Part 1: Theoretical Questions

- Which of the following typing statement is true/false, explain why.
 - a. $\{f: [T1 \to T2], g: [T1 \to T2], a: T1\} \vdash (f(g \ a)): T2$

False:

g accepts T1 and returns T2 but f doesn't accept T2 it accepts also T1.

b.
$$\{f: [T1 \times T2 \to T3]\} \vdash (lambda(x)(f \times 100)): [T2 \to T3]$$
 False:

f accepts T1 X T2 and gets x and 100. 100 is of type T2 but T2 is not necessarily a Number, also x is of type T1 not T2.

c.
$$\{f: [T1 \rightarrow T2]\} \vdash ((lambda(x)(fx))): [T1 \rightarrow T2]$$
True:

f accepts T1 and returns T2, in the same way lambda accepts T1 which is x and returns the value of f which is T2.

d.
$$\{f: [T1 \times T2 \to T3], y: T2\} \vdash (lambda(x)(f \times y)): [T1 \to T3]$$
True:

f accepts T1 X T2 and gets x and y, y is of type T2, lambda accepts T1 which is x, so x is of type T1, the lambda returns the value of f which is T3.

2. Perform type inference manually on the following expressions, using the Type Equations method. List all the steps of the procedure.

a.
$$\left(\left(lambda (f x1) \left(lf x1 (f 1 x1) (f 3 x1)\right)\right) + \#t\right)$$

Stage I: Rename bound variables.

$$\left(\left(lambda\left(f\ x1\right)\left(if\ x1\left(f\ 1\ x1\right)\left(f\ 3\ x1\right)\right)\right) + \#t\right) \text{ turn to }$$

$$\left(\left(lambda\left(f\ x\right)\left(if\ x\left(f\ 1\ x\right)\left(f\ 3\ x\right)\right)\right) + \#t\right)$$

Stage II: Assign type variables for every sub expression:

Expression	Value
$\left(\left(lambda\left(f\ x\right)\left(if\ x\left(f\ 1\ x\right)\left(f\ 3\ x\right)\right)\right)+\#t\right)$	T0
$\left(lambda (f x) \left(if x (f 1 x) (f 3 x)\right)\right)$	T1
$\left(if\ x\ (f\ 1\ x)\ (f\ 3\ x)\right)$	T2
(f 1 x)	T3
(f 3 x)	T4
f	Tf
X	Tx
1	Tnum1
3	Tnum3
+	T+
#t	T#t

Stage III: Construct type equations.

The equations for the sub-expressions are:

Expression	Equation
$\left(\left(lambda\left(f\;x\right)\left(if\;x\left(f\;1\;x\right)\left(f\;3\;x\right)\right)\right)+\#t\right)$	T1 = [T+ * T#t -> T0]
$\left(lambda (f x) \left(lf x (f 1 x) (f 3 x)\right)\right)$	T1 = [Tf * Tx -> T2]
(if x (f 1x) (f 3x))	T2 = T3
	T3 = T4
(f 1 x)	Tf = [Tnum1 * Tx -> T3]
(f 3 x)	Tf = [Tnum3 * Tx -> T4]
1	Tnum1 = Number
3	Tnum3 = Number
+	T+ = [Number * Number -> Number]
#t	T#t = Boolean

Stage IV: Solve the equations.

Equation	Substitution
1 . T1 = [T+ * T#t -> T0]	{}
2 . T1 = [Tf * Tx -> T2]	
3. T2 = T3	
4. T3 = T4	
5. Tf = [Tnum1 * Tx -> T3]	
6. Tf = [Tnum3 * Tx -> T4]	
7. T+ = [Number * Number -> Number]	

8. T#t = Boolean	
9. Tnum1 = Number	
10. Tnum3 = Number	

Step 1:

 $(T1 = [T+ * T#t -> T0]) \circ Substitution = (T1 = [T+ * T#t -> T0])$

Equation	Substitution
2 . T1 = [Tf * Tx -> T2]	{T1 := [T+ * T#t -> T0]}
3. T2 = T3	
4. T3 = T4	
5. Tf = [Tnum1 * Tx -> T3]	
6. Tf = [Tnum3 * Tx -> T4]	
7. T+ = [Number * Number -> Number]	
8. T#t = Boolean	
9. Tnum1 = Number	
10.Tnum3 = Number	

Step 2:

 $(T1 = [Tf * Tx -> T2]) \circ Substitution = (T1 = [T+ * T\#t -> T0] = T1 = [Tf * Tx -> T2])$

