-	KESTRICTED PARPAIT						
		Solution	Marks	Remarks			
1.	(a)	Increase percentage = $(\frac{1000}{8000} \times 100)\%$	1A	for $\frac{1000}{8000}$			
•,		= 12.5 %	1A 2	Accept 12.5			
	(b)	His savings = $$9000 \times \frac{3}{10}$	1A				
		= \$2700	1A 2				
2.	(a)	$x + 1 > \frac{1}{5}(3x + 2)$		OR 3 2			
		5x - 3x > 2 - 5	1M	$ x - \frac{3}{5}x > \frac{2}{5} - 1$ 1M $\frac{2}{5}x > -\frac{3}{5}$			
		2x > -3		$x > -\frac{3}{2} \qquad 1A$			
,		$x > -\frac{3}{2}$	1 <u>A</u>	-			
	(b)	Furthermore, if $-4 \le x \le 4$, then the range of x is					
		$-\frac{3}{2} < x \leq 4.$	2A	-l if '=' incorrect Accept graphical representation			
			2	representation			
3.	(a)	Since $(x + 1)$ is a factor of $x^4 + x^3 - 8x + k$, $(-1)^4 + (-1)^3 - 8(-1) + k = 0$	1M ⁻				
		k = -8	1A 2				
	(b)	$x^4 + x^3 - 8x - 8 = (x + 1)(x^3 - 8)$	1M+1A	lM for (x+1) X cubic			
		$= (x + 1)(x - 2)(x^2 + 2x + 4)$	1A+1A	exp.			
			4				
		$\underline{OR} (2)^4 + (2)^3 - 8(2) - 8 = 0$					
		-> x - 2 is another factor	1A 2A				
		$x^{4} + x^{3} - 8x - 8 = (x + 1)(x - 2)(x^{2} + 2x + 4)$	1M+2a/F	lM for (x+1)(x-2) X quadratic exp.			
		•					

	-	KESI KICIED 内部3	人什	09 OE Maths 1-2
		Solution	Marks	Remarks
4.	(a)	A M	1A	For circle with A,B,M
		A B.	1A 2	Indication of BM = MC
	(b)	Consider A ABM and A ACM (OR joining AM, AC)	1	In this part, candi- dates are expected to
	1 n(:	= LAMC	l (ok	give brief reasons.
	ì	As AM is common and BM = MC, the two triangles are congruent.(SAS)	1	Clote A AMB = A AME.
		LBAM = LCAM, i.e. AM bisects LBAC.	1 4	state DAM BE DAMC conclude. Am biscel LBAC conclude. Am biscel LBAC conclude. Am biscel LBAC
5.	(a)	$\begin{cases} x + 2y = 5 & \dots & (i) \\ 5x - 4y = 4 & \dots & (ii) \end{cases}$		Buch
		$2 \times (i) + (ii) \Rightarrow 7x = 14$ x = 2	1M 1A	For elim. or subs.
		Putting $x = 2$ in (i), $2y = 3$,	
		$y = \frac{3}{2}$	1A	
		$\therefore \text{ the solution is } \begin{cases} x = 2 \\ y = \frac{3}{2} \end{cases}$	3	
	(b)	By (a), $\frac{a}{c} = 2$ and $\frac{b}{c} = \frac{3}{2}$	MC ME	1
		a : b : c = 4 : 3 : 2 (or equivalent ratios)	2A 1A	
6.	(a)	$\angle ABD = \angle ACD = 60^{\circ}$	1A	colonia dispris
		Since ABCD is a cyclic quadrilateral,	concel	or LBDA = 40°
		$L_{BAD} + L_{BCD} = 180^{\circ}$ $L_{BAD} = 180^{\circ} - (60 + 40)^{\circ}$ $= 80^{\circ}$	1 - 1A	OR LBDA = 40° mily LBAD=80° no NASMI IRAD=800 but wray may
	(b)	By the sine rule, $\frac{10}{\sin 60^{\circ}} = \frac{BD}{\sin 80^{\circ}}$	1M+1A	60° 40°
		$\sin 60^{\circ} \sin 80^{\circ}$ $BD = \frac{10\sin 80^{\circ}}{\sin 60^{\circ}}$		$D \longrightarrow B$
		= 11.37 cm (corr. to 2 d.p.)	1A 3	10 cm
			•	· A

	内部文件 Marks	Remarks
Solution $3\tan\theta = 2\cos\theta$ $3\frac{\sin\theta}{\cos\theta} = 2\cos\theta$	1M	
$3\sin\theta = 2\cos^2\theta$ $3\sin\theta = 2(1 - \sin^2\theta)$ $2\sin^2\theta + 3\sin\theta - 2 = 0$ $(2\sin\theta - 1)(\sin\theta + 2) = 0$ $\sin\theta = \frac{1}{2} \text{ or } -2 \text{ (rejected)}$ The solutions are $\theta = 30^{\circ} \text{ or } 150^{\circ} \text{ (} \frac{\pi}{6} \text{ or } \frac{5\pi}{6} \text{)}$ [as $\cos 30^{\circ}$ and $\cos 150^{\circ} \neq 0$].	1M 1A 1A 1A 1A 1A+1A 7	Accept sin0 = ½ or sin0 = ½ or -2' Deduct 1 for each extraneous solution.

