Frequency dependence of effective bottom attenuation due to environmental variability

Kevin B Smith
Department of Physics
Naval Postgraduate School
Monterey, CA 93943

James D Nickila
Advanced Sonar Technology
Naval Undersea Warfare Center
Newport, RI 02841

Work supported by ONR, Code 321OA

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 01 DEC 2002		2. REPORT TYPE N/A		3. DATES COVERED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Frequency Dependence of Effective Bottom Attenuation Due to Environmental Variability				5b. GRANT NUMBER	
Environmental variability				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Physics, Naval Postgraduate School, Monterey, CA 93943 and Advanced Sonar Technology, Naval Undersea Warfare Center, Newport, RI 02841				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited					
13. SUPPLEMENTARY NOTES Also see: M001452, The original document contains color images.					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	39	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction

- Traditionally, ocean sediment attenuation assumes linear frequency dependence such that loss per distance has the form $\mathbf{a} = bf$ (or constant loss per wavelength), where α may have units 1/m or dB/m, and b=constant. Parameterization of sediment attenuation then relies on determination of b.
- More recent inversion studies (e.g., Zhou et al., 1987) have suggested non-linear frequency dependence of attenuation, i.e., $b = cf^x$ such that $a = cf^{(1+x)}$. Zhou et al. found $x \sim 0.7$, so $a \Box f^{1.7}$
- Physical models of sediment attenuation mechanism unclear on inherent nonlinear response versus effective nonlinear response due to variable environmental influences.

Model

- Monterey-Miami Parabolic Equation (MMPE) model used to compute propagation. Inputs may include range-dependent sound speed profiles, water-sediment and sediment-basement interfaces, sediment/basement sound speed gradients, sediment/basement sound speed and density fluctuations, and constant sediment/basement attenuation values (linear frequency dependence assumed).
- Sound speed profiles input deterministically.
- Interface roughness based on realizations of spectral model,

$$W_{\mathbf{h}}(K) \square \left(1 + L_{\mathbf{h}}^2 K^2\right)^{-\mathbf{b}}$$

 Sound speed/density variability based on realizations of spectral model

$$W_{dc}(K,M) \square \left(\Lambda^2 K^2 + M^2\right)^{-g}$$

Approach - Part I

- Direct numerical evaluation of environmental fluctuations influence on effective frequency dependence as measured by simple, linear correlation analysis.
- MMPE model run assuming $b_{sed} = 0.15$ dB/km/Hz for numerous environments containing perturbations. Results in complex pressure values at multiple depths: $p(r, z_j)$ with r = 10 km, and z_j containing 16 depths from 0 to 100 m.
- MMPE model then run for range-independent environment (avg SSP, no sediment gradient, all other values constant). Sediment attenuation then varies from b_{sed} = 0.025 to 0.5 dB/km/Hz. Results in complex pressure replica matrix p_b'(r, z_i).
- Effective attenuation determined by maximizing normalized correlation between pressure magnitudes over band of frequencies,

$$C(r,f,b) = \frac{\sum_{j} \left| p(r,z_{j}) \right| \left| p_{b}'(r,z_{j}) \right|}{\sqrt{\sum_{j} \left| p(r,z_{j}) \right|^{2} \sum_{j} \left| p_{b}'(r,z_{j}) \right|^{2}}}$$

Environment 1

Environment 2

Environment 3

Environment 4

Summary - Part I

- Environmental fluctuations <u>can</u> have significant impact on inversion of sediment attenuation.
- Water-sediment interface roughness seemed to create largest variability in effective attenuation. No trend observed over bandwidth.
- Sediment sound speed gradients and sediment-basement roughness both seemed to introduce noticeable trend in frequency dependence at larger ranges. Specifically, there was enhanced attenuation at the lower frequencies with values of x typically –0.5 to –0.9 (i.e., α - $f^{0.1}$ to α - $f^{0.5}$) over the band f = 100 500 Hz.
- These results imply higher loss per wavelength at lower frequencies, or even nearly constant loss per distance over band.

Summary - Part I

- Cause may be primary loss mechanism in these cases due to subsediment/basement effects. Thus, lower frequencies interact more readily, thereby increasing the effective attenuation.
- This suggests environments with x > 1 may be due to water/sediment interface, or near interface, influences. Potential causes could be small-scale roughness/scattering or even near bottom biologics. Longer range effects could even be related to rough surface scattering.
- If higher frequencies incur enhanced scattering, may expect frequency dependence of attenuation of the form

Approach - Part II, New Cost Function

- Previous cost function based on incoherent correlation over depth. However, no reason to expect correlation between scattered field structure (e.g., from rough interface) and range-independent field with effective attenuation.
- I nstead, choose simple comparison of total energy integrated over depth, i.e.

$$C(r,f,b) = \sum_{j} \left| p(r,z_{j}) \right|^{2} - \sum_{j} \left| p'_{b}(r,z_{j}) \right|^{2}$$

Summary - Part II

- Cost function can be critical to inversion!
- Total energy in field for low (< 100 Hz) and high (> 1 kHz) frequencies do not exhibit nonlinear attenuation effect for these perturbations. Mid-frequency (100 1000 Hz) do exhibit nonlinear dependence for some perturbations, $\alpha \sim f^{(1.7 \rightarrow 2.0)}$.
- Gradient in sediment sound speed and basement interface roughness affect total energy the most.
- Subbottom variability still suggests reduction in power law dependence, $\alpha \sim f^{0.6}$, over low frequencies.

Summary - Part II

 Previous conjecture still valid, and may be interpreted physically as indicated below

