Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Вариант №13 Лабораторная работа №1 по дисциплине Вычислительная математика

> Выполнил студент группы Р3212 Соколов Анатолий Владимирович Преподаватель: Наумова Надежда Александровна

Содержание

1		рание	1
	1.1	Вариант	1
	1.2	Цель работы	1
	1.3	Описание метода, расчетные формулы	2
	1.4	Реализация численного метода	2
	1.5	Блок-схема реализованного алгоритма	5
	1.6	Ссылка на GitHub с основной реализацией	5
	1.7	Примеры и результаты работы программы	6
2	Зак	аключение	
3	Список литературы		

1 Задание

В программе реализуемый численный метод решения системы линейных алгебраических уравнений (СЛАУ) должен быть реализован в виде отдельного класса /метода/функции, в который исходные/выходные данные передаются в качестве параметров.

Задавать размерность матрицы (n < 20) из файла или с клавиатуры – по выбору конечного пользователя. Должна быть реализована возможность ввода коэффициентов матрицы, как с клавиатуры, так и из файла (по выбору конечного пользователя).

Сформировать не менее 3 файлов (тестов) с различным набором данных.

Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.

1.1 Вариант

Для итерационных методов должно быть реализовано:

- Точность задается с клавиатуры/файла
- Проверка диагонального преобладания (в случае, если диагональное преобладание в исходной матрице отсутствует, сделать перестановку строк/столбцов до тех пор, пока преобладание не будет достигнуто). В случае невозможности достижения диагонального преобладания выводить соответствующее сообщение.
- Вывод вектора неизвестных: $x1, x2, \ldots, x_n$
- Вывод количества итераций, за которое было найдено решение.
- \bullet Вывод вектора погрешностей: $|x_i^K x_i^{k-1}|$

Метод	№ варианта
Метод Гаусса	1, 3, 5, 8, 21, 24, 26, 28, 31, 39
Метод Гаусса с выбором глав- ного элемента по столбцам	11, 17, 19, 22, 25, 27, 30, 34, 40
Метод простых итераций	2, 4, 6, 7, 10, 13, 15, 23, 32, 36, 38
Метод Гаусса-Зейделя	9, 12, 14, 16, 18, 20, 29, 33, 35, 37

1.2 Цель работы

Рассчитать системы линейных алгебраических уравнений СЛАУ

1.3 Описание метода, расчетные формулы

Описание метода

Итерационные методы это методы последовательных приближений.

Задается некоторое начальное приближение. Далее с помощью определенного алгоритма проводится один цикл вычислений - итерация. В результате итерации находят новое приближение. Итерации проводятся до получения решения с требуемой точностью.

Метод простых итераций — это численный метод решения уравнений, включая алгебраические и дифференциальные уравнения. Основная идея метода состоит в том, чтобы преобразовать исходное уравнение таким образом, чтобы решение могло быть представлено как предел последовательности, получаемой итеративным способом.

Для алгебраических уравнений метод простых итераций можно описать следующим образом:

- 1. Преобразование уравнения: Исходное уравнение f(x) = 0 преобразуется в эквивалентное уравнение вида $x = \phi(x)$, где функция $\phi(x)$ должна быть выбрана таким образом, чтобы последовательность, порождаемая этой функцией, сходилась к корню исходного уравнения.
- 2. Выбор начального приближения: Выбирается начальное приближение к корню уравнения, обозначаемое как x_0 .
- 3. Итерационный процесс: На каждом шаге вычисляется следующее приближение к корню по формуле $x_{n+1} = \phi(x_n)$, где n номер текущей итерации. Этот процесс повторяется до тех пор, пока разность между последовательными приближениями не станет меньше заданной точности ε , т.е. $|x_{n+1} x_n| < \varepsilon$.
- 4. Критерий остановки: Итерационный процесс продолжается до тех пор, пока не будет достигнута заданная точность или не будет выполнено максимально допустимое количество итераций.

