

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería en Sistemas de Información ARQUITECTURA DE COMPUTADORES

TRABAJO PRÀCTICO Nº 3

ALGEBRA DE BOOLE. FUNCIONES. **COMPUERTAS Y** CIRCUITOS LÓGICOS. SIMPLIFICACIÓN DE **FUNCIONES** (MAPAS DE KARNAUGH).

ÁLGEBRA DE BOOLE

ALGEBRA DE BOOLE

• Representa información digital.

• Expresa algebraicamente operaciones lógicas que realizan los circuitos digitales y determina su respuesta.

• Tiene un conjunto de postulados que se aceptan como base.

ALGEBRA DE BOOLE

- Variables lógicas, booleanas o binarias: asumen valor 0 o 1 únicamente.
- <u>Función lógica</u>: variables lógicas relacionadas entre si por compuertas lógicas.
- <u>Compuertas lógicas</u>: dispositivos electrónicos que permiten, o no, que el nivel alto o bajo de tensión de su entrada se repita en su salida.

COMPUERTAS LÓGICAS BÁSICAS

OR -> SUMA LÓGICA

Símbolo gráfico	Tabla de verdad o funcionamiento	Función lógica
	A B X 0 0 0 0 1 1 1 0 1 1 1 1	X = A + B

¿Cómo generalizaríamos el enunciado para "n" variables?

COMPUERTAS LÓGICAS BÁSICAS

AND -> PRODUCTO LÓGICO

¿Cómo generalizaríamos el enunciado para "n" variables?

COMPUERTAS LÓGICAS BÁSICAS

NOT -> NEGACIÓN O INVERSOR

Símbolo gráfico	Tabla de verdad o funcionamiento	Función lógica
	A X 0 1 1 0	X=Ā

NOR -> NEGACIÓN DE OR

Símbolo gráfico	Tabla de verdad o funcionamiento	Función lógica
	A B X 0 0 1 0 1 0 1 0 0 1 1 0	$X = \overline{A + B}$

NAND -> NEGACIÓN DE AND

Símbolo gráfico	Tabla de verdad o funcionamiento	Función lógica
	A B 0 0 0 1 0 1 1 0 1 1 0 1 1 0	$\mathbf{X} = \overline{A \cdot B}$

XOR -> OR EXCLUSIVO

Símbolo gráfico	Tabla de verdad o funcionami	ento Función lógica
	A B 0 0 0 1 1 0 1 1 1 0	$X = A \oplus B$ $X = \overline{A}.B + A.\overline{B}$

¿Cómo generalizaríamos el enunciado para "n" variables?

XOR -> OR EXCLUSIVO

Α	В	С	F
		•••	
0	1	0	1
1	1	0	0
1	1	1	1

Α	В	С	D	F
		•••		
1	0	1	0	0
1	1	1	0	1
1	1	1	1	0

XNOR → NOR EXCLUSIVO

Símbolo gráfico	Tabla de verdad o funcionamiento		Función lógica
	A B 0 0 0 1 1 0 1 1	X 1 0 0 1	$X = \overline{A} \oplus \overline{B}$ $X = \overline{A} . \overline{B} + A.B$

Propiedad conmutativa de la suma y el producto.

$$A \bullet (B+C) = A \bullet B + A \bullet C$$

 $A + (B \bullet C) = (A+B) \bullet (A+C)$

Propiedad distributiva de la suma y el producto.

Leyes Asociativas.

A+0=A A•1=A La suma lógica es invariable respecto del 0 y el producto del 1.
INVARIANCIA

