Unidade II: Somatórios (∑)

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

Agenda

- Motivação ∑
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

Principal Motivação na Ciência da Computação

• Levantamento de custo (e.g., tempo e memória) de algoritmos

 O custo de um algoritmo é a soma dos custos das suas operações

• Mostre o somatório dos n primeiros números inteiros

Mostre o somatório dos n primeiros números inteiros


```
Ciência da Computação
```

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
i ≤ n
∑ i
i = 1
```

Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```


Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
Matemática
```

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

condição de parada

Mostre o somatório dos n primeiros números inteiros

Ciência da Computação

```
Matemática
```

```
int somatorio(int n){
   int soma = 0;
   for(int i = 1; i <= n; i++){
      soma += i;
   }
   return soma;
}</pre>
```


 O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
    }
    swap(menor, i);
}
```

 O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
     }
     swap(menor, i);
}
```

i	0	1	2	3	n-2
c(i) = (n - (i+1))	n-1	n-2	n-3	n-4	 1

$$\sum_{i=0}^{n-2} (n - i - 1)$$

Agenda

- Motivação
- Notação ∑
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

Variações da Notação Sigma

$$\sum_{i=1}^{i \le n} a_i = \sum_{1 \le i \le n}^{n} a_i = \sum_{1 \le i \le n}^{i \le n} a_i$$

$$\sum_{n=1}^{4} n^2 = ?$$

Escolha 1 resposta:

$$1+2+3+4$$

$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

$$\sum_{n=1}^{4} n^2 = ?$$

Escolha 1 resposta:

$$1+2+3+4$$

$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

$$\sum_{1}^{4} 3i = ?$$

$$\sum_{1}^{4} 3i = ?$$

Neste material, a menos que dito o contrário, a notação \sum_{1}^{n} incrementa o índice i. Para evitar ambiguidade, podemos usar a notação \sum_{1}^{n}

$$\sum_{1}^{4} 3i = (3.1) + (3.2) + (3.3) + (3.4) = 30$$

$$\sum_{1}^{4} 3i = 3 \cdot \sum_{1}^{4} i = 3 \cdot (1 + 2 + 3 + 4) = 30$$

$$\sum_{1}^{4} (3 - 2i) = ?$$

$$\sum_{1}^{4} (3 - 2i) = (3 - (2 . 1)) + (3 - (2 . 2)) + (3 - (2 . 3)) + (3 - (2 . 4)) = -8$$

$$\sum_{1}^{4} (3-2i) = \sum_{1}^{4} 3-2\sum_{1}^{4} i = (3+3+3+3)-2(1+2+3+4) = -8$$

$$\sum_{1}^{3} (2i + x) = ?$$

$$\sum_{1}^{3} (2i + x) = 2(1+2+3) + (x+x+x) = 12 + 3x$$

$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = ?$$

$$\sum_{0}^{5} i \cdot (i-1) \cdot (5-i) = 0 \cdot (-1) \cdot 5 + 1 \cdot 0 \cdot 4 + 2 \cdot 1 \cdot 3 + 3 \cdot 2 \cdot 2 + 4 \cdot 3 \cdot 1 + 5 \cdot 4 \cdot 0 = 0 + 0 + 6 + 12 + 12 + 0 = 30$$

Podemos afirmar que
$$\sum_{0}^{5} i.(i-1).(5-i) = \sum_{2}^{4} i.(i-1).(5-i)$$
?

Podemos afirmar que
$$\sum_{0}^{5} i.(i-1).(5-i) = \sum_{2}^{4} i.(i-1).(5-i)$$
?

Sim, pois como os termos a_0 , a_1 e a_5 são iguais a zero, o resultado dos dois somatórios é igual a $(a_2 + a_3 + a_4)$

Considere a soma 4 + 25 + 64 + 121.

Qual expressão é igual à soma acima?

Escolha todas as respostas aplicáveis:

$$\sum_{i=0}^{3} (i^2 + 2i + 4)$$

$$\sum_{i=0}^{3} (3i+2)^2$$

Nenhuma das anteriores

Considere a soma 4 + 25 + 64 + 121.

Qual expressão é igual à soma acima?

