ₃ " AgNO ₃ +AgNO ₃ , NH ₄ NO ₃ AgNO ₃ , NH ₄ NO ₃ " " " " " " " " " " " " " " " " " "
70.10	0	1

(Schreinemakers and de Baat, Z. phys. Ch. 1909, **65**. 572.)

Solubility of NH₄NO₈+NaNO₈ in H₂O at t°.

t°	g. per 100	g. per 100 g. H ₂ () Sp. gr.		
	NH4NO3	NaNO3	, ,p. g	
0	0 105.5 118.4	73.33 66 0	1.354 1.407 1.264	
15	0 24.03 42.81 64.6 110.9 152. 155.3 156.1 159 162.3 167.4	83.9 81.21 79.34 78.06 75.81 75.35 75.38 60.76 36.50 27.79 17.63	1.375 1.386 1.392 1.401 1.417 1.428 1.429 1.405 1.364 1.350 1.330 1.298	
30	0 220.8 232.6	96.12 88.31 0	1.401 1.450 1.329	

251.)

Solubility of  $NH_4NO_2+(NH_4)_2SO_4$  in  $H_2O$  at  $30^\circ$ .

NH4NO3	% (NH₄)2S04	Solid phase
70.1	O	NH4NO3
67.63	2.38	ii -
€6.93	3 45	NH ₄ NO ₈ +(NH ₄ ) ₂ SO ₄ , 3NH ₄ NO ₈
63.84	4 96	(NH ₄ ) ₂ SO ₄ , 3NH ₄ NO ₂
58.06	8.22	(NH ₄ ) ₂ SO ₄ , 3NH ₄ NO ₃ + (NH ₄ ) ₂ SO ₂ , 2NH ₄ NO ₃
52.75	11.42	$NH_4)_2SC_4$ , $2NH_4NO_8$
49.80	12.27	(NH ₄ ) ₂ SO ₄ , 2N!I ₄ NO ₂ + (NH ₄ ) ₂ SO ₄
37.20	19.48	$(NH_4)_2SO_4$
19.91	28.83	ü
12.05		u ·
0	44.1	"
1		1 01 777 111

(Schreinemakers and Haenen, Chem. Weekbl. 1909, 6. 51.)

Solubility of NH₄NO₃+(NH₄)₂SO₄ in H₂O.

Tem	n.	=()	į

		Temp. =0					
NH, NO.	(NH4) ₂ SO ₄	Solid phase					
0 5.61 29.58 29.81 31.04 30.87 31.61 45.99 49.12 54.19	41.4 37.89 41.64 21.33 20.40 20.43 19.50 9.53 6.00 0	(NH ₄ ) ₂ SO ₄ (NH ₄ ) ₂ SO ₄ + (NH ₄ ) ₂ SO ₄ , 2NH ₄ NO ₅ (NH ₄ ) ₃ SO ₄ , 2NH ₄ NO ₃ (NH ₄ ) ₂ SO ₄ , 2NH ₄ NO ₅ + (NH ₄ ) ₂ SO ₄ 3NH ₄ NO ₅ (NH ₄ ) ₂ SO ₄ , 3NH ₄ NO ₅ (NH ₄ ) ₂ SO ₄ , 3NH ₄ NO ₅ NH ₄ NO ₅ NH ₄ NO ₅					
	Temp. =70°						
% NH4N03	OS; (HN)	Solid phase					
	47 01	(MIL) GO					

 $47.81 \\ 40.81$  $(NH_4)_2SO_4$ 11.10 6.7170.15 $(NH_4)_2SO_4 + (NH_4)_2SO_4$ ,  $2NH_4NO_3$ 71.585.82 (NH₄)₂SO₄, 2NH₄NO₈ 73.48 5.14  $(NH_4)_2SO_4$ ,  $2NH_4NO_3+(NH_4)_2SO_4$ ,  $3NH_4NO_3$ 76.01 3.96  $(NH_4)_2SO_4$ ,  $3NH_4NO_8$ 80.25 81.01 81.38  $2.68 \\ 2.45$ 

(NH₄)₂SO₄, 3NH₄NO₃ +NH₄NO₃

2.41  $NH_4NO_3$ 0 84.03 (de Waal. Dissert. Leiden. 1910.)

· Very easily sol, in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 826.)

1 pt. NH₄NO₃ dissolves in 2.29 pts. alcohol of 66.8% at 25°. (Pohl. W. A. B. 6. 599.)
1 pt. NH₄NO₃ dissolves in 1.1 pt. boiling alcohol. (Wenzel.)

100 pts. absolute methyl alcohol dissolve 17.1 pts. at 20.5°. (de Bruyn, Z. phys. Ch. **10.** 783.)

100 g. absolute methyl alcohol dissolve 14.6 g. NH₄NO₃ at 14° and 16.3 g. at 18.5°. (Schiff and Monsacchi, Z. phys. Ch. 1896, 21. 277.)

100 pts. absolute ethyl alcohol dissolve 3.8 pts. at 20.5° (de Bruyn, Z. phys. Ch. 10. 783.)

100 g. absolute ethyl alcohol dissolve 4.6 g. at 14°. (Schiff and Monsacchi, Z. phys. Ch. 1896, 21. 277.)

Solubility of NH4NO3 in H2O is decreased by presence of ethyl alcohol but increased by presence of methyl alcohol. NH₄NO₃ is only very sl. sol. in abs. ethyl alcohol and the solubility increases slowly with rise in temp.; it is more sol, in abs. methyl alcohol and the solubility increases rapidly with rise in temp. (Fleckenstein, Phys. Zeit. 1905, 6. 419.)

Solubility in methyl alcohol+Aq. at 30°.

% by wt. H2O	% by wt. alcohol	% by wt. NH4NO3
29.9 21.6 20.6 16.5 11.5	$0 \\ 24.5 \\ 31.3 \\ 46.0 \\ 59.4 \\ 83.3$	70.1 53.9 48.1 37.5 29.1 16.7

(Schreinemakers, Z. phys. Ch. 1909, 65. 556.)

Solubility of NH₄NO₃ in ethyl alcohol+Aq. at 30°. Composition of sat. solution.

% by wt. H ₂ O	% by wt. alcohol	% by wt. NH4NO3
29.9 26.9	0 18.6	70.1
23.2	39.3	54.5 37.5
18.3 11.6	$\begin{array}{c} 58.5 \\ 76.5 \end{array}$	$\begin{array}{c} 23.2 \\ 11.9 \end{array}$
$\frac{5.8}{0}$	$\begin{array}{c} 86.2 \\ 96.4 \end{array}$	$\begin{array}{c} 8.0 \\ 3.6 \end{array}$

(Schreinemakers, Z. phys. Ch. 1909. 555.)

t°	% NH4NO8	% Alcohol	% H₂O
0,	54.19	0	45.81
"	42.69 1.96	$12.70 \\ 97.93$	$\begin{array}{c} 44.61 \\ 0.11 \end{array}$
30	70.10 59.83	$\frac{0}{10.60}$	$29.90 \\ 29.57$
"	8.06 3.60	85.30 96.51	6.64
70	84.03	0	15.97
"	$\begin{array}{c c} 72.37 \\ 61.11 \end{array}$	$11.12 \\ 22.87$	$16.51 \\ 16.02$
"	$41.25 \\ 24.71$	$44.64 \\ 67.23$	$14.11 \\ 8.06$
"	7.51	92.49	0

(de Waal. Dissert. Leiden, 1910.)

Sp. gr. of alcoholic solution of NH4NO2 at 15°.

$_{ m NH_4NO_3}^{ m Pts.}$	Pts. alcohol	Sp. gr.
0	100	0.83904
2	98	0.84746
4	96	0.85604
6	94	0.86524

(Gerlach, Z. anal. 28. 521.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Ammonium hydrogen nitrate, NH₄H(NO₈)₂.

Sol. in H₂O. (Ditte, C. R. 89. 576, 641.) Decomp. by H₂O. (Groschuff, B. 1904, 37. 1487.)

Ammonium dihydrogen nitrate,  $NH_4H_2(NO_3)_8$ .

Sol. in H₂O. (Ditte.)

#### Solubility in H₂O.

Solution temp.	% by wt. NH4NO3	% by wt. HNO3
-8.0 -2.5	34.2 34.8	53.9 54.8
+3.0	35.4	55.8
$\begin{array}{c} 3.5 \\ 19.5 \end{array}$	36.0 37.4	$\begin{array}{c} 56.8 \\ 58.9 \end{array}$
25.0 29.5 mpt.	38.1	$\frac{60.0}{61.2}$

(Groschuff, Z. anorg. 1904, 40, 7.)

Ammonium cerous nitrate, 3NH4NO₂,  $2\text{Ce}(NO_3)_3 + 12\text{H}_2O.$ 

Very deliquescent. Very sol. in H₂O and alcohol. (Holzmann, J. pr. 84. 78.) Hygroscopic. Sol. in H₂O. +10H₂Ò.

(Drossbach, B. 1900, 33, 3507.)  $2NH_4NO_8$ ,  $Ce(NO_8)_8+4H_2O$ . As above. (Marignae, A. ch. (4) 30. 64.)

Solubility in H₂O.

100 g. H₂O dissolve at:

8.75°  $25^{\circ}$ 45°

410.2 g. anhydrous salt. 235.5296.8

60°  $65.06^{\circ}$ 

817.4 g. anhydrous salt. 681.2

(Wolff, Z. anorg, 1905, 45, 98.)

ceric 2NH4NO₈, Ammonium nitrate. Ce(NO₈)₄.

Very sol, in H₂O without decomp. Sol, in HNO₃. (Meyer, B. 1900, **33**. 2137.) Sol. in alcohol. (Meyer, Z. anorg. 1901, **27.** 369.)

Solubility in H₂O.

100 g. H₂O dissolve at t°:

25° 35.2° 45.3°

140.9 161.7 174.9 g. anhydrous salt,

64.5° 85.60°

226.8 735.4 g. anhydrous salt. 201.6 (Wolff, Z. anorg. 1905, 45. 94.)

+1½H2O. Very deliquescent. (Holzmann, J. pr. 84. 78.)

Ammonium cobalt nitrate.

Permanent. Sol. in H₂O. (Thenard.)

Ammonium copper nitrate, 2NH₄NO₃,  $Cu(NO_8)_2$ . Very sol. in H₂O.

Ammonium didymium nitrate, 2NH₄NO₃,  $Di(NO_3)_3 + 4H_2O$ .

Somewhat deliquescent.

Ammonium gadolinium nitrate, 2NH4NO₈,  $Gd(NO_3)_3$ .

Deliquesces in the air. (Benedicks, Z. anorg. 1900, 22, 407.)

Ammonium gold (auric) nitrate (Ammonium auronitrate), NH₄Au(NO₈)₄.

Extremely deliquescent.  $H(NH_4)_2Au(NO_3)_6$ . (Schottländer, A. 217. 312.)

Ammonium lanthanum nitrate, 2NH4NO3,  $La(NO_3)_3+4H_2O$ .

Not deliquescent. Sol. in H₂O. (Marignac.)

Ammonium magnesium nitrate, 2NH4NO3.  $Mg(NO_3)_2$ .

Slowly deliquescent. Sol. in 10 pts. H2O at 12.5° and much less hot H₂O. (Fourcroy.)

Arumonium mercurous nitrate, 4NH4NO3,  $H_{K_2}(NO_3)_2 + 5H_2O$ .

Sol. in H₂O. (Pagenstecher, Repert. 14. 188.)

Ammonium nickel nitrate.

Sol. in 3 pts. cold H₂O. (Thénard, Scher. J. 10. 428.)

Ammonium praseodymium nitrate, 2NH4NO3,  $Pr(NO_3)_8 + 4H_2O$ .

Sol. in H₂O. (von Scheele, Z. anorg. 1898, **18.** 356.)

Ammonium silver nitrate, NH4NO3, AgNO3.

Very sol. in H₂O. (Russell and Maskelyne, Roy. Soc. Proc. 26. 357.)

Sol. in H₂O without decomp. (Schreinemakers and de Baat. Chem. Weckbl. 1910.

See also solubility of NH4NO₈+AgNO₈ under NH4NO₈.

Ammonium thorium nitrate, (NH₄)₂Th(NO₃)₆. Sol. in strong HNO₃. (Meyer, Z. anorg. 1901, 27. 383.)

NH4Th(NO3)5+5H2O. Sol. in HNO2 of sp. gr. 1.25. (Meyer, Z. anorg. 1901, 27. 382.)

Ammonium uranyl nitrate, NH4NO3,  $UO_2(NO_3)_2$ .

Decomp. by H₂O. Sol. in conc. HNO₈. (Meyer, B. 1903, 36, 4057.)

Solubility in H₂O at t^o.

			•	
	In 10 of th	0 pts. l he solu	by wt.	
t°	Pts. by wt. UO2	Pts. by wt. NH4	Pts. by wt. total salt	Solid phase
0.5 13.5 24.9 a b 35.0 59.0 80.7 a b	29.71 32.35 36.40 36.53 42.07 44.37 44.90 45.01	2.92 3.42 3.54 3.54 3.44 2.90 2.98 2.98	68.72 68.97  78.76 78.79	Double salt + UO2(NO2)2  Double salt

Ammonium uranyl nitrate is decomp. by H₂O at temp. below 60°: above 60° it is sol. in H₂O without decomp. (Rimbach, B. 1904, **37**. 475.)

Ammonium nitrate ammonia, 2NH4NOs, 3NH₈.

Known only as a solution of NH₃ in NH₄NO₃+Aq. (Troost, C. R. **94.** 789.) NH₄NO₃, 3NH₃. As above.

Ammonium nitrate mercuric chloride, NH ₄ NO ₃ , 2HgCl ₂ .	Solu	bility in 100	pts. H ₂ O a	t t°.
Insol. in H ₂ O. Ether dissolves out HgCl ₂ . (Kosmann, A. ch. (3) 27. 240.)	t°	Pts. Ba(NO ₈ ) ₂	t°	Pts. Ba(NO ₃ ) ₂
$2NH_4NO_3$ , $HgCl_2$ . Sol. in $H_2O$ . (Hof-	0	5.0	52	17.7
2NH ₄ NÓ ₃ , HgCl ₂ . Sol. in H ₂ O. (Hof-mann and Marburg, A. 1899, <b>305</b> . 199.)	1	5.1	53	18.1
	$oldsymbol{\dot{2}}$	5.3	54	18.4
	$\frac{2}{3}$	5.5	55	18.7
Ammonium nitrate sulphate, $2(NH_4)_2O$ , $N_2O_5$ , $2SO_3$ , $H_2O$ .	4	5.7	56 57	$19.0 \\ 19.3$
Very hydroscopic and sol. in H ₂ O. (Fried-	5 6	$\begin{array}{c c} 6.0 \\ 6.2 \end{array}$	58	19.6
heim, Z. anorg. 1894, 6. 297.)	7	6.4	59	20.0
2NH ₄ NO ₃ , (NH ₄ ) ₂ SO ₄ . (de Waal, Dissert.	8	6.6	60	20.3
<b>1910.</b> )	$reve{9}$	6.8	61	20.6
3NH ₄ NO ₈ , (NH ₄ ) ₂ SO ₄ . (de Waal.)	10	7.0	62	20.9
See also sombility of NH ₄ NO ₃ +(NH ₄ ) ₂ SO ₄	11	7.3	63	21.0
under NH ₄ NO ₃ .	12	7.5	64	21.6
`	13	7.7	65	21.0
Ammonium nitrate metatungstate, NH4NO8,	14	7.9	66	22.3
$2(NH_4)_2W_4O_{18}+4H_2O$ .	15	8.1	67	22.6
_ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	16	8.3	68	22.9
Decomposes by recrystallising out of H ₂ O. (Marignac, A. ch. (3) <b>69.</b> 61.)	17	8.5	69	23.3
(Wangnac, A. Ch. (5) 05. 01.)	18 19	$\begin{vmatrix} 8.8 \\ 9.0 \end{vmatrix}$	70 71	$23.6 \\ 23.9$
	$\frac{19}{20}$	$9.0 \\ 9.2$	72	$\frac{23.9}{24.3}$
Antimony nitrate, Sh ₄ O ₆ , N ₂ O ₅ .	$\frac{20}{21}$	9.5	73	$\frac{24.5}{24.9}$
Decomp. by cold H ₂ O. (Bucholz.)	$\frac{21}{22}$	9.7	74	25.0
Aqueous solution sat. at 10° contains 30.4%	23	9.9	75	25.4
salt. (Eller.)	$\frac{23}{24}$	10.1	76	25.7
Sol. in strong, less sol. in dil. HNO ₈ +Aq.	25	10.4	77	26.0
(Peligot, A. ch. (3) 20. 288.)	<b>2</b> 6	10.6	78	26.4
Insol. in acetone. (Naumann, B. 1904, 37.	27	10.8	79	26.7
4329.)	28	11.1	80	27.0
ļ	29	11.3	81	27.4
Barium nitrate, $Ba(NO_3)_2$ .	30	11.6	82	27.7
Sol. in H ₂ O with absorption of heat.	31	11.8	83	28.1
100 pts. H ₂ O at 0° dissolve 5.0 parts	$\begin{array}{c} 32 \\ 33 \end{array}$	12.1	84	28.4
$Ba(NO_3)_2$ . (Gay-Lussac, A. ch. 11. 313.)	34	$\begin{array}{c c} 12.3 \\ 12.6 \end{array}$	85	$ \begin{array}{c c} 28.8 \\ 29.1 \end{array} $
100 pts. H ₂ O at 0° dissolve 5.2 parts	35	12.8	86 87	29.5
$Ba(NO_8)_2$ . (Mulder.)	36	13.1	88	29.8
$Ba(NO_8)_2 + Aq$ sat. at 20° contains 8.57 pts.	37	13.4	89	30.2
$Ba(NO_{\bullet})_{\bullet}$ to 100 pts. $H_{\bullet}O_{\bullet}$ and has 1.0679 sp.	38	13.7	90	30.6
gr. (Karsten); sat. at $20^{\circ}$ has $1.064$ sp. gr., and contains 7.94 pts. $Ba(NO_3)_2$ to 100 pts.	39	14.0	91	30.9
and contains 7.94 pts. Ba(NO ₈ ) ₂ to 100 pts.	40	14.2	92	31.3
H₂O. (Michel and Krafft.)	41	14.5	93	31.7
•	42	14.8	94	32.0
100 pts. H ₂ O dissolve pts. Ba(NO ₃ ) ₂ at t°.	43	15.1	95	$32.4^{\circ}$
	44	15.4	96	32.7
$\mathbf{t}^{\circ}$ $\begin{vmatrix} \mathbf{P}_{\mathbf{t}\mathbf{s}.} \\ \mathbf{Ba}(\mathbf{NO_3})_2 \end{vmatrix}$ $\mathbf{t}^{\circ}$ $\begin{vmatrix} \mathbf{P}_{\mathbf{t}\mathbf{s}.} \\ \mathbf{Ba}(\mathbf{NO_3})_2 \end{vmatrix}$	45	15.6	97	33.1
Ba(NO ₃ ) ₂ Ba(NO ₃ ) ₂	46 47	15.9	98	33.5
	48	16.2	100	33.8
0   5 00   52 11   17 97		16.5 16.8	100 101	$   \begin{array}{c c}     34.2 \\     34.5   \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
14.95   8.18   73.75   25.01	49 50			
	50 51	17.1 17.4	101.9	34.8

(Gay-Lussac, A. ch. (2) 11. 313.) experiments, Scheik. Verhandel. 1864. 50.)

Sat.	$Ba(NO_3)_2 + Aq$	contains	%	$Ba(NO_3)_2$	l
	a	t t°.		•	l

t°	Βω(NO ₃ ) ₂	· t°	Ba(N() ₈ ) ₂
0.4 2.1	4.3 4.9	60.0 73.0	16.1 19.4
$\begin{array}{c} 6.0 \\ 6.5 \\ 11.0 \end{array}$	$5.6 \\ 5.6 \\ 6.4$	$\begin{array}{c c} 92.0 \\ 110.0 \\ 132.0 \end{array}$	$ \begin{array}{c c} 23.4 \\ 27.4 \\ 31.8 \end{array} $
$\begin{array}{c} 15.3 \\ 18.0 \end{array}$	7.1	134.0 150.0	32 5 34.9
$28.5 \\ 45.5 \\ 52.0$	$ \begin{array}{c c} 9.7 \\ 12.8 \\ 14.9 \end{array} $	$\begin{array}{c c} 152 & 0 \\ 171.0 \\ 215.0 \end{array}$	35.4 38.3 45.8

(Étard, A. ch. 1894, (7) 2. 528.)

100 g. H₂O dissolve 8.54 g. Ba(NO₃)₂ at 17°. (Gmelin-Kraut, Handbuch der anorg. Chemie.)

100 g. H₂O dissolve 7.87 g. Ba(NO₃)₂ at 15°; 8.32 g. at 17°. (Euler, Z. phys. Ch. 1904, **49.** 315.)

1000 g. H₂O dissolve 0.72 gram-equivalents  $Ba(NO_3)_2$  at 21.5°. (Euler, Z. phys. Ch. 1904, 49. 312.)

10.30 g. anhydrous Ba(NO₃)₂ are sol. in 100 g. H₂O at 25°. (Parsons and Colson, J. Am. Chem. Soc. 1910, 32. 1385.)

4.74 g. Ba(NO₃)₂ are contained in 100 g. Ba(NO₃)₂ sat. at 0°. (Coppadoro, Gazz. ch. it. 1911, 42, I. 233.)

Solubility of Ba( $NO_3$ )₂ in H₂O = 0.427 mol. (Masson, Chem. Soc. 1911, 99. l. at 30°. 1136.)

Solubility of  $Ba(NO_3)_2$  in  $H_2O$  at  $30^\circ =$ 10.33%. (Coppadoro, Gazz. ch. it. 1913, 43. I. 240.)

Solubility in H₂O.

100 g. of the sat, solution contain at:  $9.1^{\circ}$ 21.1° 35° 6.25 8.46 11.39 g. Ba(NO₃)₂. (Findlay, Chem. Soc. 1914, 105. 780.)

Sp. gr. of  $Ba(NO_3)_2 + Aq$  at 19.5°.

Ba(NO ₈ ) ₂	Sp. gr.	Ba(NO ₃ ) ₂	Sp. gr.
1	1.009	6	1.050
2	1.017	7	1.060
3	1.025	8	1.069
4	1.034	9	1.078
5	1.042	10	1.087

(Calculated by Gerlach, Z. anal. 8, 286, from Kremers, Pogg. 95. 110.)

Sp. gr. of  $Ba(NO_3)_2 + Aq$  at 18°.

% Ba(NO ₃ ) ₂	Sp. gr.
4.2	1.0340
8.4	1.0712

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $Ba(NO_3)_2 + Aq$  at 17.5°.

Ba(NO ₃ ) ₂	Sp. gr.	73 Ba(NO ₃ ) ₂	Sp. gr.
1 2 3 4 5	1.0085 1.0170 1.0255 1.0340 1.0425	6 7 8 Sat. sol.	1.0510 1.0600 1.0690 1.0690

(Gerlach, Z. anal. 27, 283.)

Sp. gr. of Ba( $NO_{3/2}$  +Aq at room temp.

Yo Ba (NOs)2	Sp. gr.
5.25	1.0507
2.98	1.0274

(Wagner, W. Ann. 1883, 18. 264.)

Sp. r. of Ba( $NO_3$ )₂+Aq at 25°.

Concentration of Ba(NO ₃ ) ₂ +Aq.	Sp. gr.
1/2 normal	1.0518
1/4 "	1.0259
1/8 "	1.0130

(Wagner, Z. phys. Ch. 1890, 5. 35.)

 $Ba(NO_3)_2 + Aq$  containing 6.08%  $Ba(NO_3)_2$ has sp. gr.  $20^{\circ}/20^{\circ} = 1.0517$ .

 $Ba(NO_3)_2 + Aq$  containing 6.97%  $Ba(NO_3)_2$  has sp. gr. 20°/20° = 1.0597.

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 279.)

Sp. gr. of Ba(NO₃)₂+Aq at 20° containing Mg. mols. salt per liter.

M Sp. gr.	$0.01 \\ 1.002031$	$0.025 \\ 1.005224$	$0.05 \\ 1.010591$
M Sp. gr.	$0.075 \\ 1.015671$	$0.10 \\ 1.021143$	0.15 1.031770
(Jones a	nd Pearce, A	m. Ch. J. 190	7, <b>38</b> . 708.)

Sp. gr. of sat. Ba(NO₃)₂+Aq at t°.

t°	g. Ba(NO ₃ ) ₂ sol. in 100 g. H ₂ O	Sp. gr.
0 10 20 30 40 50 60 70	7.0 9.2 11.6 14.2 17.1 20.3 23.6	1.043 1.056 1.073 1.087 1.104 1.121 1.137 1.146

(Tschernaj, J. Russ. Phys. Chem. Soc. 1912, **44**. 1565.)

Saturated BaNO₈+Aq contains:-36.18 pts. Ba(NO₃)₂ to 100 pts. H₂O, and boils at 101.1°. (Griffiths.)

554

35.2 pts.  $Ba(NO_3)_2$  to 100 pts.  $H_2O$ , and

boils at 101.65°. (Gay-Lussac.) 34.8 pts. Ba(NO₃)₂ to 100 pts. H₂O, and boils at 101.9°. (Mulder.)

34.8 pts.  $Ba(NO_3)_2$  to 100 pts.  $H_2O$ , and boils at 102.5°. (Kremers.)

Sat. Ba(NO₈)₂+Aq forms a crust at 101.1°; highest temp. observed was 101.5°. (Gerlach, Z. anal. 26. 427.)

B. pt. of Ba(NO₃)₂+Aq containing pts.  $Ba(NO_3)_2$  to 100 pts.  $H_2O$ .

Bpt.	Pts. Ba(N() ₃ ) ₂
100 <b>6°</b>	12.5
101.0	26.0
101.1	27.5

(Gerlach, Z. anal. 26, 440.)

Insol. in conc. HNO₈+Aq, and much less sol. in dil. HNO₈+Aq or HCl+Aq than in H₂O.

Solubility of Ba(NO₃)₂ in HNO₃+Aq at 30°.

Sp. gr. of sat.	G. mol. per l.		
solution	$\mathrm{HNO_3}$	Ba(NO3)2	
1.0891	0.0000	0.4270	
1.0811	0.1318	0.3282	
	0.2496	0.3268	
1.0663	0.4995	0.2410	
1.0619	0.7494	0.1785	
1.0609	1.000	0.1353	
1.0633	1.247	0.1056	
1.0668	1.493	0.0847	
1.0783	1.998	0.0598	
1.1050	2.993	0.0334	
1.1341	3.986	0.0218	
1.1341	3.994	0.0223	
1.1645	5.012	0.0147	

(Masson, Chem. Soc. 1911, 99, 1136.)

Less sol. in dil. HC₂H₃O₂+Aq than in dil. HCl+Aq

Solubility in NH₄Cl+Aq is the same as in H₂O.

Less sol. in NH₄OH+Aq, NH₄C₂H₃O₂+Aq, or NH₄NO₃+Aq than in H₂O. (Pearson, Zeit. Ch. (2) 5. 662.)

Ba(NO₈)₂ is sol. in about:

13.33 pts. H₂O at ord. temp., and 4.67 pts. at 100°.

14.67 pts.  $NH_4OH+Aq$  (conc.) at ord. temp., and 5.67 pts. at  $100^\circ$ .
16.50 pts.  $NH_4OH+Aq$  (1 vol. conc.+3 vols.  $H_2O$ ) at ord. temp.

28.00 pts. HCl+Aq (1 vol. conc. HCl+4 vols. H₂O) at ord, temp.

29.00 pts. HC₂H₃O₂+Aq (1 vol. commercial  $HC_2H_3O_2+1$  vol.  $H_2O$ ) at ord. temp.

13.67 pts. NH₄Cl+Aq (1 pt. NH₄Cl+10 pts. H₂O) at ord. temp., and 4.67 pts. at 100°.

24.00 pts.  $NH_4NO_3+Aq$  (1 pt.  $NH_4NO_3+$ 

10 pts. H₂O) at ord. temp

17.33 pts. NH₄C₂H₈O₂+Aq (dil. NH₄OH neutralised by dil. HC₂H₃O₂) at ord. temp., and 4.33 pts. at 100°

14.67 pts. NaC₂H₃O₂+Aq (dil. HC₂H₃O₂ neutralised by Na₂CO₃ and dil. with 4 vols.

 $H_2O$ ) at ord. temp., and 5.33 pts. at  $100^\circ$ . 17.33 pts.  $Cu(C_2H_3O_2)_2+Aq$  (see Stolba, Z. anal. 2. 390) at ord. temp., and 6.00 pts. at 100°

18.67 pts. grape sugar (1 pt. grape sugar +10 pts. H₂O) at ord. temp. (Pearson, Zeit. Ch. 1869. 662.)

Sol. in sat. NH₄Cl+Aq without pptn. at first, but finally NH₄Cl is pptd. until a certain state of equilibrium is reached. (Karsten.)

#### Solubility in BaO₂H₂, 8H₂O+Aq at 25°.

Sp. gr. 25°/25°	G. BaO as Ba(OH) ₂ in 100 g. H ₂ O	G. Ba(NO ₃ ) ₂ in 100 g. H ₂ O
1.0797	0	10.30
1.1002	1.55	10.66
1.1210	3.22	11.04
*1.1448	5.02	11.48

* This solution is sat. with respect to both  $Ba(OH)_2$ ,  $8H_2O$  and  $Ba(NO_3)_2$ . (Parsons. J. Am. Chem. Soc. 1910, 32, 1385.) See also under BaO₂H₂.

#### Solubility in BaCl₂+Aq at t°.

†°	Sat. solution contains			
	% BaCl ₂	% Ba(NO ₈ ) ₂		
-7 -1 +1.5 2 10 21 32 35 38 48 53 53	21.4 23.0 22.6 24.7 24.5 26.6 26.4 26.7 28.1 28.5 28.3	4.0 4.0 4.4 5.0 6.1 5.6 7.7 7.7 7.8 8.0 9.0 9.2		
66 73 79 90 155 162 210	28.0 30.0 30.3 32.1 32.5 33.1 32.5	10.0 10.5 11.2 12.5 23.1 23.4 31.9		

(Etard, A. ch. 1894, (7) 3. 287.) See also under BaCl₂.

 $Ba(NO_8)_2 + Pb(NO_8)_2$ 

Very sl. sol. in sat. Pb(NO₃)₂+Aq. (Karsten.)

100 pts. sat.  $Ba(NO_3)_2+Pb(NO_3)_2+A\alpha$  contain 33.95 pts. of the two sales at 19-20°. (v. Hauer, J. pr. 98. 137.)

Solubility of Ba(NO₈)₂+Pb(NO₈)₂ at 25°.

G.	Sp. gr.	
Ba(NO3)2	Pb(NO3)2	1545. #1.
102.2 54.9 86.5 79.7 77.0 69.8 66.0 57.5 25.9 28.8	0 17.63 49.80 68.10 97.20 130.7 177.3 247.7 334.3 429.7 553.8	1.079 1.088 1.108 1.119 1.140 1.163 1.198 1.252 1.294 1.376 1.459

(Fock, Z. Kryst. Min. 1897, 28, 365, 397.)

 $\begin{array}{c} 100 \ \ {\rm ccm.} \ \ Ba(NO_3)_2 + Pb(NO_5)_2 + \Lambda q \ \ {\rm sat.} \\ {\rm at} \ 17^{\circ} \ \ {\rm contain} \ 3.22 \ g. \ Ba(NO_3)_2 \ {\rm and} \ 38.59 \ g. \\ Pb(NO_3)_2 \ \ {\rm and} \ \ {\rm solution} \ \ {\rm has} \ \ {\rm sp.} \ \ {\rm gr.} = 1.350. \\ (Euler, Z. \ phys. \ Ch. \ 1904, \ 46.313.) \\ 100 \ \ {\rm pts.} \ \ {\rm sat.} \ \ Ba(NO_3)_2 + Pb(NO_3)_2 + \\ \end{array}$ 

100 pts. sat.  $Ba(NO_3)_2 + Pb(NO_3)_2 + Sr(NO_3)_2 + Aq$  contain 45.90 pts. of the three salts at 19–20°. (v. Hauer, l. c.)

 $Ba(NO_3)_2 + Sr(NO_3)_2$ .

100 pts. sat.  $Ba(NO_3)_2 + Sr(NO_3)_2 + Aq$  contain 45.96 pts. of the two salts at 19-20°. (v. Hauer,  $l.\ c.$ )

 $Ba(NO_3)_2 + KNO_3$ .

100 pts. H₂O dissolve:

	(Mulder)			
	(1)			
$\overline{\mathrm{KNO_3}}$ $\mathrm{Ba}(\mathrm{NO_3})_2$	29.7	28.8 5.4 34.2	8.9	

	(Karsten)		(Kopp)	
	 (2)	(3)	(4)	(5)
$\overline{\mathrm{KNO_3}}$ . $\mathrm{Ba(NO_3)_2}$	13.31 6.91	29.03 1.00	5.7 33.1	$\frac{3.5}{36.3}$
	20.22	30.03	38.8	39.8

1. Sat. Ba(NO₈)₂+Aq sat. with KNO₈ at 18.5°.

2. To sat. KNO₃+Aq, Ba(NO₃)₂+Aq was added.

3. To sat.  $Ba(NO_3)_2+Aq$ ,  $KNO_3$  was added.

4. Both salts in excess + Aq at 21.5°.

5. Both salts in excess +Aq at 23°.

1 l. of the solution contains 59.1 g. Ba(NO₃)₂ +124.2 g. KNO₃=183.35 g. mixed salts at 17°. Sp. gr. Ba(NO₃)₂+KNO₃+Aq=1.120.

17°. Sp. gr. Ba( $NO_3$ ),  $+KNO_3+Aq=1.120$ . 11. of the solution contains 88.7 g. Ba( $NO_3$ ), +213.6 g.  $KNO_3=302.3$  g. mixed salts at 3°. Sp. gr. Ba( $NO_3$ ),  $+KNO_3+Aq=1.191$ . (Euler, Z. phys. Ch. 1904, **49**, 313.)

Solt bitity in KNO₃+Aq at 25°.

100 pts. of solu- tion contain		Solid phase	
pts. KNO3	pts. Ba(NO-)2	-	
15.24 14.69 14.79 16.30 21.99 27.66 27.81 27.94 27.64	$660 \\ 6.62 \\ 5.49 \\ 3.04$	B ₁ (NO ₃ ) ₂ +2KNO ₃ , Ba(NO ₈ ) ₂ " 2F:NO ₈ , Ba(NO ₃ ) ₂ KNO ₃ +2KNO ₃ , Ba(NO ₃ ) ₂ " " "	

These results show that a double salt of potassium and barium nitrates is formed at 25°.

(Foote, Am. Ch. J. 1904, 32, 252.)

Solubility of Ba(NO₃)₂+KNO₃ at t°.

9.1 6.25 0 4.20 8 1.98 12.4 0.98 16.3 0 16.3 1.98 12.4 0.98 16.3 3.35 5.9 6.35 5.9 6.35 5.9 6.35 18.2 2.30 21.4 1.76 24.3 0 24.3 35 11.39 0	Ba(NO ₃ ) ₂ 2KNO ₃ , Ba(NO ₃ ) ₂ 2KNO ₃ , Ba(NO ₃ ) ₂ + KNO ₃ KNO ₃ Ba(NO ₃ ) ₂ +  (12 (12 (12 (13 (14 (14 (15 (15 (15 (15 (15 (15 (15 (15 (15 (15
1.98   12.4 0.98   16.8 0   16.7 21.1   8.46   0 7.47   2.7 6.35   5.9 6.06   8.4 5.98   13.5 2.30   21.4 1.76   24.8 0   24.7	Ba(NO ₃ ) ₂ 2KNO ₃ , Ba(NO ₃ ) ₂ 2KNO ₃ , Ba(NO ₃ ) ₂ + KNO ₃ 6  Ba(NO ₃ ) ₂ + KNO ₃ 6  Ba(NO ₃ ) ₂ 6  6  6  6  6  6  6  7  6  7  7  8  8  8  8  8  8  8  8  8  8  8
0.98   16.2 0   16.2 21.1   8.46   0 7.47   2.2 6.35   5.9 6.06   8.2 5.98   13.2 3.35   18.2 2.30   21.2 1.76   24.3 0   24.2	2KNO ₃ , Ba(NO ₃ ) ₂ 2KNO ₃ , Ba(NO ₃ ) ₂ + KNO ₃ ENO ₃ Ba(NO ₃ ) ₂ " 22  " 47  Ba(NO ₃ ) ₂ " 48  Ba(NO ₃ ) ₂ +2KNO ₃ ,
0 16.3 21.1 8.46 0 7.47 2.6.35 5.9 6.06 8.4 5.98 13.3 3.35 18.3 2.30 21.4 1.76 24.8 0 24.3	76 KNO ₃ KNO ₃ Ba(NO ₃ ) ₂ 12  " 18 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
21.1 8.46 0 7.47 2.635 5.96 6.06 5.98 13.5 2.30 21.76 24.8 0 24.3	76   KNO ₃ Ba(NO ₃ ) ₂ 12  13  14  17  18  Ba(NO ₃ ) ₂ "  "  44   Ba(NO ₃ ) ₂ +2KNO ₃ ,
7.47 2 6.35 5.9 6.06 8.4 5.98 13.2 3.35 18.2 2.30 21.4 1.76 24.8	12 98 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19
6.35 5.6 6.06 8.4 5.98 13.3 3.35 18.3 2.30 21.4 1.76 24.8	98 17 24   Ba(NO ₃ ) ₂ +2KNO ₃ ,
6.06 8.4 5.98 13.5 3.35 18.5 2.30 21.4 1.76 24.8 0 24.3	17 " 24 Ba(NO ₃ ) ₂ +2KNO ₃ ,
5.98   13.2 3.35   18.5 2.30   21.4 1.76   24.8 0   24.7	$\begin{array}{c c}  & \\  24 & Ba(NO_3)_2 + 2KNO_3, \end{array}$
3.35 2.30 1.76 24.8 0 24.3	
2.30 21.4 1.76 24.8 0 24.7	$Ba(NO_3)_2$
2.30 21.4 1.76 24.8 0 24.7	
1.76 24.8 0 24.3	
25 11 20 0	
50   II.59   U	Ba(NO ₈ ) ₂
8.18   12.9	99 "
8.08 17.4	18 "
8.42 19.	
5.85 24.	$\begin{array}{c} \operatorname{Ba(NO_3)_2} \\ \operatorname{2KNO_3}, \operatorname{Ba(NO_3)_2} \end{array}$
5.02 26.0	
3.02 34.8	
1.77 34.9	
0 35.0	

(Findlay, Chem. Soc. 1914, 105. 779.)

 $Ba(NO_3)_2 + NaNO_3$ .  $Ba(NO_3)_2$  is sol. in sat.  $NaNO_3 + Aq$  without separation.

100 pts. H2O dissolve:

	· ·	 	(Karsten) At 18.75°		
$rac{\mathrm{NaNO_3}}{\mathrm{Ba}(\mathrm{NO_3})_2}.$	•	:	86.6	88.14 3.77	8.9
,			(Kopp) At 20.2°		
NaNO ₃ .			87.7	88.6	

#### Solubility of Ba(NO₃)₂+NaNO₃ in H₂O at 0°.

% NaNOs	% Ba(NO ₃ ) ₂	Solid phase
0	4.74	$Ba(NO_3)_2$
0.41	4.33	***
0.61	4.03	"
1.68	3.34	"
3.54	2.50	"
8.05	1.60	"
12.71	1.56	"
20.24	1.53	"
20.92	1.43	"
27.74	1.56	"
30.81	1.55	"
33.79	1.53	"
35.83	1.49	"
41.30	1.55	$Ba(NO_3)_2 + NaNO_3$
41.68	0.51	NaNO ₃
42.47	0	"

(Coppadoro, Gazz. ch. it, 1912, 42 (1) 233.)

# Solubility of Ba(NO₃)₂+NaNO₃ in H₂O at 30°.

% Nanos	Ba(NO3)2	Solid phase
0 2.33 7.09 12.07 14.41	10.33 8.58 5.28 3.89 3.54	Ba(NO ₃ ) ₂
17.87 19.06 23.55 41.22 48.22 48.50 49.16	3.20 3.07 2.81 2.27 2.11 1.00 0	" " " Ba(NO ₃ ) ₂ +NaNO ₃ NaNO ₃

(Coppadoro, Gazz. ch. it. 1913, 43, I. 240.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 827.)

100 pts. hydrazine dissolves 81.1 pts. Ba(NO₈)₂ at 12.5-13°. (de Bruyn, R. t. c. 1899, 18. 297.)

100 pts. anhydrous hydroxylamine dissolve 11.4 pts. Ba(NO₈)₂. (de Bruyn, R. t. c. 1892, **11.** 18.)

Insol. in absolute alcohol.

Solubility in dilute alcohol increases with the temp. (Gerardin, A. ch. (4) 5. 145.)

#### Solubility in ethyl alcohol + Aq at 25°.

% C ₂ H ₅ OH in the solvent	% C ₂ H ₅ OH in the solution	% Ba(NO ₈ ) ₂ in the solution
0	0	9.55
10.25	9.5	7.63
18.60	17.5	6.02
25.05	23.7	5.25
40.20	38.8	3.53
58.00	57.0	1.85
78.70	78.2	0.62
90.10	89.9	0.18
99.40	99.39	0.005

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 37.)

Completely insol. in boiling amyl alcohol. (Browning, Sill. Am. J. 143. 314.)

#### Solubility in organic solvents.

Solvent	% Ba(NO ₃ ) ₂ in the solution at 25°
Methyl alcohol Ethyl alcohol Acetone Ether Paracetaldehyde	0.50 0.005 0.005 very small

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 44.)

#### Solubility in phenol + Aq at 25°.

Concentration of the phenol Mol./Liter	Solubility of Ba(NO ₃ ) ₂ Mol./Liter
0.000	0.3835
0.045	0.3785
0.082	0.3746
0.146	0.3664
0.310	0.3492
0.401	0.3400
0.501	0.3299
0.728  (sat.)	0.3098

(Rothmund and Wilsmore, Z. phys. Ch. 1902, **40.** 620.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37. 3602.)

Insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Difficultly sol, in acetone. (Naumann, B. 1904, 37, 4328.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Barium mercurous nitrate, 2BaO, 2Hg₂O, 3NOs.

Decomp. by H₂O. Sol. in hot dil. HNO₂+ Aq and hot Hg2(NO3)2+Aq, from which it crystallises on cooling. (Städeler, A. 87, 129.)

Barium potassium nitrate,  $Ba(NO_8)_2$ ,  $2\kappa NO_8$ . Ppt. (Wallbridge, Am. Ch J. 1903, 39. 154.)

Solubility determinations show that the only double salt formed by barium and potassium nitrates at 25° is Ba(NO₃)₂, 2KNO₃. See Ba(NO₃)₂+KNO₃ under Ba(NO₃)₂. (Foote, Am. Ch. J. 1904, **32.** 252.)

Barium nitrate metatungstate, 2Ba(NO₃)₂,  $BaW_4O_{18} + 6H_2O$ .

Efflorescent. Sol, in warm H₂O. (Péchard, A. ch. (6) 22. 198.)

Bismuth nitrate, basic,  $Bi_2O_3$ ,  $N_2O_5 + 2H_2O$ .

Sol. in a large amount of H₂O. Sol. in  $HNO_3+Aq$ . (Heintz.) Sol. in 135 pts. H₂O at 90–93°. (Ruge, J. B.

**1862.** 163.)

 $+\frac{1}{2}H_2O$ . Sol. in much H₂O. (Yvon, ) C.R. 84. 1161.)

+H₂O. (Ruge.) 2Bi₂O₃, N₂O₅. Not acted upon by H₂O. (Ditte, C. R. **84**. 1317.)

 $+H_2O$ . (Yvon.)

 $Bi_2O_3$ ,  $2N_2O_5+H_2O$ . (Ruge.)

 $11Bi_2O_3$ ,  $5N_2O_5+16H_2O$ . Not decomp. by H₂O. (Yvon.)

 $5Bi_2O_3$ ,  $4N_2O_5+8H_2O$ . Ppt. Not attacked by H₂O. (Schulten, Bull. Soc. 1903, (3) 29.  $7\bar{2}2.)$ 

 $5Bi_2O_3$ ,  $5N_2O_5+9H_2O$ . Sol. in  $H_2O$  with

decomp. (Schulten.)  $6Bi_2O_3$ ,  $5N_2O_5+8H_2O$ , and  $+9H_2O$ . (Rut-

ten, Z. anorg. 1902, 30. 368.)

At 25° the salt Bi₁₂O₁₃(NO₃)₁₀, 9H₂O is in equilibrium with HNO₃+Aq from 0.03-0.32-N; the salt BiO(NO₃), H₂O is in equilibrium with HNO₈+Aq from 0.425-0.72-N.

At 50° the salt Bi₄O₅(NO₃)₂, H₂O is in equilibrium with HNO₃+Aq from 0.057-0.285-N; the salt Bi₁₂O₁₃(NO₃)₁₀, 9H₂O is in equilibrium with HNO₃+Aq from 0.285-0.446-N.

At 75° the salt Bi₄O₅(NO₃)₂, H₂O is in equilibrium with HNO₈+Aq from 0.109-0.314-N. (Allan, Am. Ch. J. 1901, 25. 314.)

#### Bismuth nitrate, Bi(NO₃)₃.

Permanent. Decomp. by little H2O with separation of a basic salt. This decomposition is prevented by slight excess of HNO₃, and then the salt is completely sol. in a large

amount of  $H_2O$ . (Rose.) Sol. in dil.  $HNO_3+Aq$ . Not decomp. by  $H_2O$  in presence of  $HC_2H_3O_2$  or  $_{500}$  pt. NH₄NO₃. (Löwe, J. pr. 74. 341.)

Completely sol. in HNO₃+Aq containing 83 g. HNO₃ per liter. (Ditte.)

Solubility of Bi(NO₃)₃ in 2.3N-HNO₃+Aq. =2.04 g. at Bi per l.; in 0.922N-HNO₃+Aq. =2.23 g. at Bi per l. (Dubrisay, C. R. 1911, **153.** 1077.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insc. in acetone. (Krug and M'Elroy.) Solubility of Bi(NO₂)₃ in 6.67% acetone+ 2.3N-HNO₃+Aq=1.89 g. at Bi per l.; in 6.67% acetone+0.922N-HNO₃+Aq=2.17 g. at Bi per I.; in 13.35% acetone+0.922N-HNO₃+Aq=2.08 g. at Bi per I. (Dubrisay, C. R. 1911, **153**, 1077.)

When Bi(NO₃)₃ is mixed with mannite sorbite) in proportion to the mol. wis. and H₂O is added, a clear solution is obtained which is not pptd. by addition of much H₂O. These solutions are more stable the greater the proportion of mannitol. (Vanino and Hunser, Z. anorg. 1901, 28. 211.)

+1½H₂(). (Ditte.) +5H₂(). If treated with increasing amts. of H₂O, the amt. of Bi which dissolves decreases, and when 1 pt. is treated with 50,000 pts. II₂O, no Bi goes into solution. (Antony and Gigli, Gazz. ch. it. 1898, 28. 245.)

48.66 pts. are sol. in 100 pts. acetone at 0°. 41.70 " " " 100 " (Laszczynski, B. 1894, **27.** 2287.)

 $+5\frac{1}{2}H_2O$ . (Yvon, C. R. 84. 1161.) +10H₂O. Melts in crystal H₂O with decomp. at 74°. (Ordway.)

Bismuth cæsium nitrate, Bi(NO₃)₃, 2CsNO₃. Ppt. (Wells, Am. Ch. J. 1901, 26, 277.)

Bismuth cobalt nitrate,  $2Bi(NO_3)_3$ ,  $3Co(NO_3)_2$ +24H₂O.

100 cc. sat. solution in HNO₃+Aq (sp. gr. 1.325) contain 54.67 g. hydrated salt. (Jantsch Z. anorg. 1912, 76. 321.)

Bismuth magnesium nitrate, 2Bi(NO₃)₃,  $3\text{Mg}(\text{NO}_{\bar{3}})_2 + 24\text{H}_2\text{O}$ .

Effloresces in dry air. Deliquescent. Decomp. by H₂O. (Urbain and Lacombe, C. R. 1903, 137. 569.)

100 cc. sat. solution in HNO₃+Aq (sp. gr. 1.325) contain 41.69 g. hydrated salt. (Jantsch Z. anorg. 1912, 76. 321.)

2Bi(NO₃)₃, Bismuth manganous nitrate,  $3\text{Mn}(\text{NO}_3)_2 + 24\text{H}_2\text{O}$ .

Effloresces in Deliquescent. dry air. Decomp. by H2O. (Urbain and Lacombe, C. R. 1903, 137. 569.)

100 cc. sat. solution in HNO₃+Aq (sp. gr. 1.325) contain 65.77 g. hydrated salt. (Jantsch Z. anorg. 1912, 76. 321.)

#### Bismuth nickel nitrate, 2Bi(NO₃)₃, 3Ni(NO₃)₂ +24H₂O.

Deliquescent. E Decomp. by H₂O. C. R. 1903, **37.** 569.) Efflorences in dry air. (Urbain and Lacombe,

100 cc. sat. solution in HNO₃+Aq (sp. gr. 1.325) contain 46.20 g. hydrated salt at 16°. (Jantsch.)

#### Bismuth zinc nitrate, $2Bi(NO_3)_3$ , $3Zn(NO_3)_2$ + 24H₂O.

Deliquescent. Decomp. by  $H_2O$ . bain and Lacombe, C. R. 1903, 137. 569.)

100 cc. sat. solution in HNO₃+Aq (sp. gr. 1.325) contain 57.51 g. hydrated salt at 16°. (Jantsch.)

## Cadmium nitrate, basic, Cd(OH)NO₃+H₂O.

Decomp. by  $H_2O$ , or ordinary alcohol. (Klinger, B. 16. 997.) 12CdO,  $N_2O_6+11H_2O$ . Sl. sol. in  $H_2O$ ;

more sol. in H₂O than basic sulphate. (Habermann, 5. 432.

5 CdO, 2N₂O₅+8H₂O. Decomp. by cold H₂O. (Rousseau and Tite, C. R. 114. 1184.)

#### Cadmium nitrate, Cd(NO₃)₂.

Deliquescent, and very sol. in H₂O. See +4, and 9H₂O.

Sp. gr. of aqueous solution containing:

50% Cd(NO₃)₂. 1,3566 1,4372 1,5372 1,6474 1,7608

(Franz, J. pr. (2) 5. 274.)

Sp. gr. of Cd(NO₃)₂+Aq at 18°.  $\% \operatorname{Cd}(NO_8)_2$ 10 15 1.0069 1.0869 Sp. gr. 1.0415 1.136 % Cd(NO₈)₂ 25 30 351.1903 1.25 1.3125 Sp. gr. 1.3802 % Cd(NO₃)₂ 40 45 48 Śp. gr. 1.459 1.543 1.5978 (Grotrian, W. Ann. 1883, 18. 193.)

Sp. gr. of  $Cd(NO_8)_2+Aq$  at room temp. containing:

22.36% Cd(NO₃)₂. 7.8115.71 1.1593 1.0744 1.2411 (Wagner, W. Ann. 1883, 18. 265.)

Sp. gr. of  $Cd(NO_3)_2 + Aq$ .

		1 0	,	
_	Cd(N <b>1)</b> 2	t°	Sp. gr. at to	Sp. gr. at 18°
_	0.0492	17.57	0.99912	0.99904
	0.100	21.14 18.00	0.99839	0.99945
	0.249	$17.34 \\ 20.22$	1.0008 1.0002	1.0007
	0.464	18.00		1.0025
	0.952	18.00		1.0025

(Wershofen, Z. phys. Ch. 1890, 5, 493.)

Sp. gr.	of C	d(NO ₃	$)_2 + Aq$	at	25°.
---------	------	-------------------	------------	----	------

Concentration of Cd(NO ₃ ) ₂ +Aq.	Sp. gr.
1-normal $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{16}$ $\frac{1}{16}$	1.0954 1.0479 1.0249 1.0119

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Sp. gr. of Cd(	$NO_3)_2+B$	1q at 18'/4'.	
% Cd(NO ₃ ) ₂	54.027	43.716	30.879
Sp. gr.	1.711	1.515	1.321
% Cd(NO ₃ ) ₂	21,353	14.899	8.683
Sp. gr.	1.204	1.134	1.074
(de Muvnck	. W. Ann	. 1894. <b>53.</b> 5	61.)

 $Cd(NO_3)_2 + Aq$  containing 7.89%  $Cd(NO_3)_2$  has sp. gr. 20°/20° = 1.0673.

 $Cd(NO_3)_2 + Aq$ containing 12.14%

 $Cd(NO_3)_2$  has sp. gr.  $20^{\circ}/20^{\circ} = 1.1070$ . (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 282.)

Sat. Cd(NO₃)₂+Aq boils at 132°

Almost entirely insol. in conc. HNO₃+Aq. (Wurtz.)

Moderately sol. in liquid NH3. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Sol, in alcohol.

Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Sol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.) +4 $H_2O$ . M.-pt. of  $Cd(NO_3)_2+4H_2O=59.5^{\circ}$ . (Ordway; Tilden, Chem. Soc. 45. 409.) Solubility in H₂O.

#### Solubility in H₂O at t°.

t°	% Cd(NO3)2 in the solution	Mols. H ₂ () to 1 mol. Cd(NO ₃ ) ₂
0	52.31	11.96
18	55.90	10.34
30	58.40	9.34
40	61.42	8.24
59.5 mpt.	76.54	4.00

(Funk, B. 1899, 32. 105.)

Sat. solution of Cd(NO₃)₂+4H₂O in H₂O at 0° contains 52.3% Cd(NO₃)₂; at 18°, 55.9% Cd(NO₃)₂. (Mylius, Z. anorg. 1912, **74.** 411.)

Sol. in liquid NH₃. (Johnson and Wilsmore, Elektroch. Z. 1908, 14. 227.)
Sol. in acetone. (Naumann, B. 1904, 37.

4328.) Sol. in ethyl acetate. (Naumann, B. 1910,

43. 314.) +9H₂O. Solubility in H₂O.

#### Sat. solution contains at:

-13° ---1° 37.37 47.33 52.73% Cd(NO₃)₂.

Cryohydrate is formed at -16°. (Funk. Z. anorg. 1899, 20. 416.)

The composition of the hydrates formed by Cd(NO₃)₂ at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by Cd(NO₃)₂ and of the conductivity and sp. gr. of  $Cd(NO_3)$ :+Aq. (Jones, Am. Ch. J. 1905, **34**. 308.)

Cadmium uranyl nitrate,  $Cd(NO_3)_2$ ,  $(UO_2)(NO_3)_2 + 30H_2O.$ 

Sol. in H₂O and acids. Insol. in alcohol and alkalies+Ag. (Lancien, C. C. 1912, 1. 208.)

Cadmium nitrate ammonia, Cd(NO₃)₂, 6NH₃  $+\mathrm{H}_{2}\mathrm{O}.$ 

(André, C. R. 104, 987.)

Cadmium nitrate cupric oxide, Cd(NO₃)₂,  $CuO + 5H_2O$ .

Ppt. (Mailhe, C. R. 1902, **134**, 235.)

Cadium nitrate cupric oxide, Cd(NO₃)₂,  $3\text{CuO} + 5\text{H}_2\text{O}$ .

(Mailhe, A. ch. 1902, (7) 27. 383.)

Cadmium nitrate hydrazine,  $Cd(NO_3)_2$ , 3N₂H₄.

Decomp. by hot H₂O. Sol. in warm NH₄OH. (Franzen, Z. anorg. 1908, **60.** 282.)

#### Cæsium nitrate, CsNO₃.

100 pts. H₂O dissolve 10.58 pts. CsNO₈ at 3.2°. Sl. sol. in absolute alcohol. (Bunsen.)

Solubility of CsNO₃ in H₂O at t°.

t°	G. CsNO3 per 100 g.		l to	G. CsNO ₃ per 100 g.	
·	Solu- tion	Water		Solu- tion	Water
0 10 20 30 40 50	8.54 12.97 18.7 25.3 32.1 39.2	9.33 14.9 23.0 33.9 47.2 64.4	60 70 80 90 100 106.2	45.6 51.7 57.3 62.0 66.3 68.8	83.8 107.0 134.0 163.0 197.0 220.3

(Berkeley, Trans. Roy. Soc. 1904, 203. A, 213.)

100 g. H₂O dissolve 26.945 g. CsNO₃ at 25°. (Haigh, J. Am. Chem. Soc. 1912, 34. 1148.)

Sp. gr. 20°/4° of a normal solution of CsNO₈ =1.140905; of a 0.5 normal solution = 1.07001. (Haigh.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328.)

Solubility in glycol=8% at ord. temp. (de Coninck, Belg. Acad. Bull. 1905, 359.)

Cæsium hydrogen nitrate.

CsNO₃, HNO₃. Sol. in H₂O. (Wells, Am. Ch. J. 1901, **26**. 273.) CsNO₃, 2HNO₃. (W.)

Cæsiam cerium nitrate, Cs₂Ce(NO₃)₆.

Sol. in H₂O; very sl. sol. in HNO₃. (Meyer, Z. anorg. 1901, 27. 371) Sol. in I.NO₃. (Meyer, B. 1900, 33. 2137.)

Cæsium ferric nitrate, CsNO2, Fe(NO3)3+

Deliquescent. (W-lls, Am. Ch. J. 1901, **26.** 276.)

Cæsium silver nitrate, CsNO₃, AgNO₃.

Sol. in H₂O. (Russell and Maskelyne, Roy. Soc. Proc. 26. 357.)

Cæsium thorium nitrate,  $Cs_2Th(NO_3)_6$ .

Decomp by H₂O; sl. sol. in HNO₃. (Meyer, Z. anorg. 1901, **27.** 384.)

Cæsium uranyl nitrate,  $Cs(UO_2)(NO_3)_{\delta}$ .

Decomp. by H₂O. Sol. in conc. HNO₂. (Meyer, B. 1903, 36. 4057.)

Decomp. by H₂O at low temp., so that the solid phase in contact with the solution consists of the double salt and CsNO3. At 16.1° 10°C pts. by wt. of the solution in  $\rm H_2O$  contain 31.39 pts. UO₂ and 6.59 pts. Cs. (Rimbach, B. 1904, **37.** 477.)

Calcium nitrate, basic,  $Ca(NO_3)_2$ ,  $CaO_2H_2+$ 2½H2O.

Decomp. by H₂O. (Werner, A. ch. (6) 27. 570.)

+H₂O. As above. (Rousseau and Tite, C. R. 114. 1184.)

Calcium nitrate,  $Ca(NO_3)_2$ .

Deliquescent. Very sol, in H₂O with evolution of much heat.

100 pts. H₂O at 0° dissolve 84.2 pts.  $Ca(NO_3)_2$ .

 $a(NO_3)_2$ . (Poggiale.) 100 pts.  $H_2O$  at 0° dissolve 93.1 pts.  $Ca(NO_3)_2$ . (Mulder.)

Sol. in 0.25 pt. cold H₂O with reduction of temp. Sol. in all proportions in boiling H₂O. (Berzelius.)
Sol. in 2 pts. cold, and 0.6667 pt. boiling H₂O. (Fourcroy.)

Sat.  $Ca(NOs)_2 + Aq$  at 12.5° contains 33.8%. (Hassenfratz, A. ch. 28.29.)

Solubility in H₂O.

100 g. of the solution contain at:

80° 90° 55° 100° 78.16 78.20 78.37 78.43 g. Ca(NO₃)₂,

 $125^{\circ}$ 147.5° 151° (bpt. of sat. solution at 760 mm.)

79.00 g. Ca(NO₃)₂. 78.57 78.80

The anhydrous salt is the stable solid phase above 51.3°. (Bassett and Taylor, Chem. Soc. 1912, **101.** 580.)

100 g. sat.  $Ca(NO_3)_2+Aq$  contain 77.3 g.  $Ca(NO_3)_2$  at 25°. (Taylor and Henderson, J. Am. Chem. Soc. 1915, 37. 1692.)

See also +2, 3, and  $4H_2O$ .

Sp. gr. of  $Ca(NO_3)_2+Aq$  at room temp. containing:

(Wagner, W. Ann. 1883, 18. 270.)

Sp. gr. of  $Ca(NO_3)_2 + Aq$  at 17.5°.

Ca(NO3)2	Sp. gr.	Ca(NO ₃ ) ₂	Sp. gr.
1 5 10 20 25 30	1.009 0.045 1.086 1.129 1.174 1.222 1.272	35 40 45 50 55 60	1.328 1.385 1.447 1.515 1.588 1.666

(Franz, J. pr. (2) 5. 274.)

Sp. gr. of  $Ca(NO_3)_2 + Aq$  at 17.5°.

	1 0						
Ca(NO ₃ ) ₂	Sp. gr.	Ca(NO ₃ ) ₂	Sp. gr.				
10 20 30	1.076 1.163 1.261	40 50 60	1.368 1.483 1.605				

(Gerlach, Z. anal. 27. 283.)

Sp. gr. of Ca(NO₃)₂+Aq at 18°.

Ca(NO ₃ ) ₂	Sp. gr.	Ca(NO ₃ ) ₂	Sp. gr.
6.25 $12.5$ $25.0$	1.0487 1.1016 1.2198	37.5 50.0	1.3546 1.5102

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $Ca(NO_3)_2+Aq$  at 24.65°. a=no. of g.  $\times \frac{1}{2}$  mol. wt. dissolved in 1000 g.  $H_2O$ ; b=sp. gr. if a is  $Ca(NO_3)_2$ ,  $4H_2O$ ,  $\frac{1}{2}$  mol. wt.=118; c=sp. gr. if a is  $Ca(NO_3)_2$ ,  $\frac{1}{2}$  mol. wt.=82.

а	b	e	a	b	С
1 2 3 4 5	1.056 1.104 1.145 1.181 1.213	1.059 1.112 1.160 1.205 1.246	6 7 8 9 10	1.243 1.270 1.294 1.316 1.336	1.286 1.323

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of Ca(NO₈)₂+Aq at 25°.

Concentration of Ca(NO ₃ ) ₂ +Aq.	Sp. gr.
1-normal  1/2 "  1/4 "  1/8 "	1.0596 1.0300 1.0151 1.0076

(Wagner, Z. phys. Ch. 1890, 5. 36.)

 $Ca(NO_8)_2$ +Aq containing 7.15%  $Ca(NO_8)_2$  has sp. gr.  $20^\circ/20^\circ=1.0554$ .

 $Ca(NO_3)_2 + Aq \text{ containing 7.91\% } Ca(NO_3)_2$  has sp. gr.  $20^{\circ}/20^{\circ} = 1.0613$ .

(Le Blanc and Rohland, Z. phys. Ch. 1896, 9, 284)

Sp. gr. of Ca(NO₃)₂+Aq at 20° containing M g. mols. of salt per liter.

M 0.0125 0.025 0.05 0.125 Sp. gr. 1.001846 1.003166 1.00604 1.01523

M 0.25 0.5 0.75 Sp. gr. 1.03074 1.06011 1.08874

M 1.00 1.50

Sp. gr. 1.11751 1.17375

(Jones and Pearce, Am. Ch. J. 1907, **38. 704**.)

Saturated Ca(NO₃)₂+Aq containing 351.2 pts. Ca(NO₃)₂ to 100 pts. H₂O boils at 151° (Legrand); 152° (Kremers).

Forms a crust at 141°, and contains 333.5 pts. Ca(NO₃)₂ to 100 pts. H₂O; highest temp. observed, 151°. (Gerlach, Z. anal. **26**. 427.)

B.-pt. of  $Ca(NO_3)_2+Aq$  containing pts.  $Ca(NO_3)_2$  to 100 pts.  $H_2O$ . G=according to Gerlach (Z. anal.**26.**447); L=according to Legrand (A. ch. (2)**59.**436).

Bpt.	G	L	Bpt.	G	L
101°	10	15	127	215.5	
102	20	25.3	128	222.5	197.0
103	30	34.4	129	230	
104	40	42.6	130	237.5	209.5
105	50	50.4	131	245	1
106	60	57.8	132	253	222.2
107	70	64.9	133	261.5	
108	80	71.8	134	270	235.1
109	89	78.6	135	278.5	
110	98	85.3	136	287	248.1
111	106.5	91.9	137	296	l
112	114.5	98.4	138	305	261.3
113	122.5	104.8	139	314.5	
114	130	111.2	140	324	274.7
115	137.5	117.5	141	333.5	
116	144	123.8	142	343.5	288.4
117	150.5	130	143	354	
118	157	136.1	144	364.5	302.6
119	163.5	142.1	145	375	
120	170	148.1	146	386	317.4
121	176		147	397.5	
122	182.5	160.1	148	409	333.2
123	189		149	420.5	
124	195.5	172.2	150	432.5	351.2
125	202		151	444.5	362.2
126	208.5	184.5	151.97	455.68	
~	~ ~~				

Sat.  $Ca(NO_3)_2+Aq$  boils at 132°. (Ordway, Sill. Am. J. (2) 27. 14.)

Conc. HNO₃ precipitates Ca(NO₃)₂ from its aqueous solution. (Mitscherlich, Pogg. **18.** 159.)

Very sol. in conc. HNO₃. (Rawson, J. Soc. Chem. Ind. 1897, 16. 113.)

Solubility	in	HNO	+Aa	at	25°.
------------	----	-----	-----	----	------

100 g. of the solut	ion contain	Solid phase
G. Ca(NO ₈ ) ₂	G. HNO ₈	
57.98	0.00	)
54.82	3.33	
52.96	5.87	
51.58	7.21	1
47.82	11.27	ı
45.59	13.71	$\left\{ \text{Ca(NO}_3)_2 + 4\text{H}_2\text{O} \right\}$
40.70	19.65	
38.17	22.80	1
<b>34.4</b> 6	28.81	1
32.84	32.63	
32.50	33.52	j
33.44	35.63	1)
29.05	41.66	$\left\{ \text{Ca(NO}_3)_2 + 3\text{H}_2\text{O} \right.$
27.79	45.70	
31.09	40.56	)
26.07	45.70	1
17.41	55.48	$Ca(NO_8)_2 + 2H_2O$
12.25	62.05	Ca(NOs)2+21120
9.34	65.69	
8.52	67.20	)
5.06	71.12	)
2.53	74.77	
1.05	78.56	
0.54	80.83	$\left\{ \mathrm{Ca(NO_3)_2} \right\}$
0.36	85.83	
0.01 (about)	90.90	
0.00	96.86	J

These results show that the hydrates of Ca(NO₃)₂ which are stable at 25° in contact with HNO₃+Aq are Ca(NO₃)₂+4H₂O, +3H₂O and +2H₂O, (Bassett and Taylor, Chem. Soc. 1912, 101. 582.)

Sol. in glacial HC₂H₃O₂. (Persoz.) Sol. in sat. KNO₃+Aq with elevation of temp. and pptn. of a portion of KNO₃. (Fourcroy and Vauquelin, A. ch. **11**. 135.)

#### Solubility of Ca(NO₃)₂+NaNO₃ at t°.

t°	% Ca(NOs)2	% NaNO₃	Solid phase
9	47.51 46.08 26.67 11.76	9.51 12.56 23.32 34.26	Ca(NO ₃ ) ₂ , 4H ₂ O " +NaNO ₃ NaNO ₃
25	54.58 53.22 52.73 52.40 37.31 26.91 14.61	7.25 10.70 12.08 11.58 19.48 24.98 36.12	Ca(NO ₃ ) ₂ , 4H ₂ O  " +NaNO ₃ NaNO ₃ "

(Kremann and Rothmund, Z. anorg. 1914,

Solubility of Ca(NO₂)₂+CaS₂O₂ at t°.

1			
to	Ca ₃ (NO ₃ ):	% CaS ₂ O ₃	Solid phase
9	46.02 45.68 27.92 10.49	5.46 6.81 10.46 22.81 29.33	Ca(NO ₃ ) ₂ , 4H ₂ O " CaS ₂ O ₃ , 6H ₂ O CaS ₂ O ₃ , 6H ₂ O
25	54.03 59.25 45.92 42.90 32.01 19.51 8.15	4.27 9.10 13. 13.83 17.09 23.78 29.85	Ca(NO ₃ ) ₂ , 4H ₂ O  "+CaS ₂ O ₃ , 6H ₂ O  CaS ₂ O ₃ , 6H ₂ O

(Kremann and Rothmund, Z. anorg. 1914, 86. 373)

Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 827.)

Sol. in 0.8 pt. alcohol (Macquer); 1 pt. boiling alcohol. (Bergmann.)

Dry Ca(NO₃)₂ is sol. in 7 pts. alcohol at 15° and 1 pt. boiling alcohol. (Bergmann.)

Sp. gr. of Ca(NO₈)₂+alcohol.

% Ca(NO ₃ ) ₂	Sp. gr. 20°/20°
0	0.7949
4.96	0.8278
6.47	0.8383

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 284.)

#### Solubility in ethyl alcohol+Aq at 25°.

% C ₂ H ₆ OH in	% C ₂ H ₅ OH in	% Ca(NO ₃ ); in
the solvent	the solution	the solution
*0	0	82.5
*25.1	5.8	77.0
*50.1	15.2	69.52
*60.1	20.4	66.08
*63.9	22.4	64.94
70.4	26.5	62.3
72.0	27.39	61.96
73.4	28.5	61.15
75.3	29.9	60.3
*84.9	35.9	57.7
*99.1	48.1	51.4

* Metastable solutions.

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 43.)



Solubility of Ca(NO₃)₂, 2C₂H₅OH in C₂H₅OH +Ag at 25°.

% C ₂ H ₅ OH in	% C2H5OH in	% Ca(NO ₃ ) ₂ in
the solvent	the solution	the solution
98.1	60.2	38.6
94.1	54.6	41.9
85.8	42.5	50.97
80.5	35.8	55.3
75.3	29.9	60.28

(D'Ans and Siegler, l, c.) *See also under +4H2O.

### Solubility in organic solvents.

Solvent	% Ca(NO ₃ ) ₂ in the solution at 25°
Methyl alcohol Ethyl alcohol Propyl alcohol Isobutyl alcohol Amyl alcohol Acetone	65.5 52.0 36.5 25.0 13.3 58.5

(D'Ans and Siegler, l. c.)

Sol. in 1.87 pts. ether-alcohol (1:1). (Fresenius, Z. anal. 32. 191.)

Ether ppts. Ca(NO₃)₂ from its alcoholic solution. Easily sol, in boiling amyl alcohol. (Browning, Sill. Am. J. 143. 53.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Insol. in benzonitrile. (Naumann, B. 1914. 47. 1370.)

Insol. in methylal. (Eidmann, C. C. 1899,

II. 1014.)

1 g. Ca(NO₃)₂ is sol. in 1.44 g. methyl acetate at 18°. Sp. gr. 18°/4° of sat. solution = 1.313. (Naumann, B. 1999, 42. 3795.)

Sol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.)

+2H₂O. Solubility in H₂O. 100 g. of the solution contain at:

49° 51° 77.49 78.05 g.  $Ca(NO_3)_2$ .

Solutions in stable equilibrium with the dihydrate can only exist between the limits of temp. 48.4° and 51.3°. (Bassett and Taylor, Chem. Soc. 1912, 101. 580.)

+3H₂O. Solubility in H₂O.

100 g. of the solution contain at: 40° 45° 50° 51°

70.37 71.45 73.79 74.73 g.  $Ca(NO_8)_2$ . Mpt. of  $Ca(NO_3)_2 + 3H_2O = 51.1^\circ$ . 70.37

(Bassett and Taylor, l. c.)

 $+4H_2O$ .  $Ca(NO_3)_2+4H_2O$  melts in its crystal  $H_2O$  at  $44^\circ$ . (Tilden, Chem. Soc. 45. 409.)

Solubility in H2O at to.

100 g. of the solution contain g. Ca(NO₈)₂ at to.

t°	G. Ca(NO ₃ ) ₂
-26.7	43.37
$-10.0 \\ 0.0$	47.31 50.50
+5.0	51.97
10.0	53.55
15.0	54.94
$\frac{20.0}{25.0}$	56.39 57.98
30.0	60.41
35.0	62.88
40.0	66.21
$\begin{array}{c} 42.4 \\ 42.5 \end{array}$	68.68 68.74
$\overset{42.3}{42.7}$	mpt. of $Ca(NO_3)_2 + 4H_2O$
42.45	71.70

(Bassett and Taylor, l. c.)

Solubility of a and \( \beta \) modifications in H2O

a modification is the stable form.

t°	G. Ca(NO ₃ ) ₂ in 100 g. of solution	Solid phase
0	50.17	$\alpha \operatorname{Ca(NO_3)_2} + 4 \operatorname{H_2O}$
22.2	56.88	a
25.0	57.90	a "
30.0	60.16	α "
30.0	61.57	β "
34.0	63.66	β "
35.0	62.88	a "
38.0	64.34	a "
38.0	66.65	β "
39.0	67.93	$\beta$ "
1 39 . 6	69.50	β "
² 39.0	75.34	β "
40.0	66.21	a "
1 42.7	69.50	a "
² 42.4	71.70	α "

1 mpt. of hydrate.

² reflex pt.

(Taylor and Henderson, J. Am. Chem. Soc. 1915, **37**. 1692.

Sp. gr. of solution sat. at 18°=1.548, containing 54.8% Ca(NO₃)₂. (Mylius, B. 1897, **30**. 1718.)

Solubility in	Solubility in ethyl alcohol + Aq at 25°.				
% C2H5OH in	% C ₂ H ₅ OH in	% Ca(NO ₃ ) 2 in			
the solvent	the solution	the solution			
0	0	57.5			
18.3	3.5	56.1			
39.2	8.1	55.2			
59.2	14.1	52.9			
80.4	22.3	50.2			
90.4	29.4	49.0			
99.4 99.4 99.4 60.1 60.1 60.1	31.1 31.2 29.5 28.3 27.8 27.3 26.5	49.7 52.0 56.2 58.9 60.0 60.7 62.3			

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 42.)

Calcium nitrate hydrazine,  $Ca(NO_3)_2$ ,  $2N_2H_4 + H_2O$ .

Ppt. (Franzen, Z. anorg. 1908, 60. 288.)

Calcium nitrate tungstosilicate, Ca₂W₁₂SiO₄₀, Ca(NO₃)₂.

 $+13H_2O$  and  $+15H_2O$ . Decomp. by  $H_2O$ . (Wyrouboff, Chem. Soc. 1897, **72.** (2) 176.)

#### Cerous nitrate, $Ce(NO_3)_3+6H_2O$ .

Not very deliquescent. (Jolin.)

Very sol. in H₂O; sol. in 2 pts. alcohol. (Vauquelin.)

Sol. in acetone. (Eidmann, C. C. **1899.** II. **1014**; Naumann, B. 1904, **37.** 4328.)

#### Ceric nitrate, Ce(NO₃)₄.

Deliquescent. Decomp. by hot  $H_2O$ . (Berzelius.)

Sol. in alcohol. (Dumas.)

Basic compounds containing 12 mols. or less CeO₂ to 1 mol. N₂O₅ may be obtained, which are sol. in H₂O. (Ordway.)

 $\begin{array}{cc} \text{Cerous} & \text{cobaltous} & \text{nitrate,} & 2\mathrm{Ce(NO_3)_3,} \\ & 3\mathrm{Co(NO_3)_2}{+}24\mathrm{H_2O.} \end{array}$ 

Deliquescent. Easily forms supersaturated solutions. (Lange, J. pr. 82. 129.)

1 l. sat. solution in HNO₅+Aq (sp. gr. 1.325) contains 103.3 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, **76**. 321.)

Ceric cobaltous nitrate,  $CeCo(NO_8)_6 + 8H_2O$ .

Decomp. by  $H_2O$  when heated; sol. in cold  $H_2O$ ; sl. sol. in  $HNO_3$ . (Meyer, Z. anorg. 1901, 27. 376.)

Cerous magnesium nitrate,  $2\text{Ce}(\text{NO}_3)_3$ ,  $3\text{Mg}(\text{NO}_3)_2+24\text{H}_2\text{O}$ .

Slightly deliquescent. Easily sol. in H₂O or alcohol, and easily forms supersaturated solutions. (Holzmann, J. pr. **75**. 330.)

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 63.8 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912-76. 321.)

Ceric magnesium nitrate, CeMg(NO₃)₆. +8H₂O.

Decomp. by H₂O; sol. in HNO₃+Aq without decomp. (Meyer, Z. anorg. 1901, 27. 373.)

Cercus manganous nitrate,  $2Ce(NO_3)_3$ ,  $3Mn(NO_3)_2+24H_2O$ .

Sol, in H₂O. (Lange, J. pr. **82**. 129.) 1 i. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 193.1 g. hydrous salt at 16°. (Jantsch.)

Ceric manganous nitrate, CeMn(NO₃)₆+ 8H₂O₂

Decomp. by H₂O and dil. HNO₃; sol. in conc. t1NO₃ without decomp. (Meyers Z. anorg. 1901, **27**. 377.)

Cerous nickel nitrate, 2Ce(NO₃)₃, 3Ni(NO₃)₂ +24H₂J.

Easily sol. in H₂O. (Holzmann, J. pr. 75. 321.)

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 80.3 g. hydrous salt at 16°. (Jantsch.)

Ceric nickel nitrate, CeNi(NO₃)₆+8H₂O.

Decomp. by  $\rm H_2O$  when heated; sol. in  $\rm H_2O$  in the cold; sl. sol. in  $\rm HNO_3$ . (Meyer, Z. anorg. 1901, **27.** 375.)

Cerous potassium nitrate,  $Ce(NO_3)_3$ ,  $2KNO_3 + 2H_2O$ .

Sol. in H₂O. (Lange, J. pr. 82. 136.)

Ceric potassium nitrate, CeK₂(NO₃)₆.

Sol. in H₂O with decomp. (Meyer, Z. anorg. 1901, **27.** 370.)

 $+1\frac{1}{2}H_2O$ . Efflorescent. (Holzmann, J. pr. **75**. 324.)

Ceric rubidium nitrate, CeRu₂(NO₃)₆.

Very sol. in H₂O; sl. sol. in HNO₃. (Meyer.)

#### Ceric sodium nitrate.

Deliquescent. Decomp. by recrystallization. (Holzmann.)

Cerous thallous nitrate,  $[Ce(NO_3)_5]Tl_2 + 4H_2O$ .

Very hydroscopic. Decomp. by H₂O. (Jantsch, Z. anorg. 1911, **69**. 229.)

Cerous zinc nitrate,  $2Ce(NO_3)_3$ ,  $3Zn(NO_3)_2 + 24H_2O$ .

Sol. in H₂O. Easily forms supersat. solutions. (Lange, J. pr. 82. 129.)

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 124.1 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, **76**. 321.)

Ceric zinc nitrate, ZnCe(NO₃)₆+8H₂O.

Decomp. by H₂O; sol. in HNO₂+Aq. (Meyer, Z. anorg. 1901, 27. 374.)

Ceroceric zinc nitrate (?), Ce₃O₄, 2ZnO,  $6N_2O_5 + 18H_2O$  (?).

Easily sol. in H₂O. (Holzmann, J. pr. 75. 321.)

Chromic nitrate, basic, Cr₂O(NO₃)₄. Sol. in H₂O. (Löwel.)

+12H₂O. Sol. in H₂O. (Ordway.)

#### Chromic nitrate, $Cr(NO_3)_3 + 9H_2O$ .

Very sol, in H₂O and alcohol. (Löwel.) Melts in its crystal H₂O at 36.5°. Sat. Or(NO₃)₃+Aq boils at 125.6°. (Ordway.) Sp. gr. of  $Cr(NO_3)_8 + Aq$ .

M = concentration of solution in gram. mols wt. of 25 cc. of solution.

M \$\docume{0.0934} \ 0.1868 \ 0.3736 \ 0.5604 \ 0.9340 W 65.4300 25.8828 26.7302 27.5524 29.3072

M 1,1208 1.3076 1.4944 1.8680 W 30.0668 30.8464 31.6327 33.3379 (Jones and Getman, Z. phys. Ch. 1904, 49. 426.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

### Chromic nitrate chloride, CrCl₂(NO₃).

Sol. in H₂O and alcohol. (Schiff, A. 124. 177.) Cr(NO₃)₂Cl. (Schiff.)

Chromic nitrate sulphate,  $Cr_2(SO_4)(NO_3)_4$ . Hygroscopic. Completely sol. in H₂O.  $Cr_2(SO_4)_2(NO_3)_2$ . Sol. in  $H_2O$ . (Schiff, A. **124.** 174.)

Cobaltous nitrate, basic, 6CoO,  $N_2\text{O}_5 + 5\text{H}_2\text{O}$ . Ppt. Gradually sol. in H₂O with deposition of CoO. (Winkelblech, A. 13. 155.)

Sol. in cold HCl, and HNO₃+Aq. comp. by hot KOH+Aq. 4CoO,  $N_2\text{O}_5 + 6\text{H}_2\text{O}$ . Ppt. (Habermann. M. 5. 432.)

#### Cobaltous nitrate, Co(NO₃)₂.

Deliquescent in moist air. Very sol. in  $H_2O$ .

See +3, 6, and  $9H_2O$ .

Sp. gr. of aqueous solution at 17.5° containing:

- 5 20% Co(NO₃)₂, 10 15 1.1378 1.0462 1.0906 1.1936

 $40\% \text{ Co(NO_8)_2}.$ 1.3896 1.4662 1.2538 1.3190 Sp. gr. of sat. solution = 1.5382. (Franz, J. pr. (2) 5. 274.)

Sp. gr. of  $Co(NO_3)_2 + Aq$  at room temp. containing:

24.528% Co(NO₈)₂. 8.28 15.96 1.2288 1.0732 1.1436

(Wagner, W. Ann. 1883, 18. 268.)

Sp. gr. of  $Co(NO_3)_2 + Ag$  at 25°.

Concentration of Co(NOs) Aq.	Sp. gr.
1-normal  1/2- ''  1/4- ''  1/8- ''	1.0728 1.0369 1.0184 1.0094

(Wagner, Z. phys. Ch. 1890, 5. 37.)

Sp. gr. at 20° of Co(NO₃)₂+Aq containing M g. mols.  $Co(NO_3)_2$  per liter.

0.01 0.0250.050.075Sp. gr. 1.001496 1.003863 1.007579 1.011289

0.250.100.5Sp. gr. 1.015084 1.03737 1.07415 1.11204

M 1.0 2.0 1.5Sp. gr. 1.14612 1.21720 1.28576 (Jones and Pearce, Am. Ch. J. 1907, 38. 715.)

Sol. in liquid NH₃. (Guntz, Bull. Soc. 1909 (4) **5.** 1009.)

100 g. sat. solution in glycol contains 80 g. Co(NO₃)₂. (de Coninck, C. C. 1905, II. 883.) Sol. in ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

 $+3H_2O$ . Solubility in  $H_2O$ .

Sat. solution contains at:

55°  $62^{\circ}$  $70^{\circ}$ 84° 91° mpt. 61.74 62.88 64.89 68.84 77.21% Co(NO₃)₂.

(Funk, Z. anorg. 1899, 20. 408.)

+6H₂O. Melts in its crystal H₂O at 56° (Ordway); 38° (Tilden). Solubility in H₂O.

Sat. solution contains at:

-21° -10° ---4°

41.55 43.69 44.85 45.66% Co(NO₃)₂,

+18° 41° 56° mpt. 49.73 55.96 62.88% Co(NO₃)₂.

(Funk, Z. anorg. 1899, 20. 408.)

Moderately sol. in liquid NH₃. (Franklin,

Am. Ch. J. 1898, 20. 827.)
Easily sol. in alcohol. Sol. in 1 pt. strong alcohol at 12.5°. (Wenzel.)

Easily sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Sol. in methyl acetate. (Naumann, B. **1909**, **42**. 3790.)

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, **43.** 314.) +9H₂O. Solubility in H₂O.

Sat. solution contains at: --26° --23.5° --20.5°

39.4540.40 42.77% Co(NO₈)₂.

Cryohydrate is formed at -29°. (Funk, Z. anorg. 1899, 20. 409.)

Cobaltous didymium nitrate. 3Co(NO₃)₂,  $2\text{Di}(\text{NO}_3)_3 + 48\text{H}_2\text{O}$ .

Very deliquescent. (Frerichs and Smith, A. **191.** 331.)

Cobaltous gadolinium nitrate, 3Co(NO₃)₂,  $2Gd(N\ddot{O}_3)_3 + 24H_2O$ .

1 l. sat. solution in HNO₃ (sp. gr. 1.325) contains 451.4 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 303.)

Cobaltous lanthanum nitrate, 3Co(NO₈)₂,  $2La(NO_3)_8 + 24H_2()$ .

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 109.2 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 303.)

Cobaltous neodymium nitrate,  $3\text{Co}(\text{NO}_3)_2$ ,  $2N_2(NO_3)_3 + 24H_2O_1$ 

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 151.6 hydrous salt at 16°. (Jantsch.)

Cobaltous praseodymium nitrate, 3Co(NO₃)₂,  $2Pr(NO_3)_3 + 24H_2O$ .

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 12.99 g. hydrous salt at 16° (Jantsch.)

Cobaltous samarium nitrate,  $3\text{Co(NO_3)_2}$ ,  $2\mathrm{Sm}(\mathrm{NO_3})_8 + 24\mathrm{H_2O}$ 

1 l. sat. solution in  $HNO_3 + Aq$  (sp. gr. 1.325) contains 34.27 g. hydrous salt at 16°. (Jantsch.)

Cobaltous thorium nitrate, CoTh(NO₃)₆+ 8H₂().

Hydroscopic; sol. in  $HNO_3+Aq$ . (Meyer, Z. anorg. 1901, 27. 387.)

Cobaltous nitrate ammonia, Co(NO₃)₂, 6NH₃  $+2H_2O.$ 

Decomp. by H₂O with separation of basic nitrate. (Fremy.)

Sol. in NH₄OH+Aq. (Hess.)

Cobaltous nitrate cupric oxide, Co(NO₃)₂,  $3\text{CuO} + 3\text{H}_2\text{O}$ .

Ppt. (Mailhe, C. R. 1902, 134, 234.)

Cobaltous nitrate hydrazine, Co(NO₈)₂, 3N₂H₄.

Decomp. by hot H₂O. (Franzen, Z. anorg. 1908, 60. 274.)

Cupric nitrate, basic, 2CuO, N₂O₅.

(Ditte, A. ch. 1879, (5) **18.** 339.) 4CuO, N₂O₅+3H₂O. Insol. in H₂O. Eas-

ily sol. in acids. (Graham, A. 29. 13.) Insol. in H₂O; easily sol. in acids. (Athanasesco, Bull. Soc. 1895, (3) 11. 1113.)

+3½H2O. Insol. in H2O, and decomp. by heat. (Casselman, Z. anal. 4. 24.)

Cupric nitrate, Cu(NO₈)₂.

Deliquescent. Very easily sol. in H2O or alcohol; also in moderately conc. HNO₃+Aq, but is precipitated from conc. aqueous solution by HNO8+Aq of 1522 sp. gr. (Mitscherlich, Pogg. 18. 159.)

Sat.  $Cu(NO_3)_2 + Aq$  contains at:

-3° ---10° 38.8 41.6 44.5% Cu(NO₈)₂,

 $20^{\circ}$ 32° 48.554.1 61.2% Cu(NO₃)₂. (Etard, A. cr. 1894, (7) 2. 528.)

See +3, 6, and 9H2O.

Sp. gr. of Cu(NO₃)₂+Aq at 17.5° containing:

15% anhydrous salt, 10 1.04521.0942 1.1342 25 30% anhydrous salt,

1.3298 1.2036 1.2644 35 40 45% anhydrous salt. 1.3974 1.4724 1.5576

(B. Franz, J. pr. (2) 5. 274.)

Sp. gr. of  $Cu(NO_3)_2 + Aq$  at 15°.

1 0	
% Cu(NO ₃ ) ₂	Sp. gr.
5.22 10.44 15.67 20.85 26.12 35.00	1.046 1.094 1.146 1.202 1.262 1.377

(Long, W. Ann. 1880, 11. 39.)

Sp. gr. of  $Cu(NO_3)_2 + Aq$  at room temp. containing:

46.71% Cu(NO₃)₂. 18.99 26.68 1.1774 1.2637 1.5363 (Wagner, W. Ann. 1883, 18. 272.)

Sp. gr. of Cu(NO₂)₂+Aq at 25°

op. gr. or Ou(1103)2 + Aq at 20 .			
Concentration of Cu(NO ₃ ) ₂ +Aq	Sp. gr.		
1-normal - 1/2- " 1/4- " 1/8- "	1.0755 1.0372 1.0185 1.0092		

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp. gr. of  $Cu(NO_3)_2 + Aq$  at 12.5°. %  $Cu(NO_3)_2$ 10 14 1.0059 1.0320 1.0655 Sp. gr. 1.0916  $\% \text{ Cu(NO_3)_2}$ 1.2320 Sp. gr. 1.1716 1.13501.2712% Cu(NO₈)₂ 50 56 40 Śp. gr. 1.3320 1.3749 1.4440 1.5205 (Hassenfratz, Muspratt, 1893, 4. 2243,)

Sp. gr. at 20° of Cu(NO₈)₂+Aq containing M g. mols. salt per liter. M 0.01 0.025

0.0750.05Sp. gr. 1.001504 1.004076 1.007859 1.011715

0.25 0.500.75 0.935 Sp. gr. 1.040290 1.07723 1.11469 1.14262

2.0 Sp. gr. 1.5 1.22618 1.29262

(Jones and Pearce, Am. Ch. J. 1917, 38, 719.)

Sat. Cu(NO₈)₂+Aq boils at about 173°. (Griffiths.)

Insol. in fuming HNO₃. (Ditte, A. ch. 1879 (5) **18.** 39.)

Solubility of  $Cu(NO_3)_2 + Pb(NO_3)_2$  in  $H_2O$  at  $20^\circ$ .

	In 1 l. of solution						
Sp. gr.	r. Cu(NO ₃₎₂		Cu(NO ₃ ) ₂   Pb(NO ₃ ) ₂		Pb(NO ₃ ) ₂		Solid phase
	g.	g. mol.	g.	g. mol			
1.354 1.322 1.321 1.343	70.5 $139.2$ $226.5$ $301.8$	$\begin{array}{c} 0.375 \\ 0.742 \\ 1.207 \\ 1.608 \end{array}$	359 5 257 2 175 1 133 4	$\begin{array}{c} 1 & 086 \\ 0 & 777 \\ 0 .529 \\ 0 & 403 \end{array}$	Pb(NO ₃ ) ₂		
$1.360 \\ 1.451 \\ 1.546$	$341/8 \\ 519.4 \\ 681.7$	1 821 2 767 3 632	117.8 70.5 44 0	$0.356 \\ 0.213 \\ 0.133$	"		
1.622 1.700	79× 1 943 2	4 252 5 028	28.1 17 2	0 085 0 052	Pb(N() ₃ ) ₂ + Cu(N() ₃ ) ₂ ,6H ₂ (		

(Fedotieff, Z. anorg. 1911, 73. 178.)

Very sol. in liquid NH₃ (Guntz, Bull. Soc. 1909, (4) **5.** 1007.)

Easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.) Insol. in liquid HF. (Franklin, Z. anorg.

1905, **46.** 2.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sl. sol. in benzonitrile. (Naumann, B.

1914, **47**. 1369.) +3H₂O. Melts in crystal H₂O at 114.5°. (Ordway; Tilden, Chem. Soc. **45**. 409.)

Solubility in H₂O.

Sat. solution contains at:

25°  $30^{\circ}$ 40° 50° 60.01 60.44 62.62% Cu(NO₃)₂, 61.51

70° 80° 114.5° Mpt. 64.17 65.79 67.51 77.59% Cu(NO₈)₂. (Funk, Z. anorg. 1899, 20. 413.)

100 pts. HNO₃ dissolve 2 pts. at 13°, considerably more on heating. (Ditte, A. ch. 1879, (5) **18.** 339.)
Sol. in 1 pt. strong alcohol at 12.5°. (Wen-

zel.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+6H₂O. Efflorescent. H₂O at 38°. (Ordway.) Melts in crystal Solubility in H₂O.

Sat. solution contains at:

--10° 0° +10°45.00 39.52 42.0 48.79 % Cu(NO₃)₂,

> 18° 20° 26.4° mpt. 53.86 55.58 63.39% Cu(NO₃)₂. (Funk, Z. anorg. 1899, 20. 413.)

Sat. solution of Cu(NO₃)₂+6H₂O in H₂O at 20° contains 5.04 g. mol. per l. Sp. gr. of sat. solution = 1.688. (Fedotieff, Z. anorg. 1911, **73.** 78.)

Sat. solution of Cu(NO₃)₂+6II₂O in [H₂O contains 45.0 g. Cu(NO₃)₂ in 100 g. solution at 0°; 53.9 g, at 18°, (Mylius, Z. anorg. 1912, **74.** 411.)

 $+9H_{:}O.$ 

Solubility in H₂O.

Sat. solution contains at:

---23° --21° --20°

36.0837.3840.92% Cu(NO₃)₂.

Cryohydrate is formed at -24°. (Funk, Z. anorg, 1899, 20, 414.

Cupric nitrate ammonia (Cuprammonium nitrate),  $Cu(NO_3)_2$ ,  $4NH_3$ .

Easily sol, in H₂O, from which it can be recrystallized. Sol. in alcohol. (Berzelius.) Sol. in 1 pt. liquid NH₃. (Horn, Am. Ch. J. 1908, **39.** 216.)

 $Cu(NO_3)_2$ ,  $5NH_3$ . (Horn, Am. Ch. J. 1907, **37.** 620.)

 $4Cu(N()_3)_2$ ,  $23NH_3$ . (Horn.)

Cupric nitrate hydrazine, Cu(NO₃)₂, N₂H₄.

Decomp. by H₂O. (Hofmann and Marburg, A. 1899, **305**, 221.)

Cupric nitrate mercuric oxide, Cu(NO₃)₂,  $HgO + 3H_2O$ .

Sol. in HCl, HNO₃ and H₂SO₄. (Finzi, Gazz. ch. it. 1913, **43**. (2) 709.)

Didymium nitrate, basic, 4Di₂O₃, 3N₂O₅+ 15H₂O.

Insol. in H₂O. (Marignac.)  $2Di_2O_3$ ,  $3N_2O_5$ . (Becquerel, A. ch. (6) **14.** 257.)

Didymium nitrate, Di(NO₈)₃.

Anhydrous. Very sol. in H₂O. As sol. in 96% alcohol as in H₂O, and the solution is not precipitated by much ether. Insol. in pure ether. (Marignac, A. ch. (3) 36. 161.)

Moderately sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, 20. 827.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328; Eidmann, C. C. 1899, II. 1014.)

+6H₂O. Very deliquescent. (Cleve, Bull. Soc. (2) **43.** 361.)

 $\begin{array}{ccc} \textbf{Didymium} & \textbf{nickel} & \textbf{nitrate,} & 2Di(NO_3)_3, \\ & 3Ni(NO_s)_2 + 36H_2O. \end{array}$ 

Very deliquescent, (Frerichs and Smith, A. 191. 355.)

See Neodymium and praseodymium.

Didymium zinc nitrate, 2Di(NO₃)₃, 3Zn(NO₃)₂ +69H₂O.

Very deliquescent. (F. and S.) See Neodymium and praseodymium.

Dysprosium nitrate, Dy(NO₃)+5H₂O. Very sol. in H₂O; less sol. in H₂O+HNO₃. Sol. in alcohol. (Urbain, C. R. 1908, **146**. 129.)

Erbium nitrate, basic,  $2\mathrm{Er}_2\mathrm{O}_3$ ,  $3\mathrm{N}_2\mathrm{O}_5+9\mathrm{H}_2\mathrm{O}$ . Decomp. by  $\mathrm{H}_2\mathrm{O}$ . Sl. sol. in  $\mathrm{HNO}_3$ . (Bahr and Bunsen.)  $3\mathrm{Er}_2\mathrm{O}_3$ ,  $4\mathrm{N}_2\mathrm{O}_5+20\mathrm{H}_2\mathrm{O}$ . (Cleve, Bull. Soc. (2) 21. 344.)

Erbium nitrate, Er(NO₃)₃+6H₂O.

Easily sol. in H₂O, alcohol, and ether. (Höglund.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Gadolinium nitrate,  $Gd(NO_3)_3+6\frac{1}{2}H_2O$ . Sol. in  $H_2O$ . (Benedicks, Z. anorg. 1900, 22. 406.)  $+5H_2O$ . Sol. in  $HNO_3$ . (B.)

Gadolinium magnesium nitrate,  $2Gd(NO_8)_8$ ,  $3Mg(NO_8)_2+24H_2O$ .

1 l. sat. solution in  $HNO_3+Aq$  (sp. gr. 1.325) contains 352.3 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, **76.** 303.)

Gadolinium nickel nitrate,  $2Gd(NO_3)_3$ ,  $3Ni(NO_3)_2+24H_2O$ .

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 400.8 g. hydrous salt at 16°. (Jantsch.)

Gadolinium zinc nitrate,  $2Gd(NO_8)_8$ ,  $3Zn(NO_3)_2+24H_2O$ .

1 l. sat. solution in  $HNO_8+Aq$  (sp. gr. 1.325) contains 472.7 g. hydrous salt at 16°. (Jantsch.)

Gallium nitrate, Ga(NO₃)₃.

Very deliquescent, and sol. in H₂O. (Dupré.)

Glucinum nitrate, basic, 2GlO,  $N_2O_5+$   $3H_2O$  (?).

Sol. in H₂O. 3GlO, N₂O₅. Sol. in H₂O. (Ordway, Sill. Am. J. (2) **26**. 205.)

Compounds more basic than this are insol. in  $H_2O$ . (Ordway.)

Glucinum nitrate, Gl(NO₃)₂+3H₂O.

Very deliquescent. (Joy, Sill. Am. J. (2) 36. 90.)

Easily sol. in H₂O and alcohol. (Vauquelin.) Melts in its crystal H₂O at 29.4°. (Ord-ray.)

Sat. Gl(NO₅)₂+An boils at 140.5°. (Ord-way.)

Gold (auric) nitrate, basic,  $Au_2O_3$ ,  $N_2O_6+\frac{2}{5}H_2O$ , or Auryl nitrate, (AuO)NO₃+ $\frac{1}{5}H_2O$ .

(Senottländer, A. 217. 364.)  $2Au_2O_3$ ,  $N_2O_5+2H_2O=Au_4O_5(NO_2)_2+2iH_2O$ . Slowty sol. in HNO₃+Aq at 100°. (Schottländer, A. 217. 356.)

Gold (auric) nitrate, Au(NO₃)₃+xH₂O. Decomp. by H₂O. Sol. in acetone. (Hanriot and Paoult, C. R. 1912, 155. 1086.)

Gold (auric) hydrogen nitrate, Au(NO₃)₈, HNO₃+3H₂O.

Decomp. by  $H_2O$ . Sol. in  $HNO_3+Aq$ . (Schottlander, A. 217. 356)

Gold (auric) potassium nitrate, KAu(NO₃)₄. Easily sol. in H₂O.

H₂O. (Schotter

2KAu(NO₃)₄, K₂HAu(NO₃)₆. (Schotter länder, J. B. **1884**. 453.)

Gold (auric) rubidium nitrate, RbAu(NO₃)₄.
Easily sol. in H₂O.

 $\frac{1}{1}$  HRb₂Au(NO₃)₆. As above. (Schottländer.)

Gold (auric) thallium nitrate, TlAu(NO₃)₄.

Easily sol. in  $H_2O$ .  $6\Lambda u_2O_3$ ,  $2Tl_2O_3$ ,  $3N_2O_5+15H_2O$ . Ppt. (Schottländer.)

Indium nitrate,  $In(NO_3)_3+4\frac{1}{2}H_2O$ .

Very deliquescent. Easily sol, in  $H_2O$  and absolute alcohol. (Winkler.)  $+1\frac{1}{2}H_2O$ .

Iron (ferrous) nitrate,  $Fe(NO_3)_2 + 6H_2O$ .

100 pts. of crystals dissolve in 50 pts.  $H_2O$  at 0°, sp. gr. of solution = 1.44; 40.8 pts.  $H_2O$  at 15°, sp. gr. of solution = 1.48; 33.3 pts.  $H_2O$  at 25°, sp. gr. of solution = 1.50. (Ordway, Sill. Am. J. (2) 40. 325.)

Sat. solution contains at:

-9° 0° +18° 24° 60.5° Mpt. 39.68 41.53 45.14 46.51 62.50% Fe(NO₃)₃. (Funk, Z. anorg. 1899, **20**. 406.)

Sat. solution of  $Fe(NO_8)_2+6H_2O$  in  $H_2O$  contains 41.5%  $Fe(NO_3)_2$  at  $0^\circ$ ; 45.1% at  $18^\circ$ . (Mylius, Z. anorg. 1912, **74.** 411.)

+9H₂O. Solubility in H₂O. Sat. solution contains at:

-27 —21.5° -19° -15.5°

35.66 36.10 36.56 37.17% Fe(NO₃)₂.

Cryohydrate is formed at -28°. Z. anorg. 1899, 20. 407.)

Fe(NO₃)₂+Aq decomposes on heating; less rapidly when dil., more readily in presence of excess of acid. (Ordway.)

Iron (ferric) nitrate, basic, 36Fe₂O₃, N₂O₅+ 48H₂O (?).

Easily sol. in H₂O. Sl. sol, in dil. HNO₈+ Aq; very sl. sol. in alcohol. (Hausmann, A. 89. 111.)

 $8Fe_2O_5$ ,  $N_2O_5+12H_2O$ . Sl. sol. in  $H_2O$ ; very sl. sol. in cold or warm dil. HNO₃+ Aq more easily sol. in hot HCl+Aq. (Hausmann.)

ma_1.)  $+xH_2O$ , Sol. in  $H_2O$ ; completely pptd. from aqueous solution by NaCl, NH₄Cl, KI, KClO₃, Na₂SO₄, CaSO₄, ZnSO₄, CuSO₄, KNO₃ NaNO₃, Ba(C₂H₃O₂)₂, or Zn(C₂H₃O₂)₂+Aq. More slowly pptd. by NH₄NO₃, Mg(NO₃)₂, Ba(NO₃)₂, or Pb(NO₃)₂+Aq. Not pptd. by alcohol, Pb(C₂H₃O₂)₂, Cu(C₂H₃O₂)₂, Hg(CN)₂. AgNO₃ or As₂O₃+Aq (Ordway, Sill, Am. AgNO₃, or As₂O₃+Aq. (Ordway, Sill. Am. J. (2) 9. 30.)

4Fe₂O₃, N₂O₅+1½H₂O. Easily sol. in H₂O; sl. sol. in dil. HNO₃+Aq, and in alcohol. (Hausmann.)

+3H₂O. Insol. in H₂O or HNO₃+Aq; sol. in HCl+Aq. (Scheurer-Kestner, C. R. 87. 927.)

+9H₂O. Not deliquescent; easily sol. in H₂O. (Ordway.)

 $3Fe_2O_3$ ,  $N_2O_5+2H_2O$ . (Scheurer-Kestner.) Insol. in H₂O.

 $2\text{Fe}_2\text{O}_3$ ,  $N_2\text{O}_5 + \text{H}_2\text{O}$ . Decomp. by  $\text{H}_2\text{O}$ . (Scheurer-Kestner.)

+8H₂O. (S.-K.) Fe₂O₃, N₂O₅. Decomp. by H₂O. (S.-K.) Fe₂O₃, 2N₂O₅. Sol. in H₂O or alcohol in all proportions. Insol. in HNO₃+Aq. N₂O₅ with 1, 2, 3, 4, 5, 6, and 8Fe₂O₃ forms compounds, sol. in H₂O. (Ordway.)

Solubility determinations show that there are no definite basic nitrates of iron formed from solutions at 25°, and that the solid phase under these conditions is a solid solution of Fe₂O₈, HNO₈ and H₂O. The normal salt, Fe₂O₈, 3N₂O₅, 18H₂O is stable in solutions containing about 30-45% N₂O₅. In higher concentrations of nitric acid it appears to be metastable and a new salt, Fe₂O₃, 4N₂O₅, 18(?)H₂O is the stable form. (Cameron, J. phys. Chem. 1909, 13. 252.)

#### Iron (ferric) nitrate, Fe(NO₃)₃.

+H₂O. (Scheurer-Kestner, A. ch. (3) 65. 113.)

Deliquescent, and sol. in any +6H₂O. amount of H₂O. (Schönbein, Pogg. 39. 141.) Sol. in acetone. (Naumann, B. 1904, 37. **4**328.)

+9H₂O. Deliquescent. Sol. in H₂O and alcohol. Sl. sol. in HNO₃+Aq. 2 pts. salt with 1 pt. H₂O lower the temperature 18.5°. (Scheurer-Kestner.)

Sp. gr. of solution at 17.5° containing: 5 10 15 20 25% Fe(NO₃)₅, 1.0398 1.0770 1.1182 1.1612 1.2110

1.26221.31641.37461.43381.497265% Fe(NO₃)₃. 1.5722 1.6572 1.7532 (Franz, J. pr. (2) 5. 274.)

Nearly insol, in conc. HNO₃+Aq at temp. below 15.5°.

Easily sol, in alcohol.

Melts in crystal H₂O at 47.2°. (Ordway.) Sat. Fe(NO₃)₃+Aq boils at 125°. (Ord-

#### Lanthanum nitrate, $La(NO_3)_3 + 6H_2O$ .

Very deliquescent; easily sol. in H₂O and alcohol. (Mosander.) Melts in its crystal H₂O at 40°; hoils at 124.5°. (Ordway.) La(NO₃)₃+Aq sat. at 25% contains 60.17%

La(NO₃)₃, or 100 g. H₂O dissolve 151.1 g. La(NO₃)₃ at 25°. (James and Whittemore, J. Am. Chem. Soc. 1912, 34. 1169.)

Sol. in acetone. (Naumann, B. 1904, **37.** 4328; Eidmann, C. C. **1899**, II. 1014.)

Lanthanum magnesium nitrate, 2La(NO₃)₃,  $3Mg(NO_3)_2 + 24H_2O$ .

Deliquescent in moist air. (Holzmann, J. pr. **75.** 350.)

1 l. sat. solution in HNO₈+Aq (sp. gr. 1.325) contains 63.8 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, 76. 321.)

Lanthanum manganous nitrate, 2La(NO₃)₃,  $3\text{Mn}(\text{NO}_3)_2 + 24\text{H}_2\text{O}$ .

Sol. in H₂O. (Damour and Deville.)

1 l. sat. solution in HNO₈+Aq (sp. 1.325) contains 193.1 g. hydrous salt at 16°. (Jantsch.)

Lanthanum nickel nitrate, 2La(NO₃)₃,  $3Ni(NO_3)_2 + 36H_2O$ .

Very sol. in H₂O. (Frerichs and Smith, A. **191.** 355.)

+24H₂O. 1 l. sat. solution in HNO₃+ Aq (sp. gr. 1.325) contains 80.3 g. hydrous salt at 16°. (Jantsch.)

Lanthanum rubidium hydrogen nitrate.  $[La(NO_8)_4]Rb$ ,  $HNO_8+6H_2O$ .

Sol. in H₂O and HNO₃. (Jantsch, Z. anorg. 1911, 69, 225.)

Lanthanum thallous nitrate, [La(NO₃)₅]Tl₂+ 4H₂O.

Hydroscopic. (Jantsch, Z. anorg. 1911, 69. 228.)

Lanthanum zinc nitrate, 2La(NO ₃ ) ₃ , 3Zn(NO ₃ ) ₂ +24H ₂ O.	_
Very sol. in H ₂ O. (Damour and Deville, J. B. <b>1858.</b> 135.)	1
1 l. sat. solution in HNO ₃ +Aq (sp. gr. 1.325) contains 124.1 g. hydrous salt at 16° (Jantsch, Z. anorg. 1912, 76. 321.) +69H ₂ O. (Frerichs and Smith, A. 191. 355.)	
Lead nitrate, basic, 2PbO, N ₂ O ₅ +H ₄ O = Pb(OH)NO ₃ .	
Sol in 5.15 pts. H ₂ O at 19.2°. (Pohl. W. A.)	
B. <b>6.</b> 597.) Very sl. sol. in cold, much more in hot H ₂ O. (Berzelius.) Sol. in Pb(C ₂ H ₃ O ₂ ) + Aq. (Guignet, C. R. <b>56.</b> 358.)	
+Aq. (Guignet, C. R. <b>56.</b> 358.) Insol. in H ₂ O: sol. in acids. (Athanesco.	
Insol. in H ₂ O; sol. in acids. (Athanesco, Bull. Soc. 1895, (3) <b>13</b> . 178.) +2H ₂ O. (André, C. R. <b>100</b> . 639.)	
$3PbO$ , $N_2O_5+1/2H_2O$ , SI, sol, in pure $H_2O_5$	
Insol, in H ₂ O containing HCl. (Berzelius.) +3H ₂ O. Sel. in 119.2 pts. cold, and 10.5	
$+3\mathrm{H}_2\mathrm{O}$ . Scl. in 119.2 pts. cold, and 10.5 pts. boiling $\mathrm{H}_2\mathrm{O}$ . Sol. in $\mathrm{Pb}(\mathrm{C}_2\mathrm{H}_3\mathrm{O}_2)_2+\mathrm{Aq}$ , but sl. sol. in $\mathrm{KNO}_3+\mathrm{Aq}$ . (Vogel, jr. A. 94.	
97.)	
=10PbO, 3N ₂ O ₅ +5H ₂ O. (Wakemann and Wells, Am. Ch. J. <b>9.</b> 299.)	
$+4H_2O$ . (André, C. R. <b>100</b> . 639.) 6PbO, $N_2O_5+H_2O$ . Nearly insol. in $H_2O$ .	
(Löwe, J. pr. <b>98.</b> 385.)	
10PbO, 3N ₂ O ₆ +4H ₂ O. Less sol. in H ₂ O than Pb(NO ₈ )OH, and not decomp. by boiling	
H ₂ O. (Wakemann and Wells, Am. Ch. J. 9. 299.)	
,	

#### Lead nitrate, Pb(NO₃)₂.

Sol. in H₂O with absorption of much heat. (Rose.)

1 pt.  $Pb(NO_3)_2$  dissolves in  $7\frac{1}{2}$  pts. cold  $H_2O$ . (Mitscherlich.)

(Mitscherlich.)

1 pt. Pb(NO₃)₂ dissolves in 1.989 pts. H₂() at 17.5° and forms a liquid of 1.3978 sp. gr. (Karsten.)

1 pt. Pb(NO₃)₂ dissolves in 1.707 pts. H₂O at 22.3°; in 1.585 pts. H₂O at 24.7°. (Kopp.)

Sol. in 1.87 pts. H₂O at 17.5°. (Schiff, A. 109. 326.)

100 pts. Pb(NO₃)₂ + Aq sat. at 102.2° contain 52.5 pts. Pb(NO₃)₂ or 100 pt. H₂O dissolve 110.526 pts. Pb(NO₃)₂ at 102.2°. (Griffiths.)

Sol. in 7.5 pts. cold H₂O and much less hot H₂O. (Wittstein.)

100 pts. boiling  $\rm H_2O$  dissolve 13 pts.  $\rm Pb(NO_3)_2.$  (Ure's Dict.)

100 pts. Pb(NO₃)₂+Aq sat. at 19-20° contain 35.80 pts. salt. (v. Hauer, W. A. B. 53, 2.

221.) 1 pt. dissolves: at 0° 10° 25° 45° 65° 85° 100° in 2.58 2.07 1.65 1.25 0.99 0.83 0.72 pts. H₂O.

(Kremers, Pogg. 92. 497.)

1 l. Pb(NO₈)₂+Aq sat. at 15° contains 461.49 g. Pb(NO₈)₂ and 928.58 g. H₂O, and has sp. gr. 1.39. (Michel and Krafft, A. ch. (3) 41.471.)

Solubility	in	100	pts.	$H_2O$	at t°	•

t³	Pts. Pb(NO ₃ ) ₂	t°,	Pts. Pb(NOs)2	t°	Pts. Pb(NO ₃ ) ₂
0	36.5	36	65.9	72	99.7
ï	37.4	37	66 7	73	100.7
$\frac{1}{2}$	38.3	38	67.6	74	101.7
$\frac{2}{3}$	39.	39	63.5	75	102.6
4	39.8	40	69.4	76	103.6
	40.5	41	70.3	77	104.6
5 6	40.5	42	71.2	78	105.6
7	42.0	43	72.1	79	106.6
8	42.0	44	75.0	80	107.6
9	43.6	45	74.0	81	108.6
10	14.4	46	74.9	82	109.6
11	45.2	47	75.9	83	110.6
12	46.0	48	76.8	84	111.5
13	46.8	49	77.7	85	112.5
14	47.5	50	78.7	86	113.5
15	48.3	51	79.6	87	114.5
16	49.1	52	80.5	88	115.4
17	49.1	53	81.5	89	116.4
18	30.7	54	82.4	90	117.4
19	51.5	55	83.3	91	118.4
20	52.3	56	84.3	92	119.4
$\frac{20}{21}$	53.1	57	85.2	93	120.3
$\frac{21}{22}$	53.9	58	86.1	93	121.3
23	54.7	59	87.1	95	122.3
24	55.6	60	88.0	96	123.2
$\frac{24}{25}$	56.4	61	89.0	97	124.2
$\frac{26}{26}$	57.3	62	90.0	98	125.2
$\frac{20}{27}$	58.1	63	90.9	99	126.1
28	59.0	64	91.9	100	127.0
$\frac{29}{29}$	59.8	65	92.8	101	128.0
30	60.7	66	93.8	101	128.9
31	61.6	67	94.8	103	129.9
32	62.4	68	95.7	103	130.9
33	63.3	69	96.7	104.7	131.5
34	64.1	70	96.7 97.7	104.7	101.0
35	65.0	71	98.7		
00	00.0	'1	30.1	<u> </u>	1

(Mulder, Scheik. Verhandel. 1864. 66.).

100 g. H₂O dissolve 52.76 g. Pb(NO₃)₂ at 17°. (Euler, Z. phys. Ch. 1904, **49**. 315.) Solubility of Pb(NO₃)₂ in H₂O at 20° = 1.52 g. mol. per l. Sp. gr. of sat. solution = 1.419. (Fedotieff, Z. anorg. 1911, **73**. 178.) Sat. Pb(NO₃)₂+Aq at 0° contains 26.7% Pb(NO₃)₂ at 18°, 29.1% Pb(NO₃)₂. (Mylius, Z. aporg. 1912, **74**, 411) Z. anorg. 1912, 74. 411.)

Sp. gr. of  $Pb(NO_3)_2 + Aq$  at 19.5°.

Pb(NO3)2	Sp.gr.	Pb(NO ₈ ) ₂	Sp. gr.
5 10 15 20	1.045 1.093 1.144 1.203	25 30 35	1.266 1.334 1.414

(Kremers, calculated by Gerlach, Z. anal. 8

Sp. gr. of Pb(NO ₃ ) ₂ +Aq at 17.5°.				
Pb(NO ₂ ) ₂	Sp. gr.	% Pb(N()3)2	Sp. gr.	
5 10	1.044 1.092	25 30	1.263 1.333	
15 20	1.144 1.200	sat. sol.	1.409 1.433	

(Gerlach, Z. anal. 27, 283.)

Sp. gr. of  $Pb(NO_3)_2 + Aq$  sat. at  $8^{\circ} = 1.372$ . (Anthon.)

Sp. gr. of Pb( $NO_3$ )₂+Aq at 17.5°.

Dp. gr. or 1 D(14(73)2   14q at 11.0 .			
Pb(NO3)2	● Sp. gr.	Pb(NO ₈ ) ₂	Sp. gr.
1 2 3	1.0080 1.0163	20 21	1.1902 1.2016
3 4	1.0247 1.0331	22 23	$1.2132 \\ 1.2251$
5 6	$1.0416 \\ 1.0502$	24 25	1.2372 $1.2495$
7 8	$1.0591 \\ 1.0682$	26 27	$1.2620 \\ 1.2747$
9 10	1.0775 1.0869	28 29	$\frac{1.2876}{1.3907}$
11 12	1.0963 1.1059	30 31	1.3140 1.3276
13 14	1.1003 $1.1157$ $1.1257$	32 33	1.3416 1.3558
15	1.1359	34	1.3702
16 17	1.1463 1.1569	35 36 37	1.3848
18 19	$1.1677 \\ 1.1788$	37	1.4146

(Schiff, calculated by Gerlach, Z. anal. 8. 286.)

Sp. gr. of  $Pb(NO_3)_2 + Aq$  at t°.

t°	% Pb(NO ₃ ) ₂	Sp. gr.
14 14 14.5 14.3	5 10 15 20 25	1.0451 1.0939 1.1468 1.2045 1.2678
15	32.28	1.3716

(Long, W. Ann. 1880, 11. 40.)

Sp. gr. of  $Pb(NO_3)_2+Aq$  at room temp. containing:

17.93 32.22% Pb(NO₈)₂. 1.1786 1.3619

(Wagner, W. Ann. 1883, **18.** 267.) Sp. gr. of  $Pb(NO_3)_2+Aq$  at 25°.

 $\begin{array}{c|c} \text{Concentration of} \\ \text{Pb}(\text{NO}_3)_2 + \text{Aq} \\ \hline \\ 1-\text{normal} \\ 1/2- & 1.0699 \\ 1/4- & 1.0351 \\ 1/8- & 1.0175 \\ \end{array}$ 

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Pb(NO₈)₂+Aq containing 15.93% Pb(NO₈)₂ has sp. gr. 20/°20° = 1.1558.

Pb(NO₃)₂+Aq containing 30.57% Pb(NO₃)₂ has sp. gr. 20°/20° = 1.3436.

Pb(NO₃)₂+Aq containing 30.69% Pb(NO₃)₂ has sp. gr. 20°/20° = 1.3465.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Sat.  $Pb(NO_3)_2+Aq$  boils at 103.5°. (Kremers.)

Sat.  $Pb(NO_3)_2+Aq$  boils at 102.2°, and contains 140 pts.  $Pb(NO_3)_2$  to 100 pts.  $H_2O$ . (Griffiths.)

Sat.  $Pb(NO_3)_2 + Aq$  boils at 103.5°. (Gerlach, Z. anal. 26. 427.)

B.-pt. of Pb(NO₃)₂+Aq containing pts. Pb(NO₃)₂ to 100 pts. H₂O, according to Gerlach (Z. anal. **26**. 449).

Bpt.	Pts. Pb(NO ₃ ) ₂	Bpt.	Pts. Pb(NO ₃ ) ₂
100.5° 101 101.5 102	11 26 44 65	102.5° 103 103.5	87 111 137

Insol. in conc. HNO₃+Aq.

Solubility of  $Pb(NO_3)_2 + Ba(NO_3)_2$ .

See under Ba(NO₃)₂.

Solubility of  $Pb(NO_3)_2 + Cu(NO_3)_2$ .

Ser under Cu(NO₃)₂.

Sol. in sat. KNO₃+Aq without pptn., 100 pts.  $H_2O$  at 18.75° dissolving 114 pts. mixed salt, viz. 84.1 pts.  $Pb(NO_3)_2$  and 29.9 pts. KNO₃. (Karsten.)

100 pts. H₂O dissolve 119.6 pts. Pb(NO₈)₂ and 67.1 pts. KNO₃ at 21.2°. (Rüdorff, B. **6.** 

100 g. H₂O dissolve 95.39 g. Pb(NO₃)₂ and 61.05 g. KNO₃ at 20°. (Le Blanc and Noyes. Z. phys. Ch. 1890, **6**. 386.)

Sol. in sat. NaNO₃+Aq without pptn., 100 pts. H₂O at 18.75° dissolving 121.9 pts. mixed salt, viz. 87.8 pts. Pb(NO₃)₂ and 34.1 pts. NaNO₃. (Karsten.)

### Solubility of Pb(NO₈)₂+NaNO₈.

Solid phase = $Pb(NO_8)_2$ .					
to of saturation	% NaNO3	% Pb(NO ₃ ) ₂			
32 35.5 39.5 44. 49.1 55	34.42 34.15 33.71 33.35 32.94 32.60 32.47	19.69 20.33 21.35 22.19 23.15 23.93 24.24			
62 65	32.33 32.14	24.57 24.89			

#### Solubility of Pb(NO₃)₂+NaNO₃—Continued.

Solid phase = NaNO ₈					
% NaNOs	% Pb(NO ₃ ) ₂				
40.97	13.62				
42.04	13.38				
	$12.88 \\ 12.78$				
45.11	12.94				
46.03	12.45				
	12.50				
	11.76				
	40.97 42.04 43.18 44.63 45.11				

(Isaac, Chem. Soc. 1908, 93, 398.)

Also sol. in  $KNO_2+NaNO_3+Aq$ 100 pts. sat.  $Pb(NO_3)_2+Sr(NO_3)_2+Aq$ contain 45.98 pts. of the two salts at 19.20°. (v. Hauer, J. pr. 98, 137.)

#### Solubility of Pb(NO₃)₂+Sr(NO₃)₂ at 25°.

G, per 100 cc.		Mol per cent	in solid phase
Pb(NO ₃ ) ₂	Sr(NOs)2	Pb(NO3)2	Sr(NO ₃ ) ₂
46.31 50.47 53.92 45.34 44.48 25.23 19.13	0 4.56 8.14 17.81 18.74 35.03 37.54 71.04	100. 99.05 98.11 97.02 96.06 83.84 32.88	0 0.95 1.89 2.98 3.94 16.16 67.12

(Fock, Z. Kryst. Min. 1897, 28. 365.)

Very easily sol. in liquid NH₃. (Franklin, Am. Čh. J. 1898, **20.** 828.)

100 pts. alcohol of 0.9282 sp. gr. dissolve: at 4°  $8^{\circ}$ 40°  $22^{\circ}$ 50°

4.96 5.82 8.77 12.8 14.9 pts. Pb(NO₃)₂. (Gerardin, A. ch. (4), **5.** 129.)

100 pts. absolute methyl alcohol dissolve 1.37 pts. at 20.5°.

100 pts. absolute ethyl alcohol dissolve 0.04 pt. at 20.5°. (de Bruyn. Z. phys. Ch. 10. 783.)

Very sl. sol. in acetone. (Krug and M'El-

roy, J. Anal. Ch. 6. 184.)

Insol. in cold, sl. sol. in hot CS2. (Arctowski, Z. anorg. 1894, 6. 257.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Mol. weight determined in pyridine. (Werner, Z. anorg. 1897, 15. 21.)

Solubility of Pb(NO₈)₂ in pyridine at t°.

t°,	G Pb(NO ₃ ) ₂ per 100 g. C ₅ H ₅ N	Solid phase
- 19 4 14 5	2.93 2.14	$Pb(NO_8)_{2,4}C_5H_8N$
10	1.90	٠ ، ،
0	3.54	"
5. <b>4</b>	3.93	"
8.7	5.39	"
$\frac{5.7}{14.72}$	6.13	"
19.97	$\frac{0.13}{6.78}$	4
$\frac{19.97}{24.75}$	8.56	"
30.03	10.98	"
34.9.	13.20	٠.
40.03	16.94	44
45.	22.03	"
49.97	29.37	"
51 tr. pt.	20.01	"+Pb(NO ₃ ) ₂ , 3C ₅ H ₅ N
59.52	36.70	$Ph(NO_3)_2, 3C_5H_5N$
70	47.29	16(1103/2, 50511511
80	61.60	• "
39 93	90.21	"
94.94	128.06	"
96 t. pt	120.00	"+Pb(NO ₈ ) ₂ , 2C ₅ H ₅ N
99.89	143.36	Pb(NO ₃ ) ₂ , 2C ₅ H ₅ N
104.90	152	11
109.90	163.80	"
	1	1

(Walton and Judd, J. Am. Chem. Soc. 1911, **33.** 1036.)

Lead mercurous nitrate, 2PbO, 2Hg₂O, 3N₂O₅. Decomp. by H₂O. Sol. in warm dil. HNO₃, or Hg₂(NO₃)₂+Aq without decomp. (Städeler, A. 87. 129.)

Lead silver nitrate, Pb(NO₃)₂, 2AgNO₃. Sol. in II₂O. (Stürenberg, Pogg. 74. 115.)

Lead silver nitrate iodide, Pb(NO₃)₂, SAgNO₃, 4AgI.

Decomp. by H₂O. (Stürenberg.) Pb(NO₃)₂, 2AgNO₃, 2AgI. Decomp. by H₂O. (Stürenberg.)

Lead nitrate nitrite, basic, 4PbO, N₂O₅, N₂O₈  $+2H_2O = Pb(OH)NO_3$ ,  $Pb(OH)NO_2$ .

Sl. sol. in cold, easily in hot  $H_2O$ . Sol. in 80 pts.  $H_2O$  at 23° (Chevreuil); 85 pts. at ord. temp. (Bromeis, A. 72. 38); 10.6 pts. at 100° (Chevreuil).

 $+2H_{\bullet}O.$ 

#### Solubility in acetic acid.

Normality of acid	g. PbO per 100 cc. sat. solution	Normality of acid	g. PhO per *100 cc. sat. solution
0	0.601	0.25	5.450
0.05	1.323	0.50	9.690
0.10	2.185	0.75	15.874

(Chilesotti, Att. Acad. Linc. 1908, (5) 17, II.

(v.

Formula is 3Pb(OH)NO₈, 5Pb(OH)NO₂+ H₂O. (v. Lorenz, W. A. B. 84, 2. 1133_e)  $+3H_2O$ . (v. Lorenz.) 4PbO,  $N_2O_5$ ,  $3N_2O_8+4H_2O$ . Sol. in  $H_2O$ . (Bromeis.)  $6PbO, N_2O_5, 2N_2O_8+3^2/_8H_2O=Pb(OH)NO_8,$  $\begin{array}{lll} 2\text{Pb}(O\text{H})\text{NO}_2 + \frac{3}{2}\text{M}_2\text{O}_1 & \text{(v. Lorenz.)} \\ 6\text{PbO}, & 2\text{N}_2\text{O}_5, & \text{N}_2\text{O}_3 + 3^2/_3\text{H}_2\text{O} = \\ 2\text{Pb}(O\text{H})\text{NO}_3, & \text{Pb}(O\text{H})\text{NO}_2 + \frac{1}{3}\text{H}_2\text{O}. & \text{(v. Lorenz.)} \end{array}$ Lorenz.) 7PbO, N₂O₃, N₂O₅+3H₂O. Less sol. in H₂O than 4PbO, N₂O₅, N₂O₃+2H₂O; sol. in cold conc. HNO₃+Aq. (Peligot, A. 39. 338.) 8PbO,  $N_2O_5$ ,  $3N_2O_3+4^2/_3H_2O=Pb(OH)NO_5$ ,  $3Pb(OH)NO_2+^1/_3H_2O$ . (v. Lorenz.) 10PbO,  $M_2O_5$ ,  $4N_2O_3 + 5H_2O = Pb(OH)NO_3$ ,  $4Pb(OH)NO_2$ . (v. Lorenz.)  $12PbO_{5}^{*}N_{2}O_{5}, 5N_{2}O_{3}+6H_{2}O = Pb(OH)NO_{3},$ 5Pb(OH)NO₂. (v. Lorenz.) 10PbO, N₂O₃, 2N₂O₃+4H₂O=Pb(OH)NO₃, 2Pb(OH)NO₂, 2PbO+½H₂O. (v. Lorenz.) 14PbO,  $N_2O_5$ ,  $3N_2O_3 + 6H_2O = Pb(OH)NO_3$ ,  $3Pb(OH)NO_2$ ,  $3PbO + H_2O$ . (Bromeis.) 14PbO,  $3N_2O_5$ ,  $N_2O_3 + 6H_2O = 3Pb(OH)NO_3$ ,  $Pb(OH)NO_2$ ,  $3PbO + H_2O$ . (Bromeis.) 16PbO,  $2N_2O_5$ ,  $3N_2O_8+6H_2O =$  $4Pb(OH)NO_3$ ,  $6Pb(OH)NO_2$ , 5PbO,  $Pb(OH)_2$ (v. Lorenz.) 16PbO,  $3N_2O_5$ ,  $5N_2O_3 + 10H_2O =$ 3Pb(OH)NO₃,  $5Pb(OH)NO_2+H_2O$ . (v.

Lead nitrate phosphate,  $Pb(NO_3)_2$ ,  $Pb_3(PO_4)_2 + 2H_2O$ .

26PbO,  $6\text{N}_2\text{O}_5$ ,  $7\text{N}_2\text{O}_3 + 21\text{H}_2\text{O} =$  $6\text{Pb(OH)}\text{NO}_3$ ,  $7\text{Pb(OH)}\text{NO}_2 + 4\text{H}_2\text{O}$ .

Lorenz.)

Completely insol. in cold  $H_2O$ . Decomp. by boiling  $H_2O$  into its constituents. Sol. in a little conc.  $HNO_3+Aq$  without decomp. (Gerhardt, A. 72. 83.)

### Lead nitrate phosphite, Pb(NO₃)₂, PbHPO₃.

Decomp. by  $H_2O$ . Sol. in  $Pb(NO_3)_2+Aq$ .  $Pb(NO_3)_2+Aq$  (33.3 g. per litre) dissolves 1 g. salt at 15°. If less than 31 g. per litre of  $Pb(NO_3)_2$  are present the salt is decomp. (Amat, A. ch. (6) **24.** 317.)

Lead intrate potassium nitrite,  $Pb(NO_8)_2$ ,  $2KNO_2+H_2O$ .

Difficultly sol. in  $H_2O$ . (Lang, J. B. **1862**. 102.) 3PbO,  $3K_2O$ ,  $4N_2O_8$ ,  $2N_2O_6+3H_2O$ . Sol. in  $H_2O$ . (Hayes, Sill. Am. J. (2) **31**. 226.)

#### Lithium nitrate, LiNO₈.

Very deliquescent, and sol. in H₂O.
100 pts. H₂O dissolve:
at 0° 20° 40° 70° 100° 110°
48.3 75.7 169.4 196.1 227.3 256.4 pts. LiNO₃.
(Kremers, Pogg. **99.** 47.)

Forms supersaturated solutions with ease, which crystallize when temp is lowered to +1°. (Kremers, Pogg. 92. 520.)
Sat. solution boils at over 200°. (Kremers, Pogg. 99. 43.)
1 pt. LiNO₃ dissolves in 200 pts. HNO₃.

(Schultz, Zeit. Ch. (2) 5. 531.)

100 pts. of the sat. solution contain at:

64.2° 70.9° 64.9 66.1 pts. anhydrous salt. (Donnan and Burt, Chem. Scc. 1903, 83. 339.) See +½H₂O, and 3H₂O.

Sp. gr. of LiNO₃+Aq at 19.5° containing pts. LiNO₃ in 100 pts. H₂O:

12.7 14.2 26.441.8 pts. LiNO₃, 1.069 1.077 1.134 1.197 54.8 57.5 77.479.4 pts. LiNO₃. 1.319 1.2451.2551.315(Kremers, Pogg. 114. 45.)

#### Sp. gr. of LiNO₃+Aq.

g. LiNO ₃ in 1000 g, of solution	Sp. gr. 16/16°
0	1.000000
4.8526	1.002469
10.9128	1.0055495
17.9016	1.009113

(Dijken, Z. phys. Ch. 1897, 24. 109.)

Sp. gr.  $20^{\circ}/4^{\circ}$  of a normal solution of LiNO₃ = 1.03803; of a 0.5-normal solution = 1.01830. (Haigh, J. Am. Chem. Soc. 1912, **34**. 1151.) Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

Sol. in strong alcohol.
Sol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**, 4328.)

Solubility in acetone = 0.343 g. mol. per l. at 18°. (Roshdestwensky and McBride, Chem. Soc. 1911, 99. 2140.)
Insol. in benzonitrile. (Naumann, B.

Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)
Difficultly, sol. in other contests. (Nav.

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, **43**, 314.) +½H₂O. Solubility in H₂O.

100 pts. of the sat. solution contain at:

43.6° 50.5° 55.0° 60.0° 60.8 61.3 63.0 63.6 pts. anhydrous salt.

61.1° is the temp, at which LiNO₃+½H₃O goes over into LiNO₃. (Donnan and Burt, Chem. Soc. 1903, **83**. 339.)

+3H₂O.

Solubility in H₂O.

100 pts. of the sat, solution contain pts. anhydrous salt at t°.

t°	Pts. anhydrous salt
0.10	34.8
10.50	37.9
12.10	38.2
13.75	39.3
19.05	40.4
22.10	42.9
$\frac{57.55}{27.55}$	47.3
29.47	53.67
$\frac{50.78}{29.78}$ .	55.09
29.87	56.42
29.86	56.68
29.64	57.48
$\frac{29.54}{29.55}$	58.03

Mpt. of LiNO $_3+3H_2O$  is 29.88°.

(Donnan and Burt, Chem. Soc. 1903, **83**. 337.)

#### Magnesium nitrate, basic, Mg₃N₂O₈.

Insol. in H₂O and alcohol. Sol. in acids. (Chodnew, A. **71**. 241.) +5H₂O. Decomp. by H₂O. (Didier, C. R.

**1896**, **122**. 936.)

#### Magnesium nitrate, $Mg(NO_3)_2$ . Anhydrous. Deliquescent.

Sol in 1 pt. H₂O at 15.6°. Sol. in 4 pts. abs. alcohol at 15.6°, and 2 pts. at boiling temp. More sol. in alcohol of 0.817 sp. gr than in that of 0.900. (Kirwan.) Sol. in 0.3458 pt. strong alcohol at 82.5°. (Wenzel.) Sol. in 10 pts. strong alcohol at 15°. (Bergmann.) Sol. in 9 pts. strong alcohol on heating. (Bergmann.)

Solubility in H₂O in presence of the anhydrous salt.

Sat. solution contains at:

89° 77.5° 63.14 65.67  $67.55\% \text{ Mg(NO}_3)_2$ .

(Funk, Z. anorg. 1899, 20. 396.) See +6, and 9H₂O.

Sp. gr. of  $Mg(NO_3)_2 + Aq$  at 14°.

% Mg(NO ₃ ) _{2'} 6H ₂ O	Sp. gr.	% Mg(NO ₃ ) ₂ , 6H ₂ O	Sp. gr.
1	1.0034	30	1.1347
5	1.0202	35	1.1649
10	1.0418	40	$1.1909 \\ 1.2176$
15	1.0639	45	
20 25	1.0869 1.1103	49	1.2397

(Oudemans, Z. anal. 7. 419.)

Sp. g	gr. of	Mg(N0)	$(a_3)_2 + Aq$	at 21°.
-------	--------	--------	----------------	---------

% M*(NO ₃ )2 +6H ₂ O	Sp. gr.	% Mg(NO ₃ ) ₂ +6H ₂ O	Sp. gr.
2 4 6 8 1C 12 14 16 18 20	1.0078 1.0158 1.0239 1.0321 1.0405 1.0490 1.0577 1.0663 1.0752 1.0843	28 30 32 34 36 38 40 42 44 46	1.1216 1.1312 1.1410 1.1508 1.1608 1.1709 1.1811 1.1914 1.2019 1.2124
$egin{array}{c} 22 \ 24 \ 26 \end{array} \mid$	1.0934 1.1026 1.1120	48 50	1.2231 1.2340

(Schiff, calculated by Gerlach, Z. anal. 8. 286.)

Sp. gr. of  $Mg(NO_3)_2$ +Aq at 18°.

% Mg(NO3)2	Sp. gr.	% Mg(NOs)2	Sp. gr.
5	1 0378	15	1.1181
10	1.0763		1.1372

(Kohlrausch, W. Ann. 1879. 1.)

Sr. gr. of  $Mg(NO_3)_2+Aq$  at room temp. containing:

39.77% Mg(NO₃)₂. 18.62 34.19 1.1025 1.2000 1.4298 (Wagner, W. Ann. 1883, 18. 273.)

Sp. gr. of Mg(NO₃)₂+Aq at 25°.

Concentration of Mg(NO ₃ ) ₂ +Aq	Sp. gr.
1-normal 1/2- " 1/4- " 1/8- "	1.0512 1.0259 1.0130 1.0066

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp. gr. of solution sat. at 18°=1.384, containing 43.1% Mg(NO₈)₂. (Mylius, B. 1897, **30.** 1718.)

Sp. gr. of  $Mg(NO_3)_2+Aq$ .

$\frac{1}{2}$ Mg(NO ₈ ) ₂ g. in 1000 g. of solution	Sp. gr. 16°/16°
0 0.8099 1.5621 3.3398 7.4410 15.161 29.356 58.353 81.025	1.000000 1.000660 1.001253 1.002539 1.005523 1.011151 1.021580 1.043329 1.060773

(Dijken, Z. phys. Ch. 1897, 24. 107.)

Sp. gr. of  $Mg(NO_3)_2 + Aq$  at 20.1°. p=per cent strength of solution; d=observed density; w = volume concentration in grams per cc.

p	d	w
35.02 31.15 25.03 19.55 13.43 10.09 6.650	1.3110 1.2655 1.2057 1.1551 1.1028 1.0753 1.0480	0.46695 0.39420 0.30172 0.22585 0.14815 0.10850 0.06968
4.672 4.001 1.372 ●	$egin{array}{c} 1.0330 \ 1.0276 \ 1.0085 \end{array}$	$egin{array}{c} 0.04826 \ 0.04112 \ 0.01383 \end{array}$

(Barnes, J. phys. Chem. 1898, 2, 545.)

Sp. gr. of Mg(NO₃)₂+Aq at 20° containing M g. mols, of salt per liter.

M 0.020.05 0.15Sp. gr. 1.00224 1.005626 1.011118 1.016557

0.50 1.00 1.274Sp. gr. 1.022026 1.054804 1.107865 1.136615 (Jones and Pearce, Am. Ch. J. 1907, 38, 707.)

Less sol, in  $Ca(NO_3)_2 + Aq$  than in  $H_2O$ . (Dijonval.)

Very easily sol. in liquid NH₃. (Franklin, Am. Čh. J. 1898, **20.** 828.)

+2H₂O. Mpt. 127°. (Wasiliew, C. C. 1909, II. 1966.)

 $+4\mathrm{H}_2\mathrm{O}$ . Mpt. 45.5°. (W.)  $+6\mathrm{H}_2\mathrm{O}$ . Deliquescent. Sol. in  $\mathrm{H}_2\mathrm{O}$  and alcohol. Sol. in 0.5 pt. cold H₂O, and 9 pts. cold alcohol of 0.84 sp. gr.; very sl. sol. in abs. alcohol. (Graham.)

Melts in its crystal H₂O at 90°, and the resulting liquid boils at 143.4°. (Ordway, Sill. Am. J. (2) **27.** 14.)

Solubility in H₂O.

Sat. solution contains at:

0° -4.5° 18° -18° 42.33% Mg(NO₃)₂, 38.03 39.50 39.9640° 80° 90° (mpt.). 57.81% Mg(NO₃)₂. 45.87 53.69

(Funk, Z. anorg. 1899, **20.** 395.)

+9H₂O. Solubility in H₂O. Sat. solution contains at:

-23° -20.5° 38.03% Mg(NO₃)₂. 36.19 35.44

Cryohydrate is formed at -29°. (Funk, Z. anorg. 1899, 20. 398.)

Magnesium neodymium nitrate, 3Mg(NO₃)₂,  $2Nd(NO_3)_3+24H_2O$ .

1 l. sat. solution in HNO₃+Aq (sp. gr 1.325) contains 97.7 g. hydrous salt at 16° (Jantsch, Z. anorg. 1912, 76. 303.)

Magnesium praseodymium nitrate.  $3Mg(NO_3)_2$ ,  $2Pr(NO_3)_3 + 24H_2O$ .

1 l. sat. solution in HNO₂+Aq (sp. gr. 1.325) contains 7.70 g. hydrous salt at 16°. (Jantsch.)

Magnesium samarium nitrate,  $3Mg(NO_3)_2$ .  $Sm(NO_3)_3 + 24H_2O$ .

(Demarçay, C. R. 1900, 130. 1187.)

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 24.55 g. hydrous salt at 16°. (Jantsch.)

Magnesium thorium nitrate, MgTh(NO₈)₆+ H₂O.

Hydroscopic; sol. in HNO₃. (Meyer, Z. anorg. 1901, 27. 385.)

Magnesium nitrate ammonia, Mg(NO₃)₂, 6NH₃.

Sl. sol. in liquid NH₃. (Franklin, J. Am. Chem. Soc. 1913, 35. 1459.)

Manganous nitrate, basic, 2MnO, N₂O₅+ 3H₂O.

Sol. in H₂O. (Gorgeu.)

Manganous nitrate,  $Mn(NO_3)_2$ .

Deliquescent. Easily sol. in H₂O and alcohol.

See +3, and 6H₂O.

Sp. gr. of  $Mn(NO_3)_2 + Aq$  at 8°.

% Mn(NO ₃ ) ₂ +6H ₂ O	Sp. gr.	% Mn(NO ₃ ) ₂ +6H ₂ O	Sp. gr.
5 10 15 20 25 30 35	1.0253 1.0517 1.0792 1.1078 1.1137 1.1688 1.2012	45 50 55 60 65 70 71	1.2705 1.3074 1.3459 1.3861 1.4281 1.4721 1.4811
40	1.2352		• • •

(Oudemans, Z. anal. 7. 421.)

Sp. gr. of aqueous solutions containing:

 $30 \% \text{Mn(NO}_3)_2 + 6\text{H}_2\text{O},$  $18.711\% \text{Mn(NO}_3)_2,$ 10 20 6.23712.474 1.0521,107 1.165

 $60 \% \text{Mn(NO}_3)_2 + 6\text{H}_2\text{O}, 37.422\% \text{Mn(NO}_3)_2,$ 40 50 24.94831.1851.230 1.3021.381

70 80  $\% \text{ Mn(NO_3)_2+6H_2O}.$ 49.896% Mn(NO₃)₂. 43.6591.466 1.558

(Gerlach, Z. anal. 28. 477.)

Sp. gr. of  $Mn(NO_3)_2 + Aq$  at room temp. containing:

18.309 29.602 49.309% Mn(NO₃)₂. * 1.1482 1.3227 1.5056

(Wagner, W. Ann. 1883, 18. 271.)

Sp. gr. of Mn(NO ₃ ) ₂ +Aq at 25°.		
Concentration of Mn(NO ₃ ) ₂ +Aq	Sp. gr.	
1-normal  1/2- "  1/4- "  1/8- "	1.0690 1.0349 1.0174 1.0093	

(Wagner, Z. phys. Ch. 1890, 5, 39.)

Sol, in liquid NH₈. (Guntz, Bull, Soc. **1909**, (4) **5**. 1006.)

Very sol, in liquid NH₈. (Franklin, Am. Ch. J. 1898, 20, 828.)

+H₂O. Deliquescent, (Guntz, Bull. Soc. 1909 (4) **5.** 1005.)

+3H₂O. From solution in HNO₃. (Schultz-Sellack, Zeit. Ch. 1870. 646.)

Solubility in H₂O.

Sat. solution contains at:

 $34^{\circ}$ 35.5° mpt.  $29^{\circ}$  $30^{\circ}$ 65.66 66.99 67.38 71.31 76.82% Mn(NO₈)₂. (Funk, Z. anorg. 1899, **20.** 403.)

+6H₂O, Melts in its crystal H₂O at 25.8° and boils at 129.4°. (Ordway.)

Solubility in H₂O.

Sat. solution contains at:

-29° --26° --21° --16° --5°

 $42.29 \ 43.15 \ 44.30 \ 45.52 \ 48.88\% \ Mn(NO_3)_2$ 

+11° 18° 25.8° mpt.  $50.49 \ 54.50 \ 57.33 \ 62.37\% \ Mn(NO_3)_2$ .

Cryohydrate is formed at -36°. (Funk, Z. anorg. 1899, 20. 403.)

Manganous neodymium nitrate, 3Mn(NO₃)₂,  $2Nd(NO_3)_3+24H_2O$ .

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 296 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, **76**. 303.)

Manganous praseodymium nitrate  $3Mn(NO_3)_2$ ,  $2Pr(NO_3)_3 + 24H_2O$ .

1 l. sat. solution in HNO₃+Aq (sp. g 1.325) contains 23.4 g. hydrous salt at 16°. (Jantsch.)

Manganous samarium nitrate,  $3Mn(NO_8)_2$ ,  $2\text{Sm}(\text{NO}_3)_8 + 24\text{H}_2\text{O}$ .

1 l. sat. solution in  $\mathrm{HNO_3} + \mathrm{Aq}$  (sp. gr. 1.325) contains 50.04 g. hydrous salt at 16°. (Jantsch.)

Manganous thorium nitrate, MnTh(NO₃)₆+ 8H₂O.

Ppt. (Meyer, Z. anorg. 1901, **27.** 388.)

Manganous nitrate cupric oxide, Mn(NO₃)₂,  $3CuO + 3H_2O$ .

Ppt. (Mailhe, C. R. 1902, 134. 234.)

Manganous nitrate hydrazine, Mn(NO₃)₂, 2N₂H₄.

Not decomp, by H₂O. (Franzen, Z. anorg. 1908. **60.** 286.)

Mercurous nitrate, basic, 2Hg₂O, N_{2Os}+  $H_2O$ .

Decomp. by boiling with H₂O. Ppr. (Marignae, A. ch. (3) 27. 332.)

Slowly sol. in cold, rapidly in hot HCl+Aq;

insol. in NH₄Cl, and NH₂NC₃+Aq. +10H₂O Slowly sol. in normal HNO₃. (Reuss, Dissert. **1886**.)

4Hg₂O, 3N₁O₅+H₂O. Sol. in a small quan-

tity of H₂O; decemp. by a large amt. of H₂O or by warm H₂O. (Rose, Pogg. 83. 154.) Is 3HgO, 2N₂O₅+H₂O according to Ger-

hardt.

+5H₂O. (Reuss, Dissert. **1886.**) 5Hg₂O₂ 3N₂O₅+2H₂O. (Marig (Marignac.) Is  $2Hg_2O$ ,  $N_2O_5+H_2O$ . (Lefort, A. **56**. 247.) Sol. in boiling, less sol. in cold H₂O. (Marignac, l. c.

1886.)

 $8Hg_2O$ ,  $5N_2O_5+5H_2O$ , and  $+11H_2O$ . (Reuss.)

 $11 \text{Hg}_2\text{O}$ ,  $6 \text{N}_2\text{O}_5 + 25 \text{H}_2\text{O}$ . (Reuss.)  $16 \text{Hg}_2\text{O}$ ,  $9 \text{N}_2\text{O}_6 + 19 \text{H}_2\text{O}$ ,  $+23 \text{H}_2\text{O}$ , and  $+31 \text{H}_2\text{O}$ . (Reuss.) 31'g₂O,N₂O₅+2H₂O. (Cox, Z. anorg. 1904,

**40**. 177.)

Mercurous nitrate, HgNO₃.

Very sol. in liquid NH₃. (Franklin, Am.

Ch. J. 1898, **20.** 829.)
Fairly sol. in boiling CS₂. (Arctowski, Z.

anorg. 1894, 6. 257.) Sl. sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Sol. in methylamine. (Franklin, J. Am.

Chem. Soc. 1906, 28. 1419.) +H₂O. Completely sol. in a little warm H₂O, but decomp. by more H₂O. Completely sol. as acid salt in H2O containing HNO3. (Marignac, A. ch. (3) 27. 332.)

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

 $+1^{1}/_{4}H_{2}O$  $+1^{1/3}H_{2}O$  $+1^{1}/_{2}H_{2}O$ , etc. (Reuss, Dissert. 1896.)

Mercuric nitrate, basic, 6HgO, N₂O₅ (?).

Insol. in hot H₂O. (Kane.) 3HgO, N₂O₅+H₂O. Decomp. to oxide by washing with cold H₂O. Sol. in dil. HNO₈+ Aq. (Millon, A. ch. (3) 18. 361.)

2HgO,  $N_2O_5 + H_2O$ . Sl. deliquescent. Decomp. by  $H_2O$ ; sol. in dil.  $HNO_3 + Aq$ .

(Millon.) Decomp. by cold H₂O. Deli-Sol. in H₂O containing HNO₃. +2H₂O. quescent. (Marignac.)

+3H₂O. (Ditte, J. B. 1854. 366.)

Mercuric nitrate,  $Hg(NO_3)_2$ .

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 829.)

Neither dissolved nor attacked by liquid NO2. (Frankland, Chem. Soc. 1901, 79. 1361.)

Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43, 314.)

Sol. in methylal. (Eidmann, C. C. 1899.

II, 1014.) +½H₂O. Deliquescent. Very sol. in a little H₂O. H₂O precipitates basic salt from conc.  $Hg(NO_3)_2 + Aq$ . Insol. in alcohol. Decomp. by ether. (Millon.)

 $+H_2O$ . Extraordinarily sol. in  $H_2O$ . (Cox, **Z**. and **g**. 1904, **40**. 159.) +8H₂O. Melts at 6° in crystal H₂O. (Ditte.)

Mercuromercuric nitrate, Hg₂O, 2HgO, N₂O₅. gradually dissolves Boiling H₂O Hg₂(NO₃)₂, and leaves residue of HgO and Hg. (Brooks, Pogg. 66. 63.)  $2H_{\rm g_2O}$ ,  $H_{\rm gO}$ ,  $N_{\rm 2O_5} + H_{\rm 2O}$ . (Ray, Chem. Soc. 1905, 87. 175.)

 $Hg_2O$ , 2HgO,  $N_2O_6+H_2O$ . (Rây.)

Mercurous hydrogen nitrate, 4HgNO₃, HNO₃ +8H₂O.

(Reuss, Dissert. 1886.) 5HgNO₃, 3HNO₃+26H₂O. (Reuss.)

Mercuric silver nitrate, Hg(NO₃)₂, 2AgNO₃. Easily sol. in H₂O without decomp. (Berzelius.)

Mercurous strontium nitrate, 2SrO, 2Hg₂O,  $3N_2O_5$ .

Decomp. by  $H_2O$ . Much more sol. in  $H_2O$ than the corresponding Ba compound.

Readily sol. in warm dil. HNO₈+Aq or  $Hg_2(NO_3)_2 + Aq$ without decomposition. (Städeler, A. 87. 131.)

Mercurous thallous nitrate, HgNO₃, TlNO₃. Miscible with H₂O. (Retgers, N. Jahrb. Miner, 1896. II, 183.)

Mercuric nitrate bromide, Hg(NO₃)₂, HgBr₂. (Morse, Z. phys. Ch. 1902, 41. 733.)

Mercuric nitrate cadmium oxide, Hg(NO₃)₂,  $CdO + 2H_2O$ .

Ppt. (Mailhe, Bull. Soc. 1901, (3) 25. 788.) +3H₂O. Decomp. by H₂O. (Mailhe.)

Mercuric nitrate cobaltous oxide, Hg(NO₃)₂,  $C_0O + 3H_2O$ .

Ppt. (Mailhe, C. R. 1901, 132. 1275.) +4H₂O₄ Decomp. by H₂O. (Mailhe, A. ch. 1902, (7) 27. 369.)

Mercuric nitrate cupric oxide, Hg(NO₈)₂,  $CuQ + 2H_2O$ , and  $+4H_2O$ .

(Mailhe, Bull. Soc. 1901, (3) 25. 791.) +5H₂O. Decomp. by H₂O. (Mailhe, A. ch. 1902, (7) 27. 365.)

Mercuric nitrate cyanide, Hg(NO₈)₂,  $Hg(CN)_2$ .

Very sol, in H₂O. Very sol, in methyl alcohol and solution is not decomp. at bpt. Ethyl alcohol apparently decomp. it. (Prussia, Gazz. ch. it. 1898, 28. (2) 115.)

Mercurous nitrate hydrazine, 2HgNO₃, N₂H₄. Decomp. by H₂O. Stable in dil. HNO₈+ Aq solution. (Hofmann and Marburg, A. 1899, **305**. 215.)

Ppt.; very unstable. (Hofmann, B. 1897, **30**. 2021.)

Hg(NO3)2, N2H4. Sol. in dil. HCl and (Hofmann and Marburg, A. 1899, HNŌ₈. **305.** 215.)

Ppt.; sol. in acids; decomp. by alkali. (Hofmann, B. 1897, 30. 2021.)

Mercuric nitrate iodide, Hg(NO₈)₂, 2HgI₂.

Decomp. by long boiling with H₂O. (Riegel, Jahrb. Pharm. 11. 396.)

Easily decomp. by  $2\text{Hg}(\text{NO}_3)_2$ ,  $3\text{HgI}_2$ . H₂O; less easily by alcohol or ether. (Riegel.) Hg(NO₃)₂, HgI₂. Decomp. very quickly by HNO₃+Aq or alcohol of 0.814 sp. gr.

(Souville, J. Pharm. 26. 474.)

Mercuric nitrate manganous oxide,  $Hg(MO_3)_2$ ,  $MnO + 2H_2O$ ,

Decomp. by H₂O. (Mailhe, Bull. Soc. 1901, (3) **25.** 790.)

+3H₂O. (Mailhe.)  $+4H_2O$ . (Mailhe, A. ch. 1902, (7) 27. 370.)

Mercuric nitrate nickel oxide, Hg(NO₈)₂, NiO +2H₂O.

(Mailbe, Bull. Soc. 1901, (3) 25. 788.) +4H₂O. Decomp. by H₂O. (Mailhe, A. ch. 1902, (7) **27.** 369.)

Mercurous nitrate phosphate, HgNO₃,  $Hg_8PO_4+H_2O.$ 

Insol. in H₂O, but decomp. by boiling therewith. Insol. in H₃PO₄+Aq or alcohol. Completely sol. in hot NH₄Cl+Aq. Decomp. by cold KOH+Aq, and warm K₂CO₃+Aq. (Wittstein.)

2HgNO₈, Hg₂O, 5Hg₃PO₄+H₂O. (Haack, A. **262**. 192.)

Mercuric nitrate silver bromide, Hg(NO₃)₄ AgBr.

(Morse, Z. phys. Ch. 1902, 41. 733.)

Mercuric nitrate silver cyanide, basic, Hg(OH)NO₈, AgCN+2H₂O.

(Schmidt, Z. anorg. 1895, 9. 431.)

 $Hg(OH)NO_3$ 5Ag₂O,  $20 \text{AgCN} + 7 \text{H}_2 \text{O}$ . (Schmidt.)

Mercuric nitrate silver iodide, Hg(NO₃)₂,  $2AgI + \frac{1}{2}H_2O$ .

Decomp. by H₂O. (Preuss, A. 29. 328.)

Mercuric nitrate sulphide, Hg(NO₃)₂, 2HgS.

Very sl. sol. in hot  $H_2O$ . Insol. in  $HNO_8+$ Aq. Decomp. by hot H2SO4 or aqua regia, also by hot HCl+Aq. (Barfoed, J. pr. 93. 230.)

Sol. in aqua regia. (Deniges, Bull. Soc. 1915, (4) 17. 355.)
2Hg(NO₃)₂, HgO, 6HgS+12H₂O. Insol. in H₂O, and HNO₃+Aq of 1.2 sp. gr (Gramp, J. pr. (2) 14. 299.)

Mercuric nitrate zinc oxide,  $Hg(NO_8)_2$ , ZnO +

Ppt. Decomp. by H₂O. (Maille, C. R. 1901, **132.** 1274.)

Molybdenum nitrate, Mo₂O₃, N₂O₅ (?).

Sol. in dil.  $HNO_3+Aq$ . (Berzelius.)  $MoO_2$ ,  $2N_2O_5$  (?). Sol. in dil.  $HNO_3+Aq$ . (Berzelius.)

Neodymium nickel nitrate, 2Nd(NO₃)₃,  $3Ni(NO_3)_2 + 24H_2O$ .

1 l. sat. solution in HNO₈+Aq (sp. gr. 1.325) contains 116.6 g. hydrous salt at 16° (Jantsch, Z. anorg. 1912, **76.** 303.)

Neodymium rubidium nitrate, [Nd(NO₃)₅]Rb₂  $+4H_2O$ .

(Jantsch, Z. anorg. 1911, Hydroscopic. **69**. 230.)

Neodymium zinc nitrate, 2Nd(NO₃)₃,  $3\text{Zn}(\text{NO}_8)_2 + 24\text{H}_2\text{O}$ .

1 l. sat. solution in HNO₈+Aq (sp. gr. 1.325) contains 177 g. hydrous salt at 16°. (Jantsch.)

Nickel nitrate, basic.

Insol. in H₂O. (Proust.) 8NiO, 2N₂O₆+5H₂O. Insol. in cold or hot H₂O. (Habermann, M. 5. 432.)
5NiO, N₂O₆+4H₂O. Not decomp. by boil-

ing H₂O. (Rousseau and Tite, C. R. 114. 1184.)

Nickel nitrate, Ni(NO₃)₂.

Solubility in H₂O. See +3, 6, and 9H₂O. Sp. gr. of aqueous solution at 17.5° containing:

20 % Ni(NO₃)₂, 5 % 10 15 1.1935 1.1375 1.0903 1.0463

% Ni(NO₈)₂. 35 40 30 1.3193 1.3896 1.4667 1.2534

(Franz, J. pr. (2) 5. 295.)

Sp. gr. of Ni(NO₂)₂+Aq containing g. Ni(NO₂)₂ (anhydrous) in 1000 g. H₂O at 24.4°:

91.5 g. (= ½ mol.) 183 274.5 369 460.5 549 1.073 1.141 1.205 1.266 1.324 1.378 1.141 1.205 1.266 1.324 1.378

(Gerlach, Z. anal. 28. 468.)

Sp. gr. of  $Ni(NO_3)_2 + Aq$  at room temp. containing:

30.006 40 953% Ni(NO₃)₂. 16.493 1.1363 1.2776 1.3879

(Wagner, W. Ann. 1883, 18. 269.)

Sp. gr. of  $N_1(NO_8)_2 + Aq$  at 25°.

Concentration of Ni(NOs)2+Aq	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.0755 1.0381 1.0192 1.0096

Wagner, Z. phys. Ch. 1890, 5. 39.)

Sp. gr. at 20° of Ni(NO₈)₂+Aq containing M g. mols, of salt per liter.

0.025 0.075 0.01 0.05Sp. gr. 1.001521 1.003882 1.007792 1.011541

M 0.250.50.11.11310 Sp. gr. 1,015307 1.03837 1.07611

2.0 M Sp. gr. 1.14562 1.22134 1.29459

(Jones and Pearce, Am. Ch. J. 1907, 38. 720.)

Sol. in liquid NH₃. (Guntz, Bull. Soc. 1909, (4) **5.** 1008.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 828.)

Solubility in glycol = 7.5%. (de Coninck, C. C. 1905, II. 1234.)

Insol, in benzonitrile. (Naumann, B. 1914, **47**. 1370.)

+3H₂Ò. Solubility in H₂O. Sat. solution contains at:

58° 60° 64° 70° 63.95% Ni(NÖ₈)2.

62.76

90° 95° mpt 70.16 77.12% Ni(NO₃)₂.

61.99

61.61

(Funk, Z. anorg. 1899, 20. 411.)

+6H₂O. Not deliquescent in dry air. Sol. in 2 pts. cold H₂O and in alcohol. (Tupputi.) Mpt. of Ni(NO₃)₂+6H₂O = 56.7°. (Ord-way; Tilden, Chem. Soc. 45. 409.) Sat. solution boils at 136.7°. (Ordway.)

Solubility in H₂O.

Sat. solution contains at:

-21° -12.5° -10° 43.00% Ni(NO₈)₂, 39.94 41.59 42.11

41° 56.7° mpt. 0° +20° 55.22 62.76% Ni(NO₃)₂. 44.32 49.06 (Funk, Z. anorg. 1899, 20. 410.)

Sat. solution of Ni(NO₃)₂+6H₂O contains 44.3% Ni(NO₃)₂ at 0°, and 48.7% Ni(NO₃)₂ at 18°. (Mylius, Z. anorg. 1912, 74. 411.) Sp. gr. of Ni(NO₃)₂+Aq containing in 1000 g. H₂O at 24.4°, g. Ni(NO₃)₂+6H₂O. 436.5 145.5 g.  $(=\frac{1}{2} \text{ mol.})$  291 582

1.179 1.224

> 727.5 873 1018.5 1164 1.357 1.329 1.264 1.299

(Gerlach, Z. anal. 28, 468.)

Sol. in NH₄OH+Aq. Insol. in absolute alcohol.

Sl. sol. in acetone. (Krug and M'Elroy.) Difficultly sol, in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B.

1910, 43. 314.) \$\frac{4}{9}\text{H}_2\text{O}\$. Solubility in \$\text{H}_2\text{O}\$.

Sat. solution contains at: --23° -21° ---10.5°

39.02 39.48 44.13% Ni(NO₃)₂.

Cryohydrate is formed at -27°. (Funk, Z. anorg. 1899, 20, 411.)

Nickel praseodymium nitrate,  $3Ni(NO_3)_2$ ,  $2Pr(NO_8)_3 + 24H_2O$ .

1. sat. solution in HNO₈+Aq (sp. gr. 1.325) contains 9.28 g. hydrous salt at 16° (Jantsch, Z. anorg. 1912, 76. 303.)

Nickel samarium nitrate,  $3Ni(NO_8)_2$ ,  $2Sm(NO_3)_3+24H_2O$ .

1 l. sat. solution in HNO₃+Aq (sp. gr. 1.325) contains 29.11 g. hydrous salt at 16°. (Jantsch.)

Nickel thorium nitrate, NiTh(NO₃)₆+8H₂O. Sol. in HNO₃+Aq. (Meyer, Z. anorg. **1901**, **27**. 387.)

Nickel uranyl nitrate, 10Ni(NO₈)₂,  $3(\mathrm{UO_2})(\mathrm{NO_3})_2$ .

Solmin H₂O and acids; insol. in aq. alkali. (Lancien, C. C. 1912, I. 208.)

Nickel nitrate ammonia,  $Ni(NO_3)_2$ ,  $4NH_8+$ 2H₂O.

* Efflorescent. Easily sol. in cold H₂O boiling. Insol. in alcohol. decomp. by (Erdmann, J. pr. 97. 395; Ephraim, B. 1913, **46.** 3106.)

H112H2O. (André, C. R. 106. 936.)

Nickel nitrate chloride ammonia, 6Ni(NO₈)₂,  $NiCl_2$ ,  $30NH_3+16H_2O$ .

Sol. in H₂O with decomp. (Schwarz, W. A. B. 1850. 272.)

Nickel nitrate cupric oxide, Ni(NO₃)₂, 3CuO+ 3H₂O.

Ppt. (Maihle, C. R. 1902, 134, 234.)

Nickel nitrate hydrazine, Ni(NO₈)₂, 3N₂H₄.

Insol. in H₂O. Decomp. by hot H₂O. Easily sol, in dil. acids. (Franzen, Z. anorg. 1908, 60. 267.)

Palladium nitrate, basic, Pd(NO₈)₂, 3PdO +4H₂O.

Ppt. Insol. in H₂O. (Kane.)

Palladium nitrate,  $Pd(NO_3)_2 + xH_2O$ .

Very deliquescent, and sol. in H₂O. Decomp. by much H₂O or alcohol. (Kane.) Decomp. by cold or hot H₂O. (Rose, A. 83.

Platinic nitrate,  $Pt(NO_3)_4$  (?).

Known only in solution, which is decomp.

on evaporating. (Berzelius.)
Pt(NO₃)₂, 3PtO₂+5H₂O. Insol. in H₂O.

(Prost, Bull. Soc. (2) 46. 156.)

Platinum nitrate sulphocarbamide, Pt(NO₃)₂,  $4CS(NH_2)_2$ .

Very sol. in H₂O. Unstable. (Kurnokow. J. pr. 1894, (2) **50.** 490.)

Potassium nitrate, KNO₃.

Not deliquescent, but, according to Mulder, 100 pts. KNO₃ under a bell jar with H₂O take up 339 pts. H₂O in 22 days, and small amounts finally deliquesce completely.

Sol. in H₂O with absorption of heat.

16 pts. KNO₃+100 pts. H₂O at 13.2° lower the temperature 10.2°. If the initial temp, is 23° it falls to 12.8°, if 0° it does not fall below —2.7°, which is the freezing-point of the mixture. (Rüdorff, Pogg. 136. 276.)

 $KNO_3+Aq$  sat. at 18.1° has 1.1601 sp. gr. and contains 22.72%  $KNO_3$ , or 100 pts.  $H_2O$  at 18.1° dissolve 29.45 pts.  $KNO_3$ . (Knrsten, 1840.) Sol. in 3.745 pts.  $H_2O$  at 18° (Gerlach.) Sol. in 3 pts.  $H_2O$  at 21° (Schiff, A. 109. 326), and solution has 1.1683 sp. gr. Sol. in 3 pts. cold, and 0.5 pt. boiling  $H_2O$ . (Four-

croy.) 4Aq sat. at 18° has sp. gr. 1.151, and contains 21.63% KNO2, or 100 pts. H₂O dissolve 27.60 pts. KNO2 at 18°. (Longchamp.)

Sol. in 4 pts. H₂O at 16°, and 0.25 pt. at b.-pt. (Rif-

100 pts. H₂O at 114.5° dissolve 284.61 pts. (Griffiths.) Sol. in 7 pts. cold, and 1 pt. boiling H₂O. (Berg-

Nol. in 6.15 pts. cold H₂O at 18.75°. (Abl.)

100 pts. H₂O at 15.5° dissolve 26.6 pts.; at 100°, 100

pts. (Ure's Dictionary.)

KNO₂+Aq sat. at 10° contains 33.3%. (Eller.)

KNO₂+Aq sat. in the cold contains 25%. (Four-

croy.)
KNO₃+Aq sat. at 12.5° contains 24.8%. (Hassen-

Solubility of KNO₃ in 100 pts.  $H_2O$  at  $t^{\circ}$ .

t° .	Pts. KNOs	t°	Pts. KNO:
0	13.2	45.10	74.7
5	16.7	54.72	97.1
11.67	22.2	65.45	125.5
17.91	29.3	79.72	169.2
24.94	38.4	97.66	236.4

(Gay-Lussac, A. ch. 11. 314.)

Solubility of KNO₃ in 100 pts. H₂O at t°.

t°	Pts. KNO₂
16.0 29 44.2	26.7 $43.5$ $71.4$

(Nordenskjöld, Pogg. 136, 312.)

100 pts. H₂O dissolve at: 53° 10° 18°  $27^{\circ}$ 41° 21.2 27.940.1 66.393.3 pts. KNO₃. (Gerardin, A. ch. (4) 5. 150.)

100 pts.  $\rm KNO_3+Aq$  sat. at 14° contain 16.34 pts.  $\rm KNO_3$ ; at 15°, 18.81 pts.  $\rm KNO_3$ . (v. Hauer, J. pr. 98. 177.)

100 pts.  $_{4}^{\circ}$  dissolve at:  $_{16.3}^{\circ}$  68.3° 132.1 pts KNO₄. 16 27.2(Andreae, J. pr. (2) 29. 456.)

Solubility in 100 pts. H₂O at t°.

t°	Pts KNO ₃	t.°	Pts. KNO ₃	to	Pts. KNO ₃
0	13.3	39	62	78	165
	13.8	40	64	79	168
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	14.6	41	66	80	172
. 3	15.5	42	68	81	175
4	16.4	43	70	82	179
5	17.1	44	72	83	182
5 6 7	17.8	45	74	84	185
7	18.5	46	76	85	189
8 9	19.3	47	78	86	192
9	20.2	48	81	87 .	196
10	21.1	49	83	88	199
11	22.0	50	86	89	203
12	23.0	51	88	90	206
13	24.0	52	91	91	210
14	25.0	53	93	92	214
15	26.0	54	96	93	218
16 17	27.0	55	98	94	222
17	28.1	56	101	95	226
18	29.1	57	103	96	230
19	30.2	58	106	97	234
20	31.2	59	108	98	238
21 22	32.3	60	111	99	243
22	33.5	61	113	100	247
23	34.7	62	116	101	252
24	36.0	63	119	102	256
25	37.3	64	121	103	261
26	38.6	65	124	104	266
27	40.0	66	127	105	272
28	41.4	67	130	106	278
29	42.9	68	133	107	284
30	44.5	69	136	108	289
31	46.0	70	139	109	295
32	48	71	142	110	301
33	50	72	146	$\begin{array}{c} 111 \\ 112 \end{array}$	307
34	52	73	149		313
35	54	74	152	113 114	319 326
36 37	56	75	155	114.1	326 327.4
38	58 60	76 77	159 162	114.1	341.4
- 30	00	''	102	<u>   · · ·  </u>	1

(Mulder, Scheik, Verhandel. 1864. 89.)

100 pts. H₂O dissolve 493 pts. KNO₃ at (Tilden and Shenstone, Phil. Trans. 1884. 23.)

Rhombohedral KNO₃ is more easily soluble than the prismatic, and easily forms super-'aturated solutions. (Frankenheim.)

Set. KNO₃ + Aq contains at:

1587 160° 139° 175° 180° 79.8 83.7 84.0 83.9 84.2% KNO₃.

25∂° 225° 190° 215° 283° 86.0 89.0 90.4 91.6 96.5% KNO₃ (Étard, A. ch. 1894, (7) 2. 526.)

Sombility in 100 pts. H₂O at t°.

ţo.	G. KNO3	Sp. gr.t°/4°
0.40	13 43	1 0817
14.90	25.78	1.1389
30.80	47.52	1.2218
44.75	74.50	1.3043
60.05	111.18	1.3903
76.	156.61	1.4700
91.65	210.20	1.5394
114*	311.64	1.6269

* B.-pt. of sat. solution. (Berkeley, Phil. Trans. 1904, **203**, A. 189.)

100 g. H₂O dissolve 37.79 g. KNO₃ at 25°.  $1^{\circ}0$  g.  $H_2O$  dissolve 3.08 g. equiv. KNO₃ at 20°; 3.27 at 21.5°. (Euler, Z. phys. Ch. 1904, 49. 312.)

1 l. H₂O dissolves 384.48 g. KNO₃ at 25°. (Armstrong and Eyre, Proc. Roy. Soc. 1910. A, **84.** 123.)

1 l. sat. KNO₃+Aq contains 2.8 g. mols. KNO₈. (Rosenheim and Weinheber, Z.

anorg. 1911, **69.** 263.) 100 g. H₂O dissolve 38.485 g. KNO₃ at 25°. (Haigh, J. Am. Chem. Soc. 1912, 34. 1148.)

Sat. KNO₈+Aq contains at: 60° 58° 62° 6 50° 62°

51.5546.39 53.64 57.04% KNO₃. (Tschugaeff, Z. anorg. 1914, 86. 160.)

Solubility in H₂O.

100 g. of the sat. solution contain at:

 $9.1^{\circ}$ 21.1°  $35^{\circ}$ 16.7624.77 35.01 g. KNO₃.

(Findlay, Chem. Soc. 1914, 105. 780.)

Sp. gr. of solution sat. at  $15^{\circ} = 1.134$ . (Michel and Krafft.)

Sp. gr. of solution sat. at  $16^{\circ} = 1.138$ . (Stolba, J. pr. 97. 503.)

Sp. gr. of solution sat. at  $18^{\circ} = 1.1601$ , and contains 29.45% KNO₃. (Karsten.)

Sp. gr. of KNO₈+Aq at 19.5°.

% KNO ₈	Sp. gr.	% KNO2	Sp. gr.
4.871 9.618 14.044	1.0307 1.0618 1.0920	17.965 21.488	1.1198 1.1457

(Kremers, Pogg. 95. 120.)

Sp. gr. of KNO ₃ +Aq at 21°.				
% KNO ₈	Sp. gr.	% KNO:	Sp. gr.	
1	1.0058	13	1.0819	
2	1.0118	14	1.0887	
3	1.0178	15	1.0956	
4	1.0239	16	1.1026	
5	1.0300	17	1.1097	
6	1.0363	18	1.1169	
7	1.0425	19	1.1242	
8	1.0490	20	1.1316	
9	1.0555	21	1.1390	
10	1.0621	22	1.1464	
11	1.0686	23	1.1538	

(Schiff, A. 110, 75.)

Sp. gr. of KNO₃+Aq at 15°.

% KNOs	Sp. gr.	% KNOs	Sp. gr.
1 2	1.00641 1.01283	12 13	1.07905 1.08596
3	1.01924	14	1.09286
. 5	1.02566 1.03207	15 16	1.09977 1.10701
6 7	1.03870 1.04534	17 18	1 11426 1 12150
$\frac{8}{9}$	1.05197 1.05861	19 20	1.12875 $1.13599$
10 11	1.06524 1.07215	21	1.14361

(Gerlach, Z. anal. 8. 286.) Sp. gr. of KNO₃+Aq at 17.5°.

KNO:	Sp. gr.	KNO3	Sp. gr.	KNO3	Sp. gr.
1 2 3 4 5 6 7	1.006 1.012 1.019 1.025 1.032 1.038 1.045	8 9 10 11 12 13 14	1.051 1.058 1.065 1.072 1.078 1.085 1.092	15 16 17 18 19 20	1.099 1.106 1.113 1.120 1.127 1.134

#### (Hager, Comm. 1883.)

Sp. gr. of KNO₃+Aq at 18°.

% KNOs	Sp. gr.	% KNO3	Sp. gr.
5 10	1.0305 1.0632	20 22	1.133 1.148
15	1.097		

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of KNO₃+Aq at 20°, containing mols. KNO₃ in 100 mols. H₂O.

Mols. KNOs	Sp. gr.	Mols. KNO3	Sp. gr.
0.5 1 2	1.01730 1.03373 1.06524	4 5	1.12264 1.14888

(Nicol, Phil. Mag. (5) 16. 122.)

Sp. gr. of KNO₂+Aq at 25°.

Concentration of KNO ₂ +Aq.	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.0605 1.0305 1.0161 1.0075

(Wagner, Z. phys. Ch. 1890, 5. 37.)

Sp. gr. of KNO₃+Aq at 20.1°.

p=per cent strength of solution; d=observed density; w=volume conc. in grams per cc.  $\left(\frac{pd}{100} = w.\right)$ 

, p	d	w
25.54 21.95	1.1783 1.1510	0.30095 0.25270
$17.88 \\ 13.93 \\ 8.706$	1.1200 1.0913 1.0553	$\begin{array}{c} 0.20033 \\ 0.15203 \\ 0.09186 \end{array}$
5.393 $4.389$	1.0331 1.0264	0.05571 0.04506
$egin{array}{c} 2.848 \ 2.030 \ 0.741 \end{array}$	1.0165 1.0113 1.0030	0.02895 0.02053 0.00743

(Barnes, J. Phys. Chem. 1898, 2. 544.)

Sp. gr.  $20^{\circ}/4^{\circ}$  of a normal solution of KNO₃ = 1.05954; of a 0.5 normal solution = 1.029325. (Haigh, J. Am. Chem. Soc. 1912, **34**. 1151.)

Sp. gr. of sat. KNO₃+Aq at t°.

t°	G. KNO ₃ sol. in 100 g. H ₂ O	Sp. gr.
6 10 20 30 40 50 60	13.27 20.89 31.59 45.85 63.90 85.51 109.00	1.084 1.120 1.161 1.212 1.282 1.339 1.403 1.446

(Tschernaj, J. Russ. Phys. Chem. Soc. 1912, 44. 1565.)

The saturated solution boils at 114.1° (Mulder); 114.5° (Griffiths); 115.9° (Legrand, Gerardin); 117° (Magnus); 118° (Kremers); 126° (Le Page).

The saturated solution forms a crust at 111°, and boils at 115°; highest temp. observed, 115.3°. (Gerlach, Z. anal. 26. 426.)

B.-pt of KNO+Aq containing pts. KNO₃ to 100 pts. H₂O. G = according to Gerlach (Z. anal. 26. 444); L=according to Legrand (A. ch. (2) 52. 426).

Bpt.	G	L	Bpt.	G	L
100.5° 101 101.5 102 102.5 103 103.5 104 104.5	7.5 15.2 23 31 39 47.5 56 64.5	12.2 26.4 42.2 59.6	107° 108 109 110 111 112 113 114	120.5 141.5 164 188.5 215 243 274 306 338.5	119.0 140.6 163.0 185.9 209.2 233.0 257.6 283.3 310.2
105 106	82 101	78.3 98.2	115.9	•••	335.1

1 pt. KNO₃ dissolves in 1.4 pts. HNO₃; at 20° in 3.8 pts., and at 123° in 1 pt. HNO₈+Aq of 1.423 sp. gr. (Composition 2HNO₃, 3H₂O.) (Schultz, Zeit. Ch. (2) **5**. 531.)

Solubility of KNO₃ in HNO₃ at 0°.

G. per 100 cc. solution		Sp. gr.
KNO ₃	HNO ₃	op. gr.
12.65	0.00	1.079
10.02	3.71	٠
8.38	8.38	1.093
7.49	13.58	1.117
7.49	19.47	1.144
7.68	30.04	1.202
10.42	42.86	1.289
28.64	75.95	1.498

(Engel, C. R., 1887, 104. 913.) Solubility in HNO₃+Aq.

-, -, -, -, -, -, -, -, -, -, -, -, -, -				
Solution temp.	% by wt. KNO3	Solid phase		
-6°	24.4	KNO ₃ , 2HNO ₃ (solution in HNO ₃ ) (stable)		
+14.0	32.6	"		
17.0	34.8	"		
19.5	37.2	"		
22.0	44.5	(mpt.)		
21.5	47.8	(Solution in KNO ₃ ) (labile)		
21.5	48.6	(60144601 111 111 103)		
20.0	50.9	"		
-4.0	37.2	KNO3, HNO3 (labile)		
+16.5	44.5	"" (1100)		
22.5	47.2	(stable)		
23.5	47.8	(Stable)		
$\frac{25.5}{25.5}$	48.6	"		
$\frac{25.5}{27.0}$	49.4	"		
27.0 29.0	50.1	(labile)		
		(labile)		
30.5	50.9	TOTO (LLIL)		
21.0	49.4	KNO ₃ (labile)		
39.0	50.9	(stable)		
<b>50.0</b>	51.7	,,		

(Groschuff, Z. anorg. 1904, 40. 10.)

Sol. in sat. NH₄Cl+Aq. Solution thus obtained contains 43.07 pts. mixed salts, or 100 pts. H₂O dissolve 75.66 pts. mixed salts, viz. 38.52 pts. KNO₃ and 39.84 pts. NH₄Cl. (Karsten.) See also under NH₄Cl. Solubility of KNO₃+K₂CO₃ and KHCO₃ in H₂O, see under K₃CO₃ and KHCO₃.

Sol. in sat. BaCl2+Aq with pptn. of

 $Ba(NO_8)_2$ . Sol. in sat. NH, NO +Aq, at first without pptn., but afterwards NM4NO2 is pptd. (Karsten.)

Soi in NH₄NO₅+Aq with pptn. of NH₄NO₅. (Ridorff, B. **6.** 485.)

See also under NH4NO3.

So! in sat. Ba(NO₃)₂+Aq, but soon a double salt separates. (Karsten.)

See also under Ba(NO3)2. (Longchamp.)

Sol. in Ca(NO₃)₂+Aq ( See also under Ca(NO₃)₂.

Sol. ir sat. Pb(NO₃)₂+Aq without pptn. 100 pts. H₂O dissolve 119.6 pts. Pb(NO₃)₂ and 67.1 pts. KNO₃ at 21.2°. (Rüdorff, B. 6. 484.) See also under Pb(NO₃)₂.

#### Solubility in AgNO₃+Aq at t°.

ţ°	Sat. solution contains			
·	% KNO3	% AgNO ₃	% total salt	
7.5 7.5 4 +20 33 34 36 38 46 54 54	10.5 10.5 11.3 23.6 26.3 27.3 29.4 	39.4 40.5 42.5 46.4 50.9 51.1 52.0  55.0 55.8	49.9 51.0 53.8 70.0 77.2 78.4 81.4 81.7 82.3 88.1	
61 68 96 105 142	34.3 37.8 38.5 41.5	54.6 55.4 55.6 55.8	89.5 88.9 93.2 94.1 97.3	

(Étard, A. ch. 1894, (7) 3. 286.)

Solubility of mixed crystals of KNO2 and AgNO₃ in H₂O at 25°.

G. p	G. per l. Mg. mols. per l.		Mg. mols. per l.		A		Mg. mols. per l.		Mol. % AgNOs in solid
AgNO ₃	KNO ₃	AgNO ₃	KNO ₈	in solu- tion	phase				
45.9 110.7 176.8 259.6 365.6 507.9 745.9	321.8 322.6 333.7 364.0 456.4 387.2 398.6	270 6513 1040 1258 2151 2988 4388	3180 3184 3298 3597 4511 3816 3960	7.83 16.96 23.97 29.81 32.28 43.85 57.70	0.2896 0.6006 0.9040 1.054 1.604 2.439 8.294				

(Herz, Z. Kryst. Min. 1897, 28. 405.)

### Solubility of KNO₈+AgNO₈ at 30°.

Composition of the solution		Solid phase
% KNO3	% AgNO ₃	
0 5.53 11.22 13.44 17.38 25.05 25.00 26.58 29.22 30.45 31.30	73.0 71.65 69.01 65.08 57.85 46.32 46.45 39.09 23.59 11.51	AgNO ₃ AgNO ₃ + AgNO ₃ , KNO ₃ AgNO ₃ , KNO ₃ KNO ₃ + AgNO ₃ , KNO ₃ KNO ₃ + AgNO ₃ ""  ""

(Schreinemakers, Z. phys. Ch. 1909, 65. 576.)

KNO₃+NaNO₈.

100 pts. H₂O dissolve 34.53 pts. KNO₃ and

91.16 pts. NaNO₃ at 15.6°, and solution has sp. gr. = 1.478. (Page and Keightley.)
100 pts. KNO₃+NaNO₃+Aq sat. at 14° contain 52.17 pts. of the two salts; sat. at 13° contain 53.15 pts. of the two salts. (v. Hauer.)

100 pts. H₂O dissolve at 18.75° 29.45 pts. KNO₃ and 89.53 pts. NaNO₃, if sat. KNO₃+Aq is treated with NaNO₃, and 35.79 pts. KNO₃ and 88.00 pts. NaNO₃ by the opposite process. 134.38 pts. of the two salts are dissolved if a mixture of the salts is treated with H₂O at 18.75°. (Karsten.)

100 pts. H₂O dissolve 39.34 pts. KNO₃ and 94.60 pts. NaNO₃, or 133.94 pts. of the two salts at 20°. (Nicol, Phil. Mag. (5) 13. 385.)

#### Solubility of mixtures of KNO₃ and NaNO₃.

NaN(); in mixture before solution	Total amt. mixed salts dis- solved in 100 pts. H ₂ O at 20	Pts. NaNO ₃ dis solved	Pts. KNO ₃ dis- solved	NaNO ₃ in mixture after solu- tion and evap. to dryness
100	86.8	86.8	0	100
90	109.6	96.4	13.2	88
80	136.5	98.0	38.5	71.8
70	136.3			12.0
60	137.6	90.0	47.6	65.4
50	106.1	66.0	40.1	62.2
45.7*	88.0	53.3	34.7	60.6
40	81.1	45.6	35.6	56.2
30	73.5			
20	54.1	20.8	33.3	38. 5
10	40.9	9.4	31.5	22.9
0	33.6	0	33.6	0

* NaNO₃+KNO₃.

(Carnelley and Thomson, Chem. Soc. 53. 782.)

Solubility of KNO₃+NaNO₃ in H₂O at 10°.

In 1000 ccm. H ₂ O		Solid phase
NaNO ₈	KNO ₃	Solid phase
805.0 848.3	301.9 208.9	NaNO3 NaNO3, KNO8 KNO8

(Kremann and Zitek, M. 1909, 30. 325.)

Solubility of KNO₃+NaNO₃ in H₂O at 24.2°

In 1000 e	em. H ₂ O	Solid phase
NaNO ₃	KNO ₃	tonia phase
913.58 910.60 1019.65 1018.40 931.30 346.70	123.60 435.85 437.70 422.00 390.00 377.35	NaNO ₃ NaNO ₃ , KNO ₃ KNO ₇ "

(Kremann and Zitek.)

Solubility of KNO₃+NaNO₃ in H₂O at 25°.

% KNO8	% NaNO2	Solid phase
38.70 41.60 46.35 39.08 20.98	39.62 66.31 100.10 98.99 94.44	KNO ₃ KNO ₃ +NaNO ₈ NaNO ₃

(Uyeda, Mem. Col. Sc. Kioto, 1910, 2. 245.)

Solubility in NaNO₃+Aq at 20°, 30°, 40° and 91°. Data, given in the original, show that each salt increases the solubility of the other. (Leather, Mem. Dept. Agric. India,

1914, 3. 177; Chem. Soc. 1915, 108. (2), 13.)
100 pts. H₂O dissolve 28.92 pts. KNO₃,
53.68 pts. NaNO₃, and 26.44 pts. NaCl at
15.6° and solution has sp. gr. = 1.44. (Page and Keightley, Chem. Soc. (2) 10, 566.)

Solubility of KNO3+NaNO3+NaCl in H2O at 25°.

Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase   Solid phase				
38.57   44.40   27.67   42.55   63.26   23.59   NaNO ₃ , KNO ₃ +NaCl 17.77   61.12   23.94   28.08   62.92   23.70   "	KN()₂	% NaNO₃	% NaCl	Solid phase
	38.57 42.55 17.77 28.08	44.40 63.26 61.12 62.92	27.67 23.59 23.94 23.70	NaNO ₃ , KNO ₃ +NaCl

(Uyeda, Mem. Col. Sc. Kioto, 1910, 2, 245.)

KNO₈+Sr(NO₈)₂.

1 l. H₂O sat. with both salts at 25° contains 552 g.  $KNO_3+1074$  g.  $Sr(NO_3)_2$ . (Le Blanc and Noyes, Z. phys. Ch. 1890, **6.** 386.)

	Solubility of KNO ₈ +Sr(NO ₈ ) ₂ at t°.					
to	KNO ₃	Sr(NO3)2	Solid phase			
20	22.90 21.70 21.01 19.60 19.49 19.69 17.56 12.65	5.49 9.17 17.10 31.24 34.91 39.56 40.37 41.12 40.70	KNO ₈ " " " " KNO ₃ +Sr(NO ₄ ) ₂ , 4H ₂ O Sr(NO ₈ ) ₂ , 4H ₂ O " "			
40	30.26 $26.90$ $22.50$ $11.19$ $0$	23.70 38.52 40.22 44.19 47.7	KNO ₃ +Sr(NO ₃ ) ₂ , 4H ₂ O Sr(NO ₃ ) ₂ , 4H ₂ O "			

(Findlay, Morgan and Morris, Chem. Soc. 1914, **105**. 779.)

 $\rm KNO_3+TINO_3.$   $100~\rm g.~H_2O$  dissolve 43  $5~\rm g.~TlNO_3+104.2~g.$  KNO₃ at 58°. (Rabe, Z. anorg. 1902, **31.** 156.)

Solubility of mixed crystals of KNO₃+TlNO₃ in H₂O at 25°.

G. 1	Sp. gr.	
TINO3		
0.09 2.37 6.15 17.64 49.74 63.60 86.18 123.8 101.3 116.1	351.0 329.0 332.4 333.7 333.3 321.0 330.5 428.3 245.1 0.0	1.2632 1.1903 1.1956 1.2050 1.2196 1.2436 1.2617 1.2950 1.2050 1.0964

(Herz, Z. Kryst. Min. 1897, 28, 405.)

KNO4+KBr.

Solubility in KBr+Aq.

1 litre of the solution contains				
at 14.5°		at 25.2°		
Mol. KBr	Mol. KNO ₃	Mol. KBr	Mol. KNO	
0.0 0.356 0.784 1.092 1.577 2.542 3.536	2.228 2.026 1.835 1.730 1.589 1.406 1.308	0.0 0.38 0.93 1.37 2.08 2.87 3.55	3.217 3.026 2.689 2.492 2.216 1.958 1.807	

(Touren, C. R. 1900, 130. 910.)

KNO₈+KCl.

100 pts. H₂O dissolve pts. of the two salts:

	At 12.9°	At 15.3°
KNO ₈	18.8 28.5	18.9 29.8

(Kolp.)

100 pts. H₂O dissolve 315.2 pts. KCl and 19 1 pts. KNO₃ at 20.0°. (Rüdorii, B. 6. 484.) 100 pts. H₂O dissolve 18.95 pts. KNO₈+32.84 pts. KCl, or 51.79 pts. of the mixed salts at 20°. (Nicol, Phil. Mag. (5) 31. 385.)

Solubility of KCl with addition of KNO₃ at 17.5°.

Sp. gr.	100 ccm. of solution contain g.			
1317. gr.	KCl	H ₂ O	KNO ₈	
1.1730	29.39	87.85	0	
1.1980	27.50	85.68	6.58	
1.2100	27.34	84.76	8.83	
1 2250	26.53	83.58	12.48	
1.2360	25.98	82.84	14.83	
1.2390	25.96	82.65	15.22	
1.2388	25.95	82.43	15.49	
1.2410	26.24	82.63	15.33	

KNO₃ separated out in last four solutions.

Solubility of KNO₃ with addition of KCl at 20.5°.

Sp. gr.	100 ccm. of solution contain g.			
ър. gr.	KNO ₈	H ₂ O	KCl	
1.1625	27.68	88.51	0	
1.1700	24.39	87.89	4.72	
1.1765	22.44	87.47	7.74	
1.1895	20.23	86.48	12.23	
1.1983	18.96	85.69	15.15	
1.2150	17.67	84.23	19.61	
1.2265	17.11	83,40	22.17	
1.2400	16.79	82.24	24.96	

(Bodländer, Z. phys. Ch. 7. 359.)

#### ·Solubility in KCl+Aq at to.

t°	Sat	solution cont	ains
	% KNO:	% KCl	% total salt
11.4	4.0	18.4	22.4
11	3.9	18.1	22.0
-10	3.8	18.6	22.5
4		19.7	
+2.5	6.3	19 9	26.2
4.5	7.3	20.7	28.0
4.5	7.8	19.8	27.6
8.5	7.9	20.9	28.8
10.5	8.4	21.0	29.4
13.5	8.9	21.8	30.7
14	10-2	21.3	31.5
17	9.7	22.6	32.3
23	12.5	21.8	34.3
27	14.9	21.3	<b>36.2</b>
29	16.1	21.0	37.1
34	18.9	21.2	39.3
36	18.9	21.6	40.5
37.5	19.2	21.6	40.8
39	21.0	21.0	42.0
42.5	21.8	20.9	42.7
48	25.3	20.3	45.6
50	28.3	20.8	49.1
52		20.2	
53			48.7
56	29.5	19.5	49.0
61	34.5	18.3	52.8
62	35.4	: • .	
71	40.5	17.3	57.8
81	47.1	15.4	62.5
85	48.2	15.3	63.5
90	52.8	13.3	66.1
96	54.1	12.6	68.7
97	56.6	12.4	69.0
104	59.9	10.8	70.7
105	60.6	10.9	77.0
120	69.6	7.7	77.3
120	69.1	7.6	76.7

(Étard, A. ch. 1894, (7) 3. 285.)

#### Solubility in KCl+Aq.

1 l	itre of the sol	ution contain	sat
1	4.5°	at :	25.2°
' Mol. KCl	Mol. KNOs	Mol. KCl	Mol. KNO ₃
0.0 0.182 0.424 0.880 1.778 2.204 2.635	2.228 2.172 2.057 1.830 1.576 1.515 1.423	0.0 0.26 0.66 1.35 2.08 2.78 3.04	3.217 3.086 2.853 2.510 2.218 2.015 1.946
			1

(Touren, C. R. 1900, 130. 909.)

#### Solubility of KCl in KNO₃+Aq.

t°	Concentra- tion of KNO ₃ % mol. per l.	G. salt dissolved in 1 l. H ₂ O	Molecular solubility
	0	283.55	3.81
ü	1/4	284.25	3.81
"	1/2	283.60	3.81
"	ĺĺ	287.60	3.86
25°	0	364.15	4.89
"	1/4	365.00	4.90
66	1/2	361.65	4.86
"	ĺĺį	358.80	4.81
"	1½	355.20	4.77

(Armstrong and Eyre, Proc. R. Soc. (A) 1910, 84. 127.)

Solubility in KCl+Aq at 20°, 30°, 40° and 91°. Data, given in the original, show that each salt diminishes the solubility in H2O of the other. (Leather, Mem. Dept. Agric. India, 1914, 3. 177; Chem. Soc. 1915, 108. (2) 13.) KNO₃+NaCl.

NaCl is sol. in sat. KNO₃+Aq, and the mixed solution is capable of dissolving more KNO₃. An amount of H₂O, which, when pure, could only dissolve 100 pts. KNO₃, can in this way be made to take up 152.64 pts. (Longchamp, A. ch. (2) 9. 8.) Sol. in sat. NaCl+Aq.

#### 100 pts. H₂O dissolve:

	Longehamp	Rüdorff		Page and
	4° (1)	14° (2)	18° (3)	Keightley 15.6° (4)
NaCl KNO ₃	35.96 26.01	38.5	38.9 36.1	39.57 32.32
	61.97	67.2	<b>7</b> 5.0	71.89

	Karsten 18.75°			Mulder At bpt.
	(5)	(6)	(7)	(8)
NaCl KNO3	$   \begin{array}{r}     36.53 \\     33.12 \\     \hline     69.65   \end{array} $	$   \begin{array}{r}     38.25 \\     29.45 \\     \hline     67.70   \end{array} $	$   \begin{array}{r}     39.19 \\     38.53 \\     \hline     77.72   \end{array} $	37.9 306.7 344.6

1, 2, 3, 4, and 8. Both salts in excess.
5. Sat. NaCl+Aq treated with KNO₃.
6. Sat. KNO₃+Aq treated with NaCl.
7. The two salts simultaneously treated with H₂O.

100 pts. H₂O dissolve 31.44 pts. KNO₃, 139 pts. KCl, and 38.58 pts. NaCl at 15.6°, and solution has sp. gr.=1.33. (Page and Keightley.)

Solut	Solubility in NaCl+Aq at t°.			
t.º	Sat.	solution cont	ains	
	% KNO2	% NaCl	% total salt	
-22	7.3 7.9	22.5	29.8	
-19.5	7.9	22.6	30.5	
15.5	8.7	22.1	31.8	
<del>7</del>	10.1	22.5	32.6	
6	10.9	23.0	33.9	
1	12.7	23.3	36.0	
+1	12.9	23.8	36.7	
+11	16.6	22.8	39.4	
17	19.0	22.8	41.8	
18	19.8	22.0	41.8	
18	18.9	22.5	41.5	
20.5	20.4	22.3	42.7	
22	21.8	21.2	16.2	
22		20.7	42.5	
<b>2</b> 6	20.7	22.3	43.0	
27	64.77	90.7	45.0	
$\frac{30.5}{5}$	24.7	20.7	45.4	
32.5	25.0	20.2	45.2	
32.5 $33$	25.9	20.2	46.1	
35 35	26.7	$20.7 \\ 20.2$	47.4 48.1	
39	$ \begin{array}{c c} 27.9 \\ 29.8 \end{array} $	19.5	49.3	
$\frac{39}{42.2}$	31.1	20.0	51.1	
50 50	38.5	16.5	55.0	
54	39.4	17.1	56.5	
58.5	40.9	15.3	56.2	
70	49.7	14.0	63.7	
76	53.9	13.6	67.5	
79	54.8	12.9	67.7	
84	57.4	12.6	70.0	
90	61.4	10.4	71.8	
96	64.7	9.5	74.2	
105	70.0	9.0	79.0	
106	69.9	9.3	79.2	
107	71.3	8.4	79.7	
115	72.2	9.0	81.2	
122	73.8	8.0	81.8	
127	73.6	7.9	81.5	
127	72.9	8.8	81.7	
127	73.0	7.6	80.6	
128	74.2	7.9	82.1	
132	75.7	7.6	83.3	
145	77.7	7.6	85.3	
170	80.7	5.8	86.5	
171	79.1	5.9	85.0	
of the	1 1 10	04 (7) 9 0		

(Étard, A. ch. 1894, (7) 3. 283.)

100 g. H₂O dissolve 41.14 g. KNO₃ and 38.25 g. NaCl at 25°; 168.8 g. KNO₃ and 39.81 g. NaCl at 80°. (Soch, J. phys. Ch. 1898, 2, 46.)

See also under NaCl.

Sol. in sat. CuSO₄+Aq, forming a double salt, which soon separates out.

Very slowly and slightly sol. in MgSO₄+Aq with pptn. of MgSO₄. (Karsten.)

 $KNO_3 + K_2SO_4$ .

Sat. KNO₂+Aq dissolves some K₂SO₄, and sat. K₂SO₄+Aq slowly dissolves some KNO₃

without pptn., but K₂SO₄ is afterwards pptd. (Karsten.)

100 pts. H₂O dissolve:

	Mulder	Karsten Kopp		Mulder	
	18.; ° (1)	18.75° (2)	20° (3)	40° (4)	18.75° (5)
KNO ₃ K ₂ SO	29.90	29.42 4.0	26.9 6.6	59.35 5.75	10.8

2. H₂O sat. with KNO₃ and K₂SO₄ simultaneously, or to a sat. solution of one salt the other was added.

3 and 4. H₂O sat, with both salts simultaneously.

Mulder doubts the results of 3 and 4.

#### Solubility in K2SO4+Aq at to.

t°	In 100 ccm. of	Sp. gr. of	
	G. KNO ₈	G. K ₂ SO ₄	solution
15 25	216.5 308.5 ·	50.7 47.66	1.165 1.210

(Euler, Z. phys. Ch. 1914, 40. 313.)

Slowly sol. in sat. Na₂SO₄ at first without pptn., but afterwards K₂SO₄ or NaSO₄ separates out.

Sol. in sat. ZnSO₄+Aq with pptn. of double salt. (Karsten.)

Sol. in sat.  $KClO_8+\Lambda q$ , from which solution it is not pptd. by salts which would ppt. it from aqueous solution. (Karsten.)

Hydrazine dissolves 21.7 pts. KNO, at 12.5-13°. (de Bruyn, R. t. c. 1899, 18. 297.)
Neither dissolved nor attacked by liquid

NO₂. (Frankland, Chem. Soc. 1901, **79**. 1361. Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Insol. in absolute alcohol; in dilute alcohol it dissolves proportional to the amount of H₂O present, but always less is dissolved than the H₂O would dissolve by itself. (Gerardin.)

100 pts. alcohol containing % by weight of alcohol dissolve pts. KNO₃ at 15°.

10 20 30 40 50 60 80% alcohol 13,2 8.5 5.6 4.3 2.8 1.7 0.4 pts. KNO₈.

(Schiff, A. 118. 365.)

# Solubility in 100 pts. alcohol at $t^{\circ}$ . D = sp. gr. of alcohol; S = solubility.

-							
D =	-0.9904	9904   D = 0.9848   D = 0.9793		D = 0.9726			
t°	s	t°	s	t°	s	t°	s
12 21 33 43 53 61	18.1 25.0 40.4 58.6 79.1 94.5	12 21 36 41 56	14.6 21.7 37.8 45.0 72.9	10 10 13 18 20 31	10.20 10.19 11.74 14.52 16.35 25.81	14 25 34 44 47 60	8.8 13.6 20.3 31.3 34.2 52.3
62	95.7			34	28.63		02.0
٠.		٠.	٠.	40	36.66		
				41	37.20		
• •			<b>.</b> .	50	50.14		٠.
• •				53	56.01		
		٠.	٠.	61	72.24		
		٠.		62	73.36		

D = 0.9573		D=	=0.9390	D =0.8967		D =0.8429	
to	s	t.º	s	t°	s	t°	s
14 25 33 44 57 65	5.4 9.0 13.2 19.1 29.1 36.2	16 24 40 51 60 64	4.13 6.00 10.94 16.51 21.54 24.22	12 33 47 57	1.61 3.62 5.77 6.97	15 22 40 54 60	0.29 0.39 0.62 0.78 1.10

(Gerardin, A. ch. (4) 5. 151.)

## Solubility of KNO₃ in alcohol at 18°.

Q.,	10	100 ccm. contain g.			
Sp. gr.	Alcohol	Water	KNO ₈		
1.1475 1.1085 1.1010 1.0805 1.0655 1.0490 1.0375 0.9935 0.9585 0.9456 0.9050 0.8722	3.30 5.24 8.69 14.08 16.27 19.97 28.11 37.53 42.98 51.23 61.65	89.63 87.44 86.26 83.18 77.93 76.36 72.93 64.74 54.21 48.15 27.32 24.74	25.12 20.11 18.60 16.18 14.54 12.27 10.85 6.50 4.11 3.37 1.95 0.83		
0.8375	69.60	13.95	0.30		

(Bodländer, Z. phys. Ch. 7. 316.)

## Solubility in alcohol.

Wt. % alcohol	G. KNOs per 100 g. alcohol		
vi v. 70 alcohor	at 30°	at 40°	
0 8.25 17.0 25.7 35.0 44.9 54.3 65.0 75.6 88.0	45.6 32.3 22.4 15.1 11.4 (34.5°) 7.0 4.5 2.7 1.3 0.4	64.5 47.1 33.3 24.1 16.7 11.6 (44°) 7.2 (55°) 4.4 2.0 (76.3°) 0.6 (88.5°)	

(Bathrick, J. phys. Ch. 1896, 1. 160.)

Solubility of KNO₃ in ethyl alcohol+Aq at 30°.

% by wt. H2()	% by wt. alcohol	% by wt. KNO2
68.7	0	31.3
$69.2 \\ 67.3$	10.1 17.0	$ \begin{array}{c c} 20.7 \\ 15.7 \end{array} $
$64.1 \\ 58.8$	$\begin{array}{c} 23.8 \\ 32.2 \end{array}$	$\begin{array}{c} 12.1 \\ 9.0 \end{array}$
$\frac{50.8}{39.8}$	$\frac{43.1}{56.9}$	$\begin{array}{c} 6.1 \\ 3.3 \end{array}$
33.9	63.8	2.3
$\begin{array}{c} 22.3 \\ 7.5 \end{array}$	$76.8 \\ 92.3$	$\begin{array}{c} 0.88 \\ 0.15 \end{array}$

(Schreinemakers, Z. phys. Ch. 1909, 65. 556.)

## Solubility in ethyl alcohol at 25°.

Concentration of alcohol in g. mol. per l. H ₂ O	Solubility in 1 l. H ₂ O	Mol. solubility	
0	384.48	3.80	
1/4	368.30	3.64	
1/2	354.40	3.50	
1	327.00	3.22	

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) 84. 127.)

Solubility of KNO₃ in methyl alcohol+Aq at 30°.

% by wt. H ₂ O	% by wt. alcohol	% by wt. KNOs
68.7	0	31.3
68.9	7.8	23.3
$\begin{array}{c} 66.4 \\ 61.0 \end{array}$	17.3 27.8	16.3 11.2
53.9	38.4	7.7
39.2	57.0	3.8
0.99	98.58	0.43

(Schreinemakers, Z. phys. Ch. 1909, 65. 556.)

Solubility	of KNO ₂ +AgNO ₈ C ₂ H ₅ OH+Aq at 30°.	in	51.6%
	C2II UI TAG at 30.		

KNO:	AgNO3	Solid phase
4.8 4.55 4.11 4.26 2.62 0	0 5.15 16.47 21.28 36.94 37	KNO ₂ " " " " " " " " " " " " " " " " " " "

(Schreimemakers, Z. phys. Ch. 1909, 65. 556.)

100 g. 40% ethyl alcohol sat, with KNOs+NaCl at 25° contain 13.74 g. KNOs+15.78 g. NaCl. (Soch, J. phys. Ch. 1898, 2. 43.) Insol. in propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 277.)

Almost insol. in ether. (Braconnot.)

Very sl. sol. in acetone. (Krug and M'Elroy.)

Sol. in acetone. (Eidmann, C. C. 1899. II, 1014.)

Solubility in acetone+Aq at 40°.

3. KNO₃ per 100 g. solven
64.5
51.3
38.9
22.8
24.7
17.0
11.9
7.2
3.0
0.7

(Bathrick, J. phys. Ch. 1896, 1. 160.)

 $100~\rm pts.~glycerine~(sp.~gr.~1.225)~dissolve~10~\rm pts.~KNO_3.~(Vogel,~N.~Rep.~Ph.~16.~557.)$   $100~\rm g.~trichlorethylene~dissolve~0.01~\rm g.~KNO_3~at~15^\circ.~(Wester~and~Bruins,~Pharm.~Weekbl.~1914,~51.~1443.)$ 

Insol. in  $CS_2$ . (Arctowski, Z. anorg. 1894, **6.** 257.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in methyl acetate (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1910, **43**. 314.)

100 g. H₂O sat. with sugar and KNO₃ dissolve 224.7 g. sugar + 41.9 g. KNO₃, or sat. solution contains 61.36 g. sugar + 11.45 g. KNO₃ at 31.25°. (Köhler, Z. Ver. Zuckerind. 1897, 47. 447.)

Potassium hydrogen nitrate, KNO₃, HNO₃. Very hygroscopic. Decomp. by H₂O. (Groschuff, B. 1904, **37**. 1489.)

Potassium dihydrogen nitrate, KNO₃, 2HNO₃.

Decomp. by H₂O. (Ditte, A. ch. (5) 18. 320.)

Sol	ubility	$7 \text{ in } \mathbf{H}_2\mathbf{O}$ .	

Solution temp.	% by wt.	% by wt.	% by wt.	
	KNOs	HNOs	H ₂ O	
mpt. +22° 20.5 13.0 12.0 6.0 0	44.5	55.5	0	
	44.1	55.0	0.9	
	43.8	54.5	1.7	
	43.0	53.6	3.4	
	42.3	52.7	5.0	
	41.6	51.8	6.6	

(Groschaff, Z. anorg. 1904, 40. 11.)

Potassium silver nitrate, KNO₈, AgNO₈.

Sol. in H₂O. (Russell and Maskelyne, Roy. Soc. Proc. 26, 35%.)

3KNO₃, AgNO₃. Sol. in H₂O. (Rose, Pogg. **106**. 320.)

Potassium thallic nitrate, 2KNO₃, Tl(NO₃)₃+ H₂O.

Decomp. by H₂O. (Meyer, Z. anorg. 1900, **24**. 361.)

Potassium thorium nitrate, 4KNO₃, Th(NO₃)₄.

Very sol. in H₂O and alcohol. (Berzelius.) Hydroscopic, very unstable. (Meyer, Z. anorg. 1901, **27**. 379.)

Hydroscopic; sol. in dil. HNO₃+Aq. (Meyer, Z. anorg. 1901, **27**. 378.)

Potassium thorium hydrogen nitrate,  $3KNO_3$ ,  $Th(NO_3)_4$ ,  $3HNO_3$ .

Decomp. in the air. (Meyer, B. 1900, **33**. 2140.) +4H₂O. Sol. in HNO₃ of 1.2 sp. gr.

 $+4H_2O$ . Sol. in HNO₃ of 1.2 sp. gr. Effloresces in the air. (Meyer, Z. anorg. 1901, 27. 380.)

Potassium uranyl nitrate, K(UO₂)(NO₃)₃.

Decomp. by  $H_2O$ . Sol. in conc.  $HNO_3$ . (Meyer, B. 1903, **36**. 405**7**.)

#### Solubility in H₂O at t°.

t°	of t	n 100 pt the solut	Solid phase	
, and the second	Pts. by wt. UO2	Pts. by wt. K	Pts. by wt. NO:	,
0.5	31.98	1.72		Double salt + KNO2
13.0	33.40	2.74		"
25.0 a)	37.08	4.05	23.49	**
b)	37.06	3.98	23.46	44
45.0	42.18	5.16		**
59.0	41.65	6.03		**
80.6 a)	43.72	6.42		Double salt
b)	43.70	6.34		11

Potassium uranyl nitrate is decomp. by H₂O at temp. below 60°; above 60° it is sol. in H₂O without decomp.

(Rimbach, B. 1904, 37, 473.)

# Potassium nitrate barium sulphate, KNO₂, 2BaSO₄.

Easily decomp. Sol. in conc. H₂SO₄. (Silberberger, M. 1904, **25**. 251.)

### Potassium nitrate phosphomolybdate.

See Phosphomolybdate nitrate, potassium.

# Potassium nitrate sulphate, KNO₃, KHSO₄. Decomp. by H₂O and alcohol. (Jacquelain.)

# Potassium nitrate sulphotungstate, 2KNO₃, K₂WS₄ (?).

Very sol. in hot or cold  $H_2O$ . Insol. in alcohol. (Berzelius.)

### Potassium nitrate tungstate (?).

100 pts. boiling  $H_2O$  dissolve 5 pts. salt. (Storer's Dict., p. 393.)

#### Potassium nitrate zinc iodide.

Permanent. Easily sol. in H₂O. Insol. in alcohol. (Anthon.)

## Praseodymium nitrate, Pr(NO₃)₃+6H₂O.

Sol. in H₂O. (von Schule, Z. anorg. 1898, **18**. 355.)

# Praseodymium rubidium nitrate, [Pr(NO₃)₅]Rb₂+4H₂O.

Hydroscopic. (Jantsch, Z. anorg. 1911, 69. 230.)

# $\begin{array}{ccc} \textbf{Praseodymium sodium nitrate,} & Pr(NO_3)_3, \\ & 2NaNO_3 + H_2O. \end{array}$

Sol. in  $H_2O$ . (von Schule, Z. anorg. 1898, **18.** 356.)

# $\begin{array}{ccc} \textbf{Praseodymium} & \textbf{zinc} & \textbf{nitrate,} & 2Pr(NO_3)_2, \\ & 3Zn(NO_3)_2 + 24H_2O. \end{array}$

1 l. sat. solution in  $HNO_3+Aq$  (sp. gr. 1.325) contains 14.69 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, **76**. 321.)

#### Radium nitrate.

Has apparently the same solubility in H₂O as the corresponding Ba comp. (Curie, Dissert. 1903.)

## Rhodium nitrate, Rh(NO₃)₃+2H₂O (?).

Deliquescent. Sol. in H₂O. Insol. in alcohol. (Claus.)

# Rhodium uranyl nitrate, $2(UO_3)(NO_3)_2Rh_2(NO_3)_6+10H_2O$ .

Sol. in  $H_2O$  and acids; insol. in aq. alkalies. (Lancien, C. C. 1912, I. 208.)

#### Rubidium nitrate, RbNO₃.

100 pts.  $H_2O$  dissolve 20.1 pts. at 0°; 43.5 pts. at 10°. (Bunsen.)

Solubility in	$H_2O$	at	t°.
---------------	--------	----	-----

t°	G. PbNO ₃ per 100 g.			G. RbNO ₃ per 100 g.		
·	H ₂ O	Solu- tion	t°	H ₂ O	Solu- tion	
0 10 20 30 40 50	19.5 33.0 53.3 81.3 116.7 155.6	16.3 24.8 34.6 44.8 53.9 60.9	60 70 80 90 100 118.3	200 251 309 375 452 617	66.7 71.5 75.6 78.9 81.9 86.1	

(Berkeley, Trans. Roy. Soc. 1904, **203**. A. 207.)

100 g. H₂O dissolve 66.855 g. RbNO₈ at 25°. (Haigh, J. Am. Chem. Soc. 1912, **34**. 1148.)

Sp. gr. 20°/4° of a normal solution of RbNO₃ = 1.100835; of a 0.5 normal solution = 1.04989. (Haigh, J. Am. Chem. Soc. 1912, **34.** 1151.) Sp. gr. of RbNO₃+Aq.

G.-equiv. RbNO₃ per I.

at 18° =	0.5035	1.008
Sp. gr. at $6^{\circ}/6^{\circ}$	1.05342	1.10566
Sp. gr. at 18°/18°	1.05226	1.10361
Sp. gr. at 30°/30°	1.05156	1.10222

#### G.-equiv. RbNO₃ per l.

at 18° =	2.000	2.685
Sp. gr. at 6°/6°	1.20655	
Sp. gr. at 18°/18°	1.20302	1.27066
Sp. gr. at 30/30°	1.20036	1.26717
(CI 337 A	1014 (4) 44 1	000 \

(Clausen, W. Ann. 1914, (4) 44. 1069.)

Easily sol. in HNO₃. (Schultz, Zeit. Ch. (2) **5**. 531.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328.) Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

## Rubidium hydrogen nitrate, RbNO₃, HNO₃. Fairly stable in air. (Wells, Am. Ch. J. 1901, **26**. 273.)

# Rubidium dihydrogen nitrate, RbNO₃, 2HNO₃.

Decomp. rapidly in air. (Wells, Am. Ch. J. 1901, 26. 273.)

2RbNO₃, 5HNO₃. Decomp. by H₂O. Known only in solution in HNO₃+Aq. (Ditte, A. ch. (5) **18.** 320.)

## Rubidium silver nitrate, RbNO₈, AgNO₈.

Sol. in  $H_2O$ . (Russell and Maskelyne, Roy. Soc. Proc. **26**. 357.)

### Rubidium thorium nitrate, Rb₂Th(NO₃)6.

Sl. sol. in HNO₃; decomp. by  $H_2O$ . (Meyer, Z. anorg. 1901, 27. 384.)

Rubidium uranyl nitrate, Rb(UO₂)(NO₃)3. Decomp. by H₂O. Sol. in conc. HNO₃. (Meyer, B. 1903, **36.** 4057.)

## Solubility of H₂O at t°.

	In 10				
t°	Pts. by wt. UO ₂	Pts. by wt. NOs	Pts. by wt. Rb	Pts. by wt. total sa!t	Solid phase
25	a) 35.42	19.72	4 63	59 57	Double salt +
80 "'	b) 35.40 a) 34.64 b) 34.68	19.76	4.67 11.01 11.01	59.64 69.46 69.52	Double salt

Rubidium uranyl nitrate is decemp. by H₂O at low temp.; at 80° it is sol. in H₂O without decomp.

(Rimbach, B. 1904, 37. 476.)

#### Samarium nitrate, $Sm(NO_3)_3+6H_2O$ .

Easily sol. in H₂O. (Cleve, C. N. 48. 74.) (Demarcay, C. R. Very hydroscopic. 1900, 130, 1187.)

#### Samarium zinc nitrate, 2Sm(NO₃)₃, $3\text{Zn}(NO_{8})_{2} + 24\text{H}_{2}O.$

1 l. sat. solution in HNO₈+Aq (sp. gr. 1.325) contains 36.47 g. hydrous salt at 16°. (Jantsch, Z. anorg. 1912, **76.** 321.)

#### Scandium nitrate, basic.

Sol, in H₂O. (Nilson, B. 13. 1444.)  $ScOH(NO_3)_2+H_2O$ . (Crookes, Roy. Soc. Proc. 1908, 80. A. 518.) Sc₂O(NÓ₃)₄. (Crookes.)

#### Scandium nitrate, $Sc(NO_3)_3$ .

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.) +4H₂O. Very sol. in H₂O. (Crookes.)

#### Silver nitrate, AgNO₈.

100 pts. H₂O at 11° dissolve 127.7 pts. (Schnauss, Arch. Pharm. (2) 82. 260.) 100 pts. H₂O dissolve at:

٩° 19.5° 714 1111 pts. AgNO₃. 121.9 500

(Kremers, Pogg. 92. 497.)

100 pts. H₂O dissolve 1622.5 pts. at 125°, and 1941.4 pts. at 133°. (Tilden and Shenstone, Phil. Trans. 1884. 23.)

Sat. solution boils at 125°. (Kremers.)

Solubility in H₂O at t°.

Sat. AgNOs+Aq contains % AgNOs at to.

t° ·	% AgNO:	t°	% AgNO:
7	46.2	36.5	75.7
7	46.0	40.5	76.8
5	47.6	45	77.1
1	52.4	48	78.5
1	51.9	73	84.0
+5	56.3	122	88.7
10	61.2	134	92.1
15.5	66.1	135	92.8
20	678	135	92.7
26	71.1	148	93.3
29	73.0	160	95.2
31	73.8	182	96.9

(Étard, A. ch. 1894, (7) 2. 526.)

100 g. sat. AgNO₈+Aq at 15.5° contain 65.5 g. AgNO₃. (Greenish and Smith, Pharm. Jour. 1903, **71.** 881.)

Solubility of AgNO₈ in H₂O at  $30^{\circ} = 10.31$ (Masson, Chem. Soc. 1911, 99. mol.-litre. 1136.)

100 g. AgNO₃+Aq sat. at 30° contain 73.0 g. AgNO₃. (Schreinemakers and de Baat, Arch. Néer. Sc. 1911, (2) 15. 415.)

100 g. sat.  $AgNO_3+Aq$  contain 53.5 g.  $AgNO_3$  at 0°; 66.7 g. at 18°. (Mylius, Z. anorg. 1912, **74.** 411.)

Sp. gr. of aqueous solution, according to C. K.=Chemiker Kalender; K. M.=Kohlrausch by Mendelejeff (Z. anal. 27. 284); and K=Kohlrausch (W. Ann. 1879. 1), containing:

15 20% AgNO₃, C. K. 1.041 K. M. 1.0440 1.080 1.125 1.160 1.0901 1.1969 1.0422 1.0893 1.1404 1.1958

30 35 40% AgNO₃, C. K. 1.206 1.251K. M. 1.4791K. 1.3213 1.3945 1.2555 1.4773

45 50% AgNO₃. K. 1.5705 1.6745

Sp. gr. of AgNO₃+Aq at 25°.

Concentration of AgNOs	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.1386 1.0692 1.0348 1.0173

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Sol. in 500 pts. HNO2; 30 pts. 2HNO2 3H₂O at 20°; and 6 pts. 2HNO₃, 3H₂O at 100° (Schultz, Zeit. Ch. 1869. 531.)

Insol. in conc. HNO₃. (Warren, C. C. **1897.** I, **43**8.)

## Solubility of AgNO, in HNO, +Aq at 25°.

G, mo	l. per l.	G. AgNOs	Sp. gr. 25°	
HNO.	AgNO ₃	per l.	Sp. gr. 20	
0 0.404 0.962 1.698 2.834 4.497 5.992 8.84 12.53	10.31 9.36 8.08 6.54 4.526 2.590 1.698 0.843 0.347	1752 1591 1373 1111 769.1 440.1 288.6 143.2 58.90	2.3921 2.2754 2.1243 1.9402 1.7052 1.4980 1.4195 1.3818 1.3976	

(Masson, Chem. Soc. 1911, 99. 1132.)

AgNO₈+NH₄NO₈. Solubility of AgNO₈ in NH₄NO₃+Aq. See under NH₄NO₃. AgNO₃+KNO₃. Solubility of Solubility of AgNO, +KNO, in H.O. See under KNO.

AgNO₂+AgNO₂.

Solubility of AgNO₃+AgNO₂ at 18°.

G. p	er l.	G. per l.		
AgNOs	AgNO ₂	AgNO ₃	AgNO ₂	
0.000 0.439 0.878 1.756	3.184 3.042 2.926 2.601	3.512 7.024 14.048	2.201 1.799 1.480	

(Naumann and Rucker, B. 1905, 38, 2293.) See also under AgNO₂.

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Very sol. in liquid  $\mathrm{NH}_3$ . (Franklin, Am. Ch. J. 1898, **20.** 829.)

Sol. in 4 pts. boiling alcohol.

Sol. in 10 pts. alcohol. (Dumas.)

Sol. in 11 pts. alcohol of 90%. (Hager.)

## Solubility in 100 pts. alcohol of given vol. %

a					
t°	95%	80%	70%	6	0%
15 50 75	3.8 7.3 18.3	10.3 42.0	22 . 	5	$   \begin{array}{c}     0.5 \\     8.1 \\     9.0   \end{array} $
t°	50%	40%	30%	20%	10%
15 50 75	35.8 	56.4 98.3 160	73.7	107 214 340	158 

(Eder, J. pr. (2) 17. 44.)

100 pts. absolute methyl alcohol dissolve 3.72 pts. at 19°; 100 pts. absolute ethyl alcohol dissolve 3.1 pts. at 19°. (de Bruyn, Z. phys. Ch. 10, 783.)

Only traces are sol, in absolute alcohol or ether. 100 pts. of a mixture of 1 vol. alcohol (95 vol. %)+1 vol. pure ether dissolve 1.6 pts. As NO₃ at 15°; 100 pts. of 2 vols. alcohol +4 vol. ether dissolve 2.3 pts. AgNO₃. (Eder, J. pr. 1878, (2) 17. 45.)

Solubility of AgNO₃ in ethyl alcohol+Aq at 30°.

% by wt. H ₂ O	% by wt. alcohol	% by wt. AgNOs
27.0		73.0
27.71	2.8	69.49
30.80	13.67	55.53
32.10	20.13	47.77
31.40	25.85	42.75
28.95	37.26	33.79
27.91	44.54	27.55
20.92	64.42	14.66
6.83	86.54	6. <b>63</b>

(Schreinemakers, Z. phys. Ch. 1909, 65. 571.)

Solubility of AgNO₃+KNO₃ in alcohol. See under KNO₃.

Sol. in methyl, ethyl, and isobutyl alcohols, CCl₄, CHCl₃, acetone and pyridine. (Wilcox, J. phys. Chem. 1910, 14. 587.)

100 pts.  $H_2O$  sat. with ether dissolve 88.4 pts. AgNO₃ at 15°. (Eder, l. c.)

Sol. in glycerine. Sol. in benzonitrile. 100 g. benzonitrile dissolve about 105 g. AgNO₈ at 18°. mann and Schier, B. 1914, 47. 1369.)

1 pt. acetonitrile dissolves about 1.5 pts. AgNO₃. (Scholl and Steinkopf, B. 1906, 39. 4398.)

Easily sol. in methyl, ethyl, and amyl amine. (Shinn, J. phys. Chem. 1907, 11. 538.)

Sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

0.35 pts. are sol. in 100 pts. acetone at 14°. 0.35 " " " 100 " " " 59°. (Laszyznski, B. 1894, 27, 2287.)

Sol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

1 g. AgNO₃ is sol, in 227 g. acetone at 18°. Sp. gr. of sat. solution  $18^{\circ}/4^{\circ} = 0.798$ . (Naumann, B. 1904, 37. 4339.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, 6. 257.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37. 3601.)

Sol. in urethane. (Castoro, Z. anorg. 1899, 20.61.)

100 g. C₆H₆ dissolve 0.022 g. AgNO₈ at 35°; 0.044 g. at 40.5°. (Linebarger, Am. J. Sci. 1895, 49. 48.)

Mol. weight determined in piperidine, pyridine and benzonitrile. (Werner, Z. anorg. 1897, **15.** pp. 17, 23 and 32.)

Solub	ility of A	Solubility of AgNO ₈ in pyridine at t [*] .			
t°	G. AgNos per 100 g. CsH ₅ N	Solid phase			
-48.5°*	0	$C_bH_bN$			
-50.5	3	"			
53	№ 6	66			
-59	9	66			
<b>-6</b> 5		$C_5H_5N + AgNO_{32}6C_5H_5N$			
-51.25	11.1	AgNO ₃ , 6C ₅ H ₅ N			
<del>-44</del>	11.7				
-40	12.2	"			
-35	12.6				
-30	13.9				
-25	17.6				
-24	1000				
$-22 \\ -10$	18.8	AgNO ₈ , 3C ₅ H ₅ N			
-10 <b>0</b>	$20.03 \\ 22.34$	66			
+10°	22.34 27.21				
<del>1</del> 10°	33.64	66			
30	40.86	. "			
<b>4</b> 0	53.52	· ·			
<b>4</b> 5	62.26	"			
46	63.06	"			
47	66.35	"			
<b>48</b>	70.85	"			
48.5		" +AgNO ₃ ,2C ₅ H ₅ N			
45	69.85	AgNO ₈ , 2C ₅ H ₅ N			
50	72.25	j			
60	.78.60	"			
<b>7</b> 0	89.10	""			
80	121.21	"			
87	215.02	"			
80	228.5	"			
74 74	$\begin{vmatrix} 230.6 \\ 235.4 \end{vmatrix}$	"			
74 80	235.4	"			
80 87	230.4	66			
90	241.9	**			
100	253.8	£ (			
110	271.4	"			
	, <b>~</b> . ~ ,	·			

* M. pt.

(Kahlenberg and Brewer, J. phys. Ch. 1908, **12.** 283.)

Silver nitrate acetylide, AgNO₈, AgHC₂. (Willgerodt, B. 1895, 28. 2108.) AgNO₃, Ag₂C₂. Ppt. (Chavastelon, C. R. 1897, **124**. 1365.) 2AgNO₈, Ag₂C₂. (Chavastelon.)

Silver nitrate ammonia, AgNO₃, NH₃.

Partly sol. in H₂O; rather sol. in alcohol. Sl. sol. in ether. (Reychler, B. 16. 990.) Very sol. in liquid ammonia below —10°.

(Joannis, C. R. 1894, 118. 1151.)

AgNO₈, 2NH₈. Easily sol. in H₂O. (Mitscherlich.)

1 l. alcohol dissolves 0.0383 g. mols. (Kurilow, C. C. 1903. II, 97.)
AgNO₂, 3NH₃. Completely sol. in H₂O

(Rose, Pogg. 20. 153.)

Silver nitrate antimonide, AgNO, Ag.Sb.

Decomp. at once by H₂O. (Poleck and Thummel, B. 16. 2434.)

Silver nitrate arsenide, AgNOs, AgsAs.

Decomp. at once by H₂O. (Poleck and Thammel.)

Silver nitrate bromide, AgNOs, AgBr.

Decomp. immediately by H₂O or alcohol. with separation of AgBr. (Risse, A. 111. 39.)

Silver nitrate chloride, AgNO₃, AgCl.

Quickly decomp, with H₂O; more slowly with absolute alcohol; not decomp, by etheralcohol. (Reichert, J. pr. 92. 237.)

Silver nitrate cyanide, 2AgNO₃, AgCN.

Decomp. by H₂O, not by alcohol. (Hellwig, Z. anorg. 1900, 25. 177.)

Silver nitrate iodide, AgNO₃, Agl.

Cold H₂O separates AgI, which redissolves on heating. (Stürenberg, Arch. Pharm. (2) **143.** 12.) Sol. in little H₂O without decomp.; more H₂O separates AgI. (Kremers, J. pr. 71. 54.) Insol. in absolute alcohol. Sol. in

conc. AgNO₃+Aq.
2AgNO₃, AgI. Sol. in little but decomp. by more boiling H₂O. (Risse, A. 111. 39.)

Silver nitrate mercuric oxide, AgNO₃, 2HgO. Decomp. by H₂O. Sol. in HNO₃ and H₂SO₄. (Finci, Gazz. ch. it. 1910, **41**. (2) 548.)

Silver nitrate phosphide, 3AgNO₃, Ag₃P. (Warren, C. N. 56. 113.)

Silver nitrate silicide, 4AgNO₃, AgSi. (Büchner, Ch. Ztg. 9. 484.)

Silver nitrate silicate, 2AgNO₃, 3Ag₄SiO₄.

Sol. in dil. HNO₃+Aq, but SiO₂ separates out after heating. (Rousseau and Tite, C. R. **114.** 294.)

Silver nitrate sulphide, AgNO₃, Ag₂S.

Decomp. by H₂O. (Poleck and Thümmel, B. **16.** 2435.)

Silver nitrate sulphocyanide, 2AgNO₈, AgSCN.

Decomp. by H₂O, not by alcohol. (Hellwig, Z. anorg, 1900, 25, 178,)

Sodium nitrate, NaNO₈.

Deliquescent in moist air. Sol. in H₂O with absorption of heat. 75 pts. NaNO₃ mixed with 100 pts. H₂O at 13.2° lower the temperature 18.5°. (Rüdorff, B. 2. 68.)

```
Sol. in 1.58 pts. H<sub>2</sub>O at --6°.
 (Marx.)
 0.46 ''
2.89 ''
 +119°.
 ..
 28°.
47°.
 "
 ..
 (Osann.)
 0.79
 1.14
 18.5°
 (Kopp.)
 ..
 1.136 "
 18 75°

 (Karsten.)
 (Schiff, A. 109, 326.)

 "
 1.16
 "
 18.75°.
 (Abl.)
```

Solubility in 100 pts. H ₁ O at t'.	100 A 110 B			NITRATE	, somium	ť		
-6 68.80 50 111.13 67.24 60 125.83.83 1 124 10 79.75 60 119.94 1 72.96 60 122.963 1 16.87.63 80 140.72 2 75.4 62 125 16.87.63 80 140.72 2 75.4 62 125 16.87.63 80 140.72 2 75.4 62 125 16.87.63 80 140.72 2 75.4 62 125 126 126 126 127 127 127 127 127 127 121 120 122.30 6 78.1 66 130 127 120 122.30 6 78.1 66 130 127 120 122.30 6 78.1 66 130 127 120 122.30 6 78.1 65 128 127 120 122.30 6 78.1 65 128 127 120 120 120 120 120 120 120 120 120 120	100 pts. H ₂ O at v dissolve pts, NaNO ₃ . Solv			ubility in 10	0 pts. H ₂ O	at t°.		
0	, t°	Pts. NaNOs	t°	Pts. NaNOs	t°	Pts. NaNO3	, 60-	Pts. NaNOs
0					d	72.0	.60	122
16					1		61 💰	124
40   95.37   100   168.20   5   77.4   65   128    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   8   79.4   68   132    (Poggiale, A. ch. (3) 8. 469.)   7   80.1   69   133    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   100   83.4    (Poggiale, A. ch. (3) 8. 469.)   133   138    (Poggiale, A. ch. (3) 8. 469.)   134    (Poggiale, A. ch. (3) 8. 469.)   133   138    (Pourcy), NaNO ₁ +Aq sat. at 12.7   20.8   20.8   20.8   20.8    (Pourcy), NaNO ₂ +Aq sat. at 14° contain   40   102   100   100   100   100   100   100   100   100   100   100    (Poggiale, A. ch. (4) 8. 40.1   138   139   160   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1					2			
40   95.37   100   168.20   5   77.4   65   128    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   7   78.7   67   131    (Poggiale, A. ch. (3) 8. 469.)   8   79.4   68   132    (Poggiale, A. ch. (3) 8. 469.)   7   80.1   69   133    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   70   134    (Poggiale, A. ch. (3) 8. 469.)   100   80.8   100   83.4    (Poggiale, A. ch. (3) 8. 469.)   133   138    (Poggiale, A. ch. (3) 8. 469.)   134    (Poggiale, A. ch. (3) 8. 469.)   133   138    (Pourcy), NaNO ₁ +Aq sat. at 12.7   20.8   20.8   20.8   20.8    (Pourcy), NaNO ₂ +Aq sat. at 14° contain   40   102   100   100   100   100   100   100   100   100   100   100    (Poggiale, A. ch. (4) 8. 40.1   138   139   160   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1			11		3			
40   102.31   120   225.30   6   78.1   66   130     (Poggiale, A. ch. (3) 8. 469.)   8   77. 8.7   78.7     (a			11		4 5			
The property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property					6			
100 pts. H ₂ 0 at 119 ^c dissolve 150 pts. NaNO ₁ . (Grid-fiths). NaNO ₁ +Aq sat. at 18.75° has 1.3769 sp. gr., and 100 pts. H ₂ O three dissolved 88.001 pts. NaNO ₂ . (Karston). O ₁ +Aq sat. at 12.5° contains 33.3% NaNO ₃ . 12 s2.0 72 137 NaNO ₁ +Aq sat. at 12.5° contains 34.4% NaNO ₄ . 13 82.7 73 138 NaNO ₃ . NaNO ₃ +Aq sat. at 12.5° contains 34.4% NaNO ₄ . 14 83.4 74 139 14 83.4 74 139 14 84.7 11 100 pts. H ₂ O dissolve pts. NaNO ₃ at t°. 18 86.1 78 145 15.7 140 100 pts. H ₂ O dissolve pts. NaNO ₃ at t°. 18 86.1 78 145 17 18 18 18 19 18 18 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 19 19 18 18 18 19 19 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 19 18 18 18 19 18 18 18 19 18 18 18 19 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18		1	1 (0) 0	<u>!</u>	7			
100 pts. H ₂ O at 118 ² dissolve 150 pts. NaNO ₁ . (Grif-   NaNO ₁ +Aq sat. at 18.75° has 1.3769 sp.gr., and 100   Pts. H ₂ O have dissolved 88.001 pts. NaNO ₂ . (Kar-   San NaNO ₁ +Aq sat. at 18.75° has 1.3769 sp.gr., and 100   Rol. 8	1)	Poggiale, A. o	ch. (3) 8. 40	59.)	8			
NaNO ₁ +Aq sat. at 18.75° has 1.3769 sp. gr., and 1100 pts. H ₂ O have dissolved 88.001 pts. NaNO ₂ . (Karstell, NaNO ₂ ) + Aq sat. in cold contains 33.3% NaNO ₃ . 12 S2.0 72 137 (NaNO ₂ ) + Aq sat. at 12.5° contains 34% NaNO ₂ . 13 S2.7 73 138 (NaNO ₂ ) + Aq sat. at 12.5° contains 34% NaNO ₃ . 14 S3.4 74 139 (Hassenfrata). 15.5° dissolve 33 pts.; at 52°, 100 pts. NaNO ₃ tr° Pts. NaNO ₃ at t°. 19 S6.8 79 146 S4.7 76 143 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146 S6.8 79 146	100 pts. H	2O at 119° disso	olve 150 pts. N	IaNO₃. (Grif-	9			
pts. H ₂ O have dissolved 88.001 pts. NaNO ₃ . (Karstein.) NaNO ₁₊ Aq sat. in cold contains 33.3% NaNO ₃ .    11		Aq sat. at 18.75	° has 1.3769 s	p. gr., and 100	1	1		
NaNO1+Aq sat. at 12.5° contains 34.7% NaNO2.   13   82.7   73   138   (Fourcroy).   NaNO4-Aq sat. at 12.5° contains 34.7% NaNO3.   14   83.4   74   139   (Hassenfrat).   15   84.0   75   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140	pts. H ₂ O ha	ave dissolved 8	88.001 pts. N	aNOs. (Kar-				
14   83, 4   74   139   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   140   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150	NaNOa+	Aq sat. in col	d contains 3	3.3% NaNO3.				
Hassenfratz.   15   84. 0   75   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   1	(Fourcroy.)	Ag out at 19	50 contains	2467 No NO.	1			
NaNOs. (Ure's Diet.)   17	(Hassenfratz	z.)						
100 pts. H ₂ O dissolve pts. NaNO ₂ at t°.   18	100 pts. H	(20) at 15.5° diss	olve 33 pts.; s	at 52°, 100 pts.		84.7	76	142
19								
t°         Pts. NaNO₃         t°         Pts. NaNO₃         20         87.5         80         148           0         73.0         60.65         125.5         21         88.3         81         149           13.9         81.6         99.9         173.6         23         89.7         83         152           44.65         110.5         119.7         211.4         24         90.3         84         153           (Nordenskjöld, Pogg. 136         312.)         26         91.8         86         156           100 pts. H₂O dissolve pts. NaNO₃         25         91.0         85         155           100 pts. H₂O dissolve pts. NaNO₃         27         92.5         87         158           10 pts. NaNO₃         10         70.94         70         142.31         31         96.0         91         162           10 pts. NaNO₃         10         142.31         31         96.0         91         164         169         166         92         166         92         166         92         166         92         166         92         166         92         166         92         166         92         166         92         166	100 pts.	. $ m H_2O$ dissolv	re pts. NaN	IO₃ at t°.				1
0 73.0 60.65 125.5 22 80.0 82 151 13.9 81.6 99.9 173.6 23 89.7 83 152 44.65 110.5 119.7 211.4 24 90.3 84 153  (Nordenskjöld, Pogg. 136 312.) 26 91.8 86 156 100 pts. H₂O dissolve pts. NaNO₃ at t°. 27 92.5 87 158  100 pts. H₂O dissolve pts. NaNO₃ at t°. 28 93.2 88 159  100 70.94 70 142.31 30 94.9 90 162 100 78.57 80 153.72 32 96 92 166 20 87.97 90 165.55 33 97 93 168 30 98.26 100 178.18 34 98 94 169 40 109.01 110 194.26 35 99 95 171 50 120.00 119.4 213.43 36 100 96 173 60 131.11 37 100 97 175  (Maumené, C. R. 58. 81.) 38 101 98 177  (Maumené, C. R. 58. 81.) 38 101 98 177  100 pts. NaNO₃ +Aq sat. at 14° contain 40 102 100 180 43.88 pts. NaNO₃ ti.5°, 44.53 pts. NaNO₃. 41 103 101 182 (v. Hauer, J. pr. 98. 137.) 42.1 100 pts. H₂O dissolve 84.21-84.69 pts. NaNO₃ at 15.6°, and sat. solution has sp. gr. 1.337-1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.) 49 111 109 198  100 pts. H₂O dissolve pts. NaNO₃ at t°. 48 110 108 196  100 pts. H₂O dissolve pts. NaNO₃ at t°. 49 111 109 198 100 pts. H₂O dissolve pts. NaNO₃ at t°. 49 111 109 198 110 100 pts. H₂O dissolve pts. NaNO₃ at t°. 49 111 109 198 110 100 pts. H₂O dissolve pts. NaNO₃ at t°. 48 110 108 196 110 111 110 110 110 110 110 110 110 110	+0	Pte NeNOs	10	Pts NuNOs				
0 73.0 60.65 125.5 22 89.0 82 151 13.9 81.6 99.9 173.6 23 89.7 83 152 44.65 110.5 119.7 211.4 24 90.3 84 153  (Nordenskjöld, Pogg. 136 312.) 26 91.8 86 156  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°. 27 92.5 87 158  100 pts. NaNO ₁ t° Pts. NaNO ₂ 29 94.0 89 161  0 70.94 70 142.31 31 96.0 91 164 20 87.97 90 165.55 33 97 93 168 30 98.26 100 178.18 34 98 94 169 20 87.97 90 165.55 33 97 93 168 30 98.26 100 178.18 34 98 94 169 40 109.01 110 194.26 35 99 95 171 50 120.00 119.4 213.43 36 100 96 173 60 131.11 37 100 97 175  (Maumené, C. R. 58. 81.) 38 101 98 177  (Maumené, C. R. 58. 81.) 39 102 99 178  100 pts. NaNO ₃ +Aq sat. at 14° contain 40 102 100 180 43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ .  (Y. Hauer, J. pr. 98. 137.) 40 102 100 180 43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ . 41 103 101 182 (V. Hauer, J. pr. 98. 137.) 42 104 102 184 100 pts. H ₂ O dissolve 84.21–84.69 pts. NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337–1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.) 49 111 109 198  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°. 48 110 108 196  100 pts. H ₂ O dissolve 51 113 111 109 198 107 107 105 190 107 107 194 110 108 196 109 107 194 110 108 196 111 109 198 117 115 211 110 200 110 113 36 99.39 55 117 115 211 111 202 111 110 200 111 113 113 207 115 115 211 116 211 117 5 216.4		1 05. 1121103	ļ	115.114.103				
13.9	0	73.0	60.65	125.5				1
A4.65   110.5   119.7   211.4   24   90.3   84   153   155   100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   26   91.8   86   156   156   100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   27   92.5   87   158   159   159   150   150   161   150   161   150   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161   161								
Nordenskjöld, Pogg. 136 312.)   26	44.65	110.5	119.7	211.4				
100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   27   92.5   87   158	(N	andonalriäld	Pogg 126	212 \	1			
t°         Pts. NaNO ₃ t°         Pts. NaNO ₃ 29         94.0         89         161           0         70.94         70         142.31         30         94.9         90         162           10         78.57         80         153.72         32         96         92         164           20         87.97         90         165.55         33         97         93         168           30         98.26         100         178.18         34         98         94         169           40         109.01         110         194.26         35         99         95         171           50         120.00         119.4         213.43         36         100         96         173           60         131.11           37         100         97         175           (Maumené, C. R. 58.81.)         38         101         98         177           100 pts. NaNO ₃ +Aq sat. at 14° contain         40         102         100         180           43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ .         41         103         101         182           (v. Hauer, J. pr. 98.137.)					1			1
t°         Pts. NaNO ₃ t°         Pts. NaNO ₃ 29         94.0         89         161           0         70.94         70         142.31         31         96.0         91         164           10         78.57         80         153.72         32         96         92         166           20         87.97         90         165.55         33         97         93         168           30         98.26         100         178.18         34         98         94         169           40         109.01         110         194.26         35         99         95         171           50         120.00         119.4         213.43         36         100         96         173           60         131.11           37         100         97         175           (Maumené, C. R. 58. 81.)         38         101         98         177           100 pts. NaNO ₃ +Aq sat. at 14° contain         40         102         100         180           (v. Hauer, J. pr. 98. 137.)         42         104         102         184           100 pts. H ₂ O dissolve by 45.21–84.69 pts	100 pts	. H₂O dissolv	ve pts. Nal	NO ₃ at t°.				
0 70.94 70 142.31 31 96.0 91 162 10 78.57 80 153.72 32 96 92 166 20 87.97 90 165.55 33 97 93 168 30 98.26 100 178.18 34 98 94 169 40 109.01 110 194.26 35 99 95 171 50 120.00 119.4 213.43 36 100 96 173 60 131.11 37 100 97 175  (Maumené, C. R. 58. 81.) 38 101 98 177 39 102 99 178  100 pts. NaNO₂+Aq sat. at 14° contain 40 102 100 180 43.88 pts. NaNO₂; at 15°, 44.53 pts. NaNO₂. 41 103 101 182 (v. Hauer, J. pr. 98. 137.) 100 pts. H₂O dissolve 84.21−84.69 pts. 43 105 103 186 NaNO₃ at 15.6°, and sat. solution has sp. gr. 1.337−1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)  100 pts. H₂O dissolve pts. NaNO₃ at t°. 48 110 108 196  100 pts. H₂O dissolve pts. NaNO₃ at t°. 49 111 109 198  100 pts. H₂O dissolve pts. NaNO₃ at t°. 49 111 109 198 2 70.97 21 85.73 2 100 112 110 200 0 66.69 18 83.62 51 113 111 202 2 70.97 21 85.73 2 100 12 100 108 196 49 111 109 198 110 76.31 36 99.39 55 117 13 79.00 51 113.63 56 118 116 213 15 80.60 68 125.07 58 211 115 117.5 216.4  Solubility is constant from 0° to −15.7°, when NaNO₃ +7H₂O separates out. (Ditte,	t°	Pts. NaNO:	l to	Pts. NaNO ₃				
0					1	11		1
20 87.97 90 165.55 33 97 93 168 30 98.26 100 178.18 34 98 94 169 40 109.01 110 194.26 35 99 95 171 50 120.00 119.4 213.43 36 100 96 173 60 131.11 37 100 97 175  (Maumené, C. R. 58. 81.)  100 pts. NaNO ₃ +Aq sat. at 14° contain 40 102 100 180 43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ . 41 103 101 182 (v. Hauer, J. pr. 98. 137.) 100 pts. H ₂ O dissolve 84.21–84.69 pts. NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337–1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°. 48 110 108 196  t° Pts. NaNO ₃ t° Pts. NaNO ₃ at t°. 49 111 109 198  t° Pts. NaNO ₃ t° Pts. NaNO ₃ 50 112 110 200 0 66.69 18 83.62 51 113 111 202 2 70.97 21 85.73 52 114 112 204 4 71.04 26 90.33 53 115 113 207 4 71.04 26 90.33 55 117 115 211 13 79.00 51 113.63 57 119 117 215 10 76.31 36 99.39 56 118 116 213 15 80.60 68 125.07 58 120 117.5 216.4								
30						96		166
40						11		
50   120.00   119.4   213.43   36   100   96   173   175   100   131.11     37   100   97   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175						11		
60   131.11     37   100   97   175   175   100   175   175   100   175   100   175   175   100   175   175   100   175   175   100   175   175   100   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175   175								
(Maumené, C. R. 58. 81.)  100 pts. NaNO ₃ +Aq sat. at 14° contain 43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ . (v. Hauer, J. pr. 98. 137.) 100 pts. H ₂ O dissolve 84.21–84.69 pts. NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337–1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   t°   Pts. NaNO ₃   t°   Pts. NaNO ₃    t°   Pts. NaNO ₃   t°   Pts. NaNO ₃    100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   t°   Pts. NaNO ₃   t°   Pts. NaNO ₃    111   109   107    120   111   109   108    138   101   98   177    99   178    40   102   100    101   182    42   104   102   184    105   103   186    106   104   188    107   105   190    46   108   106   109    47   109   107   194    48   110   108   196    49   111   109   198    50   112   110   200    112   110   200    113   111   202    2   70.97   21   85.73    4   71.04   26   90.33   53    4   71.04   26   90.33   53    115   113   207    8   75.65   29   92.93    10   76.31   36   99.39   55    117   115   211    13   79.00   51   113.63    15   80.60   68   125.07    Solubility is constant from 0° to -15.7°, when NaNO ₃ +7H ₂ O separates out. (Ditte,			1					
100 pts. NaNO ₃ +Aq sat. at 14° contain   43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ .   41   103   101   182   100 pts. H ₂ O dissolve 84.21–84.69 pts. NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337–1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)   100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   44   106   104   188   105   103   186   104   188   105   103   186   104   188   105   103   186   104   188   105   103   186   104   188   105   103   186   106   104   188   106   104   188   106   104   188   106   104   188   106   109   107   105   190   107   194   100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.   48   110   108   196   107   194   111   109   198   111   109   198   111   109   198   111   109   198   111   109   198   111   109   198   111   109   198   111   109   198   111   109   198   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111		(3.5	2 70 20	. \				
43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ .  (v. Hauer, J. pr. 98. 137.)  100 pts. H ₃ O dissolve 84.21–84.69 pts. NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337–1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  110 pts. NaNO ₃   t°   Pts. NaNO ₃   48   110   108   196   192   100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  110 pts. NaNO ₃   t°   Pts. NaNO ₃   50   112   110   200   111   109   198   111   109   198   111   109   198   111   109   198   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   200   112   110   113   111   202   114   112   204   115   113   111   202   115   113   115   113   115   113   115   113   115   113   115   113   115   115   113   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115   115		(Maumen∈, C	J. R. 58. 81	1.)		102		178
43.88 pts. NaNO ₃ ; at 15°, 44.53 pts. NaNO ₃ .  (v. Hauer, J. pr. 98. 137.)  100 pts. H ₂ O dissolve 84.21–84.69 pts. NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337–1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  110 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  111 log log log log log log log log log log	100 pts	. NaNO ₂ +A	g sat. at	14° contain				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.88 pts.	NaNO ₃ ; at	15°, 44.53 p	ots. NaNO ₈ .				
NaNO ₃ at 15.6°, and sat. solution has sp. gr. 1.337-1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  101 pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  101 pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ at t°.  102 pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. NaNO ₃ by 100 pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts. H ₂ O dissolve pts.	(v. Hauer	, J. pr. <b>98.</b> 13	37.)					
1.337-1.378. (Page and Keightley, Chem. Soc. (2) 10. 556.)						11		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		78 (Paga a	and Keight	lev Chem				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			mu magn	acy, Chem.		108	106	192
t°         Pts. NaNO3         t°         Pts. NaNO4         49         111         109         198           0         66.69         18         83.62         51         113         111         200           2         70.97         21         85.73         52         114         112         204           4         71.04         26         90.33         53         115         113         207           8         75.65         29         92.93         54         116         114         209           10         76.31         36         99.39         55         117         115         211           13         79.00         51         113.63         56         118         116         213           15         80.60         68         125.07         58         120         117.5         216.4           Solubility is constant from 0° to —15.7°, when NaNO3+7H2O separates out. (Ditte,         (Ditte,         59         211			ro mta MaN	TO at 19				
t°         Pts. NaNOs         t°         Pts. NaNOs         50         112         110         200           0         66.69         18         83.62         51         113         111         202           2         70.97         21         85.73         52         114         112         204           4         71.04         26         90.33         53         115         113         207           8         75.65         29         92.93         54         116         114         209           10         76.31         36         99.39         55         117         115         211           13         79.00         51         113.63         56         118         116         213           15         80.60         68         125.07         58         120         117.5         216.4           Solubility is constant from 0° to —15.7°, when NaNO ₃ +7H ₂ O separates out. (Ditte,         59         211	100 pts	. H ₂ O dissolv	ve pus. Mar	O ₃ at t .				
0         66.69         18         83.62         51         113         111         202           2         70.97         21         85.73         52         114         112         204           4         71.04         26         90.33         53         115         113         207           8         75.65         29         92.93         54         116         114         209           10         76.31         36         99.39         55         117         115         211           13         79.00         51         113.63         56         118         116         213           15         80.60         68         125.07         58         120         117.5         216.4           Solubility is constant from 0° to -15.7°, when NaNO ₃ + 7H ₂ O separates out. (Ditte,         59         211	t⁰	Pts. NaNO ₃	t°	Pts. NaNOs		777 ()		
2 70.97 21 85.73 52 114 112 204 24 71.04 26 90.33 54 115 113 207 85.05 29 92.93 55 117 115 211 13 13 79.00 51 113.63 56 118 116 213 15 80.60 68 125.07 58 120 117.5 215 117.5 216.4 59 211		CC CO	10	02.60				
2 70.04 21 207  8 75.65 29 92.93 54 116 114 209  10 76.31 36 99.39 55 117 115 211  13 79.00 51 113.63 56 118 116 213  15 80.60 68 125.07  Solubility is constant from 0° to —15.7°, when NaNO ₃ +7H ₂ O separates out. (Ditte,	U				52			
8   75.65   29   92.93   55   117   115   211   13   79.00   51   113.63   56   118   116   213   15   80.60   68   125.07   58   120   117.5   216.4   59   211	4					115	113	207
10   76.31   36   99.39   56   118   116   213   15   80.60   68   125.07   58   120   117.5   216.4   59   211	8							
13   79.00   51   113.63   57   119   117   215   15   15   15   17   17   17   17								
15   80.00   08   125.07   58   120   117.5   216.4	13	79.00	51					
Solubility is constant from 0° to -15.7°, when NaNO ₃ +7H ₂ O separates out. (Ditte,	15	80.60	68	125.07				
when NaNO ₃ +7H ₂ O separates out. (Ditte,	Solubilia	ty is constan	t from 0°	to -15 7°				
	when Nal	$103 + 7H_2O$ s	separates o	ut. (Ditte,	!!	11	······	<del>'</del>

Sat. solution at b.-pt. contains 216.4 pts. NaNOs (Mulder); 218.5 pts. NaNOs (Marx); 213.4 pts. NaNOs (Marmené); 211.4 pts. NaNOs (Nordenskjöld); 224.8 pts. NaNOs (Legrand); 150 pts. NaNOs (Griffiths).

Sat. NaNOs+Aq contains at:

120° 130° 172° 180° 199° 66.8 67.5 77.1 78.1 82.0% NaNO₃,

220° 250° 255° 290° 313° (mpt.). 83.5 89.5 91.5 97.5 100% NaNO₃. (Étard, A. ch. 1894, (7) **2.** 527.)

100 g. sat. NaNO₃+Aq contain 42.47 g. NaNO₃ at 0°. (Coppadoro, Rass. Min. 1911, XVII, **35**. 123.)

100 g. sat. NaNO₃+Aq contain 49.16 g. NaNO₃ at 30°. (Coppadoro, Rass. Min. 1912, **37.** 7.)

100 g. H₂O dissolve 92.14 g. NaNO₃ at 25°. (Haigh, J. Am. Chem. Soc. 1912, **34.** 1148.)

The solubility of crystals on different faces has been determined by Lebrun. (Belg. Acad. Bull. 1913. 953.)

Sp. gr. of NaNO₈+Aq at 19.5°.

% NaNOs	Sp. gr.	% NaNOs	Sp. gr.
12.057 22.726 31.987	1.0844 1.1667 1.2450	39.860 46.251	1.3176 1.3805

(Kremers, Pogg. 95. 120.)

Sp. gr. of NaNO₃+Aq at 20.2°.

% NaNOs	Sp. gr.	% NaNOs	Sp. gr.
1	1.0065	26	1.1904
<b>2</b>	1.0131	27	1.1987
$\frac{2}{3}$	1.0197	28	1.2070
4	1.0264	29	1.2154
$egin{array}{c} 4 \ 5 \ 6 \end{array}$	1.0332	30	1.2239
6	1.0399	31	1.2325
7	1.0468	32	1.2412
8	1.0537	33	1.2500
9	1.0606	34	1.2589
10	1.0676	35	1.2679
11	1.0746	36	1.2770
12	1.0817	37	1.2863
13	1.0889	38	1.2958
14	1.0962	39	1.3055
15	1.1035	40	1.3155
16	1.1109	41	1.3225
17	1.1184	42	1.3355
18	1.1260	43	1.3456
19	1.1338	44	1.3557
20	1.1418	45	1.3659
21	1.1498	46	1.3761
22	1.1578	47	1.3864
23	1.1659	48	1.3968
24	1.1740	49	1.4074
25	1.1822	50	1.4180
/CL 2.100		~ , ,	7 1 0

(Schiff, calculated by Gerlach, Z. anal. 8. 280.)

Sp. gr. of NaNO. +Aq at 18°.			
% NaNO:	Sp. gr. 🐞	% NaNO:	≨p. gr.
5 10	1.0327 1.0681	20 30	1.1435 1.2278

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of NaNO₃+A₄ at 20°, containing mols. NaNO₃ in 100 mols. H₂O.

Mole NaNOs	<b>հ</b> թ. <b>gr.</b>
2	1.05 <b>980</b>
5	1.13813

(Nicol, Phil. Mag. (5) 16. 122.)

The saturated solution boils at 117.5°. (Mulder.)

""" 1.8.9°. (Griffiths.)

"""" 119°. (Marx.)

"""" 119.4°. (Maumené.)

"""" 119.7° (Nordenskjöld.)

"""" 121°. (Legrand.)

"""" 122-123°. (Kremers.)

NaNO₃+Aq forms a crust at 118°, and contains 194 pts. NaNO₃ to 100 pts. H₂O; highest temp. observed, 120.5°. (Gerlach, \( \frac{1}{2}\)Z. anal. 26. 427.)

B.-pt. of NaNO₃+Aq containing pts. NaNO₄ to 100 pts. H₂O. G=according to Gerlach (Z. anal. **26**. 433); L=according to Legrand (A. ch. (2) **59**. 431).

Bpt.	G	L	Bpt.	G	L
101°	9	9.3	112°	121.5	120.3
102	18.5	18.7	113	133	131.3
103	28	28.2	114	144.5	142.4
104	38	37.9	115	156	153.7
105	48	47.7	116	168.5	165.2
106	58	57.6	117	181	176.8
107	68	67.7	118	194	188.6
108	78.5	77.9	119	207.5	200.5
109	89	88.3	120	222	212.6
110	99.5	98.8	121		224.8
111	110.5	109.5			• • •

 $50~pts.~NaNO_3$  mixed with 100 pts. snow at  $-1^{\circ}$  give a temp. of  $-17.5^{\circ}.~$  (Rüdorff, Pogg. 122. 337.)

Sp. gr. of NaNO₃+Aq at t°.

G. NaNO ₃ dissolved in 100 g.	G. NaNOsin 100 g. of the solution	t°	Sp. gr.
4.166	4	17.8°	1.0276
11.111	10	13.9°	1.0704
25.000	20	12°	1.1441

(de Lannoy, Z. phys. Ch. 1895, 18. 465.)

gr. of NaNO₂+Aq at 20.1°, when p = per cent strength of sol.; d = observed demity: w=volume conc. in grams

per cc.  $\left(\frac{\text{pd}}{100} = \mathbf{w}\right)$ 

р	d ·	w
42.05	1.3380	0.56267
35.65	1.2765	0.45510
31.72	1.2407	0.39365
23.24	1.1696	0.27180
17.370	1.1228	0.19505
11.915	1.0819	0.12888
9.665	1.0656	0.10300
7.039	1.0468	0.07369
4.241	1.0273	0.04357
1.589	1.0096	0.01604

(Barnes, J. phys. Chem. 1898, 2. 545.)

Sp. gr. 20°/4° of a normal solution of NaNO₈ =1.05386; of a 0.5 normal solution =1.02646. (Haigh, J. Am. Chem. Soc. 1912, 34, 1151.)

Sp. gr. of sat. NaNO₃+Aq at t°.

, t°	G. NaNO ₈ sol. in 100 g. H ₂ O	Sp. gr.
10	68.0	1.342
0	43.0	1.358
10	80.5	1.377
20	88.0	1.387
30	96.2	1.406
40	104.9	1.418
50	114.0	1.437
60	124.6	1.456
70	136.0	1.467

(Tschernaj, J. Russ. Phys. Chem. Soc. 1912, **44**. 1565.)

Sol. in 66 pts.  $HNO_2$ ; in 32 pts.  $2HNO_3$ ,  $3H_2O$  at 32°; in 4 pts.  $2HNO_3$ ,  $3H_2O$  at 123°. (Schultz, Zeit. Ch. (2) 5. 531.)

Solubility in HNO₃+Aq at 0°.

(Engel, C. R. 1887, 104, 911.)

Solubility of NaNO, in NH4OH+Aq at 15°.

G. per 1	G. per 100 g. H ₂ O	
NH:	NaNOs .	Sp. gr.
13.87 17.28 20.38	75.03 73.99 73.18	1.253 1.233 1.212

(Fedotieff and Koltunoff, Z. anorg. 1914, 85. 251.)

NaNO₃+Na₂CO₃. (See Na₂CO₃.) Sol. in sat. NH₄Cl+Aq.

Very rapidly sol. in sat. BaCl2+Aq with pptn. of Ba(NO₃)₂

Sol. in sat. KCl+Aq, with formation of KNO₃.

Sol. in sat. NH₄NO₃+Aq. (See NH₄NO₃.) Sol. in sat. Ba(NO₃)₂+Aq, with partial pptn. of Ba(NO₃)₂. (See Ba(NO₃)₂.)
Sol. in sat. Pb(NO₃)₂+Aq, with subsequent pptn. of Pb(NO₃)₂. (See Pb(NO₃)₂.)
NaNO₃+KNO₃.

Sol. in sat KNO₃+Aq; solution thus made at 18° contains 54.33% mixed salt, or 100 pts. H₂O dissolve 118.98 pts. mixed salt, viz. 89.53 pts. NaNO₃ and 29.45 pts. KNO₃. (See KNO3.)

 $NaNO_3 + Sr(NO_3)_2$ .

If  $Sr(NO_3)_2 + Aq$  sat. at 14.5° is sat. with  $NaNO_3$ , 100 pts.  $H_2O$  dissolve:

${ m NaNO_3 \atop Sr(NO_3)_2}$ .	83.7	66.4 51.0	62.0
		117.4	

(Mulder.)

NaNO₂+NaNO₂. See under NaNO₂. NaNO₃+NaCl.

100 pts. H₂O dissolve 24.91 pts. NaCl+ 54.55 pts. NaNO₃ = 79.46 pts. of the two salts at 20°. (Nicol, Phil. Mag. (5) 31. 386.)

100 pts. H₂O dissolve at 18.75°:

	1	2	3	4	5	6
NaCl . NaNO ₈	36	$25.22 \\ 52.89$	24.96 52.84	$24.98 \\ 52.82$	86.6	$\frac{24.6}{56.8}$

Sat. NaCl+Aq treated with NaNO₃.

3. Sat. NaNO₈+Aq treated with NaCl.

4. Simultaneous treatment of the two salts by H₂O. (Karsten.)

6. Excess of both salts+Aq warmed and cooled to 20°. (Rüdorff, B. 6. 484.)

Solubility of NaCl with addition of NaNOa at 15.5°.

Sp. gr.	100 ccm. contain in g.			
op. gr.	NaCl	H ₂ O	NaNO ₈	
1.2025 1.2305 1.2580 1.2810 1.3090 1.3345 1.3465	31.78 27.89 26.31 23.98 22.30 20.40 19.40 19.67	88.47 87.63 86.25 82.66 80.42 79.25 77.37	0.00 7.53 13.24 21.58 28.18 33.80 37.88 37.64	

NaNO, separated in last two solutions.

Solubility of NaNO3 with addition of NaCl at 15°.

C	100 ccm. contain in g.			
Sp. gr.	NaNO ₈	H ₂ ()	NaCl	
1.3720	62.38	74.82	0	
1.3645	56.56	75.69	4.00	
1.3585	52.09	75.71	7.24	
1.3530	47.08	76.86	11.36	
1.3495	42.66	76.96	15.33	
1.3485	39.90	77.14	17.81	
1.3485	38.73	77.15	18.97	
1.3485	38.02	77.49	19.34	

NaCl separated in last two solutions. (Bodländer, Z. phys. Ch. 7. 360.)

Solubility of NaNO₃ in NaCl+Aq at 15°.

Sp. gr.	G. per 100 cc. sat. solution			
Sp. gr.	NaCl	NaNO ₃	H ₂ O	
1.3720 1.3645 1.3585 1.3530 1.3495	$0 \\ 4.0 \\ 7.24 \\ 11.36 \\ 15.33$	62.38 56.76 52.09 47.08 42.66	74.82 75.69 75.71 76.86 76.96	
1.3485 1.3485 1.3485 1.3485	17.81 18.97* 19.34*	39.90 38.73* 38.02*	75.96 77.14 77.15 77.49	

* Solutions sat. with both salts. (Bodländer, Z. phys. Ch. 1891, 7, 361.)

Solubility of NaNO₃+NaCl (g. in 100 g. H₂O) at 25°.

NaNO ₈	NaCl	Sölid phase
79.20 68.38 56.56 39.20 20.17	8.39 16.32 23.74 27.56 31.48	NaNO ₃ "NaNO ₃ +NaCl NaCl ""

(Uyeda, Mem. Col. Sc. Kioto, 1910, 2. 245.)

Solubility in NaCl+Aq at 20°, 30°, 40° and Tables given in the original show that each salt diminishes the solubility of the other. (Leather, Mem. Dept. Agric. India, 1914, 3. 177; Chem. Soc. 1915, 108. (2) 13.) See also under NaCl.

NaNO3+NaOH.

Solubility ir NaOH+Aq at 0°. NaNO₂ = mois. NaNO₃ (in mg.) in 10 ccm. of solution, N₁₂O = mols. Na₂O (in mg.) in 10 ccm, of solution.

NaNOs	Va ₂ O	NaNOs +Na ₂ O	Sp. gr.
66.4	0	66.4	1.341
62.5	2.875	65.375	1.338
57.15	6.1	63.25	1.333
47.5	12.75	60.25	1.327
29.5	26	55.5	1.326
17.5	39	56.5	1.332
13.19	45.875	59.065	1.356
6.05	60.875	66.925	1.401

(Engel, Bull. Soc. (3) 6. 16.) Solubility in NaOH+Aq at 0°.

G. per 100	Sp. gr.	
NaOH	NaNO3	οp. <b>g</b> ι.
0.0 2.30 4.89 10.21 20.83 31.25 36.76 48.75	56, 50 53, 19 48, 63 40, 42 25, 10 14, 89 11, 22 5, 15	1.341 1.338 1.333 1.327 1.326 1.332 1.356 1.401

(Engel, l. c.)

Easily sol. in K₂SO₄+Aq without pptn. Easily sol. in Na₂SO₄+Aq without pptn. Sol. in MgSO₄+Aq, at first to a clear solution, but afterwards NaNO₃ is pptd.

Very sol. in sat. CuSO₄+Aq, but double

sulphate separates out. Very sol. in ZnSO₄+Aq with pptn. of double sulphate. (Karsten.)

Solubility of NaNO₃ in Na₂S₂O₃+Aq at t°.

t°	NaNOs	% Na ₂ S ₂ O ₃	Solid phase
9	33.31 $22.57$ $4.22$	12.26 23.41 34.77	NaNO ₃ " +Na ₂ S ₂ O ₃ , 5H ₂ O Na ₂ S ₂ O ₃ , 5H ₂ O
25	35.42 25.40 19.90 18.02 4.33	12.72 24.25 31.81 32.83 40.50	NaNO ₃ " +Na ₂ S ₂ O ₃ , 5H ₂ O Na ₂ S ₂ O ₃ , 5H ₂ O

(Kremann and Rothmund, Z. anorg. 1914, **86.** 373.)

Very sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, 20, 829.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Hydrazine dissolves 26.6 pts. NaNO₃ at 12.5–13°. (de Bruyn, R. t. c. 1899, 18. 297.)

100 pts. alcohol of 0.9 sp. gr. dissolve 10.5 pts. NaNO₁; 0.872 sp. gr., 6 pts.; 0.834 sp. gr., 0.38 pt.; insol. in alcohol of 0.817 sp. gr. (Kirwan.) 100 pts. alcohol of 61.4% by weight dissolve 21.2 pts. NaNO₃ at 26°. (Pohl. W. A. B. 6. 600.) 100 pts. alcohol of 62° Tr. dissolve 7.4 pts. NaNO₃ at

100 pts. alcohol of 93° Tr. dissolve 0.93 pt. NaNO₃ at 19.5°. (Wittstein.)

100 pts. alcohol containing % alcohol by weight dissolve pts. NaNO₈ at 15°, or 100 pts. solution comain % NaNO3:

30 60 80% alcohol. 65.3 48.8 35.5 25.8 11.4 2.8 pts. NaNO₈. 20.5 10.2 2.7% NaNO₈. 39.5 32.8 26.2

(Schiff.)

100 pts. wood-spirit of 40% dissolve 32.3 pts. NaNO₃. (Schiff, A. 118. 365.)

#### Solubility in alcohol at 16.5°.

Sp. gr.	100 ccm. contain in g.			
op. gr.	Alcohol	Water	NaNOs	
1.3745 1.3162 1.2576	0 6.16 11.60	75.25 70.82 68.10	$62.20 \\ 54.64 \\ 46.06$	
1.2140 1.1615 1.0855	16.49 $22.17$ $32.22$	65.04 61.67 52.92	39.87 $32.31$ $23.41$	
1.0558 1.0050 0.9420	37.23 43.98 52.60	48.50 42.78 32.13	19.85 $13.74$ $9.47$	
0.9030 0.8610	60.00 63.16	$\begin{vmatrix} 25.65 \\ 21.31 \end{vmatrix}$	$\substack{4.65\\1.63}$	

(Bodländer, Z. phys. Ch. 7. 317.)

100 pts. absolute methyl alcohol dissolve 0.41 pt. at 25°.

100 pts. absolute ethyl alcohol dissolve 0.036 pt. at 25°. (de Bruyn, Z. phys. Ch. 10. 783.)

#### Solubility in alcohol at 40°.

301404404				
Wt. % alcohol	G. NaNOs per 100 g. alcohol +Aq.			
0 8.22 17.4 26.0 36.0 42.8 55.3	104.5 90.8 73.3 61.6 48.4 40.6 27.1			
65.1 77.0	18.1 9.4			
87.2	4.2			

(Bathrick, J. phys. Ch. 1896, 1. 162.)

Solubility in alcohol at 30°.

Wt. % alcohol	G. NaNO ₃ per 100 g.		
in solvent	Solution	Water	
0	49.10	96.45	
5	46.41	91.15	
10	43.50	85.55	
20	37.42	74.75	
30	31.31	65.10	
40	25.14	55.95	
50	18.94	46.75	
60	12.97	37.25	
70	7.81	28.25	
90	1.21	12.25	
	1		

(Taylor, J. phys. Ch. 1897, 1. 723.)

Solubility in ethyl alcohol at 25°.

(Concentration of alcohol in g. mol. per 1000 g. H₂O.)

Normality	Solubility in 1000 g. H ₂ O	Mol. solubility
1/4 1/2 1 2	920.30 908.80 896.60 870.95 825.35	10.83 10.70 10.54 10.24 9.70

(Armstrong and Eyre, Proc. R. Soc. 1910 (A), 84. 127.)

Very sl. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

#### Solubility of NaNO₈ in acetone at 40°.

Wt. % acetone	G. NaNOs per 100 g. acetone +Aq
0.0	105
$\begin{array}{c} 8.47 \\ 16.8 \end{array}$	91.2 78.3
$\begin{array}{c} 25.2 \\ 34.3 \end{array}$	66.4 57.9
$\begin{array}{c} 44.1 \\ 53.9 \end{array}$	46.2 32.8
$\frac{64.8}{76.0}$	23.0 10.8
87.6	3.2

(Bathrick, J. phys. Ch. 1896, 1. 162.)

Solubility	of	NaNO ₈	in	acetone	at	30°	٠.
------------	----	-------------------	----	---------	----	-----	----

Wt. % acetone	G. NaNOs per 100 g.		
in solvent	Solution	Water	
0	49.10	96.45	
5	46.96	93.20	
9.09	45.11	90.40	
20	40.10	83.70	
30	35.08	77.20	
40	29.80	70.75	
50	24.34	64.40	
60	18.55	59.95	
70	13.15	50.50	
80	7.10	38.20	
90	1.98	20.20	

(Taylor, Z. phys. Ch. 1897, 2.1723.)

Sol. in glycerine.
Insol. in ethylamine. (Shinn, J. phys. Chem. 1907, 11. 538.)
Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)
Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Sodium thorium nitrate,  $NaTh(NO_8)_5 + 9H_2O$ .

Hydroscopic; sol. in dil. HNO₃ and Aq. (Meyer, Z. anorg. 1901, 27. 381.)

Sodium nitrate sulphate, NaNO₃, Na₂SO₄+ ³/₂H₂O.

Sol. in H₂O. (Marignac, Ann. Min. (5) 12. 44.) +H₂O. Min. Darapskite.

Sodium nitrate tungstosilicate,  $3Na_4W_{12}SiO_{40}$ .  $4NaNO_3+45H_2O$ . 4 4 (Wyruboff, Chem. Soc. 1897, 72. (2) 174.)

#### Strontium nitrate, Sr(NO₃)₂.

Sol. in 5 pts. cold, and 0.5 pt. boiling H₂O. (Dumas.)

"2" (Wittstein.)

"2" at 18.75°. (Abl.)

100 pts. sat. Sr(NO₃)₂+Aq at 19-20° contain 45.49

pts. Sr(NO₃)₂. (v. Hauer, J. pr. 98. 137.)

1 pt. Sr(NO₃)₂ dissolves in pts. H₂O at t°.

t°	Pts. H ₂ O	t°	Pts. H ₂ O	t°	Pts. H ₂ C
0	2.32	25	1.10	75	0.99
10	1.73	50	1.02	100	0.94

(Kremers, Pogg. 92. 499.)

100 pts. H₂O dissolve at 0°, 39.5 pts. Sr(NO₃)₂ (Mulder); at 0°, 40.16 pts. Sr(NO₃)₂ (Poggiale); at 0°, 43.1 pts. Sr(NO₃)₂ (Kremers); at 100°, 101.1 pts. Sr(NO₃)₂ (Mulder); at 100°, 106.5 pts. Sr(NO₃)₂ (Kremers, Pogg. 92. 499); at 100°, 119.25 pts. Sr(NO₃)₂ (Poggiale).

Solubility in 100 pts. H₂O at t°.

Solubility in 100 pts. H ₂ O at t°.						
t°	Pts. Sr(NO ₃ ) ₇	t°	Pts. Sr(NO ₃ ) ₂	t°	Pts. Sr(NO2)2	
0	39.5	36	96.7	73	96 0	
1	41.2	37	90.8	74	96.2	
$\hat{2}$	42.8	38	91.0	75	96.4	
$\bar{3}$	44.3	39	91.1	76	96.5	
4	45.8	40	91.3	77	96.7	
4 5	47.3	41	91.4	78	96.8	
6	48.8	42	91.5	79	97.0	
7	50.3	43	91.6	80	97.2	
8	51.8	44	91.8	81	97.4	
9	53.4	45	91.9	82	97.5	
10	54.9	46	92.1	83	97.7	
11	56.5	47	92.2	84	97.9	
12	58 0	48	92.3	85	98.0	
13	59.6	49	92.5	86	98.2	
14	61.2	50	92.6	87	98.4	
15	62.8	51	92.8	88	98.6	
16	64.4	52	92.9	89	98.8	
17	66.0	53	93.1	90	99.0	
18	67.6	54	93.2	91	99.2	
19	69.2	55	93.4	92	99.4	
20	70.8	56	93.5	93	99.6	
21	72.5	57	93.6	94	99.8	
22	74.1	58	93.8	95	100.0	
23	75.8	59	93.9	96	100.2	
24	77.4	60	94.0	97	100.4	
25	79.0	61	94.2	98	100.6	
26	80.7	62	94.3	99	100.9	
27	82.4	63	94.5	100	101.1	
28	84.1	64	94.6	101	101.3	
29	85.8	65	94.8	102	101.6	
30	87.6	66	94.9	103	101.8	
31	89.5	67	95.1	104	102.0	
31.3	90.0	68	95.2	105	102.3	
32	90.2	69	95.4	106	102.5	
33	90.3	70	95.6	107	102.7	
34 35	90.5	71	95.7	107.9	102.9	
30	90.6	72	95.9		• • • •	

(Mulder, Scheik. Verhandel. 1864. 114.)

Sat. Sr(NO₃)₂+Aq contains at:

-6° +14° 20° 32° 24.5 35.9 39.8 46.9% SrNO₃,

53° 56° 76° 94° 110° 47.2 47.8 49.1 50.4 50.2% SrNO₃. (Étard, A. ch. 1894, (7) **2.** 528.)

79.27 g. anhydrous Sr(NO₃)₂ are sol. in 100 g. H₄O at 25°. (Parsons and Carson, J. Am. Chem. Soc. 1910, **32.** 1385.)

Solubility	of	Sr	(NO	)2	in	H ₂ O	at	ť°	١.

	, ., ., .,	•
t°	G. Sr(NO ₃ ) ₂ in 100 g. H ₂ O	Sp. gr.
0.58 14.71 26.40 29.06 30.28 32.58 39.74	40.124 60.867 82.052 87.648 88.577 88.943 90.086	1.2856 1.3938 1.4883 1.5110 1.5144 1.5141 1.5128
47.73 61.34 68.96 78.98 88.94	91.446 93.856 95.576 97.865	1.5125 1.5115 1.5105 1.5106 1.5109 1.5117

(Berkeley and Appleby, Proc. R. Soc. 1911, (A) **85**. 503.)

100 g. of the sat. solution contain at 20°, 41.43 g.  $Sr(NO_8)_2$ . (Findlay, Chem. Soc. 1914, 105. 782.)

Sp. gr. of  $Sr(NO_3)_2 + Aq$  at 19.5°.

1	·	· - · · · · · · · · · · · · · · · · · ·	
% Sr(NO ₈ )2	Sp. gr.	Sr(NO3)2	Sp. gr.
1	1.009	21	1.192
2	1.017	22	1.202
$\tilde{3}$	1.025	23	1.213
4	1.034	24	1.223
5	1.041	$\overline{25}$	1.233
4 5 6	1.049	26	1.246
7	1.059	$\tilde{27}$	1.257
8	1.068	28	1.268
9	1.076	$\widetilde{29}$	1.280
10 10	1.085	30	1.292
11	1.095	31	1.304
$1\overline{2}$	1.103	32	1.316
13	1.113	33	1.330
14	1.122	34	1.340
15 15	1.131	35	1.354
16	1.140	36	1.367
17	1.150	37	1.381
18	1.160	38	1.395
19	1.170	39	1.410
$\overset{10}{20}$	1.181	40	1.422
20	1 1.101	10	1

(Kremers, calculated by Gerlach, Z. anal. 8. 286.)

Sp. gr. of  $Sr(NO_3)_2+Aq$  at  $23.4^\circ$ . a=no. of grms.  $\times \frac{1}{2}$  mol. wt. dissolved in 1000 grms.  $H_2O$ ; b=sp. gr. if a is  $Sr(NO_3)_2$ ,  $4H_2O$ ,  $\frac{1}{2}$  mol. wt. =142; c=sp. gr. if a is  $Sr(NO_3)_2$ ,  $\frac{1}{2}$  mol. wt. =106.

8.	b	С	а	b	С
1 2 3 4	1.146 1.205	1.081 1.155 1.224 1.284	5 6 7	1.303 1.345 1.383	1.350 1.407

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of  $Sr(NO_3)_2 + Aq$  at 17.5°.

% Sr(NO2)2	Sp. gr.	% Sr(NO3)2	Sp. gr.
10 20 30	1.083 1.180 1.294	40 Sat. sol.	1.422 1.52

(Gerlach, Z. anal. 27. 283.)

Sp. gr. of Sr(NO₃)₂+Aq at t°.

t°	% Sr(NO ₃ ) ₂	Sp. gr.
14.0°	5	1.0420
14.3°	10	1.0859
14.5°	15	1.1319
14.5°	20	1.1816
14.5°	25	1.2364
14.4°	34.33	1.3470

(Long, W. Ann. 1880, 11. 39.)

Sp. gr. of  $Sr(NO_3)_2 + Aq$  at room temp. containing:

10.29 21.19 32.61% Sr(NO₃)₂. 1.0885 1.124 1.3067

(Wagner, W. Ann. 1883, 18. 266.)

Sp. gr. of  $Sr(NO_3)_2 + Aq$  at 25°.

Concentration of Sr(N() ₃ ) ₂ +Aq	Sp. gr.
1-normal 1/2- " 1/4- " 1/8- "	1.0822 1.0419 1.0208 1.0104

(Wagner, Z. phys. Ch. 1890, 5. 40.)

 $Sr(NO_3)_2 + Aq$  containing 10.50%  $Sr(NO_3)_2$  has sp. gr 20°/20° = 1.0905.

has sp. gr 20 /20 = 1,0005.  $Sr(NO_8)_2 + Aq$  containing 25.51%  $Sr(NO_8)_2$  has sp. gr. 20°/20° = 1.2440.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Sp. gr. of Sr(NO₃)₂+Aq at 20° containing M g. mols. of salt per liter.

M 0.01 .0.025 0.05 0.075 Sp. gr. 1.001525 1.004207 1.008391 1.012646

M 0.10 0.25 0.50 0.75 Sp. gr. 1.016834 1.04201 1.08312 1.12386

M 1.00 Sp. gr. 1.16354

(Jones and Pearce, Am. Ch. J. 1907, 38. 705.)

B.-pt. of  $Sr(NO_3)_2+Aq$ , containing pts.  $Sr(NO_3)_2$  to 100 pts.  $H_2O$ .

Bpt.	Pts. Sr(NOs)2	Bpt.	Pts. 3r(NO ₃ ) ₂
100.5°	12	104°	81.4
101	24	104.5	89.6
101.5	34.8	105	97.6
102	45	105.5	105
102.5	54.4	106	112.2
103	63.6	106.3	116.5
103.5	$\frac{03.0}{72.6}$	100.5	110.0

(Gerlach, Z. anal. 26. 418.)

Sat. Sr(NO₃)₂+Aq boils at 106.8°, and contains 112.9 pts. salt to 100 pts. H₂O. (Griffiths.)

Sat. Sr(NO₃)₂+Aq boils at 107.5-108

(Kremers); 107.9° (Mulder).

Sat. Sr(NO₃)₂+Aq forms a crust at 106.3°, and contains 116.5 pts. Sr(NO₃)₂ to 100 pts. H₂O; highest temp. observed was 107°. (Gerlach, Z. anal. **26**. 427.)

Very sl. sol. in conc. HNO₃ or HCl+Aq (Wurtz.)

Insol. in HNO₃+Aq. (Schultz, Zeit. Ch. (2) **5**. 537.)

## Solubility in Sr(OH)₂, 8H₂O+Aq at 25°.

· · · · · · · · · · · · · · · · · · ·		
Sp. gr. 25°/25°	G. Sr() as Sr(OH)2 in 100 g. H2O	G. Sr(NO ₃ ) ₂ in 100 g. H ₂ O
1.492 1.494	0.38 0.78	$79.47 \\ 80.83$

(Parsons, J. Am. Chem. Soc. 1910, 32. 1388.)

Very sol. in liquid NH₃. (Franklin, Am.

Ch. J. 1898, **20**. 829.)
Sol. in 8500 pts. absolute alcohol. Sol. in 60,000 pts. of a mixture of 1 pt. ether and 1 pt. alcohol. (Rose, Pogg. **110**. 296.)

Sol. in 4189 pts. abs. alcohol and in 199.87 pts. ordinary rectified spirits. (Hill, Pharm. J. 1888 (3) 19. 420.)

#### Solubility in ethyl alcohol + Aq at 25°.

% C2H5OH in the solvent	% C ₂ H ₅ OH in the solution	% Sr(NO ₃ ) ₂ in the solution
99.4 79.2	99.38 77.15	0.02 2.60
59.9 40.65	53.6 32.35	10.5 20.5
20.6	13.8 $12.35$	33.2 34.3
18.8 16.25	10.45	35.7 36.7
15.05 $10.0$	$9.5 \\ 6.0 \\ 3.45$	$\frac{30.7}{40.05}$ $\frac{42.7}{42.7}$
$\begin{array}{c} 6.0 \\ 0 \end{array}$	0	46.6

 $Sr(NO_3)_2$  is the solid phase in the solutions Sol. which are rich in alcohol;  $Sr(NO_3)_2+4H_2O$  in 1014.)

the solutions which contain small amounts of alcohol.

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 39.)

Not completely insol. in boiling amylal phol., 30 ccm. dissolving about 1 mg. (Browning, Sill. Am. J. 143. 52.)

Ferfectly anhydrous  $Sr(NO_3)_2$  is sol. in 83044 pts. absolute ether-alcohol (1:1). (Fresenius, Z. anal. 32, 190)

#### Solubility in organic solvents.

Solvent	% S: (NOs)2 in the solution at 25°
Methyl alcohol	1.26
Ethyl alcohol	0.02
Propyl alcohol	0.02
Isobutyl alcohol	0.01
Amyl alcohol	0.003
Acctone	0.02

(D'Ans and Siegler, Z. phys. Ch. 1913, 82, 44.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)

Sol in acetone. (Eidmann, C. C. 1899. II, 1014.)

Difficultly sol. in acetone. (Naumann, B.

1904, 37. 4328.)

The composition of the hydrates formed by Sr(NO₃)₂ at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by Sr(NO₃)₂ and of the conductivity and sp. gr. of Sr(NO₃)₂+Aq. (Jones, Am. Ch. J. 1905, 34. 305.)

+4H₂O. Efflorescent.

#### Solubility in ethyl alcohol+Aq at 25°.

% C ₂ H ₄ OH in the solution         % C ₂ H ₄ OH in the solution         % Sr(NO ₃ ) ₂ in the solution           0         0         44.25           4         1.7         42.8           6         2.6         42.1           10.8         4.95         40.4           16.0         7.95         37.6           20         12.35         34.3			•
$egin{array}{c cccc} 4 & & 1.7 & & 42.8 \\ 6 & & 2.6 & & 42.1 \\ 10.8 & & 4.95 & & 40.4 \\ 16.0 & & 7.95 & & 37.6 \\ \hline \end{array}$	% C ₂ H ₅ OH in the solvent	% C ₂ H ₅ OH in the solution	% Sr(NO ₃ ) ₂ in the solution
	$\frac{6}{10.8}$ $16.0$	2.6 4.95 7.95	$egin{array}{c} 42.8 \ 42.1 \ 40.4 \ 37.6 \end{array}$

(D'Ans and Siegler, Z. phys. Ch. 1913, 82. 39.)

Tellurium nitrate, basic,  $4\text{TeO}_2$ ,  $N_2O_5 + 1\frac{1}{2}H_2O$ .

Very hygroscopic. Easily decomp. by  $H_2O$ . Sol. in  $HNO_3+Aq$ , but more sol. when dil. than conc. (Klein and Morel, Bull. Soc. (2) **43**. 205.)

Tellurium nitrate, TeNO3.

Sol. in acetone. (Eidmann, C. C. 1899. II, 1014.)

Terbium nitrate, Tb(NO₂)₂+6H₂O.

Sol. in H₂O. Sol. in alcohol. (Urbain, C. R. 1908, **146**. 128.)

#### Thallous nitrate, TINOs.

1 pt. TINO₃ dissolves, according to C=Crookes; L=Lamy:

at 15° 18° 58° 107° in 9.4 10.3 2.3 0.17 pts. H₂O. C L L L

Sat. TINOs+Aq contains at:

**3.5°** 18° 32° 58° 95° **4.2** 8.8 13.2 30.4 74.5% TINO₈

107° 135° \$145° 150° 155° 85] 95 95.2 96.5 97% TINO₂. (Étard, A. ch. 1894, (7) **2.** 527.)

#### Solubility in H₂O at t°.

· to	G. TINO ₃ in 100 g. H ₂ O	g. mol. TlNOs in 1 l.
0	3.91	0.149
10	6.22	0.230
20	9.55	0.357
25		0.433
30	14.3	0.522
40	20.9	0.755
50	30.4	1.07
60	46.2	1.58
70	69.5	2.29
80	111	3.40
90	200	5.32
100	414	8.29
105	594	10.25

(Berkeley, Trans. Roy. Soc. 1904, 203. A, 211.)

Sp. gr. of TlNO₃+Aq at 25°.

Concentration of TlNO ₃ +Aq	Sp. gr.
1/4-normal	1.0562
1/8- "	1.0283

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Solubility of TlNO₂+KNO₂. (See KNO₃.) Insol. in alcohol. (Lamy.) Sol. in acetone. (Eidmann, Dissert. **1899**; Naumann, B. 1904, **37**. 4328.)

Thallous hydrogen nitrate, TINO₃, 2HNO₃. (Wells, Am. Ch. J. 1901, 26. 273.)
TINO₃, 3HNO₂. (Ditte.)

Thallic nitrate,  $Tl(NO_3)_3 + 3H_2O$ .

Effloresces in the air. (Meyer, Z. anorg. 1900, 24. 361.)  $+6H_2O$ , or  $8H_2O$ . Deliquescent. Sol. in  $H_2O$ .

Thallous thallic nitrate, 2TlNO2, Tl(NO2)3.

Decomp. by H₂O. (Wells, Am. Ch. J. 1901, **26**. 278.)

Thallous uranyl nitrate, Tl(UO2)(NO3)3.

Decomp. in moist air. Decomp. by  $H_2O$ . (Meyer, B. 1903, 36. 4058.)

Thorium nitrate, ThO₂, 2N₂O₅+6H₂O.

Crystallized. Sl. hydroscopic. (Fukse, Zeit. angew. Ch. 1897, 10. 116.)

+12H₂O. Very deliquescent, and sol. in H₂O and alcohol.

Difficultly sol. in acetone. (Naumann, B. 1904, 37. 4328.)

Thorium zinc nitrate,  $ZnTh(NO_8)_6 + 8H_2O$ .

Sol. in HNO₃; very hydroscopic. (Meyer, Z. anorg. 1901, **27**. 386.)

Thulium nitrate,  $Tm_2(NO_3)_6 + 8H_2O$ .

Deliquescent. Can readily be cryst. from HNO₃. (James, J. Am. Chem. Soc. 1911, **33**. 1344.)

Tin (stannous) nitrate, basic, 2SnO,  $N_2O_5$ . Difficultly sol. with partial decomp. in  $H_2O$ . (Weber, J. pr. (2), **26**. 121.)

Tin (stannous) nitrate, Sn(NO₃)₂+20H₂O.
Deliquescent, and easily decomp. (Weber, J. pr. (2) **26.** 121.)

Tin (stannic) nitrate, basic, 4SnO₂, N₂O₅+ 4H₂O. (Thomas, Bull. Soc. 1896 (3) **15**. 312.)

Tin (stannic) nitrate, Sn(NO₈)₄.

Sol. in H₂O, but decomp. very soon on standing. Stable in presence of conc. HNO₃+Aq at 90°, but decomp. at 100°. (Montemartini, Gazz. ch. it. **22**. 384.)

Insol. in moderately conc. HNO₃; readily decomp. by H₂O. (Engel, C. R. 1897, **125**. 710.)

Titanium nitrate, 5TiO₂, N₂O₅+6H₂O.

Sol. to a slight milkiness in cold H₂O. Decomp. on boiling. (Merz, J. pr. 99. 157.)

Uranyl nitrate, basic.

Sol. in  $H_2O$ . (Ordway, Sill. Am. J. (2) 26. 209.)

Uranyl nitrate, UO2(NO3)2.

+H₂O. (de Forcrand, C. R. 1913, **156**. 1046.)

Sol. in fuming HNO₃ from which it can be cryst.

+2H₂O. 52.39% is sol. in dry ether at 7°. 54.25% " " " " " " 10°. (Lebeau, Bull, Soc. 1911, (4) **9.** 300.)

+2H₂O. (Vasilieff, C. C. **1910**, II. 1527.) +3H₂O. Mpt. 121.5°. (Vasilieff.)

Cryst. out of hot HNO₈+Aq. (Ditte.) 100 pts. HNO₃ dissolve 39 pts. at 14°. (Ditte, A. ch. 1879, (5) 18. 337.)

+4H₂O. (de Coninck, C. C. 1901, I. 1354.) +6H₂O. Deliquescent in moist, and efflorescent in dry air. Sol. in 0.5 pt. cold H2O, in 0.3 pt. absolute alcohol, and in 4.0 pts. ether. (Bucholz.)

Melts in crystal H₂O at 59.4°. (Ordway.) 1 pt. is sol. in 2 pts. H₂O at 12.9°-14.2°. (de Coninck, C. R. 1900, 131, 1220.)

#### Solubility in H₂O at t°.

t°	% by wt. UO2(NO3)2, 6H2O
-18.1	54.90
$-12.1 \\ -2.2$	58.00 62.13
$^{0}_{+12.3}$	63.01 67.36
25.6	72.83
$\begin{array}{c} 36.7 \\ 45.2 \end{array}$	78.05 82.96
71.8	86.32

(Vasilieff, J. Russ. Phys. Chem. Soc. 1910, **42.** 570.)

Sp. gr. of  $(UO_2)(NO_3)_2 + Aq$  at t°.

	,, -	·
t°	% salt	Sp. gr.
$\frac{11.5}{12.4}$	$rac{1}{2}$	1.0049 1.0096
15.1 $14.1$	3 ⁻ 4	1.01401 1.0187
$16.7 \\ 14.1 \\ 15.7$	2 3 4 5 6 7	$egin{array}{c} 1.0230 \ 1.8281 \ 1.0236 \end{array}$
15.2 16.5	8 9	1.0378 1.0410
$\begin{array}{c} 15.2 \\ 13.7 \end{array}$	10 11	1.0462 1.0504
$11.5 \\ 14.5 $	12 13	1.0550 1.0594
11.3 12.5 13.2	14 15 16	1.0643 1.0680 1.0718

(de Coninck, C. R. 1900, 131. 1219.)

Sp. gr. of a sat. aq solution = 1.7536 at 17°, containing 54.77% UO₂(NO₃)₂. Sp. gr. = 1.0257 when 2.80% UO₂(NO₃)₂ is present. (Vassiliev, C. C. **1912**. I, 1430.)

Sp. gr. of solution in HNO₂+Aq.

Pts. of salt in 100 pts. HNOs sp. gr. 1.153	1	2	3	4	5
Temp.	11.0°	11.8°	11.3°	12.0°	11.6°
Sp. gr. of the so- lution	1.1585	1.1614	1.1663	1.1698	1.1751

(de Coninck, C. R. 1901, 132. 90.)

Sp. gr. of solution in H ₂ SO ₄ +Aq.						
Pts. of salt in 100 pts. H ₃ SO ₄ 1 pt. 2 pts. 3 pts. 4 pts. 5 pts. sp. gf. 1.138						
Temp.	11.2°	11 8°	40.70	12.0°	11.4°	
Sp. gr. of solution	1.1427	1 1450	1.1511	1 . 1540	1.1576	

(de Coninck.)

Very sol. in dil. HBr and selenic acid (d=1.4). Sol. in conc. H₂SO₄, HNO₈, dil. HCl and less sol, in conc. HCl. (de Coninck, C. R. 1900, **131. 122**0.)

Sp. gr. of solution in HBr+Aq of sp. gr. 1.21.

Sp. gr.	% salt dissolved
1.2122	1
1.2168	2
1.2198	3
1.2250	4
1.2305	5

(de Coninck, Belg. Acad. Bull. 1901, 222.)

lnso! in KOH+Aq, NaOH+Aq or NH4OH +Aq. Sol. in lime water. (de Coninck, C. R. 1900, **131**. 1220.)

Sl. attacked by liquid NH₈. (Gore, Am. Ch. J. 1898, 20. 830.)

At 15°, uranyl nitrate is sol. in comm. methyl alcohol, dil. and conc. ethyl alcohol, propyl and isobutyl alcohol, comm. amyl alcohol, acetone, ether, ethyl acetate, dil. and conc. formic acid and dil. acetic acid; sl. sol. in comm. essence of terebenthine; insol. in benzene (cryst.), comm. toluene and xylene, ligroin, CHCl₃, glycerine and CS₂. (de Coninck, C. R. 1900, **131**. 1220.)

1 pt. is sol. in 55 pts. methyl alcohol at ca. 11.8°.

1 pt. is sol, in 30 pts. ethyl alcohol (85°) at ca. 12.9°

1 pt. is sol. in 65 pts. acetone at ca. 12.0°. 1 pt. is sol. in 5.6 pts. acetic acid (d = 1.035)at ca. 14.25°.

(de Coninck, C. R. 1900, 131. 1304.)

1 pt. sol. in 23.5 pts. methyl alcohol at 11.2°. 1 " " "16.0 " ether " 11.9°.
1 " " "18.4 " ethyl acetate " 10.3°. 1 " " " 5.3 " conc. formic acid at 15.1°

(de Coninck, C. R. 1901, 132. 91.)

Sp. gr. of solution in comm. methyl alcohol at to.

t°	% salt	Sp. gr. referred to H ₂ O
11	1	0.8902
12.9	2	0.8938
12.2	3	0.9003
10.7	4	0.9068
12.8	5	0.9108

(de Coninck, C. R. 1900, 131. 1304.)

Sp. gr. of solution in ethyl alcohol (85°) at t°.  $\mathbf{d_2} = \mathrm{sp.}$  gr. referred to alcohol.

 $d_1 = \text{sp. gr. referred to } H_2O$ .

t°	_1	% salt	dı	d ₂
11. 12. 11. 13. 11.	2 6	1 2 3 4 5	0.8918 0.8979 0.9023 0.9056 0.9131	1.0060 1.0127 1.0177 1.0227 1.0280

(de Coninck, C. R. 1900, 131. 1219.)

Sp. gr. of solution in acetic acid (d=1.055)at to.

 $d_1 = sp.$  gr. referred to  $H_2O$ .  $d_2 = sp.$  gr. referred to acetic acid.

t°	% salt	$\mathbf{d}_1$	$d_2$
14.0 13.8 14.8 16.9 14.6 10.4	1 2 3 4 5 6	1.0387 1.0434 1.0469 1.0505 1.0564 1.0626 1.0662	1.0034 1.0080 1.0100 1.0148 1.0205 1.0265 1.0300

(de Coninck, C. R. 1900, 131. 1304.)

When excess of UO₂(NO₃)₂ is shaken with ether at 7°, two layers are formed, the ether layer containing 59 g. salt per 100 g. solution and the aqueous layer 62.5 g. salt per 100 g. solution. (Lebeau, C. R. 1911, 152. 440.)
Sol. in nearly all proportions in glycerine.

(Postans, Pharm. J. 1883, (3) 13. 752.)

Sol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Sol. in acetone. (Eidmann, C. C. 1899. II, 1014; Naumann, B. 1904, 37, 4328.)

+18H₂O. Sat. aq. solution has D17°/17° = 1.7536. (Vasilieff, J. Russ. phys. Chem. Soc. 1911, **43**. 1183.)

Uranyl nitrate ammonia,  $(UO_2)(NO_3)_2$ , ŽNH₈.

(v. Unruh, Dissert. 1909.)

 $(UO_2)(NO_3)_2$ ,  $3NH_3$ . (v. Unruh.)  $(UO_2)(NO_3)_2$ ,  $4NH_3$ . (v. Unruh.)

Uranyl nitrate phosphate,  $UO_2H_4(PO_4)_2$ ,  $UO_2(NO_8)_2 + 14H_2O$ .

Easily sol. in warm  $H_2O$ , with gradual decomp. Easily sol. in  $HNO_3$ , HCl, or  $H_2SO_4+Aq$ . Sol. in acetic acid with decomp. (Heintz, A. 151. 216.)

Divanadyl nitrate (?).

Known only in solution. Decomp. on evaporation.

Ytterbium nitrate, basic.

Easily sol. in H₂O.

#### Ytterbium nitrate.

Very sol. in H₂O. +3H₂O. Ppt. (Cleve, Z. anorg. 1902, **32.** 140.) +4H₂O. (Cleve.)

Yttrium nitrate, basic,  $2Y_2O_3$ ,  $3N_2O_5+9H_2O$ .

Deliquescent in moist air. Decomp. by cold or boiling H2O. Sol. in a solution of yttrium nitrate without decomp. (Bahr and Bunsen, A. 137. 1.)

Yttrium nitrate,  $Y(NO_3)_3 + 6H_2O$ .

Easily sol. in H₂O, alcohol, or ether. (Cleve.)

141.6 grams are sol. in 100 grams H₂O at 25°. (James, J. Am. Chem. Soc. 1910, 32. 876.)

Zinc nitrate, basic, 8ZnO, N₂O₅+2H₂O.

Insol. in H₂O. (Grouvelle, A. ch. 19. 137.) 6ZnO,  $N_2O_5 + 8H_2O = Zn(NO_3)_2$ ,  $5Zn(OH)_2$ +3H₂O. (Bertels, J. B. **1784**. 274.)

5ZnO,  $N_2O_5 + 5\frac{1}{2}H_2O$ . Insol. in cold, somewhat sol. in hot H₂O. (Havermann.) +6H₂O. Slowly decomp. by cold H₂O.

(Rousseau and Tite.)

9ZnO, 2N₂O₅. Decomp. by H₂O. (Vogel and Reischauer, N. Jahrb. Pharm. **11**. 137.)
4ZnO, N₂O₅+2H₂O. (Schindler.)
+3H₂O. (Ordway, Sill. Am. J. (2) **32**. 14;

Gerhardt, J. Pharm. (3) 12. 61.) Insol. in H₂O; sol. in dil. acids. (Athan-

asesco, Bull. Soc. 1896, **15.** 1080.)  $2ZnO, N_2O_5+3H_2O.$  Decomp. by  $H_2O$ , and slowly by alcohol. (Wells, Am. Ch. J. 9. 304.)

7ZnO,  $4N_2O_5 + 14H_2O = 4Zn(NO_3)_2$ ,  $3\text{Zn}(OH)_2 + 11H_2O$ . (Bertels.)

Zinc nitrate, Zn(NO₃)₂.

Very deliquescent. Easily sol. in H₂O or alcohol.

Sp. gr. of  $Zn(NO_3)_2 + Aq$ . F. = according to Franz (J. pr. (2) 5. 274) at 17.5°; O. = according to Oudemans (Z. anal. 7. 410) at 14°:

15%Zn(NO₃)₂, F. 1.04961.0968 1.1476 O. 1.04251.087 1.1355

20 25 30%Zn(NO₈)₂, 1.2640 1.20241.32681.1875 1.2451.305

35 40 50%Zn(NO₃)₂. F. 1.906 1.4572 1.5258 1.5984

Calculated for  $Zn(NO_8)_2 + 6H_2O$ :

20 30 40 50% salt. 1.05361 1.1131 1.1782 1.2496 1.3292 (Oudemans.)

 $Zn(NO_3)_2+Aq$  when heated soon decomposes, with formation of an insol. basic salt. (Ordway.)

Sp. gr. of  $Zn(NO_3)_2 + Aq$  at room temp. containing: 15.95530.626 44.5% Zn(NO₃)₂. 1.11551.22911.4367 (Wagner, W. Ann. 1883, 18. 270.)

Sp. gr. of Zn(NO₃)₂+Aq at 25°. . Concentration of Zn(NO₃)₂+Aq Sp. gr.

1-normal 1.0758 1.0404 1/4-1.0191 " 1/8-1.0096

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Sp. gr. of  $Zn(NO_3)_2 + Aq$ . at 16°.

½ Zn(NO ₃ ) ₂ g. per 1000 g. of solution	Sp. gr. 16°/16°
0.0000	1.000000
0.9950	1.000814
2.0061	1.001646
4.1535	1.003413
8.1824	1.006733
17.7760	1.014702
34.5920	1.028890
68.6780	1.058644

(Dijken, Z. phys. Ch. 1897, 24. 108.)

Sp. gr. of  $Zn(NO_3)_2+Aq$  at 17.3°, when p= per cent strength of solution; d= observed density; w = volume conc. in grams per cc. pd  $\overline{100} = w$ .

p	d	w
47.28	1.5504	0.73310
41.32	1.4579	0.60240
30.86	1.3136	0.49535
29.21	1.2933	0.37780
19.65	1.1830	0.23246
14.39	1.1284	0.16232
11.36	1.0988	0.12478
7.091	1.0597	0.07515
5.923	1.0491	0.06213
1.574	1.0118	0.01593
1.210	1.0087	0.01221

(Barnes, J. Phys. Chem. 1898, 2. 545.)

Very easily sol. in liquid NH₃. (Franklin,

Am. Čh. J. 1898, **20.** 830.)

 $+1\frac{1}{2}H_2O$ . 100 pts. HNO₃ dissolve 28 pts. at 13°; 55 pts. at 55°. (Ditte, A. ch. 1879, (5) 18. 335.)

+2H₂O. (Vasilieff, C. C. 1909, II. 1966.) +3H₂O

Solubility in H₂O.

Sat. solution contains at:

41° 43° 40° 45.5° mpt. 66.38 67.42 68.21 69.26 77.77% Zn(NO₃)₂. (Funk, Z. anorg. 1899, 20, 401.)

 $+6H_2O.$ Solubility in H₂O.

Sat. solution contains at:

–18°′—15° ---13° -12° 44.6345.26 45.75%Zn)NO₂)₂, 45.51

+12.5° 25° 18° 48.56 52.00 53.50 55.90% Zn(NO₃)₂,

36.4° (mpt.) 36° 33 5° 63 63 64.7365.83% Zn(NO₃)₂.

(Funk, Z. anor: 1899, 20 400.)

100 g  $Z_n(NO_3)_2 + Aq$  sat. at 0° contain 48.7 g.  $Z_n(NO_3)_2$ ; at 18°, 53.5 g.  $Z_n(NO_3)_2$ . (Mylius, Z. anorg. 1910, 74. 411.)

Melts in its crystal H₂O at 36.4° (Ordway).

50° (Pierre); boils at 131° (Ordway). Sp. gr. of solution sat. at 18° = 1.664, and

contains 53 9% Zn(NO₈)₂. 1897, **30**. 1718.) (Mylius, B.

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314,)

 $+9H_{2}().$ 

Solubility in H₂O.

Sat. solution contains at:

·25° ---22.5° --20° -18° 40.10

40.75 $42.03 \quad 43.59\% \text{ Zn(NO_3)_2}.$ Cryohydrate is formed at -29°.

(Funk, Z. anorg. 1899, 20, 401.)

Zinc nitrate ammonia, Zn(NO₃)₂, 4NH₃. Ppt. (Ephraim, B. 1915, 48, 638.)  $+^{2}/_{3}H_{2}O.$ 

Deliquescent. Sol. in H₂O. (André, C. R.

100. 639.)

13ZnO, 3N₂O₅, 2NH₈+18H₂O. Insol. in cold, decomp. by warm H₂O. (André, C. R. 1885, **100**. 640.)

Zinc nitrate cupric oxide,  $Zn(NO_3)_2$ ,  $3CuO + 3H_2O$ .

(Mailhe, A. ch. 1902, (7) **27.** 169.)

Zinc nitrate hydrazine, Zn(NO₃)₂, 3N₂H₄. Decomp. by hot H₂O.

Sol. in NH4OH. (Franzen, Z. anorg. 1908, **60.** 279.)

Zirconium nitrate, basic, 3ZrO2, 2N2O5.

Insol. in H₂O. ZrO2, N2O5. Easily sol. in H2O and alcohol. +H₂O. As above.

Zirconium nitrate,  $Zr(NO_3)_4 + 5H_2O$  (?). Deliquescent, and sol, in H₂O.

Nitric oxide, NO.

See Nitrogen dioxide.

#### Nitrilobromosmic acid.

#### Ammonium nitrilopentabromosmate, $[OsNBr_{\delta}](NH_{4})_{2}+H_{2}O.$

Very sol, in H₂O. Decomp, in dil. aq. solution.

Stable in HBr+Aq.

Insol. in organic solvents. (Werner, B. 1906, **39.** 501.)

#### Cæsium hydrogen nitrilopentabromosmate, [OsNBr₅]₂Cs₃H.

Sl. sol. in H₂O. (Werner.)

## Potassium nitrilotetrabromosmate.

[OsNBr₄]K+2H₂O. Very sol. in H₂O. Decomp. in aq. solution. Stable in HBr+Aq. Insol. in organic solvents. (Werner.)

#### Rubidium nitrilo pentabromosmate, [OsNBr₆]Rb₂.

Sol. in H₂O. Decomp. in dil. aq. solution after a short time. (Werner.)

#### Nitrilochlorosmic acid.

#### Ammonium nitrilopentachlorosmate, $(OsNCl_5)(NH_4)_2$ .

Sol. in H₂O; insol. in conc. HCl+Aq. (Werner, B. 1901, **34.** 2702.)

#### Cæsium nitrilopentachlorosmate, (OsNCl₅)Cs₂.

Sol. in H₂O. (Werner.)

#### Potassium nitrilopentachlorosmate, (OsNCl₅)K₂.

Sol. in H₂O; pptd. by HCl; insol. in organic solvents. (Werner.)

#### Rubidium nitrilo pentachlorosmate, (OsNCl₅)Rb₂.

Sol. in H₂O; decomp, in dil. neutral solution. (Werner.)

## Nitrilotrimetaphosphoric acid, H₂NP₃O₇=

FO_OH PO < 0 PO < ŎH.

Known only in solution. (Mente, A. 248. 260.)

## Aluminum nitrilotrimetaphosphate.

Insol. in H₂O, conc. HCl, or HNO₃+Aq. Slowly sol. in boiling conc. H₂SO₄. Sol. in warm NaOH+Aq or Na₂CO₃+Aq without decomp. Insol. in NH₄OH+Aq. (Mente.)

#### Barium —, BaNP₈O₇.

Insol. in dil. or conc. acids. Decomp. by boiling NaOH or Na₂CO₃+Aq. Insol. in  $NH_4OH + Aq.$  (Mente.)

## Cadmium nitrilotrimetaphosphate.

Easily sol. in NH4OH+Aq, or boiling (NH₄)₂CO₃, or NaOH+Aq. (Mente.)

#### Calcium ——, $CaNP_3O_7 + H_2O$ .

Sol. in conc. HCl+Aq by long boiling, and more easily in fuming HNO₃+Aq. Insol. in NH₄OH or NaOH+Aq. (Mente.)

#### Chromium ----.

Slowly sol. in dil. acids. Easily sol. in ammonia. Sol. in cold NaOH+Aq. (Mente.)

#### Cobalt —, $CoNP_8O_7 + H_2O$ .

Insol, in H₂O. Sl. sol, in dil. acids. Easily sol, in NH₄OH+Aq. Decomp. by NaOH or  $Na_2CO_3+Aq$ . (Mente.)

#### Copper ----.

Sol. in NH₄OH+Aq. Decomp. by NaOH +Aq. (Mente.)

#### Ferric —, $Fe_2(NP_8O_7)_3$ .

Insol. in conc. acids. Easily sol. in NH4OH  $+\mathrm{Aq}$  or  $(\mathrm{NH_4})_2\mathrm{CO_3}+\mathrm{Aq}$ . Decomp. by NaOH or Na₂CO₃+Aq. (Mente.)

#### Lead ---

Insol, in dil. acids. Sol. in fuming HNO₃. Insol. in NH₄OH+Aq. Sol. in NaOH+Aq. (Mente.)

#### Magnesium —, $MgNP_3O_7+H_2O$ .

Slowly sol. in HCl+Aq. Sol. in H₂SO₄ or fuming HNO₃ with addition of Br₂. Insol. in NH₄OH or (NH₄)₂CO₃+Aq. (Mente.)

## Manganous —, $MnNP_8O_7 + H_2O$ .

Insol, in dil. acids. Very sl. sol. in NaOH+Aq. Insol. in Na₂CO₃ or (NH₄)₂CO₃+Aq. Easily sol. in NH₄OH+Aq. (Mente.)

#### Mercurous ----, Hg₂NP₃O₇.

Insol. in dil. acids, NH4OH, NaOH, or NH4)2CO3+Aq. Easily sol. in fuming  $(NH_4)_2CO_3+Aq.$ HNO₃. (Mente.)

#### Nickel ----, NiNP₈O₇+H₂O.

Insol. in dil. acids, NH₄OH, or (NH₄)₂CO₈ +Aq. (Mente.)

#### Zinc —, $ZnNP_3O_7 + 2H_2O$ .

Easily sol. in NH₄OH, NaOH,  $(NH_4)_2CO_3+Aq.$  (Mente.)

#### Nitrilosulphonic acid, N(SO₈H)₈.

Not known in free state. (Raschig, A. 241.

#### Potassium nitrilosulphonate, N(SO₂K)₃+ 2H₂O.

Soluble in H₂O. (Raschig, A. **241.** 161.) Is identical with "potassium ammon*tris*ulphonate" of Claus.

Insol. in cold H₂O (Claus); sol. in 50 pts. H₂O at 23° (Fremy); in H₂O at scarcely 40° without change. Decomp. by boiling. (Claus.)

## Potassium sodium nitrilosulphonate, $N(SO_3K)_2(SO_3Na)$ .

Nearly insol. in cold H₂O. (Raschig, A.) **241.** 161.)

## Sodium nitrilosulphonate, N(SO₃Na)₃.

Not isolated on account of its extreme solubility in H₂O. (Raschig, A. **241.** 161.)

#### Nitrilodisulphophosphoric acid, NP(SH)₂.

Decomp. by  $H_2O$ . (Stock, B. 1906, 39. 2001.)

## Ammonium nitrilodisulphophosphate, $NP(SNH_4)_2$ .

Easily sol. in H₂O. Not decomp. by boiling with alkali. Decomp. by acid. (Stock.)
Easily sol. in liquid NH₃. (Stock, B. 1903, **36**, 315.)

## Ammonium hydrogen nitrilodisulphophosphate, $SHP(SNH_4)N$ .

Not decomp. by boiling with alkali. Decomp. by acids. (Stock, B. 1906, 39. 1999.)

## Barium nitrilodisulphophosphate, $BaNPS_2 + H_2O$ .

Sol. in  $H_2O$  with decomp. Decomp. by hot  $H_2O$ . Not decomp. by warming with alkali. Decomp. by acid. (Stock.)

### Lead nitrilodisulphophosphate, NPS₂Pb.

Sol. in liquid NH₈. Solution decomp. rapidly with separation of PbS. (Stock.)

## Sodium nitrilodisulphophosphate, NPSNa₂.

Not decomp. by boiling with alkali. Decomp. by acid. (Stock.)

#### Nitrilosulphuric acid.

## Ammonium nitrilosulphate, $N(SO_8NH_4)_3 + 2H_2O$ .

Rather sl. sol. in H₂O, but much more sol. than K salt. (Divers and Haga, Chem. Soc. 1901, **79**. 1094.)

## Sodium nitrilosulphate, $N(SO_3Na)_3 + 5H_2O$ .

Very sol. in  $H_2O$ . (Divers and Haga, Chem. Soc. 1901, **79**. 1097.)

#### Nitrilosulphurous acid.

## Ammonium nitrilosulphite, NH(SO₂NH₄)₂.

Somewhat deliquescent. Very sol. in  $H_2O$ . Slowly decomp. in solution. Decomp. by beiling with HCl. (Divers, Proc. Chem. Soc. 1901, 17. 163.)

#### Nitritocobaltic chloride.

Sol. in 200 pts. cold  $H_2O$ . (Jörgensen, Z. anorg. 5. 172)

## Nitritoplatindiamine nitrate,

 $(N\hat{O}_2)_2Pt(N_2H_6NO_3)_2$ 

Soi. in co'l  $H_2O$  with decomp.; violently decomp. on warming. (Hadow, Chem. Soc. (2) 4. 345.)

## Nitritopurpureocobaric comps.

See Xanthocobaltic comps.

### Nitritopurpureorhodium comps.

See Xanthorhodium comps.

#### Nitrocarbamic acid.

Potassium nitrocarbamate, NO₂.NK. COOK. Decomp. by H₂O. (Thiele, B. 1894, 27. 1909.)

#### Nitro cobalt, Co₂NO₂.

Decomp. by H₂O. (Sabatier and Senderens, C. R. 115. 236.)

#### Nitro copper, CuNO₂.

Violently decomp. by H₂O. (Sabatier and Senderens, C. R. **116**. 756.)

### Nitroferricyanhydric acid.

See Nitroprussic acid.

#### Nitrogen, N₂.

Nearly insol. in all known solvents.

1 vol. recently boiled H₂O absorbs 0.0147 vol. N at 15.5°. (Henry, **1803**.)

1 vol. recently boiled H₂O absorbs 0.025 vol. N.

(Dalton.)

1 vol. recently boiled H₂O absorbs 0.025 vol. N

1 vol. recently boiled H₂O absorbs 0.0156 vol. N

1 vol. recently boiled H₂O absorbs 0.0156 vol. N at ord. temp. (Dalton.)

# 1 vol. $H_2O$ at t° and 760 mm. absorbs V vols. N gas reduced to 0° and 760 mm.

t°	v	t°	v	ť°	v
0	0.02035	7	0.01713	14	0.01500
2	$\left  egin{array}{c} 0.01981 \ 0.01932 \ \end{array} \right $	8 9	0.01675 0.01640	15 16	0.01478 0.01458
$\frac{3}{4}$	0.01884 0.01838	10 11	0.01607 0.01577	17	0.01441 0.01426
5	0.01794 0.01752	12	0.01549 0.01523	19 20	0.01413 0.01403
6	0.01752	13	0.01523	20	0.01403

(Bunsen.)

Coefficient of absorption =  $0.020346 - 0.00053887t + 0.000011156t^2$ . (Bunsen.)

t٥

15

16

17

1 l. H ₂ O absorbs ccm. N from atmospheric a	ir
at 760 mm. pressure and to.	

t°.	eem. N	t°	eem. N
0	19.29	15	13.95
5	17.09	20	12.80
10	15.36	25	11.81

## (Dittmar, Challenger Exped. Report, vol. i.)

t°	cem. N	t°	eem. N
0	19.14	15	13.73
5	16.93	20	12.63
10	15.14	25	11.80

#### (Hamberg, 1885.)

### Absorption of N by H₂O at t° and 760 mm. $\beta$ = coefficient of absorption.

t°	β	t°	β	t°	β
0	0.02388	18	0.01696	36	0.01252
l:	2337	19	1667	37	1233
2	2288	20	1639	38	1215
2 3	2241	21	1611	39	1198
<b>4</b> 5	2196	22	1584	40	1182
5	2153	23	1557	41	1166
6	2111	24	1530	42	1151
7	2070	25	1504	43	1137
. 8	2031	26	1478	44	1124
9	1993	27	1453	45	1111
10	1956	28	1428	46	1099
11	1920	29	1404	47	1088
12	1885	30	1380	48	1078
13	1851	31	1357	49	1069
14	1818	32	1334	50	1061
15	1786	33	1312	60	1000
16	1755	34	1291	100	1000
17	1725	35	1271		
	(D.1	<u> </u>	1. XX7. A	44	210 \

#### (Bohr and Bock, W. Ann. 44. 318.)

Absorption of N by  $H_2O$  at  $t^{\circ}$  and 760 mm.  $\beta = \text{coefficient}$  of absorption;  $\beta_1 = \text{``Solubility''}$  (see under Oxygen).

t°	β	$oldsymbol{eta}_1$	
0	0.02348	0.02334	
1	2291	2276	
2	2236	2220	
$\frac{2}{3}$	2182	2166	
4	2130	2113	
4 5	2081	2063	
6	2032	2013	
7	1986	1966	
8	1941	1920	
9	1898	1877	
10	1857	1834	
11	1819	1795	
12	1782	1758	
13 J	1747	1722	
14	1714	1687	

Absorption of N by H2O at to.-Continued. β

0.1682

1651 1622 Bı

0.1654

1622 1591

17	1022	150
18	1594	1562
19	1567	1534
20	1542	1507
21	1519	1482
22	1496	1457
23	1473	1433
$\frac{20}{24}$	1452	1410
$\tilde{2}\tilde{5}$	1432	1387
	1411	1365
26	1392	1344
27		1323
28	1374	1303
29	1356	
30	1340	1284
31	1321	1263
32	1304	1243
33	1287	1224
34	1270	1204
35	1254	1185
36	1239	1167
37	1224	1149
38	1210	1131
	1196	1114
39	1183	1097
40		1082
41	1171	
42	1160	1067
43	1149	1052
44	1139	1037
45	1129	1023
46	1120	1009
47	1111	0995
48	1102	0982
49	1094	0968
50	1087	0955
$\frac{50}{52}$	1072	0929
54	1058	0902
	1045	0876
56	1033	0849
58		0822
60	1022	0794
62	1011	0765
64	1001	
66	0992	0736
68	0983	0707
70	0976	0676
72	0970	0645
74	0965	0614
76	0961	0581
78	0959	0546
80	0957	0510
82	0956	0472
84	0955	0432
86	0954	0388
	0953	0343
88		0294
90	0952	0242
92	0951	
94	0950	0187
96	0949	0128
98	0948	0066
100	0947	0000

(Winkler, B. 24. 3606.)

Coefficient of absorption for H₂O = 0.01432 at 25°; 0.01621 at 20°; 0.01789 at 15°; 0.02003 at 10°; 0.02173 at 5°. (Braun, Z. phys. Ch. 1900, 33. 730.)

Solubility in H₂O at various pressures.

V = volume of the absorbing liquid. P = Hg-pressure in metres.  $\lambda = \text{coefficient of solubility.}$ 

v	t°	ľ	λ
33.134 ccm.	19.4	0 8910 1.0453 1.2488 1.4764 1.8111 2.3961 2.9074 3.3411 4.1382 4.5958 5.1103 5.8349 6.2767 7.1059 7.5815 8.1074	0.01617 0.01616 0.01611 0.01608 0.01602 0.01597 0.01585 0.01579 0.01561 0.01528 0.01515 0.01487 0.01487
32.152 ccm.	24.9	0.8977 1.0129 1.1887 1.5573 1.9846 2.5171 2.8781 3.2956 4.0947 4.5581 5.0529 5.5935 6.1956 7.0333 7.5596 24.1846	0.01498 0.01493 0.01491 0.01487 0.01482 0.01478 0.01453 0.01440 0.01444 0.01426 0.01413 0.01408 0.01377 0.01369

(Cassuto, Phys. Zeit. 1904, 5. 236.)

Coefficient of absorption for H₂O = 0.01565 at 20.18°. (Hüfner, Z. phys. Ch. 1907, 57. 615.)

Absorption of N₂ by distilled H₂O at t°. a = ccm. of N₂ absorbed by 1 l. of H₂O at t° and 760 mm.

U WIII	,,00	No.			
t°	a	t.º	a	t°	a
0 1 2 3 4 5 6 7	23.00 22.50 22.02 21.55 21.09 20.64 20.20 19.77 19.35 18.94	17 18 19 20 21 22 23 24 25 26	16.29 16.03 15.78 15.54 15.29 15.06 14.84 14.63 14.43 14.23	34 35 36 37 38 39 40 41 42 43	12.93 12.79 12.65 12.52 12.39 12.27 12.15 12.04 41.92 11.80
10 11 12 13 14 15 16	18.54 18.16 17.80 17.46 17.14 16.84 16.56	27 28 29 30 31 32 33	14 04 13.87 13.71 13.55 13.39 13.23 13.08	44 45 46 47 48 49 50	11.68 11.57 11.46 11.35 11.24 11.13 11.02

(Fox, Trans. Faraday Soc. 1909, **5.** 73.)

Solubility in  $H_2O$  at  $25^{\circ} = 0.1561$ . (Drucker

solubility of N₂ in H₂O at 25°=0.0231. (Calculated according to special formula, for which see original article.) (Findlay and Creighton, Chem. Soc. 1911, 99, 1315.)

Coefficient of absorption for  $H_2O = 0.01689$ at 15°; 0.01670 at 16.2°; 0.01622 at 17.2°. (Müller, Z. phys. Ch. 1912, **81**. 493.)

1 l. sea water (sp. gr. 1.027) absorbs ccm. N from atmosphere at to and 760 mm. pressure-

t°	According to	According to	According to
	Tornoë	Dittmar	Hamberg
0 5 10 15 20 25	14.40 13.25 12.10 10.95	15.60 13.86 12.47 11.34 10.41 9.62	14.85 13.32 12.06 11.04 10.25 9.62

No. of ccm. of N₂ (containing 1.185% argon) absorbed by a l. of sea-water from a free dry atmosphere of 760 mm. pressure at given temperatures.

Cl per 1000	0°	4°	8°	12°	16°	20°	24°	28°
4 8 12 16	18.64 17.77 16.90 16.03 15.18 14.31	16.27 15.51 14.75 14.00	14.98 14.32 13.66 13.00	13.88 13.30 12.72 12.15	12.94 12.44 11.93 11.73	12.15 11.70 11.25 10.81	11.46 11.07 10.67 10.27	10.89 10.52 10.16 9.80

(Fox. Trans. Faraday Soc. 1909, 5. 77.)

Absorption of N₂ by  $H_2SO_4+Aq$  at t°.  $\alpha = \text{coefficient}$  of absorption.

Normality of the acid	t°	a
0	20.9	0.0156
4.9	20.9	0.0091
8.9	20.9	0.0072
10.7	21.2	0.0066
20.3	21.1	0.0049
24.8	21.5	0.0048
29.6	20.8	0.0051
34.3	20.9	0.0100
35.8	21.1	0.0129

(Behr, Z. phys. Ch. 1910, 71, 49.)

Absorption of N₂ by BaCl₂+Aq.

'at' = coefficient of absorption at t'.

Per cent of Backs in the solution	a25°	a20°	a15°	a10°	a5°
11.927 6.903 6.738	0.00855 0.01044 0.01036	0.00976 0.01184 0.01182	0.01139 0.01317 0.01340	0 01249 0.01474 0 01494	0.01270 0.01368 0.01598 0.01628
3.870 3.325	0.01137 0.01190				$0.01802 \\ 0.01826$

(Braun, Z. phys. Ch. 1900, 33. 733.)

Absorption of  $N_2$  by NaCl+Aq. at°=coefficient of absorption at t°.

Per cent of NaCl in the solution	a25°	a20°	a15°	a10°	a5°
11.732				0.00930	
10.945				0.00912	
8.135				0.01131	
8.033				0.01121	
6.595				0 01252	
6.400				0.01259	
4.196				0.01451	
3.880				0.01475	
2 120				0.01638	
2 100				0.01656	
0.686				0.01833	
0.671	[0.01304	0.01484	0 01642	[0.01845]	0.02000

(Braun, l. c.)

At —191.5° liquid oxygen dissolves 458 times its vol. or 50.7 per cent of its weight of gaseous nitrogen. (Erdmann, B. 1904, 37. 1191.)

At 18° and 760 mm, 100 vols.  $\rm H_2O$  or alcohol of 0.84 sp. gr. absorb 4.2 vols. N gas. (de Saussure, 1814.)

1 vol. alcohol at t° and 760 mm. dissolves V vols. N gas reduced to 0° and 760 mm.

t°	v	t°	v
0 1 2 3 4 5 6 7	0.12634 0.12593 0.12553 0.12514 0.12476 0.12440 0.12405 0.12371	13 14 15 16 17 18 19 20	0.12192 0.12166 0.12142 0.12119 0.12097 0.12076 0.12056 0.12030
8	0.12371	21	0.12021
9 10 11 12	0.12306 0.12276 0.12247 0.12219	22 23 24 	0.12005 0.11990 0.11976

(Bunsen's Gasometry.)

1 vol. alcohol absorbs 0.126338-0.000418t+0.0000060t² vols. N gas. (Carius, A. **94.** 136.)

Solubility in alcohol at 25°.

Vol. H ₂ O	Vol. % alcohol	Solubility
100 80 67	0 20 33 100	0.01634 0.01536 0.01719 0.1432

(Just, Z. phys. Ch. 1901, 37. 361.)

1 vol. ether absorbs 0.15 vol. N (Döbereiner); 1 vol. caoutchine absorbs 5 vols. N in 5 weeks (Himly).

Solubility of  $N_2$  in ether = 0.2580 at 0°; 0.2561 at 10°. (Christoff, Z. phys. Ch. 1912, 79. 459.)

Solubility in organic solvents

colubility in organic solvenus						
Solvent	Solubility at 25° C.	Solu- bility at 20° C.	$\frac{ds}{dt}$			
Glycerine	Not measurable					
Water Aniline	0.01634 0.03074	0 01705 0 02992	-0.000142 +0.000164			
Carbon bisulphide Nitrobenzene	0 05860 0.06255	0 05290 0.06082	+0.00114 +0.000346			
Benzene	0.1159	0 114	$\pm 0.0009$			
Glacial acetic acid Xylene	0 1190 0.1217	$\begin{bmatrix} 0.1172 \\ 0.1185 \end{bmatrix}$	+0.00036 +0.00062			
Amyl alcohol Toluene	0.1225 0.1235	$0.1208 \\ 0.1186$	+0.00034 +0.00098			
Chloroform	0.1348	0 1282	+0.00132			
Methyl alcohol Ethyl alcohol (99.8%)	0.1415 0.1432	0.1348	+0.00134 +0.00064			
Acetone Amyl acetate	0.1460 0.1542	0 1383 0 1512	+0.00154 +0.0006			
Ethyl acetate	0.1727	0.1678	+0.00098			
Isobutyl aceate	0.1734	0.1701	+0.00066			

(Just, Z. phys. Ch. 1901, 37. 361.)

Coefficient of absorption for petroleum = 0.117 at 20°; 0.135, at 10°. (Gniewasz and Walfisz, Z. phys. Ch. 1. 70.)

## Absorption of N₂ by propionic acid+Aq. at°=coefficient of absorption at t°.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Per cent of propionic acid in the solution	a25°	a20°	a15°	<b>a</b> 10°	a5°
	11 023	0.01295	0 01447	0.01585	0 01800	0 01977
	9.537	0.01336	0.01471	0.01634	0 01823	0 02040
	9 155	0.01329	0.01469	0.01630	0 01845	0 02026
	6.066	0.01335	0.01476	0.01637	0 01855	0 02077
	5.891	0.01338	0.01480	0.01648	0 01872	0 02089
	4.081	0.01365	0.01541	0.01688	0 01919	0 02095

(Braun, Z. phys. Ch. 1900, 33, 732.)

Solubility of  $N_2$  in isobutyric acid+Aq at  $t^{\circ}$ . P = Corrected pressure at end of experiment in mm. Hg at  $0^{\circ}$ . S = Solubility of  $N_2$ .

Solvent	t°	P	s
Pure isobutyric acid	25.05	262.6 388.3 566.1 662.4 783.5 832.2	0 1609(?) 0.1640 0.1647 0.1656 0.1656
37.5% solution of isobutyric acid+Aq Vapor pressure = 21.6 mm.	23.02	246.2 492.2 563.6 836.3 867.3	0.0393 0.0393 0.0393 0.0400 0.0401
Vapor pressure = 30.6 mm.	29.02	231 468.4 480.7 536 656 720	0.0373 0.0384 0.0383 0.0385 0.0384 0.0386

(Drucker and Moles, Z. phys. Ch. 1910, 75. 434.)

Absorption of  $N_2$  by chloralhydrate +Aq.  $t^{\circ}$  = temp. of the solution. P = % chloralhydrate in the solution.  $\beta t^{\circ}$  = coefficient of absorption at  $t^{\circ}$ .  $\beta 15^{\circ}$  = coefficient of absorption at  $15^{\circ}$ .

t°	P	βt°	β15°
15.6	15.8	0.01574	0.01580
15.4	28.2	0.01418	0.01422
16.4	37.25	0.01288	0.01300
16.9	47.0	0.01260	0.01275
17.0	56.52	0.01230	0.01245
15.3	71.5	0.01415	0.01420
14.8	78.8	0.01447	0.01495

(Müller, Z. phys. Ch. 1912, 81. 499.)

Absorption of N₂ by organic substances +Aq at 15°.

P = % of the organic substance in the solvent.  $\beta 15^{\circ} = \text{coefficient}$  of absorption at  $15^{\circ}$ .  $315^{\circ} = 3\text{olubility}$  at  $15^{\circ}$ .

Organic substance used	P	β15°	815°
Chloralhydrate	0	0.01725	(A)
· ·	0	0.01675	0.01796
	0	0.01706	,
	6.9	0.0164	0.0173
	14.0	0.0154	0.0162
	15.0	0.0152	0,0160
	23.6	0.0134	0.0141
	26.1	0.0141	0.0149
	37.6	0.0123	0.0130
	48.9	0.7115	0.0121
	49.3	0.0118	0.0124
	61.3	0.0114	0.0120
	70.9	0.0131	0.0138
	71.2	0.0130	0.0137
	78.3	0.0152	0.0160
	79.1	0.0150	0.0165
Glycerine	0	0.01707	. *
1	0	0.01708	*
	15.7	0.01425	<b>.</b>
	15.7	0.01376	
	29.9	0.01087	
	46.6	0.00840	3
	57.6	0.00698	
	67.1	0.00635	
	72.8	0.00552	
	74.7	0.00597	
	77.0	0.00527	
	85.1	0.00482	
	87.3	0.00492	
	88.5	0.00536	
	99.25	0.00524	

(Hammel, Z. phys. Ch. 1915, 90. 121.)

Absorption of N₂ by glycerine+Aq.

 $t^{\circ}$  = temp. of the solution. P = % glycerine in the solution.  $\beta t^{\circ}$  = coefficient of absorption at  $t^{\circ}$ .  $\beta 15^{\circ}$  = coefficient of absorption at  $15^{\circ}$ .

t°	P	βt°	β15°
16.1	25.0	0.01240	0.01266
15.6	42.2	0.00966	0.00976
14.7	51.5	0.00759	0.00759
14.9	58.0	0.00703	0.00703
15.9	80.25	0.00520	0.00530
16.2	90.0	0.00570	0.00583
18.0	95.0	0.00578	0.00716

(Müller, Z. phys. Ch. 1912, 81. 496.)

Solubility of N₂ in glycerine+Aq at 25°.

G = % by wt. of glycerine in the solvent. S =solubility of  $\tilde{N}_2$ .

P = corrected pressure at end of experiment in mm. Hg at 0°.

G	P	S
16 29.7 48.9 * 74.5 \$4.1	598.4 915.5 556.5 846.5 617.7 859.8 588.5 637.3 757.0	0.0103 0.0103 0.0067 0.0068 0.0052 0.0051 0.0025 0.0024

(Drucker and Moles, Z. phys. Ch. 1910, 75.

Absorption of N₂ by sucrose+Aq. t° = temp. of the solution.

P=% sucrose in the solution.  $\beta$ t° = coefficient of absorption at t°.  $\beta 15^{\circ}$  = coefficient of absorption at 15°.

i t°	P	βt°	β15°
16.2		0.01670	0.01700
17.2		0.01622	0.01688
16.8	11.38	0.01432	0.01480
16.9	20.00	0.01233	0.01280
17	29.93	0.01025	0.01053
17.8	30.12	0.01033	0.01090
18	47.89	0.00742	0.00785
17.7	48.57	0.00658	0.00700

(Müller, Z. phys. Ch. 1912, 81. 493.)

Absorption of N₂ by organic substances +Aq at t°.

V=absorbed volume reduced to 0° and 760 mm.

a = coefficient of absorption.

Solution	Vol. of solution eem.	t°	V ccm.	a
N-dextrose N-dextrose N-dextrose N-levulose N-arabinose N-erythritol N-alanine N-glyocoll N-urea N-acetamide	409.94 409.94	20.21 20.2 20.25 20.21 20.25 20.19 20.16 20.18	5.14 5.51 4.27 4.40 4.87 4.445 4.47 5.37	0.01215 0.01380 0.01480 0.01221 0.01203 0.01321 0.01213 0.01212 0.01477 0.01475

(Hüfner, Z. phys. Ch. 1907, 57, 618-621.)

Nitrogen bromide, NBr₃. Decomp. under H₂O.

Nitrogen bromophosphide, PBr₂N.

Insol. in H₂O. Sol. in ether, less sol. in CS₂ or CHCl₃. (Besson, C. R. 114. 1479.)

Nitrogen bromosulphide.

See Nitrogen sulphobromide.

Nitrogen chloride, NCl₃.

Very unstable. Explodes when heated to 93° or by contact with other substances. Insol. in H₂O, but is decomp. thereby (in 24 hours by cold H₂O). Sol. in CS₂, PCl₃, and S₂Cl₂. (H. Davy, Phil. Trans. **1813**, **1**. 242.) Sol. in C₅H₅, CS₂, CHCl₆, CCl₄. (Hentschel B. 1897, **30.** 1434.)

Nitrogen chlorophosphide, NaPaCla.

Insol. in H₂O, but slowly decomp. thereby. Insol. in hot H₂SO₄, HCl, or HNO₃+Aq. Decomp. by hot fuming HNO₈. Sol. in alcohol; very sol. in ether, but these solutions gradually decompose. Sol. in CS₂, CHCl₃, C₆H₆, and oil of turpentine.

Sol. in POCl₃. (Gladstone, Chem. Soc. 3.

138.)

Nitrogen chlorosulphide.

See Nitrogen sulphochloride.

Nitrogen fluoride.

Very explosive. (Warren, C. N. 55. 289.)

Nitrogen monoiodamine, NH₂I.

Very rapidly decomp. by H₂O into N₂H₃I₃. (Raschig, A. **230.** 212.)

Nitrogen diiodamine, NHI₂.

Properties as trioddiamine.

Nitrogen triioddiamine, NH₈, NI₈.

Decomp. by H₂O. (Raschig, A. 230. 212.) Insol, in absolute alcohol. Sol. with decomp. in HCl+Aq. (Bunsen.)

Nitrogen iodide, NaI.

See Triazoiodide.

Nitrogen iodide, NI₃.

Insol. in H₂O, but slowly decomp. thereby. Sol. in HCl+Aq. Sol. in KCN+Aq. (Millon, J. pr. 17. 1.

Sol. in Na₂S₂O₃+Aq. (Guyard, C. R. 97. 526.)

Sol. in KSCN + Aq. (Raschig, A. 230. 212.)

Nitrogen iodide ammonia, NI₂, 3NH₂; NI₂, 2NH₃; and NI₃, NH₃.

(Hugot, C. R. 1900, 130. 507.) NI₃, 12NH₃. Ppt.; insol. in ether. (Ruff, B. 1900, 33. 3028.)

#### Nitrogen monoxide, N2O.

(a.) Liquid. Miscible with alcohol or ether.(b.) Gas.

1 vol.  $H_2O$  absorbs 0.78-0.86 vol.  $N_2O$  at ordinary temp. (Henry); 0.80 vol. at ordinary tenp. (Dalton); 0.76 vol. at ordinary temp. (de Saussure); 0.708 vol. at 18° (Pleisch); 0.54 vol. (Davy).

1 vol.  $H_2O$  at t° and 760 mm. absorbs V vols.  $N_2O$ , reduced to 0° and 760 mm.

t°	v	t°	v
0	1.3052	13	0.8304
1	1.2605	14	0.8034
<b>2</b>	1.2172	15	0.7778
$\frac{2}{3}$	1.1752	16	0.7535
4	1.1346	17	0.7306
4 5	1.0954	18	0.7090
6	1.0575	19	0.6888
7	1.0210	20	0.6700
₃8	0.9858	21	0.6525
9	0.9520	22	0.6364
10	0.9196	23	0.6216
11	0.8885	24	0.6082
12	0.8588		

(Bunsen's Gasometry.)

1 vol.  $\rm H_2O$  absorbs 1.30521–0.0453620t+0.00068430t2 vols.  $\rm N_2O$  at t° and 760 mm. (Bunsen.)

Coefficient of absorption by  $H_2O = 0.01883$  at 15°. (Steiner, Z. phys. Ch. 1895, 18. 14.)

Coefficient of absorption by  $\rm H_2O = 0.600$  at 23.5°; 0.773 at 15.5°; 0.951 at 8.1°. (Gordon, Z. phys. Ch. 1895, **18.** 4.)

Absorption of N₂O by H₂O at t°.

t°	Coefficient of absorption
25 20 15 10 5	0.5752 0.6654 0.7896 0.9479 1.1403

(Roth, Z. phys. Ch. 1897, 24. 123.)

Solubility in  $H_2O$  at  $25^\circ = 0.5942$ ; at  $20^\circ = 0.6756$ ; at  $15^\circ = 0.7784$ ; at  $10^\circ = 0.9101$ ; at  $5^\circ = 1.067$ . (For formula for "solubility," see under oxygen.) (Geffcken, Z. phys. Ch. 1904, **49**. 278.)

Solubility of  $\rm N_2O$  in  $\rm H_2O=0.592$  at 25° and 758–1362 mm. pressure. (Findlay and Creighton, Chem. Soc. 1910, **97.** 538.)

creignton, Chem. Soc. 1910, 97, 538.)
100 vols. H₂SO₄ (sp. gr. = 1.84) absorb 75.7
vols. N₂O; 100 vols. H₂SO₄+Aq (sp. gr. =
1.80) absorb 66.0 vols. N₂O; 100 vols. H₂SO₄
+Aq (sp. gr. = 1.705) absorb 39.1 vols. N₂O;
100 vols. H₂SO₄+Aq (sp. gr. = 1.45) absorb
41.6 vols. N₂O; 100 vols. H₂SO₄+Aq (sp. gr. =
1.25) absorb 33.0 vols. N₂O.
CaCl₂+Aq. and N₂Cl₃+Aq absorb

CaCl₂+Aq, and NaCl+Aq absorb considerable amounts of N₂O. (Lunge, B. 14. 2188.)

Absorption by acids+Aq.

M = content in gram-equivalents per liter. S = solubility (see under Oxygen).

Absorption of N₂O by HNO₃+Aq.

М	S 25°	S 15°
0.610	0.5969	0.7770
0.614	0.5980	0.7766
1.253	0.6045	0.7767
1.254	0.6061	0.7767
2.405	0.6156	0.7735
2.435	0.61.49	0.7737

(Geffcken, Z. phys. Ch. 1904, 49, 278.)

### Absorption of N2O by HCl+Aq.

_	-	
М	S 25°	S 15°
0.549	0.5775	0.7550 *
0.550	0.5759	0.7528
1.089	0.5670	0.7360 **
1.093	0.5657	0.7347
2.300	0.5546	0.7103
2.340	0.5564	0.7122
		·

(Geffcken.)

# Absorption of N₂O by $\frac{\text{H}_2\text{SO}_4}{2}$ +Aq.

M	S 25°	S 15°
0.523	0.5648	0.7328
0.526	0.5657	0.7340
1.050	0.5426	0.6997
1.054	0.5419	0.6984
2.042	0.5083	0.6440
2.047	0.5087	0.6428
2.971	0.4819	0.6024
2.963	0.4820	0.6030
3.897	0.4569	0.5648
3.973	0.4577	0.5640

(Geffcken.)

#### Absorption of N₂O by H₃PO₄+Aq at t°.

t°	% of HaPO4					
	3.38%	4.72%	8.84%	9.89%	13.35%	
15 20	$\begin{array}{c} 0.8827 \\ 0.7388 \\ 0.6253 \end{array}$	0.8665 0.7258 0.6147	0.9883 0.8296 0.6977 0.5926 0.5143	0.8101 0.6826 0.5810	0.7711 0.6505 0.5555	

(Roth, Z. phys. Ch. 1897, 24. 134.)

100 vols. conc.  $FeSO_4+Aq$  absorb 19.5 vols.  $N_2O$ .

Solubility of  $N_2O$  in a solution containing 47.7 g. Fe(OH); per litre at  $25^{\circ}=0.5799$ ; 47.9 g. Fe(OH); per litre at  $25^{\circ}=0.5787$ . (Geffcken, Z. phys. Ch. 1904, 49. 299.)

100 vols. KOH+Aq (sp. gr. =1.12) absorb 18.7 vols. N₂O; 100 vols. KOH+Aq sat. with pyrogallol absorb 18.1 vols. N₂O: 100 vols.

(Gordon, Z. phys. Ch. 1895, 18. 5.)

Absorption of  $N_2O$  by salts +Aq at 15°. M = number of molecules of salt per litre. a = coefficient of absorption.

(Steiner, Z. phys. Ch. 1895, 18. 14-5.)

pyrogall	ol abs	orb 18	.1 vől	s. N ₂ (	); 100	vols.	a = coefficient	of absorption	i
NaUH+ sorb 23.1	aOH+Aq (sp. gr. = 1.1) (7% NaOH) aborb 23.1 vols. N ₂ O; 100 vols. NaOH+Aq sat. ith pyrogallol absorb 28.0 vols. N ₂ O.		Salt	М	a				
Ab M = co	sorptiontent	l absoron of l in gray (see t	N₂O by m-equ	KOH	+Aq.		KCl	3.554 2.909 1.755 1.051 0.526	0.0892 0.1012 0.1279 0.1489 0.1667
М		s	25°		S 15°		KNO ₃	2.430	0.1180
0.54 0.54 1.07	2	0. 0.	5087 5093 4252 4221		0.659 0.659 0.542 0.539	95 27		1.820 1.541 0.879 0.482	0.1311 0.1391 0.1559 0.1683
(Geff	cken,	Z. phy	s. Ch.	1904,	49. 27	8.)	$\mathrm{K_{2}CO_{3}}$	$4.352 \\ 2.939$	$0.0160 \\ 0.0285$
<b>P</b> efficie			ity of tt.	N ₂ O i	in salt	s+Aq		2.156 1.376 0.690 0.341	0.0462 0.0761 0.1183 0.1501
	Concen of a	tration salt	Coe	ff. of ab	sorptio	n at		0.341	0.1628
Salt	G. per 100 g. solu- tion	G. mol. per l.	5°	10°	15°	20°	NaCl	4.815 2.801 2.049 0.825	0.0595 0.0925 0.1130 0.1548
CaCl ₂	9.86 13.99	0.964 1.416	0.608 0.510	0.586 0.441	0.509 0.380	0.435 0.328	NaNO ₂	5.711 3.980 2.656	0.0578 0.0810 0.1052
LiCI	3.85	$0.319 \\ 0.928 \\ 2.883$	0.878	0.743	0.629	0.536		1.413 0.679	0.1370 0.1603
Li ₂ SO ₄	5.46	0.219 0.521 0.836	0.795	0.665	0.557	0.474	$ m Na_2CO_3$	1.218 0.819 0.438 0.207	0.0839 0.1082 0.1385 0.1639
MgSO ₄	7.66	0.521 0.687 0.997	0.708	0.586	0.486	0.414	Na ₂ SO ₄	1.364 0.638 0.335	0.0775 0.1254 0.1519
KCl	7.64 14.58	0.676 1.037 2.187 3.414	0.799 0.654	$0.693 \\ 0.574$	$0.591 \\ 0.500$	0.494 0.430	LiCl	3.734 1.800 0.835	0.0990 0.1370 0.1619
K ₂ SO ₄	2.62	0.154	0.986	0.831	0.701	0.605	MgSO₄	2.501 1.631 0.936 0.433	0.0499 0.0797 0.1159 0.1501
NaCl	8.88 12.78	1.107 1.614 2.391	0.713 0.634	0.603 0.532	0.510 0.449	$0.434 \\ 0.386$	ZnSO ₄	2.180 1.277 0.899 0.397	0.0605 0.0961 0.1175 0.1525
Na ₂ SO ₄	8.53 12.44	0.427 0.646 0.974	0.692 0.559	0.574 0.486	$0.482 \\ 0.417$	0.416 0.354	CaCl ₂	2.962 2.556 1.827	0.0519 0.0619 0.0839
SrCl ₂	5.73	$0.215 \\ 0.380 \\ 0.939$	0.848	0.709	[0.610]	0.556		1.122 0.578 0.321	0.1138 0.1450 0.1619

## Coefficient of absorption of N₂O by NaCl+Aq at t°.

t°	Per cent of NaCl				
	0.990	1.808	3.886	5.865	
5 10 15 20 25	1.0609 0.8812 0.7339 0.6191 0.5363	1.0032 0.8383 0.7026 0.5962 0.5190	0.9131 0.7699 0.6495 0.5520 0.4775	0.8428 0.7090 0.5976 0.5088 0.4424	

(Roth, Z. phys. Ch. 1897, 24, 139.)

Absorption of  $N_2O$  by salts +Aq at  $20^\circ$ . C = concentration of the solution in terms of normal.

L = coefficient of absorption.

Absorption of N₂O by KNO₈+Aq at 20°.

P	С	а
0 1.063 2.720 5.389 10.577	0.1061 0.2764 0.5630 1.1683	0.6270 0.6173 0.6002 0.5713 0.5196

### Absorption of N₂O by NaNO₃+Aq at 20°.

P	C	α
0 1.124 2.531 5.077 8.701	0.1336 0.3052 0.6286 1.1200	0.6270 0.6089 0.5876 0.5465 0.4926

(Knopp, Z. phys. Ch. 1904, 48, 107.)

Absorption of  $N_2O$  by salts+Aq. M = content in gram-equivalents per litre. S = solubility.

Salt	M	S 25°	S 15°
San	171	5 20	5 10
NH₄Cl	0.598	0.5532	0.7203
	0.600	0.5504	0.7185
	1.158	0.5223	0.6800
	1.166	0.5200	0.6775
KI	0.550	0.5367	0.6950
	0.557	0.5344	0.6916
	0.886	0.5025	0.6466
	0.913	0.5012	0.6442
	0.514	0.5428	0.7074
	0.545	0.5406	0.7036
LiCl	0.558	0.5276	0.6884
	0.561	0.5278	0.6877
	1.057	0.4760	0.6163
	1.059	0.4773	0.6146

#### Absorption of N₂O by salts+Aq.— Continued.

Salt	M	S 25°	S 15°
КВr	0.546	0.5306	0.6877
	0.550	0.5318	0.6892
	0.937	0.4908	0.6352
	0.959	0.4899	0.6334
RbCl	0.439	0.5399	0.7050
	0.444	0.5386	0.7053
	0.977	0.4873	0.6306
	9.993	0.4846	0.6276
	0.558	0.5218	0.6782
	0.559	0.5217	0.6787
	1.070	0.4673	0.6046
	1.102	0.4639	0.6020

(Geffcken, Z. phys. Ch. 1904, 49. 278.)

Solubility of  $N_2O$  in a solution containing 39.6 g.  $As_2S_3$  per litre at  $25^\circ$ =0.5819; 42.4 g.  $As_2S_3$  per litre at  $25^\circ$ =0.5833. (Geffcken.)

1 vol. alcohol at t° and 760 mm. absorbs V vols. N₂O gas reduced to 0° and 760 mm.

+0	V	t°	v
0	4.1780	13	3.3734
1 4	4.1088	14	3.3200
2	4.0409	15	3.2678
$\frac{2}{3}$	3.9741	16	3.2169
4	3.9085	17	3.1672
4 5	3.8442	18	3.1187
6	3.7811	19	3.0714
7	3.7192	20	3.0253
8	3.6585	21	2.9805
9	3.5990	22	2.9368
10	3.5408	23	2.8944
11	3.4838	24	2.8532
12	3.4279		

#### (Bunsen's Gasometry.)

## Coefficient of absorption = 4.17805-0.0698160t + 0.0006090t². (Carius.)

At 18° and 760 mm., 100 vols.  $\rm H_{2}O$  absorb 76 vols.  $\rm N_{2}O$ : 100 vols. alcohol of 0.840 sp. gr. absorb 153 vols.; 100 vols. rectified naphtha of 0.784 sp. gr. absorb 254 vols.; 100 vols. oil of lavender of 0.880 sp. gr. absorb 275 vols.; 100 vols. olive oil of 0.915 sp. gr. absorb 150 vols.; 100 vols. att. KCl+Aq (26% KCl) of 1.212 sp. gr. absorb 29 vols. (de Saussure. 1814.) 1 vol. oil of turpentine absorbs 2.5–2.7 vols.  $\rm N_{2}O$ . (de Saussure.)

Absorption of N₂O by glycerine+Aq at t°.

t.º	% by weight of glycerine				
·	3.460%	6.726%	12.120%	16.244%	
25 20 15 10 5	0.5558 0.6468 0.7672 0.9172 1.0967	0.5415 0.6303 0.7454 0.8871 1.0552	0.5268 0.6050 0.7098 0.8411 0.9990	0.5083 0.5851 0.6857 0.8102 0.9586	

(Roth, Z. phys. Ch. 1897, 24. 128.)

#### Absorption of N₂O by urea + Aq at t°.

t°	% by weight of urea					
	3.312%	4.974%	6.366%	7.296%	9.966%	
20 15 10	0.6533 0.7708 0.9209	0.5669 0.6558 0.7732 0.9201 1.0964	0.6539 0.7605 0.9086	$\begin{array}{c} 0.6553 \\ 0.7722 \\ 0.9208 \end{array}$	0.6508 0.7614 0.9007	

(Roth, Z. phys. Ch. 1897, 24. 124.)

### Absorption N₂O by sugar+Aq at 15°.

Number of molecules of C ₁₂ H ₂₂ O ₁₁ per litre	Coefficient of absorption
1.699	0.0892
0.993	0.1284
0.520	0.1561

(Steiner, Z. phys. Ch. 1895, 18. 15.)

Absorption of N₂O by organic substances+

C = concentration of the solution in terms of normal.

a =coefficient of absorption.

Absorption of N₂O by chloral hydrate+Aq at 20°.

. P	С	а
0 2.947 6.848 13.48 16.15 19.60 24.02	0.184 0.445 0.942 1.165 1.474 1.911	0.6270 0.6182 0.6128 0.5960 0.5891 0.5793 0.5675

(Knopp, Z. phys. Ch. 1904, 48. 106.)

## Absorption of N₂O by propionic acid+Aq at

P	С	a
0 1.492 5.702 13.680 15.011 25.589	0.2045 0.816 2.140 2.385 4.645	0.6270 0.6323 0.6369 0.6504 0.6534 0.7219

(Knopp, Z. phys. Ch. 1904, 48, 107.)

#### Absorption of N₂O by oxalic acid + Aq at t°.

t°	Coeff. of abs. in H ₂ C ₂ O ₄ +Aq of given % strength	
	8.122%	3.699%
25	0.5786	0.5643
20	0.6694	0.6538
15	0.7940	0.7745
10	0.9526	0.9264
5	1.1450	1.1094

(Roth, Z. phys. Ch. 1897, 24, 130.)

Coefficient of absorption for petroleum = 2.11 at 20°; 2.49 at 10°. (Gniewasz and Walfisz, Z. phys. Ch. 1. 70.)

The solubility of N₂O in various colloidal solutions has been determined by Findlay and Creighton (Chem. Soc. 1910, 97. 538), for which see original article.

#### Nitrogen dioxide, NO.

1 vol. H2O absorbs 0.1 vol. NO gas at ordinary temp. (Davy); 1 vol. absorbs 0.05 vol. (Henry); 1 vol. absorbs 1/27 vol. (Dalton.)

Absorption of NO by H₂O at 760 mm.

 $\beta = \text{Coefficient of absorption.}$  $\beta' =$  "Solubility."

t°	β	β′	t°	β	β'
0 5 10 15 20 25 30 35 40	0.07381 6461 5709 5147 4706 4323 4004 3734 3507 3311	5640 5061	55 60 65 70 75 80 85 90 95 100	0.03040 2954 2877 2810 2751 2700 2665 2648 2638 2628	0.02570 2375 2169 1947 1706 1439 1146 0817 0439
50	3152	2771			

(Winkler, B. 1901, 34. 1414.)

205.69 cc. H₂O absorb 9.6798 cc. NO at 20° and 760 mm. (Hüfner, Z. phys. Ch. 1907,

Sol. in conc. HNO₃+Aq. 100 vols. HNO₃+Aq of 1.3 sp. gr. agitated with NO gas take up 20 vols. NO. If acid is twice as strong or one-half as strong, the quantity NO is proportional to the amount of  $HNO_3$ . Very dil.  $HNO_3+Aq$  absorbs scarcely more NO than pure  $H_2O$ . (Dalton.)

100 pts. HNO₃+Aq of 1.4 sp. gr. absorb 90 pts. NO (Dalton); sol. in Br₂, and very sl. sol. in conc. H₂SO₄. (Berthelot.)

1 ccm. conc. H₂SO₄ of 1.84 sp. gr. absorbs 0.035 ccm. NO; of 1.50 sp. gr., 0.017 ccm. NO. (Lunge, B. 18. 1391.)

## Absorption of NO by $H_2SO_4+Aq$ at 18° and 760 mm.

a =Coefficient of solubility.

H ₂ SO ₄	a	H ₂ SO ₄	а
98%	not constant	70%	0.0118
90%	0.0193	60%	0.0118
80%	0.0117	50%	0.0120

(Tower, Z. anorg. 1906, 50. 387.)

Very sol. in aqueous solutions of ferrous salts, especially the sulphate. (Priestley.)

1 vol. FeSO₄+Aq of 1.081 sp. gr., containing 1 grain FeSO₄ to 6 grains H₂O, absorbs 6

vols. NO. (Dalton.)

Absorption by ferrous salts+Aq is proportional to the amount of Fe present, irrespective of the acid or concentration of the solution. Between 0° and 10°, about 2 mols. NO are absorbed for each atom of Fe; between 10° and 15°, 1 mol. NO for 2½ to 3 atoms of Fe. The amount of NO absorbed also varies with the pressure. The sp. gr. of the ferrous salt solution is greater after the absorption of NO than before. The solutions are decomp. by heat, and at 100° all NO is given off. (Gay, A. ch. (6) 5. 145.)

Absorption of NO by FeSO₄+Ag at 25°.

A=vol. H₂O (in litres) containing 1 mol. FeSO₄.

V = vol. NO (in litres) absorbed.

A	v	A	v
1.2	1.47	7.2	5.52
1.8	2.01	12.0	6.46
2.4	2.55	18.6	8.01
4.82	4.40	36.0	10.40

(Kohlschütter, B. 1907, 40. 877.)

Absorption of NO by FeSO₄+Aq at to.

205.69 cc. FeSO₄+Aq contain 0.0221 g. Fe. Coefficient of absorption = 0.06067 at 20.09°.

t°	Pressure mm.	NO absorbed cem.
20.1	704.9	14.42
20.1	683.5	14.10
20.1	668.6	13.80
20.2	651.9	13.58
20.05	632.9	13.15
20.0	613.7	12.98

Absorption of NO by FeSO₄+Aq at t°.— Continued.

205.69 cc. of FeSO₄+Aq contain 0.0296 g.

Coefficient of absorption = 0.06505.

ť°	Pressure num.	NO absorbed cem.
20.05	677.5	14.30
20.05	655.8	14.07
20.04	639.1	13.81
20.00	620.2	13.39
20.16	600.5	13.20
20.44	581.2	12.92

205.69 cc. of  $FeSO_4+Aq$  contain 0.0409 g.

Coefficient of absorption = 0.06684.

t°	Pressure n.m.	NO absorbed cem.
20.04	667.6	16.79
20.02	650.6	16.65
20.00	613.1	15.71
20.00	594.6	15.41
20.10	577.1	15.32

205.69 cc. of FeSO₄+Aq contain  $\theta$ .0513 g. Fe.

Coefficient of absorption = 0.07981.

Caronic of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the party of the par			
t°	Pressure mm.	NO absorbed ccm.	
20.10 20.10 20.08 20.10 20.10 20.10	644.8 623.8 606.4 589.7 571.1 553.1	18.82 18.47 18.02 17.56 17.19 16.95	

205.69 cc. of FeSO₄+Aq contain 0.0663 g.

Coefficient of absorption = 0.08059

t°         Pressure mm.         NO absorbed ccm.           20.10         697.3 * 21.91           20.10         678.9 21.60           20.10         660.4 21.18           20.08         638.2 20.71           20.04         620.7 20.28           20.00         602.5 19.87	Coefficient of absorption = 0.00000.		
20.10     678.9     21.60       20.10     660.4     21.18       20.08     638.2     20.71       20.04     620.7     20.28	t°	Pressure mm.	
· · · · · · · · · · · · · · · · · · ·	20.10 20.10 20.08 20.04	678.9 660.4 638.2 620.7	21.60 21.18 20.71 20.28

205.69 cc. of FeSO₄+Aq contain 0.099 g. Fe. Coefficient of absorption = 0.11661.

**************************************			
t°	Pressure mm.	NO absorbed ccm.	
20.10 20.15 20.20 20.00 19.85 19.85	649.9 631.1 618.4 603.3 588.6 574.2	34.26 33.82 33.26 32.76 32.34 31.95	

(Hüfner, Z. phys. Ch. 1907, 59. 419.)

beorption of NO by NiSO. +Aq at to. 205.69 cc. NiSO₄+Aq contain 0.0506 g. Ni. Coefficient of absorption = 0.08311.

* to	Pressure mm.	NO absorbed ccm.
20.2	654.7	23.00
20.2	629.8	22.54
20.2	609.5	22.03
20.15	591.7	21.65
20.14	573.4	21.18

(Hüfner, l. c.)

Absorption of NO by CoSO₄+Aq at t°. 205.69 cc. CoSO₄+Aq contain 0.0598 g. Co. Coefficient of absorption = 0.09146.

t°	Pressure mm.	NO absorbed ccm.
20.15	678.3	23.47
20.16	653.5	23.01
20.20	636.6	22.55
20.30	615.9	21.99
20.40	600.0	21.56

(Hüfner, l. c.)

Absorption of NO by MnCl₂,4H₂O+Aq at t°. 205.69 cc. MnCl₂.4H₂O +Aq contain 0.0697 g. Mn.

Coefficient of absorption = 0.06111.

t°	Pressure mm.	NO absorbed ccm.
20.0	711.96	14.25
20.05	686.5	13.99
20.2	657.4	13.49
20.3	638.9	13.05
20.45	621.0	12.81

(Hüfner, l. c.)

Coefficient of absorption for FeSO₄+Aq of concentration used by Hüfner (Z. phys. Ch. 1907, **59.** 417) = 0.180 at 20°. Hüfner's results are incorrect because he assumed that the absorption-coefficient of NO always had the same value, whereas it does not. NO is reduced by FeSO₄+Aq. (Usher, Z. phys. Ch. 1908, 62. 624.)

Coefficient of absorption for CoSO₄+Aq sat. at 20°=0.0288. (Usher, Z. phys. Ch.

1908, 62. 624.)

Coefficient of absorption for NiSO₄+Aq of the concentration used by Hüfner (cf. Z. phys. Ch. 1907, **59.** 422) = 0.048 at  $20^{\circ}$ .

Coefficient of absorption for NiSO₄+Aq sat. at  $20^{\circ} = 0.0245$ . (Usher, l. c.)

Coefficient of absorption for MnCl₂+Aq. sat. at  $20^{\circ} = 0.0082$ . (Usher, Z. phys. Ch. 1908, 62. 624.)

Absorption of NO by  $FeCl_2+Aq$  at 22°.  $A = vol. H_2O$  (in litres) containing 1 mol. FeCl₂.

V = vol. NO (in litres) absorbed.

A	V
2.5	3.30
5.18	4.83
10.35	6.56
20.7	8.32
51.8	11.89

(Kohlschütter, B. 1907, 40. 878.)

Absorption by  $HCl+FeCl_2+Aq$ . 10.37 l. 30% HCl containing 1 mol.  $FeCl_2$  in solution absorb 15.64 l. NO. 10.37 l. 10% HCl containing 1 mol. FeCl₂ in solution absorb 6.17 l. NO.

(Kohlschütter, l. c.)

Absorption by salts+FeCl₂+Aq. 10.37 l. sat. NaCl+Aq containing 1 mol. FeCl₂ in solution absorb 6.549 l. NO. 10.37 l. sat. NH₄Cl+Aq containing 1 mol.

FeCl₂ in solution absorb 6.549 l. NO.

(Kohlschütter, l, c.) Solubility of NO in  $Fe(NO_3)_2 + Aq$  at 23°.  $A = vol. H_2O$  (in litres) containing 1 mol.

Fe(NO₃)₂. V = vol. NO (in litres) absorbed.

A	V
3.25	2.77
6.50	4.16
13.00	5.54
26.00	6.61

(Kohlschütter, l. c.)

Absorption of NO by CuCl₂+Aq.  $A = vol. \hat{H}_2O$  (in litres) containing 1 mol. CuCl₂.

V = vol. NO (in litres) absorbed.

A	v
0.231	0.120
0.277	0.098
0.371	0.052

(Kohlschütter, l. c.)

Absorption of NO by CuCl₂+conc. HCl. A = vol. conc. HCl (in litres) containing 1 mol. CuCl₂.

V = vol. NO (in litres) absorbed.

· A	v	A	v
0.389 0.410 0.840 1.230 2.462	0.801 0.933 2.838 3.426 3.989	7.499 12.500 18.750 28.650	3.931 3.606 3.153 1.976

(Kohlschütter, l. c.)

Absorption of NO by CuCl2+acetic acid. A = vol. acetic acid (in litres) containing 1 mol. CuCl₂.

V = vol. NO (in litres) absorbed.

A	V
252	51.77
504	39.67
1269	81.60

(Kohlschütter, l. c.)

Absorption of NO by CuCl₂+98% formic

A=vol. 98% formic acid (in litres) containing 1 mol. CuCl₂.
V=vol. NO (in litres) absorbed.

<u>,                                     </u>	V
27.9 56.0 140.0 280.0 1400.0	12.76 13.17 14.34 18.68 27.29

(Kohlschütter, l. c.)

Absorption of NO by CuCl₂+acetone. A = vol. acetone (in litres) containing 1 mol. CuCl₂. V = vol. NO (in litres) absorbed.

A	V	A	v
4.667	14.04	291.60	40.99
29.16	24.01	583.20	67.22
58.33	24.60	1166.40	81.96

(Kohlschütter, l. c.)

Absorption of NO by CuCl₂+methyl alcohol. A = vol. methyl alcohol (in litres) containing 1 mol. CuCl₂.

V = vol. NO (in litres) absorbed.

A	v	A	v
1.60	3.30	$20.50 \\ 82.25$	6.15
8.22	5.60		4.90

(Kohlschütter, l. c.)

Absorption of NO by CuCl₂+ethyl alcohol. A = vol. ethyl alcohol (in litres) containing 1 mol. CuCl₂.

V = vol. NO (in litres) absorbed.

A	v	A	v
1.50	8.70	38.41	18.15
3.84	12.38	76.83	18.05
12.80	15.43	192.10	15.92

(Kohlschütter, l. c.)

Absorption of NO by CuBr₂+Aq. A = vol. H₂O (in litres) containing 1 mol. CuBr₂.

V = vol. NO (in litres) absorbed.

A	v
0.37	0.515
0.62	0.120
0.925	0.000

(Kohlschätter, l. c.)

Absorption of NO by CuBr₂+ethyl alcohol. A = vol. alcohol (in litres) containing 1 mol. CuB. 2.

V = vol. NO (in litres) absorbed.

A	v	A	v
2.625 5.25 13 12 43.74	16.02 19.26 20.51 21.13	131.20 262.50 656.10	22.23 23.46 30.46

(Kohlschütter, ! ..)

Sol. in stannous and chromous salts+Aq. (Peligot.)

No absorbed by  $Fe_2(SO_4)_8 + Aq$ . (Dalton.) 1 vol. absolute alcohol absorbs 0.31606-0.003487t+0.000049t2 vols. NO between 0° and 25°. (Bunsen.)

1 vol. alcohol at t° and 760 mm. absorbs V vols. NO gas reduced to 0° and 760 mm.

t°	v	t°	v
0 1 2 3 4 5	0.31606 0.31262 0.30928 0.30604 0.30290 0.29985	13 14 15 16 17 18	0.27901 0.27685 0.27478 0.27281 0.27094 0.26917
6 7 8 9 10 11 12	0.29690 0.29405 0.29130 0.28865 0.28609 0.28363 0.28127	19 20 21 22 23 24	0.26750 0.26592 0.26444 0.26306 0.26178 0.26060

(Bunsen's Gasometry.)

Abundantly absorbed by CS₂. (Friedburg, C. N. 48. 97.)

Nitrogen trioxide, N2O3.

Sol. in H₂O at 0°. If large amt. of H₂O is present, the solution is quite stable at ordinary temp. (Fremy, C. R. 79. 61.)

Sol. in HNO₃+Aq.

Sol, in conc. H₂SO₄ to form HNOSO₄. Sol. in ether.

rogen trioxide stannic chloride, N2O3, SnCl.

Decomp. by H₂O. (Weber, Pogg. 118. 471.)

#### Nitrogen tetroxide, NO2 or N2O4.

Sol. in H₂O at 0° with decomp. Miscible with very conc. HNO₃. Absorbed abundantly by CS₂, CHCl₃, and C₆H₅Cl. (Friedburg, C. N. 47. 52.)

Sol. in C₆H₅NO₂.

Sl. sol. in H₂S+Aq.

Sol, in H₂SO₄ or conc. HNO₃+Aq.

H₂PO₄ absorbs some liquid NO₂. (Frankland, Chem. Soc. 1901, 79. 1362.)

#### Nitrogen pentolide, N₂O₅.

Very deliquescent. Combines with H2O to form HNO₃ with evolution of heat.

### Nitrogen hexoxide, NO₃.

Decomposes upon air or with H₂O. (Hautefeuille and Chappins, C. R. 92. 80, 134; 94. 1111, 1306.)

#### Nitrogen oxybromide.

See Nitrosyl and Nitroxyl bromide.

#### Nitrogen oxychloride.

See Nitrosvl and Nitroxvl chloride.

#### Nitrogen oxyfluoride.

See Nitrosyl fluoride and Nitroxyl fluoride.

## Nitrogen phosphochloride, P₃N₃Cl₆.

See Nitrogen chlorophosphide.

#### Nitrogen selenide, NSe.

Very explosive. Insol. in H₂O. HNO₈+Aq, and NaClO+Aq. (Espenschied, A. 113. 101.)

Insol. in H₂O, ether, absolute alcohol; very sl. sol. in CS₂, C₆H₆, and glacial acetic acid. Decomp. by HCl or KOH+Aq. (Verneuil, Bull. Soc. (2) 38. 548.)

#### Nitrogen sulphide, N₄S₄.

Insol. in H₂O. Decomp. by hot H₂O. Sl. sol. in alcohol, ether, wood alcohol, oil of turpentine. Easily sol. in CS2. Slowly decomp. by HCl+Aq or KOH+Aq, rapidly by HNO₂+Aq. 15 g. dissolve in 1 kilo. of CS₂. (Fordos and Gélis, C. R. **31**. 702.)

Sol. in CHCl₈. (Demarçay, C. R. 91. 854.) Sol. in warm glacial acetic acid with decomp. on boiling. (Ruff and Geisel, B. 1904, **37.** 1591.)

#### Nitrogen pentasulphide, N₂S₅.

Sol. in ether and most organic solvents; insol. in H2O; fairly stable in ethereal solution, but decomp. by light. (Muthmann, Z. anorg. 1897, 13. 206.)

#### Nitrogen sulphobromide, N₂S₄Br.

Decomp, by boiling H₂O and by dil. alkalies, also by boiling with alcohol. (Muthmann, B. 1897, 30. 630.)

Decomp. by moist air. (Clever, N4S4Br4. B. 1896, 29, 340-341.)

 $N_4S_4\acute{B}r_6$ . Decomp. by moist air. unstable. (Clever.)

N₄S₅Br₂. Insol. most solvents; unstable. (Clever.)

#### Nitrogen sulphochloride, N₄S₄Cl₄.

Unstable on air. Sol. in warm CHCla; crystallizes out on cooling. (Demarcay, C. R. 91. 854, 1066.)

Demarçay calls this comp. thiazyl chloride. Sol. in hot dry benzene, and in CCl4; decomp. by moist air. (Andreocci, Z. anorg. 1897, **14**. 249.) N₄S₆Cl₂. Partly sol. in H₂O. (Demarçay,

C. R. 92. 726.)

Demarcay calls this compound dithiotetrathiazvl dichloride.

 $N_2S_3Cl_2 = N_2S_2$ ,  $SCl_2$ . Decomp. on air. (Fordos and Gélis.)

Demarçay (C. R. 92, 726) calls this comp. thiodithiazyl dichloride.

N₂S₄Cl₂. Sol. in H₂O with subsequent decomp. More sol. than S in CS2. (Soubeiran, A. ch. 67. 71.)

Is a mixture of S₂Cl₂ and N₄S₄. (Fordos and Gélis, C. R. 31. 702.)

N₃S₃Cl. Sl. sol. in warm, insol. in cold CHCl₃. (Demarçay, C. R. **92**. 726.)

"Thio/riazyl chloride." (Demarçay.)

N₃S₄Cl. Sol. in H₂O. Insol. in most solvents. Sl. sol. in CHCl₃. Easily sol. in thionyl chloride. (Demarçay, C. R. 91. 854, 1066.)

Demarcay calls the compound thiotrithiazyl chloride =  $(NS)_3 \equiv S$ —Cl.

 $N_4S_5Cl_2=2N_2S_2$ ,  $SCl_2$ . Decomp. on air. (Michaelis.)

 $N_0S_7Cl_2 = 3N_2S_2$ ,  $SCl_2$ . Not decomp. on air. Decomp. by H₂O containing ammonia.

#### Nitrogen sulphoiodide, N₃S₄I.

Readily decomp. by  $H_2O$ . (Muthmann and Seitter, B. 1897, 30. 627.)

#### Nitrohydroxylaminic acid, $H_2N_2O_3$ .

Known only in solution. (Angeli, Gazz. ch. it. 1897, 27 (ž) 357.)

## Barium nitrohydroxylaminate, $BaN_2O_8+H_2O$ .

Ppt. More stable in the air than the sodium salt. Not decomp. by prolonged boiling with  $H_2O$ . (Angeli, Gazz. ch. it. 1896, **26**. 17–25.)

#### Cadmium nitrohydroxylaminate, CdN₂O₃+ H₂O.

As Ba salt. (Angelico and Fanara, Gazz. ch. it. 1901, **31.** (2) 21.)

 $\begin{array}{ccc} \text{Calcium} & \text{nitrohydroxylaminate,} & \text{CaN}_2\text{O}_8 + \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$ 

(Angeli, Gazz. ch. it. 1900, **30.** (1) 593.)

Calcium nitrohydroxylaminate,  $CaN_2O_3 + 3\frac{1}{2}H_2O$ .

(Angelico and Fanara, Gazz. ch. it. 1901, 31. (2) 15.)

Lead nitrohydroxylaminate,  $PbN_2O_3$ . (Angeli, Gazz. ch. it. 1900, **30.** (1) 593.)

Potassium nitrohydroxylaminate, K₂N₂()₃. Like Na salt. More hygroscopic. (Angeli, Gazz. ch. it. 1897, **27**. (2) 357.) Sol. in H₂O. (Angeli, Gazz. ch. it. 1900, **30**. (1) 593.)

Silver nitrohydroxylaminate, Ag₂N₂O₂. Ppt. (Angeli, C. C. 1901, 1. 1192.)

## Sodium nitrohydroxylaminate, Na₂N₂O₃.

Very sol. in H₂O. Pptd. by alcohol. Aqueous solution is readily decomp. by boiling. (Angeli, Gazz. ch. it. 1896, **26**. (2) 17.)

 $\begin{array}{ccc} \text{Strontium} & \text{nitrohydroxylaminate,} & \mathrm{SrN_2O_3} + \\ & H_2\mathrm{O.} & \end{array}$ 

(Angeli, Gazz. ch. it. 1900, **30.** (1) 593.) +1½H₂O. (Angelico and Fanara, Gazz. ch. it. 1901, **31.** (2) 15.)

Nitroiodic acid, I₂O₄(NO)₂ See Nitrosoiodic acid.

#### Nitronitrous acid.

Platinum potassium nitronitrite,  $K_2Pt(NO_2)_4$ .  $N_2O_4$ .

Decomp. by heat. (Miolati, C. C. **1896**, II. **1088**.)

Nitroplatinous acid. See Platonitrous acid.

Nitroprussic acid,  $H_2FeC_5N_6O+H_2O=H_2Fe(CN)_5NO+H_2O$ .

Deliquescent. Easily sol. in H₂O, alcohol, or ether. (Playfair, A. 74. 317.)

#### Nitroprussides.

The alkali and alkali-earth nitroprussides are sol. in  $H_2O$ , and the solutions are not pptd. by alcohol. The others are mostly insol. in  $H_2O$ .

# Ammonium nitroprusside, $(NH_4)_2Fe(CN)_5(NO)$ .

Deliquescent. Very sol. in H₂O; not pptd-therefrom by alcohol. (Playfair.)

Barium nitroprusside, BaFe(CN)₅NO+4H₂O.

Very sel. in H₂O. +6H₂O.

Caumima nitroprusside, CdFe(CN), NO.

Insol. in H₂O. Sol. in HCl+Aq. Insol. in dil. or conc. HNO₃+Aq even when boiling. Not attacked by NH₄OH or KOH+Aq. (Norton, Am. Ch. J. 10, 222.)

Calcium nitroprusside, CaFe(Clv)_bNO+
4H₂O

Very sol in H₂O. (Playfair.)

Cobalt nitroprusside, CoFe(CN)₅NO. Ppt. (Norton, Am. Ch. J. **10.** 222.) +4H₂O.

Copper nitrop.usside, CuFe/CN)₅NO+2H₂O. Insol. in H₂O or alcohol.

Ferrous nitroprusside, FeFe(CN)₅NO+ xH₂O(?). Insol, in H₂O.

Mercurous nitroprusside, Hg₂Fe(CN)₅NO. Insol. in H₂O. Unstable. (Norton, Am. Ch. J. 10, 222.)

Nickel nitroprusside, NiFe(CN)₅NO. As the Co salt. (Norton.)

Potassium nitroprusside, K₂Fe(CN)₅NO+
2H₂O.

Sl. deliquescent. Sol. in 1 pt. H₂O at 16°. K₂Fe(CN)₅NO, 2KOH. Very sol. in H₂O.

Silver nitroprusside, Ag₂Fe(CN)₅NO.

Insol. in  $H_2O$ , alcohol, or  $HNO_3+Aq$ . Sol. in  $NH_4OH+Aq$ .

Sodium nitroprusside, Na₂Fe(CN)₅NO+2H₂O.

Sol. in  $2\frac{1}{2}$  pts.  $H_2O$  at  $16^{\circ}$ , and in less hot  $H_2O$ .

Zinc nitroprusside, ZnFe(CN)₅NO. Very sl. sol. in cold, more in hot H₂O.

Nitrosisulphonic acid.

Cupric nitrosisulphonate, NO SO. Cu.

Decomp. by  $H_2O$ . (Raschig, B. 1907, **40**. 4583.)

Nitrosobromoruthenic acid.

Silver nitrosobromoruthenate ammonia, Ag₂Ru(NO)Br₅, NH₃.

Decomp. by  $H_2O$ . Sl. sol. in  $NH_4OH+Aq$ . Very sol. in  $Na_2S_2O_3+Aq$ . (Brizard, Bull. Soc. 1895, (3) 13. 1093.)

#### Nitrosobromosmic acid.

Potassium nitrosobromosmate,  $K_2Os(NO)Br_5$ . Stable in aqueous solution. (Wintrebert, A. ch. 1903, (7) 28. 132.)

#### Nitrosochloroplatinic acid.

Potassium nitrosochloroplatinate, K₂PtCl₅(NO). Sol, in H₂O. (Vèzes, C. R. **110.** 757.)

Nitrosochlororuthenic acid.

Ammonium nitrosochlororuthenate, (NH₄)₂R⊕NO)Cl₅.

Sol. in H₂O. (Joly, C. R. 107. 991.)

5 pts. are sol. in 100 pts. H₂O at 25°.

22 " " " " " " " " " 60°.

(Howe, J. Am. Chem. Soc. 1894, 16. 390.)

#### Cæsium nitrosochlororuthenate, Cs₂Ru(NO)Cl₅.

0.20 pt. is sol. in 100 pts. H₂O at 25°. 0.56 " " " " " " " " " 100°. (Howe.)

 $+2H_2O$ . Very sol. in  $H_2O$ . 105.8 pts. are sol. in 100 pts.  $H_2O$ . (Howe.)

#### Potassium nitrosochlororuthenate, K₂Ru(NO)Cl₅.

Sol. in  $H_2O$ . (Joly.) 12 pts. are sol. in 100 pts.  $H_2O$  at 25°. 80 " " " " " " " 60°. (Howe.)

#### Rubidium nitrosochlororuthenate, Rb₂Ru(NO)Cl₅.

Sol. in boiling  $H_2O$  without decomp. 0.57 pt. is sol. in 100 pts.  $H_2O$  at 25°. 2.13 " " " " " " " 60°. (Howe.)

Silver nitrosochlororuthenate ammonia,  $Ag_2Ru(NO)Cl_5$ ,  $NH_3$ .

Decomp. by H₂O. Sl. sol. in NH₄OH+Aq. Very sol. in Na₂S₂O₃+Aq. (Brizard, Bull. Soc. 1895, (3) **13**. 1092.)

#### Nitrosoiodic acid, I₂O₄(NO)₂ (?)

Decomp. with  $H_2O$ , alcohol, ether, or acetic ether. Slowly sol. in  $H_2SO_4$ . (Kämmerer, J. pr. 83. 65.

#### Nitrososulphonic acid.

Potassium dinitrososulphonate, N₂O.OK. SO₃K.

Sol. in H₂O. Very unstable. (Hantzsch, B. 1894, 27. 3268.)

Potassium nitrosodisulphonate, ON(SO₂K)₂. Sol. in H₂O. Very explosive. (Hantzsch, B. 1895, **28**. 996 and 2744.) Potassium nitrosotrisulphonate,  $ON(SO_8K)_8 + H_2O$ .

Sol. in H₂O. (Hantzsch, B. 1895, 28. 2750.)

Sodium nitrosotrisulphonate, NO₂(SO₃)₂Na. Decomp. by H₂O. (Traube, B. 1913, **46**. 2521.)

### Nitrososulphuric acid,

 $H_2N_2SO_6 = H_2SO_8(NO)_2$ .

Not known in free state.

Ammonium dinitrososulphate,  $(NH_4)_2(NO)_2SO_3$ .

Sol. in H₂O. Insol. in hot alcohol. (Pelouze, A. 15. 240.)

Barium ---, Ba(NO)₂SO₃.

Sol. in  $H_2O$ . (Divers and Haga, Chem. Soc. 47. 364.)

Barium potassium —, BaK₂(SN₂O₅)₂.

Sol. in much H₂O to form a clear liquid, but the solution gradually deposits BaSO₄. (Hantzsch, B. 1894, **27**. 3271.)

Cupric nitrosodisulphate, Cu(NO)(SO₃)₂. (Sabatier, Bull. Soc. 1897, (3) **17.** 787.)

#### Lead dinitrososulphate.

Insol. in  $H_2O$ . (Divers and Haga, Chem. Soc. 47. 364.)

Potassium —,  $K_2(NO)_2SO_3$ .

Decomp. by  $\rm H_2O$  at ordinary temp. Insol. in alcohol. (Pelouze, A. ch. 60. 160.) Sol. in about 8 pts.  $\rm H_2O$  at 14.5°. Less sol. in presence of KOH. (Divers and Haga, Chem. Soc. 1895, 67. 455.)

Sodium —,  $Na_2(NO)_2SO_3$ .

More sol. than K salt. (Pelouze.) Sl. sol. in H₂O; very unstable moist or dry; decomp. by H₂O. (Divers, C. N. 1895, **72**. 266.)

#### Nitrososulphurous acid.

Ruthenium sodium nitrososulphite,  $O[Ru(SO_3)_2(NO)Na_2]+2H_2O$ .

Sl. sol. in cold H₂O. (Miolati, Gazz. ch. it. 1900, **30**. 511.)

## Nitrosulphide of iron.

See Ferrotetranitrososulphonic acid.

#### Binitrosulphide of iron.

Roussin's comp. is ammonium ferroheptanitrososulphonate, which see.

## Nitrosulphonic acid, $HNSO_{\delta} = \frac{HO}{NO_{2}}SO_{2}$ .

(Lead chamber crystals.) Rapidly sol. in  $H_2O$  with decomp. When brought into large amount of  $H_2O$ , no gas is evolved. (Fremy, C. R. 70. 61.)

Sol. in H₂SO₄ without decomp. Sol. in cold H₂SO₄+Aq of sp. gr. 1.7-1.55. (Weber, J. pr. 100. 37.)

Sl. sol. in H₂SO₄+Aq of 1.6 sp. gr. (Dana.) More difficultly sol. in dil. than conc. H₂SO₄+Aq. (Müller.)

Potassium nitrosulphonate, KOSO₂NO₂(?).
Decomp. by H₂O. (Schultz-Sellack, B. 4. 113.)

# Nitrosulphonic anhydride (?), $N_2O_3$ , $2SO_3 = S_2O_5(NO_2)_2$ .

Rapidly sol. in H₂O with decomp. Abundantly sol. in cold H₂SO₄. (Rose, Pogg. 47. 605.)

Insol. in cold, slowly sol. in warm H₂SO₄. (Prevostaye, A. ch. **73**. 362.)

## Nitrosulphonic chloride, $NO_4SCl = NO_2SO_2Cl$ (?).

Decomp. by H₂O. Sol. in fuming H₂SO₄ without decomp. Decomp. by conc. H₂SO₄. (Weber, Pogg. **123**. 333.)

#### Dinitrosulphuric acid.

See Dinitrososulphuric acid.

## Nitrosyl bromide, NOBr.

Decomp. with cold  $H_2O$ . (Landolt, A. 116. 177.)

## Nitrosyl tribromide, NOBr₃.

Decomp. by H₂O or cold alcohol. Miscible with ether. (Landolt, A. **116**. 177.) Mixture of NOBr and Br₂. (Fröhlich, A. **224**. 270.)

Nitrosyl platinic bromide, 2NOBr, PtBr₄.
Deliquescent. Decomp. by H₂O. (Topsoë, J. B. **1868**. 274.)

#### Nitrosyl chloride, NOCl.

Decomp. by  $H_2O$ . Absorbed by fuming  $H_2SO_4$  without decomp.

Nitrosyl boron chloride, NOCl, BCl₃. See Boron nitrosyl chloride.

## Nitrosyl platinic chloride, 2NOCl, PtCl.

Very deliquescent, and sol. in  $H_2O$  with evolution of NO. (Rogers and Boye, Phil. Mag. J. 17. 397.)

Nitrosyl thallium chloride, 2NOCl, TlCl, TlCl.

Very deliquescent, and sol. in H₂O with decomp. (Sudborough, Chem. Soc. **59**. 657.)

## Nitrosyl stannic chloride, 2NOCl, SnCl4.

Decomp. by H₂O, chloroform, or benzene, not by carbon disulphide. (Jörgensen.)

Nitrosyl titanium chloride, 2NOCl, TiCl₄.

Decomp. by H₂O. (Weber, Pogg. 118, 476.)

#### Nitrosyl zine chloride, NOCl, ZnCl₂.

Very deliquement, and sol. in H₂O with evolution of NO. (Sudborough, Chem. Soc. **59**, 656.)

Nitrosyl chloride sulphur trioxide, NOCl, SO₂.

Decomp. b. H₂O. Sol. in conc. H₂SO₄ with evolution of HCl. (Weber, Pogg. 123. 233.)

## Nitrosyl fluoride, NOF.

Sol. in H.O. Solution decomp. on standing with formation of NO and HNO₃. (Ruff and Stäuber, Z. anorg. 1905, **47**. 190.)

Nitrosyl sulphate, acid, H(NO)SO₄. See Nitrosulphonic acid.

Nitrosyl sulphate, anhydro, (NO)₂S₂O₇. See Nitrosulphonic anhydride.

