

Qualitätssicherung von Software

Prof. Dr. Holger Schlingloff

Humboldt-Universität zu Berlin und Fraunhofer FIRST

- 1. Einleitung, Begriffe, Software-Qualitätskriterien
- 2. manuelle und automatisierte Testverfahren
- 3. Verifikation und Validierung, Modellprüfung
- 4. statische und dynamische Analysetechniken
- 5. Softwarebewertung, Softwaremetriken
- 6. Codereview- und andere Inspektionsverfahren
- 7. Zuverlässigkeitstheorie
 - FMEA, FMECA
 - Fehlerbaumanalyse
 - stochastische Softwareanalyse
- 8. Qualitätsstandards, Qualitätsmanagement, organisatorische Maßnahmen

Zuverlässigkeitstheorie

- Quantitative Ermittlung von Ausfallwahrscheinlichkeiten
- Ursprung: Bewertung von Hardware
 - Alterung, Umwelteinflüsse, Materialfehler, ...
- Auch für Software einsetzbar?
 - Zertifizierungsproblematik, z.B. Cenelec
 - vorausschauende Hinweise auf Schwachstellen
- FMEA, FMECA

(Fault tree analysis, FTA; DIN 25424)

- entwickelt 1961 von H.A. Watson, Bell Labs
 - Bewertung eines Raketen-Abschuss-Systems
 - für SW und eingebettete Systeme erweitert

- Systematische Suche nach Fehlerursachen
- Elimination von singulären Schwachstellen
- Top-down, von der Wurzel zu den Blättern
 - Jede Ebene im Baum zeigt den selben Sachverhalt, jedoch mit verschiedenen Detaillierungsgraden
 - Wurzel repräsentiert Bedrohung, Blätter repräsentieren atomare Fehler (Ereignisse)
 - Innere Knoten sind Abstraktionen von Ereignismengen

Symbole

Grundsymbole

Zusatzsymbole

aus: Liggesmeyer, p.435

Vorgehensweise

- Top-Down-Analyse
 - Verfeinerung der Wirkzusammenhänge
 - beginnend mit unerwünschtem Ereignis

 DIN: Nichtverfügbarkeit einer Einheit = Wahrscheinlichkeit des Ausfalls zu einem Zeitpunkt (Verteilungsfunktion F(t))

- Analyse von
 - Systemfunktionen
 - Umgebungsbedingungen
 - Hilfsquellen
 - Komponenten
 - Organisation

Beispiele

FIGURE 14.3
Portion of a fault tree for a patient monitoring system.

aus: N. Leveson, Safeware

Ausfallwahrscheinlichkeiten:

$$F_3 = F_1 * F_2 = 0.01 * 0.002 = 0.00002 = 0.002 %$$

$$F_0 = 1 - (1 - 0.00002) * (1 - 0.01) = 0.0100198 = 1.001 %$$

H. Schlingloff, Software-Qualitätssicherung

- Für boolesche Verknüpfungen
 - Und: $F(t) = F_1(t) * F_2(t)$
 - Oder: $F(t)=F_1(t) + F_2(t) F_1(t)*F_2(t)$
 - Nicht: F(t)=1 F´(t)
- → Unabhängigkeit von Ereignissen beachten!
- Jedem Blatt im Fehlerbaum wird Risiko und Wahrscheinlichkeit zugeordnet
 - Risiko bedeutet finanzieller/materieller Verlust
 - Wahrscheinlichkeit ggf. als Funktion der Zeit
- → Bottom-up-Berechnung nach vorstehenden Regeln ergibt Prioritätenliste der Risiken

Schnitte (Cut sets)

