Exercice 1 Combien d'opérations élémentaires effectuent ces programmes en python ?

```
def A():
    a=5
    while a > 0:
    a = a - 1
def B():
    for i in range(7):
        A()
def C(n):
    a = 1
    for i in range(1,n+1):
        a = i * a
    return a
```

A(): a = 5, ..., 0 donc 6 affectations, 6 tests et 5 soustractions, font 17. B(): i = 0, ..., 7 donc 8 affectations, 8 tests et 7 additions, donc 23, plus $7 \times 17 = 119$, font 142. C(n): a = 1, 1a, 2a, ..., na et i = 1, ..., n + 1 donc 2(n + 1) affectations, n multiplications, n additions, et n + 1 tests, font 5n + 3.

Exercice 2 Soit un entier n. Comparez n, $2^{\lfloor \log_2 n \rfloor}$ et $2^{\lfloor \log_2 n \rfloor + 1}$.

```
2^{\lfloor \log_2 n \rfloor} < n < 2^{\lfloor \log_2 n \rfloor + 1}
```

Exercice 3 Montrez que $\log_b n = \log_b a \times \log_a n$.

Soient les réels x, y, z tels que $b^x = n$, $b^y = a$ et $a^z = n$ ainsi $b^x = a^z = b^{yz} = b^{yz}$ et x = yz découle de la bijectivité de la fonction puissance; ce qui implique l'égalité demandée (par définition de log).

Exercice 4 Démontrez que $\log_b n = O(\log_2 n)$ pour toute base b > 1.

Il suffit de montrer qu'il existe une constante c > 0 telle que $\log_b n \le c \log_2 n$, ce qui découle de l'exercice précédent puisque, avec a = 2, il implique: $\log_b n = \log_b 2 \times \log_2 n$.

Exercice 5 Codez 1023 en base 2.

$$1023 = 1024 - 1 = 2^{10} - 1 = \sum_{i=0}^{9} 2^{i}$$
, donc 1111111111 en base 2.

Exercice 6 On considère le programme python suivant:

```
def D(n,b):
    tab=[]
    while n>0:
        tab=[n%b]+tab
        n=n//b
    return tab
```

- 1. Donnez l'équation reliant les composantes, notées $a_0, a_1, \ldots, a_{k-1}$, du tableau renvoyé par $\mathtt{D}(\mathtt{n}, \mathtt{b})$ et les entiers n, b.
- 2. Donnez l'équation reliant les entiers n, b, k.

1:
$$n = \sum_{i=0}^{k-1} a_{k-1-i} b^i$$
. 2: $k = \lfloor \log_b n \rfloor + 1$.

Exercice 7 Montrez que, pour c > 0 et $f(n) = 1 + c + c^2 + ... + c^n$ alors

1.
$$f(n) = \Theta(1)$$
 si $c < 1$

2.
$$f(n) = \Theta(n) \text{ si } c = 1$$

```
3. f(n) = \Theta(c^n) si c > 1
```

1: Il suffit de montrer qu'il existe une constante b>0 telle que $f(n)\leq b$; ce qui découle de $f(n)=\frac{1-c^{n+1}}{1-c}<\frac{1}{1-c}$. 2: Il suffit de montrer qu'il existe deux constantes a,b>0 telle que $a\,n\leq f(n)\leq b\,n$; ce qui découle de f(n)=n+1 (prendre par exemple a=1 et b=2). 3: Il suffit de montrer qu'il existe deux constantes a,b>0 telle que $a\,c^n\leq f(n)\leq b\,c^n$; ce qui découle de $f(n)=\frac{c^{n+1}-1}{c-1}$ puisque $\frac{c^{n+1}-1}{c-1}\geq \frac{c^{n+1}}{c}=c_n$ et $\frac{c^{n+1}-1}{c-1}=c^n\times\frac{c-\frac{1}{c}}{c-1}\leq c^n\times\frac{c}{c-1}$ (prendre par exemple a=1 et $b=\frac{c}{c-1}$).

Exercice 8 Montrez que $\log(n!) = \Theta(n \log n)$.

Puisque $\frac{n}{2}^{\frac{n}{2}} \le n! \le n^n$ et $\log(n^n) = n \log n$, il suffit de montrer qu'il existe une constante a > 0 telle que $a \, n \log n \le \log(\frac{n}{2}^{\frac{n}{2}}) = \frac{n}{2}(\log n - \log 2)$. Pour $n \ge 2^2$, on a $\log n \ge 2 \log 2$, d'où $\frac{n}{2}(\log n - \log 2) \ge \frac{n}{2} \frac{1}{2} \log n$ donc on peut prendre $a = \frac{1}{4}$.

Exercice 9 Montrez que $\sum_{i=1}^{i=n} \frac{1}{i} = \Theta(\log n)$.

