BROUILLON – CONSTRUCTION SIMPLE DU LOGARITHME ET DE L'EXPONENTIELLE

CHRISTOPHE BAL

 $Document,\ avec\ son\ source\ L^{A}T_{E}\!X,\ disponible\ sur\ la\ page\\ https://github.com/bc-writings/bc-public-docs/tree/main/drafts.$

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Au commencement était le logarithme népérien	2
1.1.	Définition intégrale	2
1.2.	Equation fonctionnelle	2
2.	Puis vint l'exponentielle	3
2.1.	Inverser le logarithme népérien	3
2.2.	Equation fonctionnelle	4
2.3.	Equation différentielle	4

Date: 18 Avril 2025 - 21 Avril 2025.

L'objectif de ce texte est de construire la fonction exp de la manière la plus simple possible, en utilisant uniquement des notions connues d'un lycéen en 2025.

1. AU COMMENCEMENT ÉTAIT LE LOGARITHME NÉPÉRIEN

1.1. Définition intégrale.

Définition 1. Le « logarithme népérien » est la fonction ln définie sur \mathbb{R}_+^* par $\ln x = \int_1^x \frac{1}{t} dt$.

Fait 2. $\forall x \in \mathbb{R}_+^*$, $\ln' x = \frac{1}{x}$. En particulier, la fonction \ln est strictement croissante sur \mathbb{R}_+^* , et sa représentation graphique n'admet aucune tangente horizontale.

1.2. Equation fonctionnelle.

Fait 3.
$$\forall (a;b) \in (\mathbb{R}_+^*)^2$$
, $\ln(ab) = \ln a + \ln b$.

Démonstration. Par définition de ln, nous avons $\ln(ab) = \ln a + \int_a^{ab} \frac{1}{t} dt$. Concentrons-nous sur $I_a^{ab} = \int_a^{ab} \frac{1}{t} dt$. Pour cela, notons \mathcal{L} la représentation graphique de ln.

Une dilatation horizontale ϕ de coefficient $\frac{1}{a}$ transforme $M(x_M;y_M)$ en $M'\left(\frac{x_M}{a};y_M\right)$. Appliquons ϕ à la surface hachuré associée à l'intégrale I_a^{ab} , ainsi qu'à la fonction ln qui devient $f:x\mapsto \frac{1}{ax}$, puisque nous devons avoir $f\left(\frac{x}{a}\right)=\ln x$. Il est important de noter qu'un rectangle d'une unité d'aire est transformé par ϕ en un rectangle de $\frac{1}{a}$ unité d'aire.

Une dilatation verticale ψ de coefficient a transforme $M(x_M; y_M)$ en $M'(x_M; ay_M)$. Appliquons ψ à la surface hachuré associée à l'intégrale $\int_1^b \frac{1}{at} dt$, ainsi qu'à la fonction f qui devient la fonction ln. Notons qu'un rectangle de $\frac{1}{a}$ unité d'aire est transformé par ψ en un rectangle d'une unité d'aire.

Nous venons de justifier que $I_a^{ab} = \int_1^b \frac{1}{t} dt$, d'où $\ln(ab) = \ln a + \ln b$ comme annoncé.

2. Puis vint l'exponentielle

2.1. Inverser le logarithme népérien.

Fait 4. $\forall c \in \mathbb{R}, \ \exists ! x \in \mathbb{R}^*_+ \ tel \ que \ \ln x = c.$

Définition 5. $\forall c \in \mathbb{R}$, l'unique solution de $\ln x = c$ est notée $\exp c$. On définit ainsi sur \mathbb{R} une fonction \exp nommée « exponentielle ».

Fait 6. $\forall x \in \mathbb{R}$, $\ln(\exp x) = x$, $et \ \forall x \in \mathbb{R}_+^*$, $\exp(\ln x) = x$.

Démonstration. Nous devons juste vérifier la 2e identité. En appliquant $\ln(\exp X) = X$ à $X = \ln x$, nous obtenons $\ln(\exp(\ln x)) = \ln x$. Par injectivité de la fonction \ln , nous arrivons à $\exp(\ln x) = x$ comme souhaité.

Fait 7. Soient \mathcal{L} et \mathcal{E} les représentations graphiques respectives des fonctions \ln et exp. Les courbes \mathcal{L} et \mathcal{E} sont symétriques par rapport à la 1^{re} bissectrice $\Delta : y = x$.

Démonstration. Considérons $A(a; \exp a) \in \mathcal{E}$. Notons $b = \exp a$, nous savons que $a = \ln b$. Ceci amène à considérer $B(b; \ln b) \in \mathcal{L}$, c'est-à-dire $B(\exp a; a)$. Or, $A(x_A; y_A)$ et $B(y_A; x_A)$ sont symétriques par rapport à Δ (coordonnées d'un milieu, et critère d'orthogonalité). Il ne faut pas oublier de considérer $B(b; \ln b) \in \mathcal{L}$, mais cela se traite de façon similaire.

2.2. Equation fonctionnelle.

Fait 8. $\forall (a;b) \in (\mathbb{R})^2$, $\exp(a+b) = \exp a \cdot \exp b$.

Démonstration. L'injectivité de ln et les calculs suivants permettent de conclure.

$$\ln\left(\exp(a+b)\right)$$

$$= a+b$$

$$= \ln(\exp a) + \ln(\exp b)$$

$$= \ln(\exp a \cdot \exp b)$$

$$Définition de la fonction exp.$$

$$Definition de la fonction exp.$$

$$Equation fonctionnelle validée par la fonction ln.$$

2.3. Equation différentielle.

Fait 9. $\forall x \in \mathbb{R}, \exp' x = \exp x$.

Démonstration. Notons \mathcal{L} et \mathcal{E} les représentations graphiques respectives des fonctions ln et exp. Nous savons que \mathcal{L} et \mathcal{E} sont symétriques par rapport à la droite $\Delta: y = x$. Pour $h \neq 0$, considérons $A(a; \exp a) \in \mathcal{E}$ et $M(a+h; \exp(a+h)) \in \mathcal{E}$. Par symétrie, nous avons $B(\exp a; a) \in \mathcal{L}$ et $N(\exp(a+h); a+h) \in \mathcal{L}$.

Examinons si le taux d'accroissement $\frac{\exp(a+h)-\exp a}{h}$ admet une limite en 0. Ce quotient est la pente m(AM) de la droite (AM), or $m(AM) = \frac{1}{m(BN)}$. En raisonnant sur \mathcal{L} , faire tendre h vers 0 n'est possible que si x(N) tend vers x(B). Comme ln est dérivable en x(B), nous obtenons $\lim_{h\to 0} (m(BN)) = \ln'(x(B)) = \frac{1}{\exp a}$. Finalement, $\lim_{h\to 0} (\frac{\exp(a+h)-\exp a}{h}) = \exp a$ comme souhaité.

