VD 3.5.2	
x(half-life) The half-life of a certain radioactive substances is 521 days. If 1.12 grams remain	(a) 1.34 gram
after 134 days, (a) What is the initial amount of the radioactive substance.	(b) 1.02 gram
(b) Now the school is going into summer vacation, how much will the radio substance remain	
when next school years started? (Assume the summer is 10 weeks long)[Round your answer to	
hundredth of a gram]	
(Transparency) Ms. King uses transparencies in her art class to show students how to draw a	44 transparencies
painting in different layers. However, light intensity will decrease as the transparency overlaid.	
If there is a 0.5% deduction of intensity as light passes through a transparency. What would	
the maximum numbers of layers (every layer per transparency) Ms. King can use for the art	
project if the light intensity should not be less than 80% of the original when it passes through	
all layers?	
(Richter scale)	(a) 1.101×10^9 Kwh
The Richter scale is used for measuring the magnitude of an earth quake. The Richter scale is	(b) 1.41
given by	, ,
$\frac{2}{100000000000000000000000000000000000$	
$R = \frac{2}{3}\log(0.37E) + 1.46$	
Where E is the energy in (Kwh).	
(a)What Is the energy released by an earth quake if its Richter scale is 7.2?	
(b)If two successive quakes are recorded with 0.1 difference on the scale, what is the ratio	
(bigger quake to the smaller quake) of the energy released between these two quakes?	
(Yeast Growth) Following model represents a yeast population when a sour dough bread was	(a) 3.81 Million
rising:	(b) 6.92 hr
$Y(t) = \frac{80}{1 + 20e^{75t}}, 0 \le t \le 10$	
Where t represents the time (in hours), Y(t) represent the numbers of yeast in millions.	
(a) What is the initial population when the yeast was just added into the dough?	
(b) Define that "fully risen of a dough" with this type of yeast growth is when the yeast is at	
90% of its final population. Find the hour when a bread dough is fully risen?	
(Pollution) The concentration of a pollutant from a source can be modelled by the following	(a) 2000 ppm
function:	(b) 11.51 Km
$\frac{1}{2}\left(\frac{x^2}{x^2}\right)$	
$C(x) = 2000e^{-\left(\frac{x^2}{25}\right)}$	
where x is the distances from the pollution source in km and C is the concentration of pollutant	
at ground level in ppm.	
(a) what is the concentration of the pollutant when it is just out of the source?	
(b) if the pollutant is considered as undetectable when its concentration is lower than 10 ppm,	
than how far away from the source of pollution is considered to be undetectable?	
(Altitude) The altitude h (in meters) above the sea level is related to the atmospheric pressure	(a) 4,551 m
at the level. It can be modeled by	(b) 33.52 Kpa
$h = -8000 \ln \left(\frac{P}{P_0} \right)$	
Where P_0 is the reference pressure (in Kpa).	
(a) Given that the pressure is 65Kpa at the altitude of 3,500 m, What is the height if the	
pressure is 57Kpa?	
(b) Near the sea level of the earth the air pressure is usually at 101.3 Kpa, estimate the air	
pressure at the top of the Mt. Everest (8,848 m)?	

both ends of the funnel)?

(Frappuccino) The temperature of a frappuccino and time after it was made can be modelled (a) 32 F by the following relationship, (b) 1.09 min $t = 4.35 \ln \left(\frac{36}{68 - T(t)} \right)$ Where T(t) is the frappuccino's temperature, and t is time in minutes. (a) what is the frappuccino's temperature when it was made? (b) When will the temperature of the drink be raised to at least 40 ^{o}F ? (a) $r \in \left[\frac{1}{4}, \frac{5}{2}\right]$ (b) $\frac{\sqrt{10}}{4}$ inches (Funnel) A funnel is 4" tall. The diameter of the outlet (the smaller opening) is $\frac{1}{2}$ ", and the diameter of the inlet is 5" (the bigger opening). A horizontal cross section of the funnel is a circle parallel to the inlet and outlets. Let the distance between the any horizontal cross section to the outlet be d and the radius of any cross section be r. The relationship between the r and d can be modeled by the following expression, $d(r) = a + b \ln r$ where a and b are constants. (a) what is the valid domain of the function d(r) ? (b) what is the diameter of the midway cross section? (midway is defined as equidistant from