```
import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import scipy.stats as st
         from sklearn.preprocessing import MinMaxScaler, StandardScaler
         from statsmodels.graphics.gofplots import qqplot
         import re
         import os
         import warnings
         warnings.simplefilter('ignore')
         os.chdir(r"D:\SCALERES\JupuyterNotebook\Delhivery")
        df = pd.read_csv('delhivery_data.csv')
        df.sample(5)
In [4]:
Out[4]:
                    data trip_creation_time
                                              route_schedule_uuid route_type
                                                                                        trip_uuid
                                                                                                   source_center
                                                                                                                           source_name dest
                                          thanos::sroute:bc7dbb1d-
                               2018-09-23
                                                                                                                    Gurgaon Bilaspur HB
         122606 training
                                                                                                 IND00000ACB
                                                 9379-4674-b8d3-
                                                                                                                                          11
                          14:18:13.981195
                                                                             15377122939807922
                                                                                                                              (Haryana)
                                                       f9c3b96...
                                          thanos::sroute:4029a8a2-
                               2018-09-15
                                                                                                                    Gurgaon Bilaspur HB
          29825 training
                                                                                                 IND00000ACB
                                                  6c74-4b7e-a6d8-
                          20:09:00.426097
                                                                                                                              (Haryana)
                                                        f9e069f...
                                          thanos::sroute:38b8257c-
                               2018-10-03
                                                                                                                  Neemuch_KarjuDPP_D
                                                                                                 IND458664AAA
          17283
                                                  1dae-4f7a-b762-
                                                                                                                                          I١
                     test
                          00:01:00.774939
                                                                             153852486077464126
                                                                                                                      (Madhya Pradesh)
                                                       009145e...
                                           thanos::sroute:caf62782-
                               2018-09-28
                                                                                                                 Hyderabad Shamshbd H
                                                  95cc-4d47-a071-
                                                                                                 IND501359AAE
          46455
                     test
                          22:25:15.504856
                                                                                                                            (Telangana)
                                                       d1c7038...
```

f9e069f...

34713 training

Basic data cleaning and exploration

```
In [5]: df.shape
# There are 1,44,867 rows and 24 columns in the dataset
Out[5]: (144867, 24)
```

• There are 1,44,867 rows and 24 columns in the dataset

• From the description of dataset, there are some unknown columns, dropping the unknown columns

```
In [8]: # drooping unknown columns from the dataset
    df.drop(columns=unknown_columns, inplace = True)
```

```
In [9]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 144867 entries, 0 to 144866
       Data columns (total 19 columns):
            Column
                                           Non-Null Count Dtype
                                           -----
            _____
        Ω
            data
                                           144867 non-null object
           trip creation time
                                          144867 non-null object
        2 route schedule uuid
                                          144867 non-null object
                                          144867 non-null object
            route type
            trip uuid
                                          144867 non-null object
            source center
                                         144867 non-null object
            source name
                                          144574 non-null object
            destination center
                                          144867 non-null object
            destination name
                                          144606 non-null object
            od start time
                                          144867 non-null object
        10 od end time
                                          144867 non-null object
                                          144867 non-null float64
        11 start scan to end scan
        12 actual distance to destination 144867 non-null float64
        13 actual time
                                          144867 non-null float64
        14 osrm time
                                          144867 non-null float64
        15 osrm distance
                                          144867 non-null float64
        16 segment_actual_time
                                         144867 non-null float64
        17 segment_osrm_time
                                         144867 non-null float64
        18 segment_osrm_distance
                                         144867 non-null float64
       dtypes: float64(8), object(11)
       memory usage: 21.0+ MB
In [10]: # converting the columns with two groups into Categorical
        df['data'] = df['data'].astype('category')
        df['route_type'] = df['route_type'].astype('category')
In [11]: df['od_start_time'] = pd.to_datetime(df['od_start_time'])
        df['od_end_time'] = pd.to_datetime(df['od_end_time'])
        df['trip_creation_time'] = pd.to_datetime(df['trip_creation_time'], format='mixed')
In [12]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144867 entries, 0 to 144866

Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	data	144867 non-null	 L category
1	trip_creation_time		datetime64[ns]
2	route_schedule_uuid	144867 non-nuli	l object
3	route_type	144867 non-nul:	=
4	trip_uuid	144867 non-nul:	l object
5	source_center	144867 non-nul	l object
6	source_name	144574 non-nul:	l object
7	destination_center	144867 non-nul:	l object
8	destination_name	144606 non-nul	l object
9	od_start_time	144867 non-nul:	datetime64[ns]
10	od_end_time	144867 non-nul:	datetime64[ns]
11	start_scan_to_end_scan	144867 non-nul:	l float64
12	actual_distance_to_destination	144867 non-nul:	l float64
13	actual_time	144867 non-nul:	l float64
14	osrm_time	144867 non-nul:	l float64
15	osrm_distance	144867 non-nul:	l float64
16	segment_actual_time	144867 non-nul:	l float64
17	segment_osrm_time	144867 non-nul:	l float64
18	segment_osrm_distance	144867 non-nul:	l float64
dtyp	es: category(2), datetime64[ns](3), float64(8),	object(6)

In [13]: df.describe().T

memory usage: 19.1+ MB

Out[13]:

	count	mean	min	25%	50%	75%
trip_creation_ti	me 144867	2018-09-22 13:34:23.659819264	2018-09-12 00:00:16.535741	2018-09-17 03:20:51.775845888	2018-09-22 04:24:27.932764928	2018-09-27 17:57:56.350054912
od_start_ti	me 144867	2018-09-22 18:02:45.855230720	2018-09-12 00:00:16.535741	2018-09-17 08:05:40.886155008	2018-09-22 08:53:00.116656128	2018-09-27 22:41:50.285857024
od_end_ti	me 144867	2018-09-23 10:04:31.395393024	2018-09-12 00:50:10.814399	2018-09-18 01:48:06.410121984	2018-09-23 03:13:03.520212992	2018-09-28 12:49:06.054018048

	start_scan_to_end	d_scan	144867.	0 961.262986	20.0	16	1.0 449.0	1634.0
	actual_distance_to_desti	ination	144867.	0 234.073372	9.000045	23.3558	74 66.126571	286.708875
	actua	al_time	144867.	0 416.927527	9.0	5	1.0 132.0	513.0
	osm	m_time	144867.	0 213.868272	6.0	2	7.0 64.0	257.0
	osrm_di	stance	144867.	0 284.771297	9.0082	29.91	47 78.5258	343.19325
	segment_actua	al_time	144867.	0 36.196111	-244.0	20	0.0 29.0	40.0
	segment_osrn	m_time	144867.	0 18.507548	0.0	1	1.0 17.0	22.0
	segment_osrm_dis	stance	144867.	0 22.82902	0.0	12.07	01 23.513	27.81325
In [14]:	df.describe(include	e= 'ob	ject').	T				
Out[14]:		count	unique		top	freq		
	route_schedule_uuid 14	44867	1504	thanos::sroute:4029a8a2	-6c74-4b7e-a6d8-f9e069f	. 1812		
	trip_uuid 1	44867	14817		trip-153811219535896559	9 101		
	source_center 1	44867	1508		IND00000ACE	3 23347		
	source_name 1	44574	1498	Gurga	on_Bilaspur_HB (Haryana)	23347		
	destination_center 14	44867	1481		IND000000ACE	3 15192		

Gurgaon_Bilaspur_HB (Haryana) 15192

Handle missing values

destination_name 144606 1468

```
Out[15]: data
                                             0
         trip_creation_time
                                             0
         route_schedule_uuid
                                             0
         route type
         trip_uuid
                                             0
                                             0
         source_center
         source name
                                           293
         destination_center
                                             0
         destination name
                                           261
         od_start_time
                                             0
         od_end_time
                                             0
         start scan to end scan
         actual_distance_to_destination
         actual_time
         osrm_time
                                             0
         osrm distance
         segment_actual_time
                                             0
         segment osrm time
         segment osrm distance
         dtype: int64
In [16]: df.isna().sum().sum()
```

- total of 554 null values are in the dataset in Source columns and destination columns and They are contributing below 5 %
- Dropping the null value rows from the dataset

```
In [17]: # Dropping the data Missing values from Dataset
    missing_index = df[df['source_name'].isna() | df['destination_name'].isna()].index
    df.drop(missing_index, axis= 0, inplace=True)
In [18]: # after Dropping the Null values
    df.isna().sum().sum()
```

Out[18]: 0

Out[16]: 554

Aggregation on columns

```
In [19]: numerical_cols = df.dtypes[df.dtypes == 'float']
    categorical_col = df.dtypes[df.dtypes == 'category']
```

Groupby and Aggregations Trip uuid, Source ID and Destination ID

```
groups = ['trip_uuid', 'source_center', 'destination_center'] # list of columns for groupping
agg_func = {'data' : 'first',
             'route type' : 'first',
             'trip_creation_time' : 'first',
              'source name' : 'first',
              'destination name' : 'last',
              'od_start_time' : 'first',
              'od end time' : 'first',
              'start scan to end scan' : 'first',
              'actual_distance_to_destination' : 'last',
              'actual_time' : 'last',
              'osrm time' : 'last',
              'osrm_distance' : 'last',
              'segment_actual_time' : 'sum',
              'segment_osrm_time' : 'sum',
              'seqment_osrm_distance' : 'sum'
df_agg = df.groupby(groups).agg(agg_func).reset_index()
df_agg.sample(5)
```

