# Universidade Federal do Rio de Janeiro

Trabalho Final de Sistemas Lineares I

Alunos Igor Abreu da Silva

DRE 112053874

Curso Engenharia Eletrônica

Turma 2016/1

Professor Natanael Nunes de Moura Junior

Rio de Janeiro, 15 de Julho de 2016

# Conteúdo

| 1              | Que       | estão 1 |                                |  |  |  |  |  |  |  |  |  |  |  |
|----------------|-----------|---------|--------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| 1.1 Circuito 1 |           |         |                                |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.1.1   | Determinar a função do circuto |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.1.2   | Resposta ao degrau unitário    |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.1.3   | Resposta a rampa unitário 4    |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.1.4   | Resposta a onda quadrada       |  |  |  |  |  |  |  |  |  |  |  |
|                | 1.2       | Circui  | to 2                           |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.2.1   | Determinar a função do circuto |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.2.2   | Resposta ao degrau unitário    |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.2.3   | Resposta a rampa unitário      |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.2.4   | Resposta a onda quadrada       |  |  |  |  |  |  |  |  |  |  |  |
|                | 1.3       | Circui  | to 3                           |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.3.1   | Determinar a função do circuto |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.3.2   | Resposta ao degrau unitário    |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.3.3   | Resposta a rampa unitário      |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.3.4   | Resposta a onda quadrada       |  |  |  |  |  |  |  |  |  |  |  |
|                | 1.4       | Circui  |                                |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.4.1   | Determinar a função do circuto |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.4.2   | Resposta ao degrau unitário    |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.4.3   | Resposta a rampa unitário      |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.4.4   | Resposta a onda quadrada       |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 Circuito 5 |           |         |                                |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.5.1   | Determinar a função do circuto |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.5.2   | Resposta ao degrau unitário    |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.5.3   | Resposta a rampa unitária      |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 1.5.4   | Resposta a onda quadrada       |  |  |  |  |  |  |  |  |  |  |  |
| <b>2</b>       | Que       | estão 2 | 30                             |  |  |  |  |  |  |  |  |  |  |  |
|                | 2.1       | Equaç   | ões do diagrama                |  |  |  |  |  |  |  |  |  |  |  |
|                | 2.2       | Respo   | sposta ao degrau unitário      |  |  |  |  |  |  |  |  |  |  |  |
|                | 2.3       | Respo   | sta a rampa unitária           |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 2.3.1   | Resposta a onda quadrada       |  |  |  |  |  |  |  |  |  |  |  |
| 3              | Questão 3 |         |                                |  |  |  |  |  |  |  |  |  |  |  |
|                | 3.1       | Item a  | a                              |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 3.1.1   | Variando em $\alpha$           |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 3.1.2   | Variando em $\beta$            |  |  |  |  |  |  |  |  |  |  |  |
|                | 3.2       | Item b  | 36                             |  |  |  |  |  |  |  |  |  |  |  |
|                |           | 2 2 1   | Variando em a                  |  |  |  |  |  |  |  |  |  |  |  |

|   |      | 3.2.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|---|------|----------|-------------|-------------|-----|----|----|----|-----|-----|----|-----|----|---|---|--|--|---|---|--|----|
|   | 3.3  | Item $c$ |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.3.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.3.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.4  | Item d   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.4.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.4.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.5  | Item e   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.5.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.5.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.6  | Item $f$ |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.6.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.6.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.7  | Item g   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.7.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.7.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.8  | Item h   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.8.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.8.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.9  | Item i   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.9.1    | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.9.2    | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.10 | Item j   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      |          | Variando    |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.10.2   | Variando    | em $\beta$  |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   | 3.11 | Item k   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.11.1   | Variando    | em $\alpha$ |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
|   |      | 3.11.2   | Variando    | em $\beta$  |     | •  | •  |    |     | •   |    |     |    |   | • |  |  | • | • |  | 36 |
| 4 | Con  | clusão   |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 36 |
| 5 | Refe | erência  | S           |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 37 |
|   |      |          |             |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  |    |
| L | ista | de I     | Figura      | S           |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  |    |
|   | 1    |          | so 1        |             |     |    |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 1  |
|   | 2    | Circuit  | o 1 - Polo  | s e Ze      | ros | 3. |    |    |     |     |    |     |    |   |   |  |  |   |   |  | 2  |
|   | 3    | Circuit  | to 1 - Diag | grama       | de  | В  | oo | de |     |     |    |     |    |   |   |  |  |   |   |  | 3  |
|   | 4    | Circuit  | to 1 - Resp | osta a      | ao  | de | gr | aı | ı ı | ur. | it | áı  | io | ) |   |  |  |   |   |  | 4  |
|   | 5    | Circuit  | to 1 - Resp | osta a      | ır  | an | ıр | a  | uı  | nit | tá | ria | ı  |   |   |  |  |   |   |  | 4  |

