Paradigmas de Programación

Lógica de primer orden

1er cuatrimestre de 2024 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Introducción

Sintaxis de la lógica de primer orden

Deducción natural para lógica de primer orden

Semántica de la lógica de primer orden

Unificación de términos

Introducción

Lógica proposicional

Permite razonar acerca de proposiciones.

Ejemplo: Llueve ∨ ¬Llueve

Lógica de **primer orden**

Permite razonar acerca de elementos sobre los que se predica.

Ejemplo:

$$\forall X. (\mathsf{EsPar}(X) \Rightarrow \neg \mathsf{EsPar}(\mathsf{succ}(X)))$$

Extiende a la lógica proposicional con términos y cuantificadores.

¿Para qué tanta lógica? Yo me anoté en computación...

Conexión estrecha entre lógica de primer orden y computación.

En sus orígenes históricos

Problema de la decisión de Hilbert.

En la actualidad

- Computabilidad y complejidad descriptiva.
- ▶ Representación del conocimiento, sistemas multi-agente.
- Inteligencia artificial, razonamiento automático.
- Métodos formales, verificación automática.
- Bases de datos relacionales, lenguajes de consulta.
- Verificación de hardware.
- **.**..
- Fundamento de la programación lógica.

Programación lógica

Ideal de la programación declarativa

Los programas deberían asemejarse a especificaciones.

En particular: programación lógica

El usuario escribe una fórmula:

$$\exists X. P(X)$$

- El sistema busca satisfacer o refutar la fórmula.
- ► En caso de lograr satisfacerla, el sistema produce una salida que verifica la propiedad *P* buscada.

Introducción

Sintaxis de la lógica de primer orden

Deducción natural para lógica de primer orden

Semántica de la lógica de primer orden

Unificación de términos

Lenguajes de primer orden

Definición

Un lenguaje de primer orden \mathcal{L} está dado por:

- 1. Un conjunto de **símbolos de función** $\mathcal{F} = \{f, g, h, ...\}$. Cada símbolo de función tiene asociada una aridad (≥ 0) .
- 2. Un conjunto de **símbolos de predicado** $\mathcal{P} = \{P, Q, R, ...\}$. Cada símbolo de predicado tiene asociada una aridad (≥ 0).

Términos de primer orden

Suponemos fijado un lenguaje de primer orden \mathcal{L} y un conjunto infinito numerable de **variables** $\mathcal{X} = \{X, Y, Z, \ldots\}$.

Definición

El conjunto ${\mathcal T}$ de **términos** se define por la siguiente gramática:

$$t ::= X \mid f(t_1,\ldots,t_n)$$

donde:

X denota una variable

f denota un símbolo de función de aridad n

Términos de primer orden

Ejemplo — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$\underbrace{0^0 \quad \text{succ}^1 \quad +^2 \quad *^2}_{\text{símbolos de función}}$$

$$=$$
 2 \le símbolos de predicado

Ejemplo — términos sobre el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$+(0,\operatorname{succ}(X)) *(+(X,Y),Z)$$

Los símbolos de función de aridad 0 se llaman constantes.

Nota. Usamos notación infija como conveniencia.

$$0 + \operatorname{succ}(X) \qquad (X + Y) * Z$$

Recordemos la gramática de las fórmulas en lógica proposicional y extendámosla a lógica de primer orden.

$$\sigma ::= \begin{array}{c|cccc} \mathbf{P}(t_1,\dots,t_n) & \textbf{fórmula atómica} \\ & \bot & \text{contradicción} \\ & \mid \sigma \Rightarrow \sigma & \text{implicación} \\ & \mid \sigma \land \sigma & \text{conjunción} \\ & \mid \sigma \lor \sigma & \text{disyunción} \\ & \mid \neg \sigma & \text{negación} \\ & \mid \forall X. \sigma & \textbf{cuantificación universal} \\ & \mid \exists X. \sigma & \textbf{cuantificación existencial} \end{array}$$

P denota un símbolo de predicado de aridad n. Los cuantificadores ligan una variable X.

Recordemos — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$0^0 \quad \text{succ}^1 \quad +^2 \quad *^2 \qquad =^2 \quad <^2$$

Ejemplo — fórmulas sobre $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$\forall X. \exists Y. = (+(X, Y), 0)$$

$$\forall X. \forall Y. (\operatorname{succ}(X) = \operatorname{succ}(Y) \Rightarrow X = Y)$$

$$\forall X. (X < 0 \lor X = 0 \lor 0 < X)$$

Una ocurrencia de una variable X en una fórmula está:

ligada si está bajo el alcance de un cuantificador $\forall X/\exists X$, libre si no.

