Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Aritmética modular
- * Congruencia lineal

Aritmética modular

Se basa en la operación residuo o módulo definida a continuación:

a mod b es el residuo de a div b

$$5 \text{ div } 2 = 2$$

 $5 = 2 \times 2 + R$
 $R = 15 - 2 \times 2 = 1$

Aritmética modular

Se basa en la operación residuo o módulo definida a continuación:

a mod b es el residuo de a div b

•
$$0 \le a \mod b \times b$$

$$10 \mod 5$$
 $0, 1, 2, 3, 4$
 $10 \dim 5 = 2$
 $5 \times 2 + R = 10$ $R = 0$
 $9 \mod 5$ $9 \dim 5 = 1$
 $R = 4$

• 17 mod
$$5 = 2$$

• 9 mod
$$4 = 1$$

- 2 mod 2 = ()
- -5 mod 2 = 1 \longrightarrow $2 \times (-3) + 1 = -5$

$$17 = 5 \times 3 + R$$
 $9 = 2 \times 4 + R$

$$=7=3\times(-3)+R$$

$$2 \times (-3) + 1 = -5$$

- $17 \mod 5 = 2$
- 9 mod 4 = 1
- $-7 \mod 3 = 2$
- $2 \mod 2 = 0$
- $-5 \mod 2 = 1$

• -21
$$mod 9 = 6$$

$$9(-3) + R = -21$$

• -21 mod 9 = 6
$$\sqrt{9(-3) + R} = -21$$
 $-27 + R = -21$

- $-21 \mod 9 = 6$
- $4 \mod 2 = 0$
- $2 \mod 4 = 2$
- $-12 \mod 5 = 3$

• -34 mod 4 = 2
$$4(-9) + 2 = -34 - 36 + 2 = -34$$

$$4(-9) + 8 = -34$$

$$-36 + 2 = -34$$

- 7 mod 9 = 7
- 73 mod 8 = 1
- -24 mod 7 = 4

- $-34 \mod 4 = 2$
- $7 \mod 9 = 7$
- $73 \mod 8 = 1$
- $-24 \mod 7 = 4$

Calcule y compare los siguientes pares de valores:

- 7 mod 5, 2 mod 5
- 4 mod 3, 13 mod 3
- 11 mod 5, 21 mod 5
- 22 mod 4, 38 mod 4

- 2,2
- 1, 1
- 1,1
- 2,2

Calcule y compare los siguientes pares de valores:

- $7 \mod 5 = 2 \mod 5 = 2$
- 4 $mod(3) = 13 \mod (3) = 1$
- 11 $mod 5 = 21 \mod 5 = 1$
- 22 mod 4 = 38 mod 4 = 2

$a\equiv b \pmod{m}$

Se dice que a es congruente con b módulo m, si y solo si,
 a mod m = b mod m

$a \equiv b \pmod{m}$

- Se dice que a es congruente con b módulo m, si y solo si,
 a mod m = b mod m
- Para los casos anteriores se tiene que:

```
7 \equiv 2 \pmod{5}
4 \equiv 13 \pmod{3}
```

$$11 \equiv 21 \pmod{5}$$

$$22 \equiv 38 \pmod{4}$$

•
$$2 \equiv 20 \pmod{6}$$
 2 mod $6 = 20 \mod{6}$ 2 = 2 \vee
• $5 \equiv 16 \pmod{3}$ 5 mod $3 \equiv 16 \pmod{3}$ $3 \neq 1$

- $2 \equiv 20 \pmod{6}$. si, 2 mod 6=20 mod 6=2
- $5 \equiv 16 \pmod{3}$. **no**, 5 mod 3=2 y 16 mod 3=1

$$\bullet -7 \equiv -19 \pmod{4}$$

•
$$3 \equiv 38 \pmod{7}$$

$$\bullet -5 \equiv 5 \pmod{5}$$

$$m \mid (9-6)$$

- $-7 \equiv -19 \pmod{4}$. si, $-7 \pmod{4} = -19 \pmod{4}$
- $3 \equiv 38 \pmod{7}$. si, 3 mod 7=38 mod 7=3
- $-5 \equiv 5 \pmod{5}$. si, $-5 \pmod{5} = 5 \pmod{5}$

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

División

• Sean a y b dos enteros, $a\neq 0$, se dice que a divide a b de forma exacta si existe un entero c tal que a·c=b

