### Clasificación de los Compuestos Químicos

## Nomenclatura de Compuestos Inorgánicos

#### Números de oxidación

# Es la carga aparente que adquiere un átomo y depende del elemento al cual este unido el mismo.

- ✓ Las reglas para determinar el estado de oxidación son las siguientes:
- ✓ En las sustancias simples, es decir las formadas por un solo elemento, el numero de oxidación es 0.

Ejemplo: Cu<sup>0</sup>, O<sub>2</sub><sup>0</sup>

✓ El Oxigeno, cuando esta combinado, actúa frecuentemente con -2. En algunos compuestos de formula X<sub>2</sub>O<sub>2</sub> donde X es un metal alcalino, su número de oxidación es igual a -1. Cuando se combina con el F su número de oxidación es +2 (OF<sub>2</sub>)

#### Números de oxidación

- ✓ El Hidrógeno posee casi siempre numero de oxidación +1, excepto cuando esta combinado con un metal, en ese caso actúa con -1 (hidruros).
- ✓ En los iones monoatómicos, el numero de oxidación coincide con la carga del ion.

Ejemplo: K<sup>+</sup> , S<sup>-2</sup> , Al<sup>+3</sup>

- ✓ Todos los elementos del grupo IA y IIA tienen numero de oxidación +1 y +2, respectivamente. Configuración electrónica ns¹ y ns².
- ✓ El número de oxidación del Al es siempre +3.
- ✓ El F siempre tiene número de oxidación -1 (más electronegativo).

#### Números de oxidación

- ✓ CI, Br, I tienen diferentes números de oxidación: -1 cuando se combinan con H ó metales y +1, +3, +5, +7 cuando se unen al Oxígeno.
- ✓ La suma de los números de oxidación es igual a la carga de la especie. Si se trata de compuestos neutros la suma será igual a 0, mientras que si las especies son iónicas, la suma será igual a la carga de éstos.

 $\sum N^{\circ}$  Oxid. = 0 / carga ion

Ejemplos: +3 
$$X? -2$$
  $Al_2(SO_4)_3$ 

$$\sum$$
 N° Oxid. = 0  $\Rightarrow$  2 (+3) + X + 12(-2) = 0 X = +18

Como hay 3 átomos de S por fórmula, X = +6 (N° de oxid. del S en este compuesto es +6).

$$\sum$$
 N° Oxid. = -3

$$\sum$$
 N° Oxid. = -3  $\rightarrow$  X + 4(-2) = -3 X = +5

El número de oxidación del P es +5 en este anión.

Determine qué número de oxidación tiene cada elemento en las siguientes sustancias y/o iones:

K

**MgO** 

 $NO_3$ 

Fe<sub>2</sub>O<sub>3</sub>

Cr<sub>2</sub>O<sub>7</sub>

KMnO<sub>4</sub>

**HBr** 

HCIO<sub>4</sub>

SO,

H,CO<sub>3</sub>

NaHSO<sub>4</sub>

#### Clasificación de los Compuestos Químicos





# Nomenclatura de compuestos Inorgánicos

#### Nomenclatura de iones monoatómicos simples

#### Son aniones o cationes formados por un único elemento

Aniones monoatómicos se nombran, tomando la primera parte del nombre del elemento a la que se le agrega la terminación uro.

| Elemento | Н       | F        | CI      | Br      | I      | S       |
|----------|---------|----------|---------|---------|--------|---------|
| Anión    | H-      | F-       | CI-     | Br-     | l-     | S-      |
| NOMBRE   | Hidruro | Fluoruro | Cloruro | Bromuro | loduro | Sulfuro |

Excepción: aniones que contienen oxígeno.

O<sup>2</sup>: óxido O<sub>2</sub><sup>2</sup>: peróxido

#### Cationes monoatómicos

- **>único estado de oxidación**, mantiene el nombre del elemento que lo origina: Na⁺ (ion sodio), Mg²⁺ (ion magnesio), Ag⁺ (ion plata).
- ➤ más de un estado de oxidación: el nombre indica el estado de oxidación con el que intervienen en el compuesto considerado.

