Institut für Parallele und Verteilte Systeme

Universität Stuttgart Universitätsstraße 38 D–70569 Stuttgart

Masterarbeit Nr. 314159

Development of a FEM code for fluid-structure coupling

Stephan Herb

Studiengang: Informatik

Prüfer/in: Prof. Dr. Miriam Mehl

Betreuer/in: Dipl.-Ing. Florian Lindner

Beginn am: 08. Juni 2015

Beendet am: 08. Dezember 2015

CR-Nummer:

Contents

1	Intr	troduction									
2	Fran	amework Evaluation									
	2.1	Gener	al Aspects	7							
	2.2	Frame	eworks Overview	8							
		2.2.1	Feel++	8							
		2.2.2	OOFEM	9							
		2.2.3	GetFEM++	9							
		2.2.4	MFEM	9							
		2.2.5	libMesh	10							
3	She	Shell Elements 11									
	3.1	Introd	luction to Linear Elastic Problems	11							
	3.2	Plane	Element	12							
		3.2.1	Problem Definition	12							
		3.2.2	Tri-3 Plane Element	15							
		3.2.3	Quad-4 Plane Element	20							
	3.3	Plate	Bending Element	24							
		3.3.1	Problem Definition	24							
		3.3.2	Tri-3 Plate Element	29							
		3.3.3	Quad-4 Plate Element	33							
	3.4	Coord	inate Transformation	38							
	3.5	Shell 1	Element	41							
4	FEN	EM Code Implementation 46									
	4.1	Introd	luction to libMesh	46							
	4.2	Imple	mentation Details	48							
		4.2.1	Initialization	48							
		4.2.2	Mesh file import	49							
		4.2.3	System setup	51							
		4.2.4	Matrix and vector assembly	53							
		4.2.5	Solving the system	58							
		4.2.6	Output	59							
	4.3	Parall	elization with MPI	60							
		4.3.1	libMesh requirements	60							
		4.3.2	Partitioning the mesh	60							
		4.3.3	Local elements	61							
		4.3.4	Assembly changes	62							
5	Con	pling tl	hrough preCICE	64							
-	5.1		iew of preCICE	64							

	5.2	5.2 Coupling Methods						
		5.2.1	Explicit Coupling Schemes	65				
		5.2.2	Implicit Coupling Schemes	66				
	5.3	Data I	Mapping	67				
		5.3.1	Conservative vs. Consistent	67				
		5.3.2	Nearest-Neighbor	68				
		5.3.3	Nearest-Projection	68				
		5.3.4	Radial Basis Function	69				
	5.4	Comm	nunication	69				
		5.4.1	MPI Communication	69				
		5.4.2	Socket Communication	70				
	5.5	Implei	mentation	70				
		5.5.1	Additional Boundary Conditions	70				
		5.5.2	Partitioned Coupling Surface	70				
		5.5.3	Integration of preCICE	70				
6	Vali	Validation 7						
	6.1	Test A	A: Plane Displacement with Tri-3 Element	71				
	6.2		3: Plane Displacement with Quad-4					
	6.3		C: Plate Displacement with Tri-3					
	6.4		O: Plate Displacement with Quad-4					
	6.5		E: Shell Displacement					
	6.6		C: Convergence (increasing number of elements)					
	6.7		G: MPI (increasing number of processes)					
	6.8		H: Coupling with preCICE					
7	Con	clusion		74				
•		Future		74				

Abstract

Dieser Paragraph enthält eine nette kleine Zusammenfassung, in der zusammengefasst ist, was diese Arbeit enthält und tolles neues gemacht hat, das die Welt revolutionieren wird. Dieser Text hier dient im Augenblick nur als Platzhalter und wer ihn liest, sollte sich nicht beklagen, dass er oder sie gerade Zeit verschwendet hat.

1 Introduction

Here comes the introduction . . . my worst nightmare.

2 Framework Evaluation

Part of the thesis was to find several frameworks which ease the work with the finite element method. An evaluation of frameworks was done to select a suitable one for the given task. The evaluation's criteria are presented as well as a short description of the studied frameworks.

2.1 General Aspects

In preparation of evaluating the frameworks many criteria were created in order to find the most suitable library. The individual aspects are as follows:

- Open Source: All frameworks under consideration need to be published under free license that allows modification and redistribution. The implemented program should be used by anyone without requiring to purchase additional commercial software.
- Parallelization: Due to the need of accelerating calculations, the framework has to support an implementation of the widely used Message Passing Interface (MPI).
 The library should be able to use MPI internally for its own functions and procedures, but also support the developer with auxiliary function for communicating framework-related data.
- The programming language was chosen to be C++. This aspect is subjective and due to the individual experience of the developer that is larger than, for example, with Python. It is not required that the framework is internally written in C++, but if not, it must provide an interface to C++ to work with.
- Mesh file import: Since the program should be able to work with complex geometries, the definition of such a mesh cannot be done in source code. Therefore, the library should provide a possibility to import meshes from file. The file must contain definitions of the node positions as well as the topology of the elements. Additionally, boundary conditions must be definable through identifiers at nodes or edges. The actual formats of the mesh files supported is not important, as long it supports the addressed requirements. A framework proprietary format would also be possible if it is simply reproducible.
- Linked to the previous aspect is the variety of different finite element types the library has to provide. The current program version uses triangles and quadrilaterals with three and four nodes, respectively. To be able to expand the program's functionality in the future, the library should support elements like six node triangles, nine node quadrilaterals or three dimensional elements like tetrahedra and hexahedra.
- Built-in solvers: The framework must provide a variety of different iterative solvers that can be interchanged at runtime by the user, or at least easily in the source

code. Thus, the user has a higher flexibility when optimizing a problem or comparing different solvers in order to find the best for his or her problem.

- Accessible and detailed documentation: In order to guarantee maintainability and expandability the framework has to have a good documentation. This includes a complete documentation of every class and function, that is actively growing with the library itself. Additional documented example codes help the developer learning how to use the library correctly and efficiently. If problems with the framework occur the developer should be able to get in contact with the framework developers via mailing-lists or forums.
- Up-to-date: The framework should be well maintained and actively supported by its developers to ensure a long term compatibility with new features of the program code.
- The framework should has been used by at least a few projects or has been part of publications. This shows the framework's importance and usability.
- Easy to learn syntax and structure: A rather subjective aspect, not less important. The limited time for this work does not allow studying complicated structures or semantics. The developer should be able to concentrate more on the mathematical/physical problem and less on programming details. This accompanies the choice of the programming language as well as the documentation aspect.

2.2 Frameworks Overview

The following list contains FEM libraries which were evaluated in detail.

2.2.1 Feel++

Feel++ stands for "'Finite Element Embedded Language in C++"' and is a unified framework for finite and spectral Galerkin methods in 1D, 2D and 3D to solve partial differential equations [1]. It was created in 2005 and still actively maintained with daily commits and the last release version from February, 2015. One main aspect of Feel++ is to have the syntax, semantics and pragmatics close to the mathematics. It allows creation of versatile mathematical kernels for testing and comparing different techniques and methods in solving problems. A second aim is to have a small library that is good manageable but makes use wherever possible of established libraries, for example to solve linear systems. It interfaces seamlessly with MPI simplifying the work's program parallelization. Different mesh file formats are available for import, like the GMSH format and a collection of different finite element type are supported. It is currently used in projects at Cemosis (Center for Modeling and Simulation in Strasbourg, France) including fluid structure interactions, high field magnets simulation and optical tomography [2].

2.2.2 OOFEM

[3] The "'Object Oriented Finite Element Method" framework is an multi-physics finite element code with object oriented architecture [4]. The aim of is to provide an efficient and robust tool for FEM computations as well as to offer highly modular and extensible environment for development [3]; extensible in terms of new element types, boundary conditions or numerical algorithms that can be created by the user. OOFEM focuses on efficient and robust solution to mechanical, transport and fluid problems providing corresponding modules for it. It is written in C++ with focus on high portability between platforms and interfaces various external software libraries like PETSc, ParMETIS, and ParaView. The last stable release were published on February, 2014 but it is still actively developed. The framework is used in several publications [5].

2.2.3 GetFEM++

GetFEM++ is a generic finite element C++ library. It aims at providing finite element methods and elementary matrix computations for solving (non-)linear problems numerically. The user describes a model by gathering the variables, data and terms of a problem and some predefined bricks representing classical models. It allows easy switching from one method to another due to separation of geometric transformation or integration methods, for instance. It uses MPI for parallelization, though it is stated that "'a certain number of procedures are still remaining sequential" [6] at the time this work were written. While the framework is implemented in C++, it provides interfaces to languages like Python and Matlab. Thus, the framework can be handled by scripts written in non-C++ languages. The latest release is dated from July, 2015 with daily commits from the developers. GetFEM++ is used in project like IceTools [7] (open source model for glaciers), EChem++ [8] (Problem Solving Environment for Electochemistry) and SimNIBS [9] (software for Simulation of Non-invasive Brain Stimulation) and is part of some publications [10].

2.2.4 MFEM

The "'Modular Finite Element Method"' library acts as a toolbox that provides the building blocks for developing finite element algorithms. MFEM aims to enable research and development of scalable finite element discretization and solver algorithms through general finite element abstractions. It has a wide variety of 2D and 3D finite element types, for example triangular and quadrilateral 2D elements, curved boundary elements or topologically periodic meshes. In addition to Galerkin methods, MFEM supports mixed finite elements, discontinuous Galerkin (DG) methods, or isogeometric analysis methods, for instance. The framework supports MPI-based parallelism throughout the library with minimal changes to the code to make the serial code parallel. A variety of solvers are available for the resulting linear algebra systems, including serial and parallel smoothers, solvers such as PCG, MINRES and GMRES, high-performance preconditioners from the hypre library, to name a few [11]. The latest release of MFEM is dated

January, 2015 but it is still under active development. The library is used in several publications [12].

2.2.5 libMesh

[13] The libMesh library provides a framework for the numerical simulation of partial differential equations using arbitrary unstructured discretizations on serial and parallel platforms. A major goal of the library is to provide support for adaptive mesh refinement (AMR) computations in parallel while allowing a research scientist to focus on the physics they are modeling. It makes use of existing software whenever possible. PETSc can be used for the solution of linear systems on both serial and parallel platforms, and LASPack is included with the library to provide linear solver support on serial machines, for instance. LibMesh supports a variety of 1D, 2D, and 3D geometric and finite element types and seamlessly integrates parallel functionality with MPI throughout the whole library [13]. The framework is actively developed with daily commits and the latest release is dated from February, 2015. It is part of many publications [14].

LibMesh was chosen to be the most suitable framework for this thesis. Its seamlessly integration of MPI reduces the effort of parallelization for the user, the required finite element types are supported and a range of many more are available for future expansions of the program's code. Complex geometries can be defined in several different mesh format as well as a simple libMesh particular format. The integration of external libraries like PETSc gives a high flexibility for users to change solvers and/or preconditioners. The library's classes and functions are well documented and a large collection of example codes are available. It is actively maintained by fixing bugs and adding more features. Although the structure and components of the framework are intuitive to understand, guided by the documentation, support by the developers are provided through mailing-lists.

3 Shell Elements

Shell elements are used when structures need to be modeled where plane stresses as well as bending stresses are present. Different types of shell elements are available, including curved shell elements, shells of revolution, generalized shells or flat shell elements [15]. The flat shell elements are subject of this work. Such an element can be constructed by the superposition of a plane and a plate element. This section contains the fundamentals of linear elastic problems - the field of application for the shell element - as well as the mathematical derivation of the plane and plate element, their combination resulting in the shell element and the necessary coordinate transformation that is needed for the implementation.

3.1 Introduction to Linear Elastic Problems

In the following the fundamental equations of linear elasticity will be considered. Here, the spatial case is used for demonstration, but every lower dimensional problem can easily be derived from it. The following definitions will be used in this thesis:

$$\vec{u}^T = (u \ v \ w)$$
 displacement vector (1)

$$\vec{f}^T = (f_x \ f_y \ f_z)$$
 external force vector (2)

The strains and stresses can either be described in form of tensors $\underline{\epsilon}$ and $\underline{\sigma}$, or as vectors $\vec{\epsilon}$ and $\vec{\sigma}$:

$$\underline{\epsilon} = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz} \end{pmatrix}; \underline{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$
(3)

$$\vec{\epsilon}^T = \begin{pmatrix} \epsilon_{xx} & \epsilon_{yy} & \epsilon_{zz} & 2\epsilon_{xy} & 2\epsilon_{yz} & 2\epsilon_{zx} \end{pmatrix}; \vec{\sigma}^T = \begin{pmatrix} \sigma_{xx} & \sigma_{yy} & \sigma_{zz} & \sigma_{xy} & \sigma_{yz} & \sigma_{zx} \end{pmatrix}$$
(4)

As stated in [16] the relation between displacements and strains is as follows:

$$\underline{\epsilon} = \frac{1}{2} (\nabla \vec{u} + \vec{u} \, \nabla); \quad \vec{\epsilon} = \underline{L} \vec{u}$$
 (5)

Equation 5 relates the displacement vector field \vec{u} with the strain field $\underline{\epsilon}$, or $\vec{\epsilon}$ respectively. Here, \underline{L} is a differential operator. This strain-displacement relation is also called kinematic relationship [16].

In general initial strains can exist inside the material for example due to temperature changes or shrinkage. Such initial strains are denoted $\vec{\epsilon_0}$ and the stresses will be influenced by the difference between the actual and initial strains. Additionally one could imagine initial residual stresses $\vec{\sigma_0}$ that can be added to the general equation:

$$\vec{\sigma} = D\left(\vec{\epsilon} - \vec{\epsilon_0}\right) + \vec{\sigma_0},\tag{6}$$

where \underline{D} is the material matrix. In the simplest case of linear elasticity with isotropy, \underline{D} only contains two parameters, namely the elastic modulus E (also known as the Young's modulus) and the Poisson's ratio ν . The former one defines the relationship between

the stress and strain in a material, the latter one results as the quotient of the fraction of expansion and the fraction of compression for small changes.

In the following the initial conditions are ignored, resulting in the a simpler form of equation 6:

$$\vec{\sigma} = \underline{D} \ \vec{\epsilon} \tag{7}$$

For the said isotropic case \underline{D} results in [17]:

$$\underline{D} = \frac{E}{1 - \nu^2} \begin{pmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{pmatrix} \tag{8}$$

Two different boundary conditions are distinguished: Essential and natural boundary conditions. The first one is geometrically described. An initial displacement u^0 is impressed on a surface part Ω_u of the object:

$$\vec{u} = \vec{u^0} \text{on} \Omega_u \tag{9}$$

The natural boundary conditions are represented by force conditions. They can be described as follows:

$$\underline{n}\vec{\sigma} = p^{\vec{0}} \text{on} \Omega_p \tag{10}$$

where the matrix \underline{n} contains entries of the object boundary's normal vector, $\overrightarrow{p^0}$ described the edge stress and $\vec{\sigma}$ is the stress vector:

$$\vec{n} = \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}$$

$$\underline{n} = \begin{pmatrix} n_x & 0 & 0 & n_y & 0 & n_z \\ 0 & n_y & 0 & n_x & n_z & 0 \\ 0 & 0 & n_z & 0 & n_y & n_x \end{pmatrix}$$

$$(11)$$

$$\underline{n} = \begin{pmatrix} n_x & 0 & 0 & n_y & 0 & n_z \\ 0 & n_y & 0 & n_x & n_z & 0 \\ 0 & 0 & n_z & 0 & n_y & n_x \end{pmatrix}$$
 (12)

3.2 Plane Element

Plane elements are characterized by that loads are only apply in the mid-surface directions of an element and all displacements, strains and stresses happen in the mid-surface, too. In this section plane elements are discussed in more detail and two different discretizations, a three-node triangular element and a four-node quadrilateral element, are described.

3.2.1 Problem Definition

In Figure 1 an object is shown which extends to the x and y axis as its primary direction. The extend in z-direction is smaller and denoted by thickness t. The mid-surface located in between the top and bottom surface areas has the coordinate z=0. Its local z-axis equals the normal vector of the mid place. Such an object is called *plane* in the following.

Figure 1: Schematic view of a plane object

There are two different problem definitions regarding plane elements: Plane stress and plane strain. The directions of displacements u and v along the orthogonal local x and y axis defining its displacement field is a common feature of both problems. Also, both have in common, that only strains and stresses in the xy plane have to be considered: Instead of nine, only three components remain. While in the case of plane stress all other stress components are zero, in plane strain the stress in direction perpendicular to the xy plane is non-zero. In this thesis only plane stress will be discussed in further detail. More information about plane strain is given in [17] and [18], for instance. The following conditions must be satisfied such that a plane can be in plane stress [16]:

- The thickness t varies only slightly and it must hold: $t/l \ll 1$, with l the extent of the larger side of the plane element.
- The load is applied to the mid place.
- Displacements, strains and stresses are constant across the thickness.

The stress components σ_{xz} , σ_{yz} , σ_{zz} normal to the surface areas with $z \pm t/2$ vanish (equals zero). Therefore only the two normal stress components σ_{xx} and σ_{yy} and the transverse stress component σ_{xy} are left non-zero.

Displacements can only occur in x and y direction. u will be the displacement along x and v along y. The displacement field \vec{u} is as follows:

$$\vec{u} = \begin{pmatrix} u(x,y) & v(x,y) \end{pmatrix}^T \tag{13}$$

The vector for the strain components:

$$\vec{\epsilon} = \begin{pmatrix} \epsilon_{xx} & \epsilon_{yy} & 2\epsilon_{xy} \end{pmatrix}^T \tag{14}$$

Sometimes $2\epsilon_{xy}$ is shortened to γ_{xy} [16]. The vector holding the stress components is similar to that of the strain's vector:

$$\vec{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{yy} & \sigma_{xy} \end{pmatrix}^T \tag{15}$$

The kinematic relationship $\vec{\epsilon} = \underline{L}\vec{u}$ (eq. 5) linking the displacements \vec{u} with the strains $\vec{\epsilon}$ can be written at full length:

$$\vec{\epsilon} = \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ 2\epsilon_{xy} \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \underline{L}\vec{u}$$
 (16)

With the strains known and considering equation 5 one can calculate the stresses $\vec{\sigma}$:

$$\vec{\sigma} = \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{pmatrix} = \frac{E}{1 - \nu^2} \begin{pmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{pmatrix} \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ 2\epsilon_{xy} \end{pmatrix} = \underline{D}\vec{\epsilon} = \underline{D}\,\underline{L}\vec{u}$$
 (17)

After Steinke [16], the essential boundary conditions $\vec{u} = \vec{u^0}$ and the natural boundary conditions $t \ \underline{n} \ \vec{\sigma} = \vec{q^0}$ will be applied onto the objects boundary Γ , with t is the object's thickness and $\vec{q^0}$ represents a line load. The matrix \underline{n} looks as follows [16]:

$$\underline{n} = \begin{pmatrix} n_x & 0 & n_y \\ 0 & n_y & n_x \end{pmatrix} \tag{18}$$

Beside line loads, nodal forces $\vec{F} = \begin{pmatrix} F_x & F_y \end{pmatrix}^T$ are also possible.

