```
global t
Code: -
                                                                      dmin = min(ones)
"""linear code experiment"""
                                                                      err detect = dmin - 1
import numpy as np
                                                                      if \overline{d}min%2 == 0:
\textbf{from} \text{ tabulate } \textbf{import} \text{ tabulate}
                                                                          print('dmin is an even number')
import pandas as pd
def generate_data_matrix(k, intial):
    """Generation of data matrix"""
                                                                           t = (dmin - 2)/2
                                                                      elif dmin%2 ==1:
                                                                          print('dmin is an odd number')
    arr = 2 ** k
                                                                          t = (dmin - 1) / 2
    a = []
                                                                      return err detect, t
    for i in range(intial, arr):
                                                                  def words(data, form):
        b = bin(i)
                                                                      """genearte words"""
        b = b[2:]
                                                                      emp = []
        b = b.zfill(k)
                                                                      SUB = str.maketrans("0123456789", "_{0123456789}")
        a.append(list(b))
                                                                      for i in range(1, data + 1):
    data = np.array(a, dtype=int)a
                                                                          if k == data:
    return data
                                                                              emp.append('D' + str(i).translate(SUB))
def generator_parity(parity):
                                                                          elif n - k == data:
     """Generation of parity matrix"""
                                                                               emp.append('P' + str(i).translate(SUB))
    p = generate_data_matrix(parity, 0)
    p = list(map(list, p))
                                                                              emp.append('C' + str(i).translate(SUB))
    p matrix = p.copy()
                                                                      if 'IP' == form.upper():
    for i in range(len(p)):
        ones = list(p[i]).count(1)
                                                                          emp = sorted(emp, reverse=True)
                                                                      return emp
        if ones < parity - 1:</pre>
                                                                  def parity eqn(p,form):
            p_matrix.remove(p[i])
                                                                       """generate parity eqn"""
    return p_matrix
def generator_matrix(n, k):
     """Generation of generator matrix"""
                                                                      result = []
    I = np.identity(k, dtype=int)
                                                                      last = []
                                                                      emp = words(k, form)
    parity = n - k
    p matrix = generator parity(parity)
                                                                      parity = words(n-k, form)
    I = list(map(list, I))
    I copy = I.copy()
    p = p matrix.copy()
                                                                      p = np.array(p)
                                                                      p = np.transpose(p)
    emp = []
    empI = []
                                                                      emp1 = list(map(list, p))
    for j in range(len(p)):
        if p[j].count(1) >= 2:
                                                                      for j in range(p.shape[0]):
                                                                          b = emp1[j]
a = [item1 * item2 for item1, item2 in zip(emp, b)]
             emp.append(p[j])
                                                                          a1 = a.copy()
    form = input('Enter the generator matrix format:-')
    if 'PI' == form.upper():
                                                                          for i in range(len(a)):
                                                                              if '' == a[i]:
        print('The generator matrix is in PI')
                                                                                  al.pop(i)
        print()
                                                                          result.append(a1)
        for i in range(k):
                                                                      for j in range(len(result)):
                                                                          a = result[j]
            num_of_ones = list(I_copy[i]).count(1)
                                                                          res = '+'.join(str(a[i]) for i in
             if num_of_ones == 1:
                 a = emp[i] + I_copy[i]
                                                                  range(len(result[j])))
                 empI.append(a)
                                                                          last.append(res)
                 p_matrix.remove(p[i])
                                                                      parity1 = dict(zip(parity, last))
    elif 'IP' == form.upper():
                                                                      return parity1, emp
        print('The generator matrix is in IP')
        print()
                                                                  def convert(x):
                                                                       """convert str list to int list"""
        for i in range(k):
            num of ones = list(I copy[i]).count(1)
                                                                      values = []
            if num_of_ones == 1:
    a = I_copy[i] + emp[i]
                                                                      for i in range(len(x)):
                                                                          v = int(x[i])
                                                                          values.append(v)
                 empI.append(a)
                                                                      return values
                p matrix.remove(p[i])
    I1 = np.array(empI)
    return I1, emp, form
                                                                  def Extract(lst, parity, form):
def code_generation(data,g):
                                                                       """extract the parity matrix"""
