代数学方法(第一卷)勘误表 跨度: 2019—2022

李文威

2022-04-22

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误已在修订版改正 (2022 年 4 月网络发布, 纸本待出).

- ◇ 第 12 页, 倒数第 8 行 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- **◇ 第 16 页, 倒数第 5 行 原文** 于是有 $\gamma \in \gamma$, 这同偏序的反称性矛盾. **更正** 于是 有 $\gamma \in \gamma$, 亦即在偏序集 (α, \leq) 中 $\gamma < \gamma$, 这同 < 的涵义 (≤ 但 \neq) 矛盾. 感谢王东 瀚指正.
- **◇ 第 18 页, 倒数第 10 行 原文** 而性质... 是容易的. **更正** 而且使性质... 成立, 这是容易的.
- \diamond 第 19 页, 倒数第 5 行
 原文
 $a_{\alpha} \notin C_{\alpha}$ 更正
 $a_{\alpha} \notin \{a_{\beta}\}_{\beta < \alpha}$ 感谢胡旻杰指正
- \diamond **第 26 页, 第一章习题 5** 将题目中的三个 $\mathbb{Z}_{\geq 1}$ 全改成 $\mathbb{Z}_{\geq 0}$.
- \diamond 第 35 页, 倒数第 4 行原文 $X \in Ob(\mathscr{C})$ 更正 $X \in Ob(\mathscr{C}')$ 感谢尹梓僮指正.
- **◇ 第 38 页, 第 12 行 (命题 2.2.10 证明)** 将两个箭头的方向调换. 感谢尹梓僮指正.

- ◆ 第 42 页, 倒数第 2 行 原文 … 同构. Z(…) ≃… 更正 … 同构 Z(…) ≃… 感谢
 王东瀚指正.

- ◆ 第 50 页, 第 3 行
 原文
 η_X
 更正
 η

感谢蒋之骏指正

◇第54页最后 更正 图表微调成

兴许更易懂.

感谢熊锐提供意见.

- ◇ 第 56 页, 倒数第 13 行原文 $\epsilon'(FG\epsilon')(F\eta G)$ 更正 $\epsilon'(FG\epsilon'')(F\eta G)$ 更正 $\epsilon'(FG\epsilon'')(F\eta G)$ (严格来说, 这行里的所有 ϵ 都应该改作 ϵ .)感谢张好风指正
- ◇ 第 61 页, 第 2–3 行
 原文
 $\lim_{K \to \infty} (\alpha(S)), \lim_{K \to \infty} (\beta(S))$ 更正
 $\lim_{K \to \infty} (\alpha(S)), \lim_{K \to \infty} (\beta(S))$ 感
- ◇第66页,第1行 余完备当且仅当它有所有"余"等化子和小余积. 感谢巩峻成指正
- \diamond 第 67 页, 第 7 行原文f(x)h(y)更正f(x)g(y)感谢巩峻成指正
- \diamond **第 77 页**, (3.8) 和 (3.9) 将交换图表中的 λ_2^{-1} 和 ρ_2^{-1} 分别改成 λ_2 和 ρ_2 , 相应地将箭头反转.
- \diamond 第 77 页, 倒数第 8 和倒数第 6 行 将 $\xi_F: F(\cdot) \times F(\cdot)$ 改成 $\xi_F: F(\cdot) \otimes F(\cdot)$. 将 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 改成 $\eta_F: F(\cdot \otimes \cdot) \to F(\cdot)$ 感谢巩峻成指正
- **第78页,第1行** 原文
 使得下图...
 更正
 使得 θ_{1_1} 为同构,而且使下图...

 图表之后接一句 "作为练习,可以证明对标准的 φ_F 和 φ_G 必然有 $\varphi_G = \theta_{1_1}\varphi_F$."

 后续另起一段.
- ◇ 第84页, 第2行 原文 定义结合约束 更正 定义交换约束 感谢王东瀚指正
- **⋄第91页,倒数第6行** "对于2-范畴"后加上逗号. 感谢巩峻成指正