Dos fórmulas que sólo difieren en los nombres de las variables ligadas se consideran iguales.

Ejemplo

$$\forall X. \exists Y. \mathbf{P}(X, Y) \equiv \forall Y. \exists X. \mathbf{P}(Y, X) \equiv \forall A. \exists B. \mathbf{P}(A, B)$$

Notamos $\sigma\{X := t\}$ a la sustitución de las ocurrencias libres de X en la fórmula σ por el término t, evitando la captura de variables.

Ejemplo

Sean:

$$\sigma :\equiv \operatorname{succ}(X) = Y \Longrightarrow \exists Z. X + Z = Y$$

entonces:

$$\sigma\{X := Z * Z\} \equiv \operatorname{succ}(Z * Z) = Y \implies \exists Z'.(Z * Z) + Z' = Y$$

Introducción

Sintaxis de la lógica de primer orden

Deducción natural para lógica de primer orden

Semántica de la lógica de primer orden

Unificación de términos

Deducción natural

La deducción natural proposicional se extiende a primer orden.

Igual que antes:

- 1. Un **contexto** Γ es un conjunto finito de fórmulas.
- 2. Un **secuente** es de la forma $\Gamma \vdash \sigma$.

Todas las reglas de deducción natural proposicional siguen vigentes. Se agregan reglas de introducción y eliminación para \forall y \exists .

Axioma	AX		
Conjunción	$\bigvee I$	$\wedge \mathrm{E}_1$	$\wedge \mathrm{E}_2$
Disyunción	$\forall I_1$	$\vee \mathrm{I}_2$	$\bigvee E$
Implicación	\Rightarrow I	\Rightarrow E	
Negación	$\neg I$	$\neg \mathrm{E}$	
Contradicción	$\perp_{\rm E}$		
Lógica clásica	$\neg \neg E$		
Cuantificación universal	$\forall I$	$\forall \mathrm{E}$	
Cuantificación existencial	∃ı	$\exists \mathbf{E}$	

Regla de eliminación

$$\frac{\Gamma \vdash \forall X.\,\sigma}{\Gamma \vdash \sigma\{X := t\}} \forall E$$

Regla de introducción

$$\frac{\Gamma \vdash \sigma \quad X \notin \mathsf{fv}(\Gamma)}{\Gamma \vdash \forall X.\,\sigma} \forall \mathsf{I}$$

Ejemplo

$$\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \forall X. (\mathbf{P}(X) \land \mathbf{Q}(X))}{\forall E} \qquad \forall E$$

$$\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \mathbf{P}(\cos(X)) \land \mathbf{Q}(\cos(X))}{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \mathbf{P}(\cos(X))} \qquad \forall E$$

$$\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \forall X. \mathbf{P}(\cos(X))}{\forall I} \qquad \exists E$$

$$\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \forall X. \mathbf{P}(\cos(X))}{\forall I} \qquad \exists E$$

Ejemplo

$$\frac{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Z. \forall Y. \mathbf{Q}(Z, Y)}{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Y. \mathbf{Q}(Z, Y)} \quad \forall E}$$

$$\frac{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Y. \mathbf{Q}(Z, Y)}{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Z. \mathbf{Q}(-Z, Y)} \quad \forall I}$$

$$\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Y. \forall X. \mathbf{Q}(X, Y)}$$

¿Por qué se exige que $X \notin fv(\Gamma)$ en la regla $\forall I$?

Ejemplo — aplicación incorrecta de la regla $\forall I$

$$\frac{\mathsf{EsPar}(N) \vdash \mathsf{EsPar}(N)}{\mathsf{EsPar}(N) \vdash \forall N. \, \mathsf{EsPar}(N)} \Leftarrow \mathsf{Paso de razonamiento inválido}$$

Regla de introducción

$$\frac{\Gamma \vdash \sigma\{X := t\}}{\Gamma \vdash \exists X.\,\sigma} \exists I$$

Regla de eliminación

$$\frac{\Gamma \vdash \exists X. \sigma \quad \Gamma, \sigma \vdash \tau \quad X \notin \mathsf{fv}(\Gamma, \tau)}{\Gamma \vdash \tau} \exists \mathsf{E}$$