#### Nitrosyl selenic acid, SeO₂(ONO)₂.

Decomp. by H₂O. (Lenher and Mathews, J. Am. Chem. Soc. 1906, 28. 516.)

Nitrosyl sulphuric acid, H(NO)SO₄ See Nitrosulphonic acid.

#### Nitrous acid, HNO₂.

Known only in aqueous solution. See Nitrogen trioxide.

### Nitrites.

Normal nitrites, except  $AgNO_2$ , are sol. in  $H_2O$  and alcohol; but, as a rule, they are less sol. than the corresponding nitrates.

## Ammonium nitrite, NH4NO2.

Very deliquescent, and sol. in H₂O. H₂O solution decomp. at 50°. (Berzelius.) Very dil. solution can be evaporated on water bath without decomp. (Bohlig, A. 125. 25.) Solution containing ¹/_{100,000} pt. NH₄NO₂ can be evaporated to ½ its vol. without decomp. Solution containing ¹/₅₀₀ pt. gives a distillate containing 8.6% of NH₄NO₂, while residue contains 82% of original quantity, 9.4% being

lost. (Schöyen.)
Very deliquescent, sol. in H₂O; slowly but easily sol. in alcohol; insol. in ether. (Sörensen, Z. anorg. 1894, 7. 38.)

### Ammonium barium cupric nitrite,

 $(NH_4)_2BaCu(NO_2)_6$ 

Ppt.; decomp. readily. (Przibylla, Zanorg. 1897, 15. 424.)

#### Ammonium bismuth silver nitrite, (NH₄)₂BiAg(NO₂)₆.

Moderately sol. in  $H_2O$ . Rapidly hydrolyzed by  $H_2O$ . (Ball and Abram, Chem. Soc. 1913, **103**. 2120.)

#### Ammonium bismuth sodium nitrite, 2NH₄NO₂, Bi(NO₂)₃, NaNO₂.

Easily decomp. (Ball, Chem. Soc. 1905, **87.** 761.)

Ammonium cadmium nitrite ammonia, basic, 2NH₄NO₂, Cd(NO₂)₂, Cd(OH)₂, 2NH₃.

Decomp. by H₂O. (Morin, C. R. 100. 1497.)

# Ammonium calcium cupric nitrite, (NH₄)₂CaCu(NO₂)₆.

Ppt.; decomp. easily. Sol. in H₂O. Sl. sol. in alcohol. (Przibylla, Z. anorg. 1897, **15**. 423.)

Ammonium cobaltic nitrite,  $3(NH_4)_2O$ ,  $Co_2O_8$ ,  $6N_2O_8+1\frac{1}{2}H_2O$ .

Sl. sol. in H₂O, decomp. in aq. solution on heating. (Rosenheim, Z. anorg. 1898, 17. 45.) +3H₂O.

Somewhat sol. in cold H₂O; decomp. by boiling. Decomp. by conc. H₂SO₄, not by acetic or dil. mineral acids. (Erdmann, J. pr. **97.** 405.)

#### Ammonium cupric lead nitrite, CuPb(NH₄)₂(NO₂)₆,

Stable at ordinary temp.; sol. in HNO₈ with decomp.

2.575 pts. are sol. in 100 pts.  $H_2O$  at 20°, or 2.51% salt in sat. solution at 20°. (Przibylla, Z. anorg. 1897, **15.** 420.)

#### Ammonium cupric strontium nitrite, (NH₄)₂CuSr(NO₂)₆.

Ppt.; sol. in  $H_2O$  with decomp. (Przibylla, l. c.)

#### Ammonium iridium nitrite.

See Iridonitrite, ammonium.

#### Ammonium lead nickel nitrite, (NH₄)₂PbNi(NO₂)₆(?).

Ppt. (Przibylla, Z. anorg. 1897, 15. 433.)

#### Ammonium osmium nitrite.

See Osminitrite, ammonium.

### Ammonium osmyl oxynitrite.

See Osmyloxynitrite, ammonium.

Ammonium platinum nitrite.

See Platonitrite, ammonium.

Ammonium rhodium nitrite.

See Rhodonitrite, ammonium.

Ammonium ruthenium hydrogen nitrite, Ru₂H₂(NO₂)₄, 3NH₄NO₂+3H₂O. See Rutheninitrite, ammonium hydrogen.

Barium nitrite, Ba(NO₂)₂+H₂O.

Permanent. Very sol. in H₂O.

#### Solubility in H2O at to.

t°	G. in 100 cc. Ba(NO2)2	Sp. gr.
0	58	1.40
20	63	1.45
25	71	1.50
30	82	1.52
35	97	1.61

(Vogel, Z. anorg. 1903, 35. 389.)

100 pts. H₂O dissolve at:

0° 10° 20° 30° 63.5 69.5 79.5 93 pts. Ba(NO₂)₂+H₂O,

40° 50° 60° 70°

113 136 170 202 pts.  $Ba(NO_2)_2 + H_2O$ ,

80° 90° 100° 110°

254 331 461 765 pts.  $Ba(NO_2)_2 + H_2O$ .

The sat. solution at 17° contains 40% Ba(NO₂)₂, and has sp. gr.  $17^{\circ}/0^{\circ} = 1.4897$ .

(Oswald, A. ch. 1914, (9) 1. 62.) 100 g. H₂O at 13.5° dissolve 64 g. Ba(NO₂)₂ +10.2 g. AgNO₂ with excess of AgNO₂, and 75.6 g. Ba(NO₂)₂+9.5 g. AgNO₂, with excess of AgNO₂. (Oswald.)

Sol. in 64 pts. 94% alcohol; nearly insol. in absolute alcohol. (Lang, Pogg. 118. 285.)

#### Solubility in alcohol + Aq at to.

t°	Solvent	100 ccm. of the sat. solution contain g. Ba(NO ₂ ) ₂ +H ₂ O
19.5 21.0 20.5 20.5 20.5 20.0 19.0 19.5 20.0 20.0	10% alcohol 20% " 30% " 40% " 50% " 60% " 80% " 90% " absolute alcohol	49.30 29.30 18.41 13.33 9.11 4.84 2.66 0.98 0.00 0.00

(Vogel, Z. anorg. 1903, 35, 390.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Barium cæsium nitrite, CsBa2(NO2)5.

Sol. in H₂O. (Jamieson, Am. Ch. J. 1907, **38.** 616.)

 $Cs_2Ba(NO_2)_4+H_2O$ . Very sol. in  $H_2O$ . (Jamieson, Am. Ch. J. 1907, **38.** 616.)

Barium cæsium silver nitrite, Cs₂AgBa(NO₂), +2H₂O.

Decomp. by cold  $H_2O_*$  (Jamieson. Am. Ch. J. 1907, 38, 616.)

Barium cobaltic nitrite, 2BaO, Co₂O₃, 4N₂O₃ +10H₂O.

Sol. in moderately warm  $H_2O$  without decomp. but not recryst. therefrom. (Rosenheim, Z. anorg, 1898, 17. 51-54.)

3BaO,  $Co_2O_3$ ,  $6N_2O_3+H_2O$ . Ppt.; very unstable. Nearly insol. in  $H_2O$ . (Rosenheim, Z. anorg. 1898, 17. 47.)

Barium cobaltous potassium nitrite, Ba(NO₂)₂, Co(NO₂)₂, 2KNO₂.

Decomp. by  $H_2O$ . (Erdmann, J. pr. 97. 385.)

Barium cupric nitrite, Ba[Cu(OH)(NO₂)₂]₂.

Ppt. Insol. in H₂O. Decomp. by H₂O. Insol. in alcohol, but slowly decomp. by it. (Kurtenacker, Z. anorg, 1913, **82**, 208.)

Barium cupric potassium nitrite, BaCuK₂(NO₂)₆.

Stable when dry, easily decomp. when moist; sol. in  $H_2O$  with decomp.

45.86 pts. are sol. in 100 pts.  $H_2O$  at 20°, or 31.45% salt is contained in sat. solution at 20°. (Przibylla, Z. anorg. 1897, 15. 424.)

Barium cupric thallium nitrite, BaCuTl₂(NO₂)₆,

Sl. sol. in  $H_2O$ . (Przibylla, Z. anorg. 1898, 18. 461.)

Barium iridium nitrite.

See Iridonitrite, barium.

Barium mercuric nitrite, 2Ba(NO₂)₂, 3Hg(NO₂)₂+5H₂O.

Very sol. in  $H_2O$  and easily decomp. (Rây, Chem. Soc. 1910, **97**. 327.)

Barium nickel nitrite, 2Ba(NO₂)₂, Ni(NO₂)₂. Somewhat more easily sol. in H₂O than nickel potassium nitrite. (Lang.)

Barium nickel potassium nitrite, Ba(NO₂)₂, Ni(NO₂)₂, 2KNO₂.

Sl. sol. in cold, easily in hot  $H_2O$  without apparent decomp. (Lang.)

Barium nickel thallium nitrite, NiBaTl₂(NO₂)₆

Ppt. (Przibylla, Z. anorg. 1898, 18. 462.)

Barium osmium nitrite.

See Osminitrite, barium.

Barium osmyl oxynitrite.

See Osmyloxynitrite, barium.

Barium potassium nitrite, Ba(NO₂)₂, 2KNO₂ +H₂C.

Easily sol, in  $H_2O$ ; and it is alcohol. (Lang, Pogg, 118, 293.)

Barium rhodium nitrite, 3Ba(NO₂)₂, Rh₂(NO₂)₆.

See Rhodonitrite, barium.

Barium silver nitrite, Bs(NO₂)₂, 2AgNO₂+ H₂O.

Resembles the potassium salt. (Fischer.) Less stable than the Na salt. (Oswald.)

Bismuth nitrite, basic, (BiO)NO₂+½H₂O. Sol. in HCl. (Vanino, J. pr. 1906, (2) 74. 150.)

Bismuth cæsium silver nitrite, Cs₂BiAg(NO₂)₆. Very sl. sol. in H₂O. Slowly decomp. by II₂O. (Ball and Abram, Chem. Soc. 1913, **103.** 2122.)

Bismuth potassium nitrite, Bi(NO₂)₃, 3KNO₂ +H₂O.

Decomp. by  $H_2O$ . (Ball, Chem. Soc. 1905, 87. 762.)

Bismuth potassium silver nitrite, K₂BiAg(NO₂)₆.

Less sol, in  $H_2O$  than NH₄ salt. (Ball and Abram, Chem. Soc. 1913, 103. 2121.)

Bismuth rubidium silver nitrite, Rb₂BiAg(NO₂)₆.

Sl. sol. in  $H_2O$  with slow hydrolysis. (Ball and Abram.)

Bismuth silver thallous nitrite, BiAgTl₂(NO₂)₆.
Insol. in H₂O, but decomp. thereby. (Ball and Abram.)

Cadmium nitrite, basic, 2CdO, N₂O₃. Insol. in H₂O. (Hampe, A. **125**. 335.)

Cadmium nitrite,  $Cd(NO_2)_2 + H_2O$ .

Deliquescent. Sol. in  $H_2O$ . (Lang, J. B. 1862. 99.)

Cadmium potassium nitrite, Cd(NO₂)₂, KNO₂. Easily sol. in H₂O. Very difficultly sol. in absolute alcohol, and only sl. sol. in 90% alcohol. (Hampe, A. 125, 334)

alcohol. (Hampe, A. 125. 334.)
Cd(NO₂)₂, 2KNO₂. Easily sol. in H₂O.
Insol. in alcohol. (Lang, J. B. 1862. 99.)
Cd(NO₂)₂, 4KNO₂. More sol. in H₂O than

the above salt. (Lang.)



#### Cesium nitrite, CsNO2.

Very hydroscopic. Very sol. in H₂O. (Ball, Chem. Soc. 1913, **103**. 2130.)

Cæsium calcium nitrite, Cs₂Ca(NO₂)₄+H₂O. Ppt. (Jamieson, Am. Ch. J. 1907, 38. 617.)

Cæsium cobaltic nitrite, Cs₃Co(NO₂)₆+H₂O. Sol. in 20,100 pts. H₂O at 17°. (Rosenbladt, B. **19.** 2531.)

#### Cæsium lead nitrite, $CsPb(NO_2)_8 + H_2O$ .

Sol. in cold H₂O without decomp. When solution is heated, some basic lead salt separates. (Jameson, Am. Ch. J. 1907, 38. 618.)

Cæşium lead silver nitrite, Cs₃AgPb(NO₂)₆+

Ppt. (Jamieson.)

Cæsium silver nitrite,  $CsAg(NO_2)_2$ . Decomp. by  $H_2O$ . (Jamieson.)

#### Cæsium silver strontium nitrite, C₈₈AgSr(NO₂)₆+2H₂O.

Partially decomp. by H₂O. (Jamieson.)

Cæsium strontium nitrite,  $CsSr(NO_2)_3+H_2O$ . Ppt. Sol. in  $H_2O$ . (Jamieson.)

### Calcium nitrite, $Ca(NO_2)_2 + H_2O$ .

Very deliquescent. Insol. in dil. alcohol. (Fischer, Pogg. **74.** 115.) 100 ccm. of the sat. solution contain 111.6 g.  $Ca(NO_2)_2+H_2O$  at 20.5°. (Vogel, Z. anorg. 1903, **35.** 395.)

#### Solubility in H2O at to.

t°	%Ca(NO2)2	Solid phase
0 18.5 42 44 54 64 70 73 91	38.3 43 51.8 53.5 55.2 58.4 60.3 61.5 71.2	Ca(NO ₂ ) ₂ , 4H ₂ O  " "+Ca(NO ₂ ) ₂ , H ₂ O Ca(NO ₂ ) ₂ , H ₂ O " " " " "

(Oswald, A. ch. 1914, (9) 1. 32,)

Sat. solution of Ca(NO₂)₂+AgNO₂ contains 92.4 g. Ca(NO₂)₂ and 11.2 g. AgNO₂ per 100 g. H₂O at 14°. (Oswald.)

Solubility in alcohol.

100 ccm. of sat. solution in 90% alcohol contain 39.0 g. Ca(NO₂)₂+H₂O at 20°.

100 ccm. of sat. solution in absolute alcohol contain 1.1 g.  $Ca(NO_2)_2+H_2O$  at 20°. (Vogel.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

 $+4H_2O$ . The sat. solution at 16° contains 42.3% Ca(NO₂)₂ and has sp. gr. at 16°/0° = 1.4205. (Oswald, A. ch. 1914, (9) 1. 66.)

Calcium cobaltous potassium nitrite, Ca(NO₂)₂, Co(NO₂)₂, 2KNO₂. Decomp. by H₂O. (Erdmann.)

Calcium cupric potassium nitrite, CaCuK₂(NO₂)₆.

Ppt., insol. in alcohol; sol. in H₂O with. decomp.

14.97 pts. are sol. in 100 pts.  $H_2O$  at  $20^{\circ}$ , or 13.02 per cent of salt is contained in sat. solution. (Przibylla, Z. anorg. 1897, 15. 422.)

Calcium mercuric nitrite, Ca(NO₂)₂,Hg(NO₂)₂ +5H₂O.

Very sol. in  $H_2O$ . (Rây, Chem. Soc. 1910, 97. 327.)

Calcium nickel potassium nitrite, Ca(NO₂)₂, Ni(NO₂)₂, 2KNO₂.

Very sl. sol. in cold, easily in hot H₂O. Insol. in alcohol. Sl. sol. in dil. HC₂H₃O₂+Aq. (Erdmann.)

Calcium osmium nitrite.

See Osminitrite, calcium.

Calcium potassium nitrite, CaK(NO₂)₈+

Sol. in H₂O. (Topsoë, W. A. B. **73, 2.** 112.) Deliquescent. (Lang.)

Cobaltous nitrite.

Known only in solution.

Cobaltic lead nitrite, 3PbO, Co₂O₃, 6N₂O₃+12H₂O.

Insol. in  $H_2O$ . (Rosenheim, Z. anorg. 1898, 17. 48.)

Cobaltic lead potassium nitrite, 3K₂O, 3PbO, 2Co₂O₃, 10N₂O₃+4H₂O.

Sol. by boiling in much H₂O. Sol. in hot acids with evolution of N₂O₃. (Stromeyer, A. 96. 228.)

Cobaltous potassium nitrite,  $2\text{Co(NO}_2)_2$ ,  $2\text{KNO}_2 + \text{H}_2\text{O}$ .

Ppt. (Sadtler.)

Co(NO₂)₂, 2KNO₂+H₂O. Ppt. (Sadtler.) 3Co(NO₂)₂, 6KNO₂+H₂O. Insol. in cold, sol. in hot H₂O. Sl. sol. in KC₂H₄O₂+Aq. (Erdmann, J. pr. **97**. 397.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3602.)

Cobaltic potassium nitrite (cobalt yellow),  $\mathrm{Co_2(NO_2)_6,\,6KNO_2+3H_2O}$ .

Very sl. sol. in cold H₂O. Insol. in alcohol and ether. Sol. in traces in CS₂. (St. Evre,

C. R. 35. 552.) Insol. in boiling conc. K₂SO₄, KCl, KNO₅, or KC₂H₃O₂+Aq.
Sol. in 1120 pts. H₂O at 17°. (Resembladt,

B. 1886, 19. 2535.)

Decomp. when heated in aq. solution. (Rosenheim, Z. anorg. 1898, 17. 42.)

More sol. in NH4Cl or NaCl+Aq than ir H₂O. (Stromeyer.)

Sl. decomp. by KOH+Aq, except when very conc.; easily decomp. by NaOH or

Ba(OH)₂+Aq.

Very sl. sol. in KC₂H₂O₂+Aq, or KNO₂ +Aq. (Fresenius.) Sol. in HCl+Aq. (Stro-

Small quantity of HC₂H₈O₂+Aq does not dissolve. (Fresenius.)

Cobaltic potassium silver nitrite,  $KCoAg_2(NO_2)_6$ , and  $K_2CoAg(NO_2)_6$ .

Very sl. sol. in H₂O. Less sol. than Na comp. (Burgess and Karum, J. Am. Chem. Soc. 1912, 34. 653.)

Cobaltous potassium strontium nitrite,  $Co(N\hat{O}_2)_2$ ,  $2KNO_2$ ,  $Sr(NO_2)_2$ .

Decomp. by H₂O. (Erdmann, J. pr. 97.

Cobaltic rubidium nitrite, Rb₈Co(NO₂)₆+  $H_2O$ .

Sol. in 19,800 pts. H₂O. (Rosenbladt, B. **19.** 2531.)

Cobaltic silver nitrite, CoAg₈(NO₂)₆.

Fairly sol. in H₂O. (Cunningham and Perkin, Chem. Soc. 1909, 95. 1568.)  $2Ag_2O$ ,  $Co_2O_3$ ,  $3N_2O_3+3H_2O$ . Sl. sol. in  $H_2O$ ; decomp. by boiling  $H_2O$ . (Rosenheim, Sl. sol. in Z. anorg. 1898, 17. 56.)

Cobaltic silver hydroxynitrite,  $\text{Co}_2\text{Ag}_3(\text{OH})_3(\text{NO}_2)_6$ .

Sl. sol. in H₂O. (Suzuki, Chem. Soc. 1910, **97.** 729.)

Cobaltic silver nitrite ammonia, Co₂O₈, Ag₂O,  $4N_2O_8$ ,  $4NH_8$ .

See Cobalt ammonium comps.

Cobaltic sodium nitrite, 2Na₂O, Co₂O₃, 4N₂O₃. Sol, in H₂O and alcohol. (Rosenheim, Z. anorg. 1898, 17. 50.) +H₂O. Ppt. (Sadtler, Sill. Am. J. (2) 49.

 $3Na_2O$ ,  $Co_2O_3$ ,  $6N_2O_3+xH_2O$ . Sol. in  $H_2O$ ; decomp. on heating; insol. in alcohol. (Rosenheim, Z. anorg. 1898, 17. 43.)

Cobaltic strontium nitrite, 2SrO, Co₂O₃, 4N₂O₃ +11H₂O.

Ppt. (Rosenheim, Z. anorg. 1898, 17, 54.)

Cobaltic thallium nitrite, Co2(NO2)6, 6TINO2. Sol, in 23,810 pts. H₂O at 17°. (Rosenbladt, B. 19. 2531.)

Consistic zinc nitrite, 2ZnO, Co2O3, 3N2O3+ 11H₂O.

Sol. in al. acetic acid. (Rosenheim, Z. anorg. 1898, 17. 56.)

Cobalt nitrite nitrate. 2CoO, Co₂O₃, 3N₂O₃,  $Co(NO_{\bullet})_2 + 14H_{2}$ .

Ppt. (Rosenheim, Z. anorg, 1898, 17, 58.)

Cupric nitrite, basic, 2CuO, N₂O₃.

(Hampe, A. **125.** 345.) Cu(NO₂)₂, 3Cu(OH)₂. Very sl. sol. in H₂O or alcohol. Easily sol. in dil. acids or ammonia. (van der Meulen, B. 12. 758.)

Cupric nitrite.

Known only in solution.

Cupric lead potassium nitrite, CuPbK₂(NO₂)₆. (van Lessen, R. t. c. 10. 13.)

3.056 pts. are sol. in 100 pts.  $H_2O$  at 20°, or 2.51% salt is contained in sat. solution at 20° p. 42° (Przibylla, Z. anorg. 1897, **15**. 429.)

Cupric potassium strontium nitrite,  $\text{CuSrK}_2(\text{NO}_2)_6$ .

Sol. in H₂O with decomp. 10.82 pts. are sol. in 100 pts. H₂O at 20°, or 9.77 per cent salt is contained in sat. solution at 20°. (Przibylla, Z. anorg. 1897, 15. 425.)

Cupric rubidium nitrite, Rb₈Cu(NO₂)₅. Easily sol. in H₂O. Sol. in alcohol. (Kurtenacker, Z. anorg. 1913, 82. 206.)

Cupric nitrite ammonia, Cu(NO₂)₂, 2NH₈+

Sol. in little H₂O with absorption of much Decomp. by much H₂O. (Peligot, C. R. 53. 209.)

3CuO,  $N_2O_3$ ,  $2NH_3+H_2O$ . As above. (Peligot.)

Iridium hydrogen nitrite, Ir₂H₆(NO₂)₁₂. See Iridonitrous acid.

Iridium nitrite with MNO₂. See Iridonitrite, M.

Iron (ferrous) lead potassium nitrite,  $FePbK_2(NO_2)_6$ .

Ppt.; insol. in cold H₂O; stable at ordinary temp. (Przibylla, Z. anorg. 1897, 15. 439.)

Iron (ferrous) lead thallous nitrite, FePbTl₂(NO₂)₆.

Ppt. (Przibylla, Z. anorg. 1898, 18. 463.)

Lead nitrite, basic, 4PbO, N₂O₈+H₂O= Pb(OH)NO2, PbO.

Sol. in 143 pts. H₂O at 23°, and 33 pts. at

100°. (Chevreul.)
Sol. in 1250 pts. cold H₂O, and 34.5 pts. at 100°. (Peligot.

Sol. in cold HNO₈ or HC₂H₈O₂+Aq.

Composition is 3PbO, N₂O₃+H₂O. (Meissner, J. B. **1876.** 194.)

Composition is as above. (v. Lorenz, W. A.

**B. 84, 2.** 1133.) 3PbO,  $N_2O_3 = Pb(NO_2)_2$ , 2PbO. Sol. in H₂O. (Bromeis, A. **72**. 38; v. Lorenz.)

2PbO,  $N_2O_3 + H_2O$ . Sl. sol. in H₂O. (Bromeis.)

 $+3H_2O$ . (Meissner.)  $4H_2O$ ,  $3N_2O_3+2H_2O$ . Sol. in  $H_2O$ . (Meiss- B. 1876, 195.)

Lead nitrite, Pb(NO₂)₂+H₂O.

Easily sol. in H₂O. (Peligot, A. ch. 77. 87.)

Lead nickel potassium nitrite,  $Pb(NO_2)_2$ , KNO₂, Ni(NO₂)₂.

Insol. in H₂O. (Baubigny, A. ch. (6) 17.

Ppt. (Przibylla, Z. anorg. 1897, **15**, 432.)

Lead nickel thallous nitrite, NiPbTl₂(NO₂)₆. Ppt. (Przibylla, Z. anorg. 1898, 18. 462.)

Lead potassium nitrite, 4Pb(NO₂)₂, 6KNO₂+

3H₂O. Easily sol. in H₂O and in absolute alcohol.

 $Pb(NO_2)_2$ ,  $2KNO_2+H_2O$ . Easily sol. in H₂O. Insol. in alcohol. (Lang, J. B. 1862. 102.)

Lead potassium silver nitrite, K₃AgPb(NO₂)₆ +2H₂O.

Ppt. (Jamieson, Am. Ch. J. 1907, 38. 619.)

Lead nitrite nitrate.

(Hampe, A. 125. 334.)

See Nitrate nitrite, lead.

Lithium nitrite, LiNO₂+½H₂O.

Deliquescent. Easily sol. in alcohol and H₂O. (Vogel, Z. anorg. 1903, **35**. 403.)
Sat. solution of LiNO₂+½H₂O in H₂O

contains at:

65° 81.5° 91° 96° 92.5° 72.4 91.8 94.3% LiNO₂. 63.8 68.7 (Oswald.)

+H₂O. Very sol. in H₂O, readily forming supersat. solutions. Very sol. in abs. alcohol. (Ball, Chem. Soc. 1913, 103. 2133.)

#### 100 pts. H₂O dissolve at:

10° 20° 0° 125 156 189 pts.  $LiNO_2 + H_2O_1$ 

30° 40°

242 316 459 pts.  $LiNO_2 + H_2O$ .

LiNO₂, H₂O+Aq sat. at 19° contains 48.9% LinO₂ and has sp. gr. = 1.3186. (Oswald, A. ch. 1914, (9) 1. 61.)

100 g. H₂O dissolve 78.5 g. LiNO₂+10.5 g. AgNO2 at 14°. (Oswald.)

Lithium mercuric nitrite, LiNO₂, Hg(NO₂)₂+ H₂O.

(Rây, Chem. Soc. 1907, 91. 2033.)

 $4LiNO_2$ ,  $Hg(NO_2)_2+4H_2O$ . Extremely deliquescent. (Rây.)

### Magnesium nitrite, $Mg(NO_2)_2 + 2H_2O$ .

Deliquescent, and sol. in H₂O. Solution decomp. by boiling. Easily sol. in absolute alcohol. (Hampe, A. 125. 334.)

Insol. in absolute alcohol. (Fischer.)

+3H₂O. Sol. in H₂O and absolute alcohol. Very deliquescent. (Vogel, Z. anorg. 1903, **35.** 397.)

#### Magnesium osmium nitrite.

See Osminitrite, magnesium.

## Magnesium potassium nitrite.

Deliquescent, and easily sol. in H₂O. Insol. in alcohol. (Lang.)

#### Magnesium silver nitrite.

Sol. in H₂O with decomp. (Spiegel, Ch. Z. 1895, **19.** 1423.)

#### Manganous nitrite.

Deliquescent, and sol. in H₂O. (Mitscherlich.) Not obtained in a solid state, as the solution decomp. on evaporation. (Lang, Pogg. 118, 290.)

#### Mercurous nitrite, Hg₂(NO₂)₂.

Sol. in H₂O with partial decomp. to Hg and  $Hg(NO_2)_2$ . (Rây, Â. 1901, 316. 252.)

Sol. in cold conc. HNO₃. Very slowly sol. in cold dil. HNO₃. (Rây, Chem. Soc. 1897, **71.** 339.)

Decomp. by boiling H₂O and by cold dil. H₂SO₄. (Rây, Z. anorg. 1896, **12.** 366.)

+H₂O. Slowly decomp. by H₂O. (Ray, Chem. Soc. 1897, 71, 340.)

Mercuric nitrite, basic, Hg(NO₂)₂, 2HgO+ H₂O.

Ppt. (Lang.) 12HgO,  $5N_2$ O₈+24H₂O. (Rây, Chem. Soc. 1897, **71.** 341.)

### Mercuric nitrite, Hg(NO₂)₂.

Deliquescent. Partly sol. in boiling H₂O, but the greater part is decomp. into HgO+ HNO₂. (Ray, Proc. Chem. Soc. 1904, 20. 57.)

#### Mercuromercuric nitrite, basic.

a.  $9Hg_2O$ , 4HgO,  $5N_2O_3+8H_2O$ .  $\beta$ .  $Hg_2O$ , 2HgO,  $N_2O_3+2H_2O$ . (Rây, Chem. Soc. 1897, **71.** 341.)

Mercuric potassium nitrite. Hg(NO₂) 2KNO2

Easily sol. in H₂O. Insol. in alcohol. (Lang, 1860.)

KHg(NO₂)₈. Obtained from K₈Hg(NO₂)₅, H₂O+Aq containing a small excess of KNO₂. Decomp. by H₂O. (Rosenheim, Z. anorg. 1901, 28, 173.)

K₂Hg(NO₂)₅+H₂O. Sol in H₂O. Formula of Lang is incorrect. (Rosenheim, Z. anorg. 1901, 28. 172.)

### Mercuric sodium nitrite, Na₂Hg(NO₂)₄.

Very hydroscopic. Decomp. by hot H₂O. (Rosenheim, Z. anorg. 1901, 28. 173.)

+2H₂O. Deliquescent. (Rây, Chem. Soc. 1907, 91, 2032.)

2Hg(NO₂)₂, 3NaNO₂. Decomp. by H₂O. (Rây, Chem. Soc. 1907, 91, 2032.)

Mercuric strontium nitrite,  $3Hg(NO_2)_2$ ,  $2Sr(NO_2)_2 + 5H_2O$ .

Very sol. in H₂O. (Rây, Chem. Soc. 1910, **97.** 327.)

Mercuric nitrite hydrazine, Hg(NO₂)₂, N₂H₄. Ppt. Decomp. by H2O. (Hofmann and Marburg, A. 1899, 305. 215.)

Nickel nitrite, basic, 2NiO, N₂O₃. Ppt. (Hampe, A. 125. 343.)

Nickel nitrite, Ni(NO₂)₂.

Sol. in H₂O and alcohol. (Lang, J. B. 1862. 100.)

Nickel potassium nitrite, Ni(NO₂)₂, 4KNO₂. Moderately sol. in H₂O, (Fischer, Pogg. 74. 115.) Extremely sol. in H₂O. (Hampe, A. 125. 346.) Insol. in absolute alcohol.

Nickel potassium strontium nitrite, Ni(NO₂)₂,  $2KNO_2$ ,  $Sr(NO_2)_2$ .

Sl. sol. in cold, easily sol, in hot H₂O.

Nickel nitrite ammonia, Ni(NO₂)₂, 4NH₃.

Sol. in cold H₂O. Decomp. on standing or by heating. Insol, in alcohol. Can be recrystallized by dissolving in NH₄OH+Aq, and adding much absolute alcohol. (Erd-

mann, J. pr. 97. 395.)

Ni(NO₂)₂, 5NH₃. Decomp. in the air giving Ni(NO₂)₂, 4NH₃. (Ephraim, B. 1913, **46.** 3110.)

Osmium nitrite, Os(NO₂)₃.

Ppt. (Wintrebert, C. R. 1905, 140. 587.)

Osmium nitrite with MNO₂. See Osminitrite, M.

Osmyl nitrite with MNO₂. See Osmylnitrite, M.

Osmyl oxynitrite with MNO2. See Osmyloxynitrite, M.

Osmyl nitrite ammonia, OsO₂(NO₂)₂, 4NH₃. (Wintrebert, A. ch. 1903, (7) 28, 56.)

Falladious nitrite with MNO. See Palladonitrite, M.

Platinous hydrogen nitrite, H₂Pt(NO₂)₄. See Platenitrous acid.

Platinous nitrite with MNO₂. See Platonitrite, M.

Potussium nitrite, KNO. Deliquescent. Sol. in H₂O. Pure KNO₂ is not deliquescent. (Oswald. A. ch. 1914, (9) 1. 32.) Sol. in about  $\frac{1}{3}$  its wt. of H₂O. (Divers, Chem. Soc. 1899, **75.** 86.)

100 pts H₂O dissolve at:

281	10° 291	20° 302	30° 313	;0° 325 p	ts. KNO2,
50° 337.5		70° 365	80° 380	90° 396 p	ts. KNO2,
100° 413	110° 432	120° 451	130° 473 p	ts. KN(	O ₂ .

Bpt. of sat. KNO₂+Aq is 132° at 758.5 mm.

(Oswald, A. ch. 1914, (9) 1. 58.)

Sp. gr. of KNO₂+Aq at 17.5° containing: 30 40% KNO2, 10 20 1.295 1.049 1.126 1.208 74.5% KNO₂. 60 70 1.3771.599 1.646 1.491 (Oswald.)

100 g. H₂O at 13.5° dissolve 18 g. KN@₂+ 2.36 g. AgNO₂; at 25°, 23.1 g. KNO₂+5.3 g. AgNO₂ with excess of AgNO₂.

100 g. H₂O at 13.5° dissolve 276 g. KNO₂+

26.3 g. AgNO₂; at 25°, 279 g. KNO₂+39.3 g. AgNO₂ with excess of KNO₂. (Oswald.)

See also under AgNO2. Very sol. in liquid NH₃. (Franklin, Am.

Ch. J. 1898, **20.** 829.) Deliquesces in 90% alcohol; insol. in cold 94% alcohol. More sol. in H2O than KNO3, but less sol. in alcohol. (Fischer.)

Ppt. from its conc. aq. solution by the addition of methyl alcohol. Addition of ethyl alcohol to a conc. aq. solution of KNO2 causes separation into two layers, of which the lower aq. solution contains 71.9% KNO2 while the upper alcoholic layer contains 6.9% KNO₂. (Donath, Ch. Z. 1911, 35. 773.)

Very sl. sol. in acetone. (Krug and M'El-

roy, J. Anal. Ch. 6. 184.)

#### NITRITE, POTASSIUM RHODIUM

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.) Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3602.)

Potassium rhodium nitrite, 6KNO₂, Rh₂(NO₂)6.

See Rhodonitrite, potassium.

### Potassium ruthenium nitrite. See Ruthenonitrite, potassium.

Potassium silver nitrite, KNO₂, AgNO₂+ ⅓H₂O. **▲** 

Completely sol. in a little H₂O, but decomp. by ore H₂O. Sol. in KNO₂+Aq without decomp. Insol. in alcohol. (Lang.)

#### Potassium strontium nitrite, 2KNO₂, $Sr(NO_2)_2$ .

Sol. in H₂O; insol. in alcohol. (Lang, Pogg. **118.** 293.)

Potassium zinc intrite, 2KNO₂, Zn(NO₂)₂+ H₂O.

Deliquescent. Easily sol. in H₂O. (Lang., J. B. 1862. 101.)

 $K_8$ Zn(NO₂)₅ $+3H_2$ O. Very hydroscopic. Decomp. by H₂O. (Rosenheim, Z. anorg. 1901, **28.** 174.)

#### Rhodium nitrite with MNO₂. See Rhodonitrite, M.

#### Rubidium nitrite, RbNO₂.

Deliquescent; very sol. in H₂O; sl. sol. in hot alcohol, almost insol. in acetone. (Ball, Chem. Soc. 1913, 103. 2131.)

### Ruthenium nitrite with MNO₂.

See Ruthenonitrite, M.

#### Silver nitrite, AgNO₂.

Sol. in 120 pts. cold H₂O (Mitscherlich), in 300 pts. (Fischer), and more abundantly in hot  $H_2O$ .

1 l. H₂O dissolves 3.1823 g. or 0.02067 g. mols. at 18°. (Naumann and Rücker, B. 1905, 38. 2294.)

1 litre H₂O dissolves at—

0°	0.0113 1	nol.	AgNO ₂
8°	0.0159	"	""
14°	0.0189	"	"
16°	0.0203	"	"
18°	0.0216	"	"
25°	0.0260	"	"
33°	0.0370	"	"

(Pick and Abegg, Z. anorg. 1906, 51, 3.)

1 l. H₂O dissolves 3.609 g. AgNO₂ at 21° (Oswald, A. ch. 1914, (9) 1. 33.)

t°	% AgNO2
15 25 35 51 60	0.1589 0.2752 0.4125 0.6016 1.0240 1.3625

(Creighton and Ward, J. Am. Chem. Soc. 1915, **37**. 2335.)

#### Solubility in AgNO₈+Aq at 18°.

Mols. AgNO3 per l. of the solution	Mols. AgNO ₂ dissolved per l.
0.	0.0207
0.0026	0.0198
0.0052	0.0190
0.0103	0.0169
0.0207	0.0144
0.0413	0.0117
0.0827	0.0096

(Abegg and Pick, B. 1905, 38. 2573.)

1 l. 0.2-N NaNO₃+Aq dissolves 4.956 g. AgNO₂ at 25°. (Ley and Schaefer, B. 1906, **39.** 1263.)

1 l. sat. KNO2+Aq dissolves 26% AgNO2 at 13.5°. (Oswald, A. ch. 1914, (9) 1. 33.)

#### Solubility in salts+Aq at 25°.

Salt	Conc. of the salt mols. per l.	G. AgNO2 in 100 g. of solution
		0.4135
AgNO ₃	0.00258 0.00588 0.01177 0.02355 0.04710	0.3991 0.3735 0.3432 0.2943 0.2498
KNO ₂	0.00258 0.00588 0.01177 0.02355 0.04710	0.3974 0.3820 0.3560 0.3119 0.2765

(Creighton and Ward, J. Am. Chem. Soc. 1915, 37, 2336.)

See also under KNO₂.

AgNO2+NaNO2.

1 1. 0.02 N-NaNO₂+Aq dissolves 3.185 g. AgNO₂ at 25°, 0.2-N NaNO₂, 3.016 g. AgNO₂. (Ley and Schaefer, B. 1906, 39. 1263.)
100 g. H₂O sat. with AgNO₂ and Sr(NO₂)₂ contain 10.9 g. AgNO₂ and 78.3 g. Sr(NO₂)₂ at 14°. (Oswald.)

Ch. J. 1898, <b>20</b> . 829.) Insol. in algohol.		100 pts H	20 dissolve
Sol. in acetone. (Eidmann, C. O. 18 II. 1014; Naumann, B. 1904, 37, 4328.)	99,	NeNO2	NaNO3
100 pts. acetonitrile dissolve 23 pts. at o temp.; 40 pts. at 81.6°. (Scholl and Steinko B. 1906, 39. 4393.) Sl. sol. in methyl acetate. (Bezold, D sert. 1906.) Insol. in ethyl acetate. (Hamers, Dissolution of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	pf, 21	84.75 81.1 79 ~ 73.8 73.1 6:.2 40.8 21.6	0 9.6 23.5 50.8 54.5* 56.7 62.8 74.7 89.3
Completely sol. in a little $H_2O$ , but decomby more $H_2O$ . (Fischer.) + $\frac{1}{2}H_2O$ . (Oswald, A. ch. 1914, (9) 75.)	52	108.8 107.9 104.3 101.8	0 6.7 20.6 34.5
Silver nitrite ammonia, AgNO ₂ , NH ₅ .  Sl. sol, in H ₂ O; less sol, in alcohol; nealinsol, in ether. (Reychler, B. 16, 2425.)  AgNO ₂ , 2NH ₃ . (Reychler.)  AgNO ₅ , 3NH ₃ . Deliquescent. Scl. in H ₂ (Reychler.)  Sodium nitrite, NaNO ₂ .		99.5 98.0 97.8 65.2 44.2 27.2 14.7	43.2 62.6* 82.0 88.0 92.9 101.4 109 118
Not deliquescent. Very sol. in H ₂ O. More sol. in H ₂ O than NaNO ₃ , but less alcohol. 6 pts. H ₂ O dissolve 5 pts. NaNO ₂ at 1 (Divers, Chem. Soc. 1899, <b>75.</b> 86.) 100 g. H ₂ O dissolve 83.25 g. NaNO ₂ at 1 (Niementowski and Roszkowski, J. phys. C1897, <b>22.</b> 146.)	5°. 5°.	120.7 111.5 108.5 107.8 78.3 49.5 28.4 14.7	0 34.8 62.8 90.6* 96 104.1 113.4 121.4
100 pts. H ₂ O dissolve at: 0° 10° 20° 30° 40° 73 78 84 91.5 98.5 pts. NaNO 50° 60° 70° 80° 107 116 125.5 136 pts. NaNO ₂ , 90° 100° 110° 120° 147 160.5 178 198.5 pts. NaNO ₂ .	81	137.1 125.7 122.7 122.6 79.1 50.0 27.2	0 38 8 69 8 101.0* 111.5 121.0 131.7
B-pt. of sat. NaNO ₂ +Aq=128° at 76 mm. pressure. Sat. solution at 20° has a a gr.=1.3585. (Oswald, A. ch. 1914, (9) 59.) Solubility in NaNO ₃ +Aq at t°.	sp.	149.7 141.2 134.6 132.3 60.2 30.3 0	0 23.6 57.6 107.8* 130.6 145.0 163.5
t° 100 pts. H ₂ O dissolve NaNO ₂ NaNO ₃	103	166 153.3 148.8	0 33.2 58.8
0 73 0 68.5 19 67.1 36.3 64.9 41.7*		142.4 100.0 60.1	116.0* 126.8 142.9 181.2
50.3 30.2 0 55.4 74.2		in solid phase. l, A. ch. 1914, (9	9) <b>1.</b> 71.)

Solubility in H₂O is decreased by presence of Na₂SO₄. 100 pts. H₂O dissolve 11.8 pts. Na₂SO₄+53.9 pts. NaNO₂. (Oswald.) Very sol. in liquid NH₂. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Neither dissolved nor attacked by liquid NO2. (Frankland, Chem. Soc. 1901, 79. 1361.)

Sol. in warm 90% alcohol. (Hampe, A.

**125**, 336.)

100 pts. absolute methyl alcohol dissolve 4.43 pts. at 19.5°; 100 pts. absolute ethyl alcohol dissolve 0.31 pt. at 19.5°. (de Bruyn, Z. phys. Ch. 10. 783.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

### Strontium nitrite, Sr(NO₂)₂.

Very sol. in H₂O, and very sl. sol. in boiling

alcohol. (Lang, Pogg. 118. 287.) Easily sol. in 90% alcohol. (Hampe, A.

125. 340.)

 $+\mathrm{H}_2\mathrm{O}$ . Hydroscopic, 100 ccm. of the sat. solution contain 62.83 g.  $\mathrm{Sr}(\mathrm{NO}_2)_2 + \mathrm{H}_2\mathrm{O}$ at 19.5°. (Vogel, Z. anorg. 1903, **35**. 393.)

#### 100 pts. H₂O dissolve at:

10° O° 20° 75.5 84 pts.  $Sr(NO_2)_2 + H_2O_1$ 67.658.940° 50 60° 105 116 130 pts.  $Sr(NO_2)_2 + H_2O_1$ 94 80°  $90^{\circ}$ 100° 145 162 182 pts.  $Sr(NO_2)_2 + H_2O$ .

Bpt. of sat. solution is 112.5° at 763 mm. pressure. The sat. solution at 19° contains  $39.3\% \text{ Sr(NO}_2)_2$  and has sp. gr. at  $19^{\circ}/0^{\circ} =$ 1.4461. (Oswald, A. ch. 1914, (9) 1. 64.)

Solubility in alcohol. 100 ccm. of the solution in 90% alcohol contain 0.42 g. Sr(NO₂)₂ +H₂O at 20°. 100 ccm. of the solution in absolute alcohol contain 0.04 g. Sr(NO₂)₂+ at 20°. (Vogel, Z. anorg. 1903, **35**. 393.)

#### Thallous nitrite, TlNO₂.

Sol. in H₂O. Ppt. from solution in H₂O by absolute alcohol. (Vogel, Z. anorg. 1903,

Very sol. in H2O; insol. in alcohol. (Ball, Chem. Soc. 1913, 103. 2131.)

Zinc nitrite, basic, 2ZnO, N₂O₈. (Hampe, A. 125. 334.)

Zinc nitrite,  $Zn(NO_2)_2 + 3H_2O$ .

Sol. in H₂O and alcohol. Deliquescent. (Lang, J. B. 1862. 99.)

Nitrous oxide, N₂O. See Nitrogen monoxide.

#### Nitraxyl bromide, NO₂Br.

Decomp. spontaneously or with H₂O. (Hasenbach, J. pr. (2) 4. 1.)
Does not exist. (Fröhlich, A. 224. 270.)

#### Nitroxyl chloride, NO₂Cl.

Decomp. by H₂O without evolution of gas. Probably does not exist. (Geuther, A. 245. 98.)

#### Nitroxyl fluoride, NO₂F.

Absorbed by H₂O with formation of HNO₂ and HF. Decomp. by H2O, alcohol, and ether. (Moissan and Lebeau, C. R. 1905, **140.** 1624.)

### Nitroxypyrosulphuric acid,

 $(HO)S_2O_5(NO_8), H_2O.$ 

Very deliquescent. Sol. in H₂O with decomp. (Weber, Pogg. 142. 602.)

### Nitryl chloride, NO₂Cl.

See Nitroxyl chloride.

#### Octamine cobaltic compounds.

The formulæ of the following octamine cobaltic compounds should be reduced onehalf, and they should be classed with the tetramine cobaltic compounds. (Jörgensen, Z. anorg. 2. 279.)

#### Octamine cobaltic carbonate,

 $Co_2(NH_3)_8(CO_3)_6 + 3H_2O$ .

Easily sol. in H₂O. (Vortmann and Blasberg, B. 22. 2654.)

See Carbonatotetramine carbonate.

 $\text{Co}_2(\text{NH}_3)_8\text{O}_3(\text{CO}_3)_4 + 3\text{H}_2\text{O}$ . Rather difficultly sol. in H₂O.

- chloride (?),  $Co_2(NH_3)_8(OH)_2Cl_4+$ 2H₂O.

Ppt.

 $Co_2(NH_3)_8(OH)_2Cl_4$ ,  $2HgCl_2$ .  $Co_2(NH_3)_8(OH)_2Cl_4$ ,  $PtCl_4+H_2O$ . (Vortmann and Blasberg, B. 22. 2654.)

 mercuric chloride, Co₂(NH₃)₈Cl₆,  $3HgCl_2+H_2O$ .

Co₂(NH₃)₈Cl₆, HgCl₂. Difficultly sol. in cold H₂O, decomp. on warming. (Vortmann.)

- chlorosulphite,  $\mathrm{Co_2(NH_8)_8(SO_8)_2Cl_2}$ +4H₂O.

Sol. in H₂O. (Vortmann and Magdeburg, B. **22.** 2635.)

#### chromate,

 $Co_2(NH_3)_8(CrO_4)_8(H_2O)_2 + 2H_2O$ .

Sol. in H₂O or acetic acid.

+8H₂O. Sol. in warm H₂O or acetic acid.  $Co_2(NH_3)_8(CrO_4)_2Cr_2O_7(H_2O)_2+H_2O$ . Easly sol. in H₂O, from which it is precipitated by dil. HNO₃+Aq. (Vortmann, B. **15**. 5895.)

```
Octamine cobaltic nitrate, Co2(NH3)8(NO3)6
 +2H<sub>2</sub>O.
 Sol. in H<sub>2</sub>O; precipitated by conc. HNO<sub>8</sub>+
Aq. (Vortmann.)
 -- nitratocarbonate,
 Co_2(NH_3)_8(NO_3)_2(CO_3)_2 + H_2O.
 Less sol, than other octamine carbonates.
(Vortmann and Blasberg, B. 22, 2650.)
 See Carbonatotetramine cobaltic nitrate.
 - purpureochloride.
 \operatorname{Co_2(NH_2)_8Cl_6(H_2O)_2}.
 Easily sol. in H<sub>2</sub>O; partly precipitated from
aqueous solution by conc. HCl+Aq. (Vort-
mann, B. 10. 1451.)
 =Chlorotetramine
 cobaltic
 chloride.
ClCo(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)Cl<sub>2</sub>, wich sec.
 (Jörgen-
sen, J. pr. (2) 42. 211.)
 ---- purpureomercuric chloride,
 \operatorname{Co_2(NH_8)_8Cl_6(H_2O)_2}, 6HgCl<sub>2</sub>.
 Sl. sol. in cold, easily in hot H<sub>2</sub>O. (Vort-
mann.)
 = Chlorotetramine cobaltic mercuric chlo-
ride. (Jörgensen, J. pr. (2) 42. 211.)

 purpureomercuric hydroxychloride,

 Co<sub>2</sub>N<sub>8</sub>H<sub>16</sub>(HgCl)<sub>4</sub>(HgOH)<sub>4</sub>Cl<sub>6</sub>.
 Ppt.
 (Vortmann and Morgulis, B. 22.
2647.)
 Co_2N_8H_{16}(HgOH)_8Cl_6. (V. and M.)
 Co_2N_8H_{16}(HgOH)_8Cl_4(OH)_2. (V. and M.)

 purpureomercuriodide, basic.

 \mathrm{Co_{2}N_{8}H_{18}(HgOH)_{6}I_{6}}.
 (Vortmann and Borsbach, B. 23, 2805.)

 purpureochloroplatinate.

 Very sl. sol. in H<sub>2</sub>O. (Vortmann.)

 Chlorotetramine cobaltic chloroplatinate,

ClCo(NH<sub>3</sub>)<sub>4</sub>(OH<sub>2</sub>)PtCl<sub>6</sub>+2H<sub>2</sub>O. (Jörgensen,
J. pr. (2) 42. 215.)
 --- roseochloride, Co_2(NH_3)_8Cl_6(H_2O)_2
 +2H<sub>2</sub>O, or 4H<sub>2</sub>O.
 Sol. in H<sub>2</sub>O. (Vortmann, B. 15. 1891.)
 See Roseotetramine cobaltic chloride.

 roseomercuric chloride,

 Co_2(NH_3)_8Cl_6(H_2O)_2, 6HgCl_2+3H_2O.
 Ppt. (Vortmann.)
 -roseomercuric hydroxychloride,
 \text{Co}_2\text{N}_8\text{H}_{16}(\text{HgCl})_6(\text{HgOH})_2\text{Cl}_6.
 (Vortmann and Morgulis, B. 22. 2647.)
 Co<sub>2</sub>N<sub>8</sub>H<sub>16</sub>(HgOH)<sub>8</sub>Cl<sub>6</sub>. (V. and M.)
Co<sub>2</sub>N<sub>8</sub>H<sub>16</sub>(HgOH)<sub>8</sub>Cl<sub>4</sub>(OH)<sub>2</sub>. (V. and M.)

 roseomercuric iodide,

 H_2N_2Os_2O_5(?).
```

 $\begin{array}{cccc} Co_2N_8H_{21}(HgI)_8I_6. \\ Ppt. & Sol. \ in \ HCl \ or \ HNO_8. \end{array} \ (Vortmann \label{eq:co2}$ 

and Borsbach, B. 23. 2806.)

```
Co_2N_8H_{20}(HgI)_4I_6. Ppt. (V. and B.)
 \text{Co}_2\text{N}_8\text{H}_{20}(\text{HgI})_4\text{I}_4(\text{OH})_2. Ppt. (V. and B.)
 Octamine cobaltic sulphate,
 Co_2(NH_3)_8(OH)_2(SO_4)_2 + 3H_2O. (?).
 Insol. in H<sub>2</sub>O or dil. W<sub>2</sub>SO<sub>4</sub>+Aq. Sol. in
mcderately conc. HCl +Aq. (Vortmann and
Blasberg, B. 22. 2653.)
 Co_2(\tilde{N}H_8)_c(SO_4)_8 + 6H_2O.
 Sol. in H<sub>2</sub>O.
 (Vortmann.)
 +4H<sub>2</sub>O. Easily sol. in H<sub>2</sub>O.
 See Roseotetramine cobaltic sulphate.

 sulphatocarbonate

 C_{02}, NH_3)<sub>8</sub>SO_4(CO_3)_2 + 3H_2O.
 Sol in H<sub>2</sub>O. (Vortmann, B. 10, 1458.)
 See Carbonatotetramine cobaltic sulphate.
 Co_2(NH_3)_8(SO_4)_2CO_3+4H_2O. Sol. in H_2O.
 (Vo. tmann and Blasberg, R. 22. 2650.)
 - ammonium sulphite.
 Co_2(NH_3)_8(SO_3NH_4)_6 + 10\dot{H}_2O.
 See Octamine cobaltisulphite, ammonium.
Octamine cobaltisulphurous acid.
Amnionium octamine cobaltisulphite,
 C_{2}(NH_{3})_{8}(SO_{3}NH_{4})_{6}+10\tilde{H}_{2}O.
 Sol. in H<sub>2</sub>O. (Vortmann and Magdeburg.
B. 22. 2632.)
 Co_2(NH_3)_8(SO_3)_2(SO_3NH_4)_2+4H_2O.
Ammonium barium -
 \text{Co}_2(\text{NH}_3)_8(\text{SO}_3)_6\text{Ba}_2(\text{NH}_4)_2 + 7\text{H}_2\text{O}.
 Ppt. (V. and M.)
Barium — Co<sub>2</sub>(NH<sub>3</sub>)<sub>8</sub>(SO<sub>3</sub>)<sub>6</sub>Ba<sub>2</sub>+
 7H<sub>2</sub>O.
 Ppt. (V. and M.)
Cobaltic -
 Co_2(NH_3)_8(SO_3)_6Co_2+36H_2O, and
 24H<sub>2</sub>O.
Luteocobaltic -
 Co_2(NH_3)_8(SO_3)_6(NH_3)_{12}Co_2 + 8H_2O
 Ppt. (V. and M.)
Octamine iridium chloride.
 Ir_2(NH_8)_8Cl_6.
 Very sol. in H<sub>2</sub>O. (Palmaer, B. 22. 16.)
Octamine iridium chlorosulphate,
 It_2(NH_3)_8Cl_4SO_4+4H_2O.
 (Palmaer.)
Osmiamic acid, H<sub>2</sub>N<sub>2</sub>Os<sub>2</sub>O<sub>6</sub>, or
```

Known only in aqueous solution, which is.

unstable.



#### Ammonium osmiamate.

Easily sol, in H₂O or alcohol. (Fritzsche and Struve, J. pr. 41. 97.)

Barium osmiamate, BaN2Os2O5. Moderately sol. in H₂O.

#### Lead osmiamate.

Ppt. Sol. in acids without decomp.

Lead osmiamate chloride. Ppt.

Mercurous osmiamate.

Ppt.

Mercuric osmiamate.

Ppt.

Potassium osmiamate. K₂N₂Os₂O₅, K2N2O82O6.

Sl. sol. in cold, much more easily in hot H₂O. Sl. sol. in alcohol. Insol. in ether.

Silver osmiamate, Ag₂N₂Os₂O₅.

Extremely sl. sol. in H₂O or cold HNO₃+ Aq. Sol. in NH₄OH+Aq.

Sodium osmiamate.

Easily sol. in H₂O or alcohol.

Zinc osmiamate, ZnN₂Os₂O₅.

Decomp. by H₂O. Nearly insol. in NH₄OH

#### Osmic acid, H₂OsO₄.

Stable in H₂O containing alcohol. Sol. in HNO₃ or HCl+Aq. Not attacked by H₂SO₄+Aq. (Moraht and Wischin, Z. anorg. 3.

100 g. H₂O dissolve 5.88 g. H₂OsO₄ at 15°. (Squire and Cains, Pharm. J. 1905, **74.** 720.) Attacked by liquid NH₈. (Gore, Am. Ch. J. 1898, 20. 828.)

Barium osmate, BaOsO4+H2O.

"Insol, in H₂O. (Claus, Pogg. 65. 205.)

Calcium osmate, CaOsO4.

Insol. in H₂O. (Fremy, J. pr. 33. 411.)

Lead osmate.

Insol. in H₂O. (Fremy.)

#### Potassium osmate, K₂OsO₄+2H₂O.

Sl. sol. in cold, much more sol. in hot H₂O, but is decomp. thereby. Sl. sol. in KNO₂+Aq. Insol. in dil. or conc. alcohol and ether. Fremy, A. ch. (3) 12. 516.)
Insol. in conc. saline solutions.

(Gibbs, Am. J. Sci. (2) 31. 70.)

Sodium osmate, Na₂OsO₄.

Sol, in H₂O; insol, in alcohol and ether. (Fremy, l. c.)

Perosmic acid.

See Perosmic acid.

Osminitrous acid.

Ammonium osminitrite,  $(NH_4)_2Os(NO_2)_5+$ 2H₂O.

Sol. in H₂O. Decomp. when solution is warmed. (Wintrebert, C. R. 1905, **140**. 586.)

Barium osminitrite,  $BaOs(NO_2)_5$ .

 $+H_2O$ ;  $+4H_2O$ . (Wintrebert.)

Calcium osminitrite, CaOs(NO₂)₅+4H₂O. (Wintrebert.)

Magnesium osminitrite, MgOs(NO₂)₅+ (Wintrebert.)

Potassium osminitrite,  $K_2Os(NO_2)_5$ .

Very hygroscopic. Very sol. in H₂O. Decomp. by HCl, HBr and HI. (Wintrebert, A. ch. 1903, (7) **28.** 135.)

Silver osminitrite,  $Ag_2O_8(NO_2)_5 + 2H_2O$ .

Sl. sol, in H₂O with partial decomp. (Wintrebert, C. R. 1905, **140.** 586.)

Sodium osminitrite,  $Na_2O_8(NO_2)_5 + 2H_2O$ . Sol. in H₂O. (Wintrebert.)

Strontium osminitrite, SrOs(NO₂)₅+2H₂O. (Wintrebert.)

Zinc osminitrite,  $ZnOs(NO_2)_5 + \frac{1}{2}H_2O$ . (Wintrebert.)

#### Osmyloxynitrous acid.

Ammonium osmyloxynitrite,  $(NH_4)_2OsO_3(NO_2)_2$ .

Decomp, by boiling conc. HCl and by KOH +Aq. (Wintrebert, A. ch. 1903, (7) 28, 107.)

Barium osmyloxynitrite,  $BaOsO_3(NO_2)_2 +$ 4H₂O. (Wintrebert.)

Potassium osmyloxynitrite, K₂O₅O₅(NO₂)₂+ 3H₂O.

Sl. sol. in cold H₂O. Aqueous solution decomp. slowly. Sol. with decomp. in dil. KOH +Aq. (Wintrebert.)

Silver osmyloxynitrite,  $Ag_2O_8O_3(NO_2)_2 + H_2O$ . (Wintrebert.)

Strontium osmyloxynitrite, SrOsO₃(NO₂)₂+3H₂O. (Wintrebert.)

#### Osmylnitrous acid.

Potassium osmylnitrite, K₂O₈O₂(NO₂)₄. Decomp. by H₂O and by excess of KOH-Aq. (Weinland, A. ch. 1903, (7) **28.** 54.)

#### Osmisulphurous acid.

 $\begin{array}{ll} \mbox{Potassium osmisulphite,} & [{\rm O}_{5}(H_{2}{\rm O})({\rm SO}_{8})_{5}]K_{\mbox{\tiny $L$}}\\ & +4H_{2}{\rm O}. \end{array}$ 

Ppt. (Rosenheim, Z. anorg. 1899, 21. 144.)

Potassium hydrogen osmisulphite,  $[Os_2(H_2O)(SO_3)_{11}]K_{11}H_3+5H_2O$ .

Sol. in  $H_2O$  without decomp. (Rosenheim.) [Os(SO₃)₆] $K_6H_2+2H_2O$  Sol. in  $H_2O$  without decomp. (Rosenheim.)

Sodium osmisulphite, [Os(SO₈)₆]Na₈ +8H₂O. Only sl. sol. in H₂O.

 $\begin{array}{ll} [Os(H_2O)(SO_3)_5] \bar{N} a_6 + 4H_2O. & Ppt. \\ [OsO(SO_3)_4] Na_6 + 3H_2O. & Ppt. \end{array} (Rosenheim.) \end{array}$ 

#### Osmium, Os.

When finely divided and not ignited to a very high temperature, Os is sol. in HNO₃+Aq or aqua regia. When ignited it is not attacked by any acid.

Insol. in liquid NH₃. (Gore, Am. ch. J. 1898, 20.. 828)

#### Osmium ammonium comps.

See-

Oxyosmiumamine comps.,  $OsO(NH_3)_2X$ . Oxyosmiumdiamine comps.,  $OsO_2(NH_3)_4X_2$ .

Osmium bromide with MBr. See Bromosmate, M.

#### Osmium dichloride, OsCl₂.

Deliquescent. Sol. in little, but decomp. by more H₂O, with pptn. of Os. Sol. in conc. alkali chlorides+Aq with combination and partial decomp. (Berzelius.)

Sol. in alcohol and ether. Insol. in H₂O. Insol. in H₂O. Insol. in HCl and H₂SO₄. Sl. sol. in HNO₃ and aqua regia. Slowly sol. in strong alkali. Insol. in liquid Cl₂. Insol. in alcohol and formaldehyde. (Ruff, Z. anorg. 1910, **65**. 455.)

#### Osmium trichloride, OsCl₃.

Hydroscopic. Sol. in conc. H₂SO₄, HCl and conc. HNO₃. Sol. in alkali and in NH₄OH. Insol. in liquid Cl₂. Easily sol. in alcohol. Sl. sol. in ether. (Ruff, Z. anorg. 1910, 65. 453.)

+3H₂O. Sol. in H₂O. (Moraht and Wischin, Z. anorg. 3. 153.)

#### Osmium tetrachloride, OsCl4.

Sol. in a little  $H_2O$ , but decomp. by further addition of that solvent. Sol. in conc. HCl+Aq.

Osmium trichloride witi, MCl.

See Chlerosmite, M.

Osmium teirachloride with MC!.

See Chlorosmate, M.

Osmium sodium chloride, Na₂O₈Ol₆+2H₂O. Very sol. in H₂O and in alcohol. (Rosen-

heim, 2. anorg. 1899, **21**, 133.)

Osmium tetrafluoride, G₅F₄.

Sol. in H₂O. (Ruff, B, 1913, **46**, 948.)

# Osmium hexafiuoride, Osl 6.

Decomp. by  $H_2O$  and conc.  $H_2SO_4$ . Sol. in NaOH + Aq. (Ruff, B. 1913, **46**. 945.)

#### Osmium octofluoride, OsF₈.

Sol. in H₂O, but is somewhat hydrolyzed. Sol. in conc. H₂SO₄ with decomp. Sol. in NaOH+Aq. (Ruff, B. 1913, **46**. 944.)

#### Osmium monohydroxide, OsO, xH₂O.

Insol. in H₂O. Sl. sol. in KOH+Aq. Slowly but completely sol. in acids. (Berzelius.)

#### Osmium dihydroxide, OsO2, H2O.

Sol. in HCl+Aq while still moist. Insol. in H₂SO₄ or HNO₂+Aq.

in H₂SO₄ or HNO₃+Aq. +2H₂O. Sol. in HCl, HNO₃, or H₂SO₄+Aq while still moist. (Claus and Jacoby.)

#### Osmium sesquihydroxide, Os₂O₆H₆.

Sol. in acids, and partly sol. in KOH+Aq. (Claus and Jacoby.)

#### Osmium iodide, OsI4.

Extremely deliquescent. Sol. in H₂O of alcohol, but solution is unstable. (Moraht and Wischin, Z. anorg. 3. 153.)

#### Osmium potassium nitrosochloride, K₂Os(NO)Cl₅.

Stable in aqueous solution. Only sl. attacked by hot HNO₃. (Wintrebert, A. ch. 1903, (7) **28**. 132.)

Osmium monoxide, OsO.

Insol. in H₂O or acids. (Claus and Jacoby.)

### Osmium dioxide, OsO₂.

lnsol. in H2O or acids.

#### Osmium sesquioxide, Os₂O₃.

Insol. in acids. (Claus and Jacoby.)

Osmium trioxide, "Osmic acid," OsOs. See Osmic acid.

Osmium tetroxide, "Perosmic acid," OsO4.

Slowly but abundantly sol, in H₂O. Sol, in alcohol and ether with gradual decomposition. Sol. in NH₄OH+Aq, the solution undergoing decomposition on heating.

Osmium oxide ammonia, OsO₂, 2NH₃+H₂O. See Oxyosmiumamine hydroxide.

Osmium oxysulphide, Os₃S₇O₅+2H₂O.

Unstable.

OsSO₂+1½H₂O. Insol. in H₂O. (v. Meyer, J. pr. (2) 16. 77.) Os₂O₂S₂+H₂O. Decomp. and dissolved by HNO₃, HCl, or H₂SO₄+Aq. (Moraht and Wischin, Z. anorg. 3. 153.)

Osmium sulphide,  $Os_2S_3$  (?).

(Berzelius.)

Min. Laurite. Insol. in all acids, even in aqua regia.

Osmium disulphide,  $OsS_2$ .

Sl. sol. in H₂O; not more sol. in alkali hydrates or carbonates+Aq. Insol. in alkalies after drying. (Fremy, A. ch. (3) 12.

Osmium tetrasulphide,  $OsS_4+xH_2O$ .

Insol. in alkali sulphides, carbonates, or hydroxides+Aq. Sol. in cold dil. HNO₃+ Aq. (Claus.)

Osmocyanhydric acid, H₄Os(CN)₆.

Easily sol. in H₂O and alcohol. Insol. in ether. (Martius, A. 117. 361.)

Barium osmocyanide,  $Ba_2Os(CN)_6+6H_2O$ . Easily sol. in H₂O and dil. alcohol. (M.)

Barium potassium osmocyanide,  $BaK_2Os(CN)_6 + 3H_2O$ .

Efflorescent. Sl. sol. in cold, easily in hot H₂O.

Ferric osmocyanide,  $Fe_4[Os(CN)_6]_8 + xH_2O$ . Insol. in H₂O.

Potassium osmocyanide,  $K_4Os(CN)_6 + 3H_2O$ . Moderately sol. in boiling, less in cold H₂O. Insol. in alcohol and ether.

Osmosyl ammonium comps. See Oxyosmium amine comps.

Osmyl pottasium bromide, K₂OsO₂Br₄+ 2H₂O.

(Wintre-Same properties as the chloride. bert, A. ch. 1903, (7) 28. 94.)

Osmyl potassium chloride, K₂OsO₂Cl₄.

Very sol. in H₂O. Solution is stable only in the presence of a small amt, of HCl. Decomp. by hot conc. HCl.

+2H₂O. As the anhydrous salt. (Wintrebert, A. ch. 1903, (7) 28. 86.)

Osmyl ditetramine comps.

See Oxyosmium diamine comps.

Oxamidosulphonic acid.

See Hydroxylamine monosulphonic acid.

Oximidosulphonic acid.

See Hydroxylamine disulphonic acid.

Oxyamidosulphonic acid.

See Hydroxylamine sulphonic acid.

Oxyammonium salts.

See Hydroxylamine salts.

Oxycobaltamines, acid comps.

(Maguenne, C. R. 96, 344.)

Are anhydrooxycobaltamine comps., which see. (Vortmann, M. ch. 6. 404.)

Oxycobaltamine chloride,

Co₂(NH₈)₁₀O(OH)Cl₄.

(Vortmann, M. ch. 6. 404.)  $Co_2(NH_3)_{10}O_2Cl_4$ ,  $HCl+3H_2O$ . drooxycobaltamine chloride, which see.

chloronitrate hydrochloride,  $Co_2(NH_3)_{10}(OH)(O.OH)(NO_3)_2Cl_2$ 4HCl+3H₂O.

Is anhydrooxycobaltamine chloronitrate, which see.

chlorosulphate,

 $\mathrm{Co_2(NH_3)_{10}}\left( \overset{\mathrm{OH}}{\mathrm{O(OH)}} \right) (\mathrm{SO_4)Cl_2}, \, 4\mathrm{HCl}.$ Easily decomp.

- iodide,  $\mathrm{Co_2(NH_3)_{10}} \Big( \!\!\! \begin{array}{c} \mathrm{OH} \\ \mathrm{O(OH)} \end{array} \!\!\! \Big) \mathbf{1_4}.$ 

Sl. sol. in  $H_2O$ . Decomp. by much  $H_2O$ . (Vortmann.)

- nitrate,  $Co_2(NH_8)_{10}(OH)(O.OH)(NO_8)_4$  $+\mathrm{H}_{2}\mathrm{O}.$ 

Decomp. by H₂O.  $Co_2(NH_3)_{10}(OH)(O.OH)(NO_3)_4$ , HNO₈+  $2H_2O$ . Decomp. by  $H_2O$ .

nitratosulphate,  $Co_2(NH_3)_{10}(OH)(O.OH)(SO_4)(NO_3)_2$ 4HNO₈.

Decomp. at once by H₂O.

	<del></del>				-
Oxycobaltami			Absorpt	tion of O by H2O	Continued
	$)_{10}O_{2}(SO_{4})_{2}, H_{2}SO_{4}$		t°	β	βι
Very sl. so	l. in H ₂ O with		14	0.3486	0.3431
(Maguenne (	acidified H ₂ O. C. R. <b>96.</b> 344.)	Sol. in acids.	15	3415	3358
	/ OTT \	1	16	3347	3288
$\mathrm{Co_2}(\mathrm{NH_8})_{10}$	$\binom{OH}{O(OH)}(SO_4)_2$	+3H ₂ O.	17	3283	3220
	) (		18	3220	3155
$\mathrm{Co_2}(\mathrm{NH_3})_{10}$	$\left( \begin{array}{c} OH \\ O(OH) \end{array} \right) (HSO_4)$	) ₄ . Decomp.	19	3161	3093
	(0(011))	, ·	$\begin{array}{c} 20 \\ 21 \end{array}$	3102 3044	3031
violently by	H ₂ O.	1	22	2988	2970 2911
Oxygen, Os.		1	$\overline{23}$	2934	2853
	absorb 4.6 vols. O	gas at ord temp.	24	2881	2797
(Otto-Graham.) Sol. in 27 pt	s. H ₂ O at ord. ten	p. (Pelouze and	25	2831	2743
Fremy.)			$\frac{26}{27}$	2783	2691
	dissolve 0.925 vol.		$\begin{array}{c} 27 \\ 28 \end{array}$	2736	2641
	t° and 760 mm.		20 29	2691 2649	$2592 \\ 2545$
O gas, i	reduced to 0° and	1 760 mm.	30	2608	2500
t°   V	t°   V	l t° V	31	2572	$\begin{array}{c} 2350 \\ 2459 \end{array}$
			32	2537	2419
0   0.04114		14   0.03034	33	2503	2380
1   0.04007		15   0.02989	34	2471	2342
2   0.03907		16   0.02949	35	2440	2306
3   0.03810 4   0.03717		17   0.02914	$\frac{36}{37}$	2410	2270
5 0.03628		$oxed{18 \mid 0.02884} \ 19 \mid 0.02858$	38	2382 2355	$   \begin{array}{r}     2236 \\     2203   \end{array} $
6 0 03544		20 0.02838	39	2330	$\frac{2203}{2171}$
			40	2306	2140
1)	Bunsen's Gasome	try.)	41	2280	2107
	of absorption of		42	2256	2075
	10899t + 0.000022	$2563t^3$ . (Bun-	43	2232	2043
sen and Paul			44 45	2209	2012
	of absorption o		46	2187 2166	$1981 \\ 1952$
jew, Z. phys.	08; at 12.6° = 0.03 Ch 6 148)	oom (mnore-	47	2145	1932
		// 1 1 22	48	2126	1894
	f O by H ₂ O. β		49	2108	1865
760 mm	amount of gas (re	and by 1 vol. of	50	2090	1837
	d when the baro		52 54	2057	1782
	. pressure; $\beta = cc$		54 56	2026	1728
	i. e., amount a		58	1998 1971	$\begin{array}{c} 1674 \\ 1619 \end{array}$
	hen the pressure		60	1946	1565
	the tension of the		62	1921	1508
to 760	mm.; $\beta_1 = \beta \frac{760}{760}$	when $f = va$ -	64	1897	1450
			66	1874	1392
portens	on of solvent at t	•	$\begin{array}{c} 68 \\ 70 \end{array}$	1853	1332
t°	β	$oldsymbol{eta_1}$	70 72	1833 1815	$1270 \\ 1208$
			74	1799	1144
0	0.04890	0.04860	76	1785	1078
1	4759	4728	78	1772	1010
$rac{2}{3}$	4633 4512	$\frac{4601}{4479}$	80	1761	0939
3 4	4397	4362	82	1752	0865
5	4286	4250	84 86	1743	0788
6	4181	4142	88	1736 1729	0707 0622
7	4080	4040	90	1723	0532
8	3983	3941	92	1717	0437
9	3891	3847	94	1712	0337
10	3802	3756	96	1708	0231
$\begin{array}{c} 11 \\ 12 \end{array}$	3718 3637	$\frac{3670}{3587}$	98	1704	0119
13	3560	3507	100	7001	0000
	1 0000			(Winkler, B. 24. 36	09.)

Absorption of O by  $H_2O$  at  $t^\circ$  and 760 mm.  $\beta$  = coefficient of absorption.

t°	β	t°	β	l t°	β
0	0.04961	23	0.03006	46	0.02163
	4838	. 24	2956	47	2139
1 2 3 4 5	4720	25	2904	48	2115
3	4606	26	2855	49	2092
4	4496	27	2808	50	2070
5	4389	28	2762	51	2049
6	4286	29	2718	52	2029
7 8	4186	30	2676	53	2009
8	4089	31	2635	54	1990
9	3994	32	2596	55	1972
10	3903	33	2558	56	1955
11	38167	34	2521	57	1938
12	3732	35	2486	58	1922
13	3651	36	2452	59	1907
14	3573	37	2419	60	1893
15	3497	38	2387	65	1832
16	3425	39	2356	70	1787
17	3357	40	2326	75	1752
18	3292	41	2297	80	1726
19	3230	42	2269	85	1707
20	3171	43	2241	90	1693
21	3114	.44	2214	95	1684
22	3059	45	2188	100	1679

(Bohr and Bock, W. Ann. (2) 44. 318.)

Coefficient of absorption of O by  $\rm H_2O$  between 0° and 30°=0.04890—0.0013413t+0.0000283t²—0.00000029534t³. (Winkler, l.~c.) Solubility in  $\rm H_2O$  at 25°=0.03080; at 15°=0.03630. (Geffcken, Z. phys. Ch. 1904, **49**. 269.)

Absorption of  $O_2$  by distilled  $H_2O$  at  $t^{\circ}$ . a=ccm. of  $O_2$  absorbed by 1 l. of  $H_2O$  at  $t^{\circ}$  and 760 mm.

to	a	t°	a	t°	a
0	49.24	17	33.21	34	25.19
1	47.94	18	32.58	35	24.85
2	46.65	19	32.01	36	24.52
2 3	45.45	20	31.44	37	24.20
4	44.31	21	30.91	38	23.89
5	43.21	22	30.38	39	23.59
6	42.15	23	29.86	40	23.30
7	41.15	24	29.38	41	23.02
8	40.19	25	28.90	42	22.75
9	39.28	26	28.42	43	22.49
10	38.37	27	27.94	44	22.24
11	37.51	28	27.51	45	22.00
12	36.75	29	27.08	46	21.77
13	35.98	30	26.65	47	21.55
14	35.26	31	26.27	48	21.34
15	34.55	32	25.90	49	21.14
16	33.88	33	25.54	50	20.95

(Fox, Trans. Faraday Soc. 1909, 5. 74.)

Solubility in H₂O at various pressures.

V = volume of the absorbing liquid.

P = Hg-pressure in metres.  $\lambda = coefficient$  of solubility.

$\mathbf{v}$	t°	P	λ
33.320 ccm.	23°	0.9595	0.02937
		1.0941	0.02939
		1.2883	0.02938
		1.4976	0.02935
		1.7638	0.02939
		2.0838	0.02931
		2.5011	0.02928
		3.0402	0.02909
		3.8675	0.02886
		4.2504	0.02872
		4.6301	0.02855
		5.1360	0.02832
		5.6973	0.02818
		6.1857	0.02797
		6.7343	0.02772
		7.3051	0.02741
		7.7138	0.02729
		8.1406	0.02708
32.003 ccm.	25.9°	0.8611	0.02848
		0.9808	0.02849
		1.0833	0.02846
		1.2039	0.02842
		1.4112	0.02845
		1.6602	0.02847
		2.3854	0.02831
		2.6482	0.02826
		2.8995	0.02816
		3.2883	0.02803
		3.9133	0.0279
		4.2720	0.02785
		4.6905	0.027
		5.0559	0.02762
		5.6141	0.02749
ļ		6.0120	0.02734
j		6.5687	0.02719
		7.1056 7.4729	$0.02687 \\ 0.02676$
		8.1889	0.02645
		0.1009	0.02045

(Cassuto, Phys. Zeit. 1904, 5. 236.)

Solubility of O in  $H_2O$  at  $25^{\circ}=0.0294$ . (Findlay and Creighton, Bioch. J. 1911, **5**. 294.)

Coefficient of absorption for  $H_2O=0.03398$  at 15°; 0.03375 at 15.3°; 0.03330 at 16.2°. (Müller, Z. phys. Ch. 1912, **81**. 494.)

Solubility in H2O at to.

 $l_{760}\!=\!{\rm solubility}$  of atmospheric O2 in H2Q at 760 mm. and t°.

t°	1780	t°	176.
0	10.26	13	7.51
1	9.99	14	7.36
<b>2</b>	9.73	15	7.21
$\frac{2}{3}$	9.48	16	7.07
4	9.25	17	6.93
5	9.02	18	6.80
6	8.80	19	6 67
7	8.59	20	6.55
8	8.39	21	6.43
9	8.20	22	6 32
10	8.02	23	6.21
11	7.84	24	6.10
12	7.67	25	6.00

(Carlson, Zeit, angew. Ch. 1913, 26, 714.)

Solubility of atmospheric  $O_2$  in mixtures of distilled  $H_2O$  with sea water diminishes regularly with the proportion of sea water present. (Clowes, J. Soc. Chem. Ind. 1904, **23**, 359.)

No, of ccm, of  $O_2$  absorbed by 1 l, of sea water from a free dry atmosphere of 760 mm, pressure.

Cl per 1000	t=0°	4°	8°	12°	16°	20°	24°	28°
0 4 8 12 16 20	9.36 8.90 8.43	8.85 8.45 8.04 7.64	8.40 8.04 7.68 7.33 6.97 6.62	7.36 7.04 6.74 6.43	6.80 6.52 6.24 5.96	6.33 6.07 5.82 5.56	5.91 5.67 5.44 5.20	5.53 5.31 5.08 4.86

(Fox, Trans. Faraday Soc. 1909, 5. 77.)

For O absorbed from the air, see also air, atmospheric, p. 1.

Absorption of  $O_2$  by acids +Aq. M = content in gram-equivalents per litre. S = solubility.

HNO2+Aq.

M	S 25°	S 15°
0.492 0.494 1.00 1.008 1.88	0.03021 0.03016 0.02954 0.02963 0.02853	0.03478 0.03490 0.03354 0.03365 0.03175
1.901		0.03166

Absorption of O₂ by acids + Aq. — Continued. HCl -! Aq.

M	8 25°	S 15°
0.578	0.02963	0.03431
0.579	0.02960	0.03410
1.170	0.02817	0.03217
1.176	0 028.3	0.03109
1.736	0 02733	0.03069
1.982	0.02374	0.02988

 $\frac{\text{II}_2\text{SO}_4}{2}$  + Aq.

1.1	S 25°	S 15°
0.489 0.527 0.977 1.017 1.896 1.829 2.947 3.512	0 02887 0.02875 0.02757 0.02745 0 02545 0.02577 0.02285 0.02198	0.03366 0.03375 0.03210 0.03217 0.02886 0.02930 0.02584 0.02399
4.951 5 293	0.01918	0.02174 0.02067

(Geffcken, Z. phys. Ch. 1904, 49. 269.)

Absorption of  $O_2$  by  $H_2SO_4+Aq$  at  $t^{\circ}$ .  $\alpha = \text{coefficient}$  of absorption.

Normality of the acid	$\mathbf{t}^{\mathbf{o}}$	α
0	20.9	0.0310
4.9	20.9	0.0195
8.9	20.9	0.0155
10.7	21.2	0.0143
20.3	21.1	0.0119
24.8	21.5	0.0103
29.6	20.8	0.0117
34.3	20.9	0.0201
35.8	21.2	0.0275

(Bohr, Z. phys. Ch. 1910, 71. 49.)

Absorption of  $O_2$  by NaOH+Aq. M = content in gram-equivalents per litre. S = solubility.

М	S 25°	S 15°
0.559	0.02434	0.02777
0.601	0.02424	0.02784
1.033	0.02020	0.02291
1.059	0.01991	0.02262
2.077	0.01295	0.01479
2.089	0.01272	0.01456

hin.	Absorption of O ₂ by KOH+Aq.					
	М	S 25°	S 15°			
<i>y</i> .	0.577 0.579 1.157 1.170	0.02447 0.02435 0.01920 0.01914	0.02791 0.02791 0.02191 0.02181			

(Geffcken, Z. phys. Ch. 1904, 49. 270.)

NaCl+Aq with a chlorine content of 1,930 per 100,000 dissolved 82.9% of the amount of O₂ dissolved by distilled H₂O alone. (Clowes, J. Soc. Chem. Ind. 1904, **23**. 359.)

Absorption of O₂ by salts+Aq.

M = content in gram-equivalents per litre.
S = solubility.

Absorption of  $O = by \frac{K_2SO_4}{2} + Aq$ .

M	S 25°	S 15°	
0.499	0.02528	0.02944	
$0.506 \\ 0.968$	0.02530	$0.02922 \\ 0.02395$	
0.908	0.02096	0.02393	

#### Absorption of O₂ by NaCl+Aq.

M	S 25°	S 15°
0.530	0.02598	0.03045
0.535	0.02604	0.03052
1.020	0.02226	0.02601
1.034	0.02202	0.02557
1.880		0.01898
1.890	0.01663	0.01904
1.921	0.01654	0.01869

(Geffcken, Z. phys. Ch. 1904, 49. 270.)

Solubility of  ${\rm O}_2$  in NaCl+Aq. Data indicate cc.  ${\rm O}_2$  dissolved per l. at 760 mm. and 0°.

t°	NaCl+Aq	NaCl+Aq	·NaCl+Aq
	l g. mol. per l.	2 g. mol. per l.	sat. at 20°
0	6.50	3.14	1.27
5	5.80	2.84	1.22
10	5.25	2.59	1.17
15	4.77	2.41	1.12
20	4.39	2.25	1.07
25	4.06	2.13	1.02
30	3.76	2.01	0.97

(Winkler, Z. anorg. 1911, 24, 342.)

Solubility of O₂ in KCN+Aq at 20°.

% KCN 1 10 20 30 50
Coeff. of abs. 0.029 0.018 0.013 0.008 0.003
(McLaurin, J. S. C. I. 1893, **63**. 737.)

1 vol. alcohol absorbs 0.28397 vol. O at all temperatures between 0° and 24°. (Bunsen.)

Absorption by alcohol (99.7%) at t°.  $\beta = \text{coefficient of absorption};$   $\beta_1 = \text{solubility}.$  (See p. 635.)

$\rho_1$	$\beta_1 = \text{solubility.}$ (See p. 035.)				
t°	β	$oldsymbol{eta_1}$			
0	0.23370	0.22978			
ĭ	0.23296	0.22878			
$ar{2}$	0.23222	0.22777			
$\bar{3}$	0.23149	0.22675			
1 2 3 4 5	0.23077	0.22572			
$\bar{5}$	0.23005	0.22469			
6	0.22934	0.22365			
6 7	0.22863	0.22260			
8	0.22793	0.22155			
9	0.22724	0.22047			
10	0.22656	0.21937			
11	0.22588	0.21827			
12	0.22521	0.21715			
13	0.22455	0.21601			
14	0.22389	0.21484			
15	0.22324	0.21365			
16	0.22259	0.21245			
17	0.22195	0.21122			
18	0.22132	0.20994			
19	0.22069	0.20862			
20	0.22007	0.20733			
21	0.21946	0.20600			
22	0.21886	0.20459			
23	0.21826	0.20317			
24	0.21767	0.20172			
(m)	4 . 62 1	(1) (2 )			

(Timofejew, Z. phys. Ch. 6. 151.)

Solubility of O₂ in alcohol at 20° and 760 mm.

Wt. %	Vol. %	Wt. %	Vol. %
alcohol	abs. O ₂	alcohol	abs. O ₂
0.0 $9.09$ $16.67$ $23.08$ $28.57$	2.98 2.78 2.63 2.52 2.49	33.33 50.0 66.67 80.0	2.67 3.50 4.95 5.66

(Lubarsch, W. Ann. 1889, (2) 37. 525.)

Solubility of O₂ in methyl alcohol at t°.

t°	1.	t°	1.
0 5 10 15 20	0.31864 0.30506 0.29005 0.27361 0.25574	25 30 40 50	0.23642 0.21569 0.16990 0.11840

(Levi, Gazz. ch. it. 1901, 31. II, 513.)

Solubility of  $O_2$  in ether at  $0^\circ = 0.4235$ ; at  $10^\circ = 0.4215$ . (Christoff, Z. phys. Ch. 1912, **79.** 459.)

Solubility	of	O۰	in	acetone	at	t°.

t°	I.	t°	1. 🐙
0 5 10 15 20	0.2997 0.2835 0.2667 0.2493 0.2313	25 30 40 50	0.2127 0.1335 0.1533 0.1057

(Levi, Gazz. ch. it. 1901, 31. II, 513.)

Absorption of  $O_2$  by chlorally drate  $+A_0$ .

 $t^{\circ} = temp.$  of the solution.

P = % chlorally drate in the solution.

 $\beta$  to = coefficient of absorption at to.

 $\beta 15^{\circ} = \text{coefficient of absorption at } 15^{\circ}$ 

 $\beta 20^{\circ}$  = coefficient of absorption at 20°.

t°	P	βt°	β 15°
18.3	22.9	0.02759	0.02940
16.9	28.0	0.02690	0.02800
15.4	36.6	0.02590	0.02560
16.6	38.6	0.02402	0.02477
12.8	51.3	0.02439	0.02339
16.2	58.44.	0.02350	0.02407
15.9	70.0	0.02659	0.02710
17.2	80.85	0.03200	0.03300
16.9	80.9	0.03140	0.03250
			β 20°
20.0	16 9	0.02795	0.02795
21.0	32.0	0.02443	0.02495
21.0	52.9	0.02375	0.02325
20.4	61 08	0.02390	0.02410
21.8	65.5	0.02500	0.02580
21.0	71.4	0.02680	0.02730
22.2	78.0	0.03090	0.03280

(Müller, Z. phys. Ch. 1912, 81. 499.)

Absorption of O₂ by glycerine+Aq.

 $t^{\circ}$  = temp. of the solution.

P = % glycerine in the solution.

 $\beta$  t° = coefficient of absorption at t°.

 $\beta$  15° = coefficient of absorption at 15°.

t°	P	βt°	β 15°
12.2	20.5	0.02904	0.02742
12.5	25.0	0.02654	0.02521
14.6	37.3	0.02038	0.02022
13.5	45.0	0.01800	0.01744
12.4	52.0	0.01623	0.01570
12.1	71.5	0.01010	0.00950
13.3	88.5	0.00906	0.00886

(Müller.)

Absorption of O₂ by glucose+Aq. t° = temp. of the solution.

P = % glucose in the solution.

 $\beta$  to = coefficient of absorption at to. 320° = coefficient of absorption at 20°.

t' i	P	βι°	β 20°
21.2	10.84	0 02650	0.02690
21.5	20.7	0 02202	0.02250
19.9	33.8	0 01814	0.01815
20.5	51.9	0 01378	0.01390
21.7	58.84	0 01221	0.01250

(Müller.)

Absorption of O₂ by sucrose +Aq.

t° = temp. of the solution.

P = % sucrose in the solution.

 $\beta$  t° = coefficient of absorption at t°.  $\beta$  15° = coefficient of absorption at 15°.

t°	P	βţ°	β 15°
$\frac{15.3}{16.2}$		0.03375 0.03330	0.03400 0.03397
16.0 15.6 16.6 15.6 16.2 17.2	12.1 24.38 28.44 42.96 49.25 50.0	0.02911 0.02367 0.02113 0.01582 0.01348 0.01302	0.02969 0.02396 0.02181 0.01600 0.01380 0.01359

(Müller.)

Abundantly absorbed by oil of turpentine. Oil of turpentine absorbs its own vol. O when exposed two weeks to the air, but does not give it off on boiling. (Brandes.)

Absorbed by other oils, but this is decomposition rather than absorption, as the oils

are oxidized. (See Storer's Dict.)

100 vols. arterial blood dissolve 10-13 vols. (Magnus.)

Coefficient of absorption for petroleum = 0.202 at 20°; 0.229 at 10°. (Gniewasz and (Gniewasz and

Walfisz, Z. phys. Ch. 1. 70.)

The author examined the solubility of O2 and N₂ at low temp. in alcohols, ethers, acetone, CHCl₃, petroleum, benzene and various inorganic liquids; at low temp, the solubility of the N₂ increases at the same rate as that of the O₂. (Claude, C. R. 1900, 131, 448.)

#### Oxydimercuriammonium bromate, (NHg₂OH₂)BrO₃.

(Rammelsberg, Pogg. 55. 82.)

- carbonate,  $(NHg_2OH_2)_2CO_3 + \frac{1}{2}H_2O$ . Insol. in H₂O. Decomp. by HCl+Aq only when conc. Not decomp, by boiling KOH+ Aq. Decomp. by KI or K₂S+Aq. (Hirzel.) +H₂O. As above. (Hirzel.)

#### Oxydimercuriammonium chloride, (NHg₂OH₂)Cl.

Is dimercuriammonium chloride, NHg₂Cl+H₂O, which see.

#### oxytrimercuriammonium chloride, (NHg₂OH₂)Cl, (NHg₃O₂H₂)Cl (?).

Insol. in H₂O. Easily sol. in dil. HCl+Aq. More difficultly sol. in very dil. H₂SO₄ or HNO₃+Aq. Insol. in conc. H₂SO₄. Sol. in boiling NH₄Cl+Aq, or (NH₄)₂SO₄+Aq. Decomp. by KOH+Aq. (Schmieder.)

#### ---- chromate, (NHg₂OH₂)₂CrO₄.

Not decomp. by KOH+Aq. (Hirzel, J. B. **1852.** 421.)

---- mercuric chromate, (NHg₂OH₂)₂CrO₄, 4HgO, 3CrO₃.

4HgO, 3CrO₃.

Decomp. by HNO₃ without going into solu-

tion. Easily sol. in HCl. (Hirzel.)

Composition is  $(NHg_2OH_2)_2()$ ,  $2Cr()_3$ ,  $3[(NH_4)_2O$ ,  $2Cr_2O_3] = (NHg_2OH_2)_2Cr_2O_7$ ,  $3(NH_4)_2Cr_2O_7$ . (Hensgen, R. t. c. **5**. 187.) Probably  $(NHg_2)_2Cr_2O_7$ ,  $3(NH_4)_2Cr_2O_7 + 2H_2O$ .

### --- fluoride, acid, (NHg₂OH₂)F, HF.

(Finkener, Pogg. 110. 632.) Probably NHg₂F, HF+H₂().

----- hydroxide,  $(NHg_2OH_2)OH = NHg_2OH + H_2O$ .

(Millon's base.) Sl. sol. in  $\rm H_2O$ , especially if warm. Sol. in 13,000 pts.  $\rm H_2O$  at 17°, and 1700 pts. at 80°. Insol. in alcohol or ether. (Gerresheim, A. 195. 373.)

+H₂O. Insol. in H₂O or alcohol. Sol. in traces in NH₄OH+Aq. Not decomp. by cold KOH+Aq; sl. decomp. if hot. (Millon.)

---- ammonium iodate, (NHg₂OH₂)IO₃, 2NH₄IO₃.

Insol. in H₂O. (Millon, A. ch. (3) 18. 410.)

#### ---- iodide, (NHg₂OH₂)I.

Sol. in warm HCl+Aq. Not decomp. by boiling KOH+Aq. Sol. in warm Kl+Aq. (Rammelsberg, Pogg. 48. 170.)

Correct formula is NHg₂l+H₂O. (Rammelsberg.)

#### --- nitrate, (NHg₂OH₂)NO₃.

Insol. in H₂O; not decomp. by boiling KOH+Aq. Sol. in cold HCl+Aq, from which it is precipitated by H₂O. Sl. sol. without decomp. in HNO₃ or H₂SO₄+Aq. Easily sol. in NH₄OH+Aq. (Souberran.)

Is dimercuriammonium nitrate, NHg₂NO₃. (Pesci, Gazz. ch. it. **20.** 485.)

----- ammonium nitrate, NHg₂OH₂)NO₃, 2NH₄NO₃+H₂O.

Decomp. by H₂O. Kane, A. ch. **72.** 242.) Is dimercuriammonium ammonium nitrate, NHg₂NO₃, 2NH₄NO₃+2H₂O. (Pesci.)

# Oxydimercuriammonium oxide, (NHg₂OH₂)₂O.

Insol. in  $H_2O$  or alcohol; not attacked by boiling conc. KOH+Aq. Sol. in hot  $NH_4NO_4$  + Aq,  $NH_4Cl$  + Aq,  $(NH_4)_2SO_4$  + Aq,  $NH_4C_2H_3O_2+Aq$ ,  $(NH_4)_2C_2O_4+Aq$ . (Millon, A. ch. (3) 18. 397.)

mercuric phosphate, Hg(NHg₂OH₂)PO₄.

Insol. in H₂O. Slowly sol. in hot HNO₃+Aq; not decomp. by boiling with KOH+Aq, but by KI or K₂S+Aq. Sol. in HCl+Aq or much hot (NH₄)₂HPO₄+Aq. (Hirzel.)

#### — mercuric sulphite, (NHg₂OH₂)₂SO₃, HgSO₃.

Insol. in H₂O. Sol. in much (NH₄)₂SO₅+Aq. Sol. in HCl+Aq with decomposition. Insol. in boiling KOH+Aq. (Hirzel.)

---- sulphate, (NHg₂OH₂)₂SO₄.

Sol. in traces in  $H_2O$ . Easily sol. in HCl or  $HNO_3+Aq$ . (Kane.)

Insol. in HNO₈+Aq. (Hirzel.)

Slowly sol. in boiling conc. H₂SO₄. (Hirzel.)

Insol. in conc., easily sol. in dil. H₂SO₄+ Aq. (Schmieder, J. pr. **75**: 147.)

Moderately sol. in much (NH₄)₂SO₄ or boiling NH₄Cl+Aq. Not decomp. by boiling KOH+Aq. (Hirzel.)

Easily decomp. by boiling with dil. KOH+Aq. (Schmieder.)

Does not exist. (Pesci.)

2NH₃, 2HgO, SO₃. See Dimercuriammonium sulphate.

# Oxytrimercuriammonium chloride, (NHg₃O₂H₂)Cl (?).

Insol. in H₂O.

### ---- nitrate, (NHg₃O₂H₂)NO₃.

Sol. in cold HCl+Aq, from which it is precipitated by NH₄OH+Aq. Sol. in NH₄OH+Aq without decomp. Not decomp. by H₂SO₄ or warm KOH+Aq. (Pagenstecher.)

Does not exist. (Pesci, Gazz. ch. it. 20. 485.)

Oxytrimercuridiammonium sulphate, 2NH₃, 3HgO, SO₃.

See Trimercuriammonium sulphate.

# $\begin{array}{c} \textbf{Oxy} tri \textbf{mercurioxy} di \textbf{mercuriammonium} \\ \textbf{sulphate,} \begin{array}{c} \mathbf{NH_2Hg_3O_2} \\ \mathbf{NH_2Hg_2O} \\ \end{array} > \mathbf{SO_4}. \end{array}$

Completely sol. in NH₄Cl+Aq, or  $(NH_4)_2SO_4+Aq$ . Sol. in dil. or cone. HCl+Aq, and very dil. H₂SO₄+Aq. Insol. in HNO₈+Aq or cone. H₂SO₄. (Schmieder.) Does not exist. (Pesci.)

Oxvietramercuriammonium mercuric nitrate (?),  $2(NHg_4O_2)NO_3$ ,  $HgNO_3$  (?)

Completely insol. in HNO₈+Aq. Sol. in warm HCl+Aq. Slowly decomp by boiling Gradually sol. in hot conc. KOH + Aq.  $NH_4NO_4+Aq$ . (Hirzel.)

Does not exist. (Pesci, Gazz. ch. it. 20.

# Oxynitrosulphonic anhydride, $S_2O_5 < \stackrel{NO_2}{ONO_2}(?)$ .

Sol. in H2O with decomp. (Weber, Pogg. **123.** 339.)

### Oxyosmiumamine hydroxide (Osmosyldiamine hydroxide),

OsO(NH₈OH)₂.

Insol. in H2O. Sl. sol. in acids. Sol. in KOH+Aq. When moist, sol. in NH4OH+

#### Oxyosmium diamine chloride (Osmyltetramine chloride), $OsO_2(N_2H_6Cl)_2$ .

Sl. sol. in cold, more easily in hot H2O. Insol. in NH₄Cl+Aq. (Gibbs, Am. Ch. J. **3.** 233.)

- —— chloroplatinate, OsO₂(N₂H₆Cl)₂, PtCl₄. Sl. sol. in H₂O. (Gibbs.)
- hydroxide,  $O_8O_2(N_2H_6OH)_2$ . Known only in solution.
- --- nitrate,  $OsO_2(N_2H_6NO_3)_2$ .
- --- sulphate,  $O_3O_2(N_2H_6)_2SO_4+H_2O$ . (Gibbs, Am. Ch. J. 3. 233.)

#### Oxyphosphuretted hydrogen (?), $P_4H(OH)$ .

P4O of Leverrier, and Goldschmidt has this formula according to Franke (J. pr. (2) 35. 341). Decomp. slowly by H₂O or alkalies. Forms potassium salt, P₄H(OK), sol. in H₂O.

--- hydroiodide, P₄H(OH), HI. Decomp. at 80°.

### Sesquioxyplatisulphuric acid, Pt2O3, $3SO_3$ , $SO_4H_2 + 11\frac{1}{2}H_2O$ .

Sol. in H₂O. (Blondel, A. ch. 1905, (8) 6. 113.)

Barium sesquioxyplatisulphate, Pt₂O₃, 3SO₃,  $SO_4Ba + 8H_2O$ .

Very sol. in  $H_2O$ . (Blondel.)

Potassium sesquioxyplatisulphate, Pt₂O₈,  $3SO_3$ ,  $SO_4\hat{K}_2 + 2\hat{H}_2O$ . (Blondel.)

Sodium sesquioxyplatisulphate, Pt2O3, 3SO3,  $SO_4Na_2+8H_2O_4$ 

Very sol. in H₂O. (Blondel.)

Oxygulphantimonic acid. See Sulphoxyantimonic acid.

### Oxysulpharsenic acid.

See Sulphoxyarsenic acid.

### Oxysulphazotic acid, $H_4S_4N_2O_{14} =$

 $(SO_9H)_8 = N - NO - SO_8H.$ 

Known only in its salts. (Claus, A. 158. 52, 194.)

Has formula  $(SO_8H)_2N \xrightarrow{O} N(SO_8H)_2$ . (Raschig, A. 241, 161.)

Potassium oxysulphazotate, NO(SO₃K)₂.

Insol. in alcohol. (Fremy, A. ch. (3) 15. 451.)

According to Raschig the formula is

$$(SO_3K)_2N \underbrace{O}_O N(SO_8K)_2.$$

Very sel. in water, with rapid decomposition. (Raschig.)

See also Peroxylaminesulphonate, potassium.

### Oxysulphotungstic acid.

See Sulphotungstic acid.

### Oxysulphovanadic acid.

See Sulphoxyvanadic acid.

#### Ozone, O3.

Not appreciably sol. in H₂O. (Schönbein.) Imparts its taste and properties to H₂O. (Williamson.)

Later, Carius (B. 5. 520) found that 1000 to 0° and 760 mm.). He also still later (A. 174. 1) found, by conducting the gas for 9-12 hours through H₂O, that 1000 vols, H₂O absorb a maximum of 28.160 vols. O₃. The ozonized oxygen used contained 3.44 vols. O₂ in 100 vols. O2. Since gases are absorbed in proportion to their partial pressure, which is very small for the O₃, the amount of absorption of water for the gas is very considerable. Carius calculated the coefficient of absorption at  $+1^{\circ}$  to be 0.834.

Ozone is not at all absorbed by H2O; the H₂O through which ozone had been passed gave no reactions for ozone. (Rammelsberg, B. 6. 603.)

Schöne (B. 6. 1224) corroborates Carius, and finds 8.81 vols. to 1000 vols. H₂O as a maximum amount absorbed.

Sol. in H₂O. (Leeds, B. 12: 1831.)

 $H_2O$  takes up  $^2/_2$  of its vol. of  $O_{20}$  at  $0^\circ$  and 760 mm. pressure and ½ of its vol. at 12° or about 15 times that of oxygen at the same pressure and temp. (Mailfert, C. R. 1894, 119. 951.)

Solubility in H₂O at t°.

Temp.	Wt. O ₂ dissolved in 1 l. H ₂ O	Wt. O ₃ in gaseous mix- ture above the solution	Coefficient of solubility of O ₃
0 6 11.8 13 15 19 27 32 40 47 55 60	39.4 mgr. 34.3 29.9 28 25.9 21 13.9 7.7 4.2 2.4 0.6 0.0	61.5 mgr. 61 59.6 58.1 56.8 55.2 51.4 39.5 37.6 31.2 19.2	0.641 0.562 0.500 0.482 0.456 0.381 0.270 0.195 0.112 0.077 0.031
00	0.0	12.0	0.000

(Mailfert, C. R. 1894, 119, 952.)

#### Solubility of ozone in acidulated H₂O.

Temp.	Coefficient of solubility of ozone	Composition of solution
30° 33 42.7 49 57	0.240 0.224 0.174 0.156 0.096	$ \begin{cases} 1 \text{ 1. } \text{H}_2\text{O} + 0.7 \text{ cc. } \text{H}_2\text{SO}_4 \\ 1 \text{ 1. } \text{H}_2\text{O} + 0.9 \text{ cc.} & \text{``} \\ 1 \text{ 1. } \text{``} + 0.3 \text{ cc.} & \text{``} \end{cases} $

#### (Mailfert.)

0.00002 pt. by weight is sol. in 1 pt. by weight H₂O at ordinary temp. and pressure.

Ladenburg, B. 1898, 31. 2510.)
The solution of O₃ in H₂O cannot be brought into equilibrium, because when the gas is blown through the liquid, a portion is continually decomposed, although the concentration remains constant. (Inglis, Chem. Soc. 1903, 83. 1012.)

About 10 mg, ozone are sol, in 1 l.  $H_2O$  at  $+2^{\circ}$ ; 1.5 mg. ozone are sol. at  $+28^{\circ}$ . (Moufang, C. C. 1911, II. 1674.)

Solubility in 0.1-N H₂SO₄.

C solution: C gas = 0.23 at 20°; 0.44 at 0°. (Luther, Z. Elektrochem. 1905, 11. 833.)

The absorption coefficient of the gas in 0.1 N H₂SO₄ solution is 0.487. (Rothmund,

C.*C. 1912. I, 1261.)
Sol. in H₂C₂O₄+Aq. (Jeremin, B. 11. 988.)
Completely absorbed by oil of turpentine and oil of cinnamon. (Soret, A. ch. (4) 17.113.)

### Dipalladamine chloride, Cl2Pd2(NH2)4Cl4=

Sl. sol. in H₂O. (Deville and Debray, C. R. **86.** 296.)

#### Palladium, Pd.

Not attacked by H₂O. Sl. attacked by HC+Aq, but Pd sponge or filings are easily dissolved in warm HCl+Aq, with access of air. HNO₂+Aq of 1.2 sp. gr. dissolves Pd slightly, but it is easily sol. in HNO3+Aq of 1.35 sp. gr. (Rose.)

Easily sol. in aqua regia. Sl. sol. in conc., but insol. in dil. HI+Aq. Sol. in conc. boiling H₂SO₄. Sol. in boiling FeCl₂+Aq. Sol.

in HBr+Aq with a little HNO3. Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 828.

### Palladium ammonium compounds.

Dipalladamine comps.,  $Cl_2Pd_2(NH_3)_4Cl_4$ . Pd(NH₃)₄Cl₂. Palladodiamine Palladosamine Pd(NH₃)₂Cl₂.

#### Palladium dibromide.

Not known in pure state.

#### Palladium bromide with MBr.

See Bromopalladite, M.

### Palladium tetrabromide with MBr.

See Bromopalladate, M.

#### Palladous phosphorus bromide, Pd₂P₂Br₁₀.

Properties as the corresponding chloride. (Strecker, B. 1909, **42.** 1776.)

#### Palladium subchloride, Pd₂Cl₂.

Deliquescent. Decomp. by H₂O, NH₄Cl, KI, or NH₄OH+Aq. Kane.)
Sol. in acetone. Naumann, B. 1904, 37.

4328.)

#### Palladium dichloride, PdCl₂.

Slowly but completely sol. in H₂O.

 $+2H_2O$ . Not deliquescent when pure. Slowly sol. in H₂O. Much more sol. in H₂O containing HCl.

Sol. in acetone. (Eidmann, C. C. 1899, II.

Sol. in ethyl acetate. Naumann, B. 1904, **37.** 3601.)

#### Palladium dichloride with MCl.

See Chloropalladite, M.

#### Palladium tetrachloride with MCl.

See Chloropalladate, M.

#### Palladous phosphorus chloride, PdCl₂, PCl₃.

Decomp. by H₂O into deliquescent P(OH)₃, PdCl₂. Decomp. by alcohol. (Fink, C. R. **115**. 176.)

Decomp. by H₂O. Sol. in CHCl₃ and C₆H₆. Insol. in ligroin and CCl₄. (Strecker, B. 1909, **42.** 1775.)

 ${\rm PdCl_2,\ 2PCl_3.}$  Sol. in  ${\rm C_6H_6,\ and\ decomp.}$  by  ${\rm H_2O.\ (Fink.)}$ 

Palladous chloride carbon monoxide, PdCl2, | Palladous oxide, PdO. 2CO.

Decomp. by heat. (Fink, C. R. 1898, 126, 648.)

2PdCl₂, 3CO. Decomp. by H₂O. Sol. in CCl₄. (Fink.)

#### Palladium difluoride, PdF₂.

Sl. sol. in H₂O or HF+Aq. Sl. sol. while moist, in NH₄OH+Aq; insol. after drying, in NH₄OH+Aq. Insol. in boiling NaF or NaHF₂+Aq. (Berzelius.)

Palladium hydride, Pd₂H (?).

#### Palladous hydroxide, Pd(), $xH_2()$ (?).

Easily sol. in acids or excess of alkali hydrates, and carbonates+Aq. Sol. in hot NH₄Cl+Aq. (Rose.) Insol. in Na₂B₄O₇, and Na₂HPO₁+Aq.

(Claus.)

#### Palladic hydroxide, $PdO_2$ , $xH_2O$ .

Slowly sol. in acids. Sol. in cone. HCl+Aq without decomp. With dil. HCl+Aq, Cl₂ is evolved. (Berzelius.)

#### Palladous hydroxide hydroxylamine. Pd(NH₃O)₄(OH)₂.

Sl. sol. in H₂O. Sol. in dil. HCl and in dil. H₂SO₄. (Zeisel, A. 1907, **351.** 445.)

#### Palladous iodide, PdI₂.

Insol. in H₂O. Can be detected as a brown coloration in presence of 400,000 pts. H₂O. (Lassaigne.)

Sl. sol. in HI+Aq. Easily sol. in KI+Aq. (Lassaigne, J. ch. méd. 11. 57.)

Insol. in dil. HCl+Aq, but slightly sol. in saline solutions. (Fresenius.)

Sl. sol, in hot conc. HNO₃+Aq. Sol, in H₂SO₃+Aq, Cl₂+Aq, Br₂+Aq, I₂+Aq, and CN+Aq; also in HCN, and MCN+Aq. Insol. in dil. H₂SO₄, HCl, H₃PO₄, HNO₈, or HC₂H₃O₂+Aq, or in the K, Na, or NH₄ salts of those acids. Insol. in CuCl₂, ZnCl₂, or Pb(C₂H₃O₂)₂+Aq. Insol. in KBr+Aq except in presence of a free mineral acid, but not HC₂H₃O₂. Insol. in sugar or starch+Aq, uric acid, alcohol, ether, or oil of lemon. Somewhat sol. in urine. Easily sol. in NH₄OH +Aq, even when dil., with evolution of heat and decomposition. (Kersten, A. 87. 28.)

Insol. in alcohol or ether. Sol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Palladous potassium iodide.

See Iodopalladite, potassium.

#### Palladium suboxide, Pd₂O.

Decomp. by acids into palladious salt and Pd. (Kane, Phil. Trans. 1842, 1. 276.)

Insol, in acids, even boiling aqua regia. (Willm. B. 25. 220.)

Slowly sol. in acids by boiling. (Wöhler, 4. 174. 160.)

Panadic oxide, PdO2.

Very sl. attacked by adids.

#### Palladopalladic oxide, 4PdO, PdO₂.

Not attacked by aqua regia. (Schneider. Pogg. **141.** 528.)

Palladous oxychloride, 3PdO. I'dCl2+ 4H₂O(?).

Sol in dil. acids. (Kane.)

Palladous oxychloride an monia, PdO, PdCl. 6NH₃(?).

Sol. in HCl+Aq. 3PdO, PdCl₂, 2NH₃+3H₂O (?). Ppt. (Kane.)

#### Palladium selenide, PdSe.

Insol, in HNO₃ and aqua regia. (Rössler. A. **180.** 240.)

#### Palladium subsulphide, Pd₂S.

Not attacked by acids except agua regia. which attacks slightly. (Schneider, Pogg. **141.** 530.)

#### Palladium monosulphide, PdS.

Insol. in  $H_2O$  or  $(NH_4)_2S+Aq$ . HCl+Aq. Pptd. in presence of 10,000 pts. H₂O. (Fellenberg, Pogg. **50**. 65.)

Sol, in potassium thiocarbonate+Aq. (Ro-

senbladt, Z. anal. 26. 15.)

A sol. colloidal form was obtained in very dilute solution. (Winnsinger, Bull. Soc. (2) **49.** 452.)

Does not exist. (Kritschenko, Z. anorg. 4.

#### Palladium di sulphide, $PdS_2$ .

HNO₃ dissolves out part of the S. Easily sol. in aqua regia without separation of S. (Schneider.)

Palladium sulphide with M₂S.

See Sulphopalladate, M.

### Palladodiamine bromide, Pd(N₂H₆Br)₂.

Easily sol. in H₂O.

– bromopalladite,  $\mathrm{Pd}(\mathrm{N_2H_6Br})_2$ ,  $\mathrm{PdBr}_{2\bullet}$ Properties as the corresponding chloropal ladite.

– carbonate.

Sol. in H₂O.

- chloride, Pd(N₂H₆Cl)₂. Easily sol, in H₂O.

#### PALLADOAMINE CHLOROPALLADITE

#### Magnesium ---- platinocyanide, MgPd(CN)4. Palladodiamine chloropalladite, Pd(N₂H₆Cl)₂, MgPt(CN)₄+14H₂O. PdCl₂. "Vauquelin's red salt." Insol. in cold H2O. Extremely sol. in $H_2O$ . (Fischer.) Sol. in boiling H₂O with decomp. Sol. in Potassium —, $K_2Pd(CN)_4+3H_2O$ . HCl or HNO₈+Aq. Efflorescent. Sol. in H₂O. +H₂O. Not efflorescent. - fluoride. Easily sol, in H₂O. (Müller.) Silver —, $Ag_2Pd(CN)_4$ . Ppt. --- fluosilicate. Sl. sol. in cold, easily in warm H₂O. Insol. Sodium —, Na₂Pd(CN)₄. in alcohol. Not efflorescent. Sol. in H₂O. $+H_2O$ . ---- hydrozide, Pd(N₂H₆OH)₂. Palladoiodonitrous acid. Sol, in H₂O. Potassium palladoiodonitrite, - iodide, $Pd(N_2H_6I)_2$ . $Pd(NO_2)_2I_2K_2+3H_2O$ . Sol. in H₂O. Effloresces in the air. Decomp. by H₂O and dil. acids. (Rosen-- nitrate, $Pd(N_2H_6NO_3)_2$ . heim, Z. anorg. 1900, 23. 28.) Easily sol. in H₂O, HNO₃, or NH₄OH+Aq. Insol. in alcohol. Palladonitrous acid. - palladous nitrite, $Pd(N_2H_6NO_2)_2$ , Potassium palladonitrite, $K_2Pd(NO_2)_4$ + $Pd(NO_2)_2$ . 2H₂O. Fasily sol. in H₂O. Efflorescent; sol. in H₂O. (Lang, J. pr. 83. 415.) ---- sulphate, $Pd(N_2H_6)_2SO_4+H_2O$ . Easily sol. in H₂O. Insol. in alcohol. Silver palladonitrite, Ag₂Pd(NO₂)₄. Easily sol. in hot H₂O. (Lang.) . — sulphite, Pd(N₂H₆)₂SO₃. Sl. sol. in H₂O. Sodium —, $Na_2Pd(NO_2)_4$ . • (Fischer.) Palladochloronitrous acid. Palladosamine bromide, Pd(NH₃Br)₂. Potassium palladochloronitrite, Insol. in cold, sl. sol. in hot H₂O. Easily $Pd(NO_2)_2Cl_2K_2$ . sol. in HC₂H₃O₂, H₂SO₃, KOH, NH₄OH, or alkali carbonates+Aq. (Müller, A. **86.** 341.) Sol. in 2 pts. hot, and 3 pts. cold H₂O. (Vézes, C. R. 115. 111.) - carbonate, Pd(NH₃)₂CO₃. Palladocyanhydric acid. Moderately sol. in H₂O. Ammonium palladocyanide, - chloride, Pd(NH₃Cl)₂. $(NH_4)_2Pd(CN)_4$ (?). Insol. in H₂O, but very gradually decomp. Sol. in hot H₂O. (Rössler, Z. ch. **1866.** 175.) by boiling therewith. Sol. in warm HCl or HNO₃+Aq. Sol. in Barium —, $BaPd(CN)_4+4H_2O$ . cold NH4OH+Aq. Sol. in KOH+Aq with-Not efflorescent. Sol. in H₂O. out evolution of NH3. $+2\mathrm{H}_2\mathrm{O}$ . Efflorescent. Insol. in H₂O. Calcium —, CaPd(CN)₄+4H₂O. (Baubigny, A. Suppl. 4. 253.) Sol. in H₂O. - cyanide, Pd(NH₃CN)₂. Cupric ——, CuPd(CN)₄. Sol. in NH₄OH+Aq. *Ppt. – fluoride. Lead ----, PbPd(CN)4. Known only in solution.

Magnesium ----, MgPd(CN).

Very sol. in H₂O.

- hydroxide, Pd(NH₃OH)₂.

boiling with H₂O. (Müller, A. 86, 341.)

Easily sol. in H₂O. Slowly decomp. by

#### Palladosamine iodide, Pd(NH₈I)₂.

Insol. in H₂O. Sol. in boiling HNO₈ with evolution of I₂. (Fehling, A. 39. 106.)

#### – nitrate.

Known only in solution, which decomp, on evaporation.

- nitrite, Pd(NH₃NO₂)₂. Moderately sol. in H₂O. (Lang.)

- palladous nitrite, Pd(NH₃NO₂)₂,  $Pd(NO_2)_2$ .

Slowly sol. in cold, easily in hot H₂O. (Lang.)

- sulphate, Pd(NH₃)₂SO₄. Moderately sol. in H₂O. (Müller.)

- sulphite,  $Pd(NH_3)_2SO_3$ . Easily sol. in H₂O. (Müller.)

#### Pentamine chromium compounds.

See-

Bromopurpureochromium compounds. Chloropurpureochromium compounds. Iodopurpureochromium compounds. Xanthochromium compounds. Roseochromium compounds.

#### Pentamine cobaltic compounds.

See -

Bromopurpureocobaltic compounds, Chloropurpureocobaltic compounds. Nitratopurpureocobaltic compounds. Nitritocobaltic compounds, Purpureocobaltic compounds. Roseocobaltic compounds. Sulphatopurpureocobaltic compounds. Xanthocobaltic compounds.

#### Pentamine dicobaltic sulphite.

See Roseocobaltic cobaltic sulphite.

#### Pentamine iridium compounds.

See Iridopentamine, and Iridoaquopentamine compounds.

#### Pentamine rhodium compounds.

Bromopurpureorhodium compounds. Chloropurpureorhodium compounds. Iodopurpureorhodium compounds. Nitratopurpureorhodium compounds. Roseorhodium compounds. Xanthorhodium compounds.

#### Pentathionic acid, H₂S₅O₆.

Known only in aqueous solution. Conc. solution is decomp. by boiling, but made stable by addition of acids.

Sp. gr. of aqueous solution of pentathionic acid at 22°:

Sp. gr. 1.233 1.320 1.474 1.506 %H2S5O6 32.1 41.7 56 59.7 (Kessler, Pogg. 74, 279.)

Does not exist. (Spring, Bull. Acad. rov.

Existence proven by Smith (Chem. Soc. **43.** 355.)

### Barium pentathionate $BaS_5O_6 + 2H_2O_1$

Easily s.l. in H₂O. Aqueous solution is precipitated by alcohol.

Contains 3H₂O. (Lewes, C. N. 43. 41.)

#### Barium pentathionate tetrathionate, BaS₅O₆, $BaS_4O_6+6N_2O$ .

Easily sol, in H₂O. Not precipitated from aqueous solution by two vols, alcohol. (Ludwig, Arch. Pharm. (2) 51, 264.)

Cupric pentathionate,  $CuS_5O_6+4H_2O$ .

Easily sol. in H₂O. (Debus, Chem. Soc. **53.** 360.)

## Lead pentathionate, $PbS_5O_6+4H_2O$ .

Pp'

### Potassium pentathionate, K₂S₅O₆.

Sol. in H₂O. (Rammelsberg, J. B. 1857.

Solution decomposes very quickly when neutral, but is more stable in presence of salts or acids.

Sol. in about 2 pts. H₂O. Insol. in alcohol. (Debus, Chem. Soc. 53.

 $+H_2O$ . (Shaw, Chem. Soc. **43.** 351.) +1½H₂O. (Debus, A. **244.** 76.) +2H₂O. (Lewes, C. N. **43.** 41.)

#### Perarsenic acid.

Sodium perarsenate, NaAsO₄. (Alvarez, C. N. 1906, 94, 270.)

#### Perboric acid.

#### Ammonium perborate, NH₄BO₃.

(Constam and Bennett, Z. anorg. 1900, 25. 265.)

 $+\frac{1}{2}$ H₂O. Stable in dry air. 100 pts. H₂O.

at 17.5° dissolve 1.55 g. anhydrous salt. Decomp. in aqueous solution at ord. temp.

Decomp. by dil. and cone. H₂SO₄ and by HCl. (Melikoff, B. 1898, **31**. 953.)
+H₂O. (Bruhat, C. R. 1905, **140**. 508.)
Much more sol. in H₂O than the Na salt.

(Tanatar, Z. phys. Ch. 1898, 26. 133.) +3H₂O. (Melikoff, B. 1898, **31.** 954.)

NH₄BO₃, NH₄BO₄+H₂O. (Petrenko, C. C. 1902, I. 1192.)

Barium perborate, Ba(BO₈)₂+7H₂O. Difficultly sol. in H.O. (Melikoff, B. 1898, **31.** 954.)

Cæsium perborate, CsBO₃+H₂O. As NH salt. (Christensen.)

#### Calcium perborate.

Sl. sol. in H₂O. Decomp. in water much more rapidly than the Ba salt. (Melikoff, B. 1898, **31.** 954.)

#### Copper perborate.

Very unstable. Insol. in H₂O. (Melikoff, B. 1898, **31.**954.)

#### Nickel perborate.

Very unstable. Insol. in H₂O. (Melikoff.)

#### Potassium perborate, 2KBO₃+H₂O.

1.25 pts. are sol. in 100 pts. H₂O at 0°; 2.5 pts., at 15°.

Insol. in alcohol and ether. (Girsewald, B. 1909, 42. 867.)

Potassium perborate hydrogen peroxide, 2KBO₃, H₂O₂.

0.70 pt. is sol. in 100 pts. H₂O at 15°. (Girsewald, B. 1909, 42. 868.)

Potassium perdiborate,  $KB_2O_5 + 2H_2O$ . Ppt. (Bruhat, C. R. 1905, **140**. 508.)

Rubidium perborate, RbBO₃+H₂O. As Na salt. (Christensen.)

Sodium perborate, Na₂B₄O₈+10H₂O.

100 g.  $H_2O$  dissolve 4.2 g. at 11°; 7.1 g. at 22°; 13.8 g. at 32°. (Jaubert, C. R. 1904, **134.** 796.)

+4H₂O. Slowly decomp. in cold solution, rapidly when boiled. (Tanatar, Z. phys. Ch.

1898, **26.** 132.) Sol. in H₂O. 100 g. H₂O dissolve 1.17 g Aq. solution decomp. on warming. (Melikoff, B. 1898, **31**. 679.)

100 g, H₂O dissolve 2.55 g, at 15°; 2.69 g, at 21°; 2.85 g, at 26°; 3.78 g, at 32°. (Jaubert and Lion, Rev. gén. Chim. 1905, (7) 8. 163.)

Uranyl perborate, UBO4. (Bruhat, C. R. 1905, 140. 508.)

### Perbromic acid, HBrO4.

Known only in aqueous solution, which can be concentrated to a thick liquid on water bath. Not decomp. by HCl, SO2, or H2S.

(Kämmeter, J. pr. 85, 452; 90, 190.)
Does not exist. (Muir, C. N. 33, 256; MacIvor, C. N. 33, 35.)

Barium perbromate, Ba(BrO₄)₂.

Very sl. sol. in boiling H₂O. (Kämmerer, J. pr. 90. 190.) Does not exist. (Wolfram, A. 198. 95.)

Potassium perbromate, KBrO₄.

Less sol. in H₂O than KBrO₃, but more sol. than KClO₄. (Kämmerer, J. pr. 90. 190.) Does not exist. (Wolfram, A. 198. 95.)

Silver perbromate, AgBrO₄.

Sl. sol, in cold, more abundantly in hot  $H_2O$ . (Kämmerer, J. pr. 90, 190.) Does not exist. (Wolfram, A. 198. 95.)

#### Perbromoplatinocyanhydric acid, $H_2Pt(\bar{C}N)_4Br_2+xH_2\bar{O}$ .

Deliquescent. Easily sol. in H₂O, alcohol, and ether. (Holst, Bull. Soc. (2) 22. 347.)

Aluminum perbromoplatinocyanide,  $Al_{2}[Pt(CN)_{4}Br_{2}]_{3}+22H_{2}O.$ Deliquescent. Very sol. in H₂O.

Ammonium —,  $(NH_4)_2Pt(CN)_4Br_2$ . Sol. in H₂O.

Barium —,  $BaPt(CN)_4Br_2+5H_2O$ . Very sol. in H₂O or alcohol.

Cadmium —,  $CdPt(CN)_4Br_2+xH_2O$ . Very sol. in H₂O.

Calcium ——,  $CaPt(CN)_4Br_2+7H_2O$ . Sol. in H₂O.

Cobaltous —,  $CoPt(CN)_4Br_2+5H_2O$ . Sol. in  $H_2O$ . Sl. sol. in alcohol.

Glucinum —, GlPt(CN)₄Br₂. Deliquescent. Sol. in H₂O.

Ferrous -

Very sl. sol. in H₂O.

Lead —,  $PbPt(CN)_4Br_2+2H_2O$ . Sl. sol. in H₂O.

Lithium —,  $Li_2Pt(CN)_4Br_2$ . Deliquescent. Sol. in H₂O.

Magnesium —,  $MgPt(CN)_4Br_2+xH_2O$ . Sol. in H₂O.

Nickel —, NiPt(CN)₄Br₂+xH₂O. Sl. sol. in H₂O. Sol. in NH₄OH+Aq.

Potassium —, K₂Pt(CN)₄Br₂. Sol. in H₂O. +2H₂O. Efflorescent.

#### Silver perbromoplatinocyanide, Ag₂PtBr₂(CN)₄.

Ppt. (Miolati, Gazz. ch. it. 1900, 30. 588.)

Sodium —, Na₂Pt(CN)₄Br₂.
Deliquescent. Sol. in H₂O.

Strontium —, SrPt(CN)₄Br₂+7H₂O. Sol, in H₂O.

Zinc — –,  $ZnPt(CN)_4Br_2+5H_2O$ . Not very sol. in  $H_2O$ .

#### Percarbonic acid.

# Ammonium percarbonate, $(NH_4)_2CO_4+2H_2O$ .

Sol. in H₂O with evolution of NH₃. Insol. in alcohol and ether. (Kasanezky, C. C. **1902**, I. 1263.)

#### Barium percarbonate, BaCO₄.

Insol. in H₂O. (Merck, C. C. 1906, II. 1743.)

Decomp. slowly in the air. Not rapidly decomp. by H₂O. Rapidly decomp. by acids. (Wolffenstein, B. 1908, **41**. 280.)

#### Potassium percarbonate, K₂CO₄.

Sol. in H₂O with decomp. Sl. sol. in alcohol. (v. Hansen, Z. Elektrochem. 1897, 3. 448.)

K₂C₂O₆. Sol. in H₂O at 0° with only slight decomp. but is decomp. at ord. temp. Sl. sol. in alcohol. (Treadwell, Ch. Z. 1901, **25**. 1008.)

# Rubidium percarbonate, $Rb_2CO_4$ , $2H_2O_2+H_2O$ .

Hydroscopic; decomp. by H₂O; pptd. by alcohol.

Rb₂CO₄, H₂O₂+2H₂O. Hydroscopic; de-

comp. by H₂O; pptd. by alcohol. Rb₂CO₄+2½H₂O. Hydroscopic; decomp. by H₂O; pptd. by alcohol. (Peltner, B. 1909, **42**. 1782.)

Rb₂C₂O₆. Very deliquescent. (Constam and Hansen, Z. Elektrochem. 1897, **3.** 144.)

### Sodium percarbonate, $Na_2CO_4+1\frac{1}{2}H_2O$ .

Sol. in  $H_2O$  with gradual decomp. (Tanatar, B. 1899, **32**. 1544.)

# Sodium hydrogen percarbonate, $4Na_2CO_4$ , $H_2CO_3$ .

Ppt. (Merck, Chem. Soc. 1908, **94.** (2) 180.)

#### Perchloric acid, HClO4.

Combines with H₂O with a hissing sound and evolution of much heat.

Solution in H₂O is very stable.

When dil. HClO₄+4q is distilled, H₂O and HClO₄ distil off until a temp. of 203° is reached, when an acid of constant composition containing 71.6-72.2% HClO₄ (= HClO₄+2H₂O) is obtained. Forms hydrate HClO₄+H₂O, which is deliquescent, and dissolves ir H₂O with evolution of much heat. HClO₄ is very unstable, HClO₄+H₂O more stable, and HClO₄+2H₂O is very stable. (Roscoe, A. 121, 346.)

Sp. 7r. of HClO₄+Aq. at 15°/4°.

!					
Sp. fr.	หลือ.	Sp. gr.	н∕104	Sp. gr.	нёю.
1.005	1.00	1.235	33.29	1.465	54.50
1.010	1.90	1.240	33.85	1.470	54.89
1 015	2.77	1.245	34 40	1.475	55.18
1.020	3.61	1.250	34.95	1.480	55.56
1.025	4.43	1.255	35.49	1.485	55.95
1.030	5.25	1.260	36.03	1.490	56.32
1.035	6.07	1.265	36.56	1.495	56.69
1.040	6.88	1.270	37.08	1.500	57.06
1.045	9.68	1.275	37.60	1.505	57.44
1.050	8.48	1.280	38.10	1.510	57.81
1.055	9.28	1.285	38.60	1.515	58.17
1.060	10.06	1.290	39.10	1.520	58.54
1.065	10.83	1.295	39.60	1.525	58.91
1.070	11.58	1.300	40.10	1.530	59.28
1.075	12.33 13.08	1.305	41.08	1.535	59.66 60.04
1.085	13.83	1.315	41.56	1.545	60.41
1.090	14.56	1.320	42.03	1.550	60.78
1.095	15.28	1.325	42.49	1.555	61.15
1.100	16.00	1.330	42.97	1.560	61.52
1.105	16.72	1.335	43.43	1.565	61.89
1.110	17.45	1.340	43.89	1.570	62.26
1.115	18.16	1.345	44.35	1.575	62.63
1.120	18.88	1.350	44.81	1.580	63.00
1.125	19.57	1.355	45.26	1.585	63.37
1.130	20.26	1.360	45.71	1.590	63.74
1.135	20.95	1.365	46.16	1.595	64.12
1.140	21.64	1.370	46.61	1.600	64.50
1.145	22.32	1.375	47.05	1.605	64.88
1.150	22.99	1.380	47.49	1.610	65.26
1.155	23.65	1.385	47.93	1.615	65.63
1.160	24.30	1.390	48.37	1.620	66.01
1.165	24.94	1.395	48.80	1.625	66.39
1.170	25.57	$\begin{bmatrix} 1.400 \\ 1.405 \end{bmatrix}$	49.23	1.630	66.76
1.175 1.180	$ \begin{array}{c} 26.20 \\ 26.82 \end{array} $	1.410	49.68 50.10	1.640	67.13 67.51
1.185	27.44	1.415	50.51	1.645	67.89
1.190	28.05	1.420	50.91	1.650	68.26
1.195	28.66	1.425	51.31	1.655	68.64
1.200	29.26	1.430	51.71	1.660	69.02
1.205	29.86	1.435	52.11	1.655	69.40
1.210	30.45	1.440	52.51	1.670	69.77
1.215	31.04	1.445	52.91	1.675	70.15
1.220	31.61	1.450	53.31	1	
1.225	32.18	1.455	53.71		
1.230	32.74	1.460	54.11		
		<u>' '</u>		<u>'                                    </u>	

(Emster, Z. anorg. 1907, 52. 278.)

Sp. gr. of HClO ₄ +Aq.			
% HClO.	Sp. gr. at 15°/4°	Sp. gr. at 30°/4°	Sp. gr. at 50°/4°
11.14 35.63 55.63 69.81	1.0670 1.2569 1.4807 1.6708	1.2451 1.4637	1.0507 1.2292 1.4421 1.6284

(Emster, Z. anorg. 1907, 52, 279.)

Sp. gr. of HClO₄+Aq.

	Sp. gr.			
corre	corrected uncorrected		% by wt. HClO4 in the liquid	
20°	50°	20°	50°	the liquid
1.7676 1.7817 1.8059  1.7386 1.6471 1.5353 1.4078 1.2901 1.1778	1.7098 1.7259 1.7531 1.7690 1.7756 1.7619 1.7023 1.6110 1.5007 1.3779 1.2649 1.1574	1.7716 1.7858 1.8100 1.7425 1.6508 1.5386 1.4108 1.2927 1.1800	1.7312 1.7475 1.7751 1.7912 1.7979 1.7840 1.7237 1.6311 1.5194 1.3949 1.2804	100 98.62 94.67 90.80 84.81 81.07 75.59 68.42 60.38 50.51 39.73 27.07

(v. Wyk, Z. anorg. 1905, 48. 45.)

Bpt. of HClO₄+Aq. at atmospheric pressure.

% by wt. HClO ₄ in the liquid	% by wt. HClO ₄ in the vapor	Initial bpt.
72.4 70.06 65.2 61.2 56.65 50.67 38.90 24.23	72.4 40.11 6.06 0.9	203° 198.7 181.2 162.3 148.0 132.4 114.8 105.8
0.0	0.0	100

(v. Wyk, Z. anorg. 1905, 48. 33.)

Bpt. of HClO₄+Aq. at 18 mm. pressure.

% by wt. HClO4 in the liquid	Bpt.
100	16.0°
94.8	24.8
92.0	35
84.8	70
79.8	92
70.5	107

(v. Wyk, Z. anorg. 1905, 48. 36.)

+H₂O. Deliquescent. (Roscoe, A. **121**. Barium 346.)
+2H₂O. HClO₄+2H₂O has 1.65 sp. gr. alcohol.

and boils at 200° (Serullas); has 1.72-1.82 sp. gr. and boils at 200° (Nativelle, J. pr. 26. 405).

Sol. in alcohol with decomp.; often explosive.

 $^{+2}$  $^{+2}$  $^{+2}$  $^{+2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$  $^{-2}$ 

#### Perchlorates.

All perchlorates are sol. in H₂O, KClO₄, RbClO₄, and CsClO₄ somewhat difficultly. They are all deliquescent, and sol in alcohol, excepting NH₄ClO₄, KClO₄, Pb(ClO₄)₂, and Hg₂(ClO₄)₂. (Serullas, A. ch. (2) **46.** 296.)

Aluminum perchlorate, Al(ClO₄)₃+6H₂O₄

Very deliquescent. (Weinland, Z. anorg. 1913, 84, 370.)

Aluminum sodium perchlorate,  $AlNa(ClO_4)_4$ +12 $H_2O$ .

Sl. hygroscopic. (Weinland, Z. anorg. 1913, 84, 370.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

#### Ammonium perchlorate, NH₄ClO₄.

Permanent. Sol. in 5 pts. H₂O; somewhat sol. in alcohol. (Mitscherlich, Pogg. 25. 300.)

Solubility of NH₄ClO₄ in H₂O at t°.

t°	G. per l. solution	Sp. gr.
0 20 40 60 80 100 107	115.63 208.45 305.77 390.50 481.86 570.06 591.15	1.059 1.098 1.128 1.158 1.193 1.216

(Carlson, Festsk. Stockholm. 1911. 262.)

 $100\,$  g.  $H_2O$  dissolve 18.5 g. NH₄ClO₄. (Hofmann, Höbald and Quoos, A. 1912, **386**. 304.)

100 g. sat. solution in H₂O contain 1.735 (17.35?) g. NH₄ClO₄ at 14.2°. (Thin and Cumming, Chem. Soc. 1915, **107.** 361.)

Insol. in conc. HClO₄+Aq.
100 g. sat. solution in 98.8% ethyl alcohol contain 1.96 g. NH₄ClO₄ at 25.2°. (Thin and Cumming.)

Sol. in acetone. Eidmann, C. C. **1899**, II. 1014.)

### Barium perchlorate, Ba(ClO₄)₂+4H₂O.

Deliquescent. Easily sol. in  $H_2O$  and alcohol.

+3H₂O.Solubility of Ba(ClO₄)₂+3H₂O in H₂O at t°.

t°	G. per 100 g. H ₂ O	Sp. gr.
0	206	1.782
20	289	1.912
40 60	358 432	2.009
80	497	$\substack{2.070\\2.114}$
100	564	2.155
120	645	2.195
140	758	2.230

(Carlson, Festsk. Stockholm, 1911. 262.)

#### Bismuth perchlorate, (Bi())ClO₄.

Insől, in H₂O. Easily sol, in HCl or HNO₃ -Aq, less easily in H₂SO₄+Aq. (Muir, C. N. **33.** 15.)

#### Cadmium perchlorate, $Cd(ClO_4)_2$ .

Very deliquescent. Sol. in H₂O and alcohol. (Serullas, A. ch. 46. 305.)

+4H₂O. (Salvadori, C. C. 1912, II. 414.)  $+6H_2O.$  (S.)

#### Cadmium perchlorate ammonia, Cd(ClO₄)₂, 6NH₃.

Cd(ClO₄)₂, 4NH₃. (Salvadori, C. C. 1912, II. 414.)

#### Cæsium perchlorate, CsClO₄.

Very sl. sol. in H₂O. (Retgers, Z. phys. Ch. 17.)

Solubility in H₂O. 100 g. H₂O dissolve at: 8.5° 14° 33.7° 42° 50° 5.47 g. CsClO₄, 0.91 1.19 2.994.09

70° 84° 60° 99° 7.30 9.79 16.51 28.57 g. CsClO₄. (Calzolari, Acc. Sc. Med. Ferrara, 1911, 85. 150.)

#### Solubility in H₂O at t°.

t°	G. per 100 g. H ₂ O	Sp. gr.
5 25 80	$0.97 \\ 2.05 \\ 17.05$	1.007 1.010 1.084

(Carlson, Festsk. Stockholm, 1911. 262.)

#### Calcium perchlorate, $Ca(ClO_4)_2$ .

Very deliquescent. Very sol. in H₂O and alcohol. (Serullas, A. ch. 46. 304.)

Cerous perchlorate,  $Ce(ClO_4)_8 + 8H_2O$ .

Very deliquescent. (Jolin.)

#### Chromic perchlorate, Cr(ClO₄)₃+6H₂O.

Very hygroscopic. (Weinland, Z. anorg. 1913, 84. 371.)

+9H₂O. Can be cryst. from H₂O. (Weinland.)

### Cobaltous perchlorate, Co(ClO₄)₂+9H₂O. Solubility in H2O at to.

	,	
t°	G. anhydrous salt in 100 ccm.	Sp. gr. of sat. solution at t°/4°
30.7 21.3	83.14 90.57	
<b>6</b> + 7.5	100.13 101.92	1.5639 1.5658
18	103 80	1.5670
26 <b>45</b>	112 45 113.10	1.5811 1.5878

(Golblum and Terlikowsky, Bull. Soc. 1912, (4) **11**. 146.)

+6H₂O. (Salvadori, Gazz, ch. it. 1912, **42**. (1) 458.)

Cobalt perchiorate aminonia, Co(ClO₄)₂ 6NH₃.

 $Co(ClO_4)_2$ ,  $5NH_3$ .

 $Co(ClO_4)_2$ ,  $4NH_3$ , and  $+2H_2O$ .

 $Co(ClO_1)_2$ ,  $3NH_3$ , and  $+3H_2O$ .  $Co(ClO_4)_2$ ,  $3NH_3+2H_2O$ .

(Salvadori, Gazz, ch. it. 1912, 42, (1) 458.)

Cupric perchlorate, basic,  $Cu(ClO_4)_2$ ,  $Cu(OH)_2$ . Pp.. (Salvadori, C. C. 1912, II. 414.)

#### Cupric perchlorate, Cu(ClO₄)₂.

Deliquescent. Sol. in H₂O and alcohol. (Serullas, A. ch. 46. 306.)

+4H₂O (Salvadori, C. C. 1912, II. 414.)

Cupric perchlorate ammonia, Cu(ClO₄)₂,  $4NH_3 + 2H_2O$ .

Not deliquescent. Sol. in NH₄OH+Aq. (Roscoe, A. **121.** 346.)

 $\begin{array}{l} Cu(ClO_4)_2,\ NH_3+H_2O.\\ Cu(ClO_4)_2,\ 2CuO+2H_2O,\ NH_3.\\ Cu(ClO_4)_2,\ 2CuO+2H_2O,\ 2NH_3. \end{array}$ 

 $Cu(ClO_4)_2$ ,  $Cu(OH)_2+2H_2O$ ,  $6NH_8$ .

 $Cu(ClO_4)_2$ ,  $Cu(OH)_2+2H_2O$ ,  $4NH_3$ .

(Salvadori, C. C. 1912, II. 414.)

### Didymium perchlorate, $Di(ClO_4)_3 + 9H_2O$ .

Very deliquescent. Very sol. in H₂O and alcohol. (Cleve.)

Erbium perchlorate,  $Er(ClO_4)_3 + 8H_2O$ . Very deliquescent.

Glucinum perchlorate,  $Gl(ClO_4)_2 + 4H_2O$ .

Very deliquescent, and sol. in H₂O. (Atterberg.)

Hydrazine perchlorate,  $(N_2H_4)(H_cOlO_4)_2+$  $3H_2O$ .

1 l. of sat. solution in H₂O contains 417.2 g. at 18°, sp. gr. = 1.264; 669 g. at 35°, sp. gr. = 1.391. (Carlson, Festsk. Stockholm, 1911. 262.)

#### Indium perchlorate, In(ClO₄)₂+8H₂O.

Deliquescent.  $H_2O$  solution decomp. at  $40^\circ$  with separation of basic salt. Sol. in  $H_2O$  and easily forms sat. solutions. Sol. in abs. alcohol, but much less sol. in ether. (Mathers, J. Am. Chem. Soc. 1908, **30**. 212.)

#### Iodine perchlorate, I(ClO₄)₃+2H₂O.

Decomp. by  $H_2O$ . Indifferent toward organic solvents. (Fichter, Z. anorg. 1915, **91**. 135.)

### Iron (ferrous) perchlorate, Fe(ClO₄)₂.

Tolerably permanent; sol. in  $H_2O$ . (Serullas, A. ch. 46, 335.)

Iron (ferric) perchlorate,  $Fe(ClO_4)_3$ . Sol. in  $H_2O$ . (Serullas.)

# Iron (ferric) sodium perchlorate, [Fe(ClO₄)₄]Na+6H₂O.

Hydroscopic. Can be cryst. from H₂O. (Weinland, Z. anorg. 1913, **84.** 366.)

#### Lanthanum perchlorate, La(ClO₄)₃+9H₂O.

Extremely deliquescent. Sol. in H₂O and absolute alcohol. (Cleve.)

# Lead perchlorate, basic, 2PbO, Cl₂O₇+ 2H₂O.

Decomp. by H₂O into an insol. more basic salt, and sol. Pb(ClO₄)₂. (Marignac.)

#### Lead perchlorate, Pb(ClO₄)₂+3H₂O.

Permanent; extremely easily sol. in H₂O. (Roscoe, A. **121.** 356.)

Sol. in about 1 pt. H₂O. (Serullas.)

#### Lithium perchlorate, LiClO₄.

Deliquescent. Sol. in H₂O and alcohol. (Serullas.)

+3H₂O. (Wyrouboff, Zeit. Kryst. 10. 626.)

#### Magnesium perchlorate, $Mg(ClO_4)_2$ .

Deliquescent, and sol. in H₂O and alcohol. (Serullas.)

+6H₂O. (Weinland, Z. anorg. 1913, **84.** 372.)

#### Manganous perchlorate, Mn(ClO₄)₂.

Very deliquescent. Sol. in H₂O and alcohol. (Serullas, A. ch. 46. 335.)

+6H₂O. Sol. in 0.342 pts. H₂O. (Salvadori, C. C. **1912**, II. 414.)

# Manganous perchlorate ammonia, $Mn(ClO_4)_2$ , $5NH_3+H_2O$ .

Sol. in HCl; insol. in HNO₃. (Salvadori, C. C. **1912**, II. 414.)

#### Mercurous perchlorate, $(HgClO_4)_2 + 4H_2O$ . Very sol, in $H_2O$ . Gradually decomp. by

H₂O. Decomp. by alcohol. (Chikashigé, Chem. Soc. 1895, 67. 1016.) +6H₂O. Very deliquescent. (Roscoe, A. 121. 356.) Permanent. (Serullas.)

### Mercuric perchlorate, basic, HgO, 2Hg(ClO₄)₂.

Anhydrous. Ppt. Insol. in either HCl or HNO₃. Decomp. and dissolved by a mixture of the two. (Chikashigé, Chem. Soc. 1905, 87. 824.)

+12H₂O. Very sol. in H₂O. (Chikashigé.) 2HgO, Hg(ClO₄)₂.

a-salt. Decomp. by H₂O. Sol. in acids. (Chikashigé, Chem. Soc. 1895, **67.** 1015.)
β-salt. Insol. in H₂O; insol. in HCl or HNO₃. (Chikashigé, Chem. Soc. 19**0**5, **87.** 825.)

#### Mercuric perchlorate, Hg(ClO₄)₂.

Very deliquescent. Sol. in  $H_2O$ ; sl. sol. with decomp. in alcohol. (Serullas, A. ch. **34**. 243.)

 $+6H_2O$ . Very hygroscopic. Very sol. in  $H_2O$ . Slowly decomp. by  $H_2O$ , more easily by alcohol. (Chikashigé, Chem. Soc. 1895, 67. 1014.)

#### Mercuric perchlorate bromide, HgClO₄Br.

Decomp. by  $H_2O$ . (Borelli, Gazz. ch. it. 1908, **38**. (2) 421.)

# Mercuric perchlorate cyanide, $Hg(ClO_4)_2$ , $Hg(CN)_2$ .

Very sol. in H₂O. Sol. in alcohol. (Borelli.)

#### Mercuric perchlorate iodide, Hg(ClO₄)I.

Deliquescent. Decomp. by H₂O. Sol. in much alcohol. Decomp. by HNO₂. Completely sol. in KI or KCN+Aq. (Borelli.)

### Mercuric perchlorate sulphocyanide,

 $Hg(ClO_4)_2$ ,  $Hg(SCN)_2$ . Insol. in  $H_2O$  and conc. acids. Sol. in aquaregia. (Borelli.)

+6H₂O. (Salvadori, C. C. 1912, II. 414.)

#### Nickel perchlorate, Ni(ClO₄)₂.

Deliquescent; easily sol. in alcohol and H₂O. (Groth, Pogg. **133**. 226.)

#### Solubility in H₂O at t°.

t°	G. anhydrous salt in 100 ccm.	Sp. gr. of the sat. solution
-30.7 -21.3 0 +7.5 18 26 45	89.98 92.48 104.55 106.76 110.05 112.15 118.60	1.5726 1.5755 1.5760 1.5841 1.5936

(Golblum and Terlikowsky, Bull. Soc. 1912, (4) 11. 147.)

(Golblum and Terlikowsky.) (Salvadori, C. C. 1912, II. 414.) +5H₂O. +6H₂O.  $+9H_{2}O.$ (Golblum and Terlikowsky.)

Nickel perchlorate, ammonia, Ni(ClO₄)₂, 6NHa.

Ppt. (Salvadori.)

Nitrosyl perchlorate, NO.O.ClO₃+H₂O.

Ppt.; sl. hydroscopic; decomp. by H₂O. (Hofmann, B. 1909, 42. 2032.)

Platinum perchlorate, Pt₆ClO₉+15H₁O₄ Insol. in H₂O. (Prost, Bull. Soc. (2) 46. 156.)

#### Potassium perchlorate, KClO₄.

Sol. in 57.9 pts.  $H_2O$  at 21.3° (Longuinine, A 121. 123); in 65 pts.  $H_2O$  at 15° (Serullus, A. ch. (2) 46. 207); in 88 pts.  $H_2O$  at 10°; in 55 pts.  $H_2O$  at 100° (Hutstein, J. B. 1851. 331.)

Solubility in H₂O.

1 pt. KČlO₄ dissolves in 142.9 pts. H₂O at , and solution has sp. gr. =1.0005; in 52.5 pts. H₂O at 25°, and solution has sp. gr. = 1.0123; in 15.5 pts. H₂O at 50°, and solution has sp. gr. = 1.0181; in 5.04 pts. H₂O at 100°, and solution has sp. gr. = 1.0660. (Muir, C. N. 33. 15.)

1 l. H₂O dissolves 78.07 millimols. KClO₄ at 10°; 120.4 millimols. at 20°; 179.9 millimols. at 30°. (Noyes and Sammet, Z. phys. Ch. 1903, 43. 538.)

1 l. H₂O dissolves 0.1475 mol. KClO₄ at 25°. (Rothmund, Z. phys. Ch. 1909, 69. 539.)

#### Solubility in H₂O at t°.

t°	G. KClO ₄ in 100 g. H ₂ O	t°	G. KClO ₄ in 100 g. H ₂ O
0 10 15 20.5	0.70 1.14 1.54 1.90	50 70 99	6.45 12.3 22.2

(Calzolari, Acc. Sci. Med. Ferrara, 1911, 85. 150.)

t°	G. per 100 g. H ₂ ()	Sp. gr.
0	0.79	1.007
20	1.80	1.011
40	4.81	1.022
60	8.71	1.033
80	14.78	1.053
100	20.98	1.067

(Carlson, Festsk. Stockholm, 1911. 262.)

1 l. H₂O dissolves 0.1481 equivalents KClO₄ at 25°. (Noyes and Boggs, J. Am. Chem. Soc. 1911, 33. 1652.)

100 cc. of sat. solution of KClO4 in H2O con-

tains 2.085 g. KClO₄ at 25.2°. (Thin and Cumming, Chem. Soc. 1915, 107. 361.)
KClO₄ is sol. in 22.0° pts. H₂O at ord. temp., and 4.00° pts. at 100°; in 29.6° pts. NH₄OH + Aq (conc.) at ord. temp.; in 30.4° pts. NH₄OH - Aq (1 vol. conc. +3 vols. H₂O) at ord. temp.; in 22.4° pts. HN(1₃ + Aq (1 vol. conc. +5 vols. H₂O) at ord. 5 vols. H₂()) at ord. temp., and 5.00 pts. at 100°; in 30.4 pts. HCl+Aq. (1 vol. conc.+ 4 vols.  $H_2C$ ) at ord. temp.; 45.2 pts.  $HC_2H_3O_2$ +Aq (1 vol. commercial acid+1 vol. H₂O) at ord, temp.; in 24 1 pts. NH₂C₂H₃O₂+Aq. (dil. HC₂H₃O₂+dil. NH₄OH+Aq) at ord temp., and 6.00 pts. at 100°; in 25.6 pts. NII₄Cl+Aq (1 pt. NH₄Cl+ 10 pts. H₂O) at ord. temp, and 6.00 pts. at 100°; in 16.0 pts. ord. temp, and 0.00 pts. at 107, in 10.0 pts.  $NH_4NO_3+Aq$  (1 pt.  $NH_4NO_3+10$  pts.  $H_2O$ ) at ord. temp., and 4.00 pts. at 100°; in 25.6 pts.  $NaC_2H_3O_2+Aq$  (conc.  $HC_2H_3O_2+Aq$  (conc.  $HC_2H_3O_2+Aq$  (od.  $HC_2H_3O_2+Aq$  (Stolba, Z. anal. 2. 390) at ord. temp., and 7.00 pts. at 100°; in 29.2 pts.  $Cu(C_2H_3O_2)_2+Aq$  (Stolba, Z. anal. 2. 390) at ord. temp., and 7.00 pts. at  $100^\circ$ ; in 27.2 pts. cane sugar (1 pt. +10 pts.  $H_2O$ ) at ord. temp.; in 36.8 pts. grape sugar (1 pt. +10 pts.  $H_2O$ ) at ord. temp. (Approximate.) (Pearson, Zeit. Chem. **1869.** 662.)

#### Solubility of KClO₄ in HClO₄ at 25.2°.

Normality of HClO4	% KClO4
0.01	1.999
0.10	1.485
1.00	0.527

(Thin and Cumming, Chem. Soc. 1915, 107. 361.)

#### Solubility in KCl+Aq at 25°.

Concentration of KCl	Solubility of KClO ₄
Equivalents per litre	Equivalents per litre
0.04973	0.1282
0.09933	0.1123

(Noyes and Boggs, J. Am. Chem. Soc. 1911, **33.** 1652.)

#### Solubility in K₂SO₄+Aq at 25°.

Concentration of K ₂ SO ₄	Solubility of KClO ₄
Equivalents per litre	Equivalents per litre
0.04970	0.1315
0.09922	0.1181
	<u>'</u>

(Noves and Boggs.)

Very sl. sol. in abs. alcohol, and insol. if alcohol contains trace of an acetate. (Roscoe.) Insol. in alcohol of 0.835 sp. gr. (Schlösing, C. R. **73.** 1269.)

Sol. in 6400 pts. 97.2% alcohol; in 5000 pts. 95.8% alcohol; in 2500-3000 pts. 90% alcohol; in 25,000 pts. alcohol-ether (2 pts. 97% alcohol: 1 pt. ether). Practically insol. in an alcoholic solution of HClO₄. (Wenze' Z. angew. Ch. **1891**. 691.)

Solubility of KClO₄ in ethyl alcohol+Aq at 25.2°.

Vol. % alcohol	G. KClO ₄ sol. in 100 g. alcohol
\$ 51.2	0.754
93.5	0.051
98.8	0.019

(Thin and Cumming, Chem. Soc. 1915, 107. 361.)

Solubility in organic compds. +Aq. at 25°.

. Solvent	Mol. KClO ₄ sol. in 1 litre
0.5-N methyl alcohol  "ethyl alcohol "propyl alcohol "tert. amyl alcohol "acetone ether "glycol "glycerine "urea "ammonia "diethylamine "pyridine "urethane "formamide "acetamide "acetamide "aceti acid "phenol "methylal	0.1402 0.1356 0.1343 0.1279 0.1451 0.1336 0.1416 0.1404 0.1510 0.1474 0.1342 0.1410 0.1400 0.1539 0.1447 0.1462 0.1362 0.1362 0.1400
" methyl acetate	0.1429

(Rothmund, Z. phys. Ch. 1909, 69, 539.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

#### Potassium rubidium perchlorate, KRb₂(ClO₄)₃.

15.5 g. are contained in 1 l. solution sat. at 20°; sp. gr. = 1.013. (Carlson.)

#### Rubidium perchlorate, RbClO₄.

Sol. in 92.1 pts. H₂O at 21.3°. (Longuinine, A. **121**. 123.)

1 pt. sol. in 92.1 pts. H₂O at 21° as compared with 1 pt. KClO₄ sol. in 57.9 pts. H₂O at 21°. (Erdmann, Arch. Pharm. 1894, 232. 23.)

Solubility in H₂O at t°.

t°	G. RbClO ₄ in 100 g. H ₂ O	t°	G. RbClO ₄ in 100 g. H ₂ O
0 8 19.8 30	2.46 3.50 6.28 9.53	42.2 50 77 99	14.94 19.40 41.65 76.5

(Calzolari, Acc. Sci. Med. Ferrara, 1911, 85.

Solubility in	H ₂ O	at	t°.
---------------	------------------	----	-----

t°	G. in 100 g. H ₂ O	Sp. gr.
0 20 40 60 80	1.10 1.56 3.26 6.27 11.04	1.007 1.010 1.017 1.028 1.050
100	15.75	1.070

(Carlson, Festsk. Stockholm, 1911. 262.)

### Scandium perchlorate.

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.)

### Silver perchlorate, AgClO₄.

Deliquescent. Sol. in H₂O and alcohol. (Serullas, A. ch. **46**. 307.)

#### Sodium perchlorate, NaClO4.

Deliquescent, and very sol. in H₂O and alcohol. (Serullas.)

Not deliquescent. (Potilitzin, J. russ. Soc. 1889, 1. 258.)

#### Solubility in H₂O at t°.

t°	G. in 1 l. of solution	Sp. gr.
15 50 143	1076 1234 1414	1.666 1.731 1.789

(Carlson, Festsk. Stockholm, 1911. 262.)

+H₂O. Not deliquescent. (Potilitzin.)

#### Strontium perchlorate, $Sr(ClO_4)_2$ .

Very deliquescent. Sol. in H₂O and alcohol. (Serullas, A. ch. **46**. 304.)

#### Terbium perchlorate.

Very sol. in H₂O and in alcohol. (Potratz, C. N. 1905, **92.** 3.)

#### Thallous perchlorate, TlClO₄.

1 pt. salt dissolves in 10 pts. H₂O at 15°, and 0.6 pt. at 100°. (Roscoe, Chem. Soc. (2) **4.** 504.)

#### Solubility in H₂O at t°.

t°	G. per 100 g. H ₈ 0	Sp. gr.
0 10 30 50 70 80	6.00 8.04 19.72 39.62 65.32 81.49	1.060 1.075 1.146 1.251 1.430 1.520
<b>0</b> 0	01.49	1.020

(Carlson, Festsk. Stockholm, 1911, 262.)

Sl. sol. in alcohol. (Roscoe.)

Thallic perchlorate,  $Tl(ClO_4)_3 + 6H_2O$ .

Very hydroscopic, sol. in  $H_2O$ . Decomp. in moist air. (Gewecke, Z. anorg. 1912, **75**. 274.)

Uranyl perchlorate, (UO₂)(ClO₄)₂+4H₂O_. (Salvadori, Ch. Z. 1912, **36.** 513.) +6H₂O_. (Salvadori,)

Yttrium perchlorate, Y(ClO₄)₃+8H₂O.

Very deliquescent. Sol. in  $\mathrm{H}_2\mathrm{O}$  and alcohol. (Cleve.)

Zinc perchlorate, Zn(ClO₄)₂.

Deliquescent. Sol. in  $H_2O$  and alcohol. (Serullas, A. ch. 46. 302.)  $+4H_2O$ , and  $6H_2O$ . (Salvadori, C. C. 1912, II. 414.)

Zinc perchlorate, ammonia, Zn(ClO₄)₂, 4NH₃ Ppt. (Salvadori, C. C. 1912, II. 414.) Zn(ClO₄)₂, 6NH₃. (Ephraim, B. 1915, 48. 643.)

#### Perchromic acid.

Sol. in ethyl acetate and valerate; in amyl chloride, formate, acetate, butyrate, and valerate. (All give blue solutions.)

Insol. in CS₂,  $C_6H_6$ , CHCl₃, CCl₄,  $C_6H_6NH_2$ ,  $C_6H_6NO_2$  and toluene. (Grosvenor, J. Am. Chem. Soc. 1895, **17**. 41–43.)

 $H_3CrO_8+2H_2O$ . Decomp. above  $-30^\circ$ . (Riesenfeld, B. 1914, **47**. 552.)

#### Ammonium perchromate, (NH₄)₈CrO₈.

Very unstable. Sl. sol. in cold H₂O. Decomp. by conc. H₂SO₄. Insol. in pure alcohol and pure ether. Decomp. by boiling alcohol containing more than 50% H₂O. (Wohlers, B. 1905, **38**. 1888.)

CrO₄, 3NH₃. Sol. in 10% NH₄OF+Aq; sol. in H₂O with decomp., insol. in other solvents. (Wiede, B. 1897, **30**, 2181.)

NH₄CrO₅, H₂O₂. Decomp. in the air. Sol. in ice cold H₂O, decomp. when warmed. Insol. in alcohol, ether, ligroin and CHCl₃. (Wiede, B. 1898, **31.** 518.)

Ammonium hydrogen perchromate,  $CrO_2(O.O.NH_4)(O.OH)$ .

Sol. in H₂O with decomp. Difficultly sol. in cold abs. alcohol. (Hofmann, B. 1904, **37**. **3406**.)

Barium perchromate, BaCr₂O₈. (Byers and Reid, Am. Ch. J. 1904, 32. 513.)

Calcium perchromate, CaCr₂O₈.

Very sol. in H₂O. (Mylius, B. 1900, **33**. 3689; Byers and Reid, Am. Ch. J. 1904, **32**. 513.)

Lithium perchromate, Li₂Cr₂O₈. | Ppt. (E. F. (Byers and Reid, Am. Ch. J. 1904, **32**. 511.) | 1908, **30**. 1658.)

Magnesium perchromate, MgCr₂O₈.
(Byers and Reid.)

Potassium perchromate, K₃CrO₈.

 $\odot$ l. sel. in cold  $H_2O$ . Decomp. by conc.  $H_2SO_4$ . Insol. in pure alcohol and pure ether. Decomp. by boiling alcohol containing more than 50%  $H_2O$  (Wohlers, B. 1905, 38. 1888.)

 $+xH_2O$ . Sol. in  $H_2O$  at 0° without decomp. (Riesenfeld and Kutsch, B. 1908, 41. 3948.)

 $K_2Cr_2O_8$ . Sol. in  $H_2O$ . Decomp. in the air. (Byers and Reid, Am. Ch. J. 1904, 32. 505.)

 $KCrO_6$ ,  $H_2O_2$  or  $KH_2CrO_7$ . Sol. in ice cold  $H_2O$ , decomp. when varmed; explosive. (Wiede, B. 1898, **31.** 520.)

Sodium perchromate, Na₈CrO₈.

Sl. sol. in cold H₂O. Decomp. by conc. H₂SO₄. Insol. in pure alcohol and pure ether. Decomp. by boiling with alc. containing more than 50% H₂O. (Wohlers, B. 1905, **38**, 1888.)

Na₆Cr₂O₁₅+28H₂O. Efflorescent. Sl. sol. in cold, easily in hot H₂O, with decomp. Not decomp. by NaOH+Aq. (Häussermann, J. pr. (2) **48.** 70.)

 $Na_2Cr_2O_8$ . (Byers and Reid, Am. Ch. J. 1904, **32**. 511.)

Perchloroplatinocyanhydric acid,  $H_2Pt(CN)_4Cl_2+4H_2O$ .

Very sol. in H₂O and alcohol.

Ammonium perchloroplatinocyanide,  $(NH_4)_2Pt(CN)_4Cl_2+2H_2O$ . Sol. in  $H_2O$ .

Barium —, BaPt(CN)₄Cl₂+5H₂O. Very sol. in  $H_2O$ .

Calcium —, CaPt(CN)₄Cl₂. Sol. in H₂O.

Magnesium —,  $MgPt(CN)_4Cl_2+xH_2O$ . Sol. in  $H_2O$ .

Manganous —, MnPt(CN)₄Cl₂+5H₂O. Sol. in H₂O and alcohol.

Potassium ——, K₂Pt(CN)₄Cl₂+2H₂O.

Very efflorescent, and sol. in H₂O and alcohol.

Percolumbic acid,  $HCbO_4 + nH_2O$ .

Insol. in  $H_2O$ . Sol. with decomp. in warm  $H_2SO_4$ . (Melikoff, Z. anorg. 1899, **20.** 341.)

Cæsium percolumbate, CsaCbOs.

Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, 30, 1658.)



#### Cæsium magnesium percolumbate, MgCsCbO₈+8H₂O.

Sol. in  $H_2O$  without decomp. (E. F. Smith.)

#### Calcium potassium percolumbate, CaKCbO₈+4H₂O.

Difficultly sol. in H2O. (E. F. Smith.)

Calcium sodium percolumbate, CaNaCbO₈+
4H₂O.

Difficultly sol. in H₂O. (E. F. Smith.)

# Magnesium potassium percolumbate, MgKCbO₈+7H₂O.

Sol. in H without decomp. (E. F. Smith.)

#### Magnesium rubidium percolumbate, MgRbCbO₈+7½H₂O.

Sol. in H₂O without decomp. (E, F, Smith.)

#### Magnesium sodium percolumbate, MgNaCbO₈+8H₂O.

Sol. in H₂O without decomp. (E. F. Smith.)

### Potassium percolumbate, K₃CbO₈.

Sol. in H₂O. Ppt. from aq. solution by alcohol. (E. F. Smith.)

K₄Cb₂O₁₁+3H₂O. Sol. with decomp. in H₂O. Ppt. by alcohol. Sol. in KOH+H₂O₂+Aq. (Melikoff, Z. anorg. 1899, 20. 342.)

#### Rubidium percolumbate, Rb₈CbO₈.

Sol. in  $H_2O$ . Insol. in alcohol. (E. F. Smith.)

#### Sodium percolumbate, Na₃CbO₈.

Sol. in H₂O. Insol. in alcohol. (E. F. Smith.)

#### Perferricvanhydric acid.

# Potassium perferricyanide, $K_2Fe(CN)_6 + H_2O$ (?).

Very hygroscopic, and sol. in  $H_2O$ . Nearly insol. in absolute alcohol. Decomp. by hot  $H_2O$ . (Skraup, A. 189. 368.)

#### Periodic acid, H₅IO₆.

Deliquescent in moist air; very sol. in H₂O. (Bengieser, A. 17. 254.)

Rather easily sol. in alcohol and ether. (Bengieser.)

Rather easily sol. in alcohol, less in ether. (Langtoch.)

Sl. sol. in alcohol, still less in ether. (Lang-

lois, J. pr. **56.** 36.) Sp. gr. of H₆IO₆+Aq.

 $H_bIO_b + 20H_2O = 1.4008$   $H_bIO_b + 40H_2O = 1.2165$   $H_bIO_b + 80H_2O = 1.1121$   $H_bIO_b + 160H_2O = 1.0570$  $H_bIO_b + 320H_2O = 1.0288$ 

(Thomsen, B. 7. 71.)

#### Periodates.

Most periodates are insol. or sl. sol. in  $H_2O$ ; all are insol. or very sl. sol. in alcohol, but they all dissolve in dil.  $HNO_3+Aq$ . (Bengieser.)

#### Aluminum metaperiodate, $Al(IO_4)_3 + 3H_2O$ .

Stable in solution containing HNO₈. (Eakle, C. C. **1896**. II, 649.)

#### Ammonium metaperiodate, NH₄IO₄.

Sl. sol. in H₂O. Cryst. with 3H₂O (Ihre, B. **3.** 316), 2H₂O (Langlois, A. ch. (3) **34.** 257).

Stable in solution containing free ammonia. (Eakle, Zeit. Kryst. 1896, **26**. 258-88.) 100 pts. H₂O dissolve **2.7** pts. NH₄IO₄ at 16°; sp. gr. of sat. solution at 16°/4°=1.0178.

(Barker, Chem. Soc. 1908, 93. 17.)

Ammonium dimesoperiodate, (NH₄)₄I₂O₉+

 $3H_2O$ . Sol. in  $H_2O$ . (Rammelsberg, Pogg. **134.** 379.)

Stable in solution containing free ammonia. Two modifications. (Eakle, Zeit. Kryst. 1896, **26**. 558-88; C. C. **1896**. II, 649.).

# Ammonium lithium dimesoperiodate, $(NH_4)_2Li_2I_2O_9+7H_2O$ .

Sol. in H₂O. (Ihre.)

Ammonium magnesium mesoperiodate, NH₄MgIO₅+3H₂O.

Precipitate. (Rammelsberg, Pogg. 134.

### Barium metaperiodate, $Ba(IO_4)_2$ .

Known only in solution.

#### Barium dimesoperiodate, Ba₂I₂O₀.

Sl. sol. in H₂O; easily sol. in dil. HNO₃+Aq. (Rammelsberg, Pogg. **134**. 391.) Cryst. also with 3H₂O, 5H₂O, and 7H₂O.

Barium mesoperiodate,  $Ba_2(IO_5)_2 + 6H_2O$ . (Ihre.)

#### Barium orthoperiodate, Ba₅(IO₆)₂.

Insol. in H₂O. Sol. in HNO₂+Aq. (Rammelsberg.)

### Barium dimesodi periodate, $Ba_5I_4O_{19} + 5H_2O$ .

Precipitate. Sol. in dil. HNO₃+Aq. (Rammelsberg, Pogg. **134**. 395.)

#### Barium periodate tungstate.

See Tungstoperiodate, barium.

#### Cæsium metaperiodate, CsIO4.

Sl. sol. in cold H₂O; readily sol. in hot H₂O. (Wells, Am. Ch. J. 1901, **26.** 279.)

2.15 pts. are sol. in 100 pts. H₂O at 15°. Sp. gr. of the sat. aq. solution at 15°/4° = 1.0166. (Barker, Chem. Soc. 1908, 93. 17.)

Cæsium periodate hydrogen fluoride,  $2C_8IO_4$ ,  $3HF+H_2O$ .

Sol. in 40-60% HF+Aq. Decomp. by H₂O. Efflorescent. (Weinland, Z. anorg.) 1899, **22.** 263.)

Cadmium metaperiodate, Cd(IO₄)₂. Ppt. (Rammelsberg, Pogg. 134. 516.)

Cadmium dimesoperiodate, Cd₂I₂O₉+9H₂O₂ Insol. in H₂O. (Rammelsberg.)

Cadmium mesoperiodate, Cd₂(1O₅)₂+5H₂()
Ppt.
CdHIO₅. (Kimmins, Chem. Soc. **55**. 151.)

Cadmium diperiodate, Cd₄I₂O₁₁+3H₂O. Insol. in H₂O. (Rammelsberg.)

Cadmium periodate,  $Cd_{10}I_6O_{31}+15H_2O$ . Insol. in  $H_2O$ . (Rammelsberg.)

Calcium metaperiodate, Ca(IO₄)₂. Sol. in H₅IO₆+Aq and acids. (Rammelsberg, Pogg. **134**. 405.)

Calcium dimesoperiodate, Ca₂I₂O₉+7H₂O, and 9H₂O.

Sl. sol. in H₂O. (Rammelsberg.) +3H₂O. (Langlois.)

Calcium orthoperiodate, Ca₅(1O₆)₂. Insol. in H₂O. Sol. in HNO₃+Aq. (Rammelsberg, Pogg. **44**. 577.)

Cobaltous periodate, 7CoO, 2I₂O₇+18H₂O. Attacked by HCl, and sol. on warming. Slowly but completely sol. in NHO₃. (Lautsch, J. pr. **100**. 89.) Could not be obtained by Rammelsberg.

Cupric dimesoperiodate,  $Cu_2I_2O_9+6H_2O$ . Decomp. by  $H_2O$  without dissolving. (Rammelsberg.)

Cupric orthoperiodate, Cu₂HIO₆. Very sol. in HNO₃+Aq. (Kimmins, Chem. Soc. **55**. 150.)

Cupric diperiodate, Cu₄I₂O₁₁+H₂O. Insol. in H₂O; sol. in dil. HNO₈+Aq. (Rammelsberg.) +7H₂O. (R.)

Cupric periodate, 5CuO, I₂O₅+5H₂O.
Wholly insol. in H₂O. (Rammelsberg, B. 1. 73.)

Didymium peroidate, Di₂O₂(IO₄)₂.

Precipitate.

DiIO₈+4H₂O. Ppt. (Cleve, Bull. Soc. (2)

43. 362.)

Erbium periodate.

Sol. in H₂O. (Höglund.)

Glucinum periodate, Gl₂(IO₅)₂+11H₂O.
Decomp. by H₂O without dissolving. Easily sol. in HNO₃+Aq.
+13H₂O. Nearly insol. in H₂O. (Atterberg, B. 7. 474.)

iron (ferrous) orthoperiodate, Fe₅(IO₆)₂.
(Kimmius, Chem. Sec. **55**. 150.)
FeH₃IO₆ (Kimmins.)

Iron (ferric) periodate, 2Fe₂O₃, I₂O₇+21H₂O. Ppt. (Rammelsberg.)

Iron (ferric) dimesoperiodate, FeHI₂O₉.

Insol. in dil. HNO₃-[·Aq. (Kimmins, Chem. Soc. **55.** 149.)

Iron (ferric) metaperiodate, Fe(1O₄)₃. (Kimmins.)

Lanthanum periodate, La(IO_{4/3}+2H₂O. Precipitate. (Cleve.)

Lead metaperiodate,  $Pb(IO_4)_2$ . Sol. in  $HNO_3+Aq$ . (Kimmins.)

Lead orthoperiodate, Pb₃H₄(IO₆)₂.
Sol. in HNO₃+Aq. (Kimmins, Chem. Soc. 55. 149.)

Lead mesoperiodate,  $Ph_8(IO_5)_2+2H_2O$ . Insol. in  $H_2O$  or excess of periodic acid+Aq. Decomp. by dil.  $H_2SO_4+Aq$ . (Ben-

Aq. Decomp. by dil. H₂SO₄+Aq. (Bengieser, A. 17. 254.)

Lithium metaperiodate, LiIO₄.

1. 132.)
 Somewhat deliquescent.
 +H₂O; sol. in H₂O. (Barker, Chem. Soc. 1911, 99. 1326.)

Difficultly sol. in H₂O. (Rammelsberg, B.

Lithium dimesoperiodate, Li₄I₂O₉+3H₂O. Very sl. sol. in H₂O. (Rammelsberg, Pogg. **134**. 387.)

Lithium orthoperiodate, Li₅IO₆.

H₂O dissolves out a slight amount of LiI. Easily sol. in HNO₂+Aq. (Rammelsberg, Pogg. 137. 313.)

Magnesium metaperiodate,  $Mg(IO_4)_2 + 10H_2O$ . Easily sol. in  $H_2O$ . (Rammelsberg.)

Magnesium diperiodate,  $Mg_4I_2O_{11}+6H_2O$ , or  $9H_2O$ .

Sl. efflorescent. Insol. in  $H_2O$ . (Rammelsberg.)

# Magnesium dimesoperiodate, Mg₂I₂O₂+ 3H₂O.

(Rammelsberg, Pogg. 134. 499.) +15H₂O. Insol. in H₂O. Sol. in periodic acid+Aq. (Langlois.)

#### Manganic periodate.

See Manganiperiodic acid.

 $\begin{array}{cccc} \textbf{Mercurous} & \textit{diperiodate,} & 5Hg_2O, & I_2O_7, & or \\ & 4Hg_2O, & I_2O_7 = Hg_8I_2O_{11}. & & \end{array}$ 

Insol. in  $H_2O$ . Easily sol. in  $HNO_3+Aq$  and in HCl+Aq. (Lautsch, J. pr. 100. 86.)

#### Mercuric orthoperiodate, Hg₅(IO₆)₂.

Insol. in H₂2. Easily sol. in HCl. Sl. sol. in HNO₃. (Lautsch.)

Mercuric potassium periodate, 10 HgO,  $5 K_2O$ ,  $6 I_2O_7$ .

Insol. in  $H_2O$ . Difficultly sol. in warm  $HNO_3$  without decomp. (Rammelsberg, Pogg. 134. 526.)

Nickel dimesoperiodate, Ni₂I₂O₉. (Kimmins, Chem. Soc. **55**. 151.)

Nickel mesoperiodate, Ni₃(IO₅)₂. (Kimmins.)

Nickel periodate, 7 NiO,  $41_2\text{O}_7 + 63\text{H}_2\text{O}$ . Insol. in  $\text{H}_2\text{O}$ . Easily sol. in  $\text{H}_5\text{IO}_\ell + \text{Aq}$ . (Rammelsberg, Pogg. 134. 514.)

#### Potassium metaperiodate, KIO₄.

Sl. sol, in  $H_2O$ . Sol, in 290 pts. cold  $H_2O$ . (Rammelsberg, Pogg. 134, 320.) Almost insol, in KOH+Aq. 0.66 pt. is sol, in 100 pts.  $H_2O$  at 13°. Sp. gr. of the sat. sol, at 13°/4° = 1.0051. (Barker, Chem. Soc. 1908, 93. 16.) Insol, in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Potassium mesoperiodate, K₃IO₅+4H₂O.
Deliquescent. Easily sol. in H₂O. (Ihre.)

Potassium dimesoperiodate, K₄I₂O₉+9H₂O. Sol. in 9.7 pts. cold H₂O. (Rammelsberg, Pogg. **134**. 32O.) Sol. in KOH+Aq. +3H₂O.

Potassium hydrogen dimesoperiodate, K₃HI₂O₉.

Less sol. in H₂O than KIO₄. (Kimmins, Chem. Soc. **51**. 356.)

Potassium manganic periodate.

See Manganiperiodate, potassium.

Potassium zinc periodate,  $K_2O$ , 4ZnO,  $2I_2O_7 + 4H_2O$ .

Ppt. (Rammelsberg, Pogg. 134. 368.)

Potassium periodate tungstate.

See Tungstoperiodate, potassium.

Rubidium periodate, RbIO4.

0.65 pt. is sol. in 100 pts. H₂O at 13°. Sp. gr. of the sat. aq. solution at 13°/4° = 1.0052. (Barker, Chem. Soc. 1908, **93**. 16.)

Samarium periodate, Sm(IO₅)+4H₂O.

Precipitate. (Cleve.)

Silver metaperiodate, AgIO₄.

Decomp. by cold  $H_2O$  into  $Ag_4I_2O_9+3H_2O$ , and by warm  $H_2O$  into  $Ag_4I_2O_9+H_2O$ . (Ammermüller and Magnus, Pogg. **28**. 516.)  $+H_2O$ . Insol. ppt. (Kimmins.)

#### Silver mesoperiodate, Ag₃IO₅.

(Fernlunds, J. pr. 100. 99.) Ag₂HIO₅. Insol. ppt. (Kimmins, Chem.

Soc. **51**. 358.)

Ppt. by dil. HNO₃; sol. in HNO₃. (Rosenheim, A. 1899, **308**. 57.)

Silver dimesoperiodate, Ag₄I₂O₉+H₂O, or 3H₂O.

Insol. ppt. (Kimmins.) Decomp. by boiling  $H_2O$  into  $Ag_{\mathfrak{b}}IO_{\mathfrak{b}}$ . (Rammelsberg.)

#### Silver orthoperiodate, Ag₅IO₆.

Sol. in HNO₃ or NH₄OH+Aq. (Rammelsberg, Pogg. **134.** 386.)

Sol. in excess NH₄OH+Aq; pptd. by HNO₃. (Rosenheim, A. 1899, **308.** 56.)

Ag₃H₂IO₆. Insol. ppt. (Kimmins, Chem. Soc. **51**. 358.)

Ag₂H₃IO₆. As above. (Kimmins.) Sol. in dil. HNO₃. (Rosenheim, A. 1899, **308**. 53.)

#### Silver diperiodate, $Ag_8I_2O_{11}$ .

Sl. sol. in HNO₃+Aq; insol. in NH₄OH+Aq. (Lautsch, J. pr. **100**. 75.)

#### Silver dimesodiperiodate, Ag₁₀I₄O₁₉.

 $HNO_3+Aq$  dissolves out  $Ag_2O$ . Insol. in  $NH_4OH+Aq$ . (Lautsch.)

#### Sodium metaperiodate, NaIO₄.

Easily sol. in H₂O.

+2H₂O. (Langlois.) +3H₂O. Efflorescent; sol. in 12 pts. H₂O at ord. temp. (Rammelsberg, J. pr. **103.** 278.)

#### Sodium dimesoperiodate, $Na_4I_2O_9 + 3H_2O$ .

Scarcely sol. in cold, sl. sol. in hot  $H_2O$ . (Magnus and Ammermüller, Pogg. 28. 514.) Very sol. in dil.  $HNO_3+Aq$ . (Langlois.) Sol. in  $HC_2H_3O_2+Aq$  with decomp. (Bengieser, A. 17. 254.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

 $+4H_2O$ .

Sodium mesoperiodate,  $Na_{\delta}IO_{\delta}+^{\delta}/_{4}H_{2}O$ . Sol. in  $H_{2}O$ . (Ihre.)  $+H_{2}O=Na_{\delta}H_{\delta}IO_{\delta}$ . Less sol. in  $H_{2}O$  than  $Na_{\delta}I_{2}O_{\delta}+3H_{2}O(=Na_{2}H_{\delta}IO_{\delta})$ . (Kimmins, Chem. Soc. **51**. 357.)

Sodium orthoperiodate,  $Na_5IO_6$ .  $Na_2H_3IO_6$ . Correct composition for  $Na_4I_2O_9+3H_2O$ . (Kimmins.)  $Na_3H_2IO_6$ . Correct composition for  $Na_2IO_5+H_2O$ . (Kimmins.)

Strontium metaperiodate, Sr(1O₄)₂+6H₂O. Sol. in H₂O.

Strontium dimesoperiodate, Sr₂I₂O₉. Decomp. by H₂O. +3H₂O.

Strontium mesoperiodate, Sr₃(1O₅)₂. Precipitate.

Strontium orthoperiodate, Sr₅(IO₆)₂. (Rammelsberg, Pogg. **44**. 577.)

Thallic periodate,  $3\text{Tl}_2\text{O}_3$ ,  $1_2\text{O}_7+30\text{H}_2\text{O}$ . Insol. in  $\text{H}_2\text{O}$ . Decomp. by alkalies, (Rammelsberg, B. 3. 361.)

Thorium periodate.

Precipitate. Sol. in HNO₈+Aq.

Uranous periodate.

Precipitate, which quickly decomposes.

Ytterbium periodate, YbIO₅+2H₂O. Hydroscopic. (Cleve, Z. anorg. 1902, **32.** 136.)

Yttrium periodate, Y₂(IO₅)₂+SH₂O. Very slightly sol. (Cleve.) 3Y₂O₃, 2I₂O₇+6H₂O. Precipitate. (Cleve.)

Zinc dimesoperiodate, Zn₂I₂O₉+6H₂O. (Rammelsberg, Pogg. **134**. 513.)

Zinc periodate, 3ZnO, 2I₂O₇+7H₂O. (Langlois.)

Zinc diperiodate,  $Zn_4I_2O_{11}+H_2O$ . Easily sol. in  $H_2O$ , sl. acid with HNO₃. (Langlois, A. ch. (3) **34**. 257.)

Zinc dimesodiperiodate,  $Zn_5I_4O_{19}+14H_2O$  (?). (Rammelsberg.)

Zinc periodate, 9ZnO, 2I₂O₃+12H₂O. (Rammelsberg.)

Periodoplatinocyanhydric acid.

Barium periodoplatinocyanide, BaPt(CN)₄I₂ +xH₂C.

Easily sol. in H₂O or alechol. (Holst, Bull. Soc. (2) **22**. 347.)

Potassium periodoplatinocyanide, K₂Pt(CN)₄I₂.

Permanent. Easily sol, in H₂O or alcohol.

Permanganic acid, HMnO4.

Known only in solution, which decomposes by evaporation or warming.

Permanganates.

All permanganates are sol. in H₂O, excepting AgMnO₄, which is sl. sol.

Ammonium permanganate, NH₄MnO₄.

Sol. in 12.6 pts. H₂O at 15°. (Aschoff.) Sol. in H₂O with decomp. (Christensen, Z. anorg. 1900, **24**. 206.)

Barium permanganate, Ba(MnO₄)₂. Sol. in H₂O.

Cadmium permanganate, Cd(MnO₄)₂+8H₂O_• Stable. (Klobb, Bull. Soc. 1894, (3) **11** 607.)

Cadmium permanganate ammonia,  $Cd(MnO_4)_2$ ,  $4NH_3$ .

Sol. in H₂O with decomp. (Klobb, Bull. Soc. (3) **3.** 510.)

Cæsium permanganate, CsMnO₄.

Sl. sol. in cold, somewhat more easily sol. in hot H₂O. (Muthmann, B. 1893, **26**. 1018.) Solubility in H₂O. 100 ccm. of the sat. solution contain at:

1° 19° 59° 0.097 0.23 1.25 g, CsMnO₄.

(Patterson, J. Am. Chem. Soc. 1906, 28. 1735.)

| Calcium permanganate, Ca(MnO₄)₂+5H₂O. | Deliquescent.

Cupric permanganate.

Deliquescent.



Cupric permanganate ammonia, Cu(MnO₄)₂, 4NH₃.

Sol. in H₂O with slow decomp. (Klobb, Bull. Socs (3) 3. 509.)

Didymium permanganate,  $Di(MnO_4)_8 + 21H_2O_4$ 

Sl. sol. in H₂O. (Frerichs and Smith, A. **191.** 331.)

Has not been prepared. (Cleve, B. **11.** 912.)

Lanthanum permanganate, La(MnO₄)₃+ 21H₂O.

Ppt. (Frerichs and Smith, A. 191. 331.) Has not been prepared. (Cleve, B. 11. 910.)

### Lead permanganate.

Sol. in HNO₈+Aq. (Forchhammer.)

Lithium permanganate, LiMnO₄+3H₂O. Sol. in 1.4 pts. H₂O at 16°. (Aschoff.)

### Magnesium permanganate, Mg(Mn()₄)₂.

Insol. in CHCl₃, CCl₄, C₀H₆, toluene, nitrobenzene, ligroin, ether and CS₂. Sol. in methyl alcohol, acetone, pyridine, and readily sol. in glacial acetic acid. Only pyridine and glacial acetic acid are sufficiently stable toward the salt to be of any practical use for oxidation purposes. (Michael and Garner, Am. Ch. J. 1906, **35**. 268.)

+6H₂O. Easily deliquescent.

# Nickel permanganate ammonia, $Ni(MnO_4)_2$ , $4NH_3$ .

Sol. in  $H_2O$  with decomp. (Klobb, Bull. Soc. (3) **3.** 509.)

#### Potassium permanganate, KMnO₄.

Sol. in 16 pts. H₂O at 15°. (Mitscherlich.)

### Solubility in 100 pts. H₂O at t°.

. t°	Pts. KMnO ₄
0	2.83
9.8	4.31
19.8	6.34
24.8	7.59
29.8	9.03
34.8	10.67
40.0	12.56
45.0	14.58
50.0	16.89
55.0	19.33
65.0	25.03

(Baxter, J. Am. Chem. Soc. 1906, 28, 1343.) Edwards.)

Solubility in H₂O at t°.

p=pts. KMnO₄ sol. in 100 pts. H₂O at t°.

-	-						
t°	p	t°	p	t°	р	t°	р
0	2.76	19	6.26	38	11.74		20.29
1	2.90	20	6.48	39	12.12	58	20.83
2	3.06	21	6.70	40	12.51	59	21.39
2 3	3.22	22	6.94	41	12.91	60	21.96
4	3.38	23	7.18	42	13.31	61	22.55
5	3.54	24	7.42	43	13.72	62	23.15
6	3.70	25	7.68	44	14.14	63	23.76
7	3.86	26	7.94	45	14.56	64	24.38
8	4.04	27	8.20	46	15.00	65	25.01
9	4.22	28	8.48	47	15.44	66	25.67
10	4.40	29	8.77	48	15.88	67	26.34
11	4.58	30	9.07	49	16.32	68	27.03
12	4.78	31	9.37	50	16.77	69	27.84
13	4.98	32	9.69	51	17.23	70	28.56
14	5.18	33	10.01	52	17.71	71	29.30
15	5.38	34	10.34	53	18.21	72	30.05
16	5.60	35	10.68	54	18.71	73	30.81
17	5.82	36	11.02	55	19.23	74	31.57
18	6.04	37	11.38	56	19.75	74.5	31.95

(Worden, J. Soc. Chem. Ind. 1907, 26, 453.)

Solubility in H₂O.

100 ccm. of the sat. solution contain at:

0° 15° 15.3° 30°

2.84 5.22 5.30 8.69 g. KMnO₄. Sp. gr. of sat. solution at 15°=1.035. (Patterson, J. Am. Chem. Soc. 1906, **28**.

1 l. sat. KMnO₄+Aq contains at:

6° 10° 20° 30° 40° 0.176 0.278 0.411 0.573 0.792 mol. KMnO₄,

53° 63° 70° 75° 1.154 1.429 1.812 2.047 mol. KMnO₄. (Sackur, Z. Elektrochem. 1912, **18**, 723.)

#### Solubility of KMnO₄ in H₂O at t°.

Grams KMnO4 sol. in 100 grams H2O	t°
0.58 1.01 2.02 2.91 4.22 5.20 7.53 11.61 16.75	$\begin{array}{c} -0.18 \\ -0.27 \\ -0.48 \\ -0.58 \\ +10 \\ +15 \\ +25 \\ +40 \\ +50 \end{array}$

(Voerman, C. C. 1906, I. 125.)

Sol. in conc. H₂SO₄. Deliquesces in liquid HCl, but does not dissolve. (Gore.) Slowly old in H₂PO₄+Aq. (Chevillot and Edwards.)

t°	H ₂ O	1-n KOH	2-n KOH	4-n KOH	6-n KOH	8-n KOH	10-n KOH
0	0.176	0.050	0.031	0.027	0.023	0.017	0.012
10	0.278	0.112	0 068	0.018	0.042	0.028	* 0.016
20	0.411	0.179	0.119	0.079	19° 0.074	0.032	0.029
30	0.573	32° 0.316	32° 0.213	32 0.149	0.114	32° 0.062	0.040
40	0.792	0.439	0.306	0 211	0.161	0.084	0.052
50	53° 1.154 1	50° 0.638	0.462	0.304	0.219	0 111	
63	1.429	61° 0.904	60° 0.639	0.427	0.291	61° 0.143	0.071
70	1.812	1.172	0.869	0.572	0.396	0.188	0.082
75	2.047			0.651	1		G: <b>089</b>
80		1.513	1.190		0.500	0.231	• • •
84		1.655	1.352	83° 0.803	85° 0.572		
90				- 1	0.649	0.297	

(Sackur, Z. Elektrochem, 1912, 18, 723.)

Solubility in salts+Aq. at to.

bolubility in saits Triq. at t.						
Solvent	t°	Mol. KMnO ₄ in 1 l. of sat. solution				
0.1-n \(\frac{\text{K2CO}_3}{2}\)	$\begin{array}{c} 0 \\ 25 \\ 40 \end{array}$	0 1462 0.4375 0.7380				
$1-n \frac{K_2CO_3}{2}$	0 25 40	0.0629 0.2589 0.5007				
$2$ -n $\frac{\mathrm{K_2CO_3}}{2}$	0 40	0.0446 0.3519				
$4-n \frac{K_2CO_3}{2}$	0 25	0.0270 0.0930				
6-n K ₂ CO ₃	0	0.0156				
0.1-n KCl	0 25 40	0.1395 0.4315 0.7380				
0.5-n KCl	0 25 40	0.0760 0.3060 0.5840				
1-n KCl	0 25 40	0.0532 0.220 0.444				
2-n KCl	0 25 40	0.0379 0.1432 0.288				

(Sackur, Z. Elektrochem. 1912, 18. 723.)

Very sol. in liquid NH₃. (Moissan, A. ch. 1895 (7) **6.** 428; Franklin, Am. Ch. J. 1898, **20.** 829.)

Decomp. immediately by alcohol. Sol. in acetone. (Eidmann, C. C. 1899. II, 1014; Naumann, B. 1904, 37. 4328.)

Solubility in acetone+Aq. at 13°.

A=ccm. acetone in 100 ccm. acetone+Aq.  $^{1}/_{5}$  KMnO₄ = millimols KMnO₄ in 100 ccm. of the solution.

A	1/5 KMnO4
0 10 20 30	148.5 162.2 177.3 208.2
40 50 60 70 80 90	257.4 289.7 316.8 328.0 312.5 227.0 67.6

(Herz and Knoch, Z. anorg. 1904, 41. 317.)

Sol. in benzonitrile. (Naumann, B. 1914, 47, 1369.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42, 3795.)
Sol. in ethyl acetate. (Naumann, B. 1904,

**37.** 3601.)

Rubidium permanganate, RbMnO₄.

Solubility in H₂O lies between K and Cs salts. (Muthmann, B. 1893, **26**. 1018.) Solubility in H₂O.

100 ccm. of the sat. solution contain at:

2° 19° 60° 0.46 1.06 4.68 g. RbMnO₄. (Patterson, J. Am. Chem. Soc. 1906, **28.** 1735.)

Silver permanganate, Ag₂MnO₄.

Sol. in 109 pts. cold  $H_2O$  and much less hot  $H_2O$ . Decomp. by boiling. (Mitscherlich, Pogg. 25. 301.)

Silver permanganate ammonia.

Sl. sol. in cold, more easily in hot H₂O. (Klobb, C. R. 103. 384.)

Sodium permanganate, NaMnO₄+3H₂O. **Deliquescent.** Extremely sol, in  $H_2O$ . Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 829.)

Strontium permanganate,  $Sr(MnO_4)_2 + 4H_2O$ . Deliquescent. Sol. in H₂O. (Fromherz.)

Thallous permanganate, TlMnO₄.

Sol. in H₂O with decomp. (R. Meyer, Z. anorg. 1899, 22. 188.)

Zinc permanganate,  $Zn(MnO_4)_2 + 6H_2O$ .

Deliquescent. Very sol. in  $H_2\mathrm{O}$ . (Martenson, J. B. **1873**, 274.)

Zinz permanganate ammonia,  $Zn(MnO_4)_2$ ,  $4NH_3$ .

Sol, in H₂O with decomp. (Klobb, Bull. Soc. (3) 3. 509.)

Permanganomolybdic acid, MnO₂,  $12\text{MoO}_3 + 10\text{H}_2\text{O}$ .

Sol. in H₂O. Decomp. by alkalis. Sol. in alcohol. (Péchard, C. R. 1897, 125, 31.)

Ammonium permanganomolybdate,  $2(NH_4)_2O$ ,  $MnO_2$ ,  $7MoO_3 + 5H_2O$ .

(Friedheim and Samelson, Z. anorg. 1900, **24.** 73.)

3(NH₄)₂O, MnO₂, 9MoO₃+6H₂O. (Friedheim and Allemann, Mit. d. Nat. Ges. Bern. **1904.** 23.)

+7H₂Ó. (Friedheim and Samelson, Z. anorg. 1900, 24. 70.)

 $4(NH_4)_2O$ , MnO₂,  $11MoO_3+7H_2O$ . (Fried-

heim and Samelson.)

3(NH₄)₂O, MnO₂, 12MoO₃+5H₂O. Sl. sol. in cold H₂O. Decomp. by alkalis. Insol. in alcohol. (Péchard, C. R. 1897, 125. 30.)

Ammonium manganous permanganomolybdate, 3[(NH₄)₂, Mn]O, MnO₂, 9MoO₃+  $6H_2O$  and  $+7H_2O$ .

(Friedheim and Allemann, Mitt. d. Nat. Ges. Bern. 1904. 23.)

 $3(NH_4)_2$ , Mn]O, MnO₂,  $10MoO_8+10H_2O$ . (Friedheim and Samelson, Z. anorg. 1900, 24. 94.)

 $4[(NH_4)_2, Mn]O, MnO_2; 10MoO_3+6H_2O.$ (Friedheim and Samelson, Z. anorg. 1900, 24.

4[(NH₄)₂, Mn]O, MnO₂, 11MoO₃+8H₂O. (Friedheim and Samelson, Z. anorg. 1900, **24.** 

Ammonium manganous potassium permanganomolybdate, 2(NH₄)₂O, MnO, K₂O,  $MnO_2$ ,  $10MoO_8+5H_2O$ .

Very sl. sol. in cold, easily sol. in H₂O at 70-80°. (Rosenheim, Z. anorg. 1898, 16. 79.) 3[(NH₄)₂, K₂, Mn]O, MnO₂, 9MoO₃+7H₂O. (Friedheim and Allemann, Mitt. d. Nat. Ges. Bern. 1904. 23.)

 $4[(NH_4)_2, K_2, Mn]O, MnO_2, 10MoO_3+$ 5H₂O. (Friedheim and Samelson, Z. anorg. 1900, 24, 97.)

 $3[(NH_4)_2, K_2, Mn]O, MnO_2, 10MoO_3+6H_2O, and +10H_2O.$  (Friedheim and Samelson, Z. anorg. 1900, 24. 92.)

Ammonium potassium permanganomolybdate, 3[(NH₄)₂, K₂]O, MnO₂, 8MoO₂+ 4H₂Ò.

(Friedheim and Samelson.)

Barium permanganomolybdate, 3BaO, MnO₂,  $9\text{MoO}_8 + 12\text{H}_2\text{O}$ .

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 700.)

8H₂O.

True formula for 5K₂O, Mn₂O₃, 16MoO₃+ 12H₂O of Struve. (Friedheim and Samelson, Z. anorg. 1900, **24.** 86.)

 $3[K_2,Mn]O,MnO_2,9MoO_3+6H_2O.$  (Friedheim and Allemann, Mitt. d. Nat. Ges. Bern.

 $2.6 \text{ K}_2\text{O}$ , 0.4 MnO,  $\text{MnO}_2$ ,  $9\text{MoO}_3 + 7\text{H}_2\text{O}$ . Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 700.)

 $4[K_2, Mn]O, MnO_2, 11MoO_3 + 7H_2O$ (Friedheim and Samelson, Z. anorg, 1900, 24.

Manganous potassium sodium permanganomolybdate, 3[K₂, Na₂, Mn]O, MnO₂,  $8MnO_3+4H_2O$ .

(Friedheim and Allemann, Mitt. d. Nat. Ges. Bern. 1904. 48.)

Manganous sodium permanganomolybdate,  $3[Na_2, Mn]O, MnO_2, 9MoO_3+15H_2O.$ (Friedheim and Allemann.)

Potassium permanganomolybdate, 3K₂O,  $MnO_2$ ,  $8MoO_8+3H_2O$ .

Much less sol. in H₂O than NH₄ comp. (Friedheim and Samelson, Z. anorg. 1900, 24. 78.)

+5H₂O. Nearly insol. in cold or hot H₂O. (Rosenheim and Itzig, Z. anorg. 1898, 16. 81.) 3K₂O, MnO₂, 9MoO₃+5H₂O. (Friedheim and Samelson, Z. anorg. 1900, 24. 81.)

+6H₂O. (Hall, J. Am. Chem. Soc. 1907, 29.700.)

 $3K_2O$ ,  $MnO_2$ ,  $12MoO_3+4H_2O$ . Nearly insol. in cold H₂O. Decomp. by alkalis. Insol. in alcohol. (Péchard, C. R. 1897, 125.

Silver permanganomolybdate, 3Ag₂O, MnO₂,  $9\text{MoO}_8 + 6\text{H}_2\text{O}$ .

Ppt. (Hall, J. Am. Chem. Soc. 1907, 29. 700.)

Sodium permanganomolybdate, 3Na₂O,  $MnO_2$ ,  $12MoO_3 + 13H_2O$ .

Efflorescent. Very sol. in H₂O. Decomp. by alkalies. Insol. in alcohol. (Pechard, C. A. **125.** 31.)

### Permanganotungstic acid.

Ammonium manganous permanganotungstate, 4(NH₄)₂O, MnO, MnO₂, 12WO₈+ 23H₂O.

Readily sol, in H₂O. Can be cryst, therefrom. (Rogers and Smith, J. Am. Chem. Soc. 1904, 26, 1475.)

Sodium permanganotungstate, 3Na₂O, MnO₂,  $5WO_3 + 18H_2O$ .

Rather easily sol. in hot H₂O. Solution decomp, on long boiling with separation of manganese peroxide. (Just, B. 1903, 36. 3621.)

### Permolybdic acid, $Mo_2()_i$ , $5H_2() =$ $HM_0O_4+2H_2O_1$

Very sol, in H₂O, and not decomp, by boil-

ing. (Péchard, A. ch. (6) **28.** 550.) H₂MoO₅+1, 2H₂O. "Ozo-molybdic acid." Only very sl. sol. in H₂O after being dried in the air. Sol. in fairly conc. H₂SO₄. (Muthmann, B. 1898, 31. 1838.)

H₂Mo₂O₇, H₂O₂. Sl. sol. in cold, more easily sol. in hot H₂O, but does not separate on cooling. Sol. in dil. acids, also in H₃PO₄. (Cammerer, Ch. Z. 1891, 15. 957.)

### Ammonium permolybdate, NH₄MoO₄+ 2H₂O.

Very sol. in H2O; sl. sol. in alcohol, but alcohol extracts it from H2O, forming a very conc. supersat. solution, which is pptd. by a crystal of NH₄MoO₄, and only a sl amount remains in solution. (Péchard.)
3(NH₄)₂O, 5MoO₃, 2MoO₄+6H₂O. (Muth-

mann, B. 1898, 31. 1837.

mann.)

3(NH₄)₂O, 7MoO₄+12H₂O. Ppt. (Muthmann, Z. anorg. 1898, 17. 76.)  $3(NH_4)_2O$ ,  $5MoO_4+6H_2O$ . Ppt. (Muth-

### Ammonium nickel permolybdate ammonia, $(NH_4)_2Ni(MoO_4)_2$ , $2NH_3$ .

Decomp. by H₂O. Sol. in dil. NH₄OH. (Briggs, Chem. Soc. 1904, 85, 674.)

Barium permolybdate,  $Ba(MoO_4)_2 + 2H_2O$ .

(Péchard, A. ch. 1893, (6) 28. 537.) 8BaO,  $19MoO_3$ ,  $2H_2O_2+13H_2O$ . (Baerwald, Dissert. **1885.**)

Cæsium permolybdate, Cs₂O, 4MoO₄+6H₂O Sol. hot H₂O. (Muthmann, B. 1898, 31. 1841.)

3C₈₂O, 7MoO₈, 3MoO₄+4H₂O. Ppt. (Muthmann.)

Copper permolybdate,  $Cu(MoO_4)_2 + H_2O$ .

Insol. in H₂O; easily sol. in acids. Sol. in NHAOH + Ag with decomp. (Péchard.)

Magnesium permolybdate, Mg(MoO₄)₂+ 10H₂O.

Very sc'. in  $H_2O$ ; sl. sol. in alcohol. (Péchard)

### Mercurous permolybiate.

Insol in H₂O or NII₄NO₈+Aq. (Péchard.)

Potassium permolybdate, KMoO₄+2H₂O₂

Sl. sol. in cold, more in hot H₂O. Sl. sol. in alcohol. (Péchard.)

K₂O, 2MoO₃, MoO₄+3H₂O. Ppt. (Mutherman, Z. anorg. 1898, 17. 77.)

 $K_2O_2$ ,  $MoO_4$ ,  $H_2O_2$ . Decomp. by  $H_2O$ . (Melikoff and Pissarjewsky, B. 1898, **31**. 2449.)

K₂MoO₅+3H₂O. Nearly insol. in cold, easily sol. in hot H₂O. (Mazzuchelli and Zangrilli, Gazz. ch. it. 1910, 40. (2) 56.)

### Rubidium permolybdates.

'Rubidium ozo-molybdate."

 $3Rb_2O$ ,  $10MoO_4 + 14H_2O$ . Ppt. R  $_2O$ ,  $2MoO_3$ ,  $MoO_4 + 3H_2O$ . May be recryst. from H₂O₂+Aq.

3Rb₂O, 5MoO₃, 2MoO₄+6H₂O. Ppt. Rb₂O, 3MoO₃, MoO₄+4H₂O. Ppt. (Muthmann, B. 1898, **31**. 1839–41.)

### Silver permolybdate, AgMoO₄. (Péchard.)

### Sodium permolybdate, NaMoO₄+3H₂O₂

Very sol. in H₂O; insol. in alcohol, but behaves similarly to K salt. (Péchard.)

#### Thallous permolybdate.

Insol. in H₂O. (Péchard, A. ch. 1893, (6) **28.** 559.)

### Pernitric acid, NOs.

See Nitrogen hexoxide.

Silver pernitrate, basic, 3Ag₂O₂, AgNO₅.

Decomp. H₂O. (Mulder, R. t. c. 1898, 17. 142.)

### Perosmic acid.

#### Potassium perosmate (?).

Sol, in H₂O, but very easily decomp.

### Peroxynitric acid.

### Silver peroxynitrate.

Analysis of the black compound formed, under certain circumstances, in a silver voltameter when an aqueous solution of AgNO.

### PEROXYLAMINE SULPHONIC!ACID

is electrolyzed, points to the composition Ammonium 3Ag₂O, 5O, Ag_{NO₃}, perhaps 2Ag₃O₄, Ag_{NO₃} monia, ( or 3Ag₂O₂, AgNO₅. (Mulder, Chem. Soc. 1896, **70**. (2) 561.)

### Peroxylaminesulphonic acid.

# Potassium peroxylaminesulphonate, $N_2O_2(SO_8K)_4$ .

Very unstable in H₂O. Very sl. sol. in cold H₂O. More stable in N/10 KOH+Aq.

100 pts. N/10 KOH+Aq dissolve 0.62 pt. of the salt at 3°; 6.6 pts. at 29°. (Haga, Chem. Soc. 1904, 85. 86.)

# Perstannic acid, H₂Sn₂O₇.

Known in colloidal state, sol. in H2O. (Spring, Bull. Soc. (2) 51. 180.)

### Potassium perstannate, $KSnO_4+2H_2O$ .

Sol. in H₂O. Insol. in alcohol. (Tanatar, B. 1905, 38. 1185.)

### Sodium perstannate, NaSnO₄+2H₂O.

Difficultly sol, in H₂O with decomp. (Tanatar.)

### Persulphuric acid, S₂O₇.

See Sulphur heptoxide.  $H_2S_2O_8$ .

Sp. gr. of  $H_2S_2O_8+Aq$ .

Sp. gr. 14°/14°	% H ₂ S ₂ O ₈	g. H ₂ S ₂ O ₈ per l.
1.042	7.2	75
1.096	15.4	169
1.154	23.6	272
1.246	35.2	438

(Elbs and Schönherr, Z. Elektrochem. 1896, **2.** 245.)

### Ammonium persulphate, $(NH_4)_2S_2O_8$ .

Very sol. in  $H_2O$ . 100 pts.  $H_2O$  at 0° dissolve 58.2 pts.  $(NH_4)_2S_2O_8$ . (Marshall, Chem. Soc. 59. 771.)

Solubility in H₂O equals 58% at 8°. (Moreau, C. C. **1901**, II. 56.)

100 pts. H₂O dissolve 65 pts. at ord. temp. (Elbs, J. pr. 1893, (2) 48. 185.)

# Ammonium lead persulphate,

 $(NH_4)_2Pb(SO_4)_3$ .

Decomp. by  $H_2O$ . Almost insol, in cold  $H_2SO_4$  of sp. gr. =1.7. Sl. sol, in  $H_2SO_4$  (sp. gr. =1.7) at  $50^\circ$ . Sol, in fuming  $H_2SO_4$  and in cold conc. HCl. Sol. in acetic acid, in Na acetate+Aq acidified with acetic acid and in excess of cold 20%NaOH+Aq. (Elbs, Z. Elektrochem. 1900, 7. 346.)

mercurous persulphate monia, (NH₄)HgS₂O₈, 2NH₃.

Decomp. by H2O. Insol. in dil. or conc., hot or cold H2SO4 or HNO3. Sol. in HCl. (Tarugi, Gazz. ch. it. 1903, 33. (1) 131.)

### Barium persulphate, BaS₂O₈+4H₂O.

Very sol, in H₂O, 100 pts. H₂O at 0° dissolve 39.1 pts. BaS₂O₈, or 52.2 pts. BaS₂O₈+4H₂O. Sol. in absolute alcohol with pptn. of BaS₂O₈+H₂O. Insol. in alcohol. (Marshall.)

Cadmium persulphate ammonia, CdS₂O₈. 6NH₈.

Sol. in H₂O. (Barbieri, Z. anorg. 1911, 71. 350.)

### Cæsium persulphate, Cs₂S₂O₈.

Sol. in  $H_2O$ . 8.71-8.98 pts. are sol. in 100 pts.  $H_2O$  at 23°. (E. F. Smith, J. Am. Chem. Soc. 1899, **21.** 935.)

### Calcium persulphate.

Very sol. in H₂O. (Marshall, J. Soc. Chem. Ind. 1897, 16. 396.)

Copper persulphate ammonia, CuS₂O₈, 4NH₂. Sol. in H₂O. (Barbieri, Z. anorg. 1911, 71. 351.)

#### Lead persulphate, PbS₂O₈.

Decomp. by H2O. Sl. sol. in H2SO4, and in pyrosulphuric acid. Sol. in cold cone. HCl. Insol. or sol. with decomp. in all ord. solvents. (Elbs, Z. Elektrochem. 1900, 7. 345.)

Solubility of Pb(SO₄)₂ in H₂SO₄+Aq. at 22°. v=moles of H₂SO₄ per mole of H₂O;  $c = millimols Pb(SO_4)_2$  in 1 l.

v	c	v	c				
0.304 0.348 0.387 0.407 0.435 0.477 0.515	0.00 1.8 3.0 3.9 5.3 14.4 23.3	0.558 0.699 0.917 1.11 1.54 2.08 2.13	37.2 40.5 23.3 23.7 49.6 83.5 88.2				

(Dolezalek and Finckli, Z. anorg. 1906, 51. 321.)

+3H₂O. Deliquescent. Very sol. in H₂O. (Marshall.)

### Lead potassium persulphate, K₂Pb(SO₄)₃.

Decomp. by  $H_2O$ . Almost insol. in cold  $H_2SO_4$  of sp. gr. =1.7. Sl. sol. in  $H_2SO_4$  (sp. gr. =1.7) at 50°. Sol. in funging  $H_2SO_4$ , cold conc. HCl, excess of cold 20% NaOH+Aq, acetic acid, and in Na acetate+Aq acidified with acetic acid. (Elbs, Z. Elektrochem. 1900, 7. 346.)

Nickel persulphate ammonia, NiS₂O₈, 6NH₃. Unstable in the air. Sol. in H₂O with decomp. (Barbieri, Z. anorg. 1911, **71**, 351.)

### Potassium persulphate, K₂S₂O₈.

100 pts.  $H_2O$  at 0° dissolve 1.77 pts.  $K_2S_2O_8$ ; more sol. in hot  $H_2O$  with very sl. decomp. Less sol. in  $H_2O$  than any other persulphate. (Marshall.)

### Rubidium persulphate, Rb₂S₂O₈.

Sol. in H₂O. 3.32-3.49 pts. are sol. in 100 pts. H₂O at 22.5°. (E. F. Smith, J. Am. Chem. Soc. 1899, **21**. 934.)

Silver persulphate, basic,  $5Ag_2O_2$ ,  $2Ag_2SO_7$ . Decomp. by  $H_2O$  and acids. (Mulder, C. C. **1899**. I, 16.)

Sodium persulphate, Na₂S₂O₈. Very sol. in H₂O. (Löwenherz.)

### Strontium persulphate.

Very sol. in  $H_2O$ . (Marshall, J. Soc. Chem. Ind. 1897, **16**. 396.)

Thallium persulphate, Tl₂S₂O₈.

Very sol. in H₂O. (Smith, J. Am. Chem. Soc. 1898, **21**, 936.)

Zinc persulphate ammonia,  $ZnS_2O_8$ ,  $4NH_8$ . Sol. in  $H_2O$ . (Barbieri, Z. anorg. 1911, **71**. 350.)

# Persulphomolybdic acid.

See Persulphomolybdic acid.

### Pertantalic acid, $HTaO_4 + nH_2O$ .

Ppt. (Melikoff, Z. anorg. 1899, 20. 345.)

### Cæsium pertantalate, Cs₃TaO₈.

Ppt. (E. F. Smith, J. Am. Chem. Soc. 1908, **30**. 1667.)

Calcium potassium pertantalate, CaKTaO₈+ 4½H₂O.

Insol. in cold H₂O; decomp. by hot H₂O. (Melikoff, Z. anorg. 1899, **20.** 347.)

Calcium sodium pertantalate,  $CaNaTaO_8 + 4\frac{1}{2}H_2O$ .

Difficultly sol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 1908, **30.** 1668.)

# Magnesium potassium pertantalate, $MgKTaO_8+7H_2O$ .

Somewhat sol. in H₂O. (E. F. Smith.)

### Magnesium rubidium pertantalate, MgRbTaO₈+9H₂O.

Somewhat sol, in H₂O. (E. F. Smith.)

Magnesium sodium pertantalate, MgNaTaO₈ +8H₂O.

Somewhat sol. in H₂O. (E. F. Smith.)

### Potassium pertantalate, K₃TaO₈+½H₂O.

Sol. in H₂O with deccrap; sol. in KOH+ H₂O₂+Aq; ppid, by alcohol. (Melikoff, Z. anorg. 1899, **20. 346**.)

### Rubidium pertantalate, Rb₃TaO₈.

Somewhat sol. in  $H_2$ ?. (E. F. Smith.)

### Sodium per antalate, Na₃TaO₈+ H₂O.

Pptd. by alcohol. Sl. sol. in H₂O, decompon heating with H₂O. (Melikoff, Z. anorg. 1899, **20**, 348.)

 $N\dot{a}$ TaO₄+ $\dot{N}\dot{a}$ OTaO₄+13H₂O. Sol. in H₂O₂+Aq; pptd. by alcohol. (Melikoff, Z. anorg. 1899, **20.** 349.)

### Pertitanic acid.

Ammonium pertitanate,  $(NH_4)_2O_2$ ,  $TiO_8+H_2O_2$ .

Fairly stable; decomp. rapidly in aq. solution. (Melikoff, B. 1898, 31. 955.)

### Barium pertitanate, BaO₂, TiO₈+5H₂O.

Sl. sol. in H₂O. (Melikoff and Pissarjewsky, Z. anorg. 1898, **18**. 59.)

Potassium pertitanate, K₂O₂, TiO₃, K₂O₄+ 10H₂O₂

Stable at zero; deliquesces and decomp. at ordinary temp. (Melikoff, B. 1898, 31. 680.)

Sodium pertitanate, Na₂O₂, TiO₃+3H₂O.

Sol. in  $H_2O$ . Pptd. in alcohol. (Melikoff, B. 1898, **31**. 955.)

 $4Na_2O_2$ ,  $Ti_2O_7+10H_2O$ . Decomp. by  $H_2O$ . (Melikoff.)

### Pertungstic acid.

Barium pertungstate, BaO, 2WO₃, O+6H₂O. Insol. in H₂O. Decomp. by acids. (Kellner, Dissert. 1909.)

Cæsium pertungstate, 3Cs₂O, 12WO₃, 2O+12H₂O.

Sl. sol. in cold, easily sol. in warm H₂O. (Kellner.)

5Cs₂O, 12WO₃, 24O+11H₂O. Sl. sol. in H₂O. (Kellner.)

Calcium pertungstate, 3CaO, 6WO₈, 8O+

Sol. in H₂O. (Kellner.)

8H₂O.

Lithium pertungstate,  $\rm Li_2O$ ,  $\rm 2WO_8$ ,  $\rm 2O+6H_2O$ .

Sl. sol. in H₂O. (Kellner.) 3Li₂O, 4WO₃, O+9H₂O. Sol. in H₂O. (Kellner.) Marnesium pertungstate, 2MgO. 4WO₃, 6O+

Easily sol. in H₂O. (Kellner.)

Potassium pertungstate, K₂O₄, WO₄+H₂O.

Sol. in H₂O with decomp.; explodes in the air at 80°. (Melikoff, B. 1898, 31. 634.)

K₂O, 2WO₂, 4O+4H₂O. Sol. in H₂O from which it is ppt, by alcohol and ether. (Kell-

 $7K_2O$ ,  $10WO_3$ ,  $5O+22H_2O$ . Very sl. sol. in H₂O. (Kellner.)

Rubidium pertungstate, 2Rb₂O, 4WO₃, O+

Sol. in H₂O with slow decomp. (Kellner.) 5Rb₂O, 12WO₃, 3O+12H₂O. Insol. in H₂O. (Kellner.)

Sodium pertungstate, NaWO₄+H₂O.

Very sol, in H₂O, (Péchard, C. R. 112. 1060.)

+2H₂O. Sol. in H₂O but easily decomp. (Kellner.)

 $Na_2W_2O_9+6H_2O$ . Sol. in H₂O and can be cryst. therefrom. (Pissarjewsky, Z. anorg. 1900, **24.** 113.)

Na₂O₂, WO₄+H₂O₂, (Na₂O₂)WO₄+7H₂O. Decomp. in the air. Sol. in H₂O with decomp. (Melikoff, B. 1898, **31**. 633.) Na₂O₂, WO₄, H₂O₂. Very unstable. De-

comp. in the air and by H₂O. (Melikoff.)

Strontium pertungstate, SrO, 2WO3, O+ 6H₂O. (Kellner.)

Peruranic acid,  $UO_6$ ,  $xH_2O$  (?).

Known only in its salts.

Ammonium peruranate, (NH₄)₂O₂, (UO₄)₂+

Sol. in H₂O; decomp. by acids and by Al(OH)₈ in aq. solution. (Melikoff, B. 1897, **30.** 2904.)

Ammonium uranyl peruranate,  $(NH_4)_2(UO_2)UO_8 + 8H_2O$  (?).

Easily sol, in H₂O. (Fairley, Chem. Soc. **(2) 31.** 134.)

Barium peruranate, BaUO₅.

As K salt. (de Coninck, C. C. 1909, I. 1970.)

 $(BaO_2)_2UO_4+8H_2O$ . Decomp. by  $H_2SO_4$ and H₂CO₃. (Melikoff, B. 1897, **30.** 2905.) BaO₂(UO₄)₂+9H₂O. Ppt. (Melikoff.)

Calcium peruranate, CaUO₅. As K salt. (de Coninck.)

Calcium peruranate,  $(CaO_2)_2UO_4+10H_2O$ . Ppt. (Melikoff, B. 1897, 30. 2906.)

Copper peruranate, (CuO₂)₂UO₄. Ppt. (Melikoff.)

Lead peruranate, (PbO)₂UO₄, PbO, UO₃. Ppt. (Melikoff.)

Lithium peruranate,  $(\text{Li}_2\text{O}_2)(\text{UO}_4)_2 + 8\text{H}_2\text{O}$ . Sol. in H₂O; decomp. by acids and by Al(OH)₃ in aq. solution; very unstable. (Melikoff.)

Nickel peruranate, (NiO)₂UO₄. Ppt. (Melikoff.)

Potassium peruranate,  $K_4UO_8+10H_2O$  (?).

Unstable. (Fairley.)

K₂UO₅. (de Coninck, C. R. 1909, 148. 1769.)

+3H₂O. Decomp. by H₂O, HCl and dil. HNO₃. (Aloy, Bull. Soc. 1903, (3) 29. 293.)

Silver peruranate,  $Ag_2U_2O_{11}$  (?).

(Guvard, Bull, Soc. (2) 1, 95.) Does not exist. (Alibegoff, A. 233. 117.)

Sodium peruranate, Na₄UO₈+8H₂O.

Sol, in H₂O. Sl. sol, in alcohol. (Fairley.) Na₂UO₅. As K salt. (de Coninck, C. C. **1909,** I. 1970.)

Decomp. by H₂O and HCl. +5H₂O.

(Aloy, Bull. Soc. 1903, (3) 29. 293.) (Na₂O₂)₂UO₄+8H₂O. Sol. in Sol. in H₂O; decomp. by dil. HCl, H₂SO₄, and by Al(OH)₄ in aq. solution. (Melikoff, B. 1897, **30.** 2903.)

Sodium uranyl peruranate, Na₂(UO₂)UO₈+ 6H₂O (?).

Sol. in H₂O. (Fairley.)

Pervanadic acid, HVO₄ (?).

Sol. in H₂O. (Pissarjewsky, C. C. 1902, II. 565.)

Ammonium pervanadate, NH₄VO₄.

Sol. in H₂O₂+Aq; insol. in alcohol. (Scheuer Z. anorg. 1898, 16. 294.)

 $(NH_4)_3VO_6+2\frac{1}{2}H_2O$ . Sol. in  $H_2O$ ; in in alcohol. (Melikoff, B. 1909, **42**. 2292.) Sol. in H₂O; insol.

(NH₄)₄V₂O₁₁. Sol. in H₂O₂+Aq; ppt. from aq. solution by alcohol. (Melikoff, Z. anorg. 1899, **19.** 406.)

Barium pervanadate, Ba(VO₄)₂.

Sl. sol. in  $H_2O_2+Aq$  free from  $H_2SO_4$ ; insol. in alcohol. (Scheuer, Z. anorg. 1898, **16.** 288.)

Cadmium pervanadate,  $Cd(VO_4)_2$ .

Sl. sol. in  $H_2O_2+Aq$ ; insol. in alcohol. (Scheuer.)

Calcium pervanadate,  $Ca(VO_4)_2$ .

Sol. in  $H_2O_2+Aq$ ; insol. in alcohol. (Scheuer.)

### Lead pervanadate, Pb(VO₄)₂.

Sl. sol. in H₂O₂+Aq free from H₂SO₄; insol. in alcohol. (Scheuer.)

### Lithium pervanadate, LiVO4.

Sol. in  $H_2O_2 + Aq$ ; insol. in alcohol. (Scheuer.)

### Potassium pervanadate, KVO₄.

Sol. in H₂O₂+Aq acidified with H₂SO₄: insol. in alcohol. (Scheuer.)

K₃VO₆+2¹₂H₂O. Sol. in H₂O; insol. in alcohol. (Melikoff, B. 1909, 42, 2293.)

3K₂O₂VO₄, 2KVO₄+2H₂O. 0.855 g. is sol. in 100 g. H₂O at 19°; sl. sol. in KOH+ Aq; very stable in the air. (Melikoff and Pissarjewsky, Z. anorg. 1899, 19. 403.)

K₄V₂O₁₂+2H₂O. (Melikoff and Pissar-

jewsky, Z. anorg. 1899, 19. 411.)

 $K_4\tilde{V}_2O_{13}+3\frac{1}{2}H_2O$ . Moderately sol. in H₂O with slow decomp. (Melikoff and Pissarjewsky, Z. anorg. 1899, **19**. 410.)

### Silver pervanadate, AgVO₄.

Sl. sol. in  $H_2O_2+Aq$  free from  $H_2SO_4$ ; sol. in alcohol. (Scheuer.)

### Sodium pervanadate, NaVO₄.

Sol. in H₂O₂ acidified with H₂SO₄; insol. in alcohol. (Scheuer.)

### Strontium pervanadate, $Sr(VO_4)_2$ .

Sl. sol. in H₂O₂+Aq free from H₂SO₄; insol. in alcohol. (Scheuer.)

### Philippium, Ph (?).

(Delafontaine, C. R. 87. 559.)

Consists of terbium and yttrium. (Roscoe, B. **15.** 1274.)

### Phosgene, CoCl₂.

See Carbonyl chloride.

### Phosphame, $PN_2H$ (?).

Insol. in H₂O. Insol. in dil. HNO₃+Aq; gradually decomp. by conc. HNO₃. (Rose, Pogg. 24. 308.)

Insol. in conc. HNO₃. (Pauli, A. 123. 236.) Sol. in H₂SO₄ with decomp. (Rose.)

Insol. in dil., but decomp. by conc. KOH or NaOH+Aq.

Insol, in alcohol or ether.

Formula is perhaps P₃N₃H₄. (Salzmann, B. 6. 494.)

# Phosphamic acid, PO NH

(Schiff.)

Does not exist, but was impure pyrophosphodiamic acid. (Gladstone.) Also Mente (A. **248**. 245).

### $Pyrophosphamic acid, P_2NH_6O_6 =$ $\bar{P}_2O_3(\bar{O}H)_3NH_2$ .

Deliquescent in moist air; easily sol. in H₂O or alcohol; sl. sol. in ether. (Gladstone, Chern. Soc. 3. 152.)

Correct composition is imidodiphosphoric acid, P2NL4O5=HO-PO<NH>PO-OH. (Mente, A. 248, 232.)

### Barium pyrophosphanate, Bas(P2NH2O3)2.

Sol. in HCl or HNO₃+Aq, not in HC₂H₃O₂ +Aq. (Gladstone and Holmes, Chem. Soc. (2) 2. 233.)

### Cupric ——, $Cu_8(P_2NH_2O_6)_2 + 2H_2O$ .

Ppt. Decomp. by cold KOH+Aq. (Gladstone, Chem. Soc. 3. 135.)

### Ferric —, $Fe_2(P_2NH_2O_6)_2 + 2H_2O$ .

Insol. in dil. acids. Sol. in conc. H2SO4, and decomp. by warming. Easily sol. in NH₄OH+Aq. Decomp. by KOH+Aq. (Gladstone, Chem. Soc. 3. 1 i...)

Lead —,  $Pb_3(P_2NH_2O_6)_2+4H_2O_6$ . Incol. in NH₄OH+Aq.

### Potassium —, K₃P₂NH₂O₆.

Deliquescent. Sol. in H₂O. Insol. in alcohol. (Gladstone, A. 76. 85.)

Silver —,  $Ag_3P_2NH_2O_6+5H_2O$ . Ppt.

Zinc —,  $Zn_3(P_2NH_2O_6)_2$ .

(Gladstone and Holmes, Chem. Soc. (2) 2. 225.)

#### Phosphamide, PON.

See Phosphoryl nitride.

PN2H3O.

See Phosphoryl imidoamide.

Triphosphamide, PON₂H₆. See Phosphoryl triamide.

### Trimetaphosphimic acid, PaNaHaOa.

Sol. in H₂O; aq. solution does not coagulate albumen. (Stokes, Am. Ch. J. 1895, 17. 275.)

# Ammonium trimetaphosphimate,

 $(NH_4)_8P_8N_8O_6H_8$ .

Sol. in H₂O, insol. in alcohol; unstable. (Stokes, Am. Ch. J. 1896, **18.** 643.)

### Barium trimetaphosphimate, Bas(PsNsOcHs)2 +4H₂O.

+6H₂O. Sl. sol. in H₂O. Easily sol. in NH₄Cl+Aq and in NaCl+Aq. (Stokes.)

### Barium sodium trimetaphosphimate, $P_aN_aO_aH_aNaBa+1\frac{1}{2}H_2O$ .

Almost insol. in H₂O; easily sol. in NH₄Cl+ Aq and in NaCl+Aq. (Stokes.)

### Magnesium trimetaphosphimate, $(P_3N_3O_6H_3)_2Mg_3$ (?).

Sol. in H₂O; insol. in alcohol; aq. solution decomp. on boiling. (Stokes.)

Potassium trimetaphosphimate, K₈P₃N₃O₆H₃. Sol. in H₂O; insol. in alcohol. (Stokes.)

### Silver trimetaphosphimate, Ag₃P₃N₃O₆H₃.

Ppt.; sol. in #H₄OH+Aq; insol. in H₂O; sl. sol. in HNO₃+Aq. (Stokes.)

### a Sodium trimetaphosphimate, P₈N₈O₆H₈Na₂ +4H₂O.

18.3 pts. are sol. in 100 pts. H₂O at 20°; very sol. in hot H2O; decomp. by alkali on long boiling. (Stokes.)

### β Sodium trimetaphosphimate, P₃N₃O₆H₃N₈ $+H_2O$ .

Sol. in H₂O: insol. in alcohol. (Stokes.)

### Tetrametaphosphimic acid, $P_4N_4O_8H_8+2H_2O_8$

Very sl. sol. in  $H_2O$ ; decomposes the sol. salts of HCl, H₂SO₄ and HNO₈. (Stokes, Am. Ch. J. 1895, 17. 290.)

100 pts. H₂O at 20° dissolve 0.64 pt. crystallized acid. Somewhat more sol. in boiling  $H_2O$ . (Stokes.)

100 pts. 10% HNO₃+Aq at 20° dissolve

0.26 pt. of crystallized acid. (Stokes.) Not decomp. by boiling alkalies+Aq. (Stokes, Am. Ch. J. 1896, 18. 785.) Insol. in alcohol. (Stokes, Am. Ch. J.

1896**, 18.** 784.)

# Ammonium tetrametaphosphimate,

 $P_4N_4O_8H_6(NH_4)_2$ .

Only sl. sol. in boiling H₂O; sol. in excess of hot 5% HNO₃. (Stokes.)  $P_4N_4O_8H_4(NH_4)_4+4H_2O$ . Readily sol. in  $H_2O$ ; sl. sol. in  $NH_4OH+Aq$ . (Stokes.)

### Barium tetrametaphosphimate, P₄N₄O₈H₄Ba₂ +2H₂O.

Ppt.; insol. in H₂O. (Stokes.)

### Potassium tetrametaphosphimate, P4N4O8H6K2.

Sl. sol. in boiling H₂O; sol. in cold dil. KOH | Aluminum pyrophosphodiamate. +Aq. (Stokes.)  $P_4N_4O_8H_4K_4$  (?). Very sol. in H₂O.

(Stokes.)

Silver tetrametaphosphimate, P₄N₄O₈H₄Ag₄. Ppt.; insol. in H₂O; sl. sol. in HNO₈+Aq. (Stokes.)

P₄N₄O₈Ag₈, Ppt.; sol. in NH₄NO₈+Aq. (Stokes.)

### Sodium tetrametaphosphimate, P4N4O8H4Na4 $+2\frac{1}{2}$ (?) $H_2O$ .

Sl. sol. in cold H₂O. Easily sol. in hot H₂O. Ppt. from aqueous solution by excess of alkali. (Stokes.)

### Pentametaphosphimic acid,

NH.PO.(OH)NH.PO(OH) NH.PO.(OH)NH.PO(OH) PO.(OH)(  $= H_{10}\dot{P}_5N_5O_{10}$ .

Sol. in H₂O; pptd. by alcohol. (Stokes, Am. Ch. J. 1898, 20. 748.)

### Magnesium pentametaphosphimate, $(\mathbf{P}_{\mathbf{5}}\mathbf{N}_{\mathbf{5}}\mathbf{O}_{\mathbf{10}}\mathbf{H}\mathbf{g})_{\mathbf{2}}\mathbf{M}\mathbf{g}.$

Ppt. (Stokes.)

 $P_5N_5O_{10}H_6Mg_2+5H_2O$ . Ppt., insol. in alcohol; almost insol. in H2O; sl. sol. in conc. acetic acid, (Stokes.)

### Silver pentameta phosphimate, P₅N₅O₁₀H₅Ag₅.

Ppt., sol, in cold KOH+Aq with decomp. (Stokes.)

### Sodium pentametaphosphimate,

 $P_{b}N_{b}O_{10}H_{b}Na_{b}+2II_{2}O.$ 

Sol. in H₂O; insol. in alcohol. (Stokes.)  $P_5N_5O_{10}H_6Na_4+2H_2O$ . Sol. in 80% acetic acid; pptd. by alcohol. (Stokes.)

### Hexametaphosphimic acid.

### Silver hexametaphosphimate, P6N6O12H6Ag6.

Ppt.; decomp. by cold KOH+Aq. (Stokes. Am. Ch. J. 1898, **20.** 757.)

### Sodium hexametaphosphimate, P6N6O12H6Na6 +2H₂O.

Sol. in H₂O; pptd. by alcohol. (Stokes.)

#### Phosphine.

See Hydrogen phosphide.

### Pyrophosphodiamic acid,

 $P_2N_2H_6O_5 = P_2O_8(OH)_2(NH_2)_2$ .

Deliquescent. Easily sol. in H₂O, alcohol, or ether. Sol. in cold conc. H₂SO₄ without decomp. (Gladstone, Chem. Soc. 3. 353.)

Correct composition is dimidodiphosphoric acid,  $P_2N_2H_4O_4+H_2O=HO-PO=(NH)_2=$ PO—OH. (Mente.)

Precipitate. Sol. in NH₄OH+Aq. Insol. in acids. (Gladstone, A. 76. 82.)

# Ammonium —, P₂O₈(ONH₄)₂:

Very deliquescent in moist air. Sol. in H₂O. (Schiff, A. 103. 168.)

### Barium pyrophosphodiamate, $BaP_2O_5(NH_2)_2$ .

Precipitate. Sl. sol. in H₂O. Sol. in NH₄OH+Aq. (Gladstone.)

### Calcium —, CaP₂O₅(NH₂)₂.

Insol. in NH4OH+Aq. Sol. in NH4Cl+ Ag and acids. (Gladstone and Holmes.)

Ppt. Decomp. by H₂O.

### Magnesium ----.

Ppt. (Gladstone and Holmes.)

### Silver —, $Ag_2P_2O_5(NH_2)_2$ .

Sl. sol. in H₂O. Sol. in HNO₃+Aq. (Gladstone and Holmes.)

### Strontium ---

Sol. in acids and NH₄Cl+Aq. Insol, in NH₄OH+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 295.)

### Zinc —, $ZnP_2O_5(NH_2)_2$ .

Ppt. (Gladstone and Holmes.)

# Pyrophosphotriamic acid, $P_2N_3H_7O_4 =$

 $\mathrm{P_2O_3}(\overset{\smile}{\mathrm{NH_2}})_3.$ 

Decomp. by boiling H2O or HCl. Sol. in conc. H₂SO₄ upon heating. (Gladstone and

Correct formula is HO-PO<NH>PO- $NH_2 = di \text{ imido} di \text{ phosphomonamic}$  acid. (Mente, A. 248, 241.)

### Ammonium pyrophosphotriamate.

 $P_2O_3 {{
m ONH_4} \over {
m (NH_2)_3}}.$ 

Insol. in H₂O. (Gladstone and Holmes.)

### Barium —, BaP₂N₃H₅O₄.

BaH₂(P₂N₃H₅O₄)₂. Decomp. by HCl+Aq. (Gladstone, Chem. Soc. 4. 6.)

### Cobaltous —, CoP₂N₃H₅O₄.

Slowly decomp. by dil. H₂SO₄+Aq, not by HCl+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.)

### Cupric —, CuP₂N₈H₅O₄.

Insol. in H₂O or NH₄OH+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.)

### Ferrous —, $FeH_6(P_2N_8H_8O_4)_2$ .

Insol. in dil. acids. (Gladstone, Chem. Soc. (2) **4.** 1.)

### Lead —, $H_2Pb_8(P_2N_8H_8O_4)_2$ .

Ppt. (Gladstone and Holmes, Chem. Soc. (2) **4.** 1.)

 $H_4Pb_2(P_2N_3H_3O_4)_2$ . Ppt. (G. and H.)  $H_6Pb(P_2N_3H_3O_4)_2$ . (G. and H.)

### Mercuric pyrophosphotriamate, Hg₂P₂N₃H₃O₄.

insol in H2O or dil. HCl or HNO3+Aq. (Gladstone and Holmes, Chem. Soc. (2) 4. 1.)

### Platinum ---, Pt₂P₂N₃H₅O₄.

Decomp. by H₂O when freshly pptd. (G. and H.)

### Potassium - -, KP₂N₃H₆O₄.

Almost insol. in H₂O. (Gladstone, Chem. Soc. 4. 10)

### Silver ----, Ag₃P₂N₈H₄O₄.

Ppt. Sl. attacked by HC₂H₃O₂; decomp. by HNO₂ or N'H₄OH+Aq into— AgH₂P₂N₃H₄O₄. Insol. in H₂O. Decomp.

by HCl. (Gladstone, Chem. Soc. (2) 4. 1.)

### Zinc ---.

Insol. in H2O. (Gladstone and Holmes.)

# Tetraphosphodiamic acid, $P_4N_2H_8O_{11} =$

 $P_4C_{7(NH_2)_2}$ 

Known only as NH₄ salt.

### Ammonium tetraphosphodiamate,

P4O7 O4H(NH4)8  $(NH_2)_2$ .

Very deliquescent, and sol. in H₂O. (Glad-

# Ammonium dihydrogen tetraphosphodiamate,

 $P_4N_4H_{16}O_{12} = P_4O_7O_4H_2(NH_4)_2$  (?).

Insol. in cold, easily sol. in hot H2O and dil. acids. (Gladstone.)

### Tetraphosphotetramic acid.

 $P_4N_4H_{10}O_9 = P_4O_7\frac{(OH)_2}{(NH_2)_4}$ 

Sol. in H₂O. Insol. in alcohol. (Gladstone.)

### Ammonium tetraphosphotetramate,

 $P_4O_7^{(O_2HNH_4)}_{(NH_2)_4}$ 

Sol. in H₂O, and precipitated from solution by alcohol. (Gladstone.)

### Silver —, Ag₆P₄N₄H₄O₉.

Ppt. Ag₂H₄P₄N₄H₄O₉. Ppt.

#### Ammonium phosphoarseniovanadicovanadiotungstate.

See Arseniophosphovanadicovanadiotungstate, ammonium.

### Tetraphosphopentazotic acid,

 $P_4N_5H_9O_7 = P_4O_7 \frac{(NH_2)_4}{NH}$ 

Insol. in H₂O. Decomp. gradually by boiling with H₂O. (Gladstone.)

# Ammoniotetraphosphopentazotic acid (?),

P₄O₇ (NH₂)₄ NH NH₃.

Decomp. by H₂O. (Gladstone.)

### Cupric tetraphosphopentazotate.

(Gladstone, Chem. Soc. (2) 6. 261.)

# Lead ----.

(Gladstone, Chem. Soc. (2) 6. 261.)

### Potassium ---, KOP₄N₅H₈O₆.

Insol, in H₂O. (Gladstone, Chem. Soc. (2) **6.** 268.)

### Phosphoboric acid, $H_3BO_3$ , $H_3PO_4 = BPO_4$ +3H₂O.

Not decomp, by boiling H₂O or cone, acids, Sol. in boiling solution of caustic alkalies. (Vogel, N. Repert. Pharm. 18. 611.)

### Phosphochloroplatinous acid,

P(OH)₃, PtCl₂.

See Chloroplatinophosphoric acid.

### Phosphochromic acid.

### Ammonium phosphochromate, $3(NH_4)_2O$ , $P_2O_5$ , $8CrO_3+H_2O$ .

Sol. in H₂O with decomp. (Friedheim, Z. anorg. 1894, 6. 284.)

# $\begin{array}{ccc} \textbf{Potassium} & \textbf{phosphochromate,} & 2K_2O, & P_2O_5, \\ & 4CrO_3 + H_2O. \end{array}$

Sol, in H₂O but cannot be cryst, therefrom without decomp. Can be cryst. without decomp. from H₂O containing phosphoric acid. (Friedheim.)

3K₂O, P₂O₅, 8CrO₃. Sol. in H₂O but cannot be cryst. therefrom without decomp. (Blondel, C. R. 1894, **118.** 194.)

### Phosphohypophosphotungstic acid.

Potassium sodium phosphohypophosphotungstate,  $9K_2O$ ,  $Na_2O$ ,  $4P_2O_5$ ,  $2PO_2H_3$ , 26WO₃+23H₂O.

Easily sol. in hot H₂O. Precipitate. (Gibbs, Am. Ch. J. 7. 313.)

### Tetraphosphotetrimidic acid,

 $P_4N_4H_6O_7 = P_4O_7 \frac{(NH_2)_2}{(NH)_2}$ .

Known only in its salts. (Gladstone.)

### Silver tetraphosphotetrimidate.

Ppt. (Gladstone.)

### Phosphoiodic acid, $P_2O_5$ , $18I_2O_5 + 4H_2O$ .

Decomp. by H₂O. (Chrétien, A. ch. 1898, (7) **15.** 389.)

### Ammonium phosphoiodate, 4(NH₄)₂O, P₂O₅, $181_{2}O_{5}+12H_{2}O.$

Sol. in H₂O. Sl. sol. in conc. H₃PO₄+Aq. (Chrétien.)

### Lithium phosphoiodate, 3Li₂O, P₂O₅, 18I₂O₅+ 11H₂().

Sol. in  $H_2O$ . Sl. sol. in conc.  $H_3PO_4+Aq$ . (Chrétien.)

### Potassium phosphoiodate, 4K₂O, P₂O₅, $18I_2O_5 + 5H_2O_5$

Decomp, by a small amt, of H₂O; sol, in a Sl. sol. in conc. H₃PO₄+Aq. large amt. (Chrétien.)

### Sodium phosphoiodate, 6Na₂O, P₂O₅, 18I₂O₅ $+5\bar{\mathrm{H}}_{2}\mathrm{O}$ .

Sol. in H₂O. Sl. sol. in conc. H₃PO₄+Aq. (Chrétien.)

### Phosphoiridic acid.

See Chlorophosphoiridic acid.

### Phospholuteotungstic acid, H₅PW₈O₂₉. See under Phosphotungstic acid.

### Phosphomolybdic acid, P2O5, 18MoO3 $+xH_2O$ .

"Phospholuteomolybdic acid."

Deliquescent. Sol. in H₂O in all proportions. (Kehrmann, Z. anorg. 1894, 7. 418.)

3H₂O, P₂O₅, 20MoO₃ +21H₂O. Very sol. in H₂O. Sol. in eventual with 44H₂O, or from a strong solution in conc. HNO₃+Aq, with 19H₂O, are obtained; also crystals with 38, and 48H₂O are known. (Debray, C. R. 66. 704.)

According to Rammelsberg (B. 10. 1776) formula is 3H₂O, P₂O₅, 22MoO₈.

According to Gibbs (Am. Ch. J. 3. 317)

formula is 3H₂O, P₂O₅, 24MoO₃+59H₂O. Finkener (B. **11**. 1638) gives the formula as  $3H_2O$ ,  $P_2O_5$ ,  $24M_0O_8+58H_2O$ , also with 29H₃Ó.

P₂O₅, 20MoO₃+52H₂O. Sol. in dry ether with evolution of heat, and subsequent separation into two layers, the upper consisting of pure ether, and lower of a solution of acid in ether. Sp. gr. of lower layer, when sat. at 13°, is 1.3. On warming lower layer, ether separates out and forms an upper layer. This redissolves on cooling and shaking. The lower layer is insol. in H₂O and miscible with alcohol.

100 pts. ether thus dissolve 80.6 pts. acid at 0°; 84.7 pts. at 8.1°; 96.7 pts. at 19.3°; 103.9 pts. at 27.4°; 107.9 pts. at 32.9°. (Parmentier, C. R. 104. 688.)

P₂O₆, 22MoO₃+57H₂O, and +58/H₂O. (Pohl, Dissert. 1906.)

 $P_2O_5$ ,  $23MoO_8+61H_2O$ . (Pohl.)

P₂O₅, 24MoO₃+61H₂O. (Miolati, C. C. **1903**, 11, 789.)

+64H₂O. (Pohl.)

### Diphosphopentamolybdic acid, $H_6P_2Mo_5O_{28} = 3H_2O$ , $P_2O_5$ , $5M_0O_3$ .

Not known in free state.

Ammonium phosphomolybdate, (NH₄)₂O,  $P_2O_5$ ,  $2MoO_8+2H_2O$ .

(Meschorier, Dissert. 1894.)

 $2(NH_4)_2O$ ,  $P_2O_5$ ,  $4M_0O_3+5H_2O$ . (Friedheim, Z. anorg. 1894, 6. 33.)

+6H₂O. (Perlberger, Dissert. **1904.**)

 $(NH_4)_3PO_4$ ,  $11MOO_3+6H_2O$ . Formula is  $(NH_4)_3PO_4$ ,  $10MoO_3+1\frac{1}{2}H_2O$ , according to the older authorities.

Scarcely sol. in H₂O or aqueous acid solutions. Easily sol. in ammonia, and alkalies+ Aq. (Svanberg and Struve, J. pr. 44. 291.)

It is almost completely insol. in a mixture of  $(NH_4)_2MoO_4+Aq$ , and dil.  $HNO_3+Aq$ . Absolutely insol, in a dil. nitric acid solution of ammonium nitrate. (Richters, Z. anal. 10. 471.)

Solubility is increased even in presence of ammonium molybdate and free HNO₃ by HCl, ammonium, and other chlorides, tartaric acid, or large quantities of ammonium oxalate or citrate. Not precipitated in presence of excess of H₃PO₄. (Fresenius, Z. anal. **3.** 446.)

Sol. in 10,000 pts. H₂O at 16°; in 6600 pts. H₂O containing 1 vol. % HNO₃; in 550 pts. HCl+Aq of 1.12 sp. gr.; in 620 pts. alcohol of 0.80 sp. gr.; in 190 pts. HNO₃+Aq (sp. gr. = 1.2) at 50°; in 5 pts. conc. H₂SO₄ at 100°; in 3 pts. NH₄OH+Aq of 0.95 sp. gr. (Eggertz, J. pr. 79. 496.)

Sol. in 21,186 pts.  $H_2O$ , 38,117 pts. dil. alcohol, and 13,513 pts. strong alcohol.

(Hehner, Analyst, 1879. 23.)

According to Sonnenschein, the solubility is increased by much H₂O or alcohol, alkaline hydroxides, carbonates, ortho-, pyro-, and metaphosphates; sodium borate, hyposulphate, thiosulphate, acetate, arsenate, and arsenite; potassium sodium tartrate, ammonium oxalate, orthophosphoric acid, and sulphuric acid. It is not increased by ammonium molybdate or sulphate, potassium sulphate, acid tartrate, acid oxalate, nitrate, or chlorate, iodide, chloride, or bromide; sodium bromide or nitrate; nitric, hydrochloric, boric, tartaric, oxalic, and dilute sulphuric acids. (Sonnenschein, J. pr. 53, 342.)

Sol. in hot H₂O. Sol. in cold caustic alkalies, alkali carbonates, and phosphates,

NH₄Cl, and (NH₄)₂C₂O₄+Aq; sl. sol. in (NH₄)₂SO₄, KNO₃, and KCl+Aq; very sl. sol. in NH₄NO₃+Aq. Sol. in K₂SO₄, Na₂SO₄, Nq₂Cl, MgCl₂, H₂SO₄, HCl, and conc. or dil. HNO₈+Aq.

Presence of (NH₄)₂MoO₄ totally changes ? the effect of acid liquids; in tol in dil. HNO3 or  $H_2SO_4 + Aq$ ontaining (NH₄)₂MoO₄, but somewhat sol. in HCl+Aq even in presence of that salt. Tartaric acid and similar organic substances totally prevent the precipitation (Eggertz in Fresenius' Quant. of this salt anal.)

5(NH₄)₂O, 48M₀O₃, 2P₂O₄+1r₁P₂O₅-3(NH₄)₂O, 24M₀O₃, P₂O₅+2(NH₄)₂O, H₂O, Formula of above 24MoO, P2O5+16H2O. Formula of above salt according to Gibbs.

 $3(NH_4)_2O_5$ ,  $22M_0O_3$ ,  $P_2O_5+9H_2O_5$  or

12H₂().

 $8(NH_4)_2O$ ,  $H_2O$ ,  $60M_0O_3$ ,  $3P_2O_5+11H_2O$ . Sl. sol. in H₂O

 $3(NH_4)_2O$ ,  $16MoO_8$ ,  $P_2O_5+14H_2O$ . Insol. in cold, sol. with decomp. in hot H2O. Sol. in NH₄OH+Aq. (Gibbs, Am. Ch. J. **3**. 317.)  $5(NH_4)_2O$ ,  $P_2O_c$ ,  $16MoO_3$ . (Meschoirer, Dissert. **1894.**)

 $3(NH_4)_2O$ ,  $P_2O_5$ ,  $18M_0O_3+14H_2O$ . in H₂O. The aqueous solution is stable at ordinary temp. for several days, but when warmed ordinary ammonium phosphomolyb-date separates. (Kehrmann, Z. anorg. 1894, 7. 414.)

3(NH₄)₂(), P₂O₅, 28MoO₂+8H₂(). 100 g. H₂O dissolve 0.0238 g. at 15°. 1 pt. is sol. at 15° in 4206 pts. H₂O; 7300 pts. 5% NH₄NO₂+ Aq; 4930 pts. 1% HNO₂+Aq. (de Lucchi, Rass. Min. 1910, 32. 21.)

 $9(NH_4)_2O$ ,  $2P_2O_5$ ,  $28MoO_3+8H_2O$ . (Meschoirer, Dissert. 1894.)

Ammonium diphosphopentamolybdate,

 $2(NH_4)_3PO_4$ ,  $5MoO_3+7H_2O=3(NH_4)_2O$ ,  $5\text{MoO}_3, P_2\text{O}_5 + 7\text{H}_2\text{O}_3$ 

Easily sol. in hot, less in cold H₂O. (Zenk-

ner, J. pr. **58**. 256.)

5(NH₄)₂O, H₂O, 10MoO₃, 2P₂O₅+6H₂O

=3(NH₄)₂O, 5MoO₅, P₂O₅+2(NH₄)₂O, H₂O,

5MoO₃, P₂O₅+6H₄O. Sol. in H₂O. (Gibbs, Am. Ch. J. 1895, 17. 87.)

+8H₂O. (Perlberger.)

+18H₂O.(Mazzuchelli and Zangrilli, Gazz. ch. it. 1910, 40. (2) 55.)

 $5(NH_4)_2O$ ,  $P_2O_5$ ,  $10M_0O_8+13H_2O$ , and +14H₂O. (Perlberger, Dissert. 1904.)

Ammonium barium phosphomolybdate, 3(NH₄)₂O, 30BaO, P₂O₅, 30MoO₈.

Insol. precipitate. (Seligsohn, J. pr. 67.

Ammonium cadmium phosphomolybdate,  $5(NH_4)_2O$ , CdO,  $P_2O_5$ ,  $6MoO_8+8H_2O$ . (Perlberger, Dissert. 1904.)

 $3(NH_4)_2$ , 2CdO,  $2P_2O_5$ ,  $9MoO_3 + 141H_2O$ . (Perlberger.)

Ammonium cobaltous phosphomolybdate, (NH₄)₂O, 2CoO, P₂O₅, 5MoO₃+10H₂O.

Decomp. by cold H₂O. Sol. in acids and hot H₂O. (Arnfeld, Dissert. **1898**.)
4(NH₄)₂O, CoO, 2P₄O₅, 10MoO₃+12H₂O.

Sl. sol. in cold, easily sol. in hot H2O. (Arnfeld.)

Ammonium manganous phosphomolybdate, (NH₄)₂O, 2MnO, P₂O₅, 5MoO₃+20H₂O.

Decomp. by H₂O, but dissolves clear on

heating. (Arnfeld.) 4(NH₄)₂O, MnO, 2P₂O₅, 10MoO₃+13H₂O. (Arnfeld.)

5(NH₄)₂O, 10MnO, 2P₂O₅, 20MoO₃+ 10H₂O. Veryal. sol. in H₂O. (Gibbs, Am. Ch. J. 1895, 17, 87.)

Ammonium nickel phosphomolybdate,  $(NH_4)_2O$ , 2NiO,  $P_2O_5$ ,  $5MoO_3+10H_2O$ .

Decomp. by cold, but sol. in hot H₂O. (Arnfeld.)

 $(NH_4)_2O$ , NiO,  $2P_2O_5$ ,  $10M_0O_3 + 12H_2O$ . Very solt in H₂O. (Arnfeld.)

 $\begin{array}{cccc} \textbf{Ammonium} & \textbf{potassium} & \textbf{phosphomolybdate,} \\ & 6(NH_4)_2O, & 15K_2O, & 2P_2O_5, & 60MoO_3 + \\ \end{array}$ 12H₂O.

Sol, in H₂O. Insol, in alcohol. (Seligsohn, J. pr. **67.** 477.)

Ammonium sodium phosphomolybdate,

 $6(NH_4)_2O$ ,  $15Na_2O$ ,  $2P_2O_5$ ,  $60MoO_3 +$ 

Sol. in much boiling H₂O. Insol. in alcohol. (Seligsohn, J. pr. 67. 474.)

Barium phosphomolybdate, 3BaO, P₂O₅,  $24\text{MoO}_3 + x\text{H}_2\text{O}$ .

Moderately sol. in cold, very easily sol. in hot H₂O. Decomp. in aqueous solution at ordinary temp. on standing. (Kehrmann, Z. anorg. 1894, 7. 414.)

Cæsium phosphomolybdate, 3Cs₂O, P₂O₅,  $6\text{MoO}_3 + 8\text{H}_2\text{O}$ .

Ppt. (Ephraim, Z. anorg. 1910, 65, 240.)  $2C_{82}O$ ,  $P_2O_5$ ,  $14M_0O_3+3H_2O$ . Difficultly sol. in H₂O. (Ephraim.)  $3C_{82}O$ ,  $P_2O_5$ ,  $21M_0O_3+4H_2O$  (?). (Ephraim.)

Calcium potassium phosphomolybdate, 2CaO,  $3K_2O_5$ ,  $2P_2O_5$ ,  $10M_0O_3 + 22H_2O_5$ . (Friedheim, Z. anorg, 1893, 4, 293.)

Cobaltous phosphomolybdate, 2CoO, P₂O₅,  $4\text{MoO}_3 + x\text{H}_2\text{O}$ .

(Arnfeld, Dissert. 1898.) 3CoO, P₂O₅, 5MoO₃+16½H₂O, and +17½ H₂O. Extremely sol. in H₂O. (Arnfeld.)

3CoO,  $P_2\text{O}_5$ ,  $18\text{MoO}_3 + 38\text{H}_2\text{O}$ .

H₂O. (Arnfeld.) 3CoO, P2O5, 24MoO3+58H2O, and+60H2O. Sol. in H₂O. (Arnfeld.)

Sol. in

Cobaltous potassium phosphomolybdate,  $K_2O$ ,  $2C_0O$ ,  $P_2O_5$ ,  $5M_0O_3+15H_2O$ .

(Arnfeld.)

4K₂O, CoO, 2P₂O₅, 10MoO₈+12H₂O. Sl. sol, in cold, easily sol, in hot H₂O. (Arnfeld.)

Croceocobaltic phosphomolybdate,  $24MoO_3$ ,  $P_2O_5$ ,  $[Co(NH_3)_4(NO_2)_2]_2O$ ,  $2H_2O+$ 21H₂O.

Sl. sol. in cold, easily in hot H₂O. (Gibbs, Am. Ch. J. 3. 317.)

Gold phosphomolybdate ammonia, 12Au₂O₃,  $7P_2O_5$ ,  $3M_0O_3$ ,  $24NH_3+21H_2O$ .

Insol. in H₂(). (Gibbs, Am. Ch. J. 1895, **17.** 172.)

Gold sodium phosphomolybdate ammonia, 5Au₂O₃, Na₂O, P₂O₅, 11MoO₃, 15NH₃+

Sol. in dil. HCl. Almost insol. in NH₄OH+ Aq. (Gibbs.)

Lead phosphomolybdate, 23PbMoO₄, P₂O₅,  $2PbPO_4+7H_2O$ .

Sol. in 500,000 pts.  $H_2O$ . Insol. in  $NH_4OH$  +Aq. Easily sol. in KOH, NaOH, or  $HNO_3$ +Aq; somewhat less sol. in  $HC_2H_3O_2+Aq$ . (Beuf, Bull. Soc. (3) 3. 852.)

Lithium phosphomolybdate, 12Li₂O, 4P₂O₅,  $5\text{MoO}_3 + 18\text{H}_2\text{O}$ .

Partially sol, in H₂O. (Ephraim, Z. anorg. 1909, **64.** 233.)

 $3Li_2O$ ,  $P_2O_5$ ,  $5MoO_3+16H_2O$ . Ppt. (Ephraim, Z. anorg. 1910, 65. 233-6.)

 $3Li_2O$ ,  $P_2O_5$ ,  $5MoO_8+17H_2O$ . Ppt. (E.) 5Li₂O, 2P₂O₅, 8MoO₃+28H₂O. Easily sol. in H₂O. (E.)

 $3Li_2O$ ,  $P_2O_5$ ,  $12MoO_3+18H_2O$ . Ppt. (E.)  $31.i_2O$ ,  $P_2O_5$ ,  $18MoO_3+27H_2O$ . Sol. in  $H_2O$ . (E.)

Manganous phosphomolybdate, 3MnO, P₂O₅,  $5\text{MoO}_3 + 20\text{H}_2\text{O}$ .

Very sol. in H₂O. Sl. sol. in alcohol. (Arnfeld.)

3MnO, P₂O₅, 18MoO₃+38H₂O. Sol. in (Arnfeld.) $H_2O$ .

3MnO, P₂O₅, 24MoO₈+58H₂O, and +60 H₂O. Easily sol. in H₂O. (Arnfeld.)

 $\begin{array}{ccc} \textbf{Manganous} & \textbf{potassium} & \textbf{phosphomolybdate,} \\ 2MnO, \ 3K_2O, \ 2P_2O_5, \ 10MoO_8 + 30H_2O. \end{array}$ Sol. in hot H₂O. (Arnfeld.)

Manganous sodium phosphomolybdate, 7MnO, 9Na₂O, 2P₂O₅, 22MoO₃+57H₂O. Nearly insol, in cold H₂O. Sol. in boiling H₂O but decomp. thereby. (Gibbs, Am. Ch. J. 1895, **17.** 85.)

Nickel phosphomolybdate, 2NiO, P₂O₅,  $4\text{MoO}_3 + x\text{H}_2\text{O}$ .

Ppt. (Arnfeld.)  $3NiO_{1}$ ,  $P_{2}O_{5}$ ,  $5MoO_{3}+20H_{2}O$ . Decomp. by H₂O. (Arnfeld.)

3NiO, P₂O₅, H₂O. (Arnfeld.)  $18\text{MoO}_{3} + 34\text{H}_{2}\text{O}$ . Sol. in 3NiO, P₂O₅, 24MoO₃+58H₂O, and+60H₂O. Efflorescent. Sol. in H₂O. (Arnfeld.)

Nickel potassium phosphomolybdate, K₂O,

2NiO,  $P_2\text{O}_5$ ,  $5\text{MoO}_3 + 13\text{H}_2\text{O}_2$ Decomp. by cold H₂O, but goes into solu-

tion by boiling. (Arnfeld.) 4K₂O, NiO, 2P₂O₅, 10M₀O₃+12H₂O. Sol.

in H₂O. (Arnfeld.)

Potassium phosphomolybdate, K₃P()₄,  $11\text{MoO}_8 + 1\frac{1}{2}\text{H}_2\text{O} = 3\text{K}_2\text{O}, P_2\text{O}_5, 22\text{MoO}_3$ 

Insol. in H₂O. Easily sol. in alkalies.

(Svanberg and Struve.)

100 g. H₂O dissolve 0.007 g. at 30°; 100 g. 10% HNO₈+Aq dissolve 0.204 g. at 30°. (Donk, Bull. 90, Bur. of Chem., U. S. Dept. of Agric. 1905.)

According to older authorities the formula

is  $K_3PO_4$ ,  $10M_0O_3 + 1\frac{1}{2}H_2O_1$ .  $+6H_2O$ . (Rammelsberg.)

2K₂O, H₂O, 24M₀O₃, P₂O₅+3H₂O. Sl. sol. in cold H₂O.

 $5K_2O$ ,  $H_2O$ ,  $44MoO_3$ ,  $2P_2O_b+21H_2O$ . (Gibbs, Am. Ch. J. **3.** 317.) 5K₂O,

 $3K_2O$ ,  $P_2O_5$ ,  $18M_0O_3+11H_2O$ , and  $+15H_2O$ (Elias.)

 $+14H_2O$ . Sl. sol. in cold, very easily sol. in hot H₂O. Can be cryst, from hot H₂O.

(Kehrmann, Z. anorg. 1894, 7, 416.)  $3K_2O$ ,  $P_2O_5$ ,  $17M_0O_3 + 12H_2O$ . Moder-

ately sol. in H₂O. (Elias, Dissert. 1906.)  $5K_2O$ ,  $P_2O_5$ ,  $17M_0O_3 + xH_2O$ . Aqueous solution decomp. rapidly in the cold. (Kehrmann, Z. anorg. 1894, 7. 423.)

2H₂O, 9MoO₃,  $P_2()_5 + 18H_2O$ 4K₂O,

(Zenkner.)

5K₂O, H₂O, 10M₀O₃, P₂O₅+19H₂O. Easily sol. in  $H_2O$ . (Rammelsberg, B. 10. 1776.) 6K₂O, 15M₀O₃, P₂O₅. Insol. in H₂O. Sol. in KOH+Aq. (Rammelsberg.)  $K_2O$ ,  $P_2O_{5}$ ,  $2MoO_3+13H_2O$ .

Very sol. in

 $H_2O$ . (Friedheim, Z. anorg.  $\pi$ .  $2K_2O$ ,  $P_2O_{\delta}$ ,  $4M_0O_{\delta}+8H_2O$ . Sol. in  $H_2O$ .

Potassium diphosphopentamolybdate,  $3K_2O_1$  $P_2O_5$ ,  $5M_0O_3+7H_2O$ .

Sol. in H₂O; precipitated by HNO₃ or HCl +Aq. (Zenkner, J. pr. 58. 261.)

 $2K_2O$ ,  $P_2Q_5$ ,  $5M_0O_3+6H_2O$ . (Friedheim.)

Potassium diphosphopentamolybdate nitrate,  $2K_{8}PO_{4}$ ,  $5M_{9}O_{3}$ ,  $6KNO_{3}+9H_{2}O$ . (Debray, C. R. 66. 706.)

Rubidium phosphomolybdates:

 $\begin{array}{lll} 7 \mathrm{Rb_2O}, & \mathrm{P_2O_5}, & 22 \mathrm{MoO_3} + 12 \mathrm{H_2O}; & 3 \mathrm{Rb_2O}, \\ \mathrm{P_2O_5}, 20 \mathrm{MoO_3} + 12 \mathrm{H_2O}; & 6 \mathrm{Rb_2O}, \mathrm{P_2O_5}, 18 \mathrm{MoO_3}, \\ \end{array}$ +10H₂O; 5Rb₂O, 2P₂O₅, 9MoO₅+13H₂O; 7Rb₂O, 3P₂O₅, 10MoO₅+15H₂O. (Ephraim, Z. anorg. 1910, **65.** 237-9.) Silver phosphomolybdate, 7Ag₂O, P2O5,  $20\text{MoO}_{2} + 24\text{H}_{2}\text{O}$ .

Ppt., Sol. in dil. HNO3+Aq, forming- $2\text{Åg}_2\text{O}$ ,  $P_2\text{O}_5$ ,  $20\text{MoO}_3+7\text{H}_2\text{O}$ . Sl. sol. in H₂O (Rammelsberg.)

i orinula of first salt is- $7Ag_2O_1 = 2MoO_3$ ,  $P_2O_5 + 14H_2O_1$ . Sol. in hot H₂O, but sol ation is quickly decomp. (Gibbs,

Am. Ch. J. 3. 317.) 7Ag₂O, P₂O₅, 24MoO₈. Ppt. (Miolati, J. pr. 1908 (2) 77. 451.)

Silver diphesphopentamolybdate,

 $Ag_6Mo_5P_2O_{28} + 7H_2O$ 

Easily sol. in H₂O. (Debray, C. R. 66, 705.)

Sodium phosphomolybdate.

Sol. in H₂O and HNO₃+Aq. schein, A. 104. 45.)

 $Na_2O_5 H_2O_5 P_2O_5 18MoO_8 + xH_2O_5$  $2\text{Na}_2\text{O}$ ,  $4\text{H}_2\text{O}$ ,  $P_2\text{O}_5$ ,  $18\text{MoO}_3 + x\text{H}_2\text{O}$ .

 $3Na_2O$ ,  $P_2O_5$ ,  $18MoO_3+26H_2O$ .

 $3Na_2O$ ,  $\Gamma_2O_5$ ,  $24MoO_8+42H_2O$ . (Rosenheim and Pinsker, Z. anorg. 1911, 70. 79.)

Sodium diphosphopentamolybdate, 3Na₂O,  $P_2O_5$ ,  $5M_0O_5 + 14H_2O_5$ .

Easuv sol. in H₂O. (Debray.)

Sodium auramine phosphomolybdate, Na₂O, 5Au₂O₃, 2P₂O₅, 11MoO₃, 15NH₃. Sol. in hot H₂O. Very sol. in hot HCl. (Gibbs, Am. Ch. J. 1895, 17. 171.)

### Metaphosphomolybdic acid.

Ammonium monometaphosphomolybdate,  $3(NH_4)_2O_1$ ,  $4NH_4PO_3$ ,  $10M_0O_3 + 9H_2O_2$ . Very sol. in H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Barium hexametaphosphomolybdate, BaO,  $Ba_3(PO_3)_6$ ,  $14MoO_3 + 55H_2O$ .

Sol. in H₂O. (Gibbs.)

Pyrophosphonitrylic acid,  $P_2HNO_4 =$  $P_2O_{^3N}$ 

Not known in free state.

Ammonium pyrophosphonitrylate,

P₂O₃N.

Insol. but gradually decomp. by H₂O. (Gladstone.)

Potassium ----, KP2NO4. Insol. in H₂O. (Gladstone.)

Silver ----, AgP₂NO₄. Ppt.

### Triphosphonitrilic chloramide,

P₈N₈Cl₄(NH₂)₂.

Sol. in H₂O without decomp.; sol. in ether, alcohol; sl. sol. in benzene. (Stokes, Am. Ch. J. 1895, 17. 287.)

### Triphosphonitrilic tetrachlorhydrin, P₃N₃Cl₄O₂H₂.

Sol. in ether, alcohol, and H₂O; insol. in benzene and CS₂. (Stokes, Am. Ch. J. 1895, **17**. 286.)

### Triphosphonitrilic chloride, PaNaCla.

Sol. in glacial acetic acid and  $\rm H_2SO_4$ . 100 pts. ether dissolve 46.5 pts. at 20°. (Liebig.)

Insol. in light petroleum; sol. in benzene. (Stokes, Am. Ch. J. 1897, 19. 783.)

### Tetraphosphonitrilic chloride, P₄N₄Cl₈.

Sol. in alcohol, ether, benzene,  $\rm H_2SO_4$ . Sl. sol. in  $\rm H_2O$  with decomp. 100 pts. ether dissolve 12.3 pts. at 20°. (Stokes, Am. Ch. J. 1895, 17. 281.)

# Pentaphosphonitrilic chloride, $(PNCl_2)_b = P_bN_bCl_{10}$ .

Sol. in benzene, light petroleum, acetic acid, ether, CS₂; insol. in H₂O. (Stokes, Am. Ch. J. 1897, **19.** 790.)

# Hexaphosphonitrilic chloride, $(PNCl_2)_6 = P_6N_6Cl_{12}$ .

Sol. in benzene, light petroleum, ether,  $CS_2$ ; insol. in  $H_2O$ . (Stokes.)

# Heptaphosphonitrilic chloride, $(PNCl_2)_7 = P_7N_7Cl_{14}$ .

Sol. in benzene, light petroleum, ether, CS₂; insol. in H₂O; sol. in alcohol with decomp. (Stokes.)

### Polyphosphonitrilic chloride, $(PNCl_2)x$ .

Depolymerizes on distillation; insol. in benzene and light petroleum and all neutral solvents; sol. in  $\rm H_2O$  with decomp. (Stokes.)

### Phosphonitrilochloramide, P₂N₂Cl₈(NH₂).

Slowly sol. in H₂O with decomp. Insol. in ether and CS₂. Sl. sol. in boiling CCl₄. (Besson and Rosset, C. R. 1908, **146**. 1149.)

### Phosphonium bromide, PH₄Br.

Decomp. violently by H₂O.

# Phosphonium chloride, PH,Cl.

(Ogier, Bull. Soc. (2) 32. 483.)

# Phosphonium titanium chloride, 2PH₄Cl, 3TiCl₄.

Decomp. by  $H_2O$ , HCl, or alkalies +Aq. R ose.)

### Phosphonium iodide, PH4I.

Decomp. by H₂O, alkalies, alcohol, etc. (Rose, Pogg. 46. 636.)

Decomp. by PCl₃. (Wilde, B. 16. 217.)

### Phosphonium sulphate (?).

Deliquescent; very unstable. (Besson, C. R. 109. 644.)

### Phosphoramide, P(NH₂)₃.

Insol. in NH₄Br, 3NH₃; sol. in NH₄I, 3NH₃. (Hugot, C. R. 1905, **141**. 1235.)

### Phosphortriamide, PON₂H₆.

See Phosphoryl triamide.

### Phosphoric acid, anhydrous, P2O5.

See Phosphorus pentoxide.

### Metaphosphoric acid, HPO₃.

Sol. in H₂O. Not isolated. (Fleitmann, Pogg. 78. 362.)

Deliquescent. Sol. in H₂O, but aqueous solution decomp. into H₅PO₄, slowly in the cold, but more rapidly on heating. Conc. solutions decomp. more rapidly than when dil. (Giran, A. ch. 1903, (7) **30.** 203.)

Insol. in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, **54.** 674.)

### Dimetaphosphoric acid, H₂P₂O₆.

Not isolated. (Fleitmann.)

### Trimetaphosphoric acid, H₂P₃O₉.

Sol. in H₂O; the solution is permanent in the cold, but on evaporation it is quickly decomp. to H₃PO₄.

# $Tetrametaphosphoric acid, H_4P_4O_{12}$ :

Not isolated.

# Hexametaphosphoric acid, H₀P₆O₁₈. (Glacial phosphoric acid.)

Deliquescent; easily sol, in H₂O with evolution of heat and conversion into H₃PD₄. Not easily sol, in presence of slight impurities.

easily sol. in presence of slight impurities.
Insol. in liquid NH₃. (Gore, Aga. Ch. J. 1898, **20**. 828.)

### Orthophosphoric acid, H₃PO₄.

Very sol. in H₂O.

100 pts. of the solution contain at:

26.23° 27.02° 29.42° 29.77° 95.9 95.98 96.15 96.11 pts. H₃PO₄,

37.65° 39.35° 42.30° (mpt.) 97.8 98.48 100 pts. H₃PO₄.

(Smith and Menzies, J. Am. Chem. Soc. 1909, 31, 1186.)

See also  $10H_2PO_4+H_2O_5$  and  $2H_3PO_4+H_2O_5$ .

### Sp. gr. of H₃PO₄+Aq containing:

10 20 30 40 50 %P₂O₅.
1.1 1.23 1.39 1.6 1.85

(Dalton.) .

Sp. gr. of H ₃ PO ₄ +Aq.						
Sp.gr.	% P2O6	Sp. gr.	% P2O5	Sp. gr.	% P:Os	
1.508 1.492 1.476 1.464 1.453 1.442 1.434 1.426 1.418 1.401 1.392 1.386 1.376	49.60 48.41 47.10 45.63 45.38 44.13 43.95 43.28 42.61 41.60 40.86 40.12 39.21	1.328 1.315 1.302 1.293 1.285 1.276 1.268 1.257 1.247 1.236 1.211 1.197 1.185	36.15 34.82 33.49 32.71 31.93 30.13 29.16 28.24 27.30 26.36 24.79 23.23 22.07	1.114 1.136 1.124 1.113 1.109 1.095 1.081 1.073 1.066 1.047 1.031 1.022	17.89 16.95 15.64 14.33 13.25 12.18 10.44 9.53 8.62 7.39 6.17 4.15 3.03 1.91	
1.356 1.347	38.00 37.37	1.173 1.162	20.91 19.73	1.006	0.79	
1.339	36.74	1.153	18.81			

(Watts, C. N. 12. 160.)

Specific gravity of H₃PO₄+Aq containing: 18 % H₃PO₄, 1.1065 12 1.03331.0688 24 36 54 % H₃PO₄. 1.1463 1.2338 1.3840 (Schiff, A. 113, 183.)

Sp. gr. of  $H_3PO_4+Aq$  at 15°. a=sp. gr. if % is  $P_2O_5$ ; b=sp. gr. if % is  $H_3PO_4$ .

%	, a	b	%	a	b
1	1.009	1.0054	31	1.288	1.1962
2	1.017	1.0109	3 <b>2</b>	1.299	1.2036
$\frac{2}{3}$	1.025	1.0164	33	1.310	1.2111
4	1.032	1.0220	34	1.321	1.2186
5	1.039	1.0276	35	1.333	1.2262
6	1.047	1.0333	36	1.345	1.2338
7	1.055	1.0390	37	1.357	1.2415
8	1.063	1.0449	38	1.369	1.2493
9	1.071	1.0508	39	1.381	1.2572
10	1.080	1.0567	40	1.393	1.2651
11	1:089	1.0627	41	1.407	1.2731
12	1.098	1.0688	42	1.420	1.2812
13	1.106	1.0749	43	1.432	1.2894
14	1.115	1.0811	44	1.445	1.2976
15	1.124	1.0874	45		1.3059
16	1.133	1.0937	46		1.3143
17	1.142	1.1001	47		1.3227
18	1.151	1.1065	48		1.3313
19	1.161	1.1130	49		1.3399
20	1.171	1.1196	50		1.3486
21	1.182	1.1262	51		1.3573
22	1.192	1.1329	52		1.3661
23	1.202	1.1397	53		1.3750
24	1.212	1.1465	54	• • •	1.3840
25	1.223	1.1534	55		1.3931
<b>2</b> 6	1.233	1.1604	56		1.4022
27	1.244	1.1674	57		1.4114
<b>2</b> 8	1.254	1.1745	58	• • • • •	1.4207
29	1.265	1.1817	59		1.4301
30	1.277	1.1889	60		1.4395

Sp. gr. of H₂PO₄+Aq at 17.5°.

P.0.	Sp. gr.	P206	Sp. gr.	P.0.	Sp. gr.	
1	1 007	24	1.208	47	1.476	
$\frac{1}{2}$	1.014	25	1.219	48	1.491	
3	1.02!	26	1.229	49	1.505	
4	1.028	27	1.240	50	1.521	
5	1 036	28	1.250	51	1.536	
ě	1.044	29	1.261	52	1.551	
Ž	1.053	30	1 272	53	1.566	
8	1.061	31	1 282	54	1.581	
9	1.070	32	1.293	55	1.597	
10	1.078	33	1.304	56	1.613	
11	1.086	34	1.315	57	1.629	
12	1.095	35	1.326	58	1.645	
13	1.103	36	1.308	59	1.661	
14	1.112	37	1.350	60	1.677	
15	1.120	38	1.362	61	1.693	
16	1.129	39	1.374	62	1.709	
17	1.139	40	1.386	63	1.725	
18	1.148	41	1.398	64	1.741	
19	1.158	42	1.410	65	1.758	
20	1.168	43	1.423	66	1,775	
21	1.178	44	1.436	67	1.792	
22	1.188	45	1.448	68	1.809	
23	1.198	46	1.462			

(Hager, Adjumenta varia, Leipzig, 1876.)

Table for correction to be added or subtracted for 1° change in temperature.

% P ₂ O ₈	Corr.	% P2O5	Corr.
10–14 15–25 26–35	0.00035 0.0004 0.00052	36-45 46-55 56-68	0.00068 0.00082 0.001

(Hager.)

Sp. gr. of H₃PO₄+Aq.

Gequivalents H ₈ PO ₄ per litre	t°	Sp. gr. t°/t°
0.002572 0.005142 0.01025 0.02042 0.03056 0.04065 0.0507 0.10046 0.19951 0.29716 0.49057 0.5070 0.5070	17.714 17.706 17.685 17.683 17.687 17.704 17.663 17.696 17.749 17.701 17.719 17.58	1.001552 1.0003051 1.000595 1.001158 1.001708 1.002252 1.002790 1.005412 1.010560 1.015584 1.025469 1.02627 1.02627
		l

(Kohlrausch, W. Ann. 1894, 53. 29.)

Miscible with conc. HC₂H₃O₂+Aq. Sol.

in 30 pts. warm creosote.

1 cc. of a sat. solution of ether in H₂O dis-(Schiff, calculated by Gerlach, Z. anal. 8. 292.) solves 0.0886 grams H₂PO₄.

674

1 cc. of a sat. solution of H₂O in ether dissolves 0.000033 grams H₃PO₄.

Solutions of H₃PO₄ in H₂O containing less than 0.434 grams acid per 1 cc. lose an insignificant amount of acid to ether when agitated therewith. (Berthelot, C. R. 1896, 123. 345.)

The composition of the hydrates formed by H.PO. at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by H₃PO₄ and of the conductivity and sp. gr. of H₃PO₄+Aq. (Jones, Am. Ch. **J.** 1905, **34**. 331.)

10H₃POI+H₂O. Solubility in H₂O. 100 pts. of the solution contain at:

24.38° 24.11° 24.40° 94.84 pts. H₃PO₄, 94.78 94.80

24.81° 25.41° 25.85°

95.26 94.95 95.54 pts. H₃PO₄.

(Smith and Menzies, J. Am. Chem. Soc. 1909, **31.** 1186.)

2H₂PO₄+H₂O. Solubility in H₂O. 100 pts. of the solution contain at: 16.3° 0.5° 14.95° 24.03° 27.0° 76.7 78.7 81.7 87.7 pts. H₃PO₄, 85.7

> 29.15° 29.35° (mpt.) pts. H₃PO₄, 90.5 91.6

28.5° 27.0° 25.41° 92.593.4 94.1 pts. H₃PO₄.

Retroflex part of curve.

(Smith and Menzies, J. Am. Chem. Soc. 1909, **31.** 1186.)

### Pyrophosphoric acid (Diphosphoric acid), $H_4P_2O_7$ .

Very sol. in H₂O. The solution may be kept without change, but on heating it is converted into H₃PO₄.

The acid in solution gradually changes to H_iPO₄; the conversion being more rapid with more concentrated solutions. (Montemartini and Egidi, Gazz. ch. it. 1902, 32. (1) 381.)

### Phosphoric acid, $H_8P_2O_9$ (?).

Sol. in H₂O. (Joly, C. R. 100. 447.)

### Phosphates.

The phosphates of NH₄, K, Na, Li, Cs, and Rb are sol. in H₂O, with the exception of certain metaphosphates; the other phosphates excepting neutral Tl salts, are nearly insol. in H₂O, excepting when an excess of H₂PO₄ is present. The latter are all sol. in HNO₃+Aq.

#### (a) Metaphosphates.

Monometaphosphates. Only alkali monoinsol. in H₂O.

Dimetaphosphates. Alkali dimetaphosphates and some doublt salts containing an alkali as one of the bases are sol. in H₂O, the rest are sl. sol. or insol. in H₂O.

Trimetaphosphates. All salts are sol. in H₂O.

Tetrametaphosphates. The alkali salts are sol. in H₂O, the others are insol.

Hexametaphosphates. The alkali salts are sol., the others insol., in H₂O, but are mostly sol. in Na hexametaphosphate+Aq.

(b) Orthophosphates. K, Na, Li, Cs, and Rb orthophosphates are sol. in H₂O. All the others are insol, in H2O, but sol, in excess of H₃PO₄, and HNO₃+Aq; less easily sol. in HG₂H₃O₂+Aq. Pb, Al, and Fe₂ phosphates are insol. in HC₂H₃O₂+Aq. Sl. sol. in NH₄ salts+Aq, especially NH₄Cl+Aq, from which solution they are pptd. by NH₄OH+Aq. Orthophosphates insol. in H₂() are also insol. in an excess of alkali orthophosphates+Aq.

All orthophosphates are insol., or very sl.

sol, in alcohol.

(c) Pyrophosphates. Alkali pyrophosphates are sol. in H₂O; the others are insol. in H₂O, but are mostly sol. in an excess of Na pyrophosphate+Aq.

### Aluminum metaphosphate, $Al_2(PO_3)_6$ .

Insol. in H₂O and conc. acids. (Maddrell. A. 61. 59.)

Aluminum orthophosphate, basic, 3Al₂O₃,  $P_2O_5 + 18H_2O_1$ 

Min. Evansite.  $4Al_2O_3$ ,  $3P_2O_5+18H_2O$ . Ppt. Insol. in H₂O. (Rammelsberg.)

2Al₂O₃, P₂O₅

+3H₂O. Min. Angelite.

+5H₂O. Min. Kalaite (Tyrquoise). Sol.

in HCl+Aq. +6H₂O. Decomp. by H₂O. (Hautefeuille, J. pr. (2) 37. 111.)

Min. Peganite. _ More or less sol. in HCl, and HNO3+Aq.

+8H₂O. Ppt. (Munroe, A. **159.** 278.) Min. Fischerite. Sl. attacked by HCl or

 $\frac{\text{HNO}_3 + \text{Aq}}{3 \text{Al}_2 \text{O}_3}$ ,  $\frac{\text{Sol. in H}_2 \text{SO}_4 + \text{Aq}}{2 \text{H}_2 \text{O}_5}$ , or  $\frac{12 \text{H}_2 \text{O}}{2 \text{H}_2}$ . Sol. in acids, even after ignition. (Millot, C. R. 82.

89.) +10H₂O. Min. Cœruleolactite. Sol. in acids.

+12H₂O. Min. Wavellite.

#### Aluminum orthophosphate, $Al_2(PO_4)_2$ .

Crystalline. Not attacked by conc. HCl or HNO₃+Aq, difficultly by hot conc. H₂SO₄. (de Schulten, C. R. 98. 1583.)

Ignited Al₂(PO₄)₂ is sl. decomp. by H₂O, so that solubility determinations are variable. metaphosphates are known, and they are all For an extended discussion, see original paper. (Cameron and Hurst, 1904, 26. 898.)

+4H₂O. Easily sol. in mineral acids, insol. in acetic and other organic acids. Easily sol. in KOH+Aq, but is reprecipitated by NH₄Cl+Aq. Sol. in NH₄OH+Aq. Sol. in a large amount of alum+Aq (Rose), in aluminum acetate and other aluminum salts +Aq (Fleischer, Z. anal. 6. 28). More sol. than ferric phosphate in ammonium oxalate or citrate + Aq. (Millot.)

Acid NH₄ citrate+Aq dissolves 3% of the P₂O₅; neutral NH₄ citrate + Aq dissolves 6.0 % of the P2O5; ammoniacal NH4 citrate+Aq dissolves completely in 25 min. (Erlenmeyer,

B. 14. 1869.)

Sol. in NH₄OH+Aq, especially in presence of alkali phosphates. (de Koninck, Z. anal. **23.** 90.)

Not pptd. in presence of alkali tartrates or

citrates, sugar, glycerine, etc.
Insol_ in ethyl acetate. (Naumann, B.

1910, **43.** 314.) Min. Variscite. Very quickly sol. in warm conc. HCl+Aq.

+5H₂O. Min. Zepharoritchite.

+8H₂O. Min. Gibbsite.

Aluminum orthophosphate, acid, 2Al₂O₃,  $3P_2O_5 + 16H_2O$ .

Insol. in acids after being ignited. (Millot, Bull. Soc. (2) **22.** 244.)

· +4H₂O, and 6H₂O. Insol. in H₂O or alcohol. (Hautefeuille and Margottet, J. pr. (2) **37.** 111.)

 $Al_2O_3$ ,  $2P_2O_5+8H_2O$ . Insol. in acids or aqua regia after being ignited. (Millot.)

 $2Al_2O_3$ ,  $5P_2O_5+14H_2O$ . Decomp. by cold H₂O into-

4Al₂O₃, 7P₂O₅+9H₂O. Decomp. by hot H₂O. (Erlenmeyer, A. **194.** 200.)

 $Al_2O_3$ ,  $3P_2O_5 + 3H_2O = Al_2(H_2PO_4)_6$ . Deliquescent; completely sol. in a little cold H₂O, and conc. solution can be boiled without decomp., but dil. solution (1:20) separates Al₂(PO₄)₂ on boiling, which redissolves on cooling, the more quickly the more dilute the original solution. (Erlenmeyer, A. 194. 198.)

### Aluminum pyrophosphate, $Al_4(P_2O_7)_3+$ 10H₂O.

Precipitate. Sol. in mineral acids, and Na₄P₂O₇+Aq; insol. in acetic acid. Sol. in KOH+Aq; sol. in NH4OH+Aq, but when dissolved in HCl+Aq is reprecipitated by NH₄OH+Aq, and is not redissolved in an excess thereof. (Schwarzenberg, A. 65. 147.) Sol. in alum + Aq. (Rose, Pogg. 76. 19.)

Aluminum pyrometaphosphate,  $Al_2O_3$ ,  $2P_2O_5$ . (Hautefeuille and Margottet, C. R. 96. 849.)

Aluminum ammonium dihydrogen orthophosphate, NH₄H₂PO₄, AlPO₄.

Partially decomp. by H₂O. Sol. in acids and alkalies. Nearly insol. in 50% acetic acid. (Cohen, J. Am. Chem. Soc. 1907, 29. 720.)

Aluminum calcium phosphate, Al₂O₃, 3CaO,  $P_2O_5 + 3H_2O_1$ 

Min. Tavistockite.

2Al₂O₃, 6CaO, 3P₂O₅+3H₂O. Min. Kirro-

Aluminum calcium phosphate sulphate.  $3Al_2O_3$ ,  $SO_3$ ,  $Ca_2(PO_4)_2+6H_2O_2$ 

Min. Svanbergite. Scarcely attacked by HCl+Aq, and only st. by H₂SO₄+Aq.

Aluminum ferrous magnesium phosphate.  $(Mg, He)_2 Al_2 P_2 O_{10} + 4H_2 O_1$ 

Min. Childrenite. Slowly sol. in HCl+Aq. Min. Ecsphorite. Sol. in HNO₃ or HCl+

 $(Mg, Fe)Al_2P_2O_9+H_*O_*$ Min. Lazulite. Only sl. attacked by acids, when not previcusly ignited.

Aluminum lithium phosphate,  $Al_2(PO_4)_2$ ,  $4\text{Li}_3\text{PO}_4 + 30\text{H}_2\text{O}$ .

Precipitate. (Berzelius.) Insel. in H₂O; easily sol, in acids.

Aluminum magnesium phosphate.

Min. Lazulite.

See Phosphate, aluminum ferrous magnesium.

Aluminum potassium phosphate, Al₂O₃, K₂O₄ 2P₂O₅.

Insol. in acids. (Ouvrard, A. ch. (6) 16. 289.)  $2\text{Al}_2\text{O}_3$ ,  $2\text{K}_2\text{O}$ ,  $3\text{P}_2\text{O}_5$ . (Ouvrard.)

Aluminum silver metaphosphate, 2Al₂O₂,  $Ag_2O$ ,  $4P_2O_5$ .

(Hautefeuille and Margottet, C. R. 96. 849. 1142.)

Aluminum sodium pyrophosphate,  $Al_2Na_2(P_2O_7)_2$ .

Insol. in H₂O and acids. (Wallroth.) Nearly insol. in acids. (Ouvrard, A. ch. (6) **16.** 338.)

 $2Al_2O_3$ ,  $3Na_2O$ ,  $3P_2O_5$ . Sol. in  $HNO_3+Aq$ . (Ouvrard.)

 $Al_4(P_2O_7)_3$ ,  $2Na_4P_2O_7+30H_2O$ .

Very difficultly sol. in H₂O. (Pahl, Bull. Soc. (2) 22. 122.)

Aluminum phosphate lithium fluoride, 2Al₂(PO₄)₂, 3LiF.

Sl. attacked by HCl+ Min. Amblygonite. Aq, more easily by  $H_2SO_4+Aq$ .

Ammonium metaphosphate, NH₄PO₃. Insol. in H₂O. (Fleitmann, Pogg. 78. 345.)

Ammonium dimetaphosphate, (NH₄)₂(PO₃)₂. Sol. in 1.15 pts. cold or hot H₂O. (Fleitmann, Pogg. 78. 245.) More sol. in dil. alcohol than Na or K salt.

465.)

Sol. in 0.9 pts. H₂O; easily sol. in acids especially by boiling with conc. H₂SO₄. (Glatzel, Dissert. **1880**.)

# Ammonium trimetaphosphate, (NH₄)₈P₅O₉.

Very sol. in H₂O. (Lindbom, Acta Lund. **1873.** 15.)

# Ammonium tetrametaphosphate, (NH₄)₄P₄O₁₂.

Sol. in H₂O. (Warschauer, Z. anorg. 1903, **36.** 177.) +4H₂O. Much more sol. in H₂O than the K or Na salt. 1 pt. is sol. in 8 pts. H₂O.

# Ammonium pentametaphosphate, (NH₄)₅P₅O₁₅.

(Glatzel, Dissert. 1880.)

Sol. in  $H_2O$ . (Tammann, J. pr. 1892, (2) **45.** 455.)

# Ammonium dekametaphosphate, (NH₄)₁₀P₁₀O₃₀.

Very sl. sol. in H₂O; 100 g. H₂O dissolved 1.20-1.54 g. in 2 months. Easily sol. in hot H₂O with decomp. (Tammann, J. pr. 1892, (2) **45.** 448.) +12H₂O. (Tammann, J. pr. 1892, (2) **45.** 

# Ammonium orthophosphate, (NH₄)₃PO₄+3H₂O.

Difficultly sol. in  $H_2O$ .
Less sol. in  $H_2O$  than  $(NH_4)_2HPO_4$ . (Ber-

lnsol. in alkalies + Aq. (Berzelius.)
Sl. sol. in H₂O. Decomp. in the air.

### Solubility in H₃PO₄+Aq at 25°.

(Schottländer, Z. anorg. 1894, 7. 344.)

In 1000 g. of the solution, mols.		
NH4	PO ₄	
7.42 5.02 2.95 3.04 3.32 4.78	0.084 0.20 0.46 1.02 1.32 2.32	

(D'Ans and Schreiner, Z. phys. Ch. 1910, **75**. 105.)

Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**. 4329.) +5H₂O. (Sestini, Gazz. ch. it. **9**. 298.)

# Ammonium hydrogen orthophosphate, $(NH_4)_2HPO_4$ .

Easily sol. in H₂O. Effloresces to form NH₄H₂PO₄. (Schiff, A. 112, 88.) Sol. in 4 pts. cold, and less hot H₂O. Solu-

100 g. H₂O dissolve 131 g. at 15°; sp. gr. of sat. solution=1.343. (Greenish and Smith, Pharm. J. 1901, 66. 774.)

### Solubility in H₂PO₄+Aq at 25°.

In 1000 g. of the solution, molş.		
NH4	PO ₄	
6,42	3.23	
6.46	3.74	
6.56	4.01	
6.78	4.34	
7.26	4.83	
7.16	4.82	

(D'Ans and Schreiner, Z. phys. Ch. 1910, **75.** 105.)

Insol. in acetone. (Eidmann, C. C. **1899.** II, 1014; Naumann, B. 1904, **37**. 4329.)

# Ammorium dihydrogen orthophosphate, NH₄H₂PO₄.

Does not effloresce.

Less easily sol. in H₂O than (NH₄)₂HPO₄. (Mitscherlich, A. ch. **19**. 385.) Sol. in 5 pts. cqld, and less hot H₂O.

### Solubility in H₈PO₄+Aq at 25°.

In 1000 g. of the solution, mols.		
NH4	PO ₄	
6.72 5.62 4.62 2.72 2.50 2.58 2.76 3.06 3.10	4.54 3.88 3.36 2.59 2.54 4.29 6.21 7.70 7.86	

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75.

Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**, 4329.)

### Ammonium orthophosphate, acid.

Decomp. into NH₄H₂PO₄ at 77-78°. (Parravano and Mieli, Gazz. ch. it. 1908, **38**, II. 536.)

### Ammonium pyrophosphate, (NH₄)₄P₂O₇.

Easily sol. in  $H_2O$ . Alcohol precipitates it from the aqueous solution. (Schwarzenberg, A. **65**. 141.)

Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**. 4329.)

# Ammonium hydrogen pyrophosphate (NH₄)₂H₂P₂O₇.

Sol. in 4 pts. cold, and less hot  $H_2O$ . Solu- Very sol. in  $H_2O$ . Insol. in alcohol. tion loses  $NH_3$  by boiling. Insol. in alcohol. (Schwarzenberg, A. **65**. 141.)

Ammonium barium trimetaphosphate.  $(NH_4)BaP_3O_9+H_2O.$ 

Easily sol. in H₂O. (Lindbom.)

Ammonium cadmium dimetaphosphate.  $(NH_4)_2O$ , CdO,  $2P_2O_5 + 3H_2O =$ (NH4)2Cd(P2O6)2.

Efflorescent. (Fleitmann, Pogg. 78. 347.)

Ammonium cadmium orthophosphate,  $NH_4CdPO_4+1\frac{1}{4}H_2O_1$ 

Easily sol. in NH₄OH+Aq and acids. (Drewson, Gm. K. Handb. 6te Aufl. III. 74.)

Ammonium calcium dimetaphosphate,  $(NH_4)_2Ca(P_2O_6)_2+2H_2O.$ 

Very sl. sol. in H₂O. Not decomp. by acids. (Fleitmann, Pogg. 78, 344.)

Ammonium calcium phosphate, NH₄CaPO₄+  $xH_2O$ .

Ppt. (Herzfeld and Feuerlein, Z. anal. 20. 191.) +7H₂O. Not completely decomp, by cold H₂O in ³/₄ hour; rapidly by hot H₂O. (Lasne, Bull. Soc. 1902, (3) 27. 131.)

Ammonium chromium orthophosphate, basic,  $5(NH_4)H_2PO_4$ ,  $2CrPO_4$ ,  $4Cr(OH)_3$ . (Cohen, J. Am. Chem. Soc. 1907, 29. 1196.)  $2CrPO_4+3H_2O$ . Ppt.  $(NH_4)_2\dot{H}PO_4$ (Cohen.)

Ammonium chromic pyrophosphate,  $NH_4(CrP_2O_7) + 6H_2O$ 

Sl. sol. in cold H₂O. Decomp. by boiling H₂O. (Rosenheim, B. 1915, **48.** 586.)

Ammonium cobaltous metaphosphate.

Extremely sol. in H₂O and in NH₄OH+Aq. (Persoz, J. pr. 3. 215.)

Ammonium cobaltous orthophosphate, NH₄CoPO₄+H₂O.

Not decomp. by boiling H₂O. (Debray, J. Pharm. (3) 46. 121.)

+12H₂O. Ppt. (Chancel, **1862.**)  $Co(NH_4)_2H_2(PO_4)_2+4H_2O$ . Insol. in  $H_2O$ . (Debray.)

Ammonium copper dimetaphosphate,  $(NH_4)_2P_2\bar{O}_6$ ,  $CuP_2O_6+2H_2O$ .

Very sl. sol. in H2O; insol. in alcohol. Very sl. sol. in February (Fleitmann, Pogg. 78. 345.)

H₂O; insol. in alcohol. (F.) Sol. in 50 pts. H₂O. Slowly attacked by Only boiling H₂SO₄ attacks easily. (Glatzel, Dissert. 1880.)

Ammonium glucinum orthophosphate, NH₄GlPŎ₄.

Insol. in cold, sl. sol. in hot H₂O. (Rössler, Z. anal. 17. 148.)

Ammonium glucinum sodium brthophosphate,  $(NH_4)_2GINa_2(PO_4)_2 + 7H_2O_1$ (Scheffer, A. 109. 146)

Ammonium iron (ferrous) orthophosphate, NH₄FePO₄+H₂O.

Insol, even in boiling H₂O. When still moist, easily sol. in dil. acids, but sparingly and slowly sol. after drying, even in conc. acids. Decomp. by NH₄OH, KOH, and NaOH+Aq. Insol. in alcohol. (Otto, J. pr. 2. 409.)

 $(NH_4)_2$ FeH₂ $(PO_4)_2$ +4H₂O. (1)ebray.)

Ammonium iron (ferric) hydrogen orthophosphate, basic, 2(NH₄)₂HPO₄, 3FePO₄, 3r'e OH)3.

Ppt. Insol. in 95% alcohol. (Cohen, J. Am. Chem. Soc. 1907, 29. 719.)

Ammonium iron (ferric) hydrogen orthophosphate, NH₄H₂Fe(PO₄)₂.

Pr.t. Same properties as Na salt. (Weinland, Z. anorg. 1913, 84. 356.)

Partially hydrolyzed by H₂O. Readily sol. in HCl, HNO3, H2SO4 and H.PO4. Partially hydrolyzed by cold NH₄OH+Aq. Sol. in excess of hot NH₄OH+Aq. Completely hydrolyzed by caustic alkalies. Practically insol. in 50% acetic acid. (Cohen, J. Am. Chem. Soc. 1907, 29. 718.)

Ammonium lead dimetaphosphate,  $(NH_4)_2Pb(P_2O_6)_2$ .

Very difficultly sol, in  $H_2O$  and acids, (Fleitmann, Pogg. 78. 343.)

Ammonium lithium metaphosphate, Li₂O,  $2(NH_4)_2O$ ,  $3P_2O_5 + 8H_2O$ .

Not appreciably sol. in cold  $H_2O$  but rapidly and abundantly sol. in  $H_2O$  at  $70^\circ$ . (Tammann, J. pr. 1892, (2) **45.** 442.)

Ammonium lithium phosphate,  $(NH_4)_2LiPO_4$ . Sl. sol, in H₂O. (Berzelius.)

Ammonium magnesium metaphosphate,  $(NH_4)_2O$ , 2MgO,  $2P_2O_5+9H_2O$  (?).

Sol. with difficulty in H₂O or acids when heated. Easily sol. in H₂O before heating. (Wach, Schw. J. 59. 29.)

Precipitated from aqueous solution by alcohol.

Ammonium magnesium dimetaphosphate,  $(NH_4)_2Mg(P_2O_6)_2+6H_2O.$ 

Efflorescent. (Fleitmann, Pogg. 78. 346.)

Ammonium magnesium phosphate, NH₄MgPO₄, and +6H₂O.

l. H₂O dissolves 66 mg. anhydrous  $NH_4MgPO_4$  at 15°. (Fresenius, A. 55. 109.) 1 l.  $H_2O$  dissolves 74.1 mg. anhydrous  $NH_4MgPO_4$  at 20.5–22.5°. (Ebermayer.) 1 l. H₂O dissolves 106 mg. anhydrous NH₄MgPO₄. (Liebig.)

Insol. in H₂O, but when boiled with H₂O it loses NH₃ and H₂O. (Struve, Z. anal. 1898, **37.** 485.)

Solubility of NH₄MgPO₄+6H₂O in H₂O at t°.

	$\mathbf{t}^{\mathbf{o}}$	1	G. salt in 100 g. H ₂ O
	0		0.0231
	20 40	٠	$egin{array}{c} 0.0516 \ 0.0359 \end{array}$
	50 60		$0.0303 \\ 0.0401$
•	70		0.0163
	80		0.0195

(Wenger, Dissert. Geneva, 1911.)

Aqueous solution is precipitated by NH₄OH, but not by Na₂HPO₄+Aq. (Fre-

senius.)

Sol. in 44,600 pts. H₂O containing ammonia. More sol. in H₂O containing NH₄Cl, and is sol. in 7548 pts. of a solution containing 1 pt. NH₄Cl to 5 pts. H₂O and ammonia, and in 15,627 pts. of a solution containing 1 pt. of NH₄Cl to 7 pts. H₂O and ammonia. (Fresenius.)

According to Kremers (J. pr. 55. 190), a solution of 3 pts. H₂O to 1 pt. NH₄OH+Aq of 0.96 sp. gr. is best suited for washing the

precipitated NH₄MgPO₄.

According to Ebermayer (J. pr. 60. 41), 1 pt. anhydrous salt is sol. in 13,497 pts. H₂O at 23°; in 31,098 pts. NH₄OH+Aq (4 pts. H₂O: 1 pt. NH₄OH+Aq of 0.961 sp. gr.) at 21.25°; in 36,764 pts. NH₄OH+Aq (3 pts. H₂O: 1 pt. NH₄OH+Aq) at 20.6°; in 43,089 pts. NH₄OH+Aq (1 pt. H₂O: 1 pt. NH₄OH+Aq (1 pt. H₂O: 2 pts. NH₄OH+Aq) at 22.5°; in 45,206 pts. NH₄OH+Aq (1 pt. H₂O: 2 pts. NH₄OH+Aq (1 pt. H₂O: 3 pts. NH₄OH+Aq) at 22.5°; in 60,883 pts. pure NH₄OH+Aq) at 22.5°; in 60,883 pts. pure NH₄OH+Aq (sp. gr. 0.961) at 22.5°.

Almost absolutely insol. in  $H_2O$  containing  $\frac{1}{4}$  vol.  $NH_4OH + Aq$  (sp. gr. 0.96) and  $NH_4Cl$ , i. e., much more insol. than given by Fresenius.

(Kubel, Z. anal. 8. 125.)

According to Kissel (Z. anal. 8. 173), 1 l. NH₄OH+Aq (3 pts. H₂O: 1 pt. NH₄OH+Aq of 0.96 sp. gr.) dissolves 4.98 mg. in 24 hours, while 13.9 mg. are dissolved if 18 g. NH₄Cl to

a litre of H₂O are also present.

(NH₄)₂SO₄+Aq containing 2.2 g. per litre dissolves 71.7 mg.; 3.0 g., 113 mg.; 10 g., 147 mg.; NaCl+Aq containing 2 g. NaCl per l. dissolves 123.4 mg.; NaNO₃+Aq containing 3 g. NaNO₃ per l. dissolves 93.1 mg. (Liebig, A. **106**. 196.)

Completely insol. in water containing ammonium phosphate or ammonium sodium

phosphate. (Berzelius.) 800 ccm. H₂O, sat. with CO₂, dissolve 1.425 g. (Liebig.)

Easily sol. in H₂SO₃+Aq, acetic and other [186.)

acids, also in boiling solution of ammonium citrate. (Millet, Bull. Soc. (2) 18. 20.)

When in presence of Fe or Al salts it is sol. to a considerable extent in H₂C₄H₄O₆+Aq.

6 g. NH₄Cl in 100 ccm. H₂O containing 10 ccm. 6.34% NH₄OH+Aq dissolve pptd. salt =0.0029 g. Mg₂P₂O₇. 1 g. (NH₄)₂C₂O₄ in 100 ccm. H₂O, and NH₄OH+Aq dissolve=0.0061 g. Mg₂P₂O₇. 2 g. ctric acid in excess of NH₄OH+Aq dissolve=0.0147 g. Mg₂P₂O₇. Solubility prevented by excess of magnesia mixture. (Lindo, C. N. **48**. 217.)

Solubility of NH₄MgPO₄+6H₂O in salts+Aq at t°.

(G. salt dissolved in 100 g. solvent.)

t°	5% NH4NO3 +Aq.	5% NH₄Cl+Aq.	1 pt. NH ₄ ()H (D = 0.96) +4 pts. H ₂ O
0	0.1100	0.0597	0.0087
20	0.0463	0.1055	0.0098
30	0.0546	0.1133	
40	0.0645	0.0713	0.0135
50	0.0723	0.0931	0.0153
60	0.0846	0.1728	0.0174
70	0.0834	0.1239	0.0178
80	0.1009	0.1913	0.0145

t°	4% NH4OH+Aq and 5% NH4Cl+Aq.	4% NH ₄ OH +Aq and 10% NH ₄ Cl+Aq.
20 60	0.0165 0.0274	$0.0541 \\ 0.0731$

(Wenger, Dissert. Geneva, 1911.)

About 3 times as sol. in  $Ca(C_2H_2O_2)_2+Aq$  as in  $NaC_2H_3O_2+Aq$ , but solubility is prevented by excess of  $MgCl_2$ . (Ville, Bull. Soc. (2) **18.** 316.

Sl. sol. in ammonium citrate +Aq containing 400 g. ammonium citrate in a litre. Solubility = 0.457% at ord. temp. and 0.58% at 50°. (Bolis, Ch. Z. 1903, 27. 1151.)

Min. Struvite

+H₂O. Insol. in H₂O or citric acid+Aq. (Millot and Maquenne, Bull. Soc. (2) **23.** 238.)

Ammonium magnesium hydrogen orthophosphate, (NH₄)₂MgH₂(PO₄)₂+3H₂O (?). (Graham.)

Ammonium magnesium phosphate, 5MgO, (NH₄)₂O, 2P₂O₅+24H₂O. (Gawalovsky, C. C. **1885.** 721.)

Ammonium magnesium sodium pyrophosphate, (NH₄)₃Mg₆Na(P₂O₇)₄.

Insol. in H₂O and not decomp. thereby. (Berthelot and André, A. ch. 1897, (7) 11. 186.)

### Ammonium manganous dimetaphosphate, $(NH_4)_2Mn(PO_3)_4+4H_2O$ .

Relatively easily attacked by acids. (Glatzel, Dissert. 1880.)

 $+6H_{2}O.$ 

Efflorescent. (Fleitmann, Pogg. 78, 346.)

### Ammonium manganous orthophosphate, NH₄MnPO₄+H₂O.

Sol. in 32,092 pts. cold, and 20,122 pts. boiling H₂O, and in 17,755 pts. NH₄Cl+Aq (1.4% NH₄Cl). (Fresenius.)

+7H₂O. Insol. in H₂O below 70°; at 70° 100 g. H₂O dissolve 0.0052 g. salt; at 80°, 0.0067. (Wenger, Dissert. Geneva, 1911.)

Easily sol. in dil. acids. Decomp. by KOH+Aq, but not by NH₄OH+Aq or K₂CO₃+Aq. Insol. in NH₄OH or NH₄ salts +Aq. (Gibbs.)

### Solubility in salts+Aq at t°. (G. in 100 g. solvent.)

t°	5% NH4NO3 +Aq.	5% NH₄Cl+Aq.	1 pt. NH ₄ OH D = 0.96 +4 pts. H ₂ O.
0 20 30 40 50 60 70 80	0.0206 0.0200 0.0226 0.0209 0.0226 0.0270 0.0281 0.0326	0.0020 0.0255 0.0345 0.0386 0.0355 0.0384 0.0414 0.0451	0.0116 0.0122 0.0118 0.0132 0.0193 0.0191 0.0197

(Wenger, l. c.)

Insol. in alcohol. Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

# Ammonium manganic pyrophosphate,

 $NH_4MnP_2O_7 + 3H_2O$ . Decomp, by cold H₂O with separation of Mn₂O₃. (Rosenheim, B. 1915, **48**. 584.)

### Ammonium manganous sodium pyrophosphate, NH₄NaMnP₂O₇+3H₂O.

Insol. in H₂O or alcohol. Easily sol. in very

dil. acids. (Otto, J. pr. 2. 418.) Formula is  $Na_4(NH_4)_4Mn_2(P_2O_7)_8+$ 12H₂O, according to Berzelius.

#### Ammonium mercuric metaphosphate.

Sol. in H₂O, or at least in NH₄OH+Aq. (Persoz, J. pr. **3.** 216.)

### Ammonium nickel metaphosphate.

Insol. in H₂O. Sol. in NH₄OH+Aq, from which it is repptd. on evaporation of the NH₃. (Persoz, J. pr. 3. 215.)

### Ammonium nickel dimetaphosphate, $(NH_4)_2NiP_4O_{12}+4H_2O.$

Sol. in 12.5 pts. H₂O. (Glatzel, Dissert. **1880**.)

### Ammonium nickel orthophosphate, NHANiPO4+2H2O.

Ppt. (Debray, C. R. 59. 40.) +6H:O. Decomp. by boiling H₂O. (Deoray.)

### Ammonium potassium dimetaphosphate, $(NH_4)_{10}K_4(P_2O_6)_7$ .

More sol in H₂O that following salt. (Fleitmann, Pogg. 78, 341.)

 $NII_4K_8P_4O_{12}+2H_2O$ . Difficultly sol. in H₂O. (Fleitmann.)

### Ammonium potassium pyrophosphete, $NH_4K_2HP_2O_7+\frac{1}{2}H_2O_7$

Deliquescent. Sol. in H₂O. Decomp. on boiling. (Schwarzenberg.)

### Ammonium sodium dimetaphosphate, $NH_4NaP_2O_6+H_2O$ .

More sol. i. H₂O than Na₂P₂O₆, but less than (NH4), PO6. Less sol. in alcohol than in H₂(). (Fleitmann, Pogg. **78.** 340.)

### Ammonium sodium orthophosphate, $(NH_4)_2NaPO_4+4H_2O$ .

Decomp. by H₂O. Cryst. from NH₄OH+ Ac of 0.96 sp. gr. From H₂O solution, NaNH₄HPO₄+4H₂O separates out. (Uelsmann, Arch. Pharm. (2) 99. 138.)

Insol, in acetone. (Naumann, B. 1904, 37. 4329.)

+5H₀O.

NH₄Na₂PO₄+12H₂O. (Herzfeld, Z. anal.

**20.** 191.) (NH₄)₅N₄(PO₄)₂+6H₂O. Sol. in H₂O with decomp. Cryst. from hot conc. NH4OH+Aq. (Uelsmann, Arch. Pharm. (2) 99. 138.)

### Ammonium sodium hydrogen phosphate (Microcosmic salt), NH₄NaHPO₄+4H₂O.

Efflorescent. Easily sol. in H₂O. Sol. in 6 pts. cold, and 1 pt. boiling H2O. Insol. in alcohol.

Aqueous solution gives off NH₃, especially

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Min. Stercorite.

+5H₂O. (Uelsmann.)

The composition of the hydrates formed by this salt at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by the salt and of the conductivity and sp. gr. of its aqueous solutions. (Jones, Am. Ch. J. 1905, 34. 319.) (NH₄)₈Na₃H₆(PO₄)₄+3H₂O. Decomp. by H₂O. (Filhol and Senderens, C. R. 93. 388.)

### Ammonium sodium pyrophosphate, $(NH_4)_2Na_2P_2O_7+5H_2O.$

Easily sol. in H₂O. Aqueous solution decomp. by boiling. (Schwarzenberg, A. 65. 142.)

+6H₂O. (Rammelsberg.)

Ammonium sodium glucinum orthophosphate,  $(NH_4)_2Na_2Gl(PO_4)_2+7H_2O$ .

Precipitate. (Scheffer.)

Ammonium thallous orthophosphate,

(NH₄)₈PO₄, (NH₄)₂TIPO₄, or H₂NH₄PO₄, HTI.PO.

Sol. in H₂O. (Lamy; Rammelsberg.)

### Ammonium uranvi phosphate, $NH_4(UO_2)PO_4+xH_2O.$

Insol. in H₂O and HC₂H₃O₂+Aq. Sol. in mineral acids, from which it is precipitated by NH₄C₂H₃O₂+Aq, in which it is insol. (Knop.)

+3H₂O. Insol. in H2O and acetic acid. Sol. in all mideral acids, oxalic acid and M₂CO₃+Aq. (Lienau, Dissert. 1898.)

### Ammonium vanadium phosphate.

See Phosphovanadate, ammonium.

### Ammonium zinc dimetaphosphate, $(NH_4)_2Zn(P_2O_6)_2+6II_2O.$

Efflorescent. (Fleitmann, Pogg. 78. 347.) +4H₂O. Sol. in 70 pts. H₂O. Decomp. by H₂SO₄. (Glatzel, Dissert. 1880.)

### Ammonium zinc orthophosphate, basic, 3NH₃, 2ZnO, P₂O₅ +8H₂O.

(Rother, A. 1867, **143.** 356.)  $4(NH_4)_2O_1$  6ZnO,  $3P_2O_5+4H_2O$ . (Schweikert, A. 1868, **145.** 57.)

### Ammonium zinc orthophosphate, NH₄ZnPO₄ $+\mathrm{H}_2\mathrm{O}$ .

Insol. in H₂O. Sol. in acids, and caustic alkalies. (Bette, A. 15. 129.)

### Ammonium zinc hydrogen phosphate, $NH_4H_2PO_4$ , $ZnHPO_4+H_2O$ .

Insol. in H₂O. (Debray.)

4(NH₄)₂O₅ 6ZnO, 3P₂O₅. (Schweikert, A. **145.** 57.)

 $3(NH_4)_2O$ , 4ZnO,  $2P_2O_5+13H_2O$ . (Rother, A. **143.** 356.)

### Ammonium phosphate selenate.

See Selenophosphate, ammonium. .

### Barium triphosphate, 5BaO, 3P₂O₅.

Insol. in H2O; insol. in acids after heating to a high temp. (Schwarz, Z. anorg. 1895, 9. 264.)

### Barium metaphosphate, Ba(PO₃)₂.

Insol. in H₂O or dil. acids. (Maddrell, A. **61.** 61.)

Not decomp. by boiling with acids or alkali carbonates + Aq. (Fleitmann, Pogg. 78. 352.)

### Barium dimetaphosphate, $BaP_2O_6+2H_2O$ .

More difficultly sol. in H₂O than Ba₃(P₃O₉)₂. Slightly attacked by boiling conc. HCl+Aq or HNO₃+Aq. Easily decomp. by H₂SO₄. (Fleitmann, Pogg. 78. 254.)

Barium trimetaphosphate,  $Ba_3(P_3O_9)_2 + 2H_2O$ . Somewhat sol, in H₂O. (Fleitmann, A. 65.

313.) +6H₂O. Easily sol, in HCl+Aq. (Lind-

bom.)

1 l. H₂O dissolves 2.589 g. at ord. temp. (Wiesler, Z. anorg. 1901, 28. 198.)

### Barium hexametaphosphate, Ba₃P₆O₁₈ (?).

Sol. in H₂O only after boiling several hours. Nearly insol. in H₂O. (Lüdert, Z. anorg. **5.** 15.)

Insol. in NH₄Cl+Aq. (Wackenroder.) Sol. in Na₆P₆O₁₈+Aq. Sol. in HNO₈+Aq. After ignition it is nearly insol. in HNO₃+Aq.

### Barium orthophosphate, Ba₃(PO₄)₂.

Precipitate. Very sl. sol. or insol. in H₂O. (Graham, Pogg. 32. 49.)

Sol. in HCl+Aq. Decomp. by SO₂+Aq. Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

### Barium hydrogen phosphate, BaHPO₄.

Sol. in 10,000 pts. H₂O. (Malaguti, A. ch. (3) **51.** 346.)

Sol. in 20,570 pts. H₂O at 20°. (Bischof, 1833.)

Not completely soluble in water containing CO₂, but BaCl₂ causes no ppt. in Na₂HPO₄+Aq containing 7.16 g. or less Na₂HPO₄ in a litre after it has been saturated with CO₂. (Setschenow, C. C. **1875**. 97.)
Easily sol. in H₃PO₄+Aq, and dil. HCl+

Aq. HNO₃+Aq of 1.275 sp. gr. if not diluted has scarcely any solvent action, but more dissolves on dilution until a maximum is reached, when 10 vols. of H₂O have been added. (Bischof, Schw. J. 67. 39.)

Sol. in 367-403 pts. acetic acid (1.032 sp.

gr.) at 22.5°. (Bischof, l. c.) Easily sol. in H₂O containing NH₄Cl, NH4NO3, or NH4 succinate, from which solutions it is completely pptd. by NH₄OH+Aq. (Rose.)

Insol. in Na₂HPO₄ or BaCl₂+Aq. (Rose,

Pogg. 76. 23.)

More sol. in BaCl₂ or NaCl+Aq than in H₂O, 1 pt. BaHPO₄ being sol. in 4362 pts. H₂O containing 1.2% NaCl and 0.8% BaCl₂. (Ludwig, Arch. Pharm. (2) 56. 265.) Sol. in Na citrate + Aq. (Spiller.)

# Barium tetrahydrogen phosphate,

 $BaH_4(PO_4)_2$ .

Sol. in  $H_2O$ . (Mitscherlich, 1821.) Decomp. by much H₂O into BaHPO₄. Sol. in phosphoric, and certain other acids. (Berzelius, A. ch. 2. 153.)

### Barium pyrophosphate, $Ba_2P_2O_7+xH_2O$ .

Somewhat sol. in H₂O, in much H₄P₂O₇+ Aq, also in HCl+Aq or HNO₃+Aq. Insol. in HC₂H₃O₂+Aq or Na₄P₂O₇+Aq. (Schwarzenberg.)

Insol. in NH₄Cl+Aq. (Wackenroder.)

Barium hydrogen pyrophosphate, BaH₂P₂O₇.  $Ba_{2}P_{2}O_{7} + 3H_{2}O_{1}$ 

Ppt. (Knorre and Oppelt, B. 21. 773.)

Barium tetraphosphate, Ba₃P₄O₁₃.

Insol. in H2O or acids when strongly heated. (Fleitmann and Henneberg, A. 65, 331.)

Barium manganic pyrophosphate,  $Ba(Mn\bar{P}_2O_7)_2 + 5H_2O$ .

'Almost insol. in  $H_2O$ . (Rosenheim, B. **1915. 48.** 585.)

Barium potassium trimetaphosphate,  $BaKP_3O_9+H_2O$ .

Much less sol. in H₂O than NH₄BaP₃O₉ or NaBaP₈O₉. (Lindbom.) Sol. in HCl+Aq after ignition.

Barium potassium orthophosphate, BaKPO₄. Insol. in H₂O. (Ouvrard, A. ch. (6) 16. 297.) +10H₂O. (de Schulten, C. R. **96.** 706.)

Barium sodium dimetaphosphate.  $BaNa_{2}(P_{2}O_{6})_{2}+4H_{2}O_{.}$ (Glatzel, Dissert. 1880.)

Barium sodium trimetaphosphate, BaNaP₃O₉ +4H₂O.

More easily sol. in  $H_2O$  than  $Ba_3(P_3O_9)_2$ . Sol. in acids, unless ignited. (Fleitmann and Henneberg, A. 65. 314.)

Efflorescent. Sol. in HCl+Aq after ignition only by long boiling. When fused it is easily sol. in HCl+Aq. (Lindbom, Acta Lund. **1873.** 21.)

Barium sodium orthophosphate, BaNaPO₄+ 10H₂O.

(de Schulten, C. R. 96. 706.)

Not attacked by cold, but decomp, by hot H₂O. (Villiers, C. R. **104**, 1103.) Sl. sol. in H₂O. (Quartaroli, C. A. 1911. 2375.)

Barium sodium pyrophosphate,  $Ba_4Na_4(P_2O_7)_8$ .

Sol. in hot HCl and HNO₃. (Tammann, J. pr. 1892, (2) **45**. 469.) 6Ba₂P₂O₇, Na₄P₂O₇+6H₂O. Completely insol. in Na₄P₂O₇+Aq, but not insol. in H₂O or NH₄OH+Aq. Easily sol. in HNO₃ or HCl +Aq. Insol. in alcohol. (Baer, Pogg. 75. 164.)

Barium uranous metaphosphate, UO2, BaO, (Colani, A. ch. 1907, (8) 12. 142.)

Barium uranyl orthophosphate,  $Ba(UO_2)_2(PO_4)_2 + 8H_2O_3$ Min. Uranocircite.

Barium phosphate chloride,  $3Ba_8(PO_4)_2$ , BaCl2.

Min. Barytapatite. (Deville and Caron, A. eh. (3) **67.** 4.1.)

4BaH₄(PO₄)₂, BaCl₂. (Erlenmeyer, J. B. **1857.** 145.)

15BaO, 6P₂O₅, BaCl₂+6H₂O (?). Sol. in 18,000 pts. cold H₂O. Much more sol. in H₂O containing PaCl₂, NH₄Cl₄, and NH₄OH. (Ludwig, Arch. Pharm. (2) 56. 271.)

Bismuth orthophosphate, basic, 2BiPO4. 3Bi₂O₂.

Insol in H₂O. Sol. in HCl+Aq. (Cavazzi, Gazz. ch. it. 14. 289.)

Bismuth orthophosphate, BiPO₄.

In.,ol. in  $H_2O$  or  $HNO_3+Aq$ . Sl. sol. in  $NH_4$  salts +Aq. (Chancel, C. R. **50.** 416.) Not decomp. by  $H_2O$ . Other phosphates of Bi are decomp. by H₂O. Montmartini,

C. C. **1900,** II. 1256.) Not hydrolyzed by hot H₂O; sl. sol. in BiCl₃ +Aq; decomp. by boiling alkali. (Caven, J. Soc. Chem. Ind. 1897, 16. 30.)

More sol. in HCl+Aq than in HNO₈+Aq. (Rose.)

Sol. in  $UO_2(NO_3)_2 + Aq$ . (M'Curdy, Am. J. Sci. (2) **31.** 282.)

Insol. in  $MNO_3 + Aq$ .

Insol. in Bi salts+Aq. (Rose, Pogg. 76. 26.)

Sol. in NH₄Cl+Aq, but insol. in NH₄NO₃+ Aq. (Brett, 1837.)

+1½H₂O. (Kühn.) +3H₂O. Ppt. Decomp. by H₂S or KOH +Aq. (Vanino, J₄ pr. 1906, (2) **74.** 151.)

Bismuth pyrophosphate, basic, 2Bi₂O₃, P₂O₅. Insol. in H₂O and HC₂H₃O₂+Aq; sol. in hot HCl and HNO₃+Aq. Insol. in Na₄P₂O₇ +Aq, and NH₄ citrate+Aq. (Passerini, Cim. 9. 84.)

Bismuth pyrophosphate,  $Bi_4(P_2O_7)_3$ .

Insol. in H₂O or HNO₃+Aq. (Chancel, C. R. **50.** 416.)

Decomp. by H₂O. (Wallroth, Bull. Soc. (2) **39.** 316.)

Sol. in Na₄P₂O₇+Aq. (Stromeyer.)

Bismuth sodium pyrophosphate, NaBiP₂O₇ +3H₂O.

Insol. in H₂O. (Rosenheim, B. 1915, 48. 588.

Boron phosphate, BPO₄.

Insol. in H₂O. Not attacked by boiling alkalies. (Meyer, B. 22. 2919.)

### Bromomolybdenum phosphate.

See under Bromomolybdenum comps.

### Cadmium triphosphate, Cd₅(P₅O₁₀)₂.

Insol. in H₂O and acids. (Glühmann, Dissert. 1899.)

### Cadmium tetraphosphate, 6CdO, 4P₂O₅+ 18H₂O.

Insol. in acids. (Glühmann.)

### Cadmium metaphosphate.

Very sol. in NH₄OH+Aq. (Persoz, A. ch. **56.** 334.)

### Cadmium dimetaphosphate, $Cd(PO_3)_2 + 2H_2O$ .

Sol. in 32 pts. H₂O. Scarcely attacked by acids, especially conc. H₂SO₄. (Glatzel, Dissert. **1880.**)

### Cadmium tetrametaphosphate.

Insol. in H₂O. Easily decomp. by Na₂S+

Aq. (Fleitmann, Pogg. 78, 358.) Cd₂(PO₃)₄+10H₂O. Not so very difficultly attacked by acids but insol. after ignition. (Glatzel, Dissert. 1880.)

### Cadmium orthophosphate, Cd₃(PO₄)₂.

Ppt. Insol, in H₂O. Sol, in Cd salts+Aq.

(Stromeyer.)

Easily sol. in NH₄ sulphate, chloride, nitrate, or succinate + Aq. (Wittstein, Repert.)

 $H_2Cd_5(PO_4)_4+4H_2O$ . Sol. in dil.  $H_3PO_4+$ Aq. (de Schulten, Bull. Soc. (3) 1. 473.)

### Cadmium tetrahydrogen phosphate, $CdH_4(PO_4)_2 + 2H_2O$ .

Decomp. by great excess of H₂O. (de Schulten.)

### Cadmium pyrophosphate, $Cd_2P_2O_7+2H_2O$ .

Insol. in H₂O. Sol. in NH₄OH, Na₄P₂O₇+ Aq, or acids. Insol. in KOH+Aq. Sol. in  $SO_2 + Aq$ . (Schwarzenberg, A. 65. 183.)

### Cadmium hydrogen orthophosphate hydrazine, CdHPO4, 2N2H4.

Decomp. by light. (Franzen, Z. anorg. 1908, 60. 283.)

### Cadmium potassium tetrametaphosphate, $CdK_3(PO_3)_4 + 3H_2O$ .

Sol. in 135 pts. H₂O. Difficultly decomp. by acids. (Glatzel, Dissert. 1880.)

### Cadmium potassium orthophosphate, CdKPO₄.

Insol. in H₂O; sol. in dil. HCl+Aq. (Ouvrard, A. ch. (6) 16, 321.)

### Cadmium potassium pyrophosphate. CdK₂P₂O₇.

Insolvin H.O: sol. in dil. HCl+Aq. (Ouvrard.)

 $5\text{Cd}_2\text{P}_2\text{O}_7$ ,  $4\text{K}_4\text{P}_2\text{O}_7 + 30\text{H}_2\text{O}$ . Much more easily sol! in H2O than the CdNa salt. (Pahl, Sví V. A. F. **30, 7.** 39.)

### Cadmium sodium triphosphate, Na₃CdP₃O₁₀ +12H₂O.

Sol. in acids even after ignition. (Glühmann, Dissert. 1899.)

### Cadmium sodium trimetaphosphate,

 $Na_4Cd(PO_3)_6+4H_2O.$ 

Sl. sol. in H₂O. Insol. in alcohol. (Wiesler, Z. anorg. 1901, 28. 204.)

# Cadmium sodium tetrametaphosphate,

 $Na_2Cd(PO_3)_4+3H_2O$ .

Completely insol, in H₂O. (Glatzel, Dissert. **1880.**)

## Cadmium sodium orthophosphate,

 $CdNa_4(PO_4)_2$ .

Insol. in H₂O; very sol, in dil. acids. CdNaPO₄. As above. (Ouvrard.)

# Cadmium sodium pyrophosphate,

CdNa₂P₂O₇.

Sol, in dil. acids, even acetic acid. (Wallroth.)

+4H₂O, Insol. in H₂O. (Pahl, Sv. V. A. F. **30, 7.** 39.)

### Cadmium phosphate bromide, 3Cd₃(PO₄)₂, CdBr₂.

Sol. in cold very dil. HNO₃+Aq. Schulten, Bull. Soc. (3) 1. 472.)

### Cadmium phosphate chloride, $3Cd_3(PO_4)_2$ , CdCl₂.

Sol, in dil. HNO₃+Aq. (de Schulten.)

### Cæsium metaphosphate, CsPO₃.

Sol, in H₂O. (von Berg, B. 1901, **34**. 4185.)

#### Cæsium orthophosphate, $Cs_3PO_4+5H_2O$ .

Deliquescent; very sol. in H₂O. (von Berg.)

### Cæsium hydrogen orthophosphate, Cs₂HPO₄ $+H_2O$ .

Very sol, in H₂O. (von Berg.)

### Cæsium dihydrogen orthophosphate, CsH₂PO₄.

Sol. in H₂O; insol. in alcohol. (von Berg.)

### Cæsium pyrophosphate, Cs₄P₂O₇.

Very sol. in H2O; very hydroscopic. (von Berg.)

Calcium	triphosph	ate, 5CaO,	,3P	₂ O ₅ .
		(Schwarz,		

895. **9.** 264.)

Calcium monometophosphate, Ca(PO₃)₂, Insol. in H2O and dil. acids. (Maddrell, A 61.61.)

Not decomp, by digestion with alkali carbonates+Aq. (Fleitmann.)

### Calcium dimetaphosphate, Ca₂(P₂O₆)₂+ 4H₂O.

Insol. in H₂O. Decomp. by warm H₂SO₄, but not appreciably by conc. HCl or HNO3+ Aq. (Fleitmann, Pogg. 78. 255.)

### Calcium hexametaphosphate (?).

Insol. in H₂O. Sol. in Na₆P₆O₁₈+Aq and in HCl+Aq. (Rose, Pogg. 76. 3.) Ca₃P₆O₁₈. Nearly insol. in H₂O; sol. in dil.

acids. (Lüdert, Z. anorg. 5. 15.)

### Calcium orthophosphate, basic, $3Ca_3(PO_4)_2$ + CaO₂H₂.

(Warington, J. B. **1873.** 253.) 4CaO, P₂O₅. (Hilgenstock.)

### Calcium orthophosphates,

Equilibrium in system  $CaO + P_2O_5 + H_2O$ .

Solubility of CaO in P₂O₅+A₀ at 25°

Dolubli	ity of CaO	III F2O5+Aq at 20.
g. CaO per l. of solution	g. P ₂ O ₅ per l. of solution	Solid phase
$\frac{1.71}{7.48}$	$\frac{4.69}{22.39}$	
8.10	23.37	11
11.57	36.14	
12.88	41.24	
18.77	59.35	1 1
19.25	63.03	
23.31	75.95	$\left.\right\}$ CaHPO ₄ , 2H ₂ O
23.69	79.10	, ,
32.41	109.8	11 .
35.90	129.8	
39.81	139.6	
40.89	142.7	
43.82	154.6	
49.76	191.0	
<b>55</b> . $52$	216.5	
<b>59</b> . <b>40</b>	234.6	1 1
70.31	279.7	! ₹
72.30	351.9	
69.33	361.1	<b>!</b>
65.46	380.3	
<b>63</b> . <b>53</b>	395.1	
<b>59</b> .98	419.7	$CaH_4(PO_4)_2$ , $H_2O$
59.25	424.6	-
57.74	428.0	
<b>53</b> . <b>59</b>	451.7	
48.78	475.3	
44.52	505.8	
41.86	528.9	
39.89	538.3	[]

(Cameron and Seidell, J. Am. Chem. Soc. 1905, 27. 1508.)

Solubility of CaO in P2O5+Aq at 25°.

g. CaO per l.	g. PrOs per l. of solution	Solid phase
7 81	19.96	)
6.51	16.52	
5.01	12.82	CaHPO ₄
3.42	8.16	,
2.42	5.75	! i
1.58	3.66	
0.544	1.516	4
0.400	1.108	
0.291	0.773	Solid phoses are
0.232	0.662	evidently solid
0.145	0.381	solutions
0.062	0.109	
0.049	0.088	
0.034	0.015	$Ca_3(PO_4)_2$
0.587	0.013	Solid phase is prob-
0 789	0.012	ably a solid solution

(Cameron and Seidell, J. Am. Chem. Soc. 1905, **27**. 1513.)

Solubility of CaO in P₂O₅+Aq at 50.7°.

100 g. of the solution contain		Solid phase
g. P ₂ O ₅	g. CaO	-
62.01	0.336	CaH ₄ P ₂ O ₈ +CaH ₄ P ₂ O ₈ , H ₂ O
58.08	0.635	CaH ₄ P ₂ O ₄ , H ₂ O
54 67	0.939	44
50.25	1.428	"
46.15	2.100	**
41.92	2.974	64
37.33	3.898	44
33.18	4.880	"
29.61	5.725	CaH ₄ P ₂ O ₈ , H ₂ O +CaHPO ₄
15.48	3.507	CaHPO ₄
9.465	2.328	"
6.157	1.563	
2.946	0.852	"
2.281	0.692	"
0.1521	0.0588	**
0.1527	0.0596	CaHPO ₄ , 2H ₂ O
0.1331	0.0514	Ca ₃ P ₂ O ₈ , H ₂ O
0.0942	0.0351	"
0.0309	0.0106	"
0.00068	0.00071	"

(Bassett, Z. anorg. 1908, 59. 15.)

### Solubility of CaO in P.O. +Ag at 40°

190 g. of the solution contain		189 - 12-3 - Ta
g. Paos	g. CaO	Bond phase
45.4 <b>2</b>	1.768	CaH ₄ P ₂ O ₈ , H ₂ O
41.33	2.588	"
36.79	3.584	"
32.46	4.505	"
28.27	5.501	44
21.67	4.813	$CaHPO_4$
17.78	4.100	4.
16.35	3.810	"
9.905	2.536	"
6.979	1.847	"
4.397	1.267	. "
1.819	0.57	"
0.423	0.156	"
0.294	0.110	44
0.158	0.0592	"
0.146	0.0519	"
0.128	0.0508	$Ca_3P_2O_8$ , $H_2O$
0.0262	0.0098	ιι'' -
trace	0.0709	$Ca_4P_2O_9$ , $4H_2O$
"	0.0814	"""
"	0.0829	"
"	0.0840	"

(Bassett, Z. anorg. 1908, 59. 18.)

Solubility of CaO in P₂O₅+Aq at 25°.

100 g. the solution contain		Solid phase
g. P ₂ O ₅	g. CaO	•
36.11	3.088	CaH ₄ P ₂ O ₈ , H ₂ O
31.97	4.128	"
28.34	4.908	"
27.99	4.930	"
25.45	5.489	. "
22.90	5.523	CaHPO ₄
17.55	4.499	"
15.34	4.027	"
9.10	2.638	"
6.049	1.878	"
3.613	1.181	"
2.387	0.826	"
0.417	0.165	CaHPO ₄ +CaHPO ₄ , 2H ₂ O
0.178	0.0696	"
0.0332	0.0126	"
0.0948	0.0352	Probably Ca ₃ P ₂ O ₈ , H ₂ O
0.0571	0.0211	11000019 0001 20 8, 1220
0.0525	0.0175	
0.0468	0.0186	66
trace	0.0130	$Ca_4P_2O_9$ , $4H_2O+Ca(OH)_2$
uace		$Ca(OH)_2$
	0.118	Ca(OH) ₂

(Bassett, Z. anorg. 1908, 59. 20.)

### Calcium orthophosphate, Ca₃(PO₄)₂.

Decomp. by long boiling with H₂O into basic salt, 3Ca₃(PO₄)₂, CaO₂H₂. This decomp. begins with cold H2O, so that the solubility at 6-8° varies from 9.9 to 28.6 mg. in a litre. (Warington, Chem. Soc. (2) 11. 983.)

ignited, and 79 mg. freshly precipitated Ca₃(FO₄)₂. (Völcket, J. B. 1862. 131.) ous Ca phosphate; 2.56 pts. ignited Ca phosphate; 3.00 pts. Ca phosphate from bone dust. (Maly and Donath, J. pr. (2) 7. 416.)

Solubility of bones in various solvents is

given by Maly and Donath, l. c.

0.009 g. Ča₃(PO₄)₂ is sol. in 1 l. H₂O₂. sat. with CO₂. (Joffre, Bull. Soc. 1898, (3) 19. 372.)

Determinations of solubility in H₂O as stated in the literature vary because Ca₃(PO₄)₂ is apparently a solid solution of CaHPO4 and CaO. When placed in contact with H₂O more PO4 ions dissolve than Ca ions, the resulting solution is acid and solid phase richer in Ca than before addition of H₂O. For material of the approximate composition, Ca₃(PO₄)₂, the amt. dissolved by CO₂ free H₂O at ord, temp. is 0.01-0.10 g. per l. depending on conditions of experiment. H2O sat with CO₂ dissolves 0.15-0.30 g. per l. (Cameron and Hurst, J. Am. Chem. Soc. 1904, **26**. 903.)

The decomposition of Ca₃(PO₄)₂ in H₂O is increased by presence of CaSO₄; decreased by presence of CaCO₃ or of CaSO₄ and CO₂. CO₂ increases the amount of PO₄ dissolved in the solution of water alone and the sat. CaSO₄ solutions, but has no other effect than to increase the amount of Ca in the solutions in contact with CaCO₃. (Cameron and Seidell,

J. Am. Chem. Soc. 1904, 26. 1458.)

Sol. in  $CO_2 + Aq$ .

1 l. H₂O containing 1 vol. CO₂ dissolves in 12 hours at 10°, 0.75 g. precipitated  $Ca_3(PO_4)_2$ ; 0.166 g.  $Ca_3(PO_4)_2$  from bone ash; 0.300 g. Ca₃(PO₄)₂ from bones which had been buried

20 years. (Lassaigne, J. ch. méd. (3) **3.** 11.) 1 l. H₂O containing 0.8 vol. CO₂ dissolves

0.61 g. Ca₃(PO₄)₂. (Liebig, A. **106**. 196.) H₂O sat. with CO₂ at 5-10° and 760 mm. pressure dissolves 0.527-0.60 g. Ca₃(PO₄)₂, or, if containing 1% NH₄Cl, 0.739 g. Ca₃(PO₄)₂. (Warington, Chem. Soc. (2) 9. 80.)

Solubility varies according to form of

Ca₃(PO₄)₂.

In apatite, 1 pt. Ca₈(PO₄)₂ dissolves in 222,222 pts. H₂O sat. with CO₂; in raw bones, in 5698 pts.; in bone ash, in 8029 pts.; in So. Carolina phosphate, in 6983 pts.; in phosphatic guano from Orchilla Id., in 8009 pts. (Williams, C. N. **24.** 306.)

 $Al_2O_6H_6$  and  $Fe_2O_6H_6$  prevent the solubility of Ca₃(PO₄)₂ in H₂O containing CO₂. (War-

ington, l. c.)

1 l. H₂O dissolves 0.22848 g. Ca₃(PO₄)₂.
under a CO₂-pressure of 2 atmos. at 14°.
(Ehlert, Z. Elektrochem. 1912, 18. 728.)

Sol. in SO₂+Aq, forming a liquid of 1.3 sp. gr. at 9° from freshly precipitated Ca₃(PO₄)₂, and of 1.188 sp. gr. from bone ash.

Sol. in  $H_2S + Aq$ . 1 l.  $H_2O$  sat. with  $H_2S$ 

dissolves 190-240 mg. Ca₃(PO₄)₂. (Béchamp, A. ch. (4) **16.** 241.)

Easily sol. in HNO, or HCl+Aq.

100 pts. very dil. HCl+Aq dissolve 198-225 pts. Ca₃(PO₄)₂. (Crum, A. 63. 294.)

Decomp. by H₂SO₄.

Completely decomp. to CaSO₄ and H₃PO₄ by a mixture of H₂SO₄ and alcohol.

### Solubility in HNO₃+Aq.

1 pt. of Ca₃(PO₄)₂ dissolves at 16 25-i7.5° in pts. HNO₃+Aq which contain pts. H₂O to 1 pt. HNO₃ (sp. gr. = 1.23).

Pts. HNOs+Aq	Pts. H ₂ O	Pts. HNO ₃ +Aq	Pts. H₂O
2.72 4.23 10.25 15.45 20.34 20.82	0 0.827 3.309 5.791 8.273	30.64 26.48 32.14 36.06 127.81	10.754 13 13.236 15.718 40

(Bischof, 1833.)

More sol. in acetic, lactic, malic, and tartaric acids than in HCl or HNO₃+Aq. (Crum.)

Solubility in H₃PO₄+Aq.

G. H ₄ PO ₄ in 100 cc. of	G. Ca ₃ (PO ₄ ) ₂ dissolved
H ₂ PO ₄ +Aq	by 100 cc. of solvent
5	3.85
10	7.28
15	9.45
20	12.50
25	13.79
30	15.10

(Causse, C. R. 1892, 114. 414.)

Very small quantities of the salts of the alkali metals increase the solubility in H₂O. (Lassaigne, J. chim. med. (3) 3. 11.)

1 litre cold H₂O with 2 g. NaCl dissolves 45.7 mg. Ca₃(PO₄)₂; with 3 g. NaNO₃, 33 mg. Ca₃(PO₄)₂. (Liebig.)

1 litre H₂O containing 8.75% NaCl dissolves

317.5 mg.  $Ca(PO_4)_2$ . (Lassaigne.)

NH₄ salts have even more effect, especially NH₄Cl+Aq, which dissolves Ca₃(PO₄)₂ in the cold; also ammonium nitrate and succinate. (Wittstein.)

 $(NH_4)_2SO_4+Aq$  dissolves  $Ca_5(PO_4)_2$  as easily as CaSO₄. (Liebig, A. **61.** 128.)

1 litre H₂O containing 2 g. NaCl dissolves at 7-12.3° 45.7 mg. Ca₃(PO₄)₂; 3 g. NaNO₃ at 17.3°, 33 mg. Ca₃(PO₄)₂; 2.2 g. (NH₄)₂SO₄, 76.7 mg. Ca₃(PO₄)₂. (Liebig, A. **106**. 185.)

Dry Ca. (PO₄), also dissolves by long boiling with solutions of ammonium chloride, nitrate, succinate (Wittstein), or sulphate (Delkeskamp).

Sol. in 89,448 pts. H₂O (boiled) at 7°; 19,728 pts. H₂O (boiled) containing 1% NH₄Cl at 10°; 4324 pts. H₂O (boiled) containing 10% NH₄Cl at 17°; 1788 pts. H₂O sat. with CO₂ and containing 10% NH₄Cl at 10° and 751 mm. pressure: 1351 pts. H₂O sat. with CO₂ and containing 1% NH₄Cl at 12° and 745 mm. pressure: 42,313 pts. H₂O sat. with CO₂ and containing CaCO₃ at 21° and 756.3 mm. pressure: 18,551 pts. H₂O sat. with CO₂ and containing CaCO₃ and 1% NH₄Cl at 16° and 746.1 mm. pressure. (Warington, Chem. Soc. (2) 4. 296.)

Aqueous solutions of the following NH₄ salts dissolve the given amts. of Ca₃(PO₄)₂, calculated for 100 pts. of the corresponding acid: NH₄Cl, 2.655 pt.; NiL₄NO₃, 0.306 pt.; (NIL₄)₂SO₄, 1.050 pts.; NH₄C₂H₃O₂, 0.255 pt.; NH₄ tartrate, 4.56 pts.; NH₄ citrate, 7.015 pts.; NII₄ malate, 1.125 pts. Ca₃(PO₄)₂. (Ter-

reil, Bull. Soc. (2) 35. 578.)

Solubility in various salts+Aq under a CO₂ pressure of 2 atmospheres, at 14°.

pressure of 2	aumospiicics	, 40 11 1
Salt	G. salt per 100 g. H ₂ O	G. Ca ₃ (PO ₄ ) ₂ sol. in 1 l. of the solvent.
H ₂ O		0.22848
NaCl	50 conc.	1.3208 0.64089
MgCl ₂ +6H ₂ O	86.9 conc.	1.2873 2.8923
KMgCl ₃ +6H ₂ O	79.2 conc.	1.5771 1.1536
K ₂ SO ₄ , MgSO ₄ , MgCl ₂ +6H ₂ O	70.95 conc.	1.7777 2.4911
NaNO ₃	72.7 conc.	1.5827 0.8638
$ m K_2SO_4$	74.5 conc.	4.9041 4.7649
(NH ₄ ) ₂ SO ₄	56.5 conc.	2.4131 5.8849
Na ₂ SO ₄ +10H ₂ O	137.7 conc.	2.4911 3.2267
MgSO ₄ +7H ₂ O	105.3 conc.	1.9728 3.6001
NH ₄ Cl	45.74 conc.	1.3710 1.2929

(Ehlert and Hempel, Z. Elektrochem. 1912, 18. 728.)

Ca₂(PO₄)₂ is sol. in  $K_2C_2O_4$ +Aq., 100 ccm.  $K_2C_2O_4$ +Aq (1½%  $K_2C_2O_4$ ) dissolves 57.1% of the  $P_2O_5$  from phosphorite, 71% from guano by boiling 25 min. At ord, temp, bone meal gives up 50-80% of its P₂O₅ to K₂C₂O₄+Aq in 36 hours. (Liebig, Landw. J. B. 1881. 603.) Sol. in Ca sucrate+Aq. (Bobierre, C. R.

More sol, in H₂O containing starch, glue, or other animal substances than in pure H₂O.

(Vauquelin, Pogg. **85.** 126.)

Sol. in H₂O containing organic matter, therefore when bones decay under H₂O, Ca₃(PO₄)₂ is dissolved in considerable quantity. (Hayes, Edin. Phil. J. 5. 378.)

Sol. in sodium citrate+Aq. (Spiller.) Solubility in NH4 citrates + Aq.

Ammonium citrate solution of 1.09 sp. gr. at 30-35° dissolves precipitated Ca₃(PO₄)₂ completely, but not phosphorite. (Fresenius.)

Dried on the air, with  $2^{1}/_{5}H_{2}O$ . Sol. in 40 min. in diammonium citrate+Aq (sp. gr.= 1.09); triammonium citrate+Aq (sp. gr. = | (Joffre, Bull. Soc. 1898, (3) 19. 374.)

1.09) dissolves 55.3% of the P₂O₅; citric acid +Aq (1/4%) dissolves 83.8% of the P₂O₅. (Erlenmeyer, B. **14**. 1253.) Dried at 50°, with 1⁷/₈H₂O. Sol. in 45 min.

in diammonium citrate + Aq (sp. gr. = 1.09); triammonium citrate + Aq dissolves 52.3% of

the P₂O₅. (Erlenmeyer.)

Ignited. Diammonium citrate + Aq (sp. gr. 1.09) dissolves 93% of the P2O; triammonium citrate + Aq (sp. gr. 1.09) dissolves 32% of the  $P_2O_5$ ; citric acid (1/4%) dissolves 53.4% of the P₂O₅. (Erlenmeyer.)

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 827.)

Insol, in alcohol and ether.

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, **37.** 4329.)

Min. A patite.

 $\begin{array}{c} 0.002 \ g. \ is \ sol. \ in \ 1 \ l. \ H_2O. \\ 0.014 \ '' \ '' \ '' \ 1 \ l. \ H_2O \ sat. \ with \ CO_2. \end{array}$ 

+H₂O. Solubility in H₂O, in H₂O sat. with CO₂, and in H₂O containing CO₂+CaH₂(CO₃)₂. Temp.  $16^{\circ}$ -20°.

0.1		In 1 l. of	he filtrate
Solvent		P ₂ O ₅ mg.	CaO mg.
(1) Boiled distilled H ₂ O. (2) 1200 cc. distilled H ₂ O+50 cc. H ₂ O sat. with CO ₂ . (3) 1000 cc. "+250 cc. """ (4) 1250 cc. H ₂ O sat. with CO ₂ .		0.74 6.9 48.5 91.9	
(5) Solutions of CO ₂ +CaH ₂ (CO ₃ ) ₂ . 1 l. (filtered) co Calcium carbonate Bicarbonate Carbonic acid Free carbonic acid	13 mg. 166 " 73 " 9 "	0.38	100.0
(6) { Calcium carbonate Bicarbonate Free carbonic acid } { Carbonate Carbonic acid }	13 " 277 " 122 " 49 "	1.1	162.3
$ \begin{cases} \textbf{Calcium carbonate} \\ \textbf{Bicarbonate} \\ \textbf{Free carbonic acid} \end{cases} \begin{cases} \textbf{Carbonate} \\ \textbf{Carbonic acid} \end{cases} $	13 " 376 " 165 " 105 ·"	0.80	218.8
$ \begin{cases} \textbf{Calcium carbonate} \\ \textbf{Bicarbonate} \\ \textbf{Free carbonic acid} \end{cases} \begin{cases} \textbf{Carbonate} \\ \textbf{Carbonic acid} \end{cases} $	13 " 475 " 209 " 206 "	1.77	273.3
(9) { Calcium carbonate Bicarbonate { Carbonate Carbonic acid }	13 " 545 " 240 " 301 "	1.30	312.7

Calcium hydrogen phosphate, CaHPO4, and +2H₂O.

Insol. or nearly so in H2O. Gradually decomp. by cold, more quickly by hot H₂O.

1000 pts. H₂O dissolve 0.135-0.152 pt. CaHPO₄+2H₂O. Solution clouds up on boiling. (Birnbaum.)

1000 pts. H₂O dissolve 0.28 pt., and if sat. with CO₂, 0.66 pt. CaHPO₄+2H₂O. (Dusert

and Pelouze.)

When this salt dissolves in H₂O, decomp. takes place and a very considerable time is necessary to establish equilibrium. (Rindell, [(Birnbaum, Zeit. Ch. (2) 7. 131.)

C. R. 1902, **134.** 112.)

Much less decomp. by H₂O than Ca₃(PO₄)₂ or CaH₄(PO₄)₂, and the decomposition of this salt in water depends only slightly upon the relative amounts of solid and solvent which are present. The decomposition is increased by the addition of  $CO_2$ . The presence of CaSO₄ or of CaCO₃ decreased the amount of phosphoric acid which dissolved original paper. (Cameron and Seidell, J. Am. | Chem. Soc. 1904, 26. 1460.)

When the ratio of  $P_2O_5$ : CaO is above 1.0 or below 1.27, H₂O dissolves 0.40-0.54 g. CaO and 1.11–1.52 g. P₂O₅ (see original paper). (Cameron and Bell, J. Am. Chem. Soc. 1905,

**27.** 1512.)

### Solubility in H₃PO₄+Aq.

G. H ₃ PO ₄ in 100 cc. H ₃ PO ₄ +Aq	G. CaHPO ₄ dissolved by 100 cc. of solvent
5	4.30
10	7.15
15	9.30
20	11.86
25	13.40
30	15.10

(Causse, C. R. 1892, **114.** 415.)

 I. H₂O containing 2.2 g. (NH₄)₂SO₄, 2 g. NaCl, or 3 g. NaNO₃ dissolves 79.2, 66.3, or 78.9 mg. CaP₂O₇, which is present in form of CaHPO₄. (Liebig, A. **106**. 185.) Slowly but completely sol. in boiling NH₄Cl+Aq. (Kraut, Arch. Pharm. (2) 111. 102.) Easily sol. in H₂SO₃+Aq. (Gerland, J. pr. (2) **4**. 123.) Very sol. in HCl or HNO₃+Aq. Less sol. in HC₂H₃O₂. (Berzelius.) More sol. in dil. than conc. HC₂H₃O₂+Aq, but 60 pts. HC₂H₃O₂ (1 mol.) dissolve at most 23.1 pts.  $P_2O_5$  (1 mol. = 142 pts.) from this compound. Aqueous solution of sodium acetate dissolves more easily than H2O, and becomes turbid on boiling. (Birnbaum.)

Completely sol. in K₂C₂O₄+Aq. (Liebig,

Landw. J. B. 1881. 603.)

1 l. of sat. solution in N/200 acid K tartrate +Aq at 25° contains 0.235 g. CaHPO₄.

Insol, in alcohol. Sol. in many organic substances, as starch or gelatine + Aq.

II. 1014:)

1/3H2Q (Vorbringer, Z. anal. 9. 457.)

+H₂O. Gerlach, J. pr. (2) 4. 104.) +2H₂O. Min. Brushite.

+3H₂O. Min. Metabrushite.

+5H₂O. (Dusart, C. R. 66, 327.)

### Celcium tetrahydrogen orthophosphate, $C_{\theta}H_4(PO_4)_2+H_2O_1$

Very deliquescent. Crystals take up 97.7 ots. H₂O in 16 days, and 226 pts. H₂O in 28 days from air saturated with moisture.

Not hyg oscepic when pure. (Stocklasa,

B. 23. 626 R.)

Completely sol. in 100 pts. H₂O, but decomp. by 10-40 pts. H₂O with separation of CaHPO₄, which slowly dissolves. (Erlenmeyer, J. B. 1873. 254.)

later (B. 9. 1839) Erlenmeyer says Call4(PO4) H2O is sol. in 700 pts. H2O and decomp, into CaHPO4 by a less amount of H₂O. Wattenberg (Z. anal. 19. 243) says that the decomposition by small amts. of H₂O down to 144 pts. H₂O to 1 pt. salt is inappre-

Completely sol. in 200 pts. H₂O if pure, and in less H₂() in presence of H₃PO₄. (Stocklasa.)

Sol. in 25 pts. H₂O at 15°. Solution begins to decompose when warmed to 50°. (Otto, C. C. **1887**. 1563.)

Greatly decomp, by H₂O and the resulting solution is to be regarded as a solution of the decomposition products rather than of the substance itself. The presence of an excess of CaSO4 does not materially affect the amount of phosphoric acid entering the solution. (Cameron, J. Am. Chem. Soc. 1904, 26. 1462.)

Violently decomp. by H₂O in conc. solution; only sl. decomp. when dissolved in 200 pts. H₂O. (Stocklasa, Z. anorg. 1892, 1. 310.)

### Solubility of CaH₄P₂O₈ in H₈PO₄+Aq at pressure of 745 mm. at high temp.

Bpt.	100 g. of the solution contain		Solid phase
Ä	G. P ₂ O ₅	G. CaO	
115° 132° 169°	43.60 53.43 63.95	5.623 4.327 4.489	CaH ₄ P ₂ O ₈ , H ₂ O + CaHPO ₄ CaH ₄ P ₂ O ₈ + CaH ₄ P ₂ O ₈ , H ₂ O CaH ₄ P ₂ O ₈

(Bassett, Z. anorg. 1908, 59. 26.)

Glacial HC₂H₃O₂ ppts. it completely from aqueous solution even in presence of HNO₃. (Persoz.)

Decomp. by 50 pts. absolute alcohol at b.-Insol. in acetone. (Eidmann, C. C. 1899, pt. in 1 hour; by 30 pts. in 2 hours. Sol. in absolute ether. (Erlenmeyer, l. c.)

Calcium pyrophosphate, Ca₂P₂O₇+4H₂O.

Somewhat sol. in H₂O; completely sol. in mineral acids; less sol. in acetic acid, and insol. in Na₄P₂O₇+Aq. (Schwarzenberg, A. 65. 145.) Less sol. in warm than in cold acetic acid. (Baer, Pogg. 75. 155.) Insol. in NH₄Cl+Aq. (Wackenroder, A.

**41.** 316.)

Insol. in CaCl₂+Aq. Min. Pyrophosphorite.

Calcium hydrogen pyrophosphate, CaH₂P₂O₇  $+2H_2O$ .

Sol. in H₂O. (Pahl, B. 7. 478.) 2CaH₂P₂O₇, Ca₂P₂O₇+6H₂O. Decomp. by boiling with H₂O into—
CaH₂P₂O₇, Ca₂P₂O₇+3H₂O. Insol. in hot

H₂O. (Knorre and Oppelt, B. 21. 771.)

### Tetracalcium hydrogen phosphate, $Ca_4H(PO_4)_8+H_2O.$

Ppt. Insol. in H₂O, but decomp. by boiling Sol. in acids. (Warington, therewith. Chem. Soc. (2) 4. 296.)  $+2H_2O$ .

Calcium tetraphosphate, Ca₃P₄O₁₈.

Insol, in acids when ignited. (Fleitmann and Henneberg, A. **65.** 331.)

Calcium lithium phosphate, Cal.iPO₄. Insol. in H₂O. (Rose, Pogg. 77, 298.)

Calcium potassium dimetaphosphate,  $CaK_{2}(P_{2}O_{6})_{2}+4H_{2}O.$ 

As Bak comp. (Glatzel, Dissert. 1880.)

Calcium potassium orthophosphate, CaKPO₄. Insol. in H₂O. (Rose, Pogg. 77. 291.) Easily sol. in acids. (Ouvrard, A. ch. (6) **16.** 308.)

Calcium potassium pyrophosphate, CaK₂P₂O₇. Insol. in H₂O; easily sol, in dil. acids. (Ouvrard, C. R. **106**. 1599.)

Calcium sodium dimetaphosphate,  $CaNa_2(P_2O_6)_2 + 4H_2O$ . As BaNa comp. (Glatzel.)

Calcium sodium trimetaphosphate,  $CaNaP_3O_9 + 3H_2O$ .

Sl. sol. in H₂O. (Fleitmann, A. 65. 315.) Easily sol. in H2O. Difficultly sol. in HCl+ Aq when heated to redness. Easily sol. in boiling HCl+Aq after being fused. (Lind-

Calcium sodium orthophosphate, CaNaPO₄.

Insol. in H₂O. (Rose, Pogg. 77, 292.) Easily sol. in dil. acids. (Ouvrard, A. ch. (6) **16.** 308.)

3CaO, 3Na₂O, 2P₂O₅. Sol. in dil. acids. (Ouvrard, C. R. 1888, **106**. 1599.)

Calcium sodium pyrophosphate, CaNa₂P₂O₇

+4H₂O₁

Insol. in Na₂P₂O₇+Aq. Easily sol. in HCl+Aq, HNO₃+Aq, and also in HC₂H₃O₂
+Aq. (Baer; Pogg. 75. 159.)

Ca₁₀Na₁₆(P₂O₇)₀. Sol. in acids. (Wallroth, Bull. Soc. (2) 39. 316.)

3CaO, 3Na₂O, 2P₂O₅. Easily sol. in acids. (Ouvrard, A. ch. (6) 16. 307.)

Calcium thorium metaphosphate, ThO2, CaO, P2O5.

(Colani, C. R. 1909, 149, 209.)

Calcium uranous metaphosphate, UO₂, CaO, P2O5.

Insol. in acids. (Colani, A. ch. 1907, (8) **12.** 140.)

Calcium uranyl phosphate,  $Ca(UO_2)H_2(PO_4)_2$ +2, 3, or 4H₂O.

Sol. in  $HNO_3+Aq$ . (Debray.)  $Ca(UO_2)_2(PO_4)_2+8H_2O$ . Min. Uranite. Sol. in HNO₃+Aq.

3CaO, 5UO₃, 2P₂O₅+16H₂O. (Blinkoff, Dissert. 1900.)

Calcium phosphate chloride,  $Ca_3(PO_4)_2$ ,  $CaCl_2$ . (Deville and Caron, A. ch. (3) 67. 458.)

3Ca₃(PO₄)₂, CaCl₂. Chlorapatite. Insol. in H₂O. (Daubrée, Ann. Min. (4) 19. 684.)  $7CaH_4(PO_4)_2$ ,  $CaCl_2+14H_2O$ .

HCl+Aq.

4CaH₄(PO₄)₂, CaCl₂+8H₂O. CaH₄(PO₄)₂, CaCl₂+2H₂O. Partly sol. in H₂O with decomp. Also with 8H₂O. (Erlenmeyer, J. B. **1857.** 145.)

### Calcium phosphate chloride fluoride, 3Ca₃(PO₄)₂, CaClF.

Min. A patite. Boiling H₂O dissolves out CaCl2; dil. mineral acids dissolve easily, acetic acid with more difficulty. Easily soluble in molten NaCl, crystallizing on cooling. (Forchhammer.)

Calcium phosphate silicate,  $Ca_3(PO_4)_2$ , Ca₂SiO₄.

Insol. in H₂O; decomp. by HCl+Aq. (Carnot and Richard, C. R. 97. 316.) 4Ca₃(PO₄)₂, Ca₈SiO₅. (Bücking and Linck,

C. C. 1887. 562.)
4Ca₃(PO₄)₂, 3Ca₃SiO₅. (B. and L.) Ca(PO₃)₂, CaSiO₃. (Stead and Ridsdate, Chem. Soc. **51**. 601.)

Calcium dihydrogen phosphate sulphite,  $CaH_2(PO_4)_2$ ,  $CaSO_3+H_2O$ .

Not decomp, by cold, slowly by boiling H₂O. Slightly sol. in NH₄OH+Aq. Sol. in mineral acids. Insol. in cold, slowly sol. in boiling acetic acid. More sol, in a solution of oxalic acid. (Gerland, C. N. 20. 268.)

Cerous metaphosphate, Ce(PO₃)₃. (Rammelsberg.)

Ce₂O₃, 5P₂O₅. Insol. in HO or acids. (Johnsson, B. 22, 976.)

Cerous orthophosphate, CePO4.

Insol. in H₂O. Easily sol in acids. (Grandeau, A. ch. (6) 8. 193.) Insol. in acids. (Hartley, Proc. Roy. Soc.

41. 202.) +2H₂O. Insol. in H₂O. Sol. in acids. (Jolin.)

Insol. in H₃PO₄+Aq; sl. sol. in HCl or HNO₃+Aq. (Hisinger.)

Insol. in HNO₈+Aq. (Boussingault, A. ch. (5) 5. 178.)

Min. Cryptolite. Completely decomp. by H₂SO₄ when finely powdered. Insol. in dil.  $HNO_3 + Aq.$ 

Ceric orthophosphate, 4CeO₂, 6P₂O₅+26H₂O. Ppt. (Hartley, Proc. Roy. Soc. 41, 202.)

Cerous pyrophosphate,  $Ce_2H_2(P_2O_7)_6+6H_2O$ .

Sol. in cerous nitrate+Aq.  $Ce_4(P_2O_7)_8 + 12H_2O_1$ Sol. in excess of sodium pyrophosphate+Aq. Easily sol. in HCl. (Rosenheim, B. 1915, 48. 592.)

Cerous lanthanum thorium phosphate, (Ce, La, Th)₂(PO₄)₂.

Min. Monazite. Sol. in HCl+Aq with white residue.

Cerous potassium orthophosphate, 2Ce₂O₃,  $3K_2O_1$ ,  $3P_2O_5 = 2CePO_4$ ,  $K_3PO_4$ .

Insol. in H₂O; sol. in acids. (Ouvrard, C. R. 107. 37.)

Cerous sodium orthophosphate, Ce₂O₃, 3Na₂O,  $2P_2O_5 = CePO_4$ , Na₃PO₄.

Insol. in H₂O. (Ouvrard, C. R. 107. 37.)

Cerous sodium pyrophosphate, CeNaP₂O₇.

Insol. in acetic, and cold dil. mineral acids. Sol. in warm acids. (Wallroth.)

Chromous phosphate,  $Cr_3(PO_4)_2$ .

Insol. in H₂O. Easily sol. in citric, tartaric and acetic acids. Sl. sol. in H₂CO₃+Aq. (Moissan, A. ch. 1882, (5) **25.** 415.) +H₂O. Precipitate. Easily sol. in acids. (Moberg; Moissan, A. ch. (5) 21. 199.)

Chromic metaphosphate, Cr₂(PO₃)₆.

Insol. in H₂O or conc. acids. (Maddrell, A. **61**. 53.)

Chromic orthophosphate, CrPO₄.

Hydrolyzed by hot H₂O. Somewhat sol. in NH₄OH+Aq and in Cr₂(SO₄)₃+Aq. (Caven, J. Soc. Chem. Ind. 1897, **16.** 29.) Insol. in methyl acetate. (Naumann, B. | HCl+Aq. (Maddrell, A. 58. 61.)

1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Chromic phosphate,  $Cr_2(PQ_2 + 12H_2O)$ .

Violet modification. Precipitate. (Ram-

melsberg, Pogg. 68. 383.) Green modification. sol. in H₂O and still less in NH₄NO₂ or NH₄C₂H₈O₂-Aq. (Carnot, C. R. 94. 1313.) Insol. in acetic, but easily sol. in mineral acids. Easily sol, in cold KOH or NaOH+ Aq, from which it is reparated on boiling. (Dowling and Plunkett, Chem. Gaz. 1858. *22*0.)

Chromic hydrogen phosphate, Cr₂H₆(PO₄)₄+ 16H₂O.

Sol. in H₂O. (Haushofer.)

Chromic pyrophosphate, Cr₄(P₂O₇)₃.

Anhydrous. Insol. in H2O or acids. (Ouvrard, A. ch. (6) 16. 344.)

 $+7H_2O$ . Precipitate. Sol. in strong mineral acids, SO₂+Aq, KOH+Aq, and Na₄P₂O₇+Aq. (Schwarzenberg, A. 65. 149.) Insol. in Na₄P₂O₇+Aq. (Stromeyer.)

Chromic potassium phosphate, Cr₂O₃, K₂O₄ 2P₂O₅.

Insol. in H₂O and in acids. (Ouvrard, A. ch. (6) **16.** 289.)

Chromic potassium pyrophosphate,  $K(CrP_2O_7) + 5H_2O$ .

Sl. sol. in cold H₂O. Decomp. by boiling H₂O. (Rosenheim, B. 1915, **48.** 586.)

Cr₂K₂H₄(P₂O₇)₃. Insol. in H₂O, acids, or alkalies. Sl. decomp. by boiling conc. H₂SO₄. (Schjerning, J. pr. (2) 45. 515.)

Chromic silver phosphate, 2Cr₂O₈, 2Ag₂O, 5P₂O₅.

(Hautefeuille and Margottet, C. R. 96. 1142.)

Chromic sodium orthophosphate, Na₂HPO₄,  $2CrPO_4 + 5H_2O$ .

Decomp. by H₂O. (Cohen, J. Am. Chem. Soc. 1907, **29**. 1197.)

Chromic sodium pyrophosphate,  $\operatorname{Cr_2Na_2}(\operatorname{P_2O_7})_2$ .

Insol. in acids. (Wallroth, Bull. Soc. (2) 39. 316.)

+10H₂O, and 16H₂O. Sl. sol. in cold H₂O. Decomp. by boiling H₂O. (Rosenheim, B. 1915, 48. 586.)

Cobaltous monometaphosphate, Co(PO₃)₂(?). Insol. in H₂O and dil. acids. Sol. in conc.

### Cobaltous dimetaphosphate, Co₂(P₂O₆)₂.

Insol. in cold conc. H2SO4; sl. sol. on warming, but sol. in H₂O after treating with H₂SO₄. Sol. in conc. NH₄OH+Aq. Scarcely attacked by boiling Na₂S+Aq. (Fleitmann.)

### Cobaltous hexametaphosphate (?).

Ppt. Sol. in sodium hexametaphosphate+ Aq. (Rose, Pogg. 76. 4.)

### Cobaltous orthophosphate, Co₃(PO₄)₂+ $xH_2O$ .

Sol, in  $H_3PO_4+Aq$  or  $NH_4OH+Aq$ ; sl. sol. in NH₄Cl or NH₄NO₃+Aq. (Salvetat, C. R. 48. 295.) Sol, in Co salts+Aq. +2H₂O. (Debray, A. ch. (3) 61. 438.) +8H₂O. (Reynoso, C. R. 34. 795.)

### Cobaltous hydrogen orthophosphate, $CoHPO_4+1\frac{7}{2}H_2O$ .

Ppt. (Debray.)

 $+2\frac{1}{2}H_2O$ . Ppt. Insol. in  $H_2O$ . Sol. in H₃PO₄+Aq. (Bödeker, A. 94. 357.)

### Cobaltous tetrahydrogen orthophosphate. $CoH_4(PO_4)_2$ .

Sol. in H₂O. (Reynoso.)

### Cobaltous pyrophosphate.

Ppt. Sol. in Na₄P₂O₇+Aq. (Stromeyer.) Sol. in NH₄OH+Aq. (Schwarzenberg.)

## Cobaltous pyrometaphosphate, 3CoO, 2P₂O₅. (Braun.)

6CoO, 5P₂O₅. (Braun.)

# Cobaltous potassium phosphate, CoKPO₄. Insol. in H₂O; easily sol. in dil. acids. (Ouvrard, C. R. 106, 1729.)

3CoO, 3K₂O, 2P₂O₅. As above.

### Cobaltous sodium triphosphate, NaCo₂P₃O₁₀. (Schwarz, Z. anorg. 1895, 9. 260.)

 $Na_8CoP_8O_{10}+12H_2O$ . Very sol. in  $H_2O$ ; ecomp. in aq. solution. Sol. in acids. decomp. in aq. solution. (Schwarz, Z. anorg. 1895, 9. 258.)

### Cobaltous sodium metaphosphate, $\text{Co}_3\text{Na}_2(\text{PO}_3)_8$ .

Insol. in H₂O or acids, even conc. H₂SO₄. (Watts' Dict.)

### Cobaltous sodium monometaphosphate, 6Co(PO₃)₂, 2NaPO₃.

Insol. in H₂O and dil. acids. Sol. in conc. H₂SO₄. (Maddrell, A. 61. 57.)

### Cobaltous sodium trimetaphosphate. $CoNa_4(PO_3)_3 + 8H_2O$ .

Sol. in H2O. (Fleitmann and Henneberg, A. **65.** 315.)

Cobaltous sodium orthophosphate, CoNaPO₄. Insol. in H₂O. (Ouvrard, C. R. 106. 1729.) Co₃(PO₄)₂, 2Na₂HPO₄+8H₂O. (Debray, J. Pharm. (3) **46**. 119.)

### Cobaltous sodium pyrophosphate,

Co10Na16(P2O7)9.

Insol. in H₂O. Sol. in acids. (Wallroth.)  $+xH_2O$ . Sol. in  $H_2O$ . (Stromeyer.)

### Cobaltous zinc phosphate, Co₃(PO₄)₂, $3Zn_3(PO_4)_2 + 12H_2O$ .

Ppt. Sol, in acids. (Gentele.) CoZn₂(PO₄)₂+6H₂O. Insol. in H₂O.

### Columbium phosphate (?)

Insol. in H₂O. (Blomstrand.)

### Cupric dimetaphosphate, $Cu_2(P_2O_6)_2$ .

Insol, in H₂O. Sol, in conc. H₂SO₄. (Maddrell, A. 61. 62.) Insol. in most conc. acids and in alkalies, except hot NH4OH+Aq or cone. H₂SO₄, in which it is moderately sol.

Not decomp, by  $H_2S$ , but by  $(NH_4)_2S + Aq$ , less easily by Na₂S, and K₂S+Aq. (Fleitmann, Pogg. **78**. 242.)

+8H₂O. Completely insol. in H₂O. (Fleitmann.)

#### Cupric hexametaphosphate (?).

Sol. in  $Na_6P_6O_{18}+Aq$  or  $CuCl_2+Aq$ . (Rose, Pogg. 76. 5.)

Cu₃P₆O₁₈. Easily sol. in H₂O or acids, especially when freshly pptd. (Lüdert, Z. anorg. **5.** 15.)

### Cupric orthophosphate, basic, 6CuO, P₂O₅+ 3H₂O.

Min. Phosphocalcite. 5CuO, P₂O₅+2H₂O.

Min. Dihydrite. +3H₂O. Min. Ehlite. Easily sol. in NH₄OH+Aq, and HNO₈+Aq.

4 CuO, P₂O₅+H₂O. Slowly sol. in NH₄OH or (NH₄)₂CO₃+Aq; insol. in cold Na₂S₂O₃+

Aq. (Steinschneider, C. C. 1891, II. 51.) Sl. sol. in CuCl₂+Aq and CaSO₄+Aq Decomp. by boiling H₂O and boiling Aq potash. (Caven, J. Soc. Chem. Ind. 1897, (Steinschneider, C. C. 1891, II. 51.)

**16.** 29.) Min. Sol. in acids and Libethenite.

NH₄OH +Aq. ±2H₂O. Min. Pseudolibethenite. acids and NH4OH+Aq.

+3H₂O. Min. Tagilite. Sol. in acids and  $NH_4OH + Aq.$ 

### Cupric triphosphate, 5CuO, $3P_2O_5 + 13H_2O$ . Sol. in H₂O. Sol. in HNO₈. (Schwarz, Z. anorg. 1895, 9, 262.)

Cupric dimetaphosphate, CuP₂O₆+4H₂O.

Sol. in 78 pts. H₂O. Easily decomp. by hot conc. H₂SO₄. (Glatzel, Dissert. **1880.**)

Cupric trimetaphosphate,  $Cu_3(P_3O_9)_2+9H_2O$ . Very sl. sol. in  $H_2O$  (0.04 g. in 1 l. at 20°). (Tammann, J. pr. 1892, (2) **45**. 425.)

Cupric tetrametaphosphate, Cu₂P₄O₁₂.

Insol. in  $H_2O$  and in HCl.~Sl.~sol. in boiling  $HNO_3.~Very~sol.$  in boiling conc.  $H_2SO_4.$  (Glatzel.)

+8H₂O. Nearly insol. in H₂O. Slowly attacked by acids except conc. H₂SO₄.

(Glatzel.)

Cupric orthophosphate, Cu₃(PO₄)₂+3H₂O.
Insol. in H₂O; easily sol. in acids, even H₃PO₄, HC₂H₃O₂, or H₂SO₃+Aq. Sol in NH₄OH+Aq. Sl. sol. in NH₄ salts+Aq. Sl. sol. in Cu salts+Aq. (Rose, Pogg. 76. 25.)

Sol. in cold Na₂S₂O₃+Aq. (Steinschneider, C. C. **1891**, II, 51.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 827.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**, 3790.)

Cupric hydrogen phosphate, CuHPO₄+ 1½H₂O(?).

Insol. in  $H_2O$ ; sol. in  $H_3PO_4+Aq$ , and  $HC_2H_3O_2+Aq$ . Insol. in  $NH_4Cl$ , and  $NH_4NO_3+Aq$ . (Brett, Phil. Mag. (3) 10. 98.)

 $\begin{array}{cccc} \textbf{Cupric} & \textit{pyrophosphate,} & \textbf{basic,} & Cu_2P_2O_7, \\ \textbf{2CuO,} & H_2O + 3H_2O. \\ & \textbf{Insol. in } H_2O. & (Pahl, J. B. \textbf{1873.} 229.) \end{array}$ 

Cupric pyrophosphate, Cu₂P₂O₇.

Anhydrous. Insol. in  $H_2O$ , and very sl. sol. in conc. acids. (Fleitmann, Pogg. 78. 244.)

As insol. as Cu metaphosphate, but decomp. by H₂S. (Rose, Pogg. **76.** 14.)

+2H₂O. Sol. in mineral acids, and NH₄OH +Aq; also in Na₄F₂O₇+Aq. (Schwarzenberg, A. **65**. 156.)

Sol. in cold  $H_2SO_3+Aq$  without decomp., crystallizing out on boiling.

Decomp. by boiling KOH+Aq.

Sol. in large excess of CuSO₄+Aq.
+2½H₂O. (Pahl, Sv. V. A. F. **30, 7.** 40.)
+5H₂O. Very sl. sol. in H₂O.
Sol. in dil. acids. (Wiesler, Z. anorg. 1901, **28**. 202.)

Cupric iron (ferric) pyrophosphate, Cu₃Fe₂(P₂O₇)₃+12H₂O.

Ppt. (Pascal, C. R. 1908, **146.** 233.)

Cupric potassium phosphate, 4CuO,  $K_2O$ ,  $3P_2O_6$ .

Insol. in H₂O. (Ouvrard, C. R. **111**. 177.) CuKPO₄. As above. Cupric potassium tetrametaphosphate, K₂CuP₄O₁₂+4H₂O

Sol. in 58 pts.  $H_2O$ . Easily attacked by acids. (Glatzel, Dissert. 1880.)

Capric potassium pyrophosphate, CuK₂P₂O₇. Extremely easily sol. in H₂O. (Persoz, A. ch. (3) **20.** 315.)

Cu₂P₂O₁, 3K₄P₂O₇+4l₁₂O. Insol. in H₂O. (Pahl, Sv. V. A. F. **30**, 7. **44**.)

Cupric sodium phosphate, Cu₃N_{a6}(PO₄).

Insol. in HC₂H₃O₂+Aq. Soi. in conc. acids. (Wallroth, Bull. Soc. (2) 39. 316.)

Cupric sodium triphosphate, CuNa₅P₃O₁₀+12H₂O.

Sl. sol. in  $H_2O$ ; very unstable. Easily sol. in acids. (Stange, Z. anorg. 1896) 12, 458.

Cupric sodium tetrametaphosphate, CuNa₂P₄O₁₂.

As insol. in H₂O as Cu dimetaphosphate. Difficultly decomp, by digestion with Na₂S+Aq. (Fleitmann, Pogg. **78.** 355.) +4H₂O. Sol. in 45 pts. H₂O. (Glatzel, Dissert. **1880.**)

Cupric sodium orthophosphate, 3Cu₃(PO₄)₂, NaH₂PO₄.

Decomp. by H₂O to 4CuO, P₂O₅. (Steinschneider, C. C. **1891**, II. 52.)

2Cu₃(PO₄)₂, Na₂HPO₄. Decomp. by H₂O into—

 $3Cu_3(PO_4)_2$ ,  $Na_2HPO_4$ . Decomp. by  $H_2O$ . (S.)  $Cu_3(PO_4)_2$ ,  $NaH_2PO_4$ . Decomp. by  $H_2O$ .

 $^{\mathrm{(S,)}}_{6\mathrm{Cu}_3(\mathrm{PO}_4)_2}$ ,  $2\mathrm{Na}_3\mathrm{PO}_4$ . Decomp. by  $\mathrm{H}_2\mathrm{O}$ .  $^{\mathrm{(S,)}}$ 

Cupric sodium pyrophosphate, CuNa₂P₂O₇.

Insol. in H₂O. (Fleitmann and Henneberg, A. 65, 387.)

+2/3H2O. (F. and H.) Much more sol. than the next salt. (Pahl.)

+6H₂O. (Persoz, A. ch. (3) **20.** 315.) Cu₂P₂O₇, CuNa₂P₂O₇+3½H₂O. Very ef-

florescent; insol. in H₂O. (F. and H.) +10½H₂O. (Pahl, Sv. V. A. F. **30, 7. 42.** CuNa₂P₂O₇, Na₄P₂O₇. Sol. in H₂O. (F.

and H.) +2H₂O. (F. amd H.)

+12, and 16H₂O. Very efflorescent, and sol. in H₂O. (Pahl.)

 $Cu_3Na_2P_4O_{14}+10H_2O$ . Insol. in  $H_2O$ ; sol. in HCl and HNO₃ even after heating. (Stange, Z. anorg. 1896, **12.** 456.)

Cupric uranyl phosphate,  $(UO_2)_2Cu(PO_4)_2+8H_2O$ .

Insol, in H₂O; easily sol, in acids. (Debray.)

Min. Chalcolite. Sol. in HNO₃+Aq.

Cupric orthophosphate ammonia, Cu₃(PO₄)₂,

Sl. sol, in H₂O. Easily sol, in H₂O contain-

ing NH₄OH. (Schiff, A. 123. 41.)

2CuO, 3P₂O₅, 20NH₃+21H₂O. Easily sol. in cold H₂O, with subsequent decomp. (Metzner, A. 149. 66.)

2CuO, P₂O₅, 6NH₃. (Maumené.)

Cupric pyrophosphate ammonia, 8CuO,  $P_2O_5$ ,  $4NH_3+4H_2O$ .

Sl. sol. in H₂O. (Schwarzenberg, A. 65. 133.)

 $Cu_2P_2O_7$ ,  $4NH_3+H_2O$ . Sl. sol. in  $H_2O$ . (Schiff, A. 123, 1.)

Didymium metophosphate, Di(PO₃)₃. Precipitate. (Smith.)  $Di_2O_3$ ,  $5P_2O_5$ . Insol. in  $H_2O$ . (Cleve.)

Didymium phosphate, 2Di₂O₃, 3P₂O₅. Insol. in H₂O. (Ouvrard, C. R. 107. 37.)

Didymium orthophosphate, DiPO₄.

Insol, in H₂O. Very sl. sol, in dil., easily sol. in conc. acids. (Marignac.) Insol. in H₂O. (Wallroth, Bull. Soc. (2) 39. 316.) (Frerichs and Smith, A. 191.  $+H_2O$ . 355.)

Didymium trihydrogen phosphate,  $Di_2H_8(PO_4)_3$ .

Precipitate. (Frerichs and Smith.) Existence is doubtful. (Cleve, B. 12. 910.)

Didymium hexahydrogen phosphate,  $DiH_3(PO_4)_2 + H_2O$ . Precipitate. (Hermann.)

**Didymium** pyrophosphate,  $Di_4(P_2O_7)_3$ + 6H₂O.

Precipitate. (Cleve.)

Didymium hydrogen pyrophosphate,  $Di_2H_6(P_2O_7)_3$ .

Precipitate. Sol. in disodium pyrophos-(Frerichs and Smith, A. 191. phate+Aq.

Does not exist. (Cleve.)

Didymium potassium phosphate, 2Di₂O₃,  $3K_2O_1$ ,  $3P_2O_5 = 2DiPO_4$ ,  $K_8PO_4$ . Insol. in H₂O. (Ouvrard, C. R. 107. 37.)

Didymium sodium orthophosphate, Di₂O₃,  $3Na_2O_1$ ,  $2P_2O_5 = DiPO_4$ ,  $Na_3PO_4$ . Insol. in H₂O. (Ouvrard.)

Didymium sodium pyrophosphate, Di₂O₃,  $Na_2O$ ,  $2P_2O_5 = DiNaP_2O_7$ . Insol. in H₂O. (Ouvrard, C. R. 107. 37.) Dysprosium orthophosphate, DyPO4+5H2O. Nearly insol. in H₂O.

Easily sol. in dil. acids or acetic acid. (Jantsch, B. 1911, 44. 1276.)

Erbium phosphate, ErPO₄+H₂O. Precipitate.

Erbium pyrophosphate,  $ErHP_2O_7 + 3\frac{1}{2}H_2O$ . Scarcely sol. in boiling H₂O. Slowly sol. in acids.

Erbium sodium pyrophosphate, ErNaP₂O₇. Precipitate. (Wallroth.)

Glucinum metaphosphate, Gl(PO₃)₂. Insol, in H₂O and acids. (Blever, Z. anorg. 1912, **79.** 274.

Glucinum orthophosphate, basic. 2Gl₈P₂O₈, GlO + 13H₂O. Ppt. (Bleyer, Z. anorg. 1912, 79. 268.)

Glucinum orthophosphate,  $Gl_3(PO_4)_2 + 6H_2O$ . Precipitate. Insol. in H₂O. Sol. in acids. (Atterberg, Sv. V. A. Handl. **12**, **5**. 33.) 1 l. 2% HC₂H₃O₂+Aq dissolves 0.55 g. of the anhydrous salt; 1 l. 10% HC₂H₃O₂+Aq dissolves 1.725 g. (Sestini, Gazz. ch. it. 20. 313.) +7H₂O. (Atterberg.)

Glucinum hydrogen orthophosphate, GlHPO4 +3H₂O.

GlH₄(PO₄)₂ hydroscopic. (Bleyer, Z. anorg. 1912, 79. 266.) Precipitated by alcohol. (Atterberg.)

Glucinum phosphate, 5GlO, 2P₂O₅+8H₂O. Ppt. Sol. in H₂O with decomp. (Scheffer.) 3GlO, P₂O₅, 3H₂O+H₂O. (Sestini, Gazz. ch. it. 20. 313.)

Glucinum pyrophosphate, Gl₂P₂O₇+5H₂O. Precipitate. (Scheffer.) Sol. in Na₄P₂O₇+Aq. (Stromeyer.)

Glucinum potassium phosphate, GlKPO₄. Insol. in H₂O. (Ouvrard, C. R. 110. 1333.)

Glucinum sodium phosphate, GlNaPO₄. Sl. sol. in cold, easily sol. in hot acids. (Wallroth.) Insol. in acetic acid. Min. Beryllonite. GlO, 2Na₂O, P₂O₅. rard, C. R. **110**. 1333.) Insol. in H₂O. (Ouv-

Gold (Auric) sodium pyrophosphate (?),  $Au_4(P_2O_7)_3$ ,  $2Na_4P_2O_7 + H_2O$ . Sol. in H₂O. (Persoz.)

Gold sodium pyrophosphate, ammonia,  $14\text{Au}_2\text{O}_3$ ,  $6\text{P}_2\text{O}_5$ ,  $3\text{Na}_2\text{O}$ ,  $14\text{NH}_3 + 24\text{H}_2\text{O}$ . Insol. in H₂O. (Gibbs, Am. Ch. J. 1895,

**17.** 172.) Iron (ferrous) trimetaphosphate, Fe(P₃()₃)₃+

Rather sl. sol. in cold, more easily in hot H₂O. After ignition sol. in HCl+Aq only after long boiling. (Lindbom, Acta Lund. **1873.** 17.)

### Ferrous hexametaphosphate, Fe₃P₆O₁₆.

12H₂O.

When freshly pptd, is sol, in H₂O, and very sol. in least traces of acids, or Na₆P₆O₁₈ + Aq. (Lüdert, Z. anorg. 5. 15.)

Ferrous phosphate, basic, 7FeO, 2P₂O₅+ 9H₂O.

Sol, in dil. HoSO4 or Min. Ludlamite. HCl+Aq. Decomp. by boiling KOH or NaOH + Aq.

### Ferrous orthophosphate, Fe₃(PO₄)₂.

Insol. in H2O; sol. in acids.

Sol. in 1000 pts. H₂O containing more than 1 vol. CO₂. (Pierre.)

Sol. in an excess of ferrous salts+Aq. Sol. in 560 pts.  $H_2O$  containing  $\frac{1}{660}$  pt. HC₂H₃O₂. Sol. in 1666 pts. H₂O containing 150 pts. NH₄C₂H₃O₂. (Pierre, A. ch. (3) 36.

78.) Sol. in NH₄ salts+Aq.

Sol. in NH₄OH+Aq. Not pptd. in presence of Na citrate.

Insol. in acetone. (Naumann, B. 1904, 37.

 $+H_2O$ . (Debray, A. ch. (3) **61.** 437.) Min. Vivianite.  $+8H_2O$ . Easily sol. in HCl or HNO₃+Aq. Boiling KOH+Aq dissolves out phosphoric acid. Sol. in cold citric acid+Aq. (Bolton, C. N. 37. 14.)

Insol. in H₂O. Sol. in acids. (Evans, C. C. **1897,** I. 580.)

Ferrous hydrogen orthophosphate, FeHPO₄+

Ppt. (Debray, A. ch. (3) **61.** 437.) Is impure Fe₃(PO₄)₂. (Erlennieyer and Heinrichs, A. 194. 176.)

### Ferrous tetrahydrogen orthophosphate, $\text{FeH}_4(\text{PO}_4)_2 + \text{H}_2\text{O}$ .

Easily sol. in H₂O. Not changed by alcohol. (Erlenmeyer and Heinrichs, A. 194. 176.)

### Ferrous pyrophosphate.

Ppt. Sol. in an excess of Na₄P₂O₇ or FeSO₄ +Aq. (Schwarzenberg, A. 65. 153.)

Ferric metaphosphate, Fe₃(PO₃)₆ or Fe(PO₃)₃. Insol. in H₂O or dil. acids. Sol. in conc. 1.09); citric acid +Aq (\( \frac{1}{2}\)% citric acid) dis-H₂SO₄. (Maddrell, Phil. Mag. (3) **30.** 322.) solves 17.5% of the P₂O₅. (Erlenmeyer, l.,c.)

Iron (ferric) orthophosphate, basic, 2Fe₂O₃,  $P_2O_5+xH_2O.$ 

Insol. in NH4 citrate, sol. in NH4 tartrate +Aq. (Wittstein.)

 $+3H_2O$ . Min. Krauri'e. Easily sol. in HCi+Aq.

Ppt. (Millot, C. R. 82. 89.) Min. Dufrewite. +4H₂O.

+5H₂O.

+12H₂O. Min. Cacqxone. Sol. in HCl+ Aq.

+18, or 24H₂O. Min. Delvauxite.

5Fe₂O₃, 3P₂O₃+14F₂O. Mir. Beraunite. Sol. in HCi+Aq. 3Fe₂O₃, 2P₂O₅+8H₂O. Min. Eleonorite, Sol. in HCl+Aq.

Ferric orthophosphate, Fe₂, PO₄)₂+xH₂O, or  $2 \text{Fe}_2 \text{O}_3$ ,  $3 \text{P}_2 \text{O}_5 + x \text{H}_2 \text{O}_5$ 

+4, or 8H₂O. (Pptd. ferric phosphate.) Insol. in H₂O. Sol. in 1500 pts. boiling H₂O. (Bergmann, 1315.) Soil in pure H₂O when all traces of soluble salts are absent. (Fresenius.) Very sl. sol. in, but decomp. by H₂O. (Lachowicz, W. A. B. 101, 2b. 374.) For an extended discussion of solubility in and decomposition by H2O and effect of salts see Cameron and Hurst, (J. Am. Chem. Soc. 1904, **26** 888.)

Easily sol, in dil. mineral acids, excepting H₃PO, +Aq. Insol. in cold HC₂H₃O₂+Aq. (Wittstein.) 100 ccm. cold H₂O containing 10% HC2H3O2 dissolve 0.007 g. salt. (Sestini, Gazz. ch. it. 5. 252.) When freshly pptd. easily sol. in  $H_2SO_3+Aq$ , or  $(NH_4)_2SO_2+Aq$ . (Berthier.) Easily sol. in tartaric or citric acid+Aq, also in NH4 salts of those acids. and Na citrate+Aq. (Heydenreich, C. N. 4. 158.) See below.

Sol. in 12,500 pts. H2O sat. with CO2.

