Метод Ньютона. Квазиньютоновские методы. Матрица предобработки Методы оптимизации

Александр Безносиков

Московский физико-технический институт

5 октября 2023

• Рассмотрим задачу поиска «корня» функции:

Найти
$$t^*$$
, что $arphi(t^*)=0,$

где
$$\varphi:\mathbb{R} \to \mathbb{R}.$$

• Рассмотрим задачу поиска «корня» функции:

Найти
$$t^*$$
, что $\varphi(t^*)=0$,

где
$$\varphi:\mathbb{R} \to \mathbb{R}.$$

• Пусть мы находимся в точке t^0 и хотим найти такую поправку Δt , что $t^0 + \Delta t pprox t^*$.

2 / 27

• Рассмотрим задачу поиска «корня» функции:

Найти
$$t^*$$
, что $arphi(t^*)=0,$

где $\varphi: \mathbb{R} \to \mathbb{R}$.

- Пусть мы находимся в точке t^0 и хотим найти такую поправку Δt , что $t^0 + \Delta t pprox t^*$.
- Разложим в ряд:

$$\varphi(t^0 + \Delta t) = \varphi(t^0) + \varphi'(t^0)\Delta t + o(\Delta t).$$

• Рассмотрим задачу поиска «корня» функции:

Найти
$$t^*$$
, что $arphi(t^*)=0,$

где $\varphi: \mathbb{R} \to \mathbb{R}$.

- Пусть мы находимся в точке t^0 и хотим найти такую поправку Δt , что $t^0 + \Delta t pprox t^*$.
- Разложим в ряд:

$$\varphi(t^0 + \Delta t) = \varphi(t^0) + \varphi'(t^0)\Delta t + o(\Delta t).$$

• Так как мы хотим $t^0 + \Delta t \approx t^*$, то

$$\varphi(t^0 + \Delta t) \approx \varphi(t^*) = 0 \implies \varphi(t^0) + \varphi'(t^0) \Delta t \approx 0.$$

◆ロト ◆昼 ト ◆ 豆 ト ◆ 豆 ・ か Q (で)

Задача поиска нуля: метод Ньютона

• Из $\varphi(t^0) + \varphi'(t^0) \Delta t \approx 0$ получаем:

$$\Delta t pprox -rac{arphi(t^0)}{arphi'(t^0)}.$$

Задача поиска нуля: метод Ньютона

• Из $arphi(t^0) + arphi'(t^0) \Delta t pprox 0$ получаем:

$$\Delta t pprox -rac{arphi(t^0)}{arphi'(t^0)}.$$

• Значит получаем новую точку $t^1 = t^0 + \Delta t$. Откуда получается итеративный метод:

$$\left| t^{k+1} = t^k - rac{arphi(t^k)}{arphi'(t^k)}
ight|$$

• Этот метод называется методом Ньютона. Его предложил во второй половине 17го века тот самый Ньютон.

• Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона?

• Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t) = \frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение?

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t) = \frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t) = \frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

• Производная: $\varphi'(t) = \frac{1}{(1+t^2)^{3/2}}$.

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t) = \frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

$$t^{k+1} = t^k - \frac{\varphi(t^k)}{\varphi'(t^k)} = -(t^k)^3.$$

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t) = \frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

ullet Производная: $arphi'(t)=rac{1}{(1+t^2)^{3/2}}.$ Откуда итерация метода Ньютона

$$t^{k+1}=t^k-\frac{\varphi(t^k)}{\varphi'(t^k)}=-(t^k)^3.$$

• Вопрос: что можем сказать о сходимости к решению?

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t)=\frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

$$t^{k+1}=t^k-\frac{\varphi(t^k)}{\varphi'(t^k)}=-(t^k)^3.$$

- Вопрос: что можем сказать о сходимости к решению?
 - ullet $|t^0| < 1$ есть сходимость

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t) = \frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

$$t^{k+1}=t^k-\frac{\varphi(t^k)}{\varphi'(t^k)}=-(t^k)^3.$$

- Вопрос: что можем сказать о сходимости к решению?
 - ullet $|t^0| < 1$ есть сходимость
 - ullet $|t^0|=1$ колеблемся в точках -1 и 1

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t)=\frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

$$t^{k+1}=t^k-\frac{\varphi(t^k)}{\varphi'(t^k)}=-(t^k)^3.$$

- Вопрос: что можем сказать о сходимости к решению?
 - $|t^0| < 1$ есть сходимость
 - ullet $|t^0|=1$ колеблемся в точках -1 и 1
 - $\bullet |t^0| > 1$ расходимся

- Вопрос: какие есть вопросы к интуиции получения итерации метода Ньютона? Важно, что t^0 из «хорошей окрестности» t^* .
- Рассмотрим

$$\varphi(t)=\frac{t}{\sqrt{1+t^2}}.$$

Вопрос: какое решение? $t^* = 0$.

$$t^{k+1} = t^k - \frac{\varphi(t^k)}{\varphi'(t^k)} = -(t^k)^3.$$

- Вопрос: что можем сказать о сходимости к решению?
 - $|t^0| < 1$ есть сходимость
 - ullet $|t^0| = 1$ колеблемся в точках -1 и 1
 - $\bullet |t^0| > 1$ расходимся
- Ключевая особенность метода Ньютона локальная сходимость (только в окрестности решения).

Метод Ньютона: оптимизация

• Рассмотрим задачу безусловную оптимизации с выпуклой дважды непрерывно дифференцируемой целевой функцией:

$$\min_{x\in\mathbb{R}^d}f(x).$$

• Вопрос: для такой задачи мы тоже ищем 0, но чего?

Метод Ньютона: оптимизация

• Рассмотрим задачу безусловную оптимизации с выпуклой дважды непрерывно дифференцируемой целевой функцией:

$$\min_{x\in\mathbb{R}^d}f(x).$$

• Вопрос: для такой задачи мы тоже ищем 0, но чего? $\nabla f(x^*) = 0$.

