

(11) Publication number:

2002-093778

(43) Date of publication of application: 29.03.2002

(51)Int.CI.

H01L 21/3065 H01L 21/027

H01L 21/768

(21)Application number: 2000-275170

11.09.2000

(71)Applicant: TOSHIBA CORP

(72)Inventor: HAYASHI HISATAKA

OUCHI JUNKO OIWA NORIHISA KOJIMA AKIHIRO

(54) ETCHING METHOD OF ORGANIC FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE SAME

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To provide a plasma etching method by which a highly accurate etching shape can be attained by preventing stripping of an oxide film and an organic film at the interface.

SOLUTION: A mask pattern of an oxide film, e.g. SOG, is formed on an organic film. Using a patterned SOG film as a mask, any one of gas selected from a group of ammonia (NH3) gas, nitrogen dioxide (NO2) gas, hydrogen cyanide (HCN) gas, methane (CH4) gas, ethylene (C2H4) gas, methanol gas and ethanol gas is introduced and etching is performed by plasma of mixture gas with oxygen gas. When such a gas plasma is employed, bubbling phenomenon due to recombination of nitrogen molecule at the interface of the oxide film and the organic film is prevented and a mask pattern of the oxide film can be transferred accurately to the organic film.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-93778 (P2002-93778A)

(43)公開日 平成14年3月29日(2002.3.29)

(51) Int.Cl.7		識別記号	F I		. 5	·7](参考)
H01L	21/3065		HOlL	21/302	Н	5 F 0 0 4
	21/027			21/30	573	5 F O 3 3
	21/768			21/90	M	5 F O 4 6

		农醋查審	未請求 請求項の数11 OL (全 12 頁)
(21)出願番号	特顧2000-275170(P2000-275170)	(71)出顧人	000003078
			株式会社東芝
(22)出顧日	平成12年9月11日(2000.9.11)		東京都港区芝浦一丁目1番1号
		(72)発明者	林 久貴
			神奈川県横浜市磯子区新杉田町8番地 株
			式会社東芝横浜事業所内
		(72)発明者	大内 淳子
			神奈川県横浜市磯子区新杉田町8番地 株
			式会社東芝横浜事業所内
		(74)代理人	100083806
			弁理士 三好 秀和 (外7名)
			最終頁に続く

(54) 【発明の名称】 有機膜のエッチング方法およびこれを用いた半導体装置の製造方法

(57)【要約】

【課題】 酸化膜と有機膜との界面での剥離を防止し、 精度よくエッチング形状を達成することのできるプラズ マエッチング方法を提供する。

【解決手段】 有機膜上に、SOGなどの酸化膜のマス クパターンを形成する。パターニングしたSOG膜をマ スクとして用い、SOG膜の下層に位置する有機膜を、 アンモニア (NHョ) ガス、二酸化窒素 (NOョ) ガ ス、シアン化水素 (HCN) ガス、メタン (CH4) ガ ス、エチレン(C_2 H_4)ガス、メタノールガス、エタ ノールガスから成るグループから選択されるいずれか1 のガスを導入して、酸素ガスとの混合ガスプラズマによ りエッチングする。このようなガスプラズマを用いるこ とにより、酸化膜と有機膜との界面で窒素分子の再結合 による発泡現象を防止し、酸化膜のマスクパターンを精 度よく有機膜に転写することができる。

(b) sogエッチング(フルオロカーボンガス)

(c) 接布型炭素調パターニング(NHs含有ガス)

1

【特許請求の範囲】

【請求項1】 有機膜上に、酸化膜のマスクパターンを 形成するステップと、

NXy(y≥2、Xはフッ素を除く)ガス、シアン化物ガス、パラフィン系炭化水素ガス、オレフィン系炭化水素ガス、または脂肪族飽和アルコールガスを導入するステップと、

ブラズマ放電により、前記ガスを活性化させて、前記有機膜を前記マスクパターンに沿って加工するステップと を含む有機膜のエッチング方法。

【請求項2】 有機膜上に、酸化膜のマスクパターンを 形成するステップと、

アンモニア(NH_1)ガス、二酸化窒素(NO_2)ガス、シアン化水素(HCN)ガス、メタン(CH_4)ガス、エチレン(C_2 H_4)ガス、メタノールガス、エタノールガスから成るグルーブから選択されるいずれか 1 のガスを導入するステップと、

ブラズマ放電により、前記ガスを活性化させて、前記有機膜を前記マスクパターンに沿って加工するステップと を含む有機膜のエッチング方法。

【請求項3】 前記ガス導入ステップは、前記選択されたガスとともに、酸素ガスを導入し、前記加工ステップは、前記選択されたガスと酸素ガスとの混合ガスを活性化させて前記有機膜を加工することを特徴とする請求項1または2に記載のエッチング方法。