Escolha todas as respostas aplicáveis:

$$\sum_{i=0}^{3} (i^2 + 2i + 4)$$

$$\sum_{i=0}^{3} (3i+2)^2 = (3x0+2)^2 + (3x1+2)^2 + (3x2+2)^2 + (3x3+2)^2 = 4+25+64+121$$

Nenhuma das anteriores

Exercício Resolvido (10)

$$\sum_{m=1}^{4} 8k - 6m = ?$$

Escolha 1 resposta:

$$8k-6+8k-12+8k-18+8k-24$$

$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

Exercício Resolvido (10)

$$\sum_{m=1}^{4} 8k - 6m = ?$$

Escolha 1 resposta:

$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência (∑)
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais

Somas e Relações de Recorrência

Calculamos uma soma usando, por exemplo, relações de recorrência

$$S_0 = a_0$$

 $S_n = S_{n-1} + a_n$, para n > 0

As relações de recorrência serão discutidas em Matemática Discreta (3812) ou Teoria dos Grafos e Computabilidade (3813)

Exemplo de Equação de Recorrência (1/2)

Quais são os valores da sequência abaixo?

Exemplo de Equação de Recorrência (1/2)

Quais são os valores da sequência abaixo?

i	0	1	2	3	4	5	
fib(i)	1	1	2	3	5	8	•••

Exemplo de Equação de Recorrência (2/2)

Qual é a relação da equação abaixo?

Exemplo de Equação de Recorrência (2/2)

Qual é a relação da equação abaixo?

$$fat(4) = ?$$

Exemplo de Equação de Recorrência (2/2)

Qual é a relação da equação abaixo?

$$fat(1) = 1$$

$$fat(n) = n \cdot fat(n-1)$$

```
fat(4) = 4 \cdot fat(3)
```

$$fat(3) = 3 \cdot fat(2)$$

$$fat(2) = 2$$
. $fat(1)$, contudo, sabemos que $fat(1) = 1$

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas (∑)

- Somas Múltiplas
- Alguns Métodos Gerais

Frase de [GRAHAM, 95]

A chave do sucesso na manipulação de somas está na habilidade de transformar uma soma em outra mais simples ou mais perto de algum objetivo

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas

- Somas Múltiplas
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas

- Somas Múltiplas
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

- Distributividade
- Associatividade
- Comutatividade

 Distributividade: permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Por exemplo, por distributividade, $c.a_{-1} + c.a_0 + c.a_1 = c.(a_{-1} + a_0 + a_1)$

 Distributividade: permite mover constantes para dentro ou fora de um somatório

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Também se aplica à divisão

$$\sum_{i \in I} \frac{a_i}{c} = \frac{1}{c} \cdot \sum_{i \in I} a_i$$

 Associatividade: permite quebrar um somatório em duas partes ou combinar dois somatórios em um

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Por exemplo, por associatividade, $(a_{-1} + b_{-1}) + (a_0 + b_0) + (a_1 + b_1) =$ $(a_{-1} + a_0 + a_1) + (b_{-1} + b_0 + b_1)$

 Associatividade: permite quebrar um somatório em duas partes ou combinar dois somatórios em um

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Também se aplica à subtração

$$\sum_{i \in I} (a_i - b_i) = \sum_{i \in I} a_i - \sum_{i \in I} b_i$$

• Comutatividade: permite colocar os termos em qualquer ordem

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

Por exemplo, por comutatividade, $a_{-1} + a_0 + a_1 = a_1 + a_{-1} + a_0$

Distributividade

$$\sum_{i \in I} c \cdot a_i = c \cdot \sum_{i \in I} a_i$$

Associatividade

$$\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

Comutatividade

$$\sum_{i \in I} a_i = \sum_{p(i) \in I} a_{p(i)}$$

Exercício Resolvido (11)

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) ()
$$\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3$$
;

b) ()
$$\sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c) ()
$$\sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d)
$$\left(\right) \sum_{k=0}^{12} k^p = \left(\sum_{k=0}^{12} k \right)^p$$
;

e) ()
$$\sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t$$
.

Exercício Resolvido (11)

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a)
$$(\checkmark)$$
 $\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3;$

b)
$$(\mathbf{X}) \sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c)
$$(1) \sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d)
$$(X) \sum_{k=0}^{12} k^p = \left(\sum_{k=0}^{12} k\right)^p$$
;

e)
$$(\checkmark) \sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t.$$

Exercício Resolvido (12)

• Explique a propriedade comutativa e, em seguida, ilustre sua resposta com o somatório

$$S = \sum_{0 \le i \le 4} (3 + 4.i)$$

Exercício Resolvido (12)

 Explique a propriedade comutativa e, em seguida, ilustre sua resposta com o somatório

$$S = \sum_{0 \le i \le 4} (3 + 4.i)$$

A propriedade comutativa permite colocar os termos em qualquer ordem.

