Al for theorem proving in Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

Yutaka Nagashima
University of Innsbruck
Czech Technical University

Yutaka Ng yutakang

Block or report user

L CVUT, CTU, CIIRC

Al for theorem proving in Isabelle/HOL

This work was supported by the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

Yutaka Nagashima
University of Innsbruck
Czech Technical University

Yutaka Ng yutakang

Block or report user

2 CVUT, CTU, CIIRC

To build trustworthy software (Complete Formal Verification)!

1. Specify what we want.

- 1. Specify what we want.
- 2. Implement what we want.

- 1. Specify what we want.
- 2. Implement what we want.
- 3. Prove the implementation satisfies the specification.

- 1. Specify what we want.
- 2. Implement what we want.
- 3. Prove the implementation satisfies the specification.

- 1. Specify what we want.
- 2. Implement what we want.
- 3. Prove the implementation satisfies the specification.

- 1. Specify what we want.
- 2. Implement what we want.
- 3. Prove the implementation satisfies the specification.

Mathematics

Informatics

Physics

Number Theory
Analysis
Algebra
Geometry
Probability Theory
etc.

Language
Algorithms
Data Structures
Architecture
Software Engineering
Formal Verification
theorem proving

Acoustics
Astrophysics
Electromagnetism
Molecular Physics
Quantum Physics
etc.

Mathematics

Informatics

Physics

Number Theory
Analysis
Algebra
Geometry
Probability Theory
etc.

Language
Algorithms
Data Structures
Architecture
Software Engineering
Formal Verification
theorem proving

Acoustics
Astrophysics
Electromagnetism
Molecular Physics
Quantum Physics
etc.

A tiny field inside Informatics. Who cares?

Informatics

Physics

Language

Algorithms

Data Structures

Architecture

Software Engineering

Formal Verification

Acoustics
Astrophysics
Electromagnetism
Molecular Physics
Quantum Physics

etc.

Mathematics: The Language of Science.

Analysis Algebra Geometry Probability Theory

Informatics

Physics

Language

Algorithms

Data Structures

Architecture

Software Engineering

Formal Verification

Acoustics

Astrophysics

Electromagnetism

Molecular Physics

Quantum Physics

etc.

Mathematics: The Language of Science.

Analysis Algebra Geometry Probability Theory

Logic: the Foundation of Mathematics.

Informatics

Physics

Language

Algorithms

Data Structures

Architecture

Software Engineering

Formal Verification

Acoustics

Astrophysics

Electromagnetism

Molecular Physics

Quantum Physics

etc.

Mathematics: The Language of Science.

Analysis Algebra Geometry Probability Theory

Logic: the Foundation of Mathematics.

Automate Logic using AI to Accelerate Science!

Informatics

Physics

Language
Algorithms
Data Structures
Architecture
Software Engineering
Formal Verification

Acoustics
Astrophysics
Electromagnetism
Molecular Physics
Quantum Physics
etc.

Mathematics: The Language of Science.

Analysis Algebra Geometry Probability Theory

Logic: the Foundation of Mathematics.

Automate Logic using AI to Accelerate Science!

shorturl.at/dzZ16

Interactive theorem proving with Isabelle/HOL

subgoals

subgoals

https://twitter.com/YutakangE shorturl.at/dzZ16 Interactive theorem proving with Isabelle/HOL proof goal context tactic / proof method error-message

subgoals

https://twitter.com/YutakangE shorturl.at/dzZ16 Interactive theorem proving with Isabelle/HOL proof goal context tactic / proof method error-message

subgoals

shorturl.at/dzZ16

Interactive theorem proving with Isabelle/HOL

proof goal | context

tactic / proof method

error-message

subgoals

https://twitter.com/YutakangE shorturl.at/dzZ16 Interactive theorem proving with Isabelle/HOL proof goal | context tactic / proof method error-message

subgoals

https://twitter.com/YutakangE shorturl.at/dzZ16 Interactive theorem proving with Isabelle/HOL proof goal | context tactic / proof method error-message subgoals no sub-goal!

shorturl.at/dzZ16

Interactive theorem proving with Isabelle/HOL

proof goal | context

tactic / proof method

error-message

It's blatantly clear You stupid machine, that what I tell you is true (Michael Norrish)

-goal!


```
lemma "map f (sep x xs) = sep (f x) (map f xs)"
```

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)


```
lemma "map f (sep x xs) = sep (f x) (map f xs)"
```

