

Your account usage is unusually high.

Reset your password to protect your account. Need your own subscription? Subscribe now

home / study / math / statistics and probability / statistics and probability questions and answers / q3.a. consider that the life time of a particular br...

Question: Q3.a. Consider that the life time of a particular brand of lapto...

Please answer Q4.

Q3 need solve for Q4c.

X

which is 7 years old and still functioning. Find the probability that your laptop battery will alive 8 more years. Explain the procedure or methodology that you have used to solve this problem.

Q3.b. The thickness of a particular company's glass sheets, say company A, produced by a certain process are normally distributed with mean $\mu=5.0$ mm and variance $\sigma^2=0.25$ mm. Suppose the thickness of another particular company's glass sheets, say company B, produced by a simillar process are also normally distributed with mean $\mu^*=10$ mm and variance $\sigma^{2*}=0.25$ mm. Sketch roughly their pdfs in a single graph. What is the probability that a glass sheet produced by company A is thicker than 4.5 mm?

Q4. (a) The SD of a particular type of 10-mg tablets is 1 mg, while the SD of another type of 50-mg tablets is 2 mg. Which type of tablets has more variability? Justify your answer.

(b) The table below shows the number of absences, x, in a Statistics course and the final exam grade, y, for 7 st

, 101	of / students.									
	x	1	0	2	6	4	3	3		
	y	95	90	90	55	70	80	85		

Necessary calculations: You may need to find the following quantities to answer the following questions: $\sum_{i=1}^{7} x_i = ?$, $\sum_{i=1}^{7} x_i^2 = ?$, $\sum_{i=1}^{7} y_i = ?$, $\sum_{i=1}^{7} y_i^2 = ?$, and $\sum_{i=1}^{7} x_i y_i = ?$.

- (i) Draw a scatter diagram for the variables x and y and hence indicate what type of relationship exist between them.
- Find the sample correlation coefficient and interpret your result.
- (c) Suggest a suitable statistical model to model the data given in question 3. For your suggested model do the followings:
 - Estimate the model parameters and interpret them. (i)
 - (ii) Predict the final exam grad when number of absence x = 5.
- (d) The information below represents some summary statistics for MAT361, fall 2019, students in quiz 1 and quiz 2.

Summary statistics	Quiz 1	Quiz 2
Q ₁	6	9
Q_2	12	12
Q ₃	16	16
(Lowest, Highest)	(2, 22)	(2, 22)

- Draw a box plots in a single graph for quiz 1 and quiz 2 using the above information. (i)
- Explain how the students did in quiz 2 compared to quiz 1?

Show transcribed image text

Expert Answer ①

Was this answer helpful?

	11-2-1-1-1		10	-1-
0	90	0	8100	6
2	90	4	8100	180
6	55	36	3025	330
4	70	16	4900	280
3	80	9	6400	240
3	85	9.	7225	255
7	54.	49	2916	378
26	619	124	4969)	1758
i) a type	of rela		p exist beh	and yard ween them
i) a type	of rela	e diago	p eoust beh	and yard ween them
type	of rela		p eoust beh	and yard ween them
100 ao	of rela		p eoust beh	and yard ween them
100 90	of rela		p eoust beh	and yard ween them
100 40 80	of rela		p eoust beh	and yard ween them
100 90 80 60	of rela		p eoust beh	and yard ween them
100 40 80 60 70	of rela	=== fionship	p eoust beh	und yard ween them
100 40 80 60 60 40	of rela	=== fionship	p eoust beh	und yard ween them
100 q0 80 90 90 90 90 90 90 90 90 90 90 90 90 90	of rela	=== fionship	p eoust beh	and yard ween them
100 40 80 60 60 40	of rela	=== fionship	p eoust beh	und yard ween them

indicates a negative relationship exhati between the variables.