(Pierre, A. ch. (3) **36.** 78.) Insol. in NH₄ salts+Aq. (Wittstein.) Sol. in NH4OH+Aq in presence of Na2HPO4; insol in hot Na₂HPO₄+Aq; sol. in (NH₄)₂CO₃+Aq (Berzelius). NH₄OH, KOH, or NaOH+Aq dissolve out H₃PO₄.

Sol. in ferric salts + Aq. even ferric acetate.

but insol. in ferrous acetate+Aq.

Partially sol. in large amt. of Na₂CO₃+Aq. Not pptd. in presence of Na citrate. (Spiller.) Arth (Bull. Soc. (3) 2. 324) obtained a modification of Fe₂(PO₄)₂, insol. in HNO₃+ Aq, but sol. in hot conc. HCl+Aq.

+4H₂O. Min. Strengite. Easily sol, in

HCl+Aq; insol. in HNO₃+Aq.

+5H₂O. Only sl. sol. in H₂O. Slowly sol. in HNO3, easily sol. in HCl. (Weinland, Z. anorg. 1913, 84. 361.)

Diammonium citrate +Aq dissolves 4.8% of the P₂O₅; triammonium citrate, 5.8% P₂O₅; and with an excess of NH₄OH, 21.2% P₂O₅ is dissolved. (Erlenmeyer, B. 14. 1253.)

+9H₂O. Dissolves in 35 min. in diammonium citrate +Aq (sp. gr. 1.09); in 55 min. in triammonium citrate +Aq (sp. gr. Iron (ferric) phosphate, acid, 8Fe₂O₅, 9P₂O₅ Iron (ferrous) manganous phosphate, +3H₂O.

Insol. in H₂O. (Rümpler, Z. anal. 12. 151.) 6Fe₂O₃, 7P₂O₅+3H₂O.

 $4\text{Fe}_2\text{O}_3$ ,  $5\text{P}_2\text{O}_5 + 3\text{H}_2\text{O}$ .

 $2\text{Fe}_2\text{O}_3$ ,  $3\text{P}_2\text{O}_5 + 8\text{H}_2\text{O}$ . Ppt. Decomp. by H₂O finally into Fe₂(PO₄)₂. (Erlenmeyer and Heinrich, A. 194. 176.)

 $8Fe_2O_3$ ,  $11P_2O_5 + 9H_2O$ . As above. (E. and H.)

 $4\text{Fe}_2\text{O}_3$ ,  $7\text{P}_2\text{O}_5 + 9\text{H}_2\text{O}$ . As above. (E. and H.)

 $fe_2O_3$ ,  $2P_2O_5 + 8H_2O$ . Insol. in H₂O or HC2H3O2+Aq; sol. in NH4 citrate, alkali hydrates, or carbonates+Aq. (Winkler.) Slowly decomp. by H₂O. (E. and H.)

 $+10H_2O$ . (Waine, C. N. 36. 132.)  $2Fe_2O_3$ ,  $5P_2O_5+17H_2O$ .

Fe₂O₃,  $3P_2O_5+6H_2O = FeH_c(PO_4)_3$ . Deliquescent. Insol. in  $H_2O$ , but decomp. into  $\hat{F}e_2(PO_4)_2$ . (E. and H.)

-4H₂O. (Hautefeuille and Margottet, C. R. 106. 135.)

Ferric pyrophosphate,  $Fe_4(P_2O_7)_3$ .

Two modifications.—(a) Sol. in acids, Na₄P₂O₇+Aq, FeCl₃+Aq, NH₄OH+Aq, and in  $(NH_4)_2CO_3+Aq$ .

Insol. in acetic, sulphurous acid, or NH₄Cl +Aq. Sol. in NH₄ citrate +Aq. (Schwarzen-

berg, A. 65. 153.)
(b) Insol. in dil. acids, Na₄P₂O₇+Aq, FeCl₃ +Aq. Sol. in  $NH_4OH+Aq$ . (Gladstone, Chem. Soc. (2) **5.** 435.)

### Solubility of $Fe_4(P_2O_7)_3$ in $NH_4OH + Ag$ at $0^\circ$ .

100 g. sat. sc	lution contain	100 g. sat. solution contain		
G. NH ₃	G. Fe ₄ (P ₂ () ₇ ) ₈	G. NH ₃	G. Fe ₄ (P ₂ O ₇ ) ₃	
0.884 1.59 3.71 4.72 5.93 7.91	5.606 9.75 14.85 15.94 13.92 14.61	5.92 8.26 10.55 15.96 18.83	14.71 13.89 7.40 2.52 0.445	

(Pascal, A. ch. 1909, (8) **16.** 374.)

Insol. in acetone. (Krug and M'Elroy, J. Anal. Appl. Ch. 6. 184.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

Ferroferric orthophosphate, 2Fe₃(PO₄)₂,  $3(\text{Fe}_2\text{O}_3, 2\text{P}_2\text{O}_5) + 16\text{H}_2\text{O}$ .

Ppt. Sol. in HCl+Aq. (Rammelsberg.)  $4Fe_2O_8$ , 6FeO,  $5P_2O_5+40H_2O$ . Sol. in 40 min. in diammonium citrate+Aq (sp. gr. = 1.09); triammonium citrate+Aq (sp. gr.= 1.09) dissolves 55.7% of the  $P_2O_5$ . (Erlenmeyer, B. 14. 1253.)

Ferrous lithium phosphate, Li₃PO₄, Fe₃(PO₄)₂. Min. Triphylline. Easily sol. in acids; not wholly decomp. by KOH + Aq.

 $Fe_8(PO_4)_2$ ,  $Mn_8(PO_4)_2$ .

Min. Triplite. Easily sol. in HCl+Aq. 5(Mn,Fe)O, 2P₂O₅+5H₂O. Min. H Min. Hureaulite. Sol. in acids.

Ferric manganous sodium phosphate,  $FePO_4$ ,  $(Na_2,Mn)_3PO_4 + \frac{1}{2}H_2O$ .

Min.—(?).

Ferrous manganous phosphate chloride,  $3(Mn,Fe)_3(PO_4)_2$ ,  $MnCl_2$ .

(Deville and Caron.)

Ferrous manganous phosphate fluoride,  $(Mn,Fe)_3(PO_4)_2$ ,  $(Mn,Fe)F_2$ .

Min. Triplite, Zwielesite. Sol. in HCl+Aq.  $3(Mn,Fe)_8(PO_4)_2$ ,  $MnF_2$ . (Deville and Caron, C. R. 47. 985.)

Ferric potassium phosphate, 2Fe₂O₃, 3K₂O, 3P₂O₅.

Not attacked by boiling H₂O. (Ouvrard, A. ch. (6) **16.** 289.)

Fe₂O₃, K₂O, 2P₂O₅. Insol. in H₂O; very sl. attacked by acids. (Ouvrard.)

Ferric silver metaphosphate, 2Fe₂O₃, 2Ag₂O,  $5P_2O_5$ .

(Hautefeuille and Margottet, C. R. 96.

Ferric silver pyrophosphate, Fe₂Ag₆(P₂O₇)₃+ 4H₂O.

Ppt. (Pascal, C. R. 1908, **146**, 232.)

Ferric sodium phosphate, 2Fe₂O₃, 3Na₂O₃ 3P₂O₅.

Decomp. by H₂O. (Ouvrard.)

Ferrous sodium triphosphate, FeNa₃P₃O₁₀+ 11½H₂O.

Stable dry; sol. in  $HNO_3$ ; decomp. in contact with  $H_2O$ . (Stange, Z. anorg. 1896, 12. 451.)

Ferric sodium hydrogen orthophosphate.  $Fe(PO_4)_2H_2Na+H_2O$ .

Difficultly sol. in H₂O. Slowly decomp. by boiling with H2O. Sol. in dil. HCl and dil. HNO₃. Decomp. by alkalies and alkali carbonates. (Weinland, Z. anorg. 1913, 84. 354.) Fe(PO₄)₃H₅Na+H₂O. Difficultly sol. in H₂O. Decomp. by boiling with H₂O. Sol. in dil. HCl and in dil. HNO3. Decomp. by alkalies and alkali carbonates. (Weinland, Z. anorg. 1913, **84.** 358.)

Ferric sodium pyrophosphate, Fe₄(P₂O₇)₃,  $2\text{Na}_4\text{P}_2\text{O}_7 + 7\text{H}_2\text{O}_1$ 

Slowly but completely sol. in H₂O. Pptd. by alcohol. (Milck, J. B. **1865**. 263.)

Very sol. in H₂O. (Fleitmann and Henneberg.)

+5, and 6H₂O. Easily sol. in H₂O, especially if warm. (Pahl, J. B. **1873**, 229.)

FeNaP₂O₇. Insol. in H₂O, dil. HCl, or HNO₃+Aq; sl. sol. in conc. HCl+Aq; decomp. by conc. hot H₂SO₄ without solution. (Jörgensen, J. pr. (2) **16**. 342.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

 $Na_6Fe_2(P_2O_7)_3+9H_2O$ . Decomp. by  $H_2O$ . (Rosenheim, B. 1915, **48**. 586.)

 $Fe_4(P_2O_7)_3$ ,  $5Na_4P_2O_7+7H_2O$ . (Pahl, J. B. **1873.** 229.)

Iron (ferric) phosphate sulphate,  $3Fe_2(PO_4)_2$ ,  $2Fe_2(SO_4)_3$ ,  $2Fe_2O_6H_6$ .

Min. Diaochite.

Lanthanum metaphosphate, La₂(PO₃)₅.

Precipitate. (Frerichs and Smith.) La₂O₃, 5P₂O₅. Insol. in H₂O, dil., or conc. acids. (Johnsson, B. **22**. 976.)

### Lanthanum orthophosphate, LaPO₄.

Precipitate. (Hermann.) Insol. in H₂O and acids. (Ouvrard. C. R. **107.** 37.)

### Lanthanum hydrogen phosphate, La₂H₃(PO₄)₃.

Precipitate. (Frerichs, B. 7. 799.) Existence is doubtful. (Cleve, B. 11. 910.)

Lanthanum phosphate, acid, La₂O₃, 2P₂O₅.
Precipitate. (Hermann.)

Lanthanum pyrophosphate, LaHP₂O₇+3H₂O. (Cleve.)

La₂H₆(P₂O₇)₃. Precipitate. (Frerichs and Smith.)

Does not exist. (Cleve.)

Lanthanum potassium orthophosphate, 2La₂O₃, 3K₂O, 3P₂O_b = 2LaPO₄, K₃PO₄. Insol. in H₂O. (Ouvrard, C. R. **107**. 37.)

Lanthanum sodium orthophosphate, La₂O₃, 3Na₂O, 2P₂O₅.

Insol. in H₂O. (Ouvrard.)

### Lanthanum sodium pyrophosphate, LaNaP₂O₇.

Insol. in acetic, and dil. cold mineral acids. Sol. in warm dil. acids. (Wallroth.)

### Lead dimetaphosphate, PbP2O6.

Ppt. Almost insol. in H₂O. Sol. in HNO₃ +Aq. (Fleitmann, Pogg. **78**. 253.)

### Lead trimetaphosphate, $Pb_3(P_3O_9)_2 + 3H_2O$ .

Nearly insol. in H₂O. Less sol. in H₂O than the corresponding Ag salt. (Fleitmann and Henneberg, A. 65, 304.)

Most insol. of the *trimeta* phosphates. (Lindbom, Acta Lund. 1873. 12.)

Anhydrous salt is insol. in H₂O; easily sol. in HNO₃+Aq. (Lindbom.)

### Lead tetrametaphosphate, Pb₂P₄O₁₂.

Insol. in H₂O.

More easily decomp, by acids than the other insol, metaphosphates. Lasily decomp, by alkali hydro ulphides Aq in the cold. (Fleitmann, Pogg. 78, 353.)

### Lead hexametaphosphate, Pb₃P₆O₁₈.

Nearly insol. in  $H_2O$  sol. in acids. (Lüdert, Z. anorg. 5. 15.)

Lead critophosphate, basic, 4PbO, P₂O₅. (Gerhardt, A. 72. 85.)

### Lead orthophosphate, Pb3(PO4)2.

Insol. in  $H_2O$ ; sol. in  $HNO_3+Aq$ . Insol. in  $HC_2H_3O_2+Aq$ .

Sl. sol. in H₂O. 1.35×10⁻⁴ g. is contained in 1 litre of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46**, 604.)

Not hydrolyzed by boiling  $H_2O$ . Sol. in boiling KOH + Aq: insol. in  $NH_4OH + Aq$ . Insol. in  $Pb(NO_3)_2 + Aq$ . (Caven, J. Soc. Chem Ind. 1897, **16**, 30.)

Sol. in 782.9 pts.  $HC_2H_3O_2+Aq$  containing 38.94 pts. pure  $HC_2H_3O_2$ . (Bertrand, Monit. Scient. (3) 10. 477.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1910, **43**. 314.)

#### Lead hydrogen phosphate, PbHPO₄.

Insol. in  $H_2O$ . Decomp. by  $H_2SO_4$ , or HCl+Aq. Sol. in  $HNO_3$ , or in KOH or NaOH+Aq. Insol. in  $HC_2H_3O_2+Aq$ . Sol. in cold  $NH_4Cl+Aq$  (Brett), from which it can be completely precipitated by a great excess of  $NH_4OH+Aq$ .

More sol. in  $NH_4C_2H_3O_2+Aq$  at  $18.8-25^{\circ}$  than in pure  $H_2O$ . (Wappen.)

Sol. in sat. NaCl+Aq, but less than PbSO₄. (Becquerel, C. R. **20**. 1524.)

Insol. in Pb salts+Aq.

Not pptd. in presence of Na citrate (Spiller.)

### Lead pyrophosphate, Pb₂P₂O₇+H₂O.

Insol. in  $H_2O$ . Sol. in  $HNO_3$ , or KOH+Aq. Insol. in  $NH_4OH+Aq$ ,  $HC_2H_3O_2$ , or  $SO_2+Aq$ . (Schwarzenberg, A. 65. 133.) Sol. in  $Na_4P_2O_7+Aq$ . (Stromeyer.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

### Lead potassium phosphate, PbKPO4.

Decomp. by hot  $H_2O$ . (Ouvrard, C. R. 110. 1333.)

### Lead sodium phosphate, PhNaPO4.

Very sol. in dil. acids. (Ouvrard, C. R. 110. 1333.) 10PbO, 8Na₂O, 9P₂O₅. (Ouvrard.) Lead sodium pyrophosphate, PbNa₂P₂O₇.

Insol. in hot H₂O. (Gerhardt, A. ch. (3) **22.** 506.)

Lead triphosphate sodium pyrophosphate, Pb.Na4P8O27+10H2O.

Sol. in HNO₃ after melting. (Stange, Z. anorg, 1896, 12, 459.)

Lead phosphate chloride, 2PbHPO₄, PbCl₂.

Insol. in boiling H₂O; sol. in dil. HNO₈+ Aq. (Gerhardt, A. ch. (3) 22. 505.) 2Pb₃(PO₄)₂, PbCl₂. Ppt. (Heintz, Pogg.

**73.** 119.)

3Pb₃(PO₄)₂, PbCl₂. Min. Pyromorphite. Sol. in HNO₃, and KOH+Aq.

Sl. sol. in Told citric acid+Aq. (Bolton,

C. N. 37. 14.)

+H₂O. Insol. in H₂O. Sol. in dil. HNO₃ +Aq. (Heintz.)

### Lithium metaphosphate, LiPO₃.

Insol. in boiling H2O. Scarcely sol. in acetic acid. Easily sol. in mineral acids. (Merling, Z. anal. 1879, 18. 565.)

Lithium tetrametaphosphate, Li₄P₄O₁₂+ 4H₂O.

Very sol. in H₂O. (Warschauer, Z. anorg. **1903**, **36**, 180.)

### Lithium orthophosphate, Li₃PO₄.

Very slightly sol. in H₂().

Sol. in  $\overline{2539}$  pts. pure H₂O and 3920 pts. ammoniacal H₂O; much more readily in H₂O containing NH₄ salts. Easily sol. in HCl+ Aq or HNO₃+Aq. (Mayer, A. 98. 193.) Easily sol. in carbonic acid water. (Troost.) Sol. in dil. acids or acetic acid. (de Schulten, Bull. Soc. (3) 1. 479.)

Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790.)

Insol. in acetone. (Naumann, B. 1904, **37**. 4329; Eidmann, C. C. **1899**, II. 1014.)  $+\frac{1}{2}H_{2}O$ , or  $H_{2}O$ .

Lithium hydrogen phosphate, Li₂HPO₄.

Nearly insol. in H₂O. (Gmelin.) Sol. in 833 pts. H₂O at 12°. (Rammelsberg.) Li₅H(PO₄)₂+H₂O. Sol. in 200 pts. H₂O. (Rammelsberg.)

Lithium dihydrogen phosphate, LiH₂PO₄.

Deliquescent, and very sol. in H₂O. (Rammelsberg.)

Heptalithium dihydrogen phosphate,  $\text{Li}_7\text{H}_2(\text{PO}_4)_8$ .

+1H₂O, or 2H₂O. Sol. in H₂O. (Rammelsberg.)

Lithium pentahydrogen phosphate,  $LiH_5(PO_4)_2 + H_2O$ .

Deliquescent, and sol. in H₂O.

Lithium pyrophosphate, Li₄P₂O₇+2H₂O. (Rammelsberg, B. A. B. 1883. 21.)

Lithium manganous phosphate, Li₃PO₄,  $Mn_8(PO_4)_2$ .

Min. Lithiophilite.

Lithium potassium metaphosphate, Li₂O,  $2K_2O_5 3P_2O_5 + 4H_2O_5$ 

As NH₄ comp. (Tammann, J. pr. 1892, (2) 45. 443.)

Lithium potassium pyrophosphate, Li₃KP₂O₇/ (Kraut, A. 1876, 182. 170.)

Lithium sodium phosphate, 3Li₂O, Na₂O, P2O5.

Insol. in H₂O. Sol. in dil. acids. (Ouvrard, C. R. **110.** 1333.) 2Li₂O, Na₂O, 2P₂O₅. As above (Ouvrard.)

Lithium sodium pyrophosphate, Li₂O, Na₂O, P2Ot.

5Li₂O, Na₂O, 3P₂O₅. 4Li₂O, 6Na₂O, 5P₂O₅. (Kraut, A. 1876, **182.** 168.)

### Magnesium metaphosphate, Mg(PO₃)₂.

Insol. in H2O or dil. acids, but sol. in H2SO4 +Aq. (Maddrell, A. 61. 62.)

Not decomp, by very long digestion with alkali carbonates, or orthophosphates +Aq. (Fleitmann.)

Magnesium dimetaphosphate,  $Mg_2(P_2O_6)_2$ + 9H₂().

Insol. in H₂O; decomp. by acids. (Fleitmann, Pogg. 78. 259.)

### Magnesium trimetaphosphate, Mg₈(P₃O₉)₂.

Sl. sol. in cold H₂O, more easily in hot H₂O. When ignited, insol. in boiling HCl+Aq. (Lindbom.)

Cryst. with 12, or 15H₂O.

### Magnesium tetrametaphosphate, Mg₂P₄O₁₂.

Insol. in H₂O, somewhat sol. in HCl+Aq. More easily sol. in HNO₃+Aq, especially easily sol. in conc. H₂SO₄. (Glatzel, Dissert. 1880.)

+10H₂O. Sol. in 70 pts. H₂O. (Glatzel.)

Magnesium orthophosphate, Mg₈(PO₄)₂, and +5, or  $7H_2O$ .

 $\frac{1}{M}_{\rm g_3(PO_4)_2}$  litre  $\rm H_2O$  dissolves 0.1 g. ignited  $\rm Mg_3(PO_4)_2$  in 7 days, but 0.205 g. if freshly

precipitated. (Völcker, J. B. 1862. 131.)
1 l. H₂O with 2 g. NaCl dissolves 75.8 mg.;
1 l. H₂O with 3 g. NaNO₂ dissolves 61.9 mg.
Mg₅(PO₄)₂. (Liebig, A. 106. 185.)
Easily sol, in acids, except in acetic acid.

(Schaffner, A. 50. 145.)

Easily sol. in H₂O in presence of alkali salts.

 $+6\frac{1}{2}H_2O$ . Sol. in 30 min. in diammonium citrate +Aq (sp. gr. =1.09); triammonium citrate +Aq (sp. gr. =1.09) dissolves 37.5% of the  $P_2O_6$ . (Erlenmeyer, B. **14**. 1253.)

+20H₂O. Sol. in 10 min. in diammonium citrate+Aq (sp. gr. =1.09); triammonium citrate+Aq (sp. gr. =1.09) dissolves 23.2% of the P₂O₅; sol. in 15 min. in ½% citric acid +Aq. (Erlenmeyer, *l. c.*)

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20**. 828.)

# Magnesium hydrogen phosphate, MgHPO₄+7H₂O.

Sol. in 322 pts. cold H₂O in several days. If heated to 40° becomes milky, and separates a precipitate out at 100° of same salt, so that solution at 100° contains only 1 pt. salt in 498 pts. H₂O. Much more sol. in H₂O containing traces of acids, even dil. oxalic or acetic acids. (Graham, Phil. Mag. Ann. 2. 20.) Easily sol. in H₂SO₃+Aq. (Gerland, J. pr. (2) 4. 127.)

Sol. in aqueous solution of Mg salts, but insol. in Na₂HPO₄+Aq. (Rose.) Sol. in sodium citrate+Aq. (Spiller.) When freshly precipitated it is sol. in hot NH₄Cl+Aq, and NH₄OH+Aq does not completely reprecipitate it; less sol. in NH₄NO₃+Aq. (Brett, Phil. Mag. (3) **10.** 96.) Insol. in alcohol. (Berzelius.)

For solubility in H₃PO₄, see under MgO.

 $+\frac{1}{2}H_2O$ . (Debray.)

+H₂O. Easily sol. in dil. acids. (de Schulten, C. R. **100**. 263.)

 $+3H_2O$ . Sl. sol. in  $H_2O$ , easily in acids. (Stoklasa, Z. anorg. **3**. 67.)

+4½H₂O. (Bergmann.) +6H₂O. (Debray.)

# Magnesium tetrahydrogen phosphate, $MgH_4(PO_4)_2$ .

Not hygroscopic. Sol. in 5 pts. H₂O without decomp. (Stoklasa, Z. anorg. 3. 67.) +2H₂O. Not hygroscopic. Sol. in H₂O

+2H₂O. Not hygroscopic. Sol. in H₂O without decomp. (Stoklasa, Z. anorg. 1. 307.) Decomp. by alcohol into MgHPO₄+3H₂O.

### Magnesium pyrophosphate, Mg₂P₂O₇.

Nearly insol. in H₂O; readily sol. in HCl or HNO₃+Aq. (Fresenius.)

+3H₂O. Sl. sol. in H₂O, easily in HCl or HNO₃+Aq; sol. in H₂SO₃+Aq, and Na₄P₂O₇+Aq. (Schwarzenberg.)

Sol. in MgSO₄+Aq, and (NH₄)₂CO₃+Aq.

### Magnesium tetraphosphate, Mg₃P₄O₁₃,

Insol. in  $H_2O$ . (Fleitmann and Henneberg, A. **65**. 331.)

# $\begin{tabular}{ll} Magnesium & potassium & dimetaphosphate, \\ & K_2Mg_2(P_2O_6)_3. \\ \end{tabular}$

Very sol. in dil. acids. (Ouvrard, C. R. 1888, 106. 1729.)

+4H₂O. Sol. in 10.2 pts. H₂O. (Glatzel.)

### Magnesium potassium orthophosphate, MgKPO₄.

Sl. sol. in H₂O. Decomp. by H₂O. Easily sol. in acids. +6H₂O.

2MgO, K₂O, 3P₂O₅. Insol. in H₂O; sol. in dil. HCl+Aq. (Ouvrard, C. R. **106**, 1729.) Mg₂HK(^DO₄)₂+15H₂O. (Haushofer.)

### Magnesium rubidium orthophosphate, RbMgPO₄+6H₂O.

Easily sol. in warn. dil. HCl †Aq. Not decomp by boiling H₂O. (Erdmann, A. 1897, **294.** 73.)

### Magnesium sodium triphosphate, MgNa₈P₃O₁₀+13H₂O₂

Decomp. in the air. (Stange, Z. anorg. 1896, 12. 454.)

# Magnesium sodium me'aphosphate, 3MgO, Na₂O, 4P₂O₅.

Insol. in  $H_2O$  or  $H_3PO_4+Aq$ . Scarcely sol. in HC!+Aq, or aqua regia. Not decomp. by  $(NH_4)_2CO_3+Aq$ . Sol. in conc.  $H_2SO_4$ . (Maddrell, A. **61**. 53.)

### Magnesium sodium dimetaphosphate,

 $MgNa_2(P_2O_6)_2 + 4H_2O$ .

Sol. in 25 pts.  $H_2O$ . (Glatzel, Dissert. 1880.)

### Magnesium sodium trimetaphosphate,

 $MgNa_4(P_3O_9)_2 + 5H_2O$ .

Sl. sol. in  $H_2O$ . After ignition is insol. in  $H_2O$ . (Lindborn.)

# $\begin{array}{ccc} \text{Magnesium} & \text{sodium} & \text{phosphate,} & 10 MgO, \\ & 8 Na_2 O_1 & 9 P_2 O_5. \end{array}$

Insol. in  $H_2O$ ; easily sol. in dil. acids. (Ouvrard, C. R. 106. 1729.)

# Magnesium sodium orthophosphate, MgNaPO₄.

Insol. in H₂O. (Rose.)

+9H₂O. (Schoecker and Violet, A. **140**. 232.)

MgO, 2Na₂O, P₂O₅. Insol. in H₂O. (Ouvrard.)

3MgO, 3Na₂O, 2P₂O₅. Insol. in H₂O. (Ouvrard.)

### Magnesium sodium pyrophosphate, basic (?).

Precipitate; sl. sol. in H₂O. Easily in HCl+Aq, HNO₃+Aq, and Na₄P₂O₇+Aq. (Baer, Pogg. **75.** 168.)

Sol. in (NH₄)₂CO₃+Aq, and in MgSO₄+Aq.

Insol. in alcohol.

# Magnesium phosphate chloride, $Mg_3(PO_4)_3$ , $MgCl_2$ .

(Deville and Caron, A. ch. (3) 67. 455.)

Magnesium pyrophosphate nitrogen dioxide,  $Mg_2P_2O_7$ ,  $H_2O$ ,  $NO_2$ .

Scarcely sol, in water. (Luck, Z. anal. 13. 255.)

Magnesium phosphate fluoride, Mg₃(PO₄)₂, MgF₂.

perite. Slowly sol. in hot HNO3, Min. Wa and H₂SO

Magnesium phosphate calcium fluoride,  $2Mg_3(PO_4)_2$ ,  $CaF_2$ . Min. Kierulfite.

Manganous dimetaphosphate,  $Mn_2(P_2O_6)_2$ .

Anhydrous. Insol. in H₂O and dil. acids. (Fleitmann.) Sol. in conc. H₂SO₄. (Maddrell.) Scarcely attacked by warm Na₂S+ Aq, and not much more by (NH₄)₂S+Aq. Decomp. by Na₂CO₃+Aq. +8H₂O. Insol. in H₂O and dil. acids.

(Fleitmann, Pogg. 78. 257.)

Manganous trimetaphosphate,  $Mn_3(P_3O_9)_2$ + 11H₂O.

Difficultly sol, in cold or warm H₂O. More easily sol. in cold, very easily in warm HCl+ Aq. When ignited, is insol. in acids, even aqua regia. (Lindbom.)

### Manganous hexametaphosphate.

Sol. in sodium hexametaphosphate+Aq. (Rose, Pogg. 76, 4.)  $Mn_3P_6O_{18}$ . Nearly insol. in H₂O; easily

sol. in acids. (Lüdert, Z. anorg. 5. 15.) Manganic metaphosphate, Mn(PO₃)₃.

Insol, in H₂O or acids; decomp, by alkalies.

(Schjerning, J. pr. (2) 45. 515.)

Insol. in H2O; sol. in HCl; decomp. by alkalies+Aq. (Barbier, C. R. 1902, 135. 1055.)

+H₂O. Insol. in H₂O or acids, except HCl+Aq. Sl. decomp. by boiling with H₂SO₄. (Hermann, Pogg. **74**. 303.)

Manganous tetrametaphosphate, Mn₂(PO₃)₄. Not attacked by acids. (Glatzel, Dissert. 1880.)

+10H₂O. Sol. only in boiling conc. H₂SO₄. (Glatzel.)

Manganous dekametaphosphate, 5MnO,  $5P_2O_5 + 12H_2O$ .

Ppt. (Tammann, J. pr. 1892, (2) 45. 450.)

Manganous orthophosphate,  $Mn_3(PO_4)_2$ .

+H₂O. (Debray.)

+3H₂O. Sol. in 20 min. in diamonium citrate + Aq (sp. gr. = 1.09); triammonium citrate + Aq (sp. gr. = 1.09) dissolves 30.2%of the  $P_2O_5$ . (Erlenmeyer, B. 14. 1253.)

 $+4\frac{1}{2}-5\frac{1}{2}H_2O$ . Efflorescent. (Erlenmeyer and Heinrich, A. 190. 208.)

+7H₂O. Very sl. sol. in H₂O. (Berzelius.) Easily sol, in mineral acids; sol, in HC₂H₃O₂

Easily sol. in SO₂+Aq. (Gerland, J. pr. (2) **4.** 97.

Somewhat sol, in boiling (NH₄)₂CO₈+Aq,

but deposited on cooling. (Berzelius.)
Partly sol. in cold NH₄Cl, or NH₄NO₈+Aq. (Brett.)

Sol, in cold or hot solutions of ammonium sulphate or succinate. (Wittstein.)

Sl. sol. in Mn salts+Aq. (Rose, Pogg. 76. 25.)

Insol. in alcohol.

Sol. in 10 min. in diammonium citrate+Aq (sp. gr.=1.09); triammonium citrate+Aq(sp. gr.=1.09) dissolves 53% of the  $P_2O_5$ . (Erlenmever, B. 14. 1253.)

Manganous dihydrogen orthophosphate, MnHPO₄+3H₂O.̄

Sl. sol. in H₂O. Solution decomp. at 100°. (Debray.) Slowly decomp. by cold H₂O into  $Mn_3(PO_4)_2$ . (Erlenmeyer and Heinrich, A. **190**. 20%.)

Easily sol. in H₂SO₃+Aq. (Gerland.) Sl. sol. in HC₂H₃O₂, easily in conc. mineral

(Heintz.) Sol. in  $(NH_4)_2CO_3 + Aq$ , from which it is repptd, on boiling. Decomp. by boiling KOH + Aq. Insol. in alcohol.

 $Mn_3(PO_4)_2$ ,  $2MnHPO_4+4H_2O$ . (de Schulten, C. C. **1905**, I. 188.)

Manganous tetrahydrogen phosphate,  $MnH_4(PO_4)_2 + 2H_2O$ .

Deliquescent. Easily sol. in H₂O, with decomp. to MnHPO4. (Erlenmeyer and Heinrich, A. 190, 208.)

Not decomp. by H₂O. (Otto, C. C. 1887.

1563.)

H₂O decomp. it into MnHPO₄ and H₃PO₄ containing some dissolved salt. The less  $\rm H_2O$  used, the more MnHPO4 separates. The acid filtrate separates MnHPO₄ on boiling. At 0° the decomp, increases in proportion to the amt, of salt, but 1 g, of the salt is unchanged in 100 g, H₂O. With less than 20 g. of salt to 100 g. H₂O the decomp. is analogous to that of CaH₄(PO₄)₂, but with larger amts. of salt it is the opposite, becoming less with increasing amts. of the salt. (Viard, C. R. 1899, **129.** 412.)

Alcohol dissolves out H₃PO₄. (Heintz.)

Pentamanganous dihydrogen phosphate,  $Mn_5H_2(PO_4)_4 + 4H_2O.$ 

Not decomp. by boiling H₂O. (Erlenmeyer and Heinrich, A. 190. 208.)

Manganic orthophosphate, basic, Mn₂P₂O₂+  $H_2O$ .

Sl. sol. in H₂O.

Manganic orthophosphate, MnPO₄+H₂O_. Sol. in acids. (Christensen, J. pr. (2) **28.** 1.)

Manganous pyrophosphate, Mn₂I'₂O₇.

Anhydrous. (Lewis, Sill. Am J. (3, 14. 281.)

+H₂O.

+3H₂O. Insol. in H₂O. Insol. in M₁₁SO₄+

Aq, but sol. in Na₄P₂O₇+Aq. (Rose.) Difficultly sol. in Na₄P₂O₇+Aq, but easily sol. in K₄P₂O₇+Aq. (Pahl.) Decomp. by KOH+Aq. Sol. in H₂SO₃+Aq. (Schwarzenberg.)

Insol, in acetone. (Naumann, B. 1904, 37.)

4329.)

Manganous hydrogen pyrophosphate,  $MnH_2P_2O_7+4H_2O_1$ 

Sol, in H₂O. (Pahl.)

Manganic pyrophosphate,  $Mn_4P_6O_{21} + 14H_2O_{11}$ 

Sol. in H₂SO₄, and H₃PO₄. (Auger, C. R.) 1901, **133.** 95.)

MnHP2O7. Insol. in H2O; very sl. attacked by dil. HCl+Aq, easily by conc. Sol. in conc. H₂SO₄. (Schjerning, J. pr. (2) 45. 515.)

Manganous potassium dimetaphosphate,  $K_2Mn(PO_3)_4+6H_2O$ .

Sol, in 95 pts. H₂O. When ignited is not attacked by acids. (Glatzel, Dissert. 1880.)

Manganous potassium orthophosphate, MnKPO₄.

Insol. in H₂O; easily sol. in dil. acids. (Ouvrard.)

Manganic potassium pyrophosphate, MnKP2O7.

+5H₂O. Sl. sol. in cold H₂O. +3H₂O. Sl. sol. in cold H₂O. (Rosenheim, B. 1915, 48. 584.)

Manganous potassium phosphate, MnK₂P₂O₇. Insol. in H₂O; sol. in dil. acids. (Ouvrard, C. R. 106. 1729.)

 $+8H_2O$ . Sl. sol. in  $H_2O$ . (Pahl.)  $Mn_2P_2O_7$ ,  $2K_4P_2O_7 + 10H_2O$ . sol. in  $H_2O$ . (Pahl.) Difficultly

Manganic potassium pyrophosphate, MnKP₂O₇.

Insol. in H2O. Decomp. by acids and bases. (Schjerning.)

Manganic silver pyrophosphate,  $\overline{\text{AgMnP}_2\text{O}_7} + 3\overline{\text{H}_2\text{O}_2}$ 

Almost insol. in H₂O. (Rosenheim, B. 1915, **48.** 585.)

Manganous sodium triphosphate,  $MnNa_3P_2O_{10}+12H_2O$ .

Sl. sol. in H2O; the melt obtained by heating the salt is readily sol. in H2SO4. (Stange, Z. anorg. 1896, 12. 455.)

Manganous sodium dimetaphosphate, MnNa, PO3)1+6H2O

Easily sol. in boiling H2SO4, but not attacked by acids after boiling. (Glatzel, Dissert. 1880.)

Manganous sodium trimetaphospuate.

Sol. in H₂O. (Fleitmann and Henneberg.) MnNa(PO₃)₃. Insol. in H₂O, dil. acids, or alkalies. (Schjerning, J. pr. (2) 45. 515.)

Manganous sodium octometaphosphate,  $\mathrm{Mn_3Na_2(PO_3)_8}$ 

Insol. in acids except cone. H₂SO₄. (Tammann, J. pr. 1892, (2) 45. 469.)

+5H2O. Almost insol, in cold H2O. Decomp. by boiling H₂O with separation of Mn₂O₃. (Rosenheim, B. 1915, **48**. 584.)

Manganous sodium orthophosphate, MnNaPO₄.

Insol. in H₂O. (Ouvrard, C. R. 106, 1729.) MnO, 2Na₂O, P₂O₅. As above.

Manganous sodium purophosphate. MnNa₂P₂O₇.

Insol. in H₂O; easily sol. in dil. acids. (Wallroth.)

 $+4\frac{1}{2}H_2O$ . Very sl. sol. in  $H_2O$ . (Pahl.)  $3Mn_2P_2O_7$ ,  $2Na_4P_2O_7+24H_2O$ . Very sl. sol. in H₂O. (Pahl.)

Manganic sodium pyrophosphate, MnNaP₂O₇ +H₂O.

(Christensen, J. pr. (2) 28. 1.)

Manganic dipyrophosphate ammonia. Mn₂P₄O₁₄, 2NH₃.

Insol. in H₂O.

Decomp, by HCl and by alkalies. (Barbier, C. R. 1902, **135.** 1109.)

Manganous phosphate chloride, Mn₃(PO₄)₂, MnCl₂.

Insol. in H₂O. (Deville and Caron, A. ch. (3) **67.** 459.

 $3Mn_3(PO_4)_2$ ,  $MnCl_2$ . Insol. in  $H_2O$ . (Deville and Caron.)

Mercurous hexametaphosphate (?).

Ppt. Sol. in sodium hexametaphosphate +Aq. (Rose.)

Hg₆P₆O₁₈. Insol. in H₂O; very sl. sol. in

acids. (Lüdert, Z. anorg. 5. 15.)

Moderately sol. in H₂O when freshly pptd. More sol, in acids than the mercurous salt, (Lüdert.)

Mercurous orthophosphate, (Hg₃)₂(PO₄)₂. Ppt. Decomp. by boiling with H₂O. (Gerhardt.)

Sol, in  $HNO_8 + Aq$ . Sol, in  $Hg_2(NO_3)_2 +$ Aq. Insol. in HaPO4+Aq.

### Mercuric orthophosphate, $Hg_3(PO_4)_2$ .

Insol. in H₂O. Sl. sol. in hot H₂O, crystallizing out on cooling. (Haack, A. **262**. 185. (Haack, A. 262, 185. Slowly sol. in cold dil., quickly in hot dil. or cold conc. HCl+Aq. Less casily sol. in HNO₃+Aq. Sol. in H₃PO₄+Aq. (Berzelius.) Insol. in H₃PO₄+Aq. (Haack.) Decomp. by NaCl+Aq into insol. HgCl₂, 3HgO, but sol. in NaCl+Aq, containing HNO₄. (Haack.) HNO₃. (Haack.) Sol. in 6 pts NH₄Cl in aqueous solution by heating. (Trommsdorff.)

Sol. in (NH₄)₂CO₃, (NH₄)₂SO₄, or NH₄NO₃ +Aq. (Wittstein.) Insol, in alcohol.

Mercuromercuric orthophosphate, 7Hg₂O, 14 HgO,  $2 P_2 O_5 + 20 \text{H}_2 O_5$ 

(Brooks, Pogg. 66. 63.)

Mercurous pyrophosphate, Hg₄P₂O₇+H₂O. Sol. in Na₄P₂O₇+Aq, when recently pptd. Insol. in Na₄P₂O₇+Aq, when heated to 100°. Sol. in HNO₃+Aq. Decomp. by HCl+Aq. (Schwarzenberg, A. 65. 133.)

### Mercuric pyrophosphate, Hg₂P₂O₇.

Sol. in acids; insol. in Na₄P₂O₇+Aq, after ring heated to 100°. Sol. in NaCl+Aq; being heated to 100°. quickly decomp, by NaOH + Aq

Na₂HPO₄+Aq. Sol. in 6 pts. NH₄Cl+Aq. (Trommsdorff.) Sol. in NH₄NO₃, (NH₄)SO₄, and (NH₄)₂CO₃ +Aq; also in KI +Aq.

Mercurous silver orthophosphate, AgHg₂PO₄. Sol. in HNO₃. (Jacobsen, Bull. Soc. 1909, **(4) 5.** 949.)

Molybdenum phosphate,  $Mo_2(PO_4)_2$  (?). · Insol. in H₂O. Sol. in MoCl₂+Aq.

Molybdenum sodium pyrophosphate,  $Na(MoP_2O_7) + 12H_2O$ .

Ppt. (Rosenheim, B. 1915, 48. 589.)

### Nickel dimetaphosphate, NiP₂O₆.

Insol in H2O or dilacids. Sol. in conc. Not decomp, by boiling alkali car-H₂SO₄. bonates or sulphides + Aq. (Maddrell, A. **61**. 58.

+4H₂O. Sol. in cold acids. (Glatzel, Dissert. 1880.)

### Nickel tetrametaphosphate, Ni₂P₄O₁₂.

Insol. in HCl. Sol. in conc. HNO3 and especially sol. in H₂SO₄ on boiling. (Glatzel.) sol. in dil. acids. (Ouvrard.)

Nickel tetrametaphosphate, Ni₂P₄O₁₂+ 12H2O.

Easily sol. in acids. (Glatzel.)

Nickel orthophosphate, Ni₃(PO₄)₂+7H₂O.

Insol. in H₂O. Sol. in acids. (Rammeslberg, Pogg. **68.** 383.)
Sol. in Ni salts+Aq. (Rose, Pogg. **76.** 

Insol. in Na₂HPO₄+Aq. (Tupputi, **1811**.) Very sl. sol. in hot (NH₄)₂HPO₄+Aq. Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethylacetate. (Naumann, B. 1910, **43.** 314.)

### Nickel pyrophosphate, Ni₂P₂O₇+6H₂O.

Insol. in H₂O; sol, in mineral acids, Na₄P₂O₇ +Aq, and NH₄OH+Aq. Not pptd. from Ni₂P₂O₇+Aq by alcohol. (Schwarzenberg, A. **65.** 158.)

Nickel potassium dimetaphosphate.  $NiK_2P_4O_{12}+6H_2O$ .

Sol. in 130 pts. H₂O. (Glatzel.)

Nickel potassium orthophosphate, NiKPO₄.

Insol, in H₂O; sol, in dil. acids. (Ouvrard, R. 106. 1729.)

3NiO, 3K₂O, 2P₂O₅. As above.

Nickel sodium triphosphate, Na₃NiP₃O₁₉+ 12H₂O.

Very sol. in H₂O; decomp. in Aq solution. (Schwarz, Z. anorg. 1895, 9. 261.)

Nickel sodium metaphosphate,  $3Ni(PO_3)_2$ , NaPO₃.

Insol. in H₂O and dil. acids. Sol. in conc. H₂SO₄. (Maddrell, A. **61**. 56.)  $NiNa_4(PO_3)_3 + 8H_2O$ . Easily sol. in  $H_2O$ .

(Lindbom.)

Nickel sodium dimetaphosphate, NiNa₂P₄O₁₂  $+6H_2O$ .

Sl. sol, in H₂O. Moderately sol, in acids. (Glatzel, Dissert. 1880.)

### Nickel sodium trimetaphosphate, $Ni_2Na_2(P_8O_9)_2 + 9H_2O$ .

1 l. H₂O dissolves 60.6 g. at 20°. (Tammann, J. pr. 1892, (2) **45.** 426.) Na₃NiP₄O₁₀+12H₂O. Insol. and not de-

comp. by H₂O. Sol. in acids. (Schwarz, Z. anorg. 1895, 9. 261.)

Nickel sodium octometaphosphate,

Na₂Ni₃(PO₃)₈.

(Tammann, J. pr. 1892, (2) 45. 469.)

Nickel sodium orthophosphate, NiNaPO₄+ 7H₂O.

Ppt. (Debray, C. R. **59**. 40.) NiO, 2Na₂O, P₂O₅. Insol, in H₂O. Easily

# Nickel sodium pyrophosphate, Ni₁₀Na₁₆(P₂O₇)₉.

Insol. in  $H_2O$ . Moderately sol. in acids. (Wallroth.)

### Osmium phosphate (?).

Sl. sol. in  $H_2O$ ; sol. in  $HNO_2+Aq$ . (Berzelius.)

### Palladium orthophosphate (?).

Ppt.

### Phosphorus phosphate, $4P_4()$ , $3P_2()_5(?)$ .

Decomp. spontaneously. Sol. in H₂() and alcohol when fresh; insol. in ether. (le Verrier, A. 27. 167; Reinitzer, B. 14. 1884.)

### Platinum phosphate, PtP₂O₇.

Insol. in  $H_2O$ , acids and alkalies. Decomp. by fusing with potassium carbonate. (Barnett, C. N. 1895, **71.** 256.)

### Potassium monometaphosphate, KPO₃.

Nearly insol. in H₂O; sol. in weak acids, even in acetic acid. (Maddrell, A. **61**. 62.)
Insol. in H₂O and weak acids. (Fleitmann, Pogg. **78**. 250.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

### Potassium dimetaphosphate, K₂P₂O₆+H₂O.

Sol. in 1.2 pts. cold H₂O, but not more in hot H₂O. (Fleitmann, Pogg. **78**. 250.)

### Potassium trimetaphosphate, K₃P₃O₉.

Very sol. in cold H₂() before it is fused. (Lindbom, Acta Lund. 1873. 14.)

#### Potassium orthophosphate, K₃PO₄.

Not deliquescent. Very sol. in  $H_2O$ . (Graham, Pogg. 32. 47.) Very sl. sol. in cold, easily in hot  $H_2O$ . (Darracq.)

### Solubility in H₈PO₄+Aq at 25°.

In 1000 g. of the solution, mols.		
К	PO ₄	
9.14 8.84 8.42 7.52 6.90 6.88	3.13 3.22 3.44 3.78 4.15 4.12	

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 103.)

Insol, in alcohol.

# Potassium hydrogen orthophosphate, 2K₂HPO₄, KH₂PO₄+H₂O.

Very unstable; very sol in H₂O with decomp. Identical with the substance de-

scribed as dipotassium phosphate by Berzelius. (Staudenmaier, Z. amorg. 1894, 5. 389.)

3K₂HPO₄, KH₂PO₄+2H₂O. Very unstable; very sol. in H₂O with decomp. (Staudenmaier.)

### Potassium nydrogen orthophosphate, K. HPO4.

Deliquescent. Very sol. in H₂O and alcohol.

Solubility in HaPO4+Aq at 25°.

In 1000 g. of the solution, mols.		
К	PO ₄	
6.80	4.08	
6.80	4.05	
6.76	3.96	
6.50	3.81	
6 16	3.61	
5.24	3.25	
4.42	2.94	

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75.

### Potassium dihydrogen phosphate, KH2PO4.

Deliquescent. Easily sol. in H₂O. (Vauquelin, A. ch. **74**. 96.)

1 I. sat. aq. solution at 7° contains 249.9 g. KH₂PO₄. (Muthmann and Kuntze, Z. Kryst. Min. 1894, **23**. 308.)

Solubility in H₈PO₄+Aq at 25°.

K	PO ₄
2.90	2.36
1.70	1.71
1.60	1.67
1.48	1.46
1.78	3.15
2.18	4.65
2.54	6.32
2.66	6.76
2.98	8.03
$\frac{1}{3}.32$	8.80

(D'Ans and Schreiner, Z. phys. Ch. 1910, **75.** 103.)

Sp. gr. of KH₂PO₄+Aq at 18° containing: 5 10 15% KH₂PO₄. 1.0341 1.0691 1.1092 (Kohlrausch, W. Ann. **1879**. 1.)

Sol. in 20% KC₂H₃O₂+Aq. (Stromeyer.) For solubility in H₂O, see K₂HPO₄, H₂PO₄. Insol. in alcohol.

### Potassium orthophosphate, acid, KH₂PO₄, H₂PO₄. a

Solubility in H₂O at t°.

t°	% КН₂РО₄,Н₃РО₄	Solid phase
-0.6 -2.5 -6.7 -9.2 -13 0 (?) +10.9 65.2 78 87.5 105.5 120 135 139	3.337 12.13 29.43 36.98 44 45.8 50.3 68.44 72.43 77.6 85.9 92.1 96.1	Ice  ""  Ice+KH ₂ PO ₄ KH ₂ PO ₄ ""  ""  "+KH ₂ PO ₄ , H ₃ PO ₄ KH ₂ PO ₄ , H ₃ PO ₄
	1	

(Parravano and Mieli, Gazz, ch. it. 38, II. 536.)

### Solubility in anhydrous H₃PO₄ at t°.

t°	% KH ₂ P() ₄ , H ₃ P() ₄
38.5	18.17
84	58.42
110	77.53
126.5	92.26

(Parravano and Mieli.)

Potassium pyrophosphate,  $K_4P_2O_7+3H_2O$ . Very deliquescent, and sol. in H₂O.

Precipitated from aqueous solution by alcohol. (Schwarzenberg, A. 65. 136.) Insol. in methyl acetate. (Naumann, B.

**1909**, **42**. 3790.)

Potassium hydrogen pyrophosphate,  $K_2H_2P_2O_7$ .

Very deliquescent, and sol. in  $H_2O$ . Insol. in alcohol. (Schwarzenberg.)

Potassium silver metaphosphate,  $K_2Ag_4(PO_3)_6 + H_2O$ .

(Tammann, J. pr. 1892, (2) 45. 417.)

Potassium sodium dimetaphosphate,  $KNaP_2O_6+H_2O_6$ 

Sol. in 24 pts. H₂O. (Fleitmann, Pogg. 78.

Potassium sodium phosphate, KNaHPO₄+ 7H₂O.

Not efflorescent. Sol. in H₂O.

Tripotassium trisodium hexahydrogen phosphate,  $H_6Na_3K_3(PO_4)_4+22H_2O_1$ 

Sol. in H₂O. (Filhol and Senderens, C. R. **93.** 388.)

Potassium sodium pyrophosphate,  $K_2Na_2P_2O_7+12H_2O_1$ 

Sol. in H₂O. (Schwarzenberg, A. 65. 140.)

Potassium strontium dimetaphosphate,  $K_2Sr(P_2O_6)_2 + 4H_2O$ .

As the KBa comp. (Glatzel, Dissert, 1880.)

strontium hexametaphosphate, Potassium K2Sr2P6O18.

(Tammann, J. pr. 1892, (2) 45. 435.)

Potassium strontium orthophosphate, KSrPO4.

Insol, in H₂O; sol, in dil. acids. (Grandeau, A. ch. (6) 8. 193.)

Potassium strontium pyrophosphate, K₂SrP₂O₇.

Insol, in H₂O; sol, in dil. acids. (Ouvrard, C. R. **106.** 1599.)

Potassium thorium phosphate, K₂O, 4ThO₂, 3P₂O₅.

Insol. in HCl, HNO₃, or aqua regia. (Troost and Ouvrard, C. R. 102. 1422.)  $K_2O$ , ThO₂, P₂O₅. Insol. in H₂O; sol. in HNO₃+Aq. (Troost and Ouvrard.)  $6K_2O$ ,  $3ThO_2$ ,  $4P_2O_4$ . Sol. in acids.

(Troost and Ouvrard.)

Potassium tin (stannic) phosphate, K₂O, 4SnO₂, 3P₂O₅.

(Ouvrard, C. R. 111. 177.) K₂O, 2SnO₂, P₂O₅. (Ouvrard.)

Potassium titanium phosphate, K₂O, 4TiO₂,

(Ouvrard, C. R. 111. 177.) K₂O, 2TiO₂, P₂O₅. (Ouvrard.)

Potassium uranous phosphate, 4UO₂, K₂O₃ 3P₂O₅.

Practically insol. in cone. HNO₈ and HCl. even when the acids are boiling. Attacked by HF+HNO₃. (Colani, A. ch. 1907, (8) 12. 133.)

Potassium uranous metaphosphate, UO₂, K₂O, P₂O₅.

Easily sol, in HNO₃. Sol. in conc. HCl. (Colani.)

Potassium uranous pyrophosphate, 3UO2, 6K₂O, 4P₂O₅.

Sol. in acids. (Colani.)

Potassium uranyl phosphate, K2O, UO3, P₂O₅.

(Ouvrard, C. R. 110, 1333.) 2K2O, UO3, P2O5. (Ouvrard.) K₂O, 2UO₃, P₂O₅. (Ouvrard.) Potassium uranyl orthophosphate,  $K(UO_2)PO_4+3H_2O$ 

As NH₄ comp. (Lienau, Dissert. 1898.)

Potassium vanadium phosphate. See Phosphovanadate, potassium.

Potassium yttrium phosphate, 3K₂O, Y₂O₃, 2P2Ob.

K₂O, Y₂O₃, 2P₂O₅.

3K₂O, 5Y₂O₃, 6P₂O₅. (Duboin, C. R. 107.

Potassium zinc tetrametaphosphate.  $K_2Zn(PO_3)_4+6H_2O_3$ 

Sol. in 70 pts. H₂O. (Glatzel, Dissert. 1880.)

Potassium zinc phosphate, KZnPO₄.

Insol. in H₂O. Sol. in dil. acids. (Ouvrard, C. R. 106. 1729.) K₂ZnP₂O₇. As above.

Potassium zirconium phosphate, K₂O, 4Zr()₂, 3P₂O₅.

Insol. in acids or aqua regia. (Troost and Ouvrard, C. R. 102. 1422.)

K₂O, ZrO₂, P₂O₅. Insol. in H₂O, HNO₃, HCl, or aqua regia. Sol. in hot cone. H₂SO₄. (Troost and Ouvrard.)

Potassium phosphate selenate.

See Selenophosphate, potassium.

Potassium hydrogen phosphate sulphate, KH₂PO₄, KHŠO₄.

Decomp. by H₂O and alcohol. (Jacquelain.)

Rhodium phosphate, basic,  $4Rh_2O_3$ ,  $3P_2O_5$ +

Insol. in H₂O or acids. (Claus.)  $Rh_2O_3$ ,  $P_2O_5 + 6H_2O = RhPO_4 + 3H_2O$ . Sol. in  $H_2O$ . (Claus.)

Rubidium metaphosphate, RbPO₃.

Sol. in H₂O. (von Berg, B. 1901, **34.** 4183.)

Rubidium orthophosphate, Rb₃PO₄+4H₂O.

Hydroscopie; sol. in H₂O; pptd. by alcohol. (von Berg, B. 1901, **34.** 4183.)

Rubidium hydrogen orthophosphate,  $Rb_0HPO_4+H_0O_2$ 

Sol. in H₂O; insol. in conc. NH₄OH+Aq; insol. in alcohol. (von Berg.)

Rubidium dihydrogen orthophosphate, RbH₂PO₄.

Very sol. in H₂O; pptd. by alcohol. (von Berg.)

Rubidium pyrophosphate, Rb₄P₂O₇.

Hydroscopic; sol. in H₂O. (von Berg.)

Samarium anhydrometaphosphate. Sm₂O₂. 5P2Os.

Insol. in H2O or HNO2+Aq. (Cleve.)

Samarium orthophosphate, SmPO₄.

Scarcely attacked by boiling HNO₂+Aq. (Cleve.)  $+2H_2O$ .

Samarium pyrophospnate, SmHP₂O₇+ 1½H. (Cleve.)

Silicon phosphate.

See Silicophosphoric acid.

Silver metaphosphate, Ag₂O, 2P₂O₅+H₂O. Kroll, Z. anorg. 1912, 76, 408.)

Silver dimetaphosphate, Ag₂P₂O₆.

Very sl. sol. in H₂O. (Fleitmann, Pogg. **78.** 253.)

Sol. in cold aniline metaphosphate+Aq. (Nicholson.)

Very sl. sol. in H₂O. (Warschauer, Dissert. 1903.)

--H₂O. Very sol. in H₂O. (Langheld, B. 1912 **45.** 3760.)

Silver trimetaphosphate, Ag₃P₂O₉.

Sol. in 60 pts. cold H₂O. Can be crystallized from conc. HNO₃+Aq. (Fleitmann and Henneberg.)

+H₂O. (Lindbom.)

Silver hexametaphosphate, Ag₆P₆O₁₈.

Insol. in H₂O. Sol. in HNO₃ or NH₄OH+ Aq, and in a large excess of sodium hexametaphosphate+Aq. (Rose.) Easily decomp. by Na₂S+Aq.

Decomp. gradually by hot H₂O into

Ag₆P₄O₁₃.

When freshly pptd., easily sol. in H₂O. Easily sol. in dil. acids. (Lüdert, Z. anorg. **5.** 15.)

Silver orthophosphate, Ag₃PO₄.

Very sl. sol. in H₂O. 1 l. H₂O dissolves 6.5×10-3 g. Ag₃PO₄ at 19.46°. (Böttger, Z. phys. Ch. 1903, 46. 603.)

Sol. in H₃PO₄, HNO₃, or HC₂H₃O₂+Aq, in NH₄OH or (NH₄)₂CO₃+Aq. Less easily in ammonium nitrate or succinate, and incompletely in  $(NH_4)_2SO_4+Aq$ . (Lassaigne, J. Pharm. (3) 16. 289.)

Insol. in Na₂HPO₄+Aq. (Stromeyer.) Not pptd. in presence of Na citrate.

(Spiller.) If 1 mol. Ag₃PO₄ is boiled with 1 mol. Na₂CO₃, 44% of it is decomp. (Malaguti.) Readily sol. in soluble hyposulphites+Aq

with decomp. (Herschel.)

Insol. in Ag salts + Aq. (Rose.)

Insol. in liquid NH3. (Gore, Am. Ch. J. 1898, **20.** 829.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Silver hydrogen orthophosphate, Ag₂HPO₄.

Decomp. by H₂O or alcohol into H₃PO₄ and Ag₃PO₄. (Joly, C. R. 103. 1071.)

Sol. in H₃PO₄+Aq; insol. in ether. (Schwarzenberg, A. **65**. 162.)

Silver pyrophosphate, Ag₄P₂O₇.

Insol. in hot or cold H₂O. Sol. in cold HNO₃+Aq without decomp. Decomp. by hot HNO₃ or H₂SO₄ into orthophosphate. Decomp. by HCl+Aq into AgCl and H₃PO₄. Insol. in HC₂H₃O₂+Aq. Sol. in NH₄OH+Aq without decomp. (Stromeyer, Schw. J. **58.** 126.)

Insol. in  $Na_4P_2O_7+Aq$ . Very sl. sol. in  $AgNO_3+Aq$ . (Schwarzenberg, A. **65**. 161.) Not completely insol. in  $Na_4P_2O_7+Aq$ . (Rose.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

Silver hydrogen pyrophosphate, Ag₂H₂P₂O₇.

Decomp. by H₂O into Ag₄P₂O₇. (Hurtzig and Geuther, A. **111**. 160.)

Decomp. by cold  $H_2O$ . (Cavalier, C. R. 1904, **139**. 285.)

Silver hydrogen pyrophosphate metaphosphate, 2Ag₂HP₂O₇, HPO₃.

Decomp. by H₂O. Easily sol. in HNO₃+Aq. (H. and G.)

Silver tetraphosphate,  $6Ag_2O$ ,  $4P_2O_5 = Ag_5P_4O_{13}$ .

Insol. in, but gradually decomp. by boiling H₂O. (Berzelius)

H₂O. (Berzelius.)
Sol. in large excess of the corresponding
Na salt+Aq.

Silver dekaphosphate, Ag₁₂P₁₀O₃₁.

Easily sol. in sodium dekaphosphate+Aq. (Fleitmann and Henneberg, A. 65, 330.)

Silver ultraphosphate, Ag₂O, 3P₂O₅. (Kroll, Z. anorg. 1912, **76.** 407.)

Silver sodium dimetaphosphate, AgNaP₂O₆. Sol. in H₂O. (Fleitmann and Henneberg, Pogg. **65**. 310.)

Silver sodium pyrophosphate,  $6Ag_4P_2O_7$ ,  $Na_4P_2O_7+4H_2O$ .

Not completely sol. in Na₄P₂O₇+Aq. Easily sol. in HNO₃+Aq. (Baer, Pogg. **75**. 152.)

Easily sol. in  $H_2O$ . (Stromeyer.)  $Ag_3NaP_2O_7+\frac{1}{2}H_2O$ . Ppt. (Stange, Z. anorg. 1896, **12**. 460.)

Silver uranyl phosphate, 2Ag₂O, 6UO₃, 3P₂O₅ +30H₂O.

(Blinkoff, Dissert. 1900.)

Silver phosphate ammonia, Ag₃PO₄, 4NH₃. (Widmann, B. 17. 2284.)

Sodium triphosphate, Na₆P₈O₁₀.

Very sol. in  $H_2O$ ; decomp. easily in aq. solution at  $100^{\circ}$ . (Schwarz, Z. anorg. 1895, 9. 253.)

Sodium monometaphosphate, NaPO₃.

Insol, in H₂O. Sol, in dil. and conc. acids. (Maddrell, A. **61**. 63.)

Insol. in acids. (Graham.)

Gradually decomp. by alkalies.

Sodium dimetaphosphate, Na₂P₂O₆+2H₂O.

Deliquescent. Sol. in 7.2 pts. of cold or hot H₂O. Very sol. in conc. HCl+Aq. Sol. in NaOH+Aq. Insol. in strong, very sl. sol. in dilute alcohol. (Fleitmann, Pogg. 78. 246.)

Sodium trimetaphosphate, Na₃P₃O₉+6H₂O.

Sol. in 4.5 pts. cold H₂O. Insol. in strong, very sl. sol. in dil. alcohol. (Fleitmann and Henneberg, A. **65**. 307.)

Decomp. by boiling H₂O. (Lindbom.)

Sodium tetrametaphosphate, Na₄P₄O₁₂.

Sol. in H₂O; cryst. with about 4H₂O. Less sol. in alcohol than in H₂O. (Fleitmann, Pogg. **78.** 854.)

Sodium hexametaphosphate, Na₆P₆O₁₈.

Deliquescent. Very sol. in H₂O. Insol. in alcohol. (Graham, Pogg. **32.** 56.)

Sodium orthophosphate, Na₃PO₄+12H₂O.

Not deliquescent in dry air.

100 pts. H₂O dissolve 19.6 pts. crystals at 15.5°. (Graham.)

100 pts.  $H_2O$  dissolve 28.3 pts.  $Na_3PO_4+12H_2O$  at 15°. (Schiff.)

Solubility in H₂PO₄+Aq at 25°.

In 1000 g. of the solution, mols.				
Na	PO ₄			
4.28 3.24 2.24 2.73	0.040 0.183 0.752 1.08			

(D'Ans and Schreiner, Z. phys. Ch. 1910, **75**. 101.)

Sp. gr. of Na₃PO₄+Aq at 15°. % = %Na₃PO₄+12H₂O.

70 70-1132 04 12-1					
%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1 2 3 4 5 6 7 8	1.0043 1.0086 1.0130 1.0174 1.0218 1.0263 1.0308 1.0353	9 10 11 12 13 14 15 16	1.0399 1.0455 1.0492 1.0539 1.0586 1.0633 1.0681 1.0729	17 18 19 20 21 22 23 24	1.0778 1.0827 1.0876 1.0925 1.0975 1.1025 1.1076 1.1127
	<u> </u>	1	1	1	1

(Schiff, calculated by Gerlach, Z. anal. 8. 280.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6**. 257.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

+10H₂O. (Rammelsberg.) Could not be obtained. (Hall, J. pr. 94. 237.)

+7H₂O. (Hall.)

Melts in crystal water at 76.6°. (Graham)

### Sodium hydrogen phosphate, Na₂HP()₄.

Sol. in H2O with evolution of heat.

100 pts. H₂O dissolve at t°.

t°	Pts. Na ₂ HPO ₄	t°	Pts. Na ₂ HPO ₄	t^	Pts. Na ₂ HPO ₄
0	1.55	40	30.88	80	81.29
10	4.10	50	43.31	90	95.02
20	11.08	60	55.29	100	108.20
30	19.95	70	68.72	106.2	114.43

(Poggiale, J. Pharm. (3) 44. 273)

100 pts. H₄O at 13° dissolve 3.4 pts. Na₂HPO₂ (Ferein, Ph. Viertelj. **7**. 244); at 15°, 5.9 pts. (Neese); at 16°, 6.3 pts. (Mulder); at 16°, 8.4 pts. (Muller, J. pr. **95**, 52); at 20°, 6.8 pts. (Neese, Russ. Z. Pharm. **1**. 101); at 25°, 12.5 pts. (*ibid*.).

Solubility in 100 pts. H₂O at to.

	Solubility in 100 pts. H ₂ O at t ^o .				
t°	Pts. Na ₂ HPO ₄	t°	Pts. Na ₂ HPO ₄	t°	Pts. Na ₂ HPO ₄
0	2.5	35	39.3	69	94.8
	2.6	36	43.6	70	95.0
$\tilde{2}$	2.6	37	49.5	71	95.1
$\bar{3}$	2.7	38	55.5	72	95.2
1 2 3 4	2.7	39	60.6	73	95.4
5	2.8	40	63.9	74	95.6
6	3.0	41	66.2	75	95.8
6 7 8 9	3.2	42	68.6	76	96.0
8	3.4	43	70.8	77	96.1
9	3.6	44	72.9	78	96.3
10	3.9	45	74.8	79	96.5
11	4.2	46	76.5	80	96.6
12	4.5	47	78.2	81	96.8
13	4.9	48	79.7	82	96.9
14	5.3	49	81.2	83	97.0
15	5.8	50	82.5	84	97.1
16. 17	6.3	51	83.7	8 <b>5</b>	97.2 97.4
17	6.9	52	84.8	86 87	97.4
18 19	7.6	53	85.8	88	97.6
19	8.4 9.3	54 55	86.7 87.7	89	97.7
20	10.3	56	88.6	90	. 97.8
$\frac{21}{22}$	11.4	57	89.4	91	97.9
23	12.6	58	90.2	92	98.0
24	14.0	59	90.9	93	98.1
$\frac{21}{25}$	15.4	60	91.6	94	98.2
<b>2</b> 6	16.9	61	92.2	95	98.4
27	18.5	62	92.7	96	98.5
28	20.2	63	93.1	97	98.6
$\tilde{29}$	22.0	64	93.5	98	98.7
30	24.1	65	93.8	99	98.8
31	26.4	66	94.1	105	82.5
32	29.1	67	94.4	105.57	80.7
33	32.1	68	94.6	106.4	79.2
34	35.5		• • • •		

(Mulder, Scheik. Verhandel. 1864. 103.)

Solubility in H2Q et t.		
t°	G. Na ₂ HPO ₄ in 100 g. H ₂ O	
10.26	3.55	

10.26	3.55
25.15	12.02
40.29	54.88
60.23	83.00
99.77	102.15

Calmbilian in TT O . 4 40

Three breaks in the curve: at 36.45°, transition from dodecahydrate to heptahydrate; at 48°, transition from heptahydrate to the dihydrate; 5+ 95.2°, transition from dihydrate to the monohydrate (Shiomi, C. C. 1909, II. 106.)

### Solubility of NacHPO, in H2O at to.

†°	G. Na ₂ HPO ₄ iv ₁ 100 g. H ₂ O	Sclid phase
-0.43 $-0.24$ $-0.5*$	1.42 0.70	Ice "
+0.05 $20.0$	1.67 7.66	Na ₂ HPO ₄ +12H ₂ O
$25.0 \\ 32.0 \\ 34.0$	$12.0 \\ 25.7 \\ 33.8$	11 11
35.2* 39.2	51.8	Na ₂ HPO ₄ +7H ₂ O
45.0 48.3* 50.0	67.3 80.2	Na ₂ HPO ₄ +2H ₂ O
60.0 80.0	82.9	"
90.0 95* 96.2	$92.4 \\ 101.0 \\ 104.6$	Na ₂ HPO ₄
$105.0 \\ 120$	$\begin{array}{c} 102.3 \\ 99.2 \end{array}$	u

(Menzies and Humphery, Int. Cong. App. Chem. 1912, 2. 177.)

* Transition points.

### Solubility in H₂O at t°.

t°	100 g. H ₂ O dissolve g. Na ₂ HPO	Solid phase
0° 25 35.4* 40.3 48.35* 59.7 71	2.51 12.47 46.11 54.80 79.00 91.3 95.1 98.15	Na ₂ HPO ₄ , 12H ₂ O Na ₂ HPO ₄ , 7H ₂ O Na ₂ HPO ₄ , 2H ₂ O

(D'Ans and Schreiner. Z. phys. Ch. 1911, 75. 99.)

*Transition points.

The composition of the hydrates formed by this salt at different dilutions is calculated from determinations of the lowering of the fr.pt, produced by the salt and of the conductivity and sp. gr. of its aqueous solutions. (Jones, Am. Ch. J. 1905, 34. 318.)

Na₂HPO₄+Aq saturated at 15° has 1.0469 sp. gr. (Michel and Krafft); saturated at 16°,

1.0511 (Stolba).

Sp. gr. of Na₂HPO₄+Aq at 19°.

% Na,HPO, +12H,O	Sp. gr.	% Na,HPO, +12H,0	Sp. gr.	% Na,HPO, +12H,O	Sp. gr.
1	1.0041	5	1.0208	9	1.0376
2	1.0083	6	1.0250	10	1.0418
3	1.0125	7	1.0292	11	1.0460
4	1.0166	8	1.0332	12	1.0503

(Schiff, A. 110. 70.)

Saturated solution freezes at -0.45° (Rüdorff, Pogg. **122.** 337), and boils at 105° (Griffiths), 105–106.4° (Mulder), 106.5° (Le-

Sat. Na₂HPO₄+Aq boils at 105.5° (Griffiths); at 106.5°, and contains 113.2 pts. Na₂HPO₄ to 100 pts. H₂O (Legrand); forms a crust at 106.4°, and contains 108.8 pts. Na₂HPO₄ to 100 pts. H₂O; highest temp. observed, 106.8°. (Gerlach, Z. anal. 26, 427.)

B.-pt. of Na₂HPO₄+Aq containing pts. Na₂HPO₄ to 100 pts. H₂O. G = according to Gerlach (Z. anal. 26, 450); L= according to Legrand (A. ch. (2) 59.426.)

Bpt.	G	L	Bpt.	G	L
100.5° 101 101.5 102 102.5 103 103.5	8.6 17.2 25.8 34.4 42.9 51.4 59.9	11.0 21.0 31.0 40.8 50.3 59.4 68.1	104° 104.5 105 105.5 106 106.5 106.6	68.4 76.9 85.3 93.7 102.1 110.5	76.4 84.2 91.5 98.4 105.0 111.4 112.6

+H₂O. Transition point, 95.2°. (Shiomi.) +2H₂O. Transition point, 48.35°. (D'Ans and Schreiner); 48° (Shiomi); 48.3° (Menzies and Humphery).

 $+7H_2O$ . Not efflorescent: Sol. in H₂O with absorption of heat.

Sol. in 8 pts. H₂O at 23°. (Neese, J. B. **1863.** 181.)

35.4° point, (D'Ans and Schreiner); 36.45° (Shiomi); 35.2° (Menzies and Humphery).

Solubility	in Hab	'O₄+Aq	at 25°.	
In 1000	g. of the	solution,	mols.	

In 1000 g. of the solution, mols.		
Na	PO4	
6.31 6.76 7.31	4.63 4.88 5.55	

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 101.)

See also above.

+12H₂O. Efflorescent. Sol. in H₂O with absorption of heat.

14 pts. Na₂HPO₄+12H₂O mixed with 100 pts. H₂O at 10.8° lower the temperature 3.7°. (Rüdorff, B. 2. 68.)

Sol. in 8.48 pts. H₂O at 17°, or 100 pts. H₂O dissolve 11.8 pts. at 17°, and solution has sp. gr. = 1.0422. (Schiff.) Sol. in 4 pts. cold, and 2 pts. bolling H₂O. (Pagens.) Sol. in 4 pts. H₂O at 18.75°. (Abl.) 100 pts. H₂O dissolve 12.735 pts. Na₂HPO₄+12H₂O. (Mishel card Exercise)

(Michel and Krafft.)

100 pts. H₂O dissolve 6.5 pts. Na₂HPO₄+ 12H₂O at 0°; 27.5 pts. at 30°. (Tilden, Chem. Soc. 45. 409.)

### Solubility in H₂PO₄+Aq at 25°.

In 1000 g. of the solution, mols.		
Na	PO ₄	
2.62 1.56 2.38 3.18 4.65 5.63	1.09 0.78 1.60 2.24 3.55 3.87	

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 101.)

See also above.

Melts in crystal water below 100°, and easily forms supersaturated solutions. (Gay-Lussac.)

Melts in crystal H₂O at 34.6° (Persoz), 35° (Kopp), 40-41° (Mulder).

Melts in crystal  $H_2O$  at 35°. (Tilden.

Chem. Soc. 45. 409.) Supersaturated solutions are brought to crystallization by addition of a crystal of Na₂HPO₄+12H₂O or an isomorphous substance as Na₂HAsO₄+12H₂O. (Thomson, Chem. Soc. 35. 200.)

Insol. in alcohol.

Sodium dihydrogen phosphate, NaH₂PO₄+ H₂O.

Very sol. in H₂O. Insol. in alcohol. (Graham.)

 $+2H_2O$ . Unchanged on air. Very sol, in H₂O, and solubility increases rapidly with the temperature. (Joly and Dufet, C. R. 102. 1391.)

100 pts.  $H_2O$  dissolve 59.9 pts. at 0°; 84.6 pts. at 18°. (Joly and Dufet.)

Solubility of NaH₂PO₄ in H₂O at t°. G. of anydrous NaH₂PO₄ in 100 g, H₂O. Solid phase; NaH₂PO₄+2H₂O.

t°	G. NaH ₂ P() ₄	t°	G. NaH2PO4
0.1	57.86 59.08	28.0 30.0	101.71 106.45
3.0	61.47	31.0	108.93
$\begin{array}{c} 5.0 \\ 10.0 \end{array}$	63.82 69.87	33.0 34.0	114.31 117.14
$\begin{array}{c} 15.0 \\ 20.0 \end{array}$	$76.72 \\ 85.21$	$\begin{array}{c c} 35.0 \\ 37.0 \end{array}$	120.44 126.76
$\begin{array}{c} 25.0 \\ 26.0 \end{array}$	94.63 96.73	$40.2 \\ 40.55$	138.16 110.83
27.0	99.20		

40.8°; transition point.

Solid phase; NaH₂PO₄+H₂O. 142.5552 163.8442 143.83 55 170.8545 148.20 56 173.2350 158.6157 175.81

57.4°; transition point.

Solid phase; NaH₂PO₄.

58	177.24	69.	190.24
60	179.33	80.	207.29
62	181.35	90.	225.31
65	184.99	99.1	246.56

(Imadzu, Chem. Soc. 1912, 33, 359.)

Solubility in H₃PO₄+Aq at 25°.

In 1000 g. of the solution, mols,

·	
Na	PO ₄
6.19	4.68
$\begin{matrix} 6.01 \\ 5.12 \end{matrix}$	4.67 4.36
$\begin{array}{c} \textbf{4.81} \\ \textbf{4.36} \end{array}$	4.22 4.08
$\begin{array}{c} \textbf{4.06} \\ \textbf{4.19} \end{array}$	4.03 4.38
$egin{array}{c} 4.32 \ 4.65 \end{array}$	4.96 5.89
4.88	6.40

(D'Ans and Schreiner, Z. phys. Ch. 1910, 75. 101.)

Trisodium trihydrogen phosphate, Na₃H₃(PO₄)₂.

Not hydroscopic. Sol. in H₂O in all proportions. (Joulie, C. R. 1902, **134**. 604.) +1½H₂O. Sol. in H₂O. (Filhol and

Senderens, C. R. 93. 388.)

+7H₂O. (Salzer, Arch. Pharm. 1894, **232**. 365.) +7½H₂O. (Joulie.)

Sodium orthophosphate acid, NaH₂PO₄, H₃PO₄.

Hygroscopic. Decomp. by alcohol. (Staudenmaier, Z. anorg. 1894, **5**. 395.)

Solubility of NaH2PO4, H2PO4 in H2O at to.

t°	NaF 2PO, H2PO,	Soliu phase
- 5.7 - 7.9 -11.4 - 38 - 34 + 41 51.7 79.7 85 101.7 104.5	20.77 26.92 34.15 56.66 80.46 81.82 83.68 87.48 88.65 91.47 92.67	Ice  " " " " " " " " " " " " " " " " " "
110	95.79	"
119	97.99	"
126.5	100	

(Parravano and Mieli, Gazz. ch. it. 38, II. 536.)

### Solubility in anhydrous H₃PO₄.

t°	% NaH2PO4, H3PO4
98.5	52.72
111	69.59
119	77.55
122	81.71
123	87.20

(Parravano and Mieli.)

+H₂O. Very deliquescent. (Salzer, Arch. Pharm. 1894, **232**. 369.)

Sodium pyrophosphate, Na₄P₂O₇, and +10H₂O.

Less sol. in H₂O than sodium hydrogen orthophosphate. (Clark, Ed. J. Sci. 7. 298.)

100 pts.  $H_2O$  dissolve (a) pts.  $Na_4P_2O_7$ , (b) pts.  $Na_4P_2O_7+10H_2O$  at:

 $0^{\circ}$ 30° 40° 50° 10°  $20^{\circ}$ a. 3.16 3.95 6.23 9.95 13.50 17.45 b. 5.41 10.92 18.11 24.9733.256.81

60° 70° 80° 90° 100° a. 21.83 25.62 30.04 35.11 40.26 b. 44.07 52.11 63.40 77.47 93.11

(Poggiale.)

Sol. in H₂SO₄. (Walden, Z. anorg. 1902, 29. 384.)

Crystallizes unchanged from NH₄Cl+Aq (Winkler), or conc. NH₄OH+Aq. (Uelsmann.) Decomp. into orthophosphate by heating with H₂SO₄, HCl, HC₂H₃O₂, or H₃PO₄+Aq. Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Insol, in alcohol. Insol, in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Sodium hydrogen pyrophosphate, Na₂H₂P₂O₇.

Decomp. by H₂O. Sol. in H₂O containing HC₂H₃O₂ without decomp. (Bayer, J. pr. **106.** 501.)

Sl. sol. in alcohol. Much more sol. in H₂O than NaH2PO4.

+6H₂O. **Cammelsberg**, B. A. B. **1883**. 21.)

100 g. sat. solution contain 14.95 g. Na₂H₂P₂O₇ at 18°. (Giran, A. ch. 1902, (7) 30. 249.)

Very hydroscopic. NaH₃P₂O₇. (Salzer. Arch. Pharm. 1894, 232. 369.)

100 g. sat. solution contain 62.7 g. at 18°. (Giran, A. ch. 1902, (7) 30. 249.)

Na₃HP₂O₇+H₂O. Sol. in 3 pts. H₂O. (Salzer, Arch. Pharm. 1894, **232.** 366.) +6H₂O. 100 g. sat. solution contain 28.17 g. Na₃HP₂O₇ at 18°. (Giran.)

Sodium tetraphosphate, Na₆P₄O₁₈.

Slowly sol. in 2 pts. cold H₂O. Easily decomp.

+18H₂O. (Uelsmann.)

Sodium hydrogen tetraphosphate, Na₄H₂P₄O₁₃. Sol. in H₂O.

Sodium dekaphosphate, Na₁₂P₁₀O₃₁.

Sol. in H₂O. (Fleitmann and Henneberg, **A**, **65.** 333.)

Sodium strontium dimetaphosphate.  $Na_2Sr(P_2O_6)_2 + 4H_2O$ .

As the NaBa comp. (Glatzel, Dissert. 1880.)

Sodium strontium trimetaphosphate,  $NaSrP_8O_9 + 3H_2O$ .

Easily sol, in H₂O and acids. (Fleitmann, A. 65. 315.)

Sodium strontium orthophosphate, NaSrPO₄  $+H_2O.$ 

Scarcely sol. in H₂O; sol. in acids.  $+9H_2O$ . (Joly, C. R. **104**. 905.)

Sodium strontium pyrophosphate (?).

Sl. sol. in H₂O. Insol. in Na₄P₂O₇+Aq. (Baer, Pogg. 75. 166.) Easily sol. in HCl+Aq, or HNO₃+Aq.

Sol. in NH₄OH+Aq.

Sodium thallium pyrophosphate,

 $Na_{5}[Tl(P_{2}O_{7})_{2}] + 6H_{2}O = Na(TlP_{2}O_{7}),$  $Na_4P_2O_7+6H_2O_1$ 

Decomp. by H₂O. (Rosenheim, B. 1915, **48.** 588.)

Sodium thorium orthophosphate, NaTh₂(PO₄)₃.

Insol, in acids. (Wallroth, Bull. Soc. (2) **39.** 316.)

Sodium thorium phosphate, Na₂O, 4ThO₂, 3P2O5.

Insol. in HNO₃, HCl, or aqua regia. (Troost and Ouvrard, C. R. 105. 30.)

5Na₂O, 2ThO₂, 3P₂O₅. Sol. in HNO₃+Aq. (T. and O.)

 $Na_2O$ ,  $ThO_2$ ,  $P_2O_5$ . (T. and O.)

Sodium thorium pyrophosphate, Na₄P₂O₇,  $ThP_2O_7+2H_2O$ . (Cleve.)

Sodium tin (stannic) phosphate, NaSn₂(PO₄)₈. (Ouvrard, C. R. 111. 177.)

 $Na_2Sn(PO_4)_2$ . (Wunder, J. pr. (2) **4.** 339.) 6Na₂O, 3SnO₂, 4P₂O₅. (Ouvrard.)

Sodium titanium phosphate, NaTi₂(PO₄)₃. Insol. in acids. (Rose, J. B. 1867. 9.) 6Na₂O, TiO₂, 4P₂O₅. (Ouvrard, C. R. 111.

Sodium uranium phosphate, UO2, Na2O, P2O5. Easily attacked by acids. (Colani, A. ch. 1907, (8) **12.** 137.)

Sodium uranium metaphosphate, 4UO₂, Na₂O₃ 3P₂O_b.

Insol. in boiling HNO₃. (Colani.)

Sodium uranium pyrophosphate, 3UO₂, 6Na₂O, 4P₂O₅. Sol. in acids. (Colani.)

Sodium uranyl phosphate, Na₂O, UO₃, P₂O₅. (Ouvrard, C. R. **110**. 1333.) 2Na₂O, UO₃, P₂O₅. (Ouvrard.) Na₂O, 5UO₃, 2P₂O₅+3H₂O. Insol. in H₂O; decomp. by acetic acid. (Werther, A. 68. 312.)

Sodium uranyl pyrophosphate.

Very sol. in  $H_2O$ . (Persoz, A. ch. (3) 20. 322.)

Sodium ytterbium pyrophosphate, NaYbP₂O₇. Easily sol. in the strong acids. (Wallroth.)

Sodium yttrium pyrophosphate, NaYP₂O₇.

Sol. in H₂O. (Stromever.) Insol. in H₂O. Easily sol. in strong acids. (Wallroth.)

Sodium zinc triphosphate,  $Na_2O$ , 4ZnO,  $3P_2O_5 + 19H_2O$ .

Sol. in H₂O. (Schwarz, Z. anorg. 1895, 9. 266.)

Sodium zinc trimetaphosphate, Na₂O, 2ZnO, 3P₂O₅.

Ppt. Sol. in H₂O. (Fleitmann and Henneberg, A. 65. 304.)

Sodium zinc tetrametaphosphate,  $Na_2Zn(PO_3)_4+6H_2O$ .

As K comp. (Glatzel, Dissert. 1830.)

Sodium zinc octometaphosphate, Na₂Zn₃(PO₃)₈

Insol. in acids.

Sol. in conc. H₂SO₄. (Tammann, J. pr. 1892, (2) **45.** 420.)

Sodium zinc orthophosphate, NaZnPO₄.

Difficultly sol. in H₂O or acetic acid. Easily sol. in dil. mineral acids. (Scheffer, A. 145. 53.)

2Na₂O, ZnO, P₂O₅. Insol. in H₂O; sol. indil. acids. (Ouvrard, C. R. 106. 1796.)

Sodium zinc pyrophosphate, Na₂ZnP₂O₇.

Insol. in H2O; sol. in dil. acids. (Wallroth.)

 $3Na_4P_2O_7$ ,  $Zn_2P_2O_7+24H_2O$ . Very efflores-

cent. (Pahl.)

 $Na_4P_2O_7$ ,  $Zn_2P_2O_7+2\frac{1}{2}$ , 3,  $3\frac{1}{2}$ , and  $8H_2O$ . Insol. in  $H_2O$ ; sol. in  $Na_4P_2O_7+Aq$ . (Pahl, Sv. V. A. F. 30, 7. 35.)

4Na₄P₂O₇, 5Zn₂P₂O₇+20H₂O. Insol. in H₂O. (Pahl.)

 $Na_4P_2O_7$ ,  $4Zn_2P_2O_7+12H_2O$ . Sl. sol. in H₂O. (Pahl.)

Sodium zirconium phosphate, Na₂O, 4ZrO₂,  $3P_2O_5 = NaZr_2(PO_4)_3.$ 

Insol, in acids or aqua regia. (Troost and Ouvrard, C. R. 105. 30.)

 $6Na_2O$ ,  $3ZrO_2$ ,  $4P_2O_5$ . Sol. in acids. (T. and O.)

4Na₂O, ZrO₂, 2P₂O₅. Sol. in acids. (T. and

Sodium phosphate fluoride, Na₃PO₄, NaF+ 12H₂O.

100 pts. H₂O dissolve, at 25°, 12 pts. salt and form solution of 1.0329 sp. gr.; at 70°, 57.5 pts. salt and form solution of 1.1091 sp. gr. (Briegleb, A. 97. 95.)

2Na₃PO₄, NaF+19H₂O, and 22 H₂O. Sol. in H₂O. (Baumgarten, J. B. 1865. 219.)

Sodium phosphate stannate,  $4Na_3PO_4$ ,  $Na_2SnO_3+4SH_2O$ . (Prandtl, B. 1907, 40. 2132.)

Sodium phosphate titanate  $Na_2O_1$ ,  $TiO_3$ ,  $P_2O_5 + 3H_2O_2$ .

(Mazzuchelli and Pantan-Hygroscopic. elli, C. C. **1909,** II. 420.)

Sodium phosphate vanadate. Sec Phosphovanadate, sodium.

Strontium monometaphosphate, Sr(PO₂)₂,

Insol. in H₂O and acids. Not decomp. by alkali carbonates + Aq. (Maddrell, A. 61. 61.)

Strontium hexametaph asphate.

Nearly most in H₂O; easily sol, in acids. (Ludert, Z. anorg. 5. 15.)

Strontium orthophosphate, basic, Sr(OH)2.  $Sr_3(PO_4)_2$ .

(Woyczynski, Z. anorg. 1894, 6. 311.)

Strontium orthophosphate, Sr₃(PO₄)₂. Insol. in H₂O. Sol. in HCl+Aq. (Erlenmeyer, J. B. 1857. 145.)

Strontium hydrogen phosphate, SrHPO₄.

Insol. in H₂O. Sol. in H₃PO₄, HCl, or Easily sol. in  $HNO_3 + Aq$ . (Vauquelin.) cold ammonium nitrate, chloride, or succinata+Aq, but is partly precipitated by a

little NH₄OH+Aq. (Brett.)
Sol. in boiling NH₄Cl+Aq. (Fuchs, **1834.**)
Sol. in Na citrate+Aq. (Spiller.)

Partly uccomp.

K₂CO₃+Aq. (Dulong.)

CHAPTER TO THE CONTROL (Barthe.) Partly decomp. by boiling Na₂CO₃, and

with H₂O, leaving 4.29%SrHPO₄. (Barthe.)

Strontium phosphate, acid, H₂O, 2SrO,  $3P_2O_5+xH_2O$ .

Entirely sol. in H₂O. (Barthe, C. R. 114. 1267.)

Strontium pyrophosphate,  $Sr_2P_2O_7+H_2O$ . Somewhat sol. in H2O. Easily sol. in HCl or HNO₃+Aq. Insol. in HC₂H₃O₂ or Na₄P₂O₇+Aq. (Schwarzenberg, A. 65. 144.) +2½H₂O. (Knorre and Oppelt, B. 21. 773.)

 $\begin{array}{ccc} Strontium & hydrogen & \mathit{pyrophosphate}, \\ SrH_2P_2O_7, & 2Sr_2P_2O_7 + 6H_2O. \end{array}$ 

Ppt. (Knorre and Oppelt, B. 21, 772.) SrH₂P₂O₇, 3Sr₂P₂O₇+H₂O, and +2H₂O. Knorre and Oppelt.)

 $Sr_9H_2(P_2O_7)_5 + SH_2O$ , and  $+12H_2O$ . Ppt. (Pahl, Gm. – K. 2, **2**. 172.)  $Sr_{19}H_2(P_2O_7)_{10}+5H_2O_7+18H_2O_7$  and

+20H₂O. Insol. in Sr(NO₃)₂+Aq or Na₄P₂O₇+Aq.

(Pahl, Gm. - K. 2, 2. 171.)

Strontium thorium phosphate, Th₂O, SrO, P₂O₅.

(Colani, C. R. 1909, 149, 209.)

Strontium uranium metaphosphate, UO₂, SrO, P₂O₅.

(Colani, A. ch. 1907, (8) 12. 141.)

Strontium uranyl phosphate, SrO, 4UO₅, 2P₂O₅+21H₂O. (Blinkoff, Dissert. 1900.) 2SrO, 5UO₅, 2P₂O₅+24H₂O. As Ba comp. (Blinkoff.)

Strontium phosphate chloride,  $3Sr_3(PO_4)_2$ ,  $SrCl_2$ .

Strontium apatite. Insol. in H₂O. (Deville and Caron.)

Tellurium phosenate (?).

Insol. in H₂O. (Berzelius.)

Thallous metaphosphate, TIPO₃.

Two modifications:

a. Difficultly sol. in H₂O.

β. Extremely easily sol. in H₂O. (Lamy.)

Thallous orthophosphate, Tl₃PO₄.

1 pt. is sol. in 201.2 pts. H₂O at 15°, and 149 pts. boiling H₂O; sol. in HNO₃+Aq. (Crookes.) Sl. sol. in HC₂H₃O₂+Aq. Very easily sol. in solutions of NH₄ salts. (Carstanjen.) Insol. in alcohol. (Lamy.)

Thallous hydrogen phosphate, Tl₂HPO₄.

Anhydrous. Much less sol. in H₂O than the hydrous salt, but easily sol. in a solution of the hydrous salt. (Lamy.)

 $+\frac{1}{2}H_2O$ . Easily sol. in  $H_2O$ . Insol. in alcohol. (Lamy.)

Composition is HTl₂PO₄, 2H₂TlPO₄. (Rammelsberg, W. Ann. **16.** 694.)

Taallous dihydrogen phosphate, TlH₂PO₄. Very easily sol. in H₂O. Insol. in alcohol. (Rammelsberg, B. 3. 278.)

Trithallous trihydrogen phosphate, Tl₂HPO₄, 2TlH₂PO₄.

True composition of  $Tl_2HPO_4$  of Lamy. (Rammelsberg.)

Thallous pyrophosphate, Tl₄P₂O₇.

Sol. in 2.5 pts. H₂O with slight decomposition. (Lamy.)

+2H₂O. More sol. in H₂O than the above salt, with partial decomp. (Lamy.)

Thallous hydrogen pyrophosphate, H₂Tl₂P₂O₇ +H₂O.

Very sol. in H₂O. (Lamy.)

Thallic phosphate, basic,  $2Tl_2O_5$ ,  $P_2O_5+5H_2O$ . Insol. in  $H_2O$ . Thallic phosphate, basic,  $Tl_8P_9O_{27} + 13H_2O$ . (Rammelsberg, W. Ann. **16**. 694.)  $Tl_6P_4O_{19} + 12H_2O$ . (R.)

Thallic phosphate, TlPO₄+2H₂O.

Completely insol. in H₂O. Sol. in conc. HNO₃, and dil. HCl+Aq. (Willm.)

Thorium metaphosphate, Th(PO₃)₄. Insol. in H₂O. (Troost, C. R. 101. 210.)

Thorium metaphosphate, ThO₂, 2P₂O₅. Insol, in acids. (Johnsson, B. **22**, 976.)

Thorium orthophosphate, Th₃(PO₄)₄+4H₂O. Insol. in H₂O and phosphoric acid (Berzelius); also acetic acid. (Cleve.) Sol. in HCl, and HNO₃+Aq. (Cleve.)

Thorium hydrogen phosphate,  $ThH_2(\mathrm{PO_4})_2 + H_2\mathrm{O}$  .

Precipitate.

Thorium pyrophosphate,  $ThP_2O_7 + 2H_2O$ .

Precipitate. Insol. in H₂O. Sol. in great excess of pyrophosphoric acid or sodium pyrophosphate+Aq. (Cleve.)

Thorium phosphate bromide.

See Bromophosphate, thorium.

Thorium phosphate chlroide.

See Chlorophosphate, thorium.

Tin (stannous) phosphate, 5SnO,  $4P_2O_5 + 4H_2O$ .

Insol. in  $H_2O$ . (Lenssen, A. **114.** 113.) Sn₃(PO₄)₂. Insol. in  $H_2O$ . Sol. in mineral

acids. (Kühn.)
Insol. in NH₄Cl or NH₄NO₃+Aq. Sol. in KOH+Aq.

Tin (stannic) phosphate,  $2SnO_2$ ,  $P_2O_5+10H_2O$ .

Insol. in H₂O or HNO₃+Aq. (Reynoso, J. pr. **54.** 261.)

Anhydrous. Insol. in acids. (Hautefeuille and Margottet, C. R. 102, 1017.)

Tin (stannic) phosphate,  $SnP_2O_7$ .

Insol. in acids. (Hautefeuille and Margottet, C. R. 102. 1017.)

Tin (stannous) phosphate chloride, 3SnO,  $P_2O_5$ ,  $SnCl_2+H_2O$ .

Not decomp. by hot H₂O. (Lenssen, A. 114. 113.)

Titanium phosphate, Ti₂P₂O₉ = 2TiO₂, P₂O₅.

Insol. in acids. (Hautefeuille and Margottet, C. R. **102**. 1017.)

(Ouvrard, C. R. **111**. 177.)

+3H₂O. Ppt. Insol. in H₂O. (Merz.)

TiO₂, P₂O₅. (Knop.) (Wunder, J. B. **1871**, 324.) Is NaTi₂(PO₄)₃.

H.TiPO7. Sol. in HCl, HNO8, H2SO4.

Sl. sol. in H₂PO₄. Sol. in KOH, NH₄OH, (NH₄)₂CO₃ and  $(NH_4)_2HPO_4+Aq.$ 

Very sl. sol. in acetic acid. (Faber, Z. anal. 1907, 46. 288.)

Uranous metaphosphate, U(PO₃)₄.

Insol. in HNO₈, HCl, or H₂SO₄, even when hot and conc. (Colani, A. ch. 1907, (8) **12.** 105.)

Uranic metaphosphate, U₂(PO₃)₆.

Insol, in H2O and acids. (Hautefeuille and Margottet, C. R. 96. 849.)

Uranous orthophosphate,  $U_3(P()_4)_4$ .

More easily attacked by acids than the pyro and meta phosphates, especially by HNO₂. (Colani, A. ch. 1907, (8) 12. 123.)

Uranous hydrogen orthophosphate, UHPO4+ H₂O.

Insol. in H₂O. Insol. in dil., sl. sol. in conc. HCl+Aq. Decomp. by KOH+Aq, not by NH₄OH+Aq. (Rammelsberg, Pogg. **59.** 1.)

Uranous pyrophosphate, UP₂O₇.

Insol. in H₂O.

Sl. sol. in min. acids. (Colani.)

Uranous phosphate, 2UO₂, P₂O₅.

Easily attacked by boiling HNO₃. (Colani.)

UO₂, P₂O₅+5H₂O. Insol. in H₂SO₄ and in HCl+Aq of medium concentration. Sol. in very conc. HCl+Aq. (Aloy, Dissert. 1901.)

Uranyl metaphosphate, UO₂(PO₃)₂.

(Rammelsberg, B. A. B. 1872, 447.) UO₃, 2P₂O₅. Insol. in acids. (Johnsson, B. **22.** 976.)

Uranyl orthophosphate, UO₂HPO₄+1½H₂O.

Insol. in H₂O. +3H₂O.

+4H₂O.

+4½H₂O. Insol. in H₂O. Sol. in 67,000 pts.  $HC_2H_3O_2 + Aq$ , 50,000 pts.  $NII_4C_2H_3O_2 +$ Aq, and 300,000 pts. of a mixture of the above two solutions. Sol. in K₂CO₃ or Na₂CO₃+Aq. (Kitschin, C. N. 27. 199.)

### Uranyl dihydrogen phosphate, $UO_2H_4(PO_4)_2+3H_2O.$

Decomp. by H₂O. Sol. in H₃PO₄+Aq. (Werther, J. pr. 43. 322.)

Uranyl pyrophosphate, (UO₂)₂P₂O₇-\footnote{-5H₂O.

Efflorescent. Insol. in H₂O. HNO₃+Aq, and Na₄l'₂O; +Aq. Insol. in Na₂HPO₄+Aq. Insol. in alcohol or ether. (Girard, C R. **34.** 22.)

+4H.O. (Casteing, Bull. Soc. (2) 34, 20.)

Uranyl tetre phosphate (?), UO₂P₄O₁₁. (Johnsson, B. 22, 978.)

Uranous orthophosphate chloride, U₃(PO₄)₄, UCl₄.

Sl. sol. in HCl+Aq. Sol. in HNO₃ and HNO₃+HCl. (Colani, A. ch. 1907, (8) 12. 127.)

Uranous hydrogen orthophosphate chloride, U(HPO₄)₂, UCl₄.

Very sl. sol. in H₂O. (Aloy Dissert. 1901.)

Vanadium phosphate,  $(VO_2)H_2PO_4+4\frac{1}{2}H_2O_1$ Sel. in H₂O.

See Phosphovanadic acid.

Vanadium pyrophosphate,  $V_4(P_2O_7)_3 + 30H_2O$ .

Insol. in H₂O. (Rosenheim, B. 1915, 48. 590.)

Divanadyl phosphate.

Very deliquescent, and sol. in H₂O. Insol. in alcohol. (Berzelius.)

Ytterbium metaphosphate, Yb(PO₃)₃.

Insol. in H₂O. (Cleve, Z. anorg. 1902, 32. 149.)

Ytterbium orthophosphate, YbPO₄+4½H₂O. Ppt. (Cleve.) .

Ytterbium phosphate,  $Yb_2O_3$ ,  $2P_2O_5+5H_2O_5$ Sol. in  $H_2O$ . (Cleve.)

Yttrium metaphosphate, Y(PO₃)₃. Insol, in H₂O or acids. (Cleve.)

Yttrium orthophosphase, YPO₄.

Anhydrous. Insol. in H₂O or acids after ignition.

Min. Xenotime. Insol. in conc. acids. Sl. sol. in much conc. HCl+Aq, but easily sol. therein when first heated with a little HCl+ Aq. (Wartha, A. 139. 237.)

Yttrium hydrogen orthophosphate, Y₂(HPO₄)₃. Decomp. by boiling with H₂O into insol. YPO4 and sol. acid salt.

Yttrium pyrophosphate, YHP₂O₇+3½H₂O.

Difficultly so, in acids. Decomp. H₂SO₄. Sol. in Na₄P₂O₇+Aq. (Cleve.) Decomp, by 2Y₂O₈, 3P₂O₅. Insol. in acids. (Johnsson, B. 22. 976.)

### Zinc metaphosphate.

Sol. in H2O. (Berzelius.)

### Zinc dimetaphosphate, ZnP₂O₆.

Sol. only in boiling H₂SO₄. (Fleitmann. **№Pogg. 78.** 350.)

Not decomp, by boiling Na₂S or (NH₄)₂S+

+4H₂O. Insol. in H₂O, but decomp. by boiling therewith. (Fleitmann, Pogg. 78.

Sol. in 4 pts. H₂O. Conc. H₂SO₄ decomp. it easily; other acids act slightly. (Glatzel, Dissert. 1880.)

Difficultly decomp. by boiling acids.

### Zinc trimetaphosphate, Zn₃(PO₃)₆+9H₂O.

1 l. H₂O dissolves 0.1 g. at 20°. (Tammann, J. pr. 1892, (2) 45. 426.)

### Zinc tetrametaphosphate, $Zn_2(PO_3)_4 + 10H_2()$ .

Sol. in 55 pts. H₂O. Decomp. by acids only on boiling. (Glatzel, Dissert. 1880.) Somewhat sol. in HNO₃+Aq. Sol. in boiling H₂SO₄. (Glatzel.)

### Zinc orthophosphate, $Zn_3(PO_4)_2 + 4H_2O$ .

Insol, in H₂O. Easily sol, in acids, NH₄OH,  $(NH_4)_2CO_3$ ,  $(NH_4)_2SO_4$ , or  $NH_4NO_3+Aq$ . (Heintz,  $\Lambda$ . **143**. 356.)

Sol. in NH₄Cl+Aq. (Fuchs.)

Easily sol. in Zn salts+Aq. (Rose.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 830.) Min. Hopeite.

+6H₂O. (Revnoso.)

### Zinc hydrogen phosphate, ZnHPO₄+H₂O. Insol. in H₂O; sol. in H₃PO₄+Aq. (Gra-

ham.)

Zinc tetrahydrogen phosphate,  $ZnH_4(PO_4)_2 +$ 

Nearly insol. in H₂O, but decomp, thereby into H₃PO₄ and 10ZnO, 4P₂O₅+10H₂O. (Demel, B. 12. 1171.)

Zinc phosphate, 10ZnO,  $4\text{P}_2\text{O}_5 + 10\text{H}_2\text{O}$ . Insol. in H₂O. (Demel, B. **12.** 1171.)

### Zinc pyrophosphate, $Zn_2P_2O_7 + 3/2H_2O$ .

Ppt. Sol. in H₂SO₃+Aq. Sol. in acids, KOH+Aq, NH₄OH+Aq. (Schwarzenberg, A. 65. 151.)

Sol. in Na₄P₂O₇+Aq (Gladstone), and in  $ZnSO_4 + Aq$ . (Rose.)

Insol. in acetic acid. (Knorre, Z. anorg. 1900, **24.** 389.)

+5H₂O. Insol. in H₂O. (Pahl, J. B. 1873. 229.)

### Zinc hydrogen pyrophosphate.

Sól. in H₂O. (Pahl, Sv. V. A. F. 30, 7, 45.)

### Zinc metaphosphate ammonia.

Ppt. (Bette.)

### Zinc orthophosphate ammonia, 2ZnO, P2O5. $3NH_8+8H_2O$ .

(Rother, A. 143. 356.) 6ZnO, 3P₂O₅, 8NH₃+4H₂O. (Schweikert, A. **145.** 517.)

### Zinc pyrophosphate $4NH_3+9H_2O$ . ammonia, 3Zn₂P₂O₇,

Ppt. Insol. in H₂O. (Bette.)

### Zirconium orthophosphate, 5ZrO₂, 4P₂O₅+ 8H₂O.

Somewhat sol. in acids. (Hermann, J. pr. **97.** 321.)

Insol. in acids. (Paykull, Bull. Soc. (2) 20.

2ZrO₂, P₂O₅. Not attacked by acids. (Hautefeuille and Margottet, C. R. 102. 1017.)

### Zirconium pyrophosphate, Zr(PO₃)₂.

(Knop. A. 159, 36.)

### Phosphoricovanadicotungstic acid.

### Ammonium phosphoricovanadicotungstate, $14(NH_4)_2()$ , $2P_2()_3$ , $7V_2()_3$ , $31WO_3$ + 78H₂O.

Sol. in H₂O. Insol. in alcohol, ether, CS₂ and benzene. (Rogers, J. Am. Chem. Soc. 1903, **25.** 305.)

### Phosphorimidamide, PN₂H₃.

(Joannis, C. R. 1904, 139. 365.)

### Phosphorimide, P₂(NH)₈.

Very sol, in ammoniacal solution of NH₄I. (Hugot, C. R. 1905, 141. 1236.)

### Phosphornitryl, PON.

See Phosphoryl nitride.

### Phosphorosomolybdic acid, P₂O₃,

 $24\text{MoO}_3 + 63\text{H}_2\text{O}$ .

(Rosenheim and Pinsker, Z. anorg. 1911, **70.** 77.)

### Ammonium phosphorosomolybdate,

 $2(NH_4)_2O$ ,  $2H_3PO_3$ ,  $12M_0O_3+12\frac{1}{2}H_2O$ . Insol. in cold, slightly sol. in hot H₂O. (Gibbs, Am. Ch. J. 5. 361.)

### Phosphorosophosphomolybdic acid.

Ammonium phosphorosophosphomolybdate,  $9(NH_4)_2O_1$ ,  $2H_3PO_3$ ,  $3P_2O_5$ ,  $72M_0O_3+$ 38H₂O.

Nearly insol. in H₂O. (Gibbs.)

### Phosphorosophosphotungstic acid.

Potassium phosphorosophosphotungstate, 5K₂O, 2H₃PO₂, P₂O₅, 24WO₃ + 13H₂O. Sol. in much boiling H₂O. (Gibbs, Am. Ch. J. 7. 313.)

### Phosphorosotungstic acid.

Ammonium phosphorosotungstate, 6(NH.)2O, Barium phosphite, BaHPO2.  $4H_{8}PO_{8}$ ,  $22WO_{8} + 25H_{2}O_{1}$ Sl. sol. in cold H₂O.

Potassium —,  $5K_2O$ ,  $16H_3PO_3$ ,  $32WO_3+$ 46H₂O. Sl. sol. in hot H₂O.

Sodium --,  $2Na_2O$ ,  $8H_3PO_3$ ,  $22WO_3+$ 35H₂O.

Nearly insol. in cold, sl. sol. in hot H₂O. (Gibbs, Am. Ch. J. 7. 313.)

### Phosphorous anhydride, P₂O₃. See Phosphorus trioxide.

Phosphorous acid, H₃PO₃. Deliquescent. Very sol. in H₂O.

### Phosphites.

The neutral alkali phosphites are sol, in H₂O; most of the others are sl. sol. in H₂O, but sol. in H₃PO₃+Aq; all are insol. in alcohol.

Aluminum phosphite, basic,  $Al_2(HPO_3)_3$ .  $Al_2(OH)_6$ .

Ppt. (Grützner, Arch. Pharm. 1897, 235. 698.)

### Aluminum phosphite.

Precipitate. (Rose, Pogg. 9. 39.) Sl. sol. in H₂O.

Ammonium phosphite,  $(NH_4)_2HPO_3+H_2O$ .

Very deliquescent, and sol. in H₂O. (Rose, Pogg. 9. 28.)

Sol. in 2 pts. cold, and less hot H₂O. Insol. in alcohol. (Berzelius.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328.)

### Ammonium hydrogen phosphite, (NH₄H)HPO₃.

Very deliquescent, and sol. in H₂O. 1 pt. H₂O dissolves 1.71 pts. salt at 0°; 1.9 pts. at 14.5°; and 2.60 pts. at 31°. (Amat, C. R. **105.** 809.)

### Ammonium hydroxylamine phosphite. NH₄(NH₃OH)HPO₃.

Sol. in H₂O and abs. alcohol. (Hofmann, Z. anorg. 1898, 16. 466.)

Ammonium magnesium phosphite,  $(NH_4)_2Mg_3(PHO_3)_4+16H_2O.$ 

Slightly sol. in H₂O. (Rammelsberg, Pogg. 131. 367.)

Antimonyl phosphite, (SbO)H₂PO₃. Very sol in H₂O containing HCl. (Grütz-

ner, Arch. Pharm. 1897, 235, 694.)

100 pts.  $H_{\bullet}O$  dissolve 0.25 p⁺ (Ure.) Very slightly sol. in H2O, and decomp. by boiling H₂U. (Dulong.)

Lasily sol. in H₂O containing NH₄Cl.

(Wackenroder, A. **41.** 315.) Sol, in H₃PO₃+Aq or HCl+Aq. (Railton.)

Barium hydrogen phosphite, Ba₂H₂(HPO₃)₃+ 8H₂O.

Easily sol. in H₂O, but decomp. by boiling therewith. Insol. in alcohol. (Rammelsberg, Pogg. 132, 496.)

Barium dihydrogen phosphite, BaH₂(HPO₃)₂ +⅓H₂O.

Easily sol. in  $H_2O$ . (Rose, Pogg. 9. 215.) + $H_2O$ . Sol. in  $H_2O$ ; decomp. by boiling H₂O . ito a neutral insol., and an acid sol. salt. (Wurtz, A. 58. 66.)

+2H₂O. Easily sol. in H₂O. (Rammelsberg, Pogg. 132, 496.) Insol. in alcohol. (Wurtz.)

Bismuth phosphite, 2Bi₂O₃, 3P₂O₃.

Insol. in H₂O.  $Bi_2(HPO_3)_3 + 3H_2O$ . Ppt. (Grützner, Arch. Pharn. 1897, **235.** 696.)

Decomp. by H₂S. Not decomp. by KOH +Aq. (Vanino, J. pr. 1906, (2) 74. 151.)

Cadmium phosphite, CdHPO₃+3H₂O. Ppt. (Rose, Pogg. 9, 41.)

#### Calcium phosphite, $CaHPO_3 + \frac{3}{2}H_2O$ .

Sl. sol. in H₂O; the aqueous solution is decomp. by boiling.

 $+\mathrm{H}_2\mathrm{O}$ . Sol. in NH₄Cl+Aq. (Wackenroder, A. 41. 315.)

Insol. in alcohol.

Calcium hydrogen phosphite,  $CaH_2(HPO_3)_2 +$ H₂O.

Sol. in H₂O. Aqueous solution is decomp. by alcohol. (Wurtz, A. ch. (3) 7. 212.)

### Chromic phosphite.

Precipitate. Almost insol. in H₂O. (Rose, Pogg. 9, 40.)

Cobaltous phosphite, CoPHO₃+2H₂O. Ppt. Sl. sol. in H₂O. (Rose.)

Cupric phosphite, CuHPO₃+2H₂O.

Ppt. Insol. in  $H_2O$ . (Wurtz, A. ch. (3) **16.** 213.)

Didymium phosphite, Di₂(HPO₃)₃.

Precipitate. (Frerichs and Smith, A. 191. 331.)

### Glucinum phosphite.

Precipitate. Insol. in  $H_2O$ . (Rose, Pogg. 9. 39.)

Iron (ferrous) phosphite,  $FeHPO_3+xH_2O$ . Ppt. Nearly insol. in  $H_2O$ . (Rose, Pogg. 9. 35.)

Iron (ferric) phosphite, basic, Fe₂(HPO₃)₃, Fe₂(OH)₆.

(Grützner, Arch. Pharm. 1897, **235.** 697.) Fe₄(HPO₃)₆, Fe(OH)₃+5H₂O. Hydroscopic. (Berger, C. R. 1904, **138.** 1500.)

Iron (ferric) phosphite, Fe₂(HPO₃)₂+9H₂O. Ppt. Sol. in iron alum+Aq. (Rose.)

Lanthanum phosphite, La₂(HPO₃)₃. Precipitate. (Smith.)

Lead phosphite, basic, 4PbO, P₂O₃+2H₂O.

Ppt. (Rose, Pogg. 9. 222.) 3PbO,  $F_2O_3+H_2O$ . Insol. in  $H_2O$ . Sol. in warm dil.  $H_3PO_2+Aq$ , from which it is pptd. by  $NH_4OH+Aq$ . (Wurtz, A. ch. (3) 16. 214.)

### Lead phosphite, PbHPO₃,

Insol. in H₂O. Very sl. sol. in a solution of phosphorous acid; easily sol. in cold HNO₃ +Aq. (Wurtz.)

Lead hydrogen phosphite, PbH₄(PO₃)₂. Decomp. by H₂O. (Amat, C. R. **110.** 901.)

Lead pyrophosphite, PbH₂P₂O₅.

**24.** 352.)

Gradually decomp. by H₂O into H₃PO₃ and PbHPO₃. (Amat, C. R. **110**. 903.)

Lithium hydrogen phosphite, LiH₂PO₃. Very sol. in H₂O. (Amat, A. ch. (6) **24**. 309.)

Lithium pyrophosphite, Li₂H₂P₂O₅. Very sol. in H₂O. (Amat. A. ch. 1891, (6)

Magnesium phosphite, MgHPO₃+3H₂O. Sl. sol. in H₂O. (Rose, Pogg. **9.** 28.) Sol. in 400 pts. H₂O. (Berzelius.) +4H₂O.

Magnesium pyrophosphite,  $Mg(H_2PO_3)_2$ . Very sol. in  $H_2O$ . (Amat. A. ch. 1891, (6) **24.** 313.) Manganous phosphite, MnHPO₃+½H₂O.

Difficultly sol. in  $H_2O$ , easily in  $MnCl_2$  or  $MnSO_4+Aq$ . (Rose, Pogg. 9. 33.)

Nickel phosphite, NiHPO₈+3 $\frac{1}{2}$ H₂O. Ppt. Sl. sol. in H₂O.

Potassium phosphite, K₂HPO₃.

Very deliquescent. Very sol. in H₂O. Insol. in alcohol. (Dulong.)

Potassium hydrogen phosphite, (KH)HPO₃.

Sol. in 3 pts. cold, and in less hot H₂O. (Foureroy and Vauquelin.)

Potassium pyrophosphite, K₂H₂P₂O₅. Very sol. in H₂O. (Amat. A, ch. (6) **24.** 351.)

Sodium phosphite, basic, Na₂HPO₃, NaOH (?).

Not obtained in pure state (Zimmerman, B. 7. 290); = Na₃PO₃ (Wislicenus.)

Does not exist. (Amat.)

Sodium phosphite, Na₂HPO₃+5H₂O.

Deliquescent, and very sol. in  $H_2O$ . Insol. in alcohol.

Correct formula for Na₃PO₃ of Rose and Dulong.

Sodium hydrogen phosphite, (NaH)HPO₃+ 2½H₂O.

0.56 pt. salt dissolves in 1 pt.  $H_2O$  at 0°; 0.66 pt. at 10°; 1.93 pts. at 42.° (Amat, C. R. **106**. 1351.)

 $Na_2H_4(HPO_3)_3^2+H_2O$ . Deliquescent in moist air. Sol. in 2 pts. cold, and about the same amt. hot  $H_2O$ . Sl. sol. in spirit. (Four-croy and Vauquelin.)

Sodium pyrophosphite, Na₂H₂P₂O₅.

Very sol, in  $H_2O$  with gradual decomp, into  $Na_2HPO_3$ . (Amat.)

Strontium phosphite, SrHPO₃+1½H₂O.

Difficultly sol, in H₂O. Aqueous solution decomp, on heating into a sol, acid salt and an insol, basic salt.

Strontium hydrogen phosphite,  $SrH_4(PO_3)_2$ . Very sol. in  $H_2O$ . (Amat, A. ch. (6) **24.** 312.)

Thallous hydrogen phosphite, TlH₂PO₃. Very sol. in H₂O. (Amat, A. ch. (6) **24.310.**)

Thallous pyrophosphite, Tl₂H₂P₂O₅.

Deliquescent. Very sol. in H₂O. (Amat.)

Tin (stannous) phosphite, SnHPO₃.

Ppt. Sol. in HCl+Aq. (Rose, Pogg. 9. 45.)

Tin (stannic) phosphite, 2SnO₂, P₂O₃. Ppt. (Rose, Pogg. 9. 47.)

Titanium phosphite (?)

Precipitate. (Rose, Pogg. 9. 47.)

Uranyl phosphite, (UO₂)₃H₂(HPO₃)₄+12H₂O. Precipitate. (Rammelsberg, Pogg. 132. 500.)

Zinc phosphite, ZnHPO₄.

Sol. in H₂O. (Rammelsberg, Pogg. 132, 481.)

+21/2H2O. More easily sol, in cold than warm H₂O. (Rammelsberg.)

Zinc phosphite, acid, Zn₂H₃P₃O₈.

Sol. in H₂O.

 $+2H_2O$ . Sol. in  $H_2O$ . (Rammelsberg, Pogg. 132, 498.)

Zn₃H₆P₅O₁₃. Sol. in H₂O.

 $+3H_2O$ . Sol. in  $H_2O$ . (Rammelsberg.) Zn₂H₉P₅O₁₄. Sol. in H₂O.

 $+H_2O$ . Sol. in  $H_2O$ . (Rammelsberg.)

Zirconium phosphite,  $Zr(PO_3)_2 + H_2O$ .

Ppt. Nearly insol, in dil. mineral acids. (Hauser, Z. anorg, 1913, 84, 92.)

### Phosphorous anhydride, P2O3.

See Phosphorus trioxide.

#### Phosphorus, P.

(a) Ordinary white phosphorus. Insol. in H₂O, but slowly decomp. thereby (G. K.);

very sl. sol. in H₂O. (Berzelius and others.) A pure aqueous solution containing 0.1 g. P in 500 cc. H₂O can be obtained by dissolving 0.1 g. P in CS₂ mixed with ether and hot alcohol; this solution is poured into 500 cc. boiling H₂O free from air, and the boiling continued with stirring until the alcohol, ether and CS₂ are boiled off. (Bokorny, Ch. Ztg. 1896, **20.** 1022.)

100 g. H₂O sat. with P contains 0.0003 g. P. (Stich, C. C. **1903**, I. 1291.)

Sol. with decomp. in hot conc. HNO₈+Aq. Decomp. by boiling caustic alkalies + Aq. Easily sol. in SCl₂, especially if hot. (Wöhler.)

Sol. in sulphur phosphides.

Largely sol. in PCl₃.

Easily sol, in PCl₅.

Sol. in PBr₃. Sol. in PSCl₃, easily on warming, separating on cooling. (Serullas, A. ch. 1829, **42**. 25.) Sol. in liquid SO₂. (Sestini, Bull. Soc.

1868, (2) **10.** 226.) Sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Sol. in S2Cl2 without foaming. (Nicolardot, C. R. 1908, 147. 1304.)

Sol., in PS₄Cl₅. (Gladstone, A. 1850, 74. 91.)

Sol, in 320 pts. cold alcohol of 0.799 sp. gr., and in 240 pts. of the same when warm. Pptd. from alcoholic solution by H₂O. (Büch-

One grain P dissolves in 1 ounce abs. alcohol. (Schacht.)

Sol. in 20 pts. absolute ether at 20° and 240 pts. ordinary ether at 20°. (Bucholz.) Sol. in 80 pts. absolute ether at 15.5°, and 240 pts. ordinary ether at 15.5°. (Brugnatelli, A. ch. 24. 73.)

Solubility of P, in 100 g. ether at to.

t°	G. Phosphorus	Sp. gr.
0	0.4335	
0 5 8	0.62	
8	0.79	
16	0.85	
15	0.9	at 13° 0.7257
18	1.005	
20	1.04	at 19° 0.7187
23	1.121	
≥5	1.39	0.7283
28	1.601	
30	1.75	
33	1.8	
35	1.9984	

(Christomanos, Z. anorg. 1905, 45. 136.)

Solubility of P₄ in 100 g. benzene at to.

t°	G. phosphorus	Sp. gr.
0	1.513	
5	1.99	
5 8	2.31	
10	2.4	
15	2.7	at 13° 0.8959
18	3.1	
$\widetilde{20}$	3.21	at 19° 0.8912
$\ddot{2}\ddot{3}$	3.3995	at 22° 0.8875
$\overline{25}$	3.7	0.8861
$\tilde{28}$	4.35	1
30	4.601	l
33	5.0	
35	5.17	
40	5.75	1
45	6.105	l
50	6.8	1
55	7.315	l
60	7.9	
65	8.4	
70	8.898	
75	1.4	
81	10.027	
01	10.021	1

(Christomanos.)

13971

Sol. to about 1% in acetic acid. (Vulpius, Arch. Pharm. 1878, 213. 38.)

100 g. 96% acetic acid dissolve 0.105% P. (Stich, Pharm. Ztg. 1903, 48. 343.)

Sol. in 0.05 pt. CS₂ (Böttger); 0.125 pt. (Trommsdorf.)

Alcohol ppts. P from CS₂ solution.

1 pt. CS₂ dissolves 17–18 pts. P. (Vogel, J. B. **1868**. 149.)

Solubility in CS₂ at t°. (g. per 100 g. of solution.)

t°	G. P.	t°	G. P4
-10 -7.5 -5 -3.5 -3.2	31.40 $35.85$ $1.95$ $66.14$ $71.72$	$\begin{array}{c} -2.5 \\ 0.0 \\ +5.0 \\ +10.0 \\ \end{array}$	75.00 81.27 86.30 89.80

(Cohen and Inouye, Z. phys. Ch. 1910, 72.

Very sol. in methylene iodide. (Retgers, Z. anorg. 3. 343.)

Strong vinegar dissolves P. (Beudet.) Sol. in considerable amount in stearic acid. (Vulpius, Arch. Pharm. (3) 13. 38.)

Sol. in ethyl chloride, benzoyl chloride, stannic chloride, and in liquid cyanogen.

Sl. sol. in ethyl nitrite, and wood-spirit. Sl. sol. in acetone, with gradual decomposition.

Insol, in nicotine, and coniine.

Sl. sol. in cold, more sol. in hot benzene. (Mansfield.)

Sol. in 14 pts. hot, and less in cold petroleum from Amiano. (Saussure.)

leum from Amiano. (Saussure.)
Sl. sol. in "liquid paraffine." (Crismer, B.

Sl. sol. in warm essential oils, as oil of turpentine, and in the fatty oils.

Sol. in hot oil of copaiba, separating out on cooling.

Sol. in hot oil of caraway, and mandarin oil. (Luca.)

Sl. sol. in cold, more sol. in hot caoutchin, depositing on cooling.

Readily sol. in warm, less in cold styrene. Sol. in aniline, and quinoline. (Hofmann.) Sl. sol. in cold creosote.

Somewhat sol. in fusel oil.

Easily sol. in valerianic acid, and amyl

Sol. in hexyl alcohol, ethylene chloride, allyl sulphocyanide, mercury methyl, chloroform, bromoform, warm chloral, acetic ether, aldehyde, hot cacodyl sulphide, and in cacodyl oxide.

100 g. oil of almonds sat. with P contain 1.25 g. (Stich, C. C. 1903, I. 1291.)

100 g. oleic acid sat. with P contain 1.06 g. (Stich.)

100 g. paraffine sat. with P contain 1. g. (Stich.)

(b) Amorphous phosphorus. Insol, in H₂O. Insol, in NH₄OH+Aq. (Flückiger.) Sol. in boiling KOH+Aq.

The statement of Burgess and Chapman, (Chem. Soc. 79, 1235) that red P is sol. in aqueous alcoholic alkali is incorrect. Both ordinary crystalline and amorphous red P are insol. in aqueous alcoholic alkali. (Michaelis, A. 1902, 325. 367.)

Insol. in liquid NH₃. (Hugot, A. ch. 1900 (7) 21, **31**); (Franklin, Am. Ch. J. 1898, **20**. 828.)

Bright red variety is sol. in liquid NH₃ at ord. temp. leaving a black residue. (Stoch, Bötteher and Lenger, B. 1909, **42**. 2854.)

Red. Amorphous.
Sol. in S₂Cl₂ with foaming. (Nicolardot,

C. R. 1908, 147. 1304.)
Solubility of amorphous bright red P₄
in PBr₃ is diminished by long heating as
follows:

	172°	185°
Initial concentration	0.555	0.476
Final concentration	0.374	0.397
Length of expt. in hours	34	24
198°	218°	
0.592	0.476	
0.416	0.592	
18	17	
(Buck, Disser	t. <b>1904.</b> )	

Ordinary amorphous P₄ is sol. in PBr₃. A sample prepared by heating bright red amorphous P with 94.2% P dissolved by heating in PBr₃ as follows:

A finely pulverized commercial product containing 98.0% P:

An ordinary commercial product with 98% P:

100 g. PBr, dissolve 0.2601 g. bright red phosphorus at 172°; 0.3634 g. at 184°. (Schenk, B. 1902, **35**. 353.)

Insol. in KOH + Aq.

Conc.  $H_2SO_4$  does not act upon it in the cold, but dissolves easily when hot.

Insol. in dil., easily sol. in conc. HNO₃+Aq with decomposition.

Much more sol. in HNO₈+Aq than ordinary P. (Personne, C. R. **45**. 115.)
Insol. in methylene iodide. (Retgers.)

Insol. in methylene iodide. (Retgers.)
Appreciably sol. in isobutyl alcohol.
(Svedberg.)

Insol. in CS₂, alcohol, ether, naphtha, ligroine, PCl₃, etc.

Sl. sol. in boiling oil of turpentine and

other high-boiling liquids, with conversion into ordinary phosphorus.

Insol. in oil of turpentine even at 270°. (Colson, A. ch. 1908, (8) 14. 554.)

(c) Crystalline. Insol. in, and not attacked by dil. HNO₃+Aq. Sol. in CS₂.

### Phosphorus tibromide, PBr₃.

Decomposed by H₂O, slowly at 8°, but very rapidly at 25°. (Löwig, Pogg. 14. 485.) Sol. in liquid H₂S. (Antony and Magri,

Gazz. ch. it. 1905, 35. (1) 206.)

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913, 84. 27.)

Sol. in ether, acetone, CHCl₃, C₆H₆ and CS₂. (Christomanos, Z. anorg. 1904, 41. 287.)

### Phosphorus pentabromide, PBr_b.

Fumes on air, and is violently decomp. by  $H_2O$ .

### Phosphorus tribromide ruthenium bromide, Ru₂P₆Br₁₉.

Decomp. by boiling H₂O. Slowly sol. in hot alcohol with decomp. Insol. in benzene, CCl₄, ligroin and cold alcohol. (Strecker, B. 1909, **42**. 1775.)

# Phosphorus thiophosphoryl bromide, PBr₃, PSBr₃.

Decomp. by H₂O into PSBr₃. (Michaelis.)

# Phosphorus *tri*bromide ammonia, 3PBr₃, 5NH₃.

Slowly but completely sol. with decomp. in H₂O. (Storer's Dict.)

# Phosphorus pentabromide ammonia, PBr_b, 9NH₃.

(Besson, C. R. 111. 972.)

# Phosphorus monobromotetrachloride, PBrCl. Decomp. by H₂O. (Prinvault, C. R. **74**. 868.)

Phosphorus dibromotrichloride, PCl₃Br₂. Very unstable. (Michaelis, B. **5**. 9.)

### Phosphorus tetrabromotrichloride, PCl₃Br₄. Decomp. with H₂O. (Geuther.)

Phosphorus heptabromodichloride, PCl₂Br₇. Very unstable. (Prinvault, C. R. **74**. 868.)

### Phosphorus octobromotrichloride, PCl₂Br₈. Very easily decomp. (Michaelis, B. 5. 9.)

### Phosphorus bromofluoride, PF₃Br₂.

Decomp. violently with H₂O. (Moissan, Bull. Soc. (2) 43. 2.)

### Phosphorus bromonitride.

See Nitrogen bromophosphide.

### Phosphorus dichloride, P2Cl4.

Decomp. by  $H_2O$ . (Besson, C. R. 1910, 150. 103.)

### Phosphorus trichloride, PCl₃

Gradually decomp. by H₂O.

0.11 g. is sol. in 100 cem. liquid H₂S. (Antony, Gazz. ch. it. 1965, **35** (1) 206.)

Acted upon by liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Miscible with CS2, C6H6, CHCl8, and ether.

Decomp. with alcohol.

### Phosphorus pentachloride, PCls.

Very debq escent, and sol. in H₂O with violent decomp. and evolution of heat. Sol. in liquid HCl. Acted upon by liquid NH₃. Somewhat sol. without decomp. in CS₂. (Schiff, A. 102. 118. (Franklin, Am. Ch. J. 1898, 20. 828.)

Sol. without decomp. in benzoyl chloride. (Gerhardt.)

Scl. in oil of turpentine with evolution of

## Monophosphorus platinous chloride, PCl₃, PtCl₂.

Deliquescent. Sol. in H₂O with formation of chloroplatinophosphoric acid. Similarly decomp. by alcohol. Abundantly sol. in hot benzene, toluene, chloroform, or carbon tetrachloride, and crystallizes on cooling. (Schützenberger, Bull. Soc. (2) 17. 482.)

# Diphosphorus platinous chloride, 2PCl₃, PtCl₂.

Decomp. by H₂O with formation of chloroplatinodiphosphoric acid. Similarly decomp. by alcohol. Sol. without decomp. in PCl₃, CCl₄, CHCl₃, C₆H₅, or C₇H₈. (Schützenberger.)

Sol. in propyl alcohol with formation of the propyl ether of platinochlorophosphorous acid and HCl. (Pomey, C. R. 104. 364.)

# Phosphorus diplatinous chloride, PCl₃, 2PtCl₂.

Sol. in alcohol, with formation of ether  $(PtCl_2)_2P(OC_2H_\delta)_8$ . (Cochin, C. R. 86. 1402.)

Phosphorus platinic chloride, PCl₃, PtCl₄. (Schützenberger.)

### Phosphorus pentachloride platinic chloride, PCl₅, PtCl₄, or (PCl₄)₂PtCl₅.

Decomp. at once by H₂O. (Baudrimont, A. ch. (4) 2. 47.)



Phosphorus pentachloride selenium tetrachloride, 2PCl_b, SeCl₄.

Sol. in H₂O with decomp. (Baudrimont, A. ch. (4) 2. 5.)

Phosphorus trichloride ruthenium chloride, Řu₂P₆Cl₁₉.

Slowly decomp, by boiling H₂O.

Sol. in benzene and CHCl₃.

Sl. sol. in CCl₄. Insol. in ligroin. (Strecker, B. 1909, 42, 1774.)

Phosphorus tellurium chloride, PCl₅, ŽTeCl₄.

Very deliquescent.

Sol. in  $H_2O$ . (Metzner, A. ch. 1898, (7) **15.** 203.)

Phosphorus pentachloride stannic chloride, PCl₅, SnCl₄.

Very deliquescent. Sol. in much H₂O with evolution of heat, forming SnCl₄, HCl, and H₃PO₄, and soon separates out stannic phosphate. (Casselmann, A. 83. 257.)

Phosphorus trichloride titanium chloride, PCl₃, TiCl₄.

(Bertrand, Bull. Soc. (2) 33, 565.)

Phosphorus pentachloride titanium chloride, PCl₅, TiCl₄.

Deliquescent. Decomp. by H₂O and alcohol. Sol. in ether. Sl. sol. in PCl₃. (Tüttschew, A. 141. 111.)

Completely sol, in dil. acids. (Weber.)

Phosphorus uranium pentachloride, PCl₅, ŪCl₅.

Decomp. with H₂O.

Phosphorus pentachloride zirconium chloride, PCl₅, ZrCl₄.

Decomp, by H₂O with pptn. of Zr phosphate. (Paykull.)

Phosphorus trichloride ammonia, PCl₃, 5NH₃.

Insol. as such in H₂O, but slowly decomp. by boiling H₂O. More easily sol. with decomp. in acids. Sol. with decomp. by boiling with KOH or NaOH+Aq. (Berzelius.)

Phosphorus pentachloride ammonia, PCl₅, 5NH₃.

Properties as PCl₃, 5NH₃. (Berzelius.) PCl₅, 8NH₃. Sl. decomp. on air. (Besson, C. R. **111.** 972.)

Phosphorus pentachloride tungsten trioxide, 2PCl₅, WO₃(?).

(Persoz and Bloch, C. R. 28. 389.)

Phosphorus chlorobromide.

See Phosphorus bromochloride.

Phosphorus chlorofluoride, PCl₂F₃.

Absorbed by H₂O with decomp. Absorbed by alcohol or ether. (Poulenc, A. ch. (6) 24.

Phosphorus chloroiodide, PCl₃I₂.

Decomp, by moist air or H₂O. Sol. in CS₂. (Most, B. 13. 2029.)

Phosphorus chloronitride.

See Nitrogen chlorophosphide.

Phosphorus trifluoride, PF₃.

Decomp. slowly by H₂O. (Moissan, Bull. Soc. (2) 43. 2.)

Rapidly absorbed by KOH or NaOH+Aq, slowly by  $BaO_2H_2$ , and  $K_2CO_3+Aq$ . Absorbed by absolute alcohol with decomp. (Moissan, C. R. **99**. 655.)

Phosphorus pentafluoride, PF₅.

Fumes on air. (Thorpe, A. 182, 20.)

Phosphorus pentafluoride ammonia, 2PF₅, 5NH₃.

(Moissan, C. R. 101. 1490.)

Phosphorus pentafluoride nitrogen peroxide.

Decomp. by H₂O. (Tassel, C. R. 110. 1264.

Phosphorus fluobromide.

See Phosphorus bromofluoride.

Phosphorus fluochloride.

See Phosphorus chlorofluoride.

Phosphorus subiodide, P₄I.

Sol. in dil. HNO₃ and in alkalies+Aq. (Boulouch, C. R. 1905, **141**. 257.)

Phosphorus diodide, P2I4.

Decomp. by H₂O. Sol. in CS₂. (Corenwinder, A. ch. (3) **30**. 242.) 0.09 g. is sol. in 100 ccm. liquid H₂S. (An-

tony, C. C. **1905**, I. 1692.)

Phosphorus triiodide, PI₃.

Very deliquescent. Decomp. in moist air and by H₂O. (Corenwinder, A. ch. (3) 30. 242.)

Very sol. in CS2.

Phosphorus pentaiodide, PI₅ (?).

(Hampton, C. N. 42. 180.)

Phosphorus iodosulphide.

See Phosphorus sulphoiodide.

Phosphorus nitride, P₈N₅.

Very slightly decomp. by long boiling with H₂O...

Completely insol, in any solvent. (Stock, B. 1903, **36.** 317.)

### Phosphorus suboxide, P.O.

Unchanged in dry, gradually oxidized in moist air. Insol. in H₂O, alcohol, ether, and oils; not acted on by HCl+Aq; oxidized by HNO₃ or H₂SO₄. (Marchand, J. pr. 13. 442.) Sl. sol. in H₂O. (le Verrier, A. 27. 167.)

Forms hydrate P₄O, 2H₂O, which gives up

its H₂O when dried.

Two modifications: (a) decomp, slowly by H₂O or alkalies, (b) not decomp. by H₂O or alkalies. (Reinitzer and Goldschmidt, B. 13. 847.)

oxyphosphuretted hydrogen P₄H(OH). (Franke, J. pr. (2) **35.** 341.)

### --- H₃P₅O,

Insol. in all solvents. Decomp. by H2(). Not attacked by non-oxidizing acids. Decomp. by dil. alkalies. (Gautier, C. R. 76. 173.)

### ---- P₄HO.

Insol. in nearly all substances. Not attacked by dilute acids; oxidized by ordinary HNO₃, and conc. H₂SO₄ at 200°. Attacked by very dil. alkaline solutions. Perhaps identical with phosphorus suboxide P₄O. (Gautier, C. R. **76.** 49.)

### Phosphorus oxide, P₂O.

Decomp. by heating with  $H_2O$  at  $100^\circ$ . (Besson, C. R. 1897, 124. 764.)

### Phosphorus trioxide, P₄O₆(formerly P₂O₃).

Deliquescent, but very slowly dissolved by cold H₂O to form H₃PO₃. Violently decomp. by hot H₂O or alcohol.

Sol. without decomp. in ether, carbon disulphide, benzene, or chloroform. (Thorpe and Tutton, Chem. Soc. 57. 545.)

#### Phosphorus tetroxide, P₂O₄.

Very deliquescent. Sol. with evolution of heat in H₂O. (Thorpe and Fulton, Chem. Soc. 49. 833.)

#### Phosphorus pentoxide, $P_2O_5$ .

Very deliquescent. Sol. in H2O with great evolution of heat, forming H₃PO₄.

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Insol. in acetone. (Eidmann, C. C. 1899, (I. 1014); (Naumann, B. 1904, 37. 4329.)

Phosphorus sulphur oxide,  $P_2O_5$ ,  $3SO_3 =$ (PO)₂(SO₄)₈(phosphoryl sulphate) (?).

Decomp. by H₂O. Sol. in cold, more sol. in warm SO₃. (Weber, B. 20. 86.)

### Phosphorus oxy-compounds.

See under Phosphoryl compounds.

Phosphorus oxysulphide.

See Phosphorus sulphoxide.

### Phosphorus semiselenide, PaSe.

Decomp with H₂O. Insol. in cold, decomp by boiling KOH+Aq. Insol. in, but apparently decomp. by alcohol and ether. Easily sol. in CS₂. (Hahn, J. pr. 93, 430.)

### Phosphorus monoselenide, P2Sc.

Stable in dry, decomp. in moist air and by H₂O. Insol in alcohol and ether. Decomp. by boiling LOH+Aq. CS2 dissolves out P. (Hahn, J. pr. 93, 430.)

St. sot. in CS₂. (Gore, Phil. Mag. (4) 30. 414.)

### Phosphorous sesquiselenide, P₄Se₃.

Sol. in CCl₄; sl. sol. in CS₂. (Meyer, Z. anorg. 1902, **30.** 258.)

### Phosphorus triselenide, P₂Se₃.

Decomp. by boiling H₂O and slowly in moist air. Easily sol. in cold KOH+Aq, less easily in M2CO3+Aq. It sol. in alcohol, ether, and CS₂. (Hahn, J. pr. 93. 430.)

### Phosphorus pentaselenide, P₂Se₅.

Slo ly decomp, in moist air or by H₂O. easily by KOH+Aq or alcohol. Insol. in CS₂. Sol. in CCl₄. (Hahn, J. pr. **93**. 430.)

#### Phosphorus selenides with M₂Se.

See M phosphoselenide, under M.

### Phosphorus semisulphide, $P_4S(?)$ .

1. Liquid. Not decomp. by, and insol. in boiled  $H_2O$ . Insol. in alcohol and ether. Sl. sol. in fats and volatile oils; decomp. by alkalies. Dissolves P on warming, with separation on cooling. Sol. in CS₂.

2. Red modification. Not attacked at first by HNO₃+Aq (sp. gr. 1.22), but after a time is attacked with the greatest violence. Weak acids attack only when hot. (Berzelius, A. 46. 129.)

Existence is doubtful. (Schulze, B. 13. 1862; Isambert, C. R. **96.** 1628.)

### Phosphorus $monosulphide, P_2S(?)$ .

Same properties as phos-1. Ordinary. phorus semisulphide, 1.

Unchanged by air, 2. Red modification. H₂O, or alcohol. Decomp. by conc. KOH+ Aq, not by dilute. Sl. sol. in  $NH_4OH + Aq$ . (Berzelius, A. 46. 129.)

Existence is doubtful. (Schulze; Isambert.)

Does not exist. (Helff, Z. phys. Ch. 12. 206.)

### Phosphorus sesquisulphide, P₄S₃.

Not attacked by cold, slowly by hot H₂O. Cold KOH+Aq dissolves with decomp. Oxidized by HNO₂ and aqua regia. Sol. in alcohol and ether with decomp. Sol. in CS₂ (100 pts. CS₂ dissolve 60 pts. P₄S₃), PCl₃, and PSCl₃, and in K₂S or Na₂S+Aq. (Lemoine, Bull. Soc. (2) 1. 407.)

Very sol. in CS₂. (Rebs, A. **246**. 367.) Decomp. by dil. and conc. KOH+Aq. 1 pt. P₄S₃ is sol. in 9 pts. CS₂ at -20°; in 3.7 pts. CS₂ at 0°; in 1 pt. CS₂ at 17°; in 40 pts. benzene at 17°; in 9 pts. benzene at 80°; in 32 pts. toluene at 17°; in 6.5 pts. toluene at 111°. (Stock, B. 1910, **43**. 156.)

### Phosphorus trisulphide, P₂S₃.

Decomp. by water. (Kekulé, A. 90. 310.) Sol. in M₂CO₃+Aq with separation of S. Easily sol. in KOH, NaOH, NH4OH+Aq. (Berzelius, A. 46. 129.)

Sol. in alcohol and ether. (Lemoine.) Correct formula is P₄S₆. (Isambert, C. R. **102.** 1386.)

Extremely sl. sol. in CS₂. (Rebs, A. 246. 368.)

Existence doubtful. (Helff, Z. phys. Ch. **12.** 210.)

### Phosphorus sulphide, P₄S₇.

Sl. sol. in CS₂. (Mai, A. **265**. 192.) Slowly decomp. by cold, rapidly by hot H₂O.

Sol. in cold alkalies.

1 pt. is sol. in 3500 pts. CS₂ at 17°; in 20.000 pts. at 0°. (Stock, B. 1910, **43.** 416.)

Phosphorus disulphide, P₃S₆ (formerly P₂S₄). Almost insol. in  $CS_2$ . (Helff.)

#### Phosphorus pentasulphide, P₂S₅.

Very deliquescent. Decomp. by H₂O. Very sol. in KOH, NaOH, NH₄OH+Aq. Sol. in M₂CO₃+Aq with separation of S at low temp. Decomposes alcohol, acetic acid, etc. (Kekulé, A. 106. 331.)

Sol. in CS₂. (Isambert, C. R. 102. 1386.) Not very sol. in CS₂. (Rebs, A. 246. 367.) Mpt., 290°; bpt., 513-515° at 760 mm. Decomp. by H₂O.

Easily sol. in warm NaOH + Aq.

1 pt. is sol. in 450 pts. CS₂ at room temp.; in 550 pts. at  $0^{\circ}$ ; in 1200 pts. at  $-20^{\circ}$ . (Stock, B. 1910, 43. 1225.)

Ordinary form.

Sol. in 195 pts. boiling CS₂.

New form.

Sol. in 32 pts. CS₂. (Stock, B. 1905, 38.

### Phosphorus persulphide, $P_2S_{12}$ (?).

Decomp, by H₂O, alkalies, etc. Consists of S, and mechanically united P. (Ramme, B. 12. 941.)

### Phosphorus sulphides with M2S.

See M Phosphosulphide, under M.

Phosphorus zinc sulphide, ZnP₈S₂.

Sol. in HCl+Aq with separation of P₂S (?). (Berzelius, A. 46. 150.)

Phosphorus trisulphide ammonia, P2S3, 2NH4. Decomp. by H₂O. (Bineau.)

Phosphorus pentasulphide ammonia, P₂S₅, 6NH₃.

Sol. in liquid NH₃. (Stock, B. 1903, 36. 314.)

P₂S₅, 7NH₃. (Stock.)

Phosphorus sulphobromide.

See Thiophosphoryl bromide.

Phosphorus sulphochloride.

See Thiophosphoryl chloride.

### Phosphorus sulphoiodide, P2S3I.

Sl. attacked by cold, rapidly by hot H₂O; violently decomp. by fuming HNO₃. Easily sol. in CS₂. Sl. sol. in C₆H₆ or CHCl₈, and still less in ether or absolute alcohol. (Ouvrard, C. R. 115. 1301.)

P₂S₂I₂. Easily sol. in CS₂. More easily than P₄S₂I₂ and less than PI₃. (Ouvrard, A. ch. 1894, (7) 2. 224.)

P₂SI₄. Easily decomp. (Ouvrard.) P₄S₃I₂. Insol. in H₂O; sol. in warm ether. Sl. sol. in benzene, CHCl₃ and glacial acetic acid; sol. in toluene and xylene. (Wolter, Ch. Ztg. 1907, **31.** 640.)

Easily sol. in CS₂. Sl. sol. in benzene, ether. absolute alcohol and CHCls. (Ouvrard, C. R.

1892, **115**. 1301.)

### Phosphorus sulphoxide, P₄O₆S₄.

Deliquescent. Easily sol. in H₂O with demp. Sol. in 2 pts. CS₂ without decomp. Sol. in benzene with decomp. (Thorpe and Tutton, Chem. Soc. 59. 1019.)

P₂O₂S₃. Slowly decomp. by H₂O. Violently attacked by fuming HNO₃. (Besson,

C. R. 1897, **124.** 152.) P₄S₃O₄. Deliquescent; sol. in H₂O with decomp.; insol. in most solvents. (Stock, B. 1913, 46. 1382.)

### Phosphoryl triamide, PO(NH₂)₈.

Insol. in boiling H₂O, KOH+Aq, or dil. acids. Decomp. by long boiling with HCl or  $HNO_3 + Aq$ . More easily decomp. with Easily sol. in warm H₂SO₄ or aqua regia. (Schiff, A. 101. 300.) nitrosulphuric acid. Does not exist. (Gladstone; Mente, A. **248.** 238.)

Phosphoryl bromide, POBr₃.

Not miscible with H₂O, but gradually decomp. in contact with it. Sol. in H₂SO₄, ether, oil of turpentine (Gladstone, Phil. Mag. (3) 35. 345); in CHCl₄, CS₂ (Baudrimont, Bull. Soc. 1861. 118).

Easily sol. in AsBr₃. (Walden, Z. anorg. 1902, **29.** 374.)

Sol. in CCl4, and in C6H6. (Oddo, Chem. Soc. 1900, 78. (2) 75.)

Phosphoryl bromide sulphide. See Thiophosphoryl bromide.

Phosphoryl bromochloride, POCl₂Br. Decomp. by H₂O. (Menschutkin, A. 139. 343.)

Phosphoryl dibromochloride, POClBr₂. Decomp. by H₂O. (Geuther, Jena Zeit. **10.** 130.)

Phosphoryl chloride, POCl.

Very hygroscopic. Sol. in H₂O with decomp. Insol. in most solvents. Sol. in PCl₃. (Besson, C. R. 1897, 125, 772.)

POCl₈. Decomp. by H₂O. Not acted on by liquid CO₂, P, PH₃, CS₂, I, Br, Cl, etc. Sol. in CCl₄, C₆H₆, CS₂, CHCl₃ and ether. (Oddo, Gazz. ch. it. 1899, **29**. (2) 318; Chem. Soc. 1900, **78** (2) 74.)

Phosphoryl boron chloride, POCl₃, BCl₃. See Boron phosphoryl chloride.

Phosphoryl stannous chloride, POCl₃, SnCl₂. Deliquescent. Decomp. by H₂O (Casselmann, A. **91.** 242.)

Phosphoryl stannic chloride, POCl₃, SnCl₄. Deliquescent. Decomp. by H₂O. (Casselmann.)

Phosphoryl titanium chloride, POCl₃, TiCl₄. Deliquescent, and decomp. by H₂O. (Weber, Pogg. 132. 453.)

Pyrophosphoryl chloride, P₂O₃Cl₄.

Decomp. violently with H₂O. (Geuther and Michaelis, B. 4. 766.)

Very sol. in H2O with decomp.; very unstable. (Besson, C. R. 1897, 124. 1100.)

Metaphosphoryl chloride, PO₂Cl.

Decomp. by H₂O. (Gustavson.) Does not exist. (Michaelis.)

Phosphoryl fluoride, POF₃.

Absorbed and decomp, at once by H₂O or alcohol. (Moissan, C. R. 102. 1245.)

Phosphoryl imidoamide, PN₂H₈O = PO(NH)NH₂.

Insol. in H₂O; gradually decomp. by boiling with H₂O, more rapidly in presence of KOH. Insol. in boiling conc. HCl+Aq. Insol. in cold, decomp. by hot H₂SO₄. Moderately dil. H₂SO₄+Aq dissolves without evolution | H₂O without decomp. (Weinland.)

of gas. Insol. in boiling nitric or nitrosul-phuric acid. (Gerhardt, A. ch. (3) 20. 255.) Insol. in alcohol, oil of turpentine, etc.

Phosphoryl iodide, PalaOs (?).

Sol. in H₂O, alcohol, and ether. (Burton, Am. Ch. J. ?. 280.) PO₂I₂. (Burton.)

Phosphorvi nitride, PON.

Insol. in H₂O, acids, or alkalies. (Caladstone, Chem Soc. 2. 121.)

Phosphoryl chlorosulphide, P₂O₂SCl₄. Slowly decomp. in contact with H₂O. (Besson, C. R. 1897, 124, 153.)

Phosphoryl thio-compounds. See Thiophosphoryl compounds.

Phosphoselenic acid. See Selenophosphoric acid.

Phosphoselenide, M.

See under M.

Phosphosilicic acid. See Silicophosphoric acid.

Phosphosilicosovanadicotungstic acid.

Ammonium phosphosilicosovanadicotungstate.

Exact formula not known. (E. F. Smith, J. Am. Chem. Soc. 1903, **25.** 1225.)

Phosphosilicovanadic acid, 3SiO₂, 2V₂O₅,  $2P_2O_5+6H_2O$ . Sol. in H₂O. (Berzelius.)

Phosphostannosovanadicotungstic acid.

Ammonium phosphostannosovanadicotungstate.

Exact formula not known. (E. F. Smith, J. Am. Chem. Soc. 1903, **25.** 1226.)

Phosphosulphide, M.

See under M.

Phosphosulphuric anhydride, P₂O₅, 3SO₈. Very easily decomp. (Weber, B. 19. 3190.)

Phosphotelluric acid.

Ammonium phosphotellurate, 2(NH₄)₂O,  $P_2O_5$ ,  $TeO_8+4H_2O$ .

Easily sol. in K.O. (Weinland, Z. anorg. 1901, **28**. 61.)  $4(NH_4)_2O$ ,  $3P_2O_5$ ,  $2TeO_3+11H_2O$ . Sol. in

# Potassium phosphotellurate, $1.5K_2O$ , $P_2O_b$ , $TeO_3$ .

+17.5 H₂O. Very sol. in H₂O. +4.5 H₂O. Ppt. (Weinland.)

Rubidium phosphotellurate,  $1.5Rb_2O$ ,  $P_2O_6$ ,  $TeO_8+4.5H_2O$ .

Ppt. (Weinland.)

 $\begin{array}{c} \text{Sodium phosphotellurate, } 2\mathrm{Na_2O}, \ P_2\mathrm{O_5}, \\ 2\mathrm{TeO_3}{+}9\mathrm{H_2O}. \end{array}$ 

Difficultly sol. in cold H₂O. (Weinland.)

### Phosphothorosovanadicotunstic acid.

# Ammonium phosphothorosovanadicotung-

Exact formula not known. (E. F. Smith, J. Am. Chem. Soc. 1903, 25. 1226.)

### Phosphotitanosovanadicotunstic acid.

### Ammonium phosphotitanosovanadicotungstate.

Formula not known. (E. F. Smith, J. Am. Chem. Soc. 1903, **25.** 1226.)

# Phosphotungstic acid, P₂O₅, 12WO₃+42H₂O.

Not efflorescent. Sol. in H₂O, alcohol, and ether. (Péchard, C. R. **110**. 754.)

 $P_2O_5$ ,  $16WO_3+69H_2O$ . Very efflorescent. Sol. in  $H_2O$ , alcohol, and ether. (Péchard, C. R. **109**. 301.)

+xH₂O = H₅PW₈O₂₉+xH₂O (α-phospholuteotungstic acid). Known only in aqueous solution. (Kehrmann, B. **20.** 1808.)

 $+48 H_2 O = H_3 P W_8 O_{28} + 16 H_2 O$  ( $\alpha$ -anhydrophospholuteotungstic acid). Sol. in its crystal  $H_2 O$  by warmth of the hand; sol. in less than  $^{1}/_{8}$  pt.  $H_2 O$ . (Kehrmann.)

Correct composition is represented by  $H_3PW_9O_{31}+9H_2O$ . (Kehrmann, Z. anorg. 1.

P₂O₅, 20WO₃+8H₂O. Very efflorescent. (Gibbs, B. **10**. 1386.)

 $+19H_2O = H_{11}PW_{10}O_{38} + 8H_2O$ . Sol. in  $H_2O$ . (Scheibler, B. **5.** 801.)

+50, and 62H₂O. Very efflorescent. (Péchard, C. R. 109. 301.)

3H₂O, P₂O₅, 21WO₃+30H₂O. Efflorescent. Sol. in H₂O in early every proportion.

P₂O₅, 22WO₃+28H₂O = H₅PW₁₁O₄₃+ 18H₂O. Efflorescent. (Scheibler, B. 5. 801.) Composition is 6H₂O, 22WO₃, P₂O₅+ 45H₂O. (Gibbs.)

H₃PO₄, 12WO₃+18H₂O, or P₂O₅, 24WO₅+39H₂O. Sol. in H₂O, alcohol and ether. (Soboleff Z aporg 1896, 12, 18)

(Soboleft, Z. anorg. 1895, 12. 18.)  $P_2O_5$ ,  $24WO_3+40H_2O=6H_2O$ ,  $P_2O_5$ ,  $24WO_3+34H_2O$ . Very efflorescent. Sol. in  $H_2O$ . (Gibbs.)  $+45H_2O$ .

### Solubility in H₂O at t°.

t°	100 ccm. H ₂ O dissolve g of the cryst. acid	Sp. gr. of the solution
0	16.206	1.1890
22	49.718	1.6913
43	53.64	1.8264
92	86.75	2.5813

(Soboleff, Z. anorg. 1896, 12. 31.)

### Solubility in ether at t°.

t°	100 ccm. ether dissolves g. of the cryst. acid.
0	81.196
7.8	85.327
18.2	96.017
24.2	101.348

(Soboleff.)

 $+53H_2O = 6H_2O$ ,  $P_2O_5$ ,  $24WO_3 + 47H_2O$ . Sol. in  $H_2O$ . (Gibbs.)

Sol. in ether. If an equal vol. of ether is placed above a layer of conc. aqueous solution of acid, oily drops form between the two layers, which sink to bottom, forming a third layer. The sp. gr. of the latter is 1.525. The crystallized acid dissolved in smallest amt. ether forms an oil of sp. gr. = 2.083. Ethereal solution is miscible with alcohol, and also with a large quantity of  $H_2O$ . (Drechsel, B. 20. 1452.)

 $+61H_2O$ . Sol. in  $H_2O$ . (Gibbs, Proc. Am. Acad. 16. 116.)

### Aluminum ammonium phosphotungstate.

See Aluminicophosphotungstate, ammonium.

## Ammonium phosphotungstate, $3(NH_4)_2O$ , $P_2O_5$ , $7WO_3+Aq$ .

Sl. sol. in cold H₂O without decomp. Decomp. by hot H₂O. (Kehrmann, Z. anorg. 1892, 1. 438.)

2(NH₄)₂O, P₂O₅, 12WO₃+5H₂O. Insol. in cold H₂O. (Péchard, C. R. **110**. 754.)

cold  $H_2O$ . (Pechard, C. R. 110, 754.)  $6(NH_4)_2O$ ,  $P_2O_5$ ,  $16WO_2+10H_2O$ . Easily sol. in hot  $H_2O$ . (Pechard.)

 $5(NH_4)_2O$ ,  $P_2O_5$ ,  $16WO_3+xH_2O =$ 

 $(NH_4)_5PW_8O_{29}+xH_2O$ . (Ammonium  $\alpha$ -phospholuteotungstate). Sl. sol. in  $H_2O$ . (Kehrmann.)

 $3(NH_4)_2O$ ,  $P_2O_5$ ,  $16WO_3+16H_2O = (NH_4)_3PW_5O_{28}+8H_2O$ . (Ammonium a-anhydrophospholuteotungstate). Efflorescent. Easily sol. in  $H_2O$ . (Kehrmann.)

Easily sol. in H₂O. (Kehrmann.) 5(NH₄)₂O, P₂O₅, 17WO₃+16H₂O. Very sl. sol. in cold H₂O. (Kehrmann, Z. anorg. 1894, **6**, 387.)

 $3(NH_4)_2O$ ,  $P_2O_5$ ,  $18WO_5+14H_2O$ . (Phospholutestungstate.) (Kehrmann, Z. anorg. 1893, 4. 140.)

 $3(NH_4)_2O_1$ ,  $P_2O_5$ ,  $21WO_3 + xH_2O_1$ . Rather sl. sol. in cold, easily in hot H₂O and alcohol. Insol. in sat. NH₄Cl+Aq. (Kehrmann and Freinkel, B. 25. 1972.)
3(NH₄)₂O, 3H₂O, P₂O₅, 22W₁)₂+18H₂O.
Sl. sol. in cold H₂O. (Gibbs.)
3(NH₄)₂O, 3H₂O, P₂O₅, 24WO₅+26H₂O.

Very sl. sol. even in hot H₂O. (Gibbs, Proc. Am. Acad. 16. 122.)

Ammonium barium a-anhydrophospholuisotungstate, NH₄BaPW₈O₂₈+xH₂O =  $(NH_4)_2O$ , 2BaO,  $P_2O_5$ , 16WO₈+ $xH_2O$ . Sol. in H₂O. (Kehrmann)

Barium phosphotungstate, 2BaO,  $P_2O_5$ ,  $12WO_3+15H_2O$ .

Very efflorescent. Sol. in H₂O; insol. in alcohol. (Péchard, C. R. **110**. 754.) 3BaO,  $P_2O_5$ ,  $16\text{WO}_3 + x\text{H}_2O = \text{Ba}_3(\text{PW}_8O_{28})$ 

+xH₂O. (Barium a-anhydrophospholuteotungstate). Not efflorescent. Quite difficultly sol. in H₂O. (Kehrmann.)

2BaO, P₂O₅, 16WO₃+10H₂O. Efflorescent.

(Péchard, A. ch. (6) 22. 240.)

2BaO,  $^{\prime}6H_2O$ ,  $P_2O_5$ ,  $^{\prime}20WO_3+24H_2O$ . Sol. in H₂O. (Gibbs, B. 10. 1386.) 6BaO, 2H₂O, P₂O₅, 20WO₃+46H₂O. Sol. in H₂O. (Gibbs, Proc. Am. Acad. 16. 126.) 7BaO, P₂O₅, 22WO₃+59H₂O. Sol. in H₂O, (Sprenger, J. pr. (2) 22. 418.)

+53H₂O. (Kehrmann, B. 24, 2335.) 4BaO, 2H₂O, P₂O₅, 22WO₃+39H₂O. Sol.

in H₂O without decomp. (Gibbs.) BaO, P₂O₅, 24WO₃+59H₂O. Sol. in H₂O. (Sprenger.)

2BaO,  $P_2O_5$ ,  $24WO_3 + 59H_2O$ . Sol. in  $H_2O$ .

(Sprenger.)

3BaO,  $P_2O_5$ ,  $24WO_3 + 46H_2O = 3BaO$ ,  $3H_2O$ ,  $P_2O_5$ , 24WO₃+43H₂O. Easily sol. in hot H₂O. (Gibbs.)

3BaO, P₂O₅, 24WO₃+48H₂O. Sol. in H₂O. (Soboleff, Z. anorg. 1896, **12.** 18.)

+58H₂O. Sol. in H₂O. (Sprenger.) Efflorescent. Sl. sol. in dil. BaCl₂+Aq. (Kehrmann, Z. anorg. 1. 423.)

Barium potassium phosphotungstate, 5BaO,  $2K_2O$ ,  $P_2O_5$ ,  $22WO_3+48H_2O$ .

Sol. in H₂O. (Kehrmann and Freinkel, B. **25.** 1968.)

Barium silver phosphotungstate, 4BaO, 3 Ag₂O, P₂O₅,  $22WO_3 + 34H_2O$ .

Very sl. sol. in H₂O. (Kehrmann and Freinkel, B. 25. 1966.)

Barium sodium phosphotungstate, 2BaO,  $Na_2O$ ,  $P_2O_5$ ,  $24WO_3+46H_2O$ .

Sol. in H₂O, forming cloudy liquid, which clears up. Solution in HCl is not cloudy. (Brandhorst and Kraut, A. 249. 380.)

Calcium phosphotungstate, CaO, 5H2O,  $16\text{WO}_{3}$ ,  $P_{2}O_{5} + 3H_{2}O$ .

Readily sol. in H₂O. (Gibbs, Proc. Am.

Acad. 16. 130.) 2CaO,  $P_2\text{O}_5$ ,  $12\text{WO}_3 + 19\text{H}_2\text{O}$ . cent. Insol. in alcohol. (Péchard, C. R. 110. 754.)

2CaO, I₂O, 20WO₃+22H₂O. cent. (Péchard, A. ch. 6) 22. 233.) Efflores-

Cadmium phosphotungstate, 2CdO, P₂O₅,  $12W()_{2}+13H_{2}O.$ 

Very sol. in A₂O. (P6-Sl. efflorescent. chard, C. R. 110, 754.)

Cupric phosphotungstate, 3CuO, 24WO₃,  $P_2O_5 + 58H_2O$ .

Sol. in  $H_2O$ . (Sprenger, J. pr. (2) **22.** 418.) 2CuO, P₂O₆, 12WO₃+11H₂Q. Very efflores-

cent. (Péch.rd, C. R. 116. 754.) 2CuO, P₂O₅, 20WO₃+13H₂O. cent. (Péchard, A. ch. (6) 22. 235.) Efflores-

Lead phosphotungstate, 2PbO, P2O5, 12WO3

Insol. in cold, sol. in boiling H₂O. (Péchard, C. R. **110**. 754.)

2PbO, P₂O₅, 20WO₃+6H₂O. Sol. in boiling H₂O. (Péchard, A. ch. (6) 22. 236.)

Lithium phosphotungstate, Li₂O, P₂O₅,  $12WO_3 + 21H_2O$ .

Sol, in H₂O. (Péchard, C. R. **110**. 754.)

Magnesium phosphotungstate, 2MgO, P₂O₅, 12WO₃.

Sl. efflorescent. (Péchard, C. R. 110. 754.) 2MgO,  $P_2O_b$ ,  $20WO_3+19H_2O$ . Sl. efflorescent. (Péchard, A. ch. (6) 22. 234.)

Mercurous phosphotungstate.

Insol. in dil. HNO₃+Aq. (Péchard, C. R. **110.** 754.)

Potassium phosphotungstate,  $K_2O$ ,  $P_2O_5$ ,  $12WO_3 + 9H_2O$ .

Insol. in cold, sl. sol. in hot H₂O. (Péchard,

C. R. 110. 754.)

 $5K_2O$ ,  $P_2O_5$ ,  $16WO_3 + xH_2O = K_5PW_8O_{29} +$  $xH_2O$ . (Potassium a-phospholuteotungstate). Very sl. sol. in cold, more easily in hot H₂O. Sol. in cold dil. HNO₃+Aq. (Kehrmann.)  $3K_2O$ ,  $P_2O_5$ ,  $16WO_3+16H_2O=K_3PW_8O_2$ ,  $+8H_2O$ . (Potassium  $\alpha$ -anhydrophospho-

luteotungstate). Efflorescent. Easily sol. in H₂O. (Kehrmann.)

5K₂O, P₂O₅, 17WO₃+21 or 22H₂O. Sl. sol. in cold H₂O. (Kehrmann, Z. anorg. 1894, 6. 387.)

 $3K_2O$ ,  $P_2O_5$ ,  $18WO_3 + 28H_2O$ . (Duparc and Pearce, Bull. Soc. Min. 1895, 18. 42.)  $K_2O$ ,  $5H_2O$ ,  $P_2O_5$ ,  $18WO_3+14H_2O$ . Very sl. sol. in H₂O. (Gibbs.)

 $6K_2O$ ,  $P_2O_5$ ,  $18WO_3+30H_2O$ , and  $23H_2O$ .

The 23H₂O salt is more sol, in H₂O than the 30H₂O salt. (Gibbs.)

7K₂O, H₂O, P₂O₅, 20WO₃+27H₂O. Sol. in H₂O. (Gibbs, B. 10. 1386.)

K₂O, P₂O₅, 20WO₃+5H₂O. Nearly insol.

in H₂O. (Péchard, A. ch. (6) **22.** 231.) 8K₂O, P₂O₅, 20WO₃+18H₂O. Sl. sol. in H₂O. (Gibbs.)

 $3K_2O$ ,  $P_2O_5$ ,  $21WO_8+31H_2O$ . Easily sol. in cold H₂O or alcohol. Much less sol. in very dil. HCl+Aq or KCl+Aq. Decomp. by boiling  $H_2O$ . (Kehrmann and Freinkel, B. 25. 1971.)

 $2K_2O$ ,  $4H_2O$ ,  $P_2O_5$ ,  $22WO_3+2H_2O$ . Very

sl. sol. in H₂O. (Gibbs.)
7K₂O, P₂O₅, 22WO₃+31H₂O. Easily sol. in cold or hot 2O. Insol. in alcohol. (Kehrmann, B. 25. 1966.)

 $3K_2O$ ,  $3H_2O$ ,  $P_2O_5$ ,  $24WO_3+8$ , and  $14H_2O$ . Sol. in a large amount of H2O with partial decomp. (Gibbs, Proc. Am. Acad. 16. 120.)

Practically insol. in H2O. Easily sol. in NH4OH, alkalies, or alkali carbonates+Aq. (Kehrmann, B. 24. 2329.) 6K₂O, P₂O₅, 24WO₃+18H₂O. Sol. in H₂O.

(Gibbs, Proc. Am. Acad. 15. 1.)

### Potassium lead a-phospholuteotungstate. Sl. sol. in H₂O. (Kehrmann.)

Silver phosphotungstate, Ag₂O, P₂O₅, 12WO₃

 $+8H_2O$ . Ppt. Insol. in H₂O. (Péchard, C. R. 110.

754.)

 $5Ag_2O$ ,  $P_2O_5$ ,  $16WO_3+xH_2O=Ag_5PW_8O_{29}$  $+xH_2O$  (Silver  $\alpha$ -phospholuteotungstate). Ppt. (Kehrmann.)

 $3Ag_2O$ ,  $P_2O_5$ ,  $16WO_8 + 16H_2O = Ag_3PW_8O_{28}$ (Silver a-anhydrophospholuteotungstate). Easily sol. in H₂O. (Kehrmann.) Ag₂O, 24WO₃, P₂O₅+60H₂O. Insol. in  $H_2O$ .

 $3Ag_2O_5$ ,  $24WO_3$ ,  $P_2O_5 + 58H_2O_5$ . H₂O. (Sprenger, J. pr. (2) **22.** 418.)

Sodium phosphotungstate,  $3Na_2O$ ,  $P_2O_5$ ,  $7WO_3+Aq$ .

Sol in  $H_2O$ . (Kehrmann, Z. anorg. 1. 437.)  $5\text{Na}_2\text{O}$ ,  $11\text{H}_2\text{O}$ ,  $2\text{P}_2\text{O}_5$ ,  $12\text{WO}_3 + 26\text{H}_2\text{O} = \text{Na}_6\text{H}_{11}\text{P}_2\text{W}_6\text{O}_{31} + 13\text{H}_2\text{O}$  (?). (Scheibler, B.

 $2Na_2O_1$ ,  $P_2O_5$ ,  $12WO_3+18H_2O_1$ H₂O. Insol. in alcohol. (Péchard, C. R. 110. 754.)

 $5\text{Na}_2\text{O}$ ,  $14\text{WO}_3$ ,  $2\text{P}_2\text{O}_5 + 42\text{H}_2\text{O}$ . sol. in  $\text{H}_2\text{O}$ . (Gibbs.) Easily

 $P_2O_5$ ,  $20WO_3+16H_2O$ . Easily sol. in  $H_2O$ .

(Gibbs.) +25H₂O. Sl. efflorescent; very sol. in H₂O; insol. in alcohol. (Pechard, A. ch. (6) **22.** 227.)

2Na₂O, P₂O₅, 20WO₈+10H₂O. Sol. in H₂O; insol. in alcohol. (Péchard.)

+30H₂O. (P.) 3Na₂O, P₂O₅, 20WO₃+32H₂O. As above.

(P.)  $2Na_2O$ ,  $P_2O_5$ ,  $22WO_3+9H_2O$ . Very sl. sol.

in H₂O. (Gibbs.) 3Na₂O, P₂O₅, 24WO₅+22H₂O. Sol. in H₂O.

(Brandhorst and Kraut, A. 249. 379.) +30H₂O. Sol. in H₂O. (Soboleff, Z. anorg. 1896, 12. 18.) +42H₂O.

Solubility in H₂O at t°.

t°	100 ccm. H ₂ O dissolve g. of the cryst. salt
. 0 22 93	22.04 59.65 98.184

(Soboleff, Z. anorg. 1896, 12. 31.)

24WO₈, 2Na₂O, 4H₂O.  $P_2O_5 + 23H_2O$ . Readily sol. in H2O. (Gibbs, Proc. Am. Acad. **16.** 118.)

Sp. gr. at 20° of solutions of 2Na₂O, 4H₂O, P₂O₅, 24WO₃+23H₂O containing: 10.2231.13% salt, 20.94

1.085 1.190 1.316 64.11% salt. 42.6152.921.496 1.702 2.001

or, by calculation, a = sp. gr. if % is crystallized salt, b = sp. gr. if  $\frac{6}{10}$  is anhydrous salt:

10 20 25% salt, 15 1.237a 1.040 1.084 1.131 1.181 b 1.044 1.092 1.143 1.199 1.262

30 35 40 45 50% salt, 1.299 1.370 1.449 1.538 1.640b 1.333 1.507 1.613 1.414 1.734

> 64% salt. 55 60 a 1.754 1.884 1.998 b 1.872

(Brandhorst and Kraut, A. 249. 377.)

Strontium phosphotungstate, 2SrO, P2O5,  $12 WO_3 + 17 \hat{H}_2O$ . Sol. in  $H_2O$ . Insol. in alcohol. (Péchard, C. R. **110.** 754.)

Thallium phosphotungstate,  $Tl_2O$ ,  $P_2O_5$ ,  $12WO_{3} + 4H_{2}O_{3}$ 

Ppt. (Péchard, C. R. 110. 754.)

Zinc phosphotung state, 2ZnO,  $P_2O_{\delta},$  12WO $_8+7H_2O.$ 

Efflorescent. (Péchard, C. R. 110. 754.)

### Monometaphosphotungstic acid.

Ammonium monometaphosphotungstate,  $(NH_4)_2O$ ,  $2NH_4PO_8$ ,  $18WO_8+11H_2O$ . Sl. sol. in cold H₂O.

Potassium monometaphosphotungstate, 3K₂O, 2KPO₃, 24WO₃+20H₂O.

Very sl. sol. in H₂O. (Gibbs, Am. Ch. J. 7. 319.)

### Orthometaphosphotungstic acid.

Potassium sodium orthometaphosphotungstate, 2K₂O, 4Na₂O, 6NaPO₃, 6K₃PO₄, 22WO₃+42H₂O.

Sl. sol. in H₂O. (Gibbs, Am. Ch. J. 7. 319.)

### Pyrophosphotungstic acid.

Ammonium manganous sodium pyrophosphotungstate, 5(NH₄)₂O, 6MnO, 2Na₂O, 2P₂O₅, 28WO₃+48H₂O.

Very sol. in cold and in hot H₂O. (Gibbs, Am. Ch. J. 1895, 17. 90.)

Ammonium sodium pyrophosphotungstate,  $6(NH_4)_4P_2O_7$ 3Na₄P₂O₇,  $2(N\bar{H}_{4})_{2}O$ ,  $22WO_3 + 31H_2O$ .

Nearly insol. in cold H₂O or NH₄OH+Aq. Sol. in a large amount of hot H₂O.

Manganous sodium pyrophosphotungstate, 6Na₂O, 3MnO, P₂O₅, 14WO₃+36H₂O.

Efflorescent in dry air. Sol. in H₂O and can be recryst, therefrom. (Gibbs.)

Potassium pyrophosphotungstate, 9K₄P₂O₇,  $22WO_3 + 49H_2O$ .

Very sl. sol. in cold H₂O.

6K₄P₂O₇, 3H₄P₂O₇, 22WO₃, K₂O, H₂O + 42H₂O. Sl. sol. in cold. Sol. in much boiling H₂O. (Gibbs, Am. Ch. J. 7. 392.)

Phosphovanadic acid, P₂O₅, V₂O₅, 2H₂O+ 9H₂O.

Sol. in H₂O.

Composition is vanadium phosphate  $(VO_2)H_2PO_4+4\frac{1}{2}H_2O$ . (Friedheim, B. 23. 1531.)

This is the only "acid" which exists. (F.)  $P_2O_5$ ,  $V_2O_5+14H_2O$ . Sol. in  $H_2O$ ; can be recryst. from dil. H₃PO₄+Aq. (Ditte, C. R.) 102. 757.)

 $3P_2O_5$ ,  $2V_2O_5 + 9H_2O$ . Sol. in  $H_2O$ . (Ditte.) P₂O₅, 3V₂O₅. (Berzelius.

 $3H_2O_5$ ,  $7P_2O_5$ ,  $6V_2O_5 + 34H_2O_5$ . Sol. in  $H_2O_5$ Decomp. by much H₂O into-

 $6H_2O$ ,  $P_2O_5$ ,  $20V_2O_5 + 53H_2O$ . Sol. in  $H_2O$ . (Gibbs, Am. Ch. J. 7. 209.)

Ammonium phosphovanadate, (NH₄)₂O.  $P_2O_5$ ,  $V_2O_5 + H_2O$ .

Sl. sol. in cold H₂O. (Gibbs, Am. Ch. J. **7.** 209.)

+3H₂O. Composition is (VO₂)(NH₄)HPO₄ +H₂O. (Friedheim.)

 $(NH_4)_2O_5$ ,  $P_2O_5$ ,  $2V_2O_5 + 7H_2O_5$ . Easily sol. in H₂O. (Gibbs.) Sl. sol. in H₂O. (Fried- J. Am. Chem. Soc. 1903, 25. 1226.)

heim.) Composition is (NH₄)₂O, V2O5,

18 (114) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (14) 20, 42 (1

5(NH₄)₂O, 4P₂O₅, 2V₂O₅+24H₂O. As ove. (Ditte.) Could not be obtained. (Friedheim)

 $7(NH_4)_2(1)$ ,  $P_2O_5$ ,  $12V_2O_5+26H_2O$ . Easily sol. in  $H_2O$ . Composition is  $2(NH_4)_2HPO_4+$  $5(NH_4)_2O$ ,  $12V_2O_5 + 25H_2O$ . (Friedheim.)

Potassium phosphovanadate, K2O, P2O5, 2V₂O₅ -7H₂O.

Sl. sol in H₂O; decomp, thereby to 7K₂O.  $12V_2O_5$ ,  $P_2O_5 + 26H_2O_5$ 

Composition is K₂O, V₂O₅+2(VO₂)H₂PO₄

+5H₂O. (Friedheim.)  $^{2}\text{K}_{2}\text{O}$ ,  $^{4}\text{P}_{2}\text{O}_{5}$ ,  $^{6}\text{V}_{2}\text{O}_{5} + ^{2}\text{1H}_{2}\text{O}$ . Sl. sol. in

 $H_2O$ . (Gibbs.) 7K₂O, P.  $O_5$ , 12V₂O₅+26H₂O. Easily sol. in H₂O. Composition is 2K₂HPO₄+5K₂O,  $12V_2O_b + 25H_2O$ . (Friedheim.)

2K₂O, P₂O₅, V₂O₅

 $2K_2O$ ,  $Y_2O_5$ ,  $V_2O_5$ .  $3K_2O$ ,  $2P_2O_5$ ,  $2V_2O_5+5H_2O$ .  $13K_2O$ ,  $2P_2O_5$ ,  $22V_2O_5+5VH_2O$ .  $15K_2O$ ,  $2P_2O_5$ ,  $25V_2O_6+76H_3O$ . (Friedheim, Z. anorg. 1894, **5**. 446.)  $16K_2O$ ,  $2P_2O_5$ ,  $27V_2O_5+57H_2O$ .  $6H_2O$ ,  $P_2O_5$ ,  $11V_2O_5+33H_3O$ .

 $7K_2O_5$ ,  $P_2O_5$ ,  $13V_2O_5 + 38H_2O_5$ .

 $4K_2O$ ,  $P_2O_5$ ,  $3V_2O_5 + 3H_2O$ . (Friedheim, Z. anorg. 1894, 5. 459-465.)

Silver phosphovanadate, 2Ag₂O, P₂O₅, V₂O₅+ 5H₂O.

Sl. sol. in cold or hot H₂O. (Gibbs.)

### Phosphovanadicotungstic acid.

Ammonium phosphovanadicotungstate,  $(NH_4)_2O_1$ ,  $P_2O_5$ ,  $V_2O_3$ ,  $WO_3+xH_2O_1$ 

Ppt. (Smith, J. Am. Chem. Soc. 1902, 24. 577.)

2P2O5, 15(NH₄)₂O, 6V₂O₃,  $44WO_3 +$  $106H_2O$ . Sol. in  $H_2O$ . Insol. in alcohol, ether or benzene. (Rogers, J. Am. Chem. Soc. 1903, **25.** 303.)

### Phosphovanadicovanadiotungstic acid.

Ammonium phosphovanadicovanadiotungstate, 14(NH₄)₂O, 2P₂O₅, 3V₂O₃, 7V₂O₅, 27WO₃+66H₂O.

Sparingly sol. in cold H₂O. Sol. in hot H₂O. (Rogers, J. Am. Chem. Soc. 1903, 25. 309.)

### Phosphovanadicozirconosotungstic acid.

Ammonium phosphovanadicozirconosotungstate.

Exact formula not known. (E, F. Smith.

### Phosphovanadicovanadic acid.

Ammonium phosphovanadicovanadate,  $7(NH_4)_2O_5$ ,  $2P_2O_5$ ,  $VO_2$ ,  $18V_2O_5 + 50H_2O$ . Sol, in H₂O. (Gibbs, Am. Ch. J. 7. 209.)

 $7(NH_4)_2O_5$ ,  $14P_2O_5$ ,  $16VO_2$ ,  $6V_2O_5+65H_2O$ . Decomp. by boiling with H₂O into- $5(N\dot{H}_4)_2\dot{O}, 10P_2\dot{O}_5, 11V\dot{O}_2, V_2\dot{O}_5+41H_2\dot{O}.$ Sol. in  $\dot{H}_2\dot{O}$ . (Gibbs.)

Potassium —,  $5K_2O$ ,  $12P_2O_5$ ,  $12VO_2$ ,  $6V_2O_5$ +40H₂O.

Decomp. by hot H₂O into- $7K_2O$ ,  $12P_2O_5$ ,  $14VO_2$ ,  $6V_2O_6 + 52H_2O$ . Sol. in  $H_2O$ . (Gibbs.)

 $-P4Na_2O_5$ ,  $5P_2O_5$ ,  $VO_2$ ,  $4V_2O_5+$ Sodium -37H₂O.

Insol, in H₂O. (Gibbs.)

### Phosphovanadiomolybdic acid.

Ammonium phosphovanadiomolybdate,  $7(NH_4)_2O_5$ ,  $2P_2O_5$ ,  $V_2O_5$ ,  $48M_0O_3+$ 30H₂O.

Sl. sol, in cold, somewhat more in hot H₂O with partial decomp. (Gibbs, Am. Ch. J. 5.

391.)  $8(NH_4)_2O$ ,  $P_2O_5$ ,  $8V_2O_5$ ,  $14M_0O_3 + 50H_2O$ . Easily sol, in hot H₂O without decomp. (Gibbs.)

 $5(NH_4)_2O_5$ ,  $P_2O_5$ ,  $2\frac{1}{2}V_2O_5$ ,  $21\frac{1}{2}M_0O_3$ +

50H₂O.

 $\begin{array}{l} 8(NH_4)_2O,\ P_2O_5,\ 5V_2O_5,\ 18MoO_3+45H_2O.\\ 7(NH_4)_2O,\ P_2O_5,\ 51/2V_2O_5,\ 161/2MoO_3+\\ \end{array}$ 50H₂O

 $8(NH_4)_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $15M_0O_3 + 50H_2O_5$ All above compounds are sol. in H₂O. (Blum, J. Am. Chem. Soc. 1908, **30.** 1859.)  $6(NH_4)_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $9M_0O_3+28H_2O$ ,

+33H₂O, and +37H₂O. Can be recryst, from H₂O. (Hinsen, Dissert. 1904.)

 $4(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $11M_0O_3 + 37H_2O_5$ (Jacoby, Dissert. 1900.)

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $11M_0O_3+34H_2O$ and +43H₂O. (Hinsen, Dissert. 1904.)

 $8(NH_4)_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $11M_0O_3 + 30H_2O$ .

(Hinsen.)  $5(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $12M_0O_3+39H_2O$ . 1 cc. of solution in H₂O contains 0.2624 g. of hydrous salt. Sp. gr. of solution at 18°=

1.0932. (Lahrmann, Dissert. 1904.)  $6(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $12M_0O_3 + 24H_2O$ . Nearly insol. in cold H₂O. (Lahrmann.)

 $7(NH_4)_2O$ ,  $P_2O_5$ ,  $6V_2O_5$ ,  $12M_0O_3 + 33H_2O$ .

(Stamm, Dissert. 1905.) 6(NH₄)₂O, P₂O₅, 4V₂O₅, 13M₀O₈+37H₂O. 1 cc. of solution sat. at 18° contains 0.1543 g.

hydrous salt and has sp. gr. = 1.0900. (Toggenburg, Dissert. 1902.

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $5V_2O_5$ ,  $13MoO_3+29H_2O$ . 1 cc. solution sat. at 18° contains 0.2533 g. (Stamm, hydrous salt. Sp. gr. = 1.0797. Dissert. 1905.)

+32H₂O. (Stamm.) +34H₂O. Stamm.)

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $14MoO_3+28H_2O$ . Easily sol. in  $H_2O$  with decomp. (Toggenburg, Dissert. 1902.) 8(NH₄)₂O, P₂O₅, 4V₂O₅, 14MoO₈+24H₂O.

Decomp. by cold H₂O. (Lahrmann, Dissert.

 $5(NH_4)_2O_1$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $5M_0O_3 + 39H_2O_2$ 1 cc. of solution sat. at 18° contains 0.2445 g. hydrous salt and has sp. gr. = 1.144. (Ja-

coby, Dissert. **1900.**) 6(NH₄)₂O, P₂O₆, 3V₂O₅, 15 MoO₈+41H₂O. Extraordinarily easily sol. in H₂O. coby.

 $7(NH_4)_2O$ ,  $P_2O_5$ ,  $3_2O_5$ ,  $18M_0O_3+31H_2O$ . (Schulz Dissert. 1905.)

 $6(NH_4)_2O$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $18M_0O_3+40H_2O$ .

(Schulz.)  $8(NH_4)_2O$ ,  $P_2O_5$ ,  $5V_2O$ ,  $73M_0O_3+26H_2O$ . +33H₂O. (Stamm, Dissert **1905.**)

Ammonium barium —, 0.5(NH₄)₂O 5.5BaO,  $P_2O_5$ ,  $6V_2O_5$ , 8Mo $O_3 + 38$ H₂O. (Hinsen, Dissert. 1904.)

 $2(NH_4)_9O$ , 4BaO,  $P_2O_5$ ,  $7V_2O_5$ , 10 MoO₃+ 43H₂O. Sl. sol, in H₂O. Decomp, on heating. (Toggenburg, Dissert. 1902.)

(NH₄)₂O, 5BaO, P₂O₅, 6V₂O₅, 12MoO₃+ 49 H₂O. Less sol. in H₂O than NH₄ comp. (Jacoby, Dissert. **1900**.)

 $2(NH_4)_2O_5$ ,  $4BaO_5$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $13MoO_3+$ 37 H₂O. Sol. in much hot H₂O with decomp. (Toggenburg, Dissert. 1902.)

2(NH₄)₂O, 4BaO, P₂O₅, 5V₂O₅, 13MoO₃+ 5H₂O. (Stamm, Dissert. **1905**.) 46H₃O.

 $3 \text{ NH}_4)_2\text{O}$ , 4BaO,  $P_2\text{O}_5$ ,  $5\text{V}_2\text{O}_5$ ,  $13\text{MoO}_3$ + 40H₂O. (Stamm.)

 $3(NH_4)_2O$ , 3BaO,  $P_2O_5$ ,  $4V_2O_5$ ,  $14MoO_3+$ (Stamm.)

 $2(NH_4)_2O$ , 4BaO,  $P_2O_5$ , 3V  $O_5$ , 17Mo $O_3$ + 46H₂O. (Schulz, Dissert. 1905.)

Ammonium potassium — —, (NH₄)₂O, 6K₂O,  $P_2O_5$ ,  $6V_2O_5$ ,  $10 \text{ MoO}_3 + 38H_2O$ . (Jacoby, Dissert. 1900.)

 $(NH_4)_2O$ ,  $6K_2O$ ,  $P_2O_5$ ,  $7V_2O_5$ ,  $11MoO_3+25H_2O$ . (Jacoby, Dissert. **190°**.)  $(NH_4)_2O$ ,  $5K_2O$ ,  $P_2O_5$ ,  $6V_2O_5$ ,  $12MoO_3+$ 

46H₂O. (Jacoby.)

 $(NH_4)_2O$ ,  $5K_2O$ ,  $P_2O_5$ ,  $5V_2O_6$ ,  $13M_0O_8 +$  $+25H_2O;+29H_2O; +30H_2O.$  Sl. sol. in cold, more easily in hot H2O. Dissert. 1905.)

 $5K_2O$ ,  $(NH_4)_2O$ ,  $P_2O_5$ ,  $4V_2O_5$ ,  $14M_0O_3+$ ₂O. (Stamm.)

 $(NH_4)_2O$ ,  $4K_2O$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $15MoO_8+$  $H_2O$ . (Jacoby, Dissert, **1900**.) 36H₂O.

 $(NH_4)_2O$ ,  $6K_2O$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $18M_0O_3+$ (Schulz, Dissert. 1905.) 43H₂O.

 $5(NH)_2O$ ,  $K_2O$ ,  $P_2O_5$ ,  $2V_2O_5$ ,  $20M_0O_8+$ 52H₂O. (Schulz.)

Barium potassium ——, 2BaO, 2K₂O, P₂O₅, 2V₂O₅, 18 MoO₈+47H₂O. (Schulz, Dissert. 1905.)

Potassium phosphovanadiomolybdate, 7K₂O,  $P_2O_5$ ,  $7V_2O_5$ ,  $9M_0O_3+25H_2O_6$ 

(Hinsen, Dissert. 1904.)  $5K_2O$ ,  $P_2O_5$ ,  $2V_2O_5$ , (Schulz, Dissert. 1905.)

### Phosphovanadiotungstic acid.

Ammonium phosphovanadiotungstate,  $10(NH_4)_2O_5$ ,  $3P_2O_5$ ,  $V_2O_5$ ,  $60WO_3+$ 60H₂O.

Nearly insol in cold, sl. sol. in hot H₂O. Sol. in (NII₄)₂HPO₄+Áq, and in NH₄OH+

 $5(NH_4)_2O$ ,  $P_2O_5$ ,  $3V_2O_5$ ,  $16WO_3+37H_2O_5$ Easily sol. in H₂O. (Gibbs, Am. Ch. J. 5.

13(NH₄)₂O, 2P₂O₅, 8V₂O₅, 34WO₃ +86H₂O. Very sol. in cold and hot H₂O.

nsol. in alcohol, ether, CS2, benzene and nitrobenzene. (Rogers, J. Am. Chem. Soc. 1903, **25**. 299.)

Barium - --, 18BaO, 3P₂O₅, 2V₂O, 60WO₃ +144H₂O.

·Easily sol in hot H₂O with decomp (Gibbs, Am. Ch. J. 5. 391.)

Potassium —  $3K_2O$ ,  $P_2O_5$ ,  $V_2O_5$ ,  $7WO_3$ + 11H₂O.

Sol. in H₂O.

 $8K_2O_5$ ,  $3P_2O_5$ ,  $4V_2O_5$ ,  $18WO_3+23H_2O_5$ . Sol. in hot  $H_2$ ) with decomp, into preceding salt. (Gibbs, Am. Ch. J. **5.** 391.)

Silver ____, 13Ag₂O, 2P₂O₅, 8V₂O₅, 33WO₈+ 41H₂O.

Somewhat sol. in H₂O.

Completely sol. in H₂O containing a few drops HNO₃. (Rogers, J. Am. Chem. Soc. 1903, **25.** 302.)

### Phosphovanadiovanadicotungstic acid.

Barium phosphovanadiovanadicotungstate,  $18BaO_{5}$ ,  $3P_{2}O_{5}$ ,  $VO_{5}$ ,  $VO_{2}$ ,  $60WO_{3}$ + 150H₂O.

Sl. sol. in cold, easily sol. in hot H₂O. (Gibbs, Am. Ch. J. 5. 391.)

### Phosphuretted hydrogen.

See Hydrogen phosphide.

#### Platibromonitrous acid.

Potassium platibromonitrite, K₂Pt(NO₂)₄Br₂. Rather sl. sol. in H₂O. (Blomstrand, J. pr.

(2) **3.** 214.)
Sol. in about 40 pts. cold, and 20 pts. boiling H₂O. Insol. in alcohol. Sl. sol. in KBr or KNO₂+Aq. (Vèzes, A. ch. (6) **29.** 198.) K₂Pt(NO₂)₈Br₈. Sol. in about 5 pts. warm

H₂O with decomp. (Vèzes.)

K₂Pt(NO₂)₂Br₄. Sol. in less than 5 pts. H₂O with decomp. (Vèzes.)

### 20MoO₅+53H₂O. Platichloronitrous acid.

Potassium platichloronitrite, K₂Pt(NO₂)₄Cl₂. Rather sl sol, in H₂O. (Blomstrand J. pr. (2) 3.  $2^{1}$ 4.)

Sol. in 40 pts. cold, and 20 pts. boiling H2O. Sl. sol. in KCl or KNO2+ Insol. in alcohol

q. (Vèzes, A. ch. (6) 29. 183.)  $K_2Pt(NO_2)_3Cl_3$ . Very sol. in  $H_2O$ . (Vezes.)  $K_2Pt(NO_2)_4Cl_3 + H_2O$ . Sol. in  $H_4O$  with decomp. (Vèzes.)

### Platiiodonitrous acid.

Potassium platiiodonitrite, K₂Pt(NO₂)₂I₄.

St. sol. in cold, more easily in hot H₂O; decomp. by boiling. (Vèze, A. ch. (6) 29. 207.)

 $K_2P^{\dagger}(NO_2)I_5$ . As above. (Vèzes.)

### Platin-.

See also Pla ino-, plato-, p'at-, and platos-.

### Platindiamine compounds.

See Chloro-, bromo-, hydroxylo-, iodo-, nirato-, nitrito-, sulphato-, etc., platindiamine compounds.

### Platintriamine carbonate,

 $Pt(NH_3)_6(CO_3)_2$ .

Ppt. Sol. in NaOH+Aq. (Geddes, J. pr. (2) **26.** 257.)

--- chloride Pt(NH₃)₆Cl₄.

Sol. in hot H₂O (Gerdes.)

chloroplatinate, Pt(NH₃) Cl₄, PtCl₄+ 2H₂O.

Very sl. sol. in H₂O. (Gerdes.)

- nitrate,  $Pt(NH_8)_6(NO_8)_4$ . Easily sol. in H₂O; sl. sol. in HNO₃+Aq. (Gerdes.)

sulphate,  $Pt(NH_3)_6(SO_4)_2 + H_2O$ . Nearly insol. in H₂O. (Gerdes.)

Tetraplatinamine iodide, Pt₄(NH₃)₈I₁₀. (Blomstrand, B. 16. 1469.)

Octoplatinamine iodide, Pt₈(NH₃)₁₆I₁₈. (Blomstrand.)

### Platinic acid.

Barium platinate, basic (?), 3BaO, 2PtO₂. Insol in HC₂H₃O₂+Aq; easily sol. in HCl+Aq. (Rousseau.)

### Barium piatinate, BaPtO.

(Rousseau, C. R. 109. 144.) +H₂O. Insol. in dil. HNO₈+Aq; sol. in warm HCl+Aq. (Topsoë, B. 3. 464.) +4H₂O. Very sl. sol. in H₂O, BaO₂H₂, or NaOH+Aq. Easily sol. in dil. acids, except HC₂H₃O₂, in which it is insol. in the cold, but decomp. on heating. (Topsoë, l. c.) Composition is 3BaPtO₃, BaCl₂, PtCl₂O+ 4H₂O (?). (Johannsen, A. 155. 204.)

Calcium platinate chloride (?), 2Ca₂Pt₂O₅Cl₂ +7H₂O (?). "Herschel's precipitate."

Easily sol. in HCl+Aq, and in HNO₃+Aq, if freshly pptd (Herschel.)

Very sol. HNO₃+Aq. (Weiss and

• Very sol. In HNO₃+Aq. (Weiss and Döbereiner, A. 14. 252.)

Composition is CaPtO₃ PtCl₂O, CaO+7H₂O (?). (Johannsen, A. **155**. 204.)

### Potassium platinate.

Sol. in H₂O. (Berzelius.) K₂O, PtO₂+3H₂O. Very sol. in H₂O. (Blondel, A. ch. 1905, (8) 6. 90.) K₂Pt(OH)₆. Sol. in H₂O; insol. in alcohol. (Bellucci, Z. anorg. 1905, 44. 173.)

Sodium platinate, Na₂O, 3PtO₂+6H₂O.

Dil. acids dissolve out Na₂O and leave PtO₂.

Sol. in HNO₃+Aq. (Döbereiner, Pogg. 28.

180.)

 $Na_2O$ ,  $PtO_2+3H_2O$ . Sol. in  $H_2O$ . (Blondel.)

Metaplatinic acid,  $5PtO_2$ ,  $5H_2O$ . Insol, in  $H_2O$ . (Blondel, A. ch. 1905, (8) **6.** 103.)

Sodium metaplatinate, Na₂O, 5PtO₂+9H₂O. Insol. in H₂O. (Blondel.)

Platinimolybdic acid, 4H₂O, PtO₂, 10MoO₃. (Gibbs.)

Ammonium platinimolybdate, 8MoO₃, 2PtO₂, 3(NH₄)₂O+12H₂O. 4MoO₃, 2PtO₂,2(NH₄)₂O+19H₂O. Sol. in hot H₂O. (Gibbs, Am. Ch. J. 1895, 17. 80-82.)

Potassium platinimolybdate, 60MoO₃, PtO₂, 10K₂O+40H₂O. So . in hot H₂O. (Gibbs.)

Silver platinimolybdate.

Sodium platinimolybdate, 4Na₂O, PtO₂, 10 MoO₃+29H₂O. Sol. in H₂O. (Gibbs, Sill. Am. J. (3) **14.** 61.)

### Platinitungstic acid.

Ammonium platinitungstate,  $4(NH_4)_2O$ ,  $PtO_2$ ,  $10WO_3+12H_2O$ . Sol. in  $H_2O$ . (Gibbs, B. 10. 1384.)

Potassium platinitungstate, 4K₂O, PtO₂, 10WO₃+9H₂O. Sol. in H₂O. (Gibbs.)

Sodium platinitungstate, 4Na₂O, PtO₃, 10WO₃+25H₂O.

Sol. in  $H_2O$ . (Gibbs.)  $5Na_2O$ ,  $7WO_3$ ,  $2PtO_2+35H_2O$ . Sol. in  $H_2O$ . (Gibbs.) Is double salt  $3Na_2O$ ,  $7WO_3+2Na_2PtO_3$ . (Rosenheim, B. **24**. 2397.)  $10WO_3$ ,  $PtO_2$ ,  $4Na_2O+23H_2O$ .  $10WO_3$ ,  $PtO_2$ ,  $6Na_2O+28H_2O$ .

10WO₃, PtO₂,  $4\text{Na}_2\text{O} + 25\text{H}_2\text{O}$ . 10WO₃, PtO₂,  $6\text{Na}_2\text{O} + 28\text{H}_2\text{O}$ . 20WO₃, PtO₂,  $9\text{Na}_2\text{O} + 58\text{H}_2\text{O}$ . 30WO₃, 2PtO₂,  $15\text{Na}_2\text{O} + 89\text{H}_2\text{O}$ . 30WO₃, PtO₂,  $12\text{Na}_2\text{O} + 72\text{H}_2\text{O}$ . All are sol. in boiling  $\text{H}_2\text{O}$ . (Gibbs, Am. Ch. J. 1895, **17.** 74–80.)

### Platino-.

See also Plato—.

Platinochlorophosphoric acid.

See Chloroplatinophosphoric acid.

Platinocyanhydric acid, H₂Pt(CN)₄.

Deliquescent. Very sol. in  $H_2O$ , alcohol, and ether.

Ammonium platinocyanide, (NH₄)₂Pt(CN)₄

 $+3\mathrm{H}_2\mathrm{O}$ . Very sol. in  $\mathrm{H}_2\mathrm{O}$ .  $+2\mathrm{H}_2\mathrm{O}$ . Sol. in 1 pt.  $\mathrm{H}_2\mathrm{O}$ , and still more easily in alcohol.  $+\mathrm{H}_2\mathrm{O}$ .

Ammonium hydroxylamine platinocyanide, NH₄(NH₄O)Pt(CN)₄+3½H₂O. Sol. in H₂O. (Scholz, M. Ch. 1. 900.)

Ammonium magnesium platinocyanide,  $(NH_4)_2Mg[Pt(CN)_4]_2+6H_2O$ .

Barium platinocyanide, BaPt(CN)₄+4H₂O. Sol. in 33 pts. H₂O at 16°, and in much less at 100°. Sol. in alcohol.

Barium potassium platinocyanide, BaK₂[Pt(CN)₄]₂. Sol. in H₂O.

Barium rubidium platinocyanide, BaRb₂[Pt(CN)₄]₂. Sol. in H₂O. Cadmium platinocyanide, CdPt(CN)₄.

Ppt. Sol. in NH₄OH+Aq. (Martius, A.

117. 376.)

CdPt(CN)₄, 2NH₃+H₂O. (M.)

Calcium platinocyanide,  $CaPt(CN)_4$ :  $5H_2O$ . Very sol. in  $H_2O$ .

Calcium potassium platinocyanide,  $CaK_2[Pt(CN)_4]_2$ . Sol. in  $H_2O$ .

Cerium platinocyanide, Ce₂[Pt(CN)₄]₃+18H₂O.
Sol. in H₂O.

Cobaltous platinocyanide ammonia, CoPt(CN)₄, 2NH₃. Insol. in H₂O, but sol. in hot NH₄OH + Aq.

Cupric platinocyanide,  $CuPt(CN)_4+xH_2O$ . Ppt.

Cupric platinocyanide ammonia, CuPt(CN)₄, 2NH₃+H₂O. CuPt(CN)₄, 4NH₃. Sol. in H₂O, alcohol,

and ether.

Didymium platinocyanide,  $\mathrm{Di}_2[\mathrm{Pt}(\mathrm{CN})_4]_3 + 18\mathrm{H}_2\mathrm{O}.$ 

Efflorescent in dry air. Sol. in  $H_2O$ . (Cleve.)

Dysprosium platinocyanide, Dy₂[Pt(CN)₄]₃+21H₂O.
Easily sol. in H₂O. (Jantsch, B. 1911, **44**. 1277.)

Erbium platinocyanide,  $Er_2[Pt(CN_4)]_3 + 21H_2O$ . Sol. in  $H_2O$ . (Cleve.)

Gadolinium platinocyanide, 2Gd(CN)₃, 3Pt(CN)₂+18H₂O. Sol. in H₂O; decomp. in the air. (Benedicks, Z. anorg, 1900, **22**, 405.)

Glucinum platinocyanide, GlPt(CN)₄. (Toczynski, Dissert. 1871.)

Hydroxylamine platinocyanide, (NH₄O)₂Pt(CN)₄+2H₂O. Deliquescent. Very sol. in H₂O. (Scholz.)

Hydroxylamine lithium platinocyanide, (NH₄O)LiPt(CN)₄+3H₂O. Sol. in H₂O.

Indium platinocyanide, In₂[Pt(CN)₄]₂+2H₂O. Hydroscopic; sol. in H₂O. (Renz, B. 1901, **34.** 2765.)

Lanthanum platinocyanide, Laz[Pt(CN)4]2 +18H₂O. Easily sol. in H₂O. (Cleve.) Magnesium platinocyanide,  $MgPt(CN)_4$ + 2H₂O. Solubility in H2O. 100 g. of the sat. solution contain at: 96.4° 100° 44 33 43.96 g. MgPt(CN) (Buxhoevden, Z. anorg. 1897, 15, 325.) +4H₀O. Solubility in H2O. 100 g of the sat. solution contain at: 42.2° 46.3° 48.7° 55° 40, 21 39.7940.75 40 02 g, MgPt(CN)4. 69° 77.8° 58.1° 42.01 43.48 44.8845.52 g. MgPt(CN)4, 90° 45.5945.04 g. MgPt(CN)4.

+7H₂O. Sol. in 3.4 pfs. H₂O at 16°. Easily sol. in alcohol and ether. Solubility in H₂O.

100 g. of the sat. solution contain at:

-4 12° +0.5° 5.5° 18.0°

24.9 26.33 28.07 31.23 g. MgPt(CN)₄,

36.6° 45.0° 46.2°

38.36 41.32 41.96 g. MgPt(CN)₄.

(Buxhocyden.)

(Buxhoevden.)

 $\begin{array}{c} \textbf{Magnesium potassium platinocyanide,} \\ MgK_2[Pt(CN)_4]_2 + 7H_2O. \\ Sol. \ in \ H_2O. \end{array}$ 

Mercuric platinocyanide, HgPt(CN)₄. Ppt.

Mercuric platinocyanide nitrate,  $5 HgPt(CN)_4$   $Hg(NO_3)_2 + 10 H_2O$ . Ppt.

Nickel platinocyanide ammonia,  $NiPt(CN)_4$ ,  $2NH_3+H_2O$ .

Potassium platinocyanide, K₂Pt(CN)₄+ 3H₂O.

Extremely efflorescent. Sl. sol. in cold, easily in hot H₂O. (Willm, B. **19**. 950.) Sol. in alcohol and ether.

Potassium sodium platinocyanide, K₂Pt(CN)₄, Na₂Pt(CN)₄+6H₂O. Sol. in H₂O. (Willm, B. 19. 950.)

Praseodymium platinocyanide,  $2Pr(CN)_s$ ,  $3Pt(CN)_2$ . Sol. in  $H_2O$ . (Von Scheele, Z anorg. 1898, 18, 355.) 730

Samarium platinocyanide, Sm₂[Pt(CN₄)]₃ +18H₂O.

Sol. in H₂O. (Cleve.)

 $\begin{array}{ll} \textbf{Scandium} & \textbf{platinocyanide,} & Sc_2[Pt(CN)_4]_3 \\ & +21H_2O. \end{array}$ 

Sol. in H₂O and insol. in alcohol; when boiled in alcohol it is dehydrated. (Crookes, Phil. Trans. 1910, **210**. A, 368.) +21H₂O. (Orlow, Ch. Z. 1912, **36**. 1407.)

Silver platinocyanide, Ag₂Pt(CN)₄. Insol. in H₂O. Sol. in NH₄OH+Aq.

Silver platinocyanide ammonia, Ag₂Pt(CN)₄, 2NH₃. Insol, in H₂O. Sol. in NH₄OH+Aq.

Silver platinocyanide bromide.

See Bromoplatinocyanide, silver.

Silver platinocyanide chloride.

See Chloroplatinocyanide, silver.

Silver platinocyanide iodide.

See Iodplatinocyanide, silver.

Sodium platinocyanide,  $Na_2Pt(CN)_4+3H_2O$ . Easily sol. in  $H_2O$ . (Willm; Z. anorg. 4. 298.) Sol. in alcohol.

Strontium platinocyanide,  $SrPt(CN)_4+5H_2O$ . Sol. in  $H_2O$ .

Thallous platinocyanide, Tl₂Pt(CN)₄.

Nearly insol. in cold, sl. sol. in hot H₂O.

Thallous platinocyanide carbonate, 2Tl₂Pt(CN)₄, Tl₂CO₃. Nearly insol, in cold H₂O. (F.)

(Friswell, Chem. Soc. 24. 461.)

Thorium platinocyanide,  $Th[Pt(CN)_4]_2 + 16H_2O$ .

Somewhat difficultly sol. in cold, easily in hot  $H_2O$ . (Cleve, Sv. V. A. H. Bih. 2. No. 6.)

Uranyl platinocyanide, (UO₂)Pt(CN)₄+xH₂O. Sol. in H₂O. (Levy, Chem. Soc. 1908, 93. 1459.)

Ytterbium platinocyanide, 2Yb(CN)₅, 3Pt(CN)₂+18H₂O. Easily sol. in H₂O. (Cleve, Z. anorg. 1

Easily sol. in  $H_2O$ . (Cleve, Z. anorg. 1902, 32. 139.)

Yttrium platinocyanide,  $Y_2[Pt(CN)_4]_3 + 21H_2O$ .

Easily sol, in  $H_2O$ . Insol, in absolute alcohol. (Cleve and Höglund.)

Zinc platinocyanide ammonia,  $ZnPt(CN)_4$ ,  $2NH_3+H_2O$ .

Platinonitrous acid.

See Platonitrous acid.

Platinoplatinicyanhydric acid, HPt(CN)₄ +xH₂O.

Sol. in  $H_2O$ . (Levy, Chem. Soc. 1912, 101. 1093.)

Platinoselenocyanhydric acid.

Potassium platinoselenocyanide, K₂Pt(SeCN)₆.

Sol. in  $H_2O$  and alcohol. (Clarke and Dudley, B. 1878, **11.** 1325.)

Platinoselenostannic acid.

See under Selenostannate, platinum.

Platinososulphocyanhydric acid, H₂Pt(SCN)₄.

Known only in aqueous solution.

Potassium platinososulphocyanide,  $K_2Pt(SCN)_4$ .

Permanent. Sol. in 2.5 pts. H₂O at 15°, and more readily at higher temp. Very sol. in warm alcohol.

Silver —, Ag₂Pt(SCN)₄.

Insol. in  $H_2O$ . Sol. in KSCN+Aq, and partly sol. in  $NH_4OH+Aq$ .

Platinosulphocyanhydric acid, H₂Pt(SCN)₆.

Known only in aqueous, and alcoholic solutions.

Ammonium platinosulphocyanide,  $(NH_4)_2Pt(SCN)_6$ .

Sol. in H₂O and alcohol.

Barium —, BaPt(SCN)₆. Sol. in H₂O and alcohol.

Ferrous —, FePt(SCN)6.

Insol. in H₂O or alcohol. Not attacked by dil. H₂SO₄, HCl, or HNO₃+Aq.

Lead ----, PbPt(SCN)6.

Sl. sol. in cold, decomp. by hot  $H_2O$ . Sol. in alcohol.

PbPt(SCN)₆, PbO. Insol. in H₂O or alcohol. Sol. in acetic or nitric acids.

Mercurous —, Hg₂Pt(SCN)₆.

Ppt. Insol. in H₂O.

### Potassium platinosulphocyanide, K₂Pt(SCN)₆.

Sol. in 12 pts. H₂O at 60°. Much more easily in boiling H₂O, and still more easily in hot alcohol.

+2H₂O.(Miolati and Bellucci, Gazz. Ch. it. 1900, 30, II. 592.)

Silver —, Ag. Pt(SCN)6.

Insol. in H₂O or K₂Pt(SCN)₆+Aq. Sol. in cold NH₄OH+Aq and in KCNS+Aq

Sodium ----, Na Pt(SCN)6. Sol. in H₂O and alcohol.

# Platinosulphostannic acid.

See under Sulphostannate, platinum.

# Platinosulphurous acid.

See Platosulphurous acid.

# Platinum, Pt.

Not attacked by H₂O, H₂SO₄, HCl, or HNO₃+Aq. Slowly sol. in aqua regia, or a mixture of HBr and HNO₃, but much less easily than Au.

Precipitated Pt is remarkably sol. in HCl+Aq in presence of air. (Wilm, B. 1881,

**14.** 636.)

Pure Pt foil is attacked by fuming HCl under influence of light, but not in the dark. (Berthelot, C. R. 1904, 138, 1297.)

Dil. HCl+Aq dissolves 10-15% Pt from active Pt black. (Wöhler, B. 1903, 36, 3482.)

Conc. HNO₃ oxidizes Pt black; Pt sponge,

less easily; sheet Pt, slightly. (Wöhler, Dissert. 1901.)

Pt in presence of Hg is more or less sol in conc. HNO₃. (Tarugi, Gazz. ch. it. 1903,

33, II. 171.)

Pt vessels are attacked by evaporating HNO₃ therein. (Jaunek and Meyer, Z. anorg. 1913, 83. 71.)

Sl. sol. in conc. 1½SO₄ containing small

amounts of nitrogen oxides. (Scheurer-Kestner, C. R. 86. 1082.)

Pt black, pptd. by formic acid, is easily sol. in boiling H2SO4. (Deville and Stas,

Paris, 1878.)

Thin sheet Pt is attacked by boiling H₂SO₄ containing K₂SO₄; 1 sq. cm. loses 0.01 g. in 1 hour and velocity of the reaction is not accelerated by addition of HNO₈. Pt black is completely dissolved under the above conditions in 50 hours. (Delépine, C. R. 1905, **141**. 1013.)

Further data on solubility of Pt in H₂SO₄ are given by Delépine. (C. R. 1906, 142.

631.)

95% H₂SO₄ dissolves 0.04 g. Pt from commercial Pt at 250-260° in 28 hours. roy, J. Soc. Chem. Ind. 1903, 22. 465.)

See also Quenessen. (Bull. Soc. 1906,

(3) **35.** 620.)

0.0038 g. is dissolved by 10 cc. of boiling  $\rm H_2SO_4.$  (McCoy, Eighth Inter. Cong. App. Chem. 1912. 2.)

HCl+HNO₃, so long as they are sufficiently dil. or the temperature is so low that they annot react on each other, have no action on Pt. Addition of Cl does not bring about reaction, but a few drops of KNO2 or N2O3+Aq bring about an immediate reaction. (Millon.)

Slowly sol. in HI+Aq. (Deville, C. R. 42. 896.)

Conc. H₃PO₄ attacks Pt when heated in presence of air, but not in its absence. (Hüttner, Z. aporg. 1908, 59. 216.)
Pt dissolves easily in most acids when they

contain H₂O₂. (Fairley, B. \$875, **8.** 1600.) Slowly sol. in boiling FeCl₃+Aq. (Saint-Pierre, C. R. **54.** 1077.)

FeCl₃ in acid solution is without influence

on Pt. (Marie, C. R. 1908, 146, 476.)
Pt is completely insol. in KCN+Aq. (Rössler, Z. Chem. 1866, 175.)
Pt is attacked by boiling conc. KCN+Aq. (Deville and Debray, C. R. 82, 241.)
Solubility of Pt in 10% KCN+Aq is very

small at ord. temp. (1.4 mg. in 8 days) but is considerably greater in boiling conc. KCN +Aq. (71.5 mg. in 5 hours). (Glaser, Z. Elektrochem. 1903, 9. 15.)

Pt foil is dissolved in boiling KCN+Aq (0.030 g. for 1 cc. in 1 hour). Insol. in cold KCN+Aq. (Brochet and Petit, C. R. 1904, C. R. 138. 1255.)
Sol. in RbCl₄1+Aq. (Erdmann, Arch.

Pharm, 1894, 232, 30.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 828.)

#### Platinum ammonium compounds.

Data published since the first edition of this work have not been included in this edition.

Platosamine comps., Pt < NH₃.R.

Platosemidiamine comps.,

 $\mathrm{Pt}\!<^{\mathrm{NH_3.NH_3.R}}_{\mathrm{R.}}$ 

Platomonodiamine comps.,  $Pt < {_{NH_3.NH_3.R}^{NH_3.R}}$ 

Platodiamine comps.,  $Pt < {}^{\rm NH_3, NH_3, R}_{\rm NH_3, NH_3, R}$ .

Platososemiamine comps., Pt < NH3.R

Diplatodiamine comps., Pt-NH3.NH3.R

Pt-NH3.NH3.R

Bromoplatinamine comps., Br₂Pt < NH₃.R. NH₃.R.

Chloroplatinamine comps.,  $Cl_2Pt < \stackrel{NH_3.R}{NH_3.R}$ 

788

Chloronitratoplatinamine comps.,  $Cl(NO_3)Pt < NH_3.R$ .

Hydroxyloplatinamine comps.,

Iodoplatinamine comps.,  $I_2Pt < {}_{\rm NH_3.R}^{\rm NH_3.R}$ 

 $(OH)_2Pt < NH_3.R \\ NH_8.R.$ 

Nitratoplatinamine comps.,

 $(NO_3)_2 Pt < NH_3 R$  $NH_3 R.$ 

Sulphatoplatinamine comps.,

SO₄Pt < NH₃.R.

Bromoplatinsemidiamine comps., 'Br₈PtNH₈.NH₃.R.

Bromonitritoplatinsemidiamine comps., Br₂(NO₂)PtNH₃.NH₃.R.

Chloroplatinsemidiamine comps., Cl₃PtNH₃.NH₃.R.

Chlorohydroxylonitritosemidiamine comps., Cl(OH)(NO₂)PtNH₃.NH₃.R.

Chloronitritoplatinsemidiamine comps.,  $Cl_2(NO_2)PtNH_3.NH_3.R.$ 

lodoplatinsemidiamine comps., I₈PtNH₃.NH₃.R.

Hydroxylosemidiamine comps., (OH)₃PtNH₃.NH₃.R.

 $\begin{aligned} & \textbf{Bromoplatin} monodiamine \ \textbf{comps.,} \\ & \textbf{Br}_2 Pt < \begin{matrix} NH_3.NH_3.R \\ NH_3.R. \end{matrix} \end{aligned}$ 

 $\begin{aligned} & \textbf{Bromohydroxyloplatin} monodiamine \ \ \textbf{comps.} \\ & \textbf{Br(OH)Pt} < & \textbf{NH_8.NH_3.R} \\ & \textbf{NH_3.R.}. \end{aligned}$ 

 $\begin{array}{l} \textbf{Chloroplatin} monodiamine \ \textbf{comps.,} \\ \textbf{Cl}_{2}\textbf{Pt} < & \textbf{NH}_{3}.\textbf{NH}_{3}.\textbf{R} \\ \textbf{NH}_{3}.\textbf{R}. \end{array}$ 

 $\begin{array}{l} \textbf{Iodonitratoplatin} monodiam \textbf{ine comps.,} \\ I(NO_{\text{3}})Pt < \begin{matrix} NH_{\text{3}}.NH_{\text{3}}.R \\ NH_{\text{3}}.R. \\ \end{array}$ 

$$\label{eq:hydroxyloplatinmonodiamine comps.,} \begin{split} & \mathbf{Hydroxyloplatinmonodiamine\ comps.,} \\ & (\mathrm{OH})_2\mathrm{Pt} < & \mathrm{NH_3.NH_3.R.} \\ & \mathrm{NH_3.R.} \end{split}$$

Bromoplatindiamine comps.,  $\mathrm{Br_2Pt} < \mathrm{NH_3.NH_3.R} \\ \mathrm{NH_3.NH_3.R}$ .

Bromocarbonatoplatindiamine comps.,  $^{\mathrm{CO_3}}_{\mathrm{Br_2}}>[\mathrm{Pt}(\mathrm{NH_3})\mathrm{R}]_2.$ 

Bromochloroplatin diamine comps., BrClPt(NH₃)₄R₂.

Bromohydroxyloplatindiamine comps.,  $Br(OH)Pt(NH_3)_4R_2$ .

Bromonitratoplatindiamine comps.,  $Br(NO_3)Pt(NH_3)_4R_2$ .

Bromosulphatoplatindiamine comps.,  $Br_2(SO_4)[Pt(NH_3)_4R_2]_2$ .

Carbonatochloroplatindiamine comps.,  $(CO_3)Cl_2[Pt(NH_3)_4R_2]_2$ .

Carbonatonitratoplatindiamine comps.,  $(CO_3)(NO_3)_2[Pt(NH_3)_4R_2]_2$ .

Chloroplatindiamine comps., Cl₂Pt(NH₂)₄R₂.

Chlorohydroxyloplatindiamine comps.,  $Cl(OH)(NH_{\delta})_4R_2$ .

Chloroiodoplatindiamine comps.,  $ClIPt(NH_3)_4R_2$ .

Chloronitratoplatindiamine comps.,  $Cl(NO_3)Pt(NH_3)_4R_2$ .

Hydroxyloplatindiamine comps.,  $(OH)_2Pt(NH_3)_4R_2$ .

Hydroxylonitratodiamine comps., (OH)(NO₃)Pt(NH₃)₄R₂.

Hydroxylosulphatodiamine comps., (OH)₂SO₄[Pt(NH₃)₄R₂]₂.

Iodoplatindiamine comps.,  $I_2Pt(NH_3)_4R_2$ .

Iodonitritoplatindiamine comps.,  $I(NO_2)Pt(NH_3)_4R_2$ .

Nitratoplatindiamine comps.,  $(NO_8)_2Pt(NH_8)_4R_2$ .

Nitritoplatindiamine comps.,  $(NO_2)_2Pt(NH_3)_4R_2$ .

Sulphatoplatindiamine comps., (SO₄)Pt(NH₃)₄R₂.

Iododiplatinamine comps.,

 $\begin{array}{c|c} I - Pt < \stackrel{NH_3.R}{NH_3.R} \\ I - Pt < \stackrel{NH_3.R}{NH_3.R}. \end{array}$ 

Bromodiplatindiamine comps.,

Br—Pt < NH₈.NH₈.R | NH₃.NH₈.R | Br—Pt < NH₃.NH₅.R

Hydroxylodiplatindiamine comps.,  $(OH)_2Pt_2(NH_8)_8R_4$ .

Iododiplatindiamine comps.,  $I_2Pt_2(NH_3)_8R_4$ .

Nitrato di platin di amine comps.,  $(NO_3)_2$  Pt₂ $(NH_3)_8$ R₄.

Platintriamine comps.,  $R_2Pt < {\stackrel{NH_3.NH_3.NH_3.R}{NH_3.R}}$ .

Tetraplatinamine comps., Pt₄(NH₈)₈R₁₀. Octoplatinamine comps., Pt₈(NH₃)₁₆R₁₈.

Platinum antimonide, PtSb₂. (Christofle, **1863.**)

Platinum arsenide, Pt₃As₂.

(Tivoli, Gazz. ch. it. 14. 487.) PtAs₂. Min. Sperrylite. Sl. attacked by aqua regia. (Wells, Sill. Am. J. (3) 37. 67.)

Platinum arsenic hydroxide (?), PtAsOH.

Insol. in, and slowly decomp. by H₂O and alcohol. Fasily decomp. by HCl+Aq; not attacked by HNO₅+Aq. Sol. in aqua regia; not attacked by cold conc. H₂SO₄, but decomp. on heating. (Tivoli, Gazz. ch. it. 14. 487.)

# Platinum potassium azoimide.

Ppt. Explodes violently even in aq. solution. (Curtius, J. pr. 1898, (2) 58. 304.)

# Platinum boride, Pt₂B₂.

Very slowly sol. in aqua regia. (Martius, A. 109. 79.)

# Platinous bromide, PtBr₂.

Insol. in H₂O. Sol. in HBr+Aq. St sol. in KBr+Aq. (Topsoë, J. B. **1868.** 274.)

# Platinic bromide, PtBr4.

Not deliquescent; sol. in H₂O. (Mever and Züblin, B. 13. 404.)

Sl. sol. in H₂O. 100 g. PtBr₄+Aq sat at 20° contain 0.41 g. PtBr₄. (Halberstadt, B. **17.** 2962.)

Easily sol, in HBr+Aq; sl. sol, in HC₂H₃O₂ +Aq. Sol. in considerable amount in K or NH4 oxalate+Aq.

Very sl. sol. in alcohol or ether, also in glycerine. (Halberstadt.)

# Platinic hydrogen bromide.

See Bromoplatinic acid.

Platinous bromide carbonyl. See Carbonyl platinous bromide.

# Platinic bromide with MBr. See Bromoplatinate, M.

# Platinum carbide, PtC₂.

Hot agua regia dissolves out nearly all the Pt. (Zeise, J. pr. 20. 209.)

Platinum carbon disulphide, PtCS₂. See Platinum sulphocarbide.

#### Platinum monochloride, $PtCl+xH_2O$ .

Easily sol, in HCl; mod. sol, in hot dil. H₂SO₄ without decomp. (Sonstadt, Proc. Chem. Soc. 1898, **14**. 179.)

#### Platinous chloride, PtCl₂.

Insol. in H₂O, conc. H₂SO₄, or HNO₃. Sol. in hot HCl+Aq with exclusion of air. (Berzelius.)

Insol. in alcohol or ether; sol. in NH₄OH+ Aq. (Raewsky, A. ch. (3) 22. 280.) aqua regia with formation of PtCl4.

Insol. in cold conc. KI+Aq, but sol. when heated. (Lassaigne, A. ch. (2) 51. 117.) Sl. sol. in liquid NH₈. (Gore, Am. Ch. J.

1898, 20, 828.)

Insol. in acetone. (Fidmann, C. C. 1899, II. 1014.)

#### Platinum trichloride, PtCl₃.

Sl. sol, in cold, more sol, in hot H₂O. Partially hydrolyzed by boiling with H₂O.

Insol. in cold conc. HCl: Sol. in hot conc. HCl with decomp.

Sol. in KI+Aq. (Wöhler, B. 1909, 42. 3961.)

# Platinic chloride, PtCl.

Not deliquescent. Very sol. in H₂O. (Pullinger, Chem. Soc. **61**. 420.)

Sp. gr. of aqueous solution containing: 10 15 20 25 % PtCl4,

1.046 1.097 1.153 1.214 1 285 30 40 45 50 % PtCl4. 35 1.362 450 1.546 1.666 1.785

(Precht, Z. anal, 18, 512.)

Insol, in conc. H₂SO₄. (Dumas.) Sl. sol. in liquid NH₈. (Gore, Am. Ch. J. 1898, 20, 828.)

Sol. in alcohol and ether; sol. in anhydrous acetone. (Zeise, A. 33. 34.)

Insol. in ether. (Willstätter, B. 1903, 36.

1830.) Sl. sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sol. in acetone. (Eidmann, C. C. 1899,

II 1014; Naumann, B. 1904, 37. 4328.)

 $+H_2O$ . Sol. in  $H_2O$ . (Gutbier and Heinrich, Z. anorg. 1913, **81**. 378.)  $+4H_2O$ . Sol. in  $H_2O$ . (Pigeon, C. R.

1891, 112. 792.) +5H₂O. Not deliquescent. Sol. in H₂O or HCl+Aq.

Composition is probably H₂PtCl₄O+4H₂O. (Norton, J. pr. 110. 469.)

 $+7H_2O$ . Sol. in  $H_2O$ . (Pigeon.) +8H₂O. (Blondel, A. Ch. 1905, (8) 6.

Platinic thallium chloride, Tl₃Pt₂Cl₈H₅O₄. Ppt.; insol. in H2O. (Miolati, Z. anorg.

Platinous hydrogen chloride. See Chloroplatinous acid.

98.)

1900, **22.** 460.)

Platinic hydrogen chloride. See Chloroplatinic acid.

Platinous chloride with MCl. See Chloroplatinite, M.

Platinic chloride with MCl. See Chloroplatinate, M.

Platinous phosphorus chloride. See Phosphorus platinous chloride.

Platinic phosphorus chloride. See Phosphorus platinic chloride.

Platinous chloride carbonyl. See Carbonyl platinous chloride.

#### Platinum chloride hydroxylamine. Pt(NH₂OH)₂Cl₂.

Ppt. "Sol. in alcohol and in ether. Dccomp. in aq. solution.

Sol. in H₂O. (Uhlen-Pt(NH₂OH)₄Cl₂. huth, A. 1900, **311**. 124.)

# Platinous chloride sulphocarbamide, $PtCl_2$ , $4CS(NH_2)_2$ .

Sl. sol. in H₂O; very sol. in hot H₂O; decomp. sl. on boiling. (Kurnakow, J. pr. 1894. (2) **50.** 483.)

#### Platinum chloroiodide, PtCl₂I₂.

Very deliquescent. (Kämmerer, A. 148. 329.)

PtCll₃. Insol. in H₂O. Sl. sol. in alcohol. Sol. in KOH+Aq, from which it is pptd. by H₂SO₄. (Mather, Sill. Am. J. **27.** 257.)

# Platinum chloronitride, PtNCl. (Alexander, C. C. 1887, 1254.)

Platinous cyanide with MCN. See Platinocyanide, M.

# Platinous fluoride, PtF₂(?).

Insol. in  $H_2O$ . (Moissan, A. ch. (6) 24. 287.)

# Platinic fluoride, PtF4.

Deliquescent. Sol. in H₂O with immediate decomp. into PtO₄H₄ and HF. (Moissan, C. R. 109. 807.)

#### Platinous hydroxide, PtO₂H₂.

Sol. in HCl, HBr, and H₂SO₃+Aa, but Decomp. by not in other oxygen acids. boiling KOH+Aq. (Thomsen, J. pr. (2) 16.

When freshly pptd, is insol. in dil. HNO₃ and H₂SO₄, and in HC₂H₃O₂; sol. in conc. HNO₃ and H₂SO₄. Very sol. in H₂SO₃ and *HCl. After drying, is insol. in conc. HNO3 and  $H_2SO_4$ . (Wöhler, Z. anorg. 1904, 40. 424.)

#### Platinic hydroxide, Pt(OH)₄.

Easily sol, in dil. acids and in NaOH+Aq. (Topsoë, J. B. 1870. 386.)

Nearly insol. in acetic acid. (Döbereiner.) Insol. in all acids except conc. HCl and aqua regia. (Wöhler, Z. anorg. 1904, 40. 438.)

+H₂O. Ppt. (Prost, Bull. Soc. (2) 44. 256.) Insol. in 2N-H₂SO₄ and dil. HNO₃+Aq; mod. sol. in conc. HNO₃, H₂SO₄, 2N-HCl and

NaOH+Aq. (Wöhler.)
+2H₂O. Easily sol. in dil. acids, even acetic acid, and in NaOH+Aq. (Topsoë.)
Insol. in acetic acid; sl. sol. in 2N-H₂SO₄ and HNO₃; easily sol. in HCl, and NaOH+Aq. (Wöhler.)

# Platinoplatinic hydroxide, Pt₃O₄, 9H₂O.

Ppt. (Prost, Bull. Soc. (2) 46. 156.) Pt₆O₁₁, 11H₂O. Ppt. (Prost.)

# Platinum hydroxylamine comps.

See-

Platodioxamine comps., Pt(NH₃O)₄R₂. Platosoxamine comps., Pt(NH₃O)₂R₂. Platosoxamine-amine comps., Pt(NH₃O)₃NH₃R₂.

# Platinous iodide, PtI₂.

Insol. in H₂O, acids, or alcohol. (Lassaigne, A. ch. (2) 51. 113.)

Difficultly sol. in Na₂SO₃+Aq. (Topsoë.) Gradually decomp. by hot HI+Aq of 1.038 sp. gr., also by hot KI+Aq, PtI4 being dissolved out and Pt left behind. Not attacked by conc. H₂SO₄, HCl, or HNO₈+Aq, but gradually decomp. by KOH or NaOH+Aq. (Lassaigne.)

Insol. in acetone. (Eidmann, C. C. 1889,

II. 1014.)

# Platinic iodide, Pt14.

Insol. in H₂O. Sol. in NaOH or Na₂CO₃+ Aq, H₂SO₃, or Na₂SO₃+Aq. Sol. in HI+Aq or alkali iodides+Aq. Sol. in alcohol, with partial decomp. Not attacked by acids. partial decomp. (Lassaigne, A. ch. (2) 51. 122.)

Very sol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 828.)

Sol. in alcohol. (Belluci, C. C. 1902, I. 625.)

# Platinic iodide with MI.

See Iodoplatinate, M.

# Platinum nitride chloride, PtNCl. See Platinum chloronitride.

#### Platinous oxide, PtO.

Sol. in H₂SO₃+Aq. Insol. in other acids. Döbereiner, Pogg. 28. 183.)

Sol. in conc. H₂SO₄; easily in conc. HCl+

Aq. (Storer's Dict.)
Very sl. sol. in HCl+Aq. Sl. sol. in aqua regia. (Wöhler, B. 1903, 36. 3482.)

# Platinic oxide, PtO₂.

Insol. in acids, even aqua regia. (Wöhler, Dissert, 1901.)

# Platinum trioxide, PtO₃

Unattacked by dil. H₂SO₄, HNO₃ or acetic acid. Sol. with decomp. in dil. and conc. HCl, conc. H₂SO₄ or conc. HNO₃. (Wöhler, B. 1909, **42**. 3329.)

### Platinum sesquioxide, $Pt_2O_3+xH_2O$ .

Insol. in dil. sol. in conc. H₂SO₄. Sl. sol. in hot dil. HNO₃. Sol. in HCl. Sol. in conc. alkali hydroxides+Aq. (Wöhler, B. 1909, 42. 3964.)

Insol. in HNO₃ and H₂SO₄. +2H₂O. Insol, in alkalies +Aq, also cold dil. HCl+Aq. Sol. in aqua regia. (Dudley, Am. Ch. J. 1902, 28. 66.)

+5H₂O. (Delépine, Bull. Soc. 1910, (4) **7.** 103.)

# Platinoplatinic oxide, Pt₈O₄.

Not attacked by long boiling with HCl, HNO₃, or aqua regia. (Jörgensen, J. pt. (2) **16.** 344.)

Does not exist. (Wöhler, Z. anorg, 1904. **40.** 450.)

#### Platinum oxychloride, 3PtO, PtCl₂ (?).

Sol. in HCl, and in KOH+Aq. (Kane, Phil. Trans. 1842. 298.)

 $PtCl_2(OH)_2 = H_2PtCl_2O_2$ . (Jörgensen, J. pr. (2) **16.** 345.)

5PtO₂, 2HCl+9H₂O. Insol. in cold H₂O; decomp. on boiling. Slowly sol. in HCl. (Blondel, A. ch, 1905, (8) 6. 100.)

# Platinum oxysulphide, PtOS.

See Platinum sulphydroxide.

# Platinum phosphide, PtP₂.

Insol, in HCl+Aq. Sol, in aqua regia. (Schrötter, W. A. B. **1849**. 303.)

PtP₂H₂. Insol. in H₂O, and HCl+Aq.

(Cavazzi, Gazz. ch. it. 13. 324.)

PtP.Insol. in aqua regia. (Clark and Joslin.)

Pt₂P. Sol. in aqua regia. (Clark and Joslin.)

Pt₃P₅. Partially sol, in aqua regia. (Clark and Joslin, C. N. 48. 385.)

Attacked very slowly by aqua regia. Rapidly sol. in molten alkalies. (Granger, C. N. 1898, 77. 229.)

Completely sol, in aqua regia if the action sufficiently prolonged, though with difficulty. (Granger, C. R. 1896, **123**. 1285.)

#### Platinum diselenide, PtSe₂.

As PtS₂. (Minozzi, Chem. Soc. 1909, 96. (2) 899.)

#### Platinum triselenide, PtSe₃.

Sl. attacked by hot conc. HNO₈; not attacked by cold conc. HCl+Aq; slowly sol. in aqua regia and Cl₂+Aq; insol. in CS₂.

#### Platinum silicide, Pt₂Si.

Sol. in hot aqua regia. (Vigouroux, C. R. 1896, **123**. 117.)

Pt₈Si₂. (Colson, C. R. 94. 27.)

Slowly decomp. by aqua regia. Pt₄Si₈. (Guyard, Bull. Soc. (2) 25. 511.)

PtSi Insol. in HNO2, H2SO4, HF, and HCl. Completely sol. in aqua regia. (Lebeau and Novitzky, C. R. 1907, 145. 241.)

### Platinum sulphydroxide, PtOS+H₂O= PtS(OH)2.

Decomp. easily into-

 $Pt_2S_2O_3H_2 = \frac{PtS}{PtS}OOH = PtOS + \frac{1}{2}H_2O.H_2O$ cannot be removed without decomposing the compound. (v. Meyer, J. pr. (2) 15. 1.)

#### Platinous sulphide, PtS.

Not attacked by boiling acids, aqua regia, or KOH+Aq. (Böyger, J. pr. 2.274.) Sol. in large excess of (NH₄)₂S+Aq.

# Platinoplatinic sulphide, Pt₂S:

Not attacked by HCl or HNO₃+Aq, and only slowly by aqua regia. (Schneider, Pogg. **138.** 607.)

# Platinic sulphide, PtS₂.

Anhydrous. Aqua regia attacks sl., other acids not at all. (Davy.)

Hydrated Insol. in HCl+Aq; sl. sol. in boiling HNO₃+Aq. Sol n aqua regia. (Fresenius.) Sol. in alkali sulphides, hydrates and carbonates+Aq. (Berzelius.) Very sl. so!. in (NH₄)₂S+Aq. (Claus) Irsol. in NH₄Cl, or NH₄NO₃+Aq.

1 pt. PtCl₄ in 100 pts. H O+25 pts. HCl is not pptd. by H2S. (Reinsch.)

Difficultly sol. in alkali sulphydroxides+ Aq, but more easily in presence of SnS,  $Sb_2S_3$ ,  $As_2S_3$ , or  $SnS_2$ . (Ribau, C. R. 85. 283.)

# Platinum sulphide, Pt₅S₅, or Tetraplatinum sulphoplatinate, 4PtS, PtS₂.

Decomp. on moist air, but not attacked by acids. (Schneider, J. pr. (2) 7. 214.)

# Platinum sulphides with M₂S.

Sec Sulphoplatinate, M.

#### Platinum sulphocarbide, $PtC_2S_2$ .

Not attacked by hot HCl, HNO2+Aq, slightly by aqua regia. (Schützenberger, C. R. 111. 391.)

# Platinum telluride, PtTe.

Decomp. by fused oxidizing agents; slowly sol. in conc. HNO₃. (Roessler, Z. anorg. 1897, **15**. 407.)

# Platinum ditelluride, PtTe₂.

Insol. in boiling conc. KOH+Aq; slowly sol. in boiling conc. HNO₃; decomp. by fused oxidizing agents. (Roessler.)

#### Plato-.

See also Platino-.

# Platoamidosulphonic acid.

### Potassium platoamidosulphonate, K₂Pt(NH₂SO₃)₄+2H₂O.

Very sl. sol. in cold  $H_2O$ ; sol. in 10 pts. boiling  $H_2O$ . (Ramberg and St. Kahlenberg, B. 1912, **45**. 1514.)

Platodiamine bromide, Pt[(NH₃)₂Br]₂+3H₂O.

Easily sol. in H₂O. (Cleve.)

carbonate,  $Pt(N_2H_6)_2CO_3+H_2O$ . Sol. in  $H_2O$ . (Peyrone, A. 51. 14.)  $Pt(N_2H_6CO_3H)_2$ . Sl. sol. in, but decomp. by boiling with  $H_2O$  into—

# ---- sesquicarbonate.

More sol. than preceding salt. (Reiset, C. R. 11. 711.)

---- chloride,  $Pt[(NH_3)_2Cl]_2 + H_2O$ .

"Reiset's first chloride." Sol. in 4 pts. H₂O at 16.5°, and in less hot H₂O. Insol. in alcohol or ether. (Reiset, A. ch. (3) 11. 419.) As sol. in NH₄Cl+Aq as in H₂O; insol. in absolute alcohol; sl. sol. in dil. alcohol; very sol. in dil. HCl+Aq. (Peyrone, A. ch. (3) 12. 196.)

- cuprous chloride, Pt(NH₃)₄Cl₂, Cu₂Cl₂. Sol. in H₂O, and pptd. from H₂O solution by alcohol. (Buckton.)
- cupric chloride, Pt(NH₃)₄Cl₂, CuCl₂.

  Sl. sol. in cold, decomp. by hot H₂O into

Pt(NH₃)₄Cl₂, Cu₂Cl₂. (Buckton, Chem. Soc. **5.** 218.)

Nearly insol. in H₂O; easily sol. in warm HCl+Aq; insol. in alcohol. (Millon and Commaille, C. R. **57**. 822.)

Millon and Commaille's salt is Cu(NH₃)₄Cl₂, PtCl₂, cuprammonium chloroplatinite.

---- lead chloride,  $Pt(NH_3)_4Cl_2$ ,  $PbCl_2$ .

Sol. in hot, much less in cold H₂O. Insol. in HCl+Aq or alcohol. (Buckton, Chem. Soc. **5**. 213.)

- mercuric chloride, Pt(NH₃)₄Cl₂, HgCl₂. Easily sol. in hot H₂O, much less in cold. Insol. in HCl+Aq. (Buckton.)
- zinc chloride, Pt(NH₃)₄Cl₂, ZnCl₂.

  Easily sol. in hot H₂O. Insol. in alcohol.
  (Buckton.)

Platodiamine chloroplatinate, Pt(NH₈)₄Cl₂, PtCl₄.

Ppt. Insol. in  $H_2O$ . (Cossa, Gazz. ch. it. 17. 1.)

- chloroplatinite, Pt(NH₃)₄Cl₂, PtCl₂.

(Magnus' green salt.) Insol. in, and not decomp. by H₂O, HCl+Aq, or alcohol. (Magnus.)

Slowly sol. in boiling NH₄OH+Aq and in conc. NH₄ salts+Aq. (Reiset, A. ch. (3) 11. 427.)

Almost as sol. in (NH₄)₂CO₃+Aq as in NH₄OH+Aq. Sol. in hot PtCl₄+Aq. (Reiset.)

Not decomp. by boiling KOH, dil. HCl, or H₂SO₄+Aq, but easily by HNO₃+Aq. (Gros, A. **27**. 245.)

---- dichromate, Pt(NH₃)₄Cr₂O₇.

Sl. sol. in H₂O. Insol. in alcohol. Sol. in KOH+Aq. (Buckton, Chem. Soc. **5.** 213.)

---- platinous cyanide, Pt(NH₃)₄(CN)₂, Pt(CN)₂.

Sl. sol. in cold, easily in boiling  $H_2O$ ; sol. in KOH, HCl, and dil.  $H_2SO_4+Aq$  without decomp., but conc.  $H_2SO_4$  decomposes.

potassium ferrocyanide,  $Pt(NH_3)_4K_2[Fe(CN)_6]_2+3H_2O.$ 

---- hydroxide,  $Pt[(NH_3)_2OH]_2$ .

"Reiset's first base." Easily sol. in H₂O. Sl. sol. in alcohol.

--- iodide,  $Pt[(NH_3)_2I_2]$ .

Sl. sol. in cold, more easily in hot H₂O, but slowly decomp. on boiling. (Reiset.)

--- nitrate,  $Pt[(NH_3)_2NO_3]_2$ .

Sol. in about 10 pts. boiling H₂O. Insol. or but sl. sol. in alcohol. (Peyrone, A. ch. (3) 12. 203.)

--- nitrate sulphate,  $[Pt(NH_3)_4NO_3]_2SO_4$ ,  $Pt(NH_3)_4SO_4$ .

Very easily sol. in H₂O. (Carlgren, Sv. V. A. F. **47**. 310.)

--- nitrite,  $Pt[(NH_3)_2NO_2]_2+2H_2O$ .

Efflorescent. Very sol. in hot or cold H₂O. Insol. in 90% alcohol. (Lang.)

platinous nitrite,  $Pt[(NH_3)_2NO_2]_2$ ,  $Pt(NO_2)_2$ .

Scarcely sol. in cold, somewhat more easily in hot  $H_2O$ . Not attacked by cold dil. acids. More sol. in  $NH_4OH + Aq$  than in  $H_2O$ . (Lang.)

Platodiamine phosphate,  $Pt(N_2H_6)_2HPO_4 + H_2O$ .

Rather difficultly sol. in cold, and very easily in hot H₂O. (Cleve.)

---- ammonium phosphate,  $Pt[(N_2H_6)PO_4(NH_4)_2]_2$ ,  $4NH_4H_2PO_4+H_2O$ .

Very easily sol. in  $H_2O$  with decomp. into— $Pt(N_2H_4H_2PO_4)_2$ ,  $2NH_4H_2PO_4+9H_2O$  Much more sol. in  $H_2O$  than the preceding, comp. (Cleve.)

--- sulphate, Pt(NH₃)₄SO₄.

Sol. in 32 pts.  $H_2O$  at 16.5°; more easily when heated. (Reiset.)

Sol. in 50-60 pts. boiling H₂O; less in cold H₂O; insol. in alcohol. (Cleve.)

— sulphate, acid, Pt[(NH₃)₂SO₄H]₂+H₂O.

Decomp. by H₂O or alcohol into neutral salt.

 $3Pt(NH_3)_4SO_4$ ,  $H_2SO_4+H_2O$ . Sol. in  $H_2O$ . (Cleve.)

- sulphite, Pt(NH₃)₄SO₃.

Nearly insol. in cold H₂O. (Birnbaum, A. **152.** 143.)

 $Pt[(NH_3)_2SO_3H]_2+2H_2O$ . Ppt. Sol. in HCl+Aq. (Cleve.)

--- platinous sulphite, 3Pt(NH₃)₄SO₃, PtSO₃+2H₂O.

Scarcely sol. in cold H₂O; sol. in 190 pts. H₂O at 100°. Easily sol. in warm HCl+Aq with decomp. (Peyrone.)

+4H₂O. (Carlgren, Sv. V. A. F. **47**. 308.) 2Pt(NH₃)₄SO₃, PtSO₃, H₂SO₃ Insol. in cold H₂O or alcohol. Scarcely sol. in hot H₂O. (Peyrone.)

— sulphocyanide, Pt(NH₃)₄(CNS)₂+H₂O. Very sol. in H₂O. Solution is decomp. on boiling. (Cleve, Sv. V. A. H. **10**, **9**. 7.)

---- platinous sulphocyanide, Pt(NH₃)₄(CNS)₂, Pt(CNS)₂.

Insol. in H₂O and alcohol; sol. in dil. HCl+Aq. (Buckton, Chem. Soc. **13**. 122.)

Platomonodiamine chloride, Pt_{NH₃Cl.}

Easily sol. in H₂O. (Cleve.)

Platomonodiamine chloroplatinite

2PtNH₃Cl, PtCl₂.

Moderately sol. in cold, but more easily in hot H₂O. (Cleve.)

— nitrate,  $Pt_{NH_3NO_3}^{(NH_3)_2NO_3} + H_2O$ . Easily sol. in  $H_2O$ . (Cleve.) Platomonodiamine sulphate, Pt (NH3)2SO4.

Easily sol. in cold, but much more in hot H₂O.

Platosemidiamine bro nide, Pt < (NH₃)₂Br

Sol. in H₂O. Easily sol. in NH₄OH+Aq. (Cleve.)

—— chloride, Pt $<_{
m Cl}^{
m (NH_{\it a})_{\it 2}Cl}$ 

(Peyrone's chloride.) Sol. in 307 pts.  $\rm H_2O$  at 0°, and 26 pts. at  $100^\circ$  (Cleve); in 33 pts. at  $100^\circ$ . (Peyrone.)

Sol. in NH₄OH+Aq; very sl. sol. in HCl or H₂SO₄+Aq; more easily in HNO₈+Aq; sol. in alkali carbonates+Aq. (Peyrone, A. ch. (3) 12. 193.)

Platosemidiamine chlorosulphurous acid,  ${\rm Pt} <_{Cl.}^{\rm (NH_3)_2SO_3H}$ 

Easily sol. in H₂O. (Cleve.)

Ammonium platosemidiamine chlorosulphite platosemidiamine sulphite,

 $Pt < \stackrel{(NH_3)_2SO_3NH_4}{Cl}, Pt < \stackrel{(NH_3)_2SO_3NH_4}{SO_3NH_4} + \stackrel{*}{s}$ 

Easily sol, in H₂O. Insol, in alcohol, (Cleve.)

Platosemidiamine cyanide,

Pt(CN)(NH₃)₂CN. Easily sol. in H₂O. (Cleve.)

—— platinous cyanide, Pt(CN)(NH₃)₂CN,
Pt(CN)₂(?).
Ppt. •

—— hydroxide,  $Pt <_{OH.}^{(NH_3)_2OH}$ Not known.

1100 KHOWH.

---- iodide,  $\mathrm{Pt} <_{\mathrm{I}}^{\mathrm{(NH_3)_2I}}$ 

Sl. sol. in boiling H₂O. (Cleve.)

--- nitrate  $Pt_{NO_3}^{(NH_8)_2NO_3}$ 

Moderately sol. in H₂O. (Cleve.)

— nitrite,  ${
m Pt}_{
m NO_2}^{
m (NH_8)_2NO_2}$ 

Very sl. sol. in cold, more easily in hot H₂O.

---- oxalate,  $Pt(NH_3)_2C_2O_4$ .

(Cleve.) +2H₂O. (Cleve.)

sulphate,  $Pt < \frac{(NH_3)_2}{2} > SO_4$ .

Very sl. sol. even in hot H₂O. (Cleve.)

Platosemidiamine sulphocyanide, Pt(SCN)(NH₃)₂SCN.

Easily sol, in warm H₂O, but solution soon decomposes.

# Platosemidiamine sulphurous acid.

Ammonium platosemidiamine sulphite.  $Pt < {(N\dot{H}_3)_2SO_3(NH_4) \over SO_3(NH_4)}, (NH_4)_2SO_8.$ Very sol. in H₂O. (Cleve.)

Barium —, Pt(SO₃)[(NH₃)₂SO₃]Ba, BaSO₃. Ppt. (Cleve.)

Silver ——.  $P_3(SO_3Ag)[(NH_3)_2SO_3Ag]$ , Ag2SO2. Ppt. (Cleve.)

Diplatodiamine chloride,  $Pt_2(NH_3)_4Cl_2$ . Insol. in H₂O.

- hydroxide,  $Pt_2(NH_3)_4(OH)_2+H_2O$ . Insol. in H₂O.

nitrate, Pt₂(NH₃)₄(NO₃)₂. Insol. in H₂O. (Cleve.)

— sulphate,  $Pt_2(NH_3)_4SO_4$ . Insol. in H₂O. (Cleve.)

#### Platobromonitrous acid.

Potassium platobromonitrite, K₂Pt(NO₂)₃Br +2H₂O.

Sol. in about 3 pts. cold, and 2 pts. boiling H₂O. (Vèzes, A. ch. (6) 29. 194.) K₂Pt(NO₂)₂Br₂+H₂O. Sol. in 1 pt. cold, and still less hot H₂O. Insol. in alcohol. (Vèzes.)

# Platochloronitrous acid.

Potassium chloronitrite, K₂Pt(NO₂)₃Cl+ 2H₂O.

Sol. in about 3 pts. cold, and 2 pts. boiling H₂O. (Vèzes, A. ch. (6) **29.** 178.) ••• K₂Pt(NO₂)₂Cl₂. Sol. in about 3 pts. cold, and 2 pts. boiling H₂O. (Vèzes.)

Platochlorosulphurous acid. See Chloroplatosulphurous acid.

Platoiodonitrous acid, H₂Pt(NO₂)₂I₂. Known only in solution. (Nilson, J. pr. (2) 21. 172.)

Aluminum platoiodonitrite, Al₂[Pt(NO₂)₂I₂]₃ +27H₂O. Easily sol. in H₂O. (Nilson.)

Ammonium —,  $(NH_4)_2Pt(NO_2)_2I_2+2H_2O$ . Rubidium —,  $Rb_2Pt(NO_2)_2I_2+2H_2O$ . Sol. in H₂O; decomp. on heating.

Barium platoiodonitrite, BaPt(NO₂)₂I₂+ 4H,O

Very sol. in H₂O.

Cadmium —,  $CdPt(NO_2)_2I_2+2H_2O$ . Easily sol. in H2O.

Cæsium —,  $Cs_2Pt(NO_2)_2I_2+2H_2O$ . Easily sol. in H₂O.

Calcium —,  $CaPt(NO_2)_2I_2+6H_2O$ . Very easily sol. in H₂O.

Cerium —,  $Ce_2[Pt(NO_2)_2I_2]_3 + 18H_2O$ . Easily sol. in H₂O.

Cobalt —,  $CoPt(NO_2)_2I_2 + 8H_2O$ . Sol. in H₂O.

**Didymium** —,  $Di_2[Pt(NO_2)_2I_2]_3 + 24H_2O$ . Sol. in H₂O.

Erbium —,  $\text{Er}_2[\text{Pt}(\text{NO}_2)_2\text{I}_2]_3 + 18 \text{ H}_2\text{O}$ . Sol. in H₂O.

Ferrous —,  $FePt(NO_2)_2I_2 + 8H_2O_1$ Sol. in H₂O.

Ferric —,  $Fe_2[Pt(NO_2)_2I_2]_3+6H_2O$ . Sol. in H₂O.

Lanthanum —,  $La_2[Pt(NO_2)_2I_2]_3+24H_2O$ . Sol. in H₂O.

Lead —, basic, PbPt(NO₂)₂I₂, Pb(OH)₂. Insol. in H2O.

Lithium —,  $\text{Li}_2\text{Pt}(\text{NO}_2)_2\text{I}_2 + 6\text{H}_2\text{O}$ . Very sol. in H₂O.

Magnesium —,  $MgPt(NO_2)_2I_2+8H_2O$ . Sol. in H₂O.

Manganese —,  $MnPt(NO_2)_2I_2 + 8H_2O$ . Sol. in H₂O.

Mercurous ----, basic,  $2Hg_2Pt(NO_2)_2I_2$ ,  $Hg_2O + 9H_2O$ . Insol. in H₂O.

Nickel —,  $NiPt(NO_2)_2I_2 + 8H_2O$ . Sol. in H₂O.

Potassium —,  $K_2Pt(NO_2)_2I_2+2H_2O$ . Sol. in H₂O in all proportions. Very sol. in alcohol.

Sol. in H₂O.

Silver platoiodonitrite,  $Ag_2Pt(NO_2)_2I_2$ . Insol. in  $H_2O$ .

Sodium —,  $Na_2Pt(NO_2)_2I_2 + 4H_2O$ . Very sol. in  $H_2O$ .

Strontium —, SrPt(NO₂)₂I₂+8H₂O. Sol. in H₂O.

Thallium —,  $Tl_2Pt(NO_2)_2I_2$ . Insol. in  $H_2O$ .

Yttrium —,  $Y_2[Pt(NO_2)_2I_2]_3 + 27H_2O$ . Sol. in  $H_2O$ .

Zinc —,  $ZnPt(NO_2)_2I_2+8H_2()$ . Sol. in  $H_2O$ .

Triplatooctonitrosylic acid,  $H_4Pt_3()(N()_2)_8$  (Nilson, J. pr. (2) 16. 241.)

Potassium triplatooctonitrosylate. See under Platonitrite, potassium.

Platonitrous acid, H₂Pt(NO₂)₄.
Sol. in H₂O or alcohol. (Lang. J. pr. 83. 419.)

Is called "Platotetranitrosylic acid" by Nilson.

 $\begin{array}{c} \textbf{Aluminum} \\ 14H_2O. \end{array} \textbf{platonitrite,} \quad Al_2[Pt(NO_2)_4]_3 +$ 

Sol. in H₂O.

Al₂(OH)₂[Pt(NO₂)₂]₄O₂+10H₂O. Sl. sol. in cold, easily in hot H₂O and alcohol. (Nilson, B. **9.** 1727.)

Ammonium platonitrite, (NH₄)₂Pt(NO₂)₄+

Moderately sol. in cold  $H_2O$ . (Nilson, B. 9. 1724.)

Barium platonitrite,  $BaPt(NO_2)_4+3H_2O$ . Sl. sol. in cold, very sol. in hot  $H_2O$ . (Lang.)

Cadmium platonitrite, CdPt(NO₂)₄+3H₂O. Easily sol. in H₂O. (Nilson.)

Cæsium platonitrite,  $Cs_2Pt(NO_2)_4$ . Resembles K salt.

Calcium platonitrite,  $CaPt(NO_2)_4+5H_2O$ . Very sol. in  $H_2O$ . (Nilson.)

Cerium platonitrite, Ce₂[Pt(NO₂)₄]₃+18H₂O. Sol. in H₂O. (Nilson.)

Chromium diplatonitrite, Cr₂(OH)₂[Pt(NO₂)₂]₄O₂+24H₂O. Sol, in H₂O. (Nilson.) Cobalt platonitrite, CoPt(NO₂)₄+8H₂O. Easily sol, in H₂O (Nilson.)

Copper platonitrite,  $\operatorname{CuPt}(\operatorname{NO}_2)_4+3\operatorname{H}_2\operatorname{O}$ . So!. in  $\operatorname{H}_2\operatorname{O}$ . (Nilsc(4.)  $\operatorname{3CuPt}(\operatorname{NO}_2)_4$ ,  $\operatorname{CuO}+\operatorname{18H}_2\operatorname{O}$ . Decomp. by  $\operatorname{H}_2\operatorname{O}$ . (1 ilson.)

Didymium platonitrite, Di₂[Pt(NO₂)₄]₈+
18H₂O.
Deliquescent; sol. in H₂O.

Erbium platonitrite, Er₂[Pt(NO₂)₄]₃+9, and Diff₂O Desiguescent; sol. in H₂O.

Glucinum diplatonitrite,  $Gl^{n}Pt(NO_{2})_{2}_{2}O+9H_{2}O$ . Sl. sol. in cold  $H_{2}O$ .

Indiam diplatonitrite, In(OH)₂[Pt(NO₂)₂]₄O₂ +10H₂O. Sl. sol. in H₂O.

Ferric diplatonitrite, Fe₂[Pt(NO₂)₂]₆O₃+30H₂O.
S₁. sol. in cold, easily in hot H₂O.

Lanthanum platonitrite, La₂[Pt(NO₂)₄]₃+ 18H₂O.
Deliquescent; sol. in H₂O.

Lead platonitrite, PbPt(NO₂)₄+3H₂O. Sl. sol. in H₂O. (Nilson.)

Lithium platonitrite,  $\text{Li}_2\text{Pt}(\text{NO}_2)_4 + 3\text{H}_2\text{O}$ . Sl. deliquescent; easily sol. in  $\text{H}_2\text{O}$ .

Magnesium platonitrite,  $MgPt(NO_2)_4+5H_2O$ . Easily sol. in  $H_2O$ .

Manganese platonitrite, MnPt(NO₂);中 3 8H₂O. Sol. in H₂O.

Mercurous platonitrite, Hg₂Pt(NO₂)₄, Hg₂Q. Nearly insol. in H₂O. (Lang, J. pr. **83**. 415.) +H₂O. Nearly insol. in H₂O. (Nilson.)

Nickel platonitrite, NiPt(NO₂)₄+8H₂O. Easily sol. in H₂O. (Nilson.)

Potassium platonitrite,  $K_2Pt(NO_2)_4$ . Sol. in 27 pts.  $H_2O$  at 15°; more easily sol. in warm  $H_2O$ . (Lang, J. pr. 83. 415.)  $+2H_2O$ . Efflorescent. (Lang.)  $K_2H_4Pt_8O(NO_2)_6+3H_2O$ . Very sl. sol. in cold (0.01 mol. in 1 l. at 16°), but very easily in hot  $H_2O$ . (Vèzes, A. ch. (6) 29. 162.)  $K_4Pt_8O(NO_2)_8+2H_2O$ . Sl. sol. in warm  $H_2O$ . (Nilson.) Potassium platonitrite bromide.

See Platibromonitrite and platobromonitrite, potassium.

Potassium platonitrite chloride.

See Plati- and platochloronitrite, potassium.

Potassium plat nitrite hydrogen chloride, K₂Pt(NO₂)₄, HCl.

Sol. in H₂O. (Miolati, Att. Linc. Rend. 1896, (5) 5, II. 358.)

Potassium platonitrite iodide.

See Plati- and platoiodonitrite, potassium.

Potassium platonitrite nitrogen dioxide, K₂Pt(NO₂) 2NO₂.

Violently decomp. by H₂O. (Miolati, Atti Line. Rend. 1896, (5) 5, II, 356.)

Rubidium platonitrite, Rb₂(Pt)(NO₂)₄, and +2H₂O.

Very slowly sol. in cold, more easily in warm  $H_2O$ . (Nilson.)

Silver platonitrite, Ag₂Pt(NO₂)₄.

• Very sl. sol. in cold, easily in hot H₂O.

Silver diplatonitrite,  $Ag_2Pt_2(NO_2)_4O$ . Insol. in  $H_2O$ . (Nilson.)

Sodium platonitrite,  $Na_2Pt(NO_2)_4$ . Easily sol. in  $H_2O$ .

Strontium platonitrite, SrPt(NO₂)₄+3H₂O. Somewhat sl. sol. in cold H₂O, but easily sol. in warm H₂O.

Thallium platonitrite, Tl₂Pt(NO₂)₄. Very sl. sol. in H₂O. (Nilson.)

*Yttrium platonitrite,  $Y_2[Pt(NO_2)_4|_3+9$ , or  $21H_2O$ .

Sol. in  $H_2O$ .

Zinc platonitrite, ZnPt(NO₂)₄+8H₂O. Sol. in H₂O.

### Platodioxamine chloride, Pt(NH₈O.NH₃OCl)₂.

Easily sol. in  $H_2O$ . (Alexander, A. 246. 239.)

---- chloroplatinite, Pt(NH₈O.NH₈OCl)₂, PtCl₂.

Sol. in warm HCl+Aq. Insol. in cold H₂O or alcohol; very sl. sol. in hot H₂O. (Alexander.)

— hydroxide,  $Pt(NH_3O.NH_3O)_2(OH)_2$ . Insol. in  $H_2O$  or alcohol. Fasily sol. in HCl or  $HNO_3+Aq$ . Difficultly sol. in hot dil.  $H_2SO_4+Aq$ . (Alexander.)

# Platodioxamine oxalate,

 $Pt(NH_8O.NH_3O)_2\acute{C}_2O_4.$ 

Insol. in cold H₂O, alcohol, or organic acids. (Alexander.)

phosphate,  $Pt_3(NH_3O.NH_3O)_{12}(PO_4)_2 + 3H_2O$ .

Ppt. (Alexander.)

sulphate,  $Pt(NH_3O.NH_3O)SO_4+H_2O$ . Sl. sol. in  $H_2O$ . (Alexander,)

# Platosamine bromide, Pt(NH₃Br)₂.

Sl. sol. even in hot H₂O. (Cleve.)

---- chloride, Pt(NH₃Cl)₂.

"Reiset's second chloride." Sol. in 140 pts. H₂O at 100°. (Peyrone, A. **61.** 180.)

Sol. in 130 pts.  $H_2O$  at 100°, and 4472 pts. at 0°. (Cleve.)

Easily sol. in NH₄OH+Aq, HNO₃, or aqua regia, with decomp. Sol. in KCN+Aq with evolution of NH₃. (Cleve.)

---- ammonium chloride, Pt(NH₃Cl)₂, 2NH₄Cl.

Sl. sol. in cold, easily in hot H₂O; insol. in alcohol; sol. in NH₄OH or (NH₄)₂CO₃+Aq. (Grimm, A. **99.** 75.)

# Platosamine chlorosulphurous acid,

PtNH3Cl NH3SO3H.

Easily sol, in  $\mathrm{H}_2\mathrm{O}$  without decomp. (Cleve.)

Ammonium platosamine chlorosulphite, Pt(NH₃Cl)NH₃SQ₃NH₄+H₂O. Sol. in H₂O. (Peyrone, A. **61.** 180.)

# Platosamine cyanide, Pt(NH₃CN)₂.

Quite easily sol. in H₂O or NH₄OH+Aq. (Buckton.)

----- hydroxide,  $Pt(NH_3OH)_2$ .

"Reiset's second base." Very sol. in H₂O. (Odling, B. **3.** 685.)

--- iodide, Pt(NH₃I)₂.

Very sl. sol. in H₂O. Sol. in cold NH₄OH+Aq to form platodiamine iodide. (Cleve.)

--- nitrate, Pt(NH₈NO₈)₂.

Moderately sol. in hot  $H_2O$ . Sol. in  $NH_4OH + Aq$  with combination. (Reiset, A. ch. (3) 11. 26.)

--- nitrite, Pt(NH₈NO₂)₂.

Very sl. sol. in cold, easily in hot H₂O. Insol. in alcohol. (Lang.)

```
Platosamine platinous nitrite, Pt(NH<sub>2</sub>NO<sub>2</sub>)<sub>2</sub>,
 Pt(NO_2)_2.
 Slowly and sl. sol. in cold, more easily sol. in
 hot H<sub>2</sub>O.
 Extremely sl. sol. even in conc. acids; more
sol. in NH<sub>4</sub>OH+Aq than in H<sub>2</sub>O. (Lang.)
---- oxide, Pt(NH_3)_2O.
 Insol. in H<sub>2</sub>O or NH<sub>4</sub>OH+Aq. (Reiset.)
 --- oxalate, Pt(NH_8)_2H_2(C_2O_4)_2+2H_2O.
 Ppt. (Cleve.)
 — sulphate, Pt(NH_3)_2SO_4 + H_2O.
 Sl. sol, in cold, more easily in hot H<sub>2</sub>O.
 - sulphite, Pt(NH_3)_2SO_3+H_2O.
 Easily sol, in H<sub>2</sub>O. (Cleve.)
 --- sulphocyanide, Pt(NH<sub>3</sub>SCN)<sub>2</sub>.
 Insol. in H<sub>2</sub>O; can be cryst. from alcohol;
not attacked by HCl or H2SO4+Aq. (Buck-
 Very sol. in hot H<sub>2</sub>O. (Cleve.)
---- silver sulphocyanide,
 Pt(NH_3)_2Ag_4(SCN)_6.
 (Cleve.)
Platosamine sulphurous acid,
 Pt(NH<sub>3</sub>SO<sub>3</sub>H)<sub>2</sub>.
 Exists only in its salts.
 See Platosamine sulphite.
Ammonium platosamine sulphite, Pt(NH<sub>3</sub>SO<sub>3</sub>NH<sub>4</sub>)<sub>2</sub>.
 Sol. in H<sub>2</sub>O. Insol. in alcohol.
```

Barium platosamine sulphite,  $Pt(NH_3)_2(SO_3)_2Ba + 3H_2O.$ 

Ppt. (Cleve.)

Cobalt — Pt(NH₃)₂(SO₃)₂CO + Very sl. sol. in H₂O. Sol. in HCl+Ao.

5H₂O. Very sl. sol. in H₂O; sol. in HCl+Aq.

Lead — ,  $Pt(NH_3)_2(SO_3)_2Pb + H_2O$ . Ppt.

Manganese -- ---,  $Pt(NH_{\delta})_2(SO_3)_2Mn$ +4H₂O. Ppt. Sl. sol. in H₂O.

Nickel — ,  $Pt(NH_8)_2(SO_8)_2Ni+7H_2O$ . Sl. sol. in H₂O.

Sodium platosamine sulphite,  $Pt(NH_3SO_3Na)_2 + 5\frac{1}{2}H_2O.$ 

Sol, in H2O. 100 ccm. sat. solution at 20° contains 5.52 g. cryst. salt. (Haberland and Hanekop, A. 245. 235.)

Silver ----,  $Pt(NH_2SO_3Ag)_2+H_2O$ . Pot.

Uranvi ----, Pt(NH₈)₂(SO₃)₂UO₂+H₂O. Pot.

Zinc ———,  $Pt(NH_3)_2(SO_3)_2Zn + 6H_2O$ . PDL. Very sl. sol. in H₂O. (Cleve.)

Platososemiamine potassium chloride, Pt_{Cl}^{NH₃Cl}, KCl+H₂O.

Very sol in H₂O; insol. in alcohol. (Cossa. B. **23.** 2507.)

NH₃OCl Platosoxamine chloride, PtNH3OCl.

Sol. in H₂O. Much less sol. in H₂O than platodioxamine chloride. (Alexander, A. **246.** 239.)

 $\begin{array}{c} \textbf{Platosoxamine amine chloride,} \\ \textbf{Pt}_{NH_3O.NH_3Cl.}^{NH_3O.NH_3Cl.} \end{array}$ 

Easily sol. in H₂O. Insol. in alcohol and conc. HCl+Aq. (Alexander, A. 246. 239:)

— chloroplatinite,  $Pt_{\mathrm{NH_3NH_3OCl}}^{\mathrm{NH_3O.NH_3Cl}}$ , $PtCl_2$ Ppt.

Platosulphurous acid.

Ammonium platosulphite, (NH₄)₆Pt(SO₃)₄+ Sol. in  $H_2O$ . (Birnbaum, A. **139.** 170.) (NH₄)₂Pt(SO₃)₂+H₂O. Sol. in H₂O. (Liebig, Pogg. 17. 108.)

ile.

46 Ammonium platosulphite chloride,  $(NH_4)_2$ Pt $(SO_3)_2$ ,  $2NH_4$ Cl. Sol. in H₂O. (Birnbaum.) PtClSO₃H, 2NH₄Cl. Deliquescent; sol. in H₂O. (Birnbaum, A. **152**. 143.) See also Chloroplatosulphite, ammonium.

Potassium platosulphite,  $K_6Pt(SO_3)_4+4H_2O$ . Sl. sol. in cold, easily in hot H₂O. Much more sol. than the Na salt. (Birnbaum, A. 139. 168.) +3H₂O. (Lang, J. pr. 83, 415.) 6K₂O, 2PtO, 10SO₂. Sl. sol. in H₂O. (Claus, J. B. **1847–48**, 453.)

Does not exist. (Lang.)  $K_2Pt(SO_3)_2$ . Sol. in  $H_2O$ .

# Silver platosulphite, AgePt(SO3)4.

Ppt. Very sol. in cold  $NH_4OH + Aq$ . (Lang. J, pr. 83. 415.)

# Sodium platosulphite, Na₆Pt(SO₃)₄.

Very sl. sol. in cold, somewhat more easily in hot  $H_2O$ . Not decomp. by boiling KOH or NaOH+Aq. Gradually sol. in  $(NH_4)_2S$  or  $K_2S+Aq$ . Insol. in NaCl+Aq or alcohol. (Litton and Schnedermann, A. 42. 316.)  $+1\frac{1}{2}H_2O$ .

 $+7H_2O$ .

Na₂Pt(SO₃H)₄. Moderately sol. in H₂O. (Litton and Schnedermant!.)

# Platothiosulpharic acid.

Sodium platothiosulphate,  $Na_6Pt(S_2O_3)_4 + 10H_2O$ .

Very sol. in  $H_2O$  (Schottländer, A. **140**. 200.)

PtS₂O₃, 4Na₂S₂O₃+10H₂O. PtS₂O₃, 6Na₂S₂O₃+19H₂O. 2Pt₂S₂O₃, 7Na₂S₂O₃+18H₂O.

 $2Pt_2S_2O_3$ ,  $7Na_2S_2O_3+18H_2O$ . (Jochum, C. C. **1885**. 642.)

#### Plumbic acid.

# Barium plumbate, Ba₂PbO₄.

Insol. in H₂O. Sol. in HCl+Aq with evolution of Cl. Sol. in acids in presence of a reducing substance. (Kassner, Arch. Pharm. **228**. 109.)

#### Calcium plumbate.

Insol. in  $H_2O$ .  $HNO_3+Aq$  dissolves out CaO (Crum A 55, 218)

CaO. (Crum, A. **55**. 218.) Ca₂PbO₄. Properties as Ba₂PbO₄. (Kassner, Arch. Pharm. **228**. 109.)

+4 $\mathbf{T}_2$ O. Easily decomp. by HNO₃. (Kassner, Arch. Pharm. 1894, **232**. 378.)

#### Calcium hydrogen plumbate, H₂CaPb₂O₆.

Fairly stable; slowly sol. in HNO₃ in the cold. (Kassner.)

#### Calcium lead orthoplumbate, CaPbPbO₄.

Insol' in H₂O. Sol. in HCl. HNO₃, acetic and other acids cause a separation of PbO₂. (Kassner, Arch. Pharm. 1903, **241**, 147.)

#### Copper metaplumbate, CuPbO₃.

Decomp. by acids. Insol. in NH₄OH+Aq. Acetic acid dissolves Cu. (Hoehnel, Arch. Pharm, 1896, **234**. 399.)

#### L'ead metaplumbate, PbPbO₃.

Identical with lead sesquioxide. (Hoehnel, Arch. Pharm. 1896, 234. 399.)

#### Manganese metaplumbate.

Decomp. by acids. (Hoehnel, Arch. Pharm. 1896, 234. 399.)

# Potassium plumbate, K₂PbO₃+3H₂O.

Very deliquescent. Decomp. by pure H₂O into PbO₂ and KOH. Sol. in KOH+Aq without decomp. (Fremy, J. Pharm. (3) 3. 32.)

# Silver metaplumbate, Ag₂PbO₃.

Ppt. (Grützner, Arch. Pharm. 1895, 233. 518.)

# Sodium plumbate.

Sol. in H₂O with decomposition. Sl. sol. in alkalies + Aq. (Fremy, A. ch. (3) 12. 490.)

# Sodium metaplumbate, Na₂PbO₃+4H₂O.

Decomp. by H₂O; insol. in alcohol. (Hoehnel, Arch. Pharm. 1894, **232**. 224.)

# Strontium plumbate, Sr₂PbO₄.

Properties as Ba₂PbO₄. (Kassner, Arch. Pharm. **228**. 109.)

# Zinc metaplumbate, ZnPbO₃+2H₂O.

Decomp. by dil. acids; insol. in H₂O. (Hoehnel, Arch. Pharm. 1896, **234**. 398.)

#### Plumbous acid.

#### Calcium plumbite.

Sl. sol. in H₂O. (Karsten, Scher. J. 5. 575.)

### Potassium plumbite, PbO, xK₂O.

Known only in solution.

#### Silver plumbite, Ag₂PbO₂.

Insol. in H₂O, NH₄OH+Aq and KOH+Aq; sol. in HNO₃ and acetic acid; and in conc. H₂SO₄, HI, and HF. (Bullnheimer, B. 1898, **31**. 1288.)

 $+2H_2\hat{O}$ . Insol. in  $H_2O$ . Decomp. on air. (Kratwig, B. **15**. 264.)

# Sodium plumbite.

Known only in solution.

#### Potassium, K2.

Violently decomposes H₂O or alcohol, Insol. in hydrocarbons. Sol. with violent action in acids.

#### Solubility in fused KOH at to.

t°	G. K sol. in 100 g. fused KOH
480 600 650 700	7.8-8.9 $3 -4$ $2 -2.7$ $0.5-1.3$

(Hevesy, Z. Elektrochem. 1909, 15. 534.)

Sol. in liquid NH₃. (Seely, C. N. 23. 169); (Franklin, Am. Ch. J. 1898, 20. 829.) 1 gram atom of K dissolves in 4.74 mol. liquid NH₃ at 0°; in 4.79 mol. at -50°; in 4.82 mol. at -100°. (Ruff, B. 1906, 39. 839.) Insol. in liquid CO2. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Slowly sol in ethylene diamine. Insol. in ethyl amine and in secondary and 'ertiary amines. (Kraus, J. Am. Chem. Soc. 1907, 29. 1561.)

Potassium acetylide, K₂C₂. (Moissan, C. R. 1898, 127. 917.)

Potassium acetylide acetylene, K2C2, C2H2. (Moissan, C. R. 1898, **127.** 915.)

#### Potassium amalgams.

Hg₄K, Hg₅K, Hg K, Hg₁₀K, Hg₁₂K and Hg₁₈K. (Guntz, C. R. 1900, 131, 183.) Hg14K. Stable up to 0°. Can be cryst.

from Hg without decomp, below 0°.

Hg₁₂K. Stable from 0° to 71° or 73°. Can be cryst. from Hg without decomp. at any temp. between these limits.

Hg₁₀K. Stable from 71° or 73-75°. Can be cryst. from Hg without decomp. at any temp. between these limits. (Kerp, Z. anorg. 1900, **25.** 68.)

# Potassium amide, KH₂N.

Decomp. by water or alcohol. Insol. in hydrocarbons.

Potassium ammonickelate, Ni₂N₃K₅, 6NH₃. Decomp. by H₂O. Sl. sol. in liquid NH₃. (Bohart, J. phys. Chem. 1915, **19**, 559.)

Potassium ammonoargentate, AgNHK, NH₃ or AgNH₂, KNH₂.

Ppt., decomp. in the air. Decomp. by H₂O or by liquid NH₃ solutions of acids. (Franklin, J. Am. Chem. Soc. 1915, 37. 855.)

### Potassium ammonobarate, BaNK, 2NH₈.

Hydrolyzed by H₂O. Insol. in liquid NH₃. Decomp. and dissolved in a solution of NH₄NO₃ in liquid NH₃. (Franklin, J. Am. Chem. Soc. 1915, **37**. 2297.)

Potassium ammonocadmiate, Cd(NHK)₂, 2NHs.

Ppt. (Franklin, Am. Ch. J. 1912, **47**. 310.)  $Cd(NHK)_2$ ,  $2NH_3$ . Decomp. by  $H_2O$ . Insol. in liquid  $NH_3$ . (Bohart, J. phys. Chem. 1915, **19.** 542.)

Potassium ammonocalciate, CaNK, 2NH₃.

Hydrolyzed by H₂O. Readily sol. in a solution of NH4NO3 in liquid NH3. (Franklin, J. Am. Chem. Soc. 1915, 37. 2300.)

Potassium ammonocuprite, CuNK₂, 3NH₃. Very sol. in liquid NH₈. CuNK₂, 2NH₃.

CuNK₂, NH₃. (F Soc. 1912, **34**. 1503.) CuNK₂, 2½NH₃. (Franklin, J. Am. Chem.

Ppt. (Franklin, Am. Ch. J. 1912, 47. 311.)

Potassium ammonomagnesate, Mg(NHK)2.

Sl. sol. in liquid NH₃. Rapidly hydrolyzed by H₂O. (Franklin, J. Am. Chem. Soc. 1913, **35.** 1463.)

Potassium ammonoplumbite, Pl·NK, 2½NH₃.

Completely hydrolyzed by action of water Violently decomp. by H₂O or dil. Sol. in liquid NH₈. (Franklin, J. acids. phys. Chem. 1911, **15.** 519.)

Potassium ammonostannate, Sn(NK)₂, 4NH₃.

Decomp. by H₂O. Readily sol. in HCl+ Aq. Sl. sol. in liquid NH₃. Readily sol. in a solution of NH₄I in liquid NH₈. (Fitzgerald, J. Am. Chem. Soc. 1907, 29. 1696.)

Potassium ammonostrontiate, SrNK, 2NH₈.

Hydrolyzed vigorously by H₂O. Sol. in solutions of NH4NO3 in liquid NH3. Insol. in liquid NH₃. (Franklin, J. Am. Chem. Soc. 1915, 37. 2299.)

# Potassium ammonothallate, TlNK₂, 4NH₃.

Sensitive to action of air or moisture. Violently decomp, by H2O or dil. acids. Moderately sol. in liquid NH₃ at 20°, more sol. at higher temp. and much less sol. at lower temp. Decomp. by liquid NH₃ solutions of (Franklin, J. phys. Chem. 1912, 16. acids. 689.)

#### Potassium ammonotitanate, (N) TiNHK.

Vigorously hydrolyzed by H₂O. Insol. in liquid NH₃ solutions of either potassium (Franklin, J. Am. Chem. amide or NH₄Br. Soc. 1912, 34. 1500.)

Potassium ammonozincate, Zn(NHK)₂, 2NH₈.

Decomp. by water. Sl. sol. in liquid NH₈.

(Fitzgerald, J. Am. Chem. Soc. 1907, 29. 663.) Decomp. by H₂O. Sol. in dilute acids. Sl. sol, in liquid NH₃. Sol. in solutions of ammonium salts in liquid NH2. (Franklin, Z. anorg. 1907, 55. 195.)

Potassium arsenide, K₈As.

(Hugot, C. R. 1899, 129. 604.) K₂As₄. (Hugot.)

Potassium arsenide, ammonia, AsKaKNH. Nearly insol. in liquid NH₃. (Hugot.) K₂As₄, NH₃. (Hugot.)

# Potassium azoimide, KN2.

Stable in aq. solution.

46.5 pts. are sol. in 100 pts. H₂O at 10.5°. 48.9 " " 100 " H₂O " 15.5. " 100 " H₂O " 17. 49.6 " H₂O " " " 100 " ແ " " 100 abs. alcohol at 0.1375 16°.

Insol. in pure ether. (Curtius, J. pr. 1898, (2) **58.** 280.)

# Potassium bromide, KBr.

Solubility of KBr in 100 pts. H₂O at t°.

t°	Pts. KBr	t°	Pts. KBr
0	53.48	60	85.35
20	64.52	80	93.46
40	74.63	100	102.0

(Kremers, Pogg. 97. 151.)

# Solubility of KBr in 100 pts. H₂O at t°.

t° '	Pts. KBr	t°	Pts. KBr
-13.4	46.17	43.15	77.0
-6.2	49.57	45.45	77.73
0	53.32	50.5	80.33
+3.4	55.60	54.8	82.78
<b>5.2</b>	56.63	60.15	85.37
12.65	61.03	66.75	88.22
13.0	61.17	71.45	90.69
13.3	61.45	74.85	92.25
18.3	64.11	86.5	97.28
26.05	68.31	97.9	102.9
30.0	70.35	110.0	110.3
37.9	74.46		

Solubility is represented by a straight line of the formula 54.43 + 0.5128t. (Coppet, A. ch. (5) 30. 416.)

100 pts. KBr+Aq sat. at 15-16° contain 39.06 pts. KBr. (v. Hauer, J. pr. 98. 137.)

# Solubility of KBr in 100 pts. H₂O at high temp.

t°	Pts. KBr
140	120.9
181	145.6

(Tilden and Shenstone, Phil. Trans. 1884, 23.)

Sat. solution boils at 112°. (Kremers.)

Sat. KBr+Aq contains at:

	10° +3°	32°	39°
	1.5 35.7	41.6	47.7% KBr,
55° 7	7° 140°	173°	220°
45.5 4	8.7 54.1	58.5	61.6% KBr.
( <b>É</b> ta	8.7 54.1 ard, A. ch. 18	394, (7)	<b>2.</b> 539.)

If solubility S=pts. KBr in 100 pts. solution, S = 34.5 + 0.2420t from 0° to 40°, S = | (Oppenheimer, Z. phys. Ch. 1898, 27. 452)

41.5+0.1378t from 30° to 120°. (Étard, C. R. 98. 1432.)

# Solubility of KBr in 100 g. H₂O at t°.

t°	G. KBr.	t°	G. KBr.
10.5	62.1	-11	44.9
$\frac{10}{3.5}$	$60.7 \\ 55.5$	-10.5 $-10$	$\frac{41.8}{39.7}$
0	52.6	- 8.5	35.7
-5	50.1	- 8	31.2
$-8 \\ -11.5$	$47.5 \\ 45.3$	- 6.5	25.0
11.5	40.0	}	

(Meusser, Z. anorg. 1905, 44. 80.)

68.74 g. KBr are sol. in 100 g. H₂O at 25°. (Amadori and Pampanini, Rend. Ac. Linc. 1911, V, **20.** 473.)

Sp. gr. of KBr+Aq at 19°.

% KBr	Sp. gr.	% KBr	Sp. gr.
5 10 15 20 25	1.037 1.075 1.116 1.159 1.207	30 35 40 45	1.256 1.309 1.366 1.432

(Gerlach, Z. anal. 8. 285.)

Sp. gr. of KBr+Aq at 15° containing: 20 30 36% KBr. 10 1.0357 1.1583 1.2553 1.3198 1.074(Kohlrausch, W. Ann. 1879, 1.)

Sp. gr of KBr+Aq at t°.

G. KBr dissolved in 100 g.	G. KBr in 100 g. of the solution	t°	Sp. gr.
4.166	4	14.5	1.0291
11.111	10	15.7	1.0753
25.000	20	16.5	1.1625
42.867	30	16.0	1.2580

(de Lannoy, Z. phys. Ch. 1895, 18. 460.)

KBr+Aq containing 6.99% KBr has sp. gr.  $20^{\circ}/20^{\circ}=1.0521.$  (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 278.)

Sp. gr. of KBr+Aq at 20.5°.

Normality of KBr+Aq.	G. KBr in100 g. of solution	Sp. gr. t°/4°
4.29	37.97	1.3449
3.01	28.83	1.2407
2.00	20.49	1.1629
1.00	11.03	1.0815

Solubility	of	KBr-	-NH	Br	at	25°.
------------	----	------	-----	----	----	------

% KBr	% NH ₄ Br	Sp. gr
55.81	0.0	1.3756
55.42	0.64	1.3745
53.65	2.46	1.3733
51.68	5.13	1.3721
44.12	15.29	1.3711
34.73	26.22	1.3715
26.23	34.76	1.3753
26.03	38.14	1.3753
23.22	41.78	1 3766
22.23	43.25	1.3777
17.99	48.08	1.3766
0.0	57.73	1.3763

(Fock, Z. Kryst. Min. 1897, 28. 357.)

# Solubility in KNO₃+Aq.

1	litre of the s	olution contain	ns
at 1	4.5°	at 2	ə.2°
Mol. KNO3	Mol. KBr	Mol. KNO ₃	Mol. KBr
0.0	4.332	0.0	4.761
$0.362 \\ 0.706$	$egin{array}{c} 4.156 \ 4.093 \end{array}$	$\begin{bmatrix} 0.131 \\ 0.527 \end{bmatrix}$	$\begin{array}{c} 4.72 \\ 4.61 \end{array}$
1.235	3.939	0.721 1.090	$\frac{4.54}{4.475}$
		1.170	4.44
		1.504	4.375

(Touren, C. R. 1900, 130. 911.) See also under  $\mathrm{KNO}_3$ .

100 pts. KBr+KCl+Aq sat. at 15–16° contain 37.55 pts. of the two salts; 10.0 pts. KBr+Kl+Aq sat. at 15–16° contain 57.96 pts. of the two salts; 100 pts. KBr+KCl+Kl+Aq sat. at 15–16° contain 57.88 pts. of the three salts. (v. Hauer, J. pr. 98. 137.

# Solubility of KBr+KCl in H2O at 25°.

% KBr	% KCI	Sp. gr.
55.81	0.00	1.3756
53.15	2.34	1.3700
50.36	4.66	1.3648
45.46	8.26	1.3544
37.96	13.66	1.3320
32.48	16.69	1.3119
21.80	21.39	1.2689
14.07	25.09	1.2455
4.75	29.17	1.1977
0.00	31.13	1.1756

(Fock, Z. Kryst. Min. 1897, 28. 357.)

Solubility of KBr+KCl in H₂t) at to.

* ₁ o	Sat	solution con	tains
	% KCI	% KBr	% total salt
14	10.7	18.8	29.5
-13.7			29.4
-13.5			29.5
-7	10.7	19.8	30.5
+5.2			34.4
+6	11.3	<b>22</b> .6	33.9
10	11.0	23.7	34.7
21	10.8		35 3
26	11.2	<b>25</b> 5	36.7
30	!		39.4
32	11.9	26.6	38.5
39			39.8
47	11.0	30.8	41.8
52	11.0	31 <b>2</b>	42.2
55	11.9	29.9	41.8
71	12.0	31.7	43.7
73	11.8	32.9	44.7
102	12.8	35.8	, 48.6
152	13.2	40.6	53.8
160	12.5	42 3	54.8
168			55.0
225	14.7	45.0	59.7

(Étard, A. ch. 1894, (7) 3. 281.)

# Solubility of KBr+KCl in H₂O at 25°.

G. per 1	00 g. H ₂ O.
KBr	, KCI
68.47 62.26 58.50 52.45 45.42 38.70 26.62 12.94	0.0 5.43 8.46 12.48 17.17 21.23 25.88 31.02 36.12

(Amadori and Pampanini, Att. Acc. Linc. 1911, 20, II. 475.)

# Solubility in KCl+Aq at 25.2°.

1 litre of the solution contains		
Mol. KCl	Mol. KBr	
0.0 0.67 0.81 1.35 1.48 1.61 1.70 2.46 3.775	4.761 4.22 4.15 3.70 3.54 3.42 3.34 2.50 0.525	

(Touren, C. R. 1900, **130**. 1252.)

See also under KCl.

By repeatedly heating KBr+Aq sat. at 15–16° with KI and cooling to 15°, nearly all the KBr can be separated. (v. Hauer.)

100 pts.  $H_2O$  sat. with KBr at  $16^{\circ}$  dissolve 13.15 pts. KI, but on addition of more KI, KBr is pptd. (van Melckebeke, C. C. **1872**. 586.)

Solubility in KI+Aq at to.

t°.	Sat.	solution con	tains
	% KBr	% KI	% total salt
-22	8.3	42.6	50.9
-19	9.5	42.8	52.3
-6	9.3	44.7	54.0
-1.5	₿.		55.3
+3	10.3	45.9	56.2
13.6	10.1	46.2	55.9
25	10.8	48.0	58.8
44.2	11.1	50.1	61.2
51	12.1	50.0	62.1
66	10.8	53.1	63.9
70	11.6	51.9	63.5
80	12.3	52.5	64.8
93	13.0	53.7	66.7
116	13.2	54.6	67.8
125	13.7	54.8	68.5
150	15.1	55.1	70.2
175	16.0	57.2	73.2
175			72.7
195	16.7	56.5	73.2
220	17.6	57.0	74.6

(Étard, A. ch. 1894, (7) 3. 279.)

# Solubility of KBr+KI in H2O at 25°.

G. per 100 g. H ₂ O.		
KBr	KCl	
53.21 42.32 34.14 30.08 29.62 22.15 21.88 18.54 0.0	35.92 66.63 95.36 119.59 119 127.10 127.31 130.61 149.26	

(Amadori and Pampanini, Att. Acc. Linc. 1911, 20, II. 475.)

### Solubility of KBr in KOH+Aq.

G. per 10	00 g. H ₂ O	G. per 10	00 g. H ₂ O
кон	KBr	кон	KBr
36.4 113.5 177.2 231.1	558.4 433.6 358.1 281.2	277.6 434.7 579.6 806.9	248.1 137.1 64.8 33.4

(Ditte, C. R. 1897, 124. 30.)

Sol. in Br₂ at 15°. (Walden, Z. anorg. 1900, 25. 220.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**, 829.)

Sol. in liquid NH₃. 45 pts. are sol. in 100 pts. liquid NH₃ at —50°. (Joannis, C. R. 1905, **140**. 1244.)

Attacked by liquid NO₂ with liberation of Br₂. (Frankland, Chem. Soc. 1901, **79**. 1361.)

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54**. 674.)

Sol. in SO₃. (Walden, Z. anorg. 1900, **25**.

Sol, in SO₂Cl(OH). (Walden, Z. anorg. 1902, **29**. 382.)
Difficultly sol, in AsBr₃. (Walden, Z.

Difficultly sol. in AsBr₃. (Walden, Z. anorg, 1902, **29**. 374.)
Sol. in SbCl₃. (Walden, Z. anorg, 1900, **25**.

Sol. in SbCl₃. (Walden, Z. anorg. 1900, **25**, 220.)

Sol. in liquid SO₂. (Walden, Z. anorg. 1902, **30**. 160.)

Hydrazine dissolves 56.4 pts. KBr at 12.5-13°. (de Bruyn, R. t. c. 1899, **18**. 297.)

Sl. sol. in alcohol. (Ballard.)
Sol. in 200 pts. cold, and 16 pts. boiling

80% alcohol.
Sol. in 180 pts. 90% alcohol. (Hager.)

Sol. in 750 pts. abs. alcohol at 15°. (Eder, Dingl. 221. 89.)

100 pts. absolute methyl alcohol dissolve 1.51 pts. at 25°; 100 pts. absolute ethyl alcohol dissolve 0.13 pt. at 25°. (de Bruyn, Z. phys. Ch. 10. 783.)

Solubility of KBr in methyl alcohol+Aq at 25°.

P=% by wt. of alcohol in alcohol+Aq. S=Sp. gr. of alcohol+Aq sat. with KBr. L= millimols KBr in 100 ccm. of the solution.

Р	S 25°/4°	L
0 10.6 30.8 47.1	1.3797 1.300 1.159 1.058	471 389 252 162
$64.0 \\ 78.1 \\ 98.9 \\ 100$	0.9801 0.8906 0.8411 0.8047	87 44 23 14.2

(Herz and Anders, Z. anorg. 1907, 55. 273.)

100 g. KBr+CH₃OH contain 0.2 g. KBr at the critical temp. (Centnerszwer, Z. phys. Ch 1910, **72**. 437.)

	Temp	. = 30°	Temp	. =40°
Wt. %	G. KBr. 1	per 100 g.	G. KErp	oer 100 g.
	Solution	Solvent	Solution	Solvent
0	41.62	71.30	43.40	76.65
5	38.98	67.25	40.85	72.70
10	36.33	63.40	38.37	69.00
20	31.09	56.40	33.27	62.30
30	25.98	50.15	28.32	56.45
40	21.24	44.95	23.22	50.46
50	16.27	38.85	18.11	44.25
60	11.50	32.50	13.02	37.40
70	6.90	24.70	7.98	28.90
80	3.09	15.95	3.65	18.95
90	0.87	8.80	1.03	10.45

(Taylor, J. phys. Ch. 1896, 1. 724.)

At room temp., 1 pt. KBr by weight is sol. in:

(Rohland, Z. anorg. 1898, 18. 325.)

Solubility of KBr in ethyl alcohol at 0°.

Conc. of alcohol in mol. g. per l. H ₂ O	G. KBr in 1 l. H ₂ ()	Mol, solubility
1/4 1/2 1 2	536.75 529.25 502.85 491.75 455.25	4.51 4.45 4.22 4.13 3.82

(Armstrong and Eyre, Proc. R. Soc. 1910, [A] 84, 127.)

 $100~{\rm g}.$  methyl alcohol dissolve 2.17 g. KBr at  $25^{\circ}.$ 

100 g. ethyl alcohol dissolve 0.142 g. KBr at 25°.

100 g. propyl alcohol dissolve 0.035 g. KBr at 25°.

100 g. isoamyl alcohol dissolve 0.003 g. KBr at 25°.

(Turner and Bissett, Chem. Soc. 1913, 103. 1909.)

0.055 g. is sol. in 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 276.)

Sol. in 5000 pts. ether (sp. gr. 0.729 at 15°.) (Eder, l. c.)

Sol. in 1700 pts. alcohol-ether (1:1) at 15°.

(Eder, l. c.)

100 pts. acetone dissolve 0.023 pt. KBr at 25°. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Solubility of KBr in acetone +Aq at 25°.

A=cc. acetone in 100 cc. acetone +Aq.

KBr= millimols KBr in 100 cc. of the solution.

A .	KBr	Sp. gr.
0	481.3	1.3793
20	366 ~	1.2688
30	310.5	1.2118
40	259.0	1.1558
50	202.9	1.0918
60	144.9	1.0275
70	95.3	0.9591
80	46.5	0.89415
90	10.1	0.8340

(Herz and Knoch, Z. anorg. 1905, 46. 262.)

Solubility of KBr in glycerine+Aq at 25°.

G= k, glycerine in 100 g, glycerine+Aq. KBr=millimols KBr in 100 cc. of the solution.

G	KBr	Sp. gr.
0 13.28 25.98 45.36 54.23 83.84	481.3 444.3 404.0 340.5 310.4 219.25	1.3793 1.3704 1.3655 1.3594 1.3580 1.3603 1.3691

(Herz and Knoch, Z. anorg. 1905, 45. 267.)

100 g. 95% formic acid dissolve 23.2 g. KBr at 18.5°. (Aschan, Chem. Ztg. 1913, 37. 1117.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3601.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

100 ccm. of a sat. solution of KBr in furfurol at 25° contain 0.139 pts. by wt. KBr. (Walden, Z. phys. Ch. 1906, **55**.713.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894) 6. 257.)

Potassium rhodium bromide. See Bromorhodite, petassium.

Potassium ruthenium tribromide. See Bromoruthenite, potassium.

Potassium ruthenium tetrabromide. See Bromoruthenate, potassium.

Potassium selenium bromide. See Bromoselenate, potassium. Potassium tellurium bromide. See Bromotellurate, potassium.

Potassium thallic bromide, KBr, TlBr₂+ 2H₂O.

Sol, in H₂O. 3KBr, 2TlBr₃+3H₂O. Sol. in H₂O. (Rammelsberg.)

Potassium thorium bromide.

Sol. in H₂O. (Berzelius.)

Potassium tin (stannous) bromide, KBr, SnBr₂+H₂O.

Sol. in H₂O. (Benas, C. C. **1884**. 958.) Can be recryst. from HBr or KBr+Aq. (Richardson, Am. Ch. J. 14. 95.) 2KBr, SnBr₂+2H₂O. Cannot be recryst. from HBr+Aq. (Richardson.)

Potassium tin (stannic) bromide, 2KBr, SnBr4.

See Bromostannate, potassium.

Potassium uranous bromide, KUBr₆.

Very sol. in H₂O. (Aloy, Bull. Soc. 1899. (3) 21. 264.)

Potassium uranyl bromide, 2KBr, UO₂Br₂+ 2H₂O.

Very easily sol. in H₂O. (Sendtner.)

Potassium zinc bromide, KBr, ZnBr₂+2H₂O. Not hygroscopic. (Ephraim, Z. anorg. **1908**, **59**. 60.)

2KBr,  $ZnBr_2 + 2H_2O$ . Not hygroscopic. (Ephraim.)

Potassium bromide ammonia, KBr, 4NH₃. (Joannis, C. R. 1905, 140, 1244.)

Potassium bromide ruthenium dihydronitrosochloride, (NO)Ru₂H₂Cl₃, 2HCl, 3KBr. Ppt. Sl. sol. in H₂O. (Brizard, A. ch. 1900, (7) **21.** 359.)

Potassium bromoiodide, KBr₂I.

Decomp. rapidly on air. (Wells and Wheeler, Sill. Am. J. 143, 475.)

Potassium carbonyl, K₂C₂O₂.

Decomp. by H₂O with explosion. (Joannis, C. R. **116.** 158.)

Potassium chloride, KCl.

Sol. in H₂O with absorption of heat. 30 pts. KCl+100 pts. H₂O at 13.2° lower the temp. 12.6°. (Rüdorff, B. 2. 68.) 100 pts. H₂O dissolve 29.31 pts. KCl at 0°. (Gay-Lussac); 28.5 pts. KCl at 0° (Mulder; Gerardin.)

The saturated solution contains 58.5%, and boils at 107.6° (Mulder); contains 59.40%, and boils at 108.3° (Legrand); contains 59.26%, and boils at 109.6° (Gay-Lussac); boils at 110°. (Kremers.)

Sol. in 3.016 pts. H₂O at 15° (Gerlach); in 3.03 pts. at 17.5°, or 100 pts. H₂O at 17.5° dissolve 33 pts KCl. (Schiff.)

100 pts. H₂O at to dissolve pts. KCl:

t°	Pts. KCl	t°	Pts. KCl	t°	Pts. KCl
0 19.35	29.21 34.53	52.39. 79.58	43.59 50.93	109.60	59.26

(Gay-Lussac, A. ch. (2) 11. 308.)

100 pts. H₂O dissolve 34.6 pts. KCl at 11.8°; 34.9 pts. at 13.8°; 35 pts. at 15.6°. (Kopp.)
100 pts. H₂O at 17.5° dissolve 33.24 pts. KCl, and sp. gr. of solution is 1.635. (Karsten.)
100 pts. H₂O at 12° dissolve 32 pts., and at 100°, 59.4 pts. (Otto-Graham.)
Sol. in 3 pts. H₂O at ord. temp., and 3 pts. boiling H₂O (Bergmann); in 3.33 pts. hot or cold H₂O (Fourcroy); in 3 pts. at 15°, and 1.68 pts. at 110° (M. R. and P.)

P.) Sol. in 3.5 pts.  $\rm H_2O$  at 0°, and in less than 1 pt. hot  $\rm H_2O$  (Schubarth); 100 pts.  $\rm H_2O$  at 17.5° dissolve 30.7-33.0 pts. KCl (Ure's Dict.). 100 pts.  $\rm H_2O$  dissolve 35.405 pts. KCl at 15°, and solution has sp. gr. =1.1809. (Michel and Krafft, A. ch. (3) 41. 478.)

100 pts. H₂O dissolve at:

57° 18°  $30^{\circ}$ 40° 33.6 37.8 40.1 45.0 pts. KCl. (Gerardin, A. ch. (4) 5. 139.)

100 pts. H₂O dissolve 33.06-32.08 pts. KCl at  $15.6^{\circ}$  and sp. gr. of solution = 1.171. (Page and Keightley, Chem. Soc. (2) 10. 566.)

Solubility in 100 pts. H₂O at t°.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t°		t°		t°	
16   33.6   33   38.2   50   42.8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	28.7 29.0 29.3 29.5 30.5 31.5 31.7 32.0 32.3 32.3 32.8 33.1 33.4	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	34.2 34.4 34.7 35.0 35.5 35.5 36.1 36.4 36.6 36.9 37.2 37.4 37.7 38.0	35 36 37 38 39 40 41 42 43 44 45 46 47 48	38.7 39.0 39.3 39.6 39.9 40.1 40.3 40.6 40.9 41.5 41.7 42.0 42.3 42.5

Solul	Solubility in 100 pts., etc.—Continued.					
t°	Pts. KCl	t°	Pts. KCl	t°	Pts. KCl	
51 52 53 54 55 56 57 58 59 60 61 62	43.1 43.4 43.6 43.9 44.2 44.4 44.7 44.9 45.2 45.5 45.8 46.1	71 72 73 74 75 76 77 78 79 80 81 82	48.5 48.8 49.1 49.4 49.6 49.9 50.2 50.5 50.8 51.0 51.3 51.5	91 92 93 94 95 96 97 98 99 100 101 102	54.1 54.4 54.6 54.9 55.2 55.7 56.0 56.3 56.6 56.9 57.2	
63 64 65 66 67 68 69 70	46.3 46.6 46.9 47.2 47.5 47.7 48.0 48.3	83 84 85 86 87 88 89 90	51.8 52.1 52.4 52.6 52.9 53.2 53.5 53.8	103 104 105 106 107 107.65	57.4 57.7 58.0 58.2 58.5 58.5	

(Mulder, calculated from his own and other observations, Scheik. Verhandel. 1864. 41.)

#### Solubility in 100 pts. H₂O at t°.

t°	Pts. KCl	t°	Pts. KCl	t°	Pts. KCl
-11° -6.4 0 +3.9 9.4 11.4 14.95	24.46 25.78 27.9 29.37 30.84 32.19 32.66 34.32	25.7 29.25 38.0 41.45 46.15 48.8 55.1 60.55	36.10 37.31 39.71 40.67 42.34 42.86 44.51 45.90	64.95 71.65 74.25 80.75 86.6 91.4	

(Coppet, A. ch. (5) 30. 414.)

Solubility is represented by a straight line, of which the formula is 28.51+0.2837t. (Coppet.)

100 pts. H₂O dissolve 29.33 pts. KCl at 4°, 45.5 pts. at 60°. (Andreae, J. pr. (2) **29.** 456.)

100 pts. H2O dissolve at:

0° 100° 130° 180° 29.2 56.5 66 78 pts. KCl. (Tilden and Shenstone, Lond, R. Soc. Proc. **35**. 345.)

Solubility of KCl in 100 pts. H₂O at high temp.

t°	Pts. KCl	t°	Pts. KCl	t°	Pts. KCl
125 133	59.6 69.3	147 175	70.8 75.2	180	77.5

(Tilden and Shenstone, Phil. Trans. 1884. 23.)

If solubility S=pts. KCl in 100 pts. solution, S=20.5+0.1445t from -90° to 110°. (Etard, C. R. 98. 1432.)

Sat. KCl+Aq contains at:

142° 150° 180° 175° 28.8 41.8% KCl. 38.6 41. 242° 732° (mpt.) 100% KCl. 190°  $200^{\circ}$ 43.2 **42.9** 47.6 (Étard, A. ch. 1894, (7) 2. 256.)

100 g. fi₂O dissolve 0.488 gram-equivalent KCl at 25°. (van't Hoff and Meyerhoffer, Z. phys. Ch. 1904, **49**, 315.)

### Solubility of KCl in H₂O at t°.

G. KCl per 100 G. H ₂ O.					
t°	KCI	Sp. gr.			
0.70 19.55 32.80 59.85 74.80 89.45 108.0*	28.29 34.37 38.32 45.84 49.58 53.38 58.11	1.1540 1.1738 1.1839 1.1980 1.2032 1.2069 1.2118			

* B_I t. of sat. solution. (Berkeley, Phil. Trans. Roy. Soc. 1904, **203**, A. 189.)

#### Solubility of KCl in 100 g. H₂O at t°.

t°	g. KCl	t°	g. KCl,
+18.5 11.5 10 7.5 2.5 6	33.3 31.2 30.8 29.8 28.4 27.5 27.2	$     \begin{array}{r}       -4.5 \\       -9 \\       -8.5 \\       -8 \\       -7 \\       -6 \\       -5.5     \end{array} $	25.9 23.9 21.5 20.0 17.5 15.7 14.3

(Meusser, Z. anorg. 1905, 44. 80.)

Sat. KCl+Aq at 25° contains 26.46% KCl. (Foote, Am. Ch. J. 1906, **35**. 238.)

28.01 g. KCl are contained in 100 g. solution sat. at 30°. (de Waal, Dissert. **1910.**)

36.12 g, KCl are sol. in 100 g, H₂O at 25°, (Amadori and Pampanini, Rend. Acc. Linc. 1911, V. **20**. 473.)

4.272 g. mol. are contained in 1 l. solution sat. at 25°. (Herz. Z. anorg. 1911, **73**. 274.) Solubility of KBr at 6°=23.06%; 28.4°=26.91%; 62.6°=31.57°. (Süss, Z. Krist. 1912, **51**. 262.)

Solubility at  $22^{\circ} = 25.68\%$ . (Brönstedt, **Z.** phys. Ch. 1912, **80.** 208.)

100 mol.  $H_2O$  dissolve at:

19.3° 29.7° 40.1° 54.5° 8.2 8.99 9.75 10.39 mol. KCl. (Sudhaus, Miner. Jahrb. Beil.-Bd. 1914, **37.** 18.) **KCI+Aq sat. at 16° has sp. gr. = 1.077. (Stofba, J. pr. 97. 503.)

Sp. gr. of KCl+Acrat 17.5°.

KČI	Sp. gr.	%сı	Sp. gr.	KCı	Sp. gr.
1	1 0062	9	1.0586	17	1.1152
2	1 0125	10	1.0655	18	1.1225
3	1 0189	11	1.0725	19	1.1298
4	1 0254	12	1.0795	20	1.1372
5	1 0319	13	1.0866	21	1.1446
6	1 0385	14	1.0937	22	1.1521
7	1 0451	15	1.1008	23	1.1596
8	1 0518	16	1.1080	24	1.1673

(Scaff, A. 110. 76.)

Sp. gr. of KCl+Aq at 19.5°.

% KiCi	Sp. gr.	% KCl	Sp. gr.
5.98 11.27 16.27	1.0382 1.0733 1.1075	21.31 25.133	1.1436 1.1720

(Kremers, Pogg. 95. 119.)

Sp. gr. of KCl+Aq at 15°.

ĸči	Sp. gr.	KČ1	Sp. gr.	ке ке	Sp. gr.
1	1.00650	10	1.06580	19	1.12894
3	1.01300 1.01950	11 12	1.07271 1.07962	$\frac{20}{21}$	1.13608 1.14348
5	1.02600 1.03250	13 14	1.08654 1.09345	$\frac{22}{23}$	$1.15088 \\ 1.15828$
6 7	1.03916 1.04582	15 16	1.10036 1.10750	$\begin{vmatrix} 24 \\ 24.9* \end{vmatrix}$	$1.16568 \\ 1.17234$
8 9	1.05248 1.05914	17 18	1.11465 1.12179		

* Mother liquor.

(Gerlach, Z. anal. 8. 281.)

Sp. gr. of KCl+Aq at 20°, containing mols. KCl to 100 mols. H₂O.

Mols. KCl	Sp. gr.	Mols. KCl	Sp. gr.
0.5 1.0 2.0	1.01310 1.02568 1.04959	4.0 5.0	1.09415 1.11445

(Nicol, Phil. Mag. (5) 16. 122.)

Sp. gr. of KCl+Aq at 18°.

% ксі	Sp. gr.	‰ KČI	Sp. gr.	‰ K€ı	Sp. gr.
5	1.0308	15	1.0978	25	1.1408
10	1.0638	20	1.1335	··	

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of KCl+Aq at 0°. S=pts. salt in 100 pts. of solution; S₁=mols. salt in 100 mols. solution.

s	$\mathbf{s}_{\iota}$	Sp. gr.
20.7840 17.7214 14.4707 11.0757	5.954 4.940 3.922 2.918	1.1489 1.1258 1.1018 1.0769
$7.5440 \\ 4.4968$	1.931 1.123	1.0521

(Charpy, A. ch. (6) 29, 23.)

Sp. gr. of KCl+Aq at 25°.

Concentration of KCl+Aq	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.0466 1.0235 1.0117 1.0059

(Wagner, Z. phys. Ch. 1890, 5. 36.)

KCl+Aq containing 5.05% KCl has sp. gr.  $20^{\circ}/20^{\circ} = 1.0327$ .

KCl+Aq containing 20.55% KCl has sp. gr. 20°/20° = 1.1393.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 272.)

Sp. gr. of KCl+Aq.

g. KCl in 1000 g. of solution

0 1.000000
0.7140 1.000464
1.5042 ,1.000975
3.0724 1.001991
8.3165 1.005391

(Dijken, Z. phys. Ch. 1897, 24. 109.)

Sp. gr. of KCl+Aq at 20.1°, when p=per cent strength of solution; d=observed density, and w=volume conc. in g. per cc.  $\left(\frac{pq}{p-1}\right) = w$ 

d p 36.431.853 0.4317131.12 1.15540.3595424.79 1.12150.2788718.06 1.0866 0.1961013.17 1.0617 0.13980 8.412 1.0386 0.08736 6.6101.02970.068064.419 0.45051.01933.456 0.03507 1.0148 1.197 1.0040 0.01202

(Barnes, J. phys., Ch. 1898, 2. 544.)

Sp. gr. of KCl+Aq at t°.				
t° (°	Normality of KCl+Aq.	g. KCl in 100 g. of solution	Sp. gr. t°/4°	
20.5	3.74 2.65 1.87 0.93	23.93 17.66 12.82 6.64	1.1617 1.1166 1.0829 i.0424	

(Oppenheimer, Z. phys. Ch. 1898, 27, 450.)

Sp. gr. of KCl+Aq at 18°/4°.

g. KCl in 100 g. of solution	Sp. gr.
0.24963	1.0003
0.12459	0.9995
0.08342	0.99929
0.062343	0.99912

(Jahn, Z. phys. Ch. 1900, 33, 559.)

KCl+Aq containing 1 pt. KCl in 58.923

pts. H₂O at 17° has sp. gr. = 1.0096. (Hittorf, Z. phys. Ch. 1902, **39**. 628.) Sp. gr. 20°/4° of a normal solution of KCl = 1.04443. (Haigh, J. Am. Chem. Soc. 1912, **34.** 1151.)

Sp. gr. of sat. KCl+Aq at t°.

t°	g, KCl sol. in 100 g. H ₂ O	Sp. gr.
10° 0 10 20 30 40 50	24. 98 28. 50 31. 23 34. 11 37. 28 40. 12 42. 86	1.139 1.156 1.168 1.177 1.183 1.190 1.195
60 70	45.48 48.30	1.199 1.203

(Tschernaj, J. Russ. phys. Chem. Soc. 1912, **44**. 1565.)

Sp. gr. of dil. KCl+Aq at 20.004°. Conc.=g. equiv. KCl per l. at 20.004°. Sp. gr. compared with H₂O at 20.004°=1.

Conc.	Sp. gr.
0.0000	1.000,000,0
0.0001	1.000,004,8
0.0002	1.000,009,7
0.0005	1.000,024,2
0.0010	1.000,048,5
0.0026	1.000,097,1
0.0050	1.000,242,6
0.0100	1.000,483,6

1687.)

KCl+Aq containing 10% KCl boils at 101.1°; containing 20%, at 103.4°. (Gerlach.) Sat. KCl+Aq containing 52.7 pts. KCl to 100 pts. H₂O forms a crust at 107.7°; highest temp. observed, 108.5°. (Gerlach, Z. anal. 26.

B.-pt. of KCl+Aq containing pts. KCl to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26. 438); L=according to Legrand (A. ch. (2) 59. 426).

Bpt	G	L	Bpt.	G	L
100.5° 101.0 101.5 102 102.5 103 103.5 104 104.5	4.9 9.2 13.1 16.7 20.1 23.4 26.7 29.9 33.1	4 7 9.0 13.2 17.1 20.9 24.5 28.0 31.4 34.6	105° 105.5 106 106.5 107 107.5 108 108.3 108.5	36.2 39.3 42.4 45.5 48.4 51.5 54.5	37.8 41.0 44.2 47.4 50.5 53.7 56.9 59.4

Precipitated from aqueous solution by HCl +Aq. Much less sol. in very dil. HC+Aq than in H₂O. (Fresenius.)

Nearly insol. in conc. HCl+Aq.

100 cc. sat. HCl+Aq dissolve 1.9 g. KCl at 17°. (Ditte, A. ch. 1881, (5) 24. 226.)

# Solubility of KCl in HCl+Aq at 0°.

G. per 100	cc. of solution
HCl	KCl w
0.0 1.42 2.41 2.59 4.05 8.39 12.40 14.95 23.88 54.20	25.73 22.69 20.84 20.51 17.71 11.93 7.46 5.60 1.49 1.52

(Engel, A. ch. 1888, (6) 33. 377.)

#### Solubility of KCl in HCl+Aq.

comounty or area in area ( rad.				
t°	Concentra- tion of HCl g. mol. per 1000 g. H ₂ O	Wt. KCl per 1000 g. H ₂ O	Mol. solubility	
0 " "	0 1/4 1/2 1	283.55 267.25 250.00 214.25	8.81 3.59 3.36 2.88	
25 " "	0 1/4 1/2 1	359.25 341.55 324.30 289.60	4.82 4.59 4.35 3.89	

(Lamb and Lee, J. Am. Chem. Soc., 1913, 35. | (Armstrong and Eyre, Proc. R. Soc. 1910 (A)

*100 g. sat. HCl+Aq dissolve 1.9 g. KCl at 20°. (Stoltzenberg, B. 1912, 45. 2248.)

# Solubility in HCl+Aq at 25°.

Millimols HCl in 10 ccm.	Millimols KCl in 10 ecm.
5.66 10.20 15.90 20.94 32.52	42.72 37.49 33.79 28.68 24.74 17.39

(Herz, Z. anorg. 1912, 73. 275.)

# Solution ty of KCl in HBr+Aq at 25°.

Millimo HBr in 10 eem.	Millimols KCl in 10 ccm.	
6.61	42.72 37.80 19.57	

(Herz, Z. anorg. 1912, 73. 275.)

Sol. in sat. NH₄Cl+Aq with pptn. of NH₄Cl. When action has ceased, the solution at 18.75° contains 31.6% of the mixed salt; or 100 pts. H₂O dissolve 46.1 pts. of the mixed salt, viz, 16.27 pts. KCl and 29.83 pts. NH₄Cl. (Karsten.)

#### Solubility of KCl in NH₄Cl+Aq at 25°.

Dissolved in 1000 mols H ₂ O			
Mols KCl	Mols NH4Cl		
74.2 67.9 61.4 55.5 50.2 43.0 37.6 37.0 37.5	23.8 32.5 52.2 65.9 74.4 96.3 110.0 107.5 109.4 118.2		

(Biltz, Z. anorg. 1911, 71, 174.)

See also NH4Cl.

Sol. in sat. BaCl₂+Aq with pptn. of BaCl₂ until a state of equilibrium is reached, when 100 pts. H₂O at 16.8° dissolve 45.9 pts. mixed salts, viz. 18.2 pts. BaCl₂ and 27.7 pts. KCl. See also BaCl₂.

Solubility of KCl in MgCl₂+Aq of given percentage composition.

22				4.
#t°	30%	21.2%	15%	11%
10	1.9%	5.3%	*9.9%	14.3%
20 30	2.6 3.4	6.5 7.6	11.3 12.7	15.9 17.5
40 50	4.2 5.0	8.8 10.0	14.2 15.6	19.0 20.5
60 70	5.8 6.5	11.2 12.4	$\begin{array}{c} 17.0 \\ 18.3 \end{array}$	21.9 23.2
80 90	7.3 8.1	$13.6 \\ 14.7$	$\begin{array}{c} 19.5 \\ 20.8 \end{array}$	24.5 25.8
100	8.9	15.9	22.1	27.1

(Precht and Wittgen, B. 14. 1667.)

Solubility of KCl+NaCl in 20% MgCl2+Aq.

t°	% KCl	% NaCl	t°	% KČi	% NaCl
10 20 30 40 50	4.2 5.1 6.0 6.9 7.9	5.7 5.8 5.9 6.0 6.1	60 70 80 90 100	8.9 9.9 10.9 11.9 13.0	6.3 6.4 6.6 6.7 6.9

(P. and W.)

Sol. in sat. KNO₃+Aq with pptn. of KNO₃

1	litre of the so	olution contai	ns 🎉
at 1	4.5°	at :	25.2° 4, 4
Mol. KCl	Mol. KNO ₃	Mol. KCl	Mol, KNO
3.865 3.810 3.782 3.710	0.0 0.204 0.318 0.615	4.18 4.11 4.07 3.93	0.0 0.136 0.318 0.902
3.667 3.629 3.597 3.582	0.818 0.910 1.176 1.220	3.85 3.81 3.70	1.242 1.397 1.805

(Touren, C. R. 1900, **130**. 909.) Solubility of KCl in KNO₃+Aq.

t°	Concentra- tion of KNO ₈ in g. mol. per 1000 g. H ₂ O	Wt. KCl in 1000 g. H ₂ O	Mol. solubility
0   25 	0 1/4 1/2 1 0 1/4 1/2 1	283.55 284.25 283.60 287.60 364.15 355.00 361.65	3#81 3 3.81 3.81 3.86 4.89 4.90 4.86
"	11/2	358.80 355.20	$\substack{4.81\\4.77}$

(Armstrong and Eyre, Proc. R. Soc. 1910 [A], 84. 127.)

See also KNO₈.

Sol. in sat. NaNO₃+A₄q without causing pptn. (See NaNO₃.)

Sol. in sat. Ba(NO₃)₂+Aq without causing pptn.

Solubility in KBr+An at 25 2%

1 litre of the solution contains		
Mol. KBr	Mol. KCl	
0.0	4.18	
0.49	3.85	
0.85	3.58	
1.31	3.19	
1.78	2.91	
2.25	2.58	
2.69	2.33	

(Touren, C. R. 1900, **130**. 1252.) See also **K**Br.

100 pts. H₂O dissolve 133.2 pts. KI and 10.4 pts. KCl at 21.5°, no matter how prepared. (Rüdorff, B. 6. 484.)

100 pts. KCl+Aq sat. at 15-16° contain 25.26-25.37 pts. KCl. 100 pts. \(\forall Cl+Ki+Aq\) sat. at 15-16° contain 57.80 pts. of the two salts. KCl is pptd. by KI. (v. Hauer, J. pr. 98. 137.)

# Solubility in KI+Aq at t°.

	Sat.	solution cor	ntains
t°	% KCl	% KI	% total salt
0	4.8	50.8	56.6
8	5.1	51.1	56.2
18	l l		57.9
30	4.2	54.6	58.8
41	4.7	55.0	59.7
49	5.7	56.0	61.7
60			62.5
75	4.4	59.5	63.9
82	5.0	59.6	64.6
96	l l		66.2
102			66.8
140	1	63.3	
155	7.6	64.8	72.4
182	8.7	65.4	74.1
190	8.6	66.0	74.6
245	10.0	66.5	76.5

Ætard, A. ch. 1894, (7) 3. 281.)

Solubility of KCl+KI in H2O at 25°.

G. per 100 g. H ₂ O			
KCI	KI	KCI	KI
0, 4.06 7.63 11.36 11.74 15.10	149.26 144.03 137.79 132.60 133.90 105.91	19.64 23.75 29.56 31.38 33.68 36.12	68.22 43.89 23.83 14.83 7.00 0.00

(Amadori and Pampanini, Att. Acc. Linc. 1911, 20, II. 475.)

# Solubility of KCl in KOH+Aq at 0°.

G. per 10	0 cc. solution
KCI	кон
26.83 2°.44 21.39 17.39 13.89 10.91 8.64 2.78 4.74	0.0 1.33 2.64 5.56 8.46 11.23 13.83 16.43 19.72

(Engel, Bull. Soc. 1891, (3) 6. 16.)

Solubility in KOH+Aq at 20°.

C. KOH in 1 litre	G. KCl in 1 litre	Sp. gr.	Degrees Baumé
10	293	1 185	22.5
20	$\frac{235}{285}$	1.185	$\begin{array}{c} 22.5 \\ 22.5 \end{array}$
30	276	1.190	23.0
40	265	1.192	23.0*
50	$\frac{255}{255}$	1.195	23.5
$\ddot{60}$	$\frac{245}{245}$	1.200	24.0
70	236	1.200	24.0
80	$\frac{200}{226}$	1.205	24.5
90	219	1.205	24.5
100	211	1.210	25.0
110	205	1.210	25.0
120	199	1.215	25.5
130	192	1.215	25.5
140	185	1.220	26.0
150	178	1.225	26.5
160	171	1.225	26.5
170	165	1.230	27.0
180	159	1.235	27.5
190	153	1.240	28.0
200	148	1.245	28.5
210	142	1.250	29.0
220	137	1.255	29.5
230	133	1.260	30.0
240	128	1.265	30.5
250	124	1.270	30.8
260	120	1.275	31.3
270	115	1.280	31.7
280	112	1.285	32.0
290	108	1.290	32.5
300	104	1.295	33.0
310	100	1.300	33.5
320	96	1.305	34.0
330	93	1.310	34.2
340	89	1.315	34,6
350	85	1.320	35.0
360	81	1.325	35.5
370	78	1.330	36.0
380	74	1.335	36.3
390	71	1.340	36.7
400	68	1.345	37.1
410	64	1.350	37.5

# Solubility in KOH+Aq at 20°.—Continued.

G. KOH in 1 litre	G. KCl in 1 litre	Sp. gr.	Degrees Baumé
420 *	61	1.355	38.0
430	58	1.360	38.5
440	55	1.365	38.9
450	53	1.370	39.2
460	50	1.375	39.5
470	47	1.380	40.0
480	44	1.385	40.0
490	42	1.390	40.6
<b>#5</b> 00	40	1.397	41.0
୍ମ ବିଧାର ଆଧାର	38	1.405	41.5
520	35	1.410	42.0
530	<b>3</b> 3 <b>3</b> 3	1.415	42.0
540	31	1.420	$\frac{42.3}{42.6}$
550	29 ·	1.420 $1.425$	
560 *	29 27	1.425	43.0
570	25	1.435	43.5
580	$\frac{25}{24}$	1.440	43.7
590	2 <del>4</del> 23		44.0
600		1.445	44.3
610	22	1.450	44.6
* 620	21 20	1.455	45.0
630	20 18	1.460	45.5
640	18	1.465	45.9
650		1.470	46.2
660	16 15	1.475	46.5
670		1.480	46.8
680	15	1.485	47.0
690	15	1.490	47.5
700	15 14	1.495	47.9
700 710		1.500	48.2
710	14 13	1.505	48.5
720 730	13	1.510	48.8
730 740	13	1.515	49.1
750		1.520	49.5
760 760	13 12	1.525	49.7
760 770	12	1.530	50.0
770 780	12	1.535	50.3
790 790	11	1.540	50.6
800	11	1.545	51.0
810	10	1.550	51.3
- 820	10	1.560	51.5
830	9	1.565	51.8
	9	1.570	52.2
* *840 850	9	1.575 1.580	52.6
000	9	1.380	53.0

(Winteler, Z. Elektrochem, 1900, 7. 360.)

Kel+NaCl.

100 pts. KCl+NaCl+Aq sat. at 13-16° contain 30.18 pts. of the two salts. Hauer.)

100 pts. H₂O dissolve 13.92 pts. KCl and

30.65 pts. NaCl at 15.6°, and solution has sp. gr. = 1.233. (Page and Keightley.)

100 pts. H₂O dissolve 10.11 pts. KCl, 32.15 pts. NaCl, and 4.69 pts. K₂SO₄, and solution has sp. gr. = 1.250. (P. and K.)

100 pts. H₂O dissolve 29.9 pts. NaCl and

15.7 pts. KCl at 18.8% (Rüdorff.)

Solubility of KCl+NaCl in H₂O at t°. pts. H₂O dissolve pts. KCl and pts. NaCl.

ŧ°.	Pts. KCl	Pts. NaCl	t°	Pts. KCl	Pts. NaCl
10	12.5	29.7	60	24.6	27.2
20	14.7	29.2	70	27.3	26.8
30	17.2	28.7	80	30.0	26.4
40	19.5	28.2	90	32.9	26.1
50	22.0	27.7	100	34.7	25.8

(Precht and Wittgen, B. 14. 1667.)

100 pts. H₂O dissolve 13.99 pts. KCl+30.54 NaCl = 44.53 pts. mixed salts at 20°. (Nicol, Phil. Mag. (5) **31.** 385.)

Solubility of KCl in NaCl+Aq at 20°.

G. per 100 g. H ₂ O					
NaCl KCl					
0.0 6.5 13.0 19.5	34.52 29.37 4.71 0.42				

(Nicol, Phil. Mag. 1891, 31, 369.)

# Solubility of KCl+NaCl at t°.

•	G. per 100 g. H ₂ O			
t°	KCI	NaCl		
25 " 80 "	15.8 29.0 30.0 26.4	14.5 31.5 25.2 34.0		

(Soch, J. phys. Ch. 1898, 2. 46.

# Solubility of KCl+NaCl at ??

	G, salts in 100 g. H ₂ O						
NaCl	KCI	Solid phase					
9.89 18.35 29.88 31.57 33.17	28.34 22.75 16.28 10.91 5.65	KCl +NaCl NaCl					

(Uyeda, Mem. Col. Sc. Kioto, 1910, 2. 245.)

100 g. H₂O sat. with NaCl dissolve 0.216 gram-equivalent KCl at 25°.

100 g. H₂O sat. with K₂SO₄ dissolve 0.466 gram-equivalent KCl at 25°. (Euler, Z. phys. Ch. 1904, **49**. 315.)
Solubility in NaCl+Aq at 20°, 30°, 40° and

91°. Tables given in the original show that each salt diminishes the solubility of the other. (Leather, Chem. Soc. 1915, 108. (2) 13.)*

% HCl	% NaCl	% KCl
0	19.95	10.90
8.61	10.65	7.58
17.16	3.56	3.80
20.65	2.03	2.86
32.78	0.18	1.27

(Hicks, J. Am. Chem. Soc. 1915, 37, 846.) See also under NaCl.

KCl+SrCl₂.

100 pts. H₂O dissolve 11.2 pts. KCl and 48.6 pts. SrCl₂ at 14.5°. (v. Hauer.)

If SrCl₂+Aq, sat, at 14.5 is sat, with KCl at same temp., 100 pts. H₂O dissolve:

KCl SrCl ₂	:	•	33.2	11.2 48.6	50.7
				59.8	

(Mulder, Scheik, Verhandel, 1864.)

 $KCl+(NH_4)_2SO_4$ .

Sat. solution of KCl+(NH₄)₂SO₄ at b.-pt. when cooled to 14° has different composition from sat. solution of (NH₄)Cl and K₂SO₄, and its composition is changed by warming it with either KCl or (NH₄)₂SO₄. (Rüdorff.)

 $KCl+K_2SO_4$ .

100 pts. H₂O contain the following amounts salt at 18.75°: (1) sat. with KCl alone; (2) sat. first with KCl then with K2SO4;

- (3) sat. with K₂SO₄ and KCl together; (4) sat. first with K₂SO₄ then with KCl;
- (5) sat. with K₂SO₄ alone.

	1	2	3	4	5
KCl . K ₂ SO ₄ .		32.96 1.79	33.12 1.75	33.12 1.83	10.8

(Karsten.)

100 pts. H₂O sat. with both K₂SO₄ and KCl contain the following amounts.

					At 14.8°	
KCl K ₂ SO ₄	•	•	:	33.5	$\begin{array}{ c c } 28.2 \\ 2.0 \end{array}$	10.3
,					At 15.8°	
KCl K₂SO₄	•	:	:	33.6	$\begin{bmatrix} 27.9 \\ 2.3 \end{bmatrix}$	10.4
					At 16.1°	
${^{ m KCl}_{ m k_2SO_4}}$		:	:	33.6	27.1 3.3	10.4

(Kopp, A. 34. 264.)

Sat. K₂SO₄+Aq dissolves KCl only with pptn. of K2SO4, but sat. KCl+Aq dissolves some K2SO4 without any separation. (Karsten.)

Solubility of KCl+K SO₄: 100 pts. H₂O dissolve at to

t°	Pts. KÇl	Pts. K ₂ SO ₄	t°	Pts. KCl	Pts. K ₂ SO ₄
10	30.9	1.32	60	43.8	1.94
20	23.4	1.43	70	46.5	2.06
30	36.1	1.57	80	49.2	2.21
40	38.7	1.68	90	52.0	2.38
50	41.3	1.82	100	54.5	2.53

(Precht and Wittgen.)

100 g.  $\rm H_2O$  dissolve 34.76 g. KCl+2.93 g. K₂SO₄ at 25°. (Van't Hoff and Meyerhoffer, Z. phys. Ch. 1898, **27**. 75.) Sol. in 20% KC₂H₃O₂+Aq. (Stromeyer.) Quickly attacked by liquid NO₂ in the

presence of traces of moisture, with evolution of Cl₂. (Frankland, Chem. Soc. 1901, 79. 1361.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 829.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

100 g. hydrazine dissolves 8.5 pts. KCl at 12.5-13°. (de Bruyn, R. t. c. 1899, 18. 297.) 100 g. anhyd. hydroxylamine dissolve 12.3 g. KCl at 17-18°. (de Bruyn, Z. phys. Ch.

1892, **10.** 782.)

10

100 pts. alcohol of 0.900 sp. gr. dissolve 4.62 pts.; 0.872, 1.66 pts.; 0.834, 0.38 pt.; 0.817, 0.00 pt. KCl. (Kirwan.)

Sol. in 48 pts. bolling alcohol. (Wenzel.) Insol. in absolute alcohol containing LiCl. (Mitscherlich.)

At 15°, 100 pts. alcohol of p percentage by volume (S=sp. gr.) dissolve pts. KCl as follows:

30

20

S KCl	$0.984 \\ 19.8$	$0.972 \\ 14.7$	$0.958 \\ 10.7$		0.940 $7.7$
p S KCl	50 0.918 5.0	3	$\begin{array}{c} 60 \\ 0.896 \\ 2.8 \end{array}$		80 0.848 0.45
	(Scl	niff, A. 1	<b>18.</b> 365.)	p.	

100 pts. of a mixture of 40% alcohol with 60% H₂O dissolve 9.2 pts. KCl at 15°. (Schiff.)

Insol, in absolute alcohol or in 96% alcohol at 15° or below. At 20°, 100 pts. of the latter dissolve 0.04 pt.; at 25°, 0.06 pt.; at 30°, 0.20 pt. KCl. Dilute alcohol dissolves less KCl than the contained H₂O would dissolve by itself.

# POTASSIUM CHLORIDE

Solubility in dil. alcohol. D = sp. gr. of alcohol; S = solubility in 100 pts. alcohol at t°.

D =	D =0.9904		D =0.9848		0.9793	D ==	0.9726
t°	s	t°	s	t°	s	t°	s
0 4 22 25 34 52	23.2 24.8 29.4 30.2 32.8 37.5	4 20 27 30 37 60	20.9 25.5 26.6 27.5 29.0 35.2	4 21 28 43 	16.4 20.3 22.0 25.6	3 5 16 20 25 34	12.2 12.7 15.4 16.1 17.3 19.0
		D = 0.9390		=0.9390   D =0.8967			
D =	0.9573	D =	0.9390	D =	0.8967	D =	0.8244
D =	0.9573 S	D =	0.9390 S	D =	0.8967 S	D =	0.8244 S

(Gerardin, A. ch. (4) 5. 140.)

Solubility of KCl in dil. alcohol at 14.5°

~	100 ccm. contain				
Sp. gr.	Alcohol	Water	KCl		
1.1720		88.10	29.10		
1.1542	2.79	85.78	26.85		
1.1365	4.98	84.00	24.67		
1.1075	10.56	79.63	20.56		
1.1085	15.57	75.24	17.24		
1.0545	20.66	70.52	14.27		
1.0455	24.25	67.05	13.25		
0.9695	40.42	50.18	6.35		
0.9315	48.73	40.60	3.82		
0.8448	68.63	15.55	0.30		

(Bodländer, Z. phys. Ch. 7. 316.)

Solubility of KCl in ethyl alcohol. (G. KCl per 100 g. alcohol+Aq.)

Wt. % alcohol	at 30°	at 40°	Wt. % alcohol	at 30°	at 40°
0 5.28 9.43 16.9 25.1 34.1	38.9 33.9 30.2 24.9 19.2 15.6	41.8 35.9 33.3 27.6 21.8 17.2	43.1 55.9 65.9 78.1 86.2	11.1 6.8 3.6 1.3 0.4	13.1 8.2 4.1 1.6 0.5

(Bathrick, J. phys. Ch. 1896, 1. 160.)

Solubility of KCl in ethyl alcohol at 0°.

Concentration of alcohol Mol. g. alcohol per 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility	
0.25 0.50 1.00 3.00	285.15 277.95 271.10 265.50 208.80	3.80 3.73 3.64 3.45 2.81	

(Armstrong and Eyre, Proc. Roy. Soc. 1910, (A) **84**. 127.)

Solubility of KCl in ethyl alcohol +Aq at 25°.

Wt. % alcohol	G. KCl per 100 cc. sat. solution	Wt. % alcohol	G. KCl per 100 cc. sat. solution
0 10 20 30 40 50	31.18 23.93 17.89 13.27 9.40 6.26	60 70 80 90 100	4.18 2.27 0.93 0.31 0.08

(McIntosh, J. phys. Ch. 1903, 7. 350.)

100 pts. absolute methyl alcohol disselve 0.5 pt. at 18.5°; 100 pts. absolute ethyl alcohol dissolve 0.034 pt. at 18.5°. (de Bruyn, Z. phys. Ch. 10. 783.)

100 pts. 40% wood alcohol dissolve 9.2 pts. KCl. (Schiff.)

Solubility of KCl in methyl alcohol+Aq at 25°.

P = % by wt. of alcohol in alcohol+Aq. S = Sp. gr. alcohol+Aq sat. with KCl. L = millimols KCl in 100 ccm. of the solution.

$\begin{array}{c ccccc} 0 & 1.1782 & 417.4 \\ 10.6 & 1.125 & 329 \\ 30.8 & 1.033 & 183 \\ 47.1 & 0.9679 & 102 \\ 64.0 & 0.9064 & 46.1 \\ 78.1 & 0.8607 & 20.6 \\ \end{array}$	P	S 25°/4°	L
98.9 0.8242 9.9 100 0.7937 5.7	30.8 47.1 64.0 78.1 98.9	1.125 1.033 0.9679 0.9064 0.8607 0.8242	329 183 102 46.1 20.6 9.9

(Herz and Anders, Z. anorg. 1907, 55. 273.)

Solubility	of	KCl	in	methyl	alcohol.
------------	----	-----	----	--------	----------

t°	Concentra- tion of alcohol. Mol. g. alcohol per 1000 g. H ₂ O	Solubility 1 in 1000 q. H ₂ O	Molecular solubility
0  	0.25 0.50 1.00 3.00	283.55 280.00 276.35 267.85 238.10	3.81 3.76 3.71 3.60 3.18
25  	0.25 0.50 1.00 3.00	364.15 361.90 357.10 348.70 324.15	4.89 4.86 4.79 4.67 4.35

(Armstrong and Eyre, Proc. Roy. Soc. 1910 (A) 84, 127.)

At room temp. 1 pt. by weight is sol. in: 200 pts. methyl alcohol, D¹⁵ 0.7990. 750 " ethyl " D¹⁵ 0.3035.

Insol. in propyl alcohol. (Rohland, Z. anorg. 1899, **18**. 325.) 100 g. methyl alcohol dissolve 0.53 g. KCl

at 25°.

100 g. ethyl alcohol dissolve 0.022 g. KC

100 g. ethyl alcohol dissolve 0.022 g. KCl at 25°.

100 g. propyl alcohol dissolve 0.004 g. KCl at 25°.

100 g. isoamyl alcohol dissolve 0.0008 g. KCl at 25°.

(Turner and Bissett, Chem. Soc. 1913, **103**. 1909.)

Insol. in propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 276.)

Solubility of KCl in propyl alcohol.

		1 10	
t°	Concentra- tion of alcohol. Mol. g. per 1000 g. H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0	0.25 0.50 1.00	283.55 274.10 265.45 248.0	3.81 3.68 3.56 3.33
25 	0.25 0.50 1.00	365.10 355.40 347.70 331.50	4.90 4.77 4.67 4.45
			·

(Armstrong and Eyre, Proc. Roy. Soc. 1910, (A) **84**. 127.)

Insol. in fusel-oil. (Gooch, Am. Ch. J. 9. 53.)

Very sl. sol. in mixture of equal pts. absolute alcohol and ether. (Berzelius.)

500 mg. KCl treated with 10 g. of above mixture yield only 0.3 mg. to the liquid. (Lawrence Smith, Am. J. Sci. 16. 56.)

Insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184; Eidmann, C. C. 1899, II. 1014)

# Solubility of KC! in acetone+Aq at t.°

			•		
	%	100 g. of the solution contain			
t°	acetone	3 H ₂ O	G. acetone	, G.KCl	
30	0 5	$72.73 \\ 71.15$	$0.00 \\ 3.74$	27.27 25.11	
	$\begin{bmatrix} 9.09 \\ 20 \end{bmatrix}$	$69.62 \\ 64.88$	6 96 16.22	$\frac{23.42}{18.90}$	
	30	59.49	25.45	15.06	
	40 59	$\begin{array}{c} 53.17 \\ 45.98 \end{array}$	35.52 45.98	$\begin{array}{c} 11.31 \\ 8.04 \end{array}$	
	69 70	$\frac{37.97}{29.22}$	56.91 68.18	$\frac{5.12}{2.60}$	
	80 90	$\frac{19.82}{9.98}$	79.43 89.88	$0.76 \\ 0.13$	
	100	0.00	100.00	0.00	
40	0 5	71.31 69.62	0.00 3.67	28 69 26.72	
	9.09 15	$67.88 \\ 65.15$	6.79 11.51	$\frac{25.33}{32.34}$	
	20	62.97	15.75	21.28	
	80 85	19.81 14.94	79.34 84.66	$0.58 \\ 0.40$	
	90	10.00	89.84	0.16	
	95 100	4.97 0.00	94.96 100.00	$\begin{array}{c} 0.07 \\ 0.00 \end{array}$	
	<u> </u>				

Since there is but one liquid phase here, these figures represent the solubility of KCl in acetone+Aq at 30° and 40°.

(Snell, J. phys. Chem. 1898, 2, 484.)

The addition of KCl to mixtures of acetone and H₂O will cause a division into two layers. The following table gives the temp, at which sat. solutions of KCl in acetone+Aq of varying concentrations separate into two layers and also the compositions of the sat. solutions of KCl in acetone+Aq.

%	Temp.	Temp. 100 g. of solution contain		
acetone	division	G. H ₂ O	G. acetone	G. KCl
26	46.5°		!	
30	40.0	59.36	25.44	15.20
40	34.2	53.21	35.47	11.32
50	32.6	45.97	45.97	8.06
60	33.3	37.86	56.80	5.34
70	35.5	29.09	68.25	2.66
75	39.0			
80	45.6	19.80	79.20	1.00
			·	·

(Snell.)

The following table gives the compositions of the solutions of KCl in acetane. Aq at the points at which the solution just divides into two layers. Temp.=40°.

100 g. of the solution contain					
G. H ₂ O	G. acetone	G. KCl			
<b>5</b> 6.68	28.63	14.68			
53.05	35.67	11.29			
50.34	39.82	9.83			
47.60	43.83	8.58			
44.35	48.36	7.29			
42.68	50.75	6.57			
38.53	56.26	5.21			
36.59	58.84	4.57			
32.37	64.18	3.45			
30.62	66.43	2.95			
28.12	69:45	2.44			

(Snell.)

The addition of KCl to aqueous acetone causes the separation of the liquid into two layers. The following table gives the composition of these layers at 40°.

G. H ₂ O	G. acetone	G. KCl
55.20	31.82	12.99
54.27	36.69	12.03
53.27	35.44	11.29
51.69	37.76	10.55
51.23	48.50	10.27
50.34	39.88	9.77
49.08	41.67	9.26
48.02	43.18	8.79
47.62	43.73	8.64
46.49	45.34	8.17
45.65	46.52	7.83
45.64	46.57	7.79
58.99	25.24	15.77

Lower layer contains per 100 g. of solution

G. acetone	G. KCl
69. 42 67. 83 65. 97 64. 83 63. 79 62. 01 60. 49 57. 67 56. 96	2.44 2.72 3.07 3.33 3.56 3.92 4.24 4.89 5.04 5.25
54.36 53.78 74.91	5.66 5.81 1.43
	69. 42 67. 83 65. 97 64. 83 63. 79 62. 01 60. 49 57. 67 56. 96 56. 17 54. 36 53. 78

(Snell.)

Solubility in acetone +Aq at 20°.

A = ccm. acetone in 100 ccm. acetone + Aq. KCl = millimols KCl in 100 ccm. of the solution.

<b>K</b> Cl
410.5
351.7
286.6
223.7
166.5
115.4
71.2
38.5
12.9
2.0
1

(Herz and Knoch, Z. anorg. 1904, 41. 317.)

Solubility of KCl in glycerine+Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq. KCl = millimols KCl in 100 cc. of the solution.

G	KCI	Sp. gr.
0 13.28 25.98 45.36 54.23 83.84	424.5 383.4 339.3 271.4 238.5 149.0	1.1800 1.1848 1.1935 1.2106 1.2189 1.2590
100	110.6	1.2860

(Herz and Knoch, Z. anorg. 1905, 45, 267.)

Insol. in CS₂. (Baeyer; Arctowski, Z. anorg. 1894, **6**. 257.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethy lacetate. (Naumann, B. 1910, **43**. 314.)

Solubility of KCl in organic compounds +Aq at 25°.

Compound	G. comp. per l. H ₂ O	G. KCl per 100 g. sat. solution				
Water Acetaldehyde Paraldehyde Glycerol Glycol Mannitol	11.01 11.07 13.01 15.51 62.05 45.53 136.59	26.89 27.05 26.42 25.58 26.43 25.26 24.86 24.46				

(Armstrong and Eyre, Proc. Roy. Soc. 1913, A, 88. 234.)

Solubility	y in pyridine+	Aq at 10°.	
Solv	Solvent		
H ₂ O	Pyridine	solution contain g. KCl	
100	100 0		
90	10	19.76	
80	20	16.37	
70	30	13.19	
60	40	10.05	
50	50	6.34	
40	60	3.335	
30	70	1 245	
20	80	0.24	
10	90	0.039	
0	100		

(Schroeder, J. pr. 1908, (2) 77, 268.)

Insol. in anhydrous pyridine and in 97% pyridine + Aq.

Very sl. sol. in 95% pyridine+Aq.

Sl. sol. in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, **30**. 1107.)

100 ccm. of a sat. solution of KCl in furfurol at 25° contain 0.085 pts. by wt. KCl. (Walden, Z. phys. Ch. 1906, **55**. 713.) 100 g. H₂O dissolve 246.5 g. sugar+44.8 g.

100 g. H₂O dissolve 246.5 g. sugar+44.8 g. KCl at 31.25°; 100 g. sat. solution contain 62.28 g. sugar+11.33 g. KCl. (Köhler, Z. Ver. Zuckerind, 1897, 47. 447.)

Solubility in glucose+Aq at 25°.

Concentration of glucose in 9. mol. per 1000 g H ₂ O	Solubility in 1000 g. H ₂ O	Molecular solubility
0.25 0.50 1.0 3.0	362.70 366.10 369.85 376.25 402.25	4.86 4.91 4.96 5.04 5.39

(Armstrong and Eyre, Proc. Roy. Soc. 1910, 84. 127.)

Potassium manganic chloride, K₂MnCl₅.

Sol. in H₂O; less sol. in NH₄Cl+Aq; unstable. (Neuman, M. 1894, **15.** 492.)

Potassium rhodium chloride.

See Chlororhodite, potassium.

Potassium ruthenium sesquichloride.

See Chlororuthenite, potassium.

Potassium ruthenium tetrachloride.

See Chlororuthenate, potassium.

Potassium tellurium chloride.

See Chlorotellurate, potassium.

Potassium thallic chloride, 3KCl, TlCl₃+2H₂O.

Sol. in H₂O. Not decomp. by boiling H₂O (Rammelsberg.)

Potassium thorium chloride, KCl, 2ThCl₄+
18H₂O.

Deliquescent; sol. in H₂O and alcohol. (Berzelius.)

Potassium tin (stannous, chloride (Potassium chlorostannite), KC! SnCl₂+H₂O.

Decomp. by H₂O; sol. in hot HCl or KCl+Aq. (Remsen and Ri hardson, Am. Ch. J. 14. 90.)

2KCl, SnCl₂+H₂O. Partially decomp. by dissolving in H₂O. Annual Posts Posts 94.

+2H₂O. Very sol. in hot, and but slightly in cold HCl+Aq or KCl+Aq. (Remsea and Richardson.)

4KCl, SnCl₂+3H₂O. (Poggiale, C. R. **20.** 1182.)

Does not exist. (Remsen and Richardson.)

Potassium tin (stannic) chloride, 2KCl, SnCl₄. See Chlorostannate, potassium.

Potassium tungsten chloride, K2(OH)WCl5.

Decomp. by moisture. Insol. in organic solvents. (Olsson, B. 1913, **46**. 581.)

K₃W₂Cl₉. Sol. in H₂O. Nearly insol. in most organic solvents. (Olsson.)

Potassium uranium chloride, UCl₄, 2KCl.

Very hydroscopic; sol. in H₂O with decomp.; sol. in acetic acid. Decomp. by alcohol. Nearly insol. in ether. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Potassium uranyl chloride,  $K_2(UO_2)Cl_4$ .

Very sol. in H₂O. Moderately sol. in dil. alcohol. (Aloy, Dissert. 1901.) +2H₂O. Very sol. in H₂O and alcohol. (Arfvedson.)

Sol. in H₂O, with decomp. and separation of KCl, unless H₂O is acidulated with HCl. (Peligot, A. ch. (3) 5. 37.)

# Solubility in H₂O at t°.

t°	100 pts	of the scontain	olution	Solid phase
Ü	Pts. UO2	Pts. Cl	Pts. K	
0.8	38.57	13.59	3.86	UO ₂ Cl ₂ , 2KCl, 2H ₂ O +KCl
$\frac{14.9}{17.5}$	$33.71 \\ 37.36$	13.51 14.50	5.27	"
$\frac{25.0}{41.5}$	$35.01 \\ 35.27$	15.26 15.92	7.39	"
50.0 60.0	34.18 34.19	$16.56 \\ 17.25$	9.14	" UO ₂ Cl ₂ , 2KCl, 2H ₂ O
71.5 78.5	33.55 35.26	17.44 18.24	9.28 9.95	"

(Rimbach, B. 1904, 37, 463.)

790

Potassium uranyl chloride is decomp. by H₂O at temp. below 60°. Above 60°, it is sol. in H₂O without decomp.

Potassium vanadium chloride, VK₂Cl₅+H₂O. Difficultly sol. in H₂O and alcohol. (Stähler, B. 1904, **37**. 4412.)

# Potassium vttrium chloride.

Sol. in H₂O with evolution of heat.

# Potassium zinc chloride, 2KCl, ZnCl₂.

Very deliquescent. Sol. in 1 pt. cold, and in all proportions of hot H₂O. (Pierre, A. ch. (3) 16. 248.)

+H₂O. Not very deliquescent. Can be recryst. (Ephraim, Z. anorg. 1908, **59.** 58.) KCl, ZnCl₂+2H₂O. Not deliquescent.

KCl, ZnCl₂+2H₂O. Not deliquescent. Cannot be recryst. without decomp. (Ephraim.)

# Potassium chloroiodide, KCl2I.

Very unstable. (Wells and Wheeler, Sill. Am. J. **143.** 475.)

KCl₄I. Sol. in H₂O with decomp. Ether dissolves out ICl₃. (Filhol, J. Pharm. **25**. **433**.)

#### Potassium fluoride, KF or K₂F₂.

Very deliquescent. Very sol. in  $H_2O$ . Sl. sol. in HF+Aq. Easily sol. in conc.  $KC_2H_3O_2+Aq$ . Insol. in alcohol. (Berzelius.) Sol. in dilute alcohol. (Stromeyer, A. **100**. 83.)

Sp. gr. of aqueous solution of KF at 18° containing—

5 10 20 30 40% KF. 1.041 1.084 1.117 1.272 1.378 (Kohlrausch, W. Ann. **1879.** 1.)

Solubility in HF+Aq at 21°. (G. per 100 g.  $H_2O$ .)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HF	KF	HF	KF
11.36 29.6 74.20 10	1.21 1.61 3.73 4.03 6.05 9.25 11.36	72.0 61.0 40.4 32.5 30.4 29.9 29.6	15.98 17.69 20.68 28.60 41.98 53.71 74.20	31.4 33.4 35.6 38.4 46.9 61.8 74.8 105.0 169.5

(Ditte, C. R. 1896, 123, 1282.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Very sl. sol. in liquid NH₈. (Gore, Am. Ch. J. 1898, **20**. 829.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

KF will "salt out" acetone from aqueous solution. The table shows the composition of the solutions at the points at which inhomogeneous solutions of KF, acetone and H₂O just become homogeneous at 20°.

100 g. of the solution contain:

	G. KF	G. H₂O	G. acetone	G. KF	G. H ₂ O	G. acetone
	5.75	58.91	35.34	0.61	31.95	67.44
	5.00	56.28	38.72	0.50	29.92	69.58
	3.84	52.25	43.91	28.42	69.76	1.82
i	3.06	49.05	47.89	25.74	71.24	3.02
	2.61	46.84	50.55	22.35	72.99	4.66
	2.22	44.79	52.99	20.28	73.80	5.90
	14.95	73.66	11.39	18.71	74.10	7.19
,	11.46	70.77	17.77	16.31	73.97	9.72
	9.17	67.30	23.53	12.40	72.01	15.59
•	7.72	64.01	28.27	33.86	65.73	0.397
•	7.07	62.03	30.90	29.97	68.54	1.50
	6.43	60.50	33.07	22.05	73.41	4.54
	1.38	40.55	58.06	17.82	74.01	8.16
	0.979	36.42	62.60	14.34	73.29	12.37
	0.693	32.69	66.61	44.24	55.52	0.240
•	0.57	31.50	67.93	33.34	65.66	1.00
	0.89	35.74	63.36	29.86	68.54	1.60
	0.75	33.84	65.41	24.38	72.16	3.45
				1	<u> </u>	<u> </u>

At the first quadruple point where the hydrate, acetone, water and vapor are in equilibrium the upper layer contains 98% acetone, while the lower layer contains in 100 g., 46.3 g. KF. A sat. solution of KF will thus dehydrate acetone to the extent of 98%.

(Frankforter and Cohen, J. Am. Chem. Soc. 1914, **36.** 1115.)

Similar data are given for KF in ethyl and propyl alcohol by Frankforter and Frary. (J. phys. Ch. 1913, 17, 402.)

(J. phys. Ch. 1913, 17. 402.) +2H₂O. Very deliquescent. (Guntz, A.

ch. (6) **3.** 20.)

Sat. aq. solution at 18° contains 45.3% KF (de Forcrand, C. R. 1911, 152. 1210.)

Sp. gr. of solution sat. at 18° = 1.502, and contains 48% KF. (Mylius and Funk, B. 1897, **30.** 1718.)

+4H₂O. Not deliquescent. (de Forcrand, C. R. 1911, **152**. 1075.)

Sat. aq. solution at 18° contains 35.96% KF. (de Forcrand, C. R. 1911, 152. 1210.)

# Potassium hydrogen fluoride, KF, $HF = KHF_2$ .

Easily sol. in  $H_2O$ . Sl. sol. in  $H_2O$  containing HF. Easily sol. in conc.  $KC_2H_3O_2+$ Aq. Sol. in dil. alcohol, but insol. in absolute alcohol.

KF, 2HF. Deliquescent. Decomp. by  $H_2O$  with absorption of heat. (Moissan, C. R. **106.** 547.)

KF, 3HF. As above. (Moissan.)

Potassium manganic fluoride.

See Fluomanganate, potassium.

Potassium scandium fluoride,  $K_a$ ScF₆. Sol. in H₂O. Decomp. by acids. (R. J. Meyer, Z. anorg. 1914, **86**, 275.)

Potassium silicon fluoride.

See Fluosilicate, potassium.

Potassium tantalum fluoride. See Fluotantalate, potassium.

Potassium tellurium fluoride, KF, TeF₄.

Decomp. by H₂O. (Högbom, Bull. Soc. (2) **35**. 60.)

Potassium thallic fluoride, 271F₃, KF.
Decomp. by moisture. Insol. in HF.
(Gewecke, A. 1909, **366**. 226.)

Potassium thorium fluoride, 2KF,  $ThF_4+4H_2O$ .

Nearly insol. in H₂O. Sol. in HF+Aq. KF, ThF₄. Precipitate. (Chydenius.)

Potassium tin (stannous) fluoride, 2KF, 3SnF₂+H₂O. Sol, in H₂O. (Wagner, B. **19.** 896.)

Potassium tin (stannic) fluoride. See Fluostannate, potassium.

Potassium titanium tetrafluoride. See Fluotitanate, potassium.

Potassium titanium sesquifluoride, 4KF, Ti₂F₆.

Precipitate. Very sl. sol. in H₂O. Sol. in dil. acids. (Piccini, C. R. 97. 1064.)

See also Fluosesquititanate, potassium.

Potassium titanyl fluoride.

See Fluoxypertitanate, potassium.

Potassium tungstyl fluoride.

See Fluoxytungstate, potassium.

Potassium uranium fluoride, KF, UF₄.

Insol. in H₂O and dil. acids. Difficultly sol. in conc. HCl+Aq. Sol. in conc. H₂SO₄. (Bolton, J. B. **1866**. 212.)

Potassium uranyl fluoride.

See Fluoxyuranate, potassium.

Potassium vanadium sesquifluoride. See Fluovanadate, potassium.

Potassium vanadium tetrafluoride (?).

Easily sol, in H₂O. Insol, in alcohol.
(Berzelius.)

Potassium zinc fluoride, KF, ZnF₂.
Sol. in H₂O. (R. Wagner.)
2KF, ZnF₂. Sol. in H₂O. (Berzelius.)

Potassium zirconium fluoride.

Nee Fluozirconate, rotassium.

Potassium fluoride hydrogen peroxide, KF, H₂O₅.

Not hydroscopic. Very sol. in  $H_2C$ . Is not decomp. at 70° and only partially so at 110° (Tenatar, Z. anorg. 1901, 28, 255.)

Potassium fluoride vanadic acid.

See Fluoxyvanadate, potassium.

Potassium hydride, KH.

Decomp. by H₂O. Insol. in oil of turpentine, benzene, ether and CS₂. (Moissan, C. R. 1902, **134**. 18.)

Potassium hydrosulphide, KSH.

Very deliquescent, and sol. in H₂O with gradual decomp. Crystallizes with ½H₂O. Sol. in alcohol.

Potassium hydroxide, KOH.

Very deliquescent, and sol. in H₂O with evolution of much heat. 100 pts. KOH, exposed over H₂O at 16-20° take up 460 pts. H₂O in 56 days. (Mulder.)

1 pt. KOH dissolves in 0.5 pt. cold H₂O (Lowitz); in 0.47 pt. cold H₂O (Bineau, C. R. 41. 509); in 1 pt. H₂O. (Abl.)

Solubility of KOH in H₂O at t°.

ı				
	t°	G. КОН р	er 100 g.	Solid phase
	v	H ₂ O	solution	Solid phase
l	22	3.7	3.6	Ice
	-20.7	22.5	18.4	**
1	-65.2	44.5	30.8	**
	-36.2	36.2	26.6	KOH.4H₂O
	-32.7	77.94	43.8	"
	33	80	44.4	KOH.4H₂O+KOH.
		Į.	1	$2\mathrm{H}_2\mathrm{O}$
	-23.2	85	45.9	KOH.2H ₂ O
	0	97	49.2	"
	10	103	50.7	"
	15	107	51.7	"
	20	112	52.8	"
	30	126	55.76	**
	32.5	135	57.44	KOH.2H ₂ O+KOH.
				H ₂ O
	50	140	58.33	KOH.H₂O
	100	178	64.03	" .
	125	213	68.06	" '
	143	311.7	75.73	"
	1	•	I	1

(Pickering, Chem. Soc. 1893, 63, 908.)

100 pts. KOH are sol. in 93.4 pts.  $H_2O$  at 15° or 100 pts.  $H_2O$  dissolve 107 pts. KOH at 15°. Sp. gr. = 1.5355 at 15°.

All higher values found in solubility tables are incorrect. (Ferchland, Z. anorg. 1902, 30. 133.)

100 g. sat. aq. solution at 15° contain 50.48 g. KOH. (de Forcrand, C. R. 1909, 149. 719.)

Sast. KOH+Aq boils at 157.7° (Griffiths); 340°. (Gerlach).

B.-pt. of KOH+Aq containing pts. KOH to 100 pts. H₂O.

Bpt.	Pts. KOH	Bpt.	Pts. KOH
105°	20.5	215°	210.5
110	34.5	220	219.8
115	<b>▲</b> 6.25	225	230.0
120	• 57.5	230	240.9
125	67.5	235	251.9
130	76.8	240	263.1
135	85.0	245	274.4
140	92.5	250	285.7
145	99.8	255	298.5
150	106.5	260	312.5
155	114.05	265	328.0
160	121.7	270	343.5
165	129.35	275	359.0
170	137.0	280	375.0
175	144.8	285	391.0
180	152.6	290	408.2
185	160.4	295	425.5
190	168.2	300	444.4
195	176.5	310	484.0
200	185.0	320	526.3
205	193.5	330	571.5
210	202.0	340	623.6

(Gerlach, Z. anal. 26, 464.)

Sp. gr. and b-pt. of KOH + Aq according to Dalton.

% K2O	Sp. gr.	Bpt.	% K2O	Sp. gr.	Bpt.
4.7	1.06	100.56°		1.44	123.89°
9.5	1.11	101.11	39.6	1.47	129.44
13.0	1.15	101.66	42.9	1.52	135.56
16.2	1.19	103.33	46.7	1.60	143.33
19 5	1.23	104.44	51.2	1.68	160 00
23 4	1 28	106.66	56.8	1.78	188 22
26.3	1.33	109 44	63.6	1.88	215.56
29.4	1.36	112.22	72.4	2.00 f	315 56
32.4	1.39	115.56	84.0	2.2	red heat
34.4	1.42	118.89	100	2.4	

Sp. gr. of KOH +Aq at 15°.

% K2O	Sp. gr.	% K2O	Sp. gr.	% K2O	Sp. gr.
0.568	1.0050	10 750	1.1059	20.935	1.2268
1.697	1.0153	11 882	1.1182	21.500	1.2342
2.829	1.0560	13 013	1.1308	22.632	1.2493
3.961	1.0369	14 145	1.1437	23.764	1.2648
5.002	1.0478	15.277	1.1568	24.895	1.2805
6.224	1.0589	16.408	1.1702	26.027	1.2966
7.355	1.0703	17.540	1.1839	27.158	1.3131
8.487 9.619	1.0819 1.0938	18.671 -19.803	1.1979 1.2122	28.290	1.3300

(Zimmerman, N. J. Pharm. 18, 2. 5.

Sp. gr. of KOH + Aq.

% K2O	Sp. gr.	% K2O	Sp. gr.	% K ₂ O	Sp. gr.
2.44 4.77 7.02 9.20 11.28 13.30 15.38 17.40 19.34 21.25	1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18	23.14 24.77 26.34 27.86 29.34 30.74 32.14 33.46 34.74 35.99	1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40	37.97 40.17 42.31 44.40 46.45 48.46 50.09 51.58 53.06	1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58

(Richter.)

Sp. gr. of KOH+Aq at 15°. a = sp. gr. if % is  $K_2O$ ; b = sp. gr. if % is KOH.

				·	
%	a	b	%	а	b
1	1.010	1.009	31	1.370	1.300
2	1.020	1.017	32	1.385	1.311
3	1.030	1.025	33	1.403	1.324
4	1.039	1.033	34	1.418	1.336
5	1.048	1.041	35	1.431	1.349
6	1.058	1.049	36	1.445	1.361
7	1.068	1.058	37	1 460	1.374
8	1.078	1.065	38	1.475	1.387
9	1.089	1.074	39	1.490	1.400
10	1.099	1.083	40	1.504	1.411
11	1.110	1.092	41	1.522	1.425
12	1.121	1.110	42	1.539	1.438
13	1.132	1.111	43	1.564	1.450
14	1.143	1.119	44	1.570	1.462
15	1.154	1.128	45	1.584	1.472
16	1.166	1.137	46	1.600	1.488
17	1.178	1.146	47	1.615	1.499
18	1.190	1.155	48	1.630	1.511
19	1.202	1.166	49	1.645	1.527
20	1.215	1.177	50	1.660	1.539
21	1.230	1.188	51	1.676	1.552
22	1.242	1.198	52	1.690	1.565
23	1.256	1.209	53	1.705	1.578
24	1.270	1.220	54	1.720	1.590
25	1.285	1.230	55	1.733	1.604
26	1.300	1.241	56	1.746	1.618
27	1.312	1.252	57	1.762	1.630
28	1.326	1.264	58	1.780	1.641
29	1.340	1.278	59	1.795	1.655
30	1.355	1.288	60	1.810	1.667

(Calculated by Gerlach, Z. anal. 8. 279, after Zimmermann, N. J. Pharm. 18, 2. 5, and Schiff, A. 107. 300.)

Sp. gr. of KOH+Aq at 15°.

% кон	Sp. gr.	% кон	Sp. gr.
4.2 8.4 12.6 16.8	1.0382 1.0776 1.1177 1.1588	21.0 25.2 29.4	1.2008 1.2439 1.2880

(Kohlrausch, W. Ann. 1879. 1.)

Sp	Sp. gr. of KOH+Aq at 15°.				
% кон	Sp. gr.	% кон	Sp. gr.		
10 20 30 40	1.077 1.175 1.288 1.411	50 60 70	1.539 1.667 1.790		

(Gerlach, Z. anal. 27. 275, calculated from Schiff, A. 107. 300.)

Sp. gr. of K₂O+Aq at 15°.

% K ₂ O	Sp. gr.	% K2O	Sp. gr
5 10 15 20 25	1.054 1 111 1.171 1.231 1.294	30 35 40 45	1.358 1.428 1.500 1.576

(Hager, Adjumenta varia, Leipsic, 1876.)

Sp. gr. of KOH+Aq at 20° containing 2 mols. KOH to 100 mols.  $H_2O=1.05325$ . (Nicol, Phil. Mag. (5) 16. 122.)

Sp. gr. of KOH+Aq at 15°.

жон Кон	Sp. gr.	кон	Sp. gr.	кон	Sp. gr.
52	1.53822	34	1.33313	16	1.14925
51	1.52622	33	1.32236	15	1.13955
50	1.51430	32	1.31166	14	1.12991
49	1.50245	31	1.30102	13	1.12031
48	1.49067	30	1.29046	12	1.11076
47	1.47896	29	1.27997	11	1 10127
46	1.46733	28	1.26954	10	1.09183
45	1.45577	27	1.25918	9	1.08240
44	1.44429	26	1.24888	8	1.07302
43	1.43289	25	1.23866	7	1.06371
42	1.42150	24	1.22849	6	1.05443
41	1.41025	23	1.21838	5	1.04517
40	1.39906	22	1.20834	4	1.03593
39	1.38793	21	1.19837	3	1.02671
38	1.37686	20	1.18839	2	1.01752
37	1.36586	19	1.17855	1	1.00834
36	1.35485	18	1.16875	0	0.99918
35	1.34396	17	1.15898		

(Pickering, Phil. Mag. 1894, (5) 37. 375.)

Sp. gr. of N solution at  $18^{\circ}/4^{\circ} = 1.0481$ . (Loomis, W. Ann. 1896, **60.** 55°C.)

Sp. gr. of KOH+Aq. (% KOH 6.87 12.10 Sp. gr. 29°/20° 1.0601 1.1025 (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 27°.)

KOH+Aq containing equal pts. of KOH and H₂O freezes at --54. (Guyton-Morveau, Gm.-K. **2**, **1**. 18.)

KOH is completely miscible with NaOH and with RbOH in both the inquid and the solid states. (Hevesy, Z. phys. Ch. 1910, 73. 667.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 828.)

Abundantly sol. in strong alcohol or wood-spirit.

See below under KOH+2H₂O.

Readily sol. in glycerine.

Sol. in not less than 25 pts. of ether. (Boullay.) Soi. in much more than 25 pts. of ether. (Connell.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann, B. 1904, 37, 3601.)

Insol. in acetone. Readily sol. in fusel

Insol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

Sol. in aqueous solution of mannite. (Favre, A. ch. (3) 11. 76.)

The composition of the hydrates formed by KOH at different dilutions is calculated from determinations of the lowering of the fr-pt. produced by KOH and of the conductivity and sp. gr. of KOH+Aq. (Jones, Am. Ch. J. 1905, 34. 337.)
+H₂O.

+12O. Very deliquescent, and sol. in H₂O with absorption of much heat.

100 g. sat. solution in H₂O at 30° contain 55.75 g. anhyd. KOH. (de Waal, Dissert. 1910.)

Solubility of KOH+2H₂O in alcohol+Aq at 30°.

% КОН	% alcohol	% H ₂ O
55.75 54.81	0 0.43 	44.25 44.76
31.0 28.99 27.67 27.20 26.25	57.50 65.07 69.92 73.01 81.98	11.50 5.94 2.41 negative

*Separates into two layers.

(de Waal, Dissert, 1910.)

+4H₂O.

### Potassium hydrogen titanium diimide, Ti(NH)NK.

Decomp. by H₂O and alcohol. Insol. in all ord. indifferent organic solvents. (Ruff, B. 1912, 45. 1371.)

#### Potassium iodide, KI.

Deliquescent only in very moist air. Very sol. in H₂O with absorption of heat.

The temp. of H₂O can be lowered 24° by

dissolving KI. (Baup.)

140 pts. KI dissolved in 100 pts. H₂O at 10.8° lower the temp. 22.5°. (Rüdorff, Pogg. **136.** 276.)

100 pts. H₀ dissolve 126.6 pts. KI at 0° (Kremers); 127.8 pts. KI at 0° (Mulder); 127.9 pts. KI at 0°. (Gerardin.)

By boiling, 100 pts. H₂O dissolve 221 pts. KI at 120° (Baup); 222.2 pts. KI at 120° (Gay-Lussac); 222.6 pts. KI at 118.4° (Mulder); 223.58 pts. KI at 117° (Legrand); 223.6 pts. KI at 117°. (Gerardin.)

Between these temps, the solubility in-

creases proportional to temp.

Sol. in 0.735 pt. H₂O at 12.5°; in 0.709 pt. H₂O at 18°; in 0.7 pt. H₂O at 18°; in 0.45 pt. H₂O at 120°. (Graham-Otto.)

100 pts. KI + Aq sat. at 15-16° contain 58.07 pts. KI.

100 pts. KI +Aq sat. at 15-16° contain 58.07 pts. KI. (v. Hauer, J. pr. 98, 137.)
100 pts. H₂O at 12.5° dissolve 136 pts.; at 16°, 141 pts. KI. (Baup.)
100 pts. H₂O at 18° dissolve 143 pts. KI; at 120°, 271 pts. (Gay-Lussac.)
Sol. in 0.79 pt. H₂O at 0°; in 0.70 pt. H₂O at 20°; in 0.63 pt. H₂O at 48°; in 0.57 pt. H₂O at 60°; in 0.53 pt. H₂O at 80°; in 0.51 pt. H₂O at 100°. (Kremers, Pogg. 97, 15.)

Sol. in 0.71 pt. H₂O at 15°. (Eder, Dingl. **221.** 89.)

#### Solubility of KI in 100 pts. H₂O at t°.

t°	Pts. KI	t°	Pts. KI	t°	Pts. KI
0	127.9	19	143.4	38	159
1	128.7	20	144.2	39	160
2	129.6	21	145.1	40	160
$egin{array}{c} 1 \ 2 \ 3 \end{array}$	130.4	22	145.9	41	161
4	131.2	23	146.7	42	162
<b>4</b> 5	132.1	24	147.5	43	163
6	132.9	25	148.3	44	164
7	133.7	26	149.1	45	164
8	134.5	27	149.9	46	165
9	135.3	28	150.7	47	166
10	136.1	29	151.5	48	167
11	137.0	30	152.3	49	168
12	137.8	31	153	50	168
13	138.6	32	154	51	169
14	139.4	33	155	52	170
15	140.2	34	156	53	171
16	141.0	35	156	54	172
17	141.8	36	157	55	172
18	142.6	37	158	56	173
	1 1		1	1 1	1

Solubility of KI in 100 pts., etc.—Continued.

			- /		
t°	Pts. KI	t°	Pts. KI	t°	Pts. KI
57	174	78	191	99	208
58	175	79	192	100	209
59	175	80	192	101	210
60	176	81	193	102	211
61	177	82	194	103	212
62	178	83	195	104	213
63	179	84	196	105	213
64	180	85	197	106	214
$6\overline{5}$	180	86	197	107	215
66	181	87	198	108	216
67	182	88	199	109	217
68	183	89	200	110	218
69	184	90	201	111	219
70	184	91	202	112	$\frac{1}{220}$
71	185	92	202	113	220
$7\hat{2}$	186	93	203	114	$\frac{221}{221}$
73	187	94	204	115	222
74	188	95	205	116	223
75	188	96	206	117	223.6
76	189	97	207	***	220.0
77	190	98	208		
• •	100	00	200		

(Mulder, calculated from his own and other observations, Scheik. Verhandel. 1864. 63.)

Solubility of KI in 100 pts. H₂O at t°.

t°	Pts. KI	t°	Pts. KI	t°	Pts. KI
-22.65	107 2	21.05	143.3	71.1	183.5
-22.35	106.6	25.6	146.6	74.75	185.6
-16.8	111.1	29.1	149.6	81.6	192.0
-11.35		37.3	156.7	86.35	
-5.9	120.4	42.3	160.3	93.5	200.3
12.05	126.1	45.75		100.7	205.6
$+3.25 \\ 9.55$		$51.8 \\ 55.05$	$167.6 \\ 169.1$	$\frac{110.2}{113.7}$	$216.1 \\ 218.8$
12.75			173.4	113.7	210.0
12.9	137.9	65.0	178.3		
12.0	10	00.0	110.0	<u> </u>	

(Coppet, A. ch. (5) **30.** 417.)

Solubility is represented by a straight line of the formula 126.23+0.8088t. (Coppet.)

Solubility of KI in 100 pts. H₂O at high temp.

t°	Pts. KI	t°	Pts. KI
124	233.9	144	264.6
133	249.3	175	310.4

(Tilden and Shenstone, Phil. Trans. 1884. 23.)

If solubility S = pts. KI in 100 pts. solution, S = 55.8 + 0.122t from 0° to 165°. (Etard, C. R. 98. 1432.)

Sat.	KI + Aq	contains	% KI	at t°.
------	---------	----------	------	--------

t°	% KI	t°	% KI
-21	50.7	78	64.8
-21	51.0	96	66.9
-21	51.2	150	70.6
-19	52.2	151	70.9
-15	53.2	175	71.6
-9	54.5	176	72 7
0	56.9	190	73.8
+21	59.3	193	74.5
44	60.8	213	75.7
72	64.3		

(Étard, A. ch. 1894, (7) 2, 542.)

Solubility of KI in 100 g. H₂O at t°.

t°	g. KI	t°	g. KI.
$     \begin{array}{r}       -1 \\       -5 \\       -4 \\       -10 \\       -14   \end{array} $	122.2 119.8 117.4 115.1 75.8	$     \begin{array}{r}       -11.5 \\       -9.5 \\       -7 \\       -6 \\       -5     \end{array} $	64.7 51.5 42.6 34.4 25.7

(Meusser, Z. anorg. 1905, 44. 80.)

102.70 pts. by weight are contained in 100 cc. KI+Aq sat. at  $25^{\circ}$ , or 59.54 pts. in 100 g. of solution; sp. gr. = 1.7254.

94.05 pts. by weight are contained in 100 cc. KI+Aq sat. at 0°, or 56.34 pts. in 100 g. of solution; sp. gr. = 1.6699. (Walden, Z. phys. Ch. 1906, **55**. 715.)

# Solubility of KI in H2O at low temperatures.

t°  % KI	Solid phase	t°	% KI	Solid phase
-12.538	Ice	-22		KI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	-20  -15		"
-20 48	"	- 10	54.5	"
-22.5 51.2 $-23.2 51.9$		- 5 0	$55.4 \\ 56.4$	"

(Kremann and Kershbaum, Z. anorg. 1907, **56.** 218.)

149.26 g. KI dissolve in 100 g.  $H_2O$  at  $25^{\circ}$ . (Amadori and Pampanini, Rend. Acc. Linc.  $1911,\ V,\ 20.\ 473.$ )

60.39 g. in 100 g. KI+Aq sat. at 25°. (Parsons and Whittemore, J. Am. Chem. Soc. 1911, **33.** 1934.)

56.1 g. in 100 g. KI+Aq set. at 0°; 60.35 g. in 100 g. KI+Aq sat. at 30°. (Van Dam and Donk, Chem. Weekbl. 1911, **8.** 848.)

Sp. gr. of KI+Aq at 21°.

χ̈́ι ·	Ip. gr.	%	Sp. gr.	Ki	Sp. gr.
1 2 3 4 5 6	1.0075 1.0151 1.0227 1.0305 1.0384 1.0464	21 22 23 24 25 26	1 1807 1 1911 1 2016 1 2122 2 2229 1 2336	41 42 43 44 45 46	1.4224° 1.4371 1.4520 1.4671 1.4825 1.4882
7 8 9 19 11 12 15	1.0545 1.0627 1.2710 1.0793 1.0877 1.0962 1.1048 1.1136	27 28 29 30 31 32 33 34	1.2445 1.2556 1.2699 1.2784 1.2899 1.3017 1.3138 1.3262	47 48 49 50 51 52 53 54	1.5142 1.5305 1.5471 1.5640 1.5810 1.5984 1.6162 1.6343
15 16 17 18 19 20	1.1136 1.1226 1.1318 1.1412 1.1508 1.1605 1.1705	35 36 37 38 39 40	1.3262 1.3389 1.3519 1.3653 1.3791 1.3933 1.4079	55 56 57 58 59 60	1.6528 1.6528 1.6717 1.6911 1.7109 1.7311 1.7517

(Schiff, A. 110. 75.)

Sp. gr. cf KI+Aq. S=according to Schiff (A. 108.340) at 21°; K=according to Kremers (Po.g. 96.62), interpolated by Gerlach (Z. anal. 8, 285.)

10 15 20 25 30% KI, 1.038 1.079 1.123 1.171 1.2791.038 1.078 1.1201.271 1.16635 60% KI. 45 50 55 1.483 K 1.331 1.396 1.469 1.546 1.636 1.734

Sp. gr. of KI+Aq at 18°.

1.8					
‰ Ki	Sp. gr.	κί κί	Sp. gr.	KI	Sp. gr.
5 10 20	1.0363 1.0762 1.1679	30 40 50	1.273 1.3966 1.545	55	1.630
20	1.1019	30	1.040	1	

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of KI+Aq at 18°.

% KI	Sp. gr.		
1.044	1.0062		
5.0	1.0363		

(Giotrian, W. Ann. 1883, 18. 191.)

Sp. gr. at  $16^{\circ}/4^{\circ}$  of KI+Aq containing 32.4875% KI=1.30238. (Schönrock, Z. phys. Ch. 1893, 11. 781.)

KI + Aq containing 9.35% KI has sp. gr.  $20^{\circ}/20^{\circ} = 1.0726$ .

KI+Aq containing 11.35% KI has sp. gr.  $20^{\circ}/20^{\circ} = 1.0892$ . (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 278.)

B. of KI+Aq containing pts. KI to 100 pts. H₂O.

Bpt.	Pts. KI	Bpt.	Pts. KI	Bpt.	Pts. KI
101°	15	108°	111.5	115	185°
102	30	109	123	116	195
103	45	110	134	117	205
104	60	111	145	118	215
105	74	112	155	118.5	220
106 107	87 99.5	113 114	165 175		

(Gerlach, Z. anal. 26, 439.)

Sat. KI+Aq boils at 119°. (Kremers.) Sat. KI+Aq forms a crust at 117.5°, and contains 210 pts. KI to 100 pts. H₂O; highest temp. observed, 118.5°. (Gerlach, Z. anal. **26.** 426.)

Solubility of KI in I₂+Aq at 25°.

KI mol./l.	I gatoms/l.
6.15	0.00
6.23	3.64
6.40	11.11
6.36	13.16
6.33	13.2
6.24	17.03

(Abegg, Z. anorg. 1906, **50.** 428.)

Solubility of KI+I₂ in H₂O at 25°.

% KI	% I	Solid phase	% KI	% I	Solid phase
28.91	63.88 66.54 67.14	KI ₈ +KI ₇	25.57	69.01 66.56 66.91 67.17	KI ₈

(Foote and Chalker, Am. Ch. J. 1908, 39.

See also under Iodine.

KI+Aq sat. at 14.5° containing 139.8 pts. KI to 100 pts.  $\rm H_2O$  dissolves 1.0 pt.  $\rm K_2SO_4$ with separation of 2.2 pts. KI, so that solution contains 137.6 pts. KI and 1.0 pt. K₂SO₄ to 100 pts. H₂O. (Mulder, Rotterdam, 1864.)

100 pts. H₂O dissolve 86.3 pts. KI and 2.1 pts. Na₂SO₄ at 14.5°. (Mulder, J. B. 1866. 67.)

Sol. in AsCl_s, SnCl₄ and POCl₃. (Walden, Z. anorg. 1966, 25. 214.)

Attacked by dry liquid NO2 with liberation of I₂. (Frankland, Chem. Soc. 1901, 79. 1361. (Herz and Anders, Z. anorg. 1907, 55. 274.)

Sol. in liquid SO₂. (Walden, B. 1899, 32. 2864.)

Solubility in SO₂ decreases with rise of temp. (Walden, Z. phys. Ch. 1903, **42**. 456.) Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Very easily sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 829.)

Hydrazine dissolves 135.7 pts. KI at 12.5-13°. (de Bruyn, R. t. c. 1899, **18.** 297.)

100 pts. alcohol of 0.85 sp. gr. dissolve 18 pts. KI at 12.5°. 100 pts. absolute alcohol dissolve 2.5 pts. KI at 13.5°. Much more sol. in hot alcohol. (Baup.)

100 pts. alcohol of D sp. gr. at 0° dissolve at 18°-

D 0.9904 0.9851 0.9726 0.9665 0.9528 130.5 119.4 100.1 89.9 76.9 pts. KI.

D 0.9390 0.9088 0.8464 0.8322 66.4 48.2 11.46.2 pts. KI.

That is, aqueous alcohol dissolves approximately the same amount of KI that the water present in the alcohol would dissolve, and it is therefore probable that KI is insol. in strictly absolute alcohol. (Gerardin.)

Solubility in 100 pts. alcohol of 0.9496 sp.

80 13° 25° 46°  $55^{\circ}$ 62° 67.4 69.2 75.1 84.7 87.5 90.2 pts. KI. (Gerardin, A. ch. (4) **5.** 155.)

Sol. in 68.3 pts. absolute alcohol (Eder, Dingl. 221. 89); in 370 pts. ether (sp. gr. 0.729), (Eder, l. c.); in 120 pts. alcohol-ether

(1:1), (Eder, l. c.)Sol. in 10-12 pts. 90% alcohol, and 40 pts. absolute alcohol. (Hager, Comm. 1883.)

100 pts. absolute methyl alcohol dissolve 16.5 pts. at 20.5°; 100 pts. absolute ethyl alcohol dissolve 1.75 pts. at 20.5°. (de Bruyn, Z. phys. Ch. **10.** 783.)

Solubility of KI in methyl alcohol +Aq at 25°.

P = % by wt. of alcohol in alcohol +Aq.  $S = \hat{Sp}$ . gr. of alcohol + Aq sat. with KI. L = millimols KI in 100 ccm. of the solution.

P	S 25°/4°	L
0 10.6 30.8 47.1 64.0 78.1 98.9	1.7213 1.634 1.460 1.325 1.185 1.066 0.9700 0.9018	620 555 431 335 243 169 113 80

### Solubility of KI in CH₃OH.

G = g. KI in 100 g, of the solution.

 $t_1 = \text{temp. of complete solution.}$ 

t₂ = temp. at which salt begins to separate out.

G	$\mathbf{t_1}$	t ₂
8.64		266°
12.95	0°	
14.2	20	
14.6		262
14.97	25	
19.2	85	256
26.8	115	242
28.9	144	229
29.6	188	196
33.0		

(Centnerszwer, Z. phys. Ch. 1910, 72. 432.)

Solubility of KI in methyl alcohol at to.

t°	g. KI in 100 g. alcohol	t°	g. KI in 100 g. alcohol
15	14.50	180	30.7
30	16.20	200	29.1
50	18.9	220	27.5
80	22.5	240	24.8
100	25.0	245	22.6
120	27.2	247	21.0
140	29.2	250	13.8
160	30.6	252.5*	7.6

*Critical temp. of solution.

(Tyrer, Chem. Soc. 1910, 97. 626.)

At room temp. 1 pt. KI by weight is sol. in 6 pts. methyl alcohol D¹⁵ 0.7990.
16 " ethyl " D¹⁵ 0.8322.
219 " propyl " D¹⁵ 0.8160.

(Rohland, Z. anorg. 1898, 18. 325.)

Solubility in mixtures of methyl and ethyl alcohol at 25°.

P = % methyl alcohol in the solvent. G = g, KI in 10 ccm. of the solution. S = Sp. gr. of the sat. solution at 25°.

P	G	S 25°/4°
0.00 4.37 10.40 41.02 80.69 84.77	0.155 0.191 0.225 0.494 1.013 1.072	0.8015 0.8041 0.8071 0.8295 0.8794 0.8795
$\begin{array}{c} 91.25 \\ 100.00 \end{array}$	1.184 1.316	0.8908 0.9018

(Herz and Kuhn, Z. anorg. 1908, 60. 155.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. KI in 10 ccm, of the solution. S = Sp, gr. of the set, solution.

P	G	S 25°/4°
0 J1 J1 23.8 65 2 91.8 98.75	1.316 1.096 0.854 0.262 0.060 0.058 0.043	0.9018 0.8823 0.8629 0.8187 0.8045 0.8041

(Herz and Kuhn.)

Solubility in mixtures of propyl and ethyl alcohol at 25°.

 $P = \frac{97}{5}$  propyl alcohol in the solvent. G = g. KI in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

P	G	S 25°/4°
0 8.1 17.85 56.6 88.6 91.2 95.2	0.155 0.146 0.137 0.075 0.052 0.049 0.044 0.043	0.8015 0.7983 0.7991 0.7988 0.8022 0.8027 0.8029 0.8041
	i	ı

(Herz and Kuhn.)

 $100~{\rm g}.$  methyl alcohol dissolve 18.04 g. KI at  $25^{\circ}.$ 

100 g. ethyl alcohol dissolve 2.16 g. KI at

100 g. propyl alcohol dissolve 0.43 g. KI at 25°.

100 g. isoamyl alcohol dissolve 0.09 g. KI at 25°.

(Turner and Bissett, Chem. Soc. 1913, **103**. 1909.)

0.455 g. is sol. in 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 276.)

Alcoholic solution can be mixed with ½ vol.

ether without pptn.

100 g. 95% formic acid dissolve 38.2 g.
KI at 18.5°. (Aschan, Chem. Ztg. 1913, 37.

1113.)

Solubility in organic solvents at to.

C=pts. by wt. of KI in 100 ccm, of the sat, solution.

L = no. of litres which at the saturation

temp. hold in solution 1 mol. KI.

S = sp. gr. of the solution at t°, referred to  $H_2O$  at t°.

p=pts. by wt. of KI in 100 g. of the soluion.

Solvent	t°	С	L	S	р
Water	25°	102.70	0.162	1.7254	59.54
4	00	94.05	0.177	1.6699	
Methyl alcohol	25°	13.48	1.231	0 9003	14.97
	25°	14.26			
**	0°	11.61	1.430	0.8964	12.95
Ethyl alcohol	25°	1 520	10.92	0 7908	1 922
**	-0°	1.197	13.87	0 8085	1.479
Glycol	<b>2</b> 5°	45.85	0.3621	1.3888	
	25°	47.23	0.351		33
44	۰0°	43.28	0.383	1 3954	31 03
Acetonitrile	25°	1 551	10.70		
	25°	1.590	10.44	0 7936	2 003
**	00	1.852	9.00	0 8198	2 259
Propionitrile	250		52.53)	0 7821	0.404
"	250	0 355	46 76 5	0 .021	001
**	00	0.344	48 26 1	0 8005	0 429
**	l ő°	0.412	40.29	0 1700	
Benzonitrile	25°	0 051	325 5	1.0076	0 050
Nitromethane	25°	0 349	47.56	1 1367	0 307
"	250	0.289	57.44	1.100	0.001
M 44	-0°	0.366	45 36	1 1627	0 315
"	0°	0.314	52.87	1 .02.	0.0.0
Nitrobenzene	25°	0.0019			
Acetone	250	1.038	16.0	0.7968	1 302
	000		9.58	0.8227	2.105
Furfurol	250		2 80	1 2014	4 94
	00		1.10	0	
Benzaldehyde	250		48.4	1.0446	0 328
Salicylaldehyde		0.549	30.24	1 1373	0.483
	00	1.257	13 21	1 1501	1 093
Anisaldehyde	250		23.06	1.1180	
11	00	1.520	10.92	1.1223	1 355
Ethyl acetate	250	0.0013	12.80	1.1220	1 . 0,,,,
Methyl cyan-	20	0.0010	12.00		
acetate	25°	2.459	6.75	1.1358	2 165
11	00	3 256	5.10	1.1521	2 827
Ethyl cyan-	١	2.50	0.10	1 . 1	- 021
acetate	250	0.888	18.7	1.0579	0.839
***	250	1.090	15.23	1.0678	
	1-0	1	1 .0.20	10010	1

(Walden, Z. phys. Ch. 1906, 55, 715.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

Sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3789.)

Sol. in ethyl acetate. (Casaseca, C. R. 30.

821.)
Insol. in ethyl acetate. (Naumann, B. 1910, **43**. 314.)

Insol. in ethylamine. (Shinn, J. phys. Chem. 1907, 11. 538.)

100 pts. acetone dissolve 2.930 pts. Kl at 25°. (Krug and M'Elroy, J. Anal. Ch. 6.184.) Sol. in acetone, insol. in methylal. (Eidmann, C. C. 1899. II. 1014.)

3.08 pts. sol. in 100 pts. acetone at -2.5°.
2.38 " "100 " " +22°.
1.21 " "100 " " 56°.

0.26 " "100 "pyridine "10°. 0.11 " "100 " " "119°.

(Laszczynski, B. 1894, 27. 2287.)

Freely sol. in glycerine. Insol. in acetic acid. (Berthemot.)

Sol. in 3 pts. glycerine; insol. in olive oil. (Cap and Garot.)

100 g. glycerol dissolve 40 g. KI at 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.)

### Potassium triiodide, KI.

Very deliquescent; very sol. in H₂O and alcohol. (Johnson, Chem. Soc. **1877**, **1**. 249.)

Solution of I in KI contains this salt (see KI). Decomp. by heat or shaking with CS₂, ether, chloroform. Sol. in alcohol, from which CS₂ does not remove I. (Jörgensen, J. pr. (2) 2. 247.)

### Potassium periodide.

Solubility determinations show that the compds. KI₃ and KI₇ are the only periodides of potassium which form solids at 25°. See under KI+I. (Foote and Chalker, Am. Ch. J. 1908, 39. 566.)

Kl₁. See above.

### Potassium mercuric iodide ammonia, K₂HgI₄, 2NH₃.

(Peters, Z. anorg. 1912, 77. 188.)

### Potassium silver iodide, KI, AgI.

Sol. in KI+Aq. Sol. in hot alcohol. (Boullay, A. ch. 34. 377.)

2KI, AgI, Sol. in KI+Aq. Decomp. by H₂O (Boullay.)

Hygroscopic. (Hellwig, Z. anorg. 1900, 25. 180.)

3KI, AgI. Decomp. by  $H_2O$ . (Ditte, C. R. 93, 415.)

