Information & System Security

Mathematics Related to **Public Key** Cryptography

9-6 EXPONENTIATION AND LOGARITHM

Exponentiation: $y = a^x \rightarrow \text{Logarithm: } x = \log_a y$

Topics discussed in this section:

- 9.6.1 Exponentiation
- 9.6.2 Logarithm

9.6.1 Exponentiation

$$y=a^x \mod n$$

Fast Exponentiation

$$y = a$$

$$y =$$

Example:

$$y = a^9 = a^{1001} = a^8 \times 1 \times 1 \times a$$

The idea behind the square-and-multiply method

Example

Figure shows the process for calculating $y = a^x$ using the Algorithm (for simplicity, the modulus is not shown). In this case, $x = 22 = (10110)_2$ in binary. The exponent has five bits.

Demonstration of calculation of a^{22} using square-and-multiply method

Calculation of 17²² mod 21

i	x_i	Multiplication (Initialization: $y = 1$)	Squaring (Initialization: $a = 17$)
0	0	\rightarrow	$a = 17^2 \mod 21 = 16$
1	1	$y = 1 \times 16 \mod 21 = 16 \rightarrow$	$a = 16^2 \mod 21 = 4$
2	1	$y = 16 \times 4 \mod 21 = 1 \rightarrow$	$a = 4^2 \mod 21 = 16$
3	0	\rightarrow	$a = 16^2 \mod 21 = 4$
4	1	$y = 1 \times 4 \mod 21 = 4 \rightarrow$	

Note

The bit-operation complexity of the fast exponential algorithm is polynomial.

9.6.2 Logarithm

In cryptography, we also need to discuss modular logarithm.

Exhaustive Search

```
Modular_Logarithm (a, y, n)
    for (x = 1 \text{ to } n - 1) // k is the number of bits in x
       if (y \equiv a^x \mod n) return x
    return failure
```

Order of the Group

Example

What is the order of group $G = \langle Z_{21}^*, \times \rangle$?

$$|G| = \phi(21) = \phi(3) \times \phi(7) = 2 \times 6 = 12.$$

There are 12 elements in this group: 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, and 20.

All are relatively prime with 21.

Order of an Element

Example

Find the order of all elements in $G = \langle Z_{10}^*, \times \rangle$.

Solution

This group has only $\phi(10) = 4$ elements: 1, 3, 7, 9. We can find the order of each element by trial and error.

a.
$$1^1 \equiv 1 \mod (10) \rightarrow \text{ord}(1) = 1$$
.

b.
$$3^4 \equiv 1 \mod (10) \rightarrow \text{ord}(3) = 4$$
.

c.
$$7^4 \equiv 1 \mod (10) \rightarrow \text{ord}(7) = 4$$
.

d.
$$9^2 \equiv 1 \mod (10) \rightarrow \text{ord}(9) = 2$$
.

Euler's Theorem:
$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Example

The following Table shows the result of $a^i \equiv x \pmod{8}$ for the group $G = \langle Z_8^*, \times \rangle$. $\phi(8)=4$.

The elements are 1, 3, 5, and 7.

Finding the orders of elements

$$i = 1$$
 $i = 2$ $i = 3$ $i = 4$ $i = 5$ $i = 6$ $i = 7$

<i>a</i> = 1	x: 1	<i>x</i> : 1	x: 1	x: 1	<i>x</i> : 1	<i>x</i> : 1	x: 1
a = 3	<i>x</i> : 3	x: 1	<i>x</i> : 3	<i>x</i> : 1	<i>x</i> : 3	<i>x</i> : 1	<i>x</i> : 3
<i>a</i> = 5	<i>x</i> : 5	x: 1	<i>x</i> : 5	<i>x</i> : 1	<i>x</i> : 5	<i>x</i> : 1	<i>x</i> : 5
a = 7	<i>x</i> : 7	x: 1	<i>x</i> : 7	x: 1	<i>x</i> : 7	x: 1	<i>x</i> : 7

Primitive Roots

In the group $G = \langle Z_n^*, \times \rangle$, when the order of an element is the same as $\phi(n)$, that element is called the primitive root of the group.

Example

The Table (previous) shows that there are no primitive roots in $G = \langle Z_8^*, \times \rangle$ because no element has the order equal to $\phi(8) = 4$. The order of elements are all smaller than 4.

Example

The following Table shows the result of $a^i \equiv x \pmod{7}$ for the group $G = \langle Z_7^*, \times \rangle$. In this group, $\phi(7) = 6$.

		i = 1	i = 2	i = 3	i = 4	i = 5	i = 6
	<i>a</i> = 1	<i>x</i> : 1					
	<i>a</i> = 2	x: 2	<i>x</i> : 4	<i>x</i> : 1	<i>x</i> : 2	x: 4	<i>x</i> : 1
Primitive root \rightarrow	a = 3	<i>x</i> : 3	x: 2	<i>x</i> : 6	<i>x</i> : 4	<i>x</i> : 5	<i>x</i> : 1
	a = 4	x: 4	<i>x</i> : 2	<i>x</i> : 1	<i>x</i> : 4	<i>x</i> : 2	<i>x</i> : 1
Primitive root \rightarrow	<i>a</i> = 5	x: 5	x: 4	<i>x</i> : 6	<i>x</i> : 2	<i>x</i> : 3	<i>x</i> : 1
	<i>a</i> = 6	<i>x</i> : 6	<i>x</i> : 1	<i>x</i> : 6	x: 1	<i>x</i> : 6	<i>x</i> : 1

Note

The group $G = \langle Z_n^*, \times \rangle$ has primitive roots only if n is 2, 4, p^t , or $2p^t$.

