Mathématiques de l'ingénieur I (MAT-10363) Examen partiel du 16 décembre RÉPONSES

Les questions et réponses ne sont pas nécessairement dans l'ordre de votre questionnaire.

Question 1 (10 points)

On veut approcher la valeur de $\sqrt{360} = \sqrt{15 \times 24}$ sans l'aide d'une calculatrice. Pour cela on utilise le polynôme de Taylor d'ordre deux $P_2(x,y)$ associé à la fonction $f(x,y) := \sqrt{xy}$ au point (16,25).

Lequel des énoncés suivants est VRAI.

(a)
$$P_2(x,y) = 20 + \frac{5}{8}(x-16) + \frac{2}{5}(y-25)$$
.

(b)
$$P_2(x,y) = 20 + \frac{5}{8}(x-16)^2 + \frac{2}{5}(y-25)^2$$
.

(c)
$$P_2(x,y) = 20 + \frac{5}{8}(x-16) + \frac{2}{5}(y-25) - \frac{5}{512}(x-16)^2 - \frac{1}{250}(y-25)^2$$
.

(d)
$$P_2(x,y) = 20 + \frac{5}{8}(x-16) + \frac{2}{5}(y-25) + \frac{1}{80}(x-16)(y-25).$$

(e) Les énoncés (a), (b), (c) et (d) sont tous faux.

Question 2 (10 points)

Soit
$$f(x,y) = \frac{x^3}{3} - 3xy + \frac{3}{2}y^2 + 2x$$
.

- (a) f possède exactement deux points critiques et ce sont des points de selle.
- (b) f possède exactement deux points critiques et ce sont des minima locaux.
- (c) f possède exactement un point critique et c'est un minimum local.
- (d) f possède exactement un point critique et c'est un point de selle.
- (e) Les énoncés (a), (b), (c) et (d) sont tous faux.

Question 3 (10 points)

Parmi les graphes ci-dessous, lequel est une esquisse des courbes de niveau de la fonction

$$f(x,y) := \frac{y}{2 + \cos(x)}?$$

Question 4 (10 points)

Considérer l'équation différentielle

$$y^{(4)} - 4y''' + 5y'' - 4y' + 4y = e^{2x} + x. \tag{*}$$

Le polynôme caractéristique de l'équation différentielle homogène associée à (\star) est

$$p(\lambda) = (\lambda - 2)^2 (\lambda^2 + 1).$$

Parmi les formes suivantes, laquelle est appropriée lorsqu'on cherche une solution particulière de (\star) ?

- (a) $y_p(x) := Ae^{2x} + Bx + C$.
- (b) $y_p(x) := Axe^{2x} + Bx + C$.
- (c) $y_p(x) := Ax^2e^{2x} + Bx + C$.
- (d) $y_p(x) := Ae^{2x} + x(Bx + C)$.
- (e) $y_p(x) := Axe^{2x} + x^2(Bx + C)$.

Question 5 (10 points)

Soit f(x,y) une fonction dérivable dans le plan et qui vérifie les propriétés suivantes

- $f(0, \frac{\pi}{2}) = 1;$
- $\bullet \ \frac{\partial f}{\partial x}(0, \frac{\pi}{2}) = -1;$
- $D_{\vec{u}}f(0, \frac{\pi}{2}) = -1$, où $\vec{u} = (-\frac{3}{5}, -\frac{4}{5})$.

L'équation du plan tangent à la fonction f au point $(0, \frac{\pi}{2})$ est

- (a) $z = 1 + 2\pi 3x 4y$.
- (b) z = 1 x + y.
- (c) $z = 1 \frac{\pi}{2} x + y$.
- (d) $z = 1 \pi x + 2y$.
- (e) z = 1 x.

Question 6 (10 points)

Considérer les énoncés suivants.

• Pour $f(x, y) := e^{x-y}$, on a $f_x + f_y = 0$.

• Pour $f(x,y) := \sqrt{x+2y-1} + x^2y + y$, on a $f_y(2,0) = 6$.

• Pour $f(x,y) := 2 - xy + x^3 + \cos(y)$, on a $f_{xy} = -1$.

• Il existe une fonction f = f(x, y) pour laquelle $f_x = 2xy$ et $f_y = x^2 + y$.

Combien des énoncés précédents sont VRAIS.

- (a) 0.
- (b) 1.
- (c) 2.
- (d) 3.
- (e) 4.

Question 7 (10 points)

Soit $f(x,y) := e^x (\sin x + \cos y)$, et x(r,s) := r + 2s, y(r,s) := 2r + s. Posons

$$h\left(r,s\right):=f\left(x\left(r,s\right),y\left(r,s\right)\right).$$

(a)
$$\frac{\partial h}{\partial r}(0,0) = 0$$
 et $\frac{\partial h}{\partial s}(0,0) = 0$.

(b)
$$\frac{\partial h}{\partial r}(0,0) = 0$$
 et $\frac{\partial h}{\partial s}(0,0) = 2$.

