

Mobile Phone Positioning

GPS-Ortung & Bewegungsdaten von Fitnesstrackern

M. Hanitzsch, C. Kaiser, J. Müller

Mathematisches Institut Universität Koblenz

10. Februar 2025

Inhaltsverzeichnis

2/40

Theorie

Koordinatensysteme

Ellipsoid

GPS Aufbau und DGPS

GDOP

Satellitenorbits

Iterative Weighted Least Squares

Kalman-Filter

Motivation/Forschungsfragen

Modellierung

Rauschsimulation

Unterschiedliche Satelliten Konstellationen

Ergebnisse

Fazit und Einordnung

Ausblick

Koordinatensysteme

Kartesisches Koordinatensystem

- Orthogonales Koordinatensysteme
- Drei Achsen mit Ursprung teilen Raum in acht Oktanten

Geographisches (engl. Geodetic) Koordinatensystem

- Breitenkreise:
 - Verlaufen alle parallel zum Äquator
 - Punkte mit gleicher Breitengrad (Latitude) gleichem Breitenkreis zugeordnet
 - Gradnetz vom Äquator aus gezählt, bis zu den Polen bei 90° Nord und bei 90° Süd
- Längenkreise:
 - Verlaufen alle durch Nord- und Südpol
 - Punkte mit gleicher Längengrad (Longitude) gleichem Meridian (halben Längenkreis) zugeordnet
 - Gradnetz vom Nullmeridian aus gezählt, nach Westen und Osten bis jeweils 180°

Figure 1: Abbildung von [1] (Kartesisches Koordinatensystem mit drei Dimensionen)

Figure 2: Abbildung von [2] (Geodetisches Kooridinatensystem)

Referenzellipsoid

- Ein Referenzellipsoid ist ein mathematisches Modell zur Modellierung der Erdgestalt bei konstanter Höhe/Altitude
- Dient zur Definition eines geographisches Koordinatensystems und der Bestimmung einer Position auf der Erde
- Referenzellipsoide haben einen äquatorialen Radius a und einen polaren Radius b, wobei $a \ge b$.
- Referenzellipsoide sind meistens Rotationsellipsoide

Rotationsellipsoid

- Rotationsfläche die durch Drehung einer Ellipse und die eigene Achse entsteht
- Zwei der drei Achsen müssen gleich lang sein
- Bei der Erddarstellung ist die dritte Achse kürzer, somit gilt a > b ("Abgeplatteter Ellipsoid")

Geodäte und Azimuth

Geodäte:

Kürzester Pfad zwischen zwei Punkten über die Oberfläche des Ellipsoiden

Azimuth:

 Winkel zwischen der Nordrichtung eines Punkts P und einer durch P verlaufenden geodätische Linie

Karney Formeln

- Direktes und inverses Problem
- Direktes: Berechnung des Endpunkts einer Geodäte
- inverses: Berechnung der Geodätenlänge zwischen zwei Punkten
- Direktes Problem benötigt Startpunkt, initiales Azimuth und Geodätenlänge
- Hilfskugel erlaubt Abbildungen zwischen einer Geodäte und einem Großkreis auf der Hilfskugel

Figure 3: Abbildung von [3] (Ellipsoid mit Geodäte)

Figure 4: Abbildung von [3] (Hilfskugel mit substituierten Parametern)

GPS Aufbau

- Globales Positionierungssystem (GPS) ist ein satellitenbasiertes Navigationssystem, das weltweit Positionen bestimmt.
- Es besteht aus drei Hauptkomponenten:
 - Raumsystem: 24+ GPS-Satelliten, die die Erde in geosynchronen Umlaufbahnen umkreisen und kontinuierlich ihre Position und Uhrzeit senden.
 - Nutzersystem: GPS-Empfänger auf der Erde, die Signale von mindestens 4 Satelliten empfangen und die Position durch Trilateration berechnen.
 - Kontrollsystem (bei DGPS): Ein Bodenstation-Netzwerk, das speziell bei Differential-GPS (DGPS) zur Anwendung kommt, um die Satellitenpositionen zu überwachen und Korrekturen zu senden.
- DGPS (Differential GPS) verbessert die Genauigkeit, indem es Korrektursignale von Referenzstationen (Bodenstationen) an die GPS-Empfänger sendet.
- Normales GPS benötigt keine Bodenstationen, aber seine Genauigkeit ist geringer und liegt typischerweise bei 5 bis 10 Metern.

