MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2018 EXAMINATION

Subject Name: Applied Mathematics Model Answer Subject Code: 22201

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.		Attempt any FIVE of following:	10
	a)	If $f(x) = x^4 - 2x + 7$, find $f(0) + f(2)$	02
	Ans	$f(x) = x^4 - 2x + 7$	
		$\therefore f(0) = (0)^4 - 2(0) + 7 = 7$	1/2
		$\therefore f(2) = (2)^4 - 2(2) + 7 = 19$	1/2
		$\therefore f(0) + f(2) = 7 + 19$	1/2
		$\therefore f(0) + f(2) = 26$	1/2
	b) Ans	State whether the function $f(x) = \frac{e^x + e^{-x}}{2}$ is odd or even. $f(x) = \frac{e^x + e^{-x}}{2}$ $\therefore f(-x) = \frac{e^{-x} + e^{-(-x)}}{2}$	02
		$=\frac{e^{-x}+e^x}{2}$	1/2
			1/2
		∴ function is even.	1/2
	c)	If $y = \log(x^2 + 2x + 5)$ then find $\frac{dy}{dx}$	02

SCHIVIER -	2010 EMANIII (ATTON			ı
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22201	

'ahama
cheme
1
1
02
1/2
1/2
1/2
1/2
02
2
2
02
V 2
1/2
<u> </u>

SUMMER	- 2010 LAAMIINA 110M			ı
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22201	

Q. No.	Sub Q. N.	Answer	Marking Scheme
1.	f)	Area $A = \int_0^4 2x^{1/2} dx$	
		Area $A = \int_{0}^{4} 2x^{\frac{1}{2}} dx$ $= \left[2\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{4}$ $= \left[\frac{4}{3}x^{\frac{3}{2}} \right]_{0}^{4}$	1/2
		$=\frac{4}{3}\left[4^{\frac{3}{2}}-0\right]$	1/2
		=10.667	1/2
	g)	State the trapezoidal rule of numerical integration.	02
	Ans	Trapezoidal rule	
		$\int_{a}^{b} f(x) dx = \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$	2
		where $h = \frac{b-a}{n}$	
2.		Attempt any THREE of the following:	12
	a)	If $x^y = e^{x-y}$ then prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$	04
	Ans	$x^{y} = e^{x-y}$	
		$\log x^y = \log e^{x-y}$	1/2
		$\therefore y \log x = (x - y) \log e$ $\therefore y \log x = x - y$	1/2
		$y \log x + y = x$	
		$y(\log x + 1) = x$	
		$\therefore y = \frac{x}{1 + \log x}$	1
		$(1+\log x)\frac{d(x)}{d(x)} - x\frac{d(1+\log x)}{d(x)}$	
		$\therefore \frac{dy}{dx} = \frac{\left(1 + \log x\right) \frac{d(x)}{dx} - x \frac{d(1 + \log x)}{dx}}{\left(1 + \log x\right)^2}$	
		(- ·6··)	