| 6  | Circuito 1 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$ | 5  |
|----|---------------------------------------------------------------------|----|
| 7  | Circuito 1 - Resposta ao primeiro harmônico da série de Fou-        |    |
|    | rier de um onda quadrada com $\omega = \frac{1}{8}\pi$              | 5  |
| 8  | Circuito 1 - Resposta ao terceiro harmônico da série de Fourier     |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 6  |
| 9  | Circuito 1 - Resposta ao quinto harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 6  |
| 10 | Circuito 1 - Resposta ao sétimo harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 7  |
| 11 | Circuito 2                                                          | 7  |
| 12 | Circuito 2 - Polos e Zeros                                          | 9  |
| 13 | Circuito 2 - Diagrama de Bode                                       | 9  |
| 14 | Circuito 2 - Resposta ao degrau unitário                            | 10 |
| 15 | Circuito 2 - Resposta a rampa unitária                              | 10 |
| 16 | Circuito 2 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$ | 11 |
| 17 | Circuito 2 - Resposta ao primeiro harmônico da série de Fou-        |    |
|    | rier de um onda quadrada com $\omega = \frac{1}{8}\pi$              | 11 |
| 18 | Circuito 2 - Resposta ao terceiro harmônico da série de Fourier     |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 12 |
| 19 | Circuito 2 - Resposta ao quinto harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 12 |
| 20 | Circuito 2 - Resposta ao sétimo harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 13 |
| 21 | Circuito 3                                                          | 13 |
| 22 | Circuito 3 - Polos e Zeros                                          | 15 |
| 23 | Circuito 3 - Diagrama de Bode                                       | 15 |
| 24 | Circuito 3 - Resposta ao degrau unitário                            | 16 |
| 25 | Circuito 3 - Resposta a rampa unitária                              | 16 |
| 26 | Circuito 3 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$ | 17 |
| 27 | Circuito 3 - Resposta ao primeiro harmônico da série de Fou-        |    |
|    | rier de um onda quadrada com $\omega = \frac{1}{8}\pi$              | 17 |
| 28 | Circuito 3 - Resposta ao terceiro harmônico da série de Fourier     |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 18 |
| 29 | Circuito 3 - Resposta ao quinto harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 18 |
| 30 | Circuito 3 - Resposta ao sétimo harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 19 |
| 31 | Circuito 4                                                          | 19 |
| 32 | Circuito 4 - Diagrama de Bode                                       | 20 |
| 33 | Circuito 4 - Resposta ao degrau unitário                            | 20 |
| 34 | Circuito 4 - Resposta a rampa unitária                              | 21 |

