《微积分A2》第二十讲

教师 杨利军

清华大学数学科学系

2020年04月27日

回忆: Green 定理

Theorem

定理:设D为平面有界闭区域,其边界 ∂D 为分段光滑曲线,则

对 D 上任意连续可微向量场 F(x,y) = (P(x,y),Q(x,y)) 成立

$$\text{Pr}\quad \iint_D (Q_x-P_y)dxdy=\int_{\partial D^+}\!Pdx+Qdy.$$

面积的线积分表示

$\mathsf{Theorem}$

定理: 设 D 为平面有界闭域, P(x,y) 和 Q(x,y) 在 D 上连续可微, 且 $Q_x - P_y \equiv 1$, 则区域 D 面积可如下表为线积分

$$|\mathsf{D}| = \int_{\partial \mathsf{D}} \mathsf{P} \mathsf{d} \mathsf{x} + \mathsf{Q} \mathsf{d} \mathsf{y}.$$

证:由 Green 公式可知

$$\int_{\partial D} P dx + Q dy = \iint_{D} (Q_x - P_y) dx dy = \iint_{D} 1 dx dy = |D|.$$

证毕.

面积的三种线积分表示

对于任意平面有界区域 D. 分别取

$$(\mathsf{P},\mathsf{Q})=(0,\mathsf{x}),\quad (-\mathsf{y},0),\quad \Big(rac{-\mathsf{y}}{2},rac{\mathsf{x}}{2}\Big),$$

则 D 面积可表为

$$|\mathsf{D}| = \int_{\partial \mathsf{D}} \mathsf{xdy} = \int_{\partial \mathsf{D}} - \mathsf{ydx} = \frac{1}{2} \int_{\partial \mathsf{D}} - \mathsf{ydx} + \mathsf{xdy}.$$

例子

例: 求椭圆盘 D: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ 的面积, 这里 a, b > 0.

解: 椭圆周 ∂D : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 有参数方程 $x = a\cos\theta$, $y = b\sin\theta$,

 $0 \le \theta \le 2\pi$. 显然参数 θ 与边界椭圆周 ∂D 的正定向(逆时针)

协调. 因此

$$|\mathsf{D}| = rac{1}{2} \int_{\partial \mathsf{D}} -\mathsf{y} \mathsf{d} \mathsf{x} + \mathsf{x} \mathsf{d} \mathsf{y}$$
 $= rac{1}{2} \int_0^{2\pi} \Big[-\mathsf{b} \mathsf{sin} heta (\mathsf{a} \mathsf{cos} heta)' + \mathsf{a} \mathsf{cos} heta (\mathsf{b} \mathsf{sin} heta)' \Big] \mathsf{d} heta$ $= rac{\mathsf{a} \mathsf{b}}{2} \int_0^{2\pi} (\mathsf{cos}^2 heta + \mathsf{sin}^2 heta) \mathsf{d} heta = \pi \mathsf{a} \mathsf{b}.$

解答完毕.

面积测量仪

根据上述面积的线积分表示,人们设计出了各种面积测量仪器, 广泛用于科学的各个领域.例如,测量植物叶子或飞禽翅膀的 面积,肿瘤断面的面积,以及森林覆盖面面积等.如图是一个面 积测量仪器.

FIGURE 5
A Keuffel and Esser polar planimeter

证明定理: 平面单连通域上的无旋场是保守场

Theorem

定理:设平面向量场 F = (P, Q) 是平面单连通区域 D 上的连续可微. 若 F 无旋,则场 F 是保守场(即梯度场).

证: 对域 D 中任意简单闭路径 C^+ , 由于 D 为单连通, 故由 C^+ 所包围的闭区域, 记作 D_1 , 包含在 D 中. 于是由 Green 公式, 以及无旋假设 rot F=0 得

$$\int_{C^+} \mathbf{F} \cdot d\mathbf{r} = \iint_{D_1} (\mathbf{rot} \, \mathbf{F}) d\mathbf{x} d\mathbf{y} = 0.$$