```
2018-09-19
                                                                                                            Kittur_ColageRD_D
           9453
                                     IND591115AAB
                                                     IND590016AAA training
                                                                                 FTL
                                                                                                                              Belgaum D
                 153736774425928724
                                                                                       14:35:44.259626
                                                                                                                   (Karnataka)
                                                                                           2018-10-03
                                                                                                          Nazirpur_Central_D_1
                                                                                                                                 Nowda
          26070
                                     IND741165AAB
                                                     IND742121AAB
                                                                               Carting
                                                                       test
                 153860695642073919
                                                                                       22:49:16.421019
                                                                                                                (West Bengal)
                                                                                           2018-09-30
                                                                                                         Gorakhpur Matriprm IP Sikandarpur
          22842
                                     IND273014AAB
                                                     IND277303AAC
                                                                       test
                                                                                 FTL
                 153834469166488572
                                                                                       21:58:11.665206
                                                                                                               (Uttar Pradesh)
                                                                                            2018-09-22 LakhimpurN SashPhkn D
                                                                                                                                 Dhemai
          13355
                                     IND787001AAA
                                                     IND787057AAA training
                                                                                 FTL
                 153761003705592923
                                                                                       09:53:57.056177
                                                                                                                     (Assam)
In [21]: df_agg['od_total_time'] = df_agg['od_end_time'] - df_agg['od_start_time']
          df agg.drop(columns = ['od end time', 'od start time'], inplace = True)
          df agg['od total time'] = df agg['od total time'].apply(lambda x : round(x.total seconds() / 60.0, 2))
          df_agg['od_total_time'].head()
Out[21]: 0
               1260.60
          1
               999.51
          2
                58.83
          3
               122.78
                 834.64
```

Aggregation on the basis of just Trip_uuid

Name: od_total_time, dtype: float64

```
'osrm_time' : 'sum',
    'osrm_distance' : 'sum',
    'segment_actual_time' : 'sum',
    'segment_osrm_time' : 'sum',
    'segment_osrm_distance' : 'sum'
}

df_aggid = df_agg.groupby('trip_uuid').agg(agg_func).reset_index()
df_aggid.head()
```

Out [22]

destination	source_name	trip_creation_time	route_type	data	destination_center	source_center	trip_uuid	•
Kanpur_Cer (Uttar	Kanpur_Central_H_6 (Uttar Pradesh)	2018-09-12 00:00:16.535741	FTL	training	IND209304AAA	IND209304AAA	trip- 153671041653548748	0
Doddablpur_Chik (Κε	Doddablpur_ChikaDPP_D (Karnataka)	2018-09-12 00:00:22.886430	Carting	training	IND561203AAB	IND561203AAB	trip- 153671042288605164	1
Gurgaon_Bila (I	Gurgaon_Bilaspur_HB (Haryana)	2018-09-12 00:00:33.691250	FTL	training	IND000000ACB	IND00000ACB	trip- 153671043369099517	2
Mumbai_M (Mah	Mumbai Hub (Maharashtra)	2018-09-12 00:01:00.113710	Carting	training	IND401104AAA	IND400072AAB	trip- 153671046011330457	3
Sandur_WrdN (Κε	Bellary_Dc (Karnataka)	2018-09-12 00:02:09.740725	FTL	training	IND583119AAA	IND583101AAA	trip- 153671052974046625	4

Feature Engineering

• Function for extracting States

```
In [23]: def get_state(name):
    '''The function helps to extract states names from the columns'''
    try:
```

```
if pd.isna(name):
    return None

pattern = r"\([A-Za-z &]+\s?\w+\)"

match = re.findall(pattern, str(name))

if match:
    state = match[0].replace("(", "").replace(")", "")
    return state

return None

except exception as e:
    print(f'The error is {e}')
```

Function for extracting cities

```
In [24]: def get_city(name):
             '''this function helps to split the city name form the columns '''
             if pd.isna(name):
                 return None
             pattern = r"\([A-Za-z &]+\s?\w+\)"
             matches = re.findall(pattern, str(name))
             if not matches:
                 return name
             state = matches[0]
             city_place_code = name.replace(state, '').strip()
             city_place_code_parts = city_place_code.split("_")
             if len(city_place_code_parts) == 1:
                 city = city_place_code_parts[0].strip()
             elif len(city_place_code_parts) == 2:
                 city = city_place_code.strip()
             elif len(city_place_code_parts) in [3, 4]:
                 city = city_place_code_parts[0].strip()
             else:
                 city = city_place_code
             return city
```

Function for extracting places

```
In [25]:

def get_place(name):
    '''This function helps in splitting the places of from the passied columns '''
    pattern="\([A-Za-z &]+\s?\w+\)"
    try:
        state=re.findall(pattern, name)[0]
        city_place_code=name.replace(state,'')
        city_place_code_parts=city_place_code.split("_")
        if len(city_place_code_parts)==3 or len(city_place_code_parts)==4:
            place=city_place_code_parts[1].strip()
        else:
            place=None
        return place
        except Exception as exp:
        return None
```

· Function for extracting codes

```
In [26]: def get_code(name):
             '''This Function helps for splitting code from the columns'''
             pattern="\([A-Za-z &]+\s?\w+\)"
             try:
                 state=re.findall(pattern, name)[0]
                 city_place_code=name.replace(state,'')
                 city_place_code_parts=city_place_code.split("_")
                 if len(city_place_code_parts) == 3 :
                     code=city_place_code_parts[2].strip()
                 elif len(city_place_code_parts) == 4:
                     code="_".join(city_place_code_parts[2:]).strip()
                 else:
                     code=None
                 return code
             except Exception as exp:
                 return None
```

Applying the functions

Applying the on Source Column

```
In [27]: df_aggid['source_state'] = df_aggid['source_name'].map(get_state)
         df_aggid['source_state'].sample(5)
Out[27]: 3201
                       Haryana
         551
                   West Bengal
         7905
                 Uttar Pradesh
         4787
                     Karnataka
         8214
                 Maharashtra
         Name: source_state, dtype: object
In [28]: df_aggid['source_city'] = df_aggid['source_name'].map(get_city)
         df_aggid['source_city'].sample(5)
Out [28]: 12935
                  Bangalore
         8421
                  Thuraiyur
         12862
                  Kurnool
         2046
                  Bengaluru
         5155
                     Hoogly
         Name: source_city, dtype: object
In [29]: df_aggid['source_place'] = df_aggid['source_name'].map(get_place)
         df_aggid['source_place'].sample(5)
Out[29]: 13639
                      None
         6221
                     Alwal
         6060
                  Trnsport
         14099
                      None
         10442
                     Bazar
         Name: source_place, dtype: object
In [30]: df_aggid['source_code'] = df_aggid['source_name'].map(get_code)
         df_aggid['source_code'].sample(5)
```

```
Out[30]: 12901
                 I
         5217
                   HB
         2245
                 ΙP
         5595
                  DPC
         7573
                   ΗВ
         Name: source_code, dtype: object
         on Destination column
In [31]: df_aggid['destination_state'] = df_aggid['destination_name'].map(get_state)
        df_aggid['destination_state'].head()
Out[31]: 0
              Uttar Pradesh
         1
                  Karnataka
                   Haryana
         3
               Maharashtra
                  Karnataka
         Name: destination_state, dtype: object
In [32]: df_aggid['destination_city'] = df_aggid['destination_name'].map(get_city)
        df_aggid['destination_city'].head()
Out[32]: 0
                  Kanpur
         1
              Doddablpur
                 Gurgaon
         3
                 Mumbai
                  Sandur
         Name: destination_city, dtype: object
In [33]: df_aggid['destination_place'] = df_aggid['destination_name'].map(get_place)
        df_aggid['destination_place'].head()
            Central
Out[33]: 0
         1 ChikaDPP
            Bilaspur
         3
              MiraRd
              WrdN1DPP
         Name: destination_place, dtype: object
```

```
In [34]: df_aggid['destination_code'] = df_aggid['destination_name'].map(get_code)
          df_aggid['destination_code'].head()
Out[34]: 0
                Н 6
          1
                  D
          2
                 HB
           3
                 ΙP
                  D
          Name: destination_code, dtype: object
         df_aggid.head(5)
                        trip uuid
                                   source_center destination_center
                                                                     data route_type trip_creation_time
                                                                                                                source_name
                                                                                                                                     destination
                                                                                          2018-09-12
                                                                                                          Kanpur Central H 6
                                                                                                                                  Kanpur Cer
                                  IND209304AAA
                                                   IND209304AAA training
                                                                                FTL
             153671041653548748
                                                                                      00:00:16.535741
                                                                                                               (Uttar Pradesh)
                                                                                                                                      (Uttar
                                                                                          2018-09-12
                                                                                                      Doddablpur ChikaDPP D
                             trip-
                                                                                                                              Doddablpur Chik
                                                   IND561203AAB training
                                  IND561203AAB
                                                                             Carting
             153671042288605164
                                                                                      00:00:22.886430
                                                                                                                  (Karnataka)
                                                                                                                                          (Ka
                                                                                          2018-09-12
                                                                                                         Gurgaon_Bilaspur_HB
                                                                                                                                 Gurgaon Bila
                                  IND000000ACB
                                                   IND00000ACB training
                                                                                FTL
             153671043369099517
                                                                                      00:00:33.691250
                                                                                                                   (Haryana)
                                                                                                                 Mumbai Hub
                                                                                                                                   Mumbai M
                                                                                          2018-09-12
                                  IND400072AAB
                                                                             Carting
                                                   IND401104AAA training
             153671046011330457
                                                                                      00:01:00.113710
                                                                                                                (Maharashtra)
                                                                                                                                        (Mah
                                                                                                                                Sandur WrdN
                                                                                          2018-09-12
                                  IND583101AAA
                                                                                                        Bellary Dc (Karnataka)
                                                   IND583119AAA training
                                                                                FTL
             153671052974046625
                                                                                      00:02:09.740725
                                                                                                                                          (Ka
         5 rows × 25 columns
         df_aggid['year'] = (df['trip_creation_time'].dt.year)
          df_aggid['year'].head()
Out[36]: 0
                2018.0
          1
                2018.0
```

2018.0