Pour tout entier i, il existe un unique entier $p(i) = \lfloor \log_2 i \rfloor$ tel que $2^{p(i)} \le i < 2^{p(i)+1}$. On obtient une borne inférieure (respectivement, supérieure) de la somme $\sum_{i=1}^{i=n} \frac{1}{i}$ en remplacant chaque terme $\frac{1}{i}$ par $\frac{1}{2^{p(i)+1}}$ (respectivement, $\frac{1}{2^{p(i)}}$); ce qui implique $1 + \frac{p}{2} \le \frac{1}{2^{p+1}} + \ldots + \frac{1}{8} + \frac{1}{4} + \frac{1}{4} + \frac{1}{2} + 1 \le \sum_{i=1}^{i=n} \frac{1}{i} \le 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^p} \le p + 1$, en notant $p = p(n) = \Theta(\log n)$.

Exercice 10 Montrez que E(n,p) est exponentiel.

```
def E(n,p):
    if p==n or p==0:
        return 1
    return E(n-1,p-1)+E(n-1,p)
```

Le temps T(n,p) d'exécution de l'algorithme satisfait $T(n,0), T(n,n) \ge 1$ et $T(n,p) \ge T(n-1,p-1) + T(n-1,p)$, donc $T(n,p) \ge \frac{n!}{(n-p)!p!} = \frac{n}{p} \frac{n-1}{p-1} \dots \frac{n-p+1}{1} \ge \left(\frac{n}{p}\right)^p$.

Exercice 11 Donnez les 5 lignes de code python constituant un algorithme récursif Euclide(a,b) renvoyant le pgcd de deux entiers $a \ge b$, et montrer qu'il est $O(\log b)$.

```
def Euclide(a,b):
    if b==0:
        return a
    else:
        return Euclide(b,a%b)
```

On peut supposer $b \geq 1$, car sinon l'algorithme est $\Theta(1)$. Soit (b_i) la suite telle que b_0 est la valeur retournée par l'algorithme, b_{n+1}, b_n sont les valeurs initiales ${\bf a}, {\bf b}$, et les valeurs intermédiaires b_{i-1} sont les restes de la division entière de b_{i+1} par b_i . Ainsi $b_{i+2} = q_i b_{i+1} + b_i$ avec $1 \leq b_i < b_{i+1}$ (pour $i = 0 \dots n-1$). Puisque $q_i \geq 1$, on a $b_{i+2} \geq b_{i+1} + b_i$, et de plus, $b_0, b_1 \geq 1$. Donc b_i est supérieur au *i*ème terme de la suite de Fibonnacci, et donc $b_n \geq \Theta(\phi^n)$ où ϕ est le nombre d'or (la solution positive de $x^2 = x+1$). Il existe donc une constante c > 0 telle que $b \geq c \phi^n$ d'où $n \leq \log_{\phi} b - \log_{\phi} c = O(\log b)$.

Exercice 12 Remplissez les lignes manquantes:

```
def tri_den(A):
    n=len(A)
    m=max(A)
    B=[]
    for j in range(n):
        B.append(0)
    C=[]
    for i in range(m+1):
        C.append(0)
    for j in range(n):
```

```
# solution => C[A[j]]=C[A[j]]+1
    for i in range(1,m+1):
        # solution => C[i]=C[i-1]+C[i]
    for j in range(n):
        B[C[A[j]]-1]=A[j]
    A=B
Exercice 13 Remplissez les lignes manquantes:
def tri_insertion(tab):
    for j in range(1,len(tab)):
        # solution => x=tab[j]
        i=j-1
        while i>=0 and tab[i]>x:
           # solution => tab[i+1]=tab[i]
            i=i-1
        tab[i+1]=x
Exercice 14 Donnez la sortie écran à l'appel de la fonction tri(tab) avec l'entrée tab=[1,8,7,54,78,53].
def tri(tab):
   print(*tab)
    if len(tab) >1:
        mi = len(tab)//2
        L = tab[:mi] # le sous-tableau tab[0]..tab[mi-1]
        R = tab[mi:] # le sous-tableau tab[mi]..tab[len-1]
        tri(L)
        tri(R)
        i = j = k = 0
        while i < len(L) and j < len(R):
            if L[i] < R[j]:
                tab[k] = L[i]
                i+= 1
            else:
                tab[k] = R[j]
                j+= 1
            k+=1
        while i < len(L):
            tab[k] = L[i]
            i+= 1
            k+=1
        while j < len(R):
            tab[k] = R[j]
            j+= 1
            k+=1
sortie:
   1\ 8\ 7\ 54\ 78\ 53
   187
   1
   8 7
   8
   7
   54\ 78\ 53
   54
   78 53
```