【請求項4】 前記有機膜は、塗布型炭素膜であるととを特徴とする請求項2または3に記載のエッチング方法。

【請求項5】 前記有機膜は、着色ポリマーであるととを特徴とする請求項2または3に記載のエッチング方法。

【請求項6】 前記酸化膜は、SOG(塗布型シリコン酸化膜)であることを特徴とする請求項2または3に記載のエッチング方法。

【請求項7】 メタル配線が埋め込まれた第1の層上に、有機膜と酸化膜とをそれぞれ1層以上積層するステップと、

前記有機膜および酸化膜に、前記メタル配線に達するV IAホールを形成するステップと、

を含み、前記VIAホール形成ステップは、前記有機膜 40 を、アンモニア(NH,) ガス、二酸化窒素(NO2) ガス、シアン化水素(HCN)ガス、メタン(CH4) ガス、エチレン(C2H4) ガス、メタノールガス、エタノールガスから成るグループから選択されるいずれか 1のガスをブラズマ放電により活性化させてエッチング することを特徴とする半導体装置の製造方法。

【請求項8】 前記有機膜と酸化膜の積層の最上層は酸 化膜であり、当該酸化膜上に、多層レジストを堆積する ステップと、

前記多層レジストを、アンモニア(NH,)ガス、二酸 50 下方にある最終目的である被加工層を加工するためのマ

化窒素(NO_2)ガス、シアン化水素(HCN)ガス、メタン(CH_4)ガス、エチレン(C_2H_4)ガス、メタノールガス、エタノールガスから成るグループから選択されるいずれか1のガスをプラズマ放電により活性化させて、所定のマスクパターンに加工するステップと、

前記マスクパターンに沿って、前記酸化膜を加工してトレンチを形成するステップとをさらに含むことを特徴とする請求項7に記載の半導体装置の製造方法。

【請求項9】 前記有機膜は、塗布型炭素膜であること 10 を特徴とする請求項7または8に記載の半導体装置の製造方法。

【請求項10】 前記有機膜と酸化膜の積層の最上層は 有機膜であり、当該有機膜上に酸化物のマスクパターン を形成するステップと、

アンモニア(NH」)ガス、二酸化窒素(NO2)ガス、シアン化水素(HCN)ガス、メタン(CH4)ガス、エチレン(C2 H4)ガス、メタノールガス、エタノールガスから成るグループから選択されるいずれか1のガスをプラズマ放電により活性化させ、前記最上層の17人をでいるでは、前記最上層の20 有機膜を前記酸化物マスクパターンに沿って加工してトレンチを形成するステップとをさらに含むことを特徴とする請求項7に記載の半導体装置の製造方法。

【請求項11】 前記有機膜は、着色ポリマーであるととを特徴とする請求項10に記載の半導体装置の製造方法

【発明の詳細な説明】

[00.01]

【発明の属する技術分野】本発明は、有機膜のエッチング方法と、このエッチング方法を用いた半導体装置の製造方法に関し、特に、マスクパターンに沿って有機膜をプラズマで加工するためのエッチング方法および、このエッチング方法を用いた半導体装置の製造方法に関する。

[0002]

【従来の技術】LSI技術において、バターンの微細化が進むにつれ、単層レジストによって微細加工を正確に施すのが困難になってきた。これを解決するために、多層レジストプロセスが開発されている。これは、下地からの反射を防止し、かつ下地加工のためのマスク材として機能させるためにレジストを多層にして、ターゲットの層を精密に加工するプロセスである。

【0003】具体的には、下層に高吸収性の有機膜を充分な厚さに形成して、基板の段差を吸収するとともに、露光時の基板からの反射による悪影響をなくす。一方、上層には、高解像度化のための薄いレジスト層を形成する。このような多層レジストを用いてターゲットとなる層を加工するには、まず、上層にパターンを形成した後、パタニングされた上層をマスクとして、下層の有機膜を加工する。加工された下層レジストは、さらにその下方にある最終目的である被加工層を加工するためのマ

2

- -

スクとして使用される。

【0004】下層レジストの加工を酸素RIE(反応性イオンエッチング)によるドライ現像を用いて行なう場合は、上層レジスト/中間レジスト/下層レジストの三層レジスト構造が用いられる。この場合、下層レジストは、基板段差を平坦化するとともに基板からの反射を低減させる有機膜を用い、上層に薄いレジスト膜が用いられる。中間レジストは、ドライ現像の際にエッチングマスクの役割をするもので、SOG(Spin On Grass:塗布型シリコン酸化膜)などが用いられる。

[0005]