A	A + 0
0	0
1	1

A	A . 1
0	0
1	1

$$A + \overline{A} = 1$$

$$A \bullet \overline{A} = 0 \longrightarrow$$

RESPECTO A SU NEGACIÓN

A	\overline{A}	$A + \overline{A}$
0	1	1
1	0	1

A	\overline{A}	$A ullet \overline{A}$
0	1	0
1	0	0

ACOTAMIENTO O ANULACIÓN

A	A + 1
0	1
1	1

A	A . 0
0	0
1	0

A+A=A A•A=A

IDEMPOTENCIA

A	A + A
0	0
1	1

A	A.A
0	0
1	1

NEGACIONES

A	<u> </u>	<u></u>
0	1	0
1	0	1

Α	<u> </u>	1	
0	1	0	1
1	0	1	0

$$\overline{A + B} = \overline{A} \bullet \overline{B}$$

$$\overline{A \bullet B} = \overline{A} + \overline{B}$$

TEOREMAS DE De MORGAN

$$\overline{A+B} \neq \overline{A}+\overline{B}$$

Verificaremos la validez del primero mediante tabla de verdad:

A	В	\overline{A}	\overline{B}	$\overline{A} \bullet \overline{B}$	A+B	$\overline{A+B}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

FORMAS DE REPRESENTAR LO MISMO

Tabla de verdad

Función lógica

Mapa de Karnaugh

Circuito lógico

DE FUNCIÓN LÓGICA -> A CIRCUITO LÓGICO

$$F = (\overline{A} \cdot (B + C)) \oplus D$$

DE CIRCUITO LÓGICO -> A FUNCIÓN LÓGICA

DE FUNCIÓN LÓGICA -> A TABLA DE VERDAD

$$F = \overline{A}$$
 . (B + C)

3 variables de entrada \rightarrow 2³ = 8 combinaciones posibles Escribir del 0 al 7 con tres dígitos binarios.

A	В	С	\overline{A}	(B + C)	$F = \overline{A}$. (B + C)
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	1	0

DE TABLA DE VERDAD -> A FUNCIÓN LÓGICA

A partir de una tabla de verdad se pueden obtener dos tipos de funciones, llamadas FORMAS CANÒNICAS, equivalentes entre sí:

- 1- FUNCIÒN CANÒNICA COMO SUMA DE PRODUCTOS: a partir de los 1 del resultado de la tabla escribimos los MINITÈRMINOS.
- 2- FUNCIÒN CANÒNICA COMO PRODUCTO DE SUMAS: a partir de los **0** del resultado de la tabla escribimos los MAXITÈRMINOS.

CADA MINITERMINO O MAXITERMINO LLEVA TODAS LAS VARIABLES.

DE TABLA DE VERDAD -> A FUNCIÓN LÓGICA

FUNCIÓN CANÓNICA COMO SUMA DE PRODUCTOS:

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

MINITERMINOS:

- Vemos los 1 del resultado de la tabla.
- Variables con 0 van negadas, con 1 sin negar.
- Van en compuertas AND (producto lógico).

$$\rightarrow \overline{A}.\overline{B}.C$$

Se suman los minitèrminos (productos), obteniéndose la función:

$$\mathbf{FC} = \overline{A}.\overline{B}.C + \overline{A}.B.C + A.B.C$$

DE TABLA DE VERDAD -> A FUNCIÓN LÓGICA

FUNCIÓN CANÓNICA COMO PRODUCTO DE SUMAS:

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

MAXITERMINOS:

- Vemos los 0 del resultado de la tabla.
- Variables con 0 van sin negar, con 1 negadas.
- Van en compuertas OR (suma lógica).

$$\longrightarrow$$
 $(A+B+C)$

Se multiplican los maxitèrminos (sumas), obteniéndose la función:
$$(A + \overline{B} + C)$$

$$\mathbf{FC} = (A+B+C) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+C) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+B+\overline{C})$$

$$(\overline{A} + \overline{B} + C)$$

OBTENCIÓN DE UNA FUNCION SIMPLIFICADA (MAS SENCILLA) **USANDO LOS POSTULADOS Y PROPIEDADES** DEL ÁLGEBRA DE BOOLE **EJERCICIO:** Dada la función, obtener una mas sencilla usando propiedades.

$$\mathbf{F} = (\overline{\mathbf{A} + \mathbf{B}}) (\overline{\mathbf{A}} + \overline{\mathbf{B}})$$

