Comparison of Exterior and Vector Calculus

Professor David Barrett

Transcribed by Thomas Cohn

2/8/19

From Wednesday, we have an orientation of manifold M induces an orientation of ∂M .

 $(x_1,\ldots,x_k)\mapsto (x_1,\ldots,x_k)$ orientation-preserving on \mathbb{H}^k .

 $(x_1,\ldots,x_{k-1})\mapsto (x_1,\ldots,x_{k-1},0)$ orientation-preserving on $\partial\mathbb{H}^k$.

Exterior Calculus in \mathbb{R}^3	Vector Calculus in \mathbb{R}^3
Works well with diffeomorphisms	Works well with isometries (translations and rotations)
0-form f	Scalar Field f
1-form $\alpha dx + \beta dy + \gamma dz$	Vector Field $\vec{F} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$
2-form $\alpha(dy \wedge dz) + \beta(dx \wedge dz) + \gamma(dx \wedge dy)$	Vector Field $\vec{F} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$
3-form $f(dx \wedge dy \wedge dz)$	Scalar Field f
1 -form $\wedge 2$ -form	$\left \left\langle \vec{F_1}, \vec{F_2} \right\rangle \right $ inner product
1 -form \wedge 1 -form	$\left\langle \vec{F_1}, \vec{F_2} \right\rangle$ inner product $\vec{F_1} \times \vec{F_2}$ cross product
1 -form \wedge 1 -form \wedge 1 -form	$\det(\vec{F_1}, \vec{F_2}, \vec{F_2})$ scalar field
d	$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ $\operatorname{curl} \vec{F} = \nabla \times \vec{F}$
df	$ abla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)$
$d(\alpha dx + \beta dy + \gamma dz)$	$\operatorname{curl} \vec{F} = abla imes ec{F}$
$d(\alpha dy \wedge dz + \beta dx \wedge dz + \gamma dx \wedge dy)$	$\operatorname{div} \vec{F} = \langle \nabla, \vec{F} \rangle$
$\int\limits_M \omega$	k = 1 work, circulation $k = 2$ flux across M

Notation clarification: vector field $V:A\to\mathbb{R}^n$. For a local diffeomorphism, $\alpha^*V(\vec{x})\stackrel{\mathrm{def}}{=} (D\alpha(\vec{x}))^*V(\alpha(\vec{x}))$

Vector field \leftrightarrow 1-form

$$\begin{array}{ccc} \alpha^*(V^T)(\vec{x}) & \stackrel{?}{=} & (\alpha^*V)^T(\vec{x}) \\ & & \parallel \\ V^*(\alpha(\vec{x}))D\alpha(\vec{x}) & V^T(\alpha(\vec{x}))(D\alpha(\vec{x})^{-1})^T \end{array}$$

This only works if $D\alpha = ((D\alpha)^{-1})^T \Leftrightarrow D\alpha$ orthonormal $\Leftrightarrow D\alpha$ is an isometry.

So if the coordinate patches are isometries, the distinction between vector fields and 1-forms (exterior and vector calculus) collapses since the pullback rules are the same.