Introduction to Structured Prediction

He He

CDS, NYU

March 30, 2021

Example: Part-of-speech (POS) Tagging

• Given a sentence, give a part of speech tag for each word:

X	[START]	He	eats	apples
	× ₀	× ₁	<i>x</i> ₂	<i>x</i> ₃
У	[START]	Pronoun	Verb	Noun
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃

- $V = \{all English words\} \cup \{[START], "."\}$
- $X = V^n$, n = 1, 2, 3, ... [Word sequences of any length]
- $\mathcal{P} = \{START, Pronoun, Verb, Noun, Adjective\}$
- $y = \mathcal{P}^n$, n = 1, 2, 3, ...[Part of speech sequence of any length]

Multiclass Hypothesis Space

- Discrete output space: y(x)
 - Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)
 - Size depends on input x
- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to R\}$
 - h(x,y) gives compatibility score between input x and output y
- Multiclass hypothesis space

$$\mathcal{F} = \left\{ x \mapsto \argmax_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \right\}$$

- Final prediction function is an $f \in \mathcal{F}$.
- For each $f \in \mathcal{F}$ there is an underlying compatibility score function $h \in \mathcal{H}$.

He He (CDS, NYU) DS-GA 1003 March 30, 2021 3/13

Structured Prediction

Part-of-speech tagging

Multiclass hypothesis space:

$$h(x,y) = w^{T} \Psi(x,y) \tag{1}$$

$$\mathcal{F} = \left\{ x \mapsto \arg\max_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \right\}$$
 (2)

- A special case of multiclass classification
- How to design the feature map Ψ ? What are the considerations?

4 / 13

Unary features

- A unary feature only depends on
 - the label at a single position, y_i , and x
- Example:

$$\begin{array}{lcl} \varphi_1(x,y_i) &=& 1(x_i=\mathsf{runs})\mathbf{1}(y_i=\mathsf{Verb}) \\ \varphi_2(x,y_i) &=& 1(x_i=\mathsf{runs})\mathbf{1}(y_i=\mathsf{Noun}) \\ \varphi_3(x,y_i) &=& 1(x_{i-1}=\mathsf{He})\mathbf{1}(x_i=\mathsf{runs})\mathbf{1}(y_i=\mathsf{Verb}) \end{array}$$

- A markov feature only depends on
 - two adjacent labels, y_{i-1} and y_i , and x
- Example:

$$\begin{array}{lcl} \theta_1(x,y_{i-1},y_i) & = & 1(y_{i-1} = \mathsf{Pronoun}) \mathbb{1}(y_i = \mathsf{Verb}) \\ \theta_2(x,y_{i-1},y_i) & = & 1(y_{i-1} = \mathsf{Pronoun}) \mathbb{1}(y_i = \mathsf{Noun}) \end{array}$$

- Reminiscent of Markov models in the output space
- Possible to have higher-order features

Local Feature Vector and Compatibility Score

• At each position *i* in sequence, define the **local feature vector** (unary and markov):

$$\Psi_{i}(x, y_{i-1}, y_{i}) = (\phi_{1}(x, y_{i}), \phi_{2}(x, y_{i}), \dots, \\
\theta_{1}(x, y_{i-1}, y_{i}), \theta_{2}(x, y_{i-1}, y_{i}), \dots)$$

- And local compatibility score at position $i: \langle w, \Psi_i(x, y_{i-1}, y_i) \rangle$.
- The compatibility score for (x, y) is the sum of local compatibility scores:

$$\sum_{i} \langle w, \Psi_{i}(x, y_{i-1}, y_{i}) \rangle = \left\langle w, \sum_{i} \Psi_{i}(x, y_{i-1}, y_{i}) \right\rangle = \left\langle w, \Psi(x, y) \right\rangle, \tag{3}$$

7/13

where we define the sequence feature vector by

$$\Psi(x,y) = \sum_{i} \Psi_{i}(x,y_{i-1},y_{i}).$$
 decomposable

He He (CDS, NYU) DS-GA 1003 March 30, 2021

```
Given a dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, ..., T do
      for (x, y) \in \mathcal{D} do
            \hat{y} = \operatorname{arg\,max}_{\mathbf{v}' \in \mathbf{y}(\mathbf{x})} \mathbf{w}^T \psi(\mathbf{x}, \mathbf{y}');
            if \hat{y} \neq y then // We've made a mistake
           w \leftarrow w + \Psi(x,y); // Move the scorer towards \psi(x,y)
w \leftarrow w - \Psi(x,\hat{y}); // Move the scorer away from \psi(x,\hat{y})
             end
      end
end
```

Identical to the multiclass perceptron algorithm except the arg max is now over the structured output space y(x).

He He (CDS, NYU) DS-GA 1003 March 30, 2021 8/13

Structured hinge loss

Recall the generalized hinge loss

$$\ell_{\mathsf{hinge}}(y, \hat{y}) \stackrel{\mathsf{def}}{=} \max_{y' \in \mathcal{Y}(x)} \left(\Delta(y, y') + \left\langle w, \left(\Psi(x, y') - \Psi(x, y) \right) \right\rangle \right) \tag{4}$$

9/13

- What is $\Delta(y, y')$ for two sequences?
- Hamming loss is common:

$$\Delta(y, y') = \frac{1}{L} \sum_{i=1}^{L} 1(y_i \neq y_i')$$

where *L* is the sequence length.

• Can generalize to the cost-sensitive version using $\delta(y_i, y_i')$

Structured SVM

Exercise:

- Write down the objective of structured SVM using the structured hinge loss.
- Stochastic sub-gradient descent for structured SVM (similar to HW3 P3)
- Compare with the structured perceptron algorithm

The argmax problem for sequences

Problem To compute predictions, we need to find $\arg\max_{y\in\mathcal{Y}(x)}\langle w,\Psi(x,y)\rangle$, and $|\mathcal{Y}(x)|$ is exponentially large.

Observation $\Psi(x,y)$ decomposes to $\sum_i \Psi_i(x,y)$.

Solution Dynamic programming (similar to the Viterbi algorithm)

What's the running time?

Figure by Daumé III. A course in machine learning. Figure 17.1.

The argmax problem in general

Efficient problem-specific algorithms:

problem	structure	algorithm
constituent parsing dependency parsing image segmentation	binary trees with context-free features spanning trees with edge features 2d with adjacent-pixel features	CYK Chu-Liu-Edmonds graph cuts

General algorithm:

• Integer linear programming (ILP)

$$\max_{z} a^{T} z \quad \text{s.t. linear constraints on } z \tag{5}$$

12 / 13

- z: indicator of substructures, e.g., $\mathbb{I}\{y_i = \text{article and } y_{i+1} = \text{noun}\}$
- constraints: z must correspond to a valid structure

He He (CDS, NYU) DS-GA 1003 March 30, 2021

Conclusion

Multiclass algorithms

- Reduce to binary classification, e.g., OvA, AvA, ECCO
 - Good enough for simple multiclass problems
- Generalize binary classification algorithms using multiclass loss
 - Useful for problems with extremely large output space, e.g., structured prediction
 - Related problems: ranking, multi-label classification