

REAL VECTORS

Why

We can define algebraic operations on the points in \mathbb{R}^n which have geometric interpretations.

Result

For $x, y \in \mathbb{R}^n$, define x + y by

$$(x_1+y_1,\ldots,x_n+y_n)$$

and for $\alpha \in \mathbf{R}$, define $\alpha \cdot x$

$$(\alpha x_1,\ldots,\alpha x_n).$$

Proposition 1. \mathbb{R}^n is a vector space of dimension n over \mathbb{R} with + and \cdot .

For this reason, we call elements of \mathbb{R}^n (real) vectors.

