

EE 431: COMPUTER-AIDED DESIGN OF VLSI DEVICES

Combinational Circuits

Nishith N. Chakraborty

October, 2024

CMOS Static Gate Basics

COMPLEMENTARY MOS

CHOOSING PDN AND PUN

PDN → NMOS

PUN → **PMOS**

Pulling Down a node with NMOS and PMOS transistors

Pulling Up a node with NMOS and PMOS transistors

LOGIC RULES

- NMOS devices connected in series corresponds to an (N)AND function. Similarly, NMOS transistors connected in parallel represent an (N)OR function. Similarly, construction rules for PMOS networks can be formulated.
- The pull-up and pull-down networks of a complementary CMOS structure are dual networks. This means that a parallel connection of transistors in the pull-up network corresponds to a series connection of the corresponding devices in the pull-down network, and vice versa
- Therefore, to construct a CMOS gate, one of the networks (e.g., PDN) is implemented using combinations of series and parallel devices. The other network (i.e., PUN) is obtained using duality principle by walking the hierarchy, replacing series sub-nets with parallel sub-nets, and parallel sub-nets with series sub-nets. The complete CMOS gate is constructed by combining the PDN with the PUN.

IDENTIFYING SUB-NETS (F=D+A(B+C))

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

10/22/2024

TRANSISTOR SIZING

10/22/2024

TRANSISTOR SIZING

TRANSISTOR SIZING

Bubble Pushing and Compound Gates


```
module mux(input s, d0, d1, output y);
assign y = s ? d1 : d0;
Endmodule
```

1) Sketch a design using AND, OR, and NOT gates.


```
module mux(input s, d0, d1, output y);
assign y = s ? d1 : d0;
Endmodule
```

1) Sketch a design using AND, OR, and NOT gates.

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

BUBBLE PUSHING

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
 - > Remember DeMorgan's Law

$$\frac{\overline{A \cdot B} = \overline{A} + \overline{B}}{\overline{A + B} = \overline{A} \cdot \overline{B}}$$

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

COMPOUND GATES

Logical effort of compound gates:

COMPOUND GATES

Logical effort of compound gates:

$$g_A = 3/3$$

 $p = 3/3$

$$Y = \frac{AOI21}{A \cdot B + C}$$

$$\begin{array}{c|c}
A \rightarrow \boxed{4} & B \rightarrow \boxed{4} \\
C \rightarrow \boxed{4} \\
A \rightarrow \boxed{2} \\
B \rightarrow \boxed{2} \\
\end{array}$$

$$g_A = 6/3$$

 $g_B = 6/3$
 $g_C = 5/3$
 $p = 7/3$

$$Y = A \cdot B + C \cdot D$$

$$g_A = 6/3$$

 $g_B = 6/3$
 $g_C = 6/3$
 $g_D = 6/3$
 $p = 12/3$

 $g_A = 5/3$

 $g_B = 8/3$ $g_C = 8/3$

 $g_D = 8/3$

 $g_E = 8/3$ p = 16/3

The multiplexer has a maximum input capacitance of 16 units on each input. It
must drive a load of 160 units. Estimate the delay of the NAND and compound
gate designs.

The multiplexer has a maximum input capacitance of 16 units on each input. It
must drive a load of 160 units. Estimate the delay of the NAND and compound
gate designs.

NAND SOLUTION

NAND SOLUTION

$$P = 2 + 2 = 4$$
 $G = (4/3) (4/3) = 16/9$
 $F = GBH = 160/9$
 $\hat{f} = \sqrt[N]{F} = 4.2$
 $D = N\hat{f} + P = 12.4\tau$

COMPOUND SOLUTION

COMPOUND SOLUTION

$$P = 4 + 1 = 5$$

 $G = (6/3) (1) = 2$

$$F = GBH = 20$$

$$\hat{f} = \sqrt[N]{F} = 4.5$$

$$D = N\hat{f} + P = 14\tau$$

Annotate your designs with transistor sizes that achieve this delay.

