Given the following DFA M

Prove P(M, w): conjunction of implications

 $P(M, \omega)$: "if $g(q_0, \omega) = q_0$, then $\omega = (ab)^n$, $n \ge 0$, $g(q_0, \omega) = q_1$, then $\omega = (ab)^n a_1$, $n \ge 0$. $g(q_0, \omega) = q_1$, then $\omega = (ab)^n a_1$, $n \ge 0$. $g(q_0, \omega) = q_2$ then $\omega \ne (ab)^n$ and " $g(q_0, \omega) = q_2$ then $\omega \ne (ab)^n a$."

P(H,w): "P, > 9, AND P2 > 92 KND P3 > 93"

Proof by induction on Iwl.

[p->9]

BC |w| = 0 => w = E

 $P2: \qquad \qquad \mathcal{S}(q_0, \omega) = q_1 \qquad \qquad \mathcal{B}(q_0, \omega) = q_1 \qquad \qquad \mathcal{S}(q_0, \omega) = q_0 \qquad \qquad \mathcal{S}(q_0, \omega)$

P2 is false so \\ \p2 > 92\\\ is tome

P3: "S*(90, w) = 92" > via similar argument

P3>93 is true.

 $P_1: "S^*(q_0, w) = q_0" \rightarrow This p_1 is true for w= E$

Need to show that q, is also true $q_1 : "w = (ab)^n$, n > 0" $w = \mathcal{E} = (ab)^n$, $p_1 > q_1$ is true. By Def

It Assume $P(M, \omega)$ $\forall \omega \in \Xi^{+}$, $|\omega| = n$ $= P_{1} \Rightarrow 9_{1} \land P_{2} \Rightarrow 9_{2} \land P_{3} \Rightarrow 9_{3}^{"} \qquad (n \in \mathbb{N})$ $= P_{1} \Rightarrow 9_{1} \land P_{2} \Rightarrow 9_{2} \land P_{3} \Rightarrow 9_{3}^{"} \qquad (n \in \mathbb{N})$ $= P_{1} \Rightarrow 9_{1} \land P_{2} \Rightarrow 9_{2} \land P_{3} \Rightarrow 9_{3}^{"} \qquad (n \in \mathbb{N})$

Pick some arbitrary $w \in \mathbb{Z}^*$, |w| = n+1 $w = \times \sigma$, $\times \in \mathbb{Z}^*$, $\sigma \in \mathbb{Z}$ |x| = n

Need to show that for w, $p_1 > q_1$ $\wedge p_2 > q_2$ \wedge $p_1 > q_1$ "if $S^*(q_0, w) = q_0$ then $w = (ab)^n$, n > 0"

Assume p, is true => $S^*(q_0, w) = q_0$ $=> S^*(q_0, x_0) = q_0$ $S^*(q_0, x_0) = q_0$

=> by construction of M

$$S^*(q_0, x) = q_1 \land o = b$$

IH

=> Recall that in
$$P(Y, w)$$

 $Pz \rightarrow 9z$: "if $S(90, w) = 9$, then
 $w = (ab)^n a n > 0$ "

$$(|\omega| = n)$$

$$\Rightarrow x = (ab)^n a \quad by IH$$

$$=> w = xo = (ab)^{n}a \cdot b$$

$$= (ab)^{n+1} m = n+1$$

$$= (ab)^{m}$$

$$= (ab)^{m} \qquad m=n+1$$

$$= (ab)^{m}$$

$$= (ab)^{$$

by analyzing M

$$\Rightarrow x = (ab)^n, n \geqslant 0$$

$$\Rightarrow y \neq H$$

$$\Rightarrow w = xo = (ab)^n a, n \geqslant 0$$

 $P_3 \rightarrow q_3$ "if $S^*(q_0, \omega) = q_2$ then $\forall n \geqslant 0 \ \omega \neq (ab)^n$,

AND $\omega \neq (ab)^n$

tsseme p3 is true => 5 (90, w) = 92

=> $\int_{0}^{\infty} (q_{0}, \times \sigma) = q_{2}$ => $\int_{0}^{\infty} (g_{0}, \times), \sigma = q_{2}$ => Either A $\int_{0}^{\infty} (q_{0}, \times) = q_{0}, \sigma = b$ ORB $\int_{0}^{\infty} (q_{0}, \times) = q_{1}, \sigma = a$ ORC $\int_{0}^{\infty} (q_{0}, \times) = q_{2}, \sigma = a \text{ or } b$

(A) $\times = (ab)^n$, $n \ge 0$ (B) $\times = (ab)^n$, $n \ge 0$ (C) $\times \neq (ab)^n$ $w = \times 0 = (ab)^n$ $w = \times 0 = (ab)^n$ $x \ne (ab)^n$ for any n,

for any n, appending o to x will not charge this for w

Altenatively, could have said

if $\int_{0}^{\infty} (q_0, \omega) = q_2$ then $\omega = (ab)^n b y$, n > 0, $y \in \mathbb{Z}^*$ or $(ab)^n aa y$, n > 0, $y \in \mathbb{Z}^*$