Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 19. Quality Models and Measurements

- Types of Quality Assessment Models
- Comparing Quality Assessment Models
- Data Requirements and Measurement
- Measurement and Model Selection

QA Data and Analysis

- · Generic testing process
 - Test planning and preparation
 - · Execution and measurement
 - Test data analysis and followup
 - Related data => quality => decisions
- Other QA activities
 - Similar general process
 - Data from QA/other sources (Chapter 18)
 - Models used in analysis and followup
 - provide timely feedback/assessment
 - prediction, anticipating/planning
 - corrective actions => improvement

QA Models and Measures

- · General approach
 - Adapt GQM-paradigm
 - · Quality: basic concept and ideas
 - Compare models => taxonomy
 - Data requirements => measurements
 - Practical selection steps
 - Illustrative examples
- Quality attributes and definitions

- Q models: data => quality
- Correctness vs. other attributes
- · Our definition/restriction: being defect-free or of low-defect
- Examples: reliability, safety, defect count/density/distribution/etc

Quality Analysis

- · Analysis and modeling
 - Quality models: data => quality
 - a.k.a. quality assessment models or quality evaluation models
 - · Various models needed
 - · Assessment, prediction, control
 - Management decisions
 - Problematic areas for actions
 - Process improvement
- · Measurement data needed
 - Direct quality measurements: success/failure (& defect info)
 - · Indirect quality measurements
 - activities/internal/environmental
 - Indirect but early quality indicators
 - All described in Chapter 18

Quality Models

- Practical issues
 - Applicability vs. appl. environment
 - Goal/Usefulness: information/results?
 - Data: measurement data required
 - · Cost of models and related data
- Type of quality models
 - · Generalized: averages or trends
 - · Product-specific: more customized
 - · Relating to issues above

Generalized Models

Overall Generalized Quality Evaluation Models

• Model taxonomy: Fig 19.1 (p.324)

- Generalized
 - overall, segmented, and dynamic
- Product-specific
 - semi-customized: product history
 - observation-based: observations
 - measurement-driven: predictive

Generalized Models: Overall

- · Key characteristics
 - · Industrial averages/patterns
 - => (single) rough estimate
 - Most widely applicable
 - · Low cost of use
- · Examples: Defect density
 - · Estimate total defect with sizing model
 - Variation: QI in IBM
 - (counting in-field unique defect only)
- Non-quantitative overall models
 - As extension to quantitative models
 - Examples: 80:20 rule, and other general observations

Generalized Models: Segmented

- Key characteristics
 - · Estimates via product segmentation

Model: segment -> qualityMultiple estimates provided

• Example: Table 19.1 (p.326)

Product	Failure rate	Reliability
Type	(per hour)	Level
safety-critical	< 10 ⁻⁷	ultra-high
commercial	10^{-3} to 10^{-7}	moderate
auxiliary	$> 10^{-3}$	low

- Other applications
 - Commonly used in software estimation
 - Example: COCOMO models

Generalized Models: Dynamic

• Example: Putnam model Fig 19.2 (p.326)

Rayleigh curve for failure rate: r = 2Bate**(at**(2))

- Overall/average trend over time
 - Often expressed as a mathematical function or an empirical curve
 - Combined models possible, e.g., segmented dynamic models

Product-Specific Models (PSM)

- Product-specific models (PSMs)
 - Product-specific information used
 - (vs. none used in generalized models)
 - Better accuracy/usefulness at cost increase
 - · Three types
 - semi-customized
 - observation-based
 - measurement-driven predictive
- Connection to generalized models (GMs)
 - · Customize GMs to PSMs with new/refined models and additional data
 - · Generalize PSMs to GMs with empirical evidence and general patterns
 - Illustrated in Fig 19.1 (p.324)

PSM: Semi-Customized

- · Semi-customized models
 - · Project level model based on history
 - · Data captured by phase
 - Both projections and actual
 - Linear extrapolation
- Example: DRM in Table 19.2 (p.327)

Requirement	Design	Coding	Testing	Support
5%	10%	35%	40%	10%

- · Related extensions to DRMs
 - Defect dynamics model in Chapter 20,
 - o ODC defect analyses in Chapter 20
 - 1-way distribution/trend analysis
 - 2-way analysis of interaction

PSM: Observation-Based

- · Observation-based models
 - Detailed observations and modeling
 - Software reliability growth models
 - Other reliability/safety models

- Model characteristics
 - Focus on the effect/observations
 - Assumptions about the causes
 - Assessment-centric
 - Example: Goel-Okumoto NHPP SRGM
 - functional relation: m(t) = N (1 e ** (-bt))
 - observed failures over time
 - curve fitting
 - reliability assessment/prediction
 - management decisions: exit criteria

PSM: Predictive

- Measurement-driven predictive models
 - Establish predictive relations
 - o Modeling techniques: regression, TBM, NN, OSR etc
 - · Risk assessment and management
- Model characteristics
 - · Response: chief concern
 - Predictors: observable/controllable
 - Linkage quantification

