JOIN OVER PATHS

- Recall: Given a program as a LTS $\Gamma_c \equiv (V, L, l_0, l_e, T)$, the assertion map $\mu: L \to \mathbb{P}(State)$ associates a set of states with every location.
 - $\mu(l)$ is the set of states reachable at l during any execution.
 - μ is also called the Concrete Join Over Paths (JOP) or the collecting semantics.
- Instead of operating over concrete states, we can also consider JOP over abstract states.

ABSTRACT TRANSFER FUNCTION

- Given a Galois Connection ($\mathbb{P}(State), \subseteq) \stackrel{\alpha}{\rightleftharpoons} (D, \leq)$, for every program command p, we can define the abstract transfer function \hat{f}_p (previously called the abstract strongest post-condition operator)
 - $\hat{f}_p: D \to D$.
- We can define the concrete transfer function as follows: $f_p(\sigma) = \{\sigma' | (\sigma,p) \hookrightarrow (\sigma',skip)\}.$

$$f_p(c) = \bigcup_{\sigma \in c} f_p(\sigma)$$

- Then, the abstract transfer function must be a consistent abstraction of the concrete transfer function:
 - $\forall d \in D . f_p(\gamma(d)) \subseteq \gamma(\hat{f}_p(d))$
 - Equivalently, $\forall c \in \mathbb{P}(State) . \hat{f}_p(\alpha(c)) \leq \alpha(f(c))$

- Consider the sign abstract domain, and the program command p: x := x+1.
 - $\hat{f}_p(+) = ???$

- Consider the sign abstract domain, and the program command p: x := x+1.
 - $\hat{f}_p(+) = +$

- Consider the sign abstract domain, and the program command p: x := x+1.
 - $\hat{f}_p(+) = +$
 - $\hat{f}_p(-) = ???$

- · Consider the sign abstract domain, and the program command p : x := x+1.

 - $\hat{f}_p(+) = +$ $\hat{f}_p(-) = + -$

• Consider the sign abstract domain, and the program command p: x := x+1.

•
$$\hat{f}_p(+) = +$$

•
$$\hat{f}_p(-) = +-$$

•
$$\hat{f}_p(+-) = +-$$

•
$$\hat{f}_p(\perp) = \perp$$

• See whether the condition $\forall d \in D . f_p(\gamma(d)) \subseteq \gamma(\hat{f}_p(d))$ is satisfied.

ABSTRACT JOP

- Instead of executing the program with concrete states, we execute the program with abstract state, and the abstract transfer function for each program command.
- Collect all the abstract states at each location, for every possible execution
 - Their join is the abstract JOP map, $\hat{\mu}: L \to D$.

EXAMPLE

$$\begin{array}{c} \mathbf{i} := \mathbf{0}; \\ \text{while}(\mathbf{i} < \mathbf{n}) \text{ do} \\ \mathbf{i} := \mathbf{i} + \mathbf{1}; \\ \\ \mathbf{i} := \mathbf{0} \\ \\ \mathbf{i} := \mathbf{i} + \mathbf{1} \end{array}$$

EXAMPLE - COLLECTING SEMANTICS

EXAMPLE - COLLECTING SEMANTICS

EXAMPLE - ABSTRACT JOP

EXAMPLE - ABSTRACT JOP

SOUNDNESS OF ABSTRACT INTERPRETATION DEFINITION

- A given abstract interpretation (consisting of the abstract domain (D, \leq) , (α, γ) , and abstract transfer functions \hat{F}_D) is sound, if for all $d_0 \in D$, assuming that $\hat{\mu}(l_0) = d_0$, the γ image of the abstract JOP $\hat{\mu}$ at all locations over approximates the collecting semantics μ , assuming that $\mu(l_0) = c_0$ where $c_0 \subseteq \gamma(d_0)$.
 - For all locations l, $\gamma(\hat{\mu}(l)) \supseteq \mu(l)$.

SOUNDNESS OF ABSTRACT INTERPRETATION

FROM ABSTRACT INTERPRETATION TO VERIFICATION

- In order to show the validity of the Hoare Triple $\{P\}c\{Q\}$, we instantiate a sound Al $(D, \leq, \alpha, \gamma, \hat{F}_D)$ with $\hat{\mu}(l_0) = d_0$, such that $\alpha(P) \leq d_0$ and compute the resulting JOP $\hat{\mu}$ at all locations.
- If $\gamma(\hat{\mu}(l_e)) \subseteq Q$, then the Hoare Triple is valid.
 - Since $\alpha(P) \leq d_0$, by definition of Galois connection, $P \subseteq \gamma(d_0)$.
 - Hence, by definition of soundness of AI, $\mu(l_e) \subseteq \gamma(\hat{\mu}(l_e))$, where μ is the collecting semantics assuming $\mu(l_0) = P$.

