CSE 635, Spring 2021, Homework 6 Sima Shafaei

1. First Create your own variable for survive using ifelse command to convert y/n to 1/0 then select best subset of variables from pclass, sex, age, fare, embarked that have highest R-Square in Im

```
Code:
d=read.csv("TitanicPassengers1.csv",header = TRUE)
head(d)
dt=na.omit(d)
head(dt)
survived=ifelse(dt$Survived=="Yes",1,0) #convert Survived to numerical variable
sex=ifelse(dt$Sex=="male",1,0) #convert Sex to numerical variable
m=lm(survived~dt$Pclass)
summary(m) #R-squared: 0.1294
m=lm(survived~sex)
summary(m) #R-squared: 0.2903
m=lm(survived~dt$Age)
summary(m) #R-squared: 0.005963
m=lm(survived~dt$Fare)
summary(m) #R-squared: 0.07193
m=lm(survived~dt$Embarked)
summary(m) #R-squared: 0.03846
m=lm(survived~dt$Pclass+sex)
summary(m) #R-squared:0.3683
m=lm(survived~dt$Pclass+dt$Age)
summary(m) #R-squared:0.1804
m=lm(survived~dt$Pclass+dt$Fare)
summary(m) #R-squared:0.1362
m=lm(survived~dt$Pclass+dt$Embarked)
summary(m) #R-squared: 0.139
m=lm(survived~sex+dt$Age)
summary(m) #R-squared: 0.2911
m=lm(survived~sex+dt$Fare)
summary(m) #R-squared:0.3197
```

```
m=lm(survived~sex+dt$Embarked)
summary(m) #R-squared:0.3124
m=lm(survived~dt$Age+dt$Fare)
summary(m) #R-squared:0.08263
m=lm(survived~dt$Age+dt$Embarked)
summary(m) #R-squared:0.04567
m=lm(survived~dt$Fare+dt$Embarked)
summary(m) #R-squared: 0.08655
m=lm(survived~dt$Pclass+sex+dt$Age)
summary(m) #R-squared:0.3902
m=lm(survived~dt$Pclass+sex+dt$Fare)
summary(m) #R-squared:0.3689
m=lm(survived~dt$Pclass+sex+dt$Embarked)
summary(m) #R-squared:0.3734
m=lm(survived~dt$Pclass+dt$Age+dt$Fare)
summary(m) #R-squared:0.1831
m=lm(survived~dt$Pclass+dt$Age+dt$Embarked)
summary(m) #R-squared:0.1872
m=lm(survived~dt$Pclass+dt$Fare+dt$Embarked)
summary(m) #R-squared:0.1433
m=lm(survived~sex+dt$Age+dt$Fare)
summary(m) #R-squared:0.322
m=lm(survived~sex+dt$Age+dt$Embarked)
summary(m) #R-squared:0.3135
m=lm(survived~sex+dt$Fare+dt$Embarked)
summary(m) #R-squared:0.3306
m=lm(survived~dt$Age+dt$Fare+dt$Embarked)
summary(m) #R-squared:0.09753
m=lm(survived~dt$Pclass+sex+dt$Age+dt$Fare)
summary(m) #R-squared:0.3902
m=lm(survived~dt$Pclass+dt$Age+dt$Fare+dt$Embarked)
summary(m) #R-squared:0.1886
```

m=lm(survived~dt\$Pclass+sex+dt\$Fare+dt\$Embarked)

summary(m) #R-squared:0.3736

m=lm(survived~dt\$Pclass+sex+dt\$Age+dt\$Embarked) summary(m) #R-squared:0.3939

m=lm(survived~sex+dt\$Age+dt\$Fare+dt\$Embarked) summary(m) #R-squared:0.333

 $m=Im(survived^{\sim}dt\\$Pclass+sex+dt\\$Age+dt\\$Fare+dt\\$Embarked)$ summary(m) #R-squared:0.3939

Results:

	Selected Variable	Residual Error
1	Pclass	0.1294
2	Sex	0.2903
3	Age	0.005963
4	Fare	0.07193
5	Embarked	0.03846
6	Pclass+Sex	0.3683
7	Pclass+Age	0.1804
8	Pclass+Fare	0.1362
9	Pclass+Embarked	0.139
10	Sex+Age	0.2911
11	Sex+Fare	0.3197
12	Sex+Embarked	0.3124
13	Age+Fare	0.08263
14	Age+Embarked	0.04567
15	Fare+Embarked	0.08655
16	Pclass+Sex+Age	0.3902
17	Pclass+Sex+Fare	0.3689
18	Pclass+Sex+Embarked	0.3734
19	Pclass+Age+Fare	0.1831
20	Pclass+Age+Embarked	0.1872
21	Pclass+Fare+Embarked	0.1433
22	Sex+Age+Fare	0.322
23	Sex+Age+Embarked	0.3135
24	Sex+Fare+Embarked	0.3306
25	Age+Fare+Embarked	0.09753
26	Pclass+Sex+Age+Fare	0.3902
27	Pclass+Age+Fare+Embarked	0.1886
28	Pclass+Sex+Fare+Embarked	0.3736
29	Pclass+Sex+Age+Embarked	0.3939
30	Sex+Age+Fare+Embarked	0.333
31	Pclass+Sex+Age+Fare+Embarked	0.3939

Both (Pclass+Sex+Age+Embarked) and (Pclass+Sex+Age+Fare+Embarked) have the same R-Square. So we selected the combination with fewer number of variables: Pclass+Sex+Age+Embarked

2. Run Im and predict survivability and calculate accuracy for selected variables

Code:

EmbarkedQ=ifelse(dt\$Embarked=="Q",1,0)
EmbarkedS=ifelse(dt\$Embarked=="S",1,0)
m1=Im(survived~dt\$Pclass+sex+dt\$Age+dt\$Embarked)
summary(m1)
c=coef(m1)
c

y1=c[1]+c[2]*dt\$Pclass+c[3]*sex+c[4]*dt\$Age+c[5]*EmbarkedQ+c[6]*EmbarkedS #survival prediction of linear model

summary(y1) z=ifelse(y1>0.5,1,0) t=table(survived,z) t

sum(diag(t))/sum(t) #Accuracy of LM=0.7955182

Results:

Summary of prediction:

Min	1st Qu.	Median	Mean	3rd Qu.	Max
-0.1842	0.1249	0.3379	0.4062	0.6603	1.0819

Table of prediction

	0	1
0	360	64
1	82	208

Accuracy: 0.7955182

3. Run logit and predict survivability and calculate accuracy for selected variables

Code:

 $m2 = glm(survived^{dt}Pclass+sex+dt\\Age+dt\\Embarked,family="binomial"("logit")) \\ summary(m2) \\ c=coef(m2) \\ c$

 $y2=1/(1+exp(-c[1]-c[2]*dt\Pclass-c[3]*sex-c[4]*dt\Age-c[5]*EmbarkedQ-c[6]*EmbarkedS))$ #predictor of logit model

z=ifelse(y2>0.5,1,0)

t=table(survived,z)

t

sum(diag(t))/sum(t) #Accuracy of Logit=0.7955182

Results:

Summary of prediction:

Min	1st Qu.	Median	Mean	3rd Qu.	Max
0.01404	0.10959	0.30921	0.40616	0.69634	0.97113

Table of prediction

	0	1
0	357	67
1	79	211

Accuracy: 0.7955182

4. Run probit and predict survivability and calculate accuracy for selected variables

Code:

m3=glm(survived~dt\$Pclass+sex+dt\$Age+dt\$Embarked,family="binomial"("probit")) summary(m3)

c=coef(m3)

С

 $y3=pnorm(c[1]+c[2]*dt\\pclass+c[3]*sex+c[4]*dt\\pclass+c[5]*EmbarkedQ+c[6]*EmbarkedS)\\z=ifelse(y3>0.5,1,0)$

t=table(survived,z)

t

sum(diag(t))/sum(t) #Accuracy of Probit=0.7983193

Results:

Summary of prediction:

Min	1st Qu.	Median	Mean	3rd Qu.	Max
0.008119	0.114718	0.325170	0.409959	0.692514	0.978019

Table of prediction

	0	1
0	360	64
1	80	210

Accuracy: 0.7983193

We can see that logit and linear model have the same accuracy for this dataset and probit is slightly better than them