# **Digital Logic Design**

4190.201

**2014 Spring Semester** 

# 3. Combinational Logic

Naehyuck Chang
Dept. of CSE
Seoul National University
naehyuck@snu.ac.kr



- Combinational logic
  - Whose output is solely determined by their inputs
- Representation of a function
  - Truth table
  - Boolean equation
    - Sum of products, a two-level form
    - Unique way to represent a logic like a finger print
    - Alternative form is product of sums
  - Can be done in many ways
    - Highly desirable to find the simplest implementation
    - Gates and wires
- Boolean minimization
  - Karnaugh map, etc.

  - Two-level logic and multi-leveled logic





- Time response of in digital network
  - Non-zero propagation delay





- Definition
  - Output behavior depends on the current input
  - Memoryless
  - Example: adder
    - The output changes shortly after the input changes, but the previous input has nothing to do with the current output
- Comparison with sequential logic
  - There is memory or state
  - Whose output depends both the input and the state
  - Example: traffic light
- Simple combinational circuits representing with truth tables

| X | Υ | Equal |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 0     |
| 1 | 0 | 0     |
| 1 | 1 | 1     |

| Х | Y | Zero | One | Two |
|---|---|------|-----|-----|
| 0 | 0 | 1    | 0   | 0   |
| 0 | 1 | 0    | 1   | 0   |
| 1 | 0 | 0    | 1   | 0   |
| 1 | 1 | 0    | 0   | 1   |

Comparator

**Tally circuit** 





More examples

Half adder: output the carry but cannot be chained

Full adder: can be chained

Truth table

Suitable with a modest number of inputs

2n number of rows where n is the number of inputs

| А | В | Carry | Sum |
|---|---|-------|-----|
| 0 | 0 | 0     | 0   |
| 0 | 1 | 0     | 1   |
| 1 | 0 | 0     | 1   |
| 1 | 1 | 1     | 0   |

**Half adder** 





Full adder





| А | А | Cin | Carry | Sum |
|---|---|-----|-------|-----|
| 0 | 0 | 0   | 0     | 0   |
| 0 | 0 | 1   | 0     | 1   |
| 0 | 1 | 0   | 0     | 1   |
| 0 | 1 | 1   | 1     | 0   |
| 1 | 0 | 0   | 0     | 1   |
| 1 | 0 | 1   | 1     | 0   |
| 1 | 1 | 0   | 1     | 0   |
| 1 | 1 | 1   | 1     | 1   |

Full adder





## **An Algebraic Structure**

- An algebraic structure consists of
  - A set of elements B
  - Binary operations { + , }
  - And a unary operation { ' }
  - Such that the following axioms hold:

```
○ 1. The set B contains at least two elements a, b such that a is not equal to b○ 2. Closure:a + b \in B, a \cdot b \in B○ 3. Commutativity:a + b = b + a, a \cdot b = b \cdot a○ 4. Associativity:a + (b + c) = (a + b) + c, a \cdot (b \cdot c) = (a \cdot b) \cdot c○ 5. Identity:a + 0 = a, a \cdot 1 = a○ 6. Distributivity:a + (b \cdot c) = (a + b) \cdot (a + c), a \cdot (b + c) = (a \cdot b) + (a \cdot c)○ 7. Complementarity:a + a' = 1, a \cdot a' = 0
```

- Order of operations
  - Complement, AND and then OR
- AND and OR are not the same to the arithmetic operations MULTIPLY and PLUS





#### **Truth Tables**

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and ●
- Equivalence of Boolean expressions and truth tables
  - Can be readily derived from each other

| X | Υ | X • Y |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 0     |
| 1 | 1 | 0     |
| 1 | 1 | 1     |
|   |   |       |
| _ | - | 1     |

| Χ | Υ | X' | X′ • Y |
|---|---|----|--------|
| 0 | 0 | 1  | 0      |
| 1 | Ō | Ŏ  | 0 0    |
| 1 | 1 | 0  | 0      |
|   |   |    |        |

| Χ                | Υ                | X′               | Y'               | X • Y            | X′ • Y′          | $(X \bullet Y) +$ | ( X′ • Y′ )                                  |     |
|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|----------------------------------------------|-----|
| 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 1<br>1<br>0<br>0 | 1<br>0<br>1<br>0 | 0<br>0<br>0<br>1 | 1<br>0<br>0<br>0 | 1<br>0<br>0<br>1  | $(X \bullet Y) + (X' \bullet Y') \equiv X =$ | = Y |
|                  |                  | 1                | 1                | •                | •                | 1                 |                                              |     |