◇第102页,第6行 原文 它们仅与... 更正 前者仅与... 感谢巩峻成指正 **◇ 第 113 页倒数第 3 行, 第 115 页引理 4.4.12 原文** 这相当于要求对所有... 更正 这相当于要求 X 非空, 并且对所有... 原文 $\partial X \to G$ -集 更正 $\partial X \to A$ 感谢郑维喆指正 原文 $\operatorname{Aut}(G_1) \times \operatorname{Aut}(G_2)^{\operatorname{op}}$ 更正 $\operatorname{Aut}(G_1)^{\operatorname{op}} \times \operatorname{Aut}(G_2)$ ◇ 第 114 页, 倒数第 1 行 感谢巩峻成指正 原文 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$ 更正 $\bar{H} \subsetneq N_{\bar{G}}(\bar{H})$ ⋄第116页,第5行 原文 $(\cdots)_{i=0}^n$ 更正 $(\cdots)_{i=0}^{n-1}$ ◇ 第 126 页, 第 6 行 原文 H_{i} 更正 H_{i} ◇ 第 131 页, 倒数第 1 行 感谢巩峻成指正 原文 $\operatorname{sgn}(\sigma) = \pm 1$ 更正 $\operatorname{sgn}(\sigma) \in \{\pm 1\}$ 感谢巩峻成指 ◇ 第 137 页, 倒数第 12 行 正 感谢巩峻成指正 **原文** 另外约定 $\mathfrak{S}'_n = \{1\}$ 更正 另外约定 $\mathfrak{S}'_1 = \{1\}$ ◇第 141 页,第 11 行 **◇ 第 149 页, 第 3 行** CRing 表交换环范畴. 另外此行应缩进. 感谢阳恩林指正 原文 Ir = rI = I 更正 IR = I = RI◇第156页,第4行 感谢巩峻成指正 原文 $\forall s \in S$ 更正 $\forall s \in R$ ◇ 第 158 页, 最后一行 感谢雷嘉乐指正 原文 赋予每个 R/a_i … 更正 赋予每个 $R_i := R/a_i$ … ⋄第174页,第15行 巩峻成指正 原文 $\in R[X]$ 更正 $\in K[X]$ ⋄ 第 188 页, 倒数第 5 行 感谢巩峻成指正 原文 $g \in R \cap K[X]^{\times}$ 更正 $g \in R[X] \cap K[X]^{\times}$ 感谢巩峻成指 ◇ 第 189 页, 第 17 行 正

感谢巩峻成指正

⋄ 第 190 页, 倒数第 2 行的公式 改成:

$$\bar{b}_k X^k +$$
 高次项, $\bar{b}_k \neq 0$,

感谢巩峻成指正

- **今第191页,第12**行将 (b_1,\ldots,b_m) 改成 (b_1,\ldots,b_n) ,并且将之后的"留意到…"一句删除.除.感谢巩峻成指正
- **第 191 页, 第 15 和 16** 行
 原文
 $m_{\lambda_1,...,\lambda_n}$ 更正
 $m_{\lambda_1,...,\lambda_r}$

 原文
 $(\lambda_1,...,\lambda_r)$ 的所有不同排列.
 更正
 $(\lambda_1,...,\lambda_r,0,...,0)$ 的所有不同排列.

 排列 (n 个分量).
 感谢巩峻成指正
- 。第 192 页, 第 1 段最后 1 行 原文 使 m_{λ} 落在 Λ_n 中的充要条件是 λ_1 (即 Young 图的宽度) 不超过 n. 更正 如果分拆的长度 r (即 Young 图的高度) 超过给定的 n,相应的 $m_{\lambda} \in \Lambda_n$ 规定为 0. 感谢巩峻成指正
- \diamond 第 192 页, 定义 5.8.1 第二项
 原文
 $\mu_i = \mu_k$ 更正
 $\mu_i = \lambda_i$ 感谢巩峻成指正
- \diamond 第 193 页, 第 2 行和第 5 行
 原文
 $X_{i_1} \cdots X_{i_n}$.
 更正
 $X_{i_1} \cdots X_{i_k}$.

 原文
 $\prod_{i=1}^{n} (Y X_i)$,
 更正
 $\prod_{i=1}^{n} (Y + X_i)$ 感谢巩峻成指正
- \diamond 第 194 页, 例 5.8.6 的第 3 行
 原文
 $\sum_{i=0}^{n} c_i Y^{n-i}$ 更正
 $\sum_{i=0}^{n} (-1)^i c_i Y^{n-i}$ 感谢环 峻成指正
- ◇ **第 203 页**, **第 17** 行 **原文** ker(φ) **更正** ker(φ) 感

感谢胡龙龙指正

- **第 205 页,第 7 行** 原文
 M 作为 R/ann(M)-模自动是无挠的.
 更正
 M 作为

 R/ann(M)-模的零化子自动是 $\{0\}$.
 感谢戴懿韡指正.
- **◇第220页** 本页出现的 Bil(•ו;•) 都应该改成 Bil(•,•;•), 以和 216 页的符号保持一致.
- \diamond 第 220 页, 第 10 行原文 $B(\cdot,z): M \otimes M'$ 更正 $B(\cdot,z): M \otimes M'$ 感谢巩峻成指正

