DS 100/200: Principles and Techniques of Data Science

Discussion # 10

Date: July 29, 2019

Name:

Cross Validation and Regularization

- 1. You build a model with two regularization hyperparameters λ and γ . You have 4 good candidate values for λ and 3 possible values for γ , and you are wondering which λ , γ pair will be the best choice. If you were to perform five-fold cross-validation, how many validation errors would you need to calculate?
- 2. In the typical setup of k-fold cross validation, we use a different parameter value on each fold, compute the mean squared error of each fold and choose the parameter whose fold has the lowest loss.
 - A. True
 - OB. False

Questions 3, 4, 5, and 6 are all connected.

3. Elastic Net is a regression technique that combines L_1 and L_2 regularization. It is preferred in many situations as it possesses the benefits of both LASSO and Ridge Regression. Minimizing the L2 loss using Elastic Net is as follows, where $\lambda_1, \lambda_2 >= 0$, $\lambda_1 + \lambda_2 = \lambda$, $\lambda > 0$.

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i} (y_i - \theta x)^2 + \lambda_1 \sum_{j=1}^p |\theta_j| + \lambda_2 \sum_{j=1}^p \theta_j^2$$

Suppose our goal was to get sparse parameters, i.e. we want as many parameters as possible to be zero. Which of the following choices for λ_1, λ_2 are most consistent with this goal, assuming $\lambda=1$? There is only one correct answer.

1

- $\bigcirc A. \ \lambda_1 = 0, \lambda_2 = 1$
- \bigcirc B. $\lambda_1 = 0.5, \lambda_2 = 0.5$
- \bigcirc C. $\lambda_1 = 1, \lambda_2 = 0$

Discussion # 10

4.	What happens to bias and variance as we increase the value of λ ? Assume $\lambda_2 = \lambda_1$. There is only one correct answer in each part. You will be asked to justify why in the next question.	
	(a) Bias:	
	○ A.	Bias goes up
	○ B.	Bias stays the same
	○ C.	Bias goes down
	(b) Variance:	
	○ A.	Variance goes up
	○ B.	Variance stays the same
	○ C.	Variance goes down
5.	Justify why by	marking the true statements. Select all that apply for each part.
	(a) Bias:	
	□ A.	Bias goes down because increasing λ reduces over fitting.
	□ B.	Bias goes down because bias is minimized when $\lambda_2 = \lambda_1$.
	□ C.	Bias goes up because increasing λ penalizes complex models, limiting the set of possible solutions.
	□ D.	Bias goes up because the loss function becomes non-convex for sufficiently large λ .
	□ E.	None of the above
	(b) Variance:	
	□ A.	Variance goes down because increasing λ encourages the value of the loss to decrease.
	□ B.	Variance goes down because increasing λ penalizes large model weights.
	□ C.	Variance goes up because because increasing λ increases bias.
	□ D.	Variance goes up because increasing λ increases the magnitude of terms in the loss function.
	□ E.	None of the above
6.	What happens apply.	to the model parameters $\hat{\theta}$ as $\lambda \to \infty$, i.e. what is $\lim_{\lambda \to \infty} \hat{\theta}$? Select all that
	☐ A. Con	verge to 0.
	☐ B. Dive	erge to infinity.
	☐ C. Con	verge to values that minimize the L2 loss.
	☐ D. Converge to equal but non-zero values.	
	☐ E. Converge to a sparse vector.	

3

Logistic Regression

1. You have a classification data set consisting of two (x, y) pairs (1, 0) and (-1, 1). You decide that you want your feature vector \mathbf{x} (the input to a model) for each pair to be a two-element column vector $\begin{bmatrix} 1 & x \end{bmatrix}^T$.

You run an algorithm to fit a model for the probability of Y = 1 given x:

$$\mathbb{P}(Y = 1 \mid \mathbf{x}) = \sigma(\theta \cdot \mathbf{x})$$

where $\sigma(t)=rac{1}{1+\exp(-t)}.$ Your algorithm returns $\hat{ heta}=\begin{bmatrix} -rac{1}{2} & -rac{1}{2} \end{bmatrix}$.

- (a) Calculate $\hat{\mathbb{P}}\left(Y=1\mid\mathbf{x}=\begin{bmatrix}1&0\end{bmatrix}^T\right)$
- (b) The empirical cross-entropy loss (a.k.a. log loss) is given by:

$$L(\boldsymbol{\theta}, \mathbf{X}, \mathbf{y}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(z_i) + (1 - y_i) \log(1 - z_i)]$$

where $z_i = \sigma(\theta \cdot \mathbf{X}_i)$. Let $\theta = \begin{bmatrix} \theta_0 & \theta_1 \end{bmatrix}$. Explicitly write out the empirical loss for the data set (1,0) and (-1,1) as a function of θ_0 and θ_1 . Note that in this problem, \mathbf{X}_i is the feature vector \mathbf{x} defined in the original problem statement.

(c) Calculate the empirical loss for $\hat{\theta} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}^T$ and the two observations (1,0) and (-1,1).