Q. Write a C program to simulate the following CPU scheduling algorithm to find turnaround time and waiting time.

Priority (pre-emptive or Non-pre-emptive) Round Robin (Experiment with different quantum sizes for RR algorithm)

OBSERVATION:

ROUND ROBIN:

18 (+time =0, count =0; fremain! =0;) if (Rt [count] <= time quantum 8 & 5+ [(ount] >0) time += 8+ [count] gy- Crownt J=0; ylag =1 else 1/9 (St [Count] >0) It [count] - = thme _ quantum the += +hne - quantum; Mg C9t [(ount]==022 plag==1) Lomain prant (" PI aloca) to 1 to aloca) to 1 to to all & count +1, time -at [count], then at [count], time - bt [(ount]) wait time += time - at Ecount J-b+1. Mary 2001 turnaround time + = time -at [count]; fleig = 0; 1/9 ((ount==n-1) Count =0, else 49 (at (100 mt + 1) <= +(mg) count ++; elde (00nt=0) perhalf ("In Average waiting the = got in" wast theme + 1.0/m)

	M 7 M 8 P S 6
print ("Avg Turnaroung To furnaround time * 1.0 puntiant Chart (process 12, s	ine = 9.0"
overturant the + 100	/m);
refurn 0',	startine, endino, n)
3	
OP	
Enter AT and BT gosphoces w	mbeg 11:05
71 77 78 78 78	2, 2 3
	3: 1
	4: 32
35 31 31 31 11 31 17	5: 43
Part at 8	
Enter Quantum	1 1/2
Enter time Quantum! 2	2
2 4-9 /CAR (god Car)	Carried Towns
PROCESS Tumasound time	waiting tho
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	waiting tho
PC3J 3	waiting tho
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	waiting tho
P[3] 3 P[4] 4	waiting tho
P[3] 3 P[4] 4 P[2] 10	waiting the
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14	waiting tho 2 2 7 6 9
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14	2 7 6 9
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14	2 7 6 9
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14 Avg warthar than = 5.2	2 7 6 9
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14	2 7 6 9
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14	2 7 6 9
P[3] 3 P[4] 4 P[2] 10 P[5] 9 P[1] 14	2 7 6 9

(continuation) (6A	NH Chart
void point exemptions	the CJ, but 2 []
print (" In trant the ch	soces 10 his
prints ("0/0d/n", en	enctime [m]
New OIP	
Enter Total process	
Enter AT and BT Enter AT and BT Enter AT and BT Enter AT and BT	P[3]: 0 5 P[3]: 2 1 P[4]: 3 2 PK5]: 4 3
Enter Time Quan	tum: 2
Process TAT	10T
2 3 3 4	2 2
5 5	, , , 2

	,		Page No.	YOUVA
Process	TAT	To	1	
1	11	6		
2	11	8		
5	14	6		
1	1 -	9	1	
Aug	waiting	thme = 5 = 8,20	. 40	
Chant	chart	,		
IPI P	2 183 11	P4 1 P5		
13 11	4	8 12		
		30		
		- Early		
	-			
13 - 11		+ 1 1 1 1		
		4 2 4 5		

PRIORITY:

```
Phiosity
-> code :-
     # incluere <Grd'o N
     Struct Proces &
      int Process ID;
      Int burst Time;
      int peropety;
      Int arrival time;
       In from ainty g Time;
     Voi'cl sort processes (skurt process processes)
    a skurt process temp;
     int i, J.

for (i = 0', i < m-1, i++)

great (j = 0', j < m-i-1; j++)

ly (Processes [v'), prio suly)

processes [j+1], prioruly) &

temp = processes [j]

processes [j'+1] = Processes [j+1];

process [j'+1] = temp;
    elle if (processes [i] - priority ===
processes [i+1]. priority)?
  the temp = processed i ];

processes [i] = processes [i+i]'

processes [i+i] = temp;
```

