```
In [141]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
```

Question 1 Time Series

We're proposing an ARIMA(0,1,1) model for y_t . Reasons are below:

- -Without any differencing, the series look highly correlated and the ACF plot also shows high correlation for all first 10 lags.
- -After first order differencing, the series look stationary. The ACF plot has a clear cutoff at lag 1 while the PACF plot decaying, indicating a MA(1) model for this differenced process.
- -After second order differencing, the series look stationary. The ACF plot has a clear cutoff at lag 2 while the PACF plot decaying, indicating a MA(2) model for this 2nd order differenced process.
- -In summary, the original series should be modeled using ARIMA(0,1,1)

As for the sign of the MA parameter, we believe it's positive. Reasons are below:

- -ACF(1) for Δy_t is positive
- -The sign of PACF for Δy_t is alternating
- -ACF(2) for $\Delta^2 y_t$ is negative
- -PACF for $\Delta^2 y_t$ is decaying exponentially for even lags but is very small for odd lags

Question 3 ARIMA

Out[194]:

VALUE

DATE	
1986-01-01	22.93
1986-02-01	15.46
1986-03-01	12.61
1986-04-01	12.84
1986-05-01	15.38

```
In [195]: # Time plot of the oil prices
    plt.figure(figsize=(16,8))
    plt.grid(True)
    plt.xlabel('Dates')
    plt.ylabel('Values')
    plt.title('Oil prices')
    plt.plot(oil_prices)
    plt.show()
```



```
In [196]: # Plot the first differenced oil prices
    oil_prices_diff = oil_prices.diff().dropna()
    plt.figure(figsize=(16,8))
    plt.grid(True)
    plt.xlabel('Dates')
    plt.ylabel('Values')
    plt.title('First Differenced Oil prices')
    plt.plot(oil_prices_diff)
    plt.show()
```


3.2

Yes. After the differencing, we removed the trend effect. Now it looks like that the series are centered around 0 and have equal variances over the time.

3.3

P-value is insignificant so we don't reject the null hypothesis that unit root exists. This time series is not stationary.

```
In [198]: print("ADF test results for First Differenced Oil prices: ")
    print("Test stats: ", sm.tsa.stattools.adfuller(oil_prices_diff)[0])
    print("P-value: ", sm.tsa.stattools.adfuller(oil_prices_diff)[1])
    print("Critical values: ", sm.tsa.stattools.adfuller(oil_prices_diff)[4])

ADF test results for First Differenced Oil prices:
    Test stats: -9.306964876774327
    P-value: 1.0742996246722798e-15
    Critical values: {'1%': -3.448905534655263, '5%': -2.8697161816205705, '10%': -2.5711258103550882}
```

P-value is significant so we reject the null hypothesis and there shouldn't be any unit root. This first differenced time series is stationary.

```
In [199]: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

```
In [200]: # for oil prices
acf_plot = plot_acf(oil_prices, lags=40, alpha=0.05)
pacf_plot = plot_pacf(oil_prices, lags=40, alpha=0.05)
```



```
In [145]: # for differenced oil prices
    acf_plot = plot_acf(oil_prices_diff, lags=40, alpha=0.05)
    pacf_plot = plot_pacf(oil_prices_diff, lags=40, alpha=0.05)
```


Comments:

-Acf and PACF of oil prices are not decaying, indicating that the series is highly correlated and need further differnecing.

-PACF of the differenced oil prices has a clear cutoff(may have long run dependency). ACF of the differenced oil prices is decaying. We could possibly fit an ARIMA model for this series(although the residuals may have GARCH behavior)

```
In [201]: sm.stats.diagnostic.acorr_ljungbox(oil_prices_diff, lags=12, boxpierce=False, retu
rn_df=True)
```

Out[201]:

	lb_stat	lb_pvalue
1	57.465099	3.440301e-14
2	71.799243	2.564439e-16
3	71.938271	1.641115e-15
4	72.675068	6.179524e-15
5	78.042684	2.153518e-15
6	96.139609	1.600767e-18
7	104.269344	1.413704e-19
8	106.980728	1.587383e-19
9	108.373236	3.151081e-19
10	108.374056	1.134711e-18
11	109.006754	2.892063e-18
12	110.110570	5.690184e-18

Conclusion: All pvalues are very close to 0. So we reject the null hypothesis and take the alternative one: the data are not independently distributed.