KI, 2AgI. Sol. in methylethylketone. (Marsh, Chem. Soc. 1913, 103. 783.)

### Potassium silver polyiodide, $AgK_3I_{12}$ , $3KI + 5H_2O$ .

Very deliquescent. (Johnson, Chem. Soc. 33. 183.)

### Potassium tellurium iodide.

See Iodotellurate, potassium.

### Potassium thellic iodide, KI, TlI₃.

Decomp. by H₂O. Can be crystallized from alcohol. (Willm.)

3KI,  $2TII_8+3H_2O$ . Partially decomp. by  $H_2O$ . (Rammelsberg.)

## Potassium (tin) stannous) iodide, KI, $SnI_2 + 1\frac{1}{2}H_2O$ .

When treated with a small quantity of  $H_2O$ , KI dissolves out; but when more  $H_2O$  is added, the substance is completely dissolved. More sol. in warm than cold alcohol. (Boullay.)

Potassium zinc iodide, KI, ZnI₂.

Very deliquescent. (Rammelsberg, Pogg. **48**, 665.)

K₂ZnI₄+2H₂O. Hydroscopic. (Ephraim. Z. anorg. 1910, 67, 382.)

Potassium iodide sulphur dioxide, KI, SO₂. (Péchard, C. R. 1900, 130, 1188.) KI, 4SO₂. (Walden, Z. phys. Ch. 1903, **42.** 439.)

KI, 14SO₂. (Walden.)

Potassium nitride, K₂N.

Decomp. violently by H₂O, (H. Davy.)

Potassium ruthenium dihydronitrosobromide. Ru₂H₂ NOBr₃, 2HBr, 3KBr.

Ppt. (Brizard, A. ch. 1900, (7) 21. 362.)

Potassium ruthenium nitrosochloride, Ru₂H₂NOCl₃, 3KCl, 2HCl.

Sl. sol. in H₂O. (Brizard, C. R. 1399, **129**. 216.)

Potassium suboxide.

Decomposes H₂O.

Does not exist. (Lupton, Chem. Soc. 1876, **2.** 565.)

Potassium oxide, K₂O.

Very sol. in H₂O with much heat. See Potassium hydroxide.

Potassium dioxide, K₂O₂.

Deliquescent. Sol. in H₂O. Forms compound K₂O₂, 2H₂O₂. (Schöne, A. 193, 241.)

Potassium peroxide, K₂O₄.

Deliquescent. Very sol. with decomp. in

Potassium silicon oxyfluoride, SiF₂(OK)₂ and SiO(F)OK.

(Schiff and Bechi, A. Suppl. 4. 33)

Potassium tantalum oxyfluoride, K₄Ta₄O₅F₁₄. Insol. in boiling water. Easily sol. in HF+ Aq. (Marignac, A. ch. (4) 9. 268.)

Potassium phosphide, KP₈.

Decomp. by H₂O. (Joannis, C. C. 1894, II. 834.)

Easily decomp. by H₂O. (Hugot, KP_b. C. R. 1895, **121**. 208.)

Potassium hydrogen phosphide, PH₂K.

Decomp. by H₂O. (Joannis, C. R. 1894, **119.** 558.)

Potassium phosphoselenide,  $KSeP = K_2Se$ ,  $P_2Se.$ 

Sol, in cold H₂O with rapid decomp. Sol. in alcohol with slight decomp. (Hahn, J. pr. **93.** 430.)

Potassium phosphotriselenide, 2K₂Se, P2Se8.

Deliquescent. Decomp. violently with H.O. Sol, in alcohol or ether, or in a mixture of the to, with slight decomp, but decomp, gradually on the air. (Hahr, J. pr. 93. 430.)

Potassium phosphopentaselenide, K₄P₂Se₇ = 2K₂Se, P₂Se₅.

Deliquescent; immediately decomp. by H₂O, alcohol, or ether. (Hahr.)

Potassium phosphosulphide, 4K₂S₂, P₂S₃.

Deliquescent. Sol. in H₂O with decomp.

Potassium selenide, K₂Se.

Sol. in H₂O with subsequent decomp. on the

Insol. in siquid NH3; sol. in air free H2O to a colorless liquid. (Hugot, C. R. 1899, 129. 299.)

 $+2H_2O.$ Sol. in H₂O with decomp. (Clever, Z. anorg. 1895, 10. 143.)

+9, 14, or 19H₂O. (Fabre, C. R. 102. 613.)

Potassium tetraselenide, K₂Se₄.

Easily sol. in H₂O. Decomp. on standing. Sol. in liquid NH₃. (Hugot, C. R. 1899, **129.** 299.)

Potassium monosulphide, K2S.

Deliquescent. Sol. in H₂O and alcohol. H₂O solution decomp. on air.

Sol. in 10 pts. glycerine. (Cap and Garot, J. Pharm. (3) **26.** 81.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol. in acetone and in methylal. (Eidmarn, C. C. **1899**, II. 1014.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

+5H₂O. (Schöne, Pogg. 131. 380.)

All potassium sulphides are sol, in glycerine; insol. in ether and ethyl acetate.

Potassium disulphide,  $K_2S_2$ .

Sol. in H₂O and alcohol, with gradual decomp.

Potassium trisulphide, K2S8.

Sol. in H₂O and alcohol, with gradual decomp. on the air.

Potassium tetrasulphide, K₂S₄.

Sol. in H₂O and alcohol.

+2H₂O. Sol. in H₂O. Sl. sol. in alcohol. +8H₂O. Sol. in H₂O. Alcohol takes out water. (Schöne.)

Potassium pentasulphide, K₂S₅. Sol. in H₂O and alcohol.

770

Potassium palladium sulphide. See Sulphopalladate, potassium.

Potassium platinum sulphide.

See Sulphoplatinate, potassium.

Potassium silver sulphide, 4Ag₂S, K₂S+2H₂O.

Decomp. by H₂O. (Ditte, C. R. 1895, **120**. 91.)

Potassium rhodium sulphide,  $3K_2S$ ,  $Rh_2S_3$ . Decomp. by  $H_2O$ . (Leidié.)

Potassium rellurium sulphide.
See Sulphotellurate, potassium.

Potassium thallium sulphide, K2S, Tl2S3.

Not decomposed by H₂O, or hot NH₄OH, or KOH+Aq. Decomp. by HCl or moderately conc. H₂SO₄+Aq. Hot HNO₃+Aq decomp. with separation of S. (Schneider, J. pr. **110**. 168.)

Potassium tin (stannic) sulphide. See Sulphostannate, potassium.

Potassium zinc sulphide, K₂S, 3ZnS.

Not attacked by H₂O, but easily decompby the most dil. acids. (Schneider, J. pr. (2) **8.** 29.)

Potassium telluride,  $K_2T\epsilon$ .

Sol. in H₂O. (Demarçay, Bull. Soc. (2) **40.** 99.)

Sol, in  $H_2O$  and liquid  $NH_3$ . (Hugot, C. R. 1899, 129. 388.)

### Praseocobaltic chloride, Co(NH₃)₄Cl₃+H₂O.

Easily sol. in H₂O.

Dil.  $\dot{H}$ Cl+Aq dissolves traces; conc.  $\dot{H}$ Cl+Aq dissolves more. Sol. in  $NH_4OH+Aq$  with decomp. Sol. in conc.  $H_2SO_4$  without decomp. Sl. sol. in dil.  $H_2SO_4+Aq$ . (Rose.)

— mercuric chloride, Co(NH₃)₄Cl₅, HgCl₂. Sl. sol. in cold H₂O; insol. in HgCl₂+Aq. (Vortmann, B. **15**. 1892.)

---- chloride dichromate, [CoCl₂(NH₃)₄]₂Cr₂O₇+H₂O.

Scarcely sol. in cold, easily sol. in warm H₂O. (Vortmann, B. 15. 1897.)

### Praseocobaltic chloride nitrate, CoCl₂(NH₃)₄NO₃+H₂O.

Much less sol. in H₂O than the chloride. Precipitated from aqueous solution by dil. HNO₂+Aq. (Vortmann, B. 15. 1896.)

### Praseodymicotungstic acid.

Ammonium praseodymicotungstate, 2(NH₄)₂O, Pr₂O₃, 16WO₃+16H₂O.

Very sl. sol. in H₂O. Decomp. by acids and alkalies. (E. F. Smith, J. Am. Chem. Soc. 1904, 26. 1478.)

Barium praseodymicotungstate,  $4\mathrm{BaO}$ ,  $\mathrm{Pr}_2\mathrm{O}_3$ ,  $16\mathrm{WO}_3 + 7\mathrm{H}_2\mathrm{O}$ .

Ppt. Insol. in  $H_2O$ . 6BaO,  $Pr_2O_3$ ,  $16WO_3 + 9H_2O$ . Ppt. (E. F. Smith.)

Silver praseodymicotungstate,  $4Ag_2O$ ,  $Pr_2O_3$ ,  $16WO_3+8H_2O$ .

Insol. in H₂O. (E. F. Smith.)

Praseodymium, Pr.

Praseodymium bromide, PrBr₃+6H₂().

Very sol, in  $H_2O$ ; sol, in HBr. (von Schule, Z. anorg. 1898, **18**. 353.)

Praseodymium carbide, PrC₂.

Decomp. by H₂O; insol. in conc. HNO₃, decomp. by dil. HNO₃. (Moissan, C. R. 1900, **131.** 597.)

Praseodymium chloride, PrCl₃.

Very sol. in H₂O. Insol. in PCl₃ or SnCl₄. Sol. in alcohol. Insol. in ether and most organic solvents. (Matignon, C. R. 1902, **134**. 427.)

2.14 g. PrCl₃ dissolve in 100 g. pyridine at 15°. (Matignon, Int. Cong. App. Chem. 1909, **2.** 53.)

 $+\dot{H}_2O$ .

 $+3H_2O$ .

 $+7H_2O$ . 100 g.  $H_2O$  dissolve 334.2 g.  $PrCl_3+7H_2O$  or 103.9 g. of the anhydrous salt at 13°. The aqueous solution sat. at 14° has a sp. gr.  $16^\circ/16^\circ=1.687$ . At  $100^\circ$ , the solubility in  $H_2O$  is unlimited. (Matignon, A. ch. 1906, (8) **8**. 388.)

Sol. in conc. HCl. (von Schule, Z. anorg.

1898, 18. 352.)

100 pts. of a solution of the salt in HCl+Aq contain at 13°, 41.05 pts. of anhydrous salt and 7.25 pts. HCl. Sp. gr. of this solution at 16°=1.574. (Matignon, A. ch. 1906, (8) 8. 388.)

Praseodymium hydride, PrH₈ (?). (Muthmann, A. 1904, **331**. 59.)

Praseodymium hydroxide.

Sol. in citric acid. (Baskerville, J. Am. Chem. Soc. 1904, 26. 49.)

Praseodymium nitride, PrN.

Decomp. in moist air with evolution of NH₂. (Muthmann, A. 1904. **331**, 59.)

Praseodymium oxide, Pr₂O₃.

Easily sol. in  $H_2O$ . (v. Welsbach, M. 6. 477.)

Decomp. by heating in the air. (Scheele, Z. anorg. 1898, 17. 322.)

Praseodymium monoperoxide, Pr(OH)₂.H₂O. (Melikoff, Chem. Soc. 1902, **82.** (2) 140.)

Praseodymium superoxide, Pr(OH)₂(OOH). Ppt. (Melikoff, C. C. 1902, I. 172.)

Praseodymium trisuperoxide, Pr(OOH)₃. Ppt. (Melikoff.)

Praseodymium peroxide, Pr₄O₇.

Sol. in acids with evolution of O. (Welsbach.)

Praseodymium oxysulphide, Pr₂SO₂. (Biltz, Z. anorg. 1911, **71**, 436.)

Praseodymium disulphide, PrS₂.

Decomp. by heat. (Biltz, Z. anorg 1911, 71, 437.)

### Purpureocobaltic salts.

For other purpureocobaltic salts, see—Chloropurpureocobaltic salts.
Bromopurpureocobaltic salts.
Nitratopurpureocobaltic salts.
Sulphatopurpureocobaltic salts.

### Purpureocobaltic cobalticyanide,

 $Co(NH_8)_6Co(CN)_6+1\frac{1}{2}H_2O$ . Insol, in  $H_2O$ .

—— ferricyanide, Co(NH₃)₅Fe(CN)₆.

Insol. in cold H₂O. Probably belongs to roseo series.

---- mercuric hydroxychloride, CoN₅H₁₁(HgCl)₃(HgOH)Cl₃.

Ppt. (Vortmann and Morgulis, B. 22. 2645.)

CoN₅H₁₁(HgOH)₄Cl₃. Ppt. (V. and M.)

---- mercuriodide, basic,  $CoN_5H_{11}(HgI_2)_2(HgOH)_3I_3$ .

Ppt. Sl. sol. in acids. Sol. in KI+Aq. (Vortmann and Borsbach, B. 23, 2804.)

molybdate,  $Co_2O_3(NH_3)_{10}$ ,  $7MoO_3+3H_2O$  (?).

Insol. in  $H_2O$  or dil.  $HC_2H_3O_2+Aq$ . (Carnot, C. R. 109. 109.)

--- sulphate.

See Sulphatopurpureocobaltic salts.

---- tungstate, Co(NH₃)₅O(WO₄). Scarcely sol. in cold or hot H₂O. (Gibbs.) Co₂O₃(NH₃)₁₀, 10WO₃+9H₂O (?). Insol.

in H₂O, or dil. HC₂H₃O₂+Aq, or NH₄OH+ Aq. (Carnot, C. R. **109**. 147.)

Purpureocobaltic vanadate,  $\tilde{C}o_2O_3(NH_3)_{10}$ ,  $5V_2O_5+9H_2O$  (?).

Pr. Insol. in H₂C (Carnot, C. R. 109. 147.)

Purpureocobaltic octamine salts.

See Octamine cobaltic purpureo salts.

Pyrosulphuric acid, H₂S₂O₇.

See Disulphuric acid.

Radium, Ra.

#### Radium A.

More sol than Radium B and C in all solvents; sol. even in organic solvents, especially CS₂. (Ramstedt, Le Radium, 1913, **10**. 159.)

#### Radium B.

More quickly sol. than Radium C in H₂O and acids; less quickly sol. in alkaline solutions; very sl. sol. in organic solvents. (Ramstedt, Le Radium, 1913, 10. 159.)

#### Radium C.

Sol. in common acids, less so in alkaline solutions and in H₂O, only very sl. sol. in organic solvents. (Ramstedt, Le Radium, 1913, 10. 159; Chem. Soc. 1913, 104. (2) 659.)

#### Radium bromide.

Less sol. in  $H_2O$  than corresponding Ba comp. (Curie, Dissert. 1903.)

### Radium chloride.

Less sol. in H₂O than corresponding Ba comp. (Curie, Dissert. 1903.)

#### Radium emanation.

Coefficient of absorption for  $H_2O=0.245$  at  $3^\circ$ ; 0.23 at  $20^\circ$ ; 0.17 at  $40^\circ$ ; 0.135 at  $60^\circ$ ; 0.12 at  $70^\circ$ ; 0.12 at  $80^\circ$ . (Hofmann, Phys. Zeit. 1905, **6**. 339.)

### Solubility in H₂O at t°.

Coefficient of solubility = conc. of the emanation in the liquid: conc. of the emanation in the gas.

t°	Coefficient of solubility
0	0.506
4.3	0.424
5.7	0.398
10.0	0.340
14.0	0.303
17.6	0.280
20.0	0.245
<b>2</b> 6.8	0.206
31.6	0.193
39.1	0.160

Coefficient of solubility in sea-water of sp. gr. at  $14^{\circ} = 1.022$  is 0.255.

(Boyle, Phil. Mag. 1911, (6) 22. 850.)

Solubility in H₂O. 0.5° 0.526 17.5° 35° 41° 51° Temp. Sol. 0.283 0.1830.1610.13874° 60° 79° 82° 91° Temp. 0.108 Sol. 0.127 0.112 0.111 0.111 (Kofler, M. 1913, 34. 389.)

Coefficient of solubility of radium emanation at 14° in various solvents.

Ethyl alcohol 7.34Amyl alcohol Toluene 9.31 13.7Sea water 0.255Mercurv

(Boyle, Phil. Mag. 1911, (6) 22. 851.)

Coefficient of solubility emanation of radium in various solvents at t°.

Solvents	t =18°	t =0°	t = -18°
Ethyl acetate	7.35	9.41	13.6
Acetone	6.30	7.99	10.8
Absolute		]	
alcohol	6.17	8.28	11.4
Aniline	3.80	4.43	
Benzene	12.82	16.54 at 3°	١
Chloroform	15.08	20.5	28.5
Cylclohexane	18.04 at 80°		١
Water	0.285	0.52	
Ether	15.08	20.09	29.1
Glycerine	0.21		
Hexane	16.56	23.4	35.2
Paraffine oil	9.2	12.6	١
Carbon-		}	
bisulphide	23.14	33.4	50.3
Toluene	13.24	18.4	27
Xylene	12.75		

(Ramstedt, Le Radium, 1911, 8. 255.)

Solubility in various oils, etc., at t°.

Ra	Rape oil Poppy seed		seed oil	Oil of t	Oil of turpentine	
t°	Solubility	t°	Solubility	t°	Solubility	
-3 10 20 100 200	51.2 35.3 26.1 6.2 3.3	-5 16 40 65 90	50.5 30.2 19.1 12.4 8.4	$ \begin{array}{r} -21 \\ 0 \\ 18 \\ 50 \\ 6.5 \end{array} $	42.5 23.1 16.6 7.5 4.08	

Solubility in 10% dammar resin in oil of turpentine = 16.7 at  $18^{\circ}$ .

Solubility in 5% colophony in alcohol = 11.2 at  $20^{\circ}$ .

Solubility in amyl alcohol = 10.6 at 18°. Solubility in 20% colophony in amyl alcohol = 11.1 at  $20^{\circ}$ .

(Curie. Thesis. 1910.)

Coefficient of absorption for petroleum =

22.70 at -21°.

12.87 at  $+3^{\circ}$ . 9.55 at 20°.

8.13 at 40°.

7.01 at 60°.

(Hofmann, Phys. Zeit. 1905, 6, 339.)

### Rhodicvanhydric acid, H.Rh(CN).

Not known in the free state.

### Potassium rhodicyanide, K₃Rh(CN)₆.

Sol, in H₂O. Easily decomp, by acids. Very sol. in H₂O. (Leidié, C. R. 1900, 130. 89.)

### Rhodium, Rh.

Insol. in all acids, including aqua regia. Rhodium "sponge" is sol. in HNO₃+Aq, and somewhat in HCl+Aq when exposed to

### Rhodium ammonia compounds.

See-

Bromopurpureorhodium comps., BrRh(NH₃)₅X₂.

Chloropurpureorhodium comps.,

ClRh(NH3)5X2.

Iodopurpureorhodium comps.,

 $1Rh(NH_3)_{\bar{b}}X_2$ . Luteorhodium comps., Rh(NH₃)₆X₃.

Nitratopurpureorhodium comps.,

 $(NO_3)Rh(NH_3)_bX_2$ .

Roseonhodium comps., Rh(NH₃)₅(OH₂)X₃. Xanthorhodium comps., (NO₂)Rh(NH₃)₅X₂.

### Rhodium tribromide, $RhBr_3 + 2H_2O$ .

Very sol. in H₂O. (Goloubkine, Chem. Soc. 1911, **100**. (2) 45.)

### Rhodium rubidium bromide.

See Bromorhodite, rubidium.

### Rhodium sodium bromide.

See Bromorhodite, sodium.

### Rhodium dichloride, RhCl₂ (?).

Insol. in H₂O, HCl, or HNO₃+Aq. Not attacked by boiling KOH or K₂CO₃+Aq. (Fellenberg.)

Decomp. by boiling KOH+Aq. (Berzelius.) Does not exist. (Leidié, C. R. 106. 1076.

### Rhodium trichloride, RhCl₃.

Insol. in acids, even aqua regia. boiled for a long time with KOH+Aq, it becomes sl. sol. in HCl+Aq.

Insol. in H₂O and acids; sol. in alkalies + Aq. (Leidié, C. R. 1899, **129**. 1251.) + 4H₂O. Very sl. deliquescent. Easily sol.

in H₂O, HCl+Aq, or alcohol. Insol. in ether. Decomp. by H₂SO₄ only when boiling. (Claus, J. pr. 80. 282.)

No definite amount of crystal H₂O. (Leidié A. ch. (6) 17. 271.)

# Rhodium chloride with MCl. See Chlororhodite, M.

Rhodium dihydroxide, RhO₂, 2H₂O, or Rhodium rhodate, Rh₂O₃. RhO₅+6H₂O. Sol. in HCl+Aq.

### Rhodium sesquihydroxide, Rh₂O₆H₆.

Only sl. sol. in cone. HCl+Aq. (Claus.)  $+2H_2O$ . Easily sol. in HCl,  $H_2SO_4$ ,  $H_2SO_3$ ,  $HNO_3$ , or HSCN+Aq; also when moist, in  $HC_2H_3O_2+Aq$ . Sol. in cone. KOH+Aq; very sl. sol. in  $H_3BO_3$ ,  $H_3PO_4$ ,  $H_2C_4H_4O_6$ , and HCN+Aq. Sol. in acid alkali oxalates +Aq. (Leidié, C. R. 107. 234.)

### Rhodium triiodide, RhIs.

Ppt. (Goloubkine, Chem. Soc. 1911, **100.** (2) 45.)

### Rhodium monoxide, RhO.

Not attacked by acids. (Deville and Debray, A. ch. (3) 61. 83.)

### Rhodium sesquioxide, Rh₂O₃.

Insol. in  $\hat{H}_2O$ , boiling KOH+Aq, or any acid, even aqua regia. (Claus.)

#### Rhodium dioxide, RhO₂.

Insol. in all acids or alkalies.

### Rhodium trioxide, RhO3.

"Rhodie acid." Known only in solution of "Potassium rhodate," which is very easily decomp. (Claus.)

### Rhodium oxybromide, Rh(OH)₂Br+2H₂O. Sol. in H₂O. (Goloubkine, Chem. Soc. 1911, **100**. (2) 45.)

Rhodium monosulphide, RhS. Insol. in aqua regia.

### Rhodium sesquisulphide, Rh₂S₈.

Sol. in alkali sulphides + Aq. (Debray, C. R. 97. 1332.)

Insol. in alkali sulphides+Aq. Not attacked by HNO₃, aqua regia, or Br₂+Aq. (Leidié, Bull. Soc. (2) **50**. 664.)

### Rhodium sodium sulphide, 3Na₂S, Rh₂S₃. Decomp. by H₂O. (Leidié.)

### Rhodium sesquisulphydroxide, Rh₂S₆H₆.

Fasily sol, in aqua regia or Br₂+Aq. Insol, in alkali sulphides+Aq or acids. (Leidié, Bull. Soc. (2) **50.** 664.)

### Rhodochromium bromide, HOCr₂(NH₂)₁₀Br₁+H₂O.

Rather difficultly sol in H₂O. Decomp. by boiling or standing. Sol. in NH₄OH+Aq. N₂OH+Aq. Insol in dil. HBr+Aq, KBr+Aq, or alcohol. (Jörgensen, J. pr. (2) **25.** 321.)

--- bromide, basic, ifOCr₂(NH₃)₁₀(OH)Br₄ +H₂O.

Sl. sol. in H₂O. Sel. in NH₄OH or NaOH+Aq. lnsol. in alcohol. (Jörgensen.)

- -- hromoplatinate, HOCr₂(NH₃)₁₀Br₃PtBr₆, HOCr₂(NH₃)₁₀Br₃(PtBr₆) +4H₂O. Ppt. (Jörgensen.)
- chloraurate, HOCr₂(NH₈)₁₀Cl₈(AuCl₄)₂ +2H₂O.

Difficultly sol. but not insol. in  $H_2O$ . (Jörgensen).

--- chloride,  $HOCr_2(NH_3)_{10}Cl_5 + H_2O$ .

Sol. in about 40 pts. of cold H₂O. Insol. in cold dil. HCl+Aq, NH₄Cl+Aq, or alcohol. Sol. in NH₄OH+Aa. (Jörgensen, J. pr. (2) **25**. 321.)

---- chloroiodide, basic, HOCr₂(NH₃)₁₀(OH)Cl₂I₂.

Sl. sol. in cold  $H_2\mathrm{O}$ ; insol. in alcohol. (Jörgensen.)

—— chloroplatinate, HOCr₂(NH₃)₁₀Cl₃PtCl₆, HOCr₂(NH₇)₁₀Cl(PtCl₆)₂+4H₂O. Precipitate. (Jörgensen.)

— dithionate,  $[HOCr_2(NH_3)_{10}]_2(S_2O_6)_5 + 2H_2O$ .

Nearly insol. in H₂O.

### --- dithionate, basic, $HOCr_2(NH_3)_{10}OH(S_2O_6)_2 + H_2O.$

Insol. in  $H_2O$ , cold  $NH_4OH + Aq$ , or NaOH + Aq.

— iodide,  $HOCr_2(NH_3)_{10}I_5 + H_2O$ .

Very difficultly sol. in H₂O. Insol. in very dil. HI+Aq or alcohol. Sl. sol. in NH₄OH or KOH+Aq. (Jörgensen.)

- nitrate, HOCr₂(NH₃)₁₀(NO₃)₅.

Rather difficultly sol. in H₂O, from which it is precipitated by a few drops of HNO₃+Aq. Sol. in hot dil. NH₄OH+Aq.

---- nitrate chloroplatinate, HOCr₂(NH₃)₁₀(NO₃)(PtCl₆)₂+4H₂O. Precipitate. (Jörgensen.)

#### Rhodochromium sulphate,

 $[HOCr_2(NH_8)_{10}]_2(SO_4)_5+2H_2O.$  Very \$1. sol. in cold \$H_2O\$. Easily sol. in cold dil. \$H_2SO_4+Aq\$.}

Almost insol. in a mixture of 3 vols. H₂O, 1 vol. alcohol, and 1/3 vol. dil. H2SO4+Aq. (Jörgensen.)

### Rhodonitrous acid.

Ammonium rhodonitrite,  $(NH_4)_6Rh_2(NO_2)_{12}$ . Nearly insol. in cold, sl. sol. in hot H2O.

Insol. in conc. NH₄Cl or NH₄C₂H₃O₂+Aq. Insol. in alcohol. (Leidié, C. R. 111. 108.)

Barium rhodonitrite, Ba₃Rh₂(NO₂)₁₂.

Sl. sol. in cold, more easily in hot H₂O. (Lamy.)

+12H₂O. Sol. in 50 pts. H₂O at 16°, and 6.5 pts. at 100°. (Leidié, C. R. 111, 108.)

Potassium rhodonitrite, K₆Rh₂(NO₂)₁₂.

Nearly insol. in cold, very sl. sol. in boiling H₂O. Completely insol. in KNO₂+Aq, and in KCl+Aq (30% KCl), or KC₂H₃O₂+Aq (50% KC₂H₃O₂). Insol. in alcohol. (Leidié, C. R. 111. 106.)

Sodium rhodonitrite, Na₆Rh₂(NO₂)₁₂.

Sol. in 21/2 pts. H2O at 17°, and 1 pt. at 100°. Insol. in alcohol. Decomp. by HCl+ Aq. (Leidié, C. R. 111, 107.)

### Rhodosochromium bromide.

Sol. in  $H_2O$ ; insol. in dil. HBr + Aq (1:1). (Jörgensen, J. pr. (2) 45. 260.)

- chloraurate,  $Cr_2(NH_3)_6(HO)_3Cl_3$ ,  $2\text{AuCl}_3 + 2\text{H}_2\text{O}$ .

Not insol, in cold H₂O. (Jörgensen.)

- chloride,  $Cr_2(NH_3)_6(HO)_3Cl_3+2H_2O$ . Sol. in 10.6 pts. H₂O at 18°; decomp. by boiling. Pptd. by ½ to 1 vol. dil. HCl+Aq. Sol. in cold dil. NH₄OH+Aq. (Jörgensen, J. pr. (2) **45.** 260.)

- chloroplatinate,  $2Cr_2(NH_3)_6(OH)_3Cl_3$ ,  $3PtCl_4+6H_2O$ .

Insol. in H₂O. (Jörgensen.) Cr₂(NH₃)₆(OH)₃Cl₃, 2PtCl₄+2H₂O. Insol. in 95% alcohol. (Jörgensen.)

--- chromate,  $[Cr_2(NH_3)_6(OH)_3]_2(CrO_4)_3+$ 7H₂O. (Jörgensen.)

Very sl. sol. in H₂O. (Jörgensen.)

- iodide,  $\operatorname{Cr}_2(\operatorname{NH}_3)_6(\operatorname{OH})_3\operatorname{I}_3 + 2\operatorname{H}_2\operatorname{O}$ . Sol. in H₂O. Insol. in dil. HI+Aq. (Jörgensen.)

- nitrate,  $\operatorname{Cr}_2(\operatorname{NH}_3)_6(\operatorname{OH})_3(\operatorname{NO}_3)_3 + \operatorname{H}_2\operatorname{O}$ . Much less sol. in cold H2O than the chloride. Insol. in dil. HNO₃+Aq. (Jörgensen.)

- oxalate.  $[Cr_2(NH_8)_6(OH)_8]_2(C_2O_4)(HC_2O_4)_4+$ 

Sol. in cold H₂O, but not very easily. (Jörgensen.)

Rhodosochromium sulphate,

 $[Cr_2(NH_3)_6(OH)_3]_2(SO_4)_3 + 5H_2O.$ Very sl. sol. in cold H₂O. Easily sol. in dil. NH₄Cl+Aq. (Jörgensen.)

 $[Cr_2(NH_3)_6(OH)_3]SO_4$ ,  $HSO_4+1\frac{1}{2}H_2O$ . Decomp. by  $H_2O$  into  $H_2SO_4$  and above compound. (Jörgensen.)

persulphide,  $[Cr_2(NH_3)_6(OH)_3]_2S_{11} +$ 4H₂O.

Ppt. Insol. in H₂O. (Jörgensen.)

### Rhodosulphuric acid.

Potassium rhodosulphate, K₆Rh₂(SO₄)₆.

Two modifications:

(a) Slowly sol. in cold, easily in hot H₂O.

(b) Insol. in H₂O. Does not exist. (Leidié, C. R. 107. 234.)

### Sodium rhodosulphate.

Insol. in H₂O, HCl, HNO₃, or aqua regia. (Claus.)

Does not exist. (Leidié.)  $Na_2Rh_2(SO_4)_4$ . Insol. in  $H_2O$ . (Seubert and Kobbé, B. 23. 2560.)

### Rhodosulphurous acid.

Potassium rhodosulphite, K₆Rh₂(SO₃)₅+  $6\mathrm{H}_2\mathrm{O}$ .

Nearly insol. in H₂O. Slowly sol. in acids. Not decomp, by boiling KOH+Aq. (Claus.)

Sodium rhodosulphite,

 $Na_6Rh_2(SO_3)_5 + 4\frac{1}{2}H_2O = 3Na_2SO_3$ , 2RhSO₃.

Insol. in cold, very sl. sol. in hot H₂O. Easily sol. in HNO₃+Aq. (Seubert and Kobbé, B. 23. 2558.)

### Roseochromium bromide, $Cr(NH_3)_5Br_3+H_2O.$

Easily sol. in H₂O. Insol. in HBr+Aq. (Christensen, J. pr. (2) 23. 26.)

- bromochromate,  $Cr(NH_3)_5Br(CrO_4)$ .

Somewhat sol. in H2O, but decomp. on standing. (Jörgensen, J. pr. (2) 25. 398.)

bromoplatinate,  $Cr(NH_3)_5Br(PtBr_6) +$ 2H₂O.

Precipitate. Difficultly sol. in H₂O. (Christensen, l. c.)

- chloride,  $Cr(NH_3)_5Cl_3+H_2O$ .

Easily sol. in H₂O with subsequent decomp. Insol. in alcohol. (Christensen, J. pr. (2) 23. 26.)

- mercuric chloride,  $Cr(NH_3)_5Cl_3$ ,  $3HgCl_2$ +2H₂O.

Sl. sol. in H2O. Sol. in dil. HCl+Aq with decomposition. (Christensen, l. c.)

### Roseochromium dithionate, basic, $Cr(NH_3)_5(OH)_2S_2O_6+H_2O.$

Easily sol. in very dil. HCl+Aq. (Jörgensen, J. pr. (2) **25.** 398.)

- iodide,  $Cr(NH_8)_5I_8$ .

Easily sol. in H₂O; decomp. by boiling. (Christensen, l. c.)

- nitrate,  $Cr(NH_8)_5(NO_3)_3 + H_2O$ . Rather easily sol. in H₂O. (Christensen,

 $Cr(NH_3)_5(NO_3)_3(OH_2)_2$ , HNO₃. Decomp. by H₂O or alcohol. (Jörgensen, J. pr. (2) 44. 63.)

--- sulphate,  $[Cr(NH_3)_{6}]_2(SO_4)_3 \cdot [-5H_2O.$ Easily sol. in H₂O. Precipitated by alcohol. (Christensen, l. c.)

 sulphate bromoplatinate,  $[Cr(NH_3)_5(SO_4)]_2PtBr_6.$ 

Difficultly sol. in  $H_2O$ . (Christensen, l. c.)

— sulphate chloroplatinate,  $[Cr(NH_3)_5(SO_4)]_2PtCl_6$ . Difficultly sol, in H₂O. (Christensen, l. c.)

### Roseocobaltic bromide,

 $Co(NH_3)_b(OH_2)Br_3$ .

Sol. in H₂O; insol. in HBr+Aq. (Jörgensen, J. pr. (2) 31. 49.)₃

bromoplatinate, Co(NH₃)₅(OH₂)Br₃, PtBr4+H2O.

Somewhat sol. in H₂O or dil. alcohol. Insol in strong alcohol. (Jörgensen.)

 $2\text{Co(NH}_3)_5(\text{OH}_2)\text{Br}_3$ ,  $3\text{PtBr}_4+4\text{H}_2\text{O}$ . Ppt. (Jörgensen.)

 bromosulphate,  $Co(NH_3)_5(OH_2)Br(SO_4)$ . Sol. in H₂O. (Krok.)

 bromosulphate bromaurate, Co(NH₃)₅(OH₂)(SO₄)Br, AuBr₃.

carbonate.

Very sol. in H₂O.

—— chloraurate, Co(NH₃)₅(OH₂)Cl₃, AuCl₃. Moderately sol. in cold H₂O.

- chloride, Co(NH₈)₅(OH₂)Cl₈.

Sol. in 4.8 pts. H₂O at 10.1°, but decomp. on heating.

100 pts. H₂O dissolve 16.12 pts. at 0°, and 24.87 pts. at 16.19°. (Kurnakoff, J. russ. Soc.

Sl. sol. in 1000 pts. fuming HCl+Aq, more

easily in 20% HCl+Aq. (Rose.)

Roseocobaltic mercuric chloride, Co(NH₃)₅(OH₂)Cl₃, 3HgCl₂+H₂O.

More easily sol. in solvents than the anbydrous purpureo salt. (Carstanjen.) Co(NH₃)₅(OH₂)Cl₃, HgCl₂. Sol. in HCl+ Aq with decomp. into above salt. (Jörgensen.)

chlc.oplatinate.

Co(NH₃)₅(OH₂)Cl₃, PtCl₄+½H₂O.

Decomp. by  $H_2O$ . (Jörgensen.)  $2Co(NH_8)_6(OH_2)Cl_8$ ,  $PtCl_4+2H_2O$ . Decomp by H₂O

2Co(NH₈)₆/OH₂)Cl₈, 3PtCl₄-6H₂O difficultly sol, in warm H₂O. (Gibbs.) Not Co(NH₅)₅Cl₃, PtCl₄+H₂O. (Gibbs.)

chlorosulphate, Co(NH₃)₅Cl(SO₄).

Easily sol. in H₂O.

- chloresulphate mercuric chloride,  $Co(NH_3)_5Cl(SO_4)$ ,  $HgCl_2+3H_2O$ .

Sel. in hot H₂O, and can be recrystallized without decomp. (Krok.)

- dichromate,

 $[Co(NH_3)_5]_2(Cr_2O_7)_3+5H_2O.$ 

Can be recrystallized out of weak acetic acid.

- cobalticyanide,  $Co(NH_3)_{\delta}(OH_2)Co(CN)_{\delta}$ . Nearly absolutely insol. in cold H₂O. (Jörgensen.)

+H₂O. (Gibbs and Gentele.)

- dithionate,  $Co(NH_3)_5(S_2O_6)(OH)$ .

Decomp. by H₂O. (Rammelsberg, Pogg. **58.** 296.)

 $Co(NH_3)_5(OH_2)(S_2O_6) + 2H_2O$ . Ppt. (Jörgensen.)

- hydroxide,  $Co(NH_2)_b(OH)_8$ . Known only in aqueous solution.

mercuric hydroxychloride, CoN₅H₁₂(HgOH)₈Cl₃.

Ppt. Sol. in dil. acids. (Vortmann and Morgulis, B. 22. 2646.) CoN₅H₁₂(HgOH)₃Cl₂(OH). Ppt. Sol. in dil. acids. (Vortmann and Morgulis.)

- iodide,  $Co(NH_3)_5(OH_2)I_3$ .

Less sol. in H₂O than bromide. Insol. in HI+Aq. (Jörgensen.)

-- iodosulphate,  $Co(NH_8)_5(OH_2)I(SO_4)$ . Easily sol, in H₂O. (Krok.)

- mercuriodide, [CoN₅H₁₃]₂(HgI)₃I₆.

Ppt. (Vortmann and Borsbach, B. 23. 2805.)

CoN₅H₁₈(HgI)₂I₃. Ppt. (Vortmann and Borsbach.)  $CoN_5H_{18}(HgI)_2I_2(OH)$ . Ppt.

Roseocobaltic nitrate. Co(NH₂)₅(OH₂)(NO₃)₃.

Three modifications:

a. Sol. in 20 pts. H₂O at 15°. (Jörgensen.) β. Known only in solution. Insol. in cold HNO₃+Aq. (Gibbs.)

γ. Easily sol. in hot H₂O. (Gibbs.) (Pur-

pureo salt?)

 $Co(NH_2)_5(OH_2)(NO_3)_3$ ,  $HNO_3$ . Decomp. by H₂O or alcohol. (Jörgensen, J. pr. (2) 44.

 nitrate chloroplatinate,  $C_0(NH_2)_{\delta}(OH_2)(NO_3)\dot{C}l_2$ ,  $PtCl_4+H_2O$ . Ppt. (Jörgensen.)

 nitratosulphate,  $Co(NH_3)_5(OH_2)(NO_3)(SO_4)$ .

Sl. sol, in cold, easily in hot H₂O.

- oxalate,  $[Co(NH_3)_5(OH_2)]_2(C_2O_4)_3 +$ 2H₂O. Nearly insol. in H₂O.

 $[Co(NH_3)_5]_2(C_2O_4)_3, 4H_2C_2O_4.$ 

 oxalochloroplatinate,  $[Co(NH_8)_5]_2C_2O_4Cl_2$ , PtCl₄. Sol. in hot H₂O.

- oxalosulphate,  $[Co(NH_3)_5]_2(SO_4)_2C_2O_4$ ,  $H_2C_2O_4 + 2H_2O_1$ 

Sol. in hot H₂O.

 $[Co(NH_3)_5]_2(SO_4)_2(C_2O_4)(OH)_2 + 6H_2O$ . Sl. sol. in H₂O.

 orthophosphate,  $\operatorname{Co}(\operatorname{NH}_3)_5(\operatorname{OH}_2)(\operatorname{PO}_4\operatorname{H})(\operatorname{OH}) + x\operatorname{H}_2\operatorname{O}$ . Nearly insol. in H₂O.

 $[Co(NH_3)_5(OH_2)]_2(PO_4H)_3 + 4H_2O.$ Verv sl. sol. in cold H₂O; easily in H₂O containing HCl. (Jörgensen.)

pyrophosphate,  $[Co(NH_3)_5(OH_2)]_4(P_2O_7)_8+12H_2O$ .

Insol. in  $H_2O$ . (Jörgensen.)  $Co(NH_3)_5(OH_2)(P_2O_7Na) + 12H_2O$ . Nearly insol. in cold, easily sol. in hot H2O containing NH₄OH. (Jörgensen, J. pr. (2) 23. 252.)

sulphate,  $[Co(NH_2)_5(OH_2)]_2(SO_4)_8 +$ 3H₂Ō.

Three modifications:

a. Sl. sol. in cold H2O. Sol. in 58 pts. at 27° (Gibbs); 83.5 pts. at 20.2°, and 94.6 pts at 17.2° (Jorgensen); more easily sol. in hot H₂O, and still more easily in NH₄OH+Aq.

 $\beta$ . Sol. in 1-2 pts. H₂O. (Gibbs.)

. Less sol. than luteosulphate. (Jörgensen.)

+2H₂O. Easily sol. in H₂O. (Vortmann.)

Roseocobaltic sulphate, acid,

 $[Co(NH_3)_5]_2(SO_4)_1, 2H_2SO_4+3H_2O.$ (Fremy), or  $4[Co(NH_8)_5]_2(SO_4)_8$ ,  $9H_2SO_4$ 

+11H₂O (Jörgensen).

More easily sol. in H2O than neutral sulphate, into which it is converted by recrystallization. Sol. in about 13 pts. H₂O. (Jörgen-

cerium sulphate,  $[Co(NH_3)_5(OH_2)]_2(SO_4)_3$ ,  $Ce_2(SO_4)_3$ + 2½H₂O.

Sl. sol. in cold, practically insol. in boiling H₂O. Sol. in acids. (Gibbs, Am. Ch. J. 15. 560.)

 $[\text{Co(NH_3)}_5(\text{OH}_2)]_2(\text{SO}_4)_3$ ,  $\text{Ce(SO}_4)_2$ + 2½H₂O. As above. (Gibbs.)

### sulphate chloraurate.

Three modifications:

a. Co(NH₃)₅(OH₂)(SO₄)Cl, AuCl₃. Ppt. (Jörgensen.)

 $\beta$ . Co(NH₃)₅(SO₄), AuCl₃+2H₂O. Sl. sol. in cold H₂O, (Gibbs.)

γ. As above. Can be recrystallized from hot H₂O.

sulphate chloroplatinate,

2Co(NH₃)₅(OH₂)(SO₄)Cl₂, PtCl₄.

Three modifications, all difficultly sol, in bot or cold H₂O. (Jörgensen.)

- sulphite,  $[Co(NH_8)_5(OH_2)]_2(SO_3)_8 + H_2O$ . Sl. sol. in cold, decomp. by hot H₂O. (Gibbs.)

cobaltic sulphite,  $[Co(NH_3)_5]_2(SO_3)_3$ ,  $Co_2(SO_3)_3 + 9H_2O$ . Insol. in cold, decomp. by hot H2O. (Kün-

### Roseocobaltic octamine compounds.

See Roseotetramine cobaltic compounds.

### Roseoiridium compounds.

See Iridoaquopentamine compounds.

### Roseorhodium bromide,

 $Rh(NH_3)_5(OH_2)Br_3$ .

Sol. in cold H₂O. (Jörgensen, J. pr. (2) 34. 394.)

### Roseorhodium cobalticyanide,

 $Rh(NH_3)_5(OH_2)Co(CN)_6$ .

Scarcely sol. in H₂O.

- iodosulphate,  $Rh(NH_3)_b(OH_2)I(SO_4)$ . Very sl. sol. in H₂O; easily sol. in NH₄OH+ Aq. (Jörgensen.)

- nitrate,  $Rh(NH_3)_5(OH_2)(NO_3)_3$ .

Moderately sol. in cold H₂O. (Jörgensen.)  $Rh(NH_3)_5(OH_2)(NO_3)_8$ ,  $HNO_3$ . Decomp. by H₂O or alcohol. (Jörgensen, J. pr. (2) 44. 63.)

### Roseorhodium nitrate chloroplatinate, $[Rh(NH_3)_5(OH_2)(NO_3)]_2PtCl_1+2H_2O$ .

Ppt. (Jörgensen.)

### --- orthophosphate,

 $[Rh(NH_3)_b(OH_2)]_2(HPO_4)_3 + 4H_2O$ . Very sl. sol. in H₂O.

### --- sodium pyrophosphate,

 $[Rh(NH_3)_5(OH_2)]_2NaP_2O_7+23H_2O.$ 

Ppt. Very sl. sol. in cold H₂O. Fasily sol. in very dil. acids.

### --- sulphate,

 $\{RL(NH_3)_5(OH_2)_2\}(SO_4)_3 + 3H_2O.$ 

Very sl. sol. in cold, much more in hot H₂O.

### sulphate chloroplatinate,

Rh(NH₃)₅(OH₂)(SO₄)PtĆl₆.

Ppt. Nearly insol, in H₂O or alcohol.

### Roseotetramine cobaltic bromide,

Co(NH₈)₄(OH₂)₂Br₃.

Sol. in H₂O; insol. in HBr+Aq. Nearly insol, in alcohol. (Jörgensen, Z. anorg. 2. 295.)

### - — chloride, $Co(NH_3)_4(OH_2)_2Cl_3$ .

Easily sol. in H₂O; insol. in cone. HCl+Aq: sol. in sat. HgCl₂+Aq. (Jörgensen.)

### cobalticyanide,

 $Co(NH_3)_4(OH_2)_2Co(CN)_6$ .

(Jörgensen.)

### oxalate sulphate, $[C_0(NH_3)_4(OH_2)_2]_2(SO_4)_2C_2O_4.$

Ppt. (Jörgensen.)

### pyrophosphate,

 $[Co(NH_3)_4(OH_2)_2]_4(P_2O_7)_3+6H_2O.$ 

Nearly insol, in H2O, but easily sol, in very dil. acids+Aq. (Jörgensen.)

### sulphate,

 $[C_0(NH_3)_4(OH_2)_2]_2(SO_4)_3 + 3H_2O.$ 

Sol. in about 35 pts. H₂O, and more easily by addition of dil. HCl or H₂SO₄+Aq. (Jörgensen.)

### sulphate bromaurate,

 $[C_0(NH_3)_4(OH_2)_2]_2(SO_4)_2AuBr_4.$ 

Sl. sol. in cold H₂O; insol. in alcohol. (Jörgensen.)

### sulphate chloroplatinate, $[C_0(NH_3)_4(OH_2)_2]_2(SO_4)_2PtCl_6.$

As the bromaurate. (Jörgensen.)

### Rubidium, Rb2.

Decomp. H₂O with violence. Insol. in hydrocarbons. Sol. in liquid NH2. (Seely, C. N. 23. 169); (Franklin, Am. Ch. J. 1898, **20.** 839).

### Rubidium acetylide acetylene RbC2, C2H2.

Very hygroscopic.

Insol. in CCl₄ and in other. (Moissan, C. R. 1903, 136. 1220.

### Rubidiu a amalgam, RbHg₁₂.

Stable in contact with Hg below 0°. Above 0° the composition of the amalgam varies. Can be cryst, from Hg without decomp. below 0°. (Keip, Z. anorg. 1900, 25. 68.)

### Rubidium amide, RhNH₂.

Very deliquescent. Violently decomp. by H₂(1; less violently acted on by alcohol. (Titherley, Chem. Soc. 1897, 71. 470.)

### Rubidium ammonia, RbNH₃.

Decomp. by H₂O.

Very sol. in liquid NH₃. (Moissan, C. R. 1963, **136.** 1178.)

#### Rubidium azoimide, RbN₃.

Sl. hydroscopic. Stable in aq. solution.

107.1 pts. are sol. in 100 pts. H₂O at 16°.

" " 100 " H₂O " 17°.
" " 100 " abs. alcohol at 114.1 " 0.182 "

16°.

Insol. in pure ether. (Curtius, J. pr. 1898, (2) 58. 281.)

### Rubidium bromide, RbBr.

100 pts. H₂O dissolve 98 pts. at 5°; 104.8 pts. at 16°. (Reissig, A. 127. 33.)

Solubility in H₂O.

100 pts. of the solution contain at:

 $0.5^{\circ}$  $5.0^{\circ}$ 47.26 49.50 51.17 pts. RbBr,

39 7°

 $57.5^{\circ}$ 113.5° 56.87 60.3967.24 pts. RbBr. (Rimbach, B. 1905, **38.** 1557.)

### Sp. gr. of RbBr containing g. equiv. RbBr per l.

G. equiv.	Sp. gr.	Sp. gr.	Sp. gr.
RbBr	6°/6°	18°/18°	30°/30°
0.508	1.06448	1.06389	1.06326
1.020	1.12931	1.12799	1.12626
2.031	1.25622	1.25366	1.25187
4.072	1.50574	1.50107	1.49870

(Clausen, W. Ann. 1914, (4) 44. 1070.)

RbBr + Aq. containing 6.60% RbBr has sp. gr. 20°/20° = 1.0525.

RbBr+Aq. containing 14.36% RbBr has sp. gr.  $20^{\circ}/20^{\circ} = 1.1226$ .

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Sol. in acetone. (Fidmann, C. C. 1899, II. 1014.)

Difficultly sol. in acetone. (Naumann, B. 1904, **37**. 4328.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

### Rubidium tribromide, RbBr3.

Very sol. in H₂O; decomp. by alcohol and ether. Wells and Wheeler, Sill. Am. J. **143.** 475.)

### Rubidium ruthenium bromide.

See Bromoruthenate and bromoruthenite, rubidium.

### Rubidium selenium bromide. See Bromoselenate, rubidium.

Rubidium tellurium bromide. See Bromotellurate, rubidium.

# Rubidium thallic bromide, RbBr, TlBr₃+H₂O. Recryst. from H₂O unchanged. (Pratt, Am. J. Sci. 1895, (3) **49**. 403.)

3RbBr, TlBr₈+H₂O. Very sol. in H₂O. (Pratt.)

# Rubidium stannic bromide. See Bromostannate, rubidium.

### Rubidium bromochloride, RbBr₂Cl.

Easily decomp., even by H₂O. (Wells and Wheeler.)

RbBrCl₂. Sol. in H₂O; decomp. by alcohol and ether. (Wells and Wheeler.)

### Rubidium bromochloroiodide, RbBrCII.

Sol. in H₂O and alcohol. Decomp. by ether. (Wells and Wheeler.)

### Rubidium bromoiodide, RbBr2I.

Very sol. in  $H_2O$ . Sat. solution contains about 44% RbBr₂I, and sp. gr. = 3.84. (Wells and Wheeler.)

### Rubidium carbide, Rb₂C₂.

Decomp. violently by H₂O. (Moissan, C. R. 1903, **136**, 1221.)

### Rubidium chloride, RbCl.

100 pts.  $H_2O$  dissolve 76.38 pts. at 1°; 82.89 pts. at 7°. (Bunsen.)

Solubility in H₂O at t°.

100 pts. of the solution contain pts. RbCl.

<del>-</del>	
t°	Pts. RbCl
$egin{array}{c} 0.4 \\ 15.5 \\ 57.3 \\ 114.9 \\ \end{array}$	43.61 46.56 53.71 59.48

(Rimbach, B. 1902, **35**, 1304.)

### Solubility of RbCl in H2O at to.

t°	G. RbCl per 100 g.			G. RbCl per 100 g.	
	H ₂ O	Solution	t°	H ₂ ()	Solution
0 10 20 30 40 50	77.0 84.4 91.1 97.6 103.5 109.3	43.5 45.8 47.7 49.4 50.9 52.2	60 70 80 90 100 112.9	115.5 121.4 127.2 133.1 138.9 146.6	53.6 54.8 56.0 57.1 58.9 59.5

(Berkeley, Phil. Trans. Roy. Soc. 1904, 203, A. 189.)

Sat. RbCl+Aq at 25° contains 48.57% RbCl. (Foote, Am. Ch. J. 1906, **35**. 242.) Sp. gr. of RbCl+Aq containing in 100 pts.  $\rm H_2O$ :

13.14 25.88 33.13 pts. RbCl. 1.1066 1.2156 1.2675 sp. gr. (Tammann, W. Ann. **24**. 1885.)

A normal solution of RbCl has sp. gr. at  $25^{\circ}=1.0610$ . (Wagner, Z. phys. Ch. 1890, 5.39.)

RbCl+Aq containing 6.64% RbCl has sp. gr.  $20^{\circ}/20^{\circ} = 1.0502$ .

RbCl+Aq containing 10.59% RbCl has sp. gr. 20°/20° = 1.0815. (Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 278.)
Sp. gr. 20°/4° of a normal solution of RbCl

Sp. gr. 20°/4° of a normal solution of RbCl = 1.085405. (Haigh, J. Am. Chem. Soc. 1912, **34.** 1151.)

### Sp. gr. of RbCl+Aq sat. at t°.

t,°	Sp. gr.	t°	Sp. gr.
0.55	1.4409	60.25	1.5558
18.7	1.4865	75.15	1.5746
31.5	1.5118	89.35	1.5905
44.7	1.5348	114*	1.6148

* Boiling point.
(Berkeley.)

### Sp. gr. of RbCl containing g. equiv. RbCl per l.

G. equiv.	Sp. gr.	Sp. gr.	Sp. gr.
RbCl	6°/6°	18°/18°	30°/30°
0.5123	1.06410	1.04538	1.04503
1.001	1.08916	1.08810	1.08749
2.073	1.18200	1.17959	1.17828
3.984	1.34334	1.33967	1.33757

(Clausen, W. Ann. 1914, (4) 44. 1069.)

Very sl. sol. in liquid NH₃. (Franklin, Am.) Ch. J. 1898, 20, 829.)

Solubility in alcohols at 25°.

100 g. methyl alcohol dissolve 1.41 g.

100 g. ethyl alcohol dissolve 0 078 g.

100 g. propyl alcohol dissolve 0.015 g.

100 g. isoamyl alcohol dissolve 0.0025 r.

(Turner and Bissett, Chem. Soc. 1913, 103. 19₀9.)

Insol. in anhydrous pyridine and in 97% pyridine+Aq. Very sl. sol. in 95% pyridine +Aq; sl. sol. in 93% pyridine+Aq. lenberg, J. Am. Chem. Soc. 1908, 30. 1107.) Insol. in methyl acetate. Naumann, B. 1909, 42. 3790); acetone; (Naumann, B. 1904, 37. 4329); (Eidmann, C. C. 1899, II. 1014).

Rubidium ruthenium trichloride. See Chlororuthenite, rubidium.

Rubidium ruthenium tetrachloride See Chlororuthenate, rubidium.

### Rubidium oxyruthenium chloride, Rb₂RuO₂Cl₄.

Ppt.; decomp. by H₂O; sol. in cold HCl. (Howe, J. Am. Chem. Soc. 1901, 23, 779.)

Rubidium tellurium chloride. See Chlorotellurate, rubidium.

### Rubidium thallic chloride, 2RbCl, TlCl₃+ H₂O.

Can be recryst. from H₂O without change.

(Pratt, Am. J. Sci. 1895, (3) 49. 399.) 3RbCl, TlCls. Crystallizes from HCl solu-

tion. (Neumann, A. 244. 348.) +H₂O. Very sol. in cold H₂O. Am. J. Sci. 1895, (3) **49**. 398.)  $+H_2O.$ 

 $+2\mathrm{H}_2\mathrm{O}$ . Efflorescent in dry air. Sol. in 7.5 pts. H₂O at 18°, and 1.6 pts. at 100°. (Godeffroy, Zeitschr. d. allgem. österr. Apothekerv. 1880. No. 9.)

### Rubidium stannic chloride.

See Chlorostannate, rubidium.

Rubidium titanium chloride, 2RbCl, TiCl₃  $+H_2O.$ 

Sol. in H₂O. (Stähler, B. 1904, 37, 4408.)

### Rubidium tungsten chloride, Rb₃W₂Cl₉.

Sl. sol. in cold, more sol. in hot H₂O. Sol. in very dil. NaOH+Aq. Nearly insol. in most organic solvents. (Olsson, B. 1913, 46. 574.)

Rubidium uranous chloride, Rb₂UCl₆. As K salt. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Rubidium uranyl chloridé, 2RbCl, (UO2)Cla +2H₂O.

Solubilit in H2O.

100 pts. of the solution contain at:

24.8° 80.3°

57.8 65.73 r/s. UO₂Cl₂, 2RbCl. (Rimbach, B. 1904, 37, 467.)

Rubidium vanadium chloride, Rb₂VCl₅ +H₂O.

Sl. sol. m H₂O and alcohol. Decomp. by  $H_2C$  on standing so that it dissolves. (Stähler, B. 1904, 37, 4411.)

### Rubidium zinc chloride, 2RbCl, ZnCl2.

Fasily sol. in H₂O and HCl+Aq. (Godeffroy, B. 8. 9.)

Rubidium chloride selenium dioxide, RbCl,  $2SeO_2+2H_2O$ .

Sol. in H₂O. (Muthmann, B. 1893, 26. 1013.)

### Rubidium chloroiodide, RbCl₂I.

Properties are similar to those of RbBrCII. (Wells.)

RbCl₄I. Sol, in alcohol, not attacked by ether. (Wells and Wheeler, Sill. Am. J. 144.

Sol. in POCl₃. (Walden, Z. anorg. 1900, **25**. 212.)

Nearly insol. in AsBr₃. (Walden, Z. anorg. 1902, 29, 374.)

Very stable; sl. sol. in H₂O at 0°; only very sl. sol. in HCl. (Erdmann, Arch. Pharm. 1894, **232**. 32.) (C. C. **1894**, I. 670.)

### Rubidium fluoride, RbF.

Very sel. in H₂O. (Eggeling, Z. anorg. 1905, 46. 174.)

100 g. H₂O dissolve 130.6 g. RbF at 18°. (de Forcrand, C. R. 1911, **152**. 1210.)
Sol. in dil. HF. (Pennington, J. Am. Chem. Soc. 1896, **18**. 57.)

Insol. in liquid NH₃. (Core, Am. Ch. J. 1898, **20**. 829.)

### Rubidium hydrogen fluoride, RbF, HF.

Very deliquescent.

Insol. in alcohol and ether. (Chabrié. C. R. 1905, **140**. 91.)

Very hygroscopic. Sol. in H₂O. (Eggeling, Z. anorg. 1905, **46**. 175.) RbF, 2HF. Very sl. sol. in H₂O. (Egge-

ling, Z. anorg. 1905, 46. 176.)

### Rubidium silicon fluoride.

See Fluosilicate, rubidium.

Rubidium tantalum fluoride. See Fluotantalate, rubidium.

Rubidium uranyl fluoride, 4RbF, UO₂F₂+ 6H₂O.

(Ditte, C. R. 91, 115.)

### Rubidium hydride, RbH.

Decomp. by H₂O with evolution of H₂. (Moissan, C. R. 1903, 136. 589.)*

### Rubidium hydroxide, RbOH.

Deliquescent, and very sol. in H₂O. Sol. in alcohol. (Bunsen.)

Sat. RbOH +Aq contains 64.17% RbOH at 15°. (de Forcrand, C. R. 1909, **149**. 1344.)

### Rubidium iodide, RbI.

100 pts. H₂O dissolve 137.5 pts. at 6.9°; 152 pts. at 17.4.° (Reissig, A. 127. 33.) Sat. RbI+Aq. at 25° contains 61.93% RbI. (Foote and Chalker, Am. Ch. J. 1908, 39.

Sp. gr. of RbI+Aq containing:

5% 10% cold hot sat. sat.

Sp. gr. 1.0353 1.0755 1.726 1.9629.(Erdmann, Arch. Pharm. 1894, 232. 25.)

Sp. gr. of RbI+Aq containing g. equiv. RbI per l.

G. equiv.	Sp. gr.	Sp. gr.	Sp. gr.
RbI	6°/6°	18°/18°	30°/30°
0.510	1.08347	1.08268	1.08226
1.025	1.16751	1.16569	1.16433
2.025	1.33012	1.32637	1.32531
4.015	1.64781	1.64144	1.63780

(Clausen, W. Ann. 1914, (4) 44. 1070.)

Nearly insol. in AsBr₃. (Walden, Z. anorg.

1902, **29.** 374.) Sol. in AsCl₃. (Walden, Z. anorg. 1900, 25. 214); liquid SO₂. (Walden, Z. anorg. 1902, **30.** 161); S₂Cl₂. (Walden, Z. anorg. 1900, **25.** 217); SO₂Cl₂. (Walden); POCl₃.

(Walden.) Sol, in methyl acetate. (Naumann, B. **1909**, **42**, 3789.)

Solubility in organic solvents at t°.

C = pts. bv wt. of RbI in 100 ccm, of the sat.

L = no. of litres which at the saturation temp, hold in solution 1 mol. RbI.

Solvent	t°	С	L
Furfurol Acetonitrile	25° 25° 0°	4.93 1.350 1.478	4.31 15.73 14.36
Propionitrile	25° 0°	0.305 0.274	69.61 77.48
Nitromethane "Acetone "	25° 0° 25° 0°	0.518 0.567 0.674 0.960	$\begin{array}{r} 41.00 \\ 37.44 \\ 31.5 \\ 22.1 \end{array}$

(Walden, Z. phys. Ch. 1906, 55. 718.)

### Rubidium triiodide, RbIs.

Very sol. in H₂O. Sol. in about ¹/₈ pt. H₂O at 20°; sol. in alcohol. Decomp. by ether. (Wells and Wheller, Sill. Am. J. 143. 475.) Solubility determinations show that RbI.

is the only polyiodide of rubidium formed at 25°. RbI₇ and RbI₂, mentioned by Abegg and Hamburger, (Z. anorg. 50, 403) could not be obtained. (Foote and Chalker, Am. Ch. J. 1908, 39. 567.)

### Rubidium silver iodide, 2RbI, AgI.

Easily decomp. by H₂O. (Wells and Wheeler, Sill. Am. J. **144**. 155.) RbI, AgI+1/2H2O. (Marsh, Chem. Soc.

1913, **103**. 783.)

RbI, 2AgI. Not deliquescent.

Very sol. in acetone. (Marsh, Chem. Soc. 1913, **103**. 783.)

### Rubidium tellurium iodide.

See Iodotellurate, rubidium.

### Rubidium thallic iodide, RbI, TII₃+2H₂O.

Decomp. by H₂O. (Pratt. Am. J. Sci. 1895, (3) **49.** 403.)

### Rubidium nitride,

Decomp. by heat. (Franz Fischer, B. 1910, **43.** 1468.) See also Rubidium azoimide.

#### Rubidium dioxide, RbO₂.

Decomp. by H₂O. (Erdmann, A. 1897, **294.** 68.)

### Rubidium sulphide, Rb₂S+4H₂O.

Deliquescent; very sol. in H₂O. (Biltz. Z. anorg. 1906, 48, 299.)

### Rubidium disulphide, Rb₂S₂.

Anhydrous.

Sol. in H₂O.

Very hydroscopic. (Biltz, Z. anorg. 1906, **50**. 72.)

 $+H_2O$ . From Rb₂S₂+Aq. Hydroscopic. (Biltz.)

#### Rubidium trisulphide, Rb₂S₃.

Anhydrous.

Sol. in H₂O.

Hydroscopic. (Biltz, Z. anorg. 1906, 50.

 $+H_2O$ . From  $Rb_2S_8+Aq$ . (Biltz.)

### Rubidium tetrasulphide Rb₂S₄+2H₂O.

Sol. in H₂O. (Biltz, Z. anorg. 1906, 48. 304.)

### Rubidium pentasulphide, Rb₂S₅.

Deliquescent. Decomp. by H₂O.

Very easily sol. in 70% alcohol. Insol. in ether, ethyl sulphide or CHCl₃.

(Biltz, B. 1905, 38. 127.)

### Rubidium hydrogen sulphide, RbHS.

Deliquescent, very sol. in H₂O. (Biltz. Z. anorg. 1906, 48. 300.)

### Rubidium copper tetrasulphide, RbCvS.

Decomp. very slowly in the air.

Sl. sol. in H₂O.

Very slowly decomp. by cold conc., more rapidly by hot conc., and still more rapidly by dil. HCl, H₂SO₄ and HNO₃. Sl. sol. in alcohol. (Biltz, B. 1907, 40. 978.)

#### Ruthenic acid.

### Barium ruthenate, $BaRuO_4 + H_2O$ .

Ppt. (Debray and Joly, C. R. 106, 1494.) Ruthenium tetrachloride, RuCl.

Calcium ruthenate, CaRuO₄.

Ppt.

Magnesium ruthenate, MgRuO4. Ppt.

Potassium ruthenate, K₂RuO₄+-H₂O. Very sol, in H₂O.

### Perruthenic acid.

### Potassium perruthenate, KRuO₄.

Sl. sol. in H₂O. (Debray and Joly, C. R. **106.** 1494.)

Sodium perruthenate, NaRuO₄+H₂O. Sl. sol. in H₂O.

#### Ruthenium, Ru.

Not attacked by acids, except aqua regia, which dissolves it only very slightly. (Claus, Pogg. 65. 218.)

### Ruthenium ammonium comps.

See Ruthenodiamine comps, etc.

### Ruthenium tribromide, RuBr₃.

Sol. in H₂O. Solution decomposes slowly on standing, but rapidly on heating. (Gutbier, Z. anorg. 1905, 45. 178.)

### Ruthenium tribromide, ammonia, 2RuBr₃, 7NH₃.

Sol. in H₂O and ammonia with slight warm-

Insol. in alcohol. (Gutbier, Z. anorg. 1905, **45.** 182.)

### Ruthenium dichloride, RuCl₂.

Insol. in acids, even in aqua regia. attacked by acids. Traces are dissolved by boiling with conc. KOH+Aq.

 $+xH_2O$ . Known only in aqueous solution. (Claus, A. **59.** 238.)

### Ruthenium trichloride, RuCls.

Deliguescent. So! in H₂O and alcohol, but solution is decomp, by heating into Ruo and HCl. (Claus.)

Pure RuCl₃ is insol- in cold H₂O, mineral. or organic acids. Slewly decomp, by boiling H₂O. Insul. in CCl₄, CS₂, CHCl₈, PCl₈, or ether. Slowly sol. in hot absolute alcohol, but decomp. into Ru(OH)Cl₂ by 95% alcohol. (Joly, C. R. 114. 292.)

Hydroscopic.

Sol. in H₂O; decomp. at 50°. Sol. in alcohol. (Gutbier Z. anorg. 1905. 45. 174 )

See also Ruthenium nitrosochloride.

Sol. in H₂O and alcohol. (Claus.)

Ruthenium trichloride with MCl. See Chlororuthenite, M.

### Ruthenium tetrachloride with MCl.

See Chlororuthenate, M.

### Ruthenium sesquihydroxide, Ru₂O₆H₆.

Sol. in acids; insol. in alkalies. Less sol. in NH₄OH+Aq than any other oxide of the Pt metals. (Claus.)

### Ruthenium dihydroxide, $RuO_4H_4+3H_2O$ .

Sol. in acids and alkalies. (Claus, A. 59.

Contains NO. Joly, C. R. 107, 994.)

### Ruthenium triodide, Ruls.

Ppt. (Claus.) Insol. in H₂O, KI+Aq, and alcohol. (Gutbier, Z. anorg. 1905, **45**. 181.)

### Ruthenium triiodide ammonia, 2RuI₃, 7NH₃.

Sol, in H₂O and ammonia with slight warm-

Insol. in alcohol. (Gutbier, Z. anorg. 1905, 45. 182.)

### Ruthenium nitrosochloride, RuCl₂(NO)+ $H_2O$ , and $5H_2O$ .

Slowly sol. in cold, easily in hot H₂O. (Joly, C. R. 108. 855.)

### Ruthenium dihydronitrosochloride,

NO.Ru₂H₂Cl₃, 2HCl.

Sol. in H₂O. (Brizard, A. ch. 1900, (7) **21.** 353.)

### Ruthenium silver nitrosochloride,

NO.Ru₂H₂Cl₈, 2HCl, 3AgCl.

Ppt. (Brizard, A. ch. 1900, (7) 21, 357.)

### Ruthenium nitrososesquioxide, Ru₂O₃(NO)₂ $+2H_2O.$

Ppt. (Joly, C. R. **108.** 854.)

### RUTHENIUM HYDRONITROSOHYDROXIDE

### Ruthenium dihydronitrosohydroxide, $NO.Ru_2H_2(OH)_3+2H_2O.$

Sl. sol. in cold H₂O with decomp. (Brizard, A. ch. 1900, (7) 21. 349.)

### Ruthenium dihydronitrosooxychloride, $NO.Ru_2H_2Cl_2OH + 2H_2O.$

Ppt. (Brizard, A. ch. 1900, (7) 21. 349.)

### Ruthenium monoxide, RuO.

Insol. in acids. (Claus, A. 59. 236.)

### Ruthenium sesquioxide, Ru₂O₃.

Insol. in acids. Mixture of Ru and RuO₂. (Debray and Joly, C. R. 106. 1494.) See Ruthenium nitrososesquioxide.

### Ruthenium dioxide, RuO2.

Insol. in acids. (Debray and Joly.)

### Ruthenium trioxide, RuO3.

"Ruthenic acid." Known only in its salts.

### Ruthenium tetroxide, RuO4.

Rather difficultly and slowly sol, in H₂O. (Claus.)

Decomp. in aqueous solution into Ru₂O₅+ 2H₂O. (Debray and Joly.)

#### Ruthenium pentoxide, Ru₂O₅.

(Debray and Joly, C. R. 106. 1494.) +2H₂O. Ppt. (Debray and Joly.)

### Ruthenium heptoxide, Ru₂O₇.

"Perruthenic acid." Known only in its salts.

### Ruthenium oxide, Ru₄O₀.

(Debray and Joly.)

### Ruthenium oxychloride, Ru(OH)Cl₂.

Very sol. in H₂O, but decomp. by an excess. (Joly, C. R. **114.** 293.)

### Ruthenium silicide, RuSi.

Insol. in boiling acids; slowly attacked by a mixture of fused KHSO₄ and KNO₃. (Moissan, C. R. 1903, 137. 231.)

### Ruthenium trisulphide, RuS₃.

Ppt. (Antony, Gazz. ch. it. 1900, 30. 539.)

### Ruthenomonamine hydroxide.

 $Ru(OH)_2(NH_3)_2 + 4H_2O$ .

See Ruthenosamine hydroxide.

### Ruthenodiamine carbonate, $Ru(N_2H_6)_2CO_3+5H_2O$ .

Easily sol. in H₂O. Insol. in alcohol. (Claus.)

### Ruthenodiamine chloride,

 $Ru(N_2H_6Cl)_2+3H_2O$ .

Not very sol, in cold, easily sol, in hot H₂O. Insol, in alcohol.

See Ruthenonitrosodiamine comps.

### - mercuric chloride, Ru(N₂H₆Cl)₂, HgCl₂.

Nearly insol. in cold, sol. in hot H₂O. (Gibbs, Sill. Am. J. (2) 34, 350.)

- chloroplatinate, Ru(N₂H₆Cl)₂, PtCl₄. Sl. sol. in H₂O. (Claus.)

### — hydroxide, $Ru(N_2H_6OH)_2$ .

Known only in aqueous solution.

### - nitrate, $Ru(N_2H_6NO_3)_2+2H_2O$ .

Somewhat difficultly sol, in cold, easily in hot H₂O. Insol. in alcohol.

### - sulphate, $Ru(N_2H_6)_2SO_4+4H_2O$ .

Moderately sol. in H₂O. Insol. in alcohol. (Claus.)

### Ruthenocvanhydric acid, H₄Ru(CN)₆.

Easily sol. in H₂O and alcohol. Less sol. in ether. (Claus, J. B. 1855. 444.)

### Potassium ruthenocyanide, K₄Ru(CN)₆+ 3H₂O.

Sl. efflorescent. Very sol, in H₂O; sl. sol. in dil. alcohol. (Claus.)

### Ruthenonitrosodiamine bromide,

 $Ru(NO)(NH_3)_4Br_3$ .

Sl. sol. in  $H_2()$ . (Joly, C. R. 111. 969.) Ru(NO)OH(NH $_3$ ) $_4$ Br $_2$ . Less sol. than corresponding chloride. (Joly, C. R. 108. 300.)

### - chloride, Ru(NO)(NH₈)₄Cl₃.

Sl. sol. in H₂O. (Joly, C. R. 111. 969.) Ru(NO)OH(NH₃)₄Cl₂. Sol. in H₂O. (Joly, C. R. 108, 1300.)  $Ru(NO)(NH_3)_4Cl_3+2H_2O =$ 

 $\begin{array}{l} \operatorname{Ru(NO)(\acute{O}H)(N\acute{H}_3)_4\acute{C}l_2, \quad HCl+H_2O} \\ \operatorname{Very\ sol.\ in\ H_2O.\quad (Joly,\ C.\ R.\ 111.\ 969.)} \end{array}$ 

### chloroplatinate.

 $Ru(NO)OH(NH_3)_4PtCl_6.$ 

Scarcely sol. in boiling H₂O. (Joly, C. R. **108.** 1300.)

Ru(NO)(NH₈)₄Cl₈, PtCl₄. Ppt. (Joly, C. R. **111.** 969.)

### - iodide, $Ru(NO)(NH_8)_4I_3$ .

Sl. sol. in H₂O. (Joly, C. R. 111. 969.) Ru(NO)OH(NH₃)₄I₂. Less sol. than the corresponding bromide. (Joly, C. R. 108. 1300,)

- nitrate,  $Ru(NO)(NH_8)_4(NO_8)_8$ .

More sol. in H₂O than  $Ru(NO)(OH)(NH_{\mathfrak{p}})_4(NO_{\mathfrak{p}})_2.$ (Joly, C. R. **111.** 969.)

 $Ru(NO)OH(NH_{a})_{4}(NO_{3})_{2}$ . Sl. sol. in cold  $H_{2}O$ ; insol. in conc.  $HNO_{3}+Aq$ . (Joly, C. R. 108. 1300.)

### Ruthenonitrosodiamine sulphate,

 $[Ru(NO)(NH_3)_4]_2(SO_4)_3 + 10H_2O.$ 

Sl. sol. in  $H_2O$ . (Joly, C. R. 111. 969.) [Ru(NO)(NH₃)₄]₄(SO₄)₆,  $H_2SO_4+H_2O$ . Decomp. by cold  $H_2O$ . (Joly.)

Ru(NÖ)(OH)₄(NH₃)₄SO₄+H₂O. Most 80l. in H₂O of this class of salts. (Joly, C. R. **108**, 1300.)

### Ruthenonitrous acid.

Ammonium ruthenonitrite,  $RuH_2(NO_2)_4$ ,  $3NH_4NO_2+2H_2O$ .

Easily sol. in H₂O; practically insol. in KCl+Aq. (Brizard, A. ch. 1900, (7) 21. 368.)

### Potassium ruthenonitrite

 $K_b Ru_2(NO_2)_{12} = 6KNO_2$ ,  $Ru_2(NO_2)_3$ .

Easily sol. in  $H_2O$ , alcohol, or ether. (Gibbs, Sill. Am. J. (2), **34**. 344.)

Sl. sol. in H₂O. Easily sol. in KNO₂+Aq. (Claus.)

 $K_4Ru_2(NO_2)_{10} = Ru_2O_2(N_2O_3)_3, 4KNO_2.$ Very sol. in  $H_2O$ . (Joly and Vèzes, C. R. **109**. 667.)

 $K_8Ru_2(NO_2)_{14} = Ru_2O_2(N_2O_3)_2$ , 8KNO₂. Sl. sol. in H₂O. Sol. in cold dil. acids. (Joly and Vèzes.)

Ru₂H₂(NO₂)₄, 3KNO₂+4H₂O. Very sol. in H₂O. Aqueous solution decomp. sl. on long boiling. Almost insol. in conc. KCl+Aq. (Brizard, C. R. 1899, **179.** 216.)

Silver ruthenonitrite,  $NO.Ru_2H_2(NO_2)_4$ ,  $3AgNO_2+2H_2O$ .

Ppt. (Brizard, A. ch. 1900, (7) 21. 368.)

Sodium ruthenonitrite,  $Ru_2(NO_2)_6$ ,  $4NaNO_2+4H_2O$ .

Very sol. in H₂O without decomp. (Joly, C. R. 1894, **118**. 469.)

### Ruthenosamine hydroxide,

 $Ru(NH_8OH)_2 + 4H_2O$  (?).

Very deliquescent, and sol. in H₂O. (Claus.)

### Samarium, Sm.

The element has not been isolated.

Samarium bromide, SmBr₃+6H₂O... Very deliquescent. (Cleve.)

### Samarium carbide, SmC₂.

Decomp. by water and acids. (Moissan, C. R. 1900, 131. 925.)

Samarium dichloride, SmCl₂.

Decomp. by H₂O with liberation of H₂ and formation of samarium oxide and samarium oxychloride. Insol. in CS₂, CHCl₃, benzene, abs. alcohol, pyridine and toluene. (Matignen, C. R. 1906, **142**. 55.)

### Samarium trichloride, SmCl₃.

The anhydrous sait is very hydroscopic and easily sol in H₂O. (Matignon, C. R. 1902, **134**. 1309.)

Very sol. in  $H_2O$ . Very sol. in abs. alcohol. 6.38 g. c. e sol. in 100 grams pyridine at ord. temp; insol. in quinoline. (Matignon, A. ch. 1906, (8) 8. 406.)

+5H2O. Deliquescent.

Samarium chloride ammonia, SmCl₃+NH₃; +2NH₃; +3NH₃: +4NH₃; +5NH₃; +8N.H₂; +9.5NH₃: +11.5NH₃. (Matignon, C. R. 1905, **140**. 143.)

### Samarium fluoride, SmF₃+½H₂O.

Precipitate. Insol. in H-O and dil. acids. (Cleve.)

Samarium iodide, SmI₃.

(Matignon, A. ch. 1906, (8) 8. 413.)

### Samarium hydroxide, $Sm_2(OH)_6$ .

Insol. in alkalies; easily sol. in acids, and decomposes ammonium salts. (Cleve, C. N. 51. 145.)

Samarium oxide, Sm₂O₃.

Easily sol. in acids. (Cleve, C. N. 51. 145.)

Samarium peroxide, Sm₄O₉.

Precipitate. (Cleve.)

Samarium oxychloride, SmOCl. (Matignon, A. ch. 1906, (8) 8, 412.)

Samarium sulphide, Sm₂S₃.

(Matignon, A. ch. 1906, (8) 8. 415.)

### Scandium, Sc.

Element has not been isolated.

Scandium bromide,  $Sc_2Br_6 + 3H_2O$ , and  $+12H_2O$ .

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.)

Scandium chloride, Sc₂Cl₆, +3H₂O, and +12H₂O.

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.)

### Scandium hydroxide.

Easily sol. in conc. HNO₃ or HCl+Aq. (Crookes, Roy. Soc. Proc. 1908, **80**. A, 518.)

### Scandium oxide, Sc₂O₈.

Easily sol. by boiling with conc. HNO₃ or HCl+Aq.

### Scandium sulphide, Sc₂S₃.

Decomp. by H₂O and by acids with evolution of H₂S. (Wirth, Z. anorg. 1914, 87. 5.)

### Selenantimonic acid.

Sodium selenantimonate, Na₈SbSe₄+9H₂O.
Sol. in 2 pts. cold H₂O. Insol. in alcohol.
(Hofacker, A. **107**. 6.)
Sl. sol. in H₂O; unstable. (Pouget, A. ch.

Sl. sol. in H₂O; unstable. (Pouget, A. cf 1899, (7) **18.** 562.)

### Selenantimonous acid.

Potassium orthoselenantimonite, K₃SbSe₃.

Ppt. Decomp. by  $H_2{\rm O.}$  (Pouget, A. ch. 1899, (7) 18. 560.)

Potassium paraselenantimonite, K₂Sb₄Se₇+ 3H₂O.

Sl. sol. in H₂O; unstable. (Pouget, A. ch. 1899, (7) **18.** 560.)

Sodium orthoselenantimonite, Na₃SbSe₃+ 9H₂O.

Very sol. in  $H_2O$ . Aqueous solution on standing deposits red crystals of sodium selenantimonate,  $Na_3SbSe_4+9H_2O$ . (Pouget, A. ch. 1899, (7) **18.** 562.)

Sodium paraselenantimonite, Na₂Sb₄Se₇. (Pouget, A. ch. 1899, (7) **18.** 561.)

### Selenic acid, H₂SeO₄.

Very sol. in H₂O with evolution of heat. If aqueous solution is evaporated at temp. of 165°, acid has 2.524 sp. gr.; at temp. of 267°, acid has 2.60 sp. gr.; at temp. of 285°, acid has 2.625 sp. gr. Decomp. to H₂SeO₃ at higher temp. (Mitscherlich, Pogg. 9.623.)

By evaporation at 265°, acid of 2.609 sp. gr. containing 95% H₂SeO₄ is obtained. If brought at same temp. in vacuo over H₂SO₄, acid of 2.627 sp. gr. with 97.5% H₂SeO₄ is obtained. (Fabian, A. Suppl. 1. 243.)

Sp. gr. of H₂SeO₄+Aq.

% H ₂ SeO ₄	Sp. gr.	% H ₂ SeO ₄	Sp. gr.
99.73	2.6083	90.0	2.3848
99.50	2.6051	89.0	2.3568
99.00	2.6975	88.0	2.3291
98.5	2.5863	87.0	2.3061
98.0	2.5767	86.0	2.2795
97.5	2.5695	85.0	2.5558
97.0	2.5601	84.0	2.2258
96.0	2.5388	83.0	2.1946
95.0	2.5163	82.0	2.1757
94.0	2.4925	81.0	2.1479
93.0	2.4596	80.0	2.1216
92.0	2.4322	79.0	2.0922
91.0	2.4081	73.50	1.9675
Comeron	and Macalla	n Lond R	Son Pron

(Cameron and Macallan, Lond. R. Soc. Proc. 46. 13.)

Sp. gr. of H₂SeO₄+Aq at 20° compared with H₂O at 4°.

Wts. corrected to vacuum.

vv ts. corrected to vacuum.						
Sp. gr.	H ₂ SeO ₄	Sp. gr.	% H₂SeO₄	Sp. gr.	H ₂ SeO .	
1.000	1	1.295	32.64	1.590	54.62	
1.005	0.9	1.300	33.08	1.595	54.92	
1.010	1.56	1.305	33.50	1.600	55.28	
1.015	2.12	1.310	33.92	1.605	55.62	
1.020	2.92	1.315	34.36	1.610	55.96	
1.025	3.62	1.320	34.82	1.615	56.30	
1.030	4.16	1.325	35.26	1.620	56.60	
1.035	4.70	1.330	35.72	1.625	56.88	
1.040	5.32	1.335	36.10	1.630	57.20	
1.045 $1.050$	6.08	1.340   1.345	$\begin{vmatrix} 36.43 \\ 36.88 \end{vmatrix}$	1.635 $1.640$	57.48 57.70	
1.055	7.34	1.350	37.34	1.645	58.04	
1.060	7.92	1.355	37.80	1.650	58.47	
1.065	8.56	1.360	38.24	1.655	58.86	
1.070	9.20	1.365	38.66	1.660	59.24	
1.075	9.82	1.370	39.10	1.665	59.56	
1.080	10.44	1.375	39.50	1.670	59.74	
1.085	11.02	1.380	39.98	1.675	59.94	
1.090	11.62	1.385	40.06	1.680	60.18	
1.095	12.20	1.390	40.66	1.685	60.36	
1.100	12.88	1.395	41.10	1.690	60.58	
1.105	13.58	1.400	41.56	1.695	60.80	
1.110	14.14	1.405	41.98	1.700	61.06	
1.115	14.66	1.410	42.36	1.705 1.710	61.36	
1.120 1.125	15.20	$1.415 \\ 1.420$	42.78 43.16	1.715	61.64	
1.130	$15.74 \\ 16.32$	1.425	43.56	1.720	$61.90 \\ 62.24$	
1.135	16.86	1.430	43.94	1.725	62.48	
1.140	17.38	1.435	44.32	1.730	62.76	
1.145	17.38 17.90 18.44	1.440	44.52	1.735	63.06	
1.150	18.44	1.445	45.00	1.740	63.32	
1.155	18.92	1.450	45.32	1.745	63.60*	
1.160	19.48	1.455	45.68	1.750	63.86	
1.165	20.02	1.460	46.04	1.755	64.04	
1.170 1.175	$ \begin{array}{c} 20.58 \\ 21.08 \\  \end{array} $	1.465	46.36 46.70	1.760 1.765	$64.24 \\ 64.42$	
1.180	21.60	1.475	47.01	1.770	64.62	
1.185	22.22	1.480	47.32	1.775	64.84	
1.190	22.66	1.485	47.66	1.780	65.06	
1.195	23.18	1.490	47.98	1.785	65.28	
1.200	23.70	1.495	48.28	1.790	65.48	
1:205	24.26	1.500	48.54	1.795	65.66	
1.210	24.84	1.505	48.92	1.800	65.90	
$1.215 \\ 1.220$	25.30	1.510	49.30	1.805	66.12	
1.220 $1.225$	$\begin{vmatrix} 25.84 \\ 26.30 \end{vmatrix}$	1.515 1.520	49.68 50.02	1.810 1.815	66.36 66.64	
1.230	26.84	1.525	50.02	1.820	66.90	
1.235	27.28	1.530	50.68	1.825	67.16	
1.240	27.70	1.535	51.04	1.830	67.46	
1.245	28.18	1.540	51.38	1.835	67.72	
1.250	28.58	1.545	51.66	1.840	68.02	
1.255	29.06	1.550	51.98	1.845	68.30	
1.260	29.44	1.555	52.28	1.850	68.50	
$1.265 \\ 1.270$	29.82	1.560	52.56	1.855	68.70	
$1.270 \\ 1.275$	30.26	$\begin{bmatrix} 1.565 \\ 1.570 \end{bmatrix}$	52.88   53.28	$\frac{1.860}{1.865}$	68.92 69.12	
1.280	$30.76 \\ 31.26$	1.575	53.56	1.870	69.12 69.34	
1.285	31.74	1.580	53.94	1.875	69.56	
1.290	32.18	1.585	54.30	1.880	69.72	
			11			

### Sp. gr. of H₂SeO₄+Aq-Concluded.

			,		
Sp. gr.	H2SeO₄	Sp. gr.	% H₂SeO₄	Sp gr.	% H28¢∩4
1.885	69.94	2.125	80.25	2.365	89.14
1.890	70.14	2.130	80.42	2.370	89.30
1.895	70.38	2.135	80.68	2.375	89.48
1.900	70.64	2.140	80.74	2.380	89.60
1.905	70.78	2.145	80.96	2.385	89.72
1.910	71.00	2.150	81.14	2.390	39.84
1.915	71.21	2.155	81.36	2.395	89.96
1.920	71.38	2.160	81.60	2.400	90.10
1.925	71.68	2.165	81.80	2.405	90.20
1.930	72.00	2.170	82.02	2.410	90.30
1.935	72.38	2.175	82.22	2 415	90.46
1.940	72.66	2.180	82.44	2.420	90.74
1.945	72.88	2.185	82 64	2.425	91.00
1.95Q	73.12	2.190	82.78	2.430	91.24
1.955	73.34	2.195	82.96	2.435	91.46
1.960	73.54	2.200	83.10	2.440	91.70
1.965	73.74	2.205	83.24	2.445	92.00
1.970	73.98	2.210	83.44	2.450	92.28
1.975	74.22	2.215	83.62	2.455	92.56
1.980	74.44	2.220	83.78	2.460	92.85
1.985	74.66	2.225	83.96	2.465	93.02
1.990	74.86	2.230	84.14	2.470	93.20
1.995	75.08	2.235	84.30	2.475	93.36
2.000	75.28	2.240	84.48	2.480	93.68
2.005	75.46	2.245	84.60	2.485	94.02
2.010	75.66	2.250	84.82	$\begin{vmatrix} 2.490 \\ 2.495 \end{vmatrix}$	94.32
$2.015 \\ 2.020$	75.88	$2.255 \\ 2.260$	$ 85.02  \\  85.26 $	2.495 $2.500$	$ 94.48 \\ 94.64$
$\frac{2.020}{2.025}$	76.06	$\begin{vmatrix} 2.260 \\ 2.265 \end{vmatrix}$	85.44	$\frac{2.500}{2.505}$	94.80
2.025	76.14 76.48	2.270	85.60	$\frac{2.505}{2.510}$	94.96
$\frac{2.035}{2.035}$	76.68	$\frac{2.275}{2.275}$	85.78	2.515	95.32
$\frac{2.033}{2.040}$	76.84	2.280	85.96	2.520	95.58
2.045	77.08	2.285	86.16	2.525	95.86
2.050	77.36	2.290	86.38	2.530	96.10
2.055	77.50	2.295	86.60	2.535	96.41
2.060	77.62	2.300	86.82	2.540	96.68
2.065	77.80	2.305	87.04	2.545	96.92
2.070	78.06	2.310	87.26	2.550	97.12
2.075	78.24	2.315	87.46	2.555	97.30
2.080	78.48	2.320	87.66	2.560	97.48
2.085	78.68	2.325	87.84	2.565	97.68
2.090	78.84	2.330	88.00	2.570	97.94
2.095	79.08	2.335	88.18	2.575	98.20
2.100	79.28	2.340	88.34	2.580	98.46
2.105	79.50	2.345	88.48	2.585	98.70
2.110	79.68	2.350	88.66	2.590	99.04
2.115	79.90	2.355	88.82	2.595	99.36
2.120	80.10	2.360	88.98		
/D:		T 1	7 1	CI.	1000

(Diemer and Lenher. J. phys. Chem. 1909, **13.** 509.)

Sol. in conc. or fuming H₂SO₄ Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 830.)

Decomp. by alcohol. +H₂O. (Cameron and Macallan, C. N.

**59.** 232.)

 $+2H_2O$ , and  $+6H_2O$  (?). (C. and M.) +4H₂O. (Kremann and Hofmeier, M. 1908, **29.** 1117.)

#### Selenates.

All the neutral and acid salts of  $H_2SeO_4$  are sol. in H₂O, except BaSeO₄, SrSeO₄, CaSeO₄, and PbSeO₄, which are nearly or quite insol. it. H₂O or HNO₈+Aq,

Aluminum selenate, Al₂(SeO₄)₈.

Resembles in every way aluminum sulphate. (Berzelius)

Aluminum ammonium selenate.

 $Al_2(NH_4)_2(SeO_4)_4 + 24H_2O_4$ 

More sol. in H₂O than the corresponding sulphate. (Wohlwill, A. 114. 191.)

Aluminum cæsium selenate, Al₂Cs₂(SeO₄)₄+ 24H₂O.

(Peterson, B. 9. 1563.)

Much nore sol. in Hi2O than the corresponding sulphate. (Fabre, C. R. 105. 114.)

Aluminum potassium selenate, Al₂K₂(SeO₄)₄ +24H₂O.

More sol. in H₂O than common alum. (Weber, Pogg. 108, 615.)

Aluminum rubidium selenate, Al₂Rb₂(SeO₄)₄ +24H₂O.

(Peterson, B. 9. 1563.)

Much more sol, in H₂O than the corresponding sulphate. (Fabre, C. R. 105. 114.)

Aluminum sodium selenate, Al₂Na₂(SeO₄)₄+ 24H₂O.

Sl. efflorescent. Very sol. in H₂O. (Wohlwill, A. 114. 191.)

Aluminum thallium sulphate,  $Al_2Tl_2(SeO_4)_4$ + 24H₂O.

Sol. in H₂O. (Fabre, C. R. **105**. 114.)

Aluminum selenate potassium sulphate,  $Al_2(SeO_4)_3$ ,  $K_2SO_4+24H_2O$ . Sol. in H₂O. (v. Gerichten, A. **168.** 222.)

Ammonium selenate, (NH₄)₂SeO₄.

Easily sol. in H₂O. 100 g. H₂O dissolve 117 g. (NH₄)₂SeO₄ at 7°; 164 g. at 59°; 197 g. at 100°. (Tutton, Proc. Roy. Soc. 1907, **79**, A. 351.) Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20**. 826.)

Ammonium hydrogen selenate, NH₄HSeO₄. Sol. in H₂O. (Topsoë.)

Ammonium cadmium selenate, (NH₄)₂SeO₄,  $CdSeO_4+2H_2O.$ 

Sol. in H₂O. (Topsoë, W. A. B. **66, 2. 2.**) +6H₂O. Efflorescent. Very easily sol. in H₂O. (Topsoë.)

Ammonium cerous selenate,  $(NH_4)_2Ce_2(SeO_4)_4 + 9H_2O.$ 

Easily sol. in H₂O. (Jolin.)

Ammonium chromium selenate.  $(NH_4)_2Cr_2(SeO_4)_4+24H_2O.$ Sol. in H₂O. (Fabre, C. R. 105, 114.)

Ammonium cobaltous selenate, (NH₄)₂SeO₄.  $CoSeO_4+6H_2O$ .

Easily sol. in H₂O. (Topsoë.)

Ammonium cupric selenate, (NH₄)₂SeO₄,  $CuSeO_4+6H_2O$ .

Sol. in H. (Topsoë.)

Ammonium didymium selenate, (NH₄)₂SeO₄,  $Di_2(SeO_4)_3 + 6H_2O$ .

Easily sol. in H₂O. (Cleve.) +10H₂O. (Cleve, Bull. Soc. (2) **43.** 363.)

Ammonium erbium selenate, (NH₄)₂SeO₄,  $\text{Er}_2(\text{SeO}_4)_3 + 4\text{H}_2\text{O}$ .

Easily sol, in H₂O. (Cleve.)

Ammonium ferrous selenate,  $(NH_4)_2Fe(SeO_4)_2$ +6H₂O.

Easily sol. in H₂O. (Topsoë.)  $+2H_2O$ .

Ammonium lanthanum selenate, (NH₄)₂SeO₄,  $La_2(SeO_4)_3 + 9H_2O.$ Sol, in H₂O. (Cleve.)

Ammonium magnesium selenate,  $(NH_4)_2Mg(SeO_4)_2+6H_2O$ . Easily sol. in H₂O. (Topsoë.)

Ammonium manganous selenate, (NH₄)₂SeO₄,  $MnSeO_4 + 6H_2O$ .

Not deliquescent. Easily sol. in H₂O. (Topsoë.)

Ammonium nickel selenate, (NH₄)₂SeO₄,  $NiSeO_4+6H_2O$ .

Sol. in H₂O. (Topsoë.)

Ammonium samarium selenate, (NH₄)₂SeO₄,  $Sm_2(SeO_4)_8 + 6H_2O$ .

Easily sol. in H₂O. (Cleve.)

Ammonium thallium selenate, (NH₄)₂SeO₄,  $Tl_2(SeO_4)_3 + 8H_2O.$ 

Sol. in H₂O. (Fortini, C. C. 1903, II. 706.)

Ammonium uranyl selenste, (NH₄)₂SeO₄,  $(UO_2)SeO_4+2H_2O$ .

Easily sol. in H₂O. (Sendtner.)

Ammonium yttrium selenate, (NH₄)₂SeO₄,  $Y_2(SeO_4)_8+6HO.$ 

Very sol. in H₂O. (Cleve.)

Ammonium zinc selenate,  $(NH_4)_2SeO_4$ ,  $ZnSeO_4+6H_2O$ . Sol. in H₂O. (Topsoë.)

### Antimony selenate.

Insol. in H2O. Not very sol. in acids. Sol. in H₂SeO₄. (Cameron and Macallan.)

Barium selenate, BaSeO4.

Somewhat more sol. in H₂O and dil. acids than BaSO₄. (Rose.) 100 ccm. H₂O dissolve 11.8 mg. in the cold, and 13.8 mg. at 100°. (Petersson, Z. anal. 12. 287.)

Not decomp. by H₂SO₄. Insol. in HNO₃+

Aq (Berzelius), but decomp. by solution of alkali carbonates at ordinary temp.

Very slowly decomp. by HCl+Aq. (Rose,

Pogg. 95. 426.)

#### Bismuth selenate.

Insol. in, and not decomp. by cold or hot H₂O. (Cameron and Macallan.)

Cæsium selenate, Cs₂SeO₄.

Sol. in H₂O. (Petersson, B. **9.** 1561.) 100 g. H₂O at 12° dissolve 244.8 g. Cs₂SeO₄. (Tutton, Chem. Soc. 1897, 71. 850.)

Sp. gr. of Cs₂SeO₄+Aq at 20° compared with H₂O at 4°, containing:

45.94 53.43 1.5841 1.7432 (Tutton.)

Cæsium hydrogen selenate, CsHSeO₄.

Ppt. Very hygroscopic. (Norris, Am. Ch. J. 1901, **26.** 322.)

Cæsium chromic selenate, Cs₂Cr₂(SeO₄)₄+ 24H₂O.

Sol. in H₂O. (Fabre, C. R. 105. 114.)

Cæsium cobaltous selenate, Cs₂Co(SeO₄)₂+ 6H₂O.

Sol. in H₂O. (Topsoë.)

Cæsium indium selenate,  $CsIn(SeO_4)_2+$ 12H₂O.

Efflorescent; sol. in H₂O. (Mathers, J. Am. Chem. Soc. 1908, **30.** 215.)

Cæsium iron (ferric) selenate, Cs₂Fe₂(SeO₄)₄ +24H₂O.

Sl. sol. in H₂O. (Roncogliolo, Gazz. ch. it. 1905, **35.** (2) 553.)

Cæsium magnesium selenate, Cs₂SeO₄,  $MgSeO_4+6H_2O$ . (Tutton, Chem. Soc. 1905, 87, 1163.)

Cæsium zinc selenate,  $Cs_2Zn(SeO_4)_2 + 6H_2O$ . (Tutton, Zeit. Kryst. 1900, 33, 14.)

Cadmium selenate, CdSeO₄+2H₂O.

Very sol. in  $H_2O$ . (v. Hauer, W. A. B. 39. 299.)

Cadmium potassium selenate, CdSeO4, K2SO4  $+2\mathrm{H}_{2}\mathrm{O}$ .

Sol. in H₂O; can be recrystallized without decomp. (v. Hauer, W. A. B. 54. 209.)

### Calcium selenate, CaScO₄+2H₂O.

Less sol. in hot than in cold H₂O. (v. Hauer, J. pr. 80. 214.)

Sat. CaSeO₄+Aq contains at:

Cerous selenate,  $Ce_2(SO_4)_3 + 6H_2O$ ,  $9H_2O$ , or 12H₂O.

More sol. in cold than hot  $H_2O$ . (Jolin.)  $+4H_2O$ . Very easily in cold, sl. sol. in hot  $H_2O$ . (Cingolani, C. C. **1908**, I. 1606.)

Stable above 100°.

+5H₂O. Stable at 92-100°.

+7H₂O. Stable at 80–92° Stable at 50-78°. +8H₂O.

+10H₂O. Stable at 34-40°.

+11H₂O. Stable at 12-28° +12H₂O. Stable at 0-12°. (Cingolani, C.

A. 1908. 2658.)

Solubility of Ce₂(SeO₄)₃ in H₂O at t°. (G. salt calculated as anhydrous Ce₂(SO₄)₃ dissolved in 100 cc. H₂O.)

t°	Using Ce2(SeO4)3 +11H2O	Using Ce ₂ (SeO ₄ ) ₃ +4H ₂ O	t°	Using Ce ₂ (SeO ₄ ) ₃ +11H ₂ O	Using Ce ₂ (SeC ₄ ) ₃ +4H ₂ O
0° 11.6 12.6 26.6 28.8 34.2 45.6 45.9	37 33.84 33.15 32.16	39.55 36.9 33.2  31.89	60° 60.8 78.2 80.5 91 95.4 98	13.68  5.52  2.02 1.53 	13.12 4.56  1.785 2.513

(Cingolani, l. c.)

Cerous potassium  $Ce_2(SeO_4)_3$ selenate, 5K₂SeO₄.

More sol. in H₂O than the corresponding sulphate. (Jolin.)

Cerous sodium selenate, Ce₂(SeO₄)₃, Na₂SeO₄ +5H₂O.

Quite sol. in H₂O. (Jolin.)

Chromic potassium selenate,  $Cr_2K_2(SeO_4)_4+$ 24H₂O.

Resembles the sulphate in every particular. | 1907, I. 86.)

Chromic rubidium selenate, Cr₂Rb₂(SeO₄)₄+ 24H₂O. Sol. in H₂O.

Chromic sodium selesate, Cr2Na2(SeO4)4+

Sol. in H₂O. (Fabre, C. R. 105. 114.)

Chromic thallous selenate, Cr₂Tl₂(SeO₄)₄+ 24H₂O.

Sol. in H₂O. (Fabre, C. R. 105, 114.)

Chromic selenate potassium sulphate.  $Cr_2(SeO_4)_8$ ,  $K_2SO_4+24H_2O_5$ .

sol in H₂O. (v. Gerichten.)

Cobaltous selenate, basic, 4CoO, 3SeO₃+

Insol. in H₂O; sol. in acids. (Bogdan, Bull. Soc. (3) 9. 586.)

 $Co_3(OH)_2(SeO_4)_3$ . Insol. in  $H_2O$ . Sol. in acids. (Bogdan, C. C. **1895**. 630.)

Cobaltous selenate,  $CoSeO_4 + 5H_2O_1$ .

Easily sol. in H₂O. (Topsoë.) +6H₂O. Easily sol. in H₂O. (Topsoë.) +7H₂O. Efflorescent. Extremely sol. in H₂∩. (Topsoë.) +18H₂O. Very unstable. (Copaux, A. ch. 1905, (8) **6**. 553.)

Cobaltous potassium selenate, CoSeO₄,  $K_2SeO_4+6H_2O$ .

More sol. in H₂O than corresponding sulphate. (v. Hauer, W. A. B. 39. 837.)

Cobaltous rubidium selenate, CoRb₂(SeO₄)₂ +6H₂O.

Sol. in H₂O. (Topsoë.)

Cobaltous thallous selenate, CoTl₂(SeO₄)₂+ 6H₂O.

Sol. in H₂O. (Topsoë.)

Cupric selenate, basic, 3CuO, 2SeO₃+4H₂O. Insol. in H₂O; sol. in acids. (Bogdan, Bull. Soc. (3) 9. 588.)

+5H₂O. Sl. sol. in cold H₂O. (Metzner, C. R. 1898, 127. 55.)

Cupric selenate, CuSeO₄+5H₂O.

Solubility in H₂O:-257 g. salt in 1 l. sat. solution at 15°. 346 " " " 1 l. " " " 35°. 435 " " " 1 l. " " " 55°.

Aq. solution decomp. at 70°. (Metzner. C. R. 1898, 127. 55.) +H₂O, and +2H₂O. (Metzner.)

Cupric hydrazine selenate, N2H4.H2SeO4,  $CuSeO_4 + \frac{1}{2}H_2O$ .

Decomp. in aq. solution. (Rimini, C. C.

Cupric magnesium selenate,  $CuMg_s(SeO_4)_4 + 28H_2O$ .

Sol. in H₂O. (Wohlwill.)

Cupric nickel selenate, CuSeO₄, NiSeO₄+ 14H₂O.

Sol. in H₂O. (Wohlwill.)

Cupric potassium selenate,  $CuSeO_4$ ,  $K_2SeO_4$ +  $6H_2O$ .

Sl. sol. in H₂O. (Topsoë.)

Cupric zinc selenate,  $CuZn_3(SeO_4)_4+28H_2O$ . Sol. in  $H_2O$ . (Wohlwill.)

Cupric selenate ferrous sulphate, 2CuSeO₄, 3FeSO₄+35H₂O.

Sol. in H₂O. (Wohlwill.)

Cupric selenate magnesium sulphate,  $CuSeO_4$ ,  $3MgSO_4+28H_2O$ .

Sol. in H₂O. (Wohlwill.)

Cupric selenate zinc sulphate, CuSeO., 3ZnSO.4+28H2O.

Sol. in H₂O. (Wohlwill.)

Didymium selenate,  $Di_2(SeO_4)_3+5H_2O$ , and  $6H_2O$ .

Sol. in H₂O.

+8H₂O. Easily sol. in H₂O. (Cleve.) +10H₂O. Sol. in H₂O. (Cleve.)

Didymium potassium selenate,  $Di_2(SeO_4)_3$ ,  $K_2SeO_4+9\hat{H}_2O$ .

Not deliquescent. Easily sol. in  $H_2O$ . (Cleve.)

 $\begin{array}{ccc} \mbox{Didymium} & \mbox{sodium} & \mbox{selenate,} & \mbox{Di}_2(\mbox{SeO}_4)_3, \\ & \mbox{Na}_2\mbox{SeO}_4 + 4\mbox{H}_2\mbox{O}. \end{array}$ 

Easily sol. in H₂O. (Cleve.)

Dysprosium selenate, Dy₂(SeO₄)₃+8H₂O. Easily sol. in H₂O; insol. in alcohol. (Jantsch, B. 1911, **44**. 1275.)

Erbium selenate,  $Er_2(SeO_4)_8+8H_2O$ , and  $9H_2O$ .

Fasily sol. in H₂O. (Topsoë.)

Erbium potassium selenate,  $Er_2(SeO_4)_3$ ,  $K_2SeO_4+8H_2O$ .

Easily sol. in H₂O. (Cleve.)

Gadolinium selenate,  $Gd_2(SeO_4)_8+10H_2O$ . Decomp. in the air. (Benedicks, Z. anorg. 1900, 22. 410.)

Gadolinium potassium selenate,  $Gd_2(SeO_4)_3$ ,  $3K_2SeO_4+4H_2O$ .

Sol. in  $H_2O$ . (Benedicks, Z. anorg. 1900, 22, 412.)

Glucinum selenate, GlSeO₄+4H₂O. Very sol. in H₂O. (Atterberg.)

Gold (auric) selenate, Au₂(SeO₄)₈.

Insol. in H₂O. Sol. in hot conc. H₂SeO₄+Aq. Somewhat sol. in H₂SO₄ and HNO₅+Aq. Decomp. by HCl+Aq. (Lenher, J. Am. Chem. Soc. 1902, **24.** 355.)

Indium selenate,  $In_2(SeO_4)_3+10H_2O$ .

Hydroscopic; easily sol. in  $H_2O$ . (Mathers, J. Am. Chem. Soc. 1908, **30**. 214.)

Iron (ferrous) selenate,  $FeSeO_4 + 5H_2O$ .

Sol. in H₂O. (Wohlwill, A. **114**. 169.) +7H₂O. Efflorescent, and sol. in H₂O. (Topsoë.)

Iron (ferrous) potassium selenate,  $FeSeO_4$ ,  $K_2SeO_4+6H_2O$ .

Easily sol. in H₂O. Solution decomp. somewhat on standing. (Topsoë.)

Iron (ferric) rubidium selenate,  $Rb_2Fe_2(SeO_4)_4$ +24H₂O.

Sl. sol. in  $H_2O$ . (Roncogliolo, Gazz. ch. it. 1905, **35**. (2) 553.)

 $\begin{array}{c} \text{Iron} \quad (\text{ferric}) \quad \text{selenate} \quad \text{potassium} \quad \text{sulphate,} \\ \quad Fe_2(SeO_4)_3, \quad K_2SO_4 + 24H_2O. \end{array}$ 

Sol. in H₂O. (v. Gerichten.)

Lanthanum selenate,  $La_2(SeO_4)_3+6H_2O$ , and  $10H_2O$ .

Easily sol. in cold H₂O. (Cleve.) +12H₂O. (Frerichs and Smith, A. **191.** 355.)

Lanthanum potassium selenate,  $La_2(SeO_4)_3$ ,  $K_2SeO_4+9H_2O$ .

Quite sol. in H₂O. (Cleve.)

Lanthanum sodium selenate,  $La_2(SeO_4)_8$ ,  $Na_2SeO_4+4H_2O$ .

Easily sol. in H₂O. (Cleve.)

Lead selenate, basic, 2PbO, SeO₃.

Decomp. by acids with separation of PbSeO₄.
3PbO, PbSeO₄+H₂O. Ppt. (Strömholm, Z. anorg. 1904, **38**. 443.)

Lead selenate, PbSeO4.

Insol. in H₂O or HNO₈+Aq. (Schafarik, W. A. B. 47. 256.)
Min. Kerstenite.

Lithium selenate, Li₂SeO₄+H₂O.

Not deliquescent. Easily sol. in  $H_2O$ . (Topsoë.)

Magnesium selenate, MgSeO₄+6H₂O.

Solubility resembles closely that of MgSO₄. (Topsoë.)

Magnesium potassium selenate,  $MgK_2(SeO_4)_2 + 6H_2O$ .

Easily sol. in H₂O. (Topsoë.)

 $\begin{array}{ccc} \textbf{Magnesium} & \textbf{rubidium} & \textbf{selenate,} & M_BScO., \\ Rb_2SeO_4 + 6H_2O. & & & \\ \end{array}$ 

(Tutton, Chem. Soc 1905, 87, 1163.)

Manganous selenate,  $MnSeO_4 + 2H_2O$ .

Easily sol. in  $H_2O$ . (Topsoë.) +5 $H_2O$ . Easily sol. in  $H_2O$ . Solution decomp. on warming or standing. (Topsoë.)

Manganous potassium selenate, K₂SeO₄, Sp. gr. MnSeO₄.

Not deliquescent. Easily sol. in  $\mathrm{H}_2\mathrm{O}$ . (Topsoë.)

Mercurous selenate, 6Hg₂O, 5SeO₂.

Very sl. sol. in H₂O. Sl. attacked by boiling HNO₃. Insol. in HCl+Aq. (Köhler, Pogg. 89. 146.)

Hg₂SeO₄. Very sl. sol. in H₂O; insol. in HCl+Aq. (Company and Dayly Cl. N. AA.

HC1+Aq. (Cameron and Davy, C. N. **44**. 63.)

Mercuric selenate, basic, 6HgO, 2SeO₃+H₂O. Insol. in H₂O, or cold HNO₃+Aq. Sol. in hot HNO₃ or HCl+Aq. (Köhler.) HgSeO₄, 2HgO. Sol. in 10,330 pts. H₂O. (Cameron and Davy.)

Mercuric selenate, HgSeO₄+H₂O.

Decomp. by  $H_2O$  with formation of basic salt. (Köhler.)

Sol. in H₂SeO₄, H₂SO₄, HNO₃, or HCl+Aq, but decomp. by H₂O to 2HgO, HgSeO₄. (Cameron and Davy, C. N. **44**. 63.)

Nickel selenate,  $NiSeO_4 + 6H_2O$ .

Very easily sol, in  $H_2O$ . (v. Hauer, W. A. B. 39. 305.)

Nickel potassium selenate, NiSeO₄, K₂SeO₄+6H₂O.

Sol. in H₂O. (Topsoë.)

Nickel thallium selenate, NiSeO₄, Tl₂SeO₄+6H₂O.

Sol. in H₂O. (Petersson.)

Platinum selenate.

Sol. in boiling H₂O. Sol. in HCl+Aq. Insol. in alcohol. (Cameron and Macallan, Lond. R. Soc. Proc. **46**. 13.)

Potassium selenate, K2SeO1.

Nearly equally sol. in cold and hot H₂O. (Mitscherlich, Pogg. 9. 623.)

100 g. H₂O dissolve 110.5 g. K₂SeO₄ at 0°; 112.8 g. at 20°; 122.7 g. at 100°. (Étard, C. R. 1888, **106**. 741.

Sat. K SeO4+A9 contains at:

 $-20^{\circ}$   $-5^{\circ}$   $+5^{\circ}$  51.5 51.7 52.0%  $K_2SeO_4$ ,

18° 17° 52.6 54.9% K₂SeO₄. Ltard, A. ch. 1894, (7) **2.** 550.)

100 g H₂O at 12° dissolve 115.0 g. K₂SeO₄. (Tutton, Chem. Soc. 1897, **71.** 850.)

Sp. gr. of K₂SeO₄+Aq at 20° compared with H₂O at 4°, containing:

% K₂SeO₄ 35.76 41.79 50.00 Sp. gr. 1.3591 1.4385 1.5590 (Tutton Chem. Seq. 1807. 71 851.)

(Tutton, Chem. Soc. 1897, 71. 851.)

Potacsium hydrogen selenate, KHSeO₄. Sol. in H₂O.

Potassium praseodymium selenate,  $3K_2SeO_4$ ,  $Pr_2(SeO_4)_3+4H_2O$ .

Sl. sol. in  $H_2O$ . (von Scheele, Z. anorg. 1898, 18. 361.)

Potassium samarium selenate,  $K_2SeO_4$ ,  $Sm_2(SeO_4)_3+6H_2O$ .

Easily sol. in  $H_2O$ . (Cleve, Bull. Soc. (2) 43. 166.)

Potassium sodium selenate,  $3K_2SeO_3$ ,  $Na_2SeO_4$ .

Sol. in H₂O. (Topsoë.)

Potassium thallium selenate,  $K_2SeO_4$ ,  $Tl_2(SeO_4)_3+8H_2O$ .

Very sol. in dil. acids. (Fortini, C. C. 1903, II. 706.)

Potassium uranyl selenate,  $K_2SeO_4$ ,  $(UO_2)SeO_4+2H_2O$ .

Sl. sol, in cold, easily in hot  $H_2O$ . (Sendtner.)

Potassium yttrium selenate,  $K_2SeO_4$ ,  $Y_2(SeO_4)_3+6H_2O$ .

Very sol. in H₂O. (Cleve.)

Potassium zinc selenate, K₂SeO₄, ZnSeO₄+ 2H₂O.

Sol. in H₂O. (Topsoë.) +6H₂O. Sol. in H₂O. (Topsoë.)

Potassium selenate aluminum sulphate, K₂SeO₄, Al₂(SO₄)₃+24H₂O. Sol. in H₂O. (v. Gerichten.) Potassium selenate chromic sulphate,  $K_2SeO_4$ ,  $Cr_2(SO_4)_3 + 24H_2O$ .

Sol. in H₂O. (v. Gerichten.)

Potassium selenate ferric sulphate, K2SeO4.  $Fe_2(SO_4)_3 + 24H_2O$ .

Sol. in H₂O. (v. Gerichten.)

Potassium selenate manganous sulphate,  $K_2SeO_4$ ,  $MnSO_4+6H_2O$ .

Sol. in H₂O. (v. Gerichten, A. 168. 225.)

Potassium selenate manganic sulphate,  $K_2SeO_4$ ,  $Mn_2(SeO_4)_8+24H_2O$ .

Sol. in H.O. (v. Gerichten.)

Praseodymium selenate,  $Pr_2(SeO_4)_2$ .

Sol. in H₂O. (von Schule, Z. anorg. 1898, **18.** 360.)  $+8H_2O$ . Sl. sol. in  $H_2O$ ; sol. in  $H_2SO_4$ . · (von Schule.)

### Rubidium selenate, Rb₂SeO₄.

Sol, in H₂O, (Petersson.) 100 g. H₂O at 12° dissolve 158.9 g. Rb₂SeO₄. (Tutton, Chem. Soc. 1897, 71. 850.)

Sp. gr. of Rb₂SeO₄+Aq at 20° compared with H₂O at 4°, containing:

% Rb₂SeO₄ 40.60 47.07 Sp. gr. 1.4688 1.5806 (Tutton.)

Rubidium hydrogen selenate, RbHSeO₄.

Sol. in equal pts. H₂O; very hydroscopic. (Norris, Am. Ch. J. 1901, 26. 321.)

Rubidium zinc selenate, Rb₂Zn(SeO₄)₂+ 6H₂O.

(Tutton, Zeit, Kryst. 1900, 33, 8.)

Samarium selenate,  $Sm_2(SeO_4)_3 + 8H_2O$ .

More sol. in  $H_2O$  than  $Sm_2(SO_4)_3$ . +12H₂O. Efflorescent. (Cleve.)

Scandium selenate,  $Sc_2(SeO_4)_8+2H_2O$ , and +8H₂O.

(Crookes, Roy, Soc. Proc. 1908, 80, A. 518.)

Silver selenate, Ag₂SeO₄.

As Ag₂SO₄. (Mitscherlich, Pogg. 12. 138.)

Silver selenate ammonia, Ag₂SeO₄, 4NH₈.

Easily sol. in H₂O or NH₂OH + Ag without decomp. (Mitscherlich, Pogg. 12. 141.)

### Sodium selenate, Na₂SeO₄.

Very sol. in H₂O, forming supersat. solu-Cryst. also with 10H2O, which effloresce. Maximum point of solubility is at 33°. (Mitscherlich.)

Solubility in H ₂ O at t°.					
t°	% Na ₂ SeO ₄	Mols. H ₂ O to 1 mol. Na ₂ SeO ₄	Mols. anhydrous salt to 100 mols. H ₂ O		
35.2 39.5 50 75 100	45.47 45.26 44.49 42.83 42.14	12.59 12.70 13.10 14.00 14.42	7.94 7.87 7.63 7.14 6.93		

(Funk, B. 1900, **33.** 3697.)

+10H₂O. Solubility in H₂O at t°.

t°	% Na ₂ SeO ₄	Mols. H ₂ O to 1 mol. Na ₂ SeO ₄	Mols. anhy- drous salt to 100 mols. H ₂ O
0	11.74	79.08	1.26
15	25.01	31.48	3.18
25.2	36.91	17.95	5.57
27	39.18	16.30	6.13
30	44.05	13.33	7.50

(Funk.)

Sp. gr. of sat. solution at  $18^{\circ} = 1.315$ . (Funk.)

Sodium selenate vanadate.

See Selenovanadate, sodium.

Strontium selenate, SrScO₄.

Insol. in  $H_2O$  or  $HNO_3+Aq$ ; decomp. by long boiling with HCl+Aq.

Tellurium selenate, 2TeO₂, SeO₃.

As sulphate. (Metzner, A. ch. 1898, (7) **15.** 203.)

Thallous selenate, Tl₂SeO₄.

Sl. sol. in cold, much more in hot H₂O. Insol. in alcohol and ether. (Kuhlmann.)

100 g. H₂O dissolve 2.13 g. at 9.3; 2.4 g. at 12°; 10.86 g. at 100°. (Tutton, Proc. Roy. Soc. 1907, **79.** A, 351.)
2.8 g. are sol. in 100 g. H₂O at 20°; 8.5 g.

at 80°. (Glauser, Z. anorg. 1910, 66, 437.)

Thallous hydrogen selenate, HTlSeO4+ 3H₂O.

(Oettinger.)

Thallous zinc selenate, Tl₂SeO₄, ZnSeO₄+ 6H₂O.

Easily sol. in H₂O, but less than the corresponding sulphate. (Werther, Bull. Soc. **1865.** 60.)

Thorium[selenate,  $Th(SeO_4)_4 + 9H_2O$ .

100 pts. H₂O dissolve 0.498 pt. Th(SeO₄)₄ at 0°, and 1.972 pts. at 100°. (Cleve.)

Tin (stannic) selenate, basic, SnO(SeO₄)+ H₂O.

Deliquescent. Sol. in H₂O. Ditte, C. R. **104.** 231.)

Uranyl selenate, (UÖ₂)SeO₄, H₂SeO₄+ 18H₂O.

Very deliquescent.

.  $2(UO_2)SeO_4$ ,  $H_2SeO_4 + 12H_2O$ . Efflores cent. Sol. in  $H_2O$ . (Sendtner, A. 195. 325.) Efflores-

### Ytterbium selenate, Yb₂(ScO₄)₈,

Anhydrous.

 $+15H_{2}O$  (?),  $+8H_{2}O$ (Cleve, Z. Pot. anorg. 1902, 32. 145.)

### Yttrium selenate, Y₂(SeO₄)₃.

Anhydrous. Sol. in H2O with hissing and evolution of heat. (Popp.)

+8H₂O. Easily sol. in H₂O. (Cleve.) +9H₂O. Efflorescent.

### Zinc selenate, $ZnSeO_4 + 5H_2O$ .

Sol. in H₂O. (Topsoë.)

+6H₂O. Sol. in H₂O. (Topsoë.) +7H₂O. Sol. in H₂O.

### Selenious acid, H₂SeO₃.

Deliquescent in moist, efflorescent in dry air. Very sol. in cold, and in nearly every proportion in hot  $H_2O$ . Easily sol. in alcohol. (Berzelius.)

Sp. gr. of H₂SeO₃ and of H₂SeO₃+Aq at t°. Two series of experiments.

I no borros or carpormionos.		
	t°	Sp. gr. at t°
$\begin{array}{c} H_2SeO_3 + \Lambda q \; (A) \\ 1 \; vol. \; A + 0.5 \; vol. \; H_2O \\ 00000000000000000000000000000000000$	18.0 18.0 17.7 16.6 14.0 17.0 19.2	1.4386 1.3179 1.2337 1.2045 1.1984 1.1712 1.1600
H ₂ SeO ₃ +Aq (B) 1 vol. B+0.5 vol. H ₂ O "+1.0" "+1.5" "+2.0" "+2.5" "+3.0"	15.8 16.5 13.0 14.2 17.0 16.5 14.2	1.4698 1.3191 1.2515 1.2074 1.1992 1.1793 1.1678

(de Coninck, C. C. 1905, I. 1693.) See also Selenium dioxide.

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.)

### Selenites.

Alkali selenites are sol. in H₂O. The other neutral selenites are insol. in H₂O, but sol. in HNO₃+Aq, Pb, and Ag salts slowly. The pratt, Chem. Soc. 2. 65.)

neutral salts are insol. in HCl+Aq. salts of the heavy metals are sol. in H₂O.

Aluminum selenite, basic,  $4Al_2O_3$ ,  $9SeO_2+$ 36H₂O.

Precipitate. (Nilson, Upsala, 1875.)

Aluminum selenitε, Al₂(SeO₃)₃.

Precipitate. (Berzelius.)

+7H₂(). Sl. sol. in H₂O. (Nilson.) Sol. in  $H_2SeO_8+Aq$ .

+3H₂O. Insol. in H₂O; sol. in acids. (Boutzoureano, A. ch (6) 17. 289.)

Aluminum selenite, acid, Al₂O₃, 4SeO₂ + 12 3H₂O.

(Boutzoureano.)

 $2Al_2O_3$ ,  $9SeO_2 + 12H_2O$ . Sol. in  $H_2O$ . (Nil-

 $Al_2O_3$ ,  $6SeO_2$ . Very sol. in  $H_2O$ . (Berzelius.)

+5H₂O. (Nilson.)

+2H₂O. (Boutzoureano.)

### Ammonium selenite, (NH₄)₂SeO₈.

Deliquescent. Very sol. in H₂O.

Precipitated from aqueous solution by alcohol. Insol. in ether. (Muspratt, A. 70. 275.)

Ammonium hydrogen selenite, NH4HSeO3. Not deliquescent. Sol. in H₂O. (Berzelius.)

### Ammonium trihydrogen selenite,

NH4H3(SeO3)2.

Deliquescent. (Berzelius.)

#### Ammonium vanadium selenite.

See Vanadioselenite, ammonium.

Ammonium uranyl selenite, (NH₄)₂SeO₄.  $(UO_2)SeO_3$ .

Completely insol. in H₂O. (Sendtner.)

Antimony selenite, Sb₂(SeO₃)₃, SeO₂. (Nilson, Bull. Soc. (2) 23. 494.)

Barium selenite, BaSeO₃.

Sl. sol. in H₂O. Sol. in H₂SeO₃+Aq. in acids. (Nilson.) +H₂O. (Nilson.)

Barium pyroselenite, BaSe₂O₅.

Very sl. sol. in cold, more in warm H₂O. (Berzelius.)

Bismuth selenite, Bi₂(SeO₃)₃, H₂SeO₃.

(Nilson.)  $Bi_2(SeO_3)_8$ . (Nilson.)

Cadmium selenite, CdSeO₈.

Insol. in H₂O. Sol. in H₂SeO₃+Aq. (Mus-

No Co

2CdO, 3SeO₂+H₂O. Insol. in H₂O; sol. acids. (Boutzoureano.) in acids. +1/2H2O, "Insol. in H2O; sol. in dil. acids. (Boutzoureano.)

Cadmium selenite ammonia, CdSeO₃, NH₃. Insolain cold or hot H2O. (Boutzoureano, A. ch. (6) 17. 289.)

Calcium selenite, CaSeO₃+4/₃H₂O. Very sl. sol. in H₂O. (Berzelius.) More

sol. in H₂SeO₃+Aq. HO. (Nilson.)

Calcium hadrogen selenite, CaH₂(SeO₃)₂+

Quite sol. in H₂O. (Nilson.) Ca₂H₂Se₄O₁₁. Easily sol. in H₂O. (Nil-

Cerous selenite, basic, 2Ce₂O₃, 5SeO₂+ 30H₂O.

Precipitate. (Nilson.)

Cerous selenite, Ce₂(SeO₃)₃+3H₂O.

Insol, in H₂O. Sol, in much selenious acid. (Jolin.)

+12H₂O. (Nilson.)

Cerous selenite, acid, Ce₂O₃, 4SeO₂+5, or 6 H₂O.

Insol. in H₂O, but sol. in selenious, and

other acids. (Jólin.)  $Ce_2O_3$ ,  $6SeO_2+5H_2O$ . Not decomp. by  $H_2O$ . (Nilson.)

Ceric selenite, Ce(SeO₈)₂.

Insol. in H₂O. Sl. sol. in conc. HNO3. Sol. in dil. acids. Sol. in  $H_2O_2+Aq$ . (Barbieri, B. 1910, 43.)

Chromium selenite, basic,  $4Cr_2O_3$ ,  $9SeO_2+$ 64H₂O.

Precipitate. (Nilson.)

Chromic selenite,  $Cr_2(SeO_3)_2 + 3H_2O$ .

(Boutzoureano.) +15H₂O. (Nilson.)

Very sl. sol. or insol. in H₂O; sl. sol. in H₂SeO₃+Aq; sol. in hot conc. HCl+Aq. (Taquet, C. R. 96. 107.)

Chromic selenite, acid,  $Cr_2O_3$ ,  $4SeO_2+13H_2O$ . Slowly sol. in HCl+Aq. Insol. in H₂O.

(Nilson.) Cr2O2,  $5SeO_2 + 9H_2O$ . Insol. in  $H_2O$ . (Nilson.)

#### Chromic diselenite.

Insol. in H2O; sol. in acids. (Taquet, C. **R. 97.** 1435.)

Cobaltous selenite, CoSeO₃.

Insol. in H₂O. (Berzelius.)

+1/8H2O. Insol. in H2O; sol. in acids. (Boutzoureano, A. ch. (6) 17. 289.)

Cobaltous hydrogen selenite,  $CoH_2(SeO_8)_2$ . Sol. in H₂O, (Berzelius.) +2H₂O. Sol. in H₂O with decomp. (Boutzoureano.)

Cuprous selenite.

Insol. in H₂O. Sol. in  $NH_4OH + Aq$ . (Berzelius.)

Cupric selenite, basic, 2CuO, SeO₂.

Insol. in H₂O; sol. in NH₄OH+Aq. (Boutzoureano.) Sol. in acids.

Cupric selenite,  $CuSeO_3 + \frac{1}{2}H_2O$ .

Insol. in H₂O or H₂SeO₃+Aq. (Berzelius.) +H₂O, and 2H₂O. (Boutzoureano.) +2H₂O. Min. Chalcomenite. Insol. in H₂O or H₂SeO₃+Aq. (Friedel and Sarasin, Zeit. Kryst. 1881, 6. 300.)

Cupric selenite, acid, CuO,  $2SeO_2 + H_2O =$  $CuH_2(SeO_3)_3$ .

Insol. in H₂O. Sol. in acids. (Nilson.) +2H₂O. As above. (Boutzoureano.) +4H₂O. As above. (B.)

Cupric selenite ammonia, CuSeO₃, NH₃+

Decomp. by H₂O. (Boutzoureano, A. ch. (6) **17.** 289.)

Didymium selenite, basic,  $3Di_2O_3$ ,  $8SeO_2+$ 28H₂O.

Precipitate. (Nilson.) +21H₂O. Insol. in H₂O. (Cleve, Bull. Soc. (2) **43.** 363.)

Didymium selenite,  $Di_2(SeO_3)_3 + 6H_2O$ . Precipitate. (Smith.)

Didymium selenite, acid, Di₂O₃, 4SeO₂+ 5H₂O.

Precipitate. (Cleve.) Composition is  $Di_2(SeO_3)_8 + 6H_2O$ . (Smith.) +9H₂O. (Nilson.)  $2\text{Di}_2\text{O}_3$ ,  $9\text{SeO}_2+18\text{H}_2\text{O}$ . (Nilson.)

Erbium selenite,  $Er_2(SeO_3)_3 + 5H_2O$ , and 9H₂O.

Precipitate. (Nilson.)

Erbium hydrogen selenite, Fr₂H₂(SeO₂)₄+ 4H₂O. Decomp. by hot H₂O.

132

Gadolinium hydrogen selenite,  $Gd_2(SeO_3)_3$ ,  $H_2SeO_3 + BH_2O$ .

Ppt. (Benedicks, Z. anorga 1900, 413.)

Glucinum selenite, basic, 5GlO, 2SeC+ 10H₂O.

Precipitate. (Nilson.) According to Atterberg, is 7GIO,  $3SeO_2 + 14H_2O$ .

2GlO, SeO₂+4H₂O. (Atterberg, Bull. Sec. (2) **19.** 497.) 3GlO,  $2SeO_2 + 6H_2O$ . Insol. in H₂O. (Atterberg.)

Glucinum selenite,  $GlSeO_4 + 2H_3O_4$ 

Sol. in little H₂O, decomp by excess. (Nilson.)

### Glucinum selenite, acid.

(a) 3GlO,  $5\text{SeO}_2 + 3\text{H}_2\text{O}$ ; (b) GlO,  $2\text{SeO}_2 + \text{H}_2\text{O}$ ; (c) 3GlO,  $7\text{SeO}_2 + 5\text{H}_2\text{O}$ ; (d) GlO,  $3\text{SeO}_2 + 2\text{H}_2\text{O}$ . All are very sl. sol. in cold or warm H₂O. a, b, and c are sol. in warm H₂O containing HCl; d is sol. only in boiling dil, HCl+Aq. (Nilson.)

Indium selenite, basic,  $\ln_8 \text{Se}_9 \text{O}_{30} + 64 \text{H}_2 \text{O}$ . (Nilson.)

Indium selenite,  $In_2(SO_3)_3 + 6H_2O$ . Sl. sol. in H₂O. (Nilson.)

Indium hydrogen selenite, In₂(SeO₃)₃,  $3H_2SeO_3+4H_2O$ .

Sol. in H₂O. (Nilson.)  $2In_2(SeO_3)_3$ ,  $3H_2SeO_3+12H_2O$ . Sol. in H₂O. (Nilson.)

Iron (ferrous) selenite.

Ppt. Sol. in HCl+Aq with partial separation of Se. (Berzelius.)

Iron (ferrous) hydrogen selenite. Sl. sol, in H₂O. (Berzelius.) .

Iron (ferric) selenite, basic, 2Fe₂O₃, 3SeO₂+ xH2O.

Insol. in H₂O. (Berzelius.)

Fe₂O₃, 2SeO₂. Insol. in H₂O, easily sol. in acids. (Boutzoureano, A. ch. (6) 17. 289.) 3Fe₂O₃, 8SeO₂+28H₂O. Insol. in H₂O. (Nilson.)

Iron (ferric) selenite,  $Fe_2(SeO_3)_3+4H_2O$ . Insol. in H₂O. (Muspratt, Chem. Soc. 2. **52**.)

 $+H_2O.$ Insol. in H₂O. (Boutzoureano, A. ch. (6) 17. 289.)

 $+3H_2O$ . Insol. in  $H_2O$ . (B.)  $+10H_2O$ . Insol. in  $H_2O$ . (B.)

Iron (ferric) selenite, acid, Fe₂O_{4,0}6SeO₂+  $xH_2O$ .

Iusol, in HCl. Aq. (Berrelius.)

+2H₂O. (Boutzou eano, A. ch. (6) 17.

Fe₂O₃, 4SeO₂+H₂O. Insol. in H₂O₃ sol. in acids. (Boutzourear).)

Lanthanum selenite, basic, 3La₂C₃, 8SeO₂+ 28H₂O.

Precipitate. (Nilson.)

(A) Lanthanum selenite, La₂(SO₃)₃+9H₂O, or i2H₂O.

Insol. in H₂O. (Nison.)

Lanthanum selenite, acid, La2H4(SeO3) + 4H₂O.

(Nilson.)  $L_{4}H_6(SeO_3)_6 + 2H_2O$ . (Cleve.)

Lead selenite, PbSeO₃.

Scarcely sol. in H₂O, even when it contains H₂SeO₃. Sl. sol. in HNO₃+Aq. (Berzelius.)

Lithium selenite, Li₂SeO₃+H₂O.

Difficultly sol, in H2O. (Nilson, Bull, Soc. (2) **21.** 253.)

Lithium hydrogen selenite, LiHSO₃. Very sol, in H₂O. (Nilson.)

Lithium trihydrogen selenite, LiH₃(SeO₃)₂. Not deliquescent. Sol. in H₂O. (Nilson.)

Lithium vanadium selenite.

See Vanadioselenite, lithium.

Magnesium selenite, MgSeO₃+2H₂O. Insol. in H2O; sol. in dil. acids, especially if warm, also in H₂SeO₃+Aq. (Boutzour-

eano, A. ch. (6) 18. 302.) +3H₂O. Very sl. sol. in hot H₂O. (Ber-

zelius.) +6H₂O. As the 2H₂O salt. (Boutzour-

+7H₂O. Sl. sol. in H₂O. Easily sol. in acetic, and mineral acids. (Hilger, Z. anal. **13**. 132,)

Magnesium hydrogen selenite, MgH₂(SeO₃)₂ +3H₂O.

Very deliquescent. Easily sol. in H₂O. (Nilson.)

Insol. in alcohol. (Muspratt.) MgO, 2SeO₂. Insol. in H₂O; sol. in acids. (Boutzoureano.)

Magnesium tetrahydrogen selenite,  $MgH_4(SeO_3)_3$ , and  $+3H_2O$ .

Sol. in H₂O. (Nilson.)

Mangarus selenite, MnSeO₃+H₂O.

Precipitate. (Nilson.) +2H₂O. Insol., in H₂O. (Berzelius.) Sol. in cold HCl+Aq. (Muspratt.) +½H₂O. Insol. in H₂O; sol. in dil. acids.

(Boutzoureano.)

Manganous selenite, acid, MnSe₂O₅.

Sol. in H₂O. (Berzelius; Nilson.)

MnO,  $2SeO_2 + H_2O = MnH_2(SeO_3)_2$ . (Boutzoureano, A. ch. (6) 17. 289.)

+5H₂O. Decomp. by H₂O to MnSeO₃. (Boutzoureano.)

Manganic selenite, basic,  $Mn_2O_3$ ,  $2SeO_2$ .

Insol. in H₂O, cold H₂SO₄, or HNO₃+Aq; insol. in 10t dil.  $H_2SO_4$  or  $HNO_3+Aq$ . (Laugier, C. R. 104. 1508.) Sol, in warm HCl+Aq with decomp.

Manganic selenite,  $Mn_2(SeO_3)_3 + 5H_2O$ . (Laugier.)

Manganic selenite, acid, Mn₂O₃, 4SeO₂. Insol. in H₂O, cold H₂SO₄, and HNO₃+Aq

Insol. in dil. hot H₂SO₄, and HNO₃+Aq. Sol. in cold HCl+Aq; and in H2SO3+Aq with separation of Se. (Laugier, C. R. 104. 1508.)

Mercurous selenite, basic, 3Hg₂O, 2SeO₂+ 5H₂O.

(Boutzoureano.)

Mercurous selenite, Hg₂SeO₃.

Insol. in H₂O or H₂SeO₃+Aq. Sol. in hot HNO₃+Aq. (Köhler, Pogg. **89**. 146.) Sl. sol. in HCl+Aq, and KOH+Aq. (Ber-

zelius.)

Mercurous selenite, acid,  $3 \text{Hg}_2 \text{O}$ ,  $4 \text{SeO}_2$ .

Insol. in H₂O or H₂SeO₃+Aq. Sl. sol. in boiling HNO₃+Aq. (Köhler.)

Mercuric selenite, basic, 7HgO, 4SeO₂.

Insol. in H₂O. Sl. sol. in HNO₃+Aq. Easily sol. in HCl+Aq. (Köhler, Pogg. 89. 146.)

### Mercuric selenite, HgSeO₃.

Insol. in  $H_2O$ . (Berzelius.) Nearly insol. in  $HNO_3+Aq$ . Sol. in  $K_2SeO_3+Aq$ . (Displaying the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the vers, Chem. Soc. 48. 585.)

Insol. in dil. HNO₃+Aq; sol. in HCl+Aq. (Rosenheim and Pritze, Z. anorg. 1909, 63. **278.**)

Solubility in Na₂SeO₃+Aq at 25°.

Na ₂ SeO ₃ +Aq Normality	% HgSeO3	
2.0 1.0 0.5 0.25 0.125 0.0625	2.73 1.39 0.70 0.53 0.32 0.18	

(Rosenheim and Pritze, Z. anorg. 1909, 63. 281.)

HgSeO₃, H₂SeO₃. Fasily sol. in H₂O; very sl. sol. in alcohol. (Berzelius.) See also selenium dioxide.

Mercuric sodium selenite, HgSeO₃, Na₂SeO₃, Decomp. by H₂O and alkalies with pptn. of HgSeOs. (Rosenheim and Pritze, Z. anorg. 1909, 63. 279.)

Mercuric selenite sodium chloride.  $HgSeO_3$ ,  $NaCl+2H_2O$ .

Decomp. by H₂O. (Rosenheim and Pritze. Z. anorg. 1909, 63. 280.)

Nickel selenite, NiSeO₈+H₂O.

Insol. in H₂O; sol. in H₂SeO₃+Aq. (Muspratt, Chem. Soc. 2. 52.)

 $+\frac{1}{2}H_2O$ . Insol. in  $H_2O$ . (Boutzoureano, A. ch. (6) 17. 28.)

Nickel selenite, scid.

Sol. in H₂O. (Berzelius.)

Potassium selenite,  $K_2SeO_3+H_2O$ .

Very deliquescent. Sol. in nearly all proportions in H2O. Insol. in alcohol, which separates it as oil from aqueous solution. (Muspratt, Chem. Soc. 2. 52.)

Potassium hydrogen selenite, KHSeO₃.

Very deliquescent. Very sl. sol, in alcohol. (Muspratt, Chem. Soc. 2. 52.)

Potassium trihydrogen selenite,  $KH_3(SeO_3)_2$ . Very deliquescent. Pptd. from H₂O by alcohol. (Muspratt.)

Not deliquescent. (Nilson.)

Potassium hydrogen pyroselenite, KHSe₂O₅  $+\mathrm{H}_{2}\mathrm{O}$ .

(Muthmann, B. 1893, 26, 1015.)

Potassium uranyl selenite, K₂SeO₃,  $(\mathrm{UO_2})\mathrm{SeO_3}.$ 

Absolutely insol. in H₂O. (Sendtner.)

Praseodymium hydrogen selenite,

 $Pr_2(SeO_3)_3$ ,  $H_2SeO_3+3H_2O$ .

Sol. in H₂O. (von Scheele, Z. anorg. 1898**, 18.** 362.)

Samarium selenite, basic,  $3\mathrm{Sm_2O_3}$ ,  $8\mathrm{SeO_2}+$ 7H₂O.

Precipitate. (Cleve.)

Samarium selenite, acid, Sm₂O₃, 4SeO₂+ 5H₂O.

Precipitate. (Cleve.)

Scandium selenite,  $Sc_2(SeO_3)_3 + H_2O$ . Insol. precipitate.

 $\begin{array}{ccc} \text{Scandium} & \text{hydrogen} & \text{selenite,} & Sc_2(SeO_3)_3, \\ & & & & & \\ & & & & \\ & & & & \end{array}$ 

Insol in H₂O. Not attacked by cold dilacids, but easily if warmed.

### Silver selenite, Ag₂SeO₃.

Very sl. sol. in cold, somewhat more sol. in hot  $H_2O$ . Easily sol. in hot  $HNO_3 + Aq$ , from which it is precipitated by  $H_2O$ . (Berzelius.)

Insol. in K₂SeO₃+Aq; sl. sol. in dil HNO₃+Aq. (Divers, Chem. Soc. **49.** 585.)

### Silver selenite ammonia, Ag₂SeO₃, NH₃.

Insol. in boiling H₂O. (Boutzoureano, A. ch. (6) 17. 289.)

### Sodium selenite, Na₂SeO₃.

Very sol. in  $H_2O$ . Insol. in alcohol. (Berzelius.)  $+5H_2O$ .

### Sodium selenite, acid, NaHSeO...

Permanent. Sol. in H₂O.

Na₄Se₃O₈. Sol. in H₂O. (Sacc, A. ch. (3)

21. 119.) Na $H_3(SeO_3)_2$ . Not deliquescent. Sol. in  $H_2O$ .

### Sodium vanadium selenite.

See Vanadioselenite, sodium.

### Strontium selenite, SrSeO₃+7H₂O.

Precipitate. Insol. in H₂O. Sol. in HNO₃ +Aq. (Muspratt.)

#### Strontium hydrogen selenite, SrH₂(SeO₃)₂.

Easily sol. in hot or cold H₂O. (Nilson.) Nearly insol. in hot or cold H₂O. (Berzelius.)

#### Thallous selenite, Tl₂SeO₃.

Easily sol. in H₂O. Insol. in alcohol and ether. (Kuhlmann, Bull. Soc. (2) **1.** 330.)

#### Thallous hydrogen selenite, TlHSeO₈.

More sol. in  $H_2O$  than the above comp. (Kuhlmann.)

### Thallic selenite, Tl₂(SeO₃)₃.

Insol. in H₂O. Sol. in dil. HNO₃. Easily decomp. by HCl and H₂SO₄. (Marino, Z. anorg. 1909, **62.** 177.)

Thorium selenite,  $Th(SeO_3)_2+H_2O$ , or  $8H_2O$ . Insol. in  $H_2O$ ; easily sol. in HCl+Aq. (Nilson.)

Thorium selenite, acid, 2ThO₂, 7SeO₂+ 16H₂O.

ThO₂,  $5SeO_2+8H_2O$ . (Nilson.)

Tini (stannic) selenite.

Insol. in H₂O; sol in HCl+Aq, from which it is pptd. by H₂O. (Berzelius.)

Uranic selenite, U2O2, SeO2.

Insol. in H₂O. (B.utzoureano.) +2H₂O. (B.)

Uranic selenite, acid,  $2U_2O_5$ ,  $3SeO_2+7H_2O_5$ Insol. in  $H_2O_5$  (Boutzoureano, A. ch. (6) 17, 289.)

Uranyl selenite, (UO₂)SeO₃+2H₂O. Precipitate. (Nilson.)

Uranyl selenite, acid, 3UO₂, 5SeO₂+7H₂O, or 9H₂O.

Insol. in H₂O.

 $UO_3$ ,  $^2SeO_2+H_2O = (UO_3)H_2(SeO_3)_2$ . Absolutely insol. in  $H_2O$  and  $H_2SeO_3+Aq$ . (Sendtner, A. **195**. 325.)

### Vanadium selenite.

See Vanadioselenious acid.

Ytterbium selenite, Yb₂(SeO₃)₃.
Insol. precipitate.

Ytterbium hydrogen selenite,  $Yb_2H_2(SeO_3)_4$ +4H₂O.

Insol. in H₂O.

#### Yttrium selenite, $Y_2(SeO_3)_3 + 12H_2O$ .

Insol. in  $H_2O$  or  $H_2SeO_3+Aq$ . (Berzelius.) Sol. in hot  $H_2SeO_3+Aq$ . (Nilson.)

Yttrium hydrogen selenite,  $Y_2H_2(SeO_8)_4+3H_2O$ .

Sl. sol. in  $H_2O$ . Easily sol. in HCl or  $HNO_3+Aq$ . (Cleve.)

### Zinc selenite, ZnSeO₃.

52.)

Insol. in  $H_2O$ ; sol. in acids. (Boutzoureano, A. ch. (6) **18**. 289.) +2 $H_2O$ . Insol. in  $H_2O$ . Sol. in  $H_2SeO_3$ , or  $HNO_3+Aq$ . (Muspratt, Chem. Soc. **2**.

### Zinc hydrogen selenite, ZnH₂(SeO₃)₂.

Easily sol. in H₂O. (Berzelius.)

+2H₂O. Sol. in cold H₂O. (Boutzour-eano.)

ZnO,  $4SeO_2+3H_2O$ . Easily sol. in  $H_2O$ . (Wöhler, A. **63**. 279.)

### Zinc selenite ammonia, ZnSeO₃, NH₃.

Insol. in cold or hot H₂O. (Boutzoureano, A. ch. (6) 17. 289.)

Zirconium selenite, basic, 4ZrO₂, 3SeO₂+18H₂O₃.

Precipitate. Sl. sol. in HCl+Aq. (Nil-son.)

Zirconium selenite, Zr(SeO₃)₂.

Absolutely insol. in H₂O; difficultly sol. in boiling HCl+Aq. (Nilson.) +H₂O. (Nilson.)

### Selenium, Se.

Insol. in H₂O. Schultz (J. pr. (2) 32. 390) has obtained a soluble colloidal modification which can be isolated by dialysis.

Insol. in HCl+Aq. Decomp. by HNO₈+Aq. Sol. in fuming H₂SO₄. (Schultz-Sellac,

B. 4. 113.)

1000 pts. CS₂ dissolve 1 pt. cryst. Se at boiling-point (46.6°), and 0.16 pt. at 0° (Mitscherlich, J. B. **1855**. 314.) Solubility of Se in CS₂ is variable—1 pt. Se is sol. in 1376—2464—3746 pts. CS₂ at 20° (Ranmelsberg, B. 7. 669). Cryst. Se, which is sol. in CS2, becomes insol. in CS₂ after heating to 110°, but after fusion is again sol. (Otto).

Four modifications.—(1) Amorphous red; (2) crystalline red; (3) granular gray; (4) laminated. 1 and 2 are sol. in CS₂, 3 and 4 are insol. in CS₂. All forms are sol. in SeCl₂, from which crystallizes a black modification. insol. in CS2. CCl4 with trace of CS2 dissolves red Se slightly, black Se not at all. Se(C₂H₅)₂ dissolves all modifications in small but apparently equal quantities. (Rathke, A. 152. 181.)

According to Saunders (J. phys. Chem. 1900, 4. 428) selenium exists in three modifications.

1. Liquid, including vitreous, amorphous, and colloidal selenium.

a. Vitreous.

Sol. in liquid NH₈ at 25°. (Franklin, Am.

Ch. J. 1898, **20.** 820.) Insol. in liquid NH₈ between —30° and +10°. Franklin's results are due to impure selenium and not completely dry NH₃. (Hugot, A. Ch. 1900, (7) 21. 5.)
Almost insol. in CS₂. (Schützenberger Chimie generale 1. 438.)

Action of light increases solubility in CS2. (Saunders, J. phys. Chem. 1900, 4, 456.)

Solubility in methylene iodide at 12° is 1.3 pts in 100. (Retgers, Z. anorg. 1893, **3.** 343.)

Sol. in CSe₂, ethyl selenide, and in ethyl sulphide.

Very sol. in  $Se_2Cl_2$ . (Rathke, A. 1869, **152**. 181.)

b. Amorphous.

Completely sol. in CS2 at ord. temp. if Se has not been heated. If heated or extracted with warm CS₂ it becomes partly insol. (Peterson, Z. phys. Chem. 1891, 81.

Passes into red crystalline form in solution in CS₂, C₆H₆, isobutyric acid, acetophenone, acetone, CHCl₃, thiophene, toluene, benzonitrile, ethyl acetate, and alcohol. (Saunders, J. phys. Chem. 1900, 4. 463.)

Solution in quinoline, aniline, pyridine, Z. anorg. 1906, 51. 236.)

etc., cause conversion into gray metallic form.

c. Colloidal.

Forms colloidal solution with H₂O.

A colloidal solution of Se in H₂ can be obtained. It is not decomp, by boiling, but is decomp. by electrolytes with separation of red selenium. (Gutbier, Z. anorg. 1902, 32. 106.)

2. Red crystalline.

Sol. in CS₂.

3. Gray, crystalline or metallic.

Sol. in selenium chloride and other solvents as vitreous Se. (Rathke, A. 1869, 152. 181.)

Sl. sol. in CS₂, toluene, nitrobenzene, quinoline, aniline, and KOH. Pptd. from conc. KOH+Aq. in long needles with mpt. 219°. (Coste, C. R. 1909, 149. 674.)

Sol. in many organic substances at high temp. as quinoline, ethyl benzoate, aniline and naphthaline. (Saunders, J. phys. Chem. 1900, 4. 469.)

Completely insol. in CS₂. (Saunders, J.

phys. Chem. 1900, **4.** 474.)

Solubility of the two modifications of gray crystalline Se in CS₂.

100 cc. boiling CS₂ dissolve mg. Se.

. 11 Ш Mg. Se Mg. Se Mg. Se 3.2 4.1 2.72.2 2.8 4.0 3.6 2.91.9 2.8 3.3 1.0 2.2 2.9 2.0 4.0

I. Se heated 1 hr. at 140°. Modification A. II. Modification A.

III. Se heated 48 hrs. at 190°-200°. Modification B.

(Marc, Z. anorg, 1907, **53**, 302.)

 $Se_{2}Br_{2}$  dissolves 22% Se. Pogg. **128.** 327.) (Schneider,

Red Se is sol. in (NH₄)₂SO₈+Aq. (Uelsmann, A. 116. 122.)

Sol. in alkalies and Mg sulphites+Aq.

365 pts.  $K_2SO_3+Aq$  dissolve 102 pts. Se. 360 pts.  $MgSO_3$ ,  $3H_2O+Aq$  dissolve 116 pts. Se.

Insol. in BaSO₃+Aq. (Rathke and Zschiesche, J. pr. 92. 145.)

Sol. in KCN+Aq with formation of KSeCN. (Franklin, Am. Ch. J. 1898, 20. 830.)

100 pts. methylene iodide dissolve 1.3 pts. Se at 12°. (Retgers, Z. anorg. 3. 343.)

Sol. in quinoline, but reacts with the solvent with evolution of H. (Beckmann and Gabel,

### Selenium monobromide, Se₂Br₂.

Insol. in  $H_2O$ , but gradually decompthereby. Decomp. by absolute alcohol and benzene. Sol. in  $C_2H_6I$ , but soon decomposed. Miscible with  $CS_2$ ; less sol. in CHCl₈ and  $C_2H_6Br$ . (Schneider, Pogg. 128. 327)

### Selenium tetrabromide, SeBr4.

Sol. in  $H_2O$  with decomp. Decomp. by alcohol. Sol. in HCl+Aq; sl. sol. in  $CS_2$ ,  $CHCl_3$ , and  $C_2H_5Br$ . (Schneider, Pogg. 129. 450.)

Decomp. by C2H1.

### Selenium bromotrichloride, SeCl₃Br.

Insol. in CS₂. (Fvans and Ramsay, Chem. Soc. **45**. 62.)

### Selenium tetrabromide sulphur trioxide, SeBr₄, 2SO₃.

Decomp. by  $H_2O$ . (Prandtl, Z. anorg. 1909, **62.** 242.)

Selenium tribromochloride, SeClBr₃. See Selenium chlorotribromide.

### Selenium monochloride, Se₂Cl₂.

Gradually decomp. by  $H_2O$ . Dissolves all modifications of selenium on heating (Rathke, A. **152**. 181). Insol. in conc.  $H_2SO_4$ ; easily sol. in fuming  $H_2SO_4$ . Sol. in CHCl₃,  $C6H_6$ , CCl₄. Gradually decomp. by  $H_2O$ , alcohol, and ether. (Divers and Shimosé, B. **17**. 862.) Sol. in  $CS_2$ . (Evans and Ramsay, Chem. Soc. **45**. 62.)

#### Selenium tetrachloride, SeCl₄.

Deliquescent on moist air. Decomp. with H₂O. (Berzelius, A. ch. **9.** 225.) Insol. in CS₂. Easily sol. in hot POCl₃, from which trystallizes on cooling. (Michaelis, Zeit. Chem. (2) **6.** 460.) Very sl. sol. in CS₂. (Evans and Ramsay, Chem. Soc. **45.** 62.)

### Selenium dichlorobromide, SeCl₂Br₂.

(Evans and Ramsay, Chem. Soc.  $\mathbf{45.}\ 62.$ )

#### Selenium chlorotribromide, SeClBr₃.

Very sl. sol. in CS₂. (Evans and Ramsay.)

Selenium trichlorobromide, SeCl₃Br. See Selenium bromotrichloride.

### Selenium fluoride.

Sol. in conc. HF+Aq. Decomp. immediately by  $H_2O$ . (Knox.)

### Selenium monoiodide, Se₂I₂.

Decomp. by  $H_2O$ . All solvents of iodine dissolve out that element. (Schneider, Pogg. 129. 627.)

### Selenium tetraiodide, SeI4.

Slowly decomp. by much  $H_2O$ . Iodine is dissolved out by all solvents of that element. (Schneider, Pogg. 129. 627.)

#### Seierium nitride.

See Nitrogen selenide.

### Selenium monoxide, SeO (?).

Sl. sol. in H₂O. (Berzelius.) Does not exist. 'Sacc.)

### Selenium dioxide, SeO₂.

Deliquescent. Fasily sol. in H₂O and alcohol. Sol. in glacial HC₂H₃O₂. (Hinsberg, A. **260**, 40)

Solubility in  $H_2O$  between  $-3^{\circ}$  and  $+36^{\circ}$  = 45.0+0.7692t. (Etard, C. R. 1888, **106.** 742.)

1 pt. is sol. in 2.67 pts. H₂O at 11.3.° 1 pt. """2.60"""14.° 1 pt. """2.54"""15.6.° (de Coninck, C. R. 1906, **142.** 571.)

### Sp. gr. of SeO₂+Aq at t°.

1 0		•
t°	% SeO2	Sp. gr.
15.1 15.3	$\frac{1}{2}$	0.9923 - 1.00 <b>6</b> 8
$13.0 \\ 13.0 \\ 14.5$	3 4 5	1.0200 * 1.0302 1.0346
14.8 14.1	6 7	1.0402 1.0535
$15.0 \\ 15.6 \\ 15.2$	8 9 10	1 0571 1 0719 1 0743

(de Coninck, C. R. 1906, **142**. 571.) See also Selenious acid.

1 pt. SeO  $_2$  is sol. in 9.84 pts. alcohol (93°) at 14.°

1 pt. SeO₂ is sol. in 15.0 pts. methyl alcohol at 11.8°.

 $1~\mathrm{pt.~SeO_2}$  is sol. in 23.0 pts. acetone at  $15.3.^\circ$ 

1 pt. SeO₂ is sol. in 90.0 pts. acetic acid at 12.9.° (de Coninck, C. R. 1906, **142**.

Traces dissolve in acetic anhydride. Sol. in phenyl mercaptan. (Hinsberg, A. 1890, 260. 40.)

Insol. in pure C₆H₆. (Clausnizer, A. 1879, **196**. 271.)

See Selenious acid.

### Selenium trioxide, SeO₃.

Not obtained in a pure state. (Cameron and Macallan.)

See Selenic acid.

Selenium dioxide hydrobromic acid,  $SeO_2$ , 4HBr.

Decomp. at 55.° (Ditte, A. ch. (5) 10. 82.)

SeO₅, 5HBr. Decomp. at 65.° (Ditte, A. ch. (5) **10.** 82.)

Selenium dioxide hydrochloric acid,  $SeO_2$ , 2HCl.

Decomp. at 26°.

SeO₂, 4HCl. Decomp. at 0°. Sol. in H₂O without evolution of gas. (Ditte, A. ch. (5) **10.** 82.)

Selenium dioxide sulphur trioxide, SeO₂,

Decomp. violently by H₂O. (Weber, B. 19. 3185.)

Composition may be (SeO)SO₄ (?).

Selenium oxy-compounds. See Selenyl compounds.

Selenium diphosphide, P₂Se. See Phosphorus monoselenide.

Selenium tetraphosphide, P₄Se.

See Phosphorus semiselenide.

Selenium monosulphide, SeS.

† Insol. in H₂O and ether. Sol. in CS₂. Decomp. by alcohol. (Ditte, C. R. **73.** 625, 660.)

Other compounds of Se and S are probably mixtures of the two elements.

Selenium disulphide, SeS₂.

Compound of this formula is a mixture of SeS and S. (Ditte, C. R. 73. 625, 660.)

Selenium sulphoxide, SeSO₃.

Decomp. by H₂O. Sol. in fuming H₂SO₄, conc. H₂SO₄. Sol. in H₂SO₄ of 1.806 sp. gr. without decomp. (Weber, Pogg. **156**. 531.) Decomp. by H₂O; sol. in H₂SO₄. (Divers and Shimosé, B. **17**. 858.)

Seleniuretted hydrogen, H₂Se. See Hydrogen selenide.

Selemarsenic acid.

Potassium selenoarsenate, KAsSe₃+2H₂O.
Only sl. sol. in cold H₂O; sol. in warm H₂O with decomp.; more stable in KOH+Aq. (Clever, Z. anorg. 1895, 10. 132.)

Sodium selenoarsenate, Na₃AsSe₄+9H₂O. Very sol. in H₂O; very unstable. (Szar vasy, B. 1895, **28**. 2658.) Selenoarsenious acid.

Sodium selenoarsenite, Na₃AsSe₃+9H₂O.

Moderately sol. in H₂O. (Clever and Muthmann, Z. anorg. 1895, **10**. 139.)

Selenobismuthous acid.

Potassium metaselenobismuthite, Bi₂Se₈, K₂Se or KBiSe₂.

Insol. in cold dil. HCl+Aq. Sol. on warming, with evolution of H₂Se. (Hilger and van Scherpenberg, Mitt. Pharm. II. 4.)

Selenocyanhydric acid, HSeCN.

Known only in aqueous solution.

Ammonium selenocyanide, NH₄SeCN. Very deliquescent, and sol. in H₂O.

Barium —,  $Ba(SeSCN)_2$ . Very sol. in  $H_2O$ .

Lead ----, Pb(SeCN)₂.

Sl. sol. in cold, sol. with sl. decomp. in boiling  $\mathrm{H}_2\mathrm{O}$ . Insol. in alcohol.

Mercurous —,  $Hg_2(SeCN)_2$ . Ppt.

Mercuric —, Hg(SeCN)₂.

Sl. sol. in cold H₂O. Easily sol. in MCN, MSCN, or MSeCN+Aq; also sol. in hot HgCl₂+Aq. (Cameron and Davy, C. N. **44.** 63.)

Decomp. by hot H₂O. (Rosenheim, Z. anorg. 1909, **63**. 276.)

Mercuric potassium ——, Hg(SeCN)₂, KSeCN.

Easily sol, in H₂O. Sl. sol, in cold alcohol. (Cameron and Davy, C. N. **44**, 63.)

Mercuric selenocyanide chloride,

Hg(SeCN)₂, HgCl₂.

Sol. in boiling  $H_2O$  and in abs. alcohol. Decomp. by long boiling with  $H_2O$ . (Rosenheim and Pritze, Z. anorg. 1909, **63**. 276.)

Sol. in  $H_2O$  and alcohol. (Clarke, B. 11. 1325.)

Potassium ----, KSeCN.

Very deliquescent, and sol. in  $H_2O$  with absorption of heat. More sol. in  $H_2O$  than KSCN. Sol. in alcohol.

Potassium — mercuric bromide, KSeCN, HgBr₂.

Sl. sol. in cold, more easily in hot H₂O or alcohol. (Cameron and Davy, C. N. 44. 63.)

### Potassium selenocyanide mercuric chloride, Selenosamic acid, HSeO2NH2. KSeCN, HgCl2.

As the bromide.

### Potassium — mercuric iodide, KSeCN. HgI2.

Sl. sol. in cold, easily in hot H2O or alcohol (Cameron and Davy.)

### Potassium - mercuric sulphocyanide, KSeCN, Hg(SCN)2.

Sl. sol. in cold, much more in hot H₂O or alcohol. Somewhat sol. in ether. (Cameron and Davy.)

### Silver ——, AgSeCN.

Insol. in H₂O. Almost insol. in NH₄OH+ Aq or cold dil. acids. Quickly decomp. by hot conc. acids.

### Sodium ----, NaSeCN. Very sol. in H₂O.

### Selenomolybdic acid.

### Potassium selenomolybdate, 5K₂O, 6SeO₂, 17MoO₃.

Readily sol. in H₂O without decomp. (Gibbs, Am. Ch. J. 1895, 17. 177.)

### Selenopentathionic acid.

### Sodium selenopentathionate, Na₂S₄SeO₆.

A dil. solution may be boiled for some time without change. (Norris and Fay, Am. Ch. **J**. 1900, **23**. 121.)

### Selenophosphoric acid.

### Ammonium selenophosphate,

 $2(NH_4)_2O$ ,  $P_2O_5$ ,  $2SeO_3 + 3H_2O$ .

Sol. in H₂O with decomp. (Weinland, B. **1903**, **36**. 1402.)

### Potassium selenophosphate, $2K_2O$ , $P_2O_5$ , $2SeO_5 + 3H_2O$ .

Sol. in H₂O with decomp.

3.5 $K_2O$ ,  $P_2O_5$ ,  $5SeO_3+5.5H_2O$ . sol. in  $H_2O$ . (Weinland.) Easily

### Rubidium selenophosphate,

 $2Rb_2O$ ,  $P_2O_5$ ,  $2SeO_3 + 3H_2O$ .

Sol. in H₂O with decom. (Weinland.)

### Triselenophosphorous acid.

### Potassium triselenophosphite, $K_2HPSe_3+2\frac{1}{2}\hat{H}_2O$ .

Decomp. by moist air and dil. acids; sol. in conc. KOH+Aq.; sl. sol. in cold, easily sol. in hot H₂O. (Muthmann, Z. anorg. 1897, **13.** 198.)

Known only in its salts.

### Ammonium selenosamate, (NH₄)SeO₂NH₂.

Deliquescent. Decomp. slowly by H₂O into (iNH₄)₂SeO₃.

1 pt. is sel. in !16 pts. cold alcoholic ammonia at 12°. More sol. in hot alcoholic ammonia. Sl. attacke: by cold HCl or HNO₁. (Cameron and Macailan, C. N. 1888, 57. 163.)

### Ammonium hydrogen selenosamate, NH4 I (SeU2NH2)2.

Deliquescent. Sol. in 14 pts. alcohol at 14° (Cameron and Macallan, Proc. Roy. Soc. 44, 112.)

### Selenostannic acid.

### Ammonium selenostannate, 3SnSe₂, (NH₄)₂Se $+3H_{\bullet}O.$

Sol. in H₂O. (Ditte, C. R. 95, 641.)

### Platinum potassium —, K₂Se, 3PtSe, SnSe₂.

Insol. in hot or cold H2O, NH4OH, or KOH+Aq. Not attacked by hot HCl+Aq. (Schneider, J. pr. (2) **44.** 507.)

Platinum sodium —, Na₂Se, 3PtSe, SnSe₂. Properties as the corresponding K salt. (Schneider.)

### Potassium —, $K_2SnSe_3+3H_2O$ .

Easily sol. in H₂O. (Ditte, C. R. 95. 441,)

### Selenosulphantimonic acid.

### Sodium selenosulphantimonate, Na₃SbS₂S₃+ $9H_2O$ .

Sol. in H₂O. (Hofacker, A. **107.** 6.) Na₃SbS_{1.5}Se_{2.5}+9H₂O. Somewhat sol. in H₂O. (Pouget, A. ch. 1899, (7) 18. 564.)

### Selenosulphantimonous acid.

### Potassium selenosulphantimonite,

 $Sb_4S_5Se_6K_{10}+4H_2O$ .

Sol. in  $H_2O$ . (Pouget, A. ch. 1899, (7) **18.** 563.)

Sodium selenosulphantimonite,  $Na_3SbS_{1.4}Se_{1.4}$ +9H₂O.

Sol. in H₂O. (Pouget, A. ch. 1899, (7) 18. 564.)

### Selenosulpharsenic acid.

### Potassium selenosulpharsenate, 3K2S, As2Se3 $+12H_{2}O.$

Very unstable in the air. Very sol. in H₂O. Fairly stable in aqueous solution. Decomp. by acids. (Clever, Z. anorg. 1895, 10. 134.)

Sodium selenosulpharsenate,  $Na_8AsS_2Se + 8H_2O$ .

Decomp. by acids; stable in dry air. (Messinger, B. 1897, **30**. 801.)

3Na₂S, As₂Se₆+18H₂O. Quite sol. in H₂O; quite stable in air. (Clever, Z. anorg. 1895, **10**. 140.)

 $Na_6As_2S_6Se_3+16H_2O$ . Sl. sol. in  $H_2O$ ; decomp. by acids. (Messinger, B. 1897, **30**. 803.)

 $Na_4As_2S_7Se+16H_2O$ . Stable in dry air; easily sol. in  $H_2O$ ; decomp. by acids. (Messinger, B. 1897, 30, 800.)

 $Na_3AsS_2Se_2+9H_2O$ . Decomp. in aq. solution by dil. acids. (Messinger, B. 1897, **30**. 802.)

Na₃AsSSe₃+9H₂O. Sol. in H₂O; decomp. by aq. acids; hydroscopic. (Messinger.)

### Selenosulphophosphorous acid.

Potassium selenosulphophosphite,  $2K_2S$ ,  $P_2Se_3+5H_2O$ .

Sol. in H₂O; decomp. by acids. (Muthmann, Z. anorg. 1897, **13**. 198.)

### Selenosulphostannic acid.

Ammonium selenosulphostannate,  $(NH_4)_2S$ ,  $3SnSe_2+3H_2O$ .

Easily decomp. (Ditte, C. R. 1882, 95. 643.)

Potassium —, K₂SnSe₂S+3H₂O.

Very easily sol. in H₂O. (Ditte, C. R. 95. 64T.)

Sodi in H₂O. (Ditte, C. R. 95, 641.)

### Selenosulphoxyarsenic acid.

Sodium selenosulphoxyarsenate,  $Na_3AsO_2SSe + 10H_2O$ .

Easily sol. in H₂O but solution rapidly decomp. (Messinger, B. 1897, **30.** 798.) Na₆As₂S₂SeO₆+24H₂O. Sol. in H₂O.

 $Na_6As_2S_2SeO_6+24H_2O$ . Sol. in  $H_2O$ . (Messinger.)

NaAs₂SeS₃O₄+20H₂O. Stable in dry air. Sl. sol. in H₂O; decomp. by dil. acids. (Messinger.)

 $\overline{Na_6As_2S_3Se_2O_3} + 20H_2O$ . Ppt. (Messinger.)

 $Na_9As_3S_2Se_2O_8+36H_2O$ . Decomp. by aq. acids; sol. in  $H_2O$ ; quite stable. (Messinger.)

Selenosulphur trioxide, SeSO₃.

See Selenium sulphoxide.

Selenosulphuric acid, H₂SeSO₃. Known only in its salts. Potassium selenosulphate, K₂SeSO₃+xH₂O. Deliquescent in moist air; decomp. by H₂O. (Rathke, J. pr. 95. 1.)

### Selenotrithionic acid, H₂S₂SeO₆.

Known only in solution, which is stable in dark. (Schulze, J. pr. (2) 32. 390.)

Barium selenotrithionate.

Sol. in H₂O. (Rathke.)

Potassium —, K₂SeS₂O₆.

Sol. in  $H_2O$  with gradual decomp. (Rathke J. pr. 95. 8; 97. 56.)

### Diselenotrithionic acid, H₂SSe₂O₆.

Exceedingly unstable. (Schulze.)

#### Selenovanadic acid.

Lithium selenovanadate,  $4 \mathrm{Li_2O}$ ,  $6 \mathrm{V_2O_5}$ ,  $5 \mathrm{SeO_2}$   $+30 \mathrm{H_2O}$ .

Very sol. in  $H_2O$ . (Prandtl and Lustig, Z. anorg. 1907, **53**. 401.)

Potassium selenovanadate,  $2K_2O$ ,  $3V_2O_b$ ,  $12SeO_2+12H_2O$ .

(Prandtl and Lustig.) 3K₂O₅, 5V₂O₅, 16SeO₂+40H₂O. (Prandtl and Lustig.)

4K₂O, 6V₂O₅, 21SeO₂+37H₂O. (Prandtl and Lustig.)

 $5K_2O$ ,  $10V_2O_5$ ,  $26SeO_2+43H_2O$ . (Prandtl and Lustig.)

 $\begin{array}{l} \textbf{Sodium selenovanadate, } 4Na_2O, 6V_2O_{\delta}, 5SeO_{\textbf{2}} \\ +20H_2O. \end{array}$ 

Very sol. in H₂O. Solution decomp. gradually. (Prandtl and Lustig.)

 $2Na_2O$ ,  $7V_2O_5$ ,  $10SeO_2+13H_2O$ . (Prandtl and Lustig.)  $2Na_2O$ ,  $7V_2O_5$ ,  $12SeO_2+45H_2O$ , and

+90H₂O. (Prandtl and Lustig.)

### Selenoxyarsenic acid.

Ammonium selenoxyarsenate,  $2(NH_4)_2O$ ,  $2SeO_3$ ,  $As_2O_6+3H_2O$ .

Sol. in  $H_2O$  with decomp. (Weinland, B. 1903, **36**. 1403.)

Barium sodium selenoxyarsenate,

 $BaNaAsO_3Se+9H_2O$ .

Ppt. (Weinland, Z. anorg. 1897, 14. 56.)

Potassium selenoxyarsenate,  $2K_2O$ ,  $2SeO_8$ ,  $As_2O_6+3H_2O$ .

Sol. in  $\rm H_2O$  with decomp. (Weinland and Barttlingek, B. 1903, **36.** 1403.)  $7K_2O,10SeO_3,2As_2O_5+11H_2O$ . Very sol.

in H₂O. (Weinland and Barttlingck.) 3K₂O, As₂Se₅+10H₂O. Easily decomp. by moisture. Very sol. in  $H_2O$ . (Clever, Z. anorg. 1895, 10. 126.)

Rubidium selenoxyarsenate,  $2Rb_2O$ ,  $2SeO_2$ ,  $As_2O_5+3H_2O$ .

Sol. in H₂O with decomp. (We'nland and Barttlingek.)

### Sodium selenoxyarsenate, Na₃AsSeO₃.

Fairly stable in air and in aq. solution. (Weinland, B. 1896, 29. 1010.)

Na₃AsSeO₃ + 12H₂O. Stable in the air when pure; sol. in H₂O with decomp (Weir.-

land, Z. anorg. 1897, 14. 50.)

Na₂AsSeO₃+12H₂O. Very sol. in H₂O; very unstable. (Szarvasy, B. 1895, 28. 2657.)

3Na₂O, 3Na₂Se, As₂O₅+50H₂O. Easily sol. in H₂O. Solution may be boiled for a long time without decomp. (Clever, Z. anorg. 1895, 10. 136.)

### Selenoxyphosphoric acid.

Ammonium triselenmonoxyphosphate, (NH₄)₃PSe₃O+10H₂O.

Ppt. (Ephraim, B. 1910, 43, 280.)

Ammonium hydrogen triselenmonoxyphosphate, (NH₄)₆H(PSe₃O)₂+18H₂O.

Ppt. (Ephraim.)

Barium hydrogen diselendioxyphosphate, BaHPSe₂O₂+14H₂O.

Decomp. in moist air. (Ephraim.)

Potassium selenoxyphosphate,  $K_3PSe_{2.5}O_{1.5}$ + $H_2O$ .

Decomp. by HNO₃. Insol. in alcohol and ether. (Ephraim.)

Sodium monoselen/rioxyphosphate,  $Na_3PSeO_3+20H_2O$ .

Decomp. by H₂O. (Ephraim.)

Sodium /riselenmonoxyphosphate, Na₃PSe₃O +10H₂O.

Sol. in  $H_2O$ . Decomp. in aq. solution. Easily sol. in conc. NaOH+Aq. (Muthmann, Z. anorg. 1897, 13. 199.)

Selenyl bromide, SeOBr₂ (?).

(Schneider, Pogg. 129. 450.)

Selenyl bromide sulphur trioxide, SeOBr₂, SO₃.

(Prandtl, Z. anorg. 1909, 62. 242.)

Selenyl chloride, SeO₂Cl₂.

Easily decomp. by  $H_2O$ . (Weber, Pogg. 118. 615.)

Selenyl sulphur chloride.

See Sulphoselenyl chloride.

Selenyl stannic chloride, 2SeOCl, SnCl4.

Extremely deliquescent. Completely sol. in H₂O (Weber, B. A. B. 1865, 154.)

### Selenyl titanium chloride, 28eOCl2, TiCl4.

Decomp. by H₂O with separation of an insol. residue. Decomp. by NH₄OH+Aq. (Weber, B. A. B. 1865. 154.)

### Sesquiauramine.

Sce Sesquiauramire.

Sesquihy draurylamine, (HOAu), NH 3. See Gesquihydraurylamine.

Silicic acid, SiO2, xH2O.

Sec also Silicon dioxide.

Silicic acid is sol. in 1000 pts. pure H₂O. (Kirwan.)

When pptd. from alkali silicates+Aq by CO₂, 0.021 pt. SiO₂ remains dissolved in 100 pts. H₂O. (Struckmann, A. **94**, 341.)

When pptd. as above, 100 pts. H₂O dissolve 0.09 pt. SiO₂ in 3 days; 100 pts. H₂CO₃+Aq dissolve 0.078 pt. SiO₂ in 3 days. But if heated much more dissolves, the jelly itself becoming liquid, such jelly containing 2.49 pts. SiO₂ to 100 pts. H₂O. This solution is not pptd. by considerable quantities of alcohol, but conc. (NH₄)₂CO₃, NaCl, or CaCl₂+Aq, etc., cause gelatinization. (Maschke, J. pr 68. 234.)

Solubility in H₂O depends on the amt. of H₂O, in presence of which the silicic acid is set free by dil. acids, CO₂, or alkali salts+Aq. If H₂O is present in sufficient quantity to retain the silicic acid, much more will remain in solution than can be dissolved by digesting the gelatinous acid with H₂O afterwards. 1 pt. SiO₂ can thus be held in solution by 500 pts. H₂O. Presence of NH₄OH, (NH₄)₂CO₃, or NH₄Cl (in solutions of which SiO₂ is remarkably insol.) diminishes the power of H₂O to retain SiO₂ in solution. SiO₂ is always more sol. in dil. than conc. NH₄OH +Aq. (Liebig, A. 94. 373.)

Silicic acid from the coagulation of the colloidal form (see p. 802) is sol. in about 5000 pts. H₂O when formed from a 1% solution, and 10,000 pts. when formed from a 5% solution, but is insol. after being dried. (Graham, A. 121. 36.)

Silicic acid is more sol. in dil. acids than In H₂O, because, when acid is added in excess to moderately dil. K₂SiO₃+Aq, the solution remains clear, but if only enough acid is added to neutralize the base present, silicic acid will gradually separate out. If acid is added to conc. K₂SiO₃+Aq, silicic acid separates out insol. in excess of acid, but if 20-30 pts. H₂O are present to 1 pt. K₂SiO₃, and an excess of acid added at once, the silicic acid will remain in solution. This result is obtained with HCl, HNO₃, H₂SO₄, or

 $HC_2H_3O_2 + Aq$ . These solutions may dissolve a neutral salt until saturated and no silicic acid will separate out. Therefore it is the acid that holds the SiO₂ in solution, and not the H₂O. (C. J. B. Karsten, (1826) Pogg. 6. 353.)

Even CO₂ has the power of holding SiO₂

in solution. (Karsten, l. c.)

Solubility in acids of silicic acid of Struckmann (see above): 100 pts. dil. HCl+Aq of 1.088 sp. gr. dissolve 0.0172 g.  $SiO_2$  in 11 days; 100 pts. H₂O sat. with CO₂ dissolve 0.0136 g. SiO2 in 7 days.

Silicic acid obtained by passing SiF4 into H₂O is sol. while still moist in 11,000 pts. cold, and 5500 pts. boiling HCl+Aq of 1.115

sp. gr. (Fuchs, A. 82. 119.)

Silicic acideat the moment of separation (as in dissolving cast-iron, steel, etc.) is abundantly sol. in aqua regia (3 pts. HCl+Aq of sp. gr. 1.13 and 1 pt. HNO₃+Aq of sp. gr. 1.33). (Wittstein, Z. anal. 7. 433.)

The aq. solution obtained by the hydrolysis of ethyl silicate is more stable in acids+ Aq or alkali than in pure H₂O. (Jordis, Z.

anorg. 1903, **35.** 16.)

NH₄OH + Aq dissolves considerable freshly precipitated silicic acid, (NH₄)₂CO₃ only a very little. (Karsten, Pogg. 6. 357.)

Dry or ignited SiO₂ is sol. in NH₄OH+ Aq. 100 pts. NH₄OH+Aq containing 10% NH₃ dissolve: 0.714 pt. SiO₂ from gelatinous silicic acid; 0.303 pt. from artificially dried silicic acid; 0.377 pt. from amorphous SiO₂; 0.017 pt. from quartz. (Pribram, Z. anal. 6.

NH₄OH+Aq dissolves 0.382 pt. SiO₂ from dry silicic acid: 0.357 pt. from ignited SiO₂; 0.00827 pt. from quartz. (Souchay, Z. anal.

**11.** 182.)

Silicic acid precipitated from alkali silicates +Aq with  $CO_2$  is sol. as follows: 100 pts. pure  $H_2O$  dissolve 0.021 pt.  $SiO_2$ ; 100 pts.  $(NH_4)_2CO_3$ +Aq containing 5%  $(NH_4)_2CO_3$ , 0.020 pt.; 100 pts. containing  $1\%(NH_4)_2CO_3$ , 0.062 pt.; 100 pts. NH₄OH+Aq containing 19.2% NH₃, 0.071 pt.; 100 pts. containing (Struckmann, A. 94. 1.6%, 0.0986 pt. 341.

100 pts. NH₄OH+Aq (10% NH₃) dissolve of: crystallised SiO2, 0.017 pt.; amorphous SiO₂, ignited, 0.38 pt.; amorphous 3SiO₂, 4H₂O, 0.21 pt.; amorphous silicic acid in form of jelly, 0.71 pt. Upon evaporation no ppt. is formed, even when 80 mols. SiO2 are present

to 1 mol. NH₃. (Wittstein, J. B. **1866**. 192.) Sol. in KOH or NaOH+Aq, especially if

warm. (Dumas.)

Sol. in K₂SiO₃ or Na₂SiO₃+Aq. (Fuchs.) Easily sol. in boiling Na₂CO₃+Aq, separating as a jelly on cooling. (Pfaff.) NH₄Cl or other NH₄ salts ppt. SiO₂ from

solution in Na₂CO₃+Aq.
100 pts. Tl₂O in H₂O dissolve 4.17 pts.
amorphous SiO₂ in 24 hours' boiling. (Flemming, Jena. Zeit. 4. 36.)

Sol. in butyl amine. (Wurtz, A. ch. (3) 42. 166.)

Not more sol. in H₂O containing sugar than in pure H₂O. (Petzholdt, J. pr. 60. 368.)

Soluble silicic acid.

Colloidal form by dialysis. Solutions containing 4.9% SiO₂ may be evaporated until they contain 14% SiO₂. The SiO₂ is separated from its solution thus made in many ways-

(1) By standing. This happens the more easily the more conc. the solution is, and is hastened by heat. A 10-12% solution gelatinizes at ordinary temp, in a few hours, and immediately upon heating. A 5-6% solution may be kept 5-6 days, a 2\% solution, 2-3 months, and a 1% solution may be kept 2 or more years without gelatinizing.

(2) When the solution is evaporated to dryness in vacuo at 15° a transparent glass is left

which is insol. in H₂O.

(3) The coagulation of colloidal silicic acid is accelerated by powdered graphite and other indifferent bodies, and it is brought about in a few minutes by a solution of the alkali carbonates, even when only 1/10,000 pt. of the carbonate is present. (Graham, A. 121. 36.)

(4) Coagulation is also brought about by passing CO₂ through the solution. (Liebig.)

CO2 does not cause coagulation. (Maschke.) Coagulation is not caused by H₂SO₄, HCl, HNO₃, HC₂H₃O₂, H₂C₄H₄O₆, or NH₄OH+Aq, or by neutral or acid salts+Aq. (Graham.)

NaCl and Na₂SO₄+Aq coagulate the solu-

(Maschke.) tion.

Alcohol, sugar, glycerine, or caramel not coagulate Soluble Al₂O₆H₆, Fe₂O₆H₆, albumen, and

casein precipitate soluble SiO₂. (Graham, A.

**121.** 36.)

The jelly from colloidal SiO2 is very sol. in slightly alkaline H₂O. 1 pt. NaOH in 10,000 pts. H₂O dissolves in an hour at 100° an amt. of the jelly corresponding to 200 pts. SiO₂. (Graham.)

Other colloidal forms.

Various solutions of silicic acid may be obtained as follows:

The jelly formed when SiF, is passed through H₂O dissolves in a large amt. of H₂O, and SiO₂ separates out on evaporation. This is still sol, in H₂O, but is made insol, by evap-

oration with HCl or H₂SO₄. (Berzelius.)
When SiF₄ is absorbed by crystallized
H₂BO₃, and the HF and H₂BO₃ removed by
a large excess of NH₄OH +Aq, a silicic acid is obtained which is very sol. in H2O. The solution is not decomp. by boiling, but on evaporation an insol. powder remains. (Berzelius, A. ch. 14. 366.)

When K₂SiO₃+Aq is precipitated by CuCl₂, the precipitate washed and dissolved in HCl+ Aq, the solution treated with H₂S filtered and boiled, a solution of silicic acid is obtained which gelatinizes with KOH or NH4OH+Aq.

(Doveri, A. ch. (3) 21. 40.)

When Na₂SiO₃+Aq containing at most 3% SiO₂ is saturated with HCl+Aq of 1.10 sp. gr., and Na₂SiO₃ added until the solution is slightly opalescent and carefully warmed to 30°, a gelatinous mass is obtained which will dissolve in H2() by 12-16 hours' boiling if treated before being exposed to the air. The solution is slightly opalescent. The solution can be evaporated by heat until it contains 6% SiO2. In a vacuum or over H2SO4, solutions containing 10% may be obtained. The electric current, freezing, alcohol, or H₂SO₄ precipitate or coagulate the solution. (Kühn, J. pr. **59.** 1.)

SiS2 with H2O gives off H2S, and forms a solution of SiO₂ which, after dilution, can be kept for months. But when boiled or evaporated, or when a sol. silicate is added, it becomes gelatinous. It leaves an insol. residue when evaporated to dryness. (Fremy,

**A**, ch. (3) **38.** 314.)

Various forms of silicie acid have been described as definite compounds of SiO₂ with varying amounts of H2O, but it is doubtful if any true definite compounds exist, as the percentage of H₂O varies with the moisture of the air to which it is exposed. (See Ebelmen, A. ch. (3) 16. 129; Doveri, A. ch. (3) 21. 40; Fuchs, A. 82. 19; Merz, J. pr. 99. 177; van Bernmelen, B. 11. 2232, etc.)

#### Silicates.

The silicates are insol, in H₂O with the exception of the alkali salts, and these are sol. only when the ratio of the base to the acid is above a certain limit.

### Aluminum silicate, $2Al_2O_3$ , $SiO_2 + 10H_2O$ .

Min. Collyrite. Sol. in acids, with formation of SiO2, xH2O. Becomes transparent in H₂O and is decomp

4Al₂O₃, 3SiO₂. Min. Dillnite. Al₂O₃, SiO₂. Min. Andalusite, Chiastolite, Sillimannite, Disthene or Cyanite. Insol. in

+5-7 H₂O. Min. Allophane. Completely sol. in dil. acids; decomp. by conc. acids with separation of SiO₂, xH₂O.

 $2Al_2O_3$ ,  $3SiO_2+4H_2O$ . Min. Pholerite. Insol. in  $HNO_3+Aq$ . +6H₂O. Min. Glagerite.

Al₂O₃, 2SiO₂+2H₂Ö. Min. Kaolin, Clay. Insol. in dil. HCl or HNO3+Aq; moderately dil. H₂SO₄+Aq, when heated to evaporation, extracts Al₂O₃ and some SiO₂, and leaves the rest of the SiO₂, sol. in boiling Na₂CO₃+Aq. All the Al₂O₃ is dissolved by heating with 5-6 pts. H2SO. +1 pt. H2O until H4SO4 evaporates, and then treating with H₂O.

Quickly attacked by H₂SiF₆+Aq. Decomp. by boiling KOH+Aq, with residue of SiO₂. (Rammelsberg.)

guti); is converted thereby into double silicates of K and Al, which are sol. in HCl+Aq. (Lemberg.)

Solubility in KOH and HCl increased if first heated to a low glow. (Glinka, C. C.

1839, II. 1063.)

(Schlösing, C. R. 79. 473.) Colluidal clay. +4H₂O. Halloysite. Decomp. by acids. 4Al₂O₃, 9SiO₂+12H₂O. Min. Porcelain clay from Passau.

 $Al_2O_3$ ,  $3SiO_2+3H_4O$ . Min. Razoumoffsktne.

Al₂O₃, 4SiO₂+7F·O. Min. Montmorillonite. Not decomp. by HCl+Aq, but by Min. Montmorilhot H₂SO₄. +H₂O. Min. Fyrophyllite. Not decomp.

by H₂SO₄.

+3H₂O. Min. Anauxite.

2Al₂O₃, 9SiO₂+6H₂O. Min. Cimelite. "Aluminum silicate" is insol. in acctone. (Naumann, B. 1904, 37, 4328); ethyl acetate. (Naumann, B. 1910, 43, 314.)

#### Aluminum barium silicate, Al₂O₃, BaO, 2SiO₂ $+H_2O(?)$ .

Mir., Edingtonite. Decomp. by HCl+Aq with separation of  $SiO_2$ ,  $xII_2O$ .

5Al₂O₃, 4BaO, 10SiO₂. (Fremy and Feil.

C. R. 85. 1033.)

2Al₂O₃, 4BaO, 7SiO₂. Min. Barylite. Very sl. d.comp. by alkali carbonates + Aq. (Blom-

# Aluminum barium potassium silicate,

 $Al_2O_3$ , (Ba,  $K_2O_0$ ),  $5SiO_2 + 2H_2O_0$ 

Min. Harmotome. When finely powdered, difficultly decomp. by HCl+Aq with separation of pulverulent SiO2, xH2O.

Al₂O₃, (Ba, K₂)O, 4SiO₂. Min. Hagalophane.

Scarcely attacked by acids.

# Aluminum cæsium silicate, $H_2Cs_2Al_2Si_5O_{15}$ (?) Min. Pollucite. Very sl. decomp. by HCl+

# Aluminum calcium silicate, Al₂O₃, CaO, 2SiO₂.

Min. Anorthite. Completely decomp. by HCl+Aq with separation of pulverulent SiO₂,  $xH_2O$ .

Min. Barsowite. Instantaneously decomp. by HCl+Aq, with separation of gelatinous  $SiO_2$ ,  $xH_2O$ .

Gelatinizes  $+4\mathrm{H}_2\mathrm{O}$ . Min. Gismondite.

with HCl+Aq.
Al₂O₃, CaO, 3SiO₂+3H₂O. Min. Scolezite. Easily sol. in HCl+Aq, without formation of gelatinous SiO₂. Sol. in H₂C₂O₄+Aq with pptn. of CaC₂O₄.

Decomp. by, and sol. to a certain extent in H₂CO₃+Aq, and decomp. also even by pure

H₂O. (Rogers, Am. J. Sci. (2) **5.** 408.) +5H₂O. Min. Levyn. Decomp. by acids without gelatinizing.

Al₂O₃, CaO, 4SiO₂+3H₂O. Min. Capor-KOH+Aq extracts 1/4 of the SiO2 (Mala-cianite. Leonhardite. Efflorescent.

sol. in acids, with pptn. of gelatinous SiO2,  $xH_2O$ .

Al₂O₃, CaO, 4SiO₂+4H₂O. Min. Laumontite. Easily gelatinizes with HCl or HNO₃+ Aq, but is not affected by H₂SO₄ unless hot. Al₂O₃, CaO, 6SiO₂+5H₂O. Min. Epistil-

bite. Gelatinizes with conc. HCl+Aq. (Goldschmidt, Z. anal. 17. 267.)

Scarcely decomp. by boiling conc. HCl+Aq. (Jannasch and Tenne, Miner. Jahrb. **1880, 1.** 43.)

+6H₂O.Stilbite. Heulandite. Slowly but completely gelatinized by HCl+Aq.

Al₂O₃, 2CaO, 3SiO₂+H₂O. Min. Prehnite. Imperfectly decomp, by acids before ignition, but easily afterwards.

Al₂O₃, 3C₂O, 3SiO₂. Lime alumina garnet. Grossularite Partially decomp. by acids before ignition, but easily afterwards.

 $2Al_2O_3$ , CaO,  $2SiO_2+H_2O$ . Margarite.Not attacked by acids.

3Al₂O₃, 4CaO, 6SiO₂+H₂O. Zoisite. Par-

tially decomp. by HCl+Aq.

SCAO 9SiO₂. Min. Meionite. Completely sol. in HCl+Aq.

Aluminum calcium ferric silicate, 2Al₂O₃, 4CaO,  $Fe_2O_3$ ,  $6SiO_2 + H_2O$ .

Min. Epidote. Only sl. attacked by HCl+ Aq before ignition.

Aluminum calcium ferric magnesium silicate,  $H_{14}(Ca, Mg)_{40}(Al_2, Fe_2)_{10}Si_{35}O_{147}.$ 

Min. Vesuvianite, Idiocrase. Only partially decomp. by HCl+Aq before ignition.

Aluminum calcium iron, etc., silicate borate,  $H_2R_6^{II}(Al_2, B_2)_3Si_8O_{32}$ .

Min. Axinite. Not attacked by HCl+Aq before ignition.

Aluminum calcium magnesium silicate,  $\frac{4H_4Ca_2Mg_8Si_6O_{24}, 5H_2CaMgAl_6O_{12}}{15Al_2O_3, 13CaO, 37MgO, 24SiO_2+}$ 

Completely decomp. by Min. Clintonite. HCl+Aq without gelatinization.

3H₄Ca₂Mg₈Si₆O₂₄, 4H₂CaMgAl₆O₁₂. Min. andisite. Not attacked by HCl+Aq. Slowly decemp, by boiling conc. H2SO4.

5H₄Ca₂Mg₈Si₆O₂₄, 8H₂CaMgAl₆O₁₂. Min. anthophyllite. Very sl. decomp. by hot Xanthophyllite.HCl+Aq.

3(Ca, Mg)O, Al₂O₃, 2SiO₂. Min. Gehlenite. Easily decomp. by acids.

Aluminum calcium potassium silicate,  $(H, K)_2 CaAl_2 Si_5 O_{15} + 6H_2 O.$ 

Min. Chabasite. Decomp. by HCl+Aq. (K₂, Ca)Al₂Si₃O₁₀+4H₂O. Min. Zeagonite. Completely sol. in HCl+Aq.

Aluminum calcium sodium silicate, 3Al₂O₃, 8CaO, Na₂O, 9SiO₂.

Min. Sarcolite Decomp. by acids.

2Al₂O₃, 12(Ca,Na₂)O, 9SiO₂ (?). *Mellilite*. Gelatinized by acids. Min.

Na₂CaAl₄Si₂O₁₂ (?). Min. Margarite. Na₂CaAl₄Si₁₀O₂₈. Min. Faujasite. Min. Faujasite. De-

comp. by HCl+Aq. (Na₂, Ca)Al₂Si₄O₁₂. Min. Gmelinite. De-

comp. by HCl+Aq.  $(Ca, Na_2)Al_2Si_6O_{19}+6H_2O$ . Min. Foresite.

Difficultly decomp. by HCl+Aq. Min. Thom- $(Ca, Na_2)Al_2Si_2O_8 + 2\frac{1}{2}H_2O.$ 

sonite. Gelatinizes with HCl+Aq

xNa₂Al₂Si₆O₁₆, yCaAl₂Si₂O₈. Min. Oligoclase, Labradorite. Sl. decomp. by acids, more easily the larger the amt. of Ca present.

Aluminum calcium sodium silicate sulphate,  $2(Na_2, Ca)Al_2(SiO_4)_2$ ,  $(Na_2, Ca)SO_4$ .

Min. Hauyn. Gelatinizes with HCl+Aq.

Aluminum glucinum silicate, Al₂O₃, 3GlO, 6SiO₂.

Min. Beryl. Emerald. Not decomp. by acids, excepting partially by H₂SO₄ after being ignited.

Al₂O₃, 2GlO, 2SiO₂+H₂O. Min. Euclase.

Not attacked by acids.

Aluminum ferrous silicate,  $Al_2Fe(SO_4)_3$ .

Min. Garnet. Sl. decomp. by HCl+Aq. H₂FeAl₂SiO₇. Min. Chlori/oid. Not tacked by HCl+Aq. Completely decompletely by H₂SO₄.

Al₂O₃, 3FeO, 3SiO₂+3H₂O. Min. Volatile.

Aluminum iron lithium potassium silicat K 3Li2Fe4Al12Si20O65.

Min, Zinnwaldite, Sl. decomp. by acids.

Aluminum ferrous magnesium silicate, 6Al₂O₃, 3(Mg, Fe)O, 6SiO₂+H₂O. Min. Staurolite. Not attacked by acids.

Aluminum ferric magnesium silicate,  $2(Al_2, Fe_2)O_3$ , 2MgO,  $5SiO_2$ .

Min. Cordierite. Sl. attacked by acids. +xH₂O. Min. Esmarkite, Chlorophyllite.

Aluminum ferrous manganous silicate, Al₂O₃, FeO, 2MnO, 3SiO₂.

Min. Partschinite.

Aluminum ferrous sodium, etc., silicate borate,  $R_{t}^{I}(Al_{2})(B_{2})Si_{4}O_{20} + R_{s}^{II}(Al_{2})_{2}(B_{2})Si_{4}O_{20},$ 

Min. Tourmaline. Not decomp. by HCl+ Aq; very sl. decomp. by H₂SO₄.

Aluminum lithium silicate, Al₂O₃, Li₂O, 5SiO₂. Not attacked by acids. (Hautefeuille, C. R. 90. 541,)

Al₂O₃, Li₂O, 6SiO₂. Al₂O₃, Li₂O, 4SiO₂. [Min. Spodumene. Not attacked by acids.

4Al₂O₃, 3Li₂O, 30SiO₂. Min. Petalite. Not attacked by acids.

#### Aluminum lithium potassium silicate, (Li, K)1.Al10Si16O52.

Min. Lepidolite. Sl. decomp. by acids.

Aluminum magnesium silicate, 5Al₂O₃, 4MgO,

Min. Sapphirine.

# Aluminum magnesium potassium silicate, $xH_1K_2Al_6Si_6O_{24}, yMg_{12}Si_5O_{21}.$

Min. Levidomelane. Easily decomp by HCl or HNO₃+Aq, with residue of a skeleton of SiO₂.

3Al₂O₃, 12MgO, 2K₂O, 12SiO₂ + H₂O. Min. Anomite.

 $7Al_2O_3$ , 35MgO,  $7K_2O$ ,  $36SiO_2$ . Phlogopite.

# Aluminum manganous silicate, 2Al₂O₃, 6MnO,

Not decomp, by very dil, HCl-+Aq. (Gorgeu, C. R. 97. 1303.)

### Aluminum potassium silicate, Al₂O₃, K₂O₃ $SiO_2$ .

Very slowly decomp. by cold H₂O; 12% is dissolved by hot H₂O. Sol. in alkali hydroxides Aq, but insol. in carbonates +Aq.

K₂O, Al₂O₃, 2SiO₂. Insol. in cold H₂O, but 6% dissolves on boiling. Sol. in dil. acids. Insol, in alkali hydroxides or carbonates + Aq. (Gorgeu, A. ch. (6) **10.** 45.)

 $K_2O$ ,  $Al_2O_3$ ,  $3SiO_2+3H_2O$ . Easily sol. in HNO₃+Aq. (Deville, A. ch. (3) **61.** 313.)

K₂O, Al₂O₃, 4SiO₂. Min. Leucite. Decomp. by HCl+Aq with separation of pulverulent SiO₂.

+4H₂O. Ppt. (Deville, C. R. **54.** 324.)  $H_4K_2Al_6Si_6O_{24}$ . Min. Muscovite, "Mica." Not attacked by HCl or H₂SO₄+Aq.

Partly  $K_2Al_4Si_5O_{17}+3H_2O$ . Min. Pinite. decomp. by HCl+Aq.

Min. Orthoclase. Feldspar. K₂Al₂Si₆O₁₆. Scarcely attacked by acids. Slowly sol, in H₂SO₄ or HCl+Aq when finely powdered. (Rogers.)

# Aluminum potassium sodium silicate, $K_2Al_2(SiO_3)_4$ , $5Na_2Al_2(SiO_4)_2$ (?).

Min. Nepheline. Decomp. by HCl+Aq.

# Aluminum silver silicate, Al₂Ag₄Si₂O₉.

Insol. in NH₄OH+Aq. (Silber, B. 14. 941.)  $Al_6Ag_2Na_4Si_6O_4$ . As above. (Silber.)

# Aluminum sodium silicate, Al₂O₃, Na₂O, SiO₂. Insol. in cold H₂O, but 38-40% dissolves in

hot H₂O. (Gorgeu.) Al₂O₃, Na₂O, 2SiO₂. Insol. in cold H₂O; boiling H₂O dissolves 1-2%. Sol. in HCl or HNO₃ diluted with 10-20 vols. H₂O. Insol. 82.)

in alkali hydroxides or carbonates + Aq. (Gorgeu, A. ch. (6) 10. 145.)

Not at acked by H₂O. (Silber, B. 14. 941.) +3H₂O. Easily sol. in HCl+Aq. (v. Ammon.)

Al Os, Na₂O, 3SiO₂ +3H₂O. Decomp. by acids. (Deville, A. cl. (3) 61. 326.)

Al₂O₈, Na₂O, 4SiO₂+3H₂O. Easily sol. in

HCl+Aq. (v. Amnou.)

2Al₂O₃. 3Na₂O, 3SiO₂. Insol. in cold H₂O, but 27-30% dissolves on boiling. (Gorgeu.)

H₄Na₂ Vl₉Si₆O₂₄. Min. Paragonite. Decomp. by conc. H2SO4.

Na2Al Si4O12+2H2O. Min. Anachite

Readily decomp, by HCl+Aq.

 $Na_2Al_Si_3O_{10}+2H_2O$ , Min. Natrolite. Sol. in H₂O with separation of SiO₂. Also sol. in  $H_2C_2O_4+Aq$ .

Na₂Al₂Si₆O₁₆. Min. Albite. Not attacked by acids.

# Aluminum sodium silicate chloride.

3Na₂Al₂(SiO₄)₂, 2NaCl.

Min. Sodalite. Easily decomp. by HCl, and flNO₃+Aq.

# Aluminum sodium silicate sulphate,

3Na₂Al₁(SiO₄)₂, Na₂SO₄.

Lin. Nosean. Easily decomp. by HCl+ Aa.

# Aluminum sodium silicate sulphide.

See Ultramarine.

#### Barium silicate, BaSiO₈.

Somewhat sol. in boiling H₂O. Completely sol. in dil. HCl+Aq. (v. Ammon.)

+6H₂O or 7H₂O. Boiling H₂O decomposes, and dissolves about  $\frac{1}{2}$  the weight of this substance. (le Chatelier, C. R. 92. 931.) 2BaO, SiO₂. Decomp. by H₂O into BaSiO₃

Bismuth silicate, 2Bi₂O₃, 3SiO₂.

Min. Eulytite. Decomp. by HCl+Aq.

# Bismuth ferric silicate, Bi₂Fe₄Si₄O₁₇.

Min. Bismuthoferrite.

#### Boron calcium silicate.

+6H₂O. (Laudrin.)

See Borate silicate, calcium, and Silicate borate, calcium.

#### Cadmium silicate, $CdSiO_8 + 1\frac{1}{2}H_2O$ .

Sol. in HCl+Aq with deposition of pulverulent SiO₂, xH₂O. (Rousseau and Tite, C. R. **114**. 1262.)

### Cæsium silicate, Cs₂SiO₃.

(Kahlenberg, J. phys. Chem. 1898, 2.

#### Calcium silicate, CaSiO₂.

Slowly sol, in H₂O; sol, in HCl+Aq. Sol. in about 100,000 pts. H₂O. (Gorgeu, A. ch. 1885, (6) 4. 550.)

100 cc. sat. aq. solution of air dried calcium silicate contains 0.0046 g. CaO = 0.0095g. CaSiO, at 17°. (Weisberg, Bull. Soc. 1896, (3) **15.** 1097.)

100 cc. sat. solution of air dried calcium silicate in 10% sugar solution at 17° contains

0.0065 g. CaO = 0.0135 g. CaSiO₁; 20% sugar solution, 0.0076 g. CaO = 0.0175 g. CaSiO₄. After boiling and filtering hot, 10% sugar solution contains 0.0094 g. CaO = 0.0195 g.  $CaSiO_8$ ; 20% sugar solution, 0.0120 g. CaO =

• 0.0249 g. CaSiO₃. (Weisberg.) Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann,

4CaO, 3SiO₂. (Laudrin.) 5CaO, 3SiO₂+5H₂O. When freshly precipitated is somewhat sol. in H₂O and easily

decomp. by HCl+Aq. (v. Ammon.) CaO,  $3SiO_2+2H_2O$ . (Hjeldt, J. pr. **94.** 129.)

2CaO,  $9\text{SiO}_2 + 3\text{H}_2\text{O}$ . Ppt.

CaSiO₃. Min. Wollastonite. Gelatinizes

with HCl+Aq.
CaSi₂O₆+2H₂O. Min. Okenite. Easily decomp. by cold HCl+Aq when powdered.

Calcium glucinum silicate sodium fluoride, (Ca, Gl)₁₅Si₁₄O₄₈, 6NaF.

Min. Leucophane.

by acids.

7(Ca, Gl)₃Si₂O₇, 6NaF. Min. Melinophane.

Calcium ferrous silicate, CaSiO₈, FeSiO₈. Min. Hedenbergite, Pyroxene. Sl. decomp.

Calcium ferric silicate, Ca₈Fe₂(SiO₄)₃.

Min. Garnet. Sl. decomp. by HCl+Aq. 2CaSiO₃, 11 Fe₂(SiO₃)₃. Min. Szaboite. Sl. attacked by HCl+Aq, and still less by  $H_2SO_4+Aq$ .

Calcium ferroferric silicate, 2CaO, 4FeO,  $Fe_2O_3$ ,  $4SiO_2 + H_2O = H_2Ca_2Fe_4Fe_2Si_4O_{18}$ . Min. Lievrite, Ilvaite. Easily gelatinizes with HCl+Aq.

Calcium ferrous magnesium silicate, (Ca, Fe, Mg)SiŌ₈.

Min. Amphibole, Hornblende, Asbestos, Actinolite, Tremolite. Only sl. attacked by acids.

Calcium ferroferric sodium silicate, CaSiOs, FeSiO₃, Fe₂(SiO₃)₃, Na₂SiO₃.

Min. Aegirite.

Calcium magnesium silicate, CaO, MgO, 4SiO₂.

(Mutschler, A. 176. 86.)Ca₂SiO₄,  $Mg_2$ SiO₄. Ča₂SiO₄, Min. Monticellite. Completely sol. in dil. HCl+Aq.

(Ca.Mg)SiO₃. Min. Diopside, Pyroxene Very sl. attacked by acids.

Calcium manganous silicate, CaSiO, 2MnSiO₃.

Min. Bustamite.

Calcium potassium silicate. See under Glass.

Calcium sodium silicate, (Ca, Na₂, H₂)SiO₈ Decomp. by HCl+Aq Min. Pectolite. See under glass.

Calcium sodium silicate zirconate,  $Na_4Ca(Si_7Zr)_9O_{21} + 9H_2O.$ 

Min. Wöhlerite. Decomp. by HCl+Aq.

Calcium uranyl silicate, 3CaO, 5UO₃, 6SiO₂+ 18H₂O.

Min. Uranophane. Gelatinizes with acids CaO, 3UO₃, 3SiO₂+9H₂O. Min. Uranotile.

Calcium silicate chloride, 2CaO, SiO₂, CaCl₂ Insol, in H₂O or alcohol. Sol. in HCl+Aq (le Chatelier, C. R. 97. 1510.)

Calcium silicate fluoride, 2CaO, 3SiO₂, (Deville, C. R. 52, 110.)

Calcium silicate potassium fluoride,  $4H_2CaSi_2O_6$ , KF+ $4H_2O$ .

Min. A pophyllite.. Decomp. by HCl+Aq

Calcium silicate stannate. See Silicostannate, calcium.

Calcium silicate titanate, CaO, SiO₂, TiO₂. (Hautefeuille, A. ch. (4) 4. 154.) Min. Titanite. Incompletely decomp. by HCl+Aq, wholly by H₂SO₄+Aq.

Cerous silicate, Ce2(SiO3)3.

More or less attacked by HCl, HNO₈, or H₂SO₄+Aq, according to the concentration (Didier, C. R. 101. 882.)

Cerium didymium lanthanum silicate, 2(Ce, La, Di)₂O₃, 3SiO₂. Min. Cerite. Gelatinizes with HCl+Aq.

Cerium glucinum yttrium silicate,  $(Y, \tilde{C}e, Gl)_2SiO_5$ .

Min. Gadolinite. Easily gelatinized by HCl+Aq.

Cerous silicate chloride, 2Ce₂O₃, 3SiO₂,  $4\text{CeCl}_8 = \text{Ce}_4(\text{SiO}_4)_8$ ,  $4\text{CeCl}_8$ .

Insol. in H₂O, but slowly decomp. thereby (Didier, C. R. 101. 882.)

Cobaltous silicate, Co₂SiO₄.

Gelatinizes with HCl+Aq. (Bourgeois, C. R. 108. 1077.)

Cupric silicate, CuH₂SiO₄.

Min. Dioptase. Sol. in HCl, HNO, or NH,0H+Aq with separation of SiO₂. Not attacked by KOH+Aq.

CuSiO₃+2H₂O. Min. Chrysocolla. Decomp. by HCl+Aq.

+3H₂O. Min. Asperolite. Easily decomp. by HCl+Aq.

"Cupric silicate" is insol in methyl acctave. (Naumann, B. 1909, 42. 3790.)

Cupric silicate ammonia, CuS12O5, 2NH8. Ppt. (Schiff, A. 123, 38.)

Glucinum silicate, Gl₂SiO₄.

Min. Phenacite. Not attacked by acids.

Glucinum ferrous manganous silicate ferrous manganous sulphide, 3(Gl, Fe, Mn)₂SiO₄, (Mn. Fe)S.

Min. Helvine. Decomp. by HCl+Aq.

Iron (ferrous) silicate, Fe₂SiO₄.

Min. Fayalite. Gelatinizes with HCl+

FeSiO₃. Min. Grunerite. +6H₂O. Min. Chlorophite. 4FeO, SiO₂. (Zobel, Dingl. **154**. 111.)

Iron (ferric) silicate,  $Fe_2Si_8O_9 + 5H_2O$ .

Min. Nontronite. Gelatinizes with hot

4Fe₂O₃, 9SiO₂+18H₂O. Min. Hisingerite. 2Fe₂O₃, 9SiO₂+2H₂O. Min. Anthosider-

Iron (ferroferric) magnesium silicate,  $(Fe, Mg)_8Fe_2Si_2O_{10}+4H_2O.$ 

Min. Cronstadtite. Gelatinizes with acids.

Iron (ferroferric) sodium silicate, 5Na₂SiO₈, 2FeSiO₃, 4Fe₂(SiO₃)₃.

Min. Aknite. Sl. decomp. by acids.

Iron (ferrous) magnesium silicate, Fe₂SiO₄, Mg2SiO4.

Min. Olivene, Chrysolite, Peridote.

inizes with HCl or H₂SO₄+Aq. (Fe, Mg)SiO₃+3/2H₂O. Min. Picrophyllite.  $+\frac{1}{4}H_2O$ . Min. Monradite.

(Fe,Mg)SiO₃. Min. Bronzite, Hypersthene. Not attacked by acids.

xMgSiO₈, yFeSiO₈. Min. Anthophyllite. Not attacked by acids.

Iron (ferrous) manganous silicate, Fe₂SiO₄, Mn₂SiO₄.

Min. Knebelite. Gelatinizes with HCl+ Aq.

Iron (ferrous) manganous silicate chloride,  $7(\text{Fe,Mn})\text{SiO}_3$ ,  $(\text{Fe,Mn})\text{Cl}_2 + 5\text{H}_2\text{O}$ .

Min. Purosmalite. Completely decomp. by conc. HNO₃+Aq.

Iron (ferric) potassium silicate, Fe(SiO₂)₂, K2SiOs.

(Hautefeuille and Perrey, C. R. 107, 1150.)

Iron (ferric) sodium silicate, Na₂Fe₂Si₄O₁₂. Min. Crokydol'is. Not attacked by acids.

#### Lead silicate.

Insol. in acetone. (Naumann, B. 1904, 37. 4329); methyl acetate. (Naumann, B. 1909, **42.** 3790.)

See under Glass.

Lithium suicate, Li2Si5O11.

Li₄SiO₄.

LizSiOs. More stable towards H₀O than the other alkali metasilicates. (Rieke and Endell, C. C. 1911, I. 7.)

Decomp. by boiling H₂O and acids. (Frie-

del, C. C. 1901, II. 89.)
Scarcely attacked by cold H₂O. (Friedel, Bull. Soc. Min. 1901, 24, 141.)

insol. in ethyl acetate. (Naumann, B. 1904, 37. 3601); methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Magnesium silicate, Mg₃Si₂O₇+2H₂O.

Min. Serpentine. Decomp. by HCl+Aq. more easily by H₂SO₄.

Min. Chrysotile.

Mg₄Si₈O₁₀+6H₂O. Min. Gymnite, Soapstone. Decomp. by H₂SO₄. MgSiO₃. Not completely decomp.

HCl+Aq.  $+\frac{1}{4}H_{2}O$ . Min. Aphrodite. Decomp. by hot acids.

+1/2H2O. Min. Picrosmine.

 $+1^{2}/_{3}H_{2}O$ . Sol. in dil. acids. (v. Ammon.) Min. Forsterite.

3MgO, 4SiO₂+H₂O or 4MgO, 5SiO₂+ ³⁄₄H₂O. Min. Talc or Steatite. Not at-tacked by HCl or H₂SO₄+Aq. Mg₅Si₆O₁₇+4H₂O. Min. Spadaite. De-

comp. by conc. HCl+Aq.

 $Mg_2Si_3O_8+4H_2O$ . Min. Meerschaum Decomp. by HCl+Aq.

"Magnesium silicate," is insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Magnesium potassium silicate, MgO, K₂O, 3SiO₂.

Easily sol. in acids with decomp. (Duboin, C. R. 1895, **120.** 681.)

Magnesium silicate fluosilicate, Mg.Si.O.  $Mg_{\delta}Si_{2}F_{18}$ .

Chondrodite. Gelatinizes Min. Humite, with HCl or H2SO4+Aq.

Manganous silicate, Mn₂SiO₄.

Tephroite. Min. Decomp. by HCl+Aq with formation of a stiff jelly.

Hermannite. MnSiO₃. Min. Rhodonite, Not attacked by HCl+Aq.

 $Mn_4Si_8O_{10} + 2H_2O$ . Friedelite. Min.

Easily gelatinized by HCl+Aq.

"Manganous silicate" is insol. in ethyl setate. (Naumann, B. 1910, **43.** 314.)

Manganous zinc silicate, (Mn,Zn)₂SiO₄. Min. Troostite.

Manganous silicate chloride, MnSiO₃, MnO,  $\mathbf{MnCl}_{2}$ .

Decomp, by H₂O. (Gorgeu.)

Nickel silicate, Ni2SiO4.

Easily decomp, by acids. (Bourgeois, C. R. **108.** 1077.)

# Potassium silicate, K₂SiO₃.

Completely sol. in H₂(). (Ordway, Sill. Am. J. (2) 33. 34.)

Insol, in methyl acetate. (Naumann, B.

**1909**, **42**, 3790.)

 $K_2Si_2O_5$ . Sol. in  $H_2O$ . Conc.  $K_2Si_{24}O_5 + Aq$ contains 28% of the salt, and has sp. gr. 1.25. (Fuchs.)

Hydroscopic. Decomp. at once by  $H_2O$ . (Morey, J. Am. Chem. Soc. 1914, **36**. 222.)  $K_2Si_3O_{17}$ . Partially sol. in  $H_2O$  as  $K_2SiO_3$ .  $K_2Si_2O_4$ 9+16 $H_2O$ . Insol. in  $H_2O$ . (Forchhammer.)

The K silicates are pptd. from their aqueous solution by alcohol with partial decomp, but

less readily than Na silicates.

More sol. in H₂O than the corresponding Na salts. (Ordway, Sill. Am. J. (2) 32. 155.) Solution can be obtained which is perfectly

clear when 4½SiO₂ are present to 1K₂O, if there are no impurities present. (Ordway.)

The K silicates resemble the Na salts, which see for further data.

#### Potassium hydrogen silicate, KHSi₂O₅.

Not readily affected by H₂O, even by treatment at 100° for several hours.

Decomp. by heating with dil. HCl. (Morey, J. Am. Chem. Soc. 1914, **36.** 222.)

#### Potassium zinc silicate.

Sol. in KOH+Aq. (Schindler.) K₂O, 6ZnO, 4SiO₂. Sol. in HCl+Aq. (Duboin, C. R. 1905, 141. 255.)

8K₂O, 9ZnO, 17SiO₂. Sol. in HCl+Aq. (Duboin.)

Potassium zirconium silicate, K₂O, ZrO₂,  $2{
m SiO}_{2}$  .

Decomp. by HCl+Aq. (Melliss!)

#### Rubidium silicate, Rb₂SiO₃.

(Kahlenberg, J. phys. Chem. 1898, 2. 82.) solution of Na₂SiO₃.

Silver silicate, Ag₂SiO₃.

Decomp. by all acids; sol. in NH4OH+Aq. (Hawkins, Sill. Am. J. 139. 311.)

Sodium silicate, Na₂SiO₃.

Rapidly decomp. by H₂O. Am. Chem. Soc. 1914, **36.** 224.) (Morey, J.

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

+5, 6, and  $8H_2$ (). Easily sol. in  $H_2$ O.  $+9H_2$ O. Solubility in  $\frac{1}{2}$ -N NaOH+

Αq. 100 ccm. of the solution contain 25.56 g. Na₂SiO₃+9H₂O at 17.5.°

Sp. gr. of the solution = 1.129. (Vester-

berg, C. C. 1913. 777.) 100 ccm. of a sat. solution of sodium sili-

cate in ½-N. NaCl+Aq. contain 3.83 g. Na₂SiO₃+9H₂O at 17.5.° Sp. gr. of solution =1.15.

100 ccm. of a sat. solution of sodium silicate in sat. NaCl+Aq contain 20.64 g. Na2SiO3 +9H₂O at 17.5°. (Vesterberg.)

Na₂Si₂O₅. Sol. in H₂O.

Slowly decomp. by cold H₂O. (Morev J. Am. Chem. Soc. 1914, **36.** 223.)

Na₄Si₅O₁₂.

Na₂Si₃O₇.

Na₂Si₄O₉. Slowly sol. in H₂O.

 $+12H_2O$ .

Above compounds are all more or less indefinite.

Water glass.  $xNa_2O$ ,  $ySiO_2+zH_2O$ . Sol. in  $H_2O$ , but solution is decomposed by all weak acids, even CO₂.

Fused water glass is but little acted on by cold H₂O, but when pure, easily dissolves in H₂O by long boiling. (Ordway, Am. J. Sci. (2) **32.** 337.)

When the SiO₂ is present in greater proportion than in Na₂O, 3SiO₂, it is very difficult to dissolve in H₂O.

Na silicate is less easily sol. in H₂O than

the corresponding K compound.

Solubility of water glass in H₂O is much impaired by earthy impurities, so that traces have great effect in preventing the solubility.

NH₄ salts decomp. water glass solutions. A solution containing ½% Na₂SiO₃ is scarcely precipitated by NH₄Cl, but easily by NH4NO2. (Fluckinger.)

Precipitated by NH₄OH+Aq as Na₂SiO₃. Many sodium and potassium salts, especially the chlorides and acetates, form precipitates in solutions of water glass; these precipitates are larger the more concentrated the solution is, and the greater amount of SiO₂ it contains. Heating hastens the precipitation by chlorides, nitrates, and sulphates, but delays that by acetates. KOH+ Aq does not precipitate.

Cold sat. Na₂SO₄+Aq does not precipitate even on heating, but 1 pt. anyhydrous Na₂SO₄ dissolved in 2 pts. H₂O precipitates a hot

NaNO₃ dissolved in 1 pt. H₂O precipitate Na₂SiO₃+Aq of 1.392 sp. gr.; NaNO₃ in 2 pts. H₂O when mixed with a solution of Na₂SiO₃, as above, if the two are present n equal vols., causes no ppt. in the cold, but solidifies when warmed to 54°, and redissolves on cooling rapidly, but if 2 vols. NaNO. +Aq are present to 1 vol. Na₂SiO₃+Aq, the precipitate does not disappear or cooling

If 1 pt.  $NH_4OH+Aq$  (0.921 sp. gr.) is added to 10 pts. Na2SiO3+Aq, no ppt. forms, but by increasing the amt. of NH₄OH+Aq to 2 pts., the greater pt. of the Na₂SiO₅ is pptd., but redissolves on heating to 90°, separating again on cooling When 1 pt. NH₄OH +Aq is added to 6-8 pts. Na₂S₁O₃+Aq and heated to 30°, a clear liquid is formed which separates into two lavers at ordinary temp.

The most sol. K, Na, Li, and NH, salts separate SiO₂ from cone. Na₂SiO₂+Aq. Most of these salts lose this power by dilution, but the NH, salts and KSON keep this power until the solution is very dil. This is especially the case with NH₄Cl and NH₄NO₃.

Bromine, chlorine, propyl amine, creesote, phenole dissolved in glycerine, chloral hydrate, dil. albumen solution, and glue solution ppt. SiO₂ from Na₂SiO₃+Aq; but sugar, dextrine, glycerine, urea, sl. alkaline solution of urea nitrate, conline, nicotine, saponine, convolvuline, jalappine, and colophonium dissolved in KOH+Aq do not ppt. SiO₂. (Fluckinger, Arch. Pharm. (2) 144. 97.)

Alcohol ppts, water glass as such from its aqueous solution, even when this is very dil.. but there is some decomposition, the alcohol tending to hold in solution a portion of a silicate more alkaline than that previously dissolved in H₂O, while the ppt. formed contains more SiO₂ than the original silicate.

Many neutral K or Na salts ppt. water glass as such when added to aqueous selutions. Like alcohol, these solutions exert a decomposing action, the ppt. being always more siliceous than the original silicate. Na silicate yields a larger deposit than K silicate; when a silicate of one base is pptd, by a salt of the other, both bases enter into the composition of the ppt, and the relative proportion of Na and K is very nearly the same as in the average of the liquids mixed.

Different salts have very unequal pptg. power, the acetates and chlorides being particularly efficient. Heat increases the pptg. power of the chlorides, sulphates, and nitrates, and diminishes that of the acetates. The alkali acetates are somewhat more efficient than the chlorides, but NaC₂H₃O₂ gives only a slight ppt. with Na₂O, 2½SiO₂, even after some time.

NaNO₈ has but little effect on the more alkaline silicates.

Na₂SO₄ has still less power than NaNO₈. Na₂CO₃ has no pptg. power, and Na₃AsO₄ or Na₃PO₄ have very little effect.

MHSO₄, MHCO₃, M₂HPO₄, M₂HAsO₄ ppt. SiO₂. NH₄ salts also have that effect. Pptd. water glass, as mentioned above, is much more sol. in H₂O than ordinary water glass, and dissolves in H₂O without decomp. for rumerous further eletails, see articles by Ordway in Sill. Am. J. Sci. vols. 32 and 33; also Storar's Dict.

Sp. gr. of water glass solution containing 14-15% SiO₂, 13 14% Na₂O, and 70-72% H₂O is 1.30-1.35. (Hager, Comm. 1883.)
Sp. gr. of sat. Na₂SiO₂+Aq freshly pre-

pared at 18° is 1,2600, and 1 litre contains 4.5 gramm - quivalents ½Na₂SiO₃.

Sp gr. of sat. solution of Na₂O, 3.4SiO₂ is 1.366, and 1 litre contains 3.7 gramme-cuivalents ½(Na₂O, 3.4SiO₂). (Kohlequivalents rausch, Z. phys. Ch. 12, 773.)

Sodium zirconium silicate, Na₂O, ZrO₂, SiO₂... Decomp, by hot H₂O or HCl+Aq. (Gibbs, Pogg. 71, 559.)

 $N_{ii2}O$ ,  $8ZrO_2$ ,  $SiO_2+11H_2O$ . Decomp. by  $H_2SO_4$ . (Melliss.)

# Strontium silicate, SrSiO₃.

(Stein, Z. anorg. 1907, **55**, 164.) +H₂O. Sol. in H₂O. (Jordis and Kanter, Z. a. lorg. 1903, 35. 90.)

Sr₂SiO₄. (Stein, Z. anorg. 1907, **55.** 167.) 3SrO, SiO₂. Sl. sol. in H₂O. Sol. in acids. (Vauquelin.)

#### Thallous silicate, 3Tl₂O, 10SiO₂.

100 pts. of a solution of Tl₂O dissolve 4.17 pts. SiO₂ by 24 hours' boiling. Sol. in H₂O. (Flemming, J. B. **1868.** 251.)

#### Thorium silicate, ThO₂, SiO₂.

Insol. in acids. Attacked by KHSO₄. (Troost and Ouvrard, C. R. **105**. 255.)  $+1\frac{1}{2}H_2O$ . Min. *Thorite*. Decomp. by HCl+Aq.

Th $O_2$ ,  $2SiO_2$ . Insol. in acids or KHSO₄. (T. and O.)

#### Yttrium silicate, Y₂O₃, SiO₂.

Attacked by HCl, HNO₃, or H₂SO₄+Aq. (Duboin, C. R. 107. 99.)

# Zinc silicate, ZnSiO₃.

(Stein, Z. anorg. 1907, 55. 165.) Zn₂SiO₄. Min. Willemite. Gelatinizes with HCl+Aq; sol. in KOH+Aq.

Decomp. by cold sat. citric acid+Aq. (Bolton, C. N. 1881, 43. 34.)

+H₂O. Min. Calamine. Sol. in HCl+Aq with separation of gelatinous SiO₂, xH₂O. Sol. in HC₂H₃O₂+Aq, and KOH+Aq.

Insol. in NH₄OH+(NH₄)₂CO₃+Aq. (Brandhorst, Zeit. angew. Ch. 1904, **17**. 513.) ZnO, 3SiO₂. (Bornträger, Ch. Z. 1893, **8**.

Zirconium silicate, SiO2, ZrO2.

Min. Zircon. Insol. in acids, except H2SO4, in which it is very slowly and sl. sol. 3SiO₂, 2ZrO₂ Min. Auerbachite.

# "Silicium oxide," Si.H.O.

(Geuther, J. pr. 95. 430.) This substance is identical with silicoformic anhydride according to Otto-Graham's Handb, anorgan. Chem. 7te Aufl. 2. 953.

# Siliciuretted hydrogen.

See Silicon hydride.

Silicobromoform, HSiBr₃.

Fumes on air; decomp, by H₂O.

# Silicochloroform, HSiCl₃.

Decomp. by H₂O and alcohol. Completely miscible with CS2, CCl4, CHCl3, C₆H_c, SiCl₄, SnCl₄, TiCl₄, and AsCl₃. (Ruff, B. 1905, **38.** 2230.)

#### Silicoethane.

See Silicon hydride.

# Silicofluoroform, SiHF₃.

Decomp. by H₂O. Decomp. by NaOH and abs. alcohol with evolution of hydrogen. Decomp. by abs. ether. Sol. in toluene. (Ruff, B. 1905, **38.** 63.)

# Silicoformic anhydride,

 $H_2Si_2O_3 = (HSiO)_2O$ .

Somewhat sol. in H2O. Acids, even conc. HNO₃+Aq, have no action, except HF, which dissolves it easily with evolution of hydrogen. Solutions of alkali hydrates, ammonium hydrate, and alkali carbonates+Aq also dissolve with evolution of hydrogen. (Ruff and Wöhler, A. 104. 101.)

#### Silicoiodoform, HSiIs.

Decomp. by H₂O. Sol. in CS₂. (Friedel, A. **149.** 96.)

Miscible with C₆H₆ and CS₂. (Ruff, B. 1908, 41. 3739.)

# Silicomethane, SiH4.

See Silicon hydride.

# * Silicomethyl chloride, SiH, Cl.

Decomp. by H₂O and by alkalies. (Besson and Fournier, C. R. 1909, 148. 556.)

# Silicomethylene chloride, SiH2Cl2.

Decomp. by H₂O and by alkalies. (Besson and Fournier, C. R. 1909, 148. 556.)

# Silicomolybdic acid, SiO2, 12MoO3+ 26H₂O.

Very easily sol. in H₂O and dil. acids. (Parmentier, C. R. 94, 213.)

Forms a solution with a little ether, which separates into two layers by addition of H₂O or more ether. (Parmentier, C. R. 104. 686.) (Copaux, Bull. Soc. Min. 1906, 29. 79.)

+32H₂O. Decomp. by alkali. (Asch, Z.

+33H₂O. (Copaux, Bull. Soc. Min. 1906, **29.** 79.)

Aluminum silicomolybdate, 2Al₂O₃, 3(SiO₂,  $12\text{MoO}_{3}) + 93\text{H}_{2}\text{O}$ .

(Copaux, A. ch. 1906, (8) 7. 118.)

Aluminum sodium silicomolybdate, 4(Na₂O,  $Al_2O_3$ ,  $2SiO_2$ ),  $Na_2MoO_4+7H_2O$ .

Sol. in HCl+Aq. (Thugutt, Z. anorg. 1892, **2.** 87.)

#### Ammonium silicomolybdate.

Sol. in H₂O. (Parmentier, C. R. **94.** 213.)

Barium silicomolybdate, 2BaO, SiO₂, 12MoO₃  $+16H_{2}O.$ 

(Copaux, A. ch. 1906, (8) 7. 118.)

(Copaux, A. ch. 1900, (8) 1. 118.) +22H₂O. Sol. in 4 pts. H₂O. (Copaux, Bull. Soc. Min. 1906, **29**. 80.) +24H₂O. Efflorescent. Very sol. in H₂O. (Asch, Z. anorg. 1901, **28**. 282.) +29H₂O. Efflorescent. (Copaux, A. ch.

1906, (8) 7. 118.)

Cadmium silicomolybdate, 2CdO, SiO₂,  $12\text{MoO}_3 + 22\text{H}_2\text{O}$ .

Very unusually sol. in H₂O. (Copaux, A. ch. 1906, (8) 7. 140.)

# Cæsium silicomolybdate.

+31H₂O. (Copaux.)

Sl. sol. in H₂O; insol. in silicomolybdic acid+Aq.

Calcium silicomolybdate. 2CaO. SiO2.  $12\text{MoO}_8 + 24\text{H}_2\text{O}$ .

Efflorescent. Very sol. in H₂O. Z. anorg. 1901, **28.** 282.) (Asch, +26H₂O. (Copaux, A. ch. 1906, (8) 7. 118.)

Chromium silicomolybdate, 2Cr₂O₃, 3(SiO₂,  $12\text{MoO}_3) + 93\text{H}_2\text{O}$ . (Copaux.)

Cupric silicomolybdate, 2CuO, SiO2, 12MoO3 +31H₂O.

Very sol. in H₂O. (Copaux.)

Lithium silicomolybdate, 2Li₂O, SiO₂, 12MoO₃ +29H₂O.

Very sol. in H₂O. (Copaux.)

Magnesium silicomolybdate, 2MgO, SiO₂,  $12\text{MoO}_3 + 30\text{H}_2\text{O}$ .

(Asch, Z. anorg. 1901, 28. 282.) +31H₂O. Very efflorescent and sol. in H₂O. (Copaux.)

Potassium silicomolybdate, 2K2O, SiO2,  $12\text{MoO}_3 + 16\text{H}_2\text{O}_1$ 

Efflorescent. Very sol. in H₂O. (Asch. Z. anorg. 1901, 28. 282.)  $1.5K_2O_1$ ,  $SiO_2$ ,  $12MoO_3 + 14H_2O_2$  (Asch.) Sol. in H₂O with decomp. (Copaux.)

Potassium silver silicomolybdate,  $3Ag_2O$ ,  $2(SiO_2, 12MoO_3)+14H$ K₂O,  $12\text{MoO}_3) + 14\text{H}_2\text{O}$ :  $+22H_2O; +30H_2O.$ 

Sol. in H₂O with decomp. Sol. unchanged in dil. mother liquor. (Copaux, Bull. Soc. Min. 1907, **30.** 293.)

# Rubidium silicomolybdate.

Sl. sol in H₂O.

Silver silicomolybdate, 1.5Ag₂O, SiO₂,  $12\text{MoO}_3 + 11\text{H}_2\text{O}$ .

Sol. in cold H₂O. (Asch.)  $2Ag_2O$ ,  $SiC_2$ ,  $12MoO_3+12H_2O$ . Decomp. by boiling  $H_2O$ . Sol. in  $NH_4OH+Aq$ .  $4Ag_2O$ ,  $SiO_2$ ,  $12MoO_3+15H_2O$ . (Asch.)

Sodium silicomolybdate, 2Na₂O, SiO₂,  $12\text{MoO}_3 + 14\text{H}_2\text{O}$ .

Copaux.)

 $2Na_2O$ ,  $SiO_2$ ,  $12MoO_3+21H_2O$ . Very sol. in  $H_2O$ . Efflorescent. (Asch.)

+22H₂O. (Copaux.)  $\begin{array}{l} +22H_2O. & (\text{Copaux.}) \\ 1.5\text{Na}_2O, & \text{SiO}_2, & 12\text{MoO}_3 + 17\text{H}_2\text{O.} & (\text{Asch.}) \\ 3\text{Na}_2O, & 2(\text{SiO}_2, & 12\text{MoO}_3) + 17\text{H}_2\text{O.} & (\text{Co-}) \end{array}$ (Copaux.)

Strontium silicomolybdate, 2SrO, SiO₂,  $12\text{MoO}_3 + 26\text{H}_2\text{O}$ . (Copaux.)

Zinc silicomolybdate, 2ZnO, SiO₂, 12MoO₃+ 31H₂O.

Extremely sol. in H₂O. (Copaux.)

#### Silicon, Si.

Insol. in H₂O. Sol. before Amorphous. igniting in cold HF. Insol. in other mineral acids and aqua regia. Sol. in conc. KOH+Aq. When amorphous Si is ignited, it becomes insol. in HF and KOH+Aq.

Amorphous Si is sol. in aqua regia and in a mixture of HNO₃ and HF. (Vigouroux-Moissan, C. R. 1895, **120**. 367.)
Insol. in liquid CO₂. (Buchner, Z. phys.

Ch. 1906, **54**. 674.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.)

Sol. in HNO₈+HF. (Ber-Graphitic.

zelius, A. 49. 247.)

Insol. in all acids, except a Crustalline. mixture of HF and HNO₃. Sol. in moderately conc. KOH+Aq even when cold. (Deville.)

Although it has been generally understood that crystallized Si is not attacked by HF, by H₂O. Sol. in CS₂ and other it is now found that this applies only to HF+ vents. (Blix, B. 1903, **36.** 4218.)

Aq. Gaseous HF readily attacks cryst. Si. (Newth, C. N. 1896, 72, 287.)

Si cryst. from Ag is incompletely sol. in HF. According to the temp, to which the ar Si mixture has been heated, the following percentages of Si are dissolved in HF: 970°, 58.02%; 1150°, 27.36%; 1250°, 19%; 1470°, 16%. (Moissan and Siemens, C. R. 1904, 136. 657, 1300.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20**. 830.)

Silicon  $\varepsilon$  nide,  $Si(NH_2)_4$ .

Unstable; decomp. by H₂O and pertially decomp. by HNO₃; sol. in most organic solvents. (Lengfeld, Am. Ch. J. 1899, **21**, 531.) Decomp. by H₂O; insol. in liquid NH₃. (Vigouroux, C. R. 1903, **136**, 1670.)

# Silicon triboride, SiB₃.

Slowly attacked by HNO₃. Decomp. by hot conc. H2SO4 or fused KOH. (Moissan. C. R. 1900, **131.** 142.)

# Silicon hexaboride, SiB₆.

Readily attacked by HNO₃. Slowly decomp. by hot conc. H2SO4. Not attacked by fused KOH. (Moissan, C. R. 1900, 131, 142.)

# Silicon tribromide, Si₂Br₆.

Decomp. by KOH+Aq. (Friedel and Ladenburg, A. 203. 253.) HSiBr₃. See Silicobromoform.

#### Silicon tetrabromide, SiBr₄.

Rapidly decomp, by H2O; decomp, in several days by H2SO4. (Friedel and Ladenburg. A. 147. 362.)

Silicon bromide, Si₃Br₈.

(Besson, C. R. 1910, **151**. 1056.)  $Si_4Br_{10}$ . (Besson.)

Disilicon hydrogen pentabromide, HSi₂Br₅ or  $Si_2Br_5$  (?).

Decomp. by H₂O. (Mahn, Zeit. Chem. (2) **5.** 279.)

Silicon tetrabromide ammonia, SiBr4, 6NH3. Decomp. by H₂O. (Lay, Dissert. 1910.)

SiBr₄, 7NH₃. Decomp. by H₂O. (Besson, 18) C. R. **110.** 240.)

#### Silicon bromoiodide, SiIBr₃.

Decomp. by H₂O. Sol. in CS₂. (Friedel, B. 2. 60.)

SiBr₂I₂. As above. (F.)  $SiBrI_2$ . As above. (F.)

# Silicon bromosulphide, SiSBr₂.

Decomp. in moist air. Violently decomp. by H₂O. Sol. in CS₂ and other organic sol-

#### Silicon carbide, SiO

Very stable; insol. in H₂SO₄ and HNO₂; sol, in fused KOH at red heat. (Moissan, Bull. Soc. 1894, (3) 11. 997.)

Cryst. modification. Insol. in acids; sol. in fused alkalies. (Moissan, C. R. 1893, 117.

Insol. in all acids; sol. in molten alkalies. (Muhlhaeuser, Z.* anorg. 1894, 5. 116.) See Silundum.

### Silicon subchloride, SiCl₂ (?).

Decomp. by H₂O. (Troost and Hautefeuille, A. ch. (5) 7. 463.)

### Silicon trichloride, Si₂C₆.

Decomp. by H₂O and alkalies. (Troost and Hautefeuille, A. ch. (5) 7. 459.) SiHCl₃. See Silicochloroform.

#### Silicon tetrachloride, SiCl4.

Decomp. by H₂O and alcohol.

# Silicon octochloride, Si₃Cl₈.

"Perchlorsilicopropane." Decomp. by H₂O. (Gattermann, B. 1894, **27**. 1947.)

# Silicon chloride, Si₄Cl₁₀.

(Besson, C. R. 1909, **149.** 36.)

"Perchlorsilicobutane." Decomp. Ši₅Cl₂. by H₂O. Fumes in the air. (Besson.)

Si₆Cl₁₄. "Perchlorsilicohexane." Decomp. by H₂O. (Besson, C. R. 1909, 148. 841.)

# Silicon trichloride ammonia, Si₂Cl₆, 5NH₃. Slowly decomp. by H₂O. (Besson, C. R. **110.** 516.)

Silicon tetrachloride ammonia, SiCl₄, 6NH₃. Decomp. by  $H_2O$ . (Pers )z, A. ch. **44.** 319.)

Silicon tetrachloride hydrazine, SiCl₄, 4N₂H₄. Extremely hygroscopic and quickly decomp. by H₂O. (Lay, Dissert. **1910.**)

#### Silicon chlorobromide, SiCl₃Br.

Decomp. by H₂O. (Friedel and Ladenburg, A. 145. 187.)

SiCl₂Br₂. As above. (Friedel and Laden-

SiBr₃Cl. Decomp. by H₂O. (Reynolds, Chem. Soc. **51.** 590.)

# Silicon chlorobromide ammonia, 2SiCl₃Br, 11NH₃.

Decomp. by H₂O. (Besson, C. R. **112.** 788.)  $SiCl_2Br_2$ ,  $5NH_3$ . As above. (B.) 2SiClBr₃, 11NH₃. As above. (B.)

#### Silicon chlorohydrosulphide, SiCl₃SH.

Decomp. by H₂O or alcohol. (Pierre, A. ch. (3) **24.** 286.)

# Silicon chloroiodide, SiCl₃I.

Decomp. by H₂O. (Besson, C. R. **112**. 611.) SiCl₂I₂. As above. (B.) SiClI₃. As above. (B.)

Silver chloroiodide ammonia, 2SiCl₈I, 11NH₈. (Besson.)

SiCl₂I₂, 5NH₃.

# Silicon chloronitride, Si₅N₆Cl₂.

(Schützenberger, C. R. 92, 1508.)

# Silicon chlorosulphide, Si₂Cl₂S₂.

Decomp. violently by H₂O. Sol. in CCl. (Besson, C. R. **113.** 1040.)

SiSCl₂. Violently decomp. by H₂O; sol. in CS₂. (Blix, B. 1903, **36.** 4223.)

#### Silicon difluoride, $SiF_2(?)$ .

Decomp. by H₂O or NH₄OH+Aq. (Troost and Hautefeuille, A. ch. (5) 7. 464.)

# Silicon tetrafluoride, SiF₄.

Abundantly absorbed by H₂O with decomp. 100 pts. H₂O absorb 140.6 pts. SiF₄ in 24 hours (Berzelius); 124.1 pts. SiF₄ in 24 hours (Davy).

Absorbed abundantly by HNO₃+Aq.

(Kuhlmann, A. **39.** 319.)

Absorbed abundantly by alcohol, without separation of silicic acid, if the alcohol contains less than 8% of water.

Sol. in conc. HF+Aq. Absorbed by ether. Sl. sol. in naptha, and oil of turpentine.

# Silicon hydrogen fluoride, H₂SiF₆. See Fluosilicic acid.

Silicon fluoride with MF. See Fluosilicate, M.

Silicon fluoride ammonia, SiF₄, 2NH₃. Decomp. by  $H_2O$ . (Davy.)

#### Silicon hydride, SiH4.

Insol. in H₂O. Decomp. by KOH+Aq. Not changed by NH₄OH+Aq, H₂SO₄+Aq, or HCl+Aq. Si₂H₂. "Silicoacetylene."

Sol. in 20% NaOH+Aq. with evolution of H. (Bradley, C. N. 1900, **82.** 149.)

"Silicoethane."  $Si_2H_6$ . (Lebeau, C. R. 1909, 148. 44.)

Sl. sol. in H₂O. Best solvent is ethyl orthosilicate. (Moissan, Bull. Soc. 1903, (2) **29.** 443.)

#### Silicon nitrogen hydride, SiHN.

Decomp. by H₂O and NaOH. (Ruff, B. 1905, **38.** 2241.)

Silicon hydroxide,  $SiO_2$ ,  $xH_2O$ .

See Silicic acid.

Si₂H₂O₄. See Silicooxalic acid. Si₂H₂O₃. See Silicoformic anhydride.

Si₄H₄O₃. See Silicone.

Silicon imide, (Si(NH)₂.

Decomp. by H₂O. (Vigouroux, C. R. 1903, **136.** 1671.)

Silicondimide, Si(NH)₂.

Decomp. by H₂O with evolution of much heat. (Blix, B. 1903, **36**, 4224.)

Silicon imide hydrochloride, Si(NH₂)₂, 2HCl. Rather stable in air. (Blix, B. 1903, **36**, 4225.)

Silicon diiodide, Sil₂.

Insol. in CS₂, CHCl₂, C₆H₆, and SiCl₄. (Friedel and Ladenburg, A. **203**, 247.)

Silicon triiodide, Si₂I₆.

Decomp. with  $H_2O$  even at  $0^{\circ}$ .

100 pts.  $CS_2$  dissolve 19 pts.  $Si_2I_6$  at 19°; 26 pts.  $Si_2I_6$  at 27°. (Friedel and Ladenburg, Bull. Soc. (2) **12.** 92.)

HSil3. See Silicoiodoform.

Silicon tetraiodide, Sil4.

Decomp. by  $H_2O$ . Acts on alcohol and ether.

1 pt. CS₂ dissolves 2.2 pts. SiI₄ at 27°. (Friedel, A. **149**, 96.)

Silicon nitride, SiN.

Partially decomp, by boiling with cone, H₂SO₄.

Not attacked by dil. acids with the excep-

tion of HF. Decomp. by HF.

Partially decomp. by boiling with alkalies+

Aq. (Welss, Z. anorg. 1910, **65**. 89.) Si₂N₃. Partially decomp. by boiling with

conc. Il₂SO₄.

Not attacked by dil. acids with the ex-

ception of HF. Decomp. by HF.
Partially decomp. by boiling with alkalies+

Aq. (Weiss, Z. anorg. 1910, **65**. 89.) Si₃N₄. Not attacked by H₂O.

Partially decomp. by boiling with conc. H₂SO₄.

Not attacked by dil. acids with the exception of HF. Decomp. by HF.

Partially decomp. by boiling with alkalies + Aq. (Weiss, Z. anorg. 1910, 65. 89.)

Silicon nitrimide, Si₂N₃H.

"Silicam."

Sol. in HF, and rapidly in KOH+Ac. (Schutzenberger, C. R. 92. 1508.)

Decomp. by cold, more rapidly by hot H₂O and much more rapidly by alkalies. Sol. in HF+Aq. Not attacked by HNO₃. Decomp. by conc. H₂SO₄. (Lay, Dissert. **1910**.)

Not decomposed by H₂O.

Sol. in hot alkalies+Aq with decomp. (Blix, B 1903, 36. 4227)

Silicon suboxide, Si₂O₂.

(Honigschmid, M. 1909, 30. 509.)

Silicon monoxide, SiO.

Much less easily sol. in  $HF + \Lambda q$  but more easily sol. in alkelies + Aq than  $SiO_2$ . (Potter, C. C. 1907, Il. 1952)

Silicon dioxide, SiO2.

Sec also Silicic acid.

(a) Crystalline. Min. Q artz, Tridumite. Insol. in H₂O, and acids, except HF. Sl. sol. in boiling K(CO₃+Aq, and KOH+

Aq; see below.

Insol. in cold KOH+Aq; extremely slowly sol. in boiling KOH+Aq. (Fuchs.)

Sol. in HF with formation of SiF, and H₂O. Insel. in sugar +Aq, contrary to assertion of Verdeil and Rissler. (Petzholdt, J. pr. **60.** 368)

(b) Amorphous. Min. Onal, etc.

Insol in H₂O, and acids except HF.

100 pts. H₂O containing CO₂ dissolve 0.078 pt. amorphous SiO₂ (Maschke); 0.0136 pt. (Struckmann).

100 pts. cold  $\mathrm{HCl+Aq}$  of 1.088 sp. gr. dissolve 0.017 pt.  $\mathrm{SiO}_2$ . (Struckmann.) 100 pts.  $\mathrm{HCl+Aq}$  of 1.115 sp. gr. dissolve in the cold 0.009 pt.  $\mathrm{SiO}_3$ , and 0.018 pt. on boiling. 100 pts.  $\mathrm{NH}_4\mathrm{OH}+\mathrm{Aq}$  (containing 10%  $\mathrm{NH}_4$ ) dissolve 0.017 pt. quartz and 0.38 pt. ignited  $\mathrm{SiO}_2$ . (Pribram, Z. anal. 6. 119.)

Sol. in boiling  $\mathrm{K}_2\mathrm{CO}_3$  or  $\mathrm{Na}_2\mathrm{CO}_3+\mathrm{Aq}$ ,

Sol. in boiling K₂CO₃ or Na₂CO₃+Aq, separating out on cooling as a gelatinous mass. (Pfaff, Schw. J. **29**, 383.) The different forms of SiO₂ have different degrees of solubility in K₂CO₃+Aq. Unignited amorphous SiO₂ from SiF₄ dissolves most readily, then come opal, ignited amorphous SiO₂, fused SiO₂, and tridymite; quartz powder is the most difficultly soluble. (Rose.) A similar behaviour is shown to KOH+Aq.

Opal is much more sol. in KOH+Aq than quartz, and hyalite is the least sol. of the varieties of opal. (Fuchs.)

Opal is easily sol. in KOH+Aq, even after ignition. (Schaffgotsch, Pogg. 68. 147.)
Rammelsberg (Pogg. 112. 177) made the

Rammelsberg (Pogg. 112. 177) made the following experiments on the solubility of SiO₂ in KOH+Aq. The KOH+Aq used contained 1 pt. KOH to 3 pts. H₂O. 1 pt. of the powdered mineral was boiled half an hour in a silver dish with such an amount of the KOH+Aq that 20 pts. KOH were present.

7.75% of milky white quartz was dissolved by repeating the above process three times.

12.8-15% of gray hornstone was dissolved by twice boiling; 2.43% of moderately finely powdered agate of 2.661 sp. gr. was dissolved by once boiling; 9.7% of unignited hyalite remained undissolved after thrice boiling;

21% of ignited hyalite remained undissolved after thrice boiling; 7.21% of semi-opal of 2.101 sp. gr. remained undissolved after thrice boiling; 18.5-19.2% of impure semi-opal of 2.101 sp. gr. remained undissolved after thrice boiling; 79.9% of chalcedony of 2.624 sp. gr. remained undissolved after thrice boiling; 6.12% of chalcedony of 2.567 sp. gr. remained undissolved after fourth boiling; 14.4% chrysophrase of 2.623 sp. gr. remained undissolved after once boiling; 49.41% of chrysophrase of 2.635 sp. gr. remained undissolved after thrice boiling; 6.62% of flint of 2.606 sp. gr. remained undissolved after twice boiling; 38.1% of fireopal of 2.625 sp. gr. remained undissolved after fourth boiling; 26.6% of fire-opal of 2.625 sp. a. remained undissolved after fifth boiling.

Insol. in liquid CO₂. (Büchner, Z. phys.

Ch. 1906, 54. 674.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

.The solubility of crystals of quartz on different faces in HF has been determined by Lebrun. (Belg. Acad. Bull. 1913, 953.)

Silicon thorium oxide. See Silicate, thorium.

Silicon zirconium oxide. See Silicate, zirconium.

# Silicon oxychloride, Si₂OCl₆.

Decomp. by  $H_2O$  and alcohol. Miscible with CS₂, SiCl₄, CCl₄, CHCl₃, or ether. (Friedel and Ladenburg, A. 147. 355.) Si $_4O_3$ Cl₁₀; Si $_4O_4$ Cl₈; Si $_5O_1$ 0Cl₁₂; (Si $_2O_3$ Cl₂)n.

Si₄O₇Cl₂. Sol. in above oxychlorides. (Troost and Hautefeuille, Bull. Soc. (2) 35. 360.)

Silicon oxyfluorhydrin, Si₂O_{3F}OH.

(Landolt, A. Suppl. 4. 27.)

Silicon selenide, SiSe₂.

Decomp. by H₂O or KOH+Aq. (Sabatier, C. R. 113. 132.)

Silicon sulphide, SiS₂.

Sol. in H₂O with decomp. Acts on alcohol or ether in the cold. (Fremy, A. ch. (3) 38. 314.)

SiS. Decomp. by H₂O; easily sol. in dil. alkalies. (Schützenberger, Bull. Soc. (2) 38. 56.)

Silicon sulphodiamide, SiS(NH₂)₂.

Slowly decomp, in the air. Insol. in cold liquid NH₃. (Blix, B. 1903, 36. 4219,)

Silicon sulphobromide.

See Silicon bromosulphide.

Silicon sulphochloride.

See Silicon chlorosulphide.

Silicon sulphourea, SiS(NH₂)₂.

Slowly decomp, in air.

Decomp. by H₂O.

Insol, in cold liquid NH₃. (Blix, B. 1903. **36.** 4219.)

# Silicone, Si₄H₄O₃.

Insol. in H₂O, but gives off hydrogen when warmed therewith. Not attacked by chlorine or nitric or sulphuric acids even on heating, but is gradually sol. in HF. Decomp. by alkalies, even by the most dil. NH₄OH+Aq, with greatest violence and evolution of heat and hydrogen gas. Insol. in alcohol, SiCl4.

PCl₃, or CS₂. (Wöhler, A. **127**. 257.) H₃Si₃O₂. Decomp. by H₂O and by dil. acids. Violently decomp. by fuming HNO₃. Not attacked by cone. H₂SO₄. Very slowly decomp. by cone. HCl, rapidly by alkalies+Aq and by pyridine. (Honigschmid, M. 1909, **30**. 509.)

Insol. in H₂O, alcohol. SiCl₄, PCl₈, and

(Kolb, Z. anorg. 1909, **64**, 353.)

H₁₀Si₁₀O₈. (Kolb.)  $H_8Si_8O_{13}$ . As  $H_{12}Si_{10}O_8$ . (Kolb.)

Silicomesoxalic acid, Si(OH)₂(SiO.OH)₂.

Insol, in cold  $H_2O$ , decomp. by hot  $H_2O$ . (Gattermann, B. 1899, 32. 1116.)

# Silicooxalic acid, $Si_2H_2O_4 = Si_2O_2(OH)_2$ .

Decomp, by bases with evolution of hydrogen. Takes up HNO₃ to form compound, but not HCl or H₂SO₄. (Troost and Haute-feuille, A. ch. (5) 7. 463.)

# Silicophosphoric acid, SiO₂, P₂O₅.

Slowly decomp. by H₂O. Unchanged by alcohol. Exists also in two modifications which are not attacked by H2O. (Haute-

feuille and Margottet, C. R. 99, 789.)
SiO₂, 2P₂O₅+4H₂O. Decomp. by moist air. Sol. in H₂O at 0°, but decomp. by warming to ordinary temp. (Hautefeuille and Margottet, C. R. 104. 56.)

Calcium silicophosphate. See Phosphate silicate, calcium.

#### Silicostannic acid.

Calcium silicostannate, Ca(Si,Sn)O₈.

Not attacked by acids, KHSO4, or alkalies +Aq. (Bourgeois, Bull. Soc. (2) 47. 297.)

Silicodecitungstic acid,  $H_8W_{10}SiO_{36} + 3H_2O = 4H_2O$ ,  $SiO_2$ ,  $10WO_3 + 3H_2O$ .

Sometimes sol. in H₂O, but usually separates out gelatinous silica. (Marignac, A. ch. (4) 3. 55.)

See also Silicoduodecitungstic acid.

Ammonium silicodecitungstate, (NH₄)₈W₁₀SiO₃₆+8H₂O.

Sol. in 4.5 pts. H₂O at 18°. Very sol. in hot H₂O. (Marignac, A. ch. (4) **3.** 59.) (NH₄)₆H₂W₁₀SiO₃₆+9H₂O. (Marignac.)

Ammonium potassium ——,  $(NH_4)_3K_4HSiW_{10}O_{36}+15H_2O$ . (Marignac.)

Barium —, Ba₄SiW₁₀O₃₆+22H₂O. Precipitate. Insol. in H₂O. (Mariguac.)

Potassium — silicotungstate (?),  $K_8SiW_{11}O_{39}+14H_2O$ .  $K_4H_4SiW_{11}O_{39}+10H_2O$ . (Marignac.)

Silver —, Ag₈W₁₉SiO₃₆+3H₂O. Not appreciably sol. in cold H₂O. (Marignac, A. ch. (4) **3.** 65.)

Silicotungstic acid or Silicoduodecitungstic acid, H₈SiW₁₂O₄₂.

(H₄SiW₁₀O₄₀, according to Copaux. (Bull. Soc. 1908, (4) **3.** 101.)

+20H₂O. Sol. in H₂O; very sol. in alcohol; behaves with ether as the acid with 22H₂O (Marignac, A. ch. (4) 3. 10.)

+22H₂O. Solubility as acid with 29H₂O. 100 pts. deliquesce with 13 pts. ether. To this mixture 20-25 pts. of ether car be added, but a further quantity no longer mixes with, but floats above the mixture. Ethereal solution is miscible with H₂O. Ether is taken up by a saturated aqueous solution with evolution of heat, until the volume has become doubled; more ether floats on the mixture. By warming the latter a liquid separates out which forms a layer between the two original layers. Alcoholic solution of the acid mixes with an equal vol. of ether, but on adding more ether a conc. ethereal solution separates as a syrupy layer. (Marignac, A. ch. (4) 3. 3. 10.)

+29H₂O. Efflorescent. Sol. in H₂O. Saturated solution at 18° contains 1 pt. crystalized acid to 0.104 pt. H₂O, and has 2.843 sp. gr. Melts in crystal H₂O. Easily sol. in absolute alcohol and anhydrous ether.

 $+xH_2O$ . (Drechsel, B. 1887, **20.** 1452.)

Aluminum silicotungstate,  $Al_4H_{12}(SiW_{12}O_{42})_4 + 75H_2O$ .

Not deliquescent very sol. in H₂O. (Marignac).

Al₄( $\tilde{S}iW_{12}O_{40}$ )₈+60 $H_2O$ . (Wyrouboff. Chem. Soc. 1897, **72**, (2) 174.)

+87H₂O. (Wyrouboff.) +93H₂O. Very efficiescent. (Wyrouboff.)

 $\Lambda l_4(NH_4)_{18}(SiW_{12}O_{43})_3 + 75H_2O.$  Sol. in  $H_2O$ . (Marignac.)

Ammonium ---, basic, (NH₄)₄SiW₁₂O₄₀
4NH₄OH+14H₂O.
(Wyrouboff, Chem. Soc. 1897, **72.** (2) 174.)

**Rarium** ----, Ba₂H₄SiW₁₂O₄₂+14H₂O.

Sol. in H₂O.

+22H₂O. Gradually efflorescent. (Marigna...)

Sol. in cold H₂O, 1:0.7 pts. (Copaux, Bull. Soc. Min. 1906, **29**. 80.)

Sol. in 4 pts. cold H₂O. (Wyrouboff, Bull. Soc. Min. 1896, **19.** 278.)

 $\begin{array}{ccc} Ba_4SiW_{12}O_{42}+27H_2O. & Nearly insol. in\\ cold, sl. sol. in hot <math>H_2O. & (Marignae.)\\ Ba_2SiW_{12}O_{40}+16H_2O. & (Wyrouboff.) \end{array}$ 

Barium potassium —, Ba₂K₂SiW₁₂O₄₀+ 17H₂O. (Wyrouboff, Chem. Soc. 1897, **72**. (2) 176.)

Barium sodium —, Na.Ba.SiW.12O.;2+

28H₂O. H₂O gradually dissolves out sodium silicotungstate.

Cadmium  $\longrightarrow$ , Cd₂SiW₁₂O₄₀+23H₂O, and +27H₂O.

(Wyrouboff.) 4CdO,  $3(\text{SiO}_2, 12\text{WO}_3) + 4\text{H}_2\text{O}$ . (Wyrouboff.)

Cæsium —,  $Cs_8SiW_{12}O_{42}$ .

100 pts.  $H_2O$  dissolve only 0.005 pt. at  $20^{\circ}$ ; 0.52 pt. at  $100^{\circ}$ .

Completely insol. in alcohol, and HCl+Aq. Somewhat sol. in dil. NH₄OH+Aq. (Godeffroy, B. 9. 1363.)

Cadmium hydrogen —, 2Cd₂SiW₁₂O₄₀, .H₆SiW₁₂O₄₀+42H₂O. (Wyrouboff.) Calcium silicotungstate, Ca₂H₄SiW₁₂O₄₂+ 20H,O.

Not deliquescent. Extremely easily sol. in H2O. (Marignac.)

 $Ca_2SiW_{12}O_{40} + 18$ , 24 and 27H₂O. (Wyrouboff.)

Calcium silicotungstate nitrate, Ca₂SiW₁₂O₄₀,  $Ca(NO_3)_2 + 15H_2O$ .

(Wyrouboff.)

Cerous —,  $Ce_2SiW_{12}O_{40} + 27H_2O$ .

(Wyrouboff,)

 $Ce_2SiW_{12}O_{40}$ ,  $CeH_2SiW_{12}O_{40} + 34H_2O$ . (Wyrouboff.)

Chromium --,  $Cr_4(SiW_{12}O_{40})_3+60$ , 87 and 93H₂O **●** (Wyrouboff.)

Cupric —,  $Cu_2SiW_{12}O_{40} + 18$ , 27 and  $29H_2O$ . Very efflorescent. (Wyrouboff.)

-, Di₂SiW₁₂O₄₀+26 and 27H₂O. Didymium ---(Wyrouboff.)

 $Di_2SiW_{12}O_{40}$ ,  $DiH_2SiW_{12}O_{40} + 34II_2O$ . (Wyrouboff.)

**Gallium** —,  $Ga_4(SiW_{12}O_{40})_3+60$ , 87, and 93H₂O. (Wyrouboff.)

**Glucinum** —,  $Gl_4(SiW_{12}O_{40})_3+45$ , 87 and 93H₂O. (Wyrouboff.)

Indium —,  $In_2O_3$ ,  $H_2O$ ,  $2(SiO_2, 12WO_3) +$ 40H₂O.

(Wyrouboff.)

 $2\text{In}_2\text{O}_3$ ,  $3(\text{SiO}_2, 12\text{WO}_3) + 63$  and  $93\text{H}_2\text{O}$ . (Wyrouboff.)

Iron (ferric) —,  $Fe_4(SiW_{12}O_{40})_3 + 60$  and 93H₂O. (Wyrouboff.)

Lanthanum —,  $La_2SiW_{12}O_{40} + 27H_2O$ . Efflorescent. (Wyrouboff.)  $La_2SiW_{12}O_{40}$ .  $LaH_2SiW_{12}O_{40} + 34H_2O$ . (Wyrouboff.)

Lead —, basic,  $Pb_2SiW_{12}O_{40}$ ,  $2PbO+20H_2O$ . Sl. sol, in H₂O. (Wyrouboff.)

**Lead** —,  $Pb_2SiW_{12}O_{40} + 21 H_2O$ . Sol. in H₂O. (Wyrouboff.)

 $\longrightarrow$ , Li₂O, SiO₂, 12WO₃+14 and Lithium -24H₂O. (Wyrouboff.)

Magnesium —,  $Mg_2H_4SiW_{12}O_{42}+16H_2O$ . Stable on the air. (Marignac.)

Mercurous silicotungstate, basic,  $Hg_4SiW_{12}O_{40}$ ,  $2Hg_2O + 5H_2O$ .

Insol. in H2O. Insol. in dil. HNO3. Slowly sol. in conc. warm. HNO₃. (Wyrouboff.)

Mercurous —, Hg₈SiW₁₂O₄₂.

Insol. in H₂O. Scarcely sol. in dil. HNO₃+ Aq. (Marignac, A. ch. (4) 3. 43.)

**Mercuric** —,  $Hg_2SiW_{12}O_{40} + 15H_2O$ .

Very sol. in H₂O. Solution decomp. on boiling. (Wyrouboff.)

Potassium —, basic, K₄SiW₁₂O₄₀, 4KOH+ 12H₂O.

1 pt. is sol. in 10 pts. H₂O at 18°. (Wyrouboff.)

Potassium —,  $K_8SiW_{12}O_{42} + 14H_2O_{.}$ 

Sol, in 10 pts. H₂O at 18°, and less than 3 pts. at 100°. (Marignac.) +20H₂O. Much less sol. in cold than hot

H₂O. Extremely sol. in hot H₂O. More sol. than above comp. (Marignac.)

K₄H₂SiW₁₂O₄₂+7H₂O. Solubility as preceding salt.

 $K_4H_4SiW_{12}O_{42} + 16H_2O$ . Sol. in 3 pts.  $H_2O$ at 20°.

 $K_6H_{19}(SiW_{12}O_{12})_2 + 25H_2O$ . Decemp. by dissolving in H₂O. (Marignae.)

 $K_4SiW_{12}O_0+6$  and  $15H_2O$ . (Wyrouboff.)  $K_4SiW_{12}O_{40}$ ,  $K_2H_2SiW_{12}O_{40}+29H_2O$ . (Wyrouboff.)

Rubidium —,  $Rb_8SiW_{12}O_{42}$ .

Sol, in 145-150 pts. H₂O at 20° and in 19-20 pts. at 100°. Insol. in alcohol; difficultly sol. in acidified, but extremely easily in ammonia-

cal  $H_2O$ . (Godeffroy, B. **9.** 1363.)  $Rb_2H_2SiW_{12}O_{40} + 5H_2O$ . (Wyrouboff.)  $Rb_4SiW_{12}O_{40}$ ,  $Rb_2H_2SiW_{10}O_{40} + 22H_2O$ . (Wyrouboff.)

Silver —,  $Ag_4H_4SiW_{12}O_{42}+7H_2O$ .

Very sl. sol. in H₂O; sol. in dil. HNO₃+ Aq. (Marignac.) Sl. sol. in H₂O. (Wyrouboff.)

Sodium —, basic, Na₄SiW₁₂O₄₀, 4NaOH+ 5H₂O. (Wyrouboff.)

Sodium ----, Na₈SiW₁₂O₄₂+7H₂O.

The saturated solution at 19° contains 0.21 pt. H₂O to 1 pt. of the salt dried at 100°, and has sp. gr. = 3.05. (Marignac.)

 $Na_4H_4SiW_{12}O_{42}+11H_2\bar{O}$ . Stable on air.

+18H₂O. Efflorescent. (Marignac.) Na₂H₆SiW₁₂O₄₂+14H₂O. Decomp. by dis-solving in H₂O. (Marignac.)

 $Na_4SiW_{12}O_{40} + 14$ , 16 and  $20H_2O$ . (Wyrou-

Sodium silicotungstate nitrate, 3Na₄H₄SiW₁₂O₄₂, 4NaNO₃+39H₂O. Slightly deliquescent. (Marignac.)

Strontium —, Sr₂SiW₁₂O₄₀+16, 17 23 and 27H₂O. (Wyrouboff.)

Thallium —, Tl₂H₂SiW₁₂O₄₀+9H₂O. (Wyrouboff.)

Thorium ----, basic.

Insol in H₂O. (Wyrouboif.)

 $\begin{array}{lll} \textbf{Thorium} & \longleftarrow \text{, } Th_2SiW_{12}O_{40} + 27H_2O. \\ & \text{Very sol. in } H_2O. & (Wyrouboff.) \\ & Th_2SiW_{12}O_{40}, & 2H_4SiW_{10}O_{40} + 45H_2O. \\ & (Wyrouboff.) \end{array}$ 

Uranium -----.

Thirteen salts are described by Wyrouboff.

Uranyl ----.

Seven salts are described by Wyrouboff.

Zinc —, Zn₂SiW₁₂O₄₀+18, 27 and 29H₂O. (Wyrouboff.)

# Silicovanadiomolybdic acid.

Ammonium silicovanadiomolybdate,

 $3(NH_4)_2O$ , SiO₂,  $V_2O_5$ ,  $9MoO_3+20H_2O$ . Sp. gr. of sat. solution containing 0.32016 g. salt in 1 ccm. at  $18^\circ = 1.21322$ . (Friedheim, B. 1900, **33**, 1624.)

 $3(NH_4)_2O$ ,  $SiO_2$ ,  $V_2O_b$ ,  $10MoO_3 + 21H_2O$ . Sp. gr. of sat. solution containing 0.35026 g. of salt in 1 ccm. at  $18^\circ = 1.25275$ . (Friedheim.)

 $3(NH_4)_2O$ ,  $V_2O_5$ ,  $SiO_2$ ,  $11MoO_5 + 27H_2O$ . Sp. gr. of sat. solution containing 0.38086 g. salt in 1 ccm. at  $18^\circ = 1.29266$ . (Friedheim.)  $3(NH_4)_2O$ ,  $V_2O_5$ ,  $SiO_2$ ,  $15MoO_3 + 24H_2O$ . Sp. gr. of sat. solution containing 0.48997 g. salt in 1 ccm. at  $18^\circ = 1.43761$ . (Friedheim.)

Ammonium potassium —,  $(NH_4)_2O$ ,  $2K_2O$ ,  $SiO_2$ ,  $V_2O_5$ ,  $9MoO_3+20H_2O$ .

Sp. gr. of sat. solution containing 0.24021 g. salt in 1 ccm. at  $18^{\circ} = 1.17031$ . (Friedheim.)

 $(NH_4)_2O$ ,  $2K_2O$ ,  $SiO_2$ ,  $V_2O_5$ ,  $10MoO_3+21H_2O$ . Sp. gr. of sat. solution containing 0.25914 g. salt in 1 ccm. at  $18^\circ=1.19184$ . (Friedheim.)

 $(NH_4)_2O$ ,  $2K_2O$ ,  $SiO_2$ ,  $V_2O_5$ ,  $11MoO_3+12H_2O$ . Sp. gr. of sat. solution containing 0.27914 g. salt in 1 ccm. at  $18^\circ = 1.21378$ . (Friedheim.)

Ammonium zinc —, 4(NH₄)₂O, 2ZnO, 2SiO₂, 3V₂O₅, 18MoO₃+15H₂O. Sl. sol. in H₂O. (Blum, Dissert. **1904.**)

# Silicovanadiotungstic acid.

Ammonium silicovanadiotungstate,  $3(NH_4)_2O$ ,  $SiO_2$ ,  $V_2O_5$ ,  $9WO_8+24H_2O$ .

Can be cryst. from  $H_2O$ . (Friedheim, B. 1962, 35. 3244.)

 $(NH_4) SiV_2W_{10}O_{40} + 2iH_2O$ . 1 cc. of sat. solution in  $H_2O$  at 17.5° contains 0.6652 g. of the hydrated salt. Sp. gr. of this solution = 1.4505. Decomp. by conc. acid and allegali. (Friedheim.)

Ammonium barium potassium —, (NH₄)₂K₂BaSiV₂W₁₀O₄₀+25H₂O.

Sl. soi. in  $H_2O$ . Decomp by conc. acids and alkalies. (Friedheim.)

Ammonium potassium—, (NH₄)K₅SiV₂W₁₀O₄₀+23H₂O.

1 ccm. of sat, solution at 17.5° contains 0.5072 g, of the salt. Sp. gr. of the solution at  $20^{\circ} = 1.3462$ . Can be cryst from H₂O. Decomp. by conc. acids and alkalies. (Friedheim.)

Barium —,  $Ba_3SiV_2W_{10}O_{40} + 28H_2O$ .

1 ccm. of the sat. solution in H₂O at 17.5° contains 0.0384 g. of the salt. Sp. gr. of the solution = 1.0307. Decomp. by conc. acids and alkalies. (Friedheim, B. 1902, **35**, 3245.) 6BaO. 2SiO₂, 3V₂O₅, 18WO₈+50H₂O.

6BaO,  $2SiO_2$ ,  $3V_2O_5$ ,  $18WO_3+50H_2O$ . Sl. sol. in  $H_2O$ . (Friedheim.) 7BaO,  $2SiO_2$ ,  $3V_2O_5$ ,  $18WO_3+83H_2O$ . Sl. sol. in  $H_2O$ . (Friedheim.)

Potassium —,  $K_6 SiV_2 W_{10}O_{40} + 22H_2O$ .

Sol. in  $H_2O$ . Can be cryst. from  $H_2O$  without decomp. Decomp. by conc. acids and alkalies. (Friedheim.)

 $6{\rm K}_2{\rm O},\,2{\rm SiO}_2,\,3{\rm V}_2{\rm O}_5,\,18{\rm WO}_3\!+\!31{\rm H}_2{\rm O}.$  Sol. in  ${\rm H}_2{\rm O}.$  (Friedheim.)

7K₂O, 2SiO₂, 3V₂O₅, 18WO₃+42H₂O. Sol. in H₂O. (Friedheim.)

Sodium —,  $Na_6SiV_2W_{10}O_{40} + 29H_2O$ .

Very sol. in  $H_2O$ . Decomp. by conc acids and alkalies. (Friedheim.)

Silundum,  $Si_xC_y$ .

Not attacked by hot Cl or conc. acids. (Amberg, Z. Elektrochem. 1909, **15**. 725.)

Silver, Ag.

Not attacked by H₂O. Absolutely insol. in HCl or HC₂H₃O₂+Aq. (Lea, Sill. Am. J. 144.444.) Easily sol. in HNO₃+Aq on warming, if not too conc. Only a minute trace is dissolved in an hour by cold dil. HNO₃+Aq (1 pt. HNO₃+Aq of sp. gr. 1.40:10 pts. H₂O). (Lea.) Sol. in hot conc. H₂SO₄ with evolution of SO₂. Sl. sol. in dil. H₂SO₄+Aq (1:4), but with more dil. H₂SO₄+Aq the different forms of Ag behave differently. (Lea.)

Sol. in HI+Aq at ordinary temperature.

Sol. in KI+Aq with access of air. Sol. in hot KCN+Aq. (Christomanos, Z. anal. 7. 301.)

Sol. in chromic, iodic, chloric and bromic acids. Dil. H.SO, alone is incapable of dissolving finely divided Ag, and the seeming solvent action is due to the oxygen of the air, oxygen dissolved in the acid, or derived from some external source. (Hendrixson, J. Am. Chem. Soc. 1903, 25. 637.)

Boiling H₂SO₄ dissolves pure Ag only when concentration equals 60° B. More dil. acid dissolves only the impure metal. (Pannani, Gazz. ch. it. 1909, 39. (2) 234.)

Slowly decomp, into AgCl by alkali chlor-

ides + Aq; also by CuCl₂, etc. + Aq.
Somewhat sol. in NH₄OH + Aq in presence

of O. (Lea, Sill. Am. J. 144, 444.) Sol. in MnO₄+dil. H₂SO₄+Aq. (Fried-

heim, B. 20. 2554.)

Sol. in Fe₂(SO₄)₈+Aq, especially on heating, but completely insol. in FeSO₄+Aq. (Vogel.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 829.

Allotropic forms—(a). Very sol. in  $H_2O$ . Solution is pptd. by saline solutions or almost any neutral substance. Alkali sulphates. nitrates, and citrates ppt. it in a sol. form, while MgSO₄, CuSO₄, FeSO₄, NiSO₄, K₂Cr₂O₇, K₄Fe(CN)₆, Ba(NO₃)₂, and even AgNO₃+Aq ppt. it in an insol. form, which, however, may be made sol. again by treatment with many substances, as Na₂B₄O₇, K₂SO₄, or Na₂SO₄+Aq. NaNO₂+Aq ppts. the Ag from its solution in a perfectly insol. form.

 $(\beta)$ . The ppt. from aqueous solution by salts is sol. in NH4OH+Aq. (Lea, Sill. Am.

J. **137.** 476.)

Many other allotropic forms exist. (Lea.) Pure colloidal silver is also sol. in alcohol. Schneider, B. 25. 1164.)

Entirely sol. in H₂O, even when dry. (Schneider, Z. anorg. 1894, 7. 339.)

# Silver acetylide, Ag₂C₂.

Sol. in KCN+Aq with evolution of C2H2. Decomp. by HCl+Aq. (Arth, C. R. 1897, **124.** 1535.)

#### Silver amide, AgNH₂.

Ppt.; sol. in ammonium salts+Aq and in excess of potassium amide. Sol. in liquid NH₃. Insol. in Ag salts+Aq. J. Am. Chem. Soc. 1905, **27**. 833.) (Franklin,

Sol. in excess of KNH₂. (Franklin, Z.

anorg. 1905, 46. 16.)

# Silver antimonide, Ag₂Sb or Ag₄Sb.

Min. Discrasite. Sol. in HNO₃+Aq. Ag.Sb. Insol. in HCl+Aq; decomp. by HNO₃+Aq. (Christofle.)

#### Silver azoimide, AgN₂.

Insol. in hot or cold H2O or dil. acids; sol. in conc. mineral acids. Sol. in NH4OH+Aq. (Curtius, B. 23. 3023.)

Silver bromide, AgBr.

Insol in H₂O, or H₂O acidulated with HNO₃, H₂SO₄, or HC₂H₃O₂ between 0° and 33°. If flocculent or pulverulent, it is sensibly sol, therein above 33°, but if granular only above 50°, and then very slightly. (Stas, A. ch. (5) 3. 289.) Ag can be detected as AgBr in 10,000,006 pts. H₂O. (Stas.)

Calculated from the electrical conductivity

of AgBr+Aq, AgBr is sol. in 1,971,658 pts. H₂O at 20.2°, and 775,400 pts. at 38°. (Holle-

man, Z. phys. Ch. 12. 133.)

By same method Kohlrausch and Rose calculate that 1 l. H₂O dissolves 0.4 mg. AgBr (Z. phys. Ch. **12.** 240.)

Solubility in  $H_2O = 0.109$  mg. per l. (Prudhomme, J. chim. Phys. 9. 519.)

Solubility in  $H_2O = 6.6 \times 10^{-7}$  at 25°. (Good-

win, Z. phys. Ch. 1894, 13. 645.) Solubility of AgBr in H2O at 25° equals

 $8.1 \times 10^{-7}$  g. mols. per l. (Thiel, Z. anorg. 1900. 24. 57.)

Aq. solution sat. at 21.1° contains 0.57× 10-6 gr. equiv. per litre. (Kohlrausch, C. C.

1901, II. 1299.) 1 l. H₂O dissolves 0.000137 g. AgBr at 25°. (Abegg and Cox, Z. phys. Ch. 1903, 46. 11.)

0.84×10⁻⁴ g. are dissolved per liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903,

1 l.H₂O dissolves 0.107 mg. AgBr at 21°.

(Kohlrausch, Z. phys. Ch. 1904, 50. 356.) 3.7 mg. AgBr are contained in 1 liter of sat. solution at 100°. (Böttger, Z. phys. Ch. 1906, 56. 93.)

1 mg. in 1 l. of sat. solution at 21°. (Kohlrausch, Z. phys. Ch. 1908, **64**. 168.) Solubility in  $H_2O = 8.8 \times 10^{-7}$  g. mol. per litre at 25°. (A. E. Hill, J. Am. Chem. Soc. 1908, **30**. 74.)

Boiling H₂O dissolves 0.000003502 of its weight of AgBr. HNO₃+Aq (1% HNO₃) dissolves 0.00000543 of its weight of AgBr at 100° with sl. decomposition. The solution is pptd. by AgNO₃+Aq or HBr (or MBr)+ Aq, but not completely. I pt. of AgBr in solution requires 3 pts. of Br as MBr (or HBr), or of Ag as AgNO₃ in order to be wholly

precipitated. (Stas.)

Not attacked by boiling HNO₃+Aq; sl.

sol. in conc. HBr or HCl+Aq (Löwig). Boiling conc. H₂SO₄ decomposes it (Balard) hardly acts on it (Dumas), dissolves a small quantity, which is repptd. by H2O (Berze-

lius.) Very sl. sol. in dil., easily in conc. NH₄OH +Aq. 100 pts. NH₄OH +Aq (0.986 sp. gr.) dissolve 0.51 pt. AgBr (dried at 100°) at 80° and about double that amount of freshly

pptd. AgBr. (Pohl, W. A. B. 41. 267.) 1 g. freshly pptd. AgBr is sol. in 250 ccm. 10% NH₄OH+Aq, but insol. in an ammoniacal solution of AgCl. (Seiner, Pharm. J. Trans. (3) 14. 1.)

1 g. AgBr dissolves in 8779.4 g. 5% NH₄OH +Aq (sp. gr. = 0.998) at 12°, and in 288.5 g.

10% NH₄OH+Aq (sp. gr. =0.96) at 12°. (Longi, Gazz. ch. it. 13. 87.)

Solubility of AgBr in NH4OI1+Aq at 15°. G. mols, per l.

sHN.	AgBr	Sp. gr. 15.5°
1.085	0.0011	0.9932
2.365	0.0031	0.9853
3.410	0.0050	0.9793
4.590	0.0074	0.9720
5.725	0.0101	0.9655

(Bodländer, Z. phys. Ch. 1892, 9, 734.)

Solubility in  $NH_4OH + Ag$  at 0°.

10 ccm, of the solution contain g. NH₂ and mg. Ag Br.

g. NH ₃	Mg. AgBr	g. NH	Mg. AgBr
0.307	8.0	2.627	106.7
0.488	9.6	3.126	156.8
0.669	17.2	3.389	198.7
0.829	21.2	3.652	266.9
1.151	34.9	3.722	288.8
1.532	55.7	3.770	293.0
1.809	72.2	3.926	289.2
1.953	74.1	3995	285.0

(Jarry, A. ch. 1899, (7) 17. 364.)

Solubility of AgBr in NH₄OH+Aq at 25°. G. mols. per l.

	• • • • • • • • • • • • • • • • • • • •			
NH3	AgBr	NH3	AgBr	
0.1932 0.3849 0.7573	0.00060 0.00120 0.00223	1.965 3.024 5.244	0.00692 0.01163 0.02443	

(Bodländer and Fittig, 1902, Z. phys. Ch. 39.

Solubility in NH₄OH+Aq at 25°.

g. at. Ag per l.	Mols. NH ₃ per l.
0.00170	0.450
$0.00159 \\ 0.000941$	$egin{pmatrix} 0.497 \ 0.268 \ \end{bmatrix}$
$0.00107 \\ 0.000391$	$0.273 \\ 0.115$
0.000386 0.000276	0.118 0.0764
0.000276	0.0777

(Whitney and Melcher, J. Am. Chem. Soc. 1903, **25.** 79.)

Sol. in hot NH₄Cl+Aq. Very sl. sol. in NH4 carbonate, sulphate, or succinate+Aq, and still less in nitrate. (Wittstein.) Not very easily sol. in Na₂S₂O₃+Aq when suspended in much H₂O, and is separated out again by KBr+Aq. (Field, C. N. 3. 17.)
Sol. in KCN+Aq. Sl. sol. in conc. KCl, (Lowry, Roy. Soc. Proc. 1914, 91. A, 65.)

KBr, NaCl, NaBr, NH₄Cl, or NH₄Br+Aq; but'insol. when dilute.

Traces only dissolve in alkali nitrates + Aq.

(Fresenius, Quant. Anal.)

Abundantly sol. in Hg(NO₈)₂+Aq. 100 cem. H₂O containing 10 ccm. normal Hg(NO₃)₂+Aq dissc.ve 0.0383 g. AgBr. (Stas.)

Solubility of AgBr in Hg(NO₈)₂+Aq at 25°. G. mols, per l.

Hg(NOs)2 HNOs	AgBr	Hg(NO ₃ ) ₂ HNO ₂	AgBr
1	0.03660	0.025	0.00459
0.10	0.00873	0.0125	0.00329
0.05	0.00639	0.0100	0.00306

HNO3 was present in all cases, and it was found that there was no difference in solubility of A₂Br with concentrations between 0.1N and 2N HNO₃. Cryst. and amorphous AgBr showed the same solubility. (Morse, Z. phys. Ch. 1902, 45. 708.)

Difficultly sol, in hot conc. AgNO₃+Aq.

(Risse, A. **111.** 39.)

100 ccm. of a 3-N solution of AgNO₃ dissolve 0.04 g. AgBr at 25°. Much less sol.. in AgNO₃+Aq than AgI. (Hellwig, Z, anorg. 1900, 25, 176.)

Solubility in AgNO₃+Aq.

Volumetric measurements				
AgNO ₃	N/10 KBr ccm.	Opal- escent at	G. AgBr retained per 100 g. AgNO ₃	
10 g. made up to 32 g. per 100 g. of solution  10 g. made up to 70 g. per 100 g. of solution	0.65 0.72 0.8 0.9 1.0 1.1 1.2 6.0 8.0 10.0 11.25 12.0 12.75 13.5 15.5 17.5	22° 35 44 62 67 77 79 37 53 67 72 74 79 82 85.5	0.129 0.144 0.159 0.178 0.188 0.207 0.226 1.13 1.50 1.88 2.12 2.26 2.40 2.54 2.92 3.29	

Gravimetric measurements at 14.5°

G. AgNO₃	ccm. H ₂ O	Strength of AgNO ₃	G. AgBr re- tained per 100 g. AgNO:
7.326	9.32	44	0.144
8.290	7.65	52	0.185
7.255	4.84	60	0.283
7.35	3.95	65	0.365

100 g. KBr in conc. KBr+Aq dissolve 3019 mg. AgBr at 15°; 95 g. NaCl+10 g. KBr dissolve only 75 mg. AgBr at 15°. (Schierholz, W. A. B. 101, 2b. 4.)

Solubility in KBr+Aq at 25°.

Mol. KBr in 1 litre	G. AgBr in 1 litre
4.864	26.44
4.44	17.95
4.18	13.50
3.68	7.50
2.81	2.34
2.76	2.20

(Hellwig, Z. anorg. 1900, 25, 183.)

Sol. in conc. KBr or NaBr+Aq (Lowig),

but less than AgI in KI+Aq (Field).

100 g. NaCl in conc. NaCl+Aq dissolve 474 mg. AgBr at 15°, 100 g. NaCl in 21% NaCl+Aq dissolve 188 mg. AgBr at 15°. (Schierholz, W. A. B. **101**, **2b**. 4.)

Solubility of AgBr in Na₂SO₃+Aq at 25°. G. formula weights per l.

Sos	Ag	So ₃	Ag
0.232 0.406 0.448	$\begin{array}{c} 0.0025 \\ 0.0023 \\ 0.0023 \end{array}$	$0.466 \\ 0.474 \\ 0.675$	0.0053 0.0055 0.0084

(Luther and Leubner, Z. anorg. 1912, 74. 393.)

Solubility of AgBr in Na₂SO₃ at (?)°. (g. salts per l. of solution.)

Na ₂ SO ₃	AgBr	Na ₂ SO ₃	AgBr
83.75 $70.75$ $38.2$	0.790	2.08	0.0159
	0.570	1.13	0.0086
	0.265	0.59	0.0045
17.65	0.116	0.3	0.0039
9.47	0.0526	0.17	0.0022
4.85	0.0329	0.08	0.00075

(Mees and Piper, Photog. J. 1912, 36. 234.)

Solubility in Na₂S₂O₃+Aq at 35.°

g. Na ₂ S ₂ O ₃ in 1-liter	g. AgBr corresponding to each g. Na ₂ S ₂ O ₃ .
100	0.376
200	0.390
300	0.397
500	0.427

(Richards and Faber, Am. Ch. J. 1899, 21.

 $(NH_4)_2S_2O_3+Aq.$  dissolves AgBr more rapidly than does  $Na_2S_2O_3+Aq.$  (Lumière and Seyewitz, C. C. 1908, II. 1138.)

Solubility in salts+Aq.

Solvent	% Conc.	Grams AgBr sol. in 100 grams solvent
Sodium thiosulphate	1 5 10	$\begin{pmatrix} 0.35 \\ 1.90 \\ 3.50 \end{pmatrix}$
11 .6 16 11 11 11	15 20	$\begin{bmatrix} 3.50 \\ 4.20 \\ 5.80 \end{bmatrix} 20^{\circ}$
Sodium sulphite  Ammonium sulphite	10 20 10	$egin{pmatrix} 0.04 \\ 0.08 \\ 25^{\circ} \\ \text{Traces} \end{pmatrix}$
Potassium cyanide Ammonium sulphocyanide	5 5	$\begin{bmatrix} 6.55 \ 0.21 \end{bmatrix}$
Potassium "	10 15 10	2.04 \ 20° \ 5.30 \ 0.73
Caleium " " Barium " "	10 10	$\begin{bmatrix} 0.53 \\ 0.35 \end{bmatrix}$
Aluminum " " Thiocarbamide Thiosinamine	10 10 1	$\begin{vmatrix} 4.50 \\ 1.87 \\ 0.08 \end{vmatrix}$ 25°
u	5 10	$\begin{bmatrix} 0.35 \\ 0.72 \end{bmatrix}$

(Valenta, M. 1894, 15. 250.)

Solubility of AgBr in salts+Aq at (?)°. (G. AgBr sol. in 1 l. of 1% solution of salts.)

NaSCN	2.06
$NH_4SCN$	0.03
$(NH_4)_2CO_3$	0.004
Na ₂ SO ₄	0.055

(Mees and Piper, Photog. J., 1912, 36. 234.)

In a solution of  $NaC_2H_3O_2+Aq$ , containing 10 ccm. of sat.  $NaC_2H_3O_2+Aq$  at 15° and 20 ccm. normal HC2H3O2+Aq mixed with 970 ccm. H₂O, about double the amt. of flocculent AgBr is dissolved in the cold that is dissolved by boiling H₂O from granular AgBr. This solution required 3 pts. of Ag or Br to ppt. the AgBr in solution. Pulverulent or granular AgBr are wholly insol. in dil. or conc. acetates+Aq. (Stas.) Sol. in  $Hg(C_2H_3O_2)_2+Aq$ . (Stas.)

100 ccm. H₂O containing 10% of normal  $Hg(C_2H_3O_2)_2 + Aq$  dissolves 0.0122 g. AgBr at 20°. (Schierholz.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 829.)

Solubility in 10 cc. methylamine+Aq of different concentrations at 11.5.

g. NH₂CH₃ 4.844 4.3113.5623.258127 mg. AgBr 28973 55

g. NH₂CH₈ 1.7971.513 1.3171.101 mg. AgBr 28

(Jarry, A. ch. 1899, (7) **17.** 378.)

Solubility	in	methylamine+Aq	at	25°.
------------	----	----------------	----	------

G. mol. per l.		
" CH3NH2	AgBr	
0.02	0 00026	
0.04 0.074	$egin{array}{c} 0.00034 \ 0.000395 \end{array}$	
$0.0947 \\ 0.1950$	0.00041 0.00045	

(Wuth, B. 1902, 35, 2416.)

Solubility of AgBr in methylamine 4-Aq at 25°.

G. mol. per l.			
CH ₃ NH ₂	AgBr	CH ₈ NH ₂	.\gBr
1.017 0.508 0.203	$0.0025 \\ 0.0013 \\ 0.00049$	0.102 0.051	0.00026 0.00012

(Bodländer and Eberlein, B. 1903, 36, 3948.)

Solubility in ethylamine+Aq at 25°.

$C_2H_5NH_2$	AgBr
0.01272	0.0000867
0.03942	0 000137
0.05512	0.000193
0 06572	0.000258
0.10300	0.000711

(Wuth, B. 1902, **35**. 2416.)

At 25°, 1 l. ethylamine+Aq containing 0.483 g. mol. C₂H₅NH₂ dissolves 0.00231 g. mol. AgBr; 0.200 g. mol. C₂H₅NH₂, 0.0097 g. mol. AgBr. (Bodländer and Eberlein, B. 1903, **36.** 3948.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in acetone. (Eidmann, C. C. 1899, II, 1014); (Naumann, B. 1904, 37. 4329.) Sol. in alcoholic thiourea. (Reynolds, Chem. Soc. 1892, **61.** 251.)

Insol. in methyl acetate. (Bezold, Dissert. 1906); (Naumann, B. 1909, 42. 3790.) ethyl acetate. (Hamers, Dissert. 1906); (Naumann B. 1910, 43. 314.)

1.49 g. AgBr is dissolved in 1 l. of 1% thiocarbamide+Aq. (Mees and Piper, Photog. J. 1912, **36.** 239.)

Insol. in warm pyridine.

Mol. wt. determined in piperidine. (Werner, Z. anorg. 1897, 15. 16.) Min. Bromyrite, Bromite.

# Silver bromide ammonia, AgBr, NH₈. (Joannis and Crozier, C. R. 894, 118. 1150.) the AgCl remains in solution after cooling.

AgBr, 1½NH₃. (Jarry, A. 4h. 1899, (7) **17.** 356.)

2AgBr, 3NH₃. (Joannis and Crozier.) AgBr, 3NH₃. Decomp. by H₂O. Sl. sol. in

liquid NH₃. (Jarry.) ArB1, 5NH₃. (Jarry, C. R. 1898, **126**. 1141.)

# Silver carbide, Ag₄C.

(Cay-Lussac.)

Ag₂C(*). Sol. in HNO₃+Aq with residue of C (Liebig, A. 28, 129.)
Ag₂C₂. Sol. in INO₃+Aq with residue of C. (Regnault, A. 19, 153.)

# Silver subchloride, Ag₄Cl₃.

NH₄OH+Aq dissolves the greater part, the residue (20%) being sol. in HNO₃+Aq. KCN dissolves the greater part;  $H_2SO_4$  dissolves about 2%; acetic acid and KOH are without action. (Bibra, J. pr. 1875, (2) 12. 52.)

# Argentous chloride, Ag₂Cl.

Obtained in a pure state by Guntz (C. R. 112. 861). Dil. HNO₃+Aq does not attack but warm conc. HNO3+Aq decomp. Easily sol. in KCN+Aq. (Guntz, C. R. 112. 1212.) The following data are for a more or less

impure Ag₂Cl. Boiling conc. HCl+Aq, NaCl+Aq, or NH₄OH+Aq dissolve out AgCl, and leave Ag. (Scheele, Wetzlar, Dulk, Wöhler.)

According to Berthollet, wholly sol. in NH₄OH +Aq. Sol. for the most part in NH₄OH +Aq. and the restdue is sol. in HNO₃+Aq (=Ag+AgCl). (v. Bibra, B. 7.741.)

# Silver chloride, AgCl.

Nearly insol. in H₂O.

When AgCl is left in contact for some hours with pure  $H_2O$  at 20-22°, and especially at 75° traces go into solution; more Cl is dissolved than Ag. When 1 pt. Ag is pptd. as AgCl in presence of 1 million pts. H₂O a slight bluish milkiness is observed; but in order to have a distinct ppt. 4 pts. Ag should be present.

Dil. HNO₃+Aq does not increase the solubility of AgCl, but AgCl is not absolutely insol. in stronger HNO₃+Aq. (Mulder.)

I pt. AgNO₃, when mixed with HCl+Aq in presence of 120,000 (Pfaff), 240,000 (Harting), pts. H₂O, causes an opalescence.

1 pt. Ag gives a slight turbidity with HCl+ Aq in presence of 200,000 pts. H₂O, a scarcely opalescent cloudiness with 400,000 pts. H₂O and the same after the lapse of 15 minutes in presence of 800,000 pts. H₂O. (Lassaigne.)

I pt. Ag can be detected as AgCl in 1 million parts H₂O at ordinary temp., but not in 2 million parts. In NaNO₃+Aq containing 0.79 pt. NaNO₃ in 200,000 pts. H₂O, 1 pt. Ag can be detected as AgCl. This dissolves at 75°, and is visible again on cooling.

If the same liquid contains 1574 pts. NaNO.

In 100 ccm. H₂O containing 0.787 g. NaNO₂, 43 drops of NaCl and silver solution, each drop of which contains 0.05 mg. Ag, cause a precipitate at 5°, 20 drops at 15-17°, 60 drops at 45-55°.

AgCl is somewhat less sol. in HNO₃+Aq than in NaNO₃+Aq when the amount of H₂O

remains the same.

Therefore, if HCl is used instead of NaCl, about 1/7 less AgCl remains in solution.

In 100,000 pts. of H₂O, which contain HNO₃ and an amount of HCl corresponding to the amount of Ag salt, 1.596 pts. AgCl dissolve at 25°. The solution is precipitated by either AgNO₂ or HCl. (Mulder, Silber Probirmethode, Leipzig, **1859**. 62.)

(For further older data, see Storer's Dic-

White flaky AgCl is appreciably sol. in hot H₂O, 1000 ccm. boiling H₂O dissolving about 2 mg, AgCl. Far less sol. in H₂O containing AgNO₃, being practically insol. in H₂O containing 0.1 g. AgNO₃ in a litre. Solubility is also diminished one-half by addition of HCl. (Cooke, Sill. Am. J. (3) 21. 220.)

Solubility in H₂O rapidly diminishes as the

temp. falls. (Cooke, l. c.)

Not completely insol. in H₂O. According to Stas (C. R. 73. 998) there are four modifications: (1) gelatinous; (2) cheesy-flocculent; (3) pulverulent; (4) granular, crystalline, or fused. (4) is almost absolutely insol. in H₂O at the ordinary temp., but the solubility increases with the temp, and is considerable at 100°; (2), which is formed by the precipitation of a cold dilute Ag solution, has the greatest solubility in pure H₂O, and it changes its solubility by standing, or if made pulverulent by shaking with H₂O; (3) is also sol. in H₂O; the solution of (2) or (3) in pure H₂O, or H₂O acidified with HNO₃, is precipitated by AgNO₃ or NaCl+Aq.

In order to ppt. 1 pt. AgCl in above solution 3 pts. of Cl as chloride or Ag as nitrate

are necessary; the pptn. is then complete. Solubility of granular variety in boiling H₂O is proportionately large, and pptn. is brought about by 3 pts. Cl or Ag as above, but the pptn. in this case is not complete.

The salts formed simultaneously with the AgCl have no influence on the solubility of the AgCl. Presence of HNO₃ does not increase the solubility of (2), but has that effect on (3) in proportion to the amt. of HNO₃ present. (Stas, C. R. 73. 998.)

Further determination by Stas are as

Between 0° and 30° granular AgCl is insol. in pure H₂O, or H₂O acidulated with HNO₃.

Between 0° and 30° the flocculent and pulverulent forms of AgCl dissolve without alteration in pure H₂O, in acidulated H₂O, in alkali acetates +Aq, and in  $Hg(C_2H_3O_2)_2$ +Aq containing an alkali acetate. Their degree of solubility is a function of the state 0.0217 g. at 100°. (Whitby, Z. anorg. 1910, of the chloride, of the temp., and of the nature 67. 108.)

and quantity of the solvent within these limits of temp. (0°-30°). These solvents, if they contain either Ag in the state of an Ag salt, or Cl as chloride or HCl in an amount three times that which they can dissolve as AgCl, exercise no solvent action on any of the modifications of AgCl. And reciprocally sat. AgCl+Aq is pptd. instantly by a decinormal solution of AgNO₃ or MCl (or HCl). The AgCl is wholly pptd. when the quantity of the Ag or Cl thus added is equal to three times the quantity of the Ag or Cl dissolved as AgCl.

Between 50° and 100°, however, decinormal solutions of Ag or chlorides, which cause instant ppts. in solutions sat. with any of the modifications of AgCl, do not eliminate all the dissolved AgCl. At 100°, they only ppt. 60% of the amt. dissolved. (Stas, A. ch. (5) 3. 323.)

Calculated from electrical conductivity of AgCl +Aq, AgCl is sol. in 715,800 pts.  $H_2O$  at  $13.8^\circ$ , and 384,100 pts. at  $26.5^\circ$ . (Holleman, Z. phys. Ch. 12. 132.)

Calculated in the same way, 1. l. H₂O dissolves 0.76 mg. at 2°; 0.97 mg. at 10°; 1.52 mg. at 18°; 2.24 mg. at 26°; 3.03 mg. at 34°; 4.05 mg. at 42°. (Kohlrausch and Rose, Z. phys. Ch. **12.** 242.)

Solubility in  $H_2O = 1.25 \times 10^{-5}$  mol./l. at 25°. (Goodwin, Z. phys. Ch. 1894, 13. 645.)

Solubility of AgCl in H₂O at 25° is 1.41× 10⁻⁵ (in normality). (Thiel, Z. anorg. 1900, **24.** 57.)

2.16×10 5 moles are sol. in 1 liter H₂O at 25°. (Noyes and Kohr, Z. phys. Ch. 1903, **42.** 341.)

1.53×10⁻³ g. per liter are dissolved in sat. aq. solution at 20°. (Böttger, Z. phys. Ch.

1903, **46.** 603.) 1 l.  $H_2O$  dissolves 1.6 mg. AgCl at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

21.8 milligrams are dissolved in 1 liter of sat. solution at 100°. (Pöttger, Z. phys. Ch. 1906, **56.** 93.)

1.34 mg. are contained in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.)

1 l. sat. solution at t° contains mg. AgCl.

t°	mg, AgCl	t°	mg, AgCl
1.55	0.56	17.51	1.31
4.68	0.66	25.86	1.935
9.97	0.89	34.12	2.74

(Kohlrausch, Z. phys. Ch. 1908, 64, 168.)

Solubility in  $H_2O = 1.6 \times 10^{-5}$  g.-mol. per litre at 25°. (A. E. Hill, J. Am. Chem. Soc. 1908, 30. 74.)

1 l. H₂O dissolves 0.00154 g. AgCl at 21°;

Calculated from electrical conductivity of AgCl+Aq, 1 l. H₂O dissolves:

0.0105 milli-equivalents AgCl at 18° ".50°. ".100°. 0.03650.147

(Melcher, J. Am. Chem. Soc. 1910, 32. 55.)

1 l. H₂O dissolves 1.02×10⁻⁵ g. equiv. at  $18^{\circ}$ ;  $1.429 \times 10^{-5}$  g. equiv. at 25°. (van Rossen, C. C. 1912, I. 1539.)

The most probable average value for selubility of AgCl in H₂O is 1.04×10 5 g. equiv. per l. at 18°, and 1.43×10-6 g. equiv. per l.

per I. at 18, and 1.43×10⁻³ g. equiv. per I. at 25°. (van Rossen, C. C. 1912, H. 1807.) 1.20×10⁻⁵ g. AgCl are sol. in 1 l. H₂O at 18°. (Glowczynski, C. A. 1915, 741.)

More sol. in H₂O than AgSCN. (Normand, Chem. Soc. 1912, 101. 1853.)

Sol. in conc. HCl+Aq, and also when not very conc.; thus the solution of 1 pt. AgNO3+ Aq in 15,000 pts. H₂O is clouded by a little HCl+Aq, but clears up by the addition of more. (Reinsch, J. pr. 13. 133.)

1 pt. AgCl dissolves in 200 pts. conc. HCl+ Aq and in 600 pts. HCl+Aq diluted with 2 pts. H₂O. (Pierre, J. Pharm. (3) 12. 237.)
Somewhat sol. in hot alcohol, to which HCl

has been added, but is precipitated on cooling.

(Erdmann, J. pr. 19. 341.)

100 pts. sat. HCl+Aq (sp. gr. 1.165) dissolve 0.2980 pt. AgCl, or AgCl is sol. in 336 pts. HCl+Aq at ord. temp.; 100 pts. HCl+ Aq (sp. gr. 1.165) at b.-pt. dissolve 0.56 g. AgCl, or AgCl is sol. in 178 pts. HCl+Aq.

Solubility of AgCl in dil. HCl+Aq. 100 ccm. HCl+Aq (sp. gr. 1.165), to which the given amt. H₂O has been added, dissolve g. ÄgCl.

cem. HCl	cem. H ₂ O	g. AgCl	Pts. HCl which dis- solve 1 pt. AgCl
100	1,0	0.056	1,785
100	20	0.018	5,555
100	30	0.0089	11,235
100	50	0.0035	18,571

(Vogel, N. Rep. Pharm. 23. 335.)

If HCl is added to a solution in which 1/1,000,000 pt. Ag is suspended, the milkiness disappears. Solubility in HCl+Aq increases with the temp., the AgCl separating out on cooling. (Mulder.)

The amounts of AgCl which dissolve in HCl+Aq are directly proportional to the volumes of acid (of fixed concentration) used. (Barlow, J. Am. Chem. Soc. 1906, 28. 1448.)

1l. 1% HCl dissolves 0.0002g. AgCl at  $21^\circ.$  1l. 5% HCl dissolves 0.0033g. AgCl at  $21^\circ.$  1l. 10% HCl dissolves 0.0555g. AgCl at  $21^\circ.$ 

(Whitby, Z. anorg. 1910, 67. 108.)

Solubility in MCl+Aq at 25°.

	- 19
HCl gequivalents per l.	Ag × 10 ⁻³ gequivalents per l.
0.649	0.032
1.300	0.126
1.911	0.266
2.149	0.374
2.569	0.610
2.975	0.814
3.5 <b>76</b>	1.558
4.182	2.147
4.735	3.168
5.508	4.126
-	

(Forbes, J. Am. Chem Soc. 1911, 33, 1941.)

Solubility in 20% HCl +Aq.

			•
HC!	N/10 AgNO ₃ ccm.	Opalescent at to	G. AgCl to 100 g. anhy- drous HC!
20 g. of 20% acid	1.0 $1.1$ $2.0$ $3.0$ $3.75$ $4.25$ $4.75$ $5.80$	0.0 29.5 51.5 70.0 82.0 90.0 107.0	0.39 0.72 1.076 1.346 1.525 1.74 2.08

(Lowry, Roy, Soc. Proc. 1914, 91, A. 62.)

Sl. sol. in conc. HBr+Aq. (Löwig.) Insol. in HNO₃+Aq. (Wackenroder.) Entirely unacted upon by HNO₃ of 1.43 sp. gr. (Wurtz, Am. J. Sci. (2) **25**, 382.)

Solubility in dil. HNO₃+Aq is the same as solubility in H2O, i. c. 1/2,000,000 pt. of Ag cannot be detected in H2O with or without HNO3, but 1/1,000.000 pt. can be detected in both cases. (Mulder.)

1 pt. Ag in the form of AgCl dissolves at 25° in 83,000 pts. H₂O containing free HNO₃ and 0.33 pt. of HCl. (Mulder.)
100,000 pts. conc. HNO₃+Aq dissolve

about 2 pts. AgCl, and solubility is not sensibly affected by lower nitrogen oxides." (Thorpe, Chem. Soc. (2) 10. 453.)

#### Solubility of AgCl in HNO₃+Aq at 25°.

G. per liter			
HNO ₈	AgCl	HNO ₈	AgCl
0.0315 0.063 0.630	0.001647 0.001705 0.00176	18.9 94.5	0.00225 0.0245

(Glowczynski, Kolloidchem. Beih. 1914, 6.

Insol. in cold conc. H2SO4, but on boiling is in part decomp, and in part dissolved, and does not separate on cooling.

AgCl is not more sol. in dil. H₂SO₄+Aq than in dil. HNO₃+Aq.

Unacted upon by cold H2SO3+Aq, and but

slightly decomp. on heating. (Vogel.) Abundantly sol. in H2PtCl4+Aq without

decomp. (Birnbaum, Z. Ch. 1867. 520.) Insol, in cold dil. caustic alkalies + Aq but decomp. by hot conc. solutions. (Gregory.) Decomp. by K₂CO₃+Aq.

Sl. sol. in cold K₂CO₃+Aq

Easily sol. even in dil. NH₄OH+Aq

1 pt. AgCl dissolves in 1288 pts. NH OH+ Aq of 0.89 sp. gr. (Wallace and Lamont, Chem. Gaz. 1893. 137.) 100 pts NH₄OH+Aq of 0.986 sp. gr. dis-

solve at 80° 1.492 pts. AgCl, dried at 100°.

(Pohl, W. A. B. 41. 627.)

1 l. NH₄OH+Aq of 0.949 sp. gr. dissolves 51.6 g. Ag as freshly precipitated AgCl, and

47.6 g. when diluted with 1 l. H₂O. 1 l. NH₄OH+Aq of 0.924 sp. gr. dissolves 58 g. Ag as freshly precipitated AgCl; 1 l. NH₄OH+Aq of 0.899 sp. gr. dissolves 49.6 g.; 0.5 l. NH₄OH+Aq (of 0.049 sp. gr.)+ 0.5 l. saturated NaCl+Aq dissolves 20.8 g.;  $0.5 \text{ l. NH}_4\text{OH} + \text{Aq (of } 0.949 \text{ sp. gr.)} + 0.5 \text{ l.}$ saturated KCl+Aq dissolves 20.4 g; 0.5 l. NH₄OH+Aq (of 0.949 sp. gr.) +0.5 l. saturated NH₄Cl+Aq dissolves 22.4 g. Ag as freshly pptd. AgCl. (Millon and Commaille, C. R. 56. 309.)

1 g. AgCl dissolves in 428.64 g. 5% NH₄OH+Aq (sp. gr. 0.998) at 12°; 1 g. AgCl dissolves in 12.76 g. 10% NH₄OH + Aq(sp. gr.

1 g. freshly pptd. AgCl is sol. in 17 ccm.
10% NH₄OH+Aq. Solubility is diminished by presence of AgBr. (Senier, Pharm. J. Trans. (3) 14. 1.)

Solubility in NH₄OH+Aq at 0°.

G. per 100 g. solution.

NH ₃	AgCl	NH3	AgCl
1.45	0.49	28.16	5.69
1.94	1.36	29.80	7.09
5.60	3.44	30.19	7.25
6.24	4.00	32.43	5.87
11.77	4.68	34.56	4.77
16.36	5.18	37.48	3.90

(Jarry, A. ch. 1899, (7) 17. 342.)

Solubility in NH4OH+Aq increases with the temp. (Jarry.)

Solubility in NH₄OH+Aq at 25°.

g. at. Ag per l.	Mols, NH ₃ per l.	g. at. Ag per l.	Mols. NHa per l.
0.151	2.042	0.0140	0.253
0.149	2.017	0.0140	0.253
0.149	2.013	0.0140	0.252
0.147	1.991	0.0139	0.252
0.0616	0.961	0.00621	0.118
0.0583	0.916	0.00621	0.118
0.0584	0.909	0.00619	0.118
0.0572	0.903	0.00625	0.118
0.0569	0.896	0.00304	0.0590
0.0555	0.873	0.00297	0.0589
0.0541	0.863	0.00300	0.0585
0.0514	0.818	0.05149	0.0288
0.0249	0.428	0.00143	0.0287
0.0240	0.416	0.00142	0.0285
0.0235	0.411	0.00141	0.0282
0.0227	0.397		

(Whitney and Melcher, J. Am. Chem. Soc. 1903, **25.** 78.)

Solubility of AgCl in NH₄OH+Aq at 25°.

Ag = g. at. Ag in 1000 g.  $H_2O$ .  $NH_3 = g$ . mol.  $NH_3$  in 1000 g.  $H_2O$ .

Conc. = Molecular concentration of free NH₃.

0.023	Ag	NH ₃	Conc.	Solid phase
0.1197 1.700 1.461 " 0.1308 1.688 1.426 " 0.372 3.782 3.038 0.378 3.945 3.181 " 0.574 5.10 3.95 0.609 5.33 4.11 " 0.633 5.545 4.279 0.745 6.26 4.77 0.754 6.27 4.76 0.757 6.25 4.74 0.760 6.25 4.73 0.775 6.52 4.97 0.848 8.28 6.58 0.988 11.19 9.25 0.988 11.19 9.25 0.988 11.19 9.25 0.988 11.78 9.82 " 0.978 12.23 10.27 " 0.965 12.26 10.33 " 1.03 12.68 10.62 " 1.09 12.96 10.78 "	0.023	0.437	0.391	AgCl
0.1308 1.688 1.426 0.372 3.782 3.038 0.378 3.945 3.181 0.574 5.10 3.95 0.609 5.33 4.11 0.633 5.545 4.279 0.745 6.26 4.77 0.754 6.27 4.76 0.757 6.25 4.74 0.760 6.25 4.73 0.775 6.52 4.97 0.848 8.28 6.58 0.968 11.19 9.25 0.980 11.78 9.82 " 0.978 12.23 10.27 " 0.965 12.26 10.33 " 1.03 12.68 10.62 " 1.09 12.96 10.78 " " " " " " " " " " " " " " " " " " "	0.025	0.428	0.378	- "
0. 372 3.782 3.038 " 0. 378 3.945 3.181 0.574 5.10 3.95 0.609 5.33 4.11 0.633 5.545 4.279 0.745 6.26 4.77 0.754 6.27 4.76 0.757 6.25 4.74 0.760 6.25 4.73 0.775 6.52 4.97 0.848 8.28 6.58 0.968 11.19 9.25 0.980 11.78 9.82 " 0. 980 11.78 9.82 " 0. 978 12.23 10.27 0.965 12.26 10.33 1.03 12.68 10.62 " 1. 09 12.96 10.78 " " " " " 2AgCl, 3NH ₃ " 2AgCl, 3NH ₃ "  **  **  **  **  **  **  **  **  **	0.1197	1.700	1.461	• • •
0.378   3.945   3.181   " 0.574   5.10   3.95   " 0.609   5.33   4.11   0.633   5.545   4.279   0.745   6.26   4.77   0.754   6.27   4.76   0.757   6.25   4.74   0.760   6.25   4.73   0.775   6.52   4.97   0.848   8.28   6.58   0.968   11.19   9.25   0.980   11.78   9.82   " 0.978   12.23   10.27   0.965   12.26   10.33   1.03   12.68   10.62   " 1.09   12.96   10.78   "	0.1308	1.688	1.426	**
0.574   5.10   3.95  181	0.372	3.782	3.038	"
0.693	0.378	3.945	3.181	44
$ \begin{vmatrix} 0.609 & 5.33 & 4.11 \\ 0.633 & 5.545 & 4.279 \\ 0.745 & 6.26 & 4.77 \\ 0.754 & 6.27 & 4.76 \\ 0.767 & 6.25 & 4.74 \\ 0.760 & 6.25 & 4.73 \\ 0.760 & 6.25 & 4.73 \\ 0.968 & 11.19 & 9.25 \\ 0.980 & 11.78 & 9.82 \\ 0.978 & 12.23 & 10.27 \\ 0.965 & 12.26 & 10.33 \\ 1.03 & 12.68 & 10.62 \\ 1.09 & 12.96 & 10.78 \end{vmatrix} $	0.574	5.10	3.95	46
0.633   5.545   4.279   4.76   0.745   6.26   4.77   0.754   6.27   4.76   0.757   6.25   4.74   0.760   6.25   4.73   0.775   6.52   4.97   0.848   8.28   6.58   0.968   11.19   9.25   0.980   11.78   9.82   " 0.978   12.23   10.27   0.965   12.26   10.33   1.03   12.68   10.62   " 1.09   12.96   10.78   "	0.609	5.33		"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			"
0.754				AgCl+2AgCl 3NH
0.757		1		11801   2118,01, 01111
0.760				٠٠.
0.775				"
0.968     11.19     9.25     "       0.980     11.78     9.82     "       0.978     12.23     10.27     "       0.965     12.26     10.33     "       1.03     12.68     10.62     "       1.09     12.96     10.78     "				2AgCl, 3NH ₃
0.980   11.78   9.25   "	0.848	8.28	6.58	, "
0.978   12.23   10.27	0.968	11.19	9.25	"
0.978     12.23     10.27     "       0.965     12.26     10.33     "       1.03     12.68     10.62     "       1.09     12.96     10.78     "	0.980	11.78	9.82	"
1.03   12.68   10.62   "   10.78   "   10.96   10.78   "   10.96   10.78   "   10.78   "   10.78   "   10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.78     10.	0.978	12.23	10.27	٠.
1.03     12.68     10.62     "       1.09     12.96     10.78     "	0.965	12.26	10.33	"
1.09   12.96   10.78   "	1.03	12.68		"
				"
				"
1.039 14.47 12.39 "				"

(Straub, Z. phys. Ch. 1911, 77. 332.)

Easily (Brett), difficultly (Wittstein), sol in NH₄Cl+Aq, but not in other NH₄ salts.

% NH ₄ Cl	TH ₄ Cl+Aq at 15°.  // % AgCl ***
10.0	0.0050
14.29	0.0148
17.70	0.0354
19.23	0.0577
21.98	0.110
25.31	0.228
28.45	0.340*
Sat.	0.177

 $*24.5^{\circ}$ 

(Schierholz, W. A. B., 1890, **101**, 2b, 8.) Solubility in NH₄Cl+Aq (25,31%) at t°.

t.°	% AgCl
15	0.276
40	0.329
60	0.421
80	0.592
90	0.711
100	9.856
110	1 053
	1

(Schierholz.)

At 25°, 1 l. NH₄Cl+Aq containing 0.00053 g. NH₄Cl dissolves 0.001604 g. AgCl; 0.00530 g. NH₄Cl, 0.002379 g. AgCl. (Glowczynski, Kolloidchem. Beih. 1914, 6. 147.)

See also Forbes, page 826.

1 l.  $KClO_3+Aq$  dissolves 1.8 mg. (Guye, J. Chim. Phys. **10.** 145.)

Sl. sol. in conc. KCl+Aq, NaCl+Aq, and certain other chlorides.

NaCl, KCl, NH₄Cl, CaCl₂, ZnCl₂+Aq, etc., dissolve appreciable quantities of AgCl, especially if hot and concentrated, but it separates out for the most part on cooling.

Sol. in solutions of all the metallic chlorides which are sol. in H₂O, thus NaCl, KCl, CaCl₂, SrCl₂, and BaCl₂+Aq all dissolve AgCl, especially if hot. MgCl₂, NH₄Cl, and HgCl₂ (least) also dissolve AgCl. (Mulder.)

Sol. in cone. CaCl₂+Aq. (Wetzlar.)

Sol. in roseocobaltic chloride+Aq. (Gibbs and Genth.)

Insol. in SnCl₄, HgCl₂, CuCl₂, ZnCl₂, CdCl₂, NiCl₂, or CoCl₂+Aq. (Vogel.)

Solubility of AgCl in sat. solutions of chlorides at ordinary temperatures.

, , , , , , , , , , , , , , , , , , ,						
Salt				100 pts. sat. solution dissolve pts. AgCl	Pts. solution required to dis- solve 1 pt. AgCl	
BaCl ₂ SrCl ₂ CaCl ₂ NaCl KCl NH ₄ Cl MgCl ₂ HCl				0.0143 0.0884 0.0930 0.0950 0.0475 0.1575 0.1710 0.2980	6,993 1,185 1,075 1,050 2,122 634 584 336	

(Vogel, N. Rep. Pharm. 23. 335.)

Experiments by Hahn give different results from those of Vogel as follows:—

Solubility in various salts+Aq.

	Salt			% salt	Sat. at to	% AgCl
KCl. NaCl NH ₄ Cl CaCl ₂ MgCl ₂ BaCl ₂ FeCl.		:	•	24.95 25.96 28.45 41.26 6.35 47.32	19.6 24.5 "	0.0776 0.1053 0.3397 0.5713 0.5313 0.0570 0.1686 0.0058
MoCl ₂ ZnCl ₂ CuCl ₂ PbCl ₂		•	•		24.5 24.5	0.1996 0.0134 0.0532 0.0000

(Hahn, Wyandotte Silver Smelting Works, 1877.)

1 l. 4-N KCl+Aq dissolves 0.915 g. KCl at 25°. (Hellwig, Z. anorg. 1900, **25**. 166.)

Solubility in KCl+Aq at t°.

t.°	G. equiv. per l.		
	Ag×10-3	KCl	
1.0	1.734	3.325	
25.0	2.415	3.083	
35.0	2.786	2.955	

(Forbes, J. Am. Chem. Soc. 1911, 33. 1937.)

# Solubility in KCl+Aq at 25°. G. per liter.

KCl	AgCl	KCl	A OI
$0.00236 \\ 0.00471$	0.00184	0.01491	0.00305
	0.00218	0.02984	0.00321

(Glowczynski, Kolloidchem. Beih. 1914, 6.

# Solubility in CaCl₂+Aq.

	G. equi	v. per l.
t°	Ag×108	CaCl ²
$1.0 \\ 25.0 \\ 35.0$	0.964 1.514 1.806	3.512 3.320 3.221

(Forbes, l. c.)

Sat. CuCl₂+Aq at 0° dissolves 2.835 g. AgCl per l; at 100°, 8.147 g. Solubility in sat. MgCl₂+Aq is still greater. (Hahn, Eng. Min. J. 65. 434.)

More sol. in HgCl₂+Aq than in H₂O. (Finzi, Gazz. ch. it. 1902, 32. (2) 324.)

At 15°, 100 g. NaCl in 280 ccm. H₂O dissolve 485 mg. AgCl; 100 g. KCl in 300 ccm. H₂O dissolve 334 mg.; 100 g. NH₄Cl in 280 ccm. H₂O dissolve 1051 mg.

The solubility decreases with dilution rapidly at first until about an equal vol. of  $H_2O$  has been added, and then much more slowly to a minimum quantity, when the dilution is 1:10 for NaCl and KCl, and 1:20 for NH₄Cl.

for NH₄Cl.

100 g. NaCl in 280 ccm. H₂O dissolve 2170 mg. AgCl at 109°; 100 g. NH₄Cl in 280 ccm. H₂O dissolve 4000 mg. AgCl at 110°; 100 g. NaCl in 620 ccm. H₂O (14% solution) dissolve 15 mg. AgCl at 15°, and 774 mg. at 104°. (Schierholz, W. A. B. 101, 2b. 4.)

The solubility of AgCl in NaCl+Aq decreases with diminishing concentration of

The solubility of AgCl in NaCl+Aq decreases with diminishing concentration of NaCl+Aq. (Barlow, J. Am. Chem. Soc. 1906, 28. 1448.)

# Solubility in NaCl+Aq.

Gravimetric measurements, 15°				
Strength of salt solution	G. AgCl retained per 100 g. NaCl			
15% NaCl 20% NaCl	0.063 0.134			
28% NaCl 0.279				

#### Volumetric measurement

Volumetric	measure	ments	
NaCl	N/10 AgNO ₃ ccm.	Opal- escent at t°	G. AgC retained per 100 g. NaCl
20 g. of 15% solution	0.25	28	0.119
	0.4	40	0.191
	0.7	64	0.335
	1.0	78	0.478
	1.25	89	0.598
	1.7	102.5	0.812
20 g. of 20% solution	0.43	17.0	0.156
	0.65	26.0	0.234
	0.82	37.0	0.295
	1.2	51.5	0.430
	1.6	67.0	0.524
	2.12	79.5	0.765
	2.52	88.5	0.910
	3.08	97.0	1.10
	3.52	105.0	1.27
20 g. of 28% solution	2.25	36.5	0.675
	2.75	45.0	0.704
	3.5	56.0	0.896
	4.5	69.0	1.153
	5.5	84.0	1.411
	6.5	94.0	1.664
	7.75	107.5	1.958

(Lowry, Roy, Soc. Proc. 1914, 91. A, 61.)

Solubility is salts+Aq at 25°.

 $\hat{C}$  = concentration of the salt in salt solution in g.-equivalents per litre.

Salt	C	Ag×10-1
Bait		gequivalents per.l.
NaCl	0.933	0.086
	1.190	0.130
	1.433	0.184
	1.617	0.245
	1.871	0.348
	2.094	0.446
	2.272	0.570
	$2.449 \\ 2.658$	0.684 0.851
	2.841	1.040
	3.000	1.194
	3.270	1.583
	3.471	1.897
	3.747	4.462
	3.977	2.879
	4.170	3.335
	4.363	3.810
	4.535	4.298
	5.039	6.039
CaCl ₂	1.748	0.289
$\frac{3331}{2}$	2.201	0.501
4	2.741	0.900
	3.264	1.463
	3.737	2.182
	4.033	2.802
	4.538	4.175
	5.005	5.823
NH ₄ Cl	0.513	0.042
	0.926	0.113
	1.141	0.172
	1.574	0.365
	2.143	0.842
	2.566	1.425
	2.918	2.160
	3.162	2.795
	3.510	4.029
	$\begin{array}{c} 4.363 \\ 4.902 \end{array}$	$9.353 \\ 14.92$
	5.503	24.04
	5.764	30.17
2501	0.550	0.033
SrCl ₂	0.550	0.033
2	1.359	0.092
	1.572	$0.173 \\ 0.236$
	1.698	0.284
	1.818	0.348
	2.140	0.510
	2.476	0.747
	2.992	1.252
	3.494	2.018
	4.152	3.594
	5.216 5.775	$8.174 \\ 12.04$
	5.775	12.04

Solubility	in	salts+Aq. at	25°—Continued.

Salt	C	Ag×10-3 gequivalents per l.
KCl	1.111 1.425 1.713 2.022 2.396 2.628 2.850 3.081 3.424 3.843	0.141 0.235 0.391 0.616 1.050 1.390 1.845 2.435 5.602 5.725
BaCl ₂	1.248 1.610 2 676 3.260	0.186 0.339 1.274 2.366

(Forbes, J. Am. Chem. Soc. 1911, 33, 1940).

Sol. in NaNO₃, KNO₃,Ca(NO₃)₂,Mg(NO₃)₂, and NH₄NO₃+Aq; sl. sol. at ord. temp., but solubility is much increased by heat.

Solubility in NaNO₃+Aq at 15-20°.

cem. H ₂ O	g. NaNOs	mg. AgCl dissolved
100 200 300 100	$0.787 \\ 0.787 \\ 2.361 \\ 2.787$	$egin{array}{c} 1.33 \\ 1.93 \\ 3.99 \\ 2.53 \\ \end{array}$

### Solubility increases with ascending temp.

Temp.	cem. H ₂ ()	g. NaNO3	mg. AgCl dissolved
5°	100	0.787	0.86 $1.33$ $1.46$ $2.33$ $3.99$
15–17°	100	0.787	
18°	100	0.787	
30°	100	0.787	
45–55°	100	0.787	

#### (Mulder.)

At 25°, 100,000 pts.  $\rm H_2O$  containing a little free HNO₃ and 0.787 g. NaNO₃ dissolve 2.128 mg. AgCl. By adding 2 g. more NaNO₃ to above solution, 2.5269 mg. ( 1 /₅ more) AgCl are dissolved. (Mulder.)

Solubility in H₂O is not appreciably influenced by ¹/₁₀ N to N-KNO₃ or NH₄NO₃+

Aq. (van Rossen, C. C. 1912, II. 1807.)
In presence of NaNO₃ and excess of HCl,
1 l. H₂O dissolves 0.03 mg. AgCl. (Richards
and Wells.)

Hg(NO₃)₂+Aq dissolves considerable quantities of AgCl, but the other nitrates do not. (Mulder.)

Much more sol. in hot than in cold  $Hg(NO_3)_2+Aq$ , and much more sol. therein than in  $NH_4NO_3+Aq$ . NaCl ppts. AgCl from this solution; much less sol. therein in

presence of NaC₂H₃O₂ or NH₄OH +Ac. AgCl is pptd. from above solution by NaC₂H₃O₂+

Aq. (Mulder).
Sol. in Ha(NO₃)₂+Aq (Wackenroder, A.
41. 317); in considerable amount (Liebig, A.
81. 128); and is precipitated by HCl, NH4Cl,
NaCl, KC₂H₂O₂ (Deoray, C. R. 70. 849); incompletely precipitated by AgNO₃ and not by
HNO₂ (Wackenrode).

Solubility of AgC₁ in  $Hg(NO_3)_2+Aq$  at 25°. (G. mols. per l.)

'Ig(NO.)2 HNO3	AgCl	Hg(NOs)2 HNOs	AgCl
0.0100	0.00432	0.050	0.00914
0.0125	0.00499	0.100	0.01395
0.025	0.00690	1.000	0.04810

HNO, was present in all cases, and it was tound that there was no difference in solubility of AgCl with concentrations between 0.1N and 2N HNO₃. (Morse, Z. phys. Ch. 1902, 45. 708.)

Not sol. to appreciable extent in  $Cu(NO_3)_2$ ,  $Fe_2(NO_3)_6$ ,  $Mn(NO_3)_2$ ,  $Co(NO_3)_2$ ,  $Zn(NO_3)_2$ , or  $Ni(NO_3)_2+Aq$ ; insol. or exceedingly sl. sol. in  $Pb(NO_3)_2+Aq$ . (Mulder.)

Imperfectly sol. in AgNO₃+Aq. (Wackenroder.)

Conc. AgNO₃+Aq dissolves AgCl perceptibly.

Less sol. in AgNO₃+Aq than AgBr. (Risse, A. 111. 39.)

Solubility in  $0.02N \text{ AgNO}_3 + \text{Aq} = 0.15 \times 0.7 \text{ mole part}$ 

10-7 g. mols. per l. (Böttger.) 100 ccm. of 3-N solution of AgNO₃ dissolve 0.08 g. AgCl at 25°. More dil. solutions dissolve very slight amounts of AgCl. (Hellwig, Z. anorg. 1900, **25.** 177.)

Solubility in 2-N AgNO₃+Aq at ord. temp. =0.03 $\times$ 10⁻³ g. equiv. AgCl. (Forbes, J. Am. Chem. Soc. 1912, **33**. 1946.)

# Solubility in $AgNO_8+Aq$ at t°.

(Det. by volumetric method.)

$AgNO_3:H_2O=2:1$				
G. AgNO ₃	n/10 NaCl ccm.	t°	g. AgCl retained per 100 g. AgNO ³	
6 7 8 9 11 7 10 10	2 2 2 2 2 1 1 4 5	57 45 40 35 30 26 22 65 86	0.478 0.410 0.359 0.319 0.261 0.205 0.143 0.572	

Solubility	in	AgNO ₃	+Aq	at t	$\circ$ .—Continued.
------------	----	-------------------	-----	------	----------------------

	$AgNO_3:H_2O=1:1$				
5	1	94	0.286		
6	1	84	0.239		
.7	1	75	0.205		
8	1	66	0.179		
. 9	1	58	0.159		
5.5	0.5	48	0.130		
6.5	0.5	40	0.110		
12	0.5	23	0.060		
	AgNO ₃ :H ₂ O = 1:2				
6	0.5	104	0.120		
7	0.5	92	0.103		
8	0.5	85	0.090		
10	0.5	73	0.072		
12	0.5	61	0.060		
8	0.25	45	0.045		
12	0.25	28	0.030		

(Lowry, Roy, Soc. Proc. 1914, 91. A. 58.)

Solubility in AgNO₃+Aq at 20°. (Det. by gravimetric method.)

g. AgNO ₃	g. H ₂ O	g. AgCl retained per 100 g. AgNO ₃
220 220 220 220 220 220	110 165 220 330 440	0.1372 0.1009 0.0722 0.0402 0.0294

(Lowry, Roy. Soc. Proc. 1914, 91, A, 56.)

Insol. in Na₂SO₄+Aq.

Solubility of AgCl in Na₂SO₃+Aq at 25°. G. formula weights per l.

SO ₃	Ag	SO ₃	Ag
0.080	0.011	0.483 *	0.059 *
0.106	0.017	0.470	0.070
0.220	0.033	0.652	0.103
0.234	0.036	0.890	0.140
0.478 *	0.057 *	0.937	0.142

^{*} In presence of 0.05 Cl.

(Luther and Leubner, Z. anorg. 1912, 74. 393.)

Easily sol. in Na₂S₂O₃ or KCN+Aq.

When freshly pptd., very sol. in solutions of soluble thiosulphates, and especially in conc Na₂S₂O₃+Aq, which dissolves AgCl almost as readily as H₂O dissolves sugar. K₂S₂O₃+Aq, even when very dil., also dissolves AgCl; also SrS₂O₃+Aq. (Herschel, **1819**.) Sol. in KAsO₂+Aq. (Reynoso.)

Cold NaHSO₃+Aq dissolves a considerable amount of AgCl. (Rosenheim and Steinhäuser, Z. anorg. 1900, 25. 78.)

Sol. in cold sat. (NH₄)₂S₂O₃+Aq. (Rosen-

heim and Steinhäuser, Z. anorg, 1900, 25. 103.)

Solubility in Na thiosulphate+Aq at 16°.

" No Son 5Han	g. dissolved AgCl		
g. Na ₂ S ₂ O ₃ , 5H ₂ O in 100 cc. water	experimental	calculated -	
2.08	0.29	0.80	
4.16	0.64	1.60	
6.24	0.88	2.40	
8.35	1.26	3.21	
16.70	2.54	$\boldsymbol{6.42}$	
20.83	3.28	7.99	

(Abney, Z. phys. Ch. 1895, 18. 65.)

A solution of Na₂S₂O₃+Aq containing 200 g.  $Na_2S_2O_3$  per liter, dissolves 0.454 g. AgCl per g. of  $Na_2S_2O_3$  at 35°. (Richards and Faber, Am. Ch. J. 1899, **21**. 170.)

Solubility in salts + Aq.

Solvent	Cone.	Grams AgCl sol. in 100 grams solvent
Sodium thiosulphate	1	0.40)
	5	2.00
	10	4 10
	20	6.10 \ 20°
Ammonium thiosulphate	li	0.57
	5	1.32
., ,,	10	3.92
Sodium sulphite	10	0.44)
	20	0.95
Ammonium sulphite	10	Trace
" carbonate	10	0.05
Ammonia +Aq	3	$1.40 \} 25^{\circ}$
44	15	7.58
35	50	0.50
Magnesium chloride		$\frac{0.30}{2.75}$
Potassium cyanide	5 5	0.08
Ammonium sulphocyanide	10	
	15	2.88
Potassium	10	0.11
Caicium	10	0.15
Darium	10	0.20
Aluminum	10	$\frac{2.02}{25^{\circ}}$
Thiocarbamide	10	0.83 [ ="
Thiosinamine	1 1	0.40
"	5	1.90
**	10	3.90 )

(Valenta, M. 1894, 15. 250.)

Solubility in salts+Aq.

31.71 cc. of a solution of sodium thiosulphate containing 31.869 g. Na₂S₂O₃ per liter (i. e. 5 g. of the hydrate in 100 cc. of the solution) dissolve 0.6124 g. AgCl.

21.88 cc. of a solution of ammonium thiosulphate containing 50 g.  $(NH_4)_2S_2O_3$  per liter dissolve 0.7024 g. AgCl.

27.34 cc. of a solution of potassium cyanide containing 49.511 g. KCN per liter dissolve

1.4926 g. AgCl. (Cohn, Z. phys. Ch. 1895, **18.** 63.)

Solubility of AgCl in sodium thiosulphate and potassium cyanide solutions may be determined without reference to experimental date. (Cohn.) date. (Cohn.)

Sl. sol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, 20. 829.)

Insol. in moderately dil.  $Pb(C_2H_3O_2)_2 + Aq$ . 10 ccm. normal Hg(C2H3O2)2+Aq containing 0.1 g. Hg dissolve 0.01892 g. AgCl at 15°. (Stas.)

100 ccm. of a solution of a mixture of Na and Hg acetates dissolve 0.00175 g. AgCl. (Stas, A. ch. (5) **3.** 145.)

Only sl. sol. in liquid NH₃.

Solubility curve for AgCl, AgCl, 3NH₃, AgCl, 5NH₃. (Jarry, A. ch. 1899, 17, 342.)

Insol, in alcoholic ammonia (Bodländer, Z. phys. Ch. 1892, **9.** 731.)

Nearly insol. in ether. (Mylius and Hutt-

ner, B. 1911, **44.** 1316.)

Perceptibly sol, on warming with solution of tartaric acid, but nearly the whole is deposited on cooling.

Insol. in acctone. (Naumann, B. 1904, 37. 4329); insol. in acctone and in methylal. (Eidmann, C. C. 1899, 11, 1014.)

Insol. in methyl acetate. (Bezold, Dissert. 1906; Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acctate. (Hamers, Dissert. 1906; Naumann,B. 1910, 43. 314.) Sol. in methylamine+Aq. (Wurtz, A. ch. (3) **30.** 453.)

Solubility of AgCl in methylamine at 11.5°.

Co CH3NH2 % AgCl % CH3NH2 % AgCl 3.2913.701.78 0.160.6218.69 5.43 4.44 5.51 0.8336.699.937.661.32

(Jarry, A. ch. 1899, (7) 17. 342.) Solubility in methylamine+Aq at 25°. G. mols. per l.

CH ₃ NH ₂	AgCl
0.0200	0.000300
0.0400	0.000370
0.0740	0.000424
0.0947	0.000447
0.1950	0.000481

(Wuth, B. 1902, **35.** 2416.)

Solubility in methylamine+Aq at t°. G. mols. per l.

t°	CH ₈ NH ₂	Ag
18 25 25	0.93 0.93 0.93	$egin{array}{c} 0.0315 \ 0.0338 \ 0.0335 \end{array}$

(Euler, B. 1903, 36. 2880.)

At 25°, 1 l. methylamine+Aq, containing 1.017 g. mols. CH₈NH₂, dissolves 0.0387 g.

Solubility in ethyamine+Aq at 25°. G. mols. peril.

C_H ₆ NH ₂	AgCl
0.01272	9.000114
0.00942	0 000156
0 05512	0.000235
9.06572	0.000312
C. 10300	0.000824

(Wuth, B. 1932, 35, 2416.)

Solubility in ethylamine+Aq at t°. G. mols. per l.

t°	C2H3NH2	Ag
18 25 25	0.094 0.093 0.094	0.00458 0.00474 0.00478
18 25 18	$egin{array}{c} 0.236 \ 0.234 \ 0.462 \end{array}$	0.0132 0.0136 0.0251

(Euler, B. 1903, **36.** 2880.)

At 25°, 1 l. ethylamine+Aq, containing 0.483 g. mol. C₂H_bNH₂, dissolves 0.0314 g. mols. AgCl; 0.200 g. mol. C₂H_bNH₂, 0.0115 g. mol. AgCl; 0.100 g. mol. C₂H₅NH₂, 0.0062 g. mol. AgCl. (Bodländer and Eberlein.)

Sol. in amylamine+Aq, but less than in

NH₄OH +Aq.

1914, 47. 1370.)

Sol. in caprylamine+Aq. Easily sol, on warming in ethylene diamine + Aq. (Kurnakow, Z. anorg. 1898, 17. 220.) Easily sol. in alcoholic solution of thiacetamide. (Kurnakow, J. pr. 1895, (2) **51.** 251.) Insol. in benzonitrile. (Naumann, B.

# Solubility in pyridine at t°.

t°	g. AgCl sol. in 100 g. pyridine	Solid phase
-52 -49 -35 -30 -25 -22 transition point	0.70 $0.77$ $0.99$ $1.36$ $1.80$ $2.20$ $2.75$	AgCl, 2C₀H₅N
$     \begin{array}{r}       -20 \\       -18 \\       -10 \\       -5 \\       -1     \end{array} $	3.71 3.85 4.35 5.05 5.60	AgCl, C₅H₅N

Solubility	in	pyridine	at t	°.—Continued.
------------	----	----------	------	---------------

t°	g. AgCl sol. in 100 g. pyridine	Solid phase
transition point 0 10 20 30 40 50 60 70 80 90 100 110	5.35 3.17 1.91 1.20 0.80 0.53 0.403 0.32 0.25 0.22 0.18	AgCl

(Kahlenberg, J. phys. Chem. 1909, 13, 423.)

Easily sol. in warm piperidine. (Varet. C. R. 1892, **115**. 335.)

Mol. wt. determined in piperidine. (Werner, Z. anorg. 1897, 15. 16.)

Quinoline dissolves traces of AgCl. (Varet, C. R. 1893, **116.** 60.)

As sol. in coniine+Aq as in NH₄OH+Aq. (Blyth, Chem. Soc. 1. 350.) Sol. in sinamine, and thiosinamine+Aq. Min. Cerargyrite.

#### Silver chloride ammonia, AgCl, 2NH₃.

Decomp. by H₂O. (Terreil, A. Phys. Beibl. 7. 149.)

2AgCl, 3NH₃. Decomp. on air and in H₂O to AgCl. Sol. in conc. NH4OH+Aq, from which it can be crystallised. (Rose.)

Insol. in alcohol. (Bodländer, Z. phys. Ch. 9. 730.)

AgCl, 3NH₃. More easily decomp. than 2AgCl, 3NH₃.
Sl. sol. in liquid NH₃. (Jarry, A. ch. 1899,

(7) 17. 343.) AgCl, 5NH₃. Sl. sol. in liquid NH₃.

Silver chlorobromoiodides.

(Jarry, A. ch. 1899, (7) 17. 336.)

(Rodwell, Proc. Roy. Soc. 25. 292.)

Silver subfluoride (argentous fluoride), Ag₂F.

Decomp. by H₂O into Ag and AgF. (Guntz, C. R. 110. 1337.)

Decomp. by H₂O.

Insol. in abs. alcohol, ether, acetone and (Wöhler and Rodewald, Z. anorg. 1909, **61**. 63.)

Decomp. by H₂O until the solution contains 64.5% AgF, independent of temp. (Guntz, C. R. 1913, **157**. 981.)

# Silver fluoride, AgF.

Extremely deliquescent. (Gore.)

Sol. in 0.55 pt. H₂O at 15.5° with evolution of heat. Sp. gr. of sat. solution at 15.5° = 2.61. (Gore.)

#### Solubility of AgF in H₂O at t°. G. per 100 g. H₂O.

Ι.			
4.	t°	AgF	Solid phase
	-14.2	60	Ice+AgF, 4H ₂ O AgF, 4H ₂ O
	+18.5 $18.65$	165 169.5	" +AgF, 2H ₂ O AgF, 2H ₂ O
	$\begin{array}{c} 20 \\ 24 \end{array}$	172 178	••
	$\begin{array}{c} 25 \\ 28.5 \end{array}$	179.5 215	"
ļ	32 $39.5$	193 222	" AgF, 2H ₂ O+AgF AσF
	108	205	AgF

(Guntz, A. ch. 1914, (9) 2. 101.) Sp. gr. AgF+Aq at 18°.

% AgF	Sp. gr.
7.20	1.07
29.60	1.38
49.20	1.82
56.40	2.09
66.20	2.62

(Guntz, A. ch. 1914, (9) 2. 104.)

Data on solubility of AgF in HF+Aq are

given by Guntz (l. c.) Sl. sol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 829.)

 $+H_2O$ . Deliquescent. Sol. in H₂O. (Guntz, A. ch. 1914, (9) 2. 101.)

 $+2H_2O.$ Sol. in H₂O. Deliquescent. (Guntz.)

+4H₂O. Not deliquescent. Sol. in H₂O. (Guntz.)

+5/8 H₂O. Unstable in the presence of crystals of AgF+2H₂O. (Guntz, A. ch. 1914, (9) **2.** 101.)

Silver hydrogen fluoride, AgF, HF.

(Guntz.)

AgF, 3HF. Very unstable. Sol. in HF. (Guntz, Bull. Soc. 1895, (3) **13.** 114.)

Silver stannic fluoride.

See Fluostannate, silver.

Silver tungstyl fluoride.

See Fluoxtungstate, silver.

Silver, fulminating.

See Silver nitride.

Silver hydride, AgH.

Not decomp. by H₂O. (Bartlett, Am. Ch. J. 1896, **19.** 52.)

Argentous hydroxide, Ag₄O₂H₂.

Sol. in H₂O. Known only in solution. (Weltzein, A. 142. 105.)

Silver hydroxide, AgOH.

Decomp. into  $Ag_2O$  and  $H_2O$  above  $-40^\circ$ . See Silver oxide.

Argentous iodide, Ag₂I. (Guntz, C. R. 112, 861.)

# Silver imidosulphamide, $AgN(SO_2NH_2)_1 + 1\frac{1}{2}H_2O$ .

Decomp. slowly in the air. Somewhat sol, in hot, more sol, in boiling H₂O, from which it cryst, unchanged on cooling. In aqueous solution is stable toward alkali. Decomp. by acids. Difficultly sol, in dry pyridine; easily sol, in pyridine+Aq. (Hantzsch, P. 1905, 38, 1035.)

(SO₂)₃N₅H₅Ag₃+5½H₂O. Nearly insol. in hot H₂O. (Ephraim and Michel, B. 1909, **42.** 3845.)

 $(SO_2)_4N_7H_8Ag_5+4H_2O$ . (Ephraim and Michel.)

(SO₂)₄N₆HAg₆+1!₂, 11, and 28 H₂O. Easily sol. in HNO₃ and NH₄OH+Aq. Sl. sol. in pyridine. Very sol. in pyridine containing pyridine nitrate and can be recryst. therefrom. (Ephraim and Michel.)

 $(SO_2)_4N_5Ag_7+8H_2O$ . (Ephraim and Michel.)

#### Silver iodide, AgI.

Insol. in H₂O.

Calculated from electrical conductivity of AgJ+Aq, AgI is sol. in 1,074,040 pts. H₂O at 28.4°, and 420, 260 pts. at 40°. (Holleman, Z. phys. Ch. **12**. 130.)

1 I.  $H_2O$  dissolves 0.1 mg. AgI at 18°. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.) Solubility in  $H_2O = 1 \times 10^{-8}N$ . (Rolla.)

Solubility in  $H_2O = 0.97 \times 10^{-8}$  g. mols. per l. at 25°. (Goodwin, Z. phys. Ch. 1894, 13. 645.) Solubility of AgI in  $H_2O$  at 25° is  $1.05 \times 10^{-8}$  (in normality). (Thiel, Z. anorg. 1900, 24. 57.)

A sat. aq. solution at 20.8° contains 0.0020 ×10-6 g. equiv. per l. (Kohlrausch, C. C. 1901, II. 1299.)

1 l.  $H_2O$  dissolves 0.0035 mg. AgI at 21°. (Kohlrausch, Z. phys. Ch. 1904, **50**. 356.)

1 l. H₂O dissolves 0.00253 mg. AgI at 60°. (Sammet, Z. phys. Ch. 1905, **53**. 644.)

Solubility in  $H_2O = 1.23 \times 10^{-8}$  g.-mol. per litre at 25°. (A. F. Hill, J. Am. Chem. Soc. 1908, **30**. 74.)

0.003 mg. are contained in 1 l. of sat. solution at 21°. (Kohlrausch, Z. phys. Ch. 1908, 64. 168.)

Insol. in dil. HNO₈+Aq or H₈PO₄+Aq. Decomp. by hot. conc. HNO₈+Aq or H₂SO₄. Easily sol. in conc. HI+Aq.

1 pt. AgI dissolves in 2510 pts. NH₄OH+Aq of 0.96 sp. gr. (Martini, Schw. J. **56**. 154); in 2463 pts. of 0.89 sp. gr. (Wallace and Lamont, Ch. Gaz. **1859**. 137).

1 g. AgI dissolves in 26,300 g. 10% NH₄OH+Aq (sp. gr.=0.96) at 12°. Insol. in 5% NH₄OH+Aq. (Longi, Gazz. ch. it. **13**. 87.)

Coefficient of solubility in NH₄OH+Aq (density, 0.926) is found lower than previously obtained and of the order of ¹/₆₀₀₀ at 16°. (Baubigny, Bull. Soc. 1908, (4) 3. 772.)

According to Field, insol. in cold conc. KCl or NaCl+Aq, and only in traces on boiling,

and separates out on cooling.

100 g. Nach in conc. NaCl+Aq dissolve 0.95 mg. AgI at 15°: 100 g. NH₄Cl in conc. NI₄Cl+Aq dissolve 2.9 mg. AgI at 15°; 95 g. NaCl+10 g. KBr in conc. solution dissolve 1.2 mg. 'AgI at 15°; 100 g. KBr+225 g. H₂O dissolve 430 mg. 'AgI at 15°; 100 g. KBr in conc. KBr+Aq dissolve 525 mg. AgI at 15°; 100 g. KI+69 g. H₂O dissolve 89.8 g. 'AgI at 15°; 100 g. KI+92 g. H₂O dissolve 54.0 g. AgI at 15° 100 g. KI+92 g. H₂O dissolve 54.0 g. AgI at 15° 100 g. KI+96 g. H₂O dissolve 7.25 g. 'AgI at 15° (Schierholz, W. A. B. 101, 2b 4.)

Soil in conc. KI+Aq, from which it is precipitated by H₂O. (Field, C. N. 3. 17.)

Kl gives a ppt. with AgNO₃ in presence of 30,000 pts. H₂O. (Harting.)

# Solubility in Ki +Aq at 15°.

% КІ	% Agl	%KI	% AgI
59.16	53.13	$33.3 \\ 25.0 \\ 21.74 \\ 20$	7.33
57.15	40		2.75
50.0	25.0		1.576
40.0	13.0		0.80

(Schierholz, W. A. B. 1890, 101. 2b. 10.)

#### Solubility in KI+Aq at 25°.

Mol. KI per l.	g. AgI per l.	
1.937 1.6304 1.482 1.406 1.018 1.008 0.734 0.586 0.335	46.42 24.01 15.46 12.55 3.47 3.32 1.032 0.512 0.0853	
5.550	1.0000	

Hellwig, Z. anorg. 1900, 25. 180.)

#### Solubility in KI + Aq.

	$t = 50^{\circ}$	0
% AgI	% KI	Solid phase
2.5 16.0 28.0 39.0 51.8 53.5 53.5 53.4 50.4 45.0 38.0	24.8 33.8 36.7 38.1 36.2 36.5 36.6 37.1 37.6 40.2 43.2 47.1	AgI  " " " AgI+AgI, KI AgI, KI KI+AgI, KI " "
22.8 10.7	55.5 59.1	"

	t = 30° .				
% AgI	% KI	Solid phase			
0.1	10.2	AgI			
$10.0 \\ 29.4$	$\begin{array}{c} 31.4 \\ 37.6 \end{array}$	"			
42.8 49.7	38.8 38.6	 ΛαΙ⊥ΛαΙ ΩΚΊ			
49.6	39.5	AgI + AgI, 2KI AgI, 2KI			
$\begin{array}{c} 47.7 \\ 46.3 \end{array}$	$\frac{40.9}{41.4}$	"			
$\frac{44.1}{42.8}$	$\frac{43.2}{43.9}$	AgI, 2KI+KI KI			
35.8	46.9	"			
$\begin{array}{c} 16.0 \\ 0 \end{array}$	$\begin{array}{c} 55.5 \\ 60.35 \end{array}$	"			
	+ -100				

	t =()	
% AgI	% KI	Solid phase
0.2 1.5 6.5 26.6 28.1	9.8 20.5 26.1 34.6 36.4	AgI  
38.0 37.9 37.6 37.9 31.3 21.7 18.0 9.0	41.3 42.0 42.7 44.0 46.6 50.5 51.2 53.0 56.1	AgI+AgI, KI AgI, KI  AgI, KI+KI KI " " " "
$27.5 \\ 21.0$	48.7 50.3	AgI, 2KI+KI AgI, 2KI

(Van Dam and Donk, Chem. Weekbl. 1911, **8.** 848.)

Very sol. in  $KI_3+Aq$ . (Muth, Dissert. 1895.) Very sol. in H₂O in presence of NaI. (Kurnakow, Ch. Z. 1900, 24. 60.)

Solubility in KI+Ag at 15°.

Composition of the sat. solution in mols, per 1000 mols. H ₂ O		Solid phase		
Mols. Na ₂ I ₂	Mols. Ag ₂ I ₂			
35.63	8.14	AgI		
40.54	10.94	••		
61.55	25.15	u		
80.55	38.19	"		
94.25	47.79	"		
		ALTIAL NAT 91/TIO		
107.52	57.52	$AgI + AgI$ , $NaI$ , $3\frac{1}{2}H_2O$		
117.96	51.70	AgI, NaI, 3½H ₂ O		
134.40	46.82	a ·		
135.83	46.36	AgI, NaI, 3½ H ₂ O+NaI		
133.81	43.03	NaI		
129.02	34.85	"		
122.56	22.82	"		
117.11	11.93	· · ·		
111.52	11.00	"		
111.02		-		

(Krym, J. Russ. Phys. Chem. Soc. 1909, 41. 382.)

Traces are dissolved by alkali nitrates + Aq. Easily sol. in hot KOH+Aq, from which it is pptd. by H₂O or alcohol. Not decomp. by boiling KOH+Aq. (Vogel, N. Rep. Pharm. 20. 129.)

100 pts. of AgNO₃+Aq sat. at 11° dissolve 2.3 pts. AgI in the cold, and 12.3 pts. on boiling. (Schnauss.)

Solubility of AgI in AgNO₃+Aq at 25°.

Mol. AgNO ₃ in 1 l.	g. AgI in 1 l.	Solid phase
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65	0.0680 0.080 0.090 0.125 0.167 0.224 0.299 0.400 0.528 0.672 0.850	AgI
1.215 $1.63$ $2.04$	3.08 6.26 10.90	$\left.\begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{g}_2 \\ \mathbf{I} \\ \mathbf{N} \\ \mathbf{O}_3 \end{array}\right.$
2.54 3.115 3.75 4.055 4.69 5.90	16.1 22.7 33.2 40.0 53.2 85.0	Ag ₃ I(NO ₃ ) ₂

(Hellwig, Z. anorg. 1900, **25.** 171.)

Solubility of AgI in 25% AgNO₃+Aq reaches a maximum at about 60° and at the point of maximum solubility the quantity dissolved amounts to about 5 g. AgI per 100 g. AgNO₃. (Lowry, Roy. Soc. Proc. 1914, g. AgNO₃. (Lowry, Roy. Soc. Proc. 1914, **91**, A, 66.) Sol. in hot Hg(NO₃)₂+Aq, from which

it crystallizes on cooling.

Solubility of AgI in  $Hg(NO_3)_2 + Aq$  at 25°.

Mols. Hg(NO ₃ ) ₂ per l.	g. AgI per l.	Mols, Hg(NO ₃ ) ₂ per l.	g. AgI per l.
0.010	0.800	0.050	1.737 $2.730$ $25.160$
0.0125	0.841	0.100	
0.025	1.118	1.000	

Solubility is not affected by presence of 0.1 to 2N HNO₈.

(Morse, Z. phys. Ch. 1902, 41. 708.)

Sol. in KCN + Aq.

Sl. sol. in Na₂S₂O₃+Aq when suspended in much H₂O, but separates again on addition of

KI+Aq. (Field.) Insol. in Na₂S₂O₃+Aq. (Fogh, C. R. 1890, **110.** 711.)

Solvent	Conc.	grams AgI sol. in 100 grams solvent	
Sodium thiosulphate  """""""""""""""""""""""""""""""""""	1 5 10 15 20 10 5 5 10 10 10 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	0.03 0.15 0.30 0.40 0.60 0.01 0.02 Traces 8.23 0.02 0.08 0.13 25 0.03 0.02 0.02 0.03 0.02 0.02 0.09 0.00 0.01 0.00 25 25 25 25 26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

(Valenta, M. 1894, 15, 250.)

Very sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20, 829; Jarry, A. ch. 1899, (7) **17.** 370.)

Easily sol. in liquid NH₃. (Ruff and Geisel,

B. 1905, **38.** 2662.)

Insol. in acetone. (Eidmann, C. C. 1899, II, 1014); (Naumann, B. 1904, **37**, 4329.)

Insol. in methyl acctate. (Bezold, Dissert. 1906); (Naumann, B. 1909, 42. 3790.) Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

Much less sol. in hot alcoholic thiourea than AgCl and AgBr. (Reynolds, Chem. Soc. **1892, 61.** 253.)

Insol. in benzonitrile. (Naumann, **1914, 47.** 1370.)

Slowly sol. in piperidine at 100°. (Varet, C. R. 1892, **115.** 336.)

0.10 pts. is sol. in 100 pts. pyridine at 10°. 8.60 pts. are sol. in 100 pts. pyridine at 121°. (Laszczynski, B. 1894, 27. 2288.)

Mol. wt. determined in piperidine. (Werner, Z. anorg. 1897, 15. 16.)

Min. Iodyrite.

Silver hydrogen iodide, 3Agl, HI+7H₂O. (Berthelot, C. R. **91.** 1024.)

Silver sodium iodide, 2AgI, NaI.

Very sol. in acetone. (Marsh, Chem. Soc. 1913, **103**. 784.) AgI, NaI+3½H₂O. (Krym, J. Russ.

Phys. Chem. Soc. 1909, 41. 382.) See AgI+NaI under AgI.

Silver iodide ammonia, AgI, NH₃.

Sol. in liquid NH₂. (Jarry, A. ch. 1899, (7) **17.** 371.)

2AgI, NH₈. (Rammelsberg, Pogg. 170.)

Composition is AgI, NH₃. (Longi, Gazz. ch. it. 13. 86.)

Sol. in liquid NH₈. (Jarry, A. ch. 1899, (7) 17. 371.)

AgI, 2NH₃. (Terrei', C. R 98. 1279.)

Silver nitride, Ag₈N.

Berthollet's "knallsilber." Very explosive. Insol in II₂O. Sol. in KCN+Aq. Slowly sol. in NI₄OH+Aq. (Raschie, A. 233. 93.) (Angeli, Chem Soc. 1894, 66. (2) 93.)

Argentous oxide, Ag₄O

Insel. in  $H_2O$ . Decemp. by acids into argentic oxide and silver Insol. in NH4OH+ Aq or HC₂H₃O₂. (v. der Pfordten, B. 20. 1458.)

Contains H, and is a hydroxide Ag₄,H₂O. (v. der Pfordten, B. 21. 2288.)

The above substance is a mixture, according to Friedheim (B. 20. 2557.)

Silver oxide, Ag₂O.

Somewhat sol. in H₂O. (Bucholz.) Sol. in 3000 pts. H₂O. (Bineau, C. R. 41. 509); sol. in 96 pts. H₂O. (Abl.)

Sol. in 15,360 pts. H₂O. (Levi, Gazz. ch. it. 1901, **31**. (1) 1.)

Solubility in  $H_2O$  at  $25^\circ=2.16\times 10^{-4}$  mols. AgOH per litre. (Noyes, J. Am. Chem. Soc. 1902, **24.** 1147.)

1 liter sat. aqueous solution at 19.96° contains  $2.14 \times 10^{-2}$  g.; at  $24.94^{\circ}$  contains  $2.5 \times$ 10-2 g. Ag₂O. (Böttger, Z. phys. Ch. 1903, **46.** 603.)

1 l. H₂O at 25° dissolves 1.8×10-4 gram atoms of silver. Determined from its solubility in NH₃. (Abegg and Cox, Z. phys. Ch. 1903, **46.** 11.)

1 l. H2O dissolves 0.0215 g. Ag2O at 20°. (Whitby, Z. anorg. 1910, 67. 108.)

The solubility of Ag₂O in H₂O varies with the method of preparation.

Solubility of Ag₂O (prepared by action of NaOH, freshly prepared by the solution of Na in H₂O, on a dil. solution of AgNO₃) =  $2.16 \times 10^{-4}$  g-mol. in 1 l. H₂O at  $25^{\circ}$ ;  $2.97 \times 10^{-4}$ g-mol. at  $50^{\circ}$ .

Solubility of Ag₂O (prepared by action of aqueous barium hydroxide on AgNO3) =  $2.23 \times 10^{-4}$  g.-mol. in 1 l. H₂O at 25°; 3.09×10-4 g.-mol. in 1 l. H₂O at 50°

Solubility of Ag₂O (prepared by action of conc. NaOH+Aq on moist, freshly pptd.  $AgCl) = 2.32 \times 10^{-4}$  g.-mol. in 1 l.  $H_2O$  at

25°; 3.55×10-4 g.-mol. at 50°.
Solubility of Ag₂O (prepared by action of conc. NaOH+Aq. on moist, freshly pptd. Ag₂CO₃) =  $2.95 \times 10^{-4}$  g.-mol. in 1 l. H₂O at 25°; 3.89×10-4 g.-mol. at 50°. (Rebière, Bull. Soc. 1915, (4) 7. 311.)
Sol. in acids, NH₄0H, and (NH₄)₂CO₃+

Aq. Decomp. by alkali chlorides, bromides,

and iodides + Aq. Sol. in alkali cyanides, and thiosulphates + Aq. Sl. sol. in nitrates + Aq; insol. in sulphates+Aq. V pptd., sol. in NH₄SCN+Aq. When freshly pptd., sol. in NH₄SCN+Aq. Sl. sol. in NH₄NO₂+Aq. Abundantly sol. in Ba(NO₂)₂ Sl. sol. in +Aq without pptn. of BaO₂H₂. Sol. in boiling Mn(NO₃)₂, Ni(NO₃)₂, Co(NO₃)₂, Sol. in  $Cu(NO_3)_2$ , and  $Ce_2(NO_3)_6 + Aq$  with pptn. of oxides. (Persoz.)
Insol. in KOH, and NaOH+Aq. Sl. sol. in BaO₂H₂+Aq. (Berzelius (?).

Solubility in NH₄OH+Aq at 25°.

colubility in 11114011   114 at at 1				
G. at. Ag per l.	Mol. NH₃ per l.			
0.0654	0.214			
0.0658	0.220			
<b>( 134</b>	0.458			
0.140	0.469			
0.205	0.671			
0.205	0.684			
0.225	0.720			
0.224	0.733			
0.251	0.811			
0.248	0.827			
0.242	0.830			
0.257	0.876			
0.278	0.899			
0.276	0.915			
0.299	0.999			
0.343	1.147			
0.454	1.498			
0.470	1.522			

(Whitney and Melcher, J. Am. Chem. Soc. 1903, **25.** 78.)

Insol, in liquid NH₃. (Franklin, Am. ch. J. 1898, **20.** 829.) Insol. in acetone. (Eidmann, C. C. 1899, II. 1014); (Naumann, B. 1904, 37, 4329.)

Insol. in ethyl acetate. (Hamers, Dissert.

1906; Naumann, B. 1910, 43. 314.)

Sl. sol. in amylamine+Aq, easily in methylamine+Aq (Wurtz, A. ch. 30. 453); also in ethylamine, and thiosinamine + Aq.

Solubility in methylamine+Aq. at 18°. G mole ner l

G. Holls, per 1.				
CH ₃ NH ₂	Ag			
0.1 0.5 1.0	0.0221 0.118 0.228			

(Euler, B. 1903, 36. 2879.)

Solubility in ethylamine+Aq at 18°. G. mols. per l.

C ₂ H ₅ NH ₂	Ag
0.1	0.0322
0.5 (interpolated)	0.160
1.0 ""	0.314
0.561	0.180
0.927	0.291

(Euler.)

Silver peroxide, Ag₂O₂.

Sol. in conc. H₂SO₄ (Rose), and in pure HNO₃+Aq without decomp. Sol. in NH₄OH +Aq. (Schönbein, J. pr. 41. 321.)
Sol. in HNO₃ and H₂SO₄ with decomp. (Mulder, R. t. c. 1898, 17. 151.)
Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 829.)

Silver oxide ammonia.

See Silver nitride.

Silver oxybromide, Ag₇OBr₇.

Insol. in H₂O. Insol. in HNO₃. Sol. in hot ammonia and in NaOCl+Aq. (Seyewetz, C. R. 1912, **154.** 357.)

Silver oxyfluoride, AgF, AgOH.

Decomp. by H₂O with separation of Ag₂O. (Pfaundler.)

Silver peroxyfluoride, 2Ag₃O₄, AgF.

(Tanatar, Z. anorg. 1901, 28. 335.)

4Ag₃O₄, 3AgF. (Tanatar, Z. anorg. 1901, **28.** 335.)

Silver oxyiodide, Ag₂O, Ag₅I₇.

(Seyewitz, Bull. Soc. 1894, (3) 11. 452.)

Silver phosphide, AgP₂.

Sol. in HNO₃. Attacked by aqua regia. (Granger, C. R. 1897, 124. 897.)

Ag₄P₆. Insol. in HCl+Aq; easily sol. in HNÖ₈+Aq. (Schrötter, J. B. 1849. 247.)

Ag₂P₅. (Hackspill, C. R. 1913, **157**, 720.) Ag₃P (?). (Fresenius and Neubauer Z (Fresenius and Neubauer, Z. anal. 1. 340.)

Silver phosphoselenide, Ag₂Se, P₂Se.

Insol. in H₂O or HCl+Aq. Sol. in HNO₃+ Aq. Insol. in cold, decomp. by hot alkalies+ Aq. (Hahn, J. pr. 93. 436.) 2Ag₂Se, P₂Se₃. Insol. in H₂O, HCl, or

HNO₃+Aq; slowly sol. in red furning HNO₃.

(Hahn, J. pr. 93. 440.)

2Ag₂Se, P₂Se₅. Sol. only in fuming HNO₃. (Hahn.)

Silver phosphosulphide, 2Ag₂S, P₂S.

Ag₂S, P₂S. (Berzelius, A. **46**. 254.) 2Ag₂S, P₂S₃. Easily sol. in HNO₃+Aq without separation of P. (Berzelius.)

 $Ag_4P_2S_7$ . (Berzelius.)

Ag₄PS₃. Easily attacked by hot conc. HCl. Sl. decomp. Insol. in hot HNO₃. De-Ag₄PS₈. comp. by aqua regia. (Ferrand, A. ch. 1899, (7) **17.** 413.)

Silver selenide, Ag₂Se.

Sol. in boiling HNO₃+Aq as Ag₂SeO₃, which separates out by dilution with H₂O. (Berzelius.)

Insol. in Hg₂(NO₃)₂+Aq. (Wackenroder, A. 41. 327.)

Min. Naumannite. Insol. in dil., but sol. in conc. HNO₂+Aq.

Silver sulphamide (silver thionyl amide),  $SO_2(NHAg)_2$ .

Insol. in pyridine. (Hantzch and Holl, P **1901**, **34**. 3436.) +H₂O. (Ephraim and Gurevitsch, B. 1910, 43. 146.)

#### Argentous sulphide, Ag.S.

Easily sol. in warm dil. HNO3+Aq, and in conc. H₂SO₄ without separation of S. Sol. in conc. KCN+Aq. (v. der Pfordten, B. 20. 1458; Guntz, C. R. 112. 861.)

# Silver sulphide, Ag₂S.

Less sol. in H2O than AgI. (Lucas, Z.

anorg. 1904, **41**. 210.) 1 l. H₂O dissolves about 4×10⁻¹¹ g. at. Ag as Ag₂S at 18°. (Bernfeld, Z. phys. Ch. 1898, **25.** 72.)

1 l. H₂O dissolves 0.8×10 g mols. at 16-18°. (Bil'tz, Z. phys. Ch. 1907, **58**. 291.)

1 l.  $H_2O$  dissolves  $0.552 \times 10^{-6}$  g. mols.  $Ag_2S$  at  $18^{\circ}$ . (Weigel, Z. phys. Ch. 1907, **58**. 294.)

Sol. in conc. HNO₃+Aq with separation of S. Sol. in hot conc. HCl+Aq. Not decomp. by CuCl₂+Aq, but by CuCl₂+NaCl+Aq. Insol. in NH₂OH+Aq. Insol. in  $H_2SO_3+Aq$ , or in  $Hg(NO_3)_2+Aq$ .

Insol. in H₂O, dil. acids, alkalies, and alkali

sulphides+Aq. (Fresenius.) Sol. in HCN+Aq. (Hahn, C. C. 1870. 240.)

Pptd. Ag₂S is very sol. in HNO₃ containing more than 5% HNO3. (Gruener, J. Am. Chem. Soc. 1910, 32, 1032.)

Only very sl. sol. in AgNO₃+Aq, even at 100°. (Lowry, Roy. Soc. Proc. 1914, 91, A. 70.)

Sol. in KCN+Aq. (Hahn, C. C. 1870. 240.)

Difficultly sol. in KCN+Aq; less difficultly if Ag₂S is pptd. from a very dil. solution. Amt. of KCN present also has influence on the solubility. Ag₂S dissolved in conc. KCN +Aq separates out on dilution. (Béchamp, J. pr. 60. 64.)

Insol, in NH₄Cl or NH₄NO₃+Aq. (Brett.) Min. Argentite. Acanthite. Sol. in conc. HNO₃+Aq with separation of S.

Sol, in citric acid + Aq with addition of KNO₃. (Bolton, C. N. 37. 48.)

#### Silver disulphide, $Ag_2S_2$ .

Sol. in H₂O with decomp.; also sol. with decomp. in HCl, HNO₃. CS₂ does not dissolve out S. (Hantzsch, Z. anorg. 1898, 19. 105.)

Silver sodium sulphide,  $3Ag_2S$ ,  $Na_2S+2H_2O$ . Sol. in conc. Na₂S+Aq with decomp.; sol. in H₂O with decomp. (Ditte, C. R. 1895, **120.** 93.)

Silver Zinc sulphide, Ag2S, 3ZnS. (Schneider J. pr. (2) 8, 29.)

Silver sulphimide (silver thionyl imide), SO₂NÅg.

Very sl. sol. in cold, more sol. in hot H₂O. Very sol in dil. HNO₂. (Traube, B. 1892, **25.** 2474.)

# Silver sulphophosphide.

See Silver phosp's sulphide.

#### Silver telluride, Ag₂Te.

Min. Hessite. Sol. in warm HNO₃+Aq.

# Sodammonium, Na₂(NH₈)₂.

100 g. liq. NH₃ dissolve 60.5 g. at  $-23^{\circ}$ ; 56.4 g. at  $0^{\circ}$ ; 56 g. at  $+5^{\circ}$ ; 55 g. at  $9^{\circ}$ . (Joannis A. ch. 1903, (8) 7. 41.)

# Sodium, Na2.

Violently decomposes H₂O, alcohol, etc. Insol. in hydrocarbons. Easily sol. in acids with violent action.

# Solubility in fused NaOH. G. sol. in 100 g. fused NaOH at temp.

t°	G. per 100 g. NaOH
480	25.3
$\begin{array}{c} 600 \\ 610 \end{array}$	10.1
670 760	9.5 7.9
800	6.9

(Hevesy, Z. Elektrochem. 1909, 15. 531.)

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54**. 674.)

Sol. in liquid NH3. (Franklin, Am. Ch. J. 1898, **20**. 829.)

1 gram atom dissolves:-

at +22° in 6.14 mol. liquid NH₃. 0° " 5.87

" "--30° " 5.52 " " "

"-50° " 5.39 " —70° " 5.20 " " "

" "-105° " 4.98

(Ruff, B. 1906, 39. 839.)

 $\frac{1}{2}$  ccm. oleic acid dissolves 0.0449 g. Na in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Insol, in ethylamine and in secondary and tertiary amines. (Kraus, J. Am. Chem. Soc. 1907, **29.** 1561.)

# Sodium acetylide acetylene, $Na_2C_2$ , $C_2H_2$ .

Very deliquescent. Decomp. by H₂O and by absolute alcohol. Insol. in ether, ligroin, etc. (Moissan, C. R. 1898, 127. 915.)

# Sodium amalgam.

NaHg₆. Stable in contact with the liquid amalgam from 0°-40.5°. Can be cryst. from Hg without decomp. at any temp. between these limits.

NaHg₅. Stable in contact with the liquid amalgam from 40.5°-150°. Can be cryst. from Hg without decomp, at any temp, between these limits. (Kerp, Z. anorg. 1900, **25.** 68.)

# Sodium amide, NaNH₂.

Decomp. by H₂O and alcohol.

# Sodium amidochloride, Na₂NH₂Cl.

Sol. in H₂O with decomp. (Joannis, C. R. **112.** 392.)

# Sodium arsenide, Na₃As.

Decomp. H₂O. (Lebeau, C. R. 1900, **130**. 504.)

# Sodium arsenide ammonia, Na₃As, NH₃.

Easily sol, in liquid NH₃. (Lebeau, C. R. 1900, **130.** 502.)

Sl. sol. in liquid NH₃. (Hugot, C. R. 1898, **127.** 554.)

#### Sodium azoimide, NaN₃.

Not hygroscopic. Sol. in  $H_2O$ . Insol. in alcohol and ether. (Curtius, B. 24. 3344.) 40.16 pts. are sol. in 100 pts. H₂O at 10°. 40.7 " " " 100 " H₂O " 15.2. 41.7 " " " 100 " H₂O " 17.0°. 0.3153 pt. is sol. in 100 pts. abs. alcohol at 16°.

Insol. in pure ether. (Curtius, J. pr. 1898, (2) **58.** 279.

#### Sodium bromide, NaBr, and $+2H_2O$ .

Not deliquescent. Solubility in H₂O differs according as NaBr or NaBr+2H₂O is used. The following data for anhydrous NaBr were found.

Pts. NaBr dissolved by 100 pts. H₂O at t°

t°	Pts. NaBr	t°	Pts. NaBr	t°	Pts. NaBr
44.1 51.5 55.1 60.3 64.5	115.6 116.2 116.8 117.0 117.3	74.5 80.5 86.0 90.5	118.4 118.6 118.8 119.7	97.2 100.3 110.6 114.3	119.9 120.6 122.7 124.0

Solubility is represented by a straight line of the formula S = 110.34 + 0.1075t.

Below 50° the salt usually crystallizes with (Oppenheimer, Z. phys. Ch. 1898, 27. 452.)

2H₂O, of which the solubility in 100 pts. H₂O was found to be as follows:

t°	Pts. NaBr	t°	Pts. NaBr	t°	Pts. NaBr
-21	71.1	+5	82.0	30	97.3
-20 $-15$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10 15	$ \begin{array}{c c} 84.5 \\ 87.3 \end{array} $	35	$101.3 \\ 105.8$
-10	75.1	20	90.3	45	110.6
-50	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	93.8	50	116.0
U	19.5		i i		• • •

(Coppet, A. ch. (5) **30.** 420.)

If solubility S = pts. NaBr in 100 pts. solution, S = 40.0 + 0.1746t from  $-20^{\circ}$  to  $+40^{\circ}$ ; S = 52.3 + 0.0125t from  $50^{\circ}$  to  $150^{\circ}$ . (Etard, C. R. 98. 1432.)

100 pts. H₂O dissolve: at 0°, 77.5 pts. NaBr; at 20°, 88.4 pts.; at 40°, 104.2 pts.; at 60°, 111.1 pts.; at 80°, 112.4 pts.; at 100°, 114.9 pts. (Kremers.)

Sat. solution boils at 121°. (Kremers, Pogg. **97.** 14.)

Sat. NaBr+Aq contains at:

100 g. sat. NaBr+Aq at 16.4° contain 47 g. NaBr. (Greenish, Pharm. J. 1900, 65. 190.) Solubility of NaBr+2H₂O in H₂O at  $30^{\circ}$  = 65.5% anhydrous NaBr. (Cocheret, Dissert. **1911**.)

Sp. gr. of NaBr+Aq at 19.5° containing: 25 % NaBr, 20 10 15 1.125 1.040 1.080 1.174 1.226

30 40 45 50 % NaBr. 1.281 1.410 1.483 1.3341.565(Gerlach, Z. anal. 8. 285.)

NaBr+Aq containing 17.15% NaBr has sp. gr.  $20^{\circ}/20^{\circ} = 1.1473$ .

NaBr+Aq containing 22.72% NaBr has sp. gr.  $20^{\circ}/20^{\circ} = 1.2060$ .

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 278.)

Sp. gr. of NaBr+Aq at 20.5°.

Normality of NaBr+Aq	g. NaBr in 100 g. of solution	Sp. gr. 20.5°/4°
4.33	33.57	1.3284
3.00	25.10	1.2284
1.99	17.77	1.1526
0.98	9.41	1.0750

Sp. gr. at 20° of NaBr+Aq containing Mg. mols. NaBr per liter.

0.05 0.01 0.0250.075Sp. gr. 1.000732 1.002177 1.604074 1.005972

0.10 0.25 0.50 0.75 Sp. gr. 1.00788 1.01964 1.03908 1.05811

1.0 1.5 20 Sp. gr. 1.07632 1.11963 1.15240

(Jones and Pearce, Am. Ch. J. 1907, 38, 728.)

Sol. in H₂SO₄. (Walden, Z. anorg. 1902, 29. 384.)

100 pts. NaBr+Aq sat. at 18-19° contain 46.05 pts. NaBr; 100 pts. NaBr+NaCl+Aq sat. at 18-19° contain 46.59 pts. of the two salts; 100 pts. NaBr + NaI + Aq sat. at 18-19° contain 63.15 pts. of the two salts; 100 pts. NaBr+NaCl+NaI+Aq sat. at 18-19° con-Solubility in mixtures of methyl and ethyl tain 63.20 pts. of the three salts. (v. Hauer, J. pr. **98.** 137.)

Solubility of NaBr in NaOH+Aq at 17°.

(G. per 100 g. H₂O.)

NaOH	NaBr	NaOH	NaBr
0.0	91.38	22 35	59.60
3.26	79.86	24.74	55.03
9.24	68.85	28.43	48.00
13.43	64.90	36.61	38.41
17.17	63.06	46.96	29.37
19.12	62.51	$54 \ 52$	24.76

(Ditte, C. R. 1897, **124.** 30.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Very sl. sol, in alcohol.

NaBr+2H₂O is sol. in 1.10 pts. H₂O at 15°; in 159 pts. absolute alcohol at 15°; in 1200 pts. absolute ether at 15°. (Eder, Dingl. **221**. 89.)

NaBr+2H₂Ó is sol. in 2.25 pts. 60% alcohol, and 7 pts. 90% alcohol. NaBr is sol. in 3 pts. 60% alcohol, and 10 pts. 90% alcohol. (Hager.)

100 pts. absolute methyl alcohol dissolve 17.35 pts. at 19.5.° (de Bruyn, Z. phys. Ch.

**10.** 783.) 100 g. NaBr+CH₃OH contain 0.9 g. NaBr at the critical temp. (Centnerszwer, Z. phys. Ch. 1910, 72. 437.)

At room temp., 1 pt. NaBr by weight is

sol. in: 4.6 pts. methyl alcohol D¹⁵ 0.7990.

" ethyl D15 0.8100. 14.0" propyl D15 0.8160. 49.7

(Rohland, Z. anorg. 1898, 18. 325.)

Solubility in ethyl alcohol at 30°.

. Wt. %		
Alcohol	NaBr	Solid phase
0 11.77 31.78 43.22 54.59 65.51 72.36 76.62 87.35 97.08	59.4 42.90 32.12 26.79 20.83 16.38 13.41 12.03 7.44 3.01	NaBr, 2H ₂ O  ""  ""  ""  ""  NaBr, 2H ₂ O+NaBr  NaBr  ""

(Cocheret, Dissert. 1911.)

alcohol at 25°.

 $P = \frac{C}{0}$  methyl alcohol in the solvent. G = g. NaBr in 10 ccm of the solution. S = Sp. gr. of the sat. solution.

P	G	S 25°/4°
0.00 4.37 10.40 41.02	0.293 0.365 0.404 0.724	0.8189 - 0.8265 0.8273 0.8593
80.69 84.77 91.25 100.00	1.251 1.286 1.432 1.440	0.9079 $0.9104$ $0.9235$ $0.9238$

(Herz and Kuhn, Z. anorg. 1908, 60, 155.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NaBr in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

Р	G	S 25°/4°
0 11.11 23.8 65.2 91.8	1.440 1.243 1.053 0.442 0.147	0.9238 0.9048 0.8887 0.8390 0.8153
$93.75 \\ 100$	$0.126 \\ 0.074$	$0.8144 \\ 0.8093$

(Herz and Kuhn, Z. anorg. 1908, 60. 156.)

18 75

100

15.56

100

Solubility in mixtures of propyl and ethyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NaBr in 10 ccm. of the solution. S = Sp. gr. of the sat solution.

P	G	S 25°/4°	
0	0.293	0.8189	-
8.1	0.249	0.8147	
17.85	0.247	0.8145	-
<b>56.6</b>	0.190	0.8107	
88.6	0.111	0.8116	- [
91.2	0.083	0.8083	- 1
95.2	0.082	C.8090	
100	0.074	0.8093	

(Herz and Kuhn, Z. anorg. 1908, 60. 159.)

2.05 g. are sol. in 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 276.)

Sl. sol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

100 g. 95% formic acid dissolve 22.3 g. NaBr at 18.5°. (Aschan, Ch. Ztg. 1913, 37. 1117.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann. B. 1910, 43. 314); benzonitrile. (Naumann, B. 1914, 47. 1370.)

The composition of the hydrates formed by NaBr at different dilutions is calculated from determinations of the lowering of the frpt. produced by NaBr and of the conductivity and sp. gr. of NaBr+Aq. (Jones, Am. Ch. J. 1905, **34**. 303.)

#### Sodium stannic bromide.

See Bromostannate, sodium.

#### Sodium uranous bromide, Na₂UBr₆.

As K salt. (Aloy, Bull. Soc. 1899, (3) 21.

### Sodium zinc bromide, NaBr, ZnBr₂+H₂O.

Hygroscopic. (Ephraim, Z. anorg. 1908, **59.** 63.)

2NaBr,  $ZnBr_2 + 5H_2O$ . Hygroscopic. (Ephraim.)

#### Sodium carbide, Na₂C₂.

Insol, in all neutral solvents; decomp. on heating and by H₂O. (Matignon, C. R. 1897, **125.** 1034.)

#### Sodium carbonyl, Na₂C₂O₂.

Decomp. by H₂O with explosion. (Joannis, C. R. **116.** 1518.)

#### Sodium subchloride, Na₄Cl₂.

Decomp. by H₂O into NaCl and NaOH+ Aq. (Kreutz, B. 1897, 30. 403.)

#### Sodium chloride, NaCl.

Sol. in H₂O.

t°	Pts. NaCl	Authority	
0 13 89 16.90 59.93 109.73	More than at 13.89° 35.81 35.88 37.14 40.38	Gay-Lussac, A. ch. (2) 11.	
12 100	35 91 39 92	Fehling, A. 77. 382.	
18.75	37.731	Bischof.	
10-15	35 42	Bergmann.	
106+	42.86	Griffiths, 1825.	
20	35.9	Schiff, A. 109. 326.	
All temps.	37	Fuchs and Reichenbach 1826.	
25	35.7	Kopp, A. 34. 262.	
18.75	36 53	C. J. B. Karsten, 1840.	
$\frac{1}{18.75}$	36.121 36 724 41 076	G. Karsten.	
1 25 Boiling	36 119 39 324	Unger, J. pr. 8, 285.	

100 pts. H2O at to dissolve pts. NaCl.

1 pt. NaCl is sol. in 2.789 pts. H₂O at 15° (Gerlach); in 3 pts. H₂O at 18.75° (Abl); in 2.8235 pts. H₂O at ord. temp. (Bergmann); in 2.7647 pts. boiling H₂O (Bergmann); bot or cold H₂O (Fourcroy).

Not deposited from boiling aqueous solution unless

35 40

36 95

34.2-35 42

36 16

Karsten

Ure's Dict.

Unger, l.c.

Michel and Krafft.

(?).

cited bv

the vessel containing it is open to the air. (Unger, l. c.)

#### Solubility in 100 pts. H2O at to.

t°	Pts. NaCl	t°	Pts. NaCl
1 5	33.6	70	38.1
13 75	35.8	108 5	39.4

(Nordenskiöld, Pogg. 136. 315.)

#### Solubility in 100 pts. H2O at to.

t°	Pts. NaCl	t°	Pts. NaCl
13.89	35.8	59.93	37.1
16.90	35.9	109.73	40.4

(Gay-Lussac, A. ch. 11. 296.)

Solubility of NaCl at various pressures. The figures represent pts. NaCl in 100 pts. sat. NaCl+Aq at t° and A pressure in atmospheres.

ļ	A	0°	9°	12°	15°	20°	25°	30°
	20	26.25 26.35 26.44	26.38		26.30 26.39 26.40	20.37	20.47	26.47 26.53

(Müller, Pogg. 117: 386.)

100 pts.	$H_2O$	dissolve	at to.	
----------	--------	----------	--------	--

t°	Pts. NaCl	t°	Pts. NaCl
- 15 - 10 - 5 0 5 9 14 25	32.73 33.49 34.22 35.52 35.63 35.74 35.87 36.13	40 50 60 70 80 90 100 109.7	36.64 36.98 37.25 37.88 38.87 39.61 40.35

(Poggiale, A. ch. (3) 8. 649.)

100 pts. H₂O dissolve at:

0° 9° 12° 15° 35.59 35.72 35.77 35.68 pts. NaCl,

> 20° 25° 30° 35.77 35.81 36.00 pts. NaCl. (Müller, Pogg. **122.** 337.)

100 pts.  $H_2O$  dissolve 35.76-36.26 pts. NaCl at 15.6°, and the sp. gr. of sat. solution = 1.204. (Page and Keightley, Chem. Soc. (2) 10. 566.)
100 pts. NaCl+Aq sat. at 18-19° contain 26.47 pts. NaCl. (v. Hauer, J. pr. 98. 137.)

Solubility of NaCl in 100 pts. H₂O at t°.

t°	Pts. NaCl	t°	Pts. NaCl	t°	Pts. NaCl
0	35.7	30	36.3	60	37.3
1	35.7	31	36.3	61	37.3
$\hat{2}$	35.7	32	36.3	62	37.4
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	35.7	33	36.4	63	37.4
4	35.7	34	36.4	64	37.5
4 5 6 7 8 9	35.7	35	36.4	65	37.5
6	35.7	36	36.5	66	37.6
7	35.7	37	36.5	67	37.7
8	35.7	38	36.5	68	37.7
9	35.7	39	36.6	69	37.8
10	35.8	40	36.6	70	37.9
11	35.8	41	36.6	71	37.9
12	35.8	42	36.7	72	38.0
13	35.8	43	36.7	73	38.0
14	35.8	44	36.8	74	38.1
15	35.9	45	36.8	75	38.2
16	35.9	46	36.8	76	38.2
17	35.9	47	36.9	77	38.2
18	35.9	48	36.9	78	38.2
19	36.0	49	36.9	79	38.3
20	36.0	50	37.0	80	38.4
21	36.0	51	37.0	81	38.4
22	36.0	52	37.0	82	38.5
23	36.1	53	37.1	83	38.6
24	36.1	54	37.1	84	38.6
25	36.1	55	37.1	85	38.7
26	36.1	56	37.2	86	38.7
27	36.2	57	37.2	87	38.8
28	36.2	58	37.2	88	38.9
29	36.2	59	37.3	89	39.0

Solubility of NaCl in 100 pts. H₂O at t°.— Continued.

alito	Pts. NaCl	t°	Pts. NaCl	t°	Pts. NaCl
90 91 92 93 94 95 96	39.1 30.1 39.2 39.3 39.3 39.4 39.4	97 98 99 100 101 102 103	39.5 39.6 39.7 39.8 39.8 39.9 40.0	104 105 106 107 108 109 109.7	40.0 40.1 40.1 40.2 40.3 40.3

(Calculated by Mulder from his own and other observations, School. Verhandel. 1864. 37.)

Solubility in 100 pts. H₂O at:

0-4° 20° 40° 60° 80° 35.630 35.825 36.32 37.06 **38.00** 

(Andreae, J. pr. (2) 29. 456.)

Solubility in 100 pts.  $H_2O$  from most careful experiments.

0° 20° 60° 80° 35.571 35.853 37.091 38.046 (Raupenstrauch, M. Ch. **6.** 563.)

Solubility of NaCl in 100 pts. H₂O at t°.

t°	Pts. NaCl	t°	Pts. NaCl
-14.0	32.5	44.75	36.64
-13.8	32.15	52.5	37.04
-6.25	34.22	55.0	36.99
-5.95	34.15	59.75	37.31
0	35.7	71.3	37.96
3.6	35.79	74.45	37.96
5.3	35.8	82.05	38.41
14.45	35.94	86.7	38.47
20.85	35.63	93.65	38.90
25.45	35.90	101.7	40.76
38.55	36.52		

Solubility above 20° is represented by the formula S=34.359+0.0527t. (Coppet, A. ch. (5) **30.** 426.)

Solubility of NaCl in 100 pts. H₂O at high temp.

t°	Pts. NaCl	t°	Pts. NaCl
118 140	39.8 42.1	160 180	43.6 44.9
	•		

(Tilden and Shenstone, Phil. Trans. 1884. 23.)

Sat. NaCl+Aq contains % NaCl at to.

t°	% NaCl	t°	% NaCl
-21	23.7	77	28.0
-21	28.4	90	28.2
-18	23.5	115	. 29.1
-17	23.3	135	28.9
- 7	25.5	140	28.8
0	25.8	150	29.6
+15	26.7	180	30.2
5 <b>5</b>	26.8	215	31.6

(Étard, A. ch. 1894, (7) 2. 532.)

100 g. H₂O dissolve 0.616 gram-equivalent NaCl at 25°. (Van't Hoff and Meyerhoffer, Z. phys. Ch. 1904, **49**. 315.)

### Solubility of NaCl in $H_2O$ at $t^{\circ}$ . Most careful experiments.

t°	g. NaCl per 100 g. H ₂ O	Sp. gr.	t°	g. NaCl per 100 g. H ₂ O	
30.05	35.84	1.1956	75.65 90.50	$37.82 \\ 38.53$	1.1823 1.1764 1.1701 1.1631

(Berkeley, Phil. Trans. Roy. Soc. 1904, 203. A. 189.)

Sat. NaCl+Aq. at 25° contains 26.5% NaCl. (Foote, Am. Ch. J. 1906, 35. 239.) 100 g. H₂O dissolve 35.80 g. NaCl at 25°. (Cameron, Bell and Robinson, J. phys. Ch. 1907, 11. 396.)

100 g. NaCl+Aq. sat. at 15° contains 26.3 g. NaCl; at 30°, 26.47 g. (Schreinemakers, Arch. neér. Sc. 1910, (2) 15. 81.)