The total potential of the plane element problem looks as follows [16]:

$$\Pi = \frac{1}{2} \int_{V} \vec{\epsilon}^{T} \vec{\sigma} dV - \int_{V} \vec{u}^{T} \vec{b} dV - \int_{\Gamma_{a}} \vec{u}^{T} \vec{q} d\gamma - \vec{u}^{T} \vec{F}$$

$$\tag{19}$$

The first term describes the elastic strain energy, the last three terms describe the different external forces. The first of the three describes the potential of the volume forces $\vec{b}^T = \rho \begin{pmatrix} g_x & g_y \end{pmatrix}$, where ρ is the object's density and g_x, g_y represents accelerations in the two directions. The second term stands for the line load along an edge Γ_q and the last term contains the single nodal forces.

The external forces are summarized in this work to the last term only. Line loads and volume forces can be converted to nodal load, assuming a linear distribution over the edges and the interior of the element, respectively [16]. Therefore, the total potential of the plane element shrinks to the following:

$$\Pi = \frac{1}{2} \int_{V} \vec{\epsilon}^{T} \vec{\sigma} dV - \vec{u}^{T} \vec{F}$$
 (20)

3.2.2 Tri-3 Plane Element

In section 3.2.1 the plane element's functional was derived. Now the focus is on the functional's discretization. Figure 2 shows a general, planar object defined to be placed in the xy-plane. The first discretization step is to divide the object into single triangles approximating the shape of it. This process is called triangulation. Every one of these triangles then represents a finite element with one node at every corner. The finer the triangulation is done the better the object and its boundary are matched by its discrete complement, but also the more finite elements have to be considered in later calculations.

Figure 2: Subdividing plane object with triangular elements

Figure 3: Three node triangular element with its coordinates, nodal displacements and nodal forces

One triangular finite element is shown in Figure 3. It is defined by the coordinates (x_i, y_i) of its three nodes. Since the element is located in the xy-plane, the z-coordinate is of no interest and will be ignored. At every node, forces can be applied denoted with F_{x_i}

and F_{y_i} . Accordingly, every node can be displaced. The movement along the x-axis is denoted with u_i , or with v_i along the y-axis respectively. Note, that the node numbering is in counter-clockwise direction. This definition will be kept throughout the thesis, and is important to remember when implementing the FEM-code in order to reduce errors. In this thesis only triangles defined by three nodes are discussed. There are many more finite elements forming triangles, such as six node triangles or even seven node triangles. The main difference between these types of elements are the order of shape functions. More details about higher order triangular finite elements can be found in [17], [19], [15], [18].

In the case of a three node triangle the basis functions for the two displacements u and v are as follows [16]:

$$u(x,y) = a_0 + a_1 L_1 + a_2 L_2 = \begin{pmatrix} 1 & L_1 & L_2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \vec{x}^T \vec{a}, \tag{21}$$

$$v(x,y) = a_0 + a_1 L_1 + a_2 L_2 = \begin{pmatrix} 1 & L_1 & L_2 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \vec{x}^T \vec{a}, \tag{22}$$

both defined in triangular coordinates (see figure 4).

Figure 4: Triangular coordinates L_1, L_2, L_3 and sampling point P within the triangular element

To get the unknown coefficients a_i , values for the triangular coordinates are set. This creates a system of linear equations:

$$u(L_1 = 1, L_2 = 0) = u_1 \rightarrow u_1 = a_0 + a_1$$

$$u(L_1 = 0, L_2 = 1) = u_2 \rightarrow u_2 = a_0 + a_2$$

$$u(L_1 = 0, L_2 = 0) = u_3 \rightarrow u_3 = a_0$$
(23)

Alternatively, this could be also done with v. Written as matrix and vector:

$$\frac{\underline{A}\vec{a} = \vec{u}}{\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}} \tag{24}$$

Now, inverting matrix A the coefficients can be found:

$$\vec{a} = \underline{A}^{-1}\vec{u} = \begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & -1\\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} u_1\\ u_2\\ u_3 \end{pmatrix}$$
 (25)

If one put equation 25 into 21, or the analogon into 22, the shape functions for the three node triangular finite element will be derived, as described in [16]:

$$u = \vec{x}^T \vec{a} = \vec{x}^T \underline{A}^{-1} \vec{u} = \vec{N}^T \vec{u}$$

$$\vec{N}^T = \vec{x}^T \underline{A}^{-1} = \begin{pmatrix} 1 & L_1 & L_2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} L_1 & L_2 & 1 - L_1 - L_2 \end{pmatrix} = \begin{pmatrix} N_1 & N_2 & N_3 \end{pmatrix}$$
(26)

Characteristically for the shape function, as stated in [16], is that shape function N_i gets the value 1 at node i and 0 at the two other nodes. The functions are linear with respect to L_1 and L_2 which can be noticed in equation 26. As stated before, these shape functions are the same for displacement u and v. With the knowledge of the displacement values of the element's nodes one can formulate the displacement functions in triangular coordinate notation as follows:

$$u = N_1 u_1 + N_2 u_2 + N_3 u_3$$

$$v = N_1 v_1 + N_2 v_2 + N_3 v_3$$
(27)

Or in matrix form:

$$\vec{\tilde{u}} = N\vec{u}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{pmatrix}$$
(28)

The vector \vec{u} describes the element's displacements as product of matrix \underline{N} containing the shape functions and vector \vec{u} containing the displacements of the single triangle's nodes. Now, one can put equation 28 into 16:

$$\vec{\epsilon} = \underline{L}\vec{u} = \underline{L}\ \underline{N}\vec{u} = \underline{B}\vec{u} \tag{29}$$

The product of \underline{L} and \underline{N} is called *strain-displacement matrix* \underline{B} . In order to calculate the strain-displacement matrix, one has to assemble the \underline{L} matrix containing the first partial derivatives of the triangular element. With the chain rule applied, the partial derivatives look as follows:

$$\frac{\partial}{\partial L_1} = \frac{\partial x}{\partial L_1} \frac{\partial}{\partial x} + \frac{\partial y}{\partial L_1} \frac{\partial}{\partial y}
\frac{\partial}{\partial L_2} = \frac{\partial x}{\partial L_2} \frac{\partial}{\partial x} + \frac{\partial y}{\partial L_2} \frac{\partial}{\partial y}$$
(30)

or in matrix notation:

$$\tilde{\nabla} = \underline{J}\nabla
\begin{pmatrix} \frac{\partial}{\partial L_1} \\ \frac{\partial}{\partial L_2} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial L_1} & \frac{\partial y}{\partial L_2} \\ \frac{\partial x}{\partial L_2} & \frac{\partial y}{\partial L_2} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix},$$
(31)

where \underline{J} represents the Jacobian matrix, ∇ the partial derivatives in Cartesian coordinates and $\tilde{\nabla}$ the partial derivatives in triangular coordinates. To get the derivatives in Cartesian form the upper equation must be multiplied with the inverse Jacobian matrix \underline{J}^{-1} :

$$\underline{J}^{-1} = \frac{1}{|\underline{J}|} \begin{pmatrix} \frac{\partial y}{\partial L_2} & -\frac{\partial y}{\partial L_1} \\ -\frac{\partial x}{\partial L_2} & \frac{\partial x}{\partial L_1} \end{pmatrix}$$
(32)

The conversion between triangular and Cartesian coordinates can be summarized as follows (see Figure 4 and [16]):

$$L_1 + L_2 + L_3 = 1 \to L_3 = 1 - L_1 - L_2$$

$$x = x_1 L_1 + x_2 L_2 + x_3 L_3 = (x_1 - x_3) L_1 + (x_2 - x_3) L_2 + x_3$$

$$y = y_1 L_1 + y_2 L_2 + y_3 L_3 = (y_1 - y_3) L_1 + (y_2 - y_3) L_2 + y_3$$
(33)

Considering equation 33 the Jacobian matrix can now be calculated:

$$J = \begin{pmatrix} \frac{\partial x}{\partial L_1} = x_1 - x_3 = x_{13} & \frac{\partial y}{\partial L_1} = y_1 - y_3 = y_{13} \\ \frac{\partial x}{\partial L_2} = x_2 - x_3 = x_{23} & \frac{\partial y}{\partial L_2} = y_2 - y_3 = y_{23} \end{pmatrix} = \begin{pmatrix} x_{13} & y_{13} \\ x_{23} & y_{23} \end{pmatrix}$$
(34)

and hence the inverse Jacobian matrix:

$$\underline{J}^{-1} = \frac{1}{2A_{\triangle}} \begin{pmatrix} y_{23} & -y_{13} \\ -x_{23} & x_{13} \end{pmatrix}$$
 (35)

The determinant of the Jacobian matrix is two times the area of the triangle. With the help of equation 35, 31 can be reorganized

$$\nabla = \underline{J}^{-1}\tilde{\nabla} \tag{36}$$

and this finally yields to the new version of the differential operator \underline{L} [16]:

$$\underline{L} = \frac{1}{2A_{\triangle}} \begin{pmatrix} y_{23} \frac{\partial}{\partial L_1} - y_{13} \frac{\partial}{\partial L_2} & 0\\ 0 & -x_{23} \frac{\partial}{\partial L_1} + x_{13} \frac{\partial}{\partial L_2}\\ -x_{23} \frac{\partial}{\partial L_1} + x_{13} \frac{\partial}{\partial L_2} & y_{23} \frac{\partial}{\partial L_1} - y_{13} \frac{\partial}{\partial L_2} \end{pmatrix}$$
(37)

Next, the strain-displacement matrix \underline{B} can be calculated:

$$\frac{3}{3} = \underline{L} \, \underline{N}$$

$$= \frac{1}{2A_{\triangle}} \begin{pmatrix} y_{23} \frac{\partial}{\partial L_{1}} - y_{13} \frac{\partial}{\partial L_{2}} & 0 \\ 0 & -x_{23} \frac{\partial}{\partial L_{1}} + x_{13} \frac{\partial}{\partial L_{2}} \\ -x_{23} \frac{\partial}{\partial L_{1}} + x_{13} \frac{\partial}{\partial L_{2}} & y_{23} \frac{\partial}{\partial L_{1}} - y_{13} \frac{\partial}{\partial L_{2}} \end{pmatrix}$$

$$\begin{pmatrix} L_{1} & 0 & L_{2} & 0 & 1 - L_{1} - L_{2} & 0 \\ 0 & L_{1} & 0 & L_{2} & 0 & 1 - L_{1} - L_{2} \end{pmatrix}$$

$$= \frac{1}{2A_{\triangle}} \begin{pmatrix} y_{23} & 0 & -y_{13} & 0 & y_{12} & 0 \\ 0 & -x_{23} & 0 & x_{13} & 0 & -x_{12} \\ -x_{23} & y_{23} & x_{13} & -y_{13} & -x_{12} & y_{12} \end{pmatrix}$$
(38)

With \underline{B} known, one can insert equation 29 into 17 to get the stresses:

$$\vec{\sigma} = D \, B \vec{u} \tag{39}$$

Finally, every term of the plane element's functional 20 can be filled with the above discretized terms:

$$\Pi = \frac{1}{2} \int_{V} \vec{\epsilon}^{T} \vec{\sigma} \ dV - \vec{u}^{T} \vec{F}
= \frac{1}{2} \int_{V} \vec{u}^{T} \underline{B}^{T} \underline{D} \ \underline{B} \vec{u} \ dV - \vec{u}^{T} \vec{F}
= \frac{1}{2} \vec{u}^{T} \int_{V} \underline{B}^{T} \underline{D} \ \underline{B} \ dV \vec{u} - \vec{u}^{T} \vec{F}
= \frac{1}{2} \vec{u}^{T} \underline{K} \vec{u} - \vec{u}^{T} \vec{F}$$
(40)

with \underline{K} the stiffness matrix and \vec{F} the nodal force vector.

The variation of the functional 40 is as follows [16]:

$$\delta\Pi = \frac{\partial\Pi}{\partial\vec{u}}\delta\vec{u} = 0$$

$$= \frac{1}{2}\delta\vec{u}^T \frac{\partial\vec{u}^T}{\partial\vec{u}^T} \underline{K}\vec{u} + \frac{1}{2}\vec{u}^T \underline{K} \frac{\partial\vec{u}}{\partial\vec{u}}\delta\vec{u} - \delta\vec{u} \frac{\partial\vec{u}^T}{\partial\vec{u}^T} \vec{F}$$

$$= \delta\vec{u}^T \left(\underline{K}\vec{u} - \vec{F}\right) = 0$$
(41)

In order to satisfy this equation, the term in between the parenthesis must be zero ($\delta \vec{u}^T$ can have arbitrary values). This leads to the equilibrium equation of the triangular plane element as described in [16]:

$$\underline{K}\vec{u} = \vec{F} \tag{42}$$

Since the thickness t of the element is constant per definition, it is $dV = t \, dA$ and therefore the integral of the stiffness matrix changes to:

$$\underline{K} = t \int_{A} \underline{B}^{T} \underline{D} \ \underline{B} \ dA = t A_{\triangle} \underline{B}^{T} \underline{D} \ \underline{B} \tag{43}$$

3.2.3 Quad-4 Plane Element

Sometimes it can be beneficial to use quadrilateral elements when describing a mesh. In contrast to triangles which always lie, due to their simple shape, in a plane, quadrilateral can have more complex forms. Such cases include for example: The fourth nodes does not lie in the plane defined by the other three or the shape is not convex. It is difficult to deal with such forms and one could be tempted to restrict the element to have rectangular shapes only, because these are easy to formulate and work with. But they are impractical when complicated geometry is to be modeled, especially if details should be emphasized in fine graduation.

One solution to this problem is the use of isoparametric elements. They can be non-rectangular. The trick is to use reference coordinates which map the physical element into a reference element that is a square. Thus, the physical element can have a more general shape, but a coordinate transformation and numerical integration is needed which brings in more mathematical complexity [15].

In this section quadrilateral isoparametric elements consisting of four nodes are described, but one can expand it to eight or nine node elements. Figure 5 shows the two abstraction layers: On the left side the original element is shown in physical space, on the right side the reference element is shown. The square has a side length of 2. The coordinate system with the ξ and η axis has its origin in the center of the square. Also note the numbering of the nodes is again counter-clockwise.

Figure 5: Coordinate transformation of four node quadrilateral element with physical space on the left side and reference space on the right side

Similarly to the triangular element, interpolating the displacement field as well as the element geometry is done by shape functions. They are defined in reference coordinates. The displacement of a point within the element can be expressed by the displacements at the nodes and shape functions \underline{N} . Also, the position of that point can be expressed in terms of the (global) nodal positions and shape functions $\underline{\tilde{N}}$. The element is called isoparametric if \underline{N} is identical to $\underline{\tilde{N}}$. If $\underline{\tilde{N}}$ is of lower degree than \underline{N} , the element is called

subparametric and superparametric if it is the other way around [15].

Every node has two degrees of freedom: A displacement u along the x-axis and a displacement v along the y-axis. To find the shape functions it does not matter which variable to choose, so the following basis function was used for ϕ which can either represent u or v [16]:

$$\phi(\xi,\eta) = a_0 + a_1 \xi + a_2 \eta + a_3 \xi \eta = \begin{pmatrix} 1 & \xi & \eta & \xi \eta \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \vec{x}^T \vec{a}$$
 (44)

The interpolation conditions at the nodes are as follows:

$$\phi(-1, -1) = \phi_1 \to \phi_1 = a_0 - a_1 - a_2 + a_3$$

$$\phi(1, -1) = \phi_2 \to \phi_2 = a_0 + a_1 - a_2 - a_3$$

$$\phi(1, 1) = \phi_3 \to \phi_3 = a_0 + a_1 + a_2 + a_3$$

$$\phi(-1, 1) = \phi_4 \to \phi_4 = a_0 - a_1 + a_2 - a_3$$
(45)

or in matrix notation:

$$\frac{\underline{A}\vec{a} = \vec{\phi}}{\begin{pmatrix} 1 & -1 & -1 & 1\\ 1 & 1 & -1 & -1\\ 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1 \end{pmatrix}} \begin{pmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{pmatrix} = \begin{pmatrix} \phi_1\\ \phi_2\\ \phi_3\\ \phi_4 \end{pmatrix} \tag{46}$$

Inversion of \underline{A} yields the coefficients a_i :

If the last equation is inserted into 44 one gets the shape functions \vec{N} for the quadrilateral element:

To check the correctness of the four shape function one can evaluate shape function i with $\xi\eta$ -coordinates of node i. It must evaluate to 1 while at any other node coordinate it must be zero. Now, the displacements can be expressed as follows:

$$\vec{u} = \begin{pmatrix} u \\ v \end{pmatrix} = \underline{N}\vec{u} = \begin{pmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix}$$
(49)

with \underline{N} being the matrix containing the shape functions and \vec{u} being the vector of the nodal displacements.

The assembly of the strain-displacement matrix \underline{B} is more complicated with isoparametric elements. Due to the $\xi\eta$ -coordinates one cannot easily describe an operator such as $\partial/\partial x$. The first step to achieve it, is to formulate a function $\phi = \phi(\xi, \eta)$. Like in the derivation on the shape functions ϕ can represent u or v. Derivatives with respect to ξ and η are as follows [15]:

$$\frac{\partial \phi}{\partial \xi} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial \xi}
\frac{\partial \phi}{\partial \eta} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial \eta}$$
(50)

or in matrix notation:

$$\vec{\tilde{\phi}} = \underline{J}\vec{\phi} \tag{51}$$

where \underline{J} is the Jacobian matrix:

$$\underline{J} = \begin{pmatrix} \sum N_{i,\xi} x_i & \sum N_{i,\xi} y_i \\ \sum N_{i,\eta} x_i & \sum N_{i,\eta} y_i \end{pmatrix}$$
 (52)

where $N_{i,j}$ denotes the derivation of the *i*-th shape function with respect to *j* and x_i the *i*-th component of the \vec{x} vector. The Jacobian matrix can be written out as follows:

$$\underline{J} = \frac{1}{4} \begin{pmatrix} -(1-\eta) & (1-\eta) & (1+\eta) & -(1+\eta) \\ -(1-\xi) & -(1+\xi) & (1+\xi) & (1-\xi) \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \\ x_4 & y_4 \end{pmatrix} \\
= \begin{pmatrix} (x_{12} + x_{34})\eta - x_{12} + x_{34} & (y_{12} + y_{34})\eta - x_{12} + y_{34} \\ (x_{12} + x_{34})\xi - x_{13} - x_{24} & (y_{12} + y_{34})\xi - y_{13} + y_{24} \end{pmatrix}$$
(53)

Next, equation 51 can be rearranged to get the derivatives with respect to x and y:

$$\vec{\phi} = J^{-1}\vec{\tilde{\phi}} \tag{54}$$

With the derivatives calculated, the strain-displacement relation 5 can be obtained [15]:

$$\vec{\epsilon} = \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}}_{L} \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial v} / \frac{\partial x}{\partial y} \\ \frac{\partial v}{\partial v} / \frac{\partial y}{\partial y} \end{pmatrix}$$
(55)

$$\begin{pmatrix}
\frac{\partial u/\partial x}{\partial u/\partial y} \\
\frac{\partial v/\partial y}{\partial v/\partial x} \\
\frac{\partial v/\partial y}{\partial v}
\end{pmatrix} = \underbrace{\begin{pmatrix}
j_{11} & j_{12} & 0 & 0 \\
j_{21} & j_{22} & 0 & 0 \\
0 & 0 & j_{11} & j_{12} \\
0 & 0 & j_{21} & j_{22}
\end{pmatrix}}_{\hat{J}} \begin{pmatrix}
\frac{\partial u/\partial \xi}{\partial u/\partial \eta} \\
\frac{\partial v/\partial \xi}{\partial v/\partial \eta}
\end{pmatrix} (56)$$

$$\begin{pmatrix}
\frac{\partial u}{\partial \xi} \\
\frac{\partial u}{\partial \eta} \\
\frac{\partial v}{\partial t} \\
\frac{\partial v}{\partial \eta}
\end{pmatrix} = \underbrace{\begin{pmatrix}
N_{1,\xi} & 0N_{2,\xi} & 0 & N_{3,\xi} & 0 & N_{4,\xi} & 0 \\
N_{1,\eta} & 0N_{2,\eta} & 0 & N_{3,\eta} & 0 & N_{4,\eta} & 0 \\
0 & N_{1,\xi} & 0N_{2,\xi} & 0 & N_{3,\xi} & 0 & N_{4,\xi} \\
0 & N_{1,\eta} & 0N_{2,\eta} & 0 & N_{3,\eta} & 0 & N_{4,\eta}
\end{pmatrix}}_{\hat{N}_{1}} \begin{pmatrix}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{pmatrix}$$
(57)

$$\underline{B} = \underline{L}\,\hat{J}\,\hat{N} \tag{58}$$

where j_i denotes the *i*-th entry in the inverse Jacobian matrix.