Ejemplo

$$\frac{\sigma, \mathbf{P}(\cos(X)) \vdash \mathbf{P}(\cos(X))}{\sigma, \mathbf{P}(\cos(X)) \vdash \mathbf{P}(\cos(X)) \lor \mathbf{Q}(\cos(X))} \to_{\mathrm{I}_{1}}$$

$$\frac{\sigma \vdash \sigma}{\sigma} \xrightarrow{AX} \frac{\sigma, \mathbf{P}(\cos(X)) \vdash \mathbf{P}(\cos(X)) \lor \mathbf{Q}(\cos(X))}{\sigma, \mathbf{P}(\cos(X)) \vdash \exists X. (\mathbf{P}(X) \lor \mathbf{Q}(X))} \to_{\mathrm{I}_{2}}$$

$$\frac{\sigma \vdash \exists X. \mathbf{P}(\cos(X)) \Rightarrow \exists X. (\mathbf{P}(X) \lor \mathbf{Q}(X))}{\vdash \exists X. \mathbf{P}(\cos(X)) \Rightarrow \exists X. (\mathbf{P}(X) \lor \mathbf{Q}(X))}$$

$$\sigma :\equiv \exists X. \, \mathbf{P}(\cos(X))$$

Ejemplo

$$\frac{\sigma, \mathbf{P}(W, W), \mathbf{Q}(X) \vdash \mathbf{P}(W, W)}{\sigma, \mathbf{P}(W, W) \vdash \mathbf{Q}(X) \Rightarrow \mathbf{P}(W, W)} \Rightarrow_{\exists I}$$

$$\frac{\sigma \vdash \sigma}{\sigma, \mathbf{P}(W, W) \vdash \exists Z. (\mathbf{Q}(X) \Rightarrow \mathbf{P}(W, Z))} \exists_{\exists I}$$

$$\frac{\sigma \vdash \sigma}{\exists W. \mathbf{P}(W, W) \vdash \exists Y. \exists Z. (\mathbf{Q}(X) \Rightarrow \mathbf{P}(Y, Z))} \exists_{\exists E}$$

$$\sigma :\equiv \exists W. P(W, W)$$

Para pensar

¿Por qué se exige que $X \notin fv(\Gamma, \tau)$ en la regla $\exists E$?

Introducción

Sintaxis de la lógica de primer orden

Deducción natural para lógica de primer orden

Semántica de la lógica de primer orden

Unificación de términos

Estructuras de primer orden

Suponemos fijado un lenguaje de primer orden \mathcal{L} .

Definición

Una **estructura de primer orden** es un par $\mathcal{M} = (M, I)$ donde:

- M es un conjunto no vacío, llamado universo.
- ▶ *I* es una función que le da una interpretación a cada símbolo.
- Para cada símbolo de función **f** de aridad *n*:

$$I(\mathbf{f}): M^n \to M$$

▶ Para cada símbolo de predicado P de aridad n:

$$I(\mathbf{P}) \subseteq M^n$$

Estructuras de primer orden

Recordemos — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$0^0 \quad \text{succ}^1 \quad +^2 \quad *^2 \qquad =^2 \quad <^2$$

Ejemplo — una estructura sobre $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

 $M:=\mathbb{N}$ (los elementos son números naturales)

$$I(0) = 0$$

 $I(\operatorname{succ})(n) = n + 1$
 $I(+)(n, m) = n + m$
 $I(*)(n, m) = n \cdot m$ $(n, m) \in I(=) \iff n = m$
 $(n, m) \in I(<) \iff n < m$

Bajo esta estructura, la fórmula $\forall X. X = X + X$ es falsa.

Estructuras de primer orden

Recordemos — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$0^0 \quad \text{succ}^1 \quad +^2 \quad *^2 \qquad =^2 \quad <^2$$

Ejemplo — otra estructura sobre $\mathcal{L}_{aritm\'etica}$

 $M:=\mathcal{P}(\mathbb{R})$ (los elementos son conjuntos de números reales)

$$I(0) = \emptyset$$

 $I(\operatorname{succ})(A) = \{1 + x \mid x \in A\}$ $(A, B) \in I(=) \iff A = B$
 $I(+)(A, B) = A \cup B$
 $I(*)(A, B) = A \cap B$ $(A, B) \in I(<) \iff A \subseteq B$

Bajo esta estructura, la fórmula $\forall X. X = X + X$ es verdadera.