División

- Sean a y b dos enteros, $a\neq 0$, se dice que a divide a b de forma exacta si existe un entero c tal que a·c=b
- a|b, si y solo si, existe un c tal que a·c=b
 - 3|6 porque 3.2=6
 - 4|28 porque 4.7=28
 - 2 1/5 porque no existe c

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

Propiedades

• $a \equiv b \pmod{m}$, si y solo si, $m \mid (a-b)$

•
$$2 \equiv 20 \pmod{6}$$

$$(s-s)$$

•
$$16 \equiv 4 \pmod{12}$$

•
$$38 \equiv 3 \pmod{7}$$

$$\bullet -5 \equiv 5 \pmod{5}$$

Indique si se presenta cada una de las siguientes congruencias:

$$\bullet$$
 -29 \equiv 5 mod 17

•
$$226 \equiv 5 \mod 17$$

• 226
$$\equiv$$
 5 mod 17 | 7 (226-5) | 7 | 22 | $\sqrt{}$

Indique si se presenta cada una de las siguientes congruencias:

- $-29 \equiv 5 \mod 17$. **si** porque $17 \mid (-29-5)$
- $-122 \equiv 5 \mod 17$. **no** porque 17/(-122-5)
- $226 \equiv 5 \mod 17$. si porque 17/(226-5)

Aplicación

- Tablas Hash
- Criptología

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

509555

817449

Tablas Hash

• Dado un **código k**, para conocer el sitio donde se almacena, se utiliza la función:

 $h(k) = k \mod 10$

	/	
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

h(737459)=?

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

h(737459)=9

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

Tablas Hash

• Dado un código k, para conocer el sitio donde se almacena, se utiliza la función:

$$h(k) = k \mod 10$$

h(509555)=5

h(817449)=9

h(737459)=9

A pesar de las colisiones la búsqueda es rápida

Tablas Hash

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

La función h(k)=k mod 10 indica en cuál espacio del arreglo colocar el dato k

Tablas Hash

La función h(k)=k mod 10 indica en cuál espacio del arreglo colocar el dato k

Tablas Hash

Para resolver la colisión se utiliza una lista en cada espacio del arreglo

Tablas Hash

Una tabla hash permite ordenar los datos de tal forma que la recuperación sea rápida

Criptología

Escitala Espartana

- Usada en la antigua Grecia en el año 400a.c
- Se enrolla una cinta sobre un vara
- El ancho con el cual fue escrito el mensaje corresponde con la vara adecuada para descifrar el mensaje

E

ERTTIODCAEEPAARTANSDEUSVIRABTESSDE

E

E S T U D I E B A S T A N T E O V A A P E R D E R D E T A S

Criptología

• Es el estudio de técnicas que permitan transformar un mensaje en otro, que oculta el significado del original

Método de Julio Cesar

- 1. Transforme cada letra a un número, para ello, utilice la posición relativa en el alfabeto. A es 0, B es 1, C es 2 ...
- 2. Aplique la función $f(p)=(p+3) \mod 26$ para cada número
- 3. Transforme cada número a letra y envíe el mensaje

ringles ñ -> 27

Método de Julio Cesar

- 1. Transforme cada letra a un número, para ello, utilice la posición relativa en el alfabeto. A es 0, B es 1, C es 2 ...
- 2. Aplique la función $f(p)=(p+3) \mod 26$ para cada número
- 3. Transforme cada número a letra y envíe el mensaje

Para decodificar el mensaje

- 1. Transforme cada letra a número
- 2. Utilice la función f⁻¹(p)=(p-3) mod 26
- 3. Transforme cada número a letra

Α	0	N	13		
В	1	0	14		
С	2	Р	15		
D	3	Q	16		
E	4	R	17		
F	5	5	18		
G	6	T	19		
Н	7	U	20		
I	8	V	21		
J	9	W	22		
K	10	X	23		
L	11	У	24		
M	12	Z	25		

- Encriptar el mensaje "HOLA"
- Encriptar el mensaje "MUERTE"
- · Desencriptar el mensaje "HVWXGLHRYDDSHUGHU"

· Encriptar el mensaje "HOLA"

• El mensaje encriptado es "KROD"

• Desencriptar el mensaje "HVWXGLHRYDDSHUGHU"