Together with the functional equation 40 and the material matrix \underline{D} 17, the stiffness matrix for the quadrilateral isoparametric element can be written as:

$$\underline{K} = \int_{V} \underline{B}^{T} \underline{D} \, \underline{B} \, dV = t \int_{A} \underline{B}^{T} \underline{D} \, \underline{B} \, dA = t \int_{-1}^{1} \int_{-1}^{1} \underline{B}^{T} \underline{D} \, \underline{B} \, |\underline{J}| d\xi d\eta \tag{59}$$

For the four node element a Gaussian quadrature needs 2x2 Gauss integration points to satisfy the above equation [16]. These four points are located at $\xi_i = \pm \frac{\sqrt{3}}{3}$ and $\eta_i = \pm \frac{\sqrt{3}}{3}$ with weight factors $\omega_i = 1$. The equation for the stiffness matrix can then be written in discretized form as follows:

$$\underline{K} = t \sum_{i=1}^{2} \sum_{j=1}^{2} \omega_i \omega_j \underline{B}(\xi_i, \eta_j)^T \underline{D} \underline{B}(\xi_i, \eta_j) |\underline{J}(\xi_i, \eta_j)|$$
(60)

3.3 Plate Bending Element

In contrast to the plane element, the load at the plate (bending) elements are applied transversal to the element's mid-surface producing plate bending. It has one deformation degree of freedom and two rotational degrees of freedom. Plate elements are often used to model floors or ceilings. In this section, the plate element is discussed in more detail and two discretizations are described: The three-node triangular plate element and the four-node quadrilateral plate element.

3.3.1 Problem Definition

Figure 6: Schematic drawing of a Kirchhoff plate with its main dimension l, thickness t and loading p normal to the mid-surface

In contrast to a plane, where the load is located planar with respect to the plane, the load is perpendicular to the mid place at a plate. Therefore plate element problems are important for supporting structures of bridges or ceilings and floors in buildings, for example. In Figure 6 one can see a generalized plate object. It has a main dimension of l and a constant thickness t. With the assumption that $t \ll l$, the problem becomes two dimensional and, instead of the whole object, only the middle plane between the two surface areas will be considered. The object has a local coordinate system with its xy-plane the mid plane and its z-axis perpendicular to this plane. The surface areas are located at $z = \pm t/2$. As stated in the beginning, the load is applied in z-direction, i.e. normal to the mid-surface.

In this work Kirchhoff's theory of thin plates is used. For thick plates or laminated plates, the theory of Reissner-Mindlin is more applicable. The main difference is that with Reissner-Mindlin plates one takes the shear deformations into account. Thus, the normal to the mid-surface remains straight but not necessarily perpendicular to it; instead of a Kirchhoff plate: Here, the normal remains normal to the mid-surface even after deformation.

As a short summarize the following conditions must be satisfied for a Kirchhoff plate [16]:

- The thickness t must be much smaller than the main dimension $l: t \ll l$.
- Straight lines normal to the mid-surface remain straight after deformation.
- Straight lines normal to the mid-surface remain normal to the mid-surface after deformation.
- There is only a small amount of deformation w, i.e. w < t and it holds $w \neq w(z)$.
- The plate is symmetrical to the mid-surface and changes in thickness must be very small.
- Normal stresses in z-direction σ_{zz} will be neglected.

With [20] and [16] the following displacement terms can be formulated:

$$w = w(x, y) \tag{61}$$

$$u = -z \frac{\partial w}{\partial x} \tag{62}$$

$$v = -z \frac{\partial w}{\partial y} \tag{63}$$

The deformation w suffices to explain the whole displacement vector. The two derivatives in the equations above describe the torsions around the x- and y-axis.

Similar to the plane element, the Kirchhoff plate element can have a plane strain or plane stress, respectively [16], i.e. equation 5 can be applied here, too:

$$\vec{\hat{u}} = \begin{pmatrix} u \\ v \end{pmatrix} = -z \begin{pmatrix} \frac{\partial w}{\partial x} \\ \frac{\partial w}{\partial y} \end{pmatrix} = -z \nabla w$$

$$\vec{\epsilon} = \underline{L}\vec{\hat{u}} = -z\underline{L}\nabla w = -z\vec{\Delta}w = -z\vec{\kappa}$$
(64)

$$\vec{\Delta} = \underline{L}\nabla = \begin{pmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2}{\partial x^2}\\ \frac{\partial^2}{\partial y^2}\\ \frac{\partial^2}{\partial x \partial y} \end{pmatrix}$$

$$\vec{\kappa} = \vec{\Delta}w = \begin{pmatrix} \frac{\partial^2 w}{\partial x^2} \\ \frac{\partial^2 w}{\partial y^2} \\ 2\frac{\partial^2 w}{\partial x \partial u} \end{pmatrix}$$

$$\tag{65}$$

Referring [20] ($\sigma_{zz}=0, \tau_{xz}=\tau_{yz}=0$), equation 6 can be filled with the above information:

$$\vec{\sigma} = \underline{D}\vec{\epsilon} = -z\underline{D}\vec{\kappa}$$

$$= -\frac{Ez}{1 - \nu^2} \begin{pmatrix} 1 & \nu & 0\\ \nu & 1 & 0\\ 0 & 0 & \frac{1 - \nu}{2} \end{pmatrix} \begin{pmatrix} \kappa_x\\ \kappa_y\\ 2\kappa_{xy} \end{pmatrix}$$
(66)

The integration of the stresses $\vec{\sigma}$ over the thickness results in the vector of moments $\vec{M}^T = (M_{xx} \ M_{yy} \ M_{xy})$ [16]:

$$\vec{M} = \int_{-t/2}^{t/2} z \vec{\sigma} dz = -\int_{-t/2}^{t/2} z^2 \underline{D} \vec{\kappa} dz = -\underline{D} \vec{\kappa} \int_{-t/2}^{t/2} z^2 dz = -\frac{t^3}{12} \underline{D} \vec{\kappa} = -\underline{D}_p \vec{\kappa}$$
 (67)

The above equation relates the moments with the curvatures of the plate. The integrals over the transverse stresses σ_{xz} and σ_{yz} lead to the following shear forces, as described in [16]:

$$Q_{x} = \int_{-t/2}^{t/2} \sigma_{xz} dz = \int_{-t/2}^{t/2} \sigma_{xz}^{\max} \left(1 - 4 \left(\frac{z}{t} \right)^{2} \right) dz = \frac{2}{3} \sigma_{xz}^{\max} t$$

$$= \frac{2}{3} \sigma_{xz} (z = 0) t$$
(68)

$$Q_{y} = \int_{-t/2}^{t/2} \sigma_{yz} dz = \int_{-t/2}^{t/2} \sigma_{yz}^{\max} \left(1 - 4 \left(\frac{z}{t} \right)^{2} \right) dz = \frac{2}{3} \sigma_{yz}^{\max} t$$

$$= \frac{2}{3} \sigma_{yz} (z = 0) t$$
(69)

The transverse stress is distributed quadratically over the thickness t, i.e. they have their maximum at z=0 and vanish at $z=\pm t/2$. The equilibrium of forces in z-direction leads to:

$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + p = 0 \tag{70}$$

with p the load applied perpendicular to the mid-surface. Additionally the equilibrium of moments around the x- and y-axis:

$$\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} + Q_x = 0$$

$$\frac{\partial M_{yy}}{\partial y} + \frac{\partial M_{xy}}{\partial x} + Q_y = 0$$
(71)

Putting equation 71 into 70 results in:

$$\frac{\partial^2 M_{xx}}{\partial x^2} + \frac{\partial^2 M_{yy}}{\partial y^2} + 2\frac{\partial^2 M_{xy}}{\partial x \partial y} = \vec{\Delta}^T \vec{M} = p \tag{72}$$

Now, one can insert the kinematic equation 65 into equation 67 and then into the equilibrium relation 72:

$$\vec{\kappa} = \vec{\Delta}w$$

$$\vec{M} = -\underline{D}_p \vec{\kappa} = -\underline{D}_p \vec{\Delta}w$$

$$\vec{\Delta}^T \vec{M} = -\vec{\Delta}^T \underline{D}_p \vec{\Delta}w = p$$
(73)

The last equation leads to the partial differential equation of the plate bending [20]:

$$\frac{\partial^4 w}{\partial x^4} + \frac{\partial^4 w}{\partial y^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} = -\frac{12(1-\nu^2)}{Et^3}p = \frac{p}{k}$$
 (74)

with k denoted as plate stiffness.

Figure 7: Part of a plate's boundary with its essential and natural boundary conditions

Let P be a point on the continuous boundary of the plate with a local Cartesian coordinate system as described in [16] (see Figure 7): The n coordinate is perpendicular to the boundary surface, the s axis tangential to it. The third axis equals the global z-axis of the plate. There are three essential and three natural boundary conditions defined for P: The displacement w, the drills $\theta_n = \partial w/\partial s$, $\theta_s = -\partial w/\partial n$, the shear

force Q_n and the moments M_{ns} and M_{nn} . Since this leads to an inconsistency with the differential equation above, [16] stated that Kirchhoff introduced new forces:

$$V_n = Q_n - \frac{\partial M_{ns}}{\partial s} \tag{75}$$

With them, only the four conditions for w, θ_s, V_n and M_{nn} occur. The plate can be mounted in different ways:

- clamped: $w = 0, \theta_s = -\partial w/\partial n = 0$
- simple supported: $w = 0, M_{nn} = 0$
- symmetrical edge: $\theta_s = -\partial w/\partial n = 0, V_n = 0$

The plate's functional as described in [16] is given below:

$$\frac{1}{2} \int_{V} \vec{\epsilon}^{T} \vec{\sigma} \, dV \tag{76}$$

One can insert equation 64 and 66 into the functional:

$$\frac{1}{2} \int_{V} \vec{\epsilon}^{T} \vec{\sigma} \, dV = \frac{1}{2} \int_{V} \vec{\kappa}^{T} \underline{D} \vec{\kappa} z^{2} \, dV = \frac{1}{2} \int_{A} \vec{\kappa}^{T} \underline{D}_{p} \vec{\kappa} \, dA \tag{77}$$

Together with the potential of the external forces the overall potential of the Kirchhoff plate is:

$$\Pi = \frac{1}{2} \int_{A} \vec{\kappa}^{T} \underline{D}_{p} \vec{\kappa} \, dA - \int_{A} p \, w \, dA - \int_{\Gamma} \left(V_{n} w - M_{nn} \theta_{s} \right) \, d\Gamma \tag{78}$$

Klein [20] states that for the plate element discretization additional conditions must be satisfied. They are: The bending w(x,y) as well as the normal derivative $\partial w/\partial n$ at the element's boundary must be continuous to the neighboring elements. This would be the case if the bending and the normal derivative are explicitly determined by the nodal parameters at the border. Further, Klein lists requirements for a plate element ansatz:

- Totality of the displacement approach in order to guarantee good convergence.
- The terms $1, x, y, x^2, xy, y^2$ should be included to get variable strains, curvatures and rigid body motion.

Steinke [16] expands the requirements as follows:

- Compatibility of the displacement variable at the element's boundary (conformity condition): If the steadiness of the deformation w and its first derivatives is not satisfied the bending surface between two elements can have a sharp bend at which the elements are overlapping at one side and diverge on the opposite side. If such a behavior is shown, the element is called non-conforming.
- Rigid body motions must not create strains and stresses in the element. This requires a constant term in the basis function for the translative part of the motion and a linear term for the rotatory.

• The basis function must provide constant plain strain and plain stress: If the element converges in its size until it becomes a point, a constant state of bending must be describable in this situation. Since the bending is described as second order derivatives of w, the basis function must include quadratic terms.

The following sections show details of two discretizations of plate elements: A triangular element with three nodes and a quadrilateral element with four nodes.

3.3.2 Tri-3 Plate Element

There exists many different types of triangular plate elements, for example Batoz et al. [21], Tocher [22] or Specht [23]. The three node triangular element from [22] has three degrees of freedom (d.o.f) (w, θ_x, θ_y) per node. His basis function was a complete cubic polynomial. The term xy was left out, because the polynomial has one coefficient more than the element has d.o.f. This leads to the problem that no constant state of bending can be described (non-conforming element) and this leads to wrong results at convergence [16]. Therefore, Steinke challenges the practical use of this element. A possible way to use a complete cubic polynomial would be to add another node in the center of mass of the triangle and assign the only degree of freedom w to it [16]. But the problem of non-conformity persist, as the nodal twists don't suffice to describe the twists along the element's edges, which are quadric. Here, additional nodes on the edges would be needed. To get a conforming element one can choose a basis function with a complete polynomial of order five. It has 21 coefficients and d.o.f. They are distributed as follows: Every node has six d.o.f $(w, \partial w/\partial x, \partial w/\partial y, \partial^2 w/\partial x^2, \partial^2 w/\partial y^2, \partial^2 w/\partial x\partial y)$ and the mid node of every edge gets the degree of freedom $\partial w/\partial n$. This results in continuous element edge twists, conformity and convergence. The problem: 21 d.o.f. per element leads to high computational effort and second order derivatives at the boundaries are needed. Hence, Steinke advices against using it in practice [16].

In this work an element from Specht [23] were implemented which is also described in [16]. It has three nodes and also three d.o.f. per node: The deformation w and the two twists θ_x and θ_y . The basis function for the deformation w is as follows:

$$w = a_0 L_1 + a_1 L_2 + a_2 L_3 + a_3 L_1 L_2 + a_4 L_2 L_3 + a_5 L_3 L_1$$

$$+ a_6 \left(L_2 L_1^2 + \frac{1}{2} L_1 L_2 L_3 \left(3(1 - \mu_3) L_1 - (1 + 3\mu_3) L_2 + (1 + 3\mu_3) L_3 \right) \right)$$

$$+ a_7 \left(L_3 L_2^2 + \frac{1}{2} L_1 L_2 L_3 \left(3(1 - \mu_1) L_2 - (1 + 3\mu_1) L_3 + (1 + 3\mu_1) L_1 \right) \right)$$

$$+ a_8 \left(L_1 L_3^2 + \frac{1}{2} L_1 L_2 L_3 \left(3(1 - \mu_2) L_3 - (1 + 3\mu_2) L_1 + (1 + 3\mu_2) L_2 \right) \right)$$

$$(79)$$

with

$$\mu_{1} = \frac{S_{21} - S_{31}}{S_{32}}$$

$$\mu_{2} = \frac{S_{32} - S_{21}}{S_{31}}$$

$$\mu_{3} = \frac{S_{31} - S_{32}}{S_{21}}$$

$$S_{32} = x_{32}^{2} + y_{32}^{2}$$

$$S_{31} = x_{31}^{2} + y_{31}^{2}$$

$$S_{21} = x_{21}^{2} + y_{21}^{2}$$
(81)

 S_{ij} denoted the square of the length of the edge between node i and j. This can be written is vector form:

The twists θ_x and θ_y are yet described in Cartesian coordinates. They must be transformed into triangular coordinates with the help of equation 31:

$$\vec{\theta} = \begin{pmatrix} \theta_x \\ \theta_y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \nabla w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \underline{J}^{-1} \tilde{\nabla} \vec{x}^T \vec{a} = \underline{G} \vec{a}$$
 (83)

with \underline{J}^{-1} the inverse Jacobian matrix and $\tilde{\nabla}$ the nabla operator in triangular coordinates. The matrix \underline{G} :

$$\underline{G} = \frac{1}{2A_{\triangle}} \begin{pmatrix} x_{32} & x_{13} \\ y_{32} & y_{13} \end{pmatrix} \begin{pmatrix} \frac{\partial x_1}{\partial L_1} & \frac{\partial x_2}{\partial L_1} & \cdots & \frac{\partial x_9}{\partial L_1} \\ \frac{\partial x_1}{\partial L_2} & \frac{\partial x_2}{\partial L_2} & \cdots & \frac{\partial x_9}{\partial L_2} \end{pmatrix}$$
(84)

Next, the interpolation conditions at the three nodes for the three unknowns can be set

(cf. Figure 4). Following the notation of [16]:

$$\underbrace{\begin{pmatrix}
\vec{x}^{T}(1,0) \\
G_{1}(1,0) \\
G_{2}(1,0) \\
\vec{x}^{T}(0,1) \\
G_{1}(0,1) \\
G_{2}(0,1) \\
\vec{x}^{T}(0,0) \\
G_{1}(0,0) \\
G_{2}(0,0)
\end{pmatrix}}_{\mathbf{A}} \vec{a} = \underbrace{\begin{pmatrix}
w_{1} \\
\theta_{x_{1}} \\
\theta_{y_{1}} \\
w_{2} \\
\theta_{x_{2}} \\
\theta_{y_{2}} \\
w_{3} \\
\theta_{y_{3}} \\
\theta_{y_{3}}
\end{pmatrix}}_{\mathbf{W}} (85)$$

where \underline{G}_i is the *i*-th row of matrix \underline{G} . The unknown coefficients a_i can be computed by inverting the matrix \underline{A} : $\vec{a} = \underline{A}^{-1}\vec{w}$:

where x_{ij} and y_{ij} denotes the differences of the node's coordinates $x_i - x_j$ and $y_i - y_j$. Now, the coefficients can be inserted into equation 82:

$$w = \vec{x}^T \vec{a} = \vec{x}^T A^{-1} \vec{w} = \vec{N}^T \vec{w}$$
 (88)

The vector \vec{N} containing the shape functions N_i can then be calculated as follows:

$$\vec{N} = \left(\underline{A}^{-1}\right)^T \vec{x} \tag{89}$$

Since the shape functions following a pattern, due to the regular order in the matrix \underline{A}^{-1} , one can summarize the nine shape functions into three groups; one for every node:

$$N_{i} = \begin{cases} \chi_{i} - \chi_{i+3} + \chi_{k+3} + 2 (\chi_{i+6} - \chi_{k+6}) & \text{for d.o.f. } w \\ -y_{ki} (\chi_{k+6} - \chi_{k+3}) + y_{ji} \chi_{i+6} & \text{for d.o.f. } \theta_{x} \\ x_{ki} (\chi_{k+6} - \chi_{k+3}) - x_{ji} \chi_{i+6} & \text{for d.o.f. } \theta_{y} \end{cases}$$
(90)

The variables χ_i denotes the *i*-th component of the vector \vec{x} , the indexes i, j, k under χ are cyclic permutations of 1, 2, 3. x_{ij} and y_{ij} denote the coordinate differences $x_i - x_j$ and $y_i - y_j$. The index under N is incremented in such a way, that N_1, N_4, N_7 describes

the d.o.f. w, N_2, N_5, N_8 describes the d.o.f. θ_x and N_3, N_6, N_9 describes the d.o.f. θ_y . Similar to the plane elements, one can check the correctness of the shape functions by evaluating them at the triangular coordinates of the three triangle's nodes. For example, shape function N_7 will evaluate to 1 for the coordinates $(L_1 = 0, L_2 = 0)$ (node 3) and will be zero for $(L_1 = 1, L_2 = 0)$ (node 1) and $(L_1 = 0, L_2 = 1)$ (node 2).