Метод Ньютона: оптимизация

• Рассмотрим задачу безусловную оптимизации с выпуклой дважды непрерывно дифференцируемой целевой функцией:

$$\min_{x \in \mathbb{R}^d} f(x).$$

• Вопрос: для такой задачи мы тоже ищем 0, но чего? $\nabla f(x^*) = 0$. Откуда метод Ньютона для задачи оптимизации

Алгоритм 3 Метод Ньютона

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Вычислить $\nabla f(x^k)$, $\nabla^2 f(x^k)$
- 3: $x^{k+1} = x^k (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$
- 4: end for

Выход: x^K

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x:

Метод Ньютона

0000000000000000

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x: $\nabla f(x^k) + \nabla^2 f(x^k)(x - x^k) = 0$.

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x: $\nabla f(x^k) + \nabla^2 f(x^k)(x - x^k) = 0$. Откуда получаем следующую точку метода: $x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x: $\nabla f(x^k) + \nabla^2 f(x^k)(x-x^k) = 0$. Откуда получаем следующую точку метода: $x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

 Метод Ньютона использует оракул второго порядка: требует вычисление гессиана.

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x: $\nabla f(x^k) + \nabla^2 f(x^k)(x-x^k) = 0$. Откуда получаем следующую точку метода: $x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

- Метод Ньютона использует оракул второго порядка: требует вычисление гессиана.
- Стоимость итерации значительно возрастает (по сравнению с градиентным спуском) не только из-за гессиана, но и его обращения.

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x: $\nabla f(x^k) + \nabla^2 f(x^k)(x-x^k) = 0$. Откуда получаем следующую точку метода: $x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

- Метод Ньютона использует оракул второго порядка: требует вычисление гессиана.
- Стоимость итерации значительно возрастает (по сравнению с градиентным спуском) не только из-за гессиана, но и его обращения. Вопрос: за сколько итераций метод Ньютона сойдется для квадратичной задачи с положительно определенной матрицей?

 Градиентный спуск работает с линейной аппроксимацией в текущей точке, метод Ньютона — с квадратичной:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k)(x - x^k) \rangle.$$

Минимизируем квадратичную аппроксимацию по x: $\nabla f(x^k) + \nabla^2 f(x^k)(x-x^k) = 0$. Откуда получаем следующую точку метода: $x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

- Метод Ньютона использует оракул второго порядка: требует вычисление гессиана.
- Стоимость итерации значительно возрастает (по сравнению с градиентным спуском) не только из-за гессиана, но и его обращения. Вопрос: за сколько итераций метод Ньютона сойдется для квадратичной задачи с положительно определенной матрицей? за 1 (но дорогую).

 То, что для квадратичной задачи метод Ньютона сходится за 1 итерацию, наталкивает на мысль о том, что при всех своих минусах (локальная сходимость, дороговизна итерации) ключевым плюсом является скорость сходимости.

- То, что для квадратичной задачи метод Ньютона сходится за 1 итерацию, наталкивает на мысль о том, что при всех своих минусах (локальная сходимость, дороговизна итерации) ключевым плюсом является скорость сходимости.
- Пусть целевая функция в задаче безусловной минимизации является дважды непрерывно дифференцируемой, μ -сильно выпуклой и имеет M-Липшицев гессиан, т.е. для любых $x,y\in\mathbb{R}^d$ справедливо:

$$\nabla^2 f(x) \succeq \mu I$$
, $\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le M \|x - y\|_2$.

В случае матрицы $\|\cdot\|_2$ – спектральная норма (согласованная норма с евклидовой для векторов).

• Доказываем сходимость.

• Доказываем сходимость. Будем изучать, как меняется расстояние до решения:

$$x^{k+1} - x^* = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k) - x^*.$$

• Доказываем сходимость. Будем изучать, как меняется расстояние до решения:

$$x^{k+1} - x^* = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k) - x^*.$$

 Снова вспомним формулу Ньютона-Лейбница для интеграла вдоль кривой:

$$\nabla f(x^k) - \nabla f(x^*) = \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*))(x^k - x^*) d\tau$$

8 / 27

Метод Ньютона: сходимость

• Доказываем сходимость. Будем изучать, как меняется расстояние до решения:

$$x^{k+1} - x^* = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k) - x^*.$$

 Снова вспомним формулу Ньютона-Лейбница для интеграла вдоль кривой:

$$\nabla f(x^{k}) - \nabla f(x^{*}) = \int_{0}^{1} \nabla^{2} f(x^{*} + \tau(x^{k} - x^{*}))(x^{k} - x^{*}) d\tau$$

Зная, что $abla f(x^*) = 0$, получим

$$x^{k+1} - x^* = x^k - x^* - \left(\nabla^2 f(x^k)\right)^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*))(x^k - x^*) d\tau.$$

• Продолжаем и используем «умную единицу»:

$$x^{k+1} - x^* = x^k - x^* - \left(\nabla^2 f(x^k)\right)^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*))(x^k - x^*) d\tau$$

$$= \left(\nabla^2 f(x^k)\right)^{-1} \nabla^2 f(x^k)(x^k - x^*)$$

$$- \left(\nabla^2 f(x^k)\right)^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*))(x^k - x^*) d\tau.$$

9 / 27

Метод Ньютона: сходимость

• Продолжаем и используем «умную единицу»:

$$x^{k+1} - x^* = x^k - x^* - \left(\nabla^2 f(x^k)\right)^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*))(x^k - x^*) d\tau$$

$$= \left(\nabla^2 f(x^k)\right)^{-1} \nabla^2 f(x^k)(x^k - x^*)$$

$$- \left(\nabla^2 f(x^k)\right)^{-1} \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*))(x^k - x^*) d\tau.$$

