Introduction to Information Retrieval

Resource Person: Asma Naseer

Lecture 4: Index Construction

Index construction

- How do we construct an index?
- What strategies can we use with limited main memory?

Hardware basics

3

- Many design decisions in information retrieval are based on the characteristics of hardware
- We begin by reviewing hardware basics

Hardware basics

- Access to data in memory is much faster than access to data on disk.
- Disk seeks: No data is transferred from disk while the disk head is being positioned.
- Therefore: Transferring one large chunk of data from disk to memory is faster than transferring many small chunks.
- Disk I/O is block-based: Reading and writing of entire blocks (as opposed to smaller chunks).
- Block sizes: 8KB to 256 KB.

Hardware basics

- Servers used in IR systems now typically have several GB of main memory, sometimes tens of GB.
- Available disk space is several (2–3) orders of magnitude larger.
- Fault tolerance is very expensive: It's much cheaper to use many regular machines rather than one fault tolerant machine.

Some stats

symbol	statistic	value
S	average seek time	$5 \text{ ms} = 5 \times 10^{-3} \text{ s}$
b	transfer time per byte	$0.02 \mu s = 2 \times 10^{-8} \mathrm{s}$
P	processor's clock rate	10 ⁹ S ⁻¹
	lowlevel operation (e.g., compare & swap a word)	$0.01 \mu s = 10^{-8} s$
	size of main memory	several GB
	size of disk space	1 TB or more

Goal: Construct Inverted Index

dictionary

postings

Key step

• After all documents have been parsed, the inverted file is sorted by terms.

We focus on this sort step. We have 100M items to sort.

Term	Doc#	Term	Doc#
I	1	ambitious	2
did	1	be	2
enact	1	brutus	1
julius	1	brutus	2
caesar	1	capitol	1
I .	1	caesar	1
was	1	caesar	2
killed	1	caesar	2
i'	1	did	1
the	1	enact	1
capitol	1	hath	1
brutus	1	ı	1
killed	1	ı	1
me	1	ľ	1
so	2 _	it	2
let	2	julius	1
it	2	killed	1
be	2	killed	1
with	2	let	2
caesar	2	me	1
the	2	noble	2
noble	2	so	2
brutus	2	the	1
hath	2	the	2
told	2	told	2
you	2	you	2
caesar	2	was	1
was	2	was	2
ambitious	2	with	2

Scaling index construction

- 9
- In-memory index construction does not scale
 - Can't stuff entire collection into memory, sort, then write back
- How can we construct an index for very large collections?
- Taking into account the hardware constraints we just learned about . . .
- Memory, disk, speed, etc.

Block Sort-based Index Construction

- •As we build index, we parse docs one at a time.
- •The final postings for any term are incomplete until the end.
- •Can we keep all postings in memory and then do the sort inmemory at the end?
- •No, not for large collections
- •At 10–12 bytes per postings entry, we need a lot of space for large collections.
- T = 100,000,000 in the case of RCV1: we can do this in memory on a typical machine in 2010.
- •But in-memory index construction does not scale for large collections.
- ■Thus: We need to store intermediate results on disk.

Sort using disk as "memory"?

10

 Can we use the same index construction algorithm for larger collections, but by using disk instead of memory?

• No: Sorting T = 100,000,000 records on disk is too slow – too many disk seeks.

Bottleneck

- Parse and build postings entries one doc at a time
- Now sort postings entries by term (then by doc within each term)
- Doing this with random disk seeks would be too slow
 - must sort *T*=100M records
- Considering disk seek time = 5 ms

If every comparison took 2 disk seeks, and *N* items could be sorted with *N* log₂*N* comparisons, how long would this take?

Bottleneck

Q: If every comparison took 2 disk seeks, and N items could be sorted with N log₂N comparisons, how long would this take?

- Ans: disk seek time = 5 ms
- \circ N = 100 million
- \circ N log₂N = 100 million * log₂100 million = 2700 million
- Total time = 2700 million * 5 ms * 2 = 27000 million ms
- = 3125 Days = 8.5 years

BSBI: Blocked sort-based Indexing (Sorting with fewer disk seeks)

8

- 12-byte (4+4+4) records (*term*, *doc*, *freq*).
- These are generated as we parse docs.
- Must now sort 100M such 12-byte records by term.
- Define a <u>Block</u> ~ 10M such records
 - Can easily fit a couple into memory.
 - Will have 10 such blocks to start with.
- Basic idea of algorithm:
 - Accumulate postings for each block, sort, write to disk.
 - Then merge the blocks into one long sorted order.