SUMMER – 2018 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
2.	a)	$\therefore \frac{dy}{dx} = \frac{\left(1 + \log x\right) - x\left(\frac{1}{x}\right)}{\left(1 + \log x\right)^2}$ $dy = \frac{1 + \log x - 1}{1 + \log x - 1}$	1
		$\therefore \frac{dy}{dx} = \frac{1 + \log x - 1}{\left(1 + \log x\right)^2}$ $\therefore \frac{dy}{dx} = \frac{\log x}{\left(1 + \log x\right)^2}$	1/2
	b)	If $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$, then find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$	04
		$x = a(\theta - \sin \theta)$ $y = a(1 - \cos \theta)$ $\frac{dy}{d\theta} = a \sin \theta$	1+1
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$ $\therefore \frac{dy}{dx} = \frac{a\sin\theta}{a(1-\cos\theta)} = \frac{\sin\theta}{(1-\cos\theta)} \qquad \text{OR} \qquad \frac{dy}{dx} = \frac{\sin\theta}{(1-\cos\theta)} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = \cot\frac{\theta}{2}$	1
		at $\theta = \frac{\pi}{4}$ $\therefore \frac{dy}{dx} = \frac{\sin\frac{\pi}{4}}{\left(1 - \cos\frac{\pi}{4}\right)} = \frac{\frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}}$	
		$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{2} - 1} \text{ or } 2.414 \qquad \text{OR} \qquad \frac{dy}{dx} = \cot \frac{\pi}{2} = \cot \frac{\pi}{8} = 2.414$	1
	c) Ans	Find maximum and minimum value of $y = x^3 - 18x^2 + 96x$ Let $y = x^3 - 18x^2 + 96x$	04
	THIS	$\therefore \frac{dy}{dx} = 3x^2 - 36x + 96$ $\therefore \frac{d^2y}{dx^2} = 6x - 36$	1/2
		$\therefore \frac{d^2 y}{dx^2} = 6x - 36$	1/2
		Consider $\frac{dy}{dx} = 0$	

SUMMER – 2018 EXAMINATION

Q.	Sub	Angwar	Marking
No.	Q. N.	Answer	Scheme
2.	c)	$3x^2 - 36x + 96 = 0$	1/2
		$x^2 - 12x + 32 = 0$	
		$\therefore x = 8 \text{ or } x = 4$	1/2
		at x = 8	
		$\frac{d^2y}{dx^2} = 6(8) - 36 = 12 < 0$	1/2
		\therefore y is minimum at $x = 8$	
		$y_{\min} = (8)^3 - 18(8)^2 + 96(8)$	
		=128	1/2
		at x = 4	
		$\frac{d^2y}{dx^2} = 6(4) - 36 = -12 < 0$	1/2
		\therefore y is maximum at $x = 4$	
		$y_{\text{max}} = (4)^3 - 18(4)^2 + 96(4)$	
		= 160	1/2
	d)	Find radius of curvature of the curve $y = x^3$ at $(2,8)$	04
	Ans	$y = x^3$	
		$\therefore \frac{dy}{dx} = 3x^2$ $\therefore \frac{d^2y}{dx^2} = 6x$	1/2
		$\therefore \frac{d^2 y}{dx^2} = 6x$	1/2
		at (2,8)	
		$\frac{dy}{dx} = 3(2)^2 = 12$	1/2
		$\frac{dy}{dx} = 3(2)^{2} = 12$ $\frac{d^{2}y}{dx^{2}} = 6(2) = 12$	1/2
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$ $\therefore \rho = \frac{\left[1 + \left(12\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
		$\frac{d^2y}{dx^2}$	
		$\therefore \rho = \frac{\left[1 + (12)^2\right]^{\frac{3}{2}}}{12}$ $\therefore \rho = 145.50$	1
		12	
		$\therefore \rho = 145.50$	1
		Paga No.) = /4 O

SUMMER – 2018 EXAMINATION

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
3.		Attempt any THREE of the following:	12
.		recompt any Time 20 of the following.	
	a)	Find $\frac{dy}{dx}$ if $y = x^x + (\sin x)^x$	04
	Ans	Let $u = x^x$	
		$\therefore \log u = \log x^x$	
		$\log u = x \log x$	1/2
		$\frac{1}{u}\frac{du}{dx} = x\frac{1}{x} + \log x(1)$	1
		$\therefore \frac{du}{dx} = u \left(1 + \log x \right)$	
		$\therefore \frac{du}{dx} = x^x \left(1 + \log x\right)$	
		Let $v = (\sin x)^x$	
		$\therefore \log v = \log (\sin x)^{x}$	
		$\log v = x \log \left(\sin x\right)$	1/2
		$\frac{1}{v}\frac{dv}{dx} = x\frac{1}{\sin x}\cos x + \log(\sin x)(1)$	1
		$\frac{1}{v}\frac{dv}{dx} = x\cot x + \log(\sin x)$	
		$\frac{dv}{dx} = v\left(x\cot x + \log\left(\sin x\right)\right)$	
		$\frac{dv}{dx} = \left(\sin x\right)^x \left(x\cot x + \log(\sin x)\right)$	
		$\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	
		$\therefore \frac{dy}{dx} = x^x (1 + \log x) + (\sin x)^x (x \cot x + \log(\sin x))$	1
	b)	Find $\frac{dy}{dx}$ if $x^2 + 3xy + y^2 = 5$	04
	Ans	$x^2 + 3xy + y^2 = 5$	
		$2x+3\left[x\frac{dy}{dx}+y(1)\right]+2y\frac{dy}{dx}=0$	2
		$2x + 3x\frac{dy}{dx} + 3y + 2y\frac{dy}{dx} = 0$	1/2
		$(3x+2y)\frac{dy}{dx} = -2x-3y$	1/2
		uv	

