Probabilidades – Año 2022

Práctica 2: Cálculos combinatorios. Resultados igualmente probables.

- 1. Consideremos mensajes enviados en código binario (0 y 1). ¿Cuántos mensajes es posible enviar con 10 digitos o menos?
- 2. Un experimentador está estudiando los efectos de la temperatura, la presión y el tipo de catalizador en la producción de cierta reacción química. Se consideran para las experiencias tres temperaturas diferentes, cuatro presiones distintas y cinco catalizadores diferentes. Si cualquier experimento particular implica utilizar una temperatura, una presión y un catalizador:
 - (a) ¿Cuántos experimentos distintos son posibles realizar?
 - (b) ¿Cuántos experimentos distintos existen que impliquen el uso de la temperatura más baja y las dos presiones más bajas?
 - (c) Suponga que se tienen que realizar cinco experimentos diferentes el primer día de experimentación y los experimentos se realizan al azar. ¿Cuál es la probabilidad de que se utilice un catalizador diferente en cada experimento?
- 3. Se lanzan dos dados, sea "a" el número del primer dado y "b" el del segundo ¿Cuál es la probabilidad de que la ecuación $x^2 + ax + b^2 = 0$ tenga raíces reales?
- 4. En una habitación, 10 personas tienen insignias numeradas del 1 al 10. Se eligen 3 personas al azar.
 - (a) ¿Cuál es la probabilidad de que el número menor de las insignias de las personas elegidas sea 5?
 - (b) ¿Cuál es la probabilidad de que el número mayor de las insignias sea 5?
- 5. Se eligen al azar dos números entre los primeros números 1, 2,, n. ¿Cuál es la probabilidad que sean consecutivos si los escogemos con sustitución? ¿Y si lo hacemos sin sustitución?.
- 6. Cinco hombres y cinco mujeres son ordenados de acuerdo a su nota de examen. Asumimos que no hay dos notas iguales y que todos los posibles 10! reordenamientos son igualmente probables.
 - (a) Encontrar la probabilidad de que una mujer obtenga el tercer puesto.
 - (b) Encontrar la probabilidad de que el puesto más alto alcanzado por una mujer sea el sexto.
- 7. En una canasta hay 30 manzanas de las cuales 5 están machucadas. Si elijo al azar, con orden y sin reemplazo 6 manzanas,
 - (a) Defina un espacio muestral. ¿Cuántos elementos tiene? ¿Es equiprobable?
 - (b) ¿Cuál es la probabilidad de que exactamente 3 de ellas estén machucadas?
 - (c) ¿Cuál es la probabilidad de que la tercera esté machucada?
- 8. En una fiesta se reparten al azar 10 caramelos entre 5 niños (un niño puede recibir más de un caramelo y obviamente otros niños pueden no recibir caramelos). Mi sobrino se encuentra en el grupo de niños. ¿Cuál es la probabilidad de que mi sobrino quede sin caramelo? (Ayuda: es conveniente suponer que tanto los niños como los caramelos están numerados).
- 9. En una reunión hay 8 personas ¿Cuál es la probabilidad de que al menos 2 de ellas cumplan años el mismo día? ¿Qué suposiciones son necesarias para el cálculo realizado?

- 10. Al tirar tres dados se puede obtener una suma de 9 de seis formas distintas, a saber: 126; 135; 144; 225; 234; 333, y una suma de 10 también de 6 formas diferentes, a saber: 136; 145; 226; 235; 244; 334. Sin embargo, la experiencia dice que es más fácil obtener 10 que 9 ¿Por qué?
 - Nota: este problema lo resolvió Galileo en el siglo XVII a requerimiento de un jugador, el príncipe de Toscana.
- 11. Los dados, tal y como los conocemos actualmente, se hicieron muy populares en la edad media. Chevalier De Mere propuso un enigma matemático: ¿Qué es más probable? ¿sacar al menos un 6 en cuatro tiradas con un sólo dado, o sacar al menos un doble seis en 24 tiradas con dos dados?
- 12. Tres matrimonios han comprado boletos para el teatro y se sientan en una fila formada por sólo seis asientos. Si toman sus asientos de un modo aleatorio:
 - (a) ¿cuál es la probabilidad de que Juan y Paula (marido y mujer) se sienten en los dos asientos de la extrema izquierda?
 - (b) ¿cuál es la probabilidad de que Juan y Paula terminen sentados en forma contigua?
 - (c) ¿cuál es la probabilidad de que por lo menos una de las esposas quede sentada junto a su marido?
- 13. Se arrojan 5 dados distinguibles. Calcular la probabilidad de obtener:
 - (a) escalera (b) "full" (c) "pierna" (aaabc, siendo a, b y c distintos) (d) un par (aabcd) (e) par doble (aabbc).
- 14. Dos amigos Luis y Pedro están con 6 personas y todos han colocado sus abrigos en un perchero. Al irse toman al azar un abrigo cada uno.
 - (a) Hallar la probabilidad que Luis tome su abrigo y Pedro no tome el suyo.
 - (b) ¿Cuál es la probabilidad que Luis o Pedro (al menos uno) escoja su propio abrigo?
- 15. Una urna contiene 5 bolillas rojas, 6 azules y 8 verdes. Si se eligen 3 bolillas al azar. ¿Cuál es la probabilidad que:
 - (a) todas sean del mismo color?
 - (b) todas sean de distinto color?
 - (c) Repetir los cálculos anteriores suponiendo que el muestreo se realiza con sustitución.
- 16. En una ciudad hay 4 técnicos en reparación de televisores. Se han descompuesto 4 televisores.
 - (a) Hallar la probabilidad que el técnico A sea llamado.
 - (b) Hallar la probabilidad que exactamente k técnicos sean llamados (k = 1, 2, 3, 4).
- 17. En una fiesta entre 10 matrimonios (hombre-mujer), se eligen 4 de las mujeres y 4 de los hombres para formar un grupo. Hallar la probabilidad de que en ese grupo estén presentes ambos cónyuges de exactamente k matrimonios, para k = 0, 1, 2, 3, 4.
- 18. Se elije al azar un entero entre 1 y 100000. ¿Cuál es la probabilidad de que no sea múltiplo ni de 2 ni de 3 ni de 5?
- 19. Se forma una fila de 8 números al azar con dos números 1, dos números 2, dos números 3 y dos números 4. ¿Cuál es la probabilidad de que no haya números iguales consecutivos?