这说明场 F 在 D 上沿着任意简单闭路径的积分为零. 而后者等价于场 F 为保守场(即梯度场). 证毕. □

环量和通量

Definition

定义:设F = (P,Q) 为平面域 D 上的连续向量场, C^+ 是 D 内的一条简单闭曲线, 逆时针为其正向.记T 和 n 为定向曲线 C^+ 的单位切向量和单位外法向量,则分别称如下两个闭路径积分

$$\oint_{\mathbf{C}^+} \mathbf{F} \cdot \mathbf{Tds}, \quad \oint_{\mathbf{C}^+} \mathbf{F} \cdot \mathbf{nds}$$

为场 F 关于闭路径 C⁺ 的环量(circulation) 和通量(flux)

 \underline{i} : 环量积分 \oint_{C^+} F·Tds 就是场 F 关于定向闭路径 C⁺ 的第二型线积分.

环量和通量的物理意义

假设向量场F平面流体流动的速度场,则

- (i) 环量积分 ∮_{C+}F·Tds 表示单位时间里流体沿着环路 C⁺ 的流量;
- (ii) 通量积分 $\oint_{C^+} \mathbf{F} \cdot \mathbf{nds}$ 表示单位时间里流体穿过环路 \mathbf{C}^+ 由内向外的流出的流量.

回忆: 当 F 为力场时, 积分 $\oint_{C^+} F \cdot T ds$ 的物理意义是, 力场 F 关于质点沿着闭路径 C^+ 运动一周所作的功.

闭路径的单位切向量与单位法向量之表示

假设平面闭路径 C^+ 的正向(如通常规定的)为逆时针,且 C^+ 有正则参数方程 r(t)=(x(t),y(t)), $a\leq t\leq b$,参数与定向协调,则闭路径 C^+ 的单位切向量 T 和单位外法向 n 可表为

$$\mathsf{T}(t) = \frac{1}{|\mathsf{r}'(t)|}(\mathsf{x}'(t),\mathsf{y}'(t)), \quad \mathsf{n}(t) = \frac{1}{|\mathsf{r}'(t)|}(\mathsf{y}'(t),-\mathsf{x}'(t)).$$

正法向具有上述形式的理由:由图可知向量组n,T构成右手系,或等价地,以n,T分别为第一行二行的二阶行列式为1.故向量n必有上述表示.

<ロ > ← □

平面向量场的旋度与散度

Definition

定义: 设F = (P, Q) 是平面域 D 的向量场, 连续可微.

- (i) $% \operatorname{rot}(F) = Q_x P_y \$ 为场 F 的旋度 (rotation 或 curl);

 \underline{i} : 旋度也常记作 $\operatorname{curl}(F)$, 即 $\operatorname{curl}(F) = Q_x - P_y$.

Green 公式的一个等价形式: 通量形式

干是通量积分可表为

$$\begin{split} \oint_{C^+} (F \cdot n) ds &= \int_a^b F(r(t)) \cdot \frac{\left(y'(t), -x'(t)\right)}{|r'(t)|} |r'(t)| dt \\ &= \int_a^b [P(x(t), y(t)) y'(t) - Q(x(t), y(t)) x'(t)] dt \\ &= \int_{C^+} P dy - Q dx = \iint_{D} (P_x + Q_y) dx dy. \end{split}$$

由此得到 Green 公式的通量形式

$$\oint_{C^+} (F \cdot n) ds = \iint_{D} div(F) dx dy.$$

Green 公式的旋度形式

由于之前的 Green 公式

$$\int_{\partial D^+} P dx + Q dy = \iint_D (Q_x - P_y) dx dy$$

可以写作如下

$$\oint_{\partial D^+} \mathbf{F} \cdot \mathbf{T} d\mathbf{s} = \iint_{\mathbf{D}} \mathbf{rot}(\mathbf{F}) d\mathbf{x} d\mathbf{y}.$$

因此上述公式可称为 Green 公式的旋度形式.

平面线积分与路径无关性, 总结

<u>定理</u>: 设 D 为平面单连通开区域, F = (P, Q) 为 D 上 C^1 向量场, 则以下四件事情等价.

- (i) 闭路径积分为零; 即对 D 中任意闭路径 C^+ , $\oint_{C^+} F \cdot dr = 0$;
- (ii) 积分与路径无关;即对任两点 $A,B\in D$,以及任意以 A为起点,以 B 为终点的路径 C_{AB} ,积分 $\oint_{C_{AB}} F\cdot dr$ 的值,仅与点 A,B 的位置有关,而与路径 C_{AB} 的选择无关;
- (iii) 场 F 是梯度场, 即存在 D 上 C^1 函数 f(x,y), 使得 $\nabla f = F$;
- (iv) 场 F 无旋, 即 rot(F) = 0, 亦即 $Q_x = P_y$.