PSM: Predictive Model Example

• Example: Table 19.3 (p.329)

Product	Subset	#Modules	Mean-DF
LS	Irrr	16	9.81
	rlr	53	10.74
	rr	17	22.18
	whole		
	product	1296	1.8
NS	rIII	8	55.0
	rr	5	77.0
	whole		
	product	995	7.9

- · tree-based defect modeling
- · substantially different high-risk areas
- · identification and remedial actions

Model Summary

• Summary: Table 19.4 (p.329)

Model	Sub-	Primary	Applicability
Type	Type	Result	
general	ized	rough	all
quality		quality	or by
models		estimates	industry
	overall	overall	across
		product	industries
		quality	
	segmented	industry-	within
		specific	an
		quality	industry
	dynamic	quality	trend
		trend	in
		over time	all
product	-specific	better	specific
quality		quality	product
models		estimates	
	semi-	quality	prev→cur
	customized	extrapolation	release
	observation-	quality	current
	based	assessments	product
	measurement-	quality	both
	driven	predictions	above

Model Applications

- Applications
 - not data => GMs as early choices
 - Data arrival => phase in PSMs
 - special case: historical data
 - => semi-customized models
 - Model customization within application
- Model customization (from generalized to product-specific) in connection with model applications

- Model generalization
 - · data/results accumulation
 - generalized model possible?
 - · mathematical function/empirical trend

Relating Models to Measurements

- Data (Chapter 18) required by quality models
 - Direct quality measurements
 - to be assessed/predicted/controlled
 - Indirect quality measurements
 - means to achieve the goal
 - environmental, activity, product-internal
 - Data requirement by models: summarized in Table 19.5 (p.331)

Model	Sub-	Measurement
Type	Гуре	Data
generalized		industrial averages
OV	erall	average: all industries
segme	nted	average: own industry
dyna	amic	trend: all industries
product-specific		product-specific data
semi-custom	nized	rough historical data
obserb	ased	current observations
measdriven		current & historical data

- Data requirement of GMs
 - Quality averages/patterns: Q
 - No measurements from current project
- Data requirement of PSMs
 - · All use direct quality measurements: Q
 - related to other measurements: M
 - as relations: Q ~ M
 - or as functions: Q = f (M)
 - Measurement-driven models
 - M = all measurements
 - Semi-customized models
 - M = environmental measurements
 - Observation-based models

- M = activity measurements
- Various other secondary uses

Relating Models to Measurements Quality Measurements

• Relating models to measurements: Fig 19.3 (p.332) - chapter summarized

• Can also be examined from the direction of measurements-models forward links

Model/Measurement Selection

- Customize GQM into 3-steps
- Step 1: Quality goals
 - · Restricted, not general goals
- Step 2: Quality models
 - Model characteristics/taxonomy
 - Model applicability/usefulness
 - Data requirement/affordability
- Step 3: Quality measurements
 - Model-measurements relations
 - Detailed model information

Selection Example A

- · Goal: rough quality estimates
- Situation 1
 - · No product specific data
 - Industrial averages/patterns
 - · Commercial tools: SLIM etc
 - Product planning stage
 - · Defect profile in lifecycle
 - Use generalized models
- Situation 2
 - · Data from related products
 - DRM for legacy products
 - ODC profile for IBM products
 - · Semi-customized models

Selection Example B

- · Goal: customer-view of quality in system testing
- · Quality model
 - · SRGMs: info. about reliability
 - Assessment: customer-view
 - · Prediction: project management
 - o Decisions: exit criteria
 - · Affordability: data and modeling
- · Quality measurements
 - Reliability: failure-free operation for a given time under a specific environment
 - · Result: success/failure measurement
 - Time measurement: re(cid:13)ect activity
 - · Environment: implicitly assumed
- Fig 19.4 (p.335): SRGM, an observation-based model, selected for Example B

- · reliability assessed/predicted
- time = transactions

Selection Example C

- Goal: testing process/quality improvement, but SRGMs inadequate
- Selecting TBRM in Fig 19.5 (p.336) to focus on reliability improvement

Selection Example C

- TBRM: improvement focus
 - · what's wrong: risk identification
 - · what to do: remedial actions
- Data attributes: Table 19.6 (p.336)
 - · Result: success/failure measurement
 - · Timing info.: time-domain analysis
 - Input state: input-domain analysis

Timing:

calendar date (year, month, day), tday (cumulative testing days since the start of testing), and rsn (run sequence number, uniquely identifies a run in the execution sequence).

Input state:

SC (scenario class), SN (scenario number), log (corresponding to a sub-product with a separate test log) and tester.

Result:

result indicator of the test run, with 1 indicating success and 0 indicating failure.

Summary and Perspectives

- Practical need for quality measurement and model selection
- · Viable approach
 - Model characteristics => taxonomy
 - Model data requirement: different types of quality measurements
 - Selection steps: customized GQM
 - Viability: examples
- · Perspective and future work
 - Refined taxonomy
 - Relating models to measurements
 - more details and specific info
 - · Lifecycle activities and support
 - Automation?