Por exemplo, graças a ela, temos que:

$$(3 + 4.0) + (3 + 4.1) + (3 + 4.2) + (3 + 4.3) + (3 + 4.4) =$$
 $(3 + 4.[4-0]) + (3 + 4.[4-1]) + (3 + 4.[4-2]) + (3 + 4.[4-3]) + (3 + 4.[4-4]) =$
 $(3 + 4.[4]) + (3 + 4.[3]) + (3 + 4.[2]) + (3 + 4.[1]) + (3 + 4.[0])$

Lembrete

 Uma PA é uma sequência cuja diferença (razão) entre dois termos consecutivos é constante

o O termo inicial, é o a e

A razão é b . i onde b uma constante e i a ordem do termo

Por exemplo, na sequência 5, 7, 9, 11, 13, ..., os valores a e b são 5 e
2, respectivamente. Logo, temos: (5 + 2.0), (5 + 2.1), (5 + 2.2), (5 + 2.3), (5 + 2.4), ...

Exercício Resolvido (13):

• Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

Exercício Resolvido (13):

• Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ...

Os valores a e b são 1 e 3, respectivamente, logo, temos:

$$1 + 3 \cdot 0 = 1$$

$$1 + 3 \cdot 1 = 4$$

$$1 + 3 \cdot 2 = 7$$

$$1 + 3 \cdot 3 = 10$$

$$1 + 3 \cdot 4 = 13$$

. . .

Exercício Resolvido (14):

• Mostre os valores de a e b na sequência 5, 7, 9, 11, 13, ...

Exercício Resolvido (14):

• Mostre os valores de a e b na sequência 5, 7, 9, 11, 13, ...

Os valores a e b são 5 e 2, respectivamente, logo, temos:

$$5 + 2 \cdot 0 = 5$$

$$5 + 2 \cdot 1 = 7$$

$$5 + 2 \cdot 2 = 9$$

$$5 + 2 \cdot 3 = 11$$

$$5 + 2 \cdot 4 = 13$$

. . .

Seja a soma de uma progressão aritmética:

$$S = \sum_{0 \le i \le n} a + b.i$$

Seja a soma de uma progressão aritmética:

$$S = \sum_{0 \le i \le n} a + b.i$$

 Aplicando a comutatividade, podemos somar do maior para o menor, trocando i por (n-i):

$$S = \sum_{0 \le n-i \le n} [a + b.(n-i)] = \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como S =
$$\sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$$
, podemos afirmar que:

$$2S = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

• Como S = $\sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$, podemos afirmar que:

$$2S = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

Aplicando associatividade, podemos combinar os dois somatórios:

$$2S = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i]$$

• Como S = $\sum_{0 \le i \le n} [a + b.i] = \sum_{0 \le i \le n} [a + b.n - b.i]$, podemos afirmar que:

$$2S = \sum_{0 \le i \le n} [a + b.i] + \sum_{0 \le i \le n} [a + b.n - b.i]$$

Aplicando associatividade, podemos combinar os dois somatórios:

$$2S = \sum_{0 \le i \le n} [a + b.i + a + b.n - b.i] = \sum_{0 \le i \le n} [2.a + b.n]$$

• Simplificando, temos

Usando distributividade, temos:

$$2S = \sum_{0 \le i \le n} [2.a + b.n] = (2.a + b.n) \cdot \sum_{0 \le i \le n} 1$$

Substituindo o somatório:

Exemplo: Encontre a Soma de uma PA

Substituindo o somatório:

$$2S = (2.a + b.n)(n+1)$$

Exemplo: Encontre a Soma de uma PA

• Substituindo o somatório:

$$2S = (2.a + b.n)(n+1)$$

Dividindo por dois, temos:

$$S = \sum_{0 \le i \le n} [a + b.i] = (2a + bn)(n+1)$$

• Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de $0 + 1 + 2 + 3 + ... + n = \sum_{\substack{0 \le i \le n}} i$

• Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de $0 + 1 + 2 + 3 + ... + n = \sum_{\substack{0 \le i \le n}} i$

Resposta: Nesse caso, temos uma progressão cujos valores a e b são zero e um, respectivamente

$$S = \sum_{0 \le i \le n} [0 + 1.i] = \underbrace{(2x0 + 1.n).(n+1)}_{0 \le i \le n} = \underbrace{n.(n+1)}_{2}$$

Dada a fórmula fechada do somatório dos *n* primeiros números inteiros,
 mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