GDOP

- GDOP beschreibt die Auswirkung der Satellitengeometrie auf die Positionsgenauigkeit.
- GDOP kann anhand der Designmatrix **A** nach folgender Formel berechnet werden:

$$\mathsf{GDOP} = \sqrt{\mathsf{trace}\left((\mathbf{A}^T\mathbf{A})^{-1}\right)}$$

- GDOP ist dabei ein quantitavies Maß für die Güte der Satellitenposition relativ zum Empfänger. Ein niedriger GDOP bedeutet eine gute Satellitengeometrie, während ein hoher GDOP auf eine ungünstige Geometrie hinweist.
- GPS-Empfänger testen dabei in der Regel alle möglichen Kombinationen der verfügbaren Satelliten auf ihren GDOP-Wert und wählen die beste Kombination zur Positionsbestimmung aus
- Satelliten mit einem Elevationswinkel von weniger als 15° werden dabei nicht berücksichtigt, da die Störfaktoren dann zu groß werden

GDOP

12/40

Designmatrix

Die Designmatrix \mathbf{A} enthält die Richtungsvektoren von den Satelliten zum Empfänger. Für jedes Satellitenpaar werden diese Vektoren in die Designmatrix \mathbf{A} aufgenommen, wobei jede Zeile der Matrix den Richtungsvektor des jeweiligen Satelliten enthält.

Die Designmatrix A hat die Form:

$$\mathbf{A} = \begin{pmatrix} \frac{x_1 - x}{r_1} & \frac{y_1 - y}{r_1} & \frac{z_1 - z}{r_1} & 1\\ \frac{x_2 - x}{r_2} & \frac{y_2 - y}{r_2} & \frac{z_2 - z}{r_2} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{x_n - x}{r_n} & \frac{y_n - y}{r_n} & \frac{z_n - z}{r_n} & 1 \end{pmatrix}$$

wobei $r_i = \sqrt{(x_i - x)^2 + (y_i - y)^2 + (z_i - z)^2}$ der Abstand des Empfängers zum i-ten Satelliten ist.

GDOP als Einflussfaktor

- Warum führt ein besseres GDOP an sich tendenziell zu besseren Ergebnissen?
- GPS arbeitet mit geometrischen Kugelschnitten, die allerdings nicht ohne Störfaktoren ablaufen können.
- Je nachdem wie die einzelnen Kugeln sich schneiden, haben die Fehler in den Messungen einen unterschiedlich großen Einfluss an der Abweichung vom tatsächlichen Wert.
- Betrachte dazu analog Geradenschnitte mit Geraden durch den Ursprung deren Steigungen die Eingangsparameter seien:

GDOP: Analogie Geradenschnitt

Figure 5: Geradenschnitt unter 90°

Figure 6: Geradenschnitt unter flachem Winkel

Satellitenorbits

- Himmelskörper bewegen sich nach Kepler auf Ellipsen
- Charakterisierung der Satellitenposition mit Keplerelemente: $[a, e, i, \Omega, \omega, \Theta]$
 - a entspricht der kleinen Halbachse
 - *e* entspricht der Exzentrizität
 - *i* entspricht der Inklination (Neigungswinkel gegenüber der Referenzbahn)
 - lacksquare Ω entspricht der Länge des aufsteigenden Knotens
 - ullet ω entspricht dem Argument des Perihels
 - ullet Θ entspricht der aktuellen Position auf der Bahn als Winkel gegenüber des Perihels
- Für die Bewegungsmodellierung gelte: $\Theta(t+1) = \Theta(t) + \Delta t \cdot \dot{\theta}$
- Für den Orbit ist der spezifische Drehimpuls h als Erhaltungsgröße konstant.
- lacksquare Sei M die Ermasse und G die Gravitationskonstante. Es gilt:

$$\dot{\theta} = \frac{h}{r^2} \text{ mit } h = \sqrt{GM(1 - e^2)} \text{ und } r = \frac{a(1 - e^2)}{1 + e\cos(\Theta)}$$