SUMMER – 2018 EXAMINATION

Q.	Sub	Angwar	Marking
No.	Q. N.	Answer	Scheme
3.	b)	$\frac{dy}{dx} = \frac{-2x - 3y}{3x + 2y} = \frac{-(2x + 3y)}{3x + 2y}$	1
		Evaluate: $\int \frac{\log(\tan\frac{x}{2})}{\sin x} dx$	04
	Ans	$\int \frac{\log\left(\tan\frac{x}{2}\right)}{\sin x} dx$	
		Put $\log\left(\tan\frac{x}{2}\right) = t$	1/2
		$\frac{1}{\tan\frac{x}{2}}\sec^2\frac{x}{2}\left(\frac{1}{2}\right)dx = dt$	1/2
		$\left(\frac{1}{2}\right)\frac{\cos\frac{x}{2}}{\sin\frac{x}{2}}\cdot\frac{1}{\cos^2\frac{x}{2}}dx = dt$	
		$\therefore \frac{1}{2\sin\frac{x}{2}\cos\frac{x}{2}}dx = dt$	
		$\therefore \frac{1}{\sin x} dx = dt$	1/2
		$\therefore \int t dt$ $= \frac{t^2}{2} + c$	1
			1
	1	$= \frac{\left(\log\left(\tan\frac{x}{2}\right)\right)^2}{2} + c$	1/2
	d)	Find the equation of tangent to the circle $x^2 + y^2 + 6x - 6y - 7 = 0$ at a point it cuts the x-axis	04
	Ans	$x^{2} + y^{2} + 6x - 6y - 7 = 0$ $\therefore \text{ tangent cuts } x - \text{axis } \therefore y = 0$	
		$\therefore x^2 + (0)^2 + 6x - 6(0) - 7 = 0$	
		$\therefore x^2 + 6x - 7 = 0$	
		$\therefore x = 1 \text{ and } x = -7 \qquad \therefore \text{ Points are } (1,0) \text{ and } (-7,0)$	1
		$x^{2} + y^{2} + 6x - 6y - 7 = 0$	1/
		$\therefore 2x + 2y \frac{dy}{dx} + 6 - 6 \frac{dy}{dx} = 0$	1/2
		$\therefore (2y-6)\frac{dy}{dx} = -2x-6$	

