前缀和差分简单贪心

I. 前缀和(prefix-sum)

前缀和:可以理解为「数列的前N项和」,是一种重要的预处理方式。

一维前缀和:对于一个长度为n的序列 $\{a_i\}$,如果需要多次查询数组里[l,r]位置中序列数字的和 $\{p\}_{i=l}^r a_i\}$,那么就可以考虑使用前缀和。

我们在高中学习数列的时候,都学过数列的前N项和,即

$$S_k = \sum_{i=1}^k a_i$$

这个时候我们知道:

$$S_0 = 0, S_i = S_{i-1} + a_i$$

于是我们可以得到另一个式子:

$$\sum a_{[l,r]} = S_r - S_{l-1}$$

然后我们来考虑一下时间复杂度,看看前缀和究竟带给我们什么了~ 让我们先来看看下面这个问题:

对于一个长度为N的数列A, 我们有Q次询问对于每一次询问, 我们给出一个区间[L,R], 你需要给出

$$\sum_{i=L}^{R} a_i$$

solution 1: Step1: 读入数列 $A \implies Step2$: Q次循环,每次读入L, $R \implies Step3$: R-L次循环,求和并输出 很显然的是,读入是O(N)的,查询的外层循环Q次,内层循环R-L次,那么最坏情况就是每一次都枚举 $1 \sim N$ 所有的数字,时间复杂度是 O(N+QN)的.

solution 2: Step1: 读入数列 $A \Longrightarrow Step2$: N次循环预处理出 $S_{i\in[1,N]}$ 前缀和 $\Longrightarrow Step3$: Q次循环,每次读入 $L,R \Longrightarrow Step4$: 直接输出 $S_R - S_{L-1}$ 读入是O(N)的,预处理循环Q次,查询的循环Q次,对于每一次查询,直接O(1)输出,所以复杂度是O(N+N+Q)的.

让我们来看看代码吧

```
1 int main() {
                                                                                     int n,q,i; scanf("%d%d",&n,&q);
2
3
    int a[n+1]; for(i=1;i<=n;i++) scanf("%d",a+i);</pre>
    for(;q--;){
      int l,r,ans=0; scanf("%d%d",&l,&r);
5
6
      for(i=l;i<=r;i++) ans+=a[i];</pre>
7
       printf("%d",ans);
8
9 }
   int main() {
                                                                                     ⊗C++
1
2
     int n,q,i; scanf("%d%d",&n,&q);
3
     int a[n+1]; for(i=1;i<=n;i++) scanf("%d",a+i);</pre>
4
     int pre[n+1]; pre[0]=0;
5
     for(i=1;i<=n;i++) pre[i]=pre[i-1]+a[i];</pre>
6
     for(;q--;){
7
       int l,r; scanf("%d%d",&l,&r);
        printf("%d",pre[r]-pre[l-1]);
8
     }
9
10 }
```

二维前缀和: 其实和一维前缀和类似, 但有一定区别, 实际上, 对于一个大小为M*N的二维数组A, 其前缀和的式子应该是

$$S_{i,j} = \sum_{k < i} \sum_{h < j} A_{k,h}$$

那么我们要考虑其递推公式对吧,就应该是这样的:

$$S_{i,j} = A_{i,j} + S(i-1,j) + S(i,j-1) - S(i-1,j-1)$$

就如下图所示,

全部 == 蓝色 + 红绿 + 红黄 - 红

同理可以推导出 $(i,j) \Rightarrow (k,h)$ 的矩阵和为:

$$S_{k,h} - S_{i-1,h} - S_{k,j-1} + S_{i-1,j-1}$$

那么让我们来做一道题吧:

https://www.luogu.com.cn/problem/P1387

洛谷 P1387 最大正方形

solution:最大不包含 0 的正方形,换句话说就是找到最大的正方形区域,使得这个区域内所有数字的和刚好为区域大小,形式化的讲:

$$\sum_{i=x}^{x+l} \sum_{j=y}^{y+l} A_{i,j} = l * l$$

前缀和计算需要O(n*m), 枚举边长l需要 $O(\min(n,m))$, 枚举横纵需要 O(n), O(m),即 $O(n^3)$.

如果不使用前缀和,则计算过程需要多一个O(l*l),最终就是 $O(N^5)$ 的.

所以,显然可以看出前缀和优化了时间复杂度,

关于前缀和我们就先讲到这里!

II. 差分