Predicting House Prices

Mikdad Kanbar - Lisa Verlare - Madelief Bresser

Introduction

Data set: House characteristics and price of residential homes in Ames, Iowa

Research questions:

- What method is most accurate when predicting house prices based on available house characteristic variables?
- 2. Which house characteristics are most important in determining the sale price?

Models:

- Lasso (+ Ridge)
- Random Forest
- Gradient Boosting

Data Exploration:

1120

80

~60%

Cases

Predictors

Categorical

Examples of variables with one dominant category

Examples of variables with one dominant category: We drop the majority of them

Lasso

How does Lasso work?

- L1 regularization, which adds a penalty term to the regression equation based on the absolute values of the coefficients.
 - > Shrinks irrelevant variables to 0

Why Lasso?

- Ability to handle high-dimensional
- Feature selection (by shrinking the coefficients of less relevant features)
- Lasso regression helps to reduce the risk of overfitting.

Comparison using minimal versus 1se lambda for Lasso

Variable Importance

We scaled the data and retrained the Lasso model. Then we sorted according to the absolute value of coefficients.

- Above ground living area in square feet
- Neighborhood Northridge Heights
- Above ground living area in square feet

Lasso

RMSE comparison: very similar results

Continue with **Lasso**

- Sparse leave out irrelevant variables
- Improves prediction accuracy

Choose to use lambda minimal

- Goal is to maximize prediction accuracy
 - o Provides lowest possible error
 - Interpretability is less important

Lasso	25.25
Ridge	25.27

Random Forest Ensemble

How does RF work?

- Ensemble Method that uses bagging.
- Can model nonlinear relationships and interactions.
- Ensemble increases prediction accuracy.
- Multiple decision trees trained on subsets of variables.
- Goal: minimizing information loss and node impurity.

Why Random Forest?

- Works well with complex interactions and non-linear relationships between the variables.
- Works well with high-dimensional data.

Random forest parameters

For stopping criterion:

- Minimum node size, we used 1
- Maximum depth of decision tree, we used default of random forest package in R

For feature selection:

 Amount of random features selected for each decision tree, we analysed a range of 1:40 and decided to go with 35.

Results

- RMSE: 27.68984

Predicted vs. true sale prices

Variable Importances for the Random Forest

Most important values in Random Forest

Mostly size of areas

Variable	Importance Score
Above ground living area in square feet	30.017
Rating of overall material and finish of the house	26.951
Neighborhood	20.891
Type of dwelling/house	16.840
Car capacity of garage	12.737
Basement size in square feet	12.713
Finished basement square feet	12.093
Second floor size in square feet	11.127

Partial Dependence Plots

Gradient Boosted Ensemble

How does GBM work?

- Ensemble Method
- Ensemble increases prediction accuracy
- Models built sequentially
- Goal: minimize squared error loss
- Fix residuals in each sequential step

Why Gradient Boosting?

- Trees built on previous tree to correct errors
- Can model nonlinear relationships and interactions; do not assume relationship

Accuracy will improve

Gradient Boosted Ensemble

How does GBM work?

- Ensemble Method
- Can model nonlinear relationships and interactions
- Ensemble increases prediction accuracy
- Models built **sequentially**
- Goal: minimize squared error loss
- Fix residuals in each sequential step

Why Gradient Boosting?

- Trees built on previous tree to correct errors
- Do not assume relationship

Accuracy will improve

Tuning Parameters

- Overfitting could be an issue
- 10-fold cross validation
- Tuning parameters:
 - o Shrinkage: learning rate
 - Slower = better
 - Number of trees generated
 - Interaction depth: the maximum tree depth
 - How many splits per node?
 - Overfitting is possible
 - Minimum number of observations
 - Too little data can mean relationships are modeled that don't exist

Shrinkage: 0.001, 0.005, 0.01, 0.05, 0.1

Number of trees: 10, 100, 500, 1000

Interaction depth: 1, 2, 3, 4

Minimum number of observations (stopping

criteria): 10

Tuning Parameters

- Overfitting could be an issue
- 10-fold cross validation
- Tuning parameters:
 - o Shrinkage: learning rate
 - Slower = better
 - Number of trees generated
 - o **Interaction depth:** the maximum tree depth
 - How many splits per node?
 - Overfitting is possible
 - Minimum number of observations
 - Too little data can mean relationships are modeled that don't exist

Shrinkage: 0.001, 0.005, 0.01, 0.05, **0.1**

Number of trees: 10, 100, 500, **1000**

Interaction depth: 1, 2, 3, 4

Minimum number of observations: 10

RMSE = 28.09

Variable Importance

Most important factors to determine Sale Price:

- Quality of the House
- Neighbourhoods
- Square feet of the house

Variable	Relative Influence (%)
Rating of overall material and finish of the house	34.07
Above grade (ground) living area square feet	13.66
Physical locations within Ames city limits	12.11
Total square feet of basement area	6.19
Size of garage in car capacity	4.85
Type 1 finished square feet	3.24
Month Sold	2.55
First floor square feet	2.016318430

Partial Dependence Plots

- Higher quality increases Sale Price
 * For Quality Rate = 2 only 2 observations are available, which explains the higher effect on the Sale Price
- Larger square footage increases the Sale
 Price
- Some neighborhoods will increase the Sale
 Price more than other neighborhoods

Conclusion

Which model is most accurate in its predictions?

Lasso

- Many data points = good prediction
- Few data points = bad prediction

Why?

- Feature selection
- Linear relationship
- Random forest and GBM slightly too complex

RMSEs could improve with more data

Comparison

Companse

Lasso:

- 1. Rating of overall material and finish of the house
- 2. Neighborhood Northridge Heights
- 3. Above ground living area in square feet

Which variables are most important to the Sale Price?

Random Forest

- 1. Above ground living area in square feet
- 2. Rating of overall material and finish of the house
- 3. Neighborhood

Gradient Boosting

- 1. Rating of overall material and finish of the house
- 2. Above ground living area in square feet
- 3. Neighborhoods

- 4. Neighborhood Northridge
- 5. Car <u>capacity</u> of garage
- 6. Neighborhood Stone Brook
- 7. Basement: Good Exposure
- 8. Type of Sale: Home just constructed and sold

- 4. Type of dwelling/house
- 5. Car <u>capacity</u> of garage
- 6. Basement size in **square feet**
- 7. Finished basement <u>square feet</u>
- 8. Second floor size in <u>square feet</u>

- 4. Total <u>square feet</u> of basement area
- 6. Car capacity of garage
- 6. Type 1 finished square feet
- 7. Month sold
- 8. First floor square feet

Discussion & Challenges

Challenges

- Training grids yield high computational time.
- Variables with low variance.
- Missing values.

Suggestions

- Testing larger grids.
- Imputation techniques.
- Larger and more diverse data set.
- Unsupervised learning methods.