2019年度予備テスト 解答と補足

Masataka HAMADA

2019年4月13日

1 関数の一様連続性

1.1 問題と解答

 $\boxed{1}$ f を開区間 (0,1) で定義された函数とする. f が一様連続であるとは、

任意の $\epsilon>0$ に対して,ある $\delta>0$ が存在して, $|x-y|<\delta$ となる任意の $x,y\in(0,1)$ に対して, $|f(x)-f(y)|<\epsilon$ が成り立つ

ことである.このとき,次の問に答えよ.

- 1. $f(x) = \sin(1/x)$ とするとき、f は一様連続か?理由とともに答えよ.
- 2. f が一様連続ならば有界であることを示せ、ここで、f が有界であるとは、 ある正実数 M>0 が存在して、任意の $x\in(0,1)$ に対して、|f(x)|< M が成り立つ ことである.
- 3. f が一様連続ならば、 $x_n \in (0,1)$ かつ $\lim_{n\to\infty} x_n = 0$ となる任意の数列 $\{x_n\}_{n=1}^\infty$ に対して、 $\{f(x_n)\}_{n=1}^\infty$ がコーシー列になることを示せ.
- 1. f は一様連続でない. 実際, $\epsilon=1$ とすると, 任意の $\delta>0$ に対して

$$\left|\frac{1}{(2n+1/6)(2n+7/6)\pi}\right|<\delta$$

を満たす自然数 n をとって $x=[(2n+1/6)\pi]^{-1}, y=[(2n+7/6)\pi]^{-1}$ とおけば、 $x,y\in(0,1)$ であり、

$$|x - y| = \left| \frac{1}{(2n + 1/6)(2n + 7/6)\pi} \right| < \delta$$

かつ

$$|f(x)-f(y)| = \left|\sin\left(2n+\frac{1}{6}\right)\pi - \sin\left(2n+\frac{7}{6}\right)\pi\right| = \left|\frac{1}{2}+\frac{1}{2}\right| = 1 \ge \epsilon$$

となる.

2. f は一様連続であるから、ある $\delta > 0$ が存在して、 $|x-y| < \delta$ となる任意の $x,y \in (0,1)$ に対して、

|f(x) - f(y)| < 1 が成り立つ. このとき,

$$(0,1)\subset \bigcup_{i=1}^N B(x_i,\delta),$$
 ただし $B(x_i,\delta):=\{x\in\mathbb{R}:|x_i-x|<\delta\}$

を満たす $x_1,x_2,\cdots,x_N\in(0,1)$ が存在する.よって,任意の $x\in(0,1)$ に対して,ある $i=1,2,\cdots,N$ が存在して $|x_i-x|<\delta$ が成り立つから, $M:=\max_{1\leq i\leq N}|f(x_i)|$ とおくと,

$$|f(x)| = |f(x) - f(x_i) + f(x_i)| \le |f(x) - f(x_i)| + |f(x_i)| < 1 + |f(x_i)| \le 1 + M$$

となる. 従って, f は有界である.

3. 任意の $\epsilon > 0$ に対して,f が一様連続であることから,ある $\delta > 0$ が存在して, $|x-y| < \delta$ となる任意の $x,y \in (0,1)$ に対して $|f(x)-f(y)| < \epsilon$ となる.さらに $\lim_{n \to \infty} x_n = 0$ なので,ある自然数 N が存在して, $n \geq N$ となる任意の自然数 n に対し $|x_n| < \delta/2$ となる.このとき, $m,n \geq N$ となる任意の自然数 m,n について $|x_m-x_n| \leq |x_m| + |x_n| < \delta/2 + \delta/2 = \delta$ となるから $|f(x_m)-f(x_n)| < \epsilon$ であることが従う.以上より, $\{f(x_n)\}_{n=1}^\infty$ はコーシー列である.

1.2 補足

1. f が一様連続でない,すなわち一様連続であることの定義の否定はある $\epsilon>0$ が存在し,任意の $\delta>0$ に対して, $|x-y|<\delta$ かつ $|f(x)-f(y)|\geq\epsilon$ となる $x,y\in(0,1)$

となります.

が存在する

- 2. 証明にあたってはこちらを参照しました.
- 3. 実数列 $\{x_n\}_{n=1}^{\infty}$ がコーシー列であるとは,

任意の $\epsilon>0$ に対して,ある自然数 N が存在して, $m,n\geq N$ となる任意の自然数 m,n に対して $|x_m-x_n|<\epsilon$ が成り立つ

ことです.