• Заметим, что $x^k - x^*$ можно вынести за пределы интеграла:

$$x^{k+1} - x^* = \left(\nabla^2 f(x^k)\right)^{-1} \nabla^2 f(x^k) (x^k - x^*)$$
$$- \left(\nabla^2 f(x^k)\right)^{-1} \left(\int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*)) d\tau\right) (x^k - x^*).$$

ullet Введем обозначение $G_k =
abla^2 f(x^k) - \int_0^1
abla^2 f(x^* + au(x^k - x^*)) d au$:

$$x^{k+1} - x^* = (\nabla^2 f(x^k))^{-1} G_k(x^k - x^*).$$

• Введем обозначение $G_k = \nabla^2 f(x^k) - \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*)) d au$:

$$x^{k+1} - x^* = (\nabla^2 f(x^k))^{-1} G_k(x^k - x^*).$$

• Перейдем к оценке нормы расстояния:

$$||x^{k+1} - x^*||_2 = \left\| \left(\nabla^2 f(x^k) \right)^{-1} G_k(x^k - x^*) \right\|_2$$

• Введем обозначение $G_k = \nabla^2 f(x^k) - \int_0^1 \nabla^2 f(x^* + \tau(x^k - x^*)) d\tau$:

$$x^{k+1} - x^* = \left(\nabla^2 f(x^k)\right)^{-1} G_k(x^k - x^*).$$

• Перейдем к оценке нормы расстояния:

$$||x^{k+1} - x^*||_2 = \left\| \left(\nabla^2 f(x^k) \right)^{-1} G_k(x^k - x^*) \right\|_2$$

 Пользуемся, что спектральная норма матрицы согласована с евклидовой вектора:

$$\|x^{k+1} - x^*\|_2 \le \left\| \left(\nabla^2 f(x^k) \right)^{-1} G_k \right\|_2 \|x^k - x^*\|_2$$

 $\le \left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 \|G_k\|_2 \|x^k - x^*\|_2.$

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2 \le \left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 ||G_k||_2 ||x^k - x^*||_2.$$

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2 \le \left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 ||G_k||_2 ||x^k - x^*||_2.$$

• Вопрос: как оценить $\|(\nabla^2 f(x^k))^{-1}\|_2$?

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2 \le \left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 ||G_k||_2 ||x^k - x^*||_2.$$

• Вопрос: как оценить $\left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2$? Мы знаем, что $\nabla^2 f(x) \succeq \mu I$, а значит $\frac{1}{\mu} I \succeq \left(\nabla^2 f(x^k) \right)^{-1}$,

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2 \le \left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 ||G_k||_2 ||x^k - x^*||_2.$$

• Вопрос: как оценить $\left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2$? Мы знаем, что $\nabla^2 f(x) \succeq \mu I$, а значит $\frac{1}{\mu} I \succeq \left(\nabla^2 f(x^k) \right)^{-1}$, откуда $\left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 \leq \frac{1}{\mu}$ и $\|x^{k+1} - x^*\|_2 \leq \frac{1}{\mu} \|G_k\|_2 \|x^k - x^*\|_2$.

• С предыдущего слайда:

$$||x^{k+1} - x^*||_2 \le \left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 ||G_k||_2 ||x^k - x^*||_2.$$

• Вопрос: как оценить $\left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2$? Мы знаем, что $\nabla^2 f(x) \succeq \mu I$, а значит $\frac{1}{\mu} I \succeq \left(\nabla^2 f(x^k) \right)^{-1}$, откуда $\left\| \left(\nabla^2 f(x^k) \right)^{-1} \right\|_2 \leq \frac{1}{\mu}$ и $\|x^{k+1} - x^*\|_2 \leq \frac{1}{\mu} \|G_k\|_2 \|x^k - x^*\|_2$.

• Осталось оценить $||G_k||_2$.

• Оцениваем $||G_k||_2$:

$$||G_{k}||_{2} = ||\nabla^{2} f(x^{k}) - \int_{0}^{1} \nabla^{2} f(x^{*} + \tau(x^{k} - x^{*})) d\tau||_{2}$$

$$= ||\int_{0}^{1} (\nabla^{2} f(x^{k}) - \nabla^{2} f(x^{*} + \tau(x^{k} - x^{*}))) d\tau||_{2}$$

$$\leq \int_{0}^{1} ||\nabla^{2} f(x^{k}) - \nabla^{2} f(x^{*} + \tau(x^{k} - x^{*}))||_{2} d\tau$$

$$\leq \int_{0}^{1} M(1 - \tau) ||x^{k} - x^{*}||_{2} d\tau$$

$$= M||x^{k} - x^{*}||_{2} \int_{0}^{1} (1 - \tau) d\tau = \frac{M}{2} ||x^{k} - x^{*}||_{2}.$$

• Подставляем оценку на $\|G_k\|_2$:

$$||x^{k+1} - x^*||_2 \le \frac{M}{2\mu} ||x^k - x^*||_2^2.$$

• Подставляем оценку на $\|G_k\|_2$:

$$||x^{k+1} - x^*||_2 \le \frac{M}{2\mu} ||x^k - x^*||_2^2.$$

Теорема об оценке сходимости метода Ньютона для μ -сильно выпуклых функций с M-Липшецевым гессианом

Пусть задача безусловной оптимизации с μ -сильно выпуклой целевой функцией f с M-Липшецевыми гессианом решается методом Ньютона. Тогда справедлива следующая оценка сходимости за 1 итерацию

$$||x^{k+1} - x^*||_2 \le \frac{M}{2\mu} ||x^k - x^*||_2^2.$$

• Подставляем оценку на $\|G_k\|_2$:

$$||x^{k+1} - x^*||_2 \le \frac{M}{2\mu} ||x^k - x^*||_2^2.$$

Теорема об оценке сходимости метода Ньютона для μ -сильно выпуклых функций с M-Липшецевым гессианом

Пусть задача безусловной оптимизации с μ -сильно выпуклой целевой функцией f с M-Липшецевыми гессианом решается методом Ньютона. Тогда справедлива следующая оценка сходимости за 1 итерацию

$$||x^{k+1} - x^*||_2 \le \frac{M}{2\mu} ||x^k - x^*||_2^2.$$

Мы уже знаем, что такого рода оценки дают квадратичную скорость сходимости.

