# **Twitter Sentiment Classification**

 $\bullet \bullet \bullet$ 

Chris Hollman October, 2022

### **Overview**

• Developing research tools for an online publishing company.

Classify tweets by their sentiment and generate visuals.

• This will cut down on prep time, identify subject matter that is generating interest, and give writers a tool to quickly write pertinent articles..

# **Project Objective:**

- 1. Group tweets by sentiment
  - a. Positive
  - b. Negative **x**
  - c. Neutral —
- 2. Develop visuals around common words in each category
  - a. Distributions
  - b. Word Clouds
  - c. Tweets

### **Deliverables**

#### Sentiment Distributions

Focused on overall public opinion on broader topics.

#### Word Clouds/Frequencies

Easily identify high usage words within sentiment groups.

#### **Example Tweets**

Establish context for high usage words

# **Examining Data**

The dataset we are using today consists of 9,000 tweets collected by CrowdFlower. These tweets are related to the 2012 South by Southwest (SXSW) conference and are predominantly directed toward Google and Apple events and products.



### **Processing The Data**

### Cleaning:

- Removing punctuation
- Standardizing case
- Dropping irrelevant tweets

### Processing

- Removing stopwords
- Stemming/Lemmatizing
- Vectorizing

# Modeling

### Strengths

- Majority class performance (89% classified)
- Overall accuracy (60%)
- Shows potential for 'positive' category. (19% classified)

#### Weaknesses

- Minority class performance (2% classified.
- False positives/negatives (F1 Scores)
- Would result in poor visuals

### **Baseline Confusion Matrix**



- 60% Overall accuracy is misleading.
- Model predicted "No Emotion" 100% of the time.
- No examples for visuals.

### **Final Confusion Matrix**



- Improved minority class performance.
- 90 examples of positives.
- Still few negative examples

### **Visuals/Results: Sentiment Distributions**



- More total tweets regarding Apple
- Similar distributions
- Majority "No Emotion"

# **Top 20 Word Frequency**



# **Apple: Positive**





**Store:** Apple set up a popup store to sell the new iPad 2

# **Apple: Negative**





**Design:** The overall design quality of the iPad 2 is getting mixed reviews.

## **Google: Positive**





*Marissa*: Marissa Mayer's talk at this year's conference was very well received and was quoted heavily on Twitter.

# Google: Negative





<u>Circles:</u> Google was set to launch a new social platform, however the launch never occurred.

### Recommendations

#### Use of Deliverables:

#### Order of use:

- 1. Sentiment Distribution
- 2. Word Frequency
- 3. Word Clouds
- 4. Tweets

#### **Potential Articles:**

- iPad breakdown/review
- Failed launch of Circles
- Festival overview

### Next Steps

#### More Minority Data

The real weakness of this model is poor performance on minority classes. A possible solution is to find more examples to balance out distribution.

#### Other Subjects

The model also should be applied to other subject matter to test usefulness in other realms.

#### Recent Data

The tweets in this set are 10 years old. More recent examples should be obtained to see how our model reacts to modern day tweets.

# Thank You!

Please feel free to ask any questions.

You may also reach me via email:

Chris Hollman chollman91@gmail.com