Wireless LAN para la Facultad de Ingeniería de la Universidad de Buenos Aires

Ernesto Cottely Fernando Manso

Departamento de Electrónica Facultad de Ingeniería, Universidad de Buenos Aires

Diciembre 2009

Detección de la necesidad a cubrir

- Cliente.
- Sector a satisfacer.
- Importancia de la actualización de la red.

Detección de la necesidad a cubrir

- Cliente.
- Sector a satisfacer.
- Importancia de la actualización de la red.

Detección de la necesidad a cubrir

- Cliente.
- Sector a satisfacer.
- Importancia de la actualización de la red.

- $\bullet \approx 800$ computadoras.
- ≈ 300 teléfonos.
- Wi-Fi Biblioteca y L11.
- Cableado Vertical.
- Cableado Horizontal.

- $\bullet \approx 800$ computadoras.
- ≈ 300 teléfonos.
- Wi-Fi Biblioteca y L11.
- Cableado Vertical.
- Cableado Horizontal.

- ≈ 800 computadoras.
- ≈ 300 teléfonos.
- Wi-Fi Biblioteca y L11.
- Cableado Vertical.
- Cableado Horizontal.

- $\bullet \approx 800$ computadoras.
- ≈ 300 teléfonos.
- Wi-Fi Biblioteca y L11.
- Cableado Vertical.
- Cableado Horizontal.

- $\bullet \approx 800$ computadoras.
- ≈ 300 teléfonos.
- Wi-Fi Biblioteca y L11.
- Cableado Vertical.
- Cableado Horizontal.

- "Busy Hours" $\approx 15 Mbps$ (filtrado).
 - 15 % de utilización del canal (FE).
 - ⇒ Congestión leve.
- Paquetes ARP (3,15 %)

- "Busy Hours" $\approx 15 Mbps$ (filtrado).
 - 15 % de utilización del canal (FE).
 - ⇒ Congestión leve.
- Paquetes ARP (3,15 %)

- "Busy Hours" $\approx 15 Mbps$ (filtrado).
 - 15 % de utilización del canal (FE).
 - → Congestión leve.
- Paquetes ARP (3,15 %)

- "Busy Hours" $\approx 15 Mbps$ (filtrado).
 - 15 % de utilización del canal (FE).
 - ⇒ Congestión leve.
- Paquetes ARP (3,15 %)

- "Delay" $\approx 5ms$.
- "Delay Jitter" $\approx 0,15ms$.
- "Packet Loss" $\approx 0\%$

- "Delay" $\approx 5ms$.
- "Delay Jitter" $\approx 0,15ms$.
- "Packet Loss" $\approx 0 \%$.

Casa de la calidad

	Ð							
Red FIUBA	Peso relativo de los PIQ del proyec	Estado actual de la Red	Estado proyectado de la Red	Metas Phreachs	Mejora	Punto de venta	Pleso Total	Peso Total %
Disponibilidad apropiada de los servicios	4	3	4	4	1,0	1	4,0	9%
Rapidez en los servicios.	5	4	4	5	1,0	1	5,0	11%
Flexibilidad en la conexión de computadoras ajenas a la FIUBA	3	3	3	3	1.0	1	3,0	7%
Servicios conflables	2	2	5	4	1,4	1	2,8	6%
Un buen servicio de inscripción	3	3	2	4	1,2	1	3,6	8%
Cantidad apropiada de terminales	4	2	4	4	1,0	1	4,0	9%
Privacidad e integridad de la información	3	1	2	4	1.2	1	3,6	8%
Convergencia de servicios	5	1	5	5	1,0	1	5,0	11%
Inteligibilidad en los llamados	4	1	4	5	1,2	1	4,8	11%
Costo	4	1	4	5	1.2	1	4,8	11%
Estética Edilicia	3	3	3	4	1,2	1	3,6	8%
					Total 100%.		44,2	%00L

Casa de la calidad

Dirección de la Mejora	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	∇	∇	∇	Δ	Δ	Δ	Δ	
Red FIUBA	Ancho de banda LAN por piso	Ancho de banda del "backbone"	Ancho de banda WAN	Cumplimiento de normas de CE	Redundancia en enlaces y equipos.	Administracion centralizada	Stasificacion de Trafico	Priorizacion de paquetes	Delay	Dekay Jitter	Packet Loss	Scalabilidad	Seguridad Fisica	Mantenibilidad	POE	
Prioridades Técnicas		197		161	_	71	Ĭ	100		_	70	83		122		
Porcentaje	10%	10%	10%	9%	4%	4%	9%	5%	7%	5%	4%	4%	7%	7%	6%	
Red Actual (Datos)	Fast Eth.	2GE	12 Mbps	No	9	ī	No	No	Sms	0,15ms	%0~	No	No	ï	No	
Red Proyectada (Datos, voz y seguridad)	Giga Eth.	2GE	14 Mbps	Ø	£	Ø	Ö	Ø	<50ms	<10ms	<0.1%	Ö	Ø	Ø	Ø	
Metas	Giga Eth.	2GE	12 Mbps	is.	S.	S	ï	ī	<50ms	<10ms	<0.1%	ï	ī	S	īS	ľ

- Tecnología inalámbrica para el acceso.
 - Mayor escalabilidad de usuarios.
 - Favorece a la estética edilicia
 - Flexibilidad en la conexión de terminales a la red.
 - Permite la convergencia de servicios.
 - Permite acceso móvil y de dispositivos personales.
- Tecnología cableada por cobre para el backbone.
 - Económicamente más viable
 - Escalabilidad en capacidad y reutilización de equipos.
 - Distancia requerida < 100m

Tecnología inalámbrica para el acceso.

- Mayor escalabilidad de usuarios.
- Favorece a la estética edilicia.
- Flexibilidad en la conexión de terminales a la red.
- Permite la convergencia de servicios.
- Permite acceso móvil y de dispositivos personales.
- Tecnología cableada por cobre para el backbone.
 - Económicamente más viable
 - Escalabilidad en capacidad y reutilización de equipos
 - Distancia requerida < 100m

- Tecnología inalámbrica para el acceso.
 - Mayor escalabilidad de usuarios.
 - Favorece a la estética edilicia.
 - Flexibilidad en la conexión de terminales a la red.
 - Permite la convergencia de servicios.
 - Permite acceso móvil y de dispositivos personales.
- Tecnología cableada por cobre para el backbone.
 - Económicamente más viable
 - Escalabilidad en capacidad y reutilización de equipos
 - Distancia requerida < 100m

- Tecnología inalámbrica para el acceso.
 - Mayor escalabilidad de usuarios.
 - Favorece a la estética edilicia.
 - Flexibilidad en la conexión de terminales a la red.
 - Permite la convergencia de servicios.
 - Permite acceso móvil y de dispositivos personales.
- Tecnología cableada por cobre para el backbone.
 - Económicamente más viable.
 - Escalabilidad en capacidad y reutilización de equipos.
 - Distancia requerida < 100m.

- Tecnología inalámbrica para el acceso.
 - Mayor escalabilidad de usuarios.
 - Favorece a la estética edilicia.
 - Flexibilidad en la conexión de terminales a la red.
 - Permite la convergencia de servicios.
 - Permite acceso móvil y de dispositivos personales.
- Tecnología cableada por cobre para el backbone.
 - Económicamente más viable.
 - Escalabilidad en capacidad y reutilización de equipos.
 - Distancia requerida < 100m.

Wi-Fi vs Wi-Max

- Wi-Max orientada a accesos de última milla en redes metropolitanas.
- Wi-Fi es más económico y masivo.
- Wi-Fi forma parte de un estandar abierto.

Wi-Fi vs Wi-Max

- Wi-Max orientada a accesos de última milla en redes metropolitanas.
- Wi-Fi es más económico y masivo.
- Wi-Fi forma parte de un estandar abierto.

- IEEE 802.11 $n \rightarrow \mathsf{MIMO} + \mathsf{Channel}$ Bonding.
 - + Mayor alcance.
 - + Mayor velocidad de transmisión de datos.
 - Más costoso.
 - Menos masivo.
 - Estandar en estapa "Draft".
- \Rightarrow Wi-Fi IEEE 802.11g

- IEEE $802.11n \rightarrow \mathsf{MIMO} + \mathsf{Channel}$ Bonding.
 - + Mayor alcance.
 - + Mayor velocidad de transmisión de datos.
 - Más costoso.
 - Menos masivo.
 - Estandar en estapa "Draft".
- \Rightarrow Wi-Fi IEEE 802.11g

- IEEE 802.11 $n \rightarrow \mathsf{MIMO} + \mathsf{Channel}$ Bonding.
 - + Mayor alcance.
 - + Mayor velocidad de transmisión de datos.
 - Más costoso.
 - Menos masivo.
 - Estandar en estapa "Draft".

- IEEE 802.11 $n \rightarrow \mathsf{MIMO} + \mathsf{Channel}$ Bonding.
 - + Mayor alcance.
 - + Mayor velocidad de transmisión de datos.
 - Más costoso.
 - Menos masivo.
 - Estandar en estapa "Draft".
- $\bullet \Rightarrow \text{Wi-Fi IEEE } 802.11g$

- Proyecto social/educativo.
 - Costos tangibles.
 - Beneficios tangibles e intangibles.
- Análisis de "Costo Beneficio".
 - Maximizar los beneficios respecto a los costos.
 - Beneficios: Propietarios + Comunidad educativa

- Proyecto social/educativo.
 - Costos tangibles.
 - Beneficios tangibles e intangibles.
- Análisis de "Costo Beneficio".
 - Maximizar los beneficios respecto a los costos.
 - Beneficios: Propietarios + Comunidad educativa

- Proyecto social/educativo.
 - Costos tangibles.
 - Beneficios tangibles e intangibles.
- Análisis de "Costo Beneficio".
 - Maximizar los beneficios respecto a los costos.
 - Beneficios: Propietarios + Comunidad educativa.

- Proyecto social/educativo.
 - Costos tangibles.
 - Beneficios tangibles e intangibles.
- Análisis de "Costo Beneficio".
 - Maximizar los beneficios respecto a los costos.
 - Beneficios: Propietarios + Comunidad educativa.

- Proyecto social/educativo.
 - Costos tangibles.
 - Beneficios tangibles e intangibles.
- Análisis de "Costo Beneficio".
 - Maximizar los beneficios respecto a los costos.
 - Beneficios: Propietarios + Comunidad educativa.

- Proyecto social/educativo.
 - Costos tangibles.
 - Beneficios tangibles e intangibles.
- Análisis de "Costo Beneficio".
 - Maximizar los beneficios respecto a los costos.
 - Beneficios: Propietarios + Comunidad educativa.

Flujo de inversiones

	Detalle	Costo	Mes 1		Me	s 2	Me	s 3	Me		Mes 5		Mes 6]
Пр		Unitario	Cantidad	Costo	1										
	AP Aruba AP-61 Single Radio	320	39	12.480	27	8.640	48	15.360	28	8.950	0	0	o	0	
	AC Aruba 3600	12.240	- 1	12.240	0	0	0	0	0	0	0	0	0	0	1
	Edge Switch Cisco SRW-2016	371	4	1.484	4	1.484	4	1.484	4	1.484	1	371	0	0	
	Media Gateway Avaya G450 y Server Avaya S8300	4.720	0	0	0	0	0	0	0	0	1	4.720	0	0	
	Firewall HP Proliant ML150 G5	725	0	0	0	o	0	0	0	0	2	1.450	0	0	
	Sistore MX NVS	3.836	0	0	- 1	3.836	1	3.836	- 1	3.836	0	0	0	0	1
ES	Placa PCMCIA Encore ENPWI-G2 54Mbps Cardbus II	24	0	0	0	0	0	0	0	0	0	0	0	0	
	D-link 802.11g Wireless LAN USB Adapter	16	100	1.580	100	1.580	100	1.580	100	1.580	100	1.580	o	0	
	Placa de Red Wi-Fi D-link PCI 54Mops Wireless	26	100	2.575	100	2.575	100	2.575	100	2.575	100	2.575	0	0	
	Teléfono IP Wireless Avaya 3641	202	0	0	0	0	0	0	0	0	0	0	300	60.720	
	Cámara IP DLINK DCS-3420	295	40	11.800	40	11.800	40	11.800	40	11.800	0	0	0	0	
ВОМ	Cable UTP Cat5e Int Furukawa Bobina 305m	54	3	162	3	162	3	162	3	152	0	0	٥	0	yecto
	Bandeja Portacable Perforada 0,7 50x50mm X 3mts	13	275	3.575	275	3.575	275	3.575	275	3.575	0	0	0	0	
	Bandeja Portacable Curva Plana 90° 50x50mm	4	90	378	90	378	90	378	90	378	0	0	0	0	
NO	Mano de Obra según Planeamiento y Programación			3.715		3.715		3.715		3.715		4.380		1.265	
	Costo Mensual Total			49.989		37,745		44.465		38.065		15.076		61.985	1

