DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS Pretest on Calc I MATH 122 Spring 2014

Your Name:			
	1	(5)	
	2	(5)	
	3	(5)	
	4	(5)	
	5	(5)	
	6	(5)	
	Total	(30)	

(1) Which integral matches the Riemann sum?

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} \left(\frac{2n+i}{n} \right)^{2}$$

- (a) $\int_0^1 x \, dx$ (b) $\int_2^3 (2x+1)^2 \, dx$ (c) $\int_0^1 \frac{dx}{x^3}$ (d) $\int_0^1 (2+x)^2 \, dx$

- (2) If f, f' and f'' are continuous functions on the interval [a,b], such that f'(a) > 00, f'(b) < 0, and f''(x) < 0 for all x in (a,b), then which of the following must
 - (a) There exist a number c, in (a,b), such that f(c) = 0.
 - (b) There exist a number c in (a,b) such that $f(c) = \frac{a+b}{2}$.
 - (c) f(x) has a local minimum in the interval (a,b).
 - (d) f(x) has a local maximum in the interval (a,b).
 - (e) None of the above.

(3) A rectangular box with a square base and open top is constructed to have volume of 625 cubic inches. The material used to make the bottom costs 4 cents per square inch and the material used to make the sides costs 2 cents per square inch. Find the dimensions of the box that minimizes the total costs. Justify your answer.

(4) Compute the limit

$$\lim_{x \to 1+} \left(\frac{x}{x-1} - \frac{1}{\ln(x)} \right)$$

(5) For the implicitly defined curve

$$x^y = y^x$$

write the equation of the tangent line at the point P(2,2).

(6) Evaluate the improper integral or otherwise show it is divergent

$$\int_0^\infty x^2 e^{-x} dx.$$