 Сходимость, как и в случае первородного метода Ньютона, является локальной.

• Сходимость, как и в случае первородного метода Ньютона, является локальной. А именно, чтобы гарантировать $\|x^1-x^*\|_2<\|x^0-x^*\|_2$, нужно предположить, что

$$||x^0 - x^*||_2 < \frac{2\mu}{M}.$$

• Сходимость, как и в случае первородного метода Ньютона, является локальной. А именно, чтобы гарантировать $\|x^1-x^*\|_2<\|x^0-x^*\|_2$, нужно предположить, что

$$||x^0 - x^*||_2 < \frac{2\mu}{M}.$$

• Поймем насколько быстро сходится метод. Пусть M=2, $\mu=1$, а $\|x^0-x^*\|_2=\frac{1}{2}.$

• Сходимость, как и в случае первородного метода Ньютона, является локальной. А именно, чтобы гарантировать $\|x^1-x^*\|_2<\|x^0-x^*\|_2$, нужно предположить, что

$$||x^0 - x^*||_2 < \frac{2\mu}{M}.$$

• Поймем насколько быстро сходится метод. Пусть M=2, $\mu=1$, а $\|x^0-x^*\|_2=\frac{1}{2}$. Тогда мы можем гарантировать, что $\|x^1-x^*\|_2\leq \frac{1}{2^2}$,

• Сходимость, как и в случае первородного метода Ньютона, является локальной. А именно, чтобы гарантировать $\|x^1-x^*\|_2<\|x^0-x^*\|_2$, нужно предположить, что

$$||x^0 - x^*||_2 < \frac{2\mu}{M}.$$

• Поймем насколько быстро сходится метод. Пусть M=2, $\mu=1$, а $\|x^0-x^*\|_2=\frac{1}{2}$. Тогда мы можем гарантировать, что $\|x^1-x^*\|_2\leq \frac{1}{2^2}$, $\|x^2-x^*\|_2\leq \frac{1}{(2^2)^2}$ и так далее.

• Пытаемся решить проблему локальной сходимости. Действуем по аналогии с градиентным спуском. Вопрос: идеи?

- Пытаемся решить проблему локальной сходимости. Действуем по аналогии с градиентным спуском. Вопрос: идеи?
- Идея первая шаг:

$$x^{k+1} = x^k - \gamma_k \left(\nabla^2 f(x^k) \right)^{-1} \nabla f(x^k).$$

Такой метод называется демпфированный метод Ньютона.

- Пытаемся решить проблему локальной сходимости. Действуем по аналогии с градиентным спуском. Вопрос: идеи?
- Идея первая шаг:

$$x^{k+1} = x^k - \gamma_k \left(\nabla^2 f(x^k) \right)^{-1} \nabla f(x^k).$$

Такой метод называется демпфированный метод Ньютона. **Вопрос**: как выбирать шаг?

- Пытаемся решить проблему локальной сходимости. Действуем по аналогии с градиентным спуском. Вопрос: идеи?
- Идея первая шаг:

$$x^{k+1} = x^k - \gamma_k \left(\nabla^2 f(x^k) \right)^{-1} \nabla f(x^k).$$

Такой метод называется демпфированный метод Ньютона. Вопрос: как выбирать шаг? Много разных способов, например, на прошлой лекции обсуждали линейный поиск: $\arg\min_{\gamma} f(x^k + \gamma p_k)$, где $p_k = -\left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$.

• Идея вторая – «оценки сверху». В основе анализа градиентного спуска лежала оптимизация «оценки сверху» на функцию:

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^d} \left(f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} ||x - x^k||_2^2 \right).$$

• Идея вторая – «оценки сверху». В основе анализа градиентного спуска лежала оптимизация «оценки сверху» на функцию:

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^d} \left(f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|_2^2 \right).$$

Вопрос: чему равно x^{k+1} ?

• Идея вторая – «оценки сверху». В основе анализа градиентного спуска лежала оптимизация «оценки сверху» на функцию:

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^d} \left(f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|_2^2 \right).$$

Вопрос: чему равно x^{k+1} ? $x^{k+1} = x^k - \frac{1}{L} \nabla f(x^k)$.

 Идея вторая – «оценки сверху». В основе анализа градиентного спуска лежала оптимизация «оценки сверху» на функцию:

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^d} \left(f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|_2^2 \right).$$

Вопрос: чему равно x^{k+1} ? $x^{k+1} = x^k - \frac{1}{L} \nabla f(x^k)$. Запишем, похожее для аппроксимации 2-го порядка:

$$\begin{aligned} x^{k+1} &= \arg\min_{x \in \mathbb{R}^d} \left(f(x^k) + \langle \nabla f(x^k), x - x^k \rangle \right. \\ &+ \frac{1}{2} \langle x - x^k, \nabla^2 f(x^k) (x - x^k) \rangle + \frac{M}{6} \|x - x^k\|_2^3 \right). \end{aligned}$$

Здесь M – константа Липшица гессиана. Такой метод называется кубический метод Ньютона.

• Запишем метод Ньютона следующим образом:

$$x^{k+1} = x^k - H_k \nabla f(x^k).$$

• Запишем метод Ньютона следующим образом:

$$x^{k+1} = x^k - H_k \nabla f(x^k).$$

В случае метода Ньютона вместо H_k стоит $\left(
abla^2 f(x^k) \right)^{-1}$.

• Хочется заменить $(\nabla^2 f(x^k))^{-1}$ на что-то более дешевое с точки зрения вычислений.

• Запишем метод Ньютона следующим образом:

$$x^{k+1} = x^k - H_k \nabla f(x^k).$$

В случае метода Ньютона вместо H_k стоит $\left(
abla^2 f(x^k) \right)^{-1}$.

