形状记忆聚氨酯的合成及其在织物中的应用

**** 年 * 月

形状记忆聚氨酯的合成及其在织物中的应用

作	者	姓	名	***		
学	院	名	称	** 学院		
指	导	教	师	** 教授		
答新	译委员	员会 🗄	上席	** 教授		
申	请	学	位	工学硕士(博士)		
学	科	专	业	****		
学位授予单位		单位	北京理工大学			
论:	文 答	· 辩 F	日期	**** 年 * 月		

Synthesis and Application on textile of the Shape **Memory Polyurethane**

Candidate Name:	***
School or Department:	****
Faculty Mentor:	Prof. **
Chair, Thesis Committee:	Prof. **
Degree Applied:	****
Major:	****
Degree by:	Beijing Institute of Technology
The Data of Defence:	*, ****

形状记忆聚氨酯的合成及其在织物中的应用

北京理工大学

研究成果声明

本	人郑重声明:	所提交的等	学位论文是	我本人在	E指导教师	的指导	下进
行的研	究工作获得的	研究成果。	尽我所知,	文中除物	寺别标注和	致谢的:	地方
外,学	位论文中不包	含其他人已	经发表或拨	撰写过的4	研究成果,	也不包	含为
获得北	公京理工大学 或	达 其它教育标	几构的学位	或证书所	f使用过的	材料。	与我
一同工	作的合作者对	计此研究工作	乍所做的任	何贡献均	可已在学位	论文中	作了
明确的	说明并表示了	谢意。					

特此申明。

作者签名:	签字日期:	

关于学位论文使用权的说明

本人完全了解北京理工大学有关保管、使用学位论文的规定,其中包括:①学校有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印或其它复制手段复制并保存学位论文;③学校可允许学位论文被查阅或借阅;④学校可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或部分内容(保密学位论文在解密后遵守此规定)。

作者签名:	 导师签名:	
签字日期:	 签字日期:	

摘要

本文······。(摘要是一篇具有独立性和完整性的短文,应概括而扼要地反映出本论文的主要内容。包括研究目的、研究方法、研究结果和结论等,特别要突出研究结果和结论。中文摘要力求语言精炼准确,硕士学位论文摘要建议 500~800 字,博士学位论文建议 1000~1200 字。摘要中不可出现参考文献、图、表、化学结构式、非公知公用的符号和术语。英文摘要与中文摘要的内容应一致。)

关键词: 形状记忆; 聚氨酯; 织物; 合成; 应用(一般选3~8个单词或专业术语, 且中英文关键词必须对应。)

Abstract

In order to exploit ·····.

Key Words: shape memory properties; polyurethane; textile; synthesis; application

目录

摘要	I
Abstract	II
第1章 绪论	1
1.1 本论文研究的目的和意义	1
1.2 国内外研究现状及发展趋势	1
1.2.1 形状记忆聚氨酯的形状记忆机理	1
1.2.2 形状记忆聚氨酯的研究进展	2
1.2.3 水系聚氨酯及聚氨酯整理剂	2
结论	3
参考文献	4
附录 A ***	5
附录 B Maxwell Equations	6
攻读学位期间发表论文与研究成果清单	7
致谢	8
作者简介	Q

第1章 绪论

1.1 本论文研究的目的和意义

近年来,随着人们生活水平的不断提高,人们越来越注重周围环境对身体健康的 影响。作为服装是人们时时刻刻最贴近的环境,尤其是内衣,对人体健康有很大的影响。由于合时刻刻最贴近的环境,尤其是内衣,对人体健康有很大的影响。由于合成 纤维的衣着舒适性、手感性,天然纤维的发展又成为人们关注的一大热点。

.....[1–5]

1.2 国内外研究现状及发展趋势

1.2.1 形状记忆聚氨酯的形状记忆机理

形状记忆聚合物(SMP)是继形状记忆合金后在 80 年代发展起来的一种新型形状记忆材料^[6]。形状记忆高分子材料在常温范围内具有塑料的性质,即刚性、形状稳定恢复性;同时在一定温度下(所谓记忆温度下)具有橡胶的特性,主要表现为材料的可变形性和形变恢复性。即"记忆初始态一固定变形一恢复起始态"的循环。

固定相只有物理交联结构的聚氨酯称为热塑性 SMPU, 而有化学交联结构称为热固性 SMPU。热塑性和热固性形状记忆聚氨酯的形状记忆原理示意图如图1.1所示

图 1.1 热塑性形状记忆聚氨酯的形状记忆机理示意图

表 1.1 水系聚氨酯分类

类别	水溶型	胶体分散型	乳液型
状态	溶解 ~ 胶束	分散	白浊
外观	水溶型	胶体分散型	乳液型
粒径 /μm	< 0.001	0.001 − 0.1	> 0.1
重均分子量	1000 ~ 10000	数千 ~ 20□	> 5000