The displacement-strain relation 64 introduced for the plate element contains an operator living in the Cartesian space. It has to be converted into triangular coordinates. With equation 36 $(\nabla = \underline{J}^{-1}\tilde{\nabla})$ one can describe a second order derivative operator Δ :

$$\Delta = \nabla \nabla^{T} = \underline{J}^{-1} \tilde{\nabla} \left(\underline{J}^{-1} \tilde{\nabla} \right)^{T} = \underline{J}^{-1} \tilde{\nabla} \tilde{\nabla}^{T} \left(\underline{J}^{-1} \right)^{T} = \underline{J}^{-1} \tilde{\Delta} \left(\underline{J}^{-1} \right)^{T}$$

$$\Delta = \begin{pmatrix} \frac{\partial^{2}}{\partial x^{2}} & \frac{\partial^{2}}{\partial x \partial y} \\ \frac{\partial^{2}}{\partial y \partial x} & \frac{\partial^{2}}{\partial y^{2}} \end{pmatrix} \rightarrow \vec{\Delta} = \begin{pmatrix} \frac{\partial^{2}}{\partial x^{2}} \\ \frac{\partial^{2}}{\partial y^{2}} \\ 2 \frac{\partial^{2}}{\partial x \partial y} \end{pmatrix}$$

$$\vec{\Delta} = \frac{1}{4A_{\Delta}^{2}} \begin{pmatrix} y_{32}^{2} & y_{31}^{2} & y_{23}y_{31} \\ x_{32}^{2} & x_{31}^{2} & x_{13}x_{32} \\ 2x_{32}y_{23} & 2x_{13}y_{31} & x_{32}y_{31} + x_{31}y_{32} \end{pmatrix} \begin{pmatrix} \frac{\partial^{2}}{\partial L_{1}^{2}} \\ \frac{\partial^{2}}{\partial L_{2}^{2}} \\ 2 \frac{\partial^{2}}{\partial L_{1} \partial L_{2}} \end{pmatrix}$$

$$\vec{\Delta} = Y \vec{\Delta} \tag{92}$$

Next, equation 64 can be rewritten for triangular coordinates:

$$\vec{\epsilon} = -z\vec{\Delta}w = -zY\tilde{\Delta}w = -z\vec{\kappa} \tag{93}$$

(92)

And additionally, with the help of equation 88, this yields a new version of equation 65:

$$\vec{\kappa} = \vec{\Delta}w = \underline{Y}\tilde{\vec{\Delta}}\vec{N}^T\vec{w} = \underline{Y}\tilde{\underline{B}}\vec{w} = \underline{B}\vec{w} \tag{94}$$

$$\underline{\tilde{B}} = \vec{\tilde{\Delta}} \vec{N}^T = \begin{pmatrix}
\frac{\partial^2 N_1}{\partial L_1^2} & \frac{\partial^2 N_2}{\partial L_1^2} & \cdots & \frac{\partial^2 N_9}{\partial L_1^2} \\
\frac{\partial^2 N_1}{\partial L_2^2} & \frac{\partial^2 N_2}{\partial L_2^2} & \cdots & \frac{\partial^2 N_9}{\partial L_2^2} \\
2 \frac{\partial^2 N_1}{\partial L_1 \partial L_2} & 2 \frac{\partial^2 N_2}{\partial L_1 \partial L_2} & \cdots & 2 \frac{\partial^2 N_9}{\partial L_1 \partial L_2}
\end{pmatrix}$$
(95)

With the help of equation 94, the first term (denoted as Π_1) of the plate element's functional 78 can be written out:

$$\Pi_{1} = \frac{1}{2} \int_{A} \vec{\kappa}^{T} \underline{D}_{p} \vec{\kappa} \, dA$$

$$= \frac{1}{2} \vec{w}^{T} \int_{A} \underline{B}^{T} \underline{D}_{p} \underline{B} \, dA \vec{w}$$

$$= \frac{1}{2} \vec{w}^{T} \underline{K} \vec{w} \tag{96}$$

where K describes the stiffness matrix for the three node triangular plate element. The stiffness matrix must be integrated in triangular coordinates. This will be done by a Gaussian quadrature with the Gauss points located at: $(L_{1_1} = 1/6, L_{2_1} = 1/6), (L_{1_2} = 1/6)$

2/3, $L_{2_2} = 1/6$), $(L_{1_3} = 1/6, L_{2_3} = 2/3)$ and weights $\omega_i = 1/6$ for all three points. For an exact integration one would accumulate four sampling points, but [16] states that this leads to an element, that is too stiff; with only three samplings a more natural element results.

$$\underline{K} = 2A_{\triangle} \sum_{i=1}^{3} \omega_{i} \underline{B}^{T}(L_{1_{i}}, L_{2_{i}}) \underline{D}_{p} \underline{B}(L_{1_{i}}, L_{2_{i}})$$

$$(97)$$

The plate's functional 78 has two more terms including the surface load p and edge loads V_n . These two can now be written as follows (see also [16]):

$$\int_{A} p \ w \ dA = \vec{w}^{T} \vec{F}_{p} = \vec{w}^{T} p \int_{A} \vec{N} \ dA = 2\vec{w}^{T} A_{\triangle} p \int_{0}^{1} \left(\int_{0}^{1-L_{1}} \vec{N} \ dL_{2} \right) \ dL_{1}$$
 (98)

where \vec{F}_p is a 1×9 vector containing forces and moments emerging from the surface load p. As an example, an edge load V_n is applied to edge S_{13} . This can be described as follows [16]:

$$\int_{\Gamma_V} V_n w \ d\Gamma = \int_{\Gamma_V} V_n \vec{w}^T \vec{N}(L_2 = 0) \ d\Gamma$$
(99)

with $d\Gamma = S_{13}dL_1$. With V_n being constant all over the edge:

$$\int_{\Gamma_V} V_n \vec{w}^T \vec{N}(L_2 = 0) \ d\Gamma = \vec{w}^T S_{13} V_n \int_0^1 \vec{N} \ dL_1 = \vec{w}^T \vec{F}_v$$
 (100)

The edge load applies forces and moments contained in \vec{F}_v to the nodes forming that edge. The above equation can be applied to every other edge.

3.3.3 Quad-4 Plate Element

The element implemented in this work is the so-called DKQ element, introduced by Batoz et al. [24]. It is a four node, 12 degrees-of-freedom quadrilateral element for thin plates. It is based on a generalization of the $Discrete\ Kirchhoff\ Triangular\ (DKT)$ element which is a three node, 9 d.o.f. triangular element. Like the triangular element of the previous section, the DKQ element's nodes have all three degrees of freedom: The displacement w and the rotations θ_x and θ_y around the element's local x- and y-axis. Figure 8 shows an example of such an element.

The formulation of the DKQ element by Batoz et al. [24] uses the discrete Kirchhoff technique. It is based on the discretization of the strain energy and neglects the transverse shear energy. This results in the following functional:

$$\Pi = \frac{1}{2} \int_{A} \vec{\kappa}^{T} \underline{D}_{p} \vec{\kappa} \, dA \tag{101}$$

where \underline{D}_p is the material matrix as defined previously (equation 67) and $\vec{\kappa}$ denotes:

$$\vec{\kappa} = \begin{pmatrix} \frac{\partial \beta_x}{\partial x} \\ \frac{\partial \beta_y}{\partial y} \\ \frac{\partial \beta_x}{\partial y} + \frac{\partial \beta_y}{\partial x} \end{pmatrix}$$
(102)

Figure 8: 12 node quadrilateral plate element DQK

 β_i is the rotation of the normal to the undeformed mid-surface in x-z-plane and y-z-plane, respectively. For Π only C^0 continuity is required [24]. Further, Batoz et al. states that β_x and $beta_y$ must be related to w in such a way, that the final element satisfies the following requirements:

- The nodal variables must be w, θ_x and θ_y with respect to x and y at the four element's nodes $(\theta_x = \partial w/\partial y, \theta_y = -\partial w/\partial x)$
- The Kirchhoff boundary conditions must be satisfied.

Two incomplete cubic polynomial expressions define β_x and β_y :

$$\beta_x = \sum_{i=1}^8 N_i \beta_{x_i} \tag{103}$$

$$\beta_y = \sum_{i=1}^8 N_i \beta_{y_i} \tag{104}$$

 $N_i(\xi, \eta)$ are here the shape functions with isoparametric coordinates ξ and η . They are the same as of the eight node Serendipity element, described for example in [17], or [18] and seen in Figure 9. The shape functions of this element are achieved by products of linear lagrangian polynomials of the form $\frac{1}{4}(\xi+1)(\eta+1)$. For the eight node element

the following shape functions result:

$$N_{1}(\xi,\eta) = \frac{1}{4}(1-\xi)(1-\eta)(-\xi-\eta-1)$$

$$N_{2}(\xi,\eta) = \frac{1}{4}(1+\xi)(1-\eta)(\xi-\eta-1)$$

$$N_{3}(\xi,\eta) = \frac{1}{4}(1+\xi)(1+\eta)(\xi+\eta-1)$$

$$N_{4}(\xi,\eta) = \frac{1}{4}(1-\xi)(1+\eta)(-\xi+\eta-1)$$

$$N_{5}(\xi,\eta) = \frac{1}{2}(1-\xi^{2})(1-\eta)$$

$$N_{6}(\xi,\eta) = \frac{1}{2}(1+\xi)(1-\eta^{2})$$

$$N_{7}(\xi,\eta) = \frac{1}{2}(1-\xi^{2})(1+\eta)$$

$$N_{8}(\xi,\eta) = \frac{1}{2}(1-\xi)(1-\eta^{2})$$

 β_{x_i} and β_{y_i} are transitory nodal variables at the four nodes and mid-sides of the element.

Figure 9: Eight node quadrilateral element with local ξ , η -coordinates

Next, Batoz et al. described the Kirchhoff assumptions at the corner nodes (cf. Figure

9 for the following):

$$\begin{pmatrix} \beta_{x_i} + \partial w / \partial x_i \\ \beta_{y_i} + \partial w / \partial y_i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad i = 1, 2, 3, 4$$
 (105)

and at the mid-nodes:

$$\beta_{s_k} + \partial w / \partial s_k = 0, \qquad k = 5, 6, 7, 8$$
 (106)

where s denotes the coordinate along the element boundary and $\partial w/\partial s_k$ is the derivative of the displacement w with respect to the mid-node k:

$$\frac{\partial w}{\partial s_k} = -\frac{3}{2l_{ij}}(w_i - w_j) - \frac{1}{4}\left(\frac{\partial w}{\partial s_i} + \frac{\partial w}{\partial s_j}\right)$$
(107)

with k = 5, 6, 7, 8 being the mid-node of side ij = 12, 23, 34, 41 and l_{ij} denotes the length of side ij. β_n varies linearly along the sides:

$$\beta_{n_k} = \frac{1}{2} \left(\beta_{n_i} + \beta_{n_j} \right) = -\frac{1}{2} \left(\frac{\partial w}{\partial n_i} + \frac{\partial w}{\partial n_j} \right)$$
 (108)

with k same as before. β_x and β_y can be rewritten as follows:

$$\beta_x = H^x(\vec{\xi}, \eta)^T \vec{w} \tag{109}$$

$$\beta_{y} = H^{y}(\vec{\xi}, \eta)^{T} \vec{w}$$

$$\vec{w}^{T} = \begin{pmatrix} w_{1} & \theta_{x_{1}} & \theta_{y_{1}} & w_{2} & \theta_{x_{2}} & \theta_{y_{2}} & w_{3} & \theta_{x_{3}} & \theta_{y_{3}} \end{pmatrix}$$

$$(110)$$

with

$$\begin{split} \vec{H^x}^T &= \left(H_1^x \quad \dots \quad H_{12}^x\right) \\ H_{[1,4,7,10]}^x &= \frac{3}{2} \left(a_{[5,6,7,8]} N_{[5,6,7,8]} - a_{[8,5,6,7]} N_{[8,5,6,7]}\right) \\ H_{[2,5,8,11]}^x &= b_{[5,6,7,8]} N_{[5,6,7,8]} + b_{[8,5,6,7]} N_{[8,5,6,7]} \\ H_{[3,6,9,12]}^x &= N_{[1,2,3,4]} - c_{[5,6,7,8]} N_{[5,6,7,8]} - c_{[8,5,6,7]} N_{[8,5,6,7]} \\ \vec{H^y}^T &= \left(H_1^y \quad \dots \quad H_{12}^y\right) \\ H_{[1,4,7,10]}^y &= \frac{3}{2} \left(d_{[5,6,7,8]} N_{[5,6,7,8]} - d_{[8,5,6,7]} N_{[8,5,6,7]}\right) \\ H_{[2,5,8,11]}^y &= -N_{[1,2,3,4]} + e_{[5,6,7,8]} N_{[5,6,7,8]} + e_{[8,5,6,7]} N_{[8,5,6,7]} \\ H_{[3,6,9,12]}^y &= -b_{[5,6,7,8]} N_{[5,6,7,8]} - b_{[8,5,6,7]} N_{[8,5,6,7]} \end{split}$$

The function notation $H^x_{[i,j,k,l]}$ groups four functions together. The first function of the group gets the first index of the squared brackets, the second function the second index,

and so on. The coefficients a, b, c, d and e are as follows:

$$a_{k} = -\frac{x_{ij}}{l_{ij}^{2}}$$

$$b_{k} = \frac{3}{4} \frac{x_{ij}y_{ij}}{l_{ij}^{2}}$$

$$c_{k} = \frac{\frac{x_{ij}^{2}}{4} - \frac{y_{ij}^{2}}{2}}{l_{ij}^{2}}$$

$$d_{k} = -\frac{y_{ij}}{l_{ij}^{2}}$$

$$e_{k} = \frac{y_{ij}^{2} - \frac{x_{ij}^{2}}{2}}{l_{ij}^{2}}$$

where k = 5, 6, 7, 8 for the sides ij = 12, 23, 34, 41, $x_{ij} = x_i - x_j$, $y_{ij} = y_i - y_j$ and $l_{ij}^2 = x_{ij}^2 + y_{ij}^2$. For more details about the derivation of these coefficients and functions H^x and H^y see Batoz et al. [24].

Next, the Jacobian matrix \underline{J} can be assembled, that is:

$$\underline{J} = \frac{1}{4} \begin{pmatrix} (x_{12} + x_{34})\eta - x_{12} + x_{34} & (y_{12} + y_{34})\eta - x_{12} + y_{34} \\ (x_{12} + x_{34})\xi - x_{13} - x_{24} & (y_{12} + y_{34})\xi - y_{13} + y_{24} \end{pmatrix} = \begin{pmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{pmatrix}$$
(111)

With its determinant and inverse:

$$|\underline{J}| = J_{11}J_{22} - J_{12}J_{21} \tag{112}$$

$$\underline{J}^{-1} = \frac{1}{|\underline{J}|} \begin{pmatrix} J_{22} & -J_{12} \\ -J_{21} & J_{11} \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{pmatrix}$$
(113)

The strain-displacement matrix can now be obtained:

$$\underline{B} = \begin{pmatrix} \vec{H}_{x}^{x} \\ \vec{H}_{y}^{y} \\ \vec{H}_{y}^{x} + \vec{H}_{x}^{y} \end{pmatrix} = \begin{pmatrix} j_{11} & j_{12} & 0 & 0 \\ 0 & 0 & j_{21} & j_{22} \\ j_{21} & j_{22} & j_{11} & j_{12} \end{pmatrix} \begin{pmatrix} \vec{H}_{\xi}^{x} \\ \vec{H}_{\eta}^{x} \\ \vec{H}_{y}^{y} \\ \vec{H}_{\eta}^{y} \end{pmatrix}$$
(114)

The expressions $vecH_{\xi}^{x}$, $\vec{H_{\eta}^{x}}$, $\vec{H_{\xi}^{y}}$ and $\vec{H_{\eta}^{y}}$ are vectors containing the derivatives of the corresponding components of the vectors $\vec{H^{x}}$ and $\vec{H^{y}}$ with respect to ξ and η , respectively. And the matrix \underline{B} can then be inserted into the displacement-strain relation, like equation 94:

$$\vec{\kappa} = B\vec{w} \tag{115}$$

Next, $\vec{\kappa} = \underline{B}\vec{w}$ can be used in the functional to get the first term like equation 96:

$$\Pi_1 = \frac{1}{2} \int_A \vec{\kappa}^T \underline{D}_p \vec{\kappa} \, dA$$
$$= \frac{1}{2} \vec{w}^T \int_A \underline{B}^T \underline{D}_p \underline{B} \, dA \vec{w}$$
$$= \frac{1}{2} \vec{w}^T \underline{K} \vec{w}$$

with the stiffness matrix of the DKQ element \underline{K} :

$$\underline{K} = \int_{A} \underline{B}^{T} \underline{D}_{p} \underline{B} \ dA$$

$$= \int_{-1}^{1} \int_{-1}^{1} \underline{B}^{T} \underline{D}_{p} \underline{B} \ |\underline{J}| \ d\xi d\eta$$
(116)

The stiffness matrix can be numerically integration with a 2×2 Gaussian integration scheme. Batoz et al. states that four sampling points are enough, although a 3×3 point scheme would be necessary for exact integration on a rectangular element [24]. Those four sampling points are located at $\xi_i = \pm \frac{\sqrt{3}}{3}$ and $\eta_i = \pm \frac{\sqrt{3}}{3}$ with weight factor $\omega_i = 1$ equivalent to all four. The equation for the stiffness matrix can then be written in discretized form as follows:

$$\underline{K} = \sum_{i=1}^{2} \sum_{j=1}^{2} \omega_i \omega_j \underline{B}(\xi_i, \eta_j)^T \underline{D}_p \underline{B}(\xi_i, \eta_j) |\underline{J}(\xi_i, \eta_j)|$$
(117)

When all nodal values \vec{w} are known, the moments \vec{M} at point (x, y) in the element can be calculated:

$$\vec{M}(x,y) = \underline{D}_p \underline{B}(x,y) \vec{w} \tag{118}$$

with

$$\vec{M} = \begin{pmatrix} M_x \\ M_y \\ M_x y \end{pmatrix} \tag{119}$$

3.4 Coordinate Transformation

The nodes and elements in the mesh are defined in a global three dimensional coordinate system. The elements need to be transformed into a two dimensional local coordinate system in order to be able to calculate their local stiffness matrices. This local stiffness matrix must then be transformed back into the global system before adding it to the global stiffness matrix. This section describes the building of the transformation matrix, that will be used in the following section for the addressed transformation steps. First the transformation of an arbitrary triangle defined in 3D space is described.