X, Y are Boolean algebra variables

Boolean expression that is true when the variables X and Y have the same value and false, otherwise





## **Truth Tables**

Reduced carry out full adder expression

$$\bigcirc$$
 C<sub>out</sub> = (AC<sub>in</sub>) + (BC<sub>in</sub>) + (AB)

| А | А | С | AC | ВС | AB | С |
|---|---|---|----|----|----|---|
| 0 | 0 | 0 | 0  | 0  | 0  | 0 |
| 0 | 0 | 1 | 0  | 0  | 0  | 0 |
| 0 | 1 | 0 | 0  | 0  | 0  | 0 |
| 0 | 1 | 1 | 0  | 1  | 0  | 1 |
| 1 | 0 | 0 | 0  | 0  | 0  | 0 |
| 1 | 0 | 1 | 1  | 0  | 0  | 1 |
| 1 | 1 | 0 | 0  | 0  | 1  | 1 |
| 1 | 1 | 1 | 1  | 1  | 1  | 1 |





# **Truth Tables**

Deriving expressions from truth tables

- S =
- $\bigcirc$  C<sub>out</sub> =

| Α | В | С | C | Sum |
|---|---|---|---|-----|
| 0 | 0 | 0 | 0 | 0   |
| 0 | 0 | 1 | 0 | 1   |
| 0 | 1 | 0 | 0 | 1   |
| 0 | 1 | 1 | 1 | 0   |
| 1 | 0 | 0 | 0 | 1   |
| 1 | 0 | 1 | 1 | 0   |
| 1 | 1 | 0 | 1 | 0   |
| 1 | 1 | 1 | 1 | 1   |





# **Theorems of Boolean Algebra**

- Duality
  - A dual of a Boolean expression is derived by replacing
    - by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
  - Any theorem that can be proven is thus also proven for its dual!
  - A meta-theorem (a theorem about theorems)
- Duality:
  - $\bigcirc$  X + Y + ...  $\Leftrightarrow$  X  $\bullet$  Y  $\bullet$  ...
- Generalized duality:
  - $\P$  f (X1,X2,...,Xn,0,1,+, $\bullet$ )  $\Leftrightarrow$  f(X1,X2,...,Xn,1,0, $\bullet$ ,+)
- Different from deMorgan's Law
  - This is a statement about theorems
  - This is not a way to manipulate (re-write) expressions





# **Theorems of Boolean Algebra**

Identity

$$91. X + 0 = X$$

Null

$$9$$
 2.  $X + 1 = 1$ 

Idempotency:

$$9 \ 3. \ X + X = X$$

Involution:

$$94. (X')' = X$$

Complementarity:

$$95. X + X' = 1$$

Commutativity:

$$96. X + Y = Y + X$$

Associativity:

$$\bigcirc$$
 7.  $(X + Y) + Z = X + (Y + Z)$ 

1D. 
$$X \cdot 1 = X$$

2D. 
$$X \cdot 0 = 0$$

3D. 
$$X \bullet X = X$$

5D. 
$$X \cdot X' = 0$$

6D. 
$$X \cdot Y = Y \cdot X$$

7D. 
$$(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$$





# **Theorems of Boolean Algebra**

#### Distributivity:

$$98. X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$
 8D.  $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$ 

8D. 
$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

- Uniting:
  - $9. X \bullet Y + X \bullet Y' = X$

9D.  $(X + Y) \cdot (X + Y') = X$ 

- Absorption:
  - $9 10. X + X \bullet Y = X$
  - $\bigcirc$  11.  $(X + Y') \bullet Y = X \bullet Y$
- Factoring:

- Concensus:
  - $\bigcirc$  13. (X Y) + (Y Z) + (X' Z) =  $X \bullet Y + X' \bullet Z$

10D. 
$$X \bullet (X + Y) = X$$

11D. 
$$(X \cdot Y') + Y = X + Y$$

12D. 
$$X \bullet Y + X' \bullet Z =$$

$$(X + Z) \bullet (X' + Y)$$

13D. 
$$(X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$$





# **Proving Theorems (Rewriting)**

- Using the axioms of Boolean algebra:
  - e.g., prove the theorem:

$$X \bullet Y + X \bullet Y' = X$$

$$X \bullet Y + X \bullet Y'$$
 =  $X \bullet (Y + Y')$   
 $X \bullet (Y + Y') = X \bullet (1)$   
 $X \bullet (1)$  =  $X \ddot{u}$ 

$$X + X \bullet Y = X$$

$$X + X \bullet Y$$

$$X \bullet 1 + X \bullet Y$$

$$X \bullet (1 + Y)$$

$$X \bullet (1 + Y)$$

$$X \bullet (1)$$





# **Activity**

Prove the following using the laws of Boolean algebra:

|                 | $(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z)$                                      |
|-----------------|---------------------------------------------------------------------------------------|
| identity        | $(X \bullet Y) + (1) \bullet (Y \bullet Z) + (X' \bullet Z)$                          |
| complementarity | $(X \bullet Y) + (X' + X) \bullet (Y \bullet Z) + (X' \bullet Z)$                     |
| distributivity  | $(X \bullet Y) + (X' \bullet Y \bullet Z) + (X \bullet Y \bullet Z) + (X' \bullet Z)$ |
| commutativity   | $(X \bullet Y) + (X \bullet Y \bullet Z) + (X' \bullet Y \bullet Z) + (X' \bullet Z)$ |
| commutativity   | $(X \bullet Y) + (X \bullet Y) \bullet Z + (X' \bullet Z) + (X' \bullet Z) \bullet Y$ |
| absorption      | $(X \bullet Y) + (X' \bullet Z)$                                                      |





# **Activity**

- Full adder example
  - Cout = A'BCin + AB'Cin + ABCin' + ABCin
  - Idempotent (introduces a redundant term)
  - Commutative (rearranges terms)
  - Distributed (factors out common literals)
    - $\bigcirc$  Cout = (A' + A)BCin + AB'Cin + ABCin' + ABCin'
  - Complementarity (replaces A' + A to 1)
    - Cout = (1)BCin + AB'Cin + ABCin' + ABCin
  - Identity (replaces 1X to X)
    - Cout = BCin + AB'Cin + ABCin' + ABCin
  - Finally





## **DeMorgan's Law**

- DeMOrgan's law
  - Establishes relationship between and +
- Theorem:

$$9$$
 14.  $(X + Y + ...)' = X' \cdot Y' \cdot ...$  14D.  $(X \cdot Y \cdot ...)' = X' + Y' + ...$ 

- Generalized DeMorgan's:
  - 9 15. f'(X1,X2,...,Xn,0,1,+,•) = f(X1',X2',...,Xn',1,0,•,+)
- Purpose
  - Negative logic





# **Proving Theorems (Perfect Induction)**

- Using perfect induction (complete truth table):
  - e.g., de Morgan's:

$$(X + Y)' = X' \bullet Y'$$
  
NOR is equivalent to AND  
with inputs complemented

$$(X \bullet Y)' = X' + Y'$$
  
NAND is equivalent to OR  
with inputs complemented

| X | Υ | X' | Y | (X + Y)' | X′ • Y′ |
|---|---|----|---|----------|---------|
| 0 | 0 | 1  | 1 | 1        | 1       |
| 0 | 1 | 1  | 0 | 0        | 0       |
| 1 | 0 | 0  | 1 | Ö        | Ŏ       |
| 1 | 1 | 0  | 0 | Ö        | Ŏ       |

| Χ | Υ | X' | Y' | (X • Y)′ | X' + Y' |
|---|---|----|----|----------|---------|
| 0 | 0 | 1  | 1  | 1        | 1       |
| 0 | 1 | 1  | 0  | 1        | 1       |
| 1 | 0 | 0  | 1  | 1        | 1       |
| 1 | 1 | 0  | 0  | 0        | 0       |