Iterative Weighted Least Squares

16/40

- Numerisches Verfahren zur Lösung nichtlinearer Gleichungssysteme.
- Das Residuum p(x) beschreibt die Abweichung zwischen der wahren Position y und der gemessenen Position h(x):

$$p(x) = h(x) - y$$

Ziel:

$$x = \arg\min_{x} p(x)^{T} p(x)$$

- Zunächst Betrachtung des Iterative Least Squares-Ansatzes.
- Idee: Linearisierung des Residuums in der Nähe des Iterationsparameters x_k :

$$p(x_k + \Delta x_k) \approx p(x_k) + p'(x_k) \Delta x_k$$

Daraus folgt:

$$p(x_{k+1}) = p(x_k + \Delta x_k) \approx p(x_k) + p'(x_k)\Delta x_k = 0$$

■ Die Ableitung wird durch die Jacobi-Matrix J_k gegeben:

$$J_k = p'(x_k) \implies J_k \Delta x_k = -p(x_k)$$

Iterative Weighted Least Squares

Erinnerung an die Lösung des Least-Squares-Problems für eine allgemeine Abbildungsmatrix A, einen Lösungsvektor x und eine rechte Seite b:

$$x = \arg\min_{x} ||Ax - b||^2 = (A^T A)^{-1} A^T b$$

Analoge Anwendung hier:

$$\Delta x_k = -(J_k^T J_k)^{-1} J_k^T p(x_k)$$

Daraus ergibt sich die Iterationsvorschrift:

$$x_{k+1} = x_k - (J_k^T J_k)^{-1} J_k^T p(x_k)$$

- Iterative Weighted Least Squares erweitert diese Methode um eine Gewichtungsmatrix Σ , um die einzelnen Residuen unterschiedlich zu gewichten.
- Damit ergibt sich das optimierte Problem, welches analog behandelt wird:

$$x = \arg\min_{x} p(x)^{T} \Sigma^{-1} p(x)$$

Algorithmus des Kalman-Filters

Zustandsmodell:

$$x_k = \Phi_{k-1} x_{k-1} + w_{k-1}, \quad \mathbb{V}(w_{k-1}) = Q_{k-1}$$

Messmodell:

$$y_k = H_k x_k + v_k, \quad \mathbb{V}(v_k) = R_k$$

- Initiale Schätzung: \hat{x}_0 und P_0
- 1. Vorhersage:

$$\hat{x}_{k}^{-} = \Phi_{k-1}\hat{x}_{k-1}, \quad P_{k}^{-} = \Phi_{k-1}P_{k-1}\Phi_{k-1}^{T} + Q_{k-1}$$

2. Kalman-Gain:

$$K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R_k)^{-1}$$

3. Korrektur der Schätzung:

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - H_k \hat{x}_k^-), \quad P_k = (I - K_k H_k) P_k^-$$

• 4. Iteration: Wiederhole die Schritte für k = 1 bis m (Anzahl der Messungen).

Bezeichner der Symbole

19/40

- \mathbf{x}_k : Zustand des Systems zur Zeit k
- \hat{x}_k : Schätzung des Zustands zur Zeit k
- Φ_k : Zustandsübergangsmatrix
- w_k : Prozessrauschen zur Zeit k
- lacksquare Q_k : Kovarianzmatrix des Prozessrauschens
- y_k : Messung zur Zeit k
- \blacksquare H_k : Messmatrix
- v_k : Messrauschen zur Zeit k
- R_k: Kovarianzmatrix des Messrauschens
- \blacksquare P_k : Fehlerkovarianzmatrix zur Zeit k
- K_k : Kalman-Gain zur Zeit k
- \hat{x}_k^- : Vorhersage des Zustands zur Zeit k
- P_k^- : Vorhersage der Fehlerkovarianz zur Zeit k
- *m*: Anzahl der Messungen