```
3 2018.0
             2018.0
         Name: year, dtype: float64
In [37]: df_aggid['month'] = df['trip_creation_time'].dt.month_name()
        df_aggid['month'] .head()
Out[37]: 0
            September
        1 September
         2 September
         3 September
             September
         Name: month, dtype: object
In [38]: df_aggid['week'] = df['trip_creation_time'].dt.isocalendar().week
        df_aggid['week'].head()
Out[38]: 0
             38
         1
             38
         2
            38
         3
            38
             38
         Name: week, dtype: UInt32
In [39]: df_aggid['day'] = (df['trip_creation_time'].dt.day).astype(int)
        df_aggid['day'].head()
Out[39]: 0
            20.0
         1 20.0
         2 20.0
         3 20.0
             20.0
         Name: day, dtype: float64
In [40]: df_aggid['created_hour'] = df['trip_creation_time'].dt.hour
        df_aggid['created_hour'].head()
Out[40]: 0
            2.0
             2.0
         1
             2.0
             2.0
```

4 2.0

Name: created_hour, dtype: float64

In [41]: df_aggid.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14787 entries, 0 to 14786
Data columns (total 30 columns):

Data	Columns (colar 30 Columns):		
#	Column	Non-Null Count	Dtype
0	trip_uuid	14787 non-null	2
1	source_center	14787 non-null	object
2	destination_center	14787 non-null	object
3	data	14787 non-null	category
4	route_type	14787 non-null	category
5	trip_creation_time	14787 non-null	datetime64[ns]
6	source_name	14787 non-null	object
7	destination_name	14787 non-null	object
8	od_total_time	14787 non-null	float64
9	start_scan_to_end_scan	14787 non-null	float64
10	actual_distance_to_destination	14787 non-null	float64
11	actual_time	14787 non-null	float64
12	osrm_time	14787 non-null	float64
13	osrm_distance	14787 non-null	float64
14	segment_actual_time	14787 non-null	float64
15	segment_osrm_time	14787 non-null	float64
16	segment_osrm_distance	14787 non-null	float64
17	source_state	14787 non-null	object
18	source_city	14787 non-null	object
19	source_place	12875 non-null	object
20	source_code	12875 non-null	object
21	destination_state	14787 non-null	object
22	destination_city	14787 non-null	object
23	destination_place	12795 non-null	object
24	destination_code	12795 non-null	object
25	year	14689 non-null	float64
26	month	14689 non-null	object
27	week	14689 non-null	UInt32
28	day	14689 non-null	float64
29	created_hour	14689 non-null	float64

dtypes: UInt32(1), category(2), datetime64[ns](1), float64(12), object(14)

memory usage: 3.1+ MB

In [42]: df_aggid['time_range'] = ((df ['od_end_time'] - df['od_start_time']).dt.total_seconds() / 3600).round(2)

In [43]: df.describe().T

Out[43]:

: 		count	mean	min	25%	50%	75%
	trip_creation_time	144316	2018-09-22 13:05:09.454117120	2018-09-12 00:00:16.535741	2018-09-17 02:46:11.004421120	2018-09-22 03:36:19.186585088	2018-09-27 17:53:19.027942912
	od_start_time	144316	2018-09-22 17:32:42.435769344	2018-09-12 00:00:16.535741	2018-09-17 07:37:35.014584832	2018-09-22 07:35:23.038482944	2018-09-27 22:01:30.861209088
	od_end_time	144316	2018-09-23 09:36:54.057172224	2018-09-12 00:50:10.814399	2018-09-18 01:29:56.978912	2018-09-23 02:49:00.936600064	2018-09-28 12:13:41.675546112
	start_scan_to_end_scan	144316.0	963.697698	20.0	161.0	451.0	1645.0
actu	ual_distance_to_destination	144316.0	234.708498	9.000045	23.352027	66.135322	286.919294
	actual_time	144316.0	417.996237	9.0	51.0	132.0	516.0
	osrm_time	144316.0	214.437055	6.0	27.0	64.0	259.0
	osrm_distance	144316.0	285.549785	9.0082	29.89625	78.6244	346.3054
	segment_actual_time	144316.0	36.175379	-244.0	20.0	28.0	40.0
	segment_osrm_time	144316.0	18.495697	0.0	11.0	17.0	22.0
	segment_osrm_distance	144316.0	22.818993	0.0	12.053975	23.5083	27.813325

In [44]: df.describe(include='object').T

Out [44]: count unique top freq

route_schedule_uuid	144316	1497	thanos::sroute:4029a8a2-6c74-4b7e-a6d8-f9e069f	1812
trip_uuid	144316	14787	trip-153837029526866991	101
source_center	144316	1496	IND000000ACB	23267
source_name	144316	1496	Gurgaon_Bilaspur_HB (Haryana)	23267
destination_center	144316	1466	IND000000ACB	15192
destination_name	144316	1466	Gurgaon_Bilaspur_HB (Haryana)	15192

Hypothesis Testing & Visual Analysis

Hypothesis Testing Frame Work

actual_time aggregated value and OSRM time aggregated value

Step 1: Set up Null Hypothesis

- Null Hypothesis (HO): The mean actual differnece between aggregated value and OSRM time aggregated value same
- ALternative Hypothesis (HA): The mean actual difference between aggregated value and OSRM time aggregated value holds significance different

Step-2: Checking for basic assumpitons for the hypothesis

- Distribution check using QQ Plot
- Homogeneity of Variances using Lavene's test

Step-3: Define Test statistics; Distribution of T under H0.

• If the assumptions of T Test are met then we can proceed performing T Test for independent samples else we will perform the non parametric test equivalent to T Test for independent sample i.e., Mann-Whitney U rank test for two independent samples.

Step: Compute the p-value and fix value of alpha.

• We set our alpha to be 0.05

Step-5: Compare p-value and alpha.

Based on p-value, we will accept or reject H0.

```
1. p-val > alpha : Accept H0
2. p-val < alpha : Reject H0</pre>
```

Creating custom Functions

```
In [45]: def stats_desc(col1, col2):
    """Returns the statistical description of the specified columns in the dataset."""
    return df_aggid[[col1, col2]].describe().T

In [46]: # plotting the Distributions for of the columns
    def plot_dist(col1, col2):
        """Returns the hist plotting of the specified columns in the dataset."""
```

```
try:
                 plt.figure(figsize=(12, 6))
                 # first plot
                 plt.subplot(121)
                 print(sns.histplot(df_aggid[col1], bins=100,element = 'step', color = 'green'))
                 # Second Plot
                 plt.subplot(122)
                 print(sns.histplot(df_aggid[col2], bins=100,element = 'step', color = 'pink'))
                 plt.tight_layout()
                 plt.show()
             except Exception as e:
                 print(f'The Error caused due to {e}')
In [47]: # Distribution check using QQ Plot
         def qq_plot(col1, col2):
             """Returns the QQ plotting of the specified columns in the dataset."""
             try:
                 plt.figure(figsize=(12, 6))
                 plt.suptitle(f'QQ plots for {col1} and {col2}')
                 # first plot
                 plt.subplot(121)
                 print(st.probplot(df_aggid[col1], plot = plt, dist = 'norm'))
                 plt.title(f'QQ plot for {col1}')
                 # Second Plot
                 plt.subplot(122)
                 print(st.probplot(df_aggid[col2], plot = plt, dist = 'norm'))
                 plt.title(f'QQ plot for {col2}')
                 plt.tight_layout()
                 plt.show()
```

```
except Exception as e:
                 print(f'The Error caused due to {e}')
In [48]: # Shapiro-Walik test for normality
         def shapiro_test(col1, col2):
             """Performs the Shapiro-Wilk test for normality on a 200-row sample of the specified columns in the dataset."""
             sample1 = df_aggid[col1].sample(200)
             sample2 = df_aggid[col2].sample(200)
             #testing for coll
             t_stat, p_value = st.shapiro(sample1)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel1 = ('The sample does not follow normal distribution')
             else:
                 rel1 = ('The sample follows normal distribution')
             # tetsing for col2
             t_stat, p_value = st.shapiro(sample2)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel2 = ('The sample does not follow normal distribution')
             else:
```

```
def levene_test(col1, col2):
    """Performs Levene's test for equal variances on a sample of the specified columns in the dataset."""
    stat_val, p_value = st.levene(df_aggid[col1],df_aggid[col2])
    print('p_value', p_value)
    alpha = 0.05
    if p_value < alpha:
        rel = 'The samples do not have Homogenous Variance'</pre>
```

rel2 = ('The sample follows normal distribution')

return (rel1, rel2)

```
else:
    rel = 'The samples have Homogenous Variance'
return rel
```

Hypothesis testing/ Visual analysis between od_total_time and start_scan_to_end_scan

Step 1: Set up the Hypotheses

Null Hypothesis (H₀):

The mean difference between the od_total_time (aggregated) and start_scan_to_end_scan (aggregated) is **not significantly different** (i.e., the means are equal).

• Alternative Hypothesis (H₁):

The mean difference between the od_total_time (aggregated) and start_scan_to_end_scan (aggregated) is significantly different.

Step 2: Check Assumptions for the Hypothesis Test

- 1. Normality Check
 - Use a Q-Q Plot to visually assess whether the differences follow a normal distribution.
 - Optionally confirm with a Shapiro-Wilk Test.
- 2. Homogeneity of Variance
 - Use Levene's Test to check if the variances between the two groups are equal.

Step 3: Choose the Appropriate Statistical Test

• If the assumptions of normality and equal variances are met:

- Perform an Independent Samples T-Test.
- If assumptions are violated:
 - Use the Mann-Whitney U Test, the non-parametric alternative to the T-Test for independent samples.

Step 4: Set the Significance Level (α)

• Set $\alpha = 0.05$

Step 5: Make a Decision Based on the p-value

- If p-value > α → Fail to reject H₀ (no significant difference)
- If p-value < α → Reject H₀ (significant difference exists)

```
('od total time', 'start scan to end scan')
         df_aggid[['od_total_time', 'start_scan_to_end_scan']].head()
            od_total_time start_scan_to_end_scan
          0
                 2260.11
                                       2259.0
                 181.61
         1
                                        180.0
          2
                 3934.36
                                       3933.0
          3
                 100.49
                                        100.0
                 718.34
          4
                                        717.0
In [51]: stats_desc('od_total_time', 'start_scan_to_end_scan')
                                                                              50%
                                                                                      75%
                                 count
                                                         std
                                                               min
                                                                       25%
                                            mean
                                                                                               max
```

 od_total_time
 14787.0
 530.313468
 658.415416
 23.46
 149.695
 279.71
 633.535
 7898.55

 start_scan_to_end_scan
 14787.0
 529.429025
 658.254936
 23.00
 149.000
 279.00
 632.000
 7898.00

```
In [52]: plot_dist ('od_total_time', 'start_scan_to_end_scan')
```

Axes(0.125,0.11;0.352273x0.77) Axes(0.547727,0.11;0.352273x0.77)

768618, 530.3134679110028, 0.8168212377722497))
((array([-3.90622638, -3.68627647, -3.56575533, ..., 3.56575533, 3.68627647, 3.90622638]), array([23., 26., 26., ..., 6495., 7458., 7898.])), (537.6611256744281, 529.4290254953675, 0.8166201568117032))

QQ plots for od total time and start scan to end scan

p_value 7.526206717878174e-19
p_value 7.264394651288022e-21

Conclusion from the Above Analysis

- Histogram Plot: Indicates that the data is right-skewed.
- Q-Q Plot: Deviations from the reference line suggest the data does not follow a normal (Gaussian) distribution.
- Shapiro-Wilk Test: The sample does not follow a normal distribution (p-value < 0.05).
- Levene's Test: The samples do not have homogeneous variances (p-value < 0.05).

Therefore:

Since the assumptions for an Independent Samples T-Test (normality and equal variances) are not met, we cannot proceed with a parametric T-Test. Instead, a non-parametric alternative such as the Mann-Whitney U Test should be used.