## **Possible Logic Functions of Two Variables**

- There are 16 possible functions of 2 input variables:









## **Cost of Different Logic Functions**

- Different functions are easier or harder to implement
  - Each has a cost associated with the number of switches needed
  - ⊕ 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
  - X (F3) and Y (F5): require 0 switches, output is one of inputs
  - X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
  - X nor Y (F4) and X nand Y (F14): require 4 switches
  - X or Y (F7) and X and Y (F1): require 6 switches
  - $\bigcirc$  X = Y (F9) and X  $\oplus$  Y (F6): require 16 switches
  - Thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice
- But if we consider the target technology (logic structure), the story is different
  - ▼ To be learned from electronics circuit, semiconductor and advanced digital system design





### **Minimal Set of Functions**

- □ Can we implement all logic functions from NOT, NOR, and NAND?
  - For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
  - NOT is just a NAND or a NOR with both inputs tied together

| X | Y | X nor Y |
|---|---|---------|
| 0 | 0 | 1       |
| 1 | 1 | 0       |

| Χ | Υ | X nand Y |
|---|---|----------|
| 0 | 0 | 1        |
| 1 | 1 | 0        |

And NAND and NOR are "duals", that is, its easy to implement one using the other

$$X \underline{nand} Y \equiv \underline{not} ( (\underline{not} X) \underline{nor} (\underline{not} Y) )$$
  
 $X \underline{nor} Y \equiv \underline{not} ( (\underline{not} X) \underline{nand} (\underline{not} Y) )$ 

- But lets not move too fast . . .
  - Let's look at the mathematical foundation of logic





 $\bigcirc$  NOT X'  $\overline{X}$   $\sim$ X



 $X \wedge Y$ 



$$X + Y$$

$$X \vee Y$$









| X | Υ      | Z |
|---|--------|---|
| 0 | Ō      | 1 |
| 0 | 1<br>0 | 1 |
| ļ | 0      | 0 |
| 1 | 1      | 0 |

NOR

$$\begin{array}{c|cccc} X & Y & Z \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

 $X \underline{xor} Y = X Y' + X' Y$  X or Y but not both("inequality", "difference")

X xnor Y = X Y + X' Y' X and Y are the same ("equality", "coincidence")





More than one way to map expressions to gates

$$\Theta$$
 e.g.,  $Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$ 







- Implication
  - $\bigcirc$  X implies Y: X  $\Rightarrow$  Y
  - Is false only when X is true and Y is false





# **Logic Blocks and Hierarchy**

Half adder



| Α | В | Carry | Sum |
|---|---|-------|-----|
| 0 | 0 | 0     | 0   |
| 0 | 1 | 0     | 1   |
| 1 | 0 | 0     | 1   |
| 1 | 1 | 1     | 0   |

Full adder







# **Logic Blocks and Hierarchy**

2 bit full adder







## **Waveform View of Logic Functions**

- Just a sideways truth table
  - But note how edges don't line up exactly
  - It takes time for a gate to switch its output!







# **Time and Space Tradeoff**

| В | C                          | Ζ                                             |
|---|----------------------------|-----------------------------------------------|
| 0 | 0                          | 0                                             |
| 0 | 1                          | 1                                             |
| 1 | 0                          | 0<br>1                                        |
| 1 | 1                          | 1                                             |
| 0 | 0                          | Ō                                             |
| 0 | 1                          | 1                                             |
| 1 | 0                          | 1                                             |
| 1 | 1                          | 0                                             |
|   | 0<br>0<br>1<br>1<br>0<br>0 | 0 0<br>0 1<br>1 0<br>1 1<br>0 0<br>0 1<br>1 0 |