5.456 g. mol. are contained in 1 l. NaCl+Aq sat. at 25°. (Herz, Z. anorg. 1911, 73. 274.)

5.40 g. mol. are contained in 1 l. NaCl+Aq sat. at 30°. (Masson, Chem. Soc. 1911, 99. 1136.)

26.47 g. NaCl are contained in 100 g. NaCl+Aq. sat. at 30°. (Cocheret, Dissert. 1911.)

35.79 g. NaCl are sol. in 100 g.  $H_2O$  at room temp. (Frankforter, J. Am. Chem. Soc. 1914, **36.** 1106.)

100 mol. H₂O dissolve at:

19.3° 29.7° 40.1° 54.5°

11.04 11.06 11.15 11.35 mol, NaCl,

(Sudhaus, Miner. Jahrb. Beil. Bd. 1914, 37. 18.)

Solubility of NaCl in H₂O at 24.5° at varying pressures.

S=g. NaCl in 100 g. solvent. P=pressure in atmospheres.

P	s	100 g. of solution contains g. NaCl
$\begin{array}{c} 1\\250\\500\\1000\\1500\end{array}$	35.90 36.25 36.55 37.02 37.36	26.42 26.61 26.77 27.02 27.20

(Cohen, Inouye and Euwen, Z. phys. Ch. 1910, 75. 257.)

Sp. gr. of NaCl+Aq containing 15% NaCl is 1.109 at 15° (Francœur); 1.116 at 15° (Soubeiran); 1.1107 at 15° (Coulier); 1.111 at 15° (Baudin, C. R. **68**, 932). Sp. gr. of NaCl+Aq saturated at 15° is 1.20715 (Michel and Krafft); at 17.5° is 1.2046 (Karsten); at 8°

is 1.205 (Anthon).

Sp. gr. of NaCl+Aq.

% NaCl	Sp. gr.	% NaCl	Sp. gr.	% NaCl	Sp. gr.
5	1.037	15	1.112	25	1.192
10	1.074	20	1.154	26.43	1.204

(Dahlmann, J. B. 7. 321.)

Sp. gr. of NaCl+Aq at 20°.

% NaCl	Sp. gr.	% NaCl	Sp. gr.
1	1.0066	15	1.1090
2	1.0133	16	1.1168
3	1.0201	17	1.1247
4	1.0270	18	1.1327
5	1.0340	19	1.1408
6	1.0411	20	1.1490
7	1.0483	21	1.1572
8	1.0556	22	1.1655
9	1.0630	23	1.1738
10	1.0705	24	1.1822
11 12 13 14	1.0781 1.0857 1.0934 1.1012	25 26 27	1.1906 1.1990 1.2075

(Schiff, A. 110. 76.)

Sp. gr. of NaCl+Aq at 19.5°.

% NaCl	Sp. gr.	% NaCl	Sp. gr.
6.402 12.265 17.533	1.0460 1.0895 1.1303	22.631 26.530	1.1712 1.2036

(Kremers, Pogg. 95. 120.)

Sp.	gr.	of	NaCl	+Aq	at	15°.
-----	-----	----	------	-----	----	------

% NaCl	Sp. gr.	% NaCl	Sp.gr.
1	1.00725	15	1.11146
<b>2</b>	1.01450	16	1.11938
3	1.02174	17	1.12730
4	1.02899	18	1.13523
5	1.03624	19	1.14315
6	1.04366	20	1.15107
7	1.05108	21	1.15931
8	1.05851	22	1.16755
9	1.06593	23	1.17580
10	1.07335	24	1.18404
11	1.08097	25	1.19228
12	1.08859	26	1.20098
13	1.09622	26.395	1 20433
14	1.10384		

(Gerlach, Z. anal. 8, 279.)

Sp. gr. of NaCl+Aq at 18°.

% NaCl	Sp. gr.	% NaCl	Sp. gr.
5	1.0345	25	1.1898
10 15	1.0707 1.1087	$\begin{bmatrix} 26 \\ 26.4 \end{bmatrix}$	1.1982 1.2014
20	1.1477		

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of NaCl+Aq at 20°, containing n mols. H₂O to 1 mol. NaCl.

n	Sp. gr.	n	Sp. gr.
12.5	1.15292	100	1.02069
25 50	1.08207	200	1.00965
50	1.04227		

(Marignae, J. B. 1870. 110.)

Sp. gr. of NaCl+Aq at 0°. NaCl=g. NaCl to 100 g.  $H_2O$ ;  $d^\circ=sp.$  gr. at 0°;  $d^T=maximum\ sp.\ g^\circ$ .; T=temp. of maximum.

G. NaCl	d°	dт	Т
0	1.00000	1.000130	+ 4°
0.5	1.003925	1.003988	+ 3
1	1.007634	1.007666	+ 1.77
2	1.015366	1.015367	- 0.58
3	1.023530	1.023583	- 3.24
4	1.030669	1.030890	- 5.63
6	1.045975	1.046952	-11.07

(Rosetti, A. ch. (4) 17. 382.)

Sp. gr. of NaCl+Aq $^{\circ}$  at 20°. x = mols. NaCl to 100 mols. H₂O.

e x	Sp gr.	x	Sp. gr.
0.5 1.0 2.0	1.01145 1.02255 1.04393	4.0 5.0	1.08408 1.10276

(Nicol, Phil. Mag. (5) 16. 122.)

Sp. gr of NaCl+Aq at 0°. So weight of salt in 100 g, of solution of the given sp. gr.; S₁=No mole, of salt contained in 100 mole, of the solution.

S	٤1	Sp. gr.
23.0821 19.1952 14.3415 9.4120 5.1536	8.627 6.769 4.898 3.097 1.644	1.1821 1.1502 1.1111 1.0722 1.0394

(Charpy, A. ch. (e) 29. 23.)

Sp. gr. of NaCl+Aq.

Gequivalents NaCl per liter	t°	Sp. gr. t°/t°
0.005028	18.549	1.0002119
0.01005	18.550	1.0004258
0.02005	18.538	1.000848
0.04983	18.509	1.002101
0.09873	18.525	1.004143
0.19388	18.542	1.008093
0.28999	18.559	1.012053
0.47574	18.558	1.019627
0.49860	18 06	1.02054
4.9860	17.85	1.18783
0.00259	14.07	1.0001108
0.005178	14.076	1.0002210
0.010318	14.097	1.0004401
0.12580	14.097	1.005315
0.25019	14.076	1.010505

(Kohlrausch, W. Ann. 1894, 53. 26.)

Sp. gr. of NaCl+Aq at 18°/18°.

gequivalents of NaCl in 1 liter of solution	Sp. gr.
0.005	1.0002104
0.010	1.0004206
0.020	1.0008476
0.050	1.002109
0.100	1.004205

(Tammann, Z. phys. Ch. 1895, 16. 93.)

Sp. gr. of NaCl+Aq . 18.0°, when p = percent strength of solution; d = observed density; and w = volume conc. in grams per cc. (pd/100 = w.)

р	đ	w
25.37	1.1928	0.30263
21.25	1.1592	0.24637
17.35	1.1277	0.19503
13. <b>2</b> 5	1.0958	0.14518
9.34	1.0665	0.09960
4.810	1.0332	0.04969
2.991	1.0202	0.03052
2.593	1.0173	0.2638
1.746	1.0111	0.01765

(Barnes. J. Phys. Chem. 1898, 2, 544.)

Sp. gr. of NaCl+Aq at 20.5°.

Normality of NaCl+Aq	G. NaCl in 100 g. of solution	Sp. gr. 20.5°/4°
3.97	20.22	1.1489
2.96	15.56	1.1124
2.01	10.90	1.0775
0.97	5.49	1.0373

(Oppenheimer. Z. phys. Ch. 1898, 27. 451.)

Sp. gr. of NaCl+Aq at 15°.

Per cent NaCl	Sp. gr.
0	1.00000
5	1.03624
10	1.07335
15	1.11146
20	1.15107
25	1.19228
Sat. at 15°	1.20433

(H. C. Hahn, J. Am. Chem. Soc. 1898, 20. 622.)

Sp. gr. of NaCl+Aq at 18°/4°.

g. NaCl in 100 g. of solution	Sp. gr.
0.19560	1.0001
0.097952	0.9994
0.065410	0.99918
0.048977	0.99905

(Jahn, Z. phys. Ch. 1900, 33, 572.)

Sp. gr. 20°/4° of a normal solution of NaCl = 1.03866. (Haigh, J. Am. Chem. Soc. 1912, 34. 1151.)

Sp.	gr.	of	sat.	NaCl	+Aq	at	t°.
-----	-----	----	------	------	-----	----	-----

t°	g. NaCl sol. in 100 g. H ₂ O	Sp. gr.
10° 0 10 20 30 40 50 60 70	32.90 35.63 35.69 35.82 36.03 36.32 36.67 37.06 37.51	1.200 1.210 1.205 1.202 1.198 1.193 1.189 1.184 1.178
10	01.01	1.110

(Tschernaj, J. Russ. Phys. Chem. Soc. 1912, 44. 1565.)

Sp. gr. of dil. NaCl+Aq at 20.004°. Conc.=g. equiv. NaCl per l. at 20.004°. Sp. gr. compared with H₂O at 20.004°=1.

Conc.	Sp. gr.
0.0000 0.0001 0.0002 0.0005 0.0010 0.0020 0.0040 0.0050	1.000,000,0 1.000,004,2 1.000,008,5 1.000,021,3 1.000,042,7 1.000,085,1 1.000,169,6 1.000,211,7
0.0100	1.000,423,3

(Lamb and Lee, J. Am. Chem. Soc. 1913, **35.** 1686.)

The saturated solution boils at 109°. (Kremers.)

NaCl+Aq containing 42.9 pts. NaCl to 100 pts. H₂O boils at 106.8° (Griffiths); containing 41.2 pts. NaCl to 100 pts. H₂O boils at 108.2° (Legrand); containing 40.38 pts. NaCl to 100 pts. H₂O boils at 109.73° (Gay-Lussac); containing 38.7 pts. NaCl to 100 pts. H₂O forms a crust at 108.3°; highest point observed, 108.8° (Gerlach, Z. anal. **26**. 426.)

#### Boiling-point of NaCl+Aq.

% NaCl	Bpt. according to			
	Bischof	G. Karsten		
5 10 15 20 25 29.4	101.50° 103.03 104.63 106.26. 107.93 107.9-108.99	101.10° 102.38 103.83 105.46 107.27		

~ 17 01	Bpt. according to		
% NaCl	Legrand	Gerlach	
5 10 15 20 25	100.80° 101.75 103.00 104.60 106.60	100.9° 101.9 103.3 105.3 107.6	

B.-pt. of NaCl+Aq containing pts. NaCl to 100 pts. H₂O. G=according to Gerlach (Z. anal. 26. 438; L=according to Legrand (A. ch. (2) 59. 431).

Bpt.	G	L	Bpt.	(J	L
100.5° 101 101.5 102 102.5 103 103.5 104 104.5	3.4 6.6 9.6 12.4 14.9 17.2 19.4 21.5 23.5	4.4 7.7 19.8 13.4 15.9 18.3 20.7 23.1 25.5	105.5° 106 106.5 107 107.5 108 108.4 108.5 108.8	27.5 29.5 31.5 33.5 35.5 37.5 39.5 40.7	29.8 31.8 33.9 35.8 57.7 39.7 41.2
105	25.5	27.7			

B.-pt. of NaCl+Aq containing g. NaCl in 100 g. H₂O.

g. NaCl 7.6 11 0 14.9 16 1 18.3 102.2° B.-pt. 103 104.2 104.8 106 1

22.3 $24.0 \ 26.0 \cdot 28.7$ g. NaCl B.-pt. 107.7 108.7 109.5 107.1

(Richmond, Analyst, 1893, 18. 142.)

If NaCl is dissolved in 15 pts. H₂O, heat is absorbed if the temp. is 15°, but much less if temp. is 86°; at 100° there is neither absorption nor evolution of heat. (Berthelot, C. R. 78. 1722.)

36 pts. NaCl mixed with 100 pts. H₂O at 12.6° lower the temp. 2.5°. (Rüdorff, B. 2.

· 33 pts. NaCl with 100 pts. snow at -1° give a temp. of -21.3°. (Rüdorff, Pogg. 122. 337.)

The freezing-point of NaCl+Aq is lowered 0.60° for every gram NaCl up to 10 g. When more conc. the freezing-point sinks proportional to NaCl, 2H2O, 0.342° for every (Rüdorff, Pogg. 113. gram of that salt. 163.

Insol. in conc. HCl+Aq.

Solubility of NaCl in HCl+Aq at 0°. NaCl= · mols. NaCl (in milligrams) dissolved in 10 ccm, of liquid; HCl = mols. HCl (in milligrams) dissolved in 10 ccm. of liquid.

NaCl	HCl	Sum of mols.	Sp. gr.
53.5	1	54.5	1.2045
52.2	1.85	54.05	1.2025
48.5	5.1	53.6	1.196
44.0	9.275	53.275	1.185
37.95	15.05	53.00	1.1725
23.5	30.75	54.95	1.141
6.1	56.35	62.45	1.1159

(Engel, Bull. Soc. (2) 45. 654.)

Solubility in HCl+Aq at 10-10.5°.

, g. peř	100 cc.	G. per 100 cc.	
HCl	N ₉ Cl	HCI	NaCl
0.0 9.84 12.76 15.68 20.78	35.77 33.76 33.19 32.71 31.77	26.06 94.77 102.1 120.6	30.89 20.01 19.04 16.03

(Enklaar, R. t. c. 1901, 20, 1835)

Solubility in HCl+A₄ at 30°.

Composition	Composition of the solution			
% by wt. HCl	% by wt. NaCl			
0 6.93 12.50 17.35 35.60	\$26.47\$ 16.16 9.35 4.52 0.11			

(Schreinemakers, Z. phys. Ch. 1909, **68.** 85.)

Solubility in HCl+Aq.

Conc. = concentration of HCl. g. mol. per 1,000 g. H₂O.

NaCl = wt. NaCl dissolved in 1,000 g. H₂O.

t°	Conc.	NaCl	Molecular solubility
()	0	357.75	6.13
	0.25	341.70	5.85
	0.50	324.45	5.56
	1.00	291.20	4.99
25	0	360.80	6.18
	0.25	344.50	5.90
	0.50	329.05	5.64
	1.00	298.10	5.10

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) **84.** 127.)

Solubility in HCl+Aq at 30°.

G. mols. per l.

нсі	NaCl	Sp. gr. 30°	HCI	NaCl	Sp. gr. 30°
0.4575 0.969 1.786	4.932 4.386 3.589	1.2018 1.1906 1.1801 1.1633 1.1512	4.152 5.950 7.205	1.628 0.630	1.1289 1.1188

(Masson, Chem. Soc. 1911, 99, 1132.)

### 844

#### Solubility in HCl+Aq at 25°.

Millimols HCl in 10 ccm.	Millimols NaCl in 10 ccm.
	54.56
6.07	48.50
10.32	44.67
15.90	37.82
21.17	32.97
32.83	23.43

(Herz, Z. anorg. 1912, 73. 274.)

Moderately dil. H₂SO₄ or HNO₃+Aq precipitate N₂Cl from NaCl+Aq. (Karsten.) Sol. in H₂SO₄. (Walden, Z. anorg. 1902, **29.** 384.)

Solubility of NaCl in NH₄OH+Aq at 30°. (G. in 1 l. sat. solution.)

Sp. gr.	NH ₃	NaCl	∦Sp. gr.	NH3	NaCl
					283.38 283.06
1.160	47.26	289.7	1.1301	81.855	$277.49 \\ 270.57$

(Hempel and Tedesco, Z. anorg. 1911, 24. 2467)

Solubility of NaCl in NH4Cl+Aq at to.

t°	G. per 100 g. H ₂ ()		Sp. gr.	
	NH4Cl	NaCl	т,р. gr.	
0	0 146.1	356.3 286.4	1.185	
15	0 57.3 118.9 186.4 198.8	357.6 326.4 300 271.6 266.8	1.200 1.191 1.183 1.176 1.175	
30	0 255.4	360.3 249	1.166	
45	0 322.1	365 233.9		

(Fedotieff, Z. phys. Ch. 1904, **49**. 168.) See also under NH₄Cl.

Solubility in NaOH+Aq at 0°. NaCl=mols. NaCl (in milligrams) in 10 ccm. solution; Na₂O=mols. Na₂O (in milligrams) in 10 ccm. solution.

NaCl	Na ₂ O	Na ₂ O + NaCl	Sp. gr.
54.7	0	54.7	1.207
49.375	4.8	54.175	1.221
47.212	6.725	53.937	1.225
42.375	10.406	52.781	1.236
39.55	14.78	54.33	1.249
24.95	30.5	55.45	1.295
19.3	37.875	57.175	1.314
9.408	53.25	62.66	1.362

(Engel, C. R. **112.** 1130.) Solubility in NaOH+Aq at 20°.

polability in 148011   11q 80 20 .				
3. NaOH in 1 liter	G. NaCl in 1 liter	Sp. gr.	deg. Baumé	
10	308	1.200	23.5	
20	308	1.210	24.0	
30	306	1.215	25.5	
40	302	1.225	26.4	
50	297	1.230	26.9	
60	286	1.235	27.4	
70	277 277	1.240	27.9	
80	269	1.240 $1.245$	28.4	
90				
	261	1.250	28.8	
100	253	1.250	28.8	
110	244	1.252	29.0	
120	236	1.252	29.0	
130	229	1.260	29.7	
140	221	1.265	30.2	
150	213	1.270	30.6	
160	205	1.275	31.1 .	
170	197	1.275	31.1	
180	189	1.280	31.5	
190	181	1.285	32.0	
200	173	1.290	32.4	
210	165	1.295	32.8	
220	159	1.295	32.8	
230	152	1.300	33.3	
240	146	1.303	33.5	
$\cdot 250$	139	1.305	33.7	
$\frac{-60}{260}$	134	1.310	34.2	
$\frac{200}{270}$	129	1.315	34.6	
280	124	1.320	35.0	
290	118	1.320 $1.325$	35.4	
300	112	1.320 $1.330$	35.8	
310	107	1.333	36.0	
320	107	1.335	36.2	
330	96	1.340	36.6	
340	90	1.345	37.0	
350	85	1.350	37.4	
360	80	1.355	37.8	
370	76	1.360	38.2	
380	71	1.365	38.6	
390	66	1.370	39.0	
400	61	1.375	39.4	
410	56	1.380	40.0	
420	52	1.385	40.2	
430	48	1.390	40.6	

Solubility in NaOH+Aq at 20°.—Continued.

G. NaOH in 1 liter	G. NaCl in 1 liter	Sp. gr.	deg, Baumé
440	45	1.395	41.0
450	42	1.400	41.5
460	39	1.405	41.9
470	37	1.410	42.0
480	34	1.415	42.3
490	32	1.420	42 6
500	30	1.425	43.0
510	28	1.430	45.5
520	27	1.435	43.7
530	27	1.440	44.0
540	26	1.445	44.3
550	26	1.450	44.6
560	25	1.450	44.6
570	24	1.455	45.0
580	23	1.460	45.5
590	23	1.465	45.9
600	22	1.470	46.2
610	21	1.475	46.5
620	20	1.480	46.8
630	19	1.485	47.0
640	18	1.490	47.5
	1	l	I .

(Winteler, Z. Elektrochem, 1900, 7. 360.)

Solubility in Na₂O + Aq at 30°.

Composition	of the solution	
% by wt. Na ² ()	% by wt. NaCl	Solid phase
0	26.47	NaCl
4.47	21.49	"
12.22	13.62	"
24.48	4.36	1
29.31	2.40	
37.85	1.12	
41.42	0.97	NaCl+NaOH, H2O
	0.97	
42	U	NaOH, H ₂ O

(Schreinemakers, Z. phys. Ch. 1909, 68, 85.)

The presence of other salts increases the solubility of NaCl in H2O.

Sol. in sat. NH₄Cl+Aq with pptn. of NH₄Cl. When the reaction is complete, the solution has sp. gr. 1.1788, and contains 32.62% mixed salts; or 100 pts. H₂O dissolve 48.42 pts. mixed salts, viz., 26.36 pts. NaCl and 22.06 pts. NH₄Cl. (Karsten.) (See under NH₄Cl.)

Sol. in sat. BaCl2+Aq with pptn. of BaCl2 until a state of equilibrium is reached, when 100 pts. H₂O at 17° dissolve 38.6 pts. of mixed salts, of which 4.1 pts. are BaCl₂. (Karsten.) (See under BaCl₂.)

Insol. in sat. CaCl₂+Aq. (Vauquelin, Ann. de Chim. 13. 95.)

Much more sol. in hot than in cold H2O containing MgCl2 or CaCl2; but NaCl is pptd. from sat. NaCl+Aq when that solution is mixed with MgCl₂ or CaCl₂+Aq. (Fuchs and Ann. de Chim. 11. 130.) G. Reichenbach, 1826.) (See under MgCl2.)

Less sol. in conc. CaCl₂+Aq than in H₂O. (Hermann.)

Solubility of NaCl+CaCl2 in H2O at 25°. G. per 100 g. H₂O.

NaCl	CaCl ₂	F.s. gr. 25°/25°	Solid phase
9 1.846 1.637 1.799 7.77 10.70 18.85 32.48 35.80	84 78.49 58.48 53.47 36.80 30.08 12.53 3.92 0	1.4441 1.3651 1.3463 1.2831 1.2653 1.2367 1.2080 1.2030	CaCl ₂ , 6H ₂ O  " +NaCl NaCl " " " " " "

(Cameron, Bell and Robinson, J. phys. Chem. 1907, 11 396.)

Solubility of NaCl in NaHCO₃ sat. with CO₂ at t°.

t.c	G. per 1000 g. H ₂ O			
t	NaHCO ₃	NaCl		
0 % 15  30  45	6.0 7.7 0.0 10.0 0.0 13.9 0.0	356.3 350.1 357.6 354.6 360.3 358.1 356.0		
117	0.23	361.5		

(Fedotieff, Z. phys. Ch. 1904, 49. 170.)

Sol. in sat. KClO₃+Aq; the solution can then dissolve more KClO3. (Margueritte, C. R. **38.** 305.)

In solution containing Na, K, Cl and NO₃ ions, the solubility-relations between the four salts NaCl, KCl, NaNO3 and KNO3 have been studied. (Uycda, Z. anorg. 1911, **71.** 2.)

Sol. in sat. NH₄NO₃+Aq, without causing

pptn. (Karsten.) Sol. in sat. NH₄NO₃+Aq, from which solution it is not pptd. by salts which would cause its pptn. in aqueous solution. (Margueritte, C. R. 38. 307.)

Sol. in sat.  $Ba(NO_3)_2 + Aq$  without causing

Insol. in Ca(NO₃)₂+Aq.

Sol. in Mg(NO₃)₂+Aq with pptn. of small

portion of Mg(NO₃)₂.

Sol. in sat. KNO₃+Aq, the mixed solution having the power to dissolve more KNO₃, and the solubility of the KNO₃ apparently increasing in the same ratio as the amount of NaCl present. (Fourcroy and Vauquelin,

Sol. in sat. KNO₃+Aq; the solution thus

obtained at 18.13° contains 40.34% of the mixed salts, or 100 pts. H₂O dissolve 67.72 pts. of the mixed salts, viz., 38.25 pts. NaCl and 29.45 pts. KNO₃. (Karsten.)

Solubility of NaCl in KNO₃+Aq at 25°. KNO₃=g. KNO₃ in 100 cc. of solution. NaCl=g. mol. per l.

KNO₃	NaCl	KNO ₃	NaCl
0	5.44	12	5.28
4	5.52	16	5.21
8	5.45	20	5.15

(Ritzel, Z. Krist. 1911, **49.** 152.) (See also under  $KNO_3$ .)

### Solubinty of NaCl in NaNO3+Aq at 15.5°.

~	g. per 100 cc. sat. solution				
Sp. gr.	NaNO:	' NaCl	H ₂ O		
1.2025	0	31.78	88.47		
$1.2305 \\ 1.2580$	$7.53 \\ 13.24$	$\begin{array}{c c} 27.89 \\ 26.31 \end{array}$	$87.63 \\ 86.25$		
$\frac{1.2810}{1.3090}$	21.58 28.18	23.98 22.30	$82.66 \\ 80.42$		
1.3345	33.80	20.40	79.25		
$1.3465 \\ 1.3465$	37.88* 37.64*	19.40* 19.67*	77.37 77.34		

*Solutions sat. with both salts.
(Bodländer, Z. phys. Ch. 1891, 1. 361.)

Sol. in sat.  $NaNO_3+Aq$  with pptn. of  $NaNO_3$ .

Solubility of NaCl in NaNO $_3$ +Aq. Conc. = concentration of NaNO $_3$  in g. mol. per 1,000 g.  $\rm H_2O$ .

NaCl=g. NaCl dissolved in 1,000 g. H₂O.

t°	Conc.	NaCl	Molecular solubility
0	0 0.25 0.50	359.65 355.90 351.20 342.15	6.16 6.09 6.02 5.86
25	0 0.25 0.50 1 2	362.95 356.65 352.30 343.65 325.50	6.20 6.11 6.03 5.88 5.58

(Armstrong and Eyre, Proc. R. Soc. 1910, A. **84.** 127.)

(See also under NaNO₃.)

Sol. in sat, KCl+Aq with elevation of temp. (Vauquelin.)

100 g. H₂O sat. with KCl dissolve 0.494 gram-equivalent NaCl at 25°. (Fuler, Z. phys. Ch. 1904, **49**. 315.)

	Solubility	in	KC1-	+Aq	at	t°	
--	------------	----	------	-----	----	----	--

	Sat. solution contains			
t°	% NaCl	% KCl		
$-20 \\ -10$	21.3 21.3	5.7 6.7		
0	21.3	7.7		
+10	21.3	8.6		
$\begin{array}{c} -10 \\ 20 \\ 30 \end{array}$	21.3 21.3 21.3	9.6 10.6		
40	21.3	11.5		
50	21.3	12.5		
60	21.3	13.5		
70	21.3	14.4		
80	20.7	15.8		
90	19.9	17.8		
100	18.8	19.8		
110	17.2	22.4		
120	16.5	24.1		
130	16.4	25.1		
140	16.4	26.1		
150	16.4	27.1		
160 170	16.4 16.4	$\frac{28.0}{29.0}$		
180	16.4	30.0		

(Étard. A. ch. 1894, (7) **3.** 277.) (See under KCl.)

100 pts. NaCl+NaI+Aq sat. at 18-19° contain 62.33 pts. of the two salts. (v. Hauer.)

Sol. in sat.  $Al_2(SO_4)_3+Aq$  with no pptn. (Vauquelin.)

Sol. in sat. (NH₄)₂SO₄+Aq with pptn. of considerable amt. of (NH₄)₂SO₄+Aq. (Vauquelin.)

Sol. in sat. CuSO₄+Aq. 100 pts. H₂O dissolve 36.71 pts. NaCl and 7.19 pts. K₂SO₄ at 15°, and solution has sp. gr. 1.24. (Page and Keightey.)

NaCl is sol. in K₂SO₄+Aq, and vice versa,

without separation of a salt.

100 pts.  $H_2O$  dissolve 7.03 pts.  $K_2SO_4$  and 37.60 pts. NaCl, when warmed and cooled to 14°. (Rüdorff.)

Solubility of NaCl and K₂SO₄ in H₂O at t°. 100 pts. H₂O contain pts. NaCl, K₂SO₄, and KCl.

t°	Pts. NaCl	Pts. K ₂ SO ₄	Pts. KCl
10	33.43	8.10	3.18
20	34.01	8.90	3.06
30	34.56	9.56	2.95
40	35.16	10.38	2.81
50	35.77	11.07	2.84
60	36.40	11.93	2.72
70	36.64	12.82	3.20
80	36.04	12.26	5.06
90	35.86	12.42	6.98
100	35.63	12.56	8.79

(Precht and Wittgen, B. 15, 1666,)

Sol. in cold sat. NaSO₄+Aq at first without pptn., afterwards Na₂SO₄ separates out. (Karsten.)

Solubility in Na₂SO₄+Aq containing 7.45 g. Na₂SO₄ in 100 g. of the solution.

t°	g. NaCl in 100 g. of the solution
14.80	23.30
$17.90 \\ 24.85$	23.33
$\frac{24.85}{25.60}$	$23.45 \\ 23.485$
27.75	23.525
$\frac{32.18}{34.28}$	$23.55 \\ 23.68$

(Marie and Marquis, C. R. 1903, 136, 684.) See also under Na2SO4.

Sol. in sat. ZnSO₄+Aq with separation of

Na₂SO₄, ZnSO₄. (Karsten.) Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, 20. 829.)

12.2 pts. NaCl are sol, in 1 pt. hydrazine at 12.5–13°. (de Bruyn, R. t. c. 1899, **18.** 297.) 100 g. hydroxylamine dissolve 14.7 g. NaCl at 17.5°. (de Bruyn, Z. phys. Ch. 1892, 10. 782.)

100 g. 95% formic acid dissolve 5.8 g. at 19.7°. (Aschan, Ch. Ztg. 1913, 37. 1117.) Solubility in alcohol.

100 pts. alcohol of 0.900 sp. gr. dissolve 5.8 pts. NaCl; of 0.872 sp. gr. dissolve 3.67 pts. NaCl; of 0.834 sp. gr. dissolve 0.5 pt. NaCl. (Kirwan.)

100 pts, alcohol containing given % by weight of absolute alcohol dissolve pts. NaCl at 25°.

%	Pts.	%	Pts.	%	Pts.
alcohol	NaCl	alcohol	NaCl	alcohol	NaCl
0.0 8.4 16.7 25.1	35 70 30.49 24.84 19.30	33 4 41 8 50 2 58.5	16 08 13 28 11 28 7.96	63 9 75 2 83.6	5 95 3 75 1.59

(Kopp, A. 40. 206.)

100 pts. alcohol of 75% by weight dissolve at: 15.2° 38° 71.5°

0.736 100 pts. alcohol of 95.5% by weight dissolve at:

0.700

77.2° 15° 0.174 0.171 pts. NaCl. (Wagner, A. 64. 293.)

1.033 pts. NaCl.

100 pts. alcohol containing % alcohol by weight dissolve pts. NaCl at 15°, or 100 pts. solution contain % NaCl.

40 % alcohol, 20 30 10 22.55 17.51 13.25 pts. NaCl, 28.53 11.7 % NaCl, 22.218.4 14.9

> 60 80 % alcohol, 50 5.93 1.22 pts. NaCl, 9.77 1.2 % NaCl. 8.9 5.6(Schiff, A. 118, 365.)

Solubility of NaCl in alcohol increases with the temperature.

100 pts. (by weight) of alcohol of 0.9282 sp. gr. (30.5% by weight) dissolve at:

40 10° 13° 23° 19.9 11.43 11.1 11.9 12.3 pts. NaCl,

> 300 44° 51° 12.5 13.8 14.1 pts. NaCl. 13.1 (Gerardin, A. ch. (4) 5. 146.)

#### Solubility in alcohol at 13°.

	100 ccm. contain in g.			
Sp. gr.	Alcohol	Water	Salt	
1.2030 1.1348 1.1144 1.0970 1.0698 1.0295 6.9880 0.9445 0.9075	0 11.81 15.99 19.39 24.95 32.33 40.33 49.28 57.91	88.70 78.41 74.64 71.45 65.80 57.96 49.34 38.54 29.37	31.60 23.26 20.81 18.86 16.23 12.66 9.13 5.93 3.47	
0.8700 0.8400	$63.86 \\ 72.26$	21.62 11.24	$\begin{array}{c} 1.52 \\ 0.50 \end{array}$	

(Bodländer, Z. phys. Ch. 7. 317.)

#### Solubility in ethyl alcohol+Aq at 30°.

wt. %	g. NaCl 1	per 100 g.	wt. %	g. NaCl	per 100 g.
alcohol	solution	H ₂ O	alcohol	solution	H ₂ O
0 5 10 20 30 40	26.50 24.59 22.56 19.05 15.67 12.45	36.05 34.29 32.57 29.40 26.53 23.70	50 60 70 80 90	9.34 6.36 3.36 1.56 0.43	20.60 16.96 12.75 7.95 4.30

(Taylor, J. phys. Ch. 1897, 1. 723.)

#### Solubility in ethyl alcohol + Ag at 40°.

wt. % alcohol	g. NaCl per 100 g.		wt. %	g. NaCl	+100 g.
	solution	H ₂ O	1 - 1 1 - 1	solution	H ₂ O
0 5 10 20 30 40	26.68 24.79 22.90 19.46 16.02 12.75	36.38 34.69 33.00 30.20 27.25 24.37	50 60 70 80 90	9.67 6.65 3.87 1.69 0.50	21.42 17.82 13.10 8.68 5.10

(Taylor, l. c.)

Solubility of NaCl in ethyl alcohol+Aq at 28°.

% C₂H₅OH	% H ₂ O	% NaCl	С2Н6ОН	% H.O	% NaCi
0 3.8 7.7 16.1 25.3 35.0	73.53 71.6 69.7 64.6 58.9 52.5	26.47 24.6 22.6 19.3 15.8	45.35 56.2 67.4 78.8 89.6	45.35 37.5 28.9 19.7	9.3 6.3 3.7 1.5 0.4

(Fontein, Z. phys. Ch. 1904, 73. 212.)

Solubility of NaCl in ethyl alcohol + Aq at 25° Conc. = concentration of alcohol in g. mol. per 1,000 g. H₂O. NaC g. n 1,0

g. n 1,000 g. H₂O.

Conc.	NaCl	Molecular solubility
0	359.65	6.16
0.25	355.15	6.08
0.50	349.65	5.98
1	337.80	5.79
3	301.60	5.16

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) **84.** 127.)

100 pts. absolute methyl alcohol dissolve 1.41 pts. at 18.5°; 100 pts. absolute ethyl alcohol dissolve 0.065 pt. at 18.5°. (de Bruyn, Z. phys. Ch. 10. 782.)

100 pts. wood-spirit of 40% (by weight) dissolve 13.0 pts. NaCl. (Schiff, A. 118. 365.) 100 g. NaCl+CH₃OH contain 0.1 g. NaCl at the critical temp. (Centnerszwer, Z. phys. Ch. 1910, **72.** 437.)

Solubility of NaCl in methyl alcohol+Aq. at 25°.

Conc. = concentration of alcohol in g. mol. per 1,000 g. H₂O.  $NaCl = g. in 1,000 g. H_2O.$ 

11001	11001 8,111 1,000 8, 1-101					
t°	Conc.	NaCl	Molecular solubility			
0°	0 0.25 0.50	357.75 355.20 353.10 347.45	6.13 6.08 6.05 5.95			
25°	0 0.25 0.50 1 3	362.95 359.40 357.60 353.20 336.25	6.20 6.14 6.11 6.04 5.75			

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) 84. 127.)

Traces dissolve in propyl alcohol. (Schlamp Z. phys. Ch. 1894, 14. 276.)

Solubility of NaCl in propyl alcohol+Aq. at 25°.

Conc. = concentration of alcohol in g. mol. per 1,000 g. H₂O. NaCl = g. NaCl in 1,000 g.  $H_2O$ .

t°	Conc.	NaCl	Molecu lar solubility
0	0	357.75	6.13
	0.25	351.20	6.01
	0.50	345.55	5.91
25	0	362.95	6.20
	0.25	355.75	6.10
	0.50	350.20	6.00

(Armstrong and Eyre, Proc. R. Soc. 1910, A. **84.** 127.)

Solubility of NaCl in propyl alcohol+Aq at 23- 25°.

NaCi	С3Н7ОН	H₂()	% NaCl	C ₈ H ₇ OH	1% H₂O
0.55	87.7	11.75	14.38	5.39	80.23
2.23	51.57	46.20	15.42	5.11	79.47
3.55	18.99	77.46	16.38	4.47	79.14
3.90	14.78	81.32	18.08	3.83	78.09
5.27	12.77	81.96	20.12	3.27	76.61
8.04	9.49	82.47	22.35	2.64	75.01
10.49	7.79	81.72	24.50	2.13	75.37
12.20	6.57	81.23	24.90	2.3	72.80

(Frankforter and Frary, J. phys. Ch. 1913, **17.** 402.)

100 g. sat. solution of NaCl in 99.6% propy alcohol contain 0.04 g. NaCl at 25°. (Frankforter and Frary.)

Insol. in fusel oil. (Gooch, Am. Ch. J. 9.

Solubility of NaCl in amyl alcohol+Aq. Liquid phases conjugated at 28°.

Upper layer			Lower layer		
NaCl	amyl alcohol	H ₂ O	NaCl	amyl alcohol	H ₂ O
0.05	95.45 94.1 92.9 91.6 90.2	4.5 5.9 7.1 8.4 9.8	26.36 19 12.7 6.2 0	$egin{array}{c} 0.22 \\ 0.4 \\ 0.8 \\ 1.5 \\ 2.3 \\ \end{array}$	73.42 80.4 86.5 92.3 97.7

(Fontein, Z. phys. Ch. 1910, 73, 226.)

At room temp. 1 pt. by weight is sol. in: 75 pts. methyl alcohol D¹⁵ 0.7990. 566 " ethyl 3000 " propyl D15 0.8100. D15 0.8160. (Rohland, Z. anorg. 1898, 18. 325.)

100 g. methyl alcohol dissolve 1.31 g. NaCl at 25°.

100 g. ethyl alcohol dissolve 0.065 g. NaCl at  $25^{\circ}$ .

100 g. propyl alcohol dissolve 0.012 g. NaCl at  $25^{\circ}$ .

100 g. isoamyl alcohol dissolve 0.002 g. NaCl at 25°.

(Turner and Bissett, Chem. Soc. 1913, 103. 1909.)

Solubility of NaCl in ethyl+amyl alcohol at 28°.

1	Upper layer			ower laye	r
% NaCl	% amyl alcohol	% ethyl alcohol	% NaCl	alcohol	% ethyl
0.05 0.10 0.25 0.58 1.23 2.81 6.56	95.45 86.6 75.4 59.9 47.0 31.6 17.7	0 9.5 19.1 30.9 38.7 44.8 41.5	26.35 25.30 24.02 22.64 21.19 19.26 15.81	0.22 0.25 0.3 0.4 0.5 1.3 3.69	0 1.9 9.5 6.9 10.3 15.2 22.1

Critical solution: amyl alcohol, 10%; ethyl alcohol, 32.5%; NaCl, 11%;  $H_2O$ , 46.5%.

(Fontein, Z. phys. Ch. 1910, 73. 244.)

Ether ppts. NaCl from NaCl+Aq. (Gmelin.)

Very sl. sol. in a mixture of equal pts. of absolute alcohol and ether. (Berzelius.)

500 mg. NaCl treated with above mixture yielded only 0.5 mg. to the liquid. (Lawrence Smith, Am. J. Sci. (2) 16. 57.)

100 pts. of a mixture of 1 pt. 96% alcohol and 1 pt. 98% ether dissolve 0.11 pt. NaCl. (Mayer, A. 98. 205.)

Insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. **6.** 184; Eidmann, C. C. **1899,** II. 1014.)

Solubility in acetone +Aq at 20°.

A=ccm. ace tone in 100 ccm. of the solvent. NaCl=millimols NaCl in 100 ccm. of the solution.

A	NaCl	
0	537.9	
10	464.6	
20	394.8	
30	330.1	
32 )	lower layer 308.5	
to 2 phases		
87	upper layer 7.7	
87 J 88	7.3	
89	5.6	
90	4.3	
100		

^{&#}x27;(Herz and Knoch, Z. anorg. 1904, 41. 318.)

Solubility in acetone+Aq at 20°.

% NaCl	Ç, H₂O	% acetone
25.9	73.06	1.04
24.19	71.18	4.03
25.06	72.00	2.94
20.85	66.78	12.37
20.17	66.01	13.82
18.32	6o.16	18.52
20.44	66.19	13.37
17.89	52.21	19.90
0.32	€3.92	85.76
0.19	10.82	88.99
0 15	9.62	90.23
0.12	8.94	90.94

(Frankforter and Cohen, J. Am. Chem. Soc. 1914, 36. 1127.)

Solubility in glycol at 14.8°=31.7%. (de Coninck, Belg. Acad. Bull. **1905**. 275.) Sol. in glycerine. (Pelouze.)

Solubility of NaCl in glycerine+Aq at 25°. G=g. glycerine in 100 g. glycerine+Aq. NaCl=millimols NaCl in 100 cc. of the solution.

G	NaCl	Sp. gr.
0 13.28 25.98 45.36 54.23 83.84	545.6 501.1 448.4 370.2 333.9 220.8 167.1	1.1960 1.2048 1.2133 1.2283 1.2381 1.2696 1.2964

(Herz and Knoch, Z. anorg. 1905, 45. 267.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.)

Insol. in methyl acetate. (Naumann, B. 1909, **42**. 3790); ethyl acetate. (Naumann, B. 1904, **37**. 3602.)

Solubility of NaCl in solutions of HgCl₂ in ethyl acetate.

100 mols. ethyl acetate dissolve					
Mols. HgCl ₂	Mols. NaCl	Mols. HgCl2	Mols. NaCl		
40.0	20.0	18.0	5.1		
$\begin{array}{c} 38.1 \\ 36.0 \end{array}$	$\begin{array}{c} 19.6 \\ 19.2 \end{array}$	16.4 14.1	$\begin{array}{c c} 4.3 \\ 3.8 \end{array}$		
$\frac{34.9}{34.8}$	18.5 18.3	$13.2 \\ 12.4$	$\begin{array}{c} 2.9 \\ 2.3 \end{array}$		
$\frac{32.1}{28.0}$	13.8 9.1	$12.0 \\ 12.2$	1.6 1.3		
$\begin{array}{c} 23.8 \\ 22.8 \\ 22.9 \end{array}$	7.0 7.0	12.9	0.8		
22.9	7.0		• • •		

(Linebarger, Am. Ch. J. 1894, 16. 215.)

#### Solubility of NaCl in urea + Aq at 25°.

% urea	% NaCl	% urea	% NaCl
0 5 9.6 13	31.80 30.63 29.05 28.46	18 23 28	27.65 27.24 26.56

(Ritzel, Z. Kryst. Min. 1911, 49. 152.)

Solubility of NaCl in urea + Aq at (?)°. g=g. urea in 100 cc. of solution.

sol.=increase of solubility of NaCl in g. per 100 cc. of the solution.

g.	sol.	g.	sol.
15 20 25	0.044 0.124 0.234 0.372 0.529	30 35 40 45 50	0.709 0.910 1.134 1.370 1.602

(Fastert, N. Jahrb. Min. Beil. Bd. 1912, 23. 286.)

#### Solubility of NaCl in formamide+Aq at 25°.

% HCONH2	% NaCl	% HCONH2	% NaCl
0 2.3 5.3 8	31.80 30.98 30.86 30.40	11 15 18.8	29.11 28.52 27.76

(Ritzel, Z. Kryst. Min. 1911, 49. 152.)

Insol. in anhydrous and in 97% pyridine. Very sl. sol. in 95% pyridine+Ao. Sl. sol. in 93% pyridine+Aq. (Kahlenberg, J. Am. Chem. Soc. 1908, **30.** 1107.)

Insol. in oil of turpentine. (T. S. Hunt, Am. J. Sci. (2) 19. 417.)

100 g. H₂O dissolve 236.3 g. sugar+42.3 g. NaCl at 31.25°, or 100 g. sat. aq. solution contain 62.17 g. sugar+11.13 g. NaCl. (Köhler, Z. Ver. Zuckerind, 1897, **47**. 447.)

Solubility of NaCl in glucose+Aq at 25°. Conc. = concentration of glucose+Aq in g. mol. per 1,000 g. H₂O.

Sol. = Solubility in 1,000 g. H₂O.

Conc.	Sol.	Molecular solubility
0	361.40	6.18
9,25	364.15	6.22
0.50	364.30	6.23
1.0	369.90	6.32

(Armstrong and Eyre, Proc. R. Soc. 1910, (A) **84.** 127.)

Min. Halite.

+2H₂O. Efflorescent below 0°; sl. deliquescent at temps. above 0°. (Fuchs, **1826.**)

The solubility in  $H_2O$  at  $-12.25^{\circ}$  corresponds to 32.9 pts. of NaCl per 100 pts.  $H_2O$ . (Matignon, C. R. 1909, **148**. 551.)

Sodium stannic chloride, 2NaCl, SnCl₄+6H₂O.

See Chlorostannate, sodium.

Sodium thallic chloride, 3NaCl, TlCl₃+ 12H₂O.

Very sol. in H₂O. (Pratt, Am. J. Sci. 1895, (3) 49. 404.)

Sodium uranium chloride, 2NaCl, UCl4.

Non volatile and not hydroscopic. (Moissan, C. R. 1896, 122, 1089.)

Sol. in H₂O. (Colani, A. ch. 1907, (8) **12.** 59.)

Sodium uranyl chloride, Na₂(UO₂)Cl₄.

As K salt. (Aloy, Bull. Soc. 1899, (3) 21. 264.)

Sodium zinc chloride, 2NaCl, ZnCl₂+3H₂O. Deliquescent. Easily sol. in H₂O. (Schindler, Mag. Pharm. **36.** 48.)

Sodium zirconium chloride, 2NaCl, ZrCl₄. (Paykull.)

Sodium chloroiodide, NaCl₄I+2H₂O.

Easily decomp. by alcohol or ether. (Wells and Wheeler, Sill. Am. J. 143.42.)

Sodium fluoride, NaF.

Very sl. sol. in cold, and not more abundantly in boiling  $H_2O$ . (Rose.)

106 pts.  $H_2O$  dissolve 4.78 pts. at 16°. (Berzelius.)

100 pts. H₂O dissolve 4 pts. at 15°. (Fremy, A. ch. (3) **47.** 32.)

Sp. gr. of aqueous solutions containing in 100 pts. H₂O:

1.1081 2.2162 3.3243 pts. NaF. 1.0110 1.0221 1.0333

1.0110 1.0221 1.0333 Sat. solution has sp. gr. 1.0486. (Gerlach, Z. anal. **27.** 277.)

Sp. gr. of solution sat. at 18°=1.044, containing 4.3% NaF. (Mylius and Funk, B. 1897, 30. 1718.)

Solubility of NaF in HF+Aq at 21°.

g. per 100	00 g. H ₂ O	g. per 100	0 g. H ₂ O
HF	NaF	HF	NaF
0.0 10.0 45.8 56.5	41.7 41.4 22.5 22.7	83.8 129.7 596.4 777.4	22.9 23.8 48.8 81.7

(Ditte, C. R. 1896, **123.** 1282.)

Easily sol. in liquid HF. (Franklin, Z. anorg. 1905, 46. 2.)

Sl. sol. in conc. KC₂H₃O₂+Aq. (Stromeyer.)

Almost insol. in alcohol. (Berzelius, Pogg. 1. 13.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

#### Sodium hydrogen fluoride, NaHF₂.

Rather difficultly sol. in cold, more easily in hot H₂O. (Berzelius, Pogg. 1. 13.)

Sodium tantalum fluoride.

See Fluotantalate, sodium.

Sodium tin (stannous) fluoride, 2NaF, 3SnF₂. Sol. in H₂O. (Wagner, B. 19, 896.)

Sodium tin (stannic) fluoride. See Fluostannate, sodium.

Sodium tantalum fluoride. See Fluotantalate, sodium.

Sodium tellurium fluoride, NaF, TeF₄. Decomp. by H₂O. (Berzelius.)

Sodium titanium fluoride. See Fluotitanate, sodium.

Sodium tungstyl fluoride.

See Fluoxytungstate, sodium.

Sodium uranium fluoride, NaF, UF₄ (?). Somewhat soluble in H₂O. (Bolton.)

Sodium uranyl fluoride.

See Fluoxyuranate, sodium.

Sodium vanadium sesquifluoride. See Fluovanadate, sodium.

Sodium zinc fluoride, NaF, ZnF₂. Sol. in H₂O. (R. Wagner.)

Sodium zirconium fluoride, 5NaF, 2ZrF₄.

See Fluozirconate, sodium.

Sodium fluoride vanadium pentoxide. See Fluoxyvanadate, sodium.

Sodium hydrazide, NH₂, NHNa.

Decomp. by H₂O with explosive violence. Decomp. by alcohol. (Schlenk, B. 1915, **48**. 670.)

Sodium hydride, NaH.

Decomp, by H₂O and by acids.

Sol. in fused Na or Na amalgam. Insol. in liquid NH₃. Insol. in CS₂, CCl₄, C₆H₆ and terebenthene. (Moissan, C. R. 1902, **134**. 73.)

Na₂H₄. Decomp. violently by H₂O.

Sodium hydrosulphide, NaSH.

Deliquescent. Sol. in H₂O and alcohol. +3H₂O. Difficultly sol. in H₂O. (Damoiseau, C. C. 1885. 36.)

Sodium hydroxide, NaOH.

Very deliquescent. 100 pts. NaOH under a bell jar with H₂O at 16-20° absorb 552 pts. in 56 days. (Mulder.)

in 56 days. (Mulder.)
Very sol. in H₂O with evolution of much heat. Sol. in 0.47 pt. H₂O. (Bineau, C. R. 41. 509.)

Solubility of NaOH in H.O.

	g. per			
t, `	Solu- tion	H ₂ O	Solid phase	
-7.8	8.0	8.7	Ice	
20	13.0	19.1	"	
-28	19.0	23.5	Ice + NaOH.7H2O	
24	22.2	28.5	NaOH.7H ₂ O+NaOH.5H ₂ O	
-17.7	24.5	32.5	NaOH.5H2O + NaOH.4H2O	
0	29.6	42.0	N 4OH.4H2O	
+ 5	32.2	47.5	NaOH.4H-O +NaOH.31/2H2O	
10	34.0	51.5	NaOH.314H2O	
15 5	38 9	63.53	" f. pt.	
ő	15.5	83.5	NaOH.3½H2O+NaOH 2H2O	
	50.7	103.0	NaOH.2H ₂ O +NaOH.H ₂ O	
20	52.2	109	NaOH.H ₂ O [#]	
30	54.3	119	"	
40	56.3	129	"	
50	59.2	145	"	
60	63.5	174	**	
64.3	69.0	222.3	" f. pt.	
61.8	74.2	288	NaOH.H2O+NaOH	
80	75.8	313	NaOH (?)	
110	78.5	365	"	
192	83.9	521	61	

(Pickering, Chem. Soc. 1893, 63. 890; Mylius and Funk, W. A. B. 1900, 3. 450. Calc. by Seidell, Solubilities, 2d Edition, p. 653.)

100 g. sat. NaOH+Aq at 15° contain 46.36 g. NaOH. (de Forcrand, C. R. 149. 1344.)

Sp. gr. and b-pt of NaOH +Aq.

% Na ₂ O	Sp. gr.	Bpt.	% Na ₂ O	Sp. gr.	Bpt.
4.7	1 06	100.56°	31 0	1.44	120.00°
9.0	1 12	101.11	34 0	1.47	123.89
13.0	1 18	102.78	36.8	1.50	129.44
16.0	1 23	104.44	41 2	1.56	137.78
9.0	1 29	106.66	46 6	1.63	148.89
23.0	1 32	108.89	53.8	1.72	204.44
26.0	1 36	112.78	63.6	1.85	315.56
29.0	1 40	116.66	77.8	2.00	red heat.

(Dalton.)

Sp. gr. of NaOH +Aq at 15°.

% Na ₂ O	Sp. gr.	% Na ₂ O	Sp. gr.	% Na ₂ O	Sp. gr.
0 302	1.0040	10.879	1.1630	21.154	1.3053
0.601	1.0081	11.484	1.1734	21.758	1.3125
1 209	1.0163	12.088	1:1841	21.894	1.3143
1 813	1.0246	12.692	1.1948	22.363	1.3198
2 418	1.0330	13.297	1.2058	22.967	1.3273
3 022	1.0414	13 901	1.2178	23.572	1.3349
3 626	1 0500	14.506	1.2280	24.176	1.3426
4 231	1 0587	15.110	1.2392	24.780	1.3505
4 835	1.0675	15.714	1.2453	25.385	1.3586
5.440	1.0764	16.319	1.2515	25.989	1.3668
6.044	1.0855	16.923	1.2578	26.594	1.3751
6.648	1.0948	17.528	1.2642	27.200	1.3836
7.253	1.1042	18.132	1.2708	27.802	1.3923
7.857	1.1137	18.730	1.2775	28.407	1.4011
8.462 9.066 9.670 10.275	1.1233 1.1330 1.1428 1.1528	19.341 19.954 20.550	1.2843 1.2912 1.2982	29.011 29.616 30.220	1.4101 1.4193 1.4285

(Tünnerman, N. J. Pharm. 18. 2,)

Sp.	gr.	of	NaOH	+Aa.

% Na ₂ O	Sp. gr.	% Na ₂ O	Sp. gr.	% Na ₂ O	Sp. gr.
2.07 4.02 5.89 7.69 9.43 11.10 12.81	1.02 1.04 1.06 1.08 1.10 1.12 1.14	14.73 16.73 18.71 20.66 22.58 24.47 26.33	1.16 1.18 1.20 1.22 1.24 1.26 1.28	28.16 29.96 31.67 32.40 33.08 34.41	1.30 1.32 1.34 1.35 1.36 1.38

(Richter.)

Sp. gr. of NaOH+Aq at 15°.

5p. gr. of NaOH+Aq at 15.					
%	Sp. gr. if % is Na ₂ O	Sp. gr. if % is NaOH	%	Sp. gr. 1f % is Na ₂ O	Sp. gr. if % is NaOH
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Nazo 1.015 1.020 1.043 1.058 1.074 1.089 1.104 1.119 1.132 1.145 1.160 1.175 1.203 1.219 1.233 1.245 1.258 1.270 1.285	1.012 1.023 1.035 1.046 1.059 1.070 1.081 1.092 1.103 1.115 1.126 1.137 1.148 1.159 1.170 1.181 1.192 1.202 1.202	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51	1.450 1.462 1.475 1.488 1.500 1.515 1.530 1.543 1.570 1.583 1.570 1.623 1.637 1.650 1.663 1.663 1.670 1.690	NaOH  1.351 1.363 1.374 1.384 1.395 1.405 1.415 1.426 1.437 1.456 1.468 1.478 1.488 1.499 1.508 1.519 1.529 1.550
21 22 23 24 25 26 27 28 29 30 31	1.300 1.315 1.329 1.341 1.355 1.369 1.381 1.395 1.410 1.422 1.438	1.236 1.247 1.258 1.269 1.279 1.300 1.310 1.321 1.332 1.343	52 53 54 55 56 57 58 59 60 70	1.719 1.730 1.745 1.760 1.770 1.785 1.800 1.815 1.830	1.560 1.570 1.580 1.591 1.601 1.611 1.622 1.633 1.643 1.748

(Gerlach, Z. anal. 8. 279, calculated from Schiff, A. 107. 300.)

Sp. gr. of NaOH+Aq at 15°.

% NaOH	Sp. gr. ·	% NaOH	Sp. gr.
0.61	1.0070	4.0	1.0435
0.9	1.0105	4.32	1.0473
1.0	1.0107	4.64	1.0511
1.2	1.0141	4.96	1.0549
1.6	1.0177	5.29	1.0588
2.0	1.0213	5.58	1.0627
2.36	1.0249	5.87	1.0667
2.71	1.0286	6.21	1.0706
3.0	1.0318	6.55	1.0746
3.35	1.0360	6.76	1.0787
3.67	1.0397	7.31	1.0827

Sp. gr. of NaOH+Aq at 15°-Continued.

		11	1 ~
% NaOH	Sp. gr.	% NaOH	Sp. gr.
7.66	1.0868	24.81	1.2748
8.0	1.0909	25.3	1.2800
8.34	1.0951	25.8	1.2857
8.68	1.0992	26.31	1.2905
9.0	1.1030	26.83	1.2973
9.42	1.1077	27.31	1.3032
9.74	1.1120	27.8	1.3091
10.0	1.1158	28.31	1.3151
10.5	1.1195	28.83	1.2311
10.97	1.1250	29.38	1.3272
11.42	1.1294	30.0	1.3339
11.84	1.1339	30.57	1.3395
12.24	1.1383	31.22	1.3458
12.64	1.1423	31.85	1.3521
13.0	1.1474	32.47	1.3585
13.55	1.1520	33.0	1.3642
13.86	1.1566	33.69	1.3714
14.5	1.1631	34.38	1.3780
14.75	1.1662	35.0	1.3858
15.0	1.1697	35.65	1.3913
15.5	1.1755	36.25	1.3981
15.91	1.1803	36.86	1.4049
16.38	1.1852	37.47	1.4118
16.77	1.1901	38.13	1.4187
17.22	1.1950	38.8	1.4267
17.67	1.2000	39.39	1.4328
17.12	1.2050	40.0	1.4410
18.58	1.2101	40.75	1.4472
19.0	1.2148	41.41	1.4545
19.58	1.2202	42.12	1.4619
20.0	1.2250	42.83	1.4694
20.59	1.2308	43.66	1.4769
21.0	1.2361	44.38	1.4845
21.42	1.2414	45.27	1.4922
22.0	1.2462	46.15	1.5000
22.64	1.2522	46.87	1.5079
23.15	1.2576	47.60	1.5158
23.67	1.2632	48.81	1.5238
24.24	1.2687	49.02	1.531

Hager, Comm. 1883.)

The sp. gr. increases or diminishes for each degree as follows:

% NaOH	Corr.
40–50	0.00045
30–39	0.0004
20–29	0.0003
10–19	0.0002

Hager, Comm. 1883.)

Sp. gr. of NaOH+Aq at 15°.

% NaOH	Sp. gr.	% NaOH	Sp. gr.
2.5 5 10 . 15	1.0280 1.0568 1.1131 1.1790	20 25 30	1.2262 1.2823 1.3374

(Kohlrausch, W. Ann. 1879.)

Sp. gr of NaOH+Aq at 20° containing 2 mols. NaOH to 100 mols.  $H_2O=1.04712$ . (Nicol, Phil. Mag. (5) **16**. 122.)

Sp. gr. of NaOH+Aq at 15°

% Na ₂ O	Sp. gr.	% Na ₂ O	Sp. gr.
5 10 15 20	1.069 1.139 1.210 1.281	25 30 35	1.353 1.426 1.500

(Hager, Adjumenta Varia, Leipsic, 1876.)

Sp. gr. of NaOH+Aq at 15°.

1 6							
NaOH	Sp. gr	NaOH	Sp. gr.	NaOH	Sp. gr.		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.999180 1.010611 1.021920 1.033109 1.044317 1.055463 1.066602 1.077733 1.088856 1.099969 1.111069 1.122165 1.133250 1.144353 1.155450	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1.188707 1.199783 1.210861 1.221933 1.233062 1.244119 1.255134 1.266092 1.277063 1.287090 1.298877 1.309708 1.320496 1.331213 1.331213 1.341879	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	1.373453 1.383815 1.394092 1.404279 1.414363 1.424353 1.434299 1.444161 1.453929 1.463623 1.473249 1.482850 1.492406 1.501927 1.501927		
$\begin{array}{c} 15 \\ 16 \end{array}$	$1.166538 \\ 1.177619$	$\begin{vmatrix} 32 \\ 33 \end{vmatrix}$	1.352472 1.362991	49 50	1.520868 1.530282		

(Pickering, Phil. Mag. 1894, (5) 37. 373.)

Sp. gr. of a N solution of NaOH+Aq at  $18^{\circ}/18^{\circ} = 1.0418$ . (Loomis, W. Ann. 1896, **60.** 550.)

Sp. gr. of NaOH+Aq.

3.82 8.73 3.67 %NaOH Sp. gr. 20°/20° 1.0968 1.0416 1.0464 (Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 272.)

Sp. gr. of NaOH+Aq at t°. H₂O at 4°=1. The solutions contained a small amount of Na₂CO₃.

01 1	142000		
t°	% NaOH	% Na ₂ CO ₃	Sp. gr.
60	22.57	0.61	1.2312
	20.04	0.48	1.2026
	17.04	0.35	1.1692
	14.16	0.38	1.1374
	10.92	0.36	1.1020
80	22.81	0.55	1.2207
	14.01	0.42	1.1232

(Wegscheider and Walter, M. 1905, 26. 691.) (Wegscheider and Walter, M. 1905, 26. 692.)

Sat. NaOH+Aq hoils at 215.5°. (Griffiths.)

Sat NaOH+Aq boils at 310°. (Gerlach, Z. anal. 26. 427.)

NaOH +Aq of 1.500 sp. gr. contains 36.8% NaCH and boils at 150°.

B.-pt. c. NaOH+Aq containing pts. NaOH to 100 pts. H₂O.

Bpt.	Pts. NaOH	Bpt.	Pts. NaOH
105°	17	210°	425.5
110	30	215	475.5
115	41	220	526.3
120	<b>51</b>	225	583.3
125	60.1	230	645.2
130	70.1	235	714.3
135	81.1	240	800
140	93.5	245	888.8
145	106.5	250	1000
150	120.4	255	1142.8
155	134.5	260	1333.3
160	150.8	265	1534
165	168.8	270	1739.1
170	187	275	2000
175	208.3	280	2353
180	230	285	2857
185	254.5	290	3571.4
190	281.7	300	4651.1
195	312.3	305	6451.6
	345	310	
200			10526.3
205	380.9	314	22222.2

(Gerlach, Z. anal. 26, 463.)

Insol. in liquid NH3. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Sp. gr. of Na₂CO₃+NaOH+Aq at 11.5°.  $H_2O$  at  $4^\circ = 1$ .

% Na ₂ CO ₃	% NaOH	Sp. gr.
3.845	14.10	1.196
3.171	13.63	1.182
2.204	12.51	1.164
1.642	10.17	1.136
0.2686	16.64	1.186

(Wegscheider and Walter, M. 1905, 26. 693.)

Sp. gr. of Na₂CO₃+NaOH+Aq at t°. H₂O at  $4^{\circ} = 1$ .

t°	% Na ₂ CO ₃	% NaOH	Sp. gr.		
60°	15.38	10.63	1.2621		
	13.79	9.52	1.2302		
	12.10	8.29	1.1952		
	9.965	6.86	1.1594		
	9.47	6.70	1.1521		
	7.69	5.22	1.1158		
80°	15.26	11.14	1.2510		
	9.48	6.93	1.1417		

Solubility of NaOH+Na₂SbS₄ at 30°.

% NaOH	% NasSbS4	Solid phase
0 9.9 24.8 32.9 42.6 47.2 49.5 54.3	27.1 13. 5.9 10.5 16.4 17.7 9.1	Na ₂ SbS ₄ , 9H ₂ O  " " " +NaOH, H ₂ O NaOH, H ₂ O

(Donk, Chem. Weekbl. 1908, 5. 529, 629, 767.)

Easily sol. in alcohol or wood spirit; sol. in fusel-oil. Sol. in an aqueous solution of mannite. (Favre, A. ch. (3) 11. 76.)

Easily so in glycerine.

Sol. to a certain extent in ether.

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

Insol. in methyl acetate (Naumann, B. 1909, **42.** 3790); ethyl acetate (Naumann, B. 1904, **37.** 3602); benzonitrile. (Naumann, B. 1914, 47. 1370.)

+H₂O. 100 g. solution in H₂O sat. at 25° contain 42 g. Na₂O. (Schreinemakers, Arch. Néer. Sc. 1910, (2) 15. 81.)

Mpt. 64.3°. (See above.)

 $+1^{1}/_{8}H_{2}O$ . (Cripps, Pharm. J. Trans. (3) **14.** 833.)

+2H₂O. See above.

+31/2H2O. Deliquescent. Sol. in H2O with absorption of much heat. Melts at 6°. (Hermes.)

Mpt. 15.5°. (See above.)

+4, 5 and 7H₂O. (See above.)

The composition of the hydrates formed by NaOH at different dilutions is calculated from determinations of the lowering of the fr.-pt. produced by NaOH and of the conductivity and sp. gr. of NaOH+Aq. (Jones, Am. Ch. J. 1905, 34. 336.)

#### Sodium perhydroxide, NaO₂H.

"Natryl hydroxide."

Decomp. by H₂O. Sol. in cold alcoholic acetic acid. (Tafel, B. 1894, 27. 2300.)

#### Sodium iodide, NaI, and $+2H_2O$ .

Solubility of NaI and of NaI+2H2O in H₂O differ. Below 65°, NaI+2H₂O usually separates out, and above that temp. NaI separates.

Solubility of NaI in 100 pts. H₂C at t°.

t°	Pts. NaI	t°	Pts. NaI	. t°	Pts. NaI
81.6	295.3 296.8	92.4 97.1 101.7 110.7	$300.3 \\ 302.5$	138.1	317.3

of the formula S = 264.19 + 0.3978t.

Solubility of NaI+2H₂O in 100 pts. at t°.

t°	Pts. NaI	t°	Pts. NaI	t°	Pts. NaI
- 17 - 15 - 5 0 5 10	149.4 150.3 155.4 158.7 163.6 168.6	15 20 25 30 35 40	173.7 178.7 184.2 190.3 197.0 205.1	45 50 55 60 65	215.6 227.8 241.2 256.8 278.4

(Coppet, A. ch. (5) **50.** 424.)

If solubility S=pts. NaI in 100 pts. solution, S = 61.3 + 0.1712t from 0° to 80°; S =75+0.0258t from 80° to 160°. (Étard, C. R. 98, 1432.)

 $NaI + 2H_2O$  is sol. in 0.55 pt.  $H_2O$  at 15°.

(Eder, Dingl. 221. 89.)

100 pts. NaI + Aq at 18-19° contain 62.98 pts. NaI. (v. Hauer, J. pr. 98, 137.)

100 pts. H₂O dissolve at:

•20° 178.6	40° 208.4	60° 256.4	pts. NaI,
100° 312.5	126° 322.5		pts. NaI.
	178.6 100° 312.5	178.6 208.4 100° 126° 312.5 322.5	178.6 208.4 256.4 100° 126° 140°

Transition pt. for NaI+2H2O to NaI is 64.3°, and sat. solution containing 74,4% NaI. (Panfiloff, J. Russ. Phys. Chem. Soc. 1893, 25. 162.)

100 g. H₂O dissolve 172.4 g. NaI at 15°, and sp. gr. of sat. solution = 1.8937. (Greenish, Pharm. J. 1900, 65. 190.)

100 g. solution of NaI+2H2O sat. at 30° contains 65.5 g. anhyd. NaI. (Cocheret, Dissert. 1910.)

Sp. gr. of NaI+Aq at 19.5° containing: 20 25 10 30 % NaI, 15 1.040 1.082 1.128 1.179 1.234 1.294

50 60 % Nal. 1.360 1.432 1.510 1.60 1.70 1.81 (Gerlach, Z. anal. 8. 285.)

Sat. solution boils at 141°

Sol. in liquid SO₂. (Walden, B. 1899, 32. 2864); POCl₃. (Walden, Z. anorg. 1900, 25. 212.)

Very easily sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Sol. in 12.0 pts. absolute alcohol; in 360 pts. ether. (Eder, Dingl. 221. 89.)

Sol. in 3 pts. 90% alcohol. (Hager.)

100 pts. absolute methyl alcohol dissolve 77.7 pts. NaI at 22.5°; ethyl alcohol, 43.1 pts. (de Bruyn, Z. phys. Ch. 10. 783.)
Very sol. in abs. methyl alcohol and is not

pptd. therefrom on the addition of a large volume of abs. ether, while wet ether produces Solubility is represented by a straight line immediate separation. (Loeb, J. Am. Chem. Soc. 1905, **27.** 1020.)

Solubility of NaI in ethyl alcohol. (g. NaI in 100 g. alcohol.)

t°	NaI	t°	NaI
10	43.77	200	42.3
30	44.25	220	38.5
50 80	44.50 45.0	230 240	$\frac{36.2}{32.7}$
100	45.1	250	26.2
120	45.2	255	21 0
160	45.0	260	10.8
180	44.3	261.5*	8.6

^{*}Critical temp. of solution.

(Tyrer, Chem. Soc. 1910, 97. 626.)

100 g. sat. solution of NaI in ethyl alcohol at 30° contains 30.9 g. (Cocheret, Dissert, **1910.**)

Solubility in ethyl alcohol+Aq at 30°.

	% NaI	% alcohol	Solid phase
	65.52	0	NaI, 2H ₂ O
	64	3.40	"
	54.2	18.5	"
	54	18.8	11
	48.8	28.5	"
4	42.35	41.7	"
	38.5	53.2	"
	37.91	54.7	"
	37.49	55.37	NaI, 2H ₂ C+NaI
	35.65	59.24	Nal
	33.24	61.78	"
	30.90	68.70	"

(Cocheret, Dissert. 1911.)

At room temp. 1 pt. by weight is sol in:

1.2 pts. methyl alcohol D¹⁵ 0.7990.

1.7 " ethyl " D¹⁵ 0.8100.

3.8 " propyl " D¹⁵ 0.8160.

(Rohland, Z. anorg. 1898, 18. 325.)

100 g. methyl alcohol dissolve 90.35 g. NaI at  $25^{\circ}$ .

100 g. ethyl alcohol dissolve 46.02 g. NaI at

100 g. propyl alcohol dissolve 28.22 g. NaI at 25°.

100 g. isoamyl alcohol dissolve 16.30 g. NaI at 25°.

(Turner and Bissett, Chem. Soc. 1913, 103.

Solubility in methyl alcohol+ethyl alcohol at 25°.

P = % methyl alcohol in the solvent. G = g. NaI in 10 ccm. of the solution. S = Sp. gr. of the sat. solution at 25°.

P	,	S 25°/4°
0.00 4.37 10.40 41.02 80.66 84.77 91.25	3.515 3.68 3.971 4.598 6.744 5.892 6.110	1.0806 1.1029 1.1123 1.1742 1.2741 1.2886 1.3056
100.00	6.322	1.3250

(Herz and Kuhn, Z. snorg. 1908, 60, 154.)

Solubility in mixtures of methyl and propyl alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NaI in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

Р	G	S 25°/4°
0 11.11 23.8 65.2 91.8 93.75 100.00	6.322 5.845 5.464 4.071 2.914 2.649 2.411	1.3250 1.2853 1.2528 1.138 1.0420 1.0178 0.9968

(Herz and Kuhn, Z. anorg. 1908, 60, 156.)

Solubility in mixtures of propyl and ethy alcohol at 25°.

P = % propyl alcohol in the solvent. G = g. NaI in 10 ccm. of the solution. S = Sp. gr. of the sat. solution.

Р	G	S 25°/4°
8.1 17.85 56.6 88.6 91.2 95.2	3.515 3.460 3.405 2.841 2.613 2.588 2.474	1.0806 1.0732 1.0720 1.0276 1.0130 1.0104 1.0020
100	2.411	0.9968

(Herz and Kuhn, Z. anorg. 1908, 60. 159)

Sol. in normal propyl alcohol. (Loeb, J. Am. Chem. Soc. 1905, 27. 1020.)

28.74 g. are sol. in 100 g. propyl alcohol. (Schlamp, Z. phys. Ch. 1894, 14. 276.)

Sol. in methyl acetate. (Naumann, 1909, 42. 3789.)

Sol. in ethyl acetate. (Casaseca, C. R. 30. 821.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Solubility in organic solvents at t°.

C=pts. by wt. of NaI in 100 ccm. of the sat. solution.

L=no. of liters which at the saturation temp, hold in solution 1 mol. NaI.

Solvent	t°	С	L
Furfurol	25	25.10	0.597
Acetonitrile	25	18.43	0.813
	0	22.09	0.679
Propionitrile	25	6.230	2.406
	0	9.091	1.649
Nitromethane	25	0.478	31.36
	0	0.339	44.27

(Walden, Z. phys. Ch. 1906, 55. 718.)

Very sol. in acetone. (Walden.) +5H₂O. Transition point of NaI+5H₂O to NaI+2H₂O is -13.5°, and sat. solution contains 60.2% NaI. (Panfiloff, J. Russ. Phys. Chem. Soc. 1893, 25, 162.)

Sodium tin (stannous) iodide, NaI, SnI₂. Very sol, in H₂O. When treated with little H₂O, NaI is dissolved out, but a larger amt. of H₂O dissolves it completely. (Boullay, A. ch. (2) **34.** 375.)

Sodium zinc iodide, 2NaI,  $ZnI_2+3H_2O$ , Deliquescent.  $NaZnI_3+2H_2O$ . Very hydroscopic. (Ephraim, Z. anorg. 1910, 67. 383.)

#### Sodium nitride,

Decomp. by heat. (Franz Fisher, B. 1910. **43.** 1468.)

#### Sodium suboxide, Na₃O.

Decomp. by H₂O. (de Forcrand, C. R. 1898, **127.** 365.)

#### Sodium oxide, Na₂O.

Very deliquescent, and sol, in H₂O with evolution of heat. See Sodium hydroxide.

#### Sodium peroxide, Na₂O₂.

Deliquescent, and very sol. in H₂O with partial decomp.

Solution decomp. on boiling.

Cryst. with 2H₂O, and 8H₂O. (Fairley, *Chem. Soc. **1877**. 125.)

Forms hydrate Na₂O₂(OH)₄+4H₂O. Easily sol. in H₂O or dil. acids without decomp. (Schöne, A. 193. 241.)

Sodium peroxide carbonate, Na₂CO₄.

Easily decomp. (Woffenstein, B. 1908. 41. 285.)

Sodium peroxide dicarbonate,  $Na_2C_2O_6$ . Easily decomp. (Woffenstein, B. 1908, **41**. 287.)

Sodium trioxide, NaO₃.

Sol. in H₂O forming a solution of Na₂O₂. (Joannis, C. R. 1893, 116, 1371.)

Sodium trioxide carbonate, Na₂CO₅. (Woffenstein, B. 1908, 41, 296.)

Sodium trioxide dicarbonate, NaHCO₄.

Two isomeric modifications. (Woffenstein, B. 1908, 41. 390.)

Sodium trioxide hydrate, NaO.OH.

See Sodium perhydroxide. Isomeric with Tafel's sodyl hydroxide. O:Na.OH. (B. 27, 2297.)

Insol. in alcohol.

Very unstable. (Woffenstein, B. 1908, **41.** 290.)

#### Sodium phosphide, NaP₅.

Easily decomp. by H₂O. (Hugot, C. R. 1895, **121.** 208.)

Sodium hydrogen phosphide, NaH₂P.

Decomp. by H₂O. (Joannis, C. R. 1894.) **119.** 558.)

 $Na_8H_8P_2$ . Decomp. by acids and  $H_2O$ . (Hugot, C. R., 1898, **126.** 1721.)

Sodium selenide, Na₂Se.

Very deliquescent. Decomp. by H₂O.

Very denductor. Becomp. By 11₂O. (Uelsmann, A. 116. 127.)
Insol. in liquid NH₃; sol. in air free H₂O to a colorless liquid. (Hugot, C. R. 1899, **129.** 299.)

Cryst. with 16H₂O, 9H₂O, and ⁹/₂H₂O. (Fabre, C. R. **102**, 613.) +10H₂O. Very sol. in H₂O; very unstable

in the air. (Clever, Z. anorg. 1895, **10.** 145.)

Sodium diselenide,  $Na_2Se_2$ .

(Jackson, B. 7. 1277.)

Sodium triselenide, Na₂Se₃.

Sol. in H₂O. (Mathewson, J. Am. Chem. Soc. 1907, **29.** 873.)

Sodium hexaselenide, Na₂S₆.

Sol. in H₂O. (Mathewson, J. Am. Chem. Soc. 1907, **29.** 873.)

#### Sodium monosulphide, Na₂S.

Sol. in H₂O. Much less sol. in alcohol than in H₂O. Insol. in ether. (Roussin.)

+5H₂O. Tr. pt. from Na₂S+5½H₂O, 94°.

 $+5\frac{1}{2}H_2O$ .

The sat. solution contains:-28.48% anhydrous sait at 50° '55° 29.27 " " 60° 29.92 " " " " 70° 31.38 " " 30° 33.9537.20" ·' 90°

Labile from 48.9-91.5°; stabile from 91.5-96°.

(Parravano and Fornaini, C. C. 1908, I. 5.)

+6H₂O. Less efflorescent than with 9H₂O. Sol. in H₂O and alcohol.

The sat. solution contains:—

26.7 % anhydrous salt at 50° " " 60° " " 70° 28.1. . 30.22" "80° " 32.95" " 90° " 36.42

Tr. pt. to Na₂S+5½H₂O, 91.5°. (Parravano and Fornaini.)

+9H₂O. Efflorescent. Much less sol. in alcohol than H₂O. When dissolved in H₂O, temp. sinks from +22 to--6.1°. (Finger, Pogg. 128. 635.)

The sat. solution contains:—

9.34% anhydrous Na₂S at --10° " +10° 13.36 " 15° " " 14.36 " " 18° " 15.30  $22^{\circ}$ " " 16.2" " "  $28^{\circ}$  $17^{-7}3$ " .. "  $32^{\circ}$ 19.09 " ..  $3\bar{7}^{\circ}$ 20.98 $45^{\circ}$ 24.19

Tr. pt. to Na₂S+5½H₂O, 48.9°. (Parravano and Fornaini.)

Sodium disulphide,  $Na_2S_2$ .

Sol. in H₂() and alcohol. +5H₂O. Not efflorescent.

Sodium trisulphide, Na₂S₃.

Sol. in H₂O with decomp.

Cryst. with 3H2O from an alcoholic solution. (Böttger, A. 223. 355.)

#### Sodium tetrasulphide, Na₂S₄+6H₂O.

Very deliquescent, and sol. in H₂O. Difficultly sol. in absolute alcohol. Insol. in ether.

+8H₂O. Efflorescent. (Böttger.)

Sodium pentasulphide, Na₂S₅+6H₂O.

Sol. in H₂O. (Schöne.)

Sol. in alcohol.

+8H₂O. (Böttger.)

Solution is easily decomp. by warming. (Jones, Chem. Soc. 37. 461.)

Sodium tellurium sulphide.

See Sulphotellurate, sodium.

Sodium stannic sulphide.

See Sulphostannate, sodium.

Sodium vttrium sulpnide, Na2S, Y2S3.

Decomp. by dil. acids, even by HC2H3O2+ Aq. (Duboin, C. R. **107.** 243.)

Sodium zinc sulphide, Na₂S, 3ZnS,

Not so stable as the corresponding K selt. (Schneider, J. pr. (2) 8, 29.)

Sodrum sulphoselenide, Na₂SSe₂+5H₂O.

Hydroscopic, and decomp. in the air. (Messinger, B. 1897, 30. 806.)

Sodium telluride, Na₂Te.

Sol. in H₂O. (Demarçay, Bull. Soc. (2) **40**. 99.)

Sodium tritelluride, Na₂Te₃.

Sol. in  $H_2O$ .

Sol. in liquid NH₈. (Hugot, C. C. 1899, II. 580.)

#### Stannic acid, H₂SnO₃.

Insol. in H₂O. Sol. in HCl, and H₂SO₄+ Aq, even when dil. (Fremy.) Easily sol. in acids, from which solution it may be pptd. by dilution or boiling. While moist it is sol. in HNO₃ +Aq, but gradually separates on standing, and coagulates at once when heated to 50°. If NH₄NO₃ be added to the solution, it remains clear at ord. temp. (Berzelius.)

Easily sol. in HNO₃+Aq, when previously treated with NH₄OH+Aq. (Thénard.)
Easily sol. in KOH+Aq, but addition of

large excess ppts. K₂SnO₃, insol. in KOH+

Easily sol, in NaOH+Aq, and not pptd. by an excess of that reagent. (Barfoed, J. B. **1867.** 267.)

Sl. sol. in  $NH_4OH + Aq$  or  $(NH_4)_2CO_3 + Aq$ . Completely sol. in K₂CO₃+Aq, but not in  $Na_2CO_3+Aq.$ 

Insol. in alkali hydrogen carbonates or

NH₄Cl+Aq. Sol. in alkali sulphides+Aq. (Berzelius.) Sol. in triethyltoluenyl ammonium hydrate+Aq.

Not pptd. by NH₄OH+Aq in presence of Na citrate+Aq.

SnO₂, 2H₂O. (Weber, Pogg. **122**. 358.) "a-Orthostannic acid." Easily sol. in HCl+Aq. (Neumann, M. 12. 515.)

 $H_{10}Sn_5O_{15}$  (?)

Insol. in H₂O, HNO₂, Metastannic acid. or H₂SO₄+Aq. Insol. in HCl+Aq, but converted thereby into metastannic chloride. which dissolves after excess of HCl has been removed. (Fresenius.) Insol. in HCl+Aq of sp. gr. 1.1. (Barfoed.) Sol. in large amount

of conc. HCl+Aq. (Allen, Chem. Soc. (2) 10. 274.)

In contact with HCl+Aq, metastannic acid is converted into stannic acid. (Barfoed.)

Insol. in HNO₃+Ag even after treatment with NH₄OH+Aq.

Insol. in NH₄OH+Aq.

Sol. in KOH or NaOH+Aq with formation of metastannates, which are insol. in dil. NaOH+Aq, but sol. in H₂O or KOH+Aq, therefore KOH+Aq dissolves metastannic acid, while NaOH+Aq does not, but if the clear solution in KOH+Aq is treated with a large excess of that reagent, a further pptn. occurs. (Barfoed, J. pr. 101, 368.)
Insol. in K₂CO₃+Aq (Rose); alkali car-

bonates + A (Fremy.)
Insol. in NH₄Cl+Aq even after long boil-

Sol. in Fe(NO₃)₃+Aq containing HNO₃. (Lepèz and Storch, W. A. B. **98**, **2b**. 270.) Also in Cr(NO₃)₃+Aq, but not in Ce(NO₃)₃, Al( $NO_3$ )₃,  $Co(NO_3)_2 + Aq$ , etc. (L. and S.)

A colloidal metastannic acid sol. in H₂O can

be obtained. (Lepèz and Storch.)

According to Weber (Pogg. 122. 358), stannic and metastannic acids are only different hydrates of same oxide, and it is not a case of allotropic modification.

Colloidal. H₂SnO₃ in colloidal state can be obtained in aqueous solution containing 5.164 g. SnO₂ in a litre. This solution is coagulated by HNO₃+Aq only when in great excess; easily by dil. H₂SO₄+Aq, but not by conc. HCl+Aq. NH₄OH+Aq in large excess causes coagulation; also NH₄Cl, NaOH, NaCl, Na₂SO₄, etc. (Schneider, Z. anorg. 5. 83.)

Parastannic acid, H₂Sn₅O₁₁+3H₂O. (Engel, C. R. 1897, 125. 711.)

#### Stannates.

Stannates of alkali metals are sol. in H₂O; others are insol. All metastannates, excepting Na, K, and NH₄ salts, are insol. in H₂O. (Fremy, A. ch. (3) 12. 474.)

Ammonium stannate, (NH₄)₂O, 2SnO₂. Sol. in H₂O. Insol. in dil. NH₄OH+Aq. (Berzelius.)  $+xH_2O$ . (Moberg, 1838.)

 $(NH_4)_2O_1$ Ammonium cupric stannate,  $CuSnO_8 + 2H_2O$ .

Insol. in H₂O. Sol. in acids. (Ditte, C. R. **96.** 701.)

Barium stannate,  $BaSnO_8+6H_2O$ .

Ppt. Sol. in HCl+Aq. (Moberg.)  $Ba_2SnO_4+10H_2O$ . Insol. in  $H_2O$ . Sol. in acids. (Ditte, C. R. 95. 641.)

Calcium stannate, CaSnO₃+4H₂O.

Ppt. (Moberg.)

+5H₂O. Insol. in H₂O. Sol. in acids. (Ditte, C. R. 96. 701.) (Zulkowski, Chem. Ind.

2CaO, SnO₂. 1901, **24.** 422.)

Cobaltous stannate,  $CoSnO_3+6H_2O$ . Insol. in H₂O. Sol. in acids. (Ditte.)

Cupric stannate, CuSnO₃+3H₂O.

(Moberg.)  $+4H_2O$ . Insol. in  $H_2O$ . (Ditte.)

Cuprous stannous stannate, Cu₂O, 3SnO,  $SnO_2 + 5H_2O$ .

Slowly decomp, by dil. acids, and NH₄OH+ Aq; completely decomp. by conc. acids. (Lenssen, J. pr. 79. 90.)

Gold (aurous) stannate. See Gold purple.

Lead stannate, RbSn(OH)6.

Ppt. (Bellucci, Chem. Soc. 1905, 88. (2) 40.)

Lithium stannate hexatungstate, 2Li₂O, SnO₂,  $6WO_3 = Li_2SnO_3$ ,  $Li_2W_6O_{19}$ .

Insol. in H₂O. (Knorre, J. pr. (2) 27. 49.)

Magnesium stannate.

Ppt. (Moberg.)

Manganous stannate.

Ppt. (Moberg.)

Mercurous stannate, Hg₂SnO₃+5H₂O. Ppt.

Mercuric stannate,  $HgSnO_3+6H_2O$ . Ppt. (Moberg, J. pr. 28, 231.)

Nickel stannate, NiSnO₃+5H₂O.

Insol. in H₂O. Sol. in acids. (Ditte, C. R. **96.** 701.)

Platinous sodium stannous stannate, 2PtO,  $Na_2O$ , SnO,  $SnO_2(?)$ .

(Schneider, Pogg. 136, 105.)

Platinous stannaus stannate, PtO, 2SnO, SnO₂.

Decomp. by conc. alkalies. (Schneider,) Pogg. 136. 105.)

Potassium stannate,  $K_2SnO_3+3H_2O$ .

100 pts. H₂O dissolve 106.6 pts. at 10° solution has sp. gr. = 1.618; 100 pts. dissolve 110.5 pts. at 20°, solution has sp. gr. = 1.627. (Ordway, Sill. Am. J. (2) 40. 173.)

Very sl. sol. in conc. KOH+Aq. Insol. in KCl+Aq. (Fremy.)

Insol. in alcohol.

Pptd. from aqueous solution by the ddition of any soluble salt, especially those of K, Na, and NH4 (Fremy); by NH4Cl, but not by KCl or NaCl (Ordway).

Insol. in acetone. (Naumann, B. 1904, **37.** 329.)

### Potassium metastannate, K₂O, 10SnO.

 $K_2O$ ,  $7SnO_2+3H_2O$ . Sol. in  $H_2O$ . Solution gelatinises on heating. (Rose.)

K₂O, 6SnO₂+5H₂O. Sol. in H₂O, but loses its solubility by drying. (Fremy, A. ch. (3) **12.** 475.)

K₂O, 5SnO₂+4H₂O. Completely sol. in H₂O. Insol. in alcohol. (Fremy, A. ch. (3) 23. 396.)

K₂O,  $3\mathrm{SnO}_2 + 3\mathrm{H}_2\mathrm{O}$ . Deliquescent (Fremv.)

#### Silver stannate, Ag₂SnO₃.

Insol, in H₂O. Unacted upon by NH₄OH or HCl+Aq. (Ditte.)

Silver (argentous) stannous stannate (?),  $Ag_4O$ ,  $SnO_3SnO_2+3H_2O$  (?).

Cold dil. HNO₃+Aq slowly dissolves all Ag, hot HNOs+Aq rapidly.

Easily sol, in boiling conc. H₂SO₄. (Schulze, J. B. **1857**. 257.)

#### Sodium stannate, Na₂SnO₃+3H₂O.

More easily sol, in cold than in hot  $H_2O$ . (Fremv.)

Sol. in 2 pts. H₂O at 20° and 100.° (Mar-

ignac.)

100 pts. H₂O dissolve 67.4 pts. at 0°, 61.3 pts. at 20°, and solutions have sp. gr. = 1.472 and 1.438 at 15.5°. (Ordway, Sill. Am. J. **(2) 40.** 173.)

Pptd. from Na₂SnO₃+Aq by salts of K, Na, and NH4.

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

+8H₂O. (Haeffely, J. B. **1867**, 650.) +9H₂O. (Jones, C. C. **1865**, 607.) +10H₂O. Very effectives (Prandtl, B. 1907, 40. 2129.)

Very efflorescent. (Scheurer-Kestner, Bull. Soc. (2) 8. 389.)

#### Na₂O, $9\mathrm{SnO}_2 +$ Sodium metastannate, 8H₂O.

Insol. in NaOH+Aq or Sol. in H₂O. alcohol. (Barfoed, J. B. 1867. 267.)

Na₂O, 5SnO₂. Very difficultly sol. in H₂O. (Fremy, A. ch. (3) 23. 399.)

Insol. in KOH + Aq. +8H₂O. (Haeffely, Chem. Gaz. 1855. 59.)

#### Sodium stannate vanadate,

Na₂SnO₃, 3Na₃VO₄+32H₂O. Na₂SnO₃, 4Na₃VO₄+48H₂O.

 $Na_2SnO_3$ ,  $5Na_3VO_4+64H_2O$ .

 $Na_2SnO_3$ ,  $6Na_3VO_4+80H_2O$ . B. 1907, **40**. 2128.) (Prandtl,

Strontium stannate, 3SrO, 2SnO₂+10H₂O.

Ppt. Insol. in H₂O. Sol. in acids. (Ditte. C. R. 95. 641.)

SrSn(OH)a. (Belluci, Chem. Soc. 1905. **38** (2) 40.)

Tin (stannous) stannate, SnO, 6SnO₂+5H₂O. Insol in H₂O. Decomp. by HNO₃+Aq into metastannic acid. (Schiff, A. 120, 53.) Sol. in HCl+Aq, and in KOH+Aq.

Tin (stannous) meanstannate, SnO. 7SnO. SnO, 3SnO₂+9H₂O. Sol, in KOH+Aq or in HCl+Aq. (Fremy.) +4H.O. (Schiff.)

Zinc stannate, ZnSnC +2H₂O.

Ppt. (Moberg, **1838.**) 3ZnO, 2SnO₂+10H₂O. Insol. in H₂O. Sol. in acids. (Ditte.)

Perstannic acid, H₂Sn₂O₇.

Sec Perstannic acid.

### Stannophosphomolybdic acid.

Ammonium stannophosphomolybdate.  $3(NH_4)_2O_1$ ,  $4SnO_2$ ,  $3P_2O_5$ ,  $16MoO_3+$ 28H₂O.

Quite insol. even in boiling H₂O. (Gibbs. Am. Ch. J. 7. 392.)

#### Stannophosphotungstic acid.

Ammonium stannophosphotungstate,

 $2(NH_4)_2O_1$ ,  $2SnO_2$ ,  $P_2O_5$ ,  $22WO_3+15H_2O_5$ . Sl. sol. in boiling H₂O. Precipitate. (Gibbs, Am. Ch. J. 7. 319.)

#### Stannosulphuric acid.

See Sulphate, stannic.

#### Stibine.

See Hydrogen antimonide.

#### Strontium, Sr.

Decomp. by H₂O with violence. Dil. H₂SO₄, and HCl+Aq decomp. and dissolve; cold H₂SO₄ attacks slowly. Furning HNO₈ has scarcely any action even when boiling.

(Franz, J. pr. 107. 253.) Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 829.) Sol. in excess of liquid NH₃ at -60° forming Sr(NH₈)₆. (Roederer, C. R. 1905, 140. 1252.)

#### Strontium amalgam, SrHg₁₂.

Stable below 30°. Above 30° the composition of the amalgam varies. Can be cryst. from Hg at any temp. below 30°. (Kerp, Z. anorg. 1900, 25. 68.)

#### Strontium amide, Sr(NH₂)₂.

(Roederer, Bull. Soc. 1906, (3) 35. 715.)

#### Strontium arsenide, Sr. As2.

Decomp. by H₂O. (Lebeau, C. R. 1899, 129, 47.)

#### Strontium azoimide, SrN6.

Hydroscopic.

45.83 pts. are sol. in 100 pts.  $H_2O$  at  $16^\circ$ , 0.095 """" 100" abs. alcohol at

Insol. in pure ether. (Curtius, J. pr. 1898, (2) 58. 287.)

#### Strontium boride, SrBs.

Sol. in fused oxidizing agents; not decomp. by H₂O; insol. in aq. acids; sl. sol. in conc. H₂SO; sol. in dil. and conc. HNO₃. (Moissan, C. R. 1897, **125**. 633.)

### Strontium bomide, SrBr₂, and +6H₂O.

100 pts. H₂O dissolve at:

0° 20° 38° 59° 83° 110° 87.7 99 112 133 182 250 pts. SrBr₂. (Kremers, Pogg. **103**. 65.)

Sat. SrBr₂+Aq contains at:

-11° -1° +7° 18° 43.1 46.85 48.2 51.7% SrBr₂, 20° 93° 97° 107° 51.8 68.5 68.7 69.8% SrBr₂.

(Étard, A. ch. 1894, (7) 2. 540.)

Sp. gr. of SrBr₂+19.5° containing:

10 15 20 25 % SrBr2, 1.046 1.094 1.146 1.204 1.266 40 45 30 35 50 % SrBr₂. 1.332 1.41 1.492 1.591.694

(Kremers, Pogg. 99. 444; calculated by Gerlach, Z. anal. 8. 285.)

Somewhat sol. in absolute alcohol. (Löwig.) Solubility of anhydrous SrBr₂ in alcohol is practically constant between 0° and 40°, 100 ccm. of abs. alcohol dissolving about 64.5 g. of the anhydrous salt and forming a solution having a sp. gr. = 1.210 at 0°. (Fonzes-Diacon, Chem. Soc. 1895, 68 (2) 223.)

Much more sol. than BaBr₂ in boiling amyl alcohol,

Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

#### Strontium stannic bromide.

See Bromostannate, strontium.

Strontium bromide ammonia, 2SrBr₂, NH₈. Sol. in H₂O. (Rammelsberg, Pogg. **55**. 238.

Strontium bromide hydrazine, SrBr₂, 3N₂H₄. Very sol. in H₂O. (Franzen, Z. anorg. 1908, **60**. 290.)

Strontium bromofluoride, SrF2, SrBr2.

Decomp. by H₂O. (Defacqz, A. ch. 1904, (8) 1. 356.)

#### Strontium carbide, SrC2.

Easily decomp. by H₂O and dil. acids. (Moissan, Bull. Soc. 1894, (3) 11. 1008.)

#### Strontium carbonyl, Sr(CO)₂.

(Roederer, Bull. Soc. 1906, (3) 35. 725.)

### Strontium chloride, SrCl₂, and +6H₂O.

Deliquescent in moist air.

Sol. in 1.5 pts. H₂O at 15°, and 0.8 pt. at boiling (Dumas); in 1.996 pts. H₂O at 15° (Gerlach).

1 pt. anhydrous SrClr is sol. in 2.27 pts. H₂O at 0°; in 1.88 pts. at 20°; in 1.54 pts. at 40°; in 1.18 pts. at 60°; in 1.08 pts. at 80°; in 0.98 pt. at 100°. (Kremers, Pogg. 103. 66).

100 pts.  $H_2O$  dissolve 106.2 pts.  $SrCl_2+6H_2O$  at 0°, and 205.8 pts. at 40°. (Tilden, Chem. Soc. 45. 409.)

Solubility in 100 pts. H₂O at t°

t°	Pts. SrCl ₂	t°	Pts. SrCi ₂	t°	Pts. SrCl ₂
0	44.2	41	67.4	81	92.7
1	44.5	42	68.2	82	93.1
2	44.8	43	68.9	83	93.4
3	45.2	44	69.7	84	93.7
4	45.6	45	70.4	85	94.1
5	46.0	46	71.2	86	94.5
6	46.5	47	72.0	87	94.9
7	46.9	48	72.8	88	95.4
8	47.4	49	73.6	89	95.8
9	47.8	50	74.4	90	96.2
10	48.3	51	75.3	91	96.7
11	48.8	52	76.1	92	97.2
12	49.4	53	77.0	93	97.9
13	49.9	54	77.9	94	98.2
14	50.4	55	78.7	95	98.8
15	51.0	56	79.6	96	99.4
16	51.5	57	80.4	97	100.0
17	52.1	58	81.3	98	10).6
18	52.7	59	82.2	99	101.3
19	53.3	60	83.1	100	101.9
20	53.9	61	84.0	101	102.6
21	54.5	62	84.9	102	103.3
22	55.1	63	85.8	103	104.0
23	55.7	64	86.6	104	104.7
24	56.3	65	87.5	105	105.4
25	56.9	66	88.4	106	106.1
26	57.5	66.5	88.8	107	106.9
27	58.1	67	88.9	108	107.6
28	58.7	68	89.1	109	108.4
29	59.3	69	89.3	110	109.1
30	60.0	70	89.6	111	109.9
31	60.6	71	89.8	112	110.7
32	61.3	72	90.1	113	111.4
33	61.9	73	90.3	114	112.2
34	62.5	74	90.6	115	113.0
35	63.2	75	90.9	116	113.8
36	63.9	76	91.2	117	114.6
37	64.6	77	91.5	118	115.5
38	65.3	78	91.8	118.8	116.4
39	66.0	79	92.1		
40	66.7	80	92.4		
(Mulder, Scheik, Verhandel, 1864, 118.)					

(Mulder, Scheik. Verhandel. 1864. 118.)

## 100 pts. $H_2O$ dissolve 52.4 pts. $SrCl_2$ at 18°. (Gerardin.)

Sat. SrCl₂+Aq contains % SrCl₂ at to.

t°	% SrCl ₂	t°	% SrCl•
- 17	26.5	75	46.5
- 11	28.6	80	47.1
- 5	29.3	92	47.5
- 1	30.8	98	49.6
+ 2	31.3	104	50.7
7	31.7	105	50.7
18	33.7	118	52.0
21.5	34.7	132	52 5
35	37.8	144	54.7
44.5	39.8	153	55.7
54	42.8	175	60-5
55	43-8	215	64.1
59	47.7	222	65.4
64	46.4	250	67.3
70	46.1		

(Étard, A ch. 1894, (7) 2. 535.)

 $SrCl_2 + Aq$  sat. at 8° has sp. gr. = 1.379. (Authon,  $\Lambda$  24. 211.)

Sp. gr. of SrCl₂+Aq.

Pts. SrCl ₂ to 100 pts. H ₂ O	Sp. gr.	Pts. SrCl ₂ to 100 pts. H ₂ O	Sp. gr.
9.81 20.12 30.57	1 0823 1 1632 1 2401	41 04 51 69	1 3114 1 3816

(Kremers, Pogg. 99. 444.)

Sp. gr. of SrCl₂+Aq at 15°.

% SrCl ₂	Sp. gr.	% SrCl ₂	Sp. gr.
5 10 15	1.0453 1.0929 1.1439	25 30 33	1.2580 1.3220 1.3633
20	1.1989		

(Gerlach, Z. anal. 8. 283.)

Sp. gr. of  $SrCl_2+Aq$  at  $24.7^{\circ}$ . a=no. of  $\frac{\text{molecules}}{2}$  in grms. dissolved in 1,000 g.

 $H_2O_{;}^{-}$  b=sp. gr. when a=SrCl₂+6H₂O,  $\frac{1}{2}$  mol. SrCl₂+6H₂O=133.5 g.; c=sp. gr. when a=SrCl₂,  $\frac{1}{2}$  mol.=79.5 g.

1 1.063 1.067 7 1.304 1.401 2 1.118 1.130 8 1.330 3 1.166 1.190 9 1.354 4 1.207 1.247 10 1.376 5 1.243 1.301 11 1.396	a	b	c	a	b	СС
0   1.270   1.002   1.1	4	1.118 1.166 1.207	1.130 1.190 1.247	9	1.330 1.354 1.376	1.401

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of	SrCl2+Aq	at 18°.
------------	----------	---------

%SrCl ₂	Sp. gr.	% SrCl ₂	Sp. gr.
5 10 15	1.0443 1.0932 1.1456	20 22	1.2023 1.2259

(Nohlrausch, W. Ann. 1879, 1.)

Sp. gr. of  $SrCl_2 + Aq$  at 0°. S = pts.  $SrCl_2$  in 100  $\pm s$ , solution.

8	Sp. gr.	£*	Sp. gr.
31.8193	1.3609	18.°629	1.1915
27.7170	1.3086	12.9997	1.1284
23.2300	1.2515	6.7243	1.0637

(Charpy, A. ch. (6) 29. 24.)

Sat.  $SrCl_2+Aq$  boils at 114° (Kremers); 118.8° (Mulder); 117.45°, and contains 117.5 pts  $SrCl_2$  to 100 pts.  $H_2O$  (Legrand); forms a crust at 115.5°, and contains 120.7 pts.  $SrCl_2$  to 100 pts.  $H_2O$ ; highest tener, observed, 119°. (Gerlach, Z. anal. 26. 436.)

B.-pt. of  $SrCl_2+Aq$  containing pts.  $SrCl_2$  to 100 pts.  $H_2O$ . G=according to Gerlach (Z. anal. **26.** 442); L=according to Legrand (A. ch. (2) **59.** 436.)

Bpt.	G	L	Bpt.	G	L
101° 102 103 104 105 106 107 108 109	11 20.5 28.9 36.2 43.2 49.6 55.4 60.8 66.2	16.7 25.2 32.1 37.9 43.4 48.8 54.0 59.0 63.9	110° 111 112 113 114 115 116 117	71.4 76.5 81.6 87 93.1 99.5 105.9 112.3	68.9 74.1 79.6 85.3 91.2 97.5 104.0 110.9

Melts in its crystal H₂O at 112°. (Tilden, Chem. Soc. **45.** 409.)

Sp. gr. of SrCl₂+Aq at 25°.

Concentration of SrCl ₂ +Aq.	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.0676 1.0336 1.0171 1.0084

(Wagner, Z. phys. Ch. 1890, 5. 40.)

 $SrCl_2+Aq$  containing 3.24%  $SrCl_2$  has sp. gr. 20°/20°=1.0284.

SrCl₂+Aq containing 7.08% SrCl₂ has sp. gr. 20°/20° = 1.0638.

(Le Blanc and Rohland, Z. phys. Ch. 1896, 19. 279.)

Sp. gr. of SrCl₂+Aq at 20°.

	" . whi Bri or proof ! red or no .		
g. mols. SrCl2 per l.	Sp. gr.		
0.01	1.0012284		
0.02937	1.0038396		
0.03987	1.0053832		
0.05017	1.007028		
0.07077	1.009560		
0.10	1.013205		
0.25	1.034433		
0.50	1.068379		
0.75	1.101760		
1.00	1.135423		

(Jones and Pearce, Am. Ch. J. 1907, 38. 697.)

Conc. HCl+Aq ppts. part of the SrCl₂ from SrCl₂ Aq. (Hope.)

Solubility of SrCl₂ in HCl+Aq at 0°. SrCl₂ = ½ mols. SrCl₂ (in milligrammes) dissolved in 10 ccm. of liquid; HCl=mols. HCl (in milligrammes) dissolved in 10 ccm. of liquid.

$SrCl_2$	HCl	Sum of mols.	Sp. gr.
55	$0 \\ 6.1 \\ 12.75 \\ 23.3$	55.0	1.334
48.2		54.3	1.3045
41.25		54.00	1.2695
30.6		53.9	1.220

(Engel, Bull. Soc. (2) **45.** 655.) Solubility of SrCl₂ in HCl+Aq at 0°.

Mg. mols. per 10 cc. solution		Sp. gr. of	G. per 100 cc. solution	
SrCl ₂	нсі	solution	SrCl ₂	HCl
51.6 44.8 37.85 27.2 22.0 14.0 4.25	0 6.1 12.75 23.3 28.38 37.25 52.75	1.334 1.304 1.269 1.220 1.201 1.167 1.133	40.9 35.5 30.0 21.56 17.44 11.09 3.37	$\begin{array}{c} 0.0 \\ 2.22 \\ 4.65 \\ 8.49 \\ 10.35 \\ 13.58 \\ 19.23 \end{array}$

(Engel, A. ch. 1888, (6) **13.** 376.)

Insol, in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Sol. in 6 pts. alcohol of 0.833 sp. gr. at 15°. (Vauquelin.)

Sol. in 24 pts. absolute alcohol at 15°, and in 19 pts. at boiling. (Bucholz.) Sol. in 2.5 pts. of boiling alcohol.

Anhydrous SrCl₂ is sol. in 111.6-116.4 pts. alcohol of 99.3% at 14.5°, and in 26.2 pts. of the same alcohol at boiling. (Fresenius, A. **59.** 127.)

100 pts. alcohol of given sp. gr. at 0° dissolve pts. SrCl₂ at 18°.

0.990 0.985 0.973 0.966 0.953 sp. gr. 49.81 47.0 39.6 35.9 30.4 pts. SrCl₂,

0.939 0.909 0.846 0.832 sp. gr. 26.8 19.2 4.9 3.2 pts. SrCl₂. Insol. in absolute alcohol. (Gerardin, A. ch. (4) 5. 156.)

100 pts. absolute methyl alcohol dissolve 63.3 pts. SrCl₂+6H₂O at 6°; ethyl alcohol, 3.8 pts. (de Bruyn, Z. phys. Ch. 10. 787.)

Sl. sol. in boiling amyl alcohol. (Browning, Sill. Am. J. 144, 459.)

100 g. 95% formic acid dissolve 23.8 g. SrCl₂ at room temp. (Aschan, Ch. Ztg. 1913, **37.** 1117.)

Absolutely insol. in acetic ether. (Cann, C. R. 102, 363.)

C. R. 102. 363.)

Very sl. sol, in acetone. (Krug and M'Elroy.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)

Sl. sol. in anhydrous pyridine. Sol. in 97%, 95% and 93% pyridine+Aq. (Kahlenberg J. Am. Chem. Soc. 1998, 30, 1107)

berg, J. Am. Chem. Soc. 1908, **30.** 1107.) +2H₂O. Tr. pt. from +6H₂O is 61.5°. (Richards and Churchill, Z. phys. Ch. 1899, **28.** 313.)

+6H₂O. See above.

Strontium thallic chloride, SrCl₂, 2TlCl₃+6H₂O.

(Gewecke, A. 1909, **366.** 223.)

Strontium tin (stannous) chloride,  $SrCl_2$ ,  $SnCl_2+4H_2O$ .

Sol. in H₂O. (Poggiale, C. R. 20. 1183.)

Strontium tin (stannic) chloride.

See Chlorostannate, strontium.

Strontium uranium chloride, SrCl₂, UCl₄.

Decomp. by H₂O. (Aloy, Bull. Soc. 1899, (3) 21. 265.)

Strontium zinc chloride, SrZnCl₄+4H₂O.

Very sol. in  $H_2O$ . (Ephraim, Z. anorg. 1910, **67.** 380.)

Strontium chloride ammonia, SrCl₂, 8NH₃.

Decomp. by H₂O. (Rose, Pogg. **20**. 155.)

Strontium chloride hydrazine, SrCl₂, 2N₂H₄ +H₂O.

Hydroscopic. (Franzen, Z. anorg. 1908, 60. 289.)

Strontium chloride hydroxylamine, 2SrCl₂, 5NH₂OH+2H₂O.

As Ca comp. (Antonow, J. Russ. Phys. Chem. Soc. 1905, **37.** 482.)

Strontium hydrogen chloride hydroxylamine, 2SrCl₂, 3HCl, 9NH₂OH+H₂O.

(Antonow, J. Russ. Phys. Chem. Soc. 1905, 37, 482.)

Strontium chlorofluoride, SrF2, SrCl2.

Decomp. by H₂O, by very dil. HCl, HNO₃ or acetic acid, by hot dil. or conc. H₂SO₄.

Sol. in conc. HCl or HNO₈. Insol. in, and not decomp. by cold or boiling alcohol. (Defacqz, A. ch. 1904, (8) 1. 355.)

#### Strontium fluoride, SrF2.

Somewhat sol. in H2O. (Fr. R8der.)

1 l. H₂O dissolves 113.5 mg. Srf₂ at 0.26°; 117.3 mg. at 17.4°; 119.3 mg. at 27.4°. (Kohlrausch, Z. phys. Ch. 1908, **64**. 168.) Insol in HF+Aq. (Berzelius.)

Boiling HCl+Aq dissolves; sl. attacked by boiling HNO₂+Aq; decomp. by hot H₂SO₄. (Poulenc, C. R. 116. 987.)

#### Strontium stannic fluoride.

See Fluostannate, strontium.

#### Strontium titanium fluoride.

See Fluotitanate, strontium.

#### Strontium fluoiodide, SrF₂, SrI₂.

Decomp. by cold  $H_2O$ , more rapidly by hot  $H_2O$ . Decomp. by dil. HCl, dil. HNO3, dil.  $H_2SO_4$  or conc.  $H_2SO_4$ , also by alcohol and by ether, if not absolute. (Defacqz, A. ch. 1904, (8) **1.** 358.)

#### Strontium hydride, SrH.

Decomp. by H₂O or HCl+Aq. (Winkler, B. 24. 1976.)

SrH₂. Decomp. by H₂O. (Gautier, C. R. 1902, **134.** 100.)

#### Strontium hydroselenide.

Sol. in H₂O.

#### Strontium hydrosulphide, SrS₂H₂.

Sol. in H₂O; decomp. by boiling.

#### Strontium hydroxide, $SrO_2H_2$ , and $+8H_2O$ . Deliquescent.

Sol. in 50 pts. cold, and 2.4 pts. boiling  $\rm H_{2}O$  (Buchols); in 50 pts.  $\rm H_{2}O$  at 15.56° (Dalton); in 51.4 pts.  $\rm H_{2}O$  at 15.56°, and 2 pts. at 100° (Hope); in 52 pts.  $\rm H_{2}O$  at 15°, and 2.4 pts. at 100° (Berzelius); in 48 pts.  $\rm H_{2}O$  at 18.75° (Abl). 100 pts.  $\rm H_{2}O$  at 20° dissolve 1.49 pts. SrO. (Bineau, C. R. 41.509.)

100 pts. aqueous solution of SrO₂H₂ contain pts. SrO and pts. SrO₂H₂+8H₂O at t°.

t°	Pts. SrO	Pts. SrO ₂ H ₂ +8H ₂ O	t°	Pts. SrO	Pts. SrO ₂ H ₂ +8H ₂ O
0 5 10 15 20 25 30 35 40 45 50	0.35 0.41 0.48 0.57 0.68 0.82 1.00 1.22 1.48 1.78 2.13	0.90 1.05 1.23 1.46 1.74 2.10 2.57 3.13 3.80 4.57 5.46	55 60 65 70 75 80 85 90 95 100	2.54 3.03 3.62 4.35 5.30 6.56 9.00 12.00 15.15 18.60	6.52 7.77 9.29 11.16 13.60 16.83 23.09 30.78 38.86 47.71

(Scheibler, J. pharm. Chim. 1883, (5) 8. 540.)

Sol. in cold NH₄Cl+Aq. (Rose.)

Solubility in Sr(NO ₃ ) ₂ +Aq at
--------------------------------------------------------

Sp, gr 25°/25°	G. SrO as Sr(UH), in 100 g. H ₂ O	G. Sr(NO ₅ ) ₂ in 100 g. H ₂ O
1.481	0.0	79.27
*1.506	1.76	81.06
1.400	1.71	74.27
1.450	1 55	66.88
1.419	1.51	63.71
1.403	1.47	60.37
1.381	1.41	56.30
1.359	1.34	52:90
1.3%	1.27	46.97
1.317	1.20	44.03
1.291	1.14	40.83
1.267	1.11	37.81
1.239	1 93	32.41
1.217	1.01	28.80
1.206	0.96	$26.58$ $_{b}$
1.178	0.95	23.83
1.148	0.91	17.96
1 126	0.87	16.21
1.108	0.84	12.78
1.079	0.81	8.96 *
1.059	0.79	6.29
1.033	0.78	4.45

*Solution is sat. with respect to both substances.

(Parsons and Perkins, J. Am. Chem. Soc. 1910, **32**, 1388.)

Sol, in methyl alcohol. At room temp. 1 l. contains 31.5 g. SrO. (Neuberg and Rewald, Biochem. Z. 1908, 9. 540.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Sol. in an aqueous solution of cane sugar. (Hunton, Phil. Mag. (3) 11. 156.)

#### Solubility in H₂O containing 10 g. sugar at t°.

t°	g. SrO ₂ H ₂ +8H ₂ O	t°	g. SrO ₂ H ₂ +8H ₂ O ³
3	3.10	24	4.79
15	3.79	40	9.70

(Sidersky, C. C. 1886. 57.)

 $+8H_2O$ . 0.0835 mol. is sol. in 1 l.  $H_2O$  at 25°. (Rothmund, Z. phys. Ch. 1909, 69. 539.)

#### Solubility in organic compds. +Aq at 25°.

Solvent	Mol. SrO ₂ H ₂ +8H ₂ O sol. in 1litte
water 0.5-N methyl alcohol "ethyl alcohol "propyl alcohol "tert. amyl alcohol "acetone "ether	0.0835 0.0820 0.0744 0.0708 0.0630 0.0692 0.0645

Solubility in organic compds. +Aq at 25°. Continued.

Solvent	Mol. SrO ₂ H ₂ +8H ₂ O sol. id 1 litre
0.5-N glycol w glycerine mannitol urea ammonia diethyl amine pyridine	0.0922 0.1094 0.1996 0.0820 0.0785 0.0586 0.0694

(Rothmund, Z. phys. Ch. 1909, 69, 539.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

See also Strontium oxide.

Strontium iodide,  $SrI_2$ , and +6, or  $7H_2O$ . 100 pts. H₂O dissolve at:

20° 40° 70° 100° 179 196 250 370 pts. SrI₂. 164 (Kremers, Pogg. 103. 65.)

Sat. aq. solution contains at:

-20° --10° --3° +7° 11° 18° 38° 60.0 60.3 62.2 63.0 63.4 63.5 64.8% SrI₂,

52° 63° 77° 81° 97° 105° 120 175° 66.0 68.5 70.5 74.0 79.2 79.4 80.8 85.6% SrI₂. Étard, A. ch. 1894, (7) 2. 543.)

Sp. gr. of SrI₂+Aq at 19.5° containing: 30 % SrI₂, 10 20 1.200 1.3301.0451.091

40 50 60 65 % SrI₂. **1.491** 1.695 1.955 2.150

(Kremers, Pogg. 103. 67; calculated by Gerlach, Z. anal. 8. 285.)

Sat. solution in abs. ethyl alcohol contains at:

+4° 39° 82° --20° 2.6 3.1 4.3 4.7% SrI₂. (Étard, A. ch. 1894, (7) 2. 565.)

Strontium periodide, SrI₃+15H₂O.

(Mosnier, A. ch. 1897, (7) 12. 399.) SrI₄. (Herz and Bulla, Z. anorg. 1911, 71. 255.)

Strentium stannous iodide.

Very sol. in H₂O. (Boullay.)

Strontium zinc iodide, SrZnI₄+9H₂O.

Hydroscopic. (Ephraim, Z. anorg. 1910, **67.** 385.)

Strontium nitride, Sr₂N₃.

Decomp. H₂O violently, but not alcohol. (Maquenne, A. ch. (6) 29. 225.)

Strontium oxide, SrO.

Decomp. by H₂O to SrO₂H₂, which see.

Sol. in 160 pts.  $\rm H_2O$  at 15.56° (Dalton); in 50 pts. at  $100^{\circ}$  (Dalton); in 130 pts. at  $20^{\circ}$  (Bineau); in 40 pts. cold, and 20 pts. hot  $\rm H_2O$  (Dumas).

Very sl. sol. in alcohol. Insol. in ether.

1 l. methyl alcohol dissolves 11.2 g. SrO. (Neuberg and Rewald, Biochem. Z. 1908, 9. 540.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Sol. in cane sugar + Aq.

Solubility in H₂O containing 10 g, sugar at t°.

t°	g. SrO	t°	g. SrO
8	1.21	24	1.87
15	1.48	40	3.55

(Sidersky, C. C. 1886, 57.)

See also Strontium hydroxide.

Strontium peroxide, SrO₂.

Sl. sol. in  $H_2O$ . Easily sol. in acids and  $NH_4Cl+Aq$ . Insol. in  $NH_4OH+Aq$ . (Conroy, Chem. Soc. (2) 11. 812.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C. 1899, II. 1014.)

Strontium oxybromide,  $SrBr_2$ ,  $SrO+9H_2O$ .

Not hydroscopic; sol. in H₂O. (Tassilly, C. R. 1895, **120.** 1339.)

Strontium oxychloride, SrCl₂, SrO+9H₂O.

Very easily decomp, by H₂O and alcohol. (André, A. ch. (6) 3. 76.)

Strontium oxyiodide,  $2SrI_2$ ,  $5SrO + 30H_2O$ .

Not hydroscopic; sol. in H₂O. (Tassilly, C. R. 1895, **120**. 1339.)

Strontium oxysulphide,  $Sr_2OS_4 + 12H_2O$ .

Decomp. by H₂O.

Insol. in alcohol, ether, and CS₂. (Schöne.) Mixture of SrS₂O₃ and SrS₂. (Geuther, A. **224.** 178.)

Strontium phosphide, Sr₃P₂.

Crystallized. Sol. in dil. acids; insol. in conc. acids; decomp. by H2O. Insol. in organic solvents at ord. temp. (Jaboin, C. R. 1899, **129**. 764.)

Strontium selenide, SrSe.

Sl. sol. in H₂O. (Fabre, C. R. **102**. 1469.)

Strontium silicide, SrSi₂.

Decomp. by H₂O. (Bradley, C. N. 1900, **82.** 150.)

#### Strontium sulphide, SrS.

Sol. in H2O with decomp. into SrO2H2 and SrS2H2.

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37, 4329.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

#### Strontium tetrasulphide, SiS4.

Very deliquescent, and sol. in H₂O and alcohol. Aqueous solution decomp, on air. Cryst. with 2, or 6H₂O. (Schöne, Pogg 117. 58.)

### Strontium pentasulphide, SrSi.

Known only in solution.

Strontium stannic sulphide. See Sulphostannate, strontium.

Sulphaluminic acid.

Silver sulphaluminate,  $4Ag_2S$ ,  $5Al_2S_2$ .

(Cambi, Real, Ac. Linc. 1912, (5) 21, II. 837.)

### Sulphamic acid, HOSO₂NH₂. See Amidosulphonic acid.

### Ammonium sulphamate, 2NH₃, SO₃.

(Woronin.)

Is ammonium imidosulphonate, which see. (Berglund.)

Ammonium sulphamate, acid, 3NH₃, 2SO₃.

(Woronin )

Is basic ammonium imidosulphonate, which see. (Berglund.)

Barium sulphamate, basic, 2BaO, 3SO₃, 2NH₃

Somewhat sol. in H₂O, easily in HCl+Aq. (Jacquelain, A. ch. (3) 8. 304.)

 $BaS_2O_6(NH_2)_2$ . Sl. sol. in  $H_2O$ . Decomp. by heating with H₂O. (Woronin, J. B. 1860. 80.)

Is barium imidosulphonate. (Berglund.)

#### Sulphamide, $SO_2(NH_2)_2$ .

Very sol. in H₂O. (Regnault, A. ch. 69. 170; Mente, A. 248. 267.)

Insol. in alcohol, ether, etc. (Traube, B. **26.** 607.)

Very sol. in H₂O.

Sl. sol. in abs. alcohol.

Sl. sol. in dry ether. (Divers and Ogawa, Chem. Soc. 1902, 81. 504.

Very sol. in liquid NH₃. (Fran Stafford, Am. Ch. J. 1902, **28.** 95.) (Franklin and

Sol. in alcohol; very sol. in H₂O. (Hantzsch,

B. 1901, **34.** 3436.)

Silver sulphamide, SO₂(NHAg)₂.

Sl. sol. in cold H₂O. Sol. in HNO₃, and (NH₄)₂CO₃+Aq. (Traube, B. 26. 607.)

3NH₈, 2SO₈. (Jacquelain.)

Is basic ammonium imidosulphonate, which sec. (Berglund.)

#### Sulphamidic acid.

(Fremv.)

Sec Imidosulphonic acid.

#### Sulphaninoplatinous acid.

Ammonium tetrasulphaminoplatinite.  $Pt(SO_8NH_2)_4(NH_4)_2+6H_2O$ .

Sl. sol. in cold H₂O. (Ramberg, B. 1912, ... **45**. 1512.)

Potassium — –,  $[Pt(SO_8NH_2)_4]K_2+2H_2O$ . Very sl. sol. in cold H₂O. (Ramberg.)

Sodium ---.

Easily sol. in cold H₂O. (Ramberg.)

#### Sulphammonic, and Metasulphammonic acids.

(Fremv.)

See Nitrilosulphonic acid.

#### Monosulphammonic acid.

(Claus.)

See Amidosulphonic acid.

#### Disulphammonic acid.

(Claus.)

See Imidosulphonic acid.

#### Trisulphammonic acid.

See Nitrilosulphonic acid.

#### Tetrasulphamm onic acid.

(Claus.)

Does not exist. See Nitrilosulphonic acid.

### Sulphammonium, S(NH₃)₂, 2NH₃.

Sol. in liquid NH₃.

Sol. in abs. alcohol and anhydrous ether. (Moissan, C. R. 1901, 132. 517.)

#### Sulphantimonic acid.

#### Sulphantimonates.

The alkali sulphantimonates are sol. in H₂O, but the solutions decomp. on the most of the other sulphantimonates are insol. in  $H_2O$ ; all sulphantimonates are insol. in alcohol. (Rammelsberg.)

Ammonium sulphantimonate, (NH₄)₂SbS₄.
Sol. in H₂O.
Sol. in dil accide with decomp. (Stane

Sol. in dīl. acids with decomp. (Stanek, Z. anorg. 1898, 17. 122.) +4H₂O₃ (Stanek.)

Solubility of (NH₄)₃SbS₄+4H₂O in H₂O at t°.

t°	% (NH ₄ ) ₈ SbS ₄	Solid phase
- 1.9 - 5 - 8 -13.5 0 +20 30	9.9 20.0 30.2 41.6 41.6 47.7 54.5	Ice " Ice+(NH ₄ ) ₃ SbS ₄ , 4H ₂ O (NH ₄ ) ₂ SbS ₄ , 4H ₂ O " "

(Donk, Chem. Weekbl, 1908, 5. 529.)

Solubility of (NH₄)₃SbS₄ in alcohol at 10°. Solid phase, (NH₄)₃SbS₄+4H₂O.

<b>С.</b> н.он	(NH ₄ )3SbS ₄	C₂H₅OH	(NH ₄ ) ₃ SbS ₄
0 5.1 19.1	43.2 35.9 23.1	43.1 53.1 93.3	8.7 4.1 0
- W	<del></del>		<del></del>

(Donk, l. c.)

Antimonyl sulphantimonate, (SbO)₃SbS₄.

Sel. in HCl. (Rammelsberg, Pogg. 1841, 52. 236.)

**Barium sulphantimonate,**  $Ba_3(SbS_4) + 3H_2O$ . Sol. in  $H_2O$ . Insol. in alcohol.

 $\begin{array}{cc} \textbf{Barium potassium sulphantimonate,} \\ KBaSbS_4 + 6H_2O. \end{array}$ 

Easily sol. in H₂O.

Decomp. by acids. (Glatzel, Z. anorg. 1911, 72. 100.)

Bismuth sulphantimonate.

Ppt.

Cadmium sulphantimonate.

Ppt. (Rammelsberg, Pogg. 52. 236.)

Calcium sulphantimonate,  $\operatorname{Ca_3(SbS_4)_2}$ . Partially sol. in  $\operatorname{H_2O}$ . Insol. in alcohol.

Cöbaltous sulphantimonate, Co₃(SbS₄)₂. Ppt. Decomp. by HCl+Aq. (Rammelsberg, Pogg. **52**. 236.)

Cupric sulphantimonate, Cu₃(SbS₄)₂.

Ppt. (Rammelsberg, Pogg. **52**. 226.)

Iron (ferrous) sulphantimonate. Ppt. Iron (ferric) sulphantimonate, Fe₂(SbS₄)₂. (Rammelsberg, Pogg. **52**. 234.)

Lead sulphantimonate, Pb₈(SbS₄)₂.

Ppt. Decomp. by KOH+Aq. (Rammelsberg, Pogg. 52. 223.)

Lithium sulphantimonate, Li₂SbS₄+8½H₂O. 100 g. sat. solution in H₂O contain 50.8 g. anhyd. Li₂SbS₄.

Solubility in alcohol at 30°.

alcohol	Li ₃ SbS ₄	Solid phase
0 13.3 51.9 54.8 58.4 58.6 65.26 74.3	50.8 46.3 30.7 29.9 30.8 32.3 29.31 24.1	Li ₃ SbS ₄ , 8½H ₂ O   Li ₃ SbS ₄ , 8½H ₂ O+Li ₃ SbS ₄ Li ₃ SbS ₄
79.5	20.5	"

(Schreinemakers and Jacobs, Ch. Weekbl. 1910, **72.** 213.)

 $+9H_2O$ . Very sol. in  $H_2O$ . (Brinkmann, Dissert. 1891.)

+10 $H_2O$ . Solubility of  $Li_3SbS_4+10H_2O$  in  $H_2O$  at  $t^{\circ}$ .

t°	Li ₃ SbS ₄	Solid phase
- 1.7 - 3.2 - 5.1 -10.8 -15.9 -26.2 -42 0 +10 30 50	7.1 12.8 17.5 23.2 28.5 35.3 40.4 45.5 46.9 50.1 51.3	Ice "" "" "" Ice+Li ₃ SbS ₄ , 10H ₂ O Li ₃ SbS ₄ , 10H ₂ O ""

(Donk, Chem. Weekbl. 1908, 5. 629.)

At 10°, 100 g. sat. Li₃SbS₄+10H₂O in 10.7% alcohol contain 41.8 g. Li₃SbS₄; 26.2% alcohol, 36.5 g. Li₃SbS₄. (Donk, l. c.)

Magnesium sulphantimonate,  $Mg_3(SbO_4)_2$ . Deliquescent. Sol. in  $H_2O$ . Decomp. by alcohol.

Mercurous sulphantimonate,  $(Hg_2)_3(SbS_4)_2$ . Ppt.

Mercuric sulphantimonate, Hg₃(SbS₄)₂. Ppt. (Rammelsberg, Pogg. **52**, 229.)

#### Mercuric sulphantimonate chloride, $Hg_3(SbS_4)_2$ , $3HgCl_2$ , 3HgO.

Insol. in acids, except agua regia. (Rammelsberg.)

#### Nickel sulphantimonate, Ni₈(SbS₄)₂.

Ppt. Decomp. by hot HCl+Aq. (Rammelsberg, Pogg. **52.** 226.)

#### Potassium sulphantimonate, K₃SbS₄. Sol. in H₂O.

#### Solubility of KaSbS4 in H2O at to.

t°	% K₃SbS4	Solid phase
- 1.3 - 2.6 - 4 - 7.2 -10.6 -13.5 -18.5 -28.8 -34 -10 - 4.5	9.5 17.1 24.2 35.4 42.9 48.8 52.6 59.6 62.5 69.1	Ice  " " " " " Ice+K ₅ SbS ₄ , 6H ₂ O  K ₃ SbS ₄ , 6H ₂ O
$^{0}_{10}$ $^{30}_{50}$ 80	75.4 76.2 77.1 77.7 79.2	K₃SbS ₄ , 5H ₂ O " K₃SbS ₄ , 3H ₂ O

(Donk, Chem. Weekbl. 1908, 5. 529, 629, 767.)

#### Solubility of K₃SbS₄ in KOH+Aq at 25°.

K₃SbS₄	кон кон	Solid phase
75 68.4 56.8 50.9 37.7 19.8 11.5 9.4 00.0	0 3.4 11.0 16.1 25.5 40.5 46.9 49.9 56.3	K ₈ SbS ₄ , 5H ₂ O K ₈ SbS ₄ , 3H ₂ O K ₈ SbS ₄ " K ₈ SbS ₄ +KOH, 2H ₂ O KOH, 2H ₂ O

(Donk.)

#### Solubility of K₈SbS₄ in alcohol+Aq at 10°.

С2Н6 ЭН	K ₃ SbS ₄	Solid phase
94 90.5	0	K ₃ SbS ₄ , 5H ₂ O
0.8 0	69.2 76.1	 «

^{*} Two liquid layers are formed.

#### Composition of the liquid layers.

· Alcoho	l layer	H ₂ O	layer
C⁵H;OH	K,SbS,	% alcohol	K.SbS.
85 54.7 46.9	0 2.2 4.2	1.1 3.4 3.8	67.4 49.0 45.6
16	27.4	31.1	12.7

(Donk, l. c.)

+41/2H2O. Deliquescent. Sol. in H2O; more sol. than the Na salt.

+3, 5, and 6H2O. See Donk above. 2K₂S, Sh₂S₃. Decor (Ditte, C. R. **102**. 168.) K₂S, 2Sb₂S₃+3H₂O. Decor.ip. by cold H₂O.

Sl. sol. in  $H_2O$ . (Ditte.)

 $K_2S$ ,  $Sb_2S_3$ . Decomp. by  $H_2O$ . (Ditte.)  $K_2S'$ ,  $2Sb_2S_3$ . (Ditte.)

#### Silver sulphantimonate, Ag₃SbS₄.

Insol. in H₂O or acids. Decomp. by KOH +Aq. (Rammelsberg, Pogg. 52. 218.)

#### Sodium sulphantimonate, Na₃SbS₄+9H₂O.

(Schlippe's salt.) Sol. in 2.9 pts. H₂O at 15°. Aqueous solution is precipitated by alcohol. (Rammelsberg.)

Sol. in 3 pts. cold H₂O. (van den Corput.)

Sol. in 4 pts. cold H₂O. (Duflos.) Sol. in 1 pt. boiling H₂O. (Duflos.)

#### Solubility of Na₃SbS₄+9H₂O in H₂O at t°.

t°	% Na ₃ SbS ₁	Solid phase
- 0.1 - 0.65 - 0.9 - 1.26 - 1.45 - 1.75 0 15 30 38 49.6 59.6 69.6 79.5	0.5 4 5.7 7.8 9.2 11.2 11.3 19.3 27.1 32 38.9 45 50.7 57.1	Ice " " " " " Na ₈ SbS ₄ , 9H ₂ O " " " " " " " " " " " " " " " " " " "

(Donk, Chem. Weekbl. 1908, 5. 529, 629, 767.)

ō

#### Solubility of Na₃SbS₄+Na₂S₂O₃ in H₂O.

		-				
1	% NasSbS4	% Na ₂ S ₂ O ₃	Solid phase			
	t° = 10°.					
•	11.8	0	Na ₃ SbS ₄ , 9H ₂ O			
	4.4	4.9	"			
	0.8	14.6				
	0.1	27.3	"			
	0.0	33.6	$Na_2S_2O_8$ , $5H_2O$			
			t° = 30°.			
•	19.9	7.7	Na ₃ SbS ₄ , 9H ₂ O			
	12.5	16.4	"			
	4.2	37.7	41			
	1	<b>43.8</b>	"			
	1	47 .	"			
	ī	47.8	Na SbS + Na SO 5HO			

(Donk, l. c.)

 $Na_2S_2O_3$ ,  $5H_2O$ 

45.8

### Solubility of Na₃SbS₄ in alcohol+Aq at t°. Solid phase, Na₃SbS₄+9H₂O.

t = ()°		t =	30°	t° = 65°	
% С₂Н₅ОН	% Na ₃ SbS ₄	C, C,F,OH	% NasShS1	с С.н.он	C Nassbs
0 3.7 12.7 29. 60.8	11.8 8.2 3.2 0.9 0	5. 10.3 24.8 46 76.2	19.3 14.6 6.4 1.2	0 4.7 8 * 54.1 81.	47.9 $39.3$ $36.5$ $4.1$ $0$

* Two layers are formed.

#### Composition of above layers.

Alcohol layer		H ₂ O layer		
% alcohol	% Na ₃ SbS ₄	% alcohol	% Na ₃ SbS	
54.1	4.1	8.0	36.5	
40.4	10.2	14.3	27.8	
33.5	14.1	18.8	24.1	
		27.2	18.0	

(Donk, l. c.)

Solubility of Na₃SbS₄ in methyl alcohol at t°. Solid phase, Na₃SbS₄+9H₂O.

t = 0°		t = 30°		
СН ₈ ОН	% NaaSbS4	Ch ₃ OH	Na ₃ SbS ₄	
3.4	8.6	0	27.1	
15.5	2.8	18 1	12.8	
23.1	2.1	33.1	5.8	
50.3	0.3	65.7	0.1	
57	0.1	84.2	0.1	
81.7	0.05	91 2	1.2	
92	0.2	<b>94</b> .	3.9	
95.9	2.0			

(Donk, l. c.)

#### Sodium sulphantimonate thiosulphate, Na₃SbS₄, 2Na₂S₂O₃+20H₂O.

Efflorescent, and decomp. by H₂O. (Unger, Arch. Pharm. (2) 147. 193.)

No double salt exists. See Donk, Na₃SbS₄ +Na₂S₂O₃ under Na₃SbS₄.

#### Strontium sulphantimonate.

Sol. in H₂O; pptd. by alcohol.

#### Uranium sulphantimonate.

Ppt.

#### Zinc sulphantimonate, Zn₃(SbS₄)₂.

Ppt. Sol. in hot Na₃SbS₄+Aq; insol. in ZnSO₄+Aq. Partially sol. in KOH+Aq; sol. in hot HCl+Aq. (Rammelsberg, Pogg. **52**. 233.)

#### Sulphantimonous acid.

### Ammonium metasulphantimonite, NH₄SbS₂.

Insol. in H₂O. (Rouget, C. R. 1898, **126**. 1145.)

+2H₂O. Insol. in H₂O and alcohol. Decomp. in the air. (Stanek, Z. anorg. 1898, **17.** 119.)

# Ammonium orthosulphantimonite, (NH₄)₈SbS₃.

Easily decomp. Stable only in presence of  $(NH_4)_2S$ . Sol. in  $H_2O$ . Insol. in alcohol, by which it is pptd. from aqueous solution. (Pouget, A. ch. 1899, (7) 18. 536.)

### Ammonium parasulphantimonite,

 $(NH_4)_2Sb_4S_7$ .

Stable in the air.

Insol. in H₂O.

Decomp. by acids. (Stanek, Z. anorg. 1898, 17. 120.)

Stable; cryst. from hot solutions. (Pouget C. R. 1898, 126. 1145.)

Ammonium silver orthosulphantimonite. NH₄Ag₂SbS₃.

Decomp. by H₂O. (Pouget, A. ch. 1899, (7) **18.** 551.)

Barium metasulphantimonite, BaSb₂S₄  $+4^{1}/_{2}H_{2}O$ 

Insol. in H₂O. (Pouget, A. ch. 1899. (7) 18. 541.)

Barium orthosulphantimonite, Ba₃Sb₂S₆ +8H₂O.

Decomp, in the air and by H₂O. Somewhat sol. in BaS+Aq. (Pouget, C. R. 1898, **126.** 1792.)

Barium pyrosulphantimonite, BasbaS.  $+8H_2O$ .

Decomp, by H₂().

Nearly insol. in BaS+Aq. (Rouget.)

Barium sulphantimonite,  $Ba_3Sb_4S_9 + 10H_2O$ . Pptd. from aq. solution of ortho and pyrobarium salts. (Pouget.)

 $Ba_{b}Sb_{4}S_{11} + 16H_{2}O$ . (Pouget, A. ch. 1899, **(7) 18.** 538.)

Calcium sulphantimonite basic, Ca(OH)SbS₂. Insol. in H₂O.

Sol. in conc. HCl. (Pouget, A. ch. 1899, **(7) 18.** 544.)

Calcium pyrosulphoantimonite, Ca₂Sb₂S₅ +15H₂O.

Sol. in H₂O without decomp. (Pouget, C. R. 1898, **126.** 1793.)

Cobaltous orthosulphantimonite, Co₃Sb₂S₆. Ppt. (Pouget, A. ch. 1899, (7) 18. 554.)

Cuprous metasulphantimonite, CuSbS₂.

Sol. in mixture of HNO₃ and tartaric acid with separation of S.

Insol. in NH₄OH+Aq. Decomp. by hot KOH and alkali sulphides + Aq. Sommerlad, Z. anorg. 1898, 18. 430.)

Wolfsber ite. Sol. in HNO3+Aq Min. with separation of S and Sb₂O₃.

Cuprous orthosulphantimonite, Cu₃SbS₃. (Sommerlad, Z. anorg. 1898, 18. 432.) Ppt. Insol. in H₂O. Decomp. by H₂O. (Pouget, A. ch. 1899, (7) 18. 556.)

Cuprous sulphantimonite, Cu₂Sb₄S₇. Min. Guejarite.

Cupric orthosulphantimonite, Cu₃Sb₂S₆. Ppt. (Pouget, A. ch. 1899, (7) 18. 557.)

Cuprous lead sulphantimonite, Cu₂SbS₂, 2Pb₈SbS₈.

Decomp. by HNO₃+ Min. Bournonite. Aq, and aqua regia.

Cuprous potassium orthosulphantimonite. Cu₂KSbS₃.

Ppt., easily decomp. by H₂O. (Pouget, C. R. 1899, 129. 104.) +3H₂O. Ppt., decomp. by H₂O. (Pouget. A. ch. 1899, (7) 18. 556.)

Iron (ferrous) or tho sulphantimonite.  $Fe_{\mathfrak{s}}(Sb_{\mathfrak{s}}S)_{\mathfrak{s}}.$ 

Ppt. (Pouget, A ch. 1899, (7) 18. 554.) Berthierite Sl. sol in HCl+Aq; Min. easily sel, ir aqua regia.

Lead orthosulphantimonite, Pb₃(SbS₃)₂.

Very si. sol. in H2O. Decomp. by H₂O. (Pouget, A. ch. 1899, (7) 18. 553.) Min. Boulangerite. Completely sol. in hot HCl+Aq; decomp. by HNO₃+Aq.

Lead sulphantimonite.

Sol, in boiling conc. HNO₃+Aq. (Fournet.)

 $Pb(SbS_2)_2$ . Min. Zinckenite. Decomp: by hot HCl+Aq.

Min. Plagionite.

4PbS, Sb₂S₃. 2PbS, Sb₂S₃. Min. Jamesonite. Decomp. by hot HCl+Aq.

4PbS, Sb₂S₃. Min. Meneghinite. 5PbS, Sb₂S₃. Min. Geokronite. 6PbS, Sb₂S₃. Min. Kibrickenite (?).

Lead potassium orthosulphantimonite, PbKSbS₃.

Very sl. sol. in H₂O. Decomp. by H₂O. (Pouget, A. ch. 1899, (7) **18.** 554.)

Lead silver sulphantimonite, (Ag₂, Pb)₅Sb₄S₁₁. Min. Freieslebenite.

Lithium orthosulphantimonite, Li₃SbS₃ +3H₂O.

Very deliquescent.

Very sol, in H₂O. (Pouget, A. ch. 1899, (7) **18.** 530.)

Lithium parasulphantimonite,

 $\text{Li}_2\text{Sb}_4\text{S}_7 + 3\text{H}_2\text{O}$ .

Ppt. (Pouget, A. ch. 1899, (7) 18. 531.)

Lithium silver orthosulphantimonite, LiAg₂SbS₃.

Decomp. by H₂O. (Pouget, A. ch. 1899, **(7) 18. 551.**)

Manganous orthosulphantimonite, Mn Sb₂S₆. Ppt. Sl. sol. in H₂O. (Pouget, A. ch 1899, (7) **18.** 553.)

Manganous potassium orthosulphantimonite, MnKSbS₃.

Sl. sol. in H₂O. Decomp. by H₂O. (Pouget, A. ch. 1899, (7) 18. 553.)

Nickel orthosulphantimonite, Ni₂Sb₂S₆. Ppt. (Pouget, A. ch. 1899, (7) 18. 554.)

Potassium metasulphantimonite, KSbS₂.

Insol. in cold  $H_2O$ . Decomp. by hot  $H_2O$ . (Pouget, A. ch. 1899, (7) 18. 513.)

 $+1\frac{1}{2}H_2O$ . Sol. in H₂O, but decomp. quickly.

Sol. in H₂O. (Stanek, Z. anorg. 1898, 17. 119.)

Potassium orthosulphantimonite, K₃SbS₃.

Very deliquescent.

Very sol. in H₂O.

Decomp. by acids. (Pouget, A. ch. 1899, **(7) 18. 518.**)

Potassium sulphantimonite, K₂Sb₄S₇+3H₂O. Sl. sol. in H₂O and not decomp. thereby. (Pouget, A. ch. 1899, (7) 18. 522.)

Decomp. in the air. Sol. in K₂S+Aq. (Stanek, Z. anorg. 1898, **17.** 120.)

2K₂S, Sb₂S₃. Sol. in H₂O. (Ditte, C. R. **102.** 68.)

 $xK_2S$ ,  $ySb_2S_3$ . Deliquescent. When  $K_2S$  is in excess, sol. in  $H_2O$ ; when  $Sb_2S_3$  is in excess, partially sol. Aqueous solution is decomp. by all acids, even CO₂, and by K₂CO₃, Na₂CO₃, NaHCO₃, KHCO₃, NH₄HCO₃+Aq. Insol. in absolute alcohol. (Kohl.)

Potassium hydrogen sulphantimonite, KHSb₄S₇.

(Pouget, A. ch. 1899, (7) 18. 522.)

Potassium silver orthosulphantimonite, Ag₂KSbS₃.

Decomp. by boiling H₂O. (Pouget, C. R. 1897, **124.** 1519.)

Potassium zinc orthosulphantimonite, KZnSbS3.

Decomp. by H₂O. (Pouget, A. ch. 1899, **(7) 18.** 552.)

Silver orthosulphantimonite, Ag₃SbS₃.

Ppt. Sl. sol. in H₂O. 1899, (7) 18. 547.) (Pouget, A. ch.

Min. Pyrargyrite. Sol. in HNO₈+Aq with residue of S and Sb₂O₃. KOH+Aq dissolves out Sb₂S₃.

Silver sulphantimonite.

AgSbS₂. Min. Miargyrite. 5Ag₂s, Sb₂S₂. Min. Stephanite. decomp. by warm HNO₂+Aq. 12Ag₂S, Sb₂S₃. Min. Polyargyrite.

Silver sodium orthosulphantimonite. Ag₂NaSbS₃.

Decomp. by H₂O. Pouget, A. ch. 1899, (7) **18.** 551.)

Sodium metasulphantimonite, NaSbS₂.

Deliquescent. Decomp. by hot H₂O. When Na₂S is in excess, sol. in H₂O, but partially sol. if Sb₂S₃ is in excess. (Unger, Arch. Pharm. (2) 148. 1.)

Ppt. Insol. in H₂O. (Pouget, C. R. 1898. **126.** 1145.)

Sodium orthosulphantimonite, Na₃SbS₃ +9H₂O.

Decomp. in solution in H₂O. (Pouget, C. R. 1898, **126.** 1144.)

Sodium sulphantimonite, Na₂Sb₄S₇+2H₂O. Sol. in H₂O. (Pouget, C. R. 1898, 126. 1145.)

Na₆Sb₄S₉. (Pouget, C. R. 1898, 126. 1144.) 4Na₂S, 3Sb₂S₈+3H₂O. Permanent; sol. in H₂O. Insol. in alcohol and ether. (Kohl.)

Strontium orthosulphantimonite, SraSb2S6 +10H₂O.

Sol. in H₂O. (Pouget, C. R. 1898, 126. 1793.)

Strontium pyrosulphantimonite, Sr₂Sb₂S₅ +15H₂O.

Sol. in H₂O without essential decomp. (Pouget, C. R. 1898, **126.** 1793.)

Zinc orthosulphantimonite, Zn₈Sb₂S₆.

Ppt. (Pouget, A. ch. 1899, (7) 18. 552.)

Orthosulpharsenic acid, H₃AsS₄.

Ppt. Loses H₂S by prolonged boiling with H₂O. (Nilson, J. pr. (2) 14. 145.) See also Sulphoxyarsenic acid.

Ammonium sulpharsenate, (NH₄)₄As₂S₇.

Known only in solution in H₂O. Decomp. on boiling into— NH₄AsS₃. Sol. in alcohol.

(NH₄)₈AsS₄. Sol. in  $H_2O$ . Precipitated by alcohol.

 $(NH_4)_2S$ ,  $12As_2S_5$ . Ppt. Insol. in  $H_2O$ .

Ammonium magnesium sulpharsenate,  $(NH_4)_2S$ , MgS, As₂S₅.

Ammonium sodium sulpharsenate, (NH₄)₈AsS₄, Na₈AsS₄.

Much more sol. in H₂O than Na₈AsS₄; sl. sol. in cold, more sol. in hot alcohol. (Berzelius.)

Easily | Barium sulpharsenate, Ba(AsS₂)₂.

Sol. in H₂O and alcohol. Decomp. by evaporation.

Ba₂As₂S₇. Sol. in H₂O in all proportions with decomp. Decomp. by alcohol.

 $Ba_3(AsS_4)_2$ . Sol. in  $H_2O$ . Insol. in alcohol.

BaS, 3As₂S₅. Ppt. Insol. in H₂O.

#### Barium potassium sulpharsenate, KBaAsS₄+6H₂O.

Easily sol. in H2O.

Decomp. by acids with separation of As256. (Glatzel, Z. anorg. 1911, 71, 209.)

#### Barium sulpharsenate sulpharsenite, $Ba_3(AsS_4)_2$ , $Ba_2As_2S_5+4H_2O$ . Sl. sol. in cold, more easily in hot H₂O. (Nilson.)

## Bismuth sulpharsenate, 2Bi₂S₃, 3As₂S₅.

Sol. in Na₃AsS₄+Aq.

Bi2S2, 3A82S5. As above (Berzelius.)

#### Cadmium sulpharsenate.

Ppt. (Berzelius, Pogg. 7. 88.)

#### Calcium sulpharsenate, Ca₂As₂S₇.

Sol. in H₂O and alcohol.

Ca₃(AsS₄)₂. Easily sol. in H₂O. Insol. in alcohol.

+10H₂O. Easily sol. in H₂O. (Nilson, J. pr. (2) **14.** 169.) 5CaS,  $2AsS_2S_5 + 6H_2O$ . Easily sol. in  $H_2O$ . (Nilson, J. pr. (2) 14. 163.)

#### Cerous sulpharsenate, Ce₂As₂S₇.

Ppt.  $\hat{\text{Ce}}_3(\text{AsS}_4)_2$ . Ppt.  $Ce_4(As_2S_7)_3$ . Ppt.

### Cobaltous sulpharsenate, Co₂As₂S₇.

Ppt. Sol. in excess of sodium sulpharsenate+Aq.

#### Cuprous sulpharsenate, Cu₃AsS₄.

Ppt. (Preis, A. 257. 201.)

Min. Enargite. Clarite. Not wholly decomp. by HCl+Aq. Sol. in HCl+Aq with residue of  $As_2O_3$ . Not attacked by KOH + Aq.

#### Cupric sulpharsenate, Cu₂As₂S₇.

Ppt. Sol. in (NH₄)₂S+Aq. Decomp. by  $NH_4OH + Aq.$ (Berzelius.) Ppt. (Preis, A. 257. 201.)  $Cu_3(AsS_4)_2$ .

#### Glucinum sulpharsenate.

Sl. sol. in H₂O.

#### Gold sulpharsenate, AuAsS₄.

Sol. in pure H₂O. Insol. in Na₃AsS₄+Aq. 2Au₂S₃, 3As₂S₅. Sol. in H₂O. (Berzelius.)

#### Iron (ferrous) sulpharsenate, Fe₂As₂S₇.

Ppt. Sol. in Na₂AsS₄+Aq. (Berzelius.)

Iron (ferric) sulpharsenate, Fe₄(As₂S₇)₈. Ppt. Sol. in Na₃AsS₄+Aq. (Berzelius.)

#### Lead sulpharsenate, Pb₂As₂S₇.

Ppt. (Berzelius.)  $Pb_8(AsS_4)_2$ . Ppt.

#### Lithium sulpharsenate, LizAsS4.

Easily sol. in hot, less sol. in cold H₂O. Insol. in alcohol.

Ii4As2S7. Completely sol. in H₂O. Decomp. by alcohol.

LiasS₃. Known only in acid solution.

### Magnesium sulpharsenate, Mg2As2S7.

Sol. in all proportions of H₂O, and in alcuhol.

 $Mg_3(AsS_4)_2$ . Sci. in  $H_2O$ . Decomp. alcohol

3MgS, As₂S₅. Nearly insol in H₂O.

5 MgS,  $2 \text{As}_2 \hat{\text{S}}_5 + 15 \text{H}_2 \hat{\text{O}}$ . Very sol. in  $\text{H}_2 \hat{\text{O}}$ .

#### Manganous sulpharsenate, Mn₂As₂S₇.

Sl. sol. in H₂O

 $Mn_3(AsS_4)_2$ . Permanent. Sl. sol. in  $H_2O$ .  $6MnS_1 \triangle s_2S_5$ . Sl. sol. in  $H_2O$ .

### Mercurous sulpharsenate, (Hg₂)₂As₂S₇.

### Mercuric sulpharsenate, Ug2As2S7.

Ppt. (Berzelius, Pogg. 7. 29.)  $Hg_3(AsS_4)_2$ . Ppt. (Preis, A. 257. 200.)

#### Nickel sulpharsenate, Ni₃(AsS₄)₂.

Ppt. Not decomp. by HCl+Aq. Sol. in Na₃A₈S₄+Aq. (Berzelius.) 2NiS, As₂S₅. As above.

#### Potassium sulpharsenate, KAsS₈.

Known only in alcoholic solution.

K₄A₈₂S₇. Deliquescent. Sol. in H₂O, from

which alcohol ppts. K₃AsS₄.

K₃AsS₄. Deliquescent. Very sol. in H₂O, from which it is precipitated by alcohol. +H₂O. Very deliquescent. (Nilson, J. pr. (2) **14.** 159.)

### Potassium sodium sulpharsenate.

Sol. in H₂O.

### Silver sulpharsenate, Ag₃AsS₄.

Ppt. (Berzelius, Pogg. 7. 29.) Ag₂As₂S₇. Ppt.

#### Sodium sulpharsenate, NaAsS₃.

Known only in alcoholic solution.

Na₄As₂S₇. Sol. in H₂O. Alcohol ppts.

Na₃AsS₄ from H₂O solution.

Easily sol. in H₂O,  $Na_3A_5S_4 + 7\frac{1}{2}H_2O$ . from which it is precipitated by alcohol. +8H₂O. Insol. in alcohol; very sol. in

 $\begin{array}{c} {\rm H_2O.~(McCay,~Z.~anal.~1895,~34.~726.)} \\ {\rm +9H_2O.~(Nilson,~J.~pr.~(2)~14.~160.)} \\ {\rm Na_2S,~12As_2S_6~(?).~Insol.~in~H_2O.} \end{array}$ 

#### Sodium zinc sulpharsenate, NaZnAsS4+ 4H₂O.

Sol. in hot H₂O with decomp. (Preis, A. **257.** 202.)

Strontium sulpharsenate, Sr₃(AsS₄)₂.

Easily sol. in H₂O; insol. in alcohol. Sr₂As₂S₇. Easily sol. in H₂O, from which alcohol ppts. Sr₃(AsS₄)₂.

Strontium sulpharsenate sulpharsenite,  $Sr_{8}(AsS_{4})_{2}^{-}$ ,  $Sr_{2}As_{2}S_{5}+4H_{2}O$ .

Easily sol. in H₂O. (Nilson, J. pr. (2) 14.

#### Thallous sulpharsenate, TlaAsS4.

Not decomp. by H₂O. Decomp. by dil. acids. Insol. in dil. alkali sulphides. Partially decomp. by boiling with a conc. solution of sodium sulphide. (Hawley, J. Am. Chem. Soc. 1907, 29. 1013.)

Tin (stannous) sulpharsenate. Ppt.

Tin (stannic) sulpharsenate. Ppt.

Uranic sulpharsenate, 2U₂S₃, As₂S₅. Ppt. Sol. in Na₃AsS₄+Aq.

Zinc sulpharsenate,  $Zn_3(AsS_4)_2$ .

Ppt. (Berzelius.) 2ŽnS, As₂S₅. Ppt. (Berzelius.) ZnS, As₂S₅. (Wöhler.)

Disulpharsenic acid.

See Disulphoxyarsenic acid.

#### Sulpharseniosulphomolybdic acid.

Ammonium sulpharseniosulphomolybdate,  $(NH_4)_4As_2S_7(MoS_3)_2+5H_2O.$ 

Very unstable.

Sol. in H₂O with decomp. (Weinland, Z. anorg. 1897, **15**. 49.)

**Barium** —,  $Ba_2As_2S_7(MoS_3)_2+14H_2O$ . Sol. in H₂O with decomp. (Weinland.)

Potassium —,  $KAsS_3(MoS_3) + 4H_2O$ .

(Weinland.)

 $K_4As_2S_7(MoS_3)_2 + 8H_2O$ . Sol. in  $H_2O$ . Decomp. by mineral acids. Insol. in alcohol. (Weinland.)

Sodium —,  $NaAsS_3(MoS_3) + 6H_2O$ .

Insol. in H₂O. Easily sol. in dil. NaOH and NH₃+Aq. (Weinland.)

 $Na_4As_2S_7(MoS_3)_2 + 14H_2O$ . Sol. in H₂O. Decomp. by mineral acids. (Weinland.)

#### Sulpharseniosulphoxymolybdic acid.

Barium sulpharseniosulphoxymolybdate.  $Ba_2As_2S_7(Mo_2S_3O_3) + 12H_2O.$ 

Sol. in H₂O. (Weinland, Z. anorg. 1897, **15.** 60.)

Magnesium sulpharseniosulphoxymolybdate,  $Mg_2As_2S_7(Mo_2S_3O_8) + 16H_2O.$ 

Very sol. in H₂O. (Weinland.)

Potassium —,  $KAsS_3(MoSO_2) + 2\frac{1}{2}H_2O$ . Sol. in H₂O with decomp. (Weinland.)  $K_4As_2S_7(Mo_2S_3O_3)+6H_2O$ . Very sol. in H₂O. Weinland.) +10H₂O. (Weinland.)

Sodium —,  $NaAsS_3(MoSO_2) + 5H_2O$ . Sl. sol. in cold, very sol. in hot H₂O. (Wein- $Na_4As_2S_7(Mo_2S_3O_3) + 15H_2O$ . Very sol.

in H₂O. (Weinland.)

#### Sulpharsenious acid.

Ammonium sulpharsenite, NH₄As₃S₅+2H₂O. Insol. in H₂O. Ppt. Sol. in KOH or  $NH_4OH + Aq$ . Sl. attacked by boiling HCl + Aq. (Nilson, J. pr. (2) **14.** 42.) ( $NH_4$ )₄ $As_2S_5 = 2(NH_4)_2S$ ,  $As_2S_3$ . Sol. in H₂O, from which alcohol ppts. (NH₄)₃AsS₃.  $(NH_4)_3A_5S_3 = 3(NH_4)_2S_1A_5S_3$ . Decomp.

on air; sol. in H₂O. Insol. in alcohol. (NH₄)₅As₃S₁₀. Sol. in H₂O. (Nilson, J. pr. (2) **14.** 160.)

#### Barium sulpharsenite, Ba₂As₂S₅.

Sl. sol. in H₂O. Decomp. by alcohol. +5H₂O. Sl. sol. in H₂O. (Nilson, J. pr. (2) 14. 46.)

+15H₂O. Sl. sol. in cold H₂O. (Nilson.) Ba₃(AsS₃)₂. Sl. sol. in H₂O. Precipitated by alcohol. Sl. sol. in cold, easily in hot +14H₂O.

H₂O. (Nilson.)  $Ba(AsS_2)_2 + 2H_2O$ . Insol. in H₂O. (Nilson, J. pr. (2) 14. 44.)

BaAs₁₂S₁₉. Insol. in HCl+Aq. (Nilson.)

Bismuth sulpharsenite, 2Bi₂S₃, As₂S₃. Ppt.

Cadmium sulpharsenite.

Ppt. (Berzelius, Pogg. 7. 146.)

Calcium sulpharsenite, Ca₂As₂S₅.

Sol. in H₂O, from which alcohol ppts.  $\begin{array}{l} \operatorname{Ca_3(AsS_3)_2.} \\ \operatorname{Ca_3(AsS_3)_2.} \\ \operatorname{Ca_3(AsS_3)_2.} \\ \operatorname{Sol. in } \operatorname{H_2O.} \\ \operatorname{+15H_2O.} \\ \operatorname{Precipitated by alcohol.} \end{array}$ 

 $Ca(AsS_2)_2 + 10H_2O$ . Sol. in  $H_2O$ . (Nilson, J. pr. (2) **14.** 54.)

 $CaAs_8S_{13}+10H_2O$  (?). Insol. in cold  $H_2O$ .

Decomp. by hot  $H_2O$ . (Nilson.) CaAs₁₈S₂₈+10H₂O (?). Sl. sol. in hot  $H_2O$ . (Nilson.)

Ca₇As₂S₁₀+25H₂O. Sl. sol. in cold or hot H₂O. (Nilson.)

Cerous sulpharsenite, Ce2As2S5. Ppt.

Chromic sulpharsenite, 2Cr₂S₃, 3A_{S2}S₃. Ppt. Insol. in Na₂S+Aq.

Cobaltous sulpharsenite, 2CoS, As₂S₃,

Ppt. Sol. in excess of sodium sulpharsenite+Aq.

Cuprous sulpharsenite,

 $3Cu_2S$ ,  $2As_2S_3 = Cu_1As_4S_9$ .

Min. Binnite. Decomp. by hot acids and KOH+Aq.

2Cu₂S.  $As_2S_3 = Cu_4As_2S_5$ Decomp. by acids, KOH and K₂S+Aq. (Sommerlad, Z. anorg. 1898, 18. 434.)

Cupric sulpharsenite, Cu₃AsS₃.

Insol. in H₂O or HCl+Aq. Sol. in Na₃AsS₃ +Aq.

Cu₂As₂S₅. Ppt. (Berzelius.)

Glucinum sulpharsenite, 2GlS, As₂S₃.

Ppt. Sol. in acids; partly sol. in NH₄OH +Aq.

Gold sulpharsenite, 2Au₂S₃, 3As₂S₃. Ppt. (Berzelius.)

Iron (ferrous) sulpharsenite.

Ppt. Sol. in Na₃AsS₃+Aq. (Berzelius.)

Iron (ferric) sulpharsenite.

Ppt. Sol. in excess of a ferric salt, or  $Na_3AsS_3+Aq$ . (Berzelius.)

Lead sulpharsenite, Pb₂As₂S₅.

Ppt. Min. Dufreynosite.  $Pb(AsS_2)_2 = PbS, As_2S_3.$ Min. Sartorite. Pb₄As₂S₇. Min. Jordanite.

Lithium sulpharsenites.

Resemble K salts.

Magnesium sulpharsenite, Mg₂As₂S₅.

Almost completely sol. in H₂O. Easily sol. in alcohol. (Berzelius.)

+8H₂O. Sl. sol. in H₂O. (Nilson.)  $Mg(AsS_3)_2+5H_2O$ . Slowly sol. in both cold and hot  $H_2O$ . (Nilson, J. pr. (2) **14**.

 $Mg_3(AsS_3)_2 + 9H_2O$ . (Nilson.)

Manganous sulpharsenite, Mn₂As₂S₅.

Ppt. Decomp. by HCl+Aq.

Mercurous sulpharsenite,  $(Hg_2)_2As_2S_5$ . Ppt. (Berzelius.)

Mercuric sulpharsenite, Hg₂As₂S₅.

 $\mathbf{Hg}(\mathbf{AsS}_2)_2$ . Ppt. (Berzelius, Pogg. 7. 149.)

Nickel sulpharsenite, Ni₃(AsS₃)₂.

Ppt. (Berzelius.)

Platinum sulpharsenite, Pt2As2S5.

Potassium sulpharsenite, K₄As₂S₅.

Decomp by H₂O or alcohol. (Berzelius.) KaAsSa. Sol. in theO. Insol. in alcohol. (Berzelius.)

K₂As₄S₇. Sol. in H₂O and alcohol. (Berzelius.)

K2AsS2. Decomp. by H₂O. (Berzelius.) H₂AS₂2. Not wholly sol. in H₂O. (Nilson, J pr. (2) 14. 30.) K-A₂4S₂+8H₂O. (Nilson.) KAs₃S₅+H₂O. Insol. in H₂O. Slowly at-

tacked by hot HCl+Aq. Sol. in KOH+Aq.  $\cdot$ (Nilson.)

Silver sulpharsenite, 12Ag₂S, As₂S₃.

(Sommerlad, Z. anorg. 1898, 18. 428.)

 $5Ag_2S$ ,  $As_2S_3 = Ag_5AsS_4$ . (Sommerlad.) Ag₃AsS₃. Min. Proustite. Sol. in HNO₄+ Aq. KOH+Aq dissolves out Sh₂S₃. (Senarmont, A. ch. (3) 32. 129; Wöhler, A. 27. 159.) 2Ag₂S, As₂S₃. Partially sol. in HNO₃+ Aq. (Berzelius.)

AgAsS₂. (Berzelius, Pogg. 7. 150.)

Sodium sulpharsenite,  $NaAsS_2 + \frac{1}{2}H_2O$ .

Attacked by HCl+Aq with difficulty. (Nilson, J. pr. (2) 14. 37.)

 $+1\frac{1}{2}H_2O$ . Forms coagulum with cold, sol. in hot H₂O. (Nilson.)

Na₂As₄S₇+6H₂O. Sol. in much H₂O; not easily decomp. by HCl+Aq. (Nilson.) NaAs₃S₅+4H₂O. Ppt. (Nilson, J. pr. (2)

Strontium sulpharsenite, 3SrS, As₂S₃+ 15H₂O.

Sol. in H₂O+Aq; insol. in alcohol. (Voigt and Göttling.) 2SrS, As₂S₃. Sol. in H₂O; decomp. by

alcohol. +15H₂O. (Nilson, J. pr. (2) **14.** 53.)  $Sr(AsS_2)_2 + 2\frac{1}{2}H_2O$ . Sl. sol. in  $H_2O$ . (Nil-

son.)

Thallous sulpharsenite, TlAsS₂.

**14.** 3.)

Ppt. Decomp. by KOH+Aq. (Gunning, J. B. **1868.** 247.)

Above compound is a mixture of As₂S₃ and  $Tl_2S$ . (Hawley, J. Am. Chem. Soc. 1907, **29.** 1012.)

Min. Lorandite. (Kuenner and Loezka, C. C. 1904, II. 844.)

Tin (stannous) sulpharsenite, Sn₂As₂S₅. Ppt.

Tin (stannic) sulpharsenite, SnAs₂S₅. Ppt. (Berzelius, Pogg. 7. 147.)

Uranic sulpharsenite, 2U₂S₃, As₂S₃. Ppt.

Zinc sulpharsenite.

Ppt. (Berzelius, Pogg. 7. 145.)

Zirconium sulpharsenite, 2Zr₂S₃, As₂S₃.

Ppt. Insol. in solutions of alkali sulpharsenites. Sl. sol. in Na₂S Aq. Not decomp. by acids. (Berzelius.)

"Sulphatammon," 2NH3, SO3.

(Rose.

Is ammonium imidosulphonate, which see. (Berglund.)

"Parasulphatammon," 3NH₃, 2SO₃.

(Rose.)

Is basic ammonium imidosulphonate, which see. (Berglund.)

#### Sulphatoiodic acid.

Potassium sulphatoiodate, K₂HO₃SIO₄ or KIO₃, KHSO₄.

Decomp. by  $H_2O$ . (Blomstrand, J. pr. (2) **40.** 317.)

See Iodate sulphate, potassium.

# Sulphatooctamine cobaltic carbonate (SO₄)₂Co₂(NH₈)₈CO₈+4II₂O.

Sol. in H₂C. (Vortmann and Blasberg, B. **22.** 2650.)

 $(SO_4)Co_2(NH_3)_5(CO_3)_2+3H_2O$ . Sol. in  $H_2O$ . (V. and B.)

See Carbonatotetramine cobaltic sulphate. (Jörgensen.)

## Sulphatoplatinamine sulphate, $SO_4Pt(NH_3)_2SO_4 + 3H_2O$ .

Easily sol. in H₂O. Sol. in H₂SO₄+Aq.

# Sulphatoplatin diamine sulphate, $SO_4Pt(N_2H_6)_2SO_4+H_2O$ .

Insol. in H₂O.

# Sulphatopurpureocobaltic bromide, $Co(SO_4)(NH_3)_{\delta}Br$ .

Sol. in  $H_2O$ , from which it is precipitated by conc. HBr+Aq. (Jörgensen, J. pr. (2) **25.** 94.)

--- carbonate,  $[(SO_4)Co(NH_8)_5]_2CO_8 + 4H_2O$ .

Sol. in H₂O. (Vortmann and Blasberg, B. 22. 2648.)

--- chloroplatinate, 2Co(SO₄)(NH₈)₅Cl, PtCl₄+2H₂O.

Sl. sol. in cold H₂O. (Jörgensen.)

— nitrate,  $Co(SO_4)(NH_3)_5(NO_3)$ . Quite e Somewhat sl. sol. in cold  $H_2O$ . (Jörgensen.) 21. 161.)

Sulphatopurpureocobaltic sulphate, [Co(SO₄)(NH₃)₅]₂SO₄+H₂O.

Very easily sol. in  $H_2O$ . (Jörgensen, J. pr. (2) **25.** 94.)

 $Co(SO_4)NH_3)_5(HSO_4)+2H_2O$ . Sol. in about 25 pts. of cold  $H_2O$ . Sol. in dil., insol. in conc.  $NH_4OH+Aq$ . (Jörgensen.)

Sulphazic acid, H₄S₂N₂O₉ =

 $SO_3H$ —N(OH)—O—N— $(OH)SO_3H$ .

Known only in its salts. (Raschig, A. 241. 161.)

Potassium sulphazate,  $K_3HS_2N_2O_9 = (SO_3K)(OK)N-O-N(OH)-(SO_3K)$ .

Sol. in  $H_2O$ , but decomp. on standing. (Raschig, A. 241. 161.)

#### Sulphazidic acid.

(Fremy.)

See Hydroxylamine monosulphonic acid.

#### Sulphazilinic acid.

See Oxysulphazotic acid.

Metasulphazilinic acid.

See Trisulphoxyazotic acid.

#### Sulphazinous acid.

(Fremy.)

See Dihydroxylamine sulphonic acid.

Sulphazotic acid, H₆N₂S₄O₁₄ =

 $(SO_8H)_8 \equiv NH - NO = OH(SO_8H).$ 

Known only in its salts. (Claus, A. 158. 52 and 194). Has the formula

 $(SO_3H)_2NH< \stackrel{O}{O}>NH(SO_3H)_2.$ 

(Raschig, A. 241, 161.)

#### Lead potassium sulphazotate.

Insol. in cold, decomp. by hot H₂O. Insol. in alcohol and ether. (Fremy, A. ch. (3) 15. 439.)

Potassium sulphazotate,  $K_3HN_2S_4O_{14}+H_2O$ =  $(SO_3K)_2NK < {\stackrel{\bigcirc}{O}} > NH(SO_3K)_2$ .

Very sol. in hot, less in cold H₂O. (Raschig, A. **241**. 161.) Decomp. gradually by boiling. (Claus.) Insol. in alcohol or ether. (Fremy, A. ch. (3) **15**. 428.)

True composition is  $HON(SO_3K)_2$ ,  $KON(SO_3K)_2 + H_2O$ . Potassium hydroxylamine disulphonate. (Divers and Haga, Chem. Soc. 1900, 77. 432.)

Forms basic salt

 $(SO_3K)_2NK<_O^C>NK(SO_3K)_2$ , which is easily sol. and decomp. by  $H_2O$ . (Raschig.)

Potassium sodium sulphazotate, K₄NaHN₂S₄O₁₄+2H₂O.

Quite easily sol. in H₂O. (Raschig, A. **241.** 161.)

Disulphhydroxyazotic acid, ONH(SO₂H)₃.

Known only in its salts. (Claus, A. 158. 52 and 194.) Correct composition is hydroxylamine sulphonic acid HON(SO₃H)₂, which see. (Raschig, A. 241. 161.)

#### Sulphhydroxylamic acid.

(Claus)

See Hydroxylamine monosulphonic acid.

#### Disulphhydroxyazotic acid.

See Hydroxylamine disulphonic acid.

#### Sulphides.

The sulphides of the alkali metals are sol. in H₂O; those of the alkali-earth metals are much less sol., and are decomp, upon solution into hydrosulphide and hydroxide.

The other sulphides are insol. in H₂O. For each sulphide, see under the respective

element.

Sulphimide, SO₂NH. See Imidosulphamide.

Trisulphimide, OHSO NSO.OH N

 $(SO_2NH)_3$ .

Sol. in methyl alcohol; sl. sol. in ether; insol. in chloroform and benzene. (Hantzsch B. 1901, **34.** 3440.)

Ammonium sulphimide,  $SO_2N(NH_4)$ . Sol. in H₂O; insol. in alcohol. (Traube.)

Barium —,  $(SO_2N)_2Ba + 2H_2O$ . Sol. in H₂O. (Traube.)

Potassium ----, SO₂NK. Not very sol. in H₂O.

Silver —, SO₂NAg.

hot H₂O. Sol. in acids.

Sodium ----, SO₂NNa. Very sol. in H₂O.

"Sulphitammon," NH₃, SO₂. See Thionamic acid.

#### Sulphobismuthous acid.

+Aq and in  $HNO_8+Aq$ .

Cuprous sulphobismuthite, AuBiS₂.

Min. Emplectite. Sol. in HNO₃+Aq. Completely Cu₆Bi₄S₉. Min. Klaprothite. sol, in HCl+Aq. Cu₂BiS₂. Min. Wittichenite. Sol. in HCl

Cuprous lead sulphobismuthite, Cu2S. 2PbS, Bi2S2.

Min. Patrinite.

Sol. in HNO₂+Aq with residue of S and PbSO4.

Lead — - 2PbS, Bi₂S₈.

Min. Cosalite.

2PbS, 3Bi2S2. Min. Chiviatite.

Potassium — -, K 3iS.

Decomp. by H2O.

Sol. in HCI+Aq. (Schneider, Pogg. 1869, **136.** 464.)

#### Metasulphoboric acid, B₂S₃H₂S.

Decomp. by H2O and alcohol.

1 pt. is sol. in 5 pts. benzene 1 pt. is " " 5 " CS₂

Very sl sol. in CS₂ at -20°. (Stock, B. 1901, 34. 401.)

#### Sulphocarbonic acid.

#### Ammonium cuprous sulphocarbonate, CS₃CuNH₄.

This salt was formerly described as cupric sulphocarbonate ammonia, CS₃Cu, NH₃. (Hofmann, B. 1903, **36**. 1146.)

#### Cuprous potassium sulphocarbonate, CS,CuK.

Nearly insol. in cold H₂O. Somewhat sol. in hot H2O, NaOH and NH₄OH+Aq. (Hofmann.)

#### Cupric sulphocarbonate ammonia, CS₃Cu, NH₃.

Very sl. sol. in strong NH₄OH+Aq.; insol. in cold H2O, sl. sol. in hot H2O. (Hofmann, Z. anorg. 1897, 14. 295.)

Is ammonium cuprous sulphocarbonate. (Hofmann, B. 1903, 36. 1146.)

Sol. in 500-600 pts. cold, more easily in Cuprous sulphocarbonate potassium cyanide,  $CS_3Cu_2$ ,  $2KCN+2H_2O$ .

Sol. in H₂O and dil. alkalies on warming. (Hofmann, B. 1903, 36. 1148.)

### Zinc sulphocarbonate ammonia,

CS₃Žn, 2NH₃.

Ppt. (Hofmann, Z. anorg. 1897, 14. 277.)

### Sulphochromic acid, H₂CrO₄, SO₃. (?).

Sol. in H₂O. (Bolley, A. **56**. 113.) (SO₃)₄Cr₂O₂(OH)₂. Sol. in H₂O. All salts even alkali sales are insol. in H₂O. (Recoura,

Bull. Soc. 1896, (3) **15**. 315.) | Cr₂O₂(OH)₄(SO₂)₄O₃, Cr₂O(OH)₂(SO₂)₃ (OH)₋|(OH)₂. Sol. in H₂O. (Wyrouboff, Bull. Soc. 1902, (3) **27**. 721.)

### Chromium sulphochromate

 $\operatorname{Cr_2O_2(OH)_4(SO_2)_4O_2(OH)_2Cr_2(OH)_6}$ .

Ppt.; decomp. by boiling H₂O. boff, Bull. Soc. 1902, (3) 27. 720.) (Wyrou-

#### Sulphochromous acid.

#### Ferrous sulphochromite, FeCr₂S₄.

Insol. in H₂O, and nearly so in HCl+Aq. (Gröger, W. A. B. 81, 2, 531.)

#### Manganous ----, MnCr₂S₄.

Insol. in H₂O and HCl+Aq. (Gröger.)

#### Potassium —, K₂Cr₂S₄.

Insol. in H₂O and in hot HCl+Aq.

Easily sol. in aqua regia. Slowly sol. in cold, rapidly sol. in hot dil. HNO₃+Aq. (Milbauer, Z. anorg. 1904, **42**. 443.)

K₂Cr₄S₇. Stable in the air; sol. in HNO₃

and aqua regia with decomp. (Schneider, J. pr. 1897, (3) 56. 407.)

#### Silver —, Ag₂Cr₂S₄.

Not attacked by HCl+Aq even on heating. Decomp. by conc. HNO₃. (Schneider, J. pr. 1897, (2) **56.** 401.)

#### Sodium —, Na₂Cr₂S₄.

Insol. in H₂O. Sl. attacked by dil. HCl or H₂SO₄+Aq. Sol. in cold conc. HNO₃ or Sol. in hot dil. HNO₃+Aq. aqua regia. (Gröger.)

Sol. in acids with decomp. (Schneider, J. pr. 1897, (3) **56,** 415.)

#### Zinc —, ZnCr₂S₄.

Insol. in H₂O; sol. in traces in boiling conc. HCl or dil. H₂SO₄+Aq; sol. in HNO₃+Aq. (Gröger, W. A. B. **81, 2.** 531.)

#### Sulphocyanhydric acid, HSCN.

Sol. in H₂O.

Sat. HSCN+Aq has sp. gr. = 1.022. (Porrett, 1814.) HSCN+Aq containing 12.7% HSCN has sp. gr. 1.040 at 12.7°. (Hermes, Z. Ch. 1866, 417.)

#### Sulphocvanides.

Most sulphocyanides are sol. in H₂O, but Cu, Pb, Hg, and Ag sulphocyanides are insol.

#### Aluminum sulphocyanide, Al(SCN)₃.

Known only in solution.

Al(SCN)₂(OH)₄. Known only in solution (Suida.)

### Aluminum potassium sulphocyanide,

 $K_3Al(SCN)_6+4H_2O$ .

Very hydroscopic. Sol. in H₂O and alcohol. (Rosenheim, Z. anorg. 1901, 27. 302.)

#### Ammonium sulphocyanide, NH₄SCN.

Deliquescent, and very sol. in  $H_2O$ . 100 pts.  $H_2O$  dissolve 128.1 pts. at  $0^{\circ}$  and

162.2 pts. at 20°.

NH₄SCN+Aq sat. at ord. temp. has density of 1.138 and 100 cc. contains 69.16 g. NH₄SCN. (Klason, J. pr. 1887, (2) 36. 67.) By dissolving 90 g. NH₄SCN in 90 g. H₂O

at 17°, the temp. falls to -12°. (Clowes, Z. Ch. **1866.** 190.)

133 pts. NH₄SCN+100 pts. H₂O at 13.2° lower the temp. 31.2°. (Rüdorff, B. **2**. 68.) Sol. in liquid SO₂. (Walden, B. 1899, **32**.

2864.) Difficultly sol. in AsBr₃. (Walden, Z.

anorg. 1902, 29. 374.) Very easily sol. in liquid NH₃. (Franklin,

Am. (h. J. 1898, **20.** 826.) Easily sol. in alcohol.

Easily sol. in acetone. (Krug and M'Elroy. Sl. sol. in benzonitrile. (Naumann, B.

1914, **47.** 1369.) Sol. in methyl acetate. 1909, **42.** 3789.) (Naumann, B.

Difficultly sol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

### Ammonium bismuth sulphocyanide,

 $(NH_4)_3Bi(SCN)_3$ .

As K salt. (Rosenheim and Vogelgesang Z. anorg. 1906, **48.** 215.)

### Ammonium cadmium sulphocyanide,

 $(NH_4)_2Cd(SCN)_4+2H_2O.$ 

Somewhat deliquescent. Melts in crystal H₂O at 25°.

Insol. in alcohol. (Grossmann, B. 1902, **35.** 2667.)

#### Ammonium cadmium molybdenyl sulpho-NH4SCN. $Cd(SCN)_2$ , cvanide, $Mo(OH)(SCN)_3 + 3H_2O.$

(Maas and Sand, B. 1908, 41. 1513.)

#### Ammonium cobaltous sulphocyanide. $(NH_4)_2Co(SCN)_4$ .

Decomp. in moist air.

Cannot be recryst, from H₂O. (Treadwell, Z. anorg. 1901, 26. 109.)

 $+4H_2O$ . Sol. in  $H_2O$ .

Sol. in methyl, ethyl and amyl alcohol,

in acetone and in ether + Aq.

Can be recryst, from H₂O or alcohol without decomp. (Rosenheim and Cohn, Z. anorg. 1901, 27. 289.)

#### Ammonium iron (ferric) sulphocyanide, $9NH_4SCN$ , $Fe(SCN)_8+4H_2O$ .

Deliquescent, and sol. in H₂O. (Krüss and Moraht, A. 260. 207.)

3NH₄SCN, Fe(SCN)₃. Extremely deliquescent.

### Ammonium mercuric sulphocyanide,

2NH₄SCN, Hg(SCN)₂.

Easily sol. in H₂O. (Fleischer, A. 179. 228.)

NH₄Hg(SCN)₃. Insol. in cold; sol. in hot H₂O. (Rosenheim, Z. anorg. 1901, 27. 284.)

Ammonium molybdenyl sulphocyanide, 3NH₄SCN, Mo(OH)(SCN)₃+3H₂O. (Sand and Maas, B. 1907, 40, 4507.)

# Ammonium nickel sulphocyanide, (NH₄)₄Ni(SCN)₆+4H₂O.

Sol. in H2O with decomp.

Sl. sol. in cold; easily sol. in hot alcohol. (Rosenheim, Z. anorg. 1901, 27, 292.)

Ammonium silver sulphocyanide, NH₄SCN, AgSCN.

Decomp. by H₂O.

## Ammonium vanadium sulphocyanide, V(SCN)₃, 3NH₄SCN+4H₂O.

Sol. in  $H_2O$ ; sol. in alcohol; sl. sol. in ether. (Ciocci, Z. anorg. 1898, **19**. 311.)

# Ammonium vanadyl sulphocyanide, (NH₄)₂VO(SCN)₄+5H₂O.

Sol. in H₂O, alcohol, ether, acetone, amylalcohol and ethyl acetate. (Koppel, Z anorg. 1903, **36.** 290.)

## Ammonium zinc sulphocyanide, $(NH_4)_2Zn(SCN)_4+3H_2O$ .

Easily sol. in H₂O and in alcohol. (Walden, Z. anorg. 1900, 23, 374.)

+4H₂O. Easily sol. in cold H₂O, acetone, alcohols and ether. (Rosenheim and Huldschinsky, B. 1901, **34.** 3913.)

# Ammonium sulphocyanide mercuric bromide, NH₄SCN, HgBr₂.

Very sol. in H₂O.

Sol. in alcohol. (Grossmann, B. 1902, **35.** 

2NH₄SCN, HgBr₂+H₂O. Somewhat deliquescent.

Very sol. in H₂O.

Sol. in alcohol. (Grossmann.)

#### Arsenic sulphocyanide, As(SCN)₃.

Decomp. by H₂O. Insol. in all ordinary solvents. (Miguel, A. ch. (5) 11. 341.)

### Barium sulphocyanide, Ba(SCN)₂+2H₂O.

Deliquescent. Easily sol. in H₂O and alcohol. Boiling solution in alcohol contains 32.8% anhydrous salt. Solution sat. at 20° contains 30%. (Tscherniak, B. 16. 349.) Cryst with 3H₂O. (Tscherniak, B. 25.

Cryst. with 3H₂O. (Tscherniak, B. 25. 2627.)

#### Barium cadmium sulphocyanide, 4Ba(SCN)₂, Cd(SCN)₂+10H₂O.

Deliquescent. (Grossmann, B. 1902, 36 2669.)

#### Barium cæsium cuprous sulphocyanide, Ba(SCN)₂, 3CsSCN, 3CuSCN.

Rapidly decomp. by  $H_2O$ . (Wells, Am. Ch. J. 1902, 28, 273.)

#### Barium cæsium silve, sulphocyanide, Ba(SCN)₂, 3CsoCN, 2AgSCN,

100 pcs. H₂O dissolve 92 pts. at 19°. Decomp. by muc!. H₂O. (Wells, Am. Ch. J. 1902, **28**, 272.)

#### Barium cobaltous sulphocyanide, BaCo(SCN)4+8H₂O.

Ppt. (Rosenheim, Z. anorg. 1901, 27. 290)

#### Barium mercuric sulphocyanide, BaHg(SCN)₄.

Very sol. in H₂O and in alcohol. (Rosenheim, Z.: norg. 1901, 27, 286.)

Ba  $Hg(SCN)_8|_2+2H_2O$ . Ppt. Nearly insol. ir cold; easily sol. in hot  $H_2O$ . (Rosenheim.)

#### Barium potassium silver sulphocyanide, Ba(SCN)₂, 4KSCN, 2AgSCN+H₂O.

Very sol. in a little H₂O. Decomp. by much H₂O. (Wells, Am. Ch. J. 1902, **28**. 283.)

### Barium rubidium silver sulphocyanide, ${\rm BaRb_2Ag_2(SCN)_6+2H_2O.}$

Very sol. in  $H_2O$ . (Wells, Am. Ch. J. 1903, **30**. 186.)

 ${
m BaRb_4Ag_2(SCN)_8+H_2O}$ . Sol. in  ${
m H_2O}$ . (Wells.)

#### Barium silver sulphocyanide, Ba(SCN)₂, 2AgSC_N+2H₂O.

Stable in the air. (Wells, Am. Ch. J. 1902, **28**. 269.)

#### Barium zinc sulphocyanide, BaZn(SCN)₄ +3H₂O.

Easily sol. in alcohol. (Walden, Z. anorg. 1900, 23. 374.)

# Barium sulphocyanide mercuric bromide, Ba(SCN)₂, 2HgBr₂+5H₂O.

Very sol. in  $H_2O$ . (Grossmann, Z. anorg. 1903, 37. 420.)

### Bismuth sulphocyanide, basic, Bi(OH)(SCN)₂+5H₂O.

(Rosenheim and Vogelgesang, Z. anorg. 1906, 48. 214.)

Bi(SCN)₃, 2Bi₂O₃. Insol. in H₂O, but when recently pptd. decomp. by boiling therewith. Insol. in HSCN +Aq. (Meitzendorf.)

#### Bismuth sulphocyanide, Bi(SCN)₈.

Insol. or sl. sol. in H₂O. Sol. in HNO₈, HCl, and HSCN+Aq. (Meitzendorf, Pogg. **56**. 83.)

Decomp. by cold H₂O. (Bender, B. 20 723.)

+14H₂O. Extremely deliquescent. Decomp. by H₂O. (Rosenheim and Vogelgesang, Z. anorg. 1906, 48. 214.)

#### Bismuth potassium sulphocyanide, KaBi(SCN)6.

Decomp. by H₂O. (Rosenheim and Vogelgesang, Z. anorg. 1906, 48. 215.)

Not hydroscopic.

Decomp. by H₂O.

Easily sol. in alcohol. (Vanino, Z. anorg. 1901, 28. 220.)

Bi(SCN)₈, 9KSCN. Very hydroscopic. Decomp. by H₂O. Sol. in alcohol. (Vanino, Z. anorg. 1901,

**28.** 221.)

#### Bismuth sodium sulphocyanide, Na₈Bi(SCN)₆.

As K salt. (Rosenheim and Vogelgesang, Z. anorg. 1906, **48**. 215.)

#### Boron sulphocyanide, B(SCN)₃.

Sol. in benzene and ether. (Cocksedge, Chem. Soc. 1908, (2) 93. 217.)

#### Cadmium sulphocyanide, Cd(SCN)₂.

Sl. sol. in H₂O. Sol. in NH₄OH+Aq with combination.

#### Cadmium cæsium sulphocyanide, CsCd(SCN)₃.

Recryst. from  $H_2O$ . (Wells, Am. Ch. J. 1903, 30. 148.)

Cs₄Cd(SCN)₆+2H₂O. Very sol. in H₂O. Can be recryst. from conc. solution but decomp. on dilution to CsCd(SCN)₃. (Wells.)

#### Cadmium cæsium silver sulphocyanide, $Cs_2CdAg_2(SCN)_6$ .

(Wells.)

 $+2H_2O$ . (Wells.)

 $C_{s_2}CdAg_4(SCN)_8 + 2H_2O.$  (Wells.)  $C_{s_4}Cd_3Ag_{10}(SCN)_{20} + 6H_2O.$  (Wells.)

#### Cadmium mercuric sulphocyanide, Cd(SCN)2, $Hg(SCN)_2$ .

Very sol. in hot H₂O. (Grossmann, Z. anorg. 1903, 37. 414.)

### Cadmium molybdenum sulphocyanide, $Cd(SCN)_2$ , $Mo(SCN)_4+2H_2O$ .

(Maas and Sand, B. 1908, 41. 1513.) +3H₂O. (Maas and Sand.)

### Cadmium molybdenyl potassium sulpho-cyanide, KSCN, 4Cd(SCN)₂, $3Mo(OH)(SCN)_3 + 18H_2O$ .

(Mass and Sand, B. 1908, 41. 1513.)

Cadmium molybdenyl sulphocyanide ammonia, 3Cd(SCN)₂, 2Mo(OH)(SCN)₃, 13NH.

(Mass and Sand, B. 1908, 41. 1512.) +2H₂O. (Maas and Sand.)

# $\begin{array}{c} \textbf{Cadmium potassium sulphocyanide,} \\ K_2Cd(SCN)_4 + 2H_2O. \end{array}$

Very sol. in H₂O. (Grossmann, B. 1902, **35.** 2668.)

#### Cadmium rubidium sulphocyanide, $Rb_2Cd(SCN)_4+2H_2O$ .

Very sol, in H₂O. (Grossmann, B. 1902, **35.** 2668.)

### Cadmium sodium sulphocyanide,

 $NaCd(SCN)_3 + 3H_2O$ .

(Grossmann, B. 1902, 35. 2668.)

#### Cadmium sulphocyanide ammonia, Cd(SCN)₂, NH₈.

Decomp. by H₂O. (Grossmann, B. 1902, **35.** 2666.)

Cd(SCN)₂, 2NH₃. Decomp. by pure H₂O. (Grossmann.)

#### Cadmium sulphocyanide ammonium bromide, $Cd(SCN)_2$ , $NH_4Br+H_2O$ .

Can be recryst. from H₂O. Decomp. in dil. solution. (Grossmann, Z. anorg. 1903, 37. 425.)

Cd(SCN)₂, 2NH₄Br. Easily splits off NH₄Br. (Grossmann.)

#### Cadmium sulphocyanide ammonium chloride, Cd(SCN)₂, 2NH₄Cl.

Can be recryst from H₂O. Decomp. in dil. solution. (Grossmann, Z. anorg. 1903, 37. 423.)

#### Cadmium sulphocyanide potassium bromide, $Cd(SCN)_2$ , $KBr + H_2O$ .

Recryst. from H₂O. (Grossmann, Z. anorg. 1903, **37.** 425.)

Cd(SCN)_{2,} 2KBr. Recryst. from H₂O. (Grossmann.)

#### Cadmium sulphocyanide potassium chloride, $Cd(SCN)_2$ , 2KCl.

Recryst. from H₂O. Decomp. in dil. solution. (Grossmann, Z. anorg. 1903, 37. 423.)

#### Cadmium sulphocyanide potassium iodide, Cd(SCN)₂, 2KI.

Recryst. from H₂O. (Grossmann.)

#### Cæsium calcium silver sulphocyanide, 2CsSCN, Ca(SCN)₂, 2AgSCN+2H₂O.

Recryst. from H₂O. (Wells, Am. Ch. J. 1902, **28.** 275.)

Cæsium chromium sulphocyanide.

See Chromisulphocyanide, cæsium.

Cæsium cobaltous sulphocyanide, Cs₂Co(SCN)₄+2H₂O.

Stable in the air. (Shinn and Wells, Am. Ch. J. 1903, **29.** 476.)

Cæsium cobaltous silver sulphocyanide,  $C_{82}CoAg_2(SCN)_6+2H_2O$ .

Slowly attacked by H₂O; decomp. by boiling H₂O. Very sl. sol. in C₈SCN or Co(SCN)₂ +Aq. (Shinn and Wells, Am. Ch. J. 1903, **29.** 478.)

Cæsium cuprous sulphocyanide, CsSCN, CuSCN.

H₂O separates CuSCN. (Roberts, Am. Ch. J. 1902, **28**, 262.)

Cæsium cuprous nickel sulphocyanide, 2CsSCN, Ni(SCN)₂, 2CuSCN+2H₂O.

Sl. sol. in  $H_2O$ . (Roberts and Wells, Am. Ch. J. 1902, **28.** 277.)

Cæsium cuprous strontium sulphocyanide, 3CsSCN, 2CuSCN,  $Sr(SCN)_2$ .

As Ba salt. (Wells, Am. Ch. J. 1902, 28. 275.)

 $\begin{array}{c} \text{Cæsium magnesium silver sulphocyanide,} \\ 2\mathrm{CsSCN, Mg(SCN)_2, 2AgSCN + 2H_2O.} \end{array}$ 

As Ca comp. (Wells, Am. Ch. J. 1902, **28.** 275.)

 $\begin{array}{c} \text{Cæsium manganous silver sulphocyanide,} \\ \text{Cs}_2\text{MnAg}_2(SCN)_6 + 2H_2O. \end{array}$ 

Rather sl. sol. in H₂O. (Wells.)

Cæsium mercuric sulphocyanide, CsSCN,  $Hg(SCN)_2$ .

Sl. sol. in hot H₂O. (Bristol and Wells, Am. Ch. J. 1902, **28.** 260.)

Cæsium mercuric sulphocyanide, 2CsSCN, Hg(SCN)₂+H₂O.

Moderately sol. in  $\rm H_2O$ , especially when warm. Recryst without decomp. (Bristol and Wells, Am. Ch. J. 1902, **28.** 260.)

Cæsium nickel silver sulphocyanide, Cs₂NiAg₂(SCN)₆+2H₂O.

Slowly decomp. by hot  $H_2O$ . (Wells, Am. Ch. J. 1902, **28**. 277.)

Cæsium silver sulphocyanide, CsSCN, AgSCN.

Easily forms supersat. solution. (Wells, Am. Ch. J. 1902, 28. 264.)

2CsSCN, AgSCN. Stable in the air.

3CsSCN, AgSCN. Stable in the air. (Wells.)

Cæsium silver strontium sulphocyanide, 3CsSCN, 2AgSCN, Sr(SCN)₂. As Ba comp. (Wells.)

Cæsium silver zinc sulphocyanide,  ${\rm CsZnAg(SCN)_4} + {\rm H_2O}$ .

(Wells.)
Cs₂ZnAg(SCN)₅. Ppt. Stable in the air.
(Wells.)

CsZn₂Ag₈(SCN)₈. Decomp by cold, more rapidly by hot H₂C. (Wells.)

CsZn₂Ag₄(SCN). Slowly decomp. by H₂O (Wells.)

Cæsium zinc sulphocyanide,  $Cs_2Zn(SCN)_4+2H_2O$ .

Moderately sol. in  $H_2\mathrm{O}$  and can be recryst. therefrom. (Wells.)

Calcium sulphocyanide,  $Ca(SCN)_2+3H_2O$ . Deliquescent. Very sol. in  $H_2O$  and alcohol.

Calcium silver sulphocyanide,  $Ca(SCN)_2$ ,  $2AgSCN+2H_2O$ . (Wells.)

Calcium stannic sulphocyanide, CaSn(SCN)₆ +7H₂O.

Very sol. in H₂O. Can be recryst. therefrom. Sol. in alcohol and acetone. (Weinland and Bames, Z. anorg. 1909, **62**. 258.)

Cerous sulphocyanide, Ce(SCN)₃+7H₂O.
Deliquescent. Sol. in H₂O and alcohol.
(Jolin, Bull. Soc. (2) **21.** 534.)

Chromous sulphocyanide with MSCN. See Chromosulphocyanide, M.

Chromic sulphocyanide,  $Cr(SCN)_{\mathfrak{d}}$ .

Deliquescent, and sol. in H₂O. Somewhat sol. in organic solvents. (Speransky, C. C. **1897**, I. 141. See also Chromisulphocyanhydric acid.

Chromic sulphocyanide with MSCN. See Chromisulphocyanide, M.

Cobaltous sulphocyanide,  $Co(SCN)_2 + \frac{1}{2}H_2O$ . Sol. in  $H_2O$  and alcohol; also in ether. Sol. in liquid  $SO_2$ . (Walden, B. 1899, **32**. 2864.)

Sol. in acetone. (Krug and M'Elroy.) Sol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

 $+3H_2O$ . Sol. in  $H_2O$  and in alcohol. (Rosenheim and Cohn, Z. anorg. 1901, 27. 288.)

Cobaltous mercuric sulphocyanide,  $Co(SCN)_2$ ,  $Hg(SCN)_2$ .

Very sl. sol. in  $H_2O$  and dil. HCl+Aq. Easily sol. in  $HNO_3+Aq$ . (Cleve, J. pr. 91. 227.)

#### Cobaltous potassium sulphocyanide, CoK₂(SCN)₄.

Decomp. by H₂O. (Treadwell, Z. anorg. 1901, **26.** 109.)

+4H₂O. Sol. in H₂O. Sol. in methyl, ethyl and amyl alcohol, in acetone and in ether+Aq. Can be recryst. from H₂O or alcohol without decomp. (Rosenheim and Cohn, Z. anorg. 1901, 27. 289.)

#### Cobaltous silver sulphocyanide, CoAg(SCN)₃ $+2H_2O$ .

Decomp. by H₂O. (Shinn and Wells, Am.

Ch. J. 1903, **29.** 476.)

Ag₂Co(SCN)₄. Almost insol. in H₂O and in alcohol. (Rosenheim, Z. anorg. 1901, 27. 291.)

#### Cobaltous sodium sulphocyanide, $Na_2Co(SCN)_4 + 8H_2O$ .

Sol. in H₂O and in alcohol. (Rosenheim.)

#### Cobaltous sulphocyanideammonia, Co(SCN)₂ 2NH₃ and Co(SCN)₂, 6NH₃.

(Peters, B. 1908, 41. 3178.)

Co(SCN)₂, 4NH₃. Sol. in H₂O and alcohol. (Sand, B. 1903, **36.** 1439.)

#### Cobaltous sulphocyanide mercuric chloride, 2Co(SCN)₂, 2HgCl₂.

(Hantzsch and Shibata, Z. anerg. 1912, 73, 32Ò.)

2Ćo(SCN)2, 3HgCl₂. Easily decomp. (Hantsch and Shibata.)

#### Cuprous sulphocyanide, CuSCN.

1 l. H₂O at 18° dissolves 0.004 mg. mols. or 0.5 mg. CuSCN. (Kohlrausch and Rose, Z. phys. Ch. 1893, 12. 241.)

Insol. in dil. acids. Sl. sol. in cold, easily in warm cone. HCl+Aq. Decomp. by cone. H₂SO₄ or HNO₃+Aq. Sol. with combination in NH₄OH+Aq. Insol. in KSCN+Aq. Less sol. in H₂SO₃ and H₂SO₄+Aq than in

HNO₃. (Kuhn, Ch. Z. 1908, **32**. 1056.)
Sol. in Fe₂(SO₄)₃+Aq. (Johnson, J. Soc. Chem. Ind. 1889, 8. 603.)

KSCN+Aq (85-90 g. in 50 g. H₂O) dissolves 18 g. CuSCN. (Thurnauer, B. 1890, **23.** 770.)

Sol. in ether. (Skey, C. N. 1867, 16. 201.)

#### Cupric sulphocyanide, Cu(SCN)₂.

Decomp. by H₂O to cuprous salt. Sol. in warm HCl, H2SO4, or HNO3+Aq. Sol. in MSCN+Aq, but solutions decomp, by dilution. Sol. in NH₄OH+Aq.

Solubility in NH₄OH+Aq at 25° and at 40°.

At 25°.

0.000.000	One gram of solution contains		1000 mols. H ₂ O dissolve		Composition of solid	
Sp. gr. 25°/25°	g. NH ₃	g. Cu(SCN)2	g. H ₂ ()	Mols. NH ₃	Mols, Cu(SCN) ₂	salt in contact with solution
0.99853 0.99871 1.00703 1.01336 1.01506 1.01705 1.02132 1.01661 1.00816	0.2147 0.1655 0.0993 0.0639 0.0535 0.0426 0.0250 0.0198 0.0079	0.1522 0.1124 0.0798 0.0659 0.0622 0.0596 0.0511 0.0408 0.0245	0.6331 0.7221 0.8209 0.8702 0.8843 0.8978 0.9239 0.9394 0.9676	358.04 242.02 127.76 77.51 64.05 50.21 28.55 22.27 18.61	24.09 15.60 9.74 7.59 7.04 6.65 5.55 4.35 2.54	Cu(SCN) ₂ , 4NH ₂ Cu(SCN) ₂ , 2NH ₃
			At 40°	· ·		
	0.1802 0.1398 0.0758 0.0550 0.0435 0.0352 0.0257	0.1976 0.1658 0.1299 0.1207 0.1178 0.0876 0.0655	0.6222 0.6944 0.7943 0.8243 0.8388 0.8772 0.9088	306.28 213.10 101.00 70.59 54.82 42.53 30.00	31.83 23.93 16.38 14.67 14.07 10.00 7.22	Cu(SCN) ₂ , 4NH ₈
	0.0177	0.0418	0.9405	19.86	4.46	$Cu(SCN)_2, 2NH_3$

(Horn, Am. Ch. J. 1907, 37. 471.)

10.31

0.9625

Insol. in methyl acetate. (Naumann, B. | Cuprocupric sulphocyanide, Cu(SCN)₂, 1909, 42. 3790.)

0.0281

0.0094

 $Cu_2(SCN)_2$ .

2.93

Not attacked by hot HCl+Aq. Insol. in KSCN + Aq.

Cupric mercuric sulphocyanide, CuHg(SCN)4. Almost insol. in cold H2O and in alcohol; sl. sol. in boiling H2O. (Rosenheim, Z. anorg. **4901, 27, 286**.)

Cuprous potassium sulphocyanide, JuSCiv.

Deliquescent. Decomp. by H₂O. (Thurnauer, B. 1890, 23. 770.)

Cuprous sulphocyanide ammonia, Cu2(SCN)2,

Decomp. in the air. (Richards, Z. anorg. 1898**, 17.** 247.)

Cu₂(SCN)₂, 5NH₃. Very unstable in the air. (Richards.)

Cupric sulphocyanide ammonia, Cu(SCN)₂, 2NH₃.

Sol. in little H₂O, but decomp, by dilution with pptn. of basic salt. Sot, in NH4OH+Aq.

By long standing a small amount dissolves

in H₂O with separation of CuSCN. (Litter-scheid, Arch. Pharm. 1901, **239.** 337.) Insol. in H₂O. Sol. in H₂O containing a small amount of ammonia. (Horn, Am. Ch. J. 1907, 37. 477.)

Cu(SCN)₂, 4NH₃. Very unstable in the

Sol, in H₂O, but decomp, by much H₂O

with pptn. of a basic salt. (Horn.) 100 pts.  $N/10 NH_4OH + Aq$  dissolve 10.4 pts. anhydrous salt at 25°. (Pudschies, Dissert.)

Loses NH₃ in the air.

Sol. in H₂O. (Kohlschütter, B. 1904, 37. 1156.)

Decomp, in the air and by H₂O and dil. and cone. acids; sol. in cold cone. HNO3 and NH₄OH+Aq. Sol. in boiling conc. HCl. (Richards, Z. anorg. 1898, 17. 250.)

Didymium sulphocyanide, Di(SCN)₃+6H₂O. Deliquescent, and sol. in H₂O.

Erbium sulphocyanide,  $Er(SCN)_3 + 6H_2O$ . Deliquescent. Sol. in H₂O. (Höglund.)

Glucinum sulphocyanide, Gl(SCN)₂ (?). Sol. in  $H_2O$ . (Hermes, J. pr. 97. 465.)

Gold (aurous) potassium sulphocyanide, AuSCN, KSCN.

Easily sol. in H₂O, less in absolute alcohol. (Cleve, J. pr. **94.** 16.)

Gold (aurous) potassium sulphocyanide ammonia, KAu(SCN)2, 5NH8. (Peters, B. 1908, 41. 3178.)

Gold (auric) potassium sulphocyanide ammonia, KAu(SCN)₄, 4NH₈. (Peters.)

Gold (aurous) silver sulphocyanide, AuSCN. AgSCN.

Insol. in H₂O.. Sol. in NH₄OH+Aq.

Gold (auric) potassium sulphocyanide. Soi. in H₂O, alcohol, and ether. (Cleve.)

Gold (aurous) sulphocyanide ammonia, AuSCN, NH₃.

Very sl. sol. in cold, decomp. by he H₂O.

Iron (ferrous) suiphocyanide, Fe(SCN)2+ 3H₂O.

Very sol. in  $\mathrm{H}_2\mathrm{O}$ , alcohol, or ether. Sol. in acetone. (Krug and M'Elroy.)

Iron (ferric) sulphocyanide, Fe(SCN)₃+3H₂O.

Deliquescent. Very sol. in H₂O, alcohol, or ether. Ether extracts the salt from Fe(SCN)_{2.7}Aq. Decomp. by much H₂O if pure. Not decomp. by monobasic acids, but cone. H₂SO₄, and H₃PO₄, also oxalic, tartaric, malic, etc., acids destroy the colour.

Iron (ferric) lithium sulphoc; anide, Fe(SCN), 9LiSCN+4H₂O.

More deliquescent than the other ferric sulphocyanides. (Krüss and Moraht.)

Iron (ferrous) mercuric sulphocyanide,  $Fe(SCN)_2$ ,  $Hg(SCN)_2+2H_2O$ .

Moderately sol. in hot  $H_2O$ . (Cleve, J. pr. **91.** 227.)

Iron (ferric) potassium sulphocyanide,  $Fe(SCN)_3$ ,  $3KSCN + xH_2O$ .

Extremely deliquescent, and sol. in  $H_2O$ . (Krüss and Moraht.)

Fe(SCN)₈, 9KSCN+4H₂O. Hygroscopic. Sol. in H₂O without decomp. Insol. in pure anhydrous ether, but decomp. by ether containing traces of H2O into Fe(SCN), and KSCN. (Krüss and Moraht, A. 260. 204.)

Iron (ferrous) sodium sulphocyanide,  $Na_4Fe(SCN)_6+12H_2O$ .

Sol. in H₂O and alcohol. (Rosenheim, Z. anorg. 1901, 27. 299.)

Iron (ferric) sodium sulphocyanide, Fe(SCN), 9NaSCN +4H₂O.

Less deliquescent than the corresponding NH₄ or K salt. (Krüss and Moraht.)

 $Na_8Fe(SCN)_6+12H_2O$ . (Rosenheim, Z. anorg. 1901, 27. 297.)

Lanthanum sulphocyanide, La(SON)₈+ 7H₂O.

Deliquescent; sol. in H₂O. (Cleve.)

Lead sulphocyanide, basic, 6PbO,  $Pb(SCN)_2 + 2H_2O$ . Ppt. Insol. in H₂O.

Pb(SCN)₂, PbO+H₂O. Insol. in (Strömholm, Z. anorg. 1904, **38.** 440.)

Lead sulphocyanide, Pb(SCN)2.

Nearly insol. in cold, decomp. by boiling H₂O. (Liebig.) Sl. sol. in H₂O.

4.5×10 ¹ g. are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46.** 603.)

Lead sulphocyanide bromide, Pb(SCN)₂, 8PbBr₂.

(Grissom and Thorp, Am. Ch. J. 10. 219.)

Lead sulphocyanide chloride, PbSCNCl.

Sl. sol. in cold, easily sol. in hot H₂O. (Murtry, Chem. Soc. 55. 50.)

Sol. in H₂O. (Grissom and Thorp, Am. Ch. J. 10. 229.)

Lead sulphocyanide iodide,  $3Pb(SCN)_2$ ,  $PbI_2$ . Sol. in H₂O. (Grissom and Thorp, Am. Ch. J. 10. 229.)

Lithium sulphocyanide, LiSCN.

Very deliquescent. Sol. in H2O and alcohol. (Hermes, Z. Ch. 1866. 417.)

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3789.)

Magnesium sulphocyanide, Mg(SCN)₂+ 4H₂O.

Deliquescent. Easily sol. in H₂O and alcohol.

Magnesium stannic sulphocyanide.  $MgSn(SCN)_6 + 6H_2O$ .

Hygroscopic. Sol. in H₂O, alcohol and acetone. (Weinland and Bames, Z. anorg. 1909, **62.** 258.)

Manganous sulphocyanide,  $Mn(SCN)_2 +$ 3H₂O.

Deliquescent. Easily sol. in H₂O and alcohol.

Mercurous sulphocyanide, Hg₂(SCN)₂.

Insol. in H₂O. Sol. in hot HCl+Aq. Slowly decomp. by hot agua regia. Sol. in hot KSCN + Aq.

Mercuric sulphocyanide, basic, Hg(SCN)₂, 3HgO.

Insol. in H₂O. Easily sol. in HCl+Aq. Insol. in H₂SO₄ or HNO₃+Aq. (Fleischer.) Hg(SCN)₂, 2HgO. Insol. in H₂O. Sl. attacked by acids. (Claus, J. pr. 15. 401.)

Mercuric sulphocyanide, Hg(SCN)₂.

Very sl. sol. in cold, much more easily in hot H̃₂O. Easily sol. in dil. HCl+Aq. (Crookes, Chem. Soc. 4. 18.) Solubility in  $H_2O = 0.00218$  mol. in 1 l.

(Grossmann, Z. anorg. 1904, 43. 358.)

More sol. in H₂O than in alcohol. (Peters, B. 1908, 41. 3180.)

Very sl. sol. in H₂O at 25°. Appreciably sol. only in boiling H2O. (Jander, Dissert. 1902.)

Sol. in Hg(NO₈)₂ or KSCN+Aq, also in NH₄Cl+Aq. Sol. in many sulphocyanides

Easily sol. in cold HCl, NH4Cl, KCl or  $BaCl_2 + Aq$ . (Hermes, J. pr. 1866, (1) 97.

Very sol, in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Sl. sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Mercuric hydrogen sulphocyanide,

Hg(SCN)₂, 2HSCN.

Easily decomp. (Hermes. Dissert. 1866.)

Mercuric nickel sulphocyanide, Hg(SCN)₂,  $Ni(SCN)_2 + 2H_2O$ .

Moderately sol, in hot H₂O. (Cleve, J. pr. **91.** 227.) Very sol. in MSCN+Aq. (Orloff, C. C. 1906, I. 1411.)

 $\begin{array}{c} \textbf{Mercuric potassium sulphocyanide,} \\ Hg(SCN)_2, \ KSCN. \end{array}$ 

Sol. in cold, more easily in hot H₂O. Sol. in alcohol and ether. Very sol, in NH4Cl or

KCl+Aq. (Claus.) K₂Hg(SCN)₄. V Very sol. in H₂O; sol. in alcohol.

Insol. in anhydrous ether. (Rosenheim, Z. anorg. 1901, **27.** 285.)

Mercuric rubidium sulphocyanide, Hg(SCN)₂, RbSCN.

Sol. in alcohol without decomp. Decomp. by H₂O.

 $Hg(SCN)_2$ ,  $2RbSCN + \frac{1}{2}H_2O$ . Easily sol. in H₂O without decomp. (Grossmann, B. 1904, 37. 1259.)

Mercuric sodium sulphocyanide, Na₂Hg(SCN)₃.

Very hydroscopic. (Rosenheim, Z. anorg. 1901, **27.** 286.)

Mercuric zinc sulphocyanide, Hg(SCN)2,  $Zn(SCN)_2$ .

Scarcely sol. in cold H₂O. Easily sol. in HCl+Aq. (Cleve.)

Mercuric sulphocyanide ammonia,  $2Hg(SCN)_2$ ,  $3NH_8 + \frac{1}{2}H_2O$ .

Decomp. by H2O and alcohol. Hg(SCN)₂, 4NH₃. (Peters, B. 1908, 41. 3178.)

Mercuric sulphocyanide ammonium bromide, Hg(SCN)₂, NH₄Br.

Decomp. by H₂O. Sol. in alcohol. (Grossmann, Z. anorg. 1903, 37. 418.)

13

Mercuric sulphocyanide ammonium chloride. Hg(SCN)2, NH4Cl.

Decemp. by H2O. Sol. in warm alcohol from which it can be cryst. (Grossmann.)

Mercuric sulphocyanide bromide, HgSCNBr. Insol. in cold H₂O; sol. in hot H₂O and in (Rosenheim, Z. anorg. 1901, 27. alcohol. 282.)

Mercuric sulphocyanide chloride, HgSCNCl. Insol. in cold H₂O.

Sol. in hot H₂O and alcohol. (Resenbeim)

Mercuric sulphocyanide potassium bromide, Hg(SCN)₂, 2KBr.

Very sol. in H₂O. (Grossmann, Z. anorg. **1903**, **37**. 418.)

Mercuric sulphocyanide potassium chloride, Hg(SCN)₂, KCl.

Decomp. by H₂O.

Not decomp, by recryst, from warm alcohol (Grossmann.)

Molybdenum sulphocyanide, Mo(SCN)₃(?). Sol. in H₂O and ether. (Braun, Z. anal. 6.

Molybdenum potassium sulphocyanide,  $K_3Mo(SCN)_6+4H_2O$ .

Cryst. from boiling H₂O and alcohol. (Chilesotti, Gazz. ch. it. 1904, 34. (2) 493.)

Molybdenum sodium sulphocyanide,  $Na_3Mo(SCN)_6+12H_2O$ . (Rosenheim, B. 1909, 42, 154.)

Molybdenum thallous sulphocyanide, MoTl₃(SCN)₆.

(Rosenheim and Garfunkel, B. 1908, 41. **2388.**)

Molybdenum sulphocyanide zinc amine, 2Mo(SCN)₆, 3Zn(NH₃)₄.

(Rosenheim and Garfunkel, B. 1908, 41. 2390.)

Can be Air-dried probably has $_{
m the}$ composition  $2\text{Mo(SCN)}_6$  (OH),  $3\text{Zn(NH}_3)_4 + 2\text{H}_2\text{O}$ . (Maas and Sand, B. 1908, 41. 1510.) 2Mo(SCN)₆(OH), Zn₃(NH₃)₁₃. (Maas and

Nickel sulphocyanide, Ni(SCN)₂.

Sol. in H₂O. (Grossmann, B. 1904, 37. 565.)

+1/2H2O. Sol. in H2O and alcohol. Insol. in acetone. (Krug and M'Elroy.)

(Rosenheim  $+1\frac{1}{2}H_{2}O.$ Sol. in H₂O. and Cohn, Z. anorg. 1901, 27. 292.)

Nickel potassium sulphocyanide,  $K_4Ni(SCN)_6+4H_2O$ .

Sol. in H2O with decomp.

Sl. sol. in cold, easily sol. in hot alcohol. (Rosenheim, Z. anorg. 1901, 27, 292.)

Nickel sodium sulphocyanide,  $NiNu_2(SCN)_4 + 8H_2O$ .

Sol. in H2O with decomp.

Sl. sol. cold, readily sol. hot alcohol. (Rosenheim, Z. anorg. 1901, 27, 292,)

Nickel sulphocyanide ammonia, Ni(SCN)2, 3NHa.

(Peters, B. 1908, 41. 3178.) Ni(SCN)₂, 4NH₃. Decomp. by H₂O.

Platinous sulphocyanide, Pt(SCN)₂(?). Insol. in H₂O.

See Plat assulphocyanides, and Platinososulphocyanides.

Potassium sulphocyanide, KSCN.

Deliquescent. Very sol. in H₂O. pts. H₂O dissolve 177.2 pt at 0°, and 217.0 pts. at 20°.

100 g. sat, KSCN+Aq contain 70.5 g. KSCN at 25°. (Foote, Z. phys. Ch. 1903, 46.

150 pts. KSCN+100 pts. H₂O at 10.8° lower the temp. 34.5°. (Rüdorff, B. 2. 68.)

Solubility of KSCN + AgSCN at 25°.

KS	ć ČN	AgSCN	Solid phase
70. 66. 64. 61. 58. 53. 50. 49. 32. 24.	53 55 47 25 34 21 68 43 51 68	0.00 9 32 10.62 11.76 13.55 17.53 20.43 20.32 18.34 16.41	KSCN KSCN+2KSCN, AgSCN 2KSCN, AgSCN ""  2KSCN, AgSCN+KSCN, AgSCN KSCN, AgSCN
23.	50	16.07	KSCN, AgSCN+AgSCN

(Foote, Z. phys. Ch. 1903, 46. 81.) See also AgSCN.

Sol. in alcohol, especially easily if boiling. Sol. in acetone. (Krug and M'Elroy.) Sol. in liquid SO₂. (Walden, Z. anorg. 1902, **30.** 160.)

100 g. acetone dissolve 20.75 g. KSCN at 22°, and 20.40 g. at 58°.
100 g. amyl alcohol dissolve 0.18 g. KSCN

at 13°; 1.34 g. at 65°; 2.14 g. at 100°; 3.15 g. at 133.5.°

100 g. ethyl acetoate dissolve 0.44 g. KSCN at 0°; 0.40 g. at 14°; 0.20 g. at 79°.

100 g. pyridine dissolve 6.75 g. KSCN at 0°; 6.15 g. at 20°; 4.97 g. at 58°; 3.88 g. at

- 884

97°; 3.21 g. at 115°. (Laszcynski, B. 1894, 27. 2285.)

100 g. acetonitrile dissolve 11.31 g. KSCN at 18°. (Naumann and Schier, B. 1914, 47. 249.

Sl. sol. in benzonitrile. (Naumann, B. 1914, 47. 1369.)

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3789.)

# $\begin{array}{cc} \textbf{Potassium} & \textbf{molybdenyl} & \textbf{sulphocyanide,} \\ 3KSCN, & \textbf{Mo(OH)(SCN)}_3 + 4H_2O. \end{array}$

Sol. in H₂O. (Sand and Maas, B. 1908, **41**. 1506.)

# Potassium silver sulphocyanide, KSCN, AgSCN.

Decomp. by H₂O.

See Donk under KSCN.

2KSCN, AgSCN. Stable in the air. (Wells, Am. Ch. J. 1902, **28**. 265.)

See Donk under KSCN. 3KSCN, AgSCN. (Wells.)

## Potassium stannic sulphocyanide, $K_2Sn(SCN)_6+4H_2O$ .

Very sol. in H₂O.

Sol. in alcohol and acetone. (Weinland and Bames, Z. anorg. 1909, 62. 258.)

#### Potassium titanyl sulphocyanide, 2KSCN, TiO(SCN)₂+H₂O.

Sol. in cold H₂O without immediate decomp. but slowly decomp. (Rosenheim and Cohn, Z. anorg. 1901, 28. 169.)

### Potassium vanadium sulphocyanide, 3KSCN, V(SCN)₃+4H₂O.

Sol. in  $H_2O$ . Sol. in alcohol with a green color. Sl. sol. in ether. (Ciocci, Z. anorg. 1898, **19.** 309.)

Sol. in H₂O with decomp.; stable in aq. solution in the presence of an excess of KSCN; sol. in alcohol. (Locke, Am. Ch. J. 1898, **20**. 604.)

# Potassium vanadyl sulphocyanide, $K_2VO(SCN)_4+5H_2O$ .

Sol. in H₂O, alcohol, ether, amyl alcohol and ethyl acetate. (Koppel, Z. anorg. 1903, **36.** 292.)

#### Potassium zinc sulphocyanide, 2KSCN, Zn(SCN)₂+3H₂O.

Easily sol. in alcohol. (Walden, Z. anorg. 1900, 23. 374.)

### Potassium sulphocyanide mercuric bromide, KSCN, HgBr₂.

Very sol. in H₂O.

Sol. in alcohol. (Grossmann, B. 1902, **35**. 2945.)

2KSCN, HgBr₂. Very sol. in H₂O. Sol. in alcohol. (Grossman.)

# Potassium sulphocyanide mercuric iodide, 2KSCN, $HgI_2$ .

Undecomp. by solution in conc. alcohol, or in KSCN+Aq. (Grossmann, Z. anorg. 1903, 37. 421.)

 $+2H_2O$ . Decomp. by  $H_2O$ . (Philipp, Pogg, 1867, **131**, 94.)

#### Silicon sulphocyanide, Si(SCN)4.

Decomp. by H₂O and alcohol.

Sol. in CS₂, CHCl₃ and ligroin, (Reynolds, Proc. Chem. Soc. 1906, **22.** 17.)

#### Silver sulphocyanide, AgSCN.

1l.  $\rm H_2O$  dissolves  $1.08\times 10^{-6}$  g. mols. AgSCN at 25°. (Küster and Thiel, Z. anorg. 1902, 33. 139.)

1 l. H₂O. dissolves 1.25×10 f gram-atoms of silver at 25°. (Abegg and Cox, Z. phys. Ch. 1903, **46.** 11.)

Sl. sol. in  $H_2O$ . 1 liter of sat. solution at  $19.96^{\circ}$  contains  $1.37 \times 10^{4}$  g. (Böttger, Z. phys. Ch. 1903, **46**. 603.)

6.4 milligrams are dissolved in 1 liter of sat. solution at 100°. (Böttger, Z. phys. Ch. 1906, **56**. 93.)

Solubility product of AgSCN is 0.49 and  $1.16\times10^{-12}$  mols. per l. at 18° and 25° respectively. (Kirschner, Z. phys. Ch. 1912, 79. 245.)

Solubility in  $H_2O=1.2\times 10^{-6}$  g. mol. per liter at 25°. (A. E. Hill, J. Am. Chem. Soc. 1908, **30.** 74.)

1 l. H₂O dissolves 0.00025 g. AgSCN at 21°. (Whitby, Z. anorg. 1910, **67.** 108.)

Insol. in acids, excepting conc. H₂SO₄ or HNO₃. Insol. in dil., sol. in conc. NH₄OH+ Aq. Sol. in KSCN+Aq. Insol. in AgNO₃ or NH₄SCN+Aq. Sol. in Hg₂(NO₃)₂+ Aq.

#### Solubility in KSCN at 25°.

Mol. KSCN in 1 htre	g. AgSCN in 1 litre
1.25	22.34
1.20	19.93
1.12	16.18
1.066	14.10
0.626	2.80
0.573	2.06

(Hellwig, Z. anorg. 1900, 25. 184.)

Solubility in N/10 KSCN+Aq at  $18^{\circ}=2.5\times10^{\circ}$ . (Kirschner, Z. phys. Ch. 1912, **79**. 247.)

See also KSCN.

1 l. of a 3-N solution of AgNO₃ dissolves 0.432 g. AgSCN at 25°. Nearly insol. in less dil. solution. (Hellwig, Z. anorg. 1900, 25. 179.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Hamers, Dissert. 1906; Naumann, B. 1910, 43. 314.)

Silver strontium sulphocyanide, 2AgSCN,  $Sr(SCN)_2 + 2H_2O$ .

Stable in the air. (Wells, Am. Ch. J. 1902, **28.** 270.)

Silver zinc sulphocyanide, 2AgSCN,  $Zn(SCN)_2$ .

Decomp. by hot H₂O. (Wells.)

Silver sulphocyanide ammonia,  ${\rm AgSCN}, 2{\rm NH}_3.$ 

Decomp. by H₂O.

Samarium sulphocyanide, Sm(SCN)₃+6H₂O. Very deliquescent. (Cleve.)

Sodium sulphocyanide, NaSCN.

Very deliquescent. Very sol. in  $H_2O$  and alcohol,

Sol. in benzonitrile. (Naumann, B. 1914, **47.** 1369.)

Sol. in methyl acetate. (Naumann, B. 1909, **42**. 3789.)

Sodium stannic sulphocyanide,  $Na_2Sn(SCN)_6 + 6H_2O$ .

Very sol. in H₂O. Sol. in alcohol and acetone. (Weinland and Bames, Z. anorg. 1909, **62**, 257.)

Sodium vanadium sulphocyanide, 3NaSCN, V(SCN)₃+12H₂O.

Very hygroscopic. Sol. in  $H_2O$  and alcohol. (Ciocci, Z. anorg. 1898, 19. 313.)

Strontium sulphocyanide,  $Sr(SCN)_2 + 3H_2O$ . Very deliquescent, and sol. in  $H_2O$  and alcohol.

Strontium stannic sulphocyanide, SrSn(SCN)₆ +12H₂O.

Sol. in H₂O, alcohol and acetone. (Weinland and Bames, Z. anorg. 1909, **62.** 259.)

Thallium sulphocyanide, TISCN.

Sl. sol. in  $\rm H_2O$ . 3.15 g. are contained in 1 liter of sat. solution at  $20^\circ$ ; 3.905 g. at 25°; 7.269 g. at 39.75°. Insol. in alcohol. (Böttger, Z. phys. Ch. 1903, **46**. 603.)

Titanyl sulphocyanide, TiO(SCN)₂+2H₂O. Sol. in cold H₂O.

Tin (stannous) sulphocyanide,  $Sn(SCN)_2$ . Sol. in  $H_2O$  and alcohol. (Classen, J. pr. 96. 349.)

Sol. in cold H₂O. (Rosenheim, Z. anorg. 1901, **28**. 168.)

Yttrium sulphocyanide, Y(SCN)₃+6H₂O.

Not deliquescent. Very sol. in H₂O, alcohol, or ether.

Zinc sulphocyanide, Zn(SCN)2.

Less sol. in  $H_2O$  and alcohol than most other cyanides.

Zirc sulphocyanide ammonia, Zn(SCN)₂, 12NH₃.

Decomp. by H₂O. Sol. in NH₄OH+Aq.

Sulphocyanoplatinic acid.

See Platinosulphocyanhydric acid.

Sulphocyanoplatinous acid.

See Platinososulphocyanhydric acid.

Sulphohypophosphoric acid.

Aluminum sulphohypophosphate, Al₂(PS₃)₃.

Unstable in the air. Sol. in H₂O with decomp. (Friedel, C. R. 1894, 119. 262.)

Cadmium ---, Cd₂P₂S₆.

Partially decomp. in moist air. Decomp. by H₂O, cold HNO₃ or analis+Aq. (Ferrand, A. ch. 1899, (7) **17**. 423; Bull. Soc. 1895, (3) **13**. 116.)

Chromium —, Cr₂P₂S₆.

Insol. in  $HNO_8$ . Very sl. attacked by aqua regia. (Ferrand.)

Cupric ----, Cu₂P₂S₆.

Ppt. (Friedel, C. R. 1894, 119, 262.)

Iron (ferrous) —,  $Fe_2P_2S_6$ .

Sol. in HNO₃ and in a mixture of HNO₃ with KClO₃. (Friedel.)

Lead —,  $Pb_2P_2S_6$ .

Not decomp. by boiling H₂O. (Friedel.)

Mercuric —, Hg₂P₂S₆.

Slowly decomp. by boiling H₂O, more rapidly by KOH+Aq. (Friedel.)

Nickel —,  $Ni_2P_2S_6$ .

Not attacked by boiling H₂O or hot or cold acids. Sl. attacked by aqua regia. (Ferrand, A. ch. 1899, (7) 17. 416.)

Silver ----, Ag₄P₂S₆.

Ppt. (Friedel, C. R. 1894, 119. 263.)

Tin (stannous) hypophosphate ——, SnPS₂.

Decomp. by boiling H₂O. Sol. in dil. KOH +Aq. (Friedel, C. R. 1894, **119**. 264.)

Tin (stannic) ----, SnP₂S₆.

Easily decomp. by boiling H₂O. Sol. in dil. KOH+Aq. (Friedel.)



#### Zine sulphohypophosphate, Zn₂P₂S₆.

Decomp. in moist air. Insol. in H2O. Partially decomp. by boiling H₂O. Violently attacked by HNO₃. Sol. in aqua regia. Not attacked by HCl. (Ferrand, A. ch. 1899, (7) **17.** 421.)

#### Zinc ----, Zn₂P₂S₆.

Insol. in H2O. Partly decomp. by boiling H₂O. Not decomp. by HCl or HNO₃ but by aqua regia. (Ferrand, Bull. Soc. 1895, (3) 13. 115.)

#### Sulphomolybdic acid.

Ammonium sulphomolybdate, (NH₄)₂MoS₄. Easily sol, in H2O; very sl. sol, in alcohol. (Berzelius, Pogg. 83. 261.)

#### Ammonium cupric sulphomolybdate.

Sl. sol. in H₂O. (Debray, C. R. 96. 1616.)

#### Barium sulphomolybdate, BaMoS₄.

More sol, in H₂O than BaMo₃S₁₀. Known

only in solution. (Berzelius.)

BaS, 3MoS₃ = BaMo₃S₁₀. Sl. sol. in cold, easily sol, in hot H₂O. Not decomp, by conc. cold HNO₃+Aq, but more easily by dil. HNO₃+Aq. (Berzelius.)

#### Cadmium sulphomolybdate.

Insol. in H₂O. (Berzelius.)

Cæsium sulphomolybdate, Cs₂S, 3MoS₄+ 7H₂O.

As Rb comp. (Herschfinkel, Dissert. 1907.) 3Cs₂S, 5MoS₄. (Herschfinkel.)

#### Calcium sulphomolybdate, CaS, 3MoS₃.

Sol. in H₂O. (Berzelius.)

CaMoS₄. More sol. in H₂O than CaS. 3MoS₃. Known only in solution. (Berzelius.)

#### Cerium sulphomolybdate.

Precipitate. (Berzelius.)

Cobalt sulphomolybdate, CoMoS₄. . Sol. in K₂MoS₄+Aq. (Berzelius.)

#### Cupric sulphomolybdate.

(Debray, C. R. **96.** 1616.)

Ferrous sulphomolybdate, FeMoS₄. Sol. in H₂O. (Berzelius.)

Ferric sulphomolybdate, Fe₂(MoS₄)₈. Sol. in K₂MoS₄+Aq.

#### Lead sulphomolybdate.

Ppt. (Berzelius.)

#### Lithium sulphomolybdate.

Not deliquescent, but very easily sol, in H₂O. (Berzelius.)

Magnesium sulphomolybdate, MgMoS₄. Sol. in K₂MoS₄+Aq. (Berzelius.)

Manganous sulphomolybdate, MnMoS₄. Sol. in H₂O. (Berzelius.)

Mercurous sulphomolybdate, Hg₂MoS₄ (?).

Mercuric sulphomolybdate, HgMoS₄. Insol. in K₂MoS₄+Aq.

Nickel sulphomolybdate, NiMoS₄. Sol, in K₂MoO₄+Aq. (Berzelius.)

Potassium sulphomolybdate, basic,  $K_6Mo_2S_9$ . Easily sol. in H₂O. Insol. in alcohol and ether. (Kruss, B. 16. 2050.)

#### Potassium sulphomolybdate, K₂MoS₄.

Sol. in H₂O, from which it is precipitated by alcohol. (Berzelius.)

Rubidium sulphomolybdate, 3Rb₂S, 8MoS₃+ 30H₂O.

Very sl. sol. in H₂O. Sol. by addition of NH₈. (Herschfinkel, Dissert. 1907.) 5Rb₂S, 6MoS₂. (Herschfinkel.)

Silver sulphomolybdate, Ag₂MoS₄. Ppt.

#### Sodium sulphomolybdate, Na₂MoS₄.

Sol. in H₂O, and not precipitated by alcohol from aqueous solution. (Berzelius.)

#### Strontium sulphomolybdates.

Exactly analogous to the Ba salts, which see. (Berzelius.)

#### Zinc sulphomolybdate.

Ppt. Insol. in H₂O. (Berzelius.)

#### Monosulphomolybdic acid.

#### Sodium monosulphomolybdate, Na₂MoO₃S.

Rather hygroscopic. Sol. in H₂O; forms deep blue solution with H₂SO₄. Sol. in  $HC_2H_3O_2+Aq$ . (Krüss, A. **225.** 1.)

#### Disulphomolybdic acid.

#### Ammonium disulphomolybdate. $(NH_4)_2MoO_2S_2$ .

Sl. sol. in cold, easily in hot H₂O. Insol. in sat. NH₄Cl+Aq and absolute alcohol. Aqueous solution is decomp, by boiling. (Bodenstab, J. pr. 78, 186.)

Potassium disulphomolybdate, K₂M₀O₂S₂. Very sol. in H₂O and alcohol. Sol. in HC₂H₄O₂+Aq. (Krüss, B. 16, 2046.)

Trisulphomolybdic acid.

Ammonium hydrogen trisulphopyromolybdate, NH₄HMo₂O₄S₈.

Precipitate. Insol. in alcohol or CS₂. (Krüss, B. **16**. 2047.)

Potassium hydrogen trisulphopyromolybdate, KHMo₂O₄S₃.

Very easily sol. in  $\mathrm{H}_2\mathrm{O}.$  (Krüss, B. 16. 2048.)

 $\begin{array}{ccc} \textbf{Sodium} & \textbf{hydrogen} & \textit{trisulphopyromolybdate,} \\ & NaHMo_2O_4S_3. \end{array}$ 

Precipitate. Much more sol. in H₂O than the NH₄ compound. (Krüss, B. 16. 2047.)

Potassium sulphomolybdate,  $K_8Mo_4S_9O_7$ . Sol. in  $H_2O$ ,  $HC_2H_3O_2$ , and  $H_2SO_4$ . (Krüss, B. 17. 1771.)

Pentasulphomolybdic acid.

Potassium pentasulphomolybdate, KMoS₅. Sol. in warm H₂O. (Hofmann, Z. anorg. 1896, **12**. 62.)

Persulphomolybdic acid, H₂MoS₅.

Precipitate. Insol. in H₂O, alcohol, ether, CS₂, and acetic acid.

Decomp. slowly by hot H₂SO₄. Sol. in warm KOH+Aq, and cold K₂S+Aq. Not attacked by cold KSH+Aq, but dissolves on warming. (Krüss, B. 17. 1773.)

Ammonium persulphomolybdate,  $(NH_4)_2MoS_5$ .

Very sl. sol. in cold, more easily in hot H₂O. Insol. in NH₄OH+Aq. (Berzelius.)

Barium —, BaMoS₅.

Insol, in boiling H₂O or dil. HCl+Aq. (Berzelius.)

Calcium ----

Difficultly sol. in H₂O. (Berzelius.)

Cerium ----.

Precipitate. (Berzelius.)

Ferrous ----

Insol. in Fe salts+Aq, but sol. in K₂MoS₅+Aq. (Berzelius.)

Ferric ----

Ppt.

Lithium persulphomolybdate.

Sl. sol. in cold, easily sol. in hot H₂O. (Berzelius.)

Magnesium ----

Insol. precipitate. (Berzelius.)

Nickel ----

Ppt. Sol. in K₂MoS₅+Aq, from which it separates in 24 hour. (Berzelius.)

Potassium ---, K2MoS5.

Almost insol, in cold, more sol, in hot H₂O. Insol, in cold KOH+Aq. (Berzelius.)

Potassium hydrogen —, KHMoS₅. Sol. in H₂O. (Krüss.)

Sodium ----, Na₂MoS₅.

Sl. sol. in cold, easily in hot  $H_2O$ . (Berzelius.)

Sodium hydrogen ——, NaHMoS₅. (Krüss.)

Persulphomolybdic acid, HMoS.

Sol. in  $H_2O$ . (Hofmann, Z. anorg. 1896, 12. 59.)

Ammonium —,  $NH_4MoS_6+H_2O_*$ 

Sl. sol. in  $H_2O$  and in alcohol with decomp. (Hofmann.)

Cæsium ----, CsMoS₆

Almost insol. in H₂O. (Hofmann.)

Potassium —, KMoS₆. Sol. in H₂O. (Hofmann,)

Thallium —, TlMoS₆.

Insol. in H₂O. (Hofmann.)

Sulphonosmic acid.

Potassium sulphonosmate,

7K₂O, 4OsO₃, 10 SO₂.

Sol. in  $H_2O$ . (Rosenheim, Z. anorg. 1899, 21. 127.)

+3H₂O. Sol. in H₂O. (Rosenheim.) +7H₂O. Easily sol. in H₂O; decomp. in aq. solution at 70°. (Rosenheim.)

 $11K_2O$ ,  $40sO_8$ ,  $14SO_2+7H_2O$ . Sol. in  $H_2O$ . (Rosenheim.)

Sodium sulphonosmate,

 $3Na_2O_1 OsO_3, 4SO_2 + 5H_2O.$ 

Easily sol. in  $H_2O$ ; decomp. in aq. solution. (Rosenheim.)

#### Sulphopalladic acid.

Potassium palladious sulphopalladate,  $K_2S_1$ ,  $Pd_2S_2 = K_2Pd_3S_4$ .

Insol, in H₂O. Moderately conc. HCl+Aq dissolves out K without evolution of H₂S. (Schneider, Pogg. 141. 526.)

Silver sulphopalladate, Ag₂PdS₃. (Schneider.)

Silver palladious sulphopalladate, Ag₂S,  $Pd_2S$ ,  $PdS_2 = Ag_2Pd_3S_4$ . Extraordinarily stable. (Schneider.)

Sodium sulphopalladate, Na₂PdS₈. Slowly sol, in H₂O. Insol, in alcohol. (Schneider, Pogg. 141. 520.)

Sulphophosphide of M. See M phosphosulphide.

Sulphophosphamic acid,  $PS_{NH_2}^{(OH)_2}(?)$ . See Thiophosphamic acid.

Sulphophosphodiamic acid,  $PS_{(NH_2)_2}^{OH}(?)$ . See Thiophosphodiamic acid.

Sulphophosphotriamide,  $PS(NH_2)_3$ . See Thiophosphoryl triamide.

Sulphophosphoric acid, H₃PS()₃. See Thiophosphoric acid. H₃PS₄. Known only in its salts.

Ammonium sulphophosphate, (NH₄)₃PS₄. Stable in the air. (Ephraim, B. 1911, **44.** 3408.)

#### Antimony sulphophosphate, SbPS₄.

Insol. in H₂O, alcohol, ether, CS₂, HCl+Aq, dil. H₂SO₄+Aq, C₆H₆, or HC₂H₃O₂. Decomp. by boiling with conc. HNO₃+Aq, H₂SO₄, aqua regia, KOH, NaOH or NH₄OH +Aq. (Glatzel, B. 24. 3886.)

#### Arsenic sulphophosphate, AsPS₄.

Insol. in H₂O, alcohol, HCl+Aq, etc. Decomp. by warm HNO₃, aqua regia, dil. H₂SO₄; also sol. in KOH or NH₄OH+Aq. (Glatzel, Z. anorg. 4. 186.)

Barium sulphophosphate,  $Ba_3(PS_4)_2 + xH_2O$ . (Ephraim, B. 1911, 44, 3409.)

#### Bismuth sulphophosphate, BiPS4.

Insol. in H₂O, alcohol, ether, CS₂, benzene, HC₂H₃O₂, or dil. H₂SO₄+Aq. Decomp. by boiling HCl+Aq, conc. H₂SO₄, HNO₃, or aqua regia; also by NaOH, KOH, or NH₄OH +Aq. (Glatzel, Z. anorg. **4.** 186.)

Cadmium sulphophosphate,  $Cd_3(PS_4)_2$ .

Insol. in H2O, alcohol, ether, benzene, CS₂, and HC₂H₈O₂. Decomp. by hot HCl+ Aq. Very sl. attacked by dil. H₂SO₄+Aq. Slowly sol. in hot  $HNO_3$ , rapidly in aqua regia or hot conc.  $H_2SO_4$ . (Glatzel, Z. anorg. 4.

Cuprous sulphophosphate, Cu₃PS₄.

Insol. in H₂O, alcohol, etc.; also in HCl or dil. H₂SO₄+Aq. Decomp. by HNO₃, aqua regia, etc., not by KOH or NaOH+Aq. (Glatzel.)

Ferrous sulphophosphate, Fe₃(PS₄)₂.

Insol. in H₂O, alcohol, ether, etc.; insol. in HCl or hot dil. H₂SO₄+Aq. Decomp. by HNO₃, aqua regia, or conc. H₂SO₄. Not attacked by KOH or NH₄OH+Aq. (Glatzel.)

Lead sulphophosphate, Pb₃(PS₄)₂.

Insol. in H₂O, alcohol, etc. Decomp. by warm HCl+Aq, conc. HNO₃+Aq; not attacked by NH₄OH+Aq; sl. decomp. by KOH  $+\Lambda q$ . (Glatzel.)

Manganous sulphophosphate,  $Mn_3(PS_4)_2$ .

Insol. in  $H_2O$ , alcohol, ether, benzene,  $CS_2$ , or  $HC_2H_3O_2$ . Not attacked by HCl+Aq. Sol. in HNO₃ or aqua regia, with separation of S. Not attacked by dil. H₂SO₄+Aq. (Glatzel, Z. anorg. 4. 186.)

Mercuric sulphophosphate,  $Hg_3(PS_4)_2$ .

Insol. in H₂O, alcohol, etc.; also in HCl, dil. HNO₃, or H₂SO₄+Aq. Not attacked by cone. HNO3 or aqua regia; easily sol. in  $HNO_3 + Br_2 + Aq$ . (Glatzel.)

Nickel sulphophosphate, Ni₃(PS₄)₂, As the ferrous salt. (Glatzel.)

Potassium sulphophosphate, K₃PS₄+H₂O. Easily sol. in H₂O. (Ephraim, B. 1911, 44.

Silver sulphophosphate, Ag₃PS₄.

Insol. in H₂O, alcohol, etc.; also in HCl, HNO₈, or dil. H₂SO₄+Aq. Decomp. by conc. H₂SO₄, and aqua regia. (Glatzel.)

Sodium sulphophosphate, Na₃PS₄+8H₂O.

3407.)

Decomp. by H₂O. Sol. in Na₂S+Aq. (Glatzel, Z. anorg. 1905, **44.** 65.)

Thallous sulphophosphate, Tl₂PS₄.

Insol. in H₂O, alcohol, etc. Sol. in HCl, l. H₂SO₄+Aq, etc. Not attacked by dil. H₂SO₄+Aq, etc. Not attacked by NH₄OH+Aq; sl. decomp. by conc. KOH+ Aq. (Glatzel.)

Tin (stannous) sulphophosphate,  $Sn_3(PS_4)_2$ . Insol. in H2O, alcohol, etc. Insol. in dil. H₂SO₄ or HCl+Aq. Decomp. by HNO₃+ Aq, aqua regia, NH₄OH, or KOH+Aq. (Glatzel.)

Zinc sulphophosphate,  $Zn_3(PS_4)_2$ .

Insol. in H₂O, alcohol, ether, etc. Sol. in HCl+Aq or dil. H₂SO₄+Aq. Easily attacked by KOH+Aq; sl. decomp. by NH₄OH +Aq. (Glatzel.)

Sulphopyrophosphoric acid.

Aluminum sulphopyrophosphate, Al₂P₂S₇.

Decomp. in moist air.

Violently decomp, by H₂O or acids. Ferrand, A. ch. 1899, (7) 429.)

Cadmium —,  $Cd_2P_2S_7$ .

Decomp. in moist air. Not attacked by cold acids. (Ferrand.)

Chromium —, Cr₂P₂S₇.

Decomp. in moist air.

Not readily attacked by acids. (Ferrand.)

Cuprous —,  $Cu_4P_2S_7$ .

Not attacked by cold H₂SO₄ or boiling HCl. (Ferrand.)

Sol. in hot conc. HNO₃. (Ferrand.)

Sol. in alkalies, and in all acids except HCl. (Ferrand, C. R. 1896, **122.** 886.)

Ferrous —, Fe₂P₂S₇.

Insol. in cold acids.

Sl. attacked by boiling HCl or hot KOH+

Aq. Decomp. by fused KOH. (Ferrand, A. ch. 1899, (7) **17.** 410.)

Lead ----, Pb₂P₂S₇.

Not attacked by cold HNO₃. (Ferrand,)

Mercurous —, Hg₄P₂S₇.

Decomp. by moist air or hot HNO₃. (Fer-

Almost insol. in acids; decomp. by H₂O and moist air. (Ferrand, C. R. 1896, 122. 888.)

Nickel —,  $Ni_2P_2S_7$ .

Decomp. by H₂O and by conc. HNO₃ at 150° in a sealed tube. (Ferrand, A. ch. 1899, (7) **17.** 418.)

Silver —,  $Ag_4P_2S_7$ .

Not decomp. by  $H_2O$ . Decomp. by aqua regia. Not attacked by HNO₃. (Ferrand.)

Zinc —,  $Zn_2P_3S_7$ .

Decomp. in moist air.

Decomp. by H₂O.

Violently attacked by cold HNO₃. (Fer-

Sulphophosphorous acid,

Η  $H_8PSO_9 = SPOH(4)$ . OH

See Thiophosphorous acid.

H₃PS₃. Known only in its salts.

Aluminum sulphomiosphite, Ma(PS3).

Very vastable.

Decomp. in the air. (Ferrand, C. R. 1896, **122**. 622.ĵ

Barium sulphophosphite,  $Ba_3(PS_3)_2 + xH_2O$ .

Sol. in dil. acids.

Insol. in alcohol. (Ephraim, B. 1911, 44. 3412.)

Chromous sulphophosphite,  $Cr_3(PS_3)_2$ .

Easily attacked by hot conc. HNOs or aqua regia.

Decomp. by boiling NaOH+Aq. rand, A. ch. 1899, (7) 17. 419.)

Quite stable in moist air; very slowly attacked by acids. (Ferrand, C. R. 1896, 122. 622.)

Cuprous sulphophosphite, Cu₃PS₃.

Not attacked by H₂O or hot conc. HCl.

Sl. attacked by cold furning HNO₃.

Violently attacked by HNO₃, aqua regia

and boiling cone. H₂SO₄
Not attacked by boiling NaOH+Aq. (Ferrand, A. ch. 1899, (7) **17**. 398.)

Fairly stable decomp, by damp air. (Ferrand, C. R. 1896, 122. 621.)

Iron (ferrous) sulphophosphite,  $Fe_3(PS_3)_2$ .

Very stable and resists the action of alkalies and acids. (Ferrand, C. R. 1896, 122. 622.)

Insol, in cold acids or hot NCl.

Sol. in hot fuming HNO₃ Insol. in hot 40% KOH+Aq. (Ferrand, A. ch. 1899, (7) 17. 412.)

Mercuric sulphophosphite,  $Hg_3(PS_3)_2$ .

Decomp. in moist air.

Not attacked by cold HNO₃. Decomp. by hot HNO₃. (Ferrand.)

Unstable in the air.

Very slowly attacked by acids. (Ferrand, C. R. 1896, **122.** 622.)

Nickel sulphophosphite, Ni₃(PS₃)₂.

Unstable in the air. Attacked slowly by HNO₈. (Ferrand.)

Silver sulphophosphite, Ag₃PS₈.

Insol. in most reagents. (Ferrand, C. R. 1896, 122. 622.)

Not decomp. by H₂O.

Not easily attacked by acids. (Ferrand, A. ch. 1899, (7) 17. 414.)

Sodium sulphophosphite,  $Na_3PS_3+xH_2O$ .

Very sol. in H₂O, probably with decomp. (Ephraim, B. 1911, 44.3410.)

Zinc sulphophosphite, Zn₃(PS₃)₂.

Decomp. in moist air. Sl. attacked by H₂O.

Decomp. by HNO₃. (Ferrand, A. ch.

1899, (7) **17**. 422.)

Very unstable in the air, and attacked violently by acids. (Ferrand, C. R. 1896, 122.622.)

#### Sulphoplatinic acid, H₂Pt₄S₆.

Insol. in H₂O, but decomp. on air. (Schneider, Pogg. 138. 604.)

H₄Pt₂S₆. Insol. in H₂O, but decomp. very rapidly on air. (Schneider.)

Copper sulphoplatinate, 2CuS, 2PtS, PtS₂.

Insol. in H₂O. HCl, HNO₃, or aqua regia dissolve out part of the Cu. (Schneider, Pogg. 139. 661.)

Lead sulphoplatinate, 2PbS, 2PtS, PtS₂.

Insol. in hot or cold H₂O or HCl+Aq. HNO₃+Aq dissolves out Pb partly; aqua regia dissolves completely with difficulty. (Schneider, Pogg. 139. 662.)

Mercuric sulphoplatinate chloride, 2HgS, 2PtS, PtS₂, 2HgCl₂.

Insol. in H₂O; not attacked by HCl+Aq, and only partially sol. in boiling aqua regia. (Schneider.)

Potassium sulphoplatinate, K₂Pt₄S₆.

Insol. in  $H_2O$ . HCl+Aq dissolves out K without evolution of  $H_2S$ .

Composition its potassium platinous sulphoplatinate,  $K_2S$ , 3PtS,  $PtS_2$ . (Schneider, Pogg. 138. 604.)  $K_2PtS_2$ .

Silver sulphoplatinate, 2Ag₂S, 2PtS, PtS₂. Insol. in H₂O or HCl+Aq. HNO₃+Aq dissolves out Ag on warming. Aqua regia decomp. with formation of AgCl. (Schneider, Pogg. 138. 664.)

Sodium sulphoplatinate,  $Na_4Pt_3S_6 = 2Na_2S$ , 2PtS,  $PtS_2$ .

Decomp. by hot  $H_2O$ , with residue of  $PtS_2$ . (Schneider.)  $Na_2Pt_3S_6=Na_2S$ , PtS,  $2PtS_2$ . Insol. in

 $Na_2Pt_3S_6 = Na_2S$ , PtS,  $2PtS_2$ . Ins  $H_2O$ . (Schneider, J. pr. (2) **48.** 418.)

Thallium sulphoplatinate, 2Tl₂S, 2PtS, PtS₂. Insol. in cold H₂O. Dil. acids dissolve out all the thallium. (Schneider, Pogg. 138. 626.)

Sulphoplatinous acid, H2PtS2.

Known only in solution in H₂O, which soon decomposes. (Schneider, J. pr. (2) **48.** 424.)

Sodium sulphoplatinite, Na₂PtS₂.

Sol. in H₂O with decomp. (Schneider, J. pr. (2) **48.** 420.)

H₄Na₂(PtS₂)₃. Sol. in H₂O, from which it is pptd. by alcohol. (Schneider.)

Sulphoselenantimonous acid.

See Selenosulphantimonous acid.

Sulphoselenarsenic acid. See Selenosulpharsenic acid.

Sulphoselenostannic acid.

See Selenosulphostannic acid.

Sulphoselenoxyarsenic acid. See Selenosulphoxyarsenic acid.

Sulphoselenyl chloride, SSeO₃Cl₄.

Deliquescent; decomposed by  $H_2O$ . (Clausnitzer, B. 11. 2007.)

Metasulphosilicic acid.

Sodium metasulphosilicate, Na₂SiS₃.

Decomp. by  $H_2O$ . (Hempel, Z. anorg. 1900, 23. 41.)

Sulphostannic acid, H₂SnS₃.

Ppt. (Kühn, A. 84. 110.) Does not exist. (Storch, W. A. B. 98. 2b. 236.)

Ammonium sulphostannate,  $(NH_4)_2S$ ,  $3SnS_2+6H_2O$ .

Easily sol. in H₂O, and easily decomp. (Ditte, C. R. **95**. 641.) (NH₄)₂SnS₂+3H₂O, and +7H₂O. De-

 $(NH_4)_2SnS_3+3H_2O$ , and  $+7H_2O$ . Decomp. by acid. (Stanek, Z. anorg. 1898, 17. 124.)

Barium sulphostannate, BaSnS₃+8H₂O. Sol. in cold H₂O. (Ditte, C. R. **95.** 641.)

Calcium sulphostannate, 2CaS, SnS₂+14H₂O. Sol. in H₂O. (Ditte, C. R. **95**. 641.)

Tetraplatinous sulphostannate, 4PtS, SnS₂.

Not decomp. by acids. (Schneider, J. pr. (2) 7. 214.)

Platinum potassium sulphostannate, 3PtS, K₂S, SnS₂.

Insol. in cold H₂O. Dil. HCl or HC₂H₂O₂ +Aq dissolves out all the potassium. (Schneider, Pogg. **136**. 109.)

```
Platinum
 sodium
 sulphostannate.
 3PtS.
 Cobalt sulphotellurite, Cos TeSs.
 Na<sub>2</sub>S, SnS<sub>2</sub>.
 Insol. in cold H2O. (Schneider, Pogg. 136.
109.)
 Copper
 Ppt.
Potassium sulphostannate, K<sub>2</sub>SnS<sub>3</sub>.
Sol. in H<sub>2</sub>O. (Kühn, A. 84. 110.)
+3H<sub>2</sub>O. (Ditte, C. R. 95. 641.)
K<sub>4</sub>SnS<sub>4</sub>+4H<sub>2</sub>O. Sol. in H<sub>2</sub>O pptd. by
alcohol. (Weinland, Z. anorg. 1898, 17. 419.)
 Ferrous ----
 Ppt.
 Ferric ----.
 Ppt
Sodium sulphostannate, Na<sub>2</sub>SnS<sub>3</sub>+2H<sub>2</sub>O.
 Sl. sol. in H<sub>2</sub>O. (Kühn, A. 84. 110.)
 +3H<sub>2</sub>O. (Ditte, C. R. 95. 641.)
 Lead ---
 +7H<sub>2</sub>O. Sol. in H<sub>2</sub>O. (Höring, Zeitsch.
 Pot.
Pharm. 1851. 120.)
Na<sub>4</sub>SnS<sub>4</sub>+12H<sub>2</sub>O. Melts in crystal H<sub>2</sub>O on heating. Very sol. in H<sub>2</sub>O. (Kuhn.)
 Lithium --
 Sol. in H<sub>2</sub>O.
Strontium sulphostannate, SrSnS_8 + 12H_2O.
 Magnesium -
 Sol. in H<sub>2</sub>O. (Ditte, C. R. 95. 641.)
 Soi, in H<sub>2</sub>O and alcohol,
Thallium sulphostannate, Tl<sub>4</sub>SnS<sub>4</sub>.
 Manganous ----.
 Ppt. Practically insol. in H<sub>2</sub>O. (Hawley,
J. Am. Chem. Soc. 1907, 29. 1011.)
 Ppt.
 Potassium —, 3K<sub>2</sub>S, TeS<sub>2</sub>.
Disulphopersulphuric acid.
 Sol. in H<sub>2</sub>O.
Sodium disulphopersulphate, Na_2S_4O_8.
 Silver —, 3Ag<sub>2</sub>S, TeS<sub>2</sub>.
 Sol. in H<sub>2</sub>O. Cryst. in cold with 2H<sub>2</sub>O.
(Villiers, C. R. 106, 851, 1354.)
 (Berzelius.)
 Contains 4H more and is sodium tetra-
 Sodium,---.
thionate, NaS<sub>4</sub>O<sub>6</sub>, 2H<sub>2</sub>O. (Villiers, C. R.
108. 402.)
 Sol. in H2O.
Sulphotelluric acid.
 Strontium ----.
 Sol. in H<sub>2</sub>O.
Mercurous sulphotellurate, 3Hg<sub>2</sub>S, TeS<sub>2</sub>.
 Ppt.
 Zinc —, 3ZnS, TeS_2.
 Ppt. (Berzelius.)
Mercuric —, 3HgS, TeS<sub>2</sub>.
 (Berzelius.)
 Sulphotungstic acid.
Potassium —, K<sub>2</sub>TeS<sub>4</sub>.
 Ammonium sulphotungstate, (NH<sub>4</sub>)<sub>2</sub>WS<sub>4</sub>.
 Sol. in H<sub>2</sub>O. (Oppenheim, J. pr. 71. 279.)
 Very deliquescent. Easily sol, in H<sub>2</sub>O, and
 still more easily in NH<sub>4</sub>OH+Aq. (Corleis,
Sodium -
 A. 232. 244.)
 Sol. in H<sub>2</sub>O. (Oppenheim.)
 More sol. in pure H<sub>2</sub>O than in H<sub>2</sub>O acidified
 with HCl. Decomp. slowly on air. (Ber-
Sulphotellurous acid.
 zelius.)
Ammonium sulphotellurite, 3(NH<sub>4</sub>)<sub>2</sub>S, TeS<sub>2</sub>.
 Barium ----.
 Sol. in BaS+Aq.
 Decomp. on air. Sol. in H<sub>2</sub>O.
 Cadmium —, CdWS4.
 Ppt. (Berzelius.)
 Very slowly sol. in H<sub>2</sub>O.
 Calcium ----.
 Calcium ----.
 Sol. in H<sub>2</sub>O and alcohol. (Berzelius.)
 Somewhat sol. in H<sub>2</sub>O.
 Cobalt ----, CoWS4.
 Cerium -
 Sl. sol. in H<sub>2</sub>O.
```

Insol. ppt.

Copper sulphotungstate, CuWS₄. Ppt.

Glucinum —, GlWS

Ferrous —, FeWS₄. . · Sol. in H₂O.

Lead —, PbWS₄.

Ppt. (Berzelius.)

Magnesium —, MgWS₄. Easily sol. in H₂O or alcohol.

Manganous ——,  $MnWS_4$ . Sor. in  $H_2O$ . (Berzelius.)

Mercurous ——.
Ppt. (Berzelius.)

Mercuric —, HgWS₄.

Ppt. (Berzelius.)

Nickel —, NiWS₄.

Ppt. (Berzelius.)

Potassium ----, K₂WS₄.

Sol. in H₂O. Alcohol precipitates from aqueous solutions, but is not entirely insol. in alcohol. (Berzelius.)

Very sol. in H₂O. (Corleis, A. **232**. 264.)

Potassium — nitrate, K₂WS₄, KNO₃.

Very sol. in cold or hot H₂O, from which it is precipitated by alcohol. (Berzelius.)

 $\label{eq:control_equation} \begin{array}{ccc} \textbf{Potassium} & & & \\ & K_2WS_4, & K_2WO_4. & & \\ \end{array}$ 

Easily sol. in H₂O. Not precipitated by alcohol. (Berzelius.)

Is potassium *tri*sulphotungstate, K₂WOS₃, which see. (Corleis, A. **232.** 244.)

Silver —, Ag₂WS₄.

Ppt. (Berzelius.)

Sodium -, Na₂WS₄.

Very sol. in  $H_2O$ ; less sol. in alcohol. (Berzelius.)

Very deliquescent. (Corleis, A. 232, 264.)

Strontium ----.

Sol. in  $H_2O$ , and in SrS + Aq.

Stannous ----, SnWS4.

Ppt. (Berzelius.)

Stannic —, SnWS₅.

Ppt. (Berzelius.)

Zinc sulphotungstate, ZnWS4.

Sol. in  $H_2O$  with subsequent pptn. (Berzelius.)

Monosulphotungstic acid.

Potassium monosulphotungstate, K₂WOS+H₂O.

Deliquescent in moist air. Very sol. in  $H_2O$ . (Corleis, A. 232. 244.)

Disulphotungstic acid.

Ammonium disulphotungstate,  $(NH_4)_2WO_2S_2$ .

Sol. in H₂O and alcohol. (Berzelius.) Decomp. easily when moist. (Corleis, A. **232.** 264.)

Trisulphotungstic acid.

Potassium trisulphotungstate,  $K_2WOS_3 + H_2O$ .

Hygroscopic. Effloresces on dry air and easily decomposed. Easily sol. in H₂O. (Corleis, A. **232**. 244.)

Sulphovanadic acid, V₂O₅, 3SO₃+3H₂O. See Vanadiosulphuric acid, and Sulphate,

Sulphovanadates.

vanadium.

Alkali sulphovanadates are sol. in  $H_2O$ . Ca, Sr, and Ba sulphovanadates are sl. sol. in  $H_2O$ , and all other sulphovanadates are insol. in  $H_2O$ . (Berzelius.)

Ammonium sulphovanadate, (NH₄)₃VS₄.

Easily sol. in H₂O. Very sl. sol. in conc. NH₄SH+Aq. Insol. in ether, CS₂, or CHCl₃. (Krüss and Öhnmais, A. **263**. 46.) See also Sulphoxyvanadic acid.

Sodium pentasulphopy/ovanadate, Na₄V₂O₂S₅. Hydroscopic; sol. in H₂O with rapid decomp. (Locke, Am. Ch. J. 1898, **20**. 375.)

Sulphoxyantimonic acid.

Potassium sulphoxyantimonate, K₂HSbO₂S₂ +2H₂O.

Sol. in hot, less sol. in cold  $H_2O$ . Decomp. by cold  $H_2O$ . (Weinland and Gutmann, Z. anorg. 1898, 17. 414.)

Sulphoxyarsenic acid, H₃AsO₃S.

Known only in aqueous solution. (McCay, Am. Ch. J. 10. 459.)

Ammonium monosulphoxyarsenate, (NH₄)₃AsSO₃+3H₂O.

Decomp. in the air; sol. in  $H_2O$ , decomp. on boiling. (Weinland, B. 1896, 29. 1009.)

Very sol. in H₂O; insol. in alcohol; decomp. in aq. solution and also in the air. (Weinland, Z. anorg. 1897, 14, 53.)

Decomp. in the air. (McLauchlan B. **1901**, **34**. 2166.)

Ammonium hydrogen monosulphoxyarsenate,  $(NH_4)_2HAsSO_3$ .

Ppt. (McLauchlan, B. 1901, 34, 2168.)

Barium monosulphoxyarsenate, BallAsCa+ 10H₂O.

(Preis, A. 257, 184.)

 $Ba_3(AsSO_3)_2+6H_2O$ . Ppt. (Weinland Z. anorg. 1897, 14. 54.)

**Barium** disulphoxyarsenate,  $Ba_3(A_8S_2O_2)_2 +$ 4H₂O.

Ppt (Preis, A. 257, 185.)

+6H₂O. (Weinland and Rumpf, Z. anorg. 1897, 14. 64.)

Barium potassium trisulphoxyarsenate,  $KBaAsS_3O + 7H_2O$ .

Ppt. (McCay, Z. anorg. 1904, 41, 469.)

Barium sodium monosulphoxyarsenate, BaNaAsSO₃+9H₂O.

Ppt. (Weinland, Z. anorg. 1897, 14, 55.)

Barium sodium sulphoxyarsenate,  $Ba_7Na_2As_5O_7S_{14} + 12H_2O$ .

(McCayand Foster, Z. anorg. 1904, 41. 467.)

Calcium trisulphoxyarsenate,  $Ca_3(AsS_3O)_2 +$ 20H₂O.

Ppt. (McCay and Foster, Z. anorg. 1904, **41.** 463.)

Potassium monosulphoxyarsenate, K₃AsSO₃. Hydroscopic. (Weinland, B. 1896, 29. 109.)

Sol. in conc. KOH+Aq, free from carbonate; very hydroscopic. (Weinland, Z. anorg. 1897, 14. 51.)

Potassium hydrogen monosulphoxyarsenate,  $K_2HAsSO_3+2\frac{1}{2}H_2O$ .

Very hygroscopic. (Weinland and Rumpf,

Z. anorg. 1897, 14. 59.) KH₂AsSO₃. Sol. in H₂O; solution slowly decomp. on standing. (McCay, Am. Ch. J. **10.** 459.)

Formula given by Bouquet and Cloez (A. ch. (3) 13. 44) is K₂H₄As₂S₃O₅.

Potassium disulphoxyarsenate, K₈AsS₂O₂+ 10H₂O.

Very hydroscopic; decomp. by H₂O. (Weinland, Z. anorg. 1897, 14. 63.)

Potassium trisulphoxyarsenate, K₃AsS₃O+ 7H₂O.

Yellow oil which cryst. at -20°. (McCay and Foster, Z. anorg. 1904, 41. 468.)

Sodium monosulphoxyarsenate, Na₃AsSO₃+ 12H₂O.

Easily sol. in H2O. (Preis. A. 257, 180.)

(McLaughlan, B. 1991, 34. 2170.) Sol. in H₂O. (Weinland, B. 1896, 29. 1009.) El. efflorescent. Ir ol. in alcohol. (McCay. Z. anorg. 1902, 29. £2.)

Sol. in NaOH +Aq; decomp. by boiling with conc. NaOH 1897, 14. 49.) (Weinland, Z. anorg.

Sodium hydrogen monosulphoxyarsenate. NaH2/asSC3.

Decomp. by H₂O; insol. in alcohol. (Weinland, Z. anorg. 1897, 14. 58.)

Na₂HAsSO₃+8H₂C. Easily sol. in H₂O. (Preis.)

Sodium disulphoxyarsenate, Na₃AsS₂O₂+ 10I1.O.

Easily sol. in H₂O. (Preis.)

Sol. in H₂O; pptd. by alcohol. (McCay, B. 1899, **32**. 2472.)

Not decomp. by boiling NaOH+Aq. Weinland, Z. anorg. 1894, 14. 62.)

Insol. in alcohol. (McCay, Z. anorg. 1900, **25.** 461.)

 $+11H_{2}O.$ (McLaughlan, B. 1901, 34. **∠170.**)

Insol. in alcohol. (McCay, Z. anorg. 1902,

Sodium trisulphoxyarsenate,  $Na_3AsS_3O +$ 11H₂O.

Decomp. by H₂O. (McCay and Foster, Z. anorg. 1904, 41. 454.)

Sodium trisulphoxydiarsenate,  $As_2O_2S_3$ .  $3\text{Na}_2\text{O} + 24\text{H}_2\text{O}$ .

Easily sol. in H₂O. (Geuther, A. **240**. 208.)  $2As_2O_2S_3$ ,  $Na_2O + 7H_2O$ . Sol. in H₂O. (Nilson, J. pr. (2) 14. 14.)

Correct composition is Na₈As₁₈S₂₄O₇+30H₂O. (Preis.)

Sodium sulphoxyarsenate, Na₈As₁₈S₂₄O₇+  $30H_2O = 4Na_2O$ ,  $6As_2S_2$ ,  $3As_2S_4O +$ 30H₂O.

Decomp. by H₂O. Sol. in NH₄OH or KOH +Aq. (Preis, A. 257. 187.) =Sodium oxytrisulpharsenate of Nilson.

Sodium pentasulphoxytetrarsenate,  $Na_{12}As_4S_5O_{11}+48H_2O$ .

Less sol. in H₂O than other sulphoxyarsenates. (Preis.)

Sodium strontium trisulphoxyarsenate,  $NaSrAsS_3O + 10H_2O$ .

Unstable. (McCay and Foster, Z. anorg. 1904, **41**. 462.)

Trisulphoxyazotic acid, ON(SO₃H)₃.

Known only in its salts. (Claus, A., 158. 52 and 194.)

Has the formula  $(SO_3H)_3N < {\atop o} > N(SO_3H)_3$ . (Raschig, A. 241. 161.)

Potassium trisulphoxyazotate, ON(SO₃K)₃+

$$H_2O = (SO_3K)_8N < {O \atop O} > N(SO_3K)_8.$$

Easily sol. in H2O without decomp., even on boiling. (Claus, A. 157. 210.)

### Sulphoxyphosphorous acid,

 $H_4PS_2O = OPSH(?)$ .

See Thiophosphorous acid.

#### Sulphoxyvanadic acid.

Ammonium pyrohexa sulphoxyvanadate,  $(NH_4)_4V_2S_6O$ .

Sol. in H₂O. (Krüss and Ohnmais, A. 263.

#### Potassium pyrohexasulphoxyvanadate, $K_4V_2S_6O + 3H_2O$ .

Melts in crystal H2O. (Krüss and Ohnmais.)

 $K_8V_4S_{12}O_2+3H_2O$ . More sol. in  $H_2O$  than preceding comp. (K. and O.)

#### Sodium orthotrisulphoxyvanadate, Na₃VS₃O +5H₂O.

Very deliquescent, and easily sol. in H2O Somewhat sol. in alcohol. (Krüss and Ohnmais.)

### Sodium orthomonosulphoxyvanadate,

 $Na_8VSO_3+10H_2O$ .

Less sol. in H₂O than other sulphoxyvanadates. (K. and O.)

#### Sulphur, S.

The various modifications of sulphur have been classified in many different ways, and there is a difference of opinion as to whether certain forms are true allotropic modifications

The data, as far as concerns the solubility,

may be arranged as follows:-A. Sol. in CS₂. 1. Rhombic, octahedral, or alpha sulphur, ordinary sulphur. Easily sol. in CS2, etc. See below for solubility in various solvents.

2. Prismatic, monoclinic, or beta sulphur. Sol. in CS₂, but is converted into A, 1. Prismatic sulphur obtained by melting brimstone is not wholly sol. in CS2 on account of admixture of gamma sulphur.

Monoclinic modification is more sol. than rhombic in CHCl₃, ether and benzene. (Meyer

C. C. 1903, II. 481.)

3. Soft sulphur, milk of sulphur.

4. Amorphous sol. sulphur is also a sepa-

rate modification, according to Berthollet.
B. Soft sulphur, obtained by strongly heating and quickly cooling, is sol. in CS, but becomes insol. therein by repeatedly dissolving and evaporating. More easily sol. in CS₂ than A, 1.
C. Insol. in CS₂.

1. By action of strong light on S in CS₂.

2. By heating to b.-pt., cooling suddenly, and allowing to stand until hard. Has been called gamma sulphur, but is a mixture of  $^{2}/_{3}$  A, 4 and  $^{1}/_{3}$  insol. S.

3. Insol. S in flowers of sulphur. Converted into A. 1 by standing 3 days with alcohol.

According to Berthelot (A. ch. (3) 49. 430) there are only two varieties of S. I. "Octahedral," II. "Amorphous."

I. Octahedral. Sol. in CS2. Scarcely acted upon by KHSO3+Aq. Converted by oxidising agents into II.

II. Amorphous. Insol. in neutral solvents, viz. H₂O, alcohol, ether, CS₂, etc.

Sol. with tolerable rapidity in KHSO₃+Aq. By long action of Na₂S+Aq, a portion is dissolved, and the remainder converted into I. Less easily oxidised by HNO₃+Aq than I. Some varieties of this modification are sol. to a certain extent in alcohol and ether, and by boiling the rest of the sulphur is converted into I; also by long-continued contact with cold alcohol. Berthelot holds that the modification is changed before dissolving. Solutions of the alkalies, alkali salts, and alkali sulphides change insol. into sol. sulphur. (Berthelot.)

Elastic sulphur obtained by pouring molten sulphur at a temp. of over 260° into H₂O contains 35% or more of a modification of S which is insol in CS₂, hot or cold, but sol. in absolute alcohol; this modification can be converted back into ord. sulphur by heating to 100°. (Pelouze and Fremy.) (See C. 2.)
This modification can be obtained also

by action of HCl on thiosulphates. (Fordos

and Gélis.)

The soft pasty sulphur obtained by decomposition of H2S by SO2 forms an almost clear emulsion (pesudo-solution) with H2O, from which it is pptd. by various salts and substances which have no chemical affinity for it. 23 pts. S combine in this way with 100 pts. H₂O. When pptd. by saline solutions, some of the S remains in solution. When solution is exposed to the light, S gradually separates out; also on boiling the same takes place. The above pseudo-solution is pptd. by mineral acids, and the pptd. S may still be dissolved in fresh water, if not left in contact for some time with the acid. Also pptd. by K salts, with loss of power of forming pseudo-solutions. Pptd. by NH. and Na salts without losing that power.

Alkali hydrates, carbonates, or sulphides

convert it into insol. S.

The solution may be mixed with alcohol without change. Decomp. by long shaking with napthha or oil of turpentine. The pseudo-solution combines with CS, forming an emulsion which subsequently decomposes. The S itself is only partially sol. in CS₂. (Selmi, J. pr. 57. 49.)

By treatment of amorphous "insoluble" S with CS₂ or CCl₄, a small part goes into solution, the amount being dependent on the time of contact with the temp., and nature of the solvent, but independent of the amount of the solvent. It is assumed that this is due to a partial change of the "insoluble" into soluble S. (Wigand, Z. phys. Ch. 1910, 75. 235.)

"Delta" sulphur. Partly sol. in H₂O.

(Debus, Chem. Soc. 53. 18.)

A colloidal form wholly sol in H₂O exists, which however decomposes very easily. (Engel, C. R. 112. 866.)

Black sulphur. Insol. in alcohol, ether, CS2, fatty oils even at 200°, cold alkali hydroxides +Aq, H₂SO₄, HNO₃, or aqua regia. (Knapp, J. pr. (2) **43**. 305.)

Green modification. Five times more sol. than ordinary sublimed sulphur in a mixture of salicylaldehyde and benzene. (Orloff, C. C. **1902.** I. 1264.)

The following data relate to octahedral or

ordinary sulphur (A. 1):-

Sol. in warm liquid H2S (Niemann); warm P₂S₃, SBr₂, SCl₂, Br₂, NCl₃, BaS+Aq (Dumas); in alcoholic solution of K₂S₅, but is repptd. by addition of H₂O to sat. solution.

Sol. in liquid SO₂.

Sol. in aqueous solution of alkali sulphates, especially when hot. Sl. sol. in boiling conc. HSCN+Aq, from which it mostly separates on cooling.

Na₂CO₃+Aq (5.6% Na₂CO₃) dissolves no S at 20°; 0.06775% at 100°. (Pohl, Dingl.)

The solubility of S in Na₂S+Aq between 0° and 50° diminishes slightly with increase in temp., but increases with dilution of the solution, having its largest value in a N/16 solution of Na₂S+Aq when the relation of Na₂S to dissolved S equals about 1:4. (Küster, Z. anorg. 1905, **43**. 56.)

Sol. in AlBr₃. (Isbekow, Z. anorg. 1913,

84. 27.)

Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54.** 674.)

Sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 822.)

Sol. in liquid NH₃. 1 gr. S is sol. in 3-4 ccm. liquid NH₃. (Hugot, A. ch. 1900, (7) 21.

32.)
The solubility of S in liquid NH₃ is constant from -23° to -84° and equals 39%. (Ruff, Z.

angew. Ch. 1910, 23. 1830.)

Sol	lubili	ty in	liquid	NH ₃ .
(a	Sin	100	a solu	tion"

		0 ,	
t ³	S1	t°	s
$     \begin{array}{r}       -78 \\       -20.5 \\       0     \end{array} $	38.6 38.1 32.34	16.4 30 40	25.65 21.0 18.5

(Ruff and Hecht, Z. anerg. 1911, 70. 62.)

Sl. sol. in liquid NO2. (Frankland, Chem. Soc. 1901, **79.** 1361)

S₂Cl₂ dissolves 66.74% S at ord. temp. to

form a fiquid of 1.7 sp. gr. (Rose.)
Solubility of S in S₂Cl₂ veries according to the variety of sulphur used. Aten has published an extended investigation on the subject, which see for details. (Z. phys. Ch. 1905-14, **54.** 86, 124; **81.** 268; **83**. 443; **86.** 1; **88.** 321.) Solubility in SnCl4.

100 g. SnCl₄ dissolve at:

 $99^{\circ}$ 101° 110° 110 5.8 6.28.7 9.1 pts. solid S, 112° 112° 121°

9.4 • 9.9 17.0 pts. liquid S. (Gerardin.)

Sol. in alkalies+Aq with decomp. Soi. in 1926.7 pts. absolute alcohol at 15°. (Pohl. W. A. B. 6. 600.)

Sol. in 20 pts. hot nearly absolute alcohol, less sol. in weaker alcohol. (Laurogais.) Sol. in 600 pts. boiling alcohol of 40° B. (Chevallier, J. ch. méd. 2. 587); in 500 pts. alcohol (Meissner); 200 pts. alcohol (Pelouze and Fremy).

100 pts. absolute alcohol dissolve 0.42 pt. at b.-pt., and 0.12 pt. S at 16°; 100 pts. ether dissolve 0.54 pt. at b.-pt., and 0.19 pt. S at 16°; 100 pts. benzene dissolve 17.04 pts. at b.-pt., and 1.79 pts. S at 16°; 100 pts. oil of turpentine dissolve 16.16 pts. at b.-pt., and 1.35 pts. S at 16°; 100 pts. CS₂ dissolve 73.46 pts. at b.-pt., and 38. 70 pts. S at 16°; 100 pts. naphtha dissolve 10.56 pts. at b.-pt., and 2.77 pts. S at 16°; 100 pts. tar-oil dissolve 26.98 pts. at b.-pt., and 1.51 pts. S at 16°. (Payen, C. R. 34. 456.)

100 pts. absolute methyl alcohol dissolve 0.028 pt. at 18.5°; 100 pts. absolute ethyl alcohol dissolve 0.053 pt. at 18.5°. Bruyn, Z. phys. Ch. 10. 781.)

Solubility in amyl alcohol.

95° 110° . 1.5 2.12.2 pts. solid S.

120° 112° 131° 112° 5.3 pts. liquid S. 2.6 3.0 (Gerardin, A. ch. (4) 5. 134.)

Quickly sol. in 12.5 pts. ether. (Favre.) 100 pts. benzene dissolve 0.965 pt. S at 26° 100 pts. benzene dissolve 4.377 pts. S at 71°; 100 pts. toluene dissolve 1.479 pts. S at 23%; 100 pts. ethyl ether dissolve 0.972 pt. S at 23.5°; 100 pts. chloroform dissolve 1.205 pts. S at 22°; 100 pts. phenol dissolve 16.35 pts. S at 174°; 100 pts. aniline dissolve 85.27 pts. S at 130°. (Cossa, B. 1. 139.)

Solubility in benzene at to.

t°	g. S in 10 g. of solution		
15.17	0.1480		
19.29	0.1692		

(Brönsted, Z. phys. Ch. 1906, 55. 377.)

* A mixture of S and toluene separates into two layers containing 33 and 92.5% S respectively. (Haywood, J. phys. Ch. 1897, 1.

CS₂ dissolves 0.35 pt. cr.linary sulphur; some varieties of S, however, are not entirely sol. in CS₂, thus-

Variety of Sulphur	Pts. sol. in 1 pt. CS ₂	Fraction of original wt. insol. in CS.
Octahedral, from Sicily .	0.335	0.000
Crystallised in dry way, re-		
cently prepared	0.415	0.029
Do., prepared 8 years .	0.33	0.004
Do., prepared 9 years		0.020
Do., prepared 15 years .		0.051
Red needles, recently prepared	0.382	0.023
Soft yellow, do.		0.353
Do., prepared 2 years	0.316	0.157
Soft red, recently prepared.	0.374	0.157
Do., prepared 5 years		0.181
Flowers of sulphur	0.351	0.113
Do., another sample		0.234
Roll brimstone, outside		0.029
Do., inside		0.073
	!	

(Deville, A. ch. (3) 47. 99.)

The pt. insol. in CS₂ is sol. in hot absolute alcohol, crystallising on cooling; less sol. in chloroform or ether. (Deville.)

100 pts. pure CS₂ dissolve pts. S at t°.

1 10%	Pts. S	t°	Pts. S
-11 -6 0 415 18.5	16.54 18.75 23.99 37.15 41.65	22 38 48.5 55	46.05 94.57 146.21 181.34

(Cossa, B. 1. 138.)

Neither ordinary stick S nor flowers of S is completely sol. in CS2. Pptd. S is completely sol. in 5 pts. CS₂. (Tittenger, C. C. 1894, II. 267.)

2.99 g. S are sol. in 100 grams CS₂ at ---116°. (Arctowski, C. R. 1895, 121. 124.) Solubility in CS₂. 200 g. of the sat. solution contain at:

(Arctowski, Z. anorg. 1896, 11. 274.)

When 20 pts. S dissolve in 50 pts. CS₂ at 22° the temp. is lowered 5°. (Cossa.) Sat. solution of S in CS2 boils at 55°. (Cossa.)

Sp. gr. of S dissolved in CS₂ at 15°.

(Pts. S per 100 pts. CS₂.)

Sp. gr.	Pts. S	Sp. gr.	Pts S	Sp. gr.	Pts. S
1.271	0.0	1.312	9.9	1.352	19.6
1.272	0.2	1.313	10.2	1.353	19.9
1.273	0.4	1.314	10.4	1.354	20.1
1.274	0.6	1.315	10.6	1.355	20.4
1.275	0.9	1.316	10.9	1.356	20.6
1.276	1.2	1.317	11.1	1.357	21.0
1.277	1.4	1.318	11.3	1.358	242
1.278	1 6	1 319	11 6	1.359	5
1.279	1.9	1.320	11.8	1.360	27.8
1.280	2.1	1.321	12.1	1.361	22.1
1.281	2.4	1.322	12.3	1.362	22.3
1.282	2.6	1.323	12.6	1.363	22.7
1.283	2.9	1.324	12.8	1.364	23.0
1.284	3.1	1.325	13.1	1.365	23.2
1.285	3.4	1.326	13.3	1.366	23.6
1.286	3.6	1.327	13.5	1.367	24.0
1.287	3 9	1.328	13.8	1.368	24.3
1.288	4.1	1.329	14.0	1.369	24.8
1.289	4.4	1.330	14.2	1.370	25.1
1.290	4.6	1.331	14.5	1.371	25.6
1.291	4.8	1.332	14.7	1.372	26.0
1.292	5.1	1.333	15.0	1.373	26.5
1.293	5.3	1.334	15.2	1.374	26.9
1.294	5.6	1.335	15.4	1.375	27.4
1.295	5.8	1.336	15.6	1.376	28.1
1.296	6.0	1.337	15.9	1.377	28.5
1.297	6.3	1.338	16.1	1.378	29.0
1.298	6.5	1.339	16.4	1.379	29.7
1.299	6.7	1.340	16.6	1.380	30.2
1.300	7.0	1.341	16.9	1.381	30.8
1.301	7.2	1.342	17.1	1.382	31.4
1.302	7.5	1.343	17.4	1.383	31.9
1.303	7.8	1.344	17.6	1.384	32.6
1.304	8.0	1.345	17.9	1.385	33.2
1.305	8.2	1.346	18.1	1.386	33.8
1.306	8.5	1.347	18.4	1.387	34.5
1.307	8.7	1.348	18.6	1.388	35.2
1.308	8.9	1.349	18.9	1.389	36.1
1.309	9.2	1.350	19.0	1.390	36.7
1.310	9.4	1.351	19.3	1.391	37.2
1.311	9.7				
	(Mase	eagno C	N 43	. 192 )	1

(Mascagno, C. N. **43.** 192.)

Solubility in CHCl ₂ at t°.  t° g. S in 10 g. of solution					
t°	g. S in 10 g. of solution				
12.25 19.29	0.0744 0.0918				

(Bronsted, Z. phys. Ch. 1906, 55, 377.) Solubility of octahedral and prismatic S in organic solvents at to.

***************************************				
Solvent	t°	% prismatic S	% octahedral S	
Benzene	18.6 25.3	2.004 2.335	1.512 1.835	
Chloroform	$\frac{25.5}{0}$	$\frac{2.335}{1.101}$	$\frac{1.835}{0.788}$	
	15.5 40	1.658 2.9	$\begin{array}{c} 1.253 \\ 2.4 \end{array}$	
Ethyl ether .	0	$\frac{2.9}{0.113}$	0.080	
	25.3	0.253	0.200	
Ethyl bromide	$\begin{vmatrix} 0 \\ 25.3 \end{vmatrix}$	0.852	0.611 1.307	
Ethyl formate	0	0.028	0.019	
Ethyl alcohol	25.3	0.066	0.052	

(Brönsted, Z. phys. Ch. 1906, 55, 377.)

Solubility in organic solvents at 25°. (G. S dissolved in 1 g. mol. of solvent.)

	Solvent	g. S
*5	Ethylene chloride Tetrachlorethane Dichlorethylene Pentachlorethane Trichlorethylene Perchlorethylene Carbon tetrachloride	0.831 2.063 1.237 2.421 2.43 2.537 1.354

(Hoffmann et al. 1910, B. 43. 188.)

100 g. trichlorethylene dissolve 1.19 g. S at 15°. (Wester and Bruins, Pharm. Weekbl. 1914, 51, 1443.)

Solubility in benzyl chloride at to.

to.	g. S per 100 g. of solution				
·	in upper layer	in lower layer			
0 17 35 46.1 63.3 78.0 99.1 109.6 114.6 118.8 121.4 130.0 134.2	0.99 1.78 2.57 3.64 6.15 9.88 19.89  37.29 40.04 49.71 56.20	90.62 87.99  85.02 80.07 72.23			

Above 134.2° sulphur is miscible with | 1872.434.)

benzyl chloride in all proportions; below this temp. two layers are formed.

(Bogusky, J. Russ. Phys. Chem. Soc. 1905, **37.** 92–99; C. C. **1905**, I. 1207.)

Easily sol. in boiling acetic anhydride. (Rosenfeld, B. 13. 1475.)

Sol. in considerable amount in warm conc.

HC₂H₃O₂+Aq, but very sl. sol. if dil. (Liebermann, B. 10. 866.)

Sol. in stearic acid+Aq. (Vulpius, Arch. Pharm. (3) **13.** 38.)

Acetic ether dissolves 6% S. (Favre.) Difficultly sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sol. in ethyl acetate. (Naumann, B. 1904. **37.** 3601.)

Sl. sol. in benzonitrile at ord. temp., much more sol. at higher temp. (Naumann, B. 1914, 47, 1369.)

Sol. in 12 pts. hot petroleum from Amiano. but nearly insol. in cold. (de Saussure.)

100 pts. nicotine at 100° dissolve 10.58 pts. S, but this separates out as the solution cools. (Klever, C. C. 1872, 434.)

Sol. in warm aniline. (Barral, A. ch. (3) **20.** 352.)

Easily sol. in hot, less sol. in cold aniline. (Fritzsche.)

Very sol. in aniline and quinoline, especially when warm. (Hofmann.)

Sol. in quinoline but reacts with the solvent with evolution of H. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

½ ccm. oleic acid dissolves 0.0335 g. S in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Sol. in 2.6 pts. of boiling, sl. sol. in cold creosote.

Sol. by digestion in 2 pts. oil of turpentine. Sol. in hot oil of copaiba, crystallising on cooling.

Sol. in hot oil of mandarin, crystallising on cooling.

Sol. in hot oil of caraway, crystallising on

Somewhat sol. in hot, less in cold woodspirit.

Sl. sol. in lignone, bromoform, cold benzene, but easily in hot benzene. (Mansfield, Chem. Soc. 1. 262.)

Sol. in ethyl sulphide, and carbon chlo-

ride. (Rathke, A. 152. 187.) Sol. in mercuric methyl.

Sol. in 20 pts. ethyl nitrate, from which is is not pptd. by H₂O.
Sol. in naphtha, aldehyde, iodal, bromal,

chloroform, warm chloral, sinkaline+Aq, ethyl chloride, warm benzoyl chloride.

100 pts. methylene iodide dissolve 10 pts. S at 10°. Melted sulphur is miscible with hot methylene iodide. (Retgers, Z. anorg-

3. 343.)
S dissolves in 2000 pts. glycerine. (Cap and Garot, J. Pharm. (3) 26. 81.)

Glycerine dissolves 0.10% S. (Klever, C. C.

100 g. glycerine dissolve 0.14 g. at. 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.)

Sol. in butyl sulphydrate, and warm retinole.

Sol. in ethyl sulphydrate.

Very sol. in coniine, hexyl alconol, warm livi sulphocyanide. cacodyl oxide. Someallyl sulphocyanide, cacodyl oxide. what sol. in hot styrene, separating out cn

Readily sol. in warm, less readily in cold

toluene or resin-oil.

Sol. in olive oil at 115°, from which it

mostly separates on cooling.

Sol. in hot oil of amber, crystallising upon cooling. Sol. in 2 pts. hot, sl. sol. in cold caoutchin.

Insol. in valerianic acid, amyl valerate, valeryl hydride.

Linseed oil dissolves % S at t°.

t°	% S	t°	% S	t"	%8
25	0.630	95	2 587	160	9.129
60	1.852	130	4 935		

(Pohl.)

Solubility in olive oil (sp. gr. = 0.885). 100 pts. dissolve pts. S at t°

	100 765. 01550. 10 100.							
t°	Pts. S	t°	Pts. S	t°	Pts. S			
15 40	$\frac{2.3}{5.6}$	65 100	$\frac{20.6}{25.0}$	110 130	$\frac{30.3}{43.2}$			

(Pelouze, C. R. 68, 1179.)

Solubility in 100 pts. coal-tar oil at t°.

		Pts. S in	
t°	Oil of 0.870 sp. gr. B pt. 80-100°	Oil of 0.880 sp. gr. Bpt. 85 120°	Oil of 0.882 sp. gr. Bpt. 120-200°
15	2.1	2.3	2.5
30	3.0	4.0	5.3
50	5.2	6.1	8.3
80	11.8	13.7	15.2
100	15.2	18.7	23.0
110		23.0	26.2
120		27.0	32.0
130			38.7

	Pts. S in			
	Oil of 0.885 sp. gr. Bpt. 150 200°	Oil of 1.010 sp. gr. Bpt. 210 300°	Oil of 1.020 sp. gr. Bpt 220-300°	
15 30 50 80 100 110 120 130	2.6 5.8 8.7 21.0 26.4 31.0 38.0 43.8	6.0 8.5 10.0 37.0 52.5 105.0	7.0 8.5 12.0 41.0 54.0 115.0	

(Pelouze, C. R. 69. 56.)

Sulphur bromide, S₂Br₂.

Decomp, gradually with H₂O. Dissolves S on warming, which crystallises out on cooling. Sol. in CS.

Decomp, by current of dry air into S and

Br. (Hannay, Che a. Soc. 35. 16.)

Decomp. slowly by cold H₂O, rapidly by hct H₂O. Decomp. by dil. KOH+Aq or NaHCO₃+Aq. (kondurfer, Arch. Pharm. NaHCO₃+Aq. 1904, **242**. 156.)

A study of the mpt, curve of a series of mixtures of sulphur and bromine gave no evidence for the existence of the compounds SBr₂ and SBr₄. (Ruff, B. 1903, **36**. 2446.)

#### Sulphur monochloride, S₂Cl₂.

Slowly decomp. by H₂O. Miscible with CS₂ and C₆H₆. Sol. in alcohol and ether with subsequent decomposition. Sol. in oil of turpentine

Moderately sol. in liquid NH₈. (Franklin,

Am. Ch. J. 1898, **20**. 830.) Sol. in CCl₄, and C₆H₆. (Oddo, Gazz. ch. it. 1899, **29**. (2) 318.)

#### Sulphur dichloride, SCl₂.

Decomp. slowly with H₂O, immediately by alcohol or ether.

#### Sulphur tetrachloride, SCl₄.

Violently decomp. by H₂O. Decomp. at temperatures above -22°. (Michaelis, A. **170.** 1.)

#### Sulphur stannic chloride, 2SCl₄, SnCl₄.

Decomp. by H₂O. Sol. in dil. HNO₃+Aq. Forms a mass with fuming HNO, which is sol. in HNO₃+Aq. Sol. in POCl₃. (Casselmann.)

Very hydroscopic. Fumes in moist air. Very easily sol. in dry abs. ether and in benzene. Sol. in CHCl₃, SO₂Cl₂, CS₂, POCl₃ ligroin and petroleum ether. (Ruff, B. 1904, **37.** 4517.)

#### Sulphur titanium chloride, SCl4, 2TiCl4.

Very deliquescent. Easily sol. in dil. HNO₃+Aq. (Weber, Pogg. **132**. 454.) SCl₄, TiCl₄. Sol. in SO₂Cl₂, CHCl₃, CS₂ and petroleum ether. (Ruff, B. 1904, **37**. 4516.)

#### Sulphur chloride ammonia, S₂Cl₂, 4NH₃.

Insol. in H₂O, but gradually decomp. thereby; sol. without decomp. in absolute alcohol, from which it is pptd. by H₂O. (Mertens.)

Does not exist. (Fordos and Gélis, C. R.

**31.** 702.) SCl₂, 2NH₂. Decomp. by H₂O. Sol. in alcohol or ether. (Soubeiran, A. ch. 67. 71.) Not a true chemical compound, but a mixture. (Fordos and Gélis, C. R. 31. 702.)

*SCl₂, 4NH₂. Decomp. by H₂O. Sl. sol. in absolute alcohol and ether (Soubeiran, A₃ ch. 67. 71); mixture (Fordos and Gélis).

#### Sulphur chloride nitrogen sulphide. See Nitrogen sulphochloride.

#### Sulphur perfluoride, SF6.

Very sl. sol. in H₂O; sl. sol. in alcohol. (Moissan, C. R. 1900, 130, 868.)

#### Sulphur monoiodide, S₂I₂.

Insol. in H₂O. Decomp. by alcohol, which dissolves out I₂. Sl. sol. in cold caoutchin, the solution decomposing when boiled. Freely sol. in glycerine. Sol. in 60 pts. glycerine, and 82 pts. olive oil. (Cap and Garot, J. Pharm. (3) 26. 81.)

Very sol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 830.)

Sol. in CS₂. (Linebarger, Am. Ch. J. 1895, **17.** 58.)

#### Sulphur hexiodide, SI₆.

Decomp. on air. Alcohol or alkalies dissolve out iodine. (vom Rath, Pogg. 110. 116.) Does not exist. (M'Leod, Rep. Brit. Assn. Advn. Sci. 1892. 690.)

#### Sulphur stannic iodide.

See Tin sulphur iodide.

#### Sulphur sesquioxide, S₂O₈.

Deliquescent. Violently decomp. by H₂O at ordinary temp. Sol. in fuming H₂SO₄. Insol. in SO₃. Decomp. by alcohol or other. (Weber, Pogg. 156. 531.)

#### Sulphur dioxide, SO₂.

Liquid. Insol. in H2O if brought in contact therewith below the b.-pt. of SO₂.

Sol. in 3 vols. CS2 on warming, separating out on cooling. Dissolves some P, little S, and no sulphuric or phosphoric acids.

Dissolves ether, chloroform, P, Br, S, I, CS₂, colophonium, and other gums; also benzene when warmed. (Sestini, Bull. Soc. (2) 10. 226.)

Miscible with liquid SO₃, but not with H2SO4.

#### Gas.

1 vol. H₂O absorbs 30 vols. SO₂ gas at 18° (Davy); 20 vols. at ord. temp. (Dalton); 43.78 vols. at ord. temp. (de Saussure); 50 vols. at 20° and 760 mm. (Pelouze and Fremy); 33 vols. at ord. temp. (Thomson).

1 pt. SO₂ (by weight) is sol. in 0.1429 pt. H₂O at 5°,

1 pt. SO₂ (by weight) is sol. in 0.1429 pt. H₂O at 5°, and the solution has 1.020 sp. gr.
1 pt. SO₂ is sol. in 0.0400 pt. H₂O at ord. temp. (Priestley); in 0.0909 pt. H O at 16°, and sp. gr. of the solution = 1.0513 (Thomson).
Sol. in 2 pts. H₂O at 10°. (Pierre, A. ch. (3) 23, 421.)
100 vols. H²O at 18° and 760 mm. absorb 4378 vols.
SO₂ gas; 100 vols. alcohol of 0.84 sp. gr. at 760 mm. absorb 11,577 vols. (de Saussure, 1814.)

Solubility of SO₂ gas in H₂O.  $t^{\circ}$  = temp.; V = vols. SO₂ reduced to 0° and 760 mm. contained in 1 vol. sat. SO₂+Aq; V₁=vols. SO₂ gas reduced to 0° and 760 mm. dissolved by 1 vol. H₂O under 760 mm. pressure.

t°	v	$V_1$	t°	v	V ₁ .
0	68.861	79.789	21	34.986	37.970
<b>i</b> 1	67.003	77.210	22 .	33.910	36.617
2	65.169	74.691	23	32.847	35. <b>302</b>
3	63.360	72.230	24	31.800	34.026
4	61.576	69.828	25	30.766	32.786
5	59.816	67.485	26	29.748	31.584
6	58.080	65.200	27	28.744	30.422
7	56.369	62.973	28	27.754	29.314
8	54.683	60.805	29	26.788	28.210
9	53.021	58.697	30	25.819	27, 161
10	51.383	56.647	31	24.873	26.151
11	49.770	54.655	32	23.942	25.178
12	48.182	52.723	33	23.025	24.244
13	46.618	50.849	34	22.122	23.347
14	45.079	49 033	35	21.234	22.489
15	43.564	47.276	36	20.361	21.668
16	42.073	45.578	37	19.502	20, 886
17	40.608	43.939	38	18.658'	20.141
18	39.165	42.360	39	17.827	19.435
19	37.749	40.838	40	17.013	18.766
20	36.206	39.374			

(Schönfeld, A. 95. 5.)

This table may be formulated as follows:

1 vol. H₂O absorbs 79.789-2.6077t+ 0.029349t2 vols. SO2 at temp. between 0° and 20°, or 1 vol. sat. solution contains 68.861—1.87025t+0.01225t² vols. SO₂. Coefficient of absorption between 21° and 40°=75.182— 2.1716t+0.01903t² vols. SO₂ or 1 vol. sat. solution between 21° and 40° contains 60.952  $-1.38898t + 0.00726t^2$  vols. SO₂.

Solubility of SO₂ in H₂O at various temps, and 760 mm.  $t^{\circ} = \text{temp.}$ ;  $G = \text{grammes SO}_2$ dissolved in 1 g. H₂O; V = vols. SO₂ dissolved in 1 g. H₂().

t°	G	v	ll t°	G	v
8 10	0.168 0.154	58.7 53.9	30 32	0.078 0.073	27.3 25.7
12 14 16	$\begin{array}{ c c c c }\hline 0.142 \\ 0.130 \\ 0.121 \\ \end{array}$	$ \begin{array}{r r} 49.6 \\ 45.6 \\ 42.2 \end{array} $	34 36 38	$0.069 \\ 0.065 \\ 0.062$	$ \begin{array}{c c} 24.3 \\ 22.8 \\ 21.6 \end{array} $
18 20	0.112 0.104	39.3 36.4	40 42	0.058 0.055	20.4 19.3
$\frac{22}{24} \\ 26$	0.098 0.092 0.087	$ \begin{array}{r} 34.2 \\ 32.3 \\ 30.5 \end{array} $	44 46 48	$\begin{array}{c} 0.053 \\ 0.050 \\ 0.047 \end{array}$	$18.4 \\ 17.4 \\ 16.4$
28	0.083	28.9	50	0.045	15.6

(Sims, A. 118. 340.)

Solubilit	y of SO ₂ i	n H ₀ O at	various n	ressures					
P=	·"partial p	ressure,"	i. e. the to	otal pres-	P		20	,	
sure	e minus th given tem	e tension	of aqueou P = weigh	s vapour		G at P	G at 760	V at P	V at 760
grai	mmes, wh	ich is diss	solved in	1 g. H,O	40	0.007	0 143	2.637	50.09
	pressure				50	0.009	0.138	3.171	48.20
	ght SO ₂ t				60	0.011	0.135	3.718	47.10
	H ₂ O at 76 portional				70	0.012	0.131	4.205	45.64
Troli	ima of C				80 90	$0.013 \\ 0.015$	$0.127 \\ 0.125$	4.663 5.169	44.30
760	mm.	6		0	100	0.016	$0.123 \\ 0.124$	5.692	43.25
*					120	0.019	0.121	6.683	
		~	0		140	0.022	0.119	7.690	41.75
P	G at P	G at 760	V at P	V at 760	160	0.025	0.118	8.666	41.17
	GALL	G at 700	V 20 1		180 200	$0.028 \\ 0.030$	0.117 0.116	$\begin{array}{c} 9.652 \\ 10.62 \end{array}$	$40.75 \\ 40.35$
30	0.010	0.263	3.634	92.06	$\frac{200}{226}$	0.033	0.110	10.52 $11.59$	40.03
40	0.013	0.212	4 451	84.55	240	0.036	0.114	12.54	39.70
50	0.015	0.223	5.129	77.95	260	0.038	0.112	13.45	39.30
60 70	$0.017 \\ 0.020$	$0.818 \\ 0.213$	6.024	$\begin{bmatrix} 76.28 \\ 74.55 \end{bmatrix}$	280	0.041	0.112	14.41	39.10
80	0.020	$0.213 \\ 0.210$	7.743	73.55	300 350	0.044	0.111	$15.34 \\ 17.66$	$\frac{38.87}{38.35}$
90	0.025	0.208	8.598	72.62	400	$0.050 \\ 0.059$	0.110 0.109	$\frac{17.66}{20.56}$	38.33
100	0.027	0.205	9.421	71.60	450	0.064	0.108	$\frac{20.30}{22.37}$	37.77
120	0.032	0.201	11 09	70.20	500	0.071	0.107	24.67	37.50
140	0.036	0.197	12.71	69.00	550	0.077	0.106	26.93	37.20
16 <b>0</b> . 180	0.041	$0.195 \\ 0.193$	14.34 15.97	$\begin{bmatrix} 68.15 \\ 67.40 \end{bmatrix}$	600	0.083	0.105	29.14	36.90
200	0.050	0.191	17.59	66.83	650	0.090	0.105 0.105	$\frac{31.39}{33.62}$	36.70
$\frac{220}{220}$	0.055	0.190	19.19	66.30	700 750	$0.096 \\ 0.103$	0.103	35.94	$36.50 \\ 36.43$
240	0.059	0.188	20.79	65.84	760	0.103	0.104	36.43	36.43
260	0.064	0.187	22.40	65.44	800	0.110	0.104	38.32	36.40
$\frac{280}{200}$	0.069	0.186	23.99	65.10	1000	0.137	0.104	47.85	36.37
300 - 350	$0.073 \\ 0.085$	$0.185 \\ 0.184$	$25.59 \\ 29.55$	$64.81 \\ 64.16$	1300	0.178	0.104	62.10	36.31
400	0.096	0.184	33.51	63.65	1600	0.218	0.104	76.35	$36.27 \\ 36.21$
450	0.107	0.181	37.44	63.25	1900	0.259	0.104	90.53	30.21
500	0.118	0.180	41.42	62.94			39.8	3°	
550	0.130	0.179	45.31	62.60	P				
600 - 650	$0.141 \\ 0.152$	$0.178 \\ 0.178$	$   \begin{array}{r}     49.20 \\     53.10   \end{array} $	$\begin{bmatrix} 62.32 \\ 62.09 \end{bmatrix}$		G at P	G at 760	V at P	V at 760
700	$0.152 \\ 0.163$	0.178	56.98	61.86	200	0.016	0.062	5.675	21.57
750	0.174	0.176	60.88	61.69	300	0.024	0.061	8.368	21.20
760	0.176	0.176	61.65	61.65	400	0.031	0.060	11.03	20.95
800	0.185	0.176	64.74	61.50	500	0.039	0.059	13.67	20.77
850	0.196	0.175	68.57	61.30	600	0.047	0.059	16.29	20.64
900	$0.207 \\ 0.218$	$0.175 \\ 0.175$	$72.41 \\ 76.25$	$\begin{vmatrix} 61.15 \\ 61.00 \end{vmatrix}$	760	0.059	0.059	$20.50 \\ 21.58$	20.50 · 20.50
950 1000	0.218	$0.175 \\ 0.174$	80.01	60.88	800 1000	$0.062 \\ 0.077$	$0.059 \\ 0.058$	$\frac{21.58}{26.84}$	20.30
1050	0.240	0.174	83.97	60.77	1500	0.113	0.057	39.65	20.09
1100	0.251	0.174	87.80	60.65	2000	0.149	0.057	52.11	19.80
200	0.273	0.173	95.45	60.45		<del> </del>			<u> </u>
300	0.295	0.172	103.00	60.25	P		50		
				•		G at P	G at 760	V at P	V at 760
					200	0.012	0.045	4.156	15.97
					400	0.024	0.045	8.275	15.72
					600	0.035	0.045	12.36	15.65
	,				760	0.045	0.045	15.62	15.62
					800 1000	0.047	0.045	16.43 20.51	15.60 15.59
					1500	0.088	0.044	30.73	15.57
	•				2000	0.012	0.044	39.07	15.55
						1	<u> </u>	<u> </u>	1

(Sims, A. 118. 340.)

*1 g.  $H_2O$  dissolves 0.0909 g.  $SO_2 = 34.73$  cc. (at 25°) at 25° and 748 mm. pressure. (Walden and Centnerszwer, Z. phys. Ch. 1901, 42. 462.)

Solubility of SO₂ in H₂O at t° and 760 mm.

t°	G. SO ₂ per 1 g. H ₂ ()	t°	G. SO ₂ per 1 g. H ₂ ()
0	0.236	7	0.176
2	0.218	8	0.168
4	0.201	10	0.154
6	0.184	12	0.142

(Roozeboom, R. t. c. 1884, 3. 29.)

From a gas containing 10% by vol. of  $SO_2$  at  $10^\circ$ , 1.63% by wt. is dissolved by 1 litre of  $H_2O$ ; if the pressure is increased to 5 atmospheres, 8.14% by wt. is dissolved. (Harpf, Chem. Zeitschr., 1905, 4. 136.)

Solubility of  $SO_2$  in  $H_2O$  at  $t^\circ$ . C=g.  $SO_2$  in 1 cc. of the solution. P=Pressure in mm. of Hg.

t°	C	Р	$\frac{\mathrm{C}}{\mathrm{P}} \times 10^4$
0	0.000537 0.00237 0.01227 0.03834	0.4 3.5 29.4 109.4	13.4 6.78 4.17 3.48
25 " "	0.000534 0.09234 0.01212 0.03750	1.4 $11.75$ $87.9$ $313.0$	3.81 2.00 1.379 1.198
50  	0.000525 0.002276 0.01181 0.03628	4.9 30.5 204.5 696.0	1.07 0.746 0.577 0.521

(Lindner, M. 1912, 33. 645.)

Sp. gr. of sat. solution at— 0° 10° 20° 40° 1.06091 1.05472 1.02386 0.95548 (Bunsen and Schönfeld, A. 95. 2.)

Sat.  $SO_2 + Aq$  has sp. gr. = 1.0040. (Berthollet.)

Sp. gr. of sat. SO₂+Aq at t°.

1     1.0596     10     1.0547     18     1.032       2     1.0585     11     1.0528     19     1.028       3     1.0576     12     1.0505     20     1.023       4     1.0569     13     1.0481     21     1.014       5     1.0562     14     1.0454     22     1.014	t°	Sp. gr.	t°	Sp. gr.	t°	Sp. gr.
	1 2 3 4 5 6 7	1.0596 1.0585 1.0576 1.0569 1.0562 1.0557 1.0552	10 11 12 13 14 15	1.0547 1.0528 1.0505 1.0481 1.0454 1.0424	18 19 20 21 22 23	1.0358 1.0321 1.0281 1.0239 1.0195 1.0147 1.0099 0.9991

(Schiff, A. 107, 312,)

Sp. gr. of SO₂+Aq at 4°.

80°2	Sp. gr.	80 ₂	Sp. gr.	ső ₂	Sp. gr.
1	1.0024	8	1.0217	15	1.0445
2	1.0049	9	1.0247	16	1.0480
3	1.0075	10	1.0278	17	1.0517
4	1.0102	11	1.0311	18	1.0553
5	1.0130	12	1.0343	19	1.0591
6	1.0158	13	1.0376	20	1.0629
7	1.0187	14	1.0410	21	1.0667

(Schiff, calculated by Gerlach, Z. anal. 8. 292.)

Sp. gr. of SO₂+Aq.

% SO ₂	Temp.	Sp. gr.
0.99	15.5°	1.0051
2.05	"	1.0102
2.87	"	1.0148
4.04	"	1.0204
4.99	"	1.0252
5.89	"	1.0297
7.01	"	1.0353
8.08	"	1.0399
8.68	"	1.0438
9.80	"	1.0492
10.75	**	1.0541
11.65	12.5°	1.0597
13.09	11.0°	1.0668

(Giles and Schearer, Jour. Soc. Ch. Ind. 4. 303.)

Sp. gr. of SO₂+Aq.

ső2	Sp. gr.	% so ₂	Sp. gr.	% SÖ2	Sp. gr.
1	1.0052	4	1.0167	7	$\begin{array}{c} 1.0283 \\ 1.0329 \\ 1.0402 \end{array}$
2	1.0094	5	1.0208	8	
3	1.0134	6	1.0242	9	

(Anthon.)

Sp. gr. of SO₂+Aq.

$\overset{\%}{\text{so}}_{2}$	Sp. gr.	% SO ₂	Sp. gr.	ső,	Sp. gr.
1 2 3 4	1.0042 1.0083 1.0125 1.0167	5 6 7	1.0210 1.0252 1.0295	8 9 10 	1.0348 1.0392 1.0438

(Hager, Adjumenta varia, Leipzig, 1876.

	Sp. gr. of SO ₂ +Aq at 15°.									
$8\overset{7}{0}_{2}$	Sp. gr.	sn2	Sp. gr.	80 ₂	Sp. gr.					
0.5 1.0 1.5 2.0 2.5 3.0 3.5	1.0028 1.0056 1.0085 1.0113 1.0141 1.0168 1.0194	4.0 4.5 5.0 5.5 6.0 6.5 7.0	1.0221 1.0248 1.0275 1.0302 1.0328 1.0353 1.0377	7.5 8.0 8.5 9.0 9.5 10.0	1.0401 1.0426 1.0450 1.0474 1.0497 1.0520					
	(Scott, Po	olvt. C	entralbl.	1873. 8	326.;					

Conc.  $H_2SO_4$  absorbs 0.009 pt. by weight (58 vols.), and  $SO_2$  is more soluble in dilute  $H_2SO_4+Aq$ , the more  $H_2O$  there is present. (Kolb, Dingl. **209.** 270.)

Solubility in H₂SO₄.

Sp. gr. of H ₂ SO ₄	Absorbs SO ₂ per kg.	Absorbs SO ₂ per litre
1.841	0.009	5.8
1.839	0.014	8.9
1.540	0.021	11.2
1.407	0.032	15.9
1.227	0.068	29.7
1.020	0.135	49.0

(Kolb, Bull. Soc. Ind. Mullhouse, 1872, 224.)

Coefficient of absorption for H₂SO₄ (1.841 sp. gr. at 15° and 760 mm.) is 28.14 at 17°, and 28.86 at 16°. (Dunn, C. N. 43. 121.) Solubility of SO₂ in H₂SO₄ of 1.84 sp. gr.

, to	Sp. gr. of sat. solution	· Coeff. of absorption (760 mm.)	t°	Sp. gr. of sat. solution	Coeff. of sbsorption (760 mm.)
0 10 20 25 30 40	1.8232 1.8225 1.8221 1.8216 1.8205	53 35.0 25.0 21.0 18.0 18.0	50 60 70 80 90	1.8186 1.8165 1.8140 1.8112 1.8080	9.5 7.0 5.5 4.5 4.0

(Dunn, C. N. 1882, 45. 272. Calc. by Seidell, Solubilities, 1st Ed.)

Solubility of SO₂ in H₂SO₄+Aq.

t°	Sp. gr. of H.SO ₄ solution	Approx.	Coeff. of absorption	t°	Sp. gr. % H;SO, solution	Approx.	Coeff. of absorption
6.9	1.139	20	48.67	15.2	1.173	25	31.82
6.9	1.300		45.38	16.8	1.151		31.56
8.6	1.482	58	39.91	14.8	1.277	36	30.41
9.8	1.703	78	29  03	15.1	1.458	56	29.87
5.5	067		36.78	15.6	1.609	70	25.17
6.6	1 102	15	34.08	15.0	1.739	81	20.83

(Dunn, C. N. 1882, 45. 272; Seidell, Solubilities, 1st Ed.)

Coefficient of absorption in  $H_2SO_4$  (sp. gr. = 1.841) = 5.8; (sp. gr. = 1.839) = 8.9. (Lunge.)

#### Solubility in salts+Aq at 35°.

l = coefficient of absorption of SO₂ in the given salt solution at 35°. lo = coefficient of absorption of  $SO_2$  in water at  $35^\circ = 22.43$ .

Salt		3-normal	2.5-normal	2-normal	1.5-normal	1-normal	0.5-normal
KI	1	45.43	41.87	38.04	34.64	30.25	26.30
	l-lo	23.00	19.44	15.61	12.21	7.82	3.87
KBr	1	36.14	34.12	31.93	29.64	27.49	24.83
	l-lo	13.71	11.69	9.50	7.21	5.01	2.40
KCl	1	30.02	28.93	27.94	26.54	25.15	23.74
	l-lo	7.59	6.50	5.31	4.11	2.72	1.31
KCNS	1	42.94	38.13	35.05	32.03	28.79	25.63
	l-lo	18.51	15.70	12.62	9.60	6.36	3.20
NH4NO8	1	27.43	26.66	25.57	24.78	24.23	23.35
,	l-lo	5.00	4.23	3.14	2.35	1.80	0.92
KNO ₈	1	27.33	26.54	25.72	24.79	24.03	23.27
	l-lo	4.90	4.11	3.29	2.36	1.60	0.84

Solubility in salts+Aq at  $35^{\circ}$ .—Continued. l=coefficient of absorption of  $SO_2$  in the given salt solution at  $35^{\circ}$ . lo=coefficient of absorption of  $SO_2$  in water at  $35^{\circ}$ = 22.43.

Salt	7	3-normal	2.5-normal	2-normal	1.5-normal	1-normal	0.5-normal
½(NH ₄ ) ₂ SO ₄	1	24.60	24.23	23.93	23.49	23.14	22.91
	l-lo	2.17	1.80	1.50	1.06	0.71	0.48
½CdI2	l	24.30	23.99	23.71	23.38	<b>23</b> .06	22.75
	l-lo	1.87	1.56	1.28	0.95	0.63	0.32
1/2Na2SO4	1	19.27	19.79	20.20	20.81	21.35	21.88
	l-lo	-3.16	-2.64	-2.23	-1.62	-1.08	-0.55
½CdBr ₂	1	19.17	19.70	20.60	20.81	21.46	21.88
	l-lo	-3.26	-2.73	-1.83	-1.62	-0.97	-0.55
½CdCl2	1	18.68	19.23	20.02	20.55	21.23	21.73
	l-lo	-3.75	-3.20	-2.41	-1.88	-1.20	-0.70
½CdSO4	1	16.25	17.41	18.31	19.42	20.43	21.45
	l-lo	-6.81	5.02	-4.12	-3.01	-2.00	-0.98

Solubility in salts+Aq at 25°.

l= coefficient of absorption of  $SO_2$  in the given solution at 25°. lo= coefficient of absorption of  $SO_2$  in water at 25° = 32.76.

Salt		3-normal	2.5-normal	2-normal	1.5-normal	1-normal	0.5-normal
KI	l	68.36	62.63	56.75	50.58	44.76	38.66
	l-lo	35.60	29.87	23.99	17.82	12.00	5.90
$^{1}\!\!{}_{2}\mathrm{CdI}_{2}$	l	35.77	34.98	34.74	34.16	33.76	33.27
	l-lo	3.01	2.22	1.98	1.40	1.00	0.51
NH₄Br	1	52.25	49.17	46.06	42.78	39.46	36.28
	l-lo	19.49	16.41	13.30	10.02	6.70	3.52
KBr	1	52.26	48.87	44.96	42.41	39.11	35.94
	l-lo	19.00	15.71	12.70	9.15	6.35	3.18
NaBr	l	37.74	36.84	36.26	35.27	34.54	33.76
	l-lo	4.98	4.08	3.50	2.51	1.78	1.00
½CdBr2	1	27.46	28.15	29.27	30.17	31.01	31.91
	l-lo	5.30	-4.61	-3.49	-2.59	-1.75	-0.85
NH ₄ Cl	1	42.78	41.37	39.76	38.06	36.37	34.58
	l-lo	10.02	8.61	7.00	5.30	3.61	1.80
KCl	1	42.27	40.96	39.32	37.76	36.05	34.42
	l-lo	9.51	8.20	6.56	5.00	3.29	1.66

# Solubility in salts+Aq at 25°—Continued. l= coefficient of absorption of $SO_2$ in the given solution at 25°. lo= coefficient of absorption of $SO_2$ in water at $25^\circ=32.76$ .

Salt	1	3-norm	2.5 rai	2-normal	1.5-norm '	1-normal	0.5-normal
NaCl	1	31.36	31.51	31 76	31.96	32.25	32.46
	llo	-1.40	-1.25	-1.90	-0.80	0.51	-0.30
½CdCl ₂	1	26.06	27.09	28.16	29 46	30.55	31.66
	l-lo	6.70	5.67	1 CO	-3.30	-2.21	1.10
NH ₄ CNS	1	61.46	57.01	52.26	47.26	42.74	37.78
	l-lo	28.70	24.25	19.50	14.50	9.98	5.02
KCNS	1	61.26	55.87	51.86	47.02	42.38	37.57
	l-lo	28 50	23.11	19.10	14.26	9.62	4.81
NaCNS	1	48.34	45.86	43.37	40.78	38.24	35.44
	l-lo	15.58	13.10	10.61	8.02	5.48	2.68
NH ₄ NO ₃	1	39.14	38.01	37.27	36.28	35.07	33.96
	l-lo	6.38	5.25	4.51	3.52	2.31	1.20
KNO ₃	1	38.52	37.57	36.66	35.77	34.79	33.80
	l-lo	5.76	4.81	3.90	3.01	2.03	1.04
½(NH ₄ ) ₂ SO ₄	1	35.96	35.47	34.95	34.34	33.82	33.35
	l-lo	3.20	2.71	2.19	1.58	1.06	0.59
$\frac{1}{2}\mathrm{K}_{2}\mathrm{SO}_{4}$	I			• • •		33.61	33.20
	l-lo				,	0.85	0.48
½Na ₂ SO ₄	1	28.44	28.66	29.51	30.45	31.14	31.96
	l-lo	-4.32	-4.10	-3.25	-2.31	-1.62	-0.80
½CdSO4	1	23.76	25.14	26.58	28.24	29.71	31.11
	l-lo	9.00	<del>7</del> .62	<b>6.18</b>	-4.52	-3.05	-1.85

(Fox, Z. phys. Ch. 1902, 41. 462.)

Sol. in  $Cl_2+Aq$ . Sol. in  $Br_2$ . Solidification curves determined. (Van der Goot, Z. phys. Ch. 1913, **84**. 419.)

Solubility of SO₂ in alcohol, 1 vol. alcohol at t° and 760 mm. dissolves V vols. SO₂ gas at 0° and 760 mm.

t°	v	t°	v	t°	v
0	328.62	9	201.33	17	130.61
1	311.98	10	190.31	18	124.58
2	295.97	11	179.91	19	119.17
$\frac{2}{3}$	280.58	12	170.13	20	114.48
<b>4</b> <b>5</b>	265.81	13	160.98	21	110.22
5	251.67	14	152.45	22	106.68
6	238.16	15	144.55	23	103.77
7	225.26	16	137.27	24	101.47
8	212.98				

(Bunsen's Gasometry.)

100 pts. absolute methyl alcohol dissolve 247 pts. SO₂ at 0° and 760 mm.; 47 pts. at 26° and 760 mm.; 100 pts. absolute ethyl alcohol dissolve 115 pts. SO₂ at 0° and 760 mm.; 32.3 pts. at 26° and 760 mm. (de Bruyn, Z. phys. Ch. 10. 783.)

Sol. in ether.

Absorbed by oil of turpentine.

Rapidly absorbed by anhydrous aldehyde in the cold, 11 pts. aldehyde absorbing 19 pts.

Absorption coefficient of aldehyde for SO₂ is 1.4 times greater than that of alcohol, and 7 times greater than that of H₂O. (Geuther and Cartmell, Proc. Roy. Soc. 10. 111.)

1 pt. camphor dissolves 0.880 pt. by weight (=308 vols.) SO₂ at 0° and 725 mm.; 1 pt. glacial HC₂H₈O₂ dissolves 0.961 pt. by weight (=318 vols.)  $SO_2$  at 0° and 725 mm.; 1 pt. formic acid dissolves 0.821 pt. by weight (=351 vols.)  $SO_2$  at 0° and 725 mm.;1 pt. acetone dissolves 2.07 pts. by weight (=589 vols.)  $SO_2$  at 0° and 725 mm.; 1 pt. sulphuryl chloride dissolves 0.323 pt. by weight (=187 vols.) SO₂ at 0° and 725 mm. (Schulze, J. pr. (2) **24.** 168.)

Solubility of SO₂ in CHCl₃. C = g.  $SO_2$  in 1 cc. of the solution. P = Pressure in mm. Hg.

t°	С	P	C/P × 10⁴
0 " " " " " " "	0.000701 0.001790 0.006982 0.03097 0.08217	2.7 5.6 22.0 90.2 219.6	2.6 3.14 3.17 3.43 3.74
25  	0.000669 0.001712 0.006723 0.02954 0.07839	5.7 12.9 48.0 206.2 488.8	1.17 1.37 1.40 1.47 1.60

(Lindner, M. 1912, 33, 645.)

Distribution of SO₂ between H₂O and CHCl₃ at 20°.

 $c_1 = g$ .  $SO_2$  per l. of  $H_2O$  solution.  $c_2 = g$ . SO₂ per l. of CHCl₃ solution.

	-	
$\mathbf{C_1}$	C ₂	C ₁ /C ₂
1.738 1.753 2.326 . 2.346 2.628 3.039 3.058 3.686	1.123 1.122 1.704 1.703 1.897 2.395 2.385 3.063	1.55 1.56 1.37 1.38 1.38 1.27 1.28
3.735 4.226 5.269 5.372 6.588 31.92 33.26	3.062 3.626 4.798 4.813 6.183 33.84 37.25	1.22 1.17 1.10 1.12 1.07 0.94 0.89

(McCrae, Z. anorg. 1903, 35. 12.)

Distribution of SO₂ between HCl+Aq and CHCl₃ at 20°.

 $c_1 = g$ .  $SO_2$  per l. of HCl + Aq solution. c₂ = g. SO₂ per l. of CHCl₃ solution. HCl = normality of HCl+Aq used.

1101 1201 1111 1111 1111					
HCl	C ₁	$C_2$	C1/C2		
0.05-N	1.86	1.46	1.28		
	3.076	2.830	1.08		
	4.277	4.07	1.04		
	5.340	5.42	0.96		
0.1 - N	1.25	1.41	0.88		
	1.324	1.416	0.93		
	2.78	3.08	0.90		
	3.86	4.08	0.94		
	5.161	5.715	0.90		
0.2 -N	1.268	1.509	0.84		
	1.914	2.274	0.84		
	2.464	3.040	0.81		
	3.967	4.898	0.81		
0.4 -N	1.202	1.614 2.263	0.79 0.83		

(McCrae, Z. anorg. 1903, 35. 14.)

Sulphur dioxide ammonia, SO₂, NH₃. Very hydroscopic. Easily sol. in H₂O with decomp. (Schumann, Z. anorg. 1900, 23. 49.)

SO₂, 2NH₃. Somewhat hydroscopic. Sol. in H2O with evolution of NH3. (Schu-

mann, Z. anorg. 1900, 23. 50.)
5SO₂, 4NH₃. Very deliquescent.
Very sol. in H₂O. (Divers and Ogawa, Chem. Soc. 1901, 79. 1103.)

Sulphur trioxide, SO₃.

Fumes on air. Miscible with H₂O, with evolution of much heat. Sol. in H2SO4. Decomp. by alcohol and ether.

Exists in two modifications, one of which is liquid and miscible with H₂SO₄, while the solid form is only slowly sol. therein.

Miscible with CS₂ at 30° but at 15° CS₂

dissolves only 1/8 pt. SO₃, and SO₃, 1/8 pt. CS₂. (Schultz-Sellack, Pogg. 189. 480.)

There is only one modification, the liquid. which absorbs H₂O and becomes solid. (Rebs. A. 246, 356.)

Miscible with liquid SO₂. Sellack.)

See also Sulphuric acid.

#### Sulphur heptoxide, S2O7.

Fumes on air. Slowly decomp. at 0° instantaneously on warming. Sol. in conc.  $H_2SO_4$ . (Berthelot, J. pr. (2) 17. 48.) Forms compound  $S_2O_7$ ,  $2H_2O_2$ .

Formula is SO₄, according to Traube (B. **24.** 1764), and  $S_2O_7$  is  $SO_3 + SO_4$ .

See also Marshall (Chem. Soc. 59. 771). Traube (B. 26. 148) denies the existence of SO4.

Sulphur oxybromide, SOBr₂. See Thionvl bromide.

#### Sulphur oxychloride, SOCl₂.

See Thionyl chloride. SO₂Cl₂. See Sulphuryl chloride. S₂O₅Cl₂. See PyroSulphuryl chloride. HSO₃Cl. See Sulphuryl hydroxyl chloride. S₂OCl₄. Decomp. (Ogier, C. R. **94.** 446.) Decomp. by H₂O and alcohol.

Mixture of about 17SCl₂+2SOCl₂ and 5SO₂Cl₂. (Knoll, B. 1898, 31. 2183.)

#### Sulphur oxytetrachloride, S₂O₃Cl₄.

Violently decomp. by H2O, dil. acids, or alcohol. (Millon, A. ch. (3) 29. 327.) Sol. in warm S₂Cl₂. (Carius, A. 106. 295.) Decomp. violently with CS₂.

Sulphur oxyfluoride, SO₂F₂. See Sulphuryl fluoride. SOF₂. See Thionyl fluoride.

Sulphur diphosphide, P₂S. See Phosphorus monosulphide.

Sulphur tetraphosphide, P.S. See Phosphorus semisulphide.

Sulphuretted hydrogen, H2S. See Hydrogen sulphide.

Sulphuric acid, H₂SO₄. Miscible with H₂O in all proportions. Sp. gr. of R280 +Aq.

Baume dogrees	Sp. gr.	H ₂ SO ₄	Baume degrees	Sp. gr.	н ₂ 804
66 60 55 50 45 40 35 30 25 20	1.842 1.725 1.618 1.524 1.466 1.375 1.315 1.260 1.210	100 84.29 74.52 66.45 58.02 50.41 43.31 33.52 39.12	66 60 55 54 53 52 51 50 49	1 844 1 717 1 618 1 603 1 586 1 566 1 550 1 532 1 515 1 500	100 82.34 74.32 72.70 71.17 69.30 68.03 66.45 64.37 62.80
15 10 5	1.114 076 1.023	17 39 11 73 6 60	46 15	1 482 1 466 1 454 arcet, A.	61.32 59.85 58 02

76. 260.)

(2) **1**. 198.)

Sp. gr. of H₂SO₄+Aq.

H ₂ SO ₄	Sp. gr. at 15°	Sp gr. at 25°	% H₂SO₄	Sp. gr. at 15°	Sp. gr. at 25°
0 2 5 5 10 15	0 9986 1.0284 1 0659 1.0998	0.9955 1 0115 1 0272 1 0604	50 55 60 65 70	1.3866 1 4347 1.4860 1 5402 1 5946	1.3780 1.4767 1.5863
20 25 30 35 40 45	1 1378 1 1767 1 2154 1 2562 1 2976 1 3409	1 3311 1 2078 1 2868	75 80 85 90 95 100	1.6534 1.7092 1.7602 1.8050 1.8318 1.8406	1 6996 1 7940 1 8286

(Delezenne, 1823.)

Sp gr. at 15.56°, and b.-pt. of  $H_2SO_4+Aq$ .

Sp. gi	% SO ₃	Bpt.	Sp. gr.	% SO3	Bpt.
1.850	81	326°	1.769	67	217°
1.849	80	318	1.757	66	210
1.848	79	310	1.744	65	205
1.847	78	301	1.730	64	200
1.845	77	293	1 715	63	195
1.842	76	285	1 699	62	190
1.838	75	277	1 684	61	186
1.833	74	268	1 670	60	182
1.827	73	260	1 650	58.6	177
1.819	72	253	1 520	50	143
1.810	71	245	1 408	40	127
1.801	70	238	1.300	30	115
1.791	69	230	1.200	20	107
1.780	68	224	1.100	10	103

(Dalton, N. Syst 2. 210.)

Sp. gr. of H2SO1+Aq at 15°.

op. gr. of 112001   rid at to .						
Sp. gr.	% SO ₃	% H₂SO₄	Sp. gr.	% sos	H ₂ SO ₄	
1.8485 1.8460 1.8410 1.8336 1.8233 1.8115 1.7962 1.7774 1.7570 1.7360 1.7120	81.54 79.90 78.28 76.65 75.02 73.39 71.75 70.12 68.49 66.86 65.23	100 98 96 94 92 90 88 86 84 82 80	1.5975 1.5760 1.5503 1.5280 1.5066 •1.4860 1.4660 1.4265 1.4073 1.3884	57.08 55.45 53.82 52.18 50.55 48.92 47.29 45.66 44.03 42.40 40.77	70 68 66 64 62 60 58 56 54 52 50	
1 6870 1 6630 1 6415 1 6204	63.60 61.97 60.34 58.71	78 76 74 72	1.3697 1.3530 1.3345 1.3165	39.14 37.51 35.88 34.25	48 46 44 42	

Sp. gr. of H2SO4+Aq at 15°.-Continued.

Sp. gr.	804	% H ₂ SO ₄	Sp. gr.	% SO ₃	% H₂SO₄
1.2999 1.2826 1.2654 1.2490 1.2334 1.2184 1.2032 1.1876	32.61 30.98 29.35 27.72 26.09 24.46 22.83 21.20	40 38 36 34 32 30 28 26	1.1410 1.1246 1.1090 1.0953 1.0809 1.0682 1.0544 1.0405	16.31 14.68 13.05 11.41 9.78 8.15 6.52 4.89	20 18 16 14 12 10 8 6
1.1706 1.1549	19 57 17.94	$\begin{array}{c c} 24 \\ 22 \end{array}$	1.0268 1.0140	3.26 1.63	$\frac{4}{2}$

(Ure, Schw. J. 35. 444.)

Sp. gr. of H₂SO₄+Aq.

<b>D</b>		At	0°	At	15°
Degrees Baume	Sp. gr.	50°3	H ₂ SO ₄	% 803	H ₂ SO ₁
5 10 15 20 25 30 33 35 37 38 39 40 42 44 45 47 48 49 50 51 52 57 58 60 61 62 63	1 .036 1 .075 1 .116 1 161 1 292 1 392 1 345 1 .357 1 .370 1 .383 1 .445 1 .438 1 .448 1 .438 1 .468 1 .483 1 .514 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .546 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547 1 .547	5 1 10 3 15 5 21 2 27.2 33 6 40 4 41 7 43 1 44 5 9 47 3 7 50 0 51 4 45 9 47 3 55 5 57 1 58 5 54 3 55 7 57 1 68 9 66 9 67 4 68 9 70 5 78 6 80 4 82 4 82 4 82 4 82 4 83 6 84 6 85 6 86 8 86 8 86 8 86 8 86 8 86 8 86	4 2 8 4 12 7 3 22 2 4 33 0 7 7 33 1 1 35 2 2 36 3 37 5 38 6 7 40 8 41 43 1 44 5 5 46.6 47 8 49 0 1 50 1 51 5 53 8 60 1 61 4 62 2 66 67 2	5.4 10.9 16.3 22.4 28.3 34.8 41.6 43.4 45.5 46.9 44.3 45.5 52.5 54.0 63.9 63.9 66.9 66.9 66.9 66.9 66.3 77.6 78.9 88.9 88.9 88.9 88.9 88.9 88.9 88.9	4.5 8 9 13.3 18 3 23.1 28 4 31.8 34.0 35.1 36.2 37.2 38.3 39.5 41.8 40.7 41.8 44.1 45.2 44.1 45.2 44.7 55.8 46.5 55.8 57.0 66.5 66.5 66.5 66.5
64 65 66 5 65 8 66 66.2 66.4 68.6	1.796 1 819 1 830 1.837 1.842 1 846 1.852 1.857	84 6 87 4 89 1 90.4 91 3 92.5 95 0 100.0	69 0 71 3 72 2 73.8 74 5 75.5 77.5 81.6	86 3 89 5 91 8 94.5 100.0	70 4 73 0 74 9 77 81.6

(Bineau A. ch. (3) 26. 121.)

The sp. gr. found at  $t^{\circ}$  can be reduced to sp. gr. at  $0^{\circ}$  by multiplying by  $\frac{144.38}{144.38-t}$ , or by using the following table. (Bineau.)

Correction of sp. gr. for temperature, to be added for a lowering of the temp. of 10°, or subtracted for a corresponding increase.

Sp. gr. of acid at o°	Corr.	Sp. gr. of acid at 0°	Corr.	Sp. gr. of acid at 0°	Gorr.
1.04	0.002	1.15	0.005	1.45	0.008
1.07	0.003	1.20	0.006	1.70	0.009
1.10	0.004	1.30	0.007	1.85	0.0096

(Bineau.)

Sp. gr. of  $H_2SO_4+Aq$  at 15°. a = %; b = sp. gr. if % is  $SO_3$ ; c = sp. gr. if % is  $H_2SO_4$ .

	gr. 11 %	IS SU ₃ ; C	= sp. g	gr. 11 % 1	S II 25U4.
a 	b	c .	a.	b	с
1	1.009	1.0064	51	1.530	1.408
$\bar{2}$	1.017	1.013	52	1.545	1.418
$\bar{3}$	1.025	1.019	53	1.556	1.428
4	1.034	1.0256	54	1.573	1.438
5	1.041	1.032	55	1.585	1.448
6	1.049	1.039	56	1.600	1.4586
7	1.058	1.0464	57	1.615	1.469
8	1.067	1.0536	58	1.627	1.480
9	1.076	1.061	59	1.642	1.490
10	1.085	1.068	60	1.656	1.510
11	1.095	1.0756	61	1.675	1.512
12	1.104	1.083	62	1.689	1.523
13	1.114	1.091	63	1.701	1.534
14	1.123	1.098	64	1.716	1.545
15	1.133	1.106	65	1.730	1.557
16	1.142	1.1136	66	1.742	1.578
17	1.150	1.121	67	1.755	1.580
18	1.160	1.129	68	1.770	1.592
19	1.170	1.136	69	1.781	1.604
20	1.180	1.144	70	1.792	1.615
21	1.190	1.1516	71	1.802	1.627
22	1.200	1.159	72	1.810	1.639
23	1.210	1.167	73	1.819	1.651
24	1.220	1.174	74	1.825	1.663
25	1.229	1.182	75	1.830	1.675
26	1.239	1.190	76	1.834	1.686
27	1.248	1.198	77	1.837	1.698
28	1.258	1.2066	78	1.839	1.710
29	1.268	1.215	79	1.841	1.722
30	1.278	1.223	80	1.842	1.734
31	1.288	1.231	81		1.745
32	1.300	1.239	82		1.756
33	1.310	1.2476	83		1.767
34	1.320	1.256	84		1.777
35 36	$1.332 \\ 1.344$	$egin{array}{c} 1.264 \ 1.272 \ \end{array}$	85 86		1.786
37	1.354	1.272	87	• • • •	1.794
38	1.367	$\frac{1.281}{1.289}$	88		$\frac{1.802}{1.809}$
39	1.378	$\frac{1.289}{1.2976}$	89	• • •	1.816
40	1.390	1.306	90		1.822
41	1.401	1.315	91		1.827
42	1.415	1.324	92	• • • • •	1.831
43	1.427	1.333	93		1.834
44	1.440	1.342	94		1.8356
45	1.451	1.351	95		1.8376
46	1.465	1.361	96		1.8384
47	1.478	1.370	97	:::	1.840
48	1.490	1.379	.98		1.8406
49	1.501	1.3886	99		1.842
50 .	1.517	1.398	100	·	1.8426
/Bin		ulated by	1 1	h // amal	0.000

(Bineau, calculated by Gerlach, Z. anal. 8. 292.)

Sp. gr. of $H_2SO_4 + Aq$ at 15°; $H_2O$ at $0° = 1$ .						Sp. gr. of H ₂ SO ₄ , etc.—Continued.					
% H₂SO₄	Sp. gr.	H2SO4	Sp. gr.	H.SO.	Sp. gr.	Sp. gr.	%.	H ₂ SO ₄	Sp. gr.	\$\% \$\%	H 2804
1	1.006	35	1.264	68	1 592	1.150	17.07	20.91	1.455	45.31	55.50
2	1.012	36	1.272	69	1 604	1.155	17.59	21.55	1.460	45.69	55.97
3	1.018	37	1.281	70	1 615	1.160	18.11	22.19	1.465	46.07	56.43
4	1.025	38	1.290	71	1 625	1.165	18.64	22.83	1.470	46.45	56.90
5	1.032	39	1.298	72	1 638	1.170	19.06	23.47	1.475	46.83	57.37
6	1.039	40	1.307	73	1.650	1.175	19.69	24.12	1.480	47.21	57.83
7	1.046	41	1.316	74	1.662	1.180	20.21	24.76	1.485	47.57	58.28
8	1.053	42	1.324	75	1.674	1.185	20.73	24.40	1.490	47.95	58.74
9	1.061	43	1.333	76	1.684	1.190	21.26	26.04	1.490	48.34	59.22
10	1.069	44	1.342	77	1.697	1.195	21.78	26.68	1.500	48.73	59.70
11	1.076	45	$ \begin{vmatrix} 1.352 \\ 1.361 \\ 1.370 \\ 1.379 \\ 1.389 \\ 1.399 $	78	1 710	1.200	22 30	27.32	1.505	49.12	60.18
12	1.084	46		79	1 721	1.205	22.82	27.95	1.510	49.51	60.65
13	1.091	47		80	1 732	1.210	23.33	28.58	1.515	49.89	61.12
14	1.099	48		81	1 743	1.215	23.84	29.21	1.520	50.28	61.59
15	1.106	49		82	1 753	1.220	24.36	29.84	1.525	50.66	62.06
16	1.114	50		83	1 763	1.225	24.88	30.48	1.530	51.04	62.53
17	1.122	51	1 409	84	1.772	1.230	25.39	31.11	1.535	51.43	63.00
18	1.129	52	1.418	85	1.783	1.235	25.88	31.70	1.540	51.78	63.43
19	1.137	53	1.428	86	1.792	1.240	26.35	32.28	1.545	52.12	63.85
20	1.145	54	1.438	87	1.800	1.245	26.83	32.86	1.550	52.46	64.26
21	1.153	55	1.448	88	1.807	1.250	27.29	33.40	1.555	52.79	64.67
22 23 24 25 26	1.161 1.168 1.176 1.184 1.191	56 57 58 59 60	1.459 1.469 1.480 1.491 1.501	89 90 91 92 93	1.814 1.820 1.825 1.8294 1.8339	1.255 1.260 1.265 1.270 1.275	27.76 28.22 28.69 29.15 29.62	$     \begin{array}{r}       34.00 \\       34.57 \\       35.14 \\       35.71 \\       36.29 \\       36.87 \\     \end{array} $	1.560 1.565 1.570 1.575 1.580	54.13 54.46	65.08 65.49 65.90 66.30 66.71
27	1.199	61	1.512	94	1.8372	1 280	30.10	36.87	1.585	54.80	67.13
28	1.207	62	1.523	95	1.8390	1 285	30.57	31.45	1.590	55.18	67.59
29	1.215	63	1.535	96	1.8406	1 290	31.04	38.03	1.595	55.55	68.05
30	1.223	64	1.546	97	1.8410	1 295	31.52	38.61	1.600	55.93	68.51
31	1.231	65	1.558	98	1.8412	1 300	31.99	39.19	1.605	56.30	68.97
32	1.239	66	1.569	99	1.8403	1 305	32.46	39.77	1.610	56.68	69.43
33   1.247   67   1.580   100   1.8384 34   1.256   6   1.580   100   1.8384 (From 1–91 % according to Kolb, calculated by Gerlach; from 92–100% according to						1.310 1.315 1.320 1.325 1.330	32.94 33.41 33.88 34.35 34.80	40.35 40.93 41.50 42.08 42.66	1.615 1.620 1.625 1.630 1.635	57.05 57.40 57.75 58.09 58.43	69.89 70.32 70.74 71.16 71.57
Lunge and Naef, calculated by Gerlach, Z. anal. 27. 316.)  Sp. gr. of H ₂ SO ₄ at 15° compared with H ₂ O						1.335	35.27	43 20	1.640	58.74	71.99
						1.340	35.71	43.74	1.645	59.10	72.40
						1.345	36.14	44.28	1.650	59.45	72.88
						1.350	36.58	44.82	1.655	59.78	73.23
Sp. gr.	at 4°	and 0 n	sp. gr.	sure. $^{\%}_{\mathrm{sO}_3}$	% H ₂ SO ₄	$egin{array}{c} 1.355 \\ 1.360 \\ 1.365 \\ 1.370 \\ \end{array}$	$\begin{vmatrix} 37.02 \\ 37.45 \\ 37.89 \\ 38.32 \end{vmatrix}$	45.35 45.88 46.41 46.94	1.660 1.665 1.670 1.675	60.11 60.46 60.82 61.20	73.64 74.07 74.51 74.97
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040	0.07 0.68 1.28 1.88 2.47 3.07 3.67 4.27 4.87	0.09 0.83 1.57 2.30 3.03 3.76 4.49 5.23 5.96	1.075 1.080 1.085 1.090 1.095 1.100 1.105 1.110 1.115	8.90 9.47 10.04 10.60 11.16 11.71 12.27 12.82 13.36	10.90 11.60 12.30 12.99 13.67 14.35 15.07 15.71 16.36	1.375 1.380 1.385 1.390 1.395 1.400 1.405 1.410 1.415 1.420	38.75 39.18 39.62 40.05 40.48 40.91 41.33 41.76 42.17 42.57	47.47 48.00 48.53 49.06 49.59 50.11 50.63 51.15 51.66 52.15	1.680 1.685 1.690 1.695 1.700 1.705 1.710 1.715 1.720 1.725	61.57 61.93 62.29 62.64 63.00 63.35 63.70 64.07 64.43 64.78	75.42 75.86 76.30 76.73 77.17 77.60 78.04 78.48 78.92 79.36
1.045	5.45	6.67	1.120	13.89	17.01	1.425	42.96	52.63	1.730	65.14	79.80
1.050	6.02	7.37	1.125	14.42	17.66	1.430	43.36	53.11	1.735	65.50	80.24
1.055	6.59	8.07	1.130	14.95	18.31	1.435	43.75	53.59	1.740	65.86	80.68
1.060	7.16	8.77	1.135	15.48	18.96	1.440	44.14	54.07	1.745	66.22	81.12
1.065	7.73	9.47	1.140	16.01	19.61	1.445	44.53	54.55	1.750	66.58	81.56
1.070	8.32	10.19	1.145	16.54	20.26	1.450	44.92	55.03	1.755	66.94	82.00

s	Sp. gr. of H ₂ SO ₄ , etc.—Continued.						. 0	f conc.	H ₂ SO ₄	etc.	Continued.
Sp. gr.	so.	² % <b>H</b> 2SO₁	Sp. gr.	* 80°3	H ₂ SO ₄	% H ₁ S	0.	* Sp. gr.	_   %	H ₂ SO ₄	Sp. gr.
1.760	67.30 67.65	82.44 82.88	1.829 1.830	75.19	91.90 92.10	95.61 95.55 95.50	5	1.8414 1.8413 1.8412	9	3.32 3.29 3.26	1.8352 1.8351 1.8350
1.770	68.49	83.32 83.90	1.831		92.30  $ 92.52 $	95.45 95.40	)	1.8411 1.8410	9.	3.23 $3.20$	1.8349 1.8348
1.780	68.98	84.50 85.10	1.833		92.75 93.05	95.35 95.30	)	1.8409 1.8408	9	3.17 $3.14$	1.8347 1.8346
1.790 1.795 1.800	69.96 70.45	85.70 86.30 86.90	1.835	76.57	93.43	$95.25 \\ 95.21$	. 1	1.8407 1.8406	9:	3.12 3.09	1.8345
1.805 1.810	70.94 71.50 72.08	87.60 88.30	1.837 1.838 1.839	77.23	94.20 94.60 95.00	95.16 95.12	?	1.8405 1.8404	9:	3.06 3.00	1.8343
1.815 1.820	72.69 73.51	89.05 90.05	1.840 1.8405	78.04	95.60 95.95	95.08 95.04	<u> </u>	1.8403	9:	$\frac{2.98}{2.95}$	1.8341 1.8359
1 321 22	73.63 73.80	90.20 90:40	1.8415 1.8410	79.19	97.00 97.70	95.00 94.90	5	1.8401	9:	$\frac{2.93}{2.90}$	1.8338
$\frac{1.823}{1.824}$	73.96 74.12	90.60	1.8415 1.8400	80.16	98.20 98.70	94.92 $94.88$ $94.84$	3	1.8399 1.8398 1.8397	9:	$2.87 \\ 2.84 \\ 2.82$	1.8336
$1.825 \\ 1.826$	$74.29 \\ 74.49$	91.00 91.25	1.8400 1.8395	80.98	$99.20 \\ 99.45$	94.81 94.77		1.8396 1.8395	9:	2.79 2.77	1.8334 1.8333 1.8332
$1.827 \\ 1.828$	$74.69 \\ 74.86$	91.50 91.70	$1.8390 \\ 1.8385$	81.39	$99.70 \\ 99.95$	94.73 94.69	3	1.8394 1.8393	9:	2.73 2.71	1.8331
(Lunge	and Is	·	. angew.		129.)	94.65 94.61	5	1.8392 1.8391	9:	2.69 2.66	1.8329 1.8328
Si	≽ nome of	cone H	2SO4+A	n of 15°	<b>o</b>	94.57 94.53	[*]	$\frac{1.8390}{1.8389}$	9:	$\begin{array}{c} 2.63 \\ 2.61 \end{array}$	1.8327 1.8326
% H ₂ S		p. gr.	% H ₂ SO ₄		. gr.	94.49 94.46	;	$\frac{1.8388}{1.8387}$	9:	$egin{array}{c} 2.59 \ 2.56 \end{array}$	1.8325 1.8324
100	1	.8384	99.02		3417	94.42 $94.38$	3	1.8386 1.8385	9:	$\frac{2.54}{2.52}$	1.8323 1.8322
99.9 99.9	6 1	.8385 .8386	98.98 98.94	1.8	3418 3419	94.34 94.31		1.8384	9:	2.49 2.46	1.8321 1.8320
99.9 99.9 99.9	2 1	.8387 .8388 .8389	98.84 $98.84$ $98.78$	1.8	3420 3421	94.27 94.24	-	1.8382	9:	2.44	1.8318
99.8 99.8	8   1	.8390 .8391	98.71 98.63	1.8	3422 3423 34 <b>24</b>	$94.20 \\ 94.17 \\ 94.13$	'	1.8380 $1.8379$ $1.8378$	9.	2.39 2.37 2.34	1.8317
99.8 99.8	4 1	.8392 .8393	98.56 98.48	1.8	3425 3426	94.10 94.07	)	1.8377 1.8376	99	$2.32 \\ 2.29$	1.8315 1.8314 1.83 <b>13</b>
99.7 99.7	8 1	.8394 .8395	$98.40 \\ 98.32$	1.8	3427 3428	94.03 94.00	;	1.8375 1.8374	9:	$2.27 \\ 2.24$	1.83 <b>12</b> 1.83 <b>14</b>
99.7 99.7	3   1	. 8396 . 8397	$\frac{98.22}{98.08}$	1.8	8429 8430	93.97 $93.93$	'	1.8373 1.8372	92	$\frac{2.21}{2.19}$	1.8310 1.8309
99.6 99.6		.8398 .8399	$97.85 \\ 97.50$		8431 8432	93.90 $93.87$		$\frac{1.8371}{1.8370}$	92	2.17 $2.15$	1.8308 1.8307
99.6 $95.5$	8 1	.8400 .8401	97.10 $96.93$	1.8	3431 3430	93.83 93.80		$\frac{1.8369}{1.8368}$	9:	2.12 2.10	1.8306 1.8305
99.5 99.5	2 1	.8402 .8403	96.76 96.65	1.8	3429 3428	93 77 93.74	:	1.8367 1.8366	92	2.07 2.05	1.8304 1.8303
99.4 99.4 99.4	6 1	.8404 .8405 .8406	96.55 $96.46$ $96.39$	1.8	3427 3426 3425	$93.71 \\ 93.68 \\ 93.65$	;	1.8365 1.8364 1.8363	92	2.02 2.00 1.98	1.8302
99.4 99.3	0 1	.8407 .8408	96.31 96.24	1.8	3424 3423	93.62 93.59	:	1.8362 1.8361	9	1.98 1.95 1.93	1.8300 1.8299 1.8298
$99.3 \\ 99.2$	$\begin{vmatrix} 3 & 1 \\ 9 & 1 \end{vmatrix}$	.8409 .8410	96.16 96.09	1.8	3422 3421	93.56 $93.53$		1.8360 1.8359	93	l.91 l.88	1.8297 1.8296
$\frac{99.2}{99.2}$	2   1	.8411 .8412	$96.02 \\ 95.95$	1.8	3 <b>42</b> 0 3 <b>41</b> 9	93.50 $93.47$		$\frac{1.8358}{1.8357}$	91	l .86 l .84	1.8295 1.8294
99.1 99.1	6 1	.8413 .8414	95.88 95.81	1.8	8418 8417	93.44 93.41	.	1.8356 1.8355	91	l . 81 l . 78	1.8293 1.8292
99.1 99.0		.8415 .8416	95.74 95.67		3416 3415	93.38		1.8354 1.8353		l.76 l.74	1.8291 1.8290

-		<b>*</b>	SULPHUR	IC ACID		911	
Sp. gr. o	f conc. H ₂ S	)4, etc.— <i>Cc</i>	ontinued.	Sp. gr. of cone H ₂ SO ₄ +Aq at 15°.			
% H ₂ SO ₄	Sp. gr.	% H2SO( *	Sp. gr.		11	1.SO, Sp. gr.	
91.72 91.70 91.68 91.65 91.63 91.61 91.59 91.56 91.54 91.52 91.50 91.47	1.8298 1.8258 1.8286 1.8286 1.8285 1.8284 1.8283 1.8282 1.8281 1.8280 1.8279 1.8278	90.78 90.74 90.72 90.70 90.68 90.66 90.64 90.62 90.60 90.59 90.57	1.8244 1.8243 1.8242 1.6241 1.8240 1.8239 1.8238 1.8236 1.8236 1.8234 1.8233	90 *90.20 91 1. 91 *91.48 92 *92.83 93 1. 94 *24.84 95 *95.97	8185 8195 8241 8271 8294 8351 8339 8572 8587 8390 8406 8406	1.8406 1.8410 1.8413 1.8412 39 1.8406 66 1.8409 1.8403 47 1.8395 1.8384 .35 1.8411	
91.45 91.43	$\frac{1.8277}{1.8276}$	90.55 90.53	$\begin{array}{c} 1.8232 \\ 1.8231 \end{array}$	(Lunge a	nd Naef, Din	gl. <b>248.</b> 91.)	
91.41 91.39 91.37 91.35 91.32 91.30	1 8275 1 8274 1 8273 1 8272 1 8271 1 8270	90.51 90.49 90.47 90.46 90.44 90.42	1 8230 1.8229 1.8228 1.8227 1.8226 1.8225	taining: 7.875 1.0651 (Wagner,	₂ SO ₄ +Aq at 15.50° 1.1305 , W. Ann. 189 of H ₂ SO ₄ +A	23.429% H.SO, 1.2003 83, <b>18.</b> 265).	
$91.28 \\ 91.26$	1.8269 1.8268	90.40	$\frac{1.8224}{1.8223}$	Concentration of	f H ₂ SO ₄ +Aq	Sp. gr.	
91.24 91.22 91.20 91.18 91.16	1.8267 1.8266 1.8265 1.8264 1.8263	90.37 90.35 90.33 90.31 90.29	1.8222 1.8221 1.8220 1.8219 1.8218	1—no i/2— :/ ;— i/8—	1.0363 1.0154 1.0074 1.0035		
$\frac{91.14}{91.12}$	1.8262 1.8261	90.28 90.26	$\frac{1.8217}{1.8216}$	(Wagner, Z. phys. Ch. 1890, <b>5.</b> 40.)			
91.10	1.8260	90.24	1.8215		r. of dil. H ₂ S	$O_4 + Aq$ .	
91.08 91.06 <b>91</b> .04	$egin{array}{c} 1.8259 \ 1.8258 \ 1.8257 \ \end{array}$	$\begin{array}{c c} 90.23 \\ 90.20 \\ 90.18 \end{array}$	$egin{array}{c} 1.8214 \ 1.8213 \ 1.8212 \end{array}$	Gequivalents H ₂ SO ₄ per liter	t°	Sp. gr. t°/t°	
91.02 91.00 90.98 90.96 90.94	1.8256 1.8255 1.8254 1.8253 1.8252	90.17 90.15 90.13 90.11 90.10	1.8211 1.8210 1.8209 1.8208 1.8207	0.005049 0.01009 0.01512 0.02014 0.03014	17.343 17.360 17.382 17.398 17.419	1.0002082 1.0004020 1.0005879 1.000769 1.001125	
90.92 90.90 90.88 90.86 90.84 90.82 90.80	1.8251 1.8250 1.8249 1.8248 1.8247 1.8246 1.8245	90.08 90.06 90.04 90.02 90.01 89.99 89.97	1.8206 1.8205 1.8204 1.8203 1.8202 1.8201 1.8200	0.002526 0.005050 0.01006 0.02005 0.03001 0.04980	18.039 18.040 18.040 18.040 18.039 18.040	1.0001065 1.0002084 1.0004009 1.0007668 1.0011208 1.0018096	
	[calculated 64], Jour. S			0.09864 0.146560 0.19354 0.28942 0.47466	18.048 18.070 18.060 18.052 18.055	1.003460 1.005045 1.006580 1.009686 1.015616	
				0.4980 4.980	17.73 17.95	1.01634 1.15234	
				0.005176 0.01035 0.01551 0.12648 0.25151 0.37672 0.50503	12.997 13.020 13.005 13.031 13.011 13.007 12.998 seh, W. Ann.	1.0002106 1.000411 1.000603 1.004438 1.008565 1.012639 1.016758	

# SULPHURIC ACID

2007	10x2.4 SSD				VR 1				
Sp. g	gr. of H	₂ SO ₄ +Aq.	3-		Sp. gr	of fumir	ığ H ₂ SO	4 at 35	de la
`% H ₂ S	8O4	79.68	60.98 35.77		Free	J V	*Total	Free	1
Sp. gr.	20°/20	° , 1.7383	1.5181  1.2719	SO: %	80,%	Sp, gr.	Total SO: %	Free SOs%	Sp. gr.
% H₂S	3O ₄	10.10	4.78	-					.
Sp. gr	20°/20	° <b>199</b> 685 :	1,0317	81.63	0	1.8136	91418	,52	1.9749
(Te Ri	anc an	d Rohland, Z. 1	phys. Ch. 1896,		2	1.8270	91.55	54	1.9760
~		<b>19.</b> 268.)		82.36	4	1.8360	91.91	56	1.9772
		H ₂ SO ₄ +Aq at		82.73	6	1.8425	92.28	58	1.9754
(Loom:	18, W . A	Ann. 1896 <b>, 60.</b> 55	0.)	83.09	18	1.8498	92.65	60	1.9738
Sp. gr.	of H	2SO ₄ +Aq at 19	$0.4^{\circ}$ , when $p =$	83.46	10	1.8565	93.02	62 64	1.9709 1.9672
		trength of solution		84.20	14	1.8692	93.75	66	1.9636
de	nsity;	$\mathbf{w} = \mathbf{volume} \ \mathbf{con}$	c. in grams per	84.56	16	1.8756	94.11	68	1.9600
44	₩/pd	)		84.92	18	1.8830	94.48	70	1.9564
QC	$\sqrt{100}$	= w ) .		85.30	20	1.8919	94.85	72	4.9502
		1 1	1	85.66	22	1.9020	95.21	74	1.9442
4 1	P	d	w	86.03	24	1.9092	95.58	76	1.9379
#0	0	.1.8380	1.7295	86.40	26	1.9158	95.95	78	1.9315
3.82	مَّ	1.7998	1.5223	86.76	28	1.9220	96.32	80	1.9251
73	08	1.6743	1.2235	87.14	30	1.9280	96.69	82	1.9183
61.		1.5341	0.9412	87.50	32	1.9338	97.05	84	1.9115
40.		1.3220	0 5383	87.87	34	1.9405	97.42	86	1.9046
31.	94	1.2430	0.3970	88.24	36 38	$\begin{bmatrix} 1.9474 \\ 1.9534 \end{bmatrix}$	$\frac{97.78}{98.16}$	88 90	1.8980
<b>23</b> .	77	1.1747	0 2792	88.97	40	1.9584	98.53	92	1.8888
14.		1.1023	0.1623	89.33	42	1.9612	98.90	94	1.8712
-9,	802	1.0670	0.1046	89 70	44	1.9643	99.26	96	1.8605
<b>A.</b>	<b>82</b> 6	1.0320	0 0498	90.07	46	1.9672	99.63	98	1.8488
(Ba	rnes. J	. Phys. Chem. 1	898. <b>2</b> . 546.	90.44	48		100.00	100	1.8370
		. of H ₂ SO ₄ +Aq	•	90.81	50	1.9733			
		1	1		(Kniet	tsch, B. 1	001 34	4101 )	
H ₂ SO	ality of	% H ₂ SO ₄	Sp. gr.		(1xme)	uscii, D. 1	∂01, <b>01</b> .	4101.)	
11.	53	70.07	1.6129	Sp.	gr. of F	H ₂ SO ₄ +A	q at 15°	/15° in	air, 🙀
9.	01	59.26	1 4901	Sn gr le	% H2SO4	Sp. gr. %	H ₂ SO ₄    S	p. gr	% H.SO
6.		49.10	1.3872					, p. 6.	70
4.		36.68	1.2756	1.000	0 00	1.028	4.12 1	. 056	8.19
	008	25.00	1.1791	1.001	0.15	1.029	4.26   1	. 057	8.33
1.	002	9.25	1.0612	1.002	0.31			.058	8.47
(Forg	hheime	er, Z. phys. Ch. 1	1900, <b>34</b> , 27.)	1.003	0.46			059	8.62
3	5000	and fuming H ₂ SC		1.004	0.60			. 060	8.76
op. gr. u		1	74 at 10 and 10	1 005 1 006	$0.73 \\ 0.87$		11.	.061	8. <b>90</b> ∜ 9. <b>04</b> °
H.SO.	Total	Free SO Sp. gr. at	15° Sp. gr. at 45°	1.007	1.01			. 052 . 063	9.18
112001	SO ₃ %			1.008	1 15		11.	064	9.33
95.98	78.35	1.8418		1.009	1.30			. 065	9.47
96.68	78.92	1.8429		1.010	1.45			.066	9.61
96.99	79.18	1.8431		1.011	1.60	1.039  5		. 067	9.75
97.66	79.72	1.8434 m	ax	1.012	1.75			.068	9.89
98.65	80.53	1.8403	<u>.   · · ·                                </u>	1.013	1.89			. 069	10.04
99.40	81.14	1.8388 m	un.	1.014	2.04			.070	10.18
99.76	81.44 81.63	0.0 1.8418 0.0 1.8500	1.822	1.015	$\begin{bmatrix} 2.19 \\ 2.34 \end{bmatrix}$			. 071	10.31
100.00	83.46	10.0 1.888	1.858	1.016				.072	10.45
• • • •	85.30	20.01 920	1.887	1.018	$\frac{2.49}{2.64}$				10.59 10.73
	87.14	30.01.957	1.920	1.019	$\frac{2.04}{2.79}$				10.73
:::	88.97	40.01.979	1.945	1.020					11.00
	90.81	50.02.009	1.964 max.	1.021					11.14
	92.65	60.02.020 max		1.022					11.28
	94.48	70.02.018	1.942	1.023					11.42
	96.32	80.0 2.008	1.890	1.024	3.53	1.052 7			11.56
	98.16	90.0 1.990	1.864	1.025					11.69
1	100.00	100.0 1.984	1.814	1.026	3.82	1.054 7	.90   1.	082	11.83
(	(Kniets	ch, B. 1901, 34.	4102.)	1.027	3.97	1.055 8	.04   1.	083	11.97
					-				

Sp.	Sp. gr. of H ₂ SO ₄ +Aq at 15°/15° in air.— Continued.					Sp. gr. of H ₂ SO ₄ +Aq at 15°/15° in air.— Continued.					
· Sp. gr.	% H ₂ SO ₄	Sp. gr.	% H ₂ SO.	Sp. gr.	% H ₂ SO ₄	Sp. gr.	% H ₂ SQ.	Sp. gr.	% H.SO.	Sp. gr.	% H ₂ SO ₄
1.450 1.451 1.452 1.453 1.454 1.455 1.456 1.457 1.458 1.459 1.460	55.04 55.14 55.24 55.33 55.43 55.53 55.62 55.72 55.82 55.91 56.01	1.511 1.512 1.513 1.514 1.515 1.516 1.517 1.518 1.519 1.520 1.521	60.78 60.87 60.96 61.05 61.14 61.24 61.33 61.42 61.51 61.60 61.69	1.572 1.573 1.574 1.575 1.576 1.577 1.578 1.579 1.580 1.581 1.582	66.23 66.31 66.40 66.49 66.57 66.66 66.75 66.83 66.92 67.01 67.10	1.633 1.634 1.635 1.636 1.637 1.638 1.639 1.640 1.641 1.642 1.643	71.48 71.57 71.65 71.74 71.82 71.91 71.99 72.07 72.16 72.25 72.33	1.694 1.695 1.696 1.697 1.698 1.700 1.701 1.702 1.703 1.704	76.65 76.74 76.82 76.91 76.99 77.08 77.17 77.25 77.34 77.42 77.51	1 755 1 756 1 757 1 758 1 759 1 760 1 761 1 762 1 763 1 764 1 765	82.01 82.11 82.21 82.31 82.31 82.51 82.51 82.61 82.71 82.80 82.90 83.00
	56. 01 56. 20 56. 30 56. 39 56. 59 56. 87 56. 87 56. 87 57. 05 57. 35 57. 35 57. 44 57. 53 57. 82 57. 73 57. 82 57. 82 57. 82 57. 92 58. 10 58. 20 58. 29 58. 38 58. 38						72.33 72.42 72.50 72.59 72.67 72.76 72.84 72.93 73.01 73.10 73.18 73.27 73.35 73.52 73.69 73.77 73.86 73.94 74.02 74.11 74.27 74.36 74.44 74.53 74.61		77.51 77.60 77.68 77.77 77.85		83.00
1.491 1.493 1.494 1.495 1.496 1.499 1.500 1.501 1.502 1.503 1.504 1.505 1.506 1.508	59.03 59.12 59.22 59.31 59.50 59.59 59.68 59.78 59.96 60.05 60.14 60.23 60.33 60.42 60.51 60.60	1. 553 1. 554 1. 555 1. 556 1. 557 1. 558 1. 561 1. 563 1. 564 1. 565 1. 566 1. 566 1. 568 1. 569 1. 570 1. 570	64.55 64.64 64.73 64.82 64.91 65.00 65.08 65.17 65.26 65.35 65.44 65.52 65.61 65.79 65.88 65.96 65.05	1 613 1 614 1 615 1 616 1 617 1 618 1 620 1 621 1 622 1 623 1 625 1 627 1 628 1 629 1 630 1 631 1 632	69.86 69.95 70.03 70.12 70.20 70.29 70.38 70.46 70.55 70.63 70.72 70.89 70.97 71.06 71.14 71.23 71.31	1.674 1.675 1.676 1.677 1.678 1.689 1.680 1.683 1.684 1.685 1.688 1.688 1.689 1.690 1.691	75.03 75.12 75.29 75.29 75.37 75.46 75.54 75.63 75.71 75.80 75.88 75.97 76.05 76.14 76.22 76.31 76.39 76.48	1. 736 1. 736 1. 737 1. 738 1. 749 1. 742 1. 743 1. 744 1. 745 1. 746 1. 747 1. 748 1. 751 1. 752 1. 753 1. 754	80. 29 80. 38 80. 47 80. 56 80. 65 80. 65 80. 84 80. 92 81. 01 81. 10 81. 19 81. 28 81. 37 81. 46 81. 55 81. 64 81. 73 81. 82	1. 790 1. 797 1. 798 1. 799 1. 800 1. 801 1. 802 1. 803 1. 804 1. 805 1. 806 1. 809 1. 810 1. 811 1. 812 1. 813 1. 814 1. 815	86.45 86.58 86.71 86.84 86.97 87.10 87.23 87.36 87.50 87.64 87.78 87.92 88.06 88.20 88.34 88.49 88.64 88.79 88.95

Continued on page 917.

Sp. gr. of  $H_2SO_4+Aq$  at t°. Sp. gr. of  $H_2O$  at  $15^\circ=1$ .

1

4									
H:804	00.	100	15°	20°	25°	39°	400	50°	60°
0	1.00074	1.00000	1.00000	0.00010	0.00704	0.00054	0 . 0211	0.0000	0.00410
		1,00060	1.00000	0.99910	0.99794	0.99654	0.09311	0.98895	0.98418
1	1.00833	1.00773	1.00698	1.00594	1.00465	1.00312	0.99950	0.99522	0.99034
2	1.01563	1.01466	1.01381	1.01266	1.01126	1.00963	1.00585	1.00143	0.99644
3	1.02281	1.02153	1.02055	1.01928	1.01777	1.01607	1.01216	1.00761	1.00252
4	1.03001	1.02841	1.02728	1.02590	1.02428	1.02251	1.01848	1.01383	1.00865
5	1.03728	1.03533	1.03406	1.03258	1.03086	1.02902	1.02487	1.02013	1.01484
6	1.04461	1.04232	1.04092	1.03934	1.03756	1.03565	1.03138	1.02653	1.02114
7	1.05199	1.04939	1.04786	1.04618	1.04434	1.04235	1.03796	1.03302	1.02752
8	1.05942	1.05652	1.05486	1.05308	1.05116	1.04910	1.04458	1.03952	1.03393
9	1.06689	1.06370	1.05192	1.06002	1.05799	1.05585	1.05119	1.04605	1.04041
10	1.07439	1.07093	1.06903	1.06702	1.06490	1.06267	1.05787	1.05264	1.04696
îĭ	1.08194	1.07821	1.07619	1.07408	1.07186	1.06955	1.06462	1.05930	1.05357
12	1.08954	1.08555	1.08342	1.08120		1.07650	1.00- 32	1.06604	1.06027
13					1.07890			1.07284	1.06703
	1.09718	1.09294	1.09071	1.08839	1.08600	1.08352	1.07834		
14	1.10488	1.10040	1.09805	1.09564	1.09316	1.09061	1.08530	1.07971	1.07385
15	1.11261	1.10790	1.10546	1.10295	1.10039	1.09776	1.09233	1.08666	1,08075
16	1.12040	1.11547	1.11292	1.11033	1.10768	1.10498	1.09944	1.09368	1.08772
17	1.12823	1.12309	1.12045	1.11777	1.11505	1.11228	1.10661	1.10077	1.09476
18	1.13610	1.13076	1.12803	1.12526	1.12246	1.11963	1.11385	1.10792	1.10186
19	1.14402	1.13848	1.13566	1.13282	1.12995	1.12704	1.12115	1.11514	1.10902
20	1.15199	1.14625	1.14335	1.14043	1.13748	1.13451	1.12851	1.12242	1.11625
21	1.15998	1.15407	1.15109	1.14809	1.1.508	1.14205	1.13594	1.12977	1.12353
22	1.16803	1.16194	1.15888	1.15581	1.15273	1.14964	1.14343	1.13718	1.13089
23	1.17611	1.16986	1.16673	1.16359	1.16045	1.15731	1.15100	1.14467	1.13832
$\frac{24}{24}$	1.18424	1.17784	1.17464	1.17143	1.16823	1.16503	1.15862	1.15221	1.14579
$\overline{25}$	1.19240	1.18586	1.18260	1.17933	1.17607	1.17282	1.16631	1.15982	1.15335
26	1.20061	1.19393	1.19060	1.18728	1.18396	1.18066	1.17406	1.16749	1.16096
27 27	1.20885	1.19393	1.19865	1.19527	1.19190	1.18854	1.18186	1.17522	1.16862
28						1.19650	1.18973	1.18302	1.17635
29	1.21710	1.21019	1.20675	1.20332	1.19990	1.19050	1.19767	1.19087	1.18414
	1.22539	1.21838	1.21489	1.21142	1.20796				
30	1.23370	1.22661	1.22308	1.21957	1.21607	1.21259	1.20566	1.19879	1.19198
31	1.24204	1.23487	1.23131	1.22776	1.22423	1.22071	1.21371	1.20677	1.19989
32	1.25038	1.24316	1.23957	1.23600	1.23244	1.22887	1.22179	1.21476	1.20779
33	1.25878	1.25151	1.24789	1.24429	1.24069	1.23712	1.22999	1.22292	1.21589
34	1.26723	1.25990	1.25626	1.25263	1.24901	1.24540	1.23822	1.23109	1.22400
35	1.27571	1.26834	1.26468	1.26102	1.25738	1.25375	1.24652	1.23933	1.23219
36	1.28424	1.27683	1.27314	1.26947	1.26580	1.26214	1.25487	1.24763	1.24045
37	1.29283	1.28538	1.28167	1.27797	1.27429	1.27061	1.26329	1.25301	1.24878
<b>3</b> 8	1.30149	1.29400	1.29027	1.28655	1.28284	1.27915	1.27179	1.26448	1.25721
39	1.31022	1.30268	1.29894	1.29520	1.29148	1.28776	1.28038	1,27304	1.26575
40	1.31901	1.31144	1.30767	1.30392	1.30018	1.29646	1.28905	1.28169	1.27440
41	1.32788	1.32027	1.31648	1.31271	1.30896	1.30522	1.29779	1.29042	1.28311
42	1.33683	1.32917	1.32537	1.32158	1.31782	1.31407	1.30662	1.29924	1.29193
43	1.34587	1.33817	1.33435	1.33054	1.32676	1.32300	1.31553	1.30813	1.30081
44	1.35501	1.34727	1.34342	1.33960	1.33580	1.33202	1.32452	1.31710	1.30976
45	1.36425	1.35647	1.35261	1.34877	1.34496	1.34116	1.33363	1.32618	1.31881
46	1.37361	1.36579	1.36191	1.35805	1.35422	1.35040	1.34284	1.33365	1.32797
				1.36744	1.36359	1.35975	1.35215	1.34464	1.33721
47	1.38308	1.37522	1.37132				1.36157	1.35401	1.34655
48	1.39267	1.38476	1.38084	1.37694	1.37306	1.36921	1.37108	1.36349	1.35600
49	1.40238	1.39441	1.39047	1.38654	1.38264	1.37877			
50	1.41219	1.40418	1.40021	1.39627	1.39235	1.38845	1.38073	1.37310	1.36556
51	1.42214	1.41407	1.41007	1.40610	1.40215	1.39823	1.39047	1.38280	1.37524
52	1.43220	1.42408	1.42005	1.41605	1.41208	1.40814	1.40033	1.39262	1.38502

Sp. gr. of H₂SO₄+Aq. at t°. Sp. gr. of H₂O at 15° = 1 Continued

H,SO.	0°	10°	15°	20°	25°	30°	40°	50°	60°
53	1.44239	1.43420	1.43014	1.42611	1.42211	1,41814	1.41028	1,40254	1.39490
54	1.45269	1.44443	1.44034	1.43628	1.43225	1.42825	1.42034	1.41255	1.40488
55	1.46311	1.45477	1.45065	1.44656	1.44250	1.43847	1.43051	1.42268	1.41497
56	1.47364	1.46523	1.46107	1.45695	1.45285	1.44880	1.44078	1.43290	1.42515
57	1.48427	1.47578	1.47159	1.46743	1.46331	1.45922	1.45115	1.44322	1.43542
58	1.49499	1.48643	1.48221	1.47802	1.47387	1.46975	1.46162	1.45364	1.44579
59	1.50583	1.49719	1.49292	1.48870	1.48452	1.48037	1.47218	1.46415	1.45626
60	1.51676	1.50804	1.50374	1.49949	1.49527	1,49109	1.48285	1.47476	1.46683
61	1.52778	1.51899	1.51465	1.51036	1.50611	1,50190	1.49360	1.48546	1.47748
$\tilde{62}$	1.53889	1.53002	1.52564	1.52132	1.51703	1.51278	1.50442	1.49622	1.48819
<b>6</b> 3	1.55008	1.54113	1.53672	1.53236	1.52804	1.52376	1.51533	1.50708	1.49900
64	1.56135	1.55233	1.54788	1.54348	1.53913	1.53481	1.52632	1.51801	1.50988
65	1.57270	1.56360	1.55912	1.55469	1.55030	1.54595	1.53740	1.52903	1.52084
66	1.58414	1.57496	1.57044	1.56597	1.56154	1.55716	1.54854	1.54011	1.53187
67	1.59565	1.58640	1.58184	1.57733	1.57287	1.56846	1.55978	1.55128	1.54298
68	1.60724	1.59792	1.59332	1.58878	1.58427	1.57981	1.57104	1.56246	1.55408
69	1.61892	1.60951	1.60488	1.60030	1.59577	1.59129	1.58247	1.57384	1.56541
70	1.63068	1.62118	1.61651	1.61189	1.60732	1.60280	1.59391	1.58521	1.57672
71	1.64251	1.63293	1.62821	1.62355	1.61894	1.61437	1.60540	1.59663	1.58806
72	1.65439	1.64473	1.63997	1.63527	1.63062	1.62601	1.61696	1.60811	1.59946
73	1.66633	1.65658	1.65178	1.64704	1.64234	1.63769	1.62855	1.61961	1.61087
74	1.67831	1.66847	1.66362	1.65883	1.65408	1.64939	1.64015	1.63111	1.62227
75	1.69030	1.68037	1.67547	1.67063	1.66584	1.66109	1.65175	1.64260	1.63366
76	1.70228	1.69225	1.68731	1.68242	1.67757	1.67278	1.66332	1.65405	1.64498
77	1.71424	1.70411	1.69911	1.69416	1.68926	1.68439	1.67481	1.66540	1.65617
78	1.72615	1.71589	1.71083	1.70582	1.70085	1.69591	1.68616	1.67658	1.66717
79	1.73798	1.72758	1.72243	1.71735	1.71231	1.70731	1.69741	1.68767	1.67809
80	1.74970	1.73909	1.73386	1.72868	1.72356	1.71847	1.70842	1.69854	1.68881
81	1.76120	1.75038	1.74504	1.73979	1.73458	1,72942	1.71921	1.70916	1.69930
82	1.77244	1.76140	1.75595	1.75057	1.74524	1.73998	1.72962	1.71945	1.70950
83	1.78312	1.77193	1.76642	1.76097	1.75557	1.75022	1.73972	1.72943	1.71937
84	1.79316	1.78191	1.77636	1.77087	1.76543	1.76006	1.74943	1.73902	1.72883
85	1.80250	1.79123	1.78567	1.78016	1.77470	1.76929	1.75863	1.74816	1.73789
86	1.81108	1.79982	1.79428	1.78878	1.78331	1.77789	1.76721	1.75674	1.74642
87	1.81887	1.80767	1.80214	1.79666	1.79123	1.78584	1.77519	1.76473	1.75445
88	1.82589	1.81476	1.80926	1.80381	1.79839	1.79302	1.78242	1.77199	1.76176
89	1.83216	1.82111	1.81564	1.81022	1.80484	1.79950	1.78895	1.77856	1.76834
90	1.83771	1.82677	1.82135	1.81597	1.81063	1.80532	1.79483	1.78448	1.77429
91	1.84263	1.83179	1.82642	1.82109	1.81580	1.81054	1.80013	1.78985	1.77972
92	1.84691	1.83619	1.83088	1.82561	1.82037	1.81516	1.80487	1.79471	1.78470
93	1.85059	1.83997	1.83471	1.82950	1.82432	1.81918	1.80902	1.79900	1.78914
94	1.85363	1.84311	1.83790	1.83275	1.82763	1.82255	1.81253	1.80266	1.79296
95	1.85598	1.84555	1.84040	1.83526	1.83022	1.82520	1.81528	1.80553	1.79595
96	1.85765	1.84729	1.84217	1.83709	1.83207	1.82708	1.81724	1.80758	1.79809
97	1.85854	1.84816	1.84305	1.83798	1.83297	1.82800	1.81822	1.80863	1.79924
98	1.85836	1.84789	1.84275	1.83766	1.83264	1.82767	1.81792	1.80840	1.79912
99	1.85671	1.84612	1.84093	1.83581	1.83076	1.82578	1.81604	1.80658	1.79741
100	(1.99330)	(1.04200)	(1.00/29)	(1.00213)	(1.52/05)	(1.82205)	(1.81231)	(1.50288)	(1.(9381)

Auszug aus Band 5 der wissenschaftlichen Abhandlungen der Normaleichungskommission Berlin 1904, P. 257. Springer's publication.

(Domke, Z. anorg. 1905, 43. 176.)

Sp. gr. of H₂SO₄+Aq at 15°/15° in air.— Continued from page 915.

Sp. gr.	% H ₂ SO ₄	Sp. gr.	% H2S )4	Sp. gr.	%H ₂ SO ₄
1.816	89.11	1.828		1.840	91.57
$\frac{1.817}{1.818}$	89.27 89.44	$1.829 \\ 1.830$	91.52 91.74	1.841	94.96
1.819		1.831	91.74	1.842	95.40
1.820	89.79	1.832	1	1.844	96.93
1.821	89.97	1.833	92.46	1.844?	97.50
1.822	90.15	1.834		1.844	99.08
$\frac{1.823}{1.824}$	90.33  $ 90.51 $	1.835 $1.836$		1.843	99.84
1.825		1.837	000	1.841	98 61
1.826		1.838		1.840	98.88
1.827	91.10	1.839	94.20	18.594	100.00

(Lunge, calculated by Marshall, J. Soc. Chem Ind. 1902, **21.** 1509.

Sp. gr. at 20° of H₂SO₄+Aq containing M g. mols. H₂SO₄ per liter.

Μ.	0.01	0.025	0.05
Sp. gr.	1.000719	1.001907	1.003551
M.	0.075	0.10	0.25
Sp. gr.	1.005152	1.00677	1,01618
M.	0.50	0.75	1.0
Sp gr.	1.03218	1.04760	1.06307
M.	1.5	2.0	
Sp. gr.	1.09345	1,12316	

(Jones and Pearce, Am. Ch. J. 1907, 38. 733.)

Boiling-point of H₂SO₄+Aq.

% H ₂ S() ₄	Bpt.	% H2SO4	Bpt.
% 1135O4		0 112001	
5	101.0°	70	$170.0^{\circ}$
10	102.0	72	174.5
15	105.5	74	180.5
20	105.0	76	189.0
25	106.5	78	199.0
30	108.0	80	207.0
35	110.0	82	218.5
40	114.0	84	227.0
45	118.5	86	238.5
50	124.0	88	$251.5 \\ 262.5$
53	128.5	90 91	$\frac{202.5}{268.0}$
56	$133.0 \\ 141.5$	92	$\frac{203.0}{274.5}$
60	147.0	93	281.5
$\frac{62.5}{65}$	153.5	94	$\frac{281.5}{288.5}$
65	161.0	95	$\frac{295.0}{295.0}$
67.5	101.0	30	200.0

(Lunge, B. 11. 370.)

Freezing- and melting-points of H₂SO₄+Aq.

Sp. gr. at 15°	Fpt.	Mpt.
1.671	liq. at -20°	
1.691	"	
1.712	-7.5	-7.5
1.732	-8.5	-8.5
1.749	- 0.2	+4.5
1.767	+1.6	+6.5
$\frac{1.790}{1.807}$	$^{+4.5}_{-9.0}$	$^{+8.0}_{-6.9}$
1.001	hg. at -20°	-0.3
1.842		

(Lunge, B. 15. 2644.)

Effect of impurities on sp. gr. of H₂SO₄+Aq. The h₂ares show the increase in sp. gr. of H₂SO₄+Aq cause by adding 0.1% of an impurity to acid of different strengths

Salt	100 %	98 %	94 %	80 %	70 %
CaSO ₄ Al ₂ (SO ₄ ) ₃ Fe ₂ (SO ₄ ) ₃ PbSO ₄ MgSO ₄		0.001, insol, 0.0014 0.0010	0 0009 insol. 0 0006? 0 0015	0.0007 0.00129 0.0008 insol. 0.0009	0.0007 0.0006 0.0011 0.0007 insol. 0.0009
${}^{ ext{As}_2 ext{O}_3}_{ ext{HSNO}_5}$	0 00029	0.0013 0.00027		0 0010 0 00023	

(Marshall, J. Soc. Chem. Ind. 1902, 21. 1508.)

Sp. gr. of mixtures of  $H_2SO_4$  (96.5%) and  $HNO_3$  (94%) at  $18^\circ/18^\circ$  in air.

% HNO3 in mixture	Sp. gr.	% HNOsin mixture	Sp. gr.
0.00	1.8437	$\begin{array}{r} 22.51 \\ 25.56 \\ 27.29 \\ 32.53 \end{array}$	1.8215
0.57	1.8456		1.8112
1.05	1.8476		1.8053
4.67	1.8586		1.7863
7.17	1.8618	37.03	1.7700
7.37	1.8620	39.49	1.7601
7.75	1.8619	57.78	1.6879
9.10	1.8605	72.89	1.6227
11.33	1.8557	90.76	1.5408
12.71	1.8520	98.19	1.5080
16.52	1.8414	100.00	1.5009

(Marshall, J. Soc. Chem. Ind. 1902, 21. 1508.)

Miscible with alcohol, with evolution of heat and formation of ethylsulphuric acid.

+H₀O =H₄SO₅, also called tetrahydroxyl

+H₂O=H₄SO₅, also called tetrahydroxyl sulphuric acid. (Marignac, A. ch. (3) **39**. 184.)

Mpt. 8.35°. (Pickering.)

+2H₂O=H₆SO₆, also called perhydroxyl sulphuric acid.

Mpt. —38.9°. (Biron, J. Russ. Phys. Chem. Soc. 1899, 31. 517.) +3H₂O. (Pickering, Chem. Soc. 1890,

**57.** 331.)

+4H₂O. Mpt. -75°. (Pickering, Chem. Soc. 1890, **57**, 331.)

Sp. gr. and fr. pt. of hydrates of H₂SO₄.

Hydrate	H.SO4	Sp. gr. of the liquid	Frpt.
H ₂ SO ₄ (pure)	100	1.842	+10.5
$H_2SO_4 + H_2O$	84.48	1.777	+ 3.5
$H_2SO_4 + 2H_2O$	73.08	1.650	-70.0
$H_2SO_4 + 4H_2O$	57.65	1.476	-40.0
$H_2SO_4 + 6H_2O$	47.57	1.376	-50.0
$H_2SO_4 + 8H_2O$	40.50	1.311	-65.0
$H_2SO_4 + 10H_2O$	35.25	1.268	-88.0
$H_2SO_4 + 11H_2O$	33.11	1.249	-75.0
$H_2SO_4 + 12H_2O$	31.21	1.233	-55.0
$H_2SO_4 + 13H_2O$	29.52	1.219	45.0
$H_2SO_4 + 14H_2O$ .	28.00	1.207	-40.0
$H_2SO_4 + 15H_2O$	26.63	1.196	-34.0
$H_2SO_4 + 16H_2O$	25.39	1.187	-25.6
$H_2SO_4 + 18H_2O$	23.22	1.170	-19.0
$H_2SO_4 + 20H_2O$	21.40	1.157	-17.0
$H_2SO_4 + 25H_2O$	17.88	1.129	-8.5
$H_2SO_4 + 50H_2O$	9.82	1.067	-3.5
$H_2SO_4 + 75H_2O$	6.77	1.045	0.0
$H_2SO_4 + 100H_2O$	5.16	1.032	+ 2.5
$H_2SO_4 + 300H_2O$	1.78	1.007	+4.5
$H_2SO_4 + 1000H_2O$	0.54	1.001	+ 0.5

(Pictet, C. R. 1894, **119.** 645.)

Sulphuric acid, anhydrous, SO₃. See Sulphur trioxide.

Disulphuric (Pyrosulphuric) acid,  $H_2S_2O_7$ . Very deliquescent. Miscible with H₂O. Sol. in furning H₂SO₄. Miscible in liquid

SO₂. (Schultz-Sellack.) H₂S₂O₇, 2H₂SO₄. Fumes on air. (Jacquelain, A. ch. (3) 30. 343.)

# Tetrasulphuric acid, H₂S₄O₁₃.

Fumes on air. (Weber, Pogg. 159. 313.)

#### Sulphates.

Most sulphates are easily sol. in H₂O; but Ag₂SO₄, Hg₂SO₄, and CaSO₄ are only sl. sol., while BaSO₄, SrSO₄, and PbSO₄ are nearly insol. therein. All sulphates are sol. in conc. H₂SO₄. Basic sulphates are insol. in H₂O. Most sulphates are insol. in alcohol. Insol. in liquid NH₈. (Franklin, Am. Ch. J. 1898, **20.** 823.)

#### Aluminum sulphate, basic, 2Al₂O₂,SO₂+ 5H₂O.

HC₂H₈O₂. Slowly sol. in 10 mols. (Schlumberger, Bull. Soc. 1895, (3) 13. 41.) +7H₂O. Easily sol. in 8 mols. dil. HCl+ Aq. or in 10 mols. 10% acetic acid in 24 hours. (Schlumberger.)

+10H₂O. Insol. in H₂O; easily sol. in cold dil. mineral acids, and HC₂H₃O₂+Aq. (Crum, A. 89. 174.)

Min. Felsöbanyite.

+15H₂O. Min. Paraluminite.  $+15H_2O$ . Min. Paraluminite.  $8Al_2O_3$ ,  $5SO_3+25H_2O$ . Insol. in H₂O; sol. in dil. acids. (Löwe, J. pr. 79. 428.)  $5Al_2O_3$ ,  $3SO_3+20H_2O$ . Easily sol. in acids. (Debray, Bull. Soc. (2) 7. 9.)

(Bebray, Bull. Soc. (2) 7. 9.)  $3Al_2O_3$ ,  $2SO_3+9H_2O$ . Nearly insol. in conc.  $H_2SO_4$ . (Bayer, Dingl. **263.** 211.) +20 $H_2O$ . Ppt.  $4Al_2O_3$ ,  $3SO_3+36H_2O$ . Insol. in  $H_2O$ . Easily sol. in dil. mineral acids, and hot HC₂H₃O₂+Aq. (Debray, Bull. Soc. (2) 7.1.) Al₂O₃, SO₃ + 6H₂O = (AlO)₂SO₄ + H₂O. Insol. in H₂O or HC₂H₃O₂+Aq. Sl. sol. in

hot HCl, easily sol. in warm KOH+Aq. (Böttinger, A. 244. 225.)

+9H₂O. (Athanasesco, C. R. 103. 27.)

Min. Aluminite. [Al₂(OH)₅]SO₄+2H₂O.

Sol. in HCl+Aq. in the cold with decomp. ery unstable. (Schlumberger, Bull. Soc. Very unstable. 1895, (3) **13.** 60.)

3Al₂O₃, 4SO₃+9H₂O. (Athanasesco, C. R. 103. 271.)

+30H₂O. Sol. in 144 pts. cold, and 30.8 pts. boiling H2O. Easily sol. in HCl, and  $\frac{\text{HNO}_{8}+\text{Aq.}}{2\text{Al}_{2}\text{O}_{2}}$ ,  $\frac{3\text{SO}_{3}}{3\text{Comp.}}$ ,  $\frac{\text{Pogg. 43.}}{2\text{N}_{2}\text{O}_{3}}$ ,  $\frac{3\text{SO}_{3}}{2\text{Comp.}}$ ,  $\frac{\text{H}_{2}\text{O}}{2\text{O}_{3}}$  into  $\frac{3\text{Al}_{2}\text{O}_{3}}{3\text{Al}_{2}\text{O}_{3}}$ ,  $\frac{3\text{O}_{3}}{2\text{O}_{3}}$ l_2O_3$ ,  $2SO_3 = Al_2O(SO_4)_2$ .