Beneficios

Tipo	Detalle	Ahorro				
		Año 1	Año 2	Año 3	Año 4	Año 5
Tangibles	Mantenimiento de infraestructura de	30.316	30.316	30.316	30.316	30.316
	telefonía separada	30.310	30.316	30.316	30.310	30.316
	Personal de seguridad	20.211	20.211	20.211	20.211	20.211
	Operadora telefónica	6.063	6.063	6.063	6.063	6.063
	Venta equipos viejos	2.772	0	0	0	0
_	Incremento de usuarios de internet	1.016	1.016	1.016	1.016	1.016
	Incremento líneas telefónicas	633	633	633	633	633
	Mejora de la educación					
	Mejora estética edilicia					
	Mejora notable de telefonía					
s	Aumento de la eficiencia de					
흥	servicio de internet					
Intangibles	Aumento en la velocidad de adquisición del					
Iţal	un servicio					
=	Aumento de seguridad					
	Incremento de la moral del personal debido					
	a las nuevas herramientas de apoyo a la					
	educación, investigación y los proyectos					
						======
	Total Ahorro Anual	61.010	58.238	58.238	58.238	58.238

Flujo de caja descontada

Arquitectura de la red

- Topología "Front-End/Application Server/Database".
 - Zona de máxima seguridad: Red privada + DB
 - Zona de seguridad intermedia: Granja de servidores
 - Zona sin seguridad: Red externa.

Arquitectura de la red

- Topología "Front-End/Application Server/Database".
 - Zona de máxima seguridad: Red privada + DB.
 - Zona de seguridad intermedia: Granja de servidores.
 - Zona sin seguridad: Red externa.

Arquitectura de la red

- Topología "Front-End/Application Server/Database".
 - Zona de máxima seguridad: Red privada + DB.
 - Zona de seguridad intermedia: Granja de servidores.
 - Zona sin seguridad: Red externa.

- Acceso LAN.
- Backbone LAN
 - Core Switch.
 - Edge Switch

- Acceso LAN.
- Backbone LAN.
 - Core Switch.
 - Edge Switch.

- Acceso LAN.
- Backbone LAN.
 - Core Switch.
 - Edge Switch.

- Acceso LAN.
- Backbone LAN.
 - Core Switch.
 - Edge Switch.

- Tráfico de video, voz y datos.
- Escalabilidad a 802.11n (300Mbps).
- ⇒ Gigabit Ethernet.

- Tráfico de video, voz y datos.
- Escalabilidad a 802.11n (300Mbps).
- ⇒ Gigabit Ethernet.

- Tráfico de video, voz y datos.
- Escalabilidad a 802.11n (300Mbps).
- ⇒ Gigabit Ethernet.

- Tráfico de video, voz y datos.
- Escalabilidad a 802.11n (300Mbps).
- → Gigabit Ethernet.

- Asignación de VLAN a cada servicio.
- Priorización de paquetes.
- Asignación de bloques CIDR.
- Designación de reglas y tablas de ruteo en los firewall

- Asignación de VLAN a cada servicio.
- Priorización de paquetes.
- Asignación de bloques CIDR.
- Designación de reglas y tablas de ruteo en los firewall

- Asignación de VLAN a cada servicio.
- Priorización de paquetes.
- Asignación de bloques CIDR.
- Designación de reglas y tablas de ruteo en los firewall

- Asignación de VLAN a cada servicio.
- Priorización de paquetes.
- Asignación de bloques CIDR.
- Designación de reglas y tablas de ruteo en los firewall

- Asignación de VLAN a cada servicio.
- Priorización de paquetes.
- Asignación de bloques CIDR.
- Designación de reglas y tablas de ruteo en los firewall

Ingeniería de áreas "hotspot"

- Asignación de radiofrecuencias de las celdas.
- Evitar solapamiento de celdas a la misma frecuencia.
- Solapamiento entre celdas de diferente frecuencias para permitir hand-over.

Ingeniería de áreas "hotspot"

- Asignación de radiofrecuencias de las celdas.
- Evitar solapamiento de celdas a la misma frecuencia.
- Solapamiento entre celdas de diferente frecuencias para permitir hand-over.

Ingeniería de áreas "hotspot"

- Asignación de radiofrecuencias de las celdas.
- Evitar solapamiento de celdas a la misma frecuencia.
- Solapamiento entre celdas de diferente frecuencias para permitir hand-over.

- "Link Budget": $P_{R_X} C_{min} \ge Perdidas Ganancias$
- Distancia y pérdidas por propagación.
- Multitrayecto y Margen de potencia.
- Potencia máxima de Tx < 100mW (Espectro Ensanchado).
 - $\bullet \Rightarrow$ Alcance de cobertura máximo teórico es de $\approx 40m$

- "Link Budget": $P_{R_X} C_{min} \ge Perdidas Ganancias$
- Distancia y pérdidas por propagación
- Multitrayecto y Margen de potencia
- Potencia máxima de Tx < 100mW (Espectro Ensanchado).

ullet \Rightarrow Alcance de cobertura máximo teórico es de pprox 40 m

- "Link Budget": $P_{R_X} C_{min} \ge Perdidas Ganancias$
- Distancia y pérdidas por propagación.
- Multitrayecto y Margen de potencia
- Potencia máxima de Tx < 100mW (Espectro Ensanchado).

ullet \Rightarrow Alcance de cobertura máximo teórico es de pprox 40m.

