Regularization and Bias/Variance

Bias and Variance

Advice for Applying Machine Learning

Introduction

- You've seen how regularization can help prevent over-fitting in previous lectures.
- In the lectures that we talked about today, there was no regularization...
- How does regularization affect the bias and variances of a learning algorithm?

Large λ ← High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

$$h_{\theta}(x) \approx \dot{\theta}_0$$

Intermediate λ "Just right"

Small λ High variance (overfit)

Large λ ← → High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$

Intermediate λ "Just right"

Small λ High variance (overfit)

Large $\lambda \leftarrow$ High bias (underfit)

 $\rightarrow \lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$

Intermediate λ "Just right"

 \rightarrow Small λ High variance (overfit)

Large λ \leftarrow

High bias (underfit)

$$\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$$
$$h_{\theta}(x) \approx \theta_0$$

Intermediate λ ←

"Just right"

How to choose lambda??

 \rightarrow Small λ High variance (overfit)

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$= J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \leftarrow$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \leftarrow$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \iff$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2} \iff$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \qquad \text{J(a)}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2} \qquad \text{J(a)}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2} \qquad \text{J(a)}$$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

- 1. Try $\lambda = 0$
- 2. Try $\lambda = 0.01$
- 3. Try $\lambda = 0.02$
- 4. Try $\lambda = 0.04$
- 5. Try $\lambda = 0.08$:
- **12.** Try $\lambda = 10$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

- 1. Try $\lambda = 0 \leftarrow$ 2. Try $\lambda = 0.01$ 3. Try $\lambda = 0.02$ 4. Try $\lambda = 0.04$ 5. Try $\lambda = 0.08$:
 12. Try $\lambda = 10$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

1. Try
$$\lambda = 0 \leftarrow \gamma \longrightarrow \min J(\Theta) \rightarrow \Theta''$$

2. Try
$$\lambda = 0.01$$
 \longrightarrow \sim \sim \sim \sim \sim \sim \sim \sim

3. Try
$$\lambda = 0.02$$

4. Try
$$\lambda = 0.04$$

5. Try
$$\lambda = 0.08$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow min $J(0) \rightarrow 0$ \longrightarrow 2. Try $\lambda = 0.01$ \longrightarrow 2. Try $\lambda = 0.02$ \longrightarrow 3. Try $\lambda = 0.02$ \longrightarrow 4. Try $\lambda = 0.04$ 5. Try $\lambda = 0.08$ \longrightarrow 12. Try $\lambda = 10$ \longrightarrow 5. Try $\lambda = 10$ \longrightarrow 5. Try $\lambda = 10$ \longrightarrow 6. Try $\lambda = 10$ \longrightarrow 6. Try $\lambda = 10$ \longrightarrow 6. Try $\lambda = 10$ \longrightarrow 7. Try $\lambda = 10$ \longrightarrow 8. Try $\lambda = 10$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow min $J(\Theta) \rightarrow \Theta'' \rightarrow J_{cu}(\Theta''')$
2. Try $\lambda = 0.01$ \longrightarrow $J_{cu}(\Theta''')$
3. Try $\lambda = 0.02$ \longrightarrow $J_{cu}(\Theta''')$
4. Try $\lambda = 0.04$
5. Try $\lambda = 0.08$ \vdots
12. Try $\lambda = 10$ \longrightarrow $J_{cu}(\Theta''')$

2. Try
$$\lambda = 0.01$$
 \longrightarrow $\gamma_{in} I(0) \longrightarrow O^{(i)} \longrightarrow I_{ev}(o^{(n)})$

3. Try
$$\lambda = 0.02$$
 $\longrightarrow \mathcal{I}_{cv} (6^{(3)})$

4. Try
$$\lambda = 0.04$$

5. Try
$$\lambda = 0.08$$

12. Try
$$\lambda = 10$$

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow Min $J(\Theta) \rightarrow \Theta^{(n)} \rightarrow J_{cu}(\Theta^{(n)})$
2. Try $\lambda = 0.01$ \longrightarrow Min $J(\Theta) \rightarrow \Theta^{(n)} \rightarrow J_{cu}(\Theta^{(n)})$
3. Try $\lambda = 0.02$ \longrightarrow $J_{cu}(\Theta^{(n)})$
4. Try $\lambda = 0.04$
5. Try $\lambda = 0.08$

5. Try
$$\lambda = 0.08$$
 \rightarrow $\bigcirc^{(s)}$ $\searrow_{\omega} (\bigcirc^{(s)})$

12. Try
$$\lambda = 10$$
 $\rightarrow J \omega (o^{(12)})$

Pick (say) $\theta^{(5)}$. Test error:

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$
1. Try $\lambda = 0 \leftarrow 1$ \longrightarrow min $J(\Theta) \rightarrow \Theta^{(i)} \rightarrow J_{e_0}(\Theta^{(i)})$
2. Try $\lambda = 0.01$ \longrightarrow $M_{e_0} J(\Theta) \rightarrow \Theta^{(i)} \rightarrow J_{e_0}(\Theta^{(i)})$
3. Try $\lambda = 0.02$ \longrightarrow $M_{e_0} J(\Theta) \rightarrow \Theta^{(i)} \rightarrow J_{e_0}(\Theta^{(i)})$
4. Try $\lambda = 0.04$
5. Try $\lambda = 0.08$

3. Try
$$\lambda = 0.02$$

4. Try
$$\lambda = 0.04$$

12. Try
$$\lambda = 10$$
 Pick (say) $\theta^{(5)}$. Test error: $\int_{\text{test}} \left(\delta^{(5)} \right)$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^{2}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

Summary

- We understood that
 - as λ increases, our fit becomes more rigid.
 - as λ approaches 0, we tend to overfit the data.
- So how do we choose our parameter λ to get it 'just right'?
- In order to choose the model and the regularization term λ , we need to:
 - Create a list of lambdas (i.e. $\lambda \in \{0,0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28,2.56,5.12,10.24\}$);
 - Create a set of models with different degrees or any other variants.
 - Iterate through the λ s and for each λ go through all the models to learn some Θ .
 - Compute the cross validation error using the learned Θ (computed with λ) on the $J_{CV}(\Theta)$ without regularization or $\lambda=0$.
 - Select the best combo that produces the lowest error on the cross validation set.
 - Using the best combo Θ and λ , apply it on $J_{test}(\Theta)$ to see if it has a good generalization of the problem.