#### **Cationes**

| Catión           | Nomenclatura de IUPAC     | Nomenclatura<br>Tradicional |
|------------------|---------------------------|-----------------------------|
| Ma               | ás de un estado de oxidac | ión                         |
| Fe <sup>2+</sup> | Ion hierro (II)           | Ion ferroso                 |
| Fe <sup>3+</sup> | Ion hierro (III)          | Ion férrico                 |
| Cu⁺              | Ion cobre (I)             | Ion cuproso                 |
| Cu <sup>2+</sup> | Ion cobre (II)            | lon cúpr <b>ico</b>         |
| Pb <sup>2+</sup> | Ion plomo (II)            | Ion plumboso                |
| Pb <sup>4+</sup> | Ion plomo (IV)            | lon plúmb <b>ico</b>        |
| S <sup>4+</sup>  | Ion azufre (IV)           | lon sulf <b>ito</b>         |
| S <sup>6+</sup>  | Ion azufre (VI)           | Ion sulf <mark>ato</mark>   |

**Excepciones:** Algunos iones poliatómicos se comportan como iones monoatómicos.

| lon    | NH <sub>4</sub> <sup>+</sup> | OH-                   | CN-     |
|--------|------------------------------|-----------------------|---------|
| Nombre | Amonio                       | Hidróxido<br>oxidrilo | Cianuro |

<u>Óxidos Básicos</u>: combinación de un metal con el oxígeno. Se los nombra anteponiendo la palabra "óxido".

#### Metales con un solo número de oxidación.

Nomenclatura IUPAC = Nomenclatura clásica: anteponiendo "óxido de" al nombre del metal. Por ejemplo:

 $Na_2O -$ óxido de sodio; MgO -óxido de magnesio,  $Li_2O -$ óxido de litio

#### Metales con varios números de oxidación.

**Nomenclatura de Stock (IUPAC):** se nombra como "óxido de" seguido por el nombre del metal, indicando, el estado de oxidación correspondiente mediante un número romano colocado entre paréntesis.

Fe<sup>2+</sup> 
$$\longrightarrow$$
 FeO  $\longrightarrow$  óxido de hierro (II)  
Fe<sup>3+</sup>  $\longrightarrow$  Fe<sub>2</sub>O<sub>3</sub>  $\longrightarrow$  óxido de hierro (III).

**Nomenclatura Clásica**: se emplean los sufijos: "oso", para indicar números de oxidación inferiores e "ico", para indicar números de oxidación superiores.

11

<u>Óxidos Ácidos</u>: combinación de un **NO metal** con el oxígeno. Se antepone la palabra "<u>óxido</u>" se los nombra de la misma manera que los óxidos básicos.

| Elemento         | Fórmula                        | Nomenclatura<br>Clásica           | Nomenclatura<br>Stock  | Nomenclatura<br>Prefijos Griegos |
|------------------|--------------------------------|-----------------------------------|------------------------|----------------------------------|
| Cl <sup>1+</sup> | Cl <sub>2</sub> O              | Óxido <b>Hipo</b> clor <b>oso</b> | Óxido de cloro (I)     | Monóxido de<br>dicloro           |
| Cl <sup>3+</sup> | Cl <sub>2</sub> O <sub>3</sub> | Óxido cloroso                     | Óxido de cloro (III)   | Trióxido de dicloro              |
| Cl <sup>5+</sup> | Cl <sub>2</sub> O <sub>5</sub> | Óxido clór <b>ico</b>             | Óxido de cloro (V)     | Pentóxido de dicloro             |
| Cl <sup>7+</sup> | Cl <sub>2</sub> O <sub>7</sub> | Óxido <b>Per</b> clór <b>ico</b>  | Óxido de cloro (VII)   | Heptóxido de dicloro             |
| P <sup>3+</sup>  | $P_2O_3$                       | Óxido Fosforoso                   | Óxido de fósforo (III) | Trióxido de difósforo            |
| <b>P</b> 5+      | $P_2O_5$                       | Óxido Fosfór <b>ico</b>           | Óxido de fósforo (V)   | Pentóxido de difósforo           |

Por convención (IUPAC), primero se escribe el elemento con Nº de oxidación positivo y luego el de Nº de ox. negativo. Se los nombra al revés.

<u>Hidruros Metálicos</u>: combinación de un <u>Metal</u> con Hidrógeno (H siempre con estado de oxidación -1). Se los nombra <u>anteponiendo</u> la palabra "hidruro" al nombre del metal.

Ej.: NaH: Hidruro de sodio

Hidruros no metálicos: combinación de un No Metal con Hidrógeno.