(c)
$$\frac{\partial h}{\partial r}(0,0) = 2$$
 et $\frac{\partial h}{\partial s}(0,0) = 0$.

(d)
$$\frac{\partial h}{\partial r}(0,0) = 2$$
 et $\frac{\partial h}{\partial s}(0,0) = 4$.

(e)
$$\frac{\partial h}{\partial r}(0,0) = 4$$
 et $\frac{\partial h}{\partial s}(0,0) = 2$.

Question 8 (10 points)

Soit f = f(x, y) une fonction dont toutes les dérivées partielles de tout ordre existent et sont continues sur \mathbb{R}^2 et soit E l'ellipse $x^2 + 2y^2 = 6$. Considérer le graphe suivant où l'ellipse E est représentée et où les courbes pointillées sont des courbes de niveau de f.

- (a) Le maximum de f sur E ne peut être atteint qu'en P_4 .
- (b) Le maximum de f sur E ne peut être atteint qu'en P_1 ou P_2 .
- (c) Le maximum de f sur E ne peut être atteint qu'en P_3 ou P_4 .
- (d) Le maximum de f sur E ne peut être atteint qu'en P_5 ou P_6 .
- (e) Le maximum de f sur E pourrait être atteint en l'un ou l'autre des six points considérés.

Question 9 (5 points)

Soit
$$f(x,y) := -\frac{9}{4} \ln (1 + (x-1)^2 + (y-1)^2)$$
.

Lequel des énoncés suivants est VRAI.

- (a) $f_{xy}(0,0) = 0$ et $f_{yx}(0,0) = 1$.
- (b) $f_{xy}(0,0) = 1$ et $f_{yx}(0,0) = 0$.
- (c) $f_{xy}(0,0) = 1$ et $f_{yx}(0,0) = -1$.
- (d) $f_{xy}(0,0) = -1$ et $f_{yx}(0,0) = 1$.
- (e) Les énoncés (a), (b), (c) et (d) sont tous faux.

Question 10 (5 points)

Le polynôme caractéristique de l'équation différentielle

$$y^{(4)} - 16y = 0 \tag{*}$$

est
$$P(\lambda) = (\lambda^2 - 4)(\lambda^2 + 4)$$
.

- (a) $c_1e^{2x} + x(c_2\cos 2x + c_3\sin 2x) + c_4$ est la solution générale de (\star) .
- (b) $c_1e^{2x} + c_2xe^{2x} + c_3\sin 2x + c_4\cos 2x$ est la solution générale de (\star) .
- (c) $c_1e^{2x} + c_2e^{-2x} + c_3\sin 2x + c_4\cos 2x$ est la solution générale de (\star) .
- (d) $e^{-2x}(c_1+c_2x)+e^{2x}(c_3\sin 2x+c_4\cos 2x)$ est la solution générale de (\star) .
- (e) Les énoncés (a), (b), (c) et (d) sont tous faux.

Question 11 (5 points)

Soit f(x, y, z) une fonction dérivable et définie dans l'espace à trois dimensions. Soient \vec{u}_1 et \vec{u}_2 deux vecteurs non nuls et distincts de l'espace et qui vérifent

$$\vec{u}_1 \cdot \nabla f = 1$$
 et $\vec{u}_2 \cdot \nabla f = 1$

au point (x_0, y_0, z_0) .

Lequel des énoncés suivants est VRAI.

- (a) $D_{\vec{v}}f(x_0, y_0, z_0) = 1$ pour tout vecteur \vec{v} tel que $|\vec{v}| = 1$.
- (b) $\vec{u}_1 \vec{u}_2$ est un vecteur parallèle au vecteur $\nabla f(x_0, y_0, z_0)$.
- (c) $\vec{u}_1 \vec{u}_2$ est un vecteur parallèle au plan tangent à la fonction f au point (x_0, y_0, z_0) .
- (d) $\vec{u}_1 \vec{u}_2$ est perpendiculaire au plan tangent à la fonction f au point (x_0, y_0, z_0) .
- (e) Les énoncés (a), (b), (c) et (d) sont tous faux.

Question 12 (5 points)

Dans Maple, on exécute d'abord la commande

> with(plots):

Laquelle des commandes Maple suivantes permet alors de tracer le graphe de

$$z = f(x, y) = \cos(x) + \sqrt{xy}$$

au-dessus de la région $(x, y) \in [0, 2] \times [0, 3]$?

- (a) > contourplot(z=cos(x)+sqrt(x*y),x=0..2,y=0..3);
- (b) > plot(cos(x)+sqrt(x*y),x=0..2,y=0..3);
- (c) > surfaceplot(cos(x)+sqrt(x*y),x=0..2,y=0..3);
- (d) > implicitplot(z=cos(x)+sqrt(x*y),x=0..2,y=0..3);
- (e) > plot3d($\cos(x) + \text{sqrt}(x*y), x=0..2, y=0..3$);