

• General Description

The AGM16N10C combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{\text{DS(ON)}}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
100V	15mΩ	55A

TO-220 Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGM16N10C	AGM16N10C	TO-220			1000

Table 1. Absolute Maximum Ratings (TA=25℃)

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	100	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	55	А
	Drain Current-Continuous(Tc=100℃)	37	Α
IDM (pluse)	Drain Current-Pulsed (Note 2)	220	А
PD	Maximum Power Dissipation(Tc=25℃)	103	W
	Maximum Power Dissipation(Tc=100℃)	41	W
EAS	Avalanche energy (Note 3)	37	mJ
TJ,TSTG	TJ,TSTG Operating Junction and Storage Temperature Range		${\mathbb C}$

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		60	°C/W
ReJC	Thermal Resistance Junction-Case ¹		1.2	°C/W

Table 3. Electrical Characteristics (TJ=25℃unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off States						
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250μA	100			V
IDSS	Zero Gate Voltage Drain Current	VDS=100V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250μA	1.2		2.2	V
gFS	Forward Transconductance	VDS=5V,ID=8A		38		S
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=12A		15	16.5	mΩ
1.56(61.)		VGS=4.5V, ID=8A		19	22	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance			930		pF
Coss	Output Capacitance	VDS=40V,VGS=0V,		280		pF
Crss	Reverse Transfer Capacitance	F=1MHZ		9.8		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		1.2		Ω
Switching	Times					
td(on)	Turn-on Delay Time			10		nS
tr	Turn-on Rise Time	VGS=10V,VDS=50V,		24		nS
td(off)	Turn-Off Delay Time	RGEN=10Ω		16		nS
tf	Turn-Off Fall Time			5.0		nS
Qg	Total Gate Charge			24		nC
Qgs	Gate-Source Charge	VGS=10V, VDS=50V, ID=20A		1.5		nC
Qgd	Gate-Drain Charge	- 15-20/		13		nC
Source-Drain Diode Characteristics						
ISD	Source-Drain Current(Body Diode)				55	А
VSD	Forward on Voltage	VGS=0V,IS=12A			1.2	V
trr	Reverse Recovery Time	IF=12A , dI/dt=100A/μs ,				ns
Qrr	Reverse Recovery Charge	TJ=25℃				nc

Notes 1. The maximum current rating is package limited.

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25 $^{\circ}$ C

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig1. Typical Output Characteristics

Fig3. On-Resistance Vs. Temperature

Fig5. Typical.Capacitance

Fig2. Typical Transfer Characteristics

Fig4. Typical Source-Drain Diode Forward Voltage

Fig6. Typical.Gate Charge

Fig7. Safe Operating Area

Fig8. Normalized transient thermal impedance

TO-220 PACKAGE INFORMATION

D2

SYMBOL	MILLIMETER			
SIMDUL	MIN	Тур.	MAX	
A	4. 370	4. 570	4. 700	
A1	1. 250	1.300	1.400	
A2	2. 150	2.350	2.550	
b	0.700	0.800	0.950	
b1	1. 170	1.270	1.470	
С	0.450	0.500	0.600	
D	15. 100	15.600	16. 100	
D1	8.800	9.100	9.400	
D2	5.500 6.300 REF			
Е	9.700	10.000	10.300	
E3	7.000 7.600 REF			
е		2.540 BSC		
e1		5.080 BSC		
L	13. 200	13. 500	13. 800	
L1		3.100	3.400	
Н	6. 250	6. 500	6.750	
ф	3.400	3.600	3.800	
Q	2.600	2.800	3.000	
θ 1	7° TYP			
θ2	7° TYP			
θ3	3° TYP			

Disclaimer:

The information provided in this document is believed to be accurate and reliable. however, Shenzhen Core Control Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the first version issued on Dec.10th, 2023. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Electronics Technology Co., Ltd. all rights reserved.