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)


```
https://twitter.com/YutakangE
                                       shorturl.at/dzZ16
    lemma "map f (sep x xs) = sep (f x) (map f xs)"
  find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                        goal
            apply (induct) Dynamic (Induct)
 Auto
                       IsSolved
```

```
https://twitter.com/YutakangE
                                        shorturl.at/dzZ16
    lemma "map f (sep x xs) = sep (f x) (map f xs)"
  find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                         goal
            apply (induct)
                   Dynamic (Induct)
 Auto
    apply (auto)
                       IsSolved
```

```
https://twitter.com/YutakangE
                                              shorturl.at/dzZ16
     lemma "map f (sep x xs) = sep (f x) (map f xs)"
   find proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                            goal
              apply (induct)
                      Dynamic (Induct)
 Auto
     apply (auto)
  \bigwedge y. is_filter y \Longrightarrow map f (sep x xs) = sep (f x) (map f xs)
                           IsSolved
```

```
https://twitter.com/YutakangE
                                        shorturl.at/dzZ16
    lemma "map f (sep x xs) = sep (f x) (map f xs)"
  find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                         goal
            apply (induct)
                   Dynamic (Induct)
 Auto
    apply (auto)
                       IsSolved
```



```
https://twitter.com/YutakangE
                                                           shorturl.at/dzZ16
      lemma "map f (sep x xs) = sep (f x) (map f xs)"
    find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                  apply (induct) amic (Induct)
             1. map f (sep x []) = sep (f x) (map f [])
             ∆a xs.
                  map f (sep x xs) = sep (f x) (map f xs) \Longrightarrow
                  map f (sep x (a # xs)) = sep (f x) (map f (a # xs)) =
                                    Auto
       apply (auto)
```



```
https://twitter.com/YutakangE
                                                           shorturl.at/dzZ16
      lemma "map f (sep x xs) = sep (f x) (map f xs)"
    find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                  apply (induct) amic (Induct)
             1. map f (sep x []) = sep (f x) (map f [])
             ∆a xs.
                  map f (sep x xs) = sep (f x) (map f xs) \Longrightarrow
                  map f (sep x (a # xs)) = sep (f x) (map f (a # xs)) =
                                    Auto
       apply (auto) apply (auto)
```



```
https://twitter.com/YutakangE
                                                                  shorturl.at/dzZ16
       lemma "map f (sep x xs) = sep (f x) (map f xs)"
    find proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                    apply (induct) (induct xs) goal (induct) (induct) (induct) (induct)
              1. map f (sep x []) = sep (f x) (map f [])
              ∆a xs.
                    map f (sep x xs) = sep (f x) (map f xs) \Longrightarrow
                    map f (sep x (a # xs)) = sep (f x) (map f (a # xs)) =
                                        Auto
        apply (auto) apply (auto)
   1. ∧a xs.
         map f (sep x xs) = sep (f x) (map f xs) \Longrightarrow
         map f (sep x (a # xs)) = sep (f x) (f a # map f xs) =*
                                       IsSolved
```

```
https://twitter.com/YutakangE
                                                           shorturl.at/dzZ16
      lemma "map f (sep x xs) = sep (f x) (map f xs)"
    find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                  apply (induct) amic (Induct)
             1. map f (sep x []) = sep (f x) (map f [])
             ∆a xs.
                  map f (sep x xs) = sep (f x) (map f xs) \Longrightarrow
                  map f (sep x (a # xs)) = sep (f x) (map f (a # xs)) =
                                    Auto
       apply (auto) apply (auto)
```



```
lemma "map f (sep x xs) = sep (f x) (map f xs)"
```

