問題 4 次のプログラムの説明を読み、プログラム中の に入れるべき適切な字 句を解答群から選べ。

「プログラムの説明】

単方向リストの削除,追加を行うプログラム list_update である。単方向リストとは、データを記録するデータ部と次のデータの格納位置を示すポインタ部で表すデータ構造である。そのため、リストの先頭から順番にデータをたどることはできるが、後戻りはできない。

ここでは、すべて異なった値の n 個のデータが昇順に整列された単方向リストを 2 次元配列 list で表現している。配列の添字は 1 から始まり、処理に十分な大きさを持っているものとする。

各列には次の内容が格納されている。

1列目:データ

2列目:次のデータの格納位置。リストの末尾の要素は0

また、変数 head は、単方向リストの先頭データの添字を表している。

ここで、与えられたパラメータ (parm) により、次の処理を行う。なお、パラメータは、0 または 1 とし、変数 s_d at には、削除データまたは追加データが設定される。

- 0: データ (s_dat) の削除。削除データが配列 list に存在しない場合は、パラメータに-1 を設定する。
- 1: データ (s_{dat}) の追加。追加データは配列 1ist の n+1 番目に格納し、データが昇順になるようポインタを付け替える。

head 4

配列 list	[1]	[2]
[1]	17	6
[2]	13	1
[3]	31	0
[4]	5	2
[5]	28	3
[6]	25	5
	データ	次ポインタ

図 配列で表現した単方向リスト

「擬似言語の記述形式の説明]

記述形式	説明	
0	手続き、変数などの名前、型などを宣言する	
・変数 ← 式	変数に式の値を代入する	
/*文*/	注釈を記述する	
▲ 条件式	選択処理を示す。	
・処理 1	条件式が真の時は処理1を実行し、	
 	偽の時は処理2を実行する。	
・処理 2		
♦		
■ 条件式	前判定繰り返し処理を示す。	
・処理	条件式が真の間,処理を実行する。	

[擬似言語の記述形式の説明]

演算の種類	演算子	優先順位
単項演算	+, $-$, not	高
乗除演算	×, ÷, %	†
加減演算	+,-	
関係演算	>, <, ≧, ≦, =,≠	
論理積	and	↓ ↓
論理和	or	低

(1) の解答群

\mathcal{T}. list[curr][1] = s dat

ウ. list[curr][2] < s_dat

工. list[curr][2] > s_dat

(2), (4), (5)の解答群

 \mathcal{T} . list[curr][2] \leftarrow 0

 $\vec{\ }$. list[curr][2] \leftarrow n + 1

 $\dot{\mathcal{D}}$. list[curr][2] \leftarrow list[prev][2]

 \bot . list[n+1][2] ← 0

(3) の解答群

 \mathcal{T} . list[curr][1] = s_dat

1. list[curr][1] ≠ s_dat

ウ. list[curr][1] < s_dat

工. list[curr][1] > s_dat

```
「プログラム]
```

```
○整数型:prev, curr
▲ parm = 0 /* 削除の処理 */
  ·curr ← head
   \blacksquare (1) and list[curr][2] \neq 0
       · prev ← curr
       • curr ← list[curr][2]
   ▲ curr = head /* 先頭のデータ */
      • head ← list[head][2]
        s dat = list[curr][1] /* 中間のデータ */
          • (2)
          ・parm ← -1 /* データなし */
   • list[n+1][1] \leftarrow s dat
   \cdot curr \leftarrow head
      (3) and list[curr][2] \neq 0
       • prev ← curr
       • curr ← list[curr][2]
    x curr = head /* 先頭に追加 */
      · list[n+1][2] \leftarrow head
       • head \leftarrow n + 1
       ▲ list[curr][2] = 0 /* 末尾に追加 */
          ·list[curr][2] \leftarrow n + 1
          • (4)
          ·list[n+1][2] ← list[prev][2] /* 途中に追加 */
```

○プログラム名:list_update (整数型:list[][],整数型:head,

整数型:n,整数型:parm,整数型:s dat)