

Today: Transformations and Shaders

Transforms and Shaders

Reminder – Rasterization

Introduction to the Graphics Pipeline

Transformations

Normal and Bump Mapping

Perlin Noise

Announcements

Assignment 6 out now, due November 5th

Any Questions?

Rasterization

2. Turn on pixels inside triangle

Modern Graphics Pipeline OpenGL/Direct3D graphics pipeline *

^{*} several stages of the modern OpenGL pipeline are omitted

What is a linear transformation?

A: For vectors, a linear transformation is any operation performed by a matrix

$$Ax = b$$

2D Linear Transformations

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{bmatrix}$$

2D Linear Transformations - Scale

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

Linear transformations in 2D: Scale

When Sx = Sy we say the scaling is uniform

2D Linear Transformations - Rotation

2D Linear Transformations - Shear

$$\begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + sy \\ y \end{bmatrix}$$

These are always the same length

2D Linear Transformations - Translation

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \end{bmatrix}$$

2D Affine Transformations - Translation

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y + t_x \\ a_{21}x + a_{22}y + t_y \\ 1 \end{bmatrix}$$

$$Ax + t = b$$

Considered as a point in 3D homogeneous coordinates

Geometric Intuition

What about vectors?

Considered as a <u>vector</u> in 3D homogeneous coordinates

We don't want to be able to translate a vector

3D Linear Transformations

Ax = b

Speaking of vectors, do normals get transformed the same way an object does?

No, thank you for asking.

What's the right way to transform a normal vector?

$$n'^T t' = 0$$
$$(Xn)^T (Mt) = 0$$

What's the right way to transform a normal vector?

We want
$$\, n^T X^T M t = 0 \,$$

So, if
$$X=(M^{-1})^T$$
 then,

$$n^T X^T M t = n^T M^{-1} M t = n^T t = 0$$

Composing transformations

Composing transformations

$$\begin{bmatrix}
.707 & -.707 \\
.707 & .707
\end{bmatrix}
\begin{bmatrix}
1.0 & 0 \\
0 & 0.5
\end{bmatrix} = \begin{bmatrix}
.707 & -.353 \\
.707 & .353
\end{bmatrix}$$
2nd transformation 1st transformation

Modern Graphics Pipeline OpenGL/Direct3D graphics pipeline *

^{*} several stages of the modern OpenGL pipeline are omitted

Getting Things Onto The Screen

Canonical

Object Space

Modern Graphics Pipeline OpenGL/Direct3D graphics pipeline *

^{*} several stages of the modern OpenGL pipeline are omitted

Tessellation Shader

Modern Graphics Pipeline OpenGL/Direct3D graphics pipeline *

^{*} several stages of the modern OpenGL pipeline are omitted

Fragment Shader

Texture coordinates

Normal Mapping

One of the reasons why we apply texture mapping:

Real surfaces are hardly flat but often rough and bumpy. These bumps cause (slightly) different reflections of the light.

Normal Mapping

Normal Mapping vs. Geometry

Major problems with bump mapping: silhouettes and shadows

Displacement (Bump) Mapping

ORIGINAL MESH

DISPLACEMENT MAP

MESH WITH DISPLACEMENT

Normal Mapping vs. Displacement Mapping

Improved Perlin Noise: https://mrl.cs.nyu.edu/~perlin/paper445.pdf

Improved Perlin Noise: https://mrl.cs.nyu.edu/~perlin/paper445.pdf

1.00

- 0.75

0.50

- 0.25

0.00

Improved Perlin Noise: https://mrl.cs.nyu.edu/~perlin/paper445.pdf

Announcements

Assignment 6 out now, due November 5th