势函数的积分表示

假设平面场 F 在区域 D 上积分与路径无关,则场 F 是梯度场,即存在 C^1 函数 f(x,y),使得 $\nabla f=F$. 若 D 是矩形区域,则势函数可以表如下积分形式

$$f(x,y) = \int_{a}^{x} P(u,y) du + \int_{b}^{y} Q(a,v) dv, (沿着路径 C_{1}^{+}积分)$$

或
$$f(x,y) = \int_a^x P(u,b)du + \int_b^y Q(x,v)dv$$
. (沿着路径 C_2^+ 积分)

例子

例: 计算线积分

$$J = \int_{C_{AB}^+} (e^y + sinx) dx + (xe^y - cosy) dy,$$

其中 C_{AB} 为圆周 $(x-\pi)^2 + y^2 = \pi^2$ 的一部分, $0 \le x \le \pi$,

 $y \ge 0$, 起点 A = (0,0), 终点 $B = (\pi,\pi)$. 如图所示.

例子续一

解:直接计算这个线积分有点麻烦.故另寻途径.记 $P(x,y)=e^y+\sin x$, $Q(x,y)=xe^y-\cos y$,则 $Q_x=e^y=P_y$.这表明场 F=(P,Q) 在全平面是无旋的.故场 F 在全平面上积分与路径 无关.因此为了积分方便,取新的积分路径 $L_1^+\cup L_2^+$,如图所示.

例子续二

于是

$$\begin{split} J &= \int_{\mathsf{L}_1^+ \cup \mathsf{L}_2^+} \mathsf{P} \mathsf{d} \mathsf{x} + \mathsf{Q} \mathsf{d} \mathsf{y} \\ &= \int_0^\pi (1 + \mathsf{sinx}) \mathsf{d} \mathsf{x} + \int_0^\pi (\pi \mathsf{e}^\mathsf{y} - \mathsf{cosy}) \mathsf{d} \mathsf{y} \\ &= \pi + 2 + \pi (\mathsf{e}^\pi - 1) = 2 + \pi \mathsf{e}^\pi. \end{split}$$

<u>另解</u>: 先求势函数, 再计算积分. 为求势函数, 我们考虑微分式 Pdx + Qdy, 对其作适当组合得

$$(e^y + \sin x)dx + (xe^y - \cos y)dy$$

例子续三

$$= (e^y dx + xe^y dy) + sinxdx - cosydy$$

$$= d(xe^y) - dcosx - dsiny = d(xe^y - cosx - siny).$$

这表明 $f(x,y) = xe^y - \cos x - \sin y$ 是场 F = (P,Q) 的势函数.

因此根据线积分基本定理得

$$\begin{split} J &= \int_{C_{AB}^+} (e^y + sinx) dx + (xe^y - cosy) dy = f(B) - f(A) \\ &= f(\pi, \pi) - f(0, 0) = \pi e^{\pi} + 1 - (-1) = \pi e^{\pi} + 2. \end{split}$$

解答完毕.

一阶全微分方程(恰当方程), 及其通解

Definition

定义: (i) 形如 P(x,y)dx + Q(x,y)dy = 0 的方程称为一阶对称 的常微分方程; (ii) 如存在连续可微函数 f(x,y), 使得 df(x,y) = P(x,y)dx + Q(x,y)dy, 则称方程 Pdx + Qdy = 0 为全微分 方程或恰当方程(exact equations), 并且称 f(x,y) = K 是方程 Pdx + Qdy = 0 的一般解(通解).

 \underline{i} : 对称方程 Pdx+Qdy=0 对应了一个向量场 F=(P,Q). 显然方程 Pdx+Qdy=0 是恰当方程 \iff 场 F 是梯度场, 即存在连续可微函数 f(x,y), 使得 $\nabla f=F$, 亦即 $f_x=P$ 且 $f_y=Q$.

