Step-by-Step Guidelines for Propensity Score Weighting with Two Groups

Beth Ann Griffin

Four key steps

- 1) Choose the primary treatment effect of interest (ATE or ATT)
- 2) Estimate propensity score (ps) weights
- 3) Evaluate the quality of the ps weights
- 4) Estimate the treatment effect

Case study

- Aim: To estimate the causal effect of MET/CBT5 versus "usual care"
 - Data from 2 SAMSHA CSAT discretionary grants

MET/CBT5

- Longitudinal, observational
- 37 sites from EAT study
- N = 2459
- 2003/04 2007

"Usual Care"

- Longitudinal, observational
- 4 sites from ATM study
- N = 444
- 1998-1999

Case study

- Aim: To estimate the causal effect of MET/CBT5 versus "usual care"
 - Data from 2 SAMSHA CSAT discretionary grants

MET/CBT5

- Longitudinal, observational
- 37 sites from EAT study
- N = 2459
- 2003/04 2007

"Usual Care"

- Longitudinal, observational
- 4 sites from ATM study
- N = 444
- 1998-1999

All youth assessed with the GAIN at baseline, 6 months, and 12 months

Selection exists: Various meaningful ways in which the groups differ

Step 1: Choose the primary treatment effect (ATE or ATT)

- Today, we chose to focus on estimating an ATT-type estimand
 - Want to draw inferences about the effect of treatment for individuals in the control condition (so really ATC)
 - In this case, we can just flip treatment indicator so 1 = usual care and 0 = MET/CBT5 to get the needed ATT estimand for the control group
- Why?
 - Youth in the community are different from those targeted to receive MET/CBT5 in the EAT study
 - Thus, the policy question we want to address is

How would youth like those receiving "usual care" in the community have fared had they received MET/CBT5?

Step 2: Estimate the ps weights

- Only 1 command needed for this step
- Binary treatment command in TWANG currently available in R, SAS and STATA
- Shiny available soon (will showcase beta version at end of this session)

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of treatment variable (for ATT, it should = targeted group) Stata

- · use and_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

- · use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds
 bcs prmhtx, ///
 ntrees(5000) stopmethod(es.max) estimand(ATT) //
 rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
 objpath(C:\Users\sliu002\Desktop\twang\ pretreatment

 Specifies list of pretreatment

covariates

to balance on

- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies categorical variable race4g as i.race4g

- · use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of dataset

- · use aod_big,clear dataset
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///

```
ntrees(5000) stopmethod(es.max) estimand(ATT) ///
rcmd(*):\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
objpan(C:\Users\sliu002\Desktop\twang\webinar twang) ///
plotname(binary_twang_att.pdf)
```

- balane, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies the maximum number of iterations used by GBM. Should be large (5000 to 10000)

- · use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.\S\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies the criteria for choosing the optimal number of iterations.
Available choices include mean or max ES and mean or max KS statistics

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript exe) /// objpath(C:\Users\sliu002\Desktop\twang\we inar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies primary estimand of interest (ATT or ATE)

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///
 ntrees(5000) stopmethod(es.max) estimand(ATT) ///
 rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
 objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
 plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of outputted dataset with ps weights

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) /// plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies the R executable by name and path

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, /// ntrees(5000) stopmethod(es.max) estimand(ATT) /// rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) /// objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
 - plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies name of file where diagnostic plots will go

- · use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///
 ntrees(5000) stopmethod(es.max) estimand(ATT) ///
 rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
 objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
 plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

Specifies folder where outputted data and plots will go

- use aod_big,clear
- ps atm age female i.race4g sfs sps sds ias ces eps imds bcs prmhtx, ///
 ntrees(5000) stopmethod(es.max) estimand(ATT) ///
 rcmd(C:\Program Files\R\R-3.0.3\bin\Rscript.exe) ///
 objpath(C:\Users\sliu002\Desktop\twang\webinar twang) ///
 plotname(binary_twang_att.pdf)
- · balance, unweighted weighted
- save subdata_twogrp_att_wgts,replace

and weighted balance tables in the output window

Step 3: Evaluate the quality of the ps weights

- Key issues that should be checked:
 - Convergence = did the algorithm run long enough
 - Balance = how well matched the two groups
 look after weighting
 - Overlap = whether there is evidence that the distributions of the pretreatment covariates in the two groups line up well

