AC6102 开发板 USB3.0 UVC 摄像头实验手册

小梅哥编写, 未经许可, 严禁用于任何商业用途

介绍

基于 AC6102_V2 开发板的 USB Video Class 摄像头实验,实现了通过 AC6102 开发板上的 USB3.0 芯片将 OV5640 摄像头采集到的图像数据传输到 PC 机上, 并使用 UVC 图像显示软件显示的功能。

主要参数指标:

USB3.0 速率等级 YUV422 图像格式传输 1280*720@30fps 帧率

UVC 介绍:

UVC, 全称为: USB video class 或 USB video device class。是 Microsoft 与 另外几家设备厂商联合推出的为 USB 视频捕获设备定义的协议标准,目前已成 为 USB org 标准之一。

如今的主流操作系统(如 Windows XP SP2 and later, Linux 2.4.6 and later, MacOS 10.5 and later)都已提供 UVC 设备驱动,因此符合 UVC 规格的硬件设备 在不需要安装任何的驱动程序下即可在主机中正常使用。使用 UVC 技术的包 括摄像头、数码相机、类比影像转换器、电视棒及静态影像相机等设备。

最新的 UVC 版本为 UVC 1.5. 由 USB Implementers Forum 定义包括基本协 议及负载格式。

网络摄像头是第一个支持 UVC 而且也是数量最多的 UVC 设备,目前,操 作系统只要是 Windows XP SP2 之后的版本都可以支持 UVC, 当然 Vista 就 更不用说了。Linux 系统自 2.4 以后的内核都支持了大量的设备驱动,并可以支 持 UVC 设备。

使用 UVC 的好处 USB 在 Video 这块也成为一项标准了之后, 硬件在各 个程序之间彼此运行会更加顺利,而且也省略了驱动程序安装这一环节。

店铺: https://xiaomeige.taobao.com 官方网站: <u>www.corecourse.cn</u> 技术博客: http://www.cnblogs.com/xiaomeige/ 技术群组: 615381411

AC6102 型 FPGA 开发板 UVC 摄像头实验介绍

本实验基于 Cypress 厂家提供的应用手册 AN75779。在该应用手册中,并 未使用到 FPGA 芯片,而是直接使用 FX3 芯片连接图像传感器,如下图 1 所 示。即一个最精简的基于 FX3 芯片的 UVC 摄像头是不需要 FPGA 芯片的参与 的。但在实际的应用中,可能需要先对图像进行一定的预处理再送往 PC 端显 示处理,为了降低 PC 端的运算开销,往往将这一部分预处理工作分配到 FPGA 中, 利用 FPGA 强大的并行处理优势实现。

在 AC6102 开发板上,设计了一款拥有 30K 逻辑单元的 FPGA 主芯片 EP4CE30 和一个 FX3 芯片, FX3 芯片的所有数据线和控制线, 除 IIC、IIS、 SPI 等以外,全部连接到了 FPGA 上。因此当使用 AC6102 开发板进行 UVC 实 验时,需要通过 FPGA 芯片进行一个简单的桥接。

桥接有两种方式,一种是直接使用组合逻辑,将输入连接到输出,例如:

```
assign LV = cmos href;
assign FV = cmos vsync;
assign DQ = {8'd0,cmos data};
```

当使用这种方式时, 是直接的输入 IO 的信号经过布线直接连接到了输出 IO 上, 没有 D 触发器, 因此难以进行时序约束。

另一种能够支持时序约束的桥接方式是,使用 cmos_pclk 将所有信号打 2 拍 之后输出,如下图 2 所示。这样的话即每个信号从输入到输出,会经过 2 级寄 存器传输, 这样在进行时序约束时就非常方便了, 一级寄存器作为输入寄存 器,另一级作为输出寄存器,既方便布局布线,也利于时序分析。

店铺: https://xiaomeige.taobao.com 官方网站: <u>www.corecourse.cn</u> 技术博客: http://www.cnblogs.com/xiaomeige/ 技术群组: 615381411