例子

例: 求解微分方程

$$\Big(\ln y - \frac{y}{x}\Big)dx + \Big(\frac{x}{y} - \ln x\Big)dy = 0, \quad x,y > 0.$$

解: 记

$$P(x,y) = \ln y - \frac{y}{x}, \quad Q(x,y) = \frac{x}{y} - \ln x,$$

则 $Q_x = \frac{1}{y} - \frac{1}{x} = P_y$. 故向量场 F = (P,Q) 是无旋场. 由于场 F 的定义域(第一象限)为单连通, 故场 F 是梯度场, 因此方程 Pdx + Qdy = 0 是恰当方程. 以下求势函数. 将方程重新组合 如下

例子续

$$\frac{x}{y}dy - \frac{y}{x}dx + (lny)dx - (ln\,x)dy = 0.$$

上式可写作

$$xd(\ln y) - yd(\ln x) + (\ln y)dx - (\ln x)dy = 0$$

或

$$d[x(lny)-y(ln\,x)]=0.$$

由此即得势函数为 x(lny) - y(ln x). 于是方程 Pdx + Qdy = 0 的通解为 x(lny) - y(ln x) = K, 其中 K 为任意常数. 解答完毕.

积分因子

Definition

定义: 若存在连续可微函数(非常数) $\mu(x,y)$, 使得方程 μ Pdx $+\mu$ Qdy = 0 为恰当方程, 则称函数 $\mu(x,y)$ 为方程 Pdx + Qdy = 0 的一个积分因子 (an integrating factor). 进一步设 f(x,y) 是恰当方程 μ Pdx + μ Qdy = 0 的势函数, 则 f(x,y) = K 也称 为原方程 Pdx + Qdy = 0 的通解.

例子

例: 考虑方程 ydx + $(x^2y - x)$ dy = 0. 记 P = y, Q = $x^2y - x$, 则 P_y = 1, Q_x = 2xy - 1. 因此方程为非恰当方程. 由观察知, 用 x^{-2} 乘以方程的两端所得到的新方程

$$\frac{y}{x^2}dx + \left(y - \frac{1}{x}\right)dy = 0$$

是恰当的, 因为它的左边可改写如下

左边 =
$$\frac{y}{x^2}dx - \frac{1}{x}dy + ydy = d\left(-\frac{y}{x} + \frac{y^2}{2}\right).$$

因此新方程恰当.

例子,续

这表明函数 $\mu = x^{-2}$ 是原方程 $ydx + (x^2y - x)dy = 0$ 的一个积分因子, 且其通解为

$$-\frac{y}{x} + \frac{y^2}{2} = K. \qquad (*)$$

不难看出在左半平面 (x < 0)或右半平面 (x > 0)上,原非恰当方程 $ydx + (x^2y - x)dy = 0$ 与新方程同解,即它们均有通解 (*). 解答完毕.

积分因子方程

依定义知一个连续可微函数(非常数) $\mu(x,y)$ 是非恰当方程 Pdx+Qdy=0 的积分因子, 当且仅当 $(\mu P)_y=(\mu Q)_x$, 即

$$\mu_{y}P - \mu_{x}Q = \mu(Q_{x} - P_{y}).$$

上述方程通常称作<u>积分因子方程</u>. 这里假设函数 P, Q 的定义域 是单连通的. 注: 积分因子方程

$$\mu_{\mathsf{y}}\mathsf{P} - \mu_{\mathsf{x}}\mathsf{Q} = \mu(\mathsf{Q}_{\mathsf{x}} - \mathsf{P}_{\mathsf{y}})$$

是关于未知函数 $\mu(x,y)$ 的偏微分方程 (partial differential equations, PDE). 通常求解 PDE比求解常微分方程 (ordinary differential equationss, ODE) 更困难. 但在某些情况下, 非恰当方程 Pdx +Qdy = 0 可能有特别形式的积分因子. 比如有单变量积分因子 $\mu(x)$, $\mu(y)$ 等.

