

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	ИНФОРМАТИКА И СИС	ТЕМЫ УПРАВЛЕНИЯ					
КАФЕДРА	А КАННОИДАМЧОФНИ	ЕЗОПАСНОСТЬ	-				
РАСЧ	ЕТНО-ПОЯС	НИТЕЛЬНАЯ	ЗАПИСКА				
	К КУРСО	ВОМУ ПРОЕКТ	TY				
НА ТЕМУ:							
Расчет автогенератора (гетеродина) супергетеродинного приемника радиовещательного диапазона							
Студент	ИУ8-51		И.С.Котов				
(Группа)	(Подпись, дата)	(И.О.Фамилия)				
Руководитель	курсовой работы		Н.В.Ковынёв				
		(Подпись, дата)	(И.О.Фамилия)				

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ
	Заведующий кафедрой <u>ИУ-8</u> (Индекс) <u>М.А.Басараб</u>
3 А Д А	АНИЕ
на выполнение	курсовой работы
по дисциплине Электроника и схе	мотехника
Студент группы ИУ8-51	
(Фамилия, и	ммя, отчество)
Тема курсовой работы <u>Расчет автогенератор</u> <u>радиовещательного диапазона.</u>	а (гетеродина) супергетеродинного приемника
Направленность КР (учебная, исследователься	кая, практическая, производственная, др.)
учебная	
Источник тематики (кафедра, предприятие, Н	ИР) кафедра
График выполнения КР: 25% к <u>4</u> нед., 50%	к <u>7</u> нед., 75% к <u>10</u> нед., 100% к <u>14</u> нед.
Техническое задание рассчитать элемен	нты схемы автогенератора (гетеродина)
супергетеродинного приемника радиове	
	пания Unum.=12В; диапазон рабочих частот
<u> fмин=525кГц, fмакс=1605 кГц; промежуточ</u>	ная частота fnp=465 кГц.
Оформление курсовой работы:	
Расчетно-пояснительная записка на <u>20</u> листах Перечень графического (иллюстративного) ма	
1.Схема электрическая функциональная	
2.Схема электрическая принципиальная	
Дата выдачи задания « <u>10</u> » <u>сентября</u> 2022 г.	
Руководитель курсовой работы	
Студент	(Подпись, дата) (Подпись, дата) (И.О.Фамилия)
Примечание: Задание оформляется в двух экземп.	лярах: один выдается студенту, второй хранится на

кафедре.

Аннотация

В курсовой работе выполнено проектирование, построение и расчет элементов схемы автогенератора (гетеродина) супергетеродинного приемника радиовещательного диапазона.

Цель курсовой работы — разработать автогенератор супергетеродинного приемника на основе данных, указанных в техническом задании, произвести расчет узлов и компонентов гетеродина.

Результатом работы является принципиальная электрическая схема автогенератора, содержащая номинальные значения всех элементов устройства.

Содержание

В	ведег	ние	5
И	сход	ные данные для расчета гетеродина	6
1	Te	оретическая часть	7
2	Фу	/нкциональная схема гетеродина	8
	2.1	Выбор схемы гетеродина	10
	2.2	Выбор транзистора гетеродина	11
3	Pa	счет контура гетеродина	12
4	Pa	счет режима работы гетеродина	14
	4.1	Расчет сопротивлений резисторов делителя	15
	4.2	Расчет сопротивления ненагруженного контура	15
	4.3	Расчет коэффициентов связи контура с цепью транзистора	16
	4.4	Расчет сопротивления, вносимого в контур	17
	4.5	Расчет числа витков катушки контура	17
	4.6	Расчет емкости разделительного конденсатора	17
	4.7	Расчет коллекторной цепи транзистора	18
5	Mo	оделирование работы гетеродина в среде Multisim	19
3	аклю	чение	21
C	писо	к литературы	22
П	рило	жение 1. Функциональная схема гетеродина	23
П	рило	жение 2. Принципиальная электрическая схема	24
П	рило	ожение 3. Спецификация элементов	25

Введение

В транзисторных приемниках супергетеродинного типа используются различные типы гетеродинов, обеспечивающих перекрытие заданного диапазона частот, требуемую амплитуду выходного напряжения и достаточную стабильность частоты генерируемых колебаний.

