TD: Transport et affectation

Exercice 1 : Une entreprise dispose de trois usines et trois points 1, 2, 3 et trois point de ventes A, B,C. Le directeur de l'entreprise veut minimiser le coût de transport des produits acheminés des usines aux points de vente. Les données relatives à ce problème sont comme suit :

Offre des usines	Capacité en quantités	Demande des points de vente	Capacité en quantités
I	200	A	200
	250	В	200
	100	С	200

Les coûts de transport par unité sont :

		В	C
	A	7	8
1	10		9
2	15	12	12
	7	. 8	12

- 1- Formuler ce problème comme un programme linéaire.
- 2- Etablir la matrice d'incidence nœuds-arcs.
- Tracer le graphe correspondant.
- 4- Si l'offre de l'usine 3 devient 200, quel sera l'impact sur le programme linéaire.
- 5- Si la demande du point de vente B devient 400, quel sera l'impact sur le programme linéaire.
- 6- Déterminer les quantités à transporter sachant que l'entreprise cherche à minimiser les coûts de transport.

Exercice 2 : Le service de production d'une entreprise industrielle doit entreprendre quatre tâches, chacune de ces tâches peut être affecté à une des quatre machines disponibles, les temps d'exécution de chaque tâche sur chaque machine sont indiqués dans la tableau qui suit :

•	chaque tache sur si		Tâche 3	Tâche 4
	Tâche 1	Tâche 2	0	7
Machine 1	14	5	0	5
		12	6	
Machine 2	2	0	3	9
Machine 3	7	8	6	10
Machine 4	2	4	0	

Ecrire un programme linéaire permettant de minimiser le temps total d'exécution.

Exercice 3 : Un entrepreneur dispose d'un stock de 1.200 moteurs électriques dans son usine 1 et de 1.000 autres son usine 2. Ces stocks doivent être transportés vers trois magasins A, B, C et dont les demandes respectivement sont 1.000 ; 700 ; et 500 unités. Les coûts de transport de la marchandise

ectivement som		
Δ.	В	- 11
A	13	11
14	13	12
 13	ntés dans le tableau suivai	

des usines vers les magasins sont présentés dans le tableau suivant :

L'entrepreneur désire minimiser les coûts de transport tout en satisfaisant les demandes des magasins.

- 1- Formuler ce problème comme un programme linéaire.
- 2- Résoudre ce problème.
- 3- L'entrepreneur a recruté quatre employés qu'il doit affecter aux quatre magasins A, B, C et D. Les salaires journaliers de ces quatre employés diffèrent d'un magasin à un autre et sont résumés dans le tableau suivant :

	Α	D		
•	11	В	C	D
1	11	7	9	16
2	12	8	11	16
3	13	6	10	10
4	10		10	17
		77	8	20

Formuler le problème d'affectation que rencontre l'entrepreneur.