Step 3: Checking convergence

Bad Convergence

Good Convergence

5000

Step 3: Checking balance

TWANG has numerous diagnostics for assessing balance

Step 3: Checking balance with tables

Step 3: Checking balance with tables Unweighted balance table

Unweighted

	txmn	txsd	ctmn	ctsd s	stdeffsz	stat	р	ks	kspval
_									
age	15.82	1.088	15.54	1.573	.255	4.59	0	.116	C
bcs	12.26	7.405	9.832	7.776	.328	6.309	0	.177	C
ces	.242	.363	.052	.177	.524	10.81	0	.262	C
eps	.279	.191	.208	.185	.373	7.267	0	.186	C
female	.214	.411	.315	.465	246	-4.666	0	.101	.001
ias	.224	.19	.087	.109	.719	14.73	0	.485	0
imds	7.723	8.234	7.831	8.515	013	253	.8	.03	.874
prmhtx	.449	.498	.367	.482	.164	3.202	.001	.082	.012
sds	3.099	2.332	2.338	2.22	.327	6.382	0	.147	0
sfs	.145	.147	.109	.123	.246	4.889	0	.12	0
sps	7.93	4.454	6.311	4.268	.364	7.1	0	.141	C
race4g									
1	. 673	.469	.51	.5	.349	21.45	0	.163	0
2	.135	.342	.081	.273	.157			.054	0
3	.097	.296	.241	.428	487			.144	0
4	.092	.29	.168	.374	261			.076	C
Missingn~s									
bcs	0	0	.002	.049	054	-37.83	0	.002	.297
eps	0	0	.002	.04	044	-32.14	0	.002	.395
ias	0	0	.009	.094	103	-72.54	0	.009	.045
imds	0	0	.002	.04	044	-32.14	0	.002	.395
prmhtx	.002	.047	.007	.083	059	-1.093	.275	.005	.25
race4g	.002	.047	0	0	.048			.002	0
sds	0	0	.004	.06	066	-47.38	0	.004	.201
sps	0	0	.001	.035	038	-27.37	0	.001	. 461

Step 3: Checking balance with tables Unweighted balance table

Unweighted

	txmn	txsd	ctmn	ctsd s	stdeffsz	stat	р	ks	kspval
					-				
age	15.82	1.088	15.54	1.573	.255	4.59	0	.116	(
bcs	12.26	7.405	9.832	7.776	.328	6.309	0	.177	(
ces	.242	.363	.052	.177	.524	10.81	0	.262	(
eps	.279	.191	.208	.185	.373	7.267	0	.186	(
female	.214	.411	.315	.465	246	-4.666	0	.101	.001
ias	.224	.19	.087	.109	.719	14.73	0	.485	(
imds	7.723	8.234	7.831	8.515	013	253	.8	.03	.874
prmhtx	.449	.498	.367	.482	.164	3.202	.001	.082	.012
sds	3.099	2.332	2.338	2.22	.327	6.382	0	.147	(
sfs	.145	.147	.109	.123	.246	4.889	0	.12	(
sps	7.93	4.454	6.311	4.268	.364	7.1	0	.141	(
race4g									
1	. 673	.469	.51	.5	.349	21.45	0	.163	(
2	.135	.342	.081	.273	.157			.054	(
3	.097	.296	.241	.428	487			.144	(
4	.092	.29	.168	.374	261			.076	(
Missingn~s									
bcs	0	0	.002	.049	054	-37.83	0	.002	.29
eps	0	0	.002	.04	044	-32.14	0	.002	.395
ias	0	0	.009	.094	103	-72.54	0	.009	.045
imds	0	0	.002	.04	044	-32.14	0	.002	.395
prmhtx	.002	.047	.007	.083	059	-1.093	.275	.005	.25
race4g	.002	.047	0	0	.048			.002	(
sds	0	0	.004	.06	066	-47.38	0	.004	.20
sps	0	0	.001	.035	038	-27.37	0	.001	.46