В приемниках радиовещательных диапазонов применяются гетеродины с трансформаторной и автотрансформаторной обратной связью, т.к. катушка контура для этих диапазонов волн имеет сравнительно большое число витков и, применяя неполное включение контура, можно установить необходимую связь последнего со входом и выходом транзистора. Необходимая положительная обратная связь достигается выбором соответствующей связи между катушками и трансформатором.

Исходные данные для расчета гетеродина

Рассчитать элементы схемы автогенератора (гетеродина) супергетеродинного приемника радиовещательного диапазона с параметрами, заданными в таблице 1.

Таблица 1 - Исходные данные

Напряжение источника питания $U_{\text{пит}}$	12 B			
Диапазон рабочих частот $f_{\text{мин}} - f_{\text{макс}}$	525 кГц - 1605 кГц			
Промежуточная частота f_{np}	465 кГц			

1 Теоретическая часть

Гетеродин - маломощный генератор электрических колебаний, применяемый для преобразования частот сигнала в супергетеродинных радиоприёмниках, приёмниках прямого преобразования, волномерах и пр.

Гетеродин создаёт колебания вспомогательной частоты, которые в блоке смесителя смешиваются с поступающими извне колебаниями высокой частоты. В результате смешения двух частот, входной и гетеродина, образуются ещё две частоты (суммарная и разностная). Разностная частота используется как промежуточная частота, на которой происходит основное усиление сигнала.

К гетеродинам устанавливаются высокие требования по стабильности частоты и амплитуды, а также спектральной чистоте гармонических колебаний. Чем выше эти требования, тем сложнее конструктивное исполнение гетеродина: стабилизируют напряжение питания, применяют сложные схемы, исключающие влияние внешних факторов на частоту генератора, компоненты со специальными свойствами, гетеродин помещают в термостат, используют системы автоматической подстройки частоты и т. д. Если гетеродин работает на фиксированной частоте, применяют стабилизацию с помощью кварцевого резонатора. В современной радиоаппаратуре в качестве перестраиваемых гетеродинов всё чаще применяют цифровой синтезатор частоты, который обладает главным преимуществом: стабильность частоты гетеродина зависит только от стабильности частоты опорного генератора.

2 Функциональная схема гетеродина

Структурная схема предназначена для описания принципа работы устройства и его состава в общем виде. На схеме изображают все основные функциональные части изделия и взаимосвязи между ними. Рассмотрим структурную схему супергетеродинного приемника (см. рисунок 1).

Рисунок 1 - Функциональная схема суперегетеродинного приемника

Радиосигнал из антенны подаётся на входную цепь (ВЦ), затем на вход усилителя радиочастоты (УРЧ), а затем на вход смесителя (С) — специального элемента с двумя входами и одним выходом, осуществляющего операцию преобразования сигнала по частоте. На второй вход смесителя подаётся сигнал с локального маломощного генератора высокой частоты — гетеродина (Г). Колебательный контур гетеродина перестраивается одновременно с входным контуром смесителя - обычно конденсатором переменной ёмкости (КПЕ). Таким образом, на выходе смесителя образуются сигналы с частотой, равной сумме и разности частот гетеродина и принимаемой радиостанции. Разностный сигнал постоянной промежуточной частоты выделяется с помощью полосового фильтра и усиливается в усилителе промежуточной частоты (УПЧ), после чего поступает на фильтр сосредоточенной селекции (ФСС), а затем на демодулятор (Д), восстанавливающий сигнал низкой (звуковой) частоты. Усилитель звуковой частоты (УЗЧ) усиливает звуковой сигнал, который подается на акустическую систему (Гр).

Таким образом, к расчету схемы гетеродина необходимо приступать после проектирования входной цепи и УВЧ.

Рисунок 2 – Функциональная схема гетеродина

При подключении колебательной системы к источнику питания в ней возникают электрические колебания. Для поддержания незатухающих колебаний используется активный элемент, регулирующий поступление энергии от источника питания в контур. Для согласования активного элемента по амплитуде, фазе и частоте колебаний с соответствующими параметрами колебательной системы применяются цепи обратной связи.

