Stochastic Programming

COMP4691 / 8691

ALL MODELLING

Outline

- Farmer's example
- Two-Stage Stochastic Programming
- L-Shaped Method
- Chance Constraints
- Multi-Stage Stochastic Programming

Available as e-book and physical copy through the ANU library

Springer Series in Operations Research and Financial Engineering

John R. Birge François Louveaux

Second Edition

Farmer's Example

- A farmer has 500 acres and need to decide how to split the land for 3 different crops: wheat, corn and sugar beets
- Constraints
- → Land usage (500 acres)
 - At least 200 tons (T) of wheat and 240 T of corn for cattle
- Parameters per crop:
- yield (T/acre)
- planting cost (\$/acre) 4–
- selling price (\$/T) 4-
- purchase price (\$/T) -

in case it is cheaper to buy wheat/corn instead of producing

Extra constraint: cap on amount of sugar beets sold

Farmer's Example – Data

		Wheat	Corn	Beets	
*	Yield (T/acre)	2.5	3	20	<u>)4—</u>
\rightarrow	Plating cost (\$/acre)	150	230	260	
4	Selling price (\$/T)	170	150	36 under 6000 T	4-
				36 under 6000 T 10 above 6000 T	4-
	Purchase price (\$/T)	238	210		
→>	Min. requirement (T)	200	240	_	

 All this values comes from historical data the farmer collected over the years

Farmer's Example – Variables

		Wheat 🕹	Corn Z	Beets 3,4
→	Acres allocated	X ₁	X ₂	<u>x</u> ₃
	Amount sold	<u>W</u> ₁	W ₂	w_3 for under 6000T w_4 for over 6000T
	Amount purchased	<u>Y</u> 1	Y ₂	_

Goal: minimize loss (negative loss == profit)

Famer's Problem LP

min
$$150x_1 + 230x_2 + 238x_3$$

 $+ 238y_1 + 210y_2$ $4 - 30y_1$
 $- 170w_1 - 150w_2 - 36w_3 - 10w_4$
s.t. $x_1 + x_2 + x_3 \le 500$ $4 - (200)$
 $2.5x_1 + (y_1) - (y_1) \ge 200$ NGT CONSTR
 $3x_2 + y_2 - (y_2) \ge 240$ WHEAT (COEN)
 $w_3 + (y_4) \le 20x_3$ YIELD
 $w_3 \le 6000$

x_i: land allocated
w_i: amount sold
y_i: amount purchased
wheat → 1
corn → 2
beets → 3 (up to quota)
4 (above)

Recall: minimize loss == maximize profit (negative loss)

Solution

	Wheat	Corn	Beets
Acres allocated 🖌	120	80	300
Amount sold	<u>3</u> 00	<u>2</u> 40	6000 (exactly the quota)
Amount purchased	0)	0	_

Total Profit: \$118,600 4

- This is problem as described so far can be solved as a Knapsack problem over profitability
 - 460 \$/acre for beets up to quota, 275 \$/acre for wheat, 220 \$/acre for corn, and -60 \$/acre for beets after 6000 T
- What is the underlying issue with this model? Would you use it in your farm?

The Effect of the Weather

Consider 2 scenarios: -20% and +20% change in yield due weather

Opt. solution for each one of the cases and the previous average case:

20% yield		→ average yield			→ +20% yield			
Wheat	Corn	Beets	Wheat	Corn	Beets	Wheat	Corn	Beets
100	<u>25</u>	<u>37</u> 5	120	80	300	183	66	250
/ 0	′ 0	6000	300	240	6000	350	, 0	6000
0	180	_	0	0		0	0	1
	1/3+	\$59,950	7	1/8	118,600) t	13 -3	5167,667
	Wheat 100 - 0	Wheat Corn 100 25 0 0	Wheat Corn Beets 100 25 375 0 0 6000	Wheat Corn Beets Wheat 100 25 375 120 - 0 0 6000 300 0 180 - 0	Wheat Corn Beets Wheat Corn 100 25 375 120 80 - 0 0 6000 300 240 0 180 - 0 0	Joban Joban <t< td=""><td>Wheat Corn Beets Wheat Corn Beets Wheat 100 25 375 120 80 300 183 0 0 6000 300 240 6000 350 0 180 0 0 0 0 0</td><td>Wheat Corn Beets Wheat Corn Beets Wheat Corn 100 25 375 120 80 300 183 66 ✓ 0 6000 300 240 6000 350 0 0 180 − 0 − 0 0</td></t<>	Wheat Corn Beets Wheat Corn Beets Wheat 100 25 375 120 80 300 183 0 0 6000 300 240 6000 350 0 180 0 0 0 0 0	Wheat Corn Beets Wheat Corn Beets Wheat Corn 100 25 375 120 80 300 183 66 ✓ 0 6000 300 240 6000 350 0 0 180 − 0 − 0 0

- In each solution, we allocate enough to sell 6000 T of beets, then handle wheat and buy corn if needed
- Can we use these 3 solutions?

