Aula 6 Inteligência Artificial Aplicada Prof. Dr. Luciano Frontino de Medeiros

Temas

- Algoritmos Genéticos
- Etapas do AG
- Operadores de AG
- Exemplo de Aplicação de AG
- AG em Linguagem Java

Conversa Inicial

- A teoria da evolução darwiniana aplicada à computação
- Evolução de soluções parciais ao longo de várias iterações
- Algoritmos Genéticos

Algoritmos Genéticos

- Um algoritmo genético (AG) faz parte da classe de algoritmos de busca
- O algoritmo procura uma solução dentro de um espaço para um problema de otimização
- Os AG podem ser uma boa opção para efetuar a busca em problemas considerados intratáveis

Exemplos de Aplicações

- Arquitetura de circuitos eletrônicos
- Planejamento e roteirização
- Programação de games
- Previsão do tempo
- Descoberta de identidades matemáticas

Algoritmo de Busca

- Algoritmo de busca em feixe estocástico
- Os estados sucessores são criados a partir da combinação de dois (ou mais) estados "pais", ao invés de serem criados a partir da variação de um único estado

Fatores de Sucesso do AG

- Simplicidade da operação
- Facilidade de implementação
- Eficácia na busca da região onde provavelmente está o máximo global
- Aplicável nas situação onde se tem pouco ou nenhum conhecimento do modelo, ou este é impreciso

Função Objetivo

- A produção de uma nova população é avaliada por uma função objetivo, ou função de fitness
- Esta função retorna à nova população priorizando os estados melhores

Diferença das Técnicas Convencionais

- Busca em feixe
- Busca cega (sem conhecimento)
- Usam operadores estocásticos ou probabilísticos e não regras determinísticas

Etapas do Algoritmo Genético

Etapas do AG (1)

- 1. Cria uma população aleatória de candidatos à solução (pop)
- 2. Enquanto as condições de terminação não são satisfeitas: (cada iteração ou geração)

- (a) Cria uma nova população vazia (new-pop)
- (b) Enquanto a new-pop não estiver completa:
 - i. Faz a seleção de dois indivíduos aleatoriamente de pop (dando preferência na seleção aos indivíduos de maior fitness)

Etapas do AG (2)

- ii. Faz o crossover de dois indivíduos para obter dois novos indivíduos
- (c) Dá a cada membro da newpop a chance de mutação
- (d) Substitui pop por new-pop

3. Seleciona o indivíduo da população com o melhor fitness como a solução do problema

Operadores de Algoritmos Genéticos

Seleção

Análogo à sobrevivência dos mais adaptados no mundo natural

- Indivíduos mais aptos (melhor fitness) são selecionados para "procriação"
- Utiliza um critério de maior probabilidade de cruzamento para os que têm maior fitness

Crossover

 O crossover (cruzamento) ocorre pela mistura de duas soluções (indivíduos) com o objetivo de criar dois novos indivíduos

Este cruzamento tende a formar indivíduos que possuem características dos "pais", e que têm a possibilidade de atender melhor o fitness

Mutação

- Durante cada geração, existe uma pequena chance de que um individuo dentro da população sofra uma mutação, que vai mudar a característica do indivíduo levemente
- A mutação acontece de forma aleatória no algoritmo

Tamanho da População

Quanto maior é a população, maior a quantidade de soluções possíveis, o que significa maior variação da população

- A população deve ser a maior possível
- O limite é o tempo que o algoritmo vai demorar na execução, e a memória para guardar a população

Formas de Término do AG

- A abordagem mais simples é rodar o algoritmo de busca por um número fixo de gerações
- Encerrar o algoritmo se, depois de passadas algumas gerações, não se obtém uma melhora significativa na adaptação do melhor indivíduo da população

Exemplo de Aplicação de AG

Encontrar o Máximo de uma Equação

$$f(x) = 2 - (x-3)^2 - (y-2)^2$$

 $x = 3$
 $y - 2$

 A seguinte equação tem o seu valor máximo, f(x) = 2, no ponto (3,2)

Definição do Cromossomo

■ Faixa de valores: [0,7]

Decimal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Exemplo:
 - x = 1 (001b)
 - y = 5 (101b) 001101

Fonte: Autor.

Geração Aleatória da População

x	у	Cromossomo
3	6	011110
6	4	110100
3	5	011101
7	0	111000
3	7	011111
1	6	001110
1	2	001010
5	4	101100
6	1	110001
4	2	100010

Fonte: Autor.