Min. Alumaine.

+H₂O. Sol. in small quantity of H₂O, but decomp. by a large quantity into (AlO)2SO4

and Al₂(SO₄)₃. (Maus, Pogg. 11. 80.) +12H₂O. Easily sol. in hot or cold H₂O. Sat. solution contains 45% salt at 15°, which crystallises unchanged on evaporating. (Marguerite, C. R. 90. 354.)

Above basic compounds are mixtures. (Pickering, C. N. 45. 121, 133, 146.)

# Aluminum sulphate, $Al_2(SO_4)_3$ .

100 pts. H₂O dissolve (a) pts. Al₂(SO₄)₃, and (b) pts.  $Al_2(SO_4)_8 + 18H_2O$  at:

O° 10°  $20^{\circ}$ 30° 40° 40.36 45.73 52.13 a 31.3 33.5 36.15 b 86.85 95.8 107.35 127.6 167.6 201.4

70° 60° 90° a 59.0966.2373.14 80.83 98.11 b 262.6 348.2 467.3 678.8 1132.

(Poggiale, A. ch. (3) 8. 467.)

See also +18H₂O.

Sp. gr. of  $Al_2(SO_4)_3 + Aq$ .

0/2	Sp. gr. at			
Al ₂ (SO ₄ ) ₃	15°	25°	35°	45°
5 10 15 20 25	1.0569 1.1071 1.1574 1.2074 1.2572	1.0503 1.1022 1.1522 1.2004 1.2487	1.045 1.096 1.146 1.192 1.2407	1.0356 1.085 1.1346 1.1801 1.2295

(Reuss, B. 17, 2888.)

Sp. gr. of Al₂(SO₄)₂+Aq at 15° containing: 20  $30\%\text{Al}_2(\text{SO}_4)_8 + 18\text{H}_2\text{O}_4$ 1.0535 1.1105 1.1710

Sp. gr. of sat. solution = 1.34. (Gerlach, Z. anal. 28. 493.)

Sp. gr. of  $Al_3(SO_4)$ , +Aq. at 25°.

Strength of Al ₂ (SO ₄ ): +Aq	Sp. gr.
1 normal 1/2 " 1/4 " 1/4 "	1.0550 1.0278 1.0138 1.0068

(Wagner, Z. phys. Ch. 1890, 5. 35.)

100 pts. of a mixture of 1 vol. H₂SO₄+2  $H_2O$  dissolve only6.45pts. Al₂(SO₄)₃. (Baud, C. R. 1903, **137.** 494.) Al₂(SO₄)₃ is completely pptd. from Al₂(SO₄)₈+Aq by an excess of glacial HC₂H₈O₂. (Persoz, A. ch. (2) 63. 444.)

Solubility of  $Al_2(SO_4)_3 + (NH_4)_2Al_2(SO_4)_4$ . See under (NH₄)₂Al₂(SO₄)₄.

Solubility of Al₂(SO₄)₃+K₂Al₂(SO₄)₄. See under K₂Al₂(SO₄)₄.

Solubility in Fe₂(SO₄)₃+Aq at 25°.

100 g. of the solution contain			
g. Al ₂ (SO ₄ ) ₃	g. Fe ₂ (SO ₄ ) ₈		
27. 82 26. 01 24. 21 21. 64 15. 22 *10. 70 10. 23	0 6.064 9.819 13.02 23.28 31.91 31.90		

*Solution sat. with respect to both salts. (Wirth and Bakke, Z. anorg. 1914, 87. 48.) See also under Fe₂(SO₄)₃.

Solubility of Al₂(SO₄)₈+Li₂SO₄ at 30°.

	Compos	ition of		
Solu	tion	Resi	due	
Li _s SO ₄	Al:(804)3	Li _S O	Al2(SO4)3	Solid phase
<ul><li>13.63</li><li>13.24</li></ul>	14.89	14.72 61.24		$ \begin{array}{c c} \text{Li}_2\text{SO}_4, \ \text{H}_2\text{O} + \\ \text{Al}_2(\text{SO}_4)_3, \ 18\text{H}_2\text{O} \\ \text{Li}_2\text{SO}_4, \ 4\text{H}_2\text{O} \end{array} $
6.75 3.44	24.34 26.12 28.0	3.77	37.06	1112(5004)8, 101120

(Schreinemakers and de Waal, Ch. Weekbl. 1906, **3.** 539.)

100 g. of sat. solution of Al₂(SO₄), in glycol contain 14.4 g. Al₂(SO₄)₂. (de Coninck, Bull. Ac. Roy. Belg. 1905. 359.)
Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insol. in acctone (Naumann, B. 1904, 37, 4328.1

+6H₂O. Very slowly sol. in cold, completely sol. in hot H₂O.

+8H₂O.(Margueritte-Delarcharbonny, C. R. 112, 229.)

+10H2O. Deliquescent. (v. Hauer, W. A. B. 13. 449.)

+16H2O. Sol. in conc. H2SO4. (Baud, C. R. 1963, 137. 494.)

 $+17H_2O.$ (Gawalowski, C. C. 1885. 721.)

+18H₂O. Permanent. (Berzeiius.) 100 g. of the aqueous solution contain 27.82 g. Al₄(SO₄)₃ at 25°. (Wirth, Z. anorg. 1913, 79. 331.)

Solubility of Al₂(SO₄)₃+18H₂O in H₂SO₄+Aq

H ₂ SO ₄ +Aq % H ₂ SO ₄	100 g. of the solution contain g. Al ₂ (SO ₄ ) ₃
0	27.82
5.23	29.21
9.90	26.21
18.70	20.44
25.50	15.40
40.70	5.07
52.25	1.216
63.70	1.243
73.64	2.915

(Wirth, Z. anorg. 1913, 79. 361.)

Hydrous salt is scarcely sol. in alcohol. (Berzelius.)

Min. Alunogen.

Efflorescent. +27H₂O. (Margueritte-Delarcharbonny, C. R. 99. 800.)

Aluminum sulphate, acid, Al₂O₈, 4SO₈+ 4H₂O.

Extremely slowly sol. in cold, more rapidly in hot H₂O. (Baud, C. R. 1903, 137. 493.) Al₂O₃, 6SO₃+10H₂O. Sol. in H₂O; solution soon decomp. into Al₂(SO_{4)3+H₂SO₄.} (Silberberger, M. 1904, 25. 221.)

Aluminum ammonium sulphate (Ammonia alum),  $(NH_4)_2Al_2(SO_4)_4+24H_2O$ .

100 pts. H₂O dissolve 2.9 pts. anhydrous salt at 0°; 207.7 pts. anhydrous salt at 110.6°. (Mulder.)

100 pts. H₂O dissolve 8.74 pts. anhydrous salt at 17.5.° (Pohl, W. A. B. 6. 597.)

100 pts.  $H_2O$  at t° dissolve pts.  $(NH_4)_2Al_2(SO_4)_4$ .

Pts. (NH4)2Al2(SO4)4	Pts. (NH ₄ ) ₂ Al ₂ (SO ₄ ) ₄ + 24H ₂ O			
2.10	3.90			
4.99	9.52			
7.74	15.13			
10.94	22.01			
14.88	30.92			
20.09	44.11			
26.70	66.65			
35.11	90.67			
45.66	134.47			
58.68	209.31			
74.53	357.48			
	2.10 4.99 7.74 10.94 14.88 20.09 26.70 35.11 45.66 58.68			

(Poggiale, A. ch. (3) 8. 467.)

According to Locke (Am. Ch. J. 1901, 26. 174), Poggiale's tables for NH, and K alums are evidently transposed, and the above data are applied by Poggiale to K alum.

1 f. H₂O dissolves 91.9 g. anhydrous, or 191.9 g. hydrated salt, or 0.387 mols. anhydrous salt at 25°. (Locke, Am. Ch. J.

1901, **26.** 175.)

# Solubility in H₂O at t°.

t°	G. (NH ₄ ) ₂ Al ₂ (SO ₄ ) ₄ per 100 g. H ₂ O	G. (NH ₁ ) ₂ Al ₂ (SO ₄ ) ₄ +24H ₂ O per 100 g. H ₂ O	G. mol. (NH ₄ ) ₂ Al ₂ (SO ₄ ) ₄ per 100 g. H ₂ O
0	2.10	3.90	0.0044
5	3.50	6.91	0.0074
10	4.99	9.52	0.0105
15	6.25	12.66	0.0132
20	7.74	15.13	0.0163
25	9.19	19.19	0.0194
30	10.94	22.01	0.0231
40	14.88	30.92	0.0314
<b>5</b> 0	20.10	44.10	0.0424
60	26.70	66.65	0.0569
95	109.7	00	0.2312

(Mulder, Poggiale, Locke; Marino, Gazz. ch. it. 1905, **35**. II, 351; Berkeley, Trans. Roy. Soc. 1904, **203**. A, 214, calc. by Seidell, Solubilities.)

B.-pt. of sat. solution is  $110.6^{\circ}$ , M.-pt. of  $(NH_4)_2Al_2(SO_4)_4+24H_2O=92^{\circ}$ . (Tilden, Chem. Soc. **45**. 409.);=95°. (Locke, *l. c.*)

Sp. gr. of aqueous solution at 15° contain ing:

3% 6% 9% 1.0423 1.0141 1.0282 hydrous salt. (Gerlach, Z. anal. 28. 495.) Solubility of NH₄ alum in presence of (NH₄)₂SO₄ and Al₂(SO₄)₃.

Mixture used	100 g. sat. solution contains		
	g. (NH ₄ ) ₂ SO ₄	g. Al ₂ (SO ₄ ) ₃	
Sat. NH ₄ alum at 18.5° 20 cc. above sol-	1.42	3.69	
ution +6 g. cryst. Al ₂ (SO ₄ ) ₈ 20 cc. above sol-	0.45	16.09	
ution $+4g$ . (NH ₄ ) ₂ SO ₄	20.81	0.29	

(Rüdorff, 1885, B. 18. 1160.)

Insol. in alcohol. (Mulder.) Solubility of  $Al(NH_4)(SO_4)_2+12H_2O$  in a mixture of 93.3 g.  $H_2O$  and 23.33 g. glycerine =6.15 g. (Dunlop, Pharm. J. 1910, **85.** 6.) Solubility in 93.3 g.  $H_2O+23.3$  g. glycerine +3.9 g. phenol=5.59 g.  $Al(NH_4)(SO_4)_2+12H_2O$ . (Dunlop.) Min. T schermi, ite.

Aluminum ammonium chromium sulphate,  $Al_2(SO_4)_3$ ,  $(NH_4)_2SO_4$ ,  $Cr_2(SO_4)_3+48H_2O$ .

Sol. in H₂O; decomp. by boiling. (Vohl, A. 94. 71.)

Aluminum cæsium sulphate, Al₂Cs₂(SO₄)₄+ 24H₂O.

 $100~pts.~H_{\rm 2}O~at~17^{\circ}$  dissolve 0.619 pt. exsium alum. (Redtenbacher, J. pr. 94. 442.)

Solubility in 100 pts. H₂O at t° (calculated for salt dried at 130°).

t°	Pts. alum	t°	Pts. alum	t°	Pts. alum
0 10 17	$\begin{array}{c} 0.19 \\ 0.29 \\ 0.38 \end{array}$	25 35 50	0.49 0.69 1.235	65 80 	2.38 5.29

(Setterberg, A. 211, 104.)

#### Solubility in H₂O.

t°	Pts. anhydrous salt per litre	G. mols. anhydrous salt per litre
25	4.7	0.013
30	5.89	0.0167
35	7.29	0.0207
40	9.00	0.0256

(Locke, Am. Ch. J. 1901, 26, 180.)

Solubility of  $Al_2Cs_2(SO_4)_4$  in  $H_2O$  at  $t^\circ$ . (G.  $Al_2Cs_2(SO_4)_4+24H_2O$  in 100 g. solution.)

t°	% salt	t°	% sait
0 15 30 45 60	0.21 0.35 0.60 1.04 1.96	75 80 90 100.4	4.12 5.21 9.50 18.60

(Berkeley, Trans. Roy. Soc. 1904, **203**. A, 214.)

Solubility in 100 g. H2O at to.

t°	G. AICs.(SO ₄₎₂	4 ,	G. AICs:8042	ť	G. AICs(FO ₄ ) ₂	t°	G. AlCs(SO ₄ ):
0	0 19	26	0.50	52	1.45	78	5.15
1	0.20	27	0.51	53	1.51	79	5.40
2	0.21	28	0.52	54	1.53	80	5.78
3	0.22	29	0.55	55	1.65	81	6.05
4	0.23	30	0.57	56	1.71	82	6.4
5	0.24	31	0.59	57	1.77	83	6.7
6	0.25	32	0.60	58	1.86	84	7.0
7	0.26	33	0.62	59	1.92	85	$\frac{7.0}{7.4}$
8	0.27	34	0.65	60	2.06	86	7.7
9	0.28	35	0.69	61	2.14	87	8.0
10	0.29	36	0.72	62	2.25	88	8.3
11	0.30	37	0.75	63	2.37	89	8 6
12	0.31	38	0.77	64	2.50	90	8.8
13	0.32	59	0.80	65	2.65	91	9.0
14	0.34	40	0.85	66	2.78	92	9 2
15	0 35	41	0.87	67	2.96	93	9.5
16	0.36	42	0.91	68	3.13	94	9.9
17	0.38	43	0.96	69	3.34	95	10.1
18	0.39	44	1.01	70	3.50	96	10.4
19	0.40	45	1.06	71	3.67	97	10.8
20	0.41	46	1.10	72	3.85	98	11.1
21	0.42	47	1.17	73	4.07	99	11.5
22	0.43	48	1.21	74	4.30	100	12.0
23	0.45	49	1.27	75	4.50	···	
24	0.47	50	1.30	76	4.72		
25	0.49	51	1.39	77	4.95	<u>  </u>	<u> </u>
		^	0.70	1			1

Values from 0-7° obtained by interpolation using Setterberg's values for 0°(A. 1882, **211**. 100).

From 80–100° they were calculated by extrapolation.

(Hart and Huselton, J. Am. Chem. Soc. 1914, **36.** 2084.)

Melts in crystal  $H_2O$  at 106° (Tilden, Chem. Soc. 45. 409); at 120.5° (Erdmann); at 122° (Locke.)

Afuminum calcium sulphate, basic, Al₂O₃, 6CaO, 3SO₃+32H₂O.

Min. Ettringite. Mostly sol. in H₂O; sol. in HCl+Aq.

Aluminum chromium stulphate, Al₂Cr₂(SO₄)₆. Insol. in H₂O. 'Al₂Cr₂(SO₄)₆, H₂SO₄. Insol. in H₂O. (Étard C. R. **86**. 1400.)

Aluminum chromi m potassium sulphate, Al₂(SO₄)₃, Cr₂(SO₄)₃, 2K₂SO₄+48H₂O. Sol. in H₂O, but decomp. on boiling. (Vohl.)

Aluminum copper sulphate, 2Al₂O₃, 9CuO, 3SO₂+21H₂().

M.n. Cymotrichie. (Perce, Phil. Mag. (3) 36. 193.)

Alominum hydroxylamine sulphate, Al₂(SO₄)₃, (NH₂OH)₂SO₄+24H₂O. Sol. in H₂O. (Meyeringh, B. 10. 1946.)

Aluminum iron (ferrous) sulphate, Al₂(SO₄)₃, FesO₄+24H₂O.

Sol. in H₂O. (Klauer, A. 14. 261.)

Min. Halotrichite.

 $Al_2(SO_4)_3$ ,  $2FeSO_4+27H_2O$ . Sol. in  $H_2O$ . (Berthier.)

 $^{^{\prime}}$  Al₂O₃,  $^{^{\prime}}$ SO₃, 6FeSO₄. Easily sol. in H₂O. (Phillips.) Al₂(SO₄)₈ 2FeSO₄, H₂SO₄. Insol. in H₂O.

(Étard, C. R. 87. 602.)

Aluminum iron (ferric) sulphate, Al₂(SO₄)₂,

Fe₂(SO₄)₃.

Insol. in H₂O. (Étard, C. R. **86.** 1399.)

Al₂(SO₄)₃, Fe₂(SO₄)₃, H₂SO₄. As above (Étard.)

See  $\text{Al}_2(SO_4)_3 + \text{Fe}_2(SO_4)_3$ , under  $\text{Al}_2(SO_4)_3$  and  $\text{Fe}_2(SO_4)_3$ .

Aluminum ferrous potassium sulphate, Al₂(SO₄)₃, 12FeSO₄, 2K₂SO₄+24H₂O. Permanent. Sl. sol. in H₂O. (Dufrenoy.)

Aluminum lead sulphate, Al₂Pb₂(SO₄)₅+

Permanent; insol. in H₂O. (G. H. Bailey J. Chem. Soc. Ind. **6.** 415.)

Aluminum lithium sulphate, Li₂Al₂(SO₄)₄+ 24H₂O.

Sol. in 24 pts. cold, and 0.87 pt. hot H₂O. (Kralovansky, Schw. J. 54. 349.)

Does not exist. (Rammelsberg, J. B. 1847-48. 394; Arfvedson; Gmelin.)

Aluminum lithium potassium sulphate (?). Sol. in H₂O, from which it crystallises on cooling. (Joss, J. pr. 1. 142.)

Aluminum magnesium sulphate, MgSO₄,  $Al_2(SO_4)_3+22H_2O$ .

Min. Pickeringite. 2MgSO₄, Al₂(SO₄)₃+22H₂O. Min. Picraluminite.

 $3MgSO_4$ ,  $Al_2(SO_4)_3+36H_2O$ . Very sol. in  $H_2O$ . (Klauer, A. 14. 264.)

b 51.3

71.97

Aluminum magnesium manganous sulphate,  $Al_2(SO_4)_3$ ,  $MgSO_4$ ,  $MnSO_4+25H_2O$ .

As sol. in H₂O as K alum. (Kane.) sol. in H₂O. (Smith, Sill. Am. J. (2) 18. 379.) Min. Bosjemanite.

Aluminum manganous sulphate, Al₂(SO₄)₈,  $MnSO_4 + 25H_2O$ .

Sol. in H₂O. (Berzelius.) +24H2O. Min. Apjohnite.

Aluminum manganic sulphate,  $2Al_2(SO_4)_3$ ,  $Mn_2(SO_4)_3$ .

Insol. in H₂O. (Étard, C. R. 86. 1399.) Aluminum nickel sulphate, Al₂(SO₄)₃, 2NiSO₄, H₂SO₄.

Insol. in H₂O, but gradually decomp. thereby. (Etard, C. R. 87. 602.)

Aluminum potassium sulphate, basic,  $3(Al_2O_3, SO_3), K_2SO_4+6H_2O=K_2SO_4, 3Al_2(SO_4,)(OH)_4.$ 

Min. Alunite. Insol. in H2O. Insol. in conc. HCl+Aq.

Sol. in boiling H₂SO₄ of 1.845 sp. gr., but more easily in a mixture of 12 g. H₂SO₄ and 1.5 g. H₂O, and also in weaker acids, if heated to 210°. (Mitscherlich, J. pr. 81. 108.)

+9H₂O. Min. Löwigite. Sl. sol. in boiling HCl+Aq. (Mitscherlich, J. pr. 83. 455.) Nearly insol. in HCl or conc. HNO₃+Aq, but sol. in a mixture of 1 pt. H₂SO₄ and 1 pt.

H₂O. (Debray, Bull. Soc. (2) 7. 9.) Al₂O(SO₄)₂, K₂SO₄. Sol. in H₂O, but de-

comp. by heating.

With varying composition. Precipitates. Insol. in H₂O. Very sl. sol. in cold, gradually in hot acids. (Bley, J. pr. 39. 17.) Very difficultly sol. in warm conc. HCl+Aq, but easily sol. in KOH+Aq. (Naumann, B. 8.

Aluminum potassium sulphate (Potash alum),  $KAl(SO_4)_2 + 12H_2O$  or  $K_2Al_2(SO_4)_4 =$  $K_2SO_4$ ,  $Al_2(SO_4)_8 + 24H_2O$ .

Sol. in H₂O with absorption of heat. When 100 pts. H₂O at 10.8° are mixed with 14 pts. alum, the temp. is lowered 1.4.° (Rüdorff, B. 2. 68.)

Burnt alum is very slowly sol. in H₂O. 100 pts. H₂O at t° dissolve P pts. K₂Al₂(SO₄)₄+24H₂O.

t°	P	t°	P
12.5	7 6	50.0	46 7
21.25	10.4	62.5	230.0
25.0	22.0	75.0	920.0
37.5	44 1	87.5	1566.6

#### (Brandes, 1822.)

Sol. in 18 pts. cold, and 1.6 pts. boiling  $\mathrm{H_{2}O}$  (Four-croy); in 14.12 pts. cold, and 0.75 pt. boiling  $\mathrm{H_{2}O}$  (Bergmann); in 15 pts. cold, and 0.75 pt. boiling  $\mathrm{H_{2}O}$  (Dumas); in 11.7 pts.  $\mathrm{H_{2}O}$  at 18.75° (Ab1). 100 pts.  $\mathrm{H_{2}O}$  dissolve 14.79 pts. alum at 15.56°, and 133.33 pts. at 100°. (Ure's Dict.)  $\mathrm{K_{3}A_{1}(SO_{4})_{4}}$ +Aq sat. at 15° contains 10.939 pts. alum in every 100 pts.  $\mathrm{H_{2}O}$ . (Michel and Krafft.)  $\mathrm{K_{2}A_{1}(SO_{4})_{4}}$ +Aq sat. in cold contains 5.2% alum (Fourcroy), 6.7% (Boerhave).

100 pts. H₂O dissolve (a) pts. anhydrous alum, and (b) pts. crystallised at t° 0° 10° 20° 30° 40 6.57 9.0512.35 a 2.62 4.5015.9 27.3 b 5.22 9.16 13.6619.2936.5 70° 80° 90° 100° 26.95 50.3 70.83 a 21.1 35.2

According to Locke (Am. Ch. J. 1901, 26. 174), Poggiale's tables for NH4 and K alums are evidently transposed, and the above date are applied by Poggiale to NH₄ alum.

103.1

(Poggiale, A. ch. (3) 8. 467.)

187.8

421.9

100 pts.  $H_2O$  dissolve  $K_2Al_2/SO_4/4+24H_2O$ corresponding to pts. anhydrous K₂Al₂(SO₄)₄.

Temp.	$\begin{array}{c} Pts. \\ K_2Al_2(SO_4)_4 \end{array}$	Temp.	Pts. K ₂ Al ₂ (SO ₄ ) ₄
0	3.0	60	25
5	3.5	70	40
10	4.0	80	71
15	5.0	90	109
20	5.9	92.5	119.5
30	7.9	100	154
40	11.7	110	200
50	17.0	111 9	210/6

(Mulder, Scheik. Verhandel. 1864. 90.)

100 pts. H₂O at 17° dissolve 13.5 pts.  $K_2Al_2(SO_4)_4 + 24H_2O_7$ , or 7.36 pts.  $K_2Al_2(SO_4)_4$ .

(Redtenbacher, J. pr. 94. 442.)

Forms supersaturated solutions very easily. Supersat. solutions are brought to crystallisation by addition of a crystal of alum or an isomorphous substance, as chrome or iron alum. Other substances as NaCl, etc. have no action. (Thomson, Chem. Soc. 35. 199.)
1 l. H₂O dissolves 72.3 g. anhydrous, or

138.4 g. hydrated salt, or 0.28 g. mol. of anhydrous salt at 25.° (Locke, Am. Ch. J. 1901, **26.** 175.)

> Solubility in H2O at to (g. alum in 1000 g. H₀())

(g. aium in 1000 g. 112(7.)					
t°	g. alum	t°	g. alum		
0	57. 0	75	1280.9		
5	76. 3	76	1412.1		
10	84. 9	77	1517.9		
15	103. 6	78	1680.1		
20	120. 3	79	1775.2		
25	131. 3	80	1950.0		
30	184. 9	82	2273.5		
36	204. 3	84	2661.5		
40	250. 0	84,6	2816.0		
45	290.2	85.1	3166.6		
50	367.8	85.3	3337.2		
55	457.7	85.6	3372.2		
60	585.4	86	3997.8		
65	708.4	87	4825.4		
70	943.8	88	6639.6		

(Marino, Gazz. ch. it. 1905, 35. (2) 351.)

CI 1 1 11.	•	TT A		. ^
Solubility	ın	H	At.	t.ٽ.

t°	g. K ₂ Al ₂	g. K ₂ Al ₂	g. mol.
	(SO ₄ ) ₄ per	(SO ₄ ) ₄ +?4H ₂ O	K-Al ₂ (5O ₄ ) ₄
	100 g. H ₂ O	per 100 g. H ₂ O	per 100 g. H ₂ O
0 5 10 15 20 25 30 40 50 60	3.0 3.5 4.0 5.0 5.9 7.23 8.39 11.70 17.00 24.75	5.65 3.62 7.60 9.59 11.40 14.14 16.58 23.83 36.40 57.35	0.0058 0.0038 0.0038 0.0077 9.0097 0.0114 6.0140 0.0162 0.0227 0.0329 6.0479
70	40.00	$\begin{array}{c} 110.5 \\ 321.3 \\ 2,275.0 \\ \infty \end{array}$	0.0774
80	71.0		0.01374
90	109.0		0.2110
92.5	119.0		0.2318

(Mulder, Poggiale, Locke; Marino, Cazz. ch. it. 1905, **35**. (2) 351; and Berkeley, Proc. Roy. Soc. 1904, **203**. A, 214, calc. by Seidell, Solubilities, 1st Ed.)

M.-pt. of  $K_2Al_2(SO_4)_4+24H_2O=84.5^{\circ}$  (Tilden, Chem. Soc. 45. 409.); =92.5° (Erd- $K_2Al_2(SO_4)_4 + 24H_2O = 84.5^\circ$ mann); =91°(Locke).

Sp. gr. of sat.  $K_2Al_2(SO_4)_4+Aq$  at  $8^\circ=1.045$  (Anthon); at  $15^\circ=1.0488$  (Michel and

From the first the first than the first than the Krafft); at  $15^{\circ} = 1.0456$  (Stolba). Sp. gr. of  $K_2Al_2(SO_4)_4 + Aq$  at  $15^{\circ}$  containing 5%  $K_2Al_2(SO_4)_4 = 1.0477$ . (Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $K_2Al_2$  SO₄)₄+Aq at 15°. a = pts.  $K_2Al_2/SO_4)_4 + 24H_2O$  in 100 pts. solution; b = pts.  $K_2Al_2/SO_4$  in 100 pts. solution;  $\hat{c} = pts. K_2Al_2/SO_4$  for 100 pts. H₂O.

а	b	c	Sp. gr.
4	2.1792	2.2277	1.0210
8	4.3584	4 5570	1.0420
12	6.5376	6.9950	1.0641
13	7.083	7.622	1.0690

(Gerlach, Z. anal. 27, 280.)

Saturated solution boils at 111.9°, and

contains 210.6 pts. K₂Al₂(SO₄)₄+24H₂O to 100 pts. H₂O. (Mulder.)

100 pts. H₂O contain 52 pts. K₂Al₂(SO₄)₄, and boils at 104.5°. (Griffiths.) Crust forms at 106.3°, when the solution contains 114.2 pts. K₂Al₂(SO₄)₄ to 100 pts. H₂O. (Gerlach, Z. anal. **26**. 426.)

B.-pt. of K2Al2(SO4)4+Aq containing pts. K₂Al₂(SO₄)₄ to 100 pts. H₂O.

Bpt.	Pts.	Bpt.	Pts. K2Al2(8O4)4
100.5°	17.0	104.0°	83.9
101.0	30.2	104.5	90.7
101.5	41.8	105.0	97.6
102.0	51.6	105.5	103.9
102.5	60.4	106.0	110.5
103.0	68.7	106.5	116.9
103.5	76.7	106.7	120.55

(Gerlach, Z. anal. 26, 435.)

 $\text{I.}_{2}\text{Al}_{2}(\text{SO}_{4})_{4} + \text{Al}_{2}(\text{SO}_{4})_{8}.$ 

 $K_2\Lambda l_2(SO_4)_4$  is nearly insol. in sat.  $Al_2(SO_4)_3$ +Aq. (Crum, A. 89. 156.)

Solubility in  $Al_2/SO_4$ , +Aq. Solid Phase = K alum  $+ Al_2(SO_4)_3$ .

t°	g. Al ₂ (SO ₄ ) ₃ +18H ₂ O in 1000 g. H ₂ O	g. K ₂ SO ₄ in 1000 g. H ₂ O
0	234.73	23.45
20	824.25	30.85
35	911.02	35.29
50	1,243.21	59.55
65	1,598.00	119.43
77	1,872.11	183.80

(Marino, Gazz. ch. it. 1905, 35. (2) 351.)

Solubility is decreased by presence of Na alum. (Venable, C. N. 1879, 40. 198.) Nearly completed pptd. from sat. aq. solution by addition or Fc or Cr alum. (v. Hauer, J. B. 1866. 59.)

# $K_2Al_2(SO_4)_4+MgSO_4$ .

K₂Al₂'SO₄)₄+Aq sat. at 10°, and then sat. with MgSO₄ at 9°, contains for 100 pts. H₂O---

	At 10°		At 9°
$\begin{array}{cccc} {\rm Alum~(anhydrous)} & . \\ {\rm MgSO_4} & . & . & . \\ \end{array}$	4 0	$egin{array}{c} 2.7 \\ 31.2 \\ 33.9 \\ \end{array}$	31.1

(Mulder.)

#### $K_2Al_2(SO_4)_4+K_2SO_4$ .

K₂Al₂(SO₄)₄+Aq at 10°, and then sat. with K₂SO₄ at same temp., contains for 100 pts. H₂O--

	At 10°		At 9°
Alum (anhydrous) . K ₂ SO ₄	4.0	$0.86 \\ 9.16 \\ \hline 10.20$	9.7

(Mulder.)

Solubility	ìn	K ₂ SO ₄ +Aq. K alum+K ₂ SO	Solid	phase=
------------	----	-----------------------------------------------------------------	-------	--------

t°	g. Al ₂ (SO ₄ ) ₃ +18H ₂ O in 1000 g. H ₂ O	g. K ₂ SO ₄ in 1000 g. H ₂ O	t°	Al ₂ (SO4) ₃ +18H ₂ O in 1000 g. H ₂ O	g. K ₂ SO ₄ in 1000 g. H ₂ O
0.5 5. 10 15 30	5.06 8.658 16.07 18.52 20.56 39.60	75.83 75.18 85.78 96.50 109.30 147.80	40 50 60 70 80	73.88 126.00 249.70 529.01 1,044.04	163.10 195.40 238.80 323.74 517.27

(Marino, l. c.)

# $K_2Al_2(SO_4)_4 + Na_2SO_4$ .

 $K_2Al_2(SO_4)_4+Aq$  sat. at 10°, and then sat. with Na₂SO at 9°, contains for 100 pts. H.O-

	At 10°		At 9°
Alum (anhydrous) . Na ₂ SO ₄	4.0	4 1 8.8	8.4
	!	12.9	

(Mulder.)

Solubility of  $K_2Al_2(SO_4)_4+Tl_2Al_2(SO_4)_4$  in  $H_2O$  at 25°.

G.	G.	Solid phase	Sp. gr.
K ₂ Al ₂ (SO ₄ ) ₄	Tl ₂ Al ₂ (SO ₄ ) ₄	Mol. %	
per l.	per l.	K ₂ Al ₂ (SO ₄ ) ₄	
69.90 74.56 67.90 65.30 64.95 53.23 45.32 38.02 34.54 28.35	0.00 0.48 1.72 4.52 9.60 18.44 24.60 32.48 35.59 42.99	100 99.61 98.48 95.45 91.73 82.54 75.12 65.73 61.36 51.93	1.0591 1.0601 1.0598 1.0603 1.0605 1.0609 1.0609 1.0611 1.0611
10.94	66.12	21.34	1.0654
0.00	75.46	0.00	1.0674

(Foch, Z. Kryst. Min. 1897, 28. 397.)

Insol. in alcohol of 0.905 sp. gr. or less. (Anthon, J. pr. 14. 125.)

Insol. in acetone. (Naumann, B. 1904, **37**. 4328.)

Insol. in methyl acetate. (Naumann, B. 1909, 42, 3790.)

Solubility in H₂O is increased by glycerine. (Dunlop, Pharm. J, 1910, 31. 6.)

Min. Kalinite.

+8H₂O. Stable in dry air. (Marino, l. c.) +14H₂O. Converted into ord. alum in air. (Marino.)

# Aluminum rubidium sulphate, Al₂Rb₂(SO₄)₄ +24H₂O.

100 pts. H₂O dissolve 2.27 pts. at 17°; very sol. in hot H2O. (Redtenbacher, J. pr. 94. 442.)

Solubility in 100 pts. H₂O at t° (calculated for salt dried at 130°).

t°	Pts. alum	t°	Pts. alum	t°	Pts. alum
0 10 17	$0.71 \\ 1.09 \\ 1.42$	25 35 50	1.85 2.67 4.98	65 80	9.63 21.60

(Setterberg, A. 211, 104)

#### Solubility in H₂O.

t°	Pts. per litre	G. mols. anhydrous salt per litre
25	18.1	0.059
30	21.9	0.072
35	26.6	0.087
40	32.2	0 106

(Locke, Am. Ch. J. 1901, 26, 180.

Melts in crystal H₂O at 99° (Tilden, Chem. Soc. **45**. 409); at 105° (Erdmann); at 109° (Locke.)

Aluminum silver sulphate, Al₂Ag₂(SO₄)₄+ 24H₂O.

Decomp. by H₂O. (Church and Northcote, C. N. 9. 155.)

#### Aluminum sodium sulphate, $Al_2Na_2(SO_4)_4$ + 24H₂O.

Very sl. efflorescent.

Sol. in 2.14 pts.  $\rm H_2O$  at 13°, or 100 pts.  $\rm H_2O$  dissolve 46.7 pts. soda alum. Sol. in 1 pt. boiling  $\rm H_2O$ . (Zellner, Sohw. J. 36, 183.) 100 pts.  $\rm H_2O$  dissolve 110 pts. at 15.5°, and form a

liguid of 1.296 sp. gr. (Ure.)

100 pts. H₂O dissolve 51 pts. soda alum at 16°. (Augé, C. R. 110. 1139.)

100 pts. H₂O dissolve 110 pts. soda alum at 0°. (Tilden, Chem. Soc. 45. 409.) 100 g. H₂O dissolve at:

10° 15° 20° 25° 30° 36.7 38.7 40.9 43.145.8 g. anhydrous salt. (Smith, J. Am. Chem. Soc. 1909, **31**. 247.)

M.-pt. of  $Na_2Al_2(SO_4)_4+24H_2O=61^\circ$ . (Tilden, Chem. Soc. 45. 409.); =63.° (Locke, Am. Ch. J. 1901, 26. 183.)

Insol. in absolute alcohol. (Zellner.) Min. Mendozite.

# Aluminum thallous sulphate, TlAl(SO₄)₂.

0.177 g. mols. of anyhydrous salt are sol. in 1 l.  $H_2O$  at 25°; or 1 l.  $H_2O$  dissolves 75 g. of the anhydrous, or 117.8 g* of the hydrated salt at 25°. (Locke, Am. Ch. J. 1901, 27. 175.)

Solubility in H₂O at t°.

t°	G. Al ₂ Tl ₂ (SO ₄ ) ₄ in 100 g. H ₂ ()	G. Al ₁ Tl ₂ (SO ₄ ) ₄ +24H ₂ O in 100 g. H ₂ O
0 5	3.15 3.80	4.84 5.86
10	4.60	7.12
$\begin{array}{c} 20 \\ 25 \end{array}$	$\frac{6.40}{7.60}$	10.00 11.95
30 40	$9.38 \\ 14.40$	$14.89 \\ 23.57$
50 60	22.50 35.36	38.41 65.19

(Seidell, Solubilities, 1st Ed., p. 15.)

 $3Al_2(SO_4)_3$ ,  $Tl_2SO_4+96H_2O$ . Sol. in  $H_2O$ . (Lamy.)

Aluminum zinc sulphate, Al₂(SO₄)₃, ZnSO₄+ 24H₂O. Sol. in H₂O. (Kane.)

Aluminum sulphate chromium chloride, Al(OH₂)₆(SO₄)₂CrCl₂(OH₂)₄+2H₂O. (Werner, B. 1906, **39.** 337.)

Aluminum sulphate sodium fluoride.

Decomp. by  $H_2O$ . (Weber, Dingl. 263. 112.)

Ammonium sulphate, (NH₄)₂SO₄.

Sol. in H₂O with absorption of heat. 75 pts. (NH₄)₂SO₄ mixed with 100 pts. H₂O lower the temperature from 13.2° to 6.8°, that is, 6.4.° (Rüdorff, B. 2.68.)

Sol. in 1.31 pts.  $\rm H_2O$  at 19°. (Schiff, A 109. 326.) Sol. in 2 pts.  $\rm H_2O$  at 18.75°. (Abl.) Sol. in 2 pts.  $\rm H_2O$  at 15.6°, and in 1 pt. boiling  $\rm H_2O$ . (Fourcroy.) 100 pts.  $\rm H_2O$  at 62.6° dissolve 78 pts. (NH₄)  $_2$ SO₄. (Wenzel.) 100 pts.  $\rm H_2O$  at 15° dissolve 66.739 pts. (NH₄)  $_2$ SO₄. (Michel and Krafft.)

Sol. in 1.3 pts. cold H₂O. (Vogel, N. Rep. Pharm. 10. 9.)

Sol. in 1.37 pts. cold H₂O at 10°. (Mulder, J. B. **1866**. 67.)

Sol. in 1.34 pts. H₂O at 16-17°. (v. Hauer, W. A. B. **53**, **2**. 221.)

100 pts. H2O dissolve at:

0° 10° 20° 76.30 78.95 pts. (NH₄)₂SO₄, 71.00 **73** 65 40° 60° 70° 50 84.25 80° 86.90 89.55 pts. (NH₄)₂SO₄, 31.60 90° 100° 92.20 94.85 97.50 pts. (NH₄)₂SO₄. (Alluard, C. R. 59. 500.)

Solubility in 100 ptc. H2O at to.

(Mulder, calculated from his own and other observations, Scheik. Verhandel. 1864. 60.)

100 g.  $(NH_4)_2SO_4+Aq$  contain 41.4 g.  $(NH_4)_2SO_4$  at 0°. (de Waal, Dissert. 1910); 44.27 g. at 30°. (Schreinemakers, Z. phys. Ch. 71. 110); 47.81 g. at 70°. (de Waal.)  $(NH_4)_2SO_4+Aq$  sat. at 15° has sp. gr. 1.248. (Michel and Krafft, A. ch. (3) 41. 471.)

Sn.	or.	of	(NH	02.0	+Aa	яŧ	15°
ωp.	K1.	O.	11111		TAU	αυ	TO.

% (NH4) SO4	Sp. gr.	% (NH1)*801	Sp. gr.	% (NHi) SQ.	Sp. gr.
1	1.0057	18	1.1035	35	1.2004
2	1.0115	19	1.1092	36	1.2060
2 3	1.0172	20	1.1149	37	1.2116
	1.0230	21	1.1207	38	1.2172
4 5	1.0287	22	1.1265	39	1.2228
6	1.0345	23	1.1323	40	1.2284
7	1.0403	24	1.1381	41	1.2343
8	1.0460	25	1.1439	42	1.2402
9	1.0518	26	1.1496	43	1.2462
10	1.0575	27	1.1554	44	1.2522
11	1.0632	28	1.1612	45	1.2583
12	1.0690	29	1.1670	46	1.2644
13	1.0747	30	1.1724	47	1.2705
14	1.0805	31	1.1780	48	1.2766
15	1.0862	32	1.1836	49	1.2828
16	1.0920	33	1.1892	50	1.2890
17	1.0977	34	1.1948		

(Schiff, calculated by Gerlach, Z. anal. 8. 280.)

Sp. gr. of  $(NH_4)_2SO_4+Aq$  at 15°.

% (NH4) SO4	Sp. gr.	% (NH4) 2SO4	Sp. gr.	% (NH4) SO4	Sp. gr.
5 10	1.0292 1.0581	20 30	1.1160 1.1730	31	1.1787

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of (NH₄)₂SO₄+Aq at 15°.

% (NHt) 8O	Sp. gr.	% (NH4) SO.	Sp. gr.	% (NH1)2SO4	Sp. gr.
3	1.0181	10	1.0600	30	1.1773
6	1.0359	20	1.1190	40	1.2352

(Gerlach, Z. anal. 28. 493.)

Sp. gr. of sat. solution = 1.248. (Gerlach.)

Sp. gr. of  $(NH_4)_2SO_4+Aq$ .

• •	
1/2 (NH4) 2SO4 g. mol. in 1000 g. of solution	Sp. gr. 16°/16°
0	1,000000
0.5514	1.000347
1.1251	1.000704
2.3114	1.001436
4.5840	1.002823
10.0893	1.006093
20.0138	1.012023
40.5236	1.024117
56.8536	1.033690

(Dijken, Z. phys. Ch. 1897, 24. 107.)

Sp. gr. of (NH₄)₂SO₄+Aq at 20°.

Normality of (NH ₁ ) ₂ SO ₄ +Aq	% (NH4)2SO4	Sp. gr.
3.75	40.28	1.2289
2.964	32.99	1.1858
1.978	23.01	1.1319
0.876	10.88	1.0626
0.492	6.275	1.0352

(Forchheimer, Z. phys. Ch. 1900, 34. 22.)

Sp. gr. of (NH₄)₂SO₄+Aq at 20°.

Solution	Sp. gr.	weight of 10 ccm. of the solution	(NH4)28O4
sat.  3/4  1/2  1/4  1/8  ""	1.248 1.196 1.139 1.077 1.039	12.5062 g. 11.9034 " 11.3377 " 10.7232 "	53.2 39.9 26.6 13.3 6.65

(Wiener, Z. phys. Chem. 1911, 71. 120.)

B.-pt. of sat. solution: crust formed at  $106.2^{\circ}$ , solution containing 88.2 pts.  $(NH_4)_2SO_4$  to 100 pts.  $H_2O$ ; highest temp. observed,  $108.2^{\circ}$ . (Gerlach, Z. anal. **26.** 426.)

B.-pt. of  $(NH_4)_2SO_4+Aq$  containing pts.  $(NH_4)_2SO_4$  to 100 pts.  $H_2O$ .

Pts. (NH ₄ ) ₂ SO ₄	Bpt.	Pts. (NH ₄ ) ₂ SO ₄
7.8 15.4 22.8 30.1 37.2 44.2 51.1	105.0° 105.5 106.0 106.5 107.0 107.5 108.0	71.8 78.7 85.5 92.3 99.1 105.9 112.6
58.0 64.9	108.2	115.3
	7.8 15.4 22.8 30.1 37.2 44.2 51.1 58.0	(NH ₄ ) ₂ SO ₄ 7.8 105.0° 15.4 105.5 22.8 106.0 30.1 106.5 37.2 107.0 44.2 107.5 51.1 108.0 58.0 108.2

(Gerlach, Z. anal. 26. 431.)

Sol. with decomp. in HCl+Aq.

Solubility	in	H ₂ SO	4+Aq	at	25°.	
------------	----	-------------------	------	----	------	--

	he solution tain	Gulid above
Mol. H ₂ SO ₄	Mol. (NH ₄ ) ₂ SO ₄	Solid phase -
0.00 0.24 0.47 0.97 1.19	2.28 3.25 3.19 3.15 3.15	(NH ₄ ) ₂ SO ₄
1.43 1.72 2.20 2.60 2.71 2.82 2.96 3.20 3.32	3.22 3.18 3.02 2.97 3.00 3.03 3.10 3.19 3.25	(NH ₄ )₃H(SO ₄ )₂
3.47 3.54 3.76 4.22 5.09	3.32 3.20 2.84 2.26 1.44	(NH ₄ )HSO ₄

(D'Ans, Z. anorg. 1909, 65. 229.)

# Solubility in H₂SO₄+Aq at 30°.

Composi	tion of the	solution	
%	%	%	Solid phase
by wt.	by wt.	by wt.	
H ₂ SO ₄	(NH ₄ ) ₂ SO ₄	H ₂ O	
10.63 10.70 13.18	43.59 43.25 44.10	45.79 46.05 42.72	(NH ₄ ) ₂ SO ₄  (NH ₄ ) ₂ SO ₄ + 3(NH ₄ ) ₂ SO ₄ , H ₂ SO.
16.67	42.06	41.27	3(NH ₄ ) ₂ SO ₄ , H ₂ SO ₄ (NH ₄ )HSO ₄
25.82	41.15	33.03	
27.33	41.16	31.51	
32.32	44.63	22.26	
33.12	45.50	21.83	
33.84	45.52	20.64	
33.96	45.31	20.73	
38.51	35.37	26.12	
42.12	30.10	27.78	
45.80	24.88	29.32	
45.77	24.30	29.93	
56.55	16.98	26.37	
62.43	20.41	17.16	
62.46	24.40	13.14	
63.12	24.20	12.68	
62.57	27.67	9.76	
62.83	29.75	8.42	
62.56	30.26	7.28	
62.67	31.86	5.47	
62.59	33.70	3.71	
61.63	36.75	1.72	" , .
62.23	36.95	0.82	

(Van Dorp, Z. phys. Ch. 1910, 73. 285.)

Solubility of (NH4)2SO4 in H2SO4+Aq at 25°.

Solid phase	In 1000 g. of the solution	
	Mol. (NiI4)2SO4	Mol.
(NH ₄ )HSO ₄	2.17 1.83 1.60	4.29 4.57 4.85
(NH ₄ )HSO ₄	1.36 1.22 1.26 1.55	5.25 5.66 6.16 6.47 6.51
(NH ₄ )HSO ₄ +(NH ₄ )H ₈ (SO ₄	2.37 2.50	6.50
$(\mathrm{NH_4})\mathrm{H_8}(\mathrm{SO_4})_2$	1.64 1.38 (1.74)	7.28 7.99 (7.60)
(NH ₄ )HS ₂ O ₇	(1.42) 0.96 0.832	(8.00) 9.02 9.21
(NH ₄ )HS ₂ O ₇ +?	0.977 1.00 1.26	9.60 9.68 9.67
Z. anorg. 1913, <b>80</b> . 241.)	0.894 (D'Ans, Z	10.43

Very easily sol., even in conc. NH₄OH+Aq. (Girard, Bull. Soc. (2) 43. 522.)

# Solubility of (NH₄)₂SO₄ in NH₄OH+Aq at 25°.

In 1000 g.of the solution		
Mol. (NH ₄ ) ₂ SO ₄	Mol. (NH ₃ ) ₂	
3.28 2.60 2.13 1.59 1.16 0.78	0 1.02 1.95 3.44 5.35. 7.13 9.47	

(D'Ans and Schreiner, Z. anorg. 1910, 67. 438.)

100 pts.  $\rm H_2O$  dissolve 46.5 pts.  $\rm (NH_4)_2SO_4$  and 26.8 pts.  $\rm NH_4Cl$  at 21.5°.

# Solubility of (NH₄)₂SO₄ in NH₄Cl+Aq at 30°.

% NH ₄ Cl	(NH4)2SO4	Solid phase
0 6.86	44 36.15	(NH ₄ ) ₂ SO ₄
14.62 $17.60$	28.6 25.69	(NH ₄ ) ₂ SO ₄ +NH ₄ Cl
$17.93 \\ 19.07 \\ 19.97$	$egin{array}{c} 25.81 \ 23.22 \ 21.3 \ \end{array}$	NH₄Cl "'
$\begin{array}{c} 22.3 \\ 24.06 \end{array}$	16.33 12.72	44 44
29.5	1 0	1 NA. 9- 1010 (2) 18

(Schreinemakers, Arch. Néer. Sc. 1910, (2) 15. 92.)

See also under NH4Cl.

 $(NH_4)_2SO_4+CuSO_4$ . Solubility of  $(NH_4)_2SO_4+CuSO_4$  in  $H_4O$  at  $16^\circ$ .

Solution	% CuSO,	(NH1,)SO4
Both salts in excess 15 cc. sat. sol. $+3$ g. $(NH_4)_2SO_4$ 15 cc. sat. sol. $+3$ g. $CuSO_5H_2O$	8.55 1.77 15.85	$7.12 \\ 18.16 \\ 5.65$

(Rüdorff, B. 6. 482.)

Solubility of  $(NH_4)_2SO_4 + CuSO_4$  in  $H_2O$  at  $30^{\circ}$ .

%(NH4) SO4	CuSO.	Solid phase
0	20.32	CuSO _{4.5} H ₂ O
2.45	20.19	"
5.79	20.53	CuSO ₄ , 5H ₂ O +CuSO ₄ , (NH ₄ ) ₂ SO ₄
		6H ₂ O
6.98	16.77	CuSO ₄ , (NH ₄ ) ₂ SO ₄ ,6H ₂ O
8.19	13.65	"
9.33	11.03	
17.53	4.05	"
29.27	1.57	
38.32	0.77	"
43.29	0.49	CuSO ₄ , (NH ₄ ) ₂ SO ₄ .6H ₂ O +
		(NH ₄ ) ₂ SO ₄
44	0	(NH ₄ ) ₂ SO ₄
	1	1

(Schreinemakers, Arch. Néer. Sc. 1910, 15.

See also under CuSO4.

 $(NH_4)_2SO_4 + FeSO_4$ .

Solubility of  $(NH_4)_2SO_4 + FeSO_4$  in  $H_2O + Aq$  at  $30^\circ$ .

Compositon of the solution		Solid phase		
% by wt. FeSO4	% by wt. (NH4)2SO4	Sond phase		
24.90 25.24	0 5.24	FeSO ₄ , 7H ₂ O		
25.22	5.93	FeSO ₄ , 7H ₂ O +		
		FeSO ₄ , (NH ₄ ) ₂ SO ₄ , 6H ₂ O		
25.26	5.89	**		
23.59	6.44	FeSO ₄ , (NH ₄ ) ₂ SO ₄ , 6H ₂ O		
17.64	8.90	"		
13.13	11.45	"		
7.95	16.29	"		
5.70	19.64	••		
1.72	34.24	**		
0.79	43.86	FeSO ₄ , (NH ₄ ) ₂ SO ₄ , 6H ₂ O +		
		(NH ₄ ) ₂ SO ₄		
0.79	43.90	"		
0	44.27	(NH ₄ ) ₂ SO ₄		

(Schreinemakers, Z. phys. Ch. 1910, 71. 111.)

(NH₄)₂SO₄+Li₂SO₄. Solubility of (NH₄)₂SO₄+Li₂SO₄.

$_{c}$ Temp. = 30°.			
(NH4)2SO1	% Li₂8O4	Solid phase	
44.1 0 40.8 3 39.5 6.6 30 10 21.6 15 15 20 12.5 21.9 8.9 23 0 25.1		(NH ₄ ) ₂ SO ₄ · (NH ₄ ) ₂ SO ₄ +NH ₄ LiSO ₄ NH ₄ LiSO ₄ " NH ₄ LiSO ₄ +Li ₂ SO ₄ , H ₂ O Li ₂ SO ₄ , H ₂ O	
		1	

Temp. $=50^{\circ}$ .			
45.7 43.05 19.65 13.90 13.97 11.45	$ \begin{array}{r} 1\\ 5.86\\ 16.35\\ 21.20\\ 21.23\\ 21.75 \end{array} $	(NH ₄ ) ₂ SO ₄ (NH ₄ ) ₂ SO ₄ +NH ₄ LiSO ₄ NH ₄ LiSO ₄ NH ₄ LiSO ₄ +Li ₂ SO ₄ , H ₂ O Li ₂ SO ₄ , H ₂ O	
9.63 8.58 7.56	22.79 23.09 23.86 24.3	112504, 1120 	

(Schreinemakers and Cocheret, Chem. Weekbl. 1905, 2. 771.)

 $(NH_4)_2SO_4+MnSO_4.$ 

Solubility of (NH₄)₂SO₄+MnSO₄ in H₂O. G. per 100 g. sat. solution.

Temp. $=30^{\circ}$ .						
MnSO ₄	MnSO ₄ (NH ₃ ) ₂ SO ₄ Solid phase					
39.3 38.49	0 3.64	MnSO ₄ , 5H ₂ O MnSO ₄ , 5H ₂ O +MnSO ₄ , (NH ₄ ) ₂ SO ₄ , 6H ₂ O				
33.44 22.06 9.02	4.91 9.65 20.36					
2.91 1.75	37.42 42.58	MnSO ₄ , (NH ₄ ) ₂ SO ₄ , 6H ₂ O +(NH ₄ ) ₂ SO ₄				
1.77	43.24 43.4	(NH ₄ ) ₂ SO ₄				
Temp. =50°.						
26 26	36 26 0 MpSO H O					

	remp. = 50.				
36.26	0	MnSO ₄ , H ₂ O			
35.35	2.95	$MnSO_4$ , $H_2O + 2MnSO_4$ ,			
		$(NH_4)_2SO_4$			
30.57	5.14	2MnSO ₄ , (NH ₄ ) ₂ SO ₄			
16.86	17.62	"			
6.92	35.98	"			
6.29	39.71	"			
5.70	43.24	2MnSO ₄ , (NH ₄ ) ₂ SO ₄ +			
		$(NH_4)_2SO_4$			
3.49	44.02	$(NH_4)_2SO_4$			
0	45.7	1			
	1				

(Schreinemakers, Chem. Weekbl. 1909, 6. 131.)

(NH₄)₂SO₄+K₂SO₄. 100 pts. (NH₄)₂SO₄+K₂SO₄+Aq sat. at 16.17° contain 38.41 pts. of the two salts, of which 5.45 pts. are K₂SC₄, and 52.96 pts. (NH₄)₂SO₄. (v. Hauer, J. pr. 28. 137.) 100 pts. H₂O dissolve 50.6 pts. (NH₄)₂SO₄

and 7.2 pts. K₂SO₄ at 11° (Mulder, J. B.

**1866.** 67.)

(NH₄)₂SO₄ and K₂SO₄ replace each other in solution, so that by adding one of these gr. less than 0.850. salts to a seemingly saturated solution of the other, it is dissolved with pptn. of the other salt. (Rüdorff, B. 6. 485)

Solubility of (NH₄)₂SO₄+K₂SO₄ at 19.1°.

Solution	, , , , , , , , , , , , , , , , , , ,	'NH', SO,
Both salts in excess 15 cc. sat. sol. +4 g. K ₂ SO ₄ 15 cc. sat. sol. +4 g. (NH ₄ ) ₂ SO ₄	$   \begin{array}{r}     39.3 \\     4.94 \\     2.05   \end{array} $	37.97 33.26 40.80
(Rüdorff, B. <b>6.</b> 482.)		

Solubility of (NH₄)₂SO₄+K₂SO₄ in H₂O at

g. K ₂ SO,	g. (NH ₁ ) ₂ S() ₁	g K ₂ SO ₄	g. (NH ₄ ) ₂ SO ₄
per l.	per l.	p r l.	per l.
127.9	0.0	59.28	355.0
135.7	115.7	40.27	482.7
84.2	281.1	0.0	542.3

Results are also given for 14°, 15°, 16°, 30°, 46° and 47°.

(Fock, Z. Kryst. Min. 1897, 28. 365.)

 $(NH_4)_2SO_4+Th(SO_4)_2$ . Solubility of  $(NH_4)_2SO_4+Th(SO_4)_2$  at 16°. Pts. per 100 pts. H₂O.

	(NH4) ₂ SO ₄	Th(SO4)2	Solid phase
	2.13	3.361	$Th(SO_4)_2.9H_2O$
	4.80	5.269	"
1	10.02	8.947	"
]	16.56	13.330	$Th(SO_4)_2$ , $9H_2O+Th(SO_4)_2$ ,
			$(NH_4)_2SO_4.4H_2O$
		10.359	$Th(SO_4)_2$ . $(NH_4)_2SO_4$ . $4H_2O$
:	35.20	9.821	" $+Th(SO_4)_2$ , $2(NH_4)_2SO_4$ .
			2H ₂ O
	15.14	6.592	$Th(SO_4)_2$ , $2(NH_4)_2SO_4$ . $2H_2O$
	19.05		(CO.) CONTINUO OTT O
	2.88		$Th(SO_4)_2$ , $3(NH_4)_2SO_4$ . $3H_2O$
6	9.74	1.653	•••
_			

(Barre, A. ch. 1911, (8) 24. 239.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1698, 20. 826

Insol. in absolute alcohol. Sol. in 500 pts Sol. in 217.4 pts. of 66.8% alcohol (sp. gr. = 0.88) ct 24.3°. (Pohl, J. pr. **56.** 219.)

Tolerably sol. in alcohol, the sp. gr. of which

is greater than 0.800. Insol. in alcohol of sp.

Sclubility in dil. alcohol.

When (NH₄)₂SO₄ is dissolved in dil. alcohol, two layers are formed, the compositions of which are as follows:

	100	Lower layer	ıg.
Sp. gr.	alcohol	water	salt
1.2240 1.1775 1.1661	8.85 10.62	71.43 68.26 67.70	74.16 59.54 56.56
1.1655 1.1735	11.29 11.42	67.34 66.54	56.30 59.20

Sp. gr.	Upper layer 100 ccm. containing.			
	alcohol	water	salt	
0.9530	41.37	48.47	5.45	
0.9512	44.20	45.95	4.97	
0.9440	44.27	45.61	4.51	
0.9098	52.64	36.78	1.56	
0.8750	62.61	24.60	0.30	
0.8549	67.04	18.36	0.09	
0.8308	77.55	5.53	0.00	

(Bodländer, Z. phys. Ch. 7. 3, 8.)

Solubility in ethyl alcohol + Aq.

	Upper layer					
Temp.	g. H ₂ O	g. alcohol	g. salt			
16.6° 52.80 33.0° 47.99 41.8° 47.34 55.7° 45.90		40.21 46.75 47.67 49.47	6.99 5.26 4.99 4.63			
Lower layer						
16.6°         60.33         10.19         29.48           33.0°         61.02         9.80         29.16           41.8°         61.16         9.74         29.10           55.7°         61.59         9.46         28.96						

(Traube, Z. phys. Ch. 1887, 1. 509.)

Solubility of (NH₄)₂SO₄ in alcohol at 30°. Two liquid layers are formed between alcohol concentrations of 5.8 and 62°.

Composition of layers.

Upper layer			L	ower lay	er
*08a(*HN)	% alcohol	О,Н	OS ⁴ (†HN)	% alcohol	% H ₂ O
2.2 2.6 3.4 13.2 17	56.6 54.5 52.3 31.8 25	41.2 42.9 44.3 55 58	37.1 35.7 33.8 21.7	5.8 6.3 7.4 18.4 25	57.1 58 58.8 59.9 58

At concentration of 62% alcohol, the liquid is homogeneous and contains 1.3% (NH₄)₂SO₄.

(Wibaut, Chem. Weekbl. 1909, 6. 401.)

#### Solubility of (NH₄)₂SO₄ in alcohol at 60°.

% (NH4)2SO4	% alcohol	c _∈ H₂O
43.02 41.1	2.32 4.1	54.66 54.8
1.2 $0.2$	64.5 75.5	34.3 24.3

Between 4.1° and 64.5°, two liquid layers are formed.

### Composition of layers.

₩i. U	pper laye	er	L	ower laye	r
% (NH4) ₂ SO ₄	% al rohol	ř. HžO	CE (NHV)	al 'ohe l	H.0
1.2 1.6 3.8 7.4 10	64.5 60 50 40 34.4	34.3 38.4 46.2 52.6 55.6	$\begin{array}{c} 41.1 \\ 36.8 \\ 30.8 \\ 26.6 \\ 23.6 \end{array}$	4.1 6 9 12 15	54.8 57.2 60.2 61.4 61.4

(Schreinemakers, Z. phys. Ch. 1907, 59. 641.)

#### Solubility in alcohol + Aq at 0°.

% (NH4)2SO4	% alcohol	% H ₂ ()
41.4 30.0	0 9.41	58.6 60.59
0.14	73.03	26.83

Two layers are formed between alcohol concentrations of 9.41 and 73.03%.

(de Waal, Dissert. 1910.)

Solubility	in	propyl	alcohol +Ac	at	20°
COLUCIALLY	111	PIONI	MICORIOI   110	4 40	-

% propyl alcohol	% (NH ₄ ) ₂ SO ₄
20	6.7
$\begin{array}{c} 30 \\ 40 \end{array}$	$\begin{array}{c} 4.8 \\ 3.2 \end{array}$
50	2.0
60 70	1.0

(Linebarger, Am. Ch. J. 1892, 14, 380.)

100 g. 95% formic acid dissolve 25.4 g. (NH₄)₂SO₄ at 16.5°. (Aschan, Ch. Ztg. 1913, **37.** 1117.)

Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329). Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314.)

Insol, in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

Ammonium hydrogen sulphate, NH4HSO4. Sl. deliquescent. Sol. in 1 pt. cold H₂O. (Link.)

Very sl. sol. in alcohol. (Gerhardt,  $\Lambda$ . ch. (3) 20. 255.)

Insol. in acetone. (Naumann, B. 1904, **37**, 4329; Fidmann, C. C. **1899**, II, 1014.) (NH₄)₃H(SO₄)₂. Not deliquescent. Sol. in H₂O. (Mitscherlich, Pogg. **39.** 198.) (NH₄)₂SO₄, 3H₂SO₄.) D'Ans and Schreiner,

Z. anorg. 1913, 80. 241.)

#### Ammonium pyrosulphate, $(NH_4)_2S_2O_7$ .

Decomp. by H₂O. (Schulze.)

NH₄HS₂O₇. (D'Ans and Schreiner, Z. anorg. 1913, 80. 241.)

Ammonium octosulphate, (NH₄)₂S₈O₂₅. Decomp. by H₂O. (Weber, B. 17, 2497.)

#### Ammonium antimony sulphate,

 $(NH_4)_2SO_4$ ,  $Sb_2(SO_4)_3$ .

Behaves toward H₂O and abs. alcohol as a mixture of the components. (Metzl, Z. anorg. 1905, 48. 152.)

Decomp. very slowly by H₂O. mann, Arch. Pharm. 1898, 236, 479.)

#### Ammonium bismuth sulphate, NH₄Bi(SO₄)₂ +4H₂O.

Easily sol. in HCl, and HNO₃+Aq; less sol. in conc.  $\rm H_2SO_4$ , and hot dil. acids. Slowly decomp. by cold HC₂H₂O₂, and dil. H₂SO₄+ Aq. (Lüddecke, A. 140. 277.)

Ammonium cadmium sulphate, (NH₄)₂SO₄,  $CdSO_4+6H_2O.$ 

Can be recrystallised from a little H₂O. (v. Hauer.)

1 l. H₂O dissolves 723 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

3(NH₄)₂SO₄, CdSO₄+10H₂O. (André, C. Ammonium chromic sulphate, (NH₄)₂SO₄, R. 104. 987.)

# Ammonium calcium sulphate. $(NH_4)_2Ca(SO_4)_2+\hat{H}_2O.$

Decomp. by H₂O. (Fassbender, B. 11. 1968.)

Sol. in  $(NH_4)_2SO_4+Aq$ . (Rose, Pogg. **110.** 292.)

This double salt is stable between 0° and 100° in solutions containing an excess of (NH₄)₂SO₄. It is not formed if the solution contains less than 35% (NH₄)₂SO₄. (Barre, C. R. 1909, **148.** 1605.)

 $(SO_4)_3Ca_2(NH_4)_2$ . Decomp. by H.O.

(D'Ans, B. 1907, 40. 192.)

This double salt is formed in the presence of an excess of CaSO₄ and at temp, above 80°. (Barre, C. R. 1909, **148**, 1605.)

 $Ca_5(NH_4)_2(SO_4)_6 + H_2O$ . Decomp. by  $H_2O$ . (D'Ans, B. 1907, 40. 192.)

#### Ammonium calcium cupric sulphate, $Ca_2Cu(NH_4)_2(SO_4)_4 + 2H_2O_4$

Very stable. (D'Ans, B. 1908, 41, 1778.)

# Ammonium calcium potassium sulphate, $NH_4CaK(SO_4)_2 + H_2O$ .

Decomp. by cold H₂O. (Fassbender, B. **11.** 1968.)

# Ammonium cerous sulphate, (NII₄)₂Ce₂(SO₄)₄ +8H₂O.

More sol. in cold than in hot H₂O. (Czudnowicz).

100 g. H₂O dissolve at:

22.3° 22.35° 35.1° 45.2°

5.331 5.328 5.184 4.993 g. anhydrous salt,

 $45^{\circ}$ 55.3°  $55.2^{\circ}$ 2.9942.240 2.187 g. anhydrous salt,

 $75.4^{\circ}$ 1.4821.184 g. anhydrous salt. (Wolff, Z. anorg. 1905, **45**. 102.)

 $5(NH_4)_2SO_4$ ,  $Ce_2(SO_4)_3$ . (Barre, C. R. 1910, **151.** 873.)

Ammonium ceric sulphate, 3(NH₄)₂SO₄,  $Ce(SO_4)_2 + 4H_2O$ .

Slightly efflorescent. Easily sol. in H₂O. (Mendelejeff, A. 168. 50.)  $3(NH_4)_2SO_4$ ,  $2Ce(SO_4)_2+3H_2O$ . Sl. sol.

in H₂O. (Mendelejeff.) Ammonium chromous sulphate,  $NH_4Cr(SO_4)_2$ .

0.407 g. mol. anhydrous salt is sol. in 1 l. H₂O at 25°. (Locke, Am. Ch. J. 1901, 26. 175.)

contain 55 g. of the salt at 20°. Insol. in alcohol. (Laurent, C. R. 1911, 131. 112.)

€ra(SO4)a.

Not attacked by boiling H₂O or conc. HCl +Aq. Very slowly attacked by boiling KOH +Aq (sp. gr.=1.3). Insol. in CrCl₂+Aq or SnCl₂+Aq. (Kloba, Bull. Soc. (3) 9. 664.) +5740. Is animonium chromosulphate,

which see.

+24H₂O. Chrome Alum.

Violet modification. Efflorescent. Sol. in cold H₂O, but so ution is decomp, on heating with formation of green modification. The dil. scaution of green modification is grad-ually converted into violet modification by Alcohol ppts. it from aqueous standing. solution. (Schrötter, Pogg. 53. 526.)

100 cc. H₂O dissolve 10.78 g. anhydrous, or 21.21 g. hydrated salt at 25°. Melts in crystal H₂O at 45°. (Locke, Am. Ch. J. 1901. 26. 174.)

Solubility in H₂O.

Saturation is very slowly reached owing to transition between violet and green modifications. If time of saturation is taken at 2½ heurs, 100 g. of the solution contain at:

O° 30° 40° 3.77 10.6 15.5 g. (NH₄)₂Cr₂(SO₄)₄.

This is assumed to be the solubility of the violet modification.

In 300 hours, 15.96 g. salt are dissolved at 30°, and 24.64 g. in 250 hours at 40°. (Koppel, B. 1906, **39**. 3741.)

Calc. from electrical conductivity measurements, a solution containing 3.8 g. of the sulphate in 100 g. contains 48% of the green compound at 40° and 61% at 55°. With solutions of 6-7 times the above concentration equilibrium is reached at 40° with 30-40% green alum. (Koppel.)

Sp. gr. of aqueous solution of violet modification at 15°, containing:

4 8 12% (NH₄)₂Cr₂(SO₄)₄+24H₂O.

1.020 1.0405 1.0610

Sat. solution at  $15^{\circ}$  has sp. gr. = 1.070.

Sol. in H₂O and al-Green modification. cohol. When in aqueous solution, it gradually changes to violet modification.

Sp. gr. of aqueous solution of green modi-

fication at 15°, containing: 10 20 30% (NH₄)₂Cr₂(SO₄)₄+24H₂O, 1.044 1.091 1.142

50  $60\% (NH_4)_2Cr_2(SO_4)_4+24H_2O_7$ 1.197 1.255 1.317

70 80  $90\% \ (\mathrm{NH_4})_2\mathrm{Cr_2}(\mathrm{SO_4})_4\!+\!24\mathrm{H_2O}.$ 1.384 1.456 1.532

(Gerlach, Z. anal. 28. 498.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

5.)  $3(\hat{N}H_4)_2SO_4$ ,  $Cr_2(SO_4)_3$ . Only sl. attacked  $+6H_2O$ . 100 ccm. of sat. aqueous solution by boiling  $H_2O$ . Not attacked by boiling conc. (NH₄)₂SO₄+Aq. (Klobb, Bull. Soc. (3) **9.** 663.)



Ammonium cobaltous sulphate,  $(NH_4)_2Co(SO_4)_2+6H_2O$ .

100 pts. H₂O dissolve at:

0° 10° 18° 23° 35°

8.9 11.6 15.2 17.1 19.6 pts. anhydrous salt,

40° 45° 50° 60° 75° 22.3 25 28.7 34.5 43.3 pts. anhydrous salt. (Tobler, A. 95. 193.)

100 pts. saturated solution contain at:
20° 40° 60° 80°
14.9 20.8 25.6 33 pts. anhydrous salt.
(v. Hauer, J. pr. 74. 433.)

1 l. H₂O dissolves 147.2 g. anhydrous salt at 25°. Tobler's results are inaccurate. (Locke, Am. Ch. J. 1902, 27. 459.)

Pptd. from aqueous solution by alcohol.

Ammonium cobaltic sulphate, (NH₄)₂Co₂(SO₄)₄+24H₂O.

Sol. in H₂O with decomp. (Marshall, Chem. Soc. 59, 760.)

Ammonium cobaltous cupric sulphate,  $2(NH_4)_2SO_4$ ,  $CoSO_4$ ,  $CuSO_4 + 12H_2O$ .

Quite easily sol. in hot  $H_2O$ , but on long boiling a basic salt is pptd. (Vohl, A. **94.** 58.)

Ammonium cobaltous ferrous sulphate, 2(NH₄)₂SO₄, CoSO₄, FeSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94.** 57.)

Ammonium cobaltous magnesium sulphate, 2(NH₄)SO₄, CoSO₄, MgSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94**. 57.)

Ammonium cobaltous manganous sulphate, 2(NH₄)SO₄, CoSO₄, MnSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94.** 57.)

Ammonium cobaltous nickel sulphate, 2(NH₄)SO₄, CoSO₄, NiSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94.** 57.)

Ammonium cobaltous zinc sulphate, 2(NH₄)₂SO₄, CoSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl. A. **94.** 57.)

Ammonium cupric sulphate, (NH₄)₂SC₄, CuSO₄+6H₂O.

Efflorescent in warm air.

Sol. in 1.5 pts. boiling H₂O, and separates almost wholly on cooling. (Vogel, J. pr. 2. 194 Sol. in 1.55 pts. H₂O at 18 75°. (Abl.)

100 pts.  $H_2O$  at 19° dissolve 26.6 pts., and sat. solution has sp. gr. = 1.1337. (Schiff, A. 109. 426.

100 g. sat. solution at 30° contain 30.36 g. anhydrous salt. (Schreinemakers, Arch. Néer. Sci. 1910, (2) 15. 92.)

Solubility of (NH₄)₂Cu(SO₄)₂, 6H₂O + (NH₄)₂Ni(SO₄)₂, 6H₂O in H₂O at 13-14°.

Mols. per 100 mols. H₂O.

Cu salt	Ni salt	% Cu salt in solid phase
0 0.1476 0.2664 0.4165 0.4785 1.0350	0.521 0.295 0.2089 0.1449 0.1202	0 10.29 30.59 52.23 78.80 100

(Fock, Z. Kryst. Min. 1897, 28. 365.)

Solubility of  $(NH_4)_2Cu(SO_4)_2$ ,  $6H_2O + K_2Cu(SO_4)_2$ ,  $6H_2O$  in  $H_2O$  at  $13-14^\circ$ .

Mols. per 100 mols.  $H_2O$ .

K salt	NH4 ralt	% K salt in solid phase
0	1.035	0
0.897	0.8618	5.06
0.2269	0.6490	16.76
0.2570	0.5887	30.40
0.2946	0.5096	36.63
0.3339	0.3319	50.15
0.4560	0.1961	69.93
0.4374	0	100.

(Fock.)

Solubility of  $(NH_4)_2Cu(SO_4)_2$ ,  $6H_2O + (NH_4)_2Zn(SO_4)$ ,  $6H_2O$  in  $H_2O$  at 13–14°. Mols. per 100 mols.  $H_2O$ .

Cu salt	Zn salt	% Cu salt in solid phase
0.0422	0.8069	2.39
0.0666	0.5638	4.52
0.1218	0.5115	9.03
0.2130	0.4924	14.67
0.3216	0.4022	22.62
1.035	0	100.

(Fock.)

(NH₄)₂SO₄, 2CuSO₄. Very sol. in H₂() (Klobb, C. R. 115, 230.)

Ammonium cupric ferrous sulphate.

Sol. in  $H_2O$  without decomposition. (Vohl, A. **94.** 61.)

Ammonium cupric magnesium sulphate, 2(NH₄)₂SO₄, CuSO₄, MgSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94.** 57.)

Ammonium cupric magnesium potassium sulphate, (NH₄)₂SO₄, CuSO₄, MgSO₄, K₂SO₄ +12H₂O_.

Sol. in  $H_2O$ . (Schiff.)  $2(NH_4)_2SO_4$ ,  $CuSO_4$ ,  $2MgSO_4$ ,  $K_2SO_4+18H_2O$ . Sol. in  $H_2O$ . (Schiff.) Ammonium cupric manganous sulphate,  $2(NH_4)_2SO_4$ ,  $CuSO_4$ ,  $MnSO_4+12 H_2O$ . Sol. in H₂O. (Vohl, A. 94, 57.)

Ammonium cupric nickel sulphate  $2(NH_4)_2SO_4$ ,  $CuSO_4$ ,  $NiSO_4+12H_2O$ .

Sol. in  $H_2O$ . (Vohl.)

Ammonium cupric potassium sulphate,  $NH_4KSO_4$ ,  $CuSO_4+6H_2O$ .

Sol. in H₂O. (Schiff.)

Ammonium cupric zinc sulphate,  $2(NH_4)_2SO_4$ ,  $CuSO_4$ ,  $ZnSO_4+12H_2O_2$ Sol. in H₂O. (Vohl.)

# Ammonium cupric sulphate ammonia, $(NH_4)_2SO_4$ , CuO, $2NH_3$ .

Sol. in 1.5 pts. cold H₂O, but decomp. on exposure to air or dilution. Insol. in alcohol. (Kühn.)

Ammonium didymium sulphace, (NH₄)₂SO₄,  $Di_2(SO_4)_3 + 8H_2O$ .

Sol. in 18 pts. H₂O, and less easily in

 $\begin{array}{c} (NH_4)_2SO_4 + Aq. \quad (Marignac.) \\ Moderately \ sol. \ in \ H_2O. \quad (Cleve, \ Bull. \ Soc. \end{array}$ (2) **43.** 362.)

Ammonium erbium sulphate, (NH₄)₂SO₄,  $Er_2(SO_4)_3 + 8H_2O$ .

Sol. in H₂O. (Cleve.)

#### Ammonium gallium sulphate, $(NH_4)_2Ga_2(SO_4)_4 + 24H_2O.$

Sol, in cold water and dilute alcohol. Conc. solution clouds up on boiling, but clears on cooling. Dil. solution separates out a basic salt, insol. in hot or cold H₂O. (Boisbaudran.)

Ammonium glucinum sulphate, (NH₄)₂SO₄,  $GISO_4 + 2H_2O$ .

Sol. in H₂O. (Atterberg.)

# Ammonium indium sulphate, $(NH_4)_2In_2(SO_4)_4 + 24H_2O.$

100 pts. H₂O dissolve 200 pts. salt at 16°, and 400 pts. at 30°.

Insol. in alcohol.

Melts in crystal H₂O at 36°. (Rössler, J. pr. (2) 7. 14.) +8H₂O. (Rössler.)

Ammonium iridium sulphate, (NH₄)₂SO₄,  $Ir_2(SO_4)_3 + 24H_2O.$ 

Easily sol. in H₂O. (Marino, Z. anorg. **1904**, **42**. 221.)

Ammonium iron (ferrous) sulphate,  $(NH_4)_2Fe(SO_4)_2+6H_2O.$ 

Much less sol. in  $H_2O$  than  $FeSO_4+7H_2O$ . (Vogel, J. pr. 2. 192.)

100 pts. H₂O dissolve at:

0° 12° 20° 30° 36°

12.2 17.5 21.6 28.1 31.8 pts. anhydrous salt,

45° 55° 60° 65° 75° 36.2 40.3 44.6 49.8 56.7 pts. anhydrous salt. (Tobler, A. 95, 193.)

100 pts. H₂O a^{*} 16.5° dissolve 35.9 pts. hydrous salt.

1 l.  $H_2O$  dissolves 351 pts. or 1.044 g. mol. auhydrous salt ... 25°. (Locke, Am. Ch. J. 1902, 27, 459.)

Sol. in H₂O without decomp. Aq. solution at 30° contains 13.13% FeSO₄ and 11.45% (NH₄)₂SO₄. (Schreinemakers, C. C. **1910**, I. 801.)

Sp. gr. of  $(NH_4)_2$ FeSO₄-Aq at 19°.  $\% = \%(NH_4)_3 FeSO_4 + 6H_2O$ .

76 761					
%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1	1.006	11	1.066	21	1.130
2	1.013	12	1.073	22	1.136
3	1.018	13	1.080	23	1.143
4	1.024	14	1.085	24	1.150
5	1.030	15	1.092	25	1.156
6	1.036	16	1.097	26	1.164
7	1.042	17	1.104	27	1.171
8	1.047	18	1.110	28	1.179
9	1.054	19	1.116	29	1.185
10	1.060	20	1.124	30	1.193

(Schiff calculated by Gerlach, Z. anal. 8. 280.)

Insol. in acetone.

#### Ammonium ferric sulphate, basic.

Extremely difficultly sol. in HCl+Aq. Not decomp. by KOH+Aq. (Berzelius.)  $5(NH_4)_2O$ ,  $3Fe_2O_3$ ,  $12SO_3+18H_2O$  or  $2(NH_4)_2O$ ,  $Fe_2O_3$ ,  $4SO_3+4H_2O$ . Sol. in 2.4 pts. cold H₂O. (Maus, Pogg. 11. 79.)

Ammonium iron (ferric) sulphate, (NH₄)₂SO₄,  $Fe_2(SO_4)_8$ 

Attacked slowly by cold H₂O. (Lachaud and Lepierre.)

Nearly insol. in H₂O. (Weinland, Z. anorg. 1913, **84.** 363.)

+24H₂O. Iron alum. Sol. in 3 pts. H₂O at 15°. (Forchhammer, Ann. Phil. 5. 406.)

100 cc. H₂O dissolve 44.15 g. anhydrous, or 124.40 g. hydrated salt at 25°, or 1.659 g. mols. anhydrous salt are sol. in 1 l. H2O at 25°. (Locke, Am. Ch. J. 1901, 26. 174.)

Sp. gr. of aqueous solution at 15° containing:

 $15\% (NH_4)_2 Fe_2(SO_4)_4 + 24H_2O_7$ 1.023 1.047 1.071

20 25  $30\% (NH_4)_2 Fe_2(SO_4)_4 + 24H_2O_7$ 1.096 1.122 1.148

 $40\% (NH_4)_2 Fe_2 (SO_4)_4 + 24H_2O_4$ 1.175 1.203

40% solution is sat. at 15°. (Gerlach, Z. anal. 28. 496.)

Melts in crystal H₂O at 40°. (Locke.) 3(NH₄)₂SO₄, Fe₂(SO₄)₃. Insol. in cold H₂O. (Lachaud and Lepierre.)

Ammonium iron (ferroferric) sulphate  $4(NH_4)_2SO_4$ , FeSO₄, Fe₂(SO₄)₈+3H₂O.

Sl. sol. in cold H2O; decomp, into basic salt by hot H₂O; insol. in alcohol. (Lachaud and Lepierre, C. R. 114. 916.)

Ammonium ferrous magnesium sulphate,  $4(NH_4)_2SO_4$ ,  $3FeSO_4$ ,  $MgSO_4+24H_2O$ . Sol. in H₂O. (Schiff, A. 107. 64.)  $2(NH_4)_2SO_4$ , FeSO₄, MgSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94.** 57.)

Ammonium ferrous manganous sulphate,  $2(NH_4)_2SO_4$ , FeSO₄, MnSO₄+12H₂O. Sol. in H₂O. (Vohl, A. 94, 57.)

Ammonium ferrous nickel sulphate,  $2(NH_4)_2SO_4$ , FeSO₄, NiSO₄+12H₂O. Sol. in H₂O. (Vohl, A. 94. 57.)

Ammonium ferrous zinc sulphate,  $2(NH_4)_2SO_4$ , FeSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Bette, A. 14. 286.)

Ammonium lanthanum sulphate, (NH₄)₂SO₄,  $La_2(SO_4)_3 + 8H_2O$ .

Sl. sol. in H₂O. (Marignac.) Quite sol. in H₂O. (Cleve.) +2H₂O. (Barre, C. R. 1910, **151.** 872.) 5(NH₄)₂SO₄, 2La₂(SO₄)₃. Sl. sol.  $(NH_4)_2SO_4 + Aq$  of concentrations above 60%. (Barre, A. ch. 1911, (8) 24. 246.)  $5(NH_4)_2SO_4$ ,  $La_2(SO_4)_3$ . (Barre.)

Ammonium lead sulphate, (NH₄)₂SO₄, PbSO₄. Decomp. by H₂O into its constituents.

(Wöhler and Litton, A. 43. 126.) Decomp. by H₂O. Only stable in contact with solutions containing:

13.86 pts. (NH₄)₂SO₄ per 100 pts. H₂O at 20°

19.25 pts. (NH₄)₂SO₄ per 100 pts. H₂O at 50°.

24.31 pts. (NH₄)₂SO₄ per 100 pts. H₂O at 75°

29.42 pts. (NH₄)₂SO₄ per 100 pts. H₂O at 100°.

(Barre, C. R. 1909, 149, 294.)

Ammonium lithium sulphate, NH₄LiSO₄.

Solubility in  $H_2O = 35.25\%$  at  $-10.^{\circ}$  and 36.18% at 70°. (Schreinemakers, C. C. 1906, I. 217.)

This is the only double salt which (NH₄)₂SO₄ forms with Li₂SO₄ below 100°. This (Spielrein, C. R. 1913, 157. 48.)

Ammonium magnesium sulphate.  $(NH_4)_2Mg(SO_4)_2+6H_2O.$ 

100 pts. H₂O dissolve 15.9 pts. anhydrous double salt at 13°. (Mulder.)

100 pts. H₂O dissolve at:

0° 10° 15° 20° 30°

9.0 14.2 15.7 17.9 19.1 pts. anhydrous salt,

45° 50° 55° 60° 75°

25.6 30.0 31.9 36.1 45.3 pts. anhydrous salt. (Tobler, A. 96. 193.)

More sol, in H₂O than (NH₄)₂SO₄ or MgSO₄ (Graham.)

1 l. H₂O dissolves 199 pts. anhydrous salt 25°. Tobler's results are inaccurate. at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

100 g. H₂O dissolve at:

34° 41° F.

18.22 20.72 g. (NH₄)₂SO₄, MgSO₄, 6H₂O₄

50°

22.48 24.08 g. (NH₄)₂SO₄, MgSO₄, 6H₂O₄

60° 70° F.

24.81 28.26 g. (NH₄)₂SO₄, MgSO₄, 6H₂O₄

81° F.

33.33 g. (NH₄)₂SO₄, MgSO₄, 6H₂O.

(Lothian, Pharm. J. 1910, (4) 30. 546.)

Lothian's results for solubility in H₂O probably incorrect because of inaccuracy of experimental method. (Seidell, Pharm. J. 1911, (4) **33.** 846.)

Solubility of (NH₄)₂Mg(SO₄)₂ in H₂O at t°.

t.º	g. an hydrous salt per 100 g.				
	solution *	H ₂ O			
0	10.58	11.83			
10	12.75	14.61			
20	15.23	17.96			
25	16.45	19.69			
30	17.84	21.71			
40	20.51	25.86			
50	23.18	30.17			
60	26.02	35.17			
80	32.58	48.32			
100	39.66	65.72			

(Porlezza, Att. Acc. Linc. 1914, (5) 23. II, 509.)

Min. Cerbolite.

Ammonium magnesium nickel sulphate  $2(NH_4)_2SO_4$ , MgSO₄, NiSO₄+12H₂O. Sol. in  $H_2O$ . (Vohl, A. 94. 57.)

Ammonium magnesium potassium zinc sulphate, 2(NH₄)₂SO₄, 3MgSO₄, 3K₂SO₄, 2ZnSO₄+30H₂O.

Sol. in H₂O. (Schiff, A. 107. 64.) (NH₄)₂SO₄, 2MgSO₄, 2K₂SO₄, ZnSO₄+ 18H₂O. Sol. in H₂O. (Schiff.) (NH₄)₂SO₄, MgSO₄, K₂SO₄, ZnSO₄+12H₂O

Sol. in H₂O. (Schiff.)

Ammonium magnesium zinc sulphate 2(NH₄)₂SO₄, MgSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl. A. 94, 57.)

Ammonium manganous sulphate, 'NH₄)₂%(4,  $MnSO_4+6H_2O$ .

Deliquescent. Easily sol. in H₂O. (Jahn.) 1 l. H₂O dissolves 372 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.) (NH₄)₂SO₄, 2MnSO₄. Readily decomp. by H₂O. (Lepierre, C. R. 1895, **120**, 924.)

Ammonium manganic sulphate, (NH₄) SO₄.  $Mn_2(SO_4)_3$ .

Decomp. by H2O. Insol. in ether, C6H6, and conc. H₂SO₄. Sol. in dil. H₂SO₄+Aq. (Lepierre, Bull. Soc. 1895, (3) **13** 596.) +24H₂O. Decomp. by H₂O. (Mitscher-

lich.)

Ammonium manganous nickel sulphate  $2(NH_4)_2SO_4$ , MnSO₄, NiSO₄+ $12H_2O$ . Sol. in H₂O. (Vohl, A. 94. 57.)

Ammonium manganous zinc sulphate,  $2(NH_4)_2SO_4$ , MnSO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl.)

Ammonium mercuric sulphate, (NH₄)₂SO₄,  $3HgSO_4+2H_2O$ .

(Hirzel, J. B. **1850.** 333.) Difficultly sol. in  $(NH_4)_2SO_4$ ,  $HgSO_4$ . H₂O. Easily sol. in NH₄OH+Aq.

Ammonium mercurous sulphate ammonia, 3Hg₂O, 2(NH₄)HgSO₄, 2NH₃.

Insol. in hot or cold, dil. or conc. H₂SO₄ and HNO₃. Sol. in HCl. (Tarugi, Gazz. ch. it. 1903, **33**. (1) 131.)

Ammonium nickel sulphate, (NH₄)₂SO₄,  $NiSO_4+6H_2O$ .

Sol. in 4 pts. cold H₂O. (Link, 1796.)

100 pts. H2O dissolve at: 10° 16° 20°

1.8 3.25.85.98.3 pts. anhydrous salt,

40° 50° 59° 68° 85° 11.5 14.4 16.7 18.8 28.6 pts. anhydrous salt. (Tobler, A. 95. 193.)

100 pts. sat. solution contain at 20°, 9.4; at 40°, 13.2; at 60°, 18.6; at 80°, 23.1 pts. anhydrous salt. (v. Hauer, J. pr. 74. 433.)

1 l. H₂O dissolves 75.7 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Nearly insol. in a weak acid solution of (NH₄)₂SO₄. (Thompson, C. C. 1863. 957.)

Ammonium nickel zinc sulphate, 2(NH₄)₂SO₄,  $NiSO_4$ ,  $ZnSO_4+12H_2O$ .

Sol. in H₂O. (Vohl, A. 94. 57.)

Ammonium nickel sulõhate ammonia.  $(NH_4)_2SO_4$ ,  $NiSO_4$ ,  $6NH_2+3H_2O$ . (André, C. R. 106, 936.)

Ammonium platinia sulphate, 2(NH₄)₂SO₄, Pt₃(SO₄)₃+25⁴I₂O. So! in H₂O. (Prost, Bull, Soc. (2) 46. 156.)

Ammonium potassium sulphate, (NM4)2SO4,  $K_2SO_4+4H_2O_2$ 

Soluble in H₂O₂ 100 pts. H₂O at 16° dissolve 13 68 pts. salt. (Thomson, 1831.) M.c. Taylorite.

Ammonium praseodymium sulphate, (NH₄)₂SO₄, Pr₂(SO₄)₃+8H₂O.

Sl. sol. in H₂O. (von Scheele, Z. anorg. 1898, **18**. 359.)

Ammonium rhodium sulphate,  $(NH_4)_2SO_4$ ,  $Rh_2(SO_4)_8+24H_2O$ .

Very sol. H₂O; melts in crystal H₂O at 102-103°. (Piccini, Z. anorg. 1901, 27. 67.)

Ammonium samarium sulphate, (NH₄)₂SO₄,  $Sm_2(SO_4)_3 + 8H_2O$ . Sl. sol. in H₂O. (Cleve, Bull. Soc. (2) 43. 166.)

Ammonium scandium sulphate, (NH₄)₂SO₄,  $Sc_2(SO_4)_8$ .

Sol. in H₂O. (Cleve.) Sol. in H₂O and in dil. (NH₄)₂SO₄+Aq. (R. J. Meyer, Z. anorg. 1914, 86. 279.)

Ammonium sodium sulphate, NH₄NaSO₄+ 2H₂O.

100 pts. H₂O dissolve 46.6 pts. of cryst. salt at 15°, and the solution has a sp. gr. of 1.1749. Sp. gr. of aqueous solution containing: 31.8 24.44 15.9% NH₄NaSO₄+2H₂O,

1.1749 1.1380 1.0849

12.72 6.36 % NH₄NaSO₄+2H₂O. 1.0337 1.0679

(Schiff, A. 114. 68.)

Ammonium strontium sulphate.

Insol. in excess of (NH₄)₂SO₄+Aq. (Rose,

Pogg. 110. 296.)
(NH₄)₂SO₄, SrSO₄. This double salt is only stable in contact with nearly sat. solutions of (NH₄)₂SO₄. (Barre, C. R. 1909, 149. 293.)

Ammonium tellurium sulphate,

(2) 450.)

(NH₄)HSO₄, 2TeO₂, SO₃+2H₂O.As K salt. (Metzner, A. ch. 1898, (7) **15. 2**03.)

Ammonium thallic sulphate, NH₄Tl(SO₄)₂. (Marshall, C. C. 1902, II. 1089.) Decomp. by H₂O. Easily sol. +4H₂O. in dil. acids. (Fortini, Gazz. ch. it. 1905, 35. Ammonium thorium sulphate, 2(NH₄)₂SO₄,  $Th(SO_4)_2$ .

Easily sol. in H₂O and sat. (NH₄)₂SO₄+

Aq. (Cleve.) +2H₂O. (Barre.) (NH₄)₂SO₄, Th(SO₄)₂+4H₂O. (Barre, A. ch. 1911, (8) **24**. 240.) 3(NH₄)₂SO₄, Th(SO₄)₂+3H₂O. (B.)

Ammonium titanium sulphate,  $(NH_4)_2SO_4$ , TiO,  $SO_4 + H_2O$ .

Very sol. in H₂O with decomp.

Insol. in conc. H₂SO₄. (Rosenheim, Z. anorg. 1901, 26. 252.)

 $(NH_4)_2O$ ,  $2TiO_2$ ,  $2SO_3+3H_2O$ . Slowly decomp. by  $H_2O$ . (Blondel, Bull. Soc. 1899, (3) **21.** 262.)

Ammonium titanium sesquisulphate, (NH₄)₂SO₄, 3Ti₂(SO₄)₃+18H₂O.

Insol. in H₂O; sol. in HCl. Insol. in H₂SO₄. Decomp. by boiling with conc. H₂SO₄. (Stähler, B. 1905, 38. 2623.)

Ammonium uranous sulphate, 2(NH₄)₂SO₄,  $U(SO_4)_2$ .

Easily sol. in H₂O. (Rammelsberg.) Sol. in H₂O but solution rapidly decomp. (Kohlschütter, B. 1901, 34. 3630.)

Ammonium uranyl sulphate, (NH₄)₂SO₄,  $(UO_2)SO_4+2H_2O$ .

Quite difficultly sol, in H₂O. (Arfvedson.)

Ammonium vanadous sulphate,  $(NH_4)_2SO_4$ ,  $VSO_4+6H_2O$ .

Decomp. in the air.

Sol. in H₂O. (Piccini, Z. anorg. 1899, 19. 205.)

Less sol, in H₂O than VSO₄+7H₂O. cini and Marino, Z. anorg. 1902, **32.** 60.)

Ammonium vanadic sulphate,

 $(NH_4)_2SO_4$ ,  $V_2(SO_4)_3+12H_2O$ .

Insol. in H₂O

Insol. in H₂SO₄. Decomp. by boiling with conc. H₂SO₄.

Sol. in HCl. (Stähler, B. 1905, **38.** 3980.) +24H₂O. Very sol. in H₂O; decomp. in the air. (Piccini, Z. anorg. 1896, 11. 108.) 100 pts. H₂O dissolve 39.76 pts. salt at 10°.

Sp. gr. of sat. solution at  $4^{\circ}/20^{\circ} = 1.687$ . (Piccini, Z. anorg. 1897, 13. 446.)

1 l. H₂O dissolves 31.69 g. anhydrous or 78.51 g. hydrated salt at 25°, or 1.210 g. mols. anhydrous salt are sol. in 1 l. H₂O at 25°. Mpt. of crystals=45°. (Locke, Am. Ch.

J. 1901, 26. 175.)

Ammonium vanadyl sulphate,  $(NH_4)_2SO_4$ ,  $VOSO_4 + 3\frac{1}{2}H_2O$ .

Easily sol. in H₂O and in a mixture of a lcohol and conc. H2SO4, but cannot be recryst. therefrom. (Koppel and Behrendt, Z. anorg. **1903**, **35**. 176.)

(NH₄)₂SO₄, 2VOSO₄+H₂O. Deliquescent. Slowly but abundantly sol. in H2O, but cannot be recryst, from it except by addition of H₂SO₄. (Koppel and Behrendt, Z. anorg. 1903, **35**. 172.)

Ammonium yttrium sulphate, 2(NH₄)₂SO₄,  $Y_2(SO_4)_3 + 9H_2O.$ 

Sol. in H₂O. (Cleve.)

Ammonium zinc sulphate, (NH₄)₂SO₄, ZnSO₄ +6H₂O.

100 pts. H₂O dissolve pts. (NH₄)₂SO₄, ZnSO4 at:

13° 0° 15°

7.3 12.6 pts. salt, 8.8 10.0 12.5 75° 30° 45° 60° 85°

21.7 29.7 37.8 46.2 pts. salt. 16.5(Tobler, A. 95. 193.)

1 l. H₂O dissolves 140.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

+7H₂O. (André, C. R. **104.** 987.)

Ammonium zirconium sulphate.

Sol. in cold or hot H₂O or in acids. (Berzelius.)

Ammonium sulphate antimony fluoride,  $(NH_4)_2SO_4$ ,  $2SbF_8$ .

Very sol. in H₂O. (Mayer, B. 1894, 27. R. 922.)

Ammonium sulphate chromic chloride,  $2(NH_4)_2SO_4$ ,  $CrCl_3+6H_2O$ .

Sol. in H₂O. (Weinland, B. 1907, **40.** 3768.)

Ammonium sulphate hydrogen peroxide,  $(NH_4)_2SO_4$ ,  $H_2O_2$ .

Efflorescent in air.

Easily sol. in H₂O. (Willstätter, B. 1903, **36.** 1829.)

Antimony sulphate basic,, 7Sb₂O₃, 2SO₃+ 3H₂O.

Insol. in, and not decomp. by hot or cold  $H_2O.$  (Adie, Chem. Soc. **57.** 540.)  $5Sb_2O_8$ ,  $2SO_8+7H_2O$ . Insol.

5Sb₂O₃, 2SO₃+7H₂O. (Hensgen, R. t. c. **4.** 401.) Insol. in H₂O.

 $2\mathrm{Sb}_2\mathrm{O}_3$ ,  $\mathrm{SO}_3+x\mathrm{H}_2\mathrm{O}$ . Not decomp. by cold H₂O. (Adie.)

Sb₂O₃, SO₃ = (SbO)₂SO₄. Dec H₂O. (Peligot, J. B. **1847**. 426.) Decomp. by hot

 $+H_2O$ . As above. (Adie.)  $Sb_2O_3$ ,  $2SO_3$ , and  $+H_2O$ , and  $+2H_2O$ . Scarcely decomp. by cold, slowly by boiling H₂O. Slowly sol. in dil. HCl+Aq. (Adie.)

Antimony sulphate,  $Sb_2(SO_4)_3$ .

Very deliquescent. Combines with H₂O to a hard mass with evolution of heat; with more H₂O it becomes liquid, and by repeated treatment with much boiling H₂O it is wholly decomp. into H₂SO₄ and Sb₂O₃. (Hensgen, R. t. c. 4. 401.)

Antimony sulphate, acid, Sb₂O₃, 4SO₃,

Decomp. by H2O. (Adie.)  $Sb_2O_3+8$ , or  $9SO_3$ . Decomp. by  $H_2O$ . (Adie.)

Antimony barium sulphate,  $Sb_2(SO_4)_3$ ,  $BaSO_4 + 6H_2O_1$ 

As Ca comp. (Kühl, Z. anorg. 1907, 54.

Antimony cæsium sulphate, SbCs(SO₄)₂,

Slowly decomp. by cold H₂O (Gutman, Arch. Pharm. 1908, 246. 188.

Antimony calcium sulphate,  $Sb_2(SO_4)_3$ ,  $CaSO_4 + 6H_2()$ .

Decomp. by H₂O. (Kühl, Z. anorg, 1907, **54.** 257.)

Antimony lithium sulphate, SbLi(SO₄)₂.

Decomp. by H₂O. (Gutman, Arch. Pharm. 1908, **246.** 187.)

Antimony potassium sulphate,  $KSb(SO_4)_2$ . Decomp. by H₂O. (Gutmann, Arch. Pharm. 1898, 236. 478.)

Antimony rubidium sulphate, SbRb(SO₄)₂. Slowly decomp, by cold H₂O. (Gutman.)

Antimony silver sulphate,  $SbAg(SO_4)_2$ .

Slowly decomp, by H₂O. (Kühl, Z. anorg. 1907, **54.** 258.)

Slowly decomp. by cold H₂O. (Gutman Arch. Pharm. 1908, **246.** 189.)

Antimony sodium sulphate, NaSb(SO₄)₂.

Easily decomp. by H₂O. Arch. Pharm. 1898, **236.** 478.) (Gutmann.

Antimony strontium sulphate, Sb₂(SO₄)₃,  $SrSO_4+6H_2O$ .

As Ca comp. (Kühl, Z. anorg. 1907, 54. **2**57.)

Antimony thallium sulphate,  $SbTl(SO_4)_2$ .

Slowly decomp. by cold H₂O. Decomp. by conc. H₂SO₄. (Gutman, Arch. Pharm. **1908**, **246**. 189.)

Arsenic sulphate. See Arsenic sulphur trioxide.

# Barium sulphate, BaSO₄.

Sol. in 43,000 pts. H₂O (Kirwan); in 200,000 pts. H₂O (Margueritte, C. R. **38**, 308). 100 pts. H₂O dissolve 0.002 pt. BaSO₄.

BaCl₂+Aq containing 1 pt. BaO to 71,000 pts. H₂O, when treated with H₂SO₄, becomes turbid in ½ hour. (Harting, J. pr. 22. 52.)
Ba(NO₂) +Aq containing 1 pt. BaO to 25,000 pts. H₂O₃ gives a distinct cloud with H₂SO₄ or Na₂SO₄+Aq; with 50,000-100,000 pts. H₂O a slight turbidity is or duced: with 200,000 '100,000 pts. H₂O the mixture becomes turbid in a few minutes; while with 800,000 pts. H₂O no action is visible. (Lassaigne, J Chim. Méd. 8. 526.)

Sol. in 800,000 pts. H₂O (Calvert): in 400,000 pts. cold or hot H₂O (Fresenius)

Calculated from the electrical conductivity of the solution, PaSO4 is sol in 429,700 pts. H₂O at 18.4°, and 320,000 pts. at 37.7°. (Holleman, Z. phys. Ch. 12. 131.)
1 l. H₂O dissolves 1.72 rig. at 2°; 1.97 mg.

at 10°; 2.29 mg. at 19.0°; 2.60 mg. at 26°; 2.91 mg. at 34°. (Kohlrausch and Rose, Z.

phys. Ch. 12. 241.)

Calculated from the electrical conductivity of the solution, BaSC4 is sol. in 425,000 pts. H₂O at 18.3°. Results of Fresenius and Hintz (Z. anal. 1896, **35**. 170) are incorrect. (Küster, Z. anorg. **1896**, 12. 267.)

Sat. aq. solution contains 2.29 mg. BaSO₄ per liter at 25° when particles of salt are not

less than  $1.8\mu$  in diameter.

Sat. aq. solution contains 4.15 mg. BaSO₄ per liter at 25° when particles of salt are  $0.1\mu$  in diameter. ( $\mu$ =0.0001 cm.) (Hulett, Z. phys. Ch. 1901, 37. 398-9.)

In general the influence of the size of the grain on the solubility of the substance is negligible when the solubility exceeds 2%. The increase of normal solubility by using finely divided solids, amounts to 80% in the case of BaSO₄. (Hulett, Z. phys. Ch. 1904,

1 l. H₂O dissolves 2.3 mg. BaSO₄ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50.** 356.)

Calculated from electrical conductivity of BaSO₄+Aq.

0.0190 milli-equivalents are sol. in 1 liter H₂O at 18°; 0.0212 at 25°; 0.0288 at 50°; 0.0334 at 100°.

(Melcher, J. Am. Chem. Soc. 1910, 32. 55.) Not attacked by cold HCl or HNO₃+Aq after several hours, and only in traces after several days. On boiling, traces of BaSO₄ dissolve, and the liquid after cooling can be precipitated by BaCl₂ or H₂SO₄+Aq, but not by H₂O alone. (Rose, Pogg. 95.

108.) By washing BaSO₄ long enough with H₂O containing HCl or HNO₃ [HC₂H₃O₂ (Siegle)], the filtrate can be precipitated by H₂SO₄ or

BaCl₂. (Piria, J. B. **1856**. 334.) 1000 pts. 3% HCl+Aq dissolve 0.06 pt. BaSO₄ in the cold, and still more on boiling.

230 ccm. HCl+Aq of 1.02 sp. gr. dissolve 0.048 g. BaSO₄ from 0.679 g. BaSO₄ when boiled  $\frac{1}{4}$  hour.

168 ccm. HCl+Aq of 1.03 sp. gr. dissolve 0.0075 g. BaSO4 from 0.577 g. BaSO4 when boiled 5 minutes. (Siegle, J. pr. 69. 142.)

#### Solubility of BaSO₄ in HCl+Aq.

No. cc. HCl+Aq containing	Mg. BaSO ₄ per 1 mg. equiv. of	g. per 100	cc. solution
1 mg. equiv. HCl	HCl	HCl	BaSO ₄
2.0 1.0 0.5 0.2	0.133 0.089 0.056 0.017	1.82 3.65 7.29 18.23	0.0067 0.0089 0.0101 0.0086

(Banthisch, J. pr. 1884, 29. 54.)

100,000 pts. H₂O dissolve 0.124 pt. BaSO₄; 1000 pts. HNO₃+Aq of 1.167 sp. gr. dissolve 2 pts. BaSO₄; 1000 pts. HNO₃+Aq of 1.032 sp. gr. dissolve 0.062 pt. BaSO₄. (Calvert, Chem. Gaz. 1856, 55.)

When 0.4 g. BaSO₄ is heated ½ hour with 150 ccm. HNO₂+Aq of 1.02 sp. gr., 0.165 g. is dissolved. (Siegle, J. pr. 69. 142.)

Solubility of BaSO₄ in HNO₃+Aq.

No. cc. HNO ₃ +Aq containing	Mg. BaSO ₄ per 1 mg. equiv. of	1 mg.	
1 mg. equiv. HNO ₃	BaSO ₄	HNO ₃	BaSO ₄
2.0	0.140 0.107	3.15 6.31	0.0070 0.0107
$\begin{matrix} 0.5 \\ 0.2 \end{matrix}$	$\frac{0.085}{0.048}$	$12.61 \\ 31.52$	0.0170 0.0211

(Banthisch, J. pr. 1884, 29. 54.)

Acetic acid has less solvent power than other acids. 80 ccm. HC₂H₃O₂+Aq of 1.02 sp. gr. boiled with 0.4 g. BaSO₄ ½ hour dissolve 0.002 g. (Siegle, J. pr. 69. 142.)
Sol. in boiling conc. H₂SO₄. (See

 $BaH_2(SO_4)_2)$ .

Sol. in fuming H₂SO₄. (See BaS₂O₇.) Sol. in 2500 pts. boiling 40% HBr+Aq; in

6000 pts. boiling 40% HI+Aq. (Haslam, C. N. 53. 87.)

Sol. in considerable amount in metaphosphoric acid+Aq. (Scheerer and Drechsel, J. pr. (2) 7. 68.) Not attacked by boiling conc. KOH+Aq if

CO₂ is not present. (Rose, Pogg. 95. 104.) Very sl. decomp. by standing a long time

with cold conc. alkali carbonates + Aq. Decomp. by boiling Na₂CO₃ or K₂CO₃+Aq, not by (NH₄)₂CO₃+Aq. (See Storer's

Dict. for analytical data.)

Very sl. sol. in NH₄Cl+Aq, 1 pt. dissolving in 230,000 pts. sat. NH₄Cl+Aq. 500 ccm. sat. NH₄NO₃+Aq with 50 ccm.

sat. NH₄Cl+Aq dissolve 2 g. BaSO₄. 100 ccm. sat. NH₄NO₃+Aq with 100 ccm. sat. NH4Cl+Aq dissolve only 0.08 g. BaSO4, therefore above solubility is due to free chlorine. (Mittentzwey, J. pr. 75. 214.)

BaSO₄ cannot be precipitated from solutions containing free Cl2. (Erdmann, J. pr.

**75.** 215.)

Pptn. is retarded sl. by tartaric and racemic acids. (Spiller.)

Na metaphosphate prevents pptn. of BaSO₄ but not ortho- or pyrophosphate. (Scheerer, J. pr. 75. 114.)

Not precipitated in presence of alkali ci-

trates. (Spiller.)

Much less sol. in NH₄Cl+Aq than in NH₄NO₃+Aq. Insol. in warm conc. Na₂S₂O₃ +Aq. (Diehl, J. pr. **79**. 431.) Not appreciably sol. in H₂O containing

ammonium or sodium chloride. (Brett, Wittstein, Wackenroder.)

Not appreciably sol. in H₂O at 250°, or in

H₂O containing Na₂S. (Senarmont.)

Solubility is increased by alkali nitrates, but not appreciably by NaCl, KClO₃, or Ba(NO₃)₂. (Fresenius, Z. anal. 9. 52.) Scarcely sol. in boiling conc. (NH₄)₂SO₄+Aq. (Fresenius.)

Solubility in H₂O increased by presence of MgCl₂ (Fresenius); cerium salts (Marignac). Sol. in Fe₂Cl₆+Aq. (Lunge, Z. anal. 19. 141.)

Solubility in various salts+Aq at 20-25°.

g. salt per l.	Mg. BaSO ₄ dissolved per l. in				
	FeCl ₃	AlCl ₃	MgCl ₂		
$\begin{array}{c} 1\\2.5\\5\\10\\25\\50\\100\end{array}$	58 72 115 123 150 160 170	33 43 60 94 116 170 175	30 30 33 33 50 50		

(Fraps, Am. Ch. J. 1902, **27**, 290.)

Solubility in sat. solution of various salts+ Aq.

Salt	G. BaSO ₄ sol. in 1 l. of the solvent
NaNO ₃	0.2940
NaCl	0.00783
NH ₄ Cl	0.00827

(Ehlert, Z. Elektrochem, 1912, 18. 728.)

Conc. CrCl₃+Aq dissolves 40-120 times as much BaSO₄ as H₂O, when boiled therewith for 5 days; conc. CrCl₃+Aq acidified with HCl, 450 times as much in 10 days. (Kuster, Z. anorg. 1905, 43. 348.)
Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 827.)

Sol. in  $H_2O_2+Aq$ . (Gawalowski, C. C. **1906.** II. 7.)

100 cc. 95% formic acid dissolve 0.01 g. BaSO₄ at 18.5°. (Aschan, Ch. Ztg. 1913, **37**. 1117.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); in ethyl acetate. (Naumann. B. 1904, **37.** 3601.)

Min. Barite.

Barium hydrogen sulphate, BaH₂(SO₄)₂.

100 pts. H₂SO₄ dissolve 2.22 pts. BaSO₄ (Lies-Bodart and Jacquemin, C. R. 46. 1206): 5.69 pts. BaSO₄ (Struve, Z. anal. 9. 34).

Boiling H2SO4 dissolves 10-17% freely precipitated BaSO₄ without separating crystals on cooling. H₂SO₄ at 100° dissolves more than boiling H₂SO₄, and becomes cloudy if heated to boiling. (Schultz, Pogg. 133. 146.)

1 g. BaSO₄ pptd. from BaOl₂ is sol. in 3153 g. 91% H₂SO₄; from Ba(NO₃)₂ is sol. in !519 g. 91% H₂SO₄. (Varenue and Pauleau, C. R. **93.** 1016.)

100 pts. hot conc. H₂SO₄ dissolve approx. 6 pts. BaSO₄. (Rohland, Z. anorg. 1910, 66. **206**.)

10 ccm. of sat. BaSO₄+absolute H₂SO₄ contain approx. 2.851 g. BaSO₄. (Bergius, Z. phys. Ch. 1910, **72.** 355.)

Equilibrium in the system BaSO₄+H₂SO₄+ H₂O at 25°.

Composition of the solution					
% H ₂ SO ₄	g. BaSO ₄ per l.	Solid phase			
73.83	0.030	BaSO ₄			
78.04	0.135	· ·			
80.54	0.285	"			
83.10	0.800	"			
85.78	3.215	BaSO ₄ , 2H ₂ SO ₄ . H ₂ O			
88.08	12.200	,,			
93.17	49.665	BaSO ₄ , H ₂ SO ₄			

(Volkhonski, C. C. 1910, I. 1954; C. A. 1911. 617.)

Decomp. by H₂O, alcohol, or ether. +2H₂O. (Schultz.) BaSO₄, 2H₂SO₄+H₂O. (Volkhonski.)

Barium purosulphate, BaS₂O₇.

100 pts. fuming H₂SO₄ dissolve 15.89 pts. BaSO₄. (Struve, Z. anal. 9. 34.)

Very deliquescent. Decomp. with H₂O with hissing. (Schultz-Sellack, B. 4. 111.)

Barium calcium sulphate, 3BaSO₄, CaSO₄. Min. Dreelite.

#### Barium platinic sulphate (?).

Insol. in H2O or hoiling HCl or HNO3+Aq. Sol. in hot conc. H2SO4 or aqua regia. (E. Davy.)

Barium tin (stannic) sulphate, BaSO4,  $\operatorname{Sn}(\mathrm{SO}_4)_2 + 3\mathrm{H}_2\mathrm{O}$ .

Decomp. by H₂O. Insol. in HCl. (Weinland and Kühl, Z. anorg. 1907, 54. 249.)

Barium titanium sulphate, 2BaSO₄, 3Ti(SO₄)₂. Ppt. Decomp. by H₂O, giving titanic acid. (Weinland, Z. anorg. 1907, 54. 255.)

Barium sulphate potassium chloride, 3BaSO4 KCl.

Ppt. (Silberberger, M. 1904, 25. 233.)

Bismuth sulphate, vasic, (BiO)₂SO₄.

Insol, in H₂C. Sol, in HNO₂ or H₂SO₄+

+2H₂O. (Hein, z, Pogg. 63. 55.)  $4Bi_2O_3$ ,  $3SO_3+15H_2O$ . Insol. in  $H_2O$ .

(Leist.) (RiO)HSO₄+if₂O. Insol. in H₂O. Sol. in

dil. II2SO, +Aq. +2H₂O. Decomp. by H₂O with separation

of (BiO)₂SO₄+2H₂O. (Heintz.)

of  $(BiO)_2 = (0_4 + 2H_2U)$ . (Associated in H2U). (Athanasesco, C. R. 103, 271.) (Athanasesco, This sulphate 11SO + 17H₂U). This sulphate 2 and 2 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 and 3 crystallizes out from sulphuric acid of any strength between H_SO₄, 6H₂O and H₂SO₄, 12H₂O. (Adie, Proc. Chem. Soc. 1899, 15.

 ${\rm Bi}_2{\rm O}_3$ ,  $2{\rm SO}_3$ ,  $2{\rm '}_2{\rm H}_2{\rm O}$  is in equilibrium at  $50^\circ$  with 5.4-51.4%  ${\rm H}_2{\rm SO}_4+{\rm Aq}$ .

Bi₂O₃, SO₃ is in equilibrium at 50° with acid solutions weaker than 5.4% H₂SO₄. (Allan, Am. Ch. J. 1902, 27. 287.)

Bismuth sulphate,  $Bi_2(SO_4)_8$ .

Takes up H₂O with Very hygroscopic. strong evolution of heat to form 2Bi2(SO4)8+ 7H₂O, which becomes  $\text{Bi}_2(\text{SO}_4)_3 + 3\text{H}_2\text{O}$  at 100°. Decomp. by boiling  $\text{H}_2\text{O}$  into  $\text{Bi}_2\text{O}_3$ ,  $\text{SO}_3 + \text{H}_2\text{O}$ . (Hensgen, J. B. **1885**. 552.)

Insol. in methyl acetate. (Naumann, B.

1909, 42. 3790.)

Bismuth sulphate, acid, Bi₂O₃, 4SO₃.

 $\rm Bi_2O_3,~4SO_3$  is in equilibrium at 50° with 51.4–90%  $\rm H_2SO_4+Aq.~$  (Allan, Am. Ch. J. 1902, 27. 287.)

 $+\mathrm{H}_2\mathrm{O}$ . Crystallizes out from sulphuric acid at temp. above 170°. (Adie, Proc. Chem. Soc. 1899, **15.** 226.)

+3H₂O. Crystallizes from sulphuric acid of any strength between  $\rm H_2SO_4$ ,  $\rm H_2O$  and  $\rm H_2SO_4$ ,  $\rm 2H_2O$ . (Adie.)

or  $9H_2O = BiH(SO_4)_2 + 3H_2O$ . in H₂O. Easily sol. in acids, especially HCl,

and HNO₃+Aq. (Leist, A. **160**. 29.) +7H₂O. Crystallizes out from sulphuric acid of any strength between H₂SO₄, 3H₂O and H₂SO₄, 5H₂O.

+10H₂O. Crystallizes out from sulphuric acid at temp. below 170°. (Adie.)

Bismuth potassium sulphate, Bi₂(SO₄)₃, 3K₂SO₄ (?).

Decomp. by  $H_2O$ ; insol. in sat.  $K_2SO_4+Aq$ . (Heintz.)

Bi₂(SO₄)₈, 2K₂SO₄. BiK(SO₄)₂ = Bi₂(SO₄)₃, K₂SO₄. cold H₂O; decomp. by boiling. Am. Ch. J. **14.** 170.) Insol. in (Brigham,

# Bismuth sodium sulphate, Bi₄Na₆(SO₄)₉. (Lüdecke, A. 140. 277.)

#### Boron sulphate.

See Borosulphuric acid.

#### Bromomolybdenum sulphate.

See under Bromomolybdenum compounds.

Cadmium sulphate, basic, 2CdO, SO₂, and  $+H_2O$ .

Difficultly sol. in  $H_2O$ . (Stromeyer.) Sl. sol. in hot H₂O. (Habermann, M. **5**. 432.) 4CdO, SO₃. (Pickering, Chem. Soc. 1907, **91.** 1987.)

## Cadmium sulphate, CdSO₄.

. Sat. CdSO4+Aq contains at:

24°  $30^{\circ}$ 65° 10° 35.9 49.7% CdSO4, 37.541.542.0 130° 165° 86° 94° 188° 200° 43.5 91.6 27.7 2.3% CdSO4. 14.77.1

CdSO₄ easily forms supersat. solutions. (Étard, A. ch. 1894, (7) 2. 552.)

# Solubility in H₂O.

t°	Per cent CdSO4 in sat. solution	Soli I phase
$-18 \\ -10$	43.35 43.27	Ice "
0 +10	43.01 43.18	CdSO ₄ , 8/ ₃ H ₂ O
15 20	43.20 43.37	"
30 40	$43.75 \\ 43.99$	"
$\frac{60}{62}$	44.99 45.06	" "
72 73.5	46.2 46.6	"
74.5 75 77	$\begin{array}{c c} 46.7 \\ 46.5 \\ 42.2 \end{array}$	CdSO ₄ , H ₂ O
78.5 85	41.5 39.6	"
90 95	38.7 38.1	"
100	37.8	"

(Mylius and Funk, B. 1897, **30**. 825.) See also under  $CdSO_4 + 2^2/_3H_2O$ , and  $7H_2O$ .

Sp. gr. at 0°/4° of CdSO₄+Aq containing

14.0 g. CdSO₄ in 1000 g. H₂O = 1.0122. Sp. gr. at 12°/4° of CdSO₄+Aq containing 14.0 g. CdSO₄ in 100 g.  $H_2O = 1.0121$ .

Sp. gr. at 12°/4° of CdSO₄+Aq containing

57.2 g. CdSO₄ in 1000 g. H₂O = 1.0514. Sp. gr. at 0'/4° of CdSO₄+Aq containing 183.1 g. CdSO₄ in 1000 g. H₂O = 1.1552. Sp. gr. at 13°/4° of CdSO₄+Aq containing 183.1 g. CdSO₄ in 1000 g. H₂O = 1.1552.

183.1 g. CdSO₄ in 1000 g.  $H_2O = 1.1529$ .

(Fouqué, Ann. Observ. 1868, 9, 172.)

Sp. gr. of CdSO₄+Aq at 18°.

% CdSO₄ 10 15 1.0084 1.0486 1.1026 1.1607 Sp. gr.

% CdSO4 1.295 Sp. gr. 1.2245 1.3725 1.4575

% CdSO₄ Sp. gr. 36 1.4743

(Grotrian, W. Ann. 1883, 18. 193.)

Sp. gr. of CdSO₄+Aq at room temp. containing:

7.1414.66 22.011% CdSO4. 1.0681 1.1591 1.2681

(Wagner, W. Ann. 1883, 18. 268.)

Sp. gr. of CdSO₄+Aq at 25°.

Concentration of CdSO ₁ +Aq	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.0973 1.0487 1.0244 1.0120

(Wagner, Z. phys. Ch. 1890, 5. 36.)

Sp. gr. of CdSO₄+Aq.

% CdSO4	t°	Sp. gr. at to	Sp. gr. at 18°
0.0289	17.29	0.99908	0.99893
<i>.</i> .	23.65	0.99776	
0.0498	18.00		0.99915
0.0999	18.00	1	0.99961
0.495	18.00	1	1.0034
0.981	18.00		1.0084

(Wershofen, Z. phys. Ch. 1890, **5.** 494.)

Sp. gr. at 16°/4° of CdSO₄+Aq containing 29.4654% CdSO₄=1.36289; containing 21.3671% CdSO₄=1.24211. (Schönrock, Z. phys. Ch. 1893, **11**. 781.)

Sp. gr. of CdSO₄+Aq at 18°/4°.

% CdSO4 25.12118.172Sp. gr. 1.297 1.200

% CdSO4 9.952 5.639 Sp. gr. 1.055 1.101

(de Muynck, W. Ann. 1894, **53**. 561.)

 $CdSO_4 + Aq$  containing 13.40%  $CdSO_4$  has sp. gr.  $20^{\circ}/20^{\circ} = 1.1429$ .

CdSO₄+Aq containg 16.79% CdSO₄ has sp. gr. 20°/20° = 1.1847.

(Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 282.)

Sp. gr. of CdSO₄ at 18.2°, when p = per cent strength of solution; d = observed density; w = volume conc in grams per

р	d	w
39.86	1.5639	0.6231
31.53	1.4080	0.4439
26.85	1.3310	0.3574
24.17	1.2901	0.3118
18.35	1.208‡	0.2217
13.27	1.1437	0.1518
9.97	1.1045	0 1102
7.46	1.0764	0.0803
6.12	0.0619	0.0650
2.52	0.0242	0.0259
1.45	0.0132	0.0147
0.464	0.0033	0.0046

(Barnes, J. phys. Ch. 1898, 2, 543.)

Sp. gr. of CdSO₄+Aq sat. at 25° and 1 atm. =1.617. (Sinnige, Z. phys. Ch. 1909, 67. 518.)

Seealso under  $CdSO_4+2^2/_3H_2O_1$ , and +4H₂O.

Insol. in liquid NH₈. (Franklin, Am. Ch

J. 1898, **20.** 827.) Insol. in acetone. (Naumann, B. 1904, 37. 4329); methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann. B.

1910, 43. 314.) See Mylius and Funk, under  $+H_2O$ . CdSO₄.

 $+1^{1/3}$  H₂O. (Worobieff, Bull. Soc. 1896,

(3) **16**. 1754.)

+2²/₃H₂O. 1 pt. H₂O dissolves 0.59 pt. anhydrous salt at 23°, and not much more on heating. Sat. solution boils at 102°. Precipitated by alcohol. (v. Hauer.)

100 g. H₂O dissolve g. CdSO₄ at t°.

t°	G. CdSO ₄
0 5 7	75.52 75.65 65.73
$9 \\ 11.5 \\ 13$	75.85 75.94 76.04
15 16 17 18	$\begin{array}{c} 76.11 \\ 76.16 \\ 76.13 \\ 76.14 \end{array}$
19 25	76.18 76.79

(Kohnstamm and Cohen, W. Ann. 1898, 65. 352.)

100 pts. H₂O dissolves at:

13.7° 14.98° 15.0° 16.0°

76.06 76.09 76.14 76.18 pts. anhydrous salt,

16.96° 18.0° 19.0° 25.0°

76.26 76.32 76.39 76.81 pts. anhydrous salt. (Steinwehr, W. Ann. 1902, (4) 9, 1050.)

100 g. H₂O disse ive 76.02 g. CdSO₄ at 25°. (Stortenbecker, Z. pnys. Ch. 1900, 34, 109.)

Solubility of CdSO₄+2²/₂H₂O at 25° and varving pressures.

Pressure in utmospheres	C. CdSO ₄ in 100 g. H ₂ O
1	76.80
50 <del>0</del>	77.85
500	78.08
1000	78.77
1000	78 68
Det. by ano	ther method

G. CdSO4 in100 g. H2O Pressure in atmospheres 250 77.53500 78.02750 78.6078.96 1000

Cohen and Sinnige, Trans. Farad. Soc. 1910, **5.** 269.)

Sp. gr. at 21.6°/0° of CdSO₄+Aq containing 11.47% CdSO₄+8/3H₂O = 1.0944. (Kanonnikoff, J. pr. 1885, (2) **31**. 346.)

100 g. H₂O dissolve 57.61 g. CdSO₄+ 10.63 g. FeSO₄ at 25°. phys. Ch. 1900, **34.** 109.) (Stortenbecker, Z.

+4H₂O. (Lescoeur, A. ch. 1895, (7) 4. 222.)

Sp. gr. at 15° of CdSO₄+Aq containing 10 g. CdSO₄+4H₂O in 100 c.c of solution = 1.0790; containing 20 g.  $CdSO_4+4H_2O$  in 100 cc. of solution = 1.1522. (Traube, J. pr. 1885, (2) **31.** 207.)

Could not be obtained. (Mylius and Funk.) +7H₂O.

Solubility in H₂O.

t°	% CdSO4
$ \begin{array}{r} -17 \\ -16 \\ -12 \\ -10 \\ -7 \\ -5 \\ -4.5 \end{array} $	44.45 44.5 45.3 46.1 47.5 48.5 48.7

(Mylius and Funk, B. 1897, 30. 828.)

Cadmium cæsium sulphate, CdSO₄, Cs₂SO₄+ 6H₂O.

Sol. in H₂O. (Tutton, Chem. Soc. 63. 337.) 1 l. H₂O dissolves 1399 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.) Cadmium calcium potassium sulphate,  $Ca_2CdK_2(SO_4)_4+2H_2O.$ 

(D'Ans. B. 1908, 41, 1778.)

Cadmium cerium sulphate, CdSO₄, Ce₂(SO₄)₃ +6H₂O.

Sol. in H₂O. (Wyrouboff.)

# Cadmium hydrazine sulphate, CdH₂(SO₄)₂, 2N₂H₄.

1 pt. is sol. in 202.5 pts. H₂O at 12°.

Not attacked by dil. acids. Easily sol. in NH₄OH+Aq. (Curtius, J. pr. 1894, (2) 50. 331.)

# Cadmium magnesium sulphate, CdSO4, $MgSO_4 + 14H_2O$ .

Very efflorescent. Sol. in H₂O. (Schiff, A. **104.** 325.)

# Cadmium potassium sulphate, K2SO4, CdSO4 $+1\frac{1}{2}H_{2}O.$

Sol. in H₂O. (v. Hauer, Pogg. 133. 176.) 100 pts. H₂O dissolve 42.50 pts. anhydrous salt at 26°

100 pts. H₂O dissolves 42.80 pts. anhydrous salt at 31°

100 pts. H₂O dissolve 43.45 pts. anyhydrous

salt at 40°

100 pts.  $\rm H_2O$  dissolve 44.90 pts. anyhydrous salt at 64°. (Wyrouboff, Bull. Soc. Min. 1901, **24.** 68.)

 $+2H_2O$ . 100 pts.  $H_2O$  dissolve 42.89 pts. anhydrous salt at 16°; 46.82 pts. at 31°; 47.40 pts. at 40°. (Wyrouboff.)

+4H₂O. Efflorescent. (Wyrouboff, Bull. Soc. Min. 1891, 14. 235.)

Very efflorescent, and easily +6H₂O.decomp. (Schiff.)

Does not exist. (Wyrouboff.)

#### Cadmium rubidium sulphate, CdSO₄, $Rb_2SO_4+6H_2O.$

Efflorescent. Sol. in H₂O. (Tutton.) 1 l. H₂O dissolves 767 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27.** 459.)

#### Cadmium sodium sulphate, CdSO₄, Na₂SO₄+ $2H_2O$

Sol. in H₂O. (v. Hauer.)

Solubility of CdNa₂(SO₄)₂+2H₂O in 100 g. H₂O at t°.

5.49 24.04
$egin{array}{cccccccccccccccccccccccccccccccccccc$
(

(Koppel, Z. phys. Ch. 1905, **52.** 413.) Decomp. by  $H_2O$  below 20.5°.

Solubility of CdNa₂(SO₄)₂, 2H₂O+CdSO₄,  $^{8}/_{3}$  H₂O in 100 g. H₂O at t°.

t°	Grams CdSO4	Grams Na.804	t°	Grams CdSO ₄	Na ₂ SO ₄ Grams	t°	Grams CdSO4	Grams Na ₂ SO ₄
0	73 54	8 85	15	73.767	9.435	30	73 915	$\begin{array}{r} -11.10 \\ 12.32 \\ 13.75 \end{array}$
5	73 38	8 67:	20	73.81	9.455	35	75 01	
10	72.765	) 55	25	73.71	10.48	40	75 385	

(Koppel.)

Solubility of CdNa₂(SO₄)₂, 2H₂O+Na₂SO₄, 10H₂O in 100 g. H₂O at t°.

t°	Grams CdSO ₄	Grams Na ₂ SO ₄
-14 8	72.68	8.32
0	66.325	11.625
5	61.78	12.97
10	55.34	14.785
12	51.615	15.95
15	46.60	17.99
19.8	36.13	22 - 16
20	36.25	23.52
24	27.82	29.17
25	25.59	31.06
30	14.62	44.145

(Koppel.)

Solubility of  $CdNa_2(SO_4)_2$ ,  $2H_2O + Na_2SO_4$ (anhydrous) in 100 g. H₂O at t°

t°	Grams CdSO ₄	Grams Na ₂ SO ₄
35	13.26	47.06
40	16.25	46.27

(Koppel.)

Cadmium sulphate ammonia, CdSO₄, 6NH₃. Sol. in H₂O with separation of CdO. (Rose, Pogg. **20.** 152.)

 $CdSO_4$ ,  $4NH_3+4H_2O$ . Decomp. by  $H_2O$ . (Malaguti and Sarzeau, A. ch. (3) 9. 431.)

 $+2\mathrm{H}_2\mathrm{O}$ . Ppt. (André, C. R. **104**. 987.)  $+2\mathrm{I}_2\mathrm{H}_2\mathrm{O}$ . Sol. in  $\mathrm{H}_2\mathrm{O}$  with separation of basic sulphate. (Müller, A. 149. 70.) CdSO₄, 3NH₃. (Isambert, C. R. 1870, 70.

**457.**)

Cadmium sulphate cupric oxide, CdSO4,  $3\text{CuO} + x\hat{\mathbf{H}}_2\mathbf{O}$ .

(Recoura, C. R. 1901, **132**.1415.)  $2\text{CdSO}_4$ ,  $3\text{CuO} + 8\text{H}_2\text{O}$ . (Mailhe, 1902, 77) **27**. 383.)... (Mailhe, A. ch.

+12H₂O. (Mailhe.) 6CdSO₄, 20CuO+xH₂O. (Recoura, C. R. 1901, **132**. 1415.)

Cadmium sulphate hydrazine, CdSO₄,

Easily sol. in NH₄OH+Aq but cannot be cryst. therefrom. (Franzen, Z. anorg. 1908, **60**. 282.)

### Cadmium sulphate hydrogen chloride. 3CdSO₄, 4HCl+4H₂O.

Very deliquescent. (Baskerville and Farris. J. Am. Chem. Soc. 1901, 23, 896.) 3CdSO₄, 8HCl. Very deliquescent. (Passkerville and Harris.)

# Cæsium sulphate, Cs₂SO₄.

Not deliquescent.

100 pts. H₂O dissolve 158.7 pts. Cs₂SO₄ at

100 cc. H₂O at 17-15° dissolve 163.5 g. Cs₂SO₄. (Tutton, Chem Soc. 1894, 65.

#### Solubility in H₂O.

t°		Ts ₂ SO ₄ 100 g.	nols.	10		ls ₂ SO ; 100 g.	mols 2504 2 1
	Solu- tion	H ₂ ()	G. mols. Cs.SO ₄		Solu- tion	H ₂ ()	G. S. Per
0 10 20 30 40 50	63.4 64.1 64.8 65.5	167.1 173.1 178.7 184.1 189.9 194.9	$3.56 \\ 3.62 \\ 3.68$	60 70 80 90 100	66.7 67.2 67.8 68.3 68.8 69.2	$295.0 \\ 210.3 \\ 214.9 \\ 220.3$	3.83 3.88 3.92 3.97

(Berkeley, Trans. Boy. Soc. 1904, 203. A. 210 )

Solubility in Na₂SO₄+Aq. Sat. solution contains 54.7% Cs₂SO₄+ 11.45% Na₂SO₄ at 25°. Chem. Soc. 1911, **33**. 467.) (Foote, J. Am.

Insol in alcohol. (Bunsen.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329); (Eidmann, C. C. 1899, 1f. 1014.)

Solubility in glycol at ord. temp.=3.0-3.2%. (de Coninck, Belg. Acad. Bull. **1905.** 359.)

Cæsium hydrogen sulphate, CsHSO₄. Sol. in H₂O.

Cæsium pyrosulphate,  $Cs_2S_2O_7$ . Decomp. by H₂O.

Cæsium octosulphate, Cs₂S₈O₂₅. Decomp. by H₂O. (Weber, B. 17. 2497.)

Cæsium calcium sulphate, Ca₂Cs₂(SO₄)₈. Very stable, (D'Ans, B. 1908, 41. 1776.)

Cæsium chromium sulphate, Cs₂Cr₂(SO₄)₄ +24H₂O.

Melts in crystal H₂O at 116°. (Locke.)

Solubility	in	$H_2O$ .

Temp.	G. per litre	G. mols. anhydrous salt per l.
25°	5.7	0.015
<b>30~</b>	9.6	0.025
35°	12.06	0.032
40°	15.5	0.0405

(Locke, Am. Ch. J. 1901, **26**, 180.)

Cæsium cobaltous sulphate, Cs2SO4, CoSO4+  $6H_2O$ 

Soi, in H₂O. (Tutton, Chem. Soc. 63. 337.)

1 l. H₂O dissolves 418.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27.

Cæsium cobaltic sulphate, Cs₂Co₂(SO₄)₄+ 24H₂O.

Melts in crystal H₂O at 116°. (Locke, Am. Ch. J. 1901, 26. 15...)

Cæsium copper sulphate, Cs₂SO₄, CuSO₄+ 6H₂O.

Sol. in H₂O. (Tutton.) 1 l. H₂O dissolves 460 g. anhydrous salt

at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Cæsium gallium sulphate, Cs₂Ga₂(SO₄)₄+ 24H₂Õ.

(Soret, Arch. sc. phys. nat. 1888, (3) 20. 531.)

Cæsium indium sulphate, Cs2In2(SO4)4+ 24H₂O.

75.7 g. anhydrous (117.39 hydrated) salt or 0.172 g. mols of anhydrous salt are sol. in 1 l. H₂O at 25°. (Locke, Am. Ch. J. 1901, **26.** 175.)

100 pts. H₂O dissolve 3.04 pts. at 16.5°. (Chabriè and Rengade, C. R. 1900, 131, 1301.)

Cæsium iridium sulphate, Cs₂SO₄,  $Ir_2(SO_4)_8 + 24H_2O.$ 

Mpt. 109-110.°

Very sl. sol. in cold. More easily sol. in hot H₂O. (Marino, Z. anorg. 1904, 42. 218.)

Cæsium iron (ferrous) sulphate, Cs2SO4,  $FeSO_4+6H_2O$ .

Sol. in H₂O. (Tutton.)

1 l.  $H_2O$  dissolves 1011 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Cæsium iron (ferric) sulphate, Cs₂Fe₂(SO₄)₄ +24H₂O.

Melts in crystal H₂O at 71°. (Locke.)

Solubility in H ₂ O.					
t°	G. per litre	G. mols. anhydrous salt per litre			
25 30 35 40	17.1 25.2 37.5 60.4	0.045 0.066 0.099 0.156			

(Locke, Am. Ch. J. 1901, 26. 180.)

Cæsium lanthanum sulphate, Cs₂SO₄,  $La_2(SO_4)_3+2H_2O.$ 

(Baskerville, J. Am. Chem. Soc. 1904, **26.** 67.) 2C₈₂SO₄, 3La₂(SO₄)₃. (Baskerville.)

Cs₂SO₄, sulphate, magnesium Cæsium  $MgSO_4 + 6H_2O$ .

Sol. in  $H_2O$ . (Tutton.)

1 l. H₂O dissolves 533 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Cs2SO4. manganous sulphate, Cæsium  $MnSO_4 + 8H_2O$ .

Sol. in H₂O. (Tutton.)

Sol. in H2O and acids with decomp. (Piccini, Z. anorg. 1899, 20. 14.)

1 l. H₂O dissolves 804 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 45.

Cæsium manganic sulphate, Cs₂SO₄,  $Mn_2(SO_4)_3 + 24H_2O$ .

Decomp. by H2O and dil. acids with separation of MnO₂. Sol. in 1:3 H₂SO₄+Aq and in conc. HNO₃. Insol. in acetic acid. Sol. in oxalic acid+Aq. (Christensen, Z. anorg. 1901, 27. 332.)

Cs₂SO₄, sulphate, neodymium Cæsium  $Nd_2(SO_4)_8 + 3H_2O$ .

Baskerville, J. Am. Chem. Soc. 1904, 26. 74.)

Cæsium nickel sulphate, Cs₂SO₄, NiSO₄+ 6H₂O.

Sol. in H₂O. (Tutton.)

1 l. H₂O dissolves 255.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Cæsium praseodymium sulphate, Cs₂SO₄,  $Pr_2(SO_4)_3 + 2H_2O.$ 

(Baskerville, J. Am. Chem. Soc. 1904, 26. 73.

+4H₂O. (Baskerville.)

Cæsium rhodium sulphate, Cs₂SO₄,Rh₂(SO₄)₃ +24H₂O.

Sl. sol. in cold, sol. in warm H₂O; mpt. (Piccini, Z. anorg. 1901, 27. 64.) be tabulated as follows.

CsTl(SO₄)₄+ thallic sulphate, Cæsium 1½H2O.

Hygroscopic. (Locke, Am. Ch. J. 1902, **27.** 283.) +3H₂O. Very sl. sol. in cold; easily sol.

in hot H₂O. Can be recryst, from H₂SO₄+ Aq. The recryst. salt is at once decomp. by H₂O or 95% alcohol. (Locke.)

Cæsium thorium sulphate, Cs₂SO₄,Th(SO₄)₂+  $2H_2O$ .

Sl. sol. in H₂O. (Manuelli, Gazz. ch. it. 1903, **32.** (2) 523.)

Cæsium titanium sulphate, Cs₂SO₄, Ti₂(SO₄)₃ +24H₂O.

Deliquences in the air and is decomp.

Sl. sol. in cold H₂O; decomp. by hot H₂O. (Piccini, Gazz. ch. it. 1895, 25. 542.)

Sl. sol. in cold H₂O, more sol. in hot H₂O acidified with H2SO4.

Decomp. in neutral aq. solution. (Piccini, Z. anorg. 1898, 17. 356.)

Cæsium uranyl sulphate,  $Cs_2(UO_2)(SO_4)_2+$ 2H₂O.

As Na salt. (de Coninck, C. C. 1905, I. 1306.)

Cæsium vanadium sulphate, Cs₂V₂(SO₄)₄+ 24H₂O.

7.71 g. anhydrous (13.1 g. hydrated) salt, or 0.0204 gr. mols. of the anhydrous salt are sol. in 1 l. H₂O at 25°. (Locke, Am. Ch. J. 1901, 26. 175.)

Sl. sol. in cold, easily sol. in hot  $H_2O$ . (Piccini, Z. anorg. 1896, 11. 114.)

100 pts. H₂O dissolve 0.464 pts. of the salt at 10° and sp. gr. of the solution at  $4^{\circ}/20^{\circ} =$ 2.033. More sol. in hot H₂O than in cold. (Piccini, Z. anorg. 1897, 13. 446.)

Cæsium zinc sulphate, Cs₂SO₄, ZnSO₄+ 6H₂O.

Sol. in  $H_2O$ . (Bunsen and Kopp, Pogg. **113.** 337.)

1 l. H₂O dissolves 386.3 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. **459**.)

Cæsium zirconium sulphate, Zr₂O₈, (CsSO₄)₂ +11H₂O.

Ppt. (Rosenheim, B. 1905, 38. 815.)

Calcium sulphate, CaSO₄, and +2H₂O.

The older determinations of the solubility of CaSO4 in H2O have little, but historical, value, as the solutions were usually either non-saturated or supersaturated. They may

A = pts. H₂O required for dissolving 1 pt. CaSO₄, and B for 1 pt. CaSO₄+2H₂O at to.

t° .	A	В	Authority
Hot or cold	500		Fourcisy
$\mathbf{Cold}$	500		Bergmann
Boiling All temp.	$\begin{array}{c} 450 \\ 322 \end{array}$		Lasquiema
(?)	438		Lessaigne Anthon
(?)	250-300	.:	Dumas
Hot or cold Cold	578.5 480	$\frac{461.5}{380}$	Bucholz
Hot	491	388	Giese
15 · 20°	492	388	Tipp
$12.5^{\circ}$	503	397	Lecoq

100 pts. H₂O at to dissolve pts. CaSO₄

t°	Pts. CaSO ₄	to	Pts. CaSO ₄	t°	Pts. CaSO,
$\begin{array}{c} 0 \\ 5 \\ 12 \\ 20 \\ 30 \end{array}$	$\begin{array}{c} 0.205 \\ 0.219 \\ 0.233 \\ 0.241 \\ 0.249 \end{array}$	35 40 50 60	0.254 0.252 0.251 0.248	70 80 90 100	0.241 0.239 0.231 0.217

(Poggiale, A. ch. (3) 8. 469.)

Poggiale worked with supersat. solutions. (Droeze, B. 10. 330.)

H₂O dissolves CaSO₄ most abundantly at 35° (Poggiale); at 32-41° (Marignae).

1 pt. CaSO₄+2H₂O dissolves at:

or (by calculation) 1 pt. anhydrous CaSO₄ dissolves at:

The above nonsat, solutions are obtained by using a large excess of CaSO₄+2H₂O. The undissolved part retains its water of crystallisation. CaSO₄, dehydrated at 130-140°, forms a supersaturated solution with H₂O in 10 minutes, containing 1 pt. CaSO₄ to 110 pts. H₂O, which soon deposits crystals. The undissolved part takes up its water of crystallisation. Ignited CaSO4 dissolves very slowly in H₂O, so that in 24 hours the solution contains 1/183 to 1/598 anhydrous CaSO4. By longer contact solution continues with formation of supersaturated solutions, which contain after 10-30 days ¹/₈₇₂ to ¹/₈₂₈ CaSO₄, but these become normal as the anhydrous CaSO gradually takes up its water of crystallisation. The mineral anhydrite behaves similarly, water taking up ¹/₅₈₂ CaSO₄ in 1 day, ¹/₈₅₁ in 40 days, and  $\frac{1}{457}$  in 8 months.

Supersaturated solutions are also obtained

by evaporation of a saturated solution. By evaporation with heat, solutions are obtained containing 1/806 CaSO4, and in the cold with ¹/₁₀₂ CaSO₄, in the solution over the separated CaSO₄+2H₂O. Neutralising dil. H₂SO₄+Aq with CaCO₈ gives a solution containing 1/114 CaSO, which crystallises out partly in 24 hours, leaving 1/813 CaSC4 dissolved.

Supersaturated solutions containing 1/110 to ¹/₁₅₀ CaSO₄ deposit crystals rapidly; those under 1/850 do not crystallise spontaneously. A solution containing 1/288 shows crystals in 14 days, and contains 1/312 in 1 month, 1/414 in 2 months, 1/440 in 3 months, in spite of repeated

scaking.

Boiling diminishes the supersaturation without however removing it entirely. (Mar-

ignac, A. ch. (5) 1. 274.)

1 pt.  $CaSO_4 + 2H_2O$  is sol. in 443 pts.  $H_2O$  at 13.7°; in 447 pts.  $H_2O$  at 14.2°; in 421 pts.  $H_2O$  at 20.2°; in 419 pts.  $H_2O$  at 21.2°; ind in 445 pts.  $H_2CO_3 + Aq$  sat. at 18.7°. (Church, J. B. 1867, 192.)

Church's solutions were not sat. (Droeze, P. 10. 330.)

1000 pts. H₂O dissolve 2.19 pts. CaSO₄+  $2H_2O$  at  $16.5^{\circ}$ ; 2.352 pts.  $CaSO_4 + 2H_2O$  at  $22^{\circ}$ . (Cossa, Gazz. ch. it. **1873**. 135.)

Cossa's solutions were not saturated.

(Droeze.)

 $CaSO_4 + 2 H_2O$  is sol. in 415 pts.  $H_2O$  at  $0^\circ$ ; in 412 pts. H₂O at 5°; in 407 pts. H₂O at 10°; in 398 pts. H₂O at 15°; in 371 pts. H₂O at 20°; in 365 pts. H₂O at 25°; in 361 pts. H₂O at 30°; in 359 pts. H₂O at 35°. (Droeze, B. **10**, 330.) Sol. in 500 pts. H₂O at 12.5°. (From Marignac's and his own results, de Boisbaudran, A.

ch. (5) 3, 477.) CaSO₄ is sol. in 564.5 pts. H₂O at 0.8° 506.27 pts. at 14°; 472-3 pts. at 32.5-38.8°; 498.73 pts. at 64°; 533.92 pts. at 79.6°. (Raupenstrauch, M. **6**. 563.)

According to Goldammer (C. C. 1888, 708) H₂O is fully saturated with CaSO₄ by shaking the finely-powdered substance 5 minutes therewith.

The following results were obtained. Figures denote pts. H₂O in which 1 pt. CaSO₄ was dissolved at t° (a) from pptd. CaSO₄ "ipse fact.," (b) from pptd. CaSO₄ "gehe," (c) from "glacies mariae puly.," (d) from "glacies" Mariae pulv.," containing less than 2H2O.

t°	а	b	c	t°	d
0	561.5	558	557.5	0	476.5
7.5	526	526	520		
`15	497.5	497.5	493	20	436
22.5	481	481.5	479		
30	475	475	470		
37.5	463	469	465.5	40	450
45	473.5	474.5	470.5		
60	484	486.5	482	60	476
75	507.5	508	503	80	502.5
90	533.5	530	534		
100	556	557	534.5	100	547

Burnt gypsum easily forms supersat. solutions containing nearly 1% CaSO. It forms supersat. solutions more readily at 0°, and that tendency decreases with increase of temp., hence figures in (d) which contained burnt gypsum. (Goldammer, C. C. 1888. 708.)

Calculated from electrical conductivity of CaSO₄+Aq, 11. H₂O dissolves 2.07 g. CaSO₄ at 18°. (Kohlrausch and Rose, Z. phys. Ch.

**12.** 241.)

The anhydrous salt varies in solubility. Solubility depends (1) upon temp. and time of drying, (2) upon the relative amount of salt, (3) upon time of shaking. Possibly  $\alpha$  and  $\beta$  modifications. (Potilizin, C. C. 1894, II. 515.)

2.04 gr. are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903,

At 15° and after 5 minutes shaking, the highest degree of supersaturation which can be obtained with pure sol. calcium sulphate = 9.47 g. of the anhydrous salt or 11.976 g.  $CaSO_4+2H_2O$  in 1 l. of  $H_2O$ . (Cavazzi, C. C. 1905, I. 1694.)

Solubility of CaSO₄ in 100 pts. H₂O at high temp.

t°	Pts. CaSO ₄	t°	Pts. CaSO ₄	t°	Pts. CaSO ₄
140 165	$0.078 \\ 0.056$	175–185 240	0.027 0.018	250	0.016

(Tilden and Shenstone, Phil. Trans. 1884. 31.)

Pptn. of CaSO₄ which has been started by heating solution to 140-150° continues even after solution has cooled. (Storer.)

CaSO₄ is completely insol. in sea water or pure H₂O at temperatures between 140° and 150.° (Cousté.)

Solubility of CaSO₄ in sea water at temperatures over 100°.  $t^\circ$ =temp.; P=pressure in atmospheres; %=per cent CaSO₄ in sat. solution.

t°	Р	%	t°	P	%
103	1	0.500	118.5	1.50	0.226
103.8 105.15	1	$\begin{bmatrix} 0.477 \\ 0.432 \end{bmatrix}$	121.2	$\frac{1.5}{2}$	$\begin{bmatrix} 0.183 \\ 0.140 \end{bmatrix}$
108.6	1.25	0.395	127.9	$ar{2}$	0.097
$\begin{array}{c} 111 \\ 113.2 \end{array}$	$1.25 \\ 1.25$	$0.355 \\ 0.310$	130° 133.3	$\frac{2.5}{2.5}$	$0.060 \\ 0.023$
115.8	1.50	0.310	133.3	2.0	0.023

(Cousté, Ann. Min. (5) 5. 80.)

Solubility of CaSO₄ in H₂O at various pressures.

100 g. sat. CaSO₄+Aq at 1 atmos. pressure and 15° contain 0.206 g. CaSO₄; at 20 atmos. pressure and 15° contain 0.227 g. CaSO₄; at 1 atmos. pressure and 16.2° contain 0.213 g. CaSO₄. (Möller, Pogg. 117. 386.)

Soluble anhudrite:

1 l. H₂O dissolves 22.8 milliequivalents at 1 l. H₂O dissolves 6.4 milliequivalents at

156.° Anhydrite:

1 l. H₂O dissolves 9.2 milliequivalents at 100°

1 l. H₂O dissolves 2.7 milliequivalents at 156°

1 l. H₂O dissolves 0.7 milliequivalents at 218° (Melcher, J. Am. Chem. Soc. 1910, 32, 63.)

See also under gypsum, p. 953. Maximum solubility is at 37.5°. (Cameron,

J. phys. Chem. 1901, **5**. 572.) Sp. gr. of sat. CaSO₄+Aq at 15°=1.0022.

(Stolba, J. pr. 97. 503.)

Sp. gr. of sat.  $CaSO_4+Aq$ . at  $31^\circ=1.0031$ . 1 pt. CaSO₄ is sol. in 218 pts. H₂O containing CO₂. (Beyer, Arch. Pharm. (2) **150.** 193.) Sl. sol. in cold HCl+Aq; completely sol. in boiling dil. HCl or HNO₃+Aq. (Rose, Pogg. **95.** 108.)

Solubility of CaSO₄ in HCl+Aq.

t°	% нсі	100 ccm. dissolve g. of CaSO ₄	t°	% нсі	100 ccm. dissolve g. of CaSO ₄
25	0.77	0.6405	25	6.12	1.6539
25	1.56	0.8821	101	0.77	1.1209
25	3.06	1.2639	102	3.06	3.1780
25	4.70	1.5342	103	6.12	4.6902

(Lunge, J. Soc. Chem. Ind. 4. 31.)

Solubility in HNO₂+Aq at 25°.

g. HNO ₃	g. CaSO ₄ per	g. HNO ₃	g CaSO ₄ per
p r 100 cc.	100 cc. solution	per 100 cc.	100 cc. solution
0 1 2 3 4	0.208 0.56 0.82 1.02 1.20	6 8 10 12	1.48 1.70 1.84 1.98

(Banthisch, J. pr. 1884, 29. 52.) For solubility in  $H_2SO_4$  see  $CaH_2(SO_4)_2$ . Solubility in H₃PO₄+A₉ at 25°.

G. P ₂ O ₅ per l.	G. CaSO ₄ per l.	Sp. gr. 25°/25°
0.0	2.126 3.138	1.002
10.5	3.734	1.007
$\begin{array}{c} 21.4 \\ 46.3 \end{array}$	4.456 5.760	$\frac{1.016}{1.035}$
$105.3 \\ 145.1$	7.318 7.920	$1.075 \\ 1.106$
$204.9 \\ 312.0$	8.383 7.965	1.145 1.221
395.7 494.6	6.848 5.573	$1.230 \\ 1.344$

(Taber, J. phys. Chem. 1906, 10. 628.) Solubility in formic acid at 25°. 100 cc. of solution of acid containing 4% dissolve 0.24 g. CaSO₄. (Banthisch, J. pr. 1884, 29. 52.)

Solubility of CaSO4 in chloracetic acid at 25° 100 cc. of solution of acid containing 4% dissolve 0.22 g. CasO₄; 10%, 0.25 g. (Banthisch, J. pr. 1884, 29. 52.) Solubility in H₂O is increased by presence

of NH₄Cl (Vogel, J. pr. 1. 196), ammonium succinate (Wittstein, Repert. **57**. 18), (NH₄)₂SO₄, (NH₄)₂B₄O₇ (Popp, A. Suppl. **8**. 11); also KNO₈ (Vogel, Jun.), Na₂SO₄ (Henry, J. Pharm. **12**. 31), NaCl (Trommsdorf, N. J. Pharm. **18**, 1. 234.)

Decomp. by alkali carbonates +Aq. (Fee

Storer's Dict.)

1 g. CaSO₄ is sol. in 162 ccm. sat. KCl+Aq at 8°; in 147 ccm. sat. NaCl+Aq at 8.5°; in 93 ccm. sat. NII₄Cl+Aq at 12.5°; in 94 ccm. sat. KNO₃+Aq; in 92 ccm. sat. NaNO₃+Aq; in 320 ccm. sat. NH4NO₈+Aq; in 54 ccm. ²/₉ sat. NH₄NO₃+Aq; in about 2000 ccm. sat. K₂SO₄+Aq. (Droeze.) More sol. in Fe₂Cl₆, Cr₂Cl₆, CuCl₂, ZnCl₂+

Aq than in H₂O, but not more sol, in CaCl₂+

Aq. (Gladstone.) NH₄Cl+Aq. 1 g. CaSO₄ is sol. in 92 ccm. sat. NH₄Cl+ Aq at 13.5°; in 94 ccm. ½ sat. NH₄Cl+Aq at 13.5-15.5°; in 200 ccm. ½ sat. NH₄Cl+Aq at 13.5°; in 183 ccm. ½ sat. NH₄Cl+Aq at 100°. (Fassbender, B. 9. 1360.)

Solubility of  $CaSO_4$  in 25%  $NH_4Cl+Aq$ .

t°	% CaSO ₄	t°	% CaSO ₄
8 9 25 39	1.030 1.023 1.096 1.126	60 80 120	1.333 1.026 1.000

(Tilden and Shenstone, Roy. Soc. Proc. **38.** 335.)

Solubility in NH₄Cl+Aq increases with percentage of NH₄Cl, but if solution contains more than 60 g. NH₄Cl per l. more CaO dissolves than SO₃. With 333 g. NH₄Cl per l., the solution contains 4.9 g. SO₃ and 4.4 g. CaO, while the SO₃ content requires only 3.4 g. CaO. (Ditte, C. R. 1898, 126. 694.)

Solubility of CaSO₄ in NH₄Cl+Aq at 25°.

Grams NH4Cl per liter	Grams CaSO ₄ per liter
10.8	3.90
24.4	5.38
46.7	7.07
94.5	8.80
149.7	10.30
198.6	10.85
210.0	10.88
275.0	10.60
325.0	9.40
375.3 (saturated)	7.38

(Cameron and Brown, J. phys. Chem. 1905, 9. 211.)

CaCl2+Aq.

Solubility of CaSO4 in CaCl2+Aq at to.

ť°	CaCls	100 ccm. dissore g. vi CasO.	t°	CaCl2.	100 cem. dissolve g. of CaSO ₄
23	3.54	0.1925	25		0.0702
24	6.91	0.0963	101.0		0.1370
25	10.36	0.0886	102.5		0.1426
25	15.90	0.0734	105.5		0.1301

(Lunge, l. c.)

Solubility of CaSO₄ in H₂O containing various amts. of CaCl₂ at 20°. 100 pts. H₂O containing pts. CaCl2 dissolve pts. CaSO4.

Pts CaCl ₂	Pts. CaSO ₄	Pts. CaCl ₂	Pts. CaSO ₄
0.00	0.225	19.80	0.041
11.50	0.078	51.00	0.000
14.39	0.063	67.05	0.000

(Tilden and Shenstone.)

Solubility of CaSO₄ in CaCl₂+Aq at t°.

t°	CaCl2	% CaSO4	t°	CaCl2	CaSO ₄
15	15.00	0.063	94	15.16	$\begin{array}{c} 0.110 \\ 0.071 \\ 0.031 \\ 0.022 \end{array}$
21	14.70	0.068	138	14.70	
39	15.00	0.091	170	14.82	
72	14.90	0.100	195	14.70	

(Tilden and Shenstone, l. c.)

### Solubility in CaCl₂+Aq at 25°.

g. per l.	of solution	g. per l. o	f solution
CaCl ₂	CaSO ₄	CaCl ₂	CaSO ₄
0.00 7.49 11.96 25.77 32.05	2.06 1.24 1.18 1.10 1.08	51.53 97.02 192.71 280.30 367.85	1.02 0.84 0.47 0.20 0.03

(Cameron and Seidell, J. phys. Ch. 1901, 5. 643.)

1000 pts. of 1% CaCl₂+Aq. dissolve 1.1414 pts. CaSO₄; 40% CaCl₂, 0.2130 pts. CaSO₄. (Orloff, Chem. Soc. 1903, **84**, (2) dissolve 211.)

m	.,4	-
	٧.	

G. CaSO ₄ per l.	G. CaO per l.	Solid phase
0.0 0.391	1.166	Ca(OH) ₂
0.666	1.150	ii ii
$0.955 \\ 1.214$	$1.215 \\ 1.242$	u
$\frac{1.588}{1.634}$	$\begin{array}{c} 1.222 \\ 0.939 \end{array}$	$\begin{array}{c} \text{Ca(OH)}_2 \text{ and CaSO}_4, \ 2\text{H}_2\text{O} \\ \text{CaSO}_4, \ 2\text{H}_2\text{O} \end{array}$
$\begin{array}{c} 1.722 \\ 1.853 \end{array}$	$0.611 \\ 0.349$	"
$\frac{1.918}{2.030}$	$0.176 \\ 0.062$	<i>u</i>
2.126	0.0	"

(Cameron and Bell, J. Am. Chem. Soc. 1906, **28.** 1221.)

 $MgCl_2+Aq$ .

Sol. in 324 pts. MgCl₂+Aq (34.1% MgCl₂) at 19°. (Karsten.)

1 g. CaSO₄ is sol. in 146 ccm. 1/9 sat. MgCl₂ +Aq at 13.5°. (Fassbender.) 1 l.  $\frac{1}{9}$  sat. MgCl₂+Aq dissolves 6.83 g.

CaSO₄+2H₂O at 13.5°. (Droeze.)

#### Solubility of CaSO₄ in MgCl₂+Aq.

t°	% MgCl2	% CaSO4
9 39 80	19.7 11.1 9.99	$0.765 \\ 2.744 \\ 1.038$

(Tilden and Shenstone, l. c.)

#### Solubility in MgCl₂+Aq at 26°.

g. pe	g. per l. of solution			g. per l. of solution		
MgCl ₂	CaSO ₄	H ₂ ()	MgCl ₂	CaSO ₄	H₂O	
0.0 8.50 19.18 46.64	2.08 4.26 5.69 7.59	994.5	121.38 206.98 337.0 441.0		972.2 949.9 908.7 878.6	

(Cameron and Seidell, J. phys. Ch. 1901, **5.** 645.)

1 l. sat.  $MgCl_2+Aq$  at 25° containing 476.5 g.  $MgCl_2$  dissolves 1.09 g.  $CaSO_4$ . (Cameron and Brown, J. phys. Ch. 1905, **9**. 214.)

 $NH_4NO_3+Aq$ .

1 g. CaSO₄ is sol. in 320 ccm. sat. NH₄NO₃ +Aq at 8-9°; in 54 ccm.  $^{2}/_{9}$  sat. NH₄NO₃+ Aq at 13.5°; in 103 ccm.  $^{2}/_{27}$  sat. NH₄NO₃+Aq at 13.5°. (Fassbender.) Solubility of CaSO₄ in NH₄NO₈+Aq at 25°.

G. CaSO ₄ per l.
3.18
3.93
5.80
7.65
8.88
9.85
10.80
11.40
12.02
12.20
11.81
11.10
10.02
7.55

(Cameron and Brown, J. phys. Chem. 1905, **9.** 213.)

 $Ca(NO_3)_2 + Aq$ .

Solubility of CaSO₄ in Ca(NO₃)₂+Aq at

Weight of 1000 cc. of solution	G. Ca(NO ₃ ) ₂ per l.	G. CaSO ₄ per l.
998.1	0	2.084
1013.8	25	1.238
1031.7	50	1.196
1067.3	100	1.134
1136.9	200	0.929
1203.5	300	0.759
1265.6	400	0.569
1328.1	500	0.403
1352.0	544	0.346

(Seidell and Smith, J. phys. Chem. 1904, 8.

 $Mg(NO_8)_2+Aq.$ 

Solubility of CaSO₄ in Mg(NO₃)₂+Aq at

Weight of 1000 cc. of solution grams	G. Mg(NO ₃ ) ₂ per l.	G. CaSO ₄ per l.
998.1	0	2.084
1020.5	25	5.772
1039.8	50	7.884
1078.6	100	9.920
1149.8	200	13.340
1219.0	300	14.000
1282.1	400	14.683
1355.3	514	15. <b>04</b> 0

(Seidell and Smith, J. phys. Chem. 1904, 8. 497.)

1 l. sat.  $Mg(NO_8)_2+Aq$  at 25° containing 615.1 g.  $Mg(NO_8)_2$  dissolves 15.26 g. CaSO 4. (Cameron and Brown, J. phys. Ch. 1905, 9.

KNO₈+Aq.

1 g. CaSO₄ is sol. in 94 ccm. sat. KNO₂+Aq at 13.5°; in 82 ccm. sat. KNO₃+Aq at 15.5°; in 68 ccm. nearly sat. KNO₃+Aq at 20°. (Fassbender.)

#### Solubility in KNO₈+Aq at 25°.

Wt. of 1000 ccm. of solution grams	G. KNOs per l.	G. CaSO ₄ per 1.
998 1	0.0	2.084
1008.1	12 5	3.284
1015.4	25.0	4.080
1032.1	50.0	5.255
1062.5	100.0	6.855
1092.4	150.0	7.907
1122.4	200.0	8.688
1153.9	260.0	6.278
11,,,,,,		a 12.112

a Probably due to formation of double salt of calcium and potassium sulphates,  $CaK_2(SO_4)_2 + H_2O$ .

(Seidell and Smith, J. phys. Chem. 1908, 8. 496.)

NaNO₃+Aq.

1 g. CaSO₄ is sol, in 92 ccm. sat. NaNO₃ + Aq at 8.5°; in 318 ccm. ¹/₈ sat. NaNO₅ + Aq at 13.5°. (Fassbender.)

100 ccm. sat. NaNO₃+Aq dissolve 1.086 g. CaSO₄+2 $H_2$ O; 100 ccm.  $^{1}/_{8}$  sat. NaNO₃+Aq dissolve 0.314 g. CaSO₄+2 $H_2$ O. (Droeze, B, **10**. 338.)

#### Solubility in NaNO₃+Aq at 25°.

Wt. of 1000 ccm. of solution grams	G. NaNOs per l.	G CaSO ₄ per l.
998.1	0	2.084
1016.3 1034.0	$\begin{array}{c} 25 \\ 50 \\ \end{array}$	$\frac{4.252}{5.500}$
$1058.4 \\ 1133.6$	$\begin{array}{c} 100 \\ 200 \end{array}$	$7.100 \\ 8.790$
1191.6 1363.9	300 600	$9.282 \\ 7.886$
1390.4	655	7.23

(Seidell and Smith, J. phys. Chem. 1904, 8. 495.)

1 l. sat.  $NaNO_3+Aq$  at 25°, containing 668.4 g.  $NaNO_3$ , dissolves 5.52 g.  $CaSO_4$ . (Cameron and Brown, J. phys. Ch. 1905, **9**. 214.)

#### Solubility in KBr+Aq at 21°.

G. KBr	G. CaSO ₄	G. KBr	G. CaSO ₄ per l.
per l.	per l.	per l.	
0 10 20 40 60 80	2.05 3.1 3.6 4.5 5.2 5.9	100 125 150 200 250	6.3 6.7 7.0 7.3 Double salt.

(Ditte, A. ch. 1898, (7) 14. 294.)

KCl+Aq. 1 g. CaSO₄ is sol. in 162 ccm. sat. KCl+Aq at 8°; in 295 ccm.  $\frac{1}{1}$  sat. KCl+Aq at 9°.

Solubility in KCl+Aq at 21°.

g. I	g. per l.		g. per l.
KCl	CaS _' O ₄	KCl	CaSO ₄
0 10 20 40	2.05 3.6 4.5 5.8	60 90 100 105	6.6 7.2 7.5 Double Salt

(Ditte, A. ch. 1898, (7) 14. 294.

# Solubility in KI+Aq at 21°.

G. KI	G. CaSO ₄	G. KI	G. CaSO ₄ per l.
per l.	per l.	per l.	
0	2.05	100	5.1
10	2.8	125	5.45
20	3.2	150	5.8
40	3.9	200	5.95
60	4.5	250	6.00
80	4.85	300	Double salt.

(Ditte, l. c.)

NaCl+Aq.

Sol. in 12½ pts. sat. NaCl+Aq. (Anthon.) Insol. in sat. NaCl+Aq, but more sol. in dil. NaCl+Aq than in H₂O. Maximum solubility in NaCl+Aq is when the sp. gr. is 1.033.

1 g. CaSO₄ is sol. in 147 ccm. of sat. NaCl+Aq at  $8.5^{\circ}$ ; in 150 ccm. of sat. NaCl+Aq at  $13.5^{\circ}$ ; in 149 ccm. of  $^{1}/_{8}$  sat. NaCl+Aq at  $13.5^{\circ}$ ; in 244 ccm. of  $^{1}/_{8}$  sat. NaCl+Aq at  $13.5^{\circ}$ ; in 245 ccm. of  $^{1}/_{8}$  sat. NaCl+Aq at  $13.5^{\circ}$ . (Fassbender.)

100 ccm. sat. NaCl+Aq dissolve 0.6785 g. CaSO₄+2H₂O at 8.5°; 0.6665 g. CaSO₄+2H₂O at 13.5°. 100 ccm.  $\frac{1}{3}$  sat. NaCl+Aq dissolve 0.671 g. CaSO₄+2H₂O at 13.5°;  $\frac{1}{3}$  sat. NaCl+Aq dissolve 0.4085 g. CaSO₄+2H₂O at 13.5°. (Droeze.)

#### Solubility of CaSO₄ in NaCl+Aq at t°.

t°	% NaCl	CaSO4	t°	% NaCl	CaSO4
20 44 67 85 101	19.93 19.95 19.90	0.823 0.830 0.832 0.823 0.682	130 165 169 179 225	$20.04 \\ 20.05$	0.392 0.250 0.244 0.229 0.178

(Tilden and Shenstone, Roy. Soc. Proc. 38. 331.)

# Solubility of CaSO4 in NaCl+Aq at to.

	<u> </u>	100 ccm.		10	100 ccm.
t°	% NaCl	g. of CaSO ₄	t°	% NaCi	g. of CaSO ₄
21.5	3.53	0.5115	17.5	17.46	0.7369
19.5		0.6429			0.4891
21	11.12	0.7215	102.5	14.18	0.6248
18	14.18	0.7340	103	17.46	0.6299

(Lunge, J. Soc. Chem. Ind. 4. 31.)

100 pts. H₂O containing pts. NaCl dissolve pts. CaSO₄ at 20°.

Pts.	Pts.	Pts.	Pts.	Pts.	Pts.
NaCl	CaSO ₄	NaCl	CaSO ₄	NaCl	CaSO ₄
0.52	0.301 0.441	5.05 10.00 20.00	7.38	24.40. 35.10 35.86	

(Tilden and Shenstone.)

# Solubility in NaCl+Aq at 26°.

g. pe	g. per l.		g. per	wt. of	
NaCl	CaSO ₄	1 cc. solution	NaCl	CaSO ₄	solution
	6.66 7.18		176.50 228.76 264.17 320.49	$6.79 \\ 6.50$	1.1488 1.1707

(Cameron, J. phys. Ch. 1901, 5. 556.)

#### Solubility in NaCl+Aq at 15°.

G. CaSO ₄ per l.	G. NaCl per l.
2.3 2.5 3.1 3.7 4.8 5.6 7.4	0.6 1.1 5.1 10.6 31.1 51.4
7.4	139.9

(Cameron, J. phys. Ch. 1901, 5. 559.)

# Solubility in NaCl+Aq at 26°.

NaCl in 100 g. H ₂ O	CaSO ₄ in 100 g. H ₂ O
0.0000	0.2126
9.4307	0.6886
15.2056	0.7581
15.6859	0.7575
18.8570	0.7605
25.0478	0.7439
29.3509	0.7219
36.5343	0.6515

(Cameron, J. phys. Ch. 1901, 5. 564.)

# Solubility in NaCl+Aq.

30°		52	•	70	•	82	o
G. NaCl per l.	G. CaSO, per l.	G. NaCl per l.	G. CaSO ₄ per l.	G. NaCl per l.	G. CaSO ₄ per l.	G. NaCl per l.	G. CaSO, per l.
0.5 10.3 30.3 47.3 73.4 126.9 192.4	$\frac{3.6}{5.0}$	0.5 $1.1$ $5.0$ $10.1$ $29.6$ $48.3$ $75.7$ $131.6$ $195.9$	2.3 2.4 2.9 3.5 5.0 5.8 6.6 7.1 7.4	0.5 10.0 29.6 48.8 132.7 195.0		1.0 5.0 10.1 29.5 48.8	

(Cameron, J. phys. Ch. 1961, 5. 562.)

1 l. sat. NaCl+Aq at 25° containing 318.3 g. NaCl dissolves 5.52 g. CaSO₄. (Cameron and Brown, J. phys. Ch. 1905, **9.** 214.)

# Solubility in NaCl+Aq.

G. NaCl per l. of NaCl+Aq		CaSO ₄ dissolved litre		
or water and	nt 14°	at 20°		
0.0	1.70	2.10		
2.925	2.32	2.70		
5.850	2.79	3.15		
11.70	3.41	3.75		
14.62	3.68	4.00		
29.25	4.40	4.70		
58.50	5.72	6.00		
87.75	6.58	6.85		
102.3	6.90	7.15		
117.0	7.10	7.30		
131.6	7.20	7.30		
146.2	7.10	7.13		
160.8	7.00	7.05		
175.6	6.80	6.80		
204.7	6.30	6.30		
234.0	5.90	5.90		
263.2	5.50	5.52		
292.6	5.30	5.30		

(d'Anselme, Bull. Soc. 1903, (3) 29. 373.)

### Solubility in NaCl+Aq.

G. NaCl in 100 cc. solution	G. CaSO ₄ +2H ₂ O
0.00	0.200 g.
2.44 g.	0.635 g.
4.77 g.	0.826 g.
9.50 g.	1.056 g.
14.22 g.	1.193 g.
23.15 g.	1.275 g.
31.30 g.	1.583 g.

(Cloez, Bull. Soc. 1903, (3) 29. 167.)

#### Solubility in NaCl+Aq at t°.

When a sat. solution of NaCl is shaken with a mixture of solid NaCl and CaCO₄+2H₂O, the calcium sulphate dissolved, calculated from the amount of CaO it. solution, is always greater than that calculated from the sulphuric acid in solution. Similar results are obtained when solid calcium sulphate alone is shaken with a sat. solution of NaCl.

	In 100 g. of the solution				
t°	Cl	CuSU4 calc. from CaU	CaSO ₄ cale from SO ₈		
0	15.253	0.4464	0.4334		
10	15.920	0.4477	0.4426		
25	15.967	0 4609	0.4542		
40	16.123	0.4938	0.4730		
.50	16.270	0.5093	0.4832		
60-	16.324	0 5305	0.5047		
62.5	16.361		0.5091		
65	16.459	0 5435	0.3749		
71	16.486	0.5578	0.3631		
75	16.524	0.5693	0.3587		
85	16.670	0.5399	0.3519		
99	17.128	0 4066	0.3414		

(Arth, Bull. Soc. 1906, (3) **35.** 780.)

Within a temp. range from 25°-80° CaSO₄ CaSO₄ forms no double salt in solutions of NaCl. At any concentration with respect to the latter maximum solubility occurs with 155 g. NaCl per l. and amounts to 7.3 g. CaSO₄ at 80°. (Cameron, J. phys. Chem. 1907, 11. 496.)

See also under Gypsum, p. 653.

Solubility of CaSO₄ in NaCl+Aq in contact with solid Ca(HCO₃)₂.

G. CaSO ₄ per l.	G. Ca(HCO ₃ ) ₂ per l.	G. NaCl per l.
1.9298	0.0603	0.000
2.7200	0.0724	3.628
3.4460	0.0885	11.490
5.1560	0.1006	39.620
6.4240	0.0603	79.520
5.2720	0.0563	121.900
4.7860	0.0482	193.800
4.4620	0.0402	267.600

(Cameron and Seidell, J. phys. Chem. 1901, **5**. 653.)

(NH₄)₂SO₄+Aq. Sol. in 287 pts. (NH₄)₂SO₄+Aq (1:4). (Fresenius, Z. anal. 30. 593.) 1 g. CaSO₄ is sol. in 327 ccm. (NH₄)₂SO₄

1 g. CaSO₄ is sol. in 327 ccm. (NH₄)₂SO₄ +Aq at 9°; in 369 ccm. ¹/₇ sat. (NH₄)₂SO₄+Aq at 13.5°. (Fassbender.)

Solubility in sat. (NH₄)₂SO₄, or Na₂SO₄ is the same as in H₂O. (Droeze, B. 10. 330.)

Solubility in (NH₄)₂SO₄+Aq at 25°.

g. per l. solution		g. p		er I.		
O&(NH1)	CaSO.	wt. of 100 c solut on	OS4(1HN)	CaSO.	wt. of 100 cc. solution	
$\begin{array}{c} 0.258 \\ 0.82! \\ 1.643 \end{array}$	0.208 0.204 0.199 0.151 0.166 0.154	99.91 99.91 99.92 99.95 99.99 100.10	6.575 13.15 26.30 84.9 169.8 339.6	$\begin{array}{c} 0.162 \\ 0.233 \\ 0.333 \end{array}$	100.36 100.82 101.76 105.34 110.32 119.15	
(11 11	<del>-</del>	A OL .	O	1005 0	7 500 \	

(Sullivan, J. Am. Chem. Soc. 1905, 27. 529.)

Solubility in (NH₄)₂SO₄+Aq at 50°.

Sp. gr.	(NH ₄ ) ₂ SO ₄ per l.	CaSO ₄ per l.	Solid phase
1.0026 1.0113 1.0440 1.0819 1.1108 1.1385 1.1653	0 15.65 30.67 91.6 160.4 221.6 280.6 340.6	2.168 1.609 1.750 2.542 3.402 4.068 4.690 5.084	CaSO ₄ +2H ₂ O
1.1972 1.1964 1.2043 1.2187 1.2437 1.2480 1.2502 1.2508 1.2510	415.6 416.5 428.4 479.4 530.8 558.0 564.7 566.0 566.7	5.336 5.354 4.632 3.524 2.152 1.986 1.98 1.08	CaSO4, (NH4)2SO4+ 2H2O (NH4)2SO4

(Bell and Taber, J. phys. Chem. 1906, 10.

Solubility of CaSO₄ in (NH₄)₂SO₄+Aq at t°.

Excess of (NH ₄ ) ₂ SO ₄			E	xcess of Ca	SO4
t°	CaSO,	OS ² ('HN')	t°	% CaSO.	082 ('HN)
6 40.5 58 78 100	0.1529 0.1569 0.1662 0.1968 0.2546	41.82 44.55 46.07 47.51 49.45	3 31 60 75 80 84 100	0.3782 0.4070 0.5083 0.5898 0.6108 0.5725 0.4895	36.62 35.50 34.97 34.86 34.88 32.40 25.97

(Barre, C. R. 1909, 148. 1605.)

The solubility of CaSO₄ in H₂O is considerably increased by the presence of (NH₄)₂SO₄

but decreased by the presence of K2SO4. (Barre, C. R. 1909, 148, 1606.)

CuSO4+Aq. Solubility in CuSO₄+Aq at 25°.

Sp. gr. of the solution 25°/25°	g. CuSO4 per l.	g. CaSO ₄ per l.
1.002	1.144	2.068
1.005	3.564	1.986
1.007	6.048	1.944
1.009	7.279	1.858
1.016	14.814	1.760
1.021	19.729	1.736
1.030	29.543	1.688
1.041	39.407	1.718
1.051	49.382	1.744
1.061	58.880	1.782
1.098	97.950	1.931
1.146	146.725	2.048
1.192	196.021	2.076
1.218	224.916	2.088

(Bell and Taber, J. phys. Ch. 1907, 11, 637.)

 $MgSO_4+Aq$ .

Insol. in sat. MgSO₄+Aq.

1 g. CaSO₄ is sol. in 1162 ccm. 1/10 sat.  $MgSO_4+Aq$  at 13.5°. (Fassbender, B. 9. 1360.)

Sol. in 635 pts. sat. MgSO₄+Aq at 19°. (Karsten.)

Absolutely insol. in sat. MgSO₄+Aq, and pptd. from aqueous solution by the addition of MgSO₄. (Droeze, B. 10. 340.)

1l.  $^{1}\!/_{10}$ sat. MgSO₄+Aq dissolves 0.86 g. CaSO₄+2H₂O. (Droeze.)

Solubility in MgSO₄+Aq at 25°.

g. pe	g. per l.		g. per l.		Sp. gr.
MgSO ₄	CaSO ₄	at 25°/25°	MgSO ₄	CaSO ₄	25°/25°
0.0 3.20 6.39 10.64 21.36 42.68 64.14	1.507 1.471 1.478 1.558	$\begin{array}{c} 1.0055 \\ 1.0090 \\ 1.0118 \\ 1.0226 \\ 1.0419 \end{array}$	149.67 165.7 171.2 198.8 232.1 265.6 298.0	1.597 1.549 1.474 1.422 1.254 1.070 1.860	$1.2095 \\ 1.2382$
	1.617 1.627	1.0833 1.1190	$330.6 \\ 355.0$	$0.647 \\ 0.501$	$1.2877 \\ 1.3023$

(Cameron and Bell, J. phys. Ch. 1906, 10. 210.)

 $K_2SO_4+Aq$ . 1 g. CaSO₄ is sol. in 2325 ccm. sat.  $K_2SO_4+Aq$ . at 13.5°; in 664 ccm.  $^{1}/_{5}$  sat.  $K_2SO_4+Aq$ at 13.5.

Solubility	in	K ₂ SO ₄ +Aq	at 25°.
------------	----	------------------------------------	---------

<b>g</b> . p	g. per l.			
K2SO4	CaSO ₄	wt. of 1 cc. of solution		
0.0	2.08	0.9981		
4.88	1.60	1.0036		
5.09	1.56	1.0038		
9.85	1.45	1.0075		
19.57	1.49	0.151		
28.35	1.55	1.0229		
30.66	1.57	1.0236		
32.47*	1.58			

*Solid phase syngenite.

(Cameron and Breazeale, J. phys. Ch. 1904, 8. 335.

Solubility in K₂SO₄+Aq. at 25°. In 1000 g. of the solution

mole K2SO4 mole CaSO4.

3.2230.223(D'Ans, Z. anorg. 1909, 62. 151.)

Solubility of CaSO₄ in K₂SO₄+Aq at t°.

	Excess of K:	8O4	Excess of	f CaSO ₄
t,°	CaSO ₁	K ₂ SO ₄	Ca50,	7, K2SO,
0 18 51 .80 99	0.1296 0.1531 0.1754 0.1922 0.1980	2.00 2.79 4.21 5.00 5.39	0.0229 0.0271 0.0300 0.0349 0.0371	6.99 9.81 14.18 17.55 19.70

(Barre, C. R. 1909, 148, 1606.)

 $Ag_2SO_4+Aq$ .

1 l. of the solution contains 2.31 g. CaSO₄ +7.23 g. Ag₂SO₄=9.54 g. mixed salts at 17°. Sp. gr. = 1.0083.

1 l. of the solution contains 2.61 g. CaSO₄+ 8.11 g.  $Ag_2SO_4 = 10.72$  g. mixed salts at 25°. Sp. gr. = 1.010. (Euler, Z. phys. Ch. 1904, 49. 313.)

 $Na_2SO_4+Aq$ . 1 g. CaSO₄ is sol. in 398 ccm. sat.  $Na_2SO_4+$ Aq at 10.5°.

# Solubility of CaSO₄ in Na₂SO₄+Aq at 22°

•	G. CaSO ₄ per l.	G. Na ₂ SO ₄ per l.
	2.084 1.583	0.000 2.771
	$\frac{1.433}{1.408}$	13.820 16.360
	$\frac{1.569}{1.841}$	39.310 77.320
	$2.185 \\ 2.414$	133.00 193.800
	*2.578	*222.580

*Both CaSO₄ and Na₂SO₄ as solid phases ill contact with the solution.

(Cameron and Seidell, J. phys. Chem. 1901, 5.

Solubility in Na ₂ SO ₄ +Aq at 25°.					
wt. of 1000 ccm. of solution grams	g. Na ₂ SO ₄ per !.	g. CaSC, per l.			
1001 .26 1007 .59 1011 .45 1020 .46 1031 .48 1039 .12 1079 .47 1096 .47 1142 .66	2.390 9.535 14.132 24.369 36.979 46.150 94.220 115.084 146.612	1.650 1.457 1.388 1 471 1.563 1.650 1.980 2.096 2.234			
$1176.47 \\ 1212.00$	$205.105 \ 257.100$	$2.503 \\ 2.650$			

(Cameron and Breazeale, J. phys Chem. 1904, 8, 340.)

1 l. sat. Na₂SO₄+Aq at 25° containing 254.09, Na₂SO₄ dissolves 2.58 g. CoSO₄... (Cameron and Brown, J. phys. Ch. 1905, ? **214**.)

Hydration is retarded by dil. solutions and accelerated by conc. solution of sodium, potassium, ammonium and magnesium sulphates. (Rohland, Z. Elektrochem. 1908, **14.** 422.)

More than 10 times as much CaSO₄ dissolves in sat.  $Na_2S_2O_8+Aq$  as in  $H_2O$ . (Diehl. Insol. in alcohol. of 0.905 sp. gr. or less.

(Anthon, J. pr. 14. 125.)

Solubility in 10% alcohol=0.0970 g. CaSO₄ per 100 g. solution. Gazz. Ch. it. 1901, **31.** (2) 544.) (Magnanini,

Sol. in dil. alcoholic solutions of NH4NO3 KNO₃, NaNO₃, NH₄Cl, KCl, and NaCl. (Margueritte, C. R. **38**, 308.)

Sol. to considerable extent in NH₄C₂H₃O₂ + Aq, especially if freshly pptd. More sol. in NH₄C₂H₃O₂+Aq than in NH₄Cl+Aq. (Weppen, J. pr. 11. 182.)

More sol. in NH₄C₂H₃O₂+Aq than in other

NH₄ salts. (Cohn, J. pr. (2) **35.** 43.) More sol. in NaC₂H₃O₂+Aq or KCl+Aq

than in H₂O. (Mulder.)

Solubility in N/200 potassium hydrogen tartrate + Aq = 0.2323 g. CaSO₄ per 100 g. solution. (Magnanini, Gazz. ch. it. 1901, 31. (2) 544.)

72.61 millimols. per l. of CaSO₄+2H₂O are sol. at 25° in ammonium citrate+Aq (con-

centration = 0.5 millimols. per l.) 36.39 millimols per l. of CaSO₄ +2H₂O are (Consol. at 25° in sodium citrate+Aq. centration = 0.25 millimols per l. (Rindell, Z. phys. Ch. 1910, 70. 452.)

100 pts. glycerine dissolve 0.957 pt. CaSO₄ +2H₂O, and solubility increases with the temp. (Asselin, C. R. 76. 884.)

100 g. glycerine (sp. gr. 1.256) dissolve 5.17 g. CuSO₄ at 15–16°. (Ossendowski, Pharm. J. 1907, **79**. 575.) Solubility in 10% alcoholic N/200

 $KHC_2H_4O_6+Aq=0.0866$  g. CaSO₄ per 100 g. solution.

Solubility in N/200 KHC2H4O6+Aq+ 5% tartaric acid =0.2556 g. CaSO4 per 100 g solution. Solubility 10%alcoholic in

KHC2H4O6+5% turtaric acid=0.1086 g. CaSO4 in 100 g. so ation. (Magnanini.)

Ins l. in metnyl acetate. (Naumann, B. 1909, 42. 3790); ethylacetate. (Naumann. B. 1910**, 43.** 314.)

Solubilit in sugar + Aq at t°.

56	G CaSO4 dissolved in 1 ', sugar solutions						
nvar	30°	40°	50°	co,	700	80°	
()			1.730				
$\frac{10}{20}$	$\begin{bmatrix} 2.041 \\ 1.808 \end{bmatrix}$	1.652	1.419	1.380	1.419	1.263	
$\frac{27}{35}$	1.550		1 361 1.988				
42	1.030		$0.777 \\ 0.739$	0.816	0.855	0.729	
49 55		$0.364 \\ 0.486$					

(Stolle, Z. Ver. Zuckerind, 1900, 50. 331).

Min. Anhydrite.

+2H₂O. Min. Gyp:um.

Gypsum, A sat. aq. solution of gypsum of particles not less than  $2\mu$  contains 2.085 g. CaSO₄ per litre at 25°.

A sat. aq. solution of gypsum of particles not smaller than 0.3\mu contains 2.476 g. CaSO₄ per liter at 25°. ( $\mu = 0.0001$  cm.) (Hulett and Allen, Z. phys. Ch. 1901, 37. 391 and 393.)

Solubility in H₂O at t°.

t°	g. CaSO ₄ in 100 ccm. of the solution	Density of the solution at t°
0	0 17590	1.001970
10	0.19285	1.001727
18	0.20160	1.000590
25	0.20805	0.999109
30	0.20905	0.997891
35	0.20960	0.996122
40	0.20970	0.994390
45	0.20835	0.992370
55	0.20095	0.987960
65.3	0.19320	0.982560
75	0.18475	0.977724
100	0.16195	

(Hulett and Allen, J. Am. Chem. Soc. 1902, **24.** 674.)

1 l. H₂O dissolves 2.13 g. CaSO₄+2H₂O at . (Euler, Z. phys. Ch. 1904, 49. 314.)

2023 mg. are dissolved in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64.

1 l. H₂O dissolves 2.267 g. CaSO₄+2H₂O at 0°; 2.684 g. at 35°; 2.662 g. at 50°; and 2.155 g. at 100°. (Cavazzi, C. C. 1905; L. 1693.)

1 1. H.O dissolves 29.5 milliequivalents at 18°; 30 at 50°; 23.3 at 100°. (Melcher, J. Am. Chem. Soc. 1910, 32. 63.)

See also under CaSO.

Solubility of pulverized gypsum in NaCl+Aq at 23

Grams gypsum	G. NaCl per l.	G. CaSO ₄ per l.			
2.99	0.99	2.37			
3.82	4.95	3.02			
4.48	10.40	3.54			
6.31	30.19	4.97			
7.51	49.17	5.94			
8.53	75.58	6.74			
9.42	129.50	7.50			
9.17	197.20	7.25			
8.88	229.70	7.03			
7.19	306.40	5.68			
6.79	315.55	5.37			

(Cameron, J. phys. Chem. 1901, 5, 559.) See also under CaSO₄.

+ 1/2H₂O. Plaster of Paris contains 1/2H₂O according to Chatelier (C. C. 1889, 1, 203).

#### Calcium hydrogen sulphate, $CaH_2(SO_4)_2$ .

100 pts. H₂SO₄ of 1.82 sp. gr. dissolve about 2 pts. CaSO₄; 100 pts. fuming H₂SO₄ dissolve 10.17 pts. CaSO₄ (Struve, Z. anal. 9. 34); 100 pts. H₂SO₄ dissolve 2.5 pts. CaSO₄ (Lies-Bodart and Jacquemin, C. R. **46**, 1206); CaSO₄ is precipitated by H₂O from H₂SO₄ solution.

100 pts. boiling H₂SO₄ dissolve 10 pts. CaSO₄. (Schultz, Pogg. 133. 137.)

Solubility of CaSO₄ in H₂SO₄+Aq.

wt. of 1000 cem. of	g. H ₂ SO ₄	g. (	CaSO ₄ per	per l. at	
solution at 25°	per l.	25°	35°	43°	
999.1067 1002.493 1002.553 1005.091 1009.787 1030.151 1043.470	0.00 0.48 4.87 8.11 16.22 48.67 75.00	2.126 2.128 2.144 2.203 2.382 2.727 2.841	2.209 2.451  3.397	2.145 2.236 2.456 2.760 3.116 3.843 4.146	
1075.613 1113.392 1141.755 1168.143	97.35 146.01 194.70 243.35 292.02	2.779 2.571 2.313 1.901 1.541	3.606 3.150	4.139 3.551 2.959 2.481	

(Cameron and Breazeale, J. phys. Chem. 1903, **7.** 574.)

100 pts. hot conc. H₂SO₄ dissolve approx. 10 pts. CaSO₄. (Rohland, Z. anorg. 1910, 66. 206.)

Decomp. by H₂O.

Calcium hexahydrogen sulphate, CaH₅(SO₄)₄. Decomp. by H₂O. (Schultz, Pogg. 133.

Calcium cupric potassium sulphate,  $Ca_2K_2Cu(SO_4)_4+2H_2O$ . (D'Ans, B. 1908, 41. 1778.)

Calcium magnesium potassium sulphate, 2CaSO₄, MgSO₄, K₂SO₄+2H₂O.

Min. Polyhalite. Sol. in H₂O with residue of CaSO4. 4CaSO₄, MgSO₄, K₂SO Krugite. Decomp. by H₂O.  $MgSO_4$ ,  $K_2SO_4+2H_2O$ . Min.

Calcium potassium sulphate, CaK₂(SO₄)₂+ H₂O.

Min. Syngenite. Sol. in 400 pts.  $H_2O$ . (Zepharovitch.) Less sol. than K2SO4. Decomp. by heating with separation of CaSO. Decomp. by H₂O until 25 g. K₂SO₄ are dissolved in a litre, after which there is no decomposition. (Ditte, C. R. 84. 86.)

Easily sol. in dil. acids. (Phillips.)

Solubility of syngenite,  $CaK_2(SO_4)_2 + H_2(O)$  in  $K_2SO_4 + Aq$  at 25°.

Wt. of 1000 ccm. of solution grams	g. K ₂ SO ₄ per l.	g. CaSO ₄ per l.
1013.08	16.31	*1.495
1015.78	19.87	1.529
1020.01	25.01	1.537
1024.54	30.83	1.565
1036.82	46.99	0.810
1058.10	75.45	0.451
1085.91	112.87	0.330

*In first four determinations syngenite completely decomposed. (Cameron and Breazeale, J. phys. Chem. **1904**, **8**. 339.)

This double salt is stable between 0° and 99° in the presence of an excess of either CaSO₄ or K₂SO₄. In this temp, interval the double sulphate, 2CaSO₄, K₂SO₄, 3H₂O described by Ditte (C. R. 84, 867) does not exist. (Barre, C. R. 1909, 148, 1607.)

Ca₂K₂(SO₄)₃+3H₂O. Decomp. by cold

H₂O. (Ditte, C. R. 84. 867.) 5CaSO₄, K₂SO₄+H₂O. Slowly decomp. by H₂O. (van't Hoff and Geiger, B. A. B. **1904.** 935.)

Calcium potassium zinc sulphate,  $\operatorname{Ca_2K_2Zn}(\operatorname{SO_4})_4 + 2\operatorname{H_2O_1}$ (D'Ans, B. 1908, 41. 1778.)

Calcium rubidium sulphate, Ca₂Rb₂(SO₄)₃. (D'Ans, B. 1907, 40. 4913.) +3H₂O. Decomp. by H₂O. (Ditte, C. R. **84.** 86.)  $CaRb_2(SO_4)_2 + H_2O$ . (D'Ans.)

#### Calcium sodium sulphate, CaNa₂(SO₄)₂.

Gradually sol. in H₂O. Min. Glauberite. but crystals of CaSO4+2H2O soon separate out. (Fritzsche.)

Insol. in alcohol, and conc. NaC₂H₃O₂+Aq; decomp. by H₂O. (Folkhard, C. N. 43.

 $CaNa_4(SO_4)_3 + 2H_2O$ . Decomp. by  $H_2O$ . (Fritzsche.)

# Calcium titanium sulphate, CaSO₄, Ti(SO₄)₂.

Ppt.; decomp. by H₂O giving titanic acid. (Weinland, Z. anorg. 1907, 54. 254.)

#### Calcium uranium sulphate.

Min. Uranochalcite.

Min. Medjidite. Easily sol. in dil. HCl+ Aq.

# Cerous sulphate, Ce₂(SO₄)₈.

Anhydrous cerous sulphate is much more

sol, in H₂O than the hydrated salt.

Easily sol. in cold H₂O if added thereto in small amounts. If large amount of Ce₂(SO₄)₃ is treated with a little H₂O it hardens with evolution of heat, and becomes very difficultly soluble. 100 pts.  $H_2O$  dissolve 161 pts.  $Ce_2(SO_4)_3$  at 0° and 17.86 pts. at 19°.

Ce₂(SO₄)₃+Aq sat. in cold deposits Ce₂(SO₄)₃ at 75°, and only 2.25 pts. remain in solution at 100°. (Jolin, Bull. Soc. (2) 21.

 $100 \text{ pts. H}_2\text{O}$  dissolve 8.31 pts.  $\text{Ce}_2(\text{SO}_4)_3$  at

20°; 8.08 pts. at 45°; 4.95 pts. at 60°; 0.504 pt. at 100°. (Bührig, J. pr. (2) **12**. 240.)

60 pts. anhydrous salt dissolve quickly at

0-3° in 100 pts. H₂O.

At 15° the solution solidifies, and the mother liquor contains only 27.88% Ce₂(SO₄)₈. At 15° the maximum attainable strength is 31.62% Ce₂(SO₄)₈. (Brauner, Chein. Soc. 53. 357.)

100 pts. H₂O dissolve 10.747 pts. Ce₂(SO₄)₈

at 16°; 9.648 pts. at 19°; 6.949 pts. at 33°.

The solubility of Ce₂(SO₄)₃ in H₂O is diminished by the addition of (NH₄)₂SO₄, K₂SO₄ or Na₂SO₄. (Barre, C. R. 1910, **151**. 872.)

Sp. gr. of Ce₂(SO₄)₈+Aq was found to be constant whether Ce₂(SO₄)₃ or Ce₂(SO₄)₃+8H₂O was used. The following results were obtained at 15°.

Pts. Ce ₂ (SO ₄ ) ₂ to 100 pts. H ₂ O	Sp. gr.	Pts. Ce ₂ (SO ₄ ) ₃ to 100 pts. H ₂ O	Sp. gr.
3.17 6.11 8.35 9.61 10.55 11.66	1.03005 1.05812 1.07910 1.09085 1.09939 1.10987	12.66 14.56 15.64 21.19 31.62	1.11917 1.13665 1.14623 1.19640 1.28778

(Brauner, Chem. Soc. 53. 357.)

4.5 pts. Ce2(SO4)3 dissolve in 100 pts. H₂SO₄. (Wyrouboff, Bull, Soc. (3) 2, 745.)

Solubility in (Ntf4)2SO4+Aq at 16°.

Per 100 pts H ₂ O				
Ce2(SO ₄ ) ₃				
10.747 1.026 0.782 0.748 0.701 0.497 0.194 0.090 0.035				

(Barre, A. ch. 1911, (8) 24. 252.)

Solubility in Na₂SO₄+Aq at 19°-20°.

· Per 100 pts. H ₂ O				
Na ₂ S() ₄	Ce ₂ (S() ₄ ) ₃			
0.00 0.328 0.684 1.091 1.392 1.699 2.640 3.589 5.660 7.710	9.64 0.637 0.259 0.0937 0.057 0.0303 0.012 0.0065 0.0046 0.0037			

(Barre, A. ch. 1911, (8) 24. 251.)

Solubility in K₂SO₄+Aq at 16°.

Per 100 pts. H ₂ O			
K ₂ SO ₄ Ce ₂ (SO ₄ ) ₈			
0.00 0.178 0.510 0.726 1.290	10.747 0.956 0.432 0.250 0.0419		

(Barre, A. ch. 1911, (8) 24. 248.)

+4H₂O. 100 g. H₂O dissolve at:

35° 40° 50° 57°

8.5 6.04 3.43 2.34 g. Ce₂(SO₄)₃.

70° 82° 100.5° bpt. of sat, solution. 1.883 1.38 1.01 0.43 g.  $Ce_2(SO_4)_8$ . (Koppel, Z. anorg. 1904, 41. 399.)

+5H₂O.

100 pts. H₂O dissolve pts. Ce₂(SO₄)₃ at t°.

t°	Pts. Ce2(SO4) 3
100	0.775
80	1.70
60	3.45
50	5.56
40	8.20

(Muthmann and Rolig, Z. anorg. 1898, 16. 456.)

100 g. H₂O dissolve at:

45° 60° 70°

8.833 3.247 1.929 g. Ce₂(SO₄)₈.

80° 90° 100.5° bpt. of sat. solution. 1.207 0.8355  $0.469 \text{ g. Ce}_2(SO_4)_3.$ 

Muthmann and Rolig's determinations are inaccurate. (Koppel.)

 $+8H_2()$ . 100 pts.  $H_2O$  dissolve 14.92 pts.  $Ce_2(SO_4)_3$  at 20° from  $Ce_2(SO_4)_3+8H_2O_3$ (Jolin.)

100 pts. H₂O dissolve pts. Ce₂(SO₄)₃ at t°.

t°	Pts. Ce ₂ (SO ₄ ) ₃	t°	Pts. Ce ₂ (SO ₄ ) 3
0	19.10	50	12.48
18	17.32	60	9.40
30	16.13	70	4.24

(Muthmann and Rolig.)

100 g. H₂O dissolve at:

n° 15° 20.4°

10.09 11.06  $9.525 \text{ g. } \text{Ce}_2(\text{SO}_4)_3$ 

30° 40° 50° 60° 7.388 5.947 4.785

4.064 g.  $Ce_2(SO_4)_3$ . Previous determinations are inaccurate. (Koppel, Z. anorg. 1904, 41. 395.)

100 g. sat. solution at 25° contain 7.60 g. anhydrous salt. (Wirth, Z. anorg. 76. 174.)

Solubility in H₂SO₄+Aq at 25°. Solid phase  $Ce_2(SO_4)_3 + 8H_2O$ .

Normality	In 100 g. of the liquid are dissolved		
H ₂ SO ₄	g. Ce ₂ O ₃	g. Ce2(SO4)3	
0	4.604	7.60	
0.1	4.615	7.618	
1.1	3.64	6.00	
2.16	3.04	5.018	
4.32	2.0	3.301	
6.685	0.9115	1.505	
9.68	0.4339	0.733	
15.15	0.145	0.239	

(Wirth, Z. anorg. 1912, **76.** 191.)

+9H₂O. 100 pts. H₂O dissolve 17.52 pts.  $Ce_2(SO_4)_3$  from  $Ce_2(SO_4)_3 + 9H_2O$ . (Brauner. | 1904, 37. 146.)

100 g. H₂O dissolve at:

0° 21° 15° 31.2° 30° 20.98 11.87 9.725 7.353 7.185 g. Ce₂(SO₄)₃, 50° 60° 65°

7.164 5.13 4.673 3.88 3.595 g. Ce₂(SO₄)₂. (Koppel.)

+12H₂O.

100 pts. H₂O dissolve pts. Ce₂(SO₄)₃ at t°.

t°	Pts. Ce2(SO4)3
0	21.40
18	18.44
25	16.22

(Muthmann and Rolig, Z. anorg. 1898, 16. 457.)

100 g. H₂O dissolve at:

18.8° 19.2° n٥

16.56 17.52 17.70 g.  $Ce_2(SO_4)_3$ .

Previous determinations are inaccurate. (Koppel.)

Ceroceric sulphate,  $Ce_2(SO_4)_8$ ,  $2Ce(SO_4)_2$ + 24H₂O.

Decomp. by H₂O. Sol. in HCl+Aq with decomp. (Mendelejeff, A. **168. 45**.) Ce₂(SO₄)₃, 3Ce(SO₄)₂+31H₂O. (Jolin.)

Ceric sulphate, basic, CeO₂, SO₂+2H₂O.

Very sl. sol. in  $H_2O$ .

Sol. in 2500 pts. H₂O. (Mosander.)

Boiling H₂O gradually dissolves out H₂SO₄. (Erk.)

Sol. in acids.

8CeO₂, 7SO₃+12H₂O; 8CeO₂, 7SO₃+ 15H₂O; 6CeO₂, 5SO₃+5H₂O; 4CeO₂, 3SO₃+ 7H₂O; and 3Ce(SO₄)₂, 5Ce(OH)₄. All are insol. ppts.

Ceric sulphate, Ce(SO₄)₂.

Anhydrous. Very slowly sol. in cold, more rapidly in hot H2O. When solution has once begun, almost unlimited quantities may be dissolved. Insol. in conc. H₂SO₄. (Meyer, B. 1904, **37**. 144.) +4H₂O. Sol. in H₂O with immediate de-

comp. (Rammelsberg.)

Decomp. by H₂O. (Muthmann, B. 1900, **33.** 1764.)

Cerous hydrogen sulphate, Ce₂(SO₄)₃, 3H₂SO₄ Decomp. by H₂O. (Wyrouboff, Bull. Soc. (3) 2. 745; Brauner, Z. anorg. 1904, 38. 329.)

Ceroceric hydrogen sulphate, Ce₂H(SO₄)₄+ 13H₂O.

Sol. in H₂O. Forms very supersat. solutions.

Solubility in H₂SO₄ decreases with increase in concentration of the acid. (Meyer, B. Cerous potassium sulphate, Ce2(SO4)3, K2SO4 by further addition of H2O, which redissolves +2H₂O

Sl. sol. in H₂O; insol. in sat. K₂SO₄ | Aq.

(Czudnowicz, J. pr. 80. 26.) 2Ce₂(SO₄)₃, 3K₂SO₄. As above. (Hermann, J. pr. 30. 188.)

+8H₂O. (Barre, A. ch. 1911, (8) **24.** 249.)  $Ce_2(SO_4)_3$ ,  $2K_2SO_4+3H_2O$ . As above.

Ce₂(SO₄)₈, 3K₂SO₄. Sol. in about 56 pts.

H₂O at 9-20°. Easily sol. in acidified H₂O. Nearly insol. in sat. K₂SO₄+Aq. (Jolin.) Ce₂(SO₄)₈, 5K₂SO₄. Insol. in K₂SO₄+Aq.

(Barre, l.c.)

Ceric potassium sulphate, Ce(SO₄)₂, 2K₂SO₄ +2H₂O.

Sl. sol. in H₂O with decomp. Insol. in sat  $K_2SO_4 + Aq$ .

Ceric silver sulphate,  $10\mathrm{Ce}(\mathrm{SO_4})_2$ ,  $6\mathrm{Ag_2SO_4}$ . Only sl. sol. in cold H₂O; decomp, by hot

H₂O in which it is readily sol. (Pozzi-Escot, C. R. 1913, **156**. 1074.)

Cerous sodium sulphate, Ce₂(SO₄)₃, Na₂SO₄+ 2H₂O.

Very sl. sol. in H₂O, and still less in Na₂SO₄+Aq. 100 ccm. sat. Na₂SO₄+Aq dissolve an amount corresponding to 6.2 mg. Ce₂O₃. (Jolin.)

Sl. sol. in HCl+Aq. (Czudnowicz.)

Cerous thallous sulphate, Ce₂(SO₄)₃, 3Tl₂SO₄.

Ce₂(SO₄)₃, Tl₂SO₄+2H₂O. Sol. in H₂O. (Zschiesche, J. pr. **107**. 98.) +4H₂O. Very sl. sol. in cold, somewhat more in warm H₂O. (Wyrouboff, Bull. Soc. Min. 14. 83.)

Cerous tin (stannic) hydrogen sulphate, CeHSn(SO₄)₄.

Decomp. by  $H_2O$ . Sol. in very dil. HCl. (Weinland, Z. anorg. 1907, **54.** 251.)

Chromous sulphate,  $CrSO_4 + 7H_2O$ .

100 pts. H₂O dissolve 12.35 pts. CrSO₄+ 7H₂O. Aqueous solution can be boiled without decomp. Sl. sol. in alcohol.

+H₂O. (Moissan, Bull. Soc. **37.** 296.)

Chromic sulphate, basic,  $3Cr_2O_3$ ,  $2SO_3 + 12H_2O = 2Cr_2(SO_4)(OH)_4$ ,  $Cr_2(OH)_6 + 12H_2O = 2Cr_2(SO_4)(OH)_4$  $5H_2O$ .

Insol. in H₂O. Sol. in acids. Slowly decomp. by KOH+Aq or K₂CO₃+Aq.

5Cr₂O₃, 3SO₃. Sol. in H₂O. (Recoura, C. R. 112. 1439.)

 $Cr_2O_3,\ SO_3=Cr_2O_2(SO_4).\quad Ppt.\quad (Schiff,\ A.$ **124.** 167.)

 $+10H_2O$  or  $[Cr(OH)_2(OH_2)_4]_2SO_4$ . Nearly insol. in H₂O. (Werner, B. 1908, 41. 3451.)

little H₂O, but a precipitate is thrown down | Z. anorg. 1906, 49. 157.)

on evaporation.

5Cr₂O₃, 12SO₃ (?), (Siewert.) 2Cr₂O₃, 5SO₃+15H₂O. Sol. in H₂O; insol. in alcohol and acetere by which it is ppt. from aqueous solution. (Nicolardot, C. R. 1907, **145.** 1338.)

Chromic sulphate,  $Cr_2(SC_4)_3$ .

Insol. in H₂O, HNO₃, HCl, Anhydrous H₂SO₄, agua regia and NH₄OH+Aq. Decomp. by boiling caustic alkalies, and slowly by alk h carbonates+Aq. (Schrötter.) According to Traube (A. 71. 92) and Siewert (A. 126. 94), Schrotter's salt is an acid sulphate, .  $Cr_4(SO_4)_5(OSO_2OH)_2 = 2Cr_2(SO_4)_5$ ,  $H_2SO_4$ . According to Etard (Bull. Soc. (2) 31. 200) H₂SO₄. both salts exist, and formula of above salt is  $Cr_2(SO_4)_cCr_2$ . Formula is  $2[(Cr_2O_3)_2, (SO_3)_6]$ ,  $17H_2SO_4$  (?). (Cross and Higgins, Chem. Soc. 41. 113.)

Insol. in methyl acetate. (Naumann, B. 1909. 42. 3790); ethyl acetate. (Naumann. B. 1910, **43.** 314.)

+6H₂O (?). Green modification. Readily sol. in H₂O or alcohol. Sol. in conc. H₂SO₄. H₂O solution is converted into the violet modification by standing 3-4 weeks. (Schrötter.)

+11H₂O (?). Extremely deliquescent; becomes liquid in moist air in 2 minutes. Not pptd. by BaCl₂+Aq. (Recoura, C. R. **113**. 857.)

+18H₂O. Violet modification. Sol. in 0.833 pt. H₂O at 20°. When the H₂O solution is heated to 65-70° it begins to be converted into the green modification. This conversion is also brought about by cold HNO3, H2SO4, PCl₃. (Étard, C. R. **84.** 1090.)

Sp. gr of aqueous solution of violet modi-

fication of  $Cr_2(SO_4)_8$  containing:

 $20\% \text{ Cr}_2(SO_4)_3 + 18H_2O_7$ 10 1.0275 1.0560 1.1150

 $50\% \text{ Cr}_2(SO_4)_3 + 18H_2O.$ 1.2480 1.17851.3250

Sp. gr. of aqueous solution of green modification of Cr₂(SO₄)₈ containing:

30% Cr₂(SO₄)₃+18H₂O, 20 10 1.1070 1.1680 1.0510

 $60\% \text{ Cr}_2(SO_4)_3 + 18H_2O_7$ 50 1.38251.2340 1.3055

 $80\% \text{ Cr}_2(SO_4)_8 + 18HO_2.$ 1.4650 1,5535

(Gerlach, Z. anal. 28. 494.)

See also Chromosulphuric acid.

Chromic hydrogen sulphate,  $Cr_2(SO_4)_3$ ,  $H_2SO_4$ +16H₂O.

Two modifications.

a. Violet. Decomp. by H₂O.

5Cr₂O₃, 8SO₃ (?). (Siewert, A. **126.** 97.) b. Green. Obtained from violet modification on heating. Sol. in H₂O. (Weinland,

+24H₂O. Decomp. by alcohol, giving the

normal sulphate. (Weinland.) Cr₂(SO₄)₃, 2H₂SO₄+18H₂O. Decomp. by H₂O. (Weinland.) Hygroscopic.

 $2Cr_2(SO_4)_3$ ,  $H_2SO_4 = Cr_4 \frac{(OSO_2OH)_2}{(SO_2OH)_2}$ (SO₄)₅.

Correct composition of Cr₂(SO₄)₈ (Traube), which see.

See also Chromosulphuric acid.

Chromic cupric sulphate,  $Cr_2(SO_4)_2$ ,  $2CuSO_4$ , H2SO4

Insol. in  $H_2O$ , but gradually decomp. thereby. (Étard, C. R. 87. 602.)  $Cr_2O_3$ , CuO,  $4SO_3$ .

Insol. in H₂O. (Recoura, C. R. 1893, 117.

Chromous hydrazine sulphate, CrSO₄, 2N₂H₄, H₂SO₄.

Only sl. sol. in H₂O. Sol. in acids. (Traube B. 1913, 46. 1507.)

Chromic hydroxylamine sulphate,  $Cr_2(SO_4)_3$ ,  $(NH_2OH)_2SO_4 + 24H_2O$ .

Sol. in  $H_2O$ . (Meveringh.)

Chromic iron (ferrous) sulphate,  $Cr_2(SO_4)_3$ ,  $2\text{FeSO}_4$ ,  $\text{H}_2\text{SO}_4 + 2\text{H}_2\text{O}$ .

As above. (Étard, l.c.)

Chromic iron (ferric) sulphate,  $Cr_2(SO_4)_8$ ,  $Fe_2(SO_4)_3$ .

Insol. in H₂O. (Étard, C. R. **86**. 1399.)  $\operatorname{Cr}_2(\mathrm{SO}_4)_8$ ,  $\operatorname{Fe}_2(\mathrm{SO}_4)_3$ ,  $\operatorname{H}_2\mathrm{SO}_4$ . Insol. in H₂O. (Étard.)

Chromic lithium sulphate,  $Cr_2(SO_4)_3$ ,  $3Li_2SO_4$ . Resembles the corresponding K salt. (Wernicke.)

Chromic manganous sulphate,  $Cr_2(SO_4)_3$ , 3MnSO4.

(Étard, C. R. 86, 1402.)

Chromic manganic sulphate,  $Cr_2(SO_4)_3$ ,  $Mn_2(SO_4)_3$ .

Insol. in H₂O. (Étard, C. R. 86. 1399.)  $Cr_2(SO_4)_3$ ,  $Mn_2(SO_4)_3$ ,  $2H_2SO_4$ . Sl. deliquescent. Sol. in  $H_2O$  with decomp. (Etard.)

Chromic nickel sulphate, Cr2(SO4)3, NiSO4,  $2H_2SO_4 + 3H_2O_2$ 

Insol. in  $H_2O$ , but gradually decomp. thereby. (Étard, C. R. 87. 602.)

Chromous potassium sulphate, CrSO₄, K₂SO₄

Sol. in H₂O; less sol. in alcohol. (Peligot, A. ch. (3) **12.** 546.)

Chromic potassium sulphate, K₂Cr₂(SO₄)₄. Anhydrous. a. Sol. in H2O when not heated over 350°.

β. Insol. in cold H₂O and cold acids. When

ignited is insol, in hot H₂O and acids, except slightly in boiling cone. H₂SO₄. (Fischer.) +2H₂O (?). Insol in cold H₂O or dil. acids. Sol. by long boiling with H₂O, and more quickly when HCl is added. (Hertwig.)

+4H₂O. Is potassium chromosulphate. which see.

+24H2O. Chrome-alum. Violet modifica-Efflorescent at 29°. Sol. in 6-7 pts. cold H₂O. When the H₂O solution is heated to 60-70° it is partially decomp. into a green modification, which is more sol, in H₂O. The green modification on standing in H₂O solution is very slowly converted back into violet modification. The green modification may also be formed by heating dry salt to 100° at which temp. it melts in its crystal H₂O. When all crystal H₂O has been expelled at 300-350°, it still dissolves in hot H₂O, but when heated above 350° it becomes insol. in H₂O. (Löwel, A. ch. (3) 44. 313.)

125.1 g. anhydrous, or 243.9 g. hydrated salt, or 0.441 g. mols. anhydrous salt are sol. in 1 l. H₂O at 25°. (Locke, Am. Ch. J. 1901, 26. 175.)

Melts in crystal H₂O at 89°. (Tilden. Chem. Soc. 45. 409.)

Sp. gr. of aqueous solution of violet modification at 15° containing:

 $15\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}.$ 1.02725 1.05500 1.08350

Sp. gr. of sat. solution at  $15^{\circ} = 1.0985$ .

Sp. gr. of aqueous solution of green modification at 15° containing:

10 20  $30\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}_7$ 1.050 1.103 1.161

40 50  $60\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}_7$ 1.225 1.295 1,371

70 80  $90\% \text{ K}_2\text{Cr}_2(\text{SO}_4)_4 + 24\text{H}_2().$ 1.453 1.541 1.635

(Gerlach, Z. anal. 28. 497.)

Sp. gr. of chrome-alum solutions at 15° containing:

25 % salt, 1.0174 1.0342 1.0524 1.0746 1.1004

% salt, 1.1274 1.1572 1.1896 1.2352 1.2894

60 65 70 % salt. 1.3704 1.4566 1.5462 1.6362 (Franz, J. pr. (2) 5. 298.)

Insol, in alcohol. 3K₂SO₄, Cr₂(SO₄)₃. Insol. in H₂O, acids, or dil. alkalies. Decomp. by boiling with conc. KOH+Aq. (Wernicke, Pogg. 159. 576.)

Chromic rubidium sulphate, Rb₂Cr₂(SO₄)₄+ 24H₂O.

Sol. in H₂O. (Petersson.)

Solubility in H ₂ O.	Sc	lubi	lity	in	H ₂ O.
---------------------------------	----	------	------	----	-------------------

Temp.	G. anhydrous salt per l.	G. mols. of anhydrous alt per l.
25°	25.7	0.079
30°	31.7	0.096
35°	41.1	0.128
40°	59 7	0.181

Melts in crystal H₂O at 107°.

(Locke, Am. Ch. J. 1901, 26, 180.)

Chromic sodium sulphate,  $Na_2Cr_1(SC_4)_4 + 10H_2O$ .

Is sodium chromosulphate, which see.

+24H₂O. More efflorescent than K or NH₄ salt. Sol. in H₂O, and properties resemble the corresponding K salt.

Cr₂(SO₄)₃, 3Na₂SO₄. Resembles the corresponding K salt.

# Chromic thallous sulphate, $'\Gamma l_2 Cr_2 (SO_4)_4 + 24H_2O.$

0.212 mols. of anhydrous salt are sol. in 1 l.  $\rm H_2O$  at 25°. 1 l.  $\rm H_2O$  dissolves 104.8 g. of anhydrous or 163.8 g. hydrated salt at 25°. Melts in crystal  $\rm H_2O$  at 92°. (Locke, Am. Ch. J. 1901, **26**. 175.)

# Chromic sulphate chloride, $Cr_2(SO_4)_2Cl_2 + 2H_2O$ .

Slightly hydroscopic. Sol. in H₂O. (Schiff, A. 124. 176.)

[CrSO₄,  $5H_2O$ ]Cl. Sol. in  $H_2O$ . (Weinland, Z. anorg. 1908, **58.** 176.)

#### Chromyl sulphate, (CrO₂)SO₄.

Decomp. by H₂O. (Pictet and Karl, Bull. Soc. 1908, (4) **3.** 1114.)

#### Cobaltous sulphate, basic.

Ppt. Insol. in H₂O. (Berzelius.) 6CoO, SO₃+10H₂O. (Athanasesco, C. R. 103. 271.)

5CoO, SO₃+4H₂O. Ppt. Very sl. sol. in H₂O. (Habermann, M. Ch. 5. 432.)

# Cobaltous sulphate, CoSO₄.

100 pts. H₂O dissolve at:

3° 10° 20° 24° 29°

26.2 30.5 36.4 38.9 40 pts. anhydrous salt,

35° 44° 50° 60° 70° 46.3 50.4 55.2 60.4 65.7 pts. anhydrous salt. (Tobler, A. 95. 193.)

100 pts. H₂O at 11-14° dissolve 23.88 pts. anhydrous salt. (v. Hauer, J. pr. 103. 114.)

Solubility in 100 pts. H₂O at t°, using CoSO₄+7H₂O.

10	Pts. CoSO ₄	ι°	Pts. CoSO ₄	t°	Pts. CoSO ₄
0	24.6	36	43.5	72	65.0
1	25.0	37	44.0	73	65.6
$\dot{\hat{2}}$	25.5	53	14.6	74	66.2
3	26.0	39	45.2	75	66.8
4	26.5	40	45.8	76	67.4
5	27.0	41	46.4	77	68.0
6	27.5	42	47 0	78	68.6
7	28.0	43	47.6	79	69.2
8	28.5	44	48 2	80	69.8
9	29.0	45	48.8	81	70.4
10	29.5	46	49.4	82	71.0
11	30.0	47	50 0	83	71.6
12	30.5	48	50.6	84	72.2
13	31.0	49	51.2	85	72.8
14	31.5	50	51.8	86	73.4
15	32.0	51	52.4	87	74.0
16	32.5	52	53.0	88	74.6
17	33.0	53	53.6	89	75.2
18	33.5	54	54.2	90	75.9
19	34.0	55	54.8	91	76 6
20	34.5	56	55.4	92	77.2
$\frac{2}{1}$	35.1	57	56.0	93	77.9
$\overline{22}$	35.6	58	56.6	94	78.6
$\overline{23}$	36.2	59	57.2	95	79.2
$\frac{24}{24}$	36.8	60	57.8	96	79.9
$\overline{25}$	37.4	61	58.4	97	80.6
$\overline{26}$	38.0	62	59.0	98	81.3
27	38.5	63	59.6	99	81.9
$\overline{28}$	39.1	64	60.2	100	82.6
29	39.6	65	60.8	101	83.3
30	40.2	66	61.4	102	83.9
31	40.7	67	62.0	103	84.6
32	41.3	68	62.6	104	85.3
33	41.8	69	63.2	105	86.0
34	42.4	70	63.8	106	86.7
35	42.9	71	64.4	106.4	86.9

(Mulder, calculated from his own and Tobler's determinations, Scheik. Verhandel. **1864.** 68.)

100 g. H₂O dissolve 37.8 g. CoSO₄ at 25°. (Wagner, Z. phys. Ch. 1910, **71**. 430.)

See also +7H₂O.

Sp. gr. of CoSO₄+Aq at t°. S=pts. CoSO₄ in 100 pts. solution; S₁=mols. CoSO₄ in 100 mols. of solution.

S	Sı	Sp. gr.
6.8910	0.852	1.0765
5.8140	0.711	1.0641
4.7095	0.570	1.0517
3.5792	0.429	1.0392
2.4273	0.288	1.0263
1.2099	0.141	1.0131 *

(Charpy, A. ch. (6) 29. 26.)

Sp. gr. of CoSO₄+Aq at room temp. containing:

7.239 14.156 21.167% CoSO₄. 1.0860 1.1591 1.2398 (Wagner, W. Ann. 1883, **18**. 269.)

Sp. gr. of CoSO₄+Aq at 25°.

Concentration of CoSO ₄ +Aq	Sp. gr.
1-normal  1/2- "  1/4- "  1/s- "	1,0750 1,0383 1,0193 1,0110

(Wagner, Z. phys. Ch. 1890, 5. 37.)

100 pts. sat. solution of  $CoSO_4$  and  $CuSO_4$  contain 22.70 pts. of the two salts.

Solubility of CoSO₄, 7H₂O + Na₂SO₄, 10H₂O in H₂O at t°. 100 g. H₂O dissolve grams CoSO₄ and grams Na₂SO₄.

t°	grains CoSO4	grams Na ₂ SO ₄
0 5 10	21.855 $23.94$ $25.41$	10.07 13.155 16.665

(Koppel, Z. phys. Ch. 1905, **52**. 396.) See also under CoNa₂(SO₄)₂+4H₂O.

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

 $HC_2\dot{H}_3O_2$  ppts. it completely from  $CoSO_4+$  Aq. (Persoz.)

100 pts. absolute methyl alcohol dissolve 1.04 pts. CoSO₄ at 18°. (de Bruyn, Z. phys. Ch. 10. 784.)

100 pts. absolute methyl alcohol dissolve 54.5 pts. CoSO₄+7H₂O at 18°; 100 pts. absolute methyl alcohol dissolve 42.8 pts. CoSO₄+7H₂O at 3°; 100 pts. 93.5% methyl alcohol dissolve 13.3 pts. CoSO₄+7H₂O at 3°;100 pts. 50% methyl alcohol dissolve 1.8 pts. CoSO₄+7H₂O at 3°.

100 pts. absolute ethyl alcohol dissolve 2.5 pts. CoSO₄+7H₂O at 3°. (de Bruyn, Z. phys. **Ch. 10.** 786.)

100 g. solution in glycol contain 2.5 g. CoSO₄. (de Coninck, Bull. Ac. Belg. 1905. 359.)

Insol. in benzonitrile. (Naumann, B. 1914, 47, 1370.)

Insol. in ethyl acetate. (Naumann, B. 1904, 37. 3602.)

 $+\mathrm{H}_2\mathrm{O}$ . Sl. sol. in cold, and only very slowly sol. in hot  $\mathrm{H}_2\mathrm{O}$ . (Vortmann, B. 15. 1888.)

+4H₂O. (Fröhde, Arch. Pharm. (2) **127.** 92.)

+6H₂O. (Marignac.)

 $+7H_2O$ . Sol. in 24 pts. cold  $H_2O$ . Insol. in alcohol. (Persoz.)

Solubility of CoSO₄+7H₂O in H₂O at t°. 100 g. H₂O dissolve grams CoSO₄.

t°	g. CoSO4	t°	g. CoSO4	t°	g. CoSO4
0 5 10	$25.53 \\ 28.05 \\ 30.55$	15 20 25	33.045 36.21 39.35	35	42.26 45.80 48.85

(Koppel, Z. phys. Ch. 1905, 52. 395.)

M.-pt. of  $CoSO_4 + 7H_2O = 96-98^{\circ}$ . (Tilden, Chem. Soc. **45.** 409.)

Cobaltocobaltic sulphate,  $\mathrm{Co_2O_3}$ ,  $\mathrm{6CoO}$ ,  $\mathrm{SO_3} + 15\mathrm{H_2O}$ .

Precipitate. Insol. in boiling CoSO₄+Aq or NH₄OH+Aq. (Gentele, J. pr. **69.** 130.)

Cobaltic sulphate, Co₂(SO₄)₃+18H₂O.

Sol. in  $H_2O$  with immediate decomp. and liberation of O. Sol. in dil.  $H_2SO_4+Aq$  without immediate decomp. Sol. in conc. HNO₃,  $H_2SO_4$ , or  $HC_2H_3O_2+Aq$ . (Marshall, Chem. Soc. 59. 760.)

Cobaltous cupric sulphate, 2CoSO₄, CuSO₄+ 21H₂O.

Easily sol. in  $H_2O$ . (v. Hauer, Pogg. 125. 637.)

+36H₂O. (Liebig.) 2CoSO₄, 2CuSO₄, H₂SO₄. (Étard.)

Cobaltous cupric magnesium potassium zinc sulphate, CoSO₄, CuSO₄, MgSO₄, 4K₂SO₄, ZnSO₄+24H₂O₄(?). Sol. in H₂O₄ (Vohl.)

Cobaltous cupric potassium sulphate, CoSO₄, CuSO₄, 2K₂SO₄+12H₂O₁(?).

Sol. in H₂O. (Vohl.)

Does not exist. (Aston and Pickering, Chem. Soc. 49. 123.)

Cobaltous hydrazine sulphate,  $CoH_2(SO_4)_2$ ,  $2N_2H_4$ .

1 pt. is sol. in 305.16 pts. H₂O at 12°. Sol. in HNO₃ with decomp. Insol. in HCl. (Curtius, J. pr. 1894, (2) 50. 331.)

Cobaltous iron (ferrous) potassium sulphate, CoSO₄, Fe₂SO₄, 2K₂SO₄+12H₂O. Sol. in H₂O. (Vohl. A. **94.** 57.)

Sol. in H₂O. (Vohl, A. **94.** 57.) 2CoSO₄, 2FeSO₄, H₂SO₄. (Étard.)

Cobaltous magnesium sulphate, 3CoSO., MgSO.4+28H2O. Easily sol. in H2O. (Winkelblech.) Cobaltous magnesium potassium sulphate, CoSO₄, MgSO₄, K₂SO₄+12H₂O.

Sol. in H₂O. (Vohl, A. 94. 57.) Does not exist. (Aston and Pickering Chem. Soc. 49. 123.)

Cobaltous manganous potassium sulphate, CoSO₄, MnSO₄, 2K₂SO₄+12H₂O₂. Sol. in H₂O₂ (Vohl. A. 94, 57.)

Cobaltous nickel potassium sulphate, CoSO₄, NiSO₄, 2K₂SO₄+12H₂O.

Sol, in  $H_2O$ . (Vohl, A. 94. 57.) Does not exist. (Thomson, Rep. Brit. Assn. Adv. Sci. 1877. 209.)

Cobaltous potassium sulphate, CoSO₄, K₂SO +6H₂O₅.

Less sol. in H₂O than CoSO₄. 100 pts. H₂O dissolve at:

0° 12° 15° 20° 25°

19.1 30 32.5 39.4 45.3 pts. anhydrous salt.

30° 35° 40° 49° 51.9 55.4 64.6 81.3 pts. anhydrous salt. (Tobler, A, **96.** 126.)

100 pts. saturated solution contain at:

20° 40° 60° 80° 14 19.5 24.4 31.8 pts. anhydrous salt. (v. Hauer, J. pr. **74**. 433.)

1 l. 11₂O dissolves 128.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27.** 459.)

Cobaltic potassium sulphate,  $K_2Co_2(SO_4)_4$ +  $24H_2O$ .

Sol. in  $H_2O$  with decomp. (Marshall, Chem. Soc. **59.** 760.)

Cobaltous potassium zinc sulphate,  $CoSO_4$ ,  $2K_2SO_4$ ,  $ZnSO_4 + 12H_2O$ .

Sol. in H₂O. (Vohl, A. 94. 57.)

Cobaltous rubidium sulphate, CoSO₄, Rb₂SO₄ +6H₂O.

Sol. in H₂O. (Tutton.)

1 l. H₂O dissolves 92.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27.** 459.)

Cobaltic rubidium sulphate,  $Rb_2Co_2(SO_4)_2 + 24H_2O$ .

Decomp. by H₂O. Sol. in dil. HCl and H₂SO₄. Decomp. by conc. HCl or H₂SO₄. (Howe and O'Neal, J. Am. Chem. Soc. 1898, **20.** 762.)

Melts in crystal H₂O at 47°. (Locke, Am. Ch. J. 1901, **26.** 183.)

Cobaltous sodium sulphate, CoNa₂(SO₄)₂+4H₂O.

Solubility of CoNa₂(SO₄)₂; 4H₂O in H₂O at t°. 100 g. H₂O dissolve grams CoSO₄ and grams Na₂SO₄.

t ^c	g. CoSO4	g. Na ₂ SO ₄
20	26.65	24.91
25	25.365	23.325
30	23.13	21.61
35	22.55	20.85
40	20.975	20.055

(Korpel, Z. phys. Ch. 1905, 52, 397.)

Sciability of CoNa₂(SO₄)₂, 4H₂O+CoSO₄, 7H₂O in H₂O at t°. 100 g. H₂O dissolve grams CoSO₄ and grams Na₂SO₄.

t'	CoSO4	g. Na ₂ SO ₄	t°	CoSO ₄	g. Na ₂ SO ₄
20		23.82 23.015 20.575	35	32.695 34.065 35.01	15.61

(Koppel, Z. phys. Ch. 1905, 52. 397.)

Solubility of  $CoNa_2(SO_4)_2$ ,  $4H_2O+NaSO_4$ ,  $10H_2O$  in  $H_2O$  at  $t^\circ$ . 100 g.  $H_2O$  dissolve grams  $CoSO_4$  and grams  $Na_2SO_4$ .

t°	g. CoSO4	g. Na ₂ SO ₄
18.5	25.50	25.65
20	23.18	27.26
25	16.07	35.18
30	9.20	43.74

(Koppel.)

Solubility of CoNa₂(SO₄), 4H₂O+Na₂SO₄ (anhydrous) in H₂O at t°. 100 g. H₂O dissolve grams CoSO₄ and grams Na₂SO₄.

t°	g. CoSO ₄	g. Na ₂ SO ₄
35	7.204	50.79
40	7.456	50.095

(Koppel.)

See also CoSO₄+Na₂SO₄ under CoSO₄.

Cobaltous zinc sulphate.

Efflorescent. Decomp. on air. (Link, Crell. Ann. 1790, 1. 32.)

Cobaltous sulphate ammonia, CoSO₄, 6NH₈. Sol. in H₂O with separation of ppt. (Rose, Pogg. 20. 152.) Very easily sol. in NH₄OH+Aq. (Fremy.)

Decomp. by alcohol.

Cobaltous sulphate hydrazine, CoSO₄, 3N₂H₄.

Insol. in H₂O. Decomp. by boiling with H₂O. Very sol. in dil. acids and NH₄+Aq. (Franzen, Z. anorg. 1908, 60. 272.)



Cobaltous sulphate hydroxylamine, CoSO₄,  $NH_2OH + 2H_2O$ .

Insol, in cold; sol, in hot H₂O with decomp. (Feldt, B. 1894, 27. 403.)

# Columbium sulphate.

Sol. in H₂O. (Blomstrand.)

#### Cuprous sulphate, Cu₂SO₄.

Decomp. by H₂O. Sol. in conc. HCl, in ammonia and sl. sol. in glacial acetic acid. (Recoura, C. R. 1909, 148. 1107.)

# Cupric sulphate, basic, 10CuO, SO₃.

(Pickering, Chem. Soc. 1907, 91. 1984.) 8CuO, SO₃+12H₂O. Ppt. (Kane, A. ch. **72**. 269.)

5CuO, SO₃+6H₂O. Ppt. Mag. J. **23.** 196.) (Smith, Phil.

4CuO, SO₃+3H₂O. Insol. in H₂O. (Roucher, J. Pharm. (3) 37. 50.)
Min. Brochantite. Sol. in acids and

NH4OH+Aq.

+3½H₂O. Insol. in H₂O. Easily sol. in dil. acids, even HC₂H₃O₂+Aq. Sl. sol. in CuSO₄+Aq. Insol. in NaC₂H₃O₂+Aq. (Casselmann, Z. anal. 4. 24.)

 $+4H_2O$ . Insol. in  $H_2O$ . (Proust.) in (NH₄)₂SO₄+Aq, and more easily in NH₄Cl,

and NH₄NO₃+Aq. (Lea.) 1 l. cold H₂O dissolves 0.017 g. (Pickering,

C. N. 1883, 47. 182.)

+5H₂O. Min. Langite. +16H₂O. (André, C. R. **100.** 1138.)

7CuO, 2SO₃+5H₂O. (Reindel, J. pr. 100. +6H₂O. Wholly insol. in cold or hot H₂O.

(Habermann, M. Ch. 5, 432.) +7H₂O. Insol. in H₂O; easily sol. in acids.

Insol. in boiling CuSO₄+Aq. (Reindel.) 3CuO, SO₃+1½H₂O. Insol. in H₂O; easily

sol. in acids. (Steinmann, B. 15. 1412.)

+2 $H_2O$ . Insol. in  $H_2O$ ; sol. in dil.  $H_2SO_4+$ Aq. (Shenstone, Chem. Soc. 47. 375.) +2 $H_2O$ . (Reindel, J. pr. 102. 204.) +4 $H_2O$ . Insol. in  $H_2O$ . (Grimbert and

(Grimbert and Barrá, J. Pharm. (5) 21. 414.) 5CuO, 2SO₃+3H₂O. (V (Wibel, Dissert.

1864.)

11ĆuO, 4SO₃+8H₂O. 1898, **78.** 155.) (Clowes, C. N.

8CuO, 3SO₂+10H₂O. (Ma Sachs, Z. anorg. 1892, **1**. 405.) (Marchlewski and 7CuO, 3SO₈+12H₂O. (Etard, C. R. 1887.

**104.** 1615.)

5CuO.  $2SO_3+5H_2O$ . (Sabatier, Gm. K. **5.** 1, 839.)

6H₂O. Min. Arnimite. (Weisbach, J. B. **1886.** 2253.)

2CuO, SO₃. Decomp. by cold CuSO₄ and 4CuO, SO₃. (Roucher.) Decomp. by cold H₂O into Decomp. by hot H₂O. (Pozzi-Escot, Bull. Soc. Insol. in H₂O. Sol. in dil. acids.

1913 (4) **13.** 816.) According to Pickering (C. N. 47. 181) only 0°. (Pfaff, A. 99. 224.)

3CuO, SO₂+2½H₂O and 4CuO, SO₂+4H₂O are true chemical compounds.

There is at 25° no definite basic sulphate of copper, all the basic sulphates being solid The solutions in contact with solutions. these basic sulphates contain SO₃ and CuO in equivalent quantities and are all sl. acid in reaction. (Bell, J. phys. Chem. 1908, 12. 179.)

#### Cupric sulphate, CuSO₄.

Anhydrous. Absorbs H₂() from the air. Combines with, and dissolves in H₂O with great evolution of heat.

+H₂O. Permanent. Sol. in H₂O. (Étard,

C. R. 87. 602.)

+2H₂O (?). (Storer's Dict.) +3H₂O. (Etard, C. B. 104, 1614.)

Does not exist. (Cross, C. N. 49, 220.)

See Foote, p. 965.

+5H₂O. Superficially efflorescent in dry

Sol. in 2.34 pts. H₂O at 18°, and sat. solution has sp. gr. 1.2147. (Schiff, A. 109, 326.)
100 pts. CuSO₄+Aq sat. at b. pt., 102.2°, contain 45 pts. of the dry salt, or 100 pts. H₂O at 102.2° dissolve S1.82 pts. CuSO₄. (Griffiths, Q. J. Sci. 18, 90.)
Sol. in less than 4 pts. H₂O at ord. temp., and much more sol. in bolling H₂O. (Bergmann.)
Sol. in 4 pts. cold, and 2 pts. hot H₂O. (Schubarth.)
100 pts. H₂O dissolve 33.103 pts. CuSO₄+5H₂O at 15°, and solution has sp. gr. =1.1859. (Michel and Krafft, A. ch. (3) 41, 478.)
CuSO₄+Aq sat. at 8° has 1.17 sp. gr. (Anthon, A. 24, 210.)

24. 210.) 1 pt. CuSO₄+5H₂O dissolves at:

56° 19° 310 1.7 in 3.32 2.71 1.81 1.14 pts. H₂O.

62.5° 1069 104° in 1 27 1.07 0.75 0.55 0.47 pts. H₂O (Brandes and Gruner, 1826.)

Sol. at 17.5 in 2.412 pts. H₂O. (Karsten.)

# 100 pts. H₂O dissolve at:

9° 10°  $20^{\circ}$ 

31.61 36.95 42.31 48.81 pts.  $CuSO_4 + 5H_2O_7$ 

40° 50°  $60^{\circ}$ 56.90 65.83 77.39 94.60 pts. CuSO₄+5H₂O,

80° 90° 100° 118.03 156.44 203.32 pts.  $CuSO_4 + 5H_2()$ . (Poggiale, A. ch. (3) 8. 463.)

100 pts. H₂O dissolve at:

0°  $20^{\circ}$  $35^{\circ}$ 54°

17 24.328.6 36.1 pts. anhydrous CuSO₄. (Tobler, A. 95. 193.)

100 pts. CuSO₄+Aq sat. at 11-14° contain 16.23 pts. anhydrous CuSO₄. (v. Hauer, J. pr. **103**. 114.)

100 pts. H₂O dissolve 15.107 pts. CuSO₄ at

100 pts. H₂O dissolve pts. CuSO₄ at t°.

t°	Pts. CuSO ₄
* 0 17.9 24.1	14.99 20.16 22.37

(Diacon, J. B. 1866. 61.)

100 pts. H₂O dissolve pts. CuSO₄ at to.

ť	Pts. CuSO ₄	t.	Pis. CuS.)4	+0	1 ts.
0 10 20 30	14.15 17.50 20.53 24.34	40 50 60 70	28.50 33.31 59.01 45.74	80 90 100	54, 53 64, 35 75, 22

(Patrick and Aubert, Transactions of Kensas Acad. of Sci. 1874. 19.)

Solubility in 100 pts. H₂O at t°.

770xt07titty 111 100 press. 1120 at 0 :						
t°	Pts. CuSO ₄	t.°	Pts. CuSO ₄	t°	Pt: CuSO ₄	
()	15.5	35	27.5	70	45.7	
Ĭ	16.3	36	$\begin{bmatrix} 27.9 \end{bmatrix}$	71	46.4	
	16.6	37	$\frac{1}{28.3}$	72	47.2	
$\frac{2}{3}$	16.9	38	28.7	73	47.9	
4	17.2	39	29.1	74	48.7	
$\begin{array}{c} \cdot \ \frac{4}{5} \end{array}$	17.5	40	29.5	7.5	49.5	
6	17.8	41	29.9	76	50.3	
7	18.1	42	30.3	77	51.1	
8	18.4	43	30.7	78	51.9	
9	18.7	44	31.1	79	$52 \ 7$	
10	19.1	45	31.5	80	53.5	
11	19.3	46	31.9	81	54.3	
12	19.6	47	32.3	82	55.1	
13	19.9	48	32.7	83	55.9	
14	20.2	49	33.2	84	56.8	
15	20.5	50	33.6	85	57.8	
16	20.8	51	34.1	86	58.7	
17	21.1	52	34.5	87	59.7	
18	21.4	53	35.0	88	60.7	
19	21.7	54	35.5	89	61.7	
20	22.0	55	36.0	90	62.7	
21	22.3	56	36.6	91	63.7	
22	22.6	57	37.2	92	64.8	
23	23.0	58	37.8	93	65 8	
24	23.3	59	38.4	94	66.9	
25	23.7	60	39.0	95	68.0	
26	24.0	61	39.6	96	69.1	
27	24.4	62	40.2	97	70.2	
28	24.7	63	40.9	98	71.3	
29	25.1	64	41.5	99	72.4	
30	25.5	65	42.2	100	73.5	
31	25.9	66	42.9	101	74.6	
32	26.3	67	43.6	102	75.7	
33	26.7	68	44.3	103	76.8	
34	27.1	69	45.0	104	77.95	

(Mulder, Scheik. Verhandel. 1864. 79.)

If solubility S=pts. anhydrous CuSO4 in 100 pts. solution, S = 11.6 + 0.2614t from  $-2^{\circ}$ to  $55^{\circ}$ ; S=26.5+0.3700t from  $55^{\circ}$  to  $105^{\circ}$ ; S=45.0-0.0293t from  $105^{\circ}$  to  $190^{\circ}$ . (Etand, C R. 104. 1614.)

Solubility decreases above 120°, owing to forms ion of basic salt. (Tilden and Shenstone, Phil. Trans. 1884, 23.)
100 ccm. H₂O dissolve 14.92 g. CuSO₄ at 0°.

(Engel, C. R. 102. 113.)

100 gcm. H₂O dissolve 22 98-22.30 g. CuSO₄ at 20°. (Trevor, Z. phys Ch. 7. 468.)

Sat. CuSO₄+Aq contains % CuSO₄ at t°.

	-		
t°	% CuSO4	t°	% CuSO4
1	12.1	88	38.8
+7	14.1	89	38.9
9	14.5	94	41.8
18	16 9	96	41.9
20	17.2	97	42.0
20	17.4	100	43.6
35	21.3	108	43.8
39	21.8	110	43.4
45	23.9	116	43.8
54	26.9	116	44.0
54	26.6	120	44.8
$61^{\circ}$	28.8	132	44.8
63	29.1	133	44.7
65	30.0	143	45.0
70	31.6	160	44.2
71 7	32.6	165	44.5
76	34.5	179	42.9
80	36 6	189	42.2
86	37.8		
	1 1		(

(Étard, A. ch. 1894, (7) 2. 554.)

Solubility in H₂O at t°.

t°	g. CuSO ₄ per 100 g. H ₂ O	eri.
0	14.15 17.68	
15 20	19.25 20.78	
25	22.29 (by interpolation)	2.4

(Cohen, Z. phys. Ch. 1907, 60. 713.)

1.399 mol. are sol. in 1 l. H₂O at 25°. (Herz, Z. anorg. 1910, 67. 366.)

100 g. CuSO₄ + Aq sat. at 30° contain 20.32 anhyd. CuSO₄. (Schreinemakers, Z. phys. Ch. 1910, 71. 110.)

+7H₂Ó. (Boisbaudran, C. R. 65. 1249.) +6H₂O. (Boisbaudran, C. R. 66. 487.)

Sp. gr. of	CuSO ₄ +Aq at CuSO ₄ +5H ₂ O.	18°.	% <b>=</b> %
------------	----------------------------------------------------------------	------	--------------

%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1	1.0063	11	1.0716	21	1.1427
2	1.0126	12	1.0785	22	1.1501
3	1.0190	13	1.0854	23	1.1585
4	1.0254	14	1.0923	24	1.1659
5	1.0319	15	1.0993	25	1.1738
6	1.0384	16	1.1063	26	1.1817
7	1.0450	17	1.1135	27	1.1898
8	1.0516	18	1.1208	28	1.1980
9	1.0582	19	1.1281	29	1.2063
10	1.0649	20	1.1354	30	1.2146

(Schiff, calculated by Gerlach, Z. anal. 8. 288.)

Sp. gr. of CuSO₄+Aq at 23.9°. a=no. of  $\frac{1}{2}$  mols. in grms. dissolved in 1000 grms. H₂O; b=sp. gr. if a is CuSO₄=5H₂O ( $\frac{1}{2}$  mol. wt. =125); c=sp. gr. if a is CuSO₄ ( $\frac{1}{2}$  mol. wt. =80).

a	b	c
1 2 3	$egin{array}{c} 1.076 \ 1.142 \ 1.200 \ \end{array}$	$egin{array}{c} 1.080 \ 1.154 \ 1.225 \end{array}$

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of  $CuSO_4+Aq$  at 15°. % = %  $CuSO_4+5H_2O$ .

%	Sp. gr.	%	Sp. gr.
5 10 15	1.0335 1 0688 1.1060	20 25 mother liquor	1.1443 1.1848 1.185

(Gerlach, Dingl. **181.** 131.)

Sp. gr. of CuSO₄+Aq at 18°.

% CuSO.	Sp. gr,	% CuSO ₄	Sp. gr.
5	1.0513	15	1.1675
10	1.1073	17.5	1.2003

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of CuSO₄+Aq at 0°. S=pts. CuSO₄ in 100 pts. solution.

s	Sp. gr.	s	Sp. gr.
11.9315 9.8159 7.5474	1.1371 1.1108 1.0833	5.2181 2.6460	1.0578 1.0290

(Charpy, A. ch. (6) 29. 26.)

Sp. gr. of CuSO₄+Aq at room temp.

% CuSO ₄	Sp. gr.
6.79	1.055 °
12.57	1.1151
17.49	1.1635

(Wagner, W. Ann. 1883, 18. 265.)

Sp. gr. of CuSO₄+Aq at 25°.

Concentration of CuSO ₄ +Aq	Sp. gr.
1-normal  1/g- ''  1/4- ''  1/s- ''  1/16- ''	1.0790 1.0402 1.0205 1.0103 1.0050

(Wagner, Z. phys. Ch. 1890, 5. 38.)

B.-pt. CuSO₄+Aq containing pts. CuSO₄ to 100 pts: H₂O.

Bpt. P	ts. CuSO ₄	Bpt.	Pts. CuSO ₄
100.5° 101.0 101.5 102.0 102.5	21.3 36.9 48.0 56.2 63.0	103.0° 103.5 104.0 104.2	69.0 74.9 80.1 82.2

(Gerlach, Z. anal. 26, 434.)

Sat. CuSO₄+Aq boils at 102.2°, and contains 81.8 pts. CuSO₄ to 100 pts. H₂O. (Griffiths.)

Crust forms at 102.3°, and solution contains 60.3 pts. CuSO₄ to 100 pts. H₂O; highest temp. observed, 104.8°. (Gerlach, Z, anal. **26**. 426.)

Sol. in HCl+Aq, causing a reduction of temperature of about 17°.

Very sl. sol. in conc. H₂SO₄. (Schulz.)

#### Solubility in H₂SO₄+Aq at 0°.

G. per 100 g. H ₂ ()		Sp. gr.
H ₂ SO ₄	CuSO ₄	ор. к
0.00 2.03 7.16 15.20 26.57 27.57 35.2	14.85 14.29 15.65 9.90 6.43 6.19 3.99	1 . 144 1 . 143 1 . 158 1 . 170 1 . 195 1 . 211 1 . 224

(Engel, C. R. 1887, **104.** 507.)

Solubility	7 in	H ₂ SO	+Aq	at	25°.
------------	------	-------------------	-----	----	------

Solution			
Sp. gr.	Sp. gr.   % CuO   % SO ₃		Solid phase
1.2142 1.2248 1.2593 1.2934 1.4061	9.17 5.91 3.39 1.82 1.32	9.26 15.90 23.09 28.75 39.74	C+SO ₄ +5H ₂ O
1.4256		41.29	CuSO ₄ +5H ₂ O and
1.4249 1.4516 1.4915 1.5124	1.38 1.02	41.04 43.63 47.82 49.07	$\left.\begin{array}{c} \operatorname{CuSO_4} + 3\operatorname{H}_2\operatorname{O} \\ \\ \operatorname{CuSO_4} + 3\operatorname{H}_2\operatorname{O} \end{array}\right\}$
1.5408 1.5643 1.6824 1.7752 1.8118 1.8266	$ \begin{vmatrix} 0.38 \\ 0.368 \\ 0.109 \\ 0.105 \\ 0.15 \\ 0.07 \end{vmatrix} $	51.46 53.51 62.14 68.34 72.41 74.26	CuSO ₄ +H ₂ O

These results show that the hydrates of CuSO₄ which are stable at 25° are CuSO₄+  $5H_2O_1 + 3H_2O_2$  and  $+H_2O_2$ .

(Bell and Taber, J. phys. Chem. 1908, 12.

Solubility in H₂SO₄+Aq at 25°.

Solding in 112004   In all 20 .				
Solution contains		Solid phase		
% CuSO	% H ₂ SO ₄	Solid phase		
18.47 12.62 5.92 3.25 2.63 2.59 2.83 2.84 2.70 2.19 2.11 2.15 0.95 0.17 0.15 0.19 0.44 0.42 0.40 0.19	none 11.14 25.53 36.77 42.15 47.66 49.00 49.20 49.29 50.23 54.78 55.84 55.60 61.79 77.93 83.29 85.46 85.72 85.81 86.04 92.70	CuSO ₄ +5H ₂ O and CuSO ₄ +3H ₂ O and CuSO ₄ +3H ₂ O CuSO ₄ +3H ₂ O and CuSO ₄ +H ₂ O CuSO ₄ +H ₂ O		

These results show that the hydrates of CuSO₄ which are stable at 25° are CuSO₄+ 5H₂O, +3H₂O and +H₂O (Foote, J. Am. Chem. Soc. 1915, 37. 290.)

of a double sulphate.

# Solubility of CuSO₄ in CuCl₂+Aq at 30°.

% CuCla	% CuSO.	Solid phase
n e 50	20.32	CuSO ₄ , 5H ₂ O
6.58 15.68	13.62 8.93	 .t
25.67 $39.48$	$\frac{4.77}{3.21}$	"
42.47 43.25	$\begin{array}{c c} 2.96 \\ 1.14 \end{array}$	$\begin{array}{c} \text{CuSO}_4, 5\text{H}_2\text{O} + \text{CuCl}_2, 2\text{H}_2\text{O} \\ \text{CuCl}_2, 2\text{H}_2\text{O} \end{array}$
45.95	0 14	(4

(Schreinemakers, Arch. Néer. Sci. 1910, (2) **15.** 117.)

# Solubility of CuSO4 in LiCl+Aq at 25°. Solid phase, CuSO₄, 5H₂O. (G. mols. per l. of solution.)

LiCl	· CuSO ₄
0	1.399
0.73	1.257
1.40	1.176
2.83	1.067

(Herz, Z. anorg. 1910, 67. 366.)

# Solubility of CuSO₄ in KCl+Aq at 25°. Solid phase, CuSO₄+5H₂O. (G. mols. per l. of solution.)

KCl	CuSO ₄		
$egin{array}{c} 0.56 \ 1.17 \ 2.34 \ \end{array}$	1.496 1.561 1.819		
(Herz.)			

# Solubility of CuSO₄ in NaCl+Aq at 25°. Solid phase, CuSO₄+5H₂O. (G. mols. per l. of solution.)

NaCl	Cu8O:
$0 \\ 0.36 \\ 1.32 \\ 2.53$	1.399 1.404 1.426 1.507
(H	Herz.)

Solubility of CuSO₄ in RbCl+Aq at 25°, containing 1.094 g. mols. per l.=1.568 g. mols. (Herz.)

Slowly sol. in sat. KNO₈+Aq, with separation of a double sulphate.

Very slowly sol. in sat. NaNOs+Aq, with Sl. sol. in sat. NH4Cl+Aq, with separation | separation of a double sulphate. (Karsten, Berl. Abhandl. 1840. 10.)

Solubility of CuSO₄ in (NH₄)₂SO₄+Aq at 0°.

g. per 100 cc. solution			g. per solu	100 cc. tion		
,08g(,HN)	'CSn'J	Sp. gr.	(NH1)2SO1	CuSO,	Sp. gr.	
0 3.61 4.63 4.90	14.79 16.09 8.38 7.26	1.144 1.190 1.108 1.099	5.59 7.51 12.31 20.65	5.13 2.95 0.94 0.80	1.081 1.071 1.082 1.116	

(Engel, C. R. 1886, **102**. 114.) See also under (NH₄)₂SO₄.

Solubility of CuSO₄ in Li₂SO₄+Ag at 30°.

Composition of the solution  % by wt. % by wt. CuSO ₄ CuSO ₄ CuSO ₄		Solid phase	
17.50	3.54	.,	
16.10	6.08		
13.55	11.94		
12.14	15.72		
11.04	17.92	"	
10.05	20.55	CuSO ₄ , 5H ₂ O+Li ₂ SO ₄ , H ₂ O	
<b>10</b> .08	20.51	**	
10.07	20.49	"	
6.41	22.23	Li ₂ SO ₄ , H ₂ O	
3.39	23.59	7,	
0	25.24	44	

(Schreinemakers, Z. phys. Ch. 1909, **66**, 692.)

Sol. in CuCl₂,  $(NH_4)_2SO_4$ ,  $NH_4Cl+Aq$  at 30°. (Schreinemakers, Z. phys. Ch. 1909, **69**. 565.)

Sol. in (NH₄)₂SO₄, Li₂SO₄+Aq. at 30°. (Schreinemakers, Z. phys. Ch. 1909, **66**. 694.)

100 pts. sat. solution of CuSO₄ and FeSO₄ contain 17.43 pts. of the salts at 11-14. (v. Hauer, J. pr. 103. 114.)

100 pts. H₂O dissolve 10.85 pts. CuSO₄, 17.47 pts. MgSO₄, and 5.78 pts. Na₂SO₄ at 0°. (Diacon.)

100 pts. H₂O dissolve 7.169 pts. CuSO₄, 21.319 pts. MgSO₄, and 6.830 pts. Na₂SO₄ at 0° (Plaff)

0°. (Plaff.)
Slowly and sl. sol. in sat. MgSO₄+Aq. (Karsten.)

Solubility of CuSO₄ in H₂O in presence of MgSO₄. 100 pts. H₂O dissolve—

	No.	CuSO ₄	MgSO ₄	No.	CuSO ₄	MgSO:
,	1 2 3 4	0 2.64 4.75 9.01	26.37 25.91 25.30 23.54	5 6 7	12.03 13.61 14.99	15.67 8.64 0

In 1, 2, and 3, MgSO₄ was in excess and given amt. CuSO₄ added; in 4, both CuSO₄ and would be required.

MgSO₄ were in excess; in 5, 6, and 7, CuS()₄ was in excess. (Diacon, l. c.)

100 pts. sat. solution of CuSO₄ and MgSO₄ contain 28.58 pts. of the salts at 11–14°. (v. Hauer, J. pr. 103. 114.)

100 pts. sat. solution of CuSO₄ and MnSO₄ contain 37.90 pts. of the salts at 11-14.° (v. Hauer.)

Solubility of CuSO₄+MnSO₄ in H₂O at 25°.

G. per 10	00 g. H ₂ O	G. per 100 g. H ₂ O		
Cut O4	MnSO ₄	CuSO ₄	MnSO ₄	
20.2 19.76 13.65 11.61	$0 \\ 3.69 \\ 31.52 \\ 39.41$	9.39 6.47 3.01 0.0	46.77 53.39 58.93 61.83	

(Stortenbecker, Z. phys. Ch. 1900, 34, 112.)

100 pts. sat. solution of CuSO  $_4$  and NiSO  $_4$  contain 31.03 pts. of the salts at 11-14.  $^\circ$  (v. Hauer.)

Solubility of CuSO₄+NiSO₄ in H₂O.

	g. per 100 i	Mol. %	CuSO ₄	
t°	CuSO ₄	NiSO ₄	Solution	Solid phase
35	9.62 41.66 75.39 106.40 172.0 186.9	583.9 484.4 553.5 506.5 483.8 468.8	1.57 7.69 11.66 16.92 25.6 27.90	$\begin{array}{c} 0.35 \\ 2.12 \\ 4.77 \\ 6.52 \\ 13.88 \\ \left\{ 18.77 \\ 94.91 \right. \end{array}$
67	20.04 66.01 88.08 147.94 249.9	729.3 706.2 501.6 675.0 747.8	2.65 8.31 13.55 16.39 24.46	0.93 2.86 3.92 6.66 23.32

(Fock, Z. Kryst. Min. 1897, 28. 387.)

More easily sol. in sat. K₂SO₄+Aq than in Na₂SO₄ or MgSO₄+Aq, forming a double sulphate, which separates out. (Karsten.)

K₂SO₄ and CuSO₄ mutually displace each other in saturated solutions. (Rüdorff, Pogs. **148**. 555.)

When K₂SO₄ and CuSO₄, both in excess, are dissolved in H₂O, a maximum of solubility of 15.61 pts. of the two salts in 100 pts. H₂O at 25° is reached in 30 minutes, after which the solubility decreases. This result is obtained either by treating excess of the two salts with H₂O at 25°, or cooling solutions of the two salts sat. at higher temp. to 25°. The salts are in the proportion of 5.2 pts. K₂SO₄ to 10.4 pts. CuSO₄. If present in the same proportion as in their saturated solutions, 5.41 pts. K₂SO₄ to 10.13 pts. CuSO₄ would be required

If sat. solution of one salt is added to sat. solution of the other,  $K_2Cu(SO_4)_2 + 6H_2O$  separates, as it is less sol. than either imple salt, until a state of equilibrium is reached, after which there is no separation, contrally to Rüdorff (see above). (Trevor, Z. phys. Ch. 7. 486.)

CuSO4+Na2SO4.

Solubility of CuSO₄ in presence of Na₂SO₄ at 0°. 100 pts. H₂O dissolve-

No.	CuSO ₄	Na ₂ SO ₄	No.	Cu80+	Na ₂ SC ₄
1 2 3 4	$0 \\ 6.01 \\ 9.81 \\ 16.67$	4.53 5.34 5.73 6.48	5 6 7	15.84 15.33 14.99	3 55 1.98 0

In 1, 2, and 3, Na₂SO₄ was in excess and given amt. CuSO₄ added; in 4, both CuSO₄ and Na₂SO₄ were in excess; in 5, 6, and 7, CuSO₄ was in excess and Na₂SO₄ added. (Diacon, J. B. 1866. 61.)

100 pts. H₂O dissolve 8.033 pts. CuSO₄ and 6.31 pts. Na₂SO₄ at 0°. (Pfaff, A. **99.** 224.)

100 pts. H2O dissolve 20.7 pts. CuSO4 and 15.9 pts. Na₂SO₄ at 15°. (Rüdorff, B. 6. 484.)

#### Solubility of CuSO₄+Na₂SO₄.

1. Solid phase, 3 mol. CuSO₄+1 mol. Na₂SO₄

2. Solid phase, 1 mol. CuSO₄+1 mol. Na₂SO₄.

3. Solid phase, 1 mol. CuSO₄+3 mol. Na2SO4.

(G. in 100 g. H₂O.)

t.º	1		1 2		3	
	CuSO ₁	Na ₂ SO ₄	CuSO ₄	Na ₂ SO ₄	CuSO ₄	Na ₂ SO ₄
15 30	$20.69 \\ 22.03$	15.88 16.36	20.75 $21.00$	12.50 15.90 20.14 13.41	$20.70 \\ 15.28$	$15.92 \\ 22.70$

(Massol and Maldes, C. R. 1901, 133. 287.)

Solubility of CuSO₄, 5H₂O+Na₂SO₄, 10H₂O.

t°	% CuSO:	% Na ₂ SO ₄
0 12 15	13.40 14.83 15.00	6.23 9.82

(Koppel, Z. phys. Ch. 1903, 42. 8.) See also under CuNa₂(SO₄)₂+6H₂O.

CuSO₄+ZnSO₄. Very slowly sol. in sat. ZnSO₄+Aq, forming a double salt which separates. (Karsten.) 100 pts. sat. solution of CuSO, and ZnSO,

contain 32.70 pts. of the salts at 11-14°. (v. Hauer.)

Solubility of CuSO₄+ZnSO₄ in H₂O at 25°.

	per 100 H ₂ O	Mols. mol	per 100 s. H ₂ O
Cu	Zn	Cu	Zn
2. 28 1.83 1.41 1.19 1.86 1.22 1.31	0 2.08 3.60 5 (1 3 6 4.45 4.72	0.82 0.51 0.30 0.00 1.19 0.71 0.267 0.00	5.03 5.59 5.56 6.42 5.01 5.59 5.77 5.94

(Stortenbecker, Z. phys. Ch. 1897, 22. 62.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**. 827.)

Inson in liquid CO2. (Büchner, Z. phys.

Ch. 1906, **54.** 674.)

100 pts. of a sat. solution in 40% alcohol contains 0.25 pt. CuSO₄+5H₂O; 20% alcohol, 3.1 pts.; 10% alcohol, 13.3 pts. (Schiff, A. **118.** 362.)

Anhydrous CuSO₄ is sol. in absolute methyl alcohol, but insol. in absolute ethyl alcohol. CuSO₄+xH₂O is insol. in methyl or ethyl alcohol. (Klepl, J. pr. (2) 25. 526.) 100 pts. absolute methyl alcohol dissolve

1.05 pts. anhydrous CuSO₄ at 18°

100 pts. absolute methyl alcohol dissolve 15.6 pts.  $CuSO_4+5H_2O$  at  $18^\circ$ ; 100 pts. 93.5% methyl alcohol dissolve 0.93 pt. CuSO₄+5H₂O at 18°; 100 pts. 50% methyl alcohol dissolve 0.4 pt. CuSO₄+5H₂O at 18°; 100 pts. absolute methyl alcohol dissolve 13.4 pts. CuSO₄+5H₂O at 3°

100 pts. absolute ethyl alcohol dissolve 1.1 pts. CuSO₄+5H₂O at 3°. (de Bruyn, Z.

phys. Ch. 10. 786.)

Methyl alcohol dissolves 11.5% CuSO₄+5H₂O at 0°. (Auger, C. R. 1906, **142**. 1272.) Glacial acetic acid precipitates CuSO₄ completely from CuSO₄+Aq.

100 g. 95% formic acid dissolve 0.05 g. CuSO₄+5H₂O at 18.5°. (Aschan, Ch. Ztg.

1913, 37. 1117.)

Sol. in glycerine (Pelouze), picoline (Unver-

dorben).

100 g. glycerine dissolve 36.3 g. CuSO₄+ 5H₂O at 15-16°. (Ossendowski, Pharm. J. 1907, 79. 575.)

100 g. glycerine dissolve 30.0 g. CuSO at

15.5°

100 g. solution of CuSO₄ in glycol contain 7.6 g. at 14.6°. (de Coninck, Bull. Ac. Belg. 1905. 257.)

Anhydrous CuSO₄ is insol. in acetone. (Krug and M'Elroy, J. Anal. Ch. 6. 184.)

Insol. in acetone. (Eidmann, C. C. 1899, (Naumann, B. II. 1014); methyl acetate. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, **43.** 314); benzonitrile. B. 1914, **47.** 1370.) (Naumann,

Min. Chalcanthite.

Cupric glucinum sulphate, CuSO₄, 4GlSO₄+ | Cupric manganous sulphate, 5CuSO₄, 20H₂O.

Sol. in H₂O. (Klatzo, J. B. 1868, 205.) Does not exist. (Marignac, A. ch. (4) 30.

 $9CuSO_4$ ,  $GISO_4 + 50H_2O$ . As above. Does not exist. (Marignac, l. c.)

Cupric hydrazine sulphate, CuH₂(SO₄)₂, 2N2H4.

1 pt. is sol. in 1148 pts.  $H_2O$  at 10°. Decomp, by acids.

Sol. in NH₄OH+Aq with decomp. (Curtius, J. pr. 1894, (2) 50. 331.)

Cupric iron (ferrous) sulphate, CuSO₄, FeSO₄. Insol. in H₂O. (Étard, C. R. 87. 602.)

+2H₂O. (Étard.)  $CuSO_4$ ,  $2FeSO_4 + 21H_2O$ . Sol. in  $H_2O$ . (v.

CuSO₄, 3FeSO₄+28H₂O. 100 pts. H₂O dissolve 75 pts. salt at 7°. (Lefort.)

 $4\text{CuSO}_4$ ,  $\text{FeSO}_4 + 34\text{H}_2\text{O}$ . 100 pts.  $\text{H}_2\text{O}$  at 15.5° dissolve 75.91 pts. (Thomson.)

Cupric iron (ferric) sulphate, CuSO₄, Fe₂(SO₄)₃ +24H₂O.

Sol. in H₂O. (Bastick.)

Cupric iron (ferrous) potassium sulphate, CuSO₄ FeSO₄, 2K₂SO₄+12H₂O. Sol. in H₂O. (Vohl.)

Cupric lead sulphate, CuO, PbO, SO₃+H₂O. Min. Linarite.

3CuO, 7PbO, 5SO₃+5H₂O. Min. Caledonite. Sol. in HNO₃+Aq.

Cupric magnesium sulphate, CuSO₄, MgSO₄ +14H₂O.

Efflorescent. Sol. in H₂O. (Vohl, A. 94. 57.)

+2H₂O. (Arrot, **1834.**)

 $CuSO_4$ ,  $2MgSO_4+21H_2O$ . Sol. in  $H_2O$ . (v.

Hauer, Pogg. 125. 638.) CuSO₄, 7MgSO₄+56H₂O. Sol. in H₂O. (Schiff, A. 107. 64.)

Cupric magnesium manganous potassium sulphate, CuSO₄, MgSO₄, MnSO₄,  $3K_{2}SO_{4}+18H_{2}O.$ 

Sol. in H₂O. (Vohl.)

Cupric magnesium potassium sulphate,  $CuSO_4$ ,  $MgSO_4$ ,  $2K_2SO_4+6H_2O$ .

Sol. in H₂O. (Vohl, A. 94. 57.)

Does not exist. (Aston and Pickering, Chem. Soc. 49. 123.)

Cupric magnesium potassium zinc sulphate,  $CuSO_4$ ,  $MgO_4$ ,  $3K_2SO_4$ ,  $ZnSO_4+18H_2O$ . Sol. in  $H_2O$ . (Vohl.)

 $2MnSO_4+35H_2O$ .

Sol. in H₂O. (Schäuffele, J. B. **1852**. 340.) 2CuSO₄, 3MnSO₄+25H₂O. As above. (S.) CuSO₄, MnSO₄+H₂O. (Étard, C. R. 87. 602.)

Cupric manganous potassium sulphate,  $CuSO_4$ ,  $MnSO_4$ ,  $2K_2SO_4+12H_2O$ . Sol. in H₂O. (Vohl.)

Cupric nickel sulphate, CuSO₄, NiSO₄+3H₂O.

(Etard, C. R. 87, 602.)

CuSO₄, 2NiSO₄+21H₂C. Sol. in H₂O. (v. Hauer.)

+18H₂O. Sol. in H₂O. (Boisbaudran, C. R. 66. 497.)

2CuSO₄, 2NiSO₄, 3H₂SO₄. (Étard.)

Cupric nickel potassium sulphate, CuSO4,  $NiSO_4$ ,  $2K_2SO_4 + 12H_2O$ .

Sol. in H₂O. (Vohl.)

Sol. in 4 pts. H₂O; insol. in alcohol. (Bette.) 4CuSO₄, K₂SO₄+4H₂O. Very sl. sol. in

 $K_2O$ , 4CuO,  $4SO_3+4H_2O$ . Insol. in  $H_2O_4$ but decomp. by boiling H₂O into 3CuO, SO₃.

Cupric potassium sulphate, K₂Cu(SO₄)₂+  $6H_2\bar{O}$ .

100 pts. H₂O dissolve 66.666 pts. at 102.8°. (Griffiths.)

Much more sol. in hot than cold H₂O. (Pierre.) Easily sol. in H₂O; by boiling, de comp. into basic salt. (Persoz, A. ch. (3) **25**, 272.)

100 pts. H₂O dissolve 11.14 pts. anhydrous

salt at 25°. (Trevor, Z. phys. Ch. 7. 470.) 1 l. H₂O dissolves 116.9 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

See also CuSO4+K2SO4. Min. Cyanochroite.

Cupric potassium zinc sulphate, CuSO₄,  $2K_2SO_4$ ,  $ZnSO_4+12H_2O$ . Sol. in H₂O. (Vohl.)

Cupric rubidium sulphate, CuSO₄, Rb₂SO₄+  $6H_2O$ .

Sol. in H₂O. (Tutton.)

1 l. H₂O dissolves 102.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. **459.**)

Cupric sodium sulphate, basic, Na₂SO₄,  $Cu(OH)_2$ ,  $3CuSO_4+2H_2O$ .

Min. Natrochalcite.

Sl. sol. in H₂O; easily sol. in acids. (Palache and Warren, Am. J. Sci. 1908, (4) 26. 346.)

Cupric sodium sulphate, CuSO₄, Na₂SO₄+ 2H₂O.

Solubility of the pure double salt JuSO4,  $Na_2SO_4 + 2H_2O_1$ 

t°	100 grams solution contain		
·	CuSO ₄ grams	Na ₂ SO: grams	
17.7 19.5 23 30 40.15	14.34 14.54 14.36 14.07 13.78	13.34 12.90 12.76 12.37 12.23	

(Koppel, Z. phys. Ch. 1903, 42, 8.) Solubility of the mixture of CuSO₄, Na₂SO₄+  $H_2O$  and  $CuSO_4$ .

to.	100 g. solution contain		
·	CuSO ₄ grams	Na ₂ SO ₄ grains	
17.7 19.5 23 30 40.15	14.99 15.62 16.41 17.97 20.56	13.48? 12.06 11.35 9.95 8.00	

(Koppel.)

Solubility of the mixture of CuSO₄, Na₂SO₄+ 2H₂O and Na₂SO₄.

t.º	100 g. solution contain		
·	CuSO ₄ grams	Na ₂ SO ₄ grams	
18	13.53	13.844	
19.5	11.847	15.116	
20	11.339	15.697	
23	8.185	18.723	
25	6.284	21.198	
26	5.507	22.44	
28	3 746	24.963	
28.3	3.661		
30	2.607	28.383	
30.2	2.422		
32.2	1.465	32.442	
33.9	1.475	32.299	
35.3	1.471	32.072	
37.2	1.494	31.96	

(Koppel.)

Solubility of CuSO₄, Na₂SO₄+2H₂O in presence of varying amounts of Na₂SO₄.

+0	100 g. solution contain		
·	CuSO ₄ grams	Na ₂ SO ₄ grams	
30 30 30.1 40.15 30	5.38 5.41 3.69 3.97 1.57	22.17 21.92 25.37 23.90 32.09	

(Koppel.)

Copper sulphate and sodium sulphate unite to form a double salt, CuSO4, Na2SO4+ 2H₂O, which is stable in the presence of the solution above 16.7°. In the presence of copper sulphate the solubility of Na₂SO₄+ 10H₂() is greater than that of the pure salt. (Koppel.)

Cupric thallous sulphate, CuSO₄, Tl₂SO₄+

Decomp. by recrystallising from H₂O. (Willin, A. ch. (4) 5. 55.)

1 1. H₂O dissolves 81 g. anhydrous salt st 25° (Locke, Am. Ch. J. 1902 27 450)

Cupric zinc sulphate, CuSO₄, 3ZnSO₄+28H₂O Efflorescent. 100 pts. H₂O dissolve 80 pts. salt at 8° Sol. in all proportions in boiling H₂C. (Lefort.)

CuSO4  $2Z\dot{n}SO_4 + 21H_2O$ . (v. Hauer, Pogg. 125. 637.) CuSO₄, ZnSO₄+12H₂O. (Boisbaudran.)

2CuSO₄, 2ZnSO₄, H₂SO₄. (Etard.)

Cuprous sulphate ammonia, Cu₂SO₄, 4NH₈. Sol. in  $NH_4OH + Aq$ ; decomp. by pure  $H_2O$ .

(Péchard, C. R. 1903, **136.** 504.) +H₂O. Decomp. by H₂O. (Foerster and Blankenburg, B. 1906, 39. 4434.)

Cupric sulphate ammonia, basic, CuSO4, 3CuO,  $2NH_3+5H_2O$ .

Decomp. by hot H₂O. (Pickering, Chem. Soc. 43. 336.)

Cupric sulphate ammonia (Cuprammonium sulphate), CuSO₄, NH₈.

Decomp. by H₂O. (Kane.)

Decomp. by H₂O giving a basic sulphate. (Bouzat, C. R. 1902, **135**. 535.)
CuSO₄. 2NH₈ [CuSO₄, _ 2NH₈+3H₂O. CuSO₄, 2NH₈ [CuSO₄, 2NH₈+3H₂O. (Mendelejeff, B. 3. 422.)]. Decomp. by excess of H₂O into—

CuSO₄, 4NH₃+H₂O. Sol. in 1.5 pts. H₂O, but decomp. by much H₂O. Insol. in alcohol. Insol. in conc. NH4OH+Aq. (André, C. R. 100. 1138.)

Sol. in small quantity of H₂O; decomp. in

dil. solution. (Bouzat.) 100 g. H₂O dissolve 44.56 g. anhydrous

comp. at 25°. (Pudschies, Dissert.) 100 g. H₂O dissolve 18.05 g. at 21-22°. (Horn and Taylor, Am. Ch. J. 1904, 32. 268.)

CuSO₄, 5NH₃. Con (Rose, Pogg. **20**. 150.) Completely sol. in H₂O.

Sol. in small amt. of H₂O; decomp. in dil. solution. Insol. in liquid NH₂. (Bouzat, C. R. 1902, **135**. 535.)

Cuprous sulphate carbon monoxide, Cu2SO4,  $2CO + H_2O$ .

Very unstable. (Joannis, C. R. 1903, 136. 615.)

Cupric sulphate zinc oxide, CuSO₄, 2ZnO+ 21H₂O. •

(Larsen, Ch. Z. Repert. 1896, 20. 317.) 2CuSO₄, 3ZnO+12H₂Q. (Mailhe, A. ch. **1902**, (7) **27**, 169.)

Didymium sulphate, basic, Di₂O₃, SO₃ = (DiO)₂SO₄.

Insol. in cold or boiling H₂O. (Marignac.) Slowly sol. in hot dil. HCl+Aq. Easily sol. in conc. acids.

+8H₂O. Precipitate. (Hermann.)

Composition is  $2Di_2O_3$ ,  $3SO_3+3H_2O$  or Di₂(SO₄)₃+Di₂O₆H₆. (Frerichs and Smith.) Composition is  $5Di_2O_3$ ,  $3SO_3+xH_2O$ . (Cleve, B. 11. 910.)

# Didymium sulphate, Di₂(SO₄)₃.

Anhydrous. By saturating cold H2O and warming the solution, the following results were obtained—100 pts. H₂O dissolve at:

18° 25° 38° 50° 12° 43.1 25.8 20.6 13.0 11.0 pts. Di₂(SO₄)₈. H₂O dissolves this salt very +6H₂O.slowly; 100 pts. H₂O dissolve 13 pts. Di₂(SO₄)₃ in 24 hours, and 16.4 pts. in 2 days. If solution is evap. in vacuo until Di₂(SO₄)₃+  $8H_2O$  separates out, 34 pts.  $Di_2(SO_4)_3$  remain dissolved in 100 pts.  $H_2O$ .

 $+5H_2O$ . (Cleve.)

+8H₂O. Solutions of this salt contain at: 50° 19° 40° 100°

11.7 8.8 6.5 1.6 pts.  $Di_2(SO_4)_3$ . (Marignac, A. ch. (3) 38. 170.)

+9H₂O. (Zschiesche, J. Pr. **107**. 75.)

#### Didymium potassium sulphate, K₂SO₄, $Di_2(SO_4)_3 + 2H_2O$ .

Sol. in 63 pts.  $H_2O$ . Insol. in sat.  $K_2SO_4$ + Aq. (Marignac.)

3K₂SO₄, Di₂(SO₄)₃. Sol. in 83 pts. H₂O at Insol. in cold, sl. sol. in boiling sat. K₂SO₄+Aq, 100 ccm. of which retain 55 mg.  $\begin{array}{c} {\rm Di_2O_3~in~solution.} & {\rm (Cleve.)} \\ {\rm 4K_2SO_4,~Di_2(SO_4)_3.} & {\rm (Cleve.)} \end{array}$ 

 $9K_2SO_4$ ,  $2Di_2(SO_4)_3 + 3H_2O$ . (Cleve.)

# Didymium sodium sulphate, Di₂(SO₄)₈, $Na_2SO_4$ , and $+2H_2O$ .

Sol. in 200 pts. H₂O (Marignac), and still less in sat. Na₂SO₄+Aq, 100 ccm. of which dissolve only 70 mg. Di₂O₃ at ord. temp. (Cleve.)

# Didymium thallous sulphate, (Di₂SO₄)₃, 3TI₂SO₄.

Ppt.  $Di_2(SO_4)_3$ ,  $Tl_2SO_4 + 2H_2O$ . Sol. in H₂O. (Zschiesche, J. pr. 107. 98.)

#### Erbium sulphate, $Er_2(SO_4)_3$ .

Anhydrous. Easily and rapidly sol. in H₂O. 100 pts. H₂O dissolve 43 pts. anhvdrous salt at 0°.

+8H₂O. Less sol. in H₂O than anhydrous salt. 100 pts. H₂O dissolve 30 pts. Er₂(SO)₄)₈  $+8H_2O$  (=23 pts.  $Er_2(SO_4)_3$ ) at about 20° , 100 pts.  $\text{Er}_2(\text{SO}_4)_3 + 8\text{H}_2\text{O}$  remain dissolved. Sat. solution deposits crystals when heated to 55°. (Höglund.)

100 g. of sat. solution of Er₂(SO₄)₈+8H₂O at 25° in H₂O contains 11.94 g. anhyd. in H₂O contains 11.94 g. anhyd. Er₂(SO₄)₃. (Wirth, Z. anorg, 1912, 76, 174.)

Solubility of  $\text{Er}_2(\text{SO}_4)_3 + \text{8H}_2\text{O}$  in  $\text{H}_2\text{SO}_4$  at 25°.

 $N = equiv. g. H_2SO in 1 l. of solvent.$ C = g, oxide in 100 g, of solution.  $C^1 = g$ . anhyd. salt in 100 g. of solution.

N	C	C1	N	С	C1
$0.1 \\ 1.1$	3.64	$\frac{7.618}{6.00}$	6.685	0.4439	$\frac{1.505}{0.733}$

(Wirth, Z. anorg. 1912, **76.** 174.)

Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Erbium potassium sulphate, Er₂(SO₄)₃, 3K₂SÕ₄.

Slowly sol. in H₂O. (Höglund.)

Erbium sodium sulphate, Er₂(SO₄)₃, 5Na₂SO₄ +7H₂O.Sol. in H₂O. (Cleve.)

Europium sulphate,  $Eu_2(SO_4)_3 + 8H_2O$ .

Stable in the air. (Urbain and Lacombe, C. R. 1904, 138. 628.)

Gadolinium sulphate,  $Gd_2(SO_4)_8 + 8H_2O$ .

#### Solubility in H₂O.

Temp.	Pts. of Gd ₂ (SO ₄ ) ₈ in 100 pts. H ₂ O
0°	3.98
9.3–10.6°	3.33
14.0°	2.80
25.0°	2.40
34.4°	2.26

(Benedicks, Z. anorg. 1899, 22. 409-410.)

100 g. sat. solution of  $Gd(SO_4)_2+8H_2O$  at 25° in  $H_2O$  contain 2.981 g. anhyd.  $Gd_2(SO_4)_3$ . (Wirth, Z. anorg. 1912, 76. 174.)

Solubility in H₂SO₄. Solid phase, Gd₂(SO₄)₈+ | Solubility of GlSO₄ in H₂SO₄+Aq at 25°. 8H₂O.

N = equiv. g. H₂SO₄ in 11. of solvent. C = g. oxide in 100 g. of solution.

 $C_1 = g$ . anhyd.  $Gd_2(SO_4)_3$  in 100 g. of solu. tion.

N	С	$\mathbf{C}_{\mathbf{I}}$	N	С	C1
0.505	$\begin{array}{c} 1.98 \\ 2.365 \end{array}$	2.981 3.291 3.931 3.807	6.175	1.789 0.528 0.0521	2.974 0.8777 0.0867

(Wirth.)

Sol. in sat. K₂SO₄+Aq.

Gadolinium potassium sulphate, Gd₂(S(1,)₃,  $K_2SO_4+2H_2O_1$ 

100 grams. sat. solution in K2SO4+Aq contains 0.87-0.77 grams Gd₂O₃. (Benedicl.s, Z. anorg. 1900, 22, 410.)

# Gallium sulphate, Ga₂(SO₄)₈.

Not deliquescent, but very sol, in H₂O. Sol. in 60% alcohol; insol. in ether. (Boisbaudran.)

Aqueous solution decomp, into basic salu by boiling, which redissolves, however, on cooling.

, Gallium potassium sulphate,  $Ga_2K_2(SO_4)_4$ + 24H₂O.

(Soret, Arch. sc. phys. nat. 1885, 14, 96.)

Gallium rubidium sulphate, Rb₂Ga₂(SO₄)₄ +24H₂O.

(Soret, Arch. sc. phys. nat. 1885, **14.** 96.)

Glucinum sulphate, basic, 3GlO, SO₃+4H₂O.

Sol. in H₂O, but decomp. by heating or dilution. (Berzelius.)
2GlO, SO₃+3H₂O. Sol. in H₂O.

9GlO, SO₃+14H₂O (?). Precipitate. Insol. in H₂O. (Berzelius.)

According to Debray, this salt when carefully washed is GlO₂H₂.

#### Glucinum sulphate, GlSO₄.

Anhydrous.

Nearly insol. in H₂O, but slowly attacked by cold, rapidly by hot H₂O, and is converted into GISO₄+4H₂O before dissolving. (Parsons, Z. anorg. 1904, 42. 253.)

Sp. gr. of GlSO₄+Aq at 25°.

Concentration of GISO ₄ +Aq	Sp. gr.
1—normal  1/2— "  1/4— "  1/16— "	1.0451 1.0229 1.0114 1.0027

(Wagner, Z. phys. Ch. 1890, 5. 35.)

H ₂ SO ₄ +Aq % H ₂ SO ₄ ;	100 g. of the solution contain g. GISO4.	Solid phase
5.23 9.61 18.70 34.00 40.35 45.51 50.63	8.212 8.429 7.444 6.603 7.631 7.73 8.628 5.438	GISO ₄ +6H ₂ O
56.59 63.24 65.24 73.64	3 640 2.244 2.128 2.135	GISO ₄ +4H ₂ O

(Wirth, Z. anorg, 1913, 79, 359.) See also under +2, 4, and  $6H_2O$ .

Insol. in liquid NH₃ (Gore, Am. Ch. J., 1898, **20**. 828. +H₂O. (I (Levi-Malvano, Z. anorg. 1906, **48.** 447.)

 $+2H_2O$ . Solubility in H₂O at t°.

₆ 0	G. GISO ₄ per 100 g.		
T.	H ₂ O	Solution	
80 91.4 105 119	84.76 97.77 118.4 149.3	45.87 49.42 54.21 59.88	

(Levi-Malvano.)

+4H₂O. Very sol. in H₂O. Sol. in its own weight of H₂O at 14°, and in every proportion of boiling H₂O. Less sol. in dil. H₂SO₄+Aq than in water. (Debray, A, ch. (3) **44.** 25.)

Solubility in H₂O at t°.

t°	g. GlSO ₄ per 100 g.		t.°	g. GIS 100	
	H ₂ O	solution		H ₂ O	solution
30 40 68 85	43.78 46.74 61.95 76.30	30.45 31.85 38.27 43.28	95.4 107.2 111	90.63 115.3 128.3	47.55 53.58 56.19

(Levi-Malvano.)

Sl. sol. in dilute, insol. in absolute alcohol. Can be completely pptd. from GISO4+Aq by HC₂H₈O₂. (Persoz.) (Naumann, B. 1904, Insol. in acetone. **37.** 4329.)

+6H₂O.
Solubility in H₂O at t°.

to.	g. GlSO ₄ per 100 g.		
,	HO	solution	
31 50 72.2 77.4	* 52.23 60.67 74.94 81.87	34.32 37.77 42.85 45.01	

(Levi-Malvano.)

100 g. of the aqueous solution contain at  $25^{\circ},\,8.212$  g. GlSO₄. (Wirth, Z. anorg. 1913,  $79.\,358.)$ 

Glucinum iron (ferrous) sulphate, GlSO₄, FeSO₄+17½H₂O. Sol. in H₂O. (Klatzo, J. B. **1868**. 204.) 3GlSO₄, FeSO₄+28H₂O. Sol. in H₂O.

(Klatzo.)
Do not exist. (Marignac, A. ch. (4) 30. 45.)

Glucinum nickel sulphate, (Gl,Ni)SO₄+
4H₂O, or 7H₂O.

(Klatzo, J. B. 1868. 205.)

Does not exist. (Atterberg, Sv. V. A. F.
1873, 4. 81.)

Glucinum potassium sulphate, GlSO₄, K₂SO₄ +2H₂O.

Sl. sol. in cold, slowly but more sol. in hot  $H_2O$ . (Debray.)  $+3H_2O$ . (Klatzo.)

Glucinum potassium hydrogen sulphate, GlH₂(SO₄)₂, 2K₂SO₄+4H₂O.

Easily sol. in  $H_2O$ . Partly decomp. by recrystallisation. (Atterberg.)

Glucinum sodium sulphate, 2GlSO₄, 3Na₂SO₄ +18H₂O.

Sol. in H₂O. (Atterberg.)

Glucinum zinc sulphate, 2GlSO₄, 3ZnSO₄+35H₂O.

Sol. in H₂O. (Klatzo, J. B. 1868. 205.) Does not exist. (Atterberg.)

Gold (auroguric) sulphate, Au₂(SO₄)₂.

Decomp. by moist air, H₂O, glacial acetic acid, or HNO₃+Aq (1.42 sp. gr.) Insol. in conc. H₂SO₄. (Schottländer, A. 217. 375.)

Gold (auric) sulphate, Au₂O₃, 2SO₃+H₂O, or Auryl hydrogen sulphate, (AuO)HSO₄.

Deliquescent. Decomp. by H₂O. Sol. in HCl+Aq; not attacked by conc. HNO₃+Aq. Sol. in 6 pts. conc. H₂SO₄. (Schottländer.)

Gold (auric) potassium sulphate,  $Au_2(SO_4)_{\delta}$ ,  $K_2SO_4$ .

Not decomp. immediately by cold  $H_2O$ . (Schottländer.)

Hydrazine, mercuric sulphate hydrazine,  $(N_2H_5)_2SO_4$ ,  $3HgSO_4$ ,  $2N_2H_4$ .

Insol. in  $H_2O$ . Sol. in  $H_2O$  containing HCl. (Ferratini, Gazz. ch. it. 1912, 42. (1) 142.)

Hydroxylamine uranyl sulphate, (NH₂OH)₂, H₂SO₄, 2(UO₂)SO₄+5H₂O. Extremely sol. in H₂O from which it can be cryst. (Rimbach, Dissert. 1904.)

Indium sulphate, In₂(SO₄)₃. Easily sol. in H₂O. +9H₂O. Easily sol. in H₂O.

Indium hydrogen sulphate, InH(SO₄)₂+ 4HO. Very deliquescent. (Meyer.)

Indium potassium sulphate,  $InK(SO_4)_2 + 4H_2O$ .

Sol. in  $H_2O$ , but decomp. by boiling. (Rössler, J. pr. (2) 7. 14.) (InO) $_2$ K(SO₄) $_2$ +3 $H_2O$ . Insol. in  $H_2O$ . (Rössler.)

Indium rubidium sulphate, In₂(SO₄)₃, Rb₂SO₄+24H₂O.

44.28 pts. are sol. in 100 pts. H₂O at 15°. (Chabrié, C. R. 1901, **132**. 473.) Melts in crystal H₂O at 42°. (Locke, Am. Ch. J. 1901, **26**. 183.)

Indium sodium sulphate, InNa(SO₄)₂+4H₂O. Sol. in H₂O. (Rossler, J. pr. (2) 7. 14.)

Iodine sulphate,  $I_2(SO_4)_8$ .

Ppt. Decomp. by  $H_2O$ . (Fichter, Z. anorg. 1915, 91. 140.)

Iodyl sulphate, (IO)₂(SO₄)₃.

Possible composition of Weber's (B. 20. 86) I₂O₅, 3SO₃.

Iridium	sulphate.
---------	-----------

Sol. in H₂O or alcohol. (Berzelius.) Sol. in H₂O.  $Ir(SO_4)_2$ . (Rimbs ch. Z anorg. 1907, 52, 409.)

# Iridium potassium sulphate, Ir2(SO4)3, $K_2SO_4 + 24H_2O_1$

Mpt. 102-103°. Easily sol. in H₂O. (Marino, Z. anorg. 1904, 42. 220.)

Ir₂(SO₄)₃, 3K₂SO₄. Sol in H₂O or dil. H₂SO₄+Aq; nearly insol in sat. K₂SO₄+ Aq. (Boisbaudran, C. R. 96. 1406.)

# Iridium rubidium sulphate, Ir₂(SO₄)₄Rb₂.

Sol. in cold; very sol. in hot H₂O. (Marino, Gazz. ch. it. 1903, 32, (2) 511.) Mpt. 108-109°. (Marino, Z. anorg. 1904, **42.** 219.)

Iridium thallium sulphate,  $Ir_2(SO_4)_3$ ,  $Tl_2SO_4$ + 24H₂O.

Very sol. in H₂O. (Marino, Z. anorg. 1904, 42. 222.)

#### Iron (ferrous) sulphate, FeSO₄.

 $+2H_2O$ . Not more sol, in  $H_2O$  than gypsum. (Mitscherlich.)

 $+3H_2O$ . Sol. in  $H_2O$ . (Kane.)

+4H₂O. Separates from conc. FeSO₄+Aq at 80°

+7H₂O. Efflorescent at 33°.

1 pt.  $FeSO_4+7H_2O$  dissolves in 1.6 pts cold, and 0.3 pt. boiling H2().

1 pt. FeSO₄+7H₂O dissolves at:

10° 15° 25° 33° 46° 60° 81° 90° 100° in 1.64 1.43 0.87 0.66 0.44 0.38 0.37 0.27 0.3 pts. H₂O (Brandes and Firnhaber, Br. Arch. 7, 83.)

When boiled with insufficient H2O for solution a white hydrate is formed which separates out. Solubility

increases up to 87.5°, and then diminishes, owing to the above separation. (Brandes, Pogg. 20.581.) Sol. in 2 pts. cold., and 1 pt. boling H₂O (Fourcroy); sol. in 2 pt.s cold H₂O at 18.75° (Abl); sol. in 6 pts. H₂O (Bergmann.) at moderate heat, and 0.75 pt. at 100°. 100 pts. H₂O at 15.5° dissolve 45-50 pts.

100 pts. H2O dissolve pts. FeSO4 at to.

t°	Pts. FeSO ₄	t°	Pts. FeSO ₄	t°	Pts. FeSO ₄
0 10 12 20	15 8 19 9 21 3 26.0	21 30 37	27 4 32 6 36 5	45 55 70	42.9 47.0 56.5

(Tobler, A. 95. 198.)

100 pts. FeSO₄+Aq sat. at 11-14° contain 17.02% FeSO₄. (v. Hauer, J. pr. 103. 114.) 100 pts. FeSO₄+Aq. sat at 15° contain 37.2% FeSO₄+7H₂O; solution has sp. gr. 1.2232. (Schiff, A. 118. 362.)

Solubility in 100 pts. H₂O at t°.

t°	Pts. FeSO ₄	.ş t°	Pts. FeSO ₄	t°	Pts. FeSO ₄
0	7.9	^4	<i>-</i> 37.1	67	65.1
ĭ	8.7	35	38.0	68	65.0
	9.5	36	38.9	69	64.9
3	10.4	37	39.8	70	64.8
2 3 4	11.2	38	40.7	71	64.7
$\hat{5}$	12.0	39	41.7	72	64.5
6	12.9	10	42.6	73	64.4
7	13.7	41	43.5	74	64.2
7.8	14 5	42	44.4	75	64.0
9	15.5	43	45.3	76	63.7
tö	16.2	44	46.2	77	63.4
11	17.0	4	47.1	78	63.1
12	17.9	46	48.1	79	62.7
13	18.7	47	19.0	80	62.3
14	19.5	48	50.0	81	61.9
15	20.4	49	51.0	82	61.5
16	21.2	50	51.9	83	61.0
17	22.1	51	52.9	84	60.4
18	23.0	52	53.8	85	59.8
19	23.8	53	54.8	86	59.2
20	24.7	54	55.7	87	58.5
21	25.6	55	56.7	88	57.7
22	26.4	56	57.7	89	57.0
23	27.3	57	58.7	90	56.2
24	28.1	58	59.7	91	55.3
25	29.0	59	60.7	92	54.3
26	29.9	60	61.7	93	53.3
27	30.8	61	62.7	94	52.2
28	31.7	62	63.7	95	51.0
29	32.6	63	64.8	96	49.6
30	33.5	63.5	65.4	97	48.0
31	34.4	64	65.4	98	46.3
32	35.3	65	65.3	99	44.5
33	36.2	66	65.2	100	42.6

(Mulder, Scheik. Verhandel. 1864. 141.)

If solubility S=pts. anhydrous FeSO, in ... 100 pts. solution, S = 13.5 + 0.3788t from  $-2^{\circ}$ to +65°; S=37.5 constant from 65° to 98°; S=37.5—0.6685t from 98° to 156°. Practically insol. at 156°. (Étard, C. R. 106. 740.)

Sat. FeSO₄+Aq contains at:

—1° 13.0	+5° 15.1	$24^{\circ} \\ 22.7$	$34^{\circ}$ $26.3$	52° 32.5% FeSO ₄ ,
1				94° 36.7% FeSO ₄ ,
102° 34.7	112° 28.0	130° 17.3	$152^{\circ} \ 2.5\%$	FeSO ₄ .

(Étard, A. ch. 1894, (7) 2. 5533)

100 g. H₂O dissolve 26.69 g. FeSO₄ at 25° (Stortenbecker, Z. phys. Ch. 1900, 34. 109.)

Solubility of FeSO₄ in H₂O at t°. 100 g. H₂O dissolve g. FeSO₄.

t°	G. FeSO ₄	t.º	G. FeSO ₄
0.00	15.65	52.00	50.20
$10.00 \\ 15.25$	$20.51 \\ 23.86$	54.03 60.01	52.07 54.95
20.13	26.56	65.00	55.59
$25.02 \\ 30.03$	$\begin{array}{c c} 29.60 \\ 32.93 \end{array}$	$68.02 \\ 70.04$	$52.31 \\ 56.08$
$\frac{35.07}{40.05}$	36.87 40.20	77.00 80.41	$45.90 \\ 43.58$
45.18	44.32	85.02	40.46
50.21	48.60	90.13	37.27

FeSO₄+7H₂O is stable from -1.82° to +56.6°; FeSO₄+4H₂O from 56.6° to 64.4°; FeSO₄+H₂O above this point.

(Fraenckel, Z. anorg. 1907, 55. 228.)

FeSO₄+Aq sat. at 30° contains 24.9 g. FeSO₄ in 100 g. of solution. (Schreinemakers, Z. phys. Ch. 1912, **71**. 110.)

Sp. gr. of FeSO₄+Aq at 15°. % = % FeSO₄+7H₂O.

%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1	1.005	15	1.082	28	1.161
2	1.011	16	1.088	29	1.168
$\frac{2}{3}$	1.016	17	1.094	30	1.174
4	1.021	18	1.100	31	1.180
5	1.027	19	1.106	32	1.187
6	1.032	20	1.112	33	1.193
7	1.037	21	1.118	34	1.200
8	1.043	22	1.125	35	1.206
9	1.048	23	1.131	36	1.213
10	1.054	24	1.137	37	1.219
11	1.059	25	1.143	38	1 226
12	1.065	26	1.149	39	1.232
13	1.071	27	1.155	40	1.239
14	1.077				

(Gerlach, Z. anal. 8. 287.)

Sp. gr. 16.6° of sat. solution = 1.219. (Greenish and Smith, Pharm. J. 1903, 71.881.) Sat. FeSO₄+Aq boils at 102.2° (Griffiths), and solution contains 64% FeSO₄. Crust forms at 102.3°; highest temp. observed, 104.8°. (Gerlach, Z. anal. 26.426.)

B.-pt. of  $FeSO_4$ +Aq containing pts.  $FeSO_4$  to 100 pts.  $H_2O$ .

Bpt.	Pts. FeSO ₄	Bpt.	Pts. FeSO ₄
100.5°	17.7	101.5°	50.4
101.0	34.4	101.6	53.2

(Gerlach, Z. anal. 26. 433.)

100 g. of the sat. solution contain 22.84 g. FeSO₄ at 25°. (Wirth, Z. anorg. 1913, 79. 364.)

Sol. in hot HCl+Aq. (Kane.) Somewhat sol. in conc. H₂SO₄. (Bussy and Lecann.)

Solubility in H₂SO₄+Aq at 25°.

H ₂ SO ₄ +Aq Normality	100 g. of the solution contain g. FeSO ₄	Solid phase
$0 \\ 2.25 \\ 6.685 \\ 10.2$	22.84 19.03 13.40 10.30	FeSO ₄ +7H ₂ O
12.46 15.15 19.84	7.26 4.015 0.1522	$\left.\begin{array}{c} \text{FeSO}_4 + \text{H}_2\text{O} \\ \end{array}\right.$

(Wirth, Z. anorg. 1913, 79. 364.)

More sol, in water containing NO than in pure H₂O. (Gay, Bull. Soc. (2) **44.** 175.)

Completely pptd. from  $FeSO_4+Aq$  by glacial  $HC_2H_3O_2$ . (Persoz.) Solubility in  $(NH_4)_2SO_4+Aq$ . See under  $(NH_4)_2SO_4$ .

Solubility in Li₂SO₄+Aq at 30°.

Composition of the solution			
by wt. FeSO ₄	% by wt. Li ₂ SO ₄	Solid phase	
24.87 22.45 21.15 18.79 16.51 16.18 16.04 15.39 12.68 5.32 3.74	0 4.00 5.58 11.16 15.81 16.52 16.49 16.80 18.31 22.15 23.15 25.1	FeSO ₄ , 7H ₂ C  ""  ""  FeSO ₄ , 7H ₂ O ₊ Li ₂ SO ₄ , H ₂ O  Li ₂ SO ₄ , H ₂ O  ""  ""	

(Schreinemakers, Z. phys. Ch. 1910, 71. 110.)

Solubility of FeSO₄, H₂O +Na₂SO₄, 10H₂O₄, in 100 g. H₂O at t°.

t°	Grams FeSO ₄	Grams Na ₂ SO ₄
0	18.06	6.13
15.5	25.05	15.97

(Koppel, Z. phys. Ch. 1905, **52**. 405.) See also under  $FeNa_2(SO_4)_2$ .

Insol. in liquid NH₅. (Franklin, Am. Ch. J. 1898, **20**. 828.) Insol. in liquid CO₂. (Büchner, Z. phys. Ch. 1906, **54**. 674.)

100 pts. sat. solution of FeSO₄ in 40% alcohol contains 0.3% FeSO₄. (Schiff.)

G

(Wirth, Z.

Insol. in alcohol of 0.905 sp. gr. or less. (Anthon, J. pr. 14. 125.)

Alcohol and H2SO4 precipitate FeSO4 from FeSO₄+Aq, also glacial acetic acid.
Anhydrous FeSO₄ is insol. in acetage.

(Krug and M'Elroy, 1893.)

Insol. in acetone. (Fidmann, C. C 1899,

II. 1014.)

100 g. sat. solution in gycol contain 6.0 g. FeSO₄ at ord. temp. (de Coninck.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Iron (ferrous) sulphate, acid, 2FeO, 3SO₂, 2H₂O.

This salt exists in contact with solutions containing SO₃+1.637 H₂O to about SO₄+ 2.186 H₂O. (Kenrick, J. phys. Chem. 1908, **12.** 704.)

FeO, 2SO₃+H₂O. This compd. exists with solutions containing SO₃+1.342 H₂O to

(about) SO₃+1.595 H₂O. (Kenrick.) FeO, 4SO₃+3H₂O. This compd. is stable with solutions containing from SO₃+1.122 H₂O to (about) SO₃+1.342 H₂O. Rapidly sol. in H₂O with ppt. of FeSO₄+H₂O. (Kenrick.)

Min. Melanterite.

Iron (ferric) sulphate, basic,  $10\text{Fe}_2\text{O}_3$ ,  $\text{SO}_3$ +

(Athanasesco, C. R. 103, 27.)

 $6\text{Fe}_2\text{O}_8$ ,  $8\text{O}_8 + 10\text{H}_2\text{O}$ . Insol. in  $\text{H}_2\text{O}$ . Sl. sol. in warm HCl+Aq. (Scheerer, Pogg. 45.

 $4\text{Fe}_2\text{O}_3$ ,  $8\text{O}_3 + 11\text{H}_2\text{O}$ . (Anthon, Repert. **81.** 237.)

3Fe₂O₃,

 $SO_3+4H_2O$ . Insol. in H₂O. Rather easily sol, in acids. (Scheerer, Pogg. **44.** 453; Meister, B. **8**. 771.)

 $2 \text{Fe}_2 \text{O}_3$ ,  $6 \text{O}_3 + 6 \text{H}_2 \text{O}$ . When pptd. from cold solutions, is sol. in Fe2(SO4)3+Aq, but insol, therein when pptd, from hot solutions. (Maus.)

Only basic sulphate which is a true chemical compound. (Pickering, Chem. Soc. 37.

807.) Insol. in H₂O. Sol. in Min. Glockerite.

conc. H₂SO₄. (Meister.)  $+7H_2O$ .

(Mühlhauser.)  $+8\mathrm{H}_2\mathrm{O}$ .

+15H₂O. Min. Pissophanite.

 $Fe_2O_3$ ,  $SO_3 = (FeO)_2SO_4 + 3H_2O$ .  $H_2O$ . (Soubeiran, A. ch. 44. 329.) Insol. in

 $3\text{Fe}_2\text{O}_8$ ,  $4\text{SO}_8+9\text{H}_2\text{O}$ . (Athanasesco.)  $2Fe_2O_3$ ,  $3SO_3+8H_2O$ . Insol. in H₂O.

(Wittstein.)  $+18 \rm{H}_2 \rm{O}$ . Min. Fibroferrite. Sl. sol. in cold, more easily in hot  $\rm{H}_2 \rm{O}$ .

Fe₂O₃, 2SO₃+10H₂O. Min. Stypticite. +15H₂O. Sol. in H₂O; decomp. by heat or evaporation. (Muck, J. pr. 99. 103.)

 $2\text{Fe}_2\text{O}_3$ ,  $5\text{SO}_3 + 13\text{H}_2\text{O}$ . Min. Copiapite  $Fe_4S_5O_2 + 18H_2O = 2Fe_2O_3$ ,  $5SO_3 + 18H_2O$ a-Copiapit. This salt is in equilibrium at 25° | 1898, 20. 828.)

with solutions in which the molecular ratio Fe₂O₃: SO₈ lies between 1:2.889 a 1:2.614. (Wirth, Z. anorg. 1914, 87. 37.) (OH)Fe₃(SO₄)₄+13H₂O. β-Copiapit. This salt is in equilibrium at 25° with solutions in which the mol cular ratio Fe₂O₃: SO₄ lies between 1:3.472 and 1:2.889.

anorg. 1914, 87. 37.) According to Pickering (Chem. Soc. 87. 807), all basic ferric sulphates are mixtures

excepting 2Fe₂C₃, SO₃,

Iron (ierric) sulphate, Fc₄(SO₄)₈.

Anhydrous. Slowly deliquescent. Nearly insol in H₂O, and HCl+Aq. Insol in conc. H₂SO₄. Very rapidly sol in FeSO₄+Aq, even when very dil. (Barreswil, C. R. 20. 1366.) Sp. gr. of Fe₂(SO₄)₈+Aq. According to F = Franz at 17.5° (J. pr. (2) 5. 280); G=Gerlach 5. 15° (Z. anal. 28. 494); II=Hager at 18° (Z. anal. 28. 494); II=Hager at 18° (Z. anal. 28. 494) 18° (Z. anal. 27. 280).

10 15 20 % Fe₂(SO₄)₃, 1.0426 1.0854 1.1324 1.1826 1.096 1.205H 1.046 1.097 1.151 1.208 35 40 % Fe₂(SO₄)_{3,} 2530 1.2426 1.3090 1.3782 1.4506 1.331 1,478 H 1.271 1.337 1.411 1.490 60 % Fe₂(SO₄)₃. 45 50 1.5298 1.6148 1.7050 1.8006

# Solubility in H₂SO₄+Aq at 25°.

1.650

H ₂ SO ₄ -⊦Aq Normality	100 g. of the solution contain g. Fe ₂ (SO ₄ ) ₃
2.25	25.02
6.685	14.58
19.84	0.05

(Wirth, Z. anorg. 1913, 79. 364.)

#### Solubility in Al₂(SO₄)₃+Aq at 25°.

G. Al ₂ (SO ₄ ) ₃	G. Fe ₂ (SO ₄ ) ₈
	44.97
2.342	42.44
5.200	38.83
6.626	35.82
8.819	34.02
10.03	32.42
*10.23	31.90
10.70	31.91

*Solution sat. with respect to both salts (Wirth and Bakke, Z. anorg. 1914, 87. 48.) See also under Al₂(SO₄)₃.

Insol. in liquid NH3. (Gore, Am. Ch. J.

Completely pptd. from Fe₂(SO₄)₃+Aq by HC2H3O2. Sol. to large extent in alcohol.

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insol. in acetone.

+xH₂O. Very deliquescent, and sol. in H₂O. Conc. Fe₂(SO₄)₃+Aq may be boiled without decomp., but dil. solutions are decomp. on heating. A solution containing 1 pt. salt to 100 pts. H₂O becomes turbid at 76°; 1 pt. to 200 pts., at 56°; 1 pt. to 400 pts., at 47°; 1 pt. to 800 pts., at 40°; 1 pt. to 1000 pts., at 38°; 1 pt. to 10,000 pts., at 14°. (Scheerer.)

+9H₂O. Min. Coquimbite.

81.43 pts. are sol. in 18.57 pts. H₂O. (Wirth, Z. anorg. 1914, 87. 23.)

This salt is stable at 25° only in contact with solutions in which the molecular ratio Fe₂O₃: SO₃ lies between 1:3.472 and 1:6.699. (Wirth, Z. anorg. 1914, 87. 35.) +10H₂O. Slowly sol, in H₂O. (Oudemans.

R. t. c. 3. 331.)

Iron (ferroferric) sulphate, 6FeSO4,  $Fe_{2}(SO_{4})_{2}+60H_{2}O.$ 

Sol, in all proportions in H₂O. (Poumarède. C. R. 18. 854.)

 $3\text{FeSO}_4$ ,  $2\text{Fe}_2(\text{SO}_4)_3 + 12\text{H}_2\text{O}$ . Decomp. by H.O. Easily sol, in dil. HCl+Aq. Insol, in alcohol. (Abich, 1842.)

FeSO₄, Fe₂(SO₄)₃+12H₂O. Min. Voltaite. Difficultly sol. in H₂O.

FeO, Fe₂O₃, 6SO₃+15H₂O. (Lefort, J. Pharm. (4) **10.** 87.) Deliquescent.

Iron (ferrous) pyrosulphate,  $FeS_2O_7$ .

Deliquescent. Decomp. by H₂O. (Bolas. Chem. Soc. (2) 12. 212.)

Iron (ferric) hydrogen sulphate, Fe₂(SO₄)₃,  $H_2SO_4+8H_2O.$ 

This salt is in equilibrium at 25° only with solutions where the molecular ratio Fe₂O₃: SO₃ is more acid than 1:6.699. (Wirth and Bakke, Z. anorg. 1914, 87. 34.)

Sat. solution of Fe₂(SO₄)₃, H₂SO₄+8H₂O in abs. alcohol at 25° contains 8 g. Fe₂O₃+ 17.18 g. SO₃ per 100 g. sat. solution. (Wirth and Bakke.)

Decomp. by H₂O. (Recoura, C. R. 1903, **137.** 118.)

In contact with solutions containing 25% to 28%SO₃ at 25°, the stable solid is Fe₂O₃, 3SO₈+10H₂O. In contact with solutions containing more than 28%, the stable solid is  $Fe_2O_3$ ,  $4SO_3+10H_2O$ . (Cameron and Robinson, J. phys. Chem. 1907, 11. 650.)

Iron (ferroferric) hydrogen sulphate, Fe₂(SO₄)₈, FeSO₄, 2H₂SO₄.

Insol. in  $H_2O$ , but slowly decomp. thereby. Sol. in H₂SO₄. (Etard, C. R. 87. 602.)

Iron (ferrous) hydrazine sulphate, FeH₂(SO₄)₂, 2N2H4.

1 pt. is sol. in 325 pts. H₂O at 12°. (Curtius, J. pr. 1894, (2) **50.** 331.)

Iron (ferrous) magnesium sulphate, FeSO4.  $MgSO_4+4H_2O.$ 

Sol. in H₂O. (Schiff.)

Iron (ferric) magnesium sulphate, Fe₂(SO₄)₃,  $MgSO_4 + 24H_2O$ . (Bastick.)

Iron (ferrous) magnesium potassium sulphate,  $2K_2SO_4$ , FeSO₄, MgSO₄+12H₂O. Sol. in H₂O. (Vohl, A. 94. 57.)

Iron (ferric) manganous hydrogen sulphate,  $Fe_2(SO_4)_8$ ,  $2MnSO_4$ ,  $H_2SO_4$ . Insol. in cold H₂O. (Étard.)

Fe₂(SO₄)₃, 2MnSO₄, 3H₂SO₄. Sol. in H₂O. (Étard, C. R. 86. 1399.)

Iron (ferric) manganic sulphate, Fe₂(SO₄)₂,  $Mn_2(SO_4)_3$ .

Insol. in cold H2O; decomp. by hot H2O and HCl + Aq. (Étard.)

Iron (ferrous) manganous potassium sulphate,  $FeSO_4$ ,  $MnSO_4$ ,  $2K_2SO_4+12H_2O$ . Sol. in H₂O. (Vohl, A. 94. 57.)

Iron (ferrous) nickel sulphate, 2FeSO4, 2NiSO₄, H₂SO₄. (Étard, C. R. 87. 602.)

Iron (ferric) nickel sulphate, Fe₂(SO₄)₃, NiSO₄, 2H₂SO₄.

Insol. in H₂O, but gradually decomp. thereby. (Étard, C. R. 87. 602.)

Iron (ferrous) nickel potassium sulphate, FeSO₄, NiSO₄, 2K₂SO₄+12H₂O. Sol. in H₂O. (Vohl, A. 94. 57.)

Iron (ferrous) potassium sulphate, FeSO4, K₂SO₄.

+2H₂O. (Marignac, Ann. Min. (5) 9. 19.)

#### Solubility in H₂O at t°.

t°.	% FeK2(SO4)2	l t°	% FeK2(SO4)
0.5 17.2 40.1 60	22.79 31.98 40.86 42.63	80 90 95	42.34 42.73 41.01

(Küster and Thiel, Z. anorg. 1899, 21. 116.)

+4H.O.

· Solubility in H2O at to.

t°	% FeK2(S()4)2	t,0	% F.K2(SO.)2
0.5 17.2 40.1 60	22.94 26.79 32.41 35.68	80% 90 95	40.46 40.82 44.11

(Küster and Thiel.)

+6H₂O. 100 pts. H₂O dissolve at t°: 0° 10° 14.5° 16° 25° 19.6 24.5 29.1 30.9 36.5 pts. anhydrous salt,

35° 40° 55° 65° 41 45 56 59.3 64.2 pts. anhydrous salt. (Tobler, A. 95. 193.)

Solubility in H₂O at t°.

t°	77 FeK2(SO4)2	t°	% FeK2(SO4)
$0.5 \\ 17.2 \\ 40.1$	18.36 25.16 36.72	60 80 	42.93 45.29

(Küster and Thiel.)

 $\begin{array}{cccc} \text{Iron} & (\text{ferric}) & \text{potassium} & \text{sulphate, basic,} \\ & 4Fe_2O_3, & K_2O, & 7SO_3 + 9H_2O = 4(Fe_2O_3, \\ & 2H_2O, & SO_3), & K_2SO_4 + 7H_2O. \end{array}$ 

Insol. in boiling H2O. Sl. sol. in HCl+Aq, more readily in aqua regia. (Rammelsberg.)  $3\text{Fe}_2\text{O}_3$ ,  $\text{K}_2\text{O}$ ,  $4\text{SO}_3+6\text{H}_2\text{O}=\text{K}(^{\text{Fe}}\text{O})_3(\text{SO}_4)_2$ +3H2O. Min. Jarosite.

 $Fe_2O_3$ ,  $H_2O$ ,  $2SO_3$ ,  $2K_2SO_4+5H_2O$ . Sol. in 6 pts. cold H₂O. Solution soon decomposes. (Maus, Pogg. 11. 78.)

Sol. in 12.5 pts. H₂O at 10°. (Anthon, Repert. 76. 361.)

Formula is given as 3Fe₂O₃, 5K₂O, 12SO₃+ 18H₂O by Marignac.

3Fe₂O₃, 6SO₃, 2K₂SO₄+22H₂O. Sol. when moist in H₂O. Solution soon decomposes. Insol. in alcohol. (Soubeiran, A. ch. 44, 329.)  $3Fe_2O_3$ ,  $7SO_3$ ,  $5K_2SO_4+12H_2O$ , and  $17H_2O$ . (Scheerer, Pogg. 87. 81.)  $2Fe_2O_3$ ,  $5SO_3$ ,  $3K_2SO_4+9H_2O$ . (S.) +17H₂O. 3Fe₂O₃, 8SO₃, 4K₂SO₄+20H₂O and 24H₂O. (S.)

Iron (ferric) potassium sulphate, K₂SO₄,  $2 Fe_2(SO_4)_s$ .

Insol. in H₂O, but is gradually decomp. thereby. (Grimm and Ramdohr, A. 98. 127.) +2H₂O. Nearly insol. in H₂O. (Weinland, Z. anorg. 1913, 84. 364.) K₂Fe₂(SO₄)₄+24H₂O.

Iron alum. Sol. in 5 pts. H₂O at 12.5°. (Anthon.) Aqueous solution is decomp. by heating. Insol. in alcohol.

Sp. gr. of aqueous solution. According to

G=Gerlach, at 15° (Z. anal. 28. 496); F= Franz, at 17.5° (J. pr. (2) 5. 288), containing: 10 15% K₂Fe₂(SO₄)₄+24H₂O₇ 1.0268 1.0466 1.0672 G 1.025 1.0507 (.0773

30% K₂Fe₂(SO₄)₄+24H₂O, 25 F 1.0894 1.1136 1.1422 G 1.1050 1.1340 1.1645

 $\frac{35}{G} \frac{\%}{1.1967} \text{K}_2\text{Fe}_2(\text{SO}_4)_4 + 24\text{H}_2\text{O}_4$ 

Molts in crystal H2O at 28°. (Locke, Am. Ch. J. 1901, 26, 183.)

 $Fe_2(SO_4)_{s_1}$   $3K_2SO_4$ . Insol, in H₂O, but slowly decomp. thereby. (Étard, C. R. 84.

Iron (ferric) potassium sulphate sulphite. See Sulphite sulphate, ferric potassium.

Iron (ferrous) potassium zinc sulphate, FeSO₄,  $2K_2SO_4$ ,  $ZnSO_4+12H_2O$ . Sol. in H₂O.

iron (ferrous) rubidium sulphate, FeSO4,  $Rb_2SO_4+6H_2O$ .

Sol. in H₂O. (Tutton, Chem. Soc. 63. 337.) 1 l. H₂O dissolves 242 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Iron (ferric) rubidium sulphate, Rb₂Fe₂  $(SO_4)_2 + 24H_2O$ .

Solubility in H₂O.

	·	
Temp.	G. per litre	Gram mols. of anhydrous salt per litre
25 30 35	97.4 202.4 Basic salt formed	0.294 0.617

(Locke, Am. Ch. J. 1901, **26.** 180.)

Iron (ferrous) sodium sulphate, FeSO4,  $Na_2SO_4+4H_2O$ .

Sol. in H₂O. (Marignac, Ann. Min. (5) 9. 25.)

Solubility of FeNa₂(SO₄)₂+4H₂O in 100 g. H₂O at t°.

t°	Grams FeSO	Grams NasSO4
21.8	24.34	22.51
24.92	23.62	22.04
34.95	23.91	21.83
40	24.01	22.62

(Koppel, Z. phys. Ch. 1905, 52. 406.)

Solubility  $FeNa_2(SO_4)_2.4H_2O + FeSO_4.$ 7H₂O in 100 g. H₂O at t°.

t°	grams FeSO ₄	grams Na ₂ SO ₄	t°	grains FeSO ₄	g rams Na ₂ SO ₄
18.8 23 27	26.63 28.82 30.95	18.40	31° 35° 40°	33.99. 35.66 39.98	13.85

(Koppel.)

Solubility of  $FeNa_2(SO_4)_2.4H_2O + Na_2SO_4$ . 10H₂O in 100 g. H₂O at t°.

t°	grams FeSO ₄	grams Na ₂ SO ₄	t°	grams FeSO ₄	grams Na ₂ SO ₄
18.8 23		$22.16 \\ 26.48$		11.28 6.95	35.94 44.75

(Koppel.)

Solubility of  $FeNa_2(SO_4)_2.4H_2O + Na_2SO_4$ (anhydrous) in 100 g. H₂O at t°.

t° .	grams FeSO ₄	grams Na ₂ SO ₄
35	6.16	46.58
40	6.27	46.99

(Koppel.)

See also under FeSO4.

Iron (ferric) sodium sulphate, basic, 2Na₂O,  $Fe_2O_8$ ,  $4SO_8+7H_2O_8$ 

Only sl. sol. in H₂O with decomp. (Skrabal, Z. anorg. 1904, 38. 319.) +8H₂O. Min. Urusite. Insol. in H₂O; easily sol. in HCl+Aq.

3Na₂O, Fe₂O₃, 6SO₃+6H₂O. Sol. in H₂O with decomp. (Skrabal.)

 $4Fe_2O_3$ ,  $Na_2O$ ,  $5SO_3+9H_2O$ .

Insol. in H₂O; difficultly sol. in HCl+Aq. (Scheerer, Pogg. 45. 190.)

Iron (ferric) sodium sulphate, [Fe(SO₄)₈]Na₃ +3H₂Ó.

Ppt. Nearly insol. in H₂O. (Weinland, Z. anorg. 1913, 84. 365.)

(ferrous) thallium sulphate, FeSO₄,  $Tl_2SO_4 + 6H_2O$ .

Easily decomp. by solution in H₂O. (Willm, A. ch. (4) 5. 56.)

Iron (ferric) thallium sulphate, Tl₂Fe₂(SO₄)₄ +24H₂O.

Not efflorescent. Very easily sol. in H₂O. 361.5 g. anhydrous, or 646 g. hydrated salt are sol. in 1 l. H₂O at 25°, or 0.799 mol. of the anhydrous salt is sol. in 1 l.  $H_2O$  at 25°. Melts in crystal H₂O at 37°. (Locke, Am. Ch. J. 1901, 26. 175.)

Iron (ferrous) zinc sulphate, FeSO4, ZnSO3+ 14H₂O.

2FeSO₄, 2ZnSO₄, H₂SO₄. (Étard, C. R. 87.

Iron (ferric) zinc sulphate, Fe₂(SO₄)₃, ZnSO₄ +24H₂O. (Bastick.)

Iron (ferrous) sulphate nitric oxide, FeSO4. NO.

The solubility of NO in FeSO4+Aq is diminished by the presence of H₂SO₄, HCl, phosphoric acid, and by the presence of cer-

tain salts. (Manchot, A. 1910, 372. 157.) Fe(NO)SO₄, FeSO₄+13H₂O. Decomp. in

the air. Sol. in water. (Manchot.)

Lanthanum sulphate, basic, 2La₂O₂, 3SO₂+ 3H₂O.

Precipitate. (Frerichs and Smith.) Formula is  $3La_2O_3$ ,  $SO_3+xH_2O$ . (Cleve, B. 11. 910.)

#### Lanthanum sulphate, La₂(SO₄)₃.

Anhydrous. Much less sol, in warm than in cold H₂O. 1 pt. is sol, in less than 6 pts. H₂O, if added in small portions thereto at , and the temperature not allowed to rise to 13°; but if heated to 30°, La₂(SO₄)₂+9H₂O separates out until the solution is solid. (Mosander.)

100 pts. H₂O dissolve 2.208 pts. La₂(SO₄)₃ at 16.5°; 2.130 pts. at 18°; 1.641 pts. at 34°.

See also under  $+9H_2O$ . The solubility of  $La_2(SO_4)_3$  in  $H_2O$  is diminished by the presence of (NH₄)₂SO₄, K₂SO₄ or Na₂SO₄. (Barre, C. R. 1910, **151.** 871.)

Solubility in (NH₄)₂SO₄+Aq at 18°.

Pts. per 100 pts. H ₂ O		•
, NH4) sSO4	La ₂ (SO ₄₎₃	Solid phase
0.00 4.011 8.727 18.241 27.887 36.112 47.486 53.823 65.286 73.782	0.279 0.253 0.476 0.277 0.137 0.067 0.0117	La ₂ (SO ₄ ) ₃ +9H ₂ O La ₂ (SO ₄ ) ₃ , (NH ₄ ) ₂ SO ₄ +2H ₂ O " " " 2La ₂ (SO ₄ ) ₃ , 5(NH ₄ ) ₂ SO ₄ La ₂ (SO ₄ ) ₃ , 5(NH ₄ ) ₂ SO ₄ " "

#### (Barre.)

Solubility in K.SO.+Ag at 16.5°

OOL	(fi)lile A 11	1 112004   114 at 10.0 .
Pts. per 100 pts. H ₂ O		Solid phase
K2SO4	La2(SO4) 3	
0.00 0.247 0.496 0.846 1.029 1.516	2.198 0.727 0.269 0.185 0.054 0.022	La ₂ (SO ₄ ) ₃ +9H ₂ O La ₂ (SO ₄ ) ₃ , K ₂ SO ₄ +2H ₂ O " La ₂ (SO ₄ ) ₃ , 5K ₂ SO ₄

(Barre.)

1001	uniity ii	$1 Na_2SO_4 + Aq$ at $18^\circ$ .
	100 pts. 20	Solid phase
Na ₂ SO ₄   I ₁ n ₂ (SO ₄ ) ₃		,
0.00 0.395 0.689 0.774 1.136 2.480 3.802 5.548	2.130 0.997 0.353 0.299 0.129 0.044 0.019 0.016	La ₂ (SO ₄ ) ₈ +9H ₃ O L ₂₂ (SO ₄ ) ₈ , Na ₂ SO ₄

(Barre.)

Insol. in liquid NH3. (Gore, Am. Ch. J. 1898, **20**, 830.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

+9H₂O. Sol. in 42.5 pts. H₂O, calculated as anhydrous salt, at 23°, and 115 pts. H₂O at 100°. (Mosander.)

Solubility in H₂O.

100 pts. H₂O dissolve pts. La₂(SO₄)₃ at t^c.

t°	Pts. L12(SO1)3
0	3.02
14	2.60
30	1.90
50	1.49
75	0.94
100	0.68

(Muthmann and Rölig, B. 1898, 31. 1723.)

Solubility in H₂SO₄+Aq at 25°.

Normality H ₂ SO ₄	In 100 g, of the liquid are dissolved		Solid phase	
H250/4	g. oxide g. sulphate			
0 0.505 1.10 2.16 3.39 4.321 6.685 9.68	1.43 1.69 1.796 1.818 1.42 1.11 0.5309 0.2659	2.483 2.934 3.118 3.156 2.465 1.927 0.9217 0.4617	La ₂ (SO ₄ ) ₃ +9H ₂ O	
12.60 15.15	0.2136	$0.3709 \\ 0.3073$	"	

(Wirth, Z. anorg. 1912, 76. 189.)

Lanthanum hydrogen sulphate, La(SO₄H)₃. (Brauner, Z. anorg. 1904, 38. 330.)

Lanthanum potassium sulphate, La₂(SO₄)₃, K₂SO₄+2H₂O.

La₂(SO₄)₃, 5K₂SO₄. (Barre, C. R. 1910, **151.** 872.)

La₂(SO₄), 3K₂SO₄. Sl. sol. in H₂O. Insol. in sat. K₂SO₄+Aq. (Cleve.)

As above.  $La_2(SO_4)_4$ ,  $4K_2SO_4$ . (Cleve.) 2Le₂(SO₄)₃, 9K₂SO₄. As above. (Cleve.)

Lanthanum rubidium sulphate, La₂(SO₄)₈, Rt 2SO₄.

(B skerville, J. Am. Chem. Soc. 1904, 26.

67.). +2H₂O. (Baskerville.) 2Rh₂SO₄. 3La₂(SO₄)₃, 2Rb₂SO₄. (Baskerville.)

Lantharum sodium sulphate, La2(SO4)s.  $Na_2SO_4 + 2H_2O$ .

Si. col. in H₂O. (Cleve.) (Barre, C. R. 1910, 151, 872.)

Lead sulphate, basic, 2PbO, SO₃.

Not completely insol. in H₂O. Decomp. by acids, ven dil, HC₂H₂O₂+Aq, with formation of PbSO₄. (Barfoed, **1869**.)

0.050 millimole calc. as Pb is sol. in 1 l. H.O at 18°. (Pleissner, C. C. 1907, II. 1056)

5PbO, 3SO3. (Frankland, Proc. Roy. Soc. **46**. 364.)

Pb₃O₄, 2SO₃. (Frankland.) 3PbO, PbSO4+H2O. Ppt. (Strömholm, Z.

anorg. 1904, 38, 442.) Pb₄(SO₄)(OH)₂. 0.106 millimole calc. as Pb₁'s sol. in 1 liter H₂O at 18°. (Pleissner, C. C. 1907. II, 1056.)

Lead sulphate, PbSO4.

Sol. in 22,816 pts. H₂O at 11°. (Fresenius A. **59.** 125.)

Sol. in 31,569 pts. H₂O at 15°. (Rodwell, C. N. 11. 50.) Sol. in 13,000 pts. H₂O. (Kremers, Pogg.

**85.** 247.)

Calculated from electrical conductivity of PbSO₄+Aq, 11. H₂() dissolves 46 mg. PbSO₄ (Kohlrausch and Rose, Z. phys. Ch. at 18°. **12.** 241.)

 $4.23 \times 10^{-2}$  gr. are dissolved in 1 liter of sat. solution at 20°; 4.41×10 2 at 25°. (Böttger,

Z. phys. Ch. 1903, 46, 604.) i l. H₂O dissolves 41 mg. PbSO₄ at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

0.126 millimole Pb is sol. in 1 liter H₂O at 18°. (Pleissner. C. C. 1907, II. 1056.)

40 mg. are dissolved in 1 l. of sat. solution at 18°. (Kohlrausch, Z. phys. Ch. 1908, 64. 168.)

0.0824 g. PbSO₄ is sol. in 1000 cc. H₂O at 18° and also at 100°. The fact that PbSO₄ dissolves in H₂O is ascribed to hydrolysis, and in support of this it is shown that the solubility of hydrated oxide of lead, PbO, H₂O, in dil. H₂SO₄ is the same as the solubility of PbSO₄ in H₂O. (Sehnal, C. R. 1909, 148. 1395.)

1 l. H₂O dissolves 26 mg. at 18°; 30 mg. at 25°; 38 mg. at 37°. (Beck and Stegmüller, Arb. K. Gesund. Amt. 1910, 34. 447.)

.,	Solubility	in	$H_2O$	at	t°.
	(Millir				

4 (111111111111111111111111111111111111	per I.,
t°	PbSO ₄
18 25 37	0.126 0.144 0.183

(Beck and Stegmüller, Arb. K. Gesund. Amt. 1910, 34, 446.)

Sol. in hot conc. HCl+Aq. (Fresenius.) Solubility of PbSO₄ in HCl+Aq.

Sp. gr. of	% HCl in	Pts. HCl+Aq
HiCl +Aq	HCl+Aq	for 1 pt. PbSO ₄
1.0519	10.602	681.89
-1.0800	16.310	281.73
1.1070	22.010	105.65
1.1359	27.525	47.30
1.1570	31.602	35.03

(Rodwell, Chem. Soc. **15.** 59.)

Solubility of PbSO₄ in HCl+Aq at t°. (Millimols, per l.)

t °	0.1N	0.2N	0.3N	0.4N
18	0.126	$1.72 \\ 2.07 \\ 2.63$	2.67	3.63
25	0.144		3.14	4.29
37	0.183		4.06	5.43

(Beck and Stegmüller, Arb. K. Gesund. Amt. 1910, **34.** 446.)

Above measurements in HCl+Aq show solubility directly proportional to the hydrogen ions. (Beck and Stegmüller.)

Sol. in HNO₃+Aq, and more sol. in hot or conc. than in cold or dil. HNO₃+Aq.

Sol. in 172 pts. HNO₃+Aq of 1.144 sp. gr. at 12.5°. (Bischof.)

Pptd. from HNO₃ solution by dil. H₂SO₄+ Aq and not by H₂O. (Bischof, 1827.)

Solubility of PbSO₄ in HNO₃+Aq.

Sp. gr. of	% HNO3 in	Pts. HNO ₃ +Aq
HNO ₃ +Aq	HNO3+Aq	for 1 pt. PbSO ₄
1.079	11.55	303.10
1.123	17.50	173.75
1.250	34.00	127.48
1.420	60.00	10282.78

(Rodwell, Chem. Soc. 15. 59.)

Solubility in HNO₃ at 18°. 偽 (Millimols per l.)

HNO;	PbSO ₄	
0.1N	0.506	
0.2N	0.844	
0.3N	1.13	
0.4N	1.44	

(Beck and Stegmüller.)

Sol. in 36,504 pts. dil. H₂SO₄+Aq. senius:) See also under solubility in alcohol.

Sl. sol. in conc. H₂SO₄, from which it is partially pptd. by H₂O or completely by alcohol. (Fresenius.)

100 pts. conc. H₂SO₄ dissolve 6 pts. PbSO₄. (Schultz, Pogg. 133. 137.)

Conc. H₂ŠO₄ dissolves 0.005 pt. PbSO₄.

100 pts. H₂SO₄ dissolve 0.13 pt. PbSO₄, and 100 pts. fuming H₂SO₄ dissolve 4.19 pts. (Struve, Z. anal. 9. 31.)

More sol. in commercial H₂SO₄ than in the more conc. acid. (Hayes.)

100 pts. H₂SO₄+Aq of 1.841 sp. gr. dissolve 0.039 pts. PbSO₄; of 1.793 sp. gr. dissolve 0.011 pt. PbSO₄; of 1.540 sp. gr. dissolve 0.003 pt. PbSO₄.

Presence of SO₂ does not increase the solubility; HNO₃ increases the solubility somewhat, i. e., 100 pts. H₂SO₄+Aq of 1.841 sp. gr. with 5 pts. HNO₃ of 1.352 sp. gr. dissolve 0.044 pt. PbSO₄; 100 pts. H₂SO₄ of 1.749 sp. gr. with 5 pts.  $\rm HNO_3$  of 1.352 sp. gr. dissolve 0.014 pt.  $\rm PbSO_4$ ; 100 pts.  $\rm H_2SO_4$  of 1.512 sp. gr. with 5 pts.  $\rm HNO_3$  of 1.352 sp. gr. dissolve only a trace.

Nitrous oxides do not increase the action. (Kolb, Dingl. **209.** 268.)

Solubility in dil. H₂SO₄+Aq at 18°. (G. per l.)

H ₂ SO ₄	PbSO ₄	H ₂ SO ₄	PbSO ₄
0	0.0382	0.0245	0.0194
0.0049	0.0333	0.0490	0.0130
0.0098	0.0306	0.4904	0.0052

(Pleissner, Arb. K. Gesund. Amt. 1907, 26. 384.)

A trace of H₂SO₄ has a considerable effect in reducing the solubility of PbSO₄ in H₂O. (Sehnal, C. R. 1909, **148**. 1395.)

Solubility in dil. H₂SO₄+Aq at 20°. (G. per 1.)

H ₂ SO ₄	PbSO ₄	H ₂ SO ₄	PbSO ₄
0	0.082	0.0980	0.013
0.0098	0.051	0.4900	0.006
0.0196	0.025	0.9800	0

(Sehnal.)

Pptd. from solution in H₂SO₄ by HCl. (Bolley, A. **91.** 113.)

Not more insol. in dil. HC₂H₃O₂+Aq than in H2O. (Bischof.)

Solubility in other acids is prevented by

great excess of H₂SO₄. (Wackenroder.) Sol. in warm NH₄OH+Aq, separating on cooling. Completely sol. in warm KOH or NaOH+Aq.

Decomp. by boiling with K₂CO₃, Na₂CO₃, and (NH₄)₂CO₃+Aq.

Sol. in NH₄ salts +Aq but reported by  $H_2SO_4+Aq$ . (Fresenius, A. **59.** 125.)

The best solvents of the NH₄ salts are he nitrate, citrate, and tartrate; the two latter should be strongly alkaline with NH₄OH + Aq. (Wackenroder.)

Sol. in NH4Cl+Aq at 12.5-25°.

Sl. decomp. by NaCl+Aq. (Bley.)

1 l. sat. NaCl+Aq dissolves 0.66 g. PbSO₄. (Becquerel.)

Sol. in 100 pts. cold conc. NaCl+Aq, and PbCl₂ is deposited after a few hours. (Field.)

Solubility of PbSO₄ in NaCl+A₅ at 18°. (Millimols per l.)

NaCl	PbSO₄		
0.1N	0.546		
0.2N 0.3N	$0.904 \\ 1.28$		
0.4N	1.68		

(Beck and Stegmüller, Arb. K. Gesund, Amt. 1910, **34.** 446.)

Sol. in  $Fe_2Cl_6+Aq$ . (Fresenius, Z. anaı 19. 419.)

Sol. in  $Na_2S_2O_3+\Lambda q$ . (Löwe.) Sol. in  $(NH_4)_2SO_4+\Lambda q$ . (Rose.)

Solubility of PbSO₄+PbSO₄, K₂SO₄ in H₂O.

	K ₂ SO ₄			
t°	g, in 100 ec. of solution	Mol. in 100 ec. of solution	Solid phase	
$\begin{array}{c} 0 \\ 22 \end{array}$	0.195 0.396	$0.0112 \\ 0.0227$	K ₂ SO ₄ , PbSO ₄ +PbSO ₄	

(Brönsted, Z. phys. Ch. 1911, 77. 316.)

Sol. in 47 pts.  $NH_4C_2H_3O_2+Aq$ ) 1.036 sp. gr.), and 969 pts.  $NH_4NO_3+Aq$  (1.269 sp. gr.); from the solution in  $NH_4C_2H_3O_2$  it is pptd. by  $H_2SO_4$  or  $K_2SO_4$ ; from solution in  $NH_4NO_3$  by  $K_3SO_4$ , but not by  $H_2SO_4$ . (Bischof.)

by K₂SO₄, but not by H₂SO₄. (Bischof.) Sol. in acetates of NH₄, Na, K, Ca, Al, and Mg. (Mercer.)

Solubility in NH₄C₂H₃O₂+Aq. Excess of PbSO₄ was boiled with solution of NH₄C₂H₃O₂+Aq of varying conc.

G.	g. PbSO ₄ contained in 5 ec.solution		
NH ₄ .C ₂ H ₃ O ₂ in 100 cc.	Hot	Cooled	Cooled 24 hrs.
28 30 32 35 37 40 45	0.356 0.418 0.494 0.513 0.529 0.539 0.555	0.451 0.452  0.488	0.224 0.242 0.242 0.238 0.263

(Dunnington and Long, Am. Ch. J. 1899, 22. 218.)

Solubility in ammonium acetate + Aq at 25°.

NH4C2H3O2	Solubility of PbSO4"		
Millimol. per. l.	Millimols. per l.	g. per l.	
0.0 .03.5 207.1 414.1	0.134 2.10 4.55 10.10	0.041 0.636 1.38 3.06	

(Noyes and Witcomb, J. Am. Chem. Soc. 1905, 27, 75%.)

Solubility in KC₂H₃O₂+Aq at 25°. Solid phase, PbSO₄+PbK₂(SO₄)₂.

Composition of the solutions			
KC2H 4O2	Pb(C2H3()2)2	KC2H3O2	Ph(C2H4O2)2
4.33 9.03 17.81 22.07	2.54 3.55 5.43 5.95	26.58 28.82 28.93	9.83 11.40 19.41

(Fox, Chem. Soc. 1909, 95. 887.)

 $100~\rm pts.~H_2O$  containing a drop of  $HC_2H_3O_2$  and  $2.05~\rm pts.~NaC_2H_3O_2$  dissolve  $0.054~\rm pt.$   $PbSO_4;$  containing  $8.2~\rm pts.~NaC_2H_3O_2$  dissolve  $0.900~\rm pt.~PbSO_4;$  containing  $41.0~\rm pts.$   $NaC_2H_3O_2$  dissolve  $11.200~\rm pts.~PbSO_4.$  (Dibbits, Z. anal. 1874,~13.~139.)

# Solubility in NaC₂H₃O₂+Aq at 25°.

Composition of the solutions			
% Na acetate	% Pb acetate	% Na ₂ SO ₄	% H ₂ O
6.69 11.76 16.90 19.92 21.51 6.95	0.78 2.73 5.70 8.21 10.75 0.81	0.34 1.26 2.49 3.60 4.68 0.35	92.19 84.25 74.91 68.24 63.10 91.90

The proportion of sulphate in solution in each case corresponded with the amount of Pb present, but was calculated to sodium sulphate, since Na₂SO₄+10H₂O cryst. from the solutions on cooling. The solid phase in these solutions was PbSO₄.

(Fox, Chem. Soc. 1909, **95.** 887.)

Sol. in  $Mn(C_2H_3O_2)_2$ ,  $Zn(C_2H_3O_2)_2$ ,  $Ni(C_2H_3O_2)_2$ , and  $Cu(C_2H_3O_2)_2$ , but not in  $Hg(C_2H_3O_2)_2$  or  $AgC_2H_3O_2+Aq$ .

Solubility in KC₂H₃O₂+Aq is not less than that in NaC₂H₃O₂+Aq. (Dibbits, **Z. anal.** 13. 137.)

Insol. in  $Pb(C_2H_3O_2)_2+Aq$ . (Smith.) Sol. in basic lead acetate +Aq, but not in neutral  $Pb(C_2H_3O_2)_2+Aq$ . (Stammer, Z. anal. 23. 67.)

12.2 pts. Ca(C₂H₃O₂)₂ in very dil. solution dissolve 1 pt. PbSO₄. (Städel, Z. anal. 2. 180.) Sol. in Al(C₂H₃O₂)₃+Aq. (Lennsen.)

Very easily and abundantly sol. in NH4 tartrate +Aq. (Wöhler, A. 34. 235.)

Even when native, easily sol. in NH4 citrate

+Aq. (Smith.)
Insol. in alcohol (18%) and H₂SO₄ when NH4 acetate, K tartrate, or NH4 succinate are present. Insol. in alcohol (18%) and H2SO4 or (NH₄)₂SO₄ when Na acetate, Na or NH₄ oxalate are present. Sol. in NH4 dicitrate and K tricitrate in presence of H₂SO₄; in NH₄ succinate and NH₄ acetate in presence of (NH₄)₂SO₄; and in NH₄ citrate in presence of H₂SO₄ or (NH₄)₂SO₄. (Storer, C. N. **21.** 17.)

Alcohol (59%) alone, or with ethylsulphuric acid or sugar, does not dissolve Pb by

3 months action. (Storer.)

(Naumann, B. 1904, Insol. in acetone. **37.** 4329); methyl acetate. (Naumann, B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Min. Anglesite. Sol. in cold citric acid +Aq. (Bolton, C. N. 37. 14.)

Lead hydrogen sulphate, PbSO₄, H₂SO₄+H₂O. Decomp. by H₂O.

Lead pyrosulphate, Pb S₂O₇. Decomp. by H₂O₂(Schultz.)

## Lead potassium sulphate, PbSO₄, K₂SO₄.

When PbSO₄ is added to potassium acetate +Aq at 25° a double salt, PbK₂(SO₄)₂ is formed. This salt is insol. in the solution which contains only potassium acetate and lead acetate. (Fox, Chem. Soc. 1909, 95.

Decomp. by H₂O. Stable only in solutions of K₂SO₄, containing at least 0.56% K₂SO₄ at 7°; 0.62% at 17°; 1.09% at 50°; 1.37% at 75°; 1.69% at 100°. (Barre, C. R. 1909, **149**. 294.)

#### Lead sulphate chloride, PbSO₄, 2PbCl₂+ H₂O.

Insol. in H₂O or NaCl+Aq. (Becquerel, C. R. 20. 1523.)

# Lead sulphate fluoride, PbSO₄, 2PbF₂.

Not decomp. by H₂SO₄. (Lonyet, C. R. 24. 434.)

#### Lithium sulphate, Li₂SO₄.

More sol. in cold than in hot H₂O.

100 pts. H2O dissolve 34.6 pts. Li2SO4 at 18°. (Witt-

100 pts. H₂O dissolve pts. Li₂SO₄ at t°

t°	Pts. Li ₂ SO ₄	t°	Pts. Li ₂ SO ₄	t°	Pts. Li ₂ SO ₄
0 20	35.34 34.36	45 65	$\frac{32.38}{30.3}$	100	29.24

(Kremers, Pogg. 95. 468.)

Sat. Li₂SO₄+Aq contains at:

−20° —16° -15° -12° 18.4 22.5 22.6 24.4 % Li₂SO₄.

--4° +15° +90° 25.323.9 % Li₂SO₄. 25.7 (Étard, A. ch. 1894, (7) 2. 547.)

Sat. solution boils at 105°. (Kremers.) Sp. gr. of Li₂SO₄+Aq at 19.5° containing: 6.57.4 12.5 15.3% Li₂SO₄, 1.05 1.06 1.098 1.118

22.6 24.4 29.4 % Li₂SO₄. 1.178 1.208 1.167 (Kremers, Pogg. 114. 47.)

Sp. gr. of Li₂SO₄+Aq at 15° containing 5%  $\text{Li}_2 \text{SO}_4 = 1.0430$ ; 10%  $\text{Li}_2 \text{SO}_4 = 1.0877$ . (Kohlrausch, W. Ann. **1879.** 1.)

Sp. gr. of Li₂SO₄+Aq at 25°.

Concentration of Li ₂ SO ₄ +Aq	Sp. gr.
1—normal  1/2— "  1/4— "  1/8— "	1.0453 1.0234 1.0115 1.0057

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp. gr. of Li₂SO₄+Aq.

½Li ₂ SO ₄ g. in 1000 g. of solution	Sp. gr. 16°/16°
0	1.000000
2.9198	1.002589
16.0461	1.014093

(Dijken, Z. phys. Ch. 1897, 24, 109.)

Sp. gr. of Li₂SO₄+Aq at 20°.

		-
Normality of Li ₂ SO ₄ +Aq	% Li ₂ SO ₄	Sp. gr.
2.60 1.96 1.708 1.320 0.747	23.48 18.53 16.41 13.01 7.71	1.2330 1.1650 1.1449 1.1133 1.0678

(Forchheimer, Z. phys. Ch. 1900, 34. 24.)

Insol. in SO₃. (Weber, B. 17. 2497.) 10 ccm. of sat. Li₂SO₄ in absolute H₂SO₄ contain approx. 2.719 g. Li₂SO₄. (Bergius, Z. phys. Ch. 1910, 72. 355.)

Composition	of the solution	
% by wt. H ₂ SO ₄	% by wt. Li ₂ SO ₄	Solid phase
5.05	22.74	Li ₂ SO ₄ , H ₂ O
12.23	20.45	""
15.37	19.11	4.6
16.60	19.10	٠.
32.70	13.37	(,
36.90	11.90	**
42.98	10.57	*4
48.00	10.20	44
52.72	11.44	4.6
54.54	12.92	
55.08	13.69	${ m Li}_2{ m SO}_4$
56.30	13.87	
61.46	17.10	. 4
61.82	17.00	• 6
62.14	17.97	u
62.49	18.89	$\text{Li}_2\text{SO}_4$ , $\text{H}_2\text{SO}_4$
65.70	16.55	7,
69.40	13.75	• •
77.30	11.31	.;
78.23	11.64	"
81.20	13.28	"
81.70	13.85	"
82.30	15.50	
83 43	15.65	· · ·

(Van Dorp, Z. phys. Ch. 1910, **73.** 289.)

Solution in H₂SO₄ contains 17.2% Li₂SO₄ at 30°. (Van Dorp, Z. phys. Ch. 1913, 86. 112.)

Solubility of Li₂SO₄+Th(SO₄)₂ in H₂O at 25°.

> Solid phase, Th(SO₄)₂. G. in 100 g. H₂O.

	Li ₂ SO ₄	Th(SO ₄ ) ₂	Li ₂ SO ₄	Th(SO4)2
,	0.0	1.722	11.13	11.05
	2.57	4.13	13.18	12.54
	4.93	6.20	16.12	14.52
	6.98	7.95	20.49	16.92
	9.23	9.68	16.92	18.87

(Barre, Bull. Soc. 1912, (4) 11. 647.)

Easily sol. (Kastner), sl. sol. (Berzelius) in alcohol.

Solubility of Li2SO4 in alcohol+Aq at 30°. Solid phase Li₂SO₄, H₂O₄

	G. per 1( , g	. sat. solution		
C2H-O11   Li2SO4   C2H3OH   Li2SO4				
0 11.75 21.19 29.40 33.21	25,1 16,16 11,52 8,17 6,66	47.28 58.59 69.39 80.74 94.11	3.04 1.22 0.4 0	

(Schreinemakers and v.n Dorp, Chem. Weekbl. 1906, 3. 557.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); etayl acetate (Naumann. B. 1904, 37, 3601); acetone. (Eidmann, C. C, 1899, II. 1014; Naumann, B. 1904, 37, 4329.) +H₂O. Very sl. efflorescent. (Rammelsberg.) Aq. solution contains 25.1% Li₂SO₄ at 30°. (Schreinemakers, C. C. 1910, I. 1801); 24.3 g. at 50°. (Schreinemakers and Cocheret,

#### Lithium hydrogen sulphate, LiHSO4.

Decomp. by H₂O.

Chem. Weekbl. 1905, 2. 771.)

Cryst. from H₂SO₄. (Gmelin.) LiH₃(SO₄)₂. Cryst. from H₂SO₄. (Schultz, Pogg 133. 137.)

Li₂SO₄, 7H₂SO₄. 1910, **72**. 355.) (Bergius, Z. phys. Ch.

# Lithium potassium sulphate, Li₂SO₄, K₂SO₄.

This is the only compd. of Li₂SO₄ and K₂SO₄ which exists below 100°. (Spielrein, C. R. 1913, 157. 48.)

 $K_4Li_2(SO_4)_3$ . (Knobloch.) Has the formula K₂Li₈(SO₄)₅+8H₂O, according to Rammelsberg.

Lithium sodium sulphate, Na₃Li(SO₄)₂+ 6H₂O.

 $Na_4Li_2(SO_4)_3 + 9H_2O$ .

 $Na_2Li_8(SO_4)_5 + 5H_2O$ . (Rammelsberg.)

Do not exist. (Troost.)

Li₂SO₄, Na₂SO₄+5.5H₂O. Exists from 0°-16°

+3H₂O. Exists from 32°-100° Li₂SO₄, 3Na₂SO₄+12H₂O. Exists from

16°-24° 4Li₂SO₄,  $Na_2SO_4+5H_2O$ . Exists from 24°-32°.

(Spielrein, C. R. 1913, 157. 47.)

Lithium thallic sulphate, LiTl( $SO_4$ )₂+3H₂O. (Meyer and Goldschmidt, C. C. 1903, I. 495.)

#### Lithium titanium sulphate. $\text{Li}_2\text{TiO}_2(\text{SO}_4)_2 + 7\text{H}_2\text{O}$ .

hygroscopic than K compound. (Mazzuchelli and Pontanelli, C. C. 1909, II. 420.

Lithium uranyl sulphate, Li₂SO₄, UO₂SO₄+ 4H₂O. (de Coninck, Chem. Soc. 1905, 88. (2) 530.

#### Magnesium sulphate basic, $6Mg(OH)_2$ , $MgSO_4+3H_2O$ .

Sl. sol. in cold or hot H₂O.

Sol. in HCl+Aq. (Thugutt, Z. anorg. **1892**, **27** 150.)

## Magnesium sulphate, MgSO₄.

Anhydrous. Very slowly sol, in H₂O; sol. in hot conc. H₂SO₄, less in HCl, and HNO₃+

 $+\mathrm{H}_2\mathrm{O}$ . Min. Kieserite. Easily sol. in warm, but slowly dissolved by cold H₂O.

100 g. sat. solution at 83° contain 40.2 g.

MgSO₄. (Geiger, Dissert. 1904.) +6H₂O, and +7H₂(). The latter exists in two modifications; (a) hexagonal, and (b) the ordinary or rhombic salt.

MgSO₄+Aq, which on cooling or keeping in closed vessels has deposited MgSO₄+6H₂O, always contains for 100 pts. H₂O at:

If only hexagonal MgSO₄+7H₂O has been deposited, then the mother liquor contains for 100 pts. H₂O at:

Solutions prepared from rhombic MgSO₄+ 7H₂O contain for 100 pts. H₂O at:

These results may be given in tabular form as follows:

Temp.	A sat. aqueous solution of MgSO ₄ +7H ₂ O (b) contains for 100 pts. H ₂ O		
	Anhydrous MgSO ₄	7H ₂ O _(b) salt	
0°	26.0	73.31	
·10°	30.9	93.75	
20°	35.6	116.54	

Temp.	A sat. aqueous solution of MgSO ₄ +7H ₂ O (a) contains for 100 pts. H ₂ O		
	Anhydrous MgSO ₄	7H ₂ O (a) sale	
0°	34.67	111.74	
10°	38.71	133.67	
20°	42.84	159.61	

Temp.	A sat aqueous solution of MgSO ₄ +6H ₂ O contains for 100 pts. H ₂ O			
	Anhydrous MgSO ₄	6H ₂ O salt	7H ₂ O salt	
0°	40.75	122.22	146.02	
10°	42.32	129.44	155.53	
20°	43.87	137.72	167.97	

It is seen from table that at the same temp. the 6H₂O salt is more sol, than the 7H₂O (b) salt, and the latter is more sol. than  $7H_2O(a)$ salt; that the solubility of the 7H₂O (b) salt increases rapidly from 0° to 20°; that the 6H₂O salt is not much more sol. at 20° than at  $0^{\circ}$ , and at  $20^{\circ}$  the  $7H_2O$  (b) salt is nearly as sol. as the 6H₂O salt. (Löwel, A. ch. (3) 43. 405.)

100 pts. H₂O at to dissolve pts, MgSO₄. G L=according to Gay Lussac (A. ch. (2) 11. 311); T = according to Tobler (A. 95, 198).

+0	GL	T	+0	GL	1 7
0	25.8	24 7	50	49 7	<b>*</b> 3.
10 20	30 5 35 0		55 60	55 9	52-8
25		37 1	70	60 4	,.
30	39 8		80	65.1	
40	45 2		90	70-3	

100 pts. H₂O at 105.5° dissolve 135.2 pts. MgSO₄. (Griffiths.)

MgSO₄+Aq sat. at 17.5 has sp. gr. =1.2932, and contains 55.57 % MgSO₄+7H₂O, or 100 pts. H₂O dissolve 125.06 pts. MgSO₄+7H₂O, or 60 pts. MgSO₄, at 17.5° (Karsten.)

100 pts. H₂O at 0° dissolve 53.8 pts., and 125 pts.

at ord. temp. (Otto-Graham.)
Sol. in 2 pts. cold, and 0.5 pt. boiling H₂O. (Four-

croy.)
The aqueous solution contains for 100 pts. H₂O
92.217 pts. MgSO₄+7H₂O at 15°. (Michel and Kraftt.)
I pt. MgSO₄+7H₂O is sol. in 0.933 pt. H₂O at 15° ((Gerlach); in 0.92 pt. H₂0 at 23° (Schiff). 100 pts. H₂0 dissolve 28.067 pts. MgSO₄ at 0°. (Pfaff, A. **99**, 224.)

100 pts. H₂O dissolve pts. MgSO₄ at .t°.

t°	Pts. MgSO ₄
0 17.9 24.1	26.37 $33.28$ $35.98$

(Diacon, J. B. **1886.** 62.)

100 pts. MgSO₄+Aq sat. at 18-20° contain 25.67-26.38 pts. MgSO₄. (v. Hauer, J. pr. **98.** 137.)

Solubility in 100 pts. H₂O at t°, using MgSO₄+7H₂O.

		<u> </u>					
t°	Pts. MgSO ₄	t°	Pts. MgSO ₄	t	Pts. MgSO ₄		
0	26.9	37	44.2	7.1	61.4		
ĩ	27.4	38	44.7	75	61.9		
$ar{2}$	27.9	39	45.2	76	62.3		
3	$\frac{28.3}{2}$	40	45.6	77	62.8		
4	28.8	41	46.1	78	03.2		
$\bar{5}$	29.3	42	46.5	79	63.7		
6	29.7	43	47.0	80	64.2		
7	30.2	44	47.5	81	64.8		
8	30.6	45	48.0	82	65.1		
9	31.1	46	48.4	83	65.6		
10	31.5	47	48.9	84	66.0		
11	32.0	48	49.3	85	66.5		
12	32.4	49	49.8	86	67 0		
13	32.9	50	50.3	87	67.5		
14	33.4	51	50.7	88	68.0		
15	33.8	52	51 2	89	68 4		
16	34.3	53	51.7	90	68.9		
17	34.7	54	52.2	91	69.4		
18	35.2	55	52.7	92	69.9		
19	35.7	56	53.2	93	70.4		
20	36.2	57	53.6	94	70.9		
21	36.7	58	54.1	95	71.4		
22	37.1	59	54.5	96	71.9		
23	37.6	60	55.0	97	72.4		
24	38.0	61	55.5	98	72.8		
25	38.5	62	55.9	99	73.3		
26	39.0	63	56.4	100	73.8		
27	39.5	64	56.8	101	74.3		
28	39.9	65	57 3	102	74.8		
29	40.4	66	57.7	103	$\frac{75.2}{75.7}$		
30	40.9	67	58.2	104	75.7		
31	41.4	68	58.6	105	76.2		
32	41.8	69	59.1	106	$76.7 \\ 77.2$		
33	42.3	70	59.6	107 108	77.7		
34	42.8	71	60.0	108.4			
$\frac{35}{36}$	43.3	72 73	$\begin{vmatrix} 60.5 \\ 61.0 \end{vmatrix}$	108.4	11.3		
36	43.7	10	01.0		1		

(Mulder, calculated from his own and other observations, Scheik. Verhandel. **1864.** 52).

100 pts.  $\rm H_2O$  dissolve 72.4 pts. MgSO₄+7H₂O at 0°, 178 pts. at 40°; and 212.6 pts. at 49°. (Tilden, Chem. Soc. **45.** 409.)

Supersat. MgSO₄+Aq is brought to crystallisation by addition of crystal of MgSO₄+7H₂O, or an isomorphous substance as ZnSO₄+7H₂O, NiSO₄+7H₂O, FeSO₄+7H₂O, or CoSO₄+7H₂O. (Thomson, Chem. Soc. **35.** 199.)

Sat. MgSO₄+Aq contains at:

2° 7° 23° 67° 81° 20.9 22.5 26.0 35.6 38.6% MgSO₄,

94° 130° 145° 164° 188° 41.5 45.3 38.0 29.3 20.4% MgSO₄. Readily forms supersat. solutions. (Étard, A. ch. 1894, (7) **2.** 551.)

M.-pt. of  $MgSO_4+7H_2O$  is  $70^\circ$ . (Tilden, Chem. Soc. 45. 409.)

MgSO₄+Aq with sp. gr. 1.50 contains 44.4 % MgSO₄; sp. gr. 1.42, 39%; sp. gr. 1.30, 30% MgSO₄. (Dallor)

Sp. gr. of  $MgSO_4+Aq$  sat. at  $15^\circ=1.275$  (Michel and Krafft);  $\cdots 8^\circ=1.267$ .(Anthon); at  $18.75^\circ=1.293$  (Karsten ).

ED. Fr. of MgSO4+Aq at 15°.

% Mr304	Sp. gr.	% MgSO4	Sp. gr.
5	1.054	30	1:326
10	1.108	35	1:384
15	1.161	40	1:446
20	1.215	45	1:511
25	1.269	50	1:580

(Calculated from Anthon by Schiff, A. 107. 303.)

Sp. gr. of MgSO₄+Aq at 23°.

% MgSO₄ - 7H₂O	Sp. gr.	% MgSO ₄ +7H ₂ O	Sp. gr.
1	1.0048	28	1.1426
2	1.0096	29	1.1481
3	1.0144	30	1.1536
4	1.0193	31	1.1592
$rac{4}{5}$	1.0242	32	1.1648
6	1.0290	33	1.1704
7	1.0339	34	1.1760
8	1.0387	35	1.1817
9 '	1.0437	36	1.1875
10	1.0487	37	1.1933
11	1.0537	38	1.1991
12	1.0587	39	1.2049
13	1.0637	40	1.2108
14	1.0688	41	1.2168
15	1.0739	42	1.2228
16	1.0790	43	1.2288
17	1.0842	44	1.2349
18	1.0894	45	1.2410
19	1.0945	46	1.2472
20	1.0997	47	1.2534
21	1.1050	48	1.2596
22	1.1103	49	1.2659
23	1.1156	50	1.2722
24	1.2109	51	1.2786
25	1.1261	52	1.2850
26	1.1316	53	1.2915
27	1.1371	54	1.2980

(Schiff, A. 113. 185.)

Sp. gr.	of	MgSO	+Aa	at	12°.
---------	----	------	-----	----	------

% Mg8O₄ +7H₂O	Sp. gr.	% MgSO ₄ +7H ₂ O	Sp. gr.
1 2 3 4 5 6 7 8 9	1.0046 1.0096 1.0146 1.0196 1.0246 1.0296 1.0346 1.0396 1.0446 1.0497	21 22 23 24 25 26 27 28 29 30	1.1071 1.1125 1.1179 1.1234 1.1289 1.1344 1.1399 1.1454 1.1510 1.1566
11 12 13 14 15 16 17 18 19 20	1.0548 1.0599 1.0650 1.0702 1.0754 1.0807 1.0859 1.0911 1.0964 1.1018	31 32 33 24 35 36 37 38 39 40	1.1622 1.1679 1.1736 1.1793 1.1850 1.1908 1.1965 1.2023 1.2082 1.2140

(Oudemans, Z. anal. 7. 419.)

Sp. gr. of MgSO₄+Aq at 15°.

% MgSO4	Sp. gr.	% MgSO4	Sp. gr.
1	1.01031	14	1.15083
<b>2</b>	1.02062	15	1.16222
3	1.03092	16	1.17420
4	1.04123	17	1.18618
5	1.05154	18	1.19816
6	1.06229	19	1.21014
7	1.07304	20	1.22212
8	1.08379	21	1.23465
9	1.09454	22	1.24718
10	1.10529	23	1.25972
11	1.11668	24	1.27225
12	1.12806	25	1.28478
13	1.13945	25.248	1.28802

(Gerlach, Z. anal. 8. 287.)

Sp. gr. of MgSO₄+Aq at 23.5°. a=no. of  $\frac{1}{2}$  mols. in grms. dissolved in 1000 g. H₂O; b=sp. gr. if a is MgSO₄+7H₂O,  $\frac{1}{2}$  mol. wt.=123; c=sp. gr. if a is MgSO₄,  $\frac{1}{2}$  mol. wt.=60.

a a	b	С	a	b	c
1 2 3 4	1.056 1.103 1.141 1.174	1.114 1.166	5 6 7 8	1.203 1.229 1.252 1.273	1.260

(Favre and Valson, C. R. 79. 968.)

Sp. gr. of MgSO₄+Aq at 15°.

% MgSO4	MgSO ₄ Sp. gr.   % MgSO ₄		Sp. gr.	
5 10 15	1.0510 1.1052 1.1602	20 25	1.2200 1.2861	

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of MgSO₄+Aq at 0°. S=pts. MgSO₄ in 100 pts. solution.

s	Sp. gr.	s	Sp. gr.
13.800	1.1586	$\begin{array}{c} 7.4046 \\ 5.0447 \\ 2.5907 \end{array}$	1.0826
11.7458	1.1329		1.0557
9.6218	1.1072		1.0284

(Charpy, A. ch. (6) 29. 26.)

Sat. MgSO₄+Aq boils at 105° (Griffiths); 108.4° (Mulder).

Crust forms at 103.5° (solution containing 48.4 pts. MgSO₄ to 100 pts. H₂O); highest temp. observed, 105°. (Gerlach, Z. anal. **26.** 426.)

B.-pt. of MgSO₄+Aq containing pts. MgSO₄ to 100 pts.  $H_2O$ .

Bpt.	Pts. MgSO ₄	Bpt.	Pts. MgSO ₄	Bpt.	Pts. MgSO ₄
100.5° 101.0 101.5 102.0	8.8 16.7 23.5 29.5	102.5° 103.0 103.5 104.0	$     \begin{array}{r}       34.7 \\       39.5 \\       43.8 \\       47.7     \end{array} $	104.5° 105 108	51.3 54.6 75(2)

4

(Gerlach, Z. anal. 26. 432.)

Sp. gr. of MgSO₄+Aq at 9.5°.

Density of solution (g. per cc).
1.00170
1.00346
1.00526
1.00705
1.01060

(McGregor, C. N. 1887, 55.6.)

Sp. gr. of MgSO₄+Aq at 25°.

Concentration of MgSO ₄ +Aq	Sp. gr.
1—normal 1/2— " 1/5— " 1/8— "	1.0584 1.0297 1.0152 1.0076

(Wagner, Z. phys. Ch. 1890, 5. 38.)

Sp. gr. at 16°/4° of MgSO₄+Aq containing 11.0222% MgSO₄=1.11471; containing 8.343% MgSO₄=1.08558. (Schönrock, Z. phys. Ch. 1893, **11.** 782.)

Sp	gr. of MgSO4	+Aq.
Gequivalents MgSO4 per liter	t°	Sp. gr. to/to
0.002548	17.989	1.0001625
0.005093	18.020	1.000524
0.01015	17.995	1.000639
0.02023	17.980	1.001274
0.05023	18.047	1.003117
0.09950	18.033	1.006122
0.19773	18.014	1.012035
0.29459	17.997	1.017806
0.48671	17.994	1.029101
0.5022	17.90	1.03000
5.0220	17.95	1.26970
0.002616	14.096	1.0001672
0.005230	14.109	1.0003311
0.01042	14.098	1.000659
0.02077	14.092	1.001306
0.12462	14.199	1.007682
0.24567	14.092	1.014980

(Kohlrausch, W. Ann. 1894, **53.** 27.)

Sp. gr. of MgSO₄+Aq.

MgSO₄ g. in 1000 g. of solution	Sp. gr. 16°/16°	
0	1.000000	
0.5368	1.000570	
1.0917	1.001157	
"	1.001141	
2.1076	1.002234	
4.1367	1.004372	
9.0608	1.009523	
18.0846	1.018954	
37.1342	1.038983	
52.1362	1.054867	

(Dijken, Z. phys. Ch. 1897, 24. 108.)

Sp. gr. of MgSO₄+Aq at 18.2°, when p = per cent strength of the solution; d = observed density; and w = volume conc.

in grams per cc.  $\left(\frac{\text{pd}}{100} = \text{w.}\right)$ 

р	d	w
26.25	1.2903	1.3374
25.91	1.2860	1.3319
24.53	1.2693	1.3101
21.60	1.2330	1.2650
18.41	1.1950	1.2187
13.79	1.1423	1.1562
12.63	1.1291	1.1413
11.29	1.1147	1.1246
8.08	1.0803	1.0859
2.01	1.0204	1.0191

(Barnes, J. phys. Chem. 1898, 2. 542.)

Sp. gr. of MgSO₄+Aq at 20°.

Normality of MgSO/+Aq	% M:58O4	Sp. gr.
* 2.73 1.36	25.46 18.6	1.2879 1.2019
0.934	104	1.1049

(Forchheimer, Z. phys. Ch. 1900, 34, 24.)

Sp. gr. of dil. MgSO₄+Aq at 20.004°. Cone = g equiv. yer l. at 20.004°. Sp. gr. compared with  $H_2O$  at 20.004° = 1.

Conc.	Sp. gr.
0.0000	1.000,000,0
0.0001	1.000,006,4
0.0002	1.000,012,9
0.0003	1.000,019,4
6.0004	1.000,025,9
0.0005	1.000,032,4
0.0010	1.000,064,8
0.0020	1.000,129,4
0.0050	1.000,322,4
0.0100	1.000,642,1

(Lamb and Lee, J. Am. Chem. Soc. 1913, **35.** 1684.)

More sol. in HCl+Aq than in  $H_2O$ . (Richter.)

In sat. HCl+Aq, anhydrous MgSO₄ is scarcely sol.; MgSO₄+7H₂O dissolves, but is precipitated by a current of HCl gas. (Hensgen, B. 10. 259.)

Margueritte (C. R. 43, 50) denies the precipitation.

For solubility in H₂SO₄, see MgH₂(SO₄)₂. Completely pptd. from MgSO₄+Aq by conc. HC₂H₃O₂+Aq. (Persoz.)
Somewhat sol. in sat. NH₄Cl+Aq with

separation of a double sulphate.

Rapidly sol. in KCl+Aq with separation of  $K_2SO_4$ .

Sol. in sat. NaCl+Aq without pptn. of the latter

Easily sol. in sat. KNO₃+Aq without causing any pptn.

Sol. in sat. NaNO₃+Aq. (Karsten.)

Rapidly sol. in sat. CuSO₄+Aq; when saturation is reached, a double salt separates out. (Karsten.)

100 pts. sat. MgSO₄+NiSO₄+Aq at 18-20° contain 30.93 pts. of the two salts; 100 pts. sat. MgSO₄+ZnSO₄+Aq at 18-20° contain 35.45 pts.; 100 pts. sat. MgSO₄+NiSO₄+ZnSO₄+Aq at 18-20° contain 35.62 pts. (v. Hauer, J. pr. **98.** 137.)

100 pts. H₂O dissolve 14.1 pts. MgSO₄ and 9.8 pts. K₂SO₄, if sat. MgSO₄ +Aq is sat. with K₂SO₄; 32.4 pts. MgSO₄ and 8.2 pts. K₂SO₄, if sat. K₂SO₄+Aq is sat. with MgSO₄, all at 15°. (Mulder, J. B. **1866**.)

100 pts. H₂O dissolve 25.95 pts. MgSO₄ and

100 pts.  $H_2O$  dissolve 25.95 pts. MgSO₄ and 5.21 pts. Na₂SO₄ at 0°. (Diacon, J. B. **1866**. 62.)

100 pts. H₂O dissolve 15.306 pts. MgSO₄ and 13.086 pts. Na₂SO₄ at 0°. (Pfaff, A. **99.** 224.)

See also under MgNa₂(SO₄)₂+4H₂O.

Solubility of mixtures of MgSO₄ and MgNa₂(SO₄)₂+4H₂O at t°.

+0	g. per 100 g. H ₂ O		
·	Na ₂ SO ₄	MgSO ₄	
22	23.3	31.4	
$\begin{array}{c} 24.5 \\ 30 \end{array}$	$\begin{array}{c} 27.2 \\ 36.1 \end{array}$	$\frac{24.2}{19.1}$	
35	33.9	18.44	

(Roozeboom, 1888, Z. phys. Ch. **2.** 518.) See also under MgNa₂(SO₄)₂+4H₂O.

Slowly sol. in sat. ZnSO₄+Aq without pptn. until saturation, when a double salt separates out.

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

100 pts. dil. alcohol containing at 15°:

At higher temp, the solubility increases proportional to the temp. (Gerardin, A. ch. (4) 5. 145.)

100 pts. absolute methyl alcohol dissolve 1.18 pts. MgSO₄ at 18°. (de Bruyn, Z. phys. Ch. 10. 783.)

100 pts. absolute methyl alcohol dissolve 41 pts.  $MgSO_4+7H_2O$  at  $17^\circ$ ; 100 pts. absolute methyl alcohol dissolve 29 pts.  $MgSO_4+7H_2O$  at  $3-4^\circ$ ; 100 pts. 93% methyl alcohol dissolve 9.7 pts.  $MgSO+7H_2O$  at  $17^\circ$ ; 100 pts. 50% methyl alcohol dissolve 4.1 pts.  $MgSO_4+7H_2O$  at  $3-4^\circ$ . (de Bruyn, R. t. c. 11. 112.)

100 pts. absolute ethyl alcohol dissolve 1.3 pts. MgSO₄+7H₂O at 3°. (de Bruyn.)

Insol. in CS₂. (Arctowski, Z. anorg. 1894, **6.** 257.)

Insol. in methyl acetate (Naumann, B. 1909, **42**. 3790.); ethyl acetate (Naumann, B. 1910, **43**. 314.); acetone. (Naumann, B. 1904, **37**. 4329.)

100 g. 95% formic acid dissolve 0.34 g. MgSO₄ at 19°. (Aschan, Ch. Ztg. 1913, **37**.

100 g. sat. solution of MgSO₄ and sugar in  $\rm H_2O$  contains 46.52, g. sugar +14.0 g. MgSO₄, or 100 g.  $\rm H_2O$  dissolve 119.6 g. sugar +36.0 g. MgSO₄. (Köhler, Z. Ver. Zuckerind, 1897, **47**. 447.)

# Magnesium hydrogen sulphate, MgH₂(SO₄)₂. Decomp. by H₂O. Sol. in H₂SO₄. Insol.

in methyl acetate. (Naumann, B. 1909, 42. 3790.)

MgH₆(SO₄)₄. Boiling H₂SO₄ dissolves about 2% MgSO₄, from which this compound crystallises. (Schultz, Pogg. **133**, 137.)

Magnesium pyrosulphate, MgS₂O₇. Decomp. by H₂O.

Magnesium manganous sulphate, MgSO₄,  $2MnSO_4+15H_2O$ .

Min. Fauserite.

Magnesium manganous zinc sulphate, MgSO₄,  $MnSO_4$ ,  $ZnSO_4+21H_2O$ .

Sol. in H₂O. (Vohl, A. **99.** 124.)

Magnesium nickel sulphate,  $MgSO_4$ ,  $3NiSO_4$ +28 $H_2O$ .

Sol. in H₂O. (Schiff.)

 $\begin{array}{ccc} \textbf{Magnesium} & \textbf{nickel} & \textbf{potassium} & \textbf{sulphate,} \\ & MgSO_4, & NiSO_4, & 2K_2SO_4 + 12H_2O. \end{array}$ 

Sol. in  $H_2O$ . (Vohl, A. **94.** 57.)

Magnesium potassium sulphate,  $MgK_2(SO_4)_2+6H_2O$ .

100 pts.  $\overline{H}_2O$  dissolve 22.7 pts. anhydrous salt at 16.5°. (Mulder.)

100 pts. H₂O dissolve at:

0° 10° 20° 30° 35° 14.1 19.6 25.0 30.4 33.3 pts. anhydrous salt,

45° 55° 60° 65° 75° 40.5 47.0 50.2 53.0 59.8 pts. anhydrous salt.

(Tobler, A. 95. 193.)

100 g.  $H_2O$  dissolve 30.52 g.  $MgK_2(SO_4)_2 + 6H_2O$  at 15°. (Lothian, Pharm. J. 1909, **82.** 292.)

#### Solubility in H₂O at t°.

t°	Sat. solution contains		Mols. K ₂ SO ₄ : mols.	100 pts. H ₂ O dissolve	
	⁷ ⁄ ₈ O₄	% MgSO₄	MgSO4 in the solu- tion	K ₂ SO ₄	MgSO ₄
10 20 30 40 50 60 70 80 80	9.4 10.9 12.4 13.8 14.7 15.2 15.6 16.0 16.6 17.2	9.8 10.8 11.8 13.1 14.8 16.3 16.8 17.1 18.1	1:1.52 1:1.43 1:1.38 1:1.37 1:1.46 1:1.55 1:1.52 1:1.56 1:1.58 1:1.54	11.63 13.92 16.36 18.88 20.85 22.19 23.07 23.91 25.42 26.62	12.13 13.79 15.56 17.92 20.99 23.79 24.85 25.56 27.72 28.17

(Precht, B. 1882, 15. 1668.)

ing:

8% hydrous salt, 1.0129 1.0261 1.0394 1.053

16% hydrous salt. 10 14 1.0668 1.0808 1.095 1.1094

22% hydrous salt 1.124 1.1388 1.1539(Schiff, A. 113. 183, calculated by Gerlach Z. anal. 8. 287.)

Sp. gr. of  $MgK_2(SO_4)_2$ --Aq at 18°.

G-equiv. of salt per l.	Sp. gi.
1.0010	1.0633
0.8345	1.9531
0.6688	1.0427
0.3744	1.0243
0.0998	1.0040
0.02004	1.0015
0.01004	1.0004

These results lead the author to conclude that in dil. solutions the double salt is decomp. into its constituents. (McKay, Elektrochem. Zeit. 1899, 6. 115.)

Min. Picromerite.

+4H₂O. (van der Heide, B. **26.** 414.) 2MgSO₄, K₂SO₄. Min. Langbeinite.

Absorbs 56.26% H₂O from Deliquescent. air to form K₂SO₄, M₂SO₄+6H₂O. (Mallet, Chem. Soc. 1900, **77.** 220.)

 $4MgSO_4$ ,  $K_2SO_4 + 5H_2O$ . (van't Hoff and Kassatkin, B. A. B. 1889. 951.)

Magnesium potassium zinc sulphate, MgSO4,  $2K_{2}SO_{4}$ ,  $ZnSO_{4}+12H_{2}O$ .

Sol. in H₂O. (Vohl, A. 94. 57.)

Min. Kainite.

Magnesium rubidium sulphate, MgSO₄,  $Rb_2SO_4+6H_2O$ .

Sol. in H₂O. (Tutton, Chem. Soc. 63. 337.) 1 l. H₂O dissolves 202 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27**, 459.)

2MgSO₄, Rb₂SO₄. Deliquescent. (Mallet, Chem. Soc. 1900, 77. 223.)

Magnesium sodium sulphate, MgSO₄, Na₂SO₄ +4H₂O.

Min. Blödite, Simonyite. Blödite is efflorescent; Simonyite, deliquescent.

Min. Löwite.  $+5H_2O$ .

Decomp. on air. Sol. in 3 pts.  $+6H_2O.$ cold H₂O. Min. Vanthoffite. (van't

 $Na_{6}\bar{M}g(SO_{4})_{4}.$ Hoff, B. A. B. 1902. 414.) MgNa₂(SO₄)₂+4H₂O. Min. Astrakanite.

Sp. gr. of aqueous solution at 15° contain- 100 mols. H₂O hold mols. salt in solution

· t³	MgSO ₄	Na ₂ SO ₄
22	4.70	2.95
24.5	3.65	3.45
30	3.60	3.60
35	3.69	3.69
47	3.60	3.60

(Roozeboom, R. t. c. 1887, 6. 333.)

Solubility of mixtures of MkNa2(SO4)2+ 4H₂O and Na₂SO, at t°.

	g per 100 g H ₂ O		
t°	Nus*O4	MgSO ₄	
18.5 22 24 5 30 35	43.0 35.2 32.5 25.9 23.5	45 5 48.9 50.3 55.0 59.4	

(Roozeboom, Z. phys. Ch 1888, 2. 518.) See also under MgSO4.

Magnesium thallous sulphate, MgSO₄, Tl₂SO₄ +6H₂O.

Sol. in H₂O, but decomp. by repeated recrystallisations. (Werther.)

Magnesium uranyl sulphate.

 $MgSO_4$ ,  $(UO_2)SO_4 + 5HO_2$ . (de Coninck, Chem. Soc. 1905, 88. (2) 530.)

Magnesium zinc sulphate, MgSO₄, ZnSO₄+

 $14H_{2}()$ Sol. in H₂O. (Pierre, A. ch. (3) **16.** 244.) +10H₂O. (Pierre.)

 $3Z_{11}SO_4$ ,  $5MgSO_4 + 56H_2O$ . (Schiff.) There are only two compounds, 2(MgSO4, 7H₂O), ZnSO₄, 7H₂O and MgSO₄, 7H₂O, ZnSO₄, 7H₂O. (Hollmann, Z. phys. Ch. 1901, **37.** 212, and 1902, **40.** 577. (Hollmann, Z. phys. Ch.

Magnesium sulphate potassium chloride, MgSO₄, KCl+3H₂O or MgSO₄, K₂SO₄, MgCl₂+6H₂O.

Min. Kainite.

100 pts. H₂O dissolve 79.56 pts. at 18°. (Krause, Arch. Pharm. (3) 6. 326.)

Not sol. in a mixture of abs. alcohol and ether, which dissolves out MgCl2. (Lehmann, J. B. 1867. 416.)

Alcohol dissolves out MgCl₂, also little ₂O. Much H₂O dissolves completely.  $H_2O$ . (Zincken, Miner. Jahrb. 1865. 310.)

Sol. in H₂O. (Étard, C. R. 85. 443.)

Manganous sulphate, basic, 3MnO, 2SO₃+3H₂O.

Insol. in  $H_2O$ , but slowly decomp. thereby, (Gorgeu, C. R. **94.** 1425.)

#### Manganous sulphate, MnSO4.

Anhydrous.

Absorbs H₂O from the air to form MnSO₄+4H₂O.

1 pt. MnSO₄ is sol, in pts. H₂O at t°.

t°	Pts. H₂O	t°	Pts. H ₂ O	t°	Pts. H ₂ O
6.25	1.77	18.75	1.667	75	1.494
10	1 631	37 5	1.457	101 25	2 031

Or-

100 pts. H₂O dissolve pts. MnSO₄ at to.

t°	Pts. MnSO ₄	t.º	Pts. MnSO ₄	t°	Pts. MnSO ₄
6 25	56.49	18 75	60 00	75	66.95
10	61 29	37.5	68 63	101 25	49.33

(Brandes, Pogg. 20, 575.)

Sol. in 2.5 pts.  $H_2O$  at  $18.75^\circ$ ; at  $62.5^\circ$  it is difficult to dissolve 1 pt.  $MnSO_4$  in 3 pts.  $H_2O$ , but the satsolution at  $62.5^\circ$  does not become cloudy on heating to  $100^\circ$ . (Jahn.)

100 pts. MnSO₄+Aq sat. at 11-14° contain 37.5 pts. MnSO₄. (v. Hauer, J. pr. **103.** 114.) Sat. MnSO₄+Aq contains at:

-8° -5° +5° 18° 22° 30.0 31.0 34.1 38.3 38.2% MnSO₄,

23° 32° 45° 52° 70°

39.1 41.7 44.2 36.4 41.1% MnSO₄, 83° 110° 115° 123° 130° 140°

36.3 18.4 21.5 16.7 13.6 9.4% MnSO₄. (Étard, A. ch. 1894, (7) **2.** 553.)

Solubility in  $H_2O$  increases from 0-55°, and decreases from 55-145°. The increasing solubility is that of MnSO₄+5 $H_2O$ , and MnSO₄+2 $H_4O$  separates out at 35°, and is completely insol. at 145°. (Etard.)

If solubility S = pts. anhydrous MnSO₄ in 100 pts. solution, S = 30.0 + 0.2828t from  $-8^{\circ}$  to  $57^{\circ}$ ; S = 48.0 - 0.4585t from  $57^{\circ}$  to  $150^{\circ}$ .

Practically insol. in H₂O at 180°. (Etard, C. R. 106. 208.)

Solubility varies according to the hydrate used. Above results of Étard show the solubility of MnSO₄+7H₂O at 0°, and MnSO₄+3H₂O at 57°. Anhydrous MnSO₄ is stable only above 117°. (Linebarger.)

100 pts. H₂O dissolve pts. anhydrous MnSO₄ at t°.

t°	Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO4
120	67.18	141	41.18	155	26.49
132	63.16	146	38.83	170	16.15

(Linebarger, Am. Ch. J. **15.** 225.) 100 pts. H₂O at +H₂O. Stable only between 57° and 117°. +4H₂O. (Jahn.)

100 pts. H₂O dissolve pts. MnSO₄ from MnSO₄+H₂O at t°.

t°	Pts. MnSO ₄	to	Pts. MnSO ₄	t°	Pts. MnSO ₄
48 53 65 72	87.98 86.10 84.33 82.73	78 90 100 106	79.13 75.63 71.27 70.14	115 117	69.78 68.81

(Linebarger.)

Min. Szmikite.

Solubility of MnSO₄+H₂O in H₂O at to.

t°	Pts. MnSO ₄ per 100 pts. H ₂ O	t°	Pts. MnSO ₄ per 100 pts. H ₂ O
41.5 50.1 67.1	61.06 58.01 51.37	75 84.8 95 99.6	49.45 44.87 38.71 34.27

Av. of varying results.

(Cottrell, J. phys. Ch. 1900, **4.** 652.)

Linebarger's determinations are inaccurate. (Cottrell.)

+2H₂O. Stable between 40° and 57°.

100 pts. H₂O dissolve pts. MnSO₄ from MnSO₄+2H₂O at t°.

t°	Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO ₄
35	68.88	42	77.63	50	83.16
40	75.31	45	80.07	55	86.27

(Linebarger.)

+3H₂O. Stable between 30° and 40°.

100 pts.  $H_2O$  dissolve pts.  $MnSO_4$  from  $MnSO_4+3H_2O$  at  $t^\circ$ .

t°	Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO ₄
5 12 16 19	54.68 60.56 63.41 65.12	25 30 35 40	66.85 67.38 68.31 70.63	68 53 57	71.89 72.81 73.17

(Linebarger.)

+4H₂O. Sl. efflorescent. Less sol, in boiling than in cold H₂O.

100 pts.  $H_2O$  at  $4.4^{\circ}$  dissolve 31 pts. MnSO₄  $+4H_2O$  (Jahn.)

100 pts. F	100 pts. H ₂ O at t° dissolve pts. MnSO ₄ +4H ₂ O.				
t°	Pts. MnSO ₄ + 4H ₂ O	t°	Pts MnSO ₄ + 4H ₂ O		
6.25 10 18.75	113.22 123 122	37 5 75 101 25	149 144 93		

(Brandes, Pogg. 20, 575.)

Solubility of MnSO₄ in 100 pts. H₂O at t° using MnSO₄+4H₂O.

	,						
tan	Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO ₄		
0	55.4	35	71.9	70	61.5		
ĭ	55.9	36	72.2	71	61.5		
2∗	56.5	37	72.4	$\frac{1}{72}$	61.5		
3	57.1	38	72.7	73	61.5		
4	57.7	39	72.9	74	61.5		
2* 3 4 5	58.2	40	73.1	75	61.5		
$\ddot{6}$	58.8	41	73.3	76	61.5		
7	59.4	$ \hat{42} $	73.5	77	61.5		
8	60.0	43	73.7	78	61.5		
9	60.5	44	73.9	79	61.5		
10	61.1	45	74.0	80	61.5		
11	61.7	46	74.2	81	61.5		
12	62.2	47	74.4	82	61.5		
13	62.7	48	74.6	83	61.5		
14	63.3	49	74.7	84	61.4		
15	63.8	50	74.8	85	61.3		
16	64.3	51	74.9	86	61.2		
17	64.8	52	75.1	87	61.0		
18	65.3	53	75 2	88	60.8		
19	65.8	54	75.3	89	60.6		
20	66.3	55	74.7	90	60.3		
21	66.7	56	74.0	91	60.0		
22	67.2	57	72.9	. 92	59.6		
23	67.6	58	71.5	93	59.2		
24	68.1	59	69.5	94	58.6		
25	68.5	60	65.9	95	57.9		
26	68.9			96	57.2		
27	69.3	63.5	61.3	97	56.3		
28	69.7	64	61.5	98	55.4		
29	70.0	65	61.5	99	54.3		
30	70.4	66	61.5	100	52.9		
31	70.7	67	61.5	101	51.2		
32	71.0	68	61.5	102	49.3		
33	71.3	69	61.5	102.5	47.4		
34	71.6	.			• • • •		

(Mulder, Scheik. Verhandel. **1864.** 137 100 pts. H₂O dissolve pts. MnSO₄ from MnSO₄+4H₂O at t°.

112110111111111111111111111111111111111							
t°	·Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO ₄		
7.3 11 15	57.88 61.78 64.01 67.12	25 30 35.5 40	72.23 74.67 78.81 79.63	48 52 56	84.33 86.16 88.19		
20	69.93	45	83.06				

(Linebarger.)

Stable in aqueous solution between 25° and 31°. (Schieber, M. 1898, 19. 281.)

Solubility of MnSO₄+4H₂O in H₂O at t°.

4°	Pts. MnSO per 100 pts.	t°	Pts. MnSO ₄ per 100 pts. H ₂ O
16 0 17.7 18.5 25.0 30 0 32 2	63.97 64.16 64.19 65.32 66.43 66.83	35.0 35.5 39.9 49.9 50.0	67.87 68.09 68.81 72.48 72.62

(Cottrell, J. phys. Ch. 1900, 4. 651.)

Linebarger's determinations are inaccurate. (Cottrell.)

## Solubility in II2O at to.

t,	g MnSO4 for 100 g. H2O
30 15	66.38
35	68.22

(Richards and Fraprie, Am. Ch. J. 1901, 26.

+5H₂O. Sol. in 1 pt. H₂O at 18.75°. (Ja^hn, A. **28.** 110.)
Stable from 8° to 18°.

100 pts.  $H_2O$  dissolve pts.  $MnSO_4$  from  $MnSO_4+5H_2O$  at  $t^\circ$ .

t°	Pts. MnSO ₄	t°	Pts. MnSO ₄	l t°	t° MnSO4
0 2.5 4 7 10 15	58.05 62.41 64.22 66.83 68.05 72.33	20 25 30 32 34 37	75.16 78.63 79.16 80.38 82.04 83.91	40 42 45 47.7 53 54	84.63 85.27 86.16 86.95 83.89

(Linebarger.)

Stable in ageous solution between 15° and 20°. (Schieber, M. 1898, 19. 281.)

Solubility of MnSO₄+5H₂O at t°.

t°	Pts. MnSO ₄ per 100 pts. H ₂ O	t°	Pts. MnSO ₄ per 100 pts. H ₂ O
5	58.06	16	61.59
9	59.23	25	64.78
12	60.19	30	67.76
12.3	60.16	31.1	67.92
15	61.08	35.5	71.61

(Cottrell, J. phys. Ch. 1900, 4. 651.)