```
In [56]: # boxcox transformation

def boxcox_test(col1, col2):
    """Applies Box-Cox transformation to normalize the specified column(s) in the dataset."""

# Apply Box-Cox to both columns
    transformed1 = st.boxcox(df_aggid[col1])[0]
    transformed2 = st.boxcox(df_aggid[col2])[0]

# Convert to DataFrames with column names
    transformed1 = pd.DataFrame(transformed1, columns=[f"{col1}_boxcox"])
    transformed2 = pd.DataFrame(transformed2, columns=[f"{col2}_boxcox"])

# Combine side by side
    return pd.concat([transformed1, transformed2], axis=1)

In [57]: box_val = boxcox_test('od_total_time', 'start_scan_to_end_scan')
    box_val.head()

Out[57]: od total time boxcox start scan to end scan boxcox
```

	1	3.695012	3.706278			
	2	4.901784	4.932104			
	3	3.397090	3.407413			
	4	4.298992	4.320408			
:	# Shapiro-W	ilk test for normality	,			
	def shapiro	_test_tt(col1, col2):				
		= box_val[col1].sample	e(200)			
	=	= box_val[col2].sample				
		g for coll				
		<pre>p_value = st.shapiro(:</pre>	sample1)			
	_	lue < 0.05:	<i>-</i>			
	else:	1 = ('The sample does n	not follow norma	al distribution.)		
		1 = ('The sample follow	ws normal distr	bution!)		
	101.	1 (Ino Sample lelle	Hormar arour	,		
	# tetsi	ng for col2				
	t_stat,	<pre>p_value = st.shapiro(s</pre>	sample2)			
		lue < 0.05:				
		2 = ('The sample does i	not follow norma	al distribution')		
	else:					
		2 = ('The sample follow	ws normal distr	ibution')		
	return	(rel1, rel2)				
]:	shapiro_test	t_tt('od_total_time_bo:	xcox', 'start_	scan_to_end_scan_boxcox'))	
)]:	('The sampl	e follows normal distr	cibution'.			
. •	=	e follows normal distr				
	_		eyu(df_aggid['o	d_total_time'], df_aggid	['start_scan_to_end_s	can'])
	=	<pre>lue :',p_value)</pre>				
	if p_value	< 0.05:				

4.748396

0

4.720819

```
print('Samples are significantly different')
else:
    print('Samples are not significantly different')
```

P-value: 0.780940379505003
Samples are not significantly different

Since the p-value is greater than the significance level (α), we fail to reject the null hypothesis. Therefore, it can be concluded that od_total_time and start_scan_to_end_scan are statistically similar.

Hypothesis testing/ visual analysis between actual_time aggregated value and OSRM time aggregated value

Step 1: Set up the Hypotheses

Null Hypothesis (H₀):

The mean difference between the actual time (aggregated) and OSRM time (aggregated) is **not significantly different** (i.e., the means are equal).

• Alternative Hypothesis (H₁):

The mean difference between the actual time (aggregated) and OSRM time (aggregated) is significantly different.

Step 2: Check Assumptions for the Hypothesis Test

- 1. Normality Check
 - Use a Q-Q Plot to visually assess whether the differences follow a normal distribution.
 - Optionally confirm with a Shapiro-Wilk Test.
- 2. Homogeneity of Variance

• Use Levene's Test to check if the variances between the two groups are equal.

Step 3: Choose the Appropriate Statistical Test

- If the assumptions of normality and equal variances are met:
 - Perform an Independent Samples T-Test.
- If assumptions are violated:
 - Use the Mann-Whitney U Test, the non-parametric alternative to the T-Test for independent samples.

Step 4: Set the Significance Level (α)

• Set $\alpha = 0.05$

Step 5: Make a Decision Based on the p-value

- If p-value > α → Fail to reject H₀ (no significant difference)
- If p-value $< \alpha \rightarrow \text{Reject H}_0$ (significant difference exists)

Conclusion from the Above Analysis

- Histogram Plot: Indicates that the data is right-skewed.
- Q-Q Plot: Deviations from the reference line suggest the data does not follow a normal (Gaussian) distribution.
- Shapiro-Wilk Test: The sample does not follow a normal distribution (p-value < 0.05).
- Levene's Test: The samples do not have homogeneous variances (p-value < 0.05).

Therefore:

Since the assumptions for an Independent Samples T-Test (normality and equal variances) are not met, we cannot proceed with a parametric T-Test. Instead, a non-parametric alternative such as the Mann-Whitney U Test should be used.

```
In [66]: # boxcox transformation
         def boxcox test(col1, col2):
             """Applies Box-Cox transformation to normalize the specified column(s) in the dataset."""
             # Apply Box-Cox to both columns
             transformed1 = st.boxcox(df_aggid[col1])[0]
             transformed2 = st.boxcox(df_aggid[col2])[0]
             # Convert to DataFrames with column names
             transformed1 = pd.DataFrame(transformed1, columns=[f"{col1}_boxcox"])
             transformed2 = pd.DataFrame(transformed2, columns=[f"{col2}_boxcox"])
             # Combine side by side
             return pd.concat([transformed1, transformed2], axis=1)
In [67]: boxcox_values = boxcox_test('actual_time', 'osrm_time')
         boxcox values.head()
            actual time boxcox osrm time boxcox
         0
                    4.363873
                                    3.520374
                    3.448421
                                    2.774050
```

```
2 4.590560 3.716826
3 3.012351 2.052965
4 3.821448 2.980870
```

'The sample does not follow normal distribution')

```
In [68]: # Shapiro-Wilk test for normality
         def shapiro test1(col1, col2):
             sample1 = boxcox values[col1].sample(200)
             sample2 = boxcox values[col2].sample(200)
             #testing for coll
             t stat, p value = st.shapiro(sample1)
             if p value < 0.05:
                 rel1 = ('The sample does not follow normal distribution')
             else:
                 rel1 = ('The sample follows normal distribution')
             # tetsing for col2
             t_stat, p_value = st.shapiro(sample2)
             if p value < 0.05:
                 rel2 = ('The sample does not follow normal distribution')
             else:
                 rel2 = ('The sample follows normal distribution')
             return (rel1, rel2)
In [69]: shapiro_test1('actual_time_boxcox', 'osrm_time_boxcox')
Out[69]: ('The sample follows normal distribution',
```

Since the samples violate the assumptions required for a T-Test (normality and homogeneity of variances), it is not appropriate to use a parametric test in this case. Therefore, we proceed with the non-parametric alternative — the Mann-Whitney U Rank Test — for comparing two independent samples.

```
In [70]: t_stat, p_value = st.mannwhitneyu(df_aggid['actual_time'], df_aggid['osrm_time'])
    print('p-value', p_value)
    if p_value < 0.05:
        print('Samples are significantly different')
    else:
        print('Samples are not significantly different')

p-value 0.0
Samples are significantly different</pre>
```

Hypothesis testing/ visual analysis between actual_time aggregated value and segment actual time aggregated value

Step 1: Set up the Hypotheses

• Null Hypothesis (H₀):

The mean difference between the actual time (aggregated) and segment actual time (aggregated) is **not significantly different** (i.e., the means are equal).

Alternative Hypothesis (H₁):

The mean difference between the actual time (aggregated) and segment actual time (aggregated) is significantly different.

Step 2: Check Assumptions for the Hypothesis Test

- 1. Normality Check
 - Use a Q-Q Plot to visually assess whether the differences follow a normal distribution.
 - Optionally confirm with a Shapiro-Wilk Test.
- 2. Homogeneity of Variance
 - Use Levene's Test to check if the variances between the two groups are equal.

Step 3: Choose the Appropriate Statistical Test

- If the assumptions of normality and equal variances are met:
 - Perform an Independent Samples T-Test.
- If assumptions are violated:
 - Use the Mann-Whitney U Test, the non-parametric alternative to the T-Test for independent samples.

Step 4: Set the Significance Level (α)

• Set $\alpha = 0.05$

Step 5: Make a Decision Based on the p-value

- If p-value > $\alpha \rightarrow$ Fail to reject H₀ (no significant difference)
- If p-value < α → Reject H₀ (significant difference exists)