Dada a fórmula fechada do somatório dos *n* primeiros números inteiros,
 mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
int somatorio(int n){
    return ((n * (n+1))/2);
}
```


• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Aplicando associatividade, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = \sum_{0 \le i \le n-2} n - \sum_{0 \le i \le n-2} i - \sum_{0 \le i \le n-2} 1$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

• Simplificando, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - \sum_{0 \le i \le n-2} i - (n-1)$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Sabendo que:

$$\sum_{0 \le i \le n} i = \underline{n(n+1)} \implies \sum_{i = n-2} \underline{i} = (\underline{n-2})(\underline{n-1})$$

$$0 \le i \le n \qquad 2 \qquad 0 \le i \le n-2 \qquad 2$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (\underline{n-2})(\underline{n-1}) - (\underline{n-1})$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

· Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (\underline{n-2})(\underline{n-1}) - (\underline{n-1})$$

$$= 2$$

$$= 2\underline{n(n-1)} - (\underline{n-2})(\underline{n-1}) - 2(\underline{n-1})$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (n-2)(n-1) - (n-1)$$

$$= 2n(n-1) - (n-2)(n-1) - 2(n-1)$$

$$= 2n^2 - 2n - [n^2 3n + 2] - 2n + 2$$

• O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza $\sum_{0 \le i \le n-2} (n - i - 1)$ comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

Assim, temos:

$$\sum_{0 \le i \le n-2} (n-i-1) = n(n-1) - (n-2)(n-1) - (n-1)$$

$$= 2n(n-1) - (n-2)(n-1) - 2(n-1)$$

$$= 2n^2 - 2n - [n^2 3n + 2] - 2n + 2$$

$$= n^2 - n$$

$$= 2n^2 - n$$

• Justifique a igualdade:

$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

Justifique a igualdade:

$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

Resposta: Os dois somatórios são iguais, entretanto, o segundo faz uma soma a mais que é com seu primeiro termo cujo valor é zero.

Justifique a diferença:

$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

Justifique a diferença:

$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

Resposta: Os somatórios são diferentes, porque, não necessariamente, o primeiro termo (a_0) é igual a zero

• Justifique a igualdade:

$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Justifique a igualdade:

$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Resposta: O resultado dos dois somatórios é $(a_1 + a_2 + a_3 + ... + a_n)$

 Por que a primeira fórmula é mais adequada? (Dica: mostre os termos quando i = 0, 1, 2, 3, 4, 5, ..., n-1 e n)

$$\sum_{i=2}^{n-1} i \cdot (i-1) \cdot (n-i) = \sum_{i=0}^{n} i \cdot (i-1) \cdot (n-i)$$

Por que a primeira fórmula é mais adequada? (Dica: mostre os termos

$$\sum_{i=2}^{n-1} i \cdot (i-1) \cdot (n-i) = \sum_{i=0}^{n} i \cdot (i-1) \cdot (n-i)$$

Resposta: O primeiro somatório desconsidera os termos a_0 , a_1 e a_n cujo valor é zero.

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas

- Somas Múltiplas
- Alguns Métodos Gerais
- Regras Básicas de Transformação
- Propriedades

Propriedade (P1): Combinando Conjuntos

 Combina conjuntos de índices diferentes. No caso, se I e I' são dois conjuntos quaisquer de inteiros, então:

$$\sum_{i \in I} a_i + \sum_{i \in I'} a_i = \sum_{i \in I \cap I'} a_i + \sum_{i \in I \cup I'} a_i$$

Observe que a união garante todos os elementos e a interseção, os repetidos

Aplicando P1 em Conjuntos Quase Disjuntos

$$\sum_{1}^{m} a_{i} + \sum_{m}^{n} a_{i} = a_{m} + \sum_{1}^{n} a_{i}, 1 \le m \le n$$

Propriedade (P2): Base para a Perturbação

• Dada uma soma genérica qualquer $S_n = \sum_{0 \le i \le n} a_i$

• Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

2a Forma

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_i$$

Propriedade (P2): Base para a Perturbação

