Privacy-Preserving Data Mining

PANKAJ KUMAR

ANDREY MITYASHOV

ANTON TSITSULIN

Data mining: privacy / utility

Protect individual information while releasing accurate data aggregations

Problem:

Exact aggregation might leak confidential data

Goal:

Protect individual information, release aggregate

Data mining: privacy / utility

Question:

• Can we just use some fancy cryptography?

Answer:

No – the information leaks through correct answers

Solution:

Add some noise when answering the queries

Two privacy models

An interactive sanitizer $\mathcal{K}_{\!f}$

 \mathcal{K}_{f} applies query function f to database, and returns noisy result: $\mathcal{K}_{f}(DB) \equiv f(DB) + Noise$

Strong privacy goal:

 Joining the database should not substantially increase or decrease the probability of any event happening

Definition:

• \mathcal{K}_{f} provides ε -differential privacy if for any datasets A and B such that $|A\Delta B|=1$, and all possible outcomes S,

$$P\left(\mathcal{K}_{f}(A)\right) \leq P\left(\mathcal{K}_{f}(B)\right)e^{\varepsilon}$$

Strong privacy goal:

 Joining the database should not substantially increase or decrease the probability of any event happening

Definition:

• \mathcal{K}_{f} provides ε -differential privacy if for any datasets A and B such that $|A\Delta B|=1$, and all possible outcomes S,

$$P\left(\mathcal{K}_{f}(A)\right) \leq P\left(\mathcal{K}_{f}(B)\right)e^{\varepsilon}$$

Composition:

• Sequence of ε -differential private queries $(\mathscr{F}_1, \mathscr{F}_1, \dots, \mathscr{F}_n)$ provide $n * \varepsilon$ -differential privacy

Parallel composition:

 For disjoint sets, the privacy guarantee depends on the worst privacy on the set

Noise distribution:

Laplace, parameterized

Our question

How to select appropriate ε for machine learning?

Literature: $0.01 \le \varepsilon \le 100 \iff (1.01, 2.69 * 10^{43})$

Solution:

 \circ Tie arepsilon to adding noise in the raw data, compare through the classifiers results

The goal

Study the actual relation between ε and norm-scaled data noise Create set of recommendations to select ε .

Results – SVM

Results – Logistic regression

Results – Perceptron

Summary

Machine learning algorithms are robust to noise

There is a (notable) correlation between the data noise and privacy-induced noise

Library-adopted levels of privacy do not hurt too much

Recommended level of privacy $0.004 \le \varepsilon \le 0.1 \Leftrightarrow (1.004, 1.1)$ exp

Thank you for attention

PANKAJ KUMAR

ANDREY MITYASHOV

ANTON TSITSULIN