| 35 | Circuito 4 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$ | 21 |
|----|---------------------------------------------------------------------|----|
| 36 | Circuito 4 - Resposta ao primeiro harmônico da série de Fou-        |    |
|    | rier de um onda quadrada com $\omega = \frac{1}{8}\pi$              | 22 |
| 37 | Circuito 4 - Resposta ao terceiro harmônico da série de Fourier     |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 22 |
| 38 | Circuito 4 - Resposta ao quinto harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 23 |
| 39 | Circuito 4 - Resposta ao sétimo harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 23 |
| 40 | Circuito 5                                                          | 24 |
| 41 | Circuito 5 - Polos e Zeros                                          | 25 |
| 42 | Circuito 5 - Diagrama de Bode                                       | 25 |
| 43 | Circuito 5 - Resposta ao degrau unitário                            | 26 |
| 44 | Circuito 5 - Resposta a rampa unitária                              | 26 |
| 45 | Circuito 5 - Resposta a onda quadrada com $\omega = \frac{1}{8}\pi$ | 27 |
| 46 | Circuito 5 - Resposta ao primeiro harmônico da série de Fou-        |    |
|    | rier de um onda quadrada com $\omega = \frac{1}{8}\pi$              | 27 |
| 47 | Circuito 5 - Resposta ao terceiro harmônico da série de Fourier     |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 28 |
| 48 | Circuito 5 - Resposta ao quinto harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 28 |
| 49 | Circuito 5 - Resposta ao sétimo harmônico da série de Fourier       |    |
|    | de um onda quadrada com $\omega = \frac{1}{8}\pi$                   | 29 |
| 50 | Diagrama de Blocos                                                  | 30 |
| 51 | Polos e Zeros                                                       | 31 |
| 52 | Diagrama de Bode                                                    | 32 |
| 53 | Resposta ao degrau unitário                                         | 33 |
| 54 | Resposta a rampa unitária                                           | 33 |
| 55 | Resposta a onda quadrada com $\omega = \frac{1}{4}\pi$              | 34 |
| 56 | Resposta ao primeiro harmônico da série de Fourier de um            |    |
|    | onda quadrada com $\omega = \frac{1}{2}\pi$                         | 34 |
| 57 | Resposta ao terceiro harmônico da série de Fourier de um onda       |    |
|    | quadrada com $\omega = \frac{1}{2}\pi$                              | 35 |
| 58 | Resposta ao quinto ĥarmônico da série de Fourier de um onda         |    |
|    | quadrada com $\omega = \frac{1}{2}\pi$                              | 35 |
| 59 | Resposta ao sétimo harmônico da série de Fourier de um onda         |    |
|    | quadrada com $\omega = \frac{1}{2}\pi$                              | 36 |
|    | ± Z                                                                 |    |

# 1 Questão 1

#### 1.1 Circuito 1

Nesta sessão será resolvida toda a parte necessária para encontra a função/utilidade de cada um dos circuitos. Analisaremos todos os pontos correspondentes aos itens (a), (b), (c), (d), (e) e (f) do trabalho final.

Serão assumidos aqui que os sistemas encontram-se o zerados no instante  $t=0^-.$ 

#### 1.1.1 Determinar a função do circuto



Figura 1: Circuito 1

Podemos modelar o circuito 1 em relação ao nó após R1. Teríamos a seguinte equação:

$$\frac{V_{in} - V_{out}}{R1} - \frac{V_{out}}{R2} - \frac{C\partial V_{out}}{\partial t} - \frac{1}{L} \int V_{out} \partial t = 0$$

Para encontrarmos a E.D.O do circuito, vamos derivar toda esta expressão e separar  $V_{out}$  e  $V_{in}$ , encontrando a seguinte relação:

$$\frac{\partial V_{in}}{\partial t} \left( \frac{1}{R_1} \right) = \frac{C \partial^2 V_{out}}{\partial t^2} + \frac{\partial V_{out}}{\partial t} \left( \frac{1}{R_1} + \frac{1}{R_2} \right) + \frac{V_{out}}{L}$$

Em posse da E.D.O, utilizaremos Laplace para encontrar a função de Transferência do Circuito.

$$X(S)\left(\frac{1}{R_1}\right) = Y(S)\left(S^2C + S\left(\frac{1}{R_1} + \frac{1}{R_2}\right) + \frac{1}{L}\right) \Rightarrow$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{SR_2L}{S^2(R_1R_2LC) + S(R_1L + R_2L) + R_1R_2}$$

Afim de facilitar os cálculos, tomaremos os seguintes valores para cada elemento do circuito:

- $R_1 = 10\Omega;$
- $R_2 = 100\Omega;$
- C = 1F;
- L = 1H;