	Н	٧	W	X	G	L	H	R	У	D	D	S	Н	J	G	Н	C
р	7	21	22	23	6	11	7	17	24	3	3	18	7	20	6	7	20
f-1(p)	4	18	19	20	3	8	4	14	21	0	0	15	4	17	3	4	17
	Е	S	Τ	כ	۵	I	Е	0	V	Α	Α	Р	Е	R	٥	E	R

- Calcule los siguientes módulos:
 - -19 mod 7
 - -127 mod 4
- Indique si se presenta cada una de las siguientes congruencias. Justifique sus respuestas
 - $52 \equiv 31 \mod 7$
 - $-31 \equiv 60 \mod 7$

Resumen

a mod b Residuo de la división entre a y b --> a/b Congruencia a $_{\pm}$ b mod m sii a mod m = b mod m 0 <= a mod b < b

Si a $_{\perp}$ b mod m , que m | (a-b)

- * Algoritmo de Euclides
- * Combinación lineal
- * Inverso de a mod m

Algoritmo de Euclides

```
public int mcd(int a, int b){
 x=a;
 int x, r;
 while (y = 0)
    r= x \mod y;
    x=y;
    y= r;
return x;
```

Aplicar el algoritmo de Euclides para encontrar mcd(287,91)

287 91

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$
 $14 = 7 \cdot ? + ?$

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$
 $14 = 7 \cdot 2 + 0$

Aplicar el algoritmo de Euclides para encontrar mcd(287,91)

•
$$287 = 91 \cdot 3 + 14$$

 $91 = 14 \cdot 6 + 7$
 $14 = 7 \cdot 2 + 0$

Se toma el último residuo diferente de 0, en este caso, mcd(287,91)=7

Aplicar el algoritmo de Euclides para encontrar mcd(91,287)

$$mcd(91,287)=7$$

• Para aplicar el algoritmo de Euclides se inicia siempre dividiendo el mayor (287) entre el menor (91)

$$287 = 91 \cdot 3 + 14$$

$$91 = 14 \cdot 6 + 7$$

$$14 = 7 \cdot 2 + 0$$

Aplicar el algoritmo de Euclides para encontrar:

mcd(342,76)

$$mcd(342,76)=38$$

• mcd(342,76)

$$342 = 76 \cdot 4 + 38$$

$$76 = 38 \cdot 2 + 0$$

• mcd(342,76) = 38

Aplicar el algoritmo de Euclides para encontrar:

• mcd(48,512) = 6

• mcd(48,512)

$$512 = 48 \cdot 10 + 32$$

$$48 = 32 \cdot 1 + 16$$

$$32 = 16 \cdot 2 + 0$$

• mcd(48,512) = 16

Aplicar el algoritmo de Euclides para encontrar:

• mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

Teorema: si a y b son enteros positivos, entonces existen enteros s y t tales que $mcd(a,b)=a\cdot(s) + b\cdot(t)$

Teorema: si a y b son enteros positivos, entonces existen enteros s y t tales que $mcd(a,b)=a\cdot(s) + b\cdot(t)$

El mcd(a,b) se puede expresar como una combinación lineal de a y b

mcd(252,198) = 18

$$mcd(252,198) = 18 = 252 \cdot x + 198 \cdot y$$

$$mcd(252,198) = 18 = 252\cdot(4) + 198\cdot(-5)$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

 \cdot mcd(252,198) = 18

Se despejan los residuos

· mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

 \cdot mcd(252,198) = 18

$$36 = 198 - 54.3$$

Se reemplazan siempre en la ecuación que tiene al mcd

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 54 - (198 - 54.3).1$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$18 = 54 - 198.1 + 54.3$$

$$36 = 18 \cdot 2$$

• mcd(252,198) = 18

mcd(252,198)

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 54.4 - 198.1$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

mcd(252,198)

$$252 = 198 \cdot 1 + 54$$

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = (252 - 198.1).4 - 198.1$$

mcd(252,198)

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$18 = 252.4 - 198.4 - 198.1$$

mcd(252,198)

