Stacking

• Staking or Meta Ensembling

Kaggle 공식 홈페이지에 있는 수상자 리뷰 중 Stacking 관련 인터뷰를 참고 <u>링크</u>

- Why Staking
 - 좀 더 나은 성능을 위해 ★

- 여러 모델을 Stack해서 어떤 이점이 있는가?
 - Q1. 단일 모델을 좀 더 잘 만들면 되는 것이 아닌가?

A1. 거의 모든 모델은 mistake를 유발한다. 또한 모델마다 가지고 있는 장단점이 달라서, 데이터를 보는 관점이 다르다. 따라서, 여러 모델을 통합할 때 더 좋은 결과를 유도 할 수 있다.

Q2. 여러 모델을 만들면서 증가되는 계산 복잡도는?

A2. 좀더 나은 성능을 위해서 잠시만 접어두자.

• Stack structure

- Stacking의 구조는 다음과 같이 생겼음
- 우선, Base Model을 만들어야 한다.
- → Hyper parameter를 가지는 Base Model를 튜닝한다

for i in 1:10{

	x1	x2	Υ		
1		Toot			
2		Test			
3					
4					
5	Train				
6					
7		ITalli			
8					
9					
10					

	Test Data	
	x1	x2
1		
2		
3		
4		

Cross-Validation으로 최적의 Hyper parameter를 찾는다.

for i in 1:10{

	x1	x2	Υ		
1		Tuoin			
2		Train			
3	Took				
4	Test				
5					
6	Tuo				
7					
8	Train				
9					
10					

Test Data
x1 x2

1
2
3
4

Cross-Validation으로 최적의 Hyper parameter를 찾는 중.

for i in 1:10{

x1	x2	Υ			
	Train				
	ITalli				
	Toct				
lest					
	Tuoin				
Train					
		Train Test Train			

Test Data
x1 x2

1
2
3
4

Cross-Validation으로 최적의 Hyper parameter를 찾는 중..

for i in 1:10{

	x1	x2	Υ		
1					
2					
3	Train				
4					
5					
6					
7		Toct			
8		Test			
9		Train			
10		Train			

Test Data

x1 x2

1
2
3
4

Cross-Validation으로 최적의 Hyper parameter를 찾는 중...

for i in 1:10{

	x1	x2	Υ		
1					
2					
3					
4		Train			
5	ıraın				
6					
7					
8					
9		Toct			
10		Test			
-		•	•		

	Test Data					
	x1	x2				
1						
2						
3						
4						

Cross-Validation으로 최적의 Hyper parameter를 찾는 중....

	Test Data					
	x1	x2				
1						
2						
3						
4						

최적의 Hyper parameter를 찾았습니다. CV, Grid search 이용

'Random search' 또는 '베이지안 최적화'도 사용가능

• Meta Model 만들기

	Train Data					
	x1	x2	KNN	SVM	Υ	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

- Test와 마찬가지로 Train에도 Meta 변수를 만들어야 한다.
- **단,** 모델 튜닝을 할 때와 마찬가지로 CV로 Meta변수를 얻는다. 🛑 왜?

• Meta Model 만들기

Stacking의 핵심은 Base Model의 예측 결과값을 Meta model의 변수로 사용한다는 점

→ 어떤 부분에서 정확도가 높고, 낮은지 덕분에 알 수 있다.

이를 위해선,

- Meta변수를 만들 때 i번째 행을 학습하지 않고 test로 두어야 한다.
- 만약, 학습하게 된다면 데이터 누출(링크: <u>Data leakage</u>)로 인해 오버피팅 될 수 있다.

※ 데이터 누출 :

ML알고리즘을 훈련하기 위해 사용하는 데이터가 예측하려는 정보를 가지고 있는 상황

		Train	Data		
	x1	x2	KNN	SVM	Υ
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

	x1	x2	KNN	SVM	Υ
1					
2					
	x1	x2	KNN	SVM	Υ
3					
4					
	x1	x2	KNN	SVM	Υ
5					
6					
	x1	x2	KNN	SVM	Υ
7					
8					
	x1	x2	KNN	SVM	Υ
9					
10					

• Meta Model 만들기

Stacking의 핵심은 Base Model의 예측 결과값을 Meta model의 변수로 사용한다는 점

→ 어떤 부분에서 정확도가 높고, 낮은지 덕분에 알 수 있다.

이를 위해선,

- Meta변수를 만들 때 i번째 행을 학습하지 않고 test로 두어야 한다.
- 만약, 학습하게 된다면 데이터 누출(링크: <u>Data leakage</u>)로 인해 오버피팅 될 수 있다.

※ 데이터 누출 :

ML알고리즘을 훈련하기 위해 사용하는 데이터가 예측하려는 정보를 가지고 있는 상황

	x1	x2	KNN	SVM	Υ
1					
2					
	x1	x2	KNN	SVM	Υ
3					
4					
	x1	x2	KNN	SVM	Υ
5					
6					
	x1	x2	KNN	SVM	Υ
7					
8					
	x1	x2	KNN	SVM	Υ
9					
10					

어떤 메타 모델을 사용해야 할지는 정답이 없다.

참고자료

- http://kweonwooj.tistory.com/36
- https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard#
- https://topepo.github.io/caret/train-models-by-tag.html#l1-regularization
- http://otzslayer.github.io/machine-learning/feature-selection/
- http://michael.hahsler.net/SMU/EMIS7332/R/viz classifier.html