- **◇ 第 230 页, 第 13 行 原文** 萃取处 **更正** 萃取
- ◇ 第 230 页, 第 6 行; 第 231 页, 第 9—10 行 原文 0; 更正 0; 感谢郑维喆指正
- **⋄ 第 235 页底部** 图表中的垂直箭头 f_i, f_{i-1} 应改为 ϕ_i, ϕ_{i-1} .
- ◇ **第 236 页**, **第 6** 行 **原文** 直和 □, 更正 直和 ⊕, 感谢巩峻成指正
- ◇ 第 237 页, 第 2 行原文存在 $r: M' \to M$ 更正存在 $r: M \to M'$ 感谢雷嘉乐指正
- ◆ 第 237 页, 命题 6.8.5 证明第二行 原文 由于 f 满 更正 由于 f 单 感谢巩峻成指正
- ◇第 237 页, 命题 6.8.5 证明最后两行 原文 故 $(v) \Rightarrow (i);$ 更正 故 $(iv) \Rightarrow (i);$
- ◆第 240 页, 定义 6.9.3 第二条 原文 … 正合, 则称 I 是内射模. 更正 … 正合, 亦即它保持短正合列, 则称 I 是内射模.
 感谢张好风指正
- ◆ **第 244 页, 倒数第 10 行 原文** 下面的引理 6.10.4 **更正** 引理 5.7.4 感谢郑维喆 指正
- **◇ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7** "交换 Noether 模"应改为"交换 Noether 环". 两个定理的陈述中应该要求 *R* 是交换 Noether 环. 感谢郑维喆指正

- **◇第247頁,第6—7行 原文** 其长度记为 n + 1. **更正** 其长度定为 n.
- ◇ 第 251 页, 第 6 行原文 $\operatorname{im}(u^{\infty}) = \ker(u^n)$ 更正 $\operatorname{im}(u^{\infty}) = \operatorname{im}(u^n)$ 感谢巩峻成指正
- ◇ **第 251 页起**, **第 6.12 节** 术语 "不可分模"似作 "不可分解模"更佳,以免歧义. (第 4 页倒数第 3 行和索引里的条目也应当同步修改) 感谢郑维喆指正
- ◆ 第 252 頁, 第 2 行
 原文
 1 ≤ 1 ≤ n.
 感谢傅煌指正.
- **◇第255页,推论6.12.9的证明** 在证明最后补上一句"以上的ℓ表示模的长度." 感 谢苑之宇指正.

⋄ 第 255 页, 第 1 题 原文

$$N = \left\langle \alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j \right\rangle$$

更正

$$N = \left(\alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right)$$

感谢郑维喆指正

- **◇ 第 270 页, 注记 7.3.6 原文** 秩为 *A, B* 的秩之和 更正 秩为 *A, B* 的秩之积 感 谢汤─鸣指正
- \diamond 第 270 页, (7.6) 式 前两项改为 $M_n(A)\otimes M_m(B)\simeq A\otimes M_n(R)\otimes M_m(R)\otimes B$, 后续不变. 感谢巩峻成指正
- **◇ 第 274 页, 倒数第 2 行** 将两处 $A^k(M)$ 改成 $A^k(X)$.

感谢巩峻成指正

- ◇ 第 279 页, 定理 7.5.2 陈述 原文 唯一的 R-模同态... 更正 唯一的 R-代数同态...
 态...
 感谢巩峻成指正
- **◇ 第 284 頁, 定理 7.6.6** 将定理陈述中的 U 由 "忘却函子" 改成 "映 A 为 A_1 的函子", 其余不变. 相应地, 证明第二行的 $\varphi: M \to A$ 应改成 $\varphi: M \to A_1$. 感谢郑维喆指正
- \diamond 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- **\$\sigma\$ 286 頁**, **定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的 $e_1:$ 和 $e_{\rm sgn}:$ 皆删去. 感谢郑维喆指正
- ◇第 289 页最后一行 原文 u₁ ∧ ··· 更正 u_{i1} ∧ ···
- **⋄ 第 293 页第 8, 10, 13 行** 将 *M* 都改成 *E*, 共三处.