```
In [202]: # PACF indicates a AR(6) process
model = statsmodels.tsa.arima model
```

model = statsmodels.tsa.arima_model.ARIMA(oil_prices_diff, order=(6,0,0))
model_fit = model.fit(disp=0)

print(model_fit.summary())

/Users/chamusyuan/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred fr equency MS will be used.

% freq, ValueWarning)

ARMA Model Results

=======================================			
Dep. Variable:	VALUE	No. Observations:	361
Model:	ARMA(6, 0)	Log Likelihood	-1000.700
Method:	css-mle	S.D. of innovations	3.867
Date:	Wed, 03 Feb 2021	AIC	2017.401
Time:	00:25:26	BIC	2048.512
Sample:	02-01-1986	HQIC	2029.770
	- 02-01-2016		

==========						=======
	coef	std err	z	P> z	[0.025	0.975]
const	0.0261	0.248	0.105	0.916	-0.461	0.513
ar.L1.VALUE	0.3621	0.052	6.960	0.000	0.260	0.464
ar.L2.VALUE	0.0779	0.055	1.407	0.159	-0.031	0.186
ar.L3.VALUE	-0.0761	0.056	-1.369	0.171	-0.185	0.033
ar.L4.VALUE	0.0059	0.056	0.106	0.915	-0.103	0.115
ar.L5.VALUE	-0.0291	0.055	-0.526	0.599	-0.138	0.079
ar.L6.VALUE	-0.1626	0.052	-3.127	0.002	-0.265	-0.061

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	1.0758	-0.5649j	1.2151	-0.0770
AR.2	1.0758	+0.5649j	1.2151	0.0770
AR.3	0.1138	-1.3993j	1.4039	-0.2371
AR.4	0.1138	+1.3993j	1.4039	0.2371
AR.5	-1.2791	-0.6906j	1.4536	-0.4212
AR.6	-1.2791	+0.6906j	1.4536	0.4212

Fitted model:

 $x_t = 0.3621x_{t-1} - 0.1626x_{t-6}$

```
In [203]: mod = sm.tsa.statespace.SARIMAX(oil_prices_diff, trend='c', order=(1,0,6))
    res = mod.fit(disp=False)
    print(res.summary())
```

/Users/chamusyuan/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred fr equency MS will be used.

% freq, ValueWarning)

/Users/chamusyuan/anaconda3/lib/python3.7/site-packages/statsmodels/tsa/base/tsa_model.py:162: ValueWarning: No frequency information was provided, so inferred frequency MS will be used.

% freq, ValueWarning)

SARIMAX Results

ep. Variable:	:	VAI	LUE No.	Observations:		361
odel:	:	SARIMAX(1, 0,	6) Log	Likelihood		-1000.138
ate:	Ţ	Wed, 03 Feb 20	021 AIC			2018.276
ime:		00:25	:44 BIC			2053.276
ample:		02-01-19	986 HQIC	,		2032.192
		- 02-01-20	016			
ovariance Typ	pe:	(opg			
	coef	std err	z	P> z	[0.025	0.975]
 ntercept	0.0186	0.065	0.287	0.774	-0.108	0.146
c.L1	0.6892	0.107	6.437	0.000	0.479	0.899
a.L1	-0.3331	0.112	-2.962	0.003	-0.553	-0.113
a.L2	-0.0384	0.057	-0.670	0.503	-0.151	0.074
a.L3	-0.1290	0.046	-2.820	0.005	-0.219	-0.039
a.L4	-0.0149	0.047	-0.316	0.752	-0.107	0.077
a.L5	-0.0312	0.038	-0.825	0.409	-0.105	0.043
a.L6	-0.1717	0.044	-3.891	0.000	-0.258	-0.085
igma2 	14.9058	0.758	19 . 665	0.000	13.420	16.391
=						
jung-Box (Q):)	1		46.75	Jarque-Bera	(JB):	1:
cob(Q):			0.21	Prob(JB):		
eteroskedasti 9	icity (H):	13.29	Skew:		
rob(H) (two-s 7	sided):		0.00	Kurtosis:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-st ep).

Fitted model:

$$x_{t} = 0.0186 + 0.6892x_{t-1} + w_{t} - 0.3331w_{t-1} - 0.0384w_{t-2} - 0.1290w_{t-3} - 0.0149w_{t-4} - 0.0312w_{t-5} - 0.1717w_{t-6}$$