2 広義積分

2.1 問題と解答

2 次の問に答えよ.

1. 次の広義積分が収束するための実数 p の充たすべき必要十分条件を求めよ:

$$\int_0^1 (1-x)^p \, dx$$

2. 次の広義積分が収束することを示せ

$$\int_0^1 \frac{1}{[x(1-x)]^{1/3}} \, dx$$

3. 次の広義積分が収束しないことを示せ:

$$\int_0^\infty \frac{2 + \sin e^x}{x} \, dx$$

1. p > -1 のとき,

$$\int_0^1 (1-x)^p \, dx = \left[-\frac{(1-x)^{p+1}}{p+1} \right]_0^1 = \frac{1}{p+1}$$

となる.

p=-1 のとき、 $0<\epsilon<1$ に対して

$$\int_0^{\epsilon} (1-x)^p \, dx = \left[-\log(1-x) \right]_0^{\epsilon} = -\log(1-\epsilon)$$

となるが、 $\lim_{x\to 0+0}\log x=-\infty$ であるから $\lim_{\epsilon\to 1-0}[-\log(1-\epsilon)]=\infty$ である. つまり、広義積分

$$\int_0^1 (1-x)^p \, dx$$

は発散する.

p < -1 のとき、 $0 < \epsilon < 1$ に対して

$$\int_0^{\epsilon} (1-x)^p \, dx = \left[-\frac{(1-x)^{p+1}}{p+1} \right]_0^{\epsilon} = -\frac{(1-\epsilon)^{p+1}}{p+1} + \frac{1}{p+1}$$

となるが、 $\lim_{x\to 0+0}x^{p+1}=\infty$ であるから $\lim_{\epsilon\to 1-0}[-\frac{(1-\epsilon)^{p+1}}{p+1}+\frac{1}{p+1}]=-\infty$ であるから、広義積分

$$\int_0^1 (1-x)^p \, dx$$

は発散する. 従って, 広義積分

$$\int_0^1 (1-x)^p \, dx$$

が収束するための実数 p の充たすべき必要十分条件は p > -1 である.

2. $0 < x \le 1/2 \text{ obs}, 1 - x \ge 1/2 \text{ obs}$

$$\frac{1}{[x(1-x)]^{1/3}} = \frac{1}{x^{1/3}(1-x)^{1/3}} \le \frac{1}{x^{1/3}(1/2)^{1/3}} = 2^{1/3}x^{-1/3}$$

となる. よって, $r_0 \in (0, 1/2]$ に対して

$$\int_{r_0}^{1/2} \frac{1}{[x(1-x)]^{1/3}} \, dx \le 2^{1/3} \int_{r_0}^{1/2} x^{-1/3} \, dx = 2^{1/3} \left[\frac{2}{3} x^{2/3} \right]_{r_0}^{1/2} = \frac{2^{2/3} [1 - (2r_0)^{2/3}]}{3}$$

であるから、 $r_0 \rightarrow 0+0$ としたとき、最左辺の積分は収束する。また、 $1/2 \le x < 1$ のとき、

$$\frac{1}{[x(1-x)]^{1/3}} = \frac{1}{x^{1/3}(1-x)^{1/3}} \le \frac{1}{(1/2)^{1/3}(1-x)^{1/3}} = 2^{1/3}(1-x)^{-1/3}$$

となる. よって, $r_1 \in [1/2,1)$ に対して

$$\int_{1/2}^{r_1} \frac{1}{[x(1-x)]^{1/3}} \, dx \leq 2^{1/3} \int_{1/2}^{r_1} (1-x)^{-1/3} \, dx = 2^{1/3} \left[-\frac{2}{3} (1-x)^{2/3} \right]_{1/2}^{r_1} = \frac{2^{4/3}}{3} [2^{-2/3} - (1-r_1)^{2/3}]$$

であるから、 $r_1 \rightarrow 1-0$ としたとき、最左辺の積分は収束する. 以上より、広義積分

$$\int_0^1 \frac{1}{[x(1-x)]^{1/3}} \, dx$$

は収束する.