```
In [71]: df_aggid[['trip_uuid', 'actual_time', 'segment_actual_time']].head()
                            trip_uuid actual_time segment_actual_time
          0 trip-153671041653548748
                                         1562.0
                                                             1548.0
          1 trip-153671042288605164
                                          143.0
                                                              141.0
          2 trip-153671043369099517
                                         3347.0
                                                             3308.0
          3 trip-153671046011330457
                                                               59.0
                                           59.0
          4 trip-153671052974046625
                                           341.0
                                                              340.0
```

 out [72]:
 count
 mean
 std
 min
 25%
 50%
 75%
 max

 actual_time
 14787.0
 356.306012
 561.517936
 9.0
 67.0
 148.0
 367.0
 6265.0

 segment_actual_time
 14787.0
 353.059174
 556.365911
 9.0
 66.0
 147.0
 364.0
 6230.0

In [73]: plot_dist('actual_time', 'segment_actual_time')

Axes(0.125,0.11;0.352273x0.77) Axes(0.547727,0.11;0.352273x0.77)

In [74]: qq_plot('actual_time', 'segment_actual_time')

```
((array([-3.90622638, -3.68627647, -3.56575533, ..., 3.56575533, 3.68627647, 3.90622638]), array([ 9., 9., 10., ..., 5465., 5804., 6265.])), (427.79748769756117, 35 6.30601203760045, 0.761693377848543))
((array([-3.90622638, -3.68627647, -3.56575533, ..., 3.56575533, 3.68627647, 3.90622638]), array([ 9., 9., 10., ..., 5427., 5768., 6230.])), (424.0536025033646, 353.05917359843096, 0.7620190480749739))
```

QQ plots for actual_time and segment_actual_time


```
In [76]: shapiro_test('actual_time', 'segment_actual_time')
```

Conclusion from the Above Analysis

- Histogram Plot: Indicates that the data is right-skewed.
- Q-Q Plot: Deviations from the reference line suggest the data does not follow a normal (Gaussian) distribution.
- Shapiro-Wilk Test: The sample does not follow a normal distribution (p-value < 0.05).
- Levene's Test: The samples do not have homogeneous variances (p-value < 0.05).

Therefore:

Since the assumptions for an Independent Samples T-Test (normality and equal variances) are not met, we cannot proceed with a parametric T-Test. Instead, a non-parametric alternative such as the Mann-Whitney U Test should be used.

0	4.363873	4.358946
1	3.448421	3.440757
2	4.590560	4.584911
3	3.012351	3.011471
4	3.821448	3.818755

```
In [78]: # Shapiro-Wilk test for normality
         def shapiro_test2(col1, col2):
             '''Performs the Shapiro-Wilk test for normality on a sample of the specified columns in the dataset. '''
             sample1 = boxcox_values2[col1].sample(200)
             sample2 = boxcox values2[col2].sample(200)
             #testing for coll
             t_stat, p_value = st.shapiro(sample1)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel1 = ('The sample does not follow normal distribution')
             else:
                 rel1 = ('The sample follows normal distribution')
             # tetsing for col2
             t_stat, p_value = st.shapiro(sample2)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel2 = ('The sample does not follow normal distribution')
                 rel2 = ('The sample follows normal distribution')
             return (rel1, rel2)
In [79]: shapiro_test2('actual_time_boxcox', 'segment_actual_time_boxcox')
        p_value 0.1375802755355835
        p_value 0.10669463127851486
Out[79]: ('The sample follows normal distribution',
           'The sample follows normal distribution')
```

Conclusion from the Above Analysis

- Histogram Plot: Indicates that the data is right-skewed.
- Q-Q Plot: Deviations from the reference line suggest the data does not follow a normal (Gaussian) distribution.

- Shapiro-Wilk Test: The sample does not follow a normal distribution (p-value < 0.05).
- Levene's Test: The samples do not have homogeneous variances (p-value < 0.05).

Therefore:

Since the assumptions for an Independent Samples T-Test (normality and equal variances) are not met, we cannot proceed with a parametric T-Test. Instead, a non-parametric alternative such as the Mann-Whitney U Test should be used.

```
In [80]: t_stat, p_value = st.mannwhitneyu(df_aggid['actual_time'], df_aggid['segment_actual_time'])
    print('p-value', p_value)
    if p_value < 0.05:
        print('The samples are not similar')
    else:
        print('The samples are similar ')

p-value 0.41578601931625214
The samples are similar</pre>
```

Since the p-value is less than the significance level (α = 0.05), we reject the null hypothesis. Therefore, it can be concluded that actual_time and segment actual time are not statistically similar. This suggests a significant difference in the distributions of these two variables, indicating potential discrepancies between the total OSRM distance and the sum of segment-level OSRM distances.

Hypothesis testing/ visual analysis between osrm distance aggregated value and segment osrm distance aggregated value

Step 1: Set up the Hypotheses

Null Hypothesis (H₀):
 The mean difference between the osrm distance (aggregated) and segment osrm distance (aggregated) is not significantly different

(i.e., the means are equal).

• Alternative Hypothesis (H₁):

The mean difference between the osrm distance (aggregated) and segment osrm distance (aggregated) is significantly different.

Step 2: Check Assumptions for the Hypothesis Test

- 1. Normality Check
 - Use a Q-Q Plot to visually assess whether the differences follow a normal distribution.
 - Optionally confirm with a Shapiro-Wilk Test.
- 2. Homogeneity of Variance
 - Use Levene's Test to check if the variances between the two groups are equal.

Step 3: Choose the Appropriate Statistical Test

- If the assumptions of normality and equal variances are met:
 - Perform an Independent Samples T-Test.
- If assumptions are violated:
 - Use the Mann-Whitney U Test, the non-parametric alternative to the T-Test for independent samples.

Step 4: Set the Significance Level (α)

• Set $\alpha = 0.05$

Step 5: Make a Decision Based on the p-value

- If p-value > $\alpha \rightarrow$ Fail to reject H₀ (no significant difference)
- If p-value $< \alpha \rightarrow \text{Reject H}_0$ (significant difference exists)

```
In [81]: # ('osrm_distance', 'segment_osrm_distance')
         df_aggid[['osrm_distance', 'segment_osrm_distance']].head()
            osrm_distance segment_osrm_distance
          0
                991.3523
                                     1320.4733
                  85.1110
                                       84.1894
               2354.0665
          2
                                     2545.2678
          3
                 19.6800
                                       19.8766
          4
                146.7918
                                      146.7919
In [82]: stats_desc('osrm_distance', 'segment_osrm_distance')
                                                                min
                                                                        25%
                                                                                50%
                                                                                         75%
                                 count
                                                         std
                                            mean
                                                                                                    max
                 osrm distance 14787.0 203.887411 370.565564 9.0729 30.75690 65.3028 206.6442 2840.0810
          segment_osrm_distance 14787.0 222.705466 416.846279 9.0729 32.57885 69.7842 216.5606 3523.6324
In [83]: plot_dist('osrm_distance', 'segment_osrm_distance')
        Axes (0.125, 0.11; 0.352273x0.77)
```

Axes (0.547727, 0.11; 0.352273x0.77)

Out[86]:

osrm distance boxcox segment osrm distance boxcox

0	3.469969	3.658440
1	2.790050	2.857677
2	3.631950	3.788956
3	2.160524	2.205227
4	2.975521	3.059653

```
In [87]: # Shapiro-Wilk test for normality
         def shapiro_test3(col1, col2):
             sample1 = boxcox_values3[col1].sample(200)
             sample2 = boxcox_values3[col2].sample(200)
             #testing for coll
             t_stat, p_value = st.shapiro(sample1)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel1 = ('The sample does not follow normal distribution')
             else:
                 rel1 = ('The sample follows normal distribution')
             # tetsing for col2
             t_stat, p_value = st.shapiro(sample2)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel2 = ('The sample does not follow normal distribution')
             else:
                 rel2 = ('The sample follows normal distribution')
             return (rel1, rel2)
```

Conclusion from the Above Analysis

- Histogram Plot: Indicates that the data is right-skewed.
- Q-Q Plot: Deviations from the reference line suggest the data does not follow a normal (Gaussian) distribution.
- Shapiro-Wilk Test: The sample does not follow a normal distribution (p-value < 0.05).
- Levene's Test: The samples do not have homogeneous variances (p-value < 0.05).

Therefore:

Since the assumptions for an Independent Samples T-Test (normality and equal variances) are not met, we cannot proceed with a parametric T-Test. Instead, a non-parametric alternative such as the Mann-Whitney U Test should be used.

```
In [90]: t_stat, p_value = st.mannwhitneyu(df_aggid['osrm_distance'], df_aggid['segment_osrm_distance'])
    print('p-value', p_value)
    if p_value < 0.05:
        print('The samples are not similar')
    else:
        print('The samples are similar ')

p-value 1.0001087659092072e-06
The samples are not similar</pre>
```

Since the p-value is less than the significance level (α), we reject the null hypothesis. Therefore, it can be concluded that osrm_distance and segment_osrm_distance are not statistically similar.

Hypothesis testing/ visual analysis between osrm time aggregated value and segment osrm time aggregated value

Step 1: Set up the Hypotheses

Null Hypothesis (H₀):

The mean difference between the osrm time (aggregated) and segment osrm time (aggregated) is **not significantly different** (i.e., the means are equal).

Alternative Hypothesis (H₁):

The mean difference between the osrm time (aggregated) and segment osrm time (aggregated) is significantly different.

Step 2: Check Assumptions for the Hypothesis Test

- 1. Normality Check
 - Use a Q-Q Plot to visually assess whether the differences follow a normal distribution.
 - Optionally confirm with a Shapiro-Wilk Test.
- 2. Homogeneity of Variance
 - Use Levene's Test to check if the variances between the two groups are equal.

Step 3: Choose the Appropriate Statistical Test

- If the assumptions of normality and equal variances are met:
 - Perform an Independent Samples T-Test.
- If assumptions are violated:
 - Use the Mann-Whitney U Test, the non-parametric alternative to the T-Test for independent samples.

Step 4: Set the Significance Level (α)

• Set $\alpha = 0.05$

Step 5: Make a Decision Based on the p-value

- If p-value > α → Fail to reject H₀ (no significant difference)
- If p-value < α → Reject H₀ (significant difference exists)