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$\cdot$$
 mcd(252,198) = 18

$$18 = 252.4 - 198.5$$

mcd(252,198)

$$198 = 54 \cdot 3 + 36$$

$$54 = 36 \cdot 1 + 18$$

$$36 = 18 \cdot 2$$

$$\cdot$$
 mcd(252,198) = 18

$$512 = 48 \cdot 10 + 32$$
 $512 \mod 48 = 32$
 $48 = 32 \cdot 1 + 16$
 $32 = 16 \cdot 2 + 0$
 $32 \mod 6 = 32$

$$32 = 512 - 48 \times 10$$

 $16 = 48 - 32 \times 1$
 $16 = 48 - (512 - 48(10))$
 $16 = 48 - 512 + 48(10)$
 $16 = 48(11) + 512(-1)$

$$512 = 48 \cdot 10 + 32$$
 $32 = 512 - 48.10$

$$32 = 16 \cdot 2 + 0$$

$$512 = 48 \cdot 10 + 32$$

$$48 = 32 \cdot 1 + 16$$

$$32 = 16 \cdot 2 + 0$$

$$16 = 48 - (512 - 48.10).1$$

$$16 = 48 - 512.1 + 48.10$$

$$16 = 48.11 - 512.1$$

$$16 = 48 \cdot (11) + 512 \cdot (-1)$$

$$322 = 51 \cdot 6 + 16$$

 $51 = 16 \cdot 3 + 3$

$$3 = 1 \cdot 3 + 0$$

$$1 = 322(5) + 51(4)$$

$$1 = |6 - 3 \times 5|$$

$$1 = |6 - 5(51 - |6(3))|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 5(51) + |6(15)|$$

$$1 = |6 - 3 \times 5|$$

$$1 = |6 - 3$$

$$322 = 51 \cdot 6 + 16$$

$$16 = 322 - 51.6$$

$$51 = 16 \cdot 3 + 3$$

$$3 = 51 - 16.3$$

$$16 = 3 \cdot 5 + 1$$

$$1 = 16 - 3.5$$

$$3 = 1 \cdot 3 + 0$$

$$322 = 51 \cdot 6 + 16$$

$$16 = 322 - 51.6$$

$$51 = 16 \cdot 3 + 3$$

$$3 = 51 - 16.3$$

$$16 = 3 \cdot 5 + 1$$

$$1 = 16 - 3.5$$

$$3 = 1 \cdot 3 + 0$$

$$1 = 322 \cdot (16) + 51 \cdot (-101)$$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$

$$13 = 235 - 37.6$$

$$37 = 13 \cdot 2 + 11$$

$$11 = 37 - 13.2$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$1 = 11 - 2.5$$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$
 $13 = 235 - 37.6$

$$13 = 235 - 37.6$$

$$37 = 13 \cdot 2 + 11$$
 $11 = 37 - 13.2$

$$11 = 37 - 13.2$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$1 = 11 - 13.5 + 11.5 = 11.6 - 13.5$$

$$2 = 1 \cdot 2 + 0$$

$$235 = 37 \cdot 6 + 13$$
 $13 = 235 - 37 \cdot 6$ $37 = 13 \cdot 2 + 11$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37.6 - 13.12 - 13.5 = 37.6 - 13.17$$

$$235 = 37 \cdot 6 + 13$$
 $37 = 13 \cdot 2 + 11$
 $13 = 11 \cdot 1 + 2$
 $11 = 2 \cdot 5 + 1$
 $1 = 37 \cdot 6 - (235 - 37 \cdot 6) \cdot 17$
 $2 = 1 \cdot 2 + 0$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37.6 - 235.17 + 37.102$$

$$1 = 37.108 - 235.17$$

$$1 = 37 \cdot (108) + 235 \cdot (-17)$$

$$mcd(426,37) = __ = 426 \cdot (__) + 37 \cdot (__)$$

426 mod
$$37 = 19$$

426 = $37 \times 11 + 19$
 $37 \mod 19 = 18$
 $37 = |9 \times 1 + 18$
 $19 \mod 18 = 1$
 $19 \mod 18 = 1$
 $18 \mod 1 = 0$

$$1 = |9 - |8(1)$$

$$1 = |9 - |8(1)$$

$$1 = |9 - |8(1)$$

$$1 = (2) |9 - 37$$

$$1 = (2) (426 - 37(11)) - 37$$

$$1 = (2) (426 + 37(-23))$$

El inverso de a mod m

• Dado a mod m, su inverso se denota como \overline{a}

El inverso de a mod m

- Dado a mod m, su inverso se denota como \overline{a}
- Se cumple que $\overline{a} \cdot a \equiv 1 \pmod{m}$

