

CICLO IME 2 - QUÍMICA

TURMA IME-ITA

2022

DADOS

Elementos

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	CI	17	35,45
He	2	4,00	Ar	18	$39,\!95$
С	6	12,01	K	19	39,10
N	7	14,01	Ca	20	40,08
0	8	16,00	Cr	24	52,00
F	9	19,00	Fe	26	$55,\!84$
Ne	10	20,18	Cu	29	$63,\!55$
Na	11	22,99	Zn	30	$65,\!38$
Mg	12	24,31	Br	35	79,90
S	16	32,06	I	53	126,90

1ª QUESTÃO

Para um processo industrial, é necessário preparar ácido sulfúrico $50\,\%$. Para isso, dispõe-se de:

- 1. Solução aquosa $20\,\%$ em $\mathrm{H_2SO_4}$ a $25\,^{\circ}\mathrm{C}$
- 2. Solução aquosa $80\,\%$ em $\mathrm{H_2SO_4}$ a $25\,^{\circ}\mathrm{C}$
- **3.** Gelo a 0 $^{\circ}$ C

Os dados termodinâmicos para o sistema H_2SO_4 -água a $25\,^{\circ}C$, sendo o estado de referência para entalpia a água líquida a $25\,^{\circ}C$, são apresentados a seguir.

() $m_{\mathrm{H}_2\mathrm{SO}_4}/m$	Entalpia
() 20%	$4 \mathrm{kJ}\mathrm{mol}^{-1}$
50%	$15\mathrm{kJ}\mathrm{mol}^{-1}$
80%	$40\mathrm{kJ}\mathrm{mol}^{-1}$
()	

Determine o volume de cada solução que deve ser utilizado para preparar $1000\,\mathrm{kg}$ de ácido sulfúrico $50\,\%$ com temperatura final $25\,^\circ\mathrm{C}$.

Dados

- Entalpia de fusão do H₂O $\Delta H_{\mathrm{fus}}^{\circ}(\mathrm{H_2O}) = 6.0\,\mathrm{kJ\,mol^{-1}}$

Inicialmente, devemos escrever a equação que representa a mistura da massa de gelo e de ambas as soluções para chegar na solução final:

$$m_{1(H_2SO_4(20\%))} + m_{2(H_2SO_4(80\%))} + m_{2(gelo)} = 1000$$

A próxima equação é relacionada a massa total de ácido sulfúrico:

$$0,2m_1+0,8m_2=500$$

E a última equação é relacionada ao processo termodinâmico do processo. Nesse caso, o raciocínio utilizado dever ser que a entalpia referente a mistura das soluções é a resonsável por derreter e esquentar o gelo até a temperatura de equilíbrio:

$$\frac{m_3(6000 + 25.75)}{18} = \frac{10^3(500.40 - 0, 2.m_1.4 - 0, 8.m_2.15)}{98}$$

resolvendo o sistema, temos: $m_1=104,148 \ m_2=598,963\ m_3=296,889$ Resposta: 104,15g da solução 1 e 598,96g da solução 2.

2ª QUESTÃO

Os elementos do segundo e terceiro períodos da tabela periódica apresentam desvios da tendência em suas curvas de afinidade eletrônica em função do número atômico.

- a) **Esboçe** qualitativamente o gráfico da afinidade eletrônica em função do número atômico para o segundo e terceiro períodos da tabela periódica.
- b) **Explique** a ocorrência dos desvios.

Gabarito

b) Os desvios ocorrem devido a existência de simetria esférica e semiesférica, que geram o efeito de blindagem do núcleo fazendo com que a carga efetiva sentida pelo elétron que se aproxima do átomo seja menor. A simetria esférica ocorre no Berílio e no Magnésio enquanto a simetria semiesférica ocorre no Nitrogênio e no Fósforo devidos as suas distribuições eletrônicas.

3ª QUESTÃO

A um calorímetro, $1\,\mathrm{mol}$ de tolueno líquido e ar atmosférico em excesso são adicionados a $27\,^{\circ}\mathrm{C}$. A mistura é aquecida até $117\,^{\circ}\mathrm{C}$, entrando em combustão. A temperatura no interior do calorímetro é mantida constante em $117\,^{\circ}\mathrm{C}$ por uma jaqueta contendo $1\,\mathrm{L}$ de água líquida. Considere os dados termodinâmicos a $300\,\mathrm{K}$.

- a) Determine a variação de temperatura da água na jaqueta.
- b) Determine a variação de entropia do sistema.
- c) Determine a variação de entropia da água na jaqueta.

