Índice general

1. Resumen Descriptivo: Parte 1							
	1.1.	Lectura de Datos	3				
	1.2.	Obtención del vector de media muestral	7				
	1.3.	obtención de la matriz de covarianza muestral	8				
	1.4.	obtención de la matriz de correlación muestral	8				
		1.4.1. Gráfica de la matriz de correlación	8				
	1.5.	obtención del coeficiente de asimetría muestral	19				
	1.6.	obtención del coeficiente de curtosis muestral	20				
	1.7.	Gráficos Varios	21				
		1.7.1. Gráfico de Puntos	21				
		1.7.2. Scatterplot con Histograma lateral	24				
		1.7.3. Scatterplot con box-plot	24				
	1.8.	CRUCE DE VBLES CUALITATIVAS vs UNA CUALITATIVA DICO- TÓMICA	25				
Bi	bliog	grafía	25				

Capítulo 1

Resumen Descriptivo: Parte 1

1.1. Lectura de Datos

```
data1 <- uno
dim(data1)</pre>
```

[1] 25 6

knitr::kable(head(data1))

dradio	radio	dhumero	humero	dcubito	cubito
1.103	1.052	2.139	2.238	0.873	0.872
0.842	0.859	1.873	1.741	0.590	0.744
0.925	0.873	1.887	1.809	0.767	0.713
0.857		1.739	1.547	0.706	0.674
$0.795 \\ 0.787$	0.809 0.779	1.734 1.509	1.715 1.474	0.549 0.782	0.654 0.571

knitr::kable(data1)

dradio	radio	dhumero	humero	dcubito	cubito
1.103	1.052	2.139	2.238	0.873	0.872
0.842	0.859	1.873	1.741	0.590	0.744
0.925	0.873	1.887	1.809	0.767	0.713
0.857	0.744	1.739	1.547	0.706	0.674
0.795	0.809	1.734	1.715	0.549	0.654
0.787	0.779	1.509	1.474	0.782	0.571
0.933	0.880	1.695	1.656	0.737	0.803
0.799	0.851	1.740	1.777	0.618	0.682

dradio	radio	dhumero	humero	dcubito	cubito
0.945	0.876	1.811	1.759	0.853	0.777
0.921	0.906	1.954	2.009	0.823	0.765
0.792	0.825	1.624	1.657	0.686	0.668
0.815	0.751	2.204	1.846	0.678	0.546
0.755	0.724	1.508	1.458	0.662	0.595
0.880	0.866	1.786	1.811	0.810	0.819
0.900	0.838	1.902	1.606	0.723	0.677
0.764	0.757	1.743	1.794	0.586	0.541
0.733	0.748	1.863	1.869	0.672	0.752
0.932	0.898	2.028	2.032	0.836	0.805
0.856	0.786	1.390	1.324	0.578	0.610
0.890	0.950	2.187	2.087	0.758	0.718
0.688	0.532	1.650	1.378	0.533	0.482
0.940	0.850	2.334	2.225	0.757	0.731
0.493	0.616	1.037	1.268	0.546	0.615
0.835	0.752	1.509	1.422	0.618	0.664
0.915	0.936	1.971	1.869	0.869	0.868

```
sapply(data1,mean,na.rm=TRUE)
             radio dhumero humero dcubito cubito
##
   dradio
## 0.84380 0.81832 1.79268 1.73484 0.70440 0.69384
fivenum(data1[,1])
                         #estadisticos de tukey:min,q1,median,q3,max
## [1] 0.493 0.792 0.856 0.921 1.103
library(Hmisc)
describe(data1[,1])
                         #fucntion describe de Hmisc
## data1[, 1]
          n missing distinct
                                  Info
                                           Mean
                                                      Gmd
                                                               .05
                                                                        . 10
                                                            0.6970
##
         25
                           25
                                     1
                                         0.8438
                                                   0.1216
                                                                     0.7418
        . 25
                 .50
                          .75
                                    .90
                                             .95
##
##
    0.7920
              0.8560
                       0.9210
                                0.9372
                                         0.9440
##
## lowest : 0.493 0.688 0.733 0.755 0.764, highest: 0.932 0.933 0.940 0.945 1.103
library(pastecs)
stat.desc(data1[,1])
                         #fucntion stat, desc de pstecs
##
                    nbr.null
        nbr.val
                                   nbr.na
                                                    min
                                                                 max
                                                                            range
                  0.00000000
##
   25.00000000
                               0.00000000
                                            0.49300000
                                                          1.10300000
                                                                       0.61000000
```

```
SE.mean CI.mean.0.95
##
                      median
            sum
                                     mean
                                                                              var
                  0.85600000
                               0.84380000
                                            0.02280490
                                                         0.04706699
##
    21.09500000
                                                                       0.01300158
##
        std.dev
                    coef.var
##
     0.11402449
                  0.13513212
library(psych)
describe(data1[,1:2])
                           #fucntion describe de psych
##
                         sd median trimmed mad min max range skew kurtosis
          vars n mean
                                      0.85 0.10 0.49 1.10 0.61 -0.75
             1 25 0.84 0.11
                              0.86
## dradio
                                                                           1.96
                              0.84
                                      0.82 0.09 0.53 1.05 0.52 -0.51
## radio
             2 25 0.82 0.11
                                                                           0.75
##
            se
## dradio 0.02
## radio 0.02
library(knitr)
library(data.table)
library(pastecs)
tablita <- stat.desc(data1[,1:2])
tablita1<-data.table(Estadisticos=rownames(tablita),tablita)</pre>
kable(tablita,caption="Resumen de Datos",digits=3)
```