Given a triangle with vertices $\vec{A} = (a_x, a_y, a_z)^T$, $\vec{B} = (b_x, b_y, b_z)^T$ and $\vec{C} = (c_x, c_y, c_z)^T$ ordered in counter-clockwise direction, as shown in Figure 10. Let \vec{u} be the vector from

Figure 10: Arbitrary triangle with nodes A, B and C, defined in global xyz coordinate system. After transformation a new, local, $\tilde{x}\tilde{y}\tilde{z}$ coordinate system with node A in its origin, is created.

node \vec{A} to \vec{B} and \vec{v} be the vector from node \vec{A} to \vec{C} :

$$\vec{u} = \vec{B} - \vec{A} = \begin{pmatrix} b_x - a_x & b_y - a_y & b_z - a_z \end{pmatrix}^T$$
$$\vec{v} = \vec{C} - \vec{A} = \begin{pmatrix} c_x - a_x & c_y - a_y & c_z - a_z \end{pmatrix}^T$$

First local unit vector:

$$\vec{\tilde{x}} = \frac{1}{|\vec{u}|} \vec{u}$$

Second local unit vector:

$$\vec{\tilde{z}} = \vec{u} \times \vec{v}$$
$$\vec{\tilde{z}} \leftarrow \frac{1}{\left|\vec{\tilde{z}}\right|} \vec{\tilde{z}}$$

Third local unit vector:

$$\vec{\tilde{y}} = \vec{\tilde{z}} \times \vec{\tilde{x}}$$

Define transformation matrix \underline{T} as follows:

$$\underline{T} = \begin{pmatrix} \vec{\tilde{x}}^T \\ \vec{\tilde{y}}^T \\ \vec{\tilde{z}}^T \end{pmatrix} = \begin{pmatrix} \tilde{x}_x & \tilde{x}_y & \tilde{x}_z \\ \tilde{y}_x & \tilde{y}_y & \tilde{y}_z \\ \tilde{z}_x & \tilde{z}_y & \tilde{z}_z \end{pmatrix}$$
(120)

Assembly of element's stiffness matrix needs partial derivatives. In order to get these derivatives with less computational effort, every triangle can be translated in such a way, that node \vec{A} lies in the global origin before transforming it to local coordinates. Node \vec{A}

stays at (0, 0, 0) coordinates which then simplifies getting the derivatives (see section 4.2.4). It follows:

$$\vec{\tilde{A}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T$$

$$\vec{\tilde{B}} = \begin{pmatrix} \tilde{b}_x & 0 & 0 \end{pmatrix}^T$$

$$\vec{\tilde{C}} = \begin{pmatrix} \tilde{c}_x & \tilde{c}_y & 0 \end{pmatrix}^T$$

Node \vec{A} will not be changed by the transformation with \underline{T} , \vec{B} will be projected onto the local x-axis that is defined to be the normalized vector between \vec{A} and \vec{B} . Node \vec{C} will be projected onto the local xy-plane. One can see that the z-component vanishes by transforming into local space, thus generating the wished two dimensional local space.

Figure 11: Quadrilateral with nodes A, B, C and D, defined in global xyz coordinate system. After transformation a new, local, $\tilde{x}\tilde{y}\tilde{z}$ coordinate system is created.

The other element described in this work is the quadrilateral. Let an arbitrary quadrilateral be given with vertices $\vec{A} = (a_x, a_y, a_z)^T$, $\vec{B} = (b_x, b_y, b_z)^T$, $\vec{C} = (c_x, c_y, c_z)^T$, $\vec{D} = (d_x, d_y, d_z)^T$ ordered in counter-clockwise direction, cf. Figure 11. Next, let \vec{I} be the midpoint of edge \overline{AB} :

$$\vec{I} = \vec{A} + \frac{1}{2} \left(\vec{B} - \vec{A} \right)$$

Analogously let \vec{J}, \vec{K} and \vec{L} be the midpoints of the edges $\overline{BC}, \overline{CD}$ and \overline{DA} :

$$\vec{J} = \vec{B} + \frac{1}{2} \left(\vec{C} - \vec{B} \right)$$

$$\vec{K} = \vec{C} + \frac{1}{2} \left(\vec{D} - \vec{C} \right)$$

$$\vec{L} = \vec{D} + \frac{1}{2} \left(\vec{A} - \vec{D} \right)$$

Let then \vec{u} be the vector from node \vec{L} to \vec{J} and \vec{v} be the vector from node \vec{I} to \vec{K} :

$$\vec{u} = \vec{J} - \vec{L} = \begin{pmatrix} j_x - l_x & j_y - l_y & j_z - l_z \end{pmatrix}^T$$

$$\vec{v} = \vec{K} - \vec{I} = \begin{pmatrix} k_x - i_x & k_y - i_y & k_z - i_z \end{pmatrix}^T$$

First local unit vector:

$$\vec{\tilde{x}} = \frac{1}{|\vec{u}|} \vec{u}$$

Second local unit vector:

$$\vec{\tilde{z}} = \vec{u} \times \vec{v}$$

$$\vec{\tilde{z}} \leftarrow \frac{1}{\left|\vec{\tilde{z}}\right|} \vec{\tilde{z}}$$

Third local unit vector:

$$\vec{\tilde{y}} = \vec{\tilde{z}} \times \vec{\tilde{x}}$$

Define transformation matrix T as follows:

$$\underline{T} = \begin{pmatrix} \vec{x}^T \\ \vec{y}^T \\ \vec{z}^T \end{pmatrix} = \begin{pmatrix} \vec{x}_x & \vec{x}_y & \vec{x}_z \\ \vec{y}_x & \vec{y}_y & \vec{y}_z \\ \vec{z}_x & \vec{z}_y & \vec{z}_z \end{pmatrix}$$
(121)

Remark: In order to transform a quadrilateral element from 3D to a local two dimensional space, the nodes of the original element must all be situated on a common plane. Otherwise such a transformation cannot be performed. Such shaped quadrilaterals cannot be used as shell elements.

3.5 Shell Element

Shell elements combine the potential of both, plane and plate elements. Every time a thin walled structure like a car body, dome structure or container with multiaxial pressures is to be simulated, shell elements provide a good solution. In this work only the so-called flat shell elements are described and used in the implementation. Details about curved shell elements, shells of revolution and general shells can be found in Cook et al. [15].

Flat shell elements have a state of bending and membrane stress that can be described by superposition of the plane and plate element [20]. Figure 12 shows the superposition of plane and plate elements to a flat shell element. The degrees of freedom of plane and plate at every node are combined at the node of the shell element. Obviously the plane and plate element must be of the same finite element's type, for example three node triangular or eight node quadrilateral. The plane has displacements u and v with dedicated forces F_x and F_y . The plate has the deformation w with assigned normal force F_z and the two twists θ_x and θ_y with assigned moments M_x and M_y . Through the linking of the elements the shell element node has now five natural degrees of freedom. An

Figure 12: Creation of a triangular flat shell element by superimposing a triangular plane and a triangular plate element. The elements are described in the same local coordinate system with their degrees of freedom shown exemplary at one node per element.

additional twist around the local z-axis θ_z will be introduced [16], increasing the number to six degrees of freedom per node. In vector notation the resulting displacement vector \vec{u}_i of a shell element's node i is:

$$\vec{u} = \begin{pmatrix} u \\ v \\ w \\ \theta_x \\ \theta_y \\ \theta_z \end{pmatrix} = \begin{pmatrix} u \\ v \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ w \\ \theta_x \\ \theta_y \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \theta_z \end{pmatrix}$$
shell plane plate (123)

For the two different finite elements in this work - the three node triangular element and the four node quadrilateral element - the stiffness matrix for the shell element is described by a block matrix of either 3×3 submatrices for the triangular case or 4×4 submatrices for the quadrilateral. The following equation shows the latter case as example:

$$\underbrace{\frac{K}{\vec{u}} = \vec{F}}_{\underline{K}_{11}} \underbrace{\frac{K}{12}}_{\underline{K}_{22}} \underbrace{\frac{K}{13}}_{\underline{K}_{23}} \underbrace{\frac{K}{24}}_{\underline{K}_{24}} \underbrace{\begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \underline{K}_{31} & \underline{K}_{32} & \underline{K}_{33} & \underline{K}_{34} \\ \underline{K}_{41} & \underline{K}_{42} & \underline{K}_{43} & \underline{K}_{44} \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \\ \vec{u}_4 \end{pmatrix} = \begin{pmatrix} \vec{F}_1 \\ \vec{F}_2 \\ \vec{F}_3 \\ \vec{F}_4 \end{pmatrix} \tag{124}$$

where the vectors \vec{u}_i are the same as in equation 122. The single submatrices \underline{K}_{ij} of \underline{K} were created by the superposition of the stiffness matrices of the plane and the plate:

$$\underline{K}_{ij} = \left(\underline{\hat{K}}_{ij}\right)_m + \left(\underline{\hat{K}}_{ij}\right)_n \tag{125}$$

The submatrix \underline{K}_{ij} has the following structure:

$$\frac{u \quad v \quad w \quad \theta_{x} \quad \theta_{y} \quad \theta_{z}}{\begin{pmatrix} \circ \quad \circ \quad 0 \quad 0 \quad 0 \\ \circ \quad \circ \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad \star \quad \star \quad \star \quad 0 \\ 0 \quad 0 \quad \star \quad \star \quad \star \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 0 \end{pmatrix}} \begin{array}{c} |u| \\ |v| \\ |\theta_{x}| \\ |\theta_{z}| \\ |\theta_{z}|$$

 $(\hat{\underline{K}}_{ij})_m$ describes the submatrix of the stiffness matrix of the plane element for node i and j and is marked with the \circ -symbol, $(\hat{\underline{K}}_{ij})_p$ describes the corresponding matrix part

of the plate element's stiffness matrix and is symbolized with a \star . The degree of freedom θ_z does not exists in both, the plane and the plate element, and were introduced with the shell element. Therefore $(\underline{K}_{ij})_{66}$ is zero. The sixth degree of freedom is necessary because the missing stiffness regarding a rotation around the axis normal to the element could produce singularities in the overall stiffness matrix. This happens for example, if all neighboring elements of a node lie in the same plane, i.e. they are coplanar. A singularity can lead to a non-solvable system, so this case needs be excluded [16]. One way is to introduce this sixth degree of freedom and give it a value that is so small that it does not influence the displacements and stresses too much. The number of this values varies: Werkle suggests a value of 1/10000 of the smallest diagonal entry of \underline{K}_{ij} [25], whereas [26] used 1/1000 of the smallest diagonal entry of \underline{K}_{ij} . The value must be small, but big enough to prevent the singularities. Since this value is an approximation, one has to modify it, if the solution is not as expected or one cannot get a solution at all due to the addressed singularities.

The stiffness matrix for the shell element was constructed in a local coordinate system as described in section 3.2, 3.3 and 3.4. The overall stiffness matrix containing information about all elements need to be described in a global coordinate system. Before the element stiffness matrix is added to the global stiffness matrix, it has to be transformed from local to global. This can be achieved by transforming the single blocks of \underline{K} from equation 124 with the relation:

$$\underline{\check{K}}_{ij}\vec{\check{u}}_j = \vec{\check{F}}_i \tag{127}$$

where " $\ddot{}$ " denotes that the matrix and vector are represented in local coordinates. With the help of the transformation matrix $\tilde{\underline{T}}$, the globally described displacement vector \vec{u}_j and load vector \vec{F}_i can be represented in local coordinates:

$$\dot{\vec{u}}_j = \underline{\tilde{T}}\vec{u}_j \tag{128}$$

$$\dot{\vec{F}}_i = \tilde{\underline{T}}\vec{F}_i \tag{129}$$

Since the load vector is to be defined in a global coordinate system and the resulting displacements are to be defined globally, too, equation 127 will be multiplied by $\underline{\tilde{T}}^T$ from left:

$$\underline{\tilde{T}}^T \underline{\check{K}}_{ij} \underline{\tilde{T}} \vec{u}_j = \underline{\tilde{T}}^T \underline{\tilde{T}} \vec{F}_i = \vec{F}_i \tag{130}$$

Hence, the two vectors will be represented in global coordinates and only the local element stiffness matrix need to be transformed. The addressed 6×6 transformation matrix $\underline{\tilde{T}}$ is made up of the 3×3 transformation matrix \underline{T} from section 3.4:

$$\underline{\tilde{T}} = \begin{pmatrix} \underline{T} & 0 \\ 0 & \underline{T} \end{pmatrix}$$
(131)

In order to get the local element stiffness matrix \underline{K} transformed to the global coordinate system, one has to transform the single submatrices \underline{K}_{ij} as follows:

$$\underline{K}_{ij} = \underline{\tilde{T}}^T \underline{\check{K}}_{ij} \underline{\tilde{T}} \tag{132}$$

for $1 \le i, j \le 3$ in the case of the triangular element and $1 \le i, j, \le 4$ for the quadrilateral element, respectively.

4 FEM Code Implementation

This section contains information about the features of the framework "libMesh" that was used in the implementation of the program, details on important parts of the implementation like the system matrix assembly or the mesh format requirements and import. Additionally the parallelization with MPI concludes this section, describing details about libMesh requirements for MPI usage and important modifications to the program's code.

4.1 Introduction to libMesh

The libMesh finite element library was stared as part of the Ph.D. work of Benjamin Kirk [27]. It is a tool for numerical simulation of partial differential equations on serial and parallel platforms and uses the finite element method. Major goals are to provide data structures and algorithms for applications that need implicit numerical methods, parallel computing, adaptive mesh refinement techniques, or, a combination of them. Further, it simplifies many programming details for the user, such as: Reading the mesh from file, initialize data structures, solving the dicretized system, and, writing out the results [28].

LibMesh allows discretization of one, two and three dimensional problems using several geometric element types, including: Edges, quadrilaterals, triangles, tetrahedra, hexahedra, pyramids, prisms and some infinite elements of quadrilaterals or hexahedra. Finite elements include traditional first and second order Lagrange, as well as arbitrary order hierarchical bases, and Nédélec elements of first type.

Mesh partitioning is available in libMesh through interfaces to several external packages, but also some internal partitioning algorithms are provided: Linear and centroid partitioner as examples of internal algorithms, Metis and ParMetis [29] as examples for external partitioner. In addition to these two, libMesh includes interfaces to solver libraries such as PETSc [30] and LASPack [31]. Thus, libMesh provides several linear equation solvers such as GMRES, CG, Bi-CGSTAB, QMR, and preconditioners like Jacobi, incomplete LU factorization and incomplete Cholesky factorization. The choice of an appropriate solver and preconditioner is made by the user at runtime.

A wide variety of mesh formats are supported by libMesh to facilitate use of complex geometries. The following is an incomplete list of supported input and output formats: Nemesis, TetGen, I-deas Universal UNV, AVS's ASCII UCD, Visualization Toolkit VTK, libMesh formats XDR/XDA, ExodusII, GMSH, LANL's General Mesh Viewer GMV, GnuPlot (only output), Matlab (only input) [28].

An example program using the libMesh library would look like listing 1.

Listing 1: Example libMesh program

```
#include "libmesh/libmesh.h"

#include "libmesh/additional_libmesh_components"

using namespace libMesh;

void assemble_something(EquationSystems& es, const std::string& system_name);
```

```
8
  int main (int argc, char** argv)
  {
9
       LibMeshInit (int argc, char** argv);
10
11
       Mesh mesh( init.comm() );
12
13
       // mesh generation via MeshTools::Generation::build_... or mesh import from file via
14
            mesh.read(std::string filename)
15
       EquationSystems es(mesh);
16
17
       LinearImplicitSystem& system = es.add_system<LinearImplicitSystem> ("example_system");
18
19
       system.add_variable ("a", FIRST);
20
       system.add_variable ("b", SECOND, LAGRANGE);
21
22
       system.attach_assemble_function (assemble_something);
23
24
       es.init();
25
26
27
       system.solve();
28
       VTKIO (mesh).write_equation_systems ("out.pvtu", es);
29
30
       return 0:
31
32
  }
```

In fact, this is the base construction of nearly every libMesh program. It starts with including libMesh components that are needed by the program, e.g. mesh.h, equation_systems.h, fe.h. Then, the library needs to be initialized (line 10). This is necessary because it may depend on a number of other external libraries like MPI and PETSc that require initialization before use. On the other hand, if the LibMeshInit object goes out of scope, the other libraries are finalized automatically by libMesh. Next, a mesh is created (lines 12-14) on the default MPI communicator (even if the program is executed single-threaded). The mesh can either be read from file or created by internal mesh generation tools. In line 16 an equation systems object is created. It can contain multiple different systems. Here, only one linear implicit system is added to the object (line 16). Each system can contain multiple variables of different approximation orders (see lines 20/21). Many systems require a user-defined function that will assemble the (linear) system (lines 6 and 23). Now, the data structures for equation system must be initialized which is done in line 25. The solving of the systems is done in line 27 of the code. This one line of code calls the assemble function defined earlier and invokes the default numerical solver. If the external library PETSc is installed, the solver can be controlled from the command line by the user. After solving the system, the solution can be written to file; here, for example, the results are written to a VTK-formatted plot file (line 29).

4.2 Implementation Details

This section contains details about the program's implementation using the libMesh framework. Different parts of the code like the initialization, loading of the mesh or assembling of the system matrix are described. The focus is put on the interaction between the libMesh library and the user's code. Requirements regarding mesh formats and user arguments are described as well.

4.2.1 Initialization

The program expects a few parameters set by the user through the command line at start. The ordering of these parameters are not relevant; some are optional. Here is a complete list of all parameters that can be set in the command line:

- -nu: The Poisson's ratio ν is required by the material matrices. A value in the range $0.0 < \nu \le 0.5$ is recommended for most scenarios.
- -e: The elastic modulus or Young's modulus E is also required by the material matrices. Here, a value $E \gg 0$ is recommended.
- -t: The thickness t of the mesh. It is used at both, the material matrices and the strain-displacement matrices and thus a required parameter to be set by the user.
- -d: If set to "'1" additional messages regarding transformation matrix entries, strain-displacement matrices, force load vectors and other internal mathematic structures are put out on the console. This parameter is optional, as it only gives the user more information in case of finding error. Since it slows down the calculation, it should only be set if needed. To turn off the messages, simply ignore the parameter or set it to 0.
- -mesh: The file name of the mesh file to be imported. A required parameter, because no default mesh is coded into the program to be used. The relative path to the file (+ extension) must be specified. Allowed file formats are: libMesh format xda (ASCII) and xdr (binary) as well as GMSH format msh. For more details, see section 4.2.2.
- -out: The relative path and filename (without extension) for the output of the resulting mesh. This parameter is optional. If not set, no output file will be created. The path to the filename must exist, otherwise no file can be created.