Highlights denotes rows with absolute ES > 0.10

Step 3: Checking balance with tables Weighted balance table

	txmn	txsd	ctmn	ctsd	stdeffsz	stat	р	ks	kspval
	45.00		45.0	4 450	010	000	24.0	050	E0.4
age	15.82	1.088	15.8	1.459	.019	.238	.812	.052	. 524
bcs	12.26	7.405	12.48	7.757	03	466	. 641	.06	.351
ces	.242	.363	.131	.284	.305	4.32	0	.152	0
eps	.279	.191	.255	.183	.124	2.056	.04	.064	.283
female	.214	. 411	.248	. 432	084	-1.311	.19	.035	.929
ias	.224	.19	.203	.169	.107	1.67	.095	.083	.073
imds	7.723	8.234	8.396	8.509	082	-1.262	.207	.062	.308
prmhtx	.449	.498	. 453	.498	008	129	.898	.004	1
sds	3.099	2.332	2.898	2.245	.086	1.312	.19	.049	. 6
sfs	.145	.147	.148	.144	019	283	.778	.049	. 605
sps	7.93	4.454	7.561	4.249	.083	1.272	.204	.052	.522
race4g									
1	. 673	.469	.666	.472	.016	1.083	.362	.007	.362
2	.135	.342	.105	.307	.087			.03	.362
3	.097	.296	.12	.325	079			.023	.362
4	.092	.29	.108	.311	055			.016	.362
Missingn~s									
bcs	0	0	0	.013	004	-21.96	0	0	.125
eps	0	0	0	.005	001	-30.06	0	0	.029
ias	0	0	0	.012	002	-72.29	0	0	0
imds	0	0	0	.005	001	-30.06	0	0	.029
prmhtx	.002	.047	.003	.053	007	212	.832	.001	.832
race4g	.002	.047	0	0	.048			.002	.362
sds	0	0	.002	.041	03	-42.25	0	.002	.004
sps	0	0	0	.011	004	-20.27	0	0	.151

Highlights denote rows with absolute ES > 0.10

Step 3: Checking balance graphically

Step 3: Checking balance graphically ES plot

Step 3: Checking balance graphically ES plot

Step 3: Checking balance graphically KS plot

Plot 5 (ks): K-S P-values of Group Distns of Covariates

Step 3: Checking balance graphically KS plot

Plot 5 (ks): K-S P-values of Group Distns of Covariates

Step 3: Checking balance graphically KS plot

Plot 5 (ks): K-S P-values of Group Distns of Covariates

Step 3: Checking overlap

Step 3: Checking overlap

Check for 0 (empty) cells on binary and categorical

	MET/ CBT5	Usual Care
Female	774	95
Race = 1	1254	299
Race = 2	200	60
Race = 3	592	43
Race = 4	412	41
Prior MH trt	897	199

Compare the minimums and maximums

	MET/ CBT5	Usual Care
SFS	(0, 0.71)	(0, 0.65)
SPS	(0, 16)	(0, 16)
SDS	(0, 7)	(0, 7)
IAS	(0, 1)	(0, 1)
CES	(0, 1)	(0, 1)
EPS	(0, 0.98)	(0, 0.99)
IMDS	(0, 41)	(0, 34)
BCS	(0, 31)	(0, 31)

Note: We haven't even begun to talk about the outcome yet

- Steps 1 to 3 do not involve any outcomes
- We first focus on dealing with selection/pre-treatment group differences
- Then, if we do a good job, we will move to outcome analyses

Step 4: Estimate the treatment effect

- Estimate as difference in propensity score weighted means between the two groups of interest
 - Since we are using weights, we need to adjust our standard errors for the weighting
 - Analogous to fitting regression models with survey data with survey weights

Step 4: Estimate the treatment effect

- Estimate as difference in propensity score weighted means between the two groups of interest
 - Since we are using weights, we need to adjust our standard errors for the weighting
 - Analogous to fitting regression models with survey data with survey weights

We can use survey analysis commands in any software to estimate treatment effects

Step 4: Estimate the treatment effect (cont.)

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5[pweight=esmaxatt]

```
(sum of wgt is 7.3694e+02)

Linear regression

Number of obs = 2901

F( 1, 2899) = 4.69

Prob > F = 0.0304

R-squared = 0.0049

Root MSE = .13845
```

sfs8p12	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0198438	.0091637	-2.17	0.030	0378119	0018758
_cons	.1141963	.0066653	17.13	0.000	.1011271	.1272656

Step 4: Estimate the treatment effect (cont.)

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5[pweight=esmaxatt]

```
(sum of wgt is 7.3694e+02)
                                                         Number of obs =
Linear regression
                                                                             2901
                                                         F(1, 2899) =
                                                                             4.69
                                                         Prob > F
                                                                           0.0304
                                                         R-squared
                                                                           0.0049
                                                         Root MSE
                                                                           .13845
                              Robust
     sfs8p12
                             Std. Err.
                                                             [95% Conf. Interval]
                     Coef.
                                                  P>|t|
     metcbt5
                -.0198438
                             .0091637
                                          -2.17
                                                  0.030
                                                           -.0378119
                                                                        -.0018758
                             .0066653
                                          17.13
                                                  0.000
                                                             .1011271
       cons
                  .1141963
                                                                         .1272656
```

Results show that youth like those in "usual care" would have fared better had they received MET/CBT5