El no-metal está con su menor número de oxidación negativo y el hidrógeno esta +1. Para nombrarlos se agrega el sufijo "uro" al nombre del No-metal.

| Elemento        | Fórmula          | Nomenclatura<br>Clásica          | Hidrácidos                          |
|-----------------|------------------|----------------------------------|-------------------------------------|
| F <sup>-</sup>  | HF               | Fluor <b>uro</b> de<br>Hidrógeno | Ácido<br>Fluor <mark>hídrico</mark> |
| Cl              | HCI              | Clor <b>uro</b> de<br>Hidrógeno  | Ácido Clorhídrico                   |
| Br <sup>-</sup> | HBr              | Brom <b>uro</b> de<br>Hidrógeno  | Ácido<br>Brom <mark>hídrico</mark>  |
| S <sup>-2</sup> | H <sub>2</sub> S | Sulf <b>uro</b> de<br>Hidrógeno  | Ácido Sulf <b>hídrico</b>           |



<u>Sales Binarias</u>: combinación de un catión <u>Metálico</u> con un anión <u>No Metálico</u>. El no-metal está con su <u>menor número de oxidación negativo</u>. Para nombrarlos se agrega el sufijo "<u>uro</u>" al nombre del Nometal seguido por el nombre del catión.

| Fórmula           | Nomenclatura Clásica      |
|-------------------|---------------------------|
| NaF               | Fluor <b>uro</b> de Sodio |
| FeCl <sub>2</sub> | Cloruro Ferroso           |
| FeCl <sub>3</sub> | Cloruro Férrico           |
| CaBr <sub>2</sub> | Brom <b>uro de</b> Calcio |
| Na <sub>2</sub> S | Sulf <b>uro</b> de Sodio  |

<u>Hidróxidos o Bases</u>: combinación de un <u>Óxido Básico con  $H_2O$ </u>  $(M(OH)_n)$ . Se nombra *hidróxido de* ... (seguido por el nombre del metal).

| Fórmula             | Nomenclatura Clásica  |
|---------------------|-----------------------|
| NaOH                | Hidróxido de Sodio    |
| Fe(OH) <sub>2</sub> | Hidróxido Ferroso     |
| Fe(OH) <sub>3</sub> | Hidróxido Férrico     |
| Ca(OH) <sub>2</sub> | Hidróxido de Calcio   |
| Mg(OH) <sub>2</sub> | Hidróxido de Magnesio |

Oxoácidos: combinación de Óxido Ácido con H<sub>2</sub>O (H<sub>x</sub>AO<sub>v</sub>).

Constituidos por **Hidrógeno** (H), un elemento **No metálico** (A) y **Oxígeno** (O). En algunas excepciones A es un metal. Se nombra anteponiendo la palabra *ácido* ... a la raíz del elemento central siguiendo la misma nomenclatura que para óxidos.

| Fórmula Nomenclatura C                       | lásica |
|----------------------------------------------|--------|
| H <sub>2</sub> SO <sub>4</sub> Ácido sulfúri | СО     |
| H <sub>2</sub> SO <sub>3</sub> Ácido sulfuro | so     |
| H <sub>2</sub> CO <sub>3</sub> Ácido carbón  | ico    |
| HNO <sub>3</sub> Ácido Nítrio                | co     |
| HNO <sub>2</sub> Ácido nitros                | 80     |

# Ácidos del grupo VII (halógenos)

| Fórmula                                                                           | Nº de oxidación<br>del no-metal               | Nomenclatura Clásica                                                                                          |
|-----------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| HCIO HCIO <sub>2</sub> HCIO <sub>3</sub> HCIO <sub>4</sub> HBrO HBrO <sub>3</sub> | CI (+1) CI (+3) CI (+5) CI (+7) Br(+1) Br(+5) | Ácido hipocloroso<br>Ácido cloroso<br>Ácido clórico<br>Ácido perclórico<br>Ácido hipobromoso<br>Ácido brómico |

A es un metal

**\** 

H<sub>2</sub>CrO<sub>4</sub> ácido crómico H<sub>2</sub>MnO<sub>4</sub> ácido mangánico

H<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> ácido dicrómico HMnO<sub>4</sub> ácido permangánico

<u>Oxoaniones</u>: son aniones poliatómicos. Surgen de la pérdida de uno o más iones hidrógeno (H<sup>+</sup>) del **oxoácido** correspondiente. Se reemplaza la terminación **oso** del ácido por **ito** y la terminación **ico** del ácido por **ato**.