```
In [204]: predict = res.get_prediction(start=361, end=364)
           predict_val = predict.predicted_mean
           predict_ci = predict.conf_int()
In [205]:
           predict_val
Out[205]: 2016-03-01
                         -0.444887
           2016-04-01
                          0.800528
           2016-05-01
                          1.803406
           2016-06-01
                          2.322258
           Freq: MS, dtype: float64
In [206]:
           predict_ci
Out[206]:
                      lower VALUE upper VALUE
            2016-03-01
                        -8.011916
                                    7.122143
            2016-04-01
                        -7.232006
                                    8.833061
            2016-05-01
                        -6.380489
                                    9.987301
            2016-06-01
                        -5.862297
                                    10.506814
In [208]: plt.figure(figsize=(16,8))
           plt.grid(True)
           plt.xlabel('Dates')
           plt.ylabel('Values')
           plt.plot(oil_prices_diff.index, oil_prices_diff, 'green')
           plt.plot(predict val.index, predict val, 'blue')
Out[208]: [<matplotlib.lines.Line2D at 0x7fbdfb815320>]
              10
            Values
             -10
             -20
```

Question 4 Garch

1988

1992

1996

2004

Dates

2008

2012

2016

Out[154]:

AMZN

DATE	
2009-01-02	6.0062
2009-01-05	-0.5519
2009-01-06	6.1043
2009-01-07	-2.0223
2009-01-08	1.7082

4.1

```
In [215]: from scipy import stats

ret = amzn['AMZN']
    print('Sample mean in percentage:', ret.mean())
    result = stats.ttest_lsamp(ret, 0)
    print('Test stats:', result.statistic)
    print('Pvalue:', result.pvalue)

Sample mean in percentage: 0.14555754966887402
    Test stats: 2.4453838553781244
    Pvalue: 0.01458343172407275
```

Performed a t-test for the mean. The p value is less than 0.05, so we reject the null hypothesis that the mean of r_t is 0. Also in economic sense, since AMZN is a company growing steadily, the log return of its stock should be positive.

```
In [217]: amzn_acf = plot_acf(ret)
    amzn_pacf = plot_pacf(ret)

sm.stats.diagnostic.acorr_ljungbox(ret, lags=12, boxpierce=False, return_df=True)
```

Out[217]:

	lb_stat	lb_pvalue
1	0.410377	0.521778
2	1.750405	0.416778
3	1.914770	0.590284
4	2.980625	0.561073
5	2.994831	0.700783
6	5.384310	0.495548
7	5.808027	0.562336
8	6.478638	0.593778
9	8.222523	0.511886
10	10.778525	0.375031
11	12.481263	0.328576
12	12.486833	0.407415

All ljungbox test pvalues are larger than 0.05. So we don't reject the null hypothesis and claim that there isn't serial correlation in r_t . Also ACF and PACF plots indicates little autocorrelation among the series.

4.3

