Exercise 1-9 Find I_x from the diagram in Fig. E1-9.

Figure E1-9

$$V_1 = 5 \times 2 = 10 \text{ V}$$

$$I_x = \frac{V_1}{4} = 2.5 \text{ A}.$$

Exercise 2-4 If $I_1 = 3$ A in Fig. E2-4, what is I_2 ?

Figure E2-4

Solution: KCL at the top center node requires that

$$I_1 + I_2 - 2 A = 0.$$

Hence,

$$I_2 = 2 - I_1 = 2 - 3 = -1$$
 A.

Exercise 2-5 Apply KCL and KVL to find I_1 and I_2 in Fig. E2-5.

Solution: KCL at node 1 requires that

$$I_1 = I_2 + 4$$
.

Also, KVL for the left loop is

$$-20 + 4I_2 + 2I_1 = 0.$$

Simultaneous solution leads to

$$I_1 = 6 \text{ A}, \qquad I_2 = 2 \text{ A}.$$

Exercise 2-6 Determine I_x in the circuit of Fig. E2-6.

Solution:

KCL @ node 1: $I_x = I_1 + 4$

KCL @ node 2: $I_1 + 4 = I_2 + I_3$

KVL Loop 1: $4I_x + 2I_1 + 8I_3 = 0$

KVL Loop 2: $-8I_3 + 2I_2 - 2I_x = 0$

We have four equations with four unknowns. Simultaneous solution leads to

$$I_x = 1.33$$
.

Exercise 2-7 Apply resistance combining to simplify the circuit of Fig. E2-7 so as to find *I*. All resistor values are in ohms.

Figure E2-7

Solution: Combining all resistors that are in series will result in the following circuit:

Combining all resistors that are in parallel will result in:

Exercise 2-8 Apply source transformation to the circuit in Fig. E2-8 to find I.

Figure E2-8

Solution: Apply source transformation to the 12-V source and $6-\Omega$ resistor:

Current division gives

$$I = \frac{12 \times 2}{2 + 4} = 4 \text{ A}.$$

Exercise 2-9 For each of the circuits shown in Fig. E2-9, determine the equivalent resistance between terminals (a,b).

Figure E2-9

(b) Applying Y-Δ transformation

Exercise 2-11 Determine I in the two circuits of Fig. E2-11. Assume $V_F = 0.7$ V for all diodes.

Figure E2-11

Solution:

(a) With $V_F = 0.7$ V, KVL around the loop gives

$$-12 + 2 \times 10^{3}I + 0.7 + 3 \times 10^{3}I + 0.7 = 0,$$

which leads to

$$I = \frac{12 - 1.4}{5 \times 10^3} = 2.12 \text{ mA}.$$

(b) Since the diodes are biased in opposition to one another, no current can flow in the circuit. Hence

$$I=0.$$

Exercise 3-1 Apply nodal analysis to determine the current *I*.

Figure E3-1

Solution:

$$I_1 + I_2 + I = 0$$
 $I_1 = \frac{V_a}{10}$, $I_2 = \frac{V_a - 24}{10}$, $I_3 = \frac{V_a}{1}$

Hence,

$$\frac{V_a}{10} + \frac{V_a - 24}{10} + V_a = 0,$$

$$V_a \left(\frac{1}{10} + \frac{1}{10} + 1\right) = \frac{24}{10},$$

which leads to

$$V_a = 2 \text{ V}, \qquad I = \frac{V_a}{1} = 2 \text{ A}.$$

Exercise 3-2 Apply nodal analysis to find V_a .

Figure E3-2

Solution:

$$I_1 + I_2 + I_3 = 0$$

$$I_1 = \frac{V_B - 9}{20} , \qquad I_2 = \frac{V_B - \frac{V_a}{2}}{10} , \qquad I_3 = \frac{V_B}{40} .$$

Hence,

$$\frac{V_B - 9}{20} + \frac{V_B - \frac{V_a}{2}}{10} + \frac{V_B}{40} = 0.$$

Also,

$$V_A = 9 - V_B.$$

Solution gives: $V_a = 5 \text{ V}$.