【発明が解決しようとする課題】下層有機膜のエッチングは、通常は、窒素と酸素の混合ガスプラズマによって行なわれる。このとき、マスクとしての中間レジストSOGと、下層有機膜との密着性は、互いの物理的性質によりそれほど高くない。このため、有機膜エッチング中に、SOG膜と有機膜との間に在留する窒素分子の発泡現象によって、SOG膜が剥離してしまうという問題があった。下層有機膜のエッチング中にSOG膜が剥離すると、マスクとして機能する有機膜のパタニングを正確20に行なうことができず、結果的に、最終目的であるVIAパターンや配線トレンチの形成を精度良く行なうことができなくなる。このような発泡による剥離のメカニズムを図9を参照して説明する。

【0006】図9に示す従来の技術において、窒素ブラズマによるエッチングを行なう場合、ブラズマ中で、電子衝突解離によって窒素分子(N₂)の結合が壊れて窒素原子(N)が発生する。SOG膜の結晶構造は疎であるため、RIE開始初期では、図9(a)に示すように、ブラズマ中に存在する窒素分子(N₂)、窒素原子(N)などが、容易にSOG膜を透過する。

【0007】RIEが長時間(たとえば60秒以上)になると、図9(b)に示すように、SOG表面がイオン照射により緻密化する。この緻密層は、窒素原子のような微小粒子は透過させるが、窒素分子のような大きな分子は透過させにくい。このため、フィルタリング効果が生じる。すなわち、透過した窒素原子は、SOGと有機膜の界面で再結合反応を起こし、窒素分子(N₁)を形成する。発生した窒素分子は、緻密化したSOG表面膜を透過することができず、また、SOGより密な有機膜やにも透過できないため、SOG中に蓄積されていく。【0008】SOG中の窒素分子の内圧は、フィルタリング効果により次第に上昇し、ついには、図9(c)に示すように、密着性の弱い有機膜とSOG界面が剥離し、SOGが飛ぶ現象(発泡と称する)が起こる。

【0009】N,を含むガスプラズマを用いた場合、発生する窒素原子(N)の再結合のため、SOGの剥離が生じてしまうが、N,は有機膜の加工形状制御のため必須である。すなわち、従来の方法では、形状制御と剥離はトレードオフの関係にあり、どちらかを優先すると他 50

方がおろそかになってしまうという欠点があった。 【0010】

【課題を解決するための手段】本発明の目的は、上述した従来の有機膜のガスプラズマエッチングにおける問題点を解決し、SOGを始めとする酸化物マスクの剥離を防止して、有機膜の良好なエッチング形状を得ることのできるエッチング方法を提供するものである。

【0011】また、このようなエッチング方法を用いた、半導体装置の製造方法の提供を、第2の目的とす10 る。

【0012】このような目的を達成するために、本発明では、有機膜のプラズマエッチングにおいて、従来の窒素ガスに代え、酸化膜と有機膜との界面での窒素原子の再結合を防止すべく、NXy(y≥2、Xはフッ素を除く)なるガスまたはシアン化水素(HCN)ガスを用いる。さらに、窒素原子の再結合を防止するために、窒素そのものを含まないパラフィン系炭化水素ガス、オレフィン系炭化水素ガス、または脂肪族飽和アルコールガスを用いてプラズマ放電によるエッチングを行なう。

【0013】具体的には、本発明の有機膜のプラズマエッチング方法は、有機膜上に酸化膜のマスクパターンを形成する。その後、アンモニア(NH」)ガス、二酸化窒素(NO2)ガス、シアン化水素(HCN)ガス、メタタン(CH4)ガス、エチレン(C2H4)ガス、メタノールガス、エタノールガスから成るグループから選択されるいずれか1のガスを導入して、有機膜をマスクパターンに沿ってプラズマ加工する。

【0014】このようなエッチング化合物ガスを用いることによって、SOGの剥離を防止することができる理由を、NX。ガスを用いた場合を例にとって説明する。【0015】図1は、NH,ガスによるRIE初期および中期の状態を示す。実際は、NH,ガスと酸素ガスとの混合気体によってエッチングが行われるが、説明の便宜上、NH,ガスのイオン化のみを図示する。

【0016】NH,プラズマ中でも、N.プラズマと同様に、電子衝突解離現象が生じる。アンモニア分子の窒素原子(N)には、3つの水素原子(H)が結合しているが、電子衝突によりN-H結合が切れる。このとき、解離反応として、通常はひとつひとつの結合が切れていくため、NH,から一度に窒素原子(N)が生じることはない。このため、RIEが進行しても、プラズマ中には窒素原子(N)よりは、むしろNHやNH。などの分子が多数存在することになる。図1(b)に示すように、SOG表面にイオン照射による緻密層が形成された後も、NH分子やNH。分子は、表面緻密層を透過しないので、SOG膜の中に入り込むことがなく、SOG膜内でのN原子の再結合反応を効果的に抑制することができる