De Morgan

$$\mathbf{F} = \overline{\mathbf{A}} \overline{\mathbf{B}} (\overline{\mathbf{A}} + \overline{\mathbf{B}})$$

distributiva

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \overline{\mathbf{A}} + \overline{\mathbf{A}} \ \overline{\mathbf{B}} \ \overline{\mathbf{B}}$$

Idempotencia

$$\mathbf{F} = \overline{\mathbf{A}} \ \overline{\mathbf{B}} + \overline{\mathbf{A}} \ \overline{\mathbf{B}}$$

Idempotencia

$$\mathbf{F} = \mathbf{A} \mathbf{B}$$

EJERCICIO: Dada la función, obtener una mas sencilla usando propiedades.

$$F = \overbrace{A.\overline{B}.\overline{C}.\overline{D}} + \overline{A.\overline{B}.\overline{C}.\overline{D}} + \overbrace{A.\overline{B}.\overline{C}.\overline{D}} + \overbrace{A.B.\overline{C}.\overline{D}} + \overline{A.B.\overline{C}.\overline{D}} + A.\overline{B.C}.\overline{D} + A.\overline{B.C}.\overline{D}$$

Sacamos lo común que hay en las expresiones

$$F = \overline{A}.\overline{B}.\overline{C}((\overline{D} + D)) + \overline{A}.B.\overline{C}((\overline{D} + D)) + A.C.\overline{D}((B + \overline{B}))$$

Respecto a su negación

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot 1 + \overline{A} \cdot B \cdot \overline{C} \cdot 1 + A \cdot C \cdot \overline{D} \cdot 1$$
 Invariancia

$$F = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.C.\overline{D}$$
 Sacamos lo común que hay en las expresiones

$$F = \overline{A} \cdot \overline{C} (B + \overline{B}) + A \cdot C \cdot \overline{D}$$
 Respecto a su negación

$$F = \overline{A} \cdot \overline{C} \cdot 1 + A \cdot C \cdot \overline{D}$$
 Invariancia

$$F = \overline{A}.\overline{C} + A.C.\overline{D}$$

OBTENCIÓN DE UNA FUNCIÓN SIMPLIFICADA (MAS SENCILLA) USANDO

MAPAS DE KARNAUGH

Son otra forma de representar una función.

2ⁿ combinaciones de variables de entrada → 2ⁿ celdas en el mapa → cada una tendrá un 0 o un 1.

Objetivo: obtener una función sencilla (mínima o simple).

¿Cómo?: maximizando los agrupamientos de 1 adyacentes (se obtiene una función mínima como suma de productos) o de 0 adyacentes (se obtiene una función mínima como productos de sumas).

DE 4 VARIABLES \rightarrow 2⁴ = 16 CELDAS

AB CD	00	01 (11	10
00				
01				
11				
10				

DE 4 VARIABLES \rightarrow 2⁴ = 16 CELDAS

DE 4 VARIABLES \rightarrow 2⁴ = 16 CELDAS

DE 4 VARIABLES \rightarrow 24 = 16 CELDAS

Al ser mapa se puede doblar formando un cilindro.

DE 4 VARIABLES \rightarrow 2⁴ = 16 CELDAS

Al ser mapa se puede doblar formando un cilindro.

DE 4 VARIABLES \rightarrow 2⁴ = 16 CELDAS

Cada celda tiene un 1 o un 0.

En este mapa vemos los minitérminos.

DE 4 VARIABLES \rightarrow 2⁴ = 16 CELDAS

MAPA DE 4 VARI]			
Expresiones de 4 variables	\longleftrightarrow	1 celda	4	
Expresiones de 3 variables	\longleftrightarrow	2 celda		
Expresiones de 2 variables	\leftrightarrow	4 celda		
Expresiones de 1 variables	\longleftrightarrow	8 celda	•	
			-	

Me fijo en la función

Me fijo en el mapa

DE 2 VARIABLES \rightarrow 2² = 4 CELDAS

DE 3 VARIABLES \rightarrow 2³ = 8 CELDAS

DE 3 VARIABLES \rightarrow 2³ = 8 CELDAS

MAPA DE 3 VARIABLES		
Expresiones de 3 variables	\Rightarrow	1 celda
Expresiones de 2 variables	\leftrightarrow	2 celda
Expresiones de 1 variables	\leftrightarrow	4 celda
į.		

