Computer Architecture

Assignment 3

Problem 1

Suppose we want to expand the MIPS register file to 128 registers and expand the instruction set to contain four times as many instructions.

- (a) How would this affect the size of each of the bit fields in the R-type instructions? (R-type instructions use register addressing. Ex: add rd, rs, rt)
- **(b)** How would this affect the size of each of the bit fields in the I-type instructions? (I-type instructions use *immediate* addressing. Ex: addi rd, rs, \mathbb{N})
- (c) How could each change decrease the size of a MIPS program?
- (d) How could each change increase the size of a MIPS program?

Problem 2

Work problem 2.4 from the textbook.

Problem 3

Work problem 2.19 from the textbook.

Problem 4

Work problem 2.20 from the textbook.

Problem 5

Work problem 2.29 from the textbook.

Problem 6

Work problems 2.39 through 2.42 from the textbook.

Problem 7

Consider a machine with three instruction classes with the following CPI's:

CPI for each instruction class

A B C CPI 1 2 4

Suppose we have code sequences 1 and 2 made up of the following instruction mixes:

Instruction counts for each instruction class

Code Sequence	Α	В	С
1	2	1	3
2	5	2	1

- (a) How many clock cycles does each code sequence require to execute?
- **(b)** What is the CPI for each code sequence?