- Хочется заменить $\left(\nabla^2 f(x^k)\right)^{-1}$ на что-то более дешевое с точки зрения вычислений.
- Идея выудить какие-то свойства, присущие гессиану.

• Запишем метод Ньютона следующим образом:

$$x^{k+1} = x^k - H_k \nabla f(x^k).$$

В случае метода Ньютона вместо H_k стоит $\left(
abla^2 f(x^k) \right)^{-1}$.

- Хочется заменить $\left(\nabla^2 f(x^k)\right)^{-1}$ на что-то более дешевое с точки зрения вычислений.
- Идея выудить какие-то свойства, присущие гессиану.
- Связь градиента и гессиана:

$$abla f(x^k) =
abla f(x^{k+1}) +
abla^2 f(x^{k+1})(x^k - x^{k+1}) + o(\|x^{k+1} - x^k\|_2)$$
 или $abla f(x^k) -
abla f(x^{k+1}) \approx
abla^2 f(x^{k+1})(x^k - x^{k+1}).$ Откуда $x^{k+1} - x^k \approx (
abla^2 f(x^{k+1}))^{-1} (
abla f(x^k) -
abla f(x^k) + o(\|x^{k+1} - x^k\|_2).$

• Запишем метод Ньютона следующим образом:

$$x^{k+1} = x^k - H_k \nabla f(x^k).$$

В случае метода Ньютона вместо H_k стоит $\left(
abla^2 f(x^k) \right)^{-1}$.

- Хочется заменить $\left(\nabla^2 f(x^k)\right)^{-1}$ на что-то более дешевое с точки зрения вычислений.
- Идея выудить какие-то свойства, присущие гессиану.
- Связь градиента и гессиана:

$$abla f(x^k) =
abla f(x^{k+1}) +
abla^2 f(x^{k+1})(x^k - x^{k+1}) + o(\|x^{k+1} - x^k\|_2)$$
или $abla f(x^k) -
abla f(x^{k+1}) \approx
abla^2 f(x^{k+1})(x^k - x^{k+1}).$ Откуда $x^{k+1} - x^k \approx (
abla^2 f(x^{k+1}))^{-1}(
abla f(x^{k+1}) -
abla f(x^{k+1}))$. Заменим $abla^2 f(x^{k+1})^{-1}$ на $abla_{k+1}$, введем обозначения $abla^k = x^{k+1} - x^k$ и $abla^k =
abla f(x^k)^k =
abla f(x^k$

 $s^k = H_{k+1}y^k$

$$s^k = H_{k+1}y^k$$

• Квазиньютоновское уравнение:

$$s^k = H_{k+1} y^k$$

ullet Еще потребуем, чтобы H_{k+1} была симметричной: $H_{k+1}^T = H_{k+1}$.

$$s^k = H_{k+1}y^k$$

- ullet Еще потребуем, чтобы H_{k+1} была симметричной: $H_{k+1}^T = H_{k+1}.$
- Вопрос: сколько решений имеет система уравнений $s^k = H_{k+1} y^k$ относительно H_{k+1} при условии, что $H_{k+1}^T = H_{k+1}$?

$$s^k = H_{k+1}y^k$$

- ullet Еще потребуем, чтобы H_{k+1} была симметричной: $H_{k+1}^T = H_{k+1}.$
- Вопрос: сколько решений имеет система уравнений $s^k = H_{k+1} y^k$ относительно H_{k+1} при условии, что $H_{k+1}^T = H_{k+1}$? d уравнений, d+d(d-1)/2 уравнений. Можно урешаться.

$$s^k = H_{k+1}y^k$$

- ullet Еще потребуем, чтобы H_{k+1} была симметричной: $H_{k+1}^T = H_{k+1}.$
- Вопрос: сколько решений имеет система уравнений $s^k = H_{k+1} y^k$ относительно H_{k+1} при условии, что $H_{k+1}^T = H_{k+1}$? d уравнений, d+d(d-1)/2 уравнений. Можно урешаться. Нужно еще сузить правила поиска H_{k+1} .

 Идея первая – одно-ранговая (дешевая с точки зрения вычислений) добавка:

$$H_{k+1} = H_k + \mu_k q^k (q^k)^T,$$

где $\mu_k \in \mathbb{R}$ и $q^k \in \mathbb{R}^d$ нужно подобрать.

 Идея первая – одно-ранговая (дешевая с точки зрения вычислений) добавка:

$$H_{k+1} = H_k + \mu_k q^k (q^k)^T,$$

где $\mu_k \in \mathbb{R}$ и $q^k \in \mathbb{R}^d$ нужно подобрать.

• Подбираем исходя из квазиньютоновского уравнения:

$$s^{k} = H_{k+1}y^{k} = H_{k}y^{k} + \mu_{k}q^{k}(q^{k})^{T}y^{k}$$

= $H_{k}y^{k} + \mu_{k}\left((q^{k})^{T}y^{k}\right)q^{k}$

 Идея первая – одно-ранговая (дешевая с точки зрения вычислений) добавка:

$$H_{k+1} = H_k + \mu_k q^k (q^k)^T,$$

где $\mu_k \in \mathbb{R}$ и $q^k \in \mathbb{R}^d$ нужно подобрать.

• Подбираем исходя из квазиньютоновского уравнения:

$$s^{k} = H_{k+1}y^{k} = H_{k}y^{k} + \mu_{k}q^{k}(q^{k})^{T}y^{k}$$

= $H_{k}y^{k} + \mu_{k}\left((q^{k})^{T}y^{k}\right)q^{k}$

Откуда

$$\mu_k\left((q^k)^T y^k\right) q^k = s^k - H_k y^k$$

• С предыдущего слайда:

$$\mu_k\left((q^k)^T y^k\right) q^k = s^k - H_k y^k$$

• Вопрос: что можно сказать про вектор q^k ?

