Stoffsammlung Klausur/Probeklausur Mathematik 1 - Lineare Algebra (TINF22B4):

Aufgabe 1: Mengen (x Punkte) Auswahl aus folgenden Aufgabentypen

- Vereinigungs- / Schnitt- / Differenzmenge vorgegebener Mengen bilden (z.B. Aufgabe 2
 Übungsblatt-2)
- Potenzmenge einer gegebenen Menge bilden (z.B. Aufgabe 2 von Übungsblatt-2)
- Kartesisches Produkt vorgegebener Mengen bilden (z.B. Aufgabe 2 von Übungsblatt-2)
- Mengengleichungen mittels Wahrheitstafeln überprüfen / beweisen (z.B. Aufgabe 3 von Übungsblatt-2)
- Mengengleichungen mittels Mengenalgebra überprüfen / beweisen (z.B. Aufgabe 4 von Übungsblatt-2)

Aufgabe 2: Relationen / Abbildungen (x Punkte) Auswahl aus folgenden Aufgabentypen

- Für gegebene Relation Eigenschaften einer Äquivalenzrelation nachweisen / überprüfen (z.B. Aufgaben 1,2 von **Übungsblatt-3**)
- Zu einer gegebenen Äquivalenzrelation die Äquivalenzklassen bestimmen (z.B. Aufgabe 2 von Übungsblatt-3)
- Relationen, Umkehrrelationen und Verkettung von Relationen bilden (z.B. Aufgaben 3, 4 Übungsblatt 3)
- Injektivität, Surjektivität, Bijektivität von Abbildungen überprüfen / zeigen (z.B. Aufgabe 5 Übungsblatt 3)

Aufgabe 3 : Algebraische Strukturen / Zahlentheorie / Komplexe Zahlen (x Punkte) Auswahl aus folgenden Aufgabentypen

- Den ggT von 2 ganzen Zahlen bestimmen und ggT als Linearkombination dieser beiden Zahlen (auf 2 Arten) darstellen (z.B. Aufgabe 1, Übungsblatt-5)
- Modular addieren / subtrahieren / multiplizieren / dividieren auf \mathbb{Z}_n (z.B. Aufgabe 2, Übungsblatt-5)
- \bullet Division mit Rest mit Polynomen durchführen (z.B. Aufgabe 3, $\ddot{\mathbf{U}}\mathbf{bungsblatt-5})$
- ggT von Polynomen bestimmen (z.B. Aufgabe 4, Übungsblatt-5)
- Komplexe Zahl(en) in Normalform, Polarform, trigonometrischer Form darstellen (z.B. Aufgaben 2, 3, 4, Übungsblatt-6)
- Komplexe Zahlen addieren / subtrahieren / teilen / multiplizieren (z.B. Aufgabe 1, Übungsblatt-6)
- Komplexe Zahl potenzieren (z.B. Aufgabe 3, Übungsblatt-6)
- $\bullet\,$ n-te Wurzel aus einer komplexen Zahl berechnen (z.B. Aufgabe 4, $\ddot{\mathbf{U}}\mathbf{bungsblatt-6})$

Aufgabe 4: Matrizen und Determinanten (x Punkte)

- Matrizen addieren, subtrahieren, mit einem Skalar multiplizieren, miteinander multiplizieren, transponieren (z.B. Aufgaben 1, 3, 4, 5 Übungsblatt-9)
- Invertierbarkeit einer Matrix feststellen (z.B. Aufgabe 7, Übungsblatt-9)
- Matrix invertieren mittels Gauss-Jordan-Eliminationsverfahren (z.B. Aufgabe 6 a),b)c) Übungsblatt-9)
- Zu vorgegebenen Zeilenoperationen die hierzu korrespondierenden Eliminations-, Permutationsoder Multiplikationsmatrizen bestimmen (z.B. Aufgabe 2, Übungsblatt-9)
- Vorgegebene Matrix auf Orthogonalität überprüfen (z.B. Aufgabe 8, Übungsblatt-9)
- Vorgegebene Matrix auf die Eigenschaften symmetrisch, schiefsymmetrisch, hermitesch überprüfen (z.B. Übungen 2-4, Seite 22, Kapitel 9.1)