2.1 Выбор схемы гетеродина

Схему гетеродина выбирают, исходя из заданного диапазона частот $f_{\text{мин}}$ — $f_{\text{макс}}$. В приемниках радиовещательных диапазонов обычно применяются гетеродины с трансформаторной (см. рисунок 3) обратной связью, т.к. катушка контура для этих диапазонов волн имеет сравнительно большое число витков и, применяя неполное включение контура, можно установить необходимую связь последнего со входом и выходом транзистора. Необходимая положительная обратная связь достигается выбором соответствующей связи между катушками и трансформатором.

Рисунок 3 - Принципиальная схема гетеродина

Конденсатор переменной емкости (конденсатор настройки) C_{κ} в контуре гетеродина берется такой же, как и в контурах высокой частоты, что позволяет использовать для гетеродина одну из секций блока переменных конденсаторов.

В этом случае при перестройке приемника на различные частоты диапазона емкости контуров гетеродина и высокой частоты будут изменяться одинаково, а резонансные частоты контуров высокой частоты, настраиваемых на частоту принимаемого сигнала $f_{\rm c}$, и резонансная частота контура гетеродина, настраиваемого на частоту гетеродина $f_{\rm r}$, должны изменяться в различное число раз, т.к. коэффициент перекрытия диапазона приемника $K_{\rm д} = \frac{f_{\rm Makc}}{f_{\rm Mul}}$ отличается от коэффициента перекрытия диапазона гетеродина $K_{\rm д} = \frac{f_{\rm Makc} + f_{\rm np}}{f_{\rm Mul} + f_{\rm np}}$.

Для того, чтобы при одинаковом изменении емкости конденсатора настройки в контуре гетеродина и контурах высокой частоты обеспечить с достаточной точностью постоянство промежуточной частоты $f_{\rm np} = f_{\rm r} - f_{\rm c}$, производится сопряжение настройки контуров гетеродина и высокой частоты. Для этого в контур гетеродина параллельно и последовательно с конденсатором для настройки включают дополнительный конденсаторы $C_{\rm nap}$ и $C_{\rm noc}$. При этом сопряжение получается только в трех точках диапазона (в начале, середине и конце), а на остальных участках ошибка сопряжения остается в допустимых пределах.

2.2 Выбор транзистора гетеродина

В гетеродинах тип транзистора выбирается по предельной частоте:

 $f_{\text{пр т}} \ge f_{\text{макс}} + f_{\text{пр}}$. В этих схемах используются сравнительно высокочастотные маломощные транзисторы. На основе исходных данных получаем, что

 $f_{\rm пр\ T} \ge 1605 + 405 = 2010\ {\rm к} \Gamma {\rm ц},$ поэтому выберем транзистор КТ375Б, предельная частота которого составляет 250000 к $\Gamma {\rm ц}.$

3 Расчет контура гетеродина

Расчет гетеродина после выбора схемы целесообразно начать с расчета его контура. Контуры высокой частоты должны (входной цепи и УВЧ) быть уже рассчитаны. На рисунке 4 показана связь входного контура и контура гетеродина.

Рисунок 4 - Связь входного контура и контура гетеродина

Конденсаторы C_{κ} и C_{Π} в контуре гетеродина выбираются в соответствии с аналогичными конденсаторами во входном контуре.

Диапазон перекрытия приемника
$$K_{\rm д}=\frac{f_{\rm MaKC}}{f_{\rm MuH}}=\frac{1605}{525}=3,06.$$

Диапазон перекрытия гетеродина
$$K_{\text{д }\Gamma}=\frac{f_{\text{макс}}+f_{\text{пр}}}{f_{\text{мин}}+f_{\text{пр}}}=\frac{1605+465}{525+465}=2,09$$

Диапазоны перекрытия приемника и гетеродина отличаются, что вызывает погрешность сопряжения при настройке, поэтому необходимы три точки сопряжения:

$$f_1 = f_{\text{мин}} * K_{\text{Д}}^{0,067} = 525 * 3,06^{0,067} = 565,8$$
 кГц

$$f_2 = f_{\text{мин}} * K_{\text{д}}^{0,5} = 525 * 3,06^{0,5} = 917,9 к Гц$$

$$f_3 = f_{\text{мин}} * K_{\text{д}}^{0,933} = 525 * 3,06^{0,933} = 1489,2 кГц$$

