广东省2006年普通高等学校 专升本高数真题

作者: 石桥先生

公众号: 专插本高等数学

一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一个选项符合题目要求)

1. 函数 $f(x) = \sqrt[3]{x} + 1$ 在 x = 0 处

A. 无定义

B. 不连续

C. 可导

D. 连续但不可导

2. 设函数 f(x) 在点 x_0 处连续,且 $\lim_{x\to x_0} \frac{f(x)}{x\to x_0} = 4$,则 $f(x_0) = ($)

A . -4

B.0

C. 1/4 D. 4

一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一个选项符合题目要求)

3. 设函数
$$f(x) = \begin{cases} a(1+x)^{\frac{1}{x}}, & x > 0 \\ x \sin{\frac{1}{x}} + \frac{1}{2}, & x < 0 \end{cases}$$
 若 $\lim_{x \to x_0} f(x)$ 存在,则 $a = ($)

A.
$$\frac{3}{2}$$

A.
$$\frac{3}{2}$$
 B. $\frac{1}{2}e^{-1}$ C. $\frac{3}{2}e^{-1}$ D. $\frac{1}{2}$

C.
$$\frac{3}{2}e^{-1}$$

D.
$$\frac{1}{2}$$

$$4$$
.设z= $\ln(xy)$,则dz=

A.
$$\frac{1}{x}dx + \frac{1}{y}dy$$
 B. $\frac{1}{y}dx + \frac{1}{x}dy$ C. $\frac{dx + dy}{xy}$ D. $ydx + xdy$

$$B \cdot \frac{1}{y} dx + \frac{1}{x} dy$$

$$C \cdot \frac{dx + dy}{xy}$$

D.
$$ydx+xdy$$

一、单项选择题(本大题共5小题,每小题3分,共15分,每小题只有一个选项符合题目要求)

5 . 积分 $\int_0^{+\infty} e^{-x} dx$

()

A. 收敛且等于-1

B. 收敛且等于 0

C. 收敛且等于1

D. 发散

- 二、填空题(本大题共5小题,每小题3分,共15分)
 - 6.若直线 y=4 是曲线 $y=\frac{ax+3}{2x-1}$ 的水平渐近线,则 a=______.

 $x = 2\sin t + 1$, 7. 由参数方程 $\begin{cases} x = 2\sin t + 1, \\ y = e^{-t} \end{cases}$ 所确定的曲线在 t=0 相应点处的切线方程是______.

8. 积分 $\int_{-\pi}^{\pi} (x \cos x + |\sin x|) dx =$ ______.

- 二、填空题(本大题共5小题,每小题3分,共15分)
 - 9. 曲线 $y=e^x$ 及直线 x=0,x=1 和 y=0 所围成平面图形绕 x 轴旋转所成的旋转体体积

V=____.

10. 微分方程 4y''-4y'+5y=0 的通解是_____.

11. 求极限
$$\lim_{n\to\infty} n \left\{ \ln(2+\frac{1}{n}) - \ln 2 \right\}$$
.

12. 计算不定积分
$$\int \frac{dx}{\sqrt{x(1-x)}}$$
.

13. 设函数
$$y = \sin^2(\frac{1}{x}) - 2^x$$
, 求 $\frac{dy}{dx}$.

14. 函数
$$y = y(x)$$
是由方程 $e^y = \sqrt{x^2 + y^2}$ 所确定的隐函数,求 $\frac{dy}{dx}$ 在点 (1,0)处的值.

15. 计算定积分
$$\int_0^1 \ln \left(\sqrt{1+x^2} + x \right) dx$$
.

16. 求二重积分
$$\iint_D xy^2 d\sigma$$
, 其中积分区域 $D = \{(x,y) | x^2 + y^2 \le 1, x \ge o\}$.

17. 设函数
$$z = x \arctan \frac{x}{y}$$
, 求 $\frac{\partial^2 x}{\partial y \partial x} \Big|_{\substack{x=1 \ y=1}}$.

18. 求微分方程
$$y'\tan x = y\ln y$$
 满足初始条件 $y\Big|_{x=\frac{\pi}{6}} = e$ 的特解.

四、综合题(本大题共2小题,第19题10分,第20题12分,共22分)

- 19. 已知函数 f(x) 是 $g(x) = 5x^4 20x^3 + 15x^2$ 在 $(-\infty, +\infty)$ 上的一个原函数,且 f(0) = 0.
 - (1)求f(x);
 - (2)求 f(x) 的单调区间和极值;
 - (3) 求极限 $\lim_{x\to 0} \frac{\int_0^x \sin^4 t dt}{f(x)}$.

四、综合题(本大题共2小题,第19题10分,第20题12分,共22分)

20. 设 f(x), g(x) 都是 $(-\infty,+\infty)$ 上的可导函数,且 f'(x)=g(x),g'(x)=f(x),f(0)=1,g =

(0) = 0. 试证: $f^2(x) - g^2(x) = 1, x \in (-\infty, +\infty)$.