SOUNDNESS OF ABSTRACT INTERPRETATION SUFFICIENT CONDITIONS

- An abstract interpretation $(D, \leq, \alpha, \gamma, \hat{F}_D)$ is sound if:
 - (D, \leq) is complete lattice.
 - $(\mathbb{P}(State), \subseteq) \stackrel{\alpha}{\underset{\gamma}{\rightleftharpoons}} (D, \le)$
 - Every abstract transfer function in \hat{F}_D is a consistent abstraction of the corresponding concrete transfer function.

- Lemma-1: First, let us show that for any abstract transfer function $\hat{f} \in \hat{F}_D$ which is a consistent abstraction of concrete transfer function f, the following holds:
 - $\forall c \in \mathbb{P}(State) . \forall d \in D . c \subseteq \gamma(d) \Rightarrow f(c) \subseteq \gamma(\hat{f}(d))$

• Lemma-1: First, let us show that for any abstract transfer function $\hat{f} \in \hat{F}_D$ which is a consistent abstraction of concrete transfer function f, the following holds:

• $\forall c \in \mathbb{P}(State) . \forall d \in D . c \subseteq \gamma(d) \Rightarrow f(c) \subseteq \gamma(\hat{f}(d))$

- Lemma-1: First, let us show that for any abstract transfer function $\hat{f} \in \hat{F}_D$ which is a consistent abstraction of concrete transfer function f, the following holds:
 - $\forall c \in \mathbb{P}(State) . \forall d \in D . c \subseteq \gamma(d) \Rightarrow f(c) \subseteq \gamma(\hat{f}(d))$

Proof: Consider $c \in \mathbb{P}(State), d \in D$ such that $c \subseteq \gamma(d)$.

Note that f is monotonic. (Why?)

Hence, $f(c) \subseteq f(\gamma(d))$.

Since \hat{f} is a consistent abstraction of f, $f(\gamma(d)) \subseteq \gamma(\hat{f}(d))$.

Hence, $f(c) \subseteq \gamma(\hat{f}(d))$.

PROOF OF SOUNDNESS OF AI CONCRETE AND ABSTRACT JOP

- Given a path $\pi: l_0 \stackrel{p_0}{\to} l_1 \stackrel{p_1}{\to} \dots \stackrel{p_{n-1}}{\to} l_n$ in the program LTS, the combined abstract transfer function \hat{f}_{π} is the composition of the individual transfer functions: $\hat{f}_{p_{n-1}} \circ \dots \circ \hat{f}_{p_1} \circ \hat{f}_{p_0}$
 - Similarly, the concrete transfer function f_π is $f_{p_{n-1}} \circ \dots \circ f_{p_1} \circ f_{p_0}$
- Let Π_l be the set of all possible paths from l_0 to l.
- Assuming that $\hat{\mu}(l_0) = d_0$, the abstract JOP at a location l is given by:

$$\hat{\mu}(l) = \bigsqcup_{\pi \in \Pi_l} \hat{f}_{\pi}(d_0)$$

Similarly, assuming $\mu(l_0)=c_0$ the concrete JOP, $\mu(l)=\bigsqcup_{\pi\in\Pi_l}f_\pi(c_0)$

• Lemma-2: Assuming that $c_0 \subseteq \gamma(d_0)$, we will show that for any location l and path $\pi \in \Pi_l$, $f_{\pi}(c_0) \subseteq \gamma(\hat{f}_{\pi}(d_0))$.

Proof: We will use induction to show that for any $i \geq 0$, π_i which is the prefix of π of length i, $f_{\pi_i}(c_0) \subseteq \gamma(\hat{f}_{\pi_i}(d_0))$.

Base Case: For i=0, we are already given that $c_0 \subseteq \gamma(d_0)$.

Inductive Case: The inductive hypothesis is that $f_{\pi_i}(c_0) \subseteq \gamma(\hat{f}_{\pi_i}(d_0))$.

Consider π_{i+1} . Let the (i+1)th edge in the path be labelled by program command p .

Then, $f_{\pi_{i+1}} = f_p \circ f_{\pi_i}$ and $\hat{f}_{\pi_{i+1}} = \hat{f}_p \circ \hat{f}_{\pi_i}$.

