Machine Learning

Machine Learning

Theory

Chapter 1

Supervised Learning

- Where your training data includes labels for each sample of input parameters:
 - Classification: A subset of supervised learning where your labels are discrete classes
 - Regression: Your labels are continuous

Unsupervised Learning

- Labels are not available and the goal is to identify patterns in the data:
 - Clustering
 - Principal Component Analysis

Rules-based techniques

- Instead of having a function based model $y = f(\mathbf{x})$, you use a set of predefined rules to reach a classification
 - Random forest's (using the result of multiple decision trees to make an overall decision)

Covariance

Just as in the univariate case, it's variance can be determined by the average sum of squared differences between instances of the variable and it's mean:

$$(\sigma^2) = rac{\sum (X_i - \mu)^2}{m}$$

The same is the case for a multivariate problem, where the output is now a matrix with nondiagonal elements representing interdependence between variables:

$$C = \frac{(X_i - \mu)^t (X_i - \mu)}{m}$$

where m is just the number of points in the dataset. Note that C is always symmetric.

General Concepts

Bias/ Variance Trade-off

- Bias pertains to the error of a model when compared to its training dataset high bias suggests it poorly fits to the dataset that it was trained on, very low bias suggests potential overfitting of data.
- Variance pertains to how much the error changes when the model is evaluated on a
 different dataset to the one it was trained on. High variance suggests that the model
 has overfit the training dataset and the error changes drastically when compared to a
 non-training dataset. Low variance suggests the model has a consistent error rate
 when evaluated on other datasets
- Total error = Bias + Variance. Ideally we therefore want to minimise both
- Usually complex models lead to large variance (overfit), and simple models lead to large bias (underfit)

Validation

- Validation is used during training to assess how well a model is performing on unseen data - it's essentially intermittent testing during the training phase.
- · K-fold cross validation is commonly used
 - Here the dataset is split into K folds, and for each fold, the other k-1 folds are used for training and the remaining fold is used for testing.

The idea here isn't to find the best model after trying all k folds- no, its to identify suitable model parameters such as regularisation parameters etc. by looking at average performance and seeing if results are suitable

Scaling

- It is common practice to scale (e.g. normalise) the feature space, so that each feature is treated equally by the model.
- In the case where you had a 2 input model with features O(10^6) and O(10^1) respectively, a change of 1 in feature 2 will lead to significantly more change than the same change in feature 1, and as such the gradients will look to change feature 2 more than 1 and neglect (/converge much more slowly to) the potential improvements that could be seen by changing feature 1, by say 10^5.

Always save transformation parameters used on the training data so that when used on unseen data, the same transformations can be applied to map the input space correctly

Metrics

- These are used to assess similarity and must have the following properties:
 - Non-negativity:

$$D(a,b) \geq 0$$

Symmetry:

$$D(a,b) = D(b,a)$$

Reflexivity:

$$D(a, b) = 0$$
, if and only if $a == b$

Triangle inequality:

$$D(a,c) \leq D(a,b) + D(b,c)$$

These can be shown to hold for metrics such as Euclidian distance, lp, etc.

Contents

- 2 Bayesian Decision Theory
- 3 Regression
- 4 Linear Discriminant Functions
- 5 Support Vector Machines
- 6 Neural Nets
- 7 Non-Parametric Methods
- 8 Nonmetric Methods
- 9 Unsupervised Learning