• Dada uma soma genérica qualquer $S_n = \sum_{0 \le i \le n} a_i$

Podemos reescrever S_{n+1} de duas formas:

$$S_{n+1} = S_n + a_{n+1}$$

$$S_{n+1} = \sum_{0 \le i \le n+1} a_i = a_0 + \sum_{1 \le i \le n+1} a_0 + \sum_{0 \le i \le n} a_{i+1}$$

Em ambos: $a_1 + a_2 + a_3 + a_4 + ... a_{n+1}$

Propriedade (P2): Base para a Perturbação

Resumindo, temos as duas igualdades:

$$S_{n+1} = a_0 + \sum_{0 \le i \le n} a_{i+1} = S_n + a_{n+1}$$

Na prática, para perturbar, resolveremos a igualdade abaixo

$$a_0 + \sum_{0 \le i \le n} a_{i+1} = S_n + a_{n+1}$$

Isso, frequentemente, resulta na equação fechada para S_n

Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Seja o somatório dos elementos de uma progressão geométrica:

$$S_{n} = \sum_{0 \le i \le n} a.x^{i}$$

Aplicando P2:

$$S_{n+1} = S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

$$S_{n+1} = S_n + a.x^{n+1} = a.x^0 + \sum_{0 \le i \le n} a.x^{i+1}$$

Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

$$S_{n} + a.x^{n+1} = a.x^{0} + \sum_{0 \le i \le n} a.x^{i+1}$$

Aplicando $x \cdot \sum_{0 \le i \le n} (a.x^i)$ a distributiva

Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

$$S_n = S_n + a.x^{n+1} = a.x^0 + x \sum_{0 \le i \le n} (a.x^i)$$

Aplicando $x \cdot \sum_{0 \le i \le n} (a.x^i)$ a distributiva

Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

$$S_n + a.x^{n+1} = a.x^0 + x\sum_{0 \le i \le n} (a.x^i)$$
Sabendo
$$x \cdot \sum_{0 \le i \le n} (a.x^i) = x.S_n$$

$$0 \le i \le n$$

Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

• Seja o somatório dos elementos de uma progressão geométrica:

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Aplicando P2:

$$S_n + a.x^{n+1} = a.x^0 + xS_n$$

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n = \underline{a - a.x}^{n+1}$$
, para $x \ne 1 \Rightarrow 1 - x$

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n = \underline{a - a.x}^{n+1}$$
, para $x \ne 1 \Rightarrow 1 - x$

$$S_n = \sum_{0 \le i \le n} a.x^i = \underline{a - a.x}^{n+1}$$
, para $x \ne 1$

$$S_n + a.x^{n+1} = a + x.S_n \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n - x.S_n = a - a.x^{n+1} \Rightarrow$$

$$S_n = \underbrace{a - a.x}_{1-x}^{n+1} S_n = \underbrace{\sum_{0 \le i \le n} (a.1^i)}_{0 \le i \le n} = \underbrace{\sum_{0 \le i \le n} (n+1).a}_{0 \le i \le n}$$

$$S_n = \sum_{0 \le i \le n} a.x^i = \underline{a - a.x}^{n+1}$$
, para $x \ne 1$

• Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i \cdot 2^i$$

Aplicando P2, temos:

$$S_n + (n+1).2^{n+1} = 0.2^0 + \sum_{0 \le i \le n} (i+1).2^{i+1}$$

Aplicando P2, temos:

• Como $0.2^0 = 0$, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

Aplicando associatividade, temos:

$$S_{n} + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$\sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

Aplicando associatividade, temos:

Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} i.2^{i+1} + \sum_{0 \le i \le n} 2^{i+1}$$

Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = \sum_{0 \le i \le n}^{i} i.2^{i} + \sum_{0 \le i \le n}^{i} 0 \le i \le n$$

Aplicando distributividade, temos:

$$S_n + (n+1).2^{n+1} = 2\sum_{0 \le i \le n} i.2^i + 2\sum_{0 \le i \le n} 2^i$$

Substituindo S_n, temos:

$$S_n + (n+1).2^{n+1} = 2\sum_{0 \le i \le n} + 2\sum_{0 \le i \le n} 2^i$$

Substituindo S_n, temos:

Substituindo S_n, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + 2\sum_{0 \le i \le n} 2^{i}$$

• E agora José?

$$S_n + (n+1).2^{n+1} = 2.S_n + 2 \sum_{0 \le i \le n} 2^i$$

E agora José?

Vimos que:

• Logo:

• Logo:

Logo:

Logo:

Logo:

• Substituindo $\sum_{0 \le i \le n} 2^i$ por sua fórmula fechada, temos:

$$S_n + (n+1).2^{n+1} = 2.S_n + (2(2^{n+1}-1))$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