变量分离型积分因子

考虑非恰当方程 Pdx + Qdy = 0. 假设方程有变量分离型积分 因子, 即有积分因子形如 $\mu(x,y) = \mu_1(x)\mu_2(y)$. 将它代入积分 因子方程 $\mu_y P - \mu_x Q = \mu(Q_x - P_y)$ 得

$$\mu_1(x)\mu_2'(y)P - \mu_1'(x)\mu_2(y)Q = \mu_1(x)\mu_2(y)(Q_x - P_y).$$

上式两边同除 $\mu_1(x)\mu_2(y)$ 得

$$\frac{\mu_2'(y)}{\mu_2(y)} P - \frac{\mu_1'(x)}{\mu_1(x)} Q = Q_x - P_y.$$

变量分离型积分因子,续

由上述分析可知, 若存在两个一元函数 g(x) 和 h(y), 使得

$$h(y)P-g(x)Q=Q_x-P_y,\\$$

则方程有变量分离型积分因子 $\mu(x,y) = \mu_1(x)\mu_2(y)$, 其中

$$\frac{\mu_1'(\mathbf{x})}{\mu_1(\mathbf{x})} = \mathbf{g}(\mathbf{x}) \quad \Rightarrow \quad \mu_1(\mathbf{x}) = \mathrm{e}^{\int \mathbf{g}(\mathbf{x}) \mathrm{d}\mathbf{x}},$$

$$\frac{\mu_2'(y)}{\mu_2(x)} = h(y) \quad \Rightarrow \quad \mu_2(y) = e^{\int h(y)dy}.$$

变量分离型积分因子, 例子

例: 考虑 $(y-y^2)dx+xdy=0$. 记 $P=y-y^2$, Q=x, 则 $Q_x=1,\ P_y=1-2y.\$ 可见方程非恰当. 以下寻求 g(x) 和 $h(y),\$ 使得 $h(y)P-g(x)Q=Q_x-P_y,\$ 即

$$h(y)(y-y^2)-g(x)x=2y.$$

选取 g(x) 和 h(y) 有多种可能性:

方式一: 取
$$g(x) = 0$$
, $h(y) = \frac{2}{1-y}$, 则 $h(y)(y-y^2) - g(x)x$ $\frac{2}{1-y}(y-y^2) = 2y$. 此时积分因子为

$$\mu = \mu_1 \mu_2 = \mathrm{e}^0 \mathrm{e}^{\int rac{2 \mathrm{dy}}{1 - \mathrm{y}}} = rac{1}{(1 - \mathrm{y})^2}.$$

例子,续一

以 $\frac{1}{(1-y)^2}$ 乘以方程得

$$\frac{y}{1-y}dx+\frac{x}{(1-y)^2}dy=0.$$

显然这是一个恰当方程. 因为上式左端可以写作

$$d\bigg(\frac{xy}{1-y}\bigg)=0.$$

由此得通解

$$\frac{xy}{1-y}=c\quad \mbox{\'{A}}\quad xy=c(1-y).$$

例子,续二

方式二: 取
$$g(x) = \frac{-2}{x}$$
, $h(y) = \frac{-2}{y}$, 则 $h(y)(y - y^2) - g(x)x$ $\frac{-2}{y}(y - y^2) - \frac{-2}{x}x = 2y$. 此时积分因子为

$$\mu = \mu_1 \mu_2 = \mathrm{e}^{\int \frac{-2 \mathrm{d} \mathsf{x}}{\mathsf{x}}} \mathrm{e}^{\int \frac{-2 \mathrm{d} \mathsf{y}}{\mathsf{y}}} = (\mathsf{x} \mathsf{y})^{-2}.$$

以
$$(xy)^{-2}$$
 乘以原方程 $(y-y^2)dx + xdy = 0$ 得

$$\frac{1-y}{x^2y}dx + \frac{dy}{xy^2} = 0 \quad \text{ if } \quad \frac{dx}{x^2y} + \frac{dy}{xy^2} - \frac{dx}{x^2} = 0.$$

不难看出上式右边可写作全微分形式

$$d\bigg(\frac{-1}{xy}+\frac{1}{x}\bigg)=0.$$

例子,续三

由此得通解

$$\frac{-1}{xy} + \frac{1}{x} = c \quad \text{if} \quad -1 + y = cxy.$$

解答完毕.

齐次方程的积分因子

Theorem

设 P(x,y) 和 Q(x,y) 为次数相同的齐次函数,则齐次方程 P(x,y)dx + Q(x,y)dy = 0 有积分因子 $(xP + yQ)^{-1}$.

Proof.