Postings Merge

brutus d3 caesar d4 noble d3 with d4 brutus d2 caesar d1 julius d1 killed d2

brutus d2 d3 brutus d1caesar **d4** caesar julius d1 killed d2 noble d3 with d4

merged postings

disk

Sorting 10 blocks of 10M records

- First, read each block and sort within:
 - Quicksort takes 2N ln N expected steps
 - o In our case 2 x (10M ln 10M) steps
- Exercise: estimate total time to read each block from disk and Quicksort it.
- 10 times this estimate gives us 10 sorted <u>runs</u> of 10M records each.

Sorting 10 blocks of 10M records

- Exercise: estimate total time to read each block from disk and Quicksort it.
 - Solution: 1 block size = N = 10 million
 - \circ Processor time for one compare and swap operation = 10^{-8} s
 - o 2*N ln N comparisons = 2* 10 million * 16 = 320 million
 - o Total time = 320 million * 10^{-8} s = 320 * 10^{6} * 10^{-8} s
 - \circ = 3.2 seconds
- *Time to sort 10 blocks* = 3.2 * 10 = 32 seconds

BSBIndex Construction


```
BSBINDEXCONSTRUCTION()

1 n \leftarrow 0

2 while (all documents have not been processed)

3 do n \leftarrow n + 1

4 block \leftarrow PARSENEXTBLOCK()

5 BSBI-InVERT(block)

6 WRITEBLOCKTODISK(block, f_n)

7 MERGEBLOCKS(f_1, \ldots, f_n; f_{merged})
```

How to merge the sorted runs?

- Can do binary merges, with a merge tree of $log_210 = 4$ layers.
- During each layer, read into memory runs in blocks of 10M, merge, write back.

How to merge the sorted runs?

- But it is more efficient to do a multi-way merge, where you are reading from all blocks simultaneously
- Providing you read decent-sized chunks of each block into memory and then write out a decent-sized output chunk, then you're not killed by disk seeks

Remaining problem with sort-based algorithm

- Our **assumption** was: we can keep the dictionary in memory.
- We need the dictionary (which grows dynamically) in order to implement a **term to termID mapping**.
- Actually, we could work with term,docID postings instead of termID,docID postings . . .
- ... but then intermediate files become very large. (We would end up with a scalable, but very slow index construction method.)

SPIMI: Single-pass in-memory indexing

- 21
- Key idea 1: Generate separate dictionaries for each block – no need to maintain term-termID mapping across blocks.
- Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indexes can then be merged into one big index.

Remaining problem with sort-based algorithm

Some Important Points:

- 1. Blocked sort -based indexing has excellent scaling properties, but it needs data structure for mapping terms to term-ID. For very large collections, this data structure does not fit into memory.
- 2. A SPIMI uses term instead of termID's, writes each block's dictionary to disk and then starts a new dictionary for next block.
- 3. A difference between BSBI and SPIMI is that, SPIMI adds a posting directly to its posting list. Instead of first collecting all Term ID- docID pairs and then sorting them

SPIMI-Invert


```
SPIMI-INVERT(token_stream)
     output\_file = NewFile()
    dictionary = NewHash()
    while (free memory available)
     do token \leftarrow next(token\_stream)
        if term(token) ∉ dictionary
          then postings_list = ADDTODICTIONARY(dictionary, term(token))
          else postings\_list = GetPostingsList(dictionary, term(token))
        if full(postings_list)
          then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
        Add To Postings List (postings_list, doclD(token))
10
     sorted\_terms \leftarrow SortTerms(dictionary)
11
     WriteBlockToDisk(sorted_terms, dictionary, output_file)
     return output_file
13

    Merging of blocks is analogous to BSBI.
```

National University of Computer and Emerging Sciences NUCES

SPIMI: Compression

- Compression makes SPIMI even more efficient.
 - Compression of terms
 - Compression of postings
- Compression discussed in future lectures

Collection statistics

symbol	statistic	value					
• N	documents	800,000					
• L	avg. # tokens per doc	200					
• V	unique terms	400,000					
•	non-positional postings	100,000,000					

Distributed indexing

- For web-scale indexing (don't try this at home!): must use a distributed computer cluster
- Individual machines are fault-prone.
 - Can unpredictably slow down or fail.
- How do we exploit such a pool of machines?

Google data centers (2007 estimates; Gartner)

- Google data centers mainly contain commodity machines.
- Data centers are distributed all over the world.
- 1 million servers, 3 million processors/cores
- Google installs 100,000 servers each quarter.
- Based on expenditures of 200–250 million dollars per year
- This would be 10% of the computing capacity of the world!