【0017】このような原理により、SOG膜の剥離が 効果的に防止され、あるいは、剥離が生じたとしても、

4

度よく形成することができる。また、配線層と配線層と の間の層の種類によっては、VIAホールやトレンチそ のものを、上述したいずれかのガスプラズマによって精

のものを、上近したいすれかのカスノラスマによって相密にエッチングすることができる。この結果、デザイン ルールのきびしい多層配線構造を有する半導体装置を精

【0024】本発明のその他の効果、特徴については、 以下で図面を参照して説明する詳細な説明によって、よ

度よく製造することが可能になる。

り明確になるものである。

[0025]

【発明の実施の形態】<第1実施形態>図2は、本発明のプラズマエッチング方法を用いて、多層レジストパターンを用いて、二酸化シリコン(SiO』)の被加工膜25をエッチングする工程を示す。とこで、多層レジスト膜24は、上層レジスト21と、中間レジストであるSOG膜22と、下層レジストである塗布型炭素膜23とから成る。

【0026】まず、図2(a)に示すように、たとえば基板上に、厚さ 2μ mのSiO, 膜25上に、塗布型炭素膜23を300nm、SOG22を70nm、上層レジスト21を300nmの厚さに塗布し、露光装置により直径 0.11μ mの孔パターンを形成する。このとき、下方にある程度の厚さの有機膜である炭素膜23があるので、露光時に基板からの反射は防止される。

【0027】次に、図2(b)に示すように、上層レジスト21をマスクとして、中間のSOG22をフルオロカーボンのプラズマでエッチングする。SOG22は極めて薄いので、高解像のバタニングが達成され、上層レジスト21と同じ形状のSOGマスクバターンが形成される。

【0028】さらに、上層レジストを除去した後、図2(c)に示すように、NH。ガスを含むブラズマによって、塗布型炭素膜をSOGマスクに沿ってエッチングする。従来のエッチング方法である窒素+酸素混合ガスブラズマ、あるいは窒素+水素混合ガスブラズマと異なり、塗布型炭素膜23のエッチング中に、SOGと塗布型炭素膜の間でSOGが剥離するという問題は生じない。かつ、炭素膜23を、SOGバターンに忠実に沿って精密にエッチングすることができる。

「 【 0 0 2 9 】最後に、SOG 2 2 を除去した後、図 2 (d)に示すように、炭素膜 2 3 をマスクとして、たとえば C F 。ガスや C H F 。ガス、あるいは C 。F 。ガスといった C F 系ガスによるガスエッチングで、ターゲットである SiO 。 膜 2 2 に、直径 0 . 1 1 μ m の孔パターンを形成する。

【0030】とのような方法により、厚さ2μmに及ぶ SiO₂膜に、きわめて微細な孔加工を施すことが可能に なる。

【0031】<第2実施形態>第1実施形態では、SO Gと塗布型炭素膜を多層レジストに用いる場合のNH,

SOG剥離に至る時間を大幅に延長することができる。【0018】同様の効果がNOzガスによって達成される。また、エッチングガスとしてHCNを用いた場合は、水素原子は容易にイオン化して分離するが、窒素(N)と炭素(C)の三重結合はきわめて長時間持続するので、NH。ガスと同様の効果を達成することができる。NF、ガスは、マスクとしての酸化膜を浸食してしまうので、SOGなどの酸化膜をマスクとする有機膜のプラズマエッチングには好ましくない。

【0019】窒素原子(N)を含む化合物ガスを用いる 10 理由は、上述したように、酸化膜マスクと有機膜との界面での窒素の再結合による発泡を防止して、有機膜のエッチング形状を良好に維持するためである。具体的には、NH。ガスと酸素ガスとの混合ガスで有機膜をエッチングする場合、有機膜の主成分である炭素(C)との反応でHCNが生成されてエッチングが進行する。このとき、加工側壁に窒素分子が付着しすぎることを抑制しつつ、効果的にエッチングを進めるために酸素ガスが添加される。

【0020】一方、界面での窒素分子の再結合を避ける 20 膜2 3 ために、窒素原子そのものを含まないエッチングガスを 用いることも考えられる。すなわち、メタン(CH4) ガスなどのバラフィン系炭化水素ガス、エチレン(C2 下方に H4)ガスなどのオレフィン系炭化水素ガス、メタノー ルやエタノールといった脂肪族飽和アルコールガスを、 酸素ガスとともに用いることによって、SOG(酸化 膜)マスクと有機膜との剥離なしに、下層の有機膜を良好な形状制御でプラズマエッチングできる。具体的には、有機膜の主成分である炭素(C)が酸素ガス中の酸 ジスト 数素原子と結びついてCOを生成することによってエッチ 30 れる。ングが進行する。このとき、炭化水素ガスまたはアルコールガスが、エッチング中の加工側壁に炭素原子を付着 100 で、対させて、加工側壁を均一な形状に制御する。 て、数

