

AMENDMENTS TO THE CLAIMS

Please cancel claims 1, 6, 8, 9, 11, 27, 28 and 33 without prejudice to further prosecution in a divisional, continuation, continuation-in-part or other application. Please amend claims 2-5, 7, 10, 12, 13, 18, 22, 24-26, 29-32, 34 and 35 and add new claims 36-58 as shown below.

1 1. (Canceled)

1 2. (Currently Amended) The SBC optical system of claim 104, wherein said
2 mirror further comprises a reflective coating applied to said first facet of said broad-stripe laser
3 diode.

1 3. (Currently Amended) The SBC optical system of claim 104, wherein said
2 collimating optical system is located a distance from said second facet of said broad-stripe laser
3 diode substantially equivalent to a collimating optical system focal length.

1 4. (Currently Amended) The SBC optical system of claim 104, wherein said
2 collimating optical system is located a distance from said dispersive element substantially
3 equivalent to a collimating optical system focal length.

1 5. (Currently Amended) The SBC optical system of claim 104, further
2 comprising a divergence reducing optical system adjacent to second facet of said broad-stripe
3 laser diode, said divergence reducing optical system reducing divergence in the emissions
4 corresponding to a fast axis of said broad-stripe laser diode.

1 6. (Canceled)

1 7. (Currently Amended) The SBC optical system of claim 106, wherein said
2 aperture is selected from the group consisting of slits, circular apertures and oblong apertures

1 8. (Canceled)

1 9. (Canceled)

1 10. (Currently Amended) The SBC A spectral beam combining (SBC) optical
2 system of claim 6, comprising:
3 a broad-stripe laser diode;
4 an external resonator cavity comprising:
5 a mirror located adjacent to a first facet of said broad-stripe laser diode; and
6 an output coupler, wherein emissions from a second facet of said broad-stripe
7 laser diode are incident on said output coupler, said output coupler outputting a single
8 output beam;
9 a dispersive element interposed between said broad-stripe laser diode and said
10 output coupler, said dispersive element reflecting a portion of said emissions back into said
11 broad-stripe laser diode;
12 a collimating optical system interposed between said broad-stripe laser diode and
13 said dispersive element, said collimating optical system spatially overlapping emissions from
14 said broad-stripe laser diode onto said dispersive element;
15 a spatial filter interposed between said dispersive element and said output coupler,
16 wherein said spatial filter comprises an aperture; and
17 means for creating a plurality of pseudo emitters across said second facet of said
18 broad-stripe laser diode with a corresponding lateral spacing between adjacent pseudo emitters,
19 said means located within said external cavity, wherein said means generates wavelength-
20 periodic variations in transmission or reflectivity, and wherein an aperture width associated with
21 said aperture forms an image at said second facet of said broad-stripe laser diode less than twice
22 said lateral spacing of adjacent pseudo emitters multiplied by a factor by which the output beam
23 divergence exceeds the diffraction limit.

1 11. (Canceled)

1 12. (Currently Amended) The SBC optical system of claim 104, wherein said
2 pseudo emitter creating means is comprised of a birefringent material.

1 13. (Currently Amended) The SBC optical system of claim 104, wherein said
2 pseudo emitter creating means is comprised of an etalon.

1 14. (Original) The SBC optical system of claim 13, wherein said etalon is
2 located between said broad-stripe laser diode and said dispersive element.

1 15. (Original) The SBC optical system of claim 2, wherein said pseudo
2 emitter creating means is comprised of an etalon, said etalon comprising said broad-stripe laser
3 diode, said reflective coating applied to said first facet of said broad-stripe laser diode and a
4 second reflective coating applied to said second facet of said broad-stripe laser diode.

1 16. (Original) The SBC optical system of claim 15, wherein a maximum gain
2 corresponding to said plurality of pseudo emitters is at least 1.5 times higher than a minimum
3 gain corresponding to said plurality of pseudo emitters.

1 17. (Original) The SBC optical system of claim 16, wherein said maximum
2 gain is between 2 and 4 times higher than said minimum gain.

1 18. (Currently Amended) The SBC optical system of claim 104, wherein a
2 maximum gain corresponding to said plurality of pseudo emitters is at least 1.5 times higher than
3 a minimum gain corresponding to said plurality of pseudo emitters.

