Linear Algebra 1

Industrial AI Lab.

Linear Equations

- Solving linear equations
 - Two linear equations

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

– In a vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Solution using inverse

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$x = A^{-1}b$$

- Don't worry here about how to compute matrix inverse
- We will use a numpy to compute

Linear Equations in Python

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

import numpy as np

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

```
A = np.array([[4, -5],
              [-2, 3]
b = np.array([[-13],
              [9]])
x = np.linalg.inv(A).dot(b)
print(x)
[[ 3.]
[ 5.]]
A = np.asmatrix(A)
b = np.asmatrix(b)
x = A.I*b
print(x)
[[ 3.]
[ 5.]]
```

System of Linear Equations

Consider a system of linear equations

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots$$

$$y_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

• Can be written in a matrix form as y = Ax, where

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Elements of a Matrix

Can write a matrix in terms of its columns

$$A = \begin{bmatrix} | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | \end{bmatrix}$$

- Careful, a_i here corresponds to an entire vector $a_i \in \mathbb{R}^m$
- Similarly, can write a matrix in terms of rows

$$A = \begin{bmatrix} - & b_1^T & - \ - & b_2^T & - \ & dots & \ - & b_m^T & - \end{bmatrix}$$

• $b_i \in \mathbb{R}^n$

Vector-Vector Products

• Inner product: $x, y \in \mathbb{R}^n$

$$x^T y = \sum_{i=1}^n x_i \, y_i \quad \in \mathbb{R}$$

```
x = np.asmatrix(x)
y = np.asmatrix(y)
print(x.T*y)
```

[[5]]

Matrix-Vector Products

- $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n \Longleftrightarrow Ax \in \mathbb{R}^m$
- Writing A by rows, each entry of Ax is an <u>inner product</u> between x and a row of A

$$A = \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ \vdots & \vdots & \vdots \\ - & b_m^T & - \end{bmatrix}, \qquad Ax \in \mathbb{R}^m = \begin{bmatrix} b_1^T x \\ b_2^T x \\ \vdots \\ b_m^T x \end{bmatrix}$$

Matrix-Vector Products

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$
- Writing A by columns, Ax is a <u>linear combination</u> of the columns of A, with coefficients given by x

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \cdots & a_n \\ 1 & 1 & 1 \end{bmatrix}, \qquad Ax \in \mathbb{R}^m = \sum_{i=1}^n a_i x_i$$

Symmetric Matrices

• Symmetric matrix:

$$A \in \mathbb{R}^{n \times n}$$
 with $A = A^T$

- Arise naturally in many settings
- For $A \in \mathbb{R}^{m \times n}$,

$$A^T A \in \mathbb{R}^{n \times n}$$
 is symmetric

Norms (Strength or Distance in Linear Space)

• A vector norm is any function $f: \mathbb{R}^n \Longrightarrow \mathbb{R}$ with

1.
$$f(x) \ge 0$$
 and $f(x) = 0 \Leftrightarrow x = 0$

2.
$$f(ax) = |a|f(x)$$
 for $a \in R$

3.
$$f(x + y) \le f(x) + f(y)$$

• l_2 norm

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• l_1 norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• ||x|| measures length of vector (from origin)

Norms (Strength or Distance in Linear Space)

5.0

```
np.linalg.norm(x, 1)
```

7.0

Orthogonality

• Two vectors $x, y \in \mathbb{R}^n$ are *orthogonal* if

$$x^T y = 0$$

They are orthonormal if

$$x^T y = 0$$
 and $||x||_2 = ||y||_2 = 1$

Angle between Vectors

• For any $x, y \in \mathbb{R}^n$,

$$|x^T y| \le ||x|| ||y||$$

• (unsigned) angle between vectors in \mathbb{R}^n defined as

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}$$

thus
$$x^T y = ||x|| ||y|| \cos \theta$$

Angle between Vectors

$$\theta = \angle(x, y) = \cos^{-1} \frac{x^T y}{\|x\| \|y\|}$$

• $\{x | x^T y \le 0\}$ defines a half space with outward normal vector y, and boundary passing through 0