#### Which Realization is Best?

- Reduce number of inputs
  - Literal: input variable (complemented or not)
    - Can approximate cost of logic gate as 2 transistors per literal
    - Why not count inverters?
  - Fewer literals means less transistors
    - Smaller circuits
  - Fewer inputs implies faster gates
    - Gates are smaller and thus also faster
  - Fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
  - Fewer gates (and the packages they come in) means smaller circuits
    - Directly influences manufacturing costs





#### Which Is the Best Realization?

- Reduce number of levels of gates
  - Fewer level of gates implies reduced signal propagation delays
  - Minimum delay configuration typically requires more gates
    - Wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
  - Automated tools to generate different solutions
  - Logic minimization: reduce number of gates and complexity
  - Logic optimization: reduction while trading off against delay





## **Are All Realizations Equivalent?**

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
  - Delays are different

  - Variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent







## **Implementing Boolean Functions**

- Technology independent
  - Canonical forms
  - Two-level forms
  - Multi-level forms
- Technology choices
  - Packages of a few gates
  - Regular logic
  - Two-level programmable logic
  - Multi-level programmable logic





### **Canonical Forms**

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
  - Standard forms for a Boolean expression
  - Provides a unique algebraic signature





#### **Sum-of-Products Canonical Forms**

- Also known as disjunctive normal form
- Also known as minterm expansion
  - Minterm contains one version of every literal
  - Each minterm covers only one row
  - Minterms are ORed together to form the complete function



35





#### **Sum-of-Products Canonical Form**

- Product term and minterm
  - AB is a product term but not a minterm
  - ABC is a product term and a minterm
  - ANDed product of literals input combination for which output is true
  - Each variable appears exactly once, true or inverted (but not both)

| <u>A</u> | В | С | minterms |    |
|----------|---|---|----------|----|
| 0        | 0 | 0 | A'B'C'   | m0 |
| 0        | 0 | 1 | A'B'C    | m1 |
| 0        | 1 | 0 | A'BC'    | m2 |
| 0        | 1 | 1 | A'BC     | m3 |
| 1        | 0 | 0 | AB'C'    | m4 |
| 1        | 0 | 1 | AB'C     | m5 |
| 1        | 1 | 0 | ABC'     | m6 |
| 1        | 1 | 1 | ABC      | m7 |

Short-hand notation for minterms of 3 variables

F in canonical form:

$$F(A, B, C) = \Sigma m(1,3,5,6,7)$$
  
=  $m1 + m3 + m5 + m6 + m7$   
=  $A'B'C + A'BC + AB'C + ABC' + ABC$ 

Canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$
  
=  $(A'B' + A'B + AB' + AB)C + ABC'$   
=  $((A' + A)(B' + B))C + ABC'$   
=  $C + ABC'$   
=  $ABC' + C$   
=  $ABC' + C$ 





#### **Product-of-Sums Canonical Form**

- Also known as conjunctive normal form
- Also known as maxterm expansion
  - Maxterm contains one version of every literal
  - Each maxterm covers all but one row
  - Maxterms are ANDed together and form the complete function

| Α | В | C | F | F′ |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 1  |
| 0 | 0 | 1 | 1 | 0  |
| 0 | 1 | 0 | 0 | 1  |
| 0 | 1 | 1 | 1 | 0  |
| 1 | 0 | 0 | 0 | 1  |
| 1 | 0 | 1 | 1 | 0  |
| 1 | 1 | 0 | 1 | 0  |
| 1 | ī | 1 | 1 | Õ  |

A+B+C

| Α | В | C | F | F' |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 1  |
| 0 | 0 | 1 | 1 | 0  |
| 0 | 1 | 0 | 0 | 1  |
| 0 | 1 | 1 | 1 | 0  |
| 1 | 0 | 0 | 0 | 1  |
| 1 | 0 | 1 | 1 | 0  |
| 1 | 1 | 0 | 1 | 0  |
| 1 | 1 | 1 | 1 | 0  |

A+B'+C

| Α | В | C | F | F' |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 1  |
| 0 | 0 | 1 | 1 | 0  |
| 0 | 1 | 0 | 0 | 1  |
| 0 | 1 | 1 | 1 | 0  |
| 1 | 0 | 0 | 0 | 1  |
| 1 | 0 | 1 | 1 | 0  |
| 1 | 1 | 0 | 1 | 0  |
| 1 | 1 | 1 | 1 | 0  |