Semme		Į.		1
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22201	

	0.1		
Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
3.	d)	dy -2x-6	1/2
		$\therefore \frac{dy}{dx} = \frac{-2x - 6}{2y - 6}$	
		at $(1,0)$	
			1/
		Slope = $\frac{dy}{dx} = \frac{-2(1)-6}{2(0)-6} = \frac{-8}{-6} = \frac{4}{3}$	1/2
		∴ equation is	
		$y - y_1 = m(x - x_1)$	
		$y-0=\frac{4}{3}(x-1)$	1/2
		3y = 4x - 4	
		3y = 4x - 4 $4x - 3y - 4 = 0$	
		•	
		at $(-7,0)$	
		Slope = $\frac{dy}{dx} = \frac{-2(-7)-6}{2(0)-6} = \frac{8}{-6} = \frac{-4}{3}$	1/2
		dx = 2(0)-6 = -6 = 3	
		∴ equation is	
		$y-0 = \frac{-4}{3}(x+7)$	1/2
		3	, -
		3y = -4x - 28	
		4x + 3y + 28 = 0	
		Attempt any THREE of the following:	
4.			12
		Evaluate: $\int \frac{1}{5+4\cos x} dx$	
	a)	2 1 1000%	04
		$\int \frac{1}{5 + 4\cos x} dx$	04
	Ans		
		Put $\tan \frac{x}{2} = t$ $\therefore \cos x = \frac{1 - t^2}{1 + t^2}$, $dx = \frac{2dt}{1 + t^2}$	1
		$\int_{0}^{\infty} dx$ $\int_{0}^{\infty} 1$ $2dt$	1/
		$\therefore \int \frac{1}{5+4\cos x} = \int \frac{1-t^2}{1+t^2} \cdot \frac{1}{1+t^2}$	1/2
		$\therefore \int \frac{dx}{5 + 4\cos x} = \int \frac{1}{5 + 4\left(\frac{1 - t^2}{1 + t^2}\right)} \cdot \frac{2dt}{1 + t^2}$	
		$=2\int \frac{1}{t^2+9} dt$	
		$=2\int \frac{1}{t^2+3^2} dt$	1
		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
		$=2\times\frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right)+c$	1
		$2 \qquad (x)$	
		$=\frac{2}{3}\tan^{-1}\left(\frac{\tan\frac{x}{2}}{2}\right)+c$	1/2
		$\left(\overline{3} \right)$	
	l .		<u> </u>

SUMMER – 2018 EXAMINATION

Subject Name: Applied Mathematics

Model Answer

Subject Code: 22201

3	ubject iv	ame: Applied Mathematics <u>Model Answer</u> Subject Code. 222	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	b)	Evaluate: $\int \frac{x+1}{x(x^2-4)} dx$	04
	Ans	$\int \frac{x+1}{x(x^2-4)} dx = \int \frac{x+1}{x(x-2)(x+2)} dx$	
		Let $\frac{x+1}{x(x-2)(x+2)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+2}$	1/2
		$x+1 = A(x-2)(x+2) + Bx(x+2) + Cx(x-2)$ put $x = 0$:: $A = \frac{-1}{4}$	1/2
		$put x = 2 \therefore B = \frac{3}{8}$	1/2
		$put x = -2 \therefore C = \frac{-1}{8}$ $-1 \qquad 3 \qquad -1$	1/2
		$\frac{x+1}{x(x-2)(x+2)} = \frac{-\frac{1}{4}}{x} + \frac{\frac{3}{8}}{x-2} + \frac{-\frac{1}{8}}{x+2}$	
		$\int \frac{x+1}{x(x-2)(x+2)} dx = \int \left(\frac{-1}{\frac{4}{x}} + \frac{\frac{3}{8}}{x-2} + \frac{-1}{\frac{8}{x+2}}\right) dx$	1/2
		$= \frac{-1}{4}\log x + \frac{3}{8}\log(x-2) - \frac{1}{8}\log(x+2) + c$	1/2+1/2+1/2
	c)	Evaluate: $\int \cos(\log x) dx$	04
	Ans	$\int \cos(\log x) \ dx$	
		Put $\log x = t \Rightarrow x = e^t$	1/2
		$\therefore \frac{1}{x} dx = dt$	
		$\therefore dx = xdt$	
		$\therefore dx = e^t dt$	1
		$\therefore \int e^t \cos t dt$	1
		$=\frac{e^t}{1+1}(1\cos t + 1\sin t) + c$	1
		$= \frac{x}{2} (\cos(\log x) + \sin(\log x)) + c$	1/2
<u> </u>	•		0.0.14.0