Annotate your designs with transistor sizes that achieve this delay.

160 * 1 / 4.5 = 36 16

Static and Dynamic Properties

TWO-INPUT NAND GATE: STATIC PROPERTY

$$V_{Tn2} = V_{tn0} + \gamma ((\sqrt{|2\phi_f|} + V_{int}) - \sqrt{|2\phi_f|})$$
$$V_{Tn1} = V_{tn0}$$

Data dependent VTC

TWO-INPUT NAND GATE: DYNAMIC PROPERTY

FOUR-INPUT NAND GATE: DYNAMIC PROPERTY

size

PROGRESSIVE SIZING & LOGIC RECONSTRUCTION

Progressive sizing of transistors in large transistor chains copes with the extra load of internal capacitances.

Logic reconstruction can reduce the gate fan-in

INPUT ORDER

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling
 - If A arrives latest?
 - If B arrives latest?

INPUT ORDER

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling
 - If A arrives latest? 2T
 - If B arrives latest? 2.33τ

INNER & OUTER INPUTS

- Outer input is closest to rail (B)
- Inner input is closest to output (A)

- If input arrival time is known
 - Connect latest input to inner terminal

INPUT RE-ORDERING

signals in Some complex combinational logic blocks might be more critical than others. Not all inputs of a gate arrive at the same time (due, for instance, to the propagation delays of the preceding logical gates). An input signal to a gate is called critical if it is the last signal of all inputs to assume a stable value. The path through the logic which determines the ultimate speed of the structure is called the critical path. Putting the critical-path transistors closer to the output of the gate can result in a speedup.

ASYMMETRIC GATES

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - > So total resistance is same
- g_A =
- $g_B =$
- $g_{total} = g_A + g_B =$
- Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

ASYMMETRIC GATES

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input
 - > So total resistance is same
- $g_A = 10/9$
- $g_B = 2$
- $g_{total} = g_A + g_B = 28/9$
- Asymmetric gate approaches g = 1 on critical input
- But total logical effort goes up

SYMMETRIC GATES

Inputs can be made perfectly symmetric

SKEWED GATES

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

 Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.

$$\triangleright$$
 $g_{ij} =$

$$\geqslant$$
 g_d =

SKEWED GATES

- Skewed gates favor one edge over another
- Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

- Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
 - \Rightarrow g₁₁ = 2.5 / 3 = 5/6
 - \Rightarrow g_d = 2.5 / 1.5 = 5/3

HI- AND LO-SKEW

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- Logical effort is smaller for favored direction
- But larger for the other direction

unskewed

CATALOG OF SKEWED GATES

Inverter

$A \xrightarrow{2} Y$ $g_u = 1$ $g_d = 1$ $g_{avg} = 1$

HI-skew A
$$=$$
 $\begin{bmatrix} 1/2 & g_u & = 5/6 \\ g_d & = 5/3 \\ g_{avg} & = 5/4 \end{bmatrix}$

LO-skew A
$$= 4/3$$

$$g_{u} = 4/3$$

$$g_{avg} = 1$$

NAND2

NOR2

unskewed

CATALOG OF SKEWED GATES

Inverter

$A \longrightarrow \begin{bmatrix} 1 & g_u & = 1 \\ g_{avg} & = 1 \end{bmatrix}$

LO-skew
$$A = \begin{bmatrix} 1 & y & 0 \\ 1 & g_u & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

NAND2

NOR2

unskewed

CATALOG OF SKEWED GATES

Inverter

HI-skew A
$$= \frac{1}{2}$$
 Y $= \frac{5}{6}$ $= \frac{5}{3}$ $= \frac{5}{4}$

LO-skew A
$$g_u = 4/3$$

$$g_d = 2/3$$

$$g_{avg} = 1$$

NAND2

NOR2

ASYMMETRIC SKEW

- Combine asymmetric and skewed gates
 - > Downsize noncritical transistor on unimportant input
 - > Reduces parasitic delay for critical input