感谢巩峻成指正

感谢巩峻成指正

- **◇第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和 F'|E'.
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 / 非空".感谢郑维喆指正
- \diamond 第 315 頁, 定理 8.4.3 (iv)
 原文
 更正
 $\sum_{k=0}^{n}$ 感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- ◇ 第 317 页, 倒数第 13 行 (出现两次) $\boxed{\text{原文}}$ $\prod_{i=1}^{n}$ … $\boxed{\text{更正}}$ $\prod_{m=1}^{n}$ …
- ◇ 第 326 页第 4 行 原文 既然纯不可分扩张是特出的 更正 既然纯不可分扩张 对复合封闭 感谢巩峻成指正
- ◆ 第 340 页最后一行
 原文
 于是 Gal(E|K) 确实是拓扑群
 更正
 于是 Gal(E|F) 确 感谢巩峻成指正
- **◇ 第 343 页, 倒数第 6,7 行** 倒数第 6 行的 $Gal(K|L \cap M) \subset \cdots$ 改成 $Gal(L|K) \subset \cdots$, 另外 倒数第 7 行最后的 "故"字删去. 感谢张好风指正
- \diamond 第 348 页, 命题 9.3.6 陈述和证明原文 $\lim_{m} \mathbb{Z}/n\mathbb{Z}$ 更正 $\lim_{m} \mathbb{Z}/m\mathbb{Z}$ 原文 $\lim_{m \to n>1} \mathbb{Z}/n!\mathbb{Z}$ 更正 $\lim_{m \to n>1} \mathbb{Z}/n!\mathbb{Z}$ 感谢郑维喆和巩峻成指正
- ◇第350页,第8行
 原文
 ⇔ d | n 更正
 ⇒ n | d
 感谢巩峻成指正
- ◆ 第 352 页, 第 7 行
 原文
 p | n
 更正
 p ∤ n
 感谢郑维喆指正
- ◇ **第 355 页**, **第 6 行 原文** 设 *T* 不可逆 更正 设 *S* 不可逆 感谢雷嘉乐指正
- **◇ 第 357 页, 第 4 行** 删除 "= Gal(E|F)".

感谢巩峻成指正

- \diamond 第 359 页, 第 5 行 原文 透过 Γ_E 分解 更正 透过 $\mathrm{Gal}(E|F)$ 分解 感谢巩峻成指 正
- ◇ 第 360 页, 定理 9.6.8 陈述 在 (9.10) 之后补上一句 (不缩进): "证明部分将解释如何定义 Hom 的拓扑."
 感谢张好风指正
- \diamond 第 360 页, 定理 9.6.8 证明将证明第三行等号下方的 $\bar{\Gamma} = \Gamma_F/\Gamma$ 和上方的文字删除,等号改成 $\stackrel{\text{(1)}}{\longleftrightarrow}$.感谢杨历和巩峻成指正

感谢郑维喆指正

◇第366页,第8行

原文 014 更正 015

感谢柴昊指正

◇ 第 366 页, 倒数第 4 行

原文 $x \in S$ 更正 $x \in \mathcal{S}$

感谢郑维喆指正

- 。第 368 页, 定理 9.8.2 的表述第一句 原文 给定子集 $\{0,1\} \subset \mathcal{S} \subset \mathbb{C}$, 生成的… 更正 给定子集 $\{0,1\} \subset \mathcal{S} \subset \mathbb{C}$, 基于上述讨论不妨假定 \mathcal{S} 对复共轭封闭, 它生成的… 感谢郑维喆指正
- **\$\sigma\$ 370 页, 习题 2** 将本题的所有 q 代换成 p, 将 "仿照…" 改为 "参照", 开头加上 "设 p 是素数, …" 感谢郑维喆指正
- **⋄ 第 372 页, 第 20 题** 条件 (b) 部分的 $P \in F[X]$ 改成 $Q \in F[X]$, 以免符号冲突. 相应地, 提示第一段的 P 都改成 Q. 感谢郑维喆指正
- **⋄第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h\geq 0} c_{k,h} t^h$. 注意到 $\lim_{k\to\infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k\geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h\geq 0} c_h t^h \in K \langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_{k,h}| < \epsilon$. 于是

$$h \geq N \implies \left(\forall k \geq 0, \; |c_{k,h}| \leq \epsilon \right) \implies |c_h| \leq \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K\langle t \rangle$. 其次, 在 $K\langle t \rangle$ 中有等式

$$f - \sum_{k=0}^{M} f_k = \sum_{h \geq 0} \left(c_h - \sum_{k=0}^{M} c_{k,h} \right) t^h = \sum_{h \geq 0} \underbrace{\left(\sum_{k > M} c_{k,h} \right)}_{\mid \cdot \mid < \epsilon} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$.

感谢高煦指正.

- ◇第397页,条目 V 下第6行
 原文
 W_{x,-}
 更正
 W_{x,-}
- **◇ 第 400 页, 倒数第 5–6 行** 改为: $e(w \mid u) = e(w \mid v)e(v \mid u), f(w \mid u) = f(w \mid v)f(v \mid u).$ 感谢巩峻成指正

- \diamond **第 416 页, 定理 10.9.7** 将陈述的第一段修改为: "在所有 W(*R*) 上存在唯一的一族交换环结构, 使得 $w:W(R)\to\prod_{n\geq 0}R$ 为环同态, (0,0,...) 为零元, (1,0,...) 为幺元, 而且: "(换行, 开始表列)

对于表列第二项 ("存在唯一确定的多项式族... 所确定"), 最后补上 "... 所确定, 这些多项式与 *R* 无关."

证明第一段的"群运算"改为"环运算".

⋄第417页,最后一行 它被刻画为对...