A'+B+C

| Α | В | С | F | F' |
|---|---|---|---|----|
| 0 | 0 | 0 | 0 | 1  |
| 0 | 0 | 1 | 1 | 0  |
| 0 | 1 | 0 | 0 | 1  |
| 0 | 1 | 1 | 1 | 0  |
| 1 | 0 | 0 | 0 | 1  |
| 1 | 0 | 1 | 1 | 0  |
| 1 | 1 | 0 | 1 | 0  |
| 1 | 1 | 1 | 1 | 0  |

F=(A+B+C)(A+B'+C)(A'+B+C)





#### **Product-of-Sums Canonical Form (cont'd)**

- Sum term and maxterm
  - ⊕ A+B is a sum term but not a maxterm
  - A+B+C is a sum term and a maxterm
  - ORed sum of literals input combination for which output is false
  - Each variable appears exactly once, true or inverted (but not both)

| Α | В | C | maxterms |    |
|---|---|---|----------|----|
| 0 | 0 | 0 | A+B+C    | M0 |
| 0 | 0 | 1 | A+B+C'   | M1 |
| 0 | 1 | 0 | A+B'+C   | M2 |
| 0 | 1 | 1 | A+B'+C'  | M3 |
| 1 | 0 | 0 | A'+B+C   | M4 |
| 1 | 0 | 1 | A'+B+C'  | M5 |
| 1 | 1 | 0 | A'+B'+C  | M6 |
| 1 | 1 | 1 | A'+B'+C' | M7 |

Short-hand notation for maxterms of 3 variables

F in canonical form:

F(A, B, C) = 
$$\Pi M(0,2,4)$$
  
=  $M0 \cdot M2 \cdot M4$   
=  $(A + B + C) (A + B' + C) (A' + B + C)$ 

Canonical form 
$$\neq$$
 minimal form  
F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)  
= (A + B + C) (A + B' + C)  
(A + B + C) (A' + B + C)  
= (A + C) (B + C)





# S-o-P, P-o-S, and de Morgan's Theorem

- Sum-of-products
  - $\mathbf{F}' = \mathbf{A}'\mathbf{B}'\mathbf{C}' + \mathbf{A}'\mathbf{B}\mathbf{C}' + \mathbf{A}\mathbf{B}'\mathbf{C}'$
- Apply de Morgan's
  - (F')' = (A'B'C' + A'BC' + AB'C')'
  - P = (A + B + C) (A + B' + C) (A' + B + C)
- Product-of-sums
  - P' = (A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C')
- Apply de Morgan's
  - (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
  - $\bigcirc$  F = A'B'C + A'BC + ABC' + ABC'





# Four Alternative Two-Level Implementations of F = AB + C







#### **Waveforms for the Four Alternatives**

- Waveforms are essentially identical
  - Except for timing hazards (glitches)
  - Delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)







#### **Mapping Between Canonical Forms**

- Minterm to maxterm conversion
  - Use maxterms whose indices do not appear in minterm expansion
  - $\Theta$  e.g.,  $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
  - Use minterms whose indices do not appear in maxterm expansion
  - $\Theta$  e.g.,  $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
  - Use minterms whose indices do not appear
  - $\Theta$  e.g.,  $F(A,B,C) = \Sigma m(1,3,5,6,7)$   $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
  - Use maxterms whose indices do not appear
  - $\bigcirc$  e.g.,  $F(A,B,C) = \Pi M(0,2,4)$   $F'(A,B,C) = \Pi M(1,3,5,6,7)$





