11 класс

Задача 1. Сообщающиеся сосуды. В двух одинаковых сообщающихся вертикальных цилиндрических сосудах находится жидкость плотности ρ . Первоначальный уровень жидкости в сосудах l=10 см от дна (рис. 1). Сосуды соединены через отверстия в их дне маленькой трубочкой пренебрежимо малого объема. В левом сосуде на высоте 2l от дна находится лёгкий поршень, который может свободно перемещаться без трения о стенки. Под поршнем

находится воздух при атмосферном давлении $p_0 = 2\rho gl$. С

момента времени t=0 в левый сосуд в пространство над поршнем начинает поступать жидкость плотности ρ , причем скорость прироста её уровня над поршнем составляет $\upsilon=0.2$ мм/с.

- 1) С какой скоростью движется поверхность жидкости в правом сосуде в начале процесса?
- 2) С какой скоростью и в каком направлении (вверх или вниз) движется поверхность жидкости над поршнем в начале процесса?
- 3) На какой высоте z от дна сосуда будет находиться поверхность жидкости над поршнем а) через 600 с? б) через 1100 с?

Температуру в сосудах можно считать постоянной. Жидкость из сосудов не выливается.

Возможное решение (Аполонский А.). 1) Пусть через малое время Δt после начала поступления жидкости на поршень высота столба жидкости в правом цилиндре возросла на Δh . Из условия гидростатического равновесия в сосудах

$$p_0 + \rho g(l + \Delta h) = p_0 + \rho g \upsilon \Delta t + \rho g(l - \Delta h).$$

Из этого уравнения находим скорость поднятия жидкости в правой части сосуда в начале

процесса:
$$\upsilon_{\Pi} = \frac{\Delta h}{\Delta t} = \frac{\upsilon}{2}.$$

2) Пусть S – площадь поршня. Из закона Бойля-Мариотта

$$(p_0 lS = (p_0 + \rho g \upsilon \Delta t) HS)$$

найдем высоту H столба воздуха в левом сосуде:

$$H = \frac{l}{1 + \frac{\rho g \upsilon t}{p_0}} = \frac{l}{1 + \frac{\upsilon t}{2l}}.$$

Здесь t — время поступления жидкости в левый сосуд. Тогда поверхность жидкости над поршнем находится на высоте z от дна сосуда.

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

Региональный этап всероссийской олимпиады школьников по физике. 17 января 2017 г.

$$z(t) = (l-h) + H + \upsilon t = l - \frac{\upsilon t}{2} + \frac{l}{1 + \frac{\rho g \upsilon t}{p_0}} + \upsilon t = l + \frac{\upsilon t}{2} + \frac{l}{1 + \frac{\upsilon t}{2l}}.$$
 (1)

При малых t высота

$$z(t) \approx \left(l + \frac{\upsilon t}{2}\right) + \left(l - \frac{\upsilon t}{2}\right) = 2l$$

то есть в начале процесса скорость изменения высоты поверхности жидкости близка к нулю.

- 3a) Из формулы (1) следует. Что при t = 600 с искомая высота z = 22,25 см.
- 3б) Формальная подстановка даёт, что через $t=1\ 100\ c$ в левом цилиндре под поршнем уровень жидкости опустится на $h=\frac{\upsilon t}{2}=11\ c$ м. Но, это больше l. Следовательно, к этому времени вся вода из под поршня перетечет в правую часть, а воздух под поршнем "пробулькнет" и поршень опустится на дно.

Тогда высота поверхности жидкости над поршнем окажется z = vt = 22 см.

Критерии оценивания

1) Условие гидростатического равновесия	2 балл
2) Дан ответ к пункту 1 — (формула + число) $0.5 + 0.5$ балла	1 балл
3) Записан закон Бойля-Мариотта	1 балл
4) Получено выражение для высоты поверхности жидкости от времени	2 балла
5) Дан ответ к пункту 2	1 балл
6) Дан ответ к пункту 3а)	1 балл
7) Указано, что воздух "пробулькивает" и поршень опускается на дно	1 балл
8) Дан ответ к пункту 3б)	1 балл

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

Задача 2. Стеклоподъёмники. При включении электродвигателя стеклоподъемника одной двери автомобиля стекло поднимается из нижнего в верхнее положение за время t_1 . Если включить одновременно два стеклоподъемника, то стекла поднимутся за время t_2 $(t_2 > t_1)$.

- 1) За какое время t_3 поднимутся три стекла автомобиля при одновременной работе трёх стеклоподъёмников?
- 2) За какое время t_4 поднимутся все четыре стекла автомобиля при одновременной работе всех четырёх стеклоподъёмников.