SUMMER – 2018 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	c)	OR	
		$\int \cos(\log x) \ dx$	
		$\operatorname{Put} \log x = t \Longrightarrow x = e^t$	
		$\therefore \frac{1}{x} dx = dt$	
		$\therefore dx = xdt$	
		$\therefore dx = e^t dt$	1
		$\therefore I = \int e^t \cos t dt$	
		$= \cos t \int e^t dt - \int \left(\int e^t dt \frac{d}{dt} \cos t \right) dt$	
		$=\cos t\ e^t - \int e^t \left(-\sin t\right) dt$	1
		$= \cos t \ e^t + \int e^t \sin t dt + c$	
		$= \cos t \ e^t + e^t \sin t - \int e^t \cos t dt + c$	1
		$\therefore I = \cos t \ e^t + e^t \sin t - I + c$	
		$\therefore 2I = \cos t \ e^t + e^t \sin t + c$	
		$\therefore I = \frac{e^t}{2} (\cos t + \sin t) + c$	1/2
		$\therefore I = \frac{x}{2} (\cos(\log x) + \sin(\log x)) + c$	1/2
		OR	
		$I = \int \cos(\log x) \ dx$	
		$\therefore I = \int \cos(\log x) \cdot 1 dx$	1/2
		$\therefore I = \cos(\log x) \int 1 dx - \int \left(\int 1 dx \frac{d}{dx} \cos(\log x) \right) dx$	
		$\therefore I = \cos(\log x) x - \int x \left(\frac{-\sin(\log x)}{x} \right) dx$	1
		$\therefore I = x \cos(\log x) + \int \sin(\log x) dx$	
		$\therefore I = x \cos(\log x) + \int \sin(\log x) . 1 dx$	1/2
		$\therefore I = x \cos(\log x) + \left[\sin(\log x) x - \int x \left(\frac{\cos(\log x)}{x} \right) dx \right]$	
		$\therefore I = x \cos(\log x) + x \sin(\log x) - \int \cos(\log x) \ dx$	1
		$\therefore I = x \cos(\log x) + x \sin(\log x) - I + c$	
		$\therefore 2I = x(\cos(\log x) + \sin(\log x)) + c$	
	l	Daga No 1	<u> </u>

SUMMER – 2018 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
4.	c)	$\therefore I = \frac{x}{2} \Big[\cos(\log x) + \sin(\log x) \Big] + c$	1
	d)	Evaluate: $\int \frac{1}{x^2 + 4x + 9} dx$	04
	Ans	$\int \frac{1}{x^2 + 4x + 9} dx$	
		Third term = $\left(\frac{1}{2} \times 4\right)^2 = 4$	1
		$= \int \frac{1}{x^2 + 4x + 4 - 4 + 9} dx$	1
		$=\int \frac{1}{\left(x+2\right)^2 + \left(\sqrt{5}\right)^2} dx$	1
		$= \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x+2}{\sqrt{5}} \right) + c$	1
		OR	
		$\int \frac{1}{x^2 + 4x + 9} dx$	
		Third term = $\frac{(M.T.)^2}{4(F.T.)}$ = 4	1
		$= \int \frac{1}{x^2 + 4x + 4 - 4 + 9} dx$	1
		$=\int \frac{1}{\left(x+2\right)^2 + \left(\sqrt{5}\right)^2} dx$	1
		$= \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x+2}{\sqrt{5}} \right) + c$	1
	e)	Evaluate $\int_{1}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+3}} dx$	04
	Ans	$\int_{1}^{5} \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x+3}} dx $	
		$I = \int_{1}^{5} \frac{\sqrt{9 - (1 + 5 - x)}}{\sqrt{9 - (1 + 5 - x)} + \sqrt{(1 + 5 - x) + 3}} dx$	1
		Page No.1	11/10

Subject Name: Applied Mathematics <u>Model Answer</u> Subject Co	ode: 22201
--	------------