Aufgabe 5: Vektorräume, Vektorraumtheorie (x Punkte)

- Berechnung Linearkombination von vorgegebenen Vektoren (z.B. Aufgabe 1, Übungsblatt 7)
- Nachweis / Überprüfung , dass/ob eine vorgegebene Menge einen Vektorraum oder Untervektorraum darstellt (z.B. Aufgaben 2+3, **Übungsblatt 7**)
- Nebenklassen bestimmen (z.B. Übung 3, Kapitel 7.4, Seite 16)
- Nebenklassen auf Gleichheit bzw. leeren Schnitt überprüfen (z.B. Übung 1, Kapitel 7.4, Seite 16)
- Dimension / Basis eines Faktorraumes bestimmen (z.B. Aufgabe 4, Übungsblatt 10)
- Lineare Unabhängigkeit einer Menge von gegebenen Vektoren nachweisen / widerlegen (z.B. Aufgabe 1, 2, Übungsblatt-10)
- Eigenschaft, eine Basis zu sein, bezgl. einer Menge von gegebenen Vektoren nachweisen / widerlegen (z.B. Aufgabe 1, 2, Übungsblatt-10)
- Vektor eines Vektorraumes als Linearkombination der Basisvektoren dieses Vektorraumes darstellen (z.B. Aufgabe 2, **Übungsblatt-10**)
- Basistransformationsmatrix bezgl. zweier vorgegebener Basen bestimmen (z.B. Aufgabe 3, Übungsblatt 10 / Übung Seite 28, Kapitel 10.7)
- Koordinatenvektoren mittels Basistransformationsmatrix transformieren (z.B. Aufgabe 3, Übungsblatt 10 / Übung Seite 28, Kapitel 10.7)

Aufgabe 6: Lineare Abbildungen (x Punkte)

Aufgabe 7: Theorie und Lösung Linearer Gleichungssysteme (x Punkte)

- Lineares Gleichungssystem mittels Gauss'schem Eliminationsverfahren (Vorwärts-/Rückwärtselimina lösen (z.B. Aufgaben 1 5, Übungsblatt 8)
- Lineares Gleichungssystem mittels Benutzung der Matrix-Inversen lösen (z.B. Aufgabe 6)d), Übungsblatt 9)

Aufgabe 8: Eigenwerte / Eigenvektoren / Diagonalisierbarkeit von Matrizen (x Punkte)

Auf den kommenden Seiten folgen die zuvor beschriebenen Aufgaben (großteils in der korrekten Reihenfolge).

Aufgabe 2: Gegeben sind die Mengen $A = \{1, 2, 3\}, B = \{1, 3, 5\}, C = \{2, 4, 5\}.$

- a) Geben Sie die Potenzmengen der folgenden Mengen an : $A, A \cap B, (A \cup C) \cap B$
- b) Geben Sie das kartesische Produkt $(A \cap B) \times C$ an.

Aufgabe 3 : Beweisen Sie für Mengen $A,B,C\subseteq M$ durch Benutzung von Wahrheitstafeln

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 b) $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ c) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Aufgabe 4 : Beweisen Sie für die Mengen $A,B,C\subseteq M$ folgende Mengengleichungen mittels der Regeln / Gesetze der Mengenalgebra

a)
$$A \cap (B \cup \bar{A}) = A \cap B$$
 b) $(A \cap B) \cup (\bar{A} \cap B) = B$ c) $A \triangle (A \cup B) = B \setminus A$

d)
$$A \triangle (A \cap B) = A \setminus B$$
 e) $(A \cap B) \cup (B \cap C) \cup (C \cap \overline{A}) = (A \cap B) \cup (C \cap \overline{A})$

f)
$$(A \cup \overline{B} \cup \overline{C}) \cap (A \cup (B \cap C)) = A$$

Aufgabe 1 : Welche der folgenden Relationen sind reflexiv/nicht reflexiv, symmetrisch/nicht symmetrisch, transitiv/nicht transitiv? Welche Relationen sind demzufolge Äquivalenzrelationen?