# **Incompletely Specified Functions**

Binary and BCD (decimal) representation



| A3 | A2 | A1 | Α0 |  | S3 | S2 | 2 S1 | S0 |
|----|----|----|----|--|----|----|------|----|
| 0  | 0  | 0  | 0  |  | 0  | 0  | 0    | 0  |
| 0  | 0  | 0  | 1  |  | 0  | 0  | 0    | 1  |
| 0  | 0  | 1  | 0  |  | 0  | 0  | 1    | 0  |
| 0  | 0  | 1  | 1  |  | 0  | 0  | 1    | 1  |
| 0  | 1  | 0  | 0  |  | 0  | 1  | 0    | 0  |
| 0  | 1  | 0  | 1  |  | 1  | 0  | 0    | 0  |
| 0  | 1  | 1  | 0  |  | 1  | 0  | 0    | 1  |
| 0  | 1  | 1  | 1  |  | 1  | 0  | 1    | 0  |
| 1  | 0  | 0  | 0  |  | 1  | 0  | 1    | 1  |
| 1  | 0  | 0  | 1  |  | 1  | 1  | 0    | 0  |
| 1  | 0  | 1  | 0  |  | Х  | X  | X    | X  |
| 1  | 0  | 1  | 1  |  | Х  | Х  | Х    | X  |
| 1  | 1  | 0  | 0  |  | Χ  | Χ  | Χ    | Х  |
| 1  | 1  | 0  | 1  |  | Х  | Χ  | Χ    | X  |
| 1  | 1  | 1  | 0  |  | Х  | Χ  | Χ    | X  |
| 1  | 1  | 1  | 1  |  | Х  | Χ  | Χ    | X  |





#### **Incompletely Specified Functions**

- Binary coded decimal increment by 1
  - BCD digits encode the decimal digits 0 − 9
     in the bit patterns 0000 − 1001







#### **Notation For Incompletely Specified Functions**

- Don't cares and canonical forms
  - So far, only represented on-set
  - Also represent don't-care-set
  - Need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
  - Q Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
  - $\supseteq Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
  - Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
  - $\supseteq$  Z =  $\Pi$  [ M(1,3,5,7,9) D(10,11,12,13,14,15) ]





#### **Examples**

BCD (decimal) to seven segment decoder









#### **Seven segment LED**







# **Examples**

- BCD to seven segment decoder
  - Truth table





# Simplification of Two-Level Combinational Logic

- Motivation: is the following optimization is easy and systematic?
  - Cout = A'BCin + AB'Cin + ABCin' + ABCin
  - Idempotent (introduces a redundant term)
  - Commutative (rearranges terms)
  - Distributed (factors out common literals)
    - $\bigcirc$  Cout = (A' + A)BCin + AB'Cin + ABCin' + ABCin'
  - Complementarity (replaces A' + A to 1)
    - $\bigcirc$  Cout = (1)BCin + AB'Cin + ABCin' + ABCin
  - Identity (replaces 1X to X)
    - Cout = BCin + AB'Cin + ABCin' + ABCin
  - Finally





#### Simplification of Two-Level Combinational Logic

- Finding a minimal sum of products or product of sums realization
  - Exploit don't care information in the process
- Algebraic simplification
  - Not an algorithmic/systematic procedure
  - How do you know when the minimum realization has been found?
- Computer-aided design tools
  - Precise solutions require very long computation times, especially for functions with many inputs (> 10)
  - Heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
  - To understand automatic tools and their strengths and weaknesses
  - Ability to check results (on small examples)





#### **The Uniting Theorem**

- $\bigcirc$  Key tool to simplification: A (B' + B) = A
- Essence of simplification of two-level logic
  - Find two element subsets of the ON-set where only one variable changes its value − this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$



B has the same value in both on-set rows – B remains

A has a different value in the two rows – A is eliminated





#### **Boolean Cubes**

- Visual technique for identifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

1-cube



3-cube Y Z 101







#### **Mapping Truth Tables onto Boolean Cubes**

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



Two faces of size 0 (nodes) Combine into a face of size 1(line)

ON-set = solid nodes OFF-set = empty nodes DC-set = x'd nodes A varies within face, B does not this face represents the literal B'





#### **Three Variable Example**

Binary full-adder carry-out logic

| Α         | В         | Cin | Cout        |
|-----------|-----------|-----|-------------|
| 0         | 0         | 0   | 0           |
| 0         | 0         | 1   | 0           |
| 0         | 1         | 0   | 0           |
| 0         | 1         | 1   | 1           |
| 1         | 0         | 0   | 0           |
| 1         | 0         | 1   | 1           |
| $\bar{1}$ | ĺ         | 0   | $\bar{1}$   |
| $\bar{1}$ | $\bar{1}$ | ĺ   | $ \bar{1} $ |