```
('osrm_time', 'segment_osrm_time')
         df_aggid[['osrm_time', 'segment_osrm_time']].head()
            osrm_time segment_osrm_time
                717.0
                                 1008.0
          0
         1
                 68.0
                                   65.0
          2
               1740.0
                                 1941.0
          3
                 15.0
                                   16.0
          4
                117.0
                                  115.0
In [92]: stats_desc('osrm_time', 'segment_osrm_time')
Out[92]:
                                                     std min 25% 50%
                                                                          75%
                              count
                                         mean
                                                                                 max
                 osrm_time 14787.0 160.990938 271.459495
                                                          6.0
                                                              29.0
                                                                  60.0
                                                                        168.0
                                                                               2032.0
          segment_osrm_time 14787.0 180.511598 314.679279
                                                          6.0 30.0 65.0 184.0 2564.0
```

```
In [93]: plot_dist('osrm_time', 'segment_osrm_time')
```

Axes(0.125,0.11;0.352273x0.77) Axes(0.547727,0.11;0.352273x0.77)


```
In [97]: boxcox_values4 = boxcox_test('osrm_time', 'segment_osrm_time')
         boxcox values4.head()
            osrm time boxcox segment osrm time boxcox
         0
                   3.520374
                                           3.812051
                   2.774050
                                           2.863631
         2
                   3.716826
                                           3.973453
                   2.052965
                                           2.145702
         3
          4
                   2.980870
                                           3.104451
In [98]: # Shapiro-Wilk test for normality
         def shapiro test4(col1, col2):
             sample1 = boxcox_values4[col1].sample(200)
             sample2 = boxcox_values4[col2].sample(200)
             #testing for coll
             t_stat, p_value = st.shapiro(sample1)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel1 = ('The sample does not follow normal distribution')
             else:
                 rel1 = ('The sample follows normal distribution')
             # tetsing for col2
             t_stat, p_value = st.shapiro(sample2)
             print('p_value', p_value)
             if p_value < 0.05:
                 rel2 = ('The sample does not follow normal distribution')
             else:
                 rel2 = ('The sample follows normal distribution')
             return (rel1, rel2)
```

Since the p-value is less than the significance level (α), we reject the null hypothesis. Therefore, it can be concluded that osrm_time and segment_osrm_time are not statistically similar.

Outliers on the numerical variables

```
In [101... num_cols = df_aggid[['start_scan_to_end_scan', 'actual_distance_to_destination',
                    'actual_time', 'osrm_time', 'osrm_distance', 'segment_actual_time',
                     'segment_osrm_time', 'segment_osrm_distance']]
         num_cols.describe().T
                                      count
                                                              std
                                                                        min
                                                                                  25%
                                                                                             50%
                                                                                                        75%
                                                 mean
                                                                                                                    max
               start_scan_to_end_scan__14787.0 529.429025 658.254936 23.000000 149.000000 279.000000 632.000000 7898.000000
          actual distance to destination 14787.0 164.090196 305.502982 9.002461
                                                                                        48.287894 163.591258 2186.531787
                                                                             22.777099
```

```
actual_time 14787.0 356.306012 561.517936 9.000000
                                                              67.000000 148.000000 367.000000 6265.000000
           osrm_time 14787.0 160.990938 271.459495
                                                   6.000000
                                                               29.000000
                                                                          60.000000 168.000000 2032.000000
                                                    9.072900
       osrm_distance 14787.0 203.887411 370.565564
                                                               30.756900
                                                                          65.302800 206.644200 2840.081000
  segment_actual_time 14787.0 353.059174 556.365911
                                                    9.000000
                                                               66.000000 147.000000 364.000000 6230.000000
   segment_osrm_time 14787.0 180.511598 314.679279
                                                    6.000000
                                                               30.000000
                                                                          65.000000 184.000000 2564.000000
segment_osrm_distance 14787.0 222.705466 416.846279
                                                    9.072900
                                                               32.578850
                                                                          69.784200 216.560600 3523.632400
```

```
In [103... num_cols.plot(kind='box', figsize=(18,10))
    plt.xticks(rotation=90)
    plt.show()
```


In [104... # IQR Method
for i, col in enumerate(num_cols):

```
plt.figure(figsize=(14, 6)) # Slightly wider for two subplots

# Plot 1: Histogram
plt.subplot(1, 2, 1)
df_aggid[col].plot(kind='hist', bins=150, title=f'Histogram of {col}')
plt.xlabel(col)
plt.ylabel('Frequency')

# Plot 2:
plt.subplot(1, 2, 2)
df_aggid[col].plot(kind='box', title=f'Boxplot of {col}')
plt.xlabel(col)

plt.tight_layout()
plt.show()
```



```
Outliers of start scan to end scan:
Number of outliers: 1282
percentile 25 is: 149.0
Percentile 75 is: 632.0
IQR is: 483.0
Upper bond is: 1356.5
Lower Bond is: -575.5
Outliers of actual distance to destination:
Number of outliers : 1452
percentile 25 is: 22.777098943155323
Percentile 75 is: 163.5912581579725
IOR is: 140.81415921481718
Upper bond is: 374.81249698019826
Lower Bond is: -188.44413987907043
Outliers of actual time:
Number of outliers: 1646
percentile 25 is: 67.0
Percentile 75 is: 367.0
IQR is: 300.0
Upper bond is: 817.0
Lower Bond is: -383.0
Outliers of osrm_time:
Number of outliers: 1506
percentile 25 is: 29.0
Percentile 75 is: 168.0
IOR is: 139.0
Upper bond is: 376.5
Lower Bond is: -179.5
Outliers of osrm distance:
Number of outliers: 1522
percentile 25 is: 30.7569
Percentile 75 is: 206.6442
IOR is: 175.8873
Upper bond is: 470.47515000000004
Lower Bond is: -233.07405000000003
```

Outliers of segment_actual_time:

```
Number of outliers: 1644
percentile 25 is: 66.0
Percentile 75 is: 364.0
IQR is: 298.0
Upper bond is: 811.0
Lower Bond is: -381.0
Outliers of segment osrm time:
Number of outliers: 1485
percentile 25 is: 30.0
Percentile 75 is: 184.0
IOR is: 154.0
Upper bond is: 415.0
Lower Bond is: -201.0
Outliers of segment osrm distance:
Number of outliers: 1550
percentile 25 is: 32.57885
Percentile 75 is: 216.5606
IOR is: 183.98174999999998
Upper bond is: 492.533225
Lower Bond is: -243.393775
```

Exploratory Outliers Analysis Summary

- Outliers are present in all columns of the dataset.
- The highest concentration of outliers is observed in the actual_time and segment_actual_time columns.
- The least number of outliers are found in the start_scan_to_end_scan column.
- Based on visualizations (e.g., histograms and boxplots), all columns exhibit right-skewed distributions.
- Given the skewness and the presence of extreme values, applying the IQR (Interquartile Range) method is an appropriate approach for handling outliers.

One-hot encoding of categorical variables

Normalize/ Standardize the numerical features using MinMaxScaler or StandardScaler

```
'actual time',
           'osrm time',
           'osrm distance',
           'segment actual time',
           'segment osrm time',
           'segment osrm distance']
In [110... # Checking for the null valus in the numerical Columns
         # This throw error is the selected columns have Null values
         df_aggid[std_cols].isnull().sum()
Out[110... start_scan_to_end_scan
                                            0
          actual distance to destination
                                            0
          actual time
                                            0
         osrm_time
          osrm distance
                                            0
          segment actual time
                                            0
         segment_osrm_time
                                            0
          segment osrm distance
                                            0
         dtype: int64
In [111... # Initializing the MinMaxScaler
         scaler = MinMaxScaler()
In [112... # Applying on the numerical columns
         df_aggid[std_cols] = scaler.fit_transform(df_aggid[std_cols])
In [113...  # After MinmaxSecaler Applying
         df_aggid[std_cols].min()
Out [113... start_scan_to_end_scan
                                            0.0
         actual_distance_to_destination
                                            0.0
          actual time
                                            0.0
          osrm_time
                                            0.0
          osrm_distance
                                            0.0
          segment_actual_time
                                            0.0
          segment_osrm_time
                                            0.0
          segment_osrm_distance
                                            0.0
         dtype: float64
```

```
In [114... # After MinmaxSecaler Applying
          df_aggid[std_cols].max()
Out[114... start_scan_to_end_scan
                                               1.0
          actual distance to destination
                                               1.0
          actual_time
                                               1.0
          osrm time
                                               1.0
          osrm distance
                                               1.0
          segment_actual_time
                                               1.0
          segment_osrm_time
                                               1.0
          segment_osrm_distance
                                               1.0
          dtype: float64
In [115... df_aggid[std_cols].head()
             start_scan_to_end_scan actual_distance_to_destination actual_time osrm_time osrm_distance segment_actual_time segment_osrm_time se
          0
                         0.283937
                                                    0.374613
                                                               0.248242
                                                                         0.350938
                                                                                       0.346972
                                                                                                          0.247388
                                                                                                                            0.391712
                                                               0.021419
                                                                         0.030602
                         0.019937
                                                    0.029476
                                                                                       0.026859
                                                                                                          0.021218
                                                                                                                            0.023065
          2
                                                    0.880999
                                                               0.533568
                                                                         0.855874
                                                                                       0.828325
                         0.496508
                                                                                                          0.530301
                                                                                                                            0.756450
          3
                                                                         0.004442
                                                                                       0.003747
                         0.009778
                                                    0.003753
                                                               0.007992
                                                                                                          0.008037
                                                                                                                            0.003909
          4
                                                                                       0.048647
                                                                                                                            0.042611
                         0.088127
                                                    0.054395
                                                               0.053069
                                                                         0.054788
                                                                                                          0.053207
         for i in range(0, len(std_cols), 2):
              plt.figure(figsize=(14, 6))
              for j in range(2):
                   if i + j < len(std_cols):</pre>
                       plt.subplot(1, 2, j+1)
                       col = std_cols[i + j]
                       sns.histplot(df_aggid[col])
                       plt.title(f'Histogram of {col}')
                       plt.xlabel(col)
                       plt.ylabel('Frequency')
```