证明留作补充习题

例子

例: 求解方程 (x+y)dx - (x-y)dy = 0.

解法一: 根据定理可知方程有积分因子

$$(xP+yQ)^{-1}=(x(x+y)-y(x-y))^{-1}=(x^2+y^2)^{-1}.$$

用 $(x^2 + y^2)^{-1}$ 乘以方程两边得

$$\frac{x + y}{x^2 + y^2} dx - \frac{x - y}{x^2 + y^2} dy = 0$$

$$\Rightarrow \quad \frac{xdx + ydy}{x^2 + y^2} - \frac{xdy - ydx}{x^2 + y^2} = 0$$

例子,续

$$\begin{split} \Rightarrow & \ \, d \left(\frac{1}{2} \ln \left(x^2 + y^2 \right) - \arctan \frac{y}{x} \right) = 0 \\ \\ \Rightarrow & \ \, \ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x} + c_1 \\ \\ \Rightarrow & \ \, \sqrt{x^2 + y^2} = c e^{\arctan \frac{y}{x}}, \quad c = e^{c_1} > 0. \end{split}$$

在极坐标 $x = rcos\theta$, $y = rsin\theta$ 下, 上式(通解)为 $r = ce^{\theta}$.

解法二

解法二: 将齐次方程 (x + y)dx - (x - y)dy = 0 写作等价方程

$$\frac{dy}{dx} = \frac{x + y}{x - y}.$$

作变量替换y = zx,则

$$xz' + z = \frac{1+z}{1-z}$$
 or $xz' = \frac{1+z^2}{1-z}$.

分离变量并积分得

$$\int \frac{(1-z)dz}{1+z^2} = \int \frac{dx}{x}$$

解法二续

$$\Rightarrow \quad \arctan z - \frac{1}{2} \ln (1 + z^2) + c_1 = \ln |x|,$$

$$\Rightarrow \quad \frac{1}{2} \ln x^2 (1 + z^2) = \arctan z + c_1,$$

$$\Rightarrow \quad \sqrt{x^2 + y^2} = c e^{\arctan \frac{y}{x}},$$

这里 $c=e^{c_1}>0$. 在极坐标 $x=rcos\theta$, $y=rsin\theta$ 下, 上式(通解)为对数螺线 $r=ce^{\theta}$. 即得到与解法一相同的解. 解答完毕.

空间面积分基本定理, Gauss 定理

定理:设 $\Omega \subset \mathbb{R}^3$ 为空间有界闭域,其边界 $\partial \Omega$ 为分片正则曲面,设F = (P, Q, R) 为 Ω 上的连续可微向量场,则

其分量形式为

$$\iiint_{\Omega} (P_x + Q_y + R_z) dx dy dz = \iint_{\partial \Omega^+} P dy dz + Q dz dx + R dx dy,$$

其中 $\partial\Omega^+$ 的正法向朝外(相对于区域 Ω 而言), div $F = P_x + Q_x + R_z$, 称为场F 的散度(divergence).

Gauss 公式的意义

同一维情形的 Newton-Leibniz 公式 $\int_a^b f'(x)dx = f(b) - f(a)$, 以及二维情形的 Green 公式

$$\text{or } \iint_{D} \text{div}(F) \text{dxdy} = \oint_{\partial D^{+}} F \cdot \text{nds},$$

类似, Gauss 公式

$$\iiint_{\Omega}(\text{div} F) dx dy dz = \iint_{\partial \Omega^+} (F \cdot n) dS,$$

表明如下事实:空间向量场的某种导数在域上的积分 = 场在其边界上的积分。

Gauss 公式的应用一

利用 Gauss 公式可以用面积分表示立体体积:设 $\Omega\subset \mathbb{R}^3$ 为空间有界闭域。可取空间向量场 F=(P,Q,R),使得 div(F)=1,则 Ω 的体积可表示为

$$|\Omega| = \iint_{\partial \Omega^+} (\mathbf{F} \cdot \mathbf{n}) d\mathbf{S}.$$

例如取 $F = \frac{1}{3}(x, y, z)$,则

$$|\Omega| = rac{1}{3} \iint_{\partial \Omega^+} \!\! \mathsf{xdydz} + \mathsf{ydzdx} + \mathsf{zdxdy}.$$

例子

例: 设
$$\Omega$$
 为半径为 $R>0$ 的球体 $x^2+y^2+z^2 \leq R^2$, 其边界即
球面 $S: x^2+y^2+z^2=R^2$ 的单位外法向为 $n=(x,y,z)/R$, $(x,y,z)\in S$. 取 $F=\frac{1}{3}(x,y,z)$, 则球体体积为
$$|\Omega|=\iint_S (F\cdot n)dS=\frac{1}{3}\iint_S (x,y,z)\cdot (x,y,z)/RdS$$

$$=\frac{1}{3R}\iint_S (x^2+y^2+z^2)dS=\frac{1}{3R}\iint_S R^2dS$$

$$=\frac{R}{3}|S|=\frac{R}{3}\cdot 4\pi R^2=\frac{4\pi R^3}{3}.$$

这是熟知的球体体积公式.

<ロ > → → → → → → → → → → → → へのの

Gauss 公式的应用二, 例子

例: 设 S 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, S 所包围的立体即椭球记作 Ω , 这里 a,b,c>0. 设向量场 F=(x,y,z), 利用 Gauss 公式, 比较容易计算面积分 $J=\iint_{S^+}(F\cdot n)dS$. 因为由 Gauss 公式得

$$egin{aligned} \mathsf{J} &= \iiint_\Omega \mathsf{div}(\mathsf{F}) \mathsf{dV} = \iiint_\Omega \mathsf{3dV} = \mathsf{3} |\Omega| \ &= \mathsf{3} \cdot rac{4\pi \mathsf{abc}}{\mathsf{3}} = \mathsf{4}\pi \mathsf{abc}. \end{aligned}$$

注一: 我们曾经利用椭球面的参数方程计算过这个面积分(参见 Apr20讲义第29页例二),有相当的计算量. 注二: 椭球 Ω : $\frac{\chi^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1$ 的体积 $|\Omega| = \frac{4\pi abc}{3}$. 因为 $|\Omega| = \iiint_{\Omega} dV = abc \iiint_{U^2+v^2+w^2} \leq 1 dV = \frac{4\pi abc}{3}$.

例子

例: 记 B 为闭球 $(x-a)^2+(y-b)^2+(z-c)^2 \le R^2$, R>0, 记 S^+ 为 B 的边界, 即球面 $(x-a)^2+(y-b)^2+(z-c)^2=R^2$, 正法向朝外. 设向量场 $F=(x^2,y^2,z^2)$, 计算面积分

$$J = \iint_{S^+} (F \cdot n) dS.$$

解:由Gauss公式得

$$J=\iiint_{B}\!div(F)dV=\iiint_{B}\!2(x+y+z)dV.$$

对上述三重积分作平移变换 u = x - a, v = y - b, w = z - c, 或者 x = u + a, y = v + b, z = w + c, 则

例子续

$$J = \iiint_{B'} 2(u + v + w + a + b + c)dV,$$

这里 B' 表示球体 $u^2 + v^2 + w^2 \le R^2$. 根据对称性可知

因此

$$\begin{split} J &= \iiint_{B'} \!\! 2(a+b+c) dV \\ &= 2(a+b+c)|B'| = \frac{8}{3}(a+b+c)\pi R^3. \end{split}$$

解答完毕.

Gauss 定理的证明

证明大意: 显然 Gauss 公式

$$\iiint_E (P_x + Q_y + R_z) dx dy dz = \iint_{S^+} P dy dz + Q dz dx + R dx dy$$

成立, 当且仅当以下三个等式均成立.

$$\iiint_{E} P_{x} dx dy dz = \iint_{S^{+}} P dy dz, \quad (1)$$

$$\iiint_E Q_y dx dy dz = \iint_{S^+} Q dz dx, \quad (2)$$

$$\iiint_E R_z dx dy dz = \iint_{S^+} R dx dy. \quad (3)$$

证明续一

以下证明等式(3). 等式(1)和(2)的证明完全类似. 我们先证明等式(3) 对于如下特殊区域

$$E=\{(x,y,z),(x,y)\in D,u_1(x,y)\leq z\leq u_2(x,y)\}$$

成立,其中 D 为平面闭域,如图所示.

