0078. 子集

ITCharge ▼大约6分钟

• 标签: 位运算、数组、回溯

• 难度:中等

题目链接

• 0078. 子集 - 力扣

题目大意

描述:给定一个整数数组 nums ,数组中的元素互不相同。

要求:返回该数组所有可能的不重复子集。可以按任意顺序返回解集。

说明:

- $1 \leq nums.length \leq 10$.
- $\bullet \ \ -10 \leq nums[i] \leq 10 \text{,}$
- nums 中的所有元素互不相同。

示例:

• 示例 1:

```
      输入 nums = [1,2,3]

      输出 [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
```

• 示例 2:

```
输入: nums = [0]
输出: [[],[0]]
```

解题思路

思路 1:回溯算法

数组的每个元素都有两个选择: 选与不选。

我们可以通过向当前子集数组中添加可选元素来表示选择该元素。也可以在当前递归结束之后,将之前添加的元素从当前子集数组中移除(也就是回溯)来表示不选择该元素。

下面我们根据回溯算法三步走,写出对应的回溯算法。

1. **明确所有选择**:根据数组中每个位置上的元素选与不选两种选择,画出决策树,如下图 所示。

2. 明确终止条件:

○ 当遍历到决策树的叶子节点时,就终止了。即当前路径搜索到末尾时,递归终止。

3. 将决策树和终止条件翻译成代码:

.

1. 定义回溯函数:

- backtracking(nums, index): 函数的传入参数是 nums (可选数组列表) 和 index (代表当前正在考虑元素是 nums[i]),全局变量是 res (存放所有符合条件结果的集合数组)和 path (存放当前符合条件的结果)。
- backtracking(nums, index): 函数代表的含义是: 在选择 nums[index] 的情况下,递归选择剩下的元素。
- 2. 书写回溯函数主体(给出选择元素、递归搜索、撤销选择部分)。
 - 从当前正在考虑元素,到数组结束为止,枚举出所有可选的元素。对于每一个可选元素:
 - 约束条件:之前选过的元素不再重复选用。每次从 index 位置开始遍历而不是 从 ø 位置开始遍历就是为了避免重复。集合跟全排列不一样,子集中 {1,2} 和 {2,1} 是等价的。为了避免重复,我们之前考虑过的元素,就不再重复考虑 了。
 - 选择元素:将其添加到当前子集数组 path 中。
 - 递归搜索: 在选择该元素的情况下,继续递归考虑下一个位置上的元素。
 - 撤销选择:将该元素从当前子集数组 path 中移除。

```
for i in range(index, len(nums)): # 枚举可选元素列表
    path.append(nums[i]) # 选择元素
    backtracking(nums, i + 1) # 递归搜索
    path.pop() # 撤销选择
```

- 3. 明确递归终止条件(给出递归终止条件,以及递归终止时的处理方法)。
 - 当遍历到决策树的叶子节点时,就终止了。也就是当正在考虑的元素位置到达数组末尾(即 start >= len(nums))时,递归停止。
 - 从决策树中也可以看出,子集需要存储的答案集合应该包含决策树上所有的节点, 应该需要保存递归搜索的所有状态。所以无论是否达到终止条件,我们都应该将当 前符合条件的结果放入到集合中。

思路 1: 代码

```
py class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        res = [] # 存放所有符合条件结果的集合
        path = [] # 存放当前符合条件的结果
        def backtracking(nums, index): # 正在考虑可选元素列表中第 index

个元素
```

```
res.append(path[:])  # 将当前符合条件的结果放入集合中
if index >= len(nums):  # 遇到终止条件(本题)
return

for i in range(index, len(nums)):  # 枚举可选元素列表
path.append(nums[i])  # 选择元素
backtracking(nums, i + 1)  # 递归搜索
path.pop()  # 撤销选择

backtracking(nums, 0)
return res
```

思路 1: 复杂度分析

• **时间复杂度**: $O(n \times 2^n)$, 其中 n 指的是数组 nums 的元素个数, 2^n 指的是所有状态数。每种状态需要 O(n) 的时间来构造子集。

• **空间复杂度**: *O*(*n*), 每种状态下构造子集需要使用 *O*(*n*) 的空间。

思路 2: 二进制枚举

对于一个元素个数为 n 的集合 num 说,每一个位置上的元素都有选取和未选取两种状态。我们可以用数字 1 来表示选取该元素,用数字 0 来表示不选取该元素。

那么我们就可以用一个长度为 n 的二进制数来表示集合 nums 或者表示 nums 的子集。 其中二进制的每一位数都对应了集合中某一个元素的选取状态。对于集合中第 i 个元素 (i 从 0 开始编号)来说,二进制对应位置上的 1 代表该元素被选取, 0 代表该元素 未被选取。

举个例子来说明一下,比如长度为 5 的集合 nums = {5,4,3,2,1},我们可以用一个长度为 5 的二进制数来表示该集合。

比如二进制数 11111 就表示选取集合的第 0 位、第 1 位、第 2 位、第 3 位、第 4 位元素,也就是集合 {5,4,3,2,1} ,即集合 nums 本身。如下表所示:

集合 nums 对应位置(下标)	4	3	2	1	0
二进制数对应位数	1	1	1	1	1
对应选取状态	选取	选取	选取	选取	选取

再比如二进制数 10101 就表示选取集合的第 0 位、第 2 位、第 5 位元素,也就是集合 {5,3,1}。如下表所示:

集合 nums 对应位置(下标)	4	3	2	1	0
二进制数对应位数	1	0	1	0	1
对应选取状态	选取	未选取	选取	未选取	选取

再比如二进制数 01001 就表示选取集合的第 0 位、第 3 位元素,也就是集合 {5,2}。如下标所示:

集合 nums 对应位置(下标)	4	3	2	1	0
二进制数对应位数	0	1	0	0	1
对应选取状态	未选取	选取	未选取	未选取	选取

通过上面的例子我们可以得到启发: 对于长度为 5 的集合 nums 来说,我们只需要从 $00000 \sim 11111$ 枚举一次 (对应十进制为 $0 \sim 2^4 - 1$) 即可得到长度为 5 的集合 S 的 所有子集。

我们将上面的例子拓展到长度为 n l 合 nums 。可以总结为:

• 对于长度为 5 的集合 nums 来说,只需要枚举 $0\sim 2^n-1$ (共 2^n 种情况) ,即可得到 所有的子集。

思路 2: 代码

```
表示选取该元素
```

```
sub_set.append(nums[j]) # 将选取的元素加入到子集 sub_set 中sub_sets.append(sub_set)# 将子集 sub_set 加入到所有子集数组sub_sets 中return sub_sets# 返回所有子集
```

思路 2: 复杂度分析

- **时间复杂度**: $O(n \times 2^n)$, 其中 n 指的是数组 nums 的元素个数, 2^n 指的是所有状态数。每种状态需要 O(n) 的时间来构造子集。
- **空间复杂度**: O(n), 每种状态下构造子集需要使用 O(n) 的空间。

Copyright © 2024 ITCharge