MBA 753 : Causal Inference Methods for Business Analytics

Dr. Nivedita Bhaktha

05.08.2024

Agenda

- Fundamentals of multiple linear regression
- Categorical predictors and its interpretation
- Interaction effects and its interpretation

Fundamentals of Multiple Linear Regression

Multiple linear regression model

 Extends SLR models to accommodate multiple independent variables that are associated with the single dependent variable

$$y_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki} + \epsilon_i; \quad i = 1, ..., n$$

- Describes the relationship in the population
- Parameters are estimated through sample and assumptions

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \dots + \widehat{\beta}_k x_{ki}$$

MLR model -II

Residuals: observed – predicted

 Consider a simple case with two explanatory variables:

- *Idea*: Fit a regression plane in 3D space
- OLS estimation is used

Regression Plane

MLR model -III

- Intercept α predicts where the regression plane
 crosses the Y axis
- Slope for variable X₁ (β₁)
 predicts the change in Y
 per unit X₁ holding X₂
 constant
- The slope for variable X₂
 (β₂) predicts the change in
 Y per unit X₂ holding X₁
 constant

MLR - Interpretation

Ceteris Paribus - all else being equal

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2$$

- \hat{eta}_1 and \hat{eta}_2 are called partial effects
- Interpret: $\hat{y} = 27 + 9x_1 + 12x_2$ where \hat{y} is the predicted sales (\$1000s), x_1 is the capital investments (\$1000s) and x_2 is the marketing expenditure (\$1000s)

MLR - Assumptions

- Random and independent samples: $(y_i, x_{1i}, x_{2i}, ..., x_{ki})$; i = 1, ..., n
- Linearity in parameter: $y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + v_i$
- Zero conditional mean and normal distribution for error
 - We assume $\varepsilon_i \sim N(0, \sigma^2)$ and $cov(\varepsilon_i, \varepsilon_j) = 0$
 - The conditional mean: $E(\varepsilon \mid x_1, ..., x_k) = E(\varepsilon) = 0$ for all $(x_1, ..., x_k)$
 - Error and predictors are independent: $cov(\varepsilon, x_1) = \cdots = cov(\varepsilon, x_k) = 0$

MLR – Assumptions II

Homoscedasticity: variance of error does not change with Xs

$$var(\varepsilon \mid x_1, ..., x_k) = var(\varepsilon) = \sigma^2 < \infty$$

MLR – Assumptions III

- Multicollinearity: No perfect collinearity
 - No perfect relationship among the predictors

$$Cor(x_i, x_j) \neq \pm 1$$

- None of the predictors are constant
- In case of perfect collinearity, OLS estimation will not work
- Even high correlation among predictors leads to unstable coefficients
 - Example: Using both total number of rooms and number of bedrooms as explanatory variables in same model

Goodness of Fit

- SST = SSR + SSE
 - SST: Total sum of squares
 - SSR: Sum of squares due to regression
 - SSE: Error sum of squares
- R^2 : Proportion of variance in Y accounted for by the set of Xs

 Any additional independent variable in the model will increase SSR i.e.

Goodness of fit - II

- Adjusted R²
 - Modified version of \mathbb{R}^2 that adjusts for non-significant predictors
 - Corrects for overestimation by taking into account -
 - Sample size
 - Number of independent variables
 - Adjusted R² might decrease if a specific effect does not improve the model

$$R_{adj}^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$

Significance Tests

• Individual regression coefficients

Ho:
$$\beta_j = a$$
 $\forall | s$ H_1 : $\beta_j \neq a$ $j = 1, ..., K$ Generally $a = 0$

We can use t-test statistic such that

 $t_0 = \frac{\beta_j - a}{\widehat{SE}(\widehat{\beta}_i)}$ $\int t_0 + k-1$

Overall regression significance

Ho:
$$\beta_1 = \cdots = \beta_k = 0$$
 V/s H₁: at least one $\beta_j \neq 0$; $j = 1, \dots, k$
We can use F -statistic such that
$$F_6 = \frac{SSR/K}{SSE/n-K-1} \longrightarrow F_{K,n-K-1}$$

MLR – R output

```
Call:
lm(formula = sales ~ youtube + facebook + newspaper, data = marketing)
Residuals:
             1Q Median
    Min
                             3Q
                                     Max
-10.5932 -1.0690 0.2902 1.4272 3.3951
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.526667 0.374290 9.422 <2e-16 ***
youtube 0.045765 0.001395 32.809 <2e-16 ***
facebook 0.188530 0.008611 21.893 <2e-16 ***
newspaper -0.001037 0.005871 -0.177
                                        0.86
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 2.023 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

Categorical Predictors

Categorical Predictor Variables

- Categorical independent variables can be incorporated into a regression model by converting them into 0/1 ("dummy") variables
 - Involves categorical X variable with two levels
 - Assumes only intercept is different
 - Slopes are constant across categories

Dummy Regressors

- Dummy regressors are easily extended to explanatory variables with more than two categories
 - A variable with m categories has m 1 regressors
 - As with the two-category case, one of the categories is a reference group (coded 0 for all dummy regressors)

	D_1	D_2
Blue Collar	1	0
Professional	0	1
White Collar	0	0

Dummy Regression Model

$$Y_i = \alpha + \beta X_i + \gamma_1 D_{i1} + \gamma_2 D_{i2} + \varepsilon_i$$

This gives three parallel regression lines

Blue Collar: $Y_i = (\alpha + \gamma_1) + \beta X_i + \varepsilon_i$

Professional: $Y_i = (\alpha + \gamma_2) + \beta X_i + \varepsilon_i$

White Collar: $Y_i = \alpha + \beta X_i + \varepsilon_i$

Interaction Effect and its Interpretation

Interaction Effect

- Two predictor variables "interact" when the partial effect of one variable depends on the value of another variable
 - For example, testing whether age effects are different for men (coded 1) and women (coded 0)
 - Separate models cannot test for differences among groups
 - Testing for differences in slope

```
Y_i = \alpha + \beta X_i + \gamma D_i + \delta(X_i D_i) + \varepsilon_i
income_i = \alpha + \beta age_i + \gamma men_i + \delta(age_i \times men_i) + \varepsilon_i
```

 $\alpha + \gamma$

α

Interaction Interpretation

- When the interaction effect is significant
 - The unique partial effects (for example that of age and gender) are no longer interpretable just by themselves

Omitting interaction effects can lead to erroneous conclusions

Recap

Summary

- MLR fitting the best regression space
- Partial effects are estimated assuming ceteris paribus
- A categorical predictor with m groups will have m-1 regressors
- Interaction effects when effect of one predictor depends on the values of the other
- Objectives achieved:
 - Can understand and interpret "effects" in a MLR model with categorical predictors and interactions
 - Can fit models and perform model diagnostics in a statistical software

References

- Model diagnostics for MLR in R: <u>https://sscc.wisc.edu/sscc/pubs/RegDiag-R/index.html</u>
- Stock, J. H., Watson, M. W., Wooldridge, J. M., & Wooldridge, J. M. Introductory Econometrics: A Modern Approach (4th Edition International).
- Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied linear statistical models. McGraw Hill Education.
- Scott Cunningham, Causal Inference: The Mix Tape, Yale University Press.

Thank You ©

