Analysis H – Hahn / Tantod
Unit 2 – Polar and 3D graphing
Quiz on Polar Coordinates and Graphing
NO CALCULATORS

Polar vaulter:	
Period:	

- 1. Find the 14th term of the expansion of $(x-3y)^{41}$. [3 pts] (leave your answer in choose notation and exponents do NOT try to multiply it out, obvi.)
- 2. a) Use the polar axis below to graph and label the points $A(4,\frac{3\pi}{4})$, $B(-5,\frac{11\pi}{6})$, and $C(3,\frac{31\pi}{2})$ [1 pt each]

23 points

- b) Convert the point $B(-5, \frac{11\pi}{6})$ to rectangular coordinates. [2 pts]
- c) The point D(24, -24) is written in rectangular coordinates. Convert the point to polar. [2 pts]

3. Convert the equation $8 = r \sec \theta + 6 \tan \theta$ to a rectangular form (hint: it makes a circle! Complete the squares to write the equation in its best form.) [4 pts]

4. Graph each function. [2 pts each for a and b, 3 pts each for c and d]

a)
$$r = 6$$

b)
$$\theta = \frac{2\pi}{3}$$

c)
$$r = 7\cos(3\theta)$$

d)
$$r = 5 - 7\cos\theta$$

5. Write the equation of a dimpled limacon, where the maximum r-value is 10, the minimum r-value is 1, and the graph has symmetry about the line $\theta=\frac{\pi}{2}$ [1 pt]