- "Link Budget": $P_{R_X} C_{min} \ge Perdidas Ganancias$
- Distancia y pérdidas por propagación.
- Multitrayecto y Margen de potencia.
- Potencia máxima de Tx < 100mW (Espectro Ensanchado).

ullet \Rightarrow Alcance de cobertura máximo teórico es de pprox 40m.

- "Link Budget": $P_{R_X} C_{min} \ge Perdidas Ganancias$
- Distancia y pérdidas por propagación.
- Multitrayecto y Margen de potencia.
- Potencia máxima de Tx < 100mW (Espectro Ensanchado).
 - \Rightarrow Alcance de cobertura máximo teórico es de $\approx 40m$.

- "Link Budget": $P_{R_X} C_{min} \ge Perdidas Ganancias$
- Distancia y pérdidas por propagación.
- Multitrayecto y Margen de potencia.
- Potencia máxima de Tx < 100mW (Espectro Ensanchado).
 - \Rightarrow Alcance de cobertura máximo teórico es de $\approx 40m$.

Simulación

Intensidad de señal (dBm)

Simulación Interferencia (dBm)

Simulación

Velocidad de datos (Mbps)

Simulación Estado RF

- Láminas conductoras (Atenuación $\approx 100dB$)
- Pintura conductiva (Atenuación $\approx 40dB$)
- Malla de blindaje (Atenuación $\approx 20dB$)
- ullet Tela de blindaje para ventanas (Atenuación pprox 32dB)

- Láminas conductoras (Atenuación $\approx 100dB$)
- Pintura conductiva (Atenuación $\approx 40dB$)
- Malla de blindaje (Atenuación $\approx 20dB$)
- Tela de blindaje para ventanas (Atenuación $\approx 32dB$)

- Láminas conductoras (Atenuación $\approx 100dB$)
- Pintura conductiva (Atenuación $\approx 40dB$)
- Malla de blindaje (Atenuación $\approx 20dB$)
- Tela de blindaje para ventanas (Atenuación $\approx 32dB$)

- Láminas conductoras (Atenuación $\approx 100dB$)
- Pintura conductiva (Atenuación $\approx 40dB$)
- Malla de blindaje (Atenuación $\approx 20dB$)
- ullet Tela de blindaje para ventanas (Atenuación pprox 32dB)

- Láminas conductoras (Atenuación $\approx 100dB$)
- Pintura conductiva (Atenuación $\approx 40dB$)
- Malla de blindaje (Atenuación $\approx 20dB$)
- Tela de blindaje para ventanas (Atenuación pprox 32dB)

Métodos de blindaje electromagnético

- Láminas conductoras (Atenuación $\approx 100dB$)
- Pintura conductiva (Atenuación $\approx 40dB$)
- Malla de blindaje (Atenuación $\approx 20dB$)
- ullet Tela de blindaje para ventanas (Atenuación pprox 32dB)

Access Point: Aruba 61

Marca	Aruba	Proxim Wireless	Colubris	
Modelo	AP-61 Single Radio	AP8000	MAP-320	
POE	Sí	Sí	Sí	
Costo	U\$S 320	-	U\$S 405	
Antena	2,4GHz - 2,5GHz / 2,8dBi	1,5dbi @ 2,4GHz	-	
Transmisor	20dBm	19,5dBm	18dBm	
Sensibilidad	-85dBm	-	-87dBm	
Velocidad	FE	GB	FE	
CNC	Sí	No	Sí	
Tecnología	802.11a/b/g	802.11a/b/g/n	802.11a/b/g	

Equipos Propuestos Access Controller: Aruba 3600

Marca	HP - Colubris	Aruba	Aruba
Modelo	MSM750	6000	3600
Capacidad de Usuarios	2000	32768	2048
Capacidad de APs	200	8192	512
Costo	-	-	U\$S 12.240

Switch de borde: Cisco SRW 2016

Marca	Cisco	Cisco	3Com
Modelo	SRW-2016	SGE-2000P	4200G PWR
POE	Sí	Sí	Sí
Costo	U\$S 371	U\$S 877	U\$S 1.280
Ubicación	Borde	Borde	Borde
Puertos	16	24	24
Velocidad	GB	GB	GB

Switch de core: 3Com 4900

- Reutilización de equipos.
- Gigabit Ethernet.
- · QoS.
- VLAN.

