

Mestrado Integrado em Engenharia Informática e Computação Arquitetura e Organização de Computadores Teste 1

1º ano 2019-11-13 Duração 1:45 Sem consulta

Nome:	${ m N}^{{ m o}}$ de estudante:

Atenção: Este teste tem 14 questões em 6 páginas, num total de 200 pontos.

Parte I — Questões de Escolha Múltipla

Cada questão tem uma resposta certa. Respostas erradas não descontam.

As respostas às questões de escolha múltipla devem ser assinaladas com x na grelha seguinte.

Apenas as respostas indicadas na grelha são consideradas para efeitos de avaliação.

	Questão									
Opção	1	2	3	4	5	6	7	8	9	10
A				×					×	×
В	×		×					×		
С		×			×	×	×			
D										

Pontos: ____ / 100

- [10] 1. Quantos valores do intervalo [1; 2[podem ser representados em formato IEEE-754 (precisão simples)?
 - A. 2^{24} B. 2^{23} C. 2^{32} D. ∞
- [10] 2. O intervalo de números inteiros representáveis em sinal e grandeza com 9 bits é:
 - A. [-255; 256] B. [-256; 256] C. [-255; 255] D. [-256; 255]
- [10] 3. Indique qual a função realizada pelo circuito apresentado.

- A. $F = A \oplus B$ B. $F = \overline{A} \cdot \overline{B} + A \cdot B$ C. $F = \overline{A} \oplus \overline{B}$ D. $F = \overline{A} \cdot B + A \cdot \overline{B}$
- [10] 4. Considerando complemento para 2 com 8 bits, qual dos seguintes valores leva à ocorrência de overflow quando somado a 11010110₂?
 - **A.** 10101001₂ B. 011111111₂ C. 010111110₂ D. 11010110₂
- [10] 5. A soma de $093_{\rm H}$ com $1D6_{\rm H}$, considerando que os valores estão representados em complemento para 2 com 9 bits, é:
 - A. 69₁₀ B. 42₁₀ C. 105₁₀ D. 41₁₀

[10] 6. Indique o estado do circuito, Q_1Q_0 , logo após o terceiro flanco ascendente de relógio. Considere que o valor inicial dos flip-flops \acute{e} 0 e X \acute{e} sempre 1.

- A. 01
- B. 11
- **C.** 10
- D. 00
- [10] 7. Considere um codificador de prioridade 4:2 com entradas $I_3I_2I_1I_0 = 1010$. Assinale a alternativa que apresenta a saída desse circuito.
 - C. 11 A. 10 B. 00 D. 01
- [10] 8. Dois contadores de 4 bits são ligados conforme a figura. Considere que o valor inicial dos contadores é 0000 e a saída Q3 representa o bit mais significativo para ambos. Indique a saída do circuito, ABCD, após 10 ciclos de relógio.

- A. 0101
- **B.** 0100
- C. 0111
- D. 1010

[10] 9.

Considere a função F(A, B, C) desempenhada pelo circuito na figura. Na sua tabela de verdade, quantas linhas se encontram a 0?

B. 2 C. 3 D. 5 A. 6

- [10] 10. No sistema de memória de um CPU com 12 bits de endereço e 8 bits de dados, o sinal chip select de uma memória ROM de 1 KiB é definido por $CS = A_{11}\bar{A}_0$. Indique qual das gamas de endereçamento contém todos os endereços a que essa memória responde.
 - **A.** 800_{H} -FFE_H B. 801_{H} -FFF_H C. 000_{H} -7FF_H D. 401_{H} -7FE_H

Fim da parte I

Parte II — Questões de Resposta Aberta

Atenção: Responder a cada questão numa folha separada. Justificar todas as respostas.

- 11. Considere os números A e B em que o valor de A é $15,625_{10}$ e a representação do número B no formato IEEE-754 (precisão simples) é $41000000_{\rm H}$.
- [10] (a) Represente o número A segundo a norma IEEE-754. Apresente o resultado em hexadecimal.

 $15,625_{10} = 1111,101_2 \times 2^0$, normalizando: 1,111101₂ × 2³

- Sinal: 0 (positivo);
- Expoente real: 3, logo o expoente codificado será 127 + 3 = 130 que em binário é 10000010;
- Mantissa: 1,111101···.

[20] (b) Determine $A \times B$ apresentando o resultado em hexadecimal no formato IEEE-754.

A representação binária de B é: 0100 0001 0000 0000 0000 0000 0000. Portanto:

- Sinal: 0 (positivo);
- Expoente: 10000010₂ (decimal 130);
- Expoente real: 130 127 = 3;
- Mantissa: $1,0\cdots$;
- Valor final: Deslocando a vírgula 3 posições para a direita obtém-se 1000,02, que em decimal é 8.

