ØVING 4

KJ1041: KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK

1) Vinkelmomentet \mathbf{L} er i klassisk mekanikk definert som $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, der \mathbf{r} er posisjonen til partikkelen og $\mathbf{p} = m\mathbf{v}$ er bevegelsesmengden. Hvis vi lar $\mathbf{r} = (x, y, z)$ og $\mathbf{p} = (p_x, p_y, p_z)$, så kan vi skrive

$$\mathbf{L} = \begin{pmatrix} L_x \\ L_y \\ L_z \end{pmatrix} = \begin{pmatrix} y \, p_z - z \, p_y \\ z \, p_x - x \, p_z \\ x \, p_y - y \, p_x \end{pmatrix}. \tag{1}$$

- a) Bruk substitusjonene $x \to \hat{x}$, $p_x \to \hat{p}_x$ (og tilsvarende for y og z) for å finne operatorene \hat{L}_x , \hat{L}_y og \hat{L}_z som representerer x-, y-, og z-komponenten til vinkelmomentet \mathbf{L} .
- b) Bekreft at

$$[\hat{x}, \hat{y}] = 0 \tag{2}$$

$$[\hat{x}, \hat{p}_{v}] = 0 \tag{3}$$

$$[\hat{p}_x, \hat{p}_y] = 0 \tag{4}$$

ved å se på effekten av kommutatorene på på en vilkårlig funksjon $\varphi(x,y)$.

c) Vi har sett tidligere at

$$[\hat{x}, \hat{p}_x] = i\hbar, \quad [\hat{y}, \hat{p}_y] = i\hbar, \quad [\hat{z}, \hat{p}_z] = i\hbar. \tag{5}$$

Bruk dette for å vise at

$$[\hat{L}_r, \hat{L}_v] = i\hbar \, \hat{L}_z. \tag{6}$$

Hint: Man kan ekspandere kommutatorer på likt vis som vi gjør ved multiplikasjon av tall, f.eks. (a + b)(c + d) = ac + ad + bc + bd:

$$[\hat{A} + \hat{B}, \hat{C} + \hat{D}] = [\hat{A}, \hat{C}] + [\hat{A}, \hat{D}] + [\hat{B}, \hat{C}] + [\hat{B}, \hat{D}]. \tag{7}$$

- d) Anta at et system er i en tilstand med en bestemt verdi av L_z lik \hbar . Hva sier usikkerhetsprinsippet da om usikkerheten i observablene L_x og L_y ?
- 2) Schrödinger-likningen for en partikkel på en ring av radius r_0 er

$$\hat{H}\psi_{m_l}(\vartheta) = E_{m_l}\psi_{m_l}(\vartheta), \quad \hat{H} = -\frac{\hbar^2}{2mr_0^2} \frac{\mathrm{d}^2}{\mathrm{d}\vartheta^2}, \tag{8}$$

der θ er vinkelen med x-aksen (der vi antar at partikkelen lever i xy-planet)

- a) Bekreft at $\psi_{m_l}(\theta) = e^{im_l \theta}$ er en løsning av likning (8) for et vilkårlig reellt tall m_l .
- b) Hvorfor kan vi kreve at $\psi_{m_l}(0) = \psi_{m_l}(2\pi)$? Vis at dette kravet fører til kvantiseringen $m_l = 0, 1, -1, 2, -2, \dots$
- c) Normaliser $\psi_{m_l}(\vartheta)$.

2 ØVING 4

- d) I polarkoordinater kan vi skrive $\hat{L}_z = -i \hbar \partial/\partial \vartheta$. Bekreft at $\psi_{m_l}(\vartheta)$ er en egenfunksjon av \hat{L}_z med egenverdi $m_l \hbar$. Gitt den klassiske definisjonen $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, hvordan kan man forstå løsningene $\psi_{m_l}(\vartheta)$ for kvantetallene m_l og $-m_l$?
- e) Gi en forklaring på hvorfor kommutasjonsrelasjonen $[\hat{H}, \hat{L}_z] = 0$ medfører at energien og z-komponenten av vinkelmomentet er kompatible observabler.