1 19. (Original) The SBC optical system of claim 18, wherein said maximum
2 gain is between 2 and 4 times higher than said minimum gain.

1 20. (Original) The SBC optical system of claim 15, wherein lasing is
2 suppressed at a plurality of minimum gain locations associated with said plurality of pseudo
3 emitters.

1 21. (Original) The SBC optical system of claim 20, wherein said plurality of
2 minimum gain locations correspond to a plurality of wavelengths.

1 22. (Currently Amended) The SBC optical system of claim 104, wherein
2 lasing is suppressed at a plurality of minimum gain locations associated with said plurality of
3 pseudo emitters.

1 23. (Original) The SBC optical system of claim 22, wherein said plurality of
2 minimum gain locations correspond to a plurality of wavelengths.

1 24. (Currently Amended) The SBC optical system of claim 104, wherein said
2 lateral spacing is at least equivalent to one half of a fundamental mode diameter associated with
3 said external resonator cavity.

1 25. (Currently Amended) The SBC optical system of claim 104, wherein said
2 lateral spacing is at least equivalent to a fundamental mode diameter associated with said
3 external resonator cavity.

1 26. (Currently Amended) The SBC A spectral beam combining (SBC) optical
2 system of claim 1, comprising:

3 a broad-stripe laser diode;

4 an external resonator cavity comprising:

5 a mirror located adjacent to a first facet of said broad-stripe laser diode; and

6 an output coupler, wherein emissions from a second facet of said broad-stripe

7 laser diode are incident on said output coupler, said output coupler outputting a single
8 output beam;

9 a dispersive element interposed between said broad-stripe laser diode and said
10 output coupler, said dispersive element reflecting a portion of said emissions back into said
11 broad-stripe laser diode;

12 a collimating optical system interposed between said broad-stripe laser diode and
13 said dispersive element, said collimating optical system spatially overlapping emissions from
14 said broad-stripe laser diode onto said dispersive element;

15 a spatial filter interposed between said dispersive element and said output coupler;
16 and

17 means for creating a plurality of pseudo emitters across said second facet of said
18 broad-stripe laser diode with a corresponding lateral spacing between adjacent pseudo emitters,
19 said means located within said external cavity, wherein said means generates wavelength-
20 periodic variations in transmission or reflectivity, and wherein said lateral spacing is equivalent

21 to at least one half of a fundamental mode diameter associated with said external resonator cavity
22 multiplied by a factor by which the output beam divergence exceeds the diffraction limit.

1 27. (Canceled)

1 28. (Canceled)

1 29. (Currently Amended) The method of claim 3228, wherein said forming
2 step comprises the step of transmitting the output of the broad-stripe laser diode through an
3 etalon.

1 30. (Currently Amended) The method of claim 3428, wherein said forming
2 step further comprises the step of laterally spacing said pseudo emitters by at least one half of a
3 fundamental cavity mode diameter.

1 31. (Currently Amended) The method of claim 3428, wherein said forming
2 step further comprises the step of laterally spacing said pseudo emitters by at least a fundamental
3 cavity mode diameter.

1 32. (Currently Amended) ~~The method of claim 28, wherein said forming step~~
2 ~~further comprises the step of~~ A method for improving the beam quality of a broad-stripe laser
3 diode, the method comprising the steps of:

4 forming a plurality of pseudo emitters from an output of the broad-stripe laser
5 diode;

6 laterally spacing said pseudo emitters by at least one half of a fundamental cavity
7 mode diameter multiplied by a factor corresponding to an amount by which an output beam
8 divergence exceeds a system diffraction limit; and

9 passing a plurality of emissions corresponding to said plurality of pseudo emitters
10 through an SBC optical system.

1 33. (Canceled)

1 34. (Currently Amended) ~~The method of claim 28, further comprising the step~~
2 ~~of A method for improving the beam quality of a broad-stripe laser diode, the method comprising~~
3 ~~the steps of:~~

4 forming a plurality of pseudo emitters from an output of the broad-stripe laser
5 diode;

6 passing a plurality of emissions corresponding to said plurality of pseudo emitters
7 through an SBC optical system; and

8 selecting a slit width for a slit associated with a spatial filter of said SBC optical
9 system so that an image of said slit projected onto a front facet of the broad-strip laser diode is
10 less than twice a lateral spacing of adjacent pseudo emitters multiplied by a factor corresponding
11 to an amount by which an output beam divergence exceeds a system diffraction limit.

