With which probability is there a spanning cluster in a random graph?

- Can fluid/gas pass through coal?

- Can fluid/gas pass through coal?

- Will a defect span the whole structure?

- Can fluid/gas pass through coal?

- Will a defect span the whole structure?

- Will a disease spread uncontrollably?

With which probability is there a spanning cluster in a random graph?

With which probability is there a spanning cluster in a random graph?

fixed topology, edges/nodes inserted only with certain probability

a set of nodes connected by edges

With which probability is there a spanning cluster in a random graph?

fixed topology, edges/nodes inserted only with certain probability

going from one

a set of nodes side to the other connected by edges

With which probability is there a spanning cluster in a random graph?

> fixed topology, edges/nodes inserted only with certain probability

# Bond percolation



## Bond percolation



Percolation probability: Probability that a randomly sampled graph is connected from top to bottom

# Site percolation



Percolation probability: Probability that a randomly sampled graph is connected from top to bottom

# Limiting behaviour



# Limiting behaviour



Percolation threshold:

Threshold where p\_percolated jumps to 1 in limit graph size  $L 
ightarrow \infty$ 

|             | Lattice    | Z | $p_c^{site}$ | $p_c^{bond}$ |
|-------------|------------|---|--------------|--------------|
| Ттт         | Honeycomb  | 3 |              |              |
| dimensional | Quadratic  | 4 |              |              |
|             | Triangular | 6 |              |              |

|                 | Lattice    | Z | $p_c^{site}$    | $p_c^{bond}$    |
|-----------------|------------|---|-----------------|-----------------|
| Two-dimensional | Honeycomb  | 3 |                 |                 |
|                 | Quadratic  | 4 |                 | analytical easy |
|                 | Triangular | 6 | analytical easy |                 |

|                 | Lattice    | Z | $p_c^{site}$    | $p_c^{bond}$    |
|-----------------|------------|---|-----------------|-----------------|
| Two-dimensional | Honeycomb  | 3 |                 | analytical hard |
|                 | Quadratic  | 4 |                 | analytical easy |
|                 | Triangular | 6 | analytical easy | analytical hard |

|                 | Lattice    | Z | $\left \begin{array}{c}p_c^{site}\end{array}\right $ | $p_c^{bond}$    |
|-----------------|------------|---|------------------------------------------------------|-----------------|
| Two-dimensional | Honeycomb  | 3 | no solution yet                                      | analytical hard |
|                 | Quadratic  | 4 | no solution yet                                      | analytical easy |
|                 | Triangular | 6 | analytical easy                                      | analytical hard |

#### General rules:

- No internet/book search: ask if in doubt (numpy/python documentation is fine)
- Scoring for each task:
  - 1 abs(p\_predicted p\_true) points
     (up to 4 digits behind decimal)
  - 0.2 points for "physicists proof"

#### General rules:

- No internet/book search: ask if in doubt (numpy/python documentation is fine)
- Scoring for each task:
  - 1 abs(p\_predicted p\_true) points
     (up to 4 digits behind decimal)
  - 0.2 points for "physicists proof"

#### Coding rules:

- Python: only native and
  - numpy
  - matplotlib pyplot
  - sys (maybe useful:sys.setrecursionlimit(high number))
- other languages: be fair

#### General rules:

- No internet/book search: ask if in doubt (numpy/python documentation is fine)
- Scoring for each task:
  - 1 abs(p\_predicted p\_true) points
     (up to 4 digits behind decimal)
  - 0.2 points for "physicists proof"

#### Coding rules:

- Python: only native and
  - numpy
  - matplotlib.pyplot
  - sys (maybe useful:sys.setrecursionlimit(high number))
- other languages: be fair

#### Tips for analytics:

#### Bond percolation





#### Site percolation triangular



## Solution

|                 | Lattice    | Z | $p_c^{site}$ | $p_c^{bond}$ |
|-----------------|------------|---|--------------|--------------|
| Two-dimensional | Honeycomb  | 3 | 0.6962       | 0.65271*     |
|                 | Quadratic  | 4 | 0.59275      | $0.5^{*}$    |
|                 | Triangular | 6 | $0.5^{*}$    | 0.34729*     |

### Solution





| $\phi_i$ | $\Delta$          | Y                |
|----------|-------------------|------------------|
| $\phi_0$ | $(1-p)^2$         | $(1-q)+q(1-q)^2$ |
| $\phi_1$ | $2p(1-p)^2$       | $2q^2(1-q)$      |
| $\phi_2$ | $p^3 + 3p^2(1-p)$ | $q^3$            |

$$p_c^t = 2\sin\frac{\pi}{18}$$