Apos aplicar os valores comercias em H(S), temos:

$$H(S) = \frac{100S}{1000S^2 + 110S + 110}$$

Utilizando essa função no MatLab para encontrar os polos (quando se zera o denominador), zeros (quando se zera o numerador) e o diagrama de Bode, obtemos o seguintes gráficos:



Figura 2: Circuito 1 - Polos e Zeros



Figura 3: Circuito 1 - Diagrama de Bode

Analisando-se este circuito, pode-se afirmar que o mesmo é um filtro passa faixa operando na largura de banda de aproximadamente  $0.11 \, \mathrm{rad/sec}$  em um intervalo  $[0.28,\,0.39] \, \mathrm{rad/sec}$ .

# 1.1.2 Resposta ao degrau unitário



Figura 4: Circuito 1 - Resposta ao degrau unitário

# 1.1.3 Resposta a rampa unitário



Figura 5: Circuito 1 - Resposta a rampa unitária

#### 1.1.4 Resposta a onda quadrada



Figura 6: Circuito 1 - Resposta a onda quadrada com  $\omega = \frac{1}{8}\pi$ 



Figura 7: Circuito 1 - Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 8: Circuito 1 - Resposta ao terceiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 9: Circuito 1 - Resposta ao quinto harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 10: Circuito 1 - Resposta ao sétimo harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 

# 1.2 Circuito 2

#### 1.2.1 Determinar a função do circuto

Para modelarmos utilizaremos as seguintes equações:

$$I_1 = I_{in} - I_{out}$$

$$R_2 I_{out} + \frac{L\partial I_{out}}{\partial t} - R_1 I_1 + \frac{1}{C} \int I_{out} \partial t = 0$$



Figura 11: Circuito 2

Substituindo  $I_1$  para colocarmos a equação em função de  $I_{in}$  e  $I_{out}$  e derivando-a para removermos a Integral, temos a E.D.O:

$$\frac{\partial I_{in}}{\partial t}(R_1) = \frac{\partial^2 I_{out}}{\partial t^2}(L) + \frac{\partial I_{out}}{\partial t}(R_1 + R_2) + \frac{I_{out}}{C}$$

Transformando essa E.D.O em Laplace, obtemos:

$$X(S)(SR_1) = Y(S)\left(S^2 + S(R_1 + R_2) + \frac{1}{C}\right) \Rightarrow$$

$$H(S) = \frac{Y(S)}{X(S)} = \frac{S(R_1C)}{S^2(LC) + S(R_1C + R_2C) + 1}$$

Escolhendo os seguintes valores para cada elemento do circuito:

- $R_1 = 10\Omega;$
- $R_2 = 100\Omega;$
- C = 1F;
- L = 1H;

Encontramos a seguinte função de transferência:

$$H(S) = \frac{10S}{S^2 + 110S + 1}$$

A partir dessa função obtemos os seguintes polos, zeros e diagrama de Bode:



Figura 12: Circuito 2 - Polos e Zeros



Figura 13: Circuito 2 - Diagrama de Bode

Assim como o circuito da figura 1, temos também um filtro passa faixa que opera nas faixas entre 0.01 rad/seg e 86.5 rad/seg

# 1.2.2 Resposta ao degrau unitário



Figura 14: Circuito 2 - Resposta ao degrau unitário

# 1.2.3 Resposta a rampa unitário



Figura 15: Circuito 2 - Resposta a rampa unitária

#### 1.2.4 Resposta a onda quadrada



Figura 16: Circuito 2 - Resposta a onda quadrada com  $\omega = \frac{1}{8}\pi$ 



Figura 17: Circuito 2 - Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 18: Circuito 2 - Resposta ao terceiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 19: Circuito 2 - Resposta ao quinto harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 20: Circuito 2 - Resposta ao sétimo harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 