Exercise 3-4 Apply mesh analysis to determine *I*.

Mesh 1:
$$-12+4I_1+4(I_1-I_2)=0$$

Mesh 2: $I_2=3$ A

$$4I_1 + 4I_1 - 4 \times 3 = 12$$

 $8I_1 = 24$
 $I_1 = 3 \text{ A.}$
 $\implies I = I_1 - I_2 = 3 - 3 = 0.$

Exercise 3-5 Determine the current *I* in the circuit of Fig. E3-5.

Figure E3-5

Solution:

Mesh 1:
$$-60 + 10I_a + 20(I_a - I_b) = 0$$

Mesh 2:
$$I_b = \frac{I_1}{2}$$

Also,

$$I_1 = I_a$$
.

Hence,

$$I_b = \frac{I_a}{2}$$
,
-60 + 10 I_a + 20 $\left(I_a - \frac{I_a}{2}\right)$ = 0,

which simplifies to

$$20I_1 = 60$$

or

$$I_a = 3 \text{ A},$$

 $I = I_a - I_b = I_a - \frac{I_a}{2} = \frac{I_a}{2} = \frac{3}{2} = 1.5 \text{ A}.$

Exercise 3-6 Apply mesh analysis to determine I in the circuit of Fig. E3-6.

Figure E3-6

Solution:

Outside mesh: $2I_1 + 3I_2 + 5I_3 = 0$.

Also,

$$I_2 - I_1 = 4 \text{ A}, \qquad I_2 - I_3 = 3 \text{ A}.$$

Hence,

$$I_1 = I_2 - 4 = (I_3 + 3) - 4 = I_3 - 1$$

 $I_2 = I_3 + 3$
 $2(I_3 - 1) + 3(I_3 + 3) + 5I_3 = 0$
 $10I_3 = 2 - 9$
 $I_3 = -0.7 \text{ A}$

$$I = I_3 = -0.7 \text{ A}.$$

Exercise 3-7 Apply the node-analysis by-inspection method to generate the node voltage matrix for the circuit in Fig. E3-7.

Figure E3.7

Solution:

$$G_{11} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$
, $G_{22} = \frac{1}{3} + \frac{1}{5} = \frac{8}{15}$, $G_{11} = \frac{5}{6}$, $G_{12} = -\frac{1}{3} = G_{21}$, $G_{22} = \frac{8}{15}$.

Hence,

$$\begin{bmatrix} \frac{5}{6} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{8}{15} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}.$$

By MATLAB software,

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 3.4 \text{ V} \\ -3.5 \text{ V} \end{bmatrix}.$$

Exercise 3-8 Use the by-inspection method to generate the mesh current matrix for the circuit in Fig. E3-8.

Figure E3-8

Solution:

$$R_{11} = 5 + 10 = 15$$

 $R_{22} = 10 + 20 + 6 = 36$
 $R_{33} = 20 + 12 = 32$
 $R_{12} = R_{21} = -10$
 $R_{13} = R_{31} = 0$
 $R_{23} = R_{32} = -20$

Hence,

$$\mathbf{R} = \begin{bmatrix} 15 & -10 & 0 \\ -10 & 36 & -20 \\ 0 & -20 & 32 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 8+4=12 \\ -8 \\ -2 \end{bmatrix}$$

$$\mathbf{I} = \mathbf{R}^{-1}\mathbf{V} = \begin{bmatrix} 0.7505 \\ -0.0743 \\ -0.1089 \end{bmatrix}$$

$$\therefore I_1 = 0.75 \text{ A}$$

$$I_2 = -0.07 \text{ A}$$

$$I_3 = -0.11 \text{ A}$$

Exercise 3-9 Apply the source-superposition method to determine the current *I* in the circuit of Fig. E3-9.

Exercise 3-10 Apply source superposition to determine V_{out} in the circuit of Fig. E3-10.

Figure E3-10

By voltage division,

$$V_{\text{out}} = \frac{-6 \times 1}{5+1} = -1 \text{ V},$$