If the external library PETSc is installed and libMesh is configured to be able to use it, the user can set additional optional parameters [32]. In fact, if one uses PETSc, it will look though all command line arguments by itself to find those it can process. The following list is therefore limited to parameters that directly coincide with the need of this program. For more PETSc command line argument see [32].

• -ksp_type: Specifies the Krylov subspace method. Options are: richardson, chebyshev, cg, gmres, tcqmr, bcgs, cgs, tfqmr, cr, lsqr, bicg, preonly.

• -pc_type: To employ a particular preconditioning method used with the Krylov space method, the user can select one using this command line argument. Options are: none, jacobi, bjacobi, sor, eisenstat, icc, ilu, asm, gasm, gamg, bddc, ksp, composite, lu, cholesky, shell.

4.2.2 Mesh file import

The mesh geometry needs to be defined in a mesh file. LibMesh can import meshes from many different formats, including its own libMesh formats XDA and XDA, the first one stored in readable ASCII format, the latter one stored as binary code. Another one is the GMSH format *msh*. There are other formats libMesh can import, but only the three mentioned formats are currently supported by the thesis' program. A mesh file must provide the following information in order to be usable be the implementation:

- A list of vertices. Every vertex must be specified with its xyz-coordinates defined in the global coordinate system.
- A list of elements the mesh consists out of. The elements are normally defined by their type, for example three node triangle or four node quadrilateral, and a list of vertex identifiers representing the nodes of the element.
- A list of boundary conditions. The program provides two different types of boundary conditions. The type is to be specified in form of identifiers on element's nodes or edges. In the latter case the boundary condition is used on both nodes defining the edge.

Listing 2 shows a short example of a mesh defined in the xda-format. It represents the unit square with its center at the global origin, composed of two three node triangles. It has different boundary conditions on the bottom and top edge.

Listing 2: Example xda mesh file

```
libMesh-0.7.0+
  2
          # number of elements
3 4
          # number of nodes
          # boundary condition specification file
4
  .
5 n/a
          # subdomain id specification file
6 n/a
          # processor id specification file
  n/a
          # p-level specification file
8 2
          # n_elem at level 0, [ type (n0 ... nN-1) ]
9 3 0 1 2
                   \# 3 -> triangle with 3 nodes, 0 1 2 -> vertices 0, 1 and 2
                                                  1 3 2 -> vertices 1, 3 and 2
10 3 1 3 2
                   # x y z coordinates of vertex 0
11 -1.0 -1.0 0.0
  1.0 -1.0 0.0
12
                                           vertex 1
  -1.0 1.0 0.0
                                           vertex 2
  1.0 1.0 0.0
                                           vertex 3
14
15 2
                   # number of boundary conditions
16 0 0 1
                   \# 0 -> element 0, 0 -> edge 0 (between vertex 0 and 1), bc-type 1
17 1 1 0
                   \# 1 -> element 1, 1 -> edge 1 (between vertex 3 and 2), bc-type 0
```

Listing 3 shows the same example but in the GMSH format. Here, libMesh has some requirements how the GMSH mesh file has to be structured: Every line defined in the \$Elements-section contains severals numbers, ordered as follows: Element index, element type, number of tags, physical entity number, geometrical entity, additional list of tags, list of node indices [33]. LibMesh requires the number of tags to be at least two. The first tag (physical entity) will be used by libMesh to identify the boundary condition ID; the second tag will be ignored - at least the author could not find where libMesh uses this value. LibMesh also treats the element type in different ways: The highest dimensional element types, for example 2D elements, like triangle and quadrilaterals, will act as the mesh defining elements. Every element that has lower dimension, i.e. nodes or edges, for instance, will be seen as boundary condition definitions by libMesh. See listing 3: There are six elements defined: Two triangles and four single nodes. The mesh only exists out of the two triangles. The four nodes will be used by libMesh to set boundary conditions at the corresponding nodes of the mesh. In this case node 1 and 2 gets boundary conditions with ID 0, node 3 and 4 with ID 1. This behavior of libMesh must be kept in mind when dealing with GMSH mesh files.

Listing 3: Example GMSH mesh file

```
$MeshFormat
2.2 0 8
$EndMeshFormat
$Nodes
4
1 -1.0 -1.0 0.0
  1.0 - 1.0
             0.0
3 -1.0 1.0
             0.0
4 1.0 1.0
             0.0
$EndNodes
$Elements
1 2 2 0 0 1 2 3
2 2 2 0 0 2 4 3
3 15 2 0 0 1
4 15 2 0 0 2
5 15 2 1 0 3
5 15 2 1 0 4
$EndElements
```

The program features two different types of boundary conditions whose identifier must be set in the mesh file:

- Simply supported boundaries has type "0". This means that the boundary cannot be moved but is free to rotate and have no moment resistance. In mathematical notation: $u = v = w = 0, M_x = M_y = 0$.
- Clamped boundary has type "1". Here, the boundary is completely fixed with no movement and no rotation possible. Mathematically: $u = v = w = 0, \theta_x = \theta_y = 0$

Because the stand-alone version of the program has no coupled fluid solver which provides it with pressures/forces and moments at the nodes, these values must be imported via file, too. The structure of such a file is fairly simple: Listing 4 shows such an example corresponding to the example mesh of listing 2. The first line defines the number n of nodes/vertices the mesh has (in this case n=4). The second line holds a floating point number representing a global factor that is multiplied by every force/moment component defined below. A value of 1.0 has no effect on the load values. Lines three to n+2 are the xyz-components of the single forces put on the corresponding mesh nodes followed by three values for the moments M_x, M_y, M_z . The ordering is the same as the vertices in the mesh file. The xyz-coordinates must also be represented in the global coordinate system. In the example a load is applied on the first and third node. The first load is directed along the negative z-axis, the second load along the positive y-axis. The other two nodes have no forces or moments applied.

Listing 4: Example force file

```
4
1.0
0.0
     0.0
           -0.65
                        0.0
                              0.0
                   0.0
0.0
     0.0
            0.0
                   0.0
                        0.0
                              0.0
0.0
     2.34
            0.0
                   0.0
                        0.0
                              0.0
0.0
     0.0
                   0.0
                        0.0
```

The implementation's code to import a mesh file is rather short (listing 5).

Listing 5: Loading mesh and prepare for use

```
Mesh mesh(init.comm(), 2);
mesh.allow_renumbering(false);
mesh.read(in_filename);
mesh.print_info();
```

The first line creates a 2D mesh distributed across the default MPI communicator (gathered by the LibMeshInit-object). The mesh is read in line 3 from the file found at the place defined by in_filename. In line 4 information about the mesh is printed to the console. A special detail is line 2: It is not guaranteed that the ordering of the nodes defined in the mesh file is the same after libMesh has imported the mesh file. Since the program uses the additional force file to apply the loads onto the mesh nodes, this mapping could be destroyed. Therefore the function call in line 2 forbids libMesh to automatically renumber the nodes of the mesh and let the ordering be as defined in the mesh file.

4.2.3 System setup

After libMesh and possible external libraries are initialized and the mesh was created and initialized, the equation system must be set up. Listing 6 shows the relevant part of the implementation.

Listing 6: Setting up the equation system

```
1 EquationSystems equation_systems (mesh);
  LinearImplicitSystem& system = equation_systems.add_system<LinearImplicitSystem> ("
       Elasticity");
  unsigned int u_var = system.add_variable("u", FIRST, LAGRANGE);
  unsigned int v_var = system.add_variable("v", FIRST, LAGRANGE);
  unsigned int w_var = system.add_variable("w", FIRST, LAGRANGE);
  unsigned int tx_var = system.add_variable("tx", FIRST, LAGRANGE);
  unsigned int ty_var = system.add_variable("ty", FIRST, LAGRANGE);
  unsigned int tz_var = system.add_variable("tz", FIRST, LAGRANGE);
  system.attach_assemble_function (assemble_elasticity);
11
  std::set<boundary_id_type> boundary_ids;
  boundary_ids.insert(0);
14
  std::vector<unsigned int> variables;
  variables.push_back(u_var);
  variables.push_back(v_var);
18 variables.push_back(w_var);
19 ConstFunction<Number> cf(0.0);
20 DirichletBoundary dirichlet_bc(boundary_ids, variables, &cf);
  boundary_ids.clear();
22
  boundary_ids.insert(1);
23
  variables.push_back(tx_var);
  variables.push_back(ty_var);
  variables.push_back(tz_var);
27 DirichletBoundary dirichlet_bc2(boundary_ids, variables, &cf);
  system.get_dof_map().add_dirichlet_boundary(dirichlet_bc);
  system.get_dof_map().add_dirichlet_boundary(dirichlet_bc2);
30
31
  equation_systems.init();
  equation_systems.print_info();
```

In line 1 an EquationSystems-object is created. It contains and controls all equation systems defined for a mesh, that is passed as parameter in its constructor. It can have multiple systems or just one like in this case. In this implementation a linear implicit system is used. LibMesh provides a system with the exact same name. In line 2 such a system is created named "Elasticity" and added to the equation systems. As discussed in section 3.5 the systems has six variables, namely: $u, v, w, \theta_x, \theta_y, \theta_z$. These variables are added to the system in the lines 4 to 9. All of them are of first polynomial order and members of the Lagrange finite element family. The add_variable-functions returns a unique number identifying the variable just added. In order to assemble the system matrix and the right-hand side, a user-defined function must be attached to the system. This is done in line 11. The assemble function is part of section 4.2.4. The only thing missing is the definition of the different boundary conditions. This

is done between the lines 13 and 30. As stated in the previous section, the program features two type of boundary conditions: Simply supported and clamped with the ID "0" and "1", respectively. Because libMesh allows multiple IDs represent the same boundary condition type, in line 13 a set is created and filled with the 0-ID in the next line. After that, a vector containing the IDs of the system's variables must be created. For the simply supported boundary case, only the three displacement variables u, v, w are affected (lines 15-18). Before creating the DirichletBoundary-object, a function supplying the Dirichlet value must be defined. In this case the value must be zero at the boundary. A ConstFunction initialized with the value zero is therefore created in line 19. The constructor for the Dirichlet object takes the ID-set, the variables-vector and the function as parameters and copies their content into its object. The set and vector will be reused for the second boundary type. Now the 1-ID is inserted in the cleared set in line 23 and the twist variables $\theta_x, \theta_y, \theta_z$ are added to the existing variables in the vector (lines 24ff). Another DirichletBoundary object is created with the new initialization parameters. Finally, the two boundary types are added to the system in the lines 29 and 30. When the preparation steps are finished, the system can finally be initialized and information about the system can be print to the console.

4.2.4 Matrix and vector assembly

As stated in section 4.1, libMesh tries to do as much programming tasks as possible on its own and let the user concentrate on the mathematical/physical problem to model. The last sections show that this is often true, since the user often only need to set parameters, create objects or call functions. To solve the system, libMesh calls a userdefined assembly function. This function is the part where the user is involved at most, because here the system matrix and the right-hand side (RHS) must be assembled. Nevertheless libMesh helps the user with many auxiliary function as can be seen further down. The main part of the assembly function is described in listing 7. The first step is to get a reference to the system whose matrix and vector needs to be assembled. In this case the "Elasticity" system is used (line 1). Next a reference to a special object is get from the system: The DofMap-object handles the numbering of degrees of freedom on a mesh. In line 3 to 9 several variables are defined: Ke, Ke_m and Ke_p are matrices representing the shell element's stiffness matrix, plane (or membrane) stiffness matrix part and plate stiffness matrix part, respectively. The values of the element's RHS are stored in the vector Fe. The over three matrices are needed for the transformation of the element to local coordinates (trafo), the storing of the transformed nodes (transuv) and the partial derivatives (dphi). The element's area is stored in the variable of the same name.

The assembly function creates the local stiffness matrix and RHS for every single finite element and adds it to the global system matrix and system right-hand side. Therefore one has to iterate over all elements. This is done in line 15 to 35. The following steps are made in the exact same order:

• Get the mapping of the element's degrees of freedom to their positions in the system matrix (line 20)

Listing 7: Assemble System Matrix and RHS

```
1 LinearImplicitSystem& system = es.get_system<LinearImplicitSystem>("Elasticity");
  const DofMap& dof_map = system.get_dof_map();
  DenseMatrix<Number> Ke, Ke_m, Ke_p;
5 DenseVector<Number> Fe;
6 DenseMatrix<Real> trafo;
  DenseMatrix<Real> transUV;
  DenseMatrix<Real> dphi;
  Real area = 0.0;
  std::vector<dof_id_type> dof_indices;
11
  std::unordered_set<dof_id_type> processedNodes;
  processedNodes.reserve(mesh.n_local_nodes());
  MeshBase::const_element_iterator el = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();
  for (; el != end_el; ++el)
18
  {
       const Elem* elem = *el;
19
       dof_map.dof_indices (elem, dof_indices);
20
21
       ElemType type = elem->type();
22
       initElement(&elem, transUV, trafo, dphi, &area);
23
24
       calcPlane(type, transUV, dphi, &area, Ke_m);
       calcPlate(type, dphi, &area, Ke_p);
26
       constructStiffnessMatrix(type, Ke_m, Ke_p, Ke);
27
       localToGlobalTrafo(type, trafo, Ke);
28
       contribRHS(&elem, Fe, &processedNodes);
30
       dof_map.constrain_element_matrix_and_vector(Ke, Fe, dof_indices);
31
32
       system.matrix->add_matrix (Ke, dof_indices);
33
       system.rhs->add_vector (Fe, dof_indices);
34
35
  }
```

- Transform the element from global to local coordinates, calculate its partial derivatives and its area (line 23)
- Assemble the plane stiffness matrix part of the shell element (line 25)
- Assemble the plate stiffness matrix part of the shell element (line 26)
- Construct the shell stiffness matrix for the current element (line 27)
- Transform the local shell stiffness matrix back to global coordinates (line 28)
- Apply possible forces to the element in the form of contribution to the local RHS (line 29)
- Constrain the local element's stiffness matrix and RHS according to the set boundary conditions (line 31): LibMesh provides a function that automatically constrains the system matrix and right-hand side vector due to the boundary condition definitions in the initialization step.
- Add the element's stiffness matrix to the global system matrix (line 33): The final element's stiffness matrix is added to the overall system matrix through the function provided by libMesh. The vector storing the mappings of the degrees of freedom ensures that the matrix is added at the correct position in the system matrix.
- Add the element's RHS to the global RHS (line 34): Same as before but now for the right-hand side vector.

The transformation from global to local coordinates is described in section 3.4. Let $\tilde{A} = \begin{pmatrix} x_1 = 0 & y_1 = 0 \end{pmatrix}^T$, $\tilde{B} = \begin{pmatrix} x_2 & y_2 = 0 \end{pmatrix}^T$, $\tilde{C} = \begin{pmatrix} x_3 & y_3 \end{pmatrix}$ be the nodes of a transformed triangular element. Then the partial derivatives are as follows:

$$x_{12} = x_1 - x_2 = -x_2$$
 $y_{12} = y_1 - y_2 = 0$
 $x_{31} = x_3 - x_1 = x_3$ $y_{31} = y_3 - y_1 = y_3$
 $x_{23} = x_2 - x_3$ $y_{23} = y_2 - y_3 = -y_3$

For a transformed quadrilateral the derivatives are straightforward: $x_{ij} = x_i - x_j$, $y_{ij} = y_i - y_j$, because no implicit positions can be assumed for the transformed nodes.

The area of a triangle can easily be calculated during the creation of the transformation matrix. The cross product between the spanning vectors \vec{u} and \vec{v} (cf. section 3.4) is 2 times the area of the triangle. Thus, the area is:

$$A_{\triangle} = \frac{1}{2} \left| \vec{u} \times \vec{v} \right|$$

For the quadrilateral area A_{\square} one can use the Gauss' area formula:

$$A_{\square} = \frac{1}{2} \sum_{i=1}^{4} \left| \begin{pmatrix} x_i & x_{(i+1)\%4} \\ y_i & y_{(i+1)\%4} \end{pmatrix} \right|$$

where "%" represents the modulo-operator.

After the assembly of the plane stiffness part described in section 3.2.2 for triangular elements and in 3.2.3 for quadrilateral elements, a matrix K_m with $2n\times 2n$ entries results, n being the number of nodes the element has:

$$K_m = \begin{pmatrix} u_1 & \underline{v_1} & \underline{u_2} & \underline{\cdots} & \underline{u_n} & \underline{v_n} \\ m_{1,1} & m_{1,2} & m_{1,3} & \cdots & m_{1,n-1} & m_{1,n} \\ m_{2,1} & m_{2,2} & m_{2,3} & \cdots & m_{2,n-1} & m_{2,n} \\ m_{3,1} & m_{3,2} & m_{3,3} & \cdots & m_{3,n-1} & m_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ m_{n-1,1} & m_{n-1,2} & m_{n-1,3} & \cdots & m_{n-1,n-1} & m_{n-1,n} \\ m_{n,1} & m_{n,2} & m_{n,3} & \cdots & m_{n,n-1} & m_{n,n} \end{pmatrix} \begin{bmatrix} u_1 \\ v_1 \\ \vdots \\ u_n \\ v_n \end{bmatrix}$$

The same holds for the plate stiffness part described in sections 3.3.2 and 3.3.3. Here, the matrix has $3n \times 3n$ entries, n also the number of element's nodes:

$$K_{p} = \begin{pmatrix} \frac{w_{1}}{p_{1,1}} & \frac{\theta_{y_{1}}}{p_{1,2}} & \frac{w_{2}}{p_{1,3}} & \frac{w_{2}}{p_{1,4}} & \cdots & \frac{\theta_{x_{n}}}{p_{1,n-1}} & \frac{\theta_{y_{n}}}{p_{1,n}} \\ p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} & \cdots & p_{2,n-1} & p_{2,n} \\ p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} & \cdots & p_{3,n-1} & p_{3,n} \\ p_{4,1} & p_{4,2} & p_{4,3} & p_{4,4} & \cdots & p_{4,n-1} & p_{4,n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{n-1,1} & p_{n-1,2} & p_{n-1,3} & p_{n-1,4} & \cdots & p_{n-1,n-1} & p_{n-1,n} \\ p_{n,1} & p_{n,2} & p_{n,3} & p_{n-1,4} & \cdots & p_{n,n-1} & p_{n,n} \end{pmatrix} \begin{vmatrix} w_{1} \\ \theta_{x_{n}} \\ \theta_{y_{n}} \end{vmatrix}$$

In section 3.5, it is described that the two stiffness matrices from plane and plate can be superimposed to the shell element's stiffness matrix. This results in a matrix K that consists of $n \times n$ submatrices ($6n \times 6n$ entries):

$$K = \begin{pmatrix} K_{11} & K_{12} & \cdots & K_{1n} \\ K_{21} & K_{22} & \cdots & K_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n1} & K_{n2} & \cdots & K_{nn} \end{pmatrix}$$

Every submatrix describes the stiffness for one node of the shell element, i.e. in detail:

$$K_{ij} = \begin{pmatrix} m_{2i,2j} & m_{2i,2j+1} & 0 & 0 & 0 & 0 \\ m_{2i+1,2j} & m_{2i+1,2j+1} & 0 & 0 & 0 & 0 \\ 0 & 0 & p_{3i,3j} & p_{3i,3j+1} & p_{3i,3j+2} & 0 \\ 0 & 0 & p_{3i+1,3j} & p_{3i+1,3j+1} & p_{3i+1,3j+2} & 0 \\ 0 & 0 & p_{3i+2,3j} & p_{3i+2,3j+1} & p_{3i+2,3j+2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

where d_{ij} is a thousandth of the maximum of the diagonal entries of K_{ij} (cf. section 3.5):

$$d_{ij} = \frac{1}{1000} \max \{ m_{2i,2j}, m_{2i+1,2j+1}, p_{3i,3j}, p_{3i+1,3j+1}, p_{3i+2,3j+2} \}$$

After this step, the local stiffness matrix for the shell element is finally constructed. Before it can be added to the overall system stiffness matrix, it must be transformed back to the global coordinate system as discussed in section 3.4. For this purpose let \tilde{T} be the 6×6 transformation matrix from equation 131. Now, every submatrix K_{ij} from K must be transformed in the following way (equation 132):

$$\bar{K}_{ij} = \tilde{T}^T K_{ij} \tilde{T}$$

for $1 \leq i, j \leq n$.

