Tutorial 7

Exercise 1: For each of the following languages, give an example of 5 words belonging to the language, and an example of 5 words that do not belong to the language.

a) $L_1 = \{ w \in \{0, 1\}^* \mid \text{the length of word } w \text{ is less than } 5 \}$

Solution: Examples of words that belong to language L_1 : ϵ , 0, 1, 00, 01, ... Examples of words that do not belong to language L_1 : 00000, 00001, 00010, 000000, 1111111, ...

b) $L_2 = \{w \in \{a, b\}^* \mid \text{the number of occurrences of symbol } b \text{ in word } w \text{ is even}\}$

Solution: Examples of words that belong to language L_2 : ε , a, aa, bb, aaa, abb, ... Examples of words that do not belong to language L_2 : b, ab, ba, aab, aba, ...

c) $L_3 = \{ w \in \{0, 1\}^* \mid \text{in } w \text{ is every 0 (directly) followed by 1} \}$

Solution: Examples of words that belong to language L_3 : ϵ , 1, 01, 11, 101101, ... Examples of words that do not belong to language L_3 : 0, 10, 001, 010, 1010, ...

d) $L_4 = \{w \in \{0, 1\}^* \mid w \text{ begins and ends with the same symbol}\}$

Solution: Examples of words that belong to language L_4 : 0, 1, 00, 11, 000, 010, ... Examples of words that do not belong to language L_4 : ϵ , 01, 10, 001, 011, ...

e) $L_5 = \{w \in \{a, b\}^* \mid w \text{ contains as a subword the sequence abb}\}$

Solution: Examples of words that belong to language L_5 : abb, aabb, abba, abbb, babb, ... Examples of words that do not belong to language L_5 : ε , a, b, aa, ab, ba, bb, aaa, ...

Exercise 2: Let us assume $\Sigma = \{a, b\}$ and $n \in \mathbb{N}$.

a) How many words in Σ^* are of length n?

Solution: 2ⁿ

b) How many words in Σ^* are of length at most n?

Solution:

$$2^{0} + 2^{1} + \dots + 2^{n} = \sum_{i=0}^{n} 2^{i} = \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1$$

Exercise 3: Consider the following languages:

$$L_1 = \{ w \in \{0, 1\}^* \mid \text{in } w \text{ is every 0 (directly) followed by 1} \}$$

 $L_2 = \{ w \in \{0, 1\}^* \mid w = w^R \}$

a) Enumerate the first 5 words of each of languages L_1, L_2 (the smallest words with respect to order $<_L$).

Solution:

$$L_1$$
: ε , 1, 01, 11, 011 L_2 : ε , 0, 1, 00, 11

b) Enumerate the first 5 words of each of languages $\overline{L_1}$, $\overline{L_2}$.

Solution:

$$\overline{L_1}$$
: 0, 00, 10, 000, 001
 $\overline{L_2}$: 01, 10, 001, 011, 100

c) Enumerate the first 5 words of language $L_1 \cap L_2$.

Solution:

$$L_1 \cap L_2$$
: ε , 1, 11, 101, 111

d) Enumerate the first 5 words of language $L_1 \cup L_2$.

Solution:

$$L_1 \cup L_2$$
: ϵ , 0, 1, 00, 01

Exercise 4: Consider languages over $\{a, b\}$. Write down all the words in the concatenation of $L_1 = \{\epsilon, abb, bba\}$ and $L_2 = \{a, b, abba\}$.

 $Solution: \ L_1 \cdot L_2 = \{a,b,abba,abbb,abbabba,bbaa,bbab,bbaabba\}$

Exercise 5: Consider languages over the alphabet $\{0,1\}$. Write down all words in the concatenation

$$\{0,001,111\} \cdot \{\varepsilon,01,0101\}$$

Solution: {0,001,00101,0010101,111,11101,1110101}

Exercise 6: Consider languages over the alphabet {0, 1}. Describe the language of all words in the iteration {00, 111}* and write the first 10 words of the language.