【0021】上述したプラズマエッチング方法は、SOG膜のみならず、LKD(low-K dielectric)などの酸化膜と、有機膜との積層構造のエッチングにも効果的である。有機膜は、たとえば塗布型炭素膜や着色あるいは無着色ポリマーである。

【0022】また、本発明のプラズマエッチング方法 は、多層配線構造やダマシン構造を有する半導体装置の 40 製造方法に最適に用いられる。

【0023】たとえば、下層のメタル配線を上層の配線と結合するためのVIAブラグやトレンチ配線を形成する場合に、NH,ガス、NO₂ガス、NCHガスなどの窒素を含む化合物ガス、メタン(CH₄)などのパラフィン系炭化水素ガス、エチレン(C₂H₄)などのオレフィン系炭化水素ガス、メタノールやエタノールなどの脂肪族飽和アルコールガスを用いて、多層レジストにマスクパターンを精密に形成することができる。このようなレジストマスクに沿って、VIAホールや配線溝を精50

-,

ガスを含むプラズマエッチングについて説明した。しかし、SOG剥離の現象は、SOGと塗布型炭素膜との間に限ったものではなく、塗布型の酸化膜全般、および塗布型の有機膜全般に対して起こる現象である。そこで、これらの膜のエッチングに本発明のNH,ガスを含むプラズマエッチングを適用した場合を以下に説明する。

【0032】図3は、塗布型酸化膜の一種であるLKD(low-K dielectric)と塗布型炭素膜との積層ダマシン構造を形成する場合のNH3を含むガスエッチングの例を示す。ダマシン法とは、平坦化された基板上に、ピア 10深さもしくは配線厚さ分の絶縁膜を堆積し、所定の場所にRIEで孔もしくは溝を形成し、形成された孔もしくは溝に金属を充填したのちCMP(化学機械研磨)法により外部の金属を除去してビアブラグもしくは配線を残す方法である。

【0033】まず、図3(a)に示すように、下層配線(Cu配線)が施されたLKD層35上に、ストッパとしての塗布型炭素膜36を堆積し、さらに、LKD32と塗布型炭素膜33を交互に堆積し、最上層にレジスト31を堆積する。このレジスト31は、LKD32と炭20素膜33の積層をエッチングするためのマスクとなる。レジスト31は単層レジストでも多層レジストでもよい。単層レジストの場合は露光により、所定のマスクバターンを形成し、多層レジストの場合は、図2に示す方法でNH,含有ガスをプラズマ放電で活性化させて所定のマスクバターンにエッチングする。所定のマスクバターンに形成されたレジスト31をマスクとして、フルオロカーボン系のガスとNH,ガスとを交互に導入し、LKD32と炭素膜33とをガスエッチングし、ストッパ層33に到達するVIAバターンを形成する。30

【0034】次に、図3(b)に示すように、レジスト31を酸素ガスのRIEで剥離する。このとき、孔の底部に露出する炭素膜36も一緒に除去される。レジスト31の除去後に、VIAホール内およびLKD32上に、新たに多層レジスト37を堆積し、多層レジスト37上にSOG38を堆積する。この多層レジスト37は、トレンチを形成するためのマスクとして用いられる。まず、SOG38を所定のトレンチパターンに加工した後、このSOGをマスクとして、多層レジスト37をマスク形状にガスエッチングする。このとき、図2に示す方法と同様に、NH,を含むガスを導入してプラズマエッチングすることによって、SOGに形成されたトレンチマスクパターンを、多層レジスト37に精度よく転写することができる。このとき、VIAホール内に充填された多層レジスト37も幾分エッチングされる。

【0035】次に、図3(c)に示すように、パターニングされた多層レジスト37をマスクとして使用し、上部のLKD32をフルオロカーボン系のガスでガスエッチングして配線溝(トレンチ)39を形成する。

【0036】最後に、図3(d)に示すように、酸素

(O₂) RIEによって、多層レジスト37と、トレンチ39の底部の塗布型炭素膜33とを同時に除去して、ダマシン配線構造を形成する。との除去工程で、通常のアッシングではなく、酸素(O₂) RIEを用いる理由は、高温処理による上部のLKD32の変質を防止するためと、炭素膜33の側壁にアンダーカットが生じるのを防止するためである。

【0037】図3の例では、塗布型炭素膜の微細な孔加工およびトレンチマスクのための多層レジストの加工にNH,を含むガスプラズマを用いるので、LKD(酸化膜)やSOGとの間で剥離を生じることなく、かなりの深さの微細孔およびトレンチを、精度よく形成することができる。図3に示す方法では、VIAとトレンチとを一体に形成することができるという長所もある。