<u>. </u>		WEST KICTED (4) (i)	NIT	
		Solution	Marks	Remarks
8.	(a)	E = (1, 2)	1A 1	E=1,2 pp1
	(b)	From $x + 7y - 40 = 0$, we have $x = 40 - 7y$		
		$(or y = \frac{40 - x}{7})$		
		Putting in ℓ_1 , $(40-7y)^2 + y^2 - 2(40-7y) - 4y - 20 = 0$	1M	·
		$50y^2 - 550y + 1500 = 0$	1 A	
		$y^2 - 11y + 30 = 0$ (or $x^2 - 3x - 10 = 0$)		
		(y - 5)(y - 6) = 0		·
		y = 5 or 6 (or x = 5 or -2)	1 A	y=t and y=6. sp-1
		x = 5 or -2		,
		P = (-2, 6), Q = (5, 5)	1 A	Accept P = (5, 5)
			4	Q = (-2, 6)
	(c)	ℓ_2 is given by $\frac{y-6}{x+2} \cdot \frac{y-5}{x-5} = -1$	1M+1A	$\frac{OR}{Ctr. \text{ of } G_0 = (\frac{3}{6}, \frac{11}{6})}$
		i.e. $x^2 + y^2 - 3x - 11y + 20 = 0$	1 A	Ctr. of $G_2 = (\frac{3}{2}, \frac{11}{2})$ radius = $\frac{5\sqrt{2}}{2}$ (=3.54)
				Eqt. of \mathcal{C}_2 :
				$(x-\frac{3}{2})^2 + (y-\frac{11}{2})^2 = \frac{50}{4}$
				Answer 1M+1A
			3	
	(d)	Putting $(x, y) = (1, 2)$ in L.H.S. of b_2	1M	OR Slope of PE x slope of
•		$1^2 + 2^2 - 3(1) - 11(2) + 20 = 0$	1A	QE=-1
		\cdot . ℓ_2 passes through E		
		(As PQ is a diameter of \mathcal{C}_{2}) $\angle PEQ = 90^{\circ}$	1M)	$\frac{OR}{Let} P = (-2,6), Q = (5,5)$
		(Since PE = QE (radii of \mathcal{C}_1))	Slope of PQ = $-\frac{1}{7}$
		$\angle EPQ = \frac{90^{\circ}}{2} = 45^{\circ}$)	Slope of PE = $-\frac{4}{3}$
		2		$-\frac{1}{7}-\frac{-4}{3}$
		P		$\tan L EPQ = \frac{-\frac{1}{7} - \frac{-4}{3}}{1 + \frac{1}{7} \times \frac{4}{3}} 1M$
		0		/ 3 = 1
				$LEPQ = 45^{\circ}$ 1A
		(F(1,2))	1	OR 171 97° 126 97° 11
				171.87° - 126.87° 1M = 45°
				- 43 /A
			4	•
(GA 29	RESTRICTED 內部的	八件	e e e

	,	RESTRICTED 内部	89 CE Maths I-5	
	······································	Solution	Marks	Remarks
9.	(a)	$\frac{k}{l} = \frac{\frac{1}{2}}{k}$ $k^2 = \frac{1}{2}$	1M	
		$k = \frac{1}{\sqrt{2}} (\text{ or } \frac{\sqrt{2}}{2}) (\text{as } k > 0)$	1A	Do not accept $\pm \frac{1}{\sqrt{2}}$ but follow through
	(b)	$T(n) = \left(\frac{1}{\sqrt{2}}\right)^{n-1} [\text{ or } \frac{1}{(\sqrt{2})^{n-1}}, 2^{-\frac{n-1}{2}}, \text{ etc.}]$	1M+1A	$\frac{1}{\sqrt{2}} ^{n-1} \mathbf{p} \cdot \mathbf{p}.$
	(c)	Sum to infinity = $\frac{1}{1 - \frac{1}{\sqrt{2}}}$	1M+1A	
_		$= \frac{\sqrt{2}}{\sqrt{2}-1}$		
		$=\frac{\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$	1M	
		$= 2 + \sqrt{2} \dots$	1A 4	
	(d)	No. of terms in the product = $\frac{2n-1-1}{2}+1=n$		
		T(1) x T(3) x T(5) x x T(2n-1) = 1 x $\frac{1}{2}$ x $\frac{1}{4}$ x $\left(\frac{1}{\sqrt{2}}\right)^{2n-2}$ [or 1 x $\frac{1}{(\sqrt{2})^2}$ x $\frac{1}{(\sqrt{2})^n}$ x x $\frac{1}{(\sqrt{2})^{2n-2}}$]	1A	
		$= 1 \times \frac{1}{2} \times \frac{1}{2^{2}} \times \dots \times \frac{1}{2^{n-1}}$ $= \frac{1}{2^{1+2+\dots+(n-1)}}$	1M	·
		$\frac{1}{2} \frac{\frac{-n(n-1)}{2}}{n(n-1)} [\text{ or } 2^{\frac{-n(n-1)}{2}}, \text{ etc. }]$	1M+1A	1M for summing index as A.P.
			4	