Equation	Substitution
3 . T2 = T3	{T1 := [T+ * T#t -> T0]}
4. T3 = T4	
5. Tf = [Tnum1 * Tx -> T3]	
6. Tf = [Tnum3 * Tx -> T4]	
7. T+ = [Number * Number ->	
Number]	
8. T#t = Boolean	
9. Tnum1 = Number	
10. Tnum3 = Number	
11. Tf = T+	
12 . Tx = T#t	
13. T2 = T0	

Step 3:

 $(T2 = T3) \circ Substitution = Substitution \circ (T2 = T3)$

Equation	Substitution
4. T3 = T4	{T1 := [T+ * T#t -> T0],
	T2 = T3}
5. Tf = [Tnum1 * Tx -> T3]	

6. Tf = [Tnum3 * Tx -> T4]	
7. T+ = [Number * Number ->	
Number]	
8. T#t = Boolean	
9. Tnum1 = Number	
10. Tnum3 = Number	
11 . Tf = T+	
12 . Tx = T#t	
13 . T2 = T0	

Step 4:

(T3 = T4) ∘ Substitution = Substitution∘ (T3 = T4)

Equation	Substitution
5. Tf = [Tnum1 * Tx -> T3]	{T1 := [T+ * T#t -> T0],
	T2 = T3, T3 = T4}
6. Tf = [Tnum3 * Tx -> T4]	
7. T+ = [Number * Number ->	
Number]	
8. T#t = Boolean	
9. Tnum1 = Number	
10. Tnum3 = Number	
11. Tf = T+	
12 . Tx = T#t	
13 . T2 = T0	

Step 5:

(Tf = [Tnum1 * Tx -> T3]) \circ Substitution = Substitution \circ (Tf = [Tnum1 * Tx -> T3])

Equation	Substitution
6. Tf = [Tnum3 * Tx -> T4]	{T1 := [T+ * T#t -> T0],
	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3]}
7. T+ = [Number * Number ->	
Number]	
8. T#t = Boolean	
9. Tnum1 = Number	
10. Tnum3 = Number	
11 . Tf = T+	
12 . Tx = T#t	
13 . T2 = T0	

Step 6:

(Tf = [Tnum3 * Tx -> T3])
$$\circ$$
 Substitution =

(Tf = [Tnum3 * Tx -> T3] = Tf = [Tnum1 * Tx -> T3])

Equation	Substitution
7. T+ = [Number * Number ->	{T1 := [T+ * T#t -> T0],
Number]	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3],
	Tnum1=Tnum3}
8. T#t = Boolean	
9. Tnum1 = Number	
10. Tnum3 = Number	
11 . Tf = T+	
12 . Tx = T#t	
13 . T2 = T0	

Step 7:

Substitution (T+ = [Number * Number -> Number])

Equation	Substitution
8. T#t = Boolean	{T1 := [[Number * Number -> Number] * T#t -> T0],
	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3],
	Tnum1=Tnum3,
	T+ = [Number * Number -> Number]}
9. Tnum1 = Number	
10. Tnum3 = Number	
11. Tf = T+	
12 . Tx = T#t	
13 . T2 = T0	

Step 8:

(T#t = Boolean) ∘ Substitution = (Boolean = Boolean)

Equation	Substitution
9. Tnum1 = Number	{T1 := [[Number * Number -> Number] * Boolean ->
	T0],
	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3],
	Tnum1=Tnum3,

	T+ = [Number * Number -> Number], T#t = Boolean }
10. Tnum3 = Number	
11 . Tf = T+	
12. Tx = T#t	
13 . T2 = T0	

Step 9:

(Tnum1 = Number) ∘ Substitution = Substitution∘ (Tnum1 = Number)

(Tnum3 = Number) ∘ Substitution = Substitution∘ (Tnum3 = Number)

	•
Equation	Substitution
11 . Tf = T+	{T1 := [[Number * Number -> Number] * Boolean ->
	T0],
	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3],
	Tnum1=Boolean,
	Tnum3=Boolean,
	T+ = [Number * Number -> Number],
	T#t = Boolean }
12 . Tx = T#t	
13 . T2 = T0	

Step 10:

 $(Tf = T+) \circ Substitution = Substitution \circ (Tf = T+)$

Equation	Substitution
12 . Tx = T#t	{T1 := [[Number * Number -> Number] * Boolean ->
	T0],
	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3],
	Tnum1=Boolean,
	Tnum3=Boolean,
	T+ = [Number * Number -> Number],
	T#t = Boolean }
13 . T2 = T0	
14. Tx = Number	
15. T3 = Number	

Step 11:

 $(Tx = T\#t) \circ Substitution = Substitution \circ (Tx = T\#t)$

Equation	Substitution
13 .T2 = T0	{T1 := [[Number * Number -> Number] * Boolean ->
	T01.