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
4.	e)	$I = \int_{1}^{5} \frac{\sqrt{x+3}}{\sqrt{x+3} + \sqrt{9-x}} dx $	1/2
		$I + I = \int_{1}^{5} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x + 3}} dx + \int_{1}^{5} \frac{\sqrt{x + 3}}{\sqrt{x + 3} + \sqrt{9 - x}} dx$	1/2
		$\therefore 2I = \int_{1}^{5} \frac{\sqrt{9-x} + \sqrt{x+3}}{\sqrt{9-x} + \sqrt{x+3}} dx$	
		$\therefore 2I = \int_{1}^{5} 1 dx$	
		$\therefore 2I = [x]_1^5$ $\therefore 2I = 5 - 1$	1/2
		$\therefore 2I = 4$	1
		I=2	1/2
_			12
5.	a)	Attempt any TWO of the following: Find the area of the loop of a curve $y^2 = x^2(1-x)$.	06
	Ans		
		$y^{2} = x^{2} (1-x)$ $y = x\sqrt{1-x}$	
		at $y = 0$, $x^2(1-x) = 0$	
		$\therefore x = 0, 1$	1
		$\therefore A_1 = \int_0^1 y dx$	
		$=\int_0^1 x\sqrt{1-x}dx$	1
		$= \int_0^1 (1-x)\sqrt{x} dx$	1
		$= \int_0^1 \left(\sqrt{x} - x^{3/2} \right) dx$	
		$= \left[\frac{2}{3} x^{3/2} - \frac{2}{5} x^{5/2} \right]_0^1$	1
		$= \left[\frac{2}{3} - \frac{2}{5}\right] - 0$	
		$=\frac{4}{15}$ or 0.267	1
		:. Area of loop = $2 \times A_1 = 2 \times \frac{4}{15} = \frac{8}{15}$ or 0.533	1
		Dogo No 1	10/10

Sevinier				1
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22201	

		<u> </u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	a)	OR $y^{2} = x^{2} (1-x) \qquad \therefore y = x\sqrt{1-x}$ at $y = 0$, $x^{2} (1-x) = 0$ $\therefore x = 0$, 1 $\therefore A = \int_{0}^{1} y dx$ $= \int_{0}^{1} x \sqrt{1-x} dx$ $put t = 1-x \therefore dt = -dx \therefore -dt = dx = -\int_{1}^{0} (1-t) \sqrt{t} dt when x \to 0 to 1 t \to 1 to 0$	Scheme 1 1
		$= -\int_{1}^{0} (\sqrt{t} - t^{3/2}) dt$ $= -\left[\frac{2}{3} t^{3/2} - \frac{2}{5} t^{5/2} \right]_{1}^{0}$ $= -\left[0 - \left(\frac{2}{3} - \frac{2}{5} \right) \right]$ $= \frac{4}{15} \text{ or } 0.267$ $\therefore \text{ Area of loop} = 2 \times A_{1} = 2 \times \left(\frac{4}{15} \right) = \frac{8}{15} \text{ or } 0.533$	1 1 1
	b) (i) Ans	Attempt the following: Form the differential equation of $y = a \sin x + b \cos x$ $y = a \sin x + b \cos x$ $\therefore \frac{dy}{dx} = a \cos x - b \sin x$ $\therefore \frac{d^2y}{dx^2} = -a \sin x - b \cos x$ $\therefore \frac{d^2y}{dx^2} = -(a \sin x + b \cos x)$ $\frac{d^2y}{dx^2} = -y$ $\frac{d^2y}{dx^2} + y = 0$	06 03 1 1 1 1/2
		Dogo No.	