Расчетные формулы

$$x_i^{k+1} = \frac{b_i}{a_{ii}} - \sum_{j=1, j \neq i}^{n} \frac{a_{ij}}{a_{ii}} x_j^k, i = 1, 2, \dots, n$$

$$c_{ij} = \begin{cases} 0, i = j \\ -\frac{a_{ij}}{a_{ii}} \end{cases}$$

$$d_i = \frac{b_i}{a_{ii}}, i = 1, 2, \dots, n$$

$$x^{k+1} = Cx^k + d$$

1.4 Реализация численного метода

```
1
    fn shuffle(&mut self) -> (bool, Vec(Vec(f64)>) {
 2
        let mut biggest = vec![-1; self.n];
 3
        let mut biggest_set = HashSet::new();
 4
        let mut found_strict = false;
        for i in 0..self.n {
 7
             let sum: f64 = self.a[i].iter().sum();
 8
             for j in 0..self.n {
                  if 2.0 \times self.a[i][j] \ge sum < if <math>2.0 \times self.a[i][j] > sum < ...
 9
10
11
                      found_strict = true;
12
13
                  biggest[i] = j as isize;
14
                  biggest_set.insert(j);
15
                  break;
16
                  Y
17
18
             if biggest[i] = -1  {
19
                  return (false, vec![vec![0.0]]);
20
             >
        >
21
22
23
        if !found_strict | | biggest.len() != biggest_set.len() {
24
             return (false, vec![vec![0.0]]);
```

```
25
       }-
26
27
       let mut shuffled a = vec![vec![]: self.n]:
28
       let mut shuffled_b = vec![0.0; self.n];
29
30
       for i in 0..self.n (
31
            let index = biggest[i] as usize;
32
            shuffled_a[index] = self.a[i].clone();
33
            shuffled_b[index] = self.b[i];
34
35
36
       self.a = shuffled_a.clone();
37
       self.b = shuffled_b;
38
39
        (true, shuffled_a)
40
41
42 fn find_c_and_d(coefficients: Vec(Vec(f64>>) -> Vec(Vec(f64>> (
       let n = coefficients.len(); // The number of rows, assuming a square
           → matrix for coefficients
44
       let mut c = vec![vec![0.0; n]; n]; // Initialize C matrix with zeros
45
       for i in 0..n (
46
47
            // Diagonal element of the current row
48
            let diag_elem = coefficients[i][i];
49.
50
            for j in 0..n K
51
                // Check if the current element is not on the diagonal
52
                if i != j {
53
                // C matrix is -1 times the original coefficient matrix

→ divided by the diagonal element

                c[i][j] = -coefficients[i][j] / diag_elem;
54
55
56
            }-
57
            // The diagonal elements of C are set to zero
58
           c[i][i] = 0.0;
59
       >
60
61
       Ċ.
62
       }-
63
64 fm iterate(&mut self) {
65
       let mut new_sol = vec![0.0; self.n];
66
       for i in 0..self.n (
67
            new_sol[i] = self.b[i] / self.a[i][i] - self.sum_sol_row(i);
68
            self.sol_acc[i] = (new_sol[i] - self.sol[i]).abs();
69
       ¥.
70
       self.sol = new_sol;
71
       self.sol_iter += 1;
72
73
74
       pub fn solve(&mut self) -> Json(serde_json::Value> {
75
       let mut err = String::new():
76
77
       if !self.shuffle().0 {
            err = String::from("Невозможно
78
               привестикдиагональномупреобладанию.")
79
       >
80
81
       self.shuffled_matrix = self.shuffle().1;
82
```

```
83
         while self.sol_acc.iter().max_by(la, bl a.total_cmp(b)).unwrap() > &
            ⇔ self.acc
 84
             && self.sol_iter < self.max_iter
 85
         €.
 86
             self.iterate();
 87
         >
 88
 89
         if !self.shuffled_matrix.is_empty() {
 90
             self.c = Matrix::find_c_and_d(self.shuffle().1);
 91
             return Json(json!(K
                  "sol": self.sol.
 92
                  "acc": self.sol_acc.
 93
                  "iter": self.sol_iter.
 94
 95
                  "c": self.c.
                  "mtrx": self.shuffled_matrix.
 96
                  "enn": ennu
 97
 98
             >>>;
         >
 99
100
         Json(json!((
101
             "sol": self.sol.
102
             "acc": self.sol_acc.
"iter": self.sol_iter.
103
104
105
             "mtrx": self.shuffled_matrix.
106
             "enn": enn.
107
         >>>
108
         >
```

1.5 Блок-схема реализованного алгоритма

1.6 Ссылка на GitHub с основной реализацией

Github

1.7 Примеры и результаты работы программы

2 Заключение

Я познакомился с новым для меня и крайне необыкновенным вычислением СЛАУ на языке rust.

3 Список литературы

[1] Слайды с лекций (2023). // Кафедра информатики и вычислительной техники – Малышева Татьяна Алексеевна, к.т.н., доцент.