• С предыдущего слайда:

$$\mu_k\left((q^k)^T y^k\right) q^k = s^k - H_k y^k$$

• Вопрос: что можно сказать про вектор q^k ? Коллинеарен $s^k - H_k y^k$.

• С предыдущего слайда:

$$\mu_k\left((q^k)^T y^k\right) q^k = s^k - H_k y^k$$

• Вопрос: что можно сказать про вектор q^k ? Коллинеарен $s^k - H_k v^k$. Пусть

$$q^k = s^k - H_k y^k,$$

тогда

$$\mu_k = \frac{1}{(q^k)^T y^k}.$$

• Получаем SR1 способ подсчета матриц *H*:

$$H_{k+1} = H_k + \frac{(s^k - H_k y^k)(s^k - H_k y^k)^T}{(s^k - H_k y^k)^T y^k}$$

• Посмотрим на задачу поиска H_{k+1} , как на задачу поиска «близкой» к H_k матрицы с точки зрения оптимизации:

$$H_{k+1} = \arg\min_{H \in \mathbb{R}^{d \times d}} \|H - H_k\|^2$$

 $s.t. \ s^k = Hy^k$
 $H^T = H$

• Посмотрим на задачу поиска H_{k+1} , как на задачу поиска «близкой» к H_k матрицы с точки зрения оптимизации:

$$H_{k+1} = \arg \min_{H \in \mathbb{R}^{d \times d}} ||H - H_k||^2$$

$$s.t. \ s^k = Hy^k$$

$$H^T = H$$

• Норма в задачи оптимизации может быть любая. В зависимости от нормы будут получаться разные квазиньютоновские методы.

21 / 27

Квазиньютоновские методы: BFGS

• Посмотрим на задачу поиска H_{k+1} , как на задачу поиска «близкой» к H_k матрицы с точки зрения оптимизации:

$$H_{k+1} = \arg \min_{H \in \mathbb{R}^{d \times d}} \|H - H_k\|^2$$

$$s.t. \ s^k = Hy^k$$

$$H^T = H$$

- Норма в задачи оптимизации может быть любая. В зависимости от нормы будут получаться разные квазиньютоновские методы.
- Рассмотрим взвешенную норму Фробениуса $\|A\|_W = \|W^{1/2}AW^{1/2}\|_F$, где должно выполняться $Wy^k = s^k$. Такой выбор дает метод BFGS:

$$H_{k+1} = (I - \rho_k s^k (y^k)^T) H_k (I - \rho_k y^k (s^k)^T) + \rho_k s^k (s^k)^T$$
, где $\rho_k = \frac{1}{(y^k)^T s^k}$

• До такой формулы можно дойти по-другому.

• До такой формулы можно дойти по-другому. Рассмотрим $B_{k+1} = H_{k+1}^{-1}$. Для B квазиньютоновское уравнение выглядит как $B_{k+1} s^k = y^k$

• До такой формулы можно дойти по-другому. Рассмотрим $B_{k+1} = H_{k+1}^{-1}$. Для B квазиньютоновское уравнение выглядит как $B_{k+1}s^k = v^k$

• Для B_{k+1} можно написать SR1 пересчет матрицы:

$$B_{k+1} = B_k + \frac{(y^k - B_k s^k)(y^k - B_k s^k)^T}{(y^k - B_k s^k)^T s^k}$$

• До такой формулы можно дойти по-другому. Рассмотрим $B_{k+1} = H_{k+1}^{-1}$. Для B квазиньютоновское уравнение выглядит как $B_{k+1}s^k = v^k$

• Для B_{k+1} можно написать SR1 пересчет матрицы:

$$B_{k+1} = B_k + \frac{(y^k - B_k s^k)(y^k - B_k s^k)^T}{(y^k - B_k s^k)^T s^k}$$

• Смотрим на вид B_{k+1} и делаем из нее двухранговое изменение:

$$B_{k+1} = B_k + \mu_{k,1} y^k (y^k)^T + \mu_{k,2} B_k y^k (B_k y^k)^T$$

- До такой формулы можно дойти по-другому. Рассмотрим $B_{k+1} = H_{k+1}^{-1}$. Для B квазиньютоновское уравнение выглядит как $B_{k+1}s^k = v^k$
- Для B_{k+1} можно написать SR1 пересчет матрицы:

$$B_{k+1} = B_k + \frac{(y^k - B_k s^k)(y^k - B_k s^k)^T}{(y^k - B_k s^k)^T s^k}$$

• Смотрим на вид B_{k+1} и делаем из нее двухранговое изменение:

$$B_{k+1} = B_k + \mu_{k,1} y^k (y^k)^T + \mu_{k,2} B_k y^k (B_k y^k)^T$$

• Как и в SR1 можно подогнать $\mu_{k,1}$ и $\mu_{k,2}$:

$$B_{k+1} = B_k + \frac{y^k (y^k)^T}{(y^k)^T s^k} + \frac{B_k y^k (B_k y^k)^T}{(s^k)^T B_k s^k}$$

• До такой формулы можно дойти по-другому. Рассмотрим $B_{k+1} = H_{k+1}^{-1}$. Для B квазиньютоновское уравнение выглядит как $B_{k+1}s^k = v^k$

• Для B_{k+1} можно написать SR1 пересчет матрицы:

$$B_{k+1} = B_k + \frac{(y^k - B_k s^k)(y^k - B_k s^k)^T}{(y^k - B_k s^k)^T s^k}$$

• Смотрим на вид B_{k+1} и делаем из нее двухранговое изменение:

$$B_{k+1} = B_k + \mu_{k,1} y^k (y^k)^T + \mu_{k,2} B_k y^k (B_k y^k)^T$$

• Как и в SR1 можно подогнать $\mu_{k,1}$ и $\mu_{k,2}$:

$$B_{k+1} = B_k + \frac{y^k (y^k)^T}{(y^k)^T s^k} + \frac{B_k y^k (B_k y^k)^T}{(s^k)^T B_k s^k}$$

