Notação Assintótica

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Resumo da aula anterior

- ► Técnica de Projeto de Algoritmos: **Divisão e conquista**.
 - ► Três passos fundamentais: dividir, conquistar e combinar.
- Análise de complexidade.
 - ▶ Uso de uma **equação de recorrência** *T*(*n*) representando o tempo de execução de um problema de tamanho *n*.

$$T(n) = \left\{ \begin{array}{ll} c & \text{caso base} \\ aT(n/b) + D(n) + C(n) & \text{caso contrário} \end{array} \right.$$

Análise do MERGESORT.

$$T(n) = \begin{cases} c & \text{se } n = 1, \\ 2T(n/2) + cn & \text{se } n > 1. \end{cases}$$

Árvore de recorrência.

Conteúdo desta aula

- Introdução a notação assintótica.
- ▶ Notações: Θ , O, Ω , $o \in \omega$.
- Propriedades de comparações assintóticas.
- Notação assintótica em equações.
- Exercícios.

Problema

Vimos que a complexidade do INSERTION-SORT no pior caso era:

$$T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} + c_8\right)n - (c_1 + c_4 + c_5 + c_8).$$

Complicado? SIM. Expressão longa e complicada para memorizar e trabalhar.

O que queremos?

Uma forma simplificada de representar o comportamento do algoritmo, isto é, uma notação simples que descreva aquela afirmação que usamos informalmente ("é um algoritmo quadrático").

Análise assintótica

Informa o comportamento da função f(n), para n tendendo a $+\infty$.

A análise assintótica de um algoritmo requer:

- Identificar qual aspecto analisar:
 - tempo de execução;
 - uso de espaço (quantidade de memória);
 - ▶ outros atributos: consumo de banda (comunicação), I/O, etc.
- Identificar uma função que caracteriza tal aspecto.
- Identificar a classe assintótica de funções a qual esta função pertence, sendo esta classe responsável por definir o comportamento limitante da função (limites na taxa de crescimento).

Ordem de crescimento

A **ordem de crescimento** caracteriza a eficiência e permite a comparação de desempenho entre diferentes algoritmos.

Para entradas grandes o suficiente, constantes multiplicativas e termos de baixa-ordem em uma análise exata são dominados pelo efeito do tamanho da entrada.

Ordem de crescimento

A **ordem de crescimento** caracteriza a eficiência e permite a comparação de desempenho entre diferentes algoritmos.

Para entradas grandes o suficiente, constantes multiplicativas e termos de baixa-ordem em uma análise exata são dominados pelo efeito do tamanho da entrada.

Eficiência assintótica

Quando olhamos para entradas suficentemente grandes e consideramos relevante apenas a ordem de crescimento, estamos estudando a eficiência **assintótica** do algoritmo em relação ao uso de algum recurso.

- Preocupa-se com como o o algoritmo se comporta à medida que o tamanho da entrada aumenta sem limitações.
- Um algoritmo assintoticamente mais eficiente será a melhor escolha em todos os casos, exceto para entradas muito pequenas.

Definição

Dada uma função g(n), definimos o conjunto de funções O(g(n)):

$$O(g(n)) = \{f(n) : \exists c > 0, \exists n_0 > 0 \mid 0 \le f(n) \le cg(n), \forall n \ge n_0\}$$

Definição

Dada uma função g(n), definimos o conjunto de funções O(g(n)):

$$O(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \mid 0 \le f(n) \le cg(n), \forall n \ge n_0 \}$$

Definição alternativa

$$f(n) \in O(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L, 0 \le L < \infty.$$

- A notação O descreve um limite assintótico superior para uma função (garantia no pior caso).
- ▶ Escrevemos f(n) = O(g(n)) para indicar que $f(n) \in O(g(n))$.
- Assumimos que todas as funções envolvidas são assintoticamente não negativas.
- ▶ Informalmente, dizemos que f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

Mostre que $2n^2 = O(n^2)$.

- ► A notação O descreve um limite assintótico superior para uma função (garantia no pior caso).
- ▶ Escrevemos f(n) = O(g(n)) para indicar que $f(n) \in O(g(n))$.
- Assumimos que todas as funções envolvidas são assintoticamente não negativas.
- ▶ Informalmente, dizemos que f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

Mostre que $2n^2 = O(n^2)$. Considerando a definição, f(n) será $2n^2$ e g(n) será n^2 . Temos que mostrar que existem c e n_0 tal que $0 \le 2n^2 \le cn^2$ para todo $n \ge n_0$.

Considerando c = 2, f(n) = cg(n) para todo $n \ge n_0 = 1$.

Mais exemplos:

- ▶ $n \in O(n^3)$.
- ► $10000n + 10000 \in O(n)$.
- ▶ $n^3 + n^2 + n \in O(n^3)$.