```
In [218]: import arch
          am = arch.arch model(ret, vol='Garch', p=1, q=1)
           am fit = am.fit()
          print(am fit.summary())
          Iteration:
                                Func. Count: 6,
                                                        Neg. LLF: 3311134346.2968283
                              Func. Count: 14, Neg. LLF: 8336.16977026914
Func. Count: 23, Neg. LLF: 5537.6163832879665
Func. Count: 29, Neg. LLF: 5233.853676693495
Func. Count: 35, Neg. LLF: 3365.208786790381
Func. Count: 40, Neg. LLF: 4216.655253487106
Func. Count: 46, Neg. LLF: 15100.272744751033
Func. Count: 55, Neg. LLF: 3352.592123976801
Func. Count: 60, Neg. LLF: 3352.2697686409656
Func. Count: 65, Neg. LLF: 3352.2029036055533
                                                        Neg. LLF: 8336.16977026914
                                Func. Count:
          Iteration:
                           2,
          Iteration:
                                                        Neg. LLF: 5537.6163832879665
                          3,
          Iteration:
                          4,
          Iteration:
                          5,
          Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
                          6,
                          7,
                                                        Neg. LLF: 15100.272744751033
                          8,
                          9,
                                                       Neg. LLF: 3352.2697686409656
          Iteration: 10,
                               Func. Count: 65,
                                                       Neg. LLF: 3352.2029036055537
                               Func. Count: 70,
Func. Count: 75,
Func. Count: 80,
Func. Count: 85,
                       11,
12,
          Iteration:
                                                       Neg. LLF: 3352.2004235479612
          Iteration:
                                                       Neg. LLF: 3352.2002812714763
          Iteration:
                          13,
                                                        Neg. LLF: 3352.2002763041974
          Iteration:
                          14,
                                                        Neg. LLF: 3352.2002757157843
          Optimization terminated successfully (Exit mode 0)
                       Current function value: 3352.2002757157843
                       Iterations: 14
                       Function evaluations: 85
                       Gradient evaluations: 14
                                Constant Mean - GARCH Model Results
          ______
                                                    R-squared:
          Dep. Variable:
                                            AMZN
          Mean Model:
                                   Constant Mean
                                                    Adj. R-squared:
                                                                                      -0.000
          Vol Model:
                                            GARCH
                                                    Log-Likelihood:
                                                                                   -3352.20
          Distribution:
                                           Normal
                                                    AIC:
                                                                                     6712.40
          Method:
                             Maximum Likelihood
                                                    BIC:
                                                                                     6733.68
                                                    No. Observations:
                                                                                        1510
                                Wed, Feb 03 2021 Df Residuals:
          Date:
                                                                                        1506
                                         00:41:16 Df Model:
          Time:
                                                                                           Δ
                                            Mean Model
          ______
                                                 t P>|t| 95.0% Conf. Int.
                            coef std err
          ______
                        0.1156 5.562e-02 2.079 3.766e-02 [6.593e-03, 0.225]
          mu
                                       Volatility Model
          ______
                           coef std err t P>|t| 95.0% Conf. Int.
          ______

    0.0324
    1.943e-02
    1.665
    9.596e-02
    [-5.736e-03,7.044e-02]

    0.0000
    4.172e-03
    0.000
    1.000
    [-8.178e-03,8.178e-03]

    0.9921
    7.352e-03
    134.939
    0.000
    [ 0.978, 1.007]

          omega
          alpha[1]
          ______
```

Covariance estimator: robust

ARMA-GARCH Model

```
r_t = 0.1156 + \epsilon_t
\epsilon_t = \sigma_t \cdot e_t
\sigma_t^2 = 0.0324 + 0.9921\sigma_{t-1}^2
e_t \sim N(0, 1)
```

```
In [221]: res = am_fit.resid
    plt.plot(res)
    qq_plot = statsmodels.api.qqplot(res)
```



```
In [227]: standardized_res = (res-res.mean())/res.std()
    plt.plot(standardized_res)
    res_std_acf = plot_acf(standardized_res)
    res_std_pacf = plot_pacf(standardized_res)
```


Comment: this model is adequate. Residuals look stationary from ACF/PACF, but have a fat-tail problem from qq plots.

```
In [229]: am = arch.arch_model(ret, vol='Garch', p=1, q=1, dist='StudentsT')
am_fit = am.fit()
print(am_fit.summary())
```

2,

Func. Count:

Func. Count:

Iteration: 1,

Iteration:

```
Iteration:
                  3,
                         Func. Count:
                                                25,
                                                       Neg. LLF: 4604.45450338835