Interpretación de términos

Suponemos fijada una estructura de primer orden $\mathcal{M} = (M, I)$.

Definición

Una **asignación** es una función que a cada variable le asigna un elemento del universo:

$$\alpha: \mathcal{X} \to M$$

Definición – interpretación de términos

Cada término $t \in \mathcal{T}$ se interpreta como un elemento $\alpha(t) \in M$, extendiendo la definición de α a términos:

$$\alpha(\mathbf{f}(t_1,\ldots,t_n)) = I(\mathbf{f})(\alpha(t_1),\ldots,\alpha(t_n))$$

Interpretación de fórmulas

Suponemos fijada una estructura de primer orden $\mathcal{M} = (M, I)$.

Definimos una relación de **satisfacción** $\alpha \vDash_{\mathcal{M}} \sigma$.

"La asignación α (bajo la estructura $\mathcal M$) satisface la fórmula σ ".

Validez y satisfactibilidad

Decimos que una fórmula σ es:

$\begin{array}{c} \text{V\'aLIDA} \\ \text{si } \alpha \vDash_{\mathcal{M}} \sigma \text{ para toda } \mathcal{M}, \alpha \end{array}$	SATISFACTIBLE si $\alpha \vDash_{\mathcal{M}} \sigma$ para alguna \mathcal{M}, α
INVÁLIDA si $\alpha ot ert_{\mathcal{M}} \sigma$ para alguna \mathcal{M}, α	Insatisfactible si $\alpha \not\models_{\mathcal{M}} \sigma$ para toda \mathcal{M}, α

Observaciones

$$\sigma$$
 es Válida sii σ no es Inválida σ es Satisfactible sii σ no es Insatisfactible σ es Válida sii $\neg \sigma$ es Insatisfactible σ es Satisfactible sii $\neg \sigma$ es Inválida

Modelos

Una sentencia es una fórmula σ sin variables libres. Una teoría de primer orden es un conjunto de sentencias.

Definición — consistencia

Una teoría \mathcal{T} es *consistente* si $\mathcal{T} \not\vdash \bot$.

Definición — modelo

Una estructura $\mathcal{M}=(M,I)$ es un *modelo* de una teoría \mathcal{T} si vale $\alpha \vDash_{\mathcal{M}} \sigma$ para toda asignación $\alpha:\mathcal{X}\to M$ y toda fórmula $\sigma\in\mathcal{T}$.

Corrección y completitud

Teorema (Gödel, 1929)

Dada una teoría \mathcal{T} , son equivalentes:

- 1. \mathcal{T} es consistente.
- 2. \mathcal{T} tiene (al menos) un modelo.

Corolario

Dada una fórmula σ , son equivalentes:

- 1. $\vdash \sigma$ es derivable.
- 2. σ es válida.

Corolario

Dada una fórmula σ , son equivalentes:

- 1. $\vdash \neg \sigma$ es derivable.
- 2. σ es insatisfactible.

Ejemplos de validez y satisfactibilidad

Ejemplo

Determinar si son (in)válidas/(in)satisfactibles:

- 1. $\forall X. X = X$ satisfactible e inválida
- 2. $\forall X. P(X) \Rightarrow \forall X. P(f(X))$ válida (: satisfactible)
- 3. $\forall X. \neg P(X) \land \exists X. P(X)$ insatisfactible (: inválida)
- 4. $\forall X. \exists Y. P(X, Y) \Rightarrow \exists Y. \forall X. P(X, Y)$ satisfactible e inválida
- 5. $\forall X. (\mathbf{P}(X) \Rightarrow \sigma) \Rightarrow (\exists X. \mathbf{P}(X)) \Rightarrow \sigma \text{ con } X \notin \mathsf{fv}(\sigma) \text{ válida}$

El problema de la decisión

Querríamos un algoritmo que resuelva el siguiente problema:

Entrada: una fórmula σ .

Salida: un booleano que indica si σ es válida.

No es posible dar un algoritmo que cumpla dicha especificación.

