Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Problema

 O processo do simplex exige uma solução básica inicial (as variáveis devem ser positivas).

 Restrições do tipo >= ou = levam o problema a não ter uma solução básica inicial

Minimizar
$$Z = 16X_1 + 12X_2 + 5X_3$$

Sujeito a:

Exemplo

$$8X_1 + 4X_2 + 4X_3 \ge 16$$

 $4X_1 + 6X_2 \ge 12$
 $X_1, X_2 \ge 0$

- Invertendo as inequações para usar no Simplex teremos:

Minimizar
$$Z = 16X_1 + 12X_2 + 5X_3$$

Sujeito a:

$$-8X_{1} - 4X_{2} - 4X_{3} \le -16$$

$$-4X_{1} - 6X_{2} \le -12$$

$$X_{1}, X_{2} \ge 0$$

Minimizar
$$Z = 16X_1 + 12X_2 + 5X_3$$

Sujeito a:

Exemplo

$$8X_1 + 4X_2 + 4X_3 \ge 16$$

$$4X_1 + 6X_2 \ge 12$$

$$X_1, X_2 \ge 0$$

Minimizar
$$Z = 16X_1 + 12X_2 + 5X_3 + 0X_4 + 0X_5$$

Sujeito a:

$$-8X_{1} - 4X_{2} - 4X_{3} + 1X_{4} = -16$$

$$-4X_{1} - 6X_{2} + 1X_{5} = -12$$

$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5} \ge 0$$

$$X4 = -16$$

$$X5 = -12$$

Solução básica inicial inviável!

- Criação de variáveis artificiais
 - Uma para cada restrições do tipo >= ou =

- 1° Fase: descobrir a solução básica inicial
- 2° Fase: resolver o problema com o método simplex

 Passo 1: após introduzidas as variáveis de folga ou de excesso, introduzir variável artificial para cada restrição do tipo >= ou =

Minimizar
$$Z = 16X_1 + 12X_2 + 5X_3 + 0X_4 + 0 X_5$$

Sujeito a:

$$8X_1 + 4X_2 + 4X_3 - 1X_4 = 16$$

 $4X_1 + 6X_2 - 1X_5 = 12$
 $X_1, X_2, X_3, X_4, X_5 \ge 0$

 Passo 1: após introduzidas as variáveis de folga ou de excesso, introduzir variáveis artificiais - uma para cada restrições do tipo >= ou =

$$8X_1 + 4X_2 + 4X_3 - 1X_4 + X_1^a = 16$$

 $4X_1 + 6X_2 + 4X_3 - 1X_5 + X_2^a = 12$

Variáveis de excesso X₄ e X₅

Variáveis artificiais

X^a₁ e X^a₂

- Passo 2: cria-se uma nova função objetivo artificial usando as restrições que possuam variáveis artificiais
 - soma-se os coeficientes da variáveis originais e de folga
 - Zero para os coeficientes da variáveis artificiais
 - Soma dos termos independentes para o novo Za

$$8X_{1} + 4X_{2} + 4X_{3} - 1X_{4} + X_{1}^{a} = 16$$

$$4X_{1} + 6X_{2} - 1X_{5} + X_{2}^{a} = 12$$
Função Objetivo:
$$-(12X_{1} + 10X_{2} + 4X_{3} - 1X_{4} - 1X_{5} + 0X_{1}^{a} + 0X_{2}^{a} = 28)$$
Artificial (**Z**^a)

 Passo 3: monta-se o quadro Simplex adicionando a função objetivo artificial na última linha

Base	X_1	X ₂	X ₃	X ₄	X ₅	X ^a ₁	X ^a ₂	b
X ^a ₁	8	4	4	-1	0	1	0	16
X ^a ₂	4	6	0	0	-1	0	1	12
Z	-16	-12	-5	0	0	0	0	0
Za	-12	-10	-4	1	1	0	0	-28

- Passo 4: Aplica-se o simplex normalmente, assumindo a última linha como a função objetivo. Quanao a solução ótima for atingida, dois casos podem acontecer:
- a) Z^a = 0 | Neste caso foi obtida uma solução básica inicial do problema, e o processo deve continuar (2° fase), desprezando-se as variáveis artificiais e os elementos da última linha.
- b) Z^a ≠ 0 | Neste caso o problema original não tem solução viável, o que significa que as restrições devem ser inconsistentes

Resolvendo – Quadro 1

Entra: ??

Sai: ??

Base	X_1	X_2	X ₃	X ₄	X ₅	X ^a ₁	X ^a ₂	b
X ^a ₁	8	4	4	-1	0	1	0	16
X ^a ₂	4	6	0	0	-1	0	1	12
Z	-16	-12	-5	0	0	0	0	0
Za	-12	-10	-4	1	1	0	0	-28

Resolvendo – Quadro 1

Base	X_1	X_2	X_3	X_4	X_5	X ^a ₁	X ^a ₂	b
X ^a ₁	8	4	4	-1	0	1	0	16
X ^a ₂	4	6	0	0	-1	0	1	12
Z	-16	-12	-5	0	0	0	0	0
Za	-12	-10	-4	1	1	0	0	-28

Resolvendo – Quadro 2

Entra: ??

Sai: ??

Base	X_1	X ₂	X ₃	X ₄	X ₅	X ^a ₁	X ^a ₂	b
X_1	1	1/2	1/2	-1/8	0	1/8	0	2
X ^a ₂	0	4	-2	1/2	-1	-1/2	1	4
Z	0	-4	3	-2	0	2	0	32
Za	0	-4	2	-1/2	1	3/2	0	-4

Entra: ??

Sai: ??

	Reso	lvend	o - Q	uac	Iro 2	2
--	------	-------	-------	-----	-------	---

Base	X_1	X_2	X ₃	X ₄	X_5	X ^a ₁	X ^a ₂	b
X_1	1	1/2	1/2	-1/8	0	1/8	0	2
X ^a ₂	0	4	-2	1/2	-1	-1/2	1	4
Z	0	-4	3	-2	0	2	0	32
Za	0	-4	2	-1/2	1	3/2	0	-4

Resolvendo – Quadro 3

Solução Ótima encontrada!

Base	X_1	X ₂	X ₃	X ₄	X ₅	X ^a ₁	X ^a ₂	b
X_1	1	0	3/4	-3/16	1/8	3/16	-1/8	3/2
X_2	0	1	-1/2	1/8	-1/4	-1/8	1/4	1
Z	0	0	1	-3/2	-1	3/2	1	36
Za	0	0	0	0	0	1	1	0

Resolvendo – Quadro 3

Deve-se desprezar as variáveis artificiais e função objetivo artificial. Final da Fase 1

Base	X_1	X_2	X_3	X_4	X ₅	X ^a ₁	X a ₂	b
X_1	1	0	3/4	-3/16	1/8	3/16	-1/8	3 3/2
X_2	0	1	-1/2	1/8	-1/4	-1/8	1/4	1
Z	0	0	1	-3/2	-1	3/2	1	36
Za	0	Û	Û	Û	0	1	1	0

■ Fase 2 — Resolver pelo Simplex normalmente...

Base	X_1	X_2	X ₃	X_4	X ₅	b
X_1	1	0	3/4	-3/16	1/8	3/2
X ₂	0	1	-1/2	1/8	-1/4	1
Z	0	0	1	-3/2	-1	36