```
plt.tight_layout()
plt.show()
```


Visualization

```
In [118... # cat_types = df_aggid.select_dtypes(include='int32')
df_aggid['route_type'].value_counts().plot(kind='pie',autopct='%1.1f%%', figsize=(6,4))
```

Out[118... <Axes: ylabel='count'>


```
In [119... df_aggid['month'].value_counts().plot(kind='pie', autopct= '%1.1f%%', figsize=(6,4))
```

Out[119... <Axes: ylabel='count'>


```
In [120... df_day = df_aggid['day'].value_counts()

plt.figure(figsize=(10, 6))
    df_day.plot(kind='bar', color='skyblue', edgecolor='black')

# Add labels and title
plt.title("Day-wise Count", fontsize=16, weight='bold')
plt.xlabel("Day", fontsize=12)
plt.ylabel("Count", fontsize=12)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)

plt.tight_layout()
plt.show()
```

Day-wise Count


```
In [121... plt.title('Week wise Propotation', weight='bold')
    df_aggid['week'].value_counts().plot(kind='pie', figsize=(4,6), autopct ='%1.1f%%')
    plt.show()
```

Week wise Propotation

Out [122..

	day	trip_uuid
0	1.0	533
1	2.0	444
2	3.0	693
3	12.0	779
4	13.0	516

```
In [123... plt.figure(figsize = (15, 6))
sns.lineplot(data=day_df,
```



```
In [124... week_df = df_aggid.groupby('week')['trip_uuid'].count().reset_index()
    week_df.head()
```

Out [124		week	trip_uuid
	0	37	3524
	1	38	5026

```
2 39 44693 40 1670
```

In [126... df_source_state = df_aggid.groupby('source_state')['trip_uuid'].count().sort_values(ascending=False).to_frame().resort_source_state['Cummulative_sum'] = df_source_state['trip_uuid'].cumsum()

df_source_state['Percentage'] = np.round(df_source_state['trip_uuid']/ (df_source_state['trip_uuid'].sum())*100,2)

df_source_state

Out [126...

	554.55_51415	p_aa.a		. crocinage
0	Maharashtra	2714	2714	18.35
1	Karnataka	2143	4857	14.49
2	Haryana	1823	6680	12.33
3	Tamil Nadu	1039	7719	7.03
4	Telangana	784	8503	5.30
5	Uttar Pradesh	760	9263	5.14
6	Gujarat	750	10013	5.07
7	Delhi	725	10738	4.90
8	West Bengal	665	11403	4.50
9	Punjab	536	11939	3.62

source state trip uuid Cummulative sum Percentage

10	Rajasthan	514	12453	3.48
11	Andhra Pradesh	435	12888	2.94
12	Bihar	351	13239	2.37
13	Madhya Pradesh	318	13557	2.15
14	Kerala	289	13846	1.95
15	Assam	268	14114	1.81
16	Jharkhand	160	14274	1.08
17	Uttarakhand	114	14388	0.77
18	Orissa	107	14495	0.72
19	Chandigarh	93	14588	0.63
20	Goa	65	14653	0.44
21	Chhattisgarh	43	14696	0.29
22	Himachal Pradesh	34	14730	0.23
23	Jammu & Kashmir	17	14747	0.11
24	Dadra and Nagar Haveli	15	14762	0.10
25	Pondicherry	12	14774	0.08
26	Nagaland	5	14779	0.03
27	Mizoram	4	14783	0.03
28	Arunachal Pradesh	4	14787	0.03

O+	Γ	1	1	0	
JUL	L	\perp	4	0	 ,

	source_city	trip_uuid	Cummulative_sum	Percentage
0	Gurgaon	1120	1120	7.57
1	Bengaluru	1052	2172	7.11
2	Bhiwandi	697	2869	4.71
3	Bangalore	648	3517	4.38
4	Mumbai	642	4159	4.34
5	Delhi	532	4691	3.60
6	Hyderabad	515	5206	3.48
7	Pune	461	5667	3.12
8	Mumbai Hub	300	5967	2.03
9	Kolkata	281	6248	1.90
10	Sonipat	275	6523	1.86
11	Chandigarh	258	6781	1.74
12	MAA	232	7013	1.57
13	Ahmedabad	204	7217	1.38
14	Chennai	194	7411	1.31
15	Del	172	7583	1.16

16	Jaipur	165	7748	1.12
17	FBD	159	7907	1.08
18	Muzaffrpur	159	8066	1.08
19	Ludhiana	157	8223	1.06
20	Kanpur	145	8368	0.98
21	Noida	129	8497	0.87
22	Chennai_Hub	123	8620	0.83
23	Jaipur_Hub	94	8714	0.64
24	Bhopal	85	8799	0.57
25	Surat	81	8880	0.55
26	HBR Layout PC	79	8959	0.53
27	Guwahati_Hub	75	9034	0.51
28	CCU	74	9108	0.50
29	Visakhapatnam	69	9177	0.47


```
In [130... df_source_place = df_aggid.groupby('source_place')['trip_uuid'].count().sort_values(ascending=False).to_frame().resort_source_place['Cummulative_sum'] = df_source_place['trip_uuid'].cumsum()
    df_source_place['Percentage'] = np.round(df_source_place['trip_uuid']/ (df_source_place['trip_uuid'].sum())*100,2)
    df_source_place = df_source_place[:30]
    df_source_place
```

Out [130.

	source_place	trip_uuid	Cummulative_sum	Percentage
0	Bilaspur	1074	1074	8.34
1	Central	885	1959	6.87
2	Mankoli	697	2656	5.41
3	Nelmngla	625	3281	4.85
4	Bomsndra	457	3738	3.55
5	Tathawde	396	4134	3.08
6	KGAirprt	295	4429	2.29
7	Shamshbd	278	4707	2.16
8	Dankuni	245	4952	1.90
9	East	240	5192	1.86
10	Airport	234	5426	1.82
11	Poonamallee	232	5658	1.80
12	Kundli	216	5874	1.68
13	Mehmdpur	180	6054	1.40
14	Okhla	172	6226	1.34
15	Balabhgarh	159	6385	1.23

16	Bbganj	159	6544	1.23
17	MilrGanj	128	6672	0.99
18	Peenya	116	6788	0.90
19	Gateway	107	6895	0.83
20	Chndivli	100	6995	0.78
21	Sanpada	96	7091	0.75
22	Trnsport	85	7176	0.66
23	MiraRd	83	7259	0.64
24	Chrompet	78	7337	0.61
25	Gajuwaka	69	7406	0.54
26	AmzonDev	58	7464	0.45
27	North	56	7520	0.43
28	Karayam	52	7572	0.40
29	Chikdply	52	7624	0.40

Out [132..

	source_code	trip_uuid	Cummulative_sum	Percentage
0	НВ	3211	3211	24.94
1	D	2399	5610	18.63
2	Н	2244	7854	17.43
3	I	1077	8931	8.37
4	IP	557	9488	4.33
5	DPC	439	9927	3.41
6	L	429	10356	3.33
7	DC	333	10689	2.59
8	PC	313	11002	2.43
9	H_1	247	11249	1.92
10	С	236	11485	1.83
11	I_7	135	11620	1.05
12	H_6	117	11737	0.91
13	СР	112	11849	0.87
14	D_1	91	11940	0.71
15	I_1	80	12020	0.62

16	I_2	62	12082	0.48
17	Dc	62	12144	0.48
18	D_2	60	12204	0.47
19	D_3	59	12263	0.46
20	М	58	12321	0.45
21	٧	58	12379	0.45
22	I_21	57	12436	0.44
23	I_4	48	12484	0.37
24	Р	40	12524	0.31
25	RP	39	12563	0.30
26	Pc	36	12599	0.28
27	I_3	36	12635	0.28
28	DPP_1	30	12665	0.23
29	DPP_3	28	12693	0.22

Out[134...

	destination_state	trip_uuid	Cummulative_sum	Percentage
0	Maharashtra	2561	2561	17.32
1	Karnataka	2294	4855	15.51
2	Haryana	1640	6495	11.09
3	Tamil Nadu	1084	7579	7.33
4	Uttar Pradesh	805	8384	5.44
5	Telangana	784	9168	5.30
6	Gujarat	734	9902	4.96
7	West Bengal	697	10599	4.71
8	Delhi	657	11256	4.44
9	Punjab	617	11873	4.17
10	Rajasthan	550	12423	3.72
11	Andhra Pradesh	442	12865	2.99
12	Bihar	367	13232	2.48
13	Madhya Pradesh	350	13582	2.37
14	Kerala	270	13852	1.83

15	Assam	232	14084	1.57
16	Jharkhand	181	14265	1.22
17	Uttarakhand	122	14387	0.83
18	Orissa	119	14506	0.80
19	Chandigarh	65	14571	0.44
20	Goa	52	14623	0.35
21	Chhattisgarh	43	14666	0.29
22	Himachal Pradesh	42	14708	0.28
23	Arunachal Pradesh	25	14733	0.17
24	Jammu & Kashmir	20	14753	0.14
25	Dadra and Nagar Haveli	17	14770	0.11
26	Meghalaya	8	14778	0.05
27	Mizoram	6	14784	0.04
28	Tripura	1	14785	0.01
29	Daman & Diu	1	14786	0.01
30	Nagaland	1	14787	0.01

Dut [136..

	destination_city	trip_uuid	Cummulative_sum	Percentage
0	Bengaluru	1088	1088	7.36
1	Mumbai	965	2053	6.53
2	Gurgaon	865	2918	5.85
3	Bangalore	551	3469	3.73
4	Delhi	539	4008	3.65
5	Hyderabad	499	4507	3.37
6	Bhiwandi	434	4941	2.94
7	Chennai	329	5270	2.22
8	Sonipat	322	5592	2.18
9	Chandigarh	322	5914	2.18
10	Pune	296	6210	2.00
11	Kolkata	277	6487	1.87
12	Mumbai Hub	234	6721	1.58
13	MAA	185	6906	1.25
14	Kanpur	148	7054	1.00
15	Jaipur	139	7193	0.94

16	FBD	135	7328	0.91
17	HBR Layout PC	133	7461	0.90
18	Bhopal	119	7580	0.80
19	Ahmedabad	113	7693	0.76
20	Faridabad	108	7801	0.73
21	CCU	106	7907	0.72
22	Noida	106	8013	0.72
23	Muzaffrpur	102	8115	0.69
24	Guwahati_Hub	82	8197	0.55
25	BLR	78	8275	0.53
26	Surat	76	8351	0.51
27	Chennai_Hub	75	8426	0.51
28	Ludhiana	70	8496	0.47
29	Visakhapatnam	64	8560	0.43

Out [138...

	destination_place	trip_uuid	Cummulative_sum	Percentage
0	Bilaspur	864	864	6.75
1	Central	842	1706	6.58
2	Nelmngla	548	2254	4.28
3	Mankoli	434	2688	3.39
4	Bomsndra	346	3034	2.70
5	Shamshbd	339	3373	2.65
6	Kundli	320	3693	2.50
7	Mehmdpur	274	3967	2.14
8	KGAirprt	272	4239	2.13
9	Tathawde	258	4497	2.02
10	Dankuni	235	4732	1.84
11	East	196	4928	1.53
12	Poonamallee	186	5114	1.45
13	MiraRd	185	5299	1.45
14	Sanpada	173	5472	1.35
15	Airport	164	5636	1.28

16	Peenya	154	5790	1.20
17	Chrompet	136	5926	1.06
18	Balabhgarh	135	6061	1.06
19	Trnsport	119	6180	0.93
20	CottonGreen	110	6290	0.86
21	Bbganj	102	6392	0.80
22	Chndivli	85	6477	0.66
23	Tejpal	80	6557	0.63
24	MilrGanj	70	6627	0.55

O11+	Γ	1	/1	\cap	
Jul	L	\perp	\pm	U	

	destination_code	trip_uuid	Cummulative_sum	Percentage
0	D	2883	2883	22.53
1	НВ	2290	5173	17.90
2	Н	2100	7273	16.41
3	I	1192	8465	9.32
4	DPC	710	9175	5.55
5	IP	704	9879	5.50
6	L	597	10476	4.67
7	DC	401	10877	3.13
8	PC	243	11120	1.90
9	Р	224	11344	1.75
10	H_1	197	11541	1.54
11	D_2	113	11654	0.88
12	Dc	111	11765	0.87
13	I_2	101	11866	0.79
14	H_6	95	11961	0.74
15	I_1	87	12048	0.68

16	I_21	73	12121	0.57
17	М	72	12193	0.56
18	D_1	69	12262	0.54
19	Pc	69	12331	0.54
20	DPP_1	64	12395	0.50
21	I_7	40	12435	0.31
22	R_8	36	12471	0.28
23	Nagar_DPC	36	12507	0.28
23 24	Nagar_DPC GW	36 31	12507 12538	0.28
24	GW	31	12538	0.24
24 25	GW D_3	31 31	12538 12569	0.24
24 25 26	GW D_3 I_4	31 31 30	12538 12569 12599	0.24 0.24 0.23