1.2.2 形状记忆聚氨酯的研究进展

首例 SMPU 是日本 Mitsubishi 公司开发成功的 ······。

1.2.3 水系聚氨酯及聚氨酯整理剂

水系聚氨酯的形态对其流动性,成膜性及加工织物的性能有重要影响,一般分为 三种类型^[6],如表 1.1所示。

由于它们对纤维织物的浸透性和亲和性不同,因此在纺织品染整加工中的用途也有差别,其中以水溶型和乳液型产品较为常用。另外,水系聚氨酯又有反应性和非反应性之分。虽然它们的共同特点是分子结构中不含异氰酸酯基,但前者是用封闭剂将异氰酸酯基暂时封闭,在纺织品整理时复出。相互交联反应形成三维网状结构而固着在织物表面。······

结论

本文采用……。(结论作为学位论文正文的最后部分单独排写,但不加章号。结论是对整个论文主要结果的总结。在结论中应明确指出本研究的创新点,对其应用前景和社会、经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想。结论部分的撰写应简明扼要,突出创新性。)

参考文献

- [1] Takahashi T, Hayashi N, Hayashi S. Structure and properties of shape-memory polyurethane block copolymers [J]. Journal of Applied Polymer Science, 1996, 60 (7): 1061–1069.
- [2] Xia M, Chen B, Gang Z, et al. Analysis of Affective Characteristics and Evaluation of Harmonious Feeling of Image Based on 1/f Fluctuation Theory [C]. In Developments in Applied Artificial Intelligence, International Conference on Industrial and Engineering, Applications of Artificial Intelligence and Expert Systems, Iea/aie 2002, Cairns, Australia, June 17-20, 2002, Proceedings, 2002: 780–789.
- [3] 姜锡洲. 一种温热外敷药的制备方法. 1989.
- [4] 毛峡. 情感工学破解"舒服"之谜 [J]. 科技文萃, 2000 (7): 157-158.
- [5] 冯西桥, 何树延. 核反应堆管道和压力容器的 LBB 分析 [J]. 力学进展, 1998, 28 (2): 198-217.
- [6] 姜敏, 彭少贤, 郦华兴. 形状记忆聚合物研究现状与发展 [J]. 现代塑料加工应用, 2005, 17 (2): 53-56.

附录 A ***

附录相关内容…

附录 B Maxwell Equations

因为在柱坐标系下, $\overline{\mu}$ 是对角的,所以 Maxwell 方程组中电场 \mathbf{E} 的旋度 所以 \mathbf{H} 的各个分量可以写为:

$$H_r = \frac{1}{\mathbf{i}\omega\mu_r} \frac{1}{r} \frac{\partial E_z}{\partial \theta}$$
 (B-1a)

$$H_{\theta} = -\frac{1}{\mathbf{i}\omega\mu_{\theta}} \frac{\partial E_z}{\partial r} \tag{B-1b}$$

同样地,在柱坐标系下, $\bar{\epsilon}$ 是对角的,所以 Maxwell 方程组中磁场 **H** 的旋度

$$\nabla \times \mathbf{H} = -\mathbf{i}\omega \mathbf{D} \tag{B-2a}$$

$$\left[\frac{1}{r}\frac{\partial}{\partial r}(rH_{\theta}) - \frac{1}{r}\frac{\partial H_r}{\partial \theta}\right]\hat{\mathbf{z}} = -\mathbf{i}\omega\bar{\epsilon}\mathbf{E} = -\mathbf{i}\omega\epsilon_z E_z\hat{\mathbf{z}}$$
(B-2b)

$$\frac{1}{r}\frac{\partial}{\partial r}(rH_{\theta}) - \frac{1}{r}\frac{\partial H_r}{\partial \theta} = -\mathbf{i}\omega\epsilon_z E_z \tag{B-2c}$$

由此我们可以得到关于 E_z 的波函数方程:

$$\frac{1}{\mu_{\theta}\epsilon_{z}} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial E_{z}}{\partial r} \right) + \frac{1}{\mu_{r}\epsilon_{z}} \frac{1}{r^{2}} \frac{\partial^{2} E_{z}}{\partial \theta^{2}} + \omega^{2} E_{z} = 0$$
 (B-3)

攻读学位期间发表论文与研究成果清单

[1] 高凌. 交联型与线形水性聚氨酯的形状记忆性能比较 [J]. 化工进展, 2006, 532 — 535. (核心期刊)

致谢

本论文的工作是在导师 ……。

作者简介

本人…。