小梅哥 FPGA 团队 武汉茂路恒科技

专注于培养您的 FPGA 独立开发能力

开发板 培训 项目研发三位一体

本实验中采用第二种方式进行桥接,即在输入和输出信号之间插入2级寄 存器的方式。

```
reg LV_r,FV_r,PCLK_r;
reg [15:0]DQ r;
always@(posedge cmos_pclk)begin
   LV_r <= cmos_href;
   FV r <= cmos vsync;
   DQ r \leq {8'd0,cmos data};
end
always@(posedge cmos pclk)begin
   LV <= LV_r;
   FV <= FV r;
   DQ \leftarrow DQ r;
end
assign PCLK = cmos pclk;
```

由此,整个基于 AC6102 开发板的 UVC 摄像头框图如下图 3 所示。

店铺: https://xiaomeige.taobao.com 官方网站: www.corecourse.cn 技术博客: http://www.cnblogs.com/xiaomeige/ 技术群组: 615381411

小梅哥 FPGA 团队

武汉芯路恒科技

专注于培养您的 FPGA 独立开发能力

开发板 培训 项目研发三位一体

可以看到,与 Cypress 提供的 UVC 应用方案不同,该应用方案在图像传感 器和 FX3 之间插入了一片 FPGA,用作图像的转发,并将原本的控制图像传感 器的 IIC 功能从 FX3 中移植到了 FPGA 中。实际上,直接使用 FX3 原本的 IIC 控制器来实现图像传感器的设置也是可以的,不过这涉及到 FX3 固件的修改, 而日不同的图像传感器需要使用不同的初始化代码,也就意味着需要使用不同 的 FX 3 固件, 会增加开发工作量, 因此在本例中使用 FPGA 来完成图像传感器 的配置初始化工作。这样、对于 FPGA 开发工程师来说,可以避开不熟悉的 FX3 固件开发, 能够有效减少开发工作量。

AC6102 UVC 开发包文件介绍

AC6102 UVC 应用工程共提供以下几个文件

- 1. OV5640_USB30_UVC.qar
- 2. OV5640 UVC 30FPS.png
- 3. OV5640V2+AC6102V2.JPG
- 4. UVC AN75779.img
- 5. UVC AN75779.rar
- VirtualDub_1_10_4_35456.1400664289.zip
- ▶ OV5640_USB30_UVC.qar 文件为基于 AC6102V2 开发板和 OV5640V2 摄像 头模块的 FPGA 应用工程,该工程主要实现了摄像头数据到 FX3 芯片的转 发工作和 OV5640 摄像头的初始化配置工作。将该文件放置在一个非中文 目录下,双击就可以直接使用 Quartus 软件打开。
- OV5640_UVC_30FPS.png 文件为使用该工程进行图像采集显示的效果图
- OV5640V2+AC6102V2.JPG 文件为进行试验时的硬件连接图

店铺: https://xiaomeige.taobao.com 官方网站: www.corecourse.cn 技术群组: 615381411

技术博客: http://www.cnblogs.com/xiaomeige/

小梅哥 FPGA 团队 武汉茂路恒科技

专注于培养您的 FPGA 独立开发能力 开发板 培训 项目研发三位一体

- ▶ UVC_AN75779.img 文件为 USB 芯片的固件,由于该固件尺寸为 139KB, 超过了 EEPROM 存储器的 128K 容量,因此实验时只能烧写到 RAM 或 SPI FLASH 中。
- ▶ UVC_AN75779.rar 文件为 USB 芯片的固件源码,基于 Cypress 厂家提供的 工程源码, 我们进行了一定的修改, 主要就是屏蔽了 IIC 部分, 因为本例中 没有用到 IIC,实际上厂家的源码不做任何修改也是可以直接使用的。当初 屏蔽这部分是为了降低固件尺寸,以期能够降低到 128KB 以内,不过没有 降下来。
- ▶ VirtualDub_1_10_4_35456.1400664289.zip 文件是 PC 端的 UVC 图像显示软 件。

实验过程

连接 USB Blaster 到 JTAG 下载□、连接 OV5640 摄像头到网□左侧的 Camera 接口,将 USB3.0 数据线一端插入 AC6102 开发板,另一端插入 PC 端 的 USB3.0 接口。将电源开关拨到 ON 位置。如下图 5 所示:

店铺: https://xiaomeige.taobao.com 官方网站: www.corecourse.cn 技术群组: 615381411

技术博客: http://www.cnblogs.com/xiaomeige/

注意,这里一定要插入电脑的 USB3.0 接口,现在的电脑一般都带有 USB3.0 接□了,识别某 USB 接□为 USB3.0 还是 2.0 的方式很简单,可以通过 以下三种方式识别。

1、根据 USB 协会标准定义,USB3.0 的 typeA 母□应该为天蓝色,如果您发现 您的 USB 接□为蓝色,那一定是 USB3.0 接□。如下图 6 所示。当然,现在很 多电脑厂商在生产时并未严格遵守这一协定,因此,有的电脑单凭颜色还是无 法区分 USB3.0 和 USB2.0。

2、查看 USB 接□附近的图案标识。USB3.0 一般称作 SuperSpeed USB,因此 如果该 USB 接口对应的图案有 SS 标识,那一定是 USB3.0 接口。如下图 7,右 侧的带有 SS 标识的为 USB3.0 接口,而左侧的没有 SS 标识的则不是 USB3.0接□。

3、如果上述两种方法还是无法区分的话,可以用最直接的办法,看看这个 USB 接□里有几个触点和簧片, USB3.0 的只有 4 个, 而 USB3.0 的有 9 个, 如 下图 8 所示:

官方网站: <u>www.corecourse.</u>cn 店铺: https://xiaomeige.taobao.com 技术博客: http://www.cnblogs.com/xiaomeige/ 技术群组: 615381411

双击 OV5640_USB30_UVC.qar 文件, 打开之后进行全编译以得到 sof 文 件。并将 sof 文件下载到 FPGA 中。

打开 Cypress 的 Control Center 软件,烧写 UVC_AN75779.img 文件到 FX3 芯片的 RAM 中。该软件需要用户已经安装了 FX3-SDK. 如未安装, 可参看 AC6102 的 USB3.0 开发教程相关章节先安装软件。如何烧写 img 文件,也可参 看 AC6102 的 USB3.0 开发教程相关章节。

烧写完成后,系统会自动安装驱动,安装完成后会在设备管理器下的图像 设备中出现一个名为 FX3 的设备,如下图 9 所示。该设备就是我们的 UVC 摄 像头了。

将文件包提供的 VirtualDub_1_10_4_35456.1400664289.zip 解压, 并运行 VirtualDub.exe 文件,如下图 10 所示。打开之后,选择 File—>Capture AVI 以进 入图像捕获模式,如下图 11 所示:

▼ 新建文件夹	8==
名称	修改日期
aviproxy	2013-05-05 16:1
plugins32	2013-05-05 16:1
@ auxsetup.exe	2013-04-22 20:4
copying	2010-12-28 16:0
⊗ vdicmdrv.dll	2013-04-22 20:4
vdlaunch.exe	2013-04-22 20:4
	2013-04-22 20:4
⊗ vdsvrlnk.dll	2013-04-22 20:4
€ vdub.exe	2013-04-22 20:4
😰 VirtualDub.chm	2013-04-22 20:4
(역 VirtualDub.exe	2013-04-22 20:4
☐ VirtualDub.vdi	2013-04-22 20:4

店铺: https://xiaomeige.taobao.com 官方网站: www.corecourse.cn 技术群组: 615381411

技术博客: http://www.cnblogs.com/xiaomeige/

小梅哥 FPGA 团队 武汉芯路恒科技

专注于培养您的 FPGA 独立开发能力 开发板 培训 项目研发三位一体

然后选择 Device—>FX3(DirectShow), 如下图 11 所示, 如果软硬件配置都 没有问题的话,就可以在软件中看到显示的图像了。

店铺: https://xiaomeige.taobao.com 官方网站: www.corecourse.cn

技术博客: http://www.cnblogs.com/xiaomeige/ 技术群组: 615381411

小梅哥 FPGA 团队 武汉茂路恒科技

专注于培养您的 FPGA 独立开发能力 开发板 培训 项目研发三位一体

图 12 为使用该 UVC 工程截图的图片,可以看得到实时帧率为 30fps 左右。

关于 FX3 固件代码的理解和修改, 请参看 AC6102 开发板 USB3.0 开发教 程相关章节内容。

店铺: https://xiaomeige.taobao.com 官方网站: www.corecourse.cn 技术群组: 615381411 技术博客: http://www.cnblogs.com/xiaomeige/