Considere: $\ln(1,30) = 0.26$ $\ln(1,24) = 0.22$ $\ln(1,05) = 0.05$

Dados

- Capacidade calorífica do CO_2 $C_P(CO_2, g) = 37.0 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Capacidade calorífica do H_2O $C_P(H_2O, g) = 34.0 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Capacidade calorífica do tolueno $C_P(\text{tolueno}, l) = 160.0 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- \bullet Entalpia de formação do CO2 $\Delta H_{\rm f}^{\circ}({\rm CO_2,g}) = -390.0\,{\rm kJ\,mol^{-1}}$
- Entalpia de formação do $H_2O \Delta H_f^{\circ}(H_2O, l) = -290.0 \text{ kJ mol}^{-1}$
- Entalpia de formação do H₂O $\Delta H_{\rm f}^{\circ}({
 m H_2O,g}) = -240.0\,{
 m kJ\,mol^{-1}}$
- Entalpia de formação do tolueno $\Delta H_{\rm f}^{\circ}({\rm tolueno,l})=12.0\,{\rm kJ\,mol}^{-1}$
- Entropia do $CO_2 S^{\circ}(CO_2, g) = 210.0 \, J \, K^{-1} \, mol^{-1}$
- Entropia do H_2O $S^{\circ}(H_2O, 1) = 70.0 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Entropia do tolueno $S^{\circ}(\text{tolueno}, l) = 220.0 \, \text{J K}^{-1} \, \text{mol}^{-1}$

Gabarito

a) A combustão do tolueno :

$$C_7H_8 + 9O_2 \longrightarrow 4H_2O + 7CO_2, \Delta H$$

Teremos:

Para um mmol de tolueno, teremos:

$$\Delta H = 3723, 15J$$

Para a água na jaqueta:

$$Q = nCp\Delta T \rightarrow 3723, 15 = \frac{1000}{18} \cdot 75 \cdot \Delta T \rightarrow \Delta T = 0,89K$$

c) Calculando a variação de entropia para a água na jaqueta:

$$\Delta S = nCpln(\frac{T_f}{T_i})$$

3

$$\Delta S = \frac{1000}{18} \cdot 75 \cdot \ln(\frac{300,89}{300}) = 4166,66 \cdot \ln(\frac{300,89}{300}) J/K$$

Mas como $\Delta T << T$, podemos usar a aproximação : $ln(\frac{Tf}{Ti}) = \frac{\Delta T}{T}$ Assim,

$$\Delta S = 4166, 66 \cdot 0, 89/300 = 12, 35J/K$$

Agora resta calcular a variação de entropia do calorímetro:

$$\begin{split} \Delta S_{cal} &= 4S^{390}(H2O,g) + 7S^{390}(CO2,g) - 9S^{390}(O2,g) - S^{390}(C7H8,l) \\ S^{390}(H2O,g) &= S^{300}(H2O,l) + \Delta S^{300 \to 373}(H2O,l) + \Delta S(H2O_{(l)} \to H2O_{(g)}) + \Delta S^{373 \to 390}(H2O,g) \\ S^{390}(H2O,g) &= 70 + Cp_{H2O(l)}ln(\frac{373}{300}) + \frac{\Delta H_{vap}}{373} + Cp_{H2O(g)}ln(\frac{390}{373}) \\ \Delta H_{vap}^{373} &= \Delta Hf^{300}(H2O,g) - \Delta Hf^{300}(H2O,l) + (Cp_{H2O(g)} - Cp_{H2O(l)})\Delta T \\ \Delta H_{vap}^{373} &= -240 \cdot 10^3 + 290 \cdot 10^3 - 3690 = 46310 \ J \\ S^{390}(H2O,g) &= 70 + 16,5 + 124,15 + 1,7 = 212,35 \ J/mol.K \\ S^{390}(CO2,g) &= S^{300}(C2,g) + 37 \cdot 0,26 = 219,62 \ J/mol.K \\ S^{390}(O2,g) &= S^{300}(O2,g) + 7/2 \cdot R \cdot 0,26 = 212,57 \ J/mol.K \\ S^{390}(C7H8,l) &= S^{300}(C7H8,l) + 160 \cdot 0,26 = 261,6 \ J/mol.K \\ \Delta S_{cal} &= 4 \cdot 212,35 + 7 \cdot 219,62 - 9 \cdot 212,57 - 261,6 = 212 \ J/mol.K \end{split}$$

Multiplicando pelo número de mols:

 $\begin{aligned} \Delta S_{cal} = 0.212 \J/K \ \Delta S_{sist} = \Delta S_{cal} + \Delta S_{jaq} = 0.212 + 12.35 = 12.47\J/K \end{aligned}$

4ª QUESTÃO

Considere desprezível a variação da entropia e da energia interna com a pressão.