Uma vez que 8 é uma potência de 2, realizar a operação $A \times B$ consiste em somar ao expoente real do número A o expoente real do número B. Desta forma o expoente real do resultado é 6. Logo, o resultado de $A \times B$ é:

- Sinal: 0 (positivo);
- Expoente real: 6, logo o expoente codificado será 127 + 6 = 133 que em binário é 10000101;
- Mantissa: 1,111101...;

- 12. A função booleana OU-exclusivo (XOR, símbolo \oplus) é definida como $a \oplus b = a \cdot \overline{b} + \overline{a} \cdot b$. Recordar que: $a \oplus (b \oplus c) = (a \oplus b) \oplus c = a \oplus b \oplus c$.
- [10] (a) Mostrar que os conjuntos de funções booleanas {AND, NOT} e {XOR, AND} são ambos completos, i.e., permitem representar todas as funções booleanas.

Para mostrar que um conjunto é completo, basta mostrar que pode implementar as operações booleanas definidas nos axiomas: AND, OR e NOT.

O conjunto {AND, NOT} já inclui duas dessas operações. A operação que falta, OR, pode ser definida à custa destas duas: $a+b=\overline{\overline{a}\cdot\overline{b}}$. Logo, o conjunto é completo. Quanto ao conjunto {XOR, AND}: a função NOT pode ser implementada por $\overline{a}=a\oplus 1$. Portanto, este conjunto é equivalente ao anterior e, logo, também é completo.

[5] (b) Qual \acute{e} o valor da seguinte expressão com n termos iguais?

$$\underbrace{x \oplus x \oplus x \dots \oplus x}_{n \text{ vezes}}$$

Apresentar o resultado em função do valor de n e justificar.

Tendo em atenção que

$$0 \oplus x = x$$

$$x \oplus x = 0$$

podemos eliminar os pares $x \oplus x$ da expressão inicial, porque são equivalentes a 0. Portanto, para n par, a expressão indicada é 0; para n ímpar, fica reduzida a x.

[20] 13. Considerar o circuito seguinte.

Apresentar uma tabela com os valores das saídas $Y_3Y_2Y_1Y_0$ em função das entradas d e r. Explicar a relação entre as entradas X_i ($i \in \{0,1,2,3\}$) e as saídas Y_i .

Por inspeção, é possível construir a seguinte tabela para descrever o comportamento do circuito em função das entradas de controlo d e r (e para quaisquer valores das entradas de dados X_i):

r	d	Y_3	Y_2	Y_1	Y_0
0	0	X_3	X_2	X_1 X_1 X_0 X_2	X_0
0	1	X_3	X_2	X_1	X_0
1	0	X_2	X_1	X_0	X_4
1	1	X_0	X_3	X_2	X_1

Pode ver-se que, para r = 0 (duas primeiras linhas), as saídas têm o mesmo valor que as entradas de dados $(Y_i = X_i)$.

Para r = 1, o sinal d define o sentido de rotação:

- d = 0: os valores das saídas são iguais aos das entradas, mas posicionados por rotação da sequência de entrada X_i de uma posição para a esquerda;
- d=1: os valores das saídas são iguais aos das entradas, mas posicionados por rotação da sequência de *uma posição* para a *direita*.

0 sinal r funciona como sinal de habilitação (enable): se r=0 não há rotação dos dados, se r=1 existe uma rotação (de uma posição) com o sentido definido por d.

14. Considerar o circuito com um contador de 12 bits. A entrada RESET, síncrona com o sinal de relógio, quando ativa (RESET=1) põe as saídas do contador a 0.

[10] (a) Assumir que o estado atual é $O_{11}O_{10}\cdots O_0=0111111111110$. Indicar, justificando, o estado do contador após 3 ciclos do sinal de relógio.

Ciclo	Estado	RESET
0	0111 1111 1110	0
1	0111 1111 1111	0
2	1000 0000 0000	1
3	0000 0000 0000	0

No ciclo 2 a entrada RESET do contador é ativada. Como é síncrona com o sinal de relógio, o seu efeito (colocar as saídas do contador a zero) ocorre no ciclo seguinte.

[10] (b) Determinar o número de estados que podem ocorrer na saída O do circuito.

Entre 0000 0000 0000 e 0111 1111 1111 ocorrem $2^{11} = 2048$ estados. Como ainda ocorre o estado 1000 0000 0000 (depois deste reinicia), então o total é 2049.

(c) Considerar que o contador é usado para gerar endereços de acesso a um sistema de memória formado por duas memórias RAM. Neste circuito apenas ocorrem operações de escrita, sendo os dados de 8 bits provenientes de um multiplexador conforme apresentado na figura. Assumir que o conteúdo inicial das memórias é 0.

[5] i. Determinar a capacidade de RAM1.

Capacidade de memória = nº posições × nº bits/posição = $2^{10} \times 8$ bits = 1 KiB

[10] ii. Considerar a ocorrência de 2¹² ciclos de relógio a partir do estado 0. Nestas condições, determinar quantas posições de RAM2 são alteradas e o valor nela(s) escrito.

RAM2 só é selecionada para endereços com $A_{11} = 1$. O primeiro e único endereço em que tal ocorre é 1000 0000 0000. O endereço que sucede a este é 0000 0000 0000, devido ao *reset* do contador. Portanto, embora RAM2 utilize descodificação parcial de endereços, esta memória só é acedida uma vez considerando 2^{12} ciclos de relógio a partir do estado 0. A posição acedida tem endereço 0 e o valor nela escrito é 33h ($S_1S_0 = 00$ no multiplexador).

Fim.