Backtracking: The Power Set

William Fiset

What is the power set?

In mathematics, the power set is the set of all subsets. If s is a set we denote the power set as P(s).

```
Suppose that s = \{a, b, c\}
```

```
Then P(s) = \{\{\}\}, \{a\}, \{b\}, \{c\}\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}
```

Power set facts

P(s) always has 2^n elements where n = |s|

Power set facts

P(s) always has 2^n elements where n = |s|

The power set is the set of all subsets of different sizes. In other words, the power set is the set of all combinations of different sizes.

```
Subsets of size 0: {}

Subsets of size 1: {a}, {b}, {c}

Subsets of size 2: {a,b}, {a,c}, {b,c}

Subsets of size 3: {a,b,c}
```

Let's see how we can use backtracking to generate all subsets of a set. The key realization is to notice that any subset can be represented as a bit string of length N.

A B

Let's see how we can use backtracking to generate all subsets of a set. The key realization is to notice that any subset can be represented as a bit string of length N.

Let's see how we can use backtracking to generate all subsets of a set. The key realization is to notice that any subset can be represented as a bit string of length N.

Let's see how we can use backtracking to generate all subsets of a set. The key realization is to notice that any subset can be represented as a bit string of length N.

0	0	0
0	0	1
0	1	0
0	1	
	0	0
1	0	1
	1	0
	1	

0	0	0
0	0	1
0	1	0
0	1	
	0	0
	0	1
	1	0
1	1	

0	0	0
0	0	1
0	1	0
0	1	1
	0	0
	0	
	1	0
	1	

0	0	0
0	0	1
0	1	0
0	1	1
	0	0
	0	
	1	0
	1	

0	0	0
0	0	1
0	1	0
0	1	1
	0	0
	0	1
	1	0
	1	

Suppose $s = \{ \underbrace{\bullet}, \underbrace{\bullet}, \underbrace{\bullet}, \underbrace{\bullet} \}$, what is P(s)?

0	0	0
0	0	1
0	1	0
0	1	1
	0	0
	0	
	1	0
	1	

Suppose $s = \{ \underbrace{\bullet}, \underbrace{\bullet}, \underbrace{\bullet}, \underbrace{\bullet} \}$, what is P(s)?

0	0	0
0	0	1
0	1	0
0	1	1
	0	0
	0	1
	1	0
	1	

0	0	0
0	0	1
0	1	0
0		
1	0	0
1	0	
1	1	0
	1	

Suppose $s = \{ \underbrace{\bullet}, \underbrace{\bullet}, \underbrace{\bullet}, \underbrace{\bullet} \}$, what is P(s)?

0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	
1		0
1		

function powerSet(set):

```
N = set.length
B = [0,0,...,0] # B should be of length N
bitstrings = []
generateBitstrings(0, B, bitstrings)
# Use found bit strings to select items
subsets = []
for bitstring in bitstrings:
    subset = []
    for (i = 0; i < N; i = i + 1)
        bit = bitstring[i]
        if bit == 1:
            subset add (set[i])
    subsets add(subset)
return subsets
```

Let *i* be the index of the element we're considering, let *B* be an array of length *N* representing a bit string (initialized with all 0s), and finally, let bitstrings be an originally empty array tracking the found bit strings.

function generateBitstrings(i, B, bitstrings): # Found a valid subset if i == Nbitstrings.add(B.deepcopy()) else # Consider including element B[i] = 1generateBitstrings(i+1, B, bitstrings) # Consider not including element $B[i] = \emptyset$ generateBitstrings(i+1, B, bitstrings)

Source Code Link

Implementation source code can be found at the following link:

github.com/williamfiset/algorithms

Link in the description:

