Exercise 1 Complete the following table. Use **exact** values.

	1	-1	1	-1	1	1	1	-1
<u>x</u>	$\overline{3}$	30	300	301	$\overline{1000}$	$\overline{1001}$	50000	$\overline{100004}$
$\frac{\pi}{x}$	3π	-30π	300π	-301π	1000π	1001π	50000π	-100004π
$\cos\left(\frac{\pi}{x}\right)$	-1	1	1	-1	1	-1	1	1

Question 1.1 Based on the table above, make a conjecture about $\lim_{x\to 0} \cos\left(\frac{\pi}{x}\right)$. Does it exist? Explain.

Free Response: It seems like the limit does not exist. $\cos\left(\frac{\pi}{x}\right)$ doesn't seem to approach 1, -1, or any value in between even when x is very close to 0. It seems to oscillate in between.

Exercise 1.2 Complete the following table using **exact** values.

œ	1	-1	1	1	1	-1
x	$\overline{3}$	$\overline{301}$	$\frac{1000}{1000}$	$\overline{1001}$	$\frac{1}{50000}$	$\overline{100004}$
(π)	-1	-1	1	-1	1	1
$ x \cos\left(\frac{-}{x}\right)$	$\left \left \frac{\pi}{3} \right \right $	$ \overline{301} $	$\overline{1000}$	$ \overline{1001} $	$\overline{50000}$	$\overline{100004}$

Question 1.2.1 Based on the table above, make a conjecture about $\lim_{x\to 0} |x| \cos\left(\frac{\pi}{x}\right)$. Does it exist? Explain.

Free Response: We see that as x gets small the value of our function gets very close to 0. We conjecture then that the value of the limit is 0.

Exercise 1.2.2 Can you use the product limit law in order to evaluate $\lim_{x\to 0} |x| \cos\left(\frac{\pi}{x}\right)$?

Multiple Choice:

- (a) Yes
- (b) No ✓

Question 1.2.2.1 Explain why you can or cannot use the product limit law to evaluate the above limit.

Free Response: In order to use the product limit law we need for both $\lim_{x\to 0}|x|$ and $\lim_{x\to 0}\cos\left(\frac{\pi}{x}\right)$ to exist. However we can conjecture based on the first part of the problem that the second of these two limits does not exist, therefore we cannot use the product limit law.

Exercise 1.2.2.2 Use the Squeeze Theorem to determine $\lim_{x\to 0} |x| \cos\left(\frac{\pi}{x}\right)$ by performing the following steps.

The following inequalities are true for all x.

$$-1 \le \cos(x) \le 1$$
.

(a) Multiple all sides by |x|.

$$\left[-|x|\right] \le |x|\cos\left(\frac{\pi}{x}\right) \le \left[|x|\right].$$

(b) Since $\lim_{x\to 0} |x| = \boxed{0} = \lim_{x\to 0} (-|x|)$, it follows by the Squeeze Theorem that

$$\lim_{x \to 0} |x| \cos\left(\frac{\pi}{x}\right) = \boxed{0}.$$