TheAnalyticsTeam

# Sprocket Central Pty Ltd

Data analytics approach

Prim Hansakul

## Agenda

- 1. Introduction
- 2. Data Exploration
- 3. Model Development
- 4. Interpretation

#### 1.Introduction

After identifying data quality issues in three essential datasets related to current customers, the subsequent task involves a statistical analysis and data modeling.

The objective is to discern target customers from a new cohort of 1,000, distinguished by their lack of historical transactional data. This step is pivotal for ensuring data integrity and for the strategic identification of key new customers to engage with moving forward.



#### 2. Data Exploration

#### 2.1 Data Exploration (EDA) on customer demographic

Gender: 52.2% Female, 47.7% Male

Age: Majority 40-50 years

Wealth: Mass market dominant, high net

worth and affluent less common Location: NSW > VIC > QLD **Property Value**: 9> 8> 10> 7

**Industries**: predominantly in the industries of manufacturing, finance, health, retail, and

property.











Count of customer id by wealth segment and



property valuation

#### 2.Data Exploration

#### 2.2.1 Data Exploration (EDA) on transaction dataset

Transactions: 19.45k total, 48.6% by

women, 45.85% by men

**Tranaction Peak**: Peak in October and August, followed by July, May, and January.

**Online/offline:** equally

 online Tranaction high on Tuesdays/Fridays,

o offline high on Thursdays/Mondays

#### Seasonality:

- o online high on Aug, Oct, Jan
- offline high on July, Oct, March

19.45K

Count of transaction id

Count of transaction\_id by gender

gender
Female
Male

(Blank)





Transaction\_Weekday



Count of transaction id. Average of list price and Average







#### 2.Data Exploration

#### 2.2.2 Data Exploration (EDA) on transaction dataset

Brands: Popular - Solex, Wearea2b, Giant, OHM; Least - Trek, Norco

Product Lines: Standard, Road, Touring; Least - Mountain

**Sizes**: Medium most popular, then large, small **Prices**: Highest - WeareA2B; Lowest - Norco

Types: Expensive - Touring, then Road, Mountain



Count of transaction\_id and Average of list\_price by product line and product size



Count of transaction\_id and %GT Sum of transaction id by brand and product line



Count of transaction\_id and Average of list\_price by brand, product line and product size



#### 2.Data Exploration

#### 2.2.3 Data Exploration (EDA) on transaction dataset

**3-Year Purchase Patterns:** Majority in 0-25 purchase-bin with more female purchases high, no significant difference on Age , State, Wealth

#### 3-Year Purchase Correlations:

20

- Positive relationship with Age and Property Valuation.
   Outliers appear in 80+ age, low property value outliers among females
- Negative relationship with Tenure



100



Average of past\_3\_years\_bike\_related\_purchases by gender and tenure



10

property valuation

## 3.1 Model Development (I) - RFM Model / Cluster Analysis



## 3.1 Model Development (I) - RFM Model / Cluster Analysis

## 2.3 Interpretation characteristics of the Target RFM cluster Identify characteristics of high-value customers Low correlation with other features / No linear relationship Statistical analysis and hypothesis testing One-way ANOVA

Chi-squared test

- •The study aims to define characteristics of high-value customers but finds **low correlations between RFM clusters and other features**, suggesting **non-linear relationships**.
- •Statistical analysis reveals significance only within RFM features. However, visual data analysis shows distinct distributions in age, tenure, property valuation, job industry, and job title clusters.

Feature importances for target RFM\_Score

Features Ranks





## 3.2 Model Development (II) - Supervised learning classification

#### **Baseline Model: Multiclass Classification**



Facing challenges in identifying the underlying characteristics of the target RFM cluster, we implemented supervised learning algorithms to discern patterns and classify the target clusters.



| Task       | Multiclass classification to categorize customers into - non-active (0) - low/medium-value (1) - high-value (2)                               |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Model      | A neural netw ork with automated hyperparameter tuning                                                                                        |
| Evaluation | The model's performance, assessed through loss and accuracy on training and validation set                                                    |
| Result     | Im balanced accuracy across classes, as indicated by the ROC/AUC curves and classification report.  Overall 0.74 AUC with 0.55 accuracy score |





## 3.2 Model Development (II) - Supervised learning classification

#### **Two-Step Binary Classification**

Instead of multi-classification task, we will breaking it down into two-step binary classification model, as there's a significant class imbalance or a lack of sufficient information in the dataset.



| Taskl  | Binary classification Model: Inactive Customer Identification - non-active (0) - active customer (1)                         |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| Model  | A neural netw ork with automated hyperparameter tuning                                                                       |
| Result | effectively differentiates between non-active and active customers, demonstrating high accuracy (0.91) and AUC scores (0.92) |





## 3.2 Model Development (II) - Supervised learning classification

#### **Two-Step Binary Classification**

The resulted active customer from the first model are fed into the second training model to distinguish a level of customer value.



| Task II | Binary classification Model: High-Value Customer Identification - low-value customer (0) - med/ high-value customer (1) |
|---------|-------------------------------------------------------------------------------------------------------------------------|
| Model   | deep learning model<br>decision tree<br>KNN<br>ensemble voting classification                                           |
| Result  | The deep learning model outperformed baseline and others with an AUC score of 0.69                                      |





#### 4. Prediction and Interpretation

Finally, we utilize the trained two-stage model to classify new customer dataset into 3 potential groups of non-active (0), low-value (1), med/high-value customers.





#### Key takeaway:

- This predicted segmentation can lead to more personalized marketing strategies, improved customer engagement.
- Targeted promotions and incentives resonate with each group's behavior and preferences can be used for potentially increasing customer lifetime value and loyalty.