Me fijo en la función

Me fijo en el mapa

EJERCICIO: Dada la función, obtener una mas sencilla usando mapa de Karnaugh.

$$\mathsf{F} = \overline{A}.\overline{B}.\overline{C}.\overline{\mathsf{D}} + \overline{A}.\overline{B}.\overline{C}.\mathsf{D} + \overline{A}.B.\overline{C}.\overline{\mathsf{D}} + \overline{A}.B.\overline{C}.\overline{\mathsf{D}} + \overline{A}.B.\overline{C}.\mathsf{D} + A.B.C.\overline{\mathsf{D}} + A.\overline{B}.C.\overline{\mathsf{D}}$$

Existen dos formas de trabajar:

1 – DE FUNCION → TABLA DE VERDAD → MINITÉRMINOS → MAPA DE KARNAUGH

2 – DE FUNCION → MAPA DE KARNAUGH

Vamos a utilizar la segunda opción.

EN ÉSTE EJEMPLO SON TODOS MINITERMINOS, REPRESENTAN UN 1 EN EL MAPA.

DE FUNCIÓN -> A MAPA DE KARNAUGH

EJERCICIO: Dada la función, obtener una mas sencilla usando mapa de Karnaugh.

$$\mathsf{F} = \overline{A}.\overline{B}.\overline{C}.\overline{\mathsf{D}} + \overline{A}.\overline{B}.\overline{C}.\mathsf{D} + \overline{A}.B.\overline{C}.\overline{\mathsf{D}} + \overline{A}.B.\overline{C}.\overline{\mathsf{D}} + \overline{A}.B.\overline{C}.\mathsf{D} + A.B.C.\overline{\mathsf{D}} + A.\overline{B}.C.\overline{\mathsf{D}}$$

$$0000 \quad 0001 \quad 0100 \quad 0101 \quad 1110 \quad 1010$$

$$\overline{A}.\overline{B}.\overline{C}.\overline{D}$$
 $\overline{A}.\overline{B}.\overline{C}.\overline{D}$
 $\overline{A}.B.\overline{C}.\overline{D}$
 $\overline{A}.B.\overline{C}.\overline{D}$

Nos quedamos con las variables que NO CAMBIAN

$$Fmin_{SP} = \overline{A \cdot C} + A \cdot C \cdot \overline{D}$$

DE TABLA DE VERDAD -> A MAPA DE KARNAUGH

EJERCICIO: Dada la tabla, obtener una mas sencilla usando <u>mapa de Karnaugh</u>.

También se puede expresar como:

$$F(A,B,C) = \sum_{i=1}^{n} (0, 1, 3, 4, 5, 6, 7)$$
 INDICA POSICIÓN DE LOS 1

 $F(A,B,C) = \pi(2)$ INDICA POSICIÓN DE LOS 0

$$Fmin_{SP} = A + C + \overline{B}$$

DE MAPA DE KARNAUGH -> A FUNCIÓN

Desde el mapa se pueden obtener 4 tipos de funciones:

- 1 Función Canónica como Suma de Productos (FC_{SP})
- 2 Función Canónica como Productos de Sumas (FC_{PS})
- 3 Función Mínima como Suma de Productos (Fmin_{SP})
- 4 Función Mínima como Productos de Suma (Fmin_{PS})

DE MAPA DE KARNAUGH -> A FUNCIÓN

EJERCICIO: Dado el mapa de Karnaug obtener las Fmin_{SP} y Fmin_{PS}

$$Fmin_{SP} = \overline{C} + B.D + \overline{B.D}$$

LAS CELDAS VACÍAS SON LAS POSICIONES DE LOS CEROS.

Fmin_{PS} ES AL REVÈS: 0 SIN NEGAR, 1 NEGADOS.

$$Fmin_{PS} = (\overline{B} + \overline{C} + \overline{D}) \cdot (\overline{B} + \overline{C} + \overline{D})$$