

COMPUTER SCIENCE · FINANCE

□ (+1) 980-263-1814 | 🗷 kamath.an@husky.neu.edu | 🔏 andykamath.com | 🖸 andykamath | 🛅 andykamath

Education

Northeastern University Boston, MA

B.S. COMPUTER SCIENCE/BUSINESS, FINANCE CONCENTRATION, KHOURY COLLEGE
SEMESTER ABROAD AT AMERICAN COLLEGE OF THESSALONIKI IN THESSALONIKI, GREECE

Jan 2018 - Dec 2021

Sep 2017

Experience _____

Boston Consulting Group (BCG)

Boston, MA

NAMR MARKETING ANALYTICS CO-OP

Jul 2019 - Dec 2019

Python, Tableau, PySpark, Scikit-Learn, Excel, PowerPoint, Selenium, SQL Server, MS Dynamics, Salesforce

- Engaged with fashion client on case team consulting underserved communities in Boston.
- · Analyzed 100k historical global marketing campaigns to measure effectiveness of events in increasing engagement with current/target clients
- Used Latent Dirichlet Allocation (LDA) for topic modelling of BCG.com articles, then added user data for an article recommendation engine based on article-article relevancy and user-article propensity
- Setup Selenium scripts in Python to automate repetitive distributed data entry into the BCG.com content management system (CMS).
- · Created ETLs to sync various background information sites (LinkedIn, Bloomberg, Crunchbase, Owler, etc.) with company CRM.

Rock Ventures Detroit, MI

SPECIAL PROJECTS INTERN

Aug 2018 - Jun 2019

Python, PyTorch, Tensorflow, Keras (Tensorflow), AWS SageMaker, Flask, AngularJS

- · Outlined/developed digital growth strategies for firms across Dan Gilbert's portfolio of companies, specifically for Dictionary.com & StockX.
- Utilized latent vectors (hidden features not explicitly describable to a computer) from disentangled variational autoencoder (β-VAE) in PyTorch to decompose sneaker/streetwear trends and correlate these features to willing-to-pay price points.
- Implemented Mask R-CNN (segmented and labeled regions of images) model in Tensorflow for detection/segmentation of various fashion objects such as shoes, handbags, tops, and bottoms.

StockX Detroit, MI

DATA SCIENCE INTERN

May 2018 - Jul 2018

Python, Tableau, Google Analytics, AWS Lambda, AWS SageMaker, Keras (Tensorflow), Pandas, PostgreSQL, MySQL

- Developed convolutional autoencoder (data compression to highlight hidden representations in unstructured data) in Keras for image-based similar item recommendations.
- Researched and reported ideal fulfillment warehouse locations through location clustering and shipping optimization based on buyer/seller traffic and potential growth in the area.
- Optimized buyer-authentication-seller shipment path via shortest path optimization on weighted graph considering shipping time/cost.
- Created ETL to automate reporting daily sales and website metrics across variety of sources into one company email to employees.
- Structured KPIs and data from various sources for input into Customer Acquisition Cost (CAC) model to determine return on investment for social media advertising.

Honors & Awards

2019	Finalist and Inaugural Data Award Recipient, Northeastern RISE Research Fair	Boston, MA
2018	Finalist, Northeastern RISE Research Fair	Boston, MA
2017	National Finalist and 1st in State, Technology Students Association	Orlando, FL
2017	Winner, Intel Excellence in Computer Science	Raleigh, NC
2017	Silver Medal Recipient for Research, US Army (via Intel ISEF)	Raleigh, NC
2017	3rd Place Statewide Technology Research, Intel ISEF, North Carolina	Raleigh, NC
2017	Eagle Scout, Boy Scouts of America	Charlotte, NC

Current Project

PyRate (GitHub: andykamath/PyRate)

Python, Neo4J, AWS Lambda

- Graph database to create smart "shuffling channels" to customize how playlists are shuffled based on common artists, energy, key signature, "danceability", etc.
- Scraped historical data from Billboard, Genius, Spotify, and Last.fm to collate unique data points from all platforms and quantify "music taste"
- (In progress) Correlating audio features from Spotify with Billboard chart data to find elements that make up track popularity
- (In progress) Analyzing audio segments to find similar chord progressions for "auto-DJ" applications