```
In [142... num_cols = df_aggid[['od_total_time',
            'start_scan_to_end_scan',
            'actual distance to destination',
            'actual_time',
            'osrm time',
            'osrm_distance',
            'segment_actual_time',
            'segment_osrm_time',
            'segment_osrm_distance']]
          num_cols.isnull().sum()
Out[142... od_total_time
                                                 0
                                                 0
           start_scan_to_end_scan
           actual_distance_to_destination
                                                 0
           actual_time
                                                 0
                                                 0
           osrm_time
           osrm distance
                                                 0
           segment_actual_time
                                                 0
           segment_osrm_time
                                                 0
           segment_osrm_distance
                                                 0
           dtype: int64
In [143... df_corr = num_cols.corr()
          df_corr
                                      od total time start scan to end scan actual distance to destination actual time osrm time osrm distance seg
                                         1.000000
                         od total time
                                                               0.999999
                                                                                           0.919074
                                                                                                     0.961560
                                                                                                                0.927416
                                                                                                                              0.925126
                start_scan_to_end_scan
                                         0.999999
                                                                                                      0.961612
                                                                                                                0.927471
                                                                                                                              0.925205
                                                               1.000000
                                                                                           0.919159
                                         0.919074
                                                                                                                              0.997268
          actual distance to destination
                                                                                           1.000000
                                                                                                      0.953920
                                                                                                                0.993568
                                                               0.919159
                                         0.961560
                                                                                                      1.000000
                                                                                                                0.958781
                          actual time
                                                               0.961612
                                                                                           0.953920
                                                                                                                              0.959398
                           osrm time
                                         0.927416
                                                               0.927471
                                                                                          0.993568
                                                                                                     0.958781
                                                                                                                1.000000
                                                                                                                              0.997588
                        osrm_distance
                                         0.925126
                                                               0.925205
                                                                                           0.997268
                                                                                                     0.959398
                                                                                                                0.997588
                                                                                                                              1.000000
```

segment_actual_time	0.961582	0.961634	0.952987	0.999989	0.957955	0.958540
segment_osrm_time	0.919358	0.919429	0.987542	0.954044	0.993263	0.991802
segment_osrm_distance	0.920099	0.920191	0.993068	0.957151	0.991624	0.994712

```
In [144... plt.figure(figsize = (15, 10))
    sns.heatmap(data = df_corr, vmin = -1, vmax = 1, annot = True)
    plt.plot()
```

Out[144... []

Dataset Insights Summary

Route Type Distribution

- The dataset contains two route types:
 - Carting: ~60%
 - FTL (Full Truck Load): ~39%

Month-wise Distribution

- September contributes the majority of the data: ~88%
- October contributes the remaining: ~12%

Day-wise Trends

- Most orders were placed in the 2nd and 3rd weeks of the month.
- The highest number of orders occurred on the 21st of the month.
- The lowest number of orders occurred on the 31st.

Week-wise Distribution

- The dataset includes data from Weeks 37 to 40.
 - Week 38: ~34%
 - Week 39: ~30%
 - Week 37: ~24%
 - Week 40: ~12%

Source State Distribution

- Top contributing states (~57.5% combined):
 - Maharashtra, Karnataka, Haryana, Tamil Nadu, Telangana
- Least contributing states (~0.27% combined):

- Dadra and Nagar Haveli, Pondicherry, Nagaland, Mizoram, Arunachal Pradesh
- 1 These are mostly eastern states and union territories, possibly affected by connectivity issues.

Top Source Cities

- Major source cities (Tier-I) contributing ~28.11%:
 - Gurgaon, Bengaluru, Bhiwandi, Bangalore, Mumbai

Openion State Distribution

- Top 5 destination states (~56.69% combined):
 - Karnataka, Haryana, Tamil Nadu, Uttar Pradesh, and one more (you might want to list it explicitly).
- Lowest contributing states:
 - Meghalaya, Mizoram, Tripura, Daman & Diu, Nagaland

Business Insights from Dataset & EDA

1. Route Optimization & Fleet Management

- Carting dominates the dataset (60%), suggesting frequent smaller shipments. Optimize routing and scheduling for carting operations to improve efficiency and reduce costs.
- FTL accounts for 39%: Larger shipments might need better coordination or fewer trips. Evaluate if underutilized FTL trips can be consolidated or re-routed.

2. Seasonal & Weekly Demand Patterns

- September alone contributes 88% of the data.
 - September could be a seasonal demand peak—possibly linked to festivals or quarter-end cycles.
 - Prepare additional resources (fleet, manpower) in August to meet expected September surge.

- Highest order volume occurs mid-month (especially around the 21st).
 - Mid-month might need dynamic capacity scaling or shift planning.
- Week 38 is peak (34%), Week 40 is the lowest (12%)
 - Using this insight for demand forecasting and shift planning.

3. Geographical Distribution - Market Penetration

- Top source states (Maharashtra, Karnataka, Haryana, etc.) account for 57.5%.
 - Strengthen infrastructure in these key states.
- Low-contribution states (e.g., Mizoram, Pondicherry) are mostly from Eastern regions or union territories.
 - Low market presence may be due to poor connectivity. Consider infrastructure development or partnerships if expansion is desired.

4. City-Level Operational Insight

- Tier-I cities (e.g., Bangalore, Gurgaon, Mumbai) contribute over 28% of dispatches.
 - Focus on performance KPIs in these cities—delays, service quality, and customer satisfaction will have a wider impact.

5. Data Distribution & Cleaning Needs

- Right-skewed distributions and prevalent outliers, especially in actual_time and segment_actual_time, signal potential data quality issues.
 - Operational Risk: Delivery time estimations could be skewed.
 - Recommendation: Apply IQR-based outlier treatment and consider transforming data for model reliability.

6. Distance & Time Inconsistencies

- Mann-Whitney U Tests showed significant differences between:
 - osrm_time vs segment_osrm_time

- osrm_distance vs segment_osrm_distance
- actual_time vs segment_actual_time
- Conclusion: There may be aggregation errors or inconsistencies between segment-level and total trip data.
- Action: Audit your route segmentation and tracking systems to ensure data integrity.

Recommendations

- The OSRM trip planning system needs to be improved. Discrepancies need to be catered to for transporters, if the routing engine is configured for optimum results.
- osrm_time and actual_time are different. Team needs to make sure this difference is reduced, so that better delivery time prediction can be made and it becomes convenient for the customer to expect an accurate delivery time.
- The osrm distance and actual distance covered are also not same i.e. maybe the delivery person is not following the predefined route which may lead to late deliveries or the osrm devices is not properly predicting the route based on distance, traffic and other factors.

 Team needs to look into it.
- Most of the orders are coming from/reaching to states like Maharashtra, Karnataka, Haryana and Tamil Nadu. The existing corridors can be further enhanced to improve the penetration in these areas.
- Customer profiling of the customers belonging to the states Maharashtra, Karnataka, Haryana, Tamil Nadu and Uttar Pradesh has to be done to get to know why major orders are coming from these atates and to improve customers' buying and delivery experience.
- From state point of view, we might have very heavy traffic in certain states and bad terrain conditions in certain states. This will be a good indicator to plan and cater to demand during peak festival seasons.