Example

For which value of n, does the group $G = \langle Z_n^*, \times \rangle$ have primitive roots: 17, 20, 38, and 50?

Solution

- a. $G = \langle Z_{17}^*, \times \rangle$ has primitive roots, 17 is a prime.
- **b.** $G = \langle Z_{20}^*, \times \rangle$ has no primitive roots.
- c. $G = \langle Z_{38}^*, \times \rangle$ has primitive roots, $38 = 2 \times 19$ prime.
- d. $G = \langle Z_{50}^*, \times \rangle$ has primitive roots, $50 = 2 \times 5^2$ and 5 is a prime.

Note

If the group $G = \langle Z_n^*, \times \rangle$ has any primitive root, the number of primitive roots is $\phi(\phi(n))$.

Example

Find number of primitive roots of 7 and 19.

Solution

- (a) $\phi(\phi(7)) = \phi(7-1) = \phi(6) = \phi(2 \times 3) = \phi(2) \times \phi(3) = 2$.

 7 has 2 primitive roots—3 and 5.
- (b) Try to find $\phi(\phi(19))$.

Powers of Integers, Modulo 19

а	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Cyclic Group: If g is a primitive root in the group, we can generate the set Z_n^* as $Z_n^* = \{g^1, g^2, g^3, ..., g^{\phi(n)}\}$

Example

The group $G = \langle Z_{10}^*, \times \rangle$ has two primitive roots because $\phi(10) = 4$ and $\phi(\phi(10)) = 2$. It can be found that the primitive roots are 3 and 7. The following shows how we can create the whole set Z_{10}^* using each primitive root.

$$g = 3 \rightarrow g^1 \mod 10 = 3$$
 $g^2 \mod 10 = 9$ $g^3 \mod 10 = 7$ $g^4 \mod 10 = 1$ $g = 7 \rightarrow g^1 \mod 10 = 7$ $g^2 \mod 10 = 9$ $g^3 \mod 10 = 3$ $g^4 \mod 10 = 1$

The group $G = \langle Z_n^*, \times \rangle$ is a cyclic group if it has primitive roots. The group $G = \langle Z_p^*, \times \rangle$ is always cyclic.

The idea of Discrete Logarithm

Properties of G = $\langle Z_p^*, \times \rangle$:

- 1. Its elements include all integers from 1 to p-1.
- 2. It always has primitive roots.
- 3. It is cyclic. The elements can be created using g^x where x is an integer from 1 to $\phi(n) = p - 1$.
- 4. The primitive roots can be thought as the base of logarithm.

If the group has k primitive roots, calculations can be done in k different bases. Given $x=\log_{g} y$ for any element in y in the set, there is an x that is the log of y in base g. This type of logarithm is called discrete logarithm.

Solution to Modular Logarithm using Discrete Logs

Solve $y=a^x \pmod{n}$ when y is given, and we need to find x.

Tabulation of Discrete Logarithms

- One way to solve the above-mentioned problem is to use a table for each \boldsymbol{Z}_{p}^{*} and different bases.
- This type of table can be precalculated and saved.

Discrete logarithm for $G = \langle Z_7^*, \times \rangle$								
y	1	2	3	4	5	6		
$x = L_3 y$	6	2	1	4	5	3		
$x = L_5 y$	6	4	5	2	1	3		

Example

Find x in each of the following cases:

1.
$$4 \equiv 3^x \pmod{7}$$
.

2.
$$6 \equiv 5^x \pmod{7}$$
.

Solution

We can easily use the tabulation of the discrete logarithm in the previous Table.

1.
$$4 \equiv 3^x \mod 7 \rightarrow x = L_3 4 \mod 7 = 4 \mod 7$$

2.
$$6 \equiv 5^x \mod 7 \rightarrow x = L_5 6 \mod 7 = 3 \mod 7$$

Using Properties of Discrete Logarithms

Comparison of traditional and discrete logarithms

Traditional Logarithm	Discrete Logarithms
$\log_a 1 = 0$	$L_g 1 \equiv 0 \pmod{\phi(n)}$
$\log_a (x \times y) = \log_a x + \log_a y$	$L_g(x \times y) \equiv (L_g x + L_g y) \pmod{\phi(n)}$
$\log_a x^k = k \times \log_a x$	$L_g x^k \equiv k \times L_g x \pmod{\phi(n)}$

Using Algorithms Based on Discrete Logarithms

• Cannot be used if *n* is very large.

Note

The discrete logarithm problem has the same complexity as the factorization problem.

References

Chapter 9 - Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, Mc Graw Hill, 3rd Edition, 2015.

Chapter 8 - William Stallings, Cryptography and Network Security Principles and Practices, 7th Edition, Pearson Education, 2017.