El inverso de a mod m

- Dado a mod m, su inverso se denota como \overline{a}
- Se cumple que $\overline{a} \cdot a \equiv 1 \pmod{m}$

Se tiene 3 mod 7

$$a = -2$$

Se puede verificar que:

$$(-2)\cdot 3 \equiv 1 \mod 7$$

El inverso de a mod m

Solo existe un inverso si mcd(a,m)=1

El inverso de a mod m

- Para encontrar \overline{a} , calcule mcd(a,m), debe ser 1
- Exprese mcd(a,m)=1 como una combinación lineal

$$1 = \mathbf{a} \cdot (\mathbf{S}) + \mathbf{m} \cdot (\mathbf{T})$$

• El coeficiente que acompaña a a, es decir s, es el inverso \overline{a}

9 mod m

1)
$$mcd(235,37)=1$$

2) $1=235(s)+37(t)$
 $q = 1 \mod m$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$235 \mod (37) = 13$$

$$37 \mod (3) = 11$$

$$13 \mod (11) = 2$$

$$2 \mod (1 = 1)$$

$$2 \mod (1 = 0)$$

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37 \cdot (108) + 235 \cdot (-17)$$

• Encuentre el inverso de 235 mod 37

$$235 = 37 \cdot 6 + 13$$

$$37 = 13 \cdot 2 + 11$$

$$13 = 11 \cdot 1 + 2$$

$$11 = 2 \cdot 5 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 37 \cdot (108) + 235 \cdot (-17)$$

El coeficiente que acompaña a 235, es decir -17, es el inverso de 235 mod 37

- mcd(235,37) = 1
- 1 = $235 \cdot (-17) + 37 \cdot (108)$
- -17 es el inverso de 235 mod 37

Se puede verificar que

$$\overline{a} \cdot a \equiv 1 \pmod{m}$$

ya que

$$-17 \cdot 235 \equiv 1 \pmod{37}$$

$$-3995 \equiv 1 \pmod{37}$$

$$-3995 \pmod{37} = 1 \pmod{37}$$

$$-3995 = 37(-108) + 1$$

$$1 \pmod{37}$$

$$1 \pmod{37}$$

$$1 \pmod{37}$$

$$-3995 = 37(-108) + 1$$

$$1 \pmod{37}$$

1)
$$m(d(3,7)=1$$

2)
$$3(s) + 7(t) - 1$$
 $\sqrt{3} = \frac{1}{3}$

$$3 \times (-2) = 1 \mod 7$$

$$7 = 7 + 3(-2)$$
 $\sqrt{2} = -2$

$$-6 \mod 7 = 1$$
 $2 \mod 7 = 1$

$$7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3 + 0$$

• Encuentre el inverso de 3 mod 7

$$7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3 + 0$$

Se verifica que mcd(7,3)=1

• Encuentre el inverso de 3 mod 7

$$7 = 3 \cdot 2 + 1$$

$$3 = 1 \cdot 3 + 0$$

• Se verifica que mcd(7,3)=1. Ahora se expresa como combinación lineal

• Encuentre el inverso de 3 mod 7

$$7 = 3 \cdot 2 + 1$$

 $3 = 1 \cdot 3 + 0$

• Se verifica que mcd(7,3)=1. Ahora se expresa como combinación lineal

$$1 = 7 - 3.2$$
$$1 = 3.(-2) + 7.(1)$$

• El inverso de 3 mod 7 es -2

• Encuentre el inverso de 7 mod 3

$$7 = 3 \cdot 2 + 1$$

 $3 = 1 \cdot 3 + 0$

• Se verifica que mcd(7,3)=1. Ahora se expresa como combinación lineal

$$1 = 7 - 3.2$$
$$1 = 3.(-2) + 7.(1)$$

• El inverso de 7 mod 3 es 1

Encuentre el inverso de:

• 5 mod 7

• Encuentre el inverso de 5 mod 7

$$7 = 5.1 + 2$$

$$5 = 2.2 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(5,7)=1. Ahora se expresa como combinación lineal