 $3. \epsilon, M > 0$ とするとき

$$\int_{\epsilon}^{M} \frac{2 + \sin e^{x}}{x} dx \ge \int_{\epsilon}^{M} \frac{2 - 1}{x} dx = \int_{\epsilon}^{M} \frac{1}{x} dx = \log M - \log \epsilon$$

であり.

$$\lim_{M \to \infty} \log M = \infty, \lim_{\epsilon \to 0+0} \log \epsilon = -\infty$$

であるから, 広義積分

$$\int_0^\infty \frac{2 + \sin e^x}{x} \, dx$$

は収束しない.

2.2 補足

広義積分が収束することの定義は次の通りです.

定義 2.1. a を実数とし, $b \in \mathbb{R} \cup \{\infty\}$ とする. [a,b) に含まれる任意の有界閉区間上で可積分な関数 f に対して,広義積分

$$\int_{a}^{b} f(x) \, dx$$

が収束するとは,

$$\lim_{r \to b-0} \int_{a}^{r} f(x) \, dx$$

が存在することをいう. (a,b] で定義された関数についても、同様に

$$\int_a^b f(x) \, dx = \lim_{r \to a+0} \int_r^b f(x) \, dx$$

と定義する. また, (a,b) で定義された関数については, ある $c \in (a,b)$ をとって

$$\int_{a}^{b} f(x) \, dx = \lim_{r \to a+0} \int_{r}^{c} f(x) \, dx + \lim_{r \to b-0} \int_{c}^{r} f(x) \, dx$$

と定義する.

なお、2の証明にあたっては友人の解答を参照しました.感謝申し上げます.

3 線形部分空間

3.1 問題と解答

③ $V \geq W$ を d 次元実線型空間 \mathbb{R}^d の部分空間とする.和 V+W と交わり $V\cap W$ も \mathbb{R}^d の部分空間となる. \mathbb{R}^d の元 $u_1,\cdots,u_\ell,v_1,\cdots,v_m,w_1,\cdots,w_n$ を次のように選ぶ:

- u_1, \dots, u_ℓ は $V \cap W$ の基底である.
- $u_1, \dots, u_\ell, v_1, \dots, v_m$ は V の基底である.
- $u_1, \dots, u_\ell, w_1, \dots, w_n$ は W の基底である.

このとき,次の問に答えよ.

- 1. 和V+W の任意の元が $u_1,\cdots,u_\ell,v_1,\cdots,v_m,w_1,\cdots,w_n$ の線型結合で表されることを示せ.
- 2. 元 $u_1, \dots, u_\ell, v_1, \dots, v_m, w_1, \dots, w_n$ は線型独立であることを示せ.
- 3. 和集合 $V \cup W$ は \mathbb{R}^d の部分空間となるか?理由とともに答えよ.
- 1. 任意の $v \in V, w \in W$ は、ある $a_1, \dots, a_{\ell+m}, b_1, \dots, b_{\ell+n} \in \mathbb{R}$ を用いて

$$v = \sum_{i=1}^{\ell} a_i u_i + \sum_{j=1}^{m} a_{\ell+j} v_j, \ w = \sum_{i=1}^{\ell} b_i u_i + \sum_{k=1}^{n} b_{\ell+k} w_k$$

と表すことができ,このとき

$$v + w = \sum_{i=1}^{\ell} (a_i + b_i)u_i + \sum_{i=1}^{m} a_{\ell+j}v_j + \sum_{k=1}^{n} b_{\ell+k}w_k$$

となる.従って,V+W の任意の元は $u_1,\cdots,u_\ell,v_1,\cdots,v_m,w_1,\cdots,w_n$ の線型結合で表される.

 $2. a_1, \dots, a_\ell, b_1, \dots, b_m, c_1, \dots, c_n \in \mathbb{R}$ に対し

$$\sum_{i=1}^{\ell} a_i u_i + \sum_{j=1}^{m} b_j v_j + \sum_{k=1}^{n} c_k w_k = 0$$
 (1)

であるとする. このとき

$$v = \sum_{i=1}^{\ell} a_i u_i + \sum_{j=1}^{m} b_j v_j$$

とおくと, $v \in V$ である. さらに, (1) より

$$v = -\sum_{k=1}^{n} c_k w_k = \sum_{k=1}^{n} (-c_k) w_k$$

であるから $v \in W$ である. よって $v \in V \cap W$ であるから, $v = d_1u_1 + \cdots + d_\ell u_\ell$ となる $d_1, \cdots, d_\ell \in \mathbb{R}$ が存在する. つまり

$$\sum_{i=1}^{\ell} a_i u_i + \sum_{j=1}^{m} b_j v_j = \sum_{i=1}^{\ell} d_i u_i$$