void schedule processes Nonpreemptine (struct process processes to, ht n) ? int waiting Time = 0, turnal ound Time =0 print (") n process (+ Burst
Time) to prioroug I to Promae Time (+ working Time It Turnasov nee Time ") bor (i=0 i <n ; i++) & walting Time process ti]. arrwal Time turnaloundTime + = procos [i]. burst Timo, processos prut fo (" n %) d | t % od | t 1 to/od | t) bolod 161 601001 1616900" Plocesses [i]. processID, brocess [i]. burstine, & process I'T probley, process I'd arrand The waster of Time, turnarounditing plus (C'MAN T': 0/0 2 F" (Ploat) wasting peluto ("LATATAT": 0/0 2f", (float)
furnasound time (m) int working Time -0, two adour of the =0; plant (" n Gant + chart. [7")

while (completed processes (n) 3 2 int highest periodsty = -1 that selected process = T; tog (1=0; i < n; i++) & of (processes [i] arrivalTime <2 assent Three & & processes tij gomaining Time = 0) 3 140 (highest proving) ? righest processes CiJ. propriority 14 (Selected process = = -1) {
austent Time + +; continue, processes [selected places]. remaining Time -June = -0) Esdected Moces J. Somaring waiting Time + = current Time - processes [sepocker PROCEST) - arrivaltime - placesses Esdected process 7. bulst Time twindsound the + 2 corrent Time completed processes for processes [sebeld processes] - processes [sebeld] Mo (esses [selecter process] obligethe

prints ("In In process to BT) priority to
for (i = 0) < 2 itt) &
prints ("In obalt oracle obalt 9701.1+ %od/+ 400/+4 process [1] , process 1), process Tij. process [i] - or was the wasting time, furnal and (Time) printf("In AwT - 9224" (floor wanting The M) turnasounatine ins; 14 int man () & scanp ("ord d" &n) Struct process processes [m] pol (1=0) ICM (1+1) ?
poly (1) n Enter details for process sol processes (i)-process 10 = i+1 Peruty ("In Enter burst Time: "1) Scand ("of o d" & process [i] burst The,
prints ("In Enter priority".")

Scand ("Idod & process [i] - priority)

pulled ("Enter order at time:") Scarp (" 900", & procosses Pi) 180 cess [i] . removing The - 18000000 burst timo,

points ("select the schooling along ponto (m. non permitue m 2 Preemitue)

ponto (uenter gous choice: 1)

scant (1900 & option)

switch (option) & option)

rase 1. Short processes (Processes, h) Non preemptino (processes, n) mean; case 2'. preemptine (P80 cesses, n) break; depault : pounts ('In Invalua choice) bleak John D', Enter the number of Bocesses: 4
Enter dotails of Processes: 4
Pr+: 3 Enter dotals of process 2.

OUTPUT:

ROUND ROBIN OUTPUT:

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
                                                                                                                                                                                                                                         ∑ Code + ∨ □ · · · · ×
PS D:\VS Code> cd "d:\VS Code\OS\" ; if ($?) { gcc RR1.c -0 RR1 } ; if ($?) { .\RR1 } Enter number or processes
Enter araival times:
0 1 2 3 4
Enter process times:
5 3 1 2 3
Enter TQ
Enter TQ 2
0 P1 2 P3 3 P1 5 P2 7 P4 9 P5 11 P1 12 P2 13 P5 14
P1 12 7
P2 12 9
P3 1 0
P4 6 4
P5 10 7
ATAT=8.200000
AWT=5.4000000
PS D:\VS Code\OS>
```

PRIORITY OUTPUT:

```
PS D:\VS Code\OS> cd "d:\VS Code\OS\" ; if ($?) { gcc npp.c -o npp } ; if ($?) { .\npp } Enter number of processes

4
Enter araival times:
0 1 2 3
Enter process times:
4 3 3 5
Enter priority:
3 4 6 5
9 p1 4 p3 7 p4 12 p2 15
P1 4 0
P2 14 11
P3 5 2
P4 9 4
ATAT=8.0000000
AWT=4.2500000
PS D:\VS Code\OS>
```