Linebarger's determinations are inaccurate. (Cottrell.)

Solubianty in  $H_2O$  at 25° = 65.09 g. MnSO₄ for 100 g.  $H_2O$ . (Richards and Fraprie, Amarch. J. 1901, 26. 77.)

 $+6\mathrm{H}_2\mathrm{O}$ . Stable from  $-5^\circ$  to  $+8^\circ$ . 100 pts,  $\mathrm{H}_2\mathrm{O}$  dissolve pts. MnSO₄ from MnSO₄+6 $\mathrm{H}_2\mathrm{O}$  at t°.

t°.	Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO ₄
-4	55.87	9	70.88	30	76.24
0	64.21	15	72.45	34	77.02
3	66.87	20	74.35	35	77.23
5	67.49	25	75.38	38	7.481

(Linebarger.)

+7H₂O. Efflorescent.

Sol. in less than 0.5 pt.  $H_2O$  at 18.75°. (Jahn.)

Stable between  $-10^{\circ}$  and  $-5^{\circ}$ .

100 pts.  $H_2O$  dissolve pts.  $MnSO_4$  from  $MnSO_4 + 7H_2O$  at  $t^{\circ}$ .

t°	Pts. MnSO ₄	t°	Pts. MnSO ₄	t°	Pts. MnSO ₄
$-10 \\ -8 \\ -5$	50.11 50.93 51.53	0 5 7	$53.61 \\ 54.83 \\ 56.62$	10 15	59.91 64.34

(Linebarger.)

Stable in aqueous solution below 0°. (Shieber, M. 1898, 19. 281.)

Solubility of MnSO₄+7II₂O in H₂O at t°.

3	t°	Pts. MnSO ₄ per 100 pts. H ₂ O	t°	Pts. MnSO ₄ per 100 pts. H ₂ O
	-10	47.96	9	59.33
	0	56.23	12	61.78
	5	56.38	14.3	63.93

(Cottrell, l. c.)

M.-pt. of  $MnSO_4+7H_2O$  is 54°. (Tilden, Chem. Soc. **45.** 409.)

Sp. gr. of MnSO₄+Aq at 15°.

			<u> </u>
% MnSO ₄ +4H ₂ O	Sp. gr.	% MnSO ₄ +4H ₂ O	Sp. gr.
1	1.006	29	1.208
	1.013	30	1.2150
2 3 4 5 6	1.020	31	1.224
4	1.025	32 "	1.231
$\bar{5}$	1.0320	33	1.244
6	1.038	34	1.250
7	1.044	35	1.2579
8	1.050	36	1.268
9	1.056	37	1.276
10	1.0650	38	1.285
11	1.072	39	1.295
12	1.079	40	1.3038
13	1.085	41	1.313
14	1.093	42	1.322
15	1.1001	43	1.331
16	1.106	44	1.340
17	1.114	45	1.3495
18	1.121	46	1.360
19	1.129	47	1.370
20	1.1363	48	1.380
21	1.144	49	1.389
22	1.150	50	1.3986
<b>23</b>	1.160	51	1.410
24	1.166	52	1.420
25	1.1751	53	1.430
26	1.183	54	1.440
27	1.190	55	1.4514
28	1.200		
		-	

(Gerlach, Z. anal. 8. 288.)

Sp. gr. of MnSO₄+Aq at 23°. a=no. of  $\frac{7}{2}$ 2 mols. in grms. dissolved in 1000 g. H₂O; b=sp. gr. if a is MnSO₄+5H₂O,  $\frac{7}{2}$ 2 mol. wt. = 120.5; c=sp. gr. if a is MnSO₄,  $\frac{7}{2}$ 2 mol. wt. = 75.5.

а	b	e	a	b	c
1 2 3 4 5	1.068 1.128 1.181 1.227 1.269	1.071 1.139 1.202 1.262 1.320	6 7 8 9 10	1.306 1.341 1.371 1.399 1.426	3.576 1.429 

(Favre and Valson, C. R. 79. 968.)

Above table recalculated by Gerlach (Z. anal. 28. 475.)

% MnSO ₄ +5H ₂ O	Sp. gr.	% MnSO ₄ +5H ₂ O	Sp. gr.
10 20 30	1.0630 1.1325 1.2070	40 50	1.2900 1.3800

Sp. gr. of MnSO₄+Aq at 15°. a=%; b= Sol. in about 20 pts. boiling H₂SO₄, and sp. gr. if a is MnSO₄; c=sp. gr. if a is more sol. in boiling H₂SO₄+Aq of 1.6 sp. gr. MnSO₄+4H₂O; d=sp. gr. if a is MnSO₄ (Schultz, Pogg. 133. 137.)  $+5H_2O$ ; e=sp. gr. if a is MnSO₄+ 7H2O.

a	be	c	d	e
` 5	1.0500	1.0340	1.0310	1.0270
10	1.1035	1.0690	1.0630	1.0545
15	·1.1605	1.1055	1.0965	1.0830
20	1.2215	1.1435	1.1315	1.1130
25	1.2870	1.1835	1.1685	1.1440
30	1 3575	1.2255	1 2070	1.1765
35		1.2695	1.2470	1.2105
40		1.3155	1.2885	1.2455
45		1.3640	1.3315	1.2815
50	*		1.3760	1.3185
55.				1.3565

(Gerlach, Z. anal. 28, 475.)

Sp. gr. of MnSO₄+Aq at  $0^{\circ}$ . S=pts. MnSO₄ in 100 pts. solution.

* S	Sp. gr.	s	Sp. gr.
16.7450	1.1834	8.8295	1.0928
14.0462	1.1519	6.0172	1.0622
11.5804	1.1239	3.0865	1.0315

(Charpy, A. ch. (6) 29. 26.)

Sp. gr. of MnSO₄+Aq at room temp. containing:

22.08 % MnSO₄. 18.8 11.451.1469 1.2513 1.3082

(Wagner, W. Ann. 1883, 18. 271.)

Sp. gr. of MnSO₄+Aq at 25°.

(	Concentration of MnSO ₄ +A <b>q</b>	Sp. gr.
	1—normal  1/2— "  1/4— "  1/8— "  1/16— "	1.0728 1.0365 1.0179 1.0087 1.0041

(Wagner, Z. phys. Ch. 1890, 5. 39.)

Sp. gr. at 16°/4° of MnSO₄+Aq. containing 30.819% MnSO₄=1.36267. (Schönrock, Z. phys. Ch. 1893, **11**, 781.)

Sat. MnSO₄+Aq boils at 102.4°; crust forms at 101.6°, and solution contains 48.7 pts. MnSO₄ to 100 pts. H₂O.

B.-pt. of MnSO₄+Aq containing pts. MnSO₄ to 100 pts. H₂O.

	Bpt. Pts. MnSO ₄		Bpt.	Pts. MnSO4
1	00.5° 101.0 101.5	17.1 32.1 46.2	102.0° 102.4	58.9 68.4

(Gerlach, Z. anal. 26. 434.)

Completely pptd. from solution by HC₂H₂O₂. (Persoz.)

For solubility in (NH₄)₂SO₄, see under

(NH₄) SO... MnSO +Aq sat. at 10°, then sat. with contains for 100 pts. K₂SO₄ at same temp contains for 100 pts. H₂O 16.7 pts. MnSO₄ and 44.3 pts. K₄SO₄ (Mulder.)

Solubility of MnSO4+Na2SO4 in H2O at 35°.

	g. per 100 g. s. t. solution			
MnSO ₄	Na ₂ SO ₄	Solid phase		
39.45	0	MnSO ₄ , H ₂ O		
33.92	5.23			
33.06	7.97	$MnSO_4$ , $H_2O + 9MnSO_4$ ,		
		10Na ₂ SO ₄		
32.92	7.42	"		
31.05	9.20	9MnSO ₄ , 10Na ₂ SO ₄		
27.67	10.76	""		
22 14	14.28	"		
14.58	20.01	"		
13.96	21.91	"		
12.19	22.49	9MnSO ₄ , 10Na ₂ SO ₄ +		
		MnSO ₄ , 3Na ₂ SO ₄		
10.45	23.41	MnŠO ₄ , 3Na ₂ ŠO ₄		
7.43	26.58	""		
5.69	29.31	"		
5.11	30.52	$MnSO_4$ , $3Na_2SO_4 + Na_2SO_4$		
2.96	31.33	Na ₂ SO ₄		
0	33	7,7		

(Schreinemakers and Provije, Proc. Ak. Wet. Amsterdam, 1913, 15. 326.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Anhydrous MnSO₄ in insol. in absolute alcohol.

1000 pts. alcohol of 0.872 sp. gr. dissolve,

6.3 pts. MnSO₄. Sol. in 50 pts. of 50% alcohol. Insol. in absolute alcohol. (Brandes, Pogg. 20. 556.) 100 pts. solution saturated at 15° in dil.

alcohol containing: 60 % alcohol, contain 56.25 51.4 2.0 0.66 pts. MnSO₄+5H₂O₄

(Schiff, A. 118. 365.)

When MnSO₄+7H₂O is boiled with absolute alcohol none is dissolved, but MnSO₄ +3H₂O is formed.

When  $MnSO_4+7H_2O$  is dissolved in 15-50% alcohol, the liquid separates into two layers, the lower containing less (12-14%) alcohol and more (47-49%) salt; the upper containing. more (50-55%) alcohol and less (1.3-2.2%) salt. If the alcohol has the above strength (15-50%) the separation takes place at ordinary temp., but with 13-14% or 60% or more alcohol, warming is necessary to effect the separation. (Schiff, A. 118. 363.)

Solubility of MnSO₄+H₂O in alcohol+Aq at t°.

Composition of two layers sat. with the solid salt at t°.

to.	Alcohol layer		Water layer	
	% alcohol	% MnSO4	% alcohol	% MnSO ₄
30 31 35 37 41 42 43	45.20 43.90 41.71 38.26 34.01 32.37 31.42	2.49 2.74 3.44 4.84 5.86 6.89 8.51	8.69 8.47 9.24 11.03 11.93 13.57 14.33	30.15 30.10 28.61 26.47 24.97 23.09 22.01

(Schreinemakers and Deuss, Z. phys. Ch. 1912, **79**. 559.)

Composition of alcohol solutions sat. with MnSO₄+H₂O at t°.

t°	% H ₂ O	% alcohol	% MnSO4
- 50	63.74	0	36.26
	65.21	6.67	28.12
	65.23	16.02	18.75
	64.83	22.63	12.54
	59.41	36.47	4.12
35	61.4	0	38.6
	62.13	5.50	32.37
	62.06	6.46	31.48
	62.01	7.48	30.51
	*62.15	9.24	28.61
	*54.85	41.71	3.44
	50.69	47.73	1.58
•	50.16	48.27	1.57
30	61.4	0	38.6
	61.43	2.26	36.31
	61.25	5.09	33.66
	60.78	5.96	*33.26
	*61.16	8.69	30.15
	*52.31	45.20	2.49
	44.83	54.19	0.98
	30.95	68.97	0.08
	9.19	90.80	0.01

*The solutions also sat. with respect to one another.

(Schreinemakers and Deuss.)

Composition of the solutions sat. with respect to one another.

t°	water	water layer		alcohol layer	
	% alcohol	% MnSO4	% alcohol	% MnSO.	
50	†5.68	34.95	†53.64	0.97	
	†7.69	30.99	†45.83	2.19	
	†8.70	29.20	†41.93	3.11	
	†11.85	24.84	†35.15	5.95	
35	†8.38	29.52	†42.38	3.07	
	*9.24	28.61	*41.71	3.44	
	10.75	26.33	36.89	5.19	
	15.09	21.85	30.06	9.03	
30	†7.60	32.40	†50.97	1.74	
	*8.69	30.15	*45.20	2.49	
	10.46	27.58	40.71	3.93	
	11.86	25.75	37.54	5.20	
	16.18	20.86	29.89	9.64	

(Schreinemakers and Deuss.)

†Metastable solutions.

*Solutions also sat. with respect to MnSO₄, H₂O.

Solubility of MnSO₄+4H₂O in alcohol+Aq.

g. H ₂ O	g. alcohol	MnSO ₄ , 4H ₂ O
55.86	30.03	14.11
52.25	43.59	4.16
49.41	47.66	2.94
45.34	53.00	1.66
42.56	56.24	1.20

(Linebarger, Am. Ch. J. 1892, 14. 380.)

Solubility of MnSO₄+5H₂O in alcohol+Aq. Composition of the solution sat. with MnSO₄+5H₂O.

	alcohol layer		water layer	
t°	% alcohol	MnSO4	% alcohol	Mn804
10 15 17.6 21 25	37.06 44.56 47.11 53.55 53.09	5.44 2.79 2.22 1.10 1.23	13.78 9.25 8.53 6.10 6.81	25.25 29.79 30.88 35.05 33.72

Composition of solution sat. with solid substance at 25°.

% H ₂ O	% alcohol	% MnSO4	Solid phase
60.7	0	39.3	MnSO ₄ +5H ₂ O MnSO ₄ +H ₂ O
*59.47	6.81	33.72	
*45.68	53.09	1.23	
42.05	57.39	0.56	
23.30	76.70	0.0	

*The two liquids are sat. with respect to one another.

Composition of the two solutions sat, with respect to one another at 25°.

•	Water	layer	Alcohoi	layer
•	% alcohol	% MnSO4	% alcohol	7. MnSO.
,	*6.81 8.48 15.02	*33.72 31.51 22.61	*53 09 49.76 32.75	1.22 1.83 8.01

*Also sat. with MnSO₄, 5H₂O_. (Schreinemakers and Deuss.)

Insol. in absolute ether between 5° and 7°, and no crystal H₂O is removed thereby. Insol. in boiling oil of turpentine, but 1 mol. crystal H₂O is removed from MnSO₄+4 H₂O (Brandes, Pogg. 20. 568.)

Insol. in benzonitrile. (Naumann, B. 1914, 47. 1370.); ethyl acetate. Naumann, B. 1910, **43.** 314); acetone. (Naumann, B. 1904, **37.** 4329; Eidmann, C.C. **1899,** II. 1014.)

100 g. sat. solution in glycol contain 0.5 MnSO₄ (de Coninck, Bull. Ac roy. Belg. **1905.** 359.)

MnSO₄+7H₂O occurs as the min. Mallar-

### Manganomanganic sulphate, MnO, MnO₂, $4SO_3+9H_2O$ .

Deliquescent. Decomp. by H₂O. Sol. in little dil. H₂SO₄+Aq. (Fremy, C. R. 82.

#### Manganic sulphate, Mn₂(SO₄)₃.

Extremely deliquescent. Sol. in H₂O with evolution of heat, and decomposition into a Behaves similarly with basic sulphate. dilute acids. Sol. in traces in cold conc. H₂SO₄. Insol. in cold cone. HNO₃+Aq. Sol. in cone. Decomp. by absolute alcohol. HCl+Aq. (Carius, A. 98. 53.)

# Manganyl sulphate, MnO₂, SO₃.

Sol. in H₂SO₄ but solution decomp. if below 40-60° Baumé. Solubility in 40° Baumé acid = 15%:  $55^{\circ}$ , 4-5%. Solution can be heated to  $60-80^{\circ}$  without decomp. (Bad. Anilin u. Sodafabrik, C. C. 1905, II. 1398.)

## Manganous hydrogen sulphate.

MnSO₄ is sol. in 20 pts. boiling conc. H₂SO₄; more sol. in boiling H₂SO₄+Aq of 1.6 sp. gr. (Schultz.)

MnH₂(SO₄)₂, and +H₂O. Sol. in H₂O with

decomp. (Schultz.)

 $MnH_6(SO_4)_4$ . Sol. in  $H_2O$  with decomp. (Schultz.)

# Manganic hydrogen sulphate, $Mn_2H_2(SO_4)_4+$ 8H₂O.

Deliquescent. Decomp. by H₂O. Sol. in dil. H₂SO₄+Aq. (Francke, J. pr. (2) 36. 251.)

#### Manganous hydrazine sulphate, MnH₂(SO₄)₂, ŽN₂H₄.

1 pt. is sol. in 60 pts. H₂O at 18°. Stable in the air at 100°. (Curtius, J. pr. 1394, (2) **50.** 331.)

#### Manganous nickel potassium sulphate,

MnSO₄, NiSO₄,  $2K_2SO_4 + 12H_2O$ . in  $H_2O$ . (Vohl, A **94.** 57.) Sol.

#### Manganous potassii in sulphate, K2SO4. $MnSO_4 + 2H_2O$ .

+4H₂O. Effiorescent. (Pierre, A. ch. (3) 16. 259.7

2MnSO₄, k₂SO₄. (Mallet, C. N. 1899, **80.** 301.)

#### Manganic potassium sulphate, K2Mn2(SO4)4 +24 F.O.

Decomp. by dissolving in H₂O. (Mitscher-

# Manganomanganic potassium sulphate,

 $M_{15}(SO_4)_{3}, 5K_2SO_4 = Mn(SO_4)_2, 2MnSO_4, 5K_2SO_4.$ 

Decomp. by much H₂O. Sol. in dil. or conc. H₂SO₄. Insol. in alcohol or ether. (Flancke, J. pr. (2) **36.** 166.)

#### Manganous potassium zinc sulphate, MnSO4, $2K_2SO_4$ , $ZnSO_4+12H_2O$ .

Sol. in H₂O. (Vohl.)

#### Manganous rubidium sulphate, MnSO4, $Rb_2SO_4+6H_2O$ .

Sol. in H₂O. (Tutton, Chem. Soc. 63. 337.) 1 l. H₂O dissolves 357 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27, 459.) +2H2O. (Wyrouboff, Bull. Soc. Min. 1891, 14. 242.)

2MnSO₄, Rb₂SO₄. (Wyrouboff.)

## Manganic rubidium sulphate, Mn₂(SO₄)₂, $Rb_2SO_4+24H_2O$ .

Deliquescent. (Christensen, Z. anorg. 1901, **27.** 333.)

#### Manganous sodium sulphate, MnSO4, Na2SO4. moist Deliquescent in $+2H_2O$ .

(Geiger.) Sol. in 1.2 pts. boiling H₂O.  $+4H_2O.$ (Geiger.)

# Manganous sulphate ammonia, MnSO4, 4NHs. Decomp. by H₂O. (Rose, Pogg. 20. 148.)

Manganous sulphate cupric oxide, MnSO4, 2CuO+3H₂O.

(Mailhe, A. ch. 1902, (7) 27. 392.) MnSO₄, 3CuO+xH₂O. (Recoura, C. R. 1901, 132. 1415.)

(Recoura.)  $MnSO_4$ ,  $24CuO + xH_2O$ .

#### MnSO4, Manganous sulphate hydrazine, ŽN₂H₄.

Very unstable.

Somewhat sol. in NH4OH+Aq. (Franzen, Z. anorg. 1908, **60.** 285.)

#### Manganous sulphate hydroxylamine, MnSO4. $NH_2OH + 2H_2O$ .

Insol. in H₂O. (Feldt, B. 1894, 27. 405.)

#### Mercurous sulphate, basic, 2Hg₂O, SO₂+ H₂O.

Sol. in 25,000 pts. H₂O at 20°. (Gouy, C. R. 1900, **130.** 1401.)

#### Mercurous sulphate, Hg₂SO₄.

Sol. in 500 pts. cold, and 300 pts. hot H₂O.

(Wackenroder, A. 41. 319.)

Solubility in  $H_2O$  at  $18^\circ = 7.8 \times 10^{-4}$  g. mol. per liter. (Wilsmore, Z. phys. Ch. 1900, 35. 305.)

1 l.  $H_2O$  dissolves  $11.71 \times 10^{-4}$  g.-mol.  $Hg_2SO_4$  at 25°. (Drucker, Z. anorg. 1901, 28. 362.)

## Solubility in H₂O at to

	In 100 pts. of the solution		
t°	Hg ₂ SO ₄	H ₂ SO ₄	
16.5 33 50 75 91 100	0.055 0.060 0.065 0.074 0.084 0.092	0.008 0.018 0.037 0.063 0.071	

(Barre, A. ch. 1911, (8) 24. 203.)

Solubility in  $H_2O$  at 25° is 20% greater than at 18° and =11.71 $\times$ 10-4 g. mol. per l. By addition of increasing amts. of H₂SO₄ the solubility is somewhat, but not regularly, decreased, K₂SO₄ lowers solubility less than H₂SO₄. (Drucker, Z. anorg. 1901, **28.** 362.) Easily sol. in dil. HNO₄+Aq, from which

solution it is separated by dil. H₂SO₄+Aq. (Wackenroder, A. 41. 319.)

Abundantly sol. in hot, less sol. in cold dil. H₂SO₄+Aq. (Berzelius.)

#### Solubility in H₂SO₄+Aq at 25°.

H ₂ SO ₄ normality	gmol. Hg ₂ SO ₄ per litre
0.0400	$8.31 \times 10^{-4}$
0.1000	$8.78 \times 10^{-4}$
0.2000	$8.04 \times 10^{-4}$

(Drucker, Z. anorg. 1901, 28. 362.)

Partially decomp. by hot NH₄ salts+Aq. (Miahle, A. ch. (3) **5.** 179.)

5 times more sol. in sat. CdSO₄+Aq than in H₂O. (Hulett, Phys. Rev. 1907, 25, 16.) Sat. ZnSO4 or CdSO4+Aq attack much less | comp. by all acids. (Berzelius.)

than pure H₂O, yet the solubility of Hg₂SO₄ in these solutions is greater, i. e., 0.8 g. in 1 l. ZnSO₄+Aq and 1.1 g. in 1 l. CdSO₄+

Aq at 20°. (Gouy, C. R. 1900, 130. 1402.) Solubility in 0.2N  $K_2SO_4+Aq=9.05\times10^{-4}$ g. mol. per l. at 25°. (Drucker, Z. anorg. 1901, **28.** 362.)

#### Solubility of Hg₂SO₄ in K₂SO₄+Aq.

t°	<b>g.</b> p	lution .	
٠.	K2SO4 .	Hg ₂ SO ₄	free H2SO4
15	2.90 5.70 8.22 8.77 9.44	0.0475 0.0703 0.0912 0.0994 0.1080	0.0080 0.0093 0.0098 0.0110
33	2.94 5.68 8.30 10.70 11.90	0.0677 0.1015 0.1364 0.1724 0.1902	0.0250 0.0350 0.0441 0.0438 0.0420
75	3.10 5.75 8.50 13.20 17.30	0.1344 0.2120 0.2951 0.4610 0.6440	0.1681 0.2135 0.2514 0.2503 0.2225

(Barre, A. ch. 1911, (8) 24. 202.)

About 3 times as sol. in sat. ZnSO₄+Aq as in distilled H₂O. (Wright, Phil. Mag. (5) 1885, **19.** 29.)

## Mercuric sulphate, basic, 2HgO, SO₃.

(Mailhe, A. ch. 1902, (7) 27. 394.) 3HgO, SO₃. (Mineral turpeth.)

Sol. in 2000 pts. cold and 600 pts. boiling  $H_2()$ . (Foureroy, A. ch. 10. 307.)

Sol. in 43,478 pts. H₂O at 16° when pptd. cold, and in 32,258 pts. at 16° when pptd. at 100°. (Cameron, Z. anal. 19. 144.)

Sl. sol. in warm dil.  $H_2SO_4+Aq$ . (Rose.) Solubility in H₂O is increased by addition of H₂SO₄ up to an acid content of 4.3 mol. SO₅ to 93.7 mols. H₂O. (Hoitsema, Z. phys. Ch. 1895, 17. 665.)

Sol. in warm conc. HCl or HBr+Aq. (Ditte.)

Sol. in alkali chlorides+Aq. (Miahle.) Sol. in dil. HNO, or in HCl+Aq. More easily sol. in the warm acids. (Ray, Chem.

Soc. 1897, 71. 1099.)
3HgO, 2SO₄+2H₂O. (Hoitsema, Z. phys. Ch. 1895, 17, 659.)

4HgO, 3SO₃. (Hopkins, Sill. Am. J. 18. 364.)

## Mercuric sulphate, HgSO₄.

Decomp. by H₂O into 3HgO, SO₄, and a sol. acid salt. Sol. in dil. H₂SO₄+Aq. De-

Sol. in warm conc. HCl or HBr+Aq; very sl. sol. in boiling conc. HI+Aq. (Ditte, A. ch. (5) **17.** 124.)

Very sl. sol. in hot conc. HF. (Ditte, A. ch.

1879, (5) 17. 125.)
Sol. in HCN+Aq. (Mohr.)
Sol. with decomp. in NaCl+Aq. (Miahle.) Insol. in liquid NH3. (Franklin, Am. Ca. J. 1898, **20.** 829.

Insol. in conc. alcohol.

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.); methyl acetate. (Naumann, B. 1909, **42.** 3790.); ethyl acetate. (Naumann, B. 1910, 43. 314.)

Insol. in benzonitrile. (Naumann, B. 1914, **47.** 1370.)

Insol. in pyridine. (Schroeder, Dissert. 1901.)

 $+H_2O$ . Decomp. by  $\mathbf{W}_2$ O. (Fisfeldt, Pharm. Centr. 1853. 812.)

Mercuromercuric sulphate, Hg₂O, 2HgO, SO₃.

Insol. in cold H₂O; not decomp. by boiling H₂O. Decomp. by HCl+Aq. (Brooke, Pogg. **66.** 63.)

Hg₂SO₄, HgSO₄. (Baskerville, J. Am. Chem. Soc. 1897, 19. 875.)

Mercuric hydrogen sulphate,  $HgH_2(SO_4)_2$ . (Braham, C. N. 42. 163.)

Mercuric potassium sulphate, 3HgSO₄,  $K_2SO_4 + 2H_2O$ .

Sol. in H₂O. (Hirzel, J. B. **1850.** 332.)

Mercuric sulphate chloride ammonium chloride, 2HgSO₄, HgCl₂, 2NH₄Cl.

Decomp. with H2O. Ether dissolves out HgCl₂. (Kosmann, A. ch. (3) 27. 238.)

Mercuric sulphate cyanide, HgSO₄, Hg(CN)₂ +5H₂O.

Decomp. by conc. or warm acids. (Rupp, Arch. Pharm. 1912, 250. 280.)

Mercuric sulphate hydrazine, HgSO₄, N₂H₄. Ppt. (Hofmann and Marburg, A. 1899, **305.** 216.)

Mercuric sulphate hydrobromide, HgSO4, 2HBr.

Sol. in H2O without separation of basic sulphate. (Ditte, A. ch. (5) 17. 122.) 3HgO, SO₃, 6HBr. Sol. in H₂O. (Ditte.)

Mercuric sulphate hydrochloride, HgSO4, HCl.

Not attacked by HCl. Sl. sol. in HNO2 (Baskerville, J. Am. Chem. Soc. 1901, 23.

HgSO₄, 2HCl. Sol. in H₂O without separation of a basic salt. Very sol. in warm H₂SO₄, solidifying on cooling if very conc., or crystallising if dil. (Ditte.)

Very deliquescent.

Very sol. in H₂O. (Ba Chem. Soc. 1901, **23.** 895.) (Baskerville, J. Am.

 $+iI_2O$ . (Baskerville, J. Am. Chem. Soc. 1901, 23, 895.)

3.4gO, SO₃, 6HCl. fol. in H₂O. (Ditte.)

Mercuric sulphate hydroxylamine, HgSO4  $2NH_2OH + H_2O$ .

Decomp. by cold H₂O. (Adams, Am. Ch. J. 1902, 28, 209.)

Mercuric sulphate iodate iodiue, 6(3HgO, 2SO₃), 6FigI₂, Hg(IO₃)₂.

Decomp. by H₂O and acids. (Brückner, M. 1907, 28. 961.)

Mercuric sulphate iodide, basic, 3HgO, 2SO2, HgI₂.

 $3(3\text{HgO}, 2\text{SO}_3), 2\text{HgI}_2 + 10\text{H}_2\text{O}.$  $2(3HgO, 2SO_3)$ ,  $HgI_2+10H_2O$ . Very sol. in hot conc. HNO₃.

2SO₃. HgSO₄.

3HgO, 2SO₃, HgSO₄, (Ditte, C. R. 1905, **140.** 1167.)  $HgI_2 + 10H_2O$ .

Mercuric sulphate iodide, HgSO₄, HgI₂.

Decomp. by H2O, not by alcohol or ether.

(Riegel, J. B. pr. Pharm, 11, 396.) 31IgSO₄, HgI₂. Decomp. by cold or hot 2O. Sol. in H₂SO₄+Aq. (Ditte, C. R. H₂O.

1905, **140.** 1165.)  $4HgSO_4$ ,  $HgI_2 + 15H_2O$ , and  $+18H_2O$ . Decomp. by cold or hot H2O.

Sol. in H₂SO₄. (Ditte.)

Mercuric sulphate phosphide. See Dimercuriphosphonium mercuric sulphate.

Mercuric sulphate sulphide, basic, 2HgO, SO₈, HgS.

Somewhat sol. in HCl, H2SO4 and HNO3. (Jacobson, Pogg. 1846, **68.** 412. 4HgO, 3SO₃, 2HgS+4H₂O. Sl. sol. in H₂SO₄. (Estrup, Z. anorg. 1909, **62.** 169.)

Mercuric sulphate sulphide, 2HgSO₄, HgS.

Sl. sol. in hot HCl, H₂SO₄, or HNO₃+Aq. Easily sol. in hot aqua regia. (Jacobson, Pogg. 68. 410.)

2HgSO₄, HgS. (Palm, C. C. **1863**. 122.) HgSO₄, 2HgS. (Barfoed, J. B. **1864**. 282.) Sol. in aqua regia. (Deniges, Bull. Soc.

1915, (4) **17.** 355.) HgSO₄, 3HgS. Insol. in H₂O. Easily sol. in aqua regia; decomp. by HNO₈ into-

3HgSO₄, HgS. Insol. in all acids except aqua regia. (Spring, A. 199. 116.)

Molybdenum sesquisulphate (?).

Basic. Insol. in H₂O.

Neutral. Decomp. by H2O into acid and basic salts.

Acid. Sol. in H₂O. (Berzelius.)

# Molybdenum disulphate (?).

Sol. in H₂O.

# Molybdenum sulphate, Mo₂O₅, 2SO₃.

Very slowly sol. in cold, more quickly sol. in hot H₂O. (Bailhache, C. R. 1901, **132.** 476.) 7MoO₃, 2MoO₂, 7SO₃+Aq. (Péchard, C. R. 1901, 132. 630.

## Molybdic sulphate, MoO₂, SO₂.

Deliquescent. Sol. in H₂O. (Schultz-Sellack, B. 4. 14.)

MoO₃, 3SO₃+2H₂O. Deliquescent. Partially sol. in H₂O. (Anderson, Berz. J. B. 22.

Does not exist. (Schultz-Sellack.)

## Molybdenum sulphate ammonia,

 $5NH_3$ ,  $MoO_2SO_3$ ,  $7MoO_3+8H_2O$ .  $3NH_3$ ,  $MoO_2SO_3$ ,  $7MoO_3 + 10H_2O$ .

Both very sol. in water but less sol. in H₂() containing ammonium salts. (Péchard, C. R. 1901, **132.** 630.)

# Neodymium sulphate, basic, Nd₂O₃, SO₃.

Insol. in H₂O. Nearly insol. in dil. acids. (Wöhler, B.

1913. **46.** 1730.) Insol. in H₂O. (Matignon, C. R. .1902, **134.** 658.)

## Neodymium sulphate, $Nd_2(SO_4)_3 + 8H_2O$ . Solubility in 100 pts. H₂O at t°.

t°	pts. Nd ₂ (SO ₄ ) ₃
0 16 30 50 80 100	9.50 7.05 5.04 3.72 2.70 2.21

(Muthmann and Rolig, B. 1898, 31. 1728.)

## Neodymium hydrogen sulphate, Nd(SO₄H)₈. (Brauner, Z. anorg. 1904, 38, 331.)

#### Neodymium potassium sulphate.

Cryst. modification more sol. in cold than in hot H₂O. (Boudouard, C. R. 1898, 126. 901.)

#### Nickel sulphate, basic.

Very sl. sol. in H₂O. (Berzelius.)

6NiO,  $5SO_8 + 4H_2O$ . (Athanasesco, C. R. **103.** 271.)

7NiO, 7H₂O, SO₃+3H₂O. Nearly insol.

in H₂O. (Habermann, M. 5, 432.) 5NiO, SO₃; 5NiO, 2SO₃; and 5NiO, (Pickering, Chem. Soc. 1907, 91, 1985.) 6NiO, SO₃. (Strömholm. C.C. 1906, 1. 1222.)

#### Nickel sulphate, NiSO4.

100 pts. H₂O dissolve pts. NiSO₄ at to:

16° 20° 23° 30.4 39.7 37.4 41 45.3 pts. NiSO4.

50° 53° ദവം 700 54.4 49.1 52 57.2 61.9 pts. NiSO4. (Tobler, A. 95. 193.)

100 pts. of sat. solution contain: at 11-14°, 28.84; at 18 20°, 30.77 pts. anhydrous salt. (v. Hauer, W. A. B. 53, 2. 221.)

100 pts. H₂O at 112.5° dissolve 185.71 pts. NiSO₄. (Griffiths.) NiSO4+7H2O is sol. in 3 pts. H2O at 12.5°. (Tup-

puti.) 100 pts. H₂O at 15.5° dissolve 75.6 pts. NiSO₄+

Sat. NiSO₄+Aq contains at:

·3°  $+2^{\circ}$ 5° 11° 17° 21.7 23.1 25.2 26.6 33.6% NiSO4. 22.7

68° 74° 92° 97° 110° 117° 119°

38.2 38.7 42.4 44.2 46.5 48.8 49.4% NiSO₄. (Étard, A. ch. 1894, (7) 2. 552.)

Sec also below under hydrated salts.

Sp. gr. of NiSO₄+Aq containing g. NiSO₄+ 7H₂O in 1000 g. H₂O at 23.5°.

140.5 g.  $(=\frac{1}{2} \text{ mol.})$  281 421.5562 1.073 1.136 1.190 1.238

602.5843 983.5 1124 1.280 1.317 1.349 1.378

Containing NiSO₄ (anhydrous):

77.5 g.(=1/2mol.) 155 232.5 310 387.5 465 1.079 1.153 1.224 1.292 1.358 1.421

(Gerlach, Z. anal, 28, 468.)

Sp. gr. of NiSO₄+Aq at 0°. S=pts. NiSO₄ in 100 pts. solution;  $S_1 = \text{mols. NiSO}_4$  in 100 mols. solution.

s .	S ₁	Sp. gr.
4.2930	0.581	1.0522
3.9591	0.476	1.0431
3.2845	0.392	1.0357
2.5043	0.297	1.0271
1.6131	0.189	1.0173
0.8327	0.097	1.0089

(Charpy, A. ch. (6) 29. 26.)

Sp. gr. of NiSO₄+Aq at room temp. containing:

> 10.62 18.19 25.35% NiSO4. 1.0925 1.1977 1.3137 (Wagner, W. Ann. 1883, 18. 272.)

Sp. gr. of NiSO₄+Aq at 25°.

Concentration of NiSO ₄ +Aq	Sp. gr
1-normal  1/2- ""  1/4- ""  1/8- ""	1.0773 1.0391 1.0198 1.0017

(Wagner, Z. phys. Ch. 1890, 5. 39.)

For solubility of NiSO4+Na2SO4 in H2O, see under NiSO₄+7H₂O and NiNa₂(SO₄)₂.

100 pts. sat. NiSO4+ZnSO4+Aq at 18-20° contain 35.45 pts. of the two salts. (v. Hauer) Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, 20. 828.)

HC2H3O2 precipitates it completely from

aqueous solution. (Persoz.)

100 pts. absolute methyl alcohol dissolve 0.5 pt. NiSO₄ at 18°. (de Bruyn, Z phys. Ch. **10.** 783.)

Solubility of NiSO₄, 3CH₄() +3H₂() in methyl alcohol at 14°.

P = % anhydrous NiSO₄ in the sat. solu-

Alcohol		mol. of the	solution	
by wt.	Р	Mol. NiSO4	Mol. CH4O	Moi. H₂O
100	3.72	7.75	969	23.2
97.5	0.77	1.65	950	48.5
95	0.455	0.96	908	91
92.5	0.50	1.0	871	128
90	0.70	1.6	830	168
89	1.01	2.0	814	184
88	1.25	2.4	800	198
87	1.48	2.9	781	216
86	1.73	3.2	767	230
85	1.93	3.6	755	241

(de Bruyn, R. t. c. 1903, **22.** 418.)

This salt is more sol. in ethyl alcohol than in methyl alcohol.

See also under hydrated salts.

For solubility of NiSO₄ in ethyl alcohol, see under hydrated salts.

100 g. sat. solution in glycol contain 9.7 g. NiSO₄ at ord temp. (de Coninck, Bull. Ac. Roy. Belg. **1905.** 359.)

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790); ethyl acetate, (Naumann, B. 1904, **37,** 3602.)

Very sl. sol. in acetone. (Krug and M'Elroy.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329; Eidmann, C. C. **1899**, II. 1014). +H₂O. Very sl. sol. in abs. methyl al-

cohol. After standing in contact with it for 8-9 months, the solution contains 1.34% NiSO₄. (de Bruyn. R. t. c. 1903, 22. 414.)

+2H₂O. Cryst. from sat. NiSO₄+Aq at 131°. (Steele and Johnson.)

 $+4H_{2}O$ . Solubility in methyl alcohol+ Aq at 10°. Time=24 hrs. P=% anhydrous

salt in the sat. solutions. 20%  $50\% \\ 1.43$ water 100% 80% Alcohol of 14.8 25.17.38 0.66

(de Bruyn, R. t. c. 1903, 22. 414.)

+6H₂O. Two modifications. a-blue. tetragonal: β-green, monoclinic.

#### Solubility of $\alpha$ - NiSO₄, 6H₂O in H₂O at t°.

Salt used	t°	n NiSO4 in 100 £ H ₂ O	Salt remaining
NiSO4+6H2O (blue)	32.3	43.57	NiSO ₄ +6H ₂ O (blue)
**	33.0	43.35	(%
NiSO ₄ +7H ₂ O	34.0	43.84	"
1,4,10	35	43.79	44
NiSO4+6H2O	14.	48.05	υ.
NiSO4+71130	44.7	47.97	**
NiSO4+oli2O (blue)		50.15	**
14/1904 +01150 (little)	51.0	50.66	.,
			44
6	52.0	52.34	
"	53.0	52.34	•

(Steele and Johnson.)

#### Solubility of $\beta$ - NiSO₄, 6H₂O in H₂O at t^o.

Salt used	t°	g. NiSO ₄ per 100 g. H ₂ O	Salt remaining
NiSO +6112O(blue)	54.5	52.50	NiSO ₄ +6H ₂ O (green)
NiSO ₄ +6H ₂ O(blue) NiSO ₄ +7H ₂ O	301.0	53.40	"
NiSO ₄ +6H ₂ O(blue) NiSO ₄ +7H ₂ O	60.0	54.84	"
NiSO4+7H2O	69.0 70.0	58.38 59.44	"
NiSO ₄ +6H ₂ O(blue)	73.0	60.72	**
NiSO ₄ +6H ₂ O(blue) NiSO ₄ +7H ₂ O	)	63.17	"
NiSO ₄ +7H ₂ O	89.0 99.0	67.90 76.71	"
	<u>'</u>		

(Steele and Johnson, Chem. Soc. 1904, 85.

Tr. point from  $\alpha$ - to  $\beta$ - salt = 53.3°. (Steele and Johnson.)

100 pts. absolute methyl alcohol dissolve 31.6 pts. NiSO₄+6H₂O at 17°; 100 pts. 93.5% methyl alcohol dissolve 7.8 pts. NiSO₄+ 6H₂O at 18°; 100 pts 50% methyl alcohol dissolve 1.9 pts. NiSO₄+6H₂O at 18°. (de Bruyn, Z. phys. Ch. 10. 786.)

Solubility in methyl alcohol+Aq at 14°. Time = 5 to 6 hrs. a-Salt.

	~	In 1000 i	nol. of the	solution
Alcohol % by wt.	NiSO4	Mol. NiSO4	Mol. CH4O	Mol. H ₂ O
97.5 95.5 92.5 90.85 80.60	12.4 10.6 6.5 3.06 1.18 0.315 0.25 0.46 2.43	26 22.3 14 5.9 2.3 0.57 0.4 0.8 3.5	794 808 817 838 821 757 688 453 265	180 170 169 156 177 242 312 546 732
$\begin{array}{c} 20 \\ 0 \cdot ( ext{water}) \end{array}$	14.7 26.0	21 39	105 0	874 961

(de Bruyn, R. t. c. 1903, 22. 412.)

Solubility in methyl alcohol+Aq at 14°. Time = 24 hrs. Solubility in 100 pts. H₂O at t°.—Continued. β-salt.

Alcohol % by wt.	~	In 1000 mol. of the solution			
	% NiSO₄	Mol. NiSO4	Mol. CH₄O	Mol. H ₂ O	
100	15.7	33.8	763	203	
97.5	12.4	26	781	193	
95	10.0	20.3	784	196	
92.5	5.61	11.1	800	189	
90	2.35	4.5	810	185	
89	1.79				
88	1.29				
87	0.97				
86	0.735				
85	0.61	1.3	755	244	
80	0.415	0.7	682	317	
60	0.75	1.3	453	546	
<b>4</b> 0	3.11	4.0	264	732	
20	14.1	21.0	105	874	
0 (water)	27.2	40.0	0	960	

(de Bruyn.)

+7H₂O.Solubility in 100 pts. H₂O at t°, using  $NiSO_4 + 7H_2O$ .

t°	Pts. NiSO ₄	t°	Pts. NiSO ₄	t°	Pts. NiSO ₄
0	29.3	33	45.5	66	63.6
ĭ	29.7	34	46.0	67	64.1
2	30.1	35	46.5	68	64.7
3	30.5	36	47.0	69	65.3
4	31.0	37	47.5	70	65.9
5	31.5	38	48.0	71	66.5
5 6	32.0	39	48.5	73	67.0
7	32.5	40	49.0	72	67.6
7 8 9	33.0	41	49.6	74	68.2
	33.5	42	50.1	75	68.8
10	34.0	43	50.6	76	69.3
11	34.5	44	51.2	77	69.9
12	35.0	45	51.7	78	70.5
13	35.5	46	52.3	79	71.1
14	36.0	47	52.8	80	71.7
15	36.5	48	53.4	81	72.3
16	37.0	49	53.9	82	72.9
17	37.5	50	54.5	83	73.5
18	38.0	51	55.0	84	74.1
19	38.5	52	55.6	85	74.6
20	39.0	53	56.1	86	75.2
21	39.5	54	56.7	87	75.8
22	40.0	55	57.3	88	76.4
23	40.5	56	57.9	89	77.0
24	41.0	57	58.4	90	77.6
25	41.5	58	59.0	91	78.2
26	42.0	59	59.6	92	78.8
27	42.5	60	60.2	93	79.4
28	43.0	61	60.7	94	80.1
29	43.5	62	61.3	95	80.7
30	44.0	63	61.9	96	81.3
31	44.5	64	62.4	97	81.9
32	45.0	65	63.0	98	82.5

t°	Pts. NiSO4	t°	Pts. NiSO4	, t°	Pts. NiSO ₄
99 100 101 102	83.1 83.7 84.3 84.9	103 104 105 106	85.6 86.2 86.8 87.5	107 108 108.4	88.1 88.7 88.7

(Mulder, calculated from his own and Tobler's determinations, Scheik. Verhandel. 1864. 70.)

Solubility in H₂O at t°.

Salt used	t°	g. NiSO ₄ in 100 g H ₂ O	Salt remaining
NiSO ₄ +7H ₂ O  " " " " " " " NiSO ₄ +6H ₂ O NiSO ₄ +7H ₂ O "	$\begin{array}{r} -5 \\ 0 \\ 9 \\ 15 \\ 22.6 \\ 22.8 \\ 30.0 \\ 30.0 \\ 32.3 \\ 33.0 \\ 34.0 \end{array}$	25.74 27.22 31.55 34.19 37.90 38.88 42.46 42.47 44.02 45.74 45.5	NiSO ₄ +7H ₂ O  " " " " " " " " " " " "

(Steele and Johnson, Chem. Soc. 1904, 85. 116.)

M.-pt. of  $NiSO_4+7H_2O=98-100^\circ$ . (Tilden, Chem. Soc. **45.** 409.)

Tr. point from  $\alpha$ -6H₂O salt to 7H₂O salt = 31.5°. (Steele and Johnson.)

Exists also in an unstable, more soluble oddification. (Fedorow, C. C. 1903, II. modification. 95.)

of NiSO_{4.7}H₂O+Na₂SO_{4.10}H₂O Solubility in 100 g. H₂O at t°.

t°	grams NiSO ₄	grams Na ₂ SO ₄
0	22.46	10.09
5	25.28	15.245
10	28.26	20.64

(Koppel, Z. phys. Ch. 1905, 52. 401.) See also under NiNa2(SO4)4.

100 pts. absolute methyl alcohol dissolve 46 pts. NiSO₄+7H₂O at 17°; 100 pts. absolute methyl alcohol dissolve 24.7 pts. NiSO₄+7H₂O at 4°; 100 pts. 93.5% methyl alcohol dissolve 10.1 pts. NiSO₄+7H₂O at 4°; 100 pts. 50% methyl alcohol dissolve 2 pts. NiSO₄+7H₂O at 4°; 100 pts. 7H₂O at 4°; 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 100 pts. 10 7H₂O at 4°. (de Bruyn, Z. phys. Ch. 10. 786.)

Solubility	in	methyl	alcohol+Aq	at	14°.
		Time, 5	to 6 hrs.		

Alcohol		In 1000 mel. of solution		
% by wt.	Niso.	Mol. NiSO4	Mol. CH ₄ O	Mol. H₂C
100	16.8	35.7	714	250
97.5	13.9	29	734	237
95	11.6	23.6	742	234.5
92.5	8.12	16.2	760	224
90	5.78	11.2	758	231
85	1.52	3	744	253
84	1.06			
83	0.985			
82	0.83			
81	0.665			
80	0.653	1 2	687	312
60	6.805	1.3	453	546
45	1.73			
40	2.78	4	264	732
35	4.55			
<b>3</b> 0	6.33			
20	13.7	20	105	875
0 (water)	26.4	39.5	0	960.5

(de Bruyn, R. t. c. 1903, 22. 411.)

1.00 g. absolute ethyl alcohol dissolve 1.3 g. NiSO₄+7H₂O at 4°, and 2.2 g. at 17°. (de Bruyn, Z. phys. Ch. 10. 786.)
Min. Morenosite.

#### Nickel hydrazine sulphate, NiH₂(SO₄)₂, 2N₂H₄.

1 pt. is sol. in 275.5 pts.  $H_2O$  at 18°. Sl. sol. in hot  $H_2O$ . Sol. in  $HNO_3$  with decomp.; insol. in HCl. Sol. in  $NH_4OH + Aq$ . (Curtius, J. pr. 1894, (2) **50.** 331.)

# Nickel potassium sulphate, NiSO₄, K₂SO₄+6H₂O.

Sol. in 8-9 pts. H₂O. (Tupputi.)

100 pts. H2O dissolve at:

0° 10° 14° 20° 30°

5.3 8.9 10.5 13.8 18.6 pts. anhydrous salt,

36° 49° 55° 60° 75° 20.4 27.7 32.4 35.4 45.6 pts. anhydrous salt. (Tobler, A. 95. 193.)

Saturated solution contains at:

20° 40° 60° 80°
8.7 12.3 17.6 22.0% anhydrous salt.

(v. Hauer, J. pr. 74. 433.)

1 l. H₂O dissolves 68.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27.** 459.)

Nickel potassium zinc sulphate, NiSO₄, 2K₂SO₄, ZnSO₄+12H₂O. Sol. in H₂O. (Vohl, A. **94.** 51.)

# Nickel rubidium sulphate, NiSO4, Rb₂SO₄+6H₂O.

Sol. in H₂O. (Tutton, Chem. Soc. **63**. 337.) 1 l. H₂O dissolves 59.8 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27**. 459.)

## Nickel sodium sulphats, NiNa2(SO4)2+4H2O.

Solubility of NiNa₂( $SO_1$ )₂.4H₂O in 100 g. H₂O at t .

ţ0	grams NiSO4	grams NasSO.
20	29.31	26.87
25	27.33	25.33
30	24.64	22.58
35	23.66	21.67
40	21.88	20.65

(Koppel, Z. phys. Ch. 1905, **52.** 401.)

Solubility of  $NiNa_2(SO_4)_2.4H_2O + NiSO_4$ . 7 $H_2O$  in 100 g.  $H_2O$  at  $t^\circ$ .

t°	grams NiSO ₄	grams NaSO ₄	t°	grams NiSO ₄	grams Na ₂ SO ₄
$18.5 \\ 20 \\ 25$	30.70 31.59 33.11	25.805 25.355 23.07	35 40	34.98 36.01 37.935	19.825 16.435 14.295

#### (Koppel.)

Solubility of  $NiNa_2(SO_4)_2.4H_2O + Na_2SO_4$ .  $10H_2O$  in 100 g.  $H_2O$  at  $t^{\circ}$ .

. <b>t</b> °	grams NiSO4	grams NaSO
18.5	26.14	29.455
20	24.07	31.365
25	18.81	37.13
30	9.87	44.25

#### (Koppel.)

Solubility of NiNa₂(SO₄)₂.4H₂O+Na₂SO₄ (anhydrous) in 100 g. H₂O at t°.

t°	grams NiSO4	grams Na ₂ SO ₄
35	7.13	49.595
40	7.245	49.03

#### (Koppel.)

# Nickel thallium sulphate, NiSO₄, Tl₂SO₄+6H₂O.

Easily sol. in  $H_2O$ . Can be recryst. from little  $H_2O$  without decomp. (Werther, J. pr. 92. 132.)

1 l. H₂O dissolves 46.1 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27**, 459.)

Nickel zinc sulphate, NiSO₄, ZnSO₄+13H₂O.
Sol. in 3-4 pts. cold H₂O. Insol. in alcohol.
(Tupputi, 1811.)

Completely sol. in NH₄OH+Aq. 2NiSO₄, 2ZnSO₄, H₂SO₄. (Étard, C. R. 87, 602.).

## Nickel sulphate ammonia, NiSO4, 6NH2.

Sol. in H₂O with separation of hydroxide. (Rose, Pogg. 20. 151.) NiSO₄, 5NH₃+3½H₂O. (André, C. R. 106. 936.)

Deliquescent.

 $NiSO_4$ ,  $4NH_3+2H_2O$ . Easily sol. in H₂O. Can be recrystallized out of little H₂O. Insol. even in diff. alcohol. (Erdmann.)

#### Nickel sulphate cupric oxide, NiSO₄, 2CuO+ 6H₂O.

(Mailhe, Bull. Soc. 1902, (3) 27. 172.) ŽNiSO₄,  $3\text{CuO} + 10\text{H}_2\text{O}$ , and  $+12\text{H}_2\text{O}$ . (Mailhe.)

5NiSO₄, 16CuO+xH₂O. (Recoura, C. R. 1901, **132**. 1415.)

 $NiSO_4$ ,  $20CuO + xH_2O$ . (Recoura.)

# Nickel sulphate, hydrazine, NiSO₄, 3N₂H₄. Ppt. (Curtius, J. pr. 1894, (2) 50. 343.)

#### Nickel sulphate hydroxylamine, NiSO4. 6NH₂OH.

Decomp. by H₂O. (Uhlenhut, A. 1899, 307. 334.)

## Nitrosyl sulphate, H(NO)SO₄. See Nitrosulphonic acid.

## Osmious sulphate.

Easily sol. in H₂O and alcohol. •

#### Osmic sulphate.

Sol. in H₂O. (Berzelius.)

Palladous sulphate, basic, PdSO₄, 7PdO+  $6H_2O$ , and  $10H_2O$ .

Insol. in H₂O. Easily sol. in HCl+Aq. (Kane.)

#### Palladous sulphate, PdSO₄+2H₂O.

Deliquescent in moist air; very sol. in H2O, but decomp. by much H₂O, with separation of a basic salt. (Kane.)

#### Phosphoryl sulphate, $(PO)_2(SO_4)_2$ (?).

Possible composition of Weber's (B. 20.

86) P₂O₅, 3SO₃ (?). 3P₂O₄, 2SO₃. Immediately dec H₂O. (Adie, C. N. 1891, **63**, 102.) Immediately decomp, by

# Platinic sulphate, Pt(SO₄)₂.

Deliquescent. Sol. in H₂O, alcohol, or ether; also in H₃PO₄, HCl, and HNO₃+Aq. (Berzelius.)

H₂PtO₂SO₄. Sol. in H₂O. (Blondel, A. ch.

**1905**, (8) **6**. 109.)

PtO₂, SO₄+4 $H_2$ O. Ppt. Decomp. by  $H_2$ O. Sol. in  $H_2$ SO₄.

 $PtSO_{4}(OH)_{2}, \quad 4Pt(OH)_{4} + 3H_{2}O.$ Ppt. (Prost, Bull. Soc. (2) 46. 156.)

 $Pt_8SO_4O_{13}+16H_2O$ . As above. (Prost.)

#### Platinum hydroxylamine sulphate. Pt(NH₂OH)₄SO₄.

Only sl. sol. in H₂O; sol. in dil H₂SO₄+Aq. (Uhlenhut, A. 1900, 311, 123.)

## Platinic potassium sulphate, basic.

Insol. in boiling H₂O, HNO₃, H₂SO₄, H₃PO₄, HC₂H₃O₂, or NH₄OH+Aq. Easily sol. in boiling HCl+Aq. Sl. decomp. by aqua regia. (E. Davy.)

 $Pt_{10}(SO_4)_2O_{10}, 3K_2SO_4+34H_2O.$ 

H₂O. (Prost, Bull. Soc. (2) **46.** 156.)

 $Pt_{18}(SO_4)O_{22}$ ,  $5K_2SO_4+34H_2O$ . As above. (Prost.)

#### Platinum rubidium sulphate, Pt₆Rb₆(SO₄)₄+ 17H₂O.

Sol. in H₂O. (Prost, Bull. Soc. (2) **46.** 156.)

#### Platinum sulphate sulphocarbamide, PtSO4. 4CS(NH2)2.

Insol. in H₂O. Sol. in conc. H₂SO₄ without decomp. (Kurnakow. J. pr. 1894, (2) 50, 489.)

#### Potassium sulphate, K₂SO₄.

Not hygroscopic in the ordinary sense of the word. 100 pts. K₂SO₄ over H₂O at 14-20° absorb 58 pts. H₂O in 22 days, and finally deliquesce completely. (Mulder.)

12 pts. K₂SO₄ mixed with 100 pts. H₂O lower the temp. 3.3°. (Rüdorff, B. 2. 68.)

100 pts. H₂O dissolve with absorption of heat at 0°:

8.36 pts. K₂SO₄. (Gay-Lussac.) 8,46 (Mulder.) " 8.5 (Gerardin.) 7.31 (Möller, Pogg. 117. 386.) 7.3 - 7.9(Nordenskiöld. Pogg. **136.** 314.)

 $100~\rm pts.~H_2O$  at 0° dissolve 8.36 pts.  $\rm K_2SO_4;~at~12.72^\circ,~10.57~pts.;~at~49.08^\circ,~16.91~pts.;~at~63.90^\circ,~19.29~pts.;~at~101.50^\circ,~26.33~pts.~~(Gay~Lussac,~A.~ch.~(2)~11.311.)$ 

#### Solubility in 100 pts. H₂O at to.

t°	Pts. K ₂ SO ₄	t°	Pts. K ₂ SO ₄
$\begin{array}{c} 0 \\ 15 & 65 \\ 28 & 1 \end{array}$	7.8	47.0	16 0
	10 3	70.2	20.3
	12 8	98.0	23.9

#### (Nordenskiöld, Pogg. 136. 341.)

(Notletiskind, 10gg, 346. 341.)

100 pts. 8at. K₂SO₄ at 101.7° contain 17.5 pts. K₂SO₄, or 100 pts. H₂O at 101.25° dissolve 21.212 pts. K₂SO₄. (Griffiths.)

100 pts. H₂O at 102.8° dissolve 29 pts. K₂SO₄ (Penny); at 15°, 7.3-6.25 pts. (Ure's Dict.); at 100°, 20 pts. (Ure's Dict.); at 100°, 20 pts. Sol. in 9.081 pts. H₂O at 15° (Gerlach); in 16 pts. at 15°, and 5 pts. at 100° (Bergmann); in 18 pts. cold, and 5 pts. boiling H₂O (Fourcroy); in 15 pts. cold, and 5 pts. boiling H₂O (Reid); in 12 pts. H₂O at 0°, and 4 pts. boiling H₂O (M. R. and P.); in 12 pts. H₂O at 18.75° (Abl).

(Abl).  $K_3SO_4$  sat. at 15° has sp. gr. =1.0774, and contains 10.055 pts.  $K_2SO_4$  ip 100 pts.  $H_2O$ . (Michel and Krafft, A. ch. (3) **41**. 478.)

100 pts. H₂O dissolve 9.26 pts. K₂SO₄ at 15.6°, and sat. solution has sp. gr. = 1.177. (Page and Keightley, Chem. Soc. (2) 10.566.)

	Solubility in 100 pts. H ₂ O at t°.					
t°	Pts. K ₂ SO ₄	t°	Pts. K ₂ SO ₄	t°	Pts. K ₂ SO ₄	
0	8.5	35	13.1	70	19 8	
1	8.6	36	13.3	71	20.0	
2	8.7	37	13.4	72	20 2	
3	8.8	38	13.6	73	20.4	
2 3 4 5 6 7	9.0	39	13.8	74	20.6	
5	9.1	40	14.0	75	20.8	
6	9.2	41	14.2	76	21 0	
7	9.3	42	14.3	77	21.2	
8	9.4	43	14.5	78	21.4	
9	9.5	44	14.7	79	21.3	
10	9.7	45	14.9	80	21.8	
11	9.8	46	15.1	81	22.0	
12	9.9	47	15.3	82	22.2	
13	10.0	48	15.5	83	22.4	
14	10.2	49	15.6	84	22 6	
15	10.3	50	15.8	85	22.8	
16	10.4	51	16.0	86	$23 \ 0$	
17	10.5	52	16.2	87	23.2	
18	10.7	53	16.4	86	23.4	
19	10.8	54	16.6	89	23.6	
20	10.9	55	16.8	90	23.9	
21	11.1	56	17.0	91	24.1	
22	11.2	57	17.2	92	24.3	
23	11.3	58	17.4	93	24.5	
24	11.5	59	17.6	94	24.7	
25	11.6	60	17.8	95	25.0	
26	11.7	61	18.0	96	25.2	
27	11.9	62	18.2	97	25.5	
28	12.0	63	18.4	98	25.7	
29	12.2	64	18.6	99	25.9	
<b>3</b> 0	12.3	65	18.8	100	26.2	
31	12.5	66	19.0	101	26.4	
32	12.6	67	19.2	102	26.6	
33	12 8	68	19.4	102.25	26.75	
34	13.0	69	19.6			

(Mulder, calculated from his own and other experiments, Scheik. Verhandel. 1864. 50.)

If solubility S=pts. anhydrous salt in 100 pts. of solution, S = 7.5 + 0.1070t from 0° to 163°. Solubility from 163° to 220° is constant at 25. (Étard, C. R. 106. 208.)

Solubility of K₂SO₄ in 100 pts. H₂O at t°.

t°	Pts. K ₂ SO ₄	t°	Pts. K ₂ SO ₄	t°	Pts. K ₂ SO ₄
16 20 28 36	9.76 10.30 12.59 13.28	39 54 98	14.21 17.39 23.91	120 143 170	26.5 28.8 32.9

(Tilden and Shenstone, Phil. Trans. 1884. 23.)

Solubility of K₂SO₄ in H₂O. 100 pts. H₂O dissolve at:

69.9° 18.4° 4.3° 19.7 pts. K₂SO₄. 10.8 8.16 (Andreae, J. pr. (2) 29. 456.)

100 ccm. H₂O dissolve 12.04 g. K₂SO₄ at °. (Trevor, Z. phys. Ch. 7. 468.) Sat. K₂SO₄+Aq contains at:

ı	1004	" T730004	$T$ Aq $\omega$	minmin a	***
	21° 10.1	23° 10.3	60° 14.5	99° 19.1	130° 21.1% K₂SO₄,
	130° 21.3	152° 22.8 (Étard,	175° 24.5 A. ch.		220° 24.6% K ₂ SO ₄ .  2. 549.)

Solubility of K2SO4 in H2O at to. G. K₂SO, per 100 g. H₂O

t°	K2SO4	Sp. gr.	t°	K ₂ SO ₄	Sp.gr.
15 70	10 37	1.0589 1.0770 1.0921 1.1010	74.85	20.64	1.1157

* = b.-pt.

(Berkeley, Phil. Trans. Roy. Soc. 1904, 203. A, 189.)

100 g. H₂O dissolve 0.133 gram-equivalent

K₂SO₄ at 25° (Van't Hoii and Meyerhoffer, Z. phys. Ch. 1904, **49.** 315.)

I l. sat K₂SO₄ + Aq at 25° contains 0.617 mols. K₂SO₄. (Herz. Z. anorg. 1911, **73.** 274.)

Solubility of K₂SO₄ in H₂O at t°.

ţ°	% K ₂ SO ₄
4.78 30.05 54.20 68.90	7.82 11.43 14.77 16.40

(Le Blanc and Schmandt, Z. phys. Ch. 1911, **77.** 614.)

100 g. H₂O dissolve 12.10 g. K₂SO₄ at 25°. (Amadori, Rend. Acc. Linc. 1912, (5) **21.** II. 667.)

Solubility of K2SO4 in H2O at various pressures. Figures denote pts. K₂SO₄ contained in 100 pts. sat. K2SO4+Aq at t° and A pressure in atmospheres.

A	0°	15°	15.5°	16.2°
1 20 30	6.81 7.14 7.14	9.14	9.24 9.44	9.35 9.54

(Möller, Pogg. 117. 386.)

Sat. K₂SO₄+Aq boils at 101.5°, and contains 26.33 pts. K₂SO₄ to 100 pts. H₂O (Gay-Lussac); at 101.7°, and contains 21.2 pts. K₂SO₄ to 100 pts. H₂O (Griffiths); at 102.25°, and contains 26.75 pts. K₂SO₄ to 100 pts. H₂O (Mulder); boils at 103° (Kremers).

Crust forms at 101.7°, and solution contains 25.3 pts. K₂SO₄ to 100 pts. H₂O; highest

1001

temp. observed, 102.1°. (Gerlach, Z. anal. **26.** 426.)

B.-pt. of K₂SO₄+Aq containing pts. K₂SO₄ to 100 pts. H₂O.

Bpt.	Pts. K ₂ SO ₄	Bpt.	Pts. K ₂ SO ₄
100.5° 101.0 101.5	7 14.5 22.1	102° 102.1	30.0 31.6

(Gerlach, Z. anal. 26, 430.)

Sp. gr. of K2SO4 at 19.5°.

% K ₂ SO ₄	Sp. gr.	% K2SO4	Sp. gr.
2.401 4.744 6.968	1.0193 1.0385 1.0568	9.264 10.945	1 0763 1 0909

(Kremers, Pogg. 95. 120.)

Sp. gr. and B-pt. of K₂SO₄+A₉ at 12.5°.

Pts. K ₂ SO to 100 pts. H ₂ O	Sp. gr.	Bpt.	Pts. K ₂ SO to 100 pts. H ₂ O	Sp. gr.	Bpt.
1	1.0079	100.38°	6	1.0456	101.12°
2	1 0151	100.63°	7	1.0524	101.25°
3	1.0231	100.75°	8	1.0599	101.25°
4	1.0305	100.88°	9	1.0676	101.38°
5	1.0391	101°	10	1.0735	101.5°

(Brandes and Gruner, 1827.)

K₂SO₄+Aq sat. at 8° has 1.072 sp. gr. (Anthon, A. **24.** 211.)

 $K_2SO_4+Aq$  saturated at 12° contains 10.38%  $K_2SO_4$  and has sp. gr. 1.0716 (Struve, Zeit. Ch. (2) 5. 323); saturated at 15° contains 11.01%  $K_2SO_4$  and has sp. gr. 1.0831 (Gerlach); saturated at 18.75° contains 10.74%  $K_2SO_4$  and has sp. gr. 1.0798 (Karsten).

Sp. gr. of K₂SO₄+Aq at 15°.

					•
K.50.	Sp. gr.	K280.	Sp. gr.	% K	Sp. gr.
1 2 3 4	1.0082 1.0163 1.0245 1.0328	5 6 7	1.0410 1.0495 1.0579	8 9 9.92	1.0664 1.0750 1.0830

(Gerlach, Z. anal. 8. 287.)

Sp. gr. of K₂SO₄+Aq at 18°.

%K₂SO₄	Sp. gr.
5	1.0395
10	1.0815

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $K_2SO_4+Aq$  at 15°/15°. a=pts.  $K_2SO_4$  in 100 pts. of the solution; b=pts.  $K_2SO_4$  in 100 pts.  $H_2O$ .

а	ь	Sp. gr.
1 3 5 7 9	1.010 3.093 5.263 7.527 9.890	1.00808 1.02447 1.04091 1.05776 1.07499
9.92	11.013	1.08305

(Gerlach, Z. anal. 28. 493.)

Sp. gr. of  $K_2SO_4$  +Aq at 20° containing 0.5 mol.  $K_2SO_4$  to 100 mols.  $H_2O = 1.03758$ ; containing 1 mol.  $K_2SO_4$  to 100 mols.  $H_2O = 1.06744$ . (Nicol, Phil. Mag. (5) **16.** 122.)

Sp. gr. of K₂SO₄+Aq. at 25°.

Concentration of K ₂ SO ₄ +Aq	Sp. gr.
1-normal  1/2- "  1/4- "  1/8- "	1.0664 1.0338 1.0170 1.0084

(Wagner, Z. phys. Ch. 1890, 5. 37.)

 $K_2SO_4+Aq$ . containing 6.7%  $K_2SO_4$  has sp. gr.  $20^{\circ}/20^{\circ}=1.0549$ . (Le Blanc and Rohland, Z. phys. Ch. 1896, **19.** 278.)

Sp. gr. of  $K_2SO_4+Aq$  at 20.1°, when p= per cent strength of solution; d=observed density; w=volume conc. in gr. per cc.  $\left(\frac{pd}{100}=w\right)$ 

p.	d.	w.
9.83 8.172 6.779 5.021 3.127 2.508 1.448 1.079 1.047 0.455	1.0800 1.0657 1.0539 1.0394 1.0238 1.0186 1.0100 1.0070 1.0066 1.0018	0.10615 0.08708 0.07144 0.05218 0.03202 0.02554 0.01463 0.01087 0.01053 0.00456

(Barnes, J. phys. Chem. 1898, **2.** 543.) Sp. gr. of K₂SO₄+Aq at 18°.

1/2 K2SO4 g.-equiv. per l. Sp. gr. at 18° 0.83271.0567 0.79751.05391.0456 0.66881.0344 0.50291.0340 0.50160.25081.0173 0.010011.0006

(McKay, Elektrochem. Zeit. 1899, 6. 115.)

Sp. gr. of sat. K ₂ SO ₄ +Aq at t°.			
t°	g. K ₂ SO ₄ sol. in 100 g. H ₂ O	Sp. gr.	
0 10 20 30 40 50 60 70	7.35 9.22 11.11 12.97 14.76 16.50 18.17 19.75	1.058 1.069 1.081 1.089 1.097 1.106 1.114 1.121	

(Tschernaj, J. Russ. phys. Chem. Soc. 1912, 44. 1565.)

Sol. in conc. acids; not pptd. by glacual  $HC_2H_3O_2$ . Insol. in KOH+Aq of 1.35 sp. gr. (Liebig, A. 11. 262.)

Solubility of K2SO4 in H2SO4+Aq at 18°.

Mols. per 100 mols. solution		Solid phase
K2SO4	H ₂ SO ₄	
1.10 1.59 2.49 2.75 2.75 2.83 2.80 2.61 2.25 1.08 0.77 0.44	0 0.95 2.70 3.17 3.74 5.08 5.79 5.61 6.19 7.94 9.2 22.7	K ₂ SO ₄ " " K ₂ SO ₄ , KHSO ₄ " " K ₂ SO ₄ , 3KHSO ₄ K ₂ SO ₄ , 6KHSO ₄ " " ** ** ** ** ** ** ** ** ** ** ** **

(Stortenbecker, R. t. c. 1902, 21. 407.) Solubility in H₂SO₄+Aq at 0°.

Note			· · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Solid phose
0.37   0.53   "   "			. Bond phase
5.27 0.09 "	0.75 1.08 1.13 1.44 1.66 1.89 1.88 2.15 2.12 2.29 2.30 2.33 2.48 3.08 4.43	0.53 0.64 0.74 0.73 0.71 0.69 0.66 0.69 0.59 0.61 0.54 0.53  0.43 0.28 0.12	K ₂ SO ₄ +K ₃ H(SO ₄ ) ₂ K ₃ H(SO ₄ ) ₂ ""  K ₃ H(SO ₄ ) ₂ +Ka  ""  Ka+Kb  Kb  Kb+KHSO ₄ ""

These results show that at 0° there exist (Sullivan.)

between  $K_3H(SO_4)_2$  and  $KHSO_4$ , two acid sulphates, Ka and Kb. Ka is probably  $K_3SO_4$ ,  $3KHSO_4$  and Kb is probably  $K_2SO_4$ ,  $6KHSO_4$ .

(D'Ans, Z. anorg. 1909, 63. 228.)

3.1 mols.  $K_2SO_4$  are sol. in absolute  $H_2SO_4$  at 25°. (Bergius, Z. phys. Ch. 1910, 73. 353.)

Solubility in A₂SO₄+Aq at 25°.

Millimols H2EO4	Millimols K ₂ SO ₄
i., 10 ccm.	in 10 ccm.
3.97 7.57 1 _{x.35}	6.17 8.92 10.82 14.86

(Herz, Z. anorg. 1912, 73. 276.)

Solubility in H₂SO₄+Aq at 25°.

In 10 the s	00 g. of olution	Solid phase
Mols SO ₃	Mols K ₂ SO ₄	Sond phase
$\begin{array}{c} 6.42 \\ 6.60 \end{array}$	$0.171 \\ 0.190$	KHSO4
$6.91 \\ 7.26$	$0.266 \\ 0.182$	$KHSO_4 + KH_{3}(SO_4)_2, H_2O$
7.62	0.157	"
7.88	$0.167 \\ 0.201$	"
8.10 8.15	$0.250 \\ 0.352$	$KH_8(SO_4)_2$ , $H_2O$
8.16	0.364	KH ₃ (SO ₄ ) ₂ , H ₂ O+KH ₈ (SO ₄ ) ₂
8.29 8.33	$0.341 \\ 0.322$	"
$8.45 \\ 8.62$	$0.325 \\ 0.346$	"
8.57 8.71	$0.384 \\ 0.412$	KH3(SO4)2
8.82	0.583	KH ₈ (SO ₄ ) ₂
8.65 8.63	$0.880 \\ 0.899$	KH ₈ (SO ₄ ) ₂ +KHS ₂ O ₇ KHS ₂ O ₇ (metastable solution)
8.70 8.96	$0.882 \\ 0.561$	u u
9.80	0.365	"
9.78 9.80	$0.430 \\ 0.665$	KHS2O7
9.66 9.66	0.904	" "

(D'Ans, Z. anorg. 1913, 80. 239.)

Pptd. from K₂SO₄+Aq by NH₄OH+Aq. Sullivan.)

Solubility	of	K ₂ SO ₄ in	NH ₄ OH+Aq	at 20°.
------------	----	-----------------------------------	-----------------------	---------

G. NH ₃ in 100 ccm. H ₂ O	G. K ₂ SO ₄ in 100 ccm. H ₂ O
0	10.804
6.08	4.100
15.37	0.828
24.69	0.140
31.02	0.042

(Girard, Bull. Soc. (2) 43. 522.)

1 l. sat. solution in H₂O contains 105.7 g.  $K_2SO_4$  at 20°; in NH₄OH+Aq (5.2% NH₃), 45.2 g. (Konowalow, J. Russ. Phys. Chem. Soc. 1894, 31. 985.)

Solubility of K₂SO₄ in KOH+Aq at 25°.

In 1000 g. of the solution					
Mols K ₂ SO ₄	Mols (KOH)2				
0.617 0.433 0.280 0.137 0.035 0.009	0.0 0.258 0.433 1.13 2.86 3.42 4.809				

(D'Ans and Schreiner, Z. anorg. 1910, 67. 438.)

Sol. in sat. NH₄Cl+Aq without pptn. (See NH₄Cl.)

Sl. sol. in sat. KCl+Aq without pptn. 100 g. sat KCl+Aq. at 25° dissolve 0.0167 g. equiv. K₂SO₄ at 25°. (Van't Hoff and Meyerhoffer Z. phys. Ch. 1904. **49**. 315.)

Sl. sol. in sat. KNO₃+Aq without causing

1 l. of the solution contains 50.7 g. K₂SO₄+216.5 g. KNO₅=267.2 g. mixed salts at 15°. Sp. gr.  $K_2SO_4 + KNO_8 + Aq = 1.165$ .

1 l. of the solution contains 47.66 g. K₂SO₄ +308.5 g. KNO₂=356.2 g. mixed salts at 25°. Sp. gr. of K₂SO₄+KNO₂+Aq=1.210. (Euler, Z. phys. Ch. 1904, **49.** 313.) See also under KNOs.

Sol. in sat. NaNO₃+Aq without causing pptn at first, but soon KNO₃ is pptd. (Karsten.) (See NaNO3.)

Sol. in (NH₄)₂SO₄+Aq with pptn. of (NH₄)₂SO₄. (Rüdorff, B. 6. 485.)  $(NH_4)_2SO_4.$ 

More sol. in aqueous solutions of other salts,

as Na₂SO₄, MgSO₄, CuSO₄, etc., than in pure H₂O. (Pfaff, A. **99**, 227.)
Sol. in sat. Na₂SO₄+Aq, MgSO₄+Aq, NaCl+Aq. (See MgSO₄ and NaCl.)

Solubility of K₂SO₄ in Na₂SO₄+Aq.

Temp	. = 34°	Temp. =60°		
% Na ₂ 80 ₄	% K2SO4	% Na ₂ 80 ₄   % K ₂ 8		
0 7.1 31.4 33.1	11.9 10.7 4.3 0	0 6.6 27.1 31.3	15.3 13.9 8.2 0	

(Nacken, B. A. B. 1910. 1016.)

100 g. H₂O sat. with both K₂SO₄ and Tl₂SO₄ dissolve:

4.74 g. Tl₂SO₄+10.3 g. K₂SO₄ at 15°. 1 5 g. "+16.4 g. " " 62°. +16.4 g.11.5 g. " 100°. " 18.52 g.  $+26.2 \ g.$ (Rabe, Z. anorg. 1902, 31, 156.)

Sl. sol. in sat. ZnSO₄ or CuSO₄+Aq with

separation of double salt.

100 pts.  $H_2O$  dissolve 8.5+0.12t pts. On addition of a K salt, K2SO4 is  $K_2SO_4$ . On addition of a K salt,  $K_2SO_4$  is pptd. The amount of  $K_2SO_4$  remaining in solution plus the amt. of K in the salt added is a constant. (Blarez, C. R. 112. 939.)

Solubility of  $K_2SO_4 + Th(SO_4)_2$  at 16°. Solid phase, Th(SO₄)₂.

Pts. per 10	00 pts H ₂ ()	Pts. per 100 pts. H ₂ O		
K ₂ SO ₄	Th(SO ₄ ) ₂	K2SO4	Th(SO ₄ ) ₂	
0.000 0.424 1.004 1.152 1.224 1.283 1.348 1.378	1.390 1.667 2.193 3.191 2.514 2.222 1.706 1.637	1.487 1.633 1.844 2.512 3.092 4.050 4.825	0.870 0.635 0.370 0.128 0.070 0.027 0.003	

(Barre, C. R. 1911, 150, 1555.)

Difficultly sol. in 20% KC₂H₃O₂+Aq. (Stromeyer.)

Solubility in K acetate+Aq at 25°.

Composition of the solutions				
% K acetate	% K ₂ SO ₄	% H ₂ O		
6.11	6.65	87.24		
$\begin{array}{c} 8.68 \\ 11.29 \end{array}$	5.09 3.99	$\begin{array}{c} 86.23 \\ 84.72 \end{array}$		
$15.59 \\ 20.12$	$\begin{array}{c} 2.35 \\ 1.23 \end{array}$	$82.06 \\ 78.65$		
29.95	0.39	69.66		

The solid phase in these solutions is K₂SO₄. (Fox, Chem. Soc. 1909, 95. 885.)

100 g. hydroxylamine dissolve 3.5 K₂SO₄ at 17-18°. (de Bruyn, Z. phys. Ch. 1892, **10.** 782.)

Easily sol. in liquid anorg. 1905. 46. 2)	HF. (Franklin, Z.	Solubility in orga	nic subst	ances Ac	at 25°.
Insol. in liquid NI	H ₃ . (Franklin, Am.	•	Composit	ion of the s	olutions
NO ₂ . (Frankland, (	or attacked by liquid Chem. Soc. 1901, <b>76.</b>	Organic substance	% organic substance	% K ₂ SO ₄	% H ₂ O
0.905. (Anthon.) Solubility in dil. alceteinp.	ne sp. gr. of which is obtoincreases with the 0.939 sp. gr. (53% by	Alcoho'	1.35 4.80 7.80 9.70 12.34 14.51 15.26	9.17 6.90 4.96 4.32 3.57 2.71 2.66	89.48 88.30 87.24 85.98 84.09 82.78 82.08
4° 8° 0,16 0.21 (Gerardin, A.	60° 0.92 pts. K ₂ SO ₄ . ch. (4) <b>5</b> . 147.)		29.50 26.91 35.97 43.90	$egin{array}{c} 1.83 \\ 0.97 \\ 0.41 \\ 0.22 \\ \end{array}$	77.67 72.12 63.62 55.88
100 pts. of the sat. so of:	olution at 15° in alcohol	-	69.26	0 016	30.72
10 20 3		Pyridine	4.23 13.90 24.51 34.19 46.29 55.93 75.90	7.95 4.77 2.75 1.47 0.45 0.12 0.006	87.82 81.33 72.74 64.34 53.26 43.95 24.09
0.000 0.070 0.137 0.328 0.578	0.6714 0.6619 0.6559 0.6350 0.6097	Ethylene glycol	3 16 9.89 18.47 32.11 49.03	9.67 7.69 5.74 3.57 1.83	87.17 82.53 75.79 64.32 49.14
1.151 2.183  (Rothmund and Wilsm 40.6  Solubility in phe  Concentration of the phenol Mol/Liter  0.000 0.016 0.021 0.032	320.)	Chloral hydrate	6.44 9.09 12.38 13.20 22.07 33.15 44.40 47.30 62.82 70.28 80.36 85.26	9.13 8.41 7.79 7.31 5.88 4.54 3.36 2.92 2.00 1.75 1.40 1.08	84.431 82.50 79.83 79.49 72.05 62.31 52.24 49.78 35.18 27.97 18.24 13.66
0.040 0.047 0.064 0.076 0.127 0.152 0.236 0.252 0.308 0.409 0.464 0.486 0.495	0.6555 0.6522 0.6502 0.6494 0.6310 0.6251 0.6042 0.5956 0.5834 0.5572 0.5480 0.5425 0.5389	Glycerol	8.96 13.36 20.34 24.15 33.73 40.40 43.52 50.18 57.22 67.94 78.18 98.28	8.87 7.69 6.47 5.83 4.44 3.65 3.38 2.69 2.07 1.53 0.98 0.73	82.17 78.95 73.19 70.02 61.83 55.95 53.10 47.13 40.71 30.53 20.84 0.99
(Rothmund and Wilsr 40.			3.20 5.82 8.35 11.26 14.30 17.22	10.07 9.61 9.19 8.66	86.48 84.11 82.04 79.55 77.04 74.43

Solubility in	organic substances + Aq a	at 25°.—
	(.////////P/L	

	Composition of the solutions			
Organic substance	% organic substance	% K ₂ SO ₄	% H ₂ O	
Sucrose	9.56	9.65	80.79	
	18.55	8.65	72.80	
	28.16	7.42	64.42	
	37.24	6.35	56.41	
	47.55	5.21	47.24	
	57.00	4.24	38.76	
Acetone	4.92	7.20	87.88	
	10.06	5.02	84.92	
	16.23	2.96	80.81	
	24.31	1.50	74.19	
	37.19	0.47	62.34	
	46.29	0.20	53.51	
	62.40	0.03	37.57	

(Fox and Gage, Chem. Soc. 1910, 97. 381.)

Sol. in 76 pts. glycerine of 1.225 sp. gr. at ordinary temp. (Vogel, N. Repert. 16. 557.) (Krug and M'Elrov; Insol. in acetone. Eidman, C. C. 1899, II. 1014.)

Insol. in CS2. (Arctowski, Z. anorg. 1894, 6.257; benzonitrile. (Naumann, B. 1914, 47. 1370); methyl acetate. (Naumann, B. 1909, 42, 3790); ethyl acetate. (Naumann. B. 1904, 37, 3602.)

100 g. H₂O dissolve 104 g. K₂SO₄+219.0 g. sugar at 31.25°, or 100 g. sat. solution contain 3.8 g.  $K_2$ SO₄+66.74 g. sugar. (Köhler, Z. Ver. Zuckerind. 1897, 47. 447.)

Min. Glaserite.  $+\frac{1}{2}H_2O$ . 100 pts.  $H_2O$  dissolve 9.82 pts. (Ogier, C. R. 82, 1055.)

Tripotassium hydrogen sulphate, K₈H(SO₄)₂. Sol. in H₂O.

#### Potassium hydrogen sulphate, KHSO₄.

1.07 pts. KHSO₄ (=1 pt.  $K_2S_2O_7$ ) dissolve: 0° in 2.95 pts. H₂O. 20° " 2.08" " 40° " 1.59 " " 100° " 0.88 (Kremers, Pogg. 92. 497.)

Sp. gr. of KHSO₄+Aq at 15° containing: 15 % KHSO4 1.0354 1.0726 1.1116 KHSO4. 1.1516 1.1920 1.2110 (Kohlrausch, W. Ann. 1879. 1.)

Sat. solution boils at 105.5° (Griffiths); 108° (Kremers).

Alcohol dissolves out H2SO4. K₂SO₄ crystallises from dilute solutions. 100 g. 95% formic acid dissolve 14.6 g. KHSO₄ at 19.3°. (Aschan, Ch. Ztg. 1913, 37. 1117.)

Insol. in methyl acetate. (Naumann B. 1909, **42**, 3790.) Min. Misinite.

 $+5\frac{1}{2}H_2O$ . Deliquescent. (Senderens. Bull. Soc. (3) 2. 278.)

Potassium dihydrogen sulphate,  $K_4H_2(SO_4)$ . Sol. in H₂O. (Phillips, Phil. Mag. 1. 429.) Composition is  $4K_2O$ ,  $7SO_3 + 3H_2O$ , according to Berthelot (A. ch. (4) 30, 442).

Potassium trihydrogen sulphate, KH₃(SO₄)₂. Sol. in H₂O with rise of temperature. (Schultz, Pogg. 133. 137.)  $+1\frac{1}{2}H_2O$ . (Lescour, C. R. 78. 1044.)

Potassium disulphate (pyrosulphate), K₂S₂O₇. When dissolved in exactly the necessary amount of hot H2O for solution, it crystallises

on cooling without decomp. Decomp. by excess of H₂O. (Jacquelain, A. ch. 70. 311.) Insol. in methyl acetate. (Naumann, B. 1909. 42. 3790.)

## Potassium hydrogen disulphate, KHS₂O₇.

Sol. in fuming H₂SO₄ without decomposition.

Potassium octosulphate, K₂S₈O₂₅.

Decomp. by H₂O. (Weber.)

Potassium praseodymium sulphate, 3K₂SO₄.  $Pr_2(SO_4)_8 + H_2O_{...}$ 

Sl. sol. in H₂O.

Sol. in conc. HCl and HNO₃. (Von Scheele Z. anorg. 1898, 18. 358.)

Potassium rhodium sulphate, 3K2SO4,  $Rh_2(SO_4)_3$ .

Does not exist. (Leidić, C. R. 107. 234.)  $K_2SO_4$ ,  $Rh_2(SO_4)_8+24H_2O$ . Very sol. in H₂O. (Piccini, Z. anorg. 1901, 27. 66.)

Potassium samarium sulphate, 9K2SO4,  $2\mathrm{Sm}_2(\mathrm{SO}_4)_3 + 3\mathrm{H}_2\mathrm{O}$ .

Sl. sol. in H₂O.

Sl. sol. in sat. K₂SO₄+Aq.

1 1. sat. K₂SO₄+Aq dissolves 0.5 g. Sm₂O₃. (Cleve, Bull. Soc. (2) 43. 166.)

#### Potassium scandium sulphate, 3K₂SO₄, $Sc_2(SO_4)_8$ .

Very slowly sol. in cold, more easily sol. in warm  $H_2O$ . Insol. in sat.  $K_2SO_4+Aq$ . Sol. in  $H_2O$  and in dil.  $K_2SO_4+Aq$ . (Meyer, Z. anorg. 1914, **86.** 279.)  $2K_2SO_4$ ,  $Sc_2(SO_4)_3$ . Sol. in K2SO4+Aq. (Cleve.)

Does not exist. (Nilson.)

# Potassium sodium sulphate, 3K₂SO₄, Na₂SO₄.

100 pts. H₂O dissolve 40.8 pts. at 103.5°:

(Penny, Phil. Mag. (4) 10. 401.) 5K₂SO₄, Na₂SO₄. 100 pts. H₂O at 100° dissolve 25 pts.; at 12.7°, 10.1 pts.; at 4.4°, 9.2 pts. (Gladstone, Chem. Soc. 6. 111.)

Potassium strontium sulphate, K₂Sr₂(SO₄)₂. Decomp. by  $(NH_4)_2CO_3+Aq$ (Rose. Pogg. 93. 604.)

K2SO4, SrSO4. This is the only louble salt formed from these two components between 0° and 100°.

100 pts of the sat. solution in equilibrium with SrSO₄ and the double salt contain at: 17.5° 50° 75° 100° 17.5° 50° 100° 1.27 1.88 2.71 3.9 pts. K₂SO₄.

(Barre, C. R. 1909, 149, 292.)

Potassium tellurium sulphate, KHSO4, 2TeO2, 80.+2H₂O. (Metzner, A. ch. 1898, (7) 15. 203.)

## Potassium terbium sulphate.

Easily sol. in H₂O. Sl. sol. in K₂SO₄+Aq. (Delafontaine, Zeit. Chem. (2) 2. 230.)

Potassium thallic sulphate, KTl(SO₄)2+ 4H₂O.

Decomp. by H₂O. Gazz. ch. (Fortini,

it. 1905, **35**. (2) 453.)

2K₂O, Tl₂O₃, 4SO₃. Insol. in H₂O. Very difficultly sol. in warm dil. H₂SO₄+Aq. (Strecker, A. 135. 207.)

Potassium thorium sulphate, K₂SO₄, Th(SO₄)₂

+4H₂O. Sol. in hot H2O containing a few drops HCl. (Barre, A ch. 1911, (8) 24. 227.)

 $2K_2\hat{SO}_4$ ,  $Th(SO_4)_2 + 2H_2\hat{O}$ . Slowly sol. in cold, easily and abundantly in hot H2O, and is gradually decomp. by boiling. Easily sol. in acids. Insol. in alcohol. (Berzelius.)  $3.5K_2SO_4$ ,  $Th(SO_4)_2$ . Insol. in  $K_2SO_4+Aq$ of concentrations above 4.5%. (Barre.)

 $4K_2SO_4$ ,  $Th(SO_4)_2 + 2H_2O$ . (Chydenius.) Potassium tin (stannous) sulphate, K2SO4,

SnSO4. (Marignac.)

Potassium tin (stannic) sulphate, K₂Sn(SO₄)₃.

Easily sol. in H2O with decomp. Sol. in HCl. (Weinland, Z. anorg. 1907, **54.** 250.)

Potassium tin (stannous) sulphate chloride, 4K₂SO₄, 4SnSO₄, SnCl₂.

Can be recrystallised from H₂O. (Marignac, Ann. Min. (5) 12. 62.)

Potassium titanium sulphate, K₂SO₄, Ti(SO₄)₂ +3H₂O.

Difficultly sol. in H₂O or HCl+Aq. Decomp. by much H₂O. (Wallace, Pogg. 102. . 453.)

Potassium titanyl sulphate, 2K₂SO₄, 3TiO, SO₄+10H₂O.

Very sol. in H₂O with decomp. Insol. in (Rosenheim, Z. anorg. 1901, conc. H₂SO₄. **26.** 251.

 $K_3SO_4$ ,  $TiO_3SO_4+7H_2O$ . Very hygroscopic and sol. in  $H_2O$ . (Mazsuchelli and Pontanelli, C. C. 1909, II. 420.)  $K_2SO_4$ , (TiO) $SO_4$ . (Spence, C. C. 1901, II.

Potassium uranous sulphate, K2SO4, U(SO4)2 +B.20.

Very sl. sol. in H₂O. (kammelsberg.)

Potessium uranyl selphate, KaSO4, (UO2)SO4

Sol. 11: 9 pts. H2() at 22° and in 0.51 pt. at Insol in alcohol. (Ebelmen, A. ch. (3) **5.** 211.)

100 nts. of aqueous solution sat. at 25° contain 10.5 pts. salt; at 70.5° contain 23.93 pts. salt. (Rimbach, B. 1904, 37. 478.)

+3H₂O. (de Coninck, Chem. Soc. 1905, 88. (2) 39 r.

 $2K_2SO_4$ ,  $(UO_2)SO_4+2H_2O$ . Decomp. by

H₂O. (annot be cryst. from rather conc. H2SO4, as it is completely decomp. by it. (Rimbach,

B. 1905, 38. 1572.) K₂O₂ 2UO₃, 3SO₃. Ppt. Identical with UO₂, OK, SO₃H of Scheller, (A. 1867, **144.** 238.) (Kohlschütter, A., 1900, **311.** 11.) K₂SO₄, 3(UO₂)SO₄+H₂O. Sol. in H₂O.

Insol. in alcohol. (Berzelius.) Does not exist. (Ebelmen.)

Potassium vanadium sulphate, K2O, V2Os,  $2SO_3 + 6H_2O = K(VO_2)SO_4 + 3H_2O$ .

(Friedheim, B. 24. 1183.)

**EVO₃, K₂SO₄, V₂O₅, 2SO₃+9H₂O of Münzing (Berlin, Dissert. **1889**).

**K₂SO₄, VSO₄+6H₂O. Sol. in H₂O. (Pic-

cini, Z. anorg. 1902, 32. 61.)  $K_2V_2(SO_4)_4 + 24H_2O$ . 100 pts.  $H_2O$  dissolve 198.4 pts. salt. at 10°. Sp. gr. of satsolution at  $4^\circ/20^\circ = 1.782$ . (Piccini, Z. anorg.

# Potassium vanadyl sulphate,

1897, 13. 446.)

K₂SO₄, (VO)₂(SO₄)₃.

Very slowly sol. in H₂O, still less sol. in dil. alcohol. (Gerland.)

K₂SO₄, VOSO₄+3H₂O. Easily sol. in H₂O. Sol. in alcohol+conc. H₂SO₄. (Koppel,

Z. anorg. 1903, **35**, 178.) K₂SO₄, 2VOSO₄. Very hygroscopic. Very sol. in H₂O but goes into solution slowly. (Koppel and Behrendt, B. 1901, **34.** 3935.) Easily sol. in H₂O. (Koppel, Z. anorg. 1903. **35.** 174.)

## Potassium yttrium sulphate, 4K,8O4, Y2(SO4)3.

Sol. in 16 pts. cold H2O, and in 10 pts. sat. K₂SO₄+Aq, and more abundantly if the latter solution contains ammonium salts or free acid. (Berlin.) 3K₂SO₄, 2Y₂(SO₄)₃. 100 ccm. cold sat.

K₂SO₄+A₂ dissolve an amount of this salt corresponding to 4.685 g. Y₂O₃. (Cleve.)

#### Potassium zinc sulphate, K₂SO₄, ZnSO₄+ 6H₂O.

Sol. in 5 pts. cold H2O. (Bucholz, N. J. Pharm. 9. 2. 26.)

100 pts. H₂O dissolve at:

10° 15° 25° 36°

12.6 18.7 22.5 28.8 39.9 pts. hydrous salt,

50° 58° .65° 51.2 54.0 67.6 81.3 87.9 pts. hydrous salt. (Tobler, A. 95. 193.)

100 pts. H₂O at 15° dissolve 14.8 pts. K₂SO₄, ZnSO₄+6H₂O; sp. gr. of sat. H₂O solution at  $15^{\circ} = 1.0939$ . (Schiff, A. **109.** 326.)

1 l. H₂O dissolves 131.9 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, **27**. 459.)

## Potassium zirconium sulphate, 2K₂O, 6ZrO₂, $7SO_8 + 9H_2O$ .

Decomp. by H₂O.

 $3K_2O$ ,  $3ZrO_2$ ,  $7SO_3+9H_2O$ . Insol. in  $H_2O$ .  $Zr_2O_3(KSO_4)_2 + 8H_2O$ . Ppt. (Rosenheim, **B**. 1905, **38.** 815.)

#### Potassium sulphate vanadate.

Very difficultly sol. in H₂O. Insol. in alcohol. (Berzelius.)

#### Potassium sulphate antimony trifluoride.

See Antimony trifluoride potassium sulphate.

#### Praseodymium sulphate, basic, (PrO)₂SO₄.

Insol. in H₂O. (Matignon, C. R. 1902, **184.** 660.)

Insol. in H₂O. Nearly insol. in dil. acids. (Wöhler, B. 1913, **46.** 1730:)

#### Praseodymium sulphate, Pr₂(SO₄)₃.

Sol. in H₂O; very hydroscopic. 23.64 pts. are sol. in 100 pts. H₂O at 0° and 17.7 pts. at **2**0°. ̃ (von Scheele, Z. anorg. 1898, 18. 357-358.)

+5H₂O.Sol. in H₂O. (von Scheele, Z. anorg. 1898, 18. 357.)

Difficultly sol. in H₂O. Kryst. 1901, 34, 400.) (Kraus, Zeit.

1.50 pts. Pr₂(SO₄)₃ are sol. in 100 pts. H₂O at 85°; 1.45 pts. at 90°; and 1.02 pts. at 95°. (Muthmann and Rölig, B. 1898, **31.** 1729.) +8H₂O. (Kraus, Zeit. Kryst. 1901, **34.** 406.)

Sol. in H₂O. (von Scheele, Z. anorg. 1898,

**18.** 357.)

Solubility in H ₂ O at t°.					
t°	Pts. Pr ₂ (SO ₄ );				
0	19.79				
18	14.10				
35	10.31				
55	7.09				
75	4.13				

(Muthmann and Rölig, B. 1898, 31. 1727.)

 $+15\frac{1}{2}H_2O$ . Sol. in  $H_2O$ . (von Scheele, Z. anorg. 1898, **18**. 357.)

## Praseodymium hydrogen sulphate, Pr(SO₄H)₂.

(Brauner, Z. anorg. 1904, 38. 330.)

100 g. Solubility in boiling conc. H₂SO₄. of the solution contain 1.02 g. of the acid sulphate. (Matignon, C. R. 1902, 134. 659.)

#### Radium sulphate.

Less sol. in H₂O than corresponding Ba comp. (Curie, Dissert. 1903.)

#### Rhodium sulphate, $Rh_2(SO_4)_8+12H_2O$ .

Easily sol. in H₂O. (Berzelius.)

Sl. sol. in, but not decomp. by H₂O when not more than 16 pts. H₂O are present to 1 pt. salt. Decomp. by hot H₂O to

 $Rh_2(SO_4)_3$ ,  $Rh_2O_3$ . Insol. in  $H_2O$ . (Leidié, C. R. 107. 234.)

#### Rhodium rubidium sulphate, $Rh_2(SO_4)_{a_1}$ Rb₂SO₄+24H₂O.

Sol. in H₂O; m.-pt., 108-109°. Z. anorg. 1901, **37.** 65.) (Piccini,

### Rhodium thallium sulphate, Rh₂(SO₄)₃, Tl₂SO₄ +24H₂O.

Very sol. H₂O. (Piccini, Z. anorg. 1901, **37.** 69.)

#### Rhodium sodium sulphate, Rh₂Na₂(SO₄)₄.

Insol. in H₂SO₄ or aqua regia. (Seubert and Kobbe, B. **23.** 2560.)

#### Rubidium sulphate, Rb₂SO₄.

100 pts. H₂O dissolve 42.4 pts. at 10°. (Bunsen.)

100 cc. H₂O at 17-18° dissolve 44.7 g Rb₂SO₄. (Tutton, Chem. Soc. 1894, 65. 632.) Sat. Rb2SO4+Aq contains at:

3° 20° 27.432.5% Rb₂SO₄,

37° 197° 170° 43.9 49.2% Rb₂SO₄. 37.3 (Étard, A. ch. 1894, (7) 2. 550.)

Solubility	of	Rb ₂ SO	. in	H ₀ O	at to
COLUMNITION	O.	100700	ш	1120	<b>au</b> u .

t°	g. Rb ₂ SO ₄ per 100 g		l to	g. Rb ₂ SO ₄ per 100 g.	
·	H ₂ O	solution		H₂O	-olumon
0 10 20 30 40 50	36.4 42.6 48.2 53.5 58.5 63.1	27.3 29.9 32.5 34.9 36.9 38.7	60 70 80 90 100 102.4*	67.4 71.4 75.0 78.7 81.8 82.6	40.5 41.7 42.9 44.0 45.0 45.2

* B.-pt. at 742.4 mm.

(Berkeley, calc. by Seidell, Solubilities, 2nd | 26, 17%) Ed., p. 587.)

Sp. gr. of Rb₂SO₄+Aq sat. at  $10^{\circ} = 1.2978$ (Erdmann, Arch. Pharm. 1894, 232. 16.) G.-equiv. salt per l. at  $18^{\circ} = 0.501$ 1.01 Sp. gr. 6°/6° " 18°/18° " 30°/30° 1.05587 1 11047 1.05496 1.10896 1.05433 1.10810

G.-equiv. salt per l. at 18° = 2.043 3.168 Sp. gr. 6°/6° 1.21888 1.33276 18°/18° 1.21613 1.32912 30°/30° 1.21443 1.32750 (Clausen, W. Ann. 1914, (4) 44. 1071.)

10 ccm. of sat. Rb₂SO₄+absolute H₂SO₄ contain approx. 5.881 g. Rb₂SO₄. (Bergius, Z. phys. Ch. 1910, **72.** 355.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); acetone (Naumann, B. 1904, **37.** 4329; Eidmann, C. C. **1899**, II. 1014.)

Rubidium pyrosulphate, Rb₂S₂O₇.

Decomp. by H₂O.

Rubidium octosulphate, Rb₂S₈O₂₅.

Decomp. by H₂O. (Weber, B. 17. 2497.)

Rubidium hydrogen sulphate, RbHSO4. Sol. in H₂O.

Rubidium tin (stannic) sulphate, Rb₂Sn(SO₄)₈. Decomp. by H₂O. Sol. in HCl: (Weinland, Z. anorg. 1907, 54. 250.)

Rubidium thallic sulphate, RbTl(SO₄)₂. (Marshall, C. C. 1902, II. 1089.)

-4H₂O. (Fortini, Gazz. ch. it. 1905, 35. **(2)** 455.)

Rubidium thorium sulphate, Rb₂SO₄, Th(S₄O)₂ +2H₂O.

(Manuelli, Gazz. ch. it. Sl. sol. in H₂O. **1903**, **32**. (2) 523.)

Rubidium titanium sulphate, Rb₂SO₄,  $Ti_2(SO_4)_3 + 24H_2O.$ 

Sol. in H₂O acidified with H₂SO₄. Decomp. in neutral aq. solution. (Piccini, Z. anorg. 1898, 17. 359.)

in H₂O. Sol. in HCl. Insol. in Decomp. by boiling with conc. Insol, in H₂O. H₂SO₄. H₂SO₄. (Stähler, P. 1905, 38. 2623.)

Rubidium uranyl sulphate,  $Rb_2(UO_2)(SO_4)_2+$ 2H₂O.

Somewhat less so'. in H₂O than K salt. (Rimbe h, B. 1904, 37. 479.)

Rubidium vanadium sulphate, Rb2V2(SO4)4+ 24H₂O.

0.177 gram me's, of anhydrous salt are sol, in 1 H₂O. (Locke, Am. Ch. J. 1901,

Lisol, in H2O.

Inso! in H2SO4. Decomy, by boiling with conc. H₂SO₄

Sol. in HCl. (Stabler, B. 1905, 38. 3980.) 100 pts. H₂O dissolve 2.56 pts. salt at 10°. Sp. gr. of solution at 4°/20° = 1.915. (Piccini, Z. a.lorg. 1897, 13. 446.)

Rubidium zinc sulphate, Rb₂SO₄, ZnSO₄+ 6H₂O.

Sol. in H₂O. (Bunsen and Kopp, Pogg. **113.** 337.)

1 l.  $H_2O$  dissolves 101 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

Lubidium zirconium sulphate, Zr2O3,  $(RbSO_4)_2+15H_2O.$ 

Ppt. (Rosenheim, B. 1905, 38. 815.)

Ruthenic sulphate, Ru(SO₄)₂.

Deliquescent, and easily sol. in H₂O. (Claus, A. 59. 246.)

Samarium sulphate, basic, (SmO)₂SO₄.

Insol. in H2O and in cold dil. H2SO4. (Matignon, C. R. 1905, 141. 1231.)

Samarium sulphate, Sm₂(SO₄)₈+8H₂O.

Difficultly sol. in H2O.

Much less sol. than Di2(SO4)3+8H2O.

(Cleve.)

2.05 pts. anhydrous salt are sol. in 100 pts. H₂O at 25°. (Keyes and James, J. Am. Chem. Soc. 1914, **36**, 635.) 100 g. Sm₂(SO₄)₃+Aq sat. at 25° contain 3.426 g. anhyd. Sm₂(SO₄)₃. (Wirth, Z. anorg.

1912, 76. 174.)

Solubility in H₂SO₄+Aq at 25°. n = equiv. g. of H₂SO₄ in 1 l. of solvent.  $c = g Sm_2O_3$  in 100 g. of solution.  $c_1 = g$ .  $Sm_2(SO_4)_3$  in 100 g. of solution.

n	c	c ₁	n	c	C1
0.1	2.038	3.426 3.441 3.352 3.075	$\begin{vmatrix} 6.175 \\ 12.6 \end{vmatrix}$	1.43 0.416 0.0656	2.416 0.7025 0.1107

(Wirth, Z. anorg. 1912, 76. 174.)

S	olubility	in $(NH_4)_2SO_4+Aq$ at 25°.	
Pts. Sm ₂ (SO ₄ ); per 100 pts. H ₂ O	Pts. (NH4) \$804 per 100pts. H20	Solid phase	
$2.1 \\ 2.0 \\ 2.8$	$0.3 \\ 0.8 \\ 1.1$	$\operatorname{Sm}_2(\operatorname{SO}_4)_3$	
1.5 1.2 0.8 0.8 0.8 0.8 0.8 0.9 1.0	1.9 2.7 7.4 9.5 8.7 18.8 12.2 12.3 32.5 46.3 40.3	Sm ₂ (SO ₄ ) ₃ , (NH ₄ ) ₂ SO ₄ , 7H ₂ O	
$     \begin{array}{c}       1.3 \\       0.2 \\       0.3 \\       0.6     \end{array} $	77.5 77.2 77.3 76.8	(NH ₄ ) ₂ SO ₄	

(Keyes and James, J. Am. Chem. Soc. 1914, **36.** 637.)

Solubility in Na₂SO₄+Aq at 25°.

Pts. Na ₂ SO ₄ per 100 pts. H ₂ O	Pts. Sm ₂ (SO ₄ ); per 100 pts. H ₂ O	Solid phase
0.1	2.0	$\mathrm{Sm}_2(\mathrm{SO}_4)_3$
0.5	0.11	"
1.9	0.03	$2Sm_2(SO_4)_8$ , $3Na_2SO_4+6H_2O$
6.44	0.016	"
7.00	0.008	"
9.02	0.016	"
10.51	0.012	"
11.48	0.012	l "
13.58	0.010	"
14.71	0.010	· "
14.47	0.009	"
20.02	0.012	"
23.42	0.012	"
23.68	0.018	· ·
<b>25</b> .93	0.015	
27.40	0.011	"
	<b>'</b>	

These results seem to indicate that there is only one double salt formed by the union of Sm₂(SO₄)₃ with Na₂SO₄. Formula of this salt is  $2Sm_2(SO_4)_8$ ,  $3Na_2SO_4$ ,  $6H_2O$ .

(Keves and James, J. Am. Chem. Soc. 1914, **36.** 635.)

Samarium hydrogen sulphate, Sm(HSO₄)₂. Sl. sol. in H₂O. (Matignon, C. R. 1905, **141.** 1230.)

Ppt. (Brauner, Z. anorg. 1904, **88.** 331.)

Samarium sodium sulphate, Sm2(SO4)3,  $Na_2SO_4 + 2H_2O$ .

Sl. sol. in sat. Na₂SO₄+Aq. (Cleve, Bull. Soc. (2) 43. 166.)

 $2Sm_2(SO_4)_{8}$ ,  $3Na_2SO_4+6H_2O$ . Only double salt formed at 25°. (Keyes and James, J. Am. Chem. Soc. 1914, 36. 365.)

Scandium sulphate, basic, Sc₂O(SO₄)₂.

(Crookes, Roy. Soc. Proc. 1908, 80. A, 518.)

Scandium sulphate, Sc₂(SO₄)₃.

Anhydrous. Easily sol. in H₂O.

 $+2H_2O$ 

 $+5\mathrm{H}_2\mathrm{O}$ ; 54.61 g. of pentahydrate are sol. in 100 cc.  $\mathrm{H}_2\mathrm{O}$  at 25°. (Wirth, Z. anorg. 1914,

Solubility in H₂SO₄+Aq at 25°.

H ₂ SO ₄ +Aq.	g. Sc ₂ (SO _{4) s} in 100 g. of the solution
0.00	28.52
0.5-n	29.29
1.0-n	19.87
4.86-n	8.363
9.73-n	1.315

22.35-nH₂SO₄ the solid phase is Sc₂(SO₄)₈, 3H₂SO₄ and 100 g. sat. solution contain 0.484 g. Sc₂(SO₄)₈.

(Wirth, Z. anorg. 1914, 87. 10.)

+6H₂O. Extremely sol. in H₂O, but not deliquescent.

Scandium hydrogen sulphate,  $Sc_2(SO_4)_3$ + 3H₂O. (Wirth.)

Scandium sodium sulphate.  $Sc_2(SO_4)_3$  $3Na_2SO_4 + 12H_2O$ .

Sol. in H₂O. (Cleve.)

+10H₂O. Sol. in H₂O and in excess of Na₂SO₄+Aq. (Meyers, Z. anorg. 1914, 86. 279.)

Silver (argentoargentic) sulphate, Ag₄SO₄,  $Ag_2SO_4+H_2O$ .

Gradually sol. in conc., but not attacked by dil., HNO₃+Aq. Not attacked by hot conc. H₂SO₄. (Lea, Sill. Am. J. **144.** 322.)

Silver sulphate, Ag₂SO₄.

Sol. in 200 pts. cold, and less than 100 pts. boiling

H₂O. (Wittstein.) Sol. in 88 pts. boiling H₂O (Schnaubart); in 87.25 pts. boiling H₂O (Wenzel); in 68.85 pts. H₂O at 100° Kremers).

100 pts. H₂O at 15.5° dissolve 1.15 pts. Ag₂SO₄. (Ure's Di ct.) Sol. in 160 pts. H₂O at 18.75°. (Abl.)

1 l.  $H_2O$  dissolves 2.57 × 10⁻² g.-mol.  $Ag_2SO_4$ 

at 25°. (Drucker, Z. anorg. 1901, 28. 362.) 1 l. H₂O dissolves 7.707 g. Ag₂SO₄ at 17°. (Euler, Z. phys. Ch. 1904, 49. 314.)

1 l. H₂O dissolves 0.0267 mol. Ag₂SO₄ at 25°. (Rothmund, Z. phys. Ch. 1909, 69. 539.)

1 l. H₂O dissolves 8.35 g. Ag₂SO₄ at 25°.

(Hill and Simmons, Z. phys. Ch. 1909, 67-603.)

1 l. H₂O dissolves 8.344 g. Ag₂SO₄ at 25°. Sp. gr. of solution = 1.0052. (Harkins J. Am. Chem. Soc. 1911, **33.** 18!2.)

Solubility in H₂O at c°.

t°	Pts. Ag ₂ SO ₄ in 100 pts. of the solution.
14.5 33 51.5 75 100	0.730 0.909 1.062 1.237 1.393

(Barre, A. ch. 1911, (8) 24. 211.)

More sol. in H₂SO₄+Aq than in pure H₂(). Still more sol. in HNO₅+Aq and still more in conc. H₂SO₄, from which it is pptd. by H₂() (Schnaubart.)

Solubility in H₂SO₄+Aq at 25°.

½H2SO4+Aq. Normality	Solubility of Ag ₂ SO ₄ g -mol. per litre
0.02 0.04 0.10 0.20	$\begin{array}{c} 2.60\times10^{-2} \\ 2.64\times10^{-2} \\ 2.71\times10^{-2} \\ 2.75\times10^{-2} \end{array}$

(Drucker, Z. anorg. 1901, 28. 362.)

Solubility of Ag₂SO₄ in acids+Aq at 25°. C=concentration of acid in acid+Aq in milliequivalents per l.

 $S = \hat{S}olubility$  of  $Ag_2SO_4$  in acid + Aq in milliequivalents per l.

Acid	C	s
HNO ₃	0.0 15.89 31.78 63.57	53.98 59.86 65.32 75.90
H ₂ SO ₄	$\begin{array}{c} 0.0 \\ 29.02 \\ 58.02 \\ 105.26 \end{array}$	53.98 54.88 55.64 56.82
7/7 Y A	Obarra Son 1	011 99 1014

(Swan, J. Am. Chem. Soc. 1911, **33.** 1814.)

0.000         1.0054         8.350           1.0046         1.061         34.086           2.0452         1.1069         49.010           4.017         1.1871         71.166           4.209         1.1956         73.212           5.564         1.2456         84.609	Somonici	/ III III 108   MC	1 40 20 .
$\begin{array}{c ccccc} 1.0046 & 1.061 & 34.086 \\ 2.0452 & 1.1069 & 49.010 \\ 4.017 & 1.1871 & 71.166 \\ 4.209 & 1.1956 & 73.212 \\ 5.564 & 1.2456 & 84.609 \end{array}$	Normality HNOs	Sp. gr. of the solution	g. Ag ₂ SO ₄ dissolved per l.
8.487   1.3326   94.671 10.034   1.3676   90.806	1.0046 2.0452 4.017 4.209 5.564 8.487	1.061 1.1069 1.1871 1.1956 1.2456 1.3326	34.086 49.010 71.166 73.212 84.609 94.671

(Hill and Simmons, Z. phys. Ch. 1909, 67.

Sol. in NH₄OH, and (NH₄)₂CO₃+Aq.

100 pts.  $H_2O$  dissolve 0.58 pt. at 18°. 100 pts.  $(NH_4)_2SO_4+Aq$  (15%) dissolve 0.85 pt.  $Ag_2SO_4$  at 18°. Other sulphates have little effect. (Eder 1 pr. (2) 17 44)

effect. (Eder, J. pr. (2) 17. 44.)
Determinations of the solubility of Ag₂SO₄
i. (NH₄)₂SO₄ at temp between 16.5° and 100°
show that no double salt is formed by these
two su'phates. (Etard, A. ch. 1911, (8) 24.

Solubility of A_{c.}SO₄ in (Nh₄)₂SO₄+Aq. G. per 100 g. H₂O.

(V114)2SO1	/1 <b>g</b> 2SO4	(NH 4) 2SO4	Ag SO4
Temp	. = 33°	Temp	. =51°
8.85 15.90 22.22 27.25 30.80 35.88 39.46 43.22	1.101 1.331 1.500 1.585 1.619 1.627 1.600 1.557	8.90 16.27 22.43 32.10 35.38 39.03 42.37 15.05	1.362 1.680 1.887 2.061 2.095 2.082 2.055 2.026
Temp	. =75°	Temp.	=100°
8.80 15.23 22.30 28.25 32.00 35.82 41.16 46.46	1.758 2.155 2.490 .2.734 2.823 2.889 2.929 2.902	9.23 15.00 22.01 27.00 34.90 38.70 44.15 47.63	2.221 2.626 3.075 3.325 3.663 3.772 3.854 3.867

(Barre, A. ch. 1911, (8) 24. 149, 202, 210.)

Solubility of  $Ag_2SO_4$  in  $K_2SO_4+Aq$ . G. per 100 g.  $H_2O_4$ .

K ₂ SO ₄	Ag ₂ SO ₄ .	K2SO4	Ag ₂ SO ₄
Temp	Temp. =33°		. =51°
3.22 5.62 8.37 10.41 11.80	0.863 0.940 1.046 1.117 1.177	3.20 5.61 8.40 10.55 13.16 14.37	1.023 1.127 1.247 1.340 1.450 1.524
Temp. =75°		Temp	. = 100°
3.12 5.73 8.43 10.55 13.17 17.06	1.273 1.406 1.554 1.665 1.806 2.021	3.23 5.60 8.45 11.30 15.07 18.58	1.488 1.675 1.890 2.115 2.410 2.677

(Barre, A. ch. 1911, (8) 24. 149, 202, 210.)

Solubility in K, SO, +Aq at 25°.		
½K₂SO₄+Aq Normality	Solubility of AgaSO4 gmol. per litre .	
0.02	2.46×10-2	
$0.04 \\ 0.10$	$2.36\times10^{-2} \ 2.31\times10^{-2}$	
0.20	2.32×10-2	

(Drucker, Z. anorg. 1901, 28, 362.)

Solubility in Na₂SO₄+Aq at t°.

Ag₂SO₄ in 100 pts. H₂O Na₂SO₄ in 100 pts. H₂O t٥ 0.7415.27814.5 0.90410.103 1.003 13.0455.34533 0.9721.150 10.056 1.32015.185 1.448 20.093 1.548 25.412 29.5561.570 1.549 34.7321.46239.4471.199 44.6930.93246.97651 1.1735.407 1.377 10.116 1.57215.1461.70520.2471.787 25.1961.80229.230 1.72734.6251.540 39.3021.188 42.914 0.88244.464 75 5.368 1.4581.6979.8131.934 15.2602.07519.978 2.16125.5562.13829.6621.910 35.2781.603 38.9441.156 41.365 100 1.651 5.3362.01210.1532.312 15.5322.35125.451 2.26029.714 2.01234.718 1.687 38.6351.158 40.160

Up to 33°, the solubility of Ag₂SO₄ in Na₂SO₄+Aq increases with the concentration of Na₂SO₄; above 33° the solubility of Ag₂SO₄ rises to a maximum at a certain concentration of NaSO₄ dependent on the temp. The

solubility curves for various temp. all end at a concentration of 40% Na₂SO₄, that is, the mixed crystals formed at this concentration are equally sol. at all temp.

(Barre, C. R. 1910, 150, 1323.)

Solubility in Na₂SO₄+Aq at t°.

· t°	100 pts. H	2O dissolve	
· ·	Na ₂ SO ₄	Ag ₂ SO ₄	
18	0.0 0.25	0.766	
	$0.51 \\ 0.74$	$0.682 \\ 0.675$	
	1.00 1.48	0.665 0.670	
	$\begin{array}{c} 2.01 \\ 2.50 \end{array}$	$0.673 \\ 0.689$	
•	3.04 4.00	$0.703 \\ 0.736$	
	4.99 10.10	$0.768 \\ 0.932$	
	13.04	1.028	
33	$\begin{array}{c} 0.0 \\ 0.25 \end{array}$	0.917 0.861	
	$0.51 \\ 0.75$	0.835	
	0.98	0.825 0.816	
	$1.50 \\ 2.01$	$0.820 \\ 0.832$	
	$\frac{2.48}{3.00}$	0.849 0.867	
51	0.00 0.25	1.081 1.032	
	0.49 0.68	1.010	
	1.02	0.000 0.995	
	$1.51 \\ 1.90$	1.002 1.017	
	$\begin{array}{c} 2.46 \\ 2.92 \end{array}$	1.034 1.053	
	3.95	1.103	
75	$0.00 \\ 0.20$	1.267 1.215	
	0.47 0.80	1.208	
	0.98	1,206 1,210	
	$\begin{array}{c} 1.52 \\ 1.96 \end{array}$	1.222 1.238	
	$\frac{2.50}{2.98}$	1.269 1.296	
	4.08	1.366	
100	0.00 0.50	1.404 1.341	
	1.01	1.363	
	1.44 1.94	1.382 1.418	
		4.740	

(Barre, A. ch. 1911, (8) 24, 215.)

## Solubility in salts+Aq at 25°.

C=concentration of salt in salt+Aq in

or salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in salt in sal

Salt	С	dı	s	cl2
none			53.52	
KNO ₃	24.914 49.774 99.870	$\begin{array}{c} 0.9986 \\ 1.0002 \\ 1.0034 \end{array}$	57.70 61.13 67.93	1.0072 1.0092 1.0034
$Mg(NO_3)_2$	24.764 $49.595$ $99.460$	$0.9985 \\ 0.9999 \\ 1.0026$	$59.44 \\ 64.32 \\ 72.70$	1.0073 $1.0094$ $1.0133$
AgNO ₈	24.961 49.86 99.61	1.0007 1.0044 1.0112	39.09 28.45 16.96	1.0065 1.0084 1.0137
K ₂ SO ₄	25.024 50.044 100.0 200.03	0.9989 1.0006 1.0041 1.0110	50.66 49.35 48.04 48.30	1.0064 1.0079 1 0112 1.0180
MgSO ₄	20.22 50.069 100.04 200.05	0.9984 1.0002 1.0032 1.0092	52.21 50.93 49.95 49.60	1.0061 1.0079 1.0105 1.0164

(Harkins, J. Am. Chem. Soc. 1911, 33. 1813.)

Solubility of Ag₂SO₄ in salts+Aq at 25°.

C = concentration of salt in salt+Aq in milliequivalents per l. S = solubility of Ag₂SO₄ in salt+Aq in milliequivalents per l.

Salt	C	8
KHSO ₄	0.0 52.64 105.26	53.98 52.18 51.76
K ₂ SO ₄	0.0 27.18 54.34	53.98 50.90 49.30

(Swan, J. Am. Chem. Soc. 1911, 33. 1814.)

by alkali thiosulphates + Aq. Decomp. (Herschell.) 100 ccm. Ag₃SO₄+AgC₂H₃O₂+Aq sat. at 17° contain 3.95 g. Ag₂SO₄ and 8.30 g. AgC₂H₃O₂ and solution has sp. gr. =1.0094. (Euler, C. C. 1904, I. 1316.) Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898 **20.** 829.)