Примем пределы изменения емкости конденсатора настройки $C_{\rm K}=10\div 490~{\rm n\Phi},~{\rm eмкость}~{\rm конденсатора}~C_{\rm \Pi}=45~{\rm n\Phi}.$ Для нахождения емкостей конденсаторов $C_{\rm пар}$ и $C_{\rm noc}$ рассчитаем вспомогательные величины:

$$a_1 = \frac{f_1 + f_2 + f_3}{f_{\text{MMH}}} = \frac{565,8 + 917,9 + 1489,2}{525} = 5,6$$

$$a_2 = \frac{f_1 * f_2 + f_2 * f_3 + f_1 * f_3}{f_{\text{MVH}}^2} =$$

$$= \frac{565,8 * 917,9 + 917,9 * 1489,2 + 565,8 * 1489,2}{525^2} = 9,9$$

$$a_3 = \frac{f_1 * f_2 * f_3}{f_{\text{MUH}}^3} = \frac{565,8 * 917,9 * 1489,2}{525^3} = 5,3$$

$$a_4 = \frac{f_{\rm np}}{f_{\rm muh}} = \frac{465}{525} = 0.88$$

$$a_5 = a_1 + 2 * a_4 = 5.6 + 2 * 0.88 = 7.36$$

$$a_6 = \frac{0.5 * (a_2 * a_5 - a_3)}{a_4} = \frac{0.5 * (9.9 * 7.36 - 5.3)}{0.88} = 38.4$$

$$a_7 = a_1 * a_5 + a_4^2 - a_2 + a_6 = 5.6 * 7.36 + 0.88^2 - 9.9 + 38.4 = 71.5$$

$$a_8 = \frac{a_4^2 * a_6 + a_3 * a_5}{a_7} = \frac{0,88^2 * 38,4 + 5,3 * 7,36}{71,5} = 0,96$$

$$a_9 = \frac{(C_{\text{к мин}} + C_{\Pi}) * K_{\text{Д}}^2}{a_6} = \frac{(10 + 45) * 3,06^2}{38,4} = 13,4 \, \Pi \Phi$$

Тогда
$$C_{\text{пос}} = \frac{(C_{\text{к мин}} + C_{\Pi}) * K_{\Pi}^2}{a_8} = \frac{(10 + 45) * 3,06^2}{0,96} = 536,5 \; \Pi\Phi;$$

$$C_{\text{nap}} = \frac{C_{\text{noc}} * a_9}{C_{\text{noc}} - a_9} = \frac{536,5 * 13,4}{536,5 - 13,4} = 13,7 \text{ m}\Phi$$

Рассчитаем минимальную и максимальную емкости контура, соответствующие минимальной и максимальной частотам настройки гетеродина. Проверим правильность расчета, определив диапазон перекрытия гетеродина.

$$C_{\text{\tiny \Gamma MUH}} = \frac{C_{\text{\tiny \Pi OC}}(C_{\text{\tiny K MUH}} + C_{\text{\tiny \Pi}})}{C_{\text{\tiny \Pi OC}} + C_{\text{\tiny K MUH}} + C_{\text{\tiny \Pi}}} + C_{\text{\tiny \Pi ap}} = \frac{536,5(10+45)}{536,5+10+45} + 13,7 = 63,5 \text{ m}$$

$$C_{\text{\tiny \Gamma MAKC}} = \frac{C_{\text{\tiny \Pi OC}}(C_{\text{\tiny K MAKC}} + C_{\text{\tiny \Pi}})}{C_{\text{\tiny \Pi OC}} + C_{\text{\tiny K MAKC}} + C_{\text{\tiny \Pi}}} + C_{\text{\tiny \Pi ap}} = \frac{536,5(490 + 45)}{536,5 + 490 + 45} + 13,7 = 280 \text{ } \text{\tiny \Pi \Phi}$$