• Если теперь обратить B_{k+1} (формула Шермана-Маррисона-Вудберри), то получится выражение для H_{k+1}

• Вопрос: чтобы посчитать новую матрицу нужно $O(d^2)$ операций (не учитывая подсчет градиентов). Кажется, что BFGS подсчет дороже (есть перемнножение трех матриц). Так ли это? $H_{k+1} = (I - \rho_k s^k (y^k)^T) H_k (I - \rho_k y^k (s^k)^T) + \rho_k s^k (s^k)^T$

- Вопрос: чтобы посчитать новую матрицу нужно $O(d^2)$ операций (не учитывая подсчет градиентов). Кажется, что BFGS подсчет дороже (есть перемнножение трех матриц). Так ли это? $H_{k+1} = (I \rho_k s^k (y^k)^T) H_k (I \rho_k y^k (s^k)^T) + \rho_k s^k (s^k)^T$
- Нужно раскрыть скобки в матричном умножении. В подсчете $s^k(y^k)^T H_k$ нужно сначала умножить $(y^k)^T H_k$, а потом вектор на вектор. Аналогично для $H_k y^k (s^k)^T$. Получается, что сложность BFGS есть $O(d^2)$ операций (не учитывая подсчет градиентов).

- Вопрос: чтобы посчитать новую матрицу нужно $O(d^2)$ операций (не учитывая подсчет градиентов). Кажется, что BFGS подсчет дороже (есть перемнюжение трех матриц). Так ли это? $H_{k+1} = (I \rho_k s^k (y^k)^T) H_k (I \rho_k y^k (s^k)^T) + \rho_k s^k (s^k)^T$
- Нужно раскрыть скобки в матричном умножении. В подсчете $s^k(y^k)^T H_k$ нужно сначала умножить $(y^k)^T H_k$, а потом вектор на вектор. Аналогично для $H_k y^k (s^k)^T$. Получается, что сложность BFGS есть $O(d^2)$ операций (не учитывая подсчет градиентов).
- При инициализации матрицу H_0 достаточно брать равно единичной. Есть и более хитрые способы, но особо разницы не чувствует все работает хорошо.

• Квазиньютоновские методы не требуют подсчет гессиана и его обращение. Сложность всех арифметических операций на одной итерации $O(d^2)$, что дешевле обращения гессиана за $O(d^3)$.

- Квазиньютоновские методы не требуют подсчет гессиана и его обращение. Сложность всех арифметических операций на одной итерации $O(d^2)$, что дешевле обращения гессиана за $O(d^3)$.
- Квазиньютоновские методы имеют глобальную сверхлинейную скорость сходимости. Это медленнее, чем метод Ньютона, но не нужна «хорошая» окрестность решения.

- Квазиньютоновские методы не требуют подсчет гессиана и его обращение. Сложность всех арифметических операций на одной итерации $O(d^2)$, что дешевле обращения гессиана за $O(d^3)$.
- Квазиньютоновские методы имеют глобальную сверхлинейную скорость сходимости. Это медленнее, чем метод Ньютона, но не нужна «хорошая» окрестность решения.
- Квазиньютоновские методы используют только градиент, но в теории сходятся быстрее ускоренного градиентного метода. Вопрос: почему так, ведь метод Нестерова оптимальный?

- Квазиньютоновские методы не требуют подсчет гессиана и его обращение. Сложность всех арифметических операций на одной итерации $O(d^2)$, что дешевле обращения гессиана за $O(d^3)$.
- Квазиньютоновские методы имеют глобальную сверхлинейную скорость сходимости. Это медленнее, чем метод Ньютона, но не нужна «хорошая» окрестность решения.
- Квазиньютоновские методы используют только градиент, но в теории сходятся быстрее ускоренного градиентного метода. Вопрос: почему так, ведь метод Нестерова оптимальный? Смотри определения класса задач, для которого метод Нестерова оптимальный: не разрешены векторные произведения.

- Квазиньютоновские методы не требуют подсчет гессиана и его обращение. Сложность всех арифметических операций на одной итерации $O(d^2)$, что дешевле обращения гессиана за $O(d^3)$.
- Квазиньютоновские методы имеют глобальную сверхлинейную скорость сходимости. Это медленнее, чем метод Ньютона, но не нужна «хорошая» окрестность решения.
- Квазиньютоновские методы используют только градиент, но в теории сходятся быстрее ускоренного градиентного метода.
 Вопрос: почему так, ведь метод Нестерова оптимальный?
 Смотри определения класса задач, для которого метод Нестерова оптимальный: не разрешены векторные произведения.
- Метод Ньютона и квазиньютоновские методы на практике быстро находят точный локальный миннимум. Их спокойно можно использовать в качестве «дорешивателей». Квазиньютоновские методы и как «стартовый» метод.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

• Постоянную матрицу: $B_k = B$.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k)u_k\right),$$

здесь ⊙ покомпонентное произведение векторов.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k)u_k\right),$$

здесь ⊙ покомпонентное произведение векторов. **Вопрос**: дорого ли вычислить такую аппроксимацию?

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k) u_k\right),\,$$

здесь \odot покомпонентное произведение векторов. **Вопрос**: дорого ли вычислить такую аппроксимацию? не особо, сначала берем градиент, а потом градиент от $\langle \nabla f(x^k), u_k \rangle$.

Пусть компоненты вектора u_k берутся независимые случайные величины равные -1 и 1 с вероятностью 1/2.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k)u_k\right),$$

здесь \odot покомпонентное произведение векторов. **Вопрос**: дорого ли вычислить такую аппроксимацию? не особо, сначала берем градиент, а потом градиент от $\langle \nabla f(x^k), u_k \rangle$.

