

SOME EXAM DATE SOME EXAM TIME

EXAMINATION FOR THE DEGREES OF XXXX

$\begin{array}{c} {\rm STATISTICS} \\ {\it Spatial Statistics 4H} \end{array}$

This paper consists of 4 pages and contains 3 questions. Candidates should attempt all questions.

Question 1	20 marks
Question 2	20 marks
Question 3	20 marks
Total	60 marks

The following material is made available to you:

Statistical tables*

Remov	Property management (print(p)))	No.	Personal	-	$B(\theta)$	W(E)	Monte M(r)	tomore
Bloods'	(n) d*(n . 4)***	$x\in\{0,1,\dots,n\}$	0.0	a .		ab(1-b)	$(1-\theta+\operatorname{Resp}(t))^n$	No. of success in a trial Propolation of success
Comunic Gas(F)	$\theta^{n-1}(1-\theta)$	$x\in\mathbb{N}$	0.00		÷	3 - 47°	(1 - 6 eqs)) 1 - 6 eqs))	No. of the last part actual for below.
Eponyments Hydroly, X, M)	<u>000-0</u>	**	H + (8	N i,,N)		10(1 - 0) $\frac{N-4}{N-1}$	-	No. of type below to compare the compared and on No. 1000 of type below.
Name of States and Name (1)	$\binom{r-1}{k-1}p-n(1-p)^{n}$	$x\in\{0,0+1,\dots\}$	2 (N 0 - 2 -		÷	$\frac{2d}{(1-d)^2}$	$\left(\frac{(i-\ell)\exp(i)}{1-\ell\exp(i)}\right)^n$	Printer Printer F. printer() d some Mil(1,7) + he(7)
Prison Bellio	mpt-X4	$x \in \mathbb{N}_0$	3 > 0		à		mp(36mp(0 - 10)	
N(x, f) and agreement								
No. Contragrama	MENTAL PROPERTY.	ad Factor during the 1	Promon	B(V)		w(V)	Management Comment	name.
	erickinin in	Marga .	Nones	400 1/14	-	441) 41, 14, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	NAME OF THE OWNER, THE	f - Mr. C
tion of the second	eripeistus - Ejirosep manena rikitikulara manenyanapuna patijot patijot	Maga-	0.10	-	-		NAME OF THE OWNER, THE	5, - 56+, -0 5 - 56+, -0
(i, i) ante grana temple destinanç infrance unimide temple Belon, col Casile	eripeististe - eijarunga manana mananganapanan patigat patigat patigat	Marque 0 ≤ x ≤ 1 x ∈ B	2.70	-				A - Malay A) An - Malay A) magazini An - Malay - Malay A)
(i), i) and appears to apply the beauty to a beauty to a beauty to a beauty Carly Carly Children	articular and a state of the sequence of the s	Requirements of the state of t	n, 10 m 10 10 E 11 E	-				F Mary, 17 F Mary, 17 F Mary, 17 Gall, 17 - K17

"An electronic calculator may be used provided that it is allowed under the School of Mathematics and Statistics Calculator Policy. A copy of this policy has been distributed to the class prior to the exam and is also available via the invigilator."

CONTINUED OVERLEAF/

"An electronic calculator may be used provided that it is allowed under the School of Mathematics and Statistics Calculator Policy. A copy of this policy has been distributed to the class prior to the exam and is also available via the invigilator."

NOTE: Candidates should attempt all questions.

- 1. (a) An environmental scientist is studying yearly average nitrogen dioxide (NO₂) concentrations, which is a non-negative measure of air pollution. The scientist has made measurements at 100 locations $\mathbf{z} = (z(\mathbf{s}_1), \dots, z(\mathbf{s}_{100}))$ across Glasgow, and their only goal in analysing these data is to produce a map of NO₂ predictions at 1 kilometre intervals across the city.
 - i. The scientist is worried that as the concentrations are non-negative and skewed to the right that a Gaussian geostatistical model would be inappropriate. What advice would you give her to overcome this problem? [2 MARKS]
 - ii. Describe briefly how the scientist would assess the data for the presence of residual spatial autocorrelation? [2 MARKS]
 - iii. The scientist is considering two different geostatistical models for her data, and decides to choose the one that minimises the Bayesian Information Criterion (BIC). Why is this not a good criteria to use to select the best model given the goal of her analysis?

 [2 MARKS]
 - iv. Briefly describe an alternative approach to how she should choose the best model given the goal of her analysis. Briefly describe how this approach works, and define 3 criteria she could use to assess the predictive fit of each model considered.

 [5 MARKS]
 - (b) Consider the zero-mean geostatistical process $\{Z(\mathbf{s})|\mathbf{s}\in\mathcal{D}\}$ with a weakly stationary and isotropic covariance function given by

$$C(h) = \begin{cases} \xi^{2}(1+\rho h) \exp(-\rho h), & h > 0 \\ \nu^{2} + \xi^{2}, & h = 0. \end{cases}$$

- i. Compute the semi-variogram for the geostatistical process $\{Z(\mathbf{s})|\mathbf{s}\in\mathcal{D}\}$. [3 MARKS]
- ii. What are the nugget, sill and partial sill for this covariance model? Justify your answer. [3 MARKS]
- iii. Would the slightly altered covariance function defined below be a good model for spatial data for $\phi > 0$? Justify your answer. [3 MARKS]

CONTINUED OVERLEAF/

$$C(h) \left\{ \begin{array}{ll} \xi^2(1+\rho h) \exp(-\rho h) + \phi, & h > 0 \\ \nu^2 + \xi^2 + \phi, & \text{h} = 0. \end{array} \right.$$

