BAHATI ABDULKARIM

A'LEVEL APPLIED MATHEMATICS

FLOW CHARTS
SUITABLE FOR S.5 AND S.6

- The dry run
- Constructing flow charts
- Newton Rapson's method with flow charts

BAHATI ABDULKARIM CONTACT ME ON: 0704739907

FLOW CHARTS

A flow chart is a diagram comprising of systematic steps followed in order to solve a problem. Shapes used

1. Start/stop

STOP

START

STOP

2. Operation assignment

$$N = N + 1$$

$$N = N + 1$$

READ: X_0

PRINT: X

3. Decision Statement

Start

 $y=\overline{0}$

X=x+1

Y=yx

Is

n=5?

Print: y

stop

Example 1: Perform a dry run and state the purpose of the flowchart

	X	y	
	0	1	
	1	1	
	2	2	
	3	6	
	4	24	
	5	120	
	6	720	
	 	 	

The purpose of the flow chart is to compute and print 6!

The relationship is y = x!

DRY RUN

Example 2: Study the flow chart below and perform a dry run and state the purpose of the flowchart

Start

S = 0

stop

N	S
1	1
3	4
5	9
7	16
9	25
11	36
13	49
15	64

The purpose of the flow chart is to compute and print the first 8square numbers

DRY RUN

 $\mathbf{C} = \mathbf{C} + \mathbf{1}$

NO

Example 3: Study the flow chart below and perform a dry run and state the

purpose of the flowchart

N	S
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256

The purpose of the flow chart is to compute and print 2^8

stop

Start

R = 1

 $\mathbf{C} = \mathbf{0}$

R = 2R

Is C = 8?

DRY RUN

Example 4: Study the flow chart below.

- (a) Perform a dry run taking N = 20, $X_0=4$ and obtain the root correct to 3dp
- (b) State the purpose of the flow chart

Start

n = 0

READ, X_0 = 1.2

YES

Print: X_{n+1}

stop

N	X _n	$X_{n \perp 1}$	$ X_{n+1}-X_n $
0	4.0	4.5	0.5
1	4.5	4.4722	0.0278
2	4.4722	4.4721	0.0001

The square root is 4.472.

The purpose of the flow chart is to print the square root of a number N.

- The dry run
- Constructing flow charts
- Newton Rapson's method with flow charts

Example 1: Draw a flow chart that reads and prints the mean of the first ten counting numbers.

Solution: let S be the sum and m the mean and N the number of terms

Example 2: A shop offered 25% discount on all items in its store and a second discount of 5% to any customer who paid by cash.

(i). Construct a flow chart which shows the amount paid for each item.

(ii). Using your flow chart in (i), compute the amount paid for the following items.

Item	Price Mode	of paym
Matress	125,000 Cash	
Television set	340,000 Credit	7

Solution:

(i). Let p be the price for the item, A the amount paid for the item and C the credit payment

(ii).

Amount paid for the matress;

$$A = 0.95C$$

 $= 0.95 \times 0.75 P$

 $= 0.95 \times 0.75 \times 125000$

= 89062.5

Amount paid for television set;

$$A = C$$

= 0.75P

 $= 0.75 \times 340,000$

= 225,000

BAHATI ABDULKARIM

Example 1: Draw a flow chart that computes the cubes of the first twenty counting numbers.

Solution: let S be the sum and N the number of terms

- The dry run
- Constructing flow charts
- Newton Rapson's method with flow charts

Example 1:

- a) Determine the iterative formula for finding the fourth root of a given number N.
- b) Draw a flow chart that reads N and the initial approximation, x₀, computes and prints the fourth root of N to 3dps.
- c) Perform a dry run for N = 150.10 and $x_0 = 3.200$.

Solution (a)

Let,
$$x = \sqrt[4]{N}$$

$$\Rightarrow x^4 = N$$

$$\Rightarrow x^4 - N = 0$$

$$f(x) = x^4 - N$$

$$f'(x) = 4x^3$$

from,
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n = 0,1,2,3,...$

$$x_{n+1} = x_n - \frac{x_n^4 - N}{4x_n^3}$$

$$x_{n+1} = \frac{4x_n^4 - (x_n^4 - N)}{4x_n^3}$$

$$x_{n+1} = \frac{3x_n^4 + N)}{4x_n^3}$$

$$x_{n+1} = \frac{3x_n^4}{4x_n^3} + \frac{N}{4x_n^3}$$

$$\therefore x_{n+1} = \frac{3}{4} \left(x_n + \frac{N}{3x_n^3} \right), \text{ for n = 0,1,2,3,...}$$

N	X_n	X_{n+1}	$ X_{n+1}-X_n $
0	3.200	3.5452	0.3452
1	3.5452	3.5012	0.0440
2	3.5012	3.5002	0.0010
3	3.5002	3.5002	0.0000

 \therefore The root is 3.500(3d.p).

Example 2:

- a) Derive a formula based on Newton Raphson method for finding the reciprocal of a number N.
- b) Draw a flow chart that reads N and the initial approximation, x_0 , computes and prints the number and its reciprocal after 3 iterations or gives the reciprocal correct to 3dps.
- Perfom a dry run for $N = \frac{7}{6}$ and $x_0 = 0.8$.

Solution (a)

Let,
$$x = \frac{1}{N}$$

$$\Rightarrow N = \frac{1}{x} \quad \Rightarrow N - \frac{1}{x} = 0$$

$$f(x) = N - \frac{1}{x}$$

$$f'(x) = x^{-2}$$

from,
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n = 0,1,2,3,...$

$$x_{n+1} = x_n - \frac{N - x_n^{-1}}{x_n^{-2}}$$

$$x_{n+1} = \frac{x_n^{-1} - (N - x_n^{-1})}{x_n^{-2}}$$

$$x_{n+1} = \frac{2x_n^{-1} - N}{x_n^{-2}}$$

$$x_{n+1} = (2x_n^{-1} - N)x_n^2$$

$$x_{n+1} = 2x_n - Nx_n^2$$

$$x_{n+1} = x_n(2 - Nx_n)$$
 for n = 0,1,2,3,...

stop

BAHATI ABDULKARIM

N	X _n	X_{n+1}	$ X_{n+1}-X_n $
0	0.8	0.853	0.053
1	0.853	0.857	0.004

: For N =
$$\frac{7}{6}$$
 0.86 (2d.p).

Trial questions:

Examination-type question.

Given below are points of a flow chart not arranged in order.

a) Perform a dry run of your flow chart by coping and completing the table below.

A	В	C
46		
77		
120		
177		

- a) Rearrange the points and draw a complete logical flow chart.
- b) State the purpose of the flow chart

BAHATI ABDULKARIM CONTACT ME ON: 0704739907