Il disco schematizzato nella figura è stato discretizzato in blocchi con il metodo di Grammel. Il disco è forato e non è calettato direttamente su un albero ma connesso con flange come usuale nei dischi di turbina.

La relazione fra le grandezze (esterne) dell'ultimo blocco U e fra le grandezze (interne) del primo I è

$$\begin{cases} u_e \\ n_e \end{cases}^U = T \begin{Bmatrix} u_i \\ n_i \end{Bmatrix}^I + V$$

Le varabili u e n sono rispettivamente gli spostamenti e le forze per unità di arco nei blocchi. Le matrici T e V contengono sia i carichi centrifughi sia i carichi termici e valgono

$$T = \begin{bmatrix} 1.2 & 1.0 & 10^{-10} \\ 3.8 & 10^9 & 0.8 \end{bmatrix}; V = \begin{cases} 1.2 & 10^{-3} \\ -7.5 & 10^6 \end{cases}$$

Il disco è formato da 68 pale e altrettanti slot. Le dimensioni principali del disco e le condizioni di funzionamento sono riportate nella tabella. Calcolate

1) gli spostamenti al bordo interno e al bordo esterno u_i e u_e;

MPa

1050

2) le tensioni circonferenziali al bordo interno e al bordo esterno σ_{ci} e σ_{ce} ;

	2) 10 (011010111	CIICOIIIC	ciiziaii ai bo
Massa pala	mp	0.80	kg
Massa slot	ms	0.12	kg
Raggio pala	Rp	0.58	m
Raggio slot	Rs	0.45	m
Raggio minimo	R_min	0.22	m
Raggio massimo	R_MAX	0.43	m
Spessore al raggio minimo	b_Rmin	18	mm
Spessore al raggio massimo	b_Rmax	47	mm
Velocità di rotazione	Ω	4200	giri/minuto
Modulo di elasticità	E	1.6 E11	Pa
Coefficiente di poisson	ν	0.3	
Coefficiente di dilatazione tern	nica α	1.5 E-5	1/C
Temperatura al raggio minimo	T_Rmin	520	С
Temperatura al raggio massim	no T_Rmax	600	С
Tempertura di riferimento	T_rif	20	С

Rm

Tensione di rottura

Un supporto è formato da quattro (4) elementi sferici di diametro d = 10 mm. Le sedi degli elementi sferici sono scanalature con inclinazione a = 45°. Slitta e sfere sono fatte dello stesso materiale (acciaio).

- Calcolate la forza massima F_N, che può essere applicata prima dell'incipiente snervamento.
- Ogni singolo contatto può essere assimilato a una rigidezza di contatto $k_{\rm C}$. Calcolate questa rigidezza nelle condizioni imposte dalla forza massima $F_{\rm Nymax}$.

Materiale: Rp0.2 = 1500 MPa; E = 200 GPa; n = 0.3.

$$p = \frac{3}{2} \frac{F}{\pi \ a \ b} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$$

$$cos(\tau) = \frac{|\alpha_X - \alpha_Y + \beta_X - \beta_Y|}{\alpha_X + \alpha_Y + \beta_X + \beta_Y}$$

$$f = \sqrt[3]{\frac{3}{2} \frac{F}{2(\alpha_X + \alpha_Y + \beta_X + \beta_Y)} \left(\frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}\right)}$$