# 1.3 Circuito 3

#### 1.3.1 Determinar a função do circuto



Figura 21: Circuito 3

Este circuito, também conhecido como topologia de Sallen-Key, sabendo que o AmpOp possui impedância infinita em sua entrada, que  $V^- = V^+$ , que  $V^- = V_{out}$  e chamando  $V_a$  da tensão que passa por  $C_1$ , obtemos:

$$V_a = V_{out} + R_2 C_2 \frac{\partial V_{out}}{\partial t}$$

Utilizando a lei dos nós entre  $R_1$  e  $R_2$  e já substituindo  ${\cal V}_a$  por  ${\cal V}_{out}$  temos:

$$\frac{V_{in}}{R_1} = R_2 C_1 C_2 \frac{\partial^2 V_{out}}{\partial t^2} + \left(C_2 + \frac{R_2 C_2}{R_1}\right) \frac{\partial V_{out}}{\partial t} + \frac{V_{out}}{R_1}$$

Com esta E.D.O, podemos encontrar a seguinte função de transferência utilizando o mesmo método empregado nos circuitos anteriores, com isso temos:

$$H(S) = \frac{1}{S^2 (R_1 R_2 C_1 C_2) + S (R_1 C_2 + R_2 C_2) + 1}$$

Utilizando os valores para cada elemento do circuito:

- $R_1 = 10\Omega;$
- $R_2 = 100\Omega;$
- $C_1 = 2F$ ;
- $C_2 = 1F$ ;

Encontramos a seguinte função de transferência:

$$H(S) = \frac{1}{2000S^2 + 110S + 1}$$

Que nos gera os seguintes polos, zeros e diagrama de Bode:



Figura 22: Circuito 3 - Polos e Zeros



Figura 23: Circuito 3 - Diagrama de Bode

Pela a analise do diagrama de Bode, pode-se afirmar que esse circuito é um filtro passa alta com frequência no seu menor polo de  $0.01~\rm rad/sec.$ 

# 1.3.2 Resposta ao degrau unitário



Figura 24: Circuito 3 - Resposta ao degrau unitário

# 1.3.3 Resposta a rampa unitário



Figura 25: Circuito 3 - Resposta a rampa unitária

#### 1.3.4 Resposta a onda quadrada



Figura 26: Circuito 3 - Resposta a onda quadrada com  $\omega = \frac{1}{8}\pi$ 



Figura 27: Circuito 3 - Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 28: Circuito 3 - Resposta ao terceiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 29: Circuito 3 - Resposta ao quinto harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 30: Circuito 3 - Resposta ao sétimo harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 

# 1.4 Circuito 4

#### 1.4.1 Determinar a função do circuto



Figura 31: Circuito 4

Esse circuito, conhecido como buffer, é utilizado como um isolador. Como  $V_{in}$  é igual a  $V_{out}$ , sua função de transferência H(S) = 1. Não existem polos nem zeros para esse circuito e seu diagrama de Bode permanece em 0.



Figura 32: Circuito 4 - Diagrama de Bode

# 1.4.2 Resposta ao degrau unitário



Figura 33: Circuito 4 - Resposta ao degrau unitário

#### 1.4.3 Resposta a rampa unitário



Figura 34: Circuito 4 - Resposta a rampa unitária

# 1.4.4 Resposta a onda quadrada



Figura 35: Circuito 4 - Resposta a onda quadrada com  $\omega = \frac{1}{8}\pi$ 



Figura 36: Circuito 4 - Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 37: Circuito 4 - Resposta ao terceiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 38: Circuito 4 - Resposta ao quinto harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 39: Circuito 4 - Resposta ao sétimo harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 

#### 1.5 Circuito 5

#### 1.5.1 Determinar a função do circuto



Figura 40: Circuito 5

Esse circuito pode ser escrito como:

$$\frac{V_{in}}{R} + C \frac{\partial V_{out}}{\partial t} = 0$$

Transformando esta E.D.O com Laplace utilizando o mesmo método dos circuitos passados, obtemos:

$$H(S) = \frac{-1}{RCS}$$

Tomando os seguintes valores para os elementos do circuito:

- $R = 10\Omega$ ;
- C = 1F;

Temos a seguinte equação de transferência:

$$H(S) = \frac{-1}{10S}$$

A partir dessa equação, obtemos os seguintes polos, zeros e diagrama de Bode:



Figura 41: Circuito 5 - Polos e Zeros



Figura 42: Circuito 5 - Diagrama de Bode

Este circuito corresponde a um filtro passa baixa integrador de apenas um polo.