Let $f_{\pi_i}(c_0) = c$ and $\hat{f}_{\pi_i}(d_0) = d$. We have $c \subseteq \gamma(d)$ and \hat{f}_p is a consistent abstraction of f_p . Hence, by Lemma-1, $f_p(c) \subseteq \gamma(\hat{f}_p(d))$.

This proves that $f_{\pi_{i+1}}(c_0) \subseteq \gamma(\hat{f}_{\pi_{i+1}}(d_0))$.

Proof: By Lemma-2, we know that $\forall \pi \in \Pi_l. f_{\pi}(c_0) \subseteq \gamma(\hat{f}_{\pi}(d_0)).$

Hence,
$$\coprod_{\pi\in\Pi_l} f_\pi(c_0) \subseteq \coprod_{\pi\in\Pi_l} \gamma(\hat{f}_\pi(d_0)).$$
 Why?

 $[\bigsqcup_{\pi \in \Pi_l} \gamma(\hat{f}_{\pi}(d_0)) \supseteq \gamma(\hat{f}_{\pi}(d_0)) \supseteq f_{\pi}(c_0). \text{ Hence, } \bigsqcup_{\pi \in \Pi_l} \gamma(\hat{f}_{\pi}(d_0)) \text{ is an upper }$

bound of $\{f_{\pi}(c_0) \mid \pi \in \Pi_l\}.$

Proof: By Lemma-2, we know that $\forall \pi \in \Pi_l. f_{\pi}(c_0) \subseteq \gamma(\hat{f}_{\pi}(d_0)).$

Hence,
$$\coprod_{\pi \in \Pi_l} f_{\pi}(c_0) \subseteq \coprod_{\pi \in \Pi_l} \gamma(\hat{f}_{\pi}(d_0)).$$

RECALL: JOIN PRESERVING

• Given posets (D_1, \leq_1) and (D_2, \leq_2) , a monotonic function $f: D_1 \to D_2$, and $S \subseteq D_1$, if $\sqcup_1 S$ and $\sqcup_2 f(S)$ exist, then $\sqcup_2 f(S) \leq_2 f(\sqcup_1 S)$.

• Finally, we will show that for any location l, $\bigsqcup_{\pi \in \Pi_l} f_\pi(c_0) \subseteq \gamma(\bigsqcup_{\pi \in \Pi_l} \hat{f}_\pi(d_0)), \text{ assuming that } c_0 \subseteq \gamma(d_0).$

Proof: By Lemma-2, we know that $\forall \pi \in \Pi_l. f_{\pi}(c_0) \subseteq \gamma(\hat{f}_{\pi}(d_0)).$

Hence,
$$\bigsqcup_{\pi \in \Pi_l} f_\pi(c_0) \subseteq \bigsqcup_{\pi \in \Pi_l} \gamma(\hat{f}_\pi(d_0)).$$

We know that γ is monotonic and (D, \leq) is a complete lattice, so that $\coprod \hat{f}_{\pi}(d_0)$ exists. Hence, by the join-preserving property, $\pi \in \Pi_t$

$$\bigsqcup_{\pi \in \Pi_l} \gamma(\hat{f}_\pi(d_0)) \subseteq \gamma(\bigsqcup_{\pi \in \Pi_l} \hat{f}_\pi(d_0)). \text{ Hence, } \bigsqcup_{\pi \in \Pi_l} f_\pi(c_0) \subseteq \gamma(\bigsqcup_{\pi \in \Pi_l} \hat{f}_\pi(d_0))$$

ABSTRACT TRANSFER FUNCTION SIGN ABSTRACT DOMAIN

$$\begin{array}{l} \mathsf{D} = V \to \{\, + - \,, + \,, - \,, \, \bot \,\,\} \\ p : \mathsf{x} := \mathsf{e} \\ \hat{f}_p(d) \triangleq d[x \to g(d,e)] \\ \\ g(d,e_1 + e_2) = \begin{cases} + & \text{if } g(d,e_1) = + \text{ and } g(d,e_2) = + \\ - & \text{if } g(d,e_1) = - \text{ and } g(d,e_2) = - \\ + - & \text{otherwise} \\ + & \text{if } g(d,e_1) = + \text{ and } g(d,e_2) = - \\ - & \text{if } g(d,e_1) = - \text{ and } g(d,e_2) = + \\ + - & \text{otherwise} \\ g(d,\mathsf{y}) = d(\mathsf{y}) & \text{if } \mathsf{y} \text{ is a program variable} \\ \hat{f}_p(\,\,\bot\,\,) = \bot \end{array}$$