Switch de core: 3Com 4900

- Reutilización de equipos.
- Gigabit Ethernet.
- QoS.
- VLAN.

- Dimensionamiento acorde: hasta 206 llamadas simultáneas.
 - Fórmula de Engset: número finito de líneas entrantes (los teléfonos).
 - Actualmente: 300 líneas telefónicas, 450 a futuro (crecimiento de líneas del 50 %).
 - Utilización de $0.25Erl \Rightarrow \text{Total}$: 112.5Erl
 - ullet Bloqueo del 1% \Rightarrow Son necesarios 128 canales lógicos.

- Dimensionamiento acorde: hasta 206 llamadas simultáneas.
 - Fórmula de Engset: número finito de líneas entrantes (los teléfonos).
 - Actualmente: 300 líneas telefónicas, 450 a futuro (crecimiento de líneas del 50 %).
 - Utilización de $0.25Erl \Rightarrow \text{Total}$: 112.5Erl.
 - Bloqueo del $1\% \Rightarrow$ Son necesarios 128 canales lógicos.

- Dimensionamiento acorde: hasta 206 llamadas simultáneas.
 - Fórmula de Engset: número finito de líneas entrantes (los teléfonos).
 - Actualmente: 300 líneas telefónicas, 450 a futuro (crecimiento de líneas del 50 %).
 - Utilización de $0.25Erl \Rightarrow$ Total: 112.5Erl.
 - Bloqueo del $1\% \Rightarrow$ Son necesarios 128 canales lógicos.

- Dimensionamiento acorde: hasta 206 llamadas simultáneas.
 - Fórmula de Engset: número finito de líneas entrantes (los teléfonos).
 - Actualmente: 300 líneas telefónicas, 450 a futuro (crecimiento de líneas del 50 %).
 - Utilización de 0,25 $Erl \Rightarrow$ Total: 112,5Erl.
 - Bloqueo del $1\% \Rightarrow$ Son necesarios 128 canales lógicos.

- Dimensionamiento acorde: hasta 206 llamadas simultáneas.
 - Fórmula de Engset: número finito de líneas entrantes (los teléfonos).
 - Actualmente: 300 líneas telefónicas, 450 a futuro (crecimiento de líneas del 50 %).
 - Utilización de $0.25Erl \Rightarrow \text{Total}$: 112.5Erl.
 - Bloqueo del $1\% \Rightarrow$ Son necesarios 128 canales lógicos.

- Dimensionamiento acorde: hasta 206 llamadas simultáneas.
 - Fórmula de Engset: número finito de líneas entrantes (los teléfonos).
 - Actualmente: 300 líneas telefónicas, 450 a futuro (crecimiento de líneas del 50 %).
 - Utilización de $0.25Erl \Rightarrow \text{Total}$: 112.5Erl.
 - Bloqueo del $1\% \Rightarrow$ Son necesarios 128 canales lógicos.

- Permite la grabación y monitoreo de vídeo proveniente de hasta 32 cámaras IP.
- Escalable: puede aumentar su capacidad hasta miles de cámaras
- Detección de movimiento integrado.
- Capacidad de Memoria: 250/500/1000 GB memoria de datos.
- Unidades ópticas CD-R/CD-RW o DVD-R/DVD-RW.

- Permite la grabación y monitoreo de vídeo proveniente de hasta 32 cámaras IP.
- Escalable: puede aumentar su capacidad hasta miles de cámaras
- Detección de movimiento integrado.
- Capacidad de Memoria: 250/500/1000 GB memoria de datos.
- Unidades ópticas CD-R/CD-RW o DVD-R/DVD-RW.

- Permite la grabación y monitoreo de vídeo proveniente de hasta 32 cámaras IP.
- Escalable: puede aumentar su capacidad hasta miles de cámaras
- Detección de movimiento integrado
- Capacidad de Memoria: 250/500/1000 GB memoria de datos.
- Unidades ópticas CD-R/CD-RW o DVD-R/DVD-RW.

- Permite la grabación y monitoreo de vídeo proveniente de hasta 32 cámaras IP.
- Escalable: puede aumentar su capacidad hasta miles de cámaras
- Detección de movimiento integrado.
- Capacidad de Memoria: 250/500/1000 GB memoria de datos.
- Unidades ópticas CD-R/CD-RW o DVD-R/DVD-RW.

