Credit Card Fraud Detection

Detecting fraudulent credit card transactions using Machine Learning.

Dataset

- Source: Kaggle Credit Card Fraud Detection
- Total Transactions: 284,807
- Fraudulent Transactions: 492 (Severely imbalanced)
- Features:
- Time, Amount (scaled)
- V1 to V28: PCA-transformed anonymized features
- Class: Target variable (0 = Legit, 1 = Fraud)

Tools & Libraries Used

- Platform: Python, Jupyter Notebook
- Libraries:
- Data Handling: pandas, numpy
- Visualization: matplotlib, seaborn
- ML Models: scikit-learn, xgboost

Project Workflow

- 1. Data Loading & Exploration
- Checked shape, null values
- Verified severe class imbalance (fraud is ~0.17%)

- Basic visualizations of Amount and Time distributions

Conclusion

2. Preprocessing
- Feature Scaling: Scaled Time and Amount using StandardScaler
- Train-Test Split:
- 80% train, 20% test
- Used StratifiedShuffleSplit to maintain fraud ratio
3. Model Training
Trained the following models:
- Logistic Regression
- Random Forest Classifier
- XGBoost Classifier
4. Model Evaluation
Model Accuracy Precision Recall F1 Score
Logistic Regression ~97.5% Moderate Lower Fair
Random Forest ~99.3% High High Very Good
XGBoost ~99.5% Very High Very High Excellent
- Confusion matrices and classification reports were used to assess performance.
- XGBoost was the best performer, achieving the highest recall with minimal false positives.

- Imbalanced classification handled without SWOTE to avoid oversampling bias.
- XGBoost emerged as the most effective model.
- Focused on Recall to minimize false negatives (i.e., undetected frauds).
Future Enhancements
- Hyperparameter Tuning using GridSearchCV or RandomizedSearchCV
- Model Deployment with Flask or Streamlit
- Build a Dashboard for real-time fraud detection and analytics
- Explore advanced techniques for handling imbalanced datasets like:
- Ensemble with anomaly detection
- Cost-sensitive learning
File Structure
credit-card-fraud-detection/
creditcard.csv
fraud_detection.ipynb
requirements.txt
README.md
models/
logistic_model.pkl
rf_model.pkl
xgb_model.pkl
Key Learnings
- Real-world datasets are often imbalanced metrics like Recall matter more than accuracy.

 Tree-based models like Random Forest and XGBoost handle such data well out-of-
--

- Explainability and false positive control are crucial in fraud detection tasks.