Пусть компоненты вектора u_k берутся независимые случайные величины равные -1 и 1 с вероятностью 1/2. Вопрос: что можно сказать про $\mathbb{E}D_k$?

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k) u_k\right),\,$$

здесь \odot покомпонентное произведение векторов. **Вопрос**: дорого ли вычислить такую аппроксимацию? не особо, сначала берем градиент, а потом градиент от $\langle \nabla f(x^k), u_k \rangle$.

Пусть компоненты вектора u_k берутся независимые случайные величины равные -1 и 1 с вероятностью 1/2. Вопрос: что можно сказать про $\mathbb{E}D_k$? $\mathbb{E}D_k = \mathrm{diag}(\nabla^2 f(x^k))$.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k) u_k\right),\,$$

здесь \odot покомпонентное произведение векторов. Вопрос: дорого ли вычислить такую аппроксимацию? не особо, сначала берем градиент, а потом градиент от $\langle \nabla f(x^k), u_k \rangle$.

Пусть компоненты вектора u_k берутся независимые случайные величины равные -1 и 1 с вероятностью 1/2. Вопрос: что можно сказать про $\mathbb{E}D_k$? $\mathbb{E}D_k = \mathrm{diag}(\nabla^2 f(x^k))$. Вопрос: хорошая ли эта аппроксимация?

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

- Постоянную матрицу: $B_k = B$.
- Аппроксимацию гессиана:

$$D_k = \operatorname{diag}\left(u_k \odot \nabla^2 f(x^k) u_k\right),\,$$

здесь \odot покомпонентное произведение векторов. **Вопрос**: дорого ли вычислить такую аппроксимацию? не особо, сначала берем градиент, а потом градиент от $\langle \nabla f(x^k), u_k \rangle$.

Пусть компоненты вектора u_k берутся независимые случайные величины равные -1 и 1 с вероятностью 1/2. Вопрос: что можно сказать про $\mathbb{E}D_k$? $\mathbb{E}D_k = \operatorname{diag}(\nabla^2 f(x^k))$. Вопрос: хорошая ли эта аппроксимация? Не особо, \mathbb{E} – это хорошо, но разброс может быть огромным.

• Поэтому можно делать так:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k,$$

где $\beta_k \in (0;1)$ (часто β_k близко к 0).

• Поэтому можно делать так:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k,$$

где $\beta_k \in (0;1)$ (часто β_k близко к 0). Такой подход помогает бороться со стохастикой. Мы аккумулируем апроксимации D_k , предполагая, что гессиан меняется слабо. С другой стороны все более старые апроксимации гессиана забываются.

• Поэтому можно делать так:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k,$$

где $\beta_k \in (0;1)$ (часто β_k близко к 0). Такой подход помогает бороться со стохастикой. Мы аккумулируем апроксимации D_k , предполагая, что гессиан меняется слабо. С другой стороны все более старые апроксимации гессиана забываются.

Но на практике делают вот так:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k, \ D_k \operatorname{diag}\left(|u_k \odot \nabla^2 f(x^k)u_k| + e\right),$$

где модуль берется покомпонентно, e прибавляется покомпонетно. Обычно $e \approx 10^{-4} - 10^{-8}$.

• Поэтому можно делать так:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k,$$

где $\beta_k \in (0;1)$ (часто β_k близко к 0). Такой подход помогает бороться со стохастикой. Мы аккумулируем апроксимации D_k , предполагая, что гессиан меняется слабо. С другой стороны все более старые апроксимации гессиана забываются.

• Но на практике делают вот так:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k, \ D_k \operatorname{diag}\left(|u_k \odot \nabla^2 f(x^k)u_k| + e\right),$$

где модуль берется покомпонентно, e прибавляется покомпонетно. Обычно $e \approx 10^{-4}-10^{-8}$. Это нужно, чтобы всегда обращать диагональную матрицу из положительных чисел.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

• RMSProp:

$$B_{k+1}^2 = (1-\beta)B_k^2 + \beta D_k \quad D_k = \operatorname{diag}\left((f(x^k) \odot \nabla f(x^k)) + e^2 \right),$$

где e^2 прибавляется покомпонетно.

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

RMSProp:

$$B_{k+1}^2 = (1-\beta)B_k^2 + \beta D_k \quad D_k = \operatorname{diag}\left((f(x^k) \odot \nabla f(x^k)) + e^2\right),$$

где e^2 прибавляется покомпонетно.

Adam:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k \quad D_k = \operatorname{diag}\left((f(x^k) \odot \nabla f(x^k)) + e^2\right),$$

где $\beta_k = \frac{\beta - \beta^{k+1}}{1 - \beta^{k+1}}$. Лучше на начальных итерациях из-за подбора β_k , который меньше «доверяет» начальным аппроксимациям.

Вопрос: чем может помочь такого рода предобработка? подумайте о квадратичной задаче с диагональной матрицей.

Чем еще заменить гессиан

Предобработчки/Шкалирования

Что еще можно брать вместо гессиана: $x^{k+1} = x^k - \gamma_k(B_k)^{-1} \nabla f(x^k)$?

RMSProp:

$$B_{k+1}^2 = (1-\beta)B_k^2 + \beta D_k$$
 $D_k = \operatorname{diag}\left(\left(f(x^k) \odot \nabla f(x^k)\right) + e^2\right),$

где e^2 прибавляется покомпонетно.

Adam:

$$B_{k+1} = (1 - \beta_k)B_k + \beta_k D_k \quad D_k = \operatorname{diag}\left((f(x^k) \odot \nabla f(x^k)) + e^2\right),$$

где $\beta_k = \frac{\beta - \beta^{k+1}}{1 - \beta^{k+1}}$. Лучше на начальных итерациях из-за подбора β_k , который меньше «доверяет» начальным аппроксимациям.

Вопрос: чем может помочь такого рода предобработка? подумайте о квадратичной задаче с диагональной матрицей. А исчерпывающий теоретический ответ, почему условный Adam работает хорошо, не знает никто.