Сравним полученный диапазон перекрытия гетеродина с требуемым:

$$K_{\text{д г p}} = \sqrt{\frac{C_{\text{г макс}}}{C_{\text{г мин}}}} = \sqrt{\frac{280}{63.5}} = 2.1$$

$$\frac{|K_{\text{A}\,\Gamma\,p}-K_{\text{A}\,\Gamma}|}{K_{\text{A}\,\Gamma}-1}=\frac{2.1-2.09}{2.09-1}=0.009$$

Расхождение значений не превышает процента. Рассчитаем индуктивность контура гетеродина:

$$L = \frac{1}{(2\pi f_{\text{макс}})^2 * \mathcal{C}_{\Gamma \text{ мин}}} = \frac{1}{(2\pi * 1605000)^2 * 63,5 * 10^{-12}} = 155 \text{ мкГн}$$

4 Расчет режима работы гетеродина

Из спецификации транзистора КТ375Б имеем:

Таблица 2 - Характеристика транзистора КТ375Б

\mathbf{K} рутизна $S_{\mathfrak{g}}$	35 MA B
Коллекторный ток покоя $I_{\rm kn}$	5 mA
Напряжение коллектор-эмиттер покоя $U_{\text{кэп}}$	10 B
Сопротивление резистора R_1	300 Ом

На характеристиках транзистора (см. рисунок 5) точке покоя соответствует ток базы $I_{\rm B\Pi} \approx 30$ мкА, напряжение $U_{\rm E3\Pi} = 1{,}03$ В.

Рисунок 5 - Характеристики транзистора КТ375Б с общим эмиттером

4.1 Расчет сопротивлений резисторов делителя

Ток делителя
$$I_{\rm дел}=(5\div 10)I_{\rm бп}=(5\div 10)*30=150\div 300$$
 мкА

Тогда сопротивление резисторов делителей

$$R_2 = \frac{U_2}{I_{\text{дел}}} = \frac{I_{\text{эп}}R_1 + U_{\text{бэп}}}{I_{\text{дел}}} \approx \frac{5*10^{-3}*300+1,03}{150*10^{-6}} \approx 6,8 \text{ кОм};$$

$$R_3 = rac{U_{
m пит} - \ I_{
m дел} R_2}{I_{
m лел} + \ I_{
m бir}} pprox \ rac{12 - 150 \ * \ 10^{-6} \ * \ 6,8 \ * \ 10^{-3}}{(150 \ + \ 30)10^{-6}} pprox 41 \
m кОм$$

4.2 Расчет сопротивления ненагруженного контура

Если поместить катушку в броневой сердечник типа СБ-12а с добротностью $Q_{\rm H}=\,Q_{\rm B}=75,$ то получим

$$R_{\text{x H}} = 2\pi f_{\text{г мин}} Q_{\text{H}} L_{\text{г}} = 2\pi * 990 * 10^3 * 75 * 155 * 10^{-6} = 70 \text{ кОм}$$

$$R_{{\scriptscriptstyle {
m X\,B}}} = 2\pi f_{{\scriptscriptstyle {
m F\,MaKC}}} Q_{{\scriptscriptstyle {
m H}}} L_{{\scriptscriptstyle {
m F}}} = 2\pi * 2070 * 10^3 * 75 * 155 * 10^{-6} = 146 \; {\rm кOm}$$

Так как в данной схеме транзистор включен по схеме с общим эмиттером, то будем считать сопротивление нагруженного контура равны сопротивлениями ненагруженного контура. $R_{\rm K\,H}=R_{\rm X\,H}=70~{\rm KOM},\,R_{\rm K\,B}=R_{\rm X\,B}=146~{\rm KOM}.$

4.3 Расчет коэффициентов связи контура с цепью транзистора

Режим работы транзистора выбирают таким, чтобы гетеродин работал в недонапряженном режиме. Это требование обусловлено тем, что в режиме насыщения выходное сопротивление транзистора очень мало и оно сильно шунтирует контур, в результате чего резко снижается добротность контура и стабильность частоты колебаний.

Для получения недонапряженного режима необходимо, чтобы амплитуда переменного коллекторного напряжения была заметно меньше этого напряжения в режиме покоя: $\gamma = \frac{U_{\kappa \ni \Pi}}{U_{\kappa m}} \geq 1,5 \div 3$.