• Encuentre el inverso de 5 mod 7

$$7 = 5.1 + 2$$

$$5 = 2.2 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(5,7)=1. Ahora se expresa como combinación lineal

$$1 = 5 \cdot (3) + 7 \cdot (-2)$$

• Encuentre el inverso de 5 mod 7

$$7 = 5.1 + 2$$

$$5 = 2.2 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(5,7)=1. Ahora se expresa como combinación lineal

$$1 = 5 \cdot (3) + 7 \cdot (-2)$$

• El inverso de 5 mod 7 es 3

Encuentre el inverso de:

• 3 mod 17

$$mcd(3(17)=1)$$
 $|7 \mod 3(2)|$
 $|3 \mod 2|=1$
 $|3 = 2(1) + 1$
 $|8 = 1 \mod 17$

$$1 = 3 - 2(1)$$

$$1 = 3 - (17 - 3(5))(1)$$

$$1 = 3(6) - |7|$$

$$\boxed{\alpha=6} \quad |8 \mod 17 = 1 \mod 17$$

• Encuentre el inverso de 3 mod 17

$$17 = 3.5 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(3,17)=1. Ahora se expresa como combinación lineal

• Encuentre el inverso de 3 mod 17

$$3 = 2.1 + 1$$

$$2 = 1.2 + 0$$

• Se verifica que mcd(3,17)=1. Ahora se expresa como combinación lineal

$$1 = 3 \cdot (6) + 17 \cdot (-1)$$

• Encuentre el inverso de 3 mod 17

$$17 = 3.5 + 2$$
 $3 = 2.1 + 1$
 $2 = 1.2 + 0$

• Se verifica que mcd(3,17)=1. Ahora se expresa como combinación lineal

$$1 = 3 \cdot (6) + 17 \cdot (-1)$$

• El inverso de 3 mod 17 es 6

• Encuentre el inverso de 7 mod 26

$$26 = 7 \cdot 3 + 5$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$2 = 1 \cdot 2 + 0$$

• Se verifica que mcd(26,7)=1. Ahora se expresa como combinación lineal

$$26 = 7 \cdot 3 + 5$$

$$5 = 26 - 7.3$$

$$7 = 5 \cdot 1 + 2$$

$$2 = 7 - 5.1$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 5 - 2.2$$

$$2 = 1 \cdot 2 + 0$$

$$26 = 7 \cdot 3 + 5$$

$$5 = 26 - 7.3$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 5 - (7 - 5.1) \cdot 2 = 5.3 - 7.2$$

$$2 = 1 \cdot 2 + 0$$

$$26 = 7 \cdot 3 + 5$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = (26 - 7.3).3 - 7.2$$

$$2 = 1 \cdot 2 + 0$$

$$26 = 7 \cdot 3 + 5$$

$$7 = 5 \cdot 1 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$1 = 26.3 - 7.9 - 7.2 = 26.3 - 7.11$$

$$2 = 1 \cdot 2 + 0$$

$$1 = 26 \cdot (3) + 7 \cdot (-11)$$

• Encuentre el inverso de 7 mod 26

$$26 = 7 \cdot 3 + 5$$
 $7 = 5 \cdot 1 + 2$
 $5 = 2 \cdot 2 + 1$
 $1 = 26 \cdot 3 - 7 \cdot 9 - 7 \cdot 2 = 26 \cdot 3 - 7 \cdot 11$
 $2 = 1 \cdot 2 + 0$
 $1 = 26 \cdot (3) + 7 \cdot (-11)$

• Como 1 = $26 \cdot (3) + 7 \cdot (-11)$, el inverso de 7 mod 26 es -11

> Encuentre el inverso de:

• 9 mod 32

1)
$$mcd(9,32)$$

$$\begin{bmatrix} S = 9 + 1 \\ 1 = 1 \end{bmatrix}$$

1)
$$mcd(9,32) = 1$$

2)
$$1 = 9(s) + 32(t)$$

$$3) \overline{\alpha} = S$$

$$4) 9x\overline{q} = 1 \mod 32$$

$$1 = 5 - (9 - 5)$$
 $1 = 5(2) - 9$

$$Q = -7$$
 $9 \times (-1) = 1 \mod 32$ 1 $1 < -63 \mod 32 = 1 \mod 32$

$$1 = S(s) - 9$$

Sacar el inverso a mod m

- 1) mostrar que mcd(a,m) = 1Metodo es sacar los modulosDejar expresadas las ecuaciones
- 2) Mostrar como un sistema 1 = a(s) + m(t) donde s es el inverso ~a
- 3) Mostrar que a*~a congruente 1 mod m