|    | Fórmula                  | Nomenclatura Clásica  |                    |                    |                    |
|----|--------------------------|-----------------------|--------------------|--------------------|--------------------|
|    | SO <sub>4</sub> =        | Sulfato               |                    |                    |                    |
|    | SO <sub>3</sub> =        | Sulf <mark>ito</mark> |                    |                    |                    |
|    | CO <sub>3</sub> =        | Carbonato             |                    |                    |                    |
|    | NO <sub>3</sub> -        | Nitrato               |                    |                    |                    |
|    | NO <sub>2</sub> -        |                       | Nitr <b>ito</b>    |                    |                    |
|    | Oxácido                  | HCIO                  | HCIO <sub>2</sub>  | HCIO <sub>3</sub>  | HClO₄              |
|    |                          |                       | _                  | ŭ                  | ·                  |
|    | Oxoanión                 | CIO-                  | CIO <sub>2</sub> - | CIO <sub>3</sub> - | CIO <sub>4</sub> - |
| No | omenclatura del oxoanión | hipoclorito           | clorito            | clorato            | perclorato         |

17

<u>Oxosales</u>: Surgen de la unión de un oxoanión con un catión. La proporción de cationes y aniones es tal que sus cargas quedan neutralizadas (compuesto eléctricamente neutro).

Se nombra primero el oxoanión seguido por el nombre del catión.

| Fórmula                         | Nomenclatura Clásica               |
|---------------------------------|------------------------------------|
| Na <sub>2</sub> SO <sub>4</sub> | Sulfato de sodio                   |
| CaSO <sub>3</sub>               | Sulf <mark>ito</mark> de Calcio    |
| $(NH_4)_2CO_3$                  | Carbonato de amonio                |
| NaClO                           | Hipoclor <mark>ito</mark> de Sodio |
| NaClO <sub>2</sub>              | Clor <mark>ito</mark> de sodio     |
| KCIO <sub>3</sub>               | Clorato de potasio                 |
| KCIO <sub>4</sub>               | Perclorato de potasio              |

| Fórmula                                         | Nombre                  | Tipo de compuesto (sal binaria u oxosal) | Anión                             | Catión                       |
|-------------------------------------------------|-------------------------|------------------------------------------|-----------------------------------|------------------------------|
| $Al_2(SO_4)_3$                                  | Sulfato de aluminio     | Oxosal                                   | SO <sub>4</sub> =                 | <b>Al</b> 3+                 |
| NaNO <sub>3</sub>                               | Nitrato de sodio        | Oxosal                                   | NO <sub>3</sub>                   | Na⁺                          |
| (NH <sub>4</sub> ) <sub>2</sub> CO <sub>3</sub> | Carbonato de amonio     | Oxosal                                   | CO <sub>3</sub> <sup>2-</sup>     | NH <sub>4</sub> <sup>+</sup> |
| Na <sub>3</sub> PO <sub>4</sub>                 | Fosfato de sodio        | Oxosal                                   | PO <sub>4</sub> 3-                | Na⁺                          |
| KMnO <sub>4</sub>                               | Permanganato de potasio | Oxosal                                   | MnO <sub>4</sub> -                | K <sup>+</sup>               |
| BaS                                             | Sulfuro de bario        | Binaria                                  | S=                                | Ba <sup>2+</sup>             |
| NH₄CN                                           | Cianuro de amonio       | Binaria                                  | CN <sup>-</sup>                   | $NH_4^+$                     |
| Pb(CrO <sub>4</sub> )                           | Cromato plumboso        | Oxosal                                   | (CrO <sub>4</sub> ) <sup>2-</sup> | Pb <sup>2+</sup>             |
| AICI <sub>3</sub>                               | Cloruro de aluminio     | Binaria                                  | CI-                               | Al <sup>3+</sup>             |
| $Zn(ClO_4)_2$                                   | Perclorato de zinc      | Oxosal                                   | CIO <sub>4</sub>                  | Zn <sup>2+</sup>             |
| FeBr <sub>3</sub>                               | Bromuro férrico         | Binaria                                  | Br-                               | Fe <sup>3+</sup>             |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>   | Dicromato de potasio    | Oxosal                                   | $Cr_2O_7^=$                       | K <sup>+</sup>               |
| CaSO <sub>3</sub>                               | Sulfito de calcio       | Oxosal                                   | SO <sub>3</sub> =                 | Ca <sup>2+</sup>             |
| KCIO.                                           | Clorato de notasio      | Oxosal                                   | CIO.                              | K+                           |