- 2. (a) Consider an areal unit process $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))$ relating to n unevenly sized areal units with centroids (central points) $(\mathbf{s}_1, \dots, \mathbf{s}_n)$. One could model these data as a geostatistical process, where the central points $(\mathbf{s}_1, \dots, \mathbf{s}_n)$ represent the spatial locations of the areal units. This would allow a geostatistical covariance function to be specified for this process, such as the exponential model given by Covariance $(Z(\mathbf{s}_i), Z(\mathbf{s}_j)) = \sigma^2 \exp(-||\mathbf{s}_i \mathbf{s}_j||/\phi)$ where ||.|| denotes Euclidean distance. Is this likely to be a good representation of spatial correlation for the areal unit process described above? Justify your answer. [3 MARKS]
 - (b) Suppose the areal unit process $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))$ follows a zero-mean multivariate Gaussian distribution. A geostatistical style model would be parameterised via the covariance $\Sigma = \text{Covariance}(\mathbf{Z})$, while an areal unit style model would be parameterised via the precision (inverse of the covariance) $\mathbf{Q} = \text{Precision}(\mathbf{Z})$. Which representation is faster computationally for evaluating the multivariate Gaussian data likelihood? Justify your answer. [2 MARKS]
 - (c) Consider a simple 1 dimensional areal unit process with 4 regions ordered as [A|B|C|D], with a corresponding neighbourhood matrix

$$\mathbf{W} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right),$$

so that the only neighbour pairs are (A, B), (B, C) and (C, D). Then suppose that Z(A) = 6, Z(B) = 5, Z(C) = 4 and Z(D) = 3. Compute Geary's C statistic and describe what it tells you about the presence/absence of spatial correlation in these data. [4 MARKS]

- (d) Consider an areal unit process $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))$ with a corresponding binary $n \times n$ neighbourhood matrix \mathbf{W} , where $w_{ij} = 1$ if areas (i, j) are spatial neighbours (share a common border) and $w_{ij} = 0$ otherwise. A conditional autoregressive (CAR) model for \mathbf{Z} has the general form $\mathbf{Z} \sim \mathrm{N}(\mathbf{0}, \tau^2 \mathbf{Q}(\mathbf{W})^{-1})$, where τ^2 is a variance parameter and $\mathbf{Q}(\mathbf{W})$ is a precision matrix based on the neighbourhood matrix \mathbf{W} .
 - i. Define $\mathbf{Q}(\mathbf{W})$ mathematically for the *intrinsic CAR (ICAR)* model and write down formulae for: (i) the diagonal element Q_{ii} ; and (ii) the off-diagonal element Q_{ij} where $i \neq j$. [3 MARKS]

CONTINUED OVERLEAF/

- ii. From part i. above what does this tell you about the partial (conditional) correlations between $(Z(\mathbf{s}_i), Z(\mathbf{s}_j))$ imposed by the model if: (a) $w_{ij} = 1$; and (b) $w_{ij} = 0$? [3 MARKS]
- iii. Describe two limitations of the *intrinsic CAR* model. [2 MARKS]
- iv. Briefly describe a model that overcomes the limitations outlined in iii. above and write down its full conditional distribution $Z(\mathbf{s}_i)|\mathbf{Z}(-\mathbf{s}_i)$. [3 MARKS]
- 3. (a) Consider a spatial point process $Z = \{Z(A) | A \subset D\}$ defined on a spatial domain D.
 - i. Write down the modelling assumptions for an inhomogeneous Poisson process (IPP) with first order intensity function $\lambda(s)$. [2 MARKS]
 - ii. Write down the general form for a log-linear parametric model for $\lambda(\mathbf{s})$ ensuring you define all the quantities you specify. In practice, name one drawback of fitting such as model. [3 MARKS]
 - (b) Consider a spatial point process $Z = \{Z(A)|A \subset D\}$, where the domain D is a unit square whose four corners have coordinates (0,0), (0,1), (1,0), (1,1). The first order intensity function for this process is given by $\lambda(\mathbf{s}) = s_1 + s_2 s_1 s_2$, where the location $\mathbf{s} = (s_1, s_2)$. Thus, across the domain D both $s_1, s_2 \in [0, 1]$.
 - i. Compute the first order intensity function at (a) $\mathbf{s} = (0, 0.5)$, (b) $\mathbf{s} = (0.5, 0)$, and (c) $\mathbf{s} = (0.5, 0.5)$. Hence or otherwise briefly describe the spatial pattern in the first order intensity function across the domain D. [4 MARKS]
 - ii. Consider a region $A \subset D$, write down the formula for the expected number of points that occurred in A, $\mathbb{E}[Z(A)]$. [2 MARKS]
 - iii. Let A denote the rectangle in the domain D defined by all points $\mathbf{s} = (s_1, s_2)$ such that $s_1 \in [0, 1]$ and $s_2 \in [0.4, 0.5]$. That is, the four corners of A are (0, 0.4), (0, 0.5), (1, 0.4), (1, 0.5). Compute the expected number of points that occurred in A. [3 MARKS]
 - iv. Now suppose that the second order intensity function for this process is $\lambda_2(\mathbf{s}, \mathbf{t}) = 1$ for all $(\mathbf{s}, \mathbf{t}) \in D$. Compute the pair correlation function $\rho(\mathbf{s}, \mathbf{t})$ for points $(\mathbf{s}, \mathbf{t}) \in D$. [3 MARKS]
 - v. Are there any points $(\mathbf{s}, \mathbf{t}) \in D$ at which the pair correlation function computed in iv. is not a real number? If so what aspect of either the first or second order intensity functions is causing this problem. [3 MARKS]

Total: 60 MARKS

END OF QUESTION PAPER.