【0038】<第3実施形態>図4は、塗布型酸化膜の一種であるLKDと有機膜であるポリマーとの積層ダマシン構造、あるいはLKDとシリコン窒化膜SiN若しくはSiCとの積層ダマシン構造を、NH,含有ガスのブラズマエッチングで形成する工程を示す。

【0039】図4では、Cu配線が埋め込まれたLKD層45上に、ポリマー、SiN、又はSiCのストッパ層43を形成し、その上にLKD42を堆積する。Cu配線表面からLKDの表面までの厚さは、約0.8μmである。

【0040】まず図4(a)に示すように、LKD42上にレジスト41を堆積して、エッチングマスクを形成する。レジスト41は単層レジストであっても、多層レジストであってもよい。単層レジストの場合は露光により、多層レジストの場合は、図2に示すNH,を含むガスプラズマによって、VIAホールのためのエッチングマスクを形成する。そして、レジスト41をマスクとして、LKD42をフルオロカーボン系のガスでエッチングして、ストッパ層43に到達するVIAホールを形成する。

【0041】次に、図4(b)に示すように、酸素(O、)RIEによりレジスト41を除去する。このO、RIEで、VIAホールの底部に露出するストッパ層43も一緒に除去される。レジスト41の除去後に、VIAホール内部およびLKD42上に新たな多層レジスト47を堆積し、多層レジスト47上に、SOG46を堆積する。この多層レジスト47は、トレンチを形成するためのマスクとして用いられる。すなわち、NH、を含むガスブラズマを用いて、SOGに形成したトレンチバターンに沿って、多層レジスト47をエッチングし、多層レジスト47をエッチングし、多層レジストにトレンチマスクを形成する。NH、ガスを用いることによって、この転写プロセスを精密、かつ、SOG46と多層レジスト47との剥離なしに行なうことができる。なお、この工程で、VIAホール内には多層レジスト47が幾分残っている。

50 【0042】次に、図4(c)に示すように、多層レジ

スト47をマスクとして、フルオロカーボン系のガス で、LKD42を途中まで加工し、トレンチを形成す る。このとき、多層レジスト47上のSOG46を、同 時に除去することができる。LKD42の加工は、公知 の時間制御あるいは流量制御により、所望の深さまでエ ッチングを行なう。

【0043】最後に、図4(d)に示すように、酸素 (O₂) R I E により、多層レジスト47を除去する。 【0044】この方法によっても、VIAとトレンチと を一体として、精度よく形成することが可能になる。 【0045】<第4実施形態>図5は、LKDと有機膜 としての着色ポリマーとの積層ダマシン構造をNH3を 含むガスプラズマによって形成する例を示す。ここで、 着色ポリマーを用いるのは、有機膜にマスク性能と光学 性能の双方を持たせるためである。すなわち、着色ポリ マーは、遮光膜としても機能し、露光時の基板からの反 射を効果的に防止する。

【0046】まず、図5(a)に示すように、上部LK D52上に形成したレジスト51を所定のマスクパター ンに加工し、このレジスト51をマスクとして、フルオ 20 ロカーボン系のガスエッチングによって、LKD52に 孔パターン58を形成する。

【0047】次に、図5(b)に示すように、レジスト 51を除去して、着色ポリマーを孔パターン58および LKD52上に塗布する。

【0048】次に、図5(c)に示すように、着色ポリ マー53上に、LKD57を塗布し、レジスト56を所 定のトレンチパターンに加工し、このレジスト56をマ スクとして、LKD57を加工する。

【0049】最後に、LKD57をマスクとして、NH 30 ,含有ガスプラズマにより、上部の着色ポリマー53に トレンチを形成し、さらに、中間のLKD52をマスク として、下部の着色ポリマー53 CV I Aホールを形成 する。このエッチング工程で、着色ポリマー53とLK D57、52が剥離することはない。この方法によっ て、反射を防止しつつ、トレンチとVIAホールとを一 緒に精度よく形成することができる。なお、LKD57 上のレジスト56は、NH,含有ガスプラズマによるト レンチおよびVIAホールの形成前に除去してもよい し、NH」含有ガスプラズマエッチングで同時にある程 度まで除去してもよい。後者の場合は、トレンチおよび VIAホールの形成後に、フルオロカーボンガスプラズ マにて、残存レジストを取り除く。

【0050】<第5実施形態>図6は、LKDと塗布型 炭素膜との積層ダマシン構造の形成にNH,を含むガス プラズマを用いる例を示す。この例では、Cu配線64 が形成された有機層65上に、SiNまたはSiCのス トッパ63を介して、LKDを堆積してある。

