МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

КУРСОВАЯ РАБОТА, ЧАСТЬ 1

по дисциплине 'Дискретная математика'

Вариант № 20

Выполнил: Студент группы Р3109 Суханкин Дмитрий Юрьевич Преподаватель: Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $5 \le x_1 x_2 x_3 + x_4 x_5 < 9$ и неопределенное значение при $x_3 x_4 x_5 = 7$.

Таблица истинности

No॒	x_1	x_2	x_3	x_4	x_5	$x_1 x_2 x_3$	x_4x_5	$x_3x_4x_5$	f
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1	0
2	0	0	0	1	0	0	2	2	0
3	0	0	0	1	1	0	3	3	0
4	0	0	1	0	0	1	0	4	0
5	0	0	1	0	1	1	1	5	0
6	0	0	1	1	0	1	2	6	0
7	0	0	1	1	1	1	3	7	d
8	0	1	0	0	0	2	0	0	0
9	0	1	0	0	1	2	1	1	0
10	0	1	0	1	0	2	2	2	0
11	0	1	0	1	1	2	3	3	1
12	0	1	1	0	0	3	0	4	0
13	0	1	1	0	1	3	1	5	0
14	0	1	1	1	0	3	2	6	1
15	0	1	1	1	1	3	3	7	d
16	1	0	0	0	0	4	0	0	0
17	1	0	0	0	1	4	1	1	1
18	1	0	0	1	0	4	2	2	1
19	1	0	0	1	1	4	3	3	1
20	1	0	1	0	0	5	0	4	1
21	1	0	1	0	1	5	1	5	1
22	1	0	1	1	0	5	2	6	1
23	1	0	1	1	1	5	3	7	d
24	1	1	0	0	0	6	0	0	1
25	1	1	0	0	1	6	1	1	1
26	1	1	0	1	0	6	2	2	1
27	1	1	0	1	1	6	3	3	0
28	1	1	1	0	0	7	0	4	1
29	1	1	1	0	1	7	1	5	1
30	1	1	1	1	0	7	2	6	0
31	1	1	1	1	1	7	3	7	d

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \vee x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \vee x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \vee x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5 \vee x_1 \vee x_2 \vee x_3 \vee$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$$

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

$$(\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{1}(f)$		$K^2(f)$		Z(f)
m_{17}	10001		m_{18} - m_{19}	1001X	√	m_{20} - m_{21} - m_{22} - m_{23}	101XX	110X0
m_{18}	10010	✓	m_{17} - m_{19}	100X1	✓	m_{18} - m_{19} - m_{22} - m_{23}	10X1X	1X010
m_{20}	10100	✓	m_{20} - m_{21}	1010X	\checkmark	m_{17} - m_{19} - m_{21} - m_{23}	10XX1	0111X
m_{24}	11000	✓	m_{20} - m_{22}	101X0	\checkmark	m_{24} - m_{25} - m_{28} - m_{29}	11X0X	01X11
m_{11}	01011	√	m_{17} - m_{21}	10X01	\checkmark	m_{20} - m_{21} - m_{28} - m_{29}	1X10X	101XX
m_{14}	01110	✓	m_{18} - m_{22}	10X10	✓	m_{17} - m_{21} - m_{25} - m_{29}	1XX01	10X1X
m_{19}	10011	✓	m_{24} - m_{25}	1100X	✓	m_{21} - m_{23} - m_{29} - m_{31}	1X1X1	10XX1
m_{21}	10101	✓	m_{24} - m_{26}	110X0		m_7 - m_{15} - m_{23} - m_{31}	XX111	11X0X
m_{22}	10110	✓	m_{24} - m_{28}	11X00	\checkmark			1X10X
m_{25}	11001	✓	m_{17} - m_{25}	1X001	\checkmark			1XX01
m_{26}	11010	✓	m_{18} - m_{26}	1X010				1X1X1
m_{28}	11100	✓	m_{20} - m_{28}	1X100	\checkmark			XX111
m_7	00111	✓	m_{14} - m_{15}	0111X				
m_{29}	11101	\checkmark	m_{11} - m_{15}	01X11				
m_{15}	01111	✓	m_7 - m_{15}	0X111	\checkmark			
m_{23}	10111	✓	m_{22} - m_{23}	1011X	\checkmark			
m_{31}	11111	$\overline{}$	m_{21} - m_{23}	101X1	\checkmark			
			m_{19} - m_{23}	10X11	\checkmark			
			m_{28} - m_{29}	1110X	✓			
			m_{25} - m_{29}	11X01	✓			
			m_{21} - m_{29}	1X101	✓			
			m_7 - m_{23}	X0111	✓			
			m_{29} - m_{31}	111X1	√			
			m_{23} - m_{31}	1X111	\checkmark			
			m_{15} - m_{31}	X1111	✓			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы												
		0	0	1	1	1	1	1	1	1	1	1	1	1
	Простые импликанты		1	0	0	0	0	0	0	1	1	1	1	1
Пр			1	0	0	0	1	1	1	0	0	0	1	1
		1	1	0	1	1	0	0	1	0	0	1	0	0
			0	1	0	1	0	1	0	0	1	0	0	1
			14	17	18	19	20	21	22	24	25	26	28	29
A	110X0									X		X		
В	1X010				X							X		
	0111X		X											
	01X11	X												
С	101XX						X	X	X					
D	10X1X				X	X			X					
Е	10XX1			X		X		X						
F	11X0X									X	X		X	X
G	1X10X						X	X					X	X
Н	1XX01			X				X			X			X
I	1X1X1							X						X
	XX111													

