

Rwanda Mathematics Competition 2019

Date: March 14th, 2019	Time limit: 3 hours	
Please enter the following information in PRINT .		
NAME:	GENDER: $\begin{array}{ccc} \mathbf{M} & \square \\ \mathbf{F} & \square \end{array}$	
SCHOOL:	CLASS:	

INSTRUCTIONS AND REGULATIONS (please read it):

- In each question in PART ONE and PART TWO cross (×) for the alternative you find is true. Only one of the alternatives A, B, C, D and E is true.
- Write full solutions to ALL questions in PART THREE.
- No calculators, cellphones nor other electronic devices are allowed. Only paper, pen, eraser, straightedge and compass.
- Please do not make any calculation on the problem pages. Those are only for answers. For your own calculations use scratch papers.
- If you need additional paper or go to the toilet please raise your hand wait until one of the invigilators will approach you.
- Students communicating with each other during the test will be removed from the classroom.
- There are four questions in each category: Easy (3 points each), Medium (5 points each) and Open problems (8 points each).
- When the invigilators announce "TIME'S UP" please collect your papers (with this page on top) and hand them over immediately. Do NOT include scratch papers.

Wishing you Good Luck

Celestin Kurujyibwami, Japhet Niyobuhungiro, Layla Sorkatti and Paul Vaderlind.

DO NOT write in the boxes below please

Problems	Easy	Medium	Open	Total Score
Score	/12	/20	/32	/64

PART ONE: EASY. Each correct answer will be awarded 3 points.

- 1. Consider the sentence WE ALL LOVE RWANDAN MATH COMPETITION. Every second the first letter in **each** word is moved to the other end of this word. In how many seconds the original sentence will appear back again?
 - □ (A) 25
- \square (B) 31
- \Box (C) 924
- \Box (D) 1848
- \Box (E) 2019
- 2. How many natural number n satisfy the inequality $\frac{1}{5} < \frac{n}{n+96} < \frac{1}{4}$?
 - \Box (A) 0
- □ **(B)** 3
- \square (C) 7
- \square (D) 9
- $\square(E)$ Infinitely many
- 3. Sixteen discs are arranged in four rows of four, the top row being number one. The discs have a number on one side and either red or green on the other. A number on a disc shows how many discs that touch that disc have green on the other side.

Which of the following statements is true?

- \square (A) All of the rows have the same number of green discs
- \square (B) Row one has more green discs than any other row
- \square (C) Row two has more green discs than any other row
- \square (D) Row three has fewer green discs than any other row
- \square (E) Row four has fewer green discs than any other row

- 4. A piece of paper in the shape of an equilateral triangle has one corner folded over as shown. In the figure one of the angles is 40° . What is the size of the angle marked by x° ?
 - \Box (A) 40°
- □ (B) 45°
- \square (C) 60°
- \Box (D) 80°

□ (E) 90°

PART TWO: MEDIUM. Each correct answer will be awarded 5 points.

5.	5. Vincent and Jeninah throw two dice (one each). How big is the chance that Vincent throws higher than Jeninah's?						
	□ (A) 1/2	□ (B) 1/3	□ (C) 1/4	□ (D) 1/6	□ (E) 5/12		
6.	5. The height of a building is 60 meters. At a certain moment during daytime, it casts a shadow of length 40 meters. If a vertical pole of length 2 meters is erected on the roof of the building, the length of the shadow of the pole at the same moment is?						
	\square (A) $3/2 m$	\square (B) $2/3 m$	\square (C) $4/2 m$	\square (D) $4/3 m$	☐ (E) None of the previous numbers		
7.	7. Let ABC be a triangle with AB and AC of the same length. A circle which passes through vertices B and C cuts the sides AB and AC in points D and E respectively. Assume that line segments BC and CD have the same length and that line segments BD and DE have the same length. Find the angles of the triangle ABC.						
	\Box (A) 60°, 60°, 60° \Box (D) 75°, 75°, 30°		(B) 72°, 72°, 36° (E) 80°, 70°, 30°	□ (C) 75°	$,60^{\circ},45^{\circ}$		
8.	3. How many different planes are there, which each pass through three or more vertices of a given cube?						
	□ (A) 6	□ (B) 12	□ (C) 14	□ (D) 20	□ (E) 26		

PART THREE: OPEN PROBLEMS. Each correct solution will be awarded 8 points. For each of the four problems you have one page to supply a solution. Please do not attach scratch papers.

9. To a given integer T one may in a single step add 2 or 3, or one can multiply T by 2 or 3. If you start with an odd number T and perform all possible sequences of three steps as described, how many times will you end with an even number?

10. Three equal (congruent) squares form a figure below. Find the angle AMT.?

11. Find all pairs of real numbers (x, y) which are solutions to the system of equations

$$\begin{cases} x + y - \lfloor y \rfloor = 3.14 \\ x + \lfloor x \rfloor + \lfloor y \rfloor = 20.19 \end{cases},$$

where $\lfloor a \rfloor$ means the largest integer which is less or equal to a. For example $\lfloor 7.21 \rfloor = 7$, $\lfloor -7.21 \rfloor = -8$ and $\lfloor 13 \rfloor = 13$.

12.				-1,0 or 1. Is it possible to do it so that diagonals are all different?	the
	*****	ТНЕ	END	******	

Page 7 of 7 The π -DAY