Comparison with unweighted treatment effect

Stata Code:

- use subdata_twogrp_att_wgts,clear
- · reg sfs8p12 metcbt5

Source	SS	df		MS		Number of obs		2901
Model Residual Total	.832622997 41.6553919 42.4880148	1 2899 2900	.014	622997 368883 465104		F(1, 2899) Prob > F R-squared Adj R-squared Root MSE	= =	57.95 0.0000 0.0196 0.0193 .11987
sfs8p12	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
metcbt5 _cons	0470548 .1141963	.0061		-7.61 20.07	0.000	0591753 .1030419		0349343 1253508

Comparison with unweighted treatment effect

Stata Code:

- use subdata_twogrp_att_wgts,clear
- · reg sfs8p12 metcbt5

Source	SS	df	MS		Number of obs	
					F(1, 2899)	= 57.95
Model	.832622997	1 .83	2622997		Prob > F	= 0.0000
Residual	41.6553919	2899 .01	4368883		R-squared	= 0.0196
					Adj R-squared	= 0.0193
Total	42.4880148	2900 .0	1465104		Root MSE	= .11987
	'					
sfs8p12	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0470548	.0061815	-7.61	0.000	0591753	0349343
_cons	.1141963	.0056888	20.07	0.000	.1030419	.1253508

- Also shows significant evidence that youth in "usual care" have higher substance use frequency at 12-months than those in MET/CBT5
- Magnitude of the effect unweighted is double (-0.02 vs -0.047)

Step 4: Doubly robust estimation

- "Doubly robust" estimation is the preferred route for estimating causal treatment effects
 - Combines fitting a propensity score weighted regression model with the inclusion of additional pretreatment control covariates
 - As long as one piece is right (either the multivariate outcome model or the propensity score model), obtain consistent treatment effect estimates

Step 4: Doubly robust estimation: Adding in covariates with lingering imbalances

Stata Code:

- use subdata_twogrp_att_wgts,clear
- reg sfs8p12 metcbt5 ces [pweight=esmaxatt]

```
(sum of wgt is 7.3694e+02)
```

Linear regression

Number of obs = 2901 F(2, 2898) = 2.67Prob > F = 0.0693R-squared = 0.0070Root MSE = .13832

sfs8p12	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
metcbt5	0219624	.0096355	-2.28	0.023	0408555	0030693
ces	0191335	.0161545	-1.18	0.236	050809	.012542
_cons	.118827	.0078169	15.20	0.000	.1034998	.1341542

Conclusions

- Use of propensity score weighting reduced bias in our treatment effect estimate
 - Greatly improved balance on observed pretreatment covariates
 - Magnitude of change went from 0.40 effect size difference to 0.20 effect size difference
- Use of propensity score weighting helped us produce more robust estimates of how youth like those in usual care would have fared had they received MET/CBT5

Now want to showcase the Shiny App

Data acknowledgements

The development of these slides was funded by the National Institute of Drug Abuse grant number 1R01DA01569 (Pls: Griffin/McCaffrey) and was supported by the Center for Substance Abuse Treatment (CSAT), Substance Abuse and Mental Health Services Administration (SAMHSA) contract #270-07-0191 using data provided by the following grantees: Adolescent Treatment Model (Study: ATM: CSAT/SAMHSA contracts #270-98-7047, #270-97-7011, #277-00-6500, #270-2003-00006 and grantees: TI-11894, TI-11874; TI-11892), the Effective Adolescent Treatment (Study: EAT; CSAT/SAMHSA contract #270-2003-00006 and grantees: TI-15413, TI-15433, TI-15447, TI-15461, TI-15467, TI-15475, TI-15478, TI-15479, TI-15481, TI-15483, TI-15486, TI-15511, TI-15514, TI-15545, TI-15562, TI-15670, TI-15671, TI-15672, TI-15674, TI-15678, TI-15682, TI-15686, TI-15415, TI-15421, TI-15438, TI-15446, TI-15458, TI-15466, TI-15469, TI-15485, TI-15489, TI-15524, TI-15527, TI-15577, TI-15584, TI-15586, TI-15677), and the Strengthening Communities-Youth (Study: SCY; CSAT/SAMHSA contracts #277-00-6500, #270-2003-00006 and grantees: TI-13305, TI-13308, TI-13313, TI-13322, TI-13323, TI-13344, TI-13345, TI-13354). The authors thank these grantees and their participants for agreeing to share their data to support these secondary analyses. The opinions about these data are those of the authors and do not reflect official positions of the government or individual grantees.