Asynchronous Arbitration Primitives for New Generation of Circuits and Systems

Andrey Mokhov, Danil Sokolov, Victor Khomenko, Alex Yakovlev

Newcastle University, UK

Motivating example: toy buck converter

Motivating example: toy buck converter

- Synchronous implementation requires synchronisers for asynchronous inputs
 - Synchronisers also sanitize hazardous / dirty inputs from analog environment
 - Reaction time 3 clock cycles

Motivating example: toy buck converter

- Asynchronous implementation natural for asynchronous inputs
 - Reaction time several gate delays
 - Need to sanitise hazardous under-voltage input

Asynchronous arbitration primitives

Synchronisation

- WAIT: synchronise with high level of hazardous input
- RWAIT: WAIT that can be with released/cancellation
- WAIT01: synchronise with hazardous rising edge
- WAIT2: synchronise with both phases of a hazardous input

Decision-making

- WAITX: arbitrate between two hazardous inputs
- OM: merges two request-acknowledgement channels into one

WAIT: synchronise handshake with high level of hazardous input

WAIT: synchronise handshake with high level of hazardous input

RWAIT: WAIT that can be released/cancelled

RWAIT: WAIT that can be released/cancelled

RWAIT: WAIT that can be released/cancelled

WAIT01: synchronise handshake with rising edge of hazardous input

WAIT01: synchronise handshake with rising edge of hazardous input

WAIT2: synchronise handshake with both phases of hazardous input

WAIT2: synchronise handshake with both phases of hazardous input

WAITX: arbitrate between two hazardous inputs

V.Khomenko et.al. "WAITX: An arbiter for non-persistent signals", ASYNC, 2017.

WAITX: arbitrate between two hazardous inputs

V.Khomenko et.al. "WAITX: An arbiter for non-persistent signals", ASYNC, 2017.

WAITX: arbitrate between two hazardous inputs

OM: merge two handshake channels into one

OM: merge two handshake channels into one

Standard merge

Opportunistic merge

OM: merge two handshake channels into one

Application example: multiphase buck converter

- Phases pairs of power regulating transistors
 - Each phase operates as a basic buck
 - Phases are activated sequentially
 - Active phases may overlap

- Many operating modes
 - under-voltage (UV)
 - over-current (OC)
 - zero-crossing (ZC)
 - over-voltage (OV)
 - high-load (HL)

Application example: multiphase buck converter

Application example: multiphase buck converter

- Benefits over conventional synchronous design with synchronisers
 - No synchronisation failures
 - Quick response time (few gate delays)
 - Reaction time can be traded off for smaller coils
 - Lower voltage ripple and peak current

Conclusions

Library of asynchronous arbitration primitives

```
https://github.com/workcraft/arbitration-primitives
```

- Low-latency synchronisation and decision-making
- Developed and formally verified in WORKCRAFT (workcraft.org)

- Building blocks for applications that require:
 - Efficient synchronisation between clock and voltage domains
 - Sanitising 'dirty' signals from analog environment
- Demonstrated benefits in the area of power converters