Лабораторная работа №6. Обработка чисел в форматах с плавающей точкой на целочисленном процессоре

Цель работы: закрепить на практике особенности обработки и хранения чисел в форматах с плавающей точкой.

Задачи:

- закрепить на практике особенности микрокомандного управления микропроцессором;
- закрепить на практике особенности форматов чисел с плавающей точкой, а также особые значения стандарта IEEE754;
- получить навыки обработки чисел с плавающей точкой на целочисленном процессоре;
- закрепить навыки формирования тестовых данных и отладки программного обеспечения.

Теоретическая часть

Форматы чисел с ПТ

IEEE 754 (IEC 60559) — широко используемый стандарт IEEE, описывающий формат представления чисел с плавающей точкой. Используется в программных (компиляторы разных языков программирования) и аппаратных (CPU и FPU) реализациях арифметических действий (математических операций).

Стандарт описывает:

- формат чисел с плавающей точкой: мантисса, экспонента (показатель), знак числа;
- представление положительного и отрицательного нуля, положительной и отрицательной бесконечностей, а также *нечисла́* (англ. *Not-a-Number*, *NaN*);
- методы, используемые для преобразования числа при выполнении математических операций;

- исключительные ситуации: деление на ноль, переполнение, потеря значимости, работа с денормализованными числами и другие;
- операции: арифметические и другие.

Стандарт 2008 года заменяет IEEE 754-1985. В новый стандарт включены двоичные форматы из предыдущего стандарта и три новых формата. В соответствии с действующим стандартом, реализация должна поддерживать по крайней мере один из основных форматов, как и формат арифметики и формат обмена.

В формате возможны следующие значения: положительный и отрицательный ноль, положительная и отрицательная бесконечности, два вида NaN: тихий NaN (qNaN) и сигнализационный NaN (sNaN). NaN может нести полезную нагрузку, предназначенную для диагностической информации, указывающей источник, вызвавший NaN. Знак NaN не имеет никакого значения, но может быть предсказуемым в некоторых случаях.

В таблицах 1,2 представлены описания некоторых форматов чисел с плавающей точкой, на рисунке 1 общая структура числа с ПТ.

3	Смещённый порядок	1.	Мантисса

Рисунок 1 – общая структура числа с ПТ

Таблица 1 – Структура форматов с ПТ

Название	Разрядность мантиссы	Разрядность порядка	Смещение порядка	хранение «1»
Половинная точность	11	5	15	не хранится
Одинарная точность	24	8	127	не хранится
Двойная точность	53	11	1024	не хранится
Расширенная точность	113	15	16383	хранится
Четырёхкратная точность	64	15	16383	не хранится
Восьмикратная точность	237	19	262143	не хранится

Таблица 2 – Форматы с ПТ в языках программирования

Название в ІЕЕЕ 754	Название типа переменной в Си	Диапазон значений	Бит в	Бит на	
			мантиссе	переменную	
Half precision	-	6,10×10 ⁻⁵ 65504	11	16	
Single presicion	float	$-3,4\times10^{38}3,4\times10^{38}$	23	32	
Double precision	double	$-1,7\times10^{308}1,7\times10^{308}$	53	64	
Extended precision	На некоторых архитектурах (например в coпроцессоре Intel) long double	$-3,4\times10^{4932}3,4\times10^{4932}$	65	80	

Ноль (со знаком)

В нормализованной форме числа с плавающей точкой невозможно представить ноль. Поэтому для его представления зарезервированы специальные значения мантиссы и порядка — число считается нулём, если все его биты, кроме знакового, равны нулю. При этом в зависимости от значения бита знака ноль может быть как положительным, так и отрицательным.

Арифметика отрицательного нуля:

$$\begin{array}{l} \bullet \ \frac{-0}{|x|} = -0 \ (\text{если} \ x \neq 0) \\ \bullet \ (-0) \cdot (-0) = +0 \\ \bullet \ |x| \cdot (-0) = -0 \\ \bullet \ x + (\pm 0) = x \\ \bullet \ (-0) + (-0) = -0 \\ \bullet \ (+0) + (+0) = +0 \\ \bullet \ \frac{-0}{-\infty} = +0 \\ \bullet \ \frac{|x|}{-0} = -\infty \ (\text{если} \ x \neq 0) \end{array}$$

Неопределенность (NaN)

NaN является результатом арифметических операций, если во время их выполнения произошла ошибка. В IEEE 754 NaN представлен как число, в котором все двоичные разряды порядка — единицы, а мантисса не нулевая.

Знак																	
		Порядок Мантисса															
⁰ / ₁	1	1	1	1	1	1,	⁰ / ₁	°/ ₁	= NaNnan								
	14				10		9									0	

Любая операция с NaN возвращает NaN. Как можно получить NaN:

D 1 (01 ()

•
$$\infty+(-\infty)=NaN$$

• $0\times\infty=NaN$
• $\frac{\pm 0}{\pm 0}=NaN$
• $\frac{\pm\infty}{\pm\infty}=NaN$
• $\sqrt{x}=NaN$, rge $x<0$

Бесконечности

В число с плавающей запятой можно записать значение $+\infty$ или $-\infty$. Как и нули со знаком, бесконечности позволяют получить хотя бы близкий к правильному результат вычисления в случае переполнения. Согласно стандарту IEEE 754 число с плавающей запятой считается равным бесконечности, если все двоичные разряды его порядка — единицы, а мантисса равна нулю. Знак бесконечности определяется знаковым битом числа.

Получить бесконечность можно при переполнении и при делении ненулевого числа на ноль. При этом

$$rac{x}{0} = \left\{egin{array}{ll} +\infty, & ext{если } x>0; \ NaN, & ext{если } x=0; \ -\infty, & ext{если } x<0. \end{array}
ight.$$

Арифметические операции в форматах с ПТ

См. материалы: 10. Операции над числами с ПТ с примерами.pdf.

Ход работы

Разработайте алгоритмы и микропрограммы для выполнения операций с плавающей точкой, выполняющие следующие операции: сложение/вычитание и умножение. Формат данных — половинная точность (REAL16). Исходные данные и результат выполнения программы должны храниться в оперативной памяти.

Отладка должна быть произведена минимум на 20 различных парах чисел, среди которых должны быть такие, которые формируют особые значения соответствующего формата.

Содержание отчета

В отчёте должны быть представлены: алгоритм работы устройства в соответствии с вариантом задания; микропрограмма; трассировка на одной

паре исходных данных; результаты обработки выбранного набора исходных данных, ручные вычисления для выбранного набора; вычисления, полученные из любого приложения, демонстрирующие результат обработки; выводы по результатам эксперимента; общий вывод по работе.

Контрольные вопросы

- 1. Что такое экспоненциальная форма записи числа?
- 2. Как вы считаете, какие достоинства есть у форматов с ПТ?
- 3. Что описывает стандарт IEEE 754?
- 4. Что такое смещение порядка и для чего оно используется?
- 5. Какие существуют «особые» значения в стандарте IEEE 754?
- 6. При каких ситуациях можно получить «особые» значения в стандарте IEEE 754?
 - 7. Опишите алгоритм умножения в форматах с ПТ?
 - 8. Что такое нормализация порядка?
 - 9. Чем отличаются алгоритмы сложения и вычитания в форматах с ПТ?
- 10. Как формируется знак числа при выполнении операций умножения/деления?