Exercise on MATLAB programming

Write down the output in the space provided.

```
a = 0; j = [];
ind = [1 \ 2 \ 5];
for i = -30:5:30
if(i)
a = a + i;
else
a = a - i;
end
j = [j \ i];
end
a
j(ind)

Output:
a = 0
j (ind) = -30 - 25 - 10
```

For example, if
$$x = [2, 4, 6]$$

 $j = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$
then $j(x)$ gives $2 + 6$

Exercise on Gray-level Transformations

The above figure shows several basic gray-level intensity transformation functions. For each transformation function, e.g., T1, T2 and T3, describes the visual effect when the transformation function is applied to a gray-level image with L intensity levels.

a) Tl:					
	It	generat	es imag	e negative	<u>.</u> .
Black				olite turus	
o) T2:					
•	The	image	becomes	brighter	•
c) T3:					
	The	Image	becomes	darker.	
		•			

Exercise on Histograms

Below are the histograms of two 10-by-10 pixel, 8-gray level (0-7) images. If Image 1 is represented by matrix A and Image 2 is represented by matrix B, their sum image (Image 3) is calculated by A+B. What will be the histogram of their sum image of Image 3?

Intensity levels	0	1	2	3	4	5	6	7
Frequencies (Image 1)	0	0	0	100	0	0	0	0
Frequencies (Image 2)	16	24	12	28	20	0	0	0
Frequencies (Image 3)	0	0	0	16	24	(2	28	20

Exercise on Image Restoration and Filtering

What are the values after applying the adaptive median filter at position (4, 4) and (5, 3), where (x,y)=(row#,column#), given that $S_{max}=5$?

6	3	5	7	8	2	1
2	3	5	2	1	3	7
3	1	1	5	3	4	2
2	2	2	5	5	2	3
4	4	4	2	1	3	8
5	2	1	3	5	1	9
6	3	4	2	7	7	2

Assume that

 Z_{\min} and Z_{\max} are min. and max. grey levels in a window S_{xy} respectively,

 Z_{med} represents the median of grey level in S_{xy} ,

 Z_{xy} represents grey level at coordinates (x, y), and

 $S_{\rm max}$ denotes the max. allowed window size of $S_{\rm xy}$.

The filter is defined as follows.

Level A:

$$\begin{array}{ll} A\mathrm{l} = Z_{\mathrm{med}} - Z_{\mathrm{min}} \; ; \quad A\mathrm{2} = Z_{\mathrm{med}} - Z_{\mathrm{max}} \\ \mathrm{If} \quad A\mathrm{l} > 0 \quad \mathrm{and} \quad A\mathrm{2} < 0 \; , \; \mathrm{go \; to \; level \; B.} \end{array}$$

Else increase the window size.

If window size $\leq S_{\text{max}}$ repeat level A.

Else output Z_{xv} .

Level B:

$$\begin{array}{l} B1 = Z_{\rm xy} - Z_{\rm min} \; ; \quad B2 = Z_{\rm xy} - Z_{\rm max} \\ \text{If} \quad B1 > 0 \quad \text{and} \quad B2 < 0 \; , \; \text{output} \quad Z_{\rm xy} \; . \end{array}$$

Else output Z_{med} .

Exercise on Morphological Image Processing

Dilation on an image A with a structuring element B is defined as $A \oplus B = \left\{ z \mid \left(\hat{B} \right)_z \cap A \neq \emptyset \right\}$.

Perform dilation on the following input image and complete the output image accordingly.

	Input Image							
0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	1	1	1	1	1	1	1	
0	0	1	0	1	0	0	1	
0	0	1	1	1	0	0	1	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

	Output Image							
*	*	*	*	*	*	*	*	
*	1	1	1	0	0	0	*	
*	1	1	1	1	1	l	*	
*	1	1	l	Į	ı	1	*	
*	1	1	l	1	l	١	*	
*	1	1	l	l	1	l	*	
*	l	I	l	l	l	1	*	
*	*	*	*	*	*	*	*	

Structuring element (SE) B with the origin located at the center of the matrix:

1	1	1	
1	1	1	
1	1	1	

Remark: Fill in all pixels with either zero or one. Do not leave any pixel blank. Boundary pixels of output image are set to * and you do not need to consider those ones.