Nguyen Tran 23 April 2021

Final Report

Trans World Oil Company Optimization Problem

Part 1: Define decision variables

The task was to minimise the costs for the Far East Operations of the Trans World Oil Company. Our proposed solution for minimising the costs will be presented in this report.

A Linear Programming model is formulated that could be used to generate a comprehensible plan for Far East Operations of the Trans World Oil Company. The LP model is solved using MATLAB to find the optimal solution with respect to constraints.

Figure 1: Problem layout conceptualization

We chose to use the 26 variables, which are divided into 3 groups for easier understanding. These same variables can be seen in Appendix 1., where they are also colour coordinated to better understand our constraints, which we will explain later. Our chosen variables are as follows:

In the first part, sources of crude oils, we have 2 suppliers, Iran & Brunei and 2 subsidiaries for refining, Australia and Japan. Each refinery has 2 extreme intensities, Low and High. Therefore, we have table below. Unit of each variable is barrels of crude oil.

In the second part, from refinery subsidiaries to marketing subsidiaries, we have variables from x9 to x18

FCosts of Crude Oil (refining and shipping included):

x 1	Low Crude oil to Australia, from Brunei	aus bru low
x2	High Crude oil to Australia, from Brunei	aus bru high
х3	Low Crude oil to Australia, from Iran	aus iran low
x4	High Crude oil to Australia, from Iran	aus iran high
х5	Low Crude oil to Japan, from Brunei	jpn bru low
х6	High Crude oil to Japan, from Brunei	jpn bru high
х7	Low Crude oil to Japan, from Iran	jpn iran low
x8	High Crude oil to Japan, from Iran	jpn iran high

Moreover, there is *Cost of tanker* added to the total cost, we have more variables:

□ Costs of Shipping (gasoline and distillate):

34 S		
х9	Gasoline from Australia to New Zealand	gas aus nz
x10	Gasoline from Australia to Philippines	gas aus ph
x11	Gasoline from Japan to New Zealand	gas jpn nz
x12	Gasoline from Japan to Philippines	gas jpn ph
x13	Distillate from Australia to New Zealand	dis aus nz
x14	Distillate from Australia to Philippines	dis aus ph
x15	Distillate from Japan to New Zealand	dis ipn nz
x16	Distillate from Japan to Philippines	dis ipn ph
x17	Distillate from United States to New Zealand	dis us nz
x18	Distillate from United States to Philippines	dis us ph

Demand variables are added too

x19: Number of additional independent tankers needed.

x20: Demand of gasoline for Australia.

x21: Demand of distillate for Australia.

x22: Demand of gasoline for Japan.

x23: Demand of distillate for Japan.

Part 2: Write the constraints

After careful consideration of the costs and demands given to us, we ended up with 21 constraints as the following table.

1.	x1 + x2 + x5 + x6 = 40000
2.	$x3 + x4 + x7 + x8 \le 60\ 000$
3.	$x1 + x2 + x3 + x4 \le 50\ 000$
4.	$x5 + x6 + x7 + x8 \le 30000$
5.	$0,259x1 + 0,365x2 + 0,186x3 + 0,312x4 - x9 - x10 \ge x20$
6.	$0,688x1 + 0,573x2 + 0,732x3 + 0,608x4 - x13 - x14 \ge x21$
7.	$0,259x5 + 0,350x6 + 0,186x7 + 0,300x8 - x11 - x12 \ge x22$
8.	$0,688x5 + 0,588x6 + 0,732x7 + 0,620x8 - x15 - x16 \ge x23$
9.	$x9 + x11 \ge 5400$
10.	$x13 + x15 + x17 \ge 8700$
11.	$x10 + x12 \ge 5000$
12.	$x14 + x16 + x18 \ge 8000$
13.	$x17 + x18 \le 12000$
	(0.05x1 + 0.05x2 + 0.12x3 + 0.12x4 + 0.45x5 + 0.45x6 + 0.11x7 + 0.11x8 + 0.01x9)
14.	+ 0.01x13 + 0.02x10 + 0.02x14 + 0.06x11 + 0.06x15 + 0.01x12
	$+0.01x16) - x19 \le 6.9$
15.	<i>x</i> 20 ≥ 9000
16.	$x21 \ge 21000$
17.	<i>x</i> 22 ≥ 3000
18.	$x23 \ge 12000$

Part 3: Write the objective function

The LP is to minimise total annual cost.

$$Zmin = (21.64x1 + 22.12x2 + 20.81x3 + 21.26x4 + 21.70x5 + 22.24x6 + 20.87x7 + 21.44x8 + 0.3x9 + 0.45x10 + 0.3x11 + 0.6x12 + 0.3x13 + 0.45x14 + 0.3x15 + 0.6x16 + 21.9x17 + 21.45x18 + 8.6x19 + 0x20 + 0x21 + 0x22 + 0x23)*365$$

Part 4: Run the program in Matlab

We put them in Matlab and ran the program (Matlab file is included in the submission).