	T2 = T3, T3 = T4, Tf := [Tnum1 * Tx -> T3],
	Tnum1=Boolean,
	Tnum3=Boolean,
	T+ = [Number * Number -> Number],
	T#t = Boolean , Tx = T#t }
	1
14. Tx = Number	
15. T3 = Number	

Step 12:

(T2 = T0) ∘ Substitution = Substitution ∘ (T2 = T0)

Equation	Substitution
14.Tx = Number	{T1 := [[Number * Number -> Number] * Boolean ->
	T0],
	T2 = T3, T3 = T4,
	Tf := [Tnum1 * Tx -> T3],
	Tnum1=Boolean,
	Tnum3=Boolean,
	T+ = [Number * Number -> Number],
	T#t = Boolean ,
	Tx = T#t,
	T2 = T0}
15. T3 = Number	

Step 13:

In the substitution we got that Tx = T#t = Boolean but in this step Tx = Number so we can say that the expression is not well-typed.

b.
$$((lambda (f1 x1 y1) (f1 x1 y1)) * 1 3)$$

Stage I: Rename bound variables.

$$\left(\left(lambda \left(f1 \, x1 \, y1 \right) \left(f1 \, x1 \, y1 \right) \right) * 1 \, 3 \right) \text{ turn to}$$

$$\left(\left(lambda \left(f \, x \, y \right) \left(f \, x \, y \right) \right) * 1 \, 3 \right)$$

Stage II: Assign type variables for every sub expression:

Expression	Value
$\left(\left(lambda\left(f\ x\ y\right)\left(f\ x\ y\right)\right)*13\right)$	T0
(lambda (f x y) (f x y))	T1
(f x y)	T2
f	Tf
X	Tx
у	Ту
*	T*
1	Tnum1
3	Tnum3

Stage III: Construct type equations.

The equations for the sub-expressions are:

Expression	Equation
$\left(\left(lambda\left(f\ x\ y\right)\left(f\ x\ y\right)\right)*13\right)$	T1 = [T* * Tnum1*Tnum3 -> T0]
(lambda (f x y) (f x y))	T1 = [Tf * Tx*Ty -> T2]
(f x y)	Tf = [Tx * Ty -> T2]
1	Tnum1 = Number
3	Tnum3 = Number
*	T* = [Number * Number -> Number]

Stage IV: Solve the equations.

Equation	Substitution
1. T1 = [T* * Tnum1*Tnum3 -> T0]	{}
2 . T1 = [Tf * Tx*Ty -> T2]	
3. Tf = [Tx * Ty -> T2]	
4. T* = [Number * Number -> Number]	
5. Tnum1 = Number	
6. Tnum3 = Number	

Step 1:

(T1 = [T* * Tnum1*Tnum3 -> T0]) \circ Substitution = (T1 = [T* * Tnum1*Tnum3 -> T0])

Equation	Substitution
2 . T1 = [Tf * Tx*Ty -> T2]	{ T1: = [T* * Tnum1*Tnum3 -> T0]}
3. Tf = [Tx * Ty -> T2]	
4. T* = [Number * Number ->	
Number]	
5. Tnum1 = Number	
6. Tnum3 = Number	

Step 2:

$$(T1 = [Tf * Tx*Ty \rightarrow T2]) \circ Substitution =$$

(T1: = [T* * Tnum1*Tnum3 -> T0] = T1 = [Tf * Tx*Ty -> T2])

Equation	Substitution
3. Tf = [Tx * Ty -> T2]	{ T1: = [T* * Tnum1*Tnum3 -> T0]}
4. T* = [Number * Number ->	
Number]	
5. Tnum1 = Number	
6. Tnum3 = Number	
7. Tf = T*	
8. Tx = Tnum1	
9. Ty = Tnum3	
10 . T2 = T0	

Step 3:

$$(\mathsf{Tf} = [\mathsf{Tx} * \mathsf{Ty} -\!\!\!> \mathsf{T2}]) \circ \mathsf{Substitution} = \mathsf{Substitution} \circ (\mathsf{Tf} = [\mathsf{Tx} * \mathsf{Ty} -\!\!\!> \mathsf{T2}])$$

Equation	Substitution
4. T* = [Number * Number -> Number]	$\{ T1: = [T^* * Tnum1*Tnum3 -> T0], $ $Tf = [Tx * Ty -> T2] \}$
5. Tnum1 = Number	
6. Tnum3 = Number	
7 . Tf = T*	
8. Tx = Tnum1	
9. Ty = Tnum3	
10. T2 = T0	

Step 4:

(T* = [Number * Number -> Number]) ∘ Substitution =

Substitution ∘ (T* = [Number * Number -> Number])

