Experimental Design

Experiments with more than one factor:

A factor is a single treatment variable

Why experiment with > 1 factor?

- o Efficiency
- o Investigate possible interactions between factors

Factorial Design:

o **Every** combination of treatments is investigated

What if you can't do experiments?

 Observational studies can have many features of experimental studies except randomization

 But randomization is arguably the most important benefit of experiments

 You can <u>still minimize bias</u> even without randomization by using **matching** and adjustment

Usually four major (related) questions:

1. What is the effect size you are looking for?

Larger sample to find small effect

2. What is the significance level?

 Of you want to be more strict (smaller significance), you will need larger sample size

3. How much variability?

 If you have reason to believe that your data is very noisy, you'll need a larger sample size

4. How much power?

— If there really is an effect of a specified magnitude in the overall population, how sure do you want to be that you will find it? You will often see statements such as the following:

"We chose to study 321 subjects in each group in order to have 80% power to detect a 33% reduction in the recurrence rate from a baseline rate of 30% with a significance level of 0.05"

If I use n subjects, what information can I learn?

Sample Size: a minimum n to determine the effect of the treatment (each treatment will need to be this size)

Plan for precision:

- o Predetermined Confidence interval
- o For 95% confidence interval:
 - o As narrow as possible (usually means a larger sample size)

$$\overline{Y}_{1} - \overline{Y}_{2} \pm uncertain$$

$$1/2 \text{ width of CI}$$

$$n = 8 \left(\frac{\sigma}{uncertain}\right)^{2}$$

Sample Size: a minimum n to determine the effect of the treatment

Plan for precision:

o Predetermined Confidence interval

o As narrow as possible **Expected uncertainty** uncerta int y precision **Diminishing Returns**

Sample size *n* in each treatment

Sample Size: a minimum n to determine the effect of the treatment

Plan for Power:

- o Predetermined type I and type II error rates
 - o Choosing a sample size that would have a high probability of rejecting if the true difference between the means was at least at great as the specified value D (D is just a minimum value)

o P(reject|H₀ is false) = 0.80
$$n \approx 16 \left(\frac{\sigma}{D}\right)^{2}$$

o P(reject $|H_0|$ is true) = 0.05

Experimental Design

Sample Size: a minimum n to determine the effect of the treatment

Plan for the worst case scenario:

- o Data loss
- o Start with more than you need to accommodate individuals who begin the study but who do not end the study

Experimental Design

Mistaking the question being asked:

What is the question? Jeffery T.Leek and Roger D. Peng Science 347, 1314 (2015);

DOI: 10.1126/science.aaa6146

P-values are widely mis-interpretated and mis-applied to multiple hypotheses:

https://www.sciencenews.org/article/odds-are-its-wrong

P-value ban from a journal:

https://www.sciencenews.org/blog/context/p-value-ban-small-stepjournal-giant-leap-science

What is p-hacking?

Excellent example found here:

http://fivethirtyeight.com/features/science-isnt-broken/

- * Remember that there is (somewhat unconscious) bias present in many experiments: Collect data until I get a statistically significant result. If initial results aren't statistically significant, keep collecting the data.
- ← Ad Hoc Sequential Sample Size Determination (SSSD)

Data Dredging:

When you use multiple tests on a data set, the probability of making **at least one** type I error, α, is larger than the significance level suggests each hypothesis test has some probability of error and these errors compound as more tests are conducted

P(No type I errors)=
$$(1-\alpha)^N$$
, where N = independent tests
P(≥ 1 type I error)= $1 - (1-\alpha)^N$

<u>Example:</u>

P(No type I errors)= $(1-0.05)^{100} \approx 0.006$ P(≥ 1 I errors)=(1-0.006)=0.994

Bonferroni

- If your goal is to determine which variable really did respond to treatment rather than just preliminary data exploration
- Only reject H_0 if the ${\bf P}$ value is less than the bonferroniadjusted α^*
- P(≥ 1 Type I error) = α
- lose power penalized for 'asking too many questions of the data"

$$\alpha^* = \frac{\alpha}{Num_tests}$$

Data Dredging:

α	Test Number	P(No type I errors)	α*
0.05	10	0.60	0.005
	100	0.006	0.0005
0.01	10	0.90	0.001
	100	0.37	0.0001

Clinical test can have 10+ tests
Gene location or association (GWAS) can have 100+ tests

False discovery Rate

- Carry out multiple tests at fixed significance level
- Gather all tests that yield statistically significant result (discoveries)
- Estimate the false discovery proportion from the total discoveries

 $P(Reject|H_0 true)/\{P(reject|H_0 true) + P(reject|H_A true)\}$