•	Solution	Marks	Remarks
	30101011	Marks	Remarks
10. (a)	$AB^{\dagger} = 10\cos 45^{\circ}$	·	
	= $5\sqrt{2}$ m (or $\frac{10}{\sqrt{2}}$), (7.07107)	1A	Any figure roundable
•	$AC' = 10\cos 30^{\circ}$		to 7.07
	$= 5 \sqrt{3}m (8.66025)$	1 <u>A</u>	
(b)	$BC = \sqrt{10^2 + 10^2}$		
	$= 10 \sqrt{2} m (14.14214)$	1A	Lound -Im for
	BB' = 10sin45°		Nounit - Im for
	$= 5 \sqrt{2} m (7.07107)$	1A	N-
	CC' = 10sin30°		
	= 5 m	<u>1A</u>	
	D Lom		c c'
	$oldsymbol{A}$	1	1

(d) By the cosine rule, $\cos B'AC' = \frac{50 + 75 - (125 + 50\sqrt{2})}{2 \times 5\sqrt{2} \times 5\sqrt{3}} (= -\frac{1}{\sqrt{3}}, -0.57735) \text{ 1M}$ $\angle B'AC' = 125^{\circ} (125.264)$ $Area of the shadow = \frac{1}{2} \times 5\sqrt{2} \times 5\sqrt{3} \sin 125.264^{\circ}$ $1M \qquad \text{For } \Delta = \frac{1}{2} \text{ absinC}$

i	RESTRICTED 内部	义件	89 CE Maths I-7
-	Solution	Marks	Remarks
11. (a)	Area of cross-section = $\frac{50}{2}$ (2 + 10) = 300m^2		
•	Vol. of water = $20 \times 300 = 6000 \text{m}^3$	1M+1A	lM for Vol.= Area of cross-section x width
		2	R 20xfox2 + (10x6) x2
(b)	(i) When the depth of water at the deeper end is		<u>OR</u>
	8m, the cross-section of water is a triangle		Drop in water level = 2m
	of area $\frac{8 \times 50}{2} = 200 \text{m}^2$.		Water pumped out = $2x50x20 = 2000m^3$ 1A
	Vol. of water left = $200 \times 20 = 4000 \text{m}^3$.	2A	Water left = 4000m ³ 1A
	(ii) Vol. of water pumped out in 8 hours		
	$= (0.125)^2 \pi \times 3600 \times 8 \times 3$	1M+1A	lM for area of cross-
	= 1350 m m ⁹		section
	= 4241 m ³ (correct to the nearest m ³) (4241.15)	1 <u>A</u>	· · · · · · · · · · · · · · · · · · ·
	(iii) V ol. of water left after 8 hrs = 6000 - 4241	1M	•
	$= 1759 m^3$		
	When the depths of water are 8m and h m, the		·
	corresponding cross-sections of water are		
	two similar triangles with bases 50m and b m.		·
	$\frac{b}{h} = \frac{50}{8} \text{or} b = \frac{50}{8} h$	1A	
	$\frac{1}{2}b \neq h \neq 20 = 1759$	1M	
	$\frac{20}{2} = \frac{50}{8} h^2 = 1759$	1M	$\int \left(\frac{h}{8}\right)^2 = \frac{1759}{4000}$
	h = 5.305 = 5.3 (correct to 1 d.p.)	1 <u>A</u> 10	
	·		
	50		
	8) b		