ii) The sample correlation coefficient and interpret your result. ->. the comple correlation conficientis $S = \frac{((2^{3})^{2} - (2^{3})(2^{3})}{(n + 2^{2} - (2^{3})^{2})(n + 2^{2} - (2^{3})^{2})}$ $\gamma = \frac{8(1758) - (26)(619)}{\left(8(124) - (26)^{2}\right)\left(8(14969) - (619)^{2}\right)}$ -0.9527. Interpretation: the correlation between the variables the number of absences, x and the final exam grade, 4 is -0.9527 which indicates there is a negative linear and

Variables. (2) a Suitable statistical model to model the clada given question 3. The model parameters can be obtained using excel as: Sumary output Regression statistics: Multiple R. 0.953 R square 0.908 Adjusted Requare 0.892 standard error. 5.256 Observations. 8.000 Antov A At ss Ms = stappican ce F Regression 1.000 1630.103 1630.103 59.000 0.000									
Charles given question 3. The model parameters can be obtained using excel as: Sumary cutput Regression statistics: Multiple R. 0.953 R square 0.908 Adjusted R square 0.892 standard error. 5.256 Observations. 8.000 Anlov A SS MS = significant C. F. Regression Lamp 1620, 103	Varia	bles.	•		• ,				
Regression statistics Multiple R. 0.953 R square 0.908 Adjusted Requare 0.892 standard error. 5.256 Observations. 8.000 ANOVA Af ss Ms = significant ce F	model model The	the mod	el parar	neters	estion = Con	નુ.			
R square 0.908 Adjusted R square 0.892 standard error. 5.256 Observations. 8.000 ANIOVA df ss Ms = significant control of the standard control of the standard control of the significant control of the standard control									
R square 0.908 Adjusted R square 0.892 standard error. 5.256 Observations. 8.000 ANOVA df ss Ms = significant configurations (cf = cf	Re	gresson	Statistic	8					
R square 0.908 Adjusted R square 0.892 standard error. 5.256 Observations. 8.000 ANOVA AF SS MS = Stgnifican Regression 1.000 1620,102	Multi	ple R.	0.95	2					
Adjusted Requare 0.892 standard error. 5.256 Observations. 8.000 ANIOVA df ss Ms = significant company compa				1					
standard error. 5.256 Observations. 8.000 ANIOVA AT SS MS = Significant Company Comp	S. S.			3.00					
standard error. 5.256 Observations. 8.000 ANIOVA AT SS MS = Significant CC F	Adjust	ed Rsq	Marc 0.89	2					
Observations. 8.000 ANOVA All SS MS = Significant CC =									
ANOVA ANOVA AS MS = Significant CC =									
df ss Ms = significant Regression 1.000 1620,100									
Regresion 1. mg 1420-102	-ANOV A								
Regresion 1. mg 1420-102									
Regration 1.000 1630.103 1630.103 59.000 0.000		df		MS	F	Significan			
	Regression	1.000	1630-103	1630.103	59.000	0.000			
Residual 6.000 165.772 27.629	Residual	6.000	165.772	27.629					
70tal. 7.000 1795.875	Total.	7.000	1795.875						

	coeffice -enus	stand and essos	₹ \$+ad	P-value	lowers	upps
Intercept.	98.253	3.293	24.840	0-000	90.194	106.310
	-6.424	0-836	-7.681	0.000	-8.470	_4·3 7 8
The 8	egies 98.2	nois	mode	ع؛ ك		
(j) the	ma	lel po	vame	zters	and i	nterpet
> The value.	inters	fept " 'nal	عرص الا عرص	-253 m gra	whith	is the
The v	nampea	07	abs	ence	હૈ ≥	₹ % 0.
that wi	ith a	every	unit	Chan	ge ?	ndicates in the
exam	grade					
(i) the	fina ve x	l exa	w de	ew bo	hen nu	mpast
-> the	x= 5	dicte	- 9 t	inal :	exam	grade.

Here I provided question 4 and question 4c.

If you have any doubts please comment Please like, thank you.

Comment >

COMPANY~

LEGAL & POLICIES

CHEGG PRODUCTS AND SERVICES

CHEGG NETWORK

CUSTOMER SERVICE~

© 2003-2021 Chegg Inc. All rights reserved.