- a) Relation $R_a \subseteq \mathbb{R} \times \mathbb{R}$ mit $a \in \mathbb{N}$ mit der Definition $xR_ay :\Leftrightarrow x^a y^a = ax ay$
- b) Relation $\operatorname{mod}_a \subseteq \mathbb{Z}^2$ für ein $a \in \mathbb{N}$ mit der Definition $x \operatorname{mod}_a y \Leftrightarrow \frac{x-y}{a} \in \mathbb{Z}$
- c) Relation $R \subseteq \mathbb{Z}^2$ mit der Definition $xRy \Leftrightarrow x+y$ ist gerade
- d) Relation $R \subseteq \mathbb{N}^2$ mit der Definition $xRy \Leftrightarrow \exists a, b \in \mathbb{N}_{>1} : y = ax^b$.

Aufgabe 2 : Betrachten Sie die Menge $\mathbb{N} \times \mathbb{N}$. Hierauf wird die folgende Relation $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$ definiert.

Zeigen Sie, dass \sim eine Äquivalenzrelation darstellt.

Bestimmen Sie [(2,2)], [(2,5)], [(10,1)]. Wieviele Äquivalenzklassen gibt es?

Aufgabe 3:

- a) Gegeben seien $A = \{3, 5, 7, 11, 13, 17\}, B = \{4, 5, 6, 7, 8\}$. Geben Sie alle Elemente der folgenden Relationen exakt an :
 - $R_1 \subseteq A \times B$ mit der Definition $aR_1b \Leftrightarrow a < b$
 - $R_2 \subseteq A \times B$ mit der Definition $aR_2b \Leftrightarrow a=b$
- b) Es sei folgende Relation R definiert : $R \subseteq \mathbb{R}^2$ mit $xRy \Leftrightarrow \exists n \in \mathbb{Z} : x^n = y$. Prüfen Sie, ob die folgenden Paare in R liegen : $(2,4), (\sqrt{2},2\sqrt{2}), (3,3), (3,6)$.

Aufgabe 4:

- a) Gegeben sind die Mengen $A=\{a,b,c\}, B=\{x,y,z\}, C=\{u,v\}$ und die Relationen $R=\{(a,x),(b,x),(c,y),(c,z)\}$ und $S=\{(x,u),(z,v)\}.$ Geben Sie an (i) R^{-1} (ii) $S\circ R$.
- b) Es sei die Relation $R = \{(a,c), (a,d), (b,b), (c,d), (d,a), (d,b)\}$ auf der Menge $M = \{a,b,c,d\}$ gegeben. Bilden Sie die Relationen (i) $R^2 = R \circ R$ (ii) $R^3 = R \circ (R \circ R) = (R \circ R) \circ R$ (überzeugen Sie sich von der Gültigkeit der letzten Gleichung)
- **Aufgabe 5**: Überprüfen Sie, ob folgende Abbildungen surjektiv beziehungsweise injektiv sind: a) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (x+y, y+z)$ b) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x, x+y, y)$

Aufgabe 1: Bestimmen Sie jeweils den ggT der folgenden Zahlenpaare und stellen Sie den ggT jeweils als Vielfachsumme der beiden Zahlen auf 2 verschiedene Arten dar:

a) (1008,840) b) (481,1755) c) (2940,1617)

Aufgabe 2:

- a) Erstellen Sie jeweils die Additions- und Multiplikationstabelle für die jeweilige Restklassengruppe $\mathbb{Z}_3 = \mathbb{Z}/3\mathbb{Z}$. Leiten Sie aus der Multiplikationstabelle ab, welchen Rest die Zahlen (i) 49^{50} (ii) 128^{949} bei der Division durch 3 ergeben.
- b) Erstellen Sie jeweils die Additions- und Multiplikationstabelle für die jeweilige Restklassengruppe $\mathbb{Z}_7 = \mathbb{Z}/7\mathbb{Z}$. Leiten Sie aus der Multiplikationstabelle ab, welchen Rest die Zahlen (i) 52^{50} (ii) 128^{949} bei der Division durch 7 ergeben.
- c) Berechnen Sie in $\mathbb{Z}_5 = \mathbb{Z}/5\mathbb{Z}$:

(i)
$$(4 \cdot 3 - 1) \cdot 4$$
 (ii) $\frac{1}{3} \cdot (\frac{1}{4} - 1)$ (iii) $\sum_{n=1}^{4} n$ (iv) $\sum_{n=1}^{4} n^2$

- d) Bearbeiten Sie ohne eigens erstellte Additions- bzw. Multiplikationstabellen folgende Fragen/Aufgaben im Restklassenkörper \mathbb{Z}_{11} :
 - Was ist -8? Was ist -3?
 - Was ist $\frac{1}{7}$? Was ist $\frac{1}{10}$?
 - Berechnen Sie $4-6+\frac{3}{5}$

Aufgabe 3: Führen Sie folgende Polynomdivisionen durch und bestimmen Sie gemäß Satz zur Polynomdivision (s. Kapitel 5.5.3, Seite 30) p(x), q(x), s(x) sowie das Restpolynom r(x)

- 1. in $\mathbb{R}[x]$: (i) $(2x^4 + 2x^2 + x + 1)$: (x + 2) (ii) $(4x^3 + 2x^2 + 1)$: $(2x^2 + 3x)$
- 2. in $\mathbb{Z}_2[X]$: (i) $(x^3 + x^2 + x + 1)$: $(x^2 + 1)$ (ii) $(x^4 + x^2 + 1)$: (x + 1)

Aufgabe 4: Bearbeiten Sie folgende Teilaufgaben zur ggT-Bestimmung von Polynomen

- 1. Bestimmen Sie in $\mathbb{Z}_2[X]$ den ggT der Polynome $x^7 + x^5 + x^3 + 1$ und $x^3 + x + 1$.
- 2. Bestimmen Sie in $\mathbb{R}[X]$ den ggT der Polynome x^2-1, x^3+2x^2+2x+1 und x^4+x^3+x+1 .

Aufgabe 1 : Gegeben seien die komplexen Zahlen $z_1 = 2 + 5i$, $z_2 = -1 - 2i$, $z_3 = 1 - 3i$. Berechnen Sie die komplexen Zahlen

- a) $z_1 \cdot z_2$
- b) $\frac{z_1}{z_2 \cdot z_3}$ c) $\frac{z_1 + z_2}{z_2 z_3}$

und schreiben Sie diese in der Form $a + b \cdot i$ (also keine komplexe Zahl im Nenner).

Aufgabe 2: Berechnen Sie zu den in der Aufgabe 1 gegebenen komplexen Zahlen $z_1 = 2 + 5i, z_2 = -1 - 2i, z_3 = 1 - 3i$ jeweils den Betrag.

Aufgabe 3 : Berechnen Sie $(2-3i)^6$ und geben Sie das Ergebnis in der Normalform an.

Aufgabe 4: Berechnen Sie alle 6-ten Wurzeln aus 64.

Aufgabe 1 : Bestimmen Sie die 4×4 -Matrix mit den folgenden Eigenschaften : Es gelte $a_{jk} = 1$ für j=k, $a_{jk} = 2$ für j=k-2, $a_{jk} = 3$ für j=k+2, $a_{jk} = 4$ sonst.

Aufgabe 2 : Welche 4×4 -Matrizen erzeugen die folgenden Zeilenoperationen in einer $4 \times n$ -Matrix ?