SUMMER – 2018 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
5.	b)(ii)	Solve: $\frac{dy}{dx} + \frac{y}{x} = x^2$	03
	Ans	$\frac{dy}{dx} + \frac{y}{x} = x^2$ Comparing with $\frac{dy}{dx} + Py = Q$	
		$\therefore P = \frac{1}{x} \text{and} Q = x^2$	1/2
		$IF = e^{\int \frac{1}{x} dx} = e^{\log x} = x$	1
		$\therefore \text{ Solution is } y \cdot IF = \int Q \cdot IF dx + c$	
		$y \cdot x = \int x \cdot^2 x dx + c$	1/2
		$xy = \int x^3 dx + c$	
		$xy = \frac{x^4}{4} + c$	1
	c)	A resistance of 100Ω and inductance of 0.1 henries are connected in series	06
		with a battary of 20 volts. find the current in the circuit at any instant, if the	
		relation between L,R and E is $L\frac{di}{dt} + Ri = E$	
	Ans	$L\frac{di}{dt} + Ri = E$	
		$\therefore \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$ Comparing with $\frac{dy}{dx} + Py = Q$	
		$\therefore P = \frac{R}{L} \text{ and } Q = \frac{E}{L}$	1/2
		$IF = e^{\int \frac{R}{L} dt} = e^{\frac{R}{L}t}$	1
		$\therefore \text{Solution is} i \cdot IF = \int Q \cdot IF dt + c$	
		$i \cdot e^{\frac{R}{L}t} = \int \frac{E}{L} e^{\frac{R}{L}t} dt + c$	1/2
		$i \cdot e^{\frac{R}{L}t} = \frac{E}{L} \frac{e^{\frac{R}{L}t}}{\frac{R}{L}} + c$	1
		$i \cdot e^{\frac{R}{L}t} = \frac{E}{R}e^{\frac{R}{L}t} + c$	
		Initially at $t = 0$, $i = 0$ $\therefore c = \frac{-E}{R}$	1
		$\therefore i \cdot e^{\frac{R}{L}t} = \frac{E}{R} e^{\frac{R}{L}t} + \left(\frac{-E}{R}\right)$	

S	ubject N	ame: Applied Math	ematics	Mode	el Answer		Subjec	t Code:	222	201	
Q. No.	Sub Q. N.			Ans	wer					Marki Schen	_
5.	c)	$i = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right)$ When R=100, L=	0.1 F-20	n						1	
		$i = \frac{20}{100} \left(1 - e^{-\frac{100}{0.1}t} \right)$ $i = 0.2 \left(1 - e^{-1000t} \right)$	0.1 , L= 20	o.						1	
6.		Attempt any TWO	of the fol	llowing:						12	
	a)(i)	Using trapezoidal	rule, evalua	te $\int_{0}^{6} f(x) dx$;						
		x = 0	1	2	3	4	5	6		03	
		f(x) 1	0.5	0.3333	0.25	0.2	0.6666	0.1428	3		
	Ans	$\int_{a}^{b} f(x)dx = \frac{h}{2} \Big[(y_0)$ $a = 0, b = 6 \text{ and } h = 0$ $\therefore \int_{0}^{6} f(x)dx = \frac{1}{2} \Big[(1 - \frac{1}{2}) \Big]$ $= 2.52$	=1 +0.1428)-			5+0.2+0).6666)]			2	
	a)(ii)	Using Simpson's	$\frac{1}{3^{rd}}$ rule, e	evaluate $\int_{1}^{2} \frac{1}{x} dx$	dx given b	y					
		x	1	1.25	1.5	1.7	75	2		03	
		y = f(x)	1	0.8	0.6666	0.57	714).5			
			,			,	1				
	Ans	$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[\left(y_{0} \right) dx \right]$ Let $y = f(x) = \frac{1}{x}$ $\therefore \int_{1}^{2} f(x)dx = \frac{0.25}{3}$	$+y_n$) $+4(y_n)$	$y_1 + y_3 + +$	y_{n-1}) + 2(y	$y_2 + y_4 + .$	$+y_{n-2}$				
		Let $y = f(x) = \frac{1}{x}$	a = 1, b =	2 and $h=0$.25						
		$\therefore \int_{1}^{\infty} f(x) dx = \frac{0.25}{3}$	[(1+0.5)+	-4(0.8+0.5)	714) + 2(0	0.6666)]				2	
		=0.69								1	

