Theory of Meaning Assignment #3

Andrew Zito

10 February 2016

1 Exercise H

- 1. (i) $\mathbf{every}_x\{Px\}Gx$ where $P = \mathbf{is}$ a pig and $G = \mathbf{grunted}$
 - (ii) $some_x\{Mx\}Gx$ where M = met Mary and G = is a gardener
 - (iii) $\mathbf{the}_x\{Bx\}Lx$ where B = is a black horse and L = likes Mary
 - (iv) $\mathbf{every}_x\{Mx\}Kx$ where M = is a man and K = knows Susan
- 2. 1 every_xMxKx where M = is a man and K = knows some woman (or other)
 - 2 $\mathbf{some}_x \mathbf{WxKx}$ where $\mathbf{W} = \mathbf{is}$ a woman and $\mathbf{K} = \mathbf{knows}$ every man

2 Exercise I

- 1. (1) INSTANTIATE, NO: $\mathbf{no}_y\{Gy \& Py\}$ Sy is true w.r.t. L iff there is no object o such that (Gy & Py) is true w.r.t. $L+<\mathbf{y},\mathbf{o}>$ and Sy is also true w.r.t. $L+<\mathbf{y},\mathbf{o}>$
 - (2) INSTANTIATE, AND: ... iff there is no object o such that Gy is true w.r.t. L+<y,o> and Py is true w.r.t. L+<y,o> and Sy is also true w.r.t. L+<y,o>
 - (3) INSTANTIATE, ATOMIC-1: ... iff there is no object o such that $L+<\mathbf{y},\mathbf{o}>(\mathbf{y})\in L+<\mathbf{y},\mathbf{o}>(\mathbf{G})$ and $L+<\mathbf{y},\mathbf{o}>(\mathbf{y})\in L+<\mathbf{y},\mathbf{o}>(\mathbf{S})$
 - (4) REPLACE, LEXICON: ... iff there is no object o such that o is grey and o is a pig and also o sings
 - (5) SET THEORY: iff nothing is a grey pig that sings

2.

- 3. $\mathbf{ex1}_u\{\phi\}\psi$ is true w.r.t. M iff there is exactly one object o such that ϕ is true w.r.t. M+< u,o>, and ψ is also true w.r.t. M+< u,o>.
- 4. (a) $\mathbf{ex1}_x\{\mathrm{Tx}\}\ \mathbf{every}_u\{\mathrm{Cy}\}\mathrm{T}(\mathrm{x,y})$
 - (b) $\mathbf{every}_x\{\mathbf{Cx}\}\ \mathbf{ex1}_u\{\mathbf{Ty}\}\mathbf{T}(\mathbf{x},\mathbf{y})$