Выбрав $\gamma=2$ найдем коэффициент связи контура с коллекторной цепью транзистора: $p_{\text{\tiny K}}=\sqrt{\frac{U_{\text{\tiny K}90}}{2I_{\text{\tiny KII}}R_{\text{\tiny K}\,\text{\tiny B}}\gamma}}=\sqrt{\frac{10}{2*5*10^{-3}*146*10^3*2}}\approx 0,06$

Для самовозбуждения гетеродина необходимо, чтобы коэффициент включения контура во входную цепь удовлетворял условию:

$$p_{\text{BX}} \ge \frac{2 \div 4}{S_2 R_{\text{KH}} p_{\text{K}}} = \frac{2 \div 4}{35 * 10^{-3} * 70 * 10^3 * 0.06} \approx 0.014 \div 0.028$$

Коэффициент связи контура с нагрузкой:

$$p_{\rm H} = \frac{U_{\rm r}}{2I_{\rm NR}R_{\rm NH}p_{\rm N}} = \frac{0.15}{2*5*10^{-3}*70*10^{3}*0.06} \approx 0.004$$

 Γ де U_{Γ} — амплитуда выходного напряжения гетеродина, подаваемого на вход смесителя.

4.4 Расчет сопротивления, вносимого в контур

Найдем входное сопротивление гетеродина:

$$R_{\text{вх }\Gamma} = \frac{R_2 R_3 R_{\text{вх }9}}{R_2 R_{\text{вх }9} + R_3 R_{\text{вх }9} + R_2 R_3} = \frac{6,8*41*0,6}{6,8*0,6+41*0,6+6,8*41} = 0,5 \text{ кОм}$$

$$R_{\mathrm{BH}} = rac{R_{\mathrm{H}} R_{\mathrm{BX \, \Gamma}}}{R_{\mathrm{H}} p_{\mathrm{H}}^2 + R_{\mathrm{BX \, \Gamma}} p_{\mathrm{BX}}^2} = rac{40*0.5}{40*0.004^2 + 0.5*0.014^2} pprox 204 \ \mathrm{KOm}$$

Где $R_{\rm H}$ — сопротивление нагрузки, равное входному сопротивлению смесителю.

4.5 Расчет числа витков катушки контура

Для катушек в броневых сердечниках число витков вычисляется по формуле: $\omega = K\sqrt{L}$, где L – индуктивность катушки гетеродина (в мкГн), K – постоянный коэффициент, значение которого зависит от типа катушки. Для катушки в сердечнике типа СБ-12а K = 7, тогда $\omega = K\sqrt{L} = 7\sqrt{155} \approx 86$ витков.

Для получения $p_{\rm BX}=0.014$ от катушки контура необходимо сделать отвод ко входу транзистора $\omega_{\rm BX}=\omega p_{\rm BX}=86*0.014\approx 1$ виток. Число витков катушек связи с коллектором контура $\omega_{\rm K}=\omega p_{\rm K}=86*0.06\approx 5$ витков и нагрузкой $\omega_{\rm H}=\omega p_{\rm H}=86*0.004\approx 1$ виток.

4.6 Расчет емкости разделительного конденсатора

Желательно, чтобы разделительный конденсатор C_p давала некоторый положительный фазовый сдвиг, что позволило бы в некоторых пределах скомпенсировать отрицательный фазовый сдвиг, обусловленный инерционными свойствами транзистора. В таком случае емкость C_p рассчитывается по формуле:

$$C_{\rm p} = \frac{f_{\rm S}}{2\pi R_{\rm BY,F} f_{\rm F,Marc}^2} = \frac{22*10^6}{2\pi*0.5*10^3*(2.07*10^6)^2} \approx 1600 \, \text{m}\Phi$$

Где
$$f_{\scriptscriptstyle S} = rac{f_{\scriptscriptstyle \Pi p \, {\scriptscriptstyle T}} h_{\scriptscriptstyle 119}}{r_h' h_{\scriptscriptstyle 219}} = rac{250*600}{67*100} \, pprox \, 22 \, {\rm Mr}$$
Гц