Tabla 1.3: Resumen de Datos

	1 . 1' .	11.
	dradio	radio
nbr.val	25.000	25.000
nbr.null	0.000	0.000
nbr.na	0.000	0.000
min	0.493	0.532
max	1.103	1.052
range	0.610	0.520
sum	21.095	20.458
median	0.856	0.838
mean	0.844	0.818
SE.mean	0.023	0.021
CI.mean.0.95	0.047	0.044
var	0.013	0.011
std.dev	0.114	0.107
coef.var	0.135	0.131

kable(tablita1,caption="Resumen de Datos1",digits=4)

Tabla 1.4: Resumen de Datos1

Estadisticos	dradio	radio
nbr.val	25.0000	25.0000
nbr.null	0.0000	0.0000
nbr.na	0.0000	0.0000
min	0.4930	0.5320
max	1.1030	1.0520
range	0.6100	0.5200
sum	21.0950	20.4580
median	0.8560	0.8380
mean	0.8438	0.8183
SE.mean	0.0228	0.0214
CI.mean.0.95	0.0471	0.0441
var	0.0130	0.0114
std.dev	0.1140	0.1069
coef.var	0.1351	0.1306

```
library(stargazer)
stargazer(data1[,1:2],header=FALSE,title = "Resumen de datos-3",digits=4)
```

Tabla 1.5: Resumen de datos-3

Statistic	N	Mean	St. Dev.	Min	Max
dradio	25	0.8438	0.1140	0.4930	1.1030
radio	25	0.8183	0.1069	0.5320	1.0520

% latex table generated in R 4.1.3 by x table 1.8-4 package % Mon Mar 14 14:50:53 2022

Variable	Levels	$\bar{\mathbf{x}}$	\mathbf{s}	$c_{\rm v}\%$	Min	$\widetilde{\mathbf{x}}$	Max	\mathbf{n}	#NA
dradio	A	0.9	0.1	13.3	0.8	0.9	1.1	5	0
	В	0.9	0.1	8.8	0.8	0.9	0.9	5	0
	\mathbf{C}	0.8	0.1	7.3	0.8	0.8	0.9	5	0
	D	0.8	0.1	17.3	0.5	0.8	0.9	10	0
p = 0.45	all	0.8	0.1	13.5	0.5	0.9	1.1	25	0
radio	A	0.9	0.1	13.2	0.7	0.9	1.1	5	0
	В	0.9	0.0	5.6	0.8	0.9	0.9	5	0
	\mathbf{C}	0.8	0.1	7.5	0.7	0.8	0.9	5	0
	D	0.8	0.1	17.2	0.5	0.8	0.9	10	0
p = 0.40	all	0.8	0.1	13.1	0.5	0.8	1.1	25	0
dhumero	A	1.9	0.2	8.8	1.7	1.9	2.1	5	0
	В	1.7	0.2	9.4	1.5	1.7	2.0	5	0
	\mathbf{C}	1.8	0.3	14.9	1.5	1.8	2.2	5	0
	D	1.8	0.4	22.0	1.0	1.8	2.3	10	0
p = 0.90	all	1.8	0.3	15.8	1.0	1.8	2.3	25	0