【0051】まず、図6(a)に示すように、LKD6

状にパターニングし、これをマスクとして、LKD62 にホールを形成する。レジスト61は単層レジストであ っても、多層レジストであってもよい。多層レジストを 用いる場合は、マスクパターン形成時に、NH,を含む ガスプラズマでエッチングする。

10

【0052】次に、図6(b)に示すように、マスクで あるレジスト61を除去した後に、塗布型炭素膜66を ホールの中およびLKD62上に塗布する。

【0053】さらに、図6(c)に示すように、塗布型 炭素膜66上にSOG膜68とレジスト67を塗布し、 10 レジスト67にトレンチパターンを形成してマスクとし て用い、このパターンに沿ってSOG68を加工する。 【0054】最後に、図6(d)に示すように、SOG をマスクとして、NH₃含有ガスのプラズマエッチング によって、塗布型炭素膜66にトレンチおよびVIAホ ールを同時に形成する。NH,ガスを用いることによ り、SOG68と炭素膜66との間、および炭素膜66 とLKD62との間に、剥離が生じることなく、精密に マスクパターンが転写される。

【0055】その後、酸素 (O₂) R I Eにより、V I Aホールの底部にあるSiNまたはSiCと、SOG6 8を同時に除去して、ダマシン配線構造を形成する。と の方法でも、トレンチとVIAホールが一体に精度よく 形成することができる。

【0056】<第6実施形態>図7は、LKDと塗布型 炭素膜との積層ダマシン構造の別の例を示す。この例で は、LKDと塗布型炭素膜との位置が図6の例と逆にな っている。Cu配線74が埋め込まれたLKD層75上 に、塗布型炭素膜73とLKD72が堆積されている。 【0057】まず、図7(a)に示すように、LKD7 2上にレジストを塗布し、所定のパターンに加工してマ

【0058】次に、図7(b)に示すように、レジスト マスクを用いて、まずフルオロカーボン系のガスプラズ マでLKD72を加工し、引き続いて、NH,ガスを導 入し、LKD72をマスクとして塗布型炭素膜73を加 工する。とれにより、Cu配線74に到達するVIAホ ールを精度よく完成する。

スクパターンを形成する。

【0059】次に、図7 (c) に示すように、VIAホ ール内とLKD72上に多層レジスト77を塗布し、多 層レジスト77上にSOG76を塗布する。SOG76 をマスクとして、NH、を含むガスプラズマにより、多 層レジスト77にトレンチパターンを形成する。とのと き、VIAホール内の多層レジスト77も幾分エッチン グされる。

【0060】最後に、図7(d)に示すように、多層レ ジスト77をマスクとして、LKD72を途中まで加工 した後、酸素(O1) RIEにより、マスクとしての多 層レジスト77およびVIAホール内の多層レジスト7 2上にレジスト61を塗布し、レジスト61をVIA形 50 7を除去して、ダマシン配線構造を完成する。との方法 11

では、VIAホールの形成時と、トレンチ用のマスクバ ターン形成時にNH,ガスを用いるので、双方が剥離を 生じるととなく精度よく形成される。

【0061】<第7実施形態>図8は、LKDと塗布型 炭素膜とのさらに別の積層ダマシン構造の形成にNH, を含むガスプラズマを用いる例を示す。Cu配線84が 埋め込まれたLKD層87上に、ストッパとしての塗布 型炭素膜86が形成され、その上に、LKD85と塗布 型炭素膜83とが形成されている。

【0062】まず、図8(a)に示すように、塗布型炭 10 素膜83上に、SOG82上にレジストパターン81を 形成し、このレジストパターンに沿ってSOG82を加 工する。

【0063】次に、図8(b)に示すように、SOG8 2をマスクとして、NH,を含むガスプラズマにより、 塗布型炭素膜83にマスクパターンを転写し、LKD8 5に到達するホールを形成し、さらに、塗布型炭素膜8 3をマスクとして、LKD85をフルオロカーボン系の ガスでエッチングする。

【0064】次に、図8(c)に示すように、酸素(O 20 2) RIEにより塗布型炭素膜83を表面から一定の厚 さだけ除去した後、VIAホール内と、薄膜化した炭素 膜83上にLKDをコーティングする。その上に、塗布 型炭素膜88、SOG90、およびレジスト89から成 る多層レジストを形成する。この多層レジストを図2に 示す方法でトレンチパターンに加工する。図2と同様 に、SOG90をマスクとして炭素膜88をエッチング する際に、NH、ガスを導入する。

【0065】次に、図8(d)に示すように、トレンチ パターンに加工された塗布型炭素膜88をマスクとし て、フルオロカーボン系のガスでLKD85を加工す る。このとき、上部のLKD85については、トレンチ パターンが転写されて、トレンチが形成され、炭素膜8 3に形成されたホール部分については、そこからさらに エッチングが進み、下部のLKD85に、ストッパ86 に到達するVIAホールが形成される。

