

planetmath.org

Math for the people, by the people.

Leech lattice

Canonical name LeechLattice

Date of creation 2013-03-22 18:43:23 Last modified on 2013-03-22 18:43:23 Owner monster (22721) Last modified by monster (22721)

Numerical id 7

Author monster (22721)

Entry type Definition
Classification msc 20D08
Classification msc 20B25
Classification msc 11H56
Classification msc 11H06
Classification msc 51E10

Related topic BinaryGolayCode

 ${\it Related topic} \qquad {\it MiracleOctadGenerator}$

The Leech lattice is the unique http://planetmath.org/EvenLatticeeven unimodular lattice of http://planetmath.org/Dimension2dimension 24 having no elements of norm 2. Its http://planetmath.org/EquivalentCodeautomorphism group is the largest Conway group Co_0 (sometimes denoted by $\cdot 0$). The quotient of Co_0 by its center is called Co_1 , a sporadic simple group.

The construction of the Leech lattice below depends on the existence of the extended binary Golay code \mathcal{G}_{24} (for a construction of the latter, see miracle octad generator).

1 Construction of the Leech lattice

Let $\Omega = \{1, 2, ..., 24\}$ and assume we have constructed the Golay \mathcal{G}_{24} on Ω . The Leech lattice Λ is the set of all points

$$\frac{1}{\sqrt{8}}(x_1, x_2, \dots, x_{24})$$

in \mathbb{R}^{24} where each x_i is an integer, such that

- For some integer m, we have $x_i \equiv x_j \equiv m \pmod{2}$ for all $i, j \in \Omega$;
- For any integer n, the set of coordinates $\{i \in \Omega : x_i \equiv n \pmod{4}\}$ is in \mathcal{G}_{24} ;
- $\sum_{i \in \Omega} x_i \equiv 4m \pmod{8}$.

2 Properties of the Leech lattice

- 1. The Leech lattice Λ is an unimodular lattice; in other words:
 - The set Λ spans all of \mathbb{R}^{24} as an \mathbb{R} -vector space.
 - For any $x, y \in \Lambda$, the scalar product $x \cdot y$ is an integer.
 - For any $x \in \Lambda$, the norm $x \cdot x$ is an even integer.
 - The volume of the fundamental parallelogram of Λ is 1.

- 2. Let $\Lambda(n) = \{x \in \Lambda : x \cdot x = 2n\}$. Then $|\Lambda(0)| = 1$, $|\Lambda(1)| = 0$, $|\Lambda(2)| = 196560$, $|\Lambda(3)| = 16773120$, $|\Lambda(4)| = 398034000$.
- 3. The http://planetmath.org/EquivalentCodeautomorphism group $\operatorname{Aut}(\Lambda)$ is the largest Conway group $\operatorname{Co_0}$ with order $8\,315\,553\,613\,086\,720\,000 = 2^{22} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23$.
- 4. The group Co_0 acts http://planetmath.org/LeftActiontransitively on the sets $\Lambda(2)$, $\Lambda(3)$, $\Lambda(4)$. For n=2,3, the imprimitivity blocks of the action of Co_0 on $\Lambda(n)$ are the sets $\{x,-x\}$ where $x\in\Lambda(n)$. The imprimitivity blocks of the action of Co_0 on $\Lambda(4)$ are sets of 48 vectors called . Any two distinct vectors in a are either or orthogonal, and are http://planetmath.org/QuotientGroupcongruent modulo 2Λ .
- 5. Any vector in Λ is modulo 2Λ to a vector in $\Lambda(n)$ for one of n=0,2,3,4. The imprimitivity blocks of the action of Co_0 on these sets account for all http://planetmath.org/EquivalenceClassclasses of $\Lambda/2\Lambda$:

$$1 + |\Lambda(2)|/2 + |\Lambda(3)|/2 + |\Lambda(4)|/48 = 2^{24} = |\Lambda/2\Lambda|.$$

References

[1] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices, and Groups. Springer-Verlag, 1999.