The optimal solution we have:

The total annual cost is 627 678 163.0705 dollars.

The number of barrels per day bought from Brunei is 40 000.

The number of barrels per day bought from Iran is 28 381.

The number of gasoline barrels per day sent to New Zealand is 5 400.

The number of gasoline barrels per day sent to the Philippines is 5 000.

The number of distillate barrels per day sent to New Zealand is 8 700.

The number of distillate barrels per day sent to the Philippines is 8 000.

The number of barrels per day bought from the US is 8 389.

Appendices

Appendix 1. Decision variables.

	unit: barrels			
	crude oil	costs	gas	dis
x1	aus_bru_low	21.64	0.259	0.688
x2	aus_bru_high	22.12	0.365	0.573
х3	aus_iran_low	20.81	0.186	0.732
x4	aus_iran_high	21.26	0.312	0.608
x 5	jpn_bru_low	21.70	0.259	0.688
x6	jpn_bru_high	22.24	0.350	0.588
x7	jpn_iran_low	20.87	0.186	0.732
x8	jpn_iran_high	21.44	0.300	0.620
	shippings			
x9	gas_aus_nz	0.3		
x10	gas_aus_ph	0.45		
x11	gas_jpn_nz	0.3		
x12	gas_jpn_ph	0.6		
x13	dis_aus_nz	0.3		
x14	dis_aus_ph	0.45		
x15	dis_jpn_nz	0.3		
x16	dis_jpn_ph	0.6		
x17	dis_us_nz	21.9		
x18	dis_us_ph	21.45		

Appendix 2. Constraints

CRUDE OIL CO	NS	TRAINTS:							Т			
brunei crude d	oil								٦			
aus_bru_low	+	aus_bru_high	1 +	jpn_bru_low	+	jpn_bru_high	=	40 000	-			
iran crude oil									Ť			
	+	aus_iran_hig	h +	jpn_iran_low	+	jpn_iran_high	<=	60 000	1			
REFINERY CAP	AC	ITY CONSTRA	INTS	i:					Ť			
australia refin									7			
aus_bru_low	+	aus_bru_high	1 +	aus_iran_low	+	aus_iran_high	<=	50 000				
japan refinerio	es											
		jpn_bru_high	1 +	jpn_iran_low	+	jpn_iran_high	<=	30 000	1			
DEMAND CON	ST	RAINTS:							†			
australia gaso	lin	e										
aus_bru_low	+	aus_bru_high	+ 1	aus_iran_low	+	aus_iran_high	-	gas_aus_nz	-	gas_aus_ph	>=	9000
0,259		0,369	5	0,186		0,312			+			
australia distil	lat	·e							+			
	-	_	1 +	aus iran low	+	aus_iran_high	-	dis aus nz	-	dis aus ph	>=	21000
0,688		0,573		0,732		0,608			Ţ			
japan gasoline	_		+						+			
jpn_bru_low		jpn_bru_high	+	ipn iran low	+	jpn_iran_high	-	gas ipn nz	-	gas_jpn_ph	>=	3000
0,259	$\overline{}$	0,350		0,186		0,300		9	Ī	8 Jr Jr		
japan distillate	 e		+						+			
jpn_bru_low		ion bru high	+	jpn_iran_low	+	jpn_iran_high	-	dis_jpn_nz		dis_jpn_ph	>=	12000
0,688		0,588		0,732		0,620			Ţ			
new zealand g	as	oline	+						$^{+}$			
gas_aus_nz		gas_jpn_nz	>=	5400					ļ			
new zealand d	liet	illata	-						+			
dis_aus_nz		dis_jpn_nz	+	dis_us_nz	>=	8700			+		\vdash	
uis_uus_iie	Ė	dis_jpii_liz	Ť	uis_us_riz	-	0,00			†			
philippines ga	so	line										
gas_aus_ph	+	gas_jpn_ph	>=	5000					Ŧ			
philippines dis	til	late	+						+			
dis_aus_ph		dis jpn ph	+	dis_us_ph	>=	8000			+			
uis_uus_pii	Ť	and Thurthu		u/3_u3_pii		5500			$^{+}$			
united states	dis	tillate							\dagger		\Box	
dis_us_nz		dis_us_ph	<=	12000								