		Solut	ion		N	larks	Remarks
12. (a	a)	(1) Area of △ OAB =	$= \frac{1}{2}(2)(2)\sin\theta = 2s$	ino cm² u-1		1 Á	
		(ii) The area is gre	eatest when $\theta = \frac{\pi}{2}$	7.1.5		1A	90° not acceptable
			_	1	-	2	
(h	.)	Area of cooker OAR	1,0020 00 (2)				
(6	,,	Area of sector OAB = $20 - 2\sin\theta = 2$	$\overline{2}^{(2)} = 2\theta (cm^2)$	ptimal.		1A .	·
		$3\theta - \sin\theta - 1 = \frac{1}{2}$		•		1M	
		a - sina - 1 =			-	1A 3	
(с	:)	f(0) = 0 - 0 - 1 < 0)			For sub. f(0), f(3)
_		$f(3) = 3 - \sin 3 - 1$)		1M	Accept graphical method
		∴ 0 < α < 3 ,		not fiven.		1 <u>A</u>	
		omitted, no	/A		. -	2	
(d))	Interval	W4.1 1 0	T 2/2>			
		Interval	Mid-value θ	f(θ)	,		lM Testing of sign at
		0 < < < 3	1.5		11	M+1A	mid-value of suitable interval
		1.5 < < < 3	2.25	+		1M	<pre>IA Correct sign Correct choice of sub-</pre>
		1.5 < ∝ < 2.25 1.875 < ∝ < 2.25	1.875 (1.88)	_			interval
		1.875 < ≪ < 2.063	2.063 (2.06) 1.969 (1.97)	+ +			
		1.875 < ∝ < 1.969 1.922 < ∝ < 1.969	1.922 (1.92) 1.946 (1.95)	+		lA	
		1.922 < \alpha < 1.946			٠.		
	1	We see that ≪ lies h	petween 1.922 and	1.946.			•
		∴ ∝ = 1.9 (correct	to 1 d.p.)			la	
		, 27	(1//)		-	5	
		A	B				
		· 2cm	2				
		,	0	•			
		,					
						l	

	KEST KICTED P	TI 人们它	oy CE Maths 1-9
	Solution	Marks	Remarks
13. (a) Since p +	q = 1,	1A	optional
	$p = 3q$ $4q = 1$ $q = \frac{1}{4}$	1 <u>A</u>	aly g= 4 1A.
(1) (1) m			
black	robability that the first ball drawn i is $\frac{n}{10}$. a black ball has been drawn, the prob	1A	
	awing a second black ball is $\frac{n-1}{9}$.	1A	
	the probability that both balls are block $= \frac{n}{10} \times \frac{n-1}{9}$ $= \frac{n(n-1)}{90}$	ack IM	10 × g 14+14+1ng 10 × 10 14+1ng wrong
(ii) $\frac{n(n-90)}{90}$		IM	wrong
n ² - 1	3n - 90 > 0 $n - 30 > 0$ $6)(n + 5) > 0$	1A	
	n > 6 or $n < -5$	1A	/ Accept n > 6 will writ
As n	is integral and positive, n = 7, 8, 9 or	$\begin{array}{c} 10. \ \boxed{\frac{1A}{7}} \end{array}$	by Meslig n= 7.8.1.10 3,
(c) The probabi	ility that the first ball drawn is red		H.S. (CONFCX
and the sec	cond is also red = $\frac{1}{2} \times \frac{4}{6} (= \frac{1}{3})$.	1A	
	ility that the first is green and the $\cot z = \frac{1}{2} \times \frac{3}{6} \left(= \frac{1}{4} \right)$.		
	2 0 4	1A	
	cobability that the ball drawn from N $1 = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}.$	1A 3	
ta enl	o explained pro-		·

	Solution	Marks	Remarks
14.		1A	1A for each line
(a).		+ 1A	±1 horizontal/
		+	vertical unit at
	100	1A	(100, 0), (0, 100); (20, 0), (60, 80);
			(0, 20),(100, 20)
	<u> </u>		
	86		
	<u> </u>		
	THE STATE OF THE S		
		1A	Region
	<u> </u>	Ī	
_			
-	40 11 11 11 11 11 11 11 11 11 11 11 11 11		
	N 20	4	
	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			,
	0 1 100 100 100 100 100 100 100 100 100		
	07.9-0		
_	(b) (i) $z = 100 - x - y$	', 1A	
	(ii) Cost of mixture = $6x + 5y + 4z$	1 A	
	= 6x + 5y + 4(100 - x - y)		
	= 2x + y + 400 dollars	1A	
	$(iii)400x + 600y + 400z \ge 44 000$	1A	,
	$800x + 200y + 4002 \ge 48 000$	1A·	
	Putting 2=100-x-4, y ≥ 20		
	2x-y > 40		,
	Further, (as $z \ge 0$, $100 - x - y \ge 0$) $x + y \le 100$	1 1A	or test optimely.
	(iv) Drawing the line $2x + y = 0$ in the figure,	l IM	Any line.
	wrong lime at.		Costs at (30,20),
	the least cost is attained when $x = 30$, $y = 20$.		$(80,20),(\frac{140}{3},\frac{160}{3})$
	x = 30, y = 20, z = 50	1A	
		: {	are 480, 580 and 546.7 (Any point)
		8	, , , , , , , , , , , , , , , , , , ,
		1	