4.2 Exercises Answers to selected odd-numbered problems begin on page ANS-9.

4.2.1 Inverse Transforms

In Problems 1–30, use Theorem 4.2.1 to find the given inverse transform.

1.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^3}\right\}$$

2.
$$\mathscr{L}^{-1}\left\{\frac{1}{s^4}\right\}$$

3.
$$\mathcal{L}^{-1} \left\{ \frac{1}{s^2} - \frac{48}{s^5} \right\}$$

3.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{48}{s^5}\right\}$$
 4. $\mathcal{L}^{-1}\left\{\left(\frac{2}{s} - \frac{1}{s^3}\right)^2\right\}$

5.
$$\mathcal{L}^{-1}\left\{\frac{(s+1)^3}{s^4}\right\}$$
 6. $\mathcal{L}^{-1}\left\{\frac{(s+2)^2}{s^3}\right\}$

6.
$$\mathcal{L}^{-1}\left\{\frac{(s+2)^2}{s^3}\right\}$$

1.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s-2}\right\}$$
 8. $\mathcal{L}^{-1}\left\{\frac{4}{s} + \frac{6}{s^5} - \frac{1}{s+8}\right\}$

$$\mathscr{L}^{-1}\left\{\frac{4}{s} + \frac{6}{s^5} - \frac{1}{s+8}\right\}$$

$$\mathfrak{L}^{-1}\left\{\frac{1}{4s+1}\right\}$$

9.
$$\mathcal{L}^{-1}\left\{\frac{1}{4s+1}\right\}$$
 10. $\mathcal{L}^{-1}\left\{\frac{1}{5s-2}\right\}$

11.
$$\mathcal{L}^{-1}\left\{\frac{5}{s^2+49}\right\}$$
 12. $\mathcal{L}^{-1}\left\{\frac{10s}{s^2+16}\right\}$

12.
$$\mathcal{L}^{-1}\left\{\frac{10s}{s^2+16}\right\}$$

11.
$$\mathcal{L}^{-1}\left\{\frac{4s}{4s^2+1}\right\}$$
 14. $\mathcal{L}^{-1}\left\{\frac{1}{4s^2+1}\right\}$

14.
$$\mathcal{L}^{-1}\left\{\frac{1}{4s^2+1}\right\}$$

15.
$$\mathcal{L}^{-1}\left\{\frac{2s-6}{s^2+9}\right\}$$
 16. $\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+2}\right\}$

16.
$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+2}\right\}$$

18.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+3s}\right\}$$

18.
$$\mathcal{L}^{-1} \left\{ \frac{s+1}{s^2-4s} \right\}$$

20.
$$\mathscr{L}^{-1}\left\{\frac{s}{s^2+2s-3}\right\}$$
 20. $\mathscr{L}^{-1}\left\{\frac{1}{s^2+s-20}\right\}$

20.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+s-20}\right\}$$

$$\mathcal{L}^{-1} \left\{ \frac{0.9s}{(s - 0.1)(s + 0.2)} \right\}$$

$$2 2^{-1} \left\{ \frac{s-3}{(s-\sqrt{3})(s+\sqrt{3})} \right\}$$

$$\mathcal{L}^{-1}\left\{\frac{s^2+1}{s(s-1)(s+1)(s-2)}\right\}$$

$$\mathbb{Z} \mathbb{Z}^{-1} \left\{ \frac{1}{s^3 + 5s} \right\}$$

26.
$$\mathscr{Z}^{-1}\left\{\frac{1}{s^3+5s}\right\}$$
 26. $\mathscr{L}^{-1}\left\{\frac{s}{(s+2)(s^2+4)}\right\}$

28.
$$\mathscr{Z}^{-1}\left\{\frac{2s-4}{(s^2+s)(s^2+1)}\right\}$$
 28. $\mathscr{L}^{-1}\left\{\frac{1}{s^4-9}\right\}$

28.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^4-9}\right\}$$

$$=$$
 $\mathcal{Z}^{-1}\left\{\frac{1}{(s^2+1)(s^2+4)}\right\}$ 30. $\mathcal{L}^{-1}\left\{\frac{6s+3}{s^4+5s^2+4}\right\}$

30.
$$\mathcal{L}^{-1}\left\{\frac{6s+3}{s^4+5s^2+4}\right\}$$

Transforms of Derivatives

Problems 31–40, use the Laplace transform to solve the given -value problem.

$$\frac{dy}{dt} - y = 1, \quad y(0) = 0$$

32.
$$2\frac{dy}{dt} + y = 0$$
, $y(0) = -3$

33.
$$y' + 6y = e^{4t}$$
, $y(0) = 2$

34.
$$y' - y = 2 \cos 5t$$
, $y(0) = 0$

35.
$$y'' + 5y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$

36.
$$y'' - 4y' = 6e^{3t} - 3e^{-t}$$
, $y(0) = 1$, $y'(0) = -1$

37.
$$y'' + y = \sqrt{2} \sin \sqrt{2}t$$
, $y(0) = 10$, $y'(0) = 0$

38.
$$y'' + 9y = e^t$$
, $y(0) = 0$, $y'(0) = 0$

39.
$$2y''' + 3y'' - 3y' - 2y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

40.
$$y''' + 2y'' - y' - 2y = \sin 3t$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

The inverse forms of the results in Problem 50 in Exercises 4.1 are

$$\mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2+b^2}\right\} = e^{at}\cos bt$$

$$\mathcal{L}^{-1}\left\{\frac{b}{(s-a)^2+b^2}\right\} = e^{at}\sin bt.$$

In Problems 41 and 42, use the Laplace transform and these inverses to solve the given initial-value problem.

41.
$$y' + y = e^{-3t} \cos 2t$$
, $y(0) = 0$

42.
$$y'' - 2y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 3$

■ Discussion Problems

43. (a) With a slight change in notation the transform in (6) is the same as

$$\mathcal{L}{f'(t)} = s \mathcal{L}{f(t)} - f(0).$$

With $f(t) = te^{at}$, discuss how this result in conjunction with part (c) of Theorem 4.1.1 can be used to evaluate $\mathcal{L}\{te^{at}\}.$

- (b) Proceed as in part (a), but this time discuss how to use (7) with $f(t) = t \sin kt$ in conjunction with parts (d) and (e) of Theorem 4.1.1 to evaluate $\mathcal{L}\{t \sin kt\}$.
- **44.** Make up two functions f_1 and f_2 that have the same Laplace transform. Do not think profound thoughts.
- 45. Reread Remark (iii) on page 220. Find the zero-input and the zero-state response for the IVP in Problem 36.
- **46.** Suppose f(t) is a function for which f'(t) is piecewise continuous and of exponential order c. Use results in this section and Section 4.1 to justify

$$f(0) = \lim_{s \to \infty} sF(s),$$

where $F(s) = \mathcal{L}\{f(t)\}\$. Verify this result with $f(t) = \cos kt$.