证明续二

一般有界闭域可以分解若干个形如 E 的区域之并. 故等式(3)对一般有界闭域成立. 要证等式(3), 即要证

$$\iiint_E R_z dx dy dz = \iint_{S^+} R dx dy.$$

对左边的三重积分作先一后二的方法化简如下

$$\iiint_{E}R_{z}dxdydz=\iint_{D}dxdy\int_{u_{1}(x,y)}^{u_{2}(x,y)}R_{z}(x,y,z)dz$$

$$= \iint_{D} \left[R(x, y, u_2(x, y)) - R(x, y, u_1(x, y)) \right] dxdy.$$

再考虑等式右端的面积分. 由图可知曲面 $S = S_1 \cup S_2 \cup S_3$,

证明续三

其中 S_2 为顶部曲面, S_1 为底部曲面, S_3 为侧面(有可能不出现). 设侧面 S_3 的单位外法向为 $n_3=(\cos\alpha,\cos\beta,\cos\gamma)$. 显然法向 n_3 与 z 轴垂直. 故 $\cos\gamma=0$. 因此

$$\iint_{S_3^+} R dx dy = \iint_{S_3} (R cos \gamma) dS = 0.$$

由于顶部曲面 S_2 是函数 $z = u_2(x,y)$ 的图像, 且正法向朝上, 故

$$\iint_{S_2^+} R dx dy = \iint_{D} R(x, y, u_2(x, y)) dx dy.$$

参见Apr20讲义第26页定理. 同理

证明续四

$$\iint_{S_1^+} R dx dy = -\iint_{D} R(x,y,u_1(x,y)) dx dy.$$

于是

$$\begin{split} \iint_{S^+} R dx dy &= \iint_{S_1^+} + \iint_{S_2^+} + \iint_{S_3^+} \\ &= \iint_D \Big[R(x,y,u_2(x,y)) - R(x,y,u_1(x,y)) \Big] dx dy. \\ &= \iiint_E R_z dx dy dz \end{split}$$

即等式(3)成立. 证毕.

散度的物理意义

设F为空间区域 $\Omega \subset \mathbb{R}^3$ 上流体运动的速度场. 设 $P \in \Omega$ 为一个固定点. 以P 为心, 以r > 0 为半径的球体, 记作 B_r , 其边界曲面即球面记作 S_r , 则由 Gauss 公式可知

$$\iiint_{B_r} (\text{div}\, F) dV = \iint_{S_r^+} (F \cdot n) dS.$$

回忆第二型曲面积分的物理意义,上式右端项就是单位时间里,流体由内向外通过球面 S_r 流出的流量.于上式中两边同除一球体 B_r 的体积即得

散度的物理意义,续一

$$\frac{1}{|B_r|} \iiint_{B_r} (\text{div} F) dV = \frac{1}{|B_r|} \iint_{S_r^+} (F \cdot n) dS.$$

上式右端由可解释为单位时间里, 流体通过球面的平均流量.

对上式左端的三重积分,应用积分中值定理得

$$(\text{div}\, F)(P_r) = \frac{1}{|B_r|} \iint_{S_r^+} (F \cdot n) dS,$$

其中 $P_r \in B_r$. 于上式令 $r \to 0^+$ 得

散度的物理意义, 续二

$$(\text{div}\,F)(P)=\underset{r\rightarrow 0^{+}}{\text{lim}}\frac{1}{|B_{r}|}\iint_{S_{r}^{+}}(F\cdot n)dS.$$

上式即给出了散度的物理学意义: (div F)(P) 表示流体速度场在点 P 处流量的密度.

- (i) 若 (div F)(P) > 0, 表明点 P 处有流体喷出, 此时点 P 称为源(source);
- (ii) 若 (div F)(P) < 0, 表明点 P 处流体流失. 此时点 P 称为漏或汇(sink).

注: 平面向量场的散度有类似的物理意义.

作业

习题4.6 (page 216): 10, 11(1)(3)(4)(5).

题11(1)提示: 方程有积分因子 e^y.

习题4.7 (page 226-227): 2, 3, 4.

补充习题:设 P(x,y) 和 Q(x,y) 为定义在全平面上的齐次函数,次数相同且连续可微.证明齐次方程 Pdx+Qdy=0 有积分因子 $(xP+yQ)^{-1}$.