BEST P/N RATIO

- We have selected P/N ratio for unit rise and fall resistance ($\mu = 2-3$ for an inverter).
- Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter
 - \rightarrow t_{pdf} =
 - \rightarrow t_{pdr} =
 - \succ t_{pd,m} =
 - Differentiate t_{pd,m} w.r.t. P
 - ➤ Least delay for P =

BEST P/N RATIO

- We have selected P/N ratio for unit rise and fall resistance ($\mu = 2-3$ for an inverter).
- Alternative: choose ratio for least average delay
- Ex: inverter
 - Delay driving identical inverter
 - \rightarrow t_{pdf} = (P+1)
 - \rightarrow t_{pdr} = (P+1)(μ /P)
 - ightharpoonup $t_{pd,m} = (P+1)(1+\mu/P)/2 = (P+1+\mu+\mu/P)/2$
 - Differentiate t_{pd,m} w.r.t. P
 - \blacktriangleright Least delay for P = $\sqrt{\mu}$

P/N RATIOS

- In general, best P/N ratio is sqrt of equal delay ratio
 - Only improves average delay slightly for inverters
 - > But significantly decreases area and power

P/N RATIOS

- In general, best P/N ratio is sqrt of equal delay ratio
 - > Only improves average delay slightly for inverters
 - > But significantly decreases area and power

fastest P/N ratio Inverter NAND2 NOR2 NOR2 A = 1.15 A = 1.15

POWER CONSUMPTION IN CMOS LOGIC GATES

- Static, Dynamic and short-circuit power dissipation.
- Dynamic power consumption given by $\alpha_{0 \to 1} C_L V_{DD}^2 f$, where $\alpha_{0 \to 1}$ is the switching activity factor
- The transition activity is a strong function of the logic function being implemented.
- For static CMOS gates with statistically independent inputs, the static transition probability is the probability p₀ that the output will be in the zero state in one cycle, multiplied by the probability p₁ that the output will be in the one state in the next cycle:

$$\alpha_{0 \to 1} = p_0 \bullet p_1 = p_0 \bullet (1 - p_0)$$

2-INPUT NOR GATE SWITCHING ACTIVITY FACTOR

$$\alpha_{0 \to 1} = \frac{N_0}{2^N} \bullet \frac{N_1}{2^N} = \frac{N_0 \bullet (2^N - N_0)}{2^{2N}}$$

A	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

$$\alpha_{0 \to 1} = \frac{N_{0} \cdot (2^{N} - N_{0})}{2^{2N}} = \frac{3 \cdot (2^{2} - 3)}{2^{2 \cdot 2}} = \frac{3}{16}$$

TRANSITION PROBABILITY & SWITCHING ACTIVITY FACTOR

Output Transition Probabilities for Static Logic Gates

	$lpha_{0 o1}$		
AND	$(1 - p_A p_B) p_A p_B$		
OR	$(1-p_A)(1-p_B)[1-(1-p_A)(1-p_B)]$		
XOR	$[1 - (p_A + p_B - 2p_A p_B)](p_A + p_B - 2p_A p_B)$		

P_A and P_B are probabilities that input A and B are 1

GLITCHING IN A CHAIN OF NAND GATES

REDUCING SWITCHING ACTIVITY FACTOR

	O_1	O_2	F
p ₁ (chain)	1/4	1/8	1/16
$p_0 = 1 - p_1 \text{ (chain)}$	3/4	7/8	15/16
p _{0->1} (chain)	3/16	7/64	15/256
p_1 (tree)	1/4	1/4	1/16
$p_0 = 1 - p_1 \text{ (tree)}$	3/4	3/4	15/16
p _{0->1} (tree)	3/16	3/16	15/256

OBSERVATIONS

- For speed:
 - NAND vs. NOR
 - Many simple stages vs. fewer high fan-in stages
 - > Latest-arriving input
- For area and power:
 - Many simple stages vs. fewer high fan-in stages

Thank you!