Fahrzeugmechatronik I Aktoren

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Asynchronmaschine Allgemein

1885: Erfindung des Drehfeldes und der mehrsträngigen Wicklung durch den Italiener Galileo Ferraris und den Jugoslawen Nicola Tesla.

1889: Michael von Dolivo Dobrowolsky, Mitarbeiter der AEG erbaut den ersten dreisträngigen Asynchronmotor mit Käfigläufer. (ca. 25 Jahre nach dem Gleichstrommotor von Siemens).

80% aller elektrischen Maschinen sind heute Asynchronmaschinen. 95% davon besitzen sogenannte Käfigläufer.

Vorteile:

- Einfacher und robuster Aufbau,
- sehr preiswert wegen weitgehender Normung,
- kein Bürstenverschleiß

Nachteile:

- Drehzahl an Netzfrequenz gebunden und lastabhängig (gilt auch für GM)
 (Drehzahlregelung notwendig)
- mäßiger bis schlechter Wirkungsgrad im Vergleich zur GM.

Asynchronmaschine

Bauarten – Käfig- bzw. Kurzschlussläufer

Asynchronmaschine B-Feld bei konstantem Spulenstrom

Fachgebiet Kraftfahrzeuge • Fakultät Verkehrs- und Maschinensysteme • Technische Universität Berlin

Asynchronmaschine

B-Feld bei konstantem Spulenstrom – Über den Umfang verteilte Strangwicklung

Asynchronmaschine B-Feld bei harmonischem Spulenstrom

Asynchronmaschine Erzeugung eines Drehfeldes durch den Stator

Asynchronmaschine Spannungsinduktion im Käfig (Rotor)

Asynchronmaschine Spannungsinduktion im Käfig (Rotor)

Seite 10

Asynchronmaschine Stromfluss und Lorentzkraft im Käfig (Rotor)

Asynchronmaschine

Entstehung des Drehmomentes

c - Maschinenkonstante

n_{A/S} - Anzahl der Windungen

U s o - Amplitude der Wechselspannung

Drehstrom erzeugt umlaufendes Magnetfeld

Relativgeschw. zwischen Rotor/Stator induziert Spannung in kurzgeschlossener Ankerspule (ohne Herleitung)

$$U_{A0} = c \frac{n_A}{n_S} U_{S0} s$$

Induzierte Spannung erzeugt Lorenzkraft bzw. Drehmoment auf Anker

$$F_L = I l B$$

Asynchronmaschine

U_{A0} bei verschiedenen Betriebszuständen

$$\omega_{Mag} = const.$$

Schlupf
$$s = \frac{\omega_{Mag} - \omega_{R}}{\omega_{Mag}}$$

Leistungsform	$\omega_{\!\scriptscriptstyle R}$	S	\overline{U}_{A0}
Stillstand	$\omega_R = 0$		
Asynchroner Betrieb	$0 < \omega_R < \omega_{Mag}$		
Synchron- drehzahl	$\omega_{R} = \omega_{Mag}$		

Asynchronmaschine M-ω Kennlinie des Asynchronmotors

Asynchronmaschine Einfluss der Polpaarzahl

Synchronmaschine (permanenterregt – BLDC) Funktionsprinzip

Vorteile:

- hoher Wirkungsgrad
- > geringes Massenträgheitsmoment
- wartungsarm

Nachteile:

- Magnetmaterial teuer
- hoher Regelaufwand

Synchronmaschine (permanenterregt – BLDC) Funktionsprinzip

Rotormagnetfeld erzeugt umlaufende Oberflächenströme (Strombelag) auf den Köpfen des Schenkelpolrotors

Strombelag und B-Feld des Stators ergeben Lorentzkraft

- 0 bei 0° Differenz B-Feld Stator-Rotor
- Maximal bei 90° Differenz

Synchronmaschine (permanenterregt – BLDC) Kennlinien

Synchronmaschine (permanenterregt – BLDC) Funktionsprinzip (synchron)

Seite 19

Vielen Dank für Ihre Aufmerksamkeit!