The resulting global coordinate matrix \bar{K}_{ij} has the same structure as its local ancestor. In order to add it to the system matrix, one has to modify this structure. Until now, the ordering of columns and rows were as follows: All variables for node 1, then all variables for node 2, etc $(u_1, v_1, w_1, \dots, \theta_{y_n}, \theta_{z_n})$. LibMesh wants to system matrix to be in another format: The first variable for all nodes, then the second variable for all nodes, etc. $(u_1, u_2, \dots, u_n, v_1, v_2, \dots, \theta_{z_n})$. This change in format is achieved by the following code (listing 8):

Listing 8: Bring stiffness matrix into libMesh conform format

```
 \begin{aligned} &\textbf{for } (\alpha = 0..5) \\ &\textbf{for } (\beta = 0..5) \\ &\textbf{for } (\textbf{i} = 0..\textbf{n}-1) \\ &\textbf{for } (\textbf{j} = 0..\textbf{j}-1) \\ &K_{libmesh}(\alpha \textbf{n}+\textbf{i},\beta \textbf{n}+\textbf{j}) = \bar{K}(6\textbf{i}+\alpha,6\textbf{j}+\beta); \end{aligned}
```

The right-hand side of the shell element is constructed in the function described in listing 9.

Listing 9: Contribute RHS function

```
void contribRHS(const Elem **elem, DenseVector<Real> &Fe, std::unordered_set<unsigned int> *
       processedNodes)
  {
2
       unsigned int nsides = (*elem)->n_sides();
3
       Fe.resize(6*nsides);
       DenseVector<Real> arg;
       for (unsigned int side = 0; side < nsides; side++)</pre>
            Node* node = (*elem)->get_node(side);
9
            dof_id_type id = node->id();
10
11
            if (processedNodes->find(id) == processedNodes->end())
12
            {
13
                 processedNodes->insert(id);
14
                 arg = forces[id];
15
                 Fe(side) = arg(0);
16
                 Fe(side+nsides) = arg(1);
17
                 Fe(side+nsides*2) = arg(2);
18
19
            }
```

```
20 }
21 }
```

The local vector storing the forces and moments has 6n entries: Three forces and three moments for each of the n nodes (n=3 for the triangular element, n=4 for the quadrilateral). The values are stored in a global vector that was filled at the beginning of the program with the entries of the force file. At first (line 3 and 4) the number of sides of the element is get (equals the number of element's nodes n) and the RHS-vector is resized accordingly. Then one has to iterate over the sides of the element. Here, a problem occurs due to the iteration of the assembly function over all mesh elements: The majority of mesh nodes belongs to more than one element. In order to keep the global RHS data consistent such a node must be processed only once. In listing 7 in line 12 were an unordered-set structure created. This set keeps record of the IDs of already processed nodes. In line 12 of the RHS contribution function it is checked if the current element node's ID is already existing in that set. If so, the node is skipped and the function continues with the next one. If not, that node's ID is inserted into the set and the corresponding force/moment entries from the global vector is written to the local RHS-vector.

4.2.5 Solving the system

The system's solving is done in libMesh with only one call: equation_systems. solve(). This function does two things: It calls the user-defined assembly function that constructs the system matrix and right-hand side and after that it starts the solver. The rest is handled by libMesh or libraries like PETSc, respectively, though the user has some options to control the solver's behavior. Listing 10 shows the code section responsible for the system's solving.

Listing 10: Solve the system and build solution

```
// optionally set solver parameters:
  const unsigned int max_iter = equation_systems.parameters.get<unsigned int>("linear_solver_
       maximum_iterations");
                      tolerance = equation_systems.parameters.get<Real>("linear_solver_
       tolerance"):
  equation_systems.parameters.set<unsigned int>("linear_solver_maximum_iterations")= max_iter;
  equation_systems.parameters.set<Real>
                                                ("linear_solver_tolerance")
                                                                                    = tolerance;
  equation_systems.solve();
  std::vector<Number> sols;
  equation_systems.build_solution_vector(sols);
10
  MeshBase::const_node_iterator no = mesh.nodes_begin();
  const MeshBase::const_node_iterator end_no = mesh.nodes_end();
14
  for (; no != end_no; ++no)
15
16
        Node *nd = *no;
```

```
int id = nd->id();
Real displ_x = sols[6*id];
Real displ_y = sols[6*id+1];
Real displ_z = sols[6*id+2];
(*nd)(0) += displ_x;
(*nd)(1) += displ_y;
(*nd)(2) += displ_z;
}
```

In line 7 the addressed solve-function is called. Before, one can modify the maximum number of iterations the solver will do maximal and the residual's tolerance signaling when the solver should stop. In this case nothing is changed, since the original parameter values are set. It was added to the source code to show the syntax and mention the possibility, but was not implemented in the program. The equation system object stores the calculated solution internally. In order to get access to the results, one has to build a vector (line 9/10) where the solutions can be stored in. LibMesh resizes the vector automatically and fills it with the solution values. The order hereby is as follows: First all six values for the degrees of freedom for the first node in the order of adding them to the system, then all six values for the second node and so on, i.e. sols' = $\begin{pmatrix} u_1 & v_1 & w_1 & \theta_{x_1} & \theta_{y_1} & \theta_{z_1} & u_2 & \dots & \theta_{z_n} \end{pmatrix}$ for a mesh with n nodes. The nodes are ordered as defined in the mesh file. Until this position in the code, only the displacements and twists are calculated. What is left is to apply the displacements to the mesh. This is done between line 12 and 24. One has to iterator over all mesh nodes. LibMesh provides a special iterator-type for nodes to do this. The current node's ID is stored in a variable in line 17 and then the displacements for the x, y and z direction is get from the vector. Note, that the values are represented in global coordinates like the coordinates of the nodes in the mesh object. Hence, no transformation is needed at that point. The single direction displacements are then added to the existing absolute values of the mesh nodes.

4.2.6 Output

When the system is solved and the results are applied to the mesh, the program can write the displaced mesh with its additional data to a file. Listing 11 shows the relevant function. First, the function checks if the user does not wish any output to be made. If this is the case nothing has to be done and the functions returns. Otherwise an output stream is created with the filename specified by the user as command line argument plus the ExodusII extension ".e". Finally, the mesh with all additional data is written to the file.

Listing 11: Store results in mesh file

```
void writeOutput(Mesh &mesh, EquationSystems &es)
{
    if (!isOutfileSet)
        return;
    std::ostringstream file_name;
```

```
file_name << out_filename << ".e";

ExodusII_IO (mesh).write_equation_systems(file_name.str(), es);
}</pre>
```

The ExodusII-format was chosen for two reasons: First, libMesh can handle parallel output for this format on multiple processes. This would not be the case for VTK, for instance. Parallel output is required when the program is executed on multiple processes. Second, the ExodusII format can be opened and analyzed by ParaView (an open source multiple-platform application for interactive, scientific visualization) which gives the user more flexibility for post-processing work.

4.3 Parallelization with MPI

When the complexity of the mesh gets larger or the program is coupled with other solvers and executed permanently, it is important to parallelize the calculations in order to solve the system in less time. The parallelization with MPI has three major parts: The library itself, the partition of the mesh and the solving of the system. In the following sections these parts are described in more detail. Additionally it will be stated what code changes had to be performed in order to make the serial code working with MPI.

4.3.1 libMesh requirements

Although MPI is used internally throughout the libMesh library as soon as the program runs in MPI-mode, not everything will work as expected. If one tries to run a theoretically fully MPI-compatible libMesh program and tries to solve a system like the linear implicit system in this case, the wrong solutions will result. The problem occurs, when libMesh is built and configured without PETSc support. Then, libMesh will use an Eigen sparse solver, either a version on the user's environment or a built-in version from libMesh itself. These solvers are only serial and cannot be used with MPI, referring to an answer on the libMesh-mailing list from Dr. John Peterson, one of the libMesh developers. The solution would be to install PETSc and build libMesh against it.

4.3.2 Partitioning the mesh

The parallelization of the solving step is directly linked to the partitioning of the mesh. Every process gets a part of the mesh and solves the system on its partition. LibMesh provides an automatically partition of the mesh with the user's need to call it. Though, there are different partitioning algorithms to choose from, namely:

- LinearPartitioner: The linear partitioning algorithm is the simplest of all available partitioners. It takes the element list and splits it into equal-sized parts assigned to each processor.
- CentroidPartitioner: The centroid partitioner partitions simply based on the locations of element centroids. It must be defined how to sort the element centroids, i.e. the distance in the x, y or z-direction or the radial distance.

- MetisPartitioner: This partitioner uses the METIS graph partitioner to partition the elements. This partitioner will be used by libMesh at default if no other partitioner is specified.
- ParmetisPartitioner: Here, the ParMETIS graph partitioner will be used to partition the elements.
- HilbertSFCPartitioner: The Hilbert SFC partitioner uses a Hilbert space filling curve to partition the elements.
- MortonSFCPartitioner: Same as before but with a Morton space filling curve to partition the elements.

It is easy to use any of these partitioners in code. Listing 12 shows an example use of the ParMETIS partitioner. Instead of this partitioner every other listed class can be placed at line 7 with the corresponding header file included (line 1).

Listing 12: Mesh partitioning example

```
#include "libmesh/partmetis_partitionier.h"
// (...)

Mesh mesh(init.comm(), 2);
mesh.allow_renumbering(false);
mesh.read(in_filename);

ParmetisPartitioner partitioner;
partitioner.partition(mesh);
// (...)
```

4.3.3 Local elements

LibMesh uses a collection of different iterator-types to go through the mesh's elements and nodes. This collection can be split into two groups: Local and global iterators. In the serial case there is no difference between the two since all elements and nodes exist on the same process. If the program is run on multiple processes with a partitioned mesh, it becomes important to use local iterators. Thus, the single processes only iterate over their "own" elements and nodes without risking to interfere with the neighboring processes. This behavior gets especially important in the assembly function (cf. section 4.2.4). Listing 13 shows a short code part of this function. Here, the for loop head is shown, that will iterate over the mesh's elements in order to assemble the element's stiffness matrix and right-hand side and add them to the global system matrix and right-hand side, respectively. Note that it will be iterated over active_local_elements. In the serial case it could also be possible to use active_elements. "active" in this case means, that only non-deactivated elements from the mesh will be processed. Since the deactivation of mesh parts is not used in this implementation, one can ignore this term.

Listing 13: Local elements iterator

An example where global iterators are still possible and useful is after the solving step (see section 4.2.5. Listing 14 shows parts of the code after the system gets solved.

Listing 14: Global nodes iterator

```
// (...)
  std::vector<Number> sols;
  equation_systems.build_solution_vector(sols);
  if (global_processor_id() == 0)
        MeshBase::const_node_iterator
                                                  no = mesh.nodes_begin();
        const MeshBase::const_node_iterator end_no = mesh.nodes_end();
        for (; no != end_no; ++no)
10
               // (...)
12
        }
        // (...)
13
14
  // (...)
```

LibMesh produces the solution vector only on the master process which has the ID 0 per definition. Even when running the program with multiple processes, the solution vector on process 0 contains the values for all mesh nodes. Every other process does not have access to the solution vector. In order to apply the displacements onto the mesh nodes, process 0 must iterate over all mesh nodes. Instead of local_nodes, in line 7 and 8 nodes will be used which represents all the nodes of the mesh.

4.3.4 Assembly changes

In section 4.2.4 it was stated that a problem occurs at the creation of the local right-hand side's vector: Since nodes can be part of multiple elements, they can also be processes multiple times and contribute more than one time to the RHS. This is allowed and was prevented by creating an std::unordered_set that stores the ID of the already processed nodes. In the serial case this solves the problem. In the case of parallel execution every process generated such a set for itself without knowing what the other process has already stored in it. This way, it cannot be decided if a node that is on the boundary between two mesh partitions were already processed by one of the processes. One solution would be to communicate the data between the processes such that the information is consistent throughout the mesh. But that would produce a lot of communication overhead and

slows down the program. With the help of libMesh this problem can be solved without any inter-process communication at all. Listing 15 contains code parts from the assembly function and the auxiliary function to create the local right-hand side.

Listing 15: Process local nodes only

```
// in the assemble_elasticity function:
  std::unordered_set<dof_id_type> processedNodes;
  processedNodes.reserve(mesh.n_local_nodes());
  // in the contribRHS function:
  Node* node = (*elem)->get_node(side);
  int
            = node->id();
        id
10
  if (node->processor_id() != global_processor_id())
        continue;
12
13
  if (processedNodes->find(id) == processedNodes->end())
15
        processedNodes->insert(id);
16
        // (...)
17
18
  }
  // (...)
```

Here, one can see in line 3 that every process will create an set with a reserved size of only the number of local elements that process have access to. LibMesh stores the ID of the process in all nodes that are part of the mesh partition assigned to that process. This is exploited in line 11. If the stored ID of the node does not match the process' ID than it will be continued with the next node of the element. This can only be the case for nodes situated on the partition's boundary with another partition neighboring. If the node does not belong to the calling process, it must belong to of the other neighboring processes. It is impossible that way to skip a node, since all nodes belong to at least one process. With this line of code one, however, one can ensure that a node is processed only once: If it is not owned by the calling process, it is not processed at all. Otherwise it will be processed once and than marked in line 16 such that the same process will not use it in the future.

5 Coupling through preCICE

When a physical problem becomes too complex, one often split it into smaller pieces that are better manageable. These pieces, or physical fields, can then be solved separately and their solutions can be combined to an overall solution. This approach is called "partitioned approach" [34]. This approach allows to reuse the simulation code for the single fields and simultaneously provides the possibility to encapsulate the coupling functionality itself as a reusable component, too. This allows minimal access to solver codes, i.e., treating them as black boxes. At the same time the solver code does not have to include the whole coupling code making it less application dependent. The coupling tool preCICE offers coupling functionality to develop a multi-physics simulation environment using existing solvers. In this work a fluid-structure interaction (FSI) will be simulated. The thesis' program represents the structure part whereas the fluid part can be dynamically exchanged due to the coupling with preCICE. This Chapter gives an overview of preCICE and its main components and shows the implementation modifications that were necessary to integrate preCICE and prepare the code for coupling.

5.1 Overview of preCICE

The goal of preCICE is to provide all functionality to realize a multi-physics simulation environment working with existing single-physics solvers. This includes simulations like fluid-structure, fluid-acoustics, fluid-solid thermodynamics and porous-free flow interactions, for instance. It provides technical inter-code communication via MPI or TCP/IP, methods for data mapping between different grids and coupling methods based on quasi-Newton methods to ease the development process. preCICE supports parallel solvers through efficient point-to-point communication without the need of a server instance. It also features a high-level API making its integration into existing solver code minimal invasive [35].

preCICE supports partitioned coupling of black box solvers with focus on FSI and provides a geometry interface for Cartesian grid solvers. Its API is available for C++, C, and Fortran and consists of high-level methods enabling solvers to use coupling functionality in a flexible way. After the preCICE integration into the solver's code, a peer-to-peer communication without central control instance is generated. The single solver codes can be run serial or parallel without major modifications to the integrated API. Furthermore, the concrete coupling algorithms in the simulation can be selected through an XML configuration file that optimizes the solver adaption [34].

Figure 13 shows a schematic view of the main functionality groups of preCICE. Two solvers (A and B) are coupled through the preCICE tool. The three main functionalities of preCICE are drawn in the middle: Fix-point acceleration methods, point-to-point solver process communication and data mapping between non-matching grids at the coupling surface. Each shown solver runs in parallel with a master process controlling tasks such as convergence for the corresponding solver as well as for the whole simulation. The following sections describe each of the three addressed main functionalities in greater detail.

Figure 13: Schematic view of a partitioned multi-physics simulation with two solvers (A and B) coupled through preCICE. In the middle are the three main functionalities of preCICE shown, that steer coupling iterations: Fix-point acceleration methods, point-to-point communication and data mapping between non-matching grids at the coupling interface. Picture courtesy of Florian Lindner [35]

5.2 Coupling Methods

preCICE distinguishes two possible coupling schemes: Explicit and implicit coupling. A single time step of multi-physics simulation partitioned into several solvers can be done with only a small and fixed number of calls of time steps per solver. This is described by an explicit coupling scheme. The alternative is an iterative procedure that achieves convergence with respect to the monolithic solution of the system in each time step. An implicit coupling scheme then iterates over a coupling equation until convergence occurs. Based on [35] it is assumed that two solvers S_1 and S_2 make up a coupled system. Vector spaces X_1 and X_2 describe data at the coupling interface to be mapped between the two solvers in a single time step. The output of S_1 is required as an input by S_2 and vice versa, i.e. it follows:

$$S_1: X_1 \leftarrow X_2 \quad \text{and} \quad S_2: X_2 \leftarrow X_1$$
 (133)

The fluid-structure coupling done in this work, is an example for a Dirichlet-Neumann type coupling. The displacements at the coupling interface of the structure solver is the input for the fluid solver that gives forces to the structure solver as its output.

5.2.1 Explicit Coupling Schemes

Two different implementations of explicit coupling schemes exist in preCICE: The staggered scheme and the parallel scheme. The staggered scheme uses the old time step's values $x_1^{(n)}$ at the coupling surface for the execution of the *n*th time step $(t_n \leftarrow t_{n+1})$ to achieve $x_2^{(n+1)}$. These new values act as boundary values for the *n*th time step of S_2 [35]:

$$x_2^{(n+1)} = S_1^{(n)} \left(x_1^{(n)} \right) \quad \text{and} \quad x_1^{(n+1)} = S_2^{(n)} \left(x_2^{(n+1)} \right)$$
 (134)

Since the two solvers are executed staggered, this scheme is not optimal with respect to load balancing [35]. In contrast, the parallel scheme does not have this drawback. It uses the old time step values $x_1^{(n)}$ and $x_2^{(n)}$ as inputs for both solvers:

$$x_2^{(n+1)} = S_1^{(n)} \left(x_1^{(n)} \right) \quad \text{and} \quad x_1^{(n+1)} = S_2^{(n)} \left(x_2^{(n)} \right)$$
 (135)

According to [35] both explicit schemes yield consistent time steps but cause instabilities that cannot be avoided, even if the time step length is reduced.