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)


```
https://twitter.com/YutakangE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           shorturl.at/dzZ16
                                                   lemma "map f (sep x xs) = sep (f x) (map f xs)"
                                find proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                                                                                                                                           goal

apply induction (induct xs)

apply induct xs)

apply induction (induct xs)

apply induct ys)

apply induction (induct xs)

app
                                                           apply (auto) apply (auto)
                                                                                                                                                                                                                                                                                       IsSolved
```

```
https://twitter.com/YutakangE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           shorturl.at/dzZ16
                                                   lemma "map f (sep x xs) = sep (f x) (map f xs)"
                                find proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                                                                                                                                           goal

apply inductives about the first of th
                                                           apply (auto) apply (auto)
                                                                                                                                                                                                                                                                                       IsSolved
```

```
https://twitter.com/YutakangE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      shorturl.at/dzZ16
                                                 lemma "map f (sep x xs) = sep (f x) (map f xs)"
                              find proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                                                                                                                                     goal

apply inductives about the first product of the product of t
                                                        apply (auto) apply (auto)
                                                                                                                                                                                                                                                                                                                                                             No subgoals!
                                                                                                                                                                                                                                                                           IsSolved
```

```
https://twitter.com/YutakangE
                                                                                                                                                                                                                                                                                                                                                                                                                                                              shorturl.at/dzZ16
                                                lemma "map f (sep x xs) = sep (f x) (map f xs)"
                              find proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                                                                                                                                   goal

apply inductives about the first product of the product of t
                                                       apply (auto) apply (auto)
                                                                                                                                                                                                                                                                                                                                                       No subgoals!
                                                                                                                                                                                                                                                                                                                                                                               done
                                                                                                                                                                                                                                                                      IsSolved
```

```
https://twitter.com/YutakangE
                                                        shorturl.at/dzZ16
      lemma "map f (sep x xs) = sep (f x) (map f xs)"
   find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
                   goal goal induct xs goal induct )
               Number of lines of commands: 3
                                                              [x])
              apply (induct xs rule: Demo.sep.induct)
                                                             f (y \# zs)) \Longrightarrow
               apply auto
                                                             map f (x # y # zs))
              done
      apply (a
                                                             CA
                                           No subgoals!
                                              done
                                 IsSolved
```

Try_Hard: the default strategy

strategy Try_Hard =

```
Ors [Thens [Subgoal, Basic],
                            Thens [DInductTac, Auto_Solve],
                            Thens [DCaseTac, Auto_Solve],
strategy Basic =
                            Thens [Subgoal, Advanced],
 Ors [
                            Thens [DCaseTac, Solve_Many],
    Auto_Solve,
                            Thens [DInductTac, Solve_Many]]
    Blast_Solve,
    FF_Solve,
    Thens [IntroClasses, Auto_Solve],
    Thens [Transfer, Auto_Solve],
    Thens [Normalization, IsSolved],
    Thens [DInduct, Auto_Solve],
    Thens [Hammer, IsSolved],
    Thens [DCases, Auto_Solve],
    Thens [DCoinduction, Auto_Solve],
    Thens [Auto, RepeatN(Hammer), IsSolved],
    Thens [DAuto, IsSolved]]
```

Evaluation

Evaluation

preparation phase How does PaMpeR work? recommendation phase

preparation phase

large proof corpora

AFP and standard library

How does PaMpeR work?

recommendation phase

large proof corpora

AFP and standard library

STATISTICS

Archive of Formal Proofs (https://www.isa-afp.org)

Statistics

Number of Articles: 468 Number of Authors: 313

Number of lemmas: ~128,900 Lines of Code: ~2,170,300

Most used AFP articles:

	Name	Used by ? articles
1.	Collections	15
2.	<u>List-Index</u>	14
3	Coinductive	12

Home

About

Submission

Updating Entries

Using Entries

Search

preparation phase

large proof corpora

AFP and standard library

How does PaMpeR work?

recommendation phase

How does PaMpeR work?

How does PaMpeR work?

Summary

PSL can find how to apply induction for easy problems. CADE2017 (https://link.springer.com/10.1007/978-3-319-63046-5_32)

PaMpeR recommends which proof methods to use.

ASE2018 (https://dx.doi.org/10.1145/3238147.3238210)

https://twitter.com/YutakangE

Physics

Informatics

Acoustics
Astrophysics
Electromagnetism
Molecular Physics
Quantum Physics
etc.

Language
Algorithms
Data Structures
Architecture
Software Engineering

Formal Method

Computational Logic

Mathematics The Language of Science.

Analysis Algebra Geometry Probability Theory

Logic: the Foundation of Mathematics.

https://twitter.com/YutakangE

Physics

Informatics

Acoustics
Astrophysics
Electromagnetism
Molecular Physics
Quantum Physics
etc.

Language
Algorithms
Data Structures
Architecture
Software Engineering

Formal Method
Computational Logic

Mathematics The Language of Science.

Analysis Algebra Geometry Probability Theory

What do you want to solve with AI mathematicians?

