

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных методов

Усович Алексей Игоревич

Метод Латис-Больцмана решения задачи теплопроводности

КУРСОВАЯ РАБОТА

Научный руководитель:

д.ф.-м.н., профессор В. М. Головизнин

Соруководитель:

аспирант, мл.науч.сотр. Н.А. Афанасьев

Содержание

1	Вве	едение	3
2	Уравнение диффузии		3
	2.1	Одномерный случай	3
	2.2	Термическая диффузия	3
3	Метод Латис-Больцмана		4
	3.1	Метод Латис-Больцмана для задачи теплопроводности	5
4	Модельная задача		5
	4.1	Тепловая диффузия в слое, подверженному воздействию постоянной тем-	
		пературы	5
	4.2	Граничные условия	6
		4.2.1 Постоянство температуры	6
		4.2.2 Адиобатический процесс	6
5	Результаты моделирования		7
6	6 Заключение		8

1 Введение

2 Уравнение диффузии

2.1 Одномерный случай

Рассмотрим одномерное уравнение диффузии:

$$\frac{\partial \phi}{\partial t} = \alpha \frac{\partial^2 \phi}{\partial x^2} \tag{1}$$

 Γ де ϕ зависимая величина, например температура или импульс.

Коэффициент α влияет на скорость диффузии. В зависимости от спецификации уравнения он может являться коэффциентом термической диффузии, массовой диффузии, кинетической вязкости и тд. Чем больше α , тем выше скорость диффузии.

2.2 Термическая диффузия

Уравнение диффузии для задачи теплопроводности в одномерном случае можно записать как:

$$\rho C \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (k \frac{\partial T}{\partial x}) \tag{2}$$

где T - температура, ρ - плотность, C - удельная теплоемкость, k - удельная теплопроводность. В данном случае коэффициент диффузии принимает следующий вид:

$$\alpha = \frac{k}{\rho C} \tag{3}$$

Не трудно заметить, что величина α зависит только от характеристик среды. Таким образом, скорость протекания диффузии в среде зависит только от свойств самой среды.

Если подставить коэффициент α в (2), то уравнение теплопроводности можно записать в следующем виде:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \tag{4}$$

3 Метод Латис-Больцмана

Кинетическое уравнение для функции распределния температуры, можно записать как:

$$\frac{\partial f_k(x,t)}{\partial t} + c_k \frac{\partial f_k(x,t)}{\partial x} = \Omega_k \tag{5}$$

k = 1, 2 для одномерного случая (D1Q2)

В левой части уравнения представлен поточный процесс(streaming) распределения функции по сетке со скоростью $c_k = \frac{\Delta x}{\Delta t}$.

В правой части располагается скорость изменения функции распределения в процессе столкновения(collision).

Также правую часть можно представить, как:

$$\Omega_k = -\frac{1}{\tau} (f_k(x, t) - f_k^{eq}(x, t)) \tag{6}$$

где au - время релаксации до равновестного состояния (f_k^{eq})

Применяя BGK аппроксимацию, с использованием (6) можем дискретизировать уравнение (5) как:

$$\frac{f_k(x, t + \Delta t) - f_k(x, t)}{\Delta t} + c_k \frac{f_k(x + \Delta x, t + \Delta t) - f_k(x, t + \Delta t)}{\Delta x} = -\frac{1}{\tau} (f_k(x, t) - f_k^{eq}(x, t))$$
(7)

Заметив, что $\Delta x = c_k \Delta t$, перепишем уравнение (7), как:

$$f_k(x + \Delta x, t + \Delta t) - f_k(x, t) = -\frac{\Delta t}{\tau} ((f_k(x, t) - f_k^{eq}(x, t)))$$

$$\tag{8}$$

Таким образом, получаем основное уравнение для задачи диффузии в одномерном пространстве. Пусть время релаксации $\omega = \frac{\Delta t}{\tau}$, тогда имеем:

$$f_k(x + \Delta x, t + \Delta t) = f_k(x, t)(1 - \omega) + \omega f_k^{eq}(x, t)$$
(9)

Рис. 1: Решетка для одномерной задачи

Переменная ϕ из уравнения (1) может быть связана с функцией распределения f_i следующим образом:

$$\phi(x,t) = \sum_{k=1}^{2} f_k(x,t)$$
 (10)

Функцию равновестного распределения f_k^{eq} рассмотрим в виде:

$$f_k^{eq} = \omega_k \phi(x, t) \tag{11}$$

где ω_k означает вес распределения в направлении k, который должен удоавлетворять простому критерию: $\sum_{k=1}^n = 1$ в общем виде, в нашем случае $\omega_1 + \omega_2 = 1$.

3.1 Метод Латис-Больцмана для задачи теплопроводности

Используя основные утверждения из прошлой главы, для одномерной задачи с двумя направлениями на сетке(Рис 1), можем выразить температуру:

$$T(x,t) = \sum_{i=1}^{2} f_i(x,t) = f_1(x,t) + f_2(x,t)$$
 (12)

и через температуру - равновестное распределение

$$f_i^{eq} = \omega_i T(x, t) \tag{13}$$

Сумируем обе части получим следующее:

$$f_1^{eq} + f_2^{eq} = \omega_1 T(x, t) + \omega_2 T(x, t) \tag{14}$$

4 Модельная задача

Слой длиной L с коэффциентом температуропроводности α нагрет до температуры T_0 . Левую часть слоя подвергают высокой температурой T_l . Необходимо расчитать распределение температуры в слое в момент времени t_r .

4.1 Тепловая диффузия в слое, подверженному воздействию постоянной температуры

Рассмотрим конфигурацию системы, где L=1м, $T_0=0,\,T_l=1,\,\alpha=0.25,\,$ тогда

$$T(x,t) = \sum_{k=1}^{2} f_k(x,t)$$
 (15)

$$f_k^{eq}(x,t) = \omega_k T(x,t) \tag{16}$$

Метод состоит из двух основных шагов, в данном случае шаг коллизии принимает вид:

$$f_k(x,t+\Delta t) = f_k(x,t)(1-\omega) + \omega f_k^{eq}(x,t)$$
(17)

А поточный шаг:

$$f_k(x + \Delta x, t + \Delta t) = f_k * (x, t + \Delta t)$$
(18)

4.2 Граничные условия

4.2.1 Постоянство температуры

Тепловой баланс на границе x = 0 для одномерной задачи(D1Q2):

$$f_1^{eq}(0,t) + f2^{eq}(0,t) = f_1(0,t) + f_2(0,t)$$
(19)

$$f_1^{eq} = \omega_1 T(0, t) = 0.5T(0, t) \tag{20}$$

$$f_2^{eq} = \omega_2 T(0, t) = 0.5T(0, t) \tag{21}$$

Таким образом, имеем:

$$f_1(0,t) = T_b - f_2(0,t) (22)$$

$$f_2(0,t) = T_b - f_1(0,t) (23)$$

4.2.2 Адиобатический процесс

Градиент температуры равен 0, поэтому T(m) = T(m-1), где m - последний узер решетки. Таким образом:

$$f_1(m) + f_2(m) = f_1(m-1) + f_2(m-1)$$
(24)

или

$$f_1(m) = f_1(m-1) (25)$$

$$f_2(m) = f_2(m-1) (26)$$

5 Результаты моделирования

Рис. 2: Модельная задача в момент времени t=50

Рис. 3: Модельная задача в момент времени t=100

Рис. 4: Модельная задача в момент времени $t{=}600$

6 Заключение