Tabla 1.6: Resumen de lso datos-5

```
library(reporttools)  #para cruzar continuasxcategoricas
cate<-factor(rep(c("A","B","C","D"),c(5,5,5,10)))
cate1<-factor(rep(c("A","B","C","D"),c(10,5,5,5)))
data2<-cbind(data1,cate,cate1)
# solo tabla de vbles_nominales
titulo2<-"Caracteristicas de las variables nominales"
tableNominal(vars = data2[ ,7:8],cap=titulo2,vertical = FALSE,font.size = "scriptsize lab = "tab:nominal1",longtable = FALSE,cumsum = TRUE)</pre>
```

% latex table generated in R 4.1.3 by xtable 1.8-4 package % Mon Mar 14 14:50:53 2022

Variable	Levels	n	%	\sum %
cate	A	5	20.0	20.0
	В	5	20.0	40.0
	$^{\mathrm{C}}$	5	20.0	60.0
	D	10	40.0	100.0
	all	25	100.0	
cate1	A	10	40.0	40.0
	В	5	20.0	60.0
	$^{\mathrm{C}}$	5	20.0	80.0
	D	5	20.0	100.0
	all	25	100.0	

Tabla 1.7: Caracteristicas de las variables nominales

1.2. Obtención del vector de media muestral

```
vector_medias = medias<-apply(data1,2,mean);
knitr::kable(round(vector_medias,3))</pre>
```

	X
dradio	0.844
radio	0.818
dhumero	1.793
humero	1.735
dcubito	0.704
cubito	0.694

1.3. obtención de la matriz de covarianza muestral

```
var_cov <- cov(data1);
knitr::kable(round(var_cov,3))
```

dradio	radio	dhumero	humero	dcubito	cubito
0.013	0.010	0.022	0.020	0.009	0.008
0.010	0.011	0.019	0.021	0.009	0.009
0.022	0.019	0.080	0.067	0.017	0.013
0.020	0.021	0.067	0.069	0.018	0.017
0.009	0.009	0.017	0.018	0.012	0.008
0.008	0.009	0.013	0.017	0.008	0.011
	0.013 0.010 0.022 0.020 0.009	0.013 0.010 0.010 0.011 0.022 0.019 0.020 0.021 0.009 0.009	0.013 0.010 0.022 0.010 0.011 0.019 0.022 0.019 0.080 0.020 0.021 0.067 0.009 0.009 0.017	0.013 0.010 0.022 0.020 0.010 0.011 0.019 0.021 0.022 0.019 0.080 0.067 0.020 0.021 0.067 0.069 0.009 0.009 0.017 0.018	0.013 0.010 0.022 0.020 0.009 0.010 0.011 0.019 0.021 0.009 0.022 0.019 0.080 0.067 0.017 0.020 0.021 0.067 0.069 0.018 0.009 0.009 0.017 0.018 0.012

1.4. obtención de la matriz de correlación muestral

```
corr <- cor(data1);
knitr::kable(round(corr,3))</pre>
```

	dradio	radio	dhumero	humero	dcubito	cubito
dradio	1.000	0.852	0.691	0.668	0.744	0.678
radio	0.852	1.000	0.612	0.749	0.742	0.810
dhumero	0.691	0.612	1.000	0.894	0.552	0.440
humero	0.668	0.749	0.894	1.000	0.626	0.619
dcubito	0.744	0.742	0.552	0.626	1.000	0.729
cubito	0.678	0.810	0.440	0.619	0.729	1.000

1.4.1. Gráfica de la matriz de correlación

library(ggplot2)
library(corrplot)

matcorrs.cor<-cor(data1,method="pearson")</pre>

knitr::kable(round(matcorrs.cor,3))

	dradio	radio	dhumero	humero	dcubito	cubito
dradio	1.000	0.852	0.691	0.668	0.744	0.678
radio	0.852	1.000	0.612	0.749	0.742	0.810
dhumero	0.691	0.612	1.000	0.894	0.552	0.440
humero	0.668	0.749	0.894	1.000	0.626	0.619
dcubito	0.744	0.742	0.552	0.626	1.000	0.729
cubito	0.678	0.810	0.440	0.619	0.729	1.000

Gráfico de la MAtriz de Correlación por default corrplot(matcorrs.cor)

 $\label{lem:condition} \begin{tabular}{ll} \# \ \textit{Gr\'afica de la matriz de correlaci\'on} \\ \# \ \textit{metodo} \ (\textit{forma}), \textit{color-forma}, \textit{color-etiquetas}, \textit{inclinaci\'on-etiquetas} \\ \texttt{corrplot} \ (\texttt{matcorrs.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45}) \\ \end{tabular}$


```
# Definir una paleta de colores
col<-colorRampPalette(c("#BB4444","#EE9988","#FFFFFF","#77AADD","#4477AA"))
# Gráfica de la matriz de correlación
# addCoef.col,order
corrplot(matcorrs.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45,col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE")</pre>
```