1 35. (Currently Amended) The method of claim 3228, further comprising the
2 step of suppressing lasing at a plurality of wavelengths corresponding to pseudo emitter
3 minimums.

1 36. (New) The SBC optical system of claim 26, wherein said mirror further
2 comprises a reflective coating applied to said first facet of said broad-stripe laser diode.

1 37. (New) The SBC optical system of claim 26, wherein said collimating
2 optical system is located a distance from said second facet of said broad-stripe laser diode
3 substantially equivalent to a collimating optical system focal length.

1 38. (New) The SBC optical system of claim 26, wherein said collimating
2 optical system is located a distance from said dispersive element substantially equivalent to a
3 collimating optical system focal length.

1 39. (New) The SBC optical system of claim 26, wherein said spatial filter
2 comprises an aperture.

1 40. (New) The SBC optical system of claim 39, wherein said aperture is
2 selected from the group consisting of slits, circular apertures and oblong apertures.

1 41. (New) The SBC optical system of claim 39, wherein an aperture width
2 associated with said aperture forms an image at said second facet of said broad-stripe laser diode
3 less than twice said lateral spacing of adjacent pseudo emitters.

1 42. (New) The SBC optical system of claim 39, wherein said aperture
2 comprises a slit, and wherein a slit width associated with said slit forms an image at said second
3 facet of said broad-stripe laser diode less than twice said lateral spacing of adjacent pseudo
4 emitters.

1 43. (New) The SBC optical system of claim 26, further comprising a
2 divergence reducing optical system adjacent to second facet of said broad-stripe laser diode, said
3 divergence reducing optical system reducing divergence in the emissions corresponding to a fast
4 axis of said broad-stripe laser diode.

1 44. (New) The SBC optical system of claim 26, wherein said pseudo emitter
2 creating means is comprised of a birefringent material.

1 45. (New) The SBC optical system of claim 26, wherein said pseudo emitter
2 creating means is comprised of an etalon.

1 46. (New) The SBC optical system of claim 45, wherein said etalon is located
2 between said broad-stripe laser diode and said dispersive element.

1 47. (New) The SBC optical system of claim 36, wherein said pseudo emitter
2 creating means is comprised of an etalon, said etalon comprising said broad-stripe laser diode,
3 said reflective coating applied to said first facet of said broad-stripe laser diode and a second
4 reflective coating applied to said second facet of said broad-stripe laser diode.

1 48. (New) The SBC optical system of claim 47, wherein a maximum gain
2 corresponding to said plurality of pseudo emitters is at least 1.5 times higher than a minimum
3 gain corresponding to said plurality of pseudo emitters.

1 49. (New) The SBC optical system of claim 48, wherein said maximum gain
2 is between 2 and 4 times higher than said minimum gain.

1 50. (New) The SBC optical system of claim 26, wherein a maximum gain
2 corresponding to said plurality of pseudo emitters is at least 1.5 times higher than a minimum
3 gain corresponding to said plurality of pseudo emitters.

1 51. (New) The SBC optical system of claim 50, wherein said maximum gain
2 is between 2 and 4 times higher than said minimum gain.

1 52. (New) The SBC optical system of claim 47, wherein lasing is suppressed
2 at a plurality of minimum gain locations associated with said plurality of pseudo emitters.

1 53. (New) The SBC optical system of claim 52, wherein said plurality of
2 minimum gain locations correspond to a plurality of wavelengths.

1 54. (New) The SBC optical system of claim 26, wherein lasing is suppressed
2 at a plurality of minimum gain locations associated with said plurality of pseudo emitters.

1 55. (New) The SBC optical system of claim 54, wherein said plurality of
2 minimum gain locations correspond to a plurality of wavelengths.

1 56. (New) The SBC optical system of claim 26, wherein said lateral spacing
2 is at least equivalent to a fundamental mode diameter associated with said external resonator
3 cavity.

1 57. (New) The method of claim 34, wherein said forming step comprises the
2 step of transmitting the output of the broad-stripe laser diode through an etalon.

1 58. (New) The method of claim 34, further comprising the step of suppressing
2 lasing at a plurality of wavelengths corresponding to pseudo emitter minimums.