- Ein Schnitt ist eine Menge von Basisereignissen, so dass gilt: Falls irgendein Ereignis des Schnittes nicht eintritt,
 - wird auch das Ereignis der Wurzel nicht eintreten
- Repräsentation des Fehlerbaumes durch Schnitte: Und-Oder-Baum mit zwei Stufen
- Informationen zur Bewertung von Systemschwächen (Relevanz von Ereignissen für den Schadensfall)

stochastische Zuverlässigkeitsmodelle

- Idee: Quantifizierung der Zuverlässigkeit R (reliability) eines technischen (HW/SW-) Systems (vgl. SW-Metriken)
- Alterung: R=R(t) abhängig von der Zeit (Überlebenswahrscheinlichkeit)
 - z.B. mittlere Betriebsdauer zwischen Ausfällen bei Ausführungen
- Software: abhängig vom "Reifegrad"
- HW: Erhöhung der Zuverlässigkeit durch Redundanz, Fehlertoleranzkonzepte, ...
- SW: Übertragung der Konzepte? (ANSI/AIAAR013-1992, Recommended Practice for Software Reliability)

2.2.2005

Definition Zuverlässigkeit

- Zuverlässigkeit (reliability)
 - Grad der Fähigkeit einer Betrachtungseinheit, die geforderte Leistung während einer vorgegebenen Zeitspanne zu erbringen
 - Wahrscheinlichkeit der Abwesenheit von Ausfällen über dem Beobachtungszeitraum
 - R(t)=P[kein Ausfall im Intervall 0..t]
- vergleichbar
 - Verfügbarkeit (availability): Maß für die Wahrscheinlichkeit, dass die geforderte Leistung zu einem Zeitpunkt erbracht werden kann
 - Verlässlichkeit (dependability): Maß für das gerechtfertigte Vertrauen in die Leistung eines Systems

OLDE-DWILLE

Ausfallwahrscheinlichkeit

 F(t) = Wahrscheinlichkeit (mindestens) eines Ausfalls im Beobachtungszeitraum

$$F(t) = 1 - R(t)$$

- Oft sind F(t) und R(t) exponentiell verteilt (e-λt)
- Software: Anteil der fehlerhaften an allen betrachteten Programmausführungen

$$F(t) = \lim_{n \to \infty} (n_f / n)$$

• erste Ableitung ist *Ausfalldichte*:

$$f(t) = dF(t) / dt$$

Tendenz der Ausfallwahrscheinlichkeit

 Ausfallrate: Wahrscheinlichkeit, dass sich ein Ausfall pro Zeiteinheit in einem Intervall [t,t+δ] ereignet, gegeben Ausfallfreiheit bis zu t

$$F(t+\delta)-F(t) / \delta^*R(t)$$

Häufigkeit, mit der sich Ausfälle in einem Intervall ereignen

Hazard-Rate: bedingte Ausfalldichte
 z(t) = f(t) / R(t)

Grenzwert der Ausfallrate für kleine Intervalle

- p: Wahrscheinlichkeit des Versagens in einem Programmlauf
- (1-p): Wahrscheinlichkeit des Nichtversagens
- (1-p)ⁿ: Wahrscheinlichkeit des Nichtversagens in *n* paarweise unabhängigen Läufen

Wahrscheinlichkeit mindestens eines Versagens in n Läufen: $1-(1-p)^n$

Aussagesicherheit

 Unter der Annahme, dass ein System bei allen Beobachtungen niemals versagt, ist p natürlich nicht exakt bestimmbar; berechenbar ist eine obere Schranke für p:

 $p \le \mu$, wobei μ vorgegeben ist

• Mit Simulationsläufen ist die Wahrscheinlichkeit dieser Aussage bestimmbar: $\beta = P(p \le \mu)$

β heißt *Aussagesicherheit* der Hypothese

Zusammenhang von μ , β und n

 Wahrscheinlichkeit, dass in n Läufen höchstens x Versagensfälle auftreten:

$$p(n,x) = \sum_{m=0}^{x} {n \choose m} p^m (1-p)^{n-m}$$

Ausdruck nimmt mit wachsendem p monoton ab

• Wähle $\mu(x)$ so, dass $\sum_{n=0}^{\infty} \binom{n}{m} \mu(X)^m [1-\mu(X)]^{n-m} = 1-\beta$

• Dann gilt:
$$P[p \le \mu(X)] = P\left[\sum_{m=0}^{X} \binom{n}{m} p^m [1-p]^{n-m} \ge 1-\beta\right]$$