- Permite la grabación y monitoreo de vídeo proveniente de hasta 32 cámaras IP.
- Escalable: puede aumentar su capacidad hasta miles de cámaras
- Detección de movimiento integrado.
- Capacidad de Memoria: 250/500/1000 GB memoria de datos.
- Unidades ópticas CD-R/CD-RW o DVD-R/DVD-RW.

- Permite la grabación y monitoreo de vídeo proveniente de hasta 32 cámaras IP.
- Escalable: puede aumentar su capacidad hasta miles de cámaras
- Detección de movimiento integrado.
- Capacidad de Memoria: 250/500/1000 GB memoria de datos.
- Unidades ópticas CD-R/CD-RW o DVD-R/DVD-RW.

- Calidad de la imágen, potencia del Tx y sensibilidad Rx.
- Frecuencia de operación, potencia del Tx y sensibilidad Rx.
- Compatibilidad con gateway y costo reducido.

- Calidad de la imágen, potencia del Tx y sensibilidad Rx.
- Frecuencia de operación, potencia del Tx y sensibilidad Rx.
- Compatibilidad con gateway y costo reducido.

- Calidad de la imágen, potencia del Tx y sensibilidad Rx.
- Frecuencia de operación, potencia del Tx y sensibilidad Rx.
- Compatibilidad con gateway y costo reducido.

- Calidad de la imágen, potencia del Tx y sensibilidad Rx.
- Frecuencia de operación, potencia del Tx y sensibilidad Rx.
- Compatibilidad con gateway y costo reducido.

- Obtención del MTBF de la red inalámbrica:
 - A partir de los circuitos y usando la norma MILHDBK-271
 - Usando datos propuestos por el provedor.

Equipo	MTBF en horas		
Switches	375.000		
Media-Gateway	375.000		
Access Point	125.000		

• Cálculo de la confiabilidad de la red.

•
$$MTBF = \frac{1}{\sum_{eminos} \frac{1}{MTBF_i}} = 1794h$$

- Obtención del MTBF de la red inalámbrica:
 - A partir de los circuitos y usando la norma MILHDBK-271
 - Usando datos propuestos por el provedor.

Equipo	MTBF en horas		
Switches	375.000		
Media-Gateway	375.000		
Access Point	125.000		

• Cálculo de la confiabilidad de la red.

•
$$MTBF = \frac{1}{\sum_{\text{arginos}} \frac{1}{MTBF_i}} = 1794h$$

- Obtención del MTBF de la red inalámbrica:
 - A partir de los circuitos y usando la norma MILHDBK-271
 - Usando datos propuestos por el provedor.

Equipo	MTBF en horas		
Switches	375.000		
Media-Gateway	375.000		
Access Point	125.000		

• Cálculo de la confiabilidad de la red.

•
$$MTBF = \frac{1}{\sum_{equipos} \frac{1}{MTBF_i}} = 1794h$$

- Obtención del MTBF de la red inalámbrica:
 - A partir de los circuitos y usando la norma MILHDBK-271
 - Usando datos propuestos por el provedor.

Equipo	MTBF en horas		
Switches	375.000		
Media-Gateway	375.000		
Access Point	125.000		

Cálculo de la confiabilidad de la red.

•
$$MTBF = \frac{1}{\sum_{emirros} \frac{1}{MTBF_i}} = 1794h$$

- Obtención del MTBF de la red inalámbrica:
 - A partir de los circuitos y usando la norma MILHDBK-271
 - Usando datos propuestos por el provedor.

Equipo	MTBF en horas		
Switches	375.000		
Media-Gateway	375.000		
Access Point	125.000		

Cálculo de la confiabilidad de la red.

•
$$MTBF = \frac{1}{\sum_{equipos} \frac{1}{MTBF_i}} = 1794h$$

Mantenibilidad

- ullet Modelo de Mantenibilidad: $MTR = \sum \ m_i P_i + m_{SR_i} P_{SR_i}$
 - Identificación de la falla.
 - Localización del equipamiento en falla.
 - Desconexión y remoción.
 - Envío a servicio técnico para reemplazo o reparación.
 - Reinstalación del equipo.
 - Verificación del funcionamiento.

Mantenibilidad

- ullet Modelo de Mantenibilidad: $MTR = \sum \ m_i P_i + m_{SR_i} P_{SR_i}$
 - Identificación de la falla.
 - Localización del equipamiento en falla.
 - Desconexión y remoción.
 - Envío a servicio técnico para reemplazo o reparación.
 - Reinstalación del equipo.
 - Verificación del funcionamiento.

