

Técnicas Digitais para Computação

Decodificador/Codificador Multiplexador

Aula 16

Decodificadores

Apenas uma saída é igual a 1
Ex: se
$$A_1A_0 = 10$$
 então $D_2=1$

\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{D}_{0}	$\mathbf{D}_{\scriptscriptstyle{1}}$	D,	\mathbf{D}_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Imaginando-se que A_1A_0 seja um código, as saídas o decodificam.

Se cada saída tivesse uma lâmpada (LED) que acendesse quando esta saída fosse igual a 1, e se esta lâmpada iluminasse um número com o algarismo decodificado, teríamos explicitamente na saída a informação sobre o código detectado.

Aplicações

• Decodificação de endereço em uma memória

• Decodificador de instruções

- · Implementação de funções combinacionais
 - Imaginando que as entradas são as variáveis X,Y,Z de uma função F
 - As 8 saídas correspondem então aos mintermos
 - Tomando a soma dos produtos usando mintermos, basta fazer um OR entre os mintermos para os quais a função é = 1.

Exemplo: Full Adder

$$S(X,Y,C_{in}) = \Sigma m (1,2,4,7)$$

 $C_{out}(X,Y,C_{in}) = \Sigma m (3,5,6,7)$

Codificadores

Codificador simples

- 2ⁿ entradas

 n saídas
- Apenas uma entrada pode ter valor = 1
- Saída fornece código binário correspondente à entrada ligada.

Tabela-verdade

\mathbf{D}_{7}	\mathbf{D}_{6}	D ₅	\mathbf{D}_{4}	\mathbf{D}_3	\mathbf{D}_2	\mathbf{D}_{1}	\mathbf{D}_{0}	A ₂	\mathbf{A}_{1}	$\mathbf{A_0}$
0	0	0	0	0	0	0	1	0	0	0
				0				0	0	1
0	0	0	0	0	1	0	0	0	1	0
:	:	:	:	:	:	:	:	:	:	:
1	0	0	0	0	0	0	0	1	1	1

Implementação

$$A_0 = D_1 + D_3 + D_5 + D_7$$

 $A_1 = D_2 + D_3 + D_6 + D_7$
 $A_2 = D_4 + D_5 + D_6 + D_7$

3 Portas OR de 4 entradas

Técnicas Digitais

Problemas

Se mais de uma entrada = 1

Ex:
$$D_3 = 1$$
 e $D_6 = 1$

$$A_2 A_1 A_0 = 1 1 1 \implies \text{como se } D_7 = 1$$

Se nenhuma entrada = 1

$$A_2A_1A_0 = 000$$
, como se $D_0=1$

Codificador de prioridade

Se duas entradas são iguais a 1 simultaneamente, a entrada de maior prioridade tem precedência.

Tabela - verdade

\mathbf{D}_3	$\mathbf{D_2}$	\mathbf{D}_{1}	\mathbf{D}_{0}	\mathbf{A}_{1}	\mathbf{A}_{0}	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

V indica saída válida (pelo menos uma entrada = 1)

X = don't care

Mapas de Karnaugh

$$\mathbf{A}_1 = \mathbf{D}_2 + \mathbf{D}_3$$
$$\mathbf{V} = \mathbf{D}_3 + \mathbf{D}_2 + \mathbf{D}_1 + \mathbf{D}_0$$

$$\mathbf{A}_0 = \mathbf{D}_3 + \mathbf{D}_1 \cdot \overline{\mathbf{D}}_2$$

Implementação

Multiplexadores

- Seleciona 1 de 2ⁿ entradas e a conecta à saída
- Seleção controlada por n sinais de controle

Tabela de Função

S_1	S_0	Y
0	0	$\mathbf{D_0}$
0	1	\mathbf{D}_{1}
1	0	$\mathbf{D_2}$
1	1	\mathbf{D}_3

$$Y = S_0 S_1 D_0 + S_0 S_1 D_1 + S_0 S_1 D_2 + S_0 S_1 D_3$$

Implementação

Um mux é um decodificador ao qual foram acrescentados

- Uma entrada de dados D_0 - D_3 em cada AND (portanto decodifica S_0 S_1 e deixa passar o D_i correspondente)
- Uma porta OR na saída

Implementação de funções booleanas

- Alternativa 1
 - Usando decoder: coloca-se na saída um OR dos mintermos desejados
 - Considerar que o MUX é um decoder que já tem o OR Portanto: usar MUX, selecionando mintermos através das entradas de dados
- Exemplo de somador: $S = \Sigma$ m (1,2,4,7)

• Esta solução exige, para n variáveis, um MUX de n entradas de seleção.

Alternativa 2

- * Solução exige, para n variáveis, um MUX de n-1 entradas de seleção (metade do tamanho de um MUX com n entradas de seleção)
- Método
 - Aplicar **n-1** primeiras variáveis como entradas de seleção
 - Usar variável restante (Z) como entrada de dados
 - Expressar saída como função de **Z**, **Z**, 0, 1 (as únicas 4 alternativas que existem)
- Exemplo

$$F = \Sigma m(1,2,4,5)$$

	F	Z	Y	X
F=Z	0	0	0	0
1,-2	1	1	0	0
–	1	0	1	0
F=Z	0_	1	1	0
ID 1	1	0	0	1
F=1	1	1	0	1
TF 0	0	0	1	1
F=0	0	1	1	1

• Exemplo do somador: $S = \sum m(1,2,4,7)$

X	Y	Cin	S	
0	0	0	0	S=C:
0	0	1	1	o C _{in}
0	1	0	1	$S=\overline{C}_{in}$
0	1	1	0	S-C _{in}
1	0	0	1	\overline{C}
1	0	1	0	$S=C_{in}$
1	1	0	1	$S=\overline{C}$
1	1	1	0	S—C _{in}

• Outra aplicação de multiplexadores:

Seleção de caminhos de dados