The on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

$$Cout = BCin + AB + ACin$$





#### **Higher Dimensional Cubes**

Sub-cubes of higher dimension than 2



 $F(A,B,C) = \Sigma m(4,5,6,7)$ 

On-set forms a square i.e., a cube of dimension 2

Represents an expression in one variable i.e., 3 dimensions — 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A





#### m-Dimensional Cubes in a n-Dimensional Boolean Space

- In a 3-cube (three variables):
  - ⊕ A 0-cube, i.e., a single node, yields a term in 3 literals
  - A 1-cube, i.e., a line of two nodes, yields a term in 2 literals
  - A 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- In general,
  - An m-subcube within an n-cube (m < n) yields a term with n m literals</li>





#### **Karnaugh Maps**

- Flat map of Boolean cube
  - Wrap—around at edges
  - Hard to draw and visualize for more than 4 dimensions
  - Virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
  - Guide to applying the uniting theorem
  - On-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table



| В | F     |
|---|-------|
| 0 | 1     |
| 1 | 0     |
| 0 | 1     |
| 1 | 0     |
|   | 0 1 0 |





#### Karnaugh Maps (cont'd)

- Numbering scheme based on Gray-code
  - e.g., 00, 01, 11, 10
  - Only a single bit changes in code for adjacent map cells

| \ A | R  |    | 1  | Α  |
|-----|----|----|----|----|
| c\_ | 00 | 01 | 11 | 10 |
| 0   | 0  | 2  | 6  | 4  |
| C 1 | 1  | 3  | 7  | 5  |
|     |    |    | В  |    |



|   |   | A |    |    |   |  |
|---|---|---|----|----|---|--|
|   | 0 | 4 | 12 | 8  |   |  |
|   | 1 | 5 | 13 | 9  | D |  |
| С | 3 | 7 | 15 | 11 |   |  |
|   | 2 | 6 | 14 | 10 |   |  |
|   |   | Е | 3  |    |   |  |

$$13 = 1101 = ABC'D$$





#### **Adjacencies in Karnaugh Maps**

- Wrap from first to last column
- Wrap top row to bottom row









#### **Karnaugh Map Examples**







#### More Karnaugh Map Examples



$$G(A,B,C) = A$$



$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$



F' simply replace 1's with 0's and vice versa  $F'(A,B,C) = \sum m(1,2,3,6) = BC' + A'C$ 





#### Karnaugh Map: 4-Variable Example

 $F(A,B,C,D) = <math>\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$ 

$$F = C + A'BD + B'D'$$





Find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)





#### **Karnaugh Maps: Don't Cares**

- $f(A,B,C,D) = <math> \Sigma m(1,3,5,7,9) + d(6,12,13)$ 
  - Without don't cares
    - $\bigcirc$  f = A'D + B'C'D







#### **Karnaugh Maps: Don't Cares**

$$\bigcirc$$
 f(A,B,C,D) =  $\Sigma$  m(1,3,5,7,9) + d(6,12,13)

$$\bigcirc$$
 f = A'D + B'C'D

Without don't cares

$$\mathcal{G}$$
 f = A'D + C'D

With don't cares



By using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

Don't cares can be treated as 1s or 0s depending on which is more advantageous





# **Activity**

 $\bigcirc$  Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)







#### **Combinational Logic Summary**

- Logic functions, truth tables, and switches
  - NOT, AND, OR, NAND, NOR, XOR, . . . , minimal set
- Axioms and theorems of Boolean algebra
  - Proofs by re-writing and perfect induction
- Gate logic
  - Networks of Boolean functions and their time behavior
- Canonical forms
  - Two-level and incompletely specified functions
- Simplification
  - A start at understanding two-level simplification
- Later
  - Automation of simplification
  - Multi-level logic
  - Time behavior
  - Hardware description languages
  - Design case studies