    """code matrix generation"""
                                                                      if 'IP' == form.upper():
    drow = data.shape[0]
    gcol = g.shape[1]
                                                                          print('The generator matrix is in IP')
                                                                          s = [item[-parity:] for item in lst]
    global C
    if data.shape[1] == g.shape[0]:
                                                                          return s
        C = np.zeros((data.shape[0], g.shape[1]), dtype=int)
        for row in range(drow):
             for col in range(gcol):
                                                                      elif 'PI' == form.upper():
                                                                          print('The generator matrix is in PI')
                 for elt in range(len(g)):
                     C[row, col] ^= data[row, elt] * g[elt,
                                                                          s = [item[0:parity] for item in lst]
coll
                                                                          return s
        return C
    else:
        return "Sorry, cannot multiply A and B."
def minimum_weight(c):
                                                                  def check_form(g1,k):
    """calculate min hamming weight"""
num_of_ones = []
                                                                      global form
                                                                      s1 = [item[-k:] for item in g1]
                                                                      s2 = [item[:k] for item in g1]
    c = list(map(list, c))
    for i in range(len(c)):
                                                                      I = np.identity(k, dtype=int)
        a = list(c[i]).count(1)
                                                                      I = list(map(list, I))
                                                                      for i in range(len(I)):
        num_of_ones.append(a)
    num of ones.remove(0)
                                                                          for j in range(len(g1)):
    return num_of_ones
                                                                               if s1[j] == I[i]:
                                                                                   form = 'pi'
def error (ones):
    """Error correction and detectiion capabality"""
                                                                               elif s2[j] == I[i]:
                                                                                   form = 'ip'
```

```
return form
def convert_to_list(arr):
    """convert to list string """
    lst = list(map(list, arr))
    flatList = [item for elem in lst for item in elem]
    return flatList
def display(data):
     """displaying the data"""
    if dict != type(data):
        data = np.array(data)
        data = np.transpose(data)
        D = words(len(data), form)
        data = list(map(list,data))
        data = dict(zip(D, data))
    df = pd.DataFrame(data)
    df = tabulate(df, headers='keys', tablefmt='fancy_grid')
    return df, data
print('''plz select what you want to do:-
         1 = to use the genearator and data matrix which is
there
         2 = to create a new generator and data matrix
         3 = to enter the values of generator and data
matrix from the user''')
print('\n')
q = int(input('Enter the option number you want: -'))
print()
global n, k, initial, data, g, p, form
if 1 == q:
    print('''which linear code you want of (6,3) or (7,4)
             Enter a for (6,3)
             Enter b for another (6,3)
             Enter c for (7,4)''')
    a = input('Enter linear code : -')
    if a.lower() == 'a':
       g = [[1, 0, 0, 1, 1, 0], [0, 1, 0, 0, 1, 1], [0, 0,
1, 1, 0, 1]]
        k = 3
        intial = 0
        data = generate data matrix(k, intial)
        parity = n - k
        p = Extract(g, parity, 'ip')
        g = np.array(g)
        form = 'ip'
    elif a.lower() == 'b':
        n = 6
        k = 3
        parity = n - k
        d = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, print(p)]
0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
        g = [[1, 0, 0, 1, 0, 1], [0, 1, 0, 0, 1, 1], [0, 0,
1, 1, 1, 1]]
        g1 = g.copy()
        form = check_form(g1, k)
        print('The generator matrix is in', form.upper(),
'form\n')
        p = Extract(g, parity, form)
        data = np.arrav(d)
        g = np.array(g)
    elif a.lower() == 'c':
        k = 4
        intial = 0
        n = 7
        data = generate_data_matrix(k, intial)
g = [[1, 0, 0, \overline{0}, 1, 1, 1], [0, 1, 0, 0, 1, 0, 1], [0, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 1, 0]] parity = n - k
        p = Extract(g, parity, 'ip')
        g = np.array(g)
        form = 'ip'
elif 2 == q:
   n, k = map(int, input('Enter the number of code bit and
data bit:-').split())
   print('The linear code is of ','(',n,',', k,')')
    intial = int(input('enter The starting decimal number:-
    data = generate data matrix(k, intial)
    g, p, form = generator matrix(n, k)
```

```
elif 3 == q:
     n, k = map(int, input('Enter the number of code bit and
data bit:-').split())
    print('The linear code is of ', '(', n, ',', k, ')')
     print("\n")
     d = [input('Enter the data matrix with space :-
 ').split() for _ in range(2**k)]
g_matrix = [input('Enter the generator matrix with space
 :-').split() for _ in range(k)]
    g = []
    parity = n - k
     for i in range(len(d)):
        a = convert(d[i])
         data.append(a)
     for i in range(len(g matrix)):
         a = convert(g_matrix[i])
         g.append(a)
     g1 = g.copy()
     form = check_form(g1, k)
     print('The generator matrix is in', form.upper(),
 'form\n')
    p = Extract(g, parity, form)
    data = np.array(data)
     g = np.array(g)
rate = round(k/n, 2)
c = code generation(data, g)
ones = \overline{\min} weight(c)
err_detect, t = error(ones)
eqn, D = parity_eqn(p, form)
data, dict1 = display(data)
c, dict2 = display(c)
merge = dict1|dict2
final, _ = display(r
         = display(merge)
g = tabulate(g, tablefmt='fancy grid')
p = tabulate(eqn.items(), headers=['PARITY', 'DATA'],
tablefmt='fancy_grid')
print('--'*100, end='\n')
print('The DATA MATRIX IS :-')
print(data)
print('--'*100, end='\n')
print('The GENERATOR MATRIX IS ')
print(g)
print('--'*100, end='\n')
print('The CODE is :-')
print(c)
print('The minimum Hamming weight is = ', min(ones))
print('The error detection capability :- ', err_detect)
print('The error correction capability :- ', t)
print('The Code rate is', rate)
print('The Code efficiency is ', round(rate*100, 2))
print('The Parity eqn are')
print('The final table is :- ')
print(final)
print('made by Varad Patil 120A2036')
```