Ядро покрытия:

$$T = \begin{cases} 01X11\\ 0111X \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

			0-кубы											
		1	1	1	1	1	1	1	1	1	1	1		
	Простые импликанты		0	0	0	0	0	1	1	1	1	1		
Пр			0	0	1	1	1	0	0	0	1	1		
			1	1	0	0	1	0	0	1	0	0		
			0	1	0	1	0	0	1	0	0	1		
			18	19	20	21	22	24	25	26	28	29		
A	110X0							X		X				
В	1X010		X							X				
С	101XX				X	X	X							
D	10X1X		X	X			X							
E	10XX1	X		X		X								
F	11X0X							X	X		X	X		
G	1X10X				X	X					X	X		
Н	1XX01	X				X			X			X		
I	1X1X1					X						X		

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (E \lor H) \ (B \lor D) \ (D \lor E) \ (C \lor G) \ (C \lor E \lor G \lor H \lor I) \ (C \lor D) \ (A \lor F) \ (F \lor H)$$
$$(A \lor B) \ (F \lor G) \ (F \lor G \lor H \lor I)$$

Приведем выражение в ДНФ:

 $Y = ADGH \lor BCEF \lor ACDEF \lor ACDFH \lor ADEFG \lor BCDFH \lor BDEFG \lor BDFGH \lor ABCEGH$

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ A \\ D \\ G \\ H \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 110X0 \\ 10X1X \\ 1X10X \\ 1XX01 \end{cases} \qquad C_{2} = \begin{cases} T \\ B \\ C \\ E \\ F \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 1X010 \\ 101XX \\ 10XX1 \\ 11X0X \end{cases} \qquad C_{3} = \begin{cases} T \\ A \\ C \\ D \\ E \\ F \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 110X0 \\ 101XX \\ 10X1X \\ 10XX1 \\ 11X0X \end{cases}$$

$$S_{1}^{a} = 21 \\ S_{1}^{b} = 27 \qquad S_{2}^{a} = 21 \\ S_{2}^{b} = 27 \qquad S_{3}^{a} = 24 \\ S_{3}^{b} = 31 \end{cases}$$

$$C_{4} = \begin{cases} T \\ A \\ C \\ D \\ E \\ F \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 10X0X \\ 1011X \\ 10X0X \\ 10X1X \\ 11X0X \\ 11X0X$$

$$C_{7} = \begin{cases} T \\ B \\ D \\ E \\ F \\ G \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 1X010 \\ 10X1X \\ 10XX1 \\ 11X0X \\ 1X10X \end{cases} \qquad C_{8} = \begin{cases} T \\ B \\ D \\ F \\ G \\ H \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 1X010 \\ 10X1X \\ 11X0X \\ 1X10X \\ 1XX01 \end{cases} \qquad C_{9} = \begin{cases} T \\ A \\ B \\ C \\ E \\ G \\ H \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 100X0 \\ 1X010 \\ 101XX \\ 1X10X \\ 1XX01 \end{cases}$$

$$C_{9} = \begin{cases} T \\ A \\ B \\ C \\ E \\ G \\ H \end{cases} = \begin{cases} 01X11 \\ 0111X \\ 100X0 \\ 1X010 \\ 101XX \\ 101XX \\ 101XX \\ 1X10X \\ 1XX01 \end{cases}$$

$$S_{7}^{a} = 24$$

$$S_{7}^{a} = 24$$

$$S_{8}^{a} = 24$$

$$S_{8}^{b} = 31$$

$$S_{9}^{a} = 28$$

$$S_{9}^{a} = 36$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 01X11\\0111X\\110X0\\10X1X\\1X10X\\1XX01 \end{cases}$$
$$S^{a} = 21$$
$$S^{b} = 27$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, x_2 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_4 \vee x_1 \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_4} \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, x_2 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_4 \vee x_1 \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_4} \, x_5$$