Função Objetivo (Fitness)

x	у	Cromossomo	f(x,y)
3	6	011110	-8
6	4	110100	-15
3	5	011101	-3
7	0	111000	-32
3	7	011111	-15
1	6	001110	-8
1	2	001010	0
5	4	101100	-8
6	1	110001	-18
4	2	100010	-3

Fonte: Autor.

Ordenação

x	у	Cromossomo	f(x,y)
1	2	001010	0
3	5	011101	-3
4	2	100010	-3
3	6	011110	-8
1	6	001110	-8
5	4	101100	-8
6	4	110100	-15
3	7	011111	-15
6	1	110001	-18
7	0	111000	-32

Fonte: Autor.

Seleção

x	у	Cromossomo	f(x,y)
1	2	001010	0
3	5	011101	-3
4	2	100010	-3
3	6	011110	-8
1	6	001110	-8
5	4	101100	-8
6	4	110100	-15
3	7	011111	-15
6	1	110001	-18
7	0	111000	-32

Fonte: Autor.

	Decodificação				
x	у	Cromossomo	f(x,y)		
1	3	001011			
1	1	001001		1	
3	2	011010			
1	2	001010			
3	6	011110			
3	7	011111			
3	5	011101			
5	2	101010			
4	2	100010			
3	2	011010		1	Fonte: Autor.

AG em Linguagem Java

JAGA

- Java API for Genetic Algorithms
- Consiste em uma série de classes para o uso em diversos tipos de problemas
- Para exemplos que lidem com aspectos comuns dos AG, podemos criar uma classe de exemplo com o problema em questão

```
public class Example1 {
    public Example1() {
    }

    public void exec() {
        // Define os parâmetros para o AG
        GAParameterSet params = new DefaultParameterSet();
        params.setPopulationSize(40);
        params.setFitnessEvaluationAlgorithm(new
        Example1Fitness());

        // Inclui a reproducão da nova população com crossover e
        mutação
        CombinedReproductionAlgorithm repAlg = new
        CombinedReproductionAlgorithm(0, new
        SimpleBinaryNove(0.9));
        repAlg.insertReproductionAlgorithm(0, new
        SimpleBinaryNove(0.9));
        repAlg.insertReproductionAlgorithm(1, new
        SimpleBinaryNove(0.9));
        params.setReproductionAlgorithm(1, new
        SimpleBinaryNovetation(0.92));
        params.setReproductionAlgorithm(repAlg);
```

```
// Define o método da roleta viciada
params.setSelectionAlgorithm(new RoulettewheelSelection(-
10E10));

// Número máximo de geracões
params.setNavGenerationNumber(10000);
// Define as variáveis por individuo, a precisão decimal e
o tamanho do cromossomo
NDecimalsIndividualSimpleFactory fact = new
NDecimalsIndividualSimpleFactory(2, 2, 15);
fact.setConstraint(0, new RangeConstraint(-6, 6));
params.setIndividualSimpleFactory(fact);
// Constrói o AG
ReusableSimpleGA ga = new ReusableSimpleGA(params);
// Associa o analisador
Analysishook hook = new Analysishook(System.out, false);
ga.addHook(hook);
```

Função Objetivo public class ExampleIFitness implements FitnessEvaluationAlgorithm { public ExampleIFitness() {} public Class getApplicableClass() { return NDecimalsIndividual.class; } public Fitness evaluateFitness(Individual individual, int age, Population population, GAParameterSet params) { NDecimalsIndividual indiv = (NDecimalsIndividual) individual; double x = indiv.getDoubleValue(0); double y = indiv.getDoubleValue(1); double y = indiv.getDoubleValue(1); fitness fit = new AbsoluteFitness(f); return fit; } Fonte: Autor.

Diferentes Execuções

No	x	у	f(x,y)	Geração
1	3.00	1.99	1.9999	2475
2	2.99	2.01	1.9998	9816
3	3.14	2.06	1.9768	4019
4	3.00	1.98	1.9996	6431
5	3.01	2.00	1.9999	306
6	3.00	1.99	1.9999	1438
7	2.97	2.04	1.9975	1259
8	3.00	2.01	1.9999	2102
9	2.99	2.00	1.9999	9165
10	2.07	2.01	1.9990	2341

Fonte: Autor.