 $(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} - 2^{n+1} + 2 \Rightarrow$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 2.S_n + 2(2^{n+1}-1) \Rightarrow$$

$$(n+1).2^{n+1} - 2.(2^{n+1}-1) = 2.S_n - S_n \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = (n+1).2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} + 2^{n+1} - 2.2^{n+1} + 2 \Rightarrow$$

$$S_n = n2^{n+1} - 2^{n+1} + 2 \Rightarrow$$

$$S_n = (n-1).2^{n+1} + 2$$

• Finalmente:

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

Agenda

- Motivação
- Notação
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas ∑
- Alguns Métodos Gerais

Somas Múltiplas

 Os termos de um somatório podem ser especificados por dois ou mais índices, por exemplo:

$$\sum_{1 \le i, j \le 3} a_i b_j = a_1 b_1 + a_1 b_2 + a_1 b_3 + a_2 b_1 + a_2 b_2 + a_2 b_3 + a_3 b_1 + a_3 b_2 + a_3 b_3$$

Somas Múltiplas

 Outra forma de representação é utilizando dois somatórios, por exemplo:

$$\sum_{1 \le i, j \le 3} a_i b_j = \left(\sum_{j \le 3} a_i\right) \left(\sum_{j \le 3} b_j\right)$$

Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais (∑

Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- ◆ Alguns Métodos Gerais (∑

Método Procure!!!

 Possivelmente, todos as fórmulas de somatórios que você precisará estão resolvidas na literatura, logo, procure

Método Procure!!!

 Possivelmente, todos as fórmulas de somatórios que você precisará estão resolvidas na literatura, logo, procure

Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- Alguns Métodos Gerais (∑

Somatório do Quadrado Perfeito

 Este material explica cada método mostrando a fórmula do somatório do quadrado perfeito dos n primeiros inteiros

$$S_n = \sum_{0 \le i \le n} i^2 = \underline{n (n+1)(2n+1)}, para n \ge 0$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	
n ²	0	1	4	9	16	25	36	49	64	81	100	121	144	
S _n	0	1	5	14	30	55	91	140	204	285	385	506	650	

 Se, em um passe de mágica (ou inspiração ou dedução), descobrimos a resposta, basta prová-la por indução matemática

Prova por Indução

• 1º Passo (passo base): Provar que a fórmula é verdadeira para o primeiro valor (na equação substituir n pelo primeiro valor)

• 2º Passo (indução propriamente dita): Supondo que n > 0 e que a fórmula é válida quando trocamos n por (n-1)

$$S_n = S_{n-1} + a_n$$

 $S_{n-1} = \acute{e}$ a equação substituindo n por (n-1) $a_n = n-\acute{e}$ simo termo da sequência

Assim, temos a fórmula a ser provada:

$$S_n = \sum_{0 \le i \le n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
, para $n \ge 0$

• 1º Passo (passo base):

$$S_0 = 0.(0+1).(2.0+1) = 0 \Rightarrow \text{verdadeiro}$$

• 2º Passo (indução propriamente dita):

$$S_{n} = S_{n-1} + a_{n}$$

• 2º Passo (indução propriamente dita):

• 2º Passo (indução propriamente dita):

$$S_{n} = S_{n-1} + a_{n}$$

$$S_{n} = (n-1)(n)(2n-1) + n^{2} \Rightarrow$$

$$6$$

$$6S_{n} = (n-1)(n)(2n-1) + 6n^{2} \Rightarrow$$

$$6S_{n} = (n^{2}-n)(2n-1) + 6n^{2} \Rightarrow$$

$$6S_{n} = [2n^{3} - n^{2} - 2n^{2} + n] + 6n^{2} \Rightarrow$$

$$S_{n} = 2n^{3} + 3n^{2} + n = n(n+1)(2n+1)$$

$$6$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) =$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) = \sum_{0}^{n} 3 + \sum_{0}^{n} i = 3(n+1) + \frac{n(n+1)}{2} = \frac{6n+6+n^2+n}{2} = \frac{n^2+7n+6}{2}$$

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) = \sum_{0}^{n} 3 + \sum_{0}^{n} i = 3(n+1) + \frac{n(n+1)}{2} = \frac{6n+6+n^2+n}{2} = \frac{n^2+7n+6}{2}$$

1) Passo base:

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) = \sum_{0}^{n} 3 + \sum_{0}^{n} i = 3(n+1) + \frac{n(n+1)}{2} = \frac{6n+6+n^2+n}{2} = \frac{n^2+7n+6}{2}$$

1) Passo base:

$$\frac{0^2 + 7.0 + 6}{2} = 3 \ (verdadeiro)$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3+i) = \sum_{0}^{n} 3 + \sum_{0}^{n} i = 3(n+1) + \frac{n(n+1)}{2} = \frac{6n+6+n^2+n}{2} = \frac{n^2+7n+6}{2}$$

Prova por indução:

1) Passo base:

$$\frac{0^2 + 7.0 + 6}{2} = 3 \ (verdadeiro)$$

$$S_n = S_{n-1} + a_n$$

$$S_n = \frac{(n-1)^2 + 7(n-1) + 6}{2} + (3+n)$$

$$S_n = \frac{(n^2 - 2n + 1) + (7n - 7) + 6}{2} + \frac{2(3+n)}{2}$$

$$S_n = \frac{(n^2 - 2n + 1) + (7n - 7) + 6 + (6+2n)}{2}$$

$$S_n = \frac{n^2 + 7n + 6}{2} \text{ (verdadeiro)}$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

 Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i+1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i + 1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$

Prova por indução:

1) Passo base:

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i+1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$

Prova por indução:

1) Passo base:

$$2.1^2 + 3.1 = 5 \ (verdadeiro)$$

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

$$\sum_{1}^{n} [(4i^2 + 4i + 1) - 4i^2] =$$

$$\sum_{1}^{n} [4i + 1] =$$

$$4\sum_{1}^{n}[i] + \sum_{1}^{n}[1] =$$

$$4\frac{n(n+1)}{2} + n =$$

$$2n^2 + 3n$$

Prova por indução:

1) Passo base:

$$2.1^2 + 3.1 = 5 \ (verdadeiro)$$

$$S_n = S_{n-1} + a_n$$

$$S_n = 2(n-1)^2 + 3(n-1) + (4n+1)$$

$$S_n = 2(n^2 - 2n + 1) + (3n - 3) + (4n + 1)$$

$$S_n = (2n^2 - 4n + 2) + (3n - 3) + (4n + 1)$$

$$S_n = 2n^2 + 3n \ (verdadeiro)$$

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

 Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{i=1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{i=1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{i=1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{i=1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

$$10n^{2} + 10n$$

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

$$10n^{2} + 10n$$

Prova por indução:

1) Passo base:

• Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{i=1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{i=1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{i=1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{i=1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

$$10n^{2} + 10n$$

Prova por indução:

1) Passo base:

$$10.1^2 + 10.1 = 20 \ (verdadeiro)$$

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a

usando indução matemática.

$$\sum_{i=1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

$$\sum_{i=1}^{n} [(25i^{2} + 10i + 1) - (25i^{2} - 10i + 1)] =$$

$$\sum_{i=1}^{n} [25i^{2} + 10i + 1 - 25i^{2} + 10i - 1] =$$

$$\sum_{i=1}^{n} [20i] =$$

$$20\frac{n(n+1)}{2} =$$

$$10n^{2} + 10n$$

Prova por indução:

1) Passo base:

$$10.1^2 + 10.1 = 20 \ (verdadeiro)$$

$$S_n = S_{n-1} + a_n$$

$$S_n = 10(n-1)^2 + 10(n-1) + (20n)$$

$$S_n = 10(n^2 - 2n + 1) + (10n - 10) + 20n$$

$$S_n = (10n^2 - 20n + 10) + (10n - 10) + 20n$$

$$S_n = 10n^2 + 10n \ (verdadeiro)$$

 No Exercício Resolvido (22), encontramos a fórmula abaixo. Prove por indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

• No Exercício Resolvido (22), encontramos a fórmula abaixo. Prove por

indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

Prova por indução:

1) Passo base:

• No Exercício Resolvido (22), encontramos a fórmula abaixo. Prove por

indução que a mesma está correta

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

Prova por indução:

1) Passo base:

$$(0-1)2^{0+1} + 2 = 0 \ (verdadeiro)$$

$$S_n = S_{n-1} + a_n$$

$$S_n = [((n-1)-1)2^{(n-1)+1}+2] + (n2^n)$$

$$S_n = (n-2)2^n + 2 + n2^n$$

$$S_n = (2n - 2)2^n + 2$$

$$S_n = (n-1)2^n 2 + 2$$

$$S_n = (n-1)2^{n+1} + 2 \ (verdadeiro)$$

Agenda

- Motivação
- Notação

- Procure!!!
- Adivinhe a resposta, prove por indução
- Perturbe a soma
- Somas e Relações de Recorrência
- Manipulação de Somas
- Somas Múltiplas
- ◆ Alguns Métodos Gerais (∑

Prove a fórmula abaixo usando a perturbação:

$$S_n = \sum_{0 \le i \le n} i^2 = \underline{n (n+1)(2n+1)}, para n \ge 0$$

Prove a fórmula abaixo usando a perturbação:

$$S_n = \sum_{0 \le i \le n} i^2 = \underline{n (n+1)(2n+1)}, \text{ para } n \ge 0$$

Assim, aplicando a propriedade P2, temos:

$$S_n + a_{n+1} = \sum_{0 \le i \le n} (i+1)^2$$

Prove a fórmula abaixo usando a perturbação:

$$S_n = \sum_{0 \le i \le n} i^2 = \underline{n (n+1)(2n+1)}, para n \ge 0$$

· Assim, aplicando a propriedade P2, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2$$

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} i^2 + \sum_{0 \le i \le n} 2i + \sum_{0 \le i \le n} 1$$

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2 + 2i + 1)$$

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} i^2 + \sum_{0 \le i \le n} 1$$

 S_n

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

$$S_n + (n+1)^2 = S_n + \sum_{0 \le i \le n} 2i + \sum_{0 \le i \le n} 1$$

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

$$S_{n} + (n+1)^{2} = S_{n} + \sum_{0 \le i \le n} 1$$
Duas vezes o
somatório de Gauss,
ou seja, n (n+1)

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

$$S_n + (n+1)^2 = S_n + n(n+1) + \sum_{0 \le i \le n} 1$$
(n+1)

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

$$S_n + (n+1)^2 = S_n + n(n+1) + (n+1)$$

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

• Aplicando associatividade, podemos separar o somatórios

$$(S_n + (n+1)^2 = (S_n) + n(n+1) + (n+1)$$

Temos um problema, pois as somas se anulam...

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

Aplicando associativi

E agora José?

ıatórios

$$S_n + (n+1)^2 = S_n + n(n+1) + (n+1)$$

Temos um problema, pois as somas se anulam...

Continuando, temos:

$$S_n + (n+1)^2 = \sum_{0 \le i \le n} (i+1)^2 = \sum_{0 \le i \le n} (i^2+2i+1)$$

Aplicando associativi

E agora José?

atórios

$$(S_n + (n+1)^2 = S_n) + n(n+1) + (n+1)$$

Temos um problema, pois as somas se anulam...

... vamos tentar o somatório dos cubos

• Temos que:

Digo, perturbaremos o **somatório dos cubos** para encontrar a fórmula do somatório dos quadrados

 $SCUBO_{n} = \sum_{0 \le i \le n}^{3} i^{3}$

Temos um problema, pois as somas se anulam...

... vamos tentar o somatório dos cubos

Assim, aplicando P2 no somatório dos cubos, temos:

$$S_{CUBO_n} + a_{CUBO_{n+1}} = \sum_{0 \le i \le n} (i+1)^3$$

Assim, aplicando P2 no somatório dos cubos, temos:

Scubo_n + acubo_{n+1} =
$$\sum_{0 \le i \le n} (i+1)^3$$

Scubo_n + $(n+1)^3 = \sum_{0 \le i \le n} (i^3+3i^2+3i+1)$

Assim, aplicando P2 no somatório dos cubos, temos:

Scubo_n + acubo_{n+1} =
$$\sum_{0 \le i \le n} (i+1)^3$$

Scubo_n + $(n+1)^3 = \sum_{0 \le i \le n} (i^3+3i^2+3i+1)$

Scubo_n + (n+1)³ =
$$\sum_{0 \le i \le n} i^3 + \sum_{0 \le i \le n} 3i^2 + \sum_{0 \le i \le n} 3i + \sum_{0 \le i \le n} 1$$

Assim, aplicando P2 no somatório dos cubos, temos:

Scubo_n + acubo_{n+1} =
$$\sum_{0 \le i \le n} (i+1)^3$$

Scubo_n + $(n+1)^3 = \sum_{0 \le i \le n} (i^3+3i^2+3i+1)$

Assim, aplicando P2 no somatório dos cubos, temos:

Scubo_n + acubo_{n+1} =
$$\sum_{0 \le i \le n} (i+1)^3$$

Scubo_n + $(n+1)^3 = \sum_{0 \le i \le n} (i^3+3i^2+3i+1)$

Scubo_n + (n+1)³ =
$$\sum_{0 \le i \le n} i^3 + \sum_{0 \le i \le n} 3i^2 + \sum_{0 \le i \le n} 3i + \sum_{0 \le i \le n} 1$$

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + 3N(n+1) + (n+1)$$

Continuando:

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + 3n(n+1) + (n+1) \Rightarrow 2$$

Continuando:

$$S_{CUBO_n} + (n+1)^3 = S_{CUBO_n} + 3S_n + 3n(n+1) + (n+1) \Rightarrow 2$$

$$(n+1)^3 = 3S_n + 3n(n+1) + (n+1) \Rightarrow 3S_n + 3n(n+1) + (n+1) + (n+1) \Rightarrow 3S_n + 3n(n+1) + (n+1) + (n+1) \Rightarrow 3S_n + 3n(n+1) + (n+1) + (n+1) + (n+1) \Rightarrow 3S_n + 3n(n+1) + (n+1) + (n$$

Exercício

 Faça um vídeo explicando como encontramos o somatório dos quadrados perfeitos (tempo máximo de 5 minutos)