Equation	Substitution
5. Tnum1 = Number	{ T1: = [[Number * Number -> Number] * Tnum1*Tnum3 -> T0],
	T* = [Number * Number -> Number]}
6. Tnum3 = Number	
7. Tf = T*	
8. Tx = Tnum1	
9. Ty = Tnum3	
10. T2 = T0	

Step 5:

(Tnum1 = Number) ∘ Substitution = Substitution ∘ (Tnum1 = Number)

Equation	Substitution
6. Tnum3 = Number	{ T1: = [[Number * Number -> Number] * Number*Tnum3 -
7. Tf = T*	
8. Tx = Tnum1	
9. Ty = Tnum3	
10. T2 = T0	

Step 6:

 $(Tnum3 = Number) \circ Substitution = Substitution \circ (Tnum3 = Number)$

Equation	Substitution
7. Tf = T*	{ T1: = [[Number * Number -> Number] * Number*Tnum3 -
	> T0],
	Tf = [Tx * Ty -> T2],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number }
8. Tx = Tnum1	
9. Ty = Tnum3	
10. T2 = T0	

Step 7:

 $(Tf = T^*) \circ Substitution = Substitution \circ (Tf = T^*)$

Equation	Substitution
8. Tx = Tnum1	{ T1: = [[Number * Number -> Number] * Number*Number ->
	T0],
	Tf = [Tx * Ty -> T2],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number }
9. Ty = Tnum3	
10. T2 = T0	
11. T2 = Number	
12. Tx = Number	
13. Ty = Number	

Step 8:

 $(Tx = Tnum1) \circ Substitution = Substitution \circ (Tx = Tnum1)$

Equation	Substitution
9. Ty = Tnum3	{ T1: = [[Number * Number -> Number] * Number*Number ->
	T0],
	Tf = [Tx * Ty -> T2],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number,
	Tx = Tnum1 }
10. T2 = T0	
11. T2 = Number	
12. Tx = Number	
13. Ty = Number	

Step 9:

(Ty = Tnum3) \circ Substitution = Substitution \circ (Ty = Tnum3)

Equation	Substitution
10. T2 = T0	{ T1: = [[Number * Number -> Number] * Number*Number ->
	T0],
	Tf = [Tx * Ty -> T2],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number,
	Tx = Tnum1,
	Ty = Tnum3 }

11. T2 = Number	
12. Tx = Number	
13. Ty = Number	

Step 10:

(T2 = T0) \circ Substitution = Substitution \circ (T2 = T0)

Equation	Substitution
11. T2 = Number	{ T1: = [[Number * Number -> Number] * Number*Number ->
	T0],
	Tf = [Tx * Ty -> Number],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number,
	Tx = Tnum1,
	Ty = Tnum3 ,
	T2 = T0}
12. Tx = Number	
13. Ty = Number	

Step 11:

(T2 = Number) \circ Substitution = Substitution \circ (T2 = Number)

Equation	Substitution
12. Tx = Number	{ T1: = [[Number * Number -> Number] * Number*Number ->
	Number],
	Tf = [Tx * Ty -> Number],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number,
	Tx = Tnum1,
	Ty = Tnum3,
	T2 = T0,
	T2 = Number }
13. Ty = Number	·

Step 12:

 $(Tx = Number) \circ Substitution = Substitution \circ (Tx = Number)$

Equation	Substitution
13. Ty = Number	{ T1: = [[Number * Number -> Number] * Number*Number ->
	Number],
	Tf = [Number * Ty -> Number],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number,
	Tx = Number,
	Ty = Tnum3,
	T2 = T0,
	T2 = Number }

Step 13:

(Ty = Number) ∘ Substitution = Substitution ∘ (Ty = Number)

Equation	Substitution
	{ T1: = [[Number * Number -> Number] * Number*Number ->
	Number],
	Tf = [Number * Number -> Number],
	T* = [Number * Number -> Number],
	Tnum1 = Number,
	Tnum3 = Number,
	Tx = Number,
	Ty = Number,
	T2 = T0,
	T2 = Number }

The type inference succeeds since we have a type for T0, meaning that the expression is **well typed**. Since there are no free variables, the inferred type of T0 is: **Number.**

Our expression can be written now as

```
\Big( \big( lambda \ ([f:(Number \rightarrow Number)][x:Number][y:Number]):Number \ (f \ x \ y) \big) * 1 \ 3 \Big)
```

Question 3.1:

Typing rule define:

For every: type environment _tenv, variable declaration _x, expressions _exp and type expressions _texp:

if tenv o { x : texp} |- exp : texp -> Then tenv |- (define x exp) : void

This typing rule allows for type inference of recursive functions. When analyzing the type of exp, which is typically a lambda expression representing a function, we consider it within a tenv (type environment) where the variable x is bound to type texp. This allows us to recursively analyze the body of the function and ensure that the types are consistent throughout.