• Daraus folgt (X=0):
$$\sum_{m=0}^{X} \binom{n}{m} \mu(X)^m [1-\mu(X)]^{n-m} = 1 \cdot 1 \cdot [1-\mu(0)]^n = 1-\beta$$

$$\sum_{m=0}^{X} \binom{n}{m} \mu(X)^m [1 - \mu(X)]^{n-m} = 1 \cdot 1 \cdot [1 - \mu(0)]^n = 1 - \beta$$

$$\beta = 1 - \left[1 - \mu\right]^n$$

- Poisson-Verteilung statt binomischer Verteilung der Erwartungswerte ergibt eine ähnliche Ausfalldichtefunktion
- Formel reflektiert die erreichbare Aussagesicherheit bei gegebener Oberschranke für die Versagenswahrscheinlichkeit in Abhängigkeit von der Anzahl der versagensfreien Programmläufe

Beispielwerte für $\mu = 10^{-4}$

n	β
5000	0,3934845
10000	0,63213895
15000	0,77688658
20000	0,86467825
25000	0,91792526
30000	0,9502204
35000	0,9698079
40000	0,98168802
45000	0,9888935
50000	0,99326374

H. Schlingloff, Software-Qualitätssicherung

7. Zuverlässigkeit

2.2.2005

Folie 20

- Makromodelle
 - Außenverhalten des Systems, Black-Box-Sicht
 - Ausfallrate proportional zur Zahl der enthaltenen Fehler
- Mikromodelle
 - innere Struktur, White-Box-Sicht
 - Ausfallrate abhängig von der Aufrufstruktur

Beispiel: Jelinski-Moranda-Makromodell

- Hazard-Rate proportional zur Anzahl enthaltener Fehler
 - feste anfängliche Gesamtfehlerzahl
 - jeder Fehler verursacht mit gleicher Wahrscheinlichkeit und Rate Fehler
 - aufgetretene Fehler werden sofort beseitigt (konstante Änderung bei jeder Programmversion)
- Abschätzung der Zahl der ursprünglichen Fehler durch Beobachtung von Ausfällen über einen Zeitraum
- Berechnung der Anzahl der Restfehler und des erforderlichen QS-Aufwandes

Beispiel: Shooman-Mikromodell

- Berücksichtigung der Programmstruktur: Aufteilung in Segmente (Module, Klassen, Funktionen,...)
- Schätzung der relativen Ausführungshäufigkeit und zeit sowie der Fehlerwahrscheinlichkeit je Segment (Instrumentierung des Quelltextes)
 - Fehler sind nicht gleichverteilt
 - große Module nicht zwangsweise fehlerbehaftet
 - keine strenge Korrelation Testfehler-Produktfehler
- Berechnung der Fehlerrate aus dem Quotienten von fehlerhaften Ausführungen und zugehörigen Ausführungszeiten
- Trendanalyse für verbleibende Fehleranzahl

Bewertung der Modelle

- über 40 Varianten in der Literatur
- kein ideales Modell (viel Spielraum)
- Schätzungen, keine Vorhersagen!
- langfristige Kalibrierung nötig
- Genauigkeit "bis zu +-5%" erreichbar
- Werkzeuge verfügbar

Literaturempfehlungen

- Wolfgang Ehrenberger: Software-Verifikation, Verfahren für den Zuverlässigkeitsnachweis von Software; Hanser Verlag
- Peter Liggesmeyer: Formale und stochastische Methoden zur Qualitätssicherung technischer Software http://pi.informatik.uni-siegen.de/stt/20_3/20_3_Liggesmeyer.pdf

- F.Belli, M.Grochtmann, O. Jack: Erprobte Modelle zur Quantifizierung der Software-Zuverlässigkeit; Informatik Spektrum 21: 131–140 (1998)
- Jelinski, Z., Moranda, P.B., Software reliability research; in: Statistical Computer Performance Evaluation, W. Freiberger, Ed., New York, Academic, 465-484, 1972
- Shooman, M., Operational testing and software reliability during program development; in Rec. 1973 IEEE Symp. Comput. Software Rel., New York, 51-57, 1973.