- a) P_{24} vertauscht die Zeilen 2 und 4
- b) E_{14} addiert das 3-fache der 1. Zeile zur 4. Zeile
- c) E_{23} subtrahiert das doppelte der 2. Zeile von der 3. Zeile
- d) E_{134} subtrahiert das doppelte der 1. Zeile von der 3. Zeile und addiert die 1. Zeile zur
- 4. Zeile

Aufgabe 3: Führen Sie mit den Matrizen

$$A = \begin{pmatrix} 3 & 4 & 0 \\ -1 & 5 & 3 \end{pmatrix}, B = \begin{pmatrix} -3 & 3 \\ 1 & -1 \\ 0 & 2 \end{pmatrix} \text{ und } C = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 1 & 3 \end{pmatrix}$$

die folgenden Rechenoperationen durch ("sofern diese möglich sind)

a)
$$2 \cdot A + C - B^T$$
 b) $A^T - B - 3 \cdot C^T$ c) $2 \cdot (A + B^T)^T - C^T$ d) $A - 2 \cdot C + B$

Aufgabe 4: Führen Sie bei a)-g) folgende Matrix-Multiplikationen durch:

a)
$$\begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix}$$
 · $\begin{pmatrix} 7 & 8 & 1 & 3 \end{pmatrix}$ b) $\begin{pmatrix} 7 & 8 & 9 \end{pmatrix}$ · $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$ c) $\begin{pmatrix} 7 & 8 \\ 1 & 3 \\ 2 & 1 \\ 9 & 1 \end{pmatrix}$ · $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$
 $\cdot \begin{pmatrix} 4 & 1 \\ 1 & 1 \\ 0 & -2 \\ 1 & 3 \end{pmatrix}$ e) $\begin{pmatrix} 4 & 1 \\ 1 & 1 \\ 0 & -2 \\ 1 & 3 \end{pmatrix}$ $\cdot \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 2 & 0 & 1 \end{pmatrix}$ f) $\begin{pmatrix} 3 & -4 \\ 1 & 7 \end{pmatrix}$ $\cdot \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$

g)
$$\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \cdot \begin{pmatrix} 3 & -4 \\ 1 & 7 \end{pmatrix}$$
 Wann stimmen die Ergebnismatrizen aus f) und g) überein ?

Aufgabe 5 : Berechnen Sie A^3 mit

$$A = \begin{pmatrix} 0 & 0 & a \\ b & 0 & 0 \\ 0 & c & 0 \end{pmatrix}.$$
 Wie lautet das Ergebnis zu A^6, A^{12}, A^{30} ?

Übung 2 : Welche der folgenden Matrizen sind symmetrisch, welche schiefsymmetrisch ? Jede der Matrizen hat eine der beiden Eigenschaften.

$$A = \begin{pmatrix} 0 & 1 & 4 & 0 \\ -1 & 0 & -3 & 5 \\ -4 & 3 & 0 & -8 \\ 0 & -5 & 8 & 0 \end{pmatrix}, B = \begin{pmatrix} 5 & 0 & -3 \\ 0 & 5 & 7 \\ -3 & 7 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & -a & b \\ a & 0 & -1 \\ -b & 1 & 0 \end{pmatrix}$$

Übung 3 : Welches notwendige Merkmal besitzt jede schiefsymmetrische Matrix? Gibt es eine Matrix, die sowohl symmetrisch als auch schiefsymmetrisch ist ? Welches notwendige Merkmal besitzt eine hermitesche Matrix ?

Übung 4: Wie müssen in der Matrix

$$A = \begin{pmatrix} 1 & a & 2 \cdot i \\ -i & 0 & 1 \\ b & c & 0 \end{pmatrix}$$

a, b, c gewählt werden, damit A eine hermitesche Matrix darstellt.