Two-stage Stochastic Program with Recourse

- The farmer's problem has:
 - -two-stages: decide the land allocation (x) then we observe the weather/yield, and
 - recourse: we can buy the missing (y) wheat or corn if our production is below the requirements
- This is the class of problems we will focus in this lecture
- Expected profit if scenario has probability 1/3
 - Using the oracle: \$115,406
 - Using the average case solution: \$107,240
 - Under produces beets in the -20% case: \$86,600 ←
- → Over produces beets in the +20% case: \$107,683 △
- Can we do better than using the average case in all weathers?

Stochastic Programming

- Let $g(x, \varepsilon)$ represent the Famer's problem for a yield ε
 - Here ε is a random variable representing the uncertainty in the yield
 - $-P(\varepsilon = -20\% \text{ yield}) = 1/3$
- So far we have:

J BEST 3LE

→ Planning with an Oracle

$$E_{\varepsilon}[min_{x} g(x,\varepsilon)]$$

 \leq

Planning for the Future

$$\min_{\mathbf{x}} \mathbf{E}_{\varepsilon}[\mathbf{g}(\mathbf{x}, \varepsilon)]$$

Planning for the avg case

 $\min_{x} g(x) E_{\varepsilon}[s]$

Other names:

Wait-and-See (WS)

- Recourse-Problem (RP)
- Expected-Value Prob. (EV)

Recourse-Problem

- What does it mean min_x $E_{\epsilon}[g(x,\epsilon)]$?
 - We need to decide on x and then observe the uncertainty ε
 - Nothing is preventing us from planning for contingencies
 - E.g., If ε is -20% yield, then and only then I will buy corn
- We exploit the recourse actions to find a good decision for x that we can fix it later if needed
- We do so by separating each scenario after we observe ε
 - $-y_i$ becomes y_{i1} , y_{i2} , y_{i3} for scenarios 1 (+20%), 2 (avg) and 3 (-20%)
 - same with $\vec{w_i}$

Recourse-Problem LP

x_i: land allocated wik: amount sold y_{ik}: amount purchased wheat \rightarrow 1 $corn \rightarrow 2$ beets → 3 (up to quota) 4 (above) $k \rightarrow scenario index$

CACH

SCENAL'O

Scenario 1 (-20%)

$$2x_1 + y_{13} - w_{13} \ge 200$$

 $2.4x_2 + y_{23} - w_{23} \ge 240$
 $w_{33} + w_{43} \le 16x_3$
 $w_{33} \le 6000$

<u>Scenario 1 (+20%)</u>

$$3x_{1} + y_{11} - w_{11} \ge 200$$

$$3.6x_{2} + y_{21} - w_{21} \ge 240$$

$$w_{31} + w_{41} \le 24x_{3}$$

$$w_{31} \le 6000$$

Scenario 2 (avg)

$$3x_1 + y_{11} - w_{11} \ge 200$$
 $2.5x_1 + y_{12} - w_{12} \ge 200$
 $3x_2 + y_{21} - w_{21} \ge 240$ $3x_2 + y_{22} - w_{22} \ge 240$
 $3x_1 + w_{41} \le 24x_3$ $3x_2 + w_{42} \le 20x_3$
 $3x_3 \le 6000$ $3x_4 + w_{42} \le 20x_3$
 $3x_5 + w_{42} \le 20x_3$

Recourse-Problem Solution

			Wheat	Corn	Beets	
	First Stage (x)	Acres allocated	170	80	250	
ナ	scenario 1	Yield (T)	510	2 <u>8</u> 8	6000	54 —
	(+20% yield)	Sold/Purchased (T)	310	48	6000	
→	scenario 2	Yield (T)	425	240	5000	4
	(avg yield)	Sold/Purchased (T)	225	0	5000	
P	scenario 3	Yield (T)	340	192	4000	4-
	(-20% yield)	Sold/Purchased (T)	140	-48	4000	

Total Profit: \$108,390

• Key differences:

- Allocate land for beets to reach quota at best case
- Allocate land for corn to meet constraint in the average case
- Left over land for wheat

Comparing Solutions

- How much should we pay for a perfect prediction of the future?
 - -WS RP = -115,406 (-108,390) = -\$7,016
 - Known as the Expected Value of Perfect Information (EVPI)
- How much is Stochastic Programming helping us?
 - $-RP E[EV] = -108,390 (-107,240) \in -$1,150$
 - Known as the Value of the Stochastic Solution (VSS)
- Stochastic Programming leverages information about the distribution of the uncertain outcomes to improve the quality of the solution