4.7 Расчет коллекторной цепи транзистора

$$R_{\Phi} = rac{U_{ ext{пит}} - U_{ ext{кэп}}}{I_{ ext{кп}}} = rac{12 - 10}{5*10^{-3}} = 400 \; ext{Ом}$$

$$C_{\Phi} \ge \frac{10}{2\pi f_{_{\Gamma \, \mathrm{MMH}}} R_{\Phi}} = \frac{10}{2\pi * 990 * 10^3 * 400} \approx 4000 \, \pi \Phi$$

5 Моделирование работы гетеродина в среде Multisim

Рисунок 6 - Схема гетеродина в среде Multisim

На рисунке 6 представлена электрическая схема гетеродина, собранная в среде Multisim, к выходам вторичной обмотки катушки подключены осциллограф и частотомер для исследования полученной схемы.

Рисунок 7 - Показания осциллографа

Рисунок 8 - Показания частотомера

На рисунках 7 и 8 показаны результаты моделирования схемы гетеродина. Полученные результаты имеют небольшое расхождение с полученными аналитическим расчетом значениями. Это объясняется отсутствием в среде Multisim соответствующих катушек и транзистора, использовавшихся при аналитическом расчете, которые были заменены на аналоги.

Заключение

В ходе выполнения курсовой работы были спроектированы и рассчитаны элементы схемы автогенератора (гетеродина) с трансформаторной обратной связью контура во входной цепи транзистора супергетеродинного приемника радиовещательного диапазона с учетом настройки контуров высокой частоты для обеспечения стабильности работы гетеродина.

Список литературы

- 1. Расчет электронных устройств на транзисторах / Бочаров Л.Н., Жебряков С.К., Колесников И.Ф. М.: Энергия, 1978. 208 с., ил. (массовая радиобиблиотека; Вып. 663).
- 2. М.А. Кузнецов; Р.С. Сенина «Пособие по проектированию. Радио приемники АМ, ОМ, ЧМ сигналов» Второе издание. СПб, 1999 год.
- 3. Конденсаторы: Справочник / И.И. Четвертков, М.Н. Дьяконов, В.И. Присняков и др.: Под ред. И.И. Четверткова, М.Н. Дьяконова. М.: Радио и связь, 1993
- 4. Мелешин В.И. Транзисторная преобразовательная техника. М.: Техносфера, 2005

Приложение 1. Функциональная схема гетеродина

Рисунок 9 - Функциональная схема гетеродина

Приложение 2. Принципиальная электрическая схема

Рисунок 10 - Принципиальная электрическая схема гетеродина

Приложение 3. Спецификация элементов

Таблица 3 - Спецификация

Формат	Зона	Лbз.		<i>С</i> бозна	ачен	ue	Наименова	ние	Кол.	Приме- чание
							Резисторы	I		
			R1, R¢				MO- 50 300 Om ± 5%		2	
			R2				СПЗ- 19а 10кОм ± 10%		1	
			R3				VishayY40250K0B9R40)кОм ± 10%	1	
							Конденса тор	Ю		
			CI				K10- 17Б 1πΦ± 10%		1	
			Сф				UHV- 3A- Tdk 4000πΦ±	10%	1	
			Ox				K10- 7B 200πΦ ± 10%		1	
			æ				BM- 50 50πΦ ± 10%		1	
			Отос				Vishay 715c20dt k50 500	πΦ ± 10%	1	
			Отар				K10- 17Б 10πΦ ± 10%		1	
							Индуктивные эле	менты		
			Le				КИГ 0.1 - 150 мкГн ± 10%		1	
						Транзисторы				
			Q1			КТ375Б		1		
			_			<i>Ист</i> очники пит	ания	1		
									1	
			Uпит				APV- 12- 12 12B		1	
									1	
									1	
	${\sf T}$									<u> </u>
Nsi	и. Л	ucm	№докум	Подпись	Дата					
Pas	враб.	. <i>F</i>	Котов И.С		-, .	A = 1000	220102222	Литера	Лист	_
Про Нач	ов. н.от		Ковьнёв Н.В			Автогенератор <u>у</u> гупергетеродинного		1	1	
Н.к	онтр						иемника			
Уms.										