Solution: The language contains exactly those words that can be divided into sequences of zeroes of even length and sequences of ones of length divisible by three.

Exercise 7: Consider the following languages:

$$L_1 = \{ w \in \{0, 1\}^* \mid |w|_1 \le 1 \}$$

$$L_2 = \{ w \in \{0, 1\}^* \mid w = w^R \}$$

Describe the words in the language $L_1 \cap L_2$.

Solution: Those words with 0s only, or having just one 1 in the middle, i.e., ε , 0, 00, 000, ..., 1, 010, 00100, ...

Exercise 8: Write regular expressions for the following languages:

- a) The language $\{ab, ba, abb, bab, abbb, babb\}$ Solution: ab + ba + abb + bab + abbb + babb or $(ab + ba)(\varepsilon + b + bb)$
- b) The language over alphabet $\{a, b, c\}$ containing exactly those words that contain subword abb. Solution: $(a + b + c)^*abb(a + b + c)^*$
- c) The language over alphabet $\{a, b, c\}$ containing exactly those words that start with prefix bca or end with suffix ccab.

Solution: $bca(a + b + c)^* + (a + b + c)^*ccab$

- d) The language $\{w \in \{0, 1\}^* \mid |w|_0 \mod 2 = 0\}$. Solution: $1^*(01^*01^*)^*$
- e) The language $\{w \in \{0, 1\}^* \mid |w|_0 \mod 3 = 1\}$. Solution: 1*01*(01*01*01*)*
- f) The language $\{w \in \{0, 1\}^* \mid w \text{ contains subwords 010 and 111}\}$ Solution: (0+1)*010(0+1)*111(0+1)* + (0+1)*111(0+1)*010(0+1)*
- g) The language $\{w \in \{a,b\}^* \mid w \text{ contains subword } bab \text{ or } |w|_b \leq 3\}$ Solution: $(a+b)^*bab(a+b)^* + a^*(ba^* + \varepsilon)(ba^* + \varepsilon)(ba^* + \varepsilon)$
- h) The language $\{w \in \{a,b\}^* \mid w \text{ contains subword bab and } |w|_b \leq 3\}$ $Solution: \text{ } a^*ba^*baba^* + a^*baba^*ba^* + a^*baba^* \text{ or } (\epsilon + a^*b)a^*baba^* + a^*baba^*ba^*$
- i) The language of all words over $\{a,b,c\}$ that contain no two consecutive a's. Solution: $((b+c+a(b+c))^*(\epsilon+a)$

Exercise 9: Let us have two languages K and L described by the regular expressions

$$L_1 = \mathcal{L}(0^*1^*0^*1^*0^*), \qquad L_2 = \mathcal{L}((01+10)^*).$$

- a) What are the shortest and the longest words in the intersection $L_1 \cap L_2$?
 - Solution: The shortest words is ε and the longest 01100110, since the language L_2 does not contain any word where the same symbol would be repeated more than twice.
- b) Why none of the languages L_1 and L_2 is a subset of the other?

Solution: Because $1 \in L_1 - L_2$ and $010101 \in L_2 - L_1$.

c) What is the shortest word that does not belong to the union $L_1 \cup L_2$? Is it unambiguous? Solution: 10101, it is unambiguous.

Exercise 10: Let us say that we would like to devise a syntax for representation of simple arithmetic expressions by words over alphabet

$$\Sigma = \{\mathtt{A},\mathtt{B},\dots,\mathtt{Z},\mathtt{a},\mathtt{b},\dots,\mathtt{z},\mathtt{0},\mathtt{1},\dots,\mathtt{9},.,+,-,*,/,(,)\}.$$

- a) Propose how identifiers will look like, and deribe them using a regular expression.
- b) Propose how number constants will look like, and describe them using a regular expression.

Remark: Allow the number constants that would represent integers, e.g., 129 or 0, and also floating-point number constants, e.g., 3.14, -1e10, or 4.2E-23. Consider also the possibility of representing number constants in other number systems except the decimal number system (e.g., hexadecimal, octal, binary).