- If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is the uptime of the system (assuming it does not tolerate failures)? What about 1M nodes?
- Answer: 63% It's 100-63
- Suppose a server will fail after 3 years. For an installation of 1 million servers, what is the interval between machine failures?
- Answer: less than two minutes

Distributed indexing

- Maintain a master machine directing the indexing job considered "safe"
- Break up indexing into sets of parallel tasks
- Master machine assigns each task to an idle machine from a pool.

Parallel tasks

- We will define two sets of parallel tasks and deploy two types of machines to solve them:
 - Parsers
 - Inverters
- Break the input document collection into splits (corresponding to blocks in BSBI/SPIMI)
- Each split is a subset of documents.

Parsers

- Master assigns a split to an idle parser machine.
- Parser reads a document at a time and emits (term,docID)pairs.
- Parser writes pairs into j term-partitions.
- Each for a range of terms' first letters
 - E.g., a-f, g-p, q-z (here: j = 3)

Inverters

- An inverter collects all (term,docID) pairs (= postings) for one term-partition (e.g., for a-f).
- Sorts and writes to postings lists

Data flow

Dynamic indexing

- Up to now, we have assumed that collections are static.
- They rarely are: Documents are inserted, deleted and modified.
- This means that the dictionary and postings lists have to be dynamically modified.

Dynamic indexing: Simplest approach

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
- Deletions:
 - Invalidation bit-vector for deleted docs
 - Filter docs returned by index using this bit-vector

Issue with auxiliary and main index

- Frequent merges
- Poor search performance during index merge
- Actually:
 - Merging of the auxiliary index into the main index is not that costly if we keep a separate file for each postings list.
 - Merge is the same as a simple append.
 - But then we would need a lot of files inefficient.
- Assumption for the rest of the lecture: The index is one big file.
- In reality: Use a scheme somewhere in between (e.g., split very large postings lists into several files, collect small postings lists in one file etc.)

Logarithmic merge

- Logarithmic merging amortizes the cost of merging indexes over time.
 - → Users see smaller effect on response times.
- Maintain a series of indexes, each twice as large as the previous one.
- Keep smallest (Z_0) in memory
- Larger ones (I_0, I_1, \dots) on disk
- If Z_0 gets too big (> n), write to disk as I_0
- . . . or merge with I_0 (if I_0 already exists) and write merger to I_1 etc.

```
LMERGEADD TOKEN (indexes, Z_0, token)
      Z_0 \leftarrow \text{MERGE}(Z_0, \{token\})
  2 if |Z_0| = n
         then for i \leftarrow 0 to \infty
                do if I_i \in indexes
                       then Z_{i+1} \leftarrow \text{MERGE}(I_i, Z_i)
                                (Z_{i+1} \text{ is a temporary index on disk.})
                               indexes \leftarrow indexes - \{I_i\}
                       else I_i \leftarrow Z_i (Z_i becomes the permanent index I_i.)
                               indexes \leftarrow indexes \cup \{I_i\}
                               Break
 10
                Z_0 \leftarrow \emptyset
 11
LogarithmicMerge()
 1 Z_0 \leftarrow \emptyset (Z_0 is the in-memory index.)
2 indexes \leftarrow \emptyset
 3 while true
 4 do LMergeAddToken(indexes, Z<sub>0</sub>, getNextToken())
```

Binary numbers: $I_3I_2I_1I_0 = 2^32^22^12^0$

Logarithmic merge

- Number of indexes bounded by O(log T) (T is total number of postings read so far)
- So query processing requires the merging of O(log T) indexes
- Time complexity of index construction is O(T log T).
- ... because each of T postings is merged $O(\log T)$ times.
- Auxiliary index: index construction time is $O(T^2)$ as each posting is touched in each merge.
 - Suppose auxiliary index has size a
 - $a + 2a + 3a + 4a + \ldots + na = a \frac{n(n+1)}{2} = O(n^2)$
- So logarithmic merging is an order of magnitude more efficient.

Dynamic indexing at large search engines

- Often a combination
 - Frequent incremental changes
 - Rotation of large parts of the index that can then be swapped in
 - Occasional complete rebuild (becomes harder with increasing size – not clear if Google can do a complete rebuild)

Building positional indexes

 Basically the same problem except that the intermediate data structures are large.

Resources

- Chapter 4 of IIR
- Resources at http://ifnlp.org/ir
 - Original publication on MapReduce by Dean and Ghemawat (2004)
 - Original publication on SPIMI by Heinz and Zobel (2003)
 - YouTube video: Google data centers