であるから

$$\sum_{i=1}^{\ell} (a_i - d_i)u_i + \sum_{j=1}^{m} b_j v_j = 0$$
 (2)

となる.ここで, $u_1, \dots, u_\ell, v_1, \dots, v_m$ は線型独立であるから,(2) より特に $b_1 = \dots = b_m = 0$ である.よって (1) は

$$\sum_{i=1}^{\ell} a_i u_i + \sum_{k=1}^{n} c_k w_k = 0$$

となるが、 $u_1,\cdots,u_\ell,w_1,\cdots,w_n$ も線型独立であるから、これより $a_1=\cdots=a_\ell=c_1=\cdots=c_n=0$ である.

以上より、 $u_1, \dots, u_\ell, v_1, \dots, v_m, w_1, \dots, w_n$ は線型独立である.

 $3.\ d=1$ のとき、 $\dim V, \dim W \le 1$ であるから、V も W も $\{0\}$ または $\mathbb R$ のいずれかである.よって $V\cup W$ も $\{0\}$ または $\mathbb R$ のいずれかである.従って、 $V\cup W$ は $\mathbb R$ の部分空間である.

d>1 のとき,例えば $V=\{(x_1,\cdots,x_d)\in\mathbb{R}^d:x_1=0\}$, $W=\{(x_1,\cdots,x_d)\in\mathbb{R}^d:x_2=0\}$ とすると, $V\cup W$ は \mathbb{R}^d の部分空間ではない. 実際, $ab\neq 0$ を満たす $a,b\in\mathbb{R}$ に対して, $(a,0,0,\cdots,0)\in V\subset V\cup W$, $(0,b,0,\cdots,0)\in W\subset V\cup W$ であるが, $(a,0,0,\cdots,0)+(0,b,0,\cdots,0)=(a,b,0,\cdots,0)\notin V\cup W$ となる. 従って, $V\cup W$ は \mathbb{R}^d の部分空間であるとは限らない.

以上より, $V \cup W$ は, d=1 のとき \mathbb{R}^d の部分空間となり, d>1 のとき \mathbb{R}^d の部分空間であるとは限らない.

3.2 補足

3の解答では次の命題の1を用いています.

命題 3.1. V を有限次元線形空間, W を V の部分空間とするとき, 次が成り立つ.

- 1. W も有限次元であり、 $\dim W < \dim V$
- 2. $\dim W = \dim V$ ならば W = V

証明は、例えば「線形代数の世界」(斎藤毅、東京大学出版会、2007)の1.5節を参照してください。

4 核と像,表現行列,固有空間

4.1 問題と解答

4 二次以下の実数係数多項式の全体からなる実線型空間を V として, V 上の線型変換 $D:V \to V$ を

$$f(x) \mapsto \frac{d}{dx}[(1+x)f(x)]$$

と定める. このとき, 次の問に答えよ.

- 1. Ker D と Im D を求めよ.
- 2. V の基底 $\{1, 1+2x, 2x+3x^2\}$ に関する D の表現行列を求めよ.
- 3. Dの固有空間の全てについて、それぞれの基底を一組ずつ求めよ.

1. $a, b, c \in \mathbb{R}$ とし、 $f(x) = ax^2 + bx + c \in V$ とすると

$$(Df)(x) = \frac{d}{dx}[(1+x)(ax^2+bx+c)] = 3ax^2 + 2(a+b)x + b + c$$

となる. ここで

$$\begin{cases} 3a = 0 \\ 2(a+b) = 0 \\ b+c = 0 \end{cases}$$

の解は a = b = c = 0 であるから、 $Ker D = \{0\}$ である.

また, ${\rm Im}\, D=V$ である.実際,任意の $f\in V$ が $p,q,r\in\mathbb{R}$ を用いて $f(x)=px^2+qx+r$ と表されるとき,

$$a = \frac{p}{3}, \ b = \frac{q}{2} - \frac{p}{3}, \ c = r - \frac{q}{2} + \frac{p}{3}$$

とおけば

$$f(x) = 3ax^{2} + 2(a+b)x + b + c = (D(ax^{2} + bx + c))(x)$$

となるから $f \in \operatorname{Im} D$ である.