Sampling

- What if
 - 1) we have a complicated or black-box model, e.g., weather forecast?
 - 2) we have a continuous distribution?
- Sampling can solve both
 - In some cases, (2) can be solved analytically
- The samples is treated as scenarios of equal probability
 - Referred as the sample average approximation (SAA)
- Better results with more samples
- Different sampling methods can also improve the solution:

Evaluating Candidate Solutions

- More samples increase the size of the LP
- However, evaluating a solution is much faster than solving the LP:
 - Take the solutions of the first-stage \underline{x} (e.g., land allocation)
 - − Sample a scenario (e.g., -50% yield)
 - Compute the recourse-actions y (e.g., how corn and wheat to buy)
- Compute a solution using N samples and evaluate it on M different samples (M >> N)
- Using the Central Limit Theorem, we can get a confidence interval bound on the solution:
- \rightarrow mean(g(x, ε)) \neq z_{α} sem(g(x, ε))
 - sem is the standard error of the mean \rightarrow sample standard dev \sqrt{n}
 - 95% confidence interval for $z_{\alpha} = 1.96$

Handling Large Problem

 If you have several scenarios or samples in the farmer's example, the LHS of our constraints will look like this:

x_i: land allocated for i w_{ik}: amount sold y_{ik}: amount purchased k → scenario index i → wheat, corn, beets

- Each scenario is only connected through the first-stage variables (x)
- Where have we seen this before?

L-Shaped Method (aka Benders Decomp)

- Use Benders Decomposition
 - Instead of one big sub-problem, we have K independent small subproblems
- From Benders Lecture adapted notation:

Complete Recourse

- A problem has complete recourse when, for all possible observations of the uncertainty ε , there is a recourse action that makes the problem feasible.
- This implies that all sub-problems in the Benders decomposition are feasible regardless of the value of x
- The farmer's example has complete recourse:
 - 1. Can by as much wheat and corn to satisfy constraint of at least 200 T and 240 T each
 - 2. Everything produced can be sold

RMP for Complete Recourse Problems

$$\min_{x,\eta} f^{\mathsf{T}}x + \eta$$
s.t. $Ax = b$

$$\underbrace{\eta \ge \pi_e^{\mathsf{T}}(d_k - B_k x)}_{x > 0} \quad \forall k, \pi_e \in \bar{E}_k$$

Outline

- Farmer's example
- Two-Stage Stochastic Programming
- L-Shaped Method
- Chance Constraints
- Multi-Stage Stochastic Programming

Available as e-book and physical copy through the ANU library

Springer Series in Operations Research and Financial Engineering

John R. Birge François Louveaux

Introduction to Stochastic Programming

Second Edition

Chance Constraints

- So far in the course, we have seen:
 - (hard) constraints: must be satisfied
 - soft constraints: penalize if not satisfied
- Chance constraints: a probabilistic constraint

$$P(a^Tx \le b) \ge \alpha$$

where either a or b depends on a random variable

- Famer's problem example:
 - P(producing less than 6000 T of beets) ≤ 0.25
 - P(buy 20 T or less of corn and wheat) ≥ 0.8

Modeling Chance Constraints

- For discrete distributions and sampling:
 - 1. use binary variables to count the constraint violations
 - 2. constraint the sum of scenario probability where violation occurred &
- Famer's problem example: P(buy 20 7 or less of corn and wheat) ≥ 0.8

X

- 1. for each scenario k:
- \Rightarrow $z_k \in \{0,1\}$: constraint violated implies $z_k = 4$
 - What is the maximum amount of corn and wheat needed?
 440 from the specification (200 wheat, 240 corn)
 - Use this tight upper bound for a Big-M constraint
 - 2. in the main problem: $\sum_{k} p_{k} z_{k} \le 0.2$
- Note that we modeled the complement, i.e., $1 P(buy 20T \text{ or less}) \le 1 0.8$

Multi-Stage Stochastic Programming

Multi-stage is a series of two-stage problems:

- Superscript denotes discrete time step

- In the farmer's example:
 - crop rotation: rotate field every year t
 - beets production quota over multiple seasons
- Issue: curse of dimensionality
 - exponential growth of scenarios wrt horizon
- Key techniques:
 - Nested Benders Decomposition
 - Better Sampling

Stochastic Programming

Net 1 Flows

- More realistic decision making
 - Model uncertainty and the sequential decisions

- PCANNING UN DER UNC
- Can be used with any model: LP, MIPs, QPs, Convex Programs, etc.
 - There are special branch-and-bound techniques for it
- Successful in multiple industries
 - Used in Tasmania by energy operator
- Key challenges:
 - Curse of dimensionality / good sampling
 - Handling large problems

Available as e-book and physical copy through the ANU library

springer series in Operations Research and Financial Engineering

John R. Birge François Louveaux

Introduction to Stochastic Programming

Second Edition

