

www.gradeup.co

Prep Smart. Score Better. Go gradeup

Problem on Trains

Keep same units for all values mentioned in the problem i.e. as per the units of the given answers convert kilometre per hour (km/hr) to meters per second (m/s) and vice versa. In a similar way, convert meter (m) into centimetre (cm) and vice versa. See the examples given below:

Formula to convert Km/hr into m/s:

- 1km is equal to 1000 meters
- 1 hours is equal to 3600 seconds
- 1Km/hr is equal to $\frac{1000}{3600} = \frac{5}{18}$ meter/sec or m/s

So, to convert a value in Km/hr to m/s, we need to multiply it with 5/18 See the example given below:

$$60 \text{ km/hr} = 60x \left(\frac{5}{18}\right) = 16.7 \text{ m/s}$$

Formula to convert m/s into Km/hr:

- 1 meter is equal to 1/1000 km
- 1 sec is equal to 1/3600 hours
- 1 m/s is equal to So, to covert a value in m/s to Km/hr, we will multiply it with 18/5. See the example given below:

$$20 \text{ m/s} = 20x(\frac{18}{5}) = 72 \text{ km/hr}$$

Points about moving trains:

- 1. The distance travelled by a train to cross a pole/post/stationary lamp or person is equal to the length of the train.
- 2. The distance travelled by train when it crosses a platform/bridge is equal to the sum of the length of the train and length of the platform.
- 3. When two trains are travelling in opposite directions at speeds V_1 m/s and V_2 m/s then their relative speed is the sum of their individual speeds (V_1+V_2) m/s.
- 4. Two trains are travelling in the same direction at V_1 m/s and V_2 m/s where $V_1 > V_2$ then their relative speed will be equal to the difference between their individual speeds (V_1-V_2) m/s.
- 5. When two trains of length X meters and Y meters are moving in opposite direction at V_1 m/s and V_2 m/s then the time taken by the trains to cross each other is:

$$\frac{X+Y}{V1+V2}$$

6. When two trains of length X meters and Y meters are moving in same direction at V_1 and V_2 where $V_1 > V_2$ then the time taken by the faster train to cross the slower train:

$$\frac{X+Y}{V1-V2}$$

7. When two trains X and Y start moving towards each other at the same time from points A and B and after crossing each other the train X reaches point B in a seconds and train Y reaches points A in b seconds, then Train X speed: Train Y speed:

$$b^{(1/2)}$$
: $a^{(1/2)}$