Mais exemplos:

- ▶ $n \in O(n^3)$. Considere $c = 1, n_0 = 1$.
- ▶ $10000n + 10000 \in O(n)$. Considere $c = 20000, n_0 = 1$.
- ▶ $n^3 + n^2 + n \in O(n^3)$. Considere $c = 3, n_0 = 1$.

Exemplos de funções que não pertencem a $O(n^2)$ n^3 , $n^{2.000001}$, $n^2 \lg n$, 2^n , ...

Mais exemplos:

- ▶ $n \in O(n^3)$. Considere $c = 1, n_0 = 1$.
- ▶ $10000n + 10000 \in O(n)$. Considere $c = 20000, n_0 = 1$.
- ▶ $n^3 + n^2 + n \in O(n^3)$. Considere $c = 3, n_0 = 1$.

Exemplos de funções que não pertencem a $O(n^2)$ n^3 , $n^{2.000001}$, $n^2 \lg n$, 2^n , ...

Sua vez

- ► Mostre que $10n^4 + 5n^3 + 3n^2 + 1000n \in O(n^4)$.
- ▶ Mostre que $n^3 \notin O(n)$.

Exemplo do Insertion Sort

- ▶ Verifique que T(n) do INSERTION SORT pertence a $O(n^2)$.
- Em geral, um polinômio com termo de maior ordem an^d (polinômio em n de grau d) estará em $O(n^d)$.
- Um limite superior no pior caso também é um limite superior nos outros casos.
- Note que a definição da notação O também funciona para funções $g(n) = n^3$, $g(n) = 2^n$, etc. Então podemos dizer que o pior caso do Insertion Sort é $O(n^3)$, $O(2^n)$, etc. Mas estes limites "folgados" não são úteis.

Notação não diz o que as funções são:

Considere o algoritmo de Busca Binária num vetor ordenado:

- ▶ Consumo de **tempo** no **pior caso** está em $O(\lg n)$;
- ▶ Consumo de **tempo** no **melhor caso** está em O(1);
- Consumo de memória está em O(n) em todos os casos.

Notação não diz o que as funções são:

Considere o algoritmo de BUSCA BINÁRIA num vetor ordenado:

- ▶ Consumo de **tempo** no **pior caso** está em $O(\lg n)$;
- ▶ Consumo de tempo no melhor caso está em O(1);
- Consumo de memória está em O(n) em todos os casos.

Computação vs. Matemática

Considere o tempo de execução de dois algoritmos:

- $f(n) = n \lg n$
- price g(n) = 100n

Qual algoritmo escolher?

Notação não diz o que as funções são:

Considere o algoritmo de Busca Binária num vetor ordenado:

- ▶ Consumo de **tempo** no **pior caso** está em $O(\lg n)$;
- ▶ Consumo de tempo no melhor caso está em O(1);
- Consumo de memória está em O(n) em todos os casos.

Computação vs. Matemática

Considere o tempo de execução de dois algoritmos:

- $f(n) = n \lg n$
- g(n) = 100n

Qual algoritmo escolher?

Curiosidade sobre o número 2^{100} :

http://www.freemars.org/jeff/2exp100/question.htm.

Definição

Dada uma função g(n), definimos o conjunto de funções $\Omega(g(n))$:

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, \exists n_0 > 0 \mid 0 \le cg(n) \le f(n), \forall n \ge n_0 \}$$

Definição alternativa

$$f(n) \in \Omega(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L, 0 < L \le \infty.$$

- A notação Ω descreve um limite assintótico inferior para uma função de crescimento considerando o melhor caso.
- ▶ Informalmente, dizemos que f(n) não cresce tão vagarosamente quanto g(n).
- ▶ A notação Ω é o oposto da notação O, isto é, $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$ [exercício!].

Exemplo:

Mostre que $2n \in \Omega(n)$.

- A notação Ω descreve um limite assintótico inferior para uma função de crescimento considerando o melhor caso.
- ▶ Informalmente, dizemos que f(n) não cresce tão vagarosamente quanto g(n).
- ▶ A notação Ω é o oposto da notação O, isto é, $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$ [exercício!].

Exemplo:

Mostre que $2n \in \Omega(n)$. Pela definição, temos que encontrar c e n_0 tal que $0 \le cn \le 2n, \forall n \ge n_0$. Considere c = 1 e $n_0 = 1$.

Mais exemplos:

- $\qquad \qquad \mathbf{n}^3 \in \Omega(\mathbf{n}^2).$
- ▶ $\sqrt{n} \in \Omega(\lg n)$.
- $\qquad \qquad \mathbf{n}^2 + 10\mathbf{n} \in \Omega(\mathbf{n}^2).$

Mais exemplos:

- ▶ $n^3 \in \Omega(n^2)$. Considere c = 1 e $n_0 = 1$.
- ▶ $\sqrt{n} \in \Omega(\lg n)$. Considere c = 1 e $n_0 = 16$.
- ▶ $n^2 + 10n \in \Omega(n^2)$. Considere c = 1 e $n_0 = 1$.