# 1.5.2 Resposta ao degrau unitário



Figura 43: Circuito 5 - Resposta ao degrau unitário

# 1.5.3 Resposta a rampa unitária



Figura 44: Circuito 5 - Resposta a rampa unitária

#### 1.5.4 Resposta a onda quadrada



Figura 45: Circuito 5 - Resposta a onda quadrada com  $\omega = \frac{1}{8}\pi$ 



Figura 46: Circuito 5 - Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 47: Circuito 5 - Resposta ao terceiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 48: Circuito 5 - Resposta ao quinto harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 



Figura 49: Circuito 5 - Resposta ao sétimo harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{8}\pi$ 

# 2 Questão 2



Figura 50: Diagrama de Blocos

### 2.1 Equações do diagrama

Seguindo as regras definidas no trabalho em relação aos valores de A, B, C e D para o diagrama de blocos, temos:

- a = -22;
- b = 7:
- c = 3;
- d = 4;

Pare que o circuito possua estabilidade BIBO, precisamos que o valor de A seja negativo, caso contrario, o circuito é instável.

Com esses valores obtemos as seguintes equações para o diagrama de blocos abaixo:

- y(t) = 4u(t) + 3x(t) (Item (e) da questão 2);
- B = 7u(t);
- C = 3x(t);
- D = 4u(t);
- x'(t) = 7u(t) 22x(t) (Item (d) da questão 2);

Sabendo que  $x(t) = \frac{y(t) - 4u(t)}{3}$  e  $x' = \frac{y'(t) - 4u'(t)}{3}$ , obtemos a seguinte E.D.O:

$$\frac{\partial y(t)}{\partial t} + 22y(t) = 4\frac{\partial y(t)}{\partial t} + 109u(t)$$

Aplicando Laplace, obtemos a seguinte função de transferência:

$$H(S) = \frac{Y(S)}{U(S)} = \frac{4S + 109}{S + 22}$$

De posse da função de transferência, podemos encontrar os seguintes polos e zeros e o diagrama de Bode:



Figura 51: Polos e Zeros



Figura 52: Diagrama de Bode

# 2.2 Resposta ao degrau unitário



Figura 53: Resposta ao degrau unitário

# 2.3 Resposta a rampa unitária



Figura 54: Resposta a rampa unitária

# 2.4 Resposta a onda quadrada



Figura 55: Resposta a onda quadrada com  $\omega = \frac{1}{4}\pi$ 



Figura 56: Resposta ao primeiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{2}\pi$ 



Figura 57: Resposta ao terceiro harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{2}\pi$ 



Figura 58: Resposta ao quinto harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{2}\pi$ 



Figura 59: Resposta ao sétimo harmônico da série de Fourier de um onda quadrada com  $\omega=\frac{1}{2}\pi$ 

# 3 Questão 3

- 3.1 Item a
- 3.1.1 Variando em  $\alpha$
- 3.1.2 Variando em  $\beta$
- 3.2 Item b
- 3.2.1 Variando em  $\alpha$
- 3.2.2 Variando em  $\beta$
- 3.3 Item c
- 3.3.1 Variando em  $\alpha$
- 3.3.2 Variando em  $\beta$
- 3.4 Item d
- 3.4.1 Variando em  $\alpha$
- 3.4.2 Variando em  $\beta$
- 3.5 Item e
- 3.5.1 Variando em  $\alpha$
- **3.5.2** Variando em  $\beta$
- 3.6 Item f
- 3.6.1 Variando em  $\alpha$
- 3.6.2 Variando em  $\beta$
- 0 **-** T

# 5 Referências

- [1] Chapman, S.J. Electric Machinery Fundamentals, 4th Edition;
- [2] Fitzgerald, A. E. Máquinas Elétricas, 2da Edição;