5.2.2 Implicit Coupling Schemes

All implicit coupling schemes in preCICE are based on fixed-point iterations using the staggered or the parallel explicit scheme. The fixed-point iteration regarding the staggered scheme is as follows:

$$x_2^{(n+1),i+1} = S_1^{(n)} \left(x_1^{(n+1),i} \right) \quad \text{and} \quad x_1^{(n+1),i+1} = S_2^{(n)} \left(x_2^{(n+1),i+1} \right)$$
 (136)

The fixed-point iteration corresponding to the parallel scheme can be written as:

$$x_2^{(n+1),i+1} = S_1^{(n)} \left(x_1^{(n+1),i} \right) \quad \text{and} \quad x_1^{(n+1),i+1} = S_2^{(n)} \left(x_2^{(n+1),i} \right)$$
 (137)

Here, the new iterates for $x_2^{(n+1),i+1}$ and $x_2^{(n+1),i+1}$ are computed in parallel. preCICE offers simple underrelaxation, adaptive Aitken underrelaxation and various quasi-Newton solvers in order to solve these fixed-point equations in as robust and stable as possible [35]. In the following a generic fixed-point equation

$$x = H(x) \tag{138}$$

is considered. Every fixed-point equation solver in preCICE is a combination of a fixed-point iteration and a post-processing step that modifies the result of the fixed-point iterator. Underrelaxed fixed-point iterations are the simplest solvers [35]:

$$x^{i+1} = H(x^i) + (\omega - 1)\left(H(x^i) - x^i\right)$$
(139)

with $\omega \in \mathbb{R}, 0 < \omega \leq 1$ either a user-defined value or additionally adapted by the solver throughout the iterations using Aitken underrelaxation. In order to get the full potential of a parallel scheme, preCICE provides a powerful class of convergence acceleration methods, called quasi-Newton methods. With these methods a fast convergence is achieved in particular for difficult problems when using parallel fixed-point iterations [35]. All

quasi-Newton methods in preCICE accelerate the fixed-point iteration by a subsequent Newton step [35]:

$$x^{k+1} = \underbrace{H(x^k)}_{=: \tilde{x}^k} - J_{\tilde{R}}^{-1} \left(\underbrace{H(x^k) - x^k}_{=: \tilde{x}^k} \right)$$

$$=: \tilde{x}^k = \tilde{x}^k - H^{-1}(\tilde{x}^k)$$

$$(140)$$

where $\tilde{R} = I - H^{-1}$ maps \tilde{x}^k to the residual $r^k = \tilde{R}(\tilde{x}^k) = H(x^k) - x^k$. The inverse of the Jacobian $J_{\tilde{R}}^{-1}$ can be approximated $(\hat{J}_{\tilde{R},k}^{-1})$ in different ways in preCICE:

• The classical interface quasi-Newton (IQN) approach uses the approximated inverse Jacobian with minimal Frobenius norm:

$$\left\| \hat{J}_{\tilde{R},k}^{-1} \right\|_{F} \leftarrow \min \tag{141}$$

• The multi-vector quasi-Newton (IMVJ) approach minimizes the distance between $\hat{J}_{\tilde{R},k}^{-1}$ and the approximate $\hat{J}_{\tilde{R},k}^{-1,(n)}$ from the last time step:

$$\left\| \hat{J}_{\tilde{R},k}^{-1} - \hat{J}_{\tilde{R},k}^{-1,(n)} \right\|_{F} \leftarrow \min$$
 (142)

For more details, see [35] and [34].

Additional specifications can be made by the user to adapt the coupling method to the problem. A statement of extrapolation in time can be made to get a better initial guess for the next time step solution and with subcycling several small time steps are done in one of the solvers while the others use a larger time step.

5.3 Data Mapping

Due to the fact that independent solvers are used for coupling, it can happen that the single solver meshes are non-matching. This requires a mapping of the data that is sent by the above iterative coupling methods from the coupling surface of one solver domain to the surface of the other solver domain. The case where the two meshes matching each other is not very common when dealing with two distinct solvers and would only result in a copying of data values for transfer without any interpolation or projection. In the case of non-conforming meshes interpolation algorithms are necessary and when the two grids overlap or gaps exist even projections in some form are additionally required [34]. preCICE offers some data mapping methods but also provides the possibility for user-defined mapping implementations for special needs [35].

5.3.1 Conservative vs. Consistent

The mapping of displacements and pressures, for example, usually requires a **consistent** mapping, i.e. constants should be interpolated exactly. Let $\underline{H}_{AB} \in \mathbb{R}^{n_A \times n_B}$ be the

matrix mapping values between variables from solver A to B. Then consistent mapping can be expressed as follows:

$$\underline{\beta}_B = \underline{H}_{AB}\underline{\beta}_A \tag{143}$$

with the arbitrary variable β whose values are represented as matrix $\beta_{A,i} = \beta_{B,j} = \beta = const$, $1 \le i \le n_A$, $1 \le j \le n_B$. The property of exact constant interpolation is the case if and only if the row sums of the mapping matrix are equal to 1 [34]:

$$\beta_{B,i} = \sum_{j=1}^{n_A} H_{AB,ij} \beta_{A,j} = \beta_{A,j} = \beta \qquad \forall i$$
 (144)

A **conservative mapping** on the other hand is important for integral values like forces. This mapping approach requires the sum of the data values is equal on both sides:

$$\sum_{i=1}^{n_B} \beta_{B,i} = \sum_{j=1}^{n_A} \beta_{A,j} \tag{145}$$

This property holds only for the column sums of \underline{H}_{AB} to be equal to 1:

$$\sum_{i=1}^{n_B} \beta_{B,i} = \sum_{i=1}^{n_B} \left(\underline{H}_{AB} \underline{\beta}_A \right)_i = \sum_{i=1}^{n_B} \sum_{j=1}^{n_A} H_{AB,ij} \beta_{A,j} = \sum_{j=1}^{n_A} \left(\sum_{i=1}^{n_B} H_{AB,ij} \right) \beta_{A,j} = \sum_{j=1}^{n_A} 1 \beta_{A,j}$$
(146)

Further details to the mathematical background of the two mapping approaches can be found in [34]. Both mappings are available for all methods described below.

5.3.2 Nearest-Neighbor

The Nearest-Neighbor mapping method works locally and requires only vertex positions, i.e. only the data nodes of the solver surface meshes are required for the mapping. The mapping itself is simple: In order to map values from mesh A to mesh B, for every node of mesh B the geometrically closet neighbor to a node of mesh A needs to be determined. Then, the data value from the closest node in mesh A is copied to the corresponding node in mesh B. There are special cases that can happen with this projection method: A value from mesh A can be copied to more than one node of mesh B if the node in mesh A is closest to all of the B nodes. On the other hand, nodes in A can be omitted if no projection partner in B were found, since the search for nearest neighbors is done on mesh B only. This is a general problem of all projection methods [34].

If the meshes have matching vertex positions then this mapping method is good choice. For non-conforming meshes the first order accuracy of Nearest-Neighbor makes it a rather bad choice and other mapping methods should be taken into account [35].

5.3.3 Nearest-Projection

The Nearest-Projection mapping requires not only vertex positions but also topology information for the source mesh. It searches for mesh nodes on the target mesh and creates geometrical projections to a matching set of elements on the source mesh. An

interpolation is employed from nodes to mesh elements and vice versa. The finding of closest neighbors is similar to Nearest-Neighbor, but Nearest-Projection uses faces instead of points for its projections and several data nodes can be involved [34]. Just as for the Nearest-Neighbor mapping, nodes can be omitted here if the mesh widths differ too much locally and theoretically this method is also of first order due to the projection. In practice, due to the fact that often the distance between the two meshes normal to the coupling interface is smaller that the mesh widths, a second order accuracy can be observed [35].

5.3.4 Radial Basis Function

This mapping method uses radial basis functions (RBF) centered at the mesh nodes of the source mesh. It does not require topological information, projections or search-algorithms. It works well on general non-conforming meshes, where overlapping meshes or gaps between them can occur. Several different basis functions are implemented in preCICE, including Gaussian, (Inverse) Multiquadrics, Thin Plate Splines, Volume Splines (see [35]), but further functions can be added easily. The global support of some RBFs (Gaussian and Thin Plate, for instance) can be limited to a smaller area by introducing a cut-off radius. This reduces the density of the system matrix for interpolation and thus reduces the amount of communication between the solvers and the computational complexity of the data mapping. This allows local communication while still having the properties of the radial basis functions [35].

5.4 Communication

The coupling of different solvers in the frame of a multi-physics simulation requires an efficient communication between different executables. preCICE offers a communication per interaction of two or more participants. Either MPI ports or low level TCP/IP sockets are available for communication in preCICE. A fully parallel point-to-point data transfer is possible with preCICE, since it analyses the mesh decomposition of all participants and constructs only local communication channels where they are needed [35].

5.4.1 MPI Communication

The message passing interface (MPI) is used in preCICE with a multiple program multiple data paradigm, i.e. two different codes are communicating with their own data. Two MPI-based communication methods are implemented which differ in the way how they set up the communication space. With the first method all executables are put in the same communication space, called "communicator world". All processes of each participant are then grouped into separate communicators. An inter-communicator is used as the actual channel for data exchange. The second method establishes a connection between processes started individually and in different communication spaces. The exchange of connection information is done through a commonly accessible file which stores the port names of the participants. For this a MPI version of 2 or greater is needed [34]. The result is the same as with method one: An inter-communicator.

5.4.2 Socket Communication

The communication by TCP/IP increases compatibility to closed-source software that might be restricted to some MPI implementations [35]. To abstract from platform dependent socket interfaces like Pthreads or Winsock, the Boost. Asio (asynchronous network and low-level input/output) library was used for implementing the socket communication in preCICE [34]. The sending and receiving of data is managed by the transfer control protocol (TCP) which is designed for failsafe data transfer and synchronization between sender and receiver. Communication via TCP is not typical for multi-physics simulations that often run on supercomputers, because it involves a synchronization step and additional communication overhead compared to MPI. Other difficulties are that ports used for socket communication may be blocked by default and each supercomputer node might have different network address which requires automated checks on a low-level socket layer [34].

5.5 Implementation

5.5.1 Additional Boundary Conditions

- - 2: inner node, part of preCICE interface region (only used by preCICE coupled variant)
 - 20: same as 0 but additionally part of preCICE interface region (only used...)
 - 21: same as 1 but additionally part of preCICE ...

5.5.2 Partitioned Coupling Surface

the surface interface between the solvers is partitioned across the mpi processes of the structure solver. every process needs to construct a grid for itself

5.5.3 Integration of preCICE

the main-function gets modified with the preCICE code

6 Validation

The code was tested with several problems to validate its correctness and state where and why there are differing results to the existing (commercial) FEM codes **TODO:** besseren **Text hier einfügen**

6.1 Test A: Plane Displacement with Tri-3 Element

The three-node triangular plane element **Tri-3** is validated with a cantilever beam shown in Figure 14. The example problem was taken from [26].

Figure 14: Cantilever beam consisting of 32 triangular elements, clamped at the left side and a total force of 40 kips applied in positive y-direction at the right side

• Mesh dimensions

Length $l = 48 \ inch$ Depth $h = 12 \ inch$ Thickness $t = 1 \ inch$

• Material properties

Young's Modulus E = 30000ksiPoisson's ratio $\nu = 0.25$

• Boundary conditions

Clamped boundary conditions at node 0, 9 and 18, i.e. left side of the cantilever beam.

Loading

A concentrated load of 40kips in total. Node 8 and 26 has a load of $6\frac{2}{3}$, node 17 has a load of $26\frac{2}{3}$.

Results: The displacements in x- and y-direction at node 22 and 26 are presented in Table 1 together with the results of SAP-2000 from [26]. The displacements of the work's program deviate from the commercial software in all cases for at most 0.027%.

\mathbf{Node}	Displacement	Results from	Results from	Deviation
		program	SAP-2000	
22	u_x	-0.0255988	-0.025605	0.024%
	u_y	0.0629549	0.062971	0.026%
26	u_x	-0.0342621	-0.034271	0.027%
20	u_y	0.1944070	0.194456	0.025%

Table 1: Displacements and deviations for Test A

6.2 Test B: Plane Displacement with Quad-4

The four-node quadrilateral plane element **Quad-4** is validated with the same cantilever beam as used in Test A. It is shown in Figure 15. The example problem was also taken from [26].

Figure 15: Cantilever beam consisting of 16 quadrilateral elements, clamped at the left side and a total force of 40 kips applied in positive y-direction at the right side

• Mesh dimensions

Length l = 48 inch

Depth h = 12 inchThickness t = 1 inch

• Material properties

Young's Modulus E = 30000ksi

Poisson's ratio $\nu=0.25$

• Boundary conditions

Clamped boundary conditions at node 0, 9 and 18, i.e. left side of the cantilever beam.

• Loading

A concentrated load of 40kips in total. Node 8 and 26 has a load of $6\frac{2}{3}$, node 17 has a load of $26\frac{2}{3}$.

Results: The displacements in x- and y-direction at node 22 and 26 are presented in Table 2 together with the results of SAP-2000 from [26]. The displacements of the work's program deviate from the commercial software in all cases for at most 0.03%.

\mathbf{Node}	Displacement	Results from	Results from	Deviation
		program	SAP-2000	
22	u_x	-0.0427728	-0.042774	0.028%
	u_y	0.1012620	0.101265	0.030%
26	u_x	-0.0570728	-0.057074	0.021%
	u_y	0.3160560	0.316064	0.025%

Table 2: Displacements and deviations for Test B

6.3 Test C: Plate Displacement with Tri-3

6.4 Test D: Plate Displacement with Quad-4

6.5 Test E: Shell Displacement

6.6 Test F: Convergence (increasing number of elements)

6.7 Test G: MPI (increasing number of processes)

6.8 Test H: Coupling with preCICE

7 Conclusion

What does my code do, what problems arose, what problems persist, what does my code cannot do, where are opportunities for extensions, etc.

7.1 Future Work

• Now: Only forces at nodes are accepted and processed. Then: Pressures linked to faces can be accepted, too. The conversion to nodal values takes place in the structure solver. (Idea from coupling data mapping)

References

- [1] C. Prud'Homme, V. Chabannes, V. Doyeux, M. Ismail, A. Samaké, and G. Pena, "Feel++: A computational framework for galerkin methods and advanced numerical methods," in *ESAIM: Proceedings*, vol. 38, pp. 429–455, EDP Sciences, 2012.
- [2] F. Consortium, "Feel++ finite element embedded library in c++." http://www.feelpp.org.
- [3] B. Patzák, "Oofem project home page," 2009. http://www.oofem.org.
- [4] B. Patzák and Z. Bittnar, "Design of object oriented finite element code," *Advances in Engineering Software*, vol. 32, no. 10, pp. 759–767, 2001.
- [5] B. Patzák, "publications [oofem wiki]." http://www.oofem.org/wiki/doku.php?id=publications.
- [6] L. Saavedra, J. Pommier, and Y. Renard, "Mpi parallelization of getfem++ get-fem++." http://download.gna.org/getfem/html/homepage/userdoc/parallel.html.
- [7] A. H. Jarosch, "icetools: a numerical ice flow model download." http://sourceforge.net/projects/icetools/.
- [8] M. Bogdan, K. Ludwig, E. Sapozhnikova, and B. Speiser, "Echem++ a problem solving environment for electrochemistry." http://www.echem.uni-tuebingen.de/echem/software/EChem++/echem++.shtml/.
- [9] A. Thielscher, "free software package for the simulation of non-invasive brain stimulation." http://simnibs.de/.
- [10] J. Pommier and Y. Renard, "Getfem++ an open source library based on collaborative development." http://download.gna.org/getfem/html/homepage/index.html.
- [11] "MFEM: Modular finite element methods." http://www.mfem.org.
- [12] "MFEM finite element discretization library." http://mfem.org/publications/.
- [13] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, "libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations," *Engineering with Computers*, vol. 22, no. 3–4, pp. 237–254, 2006. http://dx.doi.org/10.1007/s00366-006-0049-3.
- [14] "libmesh publications listing." http://libmesh.github.io/publications.html.
- [15] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis. J. Wiley, 2002.
- [16] P. Steinke, Finite-Elemente-Methode: Rechnergestützte Einführung. Springer-Verlag, 2015.

- [17] O. C. Zienkiewicz and R. L. Taylor, *The finite element method: Solid mechanics*, vol. 2. Butterworth-heinemann, 2000.
- [18] D. Braess, Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, 2007.
- [19] P. Bergan and C. Felippa, "A triangular membrane element with rotational degrees of freedom," *Computer Methods in Applied Mechanics and Engineering*, vol. 50, no. 1, pp. 25–69, 1985.
- [20] B. Klein, FEM: Grundlagen und Anwendungen der Finite-Elemente-Methode. Springer-Verlag, 2013.
- [21] J.-L. Batoz, K.-J. Bathe, and L.-W. Ho, "A study of three-node triangular plate bending elements," *International Journal for Numerical Methods in Engineering*, vol. 15, no. 12, pp. 1771–1812, 1980.
- [22] J. L. Tocher, Analysis of plate bending using triangular elements. PhD thesis, University of California, Berkeley, 1963.
- [23] B. Specht, "Modified shape functions for the three-node plate bending element passing the patch test," *International Journal for Numerical Methods in Engineering*, vol. 26, no. 3, pp. 705–715, 1988.
- [24] J.-L. Batoz and M. B. Tahar, "Evaluation of a new quadrilateral thin plate bending element," *International Journal for Numerical Methods in Engineering*, vol. 18, no. 11, pp. 1655–1677, 1982.
- [25] H. Werkle, Finite Elemente in der Baustatik. Springer, 1995.
- [26] K. Kansara, Development of Membrane, Plate and Flat Shell Elements in Java. PhD thesis, Virginia Tech, 2004.
- [27] B. S. Kirk, Adaptive Finite Element Simulation of Flow and Transport Applications on Parallel Computers. PhD thesis, Austin, TX, USA, 2007.
- [28] B. S. Kirk, J. W. Peterson, and R. H. Stogner, "The libMesh finite element library: A case for object-oriented high-performance computing," in *PRACE Summer School* 2013 Frameworks for Scientific Computing on Supercomputers; Ostrava, Czech Republic, June 17–21, 2013. http://ntrs.nasa.gov/search.jsp?R=20130013759.
- [29] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.
- [30] "PETSc web page." http://www.mcs.anl.gov/petsc.
- [31] "LASpack download page." http://www.netlib.org/linalg/.

- [32] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, "PETSc users manual," Tech. Rep. ANL-95/11 Revision 3.6, Argonne National Laboratory, 2015.
- [33] "Gmsh manual." http://geuz.org/gmsh/doc/texinfo/gmsh.html.
- [34] B. Gatzhammer, Efficient and flexible partitioned simulation of fluid-structure interactions. Verlag Dr. Hut, 2015.
- [35] "preCICE a fully parallel library for multi-physics surface coupling,"
 - All URLs were lastly checked at December 8, 2015.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift