Conditional Independence in DAGs

INFO/STSCI/ILRST 3900: Causal Inference

19 Sep 2023

Learning goals for today

At the end of class, you will be able to:

- 1. Identify whether paths in a causal diagram are open or blocked given a conditioning set
- 2. Explain why conditioning on colliders differs from conditioning on non-colliders

Logistics

► Ch 6.4 of Hernan and Robins

Causal Graphs

► Causal Directed Acyclic Graphs (DAG) help communicate modeling assumptions and implications

Causal Graphs

- ► Causal Directed Acyclic Graphs (DAG) help communicate modeling assumptions and implications
- ► Check (marginal) independence by looking at paths in graph

$$A \to Z_1 \to Z_2 \leftarrow Z_3 \to Y$$

- ► Two types of nodes on a path:
 - ▶ Collider: \rightarrow *Z* \leftarrow

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- ► Two types of nodes on a path:
 - ▶ Collider: \rightarrow *Z* \leftarrow
 - ► Non-colliders: $\underbrace{\rightarrow Z \rightarrow}_{\text{mediator}}$ or $\underbrace{\leftarrow Z \rightarrow}_{\text{common cause}}$

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

► Two types of nodes on a path:

▶ Collider: \rightarrow *Z* \leftarrow

Non-colliders: $\underbrace{\rightarrow Z \rightarrow}_{\text{mediator}}$ or $\underbrace{\leftarrow Z \rightarrow}_{\text{common cause}}$

▶ Path is unblocked if it does **not** contain a collider

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

► Two types of nodes on a path:

▶ Collider: \rightarrow *Z* \leftarrow

Non-colliders: $\underbrace{\rightarrow Z \rightarrow}_{\text{mediator}}$ or $\underbrace{\leftarrow Z \rightarrow}_{\text{common cause}}$

▶ Path is unblocked if it does **not** contain a collider

▶ (Marginal) Exchangeability: $Y^a \perp A$

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point from the treatment toward the outcome

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point from the treatment toward the outcome
- Exchangeability holds if all unblocked paths are causal paths

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point from the treatment toward the outcome
- Exchangeability holds if all unblocked paths are causal paths
- ▶ Conditional Exchangeability: $Y^a \perp \!\!\! \perp A \mid L$

- ► (Marginal) Exchangeability: $Y^a \perp A$
- ► Causal path path in which all arrows point from the treatment toward the outcome
- ► Exchangeability holds if all unblocked paths are causal paths
- ▶ Conditional Exchangeability: $Y^a \perp A \mid L$
- ► How do we tell if a path is open or blocked when conditioning on *L*?

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables *L*?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables *L*?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- Check each node on the path
- ► If any node on the path is blocked, then the entire path is blocked
- ▶ If all nodes on the path are open, then the entire path is open

How do we check if a path in the DAG is open or blocked when conditioning on a set of variables *L*?

$$A \rightarrow Z_1 \rightarrow Z_2 \leftarrow Z_3 \rightarrow Y$$

- ► Check each node on the path
- ► If any node on the path is blocked, then the entire path is blocked
- ▶ If all nodes on the path are open, then the entire path is open

Conditional Exchangeability holds **given** L if all unblocked paths between A and Y are causal paths

Common cause

Common cause

If Z has a causal effect on both A and Y, the path is blocked when we condition on Z

Mediation

Mediation

If A effects Y through Z, the path is blocked when we condition on Z

For non-colliders

- ▶ Mediators: \rightarrow *Z* \rightarrow or \leftarrow *Z* \leftarrow
- ► Common causes: \leftarrow Z \rightarrow

For non-colliders

- ▶ Mediators: \rightarrow *Z* \rightarrow or \leftarrow *Z* \leftarrow
- ▶ Common causes: $\leftarrow Z \rightarrow$

▶ If Z is in the conditioning set, then Z is blocked

For non-colliders

- ▶ Mediators: \rightarrow *Z* \rightarrow or \leftarrow *Z* \leftarrow
- ▶ Common causes: $\leftarrow Z \rightarrow$

- ▶ If *Z* is in the conditioning set, then *Z* is blocked
- ► Otherwise, *Z* is open

Mathematically,

$$Z = X + Y$$

If we keep Z fixed, but increase X, then to preserve the equation, Y must decrease

▶ If there is a causal path $X \to ... \to Z$, then Z is a descendant of X

For Colliders \rightarrow *Z* \leftarrow

For Colliders \rightarrow *Z* \leftarrow

- ▶ If Z (or any descendant of Z) is in the conditioning set, then Z is open
- ► Otherwise Z is blocked

How to check if a path is open or blocked:

1. Traverse the path node by node

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - ► Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set
- ► If collider:
 - ▶ Open if it or any of its descendants are in the conditioning set
 - Otherwise it is blocked

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked:

- ► If non-collider:
 - Open if it is not in the conditioning set
 - Blocked if it is in the conditioning set
- ► If collider:
 - ▶ Open if it or any of its descendants are in the conditioning set
 - Otherwise it is blocked

Exercise

- ► What are the paths from *A* to *Y*?
- ▶ When conditioning on $L = \{Z_1\}$ are those paths open or blocked?
- ▶ When conditioning on $L = \{Z_2\}$ are those paths open or blocked?
- ▶ When conditioning $L = \{Z_1, Z_2\}$ are those paths open or blocked?

Exercise

- \blacktriangleright What are the paths from A to Y?
- ▶ When conditioning on $L = \{Z_2\}$ are those paths open or blocked?
- ▶ When conditioning $L = \{Z_1, Z_2\}$ are those paths open or blocked?

Learning goals for today

At the end of class, you will be able to:

- Identify whether paths in a causal diagram are open or blocked given a conditioning set
- 2. Explain why conditioning on colliders differs from conditioning on non-colliders