

Foundations of Machine Learning in Python

Moritz Wolter

August 30, 2022

High-Performance Computing and Analytics Lab

Overview

Neural networks

Estimation, Overfitting and Regularization

Classification

Neural networks

The wonders of the human visual system

Figure: Most humans effortlessly recognize the digits 5 0 4 1 9 2 1 3.

The perceptron

Can computers recognize digits? Mimic biological neurons,

Formally a single perceptron is defined as

$$f(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = h \tag{1}$$

with $\mathbf{w} \in \mathbb{R}^n$. $\mathbf{x} \in \mathbb{R}^n$ and $h \in \mathbb{R}$.

The activation function f

Two popular choices for the activation function f.

Arrays of perceptrons

Let's extend the definition to cover an array of perceptrons:

Every input is connected to every neuron. In matrix language, this turns into

$$\bar{\mathbf{h}} = \mathbf{W}\mathbf{x} + \mathbf{b}, \qquad \qquad \mathbf{h} = f(\bar{\mathbf{h}}).$$
 (2)

With $\mathbf{W} \in \mathbb{R}^{m,n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, and $\mathbf{h}, \bar{\mathbf{h}} \in \mathbb{R}^m$.

The loss function

To choose weights for the network, we require a quality measure. We already saw the mean squared error cost function,

$$C_{\text{mse}} = \frac{1}{2} \sum_{k=1}^{n} (\mathbf{y}_k - \mathbf{h}_k)^2 = \frac{1}{2} (\mathbf{y} - \mathbf{h})^T (\mathbf{y} - \mathbf{h})$$
 (3)

This function measures the squared distance from each desired output. \mathbf{y} denotes the desired labels, and \mathbf{h} represents network output.

The gradient of the mse-cost-function

Both the mean squared error loss function and our dense layer are differentiable.

$$\frac{\partial C_{\text{mse}}}{\partial \mathbf{h}} = \mathbf{h} - \mathbf{y} = \triangle_{\text{mse}} \tag{4}$$

The \triangle symbol will re-appear. It always indicates incoming gradient information from above. If the labels are a vector of shape \mathbb{R}^m , \triangle and the network output \mathbf{h} must share this dimension.

The gradient of a dense layer

The chain rule tells us the gradients for the dense layer [Nie15]

$$\delta \mathbf{W} = [f'(\bar{\mathbf{h}}) \odot \triangle] \mathbf{x}^T, \qquad \delta \mathbf{b} = f'(\bar{\mathbf{h}}) \odot \triangle, \qquad (5)$$

$$\delta \mathbf{x} = \mathbf{W}^{\mathsf{T}}[f'(\bar{\mathbf{h}}) \odot \triangle], \tag{6}$$

where \odot is the element-wise product. δ denotes the cost function gradient for the value following it [Gre+16].

Good news! Jax can take care of these computations for you! You can choose to verify these equations by completing the optional deep learning project.

☐ The gradient of a dense layer

where \odot is the element-wise product. δ denotes the cost function gradient for the value following it [Gre+16]. Good news! Jax can take care of these computations for you! You can choose to verify these equations by completing the optional deep learning project.

The chain rule tells us the gradients for the dense layer [Nie15]

The gradient of a dense layer

On the board, derive: Recall the chain rule $(g(h(x)))' = g'(h(x)) \cdot h'(x)$. For the activation function, we have,

$$\bar{\mathbf{h}} = f(\bar{\mathbf{h}}) \tag{7}$$

$$\Rightarrow \delta \bar{\mathbf{h}} = f'(\bar{\mathbf{h}}) \odot \triangle \tag{8}$$

For the weight matrix,

$$\bar{\mathbf{h}} = \mathbf{W}\mathbf{x} + \mathbf{b}$$
 (9)

$$\Rightarrow \delta \mathbf{W} = \delta \bar{\mathbf{h}} \mathbf{x}^T = [f'(\bar{\mathbf{h}}) \odot \triangle]^T \mathbf{x}$$
 (10)

For the bias.

$$\bar{\mathbf{h}} = \mathbf{W}\mathbf{x} + \mathbf{b} \tag{11}$$

$$\Rightarrow \delta \mathbf{b} = 1 \odot \delta \bar{\mathbf{h}} = [f'(\bar{\mathbf{h}}) \odot \triangle]$$
 (12)

Derivatives of our activation functions

$$\sigma'(x) = \sigma \cdot (1 - \sigma(x)) \tag{13}$$

$$ReLU' = H(x) \tag{14}$$

Perceptrons can learn functions

Multi-layer networks

Backpropagation

Estimation, Overfitting and

Regularization

Denoising a signal

Classification

The cross-entropy loss

MNIST digit

Modified National Institute of Standards and Technology database [dumoulin2016guide]

Literature

References

- [Gre+16] Klaus Greff, Rupesh K Srivastava, Jan Koutnik, Bas R Steunebrink, and Jürgen Schmidhuber. "LSTM: A search space odyssey." In: IEEE transactions on neural networks and learning systems 28.10 (2016), pp. 2222–2232.
- [Nie15] Michael A Nielsen. Neural networks and deep learning. Vol. 25. Determination press San Francisco, CA, USA, 2015.