Solubility in organic compds. +Aq at 25°.

~~~	cordonity in organic compus.   124 20 20 ;						
	Solvent	Mol. Ag ₂ SO ₄ sol. in 1 litre					
"	Water Methyl alcohol Ethyl alcohol Propyl alcohol	0.0267 0.0249 0.0228 0.0218					
"" "" "" "" "" "" "" "" "" "" "" "" ""	Tert anyl Icohol Acetone Ether Formaldchyde Glycol Glycerine Mannitol Glucose Sucrose Urea Dimethylpyrone	0.0204 0.0220 0.0206 0.0227 0.0259 0.0263 0.0297 0.0283 0.0270 0.0303 0.0216					
" " " " " " " " " " " " " " " " " " "	Ure hane r'ormamide Acetamide Acetonitrile Glycocoll Acetic acid Phenol Chloral Methylal Methyl acetate	0.0227 0.0270 0.0253 0.0525 0.0433 0.0252 0.0379 0.0233 0.0205 0.0212					

(Rothmund, Z. phys. Ch. 1909, **69**, 539.)

Insol. in methyl acetate (Bezold, Dissert. 1906; Naumann, B. 1909, 42. 3790); ethyl acetate. (Naumann, B. 1904, 37. 3601); liquid methylamine. (Franklin, J. Am. Chem. Soc. 1906, **28.** 1420); acetone. (Naumann, B. 1904, **37.** 4329; Eidmann, C. C. **1899**, II.

Very sol. in a hot mixture of H₂SO₄ and monobrombenzene, less sol. in cold. (Couper, A. ch. (3) **52.** 311.)

#### Silver hydrogen sulphate, AgHSO₄.

Decomp. by  $H_2O$ ; sol. in  $H_2SO_4$ . (Stas.)  $Ag_2O$ ,  $3H_2O$ ,  $4SO_3+2H_2O=AgH_3(SO_4)_2+$  $H_2O$ . As above. (Schultz, Pogg. 133. 137.)  $2Ag_2O$ ,  $3H_2O$ ,  $5SO_3+2H_2O=Ag_4H_6(SO_4)_5$   $+2H_2O$ . As above. (Schultz.)

#### Silver purosulphate, Ag₂S₂O₇.

Decomp. by H₂O. (Weber, B. 17. 2497.)

Silver thallic sulphate, AgTl(SO₄)₂. (Lepsius, Chem. Ztg. 1890, 1327.)

Silver tin (stannic) sulphate, Ag₂Sn(SO₄)₈+ 3H₂O.

Ppt. Decomp. by H₂O. Sol. in HCl. (Weinland, Z. anorg. 1907, 54. 250.)

Silver sulphate acetylide, Ag₂SO₄, 2Ag₂C₂. (Plimpton, Proc. Chem. Soc. 1892, 8. 109.)

#### Silver sulphate ammonia, Ag. SO4, 2NH2.

Completely sol. in H₂O. (Rose, Pogg. 20.

Ag₂SO₄, 4NH₃. Easily sol. in H₂O or NH₄OH+Aq without decomp. (Mitscherlich.)

# Silver sulphate mercuric oxide, Ag. SO₄, HgO.

Insol. in H₂O, but decomp. even in the cold. Sol. in HNO₃ and H₂SO₄. (Finci, Gazz. ch. it. 1911, **41**. (2) 548.)

## Silver sulphate sulphide, Ag₂SO₄, Ag₂S.

Decomp, by hot H₂O or cold HCl+Aq. Sol. in boiling HNO₃+Aq. (Poleck and Thümmel, B. 16. 2435.)

#### Sodium sulphate, Na₂SO₄. Anhudrous.

1 pt. Na₂SO₄ is sol. in 7.367 pts. H₂O at 15° (Gerlach); in 8.52 pts. H₂O at 13.3° (Poggendorf); in 10 pts. H₂O at 13°, and in 3.3 pts. H₂O at 62.2° (Wenzel).
100 pts. H₂O at 0° dissolve 5.155 pts. Na₂SO₄(Pfaff, A. 99. 226); at 100.6° dissolve 45.985 pts. Na₂SO₄

(Griffiths).

See below for further data.

+7H₂O. Efflorescent. Insol. in alcohol. See below for further data. +10H₂O.

Na₂SO₄+10H₂O is sol. in H₂O with absorption of heat; 20 pts. Na₂SO₄+10H₂O mixed with 100 pts. H₂O at 12.5° lower the temperature 6.8°. (Rüdorff, B. 2. 68.)

Sol. in 2.33 pts. H₂O at 19°, or 100 pts. H₂O at 19° dissolve 42.8 pts. Na₂SO₄+10H₂O. (Schiff, A. 109. 326.)

100 pts. H₂O dissolve a pts. Na₂SO₄ and b pts. Na₂SO₄ +10H₂O at t°.

t°	8.	b	t°	a	b
0 11.67 13.30 17.91 25.05 28.76 30.75 31.84 32.73	5.02 10.12 11.74 16.73 28.11 37.35 43.05 47.37 50.65	12.17 26.38 31.33 48.28 99.48 161.53 215.77 270.22 322.12	33.88 40.15 45.04 50.40 59.79 70.61 84.42 103.17	50.04 48.78 47.81 46.82 45.42 44.35 42.96 42.65	312.11 291.44 276.91 262.35

(Gay-Lussac, A. ch. (2) 11. 312.)

Maximum solubility is at 33° from experiment and theoretical considerations. At this temp. Na₂SO₄+ 10H₂O is converted into Na₂SO₄. (Kopp, A. **34**. 271.)

100 pts. H₂O at to dissolve pts. Na₂SO₄+10H₂O.

t°	Pts. Na ₂ SO ₄ +10H ₂ O	t°	Pts. Na ₂ SO ₄ +10H ₂ O	t°	Pts. Na ₂ SO ₄ +10H ₂ O
2.5 7.5 12.5 18.75 25 31.25	11.39 16.38 29.03 70.78 143.38 479.97	37.50 43.75 50 56.25 62.5 68.75	294.04 261.04 285.06 248.11 222.22 242.88	75 81.25 87.50 93.75 100	241.68 217.20 220.65 225.46 241.69

(Brandes and Firnhaber, 1824.)

1 pt. N₂SO₄+10H₂O is sol. in 6.1 pts. H₂O at 7.5°; 3.44 pts. at 12.5°; 2.41 pts. at 18.75°; and 1.724 pts. at 20°. (Karsten.)

1 pt. N₂SO₄+10H₂O is sol. in 2.86 pts. cold, and 0.8 pt. boiling H₂O (Bergmann); in 3 pts. cold, and 0.5 pt. boiling H₂O (Wittstein); in 4 pts. cold, and 1 pt. boiling H₂O (Fourcroy); in 3 pts. H₂O at 18.75° (Abl). 100 pts. H₂O dissolve 12.494 pts. Na₂SO₄ or 35.492 pts. Na₂SO₄+10H₂O at 15°, and sp. gr. of solution = 1.10847 (Miohel and Krafft A. cb. (3) 41.478.) 100 pts. H₂O dissolve 39.4 pts. cryst. salt at 15.5°; 80 pts. cryst salt at 100°. (Ure's Dict.)

100 pts. H₂O dissolve pts. Na₂SO₄ at t°.

t°	t° Pts. Na ₂ SO ₄		Pts. Na ₂ SO ₄	
0	4.53	24.1	$25.92 \\ 50.81$	
17.9	16.28	33		

(Diacon, J. B. 1866, 61.)

Solubility of Na₂SO₄ in H₂O at various pressures and temp. Pts. Na₂SO₄ contained in 100 pts. sat. Na₂SO₄+Aq at A pressure in atmos. and to are given.

A	. 0°	15°	15.4°	A	15°
1		11.32	11.4	30	10.05
20		10.78	10.74	40	10.33

(Möller, Pogg. 117. 386.)

The solubility of Na₂SO₄+10H₂O increases with the temperature from 0 to 34°. At 34° and above, it is converted into the anhydrous salt, the solubility of which is least at 103.17 which is the boiling point of the saturated solution, and increases by cooling from that temp. down to 18-17°. Below the latter temperature the anhydrous salt cannot exist in the presence of H₂O, but is converted into  $Na_2SO_4+7H_2O$ , or  $Na_2SO_4+10H_2O$ . solubility of Na₂SO₄+7H₂O increases with the temperature from 0-26°, and at 27° it is converted into the anhydrous salt.

Thus there are two different rates of solubility for Na₂SO₄ for temperatures from 0–18°, three different rates from 18–26°, two from 26–34°, and only one above 34°.

1. By heating Na₂SO₄+10H₂O to fusion and raising the heat until the liquid boils, placing in a closed vessel and cooling, the greater part of the anhydrous salt, which separates out on heating, redissolves on cooling, and the amount increases as the temp. falls until 18° is reached. Below 18° Na₂SO₄+7H₂O is formed. Saturated Na₂SO₄+Aq thus obtained contains for 100 pts. HO at:

18° 20° 25° 53.25 52.7651.53 51.31 pts. Na₂SO₄, 30° 33° 34° 50.37 49.71 49.53 49.27 pts. Na₂SO₄.

2. By allowing the boiling saturated solution free from undissolved salt to cool to 0

with exclusion of air until crystals of Na₂SO₄ +7H₂O are formed, then removing the obtained, but one with 49.53 pts. is formed. greater part of the mother liquor with a warm (Löwel, A. ch. (3) 49.32.) pipette, and warming the rest of the mother liquor with the excess of crystals, the crystals dissolve in increasing quantity between 0° and 26-27°, so that at 27° the solution contains 56 pts. Na₂SO₄ to 100 pts. H₂O. The remaining undissolved crystals of Na₂SO₄-7H₂O begin to melt very slowly at 27°, more quickly at higher temperatures, and cause the separation of anhydrous crusts, and thus the strength of the solution is gradually lowered to the normal. Saturated solutions prepared in this way contain for 100 pts. H2() at:

		-	i
19.62 3		pts. Na ₂ SO ₄ , pts. Na ₂ SO ₄ +7H ₂ O.	-
37.43 3	16° 17° 8.73 39.99 17.4 111.0	o pts. Na ₂ SO ₄ , o pts. Na ₂ SO ₄ +7H ₂ O,	
41.63 4	19° 20° 3.35 44.73 33.0 140.0	3 pts. Na ₂ SO ₄ , ) pts. Na ₂ SO ₄ +7H ₂ O,	
52.94 5	26° 4.97 pts. Na 02.6 pts. Na	1 ₂ SO ₄ . 1 ₂ SO ₄ +7H ₂ O.	
3. Solutio Na ₂ SO ₄ +10	ns obtained H ₂ O contain	by shaking H ₂ O with for 100 pts. H ₂ O at:	
5.02 9	10° 15° .00 13.20 p 3.04 35.96 p	pts. Na ₂ SO ₄ , pts. Na ₂ SO ₄ +10H ₂ O,	
16.80 19	20° 25° 9.40 28.00 p 3.85 98.48 p	pts. Na $_2\mathrm{SO}_4$ , pts. Na $_2\mathrm{SO}_4+10\mathrm{H}_2\mathrm{O}$ ,	
30.00	80° 40.00 pts. Na 184.1 pts. Na	B ₂ SO ₄ , B ₂ SO ₄ +10H ₂ O,	
50.76	34° 55.0 pts. Na ₂ 412.2 pts. Na	SO ₄ . B ₂ SO ₄ +10H ₂ O.	
its crystal l	H ₂ O. As lor quantity of	20 begins to melt in ng as there is a con- unchanged crystals ntains 55 pts. Na-SO	3

present, the solution contains 55 pts. Na₂SO₄ for 100 pts. H₂O, but as the hydrous salt decreases in amount and becomes converted into the anhydrous salt, the solution becomes weaker and contains only 49.53 pts. Na₂SO₄ for 100 pts. H₂O after warming for 6 or 8 hours at 34°. In the same way temporary solutions can be obtained at 36-40° with 55-56 pts. Na₂SO₄ to 100 pts. H₂O, but this amount sinks to the normal even more quickly than at 34°

Na₂SO₄ dehydrated at 100-150°, after the addition of 12/s-1½ pts. H₂O, gives a solution between 0° and 32° of the same strength as Na₂SO₄+10H₂O, but at 34° a solution with

55 pts. Na₂SO₄ to 100 pts. H₂O cannot be

4. Solubility of anhydrous salt. Above 34°.

100 pts. II O dissolve at:

35°	40°	45°	500	55°	
50.2	<b>4</b> 8.8	47.7	<b>46.</b> 7	45.9 pts.	$Na_2SO_4$
60° 45.3	6 <b>5°</b> 44.8	70° 44.4	75° 44.0	80° 43.7 pts.	Na ₂ SO ₄ ,
8 <b>5°</b> <b>43</b> .3	90° 43.1	95° <b>42.</b> 8	100° 42.5	103.5° 42.2 pts.	Na ₂ SO ₄ .
		(1	Mulder	.)	

Solubility in 100 pts. H.O at to

Somethity in 100 pts. 1120 at t.						
t°	Pts. Na ₂ SO ₄	t°	Pts. Na ₂ 80 ₄	t°	Pts. Na ₂ SO ₄	
0	4.8	35	50.2	70	44.4	
ĭ	5.1	36	49.9	71	44.3	
	5.4	37	49.6	$7\overline{2}$	44.2	
$\begin{bmatrix} 2\\3 \end{bmatrix}$	5.7	38	49.3	73	44.2	
4	6.0	39	49.1	74	44.1	
5	6.4	40	48.8	75	44.0	
6	6.8	41	48 5	76	44.0	
7	7.3	42	48.3	77	43.9	
8	7.8	43	48.1	78	43.8	
9	8.4	44	47.9	79	43.7	
10	9.0	45	47.7	80	43.7	
11	9.7	46	47.5	81	43.6	
12	10.5	47	47.3	82	43.5	
13	11.4	48	47.1	83	43.5	
14	12.4	49	46.9	84	43.4	
15	13.4	50	46.7	85	43.3	
16	14.5	51	46.6	86	43.3	
17	15.7	52	46.4	87	43.2	
18	16.9	53	46.2	88	43.2	
19	18.2	54	46.1	89	43.1	
20	19.5	55	45.9	90	43.1	
21	20.9	56	45.8	91	43.0	
22	22.5	57	45.7	92	43.0	
23	24.1	58	45.6	93	42.9	
24	25.9	59	45.4	94	42.9	
25	27.9	60	45.3	95	42.8	
26	30.1	61	45.2	96	42.7	
27	32.4	62	45.1	97	42.6	
28	35.0	63 64	45.0	98	42.6	
29	37.8	65	44.9	99 100	42.5	
$\frac{30}{31}$	40.9	66	44.8	101	42.5	
31 32	$  \begin{array}{c} 44.2 \\ 47.8 \end{array}  $	67	44.7 44.6	101	42.4 42.3	
32.75	50.65	68	44.5	102	42.3	
33	50.6	69	44.5	103.5		
3 <b>4</b>	50.4	09	44.0	103.5	42.2	
9.4	30.4				١	

(Mulder, Scheik. Verhandel. 1864. 123.)

100 pts. dissolve at:

120° 00 34° 100° 78.8(?) 42.7 41.95 pts. Na₂SO₄,

180° 140° 160° 42.042.9 44.2546.4 pts. Na₂SO₄. (Tilden and Shenstone, Lond. R. Soc. Proc. **35.** 345.

Solubility decreases above 230°. (Étard, C. R. 113. 854.)

Sat. Na₂SO₄+Aq contains at: 13° 30° 24° O٥ 28° 25.2 29.5% Na₂SO₄, 4.1 6.2 9.9 19.3  $88_{\rm o}$ 49° 62° 83° 134° 150°

32.8 31.3 30.0 29.7 29.4 29.8% Na₂SO₄,
190° 240° 279° 320°

29.9 30.0 24.5 17.8% Na₂SO₄. (Étard, A. ch. 1894, (7) **2.** 548.)

> Solubility of Na₂SO₄ in H₂O at t°. G. per 100 g. H₂O.

t°	Na ₂ 80 ₄	Sp. gr.	t°	Na ₂ SO ₄	Sp. gr.
24.90 27.65 30.20	9.21 14.07 27.67 34.05 41.78	1.2067 1.2459 1.2894	38.15 44.85 60.10 75.05 89.85	48.47 47.49 45.22 43.59	1.3229 1,3136 1.2918 1.2728 1.2571
		·			

* B.-pt. (Berkeley, Phil. Trans. Roy. Soc. 1904, **203**. A, 189.)

Transition point from  $Na_2SO_4+10H_2O$  to  $Na_2SO_4=32.5^\circ$  (Berkeley); 32.383°. (Richards and Churchill, Z. phys. Ch. 1899, 28. 314.)

100 g. Na₂SO₄+Aq sat. at 15° contain 11.5 g. anhydrous Na₂SO₄; 21.9 g. at 25°. (Schreinemakers, Arch. Néer. Sc. 1910, (2) 15.81)

1 l. Na₂SO₄+Aq sat. at 25° contains 1.881 mols. Na₂SO₄. (Herz, Z. anorg. 1911, **70.** 127.)

Solubility in H₂O at t°.

t°	Mol. % Na ₂ SO ₄
62	5.39
70	5.27
72	5.25
80	5.18
120	5.04
190	5.25
192	5.27
208	5.39
241	5.39
250	5.04
279	4.12
319	2.56
252	4.9
310	3.2
340	1.8
365	0.0

(Wuite, Z. phys. Ch. 1913, 86. 364.)

Supersaturated solutions of NaSO₄ are easily formed; when Na₂SO₄+Aq sat. at its b.-pt. is hermetically sealed, no crystals are deposited on cooling (Löwel). Supersat. Na₂SO₄+Aq may also be obtained by cooling hot sat. Na₂SO₄+Aq in flasks loosely stoppered with cotton wool (Schroeder, A. 109. 45), or by covering the containing vessel with a glass plate, watch-glass, card, etc., or by covering the liquid itself with a layer of oil, and then allowing to cool.

Hot Na₂SO₄+Aq containing 1 pt. H₂O to 1 pt. Na₂SO₄+10H₂O does not crystallise on slowly cooling or on being quickly cooled by immersion in cold water, if it is contained in a barometer tube freed from air by boiling, or in an exhausted well-closed vessel, or in an open vessel with a layer of oil of turpentine on it (Gay-Lussac); or in a vessel containing air, either well stoppered or furnished with a loose cover (Schweigger); or in an open vessel under a bell jar full of air and closed at the bottom with a water joint; or in open bottles placed in a quiet situation; or in an open glass enclosed in a stoppered vessel, containing air and some KOH for drying; in this case Na₂SO₄+10H₂O effloresces from the solution. and when washed down again does not cause instant crystallisation, but redissolves.

The crystallisation of a solution cooled in this way may often be brought about instantaneously, or often again after a short time; (1) by agitation, when the solution has been cooled in an open vessel; (2) by access of air caused by opening the vessel, the crystallisation taking place the more rapidly the larger the opening. In this case the crystallisation begins at the top, where the solution, the vessel, and the air come in contact; when a particle of dust falls in the liquid the crystallisation begins a little under the surface. When the solution has been cooled in vacuo, a bubble of air, hydrogen, carbonic acid, or nitrous oxide is sufficient to set up the crystallisation; (3) by contact with a solid body. The latter do not cause crystallisation when cooled in contact with the liquid, nor (excepting a crystal of Na₂SO₄+10H₂O) when they are moistened or warmed before contact with the solution.

Supersat. Na₂SO₄+Aq is brought to crystallisation by addition of a crystal of Na₂SO₄+10H₂O, or an isomorphous substance as Na₂SeO₄+10H₂O, or Na₂CrO₄+10H₂O. Other crystals, as MgSO₄+7H₂O, etc., have no action. (Thomson, Chem. Soc. **35.** 199.)

See also Hartley, Jones and Hutchinson, Chem. Soc. 1908, 93. 825, on "Spontaneous crystallisation of sodium sulphate solutions," and de Coppet (A. ch. 1907, (8) 10. 457) on same subject.

A more extended discussion of the phenomena and causes of supersaturation is not considered to the within the scope of this work.

Na₃SO₄+Aq sat. at 15° has sp. gr. 1.10847 (Michel and Krafft); at 15° has sp. gr. 1.119 (Stolba); at 16°

has sp. gr. 1.1162 (Stolba); at  $10^{\circ}$  contains 29 pts. Na₂SO₄ to 100 pts. H₂O (supersaturated?), and has sp. gr. 1.1259 (Karsten).

Sp. gr. of Na₂SO₄+Aq at 19.5°.

% Na ₂ SO ₄	Sp. gr.	% Na ₂ SO ₄	Sp. gr
2.894 5.589 7.995	1.0262 1.0509 1.0733	10 538 12.473	1.0977 1.1162

(Kremers, Pogg. 95, 120.)

Sp. gr. of Na₂SO₄+A₀.

% Na ₂ SO ₄ +10H ₂ O	Sp. gr.	% Na ₂ SO ₄ +10H ₂ O	Sp. gr.
1.262	1 005	13.744	1 055
2.522	1.010	14.975	1 060
3.780	1 015	16.203	1 005
5.035	1 020	17.426	1 075
6.258	1 025	18.645	1 075
7.538	1 030	19.860	1 080
8.786	1 035	21.071	1 085
10.030	1.040	22.277	1 090
11.272	1.045	23.478	1 095
12.510	1 050	24.674	1 100

(Schmidt, Pogg. 132. 132.)

Sp. gr. of Na₂SO₄+Aq at 19°.

% Na ₂ SO ₄ +10H ₂ O	Sp. gr.	% Na ₂ S() ₄ +10H ₂ O	Sp. gr.
1	1.0040	16	1.0642
2	1.0079	17	1.0683
3	1.0118	18	1.0725
4	1.0158	19	1.0766
5	1.0198	20	1.0807
6	1.0232	21	1.0849
7	1.0278	22	1.0890
8	1.0318	23	1.0931
9	1.0358	24	1.0973
10	1.0398	25	1.1015
11	1.0439	26	1.1057
12	1.0479	27	1.1100
13	1.0520	28	1.1142
14	1.0560	29	1.1184
15	1.0601	30	1.1226

(Schiff, A. 110. 70.)

Sp. gr. of Na₂SO₄+Aq at 15°.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
2     1.0182     1.008     12     1.047     22     1.090       3     1.0274     1.013     13     1.052     23     1.094       4     1.0365     1.016     14     1.056     24     1.098       5     1.0457     1.020     15     1.060     25     1.103       6     1.0550     1.024     16     1.064     26     1.107       7     1.0644     1.028     17     1.069     27     1.111       8     1.0737     1.032     18     1.073     28     1.116       9     1.0832     1.036     19     1.077     29     1.120	%	if	if Na ₂ SO ₄	%	if Na ₂ SO ₄	%	if Na ₂ SO ₄
	2 3 4 5 6 7 8 9	1.0182 1.0274 1.0365 1.0457 1.0550 1.0644 1.0737 1.0832	1.008 1.013 1.016 1.020 1.024 1.028 1.032 1.036	12 13 14 15 16 17 18 19	1.047 1.052 1.056 1.060 1.064 1.069 1.073 1.077	22 23 24 25 26 27 28 29	1.090 1.094 1.098 1.103 1.107 1.111 1.116 1.120

(Gerlach, Z. anal. 8. 287.)

Sp. gr. of Na₂SO+Aq at 24.8°. a=no. of g., equivalent to ½ mol. wt., dissolved in 1000 g. H₂O; b=sp. gr. if a is Na₂SO₄+ 10H₂O, ½ mol. wt. =161; c=sp. gr. if a is Na₂SO₄, ½ mol. wt. =71.

8.	b	c	8.	b	c
1 2 3	1.098	1.059 1.111 1.165	5 .	1.163 1.188 1.209	1.213

(Favre and Valson, C. P 49. 968.)

Do. gr. of Na SO4+A2 at 18°.

	p. gr. or 110/00/2   11/4 00 10 1				
% N 125Ot	Sp. gr.	% Na ₂ SO ₄	Sp. gr.		
5	1.0450	15	1.1426		
10	1.0915		• • • •		

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $Na_2SO_4 + Aq$  at 20° containing 0.5 mol  $Na_2SO_4$  to 100 mols.  $H_2O = 1.03466$ ; 1.0 mol.  $Na_2SO_4$  to 100 mols.  $H_2O = 1.06744$ . (Nicol, Phil. Mag. (5) **16**. 122.)

Sp. gr. of Na₂SO₄, Ag at 25°.

Concentration of Na ₂ SO ₄ +Aq	Sp. gr.
1-normal  1/2- "  1/4- "  1/8 "	1.0606 1.0309 1.0156 1.0079

(Wagner, Z. phys. Ch. 1890, 5. 39.)

Sp. gr. at 16°/4° of Na₂SO₄+Aq containing 9.4043% Na₂SO₄=1.08655. (Schönrock, Z. phys. Ch. 1893, **11**. 781.)

Na₂SO₄+Aq containing 25.51% Na₂SO₄ has sp. gr.  $20^{\circ}/20^{\circ}=1.2527$ . Na₂SO₄+Aq containing 10.14% Na₂SO₄ has sp. gr.  $20^{\circ}/20^{\circ}=1.0938$ . (Le Blane and Rohland, Z. phys. Ch. 1896, **19.** 278.)

Sp. gr. of Na₂SO₄+Aq at 17.5°, when p = per cent strength of solution; d=observed density; and w=volume conc. in

grs. per cc.  $\left(\frac{\text{pd}}{100} = \mathbf{w}\right)$ 

d.	. w.
1.1226	0.14662
	0.13043
	$0.11737 \\ 0.09214$
1.0615	0.07178
1.0358	0.04159
	0.02658
	0.02423 0.01846
1.0109	0.01364
1.0037	0.00522
1.0014	0.00293
	1.1226 1.1094 1.0990 1.0784 1.0615 1.0358 1.0225 1.0204 1.0154 1.0109

(Barnes, J. phys. Chem. 1898, 2. 543.)

Sp. gr. of Na₂SO₄+Aq at 20°.

Normality of Na ₂ SO ₄ +Aq	% Na ₂ SO ₄	Sp. gr
0.97	12.36	1.1138
0.48	6.41	1.0570

(Forchheimer, Z. phys. Ch. 1900, 34. 23.)

Sp. gr. of sat. Na₂SO₄, 10H₂O+Aq at t°.

t°	wt. of 1 ccm. of the solution	100 g. H ₂ O dissolve g. Na ₂ SO ₄ +10H ₂ O
0 5 10 15 18 20 25 26 30 33	1.040 1.058 1.078 1.109 1.137 1.156 1.209 1.222 1.287	12.16  21.04 35.96 48.41 58.35 98.48 109.81 184.1 323.1
34 35	1.317 1.317 1.317	413.2

(Tschernaj, J. Russ. Phys. Chem. Soc. 1914, 46. 8.)

Sp. gr. and b.-pt. of  $Na_2SO_4+Aq$ .  $Na_2SO_4+Aq$  containing P pts.  $Na_2SO_4+10H_2O$  for every 100 pts.  $H_2O$  has given sp. gr. and b.pt.

P	Sp. gr.	Bpt.	P	Sp. gr.	Bpt.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.005 1.008 1.014 1.020 1.021 1.028 1.030 1.032 1.036 1.040 1.043 1.050 1.055 1.060	100.5° 100.62 100.62 100.75 100.87 100.87 101.0 101.0 101.12 101.25 101.25	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	1.064 1.067 1.070 1.072 1.074 1.076 1.078 1.080 1.082 1.084 1.090 1.095 1.095 1.098	101.25° 101.25' 101.37 101.37 101.37 101.5 101.5 101.5 101.5 101.5 101.63 101.63 101.63 101.63

(Brandes and Gruner, 1827.)

Saturated solution boils at 103.17° (Löwel), 103.5° (Mulder), 105° (Kremers), 100.5° (Griffiths), 100.8° (Gerlach).

Crust forms at 102.9°; highest temp., 103.2°, and solution contains 43.9 pts. Na₂SO₄ to 100 pts. H₂O. (Gerlach, Z. anal. **26.** 426.)

B.-pt. of Na₂SO₄+Aq containing pts. Na₂SO₄ to 100 pts. H₂O.

Bpt.	Pts. Na ₂ SO ₄	Bpt.	Pts. NasSO4
100.5° 101.0 101.5 102.0	9.5 18.0 26.0 33.0	102.5° 103.0 103.2	39.0 44.5 46.7

(Gerlach, Z. anal. 26. 430.)

M.-pt. of  $Na_2SO_4+10H_2O=34^\circ$ . (Tilden, Chem. Soc. **45.** 409.) Sol. with decomp. in HCl+Aq.

Solubility in H₂SO₄+Aq at 25°.

1000 g. of the solution contain		G.Ed.		
Mols Mols H ₂ SO ₄ Na ₂ SO ₄		Solid phase		
0.286 0.338 0.884 1.576 1.666 2.611	1.539 1.671 1.742 2.256 2.363 2.437 2.091	" " Na ₂ SO ₄ , 10H ₂ O+Na ₂ SO ₄ Na ₂ SO ₄ +Na ₃ H(SO ₄ ) ₂		

(D'Ans, Z. anorg. 1906, 49. 356.)

Solubility of Na₂SO₄ in H₂SO₄+Aq at 25.°

the solution tain	Solid phase	
Mol. H ₂ SO ₄	•	
0.08	Na ₂ SO ₄	
0.60	Na ₂ SO _{4,} 10H ₂ O	
4.23	NaHSO4, H2O	
6.61	Na ₂ HSO ₄	
7.18	Na ₃ H(SO ₄ ) ₂	
	Mol. H ₂ SO ₄ 0.08 0.147 0.60 0.763 4.23 4.96 6.61 6.87	

(D'Ans, Z. anorg. 1909, 61, 92.)

10 ccm. of sat. Na₂SO₄+absolute H₂SO₄ contain approx. 2.999 g. Na₂SO₄. (Bergius, Z. phys. Ch. 1910, 72. 355.)

Solubility in	H ₂ SO ₄ +Aq	at 25°.
Solid Phase,	Na ₂ SO ₄ +10	OH ₂ O.

•	Millimols H ₂ SO ₄ in 10 ccm.	Millimols Na ₂ SC ₄ in 10 ccm.
ŧ	5.10 7.79	18.81 22.38 24 65

(Herz, Z. anorg. 1912, 73, 276.)

Solubility in H₂SO₄+Aq at 25°.

1000 g. of the solution contain		Solid phase
Mols SO ₃	Mols Na ₂ SO ₄	
5.91	0.409	NaHSO4
6.30	0.332	"
6.64	0.297	NaHSO ₄ +NaH ₂ (SO ₄ ) ₂ , H ₂ O
6.90	0.173	NaH3(SO4)2, H2O
7.36	0.071	<b>"</b>
7.74	0.047	**
7.82	0.044	"
8.12	0.037	44
8.29	0.042	44
8.40	0.046	**
8.70	0.076	44
8.86	0.156	**
$8.93^{\circ}$	0.259	"
8.93	0.269	"
8.93	0.273	
8.84	0.527	)
8.73	0.681	
8.70	0.808	NaH3(SO4)2, H2O
8.62	0.834	metastable solutions
8.62	0.844	
8.61	0.899	1
8.87	0.445	$N_{8}H_{3}(SO_{4})_{2}, H_{2}O + N_{8}_{2}SO_{4},  4.5H_{2}SO_{4}$
8.93	0.437	Na ₂ SO ₄ , 4.5H ₂ SO ₄
9.08	0.394	**
9.36	0.425	Na ₂ SO ₄ , 4.5H ₂ SO ₄ +NaHS ₂ O ₇
9.18	0.567	NaHS ₂ O ₇
9.42	0.728	"
9.48	0.760	••
9.55	0.775	"
9.48	0.953	NaHS ₂ O ₇ +?
9.85	0.787	?
9.98	0.908	?
(9.77)	(1.03)	Metastable
10.16	0.797	,
10.78	0.302	3

(D'Ans, Z. anorg. 1913, 80. 236.)

Sl. sol. in conc. HC2H3O2. (Ure's Dict.) Not pptd. by addition of glacial HC₂H₂O₂ to Na₂SO₄+Aq. (Persoz.)

Solubility in NaOH+Aq at 25°.

1000 g. of the solution contain		Solid phase	
Mols   Mols   Na2SO4			
$egin{array}{c} 0 \\ 0.074 \\ 0.70 \\ 1.47 \\ 2.02 \\ 2.82 \\ 3.52 \\ 5.83 \\ 6.62 \\ \end{array}$	1.54 1.41 1.08 0.90 0.59 0.24 0.126 0.013	Na ₂ SO ₄ , 10H ₂ O  ''  Na ₂ SO ₄ , 10H ₂ O + Na ₂ SO ₄ Na ₂ SO ₄ ''  ''  NaOH, H ₂ O	

(I) Ans and Schreiner, Z. anorg. 1910, 67. 437.)

Sol. in sat. NH₄Cl+Aq.

Rapidly and abundantly sol. in sat. KCl+

Aq with pptn. of K₂SO₄.
Na₂SO₄ +10H₂O is sol. in sat. NaCl+Aq without pptn. If effloresced Na₂SO₄ is used, a ppt. of NaCl is caused at first, and subsequently of Na₂SO₄+10H₂O. (Karsten.)

Sol. in boiling sat. NaCl+Aq with pptn. of NaCl, but from cold solutions the Na₂SO₄

separates out first. (Vauquelin.)
Less sol. in NaCl+Aq than in H₂O. (Hunt, Am. J. Sci. (2) 25, 368.)

Solubility in NaCl+Aq at to

Solubility in NaCl+Aq at t.			
t°	g. NaCl per 1 100 g. H ₂ O,	g. Na ₂ SO ₄ per 100 g. H ₂ O	
10	0.00 4.28 9.60 15.65 21.82 28.13 30.11 32.27 33.76	9.14 6.42 4.76 3.99 3.97 4.15 4.34 4.59	
21.5	0.00 9.05 17.48 20.41 26.01 26.53 27.74 31.25 31.80 32.10 33.69 34.08 35.46	21.33 15.48 13.73 13.62 15.05 14.44 13.39 10.64 10.28 8.43 4.73 2.77 0.00	
25	C.00 2.74 8.15 19.86 24.58 31.21 32.02	28.74 26.57 23.15 20.52 14.86 9.95 9.61	

Solubility in	NaCl+Aq	at t°Co	ntinued.
---------------	---------	---------	----------

t°	g. NaCl per 100 g.H ₂ O	g. Na ₂ SO ₄ per 100 g. H ₂ O
27	0.00	31.10
21	2.66	28.73
	5.29	27.17
	7.90	26.02
	16.13	24.83
	18.91	21.39
	19.64	20.11
	20.77	19.29
•	32.33	9.53
	02.00	7.00
30	0.00	39.70
	2.45	38.25
	5.61	36.50
	. 7.91	35.96
	10.61	31.64
	12.36	29.87
	15.65	25.02
	18.44	21.30
	20.66	19.06
	32.43	9.06
33	0.00	48.48
	1.22	46.49
	1.99	45.16
	2.64 .	44.09
•	3.47	42.61
	12.14	29.32
	21.87	16.83
	32.84	8.76
	33.99	4.63
	34.77	2.75
35	0.00	47.94
	2.14	43.75
	13.57	26.26
	18.78	19.74
	31.91	8.28
	35:.63	0.00
		1

At 33° and above the values represent the solubility of Na₂SO₄ in NaCl+Aq. At 10° the solid phase in contact with the solution is probably Na₂SO₄, 7H₂O. Between 17° and 33° the solid phase is either Na₂SO₄, 10H₂O or Na₂SO₄. An inversion of Na₂SO₄, 10H₂O to Na₂SO₄ takes place at various temp. below 33°, depending on the amount of NaCl contained in the solution in contact with the solid sodium sulphate.

(Seidell, Am. Ch. J. 1902, 27. 55.)

Solubility in NaCl+Aq at 15°.

	ion of the olution	,
% by wt. Na ₂ SO ₄	% by wt. NaCl	Solid Phase
11.5 7.86 5.87 5.23 5.26 5.64 2.26	0 5.42 11.51 15.97 21.03 23.39 25.21 26.3	Na ₂ SO ₄ +10H ₂ O  " " " " " Na ₂ SO ₄ , 10H ₂ O+NaCl NaCl "

(Schreinemakers and de Baat, Z. phys. Ch. 1909, 67, 554.)

Sol. in sat. NH₄NO₃+Aq. (Margueritte, C. R. **38.** 307.)

Sol. in sat. KNO₈+Aq with pptn. after several hours. (Karsten.)

Na₂SO₄+10H₂O is sol. in sat. NaNO₃+Aq without pptn., but if effloresced Na₂SO₄ is used, NaNO₃ is pptd. at first, and subsequently Na₂SO₄+7H₂O.

The presence of CaSO₄ does not affect the solubility of Na₂SO₄ in H₂O to any great extent. (Barre, A. ch. 1911, (8) **24.** 160.)

More sol. in  $K_2SO_4$ ,  $CuSO_4$ ,  $MgSO_4+Aq$ . than in  $H_2O$ . (Pfaff, A. 99. 226.)

100 pts. H₂O dissolve 20.7 pts. CuSO₄ and

15.9 pts. Na₂SO₄. (Rüdorff, B. 6. 484.) Sol. in sat. MgSO₄, K₂SO₄, CuSO₄+Aq, but if more Na₂SO₄ than can be dissolved is added to the CuSO₄+Aq, a large quantity of

a double sulphate separates out. (Karsten.)
The solubility of Na₂SO₄ in K₂SO₄+Aq has been determined at 15°, 25°, 40°, 50°, 60°, 70° and 80°. From the results the conclusion is drawn that sodium and potassium sulphates form a double salt of the formula K₂Na (SO₄)₂. (Okada, Chem. Soc. 1915, **108**. (2) 344.)

See also under CuSO₄, MgSO₄, and K₂SO₄. Slowly but abundantly sol. in sat. ZnSO₄+Aq, with separation of a double salt after a few days.

Solubility of ZnSO₄.7H₂O+Na₂SO₄.10H₂O in 100 g. H₂O at t°.

t°	grams ZnSO4	grams Na ₂ SO ₄	
0	40.305	7.905	
5	42.285	9.515	

(Koppel, Z. phys. Ch. 1905, 52, 409.)

See also under Na₂Zn(SO₄)₄+4H₂O.

Solubility of  $Na_2SO_4+Th(SO_4)_2$  at 16°. Solid phase  $Th(SO_4)_2$ .

Pts. per 10	0 pts. H ₂ O	Pts. per 10	O ₂ H .elq 00
Na ₂ SO ₄	Th(SO ₄ ) ₂	Na ₂ SO ₄	I'h(SO.)
1.094 1.960 2.84 2.98 4.11	1.743 2.387 3.800 3.962 3.375	5.79 9.35 12.24 15.36	2 1.26 1 .379 1 .169 1 .048

(Barre, C. R. 1911, **150.** 155.)

Solubility in Na accetate + Aq at 25°. Solid phase, Na₂SO₄+10H₂O.

% Na acetate	% Na ₂ SO ₄	% H ₂ O Ⅎ	
0	21.9	78.10	
4.10	17.72	78.18	
7.71	16.48	75.81	
12.58	13.50	73.92	
16.26	11.50	72.24	
20.63	8.10	71.27	

(Fox, Chem. Soc. 1909, 95. 888.)

Insol. in liquid  $NH_3$ . (Franklin, Am. Ch. J. 1898, **20.** 829.)

Alcohol precipitates Na₂SO₄+10H₂O from the cold saturated aqueous solution. (Brandes and Firnhaber.) Insol. in alcohol of from 0.817 to 0.90 sp. gr. (Kirwan.)

1000 pts. alcohol of 0.872 sp. gr. dissolve 0.7 pt. Na₂SO₄ at 12.5-15°, of 0.905 sp. gr. dissolve 3.8 pts. Na₂SO₄ at 12.5-15°.

Insol. in alcohol of 0.83-0.85 sp. gr. (Anthon.)

From supersaturated solution in alcohol, crystals with 7H₂O are formed. (Schiff, A. **106.** 11.)

100 pts. 10% alcohol at 15° contain 14.35 pts. Na₂SO₄+10H₂O; 20% alcohol at 15° contain 5.6 pts. Na₂SO₄+10H₂O; 40% alcohol at 15° contain 1.3% Na₂SO₄+10H₂O. (Schiff, A. **118**. 365.)

Very sl. sol. in abs. alcohol at ord. temp.; somewhat more, though still exceedingly sparingly, sol. in abs. alcohol acidulated with  $H_2SO_4$ . (Fresenius.)

Alcohol does not affect crystal H₂O of Na₂SO₄+10H₂O.

Solubility of  $Na_2SO_4$  in alcohol +Aq at  $t^{\circ}$ .

t°	76	g. per	100 g. se	olution	
t-	alcohol	H ₂ O	alcohol	Na ₂ SO ₄	solid phase
15	0.7	88.7	0.0	11.3	Na ₂ SO ₄ +10H ₂ O
	9.9	85.1	8.6	6.3	"
	19.4	78.6	18.9	2.9	"
	39.7	60.0	39.0	0.5	"
	58.9	41.1	58.8	0.1	"
	72.0	28.0	72.0	0.0	
	9.0	72.8	0.0	27.2	$Na_2SO_4 + 7H_2O$
	11.?	76.5	9.5	14.0	"
	20.6	74.3	19.2	6.5	"
	30.2	68.4	29.6	2.0	
25	0.0	78.1	0.0	21.9	Na ₂ SO ₄ +10H ₂ O
	10.6	78.5	9.3	12.2	"
	24.0	72.8	22.9	4.3	"
	54.0	45.6	54.0	0.4	**
36	0.0	67.0	0.0	33.0	Na ₂ SO ₄
	8.8	70.0	6.8	22.6	"
	12.8	71.2	10.5	18.3	46
	17.9	71.1	15.5	13.4	"
	18.1	71.0	15.7	13 3	"
	28.9	66.5	28.4	5.1	"
	48.7	50.9	48.3	0.8	"
4.5	0.0	67.6	0.0	32.4	"
	9.0	71.3	7.1	21.6	"
	14.5	71.8	12.1	16.1	"
	20.6	70.6	18.4	10.0	"
	31.0	65.6	29.5	4.9	. "
			<u> </u>	·	<u> </u>

Between certain concentrations of alcohol, the liquid separates into two layers at  $25^\circ$ ,  $36^\circ$  and  $45^\circ$ , of the following composition.

	Upper Layer		Lower Layer			
t°	g H ₂ O	g alcohol	Na ₂ SO ₄	g H ₂ O	g acohol	g Na ₂ SO ₄
25	66.5 68.1 68.3	27.3 23.9 23.1	6.2 8.0 8.6	67.4 68.5 68.3	5.1 6.0 6.7	27.5 25.5 25.0
36	57.7 65.0 68.1	38.4 28.3 21.2	3.9 6.7 10.7	66.6 68.8 68.9	4.1 5.9 9.4	29.3 25.3 21.7
45	61.8 65.8 66.0	$32.9 \\ 25.3 \\ 24.0$	5.3 8.9 10.0	68.4 68.6	8.8 10.1	22.8 21.3

(de Bruyn, Z. phys. Ch. 1900, 32. 101.)

Solubility in alcohol + Aq at 25°.

Composition of the sat. solution			
% by wt, H ₂ O	% by wt. alcohol	% by wt. Na ₂ SO ₄	Solid phase
63.41 49.0	50.5	1.75 0.5	Na ₂ SO ₄ , 10H ₂ O
$\frac{46.6}{34.9}$	$53.0 \\ 64.95$	$0.4 \\ 0.15$	Na ₂ SO ₄ , 10H ₂ O+Na ₂ SO ₄ Na ₂ SO ₄

(Schreinemakers, Z. phys. Ch. 1909, 67. 552.)

Solubility data for solution of NaCl in ethyl alcohol+Aq. at 15°, 25°, and 30° are given by Schreinemakers (Z. phys. Ch. 1909, 67. 556).

Solubility in propyl alcohol + Aq at 20°.

% propyl alcohol	g. Na ₂ SO ₄ per 100 g. solution	% propyl alcohol	g. Na ₂ SO ₄ per 100 g. solution
42.20	1.99	56.57	0.55
49.77	1.15	60.64	0.44
55.65	0.72	62.81	0.38

(Linebarger, Am. Ch. J. 1892, 14. 380.)

Sol. in glycerine.

Insol. in acetone. (Naumann, B. 1904 37. 4329; Eidmann, C. C. 1899. II, 1014.); benzonitrile. (Naumann, B. 1914, 47. 1370) methyl acetate. (Naumann, B. 1909, 42. 7790); ethyl acetate. (Naumann, B. 1910, 43. 314.)

100 g. H₂O dissolve 183.7 g. sugar+30.5 g. Na₂SO₄ at 31.25°, or 100 g. sat. solution contain 52.2 g. sugar + 9.6 g. Na₂SO₄. (Köhler, Z. Ver. Zuckerind, 1897, 47. 447. Min. Anhydrous, Thenardite. +10H₂O,

Mirabilite.

## Sodium hydrogen sulphate, NaHSO4.

Not deliquescent. Very sol. in H₂O with decomposition.

Sol. in 2 pts. H₂O at 0° (Link); 1 pt. H₂O at 100° (Schubarth). 100 pts. H₂O at 15.5° dissolve 92.72 pts. Sol. in 2 pts. H2O at 18.75° (Abl); decomp. by alcohol.

Insol. in liquid NH₃. (Franklin, Am. Ch. **J. 1898, 20.** 829)

+H₂O. Deliquescent, and decomp. by the H₂O which it takes up.

 $NaH_3(SO_4)_2$ . Decomp. by  $H_2O$ . (Schultz.)

#### Trisodium hydrogen sulphate, Na₂H(SO₄)₂.

Sol. in H₂O with decomp.  $+H_2O.$  (Rose.)

#### Sodium pyrosulphate, Na₂S₂O₇.

Sol. in fuming H₂SO₄ without decomp.

Sodium thallic sulphate, Na₂SO₄, Tl₂(SO₄)₃. Sol. in H₂O. (Strecker, A. 135. 207.)

## Sodium thorium sulphate, Na₂SO₄, Th(SO₄), +6H₂O.

Sol. in H₂O. 100 pts. cold sat. Na₂SO₄+Aq dissolve 4 pts. of this salt. (Cleve.) See also under Na₂SO₄+ThSO₄.

#### Sodium titanium sesquisulphate, Na₂Ti₂(SO₄)₄ +5H₂O.

Sol. in H₂O. (Spence, Chem. Soc. 1904. 86. (2) 412.) Insol. in alcohol. (Knecht, B. 1903, 36. 169.)

#### Sodium titanyl sulphate, $Na_2TiO_2(SO_4)_2$ + 10H₂Ō.

Hygroscopic. (Mazzuchelli and Pantanelli, C. C. **1909,** II. 420.)

#### Sodium uranyl sulphate, $Na_2(UO_2)(SO_4)_2 +$ 3H₂O.

(de Coninck, C. C. 1905, I. 919.)

#### Sodium vanadium sulphate, $Na_2V_2(SO_4)_4$ + 24H₂O.

Very sol. in H₂O. (Piccini, Z. anorg. 1897, **13.** 444.)

#### Sodium vanadyl sulphate, Na₂SO₄, VOSO₄+ 4H₂O.

Easily sol. in  $H_2O$  and alcohol + conc. H₂SO₄. (Koppel, Z. anorg. 1903, **35.** 177.) Na₂SO₄,  $2VOSO_4 + 2\frac{1}{2}H_2O$ . Slowly sol. in H₂O.

Can be cryst. from H₂SO₄ at 100°. (Kop-

#### Sodium yttrium sulphate, Na₂SO₄, Y₂(SO₄)₃+ 2H₂O.

Quite sol. in H₂O. (Cleve.)

The only double salt capable of existing at 25°. (James and Holden, J. Am. Chem. Soc. 1913, **35.** 562.)

#### Sodium zinc sulphate, Na₂SO₄, ZnSO₄+ 4H₂O.

Deliquescent in moist air.

Decomp. into constituents on dissolving in H₂O. (Graham, Phil. Mag. 18. 417.)

#### Solubility of $Na_2Zn(SO_4)_2 + 4H_2O$ in 100 g. H₂O at t°.

t°	grams ZnSO4	grams Na ₁ SO ₄
25	26.32	23.40
30	26.475	23.445
35	26.365	23.525
40	26.68	23.63

(Koppel, Z. phys. Ch. 1905, **52.** 409.)

Solubility of Na₂Zn(SO₄)₂.4H₂O + ZnSO₄. 7H₂O in 100 g. H₂O at t°.

t°	grams ZnSO4	grams Na ₂ SO ₄	t°	grams ZnSO:	grams Nau30
10	45.79	11.24	25	56.155	7.215
15	48.81	10.175	30	60.55	6.34
20	52.34	8.625	35	65.25	5.34

(Koppel.)

Solubility of  $Na_2Zn(SO_4)_2.4H_2O+ZnSO_4$ .  $6H_2O$  in 100 g.  $H_2O$  at  $t^{\circ}$ .

t,º	grams 7nSO4	grams Na ₂ SO,
38	66.64	4.98
40	64.89	4.71

(Koppel.)

Solubility of  $Na_2Zn(SO_4)_2.4H_2O + Na_2SO_4$  $10H_2O$  in 100 g.  $H_2O$  at to.

t°	grams ZnSO4	grams Na ₂ SO ₄
10	43.495	12.35
15	36 925	16.71
20	28.77	21.98
25	19.935	29.875
30	10.67	42.515

(Koppel.)

Solubility of Na₂Zn(SO₄)₂.4H₂O+Na₂SO₄ (anhydrous) in 100 g. H₂O at t°.

t°	grams ZnSO4	grams Na ₂ SO ₄	
35	8.725	46.61	
40	9.16	43.835	

(Koppel.)

Sodium sulphate fluoride, Na₂SO₄, NaF.

Cryst. from  $H_2O$  without decomp. (Marignac, Ann. Min. (5) **15.** 236.)

Sodium sulphate antimony trifluoride.

See Antimony trifluoride sodium sulphate.

Strontium sulphate, SrSO4.

Very sl. sol. in cold, and still less in boiling H₂O.

1 l. H₂O at 11-15° dissolves 0.066 g. SrSO₄ (Brandes and Silber); 0.145 g. SrSO₄ (Fresenius); 0.154-0.167 g. SrSO₄ (Marignac); 0.187 g. SrSO₄ (Kremers); 0.278 g. SrSO₄ (Andrews).

1 l. boiling H₂O dissolves 0.104 g. SrSO₄ (Fresenius); 0.282 g. SrSO₄ (Brandes and

When a Sr salt is precipitated by H₂SO₄, 1 pt. SrSO₄ remains dissolved in 700 pts. H₂O. (Marignac.)

Sol. in about 8000 pts. H₂O. (Schweitzer, J. B. **1877.** 1054.)

Calculated from electrical conductivity of the solution, SrSO₄ is sol. in 10,070 pts. H₂O at 16.1° and 10,090 pts. at 20.1°. (Holleman, Z. phys. Ch. 12. 131.)

11. H₂O dissolves 107 mg. SrSO₄ at 18° and not much more at higher temp. (Kohlrausch and Rose, Z. phys. Ch. 12. 241.)

 $100 \text{ g. H}_2\text{O dissol. e}$ 

at t° 0°-5° 10°-12° 20° 30° g. SrSO₄ 0.0983 0.0994 0.1479 1.0600

at t° 50° 80° 90° 95–98° g. SrSO₄ 0.1629 0.1688 0.1727 0.1789 (Woifmann, C. C. 1897, I. 632.)

1 l. H₂O dissolve: 114 mg. SrSO₄ at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50**. 356.); 114.3 mg at 18°. (Kohlrausch, Z. phys. Ch. 1908, **64**. 168.)

Sol. in 6895 pts. cold, and 9638 pts. boiling  $H_2O$ ; in 11,000-12,000 pts.  $H_2O$  containing  $H_2SO_4$ ; in 474 HCl+Aq containing 8.5% HCl; ii. 432 pts. HNO₃+Aq containing 4.8% N₂O₅; in 7843 pts. HC·H₃O₂+Aq containing 15.6% HC₂H₃O₂. (Fresenius.)

Or, 11. cold HCl+Aq of 8.5% dissolves 2.11 g.  $SrSO_4$ ; 1 l. cold  $HNO_8+Aq$  of 4.8%  $N_2O_8$  dissolves 2.31 g.  $SrSO_4$ ; 1 l. cold  $HC_2H_3O_2+Aq$  of 15.6%  $HC_2H_3O_2$  dissolves 0.1275 g.

SrSO₄. (Fresenius.)

Solubility of SrSO₄ in HCl+Aq.

No. cc. HCl+	g. per 100 cc. solution		
1 mg. equiv. HCl	HCl	SrSO4	
0.2 0.5 1.0	18.23 7.29 3.65	0.161 0.207 0.188	
$\begin{array}{c} 2.0 \\ 10.0 \end{array}$	$\begin{array}{c} 1.82 \\ 0.36 \end{array}$	$0.126 \\ 0.048$	

(Banthisch, J. pr. 1884, (2) 29. 54.)

Solubility of SrSO₄ in HNO₈+Aq.

No. cc. HNOs+ Aq containing	g. per 100 cc. solution		
1 mg. equiv. HNOs	HNO ₈	SrSO ₄	
0.2 0.5 1.0 2.0 10.0	31.52 12.61 6.30 3.15 0.63	0.381 0.307 0.217 0.138 0.049	

(Banthisch, J. pr. 1884, (2) 29. 54.)

Sol. in conc. H₂SO₄. See under SrH₂(SO₄)₂. Insol. in NH₄Cl+Aq or conc. (NH₄)₂SO₄+q. (Rose.)

Slowly but completely sol. in NaCl+Aq. (Wackenroder.)

H₂O containing Na₂SO₄ dissolves less SrSO₄.

than pure H₂O; H₂O containing H₂SO₄ still less. (Andrews, Phil. Mag. Ann. 7. 406.) Insol. in Na₂S₂O₃+Aq.

Insol. in boiling conc. (NH₄)₂SO₄+Aq.

(Rose, Pogg. 110. 292.)

Sol. in 16.949 pts. (NH₄)₂SO₄+Aq (1:4). (Fresenius, Z. anal. **32.** 195.)

Potn, is hindered by alkali metaphosphates and citrates, but not by citric acid.

Decomp. at ord. temp., and more rapidly on boiling by alkali carbonates + Aq.

Sol. in MgCl₂ or KCl+Aq, solubility increasing with strength of solution; sol. in NaCl or CaCl2+Aq, maximum solubility occurring when the solutions are of a medium concentration. The numerical results are as follows:

100 pts. of the salt solutions containing given pts. salt dissolve pts. SrSO₄.

Salt	Pts. salt	Pts. SrSO4
NaCl	22.17 15.54 8.44	0.1811 0.2186 0.1653
KCl	18.08 12.54 8.22	0.2513 0.1933 0.1925
MgCl ₂	13.63 4.03 1.59	0.2419 0.2057 0.1986
CaCl ₂	33.70 16.51 8.67	0.1706 0.1853 0.1756

(Virck, C. C. 1862. 402.)

Solubility in H₂O, and in solutions of the sulphates chlorides and nitrates of the alkalies and alkaline earths and in solutions of salts of the alkalies with strong organic acids has been determined. No data in abstract. (Wolfmann, Chem. Soc. 1898, (2) 74. 220.)

Solubility in H₂O is considerably decreased by the presence of K₂SO₄. (Barre, A. ch.

**1911,** (8) **24.** 175.)

Solubility of SrSO₄ in Ca(NO₃)₂+Aq at ord. temp.

G. per 100 cc. sat. solution.

Ca(NO ₃ ) ₂	SrSO4	Ca(NO ₃ ) ₂	SrSO4
0.5 1 2 3	0.0483 0.0619 0.1081 0.1275	4 5 6	0.1489 0.1689 0.1955

(Raffo and Rossi, Gazz. ch. it. 1915, 45. (1)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

100 g. 95% formic acid dissolve 0.02 g. SrSO₄ at 18.5°. (Aschan, Chem. Ztg. 1913, 37. 1117.)

Insol. in absolute alcohol; scarcely sol. in dil. alcohol.

(Naumann, B. Insol. in methyl acetate. 1909, **42.** 3790); acetone. (Naumann, B. 1904, **37.** 4329; Eidmann, C. C. **1899,** II. 1014.)

Min. Celestite.

# Strontium hydrogen sulphate, SrH₂(SO₄)₂.

100 pts. H₂SO₄ dissolve 2.2 pts. SrSO₄ (Lies-Bodart and Jacquemin); 100 pts. H₂SO₄ dissolve 5.68 pts. (Struve, Z. anal. **9.** 34); 100 pts. fuming H₂SO₄ dissolve 9.77 pts. (Struve).

1 g. SrSO₄ dissolves in 1256 g. 91% H₂SO₄+ Aq (Varenne and Pauleau, C. R. 93. 1016): boiling H₂SO₄ dissolves about 15% SrSO₄, and still more at 100°. (Schultz, Pogg. 133. 147). Sol. in 1519 pts. 91% H₂SO₄. (Varenne and Pauleau, C. R. **93**. 1016.)
100 pts. H₂SO₄ (sp. gr. 1.843) dissolve 14 pts. SrSO₄ at 70°. (Garside, C. N. **31**. 245.)

Decomp. by H₂O.

100 pts. hot conc. H₂SO₄ dissolve about 9.0 pts. SrSO₄. (Rohland, Z. anorg. 1910, **66.** 206.)

10 ccm. of sat. SrSO₄+absolute H₂SO₄ contain approx. 2.17 g. SrSO₄. (Bergius, Z. phys. Ch. 1910, 72. 355.)

+H₂O. Decomp. by H₂O.

Strontium tin (stannic) sulphate, SrSO₄,  $Sn(SO_4)_2 + 3H_2O$ .

Decomp. by H₂O. Sol. in HCl. land and Kühl, Z. anorg. 1907, 54. 249.)

Strontium titanium sulphate, SrSO₄, Ti(SO₄)₂. Ppt; decomp. by H₂O giving titanic acid. (Weinland and Kühl, Z. anorg. 1907, 54. 254.)

Tantalum sulphate,  $3\text{Ta}_2\text{O}_5$ ,  $8\text{O}_2 + 9\text{H}_2\text{O}$ . (Hermann, J. pr. 70. 201.)

Tellurium sulphate, basic, TeO₂, SO₃.

Sol. in cold dil. H₂SO₄. Decomp. by hot H₂O. (Klein, C. R. 99. 326.)

Terbium sulphate,  $Tr_2(SO_4)_3 + 8H_2O$ .

Sol. in H₂O.

Sol. in H₂O; pptd. by alcohol. (Urbain, C. R. 1908, **146.** 127.)

Thallous sulphate, Tl₂SO₄.

1 pt. dissolves at to in pts. H2O, according to C = Crookes; L = Lamy:

15° 18° 62° 100° 101.2° 5.22 pts. H₂O. 21.1 20.8 8.7 5.4  $\mathbf{C}$  $\mathbf{C}$ L

	Solubility of Tl ₂ SO ₄ in H ₂ O.				
t°	% Tl.SO4	t°	% Tl ₂ SO.		
0 10 20 30 40 50	2.63 3.57 4.64 5.80 7.06 8.44	60 70 80 90 99.7*	9.85 11.31 12.75 14.19 15.57		

B.-pt. at 748 mm. (Berkeley, Phil. Trans. Roy. Soc. 1904. 203. A, 189; calc. by Landolt-Bornstein.)

 $100~g,~H_2O~dissolve~3.36~g,~Tl_2SO_4~at~6.5^\circ;\\ 4.3~g,~at~12^\circ;~19.14~g,~at~100^\circ.~(Tutton,~Proc.$ Roy. Soc. 1907, **79.** A, 351.)

1 l. H₂O dissolves 0.192? equivalents Tl₂SO₄ at 20°, or 48.59 g. ir. 1 l. of solution. (Noyes, J. Am. Chem. Soc. 1911, **33.** 1657.) 1 l. H₂O dissolves 0.1083 g. equiv. Tl₂SO₄ at 25°, or 27.28 g, in 11, of solution. (Noves.)

#### Solubility in H₂SO₄+A_G at 25°.

Strength of H SO ₄ +Aq g. mols. per l.	g. mols. Tl SO; per l.	
0.0494	0.1172	
0.0987	0.1249	

(Noyes, J. Am. Chem. Soc. 1911, 33. 1662.)

1 l. TlClO₃+Aq. containing 0.1058 equivalents TlClO₂, dissolves 0.1366 equivalents Tl₂SO₄ at 20°. (Noyes.) See also TlClO₃.

#### Solubility in salts+Aq at 25°.

g. mols. per l.	g. mols. per l. Tl SO ₄ dissolved
0.0996 TINO ₃	0.08365
0.0497 Na ₂ SO ₄	0.1080
0.1988 Na ₂ SO ₄	0.1173
0.1010 NaHSO ₄	0.1161

(Noyes.)

#### Thallous hydrogen sulphate, TlHSO₄. Sl. hydroscopic.

Solubility in H₂SO₄+Aq at 25°.

#### 1000 g, of the solution contain:

Mols. H ₂ SO ₄	Mols. Tl ₂ SO ₄
4.55 4.79 4.89 4.92 4.78 4.26 4.08	0.56 0.55 0.59 0.66 0.75 1.01 1.08

(D'Ans, Z. anorg. 1910, 65. 232.)

Tl₂SO₄, TlHSO₄. Sol. in H₂O. (Stortenbecker, R. t. c. 1902, 21. 90.)

Thallous pyrosulphate, Tl₂S₂O₇.

Decomp. by H₂O (Weber, B. 17. 2502.)

Thallous octosulphate, Tl2S8O25.

Decomp. by H₂O (Weber, B. 17. 2502.)

Thallic sulphate, basic,  $Tl_2O_3$ ,  $2SO_3 + 3H_2O$ .

Sol. in H₂O.

 $+5H_2O$  As above. (Willing, A. ch. (4) 5.

#### Thallic sulphate, $Tl_2(SO_4)_3 + 7H_2O$ .

Decomp, by cold H₂O with separation of TIO(OH). (Crookes.)

Thallothallic sulphate. 2Tl₂O, 3Tl₂O₈, 12SO₈+  $2511_{2}O$ .

Gradually efflorescent. (Willm.) T12(SO4)2. (Lepsius, Chem. Ztg. 1890. 1327.)

 $TllI(SO_4)_2$ . (Lepsius.)

Thallous uranyl sulphate, Tl₂(UO₂)(SO₄)₂+ 3H₂O.

Sl. sol. in cold H₂O.

Easily forms supersat. solutions. (Kohn, Z. anorg. 1908, **59.** 112.)

#### Thallium vanadium sulphate, $Tl_2V_2(SO_4)_4$ + 24H₂O.

100 pts.  $\rm H_2O$  dissolve 11.06 pts. salt at 10°. Sp. gr. of solution at  $\rm 4^{\circ}/20^{\circ}=2.342$ . Very sol. in hot  $\rm H_2O$ . (Piccini, Z. anorg. 1897, 13. 446.)

256 g. anhydrous, or 433 g. hydrated salt, or 0.573 g. mols. of anhydrous salt are sol. in 1 l. H₂O at 25°.

Melts in crystal H₂O at 48°. (Locke, Am. Ch. J. 1901, **26.** 175.)

#### Thallous zinc sulphate, $Tl_2Zn(SO_4)_2+6H_2O$ .

1 l. H₂O dissolves 86 g. anhydrous salt at 25°. (Locke, Am. Ch. J. 1902, 27. 459.)

#### Thallothallic sulphate bromide, Tl₂B_{c2}SO₄.

Very sol. in cold H₂O. Decomp. by much H₂O. (Meyer and Goldschmidt, B. 1903, 36. 242.)

Thorium sulphate, basic,  $3[Th(SO_4)_2+2H_2O]$ ,  $Th(SO_4)O + 2H_2O$ .

Insol. in H₂O; very slowly attacked by dil. acids. (Demarcay.)

 $ThO(SO_4) + 2H_2O$ . Stable in aq. solution at 100°. (Hauser, B. 1910, **43.** 2776.)

+5H₂O. Somewhat sol. in hot conc. MgSO₄+Aq. (Halla, Z. anorg. 1912, 79. 260.)

#### Thorium sulphate, $Th(SO_4)_2$ .

Anhydrous. Easily sol. if brought into a large amount of H2O, but very slowly sol. if only a little H₂O is added to the salt.

100 pts. H₂O dissolve about 4.86 pts. Th(SO₄)₂ at 0°. (Cleve.)

When heated, a hydrous salt separates out, which redissolves on cooling. (Cleve.)

Solubility of anhydrous salt cannot be determined, as it begins to separate out Th(SO₄)₂+9H₂O before a saturated solution is reached. At 0°, 100 pts. H₂O dissolved 22.97 pts. Th(SO₄)₂ in 15 minutes; at 25°, 27.00 pts. Th(SO₄)₂ were dissolved in 5 minutes.

(Roozeboom, Z. phys. Ch. **5.** 198.) +2H₂O. Shows same behaviour as anhydrous salt. 100 pts. H₂O dissolved 35.50 pts. Th(SO₄)₂ from this salt at 1°, but this is not the maximum solubility. (Roozeboom.)

+4H₂O. Pptd. by alcohol from hot aqueous solution; also formed by heating Th(SO₄)₂ +9H₂O in aqueous solution above 60°.

100 pts.  $H_2O$  dissolve pts.  $Th(SO_4)_2 + 4H_2O$ , calculated as  $Th(SO_4)_2$ , at  $t^{\circ}$ . D = according to Demarcay (C. R. 96. 1860); R = according to Roozeboom (Z. phys. Ch. 5. 202).

t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ) ₂
17	9.41 D	50	2.54 R	70	1.09 R
35	4.50 D	55	1.94 D	75	1.32 D
. 40	4.04 R	60	1.634 R	95	0.71 D

+6H₂O. Behaves as the anhydrous salt, but action is much slower.

100 pts.  $H_2O$  dissolve pts.  $Th(SO_4)_2 + 6H_2O$ , calculated as Th(SO₄)₂, at t°.

	, ,,,,,			
t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO4) 2	
0 15 30	1.50 1.63 2.45	45 60 	3.85 6.64	

(Roozeboom.)

This determination gives too low figures. especially at the higher temperatures. (Roozeboom.)

 $+8\dot{H}_2O$ .

100 pts.  18 H₂O dissolve pts. Th(SO₄)₂+8H₂O, calculated as Th(SO₄)₂, at t°.

t° .	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ) ₂
0	1.00	25	$\frac{1.85}{3.71}$
15	1.38	44	

(Roozeboom.)

100 g.  $Th(SO_4)_2+Aq$  sat. with  $Th(SO_4)_2+8H_2O$  at 30° contain 2.152 g. anhydrous  $Th(SO_4)_2$ . (Koppel and Holzkampf, Z. anorg. 1910, 67. 274.)

100 g. H₂O dissolve 1.722 g. at 25°. (Barre,

Bull. Soc. 1912, (4). 11.)

+9H₂O. Pptd. by alcohol from cold

aqueous solution. Sol. in about 88 pts. H₂O at 0°. (Cleve.) Extremely slowly sof. in H₂O.

100 pts. H₂O dissolve pts. Th(SO₄)₂+9H₂O, calculated as Th(SO₄)₂, at to.

t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ):
0 10 20	0.88 1.02 1.25	30 40	1.85 2.83	50 55	4.86 6.5±

Above 55°, Th(SO₄)₂+4H₂O separates out. (Demarcay C. R. 96. 1860, calculated by Roozeboom.)

100 pts. H₂O dissolve pts. Th(SO₄)₂+9H₂O, calculated as Th(SO₄)₂, at t°.

t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ) ₂	t°	Pts. Th(SO ₄ ) ₂
0 10 20	0.74 0.98 1.38	30 40	1.995 2.998	51 55	5.22 6.76

Above 60°, Th(SO₄)₂+4H₂O separates out. (Roozeboom, Z. phys. Ch. 5. 201.)

For further data, see Roozeboom (Z.phys. Ch. 5. 198), where there is a full discussion of the subject.

100 g. sat. solution of  $Th(SO_4)_2+9H_2O$  in  $H_2O$  at 25° contain 1.593 g. anhyd. salt. (Wirth, Z. anorg. 1912, **76.** 174.)

# Solubility of Th(SO₄)₂ in H₂SO₄+Aq at t°.

t°	% H ₂ SO ₄	% ThSO4	Solid phase
30	0.000	2.152	$Th(SO_4)_2 + 8H_2O$
	0.466	2.055	""
,	0.72	-2.085	"
	1.468	2.267	"
	2.983	2.311	"
	4.38	2.367	"
	4.97	2.323	44
	9.95	1.961	"
	15.03	1.484	"
	18.95	1.078	"
	23.64	0.7196	"
•	32.68	0.3364	$Th(SO_4)_2+4H_2O$
	37.80	0.077	111(1004)2   11120
•	43.28	0.0213	46
	45.69	0.0047	"
	74.0	0.1208	"
	80.5	0.000	u
20	5	1.722	$Th(SO_4)_2 + 8H_2O$
	15	0.9752	(
	25	0.3838	"
	40	0.0103	$Th(SO_4)_2+4H_2O$
Boiling	5	0.7407	"
temp.	10	0.4808	u
•	15	0.3882	"
(Koppel	and Ho	zkamnf	Z. anorg. 1910, 67.

(Koppel and Holzkampf, Z. anorg. 1910, %

274.)

Solubility in H ₂ SO ₄ +Aq at 25°.			
Per 100 g. of solution			
g. Th(SO ₄ ) ₂ g. H ₂ SO ₄			
1.722 1.919 2.017 2.060 2.061 2.035 1.863 1.702	0.000 1.072 1 941 2.821 3.843 5.212 8.055 10.105		

(Barre, Bull. Soc. 1912, (4) 11, 647.)

Solubility in H₂SO₄+Aq at 25°.

Normality	In 100 g. of the liquid are dissolved			
H ₂ SO ₄	g. oxide	g. anhydrous sulphate	Solid phase	
0 1.1 2.16 4.32 6.68 9.68 10.89 15.15	1.015 1.14 0.9265 0.545 0.2685 0.0651 0.0396 0.0192	1.831 1.488 0.8751 0.4312 0.1045 0.0636	Th(SO ₄ ) ₂ +9H ₂ O Th(SO ₄ ) ₂ +8H ₂ O Th(SO ₄ ) ₂ +4H ₂ O	

(Wirth, Z. anorg. 1912, 76. 186.)

Solubility of Th(SO₄)₂ in HCl+Aq at 30°.

% HCl	% Th(SO4)2	Solid phase
0.0	2.15	Th(SO ₄ ) ₂ +8H ₂ O
$\begin{array}{c} 4.55 \\ 6.95 \end{array}$	$3.541$ $3.431 \pm$	"
$12.14 \\ 15.71$	$\frac{2.811}{2.360}$	"
$^{18.33}_{20}$	$\frac{2.199}{2.13}$	$^{\prime\prime}$ $Th(SO_4)_2 + 4H_2O$
23.9	1.277	6

(Koppel and Holzkampf, Z. anorg. 1910, **67**. 274.)

Solubility of Th(SO₄)₂ in HNO₃+Aq at 30°.

% Th(SO4)2	Solid phase
2.15 3.68 4.20 4.84 4.47 3.96	Th(SO ₄ ) ₂ +8H ₂ O
3.88 3.34 2.51	$Th(SO_4)_{ii}^2 + 4H_2O$
	2.15 3.68 4.20 4.84 4.47 3.96 3.88 3.34

(Koppel and Holzkampf, Z. anorg. 1910, **67.** 274.)

The presence of phosphoric acid increases the solubility of the rium sulphate in HCl and HNO₃. (Koppel and Holzkampf, Z. anorg. 1910, **67**. 280)

For solubility of Th(SO₄)₂ in (NH₄)₂SO₄, Ii₂SO₄, and K₂SO₄, see respective sulphates. Inso in liquid NH₃. (Gore, Am. Ch. J. 1898, **20**. 830.)

# Thorium hydrogen sulphate, ThH2(SO4)2.

Hydroscopic.

(Ditte.)

So! in excess of hot H₂SO₄; insel in cold H₂SO. (Erauner, Z. anorg. 1904, **38.** 333.)

## Thalium sulphate, Tm₂(SO₁)₈+8H₂O₁

insol. in alcohol. (James, J. Am. Chem. Soc. 1911, **33**. 1343.)

Tin (stannic) sulphate, basic, (SnO)SO₄+ $H_2$ ?.

Easily soi. in cold H₂O, but quickly decomp. with separation of stannic hydroxide. (Ditte, C. R. 104. 178.)

3SnC, SO₃. Easily sol. in dil. acids. (Ditte, A. ch. 1882, (5) 27. 159.) +1½H₂O. Not decomp. by cold H₂O.

#### Tin (stannous) sulphate, SnSO₄.

Sol. in 5.3 pts.  $H_2O$  at 19°, and 5.5 pts. at 100°. (Marignac.) Solution soon decomposes with separation of a basic salt. Sol. in.  $H_2SO_4+Aq$ . (Bouquet.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

#### Tin (stannic) sulphate, $Sn(SO_4)_2 + 2H_2O$ .

Deliquescent. Easily sol. in H₂O; decomp. by much H₂O. Sol. in dil. H₂SO₄+Aq. Slowly sol. in HCl+Aq. Decomp. by absolute alcohol. (Ditte, C. R. **104.** 178.)

#### Titanium sulphate, $Ti(SO_4)_2 + 3H_2O$ .

Deliquescent, and sol. in  $H_2O$ . The aqueous solution is decomp. on boiling. (Glatzel, B. 9. 1833.)

#### Titanium sesquisulphate, Ti₂(SO₄)₃.

Very deliquescent, and easily sol. in  $H_2O$ . Aqueous solution is decomp. by boiling. (Ebelmen.)

Insol. in H₂O, alcohol, ether and conc. H₂SO₄. Slowly sol. in dil. H₂SO₄ and HCl. (Stähler, B. 1905, **38.** 2624.)

Not sol. in alcohol. (Knecht, B. 1903, 36. 169.)

+8H₂O. Sol. in H₂O. (Glatzel, B. **9.** 1833.)

#### Titanium hydrogen sesquisulphate, 3Ti₂(SO₄)₈, H₂SO₄+25H₂O.

Gradually sol. in H₂O.

Insol. in 60% H₂SO₄, alcohol, ether and glacial acetic acid. (Stähler, B. 1905, 38. 2621.)

#### Titanyl sulphate, (TiO)SO4.

Decomp. by H2O. Slowly sol. in cold, rapidly in warm HCl+Aq. (Merz, J. pr. **99.** 157.)

 $+2H_2O$ . Sol. in  $H_2O$ . (Blondel, Bull.

Soc. 1899, (3) **21.** 262.) 2TiO₂, 3SO₃+3H₂O. Sol. in H₂O acidified with HCl. (Blondel, Bull. Soc. 1899, (3) 21.

5TiO₂, SO₃+5H₂O. (Blondel.)  $7\text{TiO}_2$ ,  $2\text{SC}_3 + x\text{H}_2\text{O}$ . (Blondel.)  $2\text{TiO}_2$ ,  $SO_3 + xH_2O$ . (Blondel.)

Uranous sulphate, basic, U(OH)₂SO₄+H₂O. Insol. in H₂O. H₂O dissolves out H₂SO₄.

(Ebelmen, A. ch. (3) 5. 217.)

+5H₂O. Sol. in alcohol. Pptd. by ether. (Rosenheim, Z. anorg. 1901, **26.** 251.

# Uranous sulphate, $U(SO_4)_2 + 4H_2O$ .

Sol. in H₂O with immediate decomp. Easily sol. in dil. H₂SO₄+Aq. (Kohlschütter, B. 1901, 34. 3629.)

Decomp. by H₂O into insol. basic, and sol. acid salt. Sol. in dil. H₂SO₄ or HCl+Aq. Difficultly sol. in conc. acids. (Ebelmen, A. ch. (3) **5.** 215.)

# Solubility of $U(SO_4)_2 + 4H_2O$ in $H_2O$ at $t^{\circ}$ .

t°	% U(SO ₄ ) ₂	t°	% U(SO ₄ ) ₂
29	9.8	48.2	8.1
37	8.3	63	7.3

(Giolitti and Bucci, Gazz. ch. it. 1905, 35. (2) 162.)

1 pt. is sol. in 4.23 pts. H₂O at 13°; 4.3 pts. at 11.3°; 4.4 pts. at 9.1°. (de Coninck, A. ch. 1903, (7) **28.** 12.) +8H₂O.

#### Solubility of U(SO₄)₂+8H₂O in H₂O at t°.

t°	% U(SO ₄ ) ₂	t°	% U(SO4)2
18	10.17	48.2	28.72
25.6	13.32	62	36.8
37	19.98	93	63.2

(Giolitti and Bucci, Gazz. ch. it. 1905, 35. (2) 162.)

#### Sp. gr. of $U(SO_4)_2 + Aq$ at $t^{\circ}$ .

t°	% salt	Sp. gr.
16 16.8 16 17.8 17.2 18 18.3	1 2 3 4 5 6 7	1.0058 1.0107 1.0165 1.0218 1.0272 1.0320 1.0379 1.0429
15.2 15.6	9	1.0485 1.0539

(de Coninck, A. ch. 1903, (7) 28. 11.)

Solubility in acids + Aq. 1 pt. U(SO₄) is sol. in pts. acid at t°.

- por o (10 o 4) oo oo oo production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - production - produ				
t°	Acid	Concentra- tion of acid	Pts. acid	
$9.7 \\ 9.2$	HCl "	1:4	5.74 5.8	
11.2 10.3	HŅO ₃	1:4	$\begin{array}{c} 5.4 \\ 5.53 \end{array}$	
11.4	H ₂ SeO ₄	1:4	4.57	
10.7	(sp. gr. 1.4)	4.6	4.66	
$\begin{array}{c} -15\\ 14.2 \end{array}$	HBr "	1:4	$\begin{smallmatrix}4\\4.23\end{smallmatrix}$	
15.5 14.4	HC ₂ H ₃ O ₂	1:4.5	4.1 4.3	
16.5 15.9	**	1:2	$\frac{3.72}{3.85}$	
11.7 10.9 10.1 9	H ₂ SO ₄	1:4	6.36 6.42 6.45 6.5	

(de Coninck, Chem. Soc. 1902, 82. (2) 459.

Sp. gr. of  $U(SO_4)_2 + HCl(d = 1.046)$  and  $d_1 = Sp.$  gr. referred to  $H_2O$ .  $d_2 = Sp.$  gr. referred to HCl.

t° .	% salt	dı	d ₂
16	1	1.0525	1.0063
17	2	1.0572	1.0109
18	3	1.0619	1.0154
18.4	4	1.0667	1.0199
17.6	5	1.0714	1.0243

(de Coninck, A. ch. 1903, (7) 28. 11.)

Sp. gr. of  $U(SO_4)_2 + H_2SO_4(d = 1.14)$  at to.  $d_1 = \text{Sp. gr. referred to } H_2O.$  $d_2 = Sp.$  gr. referred to  $H_2SO_4$ .

t°	% salt	dı	d₂
18.7	1	1.1442	1.0038
18.3	2	1.1494	1.0083
17.4	3	1.1539	1.0123
17.6	4	1.1583	1.0162
18.1	5	1.1626	1.0204

(de Coninck, A. ch. 1903, (7) 28. 11.)

1 pt. is sol. in 8 pts. alcohol (94°)+Aq (1:4) at 10.4°. (de Coninck.)

Solubility in glycol at 14.8° = 3.15%. (de Coninck, C. C. 1905, II. 883.)

Min. Johannite. Sl. sol. in H₂C.

Uranous hydrogen sulphate, U(SO₄)₂, H₂SO₄ +10H₂O.

(Giolitti, C. C. 1905, II. 1226.)

# Uranyl sulphate, basic, 3UO₃, SO₃+2H₂O.

(Athanasesco.)

 $+14 H_2 O$ . Sol. in  $H_2 O$ . (Ordway, Sill. Am. J. (2) **26.** 208.)

4UO₃, SO₃+7H₂O. (Athanasesco, C. D. 103. 271.)

UO₂, 4UOSO₄+8H₂O. Less sol. ir min acids, especially dil. H2SO4+Aq, than UOSO4 +2H₂O. (de Coninck, C. C. 1901, II. 1038.)

#### Uranyl sulphate, (UO₂)SO₄.

+H₂O. (de Coninck.)

+3H₂O. Efflorescent. Very sol. in H₂O and alcohol.

1 pt. is sol. in 0.6 pt. cold H₂O, in 0.45 pt. boiling H₂O; in 25 pts. cold absolute alcohol; in 20 pts. boiling absolute alcohol (Bucholz.)

Sol. in 0.47 pt. H₂O at 21°, and 0.28 pt. boiling H₂O. (Ebelmen.)

100 pts. H₂O at 15.5° dissolve 160 pts., and at 100°, 220 pts. (Ure's Dict.)
1 pt. is sol. in 5.3 pts. H₂O at 13.2°; 5.16

pts. at 14.1°; 4.96 pts. at 15.1°; 4.88 pts. at 15.5°. (de Coninck, A. ch. 1903, (7) **28.** 8.)

Sp. gr. of  $(UO_2)SO_4+Aq$  at t°.

هٔ t°	% (UO)2SO4	Sp. gr.
14	1	1.0062
15.5	2	1.0113
11.3	3	1.0172
10.2	4	1.0229
10.2	5	1.0280
10	6	1.0338
14	7	1.0389
15.6	8	1.0442
11	9	1.0503
10 3	10	1.0557
11.4	l ii	1.0612
11.6	12	1.0669
	<u> </u>	

(de Coninck, A. ch. 1903, (7) 28. 7.)

Solubility in acids +Aq. 1 pt. (UO₂)SO₄ is sol. in:

3.4 pts. conc. HCl at 12.8°

" " 13.6° 3.25 "

5.9 " HBr(d=1.21) " 12.9° 6.1 " " 11.2°

" 12.3° 10.8 " conc. HNO₃

11.2 " " 10.8°

H₂SO₄(d=1.38)" 12.7° " 14.0° 4.3 " 4.1 "

5.6 "aqua regia (equal vol. HCl+ HNOs) at 15.4°

5.47 pts. aqua regia (equal vol. HCl+

HNO₈) at 16 4 3.7 pts. selenic acid (d=1.4) at 15.3°.

(de Coninck, A. ch. 1903, (7) 28. 8.)

Sp. gr. of  $(UO_2)SO_1 + H_2SO_4(d = 1.168)$  at to.  $d_1 = Sp.$  gr. referred to  $H_2O$ .

 $d_2 = Sp.$  gr. referred to  $H_2SO_4$ .

t.°	% salt	d ₁	d ₂
20 6	1	1.1738	1.0050
22 2	2	1.1775	1.0082
21 1	3	1.1880	1.0129
22 7	1	1.1872	1.0165
22 3	5	1.1918	1.0204

(de Coninck A. ch. 1903, (7) 28, 7.)

1 ot is soi, in \$7.9 pts. alcohol (85°) at 16.7°; 38.6 pts. at 15.8°. (de Coninck. A. , 38.6 pts. at 15.8°. (de Coninck, A. ch. 1903, (7) **28.** 8.)

Very sl. sol. in formic and glacial acetic acids. (de Coninck, A. ch. 1903, (7) **28.** 9.)

Cempletely pptd. from (UO₂)SO₄+Aq by UC₂U₃O₂. (Persoz.)

Uranyl hydrogen sulphate, (UO2)SO4, H2SO4.

Very deliquescent. (Schultz-Sellack.)  $2(\mathrm{UO}_2)\mathrm{SO}_4$ ,  $\mathrm{H}_2\mathrm{SO}_4+5\mathrm{H}_2\mathrm{O}$ . Very deliquescent. (Wyrouboff, Bun. Soc. Min. 1909, **32**. 351.)

#### Uranyl pyrosulphate, (UO₂)S₂O₇.

Very deliquescent. Hisses with H₂O. (Schultz-Sellack.)

# Uranouranyl sulphate, USO₄, (UO₂)SO₄.

Sol. in H₂O. (Ebelmen.) Decomp. by boiling. (Berzelius.) Min. Voglianite.

# Uranyl sulphate ammonia, (UO2)SO4, 2NH3.

(v. Unruh, Dissert. 1909.)  $(UO_2)SO_4$ ,  $3NH_3$ . (v. Unruh.) (UO2)SO4, 4NH3. (v. Unruh.)

Vanadous sulphate,  $V_2O_3$ ,  $4SO_3+9H_2O_4$ . Sol. in H₂O. (Brierley, Chem. Soc. 49. 882.)

# Vanadium sulphate, $V_2O_5$ , $2SO_3 = (VO_2)_2S_2O_7$ .

Deliquescent. Easily sol. in H₂O.

 $V_2O_5$ , 3SO₃. Deliquescent. Sol. in  $H_2O$ and alcohol.

+3H₂O. Deliquescent. Very sol. in H₂O, but decomp. by boiling. Sol. in alcohol.

(Ditte, C. R. 102. 757.) VSO₄+7H₂O. Decomp. by air; very unstable; sol. in H2O. (Piccini, Z. anorg. 1899, **19.** 204.)

# Vanadium sesquisulphate, $V_2(SO_4)_a$ .

Anhydrous.

Insol. in H₂O. Insol. in conc. H₂SO₄, but slowly sol. in

boiling dil. H₂SO₄. Sol. in HCl. Insol. in alcohol and ether. (Stähler, B. 1905, **38.** 3979.)



#### Vanadium hydrogen sulphate, $V_2(SO_4)_3$ , $H_2SO_4 + 12H_2O_2$

Sol. in H₂O.

Sol. in HCl. Insol. in 60% H₂SO₄+Aq, alcohol, ether and acetic acid. (Stähler, B. 1905, **38.** 3978.)

### Divanadyl sulphate, $V_2O_2(SO_4)_2$ .

Insol. in  $H_2O$ , HCl, or  $H_2SO_4+Aq$ , but on heating to  $400^\circ$  becomes sol. in  $H_2O$  if heated to 130° therewith. (Gerland.)

+4H₂O. Very slowly sol. in H₂O at 10° quickly at 60°, and still more rapidly at 100°. Deliquesces in warm moist air more quickly than it dissolves in H₂O at 10°. Insol. in absolute alcohol. Very sol. in alcohol of 0.833 sp. gr. (Berzelius.)

+5H₂O. (Koppel and Behrendt, anorg. 1903, 35. 168.)

+7H₂O, and 10H₂O. +13H₂O. Efflorescent. (Gerland.)

2V₂O₄, 5SO₃+18H₂O. (Gain, C. R. 1906, **143.** 1154.)

 $V_2O_4$ ,  $3SO_3 + 10H_2O$ . (G.)  $2V_2O_4$ ,  $7SO_3 + 20H_2O$ . (G.)  $2V_2O_4$ ,  $9SO_3 + 22H_2O$ . (G.)  $V_2O_4$ ,  $5SO_3 + 12H_2O$ . (G.)

#### Divanadyl hydrogen sulphate,

 $(V_2O_2)H_2(SO_4)_3 = V_2O_4$ ,  $3SO_3 + H_2O$ .

+2H₂O.

+3H₂O.Deliquescent. Very slowly sol. in cold H₂O or alcohol. Easily sol. in hot H₂O. (Gerland.)

 $+5H_2O$ . Deliquescent. Insol. in ether. Scarcely sol. in alcohol. Slowly sol. in cold, easily in hot H₂O, (Crow.) +14H₂O. Easily sol. in cold H₂O or dil.

alcohol. (Gerland.)

2VO₂, 3SO₃. Sl. sol. in H₂O. (Koppell and Behrendt, Z. anorg. 1903, **35**. 163.)
2VOSO₄, H₂SO₄+H₂O. Very slowly sol. in H₂O. (Koppel and Behrendt, Z. anorg.

1903, **35**, 163.) 2VOSO₄, 3H₂SO₄+15H₂O. (Gain, C. R. 1906, **143**, 1156.)

 $2\dot{V}OSO_4$ ,  $4H_2\dot{S}O_4 + 16H_2O$ . (G.)  $2VOSO_4$ ,  $5H_2SO_4 + 15H_2O$ . (G.)

 $2VOSO_4$ ,  $7H_2SO_4 + 15H_2O$ . (G.)

2VOSO₄, 8H₂SO₄+16H₂O. (G.)

#### Ytterbium sulphate, Yb₂(SO₄)₃+8H₂O.

Quite slowly sol. in H₂O even at 100°. Anhydrous salt is easily sol. in much H2O, but if little H₂O is used the hydrous salt is formed, which only slowly dissolves. Sol. in K₂SO₄+Aq.

100 pts. H₂O dissolve at:

0° 15.5° 35° 55° 60° 44.2 34.6 19.1 11.5 10.4 pts. Yb₂(SO₄)₂, 70° 80° 90° 100°

7.22 6.93 5.83 4.67 pts. Yb₂(SO₄)₃.

(Cleve, Z. anorg. 1902, 32, 143.)

#### Yttrium sulphate, basic, $Y_2O_3$ , $SO_3 =$ (YO)₂SO₄.

Insol. in H₂O. (Berzelius.)  $2Y_2O_3$ ,  $SO_3+10H_2O$ . (Cleve.)

# Yttrium sulphate, Y₂(SO₄)₈.

Anhydrous. More sol, in H₂O than the hydrous salt, and more sol. in cold than hot H₂O. Solution sat. at 0° separates Y₂(SO₄)₃+  $8H_2O$  at  $50^\circ$ . 100 pts.  $H_2O$  dissolve 15.2 pts. anhydrous salt. at ord. temp.

5.38 pts. are sol. in 100 pts. H₂O at 25°. (James and Holden, J. Am. Chem. Soc. 1913,

**35.** 561.)

Easily sol. in large amount of sat. K₂SO₄+ Aq, from which  $3K_2SO_4$ ,  $2Y(SO_4)_3$  is pptd. on warming. (Cleve and Höglund, Sv. V. A. H. Bih. 1. No. 8.)

#### Solubility of Y₂(SO₄)₃ in Na₂SO₄+Aq at 25°.

Pts. Y ₂ (SO ₄ ) ₂ per 100 pts. H ₂ O	Pts. Na ₂ SO ₄ per 100 pts. H ₂ O	Solid phase
5.61 6.38 7.40 8.43	1.29 $3.85$ $6.21$ $8.53$	Y ₂ (SO ₄ ) ₃
5.86 $4.75$ $3.42$ $2.36$ $2.02$	$egin{array}{ccc} 7.57 \\ 7.72 \\ 10.14 \\ 11.36 \\ 13.42 \\ \end{array}$	
1.90 1.79 1.86 2.99 3.04	14.89 16.51 18.44 19.96 21.05	Y ₂ (SO ₄ ) ₃ , Na ₂ SO ₄ +2H ₂ O
2.27 1.52 1.61 5.38	27.14 28.22 28.13 0.0	

(James and Holden, J. Am. Chem. Soc. 1913, **35.** 560.)

 $+8H_2O$ . 100 pts.  $H_2O$  dissolve 9.3 pts. of cryst. salt at ord. temp., and 4.8 pts. at 100°. (Cleve, Bull. Soc. (2) 21. .344.)

Less sol. in H₂O containing H₂SO₄ than in

pure H₂O. (Berzelius.) Completely pptd. by HC₂H₃O₂+Aq. Insol. in alcohol.

# Yttrium hydrogen sulphate, Y₂(SO₄H)₃.

(Brauner, Z. anorg. 1904, 38, 332.)

Zinc sulphate, basic, 8ZnO, SO₂+2H₂O. Insol. in H₂O. (Schindler, Mag. Pharm.

**31.** 181.) 6ZnO, SO₃+10H₂O. Insol. in H₂O. (Kane,

A. ch. **72.** 310.) 4ZnO,  $SO_3 + 2H_2O$ . Scarcely sol. in hot or cold H₂O. Sol. in ZnSO₄+Aq. (Kühn, Schw. J. 60. 337.)



+3H ₂ O. (Werner, B. 1907, <b>40.</b> 4443.) +5H ₂ O. Nearly insol. in H ₂ O. (Haber-	Solu	ubility of	Zı
mann, M. 5. 432.) +6H ₂ O. (Kraut, Z. anorg. 1897, 15. 5.) +7H ₂ O. (Athanasesco, C. R. 103. 27 ¹ .)	t°	Pts. ZnSO4	
+8H ₂ O. Extremely slowly decomp. by H ₂ O. (Reindel, J. pr. 1869, (1) <b>106</b> 373.) +10H ₂ O. (Schindler.) 3ZnO, SO ₃ . Insel. in cold. st. sol. in hot H ₂ O. (Vogel.) 2ZnO, SO ₃ . (Athanasesco.) 5ZnO, SO ₃ . (Pickering, Chem. Soc. 1907,	0 1 2 3 4 5 6	44.0 44.6 45.2 45.8 46.4 47.0 47.6	
91. 1986.) +4H ₂ O. (Moody, Am. J. Sci. 1906, [4]) 22. 184.) 9ZnO, 2SO ₃ +12H ₂ O. (Reindel, J. pr. 1869. (1) 106. 374.)	,	48.3 48.9 49.5 50.2 50.8 51.5	
Zinc sulphate, ZnSO ₄ .  Sol. in H ₂ O with evolution of heat.  Sol. in HCl+Aq. +H ₂ O. (Étard.)	13	52.2 Decomp.	in
+2H ₂ O. Insol. in alcohol. (Kühn.) +3½H ₂ O. (Authon.) +5H ₂ O. Insol. in boiling alcohol of 0.86 sp. gr. (Kühn.)		Iulder, S	
+6H ₂ O. (Marignac.) +7H ₂ O. Slowly efflorescent. Mpt. of ZnSO ₄ +7H ₂ O=50°. (Tilden, Chem. Soc. <b>45.</b> 409.) For solubility data on hydrated salts, see	anhyc 27.6+	solubility Irous sal -0.2604t It from 8	t i fro
below.  Sol. in 2 + pts. H ₂ O at ord. temp., and in less at 100°. (Bergmann.)  100 pts. H ₂ O at 104.4° dissolve 81.81 pts. ZnSO ₄ . (Griffiths.)  100 pts. H ₂ O at ord. temp. dissolve 140 pts. ZnSO ₄ +	Sat 1° 29.1 55°	. ZnSO ₄ - 13° 20 32.6 34 62° 70	.8
7H ₂ O. (Dumas.) Sol. in 2.29 pts. H ₂ O at 18.75°. (Abl.) 100 pts.H ₂ O at 15.56° dissolve 140 pts. ZnSO ₄ +7H ₂ O. Ure's Dict.) 100 pts. H ₂ O at 15° dissolve 140.53 pts. ZnSO ₄ + 7H ₂ O, and has sp. gr. =1.4442. (Michel and Krafft.)	111°	45.0 47 12.° 13 40.7 38 (Étard,	7° .0
1 pt. of the crystals dissolves in 0.923 pt. H ₂ O at 17.5°, and forms a solution of 1.4353 sp. gr. (Karsten.) 100 pts. ZnSO ₄ +Aq sat. at 18-20° contain 35.36 pts. ZnSO ₄ . (v. Hauer, J. B. <b>1866.</b> 59.) 100 pts. H ₂ O dissolve at	Tra is 70°	insition p	ooi

(Tobler, J. B. 1855. 309.) 100 pts.  $\rm H_2O$  at 20.5° dissolve 163.2 pts.  $\rm ZnSO_4 + 7H_2O$ . (Schiff, A. **109.** 336.)

80.4 pts. ZnSO₄.

50° 66.9

100 pts. H₂O dissolve at: 20°

41.3

100 pts. H2O at to dissolve pts. anhydrous ZnSO₄, and pts. ZnSO₄+7H₂O.

t°	Pts. ZnSO ₄	Pts. ZnSO ₄ + 7H ₂ O	t°	Pts. ZnSO ₄	Pts. ZnSO ₄ + 7H ₂ O
0 10 20 30 40 50	43.02 48.36 53.13 58.40 63.52 68.75	115.22 138.21 161.49 190.90 224.05 263.84	60 70 80 90 100	74.20 79.25 84.60 89.78 95.03	313.48 369.36 442.62 533.02 653.59

(Poggiale, A. ch. (3) 8. 467.)

Solubility of ZnSO₄ in 100 pts. H₂O at t^o

t°	Pts. ZnSO4	t°	Pts. ZnSO ₄	t°	Pts. ZnSO ₄
0 1 2 3 4 5 6	44.0 44.6 45.2 45.8 46.4 47.0 47.6 48.3 48.9	14 15 16 17 18 19 20 21 22	52.8 53.5 54.2 54.9 55.6 56.3 57.0 57.7 58.4	27 28 29 30 31 32 33 34 25	62.1 62,8 63.6 64.3 65.1 65.8 66.6 67.3 68.1
6 10 11 12 13	$   \begin{array}{r}     49.5 \\     50.2 \\     50.8 \\     51.5 \\     52.2   \end{array} $	23 24 25 20	59.2 56.9 60.7 61 4	36 37 38 39	78.8 69.3 70.4 71.2

Decomp. into basic salt above 40°.

(Mulder, Scheik. Verhandel. 1864. 74.)

If solubility S represents number of pts. anhydrous salt in 100 pts. of solution, S=27.6+0.2604t from  $-5^{\circ}$  to  $+81^{\circ}$ ; S=50.0-0.2244t from  $81^{\circ}$  to  $175^{\circ}$ . (Etard, C. R. **106**. 207.)

Sat. ZnSO4+Aq contains at:

20° 41° 13° 49° 29.1 32.6 34.8 40.2 40.9% ZnSO4,

70° 100°

43.4 45.0 47.0 46.5 44.7% ZnSO4,

111° 12.° 137° 144° 169° 171° 43.0 40.7 38.0 37.4 30.0 29.0% ZnSO₄.

(Étard, A. ch. 1894, (7) 2. 551.)

Transition point from +6H₂O to +1H₂O

Solubility of ZnSO₄+6H₂O in H₂O at t°.

t°	g. ZnSO ₄ in 100 g. H ₂ O
-5.0	· 47.08
+0.1	49.48
9.1	54.20
15.0	57.15
25.0	63.74
30.0	65.82
35.0	67.99
39.0	70.08

(Cohen, Z. phys. Ch. 1900, 34. 182.)

Solubility of the hepta-and hexa-hydrates of ZnSO4 at to.

p=wt. of salt expressed in percent of solution.

t° '	р
0	29.43
0	29.53
0	29.49
15.00	33.66
15.88	33.85
30.70	38.46
39.92	41.36
39.95	41.37
40.73	41.43
41.49	41.70
46.40	42.68
49.97	43.51
49.99	43.41
50.00	43.50
50.02	43.51

Transition point from +7H₂O to +6H₂O is 39°.

The formula representing the change of solubility between 0° and 39° is p=29.5+0.270t+0.00068t² while the expression for the hexahydrate above 40° is

 $p = 41.35 + 0.210t + 0.00070t^2$ .

(Barnes, J. phys. Chem. 1900, 4. 19.)

Solubility of ZnSO₄+7H₂O in H₂O at t°.

t°	g. ZnSO ₄ in 100 g. H ₂ O
K	39.30
$-3 \\ +0.1$	41.93
$\begin{smallmatrix} 9.1\\15.0\end{smallmatrix}$	47.09 50.88
25.0	57.90
$\begin{array}{c} 35.0 \\ 39.0 \end{array}$	66.61 70.05
99.U	10.00

(Cohen, Z. phys. Ch. 1900, 34. 182.)

# Solubility in H₂O at high pressures:

Pressure	t°	g. ZnSO ₄ in	Solubility
in atm.		100 g. H ₂ O	at 25°
500 500 1000 1000	26 26 25.8 25.8 25.8	57.95 58.43 58.32 57.95 57.95	57.95 57.92 57.91 57.55 57.55

(Cohen and Sinnige, Z. phys. Ch. 1909, 67.

Liable to form supersaturated solutions.

Sat.  $ZnSO_4+Aq$  at 8° has sp. gr. = 1.421. (Anthon.)

Sp. gr. of ZnSO₄+7H₂O at 20.5°.  $\% = \% \text{ ZnSO}_4 + 7\text{H}_2\text{O}.$ 

1         1.0057         21         1.1288         41         1.275-2           2         1.0115         22         1.1355         42         1.283-3           3         1.0173         23         1.1423         43         1.291-3           4         1.0231         24         1.1491         44         1.300-3           5         1.0289         25         1.1560         45         1.308-3           6         1.0348         26         1.1629         46         1.316-3           7         1.0407         27         1.1699         47         1.325-3           8         1.0467         28         1.1770         48         1.333-3           9         1.0527         29         1.1842         49         1.342-3           10         1.0588         30         1.194         50         1.351-3           11         1.0649         31         1.1987         51         1.359-3           12         1.0710         32         1.2060         52         1.368-3           13         1.0772         33         1.2134         53         1.377-3           14         1.0835         34						
2     1.0115     22     1.1355     42     1.283       3     1.0173     23     1.1423     43     1.291'       4     1.0231     24     1.1491     44     1.300'       5     1.0289     25     1.1560     45     1.308'       6     1.0348     26     1.1629     46     1.316'       7     1.0407     27     1.1699     47     1.325'       8     1.0467     28     1.1770     48     1.333'       9     1.0527     29     1.842     49     1.342'       10     1.0588     30     1.1914     50     1.351'       11     1.0649     31     1.1987     51     1.359'       12     1.0710     32     1.2060     52     1.368'       13     1.0772     33     1.2134     53     1.377'       14     1.0835     34     1.2209     54     1.387'       15     1.0899     35     1.2285     55     1.396'       16     1.0962     36     1.2362     56     1.405'       17     1.1026     37     1.2439     57     1.415'	%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
3     1.0173     23     1.1423     43     1.291'       4     1.0231     24     1.1491     44     1.300'       5     1.0289     25     1.1560     45     1.308'       6     1.0348     26     1.1629     46     1.316'       7     1.0407     27     1.1699     47     1.325'       8     1.0467     28     1.1770     48     1.333'       9     1.0527     29     1.1842     49     1.342'       10     1.0588     30     1.1914     50     1.351'       11     1.0649     31     1.1987     51     1.359'       12     1.0710     32     1.2060     52     1.368'       13     1.0772     33     1.2134     53     1.377'       14     1.0835     34     1.2209     54     1.387'       15     1.0899     35     1.2285     55     1.396'       16     1.0962     36     1.2362     56     1.405'       17     1.1026     37     1.2439     57     1.415'	1	1.0057	21	1.1288	41	1.2754
3     1.0173     23     1.1423     43     1.291'       4     1.0231     24     1.1491     44     1.300'       5     1.0289     25     1.1560     45     1.308'       6     1.0348     26     1.1629     46     1.316'       7     1.0407     27     1.1699     47     1.325'       8     1.0467     28     1.1770     48     1.333'       9     1.0527     29     1.1842     49     1.342'       10     1.0588     30     1.1914     50     1.351'       11     1.0649     31     1.1987     51     1.359'       12     1.0710     32     1.2060     52     1.368'       13     1.0772     33     1.2134     53     1.377'       14     1.0835     34     1.2209     54     1.387'       15     1.0899     35     1.2285     55     1.396'       16     1.0962     36     1.2362     56     1.405'       17     1.1026     37     1.2439     57     1.415'	2	1.0115	22	1.1355	42	1.2834
4     1.0231     24     1.1491     44     1.300       5     1.0289     25     1.1560     45     1.308       6     1.0348     26     1.1629     46     1.316       7     1.0407     27     1.1699     47     1.325       8     1.0467     28     1.1770     48     1.333       9     1.0527     29     1.1842     49     1.342       10     1.0588     30     1.1914     50     1.351       11     1.0649     31     1.1987     51     1.359       12     1.0710     32     1.2060     52     1.368       13     1.0772     33     1.2134     53     1.377       14     1.0835     34     1.2209     54     1.387       15     1.0899     35     1.2285     55     1.396       16     1.962     36     1.2362     56     1.405       17     1.1026     37     1.2439     57     1.415	3	1.0173	23	1.1423	43	1.2917
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0231	24	1.1491	44	1.3000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0289	25	1.1560	45	1.3083
7   1.0407   27   1.1699   47   1.325; 8   1.0467   28   1.1770   48   1.333; 9   1.0527   29   1.1842   49   1.342; 10   1.0588   30   1.1914   50   1.351; 11   1.0649   31   1.1987   51   1.359; 12   1.0710   32   1.2060   52   1.368; 13   1.0772   33   1.2134   53   1.377; 14   1.0835   34   1.2209   54   1.387; 15   1.0899   35   1.2285   55   1.396; 16   1.0962   36   1.2362   56   1.405; 17   1.1026   37   1.2439   57   1.415.	6	1.0348	26	1.1629	46	1.3167
8     1.0467     28     1.1770     48     1.333       9     1.0527     29     1.1842     49     1.342       10     1.0588     30     1.1914     50     1.351       11     1.0649     31     1.1987     51     1.359       12     1.0710     32     1.2060     52     1.368       13     1.0772     33     1.2134     53     1.377       14     1.0835     34     1.2209     54     1.387       15     1.0899     35     1.2285     55     1.396       16     1.0962     36     1.2362     56     1.405       17     1.1026     37     1.2439     57     1.415		1.0407	27	1.1699	47	1.3252
9     1.0527     29     1.1842     49     1.342       10     1.0588     30     1.1914     50     1.351       11     1.0649     31     1.1987     51     1.359       12     1.0710     32     1.2060     52     1.368       13     1.0772     33     1.2134     53     1.377       14     1.0835     34     1.2209     54     1.387       15     1.0899     35     1.2285     55     1.396       16     1.0962     36     1.2362     56     1.405       17     1.1026     37     1.2439     57     1.415		1.0467	28	1.1770	48	1.3338
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0527	29	1.1842	49	1.3424
11     1.0649     31     1.1987     51     1.359       12     1.0710     32     1.2060     52     1.368       13     1.0772     33     1.2134     53     1.377       14     1.0835     34     1.2209     54     1.387       15     1.0899     35     1.2285     55     1.396       16     1.0962     36     1.2362     56     1.405       17     1.1026     37     1.2439     57     1.415		1.0588	30	1.1914	50	1.3511
13     1.0772     33     1.2134     53     1.3779       14     1.0835     34     1.2209     54     1.3870       15     1.0899     35     1.2285     55     1.3960       16     1.0962     36     1.2362     56     1.4050       17     1.1026     37     1.2439     57     1.415			31	1.1987	51	1.3599
14     1.0835     34     1.2209     54     1.387       15     1.0899     35     1.2285     55     1.396       16     1.0962     36     1.2362     56     1.405       17     1.1026     37     1.2439     57     1.415	12	1.0710	32	1.2060	52	1.3688
15 1.0899 35 1.2285 55 1.396 16 1.0962 36 1.2362 56 1.405 17 1.1026 37 1.2439 57 1.415	13	1.0772	33	1.2134	53	1.3779
16   1.0962   36   1.2362   56   1.405 17   1.1026   37   1.2439   57   1.415	14	1.0835	34	1.2209	54	1.3871
17   1.1026   37   1.2439   57   1.415	15	1.0899	35	1.2285	55	1.3964
1. 1 1.1020   0.   1.1230   0.	16	1.0962	36	1.2362	56	1.4057
18   1 1091   38   1 2517   58   1 4240	17	1.1026	37	1.2439	57	1.4151
	18	1.1091	38	1.2517	58	1.4246
19   1.1156   39   1.2595   59   1.4343	19	1.1156	39	1.2595	59	1.4342
20   1.1222   40   1.2674   60   1.4439	20	1.1222	40	1.2674	60	1.4439

(Schiff, A. 110. 72.)

Sp. gr. of ZnSO₄+Aq at 15°.  $\% = \% \text{ ZnSO}_4 + 7H_2O.$ 

%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1	1.006	21	1.130	41	1.280
2	1.013	22	1.137	42	1.288
3	1.019	23	1.143	43	1.295
4	1.024	24	1.150	44	1.304
5	1.0288	25	1.1574	45	1.3100
6	1.035	26	1.164	46	1.320
7	1.041	27	1.171	47	1.330
8	1.047	28	1.179	48	1.337
ğ	1.053	29	1.185	49	1.346
1Ŏ	1.0593	30	1.1933	50	1.3532
11	1.066	31	1.200	51	1.362
12	1.073	32	1.209	52	1.380
13	1.079	33	1.216	53	1.370
14	1.085	34	1.224	54	1.390
15	1.0905	35	1.231	55	1.3986
16	1.097	36	1.240	56	1.408
17	1.103	37	1.246	57	1.416
18	1.110	38	1.255	58	1.425
19	1.116	39	1.263	59	1.435
			1.2709	60	1.4451
20	1.1236	40	1.2/08	1 00	1.2102

(Gerlach, Z. anal. 8. 288.)

Sp. gr. of $ZnSO_4 + Aq$ at 23.5°. $a = no.$ of $g$ .,
equivalent to ½ mol. wt. dissolved in
$1000 \text{ g}$ . $H_2O$ : $b = \text{sp. gr. if a is } ZnSO_4 +$
$7H_2O_1 \frac{1}{2}$ mol. wt. = 143.5; c = sp. g if a
is $ZnSO_4$ , $\frac{1}{2}$ mol. wt. = 80.5.

а.	b	c	a	b
1 2 3 4 5 6	1.077 1.143 1.199 1.249 1.294 1.333	1.084 1.162 1.236 1.307 1.376 1.443	7 8 9 10 11	1.368 1.400 1.428 1.453 1.476

(Favre and Valson, C R. 79, 938.)

Sp. gr. of ZnSO₄+Aq at 18°.

% ZnSO4	Sp. gr.	CSuZ %	Sp. gr.	% Z nSO4	Sp. gr.
5	1.0509	15	1.1675	32	1.3045
10	1.1369	20	1.2313	50	1.3788

(Kohlrausch, W. Ann. 1879. 1.)

Sp. gr. of  $ZnSO_4+Aq$  at room temp. containing: 7.12 16.64 23.09%  $ZnSO_4$ .

7.12 16.64 23.09% ZnSO₄. 1.1064 1.1953 1.2814 (Wagner, W. Ann. 1883, **18**. 271.)

Sp. gr. of ZnSO₄+Aq at 19.5°.

Mass of salt per unit mass of solution	Density of solution. (g. per ec.)
0.00186	1.00179
0.00371	1.00356
0.00556	1.00530
0.00740	1.00711
0.01106	1.01065
0.01469	1.01410
0.01829	1.01753
0.02187	1.02112
0.02542	1.02446
0.02895	1.02798

(McGregor, C. N. 1887, 55. 4.)

Sp. gr. of ZnSO₄+Aq at 25°.

Concentration of ZnSO ₄ +Aq	Sp. gr.
1—normal  1/2— "  1/4— "  1/8— "  1/16— "	1.0792 1.0402 1.0198 1.0094 1.0047

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Sp. gr. of ZnSO ₄ +Aq.	√Sp.	gr.	of	ZnSO	+	Aq.	
-----------------------------------	------	-----	----	------	---	-----	--

. salt it. 100 g. solution	Sp. gr.
24.7170 21.4444 17.7573 14.0307 9.7426	1.3152 1.2665 1.2145 1.1645 1.106
5.1110	1.0565

(Charpy, A. ch. 1893, (6) 29. 27.)

Sp. gr. of ZuSO4+Aq. .

g. equivalents ZuSO4 per liter	t°	Sp. gr. t°/t°
0.001309	15.59	1.0001126
0.002616	13.575	1.0002258
0.005212	13.573	1.0004451
0.01039	13.585	1.000886
0.95818	13.621	1.008189
0.18842	13.642	1.015587
0.1890	16.11	1.01550
2.493	15.88	1.19385

(Kohlrausch and Hallwachs, W. Ann. 1894, 53. 21.)

Sp. gr. of ZnSO₄+Aq at 18.5°, when p = percent strength of solution; d=observed density; and w=volume conc.

in grams per cc.  $\left(\frac{\text{pd}}{100} = \mathbf{w}\right)$ 

р	d	w
29.22	1.3718	0.40057
25.14	1.3091	0.32910
$\frac{21.28}{17.08}$	1.2528	0.26659 0.20422
11.20	1.1220	0.12567
8.44	1.0894	0.09195
$\begin{array}{c} 6.65 \\ 3.82 \end{array}$	1.0696	$0.07112 \\ 0.03968$
3.18	1.0318	0.03281
1.46_	1.0138	0.01480
0.577	1.0045	0.00580

(Barnes, J. phys. Chem. 1898, 2, 542.)

Sp. gr. of dil. ZnSO₄+Aq at 20.004°. Conc. = g. equiv. per l. at 20.004°. Sp. gr. compared with H₂O at 20.004° = 1•

Conc.	Sp. gr.
0.0000 0.0001 0.0002 0.0005 0.0010 0.0020 0.0050 0.0060 1.0100	1.000,000,0 1.000,008,6 1.000,017,2 1.000,043,2 1.000,086,3 1.000,172,3 1.000,429,1 1.000,514,3 1.000,853,9
	1

(Lamb and Lee, J. Am. Chem. Soc. 1913, 35. 1690.)

Sat. ZnSO4+Aq boils at 104.4°, and solution contains 45 pts. ZnSO₄ to 100 pts. H₂O.

(Griffiths.)

Crust forms at 103.5°, the solution containing 68 pts. ZnSO₄ to 100 pts. H₂O. Highest temp. observed, 105°. (Gerlach, Z. anal. **26.** 

B.-pt. of ZnSO₄+Aq containing pts. ZnSO₄ to 100 pts. H₂O.

Bpt.	Pts. ZnSO4	Bpt.	Pts. ZnSO ₄
100.5°	13.1	103.0°	61.0
101.0	25.0	103.5	68.0
101.5	37.7	104.0	74.9
102.0	45.4	104.5	80.7
102.5	53.9	105.0	85.7

(Gerlach, Z. anal. 26 432.)

B.-pt. of  $ZnSO_4+Aq$ .

g. ZnSO ₄ in 100 g. H ₂ O	Rise of the bpt.	Barometric pressure mm.
2.886	0.080	743.0
6.647	0.169	"
10.139	0.266	"
13.389	0.372	"
17.713	0.461	"
22.202	0.591	"
25.199	0.690	"
28.249	0.811	"
30.470	0.899	742.0
32.89	0.995	"
35.18	1.122	"
37.36	1.240	"
39.83	1.381	"
41.30	1.459	11
44.56	1.671	"

(Kahlenberg, J. phys. Chem. 1901, 5. 370.)

1 l. absolute H₂SO₄ dissolves 0.0021 mols. ZnSO₄ at 25°. (Bergius, Z. phys. Ch. 1912, **72.** 353.)

Completely pptd. from ZnSO₄+Aq by HC₂H₃O₂. (Persoz.)

Solubility of ZnSO₄ in KOH+Aq.

per cent ZnO in ppt.
17.11
35.10
68.08
100.00
98.49
96.79
89.76
68.87
0.00

(Linebarger, J. Am. Chem. Soc. 1895, 17. **36**0.)

Difficultly and slowly sol, in sat. NH₄Cl+ Aq, with separation of a double sulphate. Sol. in considerable quantity in sat. NaCl

+Aq, without pptn. at first, but finally Na₂SO₄ separates out. See under NaCl.

Sol. in sat. NaNO₃+Aq as in NaCl+Aq.

See under NaNO3. Sol. in sat. KNO₈+Aq with immediate

pptn. of double sulphate. (Karsten.) See under KNO₈

Very rapidly sol. in sat. K₂SO₄+Aq, with separation of a double salt. (Karsten.) See under K2SO4.

Abundantly. in sat. CuSO₄+Aq.

Slowly sol. in sat. MgSO₄+Aq.

Very rapidly and abundantly sol. in sat. NaSO₄+Aq.

For solubility of ZnSO4+Na2SO4 see under Na₂SO₄ and Na₂Zn(SO₄)₂+4H₂O.

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 830.)

Insol. in alcohol of 0.88 sp. gr.; 1000 pts. alcohol of 0.905 sp. gr. dissolve 2 pts. (Anthon.)

100 pts. of a saturated solution in 40% alcohol contain 3.48 pts. ZnSO₄+7H₂O; 20% 39 pts.; 10%, 51.1 pts. (Schiff, J. B. 1861.

100 pts. absolute methyl alcohol dissolve 0.65 pt. ZnSO₄ at 18°. (de Bruyn, Z. phys. Ch. 10, 783.)

100 pts. absolute methyl alcohol dissolve

59 pts.  $ZnSO_4+7H_2O$  at 17°. 100 pts. 50% methyl alcohol dissolve 15.7

pts. ZnSO₄+7H₂O at 17°. (de Bruyn.) Insol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4329.)

100 pts. glycerine dissolve 35 pts. ZnSO₄ at ord. temp. (Klever, Bull. Soc. 1872, (2) **18.** 372.)

Insol. in methyl acetate. (Naumann. B. 1909, **42.** 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3601.)

Min. Gosslarite.

Zinc hydrogen sulphate,  $ZnH_2(SO_4)_2 + 8H_2O$ . Somewhat difficultly sol. in cold, easily in hot H₂O. (v. Kobell, J. pr. **28.** 492.)

Zinc sulphate ammonia, basic, 4NH₈, 4ZnO,  $SO_3+4H_2O.$ 

(Schindler.)

Zinc sulphate ammonia, ZnSO₄, 2NH₂.

+H₂O. Decomp. by H₂O into basic zinc sulphate.

ZnSO₄, 4NH₃+4H₂O. Sol. in H₂O. (Kane, A. ch. **72**, 304.)

+3H₂O. (André, C. R. **100**. 241.) ZnSO₄, 5NH₃. Sol. in H₂O with partial decomp. (Rose, Pogg. 20. 149.)

Zinc sulphate cupric oxide, ZnSO, 2CuO+ 5H₂Ò.

(Mailhe, A. ch. 1902, (7) 27. 169.) ZnSO₄, 3CuO+xH₂O. (Recoura (Recoura, C. R. 1901, 132. 1415.)

 $+5H_{2}O.$ 2ZnSO₄, 3CuO+12H₂O. (Mailhe, A. ch. 1902, (7) 27. 169.)  $7ZnSO_4$ ,  $24CuO + xH_2O$ . (Recoura, C. R. 1901, **132**, 1415.)

Zinc sulphate hydrazine, ZnSO₄, 2N₂H₄.

Sol. in NH₄OH+Aq. (Franzen, Z. anorg. 1908, 60. 278.)

Sol. in NH₄OH+Aq without decomp. (Curtius, J. pr. 1894, (2) **50.** 345.)

ZnH₂(SO₄)₂, N₂H₄. 1 pt. is sol. in 185 pts. H₂O at 12°. Sl. sol. in dil. acids. Decomp. by conc. H_NO₃ and by hot conc. H₂SO₄. Very sol. in  $NH_4OH + \Lambda q$ . (Curtius, J. pr. 1894, (2) **50.** 331.)

# Zirconium sulphate, basic, 3ZrO₂, 2SO₈.

Insol, in H₂O. Sol, in HCl+Aq. (Paykull, B. 12. 1719.)

 $4\mathrm{ZrO}_2$ ,  $3\mathrm{SO}_3 + 14\mathrm{H}_2\mathrm{O}$ . Ppt. Difficulty sol. in H₂O. (Hauser, B. 1904, **37**. 2024.)

3ZrO₂, SO₃. Insol. in boiling H₂O. (Franz, B. 3. 58.)

7ZrO2, 6SO3. Insol. in H2O. (Endemann, J. pr. (2) 11. 219.)

ZrO₂, SO₃. Sol. in very little H₂O. More H₂O decomp. into 3ZrO₂, 2SO₃ and Zr(SO₄)₂. (Berzelius.)

3ZrO₂, 4SO₃+15H₂O. Sol. in H₂O. (Pay-

6ZrO₂, 7SO₃+19H₂O. Sol. in H₂O. (Paykull.)

#### Zirconium sulphate, $Zr(SO_4)_2$ .

Anhydrous. Slowly but completely sol. in cold, quickly in hot H₂O.

Sol. in warm H2SO4, but separates on cooling. Precipitated from aqueous solution by alcohol.

+4H₂O. Easily sol. in H₂O.

100 pts. of the solution contain 59.3 pts. of the hydrated salt at 39.5°. (Hauser, B. 1904, **37.** 2025.

Solubility of Zr(SO₄)₂+4H₂O in H₂SO₄+ Aq at t°.

100 g. of the solution contain:

t°	g. ZrO2	g. SOs
39.5	19.5 19.3 19.6 19.3 18.8 18.15 17.3 16.2 9.6 5.3 3.51 1.03 0.46 0.31	25.46 25.6 25.99 26.5 27.0 27.6 25.3 29.1 32.3 34.7 36.01 38.2 39.8 42.0

Solubility of Zr(SO₄)₂+4H₂O in H₂SO₄+ Aq at to.—Continued.

$\mathbf{t}^{\mathbf{o}}$	g. ZrO2	g. SO ₈
	0.33	42.1
	0.14	46.8
	0.13	47.1
	0.15	56.7
	0.20	56.8
	0.27	57.1
	0.50	57.5
	0.60	57.8
	2.00	59.5
	3.25	60.4
	4.40	61.4
	0.10	50 1
22	0.10	56.1
	0.13	46.5
	0 21	57.2

(Hauser, Z. anorg. 1907, 54. 197.)

Zirconium hydrogen sulphate, Zr(SO₄)₂,  $H_2SO_4+H_2O.$ 

Solubility in H₂SO₄+Aq. at 39.5°.

100 g. of the solution contain: g. ZrO2 0.11 0.10 0.1081.6 81.5 g. SO₃. 81.4

(Hauser, Z. anorg. 1907, 54. 200.)

+3H₂O.

Solubility in H₂SO₄+Aq at t°. 100 g. of the solution contain:

100 8. 01 0110	207407	
t°	g. ZrO2	g. SO ₃
39.5	4.55 3.25 3.33 3.35 1.80 1.60 1.55 1.12 0.96	61.5 62.5 63.8 63.8 64.2 64.6 65.0 66.8 68.4
22	0.80 0.65 0.60	66.4 67.5 68.1

(Hauser, Z. anorg. 1907, 54. 200.)

Persulphuric acid, HSO4 See Persulphuric acid.

Pyrosulphuric acid and pyrosulphates. See under Sulphuric acid and sulphates.

Sulphuric boric acid. See Borosulphuric acid.

Sulphuric vanadic acid, V2O5, 3SO3+3HO3. See Sulphate, vanadium.

# Sulphurous acid, anhydrous, SO₂. See Sulphur dioxide.

#### Sulphurous acid, H₂SO₃.

Known only in aqueous solution, from which  $SO_2$  is given off upon heating. Crystallizes in cold, with various amounts of water, forming compounds which approximate  $H_2SO_3+8H_2O$  (Pierre, A. **68.** 228);  $H_2SO_3+10H_2O$  (Döpping, Bull. Ac. St. Pétersb. **7.** 100);  $H_2SO_3+14H_2O$  (Schönfeld, A. **95.** 22);  $H_2SO_3+6H_2O$  (Roozeboom, R. t. c. **3.** 29, 59, 75, 84; Geuther, A. **224.** 218). Crystals are sol. in 2 pts.  $H_2O$  at  $10^\circ$ . (Pierre.)

For sp. gr. of solutions, etc., see sulphur dioxide.

#### Sulphites.

Normal. Only the alkali sulphites are sol. in  $H_2O$ , and they are insol. or only sl. sol. in alcohol.

Insol. in liquid NH₃. (Franklin, Am. ch. 1898, 20, 824)

J. 1893, 20. 824.) Acid. All the acid sulphites are sol. in  $H_2O$ . In general it is rarely possible to determine whether the compd. described is a pure chemical compound or not. It is probable that many substances described by Svenssen and others are isomorphic mixtures whose composition depends upon the temp. and conc. of the solution in which it was pptd. (Rosenheim, Z. anorg. 1900, 25. 72.)

Aluminum sulphite, basic, Al₂O₃, SO₂+4H₂O.

Insol. in H₂O; sol. in H₂SO₃+Aq. (Four-croy and Vauquelin.)

 $6Al(OH)_3$ ,  $Af_2(SO_3)_3+9H_2O$ . Ppt. (Seubert, Z. anorg. 1893, **4.** 66.)

Ammonium sulphite, basic,  $(NH_4)_2SO_3$ ,  $NH_3 + \frac{3}{2}H_2O$ .

Sol. in H₂O. Pptd. from aqueous solution by alcohol. (Muspratt.)

Does not exist. (Marignac.)

#### Ammonium sulphite, (NH₄)₂SO₃.

Very hydroscopic. (Divers, Chem. Soc. 1900, 77. 336.)

Insol. in acetone. (Eidmann, C.C. **1899**, II. 1014.)

 $+\mathrm{H}_2\mathrm{O}$ . Slowly sol. in  $\mathrm{H}_2\mathrm{O}$ . (Muspratt, A. **50**. 268.)

Sol. in 1 pt. H₂O at 12°. (Fourcroy and Vauquelin, Crell. Ann. 1800. 2. 415.)

More sol. in hot H₂O with evolution of NH₃. Sl. sol. in absolute alcohol. (Muspratt.)

Much more sol. in alcohol than K₂SO₃. (Pierre.)

Loses NH3 in the air.

Sol. in H₂O. Conc. solution charged with NH₃ will deposit salt on evaporation over KOH. Dil. solution decomp. on evaporation. (Divers, Chem. Soc. 1900, 77. 335.)

Insol. in acetone. (Naumann, B. 1904, **37.** 4329.)

Ammonium hydrogen sulphite, NH₄HSO₂.

Insol. in acetone. (Eidmann, C.C. **1899**, II. 1014; Naumann, B. 1904, **37**. 4329.)

#### Ammonium pyrosulphite, (NH₄)₂S₂O₅.

Deliquescent. Very sol. in H₂O and alcohol. Insol. in ether. (Fock and Klüss, B. **23.** 3149.)

Very sol. in  $H_2O$ ; very hydroscopic. Aq. solution is sl. decomp. on evaporation. (Divers, Chem. Soc. 1900, **77.** 336.)

# Ammonium cadmium sulphite, (NH₄)₂SO₃, CdSO₃.

Nearly insol. in  $H_2C$ . Partly sol. in excess of  $H_2SO_3+Aq$ , but separates out on boiling. (Schuler, A. 87. 34.)

Ammonium cobaltous sulphite,  $(NH_4)_2SO_3$ ,  $CoSO_3 + xH_2O$ .

Decomp. on air. (Berglund, B. 7. 469.)

# Ammonium cobaltocobaltic sulphite.

See Cobaltisulphite, ammonium cobalt.

Ammonium cuprous sulphite,  $(NH_4)_2SO_3$ ,  $2Cu_2SO_3 + 2H_2O$ .

(Böttinger, A. **51.** 411.)

 $(NH_4)_2SO_3$ ,  $Cu_2SO_3$ . Insol. in cold, decomp. by boiling  $H_2O$ . (Rogojski, J. B. **1851.** 366.)

Decomp. by warming with H₂O, in which it is insol. Sol. in acids with evolution of SO₂. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25**. 99.)

+2H₂(). (Commaille, J. B. **1867**. 300.) 2(NH₄)₂SO₃, Cu₂SO₂+3H₂O. Very sol. in H₂O. Solution decomp. on standing. Decomp. by acids. (Rosenheim and Steinhäuser.)

5(NH₄)₂SO₃, Cu₂SO₃+2H₂O. Decomp. on air. Sol. in H₂O with decomp. (Svensson.) 6(NH₄)₂SO₃, Cu₂SO₃+4H₂O. Easily de-

6(NH₄)₂SO₃, Cu₂SO₃+4H₂O. Easily d comp. (Rosenheim and Steinhäuser.)

7(NH₄)₂SO₃, Cu₂SO₃+4H₂O. Very sol. in H₂O. Solution soon decomp. (Rosenheim and Steinhäuser.)

+10H₂O. Decomp. on air. Sl. sol. in warm, less sol. in cold H₂O.(de Saint-Gilles.) +14H₂Q. Decomp. on air. Sol. in H₂O, but solution decomp.

Very easily sol. in mother liquor. (Svensson, Acta Lund. 1899, 13.)

bon, mota Bana. Boto To.

#### Ammonium cuprocupric sulphite, (NH₄)₂SO₃, 2Cu₂SO₃,CuSO₃+5H₂O.

Insol. in H₂O and weak acids. Sol. in NH₄OH+Aq. (de Saint-Gilles, A. ch. (3) **42.** 31.)

+6½H₂O. Ppt. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25.** 98.)

Ammonium glucinum sulphite,

 $(NH_4)_2O$ , 2GIO,  $3SO_2+4H_2O$ .

Ppt. Very unstable in the air. (Rosenheim, Z. anorg. 1897, 15. 310.)

Ammonium gold (aurous) sulphite. 3(NH₄)₂SO₈,Au₂SO₈.

Very easily sol. in H₂O. Insol. in alcohol. (Haase, Z. Ch. 1869, 535.)

Ammonium gold (aurous) sulphite aunmonia,  $(NH_4)_2SO_3$ ,  $3Au_2SO_3$ ,  $6NH_3+H_2O$ .

Decomp. by H₂O. Sol. in warm NH₄OH+ Aq, but decomp, by boiling.

 $(NH_4)Au_3(SO_3)_2$ ,  $3NH_3+4H_2O$ . Decomp. by H₂O. (Rosenheim, Z. anorg. 1908, 59. 201.)

Ammonium iridium sulphite. See Iridosulphite, ammonium.

Ammonium iron (ferrous) sulphite,  $(NH_4)_2SO_3$ ,  $FeSO_3 + xH_2O$ . (Berglund.)

Ammonium iron (ferric) sulphite sulphate,  $FeSO_3SO_4NH_4+H_2O$ .

Sl. sol. in cold H₂O. Decomp. by cold dil. HCl. (Hofmann, Z. anorg. 1897, 14. **2**87.)

Ammonium magnesium sulphite,  $(NH_4)_2Mg_3(SO_3)_4+18H_2O$ .

Very sl. sol. in H₂(). (Fourcroy and Vauquelin.)

Sol. in  $H_2SO_3+Aq$ .

+5H₂(). Much more sol. in H₂O than  $MgSO_3$ . (Rammelsberg.)

Ammonium manganous sulphite, (NH₄)₂SO₃, MnSO₃.

Relatively easily decomp. by H₂O. (Berglund, Bull. Soc. (2) 21. 213.)

Not easily decomp. (Gorgeu, C. R. 96. 376.)

Ammonium mercuric sulphite, (NH₄)₂SO₈, HgSO₃.

Very easily sol. in H₂O, but H₂O solution gradually decomp., even in the cold.

Ammonium nickel sulphite, (NH₄)₂SO₈,  $3NiSO_3 + 18H_2O$ .

Sol. in H₂O. (Berglund, B. 7. 469.)

Ammonium platinous sulphite. See Platosulphite, ammonium.

Ammonium potassium sulphite, 10(NH₄)₂SO₈,  $K_2SO_3+11H_2O$ .

Decomp. by H₂O, etc. (Hartog, C. R. **109.** 221.)

Ammonium scandium sulphate.  $(NH_4)_2SO_3$ ,  $Sc_2(SO_3)_3 + 7H_2O$ .

· Insol. in H2O. Difficulty sol. in H2SO2+ Aq. (Meyer, Z. anorg. 1914, 86, 281.)

Ammonium silver sulphite, (NH₄)₂SO₂, AggCOs.

Insol. in H₂O, but gradually decomp. thereby. (Svensson, B. 4. 714.) 6(NH₄)₂SO₈, Ag₂SO₈ +19H₂O. Sol. in H₂O without decomp. (Svensson) 3,NH₄)₂SO₅, 4NH₄HSO₃, Ag₂SO₂+18H₂O.

Easily sol. in H₂O, but decomp. by warming.

Ammonium sodium hydrogen sulphite,  $NH_4Nn_2H(SO_3)_2+4H_2O$ .

Not deliquescent (Marignac, Ann. Min. (5) **12.** 29.)

100 pts. H₂O dissolve 42.3 pts. salt at 12.4°. and 48.7 pts. at 15°. (Schwicker, B. 22. 1732.) +5 $H_2O = 2Na_2SO_3$ , (NH₄)₂S₂O₅+ $H_2O$ . (Tauber, Techn. J. B. 1888, 444.)

Ammonium tellurium sulphite, (NH₄)₂SO₈,  $TeSO_3+xH_2O$ . Sol. in H₂O. (Berglund, B. **7.** 469.)

Ammonium uranyl sulphite,

 $NH_4(UO_2)(OH)SO_3$ 

Insol. in pure H₂O More sol. in H₂SO₃+ Aq than the K salt, and less than the Na salt. (Scheller, A. **144**. 240.) (NH₄)₂O, 2UO₃, 3SO₂. (NH₄)₂O, 4UO₃, 5SO₂. (NH₄)₂O, 3UO₃, 2SO₂. (NH₄)₂O, UO₃, 2SO₂. (NH₄)₂O, UO₃, 2SO₂.

(Kohlschütter, A. 1900, **311.** 10.)

Ammonium vanadium sulphite. See Vanadiosulphite, ammonium.

Ammonium vanadyl sulphite,

 $(NH_4)_2SO_3$ ,  $VOSO_3+2H_2O$ .

Sol. in H₂O with decomp. (Koppel, Z. anorg. 1903, 35. 184.)

 $(NH_4)_2O$ ,  $3VO_2$ ,  $2SO_2+H_2O$ . Sol. in cold H₂O without decomp.

Easily sol. in mineral acids and alkalies. Sl. sol. in alcohol and ether. (Koppel Z. anorg. 1903, **35.** 182.)

Ammonium zinc sulphite, (NH₄)₂SO₃, ZnSO₃. Sol. in H₂O. (Berglund, B. 7. 469.)

Ammonium sulphite mercuric chloride, 2(NH₄)₂SO₃. HgCl₂.

Sl. sol. in cold, decomp. by boiling H₂O. (de St-Giles, A. ch. (3) 36. 95.)

Antimony sulphite,  $Sb_2O_3$ ,  $3SO_2(?)$ .

Insol. in H₂O. (Berzelius.) Could not be obtained. (Röhrig, J. pr. **(2) 37.** 241.)

**42.** 3790.)

#### Barium sulphite, BaSO₈.

Very sl. sol. in H₂O. (Fourcroy and Vauquelin, A. ch. 24. 301.)

Sol. in about 46,000 pts. H₂O at 16°. (Autenrieth, Z. anal. 1898, **37.** 294.)

Sol. in H₂SO₃+Aq. Insol. in acetone. (Naumann. B. 1904, **37.** 4329); methyl acetate. (Naumann, B. 1909,

Solubility in sugar+Aq at to.

	Solvent		t°	100 cem. of solution con- tain g. BaSO
	ater		20	0.01974
sucrose	+Aq 10° l	Brix	ł	0.01040
"	' ' <b>20°</b>	"	i	0.00968
"	" 30°	"		0.00782
6,6	" 40°	64		0.00484
A	" 50°	u		0.00298
(sat.)"	" 60°	"		0.00223
	water		80	0.00177
sucrose	+Aq 10° I	3rix		0.00335
"	" 20°	"		0.00289
"	" 30°	"		0.00223
"	" 40°	"		0.00158
"	" 50°	"		0.00149
(sat.)"	" 60°	"		0.00112

(Rogowicz, C. C. 1905, II. 1223.)

Barium cobaltic sulphite.

See Cobaltisulphate, barium.

Barium gold (aurous) sulphite, 3BaSO₃, Au₂SO₃+xH₂O. Ppt. (Haase.)

Barium mercuric sulphite,  $BaSO_3$ ,  $HgSO_3 + H_2O$ .

Ppt. (Barth, Z. phys. Ch. 9. 196.)

Barium mercuric sulphite chloride, BaSO₃, BaCl₂, 2HgSO₃+3½H₂O. (Barth, Z. phys. Ch. 1892, **9.** 208.)

Bismuth sulphite, basic, Bi₂O₃, 3SO₂+5H₂O. Insol, in H₂O, alcohol, or ether. Sl. sol. in H₂SO₃+Aq. (Röhrig, J. pr. (2) **37**, 241.) (BiO)₂SO₃, 3(BiOH)SO₃+H₂O. (Seubert and Elten, Z. anorg. 1893, **4**, 72-5.) 2(BiO)₂SO₃, 3(BiOH)SO₃+2H₂O. (S. and E.) 3(BiO)₂SO₃, 7(BiOH)SO₃+10H₂O. (S. and E.) 4(BiO)₂SO₃, (BiOH)SO₃+5H₂O. (S. and E.) 9(BiO)₂SO₃, (BiOH)SO₃+2H₂O. (S. and E.)

Bismuth cobaltic sulphite. See Cobaltisulphite, bismuth.

#### Cadmium sulphite, CdSO:

Difficultly sol. in H₂O. Easily sol. in dil. acids. (Rammelsberg, Pogg. **67**. 256.) +2H₂O. Difficultly sol. in H₂O. Sol. in H₂SO₃+Aq. Sol. in NH₄OH+Aq. Insol. in alcohol. (Muspratt, Phil. Mag. (3) **30**. 414.) Insol. in acetone. (Naumann, B. 1904, **37**. 4329.)

Contains  $2\frac{1}{2}H_2O$ . (Deniges, Bull. Soc. (3) 7. 569.)

Cadmium sodium sulphite, 3CdSO₃, Na₂SO₃. Sol. in H₂O. (Berglund, B. 7. 469.)

Cadmium sulphite, ammonia, CdSO₃, NH₅.

Decomp. by H₂O. Sol. without decomp. in hot NH₄OH+Aq. (Rammelsberg, Pogg. 67. 256.)

# Cæsium sulphite, Cs₂SO₃.

Easily sol. in H₂O. Sl. sol. in alcohol. (Chabrié, C. R. 1901, **133**. 297.)

# Cæsium hydrogen sulphite, CsHSO₃.

Easily sol. in H₂O. Sl. sol. in alcohol. (Chabrié, C. R. 1901, **133**. 297.)

Calcium sulphite, basic,  $Ca_6S_5O_{16} = 6CaO$ ,  $5SO_2$ . (Schott, Dingl. **202.** 52.)

# Calcium sulphite, CaSO₂+2H₂O.

Slowly effloresces. Sol. in 800 pts. cold H₂O. (Berzelius.)

Insol. in  $H_2O$ . (Röhrig, J. pr. (2) **37.** 230.) 0.043 g. is sol. in 1 l.  $H_2O$  at 18°. (Weisberg, Bull. Soc. 1896, (3) **15.** 1249.)

CaSO₃ equiv. to 78 mg. CaO is sol. in 1 l. H₂O at 100°. (Robart, C. A. 1913, 2500.) Very sol. in H₂SO₃+Aq. See CaH₂(SO₃)₂. Insol. in liquid NH₃. (Franklin, Am. Ch. J.

1898, **20.** 827.) CaSO₃ equiv. to 37 mg. CaO is sol. in 1 l. 12% cane sugar + Aq at 100°. (Robart, C. A. **1913.** 2500.)

0.0825 g, is sol. in 1 l. 10% sugar +Aq. at 18°; 0.0800 g, is sol. in 1 l. 30% sugar +Aq. at 18°. (Weisberg, Bull. Soc. 1896, (3) **15.** 1249.) Insol. in acetone. (Krug and M'Elroy.) Insol. in methyl acetate. (Naumann, B. 1909, **42.** 3790; ethyl acetate. (Naumann, B. 1904, **37.** 3601.) + ½H₂O. (Rammelsberg.)

# Calcium hydrogen sulphite, CaH₂(SO₃)₂.

Know only in solution.

100 ccm. H₂O containing 9 g. SO₂ dissolve 0.553 g. CaSO₂ to form a solution of 1.06 sp. gr. (Gerland, J. pr. (2) **4.** 119.)

# Calcium cobaltic sulphite. See Cobaltisulphite, calcium.

Cerous sulphite, Ce₂(SO₃)₃+3H₂O.

More sol. in cold than hot H₂O.

Solution gradually decomposes. (Berthier. A. ch. (3) 7. 77.)

Chromous sulphite, CrSO₂.

Precipitate. Insol. in H₂O. (Mober 4.)

Chromium sulphite, basic, Cr₂O₃, SO₂.

Colloidal modification, Sol. in H.O. 2Cr₂O₃, SO₂. Ppt. (Recoura, Bull. Soc. **1898**, (3) **19**, 169.)

#### Chromic sulphite.

Known only in aqueous solution, which precipitates a basic salt on boiling.

2Cr₂O₃, 3SO₂+16H₂O₂. Precipitate. (Danson, Chem. Soc. 2. 205.)

Chromic potassium sulphite, K2O, Cr2O3,  $2SO_2 + xH_2O$ .

Precipitate. (Berglund, B. 7. 470.)

# Cobaltous sulphite, basic.

Ppt. Decomp. by  $H_2O$ . (Berthier.) Co(OH)₂, 5CoSO₃+10H₂O. Ppt. bert and Elten, Z. anorg. 1893, **4**. 89.) 5CoSO₃+10H₂O. Ppt. (Seu-Co(OH)₂, 10CoSO₃+15H₂O. (Seubert and Elten.)

#### Cobaltous sulphite, CoSO₈.

+3H₂O. Nearly insol. in H₂O. Sol. in H₂SO₃+Aq. (Rammelsberg.) Partly sol. in NH₄OH+Aq.

+5H₂O. Insol. in H₂O. Sol. in H₂SO₃+ Aq. (Muspratt, A. 30. 282.)

Cobaltocobaltic sulphite.

See Cobaltisulphite, M.

Cobaltic sulphite with 3M2SO3.

See Cobaltisulphite, cobaltous.

Cobaltous potassium sulphite, CoSO₃, K₂SO₃  $+x\mathrm{H}_2\mathrm{O}$ .

Insol. in H₂O; easily sol. in HCl+Aq. (Schultze, J. B. 1864. 270.)

Cobaltic potassium sulphite, Co₂(SO₃)₃, K₂SO₃.

Sl. sol. in H₂O; easily sol. in H₂SO₈+Aq or HCl+Aq. (Schultze.)

Cobaltous sodium sulphite, 3CoO, Na₂O, 3SO₂.

Insol. in H₂O. Easily sol. in HCl+Aq. (Schultze.)

Cobaltic sodium sulphite, Co₂O₃, Na₂O, 3SO₂.

Sl. sol. in H₂O. (Schultze.)

Cuprous sulphite, Cu₂SO₂+H₂O.

(a) Red. Sl. sol in H₂O. Sol. in NH₄OH or HCl+Aq. (Rogojski, J. B. **1851**. 366.) Could not be obtained by St. Gilles or

Svensson (B. 4. 713). insol. in H₂O, alconol, or ether. (Étard, C.

R. **95.** 38.)

Composition is (Cu₂)₈H₁₆(SO₄)₈, "Cuprous isosulphite," according to Etard." +½H₂O. Etard's formula, Cu₂SO₂+H₂O

is incorrect.

The salt is almost colciless. Z. phys. Ch. 1909, **69.** 512.) (Ramberg (6) White. Normal sait. Insol. in H₂O, alcohol, or ether. (Etard.)

Cupric sulphite, basic, 4CuO, SO₂+7H₂O.

Insol. in H₂O, and decomp. by washing therewith. (Millon and Commaille.)

7CuO, 43O₂+8H₂O. Sol. in dil. H₂SO₄.

(Seubert and Elten, Z. anorg. 1893, **4.** 48.) 3CuO, 2SO₂+1½H₂O. Sl sol. in H₂O. (Newbury, Am. Ch. J. **14.** 232.) 7CuO, 4SO₂+8H₂O, or 4CuSO₃, 3Cu(OH)₂ +5H₂O. Sol. in dil. H₂SO₄+Aq. (Seubert and Elten, Z. anorg. 1893, 4. 50.)

Cuprocupric sulphite, CuSO₈, Cu₂SO₈+2H₂O.

Nearly insol. in cold H₂O. Decomp. by boiling.

Sol. in H₂SO₃+Aq, HCl, or NH₄OH+Aq. (Berthier.) Sol. in very dil. HNO₃+Aq. (Döpping,

J. B. **1851.** 365.) Insol. in H₂SO₃, HC₂H₃O₂, or Cu salts+Aq.

(de St. Gilles.)

 $+5H_2O$ . Insol. in  $H_2O$ . Easily sol. in  $H_2SO_3+Aq$ ,  $HC_2H_3O_2+Aq$ , in cupric salts +Aq,  $NH_4OH+Aq$ , or HCl+Aq. (de St. Gilles, A. ch. (3) **42.** 34.)

Composition is (Cu₂)Cu₁₀¹¹H₁₀(SO₄)₈+21H₂O, "acid cuprosocupric octosulphite." (Étard,

C. R. 96. 1475.)

Cuprous ferroferric sodium sulphite, Cu₂O, 2FeO, Fe₂O₃, Na₂O, 6SO₂+16H₂O.

Sol. in about 1000 pts. H₂O.

Sol. in cold dil. H₂SO₄+Aq; sol. in cold dil. HCl+Aq with a residue of Cu2Cl2. (Stromeyer, A. 109. 237.)

Cuprous lithium sulphite, Cu₂SO₂, Li₂SO₂+ 2H₂O.

Insol. in H₂O, but gradually decomp. thereby. (Étard, C. R. 95. 138.)

Cupric mercuric sulphite, CuSO₃, HgSO₃. Sol. in H₂O in all proportions, but decomp. on boiling.

Cuprous potassium sulphite, Cu₂SO₂. K₂SO₃ (?).

(Vohl, J. pr. 95. 219.) Sol. in H₂O with decomp. +2H₂O.

(Rosenheim and Steinhäuser, Z. anorg. 1890, 25. 96.) Cu₂SO₃,

Graham, 2K₂SO₃. (Chevreul, etc.)

Does not exist. (Svensson.)

 $Cu_2O$ ,  $3K_2O$ ,  $6SO_2 + 7H_2O = 4M_2OO_3$ ,  $K_2SO_3$ ,  $Cu_2SO_3 + 5H_2O$ . Decomp. by  $H_2O$ .  $6SO_2 + 7H_2O = 4KHSO_3,$ (Svensson, B. 4. 713.)

Could not be obtained. (Rosenheim and

Steinhäuser.)

4K₂O,  $8SO_2 + 3H_2O = 6KHSO_3$ Cu₂O, K₂SO₃, Cu₂SO₃. Decomp. by H₂O. (Svens-

Could not be obtained. (Rosenheim and

Steinhäuser.)

Sol. in H₂O  $Cu_2SO_3$ ,  $8K_2SO_3+16H_2O$ . with decomp. (Rammelsberg, Pogg. 57. 391.) Does not exist, according to Svensson.

Cuprocupric potassium sulphite, 3Cu₂SO₃, 3Cu₂SO₃, K₂SO₃.

Properties as cuprous potassium sulphite. (Rogojski, J. B. 1851. 367.)

 $2\bar{C}u_2SO_3$ ,  $CuSO_3$ ,  $K_2SO_3+5H_2O$ . Insol. in H₂O and weak acids. (de St-Gilles.)

 $Cu_2SO_3$ ,  $4CuSO_3$ ,  $K_2SO_8+16H_2O$ . comp. by H2O. (Rosenheim and Steinhäuser.

Cuprous sodium sulphite, Cu₂SO₃, Na₂SO₃.  $+2H_2O$ . Decomp. by  $H_2O$ . (Svensson, 1870.)

+11H₂O. Insol. in cold H₂O, but decomp. by excess. (Etard, C. R. **95.** 138.)

2Cu₂SO₃, 3Na₂SO₃+29H₂O. Insol. in H₂O. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25.** 94.)

 $Cu_2SO_3$ ,  $5Na_2SC_3+38H_2O$ . Decomp. by

H₂O. (Svensson.)

 $Cu_2SO_3$ ,  $7Na_2SO_3+19H_2O$ . Completely sol. in H₂O, but solutions decomp. on standing. (Svensson.)
"Cuprous sodium octosulphite,"

 $\begin{array}{cccc} (Cu_2)_3\dot{H}_{10}Na_{16}S_8O_{32} + 43H_2O. & (Etard.) \\ 5Cu_2SO_3, & 2Na_2SO_3 + 30H_2O. & Easily & de- \end{array}$ (Rosenheim and Steinhäuser, Z. anorg. 1900, 25. 94.)

Cuprocupric sodium sulphite,  $Cu_2SO_3$ ,  $2CuSO_3$ ,  $2Na_2SO_3+6H_2O$ .

Nearly insol. in cold, decomp. by hot H₂O. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25.** 95.)

+8H₂O. Decomp. by H₂O. (Rosenheim and Steinhäuser.)

Cuprocupric sodium hydrogen sulphite,

 $Na_8Cu_{10}^{II}(Cu_2^I)H_2(SO_4)_{8,6}H_4(SO_4) + 5H_2O.$ Insol. in H₂O. (Étard, C. R. 94. 1422.) (Cu1)Cu11Na8H18(SO4)8. (Étard.)

#### Copper sodium sulphites.

Doubtless many of the compds. described in this class are in reality isomorphic mixtures whose composition depends upon the temp. and conc. of the solution in which pptd. anorg. 1908, 59. 199.)

(Rosenheim and Steinhäuser, Z. anorg. 1900. **25.** 92–95.)

Didymium sulphite, Di₂(SO₃)₂+3H₂O, or 6H₂O.

Precipitate. Insol. in H₂O. Sol. in H₂SO. +Aq, from which it is reprecipitated by heating, redissolving on cooling. (Marignac, A. ch. (3) 38. 167.)

Erbium sulphite,  $Er_2(SO_8)_8 + 3H_2O$ .

Precipitate.

Glucinum sulphite, basic, 2GlSO₃, 9Gl(OH)₂ +6H₂O.

Ppt. (Seubert, Z. anorg. 1893, 4, 52.) GISO₃, GIO. Decomp. by H₂O or alcohol. (K. and M.)

3GISO₃, GIC. Sol. in alcohol. (K. and M.)

Glucinum sulphite, GlSO₈.

Decomp. by H₂O or alcohol. (Krüss and Moraht, B. 23. 734.)

Glucinum potassium sulphite,  $2GISO_3$ ,  $K_2SO_3+9H_2O$ .

Unstable in the air. (Rosenheim, Z. anorg. 1897, **15.** 310.)

Gold (aurous) potassium sulphite, Au₂SO₃, 3K₂SO₈.

Very sol. in H₂O; insol. in alcohol. (Haase.)

Gold (auric) potassium sulphite,  $Au_2O_3$ ,  $5K_2O$ ,  $8SO_2+5H_2O=5K_2SO_3$ ,  $Au_2(SO_3)_3$ +5H₂O.

Sol. in H₂O with decomp.

Decomp. by acids; insol. in alkalies. (Fremy, A. 79. 46.)

Gold (auric) potassium sulphite,

 $Au_2(SO_3)_3$ ,  $5K_2SO_3+10H_2O$ .

(Rosenheim and Hertzmann, Z. anorg. 1908, **59.** 199.)

Gold (auric) potassium sulphite ammonia,  $Au_2(SO_3)_3$ ,  $3K_2SO_3$ ,  $4NH_3+4H_2O$ .

As the corresponding NH₄ salt. (Rosenheim and Hertzmann, Z. anorg. 1908, 59. 202.)

Gold (aurous) sodium sulphite, Au₂SO₂,  $3Na_2SO_3+3H_2O$ .

Sol. in less than 1 pt. H₂O. Insol. in alcohol (Hasse.)

+5H₂O. (Himly.)

Gold (auric) sodium sulphite,  $Au_2(SO_3)_3$ ,  $5Na_2SO_3+28H_2O$ .

(Rosenheim and Hertzmann, As K salt.

Gold (aurous) sulphite ammonia, 3Au₂O  $4SO_2$ ,  $8NH_3 + 4H_2O_2$ 

Sl. sol. in H₂O with decomp. Docol.p. by acids.

Sl. sol. in cold, more easily in het NH₄Ol1 + Aq. Decomp. by boiling. (Hasse, Zeit. Ch. **1869.** 535.)

Gold (auric) sulphite ammonia,  $Au_{3}(SO_{3})_{2}$ ,  $4NH_{3}+4H_{2}O$ .

Ppt. Decomp. in moist air and in neutral solution (Herzmann, Z. aporg. 1908, 59. 198.)

Indium sulphite,  $2In_2O_3$ ,  $3SO_2 + 8H_2O$ . Insol. in H₂O. (Bayer, A. 158. 372)

Iridium sulphite,  $Ir_2(SO_3)_8 + 6H_2O$ .

Scarcely sol. in H₂O; easily sol. IiCl+Aq. (Birnbaum, A. 136, 179.)

Iridyl sulphite,  $(IrO)SO_8 + 4H_2O$ .

Insol. in H₂O. Sol. in HCl or H₂SO₄+Aq. (Birnbaum.)

Iridous potassium sulphite, IrO, 3K₂O, 5SO₂(?).

Sl. sol. in H₂O, more sol. in KOH+Aq Easily sol. in HCl+Aq. (Claus, J. pr. 42.

Iridous sulphite potassium chloride. See Iridosulphite, potassium.

Iridium sulphite with M2SO3. See Iridosulphite, M.

Iron (ferrous) sulphite,  $FeSO_8 + 2\frac{1}{2}H_2O$ .

Very sl. sol. in H₂O. Easily sol. in H₂SO₃+ Aq. Insol. in alcohol, but sol. therein in presence of SO₂. (Muspratt.)

Iron (ferric) sulphite, Fe₂O₃, SO₂+6H₂O.

Very sl. sol. in H2O. Sol. in acids. (Koene.) 2Fe₂O₃, 3SO₂. Deliquescent; decomp. by H₂O into SO₂ and above comp.  $3\text{Fe}_2\text{O}_3$ ,  $\text{SO}_2+7\text{H}_2\text{O}$ . Ppt.

Iron (ferroferric) potassium sulphite, FeSO₃, (FeO)₂SO₃, 2K₂SO₃.

Ppt. (Berglund.)

Iron (ferric) potassium sulphite,  $\rm K_2O$ ,  $\rm Fe_2O_3$ ,  $\rm 3SO_3 + 2H_2O$ .

Sol. in H₂SO₃+Aq. (Koene, Pogg. 63.

 $Fe_2O_3$ ,  $2K_2O_6$   $3SO_2+5H_2O$ . Ppt. (Muspratt, Phil. Mag. (3) 30. 414.)

Iron (ferric) potassium sulphite sulphate, FeSO₃SO₄K.

Sl. sol. in cold H₂O. Sol. in 20% HCl; decomp. on boiling. (Hofmann, Z. anorg. 1897, 14. 286.)

Fe(SO₃)₂SO₄K₃. Almost insol. in cold H₂O. Decomp. by boiling with dil. acids. (Hofmann.)

Fe₂(SO₃),SO₄K₄+5H₂O. Insol. in cold H₂O; sol in cold 20% HCl+Aq; decomp. on boiling with H2O. (Hofmann.)

iron (ferric) sodium sulphite sulphate,  $Fe(SO_3)_2SO_4Na_3+6H_2O$ .

Almost insol. n H₂O.

Decomp. by oiling with dil. acids. (Hofmain Z. anorg. 1897, 14. 289.)

Iron (ferric) sodium hydrogen sulphite sulphate, FeSO₄(SO₃)₄H₂Na₂+2H₂O. ()nly very sl. sol. in H2O. (Hofmann.)

Lanthanum sulphite, La₂(SO₃)₃+4H₂O. Precipitate. (Cleve.)

Lead sulphite, PbSO₈.

fnsol. in  $H_2O$ . Decomp. by acids. Sl. sol. in  $H_2SO_3$ +Aq. (Röhrig, J. pr. (2) **37.** 233.)

Lithium sulphite, Li₂SO₃+6H₂O.

Sol. in H₂O; precipitated from aqueous solution by abs. alcohol. (Danson, Chem. Soc. 2. 205.) Sol. in H₂SO₃+Aq. +H₂O. Sl. sol. in alcohol, and still less sol. in ether. (Röhrig, J. pr. (2) **37.** 225.) +2H₂O. (Röhrig.)

Lithium potassium sulphite, LiKSO₈+½H₂O. Easily sol. in H₂O. (Röhrig, J. pr. (2) 37.

Lithium sodium sulphite, 6Li₂SO₂, Na₂SO₂+  $8H_2O$ .

Sol. in H2O. (Röhrig.)

Magnesium sulphite, MgSO₃+6H₂O.

Sol. in 20 pts. cold, and in less hot  $\rm H_2O$ . (Fourcroy and Vauquelin.)

Sol. in 80 pts. cold, and in 120 pts. boiling H₂O. (Hager, C. C. 1875. 135.)

More easily sol. in H2SO3+Aq Insol. in liquid NH1. (Franklin, Am. Ch. J. 1898, **20.** 828.)

Precipitated from aqueous solution by alcohol.

+3H₂O. (Röhrig, J. pr. (2) **37.** 234.)

Manganous sulphite, MnSO₂+2H₂O.

Insol. in H₂O, alcohol, or ether. Easily sol. in acids, also in H₂SO₃+Aq. Insol. in acetone. (Naumann, B. 1904, 37.

 $+2\frac{1}{2}$ H₂O. (Rammelsberg.) +3H₂O. Sol. in 10,000 pts. cold, and 5000 pts. hot H₂O; more sol. in conc. Mn salts+Aq; sol. in 1000 pts. H₂CO₃+Aq. 100 pts. H₂SO₃ +Aq dissolve 15-17 pts. (Gorgeu, C. R. 96. 341.)

Salt with  $2\frac{1}{2}H_2O$  is the only one which exists. (Röhrig, J. pr. (2) 37. 2.)

Manganous potassium sulphite,  $2MnSO_8$ ,  $K_2SO_3$ .

Insol. in  $H_2O$ , even when boiling. (Gorgeu, C. R. **96.** 376.)

MnSO₃, K₂SO₃. Sol. in H₂O. (Gorgeu.)

Manganous sodium sulphite, MnSO₃, Na₂SO₃ +H₂O.

Insol. in hot  $H_2\mathrm{O}$ , but decomp. by cold  $H_2\mathrm{O}$ . (Gorgeu.)

4MnSO₃, Na₂SO₃. Insol. in H₂O. (Gor-

Mercuric sulphite, 2HgO, SO₂.

Insol. in H₂O. Sol. in HCl, alkali sulphites with subsequent decomp., and in KCN + Hq. (de St-Gilles, A. ch. (3) **36.** 80.)

 $HgSO_3$ . Decomp. by cold  $H_2O$ . (de St-Gilles.)

Does not exist. (Divers and Shimidzu, Chem. Soc. 49, 553.)

HgO,  $2SO_2+H_2O$ . Sol. in  $H_2O$ , but decomp. by boiling. (de St-Gilles.) Exists only in aqueous solution. (Divers and Shimidzu.)

# Mercuromercuric sulphite, $Hg_{\delta}(SO_{\delta})_2 + 2H_2O = Hg_2SO_{\delta}$ , $HgSO_{\delta}$ .

Very efflorescent. Insol. in  $H_2O$ . Decomp. by hot  $H_2O$ . Insol. in dil.  $HNO_3$  or  $H_2SO_4+Aq$ .

+4H₂O. Very efflorescent.

Hypomercurosic sulphite,  $Hg_4(SO_3)_2+H_2O$ . Insol. in  $H_2O$ , but easily decomp. on standing therewith. Almost absolutely insol. in dil.  $HNO_3$  or  $H_2SO_4+Aq$ . (Divers and Shimidzu.)

Mercuric oxysulphite, Hg(SO₂OHgO)₂Hg+ H₂O.

Insol. in H₂O. Decomp. by hot H₂O. Insol. in dil. HNO₃ or H₂SO₄+Aq. Sol. in H₂SO₃+Aq. (Divers and Shimidzu.)

Mercuric potassium sulphite, basic,  $K_2O$ , 2HgO,  $2SO_2$ .

(Barth, Z. phys. Ch. 1892, **9.** 210.)  $K_2O$ , 3HgO, 3SO₂. Insol. in  $H_2O$ . Partly sol. in KOH+Aq. (Barth.)

Mercuric potassium sulphite, HgSO₂, K₂SO₂ +H₂O.

Sl. sol. in cold H₂O. Decomp. on boiling. (de St-Gilles, A. ch. (3) **36.** 90.)

Mercuric potassium sulphite mercuric chloride, K₂Hg(SO₃)₂, HgCl₂.

Decomp. by H₂O. (Barth, Z. phys. Ch. 1892, **9.** 206.)

Mercuric silver sulphite,  $HgSO_a$ ,  $Ag_2SO_6 + 2H_2O$ .

Decomp. rapidly; insol. in H₂O. (Barth, Z. phys. Ch. 9. 195.)

Mercuric sodium sulphite, HgSO₃, Na₂SO₃+ H₂O.

Sol. in H₂O. (de St-Gilles.)

Sol. in 25 pts. cold  $H_2O$ , and decomp. on heating. (Divers and Shimidzu.)  $+2H_2O = Na_2(SO_3)_2Hg + 2H_2O$ . (Barth,

Z. phys. Ch. 9. 193.)

2HgSO₃, Na₂SO₃+H₂O. Much more sol. in H₂O than the above comp. especially on heating. (de St-Gilles.)

Does not exist. (Divers and Shimidzu.)

Mercuric strontium sulphite,  $HgSO_3$ ,  $SrSO_3 + 2H_2O$ .

Ppt. (Barth.)

Mercuric sulphite ammonium bromide, HgSO₄, NH₄Br.

As NH₄Cl comp. (Barth, Z. phys. Ch. 1892, **9.** 215.)

Mercuric sulphite ammonium chloride, HgSO₃, NH₄Cl.

As K salt. (Barth.)

Mercuric sulphite potassium chloride, HgSO₃, KCl.

Sol. in H2O. (Barth.)

Mercuric sulphite sodium chloride, HgSO₃, NaCl+H₂O.

Sol. in H₂O. (Barth.)

Nickel sulphite, basic, 2NiSO₃, Ni(OH)₂+6H₂O.

Ppt. (Seubert and Elten, Z. anorg. 1893, 4.91.)

Nickel sulphite, NiSO₂+4H₂O.

Insol. in  $H_2O$ . Sol. in HCl+Aq. with evolution of  $SO_2$ . (Muspratt, A. **50**. 259.)  $+6H_2O$ . Insol. in  $H_2O$ . Sol. in  $H_2SO_3+Aq$ . (Rammelsberg, Pogg. **67**. 391.)

Nickel sulphite ammonia, NiSO₃, 3NH₃+3H₂O.

Sol. in little H₂O. Decomp. by much H₂O or heat. (Rammelsberg, Pogg. **67.** 245.)

Osmious sulphite, OsSO₂.

Insol. in H₂O. Easily sol. in HCl+Aq without evolution of SO₂. Very slowly decomp. by KOH+Aq. (Claus.)

Osmious potassium sulphite, OsSO₃, 2K₂SO₃, 2K₄SO₅, 2KHSO₃+4H₂O.

Nearly insol. in H₂O.

Osmious potassium sulphite chloride, OsO. 2SO₂, 6KCl.

Easily sol. in H₂Q₈

Palladous sodium sulphite, PdSO₃, 3Na₂SO₃  $+2H_2O = Na_6Pd(SO_3)_4 + 2H_2O$ .

Sol. in hot H₂O. Sol. in NaOH+Ag or H₂SO₃+Aq. (Wöhler and Frerichs, A. 174. 199.)

Platinous sulphite, PtO₂, 2SO₂,

Easily sol. in H₂O or alcohol. (Döbereiner, J. pr. **15.** 315.)

Formula is PtSO₃. (Gmelin.) PtSO₃, H₂SO₃. (Birnbaum, A. 139, 172.)

Platinic potassium sulphite, PtO2, SO2,  $K_2SO_3+H_2O$ . Sol. in KOH + Aq. (Birnbaum, A. 139.

173.) Platinic sodium sulphite, PtO₂, SO₂, 2Na₂SO₃ +2H₂O.

Sol. in H₂O. (Birnbaum.)

Platinous sulphite with M2SO3. See Platosulphite, M.

Platinum sulphite ammonium chloride. See Chloroplatosulphite, ammonium.

Potassium sulphite, K₂SO₃+2H₂O.

Somewhat deliquescent. Sol. in 1 pt. cold, and still less hot H₂O. (Fourcroy and Vauquelin, A. ch. **24**. 254.) Insol. in liquid NH3. (Franklin, Am. Ch.

J. 1898, **20.** 829.) Very slightly soluble in alcohol. Insol. in ethyl acetate. (Casaseca, C. R. 30. 821.)

Potassium hydrogen sulphite, KHSO₂. Sol. in H₂O. Insol. in absolute alcohol.

Potassium pyrosulphite, K₂S₂O₅.

Slowly sol. in H2O. Very sl. sol. in alcohol; insol. in ether. (Muspratt, A. 50. 259.)

Potassium rhodium sulphite, 3K₂SO₂,  $Rh_2(SO_3)_3+6H_2O$ .

See Rhodosulphite, potassium.

Potassium ruthenium sulphite,  $O[Ru(SO_3)_4K_6]_2 + 2H_2O.$ 

Ppt. (Miolati, C. C. 1901, I. 501.)

Potassium sodium sulphite, KNaSO.

Sol. in H₂O. (Spring, B. 7. 1161.) +1, and 2H₂O. (Schwicker, B. **22**. 1731.) Isomeric salts, KSO₂Na and NaSO₃K. Isomeric salts, KSO₂Na (Barth, Z. phys. Ch. 9. 176.)

Potassium sodium hydrogen sulphite.  $KNa_2H(SO_3)_1+4H_2\overline{O}$ .

Easily sol. in H₂O; 100 pts. H₂O dissolve 69 pts. sait at 15°. (Schwicker, B. **22**. 1731.) K₂NaH(SO₃)₂+3^{*}I₂O. (Schwicker.)

Potassium uranyl sulphite, K(UO₂)(OH)SO₂.

Insol. in H₂O, but sol. in H₂SO₃+Aq. (Scheller.)

(Sothers,  $(K_2)$ ,  $2UO_3$ ,  $3SO_2$ . (Kohls hutter, A. 1900, 311. 10 et seg.)  $K_2O$ ,  $4UO_3$ ,  $5SO_2$ . (K.)  $K_2O$ ,  $3UO_2$ ,  $2SO_2$ . (K.)  $K_2O$ ,  $UO_3$ ,  $2SO_2$ . (K.)

Potassium vanadium sulphite.

See Vanadiosulphite, potassium.

Potassium vanadyl sulphite, K₂SO₃,  $VOSO_3 + 5\frac{1}{2}H_2O$ 

Sol. in H₂O without decomp. and can be recryst. therefrom. (Koppel and Behrendt,

B. 1901, **34.** 3932.) K₂O, 3VO₂, 2SO₂. Sol. without decomp. in cold and hot H₂O.

Insol. in alcohol and ether. (Koppel, Z. anorg. 1903, **35.** 182.)

Potassium zinc sulphite, K₂SO₂, 3ZnSO₂+  $7\frac{1}{2}H_2O$ .

Sol. in H₂O with decomp. (Berglund, Acta Lund. **1872.**)

Rhodium sulphite,  $Rh_2(SO_3)_2 + 6H_2O$ .

Sol. in H₂O. Insol. in alcohol. (Claus.)

Rhodium sodium sulphite. See Rhodosulphite, sodium.

Ruthenium sulphite, Ru₂(SO₃)₃.

Colloidal substance, sol. in a large quantity of H₂O. (Lucchesi, Gazz. ch. it. 1900, 30. (2) 71.)

Ruthenium sodium sulphite, Na₇Ru(SO₃)₅ +2H₂O.

Ppt. (Miolati, C. C. 1901, I. 501.

Samarium sulphite,  $Sm_2(SO_3)_2$ . Amorphous precipitate. (Cleve.)

Scandium sulphite, Sc₂(SO₃)₃.

Insol. in cold H₂O. Sl. sol. in hot H₂O. Sol. in excess of sodium sulphite when heated. (Crookes, Phil. Trans. 1910, 210. A. 3**63**.)

+6H₂O. Very sl. sol. in H₂O. Decomp. by boiling with H₂O with separation of H₂SO₃. (R. J. Meyer, Z. anorg. 1914, **86.** 281.)

# Selezium sulphite, SeSO₂.

Correct composition for "selenium sulphoxide." (Divers, Chem. Soc. 49, 583.)

#### Silver sulphite, Ag₂SO₈.

Very sl. sol. in cold H2O. Decomp. on heating.

Solubility in H₂O is <1:20,000. (Baubigny, C. R. 1909, **149**. 858.)
Easily sol. in NH₄OH+Aq, and alkali

sulphites + Aq. Insol. in H₂SO₃+Aq. Decomp. by strong acids, but not by acetic acid. (Berthier, A. ch. (3) 7. 82.)

Easily sol. in alkali thiosulphates + Aq. (Herschel.)

Cold NaHSO₃+Aq dissolves a considerable amount of Ag₂SO₃. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25**. 78.)

Practically insol in HNO₃+Aq or dil.

AgNO₃+Aq, also in H₂SO₃+Aq. (Divers, Chem. Soc. **49**, 579.)

Silver sodium sulphite, Ag₂SO₈, Na₂SO₈+ H₂O.

Decomp. by H₂O. (Svensson, B. 4. 714.)

# Sodium sulphite, Na₂SO₈.

100 pts. dissolve at 0°, 14.1 pts.; at 20°, 25.8 pts. ; at 40°, 49.5° pts. Na₂SO₃. (Kremers, Pogg. 99. 50.) Maximum solubility is at 33.° (Mitscherlich.)

Solubility in 100 pts. H₂O at t°.

t°	Pts. Na ₂ SO ₃
60.4	28.29
59.8	28.29
59.8	28.65
59.8	28.75
37.0	28.01
37.0	28.07
47.0	28.19
47.0	28.07
55.6	28.21
84.0	28.26

The temp. at which Na₂SO₃+7H₂O changes into Na₂SO₃ is about 21.6°. (Hartley and Barrett, Chem. Soc. 1909, 95. 1183.) See also +7H₂O.

Sp. gr. of sat. solution at  $15^{\circ} = 1.21$ . (Greenish and Smith, Pharm. J. 1901, 66. 774.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol. in alcohol.

Insol. in ethyl acetate. (Casaseca, C. R. **30.** 821.); methyl acetate. (Naumann, B. 1909, **42.** 3790.) Insol. in benzonitrile.

(Naumann, В. 1914, 47. 1370.)

+7H2O Decomp. slowly on air.

Sol. in 4 pts. H₂O at 15° with absorption of heat (Dumas), and in 1 pt. boiling H₂O (Fourcroy).

Solubility in 100 pts. H₂O at t°.

•	•
t°	Pts. Na ₂ SO ₃
37.2 33.5	44.08 39.64
$   \begin{array}{c}     29.0 \\     23.5 \\     \hline     18.3 \\   \end{array} $	34.99 29.92
$18.2 \\ 10.6 \\ 5.9$	25.31 20.01 17.61
2.0 —1.9	14.82 13.09

Supersolubility curves have also been plotted for ice and Na₂SO₃+7H₂O.

(Hartley and Barrett, Chem. Soc. 1909, 95. 1181.)

+10H₂O. Efflorescent. Somewhat less sol. than above salt. (Muspratt.)

#### Sodium hydrogen sulphite, NaHSO₈.

More difficulty sol, in H2O than NaHCO3. and is precipitated by alcohol from aqueous solution. (Muspratt.)

Insol. in acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37.** 4329) (Naumann, B. 1909, 42. methyl acetate. 3790.)

 $+4\mathrm{H}_2\mathrm{O}$ . (Clark.)

# Sodium pyrosulphite, Na₂S₂O₅.

Decomp. gradually on the air.

# Sodium uranyl sulphite, Na(UO2)(OH)SO3.

Sl. sol. in  $H_2O$ . More sol. in  $H_2SO_3+Aq$ than the K salt. (Scheller.)

Na₂O, 2UO₃, 3SO₂  $Na_2O$ ,  $3UO_3$ ,  $2SO_2$ . (Kohlschütter, A. 1900, **311.** 10 et seq.)

Sodium vanadyl sulphite, Na₂O, 2SO₂,  $VO_2 + 5H_2O$ .

Sol. in H₂O with decomp.

 $Na_2O$ ,  $2SO_2$ ,  $3VO_2+4\hat{H}_2O$ . Sol. in cold H₂O; decomp. on heating. (Koppel, B. 1901, **34.** 3933.)

Sodium zinc sulphite, Na₂SO₈, 3ZnSO₈+ 7½H₂O.

Sol. in H₂O with decomp. (Berglund, Acta Lund, 1872.)

Sodium sulphite silver chloride, 3Na₂SO₃,  $AgCl+21H_2O$ .

Sol. in H₂O. (Svensson.)

# Strontium sulphite, SrSO₃.

Precipitate, Almost insol. in  $H_2O$ . Sol. in  $H_2SO_3+Aq$ . (Muspratt.) Sol. in about 30,000 pts. H2O at 13-18°.

(Autenrieth, Z. anal. 1898, 37. 293.)

Abundantly sol. in H2SO3+Aq. (Röhrig.)

# Tellurium sulphite, TeSO₃.

Correct composition of "tellurium sulphoxide." (Divers, Chem. Soc. 49. 583.)

# Thallous sulphite, Tl₂SO₈.

Sl. sol. in cold, easily in hot H₂SO₃+Aq. (Rönrig, J. pr. (2) **37.** 229.)

100 pts. H₂O dissolve 3.34 pts. at 15.5°.

Easily sol. in hot H₂O; insol. in alcohol. (Seubert and Elten, Z. anorg. 2, 434.)

# Thallous vanadyl sulphite, $2Tl_2SO_8$ , $V_2O_3SO_3+4H_2O$ .

(Gain, A. ch. 1908, (8) 14. 278.)  $Tl_2SO_3$ ,  $3V_2O_3SO_3+8H_2O$ . (Gain.)

# Thorium sulphite, $Th(SO_3)_2 + H_2O$ .

Precipitate. (Cleve.)

Tin (stannous) sulphite, 5SnO,  $2SO_2+xH_2O$ . Ppt. Partly sol. in H₂SO₃+Aq. (Röhrig, J. pr. (2) **37.** 249.)

+20H₂O. (Röhrig.) 8SnO, 2SO₂+20H₂O.

 $11\text{SnO}, 2\text{SO}_2 + 20\text{H}_2\text{O}$ (Röhrig.)

#### Uranous sulphite, basic, U(OH)₂SO₃+H₂O. Insol. in H₂O. Easily sol. in acids. Sol. in H₂SO₃+Aq, but is soon decomp. (Rammelsberg.)

#### Uranyl sulphite, basic, 3UO₂(OH)₂, $5(UO_2)SO_3 + 10H_2O$ .

(Seubert and Elten, Z. anorg. 1893, 4. 80.)

#### Uranvl sulphite, $(UO_2)SO_3+4H_2O$ .

Insol. in H₂O. Sol. in H₂SO₃+Aq or alcoholic solution of SO₂. (Röhrig, J. pr. (2) 37. 240.)

# Vanadyl sulphite, $3VO_2$ , $2SO_2+4\frac{1}{2}H_2O$ .

Decomp. slowly on standing.

Sol. in H₂O without apparent decomp (Koppel, Z. anorg. 1903, 35, 186.)

 $2\dot{V}_{2}^{2}O_{4}$ ,  $3SO_{2}+10H_{2}O$ . Sol. in  $H_{2}O$ ; aq. sol. decomp. on boiling giving off SO2 and forming V₂O₄, 2H₂O. (Gain, C. R. 1906, 143.

# Vanadyl zinc sulphite, ZnO, 3VO₂, 2SO₂.

Decomp. slowly in the air.

Sol. in H2O without decomp. (Koppel, Z. anorg. 1903, **35.** 183.)

#### Ytterbium sulphite, Yb₂(SO₃)₃+9H₂O.

Insol. in H₂O. (Cleve, Z. anorg. 1902, 32. 143.)

# Yttrium sulphite, $Y_3(SO_3)_3 + 3H_2O$ .

Sl. sol. in H₂O. (Cleve.)

# Zinc sulphite, basic, 2ZnSO₃, 3Zn(OH)₂.

(Seabert, Arch. Pharm, 229, 321.)  $ZnSO_2$ ,  $Zn(OH)_2$   $H_2O$ . (Seubert.)

## Zinc sulphite, $ZnS()_1+2$ , and $2^{1/2}H_2O$ .

Very sl. sol. in H₂O. 100 pts. H₂O dissolve 0.16 pt. ZnSO₃+2H₂O. (Henston and Tichborne, Brit. Med. J. 1890, 1963.)

Easily sel. in E₂SO₃+Aq (Koene.)

Sol. in NE₄OH + Aq. Jasol, ir alcohol.

Decomp, into basic sale by boiling H₂O. (Scubert, Arch. Pharm. 229. 1.)

#### Zinc sulphite ammonia, ZnSO₃, NH₃.

Decomp. by H₂O. Sol. in NH₄OH+Aq. (Rammelsberg, Pogg. **67.** 255.)

# Zirconium sulphite.

Insol. in H₂O. Somewhat sol. in H₂SO₂+ Aq, from which it is regard, on boiling. Sol. in (NH₄)₂SO₃+Aq, from which Zr hydroxide is pptd. on boiling. (Berzelius.) Zr(SO₃)₂+7H₂O. Ppt. (Venable, J. Am.

Chem. Soc. 1895, 17. 449.)

# Sulphuryl bromide, SO₂Br₂.

(Odling, Chem. Soc. 7, 2.)

Does not exist. (Sestini, Bull. Soc. 10. 226; Melsens, C. R. 76. 92; Michaelis.)

#### Sulphuryl chloride, SO₂Cl₂.

Decomp. by H₂O and alcohol.

Decomp. by moist air, water, or abs. alcohol; more rapidly by alkalies, HCl, SO2, etc. (Schiff, A. 102. 111.)

+H₂O. Only sl. sol. in H₂O at 0° with slow decomp. (Baeyer, B. 1901, **34.** 737.) +15H₂O. Sl. sol. in H₂O at 0° and stable

therein for several hours. (Baeyer.)

#### Disulphuryl chloride (Pyrosulphuryl chloride), S₂O₅Cl₂.

Decomp. slowly with H₂O. (Rose, Pogg. **44.** 291.)

Sol. in CCl4 and CHCl3; miscible with liquid SO₈.

# Sulphuryl hydroxyl chloride, $SO_3HCl = \frac{HO}{Cl}SO_2$ .

Decomp. on moist air, and violently with H₂O. Not miscible with CS₂. Decomp. with alcohol.

#### Sulphuryl titanium chloride, SO₂, TiCl₄= TiCl₈OSO₂Cl.

Slowly deliquescent. (Clausnitzer, B. 11. 2011.)

# Disulphuryl chloride stannic oxychloride, 5520,6Cl₂, 4SnOCl₂.

Sol. in a little H₂O, but decomp. by more H₂O. (Rose, Pogg. 44. 320.)

#### Sulphuryl fluoride, SO₂F₂.

1 pt. is sol. in 10 pts. H₂O at 9°. 3 vol. are sol. in 1 vol. alcohol at 9°; insol. in conc. H₂SO₄ at 66°; sol. in aq. solution of KOH, Ca(OH)₂, Ba(OH)₂ and in alcoholic solution of alkalies. (Moissan, C. R. 1901, **132**. 377.)

#### Sulphuryl hydroxyl fluoride, HSO.F.

Violently decomp. by H₂O. (Thorpe and Kirwan, Z. anorg. 3. 63.)

Sulphuryl peroxide, SO₄. See Sulphur heptoxide.

Sulphydric acid.

See Hydrogen Sulphide.

# Sulphydroxyl.

See Sulphhydroxyl.

#### Tantalic acid, H₄Ta₂O₇ (?).

Sol. in HF (Rose), and KH₃(C₂O₄)₂+Aq (Gahn, Schw. J. **16**. 437). At the instant of precipitation is sol. in various acids. (Rose.)

#### Aluminum tantalate.

Insol. in H₂O. (Berzelius.)

Ammonium hexatantalate, (NH₄)₂H₇Ta₇O₁₉+H₂O.

Somewhat sol. in  $H_2O$ . (Rose, Pogg. 102. 57.)

# Barium hexatantalate, Ba₄Ta₆O₁₉+6H₂O. Sl. sol. in H₂O. (Rose.)

#### Cæsium tantalate, 4Cs₂O, 3Ta₂O₅+14H₂O.

Completely sol. in a small amount of hot  $H_2O$ . (E. F. Smith, J. Am. Chem. Soc. 1908, **30.** 1666.)

7Cs₂O, 6Ta₂O₅+38H₂O. Pptd. from its aqueous solution by alcohol. (Smith.)

#### Ferrous tantalate, Fe(TaOs).

Min. Tantalite. 5FeO, 4Ta₂O₅. Min. Tapiolite.

# Magnesium hexatantalate, Mg₄Ta₅O₁₉+9H₂O.

Ppt. (Rose, Pogg. 102. 61.) 4MgO, Ta₂O₅. Insol. in H₂O. (Joly, C. R. 81. 266.)

# Mercurous tantalate, 5Hg₂O, 4Ta₄O₅+5H₂O. Decomp. by warm HNO₃+Aq (1.21 sp. gr.) with separation of Ta₂O₅. (Rose, Pogg. 102. 64.)

#### Potassium tantalate, KTaO₂.

Insol. in H₂O. Sol. in KOH #Aq. (Marignac, A. ch. (4) 9. 249.)

# Potassium hexatantalate, K₈Ta₆O₁₉+16H₂O.

Sol. without decomp. in moderately warm  $H_2O$ . Decomp. by boiling. (Marignac, A. ch. (4) **9.** 259.)

Rubidium tantalate, 4Rb₂O, 3Ta₂O₅+14H₂O. Sol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 1908, **30**. 1666.)

#### Silver tantalate, 4Ag₂O, 3Ta₂O₅.

Completely sol. in NH₄OH+Aq. HNO₂+Aq dissolves Ag₂O, and Ta₂O₅ separates out. (Rose, Pogg. 102. 64.)

# Sodium tantalate, $NaTaO_3$ .

Insol. in H₂O. (Rose.)

# Sodium hexatantalate, Na₈Ta₆O₁₉+25H₂O.

1 pt. salt. dissolves in 493 pts. H₂O at 13.5°, and in 162 pts. at 100°. Very slightly sol. in alcohol. Insol. in alkaline solutions. (Rose.)

#### Pertantalic acid.

See Pertantalic acid.

#### Tantalum, Ta.

Not attacked by HCl, HNO₃, aqua regia, or hot conc. H₂SO₄. Easily sol. in a mixture of HNO₃ and HF (Berzelius, Pogg. **4.** 6; Rose). Also sol. in HF alone (Berzelius.)

Not attacked by alkali hydrates+Aq. Insol. in single acids and in aqua regia. Oxidized by a mixture of HF and aqua regia. (Moissan, C. R. 1902, 134. 211.)

Pure Ta is insol. in boiling H₂SO₄, HNO₃,

Pure Ta is insol. in boiling H₂SO₄, HNO₅, HCl, aqua regia or mixtures of these acids; slowly sol. in HF+Aq. (v. Bolton, Zeit. Elektrochem. 1905, **11**. 45.)

#### Tantalum bromide, TaBrs.

Decomp. by H₂O. (Rose.)

#### Tantalum dichloride, TaCl₂+2H₂O.

Sol. in H₂O when freshly prepared. (Chabrié, C. R. 1907, **144.** 805.)

#### Tantalum pentachloride, TaCls.

Takes up H₂O from the air without deliquescing. Decomp. by H₂O. Sol. in H₂SO₄. Sol. in cold HCl+Aq to a cloudy liquid, which gelatinises after a time. Not completely sol. in boiling HCl+Aq, and the solution does not gelatinise by the subsequent addition of water, but all goes into solution. Partly sol. in KOH +Aq. Insol. in K₂SO₂+Aq. Sol. in absolute alcohol.

# Tantalum pentafluoride, TaF.

Very hydroscopic; sol. in H2O. (Ruff, R. 1909, 42, 494.)

# Tantalum fluoride with MF. See Fluotantalate, M.

# Tantalum hydroxide, Ta₂O₅, xH₂O_. See Tantalic acid.

#### Tantalum nitride, TaN.

Not sol. in any acids, except a mixture of HF and HNO₃. (Rose, Pogg. 100. 146) Ta₃N₅. (Joly, Bull. Soc (2) **25.** 506.)

#### Tantalum dioxide, $Ta_2O_2(?)$ .

Sol. in HF with evolution of hydrogen. (Hermann, J. pr. (2), 5. 69)

#### Tantalum tetroxide, Ta₂O₄.

Not attacked by any acid, not even a mixture of HNO₃ and HF. (Berzelius, Pogg. 4.

Decomp. by HCl. (Smith, Z. anorg. 1894, **7.** 98.)

#### Tantalum pentoxide, Ta₂O₅.

Insol, in any acid, even boiling H₂SO₄ or in HF. (Berzelius.)

Sol. in fused KHSO₄, 10 pts. being necessary to dissolve 1 pt. Ta₂O₅.

#### Tantalum silicide, TaSi₂.

Insol, in most inorganic acids. Sol. in HF and in HF+HNO3.

Decomp. by fused alkali hydroxides. (Hönigschmid, M. 1907, 28. 1027.)

#### Tantalum sulphide, Ta₂S₄.

Not attacked by HCl+Aq Oxidised by boiling with HNO₂+Aq, more rapidly with aqua regia. Attacked by H₂SO₄ on heating. Not completely sol. in HF or a mixture of HF and HNO₃.

# Telluretted hydrogen, TeH2. See Hydrogen telluride.

#### Telluric acid, H₂TeO₄.

Insol. in H₂O, cold conc. HCl, hot HNO₃, or boiling KOH+Aq, but when heated with H₂O is gradually converted into H₂TeO₄+

2H₂O and dissolved. +2H₂O. Very slowly sol. in cold H₂O, but sol. in hot H₂O in every proportion. Insol. in absolute alcohol; sol. in dil. alcohol according to the amount of H₂O present. Sol. in acids and alkalies. Insol. in alcohol or ether.

Insol. in alcohol; sol. in NaOH+Aq. (Mylius, B. 1901, **34.** 2216.)

Stable in the air. Sol. in H₂O; pptd. by HNO₂. (Staudenmaier, Z. anorg. 1895, 10. 191.)

Solubility in H.
------------------

Solid phase Temp Hareot Mois Hare to 10 mole Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot Hareot
$ H_2Te^{-1} + 6H_2O  = 0^{\circ}  13.92  66.2   1.5$
" 5° 17.84 49.2 2.0
" 10° 26 21 30.2 3.3
" 15° 32.79 21.9 4.5
H ₂ TeO ₄ .2H ₂ O   10°   25.28   31.7   3.1
"   18°   28.99   26.2   3.8
" 30° 33 36 21 4 4.6
" 40° 36 38 18.8 5.3
" 60° 43 67 14.2 7.0
80° 51.55 10.07 9.9
"   100°   60.84   6.89   14.5

(Mylius, B. 1901, **34.** 2211.)

+6h₂O. Obtained from solutions at 0°. (Staudenmaier, Z. anorg. 1895, 10, 191.)

## Allotelluric acid, H₂TeO₄.

Miscible with H₂O.

Sol. in alcohol; pptd by NaOH+Aq but sol. in excess. (Mylius, B. 1901, 34. 2216.)

Neutral alkali salts are sol. in H₂O; the acid salts are only sl. sol. therein, but dissolve in HCl+Aq.

#### Aluminum tellurate.

Ppt. Sol. in excess of aluminum salts + Aq. (Berzelius.)

#### Ammonium tellurate, (NH₄)₂TeO₄.

Slowly but completely sol. in H₂O. Sl. sol. in NH4OH+Aq or NH4Cl+Aq. Sl. sol. in alcohol. (Berzelius.)

(NH₄)₂O, 2TeO₃. Sl. sol. in H₂O, but more sol, than the corresponding K salt.

 $(NH_4)_2O$ ,  $4TeO_3$ . Very sl. sol. in  $H_2O$ . Insol. in alcohol. (Berzelius.)

#### Barium tellurate, BaTeO₄+3H₂O.

Sl. sol. in cold, more in boiling H₂O. Easily

sol. in HNO₃+Aq. (Berzelius.) BaH₂(TeO₄)₂+2H₂O. More sol. in H₂O than BaTeO₄. Decomp. by  $H_2O$ .

BaO, 41eO₂. More sol. in H₂O than either BaTeO₄ or BaH₂(TeO₄)₂. (Berzelius.)

#### Bismuth tellurate, $Bi_2TeO_6+2H_2O$ .

Min. Montanite. Sol. in HCl+Aq with evolution of Cl.

#### Cadmium tellurate, CdTeO4.

Ppt. Sol. in HCl+Aq. (Oppenheim.)

#### Cæsium hydrogen tellurate, CsHTeO4+ ½H₂O.

1 pt. is sol. in 30 pts. H₂O. (Norris, Am. Ch. J. 1901, **26.** 321.)

#### Calcium tellurate, CaTeO4.

Ppt. Sol. in hot H₂O. (Berzelius.)

#### Chromic tellurate, Cr2(TeO4)2.

Ppt. Sol. in excess of Cr salts+Aq.

#### Cobaltous tellurate.

Ppt. (Berzelius.)

#### Cupric tellurate, CuTeO4.

Ppt. (Berzelius.) CuO, 2TeO₃. Ppt. (B.)

Cu₈TeO₆. Insol. in H₂O.

Sol. in HCl, HNO₃, NH₄OH, KCN and acetic acid. (Hutchins, J. Am. Chem. Soc. 1905, 27. 1181.)

#### Glucinum tellurate, GlTeO4.

Insol. in H₂O.

# Iron (ferrous) tellurate, FeTeO4.

Ppt. Min. Ferrotellurate.

# Iron (ferric) tellurate, Fe₂(TeO₄)₈.

Ppt. Sol. in ferric salts+Aq. (Berzelius.)

#### Lead tellurate, basic.

Not completely insol. in H₂O.

# Lead tellurate, PbTeO₄.

Somewhat sol. in  $H_2O$ .

PbO, 2TeO₃. More sol. than PbTeO₄. PbO, 4TeO₃. Sl. sol. in H₂O. Sol. in  $HNO_3+Aq$ , less sol. in  $HC_2H_3O_2+Aq$ . (Berzelius.)

### Lithium tellurate, Li₄ TeO₅ +xH₂O.

Sl. sol. in H₂O with decomp. (Mylius, B. **1901**, **34**. 2209.)

#### Magnesium tellurate, MgTeO₄.

Ppt. More sol. in H₂O than the Ba, Sr. or Ca salts.

MgTe₂O₇. More sol. in H₂O than MgTeO₄.

#### Manganous tellurate.

Ppt.

Mercurous tellurate, basic, 3Hg₂O, 2TeO₃. Ppt. (Hutchins, J. Am. Chem. Soc. 1905. **27.** 1178.)

## Mercurous tellurate, Hg₂TeO₄.

Ppt. Min. Magnolite.

#### Mercuric tellurate, HgTeO4.

Ppt. Very easily decomp. by H₂O. (Hutchins, J. Am. Chem. Soc. 1905, **27.** 1179.)  $+2H_2O$ . Slowly decomp. by cold  $H_2O$ . Rapidly decomp. by boiling H₂O. (Hutchins.)

Hg₂TeO₆. Insol. in H₂O. Unchanged by

boiling with H₂O.

Sol. in HNO₃, but more readily sol. in HCl. (Hutchins.)

#### Mercuric tellurate.

Ppt. (Berzelius.)

# Mercurous hydrogen tellurate, HgHTeO.

 $+3H_2O.$ 

Stable in the air if protected from the light Insol. in H₂O. Decomp. by boiling H₂O or by an excess of cold conc. HgNO₃+Aq.

Sol. in dil. HNO₃ or dil. acetic acid. (Hutchins, J. Am. Chem. Soc. 1905, 27. 1177.)

#### Nickel tellurate.

Ppt.

### Potassium tellurate, $K_2 \text{TeO}_4 + 5 \text{H}_2 \text{O}$ .

Deliquesces. Sol. in H₂O. Very sl. sol. in H₂O containing KOH.

100 g. H₂O dissolve at:

 $0^{\circ}$ 20° 30°

8.82 27.53 50.42 g, K₂TeO₄. (Rosenheim and Weinheber, Z. anorg. 1911, **69.** 264.)

Insol. in alcohol. (Berzelius.)

K₂O₂ 2TeO₃. Insol. in H₂O₂ acids, or alkalies. (B).

KHTeO₄+½H₂O. Sl. sol. in cold, more sol. in hot H₂O. (Berzelius.)

K₂O, 3TeO₃+5H₂O. Much more sol. in hot than in cold H₂O. (Hutchins, J. Am.

Chem. Soc. 1905, **27.** 1174.)  $K_2O$ , 4TeO₃. Insol. in  $H_2O$ , HCl, or HNO₃ +Aq. Sol. by long heating with conc. HNO₃ +Aq

 $K\hat{H}TeO_4$ ,  $H_2TeO_4 + \frac{1}{2}H_2O$ . Sl. sol. in  $H_2()$ .

#### Rubidium tellurate, Rb₂TeO₄+3H₂O.

Sol. in about 10 pts. H₂O. (Norris, Am. Ch. J. 1901, **26.** 322.)

#### Rubidium hydrogen tellurate, RbHTeO4 $+\frac{1}{2}H_{2}O$ .

Sol. in about 20 pts. cold H₂O. Sl. more sol. in hot H₂O. (Norris, Am. Ch. J. 1901, **26.** 320.)

# Silver tellurate, $3Ag_2O$ , $TeO_3$ .

Sol. in NH₄OH+Aq.

 $3Ag_2O$ ,  $2TeO_3$ . Insol. in boiling H₂O. Unchanged by cold H₂O. +3H₂O. Ppt. Gradually decomp. by boiling H₂O. (Hutchins, J. Am. Chem. Soc. 1905, **27.** 1169.)

Ag₂TeO₄. Decomp. by H₂O into 3Ag₂O,

TeO₃. Sol. in NH₄OH+Aq. +2H₂O. Insol. in hot and cold H₂O. Sol. in NH₄OH, KCN, Na₂S₂O₃, HNO₃, H₂SO₄ and HC₂H₃O₂+Aq. Decomp. by conc. HNO₃ H₂SO₄ or acetic acid. (Hutchins, J. Am.

Chem. Soc. 1905, 27. 1165.)

Ag₂TeO₇. Ppt.

Ag₂O, 4TeO₃. Ppt. Could not be obtained. (Hutchins, J. Am. Chem. Soc. 1905, 27. 1168.)

#### Sodium tellurate, Na₂TeO₄+2H₂C.

Very sl. sol. in hot or cold H₂O. When heated to drive off 2H₂O becomes insol. in H₂O, but sol. in dil. HNO₃+Aq. (Berzelius.) 1 pt. is sol. in about 130 pts. H₂O at 18°;

50 pts. H₂O at 100°.  $+4H_2O$ . 1 pt. is sol. in about 70 pts  $H_2O$ 

at 18°; 40 pts. H₂O at 50°. (Mylius, B. 1901,

**34.** 2209.)  $Na_2Te_2O_7 + 4H_2O = NaHTeO_4 + 1\frac{1}{2}H_2O$ . Slowly but completely sol. in H₂O. Sl. sol. in NaC₂H₃O₂+Aq. Insol. in alcohol. (Ber-

zelius.) Na₂O, 4TeO₃. Insol. in II2O, acids, or alkalies, except by long boiling with HNO3-

 $+xH_2O$ . (a) Slowly sol. in  $H_2O$ .

Insol. even in boiling H₂O. Na₄TeO₅+8H₂O. Very sol. in H₂O but with decomp. (Mylius.)

#### Strontium tellurates.

Resemble Ca salts.

# Thallous tellurate, Tl₂TeO₄.

Sl. sol. in H₂O. (Dennis, J. Am. Chem. Soc. 1898, **18.** 975.)

#### Thorium tellurate.

Ppt. Insol. in excess of thorium salts +Aq.

#### Uranium tellurate, U₂(Te₄O)₃(?).

Insol. in  $H_2O$  or  $UO_2(NO_3)_2 + Aq$ . Ppt.

#### Yttrium tellurate.

Ppt. Insol. in H₂O or Yt salts +Aq.

#### Zinc tellurate, Zn₃TeO₆.

Insol. in H₂O.

Sol. in HNO₃, HCl, H₂SO₄ and acetic acid. (Hutchins, J. Am. Chem. Soc. 1905, 27. 1181.)

#### Zirconium tellurate.

Ppt. (Berzelius.)

#### Tellurium, Te.

Insol. in H₂O or HCl+Aq. Sl. sol: in hot conc. H₂SO₄, but separates out on cooling. Sol. in boiling conc. H₂SO₄. Easily oxidised by HNO₃ or aqua regia. Sol. in boiling very conc. KOH+Aq, separating out again on cooling.

Not attacked by boiling conc. HNO₃+Aq, according to Hartung-Schwartzkoff (Ann.

Min. (4) 19. 345).

Sol. in warm conc. KCN+Aq Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 830.)

100 pts. methylene iodide dissolve 0.1 pt. Te at 12°. (Retgers, Z. anorg. 3. 343.)

 $1\frac{1}{2}$  ccm. oleic acid dissolves 0.0014 g. Te in 6 days. (Gates, J. phys. Ch. 1911, 15.

A colloidal solution of Te in H2O can be obtained. It exists in two modifications, a bro n and a blue-gray. Both can be diluted with H2O or concentrated by boiling without decomp. They are, however, decomp. by electrolytes, especially NH₄Cl. (Cutbier, Z. ano : 1902, 32. 53.)

# Tellurum dibromide, TeDra.

Decomp on air or by H2O. (Rose, Pogg. **21** 443.)

Conc. tartaric acid dissolves partly without decomp. (Brauner, M. 1891, 12. 34.)

#### Tellurium tetrabromide, TeBr4.

Sol. in a little, but decomp. by much H₂O. Completely sol. in tartaric acid+Aq (1:1). (Brauner, M. 1891, 12. 34.)

#### Tellurium hydrogen bromide, TeBr4, HBr+ 5H₂O.

Fumes in the air. Deliquescent. Stable in an atmos. of HBr. (Metzner, C. R. 1897, **124.** 1951.)

#### Tellurium dichloride, TeCl.

Decomp. on air, or by H₂O or HCl+Aq. (Rose, Pogg. **21.** 443.)

#### Tellurium tetrachloride, TeCl4.

Extremely deliquescent. Decomp. by cold H2O, with separation of oxychloride and tellurous acid. Sol. in hot H₂() with decomp. Sol. in dil. HCl+Aq without decomp. (Rose,

Pogg. 21. 443.)
Insol. in sulphur chloride and in CS₂. (Lenher, J. Am. Chem. Soc. 1902, 24, 188.)

#### Tellurium hydrogen chloride, TeCl4, HCl+ 5H₂O.

Easily decomp. (Metzner, C. R. 1897, **125.** 24.)

#### Tellurium chloride with MCl.

See Chlorotellurate, M.

# Tellurium tetrachloride ammonia.

TeCl₄, 3NH₃.

Decomp. by H₂O. (Metzner, C. R. 1897, **124.** 33.)

TeCl₄, 4Nh₈. Not deliquescent. Decomp. by H₂O. (Espenschied, J. pr. **80.** 480.)

#### Tellurium tetrachloride sulphur trioxide. TeCl₄, SO₃.

Ppt. ((Prandtl, Z. anorg. 1909, 62. 247.) TeCl₄,2SO₃. Decomp. by moisture. On heating at 120°, it gives TeCl₄,SO₃. (Prandtl.)

#### Tellurium tetrafluoride, TeF4.

(Metzner, C. R. 1897, **125**. 25.) +H₂O. (Högbom, Bull. Soc. (2) **35**. 60.)

#### Tellurium hexafluoride, TeFa.

Decomp. by H₂O slowly but completely. (Prideaux, Chem. Soc. 1906, **39.** 322.)

# Tellurium zirconium fluoride, See Fluozirconate, tellurium.

#### Tellurium diodide, TeI2.

Insol. in  $H_2O$ . (Rose, Pogg. 21. 443.)

#### Tellurium tetraiodide, Tel.

Insol. in cold, decomp. by hot  $H_2O$  or alcohol. Sol. in HI, but only sol. in MI + Aq. (Berzelius.)

Data on solubility of TeI₄ in HI+I+Aq are given by Menke (Z. anorg. 1912, 77. 283.)

#### Tellurium hydrogen iodide, TeI₄, HI+ 8H₂O, and +9H₂O.

Deliquescent. (Metzner, A. ch. 1898, (7) **15.** 203.)

#### Tellurium nitride,

Two forms.

a. Stable at ord. temp.

b. Unstable at ord. temp.

(Franz Fischer, B. 1910, 43. 1472.)

Ag. (Metzner, A. ch. 1898, (7) 15. 203.)

TeN. Not attacked by H₂O or dil. acetic acid.

Insol. in liquid NH₃. Decomp. by KOH+

# Tellurium monoxide, TeO.

Sl. sol. in cold dil. HCl or H₂SO₄+Aq. Easily oxidised by HNO₃+Aq or aqua regia. Decomp. immediately by boiling conc. HCl+Aq. Slowly decomp. by KOH+Aq. (Divers and Shimosé, Chem. Soc. **35**. 563.)

# Tellurium dioxide, TeO2.

Very sl. sol. in  $H_2O$ . Sl. attacked by acids. Sl. sol. in NH₄OH or alkali carbonates +Aq. Easily sol. in NaOH or KOH+Aq. Not sol. in less than 150,000 pts. H₂O. Easily sol. in warm dil. HNO₃+Aq. Sol. in warm H₂SO₄+Aq. (Klein and Morel, Bull. Soc. (2) 43, 203.)

(2) 43. 203.) 20% H₂SO₄+Aq. dissolves on warming about 0.7%; 30% H₂SO₄+Aq, about 0.85%; 50% H₂SO₄+Aq, about 4.4%.

These solutions are supersat. and TeO₂ separates from the more dil. acids on standing. (Brauner, M. 1891, 12. 34.)

Min. Tellurite.

#### Tellurium dioxide hydrobromic acid, TeO₂, 3HBr.

(Ditte, C. R. 83. 336.)

# Tellurium dioxide hydrochloric acid, TeO₂, 2HCl.

(Ditte, C. R. **83.** 336.) TeO₂, 3HCl. (Ditte.)

#### Tellurium trioxide, TeO₃.

Insol. in cold or hot H₂O, cold HCl+Aq, or cold or hot HNO₃+Aq. Insol. in moderately conc. KOH+Aq, but, when the KOH+Aq is very conc., is sol. if boiling.

# Tellurium oxide, 2TeO2, TeO3.

"Tellurium tellurate."

(Metzner, A. ch. 1898, (7) 15. 203.)

#### Tellurium oxybromide.

Insol. in H₂O. (Ditte, A. ch. (5) 10. 82.)

#### Tellurium oxybromide sulphur trioxide, TeOBr₂, 2SO₃.

Deliquescent. (Prandtl, Z. anorg. 1909, **62.** 247.)

#### Tellurium oxychloride, TeOCl2.

Insol. in H₂O. (Ditte.)

#### Tellurium oxyfluoride, TeF₄, TeO₂+2H₂O.

Sol. in  $H_2O$  containing  $HNO_3$ . Decomp. by  $H_2O$ .

 $2\text{TeF}_4$ ,  $3\text{TeO}_2+6\text{H}_2\text{O}$ . Decomp. by  $\text{H}_2\text{O}$ . (Metzner, C. R. 1897, **125.** 25.)

#### Tellurium sulphide, TeS.

Insol. in  $CS_2$ ; very unstable. (Snelling, J. Am. Chem. Soc. 1912, **34**. 802.)

## Tellurium disulphide, TeS₂.

Insol. in H₂O or dil. acids. Sol. in alkali hydrates or sulphides + Aq.

CS₂ dissolves out S, so that the substance is probably a mixture. (Becker, A. 180. 257.)

#### Tellurium trisulphide, TeS.

Insol. in H₂O. Sol. in K₂S+Aq.

#### Tellurium sulphoxide, TeSO₂.

Decomp. by H₂O. Sol. in H₂SO₄. (Weber, J. pr. (2) **25.** 218.)
Is tellurium sulphite. (Divers, Chem. Soc. **49.** 583.)

#### Tellurous acid, H₂TeO₃.

Appreciably sol. in H₂O and acids. Sol. in alkali hydrates or carbonates+Aq.

#### Tellurites.

The neutral and acid tellurites of the alkali metals are sol. in H₂O. Ba, Sr, Ca, and Mg tellurites are sl. sol., and the other salts insol. in H₂O. Most tellurites are sol. in HCl+Aq.

#### Aluminum tellurite.

Ppt. Insol. in Al salts+Aq. (Berzelius.)

#### Ammonium tellurite, (NH₄)HTeO₃, H₂TeO₃+ $3^{1}/_{2}H_{2}O$ .

Sol. in H2O, from which it is precipitated by NH₄Cl+Aq or alcohol (Berzelius.)

#### Barium tellurite, BaTeOa.

Sl. sol. in H2O when prepared in the moist way. (Berzelius.) BaO, 4TeO₂.

#### Cadmium tellurite.

Ppt. Sol. in HNO₈, and HCl+Aq. (Oppenheim.)

#### Calcium tellurite, CaTeO₅.

Sl. sol. in cold, more sol. in hot H₂O. (Berzelius.) CaO, 4TeO₂.

#### Chromium tellurite.

Ppt. Sol. in excess of chromic salts +Aq.

#### Cobaltous tellurite.

Ppt.

#### Cupric tellurite.

Insol. in H₂O. (Berzelius.)

#### Glucinum tellurite.

Insol. in H₂O.

# Indium tellurite, In₂(TeO₃, 2In(OH)₃. Ppt. (Renz, Dissert. 1902.)

#### Ferrous tellurite.

Ppt.

#### Ferric tellurite.

Ppt.

#### Lead tellurite, PbTeO₂.

Ppt. Easily sol. in acids. (Berzelius.)

#### Lithium tellurite, Li₂TeO₂.

Sol. in H₂O. (Berzelius.) Li₂O, 2TeO₂. Decomp. by cold H₂O into Li₂TeO₃ and Li₂O, 4TeO₂. (B.) Li₂O, 4TeO₂. Sol. in hot, much less in cold  $H_2$ O. (B.)

## Magnesium tellurite, MgTeO₃.

Precipitate. Much more sol. in H2O than the Ba, Sr, or Ca salt. (Berzelius.)

#### Manganous tellurite.

Ppt.

#### Mercurous tellurite.

Ppt.

# Mercuric tellurite.

Ppt.

# Nickel tellurite.

Ppt.

#### Potassium tellurite, K2TeO2.

Slowly sol. in cold, Not deliquescent. haore quickly in boiling H₂O. (Berzelius.) K₂O, 2TeO₂ Completely sol. in boiling H₂O, from which K₂O, 4TeO₂ crystallises. (B.) K₂O₂4TeO₂+4A₃O. Decomp. by sold H₃O into K₄O, TeO₂, and K₂O, 2TeO₂, which dissolve, and H₂TeO₃, which is insol. (B.)

# Pctassium hexatellurite, K₂O, 6TeO₂+2H₂O.

Not decomp. by, but sl. sol. in H₂O. (Klein and Morel, C. R. 100. 1140.)

#### Silver tellurite, Ag₂TeO₂.

Ppt. Sol. in NH₄OH+Aq. (Berzelius.) The freshly pptd. salt is insol. in H₂O; sol. iu HNO₃, H₂SO₄, acetic and tartaric acid; decomp. by HCl. (Lenher, J. Am. Chem. Soc 1913, **35.** 727.)

AgHTeO₃. Insol. in rf₂O. Sol. in HNO₃ + Aq. (Rose, Pogg. **18.** 60.)

# Sodium tellurite, Na₂TeO₂.

Slowly sol. in cold, more quickly in hot H₂O. Precipitated from aqueous solution by alcohol. (Berzelius.)

Na₂O, 2TeO₂. Decomp. by H₂O as K salt.

 $Na_2O$ ,  $4TeO_2+5H_2O$ . As above. (B.)

#### Strontium tellurite, SrTeO.

Resembles Ba salt. SrH₂Te₄O₁₀. Very sl. sol. in H₂O, more easily in HNO₃+Aq.

#### Thorium tellurite.

Precipitate. Insol. in H₂O or Th salts+Aq.

#### Stannous tellurite.

Pptd. in presence of 60,000 pts. H₂O. (Fischer.)

## Uranium tellurite, U2(TeO3)3.

Ppt. Insol. in U salts+Aq.

#### Yttrium tellurite.

Precipitate.

## Zinc tellurite, ZnTeOs.

Ppt.

# Zirconium tellurite.

Ppt.

#### Terbium, Tb.

Metal has not been isolated.

Has been decomp, into two or more elements by Krüss (Z. anorg. 4. 27).

# Terbium chloride, TbCl₃+6H₂O.

Sol. in H₂O; very hydroscopic; sol. in alcohol. (Urbain, C. R. 1908, **146.** 128.)

### Terbium hydroxide.

Sol. in dilute acids. Decomposes NH₄ salts +Aq.

# Terbium oxide, T₂O₃.

Sol. in dil. acids, even after ignition.

# Terbium peroxide, Tb₄O₇.

Sol. in HNO₃ and in hot HCl. (Urbain, C. R. 1907, **146.** 127.)

# Tetramine chromium compounds.

See-

Bromotetramine chromium compounds. Chlorotetramine chromium compounds. Iodotetramine chromium compounds.

Bromotetramine cobaltic compounds.

# Tetramine cobaltic compounds, $Co(NH_3)_4X_3$ .

See-

Carbonatotetramine cobaltic compounds. Chlorotetramine cobaltic compounds. Croceocobaltic compounds. Fuscocobaltic compounds. Flavocobaltic compounds. Iodotetramine cobaltic compounds. Nitratotetramine cobaltic compounds. Praseocobaltic compounds. Roseotetramine cobaltic compounds.

Sulphatotetramine cobaltic compounds.

See also under octamine cobaltic salts for many tetramine salts as yet unclassified.

Tetramine cobaltic nitrite with MNO₂, Co₂(NH₃)₄(NO₂)₆, 2MNO₂.

See Diamine cobaltic nitrite.

# Tetrathionic acid, $H_2S_4O_6$ .

Known only in aqueous solution.

Dil. solution can be boiled without decomp.

Conc. solution decomp. by boiling.

Addition of H₂SO₄ or HCl makes solution more stable. (Fordos and Gélis, C. R. 15. 920.)

#### Tetrathionates.

Tetrathionates are all easily sol. in  $H_2O$ , but insol. in alcohol

#### Barium tetrathionate, BaS₄O₆+2H₂O.

Very sol. in H₂O, but precipitated by addition of alcohol

# Cadmium tetrathionate.

Deliquescent. Solution in H₂O gradually decomposes. (Kessler, Pogg. **74.** 249.)

# Cæsium tetrathionate, Cs₂S₄O₆.

(J. Meyer, B. 1907, 40. 1361.)

# Cuprous tetrathionate, Cu₂S₄O₆.

Decomp. by H₂O. (Chancel and Diacon, C. R. 1863, **56**. 711.)

# Cupric tetrathionate, CuS₄O₆.

Sol. in H₂O.

Decomp. by long boiling. (Curtius and Henkel, J. pr. 1888, (2) 37. 148.)

# Lead tetrathionate, $PbS_4O_6+2H_2O$ .

Sol. in H₂O.

# Manganous hydrogen tetrathionate, $MnH_2(S_4O_6)_2$ .

Deliquescent. Very sol. in  $H_2O$  and alcohol. (Curtius and Henkel, J. pr. (2) **37.** 148.)

# Nickel tetrathionate ammonia, NiS₄O₆, 6NH₃.

Ppt. Decomp. by  $H_2O$ . Insol. in alcohol. (Ephraim, B. 1913, **46**. 3109.)

### Potassium tetrathionate, K₂S₄O₆.

Soluble in  $H_2O$ . Insol. in alcohol. Difficultly sol. in  $H_2O$ . (Kessler, Pogg. 1847, **74.** 254.)

# Rubidium tetrathionate, Rb₂S₄O₆.

Not hydroscopic. (J. Meyer, B. 1907, **40**. 1356.)

#### Sodium tetrathionate, Na₂S₄O₆.

Sol. in H₂(). Precipitated therefrom by a great excess of alcohol. (Kessler, J. pr. 95. 13.)

 $+2H_2O$ . (Berthelot, A. ch. (6) 17. 450.)

# Strontium tetrathionate, $SrS_4O_6+6H_2O$ .

Sol. in H₂O. (Kessler, Pogg. **74.** 255.). More sol. in H₂O than Ba salt.

#### Zinc tetrathionate.

Sol. in H₂O. (Fordos and Gélis.)

# Zinc hydrogen tetrathionate, ZnH₂(S₄O₆)₂.

Extremely sol. in H₂O and alcohol. (Curtius and Henkel, J. pr. (2) 37. 147.)

# Zinc tetrathionate ammonia, ZnS₄O₆, 3NH₃.

Ppt. (Ephraim, B. 1915, 48. 641.)

#### Thallic acid.

#### Potassium thallate.

Known only in aqueous solution. (Carstanjen, J. pr. 101. 55.)

Does not exist. (Lepsius, Chem. Ztg. 1890, 1327.)

# Thallium, Tl.

Not attacked by pure H₂O. Easily sol. in dil. H₂SO₄ or HNO₈+Aq. Difficultly sol. in HCl+Aq. Absolute alcohol dissolves considerable quantity in a short time, class methyl alcohol, and acetic ether. (Böttger.)

Not easily attacked by HF+Aq. (Kuhl-

Insol. in liquid NH3. (Franklin, Am. Ch. J. 1898, **20.** 830.)

1/2 ccm. oleic acid dissolves 0.0424 g. Tl in 6 days. (Gates, J. phys. Chem. 1911, **15**, 143.)

# Thallium arsenide, TlAs.

Decomp. by H₂SO₄. (Carstanjen)

# Thallous azoimide, TIN₃.

Sl. sol. in II₂O

0.1712 pt. is sol. in 100 pts. H₂O at 0°; 0.1965 pt. is sol. in 100 pts. H₂O at 5°; 0.3 pt. is sol. in 100 pts. H₂O at 16°.

Insol. in abs. alcohol and ether. (Curtius, J. pr. 1898, (2) 58. 284.)

# Thallothallic azoimide, TlN₃, TlN₉.

Explosive. Decomp, by not H₂O and by acids. (Dennis, J. Am. Chem. Soc. 1896, 18. 973.)

# Thallous bromide, TlBr.

Nearly insol. in cold, sl. sol. in boiling  $H_2O$ . (Willm, Bull. Soc. (2) **2.** 89.)

1 l. H₂O dissolves 0.00869 g. mol. TlBr at

68.5°. (Noyes, Z. phys. Ch. 6.248.) Sl sol. in H₂O. 0.48×10⁻² g. is dissolved in a liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, 46. 603.)

1 l. H₂O dissolves 420 mg. TlBr at 18° (Kohlrausch, Z. phys. Ch. 1904, **50.** 356.) 238 mg. TIBr are contained in 1 l. sat.

solution at 0.13°; 289 mg. at 9.37°; 423 mg. at 18°; 579 mg. at 25.68°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.)

Solubility of TlBr in Tl(NO₃)+Aq at 68.5°.

g. mols. per l.		g. mol	s. per l.
TlNO ₃ TlBr		TINO3	TlBr
0 0.0163 0.0294 0.0955	0.00869 0.00410 0.00289 0.00148	0 4.336 7.820 25.400	2.469 1.164 0.821 0.420

(Noves, Z. phys. Ch. 1890, 6. 248.)

Insol. in acetone (Naumann, B. 1904, 37. 4329); pyridine (Naumann, B. 1904, 37. 4610); acetone (Eidmann, C. C. 1899, II. 1014).

# Thallic bromide, TlBr₃.

Easily sol. in H₂O and Deliquescent. alcohol. (Willm.)

(Naumann, B. Insol. in methyl acetate. **1909**, **42**, 3790.)

Sol. in H₂O, +H₂O. Very unstable.

alcohol and ether. (Meyer, Z. anorg, 1900, **24.** 353.)

+4H2O Very soil in H₂O. (Thomas. C. R. 1902, 134. 546.)

# Thallothallic bromid , TIBr, TIBra.

Decomp. by H₂O. (Mever, Z. anorg. 1900, 24. 35 t.) 3TlBr, TlBr₄. Decomp. by H₂O into TlBr and TiBrs.

# Thallic hydrogen bromide, TIBra, HBr.

Very sol. in F₂(). (Thomas, C · R. 1902, 134. (16.)

Thalic bromide ammonia, TlBrs. 3NHs. Decomp. by H₂O.

# Thallium bromochloride, TIClBr.

Decomp. by H₂O. (Thomas, C. R. 1901, **132.** 1489.)

TlCl₁Br₂+4H₂O. Ppt. TlCl₂Br+4H₂O. Ppt. Deco (Thomas, C. R. 1902, **134.** 546.) Decomp. by H₂O.

Tl₃Cl₂Br₄. Decomp. by H₂G, H₂SO₄ or HNO₃. (Thomas, C. R. 1900, **131.** 894; C. R. 1901, **132.** 1489.)

Tl₄Cl₃Br₃. Sol. in H₂O. (Thomas, C. R. 1901, **132**, 82.) TlClBr₂. 3TlCl. Cryst. from H₂O containing HNO₃. (Cushmann, Am. Ch. J. 1900, **24.** 222.)

TlCl₃, 3TlBr. Sol. in H₂O without decomp.

(Cushmann.) TlBr₃, 3TlCl. Decomp. by H₂O. (Cushmann.)

TiBr₃, TlCl. Sol. in H₂O with decomp. (Cushmann.)

TlCl₃, 2TlBr, TlCl. Sol. in H₂O. (Meyer, Z. anorg. 1900, **24.** 355–360.)

TlBr₃, 2TlCl, TlBr. Ppt. Decomp. by H₂O. (Meyer.)

TlCl), 2(TlBr₃, TlBr). (TlCl₃, Ppt. (Meyer.) 2(TlCl₃, TlCl), (TlBr₃, TlBr). Ppt. Decomp. by hot H2O. (Meyer.)

# Thallium bromofluoride, TIFBr2.

Decomp. in moist air. Sol. in abs. alcohol. (Gewecke, A. \$1909, **366.** 233.)

# Thallium bromofluoride ammonia,

TlFBr2, 4NH8. Decomp. by moisture.

Difficultly sol. in abs. alcohol. (Gewecke, A. 1909, **366.** 234.)

# Thallous chloride, TlCl.

Solubility in pts. H2O at to, according to H=Hebberling; C=Crookes; L=Lamy.

0°	15°	16°	16.5°
504	283.4	377	359 pts. H₂O,
H	C	H	H
	00° ut 50	100° 52.5 C	100° 63 pts. H₂O. H

1 l. H₂O dissolves 0.0161 g. mol. TICl at 25. (Noyes, Z. phys. Ch. 6. 249.)

3.26×10 ² grams are dissolved in 1 liter of sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46**. 603.)

1 l. H₂O at 25° dissolves 0.01606 g. mol. TlCl. (Geffcken, Z. phys. Ch. 1904, **49**. 296.)

Solubility in H₂O at t°.

100 cc. sat. solution contain at:

t° 0° 10° 20° 30° 40° 50° g. TlCl 0.17 0.24 0.34 0.46 0.60 0.80

t° 60° 70 80° 90° 99.3° g. TICl 1.02 1.29 1.60 1.97 2.41 (Berkeley, Trans. Roy. Soc. 1904, **203**, A,

1 l. H₂O dissolves 3.040 TlCl at 18°. (Kohlrausch, Z. phys. Ch. 1904, **50.** 356.) 2.27 g. are dissolved in 1 l. of sat. solution at 9.54°; 3.05 g. at 17.7°; 3.97 g. at 25.76°. (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.) 0.01629 mol. is sol. in 1 l. H₂O at 25°. (Hill 1 m. Chem. Sec. 1010, 22, 1225).

(Hill, J. Am. Chem. Soc. 1910, 32. 1385.)
 0.01607 g. equiv. is sol. in 1 l. H₂O at 25°.
 (Bray and Winninghoff, J. Am. Chem. Soc.

1911, **33.** 1665.)

Much less sol. in H₂O containing HCl or HNO₃.

Solubility in HCl+Aq at 25°. 1 l. dissolves g. mol. TlCl.

g. HCl added	TICI	g. HCl added	TICI	
0 0.0283 0.0560	0.01610 0.00836 0.00565	0.1468 1.000	0.00316 0.00200	

(Noyes, Z. phys. Ch. 6. 249.)

Solubility in HCl+Aq. at 25°.

Concentration of HCl,	Solubility of TlCl,	
equivalents per liter	equivalents per liter	
0	0.01612	
0.025	0.00869	
0.05	0.00585	
0.10	0.00384	
0.20	0.00254	

(Noyes, Z. phys. Ch. 1892, 9. 614.)

Solubility in HNO₃+Aq at 25°.

, -	Normality HNO:	Sp. gr. of the solution	g. TlCl dis- solved per l.
	0.000	0.996	3.952
	0.4977	1.0184	5.937
	1.0046	1.0359	6.883
	2.0452	1.0705	8.143
	4.017	1.1362	9.926

(Hill and Simmons, Z. phys. Ch. 1909, 67.

Nearly insol. in NH₄OH+Aq. More sol. in  $K_2$ CO₃+Aq than in H₂O. 3.86 g. TlCl are sol. in 1 l. H₂O at 25°. 21.84 g. TlCl are sol. in 1 l. 5N-K₂CO₂+Aq at 25°. (Spencer and Le Pla, C. C. 1908, II. 198.)

Solubility in KNO₃+Aq at 25°.

Concentration of KNO ₂ milliequivalents per l.	Solutoility of TlCl. milliequivalents per l.	
10	16.07	
20	17.16	
50	18.26	
100	19.61	
300	23.13	
1000	30.72	

(Bray and Winninghoff, J. Am. Chem. Soc. 1911, **33**. 1670.)

Solubility in K₂SO₄+Aq at 25°.

Concentration of K ₂ SO ₄ milliequivalents per l.	Solubility of TlCl milliequivalents per l.
10 20 50 100 300	16.07 17.79 19.42 21.37 26.00
1000	34.16

(Bray and Winninghoff, J. Am. Chem. Soc. 1911, 33. 1670.)

Solubility in Tl₂SO₄+Aq at 25°.

Concentration of Tl ₂ SO ₁ milliequivalents per l.	Solubility of TlCl milliequivalents per l.
10	16.07
20	10.34
50	6.77
100	4.68

(Bray and Winninghoff, J. Am. Chem. Soc. 1911, **33**. 1670.)

Solubility of TlCl in salts+Aq at 25°.

Salt	Concentration of salt g. equiv. per l.	TlCl dissolved g. equiv. per l.		
NH ₄ Cl	0.025 0.05 0.2	0.00872 0.00593 0.00271		
CaCl ₂	0.025 0.05 0.10 0.20	0.00899 0.00624 0.00417 0.00284		

Solubility	of	TlCl	in	salts+Aq	at	25°
		Co	ntir	nued.		

Salt	Concentration of salt g. equiv. per l.	TlCl lissoned g. equiv. per l.
CdCl ₂	0.025 0.05 0.10 0.20	0 01040 0.0073 0.00578 0.00425
. CuCl ₂	0.025 0.05 0.10 0.20	0.00905 0.00614 0.00422 0.00291
$ m MgCl_2$	0.025 0.05 0.10 0.20	0.00904 0.00618 0.00413 0.00275
MnCl ₂	0.025 0.05 0.10 0.20	0.00898 0.00617 0.00412 0.00286
KCl	0.025 0.05 0.1 0.2	0.00872 0.00593 0.00399 0.00265
NaCl	0.025 0.05 0.10 0.20	0.00869 0.00592 0.00395 0.00271
$\mathbf{ZnCl}_2$	0.025 0.05 0.10 0.20	0.00899 0.00627 0.00412 0.00281
TICIO ₃	0.025	0.00897
TINO ₃	0.025 0.05 0.10	0.00883 0.00626 0.00423

(Noyes, Z. phys. Ch. 1892, 9. 609.)

# Solubility of TlCl in salts+Aq at 25°.

	Mols TlCl sol. in 1 liter of				
Salt	O.5-N solution	N solution	2-N solution	3N solution	4-N solution
NH4NO3 KNO8 N8NO8 LiNO3 KCIO3 N8CIO2	0.02566 0.02564 0.02542	0.03077 0.03054	0.03904 0.03851 0.03785	0.04544 0.04438	

(Geffcken, Z phys. Ch. 1904, 49. 295.)

Insol. in alcohol. Easily sol. in hot HgCl₂+Aq. (Carstanjen.)

Solubility of TlCl in HC₂H₃O₂+Aq at 25°. (g. equiv. per l.)

Acid	TICI
0.000	0.01629
0.5134	0.01580
1.013	0.01495
2.016	0.0132
4.180	0.0099
8.130	0.0054
11.49	0.0026
14.31	0.0012
16.61	0.0005

(Hill, J. Am. Chem. Soc. 1910, 32, 1189.)

Insol. in pyridine (Naumann, B. 1904, 37. 4610); acetone. (Naumann, B. 1904, 37. 4329.)

#### Thallic chloride, TICla.

Anhydrous.

Easily sol. in H₂O and in most ord. solvents

In contact with moist air, it rapidly becomes hydrated. (Thomas, C. R. 1902, 135. 1053.)

Difficultly sol. in methyl acetate. (Naumann, B. 1909, **42**. 3790.)

Very sol. in acetone. (Renz, B. 1902, **35.** 1110.)

Difficultly sol. in acetone. (Naumann, B. 1904, 37. 4328.)

 $+H_2O$ . Deliquescent, and very easily sol. in  $H_2O$ . (Werther.)

Deliquescent, and very easily sol. in H₂O. (Werther.)

 $+4H_2O$ . 86.2 pts. are sol. in 100 pts.  $H_2O$  at 17°. Sp. gr. of sat. aq. solution at 17° = 1.85. (Thomas, C. R. 1902, **135**. 1052.)

Very hydroscopic. (Meyer, Z. anorg. 1900, 24, 336.)

Very sol. in alcohol and ether. (Meyer, Z. anorg. 1900, 24. 338.)

 $+7\frac{1}{2}H_2O$ . Deliquescent. (Werther.)

# Thallothallic chloride, 3TlCl, TlCl₃.

1 pt. dissolves in pts. H₂O at t°, according to C=Crookes; H=Hebberling; L=Lamy.

15° 17° 100° 100° 380.1 346 52.9 20–25 pts. H₂O. C H C L

Sl. decomp. by dissolving. (Lamy.)

Thallic hydrogen chloride,  $TlCl_3$ ,  $HCl+3H_2O$ .

Very hygroscopic.

Decomp. by  $H_2O$ . (Meyer, Z. anorg. 1900, 24. 337.)

# Thallium tungsten chloride, Tl₃W₂Cl₉.

Nearly insol. in  $H_2O$ . Sol. in a hot mixture of equal pts.  $H_2O$  and conc. HCl.

Sl. sol. in conc. HCl. Nearly insol. in most organic solvents. (Olsson, B. 1913, 46. 575.)

Thallic zinc chloride, 2TlCl₃, ZnCl₂+6H₂O. Can be cryst. from H₂O. (Gewecke, A. 1909, **366.** 224.)

Thallic chloride ammonia, TlCl₂, 3NH₃. Decomp. by H₂O. Sol. in HCl+Aq (Willm.)

# Thallium chlorofluoride, TIFCl2.

Very hydroscopic. Decomp. by moist air.

Easily sol. in abs. alcohol. (Gewecke, A. **1909, 366.** 230.)

+3H₂O. Not hydroscopic.

Decomp. by H₂O, alcohol and ether. (Gewecke.)

# Thallium chlorofluoride ammonia, TlFCl2, 4NH₃.

Decomp. by H₂O.

Difficultly sol. in abs. alcohol and in ether. (Gewecke, A. 1909, **366.** 232.)

# Thallium chlorofluoride potassium chloride, 2TlFCl₂, KCl.

Ppt. (Gewecke, A. 1909, **366.** 231.)

# Thallous fluoride, TIF.

Sol. in 11/4 pts. H₂O at 15°, and in much less hot H₂O. Difficultly sol. in alcohol. (Buchner, W. A. B. 52. 2. 644.)  $+\frac{1}{2}H_2O$ . Deliquescent. (Willm.)

### Thallic fluoride, TIF₃.

Insol. in H₂O and cold HCl+Aq. (Willm.) Cannot be obtained in pure state. (Gewecke, A. 1909, **366**. 218.)

# Thallous hydrogen fluoride, TIF, HF. Sol. in 1 pt. H₂O. (Buchner.)

Thallous tungstyl fluoride, See Fluoxytungstate, thallous.

Thallous vanadium fluoride. See Fluovanadate, thallous.

Thallous vanadyl fluoride. See Fluoxyvanadate, thallous.

Thallous hydroxide, TIOH. Sol. in H₂O and alcohol.

Solubility of	TIOH	in H ₂ C	at t°.
---------------	------	---------------------	--------

t°	g. equiv. 110H per l	Sp. gr. 15°/4°
0	1.151	1.231
18.5	1.554	1.317
19.5	1.582	1.322
29	1.803	1.342
23.1	1.861	1.377
33.1	1.967	1.400
36	2.075	1.417
40	2.240	1.446
44.5	2.442	
<b>54</b> .1	2.940	
<b>59.4</b>	3.281	
64.6	3.601	
<b>78</b> .5	4.673	
. 90.0	5.705	
<b>99.2</b>	6.708	

(Bahr, Z. anorg. 1911, 71. 87.)

The solubility of Tl₂O in H₂O at these temperatures is the same as that of TlOH.  $+H_2O$ . (Willm, Bull. Soc. (2) **5.** 354.)

# Thallic hydroxide, $Tl_2O_3$ , $H_2O = TlO(OH)$ .

Insol. in H₂O. Sol. in dil. acids and ammonium salts+Aq. Insol. in caustic alkali solutions.

Tl(OH)₃. Easily sol. in dil. HCl or H₂SO₄ +Aq. (Carnegie, C. N. 60. 113.)

### Thallous iodide, TII.

Very sl. sol. in H₂O.

1 pt. TlI is sol. in pts. H₂O at t°. C=according to Crookes; H = according to Hebberling; L=according to Lamy; W=according to Werther.

35° 16° 15° 16-17° 19.4°

 $20^{\circ}$ 23.4° 100° 45° 100° 11,954 10,482 5407 842 804 pts. H₂O.

Sol. in 17,000 pts. H₂O at 20°. (Long, Z. anal. 30. 342.)

Sat. solution at 20.15° contains 63.6 mg. or  $1.92\times10^{4}$  g. mol. TlI per l. (Böttger, Z. phys. Ch. 1903, 46. 603.)

1 l. H₂O dissolves 56 mg. TII at 18°. (Kohlrausch, Z. phys. Ch. 1904, 50. 356.)

36.2 mg. are dissolved in 1 l. of sat. solution

at 9.90°; 56 mg at 18.1°; 84.7 mg at  $26^{\circ}$ . (Kohlrausch, Z. phys. Ch. 1908, **64.** 168.) Solubility in  $H_2O$  at  $25^{\circ}=1.76\times10^{4}$  mol. per litre. (Spencer, Z. phys. Ch. 1912, **80**. 708.)

Not decomp. by dil. H₂SO₄, HCl, or alkalies +Aq. Decomp. by hot dil. HNO₃+Aq, and cold conc. HNO₃. Sol. in aqua regia.

Also less sol. in acetic acid than in  $H_2O$ . (Carstanjen.)

Insol. in NH₄OH+Aq. (Werther.) Not wholly insol. in NH₄OH+Aq. and solubility is increased by presence of (NH₄)₂O₄ or NH₄Cl. (Baubigny, C. R. 113. 544.)

NH₄Cl. (Baubigny, C. R. 113. 544.) Sol. in 13,000 pts. NH₄OH+ \(\frac{1}{4}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{

Insol. in dil. KI+Aq (1% KI). (Bau-

bigny.)

Much more insol. in KI+Aq than in H₂G; 1 pt. dissolves in 75,000 pts. dil. KI+Aq. (Lamy.)

Nearly insol. in Na₂S₂O₃+Aq, and absolutely insol. therein in presence of Pb salts.

(Werner, C. N. 53. 51.)

Sol. in 56,336 pts. 85% alcohol at 13°. (Werther.) Sol. in 18,934 pts 98% alcohol at 19°. (Hebberling.)

When TII is shaken with alcohol of 78-B (1 vol. H₂O+3 vols. 98% alcohol) at 22°, and let stand with TII for 24 hours, and then evaporated to ½ vol., there is shown no ppt. by NH₄SH+Aq. (Baubigny.)

by NH₄SH+Aq. (Baubigny.)
Sol. in 260,000 pts. 90% alcohol, and 37,000 pts. 50% alcohol at 20°. (Long.)

Insol. in methylene iodide. (Retgers, Z. anorg. 3. 343.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C., 1899, II. 1014.)

Insol. in pyridine. (Naumann, B. 1904, **37**. 4601.)

# Thallic iodide, TII₈.

Sol. in alcohol.

Decomp. slowly in the air. (Wells, Z. anorg. 1894, 6. 313.)
Sol. in ether.

Thallothallic iodide,  $Tl_8I_4 = 5TlI$ ,  $TlI_8$ .

Sol. in H₂O. (Jörgensen, J. pr. (2) **6.** 82.)

#### Thallium nitride.

Very unstable. (Franz Fischer, B. 1901, **43**. 1470.)

Thallous oxide, Tl₂O.

Deliquescent. Sol. in H₂O. See Thallous hydroxide.

## Thallic oxide, Tl₂O₃.

Insol. in H₂O. Not attacked by cold H₂SO₄. Sol. in hot H₂SO₄. Sol. in cold HCl +Ag.

Insol. in alkalies+Aq. (Werther, J. pr. 91. 385.)

Black modification.

Less sol. in dil. acids than the brown modification. Solution is accompanied by a slight reduction to thallous salt.

More sol. in 10% HCl than in 10% H₂SO₄ or HNO₃.

More sol, in conc. than in dil. acids. (Rabe, Z. anorg. 1906, 48. 431.)

Brown modification.

Easily sol. in Jil. mineral acids on warming, with slight reduction to thallous salt.

More sol. in conc. acid. (Rabe.)

Thallium dioxide, TIO2.

In ol. in H₂O. (Piccini, Gazz. ch. it. 17. 50.)

# Thallic oxide ammonia, Tl₂O₃, 6NH₃.

Decomp. by such H₂O. Insol. in alcohol. (Carstanjen.)

# Thallic oxyfluoride, TIOF.

Insol in  $H_2O$ . Slowly decomp. by boiling with  $H_2O$ .

Sol. in mineral acids. Almost insol. in HF. (Gewecke, A. 1909, 366. 226.)

# Thallium phosphide (?).

Ppt. (Crookes.)

# Thallous selenide, Tl₂Se.

Insol. in  $H_2O$ . Scarcely attacked by cold dil.  $H_2SO_4+Aq$ , but dissolves when heated. (Carstanjen.)

#### Thallothallic selenide.

Not attacked by cold cone, or boiling dil.  $H_2SO_4+Aq$ . Cone.  $H_2SO_4$  decomposes. (Carstanjen.)

#### Thallous sulphide, Tl₂S.

Insol. in H₂O, (NH₄)₂S+Aq, NH₄OH+Aq, KCN+Aq, and in alkali carbonates, and hydrates +Aq. Difficultly sol. in a solution of oxalic acid or acetic acid. (Crookes.) Easily sol. in HNO₃, and H₂SO₄+Aq. Difficultly sol. in HCl+Aq. (Willm.)

Sl. sol. in H₂O.

0.21×10⁻⁴ g. is dissolved in 1 l. sat. solution at 20°. (Böttger, Z. phys. Ch. 1903, **46**. 603.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329.)

### Thallic sulphide, Tl₂S₈.

Insol. in  $H_2O$ . Insol. in cold, sol. in warm dil.  $H_2SO_4+Aq$  without separation of S. Sol. in other dilute acids with separation of S. (Carstanjen.)

Thallium pentasulphide, Tl₂S₅.

Ppt. (Hofmann, B. 1903, 36. 3092,)

# Thallothallic sulphide, 5Tl₂S, 3Tl₂S₃.

Very slowly decomp. by cold dil. H₂SO₄+

Aq.  $Tl_2S$ ,  $Tl_2S$ . (Carstanjen.)  $Tl_2S$ ,  $2Tl_2S$ . Decomp. by dil. acids. (Schneider, J. pr. (2) 10. 55.)

# Thallium telluride, Tl₂Te.

(Fabre, C. R. 105. 673.)

#### Thio-

For compounds with prefix thio-, see also under sulpho-.

### Thioantimonic acid.

See Sulphantimonic acid.

### Thioarsenic acid.

See Sulpharsenic acid.

# Thiomolybdic acid.

See Sulphomolybdic acid.

# Thionamic acid, $NH_3SO_2 = NH_2SO(OH)$ .

Very deliquescent, and sol. in H₂O. H₂O solution decomp. gradually. (Rose, Pogg. 33. 275; 42. 425.)

# Ammonium thionamate, NH₂SO(ONH₄).

Deliquescent. Sol. in H₂O; easily decomp.

when in solution. (Rose.)

Very sol. in alcohol with decomp. Sl. sol. in dry ether. (Divers and Ogawa, C. C. 1900, I. 1259.)

# Dithionic acid.

See Dithionic acid.

# Trithionic acid.

See Trithionic acid.

#### Tetrathionic acid.

See Tetrathionic acid.

#### Pentathionic acid.

See Pentathionic acid.

#### Thionyl bromide, SOBr₂.

Unstable.

Decomp. by  $H_2O$ . (Besson, C. R. 1896, **122.** 322.)

# Thionyl bromochloride, SOCIBr.

Decomp. slowly in the cold, rapidly at 115°. Decomp. by H₂O. (Besson C. R. 1896, **122.** 321.)

### Thionyl chloride, SOCl2.

Sol. in CHCl₃, and C₆H₆. (Oddo, Gazz. ch. it. 1899, 29. (2) 318.)

#### Thionyl fluoride, SOF₂.

Decomp. by H₂O.

Sol. in AsCl₃, C₆H₆, ether and oil of turpentine. (Moissan, C. R. 1900, **130**. 1439.)

# Thiophosphamic acid, H₂PNH₂O₂S (?).

Known only in its salts. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.)

# Cadmium thiophosphamate, CdPNH₂O₂S.

Sol. in dil. acids, and NH₄OH+Aq. (G. and H.)

# Lead ----, PbPNH₂O₂S.

Ppt. Sol. in dil. HNO₃+Aq. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.)

# Thiophosphodiamic acid, H₂PN₂H₄OS.

Known only in solution, which soon decomposes. (G. and H.)

# Cadmium thiophosphodiamate, $Cd(PN_2H_4OS)_2$ .

Insol. in H₂O; sol. in dil. acids, and NH₄OH +Aq. (G. and H.)

# Cupric —, Cu(PN₂H₄OS)₂.

Insol. in H₂O, dil. HCl, or NH₄OH+Aq. Sol. in KCN+Aq. (Gladstone and Holmes, Chem. Soc. (2) 3. 1.)

### Lead —, $Pb(PN_2H_4OS)_2$ .

Insol. in H₂O. Sol. in dil. HNO₃+Aq.

# Nickel ---, Ni(PN₂H₄OS)₂.

Sol. in dil. acids, and NH₄OH+Aq. (Gladstone and Holmes, Chem. Soc. (2) \$\mathbf{3}\$ 1.)

# Zinc —, $Zn(PN_2H_4OS)_2$ .

Ppt. Sol. in dil. acids, and NH₄OH+Aq. (Gladstone and Holmes.)

### Thiophosphonitrile, PSN.

Not decomp. by cold H₂O. Slowly decomp. by boiling H₂O. Easily decomp. by boiling dil. HCl. (Stock, B. 1906, **39**, 1974.)

# Thiophosphoric acid, $H_3PSO_3 = PS(OH)_3$ .

Known only in its salts.

#### Ammonium magnesium thiophosphate, NH₄MgPSO₃+9H₂O.

Sl. sol. in cold  $H_2O$ . (Kubierschky, J. pr. (2) 31. 100.)

#### Barium —, $Ba_3(PSO_3)_2$ .

Insol. in H₂O. (Wurtz, A. ch. (3) 20. 473.)

#### Cobalt ----

Insol in H₂O, but partially decomp, when boiled therewith. (Wurtz.)

#### Cupric ----.

Insol. in H₂O; very easily decomp. (Wurtz.)

# Ferric ----.

Insol. in H₂O. (Wurtz.)

# Magnesium —, $Mg_3(PSO_3)_2+20H_2O$ .

Sl. sol. in cold H₂O. (Kubierschky, J. pr. (2) 31. 99.)

# Nickel thiophosphate.

Insol. in H₂O, but decomp. when boiled therewith. (Wurtz.)

# Potassium ---, K₂PSO₃.

Very sol. in  $H_2O$ . Known only in aqueous solution. (Wurtz.)

### Sodium —, $Na_3PSO_3+12H_2O$ .

Easily sol. in boiling H₂O. Cryst. out on cooling. (Wurtz, A. ch. (3) 20. 472.) Insol. in alcohol.

#### Strontium ----

Insol. in H₂O. (Wurtz.)

# Dithiometaphosphoric acid.

Ammonium dithiometaphosphate, NH₄PS₂O.

Decomp. by  $H_2O$ . (Stock, B. 1906, 39. 1990.)

# Monothioorthophosphoric acid.

Monoammonium monothioorthophosphate, O:P(SNII₄)(OH)₂.

Sol. in H₂O.

Insol. in alcohol. (Stock, B. 1906, 39. 1990.

Triammonium monothioorthophosphate, SNH4.PO.(ONH4)2. (Stock.)

#### Dithioorthophosphoric acid.

Ammonium dithiophosphate,  $(NH_4)_3PS_2O_2 + 2H_2O$ .

Sl. efflorescent. Sol in H₂O. (Kubierschky, J. pr. (2) **31.** 93.)

Ammonium magnesium —, NH₄MgPS₂O₂ +6H₂O.

Sl. sol. in cold, H₂O. (Kubierschky.)

# Barium —, Ba₃(PS₂O₂)₂+8H₂O.

Precipitate. (Kubierschky, J. pr. (2) 31. 103.)

+18H₂O. As the *tri*thio compound. (Ephraim, B. 1910, **43**. 287.)

# Calcium ----.

Very easily decomposed. (Kubierschky.)

Sodium ----, Na₃PS₂O₂+11H₂O.

Very sol. in H₂O. (Kubierschky, J. pr. (2) 31. 93.)

# Trithioorthophosphoric acid.

Ammonium trithioorthophosphate, (NH₄)₃PS₃O+H₂O. (Stock, B. 1906, **39.** 1985.) Barium trithioo thophosphate, Ba₂(PS₂O)₂+ 20H₂O.

Decomp. by H₂O and dil. acids. Sol. in conc. HNO₂ with oxidation of the sulphur to H₂SO₄. (Ephraim, B. 1910, 43. 286.)

Magnesium —,  $Mg_3(PS_3O)_2+20H_3O$ .

Decomp. by H₂() and dil. acids. (Ephraim.

## Thiophosphorous acid.

Americanium thiophosphite (1),  $(NH_4)_4P_2S_3Q_4 + 3H_2(1)$ 

Sol. in  $H_2O$ . (Lemoine, C. R. 98. 45.)  $\div 6H_2O$ .

Sodium thiophosphite (?),  $Na_4P_2S_2O_3+5H_2O$ =  $P_2O_3$ ,  $2Na_2S+5H_2O$ .

Sc!. in  $H_2O$ . (Lenoine, C. R. 98. 45.)  $Na_4P_2S_2O_4+4H_2O=P_2O_8$ ,  $3Na_2O$ ,  $2H_2S+2H_2O$ . Sol. in  $H_2O$ . (Lemoine,  $l.\ c.$ )

# Thiophosphoryl triamide, PS(NH₂)₃.

Rapidly decomp. by  $H_2O$ . Scarcely sol. in alcohol, ether, or  $CS_2$ . (Chevrier, C. R. **66**. 748.)

# Metathiophosphoryl bromide, PS2Br.

Decomp. by  $H_2O$ . Insol. in ether. (Michaelis, A. 164. 9.)

#### Orthothiophosphoryl bromide, PSBr.

Slowly decomp. by cold, rapidly by hot  $H_2O$  but volatile with only partial decomp. with steam. Easily sol. in ether,  $CS_2$ ,  $PCl_3$ ,  $PBr_4$ . Decomp. by cold alcohol. Forms hydrate  $PSBr_3 + H_2O$ . (Michaelis, A. 164. 9.)

# Pyrothiophosphoryl bromide, P₂S₃Br₄.

Decomp. by H₂O and alcohol. Sol. in CS₃ and ether. (Michaelis.)

# Thiophosphoryl phosphorus bromide, PSBr₃, PBr₃.

Decomp. by H₂O into PSBr₃. (Michaelis.)

# Thiophosphoryl dibromochloride, PSClBr₂.

Decomp. by H₂O and alkalies.

Fumes in the air. (Besson, C. R. 1896, 122, 1059.)

# Thiophosphoryl bromodichloride, PSCl₂Br.

Decomp. by  $H_2O$  and alkalies. Reacts violently with HNO₃. (Besson, C. R. 1896, 120. 1058.)

#### Thiophosphoryl chloride, PSCl₃.

Very slowly decomp. by H₂O, and may be distilled with steam without much decomp. Decomp. by alcohol. Miscible with CS₂. (Baudrimont, J. pr. 87. 301.)

Sol. in CCl₄ and C₆H₆. (Oddo, Gazz. ch.

it. 1899, 29. (2) 318.)

Thiophosphoryl pentachloride, PS₂Cl₅ (?).

Decomp. by H₂O. Sol. in alkalies with residue of S. Attacked violently by HNO₃, alcohol, ether, oil of turpentine. Miscible with CS₂. (Gladstone, Chem. Soc. 3. 5.)

# Thiophosphoryl fluoride, PSF₃.

Slowly sol. in H₂O with decomp: Sl. sol. in ether.

Insol. in H₂SO₄, CS₂, or benzene. (Thorpe and Rodger, Chem. Soc. 55. 306.)

More sol. in KOH or NaOH+Aq than in

н₀О.

# Thiophosphoryl iodide, P₂SI₂.

Very sol. in CS₂. Unstable when heated. Fumes in the air. (Besson, C. R. 1896, 122. 1201.)

# Thiosulphuric (formerly Hyposulphurous) acid, H₂S₃O₃.

Known only in aqueous solution, which is extremely unstable, and decomposes very quickly after its formation. The time before decomposition is exactly proportional to the ratio of the weight of  $H_2O$  to the weight of  $H_2S_2O_3$  present; i. e., if one solution contains twice as much  $H_2O$  for a given amt. of  $H_2S_2O_3$  as a second solution, the first solution will decompose in twice the length of time. The length of time is about 20 secs. at 10°, and 2 secs. at 50° for conc. solutions, to 120 secs. at 10° and 12 secs. at 50° for very dilute solutions. (See Landolt (B. 16. 2958) for further figures; also Winkelmann (B. 18. 406).

#### Thiosulphates.

The thiosulphates of the alkalies and of Ca and Sr are easily sol. in  $H_2O$ ; Ba and Sr salts are sl. sol. and the other salts insol. The salts of the metals dissolve in alkali thiosulphates + Aq. All are insol. in alcohol.

Double Salts of Thiosulphuric acid. It is impossible to determine whether substances of this class are true chem. individuals. Many described by Svensson and others are doubtless isomorphic mixtures, whose comp. depends on the temp. and conc. of the solution in which pptd. (Rosenheim, Z. anorg. 1900, 25. 72.)

# Ammonium thiosulphate, (NH₄)₂S₂O₃.

Very deliquescent. Very sol. in H₂O. Not deliquescent. (Fock and Klüss, B. 1889, **22**, 3099.)

Crystallises with ¹/₈H₂O. (Rammelsberg, Pogg. **56**. 298.) Anhydrous. (Arppe, A. **96**. 113.)

Insol. in alcohol. (Arppe.)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014.)

Difficultly sol. in acetone. (Naumann, B. 1904, 37. 4328.)

# Ammonium cadmium thiosulphate, 3(NH₄)₂S₂O₃, CdS₂O₃+3H₂O.

Can be recryst. from warm H₂O. (Fock and Klüss, B. 23. 1758.)

 $+H_2O.$  (F. and K.) (NH₄)₂S₂O₃, CdS₂O₃. (F. and K.)

# Ammonium cuprous thiosulphate, (NH₄)₂S₂O₈, Cu₂S₂O₈+2H₂O.

Less sol. in  $H_2O$  than  $2(NH_4)_2S_2O_3$ ,  $Cu_2S_2O_3+1\frac{1}{2}H_2O$ . (Rosenheim and Steinhäuser, Z. anorg. 1900, **25.** 91.)

2(NH₄)₂S₂O₃, Cu₂S₂O₃+1½₂H₂O. Very sol. in H₂O. Insol. in alcohol. (Rosenheim and Steinhäuser.)

# Ammonium cuprous thiosulphate cuprous iodide, 7(NH₄)₂S₂O₃, Cu₂S₂O₃, 8CuI+4H₂O.

Insol. in H₂O. (Brun, C. R. 1892, **114**. 668.) Could not be obtained. (Rosenheim and Steinhäuser, Z. anorg. 1900, **25**. 107.)

# Ammonium cuprous sodium thiosulphate ammonia, $3Cu_2S_2O_3$ , $4Na_2S_2O_3$ , $(NH_4)_2S_2O_3$ , $6NH_3$ .

Ppt. When dry is fairly stable in the air. Partially decomp. by H₂O.
Sol. in dil. H₂SO₄ or acetic acid. (Shinn, J. Am. Chem. Soc. 1904, **26**. 948.)

# Ammonium lead thiosulphate, $2(NH_4)_2S_2O_3$ , $PbS_2O_3+3H_2O$ .

Easily and completely sol. in cold H₂O, but deposits PbS₂O₃ by standing or warming. (Rammelsberg, Pogg. **56.** 312.)

# Ammonium magnesium thiosulphate, $(NH_4)_2Mg(\hat{S}_2O_3)_2+6H_2O$ .

Very deliquescent, and sol. in H₂O. (Kessler, Pogg. **74.** 283.)

Not deliquescent. (Fock and Klüss, B. **23.** 540.)

# Ammonium mercuric thiosulphate, 4(NH₄)₂S₂O₃, HgS₂O₃+2H₂O.

Sol. in H₂O, from which it is precipitated by alcohol. Extremely easily decomp. (Rammelsberg, Pogg. **56.** 318.)

# Ammonium potassium thiosulphate, NH₄KS₂O₃.

Sol. in H₂O. (Fock and Klüss, B. 23. 536.)

# Ammonium silver thiosulphate, $2(NH_4)_2S_2O_3$ , $Ag_2S_2O_3+xH_2O$ .

Easily sol. in H₂O. Somewhat sol. in alcohol. (Herschel, Edinb. Phil. J. 1. 398.) (NH₄)₂S₂O₃, Ag₂S₂O₃+xH₂O. Nearly insol. in H₂O; sol. in NH₄OH+Aq, from which it is repptd. by an acid. (Herschel.)

Ammonium zinc thiosulphate, (NH₄)₂S₂O₃, ZnS₂O₃+H₂O.

Very sol. in H₂O. (Rosenheim and Davidsohn, Z. anorg. 1904, 41. 238.)

Ammonium thiosulphate ammonium cuprous bromide, CuBr, NH₄Br, 4(NH₄)₂E₂G₃.

Sol. in H₂O. (Rosenheim, Z. anorg. 1900, **25.** 107.)

The double salts of ammonium thiosulphate with silver and copper haloid are true chemical compounds and may be recryst. from H₂O without decomp. (Rosenheim, Z. anorg. 1900, **25**. 100.)

Ammonium thiosulphate ammonium silver bromide, AgBr, NH₄Br. 4(NH₂)₂S₂O₃. Sol. in H₂O. (Rosenheim)

 $\begin{array}{c} \textbf{Ammonium thiosulphate ammonium cuprous} \\ \textbf{chloride, CuCl, NH_4Cl, 4(NH_4)_2S_2O_3.} \end{array}$ 

Sol. in  $H_2O$  and in  $NH_4OH+Aq$ . (Rosenheim.)

Ammonium thiosulphate ammonium silver chloride, AgCl, NH₄Cl,  $4({\rm NH_4})_2{\rm S}_2{\rm O}_\odot$ 

Sol. in;cold H₂O and NH₄OH+Aq. Decomp. by boiling with H₂O and by dil. acids (Rosenheim.)

Ammonium thiosulphate ammonium cuprous cyanide.

Composition not constant. (Rosenheim.)

Ammonium thiosulphate ammonium silver cyanide.

Composition not constant. (Rosenheim.)

Ammonium thiosulphate ammonium cuprous iodide, CuI, NH₄I, 4(NH₄)₂S₂O₃.

Sol. in H₂O. (Rosenheim.)

Ammonium thiosulphate ammonium cuprous iodide,  $4(NH_4)_2S_2O_3$ ,  $NH_4I$ , CuI.

Very sol. in H₂O. Decomp. by boiling. (Brun, C. R. 1892, **114.** 668.)

Ammonium thiosulphate ammonium silver iodide, AgI, NH₄I, 4(NH₄)₂S₂O₃.

Scl. in H₂O. (Rosenheim.)

Ammonium thiosulphate ammonium cuprous sulphocyanide, CuSCN, NH₄SCN, 4(NH₄)₂S₂O₃.

Sol. in H₂O. (Rosenheim.)

Ammonium thiosulphate ammonium silver sulphocyanide, AgSCN, NH₄SCN, 4(NH₄)₂S₂O₃.

Sol. in H₂O. (Rosenheim.)

Ammonium thiosulphate cuprous iodide, (NH₄)₂S₂O₄, 2CuI+H₂O.

. Insol. in H₂O. (Brun, C. R. 1892, 114. 668.)

Could not be obtained. (Rosenheim and Steinhäuser.)

Barium thiosulphate, BaS2O2+H2O.

Sl. sol. in H₂O. (Rose, Pogg. 21. 437.) Insol. in alcohol.

1 pt. cannot be dissolved in 2000 pts. H₂O. Sol in dil. HCl. Aq without decomposition. (Herschel, 1813.)

Pptd. from BaS₂O₃+Aq by dil. alcohol.

Sobrero and Selmi, A. ch. (3) 28. 211.) Insol. in acetone. (Naumann, B. 1904, 37.

Insol. in acetone. (Naumann, B. 1904, **37**, 4329.)

Barium bismuth thiosulphate,  $Ba_i[Bi(S_2O_i)_i]_i$ . Sol. in  $H_2O$  with decomp. (Hauser, Z. anorg. 1903, **35.** 9.)

Barium cadmium thiosulphate, 2BaS₂O₃, CdS₂O₃+8H₂O.

Sl. sol. in H₂O. (Feek and Klüss, B. **23.** 1761.) 3BaS₂O₃, CdS₂O₃+8H₂O. Sl. sol. in H₂O.

Barium cuprous thiosulphate.

Easily sol. in hot, difficultly sol. in cold  $H_2O$ . (Cohen, Chem. Soc. **51**. 38.)  $2BaS_2O_3$ ,  $Cu_2S_2O_3+7H_2O$ . Nearly insol. in  $H_2O$ . (Vortmann, M. **9**. 165.)

Barium gold thiosulphate.

Sl. sol. in H₂O. Insol. in alcohol. (Fordos and Gélis.)

Barium lead thiosulphate.

Difficultly sol. in H₂O. (Rammelsberg, Pogg. **56.** 313.)

Barium thiosulphate chloride, BaS₂O₃, BaCl₂+2H₂O.

Sol. in H₂O. (Fock and Klüss, B. 23. 3001.)

Bismuth cæsium thiosulphate, Cs₃Bi(S₂O₂)₃.

Sol. in H₂O. Insol. in alcohol. (Hauser, Z. anorg. 1903, 35. 8.)

Bismuth potassium thiosulphate,  $K_2Bi(S_2O_2)_3 + \frac{1}{2}H_2O$ .

Solubility in H₂O.

100 cc. of the sat. solution contain 3.5 g. at 2°; 7.0 g. at 18°. At 18° the solution

decomposes.

More sol. in Na₂S₂O₃+Aq than in pure

H₂O.
Insol. in alcohol. (Hauser, Z. anorg. 1903, **35.** 5.)

+H₂O. Sol. in H₂O. Insol. in alcohol. (Carnot, C. R. 83, 390.)

# Bismuth rubidium thiosulphate, $Rb_3Bi(S_2O_3)_3 + \frac{1}{2}H_2O$ .

Sol. in H₂O.

Insol. in acid alcohol. (Hauser, Z. anorg. 1903, 35. 7.)

 $+H_2O$ . Sol. in  $H_2O$ . (Hauser, Z. anorg. 1903, **35**. 8.)

# Bismuth sodium thiosulphate,

Very sol. in  $H_2O$ , and also in alcohol. (Carnot, C. R. **83**. 338.) Na₃Bi( $S_2O_3$ )₃. Decomp. by  $H_2O$ . Easily

 $Na_3Bi(S_2O_3)_3$ . Decomp. by  $H_2O$ . Easily sol. in 50% alcohol. (Hauser, Z. anorg. 1903, 35. 3.)

# Cadmium thiosulphate, CdS₂O₃+2H₂O.

Sol. in  $H_2O$ . Insol. in alcohol. (Vortmann and Padberg, B. 22. 2638.)

# Cadmium potassium thiosulphate, $3CdS_2O_3$ , $5K_2S_2O_3$ .

Cannot be recryst. without decomp. (Fock and Klüss, B. 23. 1753.)

CdS₂O₃, 3K₂S₂O₃+2H₂O. Can be crystallised from H₂O without decomp. (F. and K.)

# Cadmium sodium thiosulphate, $CdS_2O_3$ , $3Na_2S_2O_3+16H_2O$ .

Not deliquescent. Sol. in H₂O. (Jochum, C. C. **1885**, 642.)

+9H₂O. (Vortmann and Padberg, B. 22. 2639.)

+3H₂O. Deliquescent. (Fock and Klüss, B. 23. 1157.)

2CdS₂O₃, Na₂S₂O₃+7H₂O. (V. and P.) 3CdS₂O₃, Na₂S₂O₃+9H₂O. (V. and P.)

# Cadmium strontium thiosulphate, $CdS_2O_3$ , $3SrS_2O_3+10H_2O$ .

(Fock and Klüss, B. 23. 1763.)

Cæsium thiosulphate, Cs₂S₂O₃.

Easily sol. in H₂O. (Chabrié, C. R. 1901, **133.** 297.)

 $+2\dot{H}_2\dot{O}$ . Very hydroscopic. (J. Meyer, B. 1907, **40.** 1360.)

# Cæsium cuprous thiosulphate, Cs₂S₂O₃, Cu₂S₂O₃+2H₂O.

Easily sol. in H₂O with decomp. (J. Meyer, B. 1907, **40**. 1361.)

# Cæsium lead thiosulphate, $Cs_2S_2O_3$ , $PbS_2O_3 + 2H_2O$ .

Not hydroscopic. 2Cs₂S₂O₃, PbS₂O₃+3H₂O. Hydroscopic. (J. Meyer.)

# Cæsium magnesium thiosulphate, $Cs_2S_2O_3$ , $MgS_2O_3+6H_2O$ .

Easily sol. in H₂O. (Meyer.)

Cæsium silver thiosulphate,  $2C_{82}S_2O_3$ ,  $Ag_2S_2O_3+3H_2O$ .

Not hydroscopic.

Decomp. by hot H₂O. (J. Meyer.)

# Calcium thiosulphate, CaS₂O₈+6H₂O.

Sol. in 1 pt. H₂O at 3°.

Aqueous solution saturated at 10° has sp. gr. 1.300. Solution with sp. gr. 1.11437 at 15.5° contains 0.2081 of its weight in CaS₂O₃. Decomp. on heating. Insol. in alcohol (sp. gr. 0.8234). (Herschel, A. ch. 14. 355.)

(sp. gr. 0.529). (Herschel, A. ch. 14.595.) 100 g. sat. solution contains 29.4 g.  $CaS_2O_3$  at  $9^\circ$ , and 34.7 g.  $CaS_2O_3$  at  $25^\circ$ . (Kremann and Rodemund, M. 1914, **35**. 1065.)

Solubility of CaS₂O₃+Na₂SO₃ in H₂O.

#### % Na₂S₂O₃ t٥ CaS₂O₃ Solid phase 29.4 9 0 $CaS_2O_3$ , $6H_2O$ 11.0422.6415.8425.21 $+\mathrm{Na}_{2}\mathrm{S}_{2}\mathrm{O}_{3}$ , $5\mathrm{H}_{2}\mathrm{O}$ 31.01 7.70Na₂S₂O₃, 5H₂O 34.7 25 በ $CaS_2O_3$ , $6H_2O$ 9.24 29.69 21.41 15.67 " 25.18 18.34 28.24 21.14 30.19 20.33 +Na₂S₂O₃, 5H₂O

(Kremann and Rodemund, M. 1914, 35, 1065.)

 $Na_2S_2O_3$ ,  $5H_2O$ 

#### Calcium lead thiosulphate, 2CaS₂O₃, PbS₂O₃ +4H₂O.

Decomp. by H₂O. (Rammelsberg.)

18.43

11.61

31.24

35.04

 $\begin{array}{ccc} \text{Calcium potassium thiosulphate,} & \text{CaS}_2\text{O}_3, \\ & 3K_2\text{S}_2\text{O}_3 + 5H_2\text{O}. \end{array}$ 

Sol. in H₂O. (Fock and Klüss, B. 24, 3016.)

# Calcium silver thiosulphate, $2CaS_2O_3$ , $Ag_2S_2O_3$ + $xH_2O$ .

Easily sol. in  $H_2O$ ; less sol. in alcohol.  $CaS_2O_3$ ,  $Ag_2S_2O_3+xH_2O$ . Sl. sol. in  $H_2O$ , abundantly in  $NH_4OH+Aq$ . (Herschel, **1819.**)

### Calcium sodium thiosulphate nitrate, CaNa₃(S₂O₃)₂NO₃+11H₂O.

(Kremann and Rothemund, M. 1914, **35**. 1065.)

Cobaltous thiosulphate, CoS₂O₃+6H₂O. Sol. in H₂O. (Rammelsberg.)

# Cobaltous sodium thiosulphate, 2CoS₂O₃, 5Na₂S₂O₈+25H₂O.

Efflorescent. Sol. in H₂O. (Jochum.) Could not be obtained by Vortmann and Padberg.

 $CoS_2O_3$ ,  $3Na_2S_2O_3+15H_2O_1$ Sol. in H₂O. (Vortmann and Padberg, B. 22, 2641.)

Cuprous thiosulphate,  $Cu_2O_1 3S_2O_2 + 2AI_2O =$  $Cu_2H_4(S_2O_3)_2$ .

Sl. sol. in H₂O. Abundantly sol. in Na₂S₂O₃ + Aq, NH₄Cl + Aq, NH₄OH + Aq, or (NH₄)₂CO₃+Aq. Sol. in HCl or HNO₃+Aq. (v. Hauer, W. A. B. **13.** 443.)

Cuprous hydrazine thiosulphate,  $Cu_2S_2O_3$ ,  $(N_2H_4)_2H_2S_2O_3 + \frac{1}{2}H_2O$ .

Insol. in H₂O; sol. in NH₄OH+Aq and in dil. acids. (Ferratini, C. (* 1912, I. 1281.)

Cupric lead thiosulphate, Pb(CuS₂O₂)₂  $+3H_2O.$  (?)

Very sol. in H₂O and quickly decomp. (Girard, C. C. 1904, I. 253.)

Cuprous mercurous thiosulphate, 5Cu₂S₂O₃,  $3Hg_2S_2O_3$ .

Insol. or sl. sol. in cold, decomp. by boiling H₂O. HNO₃+Aq dissolves out Cu. (Rammelsberg, Pogg. **56.** 319.)

Cuprous potassium thiosulphate, Cu₂S₂O₃,  $K_2S_2O_3 + 2H_2O$ .

Sl. sol. in H₂O; decomp. on heating with pptn. of CuS. Easily sol. in K₂S₂O₃+Aq. (Rammelsberg, Pogg. 56. 321.)

 $Cu_2S_2O_3$ ,  $2K_2S_2O_3$ . Very sol. in cold  $H_2O$ ; insol. in K₂S₂O₃+Aq. (Cohen, Chem. Soc. **51.** 39.)

+3H₂O. Scarcely sol. in cold, sol. with sl. decomp. in hot H₂O. Sol. in HCl+Aq with evolution of SO₂.

 $Cu_2S_2O_3$ ,  $3K_2S_2O_3+3H_2O$ . More sol. in H₂() than Cu₂S₂O₃, K₂S₂O₃+2H₂O. Solution is not decomp, by boiling. Sol. in excess of NH₄OH+Aq. (Rammelsberg.)

Cuprous rubidium thiosulphate, Rb₂S₂O₃,  $Cu_2S_2O_3+2H_2O$ .

Ppt. (J. Meyer, B. 1907, 40. 1357.) 2Rb₂S₂O₃,  $Cu_2S_2O_3 + 2H_2O$ . Ppt. (J. Meyer.)  $3Rb_2S_2O_3$  $Cu_2S_2O_3+2H_2O$ . Ppt. (J.Meyer.)

Cuprous silver sodium thiosulphate ammonia, Cu₂S₂O₃, 2Ag₂S₂O₃, 5Na₂S₂O₃, 6NH₃.

Ppt. Becomes dark when exposed to light. Decomp. by H₂O. Sol. in NH₄OH+Aq. (Shinn, J. Am. Chem. Soc. 1904, 26. 949.)

Cuprous sodium thiosulphate, 2Cu₂S₂O₃,  $7\text{Na}_2\text{S}_2\text{O}_3 + 2\text{H}_2\text{O}$ .

Ppt. from aqueous solution by alcohol. (Jochum, C. C. 1885. 642.)  $+12H_2O$ . Sol. in very dil. HCl+Aq. (Jochum.)

Cu₂S₂O₃, 3Na₂S₂O₃+2H₂O. Sol. in H₂O: insol, in alcohol. (Rammelsberg.)

+6H₂O. (Jochum.) 3Cu₂S₂O₃, 2Na₂S₂O₃+8H₂O. Decomp. by H₂C. (Vortmann.)

+5H₂O. (Lenz A. 40, 99.) Formula according to Jochun, is-

 $5C_{12}S_{2}O_{3}$ ,  $4Na_{2}S_{2}O_{3}+8H_{2}O$ . Insol. in H₂O or alcohol. Soi. in HCl+Aq without evolution of SO₂, also in dil. H₂SO₄ or HNO₃+Aq. Sol. in NH₄OH+Aq. (Jochum.)

+6H₂O. As above. (Jochum.) Cu₂S₂O₃, Na₂S₂O₃+H₂O. Insol. in H₂O; sol. in Na₂S₂O₈+Aq. (Russell, Ch. Ztg. 39. 232)

+2H₂O. Insol. in H₂O and alcohol.

Decomp. by dil. acids. (Rosenheim and Steinhäuser, Z. anerg. 1900, 25, 84.)

+2½H₂O. Sol. in H₂O. Pptd. by alcohol.

(Bhaduri, Z. anorg. 1898, **17**. 1.) +3^rI₂O. Decomρ. by H₂O. (Vortmann, M. 1888. 9. 168.)

 $3Cu_2S_2O_3$ ,  $2Na_2S_2O_3$ . (Gerard, C. C. **1904**, I. 253.)

 $+5{\rm H}_2{\rm O}$ . Sol. in 352 pts.  ${\rm H}_2{\rm O}$ . (Russell, Ch. Z. 1885, **9**, 223.)

100 cc. 5% " " 7 5%  $Na_2S_2O_3 + Aq$  dissolve 12.28 g. 17.46 g. ""10% 22.54 g.

(Russell, Ch. Z. 1885, 9. 223.)

 $4Cu_2S_2O_3$ ,  $3Na_2S_2O_3+6H_2O$ . Insol. in  $H_2O$ and alcohol.

Decomp. by dil. acids. (Rosenheim and Steinhäuser, Z. anorg. 1900, 25. 84.)

-+9H₂O. Sol. in H₂O. Pptd. by alcohol. (Bhaduri, Z. anorg. 1898, 17. 1.)

 $7Cu_2S_2O_3$ ,  $5Na_2S_2O_3+16H_2O$ . Decomp. by H₂O and by alcohol. (Bhaduri, Z. anorg. 1898, **17.** 1.)

It is impossible to determine whether any of these compds. are complex or double salts. As a class they are not easily sol. and decomp. in solution. They may therefore be mixtures whose comp. depended upon the temp. and conc. of the solution in which they were pptd. (Rosenheim, Z. anorg. 1900, **25.** 81.)

Cuprocupric sodium thiosulphate ammonia,  $Cu_2S_2O_3$ ,  $CuS_2O_3$ ,  $2Na_2S_2O_3$ ,  $4NH_3$ .

Insol. in, but decomp. by hot H₂O. Sol. in HC₂H₃O₂+Aq. Sol. in NH₄OH+Aq or  $Na_2S_2O_3+Aq$ . (Schütte, C. P. **42**. 1267.)

Cuprous sodium thiosulphate cuprous chloride, Cu₂S₂O₈, 2Na₂S₂O₈, 2CuCl.

(Rosenheim and Steinhäuser, Z. anorg. 1900, **25**. 86.)

Cupric sodium thiosulphate cupric sulphide,  $Cu_2S_2O_3$ ,  $Na_2S_2O_3$ ,  $CuS+4H_2O$ .

Sl. sol. in H₂O; easily sol. in Na₂S₂O₃+Aq, and NH₄OH+Aq; insol. in alcohol. (Lenz, A. 40. 99.)

Cu₂S₂O₃, Na₂S₂O₃, 2CuS. Sol. in H₂O or dil. HCl+Aq. (Kessel, B. 11. 1585.)

Cuprous sodium thiosulphate sodium chloride, 3Cu₂S₂O₃, 2Na₂S₂O₃, 4NaCl+8H₂O. Sol. in Na₂S₂O₃+Aq. (Siewert, Zeit. ges. Naturwiss. **26.** 486.)

Ppt. (Bhaduri, Z. anorg. 1898, 17. 3.)

Cupric thiosulphate ammonia,  $CuS_2O_3$ ,  $4NH_3$ .

100 pts. H₂O dissolve 21.79 pts. at 25°. (Pudschies, Dissert.)

Cuprocupric thiosulphate ammonium chloride, Cu₂O, CuO, 3S₂O₂, 2NH₄Cl.

Sol. in HNO₃+Aq with separation of S. (v. Hauer, W. A. B. 13. 447.)

Glucinum thiosulphate, GlS₂O₃+11H₂O. (Faktor, C. C. 1901, II. 878.)

Gold (aurous) hydrogen thiosulphate, Au₂S₂O₃, 3H₂S₂O₃.

Known only in solution. (Fordos and Gélis, A. ch. (3) 13. 394.)

Gold (aurous) sodium thiosulphate,  $Au_2S_2O_3$ ,  $3Na_2S_2O_3+4H_2O$ .

Sol. in H₂O; solution decomp. on heating. Insol. in absolute, sl. sol. in dil. alcohol. (Fordos and Gélis.)

 $Au_2S_2O_3$ ,  $6Na_2S_2O_3+10H_2O$ . Very sol. in  $H_2O$ , but decomp. by boiling. (Jochum, C. **1885.** 642.)

Iron (ferrous) thiosulphate, FeS₂O₃+5H₂O.
Deliquescent. Very sol. in H₂O or alcohol. (Koene, Pogg. **63**. 241.)

Iron (ferrous) sodium thiosulphate,  $FeS_2O_3$ ,  $3Na_2S_2O_3+8H_2O$ .

Very sol. in H₂O, and easily decomp. (Vortmann and Padberg, B. **22.** 2641.)

Lead thiosulphate, PbS₂O₃.

Sol. in 3266 pts.  $H_2O$ . Sol. in alkali thiosulphates +Aq. (Rammelsberg, Pogg. **56**. 308.)

Lead lithium thiosulphate, PbS₂O₃, Li₂S₂O₃. Very hydroscopic.

Decomp. by H₂O with separation of PbS. (J. Meyer, B. 1907, **40.** 1355.)

Lead potassium thiosulphate,  $PbS_2O_3$ ,  $3K_2S_2O_3+2H_2O$ .

Sol. in  $H_2O$  with partial separation of  $PbS_2O_3$ . Sol. in  $K_2S_2O_3+Aq$ . (Rammelsberg, Pogg. **56.** 310.)

Lead rubidium thiosulphate,  $2Rb_2S_2O_8$ ,  $PbS_2O_8+2H_2O$ .

Difficultly sol. in cold H₂O. Decomp. by H₂O. (J. Meyer, B. 1907, 40. 1358.)

Lead sodium thiosulphate, PbS₂O₃, 2Na₂S₂O₃. Sl. sol. in H₂O. Very easily sol. in NaC₂H₃O₂ and Na₂S₂O₃+Aq. (Lenz, A. 40. 98.)

Insol. in alcohol.  $2\text{PbS}_2\text{O}_3$ ,  $5\text{Na}_2\text{S}_2\text{O}_3+60\text{H}_2\text{O}$ . Easily decomp. (Jochum, C. C. **1885**. 642.)

PbS₂O₃, 3Na₂S₂O₃+12H₂O. Decomp. in boiling aqueous solution. (Vortmann and Padberg, B. **22**. 2637.)

# Lead strontium thiosulphate.

Sol. in H₂O. Precipitated as a syrup by alcohol. (Rammelsberg.)

Lithium thiosulphate, Li₂S₂O₈+3H₂O.

Very deliquescent, and sol. in H₂O and absolute alcohol. (Fock and Klüss, B. **22.** 3099.)

Lithium silver thiosulphate, Li₂S₂O₃, Ag₂S₂O₃ +H₂O.

Hygroscopic.

Decomp. by boiling H₂() and by acids. (Meyer and Eggeling, B. 1907, **40.** 1355.)

# Magnesium thiosulphate, $MgS_2O_3+6H_2O$ .

Very easily sol. in H₂O. Precipitated from conc. solution by alcohol. (Rammelsberg, Pogg. **56.** 303.)

 $\begin{array}{c} \text{Magnesium potassium thiosulphate,} \\ \text{MgK}_2(S_2O_3)_2 + 6H_2O. \end{array}$ 

Deliquescent, and sol. in  $H_2O$ . Less sol. than  $K_2S_2O_3$ . (Rammelsberg, Pogg. **56.** 304.) Not deliquescent. (Fock and Klüss, B. **23.** 539.)

Magnesium rubidium thiosulphate,  $MgS_2O_3$ ,  $Rb_2S_2O_3+6H_2O$ .

Easily sol. in  $H_2O$ . (Meyer, B. 1907, **40.** 1358.)

Manganous thiosulphate, MnS₂O₃.

Sol. in H₂O, from which it is pptd. by alcohol. (Rammelsberg, Pogg. **56**. 305.) +5H₂O. Decomp. very easily. (Vortmann and Padberg, B. **322**. 2641.)

Manganous sodium thiosulphate,  $MnS_2O_3$ ,  $2Na_2S_2O_3+16H_2O$ .

Sol. in  $H_2O$ . Insol. or but sl. sol. in alcohol. (Jochum, C. C. 1885. 642.)

Mercuric potassium thiosulphate,  $3HgS_2O_8$ ,  $5K_9S_2O_8$ .

Sol. in 10 pts. H₂O at 15°, and  $\frac{1}{2}$  pt. at 100°. Aqueous solution decomp. on standing or heating.

Insol. in alcohlol. (Kirchhoff, Scher. J.

2. 30.)  $HgS_2O_3$ ,  $3K_2S_2O_3+3H_2O$ . (Fock and Klüss, B. 24. 1353.)  $HgS_2O_3$ ,  $5K_2S_2O_3+H_2O$ . (F. and K.) Nickel thiosulphate, NiS₂O₂+6H₂O.

Permanent. Sol. in H₂O. (Rammelsberg, Pogg. **56.** 306.)

Nickel sodium thiosulphate, 2NiS₂O₃,  $5Na_2S_2O_8+25H_2O.$ 

Efflorescent. Sol. in H₂O. (Jochum.)

Nickel thiosulphate ammonia, NiS2O2, 4NH2  $+6H_2O$ .

Decomp. on air. Sol. in NH₄()H-cAq. (Rammelsberg, Pogg. 56, 306.)

 $NiS_2O_3$ ,  $5NH_3+H_2O$ . (Ephraim, B. 1913, **46.** 3108.)

 $NiS_2O_3$ ,  $6NH_3+3H_2()$ . Padberg, B. **22.** 2641.) (Vortmann and

Platinous sodium thiosulphate.

See Platothiosulphate, sodium.

Potassium thiosulphate,  $K_2S_2O_3+1/3$ ,  $1^{2}/_{3}H_{2}O_{1}$  and  $2H_{2}O_{2}$ 

Very deliquescent. Very sol. in H₂O wit¹, absorption of heat. Solution is stable on the air. Însol. in alcohol.

100 pts. H₂O dissolve pts. K₂S₂O₃ at t°.

t°	Pts. K ₂ S ₂ O ₃	Solid phase
0	96.1	K ₂ S ₂ O ₃ .2H ₂ O
17	150.5	$3K_{2}S_{2}O_{3}.5H_{2}O$
20	155.4	"
25	165.0	"
30	175.7	"
35	202.4	$3K_2S_2O_3.5H_2O + K_2S_2O_3.H_2O$
40	204.7	$K_{2}S_{2}O_{3}.H_{2}O$
45	208.7	"
50	215.2	46
55	227.7	"
60	238.3	"
56.1	234.5	$K_2S_2O_3.H_2O + 3K_2S_2O_3.H_2O$
65	245.8	$3\mathrm{K}_2\mathrm{S}_2\mathrm{O}_3\;\mathrm{H}_2\mathrm{O}$
70	255.2	112,120,3 20
		"
75	268.0	
78.3	292.0	$3K_2S_2O_3.H_2O+K_2S_2O_3$
80	293.1	$K_2S_2O_3$
85	298.5	- a -
		41
<b>9</b> 0 .	312.0	

(Inohiko Io, Mem. Coll. Sc. Kioto, 1911, 3. 212.)

Sol. in dil. HC₂H₃O₂+Aq without decomp. (Mathieu-Plessy, C. R. 101. 59.)

Insol. in ethyl acetate. (Casaseca, C. R. **30.** 821.)

Potassium silver thiosulphate, 2K₂S₂O₃,  $Ag_2S_2O_3$ .

Sol. in H₂O. (Cohen.)

 $K_2S_2O_3$ ,  $Ag_2S_2O_3$ . Sl. sol. in  $H_2O$ . (Herschel.)

3K₂S₂O₃, Ag₂S₂O₃+2H₂O. Rather sl. sol. (Rosenheim and Steinhäuser, Z. in H₂O. anorg. 1900, 25. 76.)

Sl. sol. in H₂O. (Rosenheim.)

Potassium silver thiosulphate ammonia. KAgS2O3, 2NH3.

Very sl. sol. in  $H_2O$ . Easily sol. in hot  $NH_2OH+Aq$ . (Schwicker, B. 22. 1735.)  $5K_2S_2O_3$ ,  $3Ag_2S_2O_3$ ,  $NH_3$ . Difficultly sol. in H₂O with decom,

Sol. in hot NH4OH+Aq with partial decomp. (J. Meyer, B. 1907, 40, 1359.)

Potassium sodium thiosulphate.

(a)  $KNaS_2O_3+2H_2O$ . Very sol. in  $H_2O$ . 100 pts. H₂O dissolve 215.7 pts. selt at 15°. (Schwicker, B. 22, 1733.) (b) NaKS₂O₃ +2H₂O. 100 pts. H₂O dis-

soive 205.3 pts. salt at 15°. (Schwicker.)

Potassium strontium thiosulphate, K₂S₂O₃,  $SrS_2O_3 + 5H_2O$ .

Sol. in H₂O. (Fock and Klüss, B. 24. 3017.)

Potassium zinc thiosulphate, K₂S₂O₃,  $ZnS_2O_8 + H_2O$ .

Very sol. in H₂O. (Rosenheim and Davidsohn, Z. anorg. 1904, **41.** 238.)

Potassium thiosulphate sodium chloride. K₂S₂O₃, NaCl.

Sol. in H₂O. (Pape, Pogg. **139.** 238.)

Rubidium thiosulphate, Rb₂S₂O₃+2H₂O.

Very hydroscopic; easily sol. in H₂O. (J. Meyer, B. 1907, **40.** 1356.)

Rubidium silver thiosulphate, 2Rb₂S₂O₃,  $Ag_2S_2O_3+2H_2O$ .

Ppt. Not hydroscopic. Difficultly sol. in cold H₂O. Decomp. by warm H₂O. Meyer.)

Rubidium silver thiosulphate ammonia,  $Rb_2S_2O_3$ ,  $Ag_2S_2O_3$ ,  $NH_3$ .

Ppt. (J. Meyer.) 3Rb₂S₂O₃, 4Ag₂S₂O₃, NH₃. Ppt. Decomp. in the air. (J. Meyer.)

Samarium thiosulphate.

(Cleve.)

Scandium thiosulphate, basic, Sc(OH)S2O3. Ppt. (R. J. Meyer, Z. anorg. 1914, 86. 282.)

Silver thiosulphate, Ag₂S₂O₃.

Sl. sol. in H2O. Sol. in NH4OH or alkali thiosulphates + Aq. (Herschel, Edinb. Phil. J. **1.** 26.)

Silver sodium thiosulphate, Ag₂S₂O₄,  $Na_2S_2O_3 + H_2O$ .

Sl. sol. in H₂O. Easily sol. in NH₄OH+ Aq, also in Na₂S₂O₃+Aq to form—
Ag₂S₂O₃, 2Na₂S₂O₄+2H₂O. Easily sol. in H₂O or NH₄OH+Aq; somwehat sol. in alcohol, especially if warm or dilute. (Lenz, A. 46. 94.)

 $Ag_2S_2O_3$ ,  $6Na_2S_2O_3+21H_2O$ . Sol. in  $H_2O$ . (Jochum, C. C. **1885**. 642.)

Silver sodium thiosulphate acetylide acetylene, 2Na₂S₂O₃, 7Ag₂S₂O₃, 18Ag₂C₂, 32C₂H₂.

Decomp. by  $H_2O$ . Sol. in  $NH_4OH + Aq$ . Insol. in alkalies. (Bhaduri, Z. anorg. 1913, 79. 356.) .  $7Na_2S_2O_3$ ,  $5Ag_2S_2O_3$ ,  $86Ag_2C_2$ ,  $13C_2H_2$ . (Bhaduri.)

# Silver sodium thiosulphate ammonia, NaAgS₂O₃, NH₃.

Very unstable. (Schwicker, B. 22. 1736.)

Silver strontium thiosulphate, Ag₂S₂O₃, SrS₂O₃.

Nearly insol. in  $H_2O$ . Very sl. sol. in  $SrS_2O_3+Aq$ ; easily sol. in  $NH_4OH+Aq$ . (Herschel.)

Sodium thiosulphate, Na₂S₂O₃ and +1, 2 and 5H₂O.

100 pts. H₂O dissolve: At 16°, 65 pts. 65 pts. Na₂S₂O₃. "20°. 69 " 25°. " " 75 " 30°. " " 82 " 35°. " " 89 " 40°, " 98 " 40°, 98 " 45°, 109 " 47°, 114 " " " (Mulder.)

 $100~\rm{pts.}~H_2O~\rm{dissolve}$  at 0°, 47.6 pts.  $Na_2S_2O_3$ ; at 20°, 69.5 pts. ; at 40°, 104 pts. ; at 60°, 192.3 pts. (Kremers, Pogg. 99. 50)  $100~\rm{pts.}~H_2O~\rm{dissolve}~171~\rm{pts.}~\rm{cryst.}$  (=108.9 pts. anhydrous )salt at 19.5° to form a solution of 1.3875 sp. gr. (Schiff, A. 113. 350.)

By supersaturation 100 pts.  $H_2O$  may dissolve 217.4 pts.  $Na_2S_2O_3$  at  $0^\circ$ . (Kremers.)

#### Solubility in H₂O.

t°	% Na ₂ S ₂ O ₃	Solid phase
0	34.43	$Na_2S_2O_3+5H_2O$
10	37.89	"
20	41.17	u
30	45.86	"
40	50.65	u
45	54.49	"
50	62.92	$Na_{2}S_{2}O_{3}+2H_{2}O$
60	67.39	11
72	70.39	"
80.5	71.33	u
90.5	71.76	"
100	72.68	u

(Taylor, Proc. Edinburgh Soc. 1898, 22. 49.)

Solubility of anhydrous Na₂S₂O₃ in H₂O at t°.

t°	g. Na $S_2O_3$ per 100 g.				
	Solution	но			
40	67.40	206.70			
45	67.60	208.60			
50	67.76	210.20			
55	68.15	214.00			
60	68.48	217.30			
65	68.80	220.50			
70	69.05	223.10			
75	69.35	226.30			
80	69.80	231.80			

(Young and Burke, J. Am. Chem. Soc. 1906, **28.** 327.)

The solubility of the hydrates of Na₂S₂O₃ are exceedingly complicated. There are five groups of hydrates, (I) primary, (II) secondary, (III) tertiary, (IV) quaternary, and (V), quintary, and transitions occur between members of the same and different groups. Na₂S₂O₃+5H₂O(I) is the commercial thiosulphate. The relations and solubility of the various hydrates is shown in the following table.

Solubility of Na₂S₂O₃ in H₂O at t°.

# I. Primary hydrates.

t	2	g. Na ₂ S 100	32O3 per ) g.	Solid phase				
		Solution H ₂ O						
0		33.40	50.15	$Na_{2}S_{2}O_{3}, 5H_{2}O(I)$				
5		35.33	54.64	**				
10		37.37	59.69	"				
15		39.11	64.22	"				
20		41.20	70.07	"				
25		43.15	75.90	"				
30		45.19	82.45	"				
35		47.71	91.24	"				
40		50.83	105.37	"				
45		55.33	123.87	"				
<b>48</b> .	17			" $+Na_2S_2O_3$ , $2H_2O(I)$				
0		52.73	111.60	Na ₂ S ₂ O ₃ , 2H ₂ O(I)				
5		53.45	114.90	"				
10		53.94	117.10	"				
20		55.15	122.68	"				
25		56.03	127.43	"				
30		57.13	133 27	"				
40		59.38	146.20	"				
45		60.73	154.70	"				
50		62.28	165.11	"				
55		63.85	176.60	"				
60		65.68	191.30	"				
65		68.04	212.90	"				
66	. 5			" +Na ₂ S ₂ O ₃				

Se	Solubility of Na ₂ S ₂ O ₃ in H ₂ O at t°.— Continued.		Solubility of Na ₂ S ₂ O ₃ in H ₂ O at t°.—  Continued.				
		. Secor	ndary hydrates.	IV. Quaternary hydrate.			
t°	10	S ₂ O ₈ per 0 g.	Solid phase	t°	g. Na ₂ 10	S ₂ O ₃ per 0 g.	Colled a base
	Solution	H ₂ O	_		Solu- tion	H₂O	Solid phase
0 5	41.96 43.56	72.30 77.17	Na ₂ S ₂ O ₃ , 5H ₂ O(II)	0		136.00	Na ₂ S ₂ O ₃ , 4/8H ₂ O(IV)
10	45.25	82.65	"	5 10		138 50 14 ± 90	"
15	47.27	89.36	"	15		143 90	
$\begin{array}{c} 20 \\ 25 \end{array}$	49.38 52.15	$97.55 \\ 108.98$	4.4	20		147.30	"
30		130.26	it	25		152.30	"
30.22			" $Na_2S_2O_3$ , $4H_2O(II)$	30 35		156.60 162.80	16
				40		169.90	u
33.5		141.48	$Na_{2}S_{2}O_{3}, {}_{'4}H_{2}O(II)$	45		179.50	61
$\frac{36.2}{38.6}$		$153.23 \\ 168.82$	"	50		189.50	"
40.65		100.02	" $+Na_2S_2O_3, H_2O(11)$	55	37.07	203.70	
	1			58			"+Na2S2O8
$\frac{0}{5}$		153.00	$Na_2S_2O_5$ , $H_2O(11)$		v	Quint	ary hydrates.
10		$154.70 \\ 156.70$	"			<del></del>	
15		160.20	u	0		136.00	$Na_2S_2O_3$ , $2H_2O(V)$
20		163.90	"	5		139.40	"
25	62.73	168.30	"	10		144.20	• "
30		174.40	"	$\frac{15}{20}$		150.10 156.50	. "
35		180.20	"	25		165.30	"
$\frac{40}{45}$		$187.60 \\ 194.30$	"	30		174.40	"
50		201.40	u	35		188.00	
55		211.50	"	27.5		}	" $+\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_8$ , $\mathrm{H}_2\mathrm{O}(\mathrm{V})$
<b>56</b> . <b>5</b>		• • • •	" $+\mathrm{Na}_{2}\mathrm{S}_{2}\mathrm{O}_{3}$	30	63 34	172.80	Na ₂ S ₂ O ₂ , H ₂ O(V)
	I	II. Teri	tiary hydrates.	35 40	64.07	178.40 183.70	$Na_2S_2O_3$ , $H_2O(V)$
0	46.14	85.67	Na ₂ S ₂ O ₃ , 6H ₂ O (III and	45	65.58	190.50	"
			IV)	50		199.20	"
5		93.95	"	55	67.59	208.50	"INOSO I/HOW
10		$106.80 \\ 122.00$	"	43			"+ $Na_2S_2O_3$ , $^1/_2H_2O(V)$
$\frac{13}{14.35}$		122.00		25	64.21	179.40	$Na_2S_2O_3, \frac{1}{2}H_2O(V)$
14.3			$^{''} + Na_2S_2O_3,  ^4/_3H_2O(IV) \\ ^{''} + Na_2S_2O_3,  ^3/_2H_2O(III)$	35		182.50	
	! !			40		185.60	. "
0		134.80	$Na_{2}S_{2}O_{3}, \frac{3}{2}H_{2}O(III)$	45		190.82	"
5		137.20	44	50 55		194.30 199.10	"
10 15		$139.70 \\ 142.70$	"	60		206.70	<i></i>
20		145.60	"	65		214.90	"
25 25		151.10	"	70	69.06		"
30	60.78	155.00	"	70			" $Na_2S_2O_8$
35		160.20	"	(Vov	ng and	Burko	J. Am. Chem. Soc. 1906,
40		167.40	"	(104	ng anu	28	5. 321.)
45 47.5		$177.50 \\ 183.00$	"				
48.5			" +Na ₂ S ₂ O ₃ , H ₂ O(III)	110	pts.	Na ₂ S ₂ O	by dissolving in $H_2O$ . $_3+5H_2O+100$ pts. $H_2O$
47.5 50	64.78 65.30	183.90 188.20	Na ₂ S ₂ O ₃ , H ₂ O(III)	2. 68	)		0.7° to 8°. (Rüdorff, B.
52.5		193.20			½H₂O.		ng and Burke, J. Am.
55		198.10	"			1906, <b>28</b>	. 321.)
60		213.10	" .		H2O. 1/3H2O.	(Youn	g and Burke.)
61	·		" $+Na_2S_2O_3$		$\frac{11120}{120}$ .		g and Burke.)
	<del>.</del>		,			•	-

+2H₂O.

+4H₂O. M.-pt. 41.60°. (Young and

Burke.)

+5H₂O. M.-pt. 45° (Kopp); 48° (Kremers), 50° (Mulder); 48.5° (Tilden, Chem. Soc. 45. 409); 47.9° (Taylor, Proc. Edinburgh, Soc. 1898, 22. 249); 48.09° (Richards and Churchill, Z. phys. Ch. 1899, 28. 314); 48.45° (Young and Burke, J. Am. Chem. Soc. 1906, **28.** 324.)

Labile modification melts at 32°. (Parmentier and Amat, C. R. 98. 735.)

Sp. gr. of Na₂S₂O₃+Aq at 19°.  $\% = \% \text{Na}_2 \text{S}_2 \text{O}_3 + 5 \text{H}_2 \text{O}.$ 

%	Sp. gr.	%	Sp. gr.	%	Sp. gr.
1	1.0052	18	1.0975	35	1.1986
2	1.0105	19	1.1031	36	1.2048
2 3	1.0158	20	1.1087	37	1.2110
4	1.0211	21	1.1145	38	1.2172
5	1.0264	22	1.1204	39	1.2234
6	1.0317	23	1.1263	40	1.2297
7	1.0370	24	1.1322	41	1.2362
8	1.0423	25	1.1381	42	1.2427
9	1.0476	26	1.1440	43	1.2492
10	1.0529	27	1.1499	44	1.2558
11	1.0584	28	1.1558	45	1.2624
12	1.0639	29	1.1617	46	1.2690
13	1.0695	30	1.1676	47	1.2756
14	1.0751	31	1.1738	48	1.2822
15	1.0807	32	1.1800	49	1.2888
16	1.0863	33	1.1862	50	1.2954
17	1.0919	34	1.1924		

(Schiff, A. 113. 118.)

B.-pt. of  $Na_2S_2O_3+Aq$ .  $P=pts. Na_2S_2O_3$  to 100 pts. H₂O.

Bpt.	P	Bpt.	P	Bpt.	P
101°	14	110°	104	119°	201
102	27	111	113	120	214.5
103	39	112	122	121	229
104	49.5	113	131.5	122	244
105	59	114	141.5	123	262
106	68	115	152	124	283
107	77	116	164	125	311
108	86	117	175.75	126	348
109	95	118	188		

(Gerlach, Z. anal. 26. 436.)

Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 829.)

100 pts. absolute ethyl alcohol dissolve at room temperature 2.5 mg. Na₂S₂O₃. (Bödtker, Z. phys. Ch. 1897, 22. 410.)

100 pts. absolute ethyl alcohol dissolve at room temperature 3.4 mg. Na₂S₂O₃+ 5H₂O. (Bödtker, Z. phys. Ch. 1897, **22**. 510.) Sol. in oil of turpentine (Edison, Am. Chemist, **7**. 127). Insol. therein (Techn. J. B. 27. 1003).

Insol. in ethyl acetate. (Casaseca, C. R.

**30.** 821.)

thallous thiosulphate, 3Na₂S₂O₃, Sodium 2Tl₂S₂O₃+10H₂O.

Sol. in H₂O. (Werther.)

+8H₂O. (Jochum.) 2Na₂S₂O₃, Tl₂S₂O₃+8H₂O. and Padberg, B. **22**. 2638.) (Vortmann

Sodium zinc thiosulphate, Na₂S₂O₂, 2ZnS₂O₃ +23H₂O.

Sol. in  $H_2O$ . (Jochum, C. C. **1885.** 642.)  $3Na_2S_2O_3$ ,  $2ZnS_2O_3+10H_2O$ . Deliquescent. (Vortmann and Padberg, B. 22, 2640.)

# Sodium thiosulphate mercuric iodide, 2Na₂S₂O₃, HgI₂.

Decomp. by H₂O and by alcohol. (Eder and Ulm, M. 1882, 3. 197.)

# Strontium thiosulphate, SrS₂O₂+5H₂O.

Permanent. Sol. in 6 pts. cold H₂O (Gay-Lussae); in 4 pts.  $H_2O$  at 13°, and 1.75 pts. boiling  $H_2O$  (Herschel, **1819**).

1 g. is sol. in 3.7 cc. H₂() at room temp. (Antenrieth, Z. anal. 1898, 37. 293.) Gradually efflorescent. Insol. in alcohol.

# Thallous thiosulphate.

(Herschel.)

Ppt. Sl. sol. in cold, easily sol. in hot H₂O. (Crookes.)

Easily sol. in Na₂S₂O₃+Aq. (Jochum.)

# Tin thiosulphate (?).

Sol. in H₂O.

Uranyl thiosulphate, (UO₂)S₂O₃.

Ppt. (Faktor, C. C. 1901, II. 878.)

# Zinc thiosulphate, $ZnS_2O_3+xH_2O$ .

Very deliquescent, and very sol. in H₂O and alcohol. (Rammelsberg.)

# Zinc thiosulphate ammonia, ZnS2O2, 2NH2.

Decomp. by H₂O. Sol. in NH₄OH+Aq. from which it is pptd. by alcohol. (Rammelsberg, Pogg. **56.** 62.)

# Thiotrithiazyl bromide, NaSaBr.

Decomp. H₂O and alkalies. Stable in the air. (Muthmann, B. 1897, 30. 630.)

Thiodithiazyl dichloride, S₂N₂Cl₂. See Nitrogen sulphochloride.

Thiotrithiazyl chloride,  $S_4N_3Cl$ . See Nitrogen sulphochloride.

#### Thiotrithiazyl iodide, N₂S₄I.

Decomp. spontaneously in the air. unstable. (Muthmann, B. 1897, 30. 631.)

# Thiotrithiazyl nitrate, S4N2NO2.

Sol. in H₂O with decomp. Sol. in HNO₃+Aq. (Demarcay, C. R. **91**. 1066.)

Sol. in cold H₂O with decomp.

Completely insol. in organic solvents as CS₂, CHCl₃, acetone, and acetic ether. (Muthmann and Seitter, B. 1897, **30**, 629.)

# Thiotrithiazyl sulphate (S4N2)HSO4.

Stable on air. Sol. in H₂O with decomp. (Demargay, C. R. 91 **854.** 1066.)

### Thiotrithiazyl sulphocyanide, N.S.CNS

Stable in the air.

Sol. in benzene and chloroform. (Muthmann and Seitter, B. 1897, 30. 631.)

# Dithiotetrathiazyl dichloride, S₆N₄Cl₂. See Nitrogen sulphochloride.

# Thorium, Th.

Not oxidised by boiling H₂O.

Quickly sol. (Chydenius, Pogg. 119. 43), very slowly sol. by long boiling (Berzelius, Pogg. 16. 385) in HNO₃+Aq. Insol. in cold, easily sol. in warm dil. H₂SO₄+Aq. Slowly sol. in cold, rapidly in hot HCl+Aq. Easily oxidised by aqua regia. Insol. in KOH+Aq or HF+Aq.

Sl. sol. in dil. H₂SO₄+Aq; decomp. by conc. H₂SO₄. Very sl. sol. in dil., and less in conc. HNO₃+Aq. Easily sol. in conc. HCl+Aq, and aqua regia. (Nilson, B. **15**. 2521.)

#### Thorium B.

Somewhat sol. in hot H₂O, which dissolves 70% in an hour. More rapidly sol. in dil. acids or hot KI+Aq. Somewhat sol. in organic solvents. Insol. in CS₂ and in methylene iodide. (Hogley, Phil. Mag. 1913, (6) **25.** 331.)

# Thorium C.

Somewhat sol. in hot H₂O. More rapidly sol. in hot KI+Aq. and in dil. acids. More sol. in organic solvents than thorium B. 20% sol. in CS₂ or methylene iodide in 10 minutes. (Hogley, Phil. Mag. 1913, (6) **25.** 331.)

# Thorium tetraboride, ThB4.

Sol. in cold conc. HNO₃ and HCl and in hot conc. H₂SO₄. (Jassonneix, C. R. 1905, **141.** 192.)

### Thorium hexaboride, ThBr₆.

Sol. in hot dil. or conc. HNO₃; insol. in H₂SO₄, HCl, HF and aq. alkalies. (Jassonneix, C. R. 1905, **141.** 193.)

### Thorium dibromide, ThBr₂.

Sol. in H₂O with partial decomp. (Troost and Ouvrard, A. ch. (6) 17. 227.)

# Thorium tetrabromide, ThBra.

Sol. in H₂O. (Berzelius.)

Very hygroscopic, and sol. in H₂O with partial decomp. (Troost and Ouvrard, A. ch. (6) 17. 229.)

Sl. sol. in organic solvents. (Matthews, J. Am. Chem. Soc. 1898, 20, 840.)

+7H₂O. Scl. in alcohol. (Rosenheim, B. 1900. **33.** 979.)

+8H₂O Very sol. in alcohol and H₂O. Insol. in chloroform and light petroleum. (Lesinsky, Z. auorg. 1891, 15. 82.)

# Thorium tetrabromide ammonia, ThBr4, 3NH8

Insol. in organic solvents. (Matthews, J. Am. Chem. Soc. 1398, 20, 840.)

# Thorium carbide, ThC₂.

Almost insol. in conc. acids; decomp. by  $\rm H_2O$  and by dil. acids. (Moissan, C. R. 1896, **122.** 577.)

# Thorium tetrachloride. ThCl4.

Anhydrous. Extremely deliquescent, and sol. in H₂O with evolution of heat. Sol. in alcohol.

Sol. in other. (Matthews, J. Am. Chem.

Soc. 1898, 20. 824.)

 $+7\mathrm{H}_2\mathrm{O}$ . Deliquesces in the air. Very sol. in  $\mathrm{H}_2\mathrm{O}$  and alcohol. Insol. in ether. (Krüss, Z. anorg. 1897, **14**. 368.)

 $+8H_2O$ . Hydroscopic. Easily sol. in  $H_2O$  and absolute alcohol. Not pptd. from solution in alcohol by ether.

 $+9H_{2}O$ . As above. (Rosenheim, **Z**. anorg. 1903, **35.** 426.)

# Thorium tetrachloride ammonia, ThCl4, 6NH3.

Insol. in ether. Decomp. by H₂O.

ThCl₄, 8NH₃. Fumes in moist air. Decomp. by H₂O. (Matthews, J. Am. Chem. Soc. 1898, **20**. 824.)

The compds. of ThCl₄ with NH₃ are of the type ThCl₄, nNH₃ and may be classified into

three groups.

(1) n = 4, 6, 7, 12, 18. Compds. are decomp. by  $H_2O$ .

(2) n = 4, 6, 7. Compds. are not decomp. by

 $H_2O$ .
(3) n = 6, 7, 12, 18. The first two compds. of this series are identical with the last two of

group (2).

ThCl₄, 4NH₃ of group (2) is the only one in the whole series stable above 120°. (Chauvenet, C. R. 1910, **151.** 387.)

# Thorium fluoride, ThF₄+4H₂O.

Insol. in H₂O or HF+Aq.

### Thorium hydride, ThH2.

Decomp. by dil. HCl+Aq. (Winkler, B. 24. 873.)

# Thorium hydroxide, Th(OH)4.

Insol. in H₂O.

Sol. in acids, except oxalic, molybdic, and

hydrofluoric acids.

Insol. in alkali hydroxides, but easily sol. in alkali carbonates + Aq. More sol. in NH₄OH + (NH₄)₂CO₈ + Aq than in (NH₄)₂CO₈ +Aq. alone. (Berzelius.) Not pptd. in presence of tartaric and citric acids. (Chydenius, Pogg. 119. 43.)

4ThO₂, H₂O. Insol. in water and acids at

boiling temp.

# Thorium hydroxybromide, Th(OH)₂Br₂+ 11H₂O.

Sol. in alcohol. . (Rosenheim, B. 1900, 33. 979.)

# Thorium hydroxychloride, (OH)ThCl₃+ 11H₂O.

Sol. in alcohol. (Rosenheim, B. 1900, 33.

Th(OH)₂Cl₂+5H₂O. Slowly takes up H₂O from the air.

Sol. in H₂O without decomp.

Pptd. from solution in Sol. in alcohol. (Rosenheim, Z. anorg. alcohol by ether. 1903, **35.** 425.)

+8H₂O, Hydroscopic; sol. in alcohol. (Rosenheim, B. 1900, 33. 978.)

# Thorium hydroxyiodide, Th(OH)I₃+10H₂O. Evolves iodine in the light. (Rosenheim, Z. anorg. 1903, **35.** 430.)

#### Thorium iodide.

Sol. in H₂O.

# Thorium nitride, Th, N4.

Decomp. by H₂O. (Matignon, C. R. 1901, **132.** 37.)

### Thorium oxide, ThO₂.

When ignited is insol. in HCl, and HNO₃+ Aq. Sol. in H₂SO₄ by heating to boiling and subsequent addition of H₂O. Insol. in alkali hydrates or carbonates+Aq.

# Thorium metoxide, $Th_3O_5 + H_2O$ .

Sl. sol. in HCl. (Locke, Z. anorg, 1894, 7. 348.)

+2H₂O. Loses 1 H₂O at 100°. Sol. in  $H_2O$ ; insol. in  $NH_4OH + Aq$ . (Locke.)

# Metathorium oxide.

Sol. in H₂O after having been treated with conc. HNO₃ or HCl+Aq, even if previously ignited.

ThO₂, xTh(OH)₄. Compare Th₂O₅. (Locke) (Stevens, Z. anorg. 1901, **27.** 42.)

# Thorium peroxide, Th₂O₇.

Precipitate. (Cleve, C. R. 100. 605.)

# Thorium oxychloride.

Decomp. by H₂O into ThCl₄ and ThO₄. ThOCl2. Sol. in H2O.

Insol. in abs. alcohol. (Matignon, A. ch. 1907, (8) **10.** 133.) +3H₂O.

+5H₂O. (Matignon, A. ch. 1907, (8) 10. 135.)

# Metathorium oxychloride, ThO₂, xThCl₄.

Hydroscopic; sol. in H₂O; insol. in abs. alcohol. (Stevens, Z. anorg. 1901, 27. 47.)

## Thorium oxyfluoride, ThOF₂.

Insol. in H₂O.

Sol. in H₂SO₄ with decomp. (Chauvenet, C. R. 1908, **146.** 974.)

# Thorium oxysulphide, ThS₂, 2ThO₂.

(Chydenius.)

# Thorium phosphide.

Insol. in H₂O. (Berzelius.)

# Thorium silicide, ThSi2.

Sol. in aq. min. acids; insol. in aq. alkalies. Decomp. by fusion with NaOH or KOH. (Hönigschmid, C. R. 1906, 142. 158.)

# Thorium sulphide, ThS₂.

Insol, in warm H₂SO₄. Very slightly attacked by HNO₃ or HCl+Aq. Sol, in hot aqua regia. (Berzelius.)

# Thoromolybdic acid.

# Ammonium thoromolybdate

 $(NH_4)_8Th(Mo_2O_7)_6+8H_2O.$ 

Insol. in H₂O; sol. in dil. acids. (Barbieri,

C. A. **1913.**  $372 \stackrel{\downarrow}{+}$ .)  $(NH_4)_6H_2Th(Mo_2O_7)_6+11H_2O$ . Insol. in H₂O; sol. in dil. acids. (Barbieri.)

# Silver thoromolybdate, Ag₈Th(Mo₂O₇)₆.

Insol. in H₂O; sl. sol. in HNO₃+Aq, but nearly insol. in presence of AgNO₃. (Barbieri.)

#### Sodium thoromolybdate, Na₈Th(Mo₂O₇)₆+ 15H₂O.

Insol. in H₂O; sol. in dil. acids. (Barbieri.)  $Na_6H_2Th(Mo_2O_7)_6+17H_2O$ . Insol. in  $H_2O$ ; sol. in dil. acids. (Barbieri.)

#### Thulium, Tm.

# Thulium chloride, Tm₂Cl₆+14H₂O.

Very sol. in H₂O and in alcohol. (James, J. Am. Chem. Soc. 1911, 33. 1342.)

#### Thulium hydroxide.

Easily sol. in dil. acids. (James, J. Am. Chem. Soc. 1911, **33.** 1342.)

Thulium oxide, Tm2O3.

Slowly sol. in hot conc. acids. (James, J. Am. Chem. Soc. 1911, 33, 1342.)

Tin, Sn.

Insol. in H₂O. Tin is not atacked by distilled H₂O when air is passed through it for a week.

Slowly sol. in dil. cold HCl+Aq, but rapidly sol. if hot and conc. Slowly sol. in hot dil. H2SO4+Aq, but decomp, by hot conc. H₂SO₄.

Readily sol. in cold aqua regia. Attacked violently by conc. HNO3+Aq with ppt:1. of SnO₂. Completely sol. in dil. cold HNO₃+ Aq (1 pt. HNO₃: 1 pt. H₂O) at 22°. (Hay, C. N. 22. 298.) Not attacked by pure conc. HNO₃+Aq of 1.512-1.419 sp gr., but violently attacked by less conc. acid. Also attacked by most cone, acid if it contains NO2. (Millon, A. ch. (3) 6. 95.)

If Sn is placed in dil. HNO3+Aq of 1.15 sp. gr. it is sl. dissolved, but soon pptd. again as SnO₂. If a small amt. of NH₄Cl is added, the Sn remains permanently in solution; HCl+ Aq has a similar action. (Ordway, Am. J. Sci. (2) 23. 220.) Easily sol, in the cold in mixture of 1 vol. H₂SO₄, 2 vols. H_NO₃, and 3 vols. H₂O. (Basset, C. N. **53.** 172.)

HNO₃+Aq containing less than 12% HNO₃ attacks Sn and forms a stannous salt, which decomposes, giving a turbid solution. HNO₃ +Aq (12-45% HNO₃) completely dissolves Sn, but solution becomes turbid on standing. HNO₃+Aq containing more than 45% HNO₃ does not dissolve Sn, but forms a white substance, which is sol. in H₂O if over 70% acid is used; this solution soon becomes turbid.

(Montemartini, Gazz. ch. it. 22, 381.) Sn dissolves in HNO₃+Aq at low temps. (0-21°). When very dil. HNO₃+Aq (14%) HNO3) is used, the amount of stannous salt formed decreases only slightly with increase of temp. while with 30-40% acid it falls to zero at 21°. (Walker, J. Soc. Chem. Ind. **1893.** 845.)

In presence of Fe, Cr or AI, HNO₃+Aq acts on Sn to form soluble products, from which conc. HNO₃ ppts. all Sn as metastannic acid. (van Leent, C. C. 1899, I. 101.)

Much more sol, in acids when small quantities of metallic salts have been added. This is most noticeable when PtCl4 or tartar emetic is added to HCl+Aq. HCl+Aq with tartar emetic exerts 11 times, and with PtCl, 13 times the action exhibited by pure acid. (Millon, C. R. 21. 47.)

Sol. in 2N HClO₃+Aq. (Hendrixson, J. Am. Chem. Soc. 1904, **26.** 755.)

Pyrosulphuric acid dissolves Sn on warming. (Divers, Chem. Soc. 1885, 47. 639.) (Hutchins,

Hot telluric acid attacks Sn. (Hi J. Am. Chem. Soc. 1905, 27. 1183.) Sn is attacked by 17% HN₃+Aq.

(Curtius and Rissom, J. pr. 1898, (2) 58. 299.)

(Kraus, J. Am. Chem. Soc. 1907, 29, 1562.) Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.)

Sol. in boiling alum + Aq (1 pt. alum to 4

pts. H₂O).

Soi. in KHSO₃, N l₄Cl (1:4), and K₂C₄H₄O₆ +Aq. Sl. sol. in I.C₂H₃O₂+Aq, but not attacked by MgSO₄, K₂SO₄, KNO₂, or Na₂SO₄ + Aq. (Cludius, J pr. 9. 161.)

Sol. in alkalies +Au.

Attacked easily by conc. NoCl, KCl, or NH₄NO₃+Aq; 1 or attacked by NH₄Cl+Aq. (Hairock, Am. Ci.. J. **6.** 52.) Sol, in Fe(NO₃)₅+Aq in presence of HNO₃

 $+\Lambda_{4}$  in proportion of 1 atom Sn to 1 atom Fe. (Lepèz and Storch, W. A. B. 98, 2b. 268.) Solubility in dil. saline solutions.

100 ccm. H₂O containing 0.5 g. NaCl or KCl dissolve 6 mg. Sn from 11.8 sq. cm. in one week when air without CO2 is passed through the solution, but none at all when the air contains C()2.

100 ccm. H₂O containing 1 g. NH₄Cl dissolve 5 mg. Sn under above conditions without CO₂, and none with CO₂.

With 1 g. MgCl₂, 1 mg. Sn was dissolved

without CO₂, and none with CO₂. With 1 g. K₂SO₄, 2 mg. Sn were dissolved

without CO₂, and none with CO₂.

With 1 g. KNO₃, 3 mg. Sn were dissolved without CO₂, and 1 mg. with CO₂.
With 1 g. Na₂CO₃, 7 mg. Sn were dissolved

without CO2.

With 1 g. NaOH, 220 mg. Sn were dissolved without CO2.

CaO₂H₂+Aq did not dissolve. (Wagner, Dingl. 221. 260.)

Not attacked by sugar + Aq. (Klein, C. R. **102.** 1170.)

½ ccm. oleic acid dissolves 0.0134 g. Sn in 6 days. (Gates, J. phys. Chem. 1911, 15. 143.)

Tin antimonide, SnSb.

(Stead, J. Soc. Chem. Ind. 1897, 16. 205.)

Tin arsenide, Sn₃As₂.

(Stead, J. Soc. Chem. Ind. 1897, 16, 206.)

Tin (stannous) bromide, SnBr₂.

Sol. in H₂O.

Sol. in pyridine. (Naumann, B. 1904, 37. 4609.)

Mol. weight determined in pyridine and ethyl sulphide. (Werner, Z. anorg. 1897, 15. 23.)

Tin (stannic) bromide, basic, SrBr₈OH+ 3H₂O.

Sol. in H₂O. Decomp. in aq. solution when warmed.

Sol. in ether, methyl alcohol, ethyl alcohol. acetone, acetic acid and esters of organic acids. Nearly insol. in benzene, ligroin and Sol. in a solution of Na in liquid NH3. CHCl3. (Pfeiffer, Z. anorg. 1914, 87. 242.)

Pin (stannic) bromide, SnBr4.

Deliquescent. Sol. in H2O without evolution of heat. (Balard.)

Decomp. by H₂O much more quickly than

SnCl₄. (Lorenz, Z. anorg. 1895, **9.** 378.) Easily sol. in AsBr₃. (Walden, Z. anorg. 1902, **29.** 374.); PCl₃, PBr₃ and S₂Cl₂. (Walden, Z. anorg. 1900, 25. 217.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

+4H₂O. (Preis and Raymann, C. C. 1882. 773.)

Stannic hydrogen bromide, SnBr4, 2HBr. See Bromostannic acid.

Stannic bromide with MBr. See Bromostannate, M.

# Tin (stannic) bromochloride, SnClBr₃.

Fumes in moist air; decomp. by H₂O. (Besson, C. R. 1897, 124. 685.)

SnCl₂Br₂. Fumes in moist air. Decomp. by H₂O. (Besson.)

SnCl₂Br. Fumes in moist air. Decomp. by H₂O. (Besson.)

### Tin (stannic) bromoiodide, SnBr₂I₂.

Sol, in cold H₂O. Decomp. in aq. solution at 80°.

SnBr_sI.

SnBrI₃. (Lenormand, C. C. 1899, II. 521; J. Pharm. 1899, 10. 114.)

Tin (stannous) chloride, SnCl₂, and +2H₂O.

Not deliquescent. 100 pts. H₂O dissolve 83.9 pts. SnCl₂ at 0°. (Engel, A. ch. (6) 17. 347.) 100 pts. H₂O dissolve 269.8 pts. SnCl₂ at 15°, and sat. solution has sp. gr. 1.827. (Michel and Krafft, A. ch. (3) 41. 478.) Sol. in a certain amount of H2O without decomp., but more H₂O causes pptn. of SnO, SnCl₂.

SnCl₂+Aq absorbs O from air. Melts in crystal H₂O at 46°. (Ordway.)

Sat. solution boils at 121.7°.

Sp. gr. of SnCl₂+Aq at 15° containing:

20 % SnCl₂+2H₂O, 10 15 1.0331 1.0684 1.1050 1.1442

 $40 \% \operatorname{SnCl}_2 + 2H_2O_2$ 1.1855 1.2300 1.2779 1.3298

60 % SnCl₂+2H₂O, 50 55 1.3850 1.4451 1.5106 1.5823

75 % SnCl₂+2H₂O. 1.6598 1.7452 1.8399 (Gerlach, Dingl. 186, 131.)

SnCl₂ Solubility of SnCl2 in HCl+Aq.

1/2 molecules SnCl2 in milligrammes in 10 ccm. solution; HCl = molecules HCl in milligrammes in ditto;  $H_2O = amt$ .  $H_2O$ present in grammes.

$\frac{\operatorname{SnCl_2}}{2}$	HCl	Sum of equiv.	Sp. gr. of solu- tion	H ₂ ()
74 66.7 63.75 68.4 81.2 94.2 117.6 147.6 156.4	0 6.6 13.54 24.8 34.9 40.0 44 49.4 66 78	74 73.3 77.29 93.2 116.1 134.2 161.6 197.0 222.4 235	1.532 1.489 1.472 1.524 1.625 1.724 1.883 2.114 2.190 2.199	8.33 8.35 8.198 7.869 7.305 6.880 6.108 5.387 4.715 4.309

(Engel, A. ch. (6) **17.** 347.)

Solubility is thus diminished by HCl+Aq, while there are less than 8-10 mols. HCl for 1 mol. SnCl₂. When that limit is passed the solubility rapidly increases. (Engel.)

Sol. in very dil. HCl or tartaric acid +Aq. Sol. in KOH+Aq. Sol. in conc. SnOCl₂+Aq. (Gerlach.) Sol. in NH₄Cl+Aq.

Anhydrous SnCl₂ is partially sol. in liquid NH₈. (Gore, Am. Ch. J. 1898, **20.** 830.)

Sol. in absolute alcohol. Insol. in oil of turpentine.

11.41 pts. SnCl₂ are sol. in 100 pts. ether at

11.38 pts. SnCl₂ are sol. in 100 pts. ether at 16°

11.38 pts. SnCl2 are sol. in 100 pts. ether at 35.5°. (Laszczynski, B. 1894, **27.** 2286.)

Anhydrous SnCl₂ is sol. in ether. Jong, Z. anal. 1902, 41. 596.) 1 g. anhydrous SnCl2 is sol. in 1.8 g. acetone

at 18°. Sp. gr. of sat. solution  $18^{\circ}/4^{\circ} = 1.6$ . (Naumann, B. 1904, **37.** 4336.)

Sol. in acetone and in methylal. mann, C. C. 1899, II. 1014.)

Anhydrous SnCl₂ is sol, in methyl acetate to the extent of 15.7%. (Schröder and Steiner, J. pr. 1909, (2) 79. 63.)

31.20 pts. SnCl₂+2H₂O are sol. in 100 pts.

ethyl acetate at—2°. 35.53 pts. SnCl₂+2H₂O are sol. in 100 pts.

ethyl acetate at +22

73.44 pts. SnCl₂+2H₂O are sol. in 100 pts. ethyl acetate at 82°. (Laszczynski, B. 1894, **27.** 2286.)

1 pt. anhydrous SnCl₂ is sol. in 22.40 pts. ethyl acetate at 18°.  $D18^{\circ}/4^{\circ} = 0.9215$ . (Naumann, B. 1910, 43. 319.)

Insol. in ethyl amine (Shinn, J. phys. Ch. 1907. 11. 538); pyridine (Naumann, B. 1904, 37. 4609); benzonitrile (Naumann, B. 1914, 47. 1369.)

Insol. in CS2. (Arctowski, Z. anorg. 1894, **6.** 257.)

Sol. in urethane. (Castoro, Z. anorg. 1899, **20.** 61.)

Mol. weight determined in pyridine and ethyl sulphide. (Werner, Z. anorg. 1897,

# Tin (stannic) chloride, basic, SnCl₂OH+3H₂O. Hydroscopic.

Sol. in H₂O.

Sol. in ether, alcohol, acetone, acetic acid. Nearly insol. in ligroin and benzene. (Pfeiffer Z. anorg, 1914, 87. 241.)

# Tin (stannic) chloride, SnCl.

(a) Ordinary modification. —Deliquescent. Sol. in H2O. On diluting SnCl4+Aq and boiling, SnO₂ separates out. SnCl₄+Aq is not pptd. by HNO3, HCl, or H2SO4+Aq; H₃PO₄+Aq ppts. in a few days, and H₃AsO₄+ Aq in a short time. No ppt. is formed by K₂SO₄, Na₂SO₄, KCl, NaCl, NH₄Cl, KNO₃, etc. + Aq.

Sp. gr. of SnCl₄+Aq at 15°.

% SnCl₄ +5H₂O	Sp. gr.	% SnCl₄ +5H₂O	Sp. gr.	% SnČl ₄ +5H ₂ O	Sp. gr.
2	1.012	34	1.226	66	1.538
<b>4</b> 6	1.024	36 38	1.242	68 70	1.563
8 10	1.048	40 42	1.276	72 74	1.614
12 14	1.072	44 46	1.310	76 78	1.669 1.698 1.727
16 18	1.097 1.110 1.124	48 50	1.347 1.366 1.386	80 82 84	1.759 1.791
$\begin{bmatrix} 20 \\ 22 \\ 24 \end{bmatrix}$	1.124 1.137 1.151	52 54 56	1.406 1.426	86 88	1.824 1.859
26 28	1.165 1.180	58 60	1.420 1.447 1.468	90 92	1.894 1.932
$\begin{array}{c c} 20 \\ 30 \\ 32 \end{array}$	1.195 1.210	62 64	1.491 1.514	94 95	1.969 1.988
02	1.210	01	1.011	30	1.000

(Gerlach, Dingl. 178. 49.)

Sp. gr. of SnCl₄+Aq.

Deg. Baumé	% Sn	Deg. Baumé	% Sn	Deg. Baumé	% Sn
65.7 65 64 63 62 61 60 59 58	29.12 28.64 28.17 27.70 27.24 26.77 26.30 25.84	55 54 53 52 51 50 49 48 47	24.47 24.02 23.56 23.11 22.65 22.20 21.74 21.29 20.83	34 33 32 31 30 29 28 27 26	14.90 14.45 14.00 13.56 13.11 12.67 12.23 11.79 11.35
57 56	25.38 24.93	46	20.38	25	10.91

(Heermann, Ch. Z. 1907, 31. 680.)

Sol. in S₂Cl₂. (Walden, Z. anorg. 1900, 25. 217.)

Easily sol. in PCl₃ and PBr₃. Z. anorg. 1900, 25. 211.)

Very sol. in liquid NH₈. (Gore, Am. Ch. J. 1899, **20.** 830.)

Very sol. in absolute alcohol, from which it is potd. by H₂O. Easily sol. in ether; decomp. by oil of turpentine. Miscible with CS2 and Br2.

Sol. in acetone. (Naumanr, B. 1904, 37. 4328 )

Sol, in acctone and in methylal. mann, C. C. 1899, II. 1014.)

Fol, in ethyl acetone. (Naumann, B. 1904, **\$7.** 3601.)

Distribution of SnCl₄ between H₂O and xvlene.

n = ptv. by wt. of Cl in 100 pts. of H₂O layer.

m = pts. by wt. of Cl in 100 pts. of xylene layer.

k = partition coefficient.

50 cc. xylene +60 g SnCl₄.5H₂O.

t°	n	ın	k
66°	40.35	0.08	504.4
80°	39.95	0.175	228.5
97.5°	40.24	0.33	122.1
111°	40.27	0.68	59.3

(Smirnoff, Z. phys. Ch. 1907, 58, 377.)

# $50 \text{ cc. xylene} + 60 \text{ g. SnCl}_4.4\text{H}_2\text{O}.$

t°	n	m	k
66°	41.905	0.925 $1.555$ $2.515$ $3.235$	45.3
80°	41.915		27.0
100°	41.845		16.7
111°	41.68		12.9

### (Smirnoff.)

# 50 cc. xylene +60 g. SnCl₄.3H₂O.

t°	n	m	k
80°	43.205	9.95	4.4
94°	42.545	9.325	4.6
100°	42.645	10.56	5.1
111°	42.31	10.03	4.2

# (Smirnoff.)

+2H₃O. Sol. in H₂O. +3H₂O. Tr. pt. 83°. (Meyerhoffer, Bull. Soc. 1891 (3) **6**, 85.) +4H₂O. Tr. pt. 63°. (Meyerhoffer.) +5H₃O. Very deliquescent, and sol. in H₂O. Decomp. by alcohol. Sol. in HCl+Aq. Tr. pt. 56°. (Meyerhoffer.)

+8H₂O. More deliquescent than the 5H₂O salt. Tr. pt. 19°. (Meyerhoffer.)

+9H₂O. (Nöllner, Z. Ch. 1865. 45.)

(b) Metastannic chloride.—Sol. in cold H₂O: solution coagulates on boiling. Conc. HCl+Aq ppts. from SnCl₄+Aq. When solution Aq ppts. from SnCl₄+Aq. does not contain HCl, the addition of HCl+ Aq causes a ppt., which dissolves in H₂O. HNO₃, and H₂SO₄+Aq also ppt. K₂SO₄, Na₂SO₄, and NaCl+Aq produce ppts., insol. in H₂O, but sol. in HCl+Aq. NH₄Cl or KCl+Aq do not ppt. KNO₃+Aq ppts. slowly. (Rose.)

Tin (stannous) hydrogen chloride, SnCl₂, HCl+3H₂O.

Decomp. by H₂O.

Melts at -25°. (Engel, C. R. 106. 1398.)

Tin (stannic) hydrogen chloride. See Chlorostannic acid.

Tin (stannous) hydrazine chloride, SnCl₂, 2N₂H₄, HCl.

Very hydroscopic.

Sol. in H₂O and abs. alcohol. (Curtius. J. pr. 1894, (2) **50.** 341.)

Tin (stannic) chloride with MCl. See Chlorostannate, M.

Tin (stannous) chloride ammonia, SnCl₂, NH₃.

(Berzelius.)

SnCl₂, 4NH₃. Ppt. (Naumann, B. 1904, **37.** 4336.)

Tin (stannic) chloride ammonia, SnCl., 2NH₃.

Sol. in cold H2O without decomp., but decomposes by heating.

Tin (stannous) chloride arsenate. See Arsenate chloride, stannous.

Tin (stannic) chloride cyanhydric acid, SnCl₄,

Decomp. on moist air or with H₂O. (Klein, A. 74. 85.)

Tin (stannous) chloride hydrazine, SnCl2, 2N2H4.

Decomp. by H₂O.

Insol. in NH₄OH+Aq. (Franzen, Z. anorg. 1908, **60.** 286.)

Tin (stannic) chloride nitrogen sulphide, SnCl₄, 2N₄S₄.

Insol. in most solvents.

Decomp. by warm NH₄OH+Aq.

Decomposes in the air. anorg. 1908, 57. 284.)
Decomp. by H₂O. (Day (Wölbling, Z.

(Davis, Chem. Soc, 1906, **89**. 1576.)

Tin (stannic) chloride phosphine, 3SnCl.

Decomp. by H₂O. (Rose, Pogg. 24. 159.)

Tin (stannous) chloride potassium stannous sulphate.

See Sulphate, potassium stannous stannous chloride.

Tin (stannic) chloride sulphur tetrachloride, SnCl₄. 2SCl₄.

Very hygroscopic.

Sol. in CHCl3, ligroin, petroleum ether, CS₂, POCl₃; very sol. in completely dry absolute ether, in benzene, acetacetic ester and in SCl₂. (Ruff, B. 1904, **37.** 4517.)

Tin (stannic) chloride sulphide, 2SnCl₄, SnS₂. See Stannic sulphochloride.

Tin (stannic) chlorobromide, SnClBr₈.

Decomp. by H₂O. (Ladenburg, A. suppl. 8.60.) Decomp. by H₂O. SnCl₂Br₂. (Laden-

burg.)

Tin (stannous) chloroiodide, SnClI.

Decomp, immediately by H₂O. (Henry, Phil. Trans. **1845.** 363.)

Tin (stannic) chloroiodide, SrCl₂I₂.

Fumes in the air.

Decomp. by H₂O. (Lenormand, J. Pharm. **1898.** 8.)

SnClI₃. (Lenormand, J. Pharm. 1899, 10. 114.)

Tin (stannous) fluoride, SnF₂.

Easily sol. in H₂O. (Berzelius, Pogg. 1. 34.)

Tin (stannic) fluoride, SnF₄.

Very hydroscopic.

Sol. in H2O. Slowly decomp. in aq. solution with separation of SnO₂. (Ruff, B. 1904, **37.** 681.)

Tin (stannic) fluoride with MF. See Fluostannate, M.

Tin (stannous) hydroxide, 2SnO,  $H_2O$ .

Decomp. to SnO when boiled with  $H_2()$ . More easily sol. in acids than Sn or Sn(). Sol. in NaOH, and KOH+Aq, even when dil. Insol. or very sl. sol. in NH₄Oll, (NH₄)₂CO₃, and K₂CO₃+Aq; sol. in cold CaO₂H₂, and BaO₂H₂ with decomposition on boiling. (Fremy, A. ch. (3) 12.460.) Only sl. sol. in NH₄Cl+Aq hot or cold. (Brett.) Sl. sol. in NaC₂H₈O₂+Aq. (Mercer.)

G. Na in 20 cem.	G. Sn in 20 ccm
0.2480	0.1904
0.3680	0.2614
0.6394	0.4304
0.8326	0.5560
0.9661	0.7849
2.1234	1.8934

(Rubenbauer, Z. anorg. 1902, 30. 335.)

Not pptd. in presence of Na citrate (Spiller.)

Sol. in water-glass +Aq. (Ordway.) SnO₂H₂. Solubility in 1 l. H₂() = 0.0000135 g. mol. at 25°. (Goldschmidt, Z. phys. Ch. 1900, **56.** 389.)

Tin hydroxide, SnO, 6SnO₂+5H₂O. +9H₂O. (Schiff, A. 126, 153.

Tin sesquihydroxide, Sn₂O₃, xH₂O.

Insol. in H₂(). Sol. in NH₄OH+Aq. (Fuchs, J. pr. 5. 318.)

### Tin (stannic) hydroxide.

"a" modification.

Obtained by pptn. by alkali in stannic

chloride solution. Freshly pptd. substance when air dried contains 73.5% H₂O; when dried over H₂SO₄ or in a vaccum for 1 month 12.6% H₂O. Heated to glowing loses all H2O and passes into the anhydride. The "a" form is capable of existing in all degrees of hydration. (Lorenz,

Z. anorg. 1895, 9. 372-375.)
"a" stannic hydrate is a white amorphous substance which is very sol. in HNO3 when moist; sol. in H₂SO₄ even dil.; sol. in HCl and not pptd. by an excess. Very sol. in NaOH+Aq. and is not pptd. by an excess.

A solution of a stannic acid in HCl is identical with a solution of freshly prepared aqueous stannic chloride and gives no ppt. with dil. HCl, H₂SO₄, HNO₈ or arsenic acid even on long standing.

"β" modification.

Obtained by oxiding and dissolving Sn in HNO₃, and from solution of sodium stannate by pptn. Freshly pptd. from HNO₂ when air dried contains 21.3% H₂O, and when dried over H₂SO₄ or in a vacuum 11.3%,—corresponding to Sn(OH)4 and SnO(OH)2 respectively.

Freshly pptd. from sodium stannate solution and air dried contains 22.5% H2O and when dried over H2SO4 or in a vacuum contains 12.1%,—corresponding to Sn(OH)₄ and SnO(OH)₂. Passes into the anhydride when SnO(OH)2.

heated to glowing.

The " $\beta$ " form is capable of existing in all degrees of hydration. It is a white amorphous substance which is insol. in HNO3; in- (Young, J. Am. Chem. Soc. 1897, 19. 851.)

sol in H₂SO₄ even when conc.; insol. in HCl but changed by contact with the acid in that when the acid has been removed the ppt. is readily sol. in H₂O, though pptd. again from solution by addition of HCl. When freshly prepared the " $\beta$ " form is sol. in NaCH+Aq but is pptd. by an excess of

A solution of "\$" staunic acid in HCl behaves quite differently from an aq. solution of stannic chloride in that it ppts, metastannic sulphate when treated with H2SO4.

This not dissolves when heated with dilute HNO, or HCl, but the solution on standing special results forms another ppt. A solution 1 "β" stannic acid in ACI gives a ppt. when treated with arsenic acid. (Lorenz, Z. anorg. 1895, 9. 372.)

See also Stannic acid.

Tin hydroxyl chloride, SnO(OH)Cl. See Chlorostannic acid.

Tin (stannous) iodide,  $S_1 I_2$ , and  $+2H_2O$ . Sl. sol. in cold, more abundantly in hot H₂O, without decomp.

# Solubility in H₂O.

t°	Pts. SnI ₂ in 100 pts. solution	t°	Pts. SnI ₂ in 100 pts. solution
98.5	3.43	97.3	3.70
$\frac{84.9}{73.9}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	87.4 $77.6$	$\begin{vmatrix} 3.24 \\ 2.75 \end{vmatrix}$
$\frac{60.1}{51.5}$	2.09 1.79	$67.5 \\ 59.7$	$\frac{2.34}{2.03}$
41.0	1.50	49.5	1.72
$\begin{array}{c} 30.5 \\ 20.8 \end{array}$	1.21	$\begin{array}{c} 39 \ 4 \\ 29 \cdot 6 \end{array}$	1.38
		19.8	0.96

(Young, J. Am. Chem. Soc. 1897, 19, 846.)

Solubility of SnI₂ in HI+Aq at t°. Pts. Snl₂ per 100 pts. solvent.

t°	5.83% HI	9.60 ½ HI	15.20 % HI	20.44% HI	24.80 % HI	30.40% HI	36.82% HI
20 30 40 50 60 70 80 90	1.16 1.40 1.69 2.07 2.48	$egin{array}{c} 0.23 \\ 0.33 \\ 0.46 \\ 0.66 \\ 0.91 \\ 1.23 \end{array}$	0.64 0.71 0.82 1.11 1.37 1.83	1.81 1.90 2.12 2.51 2.92 3.70	4.06 4.12 4.34 4.78 5.43 6.38	10.06 10.35 11.03 11.97 13.30	25.31 23.46 23.15 23.76 24.64 25.72 27.23 29.84
100							34.05

Solubility	of SnI	at low	temp.	in	29.95%
		+Aq.			

Temp.	Pts. in 100 pts. solution	Pts. in 100 pts. solvent
1.5 1.5 6.0 10.5 15.2 24.8	12.96 13.15 12.35 11.01 , 10.48 9.36	14.89 15.14 14.09 12.36 11.70 10.33
$30.7 \\ 34.8 \\ 40.3$	8.78 8.70 9.51	$9.62 \\ 9.50 \\ 10.50$

(Young, J. Am. Chem. Soc. 1897, 19. 854.)

Solubility of SnI₂ at low temp. in 39.6% HI + Aq.

	Pts. in 100 pt	Pts. in 100 pts	
Temp.	I	II	of solvent
0° 5.7° 10.5° 15.7° 20.3°	13.52 16.44 19.47 23.56 25.50	13.56 16.37 19.60 23.68 25.60	15.66 19.71 24.27 30.92 34.30

(Young, J. Am. Chem. Soc. 1897, 19, 852-853.)

Sol. in  $SnCl_2+Aq$ . Sol. in warm alkali chlorides or iodides + Aq; also in dil. HCl+Aq. Very sl. sol. in CHCl3, CS2, or C6H6. (Personne, C. R. 54. 216.) Sol. in KOH+Aq. (Rose.)

Sol. in acetone. (Naumann, B. 1904, 37. 4328.)

#### Tin (stannic) iodide, SnI4.

Decomp. by H₂O into SnO₂ and HI.

Very sol. in PCl₃. (Beckmann, Z. anorg.

1906, **51.** 110.) Sol. in POCl₃. (Walden, Z. anorg. 1900, **25.** 212.)

Easily sol. in PCl₃ and PBr₃. (Walden,

Z. anorg. 1900, 25. 211.)

Sol. in liquid AsBr₃ forming a solution with sp. gr. = 3.731 at 15°. (Retgers, Z. phys. Ch. 1893, 11. 342.)

Sol. in SOCl₂, S₂Cl₂ and SO₂Cl₂. (Walden, Z. anorg. 1900, **25**. 215.)

Sol. in SnCl₄. (Walden.)

Sol. in anhydrous alcohol, ether, and benzene. 1 pt. CS₂ dissolves 1.45 pts. SnI₄ at ordinary temp. (Schneider, Pogg. 127. 624.)

100 pts. methylene iodide, CH₂I₂, dissolve 22.9 pts. SnI4 at 10°. Sp. gr. of solution = 3.481. (Retgers, Z. anorg. 3. 343.)

# Solubility in organic solvents at to.

Solvent	t°	G. SnI4 in 100 g. of the sat. solution	Sp. gr. of the sat. solution
CCl ₄	22.4	5.25	1.59
CCl ₄	50.0	12.50	1.63
CHCl ₃	28.0	8.21	1.50
C ₆ H ₆	20.2	12.65	0.95

(McDermott, J. Am. Chem. Soc. 1911, 33. 1964.)

Sol. in methyl acetate. (Naumann, B. 1909, **42.** 3790.)

Sol. in acetone. (Eidman, C. C. 1899. II. 1014.)

Solubility in CS₂.

100 g. of the sat. solution contain at: -84°  $-89^{\circ} -94^{\circ}$ -114.5° -58° 16.27 10.22 9.68 10.65 9.41 g. SnI₄.

(Arctowski, Z. anorg, 1896, 11, 274.)

Sol. in allyl mustard oil. (Mathews, J. phys. Ch. 1905, **9.** 647.)

# Tin (stannous) hydrogen iodide, $SnI_2$ , HI.

Not obtained in pure state. (Young, J. Am. Chem. Soc. 1897, **19.** 856.)

Tin (stannous) iodide ammonia, SnI₂, 2NH₃. (Ephraim and Schmidt, B. 1909, 42, 3857.) SnI₄, 8NH₃. (Ephraim and Schmidt.)

# Tin (stannic) iodide ammonia, SnI4, 3NH2.

(Personne, C. R. **54.** 218.)

SnI₄, 4NH₃. (Personne.) SnI₄, 8NH₃. (Rammelsberg, Pogg. 48.

169.)

# Tin iodosulphide,

See Tin sulphoidide.

#### Tin monoxide (Stannous oxide), SnO.

Insol. in H₂O. Sol. in acids. Very sl. sol. in boiling NH₄Cl+Aq. (Rose.) Insol. in NaOH or KOH+Aq

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 830.)

Insol. in acetone. (Naumann, B. 1904, 37.

# Tin dioxide (Stannic oxide), SnO₂.

Insol. in H2O or conc. acids except conc H₂SO₄. Insol. in conc. alkalies or NH₄OH+

Not absolutely insol. in dil. HNO₃+Aq. (Mulder.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.)

Min. Cassiterite (Tin stone). Not attacked by acids.

# Tin sesquioxide, Sn.O.

While moist, easily sol. in NH₄OH+Aq. Sl. sol. in dil., more easily in conc. HCl+Aq. (Berzelius.)

Tin (stannic) oxybromide, Sn₂Br₆O+12H₂O. Decomp. by H2O into SnBr2 and H2SnO. Sn₃Br₆O₂. As above. (Preis and Ravmann, C. C. 1882. 773.)

Tin (stannic) oxybromide nitrogen pentoxide, SnO₂, 3Br₂, N₂O₅.

Decomp. by H₂O. (Thomas, C. R. 1896, **122.** 33.)

Tin (stannous) oxychloride, SnO, SnCl₂+ 3H₂O.

Insol. in H₂O. Sol. in HCl. HC₂H₃O₂, and dil. IINO3, or H2SO4+Aq. (J. Davy, Schw J. 10. 325.)

Sn₈Cl₁₄O₈+10H₂O. Easily sol. in H₂O or alcohol.

Can be recrystallized from alcohol but not from H₂O. (Tschermak, W. A. B. 44.

 $3SnO_2$ ,  $2SnCl_2+6H_2O$ . Very sl. sol. in H₂O. Sol. in dil. acids. (Ditte, A. ch. 1882, (5) **27.** 146.)

4SnO, SnCl₂+6H₂O. (Ditte.)

Tin (stannic) oxychloride, SnO₂, SnCl₄.

Sol. in H₂O. (Scheurer-Kestner, A. ch. (3) **47.** 6.)

Tin (metastannic) oxychloride, 3SnO₂, SnCl₄ +3H₂O.

Sol. in little, decomp. by much  $H_2O$ . (Weber, Pogg. 122. 368.)

 $4SnO_2$ ,  $SnCl_4+7H_2O$ . (Weber.)

"Metastannyl chloride \(\beta,\)" Sn \(\beta\)O\(\beta\)Cl2. liquescent. Sol. without decomp. in a small amount of H2O or in a large amount of H2O containing a few drops HCl.

Sol. in abs. alcohol. (Engel, C. R. 1897

**124.** 767,)

+4H₂O and +9H₂O. Sol. in H₂O acidified with one drop of HCl. Pptd. by excess HCl. (Engel, C. R. 1897, **124.** 768.) "Parastannyl chloride,"  $\operatorname{Sn_5O_9Cl_2} + 2\operatorname{H_2O}$ .

Decomp. by excess H₂O.

Sol. in H₂O; pptd. by HCl. (Engel, C. R. 1897, **125.** 465.)

Tin (stannic) oxychloride nitrogen pentoxide, SnOCl₂, 3SnCl₄, N₂O₅.

Hydroscopic; sol. in H₂O.

Decomp. by heat. (Thomas, C. R. 1896, **122.** 32.)

 $\begin{array}{ccc} (stannous) & oxyiodide, & SnO, & 3SnI_2; \\ 2SnO, & 3SnI_2; & SnO, & SnI_2; & and & 2SnO, & SnI_2. \end{array}$ Decomp. by much H₂O. (Personne, C. R.

**54.** 216.)

Tin oxysulphide, Sn₂S₅O+11H₂O.

Very sol. in (NH₄)₂CO₈+Aq; slowly sol. *in H₂O. (Schmidt, B. 1894, **27**. 2739.)

Tin phosphide, Sn₂P.

(Ragg, C. C. 1898 H. 170.)

SnP Sol. in HC1+Aq. Insol. in HNO: +Aq.

SrP2 Not attacked by HCl. Easily attacked by aque regia. (Einmerling, B. 1879, **12.** 155.)

SnP₃. Insol. in HCl. Slowly attacked by dil. HNO₃ at 50°. Oxidized by fuming HNO₃ with agnition. (Jolibois, C. R. 1909, **148**.

Sn₈P₂. Insol. in mercury.

Decomp. by HCl. (Stead, J. Soc. Chem. lnd. 1897, **16.** 206.)

Sn₄P₃. Attacked by HCl, HNO₃ and alkalies. (Jobilois, C. P. 1909, 148. 637.)

The only true compounds are Sn₄P₄ and SnP₃. (Jolibois, C. R. 1909, **148**, 637.)

Tim phosphochloride, Sn₂P₂Cl₆.

(Mahn, Jena. Zeit. 5, 1660.)

# Tin (stannous) selenide, SnSe.

Decomp. by boiling HCl+Aq. Slowly oxidised by boiling HNO₃+Aq, and easily dissolved in aqua regia (Schneider, Pogg. Easily sol. in alkalies+Aq **127.** 624.) (Uelsmann, A. 116. 122), or scarcely even on boiling (Schneider), according to method of preparation. Sol. in alkali sulphides or selenides +Aq.

## Tin (stannic) selenide, SnSe₂.

Not attacked by H₂O or dil. acids; scarcely attacked by boiling conc. HCl+Aq; gradually decomp. by hot HNO3+Aq; easily dissolved by warm agua regia, and hot conc.  $H_2SO_4$ .

Sol. in cold, more easily in warm KOH, NaOH, or NH₄OH+Aq. (Uelsmann, A.

**116.** 122.)

Tin (stannous) sulphide, SnS.

1 l. H₂() dissolves 0.14×10-6 mols. SnS at 18°. (Weigel, Z. phys. Ch. 1907, **58**. 294.) Insol. in dil., sol. in conc. HCl+Aq. Sl. sol. in hot conc. HNO₃+Aq. Insol. in KOH

+Aq $+H_2O$ . Insol. in  $H_2O$ ,  $H_2S+Aq$ , or dil. acids; sol. with decomp. in conc. acids; easily sol. in hot conc. HCl+Aq. Insol. in H₂SO₃+Aq. Insol. in NH₄OH+Aq. Insol. Insol. in NH4Cl, or NH4NO3+Aq. Scarcely sol. in (NH₄)₂S+Aq, but easily sol. in the same on addition of S. (Rose.)

10% NaOH+Aq dissolves SnS by violent boiling.

Insol. in cold, sl. sol. in hot Na₂SO₂+Aq. (Materne, C. C. 1906, II. 557.)

Sol. in alkali polysulphides + Aq. Insol. in acetone. (Eidmann, C. C. 1899) II. 1014); (Naumann, B. 1904, 37. 4329.); ethyl acetate. (Naumann, B. 1910, 43. 314.)

### Tin (stannic) sulphide, SnS₂.

Anhydrous. (Mosaic gold.) Insol. in HCl or HNO₃+Aq, but decomp. by aqua regia. Sol. in hot KOH+Aq or K₂CO₃+Aq; also in hot K₂S, Na₂S+Aq, and (NH₄)₂S+Aq. 1 l. H₂O dissolves 1.13×10-6 mols. SnS₂ at 18°. (Weigel, Z. phys. Ch. 1907, 58. 294.) +xH₂O. Sl. sol. in NH₄OH+Aq, but

readily in KOH, K₂S, or Na₂S+Aq; also in hot cone. HCl+Aq. Decomp. by hot HNO₃+Aq. Insol. in KHSO₃+Aq. Sol. in K₂CO₃+Aq. Insol. in NH₄Cl, and NH₄NO₃+Aq. (Brett.)

Pptd. SnS₂ is insol. in cold, sol. in hot Na₂B₄O₇ +Aq. Sol. in Na₂CO₃+Aq. Very sol. in NaOH+Aq. (Materne, C. C. 1906, II. 557.)

Sol. in boiling conc. H₂C₂O₄+Aq. (Clarke,

C. N. 21. 124.)

Insol. in methyl acetate (Naumann, B. 1909, 42. 3790); ethyl acetate (Naumann, B. 1910, **43.** 314.); acetone (Naumann, B. 1904, **37.** 4329; Eidmann, C. C. **1899**, II. 1014.)

# Tin sesquisulphide, Sn₂S₃.

Sol. in moderately conc. HCl. (Antony and Niccoli, Gazz. ch. it. 1892, 22. (2) 408.)

#### Tin sulphochloride, SnS₂, 2SnCl₄.

H₂O dissolves out SnCl₄. (Dumas, Schw. J. 66, 409.)

 $SnS_2Cl_{12} = SnCl_4$ ,  $2SCl_4$ . Sol. in  $H_2O$  with separation of S.

Gradually sol. in dil. HNO₃+Aq. Sol. in POCl₃. (Casselmann, A. 83, 267.)

#### Tin sulphoiodide, SnS₂I₄.

Decomp. by H₂O into SnO₂, S, and HI; by cold conc. HCl+Aq with separation of S, also by aqua regia, and HNO₃+Aq.

Cold KOH+Aq separates S and SnO₂. Completely sol. in hot KOH+Aq.

Sol. in cold, more easily in hot CS₂ or CHCl₃.

Decomp. by alcohol. (Schneider, Pogg. **111.** 249.)

# Tin sulphophosphide, Sn₂P₂S.

Insol. in HCl, HNO₃ and aqua regia. Sol. in aq. alkali hydroxides, containing Cl₂ or Br₂ in solution. (Granger, C. R. 1896, **122.** 322.)

#### Tin (stannous) telluride, SnTe.

Not attacked by conc. HCl+Aq. (Ditte, C. R. **97.** 42.)

# Titanic acid, TiO₂, xH₂O.

a-Titanic acid.—Insol. in H₂O or alcohol. | HCl+Aq. When dried in the cold, is completely sol. in 578.)

acids, especially HCl, or dil. H₂SO₄+Aq, but when the solution in acids is boiled, it is converted into  $\beta$ -titanic acid. Very sl. sol. even when moist in H₂SO₃+Aq. (Berthier.) Sl. sol. in alkali carbonates +Aq. A complete solution in an alkali carbonate +Aq can only be obtained by adding a Ti salt drop by drop to the alkaline solution, and allowing the ppt. to dissolve entirely before adding more T is alt. On boiling the solution in  $(NH_4)_2CO_3$ +Aq (or in K₂CO₃ or Na₂CO₂+Aq with NH₄Cl) the titanic acid is pptd.

Relatively easily sol. in mineral acids, decreasing in the following order HCl, HNO₃, H₂SO₄. Insol. in perchloric acid.

decker, Z. anorg. 1909, 64. 67.)

Sol. in dil. H₂SO₄.  $40 \, \text{g}$ .  $\text{H}_2\text{O} + 70 \, \text{g}$ . H₂SO₄ (sp. gr. 1.145) dissolves 0.33 g. TiO₂ (Hall and Smith, Proc. Am. in 15 min. Phil. Soc. 1905, 44. 193.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 830.)

β-Titanic acid, Metatitanic acid.—Insol. in H2O, acids except HF, or alkali hydrates or carbonates +Aq. When digested with conc.  $H_2SO_4$  until acid is evaporated, the residue is sol. in  $H_2O$ . (Berzelius.)

γ-Titanic acid.—Sol. in pure H₂O, but  $\beta$ -acid is pptd. by boiling. (Knop, A. 123)

Colloidal TiO₂ xH₂O+Aq has been prepared by Graham (Chem. Soc. 17. 325.)

Barium titanate, 2BaO, 3TiO₂. (Bourgeois, C. R. 103. 141.)

# Barium pertitanate peroxide.

See Pertitanate, barium peroxide.

#### Calcium titanate, CaTiO₃.

(Ebelmen, C. R. 32. 711.)

Min. Perofskite. Scarcely attacked by HCl +Aq or other acids, except hot H₂SO₄, which decomposes it.

Titanomorphite. Par-CaO, 2TiO₂. Min. tially decomp. by HCl+Aq, completely by H₂SO₄.

# Cobaltous titanate, CoTiO₈.

(Bourgeois, C. C. 1893, I. 226.)

# Ferrous orthotitanate, Fe₂TiO₄.

(Hautefeuille, C. R. 59. 733.)

# Ferroferric titanate, FeTiO₃, xFe₂O₃.

Min. Menaccanite. Very sl. sol. in HCl or aqua regia with separation of TiO₂.

### Ferric titanate.

Not attacked by boiling H₂SO₄ or conc. (Wöhler and Liebig, Pogg. 21.

# Magnesium titanate, MgTiO₃.

Insol. in H₂O and acids. (Hautefouille, A. ch. (4) 4. 169.)

Min. Geikielite.

When finely powdered, is easily sol. in hot HCl, or in cold HF in a few hours. (Liek, Miner, Mag. 1894, 10. 146.)

Mg₂TiO₄. Slowly decomp. by boiling

with HNO3+Aq. (Hautefeuille, A. ch. (4) **4.** 169.)

### Potassium titanate, K₂TiO₈.

Anhydrous. Decomp. with H₂O.

+4H₂O. Deliquescent. Very sol. in H₂O. Precipitated from aqueous solution by alcohol. (Demoly, Compt. chim. 1849. 325.)

# Potassium titanate, acid, K₂O, 3TiO₂ +2H₂O

Insol. in  $H_2O$ . (Demoly.)

 $\begin{array}{lll} K_2O, \ 6TiO_2 + 2H_2O. & (Demoly.) \\ K_2O, \ 3TiO_2 + 3H_2O. & Insol. \ in \ H_2O. & Com- \end{array}$ pletely sol. in HCl+Aq if only cold 11₂O is used for washing. When heated to 100°, no longer completely sol. in HCl+Aq. (Rose, Pogg. 74. 563.)

K₂O, 12TiO₂. (Rose, Gilb. Ann. 73. 78.)

### Sodium titanate, Na₂TiO₃.

Anhydrous. Decomp. by H₂O into NaOH. and an acid titanate, insol. in H2O.

+4H₂O. Deliquescent. Very sol. in H₂O. Precipitated from aqueous solution by alcohol. (Demoly.)

# Sodium titanate, acid, $2Na_2O$ , $9TiO_2 + 5II_2O$ .

If not heated to 100°, is sol. in cold HCl+Aq. (Rose, Gilb. Ann. 73. 78.)

2Na₂O, 3TiO₂. Insol. in H₂O; slowly sol. in cold, easily in hot HCl+Aq. (Cormimbœuf, C. R. 115, 823.)

 $Na_2O$ ,  $2TiO_2$ . As above. (C.)  $Na_2O$ ,  $3TiO_2$ . Insol. in  $H_2O$ , and nearly Na₂O, 3TiO₂. so in boiling HCl+Aq. (C.)

# Strontium titanate, 2SrO, 3TiO₂.

(Bourgeois, C. R. 103. 141.)

#### Zinc titanate, ZnO, TiO₂(?).

(Lévy, A. ch. (6) 24, 456.) 2ZnO, TiO₂(?). (Lévy.) 3ZnO, 2TiO₂. Slowly attacked by warm H₂SO₄ or HNO₃+Aq, and by H₂SO₄+HF. Wholly sol. in cold HCl+Aq. (Lévy.)

4ZnO, 5TiO2. Not attacked by cold conc. acids, but sol. by boiling except in HCl+Aq. (Lévy.)

3TiO₂. Insol. in H₂O, alcohol, or Dil. HNO₃, H₂SO₄, or HCl+Aq do ZnO, 3TiO₂. not attack even on boiling; boiling H2SO4 dissolves with difficulty; not attacked by conc. boiling alkalies + Aq. (Lévy, A. ch. (6) 25. 471.)

# Pertitanic acid.

See Pertitanic acid.

# Titanium, Ti.

Decomp. H₂O oven under 100° (Wöhler); no attacked by H2O under 500°. (Kern. C. N. **33.** 57).

Does decomp.  $H_2O$ 100°. яt

(Schneider, Z. anorg. 1894, 8, 85.)
Sol. in HC!+Aq if warmed. Rapidly sol. in Rf+Aq. Sol. in cold dil H₂SO₄+Aq, HNO, +Aq, or IC2H3O2+Aq. Dissolves

almost instantaneously in HF+Aq. (Merz.)
Sol. in molten lead and iron; sol. in HCl, IINO3 and aqua regia. (Moissan, C. R. 1895, **120**. 293.

Amorphous. Loses its spontaneous inilluminability when left for a time in contact with H₂O. (Schneider, Z. anorg. 1895, 8. 85.)

### Titanium amide, Ti(NH2)4.

Violently attacked by H₂O. (Stähler, B. 1905, **28.** 2629.)

# Titanium tribromide, TiBr₃+6H₂O.

Very hydroscopic. (Stähler, B. 1904, 37. 4400.)

# Titanium tetrabromide, TiBr4.

Deliquescent. Decomp. by H₂O. (Duppa, C. R. **42.** 352.)

Sol. in absolute alcohol and in dry ether. (Rosenheim and Schütte, Z. anorg. 1900, **24.** 288.)

# Titanium bromonitride, TiNBr.

Decomp. by a small amount of H₂O. On addition of more H₂O, a part dissolves forming a solution which decomp, on warming with separation of titanic acid. It behaves similarly toward dil. HNO3, dil. HCl and dil. H₂SO₄. Completely sol. in warm dil. H₂SO₄. (Ruff, B. 1908, 41. 2262.)

#### Titanium carbide, TiC.

Sol. in HNO₃+Aq. (Shimer, C. N. **55.** 71.) Insol. in HCl. Slowly sol. in aqua regia. (Moissan, C. R. 1895, 120. 295.)

# Titanium carbide nitride, $Ti_{10}C_2N_8 = Ti(CN)_2$ , 3Ti₃N₂.

Insol. in, and not attacked by boiling HNO: or H₂SO₄ (Wollaston), but sol. in HNO₃+HF (Berzelius).

#### Titanium dichloride, TiCl₂.

Very deliquescent. Decomposes H₂O with violence. Insol. in ether, CS₂, or CHCl₃. Decomp. by 99.5% alcohol.

# Titanium trichloride, TiCl₃.

Deliquescent. Sol. in H₂O with evolution of heat.

(Glatzel, B. 9. 1829.)  $+4H_2O$ .

+6H₂O. Very sol. in H₂O. (Polidori, Z. anorg. 1898, 19. 307.)

Titanium tetrachloride, TiCl.

Anhydrous. Sol. in H₂O with evolution of much heat.

+5H2O. Deliquescent:

# Titanium sulphuryl chloride. TiCl₄SO₃ = TiCl₂OSO₂Cl.

Deliquesces gradually in moist air. (Clausnitzer, B. 11. 2011.)

# Titanium chloride ammonia, TiCl4, 4NH2.

Solution in H₂O is not Deliquescent. quite clear.' (Rose.)

According to Persoz (A. ch. 46. 315), is TiCl₄, 6NH₃.

TiCl₄, 6NH₃ and TiCl₄, 4NH₃.

Both compds. are unstable in moist air; insol. in ether. (Rosenheim, Z. anorg. 1901, **26.** 245.)

TiCl₄, 8NH₃. Violently decomp. by H₂O. (Stähler, B. 1905, **38**. 2627.)

# Titanium tetrachloride cyanobromide, TiCl₃, NCClBr.

(Schneider, Z. anorg. 1894, 8. 92.)

# Titanium chloride cyanhydric acid, TiCl4,

Deliquescent. Sol. in H₂O with evolution of heat. (Wöhler, A. 73. 226.)

# Titanium trichloride nitrogen sulphide, 2TiCl₃, N₄S₄.

Decomp. rapidly in air. (Davis, Chem. Soc. 1906, **89.** (2) 1576.)

# Titanium tetrachloride nitrogen sulphide. TiCl₄, N₄S₄.

Hydroscopic.

Decomp. by H₂O, HNO₃, HCl, KOH and alcohol. (Wölbling, Z. anorg. 1908, 57, 282.)

#### Titanium chloride phosphine.

Decomp. by  $H_2()$ , HCl+Aq, KOH+Aq,  $K_2CO_3 + Aq$ , or  $(NH_4)_2CO_3 + Aq$ . (Rose.)

# Titanium tetrachloride phosphoryl chloride. TiCl₄, 2POCl₃.

(Ruff, B. 1903, **36.** 1783.)

#### Titanium chloronitride, TiNCl.

Decomp. by small amount cold H₂O. On the addition of more H₂O it is only partially decomp. For complete solution, the addition of dil. HCl or a mixture of warm dil. H₂SO₄ and HF is necessary. Easily sol. in conc. HNO₃ and in cone. H₂SO₄. (Ruff, B. 1908, **41.** 2259.)

# Titanium difluoride.

(Hautefeuille, C. R. **57.** 151.) Probably sesquifluoride.

# Titanium sesquifluoride, Ti₂F₆.

Appears to be two modifications, one sol. in  $H_2O$ , and the other insol. in  $H_2O$ . (Hautefeuille, C. R. 59. 189.)

Insol. in H₂O. (Weber, Pogg. 120, 292.)

# Titanium tetrafluoride, TiF4.

Decomp. by H₂O. (Unverdorben.)

Sol. in H₂O, but solution decomp. upon evaporation. (Marignac, Ann. Min. (5) 15. 258.)

Sol. in H₂O. (Emich, M. 1904, 25. 910.) Very hydroscopic.

Sol. in H₂O. Sl. sol. in conc. HF+Aq. Sol. in cold POCl₃ without decomp. Decomp. in warm POCl₃.

Sol. in alcohol and dry pyridine.

Insol. in ether, CS₂, CCl₄, SiCl₄, SiBr₄,
SO₂Cl₂, SOCl₂, SCl₂, AsCl₃, SO₃, CrO₃, PCl₃. (Ruff, B. 1903, **36.** 1780.)

 $+2H_2O$ . Sol. in  $H_2O$ . (Ruff, B. 1903, **36.** 1780.)

### Titanium hydrogen fluoride, 2HF, TiF₄= H2TiF6.

Sol. in H₂O with decomposition and separation of a basic salt. Corresponds to fluosilicic acid, and may be considered as fluotitanic acid H₂TiF₆.

# Titanium fluoride with MF. See Fluotitanate, M.

# Titanium tetrafluoride ammonia, TiF₄, 2NH₃.

Sol. in H₂O; decomp. in aq. solution on boiling. (Ruff, B. 1903, **36.** 1781.)

#### Titanium morohydroxide, TiO₂H₂.

Ppt. (Wöhler, A. **73.** 49.) Ti₃O₄H. Not attacked by cold conc. acids; sl. attacked on warming. Insol. in cold or hot KOH+Aq. (Winkler, B. 1890, 23. 2659.)

# Titanium sequihydroxide, $Ti_2O_3$ , $xH_2O$ .

Decomposes very quickly with H₂O, forming titanium dihydroxide.

TiO₃H₃. (Polidori, Z. anorg. 1899, **19.** 306.)

#### Titanium dihydroxide.

See Titanic acid.

### Titanium hydroxychloride, TiCl₃(OH).

Deliquescent. Easily sol. in H₂O and alcohol. Sol. in ether.

 $TiCl_2(OH)_2 + 1\frac{1}{2}H_2O$ . Deliquescent. Sol. in H₂(), alcohol, and ether. Aqueous solution decomp. by boiling.

TiCl(OH)₃+H₂O. Nearly insol, in H₂O. Insol. in alcohol and ether. (König and v. der Pfordten, B. 21. 1708.)

See also Titanium oxychloride.

## Titanium diiodide, TiI₂.

Very hydroscopic; insol. in organic solvents; sol, in conc. HF and boiling HCI; decomp. by

H₂O, alkalies, H₂SO₄ and HNO₈. (Defacqz, C. R. 1908, 147. 66.)

# Titanium triiodide, $TiI_8 + \beta H_2O$ .

Very hydroscopic. (Stähler, B. 1904, 37. 4410.)

# Titanium tetraiodide, Til4.

Fumes on air, and dissolves rapidly in H₂O with evolution of heat. Solution decomposes on standing. (Weber.)

## Titanium nitride, Ti₂N₄.

Difficultly sol. in warm HNO₃+Aq. More

easily sol. in aqua regia. (Rose.)

Insol, in dil. acids. Decomp. by hot cone. H₂SO₄ and by cone. HNO₃, especially when HF is added, and by boiling KOH | Aq. (Ruff and Eisner, B. 1908, 41. 2252.)

Decomp. by H2O and dil. acids.

Insol. in all ordinary indifferent organic solvents. (Ruff, B. 1912, **45.** 1369.)

TiN₂. Insol. in H₂O. (Wöhler.)

Is TiN, according to Guerin (C. R. **82**. 972.)

# Titanium monoxide, TiO.

(Moissan, C. R. 1895, 120. 290.)

### Titanium sesquioxide, Ti₂O₃.

Insol. in HCl or HNO,+Aq. Difficultly sol. in H₂SO₄. (Ebelmen, A. ch. (3) 20. 392.)

When moist, insol. in H₂O or NH₄OH+Aq, but quickly decomp. to TiO2. Sol. in oxygen acids, but quickly decomp. (Berzelius.)

#### Titanium dioxide, $TiO_3$ .

Amorphous. Insol. in H2O, HCl, or dil. H2SO4+Aq, even when heated for a long time.

Sol. in conc. H₂SO₄ by long digestion.

TiO₂, strongly ignited at 1000°, is practically insol. in conc. H₂SO₄ and HF.

When less strongly ignited (by heating ortho or metatitanic acid to 700°) it is easily sol. therein. (Bornemann and Schirrmeister, C. C. 1910, II. 1870.)

Ignited TiO2 is very difficultly sol. in HF (Pennington, J. Am. Chem. Soc. 1896, 18.

The solubility of ignited TiO₂ in H₂SO₄ is helped by H₂O₂. (Weiss and Landecker, Z. anorg. 1909, **64.** 71.)

The solubility in H2SO4 is increased by addition of H2O2. H2O2 brings TiO2 quickly and completely into solution in the presence of NH₄OH, NH₄Cl, NaOH, Na₂CO₃ and Na₂HPO₄. (Weiss and Landecker, Z. anorg. 1909, **64.** 71.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 830.)

Min. Rutile, Brookite, and Crystalline. Anatase. Solubility as above.

See also Titanic acid.

# Titanium oxide, Ti₃O_M

(Deville, C. R. 53. 163.)

True formula is Ti₇O₁₂. (v. der Pfordten, A. 237. 201.)

# litanium peroxide, TiOs.

Sol. in acids. Solution in H2SO4 is very stable, but the HCl solution decomposes very easily. (Weber, B. 15. 2599; Piccini, B. 15. 2221; Classen, B. 21. 370.)

Titanium oxycoloride, TiO₂, TiOCl₂+8H₂O. S.d. in much H₂O. (Merz, Bull. Soc. 1867. 101.)

Ti₂O₂Cl₂. Insol. in H₂O. Sol. in NH₄OH+ Aq with separation of  $TiO_2$ .

See also Titanium hydroxychloride.

# Titanium oxyfluoride.

Insol. in H₂O. (Perzelius.)

# Titanium oxyfluoride with MF.

See Fluoxypertitanate, M.

## Titanium phosphide, i.P.

Sl. sol. in boiling aqua regia.

Insol. in dil. or conc. acids and alkalies. Sl. attacked by fuming HNO₃ in sealed tube at 250°-300°. (Gewecke, A. 1908, **361.** 84.)

#### Titanium phosphochloride.

See Phosphorus titanium chloride.

# Titanium silicide, TiSi₂.

Sol. in HF; insol. in other min. acids. Slowly sol. in 10% KOH+Aq. (Hönigschmid, C. R. 1906, **143**, 226.)

#### Titanium monosulphide, TiS.

Insol, in alkalies. Difficultly sol, in nitric acid and aqua regia.

Insol. in HF. (v. der Pfordten, A. 234.

### Titanium disulphide, TiS₂.

Decomp. slowly on moist air. I HCl or dil. H₂SO₄+Aq. (Ebelmen.) Insol. in

Sol. in aqua regia or HNO₃+Aq. Decomp. by KOH+Aq or NaOH+Aq. Insol. in KSH+Aq. (Rose.)

Sol. in HF at 100°. (v. der Pfordten, A. **234.** 257.)

#### Titanium sesquisulphide, Ti₂S₈.

Insol. in caustic alkalies + Aq. Sol. in HF at a high temp. Insol. in aqua regia. (v. der Pfordten, A. 234. 257.)

# Titanomolybdic acid, TiO₂, 12MoO₂+22H₂O.

Very sol. in H₂O. Sol. in ether. (Pechard, C. R. 1893, 117.

790.)

Ammonium titanomolybdate. " 2(NH₄)₂O, TiO₂, 12MoO₃+10H₂O.

Sol. in H₂O and acids; completely insol. in solutions of ammonium salts. (Pechard.)

Potassium titanomolybdate,  $2K_2O_1 \text{ Ti}O_2$ ,  $12M_0O_3 + 16H_2O_2$ .

Efflorescent. Sol. in H₂O. (Pèchard.)

Titanodecitungstic acid, H₈TiW₁₀O₃₆+

(Lecarme, Bull. Soc. (2) 36. 17.)

Titanotungstic acid or Titanoduodecitungstic acid,  $H_8TiW_{12}O_{42} + xH_2O$ (Lecarme, Bull. Soc. (2) 36. 17.)

Titanous acid.

Sodium titanite,  $Na_3TiO_3 = 3Na_2O$ ,  $Ti_2O_3$ . Sol. in dil. acids. (Koenig and v. der Pfordten, B. 22. 2075.)

Titanyl compounds.

See Titanium oxy-compounds.

Triamine cobaltic compounds. See Dichrocobaltic compounds.

Trithionic acid, H₂S₃O₆.

Known only in aqueous solution.

Solution in H₂O gradually decomposes in the cold, rapidly at 80°. Not decomp. if very dilute or in presence of acids, except HNO₃, HClO₃, and HIO₃. (Fordos and Gélis, A. ch. (3) 28. 451.)

# Trithionates.

The trithionates are all sol. in H2O, and | H2SO4 at high temp very easily decomposed.

Ammonium trithionate, (NH₄)₂S₃O₆.

Very deliquescent and unstable.

Very sol. in H₂O.

Insol. in abs. alcohol. (Divers and Ogawa, Chem. Soc. 1900, 77. 337.)

#### Barium trithionate, $BaS_3O_6+2H_2O$ .

Very sol. in  $H_2O$ . Precipitated from aqueous solution by large excess of alcohol. Aqueous solution is very unstable. (Kessler, Pogg. 74. 250.)

# Lead trithionate, PbS₈O₆.

Very sl. sol. in H₂O. Sol. in Na₂S₂O₃+Aq. (Fogh, C. R. 110, 524.)

# Potassium trithionate, K₂S₈O₆.

Sol. in H₂O. Insol. in alcohol. (Kessler, Pogg. 74. 270.)

Sol. in H2O with decomp.

Insol. in alcohol. (Langlois, A. 1841, 40. 102.)

Sodium trithionate, Na₂S₈O₆.

Very sol. in H₂O.

+3H₂O. (Villiers, C. R. 106. 1356.)

Thallous trithionate, Tl₂S₃O₆,

Sol. in H₂(). (Bevan, C. N. 38. 294.)

#### Zinc trithionate.

Sol. in H₂O, but decomposes upon warming the solution. (Fordos and Gélis, C. R. 16. 1070.)

# Tungsten, W.

Metallic. Not attacked by heating with fuming HNO3, aqua regia, or other acids, or by boiling KOH + Aq. Sol. in KOH + Aq and NaClO+Aq. (v. Uslar, A. 94. 255.)

Not easily acted upon by moist air, if no CO₂ present. Sol. in a mixture of HF and

HNO₃. Very slowly sol. in H₂SO₄, HCl and HF. (Moissan, C. R. 1896, **123**. 15.)

Very slowly attacked by HNO₃, H₂SO₄, HCl and even CrO₃. A mixture of CrO₃ and H₂SO₄ dissolved 1.67 g. in 16 hrs. from a fine wire and 1.36 g. in 14 hours. (Fink, Met. Chem. Eng. 1910, **8.** 341.)

Compact tungsten is not attacked by dil., and only sl. dissolved by conc. H₂SO₄. Not attacked by dil. or conc. HCl. HNO3 and HNO₃+HČl attack slowly by long heating, forming thin layer of WO3. Slowly so'. in HNO₃+HF. (Weiss, Z. anorg. 1910, **65.** 339.)

Aluminothermic tungsten is insol. acids and in aqua regia. Sol. in fused KOH. (Stavenhagen, B. 1899, 32. 1515.)

Insol. in HCl of any concentration at room temp. and only very sl. sol. at 110°. After being in contact with hot conc. HCl (sp. gr.

1.15) for 175 hrs. the metal lost 0.5% of its weight. Sl. sol. in dil. HCl at 110°.

Insol. in conc. H₂SO₄ at room temp. and in dil. H₂SO₄ at 110°. Somewhat sol. in conc.

Insol. in conc. HNO₃, and hot or cold HF. Sl. sol. in aqua regia

Very sol. in HF+HNO₃. (Ruder, J. Am. Chem. Soc. 1912, **34.** 387.)

Insol. in aqua regia and acids; sol. in fused KOH. (Stavenhagen, B. 1899, 32. 1514.)

Insol. in KOH+Aq. Sol. in fused KOH.

Slowly sol. in fused Na₂CO₃, K₂CO₃ or mixture of the two.

Somewhat sol. in NaOCl+Aq. (Ruder, J. Am. Chem. Soc. 1912, 34. 388.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, 20. 839.)

Crystalline. Insol. in H₂O, HCl, or H₂SO₄. Oxidised by HNO₃ or aqua regia. (D'Elhujar.)

Sol. in boiling KOH+Aq. (Riche, A. ch. (3) **50.** 5.)

Amorphous. Easily oxidised by HNO₃+ Aq. (Zettnow.)

# Tungsten amide.

See Tungsten nitride.

# Tungsten arsenide, WAS2.

Insol. in H₂O and other solvents. Not attacked by boiling HF or HNO₃. Sol. in cold HF+HNO₃ and in hot aqua regia. Not attacked by hot KOH+Aq or NaOH+Aq. Decomp. by fused KOH or NaOH. (Defacqz, C. E. 1901, **132**, 139.)

### Tungsten boride, WB2.

Slowly attacked by conc. acids; vigorously attacked by aqua regia. (Tucker and Moody, Chem. Soc. 1902, **81**, 16.)

# Tungsten dibromide, WBr₂.

Partly sol. in H₂O, the rest decomposing to WO₂ and HBr.

### Tungsten pentabromide, Wlsr.

Decomp. by moist air or H₂O. Sol in caustic alkalies+Aq.

Very hydroscopic. Fumes in the air.

Decomp. by H₂O.

Sol. in HF, or conc. HCl. Sl. sol. in fuming HBr. Decomp. by dil. HCl, conc. HNO₃ or dil. H₂SO₄. Readily attacked by fused alkalies or alkalies +Aq. Sol. in CCl₄, CHCl₃, CHBr₃, abs. alcohol, ether, essence of terebenthine and benzene. (Defacqz, C. R. 1899, **128.** 1232.)

# Tungsten hexabromide, WBr₆.

Decomp. by H₂O and in the air. Sol. in NH₄OH+Aq. (Smith, J. Am. Chem. Soc. 1897, **18.** 1100.)

# Tungsten bromochloride, WCl6, WBr6.

Decomp. by  $H_2O$ . Sol. in HF. Decomp. by  $HNO_3$  or  $H_2SO_4$ . Violently attacked by fused alkali or alkali  $+\Lambda q$ . Sol. in most organic solvents.

WCl₅, 3WBr₆. Properties like those of WCl₅, WBr₆. (Defacqz, C. R. 1899, **129**, 516.) Decomp. by H₂O. Sol. in 40% HF+Aq. 22° B. HCl +Aq gives a sl. ppt. of WO₃. Decomp. by HNO₃ and by H₂SO₄. Sol. in abs. alcohol, ether, CS₂, C₆H₆ and glycerine. Sol. in CCl₄ only on warming. Nearly insol. in oil of turpentine. (Defacqz.)

### Tungsten bronze.

See-

Tungstate tungsten oxide, barium.
Tungstate tungsten oxide, barium potas-

Tungstate tungsten oxide, barium sodium. Tungstate tungsten oxide, calcium potas-

sium.
Tungstate tungsten oxide, calcium sodium.

Tungstate tungsten oxide, lithium.
Tungstate tungsten oxide, lithium potas-

Tungstate tungsten oxide, potassium.
Tungstate tungsten oxide, potassium sodium.

Tungstate tungsten oxide, potassium strontium.

Tungstate tungsten oxide, sodium.

Tungstate tungsten oxide, sodium strontium.

# Tungsten carbide, W2C.

Sot. in boiling HNO₈; very slowly acted upon by other adds. (Moissan, C. R. 1896, **123**, 16.)

WC. Insol. in dil. acids; only sl. sol. in H₂SO₄ and co.... HNO₃; nol. in fused KClO₃ and FNO₃. (Williams, C. R. 198, **126**, 1724.)

### Tungsten dichloride, WCl₂.

Decomp. on the zir or with H2O. (Roscoe.)

### Tungsten tetrachloride, WCl4.

Deliquescent. Partly sol. in  $H_2O$ , with subsequent decomposition. (Roscoe.)

# Tungsten pentachloride, WCls.

Very deliquescent. Decomp. with  $H_2O$  with hissing and evolution of heat and separation of  $W_2O_b$ .

Very sl. sol. in  $CS_2$ . (Roscoe.)

### Tungsten hexachloride, WCl6.

Not decomp. by moist air or  $H_2O$ . Decomp. by alcohol. Very sol. in  $CS_2$ . (Roscoe.)

Easily sol. in POCl₃. (Teclu, A. 187. 255.)

# Tungsten chloride nitrogen sulphide, WCl₄, N₄S₄.

(Davis, Chem. Soc. 1906, 89. (2) 1575.)

### Tungsten chloroarsenide, W2AsCl9.

Hydroscopic; decomp. by H₂O and acids; sol. in aq. solution of alkalies; insol. in anhydrous organic solvents. (Defacqz, C. R. 1901, **132**, 139.)

#### Tungsten chlorosulphide, W₂S₇Cl₈.

Decomp. by H₂O.

Sol. in  $S_2Cl_2$ . (Smith and Oberholtzer, Z. anorg. 1894, **5**. 68.)

WCl., 3WS₆. Decomp. by H₂O. Insol. in CS₂, alcohol and C₆H₆. (Defacqz, A. ch. 1901, (7) **22**. 266.)

#### Tungsten hexafluoride, WF6.

Fumes in the air.

Decomp. by  $H_2O$ . Easily sol. in aq. alkalies. (Ruff, B. 1905, **38.** 747.)

# Tungsten diiodide, WI2.

Not decomp. by  $H_2O$ . (Roscoe, A. 162. 366.)

Insol. in H₂O, CS, and alcohol. Decomp. by boiling H₂O, HNO₃, H₂SO₄ and aquaregia; sol. in fused KOH, and alkali carbonates. (Defacqz, C. R. 1898, **126.** 936.)

# Tungsten tetraiodide, WI4.

Insol. in H₂O, ether, chloroform and tur-pentine; sol. in abs. alcohol; decomp. when boiled with H₂O; sol. with decomp. in dil. HCl and H2SO4, in HNO3 and aqua regia, and in alkali hydroxides and carbonates fused or in aq. solution. (Defacqz, C. R. 1898, 127. 511.)

### Tritungsten nitride, W₃N₂.

(Uhrlaub.)

W₂N₃. Insol. in HNO₃, dil. H₂SO₄ and NaOH+Aq. (Rideal, Chem. Soc. 1889, 55.

# Tungsten nitride amide, $W_aN_6H_4 = 2WN_2$ . $W(NH_2)_2$ .

Not attacked by acids or caustic alkalies+ Aq. (Wöhler, A. 73. 191.)

# Tungsten nitride amide oxide, $W_7N_8H_4O_4 =$ 3WN₂, W₂(NH₂)₂, 2WO₃.

Not attacked by acids or alkalies. (Wöhler.)

# Tungsten monoxide, WO.

Insol. in H₂O. Not attacked by HCl. HF, H₂SO₄, or KOH+Aq. HNO₃+Aq or aqua regia convert it into WO₃. (Headden, Sill. Am. J. 145. 280.)

# Tungsten dioxide, $WO_2$ .

(a) When prepared in the dry way, is attacked only by aqua regia, which oxidises to WO₃.

(b) When moist, is sol. in HCl or H₂SO₄+ Aq, also in KOH+Aq. Insol. in NH₄OH+Aq. (Riche, A. ch. (3) **50.** 5.)

Cryst. Insol. in HCl, H2SO4 and conc. aq alkalies; sol. in HNO₃. (Hallopeau, C. R. **1898**, **127**, 135.)

#### Tungsten oxide, blue.

W₂O₅ (Riche, A. ch. (3) **50.** 33); W₃O₈ (v. Uslar); W₄O₁₁ (Gmelin).

All are probably the same substance. Not attacked by boiling HNO3 or aqua regia. Slowly sol. in boiling KOH+Aq.

# Tungsten trioxide, WO.

Insol. in H₂O or acids. Sl. sol. in dil. KOH +Aq, NaOH+Aq, Na₂CO₃+Aq, or H₂CO₃+ Aq, but easily sol. in conc. boiling solutions of same. NH₄OH+Aq when boiling has a solvent action.

Insol. in conc. and dil. H₂SO₄. (Desi, J. Am. Chem. Soc. 1897, **19**. 214.)

Min. Tungstite. Insol. in acids. Sol. in NH₄OH+Aq.

# Tungsten oxide, W₂O₃.

Sol. in alkalies. (Desi, J. Am. Chem. Soc. 1897, **19.** 214.)

W₂O₈. Insol. in acids and alkalies. (Desi, J. Am. Chem. Soc. 1897, 19. 228.)

+H₂O. Like W₅O₁₄+H₂O. (Allen and Gottschalk, Am. Ch. J. 1902, 27. 336.)

W₄O₈. (Desi, J. Am. Chem. Soc. 1897, 19. 219.)

W₅O₉. (Desi.)

 $W_{5}\tilde{O}_{14}+\tilde{H}_{2}\tilde{O}.$  Insol. in  $H_{2}O$  containing a little HCl.

Slowly attacked by cold, conc. MOH+Aq. (Allen and Gottschalk, Am. Ch. J. 1902, 27. 333.)

# Tungsten trioxide ammonia, WO₂, 3NH₂.

(Rosenheim and Jacobsohn, Z. anorg. 1906, **50.** 306.)

# Tungsten oxybromide, etc.

See Tungstyl bromide, etc.

# Tungsten monophosphide, WP.

Not attacked by HF or HCl.

Sol. in warm HNO₈+HF. Slowly attached by hot HNO₃.

Not attacked by KOH+Aq or NaOH+Aq. (Defacqz, C. R. 1901, 132. 34.)

### Tungsten diphosphide, WP₂.

Insol. in H2O and in most organic solvents; insol. in HCl and HF; sol. in a mixture of HF and HNO3 in the cold, and in aqua regia on warming. (Defacqz, C. R. 1900, 130. 916.)

#### Tungsten phosphide, W₄P₂.

Not attacked by any acid, not even by aqua regia. (Wöhler and Wright, A. 79. 244.) W₃P₄. (Wöhler and Wright.)

# Tungsten diselenide, WSe2.

(Uelsmann.)

### Tungsten triselenide, WSe₃.

Easily sol, in alkali sulphides or selenides +Aq. (Uelsmann, Jahrb, f. Ch. 1860, 92.)

### Tungsten silicide.

Sol. in HF.

Only very sl. sol. in other acids. (Warren,

C. N. 1898, **78.** 319.)

WSi₂. Not attacked by ordinary acids and scarcely by warm aqua regia, but violently attacked by HNO₈+HF. Sl. attacked by 10% alkalies+Aq. (Hönigschmid, M. 1907, **28.** 1017.)

Not attacked by dil. or conc. HCl, HF, HNO₃ or H₂SO₄, nor by not aqua regia.

Attacked by HNO₃+HF or by fused

alkalies. (Defacqz, C. R. 1907, 144. 850.)

WSi. Violently attacked by HNO₈+HF. Not attacked by HNO₃, H₂SO₄, HCl or HF. (Frilley, Rev. Mét. 1911, **8.** 509.)

W₂Si₃. Insol. in acids including HF; sol. in a mixture of HF and HNO; sol. in fused alkali hydroxides and carbonates. (Vigouroux, C. R. 1898, 127, 394.)

# Tungsten disulphide, WS2.

Oxidised by HNO₃+Aq. (Berzelius.) Insol. in min. acids.

Sol. in a mixture of HF and HNO3 and in fused alkalies and alkali carbonates. facqz, C. R. 1899, 128. 611.)

# Tungsten trisulphide, WS₃.

Somewhat sol. in cold, abundantly in hot H₂O, but separated out by the addition of salts, especially NH.Cl, or acids. Sol. in alkali sulphides, and hydrosulphides+Aq. Sol in caustic alkalies, and alkali carbonates +Aq. Slowly sol. in NH4OH+Aq in the cold.

# Tungstic acid, H₂WO₄.

Insol. in H₂O. Sol. in HF Insol. in turgstates + Aq.

44.7% H₂WO₄ is sol. in 50% HF+A₉ at

55.3% H₂WO₄ is sel. in 50% HF +Aq at 50°

100 g. sat. H₂WO₄+HCl+Aq contain 0.68 g. H₂WO₄ at 80°.
9.8 % H₂WO₄ is sol. in sat. r!coholic HCl at 75°.

Insol. in alcoholic solutions of HBr and HI. (Rosenheim, Chem. Soc. 1911, 100. (2) 402.) Freshly pptd. tungstic acid dissolves in

H₂O₂. (Kellner, Dissert. 1909.) Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 830.)

H4WO5. Precipitate. Sl. sol. in H2O and aqueous solutions of the tungstates. Sol. in 250-300 pts. H₂O. When freshly pptd., sol. in alkali hydrates or carbonates+Aq. (Anthon, J. pr. 9. 6.)

# Metatungstic acid, H₂W₄O₁₈+9H₂O.

Sol. in H₂O. Solution may be boiled and evaporated to a syrupy consistency, when it suddenly gelatinises and ordinary tungstic acid is precipitated.

Sol. in H₂O. When heated to 50°, it becomes insol. in H2O. (Soboleff, Z. anorg. 1896, 12. 28.)

#### Solubility in H₂O at t°.

t°	100 ccm. H ₂ O dis- solve g. of the cryst. acid	Sp. gr. of the solution
$0 \\ 22 \\ 43.5$	41.46 88.57 111.87	1.6025 2.5239 3.6503

(Soboleff.)

Sp. gr. of solution of metatungstic acid at 17.5° containing:

43.75% WO₃. 27.61 2.79 1.1275 1.3274 1.6343 1.0257 (Scheibler, J. pr. 83, 273.)

Sp. gr. of aqueous solution calculated by M = Mendelejeff, and G = (Gerlach (Z. anal. 27. 300), containing:

25% WO. 20 M 1.047 1.098 1.153 1.214 1.285 G 1.0469 1.0980 1.1544 1.2172 1.2873

35 40 45 50% WO. 1.581 (?) M 1.366 1.458 1.555 G 1.3660 1.4540 1.5527 1.6630 1.7860

# Solubility in ether at to.

t°	100 cm. ether dissolve g. of the cryst. acid
0	83.456
7.8	88.389
18.2	99.66
24.3	110.76

(Soboleff, Z. anorg. 1896, 12. 32.)

Colloidal. Sol. in H₂O. Not precipitated by acids or alcohol. Can be evaporated to dryness and heated to 200°, and still remains 30l. in  $H_2O$ . Sol. in  $\frac{1}{4}$ pt. of  $H_2O$ .

Sp. gr. of aqueous solution containing:

20 50 79.8% WO. 66.5 1.0475 1.2168 1.8001 2.596 3.243 (Graham, Chem. Soc. 17. 318.)

Perhaps paratungstic acid, H₁₀W₁₂O₄₁. (Klein, Bull. Soc. (2) 36. 547.)

### Tungstates.

Few normal tungstates are sol. in H₂O, even some of the K and NH4 salts are very sl. sol. Most of the metatungstates, however, are easily sol. in H₂O.

Tungstates insol. in H₂O are usually insol. in dil. acids.

Aluminum tungstate, Al₂(WO₄)₁+8H₂O.
Precipitate. Insol. in H₂O and Na₂WO₄+
Aq. Sol. in (NH₄)₂Al₂(SO₄)₄+Aq, NaOH+
Aq. NH₄OH+Aq.  $\mathbf{and}$ 

Easily sol. in H₃PO₄, H₂C₂O₄, H₂C₄H₄O₆+Aq. (Lotz, A. **83**. 65.) Sol. in 1500 pts. H₂O at 15°. (Lefort, C. R.

87. 748.)

Al₂O₃, 4WO₃+9H₂O. Sol. in 400 pts. H₂O at 15° (Lefort, C. R. 87. 748.)  $Al_2O_3$ ,  $5WO_3+6H_2O$ . Sol. in  $H_2O$ , from

which it is pptd. by alcohol. (Lefort.) Formula according to Lefort is Al₂O₈, 3WO₈

+3H₂O, 2WO₃.

See also Aluminicotungstic acid.

Aluminum paratungstate, 5Al₂O₃, 36WO₃+  $46H_2O = Al_2O_3$ ,  $7WO_3 + 9H_2O$  (?).

Easily sol. in an alum solution. (Lotz, A. 83. 65.)

Aluminum ammonium tungstate, 3(NH4)2O,  $Al_2O_2$ ,  $9WO_2+4H_2O$ .

Sol. in conc. HNO₈ and in conc. HCl. (Balke and Smith, J. Am. Chem. Soc. 1903, **25.** 1230.)

Atuminum ammonium antimony tungstate.

See Aluminicoantimoniotungstate, ammonium.

Aluminum antimony tungstate.

See Aluminicoantimoniotungstic acid.

Aluminum zinc tungstate, Al₂O₃, ZnO, 9WO₃ +20H₂O.

Very sol. in H₂O. (Daniels, J. Am. Chem. Soc. 1908, **30.** 1850.)

 $2Al_2O_8$ , 3ZnO,  $18WO_8+16H_2O$ . Sol. in much  $H_2O$ .

Sol. in very dil. mineral acids or in acetic acid. (Daniels.)

### Ammonium tungstate, (NH₄)₂WO₄.

Known only in solution.

(NH₄)₄W₃O₁₁+3H₂O = 2(NH₄)₂O, 3WO₃+3H₂O. Sol. in H₂O with decomp. Decomp. on air with evolution of NH₃, and formation of paratungstate. Sol. in NH₄OH+Aq. (Marignac, A. ch. (3) **69.** 23.)

 $(NH_4)_4W_5O_{17} + 5H_2O = 2(NH_4)_2O$ ,  $5WO_3 + 5H_2O$ . Sol. at ordinary temp. in 26-29 pts.  $H_2O$  with partial decomposition. (Marignac.)  $+2\frac{1}{2}H_2O$ ,  $+3H_2O$ ,  $+4H_2O$ ,  $+4\frac{1}{2}H_2O$ , and  $+5H_2O$ . (Pinagel, Dissert, **1904**.)

 $(N\dot{H}_4)_6\dot{W}_3O_{27} + 8\dot{H}_2O = 3(N\dot{H}_4)_2O, 8\dot{W}O_3 + 8\dot{H}_2O.$  Sol. in  $\dot{H}_2O$ . (Marignac.)

Colloidal. (NH₄)₂O, 6WO₃+4 or 6H₂O. Miscible with water in nearly all proportions. (Taylor, J. Am. Chem. Soc. 1902, **24**. 632.)

### Ammonium metatungstate, (NH₄)₂W₄O₁₈.

+6H₂O. (Marignac, A. ch. (4) **3.** 74.) +8H₂O. Efflorescent. Very sol. in H₂O. 1 pt. dissolves at 15° in 0.84 pt. H₂O. (Lotz.) 1 pt. dissolves at ordinary temp. in 0.35 pt. H₂O. (Riche.)

Solubility increases rapidly with the tem-

perature.

'Saturated solution at 40° is solid on cooling. Sl. sol. in ordinary, insol. in absolute alcohol. (Lotz.) Insol. in ether. (Riche.) [(NH₄)₂W₃O₁₀+5H₂O of Margueritte.]

 $\{(NH_4)_2W_{3O_{10}}+5H_2O \text{ of Margueritte.}\}$   $\{(NH_4)_6W_{16}O_{51}+17H_2O=3(NH_4)_2O, 16WO_3$   $+17H_2O.$  Very efflorescent. Decomp. by dissolving in pure  $H_2O.$  (Marignac, A. ch. (4) **3.** 75.)

# Ammonium paratungstate, $(NH_4)_{10}W_{12}O_{41} = 5(NH_4)_{2}O$ , $12WO_2$ .

(Marignac, A. ch. (3) 69. 25.)

According to Lotz (A. 91. 49) and Scheibler (J. pr. 80. 208), formula is  $(NH_4)_6W_7O_{24} = 3(NH_4)_2O$ ,  $7WO_8$ .

+5H₂O. (Scheibler, J. pr. **48.** 232.)

 $+11\ddot{H}_2O$ . Sol. in 25-28 pts. cold  $H_2O$ . (Anthon.)

Sol. in 26.1 pts.  $H_2O$  at 10.7°, and 5.8 pts. at 100°. (Lotz.)

Sol. in 33.3 pts. cold H₂O, and 9.6 pts at 100°. (Riche.)

Sol. in 22-38 pts. H₂O at 15-18°. The solution gradually decomposes, with the formation of a more soluble salt. (Marignac.) Not much more sol. in NH₄OH+Aq than in H₂O. Insol. in alcohol. (Anthon.) Sol. in H₂O₂. (Kellner, Dissert, 1909.)

Ammonium bismuth tungstate.

See Bismuthicotungstate, ammonium.

Ammonium cadmium paratungstate, 3(NH₄)₂O, 12CdO, 35WO₃+35H₂O. Ppt. Sol. in H₂O acidmated with HNO₃. (Lotz, A. **91**. 49.)

Ammonium cerium tungstate.

Sce Cericotungstate, ammonium.

Ammonium cobaltous tungstate, 8(NH₄)₂O, 2CoO, 15WO₃+3H₂O. (Carnot, C. R. **109.** 147.)

Ammonium hydroxylamine tungstate, NH₄OWO₄NH₄.

Sol. in H₂O. (Hofmann, Z. anorg. 1898, **16.** 465.)

Ammonium iron (ferric) tungstate, 5(NH₄)₂O, Fe₂O₃, 5WO₃+5H₂O. Sol. in H₂O. (Borck.)

Ammonium lanthanum tungstate.

See Lanthanicotungstate, ammonium.

Ammonium magnesium prratungstate, 2(NH₄)₂O, 3MgO, 12WO₃+24H₂O.

Very slightly sol. in H₂O. (Marignac, A. ch. (3) **69.** 58.)

 $(N\dot{H}_4)_2O,~2\dot{M}gO,~7WO_3+10H_2O.~Very~sl.~sol.~in~H_2O~;~sol.~in~H_2O~acidulated~with~HNO_3.~(Lotz.)$ 

Ammonium mercuric tungstate,  $(NH_4)_2WO_4$ ,  $HgWO_4+H_2O$ .

Insol. in  $H_2O$ . Decomp. by acids or alkalies. (Anthon.)

Ammonium neodymium tungstate.

See Neodymicotungstate, ammonium.

Ammonium nickel tungstate.

See Nickelicotungstate, ammonium.

Ammonium potassium paratungstate, 5K(NH₄)O, 12WO₈+11H₂O.

Sol. in boiling  $H_2O$ ; sl. sol. in cold  $H_2O$ . (Hallopeau, C. R. 1896, **123**. 180.)

Ammonium potassium sodium paratungstate, 5(K, Na, NH₄)₂O, 12WO₃+13H₂O, where K: Na: NH₄=3:3:4.

 $10(K, Na, NH_4)_2O, 24WO_3+26H_2O, where K: Na: NH_4=3:3:14. (Laurent.)$ 

Ammonium sodium  $paratungstate, 4(NH_4)_2O$ , Na₂O, 12WO₃+5H₂O.

Can be crystallised from H₂O without (Lotz, A. 91. 57.) decomp.

+14H₂O. Sol. in warm H₂O. (Hallopean, C. R. 1896, **123**. 181.)

 $(NH_4)_2O$ ,  $4Na_2O$ ,  $12WO_8 + 25H_2O$ , Sl. sol. in H₂O. (Hallopeau, C. R. 1895, **120**, 1544.) 5Na₂O, 15(NH₄)₂O, 48WO₈+45H₂O.

(Marignac, A. ch. (3) 69. 53.) 3(NH₄)₂O, 12WO3+15P.2O. 2Na₂(),

(Marignac.)

 $3(NH_4)_2O$ ,  $2Na_4O$ ,  $12WO_3+15H_4O$ .  $3(NH_4)_2O$ ,  $3Na_2O$ ,  $16WO_3+22H_2O$ . Sol. in H₂() without decomp. Hallopeau, C. R. 1896, 123. 181.)

4(NH₄)₂O, 16WO3+18H2O. 3Na₂O, (Gibbs, Am. Ch. J. 7. 236.) Is 2Na₂O, 3(NH₄)₂O, 12WO₃+13H₂O, ac

cording to Knorre (B. 19, 823).

Very sol. in hot H₂O. (Knorre, B. 1886, **19.** 823.)

 $(NH_4)_2O_1$ ,  $3Na_2O_1$ ,  $16WO_3 + 38H_2O_2$ , (Wvrouboff, Bull. Soc. Min. 1892, 15. 85.)

 $6(NH_4)_2O$ ,  $2Na_2O$ ,  $20WO_3 + 24H_2O$ . Can be cryst from boiling H₂O (Baragiola, Dissert, **1902.**)

 $4Na_2O$ ,  $16(NH_4)_2O$ ,  $50WO_3+59H_2O$ . Sl. sel, in cold H₂O. (Gibbs, Proc. Am. Acad

Ammonium zinc paratungstate,  $(NH_4)_2O$ , 2Zn(),  $7W()_3+13H_2()$ .

Sl. sol. in boiling H₂(), but more easily on addition of oxalic, tartaric, phosphoric, or dil. nitric acids, or of ammonium tungstate. (Lotz, A. **91.** 49.)

Ammonium zirconium tungstate. See Zirconotungstate, ammonium.

Ammonium metatungstate nitrate. See Nitrate metatungstate, ammonium.

Ammonium tungstate vanadate. See Vanadiotungstate, ammonium.

Antimony tungstate, Sb₂O₃, 5WO₃+4H₂O. Sol, in H₂O without decomp. (Lefort.) Sb₂O₃, 6WO₃+8H₂O. Ppt. See also Antimoniotungstic acid.

# Barium tungstate, BaWO4.

Anhydrous. Insol. in H₂O. Decomp. by boiling HNO3+Aq. (Geuther and Forsberg, A. 120. 270.)

+½H₂O. Insol. in H₂O or boiling H₃PO₄+ Aq. Sol. in boiling, less sol. in cold H₂C₂O₄+ (Anthon.)

+2½H₂O. Insol. precipitate. (Scheibler.)
Pptd. BaWO₄ is attacked by dil. acids.
More sol. in NH₄NO₅+Aq than in H₂O. (Smith and Bradbury, B. 24. 2930.)

# Barium ditungstate, BaW2O7+H2O (?).

Nearly insol. in H2O. 100 ccm. H2O dissolve about 0.05 g. at 15°. (Lefort, A. ch. (5) **15.** 325.)

# Barium iritungstate BaW₂O₁₀+4H₂O (?).

Sol. n about 300 pts. H₂O at 15°. Decomp. by boiling H₂O into an insol. sult. (Lefort, C. R. 88. 798.) +6H₂O. (Scheibler.)

# Barium relatungutate, BaW4O18+9H4O.

Efforescent. Quite sol. in hot H₂O. Partly decomp. by cold H₂O into BaW₃O₁₀ and  $WO_3$ , which recombine on heating. (Scheibler, J. pr. 80. 204.)

# Barium tungstate, BaW₈O₂₅+8H₂O.

Insol in H₂O or HCl+Aq. (Zettnow.) BaW Doll Barium bronze. (Hallopeau. A. ch. 1900, (7) 19. 121.)

# Barium paratungstate, Ba₅W₁₂O₄₁+14H₂O, or Ba₈W₇O₂₄+8H₂O

lnsol. in cold H2O; when freshly pptd. is sl. sol. in HNO₃+Aq. (Lotz, A. Sol. in NH₄Cl+Aq. (Wackenroder.) (Lotz, A. 91. 60.)  $+27 H_2 O = Ba_3 W_7 O_{24} + 16 H_2 O$ . Insol. in cold, sl. sol. in hot  $H_2 O$ . (Knorre, B. **18.** 327.)

# Barium potassium tungstate tungsten oxide, BaW4O12, 5K2W4O12.

(Engels, Z. anorg. 1903, **37.** 136.)

### Barium silver metatungstate.

(Scheibler.)

Barium sodium paratungstate, 2BaO, 3Na₂O, 12  $W()_8+24H_2()$ . (Marignac), or BaO, 2Na₂O, 7WC₃+14H₂O (Scheibler). Insol. in H₂O.

# Barium sodium tungstate tungsten oxide, 2BaW4O12, 3Na2W5O15.

 $BaW_4O_{12}$ ,  $5Na_2W_3O_9$ . (Engels, Z. anorg. 1903. **37.** 131.)

# Bismuth tungstate, Bi₂O₃, 6WO₃+8H₂O.

Very sol. in H₂O with decomp. Pptd. by alcohol from aqueous solution. (Lefort, C. R. **87.** 748.)

# Cadmium tungstate, CdWO4.

Anhydrous.

Sol. in about 2000 pts. H₂O. +H₂O.

(Lefort.)

+2H₂O. Insol. in H₂O. Sol. in hot phosphoric or oxalic acids, or in NH₄OH+Aq. (Anthon, J. pr. 9. 341.)

Sol. in KCN+Aq. (Smith and Bradbury, B. **24.** 2390.)

Cadmium ditungstate, CdW₂O₇+3H₂O (?). Sol. in about 500 pts. H₂O at 15°. (Lefort, A. ch. (5) 15. 346.)

Cadmium tritungstate, CdW₈O₁₀+4H₂O (?). (Lefort.)

Cadmium metatungstate, CdO, 4WO₂+ 10H₂O.

Not efflorescent. (Scheibler, J. pr. 83. 273.) Somewhat less sol. in H₂O than the Mn salt. (Wyrouboff, Bull. Soc. Min. 1892, 15. 84.)

Cadmium paratungstate, Cd₈W₇O₂₄+16H₂O.

Ppt. (Gonzalez.) Insol. in H₂O. Sol. in NH₄OH+Aq, and hot H₃PO₄, H₂C₂O₄, or HC₂H₃O₂+Aq.

Cadmium sodium paratungstate, 2CdO, Na₂O.  $7WO_3 + 18H_2O$ .

Difficultly sol. in cold H₂O. (Knorre, B. **19.** 824.)

#### Calcium tungstate, CaWO4.

Insol. in H2O or dil. acids. Sol. in about 500 pts. H₂O. (Lefort.)

Decomp. by KOH+Aq. (Anthon.) When freshly pptd., sol. in NH₄Cl+Aq. (Wackenroder.)

Sol. in Mg, and NH₄ salts, also Na₂WO₄ +Aq. (Sonstadt, C. N. 11. 97.) Min. Scheelite. Decomp. by HCl or HNO₃

+Aq, with separation of WO3.

Calcium ditungstate, CaW₂O₇+3H₂O (?). Sol. in 30 pts. H₂O at 15°. (Lefort, A. ch. (5) **15.** 328.)

Calcium tritungstate, CaW₃O₁₀+6H₂O (?). Sol. in cold H₂O. (Lefort.)

Calcium metatungstate, CaW₄O₁₈+10H₂O. Easily sol. in H₂O. (Scheibler.)

Calcium paratungstate, Ca₂W₇O₂₄+18H₂O (or  $Ca_5W_{12}O_{41}+30H_2O$ ).

Much more sol. than Sr or Ba salt. (Knorre B. 18. 328.)

Easily sol. in H₂O₂. (Knorre, B. 1885, **18.** 326.)

Calcium potassium tungstate tungsten oxide,  $CaW_4O_{12}$ ,  $5K_2W_4O_{12}$ .

(Engels, Z. anorg. 1903, 37.149.)

Calcium sodium paratungstate, 2CaO, 3Na₂O,  $12WO_3 + 3H_2O$ .

(Gonzalez, J. pr. (2) **36.** 44.)

Calcium sodium tungstate tungsten oxide. CaW4O12, 5Na2W5O15.

Engels, Z. anorg. 1903, 37. 145.)

Cerium tungstate,  $Ce_2(WO_4)_2 + H_2O$ .

Precipitate. (Cossa and Zecchino, Gazz. ch. it. 10. 225.)

Cerium metatungstate, Ce₂O₅,  $12WO_2+$ 30H2O.

Sol. in H₂O. Permanent. (Scheibler.)

Cerium sodium tungstate, Ce₂Na₈(WO₄)₇.

Insol. in H₂O. Slowly sol. in dil. acids, easily in HCl+Aq. (Högbom, Bull. Soc. (2) **42.** 2.)

Ce₂(WO₄)₃, 3Na₂WO₄. Didier, C. R. **102**. 823.)

Cerium tungstate chloride,  $3\text{Ce}_2(\text{WO}_4)_2$ 2CeCl₃. (Didier, C. R. 102. 823.)

Chromic tungstate, basic, Cr₂O₃, 2WO₃+ 5H₂O.

Sol. in 400 pts. H₂O at 15°. (Lefort, C. R. **87.** 748.)

Chromic tungstate, Cr₂(WO₄)₂+7, and 13H₂O.

Sol. in CrCl₃+Aq, and in phosphoric, oxalic, or tartaric acids  $+\mathrm{Aq.}$  (Lotz.)  $+3\mathrm{H}_2\mathrm{O.}$  (Lefort, C. R. **87.** 748.)  $\mathrm{Cr}_2\mathrm{O}_3$ ,  $4\mathrm{WO}_3+6\mathrm{H}_2\mathrm{O.}$  Sol. in about 50 pts.

H₂O at 15°. (Lefort.)

Cr₂O₃, 5WO₃. Not attacked by aqua regia. (Smith and Oberholtzer, Z. anorg. 5. 63.)

Chromic paratungstate,  $Cr_2W_7O_{24}+9H_2O$ .

Insol. in  $H_2O$  or  $NH_4$  paratungstate +Aq: sol. in  $CrCl_3 + Aq$ . (Lotz.)

### Cobaltous tungstate, CoWO₄.

Anhydrous. Insol. in H2O and acids. +2H₂(). Insol. in H₂O and cold HNO₃+Aq. Sl. sol. in H₂C₂O₄+Aq. Completely sol. in warm H₃PO₄, HC₂H₃O₂, or NH₄OH+Aq. (Anthon, J. pr. 9. 344.) Sol. in about 500 pts. H₂O. (Lefort.)

Cobaltous ditungstate,  $CoW_2O_7$  (?).

+3H₂O. Insol. in H₂O. Sl. sol. in H₂C₂O₄+Aq. Completely sol. in H HC₂H₃O₂, or NH₄OH+Aq. (Anthon.) Completely sol. in H₃FO₄, +5H₂O. Sol. in about 100 pts. H₂O. (Lefort.) +8H₂O(?). (Lefort.)

Cobaltous tritungstate, CoW₂O₁₀+4H₂O (?). Sol. in H₂O. (Lefort, C. R. 88. 798.)

Cobaltous metatungstate, CoW₄O₁₂+9H₂O. Sol. in H₂O. (Scheibler, J. pr. 83. 317.)

Cobaltous paratungstate, Co₂W₇O₂₄+25H₂O_. (Gonzalez, J. pr. (2) 36. 44.)

Cobaltous sodium paratungstate. 3Na₂O, 12WO₂+30H₂O.

(Gonzalez.)

Cupric tungstate, CuWO4.

 $+2H_2O$ . Insol. in  $H_2O$ . Soi. in  $H_3i^2O_{4i}$ ! HC₂H₃O₂, or NH₄OH+Aq. Insol. in H₂C₂O₄ +Aq. (Anthon.) 100 ccm H₂O at 15° dissolve 0.1 g. (Lefort.)

Cupric ditungstate, CuW₂O₇ (?).

+4H₂O. Insol. in H₂O and HNO₃. Sol. in NH4()H+Aq. (Anthon, J. pr. 9. 346)  $+5\mathrm{H}_2\mathrm{O}$ . Sol. in about 300 pts.  $\mathrm{H}_2\mathrm{O}$  (Lefort.)

Cupric metatungstate, CuW₄O₁₃+11H₂O. Sol. in H₂O. (Scheibler.)

Cupric paratungstate, Cu₃W₇O₂₄+19H₂O. Insol. in H₂O. (Knorre, B. 19. 826.)

Cuprocupric tungstate, Cu₂WO₄, 2CuWO₄. Insol. in H₂O. (Zettnow, Pogg. 130. 255.)

Cupric sodium paratungstate,

 $Cu_8Na_3(W_7O_{24})_2+32H_2O_1$ Ppt. (Knorre, B. 19. 826.) CuO, 4Na₂O, 12WO₃+32H₂O. Ppt. (Gonzalez, J. pr. (2) **36.** 52.)

Cupric tungstate ammonia, CuWO4, 2NH3+ H₂().

(Schiff, A. **123.** 39.)

CuWO₄, 4NH₃. Gives off NH₃ at ord. temp. Sol. in H₂O. Sol. in dil. NH₄OH+ Aq. (Briggs, Chem. Soc. 1904, **85.** 676.) Cu(),  $4WO_3$ ,  $6NH_3+8H_2()$ . Insol. in  $H_2()$ . Nearly insol. in dil. NH4OH+Aq. (Briggs, Chem. Soc. 1904, **85.** 676.)

Didymium tungstate, Di₂(WO₄)₈.

Precipitate. (Frerichs and Smith, A. 191. 355.)

Didymium metatungstate.

Sol. in H₂O. (Scheibler.)

Didymium sodium tungstate, DiNa₃(WO₄)₈. Insol. in H2O. Slowly sol. in dil. acids. Sol. in conc. HCl+Aq. DiNa(WO₄)₂. As above. (Högbom, Bull. Soc. (2) 42. 2.)

Erbium sodium tungstate, Na₆Er₄(WO₄)₉. Insol. in H₂O. (Högbom.)

Glucinum metatungstate.

Very sol. in H₂O.

Indium tungstate, In₂(WO₄)₃+8H₂O. Insol. in H2O. Decomp. by acids. (Renz, Dissert. 1902.)

2CoO, Iron (ferrous) tungstate, FeWO4.

Min. Ferberite, Reinite. +3H₂O. Inso. in H₂O. H₂SO₄, HCl, or HNO₃+Aq. Sol. in cold Decomp. by boiling acids with separation of WOs. Sol. in boiling II₈PO₄+A₆, or warm H₂C₂O₄+A₉. (Anthon, J. pr. 9. 543.) + H₂O. Very unstable. (Lefort, A. ch.

(5) 15. 314.)

Iron (ferrous) dittingstate, FeW2O7 (?).

Insol. in H₂C. Sol. in hot H₃PO₄+Aq or H₂C₃O₄+Aq. Decomp. by dil. HCl+Aq or by hOH+Aq. (Ebelmen, C. R. 17. 1198.) +xH₂'). Very unstable. (Lefort.)

lron (ferrous) tritungstate. FeW8010+ 4H₂O (?).

Ppt. Decomp. by cold, more rapidly by het H.O. (Lefort.)

Iron (ferrous) metatungstate.

Sol. in  $H_2O$ . (Scheibler, J. pr. 83, 315.)

iron (ferric) tungstate, basic, Fe₂O₃, 2WO₃+ 4H₂O.

Sol. in about 50 pts. H₂O. (Lefort.) 2Fe₂O₃, 3WO₃+6H₂O. Sol. in about 300 pts. H₂O at 15°. (Lefort.)

Iron (ferric) tritungstate (?),  $Fe_2O_3$ ,  $4WO_3+4H_2O=Fe_2O_3$ ,  $3WO_3+WO_3$ ,  $4H_2O$  (?). Sol. in H₂O without decomp. (Lefort.)

Iron (ferric) metatungstate.

Sol. in H₂O. (Scheibler, J. pr. **83.** 273.)

Iron (ferrous) manganous tungstate, 7FeWO4, MnWO₄.

(Geuther and Forsberg, A. 120. 277.) 4FeWO₄, MnWO₄. (G. and F.) 3FeWO₄, MnWO₄. Partially sol. in conc. HCl+Aq. (G. and F.) 3FeWO₄, 2MnWO₄. (G. and F.) FeWO₄, MnWO₄. (Zettnow, Pogg. 130.

250.)

FeWO₄, 2MnWO₄. (G. and F.) FeWO₄, 7MnWO₄. (G. and F.) xFeWO₄, yMnWO₄. Min. Wolframite. Sol. in HCl+Aq, and boiling H₃PO₄+Aq.

Lanthanum tungstate, La₂(WO₄)₈. Precipitate.

Lanthanum metatungstate. Sol. in H₂O. (Scheibler.)

Lanthanum silver tungstate.

See Lanthanicotungstate, silver. Lanthanum sodium tungstate, Na₈La₂(WO₄)₇.

Insol. in H₂O. Slowly sol. in dil. acids. Sol. in HCl+Aq. La₄Na₆(WO₄)₉. A Bull. Soc. (2) **42.** 2.) As above. (Högbom,

· v

#### Lead tungstate, PbWO4.

Insol. in H₂O or cold HNO₃+Aq. Sol. in KOH+Aq. Decomp. by hot HNO₃+Aq. (Anthon, J. pr. **9.** 342.)

Sol. in about 4000 pts. H₂O. (Lefort.) Min. Scheelenite, Stolzite. Sol. in KOH+ Aq; decomp. by HNO₃.

Absolutely insol. in NH₄NO₃+Aq. (Smith and Bradbury, B. **24.** 2930.)

Lead ditungstate, PbW₂O₇+2H₂O (?). Sol. in about 80 pts. H₂O at 15°. (Lefort.)

Lead tritungstate, PbW₈O₁₀+2H₂O (?). Ppt. (Lefort.)

Lead metatungstate, PbW₄O₁₈+5H₂O.

Sl. sol. in cold, more in hot H₂O. Sol. in hot HNO₃+Aq. (Scheibler, J. pr. 83. 318.)

#### Lead paratungstate, Pb₈W₇O₂₄.

Insol. in  $H_2O$ , dil.  $HNO_3+Aq$ ,  $(NH_4)_2WO_4$ +Aq, or  $Pb(NO_3)_2+Aq$ . Sol. in NaOH+ Aq or boiling  $H_3PO_4+Aq$ . (Lotz, A. **91.** 49.)

Lead sodium paratungstate, PbO, 4Na₂O, 12WO₃+28H₂O.
(Gonzalez.)

Lithium tungstate, Li₂WO₄.

Rather easily sol. in H₂O. (Gmelin.)

Lithium metatungstate, Li₂W₄O₁₃.

Insol. in  $H_2O$ . (Knorre, J. pr. (2) **27.** 94.)  $+xH_2O$ . Syrup. (Scheibler.)

Lithium paratungstate,  $\text{Li}_{10}\text{W}_{12}\text{O}_{41} + 33\text{H}_2\text{O}$ (or  $\text{Li}_6\text{W}_7\text{O}_{24} + 19\text{H}_2\text{O}$ ).

According to Scheibler, more sol. than the paratungstates of the other alkali metals.

Lithium tungstate tungsten oxide, Li₂W₅O₁₅.

Lithium bronze. Insol. in H₂O.

Lithium potassium tungstate tungsten oxide, Li₂W₅O₁₅, 3K₂W₄O₁₂.

Lithium potassium bronze. Insol. in H₂O. (Feit, B. **21.** 135.)

Lithium sodium tungstate,  $\text{Li}_2\text{WO}_4+3\text{H}_2\text{O}$ ,  $3(\text{Na}_2\text{WO}_4+3\text{H}_2\text{O})$ .

(Traube, N. Jahrb. Miner, 1894, I. 190.)

#### Magnesium tungstate, MgWO4.

Anhydrous. Insol. in  $H_2O$ . Gradually decomp. by boiling conc.  $HNO_3+Aq$ . (Geuther and Forsberg, A. **120.** 272.)  $+3H_2O$ . Very sol. in  $H_2O$ ; nearly insol.

 $+3H_2O$ . Very sol. in  $H_2O$ ; nearly in alcohol. (Lefort, A. ch. (5) **15.** 329.)

+7H₂O. Slowly sol. in cold, very easily in hot H₂O. (Ullik, W. A. B. **56. 2.** 152.)

Magnesium ditungstate, MgW₂O₇+8H₂O (?). Sol. in about 100 pts. H₂O. (Lefort.)

Magnesium tritungstate,  $MgW_3O_{10}+4H_2O(?)$ . Easily sol. in  $H_2O$  with gradual decomp. (Lefort.)

Magnesium me'atungstate, MgW₄O₁₈+8H₂O. Sol. in H₂O. (Scheibler.)

Magnesium paratungstate,  $Mg_3W_7O_{24}+24H_2O$ .

Very difficultly sol. in cold, somewhat sol. in hot H₂O. (Knorre, B. 19. 825.)

Magnesium potassium tungstate, MgWO₄, K₂WO₄.

 $+2H_2O$ . Very sl. sol. in  $H_2O$ . (Ullik.)  $+6H_2O$ . Precipitate.

Magnesium potassium paratungstate,  $5(^2/_3K_2O, ^1/_3MgO)$ ,  $12WO_3+24H_2O$ . Insol. in cold, sol. in hot  $H_2O$ . (Hallopeau, C. R. 1898, **127.** 621.)

Magnesium sodium paratungstate, 3MgO, 3Na₂O, 14WO₃+33H₂O.

Nearly insol. in  $H_2O$ . (Knorre, B. 19. 825.)

Manganous tungstate, MnWO4.

Min. Hubnerite. Partially sol. in HCl+Aq. +2H₂O. Insol. in H₂O; sol. in warm H₃PO₄ and H₂C₂O₄+Aq; sl. sol. in HC₂H₃O₂ +Aq. Insol. in cold HCl+Aq. (Anthon.) +H₂O. Sol. in about 2500 pts. H₂O at 15°. (Lefort.)

Manganous ditungstate,  $MnW_2O_7+3H_2O$  (?). Sol. in about 450 pts.  $H_2O$  at 15°. (Lefort, A. ch. (5) **15.** 333.)

Manganous tritungstate,  $MnW_3O_{10}+5H_2O(?)$ . Decomp. by  $H_2O$  into  $MnW_2O_7$  and  $MnW_4O_{13}$ . (Lefort, A. ch. (5) **17.** 480.)

Manganous metatungstate, MnW₄O₁₃+ 10H₂O.

Very sol. in H₂O. (Wyrouboff, Bull. Soc. Min. 1892, **15.** 82.)

Manganous paratungstate, 5MnO, 12WO₂+ 34H₂O.

(Gonzalez, J. pr. (2) **36.** 44.) Mn₃W₇O₂₄+11H₂O. When recently pptd., sol. in a small amt. of H₂O acidulated with

Manganous potassium tungstate, 2MnO, 3K₂O, 12WO₃+16H₂O.

HNO₃. (Lotz.)

Completely insol. in H₂O. (Hallopeau, Bull. Soc. 1898, (3) 19. 955.)

Manganous sodium paratungstate, 3Na₂O, 3MnO, 14WO₃+36H₂O.

Sol. in H₂O. (Knorre, B. 19. 826.)

#### Manganic sodium tungstate.

See Permanganotungstate, sodium.

#### Mercurous tungstate, Hg₂WO₄

Insol. in H₂O. (Anthon.)

Impossible to obtain pure, as it is decomp.

2Hg₂O, 3WO₃+8H₂O. Sol. in 100 pts. H₂O at 15°. (Lefort..)

# Mercurous metatungstate, $Hg_2W_4O_{18}+25H_2O$ .

Ppt. (Scheibler, J pr. 83, 319.)

#### Mercuric tungstate, HgWO₄.

Sl. sol. in H₂O and very unstable. (Lefort, A. ch. (5) **15.** 356.)

3HgO, 2WO₃. Insol. in H₂O. (Anthon.) 2HgO, 3WO₃. Insol. in H₂O. (Anthon.) 3HgO, 5WO₃+5H₂O. Sol. in about 250 pts. H₂O at 15°. (Lefort.)

² 2HgO, 5WO₃+7H₂O. Decomp. by hot or cold H₂O. (Lefort, C. R. **88.** 798.)

### **Mercuric** tritungstate, HgW₃O₁₀+7H₂O (?). Sol. in about 120 pts. H₂O at 15°. (Lefort, A. ch. (5) **15.** 360.)

#### Molybdenum tungstate.

Easily sol. in H₂O. Insol. in NH₄Cl+Aq or in alcohol of 0.87 sp. gr. (Berzelius.)

### Neodymium tungstate, Nd₂(WO₄)₃.

Very sl. sol. in H₂O. 1 pt. is sol. in 52630 pts. H₂O at 22°; 59580 pts. at 65°; 66040 pts. at 98°. (Hitchcock, J. Am. Chem. Soc. 1895, **17.** 532.)

#### Nickel tungstate, NiWO4.

 $+3\mathrm{H}_2\mathrm{O}$ . Sol. in about 1000 pts.  $\mathrm{H}_2\mathrm{O}$  at 15°.

+6H₂O. Insol. in H₂O or H₂C₂O₄+Aq. Sol. in boiling H₃PO₄+Aq, HC₂H₃O₂+Aq, or in warm NH₄OH+Aq. (Anthon.)

Nickel ditungstate, NiW₂O₇+5H₂O (?). Sol. in about 250 pts. H₂O. (Lefort.)

### Nickel tritungstate, NiW₃O₁₀+4H₂O (?).

Sol. in H₂O. Pptd. by alcohol. Decomp. by cold or warm H₂O after above pptn. (Lefort.)

Nickel metatungstate, NiW₄O₁₈+8H₂O. Sol. in H₂O. (Scheibler, J. pr. 83. 273.)

### Nickel paratungstate, Ni₃W₇O₂₄+14H₂O.

Insol. in  $H_2O$ . Sl. sol. in  $H_2C_2O_4+Aq$ . Completely sol. in warm  $H_3PO_4$  or  $HC_2H_3O_2+Aq$ . (Anthon.)

#### Potassium tungstate, K2WO4.

Anhydrous. Rather deliquescent. Easily sol. in  $\mathbf{H}_2\mathbf{O}$ .

 $+H_2O$  Easily sol in  $H_2O$ . Insol. in alcohol.

+2H₂O. Very sol. in H₂O with absorption of heat.

1 pt. dissolves in 1.94 pts. cold, and 0.66 pt boiling H₂O? Alcohol does not mix with cone. aq. solution, but slowly separates out the salt from it. Acids, even H₂SO₃, HC₂H₃O₂ or H₂C₂O₄, sep. rate out VO₃ from solution. (Riche, A. ch. (a) 50.45.)

#### Potassium ditungstate, K₂W₂O₇+2H₂O.

Sol. in about 8 pts. H₂C at 15°, but on heating is converted into—

 $+3H_2()$ . 100 pts.  $H_2()$  dissolve only 2-3 pts. at 15°. (Lefort, A. ch. (5) 9. 102.)

#### Potassium iritungstate, K₂W₈O₁₀+2H₂O.

Sol. in 5-6 pts. H·O at 15°. Can be recryst. from hot  $H_2O$  (Lefort, A. ch. (5) **9.** 105.)

#### Potassium metatungstate, K₂W₄O₁₈+5H₂O.

Not efflorescent. Easily sol. in  $H_2O$ . (Marignac.) ( $K_4W_6O_{17} + 8H_2O$  of Margueritte.)

+8H₂O. Extremely efflorescent. (Scheibler.)

#### Potassium octotungstate, K₂W₈O₂₅.

Insol. in H₂O. (Knorre, J. pr. (2) 27. 49.)

Potassium tungstate,  $K_8W_{10}O_{84} + 9H_2O = 4K_2O$ ,  $10WO_8 + 9H_2O$ .

Properties resemble the paratung state. (Gibbs, Proc. Am. Acad. 15. 11.)  $+8H_2O = K_4W_5O_{17} + 4H_2O$ . Sol. in 15 pts.

 $+8H_2()=K_4W_5O_{17}+4H_2O$ . Sol. in 15 pts.  $H_2O$  at 15°, but decomposed by heating into  $K_2W_2O_7$  and  $K_2W_3O_{10}$ . (Lefort, A. ch. (5) **9.** 104.)

K₁₀W₁₄O₄₇. Very difficulty sol. in cold, appreciably sol. in hot H₂O, probably with decomposition. (Knorre.)

Potassium paratungstate, K₁₀W₁₂O₄₁+11H₂O (or K₅W₇O₂₄+6H₅O, according to Lotz and Scheibler.)

Much more sol. in hot than cold H₂O. (Anthon.) Sol. in 100 pts. H₂O at 16°, in 8.5 pts. at 100°. (Anthon.) Sol. in 46.5 pts. cold, and 15.15 pts. boiling H₂O. (Riche.)

By shaking the crystals several days at 20°, 1 pt. dissolves in 71 pts. H₂O. If the salt is treated with boiling water, more goes into solution the longer it is boiled, until dissolved in 5.52 pts. H₂O at 18°. Kept in a closed flask, this solution contained after 26 days 1 pt. of salt to 11.9 pts. H₂O; after 153 days, 1 pt. of salt to 15.6 pts. H₂O; after 334 days, 1 pt. of salt to 15.6 pts. H₂O. Insol. in alcohol. (Marignae.)

#### Potassium sodium tungstate, K₂WO₄, 2Na₂WO₄+14H₂O.

Easily sol. in hot and cold H₂O. (Ullik, W. A. B. **56**, **2**, 150.)

Deliquescent. Sol. in 1 pt. cold, and  $\frac{1}{2}$  pt. hot  $H_2O$ . (Anthon.)

# Potassium sodium paratungstate, Na₂O, 4K₂O, 12WO₃+15H₂O.

Sol. in  $H_2O$ . (Marignac.)  ${}^8/_{11}Na_2O$ ,  ${}^3/_{11}K_2O$ ,  $12WO_3+25H_2O$ . Sol. in  $H_2O$ . (Marignac.)

# $\begin{array}{cccc} \textbf{Potassium} & \textbf{strontium} & \textbf{tungstate} & \textbf{tungsten} \\ & \textbf{oxide,} & 5K_2W_4O_{12}, & SrW_4O_{12}. \end{array}$

(Engels, Z. anorg. 1903, **37.** 143.)

# Potassium uranous tungstate. See Uranosotungstate, potassium.

Potassium zirconium tungstate.

See Zirconotungstate, potassium.

# Potassium tungstate tungsten oxide, K₂WO₄, W₂O₅.

Potassium tungsten bronze. (Scheibler, J. pr. 83. 321.)

Formula is  $K_2W_4O_{12}$ . Not attacked by acids, and only very sl. by alkalies. (Knorre, J. pr. (2) **27.** 49.)

K₂WO₄, 4WO₂. Not attacked by acids, even HF, or by alkalies+Aq. Insol. in alcohol. (Zettnow, Pogg, **130**. 262.)

Does not exist. (Knorre.)

# Potassium sodium tungstate tungsten oxide, $5K_2W_4O_{12} + 2Na_4W_5O_{15}$ .

Potassium sodium tungsten bronze. Properties as potassium bronze.

 $3K_2W_4O_{12}$ ,  $2Na_2W_3O_9$ . As above. (Knorre, J. pr. (2) **27.** 49.)

### Praseodymium tungstate, Pr₂(WO₄)₃.

Very sl. sol. in H₂O.

Insol. in H₂O at 20°; at 75°, 1 pt. is sol. in 23,300 pts. H₂O. (Hitchcock, J. Am. Chem. Soc. 1895, 17. 529.)

# Rubidium metatungstate, Rb₂O, 4WO₃+8H₂O.

Sol. in about 10 pts. cold H₂O. Moderately sol. in warm H₂O. (Wyrouboff, Bull. Soc. Min. 1892, **15.** 69.)

#### Rubidium pentatungstate, Rb₂W₅O₁₆.

Almost insol. in hot H₂O. When finely powdered, it is sol. in alkali carbonates + Aq. (Schaeffer, Z. anorg. 1904, **38.** 163.)

#### Rubidium octotungstate, Rb₂W₈O₂₅.

Insol. in  $H_2O$ , acids, and alkalies. (Schaeffer, Z anorg. 1904, 38. 103.)

Rubidium paratungstate, 5Rb₂O, 12WO₃+18H₂O.

.Very sl. sol. in H₂O. (Schaeffer, Z. anorg. 1904, **38.** 173.)

Samarium metatungstate,  $Sm_2O_3$ ,  $12WO_3+35H_2O$ .

Easily sol. in H₂O. (Cleve.)

# Samarium sodium tungstate, Na₀Sm₄(WO₄)₉. Insol. in H₂O. Slowly sol. in dil. acids, easily in conc. HCl+Aq. (Högbom, Bull. Soc. (2) **42**. 2.)

#### Silver (argentous) tungstate, Ag₄O, 2WO₈.

HNO₃+Aq separates WO₃. KOH+Aq dissolves out WO₃ and separates Ag₄O. (Wöhler and Rautenberg, A. 114, 120.)

Does not exist. (Muthmann, B. 20. 983.)

### Silver tungstate, Ag₂WO₄.

Sol. in about 2000 pts. H₂O at 15°. Easily decomp. by NaCl+Aq or HNO₈+Aq. (Lefort.)

 $Ag_2W_2O_7$ . Insol. in  $H_2O$ . Nearly insol. in  $HC_2H_3O_2$  or  $H_3PO_4+Aq$ . More sol. in KOH,  $NH_4OH+Aq$ , or  $H_2C_2O_4+Aq$ . (Anthon, J. pr. **9.** 347.)

 $+\dot{H}_2\Omega$ . Sol. in about 5000 pts.  $H_2\Omega$  at 15°. (Lefort.)

#### Silver metatungstate, Ag₂W₄O₁₃+3H₂O.

Sl. sol. in  $H_2O$ . (Scheibler, J. pr. **83**. 318.) Nearly insol. in  $H_2O$ . (Rosenheim, Z. anorg. 1911, **69**. 250.)

Silver paratungstate, Ag₁₀W₁₂O₄₁+8H₂O. (Gonzalez, J. pr. (2) **36.** 44.)

#### Silver tungstate ammonia, Ag₂WO₄, 4NH₂.

Sol. in H₂O with rapid decomp. (Widmann, Bull. Soc. (2) **20.** 64.)

#### Sodium tungstate, Na₂WO₄+2H₂O.

Sol. in 4 pts. cold, and 2 pts. boiling H₂O. (Vauquelin and Hecht.)

Sol. in 1.1 pts. cold, and 0.5 pt. boiling H₂O. (Anthon.)

Sol. in 2.44 pts. H₂O at 0°; 1.81 pts. at 15°; 0.81 pt. at 100°. (Riche.)

#### Solubility in H₂O at t°.

t°	% Na ₂ WO ₄	Mols. H ₂ O to 1 mol. Na ₂ WO ₄	Mols. of anhydrous salt to 100 mols.
-3.5	41.67	22.87	4.37
+0.5	41.73	22.80	4.39
21.0	42.27	22.30	4.48
43.5	43.98	20.80	4.81
80.5	47.65	17.95	5.57
100.0	49.31	16.79	5.95

(Funk, B. 1900, **33**. 3701.) See also +10H₂O.

Sp. gr.	of Na₂W	O4+Aq at 24.5° containing:
5	10	15 % Na ₂ WO ₄ +2H ₂ O ₁
1.036	1.075	1.119
20	25	$30 \% \text{Na}_2\text{WO}_4 + 2\text{H}_2\text{O}_1$
1.166	1.215	1.274
35	40	$44 \% \text{Na}_2 \text{WO}_4 + 2\text{H}_2 \text{O}$ .
1.349	1.430	1.492
	(Franz,	J. pr. (2) 4. 238.)

Sp. gr. of Na₂WO₄+Aq at 25°.

Sp. gr. at 20°	Per cent Na ₂ WO ₄	Per cent Na ₂ WO _{1,2} H ₂ O
1.02016	2 21	2.48
1.03945	4.26	4 78
1.04292	4.59	5.15
1.05831	6.25	7 01
1.07449	7.82	8.79
1.08209	8.61	9.66
1.09687	10.08	11.31
1.12114	12.30	13.81
1.13036	13.16	14.77
1.14392	14.44	16.21
1.16896	16.56	18.62
1.19154	18.52	20.79
1.19938	19.10	21.44
1.20787	19.74	22.16
1.21720	20.59	23.11
1.25041	23.16	25.99
1.25083	23.30	26.15
1.26234	24.05	27.00
1.28143	25.46	28.58
1.33993	29.50	33.11
1.38826	32.68	36.68
1.41072	33.91	38.06
1.47193	37.30	41.87
1.48481	38.20	42.87
1.48595	38.43	43.14

(Pawlewski, B. 1900, 33. 1224.)

Na₂WO₄+Aq is pptd. by HCl, HNO₃, or H₂SO₄+Aq, but not by H₂SO₃, HI, HCN, oxalic, or tartaric acids+Aq, but pptn. by the former acids is not prevented by presence of the latter, but when heated with HC₂H₅O₂+ Aq, or in presence of H₃PO₄+Aq, mineral acids cause no ppt. (Zettnow, Pogg, 130. 16.)

Much more sol. in H₂O₂ than in H₂O. (Kellner, Dissert, 1909.)

Sl. sol. in liquid NH3. (Franklin, Am. Ch. J. 1898, **20.** 829.)

Insol. in alcohol. (Riche, A. ch. (3) 50.

Ínsol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

+10H₂O.

Solubility	in	$H_2O$	<b>8,</b> 5	t°.	

. t°	Na2WO4	Mols. H ₂ O to 1 mol. Na ₂ WO ₄	Mols. anhydrous salt to 100 mols. H ₂ O	
-5. -4.0 -5.5 -2.0 0.0 +3.0 +5.0	30.60 31.87 32.98 34.5° 36.54 39.20 41.02	37.04 34.92 33.19 30.90 28.37 25.33 23.48	2.70 2.86 3.01 3.23 3.52 3.95 4.26	

(Funk, B. 1900, 33, 3701.)

### Sodium ditungstate, Na₂ N₂O₇.

Sol. in H₂O by heating several hours to 136-150°. (Knorre, J. pr. (2) **27.** 80.) +6H₂O. Sol. in 13 pts. H₂O at 15°. (Lefort, C. R. 88. 798.)

### Sodium tritungstate, Na₂W₃O₁₀+4H₂O.

Sol. in 1 pt. H₂O. Decomp. on standing into sol. tetratungstate and insol. ditungstate. (Lefort, C. R. 88. 798.)

Neither this nor the other tritungstates of Lefort exist, according to Knorre (J. pr. (2) **27.** 49.)

#### Sodium metatungstate, Na₂W₄O₁₂.

Anhydrous. Insol. in H₂O. +10H₂O. Sol. at 13° in 0.935 pt. H₂O to form a solution of 3.02 sp. gr. (Scheibler.) Sol. at 19° in 0.195 pt. H₂O. (Forcher.) Precipitated by alcohol.

#### Sodium pentatungstate, Na₂W₅O₁₆.

Sl. sol. in H₂O by heating 3 hours at 150°. (Knorre, J. pr. (2) 27. 49.)

#### Sodium octotungstate, Na₂W₈O₂₆.

Insol. in H2O. Very difficultly attacked by acids and alkalies. (Knorre.)

+12H₂O. Easily sol. in cold H₂O, and can be recryst. without decomp. (Ullik, W. A. B.

56, 2. 157.) 3Na₂O, 8WO₃+17H₂O. Very efflorescent. Very sol. in hot H₂O. (Wells, J. Am. Chem. Soc. 1907, 29. 112.)

#### Sodium tungstate, Na₆W₇O₂₇ (?).

 $+16H_2()$  (?). (Marignac, A. ch. (3) **69.** 51.)

+21H₂() (?). Much more sol. and much more rapidly than the paratungstate. (Ma-

 $Na_4W_8O_{11}+7H_2O(?)$ . Mixture of  $Na_2W_4O_{18}$ and Na₂WO₄. (Knorre, J. pr. (2) **27.** 49.) Na₄W₅O₁₇+11H₂O. Efflorescent. Sol. in

H₂O. (Marignac.) 100 pts. H₂O dissolve 16 pts. at 15°. (Le-

fort, A. ch. (5) 9. 97.) Formula is 4Na₂O, 10WO₈+23H₂O, according to Gibbs (Proc. Am. Acad. 15. 5.) Sodium paratungstate, Na₁₀W₁₂O₄₁+21H₂O. +25H₂O.

 $+28H_2O = 3Na_6W_7O_{24} + 16H_2O$ , according to Lotz and Scheibler.

Sol. in 8 pts. cold H2O (Anthon); in 12.6 pts. at 22°.

Sol. in about 12 pts. H₂O. (Marignac.) The aqueous solution saturated at 35-40° contained to 1 pt. of the salt, after:

410 days, 18° at 18° 18° 16° 20° 9.25 11.26 10.92 11.90 11.74 pts. H₂O.

The solution saturated by very long boiling, after a part of the salt had crystallised out, contained, after:

2 12 days, 1 0.68 72 2.59 pts. H2O to 1 pt. salt, 0.91222 405 days, 9.75 8.80 pts. H₂O to 1 pt. salt. 6.88(Marignac.)

Decomp. by boiling with H₂O. (Knorre, B. **18.** 2362.)

Sodium strontium paratungstate, Na₂O.  $4SrO, 12WO_3 + 29H_2O.$ (Gonzalez, J. pr. (2) **36.** 44.)

Sodium strontium tungstate tungsten oxide, 5NaW₅O₁₅, SrW₄O₁₂.

12Na₂W₃O₉, SrW₄O₁₂. (Engels, Z. anorg. **1903**, **37**, 138.)

Sodium thorium tungstate, Na₄Th(WO₄)₄.

Insol. in H₂O. Slowly sol. in dil. acids, easily in conc. HCl+Aq. (Högbom, Bull. Soc. (2) **42.** 2.)

Sodium ytterbium tungstate, Yb₂O₃, 9Na₂O, 12WO₃.

Insol. in H₂O. (Cleve, Z. anorg. 1902, **32.** 154.)  $2Yb_2O_3$ ,  $4Na_2O_1$ ,  $7WO_3$ . Ppt. (Cleve.)

Sodium yttrium tungstate, Na₈Y₂(WO₄)₇.

Insol. in H₂O, and very slowly attacked by dil. acids. (Högbom, Bull. Soc. (2) 42. 2.)

Sodium zinc paratungstate, Na₂O, 2ZnO,  $7WO_8 + 15H_2O$ .

Difficultly sol. in cold, more sol. in hot  $H_2O$ . (Knorre, B. 19, 823.) +21H₂O. (Knorre.)

Sodium tungstate tungsten oxide, Na₂WO₄, W₂O₅.

Yellow tungsten bronze. Gradually deliquesces on air. Not decomp. by any acid, even aqua regia, except HF, or by alkalies. (Wöhler, Pogg. 2. 350.)

Correct formula is Na₅W₆O₁₈, according

to Phillip (B. **15.** 499).

Sol. in ammoniacal silver solution with separation of Ag. Easily sol. in boiling alkaline potassium ferricyanide+Aq. (Phillip, B. 12. 2234.)

Na2WO4, 2W2O5. Blue tungsten bronze. Not attacked by acids or alkalies. (Scheibler.) Correct formula is Na₂W₆O₁₆, according to Phillip (B. **15.** 506).

Sol. in ammoniacal silver solution with

separation of Ag.
Na₄W₅O₁₅. Properties as above. B. **15.** 499.)

Na₂W₃O₉. Properties as above. (Phillip.)

Strontium tungstate, SrWO₄.

Precipitate. (Schultze.) Sol. in about 700 pts. H₂O. (Lefort.)

Strontium ditungstate,  $SrW_2O_7 + 3H_2O$  (?).

100 ccm, H₂O dissolve 0.35 g. at 15°. (Lefort, A. ch. (5) **15.** 326.)

Strontium tritungstate, SrW₃O₁₀+5H₂O (?). Sol. in H₂O with decomp. into SrW₂O₇ and SrW₄O₁₃. (Lefort, A. ch. (5) **17.** 477.)

Strontium metatungstate, SrW₄O₁₃+8H₂O.

Solubility as calcium metatungstate. (Scheibler.)

Extraordinarily sol. in H₂O. (Wyrouboff, Bull. Soc. Min. 1892, 15. 63.)

Strontium paratungstate, Sr₃W₇O₂₄+16H₂O, or Sr₅W₁₂O₄₁+27H₂O.

Insol. in cold, sl. sol. in hot H₂O. (Knorre. B. 18. 327.)·

Thallous tungstate, Tl₂WO₄.

Very sl. sol. in H₂O. Sol. in hot Na₂CO₃+ Aq. (Flemming, J. B. 1868. 250.)

Thallous metatungstate, Tl₂W₄O₁₃+3H₂O.

Nearly insol. in H₂O. (Rosenheim, Z. anorg. 1911, **69.** 251.)

Thallous paratungstate, 5Tl₂O, 12WO₃.

Insol. in H₂O.

Sol. in Na₂CO₃+Aq. and KOH+Aq. decomposed by mineral acids. (Schaeffer, Z. anorg. 1904, **38.** 171.)

Thallous hydrogen tungstate, TlHWO4.

Insol. in H₂O. Difficultly sol. in NH₄OH+ Aq. Easily sol. in boiling alkali carbonates or hydrates +Aq. (Oettinger, J. B. 1864. 254.)

Thorium tungstate.

Precipitate. (Berzelius.) Insol. in H₂O.

Tin (stannous) tungstate,  $SnWO_4+6H_2O$ .

Insol. in H2O. Sol. in oxalic acid and in KOH+Aq. Slowly sol. in hot H₃PO₄+Aq. (Anthon, J. pr. 9. 341.)

Tin (stannic) tungstate, 9SnO₂, 13WO₃.

Insol. in ammonium tungstate+Aq. Sol. in tin salts+Aq. also in phosphoric, oxalic, or tartaric acids+Aq. (Lo:z, A. 91. 49.)

Tungsten tungstate,  $WO_2$ ,  $WO_3 = W_2O_5$ . See Tungsten oxide,  $W_2O_5$ .

Uranous tungstate, UO2, 3WO3+6H2O.

Decomp. by NaOH+Aq or HNO $_3$ +Aq. Sol. in HCl+Aq, but not in H $_2$ SO $_4$ . (Rammelsberg.)

Uranyl tungstate, UO₃, WO₃+2H₂O₄

Sol. in about 100 pts. H₂O. (Lefort, C R. **87.** 748.)

UO₃,  $3WO_3+5H_2O$  (?). Sol. in about 200 pts.  $H_2O$ . (Lefort.)

Vanadium tungstate.

Sl. sol. in H₂O.

Ytterbium tungstate basic, (YbO)₂WO₄. Ppt. (Cleve, Z. anorg. 1902, **32**, 153.)

Ytterbium metatungstate, Yb₂O₂, 12WO₃-;-35H₂O.

Very sol. in H₂O. (Cleve.)

Yttrium tungstate, Y₂(WO₄)₃+6H₂O.

Very sl. sol. in  $H_2O$ , but more sol. in  $Na_2WO_4+Aq$ . (Berlin.)

Zinc tungstate, ZnWO4.

Insol. in  $H_2O$ . (Geuther and Forsberg, A. **120.** 270.)

 $+H_2O$ . Sol. in 500 pts.  $H_2O$ .

Zinc ditungstate,  $ZnW_2O_7 + 3H_2O$  (?).

Sol. in 10 pts.  $H_2O$  at 15°, but solution soon decomposes. (Lefort.)

Zinc tritungstate, ZnW₃O₁₀+5H₂O.

Insol. in boiling  $H_2O$ . Sol. in  $ZnSO_4+Aq$ , or  $Na_4W_6O_{17}+Aq$ . (Gibbs.)

Zinc metatungstate, ZnW₄O₁₃+10H₂O.

Easily sol. in H₂O. Loses crystal H₂O by ignition, and becomes insol. in H₂O. (Scheibler, J. pr. 83. 273.)

 $+8H_2O$ . More sol. in  $H_2O$  than magnesium comp. (Wyrouboff, Bull. Soc. Min. 1892, **15.** 72.)

Zinc tungstate,  $Zn_4W_{10}O_{34} + 18H_2O = 4ZnO$ ,  $10WO_3 + 18H_2O$ .

Insol. in H₂O. Sol. in excess of zinc sulphate or of sodium tungstate+Aq. (Gibbs, Proc. Am. Acad. **15.** 14.)

+29H₂O. (Gibbs.)

Zinc paratungstate, 5ZnO, 12WO₂+37H₂O. (Gonzalez, J. pr. (2) 36. 44.)

Zinc tungstate,  $Z_{n_2}W_{22}O_{15}+66H_2O=9ZnO$ ,  $22WO_5+66H_2O$ .

' Lusol. in H₂O. (Gibbs.)

Zinc tungstate ammonia, ZnWO₄, 4NH₈+3H₂O.

Decomp. in the air. (Briggs, Chem. Soc. 1904, **85.** 677.)

Pertungstic acid.

See Pertungstin acid.

Tungstoarsenic acid.

See Arseniotungstic acid.

Tungstoboric acid.

See Borotungstic acid.

Tungstocyanhydric acid, H₄W(CN)₃+6H₂O.

Hydroscopic.

Sol. in  $H_2O$  and abs. alcohol. Insol. in ether, benzene etc. (Olsson, Z. anorg. 1914, 88. 71.)

Ammonium tungstocyanide, (NH4)4W(CN)8.

Easily sol. in H₂O. Aqueous solution decomp. slowly.

Insol. in organic solvents. (Olsson, Z. anorg. 1914, 88.62)

Cadmium tungstocyanide, Cd₂W(CN)₈+8H₂O.

Nearly insol. in H₂O. Sl. sol. in dil. HCl. Sol. in conc. NH₄OH+Aq. Insol. in organic solvents. (Olsson, Z. anorg. 1914, **88**. 68.)

Cæsium tungstocyanide, Cs4W(CN)8.

Easily sol. in H₂O forming stable solutions. Insol. in alcohol and other organic solvents (Olsson.)

Calcium tungstocyanide,  $Ca_2W(CN)_8+8H_2O$ .

Easily sol. in H₂O. Aqueous solution decomp. slowly.

Insol. in organic solvents. (Olsson.)

Lead tungstocyanide, Pb₂W(CN)₈+4H₂O.

Sol. in H₂O. Solution decomp. after short time.

Insol. in organic solvents. (Olsson.)

Magnesium tungstocyanide,  $Mg_2W(CN)_8+6H_2O$ .

Easily sol. in  $H_2O$ . Aqueous solution decomp. on heating.

Insol. in organic solvents. (Olsson.)

Manganous tungstocyanide,  $Mn_2W(CN)_8+8H_2O$ .

Insol. in H₂O and in acids.
Insol. in organic solvents. (Olsson.)

Potassium tungstocyanide, K₄W(CN)₈+

Easily sol. in  $H_2O$  from which it can be cryst. 10 ccm.  $H_2O$  dissolve 13-14 g. salt at 18°.

Insol. in alcohol, ether and other organic solvents. (Olsson.)

Rubidium  $3H_2O$ . Rb₄W(CN)₈+

Easily sol. in  $H_2O$ . Can be cryst. from  $H_2O$ . Insol. in alcohol and other organic solvents. (Olsson.)

Silver tungstocyanide, Ag₄W(CN)₈.

Insol. in H₂O.
Insol. in acids. Decomp. by dil. HCl.
Sol. in hot conc. NH₄OH +Aq.
Insol. in organic solvents. (Olsson.)

Sodium tungstocyanide, Na₄W(CN)₈+ 2½H₂O.

Hydroscopic. Easily sol. in H₂O. Insol. in organic solvents. (Olsson.)

Strontium tungstocyanide,  $Sr_2W(CN)_8+8H_2O$ ,  $+9H_2O$ .

Easily sol. in H₂O. Aqueous solution decomp. on standing.

Insol. in organic solvents. (Olsson.)

Thallium tungstocyanide, Tl₄W(CN)₈.

Difficultly sol. in cold H₂O, more sol. in hot H₂O.

Insol. in organic solvents. (Olsson.)

Zinc tungstocyanide, Zn₂W(CN)₈+4H₂O. Insol. in H₂O, and acids. Sol. in conc. NH₄OH+Aq. (Olsson.)

Metatungstoiodic acid.

Ammonium metatungstoiodate, 2(NH₄)₂O, 2I₂O₅, 4WO₃+12H₂O. Very sl. sol. in H₂O. (Chrétien, A. ch. 1898, (7) **15.** 431.)

Potassium tungstoiodate, K2H2WIO8.

(Blomstrand, J. pr. (2) **40.** 327.) 2K₂O, 2I₂O₅, 4WO₅+8H₂O. 5.13 g. are sol. in 1 l. H₂O at 15°; 8.25 g. at 100°. (Chrétien, A. ch. 1898, (7) **15.** 431.)

Tungstoperiodic acid.

Ammonium sodium tungstoperiodate, 2(NH₄)₂O, Na₂O, I₂O₇, 2WO₃+16H₂O. Ppt. (Rosenheim, A. 1899, **308**. 64.)

Barium tungstoperiodate, 5BaO, I₂O₇, 12WO₂+12H₂O. Ppt. (Rosenheim.) Potassium tungstoperiodate, 5K₂O, I₂O₇, 12WO₃+8H₂O.

Sol. in H₂O. (Rosenheim.)

Sodium tungstoperiodate, 3Na₂O, I₂O₇, 2WO₃+4H₂O.

Fpt.  $5Na_2O$ ,  $I_2O_7$ ,  $12WO_3+16H_2O$ . Sol. in  $H_2O$ . (Rosenheim.)

Strontium tungstoperiodate, 5SrO, I₂O₇, 12WO₃+28H₂O. Sol. in H₂O. (Rosenheim.)

Tungstophosphoric acid, See Phosphotungstic acid.

Tungstosilicic acid, See Silicotungstic acid.

Tungstotungstic acid.

Lithium tungstotungstate, Li₂O, WO₃+ WO₂, 3WO₃.

Insol. in boiling H₂O and conc. HCl. (Hallopeau, C. R. 1898, **127.** 514.)

Potassium tungstotungstate, K₂O, WO₃+ WO₂, 3WO₃.

Insol. in hot H₂O, and conc. HCl. (Hallopeau, Bull. Soc. 1899, (3) **21.** 267.)

Tungstous acid.

Sodium tungstite, Na₂W₂O₅.

See Tungstate tungsten oxide, sodium.

Tungstovanadic acid.

See Vanadiotungstic acid.

Tungstyl dibromide, WO₂Br₂. Not decomp. by cold H₂O. (Roscoe.)

Tungstyl tetrabromide, WOBr4.

Extremely deliquescent. Decomposes at once in moist air or with H₂O.

Tungstyl dichloride, WO₂Cl₂.

Not decomp, by cold, and but slowly by boiling H₂O. Sol. in alkalies and ammonia.

Tungstyl tetrachloride, WOCl4.

Easily decomp. by  $H_2O$  or moist air. Very sol. in  $CS_2$  and  $S_2Cl_2$ . Sl. sol. in benzene. (Smith, J. Am. Chem. Soc. 1899, **21**. 1008.)

Tungstyl tetrafluoride, WOF4.

Sol. in H₂O with decomp. Very hydroscopic.
Insol. in carbon tetrachloride.

Sl. sol. in carbon bisulphide, dry benzene and ether.

Easily sol. in chloroform and absolute alcohol. (Ruff, Z. anorg. 1907, 52. 265.)

#### Tungstyl tetrafluoride ammonia, 2WOF. NH₈.

Sol. in H₂O with decomp.

Insol. in liquid NH3. (Ruff, Z. anorg. 1907, **52.** 266.)

# Ultramarine blue, 2Na₂Al₂Si₂O₈, Na₂S₂ (?)

Not attacked by solutions of alkalies or NH₄OH+Aq. Decomp. by acids or acid salts +Aq. Decomp. by alum +Aq.

### Ultramarine green, Na₂Al₂Si₂O₈, Na₂S (?).

Decomp. by mineral acids. Not attacked by alkalies. Decomp. by alum +Aq.

Ultramarine white, 2Na₂Al₂Si₂O₈, Na₂S (?).

### Uranic acid, H₂UO₄.

Insol. in H₂O. Sol. in acids. Very sol. in cold dil. HNO3+Aq. Sl. sol. in boiling NH₄Cl+Aq. Insol. in KOH, NaOH, or NH₄OH+Aq. Easily sol. in (NH₄)₂CO₃, KHCO₃, and NaHCO₃+Aq; less in K₂CO₃+ Easily sol. in (NH₄)₂CO₃, Aq. (Ebelmen.)

Easily sol, in malic and tartaric acids to form complex compds. (Itzig, B. 1901, 34.

H4UO5. Insol. in H₂O; sol. in acids. (Ebelmen.)

#### Uranates.

Insol. in H₂O; sol. in acids.

#### Ammonium uranate.

Sl. sol. in pure H₂O; insol. in H₂O containing NH4Cl or NH4OH.

Sol. in  $(NH_4)_2CO_3+Aq$ . (Peligot, A. ch. (3) **5.** 11.)

 $(NH_4)_2O$ ,  $4UO_3+7H_2O$ . (Grubler, Dissert, 1908.)

 $(\dot{N}H_4)_2O$ ,  $6UO_3+10H_2O$ . Insol. in cold and hot H₂O and alkalies + Aq. Very sol. in H₂SO₄, HCl and acetic acid +Aq. (Zehenter, M. 1900, **21.** 235.)

#### Barium uranate, BaUO4.

Insol. in H2O. Sol. in dil. acids.

BaU₂O₇. As above. (Ditte, C. R. 95. 988.) Nearly insol. in H₂O,  $BaU_3O_{10}+4\frac{1}{2}H_2O$ .

KOH+Aq. and alcohol.

Easily sol. in cold dil. HCl or HNO3 and in hot acetic acid. (Zehenter, M. 1904, 25. 200.)
Ba₂U₃O₁₇+8H₂O. Nearly insol. in hot or cold H₂O, KOH+Aq. and alcohol.

Easily sol. in cold dil. HCl or HNO3 and in

hot acetic acid. (Zehenter.)

 $Ba_2U_7O_{23}+11H_2O.$ Same properties as

BaU₃O₁₀. (Zehenter.)

Bismuth uranate, Bi₂O_{8,*} UO₈+H₂O.

Min. Uranosphaerite.

#### Calcium uranate, CaUO₄.

Insol. in H2O; sol. in dil. acids. (Ditte, C. R. 95. 988.)

CaU.O. Insol. in H2O; sol. in dil. acids. (Ditte.)

#### Cobalt uranate.

Inset, in  $H_2O$  sol, in  $Pb(C_2H_3O_2)_2 + Aq$ . (Persoz, J. pr. 3. /15.)

Soi. in ItNO3+Aq; insoi. in KNO3+Aq. (Ehelmen, A. ch. (3) 5. 222.)

### Cupric uranate, CuU₂O₇.

Insol. in H₂O. (Dobray, A. ch. (3) **61.** 451.)

#### Lead uranate, PbUO₄.

If ignited, very difficultly sol. in HC2H3O2+

Aq. (Wertheim, J. pr. 29. 228.) Insol. in  $Pb(C_2H_3O_2)_2+Aq$ . (Persoz.) 3PbO, 2UO₃. Sol. in dil.  $HNO_3+Aq$ .

(Ditte, A. ch. (6) **1.** 338.) PbU₃O₁₀. Insol in F.O. Sol in HNO₃. Insol. in KOH+Aq, NH4OH and cold acetic acid. Sol. in hot acetic acid. (Zehen-

ter, M. 1904, **25.** 215.)
Ph₂U₅O₁₉+4H₂O. Insol. in hot or cold H₂O. Sol. in HNO₃. Insol. in KOH+Aq, NH4OH, alcohol and ether. Sl. sol. in cold more easily sol. in hot acetic acid. (Zehenter.)

#### Lithium uranate, Li₂UO₄.

Insol. in H₂O, but decomp. thereby. Sol. in dil. acids.

#### Magnesium uranate, MgUO₄.

Insol. in H₂O. Nearly insol. in cold HCl+ Aq. Slowly sol. in HCl+Aq on warming, and more rapidly by addition of a little HNO2 +Aq. (Ditte.)  $MgU_2O_7$ . Ppt. (Berzelius.)

### Neodymium uranate, Nd₂(U₃O₁₀)₃+18H₂O. Ppt. (Orloff, Ch. Z. 1907, 31. 1119.)

#### Potassium uranate, K₂UO₄ (?).

Insol. in H2O; sol. in dil. acids, etc., exactly as Na₂UO₄. (Ditte.)

 $K_2U_2O_7 + 6H_2O$ . Insol. in H₂O. Sol. in dil. acids, even acetic acid. (Zimmermann, B. 14. 440.)

Insol. in K2CO3+Aq, but easily sol. in alkali hydrogen carbonates+Aq. Sol. in HCl+Aq. (Ebelmen, A. ch. (3) 5. 220.) Sol. in

K₂O, 4UO₃+5H₂O. (Zehenter, M. 1900. **21.** 235.)

K₂O,  $6\mathrm{UO_3} + 6\mathrm{H_2O}$ . Insol. in H₂O. (Drenckmann, Zeit. ges. Nat. 17, 113.) +10H₂O. Nearly insol. in cold and hot H2O. Easily sol. in hot acetic acid, dil. H2SO4 HCl and HNO3. Insol. in KOH+Aq, alcohol and ether. ((Zehenter, M. 1900, 21. 235.)

#### Potassium hydroxylamine uranate, $UO_4(NH_4O)(NH_3OK) + H_2O.$

Sl. sol. in H₂O; insol. in alcohol. (Hofmann, A. 1899, **307.** 318.)

#### Rubidium uranate, RbUO₄.

Insol. in H₂O. (Ditte, A. ch. (6) 1. 338.)

#### Silver uranate, Ag₂U₂O₇.

Insol. in H2O. Easily sol. in acids. (Alibegoff, A. 233. 117.)

#### Sodium uranate, Na₂UO₄ (?).

Insol. in H₂O; sol, in dil. acids. Sol. in alkali carbonates+Aq. (Ditte.)

 $Na_2U_2O_7+6H_2O$ . Insol. in  $H_2O$ . Sol. in dil. acids. (Stolba, Z. anal. 3. 74.)

Na2O, 3UO2. Insol. in H2O. Easily sol. in

very dil. acids. (Drenckmann.)

Na₂O, 5UO₃+5H₂O. Insol. in H₂O, alcohol, NH₄OH, KOH+Aq. Sol. in HCl, HNO₃, H₂SO₄. Sl. sol. even on boiling in conc. acetic acid. (Zehenter, M. 1900, **21.** 235.)

### Sodium hydroxylamine uranate,

 $UO_4(NH_4O)(NH_8ONa) + H_2O.$ 

Sol. in H₂O. (Hofmann, A. 1899, **307.** 319.)  $UO_4(NH_8ONa)_2+6H_2O$ . Very sol. in  $H_2O$ . (Hofmann.)

#### Strontium uranate, SrUO₄.

Insol. in H₂O. Sol. in dil. acids.

SrU₂O₇. As above. (Ditte, C. R. **95.** 988.) Very sl. sol. in H₂O. Sol. in all acids especially oxalic.

+H₂O. Very sl. sol. in H₂O. Sol. in all acids especially oxalic. (J. C. C. 1896, II. 512.)

#### Thallous uranate.

Ppt. (Bolton, Am. Chemist, 1872, 2. **456**.)

#### Zinc uranate.

Insol. in  $H_2O$ ; sol. in  $Pb(C_2H_3()_2)_2 + Aq$ . (Persoz, J. pr. **3.** 216.) Sol. in  $HNO_3 + Aq$ ; insol. in KNO3, and NH4NO3+Aq. (Ebelmen, A. ch. (3) **5.** 221.)

#### Peruranic acid.

See Peruranic acid.

#### Uranium, U.

Not attacked by H₂O. Slowly decomp. by cold dil. H₂SO₄+Aq, rapidly on warming. Easily sol. in dil. or conc. HCl+Aq. Fused U is slightly attacked by conc. or furning HNO₈, or conc. H₂SO₄. Amorphous U, however, is easily attacked thereby. Not attacked by acetic acid, KOH, NaOH, or NH₄OH+Aq. (Zimmermann, B. **15**. 849.)

When finely divided, it is decomp. by H₂O slowly at ordinary temps. and rapidly at 100°. (Moissan, C. R. 1896, 122. 1091.)

#### Uranium antimonide, U₂Sb₂.

Violently attacked by conc. HNO₃. (Colani, C. k. 1903, **137.** 383.)

#### Uranium arsenide, UaAs2.

Violently attacked by conc. HNO₃. (Colani, C. R. 1903 137. 383.)

#### Uranium boride, UB₂.

Sol. in HNO3 and HF. Decomp. by fused alkalies. (Wedekind, B. 1913, 46. 1204.)

#### Uranium tribromide, UBr_s.

Very hygroscopic. Sol. in H₂O with his. ing. (Alibegoff, A. 233, 117.)

#### Uranium tetrabromide, UBr.

Anhydrous. Very deliquescent. Sol. in

H₂O with hissing. (Hermann.)

Insol. in alcohol. (v. Unruh, Dissert, 1909.) Sol. in acetone. (Eidmann, C. C. 1899, II. 1014); methyl acetate (Naumann, B. 1909. 42. 3790); ethyl acetate. (Naumann, B. 1904, **37.** 3**6**01.)

+8H₂O. Very deliquescent, and sol. in H.O. (Rammelsberg.)

#### Uranium carbide, UC₂.

(Ruff and Heinzelmann, Z. anorg. 1911, **71.** 72.)

Attacked slowly by H2O. Slowly attacked by cold dil. HCl, H₂SO₄ or HNO₃+Aq. Conc. acids, except HNO₃, react sl. in the cold, violently on heating. (Moissan, Bull. Soc. 1897, (3) **17.** 12.)

Sol. in fused KNO₂ and KClO₂; sol. in dil. acids in the cold and in conc. acids on heating: decomp. by H₂O. (Moissan, C. R. 1896, **122.** 276.)

#### Uranium trichloride, UCl $_{ m s}$ .

Very sol. in H₂O. (Feligot.)

Very unstable. (Zimmermann.)

Very hygroscopic. Sol. in H₂O with decomp. Sol. in conc. HCl and solution is much more stable than aqueous one. (Rosenheim and Loebel, Z. anorg. 1908, 57. 234.)

#### Uranium tetrachloride, UCl₄.

Anhydrous. Extremely deliquescent. Sol. in H₂O with evolution of heat. Decomp. on boiling. Sol. in NH4Cl+Aq without decomp.

HCl increases its solubility in H₂O. (Aloy,

Dissert. 1901.)

**37.** 3601.)

Sol. in alcohol, acetone, acetic ether, ben-Insol. in ether, CHCl and zoic ether. C₆H₆. (Loebel.) Sol. in ethyl acetate. (Naumann, B. 1901,

# Uranium pentachloride, UCl₅.

Deliquescent. Sol. in H₂O with evolution of heat and decomposition. (Roscoe, B. 7. 1131.)

Sol. in acetic acid, acetic ether, benzaldehyde, glycerine, benzyl alcohol (trace), nitrobenzene (trace), xylidine and p-toluidine (on warming)

Insol. in aniline, ligroin, pyridine, quinoline, thioethyl ether, thioamyl ether and CS

(Pimmer, Dissert. 1904.)

Sol. in abs. alcohol. Insol. in ether, C:H6, nitrobenzene, ethylene bromide. in CCl₄ and CHCl₃. Sol. in ben Sl. sol. Sol. in benzoic eth r. acetone and trichloracetic acid. Best colvents are ethyl acetate and benzonitrile. Sol. in many organic compounds containing oxygen. (Loebel, Dissert. 1907.)

#### Uranium difluoride, $UF_2 + 2H_2O$ .

(Giolitti and Agamennone, C. C **1905,** I. 1130.)

#### Uranium tetrafluoride, UF₄.

Insol. in H2O. Very sl. sol. in dil. acids Sol, in hot cone, H2SO, and slowly in warm conc. HNO₃+Aq. (Bolton, J. B. 1866, 209.)

#### Uranium hexafluoride, UF6.

Very sol. in H₂O. (Ditte, A. ch. (6) 1. 339.)

Fumes in the air.

Very hydros copic; sol. in H₂O. (Ruff, B.

1909, **42.** 495)

Very hygroscopic. Sol. in H2O. Nearly insol, in CS2. Insol, in paraffine oil. Sol, in symmetrical tetrachlorethane (best solvent), CHCl₃, CCl₄ and nitrobenzene. (v. Unruh, Dissert. 1909.)

Decomp. by H₂O, alcohol and ether.

Nearly insol. in CS₂ Sol. in CHCl₃, CCl₄, nit obenzene and C₂H₂Cl₄. (Ruff, Z. anorg. 1911, **72.** 81.)

### Uranium hydrogen fluoride, UF6, 8HF (?).

Sol. in H₂O. (Ditte.) Is  $UO_2F_2$ ,  $HF + H_2O$ . (Smithells)

### Uranous hydroxide, $UO_2$ , $xH_2O$ .

Easily sol. in dil. acids.

Insol. in alkali hydrates and carbonates +Aq. (Berzelius.)

Sol. in alkali carbonates+Aq. (Rammels-

berg.) U(OH)₄. Sol. in dil. acids. (Aloy, Bull. Soc. 1899, (3) **21.** 613.)

# Uranouranic hydroxide, U₃O₈, 6H₂O (?).

Easily sol. in acids. Decomp. by (NH₄)₂CO₃+Aq, which dissolves out UO3. (Berzelius.)

### Uranic hydroxide.

See Uranic acid.

### Uranium tetraiodide, UI4.

Sol. in H₂O. (Guichard, C. R. 1907, 145. 921.)

#### Uranium iodide.

Sol. in ethyl acetate.. (Naumann, B. 1904 **37.** 3601.)

#### Uranium nitride, U₃N₄.

(Colani, C. R. 1903 137, 383.)

#### Uranium suboxide, UO (?).

(Guyard, Bull. Soc. (2) 1. 89.)

Does not exist. (Zimmermann, A. 213.

U₂O₃(?). Ppt. Decomp. by H₂O and in the air. (Peligot.)

#### Uranium dioxide (Uranous oxide), UO₂.

Insol in dil. HCl or H2SO/+Aq.

Sol. in conc. H₂SO₄, and easily in HNO₈+ Aq. (Peligot.)

Insol. in NH₄Cl+Aq. (Rose.)

Only sl. sol. in H₂SO₄, but a considerable amount is converted into the sulphate which is nearly insol, in H₂SO₄.

Slewly sol. in HCl, the amount dissolved in a given time varying widely with the method of preparation of the oxide. (Colani, C. R. 1912, **155.** 1251.)

Sl. more sol. in HNO3 man in aqua regia.

(Raynaud, Bull. Soc. 1912, (4) 11. 802.)

Very sol. in conc. HNO₃; less sol. in dil.

HNO₃. 1 gram is sol. in 3100 grams HCl
(1.17) at 17°; 4650 grams HBr(1.52) at 17°; 2200 grams H₂SO₄(1.79) at 17°; 12,000 grams acetic acid at 19°. (Raynaud, C. R. 1911, **153.** 1481.)

Sl. attacked by liquid NH3. (Gore, Am.

Ch. J 1898, 20. 830.) Easily sol, in warm Min. Uraninite. HNO₃+Aq. Not attacked by HCl+Aq.

### Uranium trioxide (Uranic oxide), UO₃.

Sol. in HNO₃+Aq. (Peligot.) Insol. in boiling K tartrate +Aq. (Kahlenberg and Hillyer, Am. Ch. J. 1894, 16. 102.) Sol. in oleic acid. (Gibbons, Arch. Pharm. 1883, **221.** 621.) See Uranic acid.

#### Uranium tetroxide, UO4.

(Fairley, Chem. Decomp. by HCl+Aq. Soc. **31.** 133.)

(Zimmer- $+2H_2O.$ Very hygroscopic. mann.) +3H₂O.

#### Uranium pentoxide, U2O5.

Sol. in acids. (Peligot.) Mixture of UO3 and U3O8. (Rammelsberg, Pogg. 59. 5.) Mixture of UO2 and U3O8. (Zimmermann, A. **232.** 273.)

#### Uranouranic oxide, UsO8.

Green uranium oxide. Very slowly and slightly sol. in dil. HCl or H2SO4+Aq; more easily when conc. Completely sol. in boilling H₂SO₄. Easily sol. in HNO₂+Aq.

Uranous oxychloride, UO2, UCl4+H2O.

Moderately sol. in H₂O. (Alov. Dissert.

2UO₂, UCl₄+H₂O. Very sol. in H₂O and alcohol. (Orloff, C. C. 1903, II. 484.) +13H₂O. Very sol. in H₂O and alcohol. (Orloff.)

4UO₂, UCl₄. Very sol. in H₂O and alcohol. (Orloff.)

5UO2,  $UCl_4+10H_2O$ . Insol. in H₂O. (Aloy, Dissert, 1901.)

#### Uranous oxyfluoride, UOF₂+2H₂O.

(Giolitti and Agamennone, C. C. 1905, I.

### Uranous oxysulphide, $U_8O_2S_4 = UO_2$ , $2US_2$ .

Slightly attacked by dil., easily by conc. HCl+Aq. Sol. in cold HNO₃+Aq. (Hermann, J. B. 1861. 258.)

#### Uranic oxy-compounds.

See Uranyl compounds.

#### Uranium phosphide, $U_3P_2$ .

Violently attacked by (Colani, C. R. 1903, 137. 383.) conc. HNO₃.

U₃P₄. Slowly attacked by H₂O, not by dil. HCl+Aq. More easily attacked by conc. HCl+Aq. Quickly decomp. by boiling conc. HNO3 and HNO3+HCl. (Colani, A. ch. 1907, (8) **12.** 59.)

#### Uranium selenide, USe.

Spontaneously inflammable. Sol. in funing HNO4. (Colani. C. R. 1903, **137.** 383.) USe₂. As US₂. (Colani, C. C. **1903,** II. 707.) U2Se3. (Colani.)

#### Uranium disilicide, USi₂.

Sol. in cold or hot conc. HF; insol. in HCl, HNO₃, H₂SO₄ and aqua regia. (Defacqz, C. R. 1908, **147.** 1051.)

#### Uranium monosulphide, US.

(Alibegoff, A. 233. 117.)

#### Uranium sesquisulphide, U₂S₃.

Not attacked by HCl or dil. HNO3+Aq. Oxidised by fuming H2SO4 or aqua regia. (Alibegoff, A. 233. 117.)

#### Uranium disulphide, $US_2$ .

Insol, in cold or boiling dil. HCl+Aq. Sol. in cold conc. HCl+Aq. Decomp. by HNO₃+Aq. (Hermann, J. B. 1861. 258.)

#### Uranium telluride, U4Te3.

Violently attacked by conc. HNO₈. (Colani, C. R. 1903, 137. 383.)

#### Uranosotungstic acid.

Potassium uranosotungstate, 9K2O, 6UO2.  $8WO_3 + 34H_2O$ .

Insol. in H₂O and in HCl. (Gibbs. Am. Ch. J. 1895, **17.** 175.)

#### Sodium uranosotungstate, 12Na₂O, 6UO₂, $8WO_3 + 25H_2O$ .

Insol. in cold H₂O. (Gibbs.)

#### Uranyl bromide, UO2Br2.

Sol. in H₂O. (de Coninck, C. C. 1903, I. 693.)

Sol. in ether. (v. Unruh, Dissert. 1909.) +7H₂O. Deliquescent. Sol. in H₂O.

### Uranyl bromide ammonia, UO₂Br₂, 2NH₃.

(v. Unruh, Dissert. 1909.) UO2Br2, 3NH3. (v. Unruh.) UO2Br2, 4NH3. (v. Unruh.)

#### Uranyl chloride, UO2Cl2.

Anhydrous.Very deliquescent. Sol. in H₂O, alcohol, and ether. Very sol. in H₂().

Sp. gr. of UO₂Cl₂+Aq at t°.

t°	% UO₂Cl₂	Sp. gr.
14.6	1	1.0056
16.3	2	1.0112
13.7	3	1.0161
13.1	4	1.0215
14.2	5	1.0260
15.2	6	1.0313
14.3	7	1.0366
14.5	8	1.0418
15.0	9	1.0469
14.8	10	1.0517

(de Coninck, A. ch. 1904, (8) **3.** 500.)

Sol. in cone. HCl. cone. HNO3 and in selenic acid.

Decomp. by H₂SO₄. (de Coninck, A. ch. 1904, (8) **3.** 504.)

Sol. in methyl acetate (Naumann, B. 1909, **42.** 3790); acetone. (Naumann, B. 1904, **37.** 4328.)

+H₂O. Sol. in H₂O, alcohol, and ether. +3H₂O. Deliquescent.

Very sol. in H₂O. 1 pt. is sol. in 0.134 pts. H₂O at 18° and solution, which is saturated, contains 76.2% UO₂Cl₂ or 88.2% UO₂Cl₂+3H₂O. Sp. gr. of solution = 2.740. The solubility increases with rise in temp.

Sol. in alcohol and in ether. (Mylius and

Dietz, B. 1901, **34.** 2775.)

#### Uranyl hydrogen chloride, UO₂Cl₂, HCl+ 2H₂O.

Cryst. at - 10° from sat. solution of UO₂Cl₂ in HCl+Aq.

Fumes in the air. (Aloy, Bull. Soc. 1901, (3) **25.** 15**4**.)

### Uranyl chloride ammonia, UO2(NH2Cl)2.

Decomp. by H₂O. (Regelsherger, A. 227).

UO₂(NH₈.NH₈Cl)NH₂Cl. Decomp. by H₂O. (Regelsberger.) UO₂(NH₈.NH₃Cl)₂.

Decomp. by H₂O. (Regelsberger.)

### Uranyl fluoride, UC₂F₂.

Very sol. in H₂O. (Sm thells, Chem. Soc. **43.** 125.)

Insol. in H₂O or dil. acids. Very sl. sol. in  $\mathbf{HF} + \mathbf{Aq}$ . Sol. in  $\mathbf{H}_2\mathbf{SO}_4 + \mathbf{aqua}$  regia. (Ditte, A. ch. (6) **1.** 369.)

Insol, in ether and amyl alcohol. (v. Unruh, Dissert, 1909.)

UOÉ₄ Very sol, in H₂O. (Ditte, C. II. **91.** 115.)

True composition is UC₂F₂. (Smithells.)

#### Uranyl hydrogen fluoride, UO₂F₂, HF+H₂O. Very sol. in H₂O. (Smithells, Chem. Soc. **43.** 131.)

### Uranyl fluoride ammonia, UO₂F₂, 2NH₃.

(v. Unruh, Dissert. 1909.)  $UO_2F_2$ ,  $3NH_3$ . (v. Unruh.) UO2F2, 4NH3. (v. Unruh.)

#### Uranyl iodide, UO₂I₂.

(Aloy, A. ch. 1910, Ppt. Deliquescent. (7) **24.** 417.)

Deliquescent.

Sol. in alcohol, ether and benzene. (Aloy, Dissert. **1901.**)

Sol. in acetone. (Eidmann, C. C. 1899, II. 1014; Naumann, B. 1904, 37. 4328); methyl acetate. (Naumann, B. 1909, 42. 3790.)

### Uranyl iodide ammonia, UO2I2, 2NH3.

(Aloy, Dissert. 1901.)  $UO_2I_2$ ,  $3NH_3$ . (Aloy.) UO2I2, 4NH3. (Aloy.)

#### Uranvl selenide, UO2Se.

Very slowly decomp. by H₂O.

Easily sol. in cold HCl. Violently attacked by cold HNO₃. Not attacked by dil. alkalies. (Milbauer, Z. anorg. 1904, 42. 450.)

#### Uranyl sulphide, UO2S.

Sl. sol. in pure H₂O. Sol. in dil., insol. in Sol. in conc. HCl+Aq, absolute alcohol. Decomp. by caustic al- Hauer.) also in dil. acids. kalies +Aq. Partly sol. in (NH4)2S+Aq.

### Metavanadic acid, HVO.

Insol. in H2O; sol. in acids and alkalies. Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.) +½H₂O.

See Vanadium pentoxide.

### Pyrovanadic acid, H4V2O7.

Insol. in H2O. Sol in acids and alkalies.

#### Vanadates.

The alkali, Ba, and Ph metavanadates are sl. sol. in H2O, the others are more easily sol. Incol. in alcohol.

#### Aluminum me avanadate.

Very sl. sol. in H₂O. (Berzelius.)

#### Aluminum divanadate.

Very sl. sel. in H₂O. (Berzelius.)

### A:nmonium metavanadate, (NH₄)VO₈.

(a) Very slowly and sparingly sol. in cold  $H_2O$ . Easily sol. in hot  $H_2O$ . (Berzelius.) Easily sol. in  $H_2O$  at about 70°. Very sl. sol. at above and below that temperature. (Guyard, Bull. Soc. (2) 25, 355.)

10 g. dissolve in 1 litre cold, and 63 g. in 1 litre hot H₂O with partial decomp. (Ditte, C. R. **102.** 918.)

#### Solubility in H₂O at t°.

t°	Solubility, mol. per litre
18 25 35 45 55	0.03715 0.05189 0.08980 0.13406 0.17041
70	0.25994

(Meyer, Z. Elektrochem, 1909, 15. 266.)

#### Solubility in NH₄OH + Aq at t°.

PA+HO ₄ HN	t°	Solubility, mol. per litre
0.0677-N 0.2452-N 0.5872-N	18	0.04763 0.06798 0.1029
0.0677-N 0.2452-N 0.5872-N	25	0.06026 0.07303 0.1080

(Meyer, Z. Elektrochem, 1909, 15. 268.)

Extremely sl. sol. in sat. NH₄Cl+Aq. (v. Insol. in sat. NH4Cl+Aq.

Solubility in salts + Aq at t°.			
Salt solution	t°	Solubility, mol. per litre	
0.05-N NH ₄ Cl+Aq	18 25 35 45 55	0.01419 0.02246 0.04445 0.07575 0.09544	
0.1-N NH ₄ Cl+Aq	18 25 35 45 55	0.00356 0.00995 0.02347 0.04507 0.06314	
0.05-N NH ₄ NO ₃ +Aq	18 25	0.01433 0.02364	
0.1-N NH ₄ NO ₃ +Aq	18 25	0.00497 0.01050	

(Meyer, Z. Elektrochem, 1909, 15. 267.)

Insol. in alcohol. (v. Hauer.)

(b) Sol. in cold H₂O, from which it is pptd. by alcohol. (Berzelius.)

# Ammonium divanadate, $(NH_4)_2V_4O_{11}+4H_2O$ .

Sol. in H₂O, from which it is precipitated by sat. NH₄Cl+Aq or alcohol. (v. Hauer, W. A. B. **21.** 337.)

Correct formula is (NH₄)₃V₇O₁₀+2H₂O, according to Rammelsberg (B. A. B. 1883. 3.)  $+3H_2O$ . Very sol. in  $H_2O$ . (Ditte, C. R. **102.** 918.)

#### Ammonium trivanadate, (NH₄)₂V₆O₁₆.

Anhydrous. Nearly insol. in hot or cold H₂O. (Norblad, B. 8. 126.)

1.5 g. dissolve in 1 litre of boiling  $H_2O$ . (Ditte, C. R. 102. 918.) +5 $H_2O$ . Very sl. sol. in  $H_2O$ . (Ditte.) +6 $H_2O$  (?). Very sol. in  $H_2O$ . (v. Hauer, W. A. B. **39.** 455.)

Could not be obtained. (Norblad; also Rammelsberg, B. A. B. **1883.** 3.)

### Ammonium vanadate, $(NH_4)_8V_7O_{10}+2H_2O$ .

Correct formula of v. Hauer's divanadate, according to Rammelsberg (B. A. B. 1883. 3). Sl. sol. in H₂O.

Ammonium sesquivanadate, (NH4)4V6O17+ 4 or 6H₂O.

Very sol. in H₂O. (Ditte, C. R. 102, 918.)

Ammonium pentavanadate, (NH₄)₄V₁₀O₂₇+ 10H₂O.

Sol. in  $H_2O$ . (Rammelsberg, B. A. B. 1883.

#### Ammonium hydroxylamine vanadate, VO6N2H10.

Rapidly decomp. by H₂O. (Hofmann and Kohlschütter, Z. anorg. 1898, 16. 472.)

 $HVO_3$ ,  $3NH_3O$ ,  $2NH_3 = VO_6N_5H_{16}$ . idly decomp. by H₂O. (Hofmann and Kohlschütter.)

Ammonium potassium vanadate, K₂V₄O₁₁,  $(NH_4)_4V_6O_{17}+9H_2O.$ 

Sol. in H₂O. (Ditte, C. R. 104, 1844.)

Ammonium sodium vanadate, Na₂V₄O₁₁,  $(NH_4)_4V_6O_{17}+15H_2O.$ 

Sol. in H₂O. (Ditte, C. R. **104.** 1841.)

Ammonium uranyl vanadate, (NH₄)₂O, 2UO₃,  $V_2O_5+H_2O.$ 

Insol. in  $H_2O$ ,  $NH_4OH + Aq$ , or dil.  $HC_2H_3O_2 + Aq$ . (Carnot, C. R. **104.** 1850.)

#### Barium metavanadate, $Ba(VO_3)_2 + H_2O$ .

Somewhat sol. in H₂O before ignition Sol. in conc. H₂SO₄. (Berzelius.)

#### Barium pyrovanadate, Ba₂V₂O₇.

Somewhat sol, in H₂O. (Roscoe.)

#### Barium vanadate, $Ba_2V_6O_{17}+14H_2O$ .

(Ditte, C. R. **104.** 1705.)

 $Ba_3V_{10}O_{28}+19H_2O$ . 1 pt. is sol. in 5200 pts.  $H_2O$  at 20-25°. Much more sol. in hot, but decomp. by boiling H₂O. (v. Hauer, W. A. B. **21.** 344.)

Sol. in about 5000 pts. H₂O. (Manasse, C. C. **1886.** 773.)

 $Ba_4V_{10}O_{29} + 2H_2O$ . (Norblad.)

#### Bismuth vanadate, Bi₂(VO₄)₂,

Min. Pucherite. Sol. in HCl+Aq with evolution of Cl.

#### Cadmium vanadate, $Cd(VO_3)_2$ .

(Ditte, C. R. **102.** 918.)

 $CdV_6()_{16}+24H_2O$ . Sl. sol. in  $H_2O$ . (Ditte, C. R. **104.** 1705.)

#### Cadmium potassium vanadate, CdK₂V₆O₁₇+ $+9H_2O.$

(Radau, A. **251.** 148.)

 $Cd_3V_{10}O_{28}$ ,  $K_6V_{10}O_{28}+27H_2O$ . 1000 pts. H₂O dissolve 5.4 pts. at 18°. (Radau.)

#### Cadmium vanadate bromide, $3Cd_{3}(VO_{4})_{2}$ , CdBr₂.

Very sol, in dil. acids. (de Schulten, Bull. Soc. 1900, (3) **23.** 160.)

#### Cadmium vanadate chloride, $3Cd_{3}(VO_{4})_{2}$ , CdCl₂.

Very sol. in dil. acids. (de Schulten, Bull. Soc. 1900, (3) **23.** 159.)

#### Cæsium metavanadate, CsVO₂.

(Chabrié, A. ch. 1902, (7) **26.** 228.)

Calcium metavanadate, Ca(VO₃)₂+4H₂O.

Much more sol. than Sr(VO₃)₂, and solution is not precipitated by alcohol. (Berzelius.)
+3H₂O. Sol. in H₂O₄; insol. in alcohol.

+3H₂O. Soi. in H₂O₂; insoi. in alectical (Scheuer, Z. anorg. 1898, **16.** 304.)

Calcium pyrovanadate, Ca₂V₂O₇+5H₂O. Precipitate.

+2H₂O. Very sol. in dil. acids. (Ditte C. R. **104**. 1705.) +2½H₂O. (Roscoe.)

Calcium divanadate, CaV₄O₁₁+9H₂O.

Easily sol. in H₂O. (v. Hauer.) When fused is nearly insol. in H₂O.

Hauer.) +6H₂O. (Manasse, A. **240.** 23.)

Calcium trivanadate, CaV₀O₁₇+12H₂O. Very sol, in H₂O. (Ditte, C. R. **104**, 1765.)

Calcium vanadate, Ca₈V₈O₂₃+15H₂O.

Sol. in  $H_2O$ . (Manasse, A. **204.** 23.)  $Ca_3V_{14}O_{38}+7H_2O$  (?). Sl. sol. in  $H_2O$ . Probably a mixture. (Manasse, A. **240.** 23.)  $Ca_3V_{16}O_{43}+26H_2O$ . Sol. in  $H_2O$ . (Manasse, A. **240.** 23.)

Calcium copper vanadate, (Ca,  $Cu)_4V_2O_9+H_2O$ .

Min. Volborthite. Sol. in HNO3+Aq.

Calcium potassium vanadate,  $CaK_8V_{20}O_{55} + 22H_2O$ .

Sol. in H₂O. (Manasse, A. **240.** 23.)

Calcium vanadate chloride, Ca₈(VO₄)₂, CaCl₂. (Hautefeuille, C. R. 77. 896.)

Chromium vanadate, CrVO₄.

Absolutely insol. in  $H_2O$  containing  $NH_4C_2H_3O_2$  and  $HC_2H_3O_2$ . (Carnot, C. R. **104.** 1850.)

Cobaltous metavanadate, Co(VO₂)₂+3H₂O. Easily sol. in H₂O. (Ditte, C. R. **104**. 1705.)

Cobaltous potassium vanadate, CoKV₆O₁₄++8H₂O.

 $\begin{array}{c} 1000 \text{ pts. } H_2O \text{ dissolve } 4.8 \text{ pts. of this salt.} \\ (\text{Radau, A. } \textbf{251.} \ 140.) \\ \text{Co}_3\text{K}_2\text{V}_14\text{O}_{39} + 21\text{H}_2\text{O.} \quad (\text{Radau.}) \end{array}$ 

Cupric metavanadate.

Sol. in H₂O. (Berzelius.)

Cupric pyrovanadate, Cu₂V₂O₇+3H₂O. Sol. in hot H₂O. (Ditte, C. R. 104. 1705.) Could not be obtained. (Radau, A. 251. 150.) Cupric lead vanadate, 5(Cu, Pb)O, V₂O₅+ 2H₂O.

Min. Mottramite.

3CuO, V₂O₅, 3(3PbO, V₂O₅), 6CuO₂H₂+ 12H₂O. Min. Psittacinnite.

Cupric potassium vanadate, CuKV₀O₂₄+ 171:₂O.

Moderately sol. in warm  $H_2O$ . 100 pts.  $H_2O$  dissolve 11.1 pts. at 18°. (Radau, A. 251. 151)

Didymi..m varadate, Dia(VO4)2.

Puis Soc. (2) 43. 365.)

Glucinum metavanadate (?).

Difficultly sol. in H₂C. (Berzelius.)

Glucinum divanadate (?).

Difficultly sol. in H₂O. (Berzelius.)

Indium metavanadate,  $In(YO_3)_3+2H_2O$ .

Ppt. (Renz, Dissert. 1902.)

Iron (ferrous) metavanadate.

Ppt. Sol. in HCl+Aq. (Berzelius.)

Iron (ferric) metavanadate.

Somewhat sol. in H₂O. (Berzelius.)

Lead metavanadate, Pb(VO₃)₂.

Sl. sol. in H₂O. Easily sol. in warm dil. HNO₃+Aq. Not completely decomp. by H₂SO₄ or by boiling with K₂CO₃+Aq. (Bergelius)

Min. Dechenite. Easily sol. in dil. HNO₃+Aq, and decomp. by HCl+Aq.

Lead pyrovanadate, basic, 2Pb₂V₂O₇, PbO.

Insol. in boiling H₂O or HC₂H₃O₂. Decomp. by HNO₃+Aq with separation of V₂O₅, which dissolves on warming. (Roscoe.)

Lead pyrovanadate, Pb₂V₂O₇.

Sol. in warm dil. HNO₃+Aq. (Ditte, C. R. **104.** 1705.)

Min. Descloizite. Sol. in cold dil. HNO3+Aq.

Lead divanadate, PbV4O11.

(Ditte, C. R. 104. 1705.)

Lead orthovanadate, Pb₃(VO₄)₂.

Insol. in H₂O. (Roscoe, A. suppl. 8. 109.)

Lead zinc orthovanadate, 4Pb₃(VO₄)₂,

3Zn₃(VO₄)₂.
Min. Eusynchite. Easily sol. in HNO₅+

Lead zinc vanadate, (Pb, Zn), V2O0+H2O.

Min. Descloizite. Sol. in excess of HNO₈+ Aq.

Lead vanadate chloride, 3Pb₃(VO₄)₂, PbCl₂. Min. Vanadinite. Easily sol. in HNO3+ Aq.

Lithium vanadate, basic, Li₆V₂O₈+6H₂O.

Sol. in H₂O. (Ditte, C. R. 104, 1168.)  $\text{Li}_8\text{V}_2\text{O}_9 + \text{H}_2\text{O}$ , and  $14\text{H}_2\text{O}$ . Sol. in  $\text{H}_2\text{O}$ . (Ditte.)

#### Lithium metavanadate, LiVO₃.

Easily sol. in H₂O. (Berzelius.) +2H₂O. Quite easily sol. in H₂O. (Rammelsberg, B. A. B. 1883. 3.)

#### Lithium divanadate, Li₂V₄O₁₁+9H₂O.

Very sol. in H₂O. (Norblad.) Correct formula is Li₃V₅O₁₄+12H₂O. (Rammelsberg.) +8, or 12H₂O. (Ditte, C. R. 104, 1168.)

#### Lithium orthovanadate, LizVO4.

Insol. in H₂O. (Rammelsberg, B. A. B. **1883.** 3.)

Lithium pyrovanadate,  $Li_4V_2O_7+4H_2O_1$ 

Very sol. in H₂O. (Rammelsberg, B. 16. 1676.)

+3H₂O. (Ditte, C. R. 104. 1168.)

### Lithium vanadate, $\text{Li}_{5}\text{O}_{14} + 7\text{H}_{2}\text{O}$ .

Difficultly sol. in H₂O. (Rammelsberg.) +12H₂O. Very efflorescent. Correct formula for v. Hauer's divanadate. (Rammelsberg.)

 $\text{Li}_4\text{V}_6\text{O}_{17} + 16\text{H}_2\text{O}$ . Sol. in  $\text{H}_2\text{O}$ . (Ditte, C. R. **104.** 1168.)

+15H₂O. (Rammelsberg.)

 $+11H_2O.$  (R.) +3H₂O. (R.)

 $\text{Li}_6\text{V}_4\text{O}_{13} + 15\text{H}_2\text{O}$ . Not very easily sol. in

 $H_2O$ . (Rammelsberg.)  $Li_6V_8O_{22}+12H_2O$ . Moderately sol. in  $H_2O$ . (Rammelsberg.)

 $\text{Li}_{10}\text{V}_{12}\text{O}_{35} + 30\text{H}_2\text{O}$ . Efflorescent. Verv sol. in H₂O. (Rammelsberg.)

#### Magnesium metavanadate, Mg(VO₃)₂.

Very easily sol. in H₂O. (Berzelius.) +6H₂O. Very sol. in H₂O. (Ditte, C. R. **104.** 1705.)

#### Magnesium divanadate, $MgV_4O_{11}+8H_2O$ .

Difficultly sol. in H₂O, but much more sol. than barium divanadate. (v. Hauer.) +9H₂O. (Ditte, C. R. **104.** 1705.)

Magnesium trivanadate,  $Mg_2V_6O_{17}+4\frac{1}{2}H_2O$ . Very sl. sol. in H₂O. (Manasse, A. 240. 23.)

### Magnesium vanadate, Mg₃V₁₀O₂₈+28H₂O.

Sol. in H₂O. (Suguira and Baker, Chem. Soc. **35.** 715.)

#### Manganous metavanadate, $Mn(VO_2)_2 +$ 4**H**₂O.

Very sl. sol. in cold, somewhat more sol. in hot H2O. Easily sol. in dil. acids. (Radau, A. **251.** 125.)

Sl. sol, in H₂O₂; insol, in alcohol. (Scheuer, Z. anorg. 1898, **16.** 304.)

#### Manganous pyrovanadate, Mn₂V₂O₇.

Sl. sol. in hot dil. HNO₃+Aq. (Ditte, C. R. **96.** 1048.)

#### Manganous potassium vanadate, MnKV₅O₁₄ $+8H_2O.$

100 pts. H₂O dissolve 1.7 pts. salt at 18°.  $\begin{array}{c} Easily \ sol. \ in \ acids. \ (Radau, \ A. \ \textbf{251.} \ 129.) \\ 3Mn_3V_8O_{23}, \quad K_6V_8O_{23} + 54H_2O. \quad (Radau.) \\ 7Mn(VO_3)_2, \quad 2KVO_3 + 25H_2O. \quad (Radau.) \\ 11Mn(VO_3)_2, \quad 2KVO_3 + 48H_2O. \quad (Radau.) \end{array}$ 

#### Mercuric vanadate.

Sl. sol. in H₂O.

#### Nickel vanadate, Ni(VO₈)₂.

Sol. in H₂O. (Ditte, C. R. **104.** 1705.)

#### Nickel orthovanadate, Ni₂(VO₄)₂.

Insol. in H₂O; sol. in HNO₃+Aq. (Ditte, C. R. 96. 1049.)

#### Nickel divanadate, $NiV_4O_{11}+3H_2O$ .

Sol. in H₂O. (Ditte, C. R. **104.** 1705.)

#### Nickel potassium vanadate, 5Ni(VO₃)₂, $2KVO_3+25H_2O$ .

 $Ni_3K_2V_{10}O_{29}+17H_2O$ . Very sl. sol. in hot H₂O.

NiKV₅O₄+8H₂O.

 $2Ni_4V_{14}O_{39}$ ,  $K_8V_{14}O_{39}+69H_2O$ . 1000 pts. H₂O dissolve 1.7 pts. of salt at 17.5°. (Radau, A. **251.** 137.)

Potassium vanadate, basic,  $K_8V_2O_9+20H_2O$ . Sol. in H₂O. (Ditte, C. R. 104. 902.)

#### Potassium metavanadate, KVO₃.

Anhydrous. Slowly sol. in cold, more easily in hot H₂O. Insol. in alcohol. (Berzelius.)

Completely sol. in a little cold H₂O. (Norblad.)

 $+H_2O.$ Sol. in H₂O. (Rammelsberg.)

 $+1\frac{1}{4}H_{2}O.$ (Ditte.)

 $+1\frac{1}{2}H_{2}O.$ (Ditte.)  $+2H_2O$ . (Ditte.)

(Ditte, C. R. 104. 902.)  $+3H_2O$ .

+7H₂O. (Rammelsberg.)

### Potassium divanadate, K₂V₄O₁₁+4H₂O.

Sol. in cold or lukewarm H2O. Decomp. by hot H₂O. (Rammelsberg.)

 $+3H_2O$ . (Berzelius.)

+3½H₂O. Sol. in warm H₂O. Norblad. +8 or 10H₂O. (Ditte, C. R. 104. 902.) +6H₂O. (Ephraim, Z. anorg. 1903, 35. 76.)

### Potassium trivanadate, K₂V₆O₁₆.

Anhydrous. Nearly insol. in H₂O (Norblad.) +6H₂O. Insol. in cold or hot H₂O. (Norblad.) +1, and 5H₂O. (Ditte, C. R. 104. 902.)

#### Potassium orthovanadate, K₈VO₄+4½ or 6H₂O.

Deliquescent. Sol. in H₂O. (Ditte, C. E. **104.** 902.)

Decomp. by H₂O into K₄V₂O₇ and KOM. (Rammelsberg, B. A. B. 1883. 3.)

#### Potassium pyrovanadate, $K_4V_2O_7 + 3H_2O_1$

Deliquescent Easily sol. in  $H_2O$ . Insol. in alcohol. (Norblad.) +4H₂O. (Ditte, C. R. 104. 902.)

#### Potassium vanadate, $K_8V_5O_{14}+5H_2O$ .

100 pts. H₂O dissolve 19.2 pts. at 17.5°. (Radau, A. **251.** 120.) +4½H₂O. (Radau.)

 $K_4V_6O_{17}+2H_2O$ . Slowly sol. in H₂O.

(Rammelsberg. +6H₂O. (Ditte, C. R. 104. 902.)

· +7H₂O. (Friedheim, B. 23. 1526.) Very sol. in H₂O.  $K_4V_{10}O_{27}+12H_2O$ .

(Manasse, A. 240, 42.)  $K_{10}V_8O_{25}^{\prime}+7H_2O$ . Sol. in  $H_2O$ . (Rammels-

berg.  $K_2V_8O_{21}+1\frac{1}{2}H_2O$ . Very sl. sol. in  $H_2O$ . (Ephraim, Z. anorg. 1903, 35. 75.) (Ephraim, Z. anorg. 1903,  $K_4V_{18}O_{47}$ .

Potassium sodium vanadate, 2(2K₂O,3V₂O₅),  $3(2Na_2O_1, 3V_2O_5) + 30H_2O_1$ 

**35.** 78.)

(Friedheim, Z. anorg. 1894, 5. 442.)

 $2K_2O$ ,  $3V_2O_5$ ,  $4(2Na_2O$ ,  $3V_2O_5)+35H_2O$ . Efflorescent. (Friedheim, Z. anorg. 1894, **5.** 441.)

#### Potassium strontium vanadate, K2Sr8V14O39+ 20H₂O.

Sol. in H₂O. (Manasse, A. **240.** 23.)  $K_2Sr_3V_{14}O_{39} + 30H_2O$ . As above. (Manasse.)

 $K_4Sr_2V_{14}O_{39}+18H_2O$ . As above. (Manasse.)

Potassium zinc vanadate, KZnV₅O₁₄+8H₂O. 1000 pts. H₂O dissolve 4.1 pts of the salt.

(Radau, A. 251. 145.)

Potassium vanadate cyanide, K₄V₂O₇, 4KCN +14H₂O.

Easily decomp. Insol. in alcohol. (Petersen. Z. anorg. 1904, 38, 343.)

Samar. 1m vanadate, Sm₂O₃, 5V₂O₅+28H₂O₄ (Cleve )

+24H₂O. (Cleve.)

#### Samerium orthovanadate.

Produitace.

### Silver metavanadate, AgVO .

Sol. in HNO₃ or di. NH₄OH+Aq. (Berzelius.) Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 829.)

#### Silver orthovanadate, AgaVO4.

Ppt. Easily sol. in HNO3 or NII4OH+Aq. (Roscoe, Proc. Roy. Soc. 18. 316.)

#### Silver pyrovanadate, Ag₄ v₂O₇.

Ppt. (Roscoe.) Sol. in NH₄OH+Aq. (Ditte, C. R. 104. 1705.)

#### Silver vanadate, Ag₆V₄O₁₃.

Sol. in 21,414 pts. H₂O at 14°, and 13,617 pts. at 100°. (Carnelley, A. 166. 155.)

#### Silver vanadate ammonia, 6AgVO₃, 4NH₃+ 8H₂O.

(Ditte, C. R. **104.** 1705.)

#### Sodium vanadate, basic, Na₈V₂O₉+26 or 30H₂O.

Very sol. in  $H_2()$ . (Ditte.)

#### Sodium metavanadate, NaVO₈.

Anhydrous. Slowly sol. in cold, very easily in hot H₂O. (Norblad.)

 $100 \text{ g. } \text{H}_2\text{O} \text{ dissolve at:}$   $25^{\circ} \text{ 40}^{\circ} \text{ 60}^{\circ}$ 75°

21.10 26.2332.9738.83 g. NaVO₃. (McAdam and Pierle, J. Am. Chem. Soc.

1912, **34.** 606.) +2H₂O. Easily sol. in H₂O.

100 g. H₂O dissolve at: 25° 40° 6

60° 68.36 g. NaVO₃. 29.93

At 75° a value was obtained which showed that the solid phase had changed into the less sol. modification. (McAdam and Pierle, J. Am. Chem. Soc. 1912, **34**. 607.) +½H₂O. (Ditte, C. R. **104**. 1061.)

+3, 4, and 5H₂O. (Ditte.)

#### Sodium divanadate, Na₂V₄O₁₁.

Anhydrous. Sl. sol. even in warm H2O,  $2K_8V_{14}O_{39},\ 3Zn_4V_{14}O_{39}+90H_2O.\quad (Radau.)\ |\ but\ easily\ sol.\ on\ addition\ of\ acids.$ 

+9H₂O. Easily sol. in cold H₂O. Insol. (Norblad.) in alcohol. (Ditte, C. R. 104. 1061.) +5H₂O.

Not obtained by Rammelsberg (B. A. B. **1883.** 3.)

#### Sodium trivanadate, Na₂V₆O₁₆+9H₂O.

Insol. in cold or hot H₂O. (Norblad.) Composition is Na₆V₁₆O₄₃+24H₂O. (Rammelsberg.)

+3H₂O. (Ditte, C. R. **104.** 1061.)

#### Sodium orthovanadate, Na₃VO₄+16H₂O.

Easily sol. in H₂O, but decomp. into Na₄V₂O₇ and KOH. Precipitated by an excess of alcohol. (Roscoe, A. suppl. 8. 102.)

+7H₂O. (Hall, Chem. Soc. **51.** 96.) +10., and 12H₂O. Less sol. in dil. NaOH +Aq than in  $H_2O$ . (Baker, A. **229.** 286.)

#### Sodium pyrovanadate, Na₄V₂O₇+18H₂O.

Easily sol. in H₂O. Insol. in alcohol. (Norblad.)

Sol. in alcohol. (Ditte, C. R. 104. 1061.) +8H₂O. (Ditte.)

### Sodium sesquivanadate, Na₄V₆O₁₇.

Anhydrous. Insol. in H₂O or NH₄OH + Aq. (Rammelsberg.)

+10H₂O. (Norblad.)

+16H₂O.Efflorescent. (Rammelsberg.)

 $+18H_{2}O.$ (Ditte.)

Sodium pentavanadate, Na₄V₁₀O₂₇+3¹/₂H₂O. Scarcely sol. in H₂O. (Rammelsberg.)

#### Sodium vanadate, $Na_6V_4O_{18}+6H_2O$ .

Difficultly sol. in cold H₂O. (Carnelley, A. 166. 155.)

+2H₂O. (Carnelley.)

Na₆V₁₆O₄₃+24H₂O. Correct formula for Norblad's *tri*vanadate. (Rammelsberg.)

 $Na_2O$ ,  $4V_2O_5+7\frac{1}{2}H_2O$ . (Baragiola, Dissert. 1902.)

 $+8\frac{1}{2}H_2O$ .

O. (Baragiola.)  $5V_2O_5+22H_2O$ . 3Na₂O, (Prandtl and

Lustig, Z. anorg. 1907, 53. 405.)  $4Na_{2}O$ ,  $7V_{2}O_{5} + 33H_{2}O$ . (Friedheim, Z. anorg, 1894, 5. 443.)

5Na₂O, 8V₂O₅+39H₂O. Sol. in H₂O. (Friedheim, Z. anorg. 1894, **5.** 441.)

#### Sodium vanadate fluoride, 2Na₃VO₄, NaF+ 19H₂O.

Sol. in H₂O. (Rammelsberg, W. Ann. 20.

# Stontium metavanadate, Sr(VO₃)₂+4H₂O.

Difficultly sol. in cold H₂O. (Norblad.)

#### Strontium divanadate, $SrV_4O_{11} + 9H_2O$ .

Sl. sol. in H₂O, but much more sol. than barium divanadate. (v. Hauer.)

Sol. in  $H_2O_2+Aq$  free from  $H_2SO_4$ . Insol. in alcohol. (Scheuer, Z. anorg. 1898. **16.** 303.)

#### Strontium trivanadate, SrV₆O₁₆+14H₂O.

Sol. in H₂O, but decomposes slowly on Easily sol. in hot H2O acidified boiling. with HC₂H₃O₂, and crystallizes therefrom without decomp. (v. Hauer, J. pr. 76. 156.)

#### Strontium tetravanadate, $SrV_8O_{21}+11H_2O$ .

Sol. in hot H₂O with partial decomposition. (Manasse, A. 240. 34.)

#### Strontium vanadate, Sr₃V₈O₂₃+14H₂O.

Sol. in H.O. (Manasse, A. 240, 23.)  $Sr_4V_{14}O_{39} + 30H_2O$ . Sol. in  $H_2O$ . (Norblad.)

#### Thallous metavanadate, TlVO₃.

Sol. in 11,534 pts. H₂O at 11°, and 4756 pts. at 100°. (Carnelley.)

#### Thallous orthovanadate, Tl₃VO₄.

Sl. sol. in H₂O. Sol. in 999 pts. H₂O at 15°, and 574 p s. at 100°. (Carnelley, Chem. Soc. (2) **11.** 323.)

#### Thallous pyrovanadate, Tl₄V₂O₇.

Sol. in 4996 pts. H₂O at 14°, and 3840 pts. H₂O at 100°. (Carnelley.)

#### Thallous vanadate, Tl₁₂V₈O₂₆.

Sol. in 3406 pts.  $H_2O$  at 14°, and 533 pts. at 100°. (Carnelley.)  $Tl_{12}V_{10}O_{31}$ . Sol. in 9372 pts.  $H_2O$  at 11°,

and 3366 pts. at 100°. (Carnelley.) Tl₁₂V₁₄O₄₁. Ppt. (Carnelley)

#### Thorium vanadate, Th₅O₁₂(VO)₄, 16V₂O₅+ 24H₂O (?).

Sol. in H₂O. (Cleve.)

ThO2, V2O5+6H2O. Sol. in acids. (Volck, Z. anorg. 1894 6. 167.

Uranyl vanadate, 2UO₃, V₂O₅, (UO₂)₂V₂O₇. Insol. in H₂O. (Carnot, C. R. 104. 1850.)

#### Vanadium vanadate, $2VO_2$ , $V_2O_6 = V_4O_9$ .

Insol. in H₂O. Sol. in dil. H₂SO₄ or HN()₃ +Aq. (Rammeslberg.)

Slowly oxidise l by HNO₃+Aq. Slowly sol. in NH₄OH+Aq. Reasily sol. in HCl+Aq (Ditte, C. R. **101.** 1487.)  $+2^{2}/_{3}H_{2}O.$ (Brierley.)

2VO₂, 2V₂O₅+8H₂O. Ins (Brierley, Chem. Soc. **49.** 31.) Insol. in H₂O.

### Ytterbium vanadate, $3Yb_2O_8$ , $5V_2O_6+3H_2O$ .

 $Yb_{2}O_{3},\ 15V_{2}O_{\delta}.$  Ppt. (Cleve, Z. anorg. 1902, **32.** 150.)

#### Yttrium vanadate.

Precipitate. (Berzelius.)

Zinc vanadate,  $Zn(VO_3)_2 + 2H_2O$ . Sol. in H₂O. (Ditte, C. R. 104. 1705)

Zinc pyrovanadate, Zn₂V₂O₇.

Appreciably sol. in H₂O. (Ditte, C. R. **96.** 1048.)

Pervanadic acid. See Pervanadic acid.

Vanadicotungstic acid.

Ammonium vanadicotungstate,  $3(NH_4)_2O$ ,  $V_2O_3$ ,  $8WO_4 + 10H_2O$ .

Very sol. in H₂O. Insol. in organic solvents. (E. F. Smith, J. Am. Chem. Soc. 1905, **25**, 1227.)

#### Vanadicovanadic acid.

Ammonium vanadicovanadate, (NH₄)₂O,  $2VO_2$ ,  $4V_2O_5 + 8H_2O$ .

Sl. sol, in cold and warm H₂O. Am. Ch. J. 7. 209.) in H₂O. (Brierley.)

Potassium —,  $2K_2O$ ,  $2V_2O_4$ ,  $V_2O_5+6H_2O$ . Sol. in hot H₃O. (Brierley, Chem. Soc. **49.** 30.)  $5K_2O_1$ ,  $2V_2O_4$ ,  $4V_2O_5 + H_2O_2$ . Insol. in  $H_2O_2$ .

(Brierley.)  $K_2O_1$ ,  $V_2O_4$ ,  $8V_2O_5$ . Insol. in H₂(). Sol. in conc. H₂SO₄. (Prandtl, B. 1905,

Sodium  $\overline{\phantom{a}}$ ,  $2Na_2O$ ,  $2V_2O_4$ ,  $V_2O_5+13H_2O$ . Easily sol, in H2O. Insol, in conc. solutions of salts, especially acetate. (Brierley,

Chem. Soc. 49, 30.) 2Na₂O, V₂O₄, 5V₂O₅. Insol in H₂O. Sol. in conc. H₂SO₄. Not attacked by boiling with conc. HNO₃. Slowly attacked by hot dil. NH₄OH+Aq. (Prandtl, B. 1905, **38**. 659.)

Vanadioarsenic acid. See Arseniovanadic acid.

**38.** 660.)

Vanadioiodic acid. See Iodovanadic acid.

Vanadiomolybdic acid, 8MoOs, V2Os+ 5H₂O.

Very sl. sol, in H₂O, and sl. sol. in boiling HNO₃+Aq. (Ditte, C. R. **102.** 757.) Could not be obtained. (Friedheim, B. **24.** 1173.)

Ammonium vanadiomolybdate,

Castendyck, B. 1900, 33. 1615.)

 $(NH_4)_2O$ ,  $2V_2O_5$ ,  $2M_0O_8 + 8H_2O$ . Nearly insol. in H₂O. (Friedheim and Castendyck.)  $2(NH_4)_2O$ ,  $V_2O_5$ ,  $3MoO_3+6H_2O$ . (Euler-Chelpin, Dissert, 1895.)

 $(NH_4)_2O$ ,  $V_2O_5$ ,  $3M_0O_3+17H_2O$ . (hclpin.)

 $2(NH_4)_2O$ ,  $V_2O_5$ ,  $4MoO_5+7H_2O$  and + 8H2O. (Euler-Chelpin,)

 $3(NH_4)_2O$ ,  $2V_2O_b$ .  $1MoO_3+7H_2O$ . (Milch, Dissert. Berlin, 1887.)

+9H₂O. Sol. ir H₂O. (Ditte, C. R. 102. 1019.)

+11H2O. Easily sol. in H2O. Correct composition of above compounds is = (NH₄)₂O, 2V₂O₃+2[NH₄)₂O, 2MoO₃]+11H₂O. (Predheim, B. **24.** 1173.)

Moderately sol, in H₂O and can be recryst. therefrom. Euler-Chelpin, Dissert. 1895.)

 $2(NH_4)_2O$ ,  $3V_2O_5$ ,  $4MoO_3+11H_2O$ . Nearly insol. in H2O. (Friedheim and Casten-

 $H_{4/2}O_{2}$ , dyck, B. 1900, **33**, 1615.)  $(Gibbs, | ir cold H_{2}O_{2}) = (Guer-Chelpin, Dissert.$ **1895**.) $<math>+8H_{2}O_{2}$ . Nearly insol. in  $H_{2}O_{2}$ . (Fried-heim and Castendyck, B. 1900, **33**, 1615.)  $3(NH_4)_2O$ ,  $2V_2O_5$ ,  $5MoO_3+8\frac{1}{2}H_2O$ . Very Insol. easily sol. in H₂O. (Liebert, Dissert. 1891.)

 $4(NH_4)_2O$ ,  $12V_2O_5$ ,  $5MoO_3+24H_2O$ . Practically insol. in  $H_2O$ . (Friedheim and Casten-

dyck, B. 1900, **33**, 1615.)  $2(NH_4)_2O$ ,  $V_2O_5$ ,  $6MoO_3+5H_2O$ . Sol. in a large amount of  $H_2O$ . (Gibbs, Am. Ch. J. **5.** 361.)

+6H₂O. Rather sl. sol. in H₂O. Easily sol. in acids. (Liebert, Dissert,

1891.) Composition is double the above formula,

2V₂O₅,  $12\text{MoO}_3 + 12\text{H}_2\text{O}$ .  $4(NII_4)_2O$ Rather difficultly sol. in H2O. Composition  $(NH_4)_2O$ ,  $2V_2O_5 + 3[NH_4)_2O_5 - 4M_0O_3$ .

(Friedheim.)  $3(NH_4)_2O$ ,  $V_2O_5$ ,  $6M_0O_3+7H_2O$ . (Isen-

burg, Dissert, 1901.)
5(NH₄)₂O, 4V₂O₅, 6MoO₅+12H₂O and +14H₂O. (Euler-Chelpin, Dissert, 1895.)  $5(NH_4)_2O$ ,  $3V_2O_5$ ,  $7MoO_3+13H_2O$  and  $+16H_2O$ . Sol. in  $H_2O$  and can be recryst. (Toggenburg, Dissert, 1902.) therefrom.  $3V_2O_5$ ,  $8M_0O_3+14H_2O$ .  $5(NH_4)_2O$ ,

(Stamm, Dissert, 1905.)  $5(NH_4)_2O$ ,  $2V_2O_5$ ,  $12MoO_8+10H_2O$ . Quite easily sol. in  $H_2O$ . Composition is  $(NH_4)_2O$ ,  $2V_2O_5+4[(NH_4)_2O, 3M_0O_3]+10H_2O.$ 

 $6(NH_4)_2O$ ,  $3V_2O_5$ ,  $12M_0O_3+21H_2O$ . Sol. in H₂O. Composition is (NH₄)₂O, 3V₂O₅+

be obtained. (Friedheim.)

(NH₄)₂O₅, V₂O₅, 2M₀O₅+4H₂O. | 10(NH₄)₂O₅, 3V₂O₅, 24M₀O₅+10H₂O. Sol. Nearly insol. in H₂O. (Friedheim and in H₂O. (Milch.) Could not be obtained. (Friedheim.)

Ammonium barium vanadiomolybdate. 5(NH₄)₂O, 15BaO, 6V₂O₅, 36MoO₃. (Milch.)

 $(NH_4)_2O$ , BaO,  $V_2O_5$ ,  $MoO_3+6H_2O$ . (Euler-Chelpin, Dissert, **1895.**)  $3(NH_4)_2O$ , BaO,  $3V_2O_5$ ,  $5MoO_3+9H_2O$ .

Sl. sol. in cold and hot H₂O. (Euler-Chelpin.)

Ammonium potassium —, (NH₄)₂O, 3K₂O,  $2V_2O_5$ ,  $4M_0O_2 + 5H_2O$ .

Decomp. by  $H_2O$ . (Euler-Chelpin,)  $(NH_4)_2O$ ,  $3K_2O$ ,  $3V_2O_5$ ,  $5MoO_3+9H_2O$ . (Euler-Chelpin.)

 $\frac{1}{2}(NH_4)_2O$ , 3½K2O,  $3V_2O_5$ ,  $5M_0O_3+$ 16H₂O. Sol. in H₂O. (Jacoby, Dissert. 1900.)

Ammonium sodium --- $(NH_4)_2O$ ,  $Na_2O$ , 2V₂O₅, 6M₀O₃+12H₂O₃ (Euler-Chelpin, Dissert, 1895.)

Barium —, BaO,  $V_2O_5$ ,  $MoO_2+7H_2O$ . (Euler-Chelpin.)

Barium ---, 3BaO, 2V₂O₅, 6MoO₃.

(Milch.)

+8H₂O. (Euler-Chelpin.)

5BaO,  $4V_2O_5$ ,  $6MoO_3 + 28H_2O$ . Sol. in l

hot H₂O. (Euler-Chelpin.)
3BaO, V₂O₅, 8MoO₃+2BaO, H₂O, V₂O₅,
8MoO₃+28H₂O. Sol. in hot H₂O. (Gibbs,

Am. Ch. J. **5.** 361.) 7BaO,  $3V_2O_5$ ,  $18MoO_3+16H_2O=BaO$ ,  $3V_2O_5+6(BaO, 3MoO_3)+16H_2O$ . Sl. sol. in H₂O.

 $+36H_2O$  and  $+48H_2O$ . (Liebert, Dissert. 1891.)

Potassium —,  $K_2O$ ,  $V_2O_5$ ,  $3M_0O_3 + 15H_2O$ . Nearly insol. in cold H₂O, (Euler-Chelpin, Dissert, 1895.)  $3K_2O_2$ ,  $2V_2O_5$ ,  $4M_0O_3 + 8H_2O = K_2O_1$ ,  $2V_2O_5$ 

 $+2(K_2O, 2M_0O_3)+8H_2O.$ 

Very sol. in H₂O. (Friedheim.)

+7H₂O. Easily sol. in cold H₂O. (Euler-

+9H₂O. Easily sol. in cold H₂O. (Euler-Chelpin.)

 $2K_2O$ ,  $2V_2O_5$ ,  $5M_0O_3 + 10H_2O$ . Nearly insol, in cold, very sl. sol, in hot H₂O. (Euler-Chelpin.)

 $3K_2O$ ,  $V_2O_5$ ,  $6M_0O_3 + 5H_2O$ . (Euler-Chelpin.)

 $2K_2O$ ,  $V_2O_5$ ,  $6M_0O_3+6H_2O$ . Very sl. sol. in cold, easily sol. in hot H₂O. (Liebert.)

in H2O. (Friedheim.)

 $5K_2O$ ,  $2V_2O_5$ ,  $12M_2O_3 + 12H_2O = K_2O$ ,  $2V_2O + 4(K_2O, 3M_2O_3) + 12H_2O$ . Rather sl. sol. in H₂O. (Friedheim.)

Sl. sol. in cold, easily sol in hot H₂O. (Liebert, Dissert, **1891.**) 3K₂O, V₂O₅, 12MoO₅+15H₂O. (Liebert.)

Potassium sodium vanadiomolybdate, K2O. 4Na₂O, 2V₂O₅, 12MoO₃+18H₂O. (Euler-Chelpin, Dissert 1895.)

Sodium ---, 2Na₂O, V₂O₅, 6MoO₄+16H₂O (Euler-Chelpin, Dissert, 1895.)

Vanadiophosphoric acid. See Phosphovanadic acid.

Vanadioselenious acid, 3V₂O₅, 4SeO₂+ 4H₂O.

 $+6H_2O$ . Difficultly sol. in H₂O. Can be cryst. from H2O.

+10H₂O. Difficultly sol. in H₂O. Can be cryst. from H₂O. (Prandtl, B. 1905, 38. 1307.)

Ammonium vanadioselenite,  $4(NH_4)_2O_16V_2O_5$ ,  $5SeO_2+13H_2O_1$ 

Sl. sol. in  $H_2O$ . Decomp. by boiling  $H_2O$ .  $3(NH_4)_2O$ .  $3V_2O_5$ .  $6SeO_2 + 2H_2O$ . Ppt. (Prandtl, B. 1905, 38. 1309.)

 $(NH_4)_3HV_6O_{17}$ ,  $12SeO_2+2H_2O$ . Ppt. +4H₂O. Ppt. (Prandtl, Z. anorg. 1911, **73.** 231.)

Ammonium silver—,  $2^2/_3(NH_4)_2O$ ,  $1^1/_3Ag_2O$ , 6V2O5,  $5SeO_2 + 12H_2O_1 + 16H_2O_2$ +22H₂O. (Prandtl, Z. anorg. 1907, **53.** 402.)

Lithium —,  $4\text{Li}_2\text{O}$ ,  $6\text{V}_2\text{O}_5$ ,  $5\text{SeO}_2 + 30\text{H}_2\text{O}$ . Very sol. in H₂O. (Prandtl.)

Potassium —,  $4K_2O_1$ ,  $6V_2O_3$ ,  $5SeO_2+$ 13H₂O.

3K₂O, 3V₂O₅, 6SeO₂. (Prandtl, B. 1905. **38.** 1309.)

Sodium —,  $4Na_2O$ ,  $6V_2O_5$ ,  $5SeO_2 + 20H_2O$ . Very. sol. in H₂O. (Prandtl, Z. anorg. 1907, **53.** 403.)

Vanadiosulphuric acid, V₂O₅, 3SO₈+3H₂O. Deliquescent. Sol. in H₂O, but is decompby boiling. (Ditte, C. R. 102, 757.) See Sulphate, vanadium.

Vanadiosulpurous acid.

Ammonium vanadiosulphite,  $3(V_2O_4,SO_2), (NH_4)_2O, SO_2+4H_2O.$ (Gain, C. R. 1907, 144, 1158.)

Cæsium --,  $(V_2O_4,SO_2)$ ,  $3(C_{82}O_1SO_2)$  + 8H₂O. (Gain.)

Lithium --, (V₂O₄,SO₂), 5(Li₂O₁SO₂)+ 8H₂O. (Gain.)

Potassium vanadiosulphite,  $3SO_2(V_2O_4)$ ,  $SO_{2},(K_{2}O)+5H_{2}O.$ (Gain.)

Rubidium —,  $(V_2O_4,SO_2)$ ,  $2(Fb_2O,SO_2)$  + 2H₂O. (Gain.)

-,  $5(V_2O_4,SO_2)$ ,  $(Na_2O,SO_2)$  + Sodium 2H₂O. (Gain.)

Thallium —,  $3(V_2O_4,SO_2)$ ,  $(Tl_2O_1SO_2)$ 8H₂O.

(Gain.)

Vanadiotungstic acid, 6H₂O, V₂O₅, 10WO₃ +16H₂O.

Very sl. sol. in cold, more easily in hot H₂O. (Gibbs, Am. Ch. J. 5. 361.)  $6H_2O$ ,  $V_2O_5$ ,  $16WO_3 + 30H_2O$ , sol. in  $H_2O$ . (Gibbs.) Readily  $\begin{array}{c} 17H_2O, \ 4V_2O_5, \ 16WO_3 + 24H_2O. \ \ Sl \ \ sol. \\ \text{in cold, easily in hot} \ H_2O. \ \ (Rosenheim, \ \Lambda. \end{array}$ **251.** 228.)

Aluminum sodium vanadiotungstate, 7Al₂O₃,  $\begin{array}{l} 27 N a_2 O, \quad 36 V_2 O_5. \quad 144 W O_8 + 504 H_2 O_9 \\ 3 (Al_2 O_3, 9 N a_2 O, 48 W O_3), \ 4 (Al_2 O_3, 9 V_2 O_5) \end{array}$  $+504H_2O$ . Sol. in H₂O. (Rothenbach, B. 23, 3055.)

Ammonium ---, (NH₄)₂O, 3V₂O₅, WO₈+  $6H_2O$ .

Sol. in H₂O. (Rammelsberg, B. 1. 158.) 2(NH₄)₂O, V₂O₅, 4WO₃+4H₂O. (Friedheim and Löwy, Z. anorg. 1984, **6**, 24.)
4(NH₄)₂O, 2H₂O, V₂O₅, 5WO₃+11H₂O.
Sol. in H₂O. (Gibbs. Am. Ch. J. **5**, 361.)
2(NH₄)₂O, V₂O₅, 5WO₃+10H₂O. Sol. in H₂O. (Ditte, C. R. **102**, 1019.)  $60WO_3 + 58H_2O =$ 14V₂O₅.  $\begin{array}{l} \begin{array}{l} \text{51(NH_4)}_2\text{O}, & \text{14}\text{V}_2\text{O}_5, & \text{50}\text{W}\text{O}_3 + \text{58H}_2\text{O} = \\ 5[5(\text{NH}_4)}_2\text{O}, & 12\text{W}\text{O}_3], & 2[3(\text{NH}_4)}_2\text{O}, & 7\text{V}_2\text{O}_5)]. \\ \text{Sol. in H}_2\text{O}, & (\text{Rothenbach, B. } \textbf{23.} & 3051.) \\ 7(\text{NH}_4)}_2\text{O}, & 4\text{V}_2\text{O}_5, & 14\text{W}\text{O}_3 + 16\text{H}_2\text{O}. & \text{Sol.} \\ \end{array}$ 31(NII₄)₂O, in H₂O. (Rosenheim, A. **251.** 197.)  $8(NH_4)_2O$ ,  $4V_2O_5$ ,  $16WO_3$ ,  $9H_2O + 4H_2O$ . Efflorescent. Very sol in  $H_2O$ . (Rosenheim, A. **251.** 216.)

19BaO, 10V₂O₅, (5BaO, 12WO₃), 36WO₃+  $\frac{\text{um}}{94\text{H}_2\text{O}} = 3(5\text{BaO})$ 2(2BaO,  $5V_2O_5) + 94H_2O.$ 

Sl. sol. in H₂O. (Rothenbach, B. 23. 3052.) 8BaO,  $4V_2O_5$ ,  $16WO_3$ ,  $9H_2O+44H_2O$ . Efflorescent. Not very sol. in  $H_2O$ . (Rosenheim, A. 251. 218.)

Composition is 6BaO, 12WO₃, 3V₂O₅+

39H₂O. (Friedheim.) 6BaO, 3V₂O₅, 12WO₃+34H₂O. Not easily sol. in H₂O. (Friedheim and Löwy, Z. anorg. 1894, **6.** 18.)

4BaO, 4V₂O₅, 12WO₃+41H₂O. Less sol.

than preceding salt. Decomp. by boiling or by mineral acids. (Rosenheim.) Composition is 4BaO, 12WO₃, 3V₂O₅+ 30H₂O. (Friedheim.)

Calcium vanadio+ungstate, 2CaO, V2O5, 2WO₃+12H₂O.

(Friedheim and Löwy, Z. anorg. 1894, 6. **2**0.)

Magnesium so ium —, MgO,  $3V_2O_2$ ,  $12VVO_3+42H_2O=5Nu_2O$ MgO, 6Na₂O,  $2WO_{5}+MgO, Na_{2}C, 3V_{2}O_{5}+42H_{2}O.$ Sol. in H.O. (Rothenbach, B. 23, 3054,

Potassium —,  $4K_2O$ ,  $3V_2O_5$ ,  $12WO_2+$ 30**H**₂O.

Sol. in H₂O.

Composition is potassium metatungstate vanadate,  $3(K_2O, 4WO_3) + K_2O, 3V_2O_5 + 30H_2O$ . (Friedheim, B. **23.** 1515.)

 $8K_2O$ ,  $4V_2O_5$ ,  $16WO_8$ ,  $9H_2O + 24H_2O$ . Very efforescent. Easily sol. in  $H_2O$ , (Roseniem, A. 251. 214.)

Formula is  $6K_2O$ ,  $12WO_3$ ,  $3V_2O_5 + 24H_2O$ , which is a double salt, 5K₂O, 12WO₃+K₂O, 3V₂O₅. (Friedheim, B. 23. 1505.)

+22H₂O.

(Friedheim and Löwy, Z. anorg. 1894, 6.

 $4(5Na_2(), 3V_2O_5, 6WO_3+24H_2O), 3(5K_2O)$  $3V_2O_5$ ,  $6WO_3+24H_2O_2$ (Friedheim and Löwy.)

 $5(5Na_2O, 3V_2O_5, 6WO_3+24H_2O), 5K_2O_5$ 3V₂O₅, 6WO₃+24H₂O. (Friedheim and Löwy.)

Silver —, 8Ag₂O, 4V₂O₅, 16WO₂, 9H₂O.

Somewhat sol. in cold H₂O, more easily upon addition of little HNO₃. Decomp. by warm H₂O. (Rosenheim, A. **251**, 224.)
3Ag₂O, 2V₂O₅, 6WO₅+3H₂O. Nearly insol, in cold H₂O. Decomp. by addition of

HNO3 or upon warming. (Rosenheim.)

Sodium ----, 5Na₂O, 3V₂O₅, 6WO₃+36H₂O.

Sol. in H2O. Composition is 3(Na₂C, 2WO₃)+2(Na₂O, 3V₂O₅)+36H₂O. (Friedheim, B. 23. 1527.) +38H₂O. Sol. in 1.25 pts. H₂O at 13.8°. (Friedheim and Löwy.)

 $2N_{82}O$ ,  $2V_2O_5$ ,  $3WO_3+20H_2O$ . Very sol. in H₂O.

Composition is Na₂O, 3WO₃+Na₂O, 2V₂O₅ +20H₂O, double salt of sodium tritungstate and divanadate. (Friedheim, B. 23. 1523.) 4Na₂O, 3V₂O₅, 12WO₃+38H₂O = 3(Na₂O, 4WO₃)+Na₂O, 3V₂O₅+38H₂O. Sol. in H₂O. (Rothenbach, B. 23, 3050.) 8Na₂O, 4V₂O₅, 16WO₃, 9H₂O+48H₂O. Efflorescent. Easily sol. in H₂O. (Rosenheim, A. 251. 210.)

Formula is 6Na₂O, 12WO₃, 3V₂O₅+42H₂O, and is a double salt of sodium paratungstate,  $SNa_2O$ ,  $12WO_3$ , and sodium trivanadate,  $Na_2O$ ,  $3V_2O_5$ . (Friedheim, B. **23.** 1505.)  $7Na_2O$ ,  $V_2O_5$ ,  $12WO_3+29H_2O$ . Easily sol. in  $H_2O$ . (Friedheim and Löwy, Z. anorg.

1894, 6. 15.)

 $8Na_2O$ ,  $V_2O_5$ ,  $14WO_3 + 60H_2O$  and  $+66H_2O$ (Friedheim and Löwy.)

Strontium vanadiotungstate, 19SrO, 36WO₃,  $10V_2O_5 + 122H_2O = 3(5SrO,$ 12WO₃),  $2(2SrO, 5V_2O_b) + 122H_2O.$ 

Sol. in H₂O. (Rothenbach, B. 23. 3053.)

#### Vanadious acid.

See Hypovanadic acid.

#### Vanadiovanadicomolybdic acid.

#### Ammonium vanadiovanadicomolybdate. $11(NH_4)_2O_1$ , $4V_2O_5$ , $VO_2$ , $28MoO_8+$

48H₂O.

Sl. sol. in cold, sol. in hot H2O without decomp. (Gibbs, Am. Ch. J. 5. 391.)

-, 14BaO,  $2V_2O_5$ ,  $3VO_2$ ,  $30MoO_3$ Barium ----+48H₂O.

Precipitate. Very sl. sol. in cold, decomp. by hot  $H_2O$ . (Gibbs.)

#### Vanadiovanadicotungstic acid.

#### Ammonium vanadiovanadicotungstate,

12WO₃+ 2V₂O₅, 3VO₂. 6(NH₄)₂O, 12H₂O. Sol. in H₂O. (Gibbs, Am. Ch. J. 5. 591.)

Silver —,  $6Ag_2O$ ,  $2V_2O_5$ ,  $3VO_2$ ,  $12WO_8+$ 8H₂O.

Precipitate. Very sl. sol. in cold, sol. in much warm H₂O. (Gibbs.)

Sodium ----, 6Na₂O, 2V₂O₅, 3VO₂, 12WO₃. Very sol. in H₂O. (Gibbs.)

#### Vanadium, V.

Insol. in H₂O, HCl, dil. H₂SO₄+Aq, and cold conc. H₂SO₄. Sol. in hot conc. H₂SO₄. Slowly sol. in HF+Aq. Easily sol. in dil. or conc. HNO₃+Aq. Not attacked by hot or cold NaOH or KOH+Aq. (Roscoe, A. suppl. 7. 85.)

Does not alter in the air; not acted upon

by HCl and very slowly by H2SO4. (Moissan, C. R. 1896, **122.** 1299.)

#### Vanadium boride, VB.

Sol. in HF and HNO₂. Decomp. by fused alkalies. (Wedekind, B. 1913, 46. 1203.)

#### Vanadium tribromide, VBrs.

Very deliquescent; quickly decomposes. (Roscoe, A. suppl. 8. 99.)

+6H₂O. Sol. in H₂O with decomp. (Locke and Edwards, Am. Ch. J. 1898, 20. 600.)

Sol. in H₂O, alcohol and ether. Insol. in HBr. (Piccini, Z. anorg. 1899, 19. 398.)

### Vanadium carbide, VC.

Insol. in HCl and H2SO4.

Sol. in HNO3 in the cold, and in fused KNO₃ and KClO₃. (Moissan, C. R. 1896, **122.** 1300.)

### Vanadium dichloride, $VCl_2$ .

Very deliquescent. Sol. in H₂O, alcohol, and ether. (Roscoe, A. suppl. 7.79.)

#### Vanadium trichloride, VCls.

Deliquescent. Sol. in H₂O, absolute alcohol, and ether.

+6H₂O. Sol. in H₂O; sl. sol. in conc. HCl+ Aq.

Sol. in alcohol and ether. (Piccini, Z. anorg. 1899, **19.** 395.)

#### Vanadium tetrachloride, VCl₄.

Sol. with decomp. in H2O, alcohol, and ether. (Roscoe.) Sol. in H₂O with decomp.

Sol. in fuming HCl with decomp.

Sol. in anhydrous CHCl3 or glacial acetic acid apparently without chemical change. (Koppel, Z. arorg. 1905, **45.** 346.)

#### Vanadium difluoride, VF₂.

Sol. in HF with evolution of H2 and formation of VF₃. (Manchot, A. 1907, **357.** 135.)

#### Vanadium trifluoride, VF₈.

Nearly insol. in H₂O and organic solvents. (Ruff, B. 1911, **44.** 2544.)

+3H₂O. Eff'orescent. Easily sol. in cold, extremely sol. in hot H₂O with decomp. Can be recryst from HF+Aq. Insol. in strong alcohol. (Petersen, J. pr. (2) 40. 48.)

#### Vanadium tetrafluoride, VF₄.

Very hydroscopic. Easily sol. in H₂()

Difficultly sol. in SO₂Cl₂ and SiCl₄.

Sol. in POCl₃ with evolution of gas.

Sol. in acetone and acetic acid. Difficultly sol. in alcohol and CHCl₃. (Ruff, B. 1911, 44. 2545.)

#### Vanadium pentafluoride, VF_b.

Easily sol. in H₂O.

Easily sol. in alcohol, CHCl₃, acetone, and ligroin. Insol. in CS₂. Decomp. toluene and ether. (Ruff, B. 1911, 44. 2549.)

#### Vanadium trifluoride with MF. See Fluovanadate, M.

#### Vanadium hydride.

Stable. Does not react with boiling H2O. Not attacked by boiling HCl, but oxidized by hot H2SO4.

Sol. in boiling HNO₃. (Muthmann, 1907, 355, 86.)

#### Vanadium dihydroxide, VO, xH₂O.

Insol. in KOH or NaOH+Aq. V(OH)₂. Sol. in HCl. (Locke and Ed- Vanadium oxide, V₄O₉=2VO₂, V₂O₅. wards, Am. Ch. J. 1898, 20, 598.)

#### Vanadium trihydroxide, $V_2O_3$ , $xH_2O$ .

Easily sol. in all acids (Petersen, J. pr. (2) **40.** 49.)

#### Vanadium tetrahydroxide (Hypovanadic hydroxide), $V_2O_2(OH)_4 + 5iI_2O$ .

Easily sol. in acids or alkalies. (Crov., Chem. Soc. **30.** 453.)

#### Vanadium triiodide, $VI_8+6H_2O$ .

Very hydroscopic; sol. in H₂O. Only sl. sol. in cold conc. HI+Aa. Sol. in alcohol. (Piccini Z. anorg. 1899,

**19.** 399.)

#### Vanadium nitride, V₂N.

in HNO₃+H₂SO₄.

Decomp. by fusing with KOH. (Muthmann, A. 1907, **355.** 93.)

Insol. in liquid NH₃. (Gore, Am. Ch. J.

1898, **20.** 830.) VN. (Roscoe, A. suppl. **6.** 114.) VN₂. Not attacked by cold HNO₃+Aq. (Uhrlaub, Pogg. 103, 134.)

#### Vanadium dioxide, VO.

Insol. in H2O; easily sol. in dil. acids. (Roscoe, A. suppl. 6. 95.)

#### Vanadium trioxide, $V_2O_3$ .

Oxidized in H2O in contact with air and then dissolves. Insol. in acids, except HNO₃ and in alkalies+Aq. (Roscoe, A. surpl. 6.

Easily sol. in HF. (Petersen, J. pr. (2) 40.

#### Vanadium tetroxide, VO₂.

Sol. in acids and alkalies+Aq.

### Vanadium pentoxide, V2O5.

Sol. in about 1000 pts. H₂O. (Berzelius.) Sol. in acids, alkali hydrates, and carbonates +Aq. Insol. in absolute, very sl. sol. in dil. alcohol.

Insol. in glacial HC2H3O2. Sol. in conc. KF+Aq. (Ditte, C. R. 105.

1067.) Sol. in H₂C₂O₄+Aq and alkali oxalates+ Aq. (Halberstadt, Z. anal. 22. 1.)

Three modifications.—(a) Forms hydrates 1905, 45. 357.)

with 2, and 5H₂O. Sol. in H₂O. 11. of sat.

solution contains 8 g.  $V_2O_5$ . (3)  $V_2O_6$ ,  $2H_2O$ . Very sl. sol. in  $H_2O$ . 11. of sat. solution contains 0.5 g. V₂O₅.

 $(\gamma)$   $V_2O_5,\ 5H_2O.$  Less sol. in  $H_2O$  than 8 1 i.  $H_2O$  contain 0.05 g.  $V_2O_5$  when saturated. (Ditte, C. B 101. 698.)

See Vanadic acid.

See Vanadate, vanadium.

V O₄, V₂O₅+-/₅H₂O₅ Soc. 40, 30.) Brierley, Chem.

See also Vanadiovanadic acid.  $V_2O_4$ ,  $2V_2O_5+8H_2O$ 

See Vanadate, vanadium.

#### Vanadium pentoxide with MF. See Fluoxyvanadate, M.

#### Vanadium oxy compounds. See Vanadyl compounds.

### Vanadium silicide, V₂Si.

Insol. in H₂().

Not attacked by HCl, HNO₃ or H₂SO₄.

Readily attacked by HF

Insol. in H₂O, HCl, and KOH+Aq. Sol. or NH₄OH. Decomp. by fused KOH.

Insol. in alcohol, ether and benzene. (Moissan, C. R. 1902, 135. 496.) VSi₂. Sol. in HF; insol. in acids and al-

Decomp. by fused KOH. (Moissan, C. R. 1902, **135.** 78.)

#### Vanadium disulphide, $V_2S_2$ .

Insol. in boiling dil. or conc. HCl, dil. H₂SO₄+Aq, or cold conc. H₂SO₄. Easily sol. in hot dil. or conc. HNO₃+Aq, or in boiling conc. H₂SO₄. Insol. in alkalies+Aq. Sl. sol. in KSH+Aq; sol. in NH₄SH+Aq. (Kay, Chem. Soc. **37.** 728.)

#### Vanadium tri sulphide, $V_2S_3$ .

Insol, in cold HCl or dil.  $H_2SO_4+Aq$ . Very sl. sol, in hot HCl or dil.  $H_2SO_4+Aq$ . More sol, in  $HNO_3+Aq$  or conc.  $H_2SO_4$ . Sl. sol. in NaOH or NH4OH+Aq. Easily sol. in (NH₄)₂S or NH₄SH+Aq, also in K₂S+Aq. (Kay, Chem. Soc. 37. 728.)

#### Vanadium $pentasulphide, V_2S_5$ .

Sl. attacked by hot conc. HCl or hot dil. H₂SO₄+Aq; sol. in hot conc. H₂SO₄. Sol. in hot dil. HNO₃+Aq. Sl. sol. in NH₄OH+Aq, but easily dissolved by NaOH+Aq. Sl. sol in Na₂S+Aq. Sol. in NH₄SH+Aq. (Kay.)

#### Vanadium sulphochloride sulphur chloride, 4VSCl₂, S₂Cl₂.

Decomp. in the air. (Koppel, Z. anorg.

#### Vanadous acid.

# Ammonium vanadite, basic, 2(NH₄)₂O, V₂O₄.

Sl. sol. in cold, easily in hot  $H_2O$ . (Ditte, C. R. 102. 1310.)

#### Ammonium vanadite, $(NH_4)_2V_4O_9+3H_2O$ .

Sol. in  $H_2O$ . (Crow, Chem. Soc. **30.** 460.)  $+xH_2O$ . Sol. in  $H_2O$ .

Insol. in alcohol, ether and ammonia. (Koppel, Z. anorg. 1903, 36. 297.)

 $+3H_2O$ . Easily sol. in  $H_2O$ . (Mawrow, Z. anorg. 1907, **55.** 150.)

#### Barium vanadite, BaV₄O₉+4H₂O.

Ppt. (Koppell, Z. anorg. 1903, **36.** 300.) +5H₂O. Precipitate. Easily sol in HNO₃, or HCl+Aq. (Crow, Chem. Soc. **30.** 460.)

#### Lead vanadite, PbV₄O₉.

Ppt. (Crow.)

#### Potassium vanadite, $K_2V_4O_9+4H_2O$ .

Sol. in H₂O.

Insol. in alcohol, ether and ammonia (Koppel, Z. anorg. 1903, **36.** 300.)

 $+7H_2O$ . Easily sol. in  $H_2O$ . Insol. in cold, sol. in hot KOH+Aq. Insol. in alcohol. (Crow.)

+H₂O. (Ditte, C. R. **102.** 1310.)

#### Silver vanadite, Ag₂V₄O₉.

Ppt. (Crow.)

#### Sodium vanadite, Na₂V₄O₉+4H₂O.

Sol. in H₂O.

Insol. in alcohol, ether and ammonia. (Koppel, Z. anorg. 1903, **36.** 299.) +7H₂O. Easily sol. in H₂O. (Crow, Chem.

 $+7H_2O$ . Easily sol. in  $H_2O$ . (Crow, Chroco. **30.** 459.)

#### Vanadosotungstic acid.

# Ammonium vanadosotungstate, 5(NH₄)₂O, 2V₂O₄, 14WO₈+13H₂O.

Very sol. in H₂O. (E. F. Smith, J. Am. Chem. Soc. 1903, **25.** 1228.)

### Vanadous acid.

See Hypovanadic acid.

#### Vanadovanadic acid.

See Vanadicovanadic acid.

#### Vanadyl bromide, VOBr.

Very sle sol. in H₂O, acetic anhydride, ethyl acetate, and acetone.

Insol. in alcohol, ether, acetic acid, CHCl₃, toluene and CCl₄. (Ruff, B. 1911, 44, 2537.)

#### Vanadyl dibromide, VOBr₃.

Very deliquescent, and sol. in  $H_2O$ . (Roscoe.)

#### Vanadyl tribromide, VOBra.

Very deliquescent, and quickly decomposes in moist air. Sol. in H₂O. (Roscoe.)

Vanadyl bromide, V2O2Br2, 2HBr+7H2O.

Very deliquescent. (Ditte, C. R. 102. 1310.)

#### Vanadyl semichloride, V₂O₂Cl.

Insol. in H₂O. Easily sol. in HNO₃+Aq. (Roscoe, A. suppl. **6.** 114.)

#### Vanadyl monochloride, VOCl.

Insol. in  $H_2O$ . Easily sol. in  $HNO_3+Aq$ . (Roscoe.)

#### Vanadyl dichloride, VOCl₂.

Deliquescent. Slowly decomp. by H₂O. Easily sol. in HNO₃+Aq. (Roscoe.)

#### Vanadyl trichloride, VOCl₈.

Deliquescent. Sol. in H₂O and alcohol with decomp. (Bedson, A. **180**. 235.) Sol. in ether with combination.

#### Divanadyl chloride, V₂O₄Cl₂+5H₂O.

Deliquescent, and sol. in H₂O, fuming HCl, or alcohol. (Crow, Chem. Soc. **30.** 457.)

#### Vanadyl chloride, V₂O₈Cl₂+4H₂O.

Very deliquescent. (Ditte, C. R. 102. 1310.)

#### Vanadyl platinum chloride.

See Chloroplatinate, vanadyl.

# Vanadyl trichloride ammonia, VOCl₈, xNH₈.

Decomp. by H₂O. (Roscoe.)

#### Vanadyl difluoride, VOF₂.

Insol. in H₂O. Insol. in alcohol, ether, CHCl₃. Sl. sol. in acetone. (Ruff, B. 1911, **44.** 2546.)

#### Vanadyl trifluoride, VOF₃.

Very hydroscopic. Easily sol. in H₂O. Sol. in POCl₃ with evolution of gas. Difficultly sol. in PCl₃ and AsCl₃. Sol. in hot CHCl₃ and acetic anhydride. (Ruff, B. 1911, **44.** 2547.)

#### Vanadyl fluoride with MF.

See Fluoxyvanadate, and Fluoxhypovanadate, M.

#### Vanadyl iodide, V₂O₈I₂, 3HI+10H₂O.

Very deliquescent, and sol. in  $H_2\mathrm{O}$ . (Ditte, C. R. 102. 1310.)

 $V_2O_3I_2$ ,  $2HI+\hat{\epsilon}H_2O$ . As above.

#### Vanadyl sulphide, VOS (?).

(a) Insol. in H₂O, alkalies, alkali sulphides +Aq. Sol. in acids, except nitric acid and aqua regia. (Berzelius.)

(b) Sol. in alkalies, alkali carbonates, and | Xanthochromium chloride, sulphides+Aq. Insol. in acids. (Berzelius.)

#### Water, H₂O.

Water is the most universal solvent It. absorbs all gases, usually with an increase of volume, seldom, as in the case of NH₂, with a diminution of volume. It dissolves almost all solids in greater or less quantity, and mixes with or dissolves considerable amounts of many liquids.

Miscible with alcohol. Sol. in 36 pts. ether. Sol. in 30-33 vols ethyl acetate. (Becker.) Sol. in 5 vols. iodhydrin.

Sl. sol, in most of the fatty oils.

Solubility in organic solvents at t°.

Domonity in organi	. 501.01100	
Solvent	t°	G. H.⊖ in 100 g. at the solution
Benzene	+3 23 40 55 66 77	0.030 0.000 0.114 0.184 0.255 0.337
Petroleum bpt. 190-250° at atmos. pressure	-2 +18 23 30 36 53 59 61 66 79 85 94	0.0012 0.005 0.007 0.008 0.012 0.026 0.031 0.035 0.043 0.063 0.075 0.097
Paraffin oil bpt. 200-300° at 10 mm. pressur	+16 50 65 73 77 94	0.003 0.013 0.022 0.030 0.035 0.055

(Groschuff, Z. Elektrochem, 1911, 17. 350.)

White precipitate, fusible. See Mercuridiammonium chloride.

White precipitate, infusible. See Mercuric chloramide.

#### Xanthochromium bromide, $Cr(NO_2)(NH_3)_5Br_2.$

Sol. in H₂O. Resembles the chloride. (Christensen, J. pr. (2) 24. 74.)

- carbonate,  $Cr(NO_2)(NH_3)_5CO_3$ . Easily sol. in H₂O. (Christensen.)

# Cr(NO₂)(NH₂)₄Cl₂.

More sol. in H₂O than the roseo, but less than the purpureo salt.

Solution decomp. by light or boiling. Decomp. by dil. acids. Sol. in NaOH+Aq and in NH₄OH+Ac (sp. gr. 0.91). Insol. in. alc hol. (Ch. istensen, J. pr. (2) 24. 74.)

#### 

Insol in pure H₂O, but sol when warmed with H₂O cortaining HCl, with formation of a new double selt. (Christensen.)

- mercuric chloride, Cr(NO₂)(NH₃)₅Cl₂, ?HgCl2.

Precipitate. Decomp. by long contact with H₂O. (Christensen.)

--- chromate,  $Cr(NO_2)(NH_3)_bCrO_4$ . Difficultly sol. in H₂O. (Christensen.)

--- dichromate, Cr(NO₂)(NH₃)₅Cr₂O₇. Difficultly sol. in H₂O. (Christensen.)

— dithionate,  $C_1$ ,  $NO_2$ )  $(NH_8)_5S_2O_6$ . Insol. in cold H₂O. (Christensen.)

— hydroxide,  $Cr(NO_2)(NH_3)_5(OH)_2$ . Known only in solution. (Christensen.)

—— iodide,  $Cr(NO_2)(NH_3)_5I_2$ . Quite difficultly sol, in H₂O. (Christensen.)

--- nitrate,  $Cr(NO_2)(NH_3)_5(NO_3)_2$ . Sol. in about 150 pts. H₂O. (Christensen.)

---- sulphate,  $Cr(NO_2)(NH_3)_{\delta}SO_4 + H_2O$ . Sol. in H₂O and (NH₄)₂SO₄+Aq. (Christensen.)

### Xanthocobaltic bromide.

 $Co(NH_3)_5(NO_2)Br_2$ .

Easily sol. in cold H₂O. (Werner and Miolati, Gazz. ch. it. 23, 2. 140.)

- bromonitrate,  $Co(NO_2)(NH_8)_5(NO_8)Br$ . Sl. sol. in cold, more easily in hot H₂O. (Gibbs.)

- chloride,  $Co(NO_2)(NH_3)_5Cl_2$ .

Sl. sol. in cold H₂O, and decomp. by boiling Insol. in HCl+Aq and alkali therewith. chlorides + Aq. Easily decomp. by boiling with acids, even dilute. (Gibbs and Genth. Sol. in 50 pts. cold H₂O. (Jörgensen, Z. anorg. **5.** 172.)

mercuric chloride, Co(NO₂)(NH₂)₅Cl₂,  $2 \text{HgCl}_2 + \text{H}_2\text{O}$ .

Insol. in cold, sl. sol. in hot H2O without decomp. More sol. in acidified H₂O. (Gibbs and Genth.)

#### Xanthocobaltic chloraurate, Co(NO₂)(NH₂)₅Cl₂, AuCl₃+H₂O.

Can be easily crystallised out of hot H₂O. (Gibbs and Genth, Sill, Am. J. (2) 24. 90.)

- chloronitrate, Co(NO₂)(NH₃)₅(NO₃)Cl. Sl. sol. in cold. more easily in hot H₂O.
- ---- chloronitrate gold chloride.  $Co(NO_2)(NH_8)_5(NO_8)Cl$ , AuCl₃.
- ---- chloronitrate platinic chloride. 2Co(NO₂)(NH₈)₅(NO₈)Cl, PtCl₄.
- chloroplatinate, Co(NO₂)(NH₃)₅Cl₂, PtCl₄+H₂O.

Scarcely sol, in hot or cold H₂O. Can be recryst. from dil. HNO₈+Aq. Sol. in hot dil. HCl+Aq. (Gibbs and Genth, Sill. Am. J. (2) 24. 91.)

- chromate,  $C_0(NO_2)(NH_3)_5CrO_4+H_2O_1$ Very sl. sol. in cold, and but slightly sol. in hot H₂O. (Gibbs.)
- --- dichromate,  $Co(NO_2)(NH_3)_5Cr_2O_7$ . Easily sol. in hot H₂().
- ferrocyanide,  $[Co(NO_2)(NH_3)_5]_2Fe(CN)_6$ +7H₂O.

Nearly insol, in cold, decomp, by warm +6H₂O. (Braun, A. 132. 47.)

- iodide,  $Co(NO_2)(NH_3)_bI_2$ . Sol. in H₂O. (Gibbs.)
- iodosulphate,  $[Co(NO_2)(NH_3)_5|_2(SO_4)I_2$ . Sol. in H₂O.
- periodosulphate,  $[\hat{C}o(NO_2)(\hat{N}H_3)_5]_2(SO_4)I_4$ . Easily decomp. by hot H₂().
- nitrate,  $Co(NO_2)(NH_3)_5(NO_3)_2$ . Sl. sol. in cold, moderately sol. in hot  $H_2O$ . Decomp. by boiling. Much less sol. than NH₄Cl or (NH₄)₂SO₄ in cold H₂O. Insol. in HNO₃. (Gibbs and Genth.)
- nitrite,  $Co(NO_2)(NH_3)_5(NO_2)_2 + 2H_2O_1$ Sol. in H₂O. (Gibbs.)
- cobaltic nitrite, Co(NO₂)(NH₈)₆(NO₂)₂. +2H₂O.

Sl. sol. in H₂O. (Gibbs, Proc. Am. Acad. **11.** 8.)

 $\begin{array}{l} [(NO_3)Co(NH_3)_5]_5[Co(NO_2)_6]_2 + 2H_2O. \\ \text{gensen, Z. anorg. 5. 175.}) \\ [Co(NO_2)(NH_3)_5]_5[Co(NO_2)_6]_2. \end{array} N$ (Jör-

difficultly sol. as the luteo salt. (Jörgensen.)

### Xanthocobaltic tetramine cobaltic nitrite.

 $Co_2(NO_2)_2(NH_3)_{10}[Co_2(NH_3)_4(NO_2)_3]_2$ Can be recryst. from hot H₂O. (Gibbs, Proc. Am. Acad. 11. 8.)

=  $(NO_2)Co(NH_3)_{5}[(NO_2)_{2}(NH_3)_{2}Co(NO_2)_{2}]_{2}$ . Xanthocobaltic diamine cobaltic nitrite. Very sl. sol. in cold  $H_2O$ . (Jörgensen, Z. anorg. 5. 180.)

- oxalate,  $Co(NO_2)(NH_8)_5C_2O_4$ . Nearly insol. in cold, sl. sol. in hot H₂O.

### - sulphate, $Co(NO_2)(NH_8)_5SO_4$ .

Moderately sol. in hot, much less in cold H₂O. Sol. without decomp. in H₂SO₄+Aq. (Gibbs and Genth.)

Sol. in 25 pts. hot H₂O acidified with HC₂H₃O₂. (Jörgensen, Z. anorg. **5.** 172.) 4Co(NO₂)(NH₃)₅SO₄, 3H₂SO₄. Decomp. by H₂O, not by absolute alcohol. (Jörgensen.)

### Xanthorhodium bromide.

(NO2)Rh(NH3)Br2.

Moderately sol. in H₂O. (Jörgensen, J. pr. (2) **34.** 394.)

- chloride, (NO2)Rh(NH3)5Cl2.

Much more sol, in H2O than the nitrate.

- --- chloroplatinate, (NO₂)Rh(NH₃),PtCl₆. Ppt. Extremely sl. sol. in cold H₂O.
- dithionate,  $(NO_2)Rh(NH_3)_5S_2O_6+H_2O$ . Nearly insol, in H₂O.
- -fluosilicate,  $(NO_2)Rh(NH_3)_5SiF_6$ . Ppt.
- -hydroxide,  $(NO_2)Rh(NH_3)_b(OH)_2$ .
- nitrate,  $(NO_2)Rh(NH_8)_5(NO_8)_2$ .

Moderately sol. in cold, easily in hot H₂O. Insol. in alcohol. Less sol. in conc. NH4OH+ Aq than in H₂O.

Insol. in dil. HNO₃+Aq; sol. in HNO₃+Aq of 1.4 sp. gr.

#### - oxalate, $(NO_2)Rh(NH_3)_5C_2O_4$ .

Nearly insol. in cold H₂O. Very sl. sol. in warm H₂O. Easily sol. in dil. HC₂H₃O₂+Aq.

- sulphate,  $(NO_2)Rh(NH_3)_5SO_4$ .

Slowly sol. in cold, quite easily in hot  $H_2O$ .  $4(NO_2)Rh(NH_3)_6SO_4$ ,  $3H_2SO_4$ . Sl. sol. in cold, easily in hot  $H_2O$ . Can be recrystal-Is nitratopurpureocobaltic cobaltic nitrite, lized from dil. H2SO4+Aq.

#### Xenon, Xe. Absorption by H₂O at t°.

t°	Absorption coefficient
0	0.2189
10	0.1500
20	0.1109
30	6.0900
40	0.0312
50	0.0878

(Antropoff, Roy. Soc. Proc. 1910, 83. 4, 480.)

#### Ytterbium, Yb.

#### Ytterbium bromide, YbBr₃+8H₂O.

Very sol, in H₂O. Hydroscopic. (Cleve. Z. anorg. 1902, **32.** 135.)

#### Ytterbium chloride, YbCl₃+6H₂O.

Very sol. in H₂O. (Cleve, Z. anorg.1902, **32.** 134.)

Mpt. 150-155°. Anhydrous salt is sol. in H₂O and in alcohol. (Matignon, A. ch. 1906, (8) 8. 442.)

#### Ytterbium oxide, Yb₂O₃.

Slowly attacked by cold or warm acids, but easily sol. at 100°.

### Ytterbium oxychloride, YbOCl.

Ppt. (Cleve, Z. anorg. 1902, 32. 135.)

#### Yttrium, Y.

Decomposes H₂O. (Cleve, Bull. Soc. (2) **21.** 344.) Decomp. H₂O slightly at ord. temp., more rapidly by boiling. Easily sol. in dil. acids, even accic acid. Slightly acted upon by conc. H₂SO₄. Decomposes hot KOH+Aq and cold NH₄Cl+Aq. Not attacked by and cold NH₄Cl+Aq. Not attacked by NH₄OH+Aq. (Popp, A. **131.** 179.) Popp's yttrium contained erbium.

#### Yttrium bromide, YBr₃.

Sol. in H2O with evolution of heat. (Du-

boin, C. R. 107. 243.) +9H₂O. Deliquescent. Easily sol. in H₂O and alcohol. Insol. in ether. (Cleve.)

#### Yttrium carbide, YC2.

Decomp. by H2O and by dil acids; very slowly attacked by conc. acids. (Moissan, C. R. 1896, 122. 575.)

Decomp. by H₂O and dil. acids. (Pettersson, B. 1895, 28. 2421.)

#### Yttrium chloride, YCls.

Anhydrous. Sol. in H2O with evolution of heat. (Cleve.)

+6H₂O. Deliquescent. Very sol. in H₂O. Sl. sol. in alcohol. Insol. in ether. (Cleve.) Mpt. 156-160°; sol. in alcohol.

60.1 grams anhydrous salt are sol, in 100 grams of abs. alcohol at 15°.

6.5 grams are sol. in 100 grams pyridine. (Matignon, A. ch. 1906, (8) 8. 437.)

#### Yttrium fluoride, YFa+1/2H2O.

Nearly insol. in dil. acids. (Cleve.)

#### Yttrium hydroxide, Y2O3, 6H2O or Y2O6H6+ 3H₂O.

Insol. in H₂O

Insol. in Kerl or NaOH+Ac. Easily sol. in acids. Sol. in alkali carbonates-Aq. When freshly pptd., easily sol. in NH₄Cl+

#### Yttrium iodide, YI.

Very deliquescent. Easily soi. in H2O and alcohol.

S! ol. in ether. (Cleve.)

### Yttrium oxide, Y₂O₃.

Insol. in H₂O. Sl. sol. in cold HCl, HNO₈, or dil. H₂SO₄+Aq, but gradually completely scl. on warming. Insol. in NH₄OH and sl. sol. in KOH+Aq. Sol. in HC₂H₃O₂+Aq. Somewhat sol. in K₂CO₃+Aq.

#### Yttrium peroxide, Y₄O₉,

(Cleve, Bull. Soc. (2) 43. 53.)

#### Yttrium oxychloride, Y₂O₂Cl₂.

Insol. in H₂O. (Popp.)

#### Yttrium sulphide, Y2S3.

Not prepared in pure state. Impure is insol. in H2O, and partially decomp. thereby. Easily sol. in acids with decomp. (Popp.)

#### Zinc, Zn.

Not attacked by pure cold H₂O. Slowly oxidised by boiling H₂O. Pure H₂O free from () dissolved nothing from 2500 sq. mm. Zn. Presence of air containing CO2 caused a solution of 3.5 mg. Zn, which maximum was reached in 2 days. Air without CO₂ also caused a slight action. (Snyders, B. 11. 936.)

100 ccm. distilled H₂O dissolved 14 mg. Zn from 11.8 sq. cm. in one week, during which air free from CO2 was passed through the liquid, and 19 mg, when air containing CO2 was used. (Wagner, Dingl. 221. 260.)

Filtered rain water was found to contain 20 mg. Zn per l. (Burg, Isis, 1873. 119.)

Very pure H₂O, when conducted through a great length of galvanized iron pipe, contained 1.7 pts. Zn to 100,000 pts. H₂O. (Davies, J. Soc. Chem. Ind. 1899, 18. 102.)

Action of H₂O on Zn in galvanized pipes is caused by electrolysis. (Smetham, C. N. 1879, **39.** 236.)

All kinds of H2O attack Zn, rain water the least.

In distilled H₂O exposed to air Zn is abun-

dantly coated with  $ZnCO_3$ ,  $2ZnO+3H_2O$ . allowing 32 g. Zn to stand in 270 cc. distilled H₂O in a flask loosely stoppered with filter paper, 1.2 pts. Zn to 100,000 pts.  $H_2O$  was found in solution in 1-2 days. (Smith, J. Soc.

Chem. Ind. 1904, 23. 475.)

1118

Sol. in all acids. Very slowly sol. in dil. HCl or H₂SO₄+Aq in glass vessels if Zn is pure. According to Jacquelain, 24 hours were necessary to dissolve 6 g. pure zinc. When fused at the lowest possible temperature, it is much more slowly sol. than when heated to a red heat. In both cases it is much more rapidly dissolved if cooled quickly. (Bolley, A. 95. 294; Rammelsberg.)

Dil. H₂SO₄+Aq dissolves given % zinc in the same length of time (B = according to Bolley, R=according to Rammelsberg):

,	Slowly cooled		Rapidly cooled	
	В	R	В	R
Cast at the melt- ing point Cast at a red heat	$\frac{42.5}{100.0}$	74.1 69.4	13.0 85.5	0.9 9.5

50 ccm. H₂SO₄+Aq dissolved in 2 hours the following amts. from 1 sq. cm. Zn at to.

t°	Strength of acid	Grms. dissolved
20	H ₂ SO ₄	0.000
130	"	0.075
150	"	0.232
20	$H_2SO_4 + H_2O$	0.002
130	"	0.142
150		0.345
20	$H_2SO_4 + 2H_2O$	0.002
130		4.916
150	"	5.450
20	$H_2SO_4 + 3H_2O$	0.005
130	11	3.080
20	$H_2SO_4+4H_2O$	0.049
130	"	0.456
20	$H_2SO_4 + 5H_2O$	0.027
130	"	0.337
20	$H_2SO_4+6H_2O$	0.018
100		3.16

(Calvert and Johnson, Chem. Soc. 19. 437.)

C. P. zinc is more quickly sol. in dil. acids in vacuo than under normal pressure, the ratio being about 1:6.5. The rate of solubility increases slowly with rise of temp. from 0° to 98°, when it amounts to about 4 times that at 0°, but from 98°-100° the increase is Thus, as an average of 6 exthirteenfold. periments, dil. H₂SO₄+Aq (1:20) dissolves in 30 minutes 2.1 mg. Zn at 0°; 4.9 mg. at 20°; 7.4 mg. at 60°; 9.3 mg. at 98°; but 122.1 mg. at 100°. If, however, the acid was prevented from boiling by increasing the pressure, the sudden increase between 98° and 100° does not take place.

The rate of solubility in dil. H₂SO₄+A_Q (1:20) is also increased 175 times by the addition of CrO₃ and 306 times by the addition of H₂O₂. The above phenomena are explained by assuming the formation of a condensed hydrogen atmosphere around the metal, which prevents the further action of the acid. (Weeren, B. 24. 1785.)

Not attacked by  $HNO_3+Aq$  of 1.512 to 1.419 sp. gr. at a temp. of  $-18^{\circ}$  or less, but violently attacked if temp. is raised. HNO3+ Aq of 1.419-1.401 sp. gr. does not attack Zn at temp. of a freezing mixture, but violently at 0°. More dil. HNO₃+Aq attacks Zn even

at -20°. (Millon, A. ch. (3) 6. 99.)

Sol. in H₂CO₃+Aq. (Berzelius.)

Solubility of Zn in acids is very much affected by the presence of small quantities of various metallic salts. Small amts. of PtCl₄+Aq accelerated the action of H₂SO₄+ Aq 149 times, and As₂O₃ 123 times. HgCl₂ has a strong retarding action owing to pptn. of Hg on the Zn.

The rate of solution of Zn in acids and the effect of changes in concentration and temperature and of the presence of inorganic salts and organic substances on this rate has been studied. 26 Tables are given. (Ericson-Aurén, Z. anorg. 1901, 27. 209-253.)

Speed of solution in H₂SO₄ and in HCl. (Centnerszwer, Z. phys. Ch. 1914, 87. 692.) Various saline solutions have a strong solvent power in presence of PtCl₄, i.e. KCl, NaCl, Na₂SO₄, K₂SO₄, MgSO₄+Aq. PtCl₄ also causes Zn to decompose distilled H₂O. CuSO₄ has a similar but less energetic effect.

In all the above cases the disengagement of hydrogen is slower in the dark than in the light. (Millon, C. R. 21. 37.)

According to Barreswill (C. R. 21. 292) the above reactions are all caused by galvanic action due to pptd. metal, and a piece of Pt in contact with the Zn causes the same action as the PtCl₄ in solution.

Easily sol. in alkalies + Aq, even NH4OH+ Aq, especially when the Zn is in contact with Fe. Sol. in NaCl+Aq with pptn. of ZnO. (Siersch, J. B. 1867. 257.)

Sol. in sat. alkali and alkali-earth chlorides

+Aq. (Post, **1872.**) Sol. in NH₄ salts+Aq. (Lorin, J. B. **1865.** 124.)

Sol. in sat. Na₂SO₄, K₂SO₄, MgSO₄, NaNO₃, KNO₃, Ba(NO₃)₂, CaCl₂, MgCl₂, and NH₄NO₃+Aq. Chlorides and sulphates (especially Na₂SO₄ and MgCl₂) have strongest action, MgSO4 and nitrates the least. The action was greatly increased by heat. (Snyders, B. 11. 936.)

Sol. in boiling NH4Cl+Aq. Sol. in neutral FeCl₂+Aq with pptn. of Fe, especially easily

at 100°. (Capitaine, C. R. 9. 737.)
Sol. in NiSO₄+Aq with pptn. of NiO.

(Tupputi.) Sol. in conc. hot ZnCl2+Aq, but Zn oxychloride is pptd. on diluting. (Ordway, Am. J. Sci. (2) **23.** 222.) Sol. in GlSO₄+Aq. (Debray.)

Solubility of Zn in dilute solutions of salts:

100 ccm. of solutions of the given salts
were allowed to act one week on 11.8 sq.
cm. Zn while a current of air with or
without CO₂ was passed through the
solution.

Salt	G. salt in 100 ccm solution	Mg. Zn dissolved without CO2	Mg. Zn disselved with CO ₂
NaCl or KCl NH ₄ Cl MgCl ₂ K ₂ SO ₄ KNO ₃	0.5 1.0 0.83 1.9 1.0	7 51 18 30 9	38 36 54 53 37
$egin{array}{l} \mathrm{NO_3} \\ \mathrm{Na_2CO_3} \\ \mathrm{NaOH} \\ \mathrm{CaO_2H_2} \\ \end{array}$	1.0 1.0 0.923 Sat	13 60 3	

(Wagner, Dingl. 221. 260.)

Action of dil. salt solutions (1%) on Zn. The following amts. of Zn in mg. were dissolved from 2500 sq. mm. Zn in 14 days by 400 ccm. 1% solution of the given salts:

Salt	Mg. Zn	Salt	Mg. Zn
NaCl . KCl . CaCl ₂ . MgCl ₂ . BaCl ₂ . BaCl ₂ . BaSO ₄ MgSO ₄ KNO ₃	11.2 14.8 15.2 17.2 13.2 12.0 8.8 6.8	$(NH_4)_2SO_4$ $NH_4NO_3$ $NaHCO_3$	6 8 24.0 31.6 26.0 0 0

Sl. attacked by H₂O at 80°, by hot conc. NH₄OH; attacked by H₃PO₄ or NaCl+Aq; very sl. attacked by NaNO₃+Aq or KNO₃+Aq at 100°. (Smith, J. Soc. Chem. Ind. 1904, **23.** 476.)

1/2 ccm. oleic acid dissolves 0.0240 g. Zn in 6 days. (Gates, J. phys. Chem. 1911, **15**.

Attacked by cane sugar+Aq at 115°. (Klein and Berg, C. R. **102.** 1170.)

### Zinc amide, Zn(NH₂)₂.

Decomp. by H₂O and alcohol. Insol. in ether. (Frankland, Phil. Mag. (4) **15.** 149.)

### Zinc antimonide, ZnSb.

Does not decomp. boiling H₂O except slightly. Not attacked by dil. mineral acids, but decomp. by conc. HCl or HNO₃+Aq. (Cooke, Proc. Am. Acad. **5.** 348.)

Zn₃Sb₂. Decomp. H₂O rapidly at 100°.

Violently decomp. by dil. HCl or H₂SO₄+Aq, also by HNO₃+Aq. Completely sol. in HCl +Aq mixed with a little HNO₃. (Cooke.)

#### Zinc azoimide, basic, Zn(OH)N₈.

Very sl. sol. in H₂O. Decomp. by hot H₂O. (Curtius, J. pr. 1898, (2) **58.** 293.)

#### Zinc azoimide ammonia, ZnNs, 2NHs.

Insol. in  $H_2O$ , but gradually decompthereby. (Der is, J. Am. Chem. Soc. 1907 29. 20.)

#### Zinc bromide, ZnBr2.

Very deliquescent, and sol. in H₂O. Sat. ZnBr₂+Aq ontains at:

107 170° 210° 375° (mpt.) 83.8 85.0 89.3 100% ZnBr₂. (f tard, A. ch. 1894, (7) **2**. 541.)

### Solubility in H2O.

100 g. of the sat. solution contain at: 35° 40° 60° 80° 100° 85.45 85.53 86.08 86.57 87.05 g. ZnBr₂. (Dietz, Z. anorg. 1899, **20**. 250.)

See also below under hydrated salts.

Sp. gr. of ZnBr₂+Aq at 19.5° containing 18.3 31.7 43.2 % ZnBr₂, 1.1849 1.3519 1.5276

52.6 59.1 68 % ZnBr₂. 1.7082 1.8525 2.1027 (Kremers, Pogg. **108**. 117.)

Sp. gr. of ZnBr₂+Aq at 19.5°.

	-				
ZnBr2	Sp. gr.	ZnBr2	Sp. gr.	ZnBr2	Sp. gr.
5 10 15 20	1.045 1.093 1.196 1.204	25 30 35 40	1.265 1.330 1.400 1.475	45 50 55 60	1.560 1.650 1.755 1.875

(Kremers, calculated by Gerlach, Z. anal. 8. 285.)

Sol. in conc. HCl or HC₂H₃O₂+Aq, also in NH₄OH+Aq. Sol. in AlBr₃. (Isbekow, Z. anorg. 1913.

84. 27.) Very sl. sol. in liquid NH₃. (Franklin, Am, Ch. J. 1898, 20. 830.)

Sol. in alcohol and ether. (Berthemot, J.

Pharm. 14. 610.)
Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in ethyl acetate. (Naumann, B. 1910, 43. 314.)

More sol. in anhydrous ether than in abs. alcohol. Insol. in CS₂. (Hampe, Ch. Z. 1887, **11.** 846.)

Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

Mol. weight determined in pyridine. (Werner, Z. anorg. 1897, **15.** 22.) + H₂O. (Lescoeur, A. ch. 1894, (7) **2.** 78.)

+2H₂O. Very hygroscopic.

Solubility in H₂O.

100 g. of the sat. solution contain at:

--8° 0° 13° 25° 30° 37° (mpt.) 79.06 79.55 80.76 82.46 84.08 86.20 g. ZnBr₂. (Dietz, Z. anorg. 1899, **20.** 250.)

+3H₂O. Solubility in H₂O. 100 g. of the sat. solution contain at: -15° -10° -5° (mpt.) 77.13 78.45 80.64 g. ZnBr₂.

Zinc bromide ammonia, ZnBr2, 2NH2.

Decomp. by H₂O. Sl. sol. in cold, more easily in warm NH₄OH+Aq. (Rammelsberg, Pogg. **55.** 240.)

(Dietz, Z. anorg. 1899, 20. 250.)

 $+^{1}/_{3}H_{2}O$ . Decomp. by  $H_{2}O$  with separation of ZnO. (André. C. R. **96.** 703.)

+H₂O. Above salt of Rammelsberg's has this composition. (André.)

3ZnBr₂, 8NH₃+2H₂O. Decomp. by H₂O. (André.)

 $3ZnBr_2$ ,  $10NH_3+H_2()$ . Decomp. by  $H_2()$ . (André.)

2ZnBr₂, 10NH₃. Efflorescent. Decomp. by H₂O. (André.)

Zinc bromide cupric oxide, ZnBr₂, 3CuO+2H₂O.

+4H₂O. (Mailhe, C. R. 1901, 133. 227.)

Zinc bromide hydrazine, ZnBr₂, 2N₂H₄.

Decomp. by  $H_2()$ . Sol. in  $NH_4OH + Aq$ . (Franzen, Z. anorg. 1908, **60**. 277.)

Zinc chloride, ZnCl2.

Very deliquescent, and sol. in H₂O.

Sol. in 0.333 pt. H₂O at 18.75°. Abl.) ZnCl₂+Aq sat. at 12.5° contains 78.5% ZnCl₂. (Hassenfratz, A. ch. **28**. 291.)

Solubility in H₂O. 100 g. of the sat. solution contain at: 15° 20° 41° 60° 100° 79.12 81.19 82.21 83.51 86.01 g. ZnCl₂. (Dietz, Z. anorg. 1899, **20**. 245.)

 $ZnCl_2+Aq$  containing 1 pt  $ZnCl_2$  in 1.8205 pts.  $H_2O$  at 18° has sp. gr. = 1.3666. (Hittorf, Z. phys. Ch. 1902, **39**, 628.)

Solubility in H₂O at t°. 100 g. H₂O dissolve g. ZnCl₂.

t°	Solid phase	ZnCl2	
5	ice	14	
-10	100	25	j
40	**	83	1
- 62	ice:4aq	104	cryohydrate point
- 50	ZnCl2+4H2O	113	cryonyarate ponte
-40	20012    22230	127	
<del>- 30</del>	4aq:3aq	160	transition point
- 10	ZnCl2+3H2O	189	Transition point
Õ	10000	208	
+5	**	230	
6 5	"	252	mpt.
6 5 5	"	282	
Ö	3aq:11/2aq	309	eutectic point
ŏ	ZnCl2+21/2H2O	235	J
6.5	2½aq:3aq	252	transition point
10	ZnCl2+21/2H2O	272	
12.5		303	mpt.
11.5	2½aq:1½aq	335	eutectic point
9	21/680:180	360	eutectic point
6	2½aq:1aq ZnCl ₂ +2½H ₂ O	385	
- 6	ZnCl2+11/2H2O	298	
+10	"	330	
20	**	368	
26	1½aq:1aq	423	transition point
26 3	11/2aq:ZnCl2	433	transition point
0	ZnCl2+H2O	342	_
10	**	364	
20	"	396	
28	laq ZnCl2	436	transition point
31	ZnCl ₂ +H ₂ O	477	
25	ZnCl₂	432	
40	"	452	
60	"	488	
80	"	543	
100	"	615	
262	"		mpt.
	<u>-</u>	<u>-</u>	

(Mylius and Dietz, Z. anorg. 1905, 44. 217.) See also below under hydrated salts.

Sp. gr. of ZnCl₂+Aq at 19.5°.

% ZnCl2	Sp. gr.	% ZnCl2	Sp. gr.
$\frac{13.8}{25.8}$	1.1275	37.5	1.3859
	1.2466	49.2	1.5551

(Kremers, Pogg. 105. 360.)

Sp. gr. of ZnCl₂+Aq at 19.5°.

	1 6				
% ZnCl:	Sp. gr.	% ZnCl:	Sp. gr.	% ZnCl2	Sp. gr.
1 5 10 15 20	1.010 1.045 1.091 1.137 1.186	25 30 35 40	1.238 1.291 1.352 1.420	45 50 55 60	1.488 1.566 1.650 1.740

(Gerlach, Z. anal. **8.** 283, calculated from Kremers.)

Sp. gr. of ZnCl2+Aq at to.  $15^{\rm \circ}$ 15° 15° 15° % ZnCl 20.02.54.8910.0 Sp. gr. 1.190 1.0241.046 1.094 15° 15° 15° % ZnCl2 58.88 29.86 40.0 Sp. gr. 1.297 1.423 1.728(Long, W. Ann. 1880, 11. 38.)

Sp. gr. of ZnCl2+Aq at room temp. containing:

15.33423.487 33.752% ZnCl2. 1.1459 1.2288 1.343i

(Wagner, W. Ann. 1883, 18. 267.)

Sp., gr. of ZnCl₂+Aq at 25°.

Concentration of $ZnCl_2 + \Lambda q$	Sp. gr.
1—normal  1/2— "  1/4— "  1/8— "	1.0590 1.0302 1.0152 1.0077

(Wagner, Z. phys. Ch. 1890, 5. 40.)

Sp. gr. of ZnCl₂+Aq.

½ ZnCl ₂ g. in 1000 g of solution	Sp. gr. 16°/16°
0	1.000000
0.5994	1.000560
2.3163	1.002163
5.0406	1.004708
9.8988	1.009243
19.4914	1.018228

(Dijken, Z. phys. Ch. 1897, 24. 108.)

Insol. in SbCl₃. (Klemensiewicz, C. C. 1908, II. 1850.)

Insol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20.** 830.)

Easily sol. in hot absolute alcohol, and ether. Sol. in 1 pt. strong alcohol at 12.5°. (Wenzel.)

Sol. in 0.35 pt. absolute alcohol. (Graham.) Sol. in butyl (Wurtz), and hexyl (Bouis)

alcohol at ord. temp., but decomp. on heating. Very sol. in acetic ether with evolution of

heat. (Cann, C. R. 102. 363.) Easily sol. in acetone. (Krug and M'El-

roy, J. Anal. Ch. 6. 184.) 1 g. ZnCl2 is sol. in 2.3 g. acetone at 18°. Sp. gr. of sat. solution  $18^{\circ}/4^{\circ} = 1.14$ . (Nau-

mann, B. 1904, 37. 4338.) Sol. in acetone and in methylal. (Eidmann, C. C. 1899, II. 1014.)

Sol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Sol. in hot benzonitrile, also in other aromatic nitriles.

Sol. in methyl sulphide and in ethyl sulphide. Very sol. in piperidine. (Werner, Z. anorg. 1897, 15. 7.)

Sol. in benzyl alcohol, furfurol, methylpropylketone, acetophenone, ethyl monochloracetate, ethyl cyanacetate, ethyl acetoacetate, ethyl benzoate, ethyl oxalate, amyl

nitrite, pyridine, piperidine, and quinoline. Insol. in salicylic aldehyde, ethyl nitrate, and nitrobenzene. (Lincoln, J. phys. Chem. 1899, 3. 460.)

Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, 51. 236.)

Sol. in 2 pts. glycerine at ord. temp. (Clever, Bull. Soc. 1872, (2) 18. 372.)

100 g. glycerol lissolve 50 g. ZnCl, at 15.5°. (Ossendowski, Pharm. J. 1907, 79. 575.)

Jusol. in CS2. (Arctowski, Z. anorg. 1894, 8. 257.)

Sol. 'n urethanc. (Castoro, Z. anorg. 1899, **20.** 61.)

Mol. weight desermined in piperidine; pyridine and methyl sulphide. (Werner, Z.

H₂O. (Engel, C. R. 102, 1111.)

Solubility in H₁O.

100 g. of the sat. solution contain at: 27° (mpt.) 74.33 78.25 84.61 g. ZnCl₂, (Dietz, Z. anorg, 1899, 20, 245.)

 $+1!_2H_2O.$ Solubility in H2O. 100 g. of the sat. solution contain at: 10°  $20^{\circ}$ 26° (mpt.) 67.45 73.65 80.08 83.43 g. ZnCl₂.

+2H₂O. Sat. aq. solution contains at: —14° -20° ---10° -4° --1° 56.5 54.755.4 57.4 57.9% salt.  $+5^{\circ}$ 9° 15° 42° 33° 59.1 60.2 62.0 66.8 68.3% salt. (Étard, A. ch. 1894, (7) 2. 536.)

(Dietz, Z. anorg. 1899, 20. 245.)

Solubility in H₂O. 100 g. of the sat. solution contain at:  $0^{\circ}$ 10° 19° (mpt.) 79.07 g. ZnCl₂. 67.5673.70

(Dietz, Z. anorg. 1899, 20. 245.) +2½H₂O. Solubility in H₂O.

100 g. of the sat. solution contain at: O° 8° 13° (mpt.) 67.4271.96 75.14 g. ZnCl₂. (Dietz, Z. anorg. 1899, 20. 245.)

 $+3H_2O$ . Sol. in 12.5 pts.  $H_2O$  at  $0^\circ$ . (Engel.)

Solubility in H₂O. 100 g. of the sat. solution contain at:

—5° 0° +7° (mpt.) 64.5 67:58 71.57 g. ZnCl₂. (Dietz, Z. anorg. 1899, 20. 245.)

Zinc hydrogen chloride, 2ZnCl₂, HCl+2H₂O. Deliquescent. (Engel, C. R. 102. 1068.) ZnCl₂, HCl+2H₂O. (Engel.)

Zinc hydrazine chloride, ZnCl₂, N₂H₄, HCl.

Very hydroscopic.

Sol. in H₂O. (Curtius, J. pr. 1894, (2) 50.

ZnCl₂, 2(N₂H₄, HCl.) Hydroscopic; very sol. in H₂O.

Sol. in hot alcohol and NH₄OH+Aq. (Curtius, J. pr. 1894, (2) **50.** 338.)

#### Zinc chloride ammonia, ZnCl₂, 5NH₃+H₂O.

Easily sol. in little, but decomp. by much H₂O. Still more sol. in ZnCl₂+Aq with de-(Divers, C. N. 18. 13.) comp.

ZnCl₂, 4NH₃+H₂O. (Kane.)

ZnCl₂, 2NH₃. Not completely sol. in H₂O; can be recryst. from hot NH₄Cl+Aq. (Ritthausen, J. pr. 60. 473.)

Insol. in H₂O. Sol. in NH₄Cl or NH₄OH+

Aq. (Thomas, B. 20. 743.) +1/4H₂O. +2/4H₂O. +1/4H₂O. +1/4H₂O. +1/4H₂O. +1/4H₂O. Decomp. by H₂O.

∔**Ĥ**₂Ο.

(André, C. R. 1882, 94. 964.)

ZnCl₂, NH₃. Decomp. by H₂O. (Kane, A. ch. **72.** 290.)

Zinc chloride cupric oxide, ZnCl₂, 3CuO+ 4H₂O.

(Mailhe, C. R. 1901, **134**, 226.)

Zinc chloride hydrazine, ZnCl₂, 2N₂H₄. Ppt. (Franzen, Z. anorg. 1908, 60, 275.) ZnCl₂, 2N₂H₄. Insol. in H₂O.

Easily sol. in NH₄OH+Aq. (Curtius, J. pr. 1894, (2) **50.** 345.)

#### Zinc chloride hydroxylamine, ZnCl₂, 2NH₂OH.

Sl. sol. in cold, somewhat more in warm H₂O. Very sol. in NH₂OH+Aq. Very sl. sol. in alcohol and other organic solvents. (Crismer, Bull. Soc. (3) 3. 116.)

1 pt. is dissolved in 100 pts aq. solution sat. at 20°. (Antonoff, C. C. 1905, II. 810.)

#### Zinc fluoride, ZnF₂.

Sl. sol. in cold, more easily in hot  $H_2O$ . Insol. in 95% alcohol. Sol. in boiling HNO3, HCl, or H₂SO₄. (Poulenc, C. R. 116. 581.)

Contrary to older statements, ZnF2 is quite sol. in H₂O. (Kohlrausch, Z. phys. Ch. 1903, 44. 213.)

Insol. in liquid NH₃. (Gore, Am. Ch. J. 1898, **20.** 830.)

Insol. in methyl acetate. (Naumann, B. **1909**, **42**. 3790.)

+4H₂O. Difficultly sol. in H₂O. Somewhat more sol. in H₂O containing HF, HCl, or HNO₃. Easily sol. in NH₄OH+Aq. (Berzelius, Pogg. 1. 26.) or HNO₃.

1 l. H₂O dissolves 16 g. at 18°. (Dietz)

#### Zinc hydrogen fluoride.

Known only in solution.

Zinc zirconium fluoride.

See Fluozirconate, zinc.

#### Zinc hydrophosphide, Zn₂H₂P₂.

Decomp. by cold H₂O and by dil. HCl+Aq. (Drechsel and Finkelstein, B. 1871, 4. 353.)

#### Zinc hydroxide, ZnO₂H₂.

Insol. in H₂O. Sol. in acids. Sol. in KOH. NaOH, NH₄OH, or (NH₄)₂CO₃+Aq.

1 l. H₂O dissolve 0.01 g. ZnO₂H₂ at 25°. (Bodländer, Z. phys. Ch. 1898, 27. 66.) Solubility in  $H_2O$  is calculated to be 2.6× 10-5 g. mols. per l. (Herz, Z. anorg. 1900, 23. 227.)

1 l. H₂O dissolves 0.0042 g. ZnO₂H₂ at 18°. (Dupre and Bialas, Z. angew. Ch. 1903, 16. 55.)

Šee also Zinc oxide.

### Solubility in NH₄OH+Aq at 25°.

ZnO ₂ H ₂ used	NH3 norm.	G. ZnO per l.
$\begin{array}{c} \text{prepared from} \\ \textbf{ZnSO}_{4} \end{array}$	1.287 0.825 0.311	7.28 3.84 0.85
prepared from $\mathrm{Zn}(\mathrm{NO_8})_2$	0.321 0.643 1.215 1.928 2.570 3.213	0.34 0.845 2.70 5.07 7.01 10.16

(Bonsdorff, Z. anorg. 1904, **41.** 189.)

#### Solubility of ZnO₂H₂ in NH₄OH and ammonium bases + Aq at 17°-19°.

Normality of the base	G. ZnO in 20 cc. of the solution
0.0942 NH ₃ 0.236 NH ₃ 0.707 NH ₃ 0.0944 NH ₂ CH ₃ 0.472 NH ₂ CH ₃ 0.944 NH ₂ CH ₃ 0.944 NH ₂ C ₂ H ₃ 0.068 NH ₂ C ₂ H ₅ 0.51 NH ₂ C ₂ H ₅ 0.68 NH ₃ C ₂ H ₅ NH(C ₂ H ₆ ) ₂ NH(CH ₃ ) ₂	0.00185 0.01795 0.0959 0.0008 0.01325 0.0484 0.0005 0.0074 0.01605 insol.
( · · · · · · · · · · · · · · · · · · ·	l .

(Herz, Z. anorg. 1902, **30.** 280.)

Solubility in NH₄OH+Aq increases with increasing concentration of NH4OH. (Euler, B. 1903, **36.** 3401.)

2 pts. ZnO₂H₂ dissolve in 5 pts. KOH+Aq. (sp. gr. = 1.3.) (Bonnet.)

Solubility of ZnO ₂ H ₂ in NaOH+Aq.		
G. Na in 20 ccm.	G. Zn in 20 ccm.	
0.1012 0.1978 0.4278 0.6670 0.9660 1.4951 2.9901	0.0040 0.0150 0.0150 0.0142 0.1771 0.9630 0.2481 0.3700	

When zinc hydroxide is treafed with alkali, more dissolves at first than corresponds with the true equilibrium under the prevailing conditions, for such solutions spontaneously deposit more or less zinc hydroxide according to the concentration. (Rubenbauer, Z. anorg. 1902, 30, 333.)

Solubility of ZnO₂H₂ in NaOH+Aq at 27

G. mol. per l.		
Na	Zn	
0.2636	0.00311	
0.3871	0.0057	
0.5414	0.0129	
0.9280	0.0425	

(Wood, Chem. Soc. 1910, 97. 884.)

Freshly pptd. ZnO₂H₂ is easily sol. in KOH+Aq, but it gradually goes over into a stable form which is difficultly sol. in KOH+Aq. (Herz, Z. anorg. 1901, **28.** 474.)

Freshly pptd.  $ZnO_2H_2$  is sol. in dil. salt solutions (1 %) as follows. The given amts. in mg. (calculated as Zn) were disolved per l. at  $t^{\circ}$ .

		Sa	lt			Mg. Zn	t°
NaCl						51	18
KCl .						43	20
						57.5	16
${f MgCl_2}$						65	16
$BaCl_2$						38	18
$K_2SO_4$						37 5	20
$MgSO_4$						27	21
$\overline{\mathrm{KNO}}_3$						17.5	15
NaNO ₃ .						22	15
$Ba(NO_3)_3$	2					25	21
$K_2CO_3$ .					. 1	0	15
NH ₄ Cl				٠.`	. ]	95	20
NH ₄ NO ₃					.	77	20
$(NH_4)_2SC$	)4					88	20

(Snyders, B. 11. 936.)

+H₂O. See also Zinc oxide.

Zinc hydrosulphide, Zn(SH)₂.

Very unstable. Decomp. by H₂O. (Zotta, M. 10. 807.)

Sol. in NaSH+Aq. (Thomsen, B. 11. 2044.)  $Z_{n_3}H_2S_4$ . (Zotta.)

Zinc iodide, ZnI2.

Deliquescent. Easily sol. in H₂O., Sat. ZnI₂+Aq contains at:

--18° --5° +17° 47° 62° 73°
70.9 74.0 80.4 80.3 81.3 81.2% ZnI₂,

97° 100° 107° 138° 140°
82.1 83.0 82.6 83.8% ZnI₂.

(Étard, A. ch. 1894, (7) **2.** 544.)

Solubility in Ii2O.

100 g. of the sat. solution contain at:
0' 18° 40' 60° 50° 100°

81.11 81.20 81.60 82.37 83.05 83.62 g. ZnI₂. (Dietz, Z. anorg. 1899, **20**. 251.)

See also under +2HO.

Sp. gr. of ZnI₂+ Aq at 19.5° containing: 23.1 42.6 56.3 63.5 76.0% ZnI₂. 1.2340 1.5121 1.7871 1.9746 2.3976 (Kremers, Pogg. **111**, 61.)

Sp. gr. of ZnI₂+Aq at 19.5° containing: 25 % ZnI2, 10 15 20 1.0451.091 1.140 1.196 1.25530 40 45 50 % ZnI2, 1.368 1.390 1.4201.5601.65055 60 70 65 75 % ZnI₂. 1 754 1.875 2.020 2.180 2.360 (Kremers, calculated by Gerlach, Z. anal. **8.** 285.)

Sol. in (NH₄)₂CO₃+Aq. Moderately sol. in liquid NH₃. (Franklin, Am. Ch. J. 1898, **20**, 830.) Sol. in alcohol.

100 pts. glycerine disolve 40 pts. at ord. temp. (Klever, Bull. Soc. 1872, (2) **18.** 372.) 100 g. glycerol dissolve 40 g. ZnI₂ at 15.5°. (Ossendowski, Pharm. J. 1907, **79.** 575.)

More sol. in anhydrous ether than in abs. alcohol. Insol. in CS₂. (Hampe, Ch. Z. 1887, **11**. 846.)

Sol. in methyl acetate (Naumann, B. 1909, **42**, 3790); acetone. (Eidmann, C. C. **1899**, II. 1014; Naumann, B. 1904, **37**, 4328.)

Sol. in quinoline. (Beckmann and Gabel, Z. anorg. 1906, **51.** 236.)

Mol. weight determined in methyl sulphate. (Werner, Z. anorg. 1897, 15. 25.)

 $^{+}$  +2H₂O. Solubility in H₂O.  100  g. of the sat. solution contain at:  $^{-}$  +10°  $^{\circ}$  22° 27°(mpt.)  $^{\circ}$  80.50 80.77 81.16 82.06 83.12 89.52 g. ZnI₂. (Dietz, Z. anorg. 1899, **20.** 251.)

+4H₂O. (Lubarski, Z. anorg. 1898, **18.** 387.)

Zinc tetraiodide, ZnI4.

Known only in aqueous solution. (Baup, Repert. 14. 412.)
Sol. in fenchone. (Rimini and Olivari, C. C. 1907, II. 241.)

#### Zinc iodide ammonia, ZnI2, 4NH3.

Decomp. by cold H₂O. Easily sol. in acids and NH₄OH+Aq. (Rammelsberg, Pogg. **48.** 152.)

ZnI₂, 5NH₃. Decomp. by cold H₂O. Sol. in NH₄OH+Aq. (Rammelsberg.) 3ZnI₂, 5NH₃+3H₂O. (Tassily, C. R. 1896, 1998, 224

**122.** 324.)

#### Zinc iodide hydrazine, ZnI2, 2N2H4.

Decomp. by H₂O.

Sol. in NH₄OH+Aq. (Franzen, Z. anorg. 1908, 60, 277.)

#### Zinc nitride, Zn₂N₂.

Decomp. by H₂O with the greatest violence.

(Frankland, Phil. Mag. (4) 15. 149.) Easily decomp. by H₂O when finely powdered. (Rossel, C. R. 1895, 121. 942.) Sol. in HCl. (Fischer, B. 1910, 43. 1468.)

#### Zinc oxide, ZnO.

Insol. in H₂O. Some preparations of ZnO are sl. sol. in H₂O, never, however, in less than 1 million pts. H₂O. (Bineau, C. R. **41. 510**.)

Calculated from electrical conductivity of ZnO+Aq. 1 pt. ZnO is sol. in 236,000 pts.  $H_2O$  at 18°. (Dupre and Bialas, Zeit. angew. Ch. 1903, 16. 55.)

See also Zinc hydroxide.

Easily sol. in acids, even after ignition. Easily sol. in acids, even H₂SO₃, or H₂CO₃+

Solubility of ZnO in CrO₃+Aq at 25°.

1 l. of the solution contains:

G. CrO ₈	G. ZnO	G. CrO ₃	G.ZnO
0.010	0.013	101	44.9
0.010	0.013	151	66.1
0.010	0.013	192	83.8
0.604	0.409	192	83.6
2.14	1.16	285	123
4.19	2.24	392	168
11.4	5.84	450	193
11.5	5.89	461	196
22.2	10.7	463	197
31.4	.14.9	475	202
43.1	20.1	574	240
57.5	26.7	660	274
66.5	30.3	769	318
66.7	30.4	879	354
70.6	32.2	970	389
93.3	41.5		

(Gröger, Z. anorg. 1911, 70. 136.)

When moist is easily sol. in KOH, NaOH, and NH₄OH+Aq, but only sl. sol. therein after ignition. Partially repptd. from solution in NH₄OH+Aq by dilution with  $H_2O$ .

Anhydrous ZnO is insol. in dil., but sol. in conc. alkali hydrates+Aq, but the hydroxide is easily sol., even in dil. alkalies + Aq. (Fremy, A. ch. (3) 23. 390.)

Very sl. sol. in NH₄OH+Aq. After igni-

tion its solubility is greatly increased by traces of K and NH₄ salts. Phosphates have the strongest action, then, in the following order: arsenates, chlorides, sulphites, ni-trates, acetates, carbonates, tartrates, cit-Succinates and benrates, and sulphates. zoates increase the solubility in NH4OH+ Aq, only when it is very dil.; borates, iodides, chlorates, arsenites, gallates, and oxalates do not increase the solubility. (Schindler.)

ZnO is sol. in NH4OH+Aq. only in presence of NH₄ salts. (Brandhorst, Zeit. angew. Ch. 1904, 17. 513.)

Solubility in KOH, NaOH, and NH₄OH+

Aq. An excess over 4 mols. KOH to 1 mol. ZnO is necessary for solution, but that excess may be neutralised after solution, until only 4 mols. are left, without pptn. of ZnO. Solution is pptd. by addition of 12 vols. H₂O. KOH+Aq containing 16.5 g. KOH to a litre H₂O is the weakest solution which will dissolve ZnO. Three times as much alkali are necessary for solution at 50° as at 16-17°. Less excess of NaOH than of KOH is necessary. 3 mols. NH₄OH will dissolve 1 mol. ZnO, and the temp. and dilution are in this case of little influence. (Prescott.)

100 cc. of 20% NaOH+Aq dissolve in many hours at most 2.97 g. ignited ZnO. Pptd. ZnO is more quickly dissolved but the action becomes very slow after 100 cc. of the solution contain 3.87 g. of Zn. (Förster and Günther, Z. Elektrochem. 1900, **6.** 301.)

Solubility of ignited ZnO in NaOH+Aq gradually decreases. (Kunschert, Z. anorg. 1904, **41.** 343.)

Sol. in hot NH₄Cl+Aq, either when moist or dry.

Somewhat less sol. in NH₄NO₃+Aq. Somewhat sol. in water glass+Aq. way.)

Slowly sol. in cold, easily in hot NaCl+Aq. (Siersch, J. B. **1867.** 255.)

Solubility of ZnO in ZnCl₂+Aq at room temp.

G. ZnCl ₂ per 100 g. H ₂ O	G. ZnO per 100 g. H ₂ O
8.22	0.0137
23.24	0.138
45.95	0.497
51.50	0.604
56.90	0.723
62.85	0.884
96.00	1.792
124.70	3.213
144.80	2.640
203.00	1.590

The solubility curve has a maximum at a point corresponding to about 125 g. ZnCl₂ per 100 g. H₂O. On the first branch of the curve the solid phase in equilibrium with the solution is ZnCl₂, 4ZnO, 6H₂O; on the second branch it is ZnCl₂, ZnO, 1.5H₂O.

(Driot, C. R. 1910, **150.** 1427.)

Sol. in boiling Fe(NO₃)₃, and Pb(NO₃)₂+ Aq with pptn. of oxides. Not attacked by  $Co(NO_3)_2$ ,  $Ni(NO_3)_2$ , and  $Ce(NO_3)_3 + Aq$ . (Persoz.)

Sol. in boiling KCN +Aq.

Insol. in boiling K tartrate + Aq. lenberg and Hillyer, Am. Ch. J. 1894, 16. 101.) Insol. in liquid NH₃. (Franklin, Atc., Ch. J. 1898, **20.** 830.) Tartaric acid somewhat hinders the pptn.

of ZnO2H2.

Insol. in methyl acetate. (Naumann, B. 1909, 42. 3790.)

Insol. in acetone. (Naumann, B. 1904, 37. 4329; Eidmann, C. C 1899, II. 1014.)

Sol. in methyl amine, but insol in amyl amine + Aq. (Wurtz.)

1 l. solution containing 174.4 g. sugar and 14.1 g. CaO dissoolves 0.24 g. ZnO. (Bodenbender, J. B. 1865, 600.) Min. Zincite. Sol. in acids.

#### Zinc peroxide.

1 pt. sol. in 45,000 pts. H₂O.

Very sol. in acids. (Foregger and Philipp,

J. Soc. Chem. Ind. 1906, 25. 300.)

J. Soc. Chem. Ind. 1906, 26, 300.;

ZnO₂ (?). Ppt. Decomp. by acids with evolution of H₂O₂. (Haass, B. 27, 2249.)

ZnO, H₂O, H₂O₂. (de Forcrand, A. ch. 1902, (7) 27, 58.)

3ZnO, 2H₂O₂. (de Forcrand.)

3ZnO, H₂O, 2H₂O₂. (de Forcrand.)

4ZnO, H₂O, 3H₂O₂. (de Forcrand.)

ZnO₂, ZnO₂H₂. Insol. in NH₄OH+Aq.

ZnO₂, ZnO₂H₂. Insol. in (Kouriloff, A. ch. (6) **23.** 431.)

3ZnO₂, Zn(OH)₂. Sol. in NaOH+Aq with evolution of O. (Eijkman, C. C. 1905, I.

1628.) 3ZnO+4H₂O. Completely sol. in Zn4O7 dil. H₂SO₄. (de Forcrand.) 10ZnO₂, 4ZnO+5H₂O. Ppt. (Teletow,

C. C. 1911, I. 1799.)

### Zinc oxybromide, ZnBr₂, ZnO+13H₂O.

ZnBr₂, 4ZnO+10, 13, and 19H₂O. comp. by H2O into-

 $ZnBr_2$ ,  $6ZnO + 35H_2O$ . (André.)

 $ZnBr_2$ ,  $5ZnO+6H_2O$ . (André.)

All oxybromides are sol. in KOH and NH₄OH+Aq. (André, C. R. **96.** 703.)

Zinc oxybromide ammonia, ZnBr2, 3ZnO, 2NH₃+5H₂O.

Decomp. by H₂O. (André, C. R. 96. 703.)

### Zinc oxychloride, ZnO, 3ZnCl₂+H₂O.

Decomp. by H₂O.

Very sol. in dil. acids. (Ephraim, Z. anorg.

1908, **59.** 67.)

94.)

+4H₂O. Sl. sol. in H₂O; more sol. in  $ZnCl_2+Aq.$ 

Easily sol. in acids, or NH₄OH, or KOH+ Aq. (Schindler, Mag. Pharm. **36.** 45.) +5H₂O and 8H₂O. (André, A. ch. (6) **3.** 

ZnO, ZnCl₂+1½H₂O. (Driot, C, R. 1910,

150. 1427.)

, 3ZnO, ZnCl₂+2H₂O. Sl. sol. in H₂O, more easily sol. in ZnCl₂+Aq. Easily sol. in acids and in NH₄OH or KOH+Aq.

m seeds and in NH₄OH or KOH+Aq. (Schindler, Mag. Plearm. **36**, 45.) +3H₂O. (Wer ier, B 1907, **40**, 4443.) +5H₂O. (Mailhe, A.ch. 1902, (7) **27**, 367.) 3ZnO, 2ZnCi₂+11H₂O. (André, C. R. 1888, **106**, 854.)

4ZnO, ZnCl₂+6H₂O. (André, C. R. 1888, **106.** 854.)

4-11H₂O. (André, A. cn. (6) 3. 94.)

52.00, ZnCl₂+6H₂O. (Ferrot, Bull. Soc. 1895, (3) **13.** 976.)

+8H₂O. (André, C. P. 1882, **94.** 1524.) 5ZnO, 2ZnCl₂+23H₂O. Sol. in KOH or NH₄OH+Aq. Decomp. by H₂O into— 5ZnO, ZnCl₂+26H₂O. Sol. in KOH or

NH4OH+Aq. Decomp. by H2O into-

Insol. in H₂O.

NHAOH + Aq. Decomp. 6Zr 2, ZnCl₂ + 6H₂O. (Kane, A. ch. **72**, 296.) 8ZnO, ZnCl₂ + 10H₂O. 1902, (7) **27**, 367.) 9ZnO, ZnCl₂ + 3H₂O. (Mailhe, A. ch.

Insol. in H₂O. Less sol. in NH4OH+Aq than ZnCl2, 3ZnO+  $2H_2O$ , but easily sol. in  $+14H_2O$ .

9ZnO, 2ZnCl₂+12H₂O. Insol. in hot or cold H₂O. (Habermann, M. **5.** 432.)

### Zinc oxychloride ammonia, 6ZnCl₂, ZnO, $12NH_8+4H_2O$ .

Decomp. by H₂O and boiling alcohol.

(André, A. ch. (6) **3.** 90.) ZnCl₂, 3ZnO, 2NH₃+5H₂O. 3ZnO, Decomp.  $ZnCl_2$ 

by H₂O. (André.) (André.) ZnCl₂, 2ZnO, 2NH₃+3H₂O. 6ZnCl₂, 3ZnO, 10NH₃+13H₂O. ZnCl2, (André.)  $4ZnCl_2$ , ZnO,  $8NH_3+2H_2O$ . (André.)

#### Zinc oxyiodide, ZnI₂, 3ZnO+2H₂O.

Insol. in cold, sl. sol. in boiling H₂O. (Müller, J. pr. 26. 441.) Znl₂, 9ZnO+24H₂O. Insol. in cold H₂O. Znl₂, 5ZnO+11H₂O. Decomp. by H₂O. (Tassilly, C. R. 1896, **122**. 324.)

### Zinc oxyphosphide, ZnP₂O.

(Renault, A. ch. (4) 9. 162.) Probably is a mixture of zinc phosphate and phosphorus. (Vigier, Bull. Soc. 1861.

### Zinc oxysulphide, ZnO, ZnS.

Sol. in HCl+Aq. (Arfvedson, Pogg. 1. 59.) 4ZnS, ZnO. Not decomp. by boiling 4ZnS, ZnO. (Kersten, Schw. J. 57. 186.)  $HC_2H_3O_2+Aq$ . Min. Volzite. Sol. in HCl+Aq.

### Zinc phosphide, ZnP.

Less easily attacked by HCl+Aq than

Zn₃P₂. Not attacked by hot HCl+Aq. ZnP2. (Hvoslef, A. 100. 99.) ZnP4. Insol. in dil. HCl+Aq. (Renault.)

Zn₂P₂. Insol. in H₂O. Sol. in dil. HCl, H₂SO₄, or HNO₃+Aq, with evolution of PH₃. (Renault, A. ch. (4) 9. 162.)

Zn₃P₄. Insol. in HCl+Aq. (Renault.)

#### Zinc selenide, ZnSe.

Cold dil. HNO3+Aq dissolves out Zn, and Se separates out, which dissolves on warming as H₂SeO₃. (Berzelius.)

 $+xH_2O$ . Insol. in  $H_2O$ . (Berzelius.)

## Zinc sulphide, ZnS.

Anhydrous. Insol. in H₂O. Sol. in HCl+Aq; insol. in HC₂H₃O₂+Aq. (Ebelmen, A.

ch. (3) 25. 97.)
Sol. in H₂S+Aq under pressure in a sealed tube. (Senarmont, A. ch. (3) 32. 168.)

Min. Blende, Sphalcrite. Sl. attacked by

acids, expecting aqua regia.

1 l. H₂O dissolves 6.65×10-6 mols. zinc

blende at 18°

1 l. H₂O dissolves 6.63×10-6 mols. artificial cryst. ZnS at 18°. (Wiegel, Z. phys. Ch. 1907, **58.** 294.)

Sol. in an alkaline solution of NaClO. (Sadtler, Trans. Am. Electrochem. Soc. 1902, 1. 142.)

Insol. in liquid NH₃. (Franklin, Am. Ch.

J. 1898, **20.** 830.) +1/2, ²/₃, or 1H₂O. *Pptd.* ZnS.

1 l. H₂O dissolves 70.60×10-6 mols. pptd. ZnS at 18°. (Wiegel, Z. phys. Ch. 1907, **58**. 294.)

Insol. in alkali hydrates, carbonates, and sulphides+Aq. Insol. in NH₄OH, HCl, or (NH₄)₂CO₃+Aq. Easily sol. in very dil. HCl and HNO₃+Aq, but H₂S ppts. ZnS in presence of very dil. HCl+Aq, or H₂SO₄+Aq. (Eliot and Storer.)

More easily sol. in HNO₃+Aq than in

HCl+Aq. (Fresenius.)

Only sl. sol. in acetic acid. (Wackenroder.) When still moist is sol. in  $H_2SO_3+Aq$ . Insol. in NH₄Cl or NH₄NO₃+Aq.

K₂S+Aq when added to ZnSO₄+Aq produces a ppt. in presence of 10,000 pts. H₂O, and a slight opalescence with 20,000 pts. (Lassaigne.)

Slowly sol. in conc. KCN+Aq. (Halm, J. B. **1870.** 1008.)

Sl. sol. in Na₂S+Aq; sol. in NaSH+Aq. (Becker, Sill. Am. J. (3) 33. 199.)

#### Zinc pentasulphide, ZnS₅.

Sol. in acids, with separation of S. (Schiff, A. 115. 74.)

## Zinc sulphosilicide, ZnSiS.

Decomp. by acids and by alkalies. (Fraenkel, Metall, 1909, 6. 683.)

## Zinc telluride, ZnTe.

Decomp. by acids. Sol. in  $Br_2+Aq$ . (Fabre, C. R. 105. 277.)

#### Zincic acid.

Zinc hydroxide shows weak acid properties. and forms the following salts.

Ammonium zincate, 3ZnO, 4NH₃+12H₂O= 3ZnO,  $2(NH_4)_2O + 10H_2O$ .

Decomp. by much H₂O.

Barium zincate, BaH₂Zn₂O₄+7H₂O.

Decomp. by H₂O. (Bertrand, C. R. 115, 939.)

Calcium zincate, CaH₂Zn₂O₄+4H₂O.

Decomp. by H₂O. Sol. in NH₄OH+Aq. (Bertrand, C. R. **115.** 939.)

Cobaltous zincate, xCoO, yZnO.

Rinman's green. Sol. in acids. H₂CO₃+Aq dissolves out ZnO. (Comey.)

## Potassium zincate, ZnO, K₂O.

Easily sol. in H₂O, but decomp. by boiling. (Laux, A. 9. 183.) 2ZnO, K₂O. Decomp. immediately by cold H₂O. (Fremy, C. R. **15.** 1106.)

Sodic zincate, Na₂O, 2ZnO+8H₂O, or  $2NaHZnO_2+7H_2O$ .

Decomp. by H₂O or alcohol. and Jackson, Am. Ch. J. 11. 145.)

+7H₂O. (Förster and Günther, Z. Elektrochem, 1899, 6. 301.)

 $2Na_2O$ ,  $3ZnO+18H_2O$  or  $Zn_3O_6Na_4H_2+17H_2O$ . Decomp. by  $H_2O$  or alcohol. Insol. in ether. (Comey and Jackson.)

Strontium zincate, SrH₂Zn₂O₄+7H₂O.

Decomp. by H₂O. (Bertrand.)

#### Zirconic acid.

See Zirconium hydroxide.

Barium zirconate, BaZrO₈.

Insol. in acids. (Ouvrard, C. R. 113. 80.)

Calcium zirconate, CaZrO₃.

Insol. in acids. (Ouvrard, C. R. 113. 80.)

Calcium zirconate, acid.

Inscl. in H₂O or HCl+Aq. (Hiordthal, A. **137.** 237.)

Calcium potassium zirconate, (Ca,K)LaO₃ (small quantity of CaO substituted by K₂O).

Sol. in HCl. (Venable, J. Am. Chem. Soc. 1896, **18.** 444.)

## Cupric zirconate.

(Berthier, A. ch. 59. 195.)

## Lithium zirconate, Li₂ZrO₃.

Easily attacked by acids. (Ouvrard, C. R. 112. 1444.)

#### Magnesium zirconate.

Insol. in H₂O or HCl+Aq. (Hiordthal, C. R. **61.** 215.)

#### Potassium zirconate.

Decomp. by HCl +Aq. (Knop, A 159, 44.)

#### Sodium zirconate, Na₂ZrO₂.

Decomp. by H₂O

Na₄ZrO₄. Decomp. by HCl+Aq, and is dissolved by subsequent addition of H₂O. Na₂O, 8ZrO₂+12H₂O. (Hiordthal.)

# Strontium zirconate, SrZrO₂.

As CaZrO₃. (Ouvrard)

# Zirconium, Zr.

Crystallized. Attacked by conc. HCl+Aq above 50°, but very slowly even at 100°; rapidly by hot aqua regia. Sol. in cold conc. HF+Aq. (Troost, C. R. 61. 109.)

Very violently attacked by a mixture of HNO₃ and HF. (Berzelius, Pogg. 4. 117.) Amorphous. Slowly attacked by boiling aqua regia, H₂SO₄, or conc. HCl+Aq. (Ber-

zelius.)
Easily sol, in HF or HNO₃+HF.

## Zirconium bromide, ZrBr4.

Very hygroscopic. Violently decomp. by  $H_2O$  to form oxybromide. (Melliss, Zeit. Ch. (2) **6.** 296.)

Sl. sol. in organic solvents. (Matthews, J. Am. Chem. Soc. 1898, 20. 840.)

# Zirconium bromide ammonie, ZrBr4, 4NH3.

Ppt. Insol. in organic solvents. (Matthews, J. Am. Chem. Soc. 1898, **20.** 840.) ZrBr₄, 10NH₃. Very hydroscopic.

Decomp. by H₂O. (Stähler, B. 1905, **38**. 2612.)

#### Zirconium carbide, ZrC.

Insol. in H₂O and NH₄OH+Aq and HCl Aq even when heated. Sol. in HNO₅, H₂SO₄ and fused alkali nitrates, chlorates, or hydroxides. (Moissan, C. R. 1896, **122**. 653.)

#### Zirconium chloride, ZrCl4.

Sol. in H₂O with evolution of much heat to form ZrOCl₂. Sol. in alcohol. (Hinsberg, A. **239.** 253.)

Very unstable.

Probably substances so described in the literature by Nylander and others were oxychlorides. (Venable, J. Am. Chem. Soc. 1894, **16.** 471.)

Sol. in ether. (Matthews, J. Am. Chem. Soc. 1898, **20.** 821.)

Zirconium chloride ammonia, ZrCl4, 2NH2.

Fumes in the air. Decomp. by H₂O. (Matthews, J. Am. Chem. Soc. 1898, **20**. 821.) ZrCl₄, 3NH₃. (Stähler, B. 1905, **38**. 2611.) ZrCl₄, 4NH₃. Decomp. by H₂O. (Paykull.)

Unstable. Decomp. by H₂O. (Matthews,

J. Am. Chem. Soc. 1898, 20. 821.)

ZrCl₄, 8NH₃. Stable in the air. Decomp. by H₂O. Insol. in ether. (Matthews, J. Am. Chem. Soc. 1898, **20.** 821.) Very hydrosopic. Decomp. by H₂O.

Very hydros opic, Decomp. by **H₂O.** (Stähler, P. 1905, **S8.** 2611)

# Zirconium fluoride, ZrF4.

Anhydrous. Insol in H₂O and acids. (Deville, A. ch. (3) 49. 84.)

Only sl. sol. in H₂O.

1.388 g. dissolve in 100 cc. H₂O without hydrolesis. On warming the solution, zirconium hydrate begins to ppt. out at about 50°. (Wolter, Ch. Z. 1908, **32**. 606.) +3H₂O. Sol. in H₂O, but solution decom-

+3H₂O. Sol. in H₂O, but solution decomposes on diluting, with pptn. of an insol. pasic salt. Sol. in dil. HF+Aq. (Berzelius.)

# Zirconium fluoride ammonia, 5ZrF4, 2NH2.

(Wolter, Ch. Z. 1908, **32.** 607.)

## Zirconium hydride, ZrH2.

Not attacked by acids. (Winkler, B. 24. 873.)

## Zirconium hydroxide, Zr(OH)4.

Insol. in H₂O or alcohol. Sol. in 5000 pts. H₂O. (Melliss.)

Sol. in acids, even oxalic or tartaric acid, when precipitated cold. If precipitated hot, it is slowly dissolved upon heating with concacids.

Sol. in dil. or conc. min. acids except HI. Readily sol. in oxalic, only sl. sol. in acetic acid.

Much less sol. when pptd. from hot solution than when pptd. from cold solution. (Venable, J. Am. Chem. Soc. 1898, **20.** 274.) Sl. sol. in (NH₄)₂CO₃+Aq. Insol. in K₂CO₃ and Na₂CO₃+Aq. Insol. in NaOH, KOH, and NH₄OH+Aq.

Sol in  $(NH_4)_2C_4H_4O_6+NH_4OH+Aq$ . In-

sol. in NH₄ salts+Aq.

#### Zirconium iodide, ZrI4.

Fumes in the air.

Sol. in H₂O and acids with violent reaction.

Decomp. by alcohol. Sol. in abs. ether. Sl. sol. in benzene and CS₂. (Stähler, B. 1904, **37**. 1137.)

Insol. in H₂O, HNO₃, HCl, aqua regia, and CS₂.

Sol. in H₂SO₄ with decomp; unchanged by boiling H₂O₅. (Dennis, J. Am. Chem. Soc. 1896, **18**. 678.) Zirconium iodide ammonia, ZrI4, 6NH2; ZrI4, 7NH2; ZrI4, 8NH2; ZrI4, 10NH2.

All above comps. are hydroscopic and lose NH₃ in the air. (Stähler, B. 1905, 38, 2615.)

#### Zirconium nitride.

Scarcely attacked by acids, aqua regia, and caustic alkalies. Slowly decomp. by long contact with H₂O. (Mallet, Sill. Am. J. (2) **28.** 346.)

Decomp. when heated in the air: Zr₂N₈. sol. in HF; insol. in other min. acids. (Matthews, J. Am. Chem. Soc. 1898, 20. 844.)

Zr₃N₈. Decomp. when heated in the air. Sol. in HF; insol. in other min. acids. (Matthews, J. Am. Chem. Soc. 1898, 20, 844.)

#### Zirconium oxide, ZrO2.

When ignited, is insol. in all acids except HF and H₂SO₄. Sl. sol. in HF; sol. in H₂SO₄ only when very finely powdered and heated with a mixture of 2 pts. H₂SO₄ and 1 pt. H₂O until the H₂SO₄ volatilises. (Berzelius.)

# Zirconium peroxide, ZrO₃.

(Cleve, Bull. Soc. (2) 43. 53), or Zr₂O₅ according to Bailey (Chem. Soc. 49. 150). Not attacked by cold dil. H₂SO₄+Aq. (Bailey.)

#### Zirconium silicon oxide.

Min. Zircon. See Silicate, zirconium.

Zirconium oxy-compounds. See Zirconyl compounds.

#### Zirconium phosphide, ZrP₂.

Insol. in dil. or conc. acids and alkalies. Sl. sol. in aqua regia. (Gewecke, A. 1908, **361.** 85.)

#### Zirconium silicide, ZrSi₂.

Sol. in HF, insol. in other min. acids. Not acted upon by 10% KOH+Aq or NaOH+Aq.

Decomp. by fusion with KOH. (Hönigschmid, C. R. 1906, **143**. 225.)

#### Zirconium sulphide.

Insol. in H₂O. Sol. in HF; slowly sol. in aqua regia. Insol. in HNO3, HCl, H2SO4,

or KOH+Aq. (Berzelius.)
Insol. in dil. acids. Sol. in conc. HNO₃+ Aq (perhaps an oxysulphide). (Fremy.)

## Zirconomolybdic acid.

Ammonium zirconomolybdate,  $2(NH_4)_2O$ ,  $ZrO_2$ ,  $12MoO_3+10H_2O$ . Sol. in H₂O. (Pechard, C. R. 1893, 117. 790.)

Potassium zirconomolybdate, 2K₂O, ZrO₂, 12M₀O₃+18H₂O.

Sol. in H₂O. (Pechard.)

## Zirconotungstic acid.

Ammonium zirconodecatungstate,  $3(NH_4)_2O$ ,  $ZrO_2$ ,  $10W\bar{O}_3 + 13\dot{H}_2O$ .

Verv sol. in H₂O.

Efflorescent. (Hallopeau, Bull. Soc. 1896,

(3) **15.** 921.)

 $3(NH_4)_2O$ ,  $H_2O$ ,  $ZrO_2$ ,  $10WO_3+13H_2O$ . Sol. in H₂O; unstable; effloresces in the air. (Hallopeau.)

#### Potassium zirconotungstate, 4K2O, ZrO2, $WO_3 + 20H_2O$ .

Sol. in hot H₂O. (Hallopeau.) 4K₂O, ZrO₂, 10WO₃+15H₂O. More sol. in hot than in cold H₂O.

(Hallo-Sol, in fused alkali carbonates. peau.)

#### Potassium dizirconodecatungstate, $4K_2O_1$ , $2Z_1O_2$ , $10WO_2 + 20H_2O_1$ .

More sol. in hot than in cold H₂O. Sol. in fused alkali carbonates. (Hallopeau.)

Zirconyl bromide, ZrOBr₂+3H₂O.

Deliquescent. Decomp. in moist air. (Venable, J. Am. Chem. Very sol. in H₂O. Soc. 1898, **20.** 324.) +7H₂O. Sol. in

Sol. in H₂O. (Melliss.)

+8H₂O. Deliquescent. Decomp. in moist air. Very sol. in H₂O. (Venable, J. Am. Chem. Soc. 1898, 20. 324.)

 $+13H_{2}O.$ Deliquescent. Decomp. in moist air.

Very sol. in H₂O. (Venable.)

Deliquescent. Decomp. in +14H₂O.

moist air. (Venable.)

Very sol. in H₂O. (Venable.)

ZrBr(OH)₃+H₂O, and +2H₂O. Deliquescent, and decomp. in moist air. (Venable.)

#### Zirconyl chloride, ZrOCl₂.

Sol. in H₂O; insol. in HCl. (Venable, J. Am. Chem. Soc. 1894, 16. 475.)

(Chauvenet, C. R. 1912, 154.  $+2H_2O$ . 822.)

+3H₂O. Sol. in H₂O. (Venable.) +3.5H₂O. (Chauvenet, C. R. 1912, 154.

 $+6H_2O$ . (Chauvenet.) Sol. in H₂O.

Insol. in HCl. (Venable.)

+4½H₂O, 6½H₂O, and 8H₂O. Efflorescent. Easily sol. in H₂O and alcohol. Very sl. sol. in conc. HCl+Aq. (Berzelius.)

+8H₂O. Sol. in H₂O. (Venable, J. Am. Chem. Soc. 1898, **20.** 321.)

Effloresces in the air.

Sol. in H₂O. Less sol. in HCl+Aq. and nearly insol. in conc. HCl. (Chauvenet, C. R. 1912, **154.** 822.)

Zr₂OCl₂. Sol. in H₂O and alcohol. Ende-

mann, J. pr. (2) 11. 219.)

Not decomp. by H₂O. Sol. in dil. HCl. (Chauvenet, C. R. 1912, 37, 1138.) **154.** 1236.)

(Chauvenet, C. R. 1912, 154.)  $+H_2O.$ 

1236.) +3H₂O. Decomp. by H₂O. Sol. in dil HCl. (Chauvenet.)

8ZrO₂, 7HCl. Sol. in H₂O. (E.)

Zr₂OČl₆. (Troost and Hautefeuille, C. R. **73.** 563.)

 $Zr_3OCl_4 = ZrCl_4$ ,  $2ZrO_2$ . Insol. in H₂O. (Hermann.)

# Zirconyl iodide, ZrOI₂+8H₂O.

Very sol, in H₂O and alcohol.

((Stähler, B. 1904, Very hydroscop 3.

Zr. (OH)3+3H4O. Easily sol. in H2O.

(Hinsberg, A. 239, 253.)

Ppc. Sl. sol in H1+Aq. (Venable, J. Am. Chem. Soc. 1898, 20. 328.)

# Zirconyl sulphide (?)

Lecomp by HNO₃ with separation of S. (Fremy, A ch. (2) 38. 326.)

# APPENDIX

# FORMULÆ FOR CONVERTING AREOMETER DEGREES INTO SPECIFIC GRAVITY.

n = no. of degrees on the areometer scale, sp. gr. = specific gravity.

	-,		
Arcongter	Temp.	Liquida heavier than H2O	Liquids lighter than H2O
1. Baumé.  (a) According to Baumé's original directions. For liquids heavier than $H_2O$ . Sp. gr. of a solution of 15 pts. NaCl dissolved in 85 pts. $H_2O$ at $12.5^{\circ}$ ( $d\frac{12.5^{\circ}}{12.5^{\circ}}$ = 1.1118988)  = 15°; $H_2O$ = 0°. For liquids lighter than $H_2O$ . Sp. gr. of $10\%$ NaCl+Aq at $12.5^{\circ}$ ( $d\frac{12.5^{\circ}}{12.5^{\circ}}$ = 1.0737665) = 0°;	15°	Sp. gr. = $\frac{149.05}{149.05-n}$ .	Sp. gr. = $\frac{145.56}{135.56 + n}$
$\dot{H}_2() = 10^{\circ}$ . (b) Old Form. Liquids heavier than H ₂ O, 10% NaCl	12.5°	Sp. gr. = $\frac{145.88}{145.88-n}$	Sp. gr. = $\frac{145.88}{135.88 + n}$
$+\Lambda q \text{ at } 15^{\circ} \left( d \frac{15^{\circ}}{15^{\circ}} = 1.073350 \right)$	15°	Sp. gr. = $\frac{146.3}{146.3-n}$	Sp. gr. = $\frac{146.3}{136.3+n}$
= 10°; $H_2O = 0$ °. Liquids lighter than $H_2O$ , 10% NaCl $+Aq = 0$ °; $H_2O = 10$ °. $(c)$ New Form. So-called "Rational Scale." Liquids	17.5°	Sp. gr. = $\frac{146.78}{146.78 - n}$	Sp. gr. = $\frac{146.78}{136.78 + n}$
heavier than $H_2O$ , $H_2SO_4+$ $Aq\frac{15^{\circ}}{15^{\circ}}=1.842=66^{\circ}$ ; $H_2O=0^{\circ}$ .	15°	Sp. gr. = $\frac{144.3}{144.3-n}$	
2. Beck. $H_2O = 0^\circ$ ; liquid of 0.850 sp. gr. $\left(\frac{12.5^\circ}{12.5^\circ}\right) = 30^\circ$ . Scale continued above and below.	12.5°	Sp. gr. $=\frac{170}{170-n}$	Sp. gr. = $\frac{170}{170+n}$
3. Twaddle. $H_2O=0^\circ$ . Each degree corresponds to an increase of 0.005 in the sp. gr.	Given on the instru- ment	Sp. gr. = $1.000 + 0.005n$	

# TABLES FOR THE CONVERSION OF BAUMÉ DEGREES INTO SP. GR.

Since the original directions of Baumé there have been many slight modifications suggested, so that there are several varieties of Baumé hydrometers with somewhat varying readings, tables for the two principal ones of which are heregiven.

1. According to Baumé's original directions.

For liquids heavier than  $H_2O$ . Sp. gr. of 15 % NaCl+ Aq  $\left(\frac{12.5^{\circ}}{12.5^{\circ}}\right) = 1.1118988 = 15^{\circ}$ ;  $H_2O = 0^{\circ}$ .

Calculated according to the formula, sp. gr. =  $\frac{149.05}{149.05-n}$ .

Deg. Baumé	Sp. gr.	Deg. Baumé	Sp. gr.	Deg. Baumé	Sp. gr.	Deg. Baumé	Sp. gr.
0	1.00000	20	1.15497	39	1.35438	58	1.63701
1	1.00675	21	1.16399	40	1.36680	59	1.65519
2	1.01360	22	1.17316	41	1.37945	60	1.67378
2 3	1.02054	23	1.18246	42	1.39234	61	1.69279
	1.02757	24	1.19192	43	1.40547	62	1.71223
4 5 6 7	1.03471	25	1.20153	44	1.41885	63	1.73213
6	1.04194	26	1.21129	45	1.43248	64	1.75250
7	1.04927	27	1.22122	46	1.44638	65	1.77335
8 9	1.05671	28	1.23131	47	1.46056	66	1.79470
9	1.06426	29	1.24156	48	1.47501	67	1.81657
10	1. <b>07</b> 191	30	1.25199	49	1.48971	68	1.83899
11	1.07968	31	1.26260	50	1.50479	69	1.86196
12	1.08755	32	1.27338	51	1.52014	70	1.88551
13	1.09555	33	<b>1</b> _c . 28436	52	1.53580	71	1.90967
14	1.10366	34	1.29522	53	1.55179	72	1.93446
15	1.11189	35	1.30688	54	1.56812	73	1.95989
16	1.12025	36	1.31844	55	1.58471	74	1.98601
17	1.12873	37	1.33621	56	1.60182	75	2.01283
18	1.13735	38	1.34218	57	1.61923	76	2.04038
19	1.14609						

For liquids lighter than H2O. Sp. gr. of 10 % NaCl

Aq 
$$\left(\frac{12.5^{\circ}}{12.5^{\circ}}\right) = 1.0737665 = 0^{\circ}$$
; H₂C = 10°.

Calculated according to the formula, sp. gr. =  $\frac{145.56}{135.56+n}$ .

Deg. Baumé	Sp. gr.	Deg. Baumé	Sp gi.	Deg. Brun-é	Sp. gr	Dog. Baumé	Sp. gr.
10 15 20 25	1.00000 0.96679 0.93571 0.90657	30 35 40 45	0.87919 0.85342 0.82912 0.80616	50 55 60	0.78443 0.76385 0.74432	65 70 75	0.72577 0.70811 0.69130

2. According to the so-called Rational Scale.

Sp. gr. of 
$$H_2SO_4 + A_{3}(\frac{15^{\circ}}{15^{\circ}}) = 1.842 = 66^{\circ}$$
;  $H_2O = 0^{\circ}$ .

Calculated according to the formula, sp. gr. =  $\frac{144.3}{144.3-n}$ 

Deg. Baumé	Sp. gr.	Deg. Baumé	Sp. gr.	Der. Baumé	Sp. gr.	Deg. Baumé	Sp. gr.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.007 1.014 1.021 1.029 1.036 1.043 1.051 1.059 1.066 1.074 1.082 1.091 1.099 1.107 1.116	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	1.142 1.152 1.161 1.170 1.180 1.190 1.200 1.210 1.220 1.230 1.241 1.251 1.262 1.274 1.285 1.296 1.308	35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	1.320 1.332 1.345 1.357 1.370 1.384 1.397 1.411 1.424 1.439 1.453 1.468 1.483 1.498 1.514	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	1.547 1.563 1.580 1.598 1.616 1.634 1.653 1.672 1.692 1.712 1.732 1.753 1.775 1.797

# SYNCHRONISTIC TABLE OF CHEMICAL

Year	Λ.	A. ch.	Am. J. Sci.	Ann. Min.	Ann. Phil.	Arch. Pharm.	Ch. Gaz.	C. R.	Dingl.
1800		(1) 32-34							
1801		35-39							
1802		40-43							
1803	,	44-47							
1804		48-51					• •		
1805		52-55							
1806		56-60							
1807 1808		61-64 65-68					• •		
1809	· ·	69-72	• • • •					• • •	
1810	4							• • •	
1811	::: '	<b>73</b> –76							
1812	:::	81–84					::		
1813		85-88			(1) 1, 2				
1814		89-92			3, 4		::	• • •	
1815		93-96		1	5, 6				
1816	1	(2) 1-3			7, 8				
1817		4-6		1, 2	9, 10				
1818		7-9		3	11, 12				
1819		10-12	(1) 1	4	13, 14			2.7	
1820		13-15	2	³ 5	15, 16		1 1		1-3
1821		16-18	3	6	(2) 1, 2		١		46
1822		19-21	4, 5	7	3. 4	1, 2			7-9
1823		22-24	6	8	5, 6	3-6			10-12
1824		25–27	7, 8	9	7, 8	7-10			13-15
1825		28-30	9	10, 11	9, 10	11-14		• • • •	<b>16-18</b>
1826		31–33	10, 11	12, 13	11, 12	16-19			<b>19</b> -22
1827		34-36	$\frac{12}{12}$	(2) 1, 2		20-23	• •		23-26
1828		37-39	13, 14	3, 4		24-26		• • •	27-30
1829		40-42	15, 16	5, 6		27-30	• •		31-34
1830		43-45	17, 18	7, 8	· · • 🐙 👻	31-34	• •	• •,•	35-38
1831	1 4	46-48	19, 20	(9) 1 9		35-39		****	39-42
1832 1833	1-4 5-8	$49-51 \\ 52-55$	21, 22 23, 24	$(3) \ 1, \ 2 \ 3, \ 4$		40-43 44-47		• • •	43-47 48-50
1834	9-12	56-57	25, 24 $25-27$	5, 6		48-50			51-54
1835	13-16	58-60	28, 29	7, 8		$(2) \ 1-4$		1	55-58
1836	17-20	61-63	30, 31	9, 10		5-8		2, 3	59–62
1837	21-24	64-66	32, 33	11, 12		9-12		4, 5	63-66
1838	25-28	67-69	35, 35	13, 14		13-16		6, 7	67-70
1839	29-32	70-72	36, 37	15, 16		17-20		8, 9	71-74
1840	33-36	73-75	38, 39	17, 18		21-24		10, 11	75–78
1841	37-40	(3) 1-3	40, 41	19, 20		25-28		12, 13	79-82
1842	41-44	4-6	42, 43	(4) 1, 2		29-32		14, 15	83-86
1843	45-48	7-9	44, 45	3. 4		33-36	1	16, 17	87-90
1844	49-52	10-12	46, 47	5, 6 7, 8		37-40	2	18, 19	91-94
1845	53-56	13-15	48-50	7, 8		41-44		20, 21	95-98
1846	57-60	16-18	(2) 1, 2	9, 10		45-48	3	22, 23	99-102
1847	61-64	19-21	3, 4	11, 12		49-52	4	24, 25	103-106

# AND OTHER SCIENTIFIC PERIODICALS—Part I.

Gilb. Ann.	J. Chim. med.	J. Pharm.	J, pr.	Phil. Mag.	Pogg.	Prod. Am. Acad.	Proc. Roy. Soc.	2. J. Sci.	Scher, J.	Schw. J.
4-6				6-8					3,4	
7-9				9-11					5, 6	
10-12				12-14				· · · · ·		
13-15	<b>.</b>			15-17					9, 10	
16-18				18-20	. ,				12, 12	
19-21		!		21-23	.				13, 14	
22 - 24				24-26				!	15, 16	
25-27				27-29	ì				17, 18	
28-30				20-32					19, 20	
31-33		(1) 1		33, 34					21, 22	
34-36		2		35, 36					23, 24	(1)
37 - 39		3		37, 38					Cont. as	
40-42		4		39, 40		· • •			Schw. J.	1-6
43 - 45		5		41, 42					• • • •	7-9
46-48		6		43, 44				٤٠.		10-12
49-51		(2) 1		45, 46						13-15 16-18
52 - 54		2		47, 48				1		19-21
55-57		3		49, 50				2, 3		22-24
58-60		4		51, 52	٠.			4, 5		25-24
61-63		5		53, 54	٠.			6, 7		28-30
6466		6		55, 56				8, 9		(2) 1-3
67-69		7		57, 58				10, 11		4-6
70-72		8		59, 60				12, 13 14, 15		7-9
73-75		9		61, 62				16, 17		10-12
76		10		63, 64	1, 2			18, 19		13-15
Cont. as	(1) 1	11		65, 66	3-5			20, 21		16-18
Pogg.	2	12		67, 68	6-8					19-21
	3	13		(2) 1, 2	9-11					22-24
	4	14		3, 4	12-14					25-27
	5	15		5, 6	15-17 18-20		1	1		28-30
	6	16		7, 8	21-23		1			(3) 1-3
	7	17		9, 10	24-26		1			4-6
	8	18		$\begin{bmatrix} 11, & (3) & 1 \\ 2, & 3 \end{bmatrix}$	27-30	i	2	1		7-9
	9	19	1	4, 5	31-33		1			Cont. as
	10	20	1-3	6, 7	34-36	:::	1			J. pr.
	(2) 1	21	4-6	8, 9	37-39	1	1			
	2	22	7-9 10-12	10, 11	40-42	1	3			
	3	23	13-15	12, 13	43-45					
	4	24	16-18	14, 15	46-48		1			
	5	25	19-18	16, 17	49-51		1			
	6	26	22-24	18, 19	52-54	1	1			
	7	27	25-27	20, 21	55-57	1	4			
	8	(3) 1, 2	28-30	22, 23	58-60		1			
	9		31-33	24, 25	61-63			,		
	10		34-36	26, 27	64-66					
	(3) 1	7, 8 9, 10	37-39	28, 29	67-69					
• • •	2 3	11, 12	40-42	30, 31	70-72					
• • •	3	11, 12	10 12			1				1

# SYNCHRONISTIC TABLE OF CHEMICAL AND

Year	<b>A</b> . ·	A. ch.	Am. Ch. J.	Am. J. Sci.	Analyst	Ann. Min.	Arch. Pharm.	A. suppl.	В.	Bull. Soc.
1848	65-68	22-24		5, 6		13, 14	53-56			
1849	69-72	25-27		7, 8		15, 16	57-60			
1850	73–76	28-30		9, 10		17. 18	61-64			
1851	77-80	· 31–33		11, 12		19, 20	65-68			
1852		34-36		13, 14		(5).1, 2	69-72			
1853	85-88	37-39		15, 16	• • • •	3, 4	73-76			
1854		40-42		17, 18		5, 6	77-80			
1855	93-96	43-45		19, 20	٠٠	7, 8	81-84			
1856		46-48		21, 22	• • • •	9, 10	85-88			
	101-104	, <del>4</del> 9-51		23, 24		11, 12	89-92			
	105*108	52-54		25, 26		13, 14	93-96			1
	109-112	55-57		27, 28		15, 16	97-100			1
	113-116	58-60		29, 30		17, 18	101-104	1.1.		2
	117-120	61-63		31, 32		19, 20	105-108	1		3
	121-124	64-66		33, 34	• • •	(6) 1, 2	109-112	2		4
	125-128	67-69		35, 36		3, 4	113-116	1		5
	129-132			37, 38		5, 6	117-120	3		(2) 1, 2
	133-136	4-6		39, 40	• • •	7, 8	121-124	4.		3, 4
	137-140	7-9		41, 42		9, 10	125-128	٠ : ١		5, 6
	141-144	10-12		43, 44		11, 12	129-132	5		7, 8
	145-148	13-16		45, 56	• • •	13, 14	133-136	6	1	9, 10
	149-152	16-18		47, 48		15, 16	137-140		$\frac{2}{3}$	11, 12
	153-156	19-21		49, 50		17, 18*	141-144	7	4	13, 14
	157-160	22-24	• • •	$(3) 1, 2^*  3, 4$		19, 20	145-148		5	
1872	161–164	25–27		, ,	• • •	(7) 1, 2	$ 149, 150  \ (3) \ 1\dagger$	8	3	17, 18
1873	165-170	28-30		5, 6		3, 4	2, 3		6	19, 20
	171–174	` ' 1		7, 8	• • •	5, 6	4,5		7	21, 22
	175–179	46	· • •	9, 10		7, 8	6,7		8	23, 24
	180-183	7-9		11, 12	0	9, 10	8,9		9	25, 26
	184–189	10-12		13, 14	2	11, 12	10, 11	]	10	27, 28
	190-194	13-15		15, 16	3	13, 14	12, 13	]	11	29, 30
	195–199	16-18	1	17, 18	4	15, 16	14, 15		12	31, 32
	200-205	19–21	2	19, 20	5	17, 18	16, 17		13	33, 34
	206-210	22-24	3	21, 22	6 7	19, 20	18, 19	• • •	14	35, 36 37, 38
	211-215	25-27	4	23, 24		(8) 1, 2	20		15	1
	216-221	28-30	5	25, 26 27, 28	8	3, 4	21		${}^{16}_{17}$	39, 40 41, 42
	222-226 227-231	(6) 1–3 4–6	$\frac{6}{7}$	27, 28 29, 30	9 10	5, 6 7, 8	$\begin{array}{c} 22 \\ 23 \end{array}$		18	43, 44
	232-236	7-9	8	31, 32	-11	9, 10	23 24		19	45, 46
	237-242	10-12	9	33, 34	12	11, 12	25		20	47, 48
	243-249	13-15	10	35, 36	13, 14	13, 14	26		21	49, 50
	250-255	16-18	11	37, 38	15, 16	15, 16	$\frac{20}{27}$	*	22	(3) 1, 2
	256-260	19-21	12	39, 40	17, 18	17, 18	228	• • •	23	3, 4
	261-266	22-24	13	41, 42	19, 20	19, 20	229		$\frac{20}{24}$	5, 6
	267-271	25-27	14	43, 44	21, 22	$(9)$ 1, $\overset{13}{2}$	230		$\frac{24}{25}$	7, 8
	272-277	28-30	15	45, 46	23, 24	3, 4	231		26	9, 10
		(7) 1-3	16	47, 48	25, 26	5, 6	232		27	11, 12
	284-289	4-6	17	49, 50	27, 28	7, 8	233	:::	28	13, 14
1895										
				es, 101, 102		<u> </u>	Also cit			<u> </u>

# OTHER SCIENTIFIC PERIODICALS—Part II.

C. C.	Chem. Ind.	Chem. Soc.	Ch Gaz.	Ch. Ztg.	Cim.	C. N.	C. R.	Dingl.	Gazz. ch. it.	J. Am. Chem. Soc.	J. Anal. Ch.
		1 2 3 4 4 5 6 7 8 9 10 11 12 13 14, 15 16* 17 18 19 20 21 22 23 24 25	5 6 7 8 9 10 11 12 13 14 15 16 17 Cont. as C. N		1, 2 3, 4 5, 6 Cont. as N. Cim	1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16 1., 18 .9, 20 21, 22 23, 24 25, 26	26, 27 28, 29 30, 31 52, 33 54, 35 56, 37 38, 39 40, 41 42, 43 44, 45 50, 51 52, 53 54, 55 56, 57 58, 59 60, 61 62, 63 64, 65 66, 67 68, 69 70, 71 72, 73 74, 75	107-110 111-114 111-118 119-122 123-126 127-130 131-134 135-138 139-142 143-146 147-159 151-154 155-158 159-162 163-166 167-170 171-174 175-178 179-182 183-186 187-190 191-194 195-198 199-202 203-206			
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	26 27 28 29, 30 31, 32 33, 34 35, 36 37, 38 39, 40 41, 42 43, 44 45, 46 47, 48 49, 50 51, 52 53, 56 57, 58 59, 60 61, 64 65, 66 67, 68		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		67, 6	80, 81 82, 83 84, 85 86, 87 88, 89 90, 91 90, 93 6 96, 93 6 96, 93 6 104, 10 6 104, 10 6 104, 10 6 104, 11 6 111, 1 7 111, 1 8 116, 1	215-218 219-229 223-22 227-23 231-23 235-23 239-24 5 243-24 7 247-25	4		٠.

^{*} Also cited as (2) 1, 2, 3, etc.

# ---

# SYNCHRONISTIC TABLE OF CHEMICAL AND

Year	J. Chim. méd.	Jena. Zeit.	J. Pharm.	J. pr.	J. Russ. Soc.	J. Soc. Chem. Ind.	M. Ch.	Monit. Scient.	N. Cim.	N. Rep. Pharm.	Pharm. J. Trans.	Phil. Mag.
1848 1849 1850 1851 1852 1853 1854 1855 1856 1856 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871	5 6 7 8 9		7, 8 9, 10	$\begin{array}{c} 43\text{-}45\\ 46\text{-}48\\ 49\text{-}51\\ 52\text{-}54\\ 55\text{-}57\\ 58\text{-}60\\ 61\text{-}63\\ 64\text{-}66\\ 67\text{-}69\\ 70\text{-}72\\ 73\text{-}75\\ 76\text{-}78\\ 79\text{-}81\\ 82\text{-}84\\ 88\text{-}90\\ 91\text{-}93\\ 94\text{-}96\\ 97\text{-}99\\ 100\text{-}102\\ 103\text{-}105\\ 106\text{-}108\\ (2)\ 1,\ 2\\ 3,\ 4\\ 5,\ 6\\ \end{array}$				(1) 1 2 3 4  (2) 6 7 8 9 10 11 12 (3) 13 14	1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21		32, 33 34, 35 36, 37 (4)1, 2 5, 6 7, 8 9, 10 11, 12 13, 16 17, 18 19, 20 21, 22 23, 26 27, 28 29, 30 31, 32 35, 36 37, 38 39, 40 41, 42 43, 44
1873 1874 1875 1876 1877 1878 1889 1881 1882 1883 1884 1885 1889 1890 1891 1891 1892 1893 1894 1895	9 10 11 12    	7 8 9 10 110 12 13 14 15  16 17 18 19 20 21 22 23 24 25 26 27 28	17, 18 19, 20 21, 22 23, 24 25, 26 27, 28 29, 30 (5)1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16 17, 18 19, 20 21, 22 23, 24 25, 26 27, 28 29, 30 (6)1, 2	7, 8 9, 100 11, 12 13, 14 15, 16 17, 18 19, 20 21, 22 23, 24 25, 26 27, 28 29, 30 31, 32 33, 34 35, 36 37, 38 39, 40 41, 42 43, 44 45, 46 47, 48 49, 40 51, 52	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37		22 23 24   	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	45, 46 47, 48 49, 50 (5)1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16 17, 18 19, 20 21, 22 23, 24 25, 26 27, 28 29, 30 31, 32 33, 34 35, 36 37, 38 39, 40

# OTHER SCIENTIFIC PERICDICALS—Part II.—Continued.

Pogg.	Proc. Am. Acad.	Proc. Roy. Soc.	Rep. Anal. Ch.	R. t. c.	Techn.	W. A. B.	W. Ann.	Z. s .al.	Z. angew. Ch.	Z. anorg.	Zeit. Ch.	Z. phys. Ch.
73-75	3					1					ļ	
76–78	4	1				2, 3	• • • •	• • • •		• •		
79–81						4, 5				• •	• • • •	• • • •
82-84		5				6, 7		• • •	• • •	• • •		• • • •
85-87						8, 9		• • •	• • • •	• •		· • •
88-90						10. 11						
91-93		6				12-14				• • • •		• • • •
94-96	5				(1) !	15-18						· • •
97-99		7			$^{-2}$	19-21						
100-102	6	8			3	22-27						• • •
103-105	· · ·				4	28-33					(1) 1	• • •
106-108	·•	9			5	34-38					$\mathbf{\hat{2}}$	
109-111	7	10			6	39-42					3	
112-114	8	1			7	43					4	
115-117		11			8	44, 45		1			5	
118-120		12			9	46-48		2				
121-123		13	• • •		10	49		3			6	
124-126		14			11	50-52		4	· · ·		(2) 1	
127-129	٠	1			12	53, 54		5			2	
130-132	9	15			13	55, 56		6			3	
133–135	10	16			14	57, 58		7			4	
136-138		17	• • •		15	59, 60		8			5	
139~141		18			$(2) \frac{1}{2}$	61, 62		9			6	
142-144		19			$\frac{2}{2}$	63, 64		10			7	
145-147	• • •	20			3	65, 66		11	• • • •	• • •	• • •	• • •
148-150		21			4	67, 68		12				
151-153		22			5	69, 70		13				
154 -155		23			6	71, 72		14				
157- 159	11	24			7	73, 74	:::	15				
160	12	25, 26			8	75, 76	1,2	16				
Cont. as	13	27		• • • •	9	77, 78	3-5	17				
W. Ann.	14	28, 29	.		10	79, 80	6-8	18				
	$\frac{15}{16}$	$\begin{vmatrix} 30 \\ 31, 32 \end{vmatrix}$	1		11   12	81, 82 83, 84	9-11 12-14	19	• • •	• • •		
	17	33	$\frac{1}{2}$	1	13		15-14	20				• • •
	18	34, 35	$\frac{2}{3}$	$\frac{1}{2}$	14		18-20	$\frac{21}{22}$		• • •		• • •
	19	36, 37	4	3	15		21-23	23	• • • •	• • •		
	20	38, 39	5	4	16		24-26	$\frac{25}{24}$	• • • •			• • •
	$\frac{20}{21}$	40, 51	6	5	17		27-29	$\frac{24}{25}$		• • •		
• • •	$\frac{21}{22}$	42, 43	7	6	18		30-32	26	i	• • •		1
	$\frac{22}{23}$	44, 45	Cont.	7	19	97, 98	33-35	27	2	• • •		-1 2
	$\frac{23}{24}$	46, 47	as Z.	8	20	99, 100		28	3			3, 4
	$\frac{24}{25}$	48, 49		9			39-41	29	4	• • •		5, <del>4</del> 5, 6
	$\frac{26}{26}$	50	Ch.	10		103, 104		30	5	• • •		7, 8
	$\frac{20}{27}$	51, 52		iĭ		105, 106		31	6	1, 2		9, 10
	28	53, 54		12		107, 108	48-50	32	7	3, 4		11, 12
	$\frac{20}{29}$	55, 56		13	25	109, 110	51-53	33	8	5-7		13, 14
	30	57, 58		14	26		54-56	34	6	8-10		15, 16

# APPENDIX

# SYNCHRONISTIC TABLE OF CHEMICAL AND

Year	A.	A. ch.	Am. Ch. J.	Am. J. Sci.	Arch. Pharm.	В.	Bull. Soc.	C. A.	Chem. Soc.	Chem. Weekbl.	C. R.	Gazz. ch. it.	J. Am. Chem. Soc.
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908	289-293 294-298 299-303 304-309 310-314 314-319 320-326 330-338 338-343 344-351 351-358 358-364 371-378	10-12 13-15 16-18 19-21 22-24 25-27 28-30 (8)1-3 4-6 7-9 10-12 13-15 16-18		9, 10 11, 12 13, 14 15, 16 17, 18 19, 20 21, 22 23, 24 25, 26 27, 28	239 240 241 242 243 244 245 246 247	29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	(2)15, 16 17, 18 19, 20 21, 22 23, 24 25, 26 27, 28 29, 30 31, 32 33, 34 35, 36 (4) 1, 2 3, 4 5, 6 7, 8		69, 70 71, 72 73, 74 75, 76 77, 78 79, 80 81, 82 83, 84 85, 86 87, 88 89, 90 91, 92 93, 94 95, 96 97, 98	······································	122, 123 124, 125 126, 127 128, 129 130, 131 132, 133 134, 135 136, 137 138, 139 140, 141 142, 143 144, 145 146, 147 148, 149 150, 151	27 28 29 30 31	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1911 1912 1913 1914	378–386 386–394 395–402 402–406 407–410	22-24 25-27 27-30 (9)1-2	45, 46 47, 48 49, 50	31, 32 33, 34	249 250 251 252	44 45 46 47 48	9, 10 11, 12 13, 14 15, 16 17, 18	5 6 7 8	99, 100 101, 102 103, 105 105, 106 107, 108	8 9 10	150, 151 152, 153 154, 155 156, 157 158, 159 160, 161	41 42 43 44 45	33 34 35 36 37

# OTHER SCIENTIFIC PERIODICALS—Part III.

J. Pharm.	J. phys Ch	J. pr.	J. Soc. Chem. Ind.	М.	Proc. Roy. Son.	?. † c.	W. Ann.	Z. anal	Z. angew.	%. anorg.	Z. Elek- trochem.	Z. Kryst. Min.	Z. phys. Ch.
(6)3, 4 5, 6 7, 8 9, 10 11, 12 13, 14 15, 16 17, 18 21, 22 23, 24 25, 26 27, 28 29, 30 (7)1, 2 3, 4 5, 6 7, 8 9, 10 11, 11, 12	4 5 6 7 9 10 11 12 13 14 15 16 17 18	53, 54 55, 56 57, 58 59, 60 61, 62 63, 64 65, 66 67, 68 71, 72, 73, 74 75, 76 77, 78 79, 80 81, 82 83, 84 85, 88 87, 88 89, 90 91, 92	15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34	17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36	59, 60 60, 61 62, 63 64, 65 66, 67 68, 69 70, 71 71, 72 76A 77, 78A . 79A 80, 81A 82, 83A 83, 84A 84–86A 86, 87A . 38, 89A . 89, 91A 91, 92A	15 16 17 18 20 21 22 24 25 26 27 28 29 30 31 52 33 34	57-59 30 62 63-63 66-68 (4)1-3 4-6 7-9 10-12 16-18 09-21 22-24 25-27 28-30 33-31 34-36 37-39 40-42 43-45 46-48	36 37 38 39 40 41 42 44 45 46 47 48 49 50 51 52 53	10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29	11, 12 13-15 16-18 19-21 22-25 26-29 29-33 33-33 43-44 43-51 52-56 65-60 61-65 65-69 69-73 779-84 84-89 90-93	3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21	25, 26 27, 28 29 30, 31 32, 33 34 35, 36 37 40 41, 42 42-44 44, 45 46 47 48, 49 50 51, 52 53 54	19-21 22-24 25-27 28-31 32-35 36-39 39-42 42-46 54-57 57-61 61-65 65-68 68-75 75-78 78-81 81-86 86-89 89, 90