- 2.1での計算結果を用いて
 - $(D1)(x) = 1 = 1 \cdot 1 + 0 \cdot (1 + 2x) + 0 \cdot (2x + 3x^2)$
 - $(D(1+2x))(x) = 4x + 3 = 1 \cdot 1 + 2 \cdot (1+2x) + 0 \cdot (2x+3x^2)$
 - $(D(2x+3x^2))(x) = 9x^2 + 10x + 2 = 0 \cdot 1 + 2 \cdot (1+2x) + 3 \cdot (2x+3x^2)$

であることがわかる.従って,V の基底 $\{1,1+2x,2x+3x^2\}$ に関する D の表現行列は

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

である.

3.2 の表現行列を A とする. A の固有多項式 $\phi(x)$ は

$$\phi(x) = \begin{vmatrix} x-1 & -1 & 0 \\ 0 & x-2 & -2 \\ 0 & 0 & x-3 \end{vmatrix} = (x-1) \begin{vmatrix} x-2 & -2 \\ 0 & x-3 \end{vmatrix} = (x-1)(x-2)(x-3)$$

であるから,A の固有値は 1,2,3 である.以下, $x=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\in\mathbb{R}^3$ とする.

$$Ax = x \Leftrightarrow \begin{cases} x_1 + x_2 &= x_1 \\ 2x_2 + 2x_3 &= x_2 \Leftrightarrow \\ 3x_3 &= x_3 \end{cases} \Leftrightarrow \begin{cases} x_1 \in \mathbb{R} \\ x_2 = x_3 = 0 \end{cases}$$

であるから、固有値1に関する固有空間の基底の1つは1である.

$$Ax = 2x \Leftrightarrow \begin{cases} x_1 + x_2 &= 2x_1 \\ 2x_2 + 2x_3 &= 2x_2 \\ 3x_3 &= 2x_3 \end{cases} \Leftrightarrow \begin{cases} x_1 = x_2 \\ x_3 = 0 \end{cases}$$

であるから、固有値 2 に関する固有空間の基底の 1 つは 1+(1+2x) である.

$$Ax = 3x \Leftrightarrow \begin{cases} x_1 + x_2 &= 3x_1 \\ 2x_2 + 2x_3 &= 3x_2 \\ 3x_3 &= 3x_3 \end{cases} \Leftrightarrow \begin{cases} x_1 = x_3 \\ x_2 = 2x_1 \end{cases}$$

であるから, 固有値 3 に関する固有空間の基底の 1 つは $1+2(1+2x)+(2x+3x^2)$ である.

4.2 補足

1. (別解) 命題 3.1 と次の命題を用いると、 $\operatorname{Ker} D = \{0\}$ であることから $\operatorname{Im} D = V$ が直ちに従います.

命題 **4.1.** 有限次元線形空間 V,W および線形変換 $f:V \to W$ に対し,次の等式が成り立つ:

$$\dim V = \dim \operatorname{Ker} f + \operatorname{rank} f$$

証明は、例えば「線型代数入門」(齋藤正彦、東京大学出版会、1966) の第 4 章 §4[4.5] や「線形代数の世界」(斎藤毅、東京大学出版会、2007) の 2.4 節を参照してください.

- 2. 特にありません.
- 3. 固有空間の定義は次の通りです.

定義 4.2. V を K 線形空間, $T:V\to V$ を V 上の線形変換とする.0 でない $v\in V$ が T の固有ベクトルであるとは,ある $\lambda\in K$ が存在して $T(v)=\lambda v$ が成り立つことをいう.このとき, λ を固有ベクトル v に関する固有値といい.さらに

$$W_{\lambda} := \{ w \in V : T(w) = \lambda w \}$$

によって定義される線形空間 W_{λ} を, 固有値 λ に関する固有空間と呼ぶ.

従って,D の表現行列を用いて V を \mathbb{R}^3 とみなして考えたときの固有空間は,D の固有空間そのものではありません.V を \mathbb{R}^3 とみなして考えたとき,固有値 1,2,3 に関する固有空間の基底の 1 つは,それぞれ

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

なので、対応する D の固有空間の基底は、それぞれ

$$1, 1 + (1 + 2x), 1 + 2(1 + 2x) + (2x + 3x^2)$$

となります.