Suppose $G = \langle X|R \rangle$ is a hyperbolic group in the sense that all triangles in the Cayley graph of G are δ -thin.

Theorem 0.1. Suppose $A = [a_1, ..., a_n]$ is a tuple of elements in G. Then the centraliser of A can be computed in time $O(||A||n^n)$, or O(||A||n) if a_1 is of infinite order.

Theorem 0.2. Suppose $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$ are tuples of elements in G. Then one can decide if there exists some g such that $A^g = B$ and return such a g in time $O((||A|| + ||B||)n^2)$, or O((||A|| + ||B||)n) if a_1 is of infinite order.

Theorem 0.3. There is a presentation $G = \langle Y|S \rangle$ such that all triangles in the Cayley graph of this presentation are 13-thin.

Now suppose H is an ϵ -quasiconvex subgroup of G.

Theorem 0.4. Triangles in the coset Cayley graph of H are $4\epsilon + 30\delta$ -thin.

Theorem 0.5. If the Cayley graph of H has $GIB(\frac{5}{2}\delta)$ with constant K, then it has $GIB(\infty)$, and the constant associated to GIB(k) $(k > \frac{5}{2}\delta)$ is less than or equal to K + k.

Theorem 0.6. Torsion free subgroups have $GIB(\frac{5}{2}\delta)$ with constant in $O(\epsilon)$. We now suppose H has $GIB(\frac{5}{2}\delta)$.

Theorem 0.7. There exists a K such that if w labels a geodesic in the Cayley graph of G, and w labels a path lying outside of $B_K(H)$ in the coset Cayley graph of H, this path is also a geodesic.

Corollary 0.8. Given $\lambda \geq 1$ and $\epsilon \geq 0$, there exists a K such that if w labels a (λ, ϵ) -quasigeodesic in the Cayley graph of G, and w labels a path lying outside of $B_K(H)$ in the coset Cayley graph of H, this path is also a (λ, ϵ) -quasigeodesic.

Corollary 0.9. Given $g \in G$, it is possible to decide whether $g^a \in H$ for some a in G and return such an a in time O(|g|).

Corollary 0.10. There is a number N such that if $g \in G$ and $(g^n)^a \in H$ with n a positive and minimal integer and a is any element of G, then $n \leq N$.