Introducción

Sintaxis de la lógica de primer orden

Deducción natural para lógica de primer orden

Semántica de la lógica de primer orden

Unificación de términos

Algoritmo de unificación

El algoritmo de unificación que conocíamos se adapta a términos de primer orden sólo cambiando la notación:

$$\{X \stackrel{?}{=} X\} \cup E \xrightarrow{\text{Delete}} E$$

$$\{f(t_1, \dots, t_n) \stackrel{?}{=} f(s_1, \dots, s_n)\} \cup E \xrightarrow{\text{Decompose}} \{t_1 \stackrel{?}{=} s_1, \dots, t_n \stackrel{?}{=} s_n\} \cup E$$

$$\{t \stackrel{?}{=} X\} \cup E \xrightarrow{\text{Swap}} \{X \stackrel{?}{=} t\} \cup E \text{ si } t \text{ no es una variable}$$

$$\{X \stackrel{?}{=} t\} \cup E \xrightarrow{\text{Elim}} \{X := t\} E\{X := t\} \text{ si } X \notin \text{fv}(t)$$

$$\{f(t_1, \dots, t_n) \stackrel{?}{=} g(s_1, \dots, s_m)\} \cup E \xrightarrow{\text{Clash}} \text{ falla } \text{ si } f \neq g$$

$$\{X \stackrel{?}{=} t\} \cup E \xrightarrow{\text{Occurs-Check}} \text{ falla } \text{ si } X \neq t \text{ y } X \in \text{fv}(t)$$

Terminación del algoritmo de unificación

Dado un conjunto de ecuaciones de unificación *E*, definimos:

- n₁: cantidad de variables distintas en E
- $ightharpoonup n_2$: tamaño de E, calculado como $\sum_{\substack{(t=s)\in E}} |t|+|s|$
- $ightharpoonup n_3$: cantidad de ecuaciones de la forma $t\stackrel{?}{=} X$ en E

Podemos observar que las reglas que no producen falla achican la tripla (n_1, n_2, n_3) , de acuerdo con el *orden lexicográfico*:

	n_1	n_2	<i>n</i> ₃
Elim	>		
Decompose	=	>	
Delete	\geq	>	
Swap	=	=	>

Recordemos

- Una sustitución es una función S que le asocia un término S(X) a cada variable X.
- 2. **S** es un **unificador** de E si para cada $(t \stackrel{?}{=} s) \in E$ se tiene que S(t) = S(s).
- 3. **S** es **más general** que S' si existe **T** tal que $S' = T \circ S$.
- 4. S es un m.g.u. de E si S es un unificador de E y para todo unificador S' de E se tiene que S es más general que S'. Técnicamente, nos interesan los m.g.u. idempotentes, es decir S(S(t)) = S(t) para todo término t.

Lema — corrección de la regla Delete

S m.g.u. de
$$E \implies$$
 S m.g.u. de $\{X \stackrel{?}{=} X\} \cup E$.

Lema — corrección de la regla Swap

S m.g.u. de
$$\{t \stackrel{?}{=} s\} \cup E \implies$$
 S m.g.u. de $\{s \stackrel{?}{=} t\} \cup E$.

Lema — corrección de la regla Decompose

S m.g.u. de
$$\{t_1 \stackrel{?}{=} s_1, \dots, t_n \stackrel{?}{=} s_n\} \cup E$$

 \implies **S** m.g.u. de $\{f(t_1, \dots, t_n) \stackrel{?}{=} f(s_1, \dots, s_n)\} \cup E$.

Lema — corrección de la regla Elim

S m.g.u. de
$$E\{X := t\}$$
 y $X \notin fv(t)$
 \implies **S** $\circ \{X := t\}$ m.g.u. de E .

Usar el hecho de que si S(X) = t entonces $S(s\{X := t\}) = S(s)$.

Probemos la corrección del algoritmo en caso de éxito.

Sea
$$E_0 \rightarrow_{\mathbf{S}_1} E_1 \rightarrow_{\mathbf{S}_n} E_2 \rightarrow \ldots \rightarrow_{\mathbf{S}_n} E_n = \emptyset$$
.

Veamos que $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_1$ es un m.g.u. de E.

Por inducción en *n*:

- 1. Si n = 0, la sustitución identidad es un m.g.u. de \emptyset .
- 2. Si n > 1, se tiene:

$$E_0 \rightarrow_{\mathbf{S}_1} E_1 \qquad E_1 \rightarrow_{\mathbf{S}_2} \ldots \rightarrow_{\mathbf{S}_n} E_n = \emptyset$$

Por HI, $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_2$ es un m.g.u. de E_1 . Aplicando alguno de los lemas anteriores, se concluye que $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_2 \circ \mathbf{S}_1$ es un m.g.u. de E_0 .

La corrección en caso de falla se prueba de manera similar, con lemas que van "hacia adelante" en lugar de "hacia atrás".