- a) Esboçe o diagrama de fases para o carbono, indicando as fases líquida, gasosa, grafite e diamante.
- b) **Determine** a pressão necessária para que a conversão de grafite em diamente seja termodinâmicamente viável $27\,^{\circ}$ C.
- c) **Explique** por que não se verifica a conversão de diamante em grafite a 27 °C.

Dados

- Densidade do C $\rho(C, diamante) = 2.40 \, g \, cm^{-3}$
- Densidade do C $\rho(C, grafite) = 4.00 g cm^{-3}$
- Entalpia de formação do C $\Delta H_{\rm f}^{\circ}({
 m C, diamante}) = 1.9\,{
 m kJ\,mol^{-1}}$
- Entropia do C $S^{\circ}(C, diamante) = 2.4 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Entropia do C $S^{\circ}(C, grafite) = 5.7 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Assim, reescrevendo : $\Delta G = \Delta U + P\Delta V - T\Delta S$ para uma determinada pressão.

$$\Delta G^{o} = \Delta U^{o} + P^{o} \Delta V - T \Delta S^{o}$$
$$\Delta G = \Delta U + P \Delta V - T \Delta S$$

Considerando que a energia interna e a entropia não variam com a pressão, teremos :

$$\Delta G^o - \Delta G = P^o \Delta V - P \Delta V$$

Trabalhando com a pressão externa:

$$\Delta G^o - \Delta G = P\Delta V - P^o \Delta V$$

Para determinar a pressão a partir da qual a conversão se torna termodinâmicamente viável,

$$\Delta G = 0$$

Assim,

$$\Delta G^o = (P - P^o)\Delta V$$

Sendo $\Delta G^o = \Delta H^o - T \Delta S^o = 2890~J$ Para um mol, $\Delta V = \frac{12}{2.4} - \frac{12}{4}$ = $2cm^3$

$$2890 = (P - P^{o})2 * 10^{-6}$$

$$P - P^o = 1445 * 10^6 Pa$$

Com isso, P=14451 atm.

c) Apesar da conversão ser viável à 300K, ela ocorre com velocidade extremamente baixa, portanto não é observada.

5ª QUESTÃO

Apresente a estrutura de todos os compostos monocíclicos com fórmula molecular C_6H_{10} .

Gabarito

As possíveis estruturas são

Os compostos marcados com asterisco possuem enantiômeros.

Observação: Ciclopropenos substituídos são instáveis e podem ser omitidos.

6ª QUESTÃO

Uma mistura gasosa, apresentando comportamento ideal, é formada por oxigênio, dióxido de enxofre e trióxido de enxofre. A mistura apresenta 25% em massa e 25% em volume de dióxido de enxofre.

- a) Determine a fração mássica de trióxido de enxofre na mistura.
- b) **Determine** a densidade da mistura.
- c) **Determine** a massa teórica de ácido sulfúrico puro que poderia ser obtida a partir de $1,00\,\mathrm{m}^3$ da mistura em CNTP admitindo 60% de conversão de dióxido em trióxido de enxofre quando a mistura passa por um leito catalítico contendo pentóxido de vanádio.

Gabarito

Gabarito a) A mistura citada na questão é composta de:

massa de
$$O_{2(g)} = m_1$$

massa de $SO_{2(g)} = m_2$
massa de $SO_{3(g)} = m_3$

Pelo enunciado sabemos que:

$$m_2 = 0,25 * (m_1 + m_2 + m_3)$$

 $3m_2 = m_1 + m_3 \rightarrow m_1 = 3m_2 - m_3$

Como os gases possuem comportamento ideal, a fração volumetrica será a mesma que a fração molar. Assim:

$$n_2 = 0,25 * (n_1 + n_2 + n_3)$$
$$3n_2 = n_1 + n_3$$

Passando a equação para massa:

$$15m_2 = 10m_1 + 4m_3m_2 = \frac{2m_3}{5}m_1 = \frac{m_3}{5}$$

Como queremos a fração mássica do $SO_{3(q)}$:

$$Fração\ m\'assica\ de\ SO_{3(g)} = \frac{m_3}{m_1+m_2+m_3}$$

Substituindo os valores encontrados

$$Fração\ mássica\ de\ SO_{3(g)} = \boxed{0,625}$$

b)
$$m_1 = 0, 125mm_2 = 0, 25mm_3 = 0, 625m$$

Para calcular a densidade nas CNTP:

$$d = \frac{P \cdot MM}{R \cdot T}$$

$$MM_{mistura} = x_1 \cdot MM_1 + x_2 \cdot MM_2 + x_3 \cdot MM_3$$

$$MM_{mistura} = 64g/mol$$

$$d = \frac{1 \cdot 64}{0,082 \cdot 273} = \boxed{2,86g/L}$$

c) Todo o ácido súlfurico é formado a partir do $SO_{3(g)}$ A massa total da mistura nas condições do enunciado será:

$$d = \frac{massa}{volume} \rightarrow 2,86g/L = \frac{massa}{1000L} massa = 2860g$$

Sendo n o número de mols de ácido formado, temos que:

$$n = n_3 + 0,6n_2 \frac{m_{H_2SO_4}}{MM_{H_2SO_4}} = \frac{0,625 \cdot 2860}{80} + \frac{0,6 \cdot 0,25 \cdot 2860}{64} = 22,34 + 6,70$$

Finalmente:

$$m_{H_2SO_4} = 29,04 * 98 = \boxed{2845,92 \ g}$$

7ª QUESTÃO

O gás de síntese, composto por monóxido de carbono e hidrogênio, é porduzido pela reação entre metano e vapor d\'água. Em um reator, $10\,\mathrm{L}$ de metano com excesso de água em CNTP são convertidos em gás de síntese com rendimento de 80%.

- a) Determine a variação de entalpia da reação.
- b) Determine a variação de entropia da reação.
- c) **Determine** a temperatura mínima para que a reação de formação do gás de síntese seja espontânea em condições padrão.

Dados

- Entalpia de formação do CH₄ $\Delta H_{\rm f}^{\circ}({\rm CH_4,g}) = -75.0\,{\rm kJ\,mol}^{-1}$
- Entalpia de formação do CO $\Delta H_{\rm f}^{\circ}({\rm CO,g}) = -110.0\,{\rm kJ\,mol}^{-1}$
- Entalpia de formação do $H_2O \Delta H_f^{\circ}(H_2O,g) = -240.0 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- Entropia do CH₄ $S^{\circ}(CH_4, g) = 190.0 \, \mathrm{J \, K^{-1} \, mol^{-1}}$
- Entropia do CO $S^{\circ}(CO, g) = 200.0 \, J \, K^{-1} \, mol^{-1}$
- Entropia do H_2O $S^{\circ}(H_2O, g) = 190.0 \, \mathrm{J \, K^{-1} \, mol^{-1}}$

Gabarito A reação em questão é:

$$CH_{4(q)} + H_2O_{(q)} \to CO_{(q)} + 3H_{2(q)}$$

a)

$$\Delta H = -110 - (-75 - 240) = 205kJ/mol$$

Como o metano será o reagente limitante e se encontra em CNTP, o número de mols de reação será:

$$n = \frac{10}{22,4} \ mols$$

Logo a energia liberada levará em conta o quanto de metano reagiu, além do rendimento da reação:

$$Energia = \frac{10}{22,4} \cdot 0, 8 \cdot 205 = \boxed{73,21kJ}$$

b)

$$\Delta S = 200 + 3 \cdot 131 - (190 + 190) = 213J/molK$$

de maneira análoga ao item (a) temos que:

$$213 \cdot 0, 8 \cdot \frac{10}{22, 4} = \boxed{76, 07J/K}$$

c) Para que a reação seja espontânea sabemos que

$$\Delta G < 0$$

Mas:

$$\Delta G = \Delta H - T \cdot \Delta S < 0$$

$$T > \frac{\Delta H}{\Delta S}$$

$$T > 962,44K$$

8ª QUESTÃO

Um engenheiro químico foi encarregado da unidade de destilação de água em uma barragem, altamente contaminada com acetona de efluentes industriais. O objetivo é obter água a partir de uma mistura de acetona e água contendo 60% de massa em água. A mistura entra na unidade de destilação com uma vazão de $700\,\mathrm{kg/h}$. O produto de fundo da destilação sai com vazão de $270\,\mathrm{kg/h}$ e contém 80% de água, em massa.

- a) **Determine** a composição do produto de topo.
- b) **Determine** a vazão molar de água no produto de fundo.
- c) Proponha um processo para aumentar a pureza da água no produto de fundo.