Exemplos de funções que não pertencem a $\Omega(n^2)$ $n^{1.999999}, n, \lg n, \dots$

Mais exemplos:

- ▶ $n^3 \in \Omega(n^2)$. Considere c = 1 e $n_0 = 1$.
- ▶ $\sqrt{n} \in \Omega(\lg n)$. Considere c = 1 e $n_0 = 16$.
- ▶ $n^2 + 10n \in \Omega(n^2)$. Considere c = 1 e $n_0 = 1$.

Exemplos de funções que não pertencem a $\Omega(\mathbf{n}^2)$ $\mathbf{n}^{1.999999}, \mathbf{n}, \lg \mathbf{n}, \dots$

Sua vez

- ▶ Mostre que $n^2 10n \in \Omega(n^2)$.
- ▶ Mostre que $n^2 \notin \Omega(n^3)$.

Definição

Dada uma função g(n), definimos o conjunto de funções $\Theta(g(n))$:

$$\begin{array}{rcl} \Theta(g(n)) &=& \{f(n): \exists \text{ constantes positivas } c_1, \ c_2 \in n_0 \text{ tais que} \\ && 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \, \forall n \geq n_0 \} \end{array}$$

Definicão alternativa

$$f(n) \in \Theta(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L, 0 < L < \infty.$$

- A notação Θ descreve um limite assintótico restrito (justo).
- ▶ Informalmente, dizemos que f(n) é "sanduichada" por $c_1g(n)$ e $c_2g(n)$.
- ▶ Combinação das definições para O e Ω , isto é, para duas funções f(n) e g(n):

$$f(\textit{n}) \in \Theta(\textit{g}(\textit{n})) \iff f(\textit{n}) \in \textit{O}(\textit{g}(\textit{n})) \, \, \mathrm{e} \, \, f(\textit{n}) \in \Omega(\textit{g}(\textit{n})).$$

▶ Se $f(n) \in \Theta(g(n))$, então $g(n) \in \Theta(f(n))$.

Exemplo:

Mostre que $n^2 - 2n = \Theta(n^2)$.

- A notação Θ descreve um limite assintótico restrito (justo).
- ▶ Informalmente, dizemos que f(n) é "sanduichada" por $c_1g(n)$ e $c_2g(n)$.
- ▶ Combinação das definições para O e Ω , isto é, para duas funções f(n) e g(n):

$$f(\textit{n}) \in \Theta(\textit{g}(\textit{n})) \iff f(\textit{n}) \in \textit{O}(\textit{g}(\textit{n})) \, \, \mathrm{e} \, \, f(\textit{n}) \in \Omega(\textit{g}(\textit{n})).$$

▶ Se $f(n) \in \Theta(g(n))$, então $g(n) \in \Theta(f(n))$.

Exemplo:

Mostre que $n^2 - 2n = \Theta(n^2)$. Considere $c_1 = 1/2$, $c_2 = 1$ e $n_0 = 4$. Assim, $n^2/2 \le n^2 - 2n \le n^2$ para todo $n \ge n_0 = 4$.

Mais exemplos:

Pertencem a $\Theta(n^2)$

- $ightharpoonup n^2$
- $n^2 + 1000n$
- $ightharpoonup 1000n^2 + 1000n 2000$

Mais exemplos:

Pertencem a $\Theta(n^2)$

- \triangleright n^2
- $n^2 + 1000n$
- $ightharpoonup 1000n^2 + 1000n 2000$

Não pertencem a $\Theta(n^2)$

- $n^{1.999999}$
- $n^{2.000001}$
- \triangleright $n \lg n$
- $ightharpoonup n^3$

Exercícios − Θ

Mostre utilizando a definição da notação Θ , se cada expressão a seguir é verdadeira ou falsa.

- 1. $100n^2 = \Theta(n^2)$
- 2. $\frac{1}{2}n^2 3n = \Theta(n^2)$
- 3. $3n^2 + 20 = \Theta(n)$
- **4**. $6n = \Theta(n^2)$
- 5. $720 = \Theta(1)$

Notação *o* (little-oh)

Definição

Dada uma função g(n), denotamos por o(g(n)) o conjunto de funções

$$o(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0, \\ \text{tal que } 0 \le f(n) < cg(n), \forall n \ge n_0\}$$

- Descreve um limite superior assintoticamente estrito.
- A função f(n) torna-se insignificante em relação a g(n) à medida que n aproxima-se do infinito, isto é

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Notação o (little-oh)

Pertence ou não pertence

- $n^{1.999999} \in o(n^2)$
- $\blacktriangleright \ \tfrac{n^2}{\lg n} \in o(n^2)$
- $ightharpoonup n^2 \not\in o(n^2)$
- $\blacktriangleright \ \tfrac{\mathit{n}^2}{1000} \not \in \mathit{o}(\mathit{n}^2)$

Tente você!