【0066】最後に、図8(e)に示すように、酸素 (O₂) RIEにより、VIAホールの底部の塗布型炭 素膜86と、トレンチマスクとしての塗布型炭素膜88 とを同時に除去する。その後、NH。ガスを導入し、マ 40 スクとしてのLKD85に沿って塗布型炭素膜83をN H。を含むガスプラズマでエッチングし、ダマシン配線 構造を完成する。

【0067】上述したすべての実施形態において、有機 膜のエッチング工程において、アンモニア(NH。)ガ スに代え、二酸化窒素(NO,)ガス、あるいはシアン 化水素(HCN)ガスを酸素ガスとともにプラズマ放電 により活性化させて用いることが可能である。

【0068】さらに、窒素の再結合による発泡をなくす ために、窒素そのものを含まない炭化水素系のガスを用 50

いることもできる。具体的には、有機膜のエッチング に、メタン(CH。)ガスと酸素ガス、あるいはエチレ ン(C,H,)ガスと酸素ガスの混合ガスを導入して も、良好なエッチング形状を達成することができる。ま た、メタノールあるいはエタノールなのどの脂肪族飽和 アルコールガスを用いてもよい。

[0069]

【発明の効果】以上説明したように、本発明の方法を用 いると、SOGあるいはLKD等の酸化膜のマスクパタ ーンに沿って有機膜をガスプラズマで加工する際に、膜 剥がれが生じることなく、かつ精度よく良好なエッチン グ形状を達成することができる。

【図面の簡単な説明】

【図1】本発明のNH、を含むガスプラズマによるエッ チング原理を説明する図である。

【図2】本発明のNH,含有ガスプラズマによるエッチ ングを、SOGと有機膜とを含む多層レジストのマスク パターニングに適用する例を示す図である。

【図3】本発明のNH,含有ガスプラズマによるエッチ ングを、LKD(塗布型酸化膜)と有機膜との積層ダマ シン構造の加工に適用する例を示す図である。

【図4】本発明のNH,含有ガスプラズマによるエッチ ングを、LKDとポリマー、あるいはLKDとSiN若 しくはSiCとの積層ダマシン構造の加工に適用する例 を示す図である。

【図5】本発明のNH,含有ガスプラズマによるエッチ ングを、LKDと着色ポリマーとの積層ダマシン構造の 加工に適用する例を示す図である。

【図6】本発明のNH,含有ガスプラズマによるエッチ 30 ングを、LKDと塗布型炭素膜との積層ダマシン構造の 加工に適用する例を示す図である。

【図7】本発明のNH,含有ガスプラズマによるエッチ ングを、LKDと塗布型炭素膜との積層ダマシン構造の 加工に適用する別の例を示す図である。の

【図8】本発明のNH,含有ガスプラズマによるエッチ ングを、LKDと塗布型炭素膜との積層ダマシン構造の 加工に適用する別の例を示す図である。

【図9】従来の窒素ガスエッチングによる膜剥がれ現象 を説明するための図である。

【符号の説明】

21、31、41、51、61、71、81 レジスト 22, 38, 46, 68, 76, 82 SOG (スピン オングラス)

23、33、73、83、86 塗布型炭素膜(有機

24、37、47、77 多層レジスト

32、42、52、62、72 LKD(塗布型酸化

53 着色ポリマー(有機膜)

【図1】

【図2】

(a) 多層レジストパターニング

(b) SOGエッチング(フルオロカーポンガス)

レジスト・	~21 ~22
SOG 生布型炭素膜 、	~22 ~23
SiOz	~25

(c) 整布型炭素膜パターニング(NFis含有ガス)

(d) 被エッテング膜加工

【図3】

【図4】

【図5】

【図6】

(b) 協布型炭素酸コーティング

(c) トレンチパターニング

(d) トレンチ&VIAエッチング(Nels含有ガス)

[図7]

【図8】

【図9】

N2+O2 プラズマでの発泡メカニズム

フロントページの続き

(72)発明者 大岩 徳久

神奈川県横浜市磯子区新杉田町8番地 株

式会社東芝横浜事業所内

(72)発明者 小島 章弘

神奈川県横浜市磯子区新杉田町8番地 株

式会社東芝横浜事業所内

Fターム(参考) 5F004 AA05 CA01 DA00 DA01 DA16

DA25 DA28 DB00 DB03 DB07

DB23 EA02 EA06 EA22 EA23

EA28 EB01

5F033 KK11 MM02 QQ04 QQ12 QQ15

QQ21 QQ25 QQ28 QQ29 QQ30

QQ37 RR01 RR04 RR06 RR21

SS21 TT04 XX03 XX12

5F046 NA07 NA17 NA18 PA09 PA11