Vamos tomar uma base de cálculo de 1 hora, portanto em 1 hora teremos 700kg de uma mistura 60% massa de água entrando na unidade de destilação, sendo que 270kg de uma mistura 80% massa de água sai como produto de fundo e os outros 430kg saem como produto de topo. Para determinar a composição do produto de topo basta conservar a massa de água:

$$m_o = m_1 + m_2 \ (I)$$

Sendo: * m_o massa de água inicial * m_1 massa de água no produto de fundo * m_2 massa de água no produto de topo

Cálculo de m_o :

$$m_o = m_t \cdot f_{H_2O}^{m_o}$$

onde $f_{H_2O}^{m_o}$ é a fração mássica inicial de água

$$m_o = 700 \cdot 0, 6$$

$$m_0 = 420 kg$$

Cálculo de m_1 :

$$m_1 = m_{t1} \cdot f_{H_2O}^{m_1}$$

Analogamente:

$$m_1 = 270 \cdot 0.8$$

$$m_1 = 216kg$$

Cálculo de m_2 : Por (I):

$$420 = 216 + m_2$$

$$m_2 = 204kg$$

Por fim basta relacionar essa massa de água com a massa total do produto de topo. A fração mássica de água no produto de topo será:

$$f_{H_2O}^{m_2} = \frac{204}{430} \approx 47,4\%$$

* Portanto a composição do produto de topo será: 47,4% de **água** e 52,6% de **acetona** em massa.

Para calcular a vazão molar basta converter a vazão em massa de água no produto de fundo. Cálculo da vazão molar de água no produto de fundo: V_m a vazão molarde água no produto de fundo:

$$V_{m} = \frac{V_{mass}}{MM_{H_{2}O}} = \frac{V_{total} \cdot f_{H_{2}O}^{m_{1}}}{MM_{H_{2}O}}$$

$$V_m = \frac{270 \cdot 0.8}{18} = \boxed{12 \text{ } kmol/h}$$

a) Para aumentar a pureza da água basta usar o processo de **refluxo**, o qual consiste em pegar essa corrente de água mais purificada e jogá-la novamente na unidade de destilação.

9ª QUESTÃO

Considere o elemento X, de número atômico Z = 82.

- a) Determine a configuração eletrônica do estado fundamental de X.
- b) **Determine** os números quânticos do elétron mais energético de **X**.
- c) Apresente a fórmula molecular do cloreto mais estável de X.

Gabarito

a) Fazendo a distribuição eletrônica temos:

$$\boxed{1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^6\ 6s^2\ 4f^{14}\ 5d^{10}\ 6p^2}$$

b) Pela distribuição, o elétron será o do $6p^2$, portanto seus números quânticos serão:

$$n = 6$$
 $l = 1$ $m = 0$ $s = -\frac{1}{2}$

c) Temos 2 possibilidades de cloreto, uma envolvendo apenas os elétrons do $6p^2$ e outro envolvendo esses mais os elétrons do $6s^2$ Portanto temos 2 possibilidades:

$$XCl_2$$
 XCl_4

Porém pelo efeito do par inerte, os elétrons do $6s^2$ recebem uma péssima blindagem dos orbitais d e f, dessa forma o par $6s^2$ sente uma forte atração do núcleo, de modo a dificultar a interação desse par com os íons cloreto, por isso o cloreto mais estável será o $\boxed{XCl_2}$.

10^a QUESTÃO

Estabeleça a relação entre as estruturas de cada par abaixo, identificando-as como enantiômeros, diastereoisômeros, isômeros constitucionais ou representações diferentes de um mesmo composto.

$$Cl$$
 CH_3
 H_3C
 Cl
 O
 O

e)
$$H \xrightarrow{CH_3} H \xrightarrow{H_3C \xrightarrow{H}} F$$
 $H_3C \xrightarrow{H} H \xrightarrow{CI} CH_3$

a) Enantiômeros

Girando o segundo cubo 90 graus no eixo vermelho temos:

Girando 90 graus no eixo azul temos:

Veja que o resultado final é a imagem especular do primeiro cubo.

a) Enantiômeros Passando para a visão plana e rodando 180 graus saindo do plano do papel:

$$F = \frac{1}{\hat{C}I} = \frac{\hat{C}I}{\hat{B}r} = \frac{\hat{C}I}{\hat{B}r}$$

a) Enantiômeros Rotação no plano do papel:

- a) Diastereoisômeros Basta ver que a parte de cima é espelhada e a parte de baixo é igual, portanto não são o mesmo composto, nem enantiômeros, sendo assim diastereoisômeros
- b) Diastereoisômeros Girando 180 graus no plano do papel percebemos q um dos carbonos é imagem especular do outro enquanto os outros carbonos não são, portanto são diastereoisômeros.