Gráfica Triagular

corrplot(matcorrs.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="lower")

corrplot(matcorrs.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper")

corrplot(matcorrs.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F)

corrplot(matcorrs.cor,method="shade",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F,addshade="all")

corrplot(matcorrs.cor,method="circle",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F,addshade="all")

corrplot(matcorrs.cor,method="ellipse",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F,addshade="all")

corrplot(matcorrs.cor,method="pie",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F,addshade="all")

corrplot(matcorrs.cor,method="color",shade.col=NA,tl.col="black",tl.srt=45,
 col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
 diag=F,addshade="all")

corrplot(matcorrs.cor,method="square",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="AOE",type="upper",
diag=F,addshade="all")

corrplot(matcorrs.cor,method="square",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="FPC",type="upper",
diag=F,addshade="all")

corrplot(matcorrs.cor,method="square",shade.col=NA,tl.col="black",tl.srt=45,
col=col(200),addCoef.col="black",addcolorlabel="no",order="hclust",type="upper",diag=

Para fundir la matriz de correlación (la matriz de corr en forma de un data.frmac library(reshape2) ##head(matcorrs.cor) matcorrs.melt<-melt(matcorrs.cor)</pre>

```
## Var1 Var2 value
## 1 dradio dradio 1.0000000
## 2 radio dradio 0.8518067
## 3 dhumero dradio 0.6914590
## 4 humero dradio 0.6682584
## 5 dcubito dradio 0.7436926
## 6 cubito dradio 0.6778941
```

head(matcorrs.melt)

```
ggplot(data=matcorrs.melt, aes(x=Var1 , y=Var2, fill=value))+
   geom_tile()
```


1.5. obtención del coeficiente de asimetría muestral

 $\frac{x}{-0.511}$

1.6. obtención del coeficiente de curtosis muestral

 $\frac{x}{3.745}$

```
## [1] 1.0000000 0.8183200 0.6806088 0.5742721
##
##
   D'Agostino skewness test
##
## data: radio
## skew = -0.54306, z = -1.28329, p-value = 0.1994
## alternative hypothesis: data have a skewness
##
##
   Anscombe-Glynn kurtosis test
##
## data: radio
## kurt = 4.0637, z = 1.5936, p-value = 0.111
## alternative hypothesis: kurtosis is not equal to 3
##
##
    Jarque-Bera Normality Test
##
## data: radio
## JB = 2.4075, p-value = 0.3001
## alternative hypothesis: greater
## [1] Resultados: Curtosis = 3.74512405032383 Asimetría = -0.510805193333147
```

1.7. Gráficos Varios

1.7.1. Gráfico de Puntos

Gráfico de Puntos

Histogram of data1\$radio

Box Plot de: Radio

Radio

Box Plot de: Radio

Box Plot de: Radio

Radio

1.7.2. Scatterplot con Histograma lateral

1.7.3. Scatterplot con box-plot

1.8. CRUCE DE VBLES CUALITATIVAS vs UNA CUALITATIVA DICOTÓMICA

% latex table generated in R 4.1.3 by xtable 1.8-4 package % Mon Mar 14 14:50:54 2022

Variable	Levels	\mathbf{n}_{NO}	$\%_{ m NO}$	\sum % _{NO}	\mathbf{n}_{SI}	$\%_{\mathrm{SI}}$	\sum %si	$\mathbf{n}_{\mathrm{all}}$	$\%_{\mathrm{all}}$	\sum % _{all}
V6	SubMuli	0	0.0	0.0	11	39.3	39.3	11	19.6	19.6
	$_{\mathrm{Upper}}$	28	100.0	100.0	10	35.7	75.0	38	67.9	87.5
	Wilhelm	0	0.0	100.0	7	25.0	100.0	7	12.5	100.0
p < 0.0001	all	28	100.0		28	100.0		56	100.0	
cate	A	0	0.0	0.0	15	53.6	53.6	15	26.8	26.8
	В	0	0.0	0.0	8	28.6	82.1	8	14.3	41.1
	C	10	35.7	35.7	5	17.9	100.0	15	26.8	67.9
	D	18	64.3	100.0	0	0.0	100.0	18	32.1	100.0
p < 0.0001	all	28	100.0		28	100.0		56	100.0	

Tabla 1.14: Caracteristicas de las variables nominales