Esercizio 1

Progettare un circuito selezionatore che svolge le seguenti operazioni:

Input:

- 2 ingressi di dato (In0 e In1)
- 1 ingresso di selezione S

Ouput

- se S=0: il valore di In0
- se S=1: il valore di In1.

Tavola di verità

In0	In1	S	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Out

In0 In1	0 0	01	11	10
0	0	0	1	1
1	0	1	1	0

Out=In1 S + In0 \overline{S}

Circuito

Come si può passare ad un selezionatore con 4 ingressi (In0, In1, In2, In3) tra cui selezionare?

Esercizio 2

Progettare un generatore di onde quadre con un ingresso che ne stabilisce il periodo, secondo le seguenti specifiche:

- se l'ingresso è 0, il periodo dura 2 colpi di clock (al primo colpo di clock l'uscita è alta, al secondo l'uscita è bassa),
- se l'ingresso è 1, il periodo dura 4 colpi di clock (per 2 colpi di clock l'uscita è alta e per i successivi 2 colpi di clock l'uscita è bassa).

Diagramma degli stati

Mappatura degli stati

A 00

B 01

C 10

D 11

Tavola degli stati

FF1	FF2	I	FF1	FF2	0
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

FF1

FF1 FF2 S	0 0	01	11	10
0	1	1	0	0
1	0	1	0	1

FF1=S FF1 FF2 + \overline{S} FF1 + $\overline{FF1}$ FF2

FF2

FF1 FF2	0 0	01	11	10
0	0	0	0	0
1	1	0	0	1

O

FF1 FF2				
S	0 0	01	11	10
0	0	0	1	1
1	0	0	1	1

O=FF1

Circuito

FF1=S FF1 FF2 + S FF1 + FF1 FF2

FF2=S FF2

O=FF1

Esercizio 3

Progettare un circuito contatore sincrono su 2 bit, avente un ingresso per stabilite l'incremento (se vero il contatore incrementa, se falso mantiene il valore attuale), un ingresso per resettare il contatore (se vero azzera il valore del contatore), e due uscite per memorizzare il numero.

Diagramma degli stati

Mappatura degli stati

A 00

B 01

C 10

D 11

Tavola degli stati

FF1	FF2	Inc	Reset	FF1	FF2	Out1	Out2
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	1	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	0	1	0
1	0	0	1	0	0	1	0
1	0	1	0	1	1	1	0
1	0	1	1	0	0	1	0
1	1	0	0	1	1	1	1
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	1
1	1	1	1	0	0	1	1

FF1

FF1 FF2 Inc Reset	0 0	01	11	10
0 0	0	0	1	1
01	0	0	0	0
11	0	0	0	0
10	0	1	0	1

FF1=Inc Reset FF1 FF2 + Reset FF1 FF2 + Inc Reset FF1

FF2

FF1 FF2 Inc Reset	0 0	01	11	10
0 0	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

FF2=Inc \overline{Reset} $\overline{FF2}$ + \overline{Inc} \overline{Reset} FF2

Out1

FF1 FF2 Inc Reset	0 0	01	11	10
0 0	0	0	1	1
0 1	0	0	1	1
11	0	0	1	1
10	0	0	1	1

Out2

FF1 FF2 Inc Reset	0 0	01	11	10
0 0	0	1	1	0
0 1	0	1	1	0
11	0	1	1	0
10	0	1	1	0

Circuito

FF1=Inc Reset FF1 FF2 + Reset FF1 FF2 + Inc Reset FF1

FF2=Inc Reset FF2 + Inc Reset FF2

Out1=FF1

Out2=FF2