

Model Development Phase Template

Date	10 July 2024
Team ID	SWTID1720162737
Project Title	Predicting Compressive Strength Of Concrete Using Machine Learning
Maximum Marks	5 Marks

Feature Selection Report Template

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Selected (Yes/No)	Reasoning
Cement	Binding agent in concrete, directly influences strength development	Yes	A major factor in predicting the strength of concrete.
Blast furnace slag	Industrial byproduct that can partially replace cement, reducing cost and environmental impact. May influence strength depending on slag type and content.	Yes	Can enhance strength and sustainability, depending on its type and content.
Fly ash	Finely divided byproduct of burning coal, improves workability and can contribute to strength development in some concrete mixes.	Yes	Enhances workability and may contribute to strength in specific mixes.

Water	Essential ingredient for concrete hydration, critical for strength development. Too much water weakens the concrete.	Yes	Crucial for hydration, directly impacts strength.
Superplastic izer	Chemical admixture that improves workability without affecting water content, potentially allowing for higher strength.	Yes	Improves workability and can lead to higher strength without extra water.
Coarse aggregate	Larger inert particles (gravel, crushed rock) in the mix, contribute to strength and dimensional stability.	Yes	Provides structural stability and contributes to overall strength.
Fine aggregate	Smaller inert particles (sand) that fill gaps between coarse aggregate, influencing strength and workability.	Yes	Fills voids and improves strength and workability.
Age	Maturity of the concrete specimen. Concrete compressive strength increases over time as hydration progresses.	Yes	Strength increases with age, crucial for understanding strength development over time.
Concrete compressive strength	The maximum stress that concrete can withstand before failure in compression.	Yes	This is the variable the model aims to predict.