plz select what you want to do:-

- 1 = to use the genearator and data matrix which is there
- 2 = to create a new generator and data matrix
- 3 = to enter the values of generator and data matrix from the user

Enter the option number you want: -1

which linear code you want of (6,3) or (7,4)

Enter a for (6,3)

Enter b for another(6,3)

Enter c for (7,4)

Enter linear code : -a The generator matrix is in IP

dmin is an odd number

The DATA MATRIX IS :-

	D ₃	D ₂	D ₁
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

The GENERATOR MATRIX IS

1	0	0	1	1	0
0	1	0	0	1	1
0	0	1	1	0	1

The minimum Hamming weight is = 3

The error detection capability :- 2
The error correction capability :- 1.0

The Code rate is 0.5

The Code efficiency is 50.0

The Parity eqn are

PARITY	DATA
D ₃	D ₃ +D ₁
D ₂	D ₃ +D ₂
D ₁	D ₂ +D ₁

The CODE is :-

	C 6	C ₅	C4	C ₃	C ₂	C ₁			
0	0	0	0	0	0	0			
1	0	0	1	1	0	1			
2	0	1	0	0	1	1			
3	0	1	1	1	1	0			
4	1	0	0	1	1	0			
5	1	0	1	0	1	1			
6	1	1	0	1	0	1			
7	1	1	1	0	0	0			

The final table is :-

	D 3	D ₂	D ₁	C 6	C 5	C4	C ₃	C ₂	C ₁
0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	1	0	1
2	0	1	0	0	1	0	0	1	1
3	0	1	1	0	1	1	1	1	0
4	1	0	0	1	0	0	1	1	0
5	1	0	1	1	0	1	0	1	1
6	1	1	0	1	1	0	1	0	1
7	1	1	1	1	1	1	0	0	0

made by Varad Patil 120A2036

Enter the option number you want: - 1

which linear code you want of (6,3) or (7,4)

Enter a for (6,3)

Enter b for another(6,3)

Enter c for (7,4)

Enter linear code : -c

The generator matrix is in $\ensuremath{\mathsf{IP}}$

dmin is an odd number

The DATA MATRIX IS :-

	D4	D3	D ₂	D ₁
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

The GENERATOR MATRIX IS

1	0	0	0	1	1	1
0	1	0	0	1	0	1
0	0	1	0	0	1	1
0	0	0	1	1	1	0

The minimum Hamming weight is = 3
The error detection capability :- 2
The error correction capability :- 1.0
The Code rate is 0.57
The Code efficiency is 57.0
The Parity eqn are