Определение МКНФ

$$f = (x_1 \lor x_2) \ (x_1 \lor x_4) \ (x_1 \lor x_3 \lor x_5) \ (x_2 \lor x_3 \lor x_4 \lor x_5) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$\begin{split} f &= \overline{x_1} \, x_2 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, x_4 \vee x_1 \, x_3 \, \overline{x_4} \vee x_1 \, \overline{x_4} \, x_5 & S_Q = 27 \quad \tau = 2 \\ f &= x_1 \, \overline{x_4} \, \left(x_3 \vee x_5 \right) \vee x_1 \, \overline{x_2} \, x_4 \vee \overline{x_1} \, x_2 \, x_4 \, \left(x_3 \vee x_5 \right) \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_5} & S_Q = 22 \quad \tau = 3 \\ \varphi &= \overline{x_3} \, \overline{x_5} & \overline{\varphi} &= x_3 \vee x_5 \\ \overline{\varphi} &= x_3 \vee x_5 & S_Q &= 20 \quad \tau = 4 \end{split}$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \lor x_2) \ (x_1 \lor x_4) \ (x_1 \lor x_3 \lor x_5) \ (x_2 \lor x_3 \lor x_4 \lor x_5) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4}) \quad S_Q = 25 \quad \tau = 2$$

$$f = (x_1 \lor x_2 \ x_4 \ (x_3 \lor x_5)) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{x_3} \overline{x_5}) \ (x_2 \lor x_3 \lor x_4 \lor x_5) \qquad S_Q = 20 \quad \tau = 4$$

$$\varphi = x_3 \lor x_5$$

$$\overline{\varphi} = \overline{x_3} \overline{x_5}$$

$$f = (x_1 \lor x_2 \ x_4 \ \varphi) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{\varphi}) \ (\varphi \lor x_2 \lor x_4)$$

$$S_Q = 18 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \,\overline{x_4} \,\overline{\varphi} \vee x_1 \,\overline{x_2} \,x_4 \vee \overline{x_1} \,x_2 \,x_4 \,\overline{\varphi} \vee \varphi \,x_1 \,x_2 \quad (S_Q = 20, \tau = 4)$$
$$\varphi = \overline{x_3} \,\overline{x_5}$$

Схема по упрощенной МКНФ:

$$f = (x_1 \lor x_2 x_4 \varphi) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4} \lor \overline{\varphi}) \ (\varphi \lor x_2 \lor x_4) \quad (S_Q = 18, \tau = 4)$$
$$\varphi = x_3 \lor x_5$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1 \, \overline{x_4} \, \overline{\varphi}} \, \overline{x_1 \, \overline{x_2} \, x_4} \, \overline{\overline{x_1}} \, \overline{x_2 \, x_4} \, \overline{\overline{\varphi}} \, \overline{\varphi} \, \overline{x_1 \, x_2}} \quad (S_Q = 25, \tau = 6)$$
$$\varphi = \overline{x_3} \, \overline{x_5}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1}} \, \overline{x_2} \, \overline{x_4} \, \overline{\varphi} \, \overline{x_1} \, x_2 \, x_4 \, \overline{\varphi} \, \overline{\varphi} \, \overline{x_2} \, \overline{x_4} \quad (S_Q = 22, \tau = 7)$$
$$\varphi = \overline{x_3} \, \overline{x_5}$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_1 \, \overline{\overline{x_2} \, x_4} \, \overline{x_2} \, \overline{\overline{x_3} \, \overline{x_5}}} \, \overline{\overline{x_3} \, \overline{x_5}} \, \overline{\overline{x_1} \, \overline{x_4}} \, \overline{\overline{\overline{x_1}} \, \overline{\overline{x_2} \, \overline{x_4}}} \qquad (S_Q = 28, \tau = 6)$$

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_1}} \overline{x_2} \overline{x_4}} \overline{\overline{\overline{x_3}} \overline{\overline{\overline{x_5}}} \overline{\overline{x_1}} \overline{\overline{\overline{x_2}}} \overline{\overline{x_4}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{\overline{x_3}} \overline{x_5}}} \quad (S_Q = 34, \tau = 9)$$