Mantenibilidad

Equipo	m_i	m_{SRi}	
Access Points	15 Min	1 Días	
Switches	30 Min	0,5 Días	
Gateway	30 Min	0,5 Días	

i	n_i	P_i	P_{SRi}	$m_i P_i$	$m_{SRi}P_{SRi}$
Access Point	143	0.950	1.95	0.240	46,8
Switch	21	0.046	0.002	0.023	0.024
Mediagateway	1	0.0022	0	0.001	0

• MTR = 47,1 horas 0 1,96 días

•
$$D = \lim_{t \to \infty} F = \lim_{t \to \infty} T_f = \frac{\frac{T_f}{n}}{\frac{T_f + T_r}{n}} = \frac{MTBF}{MTBF + MTR}$$

- Disponibilidad: 97.44 %
 - No se contaron con los valores exactos de MTBF de los equipos.
 - Los valores de TMR fueron estimados según el criterio de los autores de este proyecto.
 - Modelo exigente, cualquier falla es una falla catastrófica

•
$$D = \lim_{t \to \infty} F = \lim_{t \to \infty} T_f = \frac{\frac{T_f}{n}}{\frac{T_f + T_r}{n}} = \frac{MTBF}{MTBF + MTR}$$

- Disponibilidad: 97.44 %
 - No se contaron con los valores exactos de MTBF de los equipos.
 - Los valores de TMR fueron estimados según el criterio de los autores de este provecto.
 - Modelo exigente, cualquier falla es una falla catastrófica

•
$$D = \lim_{t \to \infty} F = \lim_{t \to \infty} T_f = \frac{\frac{T_f}{n}}{\frac{T_f + T_r}{n}} = \frac{MTBF}{MTBF + MTR}$$

- Disponibilidad: 97.44 %
 - No se contaron con los valores exactos de MTBF de los equipos.
 - Los valores de TMR fueron estimados según el criterio de los autores de este proyecto.
 - Modelo exigente, cualquier falla es una falla catastrófica.

•
$$D = \lim_{t \to \infty} F = \lim_{t \to \infty} T_f = \frac{\frac{T_f}{n}}{\frac{T_f + T_r}{n}} = \frac{MTBF}{MTBF + MTR}$$

- Disponibilidad: 97.44 %
 - No se contaron con los valores exactos de MTBF de los equipos.
 - Los valores de TMR fueron estimados según el criterio de los autores de este proyecto.
 - Modelo exigente, cualquier falla es una falla catastrófica.

•
$$D = \lim_{t \to \infty} F = \lim_{t \to \infty} T_f = \frac{\frac{T_f}{n}}{\frac{T_f + T_r}{n}} = \frac{MTBF}{MTBF + MTR}$$

- Disponibilidad: 97.44 %
 - No se contaron con los valores exactos de MTBF de los equipos.
 - Los valores de TMR fueron estimados según el criterio de los autores de este proyecto.
 - Modelo exigente, cualquier falla es una falla catastrófica.

- ullet Es la probabilidad de encontrar al sistema funcionando en un instante t
- $D = \lim_{t \to \infty} F = \lim_{t \to \infty} T_f = \frac{\frac{T_f}{n}}{\frac{T_f + T_r}{n}} = \frac{MTBF}{MTBF + MTR}$
- Disponibilidad: 97.44 %
 - No se contaron con los valores exactos de MTBF de los equipos.
 - Los valores de TMR fueron estimados según el criterio de los autores de este proyecto.
 - Modelo exigente, cualquier falla es una falla catastrófica.

- Diseño de una nueva red que integra voz, video y datos.
- Proyecto innovador para la LAN de la FIUBA.
- Búsqueda de una solución para un cliente concreto.
- Se logra beneficiar a la comunidad educativa.

- Diseño de una nueva red que integra voz, video y datos.
- Proyecto innovador para la LAN de la FIUBA.
- Búsqueda de una solución para un cliente concreto.
- Se logra beneficiar a la comunidad educativa.

- Diseño de una nueva red que integra voz, video y datos.
- Proyecto innovador para la LAN de la FIUBA.
- Búsqueda de una solución para un cliente concreto.
- Se logra beneficiar a la comunidad educativa.

- Diseño de una nueva red que integra voz, video y datos.
- Proyecto innovador para la LAN de la FIUBA.
- Búsqueda de una solución para un cliente concreto.
- Se logra beneficiar a la comunidad educativa.

Recomendaciones para futuros diseños

 Tener en cuenta por la presencia de nuevas tecnologías (principalmente IEEE 802.11n)

Muchas Gracias!!!