Aufgabe 1 : Gegeben sind die Vektoren $a=\begin{pmatrix}3\\2\\-4\end{pmatrix}, b=\begin{pmatrix}-2\\0\\4\end{pmatrix}, c=\begin{pmatrix}-5\\1\\4\end{pmatrix}.$ Berechnen Sie folgende Vektoren :

a)
$$3a - 5b + 3c$$
 b) $-2(b + 5c) + 5(a - 3b)$ c) $4(a - 2b) + 10c$ d) $3(a \cdot b)c - 3a(b \cdot c)$

 ${\bf Aufgabe~2:}~{\bf Begründen}$ / Beweisen Sie folgende Gesetzmäßigkeiten zu Unterräumen von Vektorräumen

- 1. V sei ein Vektorraum, U_1, U_2 seien zwei Unterräume von V. Dann gilt : $U_1 \cap U_2$ ist wieder ein Unterraum von V.
- 2. V sei ein Vektorraum, U_1, U_2 seien zwei Unterräume von V. Dann gilt : $U_1 \cup U_2$ ist i.a. kein Unterraum von V. **Hinweis :** Finden Sie ein einfaches Gegenbeispiel z.B. $V = \mathbb{R}^2$ mit geeignet gewählten Unterräumen U_1, U_2 .
- 3. V sei ein Vektorraum, U_1, U_2 seien zwei Unterräume von V. Dann gilt : $U_1 + U_2 := \{u_1 + u_2 | u_1 \in U_1, u_2 \in U_2\}$ ist wieder ein Unterraum von V.

Aufgabe 3 : Sei V die Menge aller Abbildungen von \mathbb{R} nach \mathbb{R} .

1. Zeigen Sie: Wenn man eine Addition und eine skalare Multiplikation auf V folgendermaßen definiert

$$(f+g)(x)=f(x)+g(x), (a\cdot f)(x)=a\cdot f(x)$$
 für alle $x\in\mathbb{R}, (f,g\in V,a\in\mathbb{R}),$ so wird V zu einem \mathbb{R} -Vektorraum.

2. Zeigen Sie, dass

$$W = \{ f \in V : f(1) = f(-1) = 0 \}$$

einen Unterraum von V darstellt.

3. Begründen Sie, warum

$$U = \{f \in V : f(1) = f(-1) = 1\}$$

keinen Unterraum von V darstellt.

Übung 3 : Gegeben sei der Unterraum $U = \left\{ r \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}, r \in \mathbb{Z}_2 \right\}$ des \mathbb{Z}_2^2 . Wieviele verschiedene Nebenklassen von U gibt es ?

Übung 1 : Gegeben sei der Unterraum $U = \left\{ r \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}, r \in \mathbb{R} \right\}$ des \mathbb{R}^2 . Sind folgende Nebenklassen von U gleich oder disjunkt ?

Aufgabe 1 : Zeigen Sie die lineare Unabhängigkeit der Vektoren

a)
$$\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$
 und $\begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 \\ -6 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Zeigen Sie die lineare Abhängigkeit der Vektoren

c)
$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 und $\begin{pmatrix} -6 \\ 3 \\ -9 \end{pmatrix}$ d) $\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$, $\begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} 5 \\ 10 \\ 1 \end{pmatrix}$

Welche Dimension hat der von den 3 Vektoren

e)
$$\begin{pmatrix} 1 \\ 2 \\ t+2 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ t+1 \\ t \end{pmatrix}$ und $\begin{pmatrix} 0 \\ t \\ 1 \end{pmatrix}$

aufgespannte Vektorraum in Abhängigkeit von $t \in \mathbb{R}$.

Aufgabe 2 : Gegeben sind $a_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $a_2 = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix}$, $a_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$. U sei der von den Vektoren a_1, a_2, a_3 erzeugte Unterraum des \mathbb{R}^3 .

- a) Geben Sie die Dimension von U an.
- b) Geben Sie eine Basis zu U an.
- c) Liegt der Vektor $a = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ in U? d) Liegt der Vektor $b = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$ in U?
- e) Geben Sie 2 verschiedene komplementäre Unterräume zu U ${\rm an.}$

Aufgabe 4 : Gegeben sei der Unterraum $U = \{t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} | t \in \mathbb{R} \}$ des Vektorraums $V = \mathbb{R}^3$.