      Iteration:
      3, Func. Count:
      25, Neg. LLF: 4604.45450338835

      Iteration:
      4, Func. Count:
      34, Neg. LLF: 3223.105100448301

      Iteration:
      5, Func. Count:
      41, Neg. LLF: 3370.1167425622866

      Iteration:
      6, Func. Count:
      48, Neg. LLF: 3237.823876224604

      Iteration:
      7, Func. Count:
      55, Neg. LLF: 3229.066898542713

      Iteration:
      8, Func. Count:
      62, Neg. LLF: 3194.2651409936775

      Iteration:
      9, Func. Count:
      69, Neg. LLF: 3188.7080259264235

      Iteration:
      10, Func. Count:
      76, Neg. LLF: 3188.2301559514735

      Iteration:
      11, Func. Count:
      82, Neg. LLF: 3188.2281453927335

      Iteration:
      12, Func. Count:
      88, Neg. LLF: 3188.2282454125893

      Iteration:
      13, Func. Count:
      95, Neg. LLF: 3188.2277420391356

      Iteration:
      14, Func. Count:
      101, Neg. LLF: 3188.2277308096536

Iteration: 14, Func. Count: 101, Neg. LLF: 3188.2277308096536
Iteration: 15, Func. Count: 106, Neg. LLF: 3188.2277308096473
Optimization terminated successfully (Exit mode 0)
               Current function value: 3188.2277308096536
               Iterations: 15
               Function evaluations: 106
               Gradient evaluations: 15
                               Constant Mean - GARCH Model Results
______
Dep. Variable:
                                                  AMZN R-squared:
                                                                                                    -0.
000
Mean Model:
                                     Constant Mean Adj. R-squared:
                                                                                                    -0.
000
Vol Model:
                                                GARCH
                                                          Log-Likelihood:
                                                                                                 -318
8.23
Distribution: Standardized Student's t
                                                          ATC:
                                                                                                   638
6.46
Method:
                                Maximum Likelihood
                                                          BIC:
                                                                                                   641
3.05
                                                           No. Observations:
510
                                 Wed, Feb 03 2021 Df Residuals:
Date:
                                                                                                       1
505
Time:
                                             00:51:48 Df Model:
                                        Mean Model
______
                    coef std err t P>|t| 95.0% Conf. Int.
______
                 0.0945 4.662e-02 2.026 4.272e-02 [3.097e-03, 0.186]
mu
                              Volatility Model
______
                    coef std err
                                            t P>|t| 95.0% Conf. Int.
______
omega 0.0518 1.473e-02 3.514 4.419e-04 [2.289e-02,8.062e-02] alpha[1] 6.8702e-03 3.017e-03 2.277 2.276e-02 [9.577e-04,1.278e-02] beta[1] 0.9796 5.155e-03 190.022 0.000 [ 0.969, 0.990]
                                 Distribution
______
                                              t P>|t| 95.0% Conf. Int.
                    coef std err
______
                   4.3514 0.496 8.781 1.624e-18 [ 3.380, 5.323]
______
```

7,

16,

Neg. LLF: 31604.212731429856

Neg. LLF: 77794.45888614171

Covariance estimator: robust

4.5

ARMA-GARCH Model

```
r_t = 0.0945 + \epsilon_t
\epsilon_t = \sigma_t \cdot e_t
\sigma_t^2 = 0.0518 + 0.9796\sigma_{t-1}^2
e_t \sim T(0; 4)
```

In [230]: res = am_fit.resid
 plt.plot(res)
 qq_plot = statsmodels.api.qqplot(res)


```
In [231]: standardized_res = (res-res.mean())/res.std()
    plt.plot(standardized_res)
    res_std_acf = plot_acf(standardized_res)
    res_std_pacf = plot_pacf(standardized_res)
```


Comment: this model is adequate. Residuals look stationary from ACF/PACF, but still have a fat-tail problem from qq plots.

```
In [233]: forecast = am fit.forecast(horizon=5, align='origin')
          print(forecast.mean.dropna())
          print(forecast.variance.dropna())
                           h.1
                                     h.2
                                               h.3
                                                         h.4
                                                                   h.5
          DATE
          2014-12-31 0.094468 0.094468 0.094468 0.094468 0.094468
                                     h.2
                                              h.3
                                                                  h.5
          DATE
          2014-12-31 3.594059 3.597115 3.60013 3.603104 3.606037
In [234]: idx = ['2015-01-02', '2015-01-05', '2015-01-06', '2015-01-07', '2015-01-08']
          idx = [pd.to datetime( ) for in idx]
          predict = pd.DataFrame(list(forecast.mean.iloc[-1,:]), index=idx, columns=['Value
          s'])
In [235]: plt.figure(figsize=(16,8))
          plt.grid(True)
          plt.xlabel('Dates')
          plt.ylabel('Values')
          plt.plot(ret.index, ret, 'green', label='Train data')
          plt.plot(predict.index, predict, 'blue', label='Test data')
Out[235]: [<matplotlib.lines.Line2D at 0x7fbde0d00cc0>]
```


Comments: Returns are not predictable for short horizons. Judging from our predictions, the forcasted values are very close and have similar variance and it's actually quite random. Although we introduced student-t innovations, we still can't solve the fat-tail problem of the residuals, which means our Gaussian/T-distributed assumption about them could be challenged. Generally speaking, short terms returns are just combinations of market uncertainties at that moment, thus are not predictable.

```
In [ ]:
```