Subject Name: Applied Mathematics	Model Answer	Subject Code:	22201	

Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	b) Ans	Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ Using Simpson's $1/3^{rd}$ rule divide the interval $[0,1]$ into six equal parts. Find approximate value of π . Let $y = \frac{1}{1+x^2}$ $a = 0, b = 1$ and $n = 6$	06
		$\therefore h = \frac{b-a}{n} = \frac{1-0}{6} = \frac{1}{6}$	1
			2
		Using Simpson's $1/3^{rd}$ rule $\int_{a}^{b} f(x) dx = \frac{h}{3} \left[(y_0 + y_n) + 4(y_1 + y_3 + + y_{n-1}) + 2(y_2 + y_4 + + y_{n-2}) \right]$	
		$\therefore \int_{0}^{1} f(x) dx = \frac{\frac{1}{6}}{3} \left[\left(1 + \frac{1}{2} \right) + 4 \left(\frac{36}{37} + \frac{4}{5} + \frac{36}{61} \right) + 2 \left(\frac{9}{10} + \frac{9}{13} \right) \right]$ $= 0.7854$	1
		$\therefore \int_{0}^{1} \frac{1}{1+x^{2}} dx = 0.7854$ $\therefore \left[\tan^{-1} x \right]_{0}^{1} = 0.7854$	1/2
		$\pi = 3.142$ OR Let $y = \frac{1}{1+x^2}$ $a = 0, b = 1$ and $n = 6$	1/2
		$\therefore h = \frac{b-a}{n} = \frac{1-0}{6} = \frac{1}{6} = 0.1667$ $x $	1
		$y = \frac{1}{1+x^2}$ 1 0.9730 0.9 0.8 0.6922 0.5901 0.5	2
		Using Simpson's $1/3^{rd}$ rule $\int_{a}^{b} f(x) dx = \frac{h}{3} \left[(y_0 + y_n) + 4(y_1 + y_3 + + y_{n-1}) + 2(y_2 + y_4 + + y_{n-2}) \right]$	

				1
Subject Name: Applied Mathematics	Model Answer	Subject Code:	22201	

Q. No.	Sub Q. N.	Answer	Marking Scheme
6.	b)	$\therefore \int_{0}^{1} f(x) dx = \frac{0.1667}{3} \left[(1+0.5) + 4(0.9730 + 0.8 + 0.5901) + 2(0.9 + 0.6922) \right]$ $= 0.7855$	1
		$\int_{0}^{1} \frac{1}{1+x^{2}} dx = 0.7855$ $\left[\tan^{-1} x \right]_{0}^{1} = 0.7855$ $\left[\tan^{-1} (1) \right] - \left[\tan^{-1} (0) \right] = 0.7855$	1/2
		$\frac{\pi}{4} = 0.7855$ $\pi = 3.142$	1/2
	c) Ans	Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} dx$ Using Simpson's $3/8^{th}$ rule. Consider $n = 6$ $y = \frac{1}{1+x^{2}} a = 0, b = 6$	06
		$\therefore h = \frac{b-a}{n} = \frac{6-0}{6} = 1$	1
		$y = \frac{1}{1+x^2} \qquad 1 \qquad 0.5 \qquad 0.2 \qquad 0.1 \qquad 0.0588 \qquad 0.0385 \qquad 0.0270$	2
		Using Simpson's $3/8^{th}$ rule. $\int_{a}^{b} f(x)dx = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3}) \right]$	
		$\therefore \int_{0}^{6} \frac{1}{1+x^{2}} dx = \frac{3(1)}{8} \Big[(1+0.0270) + 3(0.5+0.2+0.0588+0.0385) + 2(0.1) \Big]$	2
		$\therefore \int_{0}^{6} \frac{1}{1+x^{2}} dx = 1.3571$ Note: If the student has considered any value of n and attempted to solve give appropriate marks.	1

SUMMER – 2018 EXAMINATION

Q. No.	Sub Q. N.	Answer	Marking Scheme
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	