Mostre que $2n^2 = o(n^3)$.

Notação ω (little omega)

Definição

Dada uma função g(n), denotamos por $\omega(g(n))$ o conjunto de funções

$$\omega(g(n)) = \{f(n) : \forall \text{ constante } c > 0, \exists \text{ uma constante } n_0 > 0, \\ \text{tal que } 0 \le cg(n) < f(n), \forall n \ge n_0\}$$

- Descreve um limite inferior assintoticamente estrito.
- ▶ A função f(n) torna-se arbitrariamente grande em relação a g(n) à medida que n aproxima-se do infinito, isto é

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty.$$

Notação ω (little-omega)

Pertence ou não pertence

- ▶ $n^{2.000001} \in \omega(n^2)$
- $ightharpoonup n^2 \lg n \in \omega(n^2)$
- $ightharpoonup n^2 \not\in \omega(n^2)$

Resumo sobre limites e notação assintótica

Comparando crescimento de funções

Sejam f(n) e g(n) funções, então:

$$\begin{split} f(n) &\in O(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L, \qquad 0 \le L < \infty. \\ f(n) &\in \Omega(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L, \qquad 0 < L \le \infty. \\ f(n) &\in \Theta(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = L, \qquad 0 < L < \infty. \\ f(n) &\in o(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \\ f(n) &\in \omega(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty. \end{split}$$

Notação Big-Oh com múltiplas variáveis

Definição

$$\begin{array}{rcl} O(g(m,n)) & = & \{f(m,n): \exists \text{ constantes positivas } c, \ m_0 \in n_0 \mid \\ & f(m,n) \leq cg(m,n) \text{ para todo } n \geq n_0 \in m \geq m_0 \} \end{array}$$

Exemplo

Seja $f(m, n) = 32mn^2 + 17mn + 32n^3$.

- ► $f(m, n) \in O(mn^2 + n^3)$ e $f(m, n) \in O(mn^3)$.
- ► $f(m, n) \notin O(n^3)$ nem $f(m, n) \notin O(mn^2)$.

Analogia com números reais

- ▶ Sejam f, g funções e a, $b \in \mathbb{R}$.
- ▶ $f(n) = O(g(n)) \approx a \leq b$.
- $f(n) = \Omega(g(n)) \approx a \geq b$.
- $f(n) = \Theta(g(n)) \approx a = b$.
- $f(n) = o(g(n)) \approx a < b.$
- $f(n) = \omega(g(n)) \approx a > b$.

Propriedades de comparações assintóticas

Transitividade

- ▶ $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$ implicam $f(n) = \Theta(h(n))$.
- Vale para as outras notações.

Reflexividade

- $f(n) = \Theta(f(n)).$
- ▶ E quanto às notações O, Ω , o e ω ?

Simetria

- ▶ $f(n) = \Theta(g(n))$ se e somente se $g(n) = \Theta(f(n))$.
- Vale para outras notações? Por quê?

Notação assintótica em equações

Colocando notação assintótica em equações permite-nos simplificar manipulações durante a análise.

Notação assintótica no lado direito: ∃

O(g(n)) no lado direito significa $\it para alguma função anônima no conjunto <math>O(g(n))$.

$$\begin{array}{ll} 2n^2+3n+1=2n^2+\Theta(n) & \text{significa:} \\ 2n^2+3n+1=2n^2+f(n) & \text{para alguma } f(n)\in\Theta(n) \\ & \text{ (em particular, } f(n)=3n+1). \end{array}$$

Notação assintótica em equações

Notação assintótica no **lado esquerdo**: ∀

A notação somente é usada no lado esquerdo quando também está presente no lado direito.

Semântica: Não importa como a função anônima é escolhida no lado esquerdo, existe um meio de escolher funções no lado direito de forma a satisfazer a equação.

$$2n^2+\Theta(n)=\Theta(n^2)$$
 significa que $\forall f(n),\ \exists g(n)\in\Theta(n^2)$ tal que $2n^2+f(n)=g(n).$

Combinando Termos

Podemos fazer operações algébricas como:

$$2n^{2} + 3n + 1 = 2n^{2} + \Theta(n) = \Theta(n^{2})$$

Exercícios

Livro do Cormen.

- ▶ 3.1-1
- **▶** 3.1-2
- **▶** 3.1-3
- **▶** 3.1-4