 Π римечания. Считайте, что сила, необходимая для подъёма стекла, не зависит от скорости подъёма, а сила тяги F мотора стеклоподъёмника пропорциональна силе тока, идущего через него.

Решение (Гуденко А., Кармазин С.). Закон сохранения энергии при работе одного стеклоподъёмника:

$$IU = I^2(r+R) + sF/t_1.$$

Здесь U — ЭДС аккумулятора, r — его внутреннее сопротивление, R — сопротивление обмотки электродвигателя, I — сила тока, необходимая для равномерного подъёма стекла и создающая необходимую силу тяги $F = \beta I$, β — коэффициент пропорциональности, s — перемещение стекла при подъёме.

При работе двух стеклоподъёмников сила тока, текущего через аккумулятор, в два раза больше и закон сохранения энергии выглядит так:

$$2IU = (2I)^{2} (r + R/2) + 2sF/t_{2}$$

Для трёх стеклоподъёмников:

$$3IU = (3I)^2 (r + R/3) + 3sF/t_2.$$

Для четырёх стеклоподъемников:

$$4IU = (4I)^{2}(r+R/4)+4sF/t_{2}.$$

Из первых трёх уравнений получаем: $\frac{1}{t_2} - \frac{1}{t_2} = \frac{1}{t_2} - \frac{1}{t_2}$,

Откуда получаем $t_3 = \frac{t_1 t_2}{2t_1 - t_2}$.

Аналогично: $t_4 = \frac{t_1 t_2}{3t_1 - 2t_2}.$

Из уравнений видно, что при идеальном аккумуляторе (r=0), все четыре уравнения выглядят одинаково и, соответственно, все времена подъёма также одинаковы.

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

Критерии оценивания

1. Записано уравнение закона сохранения энергии	
при подъеме одного стекла	2 балла
2. Записано уравнение закона сохранения энергии	
при подъеме двух стекол	1 балл
3. Записано уравнение закона сохранения энергии	
при подъеме трёх стекол	1 балл
4. Записано уравнение закона сохранения энергии	
при подъеме четырёх стекол	1 балл
5. Получена связь на времена t_1, t_2, t_3	1,5 балла
6. Получена связь на времена $t_1,\ t_2,\ t_4$	1,5 балла
7. Найдено время t_3	1 балл
8. Найдено время t_4	1 балл

Задача 3. Зарядка-разрядка. В электрической цепи (рис. 1) все элементы можно считать идеальными. Конденсатор емкостью C не заряжен. ЭДС батареи задана. Ключ K замыкают, а затем размыкают в тот момент, когда скорость изменения энергии, запасённой в конденсаторе, составляет 75% от максимальной.

Найдите количество теплоты, выделившееся в цепи при замкнутом ключе.

Возможное решение (Шеронов А.). Скорость изменения энергии конденсатора:

$$P = \frac{d}{dt} \left(\frac{q^2}{2C} \right) = \frac{q}{C} \frac{dq}{dt} = \frac{q}{C} I. \tag{1}$$

Здесь I – сила тока в цепи, q – заряд на конденсаторе.

Запишем закон Ома для цепи:

$$\mathcal{E} = IR + \frac{q}{C} \,. \tag{2}$$

Работа батареи идёт на зарядку конденсатора и на тепловые потери на резисторе:

$$\mathcal{E}I = P + I^2 R \,. \tag{3}$$

Максимум мощности достигается при силе тока $I = \frac{\mathcal{E}}{2R}$.

Из уравнения (2) найдём заряд на емкости:

$$q = C\left(\mathcal{E} - \frac{\mathcal{E}}{2R}R\right) = \frac{C\mathcal{E}}{2}.$$

Из (1) найдём максимальную скорость изменения энергии:

$$P_{\text{max}} = \frac{\mathcal{E}^2}{4R}.$$
 (4)

По условию в момент размыкания ключа $P = \frac{3}{16} \frac{\mathcal{E}^2}{R}$. (5)

Подставляя это выражение в уравнение (3) получим:

$$I^2 - \frac{\mathcal{E}}{R}I + \frac{3}{16} \left(\frac{\mathcal{E}}{R}\right)^2 = 0.$$

Решая это квадратное уравнение найдём:

$$I = \frac{\mathcal{E}}{2R} \pm \sqrt{\frac{1}{4} \left(\frac{\mathcal{E}}{R}\right)^2 - \frac{3}{16} \left(\frac{\mathcal{E}}{R}\right)^2} = \frac{\mathcal{E}}{2R} \pm \frac{\mathcal{E}}{4R}.$$

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

$$I_1 = \frac{\mathcal{E}}{4R}; \quad I_2 = \frac{3\mathcal{E}}{4R}.$$

Из уравнения (2) найдём соответствующие заряды:

$$q_1 = \frac{3C\mathcal{E}}{4}; \quad q_1 = \frac{C\mathcal{E}}{4}.$$

Джоулево тепло, выделившееся на резисторе равно:

$$W = \left(q\mathcal{E} - \frac{q^2}{2C}\right).$$

Соответственно,

$$W_1 = \frac{24}{32}C\mathcal{E}^2 - \frac{9}{32}C\mathcal{E}^2 = \frac{15}{32}C\mathcal{E}^2; \quad W_1 = \frac{8}{32}C\mathcal{E}^2 - \frac{1}{32}C\mathcal{E}^2 = \frac{7}{32}C\mathcal{E}^2.$$

Таким образом, задача имеет два решения:

$$W_1 = \frac{15}{32} C \mathcal{E}^2; \quad W_2 = \frac{7}{32} C \mathcal{E}^2.$$

Критерии оценивания

• •	
1) Получена скорость изменения энергии конденсатора (1)	1 балл
2) Записан закон Ома для цепи (2)	1 балл
3) Найдена максимальная скорость изменения энергии конденсатора (4)	1 балл
4) Найдена мощность в момент размыкания ключа (5)	1 балл
5) Получено квадратное уравнение для соответствующей силы тока	2 балла
6) Найдены заряды на конденсаторе, при которых в цепи выделяется	
соответствующая теплота (решено квадратное уравнение)	2 балла
7) Найдено соответствующее количество теплоты	
(рассмотрен любой случай из двух)	2 балла

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00. Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

Задача 4. Долго ли умеючи? В глубинах вселенной вдали от всех тяготеющих масс находится тонкий однородный стержень длины L=10 м и массой M=1,0 кг. По нему без трения может скользить бусинка массой m=0,1 кг. В начальный момент бусинка слегка смещена относительно центра стержня и система неподвижна. Через какое время τ бусинка впервые достигнет середины стержня? Гравитационная постоянная $G=6,67\cdot10^{-11}$ $\text{H}\cdot\text{m}^2/\text{кг}^2$.

Решение (Плис В.). В процессе колебаний центр масс системы тел будет оставаться неподвижным. Начало лабораторной системы отсчета OX поместим в центр масс. Подвижную систему отсчета OX_1 свяжем со спицей. В ЛСО ускорение бусинки при малом ее смещении x_1 относительно спицы определяется силой притяжения концевого отрезка спицы длиной $2x_1$ и расположенного на расстоянии $\approx L/2$ от бусинки:

$$a_{m,C} = \frac{F_x}{m} = -\frac{Gm(M/L)2x_1}{m(L/2)^2} = -\frac{8GM}{L^3}x_1.$$

Ускорение стержня при этом смещении бусинки

$$a_{M,C} = -\frac{F_x}{M} = \frac{Gm(M/L)2x_1}{M(L/2)^2} = \frac{8Gm}{L^3}x_1.$$

Тогда ускорение a_m бусинки относительно стержня будет равно

$$a_m = a_{m,C} - a_{M,C} = -\frac{8G(M+m)}{L^3} x_1.$$

Получено уравнение гармонических колебаний бусинки относительно спицы. Период этих колебаний

$$T = 2\pi / \omega = \pi L \sqrt{\frac{L}{2G(M+m)}}.$$

Искомое время равно четверти периода гармонических колебаний

$$\tau = T / 4 \approx 2,0.10^6 \text{ c} \approx 24 \text{ суток}$$
.

Решение (Гуденко А.). Известно, что период колебаний двух грузов m и M, связанной пружинкой с жёсткостью k, определяется точно также, как для одного грузика на пружинке, но только вместо массы груза нужно взять приведённую массу $\mu = \frac{mM}{m+M}$ (это выражение можно получить из уравнений движения).

Период колебаний груза на пружине равен $T = 2\pi \sqrt{\frac{\mu}{k}} \; .$

В нашем случае «коэффициент жёсткости» $k = \frac{8GmM}{L^3}$.

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00. Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

Тогда период колебаний
$$T = \pi L \sqrt{\frac{L}{2G(M+m)}}$$
 .

Критерии оценивания

1) Отмечено, что при смещении бусинки на x_1 сила притяжения определяется взаимодействием бусинки и части спицы длиной $2x_1$ **1 балл**2) Применён вторые законы Ньютона (по 2 балла за каждый из случаев (для бусинки и для стержня) **4 балла**3) Получено ускорение бусинки относительно стержня **1 балл**4) Получено выражение для периода колебаний **2 балл**5) Получен численный ответ **2 балла**Если явно указано, что ускорением стержня можно пренебречь в силу m << M, то снимается 1 балл.

Задача 5. Толстая линза. Вся поверхность плоского экрана, собой матовое представляющего стекло, освещается параллельным пучком лучей, направленным перпендикулярно экрану. Толстую линзу в виде половинки стеклянного шара расположили перед экраном так, что плоская поверхность линзы параллельна плоскости экрана (рис. 1). Показатель преломления стекла линзы n = 2,0. Диаметр линзы меньше размеров экрана.

Рис. 1

- 1) Определите расстояние L_1 от плоской поверхности линзы до экрана, если на экране наблюдается картина (рис. 2). Здесь пунктирные линии касаются внешней границы области с переменной освещённостью.
- 2) Определите расстояние L_2 от плоской поверхности линзы до экрана, если на экране наблюдается картина (рис. 3).

Рис. 2

Возможное решение (Варламов С., Карманов М.). Рассмотрим ход лучей в линзе. Плоскую границу линзы все лучи проходят без преломления. А вот из сферической поверхности выходят не все лучи. Часть из них испытывает полное отражение. Найдем предельный угол падения, при котором лучи перестают

выходить за сферическую поверхность: $n \sin \alpha_{mn} = 1,0$. Отсюда

$$\alpha_{\rm np} = 30^{\circ}$$
.

Построим ход некоторых лучей. Из данной картинки (рис. 4) понятно, почему в первом случае мы наблюдаем на экране кольцо более яркое, чем вся поверхность экрана. Это кольцо создается как лучами, прошедшими мимо линзы, так и некоторыми лучами, прошедшими сквозь неё. При этом внешняя граница яркого кольца определяется как раз лучом, падающим на сферическую поверхность под предельным углом

Рис. 4

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс – 11.00; 8 класс – 12.00; 9 класс – 13.00; 10 класс – 14.30; 11 класс – 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros

в 30°.

Диаметр же темного центрального пятна равен диаметру линзы. Определим с помощью масштабной линейки внешний диаметр кольца D = 2.90 см и диаметр внутреннего темного круга d = 2,10 см.

Рассмотрим предельный луч.

Отмеченный угол равен 30°, $CD = \frac{d}{2} = R = 1,05$ см (рис. 5).

$$CE = \frac{D}{2} = 1,45 \text{ cm}.$$

Пусть L – искомое расстояние, тогда $AB = L - R\cos\alpha_{\text{mn}}$.

$$BE = \frac{D}{2} + R \sin \alpha_{\rm np}.$$

$$\frac{AB}{BE} = \operatorname{tg} \alpha_{\rm np}.$$

 $L_{\rm l} = \frac{\frac{D}{2}\sin\alpha_{\rm np} + R}{\cos\alpha_{\rm np}} = 2,05 \text{ cm}.$ В результате преобразований получим

Рис. 5

Во втором случае точки D и E должны совпасть, либо точка E должна располагаться ближе к точке C. Тогда $D \le d = 2{,}10$ см. Поскольку придвинуть линзу к экрану ближе, чем на расстояние R = d/2, невозможно, то

$$R \le L_2 \le R rac{\sinlpha_{
m np} + 1}{\coslpha_{
m np}}$$
 или $1{,}05~{
m cm} \le L_2 \le 1{,}82~{
m cm}.$

Критерии оценивания

1)	Понимание наличия полного внутреннего отражения для части лучей	1 балл
2)	Определен предельный угол в 30 градусов	1 балл
3)	Рисунок с ходом лучей, поясняющий образование на экране первой картинки	2 балла
4)	Показано, что диаметр темного пятна равен диаметру полушара.	1 балл
5)	Записаны геометрические связи, позволяющие получить ответ.	1 балл
6)	Получена формула для L в первом случае	1 балл
7)	Верный численный ответ в первом случае	1 балл
8)	Верный переход ко второму случаю	1 балл
9)	Верный численный ответ (граничное значение или диапазон возможных	
	значений для L) во втором случае	1 балл

18 января, на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс – 11.00; 8 класс – 12.00; 9 класс – 13.00; 10 класс – 14.30; 11 класс – 16.00.

Для участия в разборе необходимо зарегистрироваться на портале http://abitu.net/vseros