- 1. Welche Dimension hat der Faktorraum V/U?
- 2. Welche der beiden Mengen $B_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + U, \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix} + U \right\}, B_2 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + U, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + U \right\}$ stellt eine Basis von V/U dar? Die Antwort ist zu begründen.

 $\ddot{\mathbf{U}}\mathbf{bung}: \mathsf{Gegeben} \mathsf{seien} \mathsf{die} \mathsf{beiden} \mathsf{Basis} \mathsf{des} \ \mathbb{R}^3$

$$C = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ und } D = \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Bestimmen Sie die Basistransformationsmatrizen \mathcal{T}_C^D und \mathcal{T}_D^C . Benutzen Sie, dass gilt

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \text{ sowie } \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 0 & -1 \\ 3 & -1 & -1 \end{pmatrix}.$$

Bearbeiten Sie

- 2 Transformieren Sie den Koordinatenvektor $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}_D$ in den entsprechenden Koordinatenvektor bezgl. der Basis C und machen Sie die Probe.

Benutzen Sie bei der Lösung der Aufgaben 1 - 6 ausschließlich das Gauss'sche Eliminationsverfahren. Stellen Sie selbst fest, dass Sie mit seiner Hilfe immer zu einem brauchbaren Ergebnis kommen, das dann, je nach Aufgabenstellung, noch weiterzuverwerten ist.

Aufgabe 1 : Zu lösen ist das Lineare Gleichungssystem

$$x_1 + 2x_2 = 3$$

$$x_1 + 7x_2 + 4x_3 = 18$$

$$3x_1 + 13x_2 + 4x_3 = 30$$

Aufgabe 2 : Zu lösen ist das lineare Gleichungssystem

$$3x_2 - 5x_3 + x_4 = 0$$

$$-x_1 - 3x_2 - x_4 = -5$$

$$-2x_1 + x_2 + 2x_3 + 2x_4 = 2$$

$$-3x_1 + 4x_2 + 2x_3 + 2x_4 = 8$$

Aufgabe 3 : Zu lösen ist das lineare Gleichungssystem, wenn $a_1, a_2, a_3 \in \mathbb{R}$

$$x_1 + x_2 + x_3 = a_1$$

 $5x_1 + 4x_2 - 5x_3 = a_2$.
 $3x_1 + 2x_2 - x_3 = a_3$

Aufgabe 4 : Zu lösen ist das lineare Gleichungssystem mit $a_1, a_2, a_3 \in \mathbb{R}$

$$x_1 + x_2 + x_3 = a_1$$

$$5x_1 + 4x_2 + x_3 = a_2$$

$$3x_1 + 2x_2 - x_3 = a_3$$

Welcher Zusammenhang muss zwischen a_1, a_2, a_3 bestehen, damit das Gleichungssystem (1) keine Lösung, (2)unendlich viele Lösungen besitzt.

Aufgabe 5 : Zu lösen ist das lineare Gleichungssystem

$$t \cdot x_1 + x_3 = 0 t \cdot x_2 + x_3 = 0 x_1 + x_2 + t \cdot x_3 = 0$$

Stellen Sie fest, für welche $t \in \mathbb{R}$ das LGS a) genau eine b) unendlich viele Lösungen besitzt. Ist es möglich, dass das Gleichungssystem gar keine Lösung besitzt?

Aufgabe 6 : Berechnen Sie jeweils die Inverse der Matrizen mittels dem Gauss-Jordan-Verfahren

a)
$$A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$ c) $C = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 7 & 4 \\ 3 & 13 & 4 \end{pmatrix}$.

d) Lösen Sie das Gleichungssystem
$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & 7 & 4 \\ 3 & 13 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 18 \\ 30 \end{pmatrix}$$

unter Verwendung der in c) berechneten inversen Matrix C^{-1} .