PARITY	DATA
P ₃	D4+D3+D1
P ₂	D ₄ +D ₂ +D ₁
P ₁	D ₄ +D ₃ +D ₂

The CODE is :-

C7 C6 C5 C4 C3 C2 C1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1 1 0 1 1 3 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0<	The Co	ODE is	: -					
1 0 0 0 1 1 1 0 2 0 0 1 0 0 1 1 3 0 0 1 1 1 0 1 4 0 1 0 0 1 0 1 5 0 1 0 1 0 1 1 6 0 1 1 0 1 1 0 7 0 1 1 1 0 0 0 0 0 0 8 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0		C 7	C ₆	C 5	C4	C ₃	C ₂	C ₁
2 0 0 1 0 0 1 1 3 0 0 1 1 1 0 1 4 0 1 0 0 1 0 1 5 0 1 0 1 0 1 1 6 0 1 1 0 1 1 0 7 0 1 1 1 0 0 0 0 0 0 8 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 <	0	0	0	0	0	0	0	0
3 0 0 1 1 1 0 1 4 0 1 0 0 1 0 1 5 0 1 0 1 0 1 1 6 0 1 1 0 1 1 0 7 0 1 1 1 0 0 0 8 1 0 0 0 1 1 1 9 1 0 0 1 0 0 1 10 1 0 1 0 0 1 0 11 1 0 1 0 0 1 0 12 1 1 0 0 0 1 0 13 1 1 0 0 0 0 1 14 1 1 1 0 0 0 0 1	1	0	0	0	1	1	1	0
4 0 1 0 0 1 0 1 5 0 1 0 1 0 1 1 6 0 1 1 0 1 1 0 7 0 1 1 1 0 0 0 8 1 0 0 0 1 1 1 9 1 0 0 1 0 0 1 10 1 0 1 0 0 0 1 11 1 0 1 0 0 1 0 12 1 1 0 0 0 1 0 13 1 1 0 1 1 0 0 0 1	2	0	0	1	0	0	1	1
5 0 1 0 1 0 1 1 6 0 1 1 0 1 1 0 7 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 <td>3</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td>	3	0	0	1	1	1	0	1
6 0 1 1 0 1 1 0 7 0 1 1 1 0 0 0 8 1 0 0 0 1 1 1 9 1 0 0 1 0 0 1 10 1 0 1 0 1 0 0 11 1 0 1 1 0 0 1 0 12 1 1 0 0 0 1 0 13 1 1 0 1 1 0 0 0 1 14 1 1 1 0 0 0 0 1	4	0	1	0	0	1	0	1
7 0 1 1 1 0 0 0 0 0 0 0 0 0 1	5	0	1	0	1	0	1	1
8 1 0 0 0 1 1 1 9 1 0 0 1 0 0 1 10 1 0 1 0 0 0 0 11 1 0 1 1 0 1 0 12 1 1 0 0 0 1 0 13 1 1 0 1 1 0 0 0 1 14 1 1 1 0 0 0 0 1	6	0	1	1	0	1	1	0
9 1 0 0 1 0 0 1 10 1 0 1 0 0 0 0 11 1 0 1 1 0 1 0 0 1 0 12 1 1 0 0 0 1 0 0 1 0 13 1 1 0 1 1 0 0 0 0 1 14 1 1 1 0 0 0 0 0 1	7	0	1	1	1	0	0	0
10 1 0 1 0 1 0 0 11 1 0 1 1 0 1 0 12 1 1 0 0 0 1 0 13 1 1 0 1 1 0 0 14 1 1 1 0 0 0 0 1	8	1	0	0	0	1	1	1
11 1 0 1 1 0 1 0 12 1 1 0 0 0 1 0 13 1 1 0 1 1 0 0 14 1 1 1 0 0 0 1	9	1	0	0	1	0	0	1
12 1 1 0 0 0 1 0 13 1 1 0 1 1 0 0 14 1 1 1 0 0 0 0 1	10	1	0	1	0	1	0	0
13 1 1 0 1 1 0 0 14 1 1 1 0 0 0 1	11	1	0	1	1	0	1	0
14 1 1 1 0 0 0 1	12	1	1	0	0	0	1	0
	13	1	1	0	1	1	0	0
	14	1	1	1	0	0	0	1
	15	1	1	1	1	1	1	1

The final table is :-

	D4	D ₃	D ₂	D ₁	C 7	C ₆	C ₅	C4	C 3	C ₂	C ₁
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	1	1	0
2	0	0	1	0	0	0	1	0	0	1	1
3	0	0	1	1	0	0	1	1	1	0	1
4	0	1	0	0	0	1	0	0	1	0	1
5	0	1	0	1	0	1	0	1	0	1	1
6	0	1	1	0	0	1	1	0	1	1	0
7	0	1	1	1	0	1	1	1	0	0	0
8	1	0	0	0	1	0	0	0	1	1	1
9	1	0	0	1	1	0	0	1	0	0	1
10	1	0	1	0	1	0	1	0	1	0	0
11	1	0	1	1	1	0	1	1	0	1	0
12	1	1	0	0	1	1	0	0	0	1	0
13	1	1	0	1	1	1	0	1	1	0	0
14	1	1	1	0	1	1	1	0	0	0	1
15	1	1	1	1	1	1	1	1	1	1	1

made by Varad Patil 120A2036