Motivation/Forschungsfragen

Motivation

- Wie bereits erwähnt kann man zwischen GPS und DGPS unterscheiden.
- Auch können in GPS-Empfängern zusätzlich Beschleunigungssensoren verbaut sein.
- Diese Erweiterungen eines einfachen GPS-Empfängers erfordern zusätzliche Hardware.
- Motivation: Untersuchung eines GPS-Fitness-Trackers, der diese zusätzliche Hardware "auslagert" und dem stattdessen einfach mehr Satelliten zur Verfügung stehen.

Forschungsfragen

- Welchen Einfluss haben Anzahl und Anordnung der Satelliten?
- Sollte GPS im Sinne der Demokratisierung mehr GPS-Satelliten betreiben, um die Messungen auch von einfachereren Empfängern maßgeblich zu verbessen?

Modellierung

- Für die Simulationen werden folgende Systemkomponenten aufgesetzt:
 - Satelliten auf ellipsenförmigen Bahnen
 - Receiver auf Referenzellipsoid
- Die Keplerelemente der Satelliten sind denen der echten GPS Satelliten nachempfunden
- Der Receiver wird auf einem zufälligen Längen- sowie Breitengrad auf der Erde als Startposition positioniert (Polarkreise ausgenommen, da GPS hierfür nicht ausgelegt ist)
- Der Receiver wählt aus den verfügbaren Satelliten diejenige Kombintation mit dem besten GDOP aus
- Statt mit Signallaufzeiten zu arbeiten, wird die korrekte Entfernung des Satelliten vom Receiver lediglich pro Satellit "verrauscht"
- Der Receiver bewegt sich während der Simulation auf einem Testpfad mit unterschiedlichen Geschwindigkeiten

Modellierung

- Der Receiver nutzt den Iterative Weighted Least Square Algorithmus und den Kalmanfilter zur Positionsbestimmung
- Die Gewichtungsmatrix W sei dabei wie folgt gegeben: Sei ψ_i der Elevationswinkel des i-ten Satelliten. Sei $w_i = \sin(\psi_i)^2$. $W \coloneqq \text{diag}(w_1, w_2, \dots, w_n)^T$ mit n als Anzahl der genutzten Satelliten.
- Mittels der Simulationen soll die zurückgelegte Strecke des Receivers geschätzt werden und für verschiedene Geschwindigkeiten verglichen werden.
- Folgende Satellitenkonstellationen sollen untersucht werden:
 - GPS-Konstellation
 - "Doppelte"-GPS-Konstellation

Rauschsimulation I

- Ziel: "Verrauschen" des Satellitensignals für jeden Satelliten, wobei der Fehler $\epsilon \sim \mathcal{N}(0, \sigma_{einzeln})$ verteilt ist.
- μ = 0 wird hier angenommen, da es sich sonst um einen Modellfehler handeln würde, wovon bei einem derartig etablierten System nicht ausgegangen wird.
- Bei einer einfachen GPS-Messung der Position beträgt die Standardabweichung 3,6 Meter
- Problem: Die Standardabweichung von 3,6 Metern bezieht sich auf GPS Messungen, also auf die Abweichung nach "Kugelschnitt und Behandlung".
- Idee: Approximiere ein geeignetes σ_{einzeln} mittels Fixpunktiteration: $p_{i+1} = p_i \cdot \frac{3,6}{\sigma_{\text{sim}}}$, sodass $p_i \leadsto \sigma_{\text{einzeln}}$.
- Für diese Abschätzung wurde entsprechend das GPS-Modell genutzt (zunächst ohne zusätzliche Beachtung der Ionosphäre)

Rauschsimulation II

- Es lässt sich folgende Dekomposition der Störfaktoren angeben:
 - Störungen durch die Ionosphäre (±5 Meter)
 - Schwankungen der Satellitenumlaufbahnen (±2.5 Meter)
 - Uhrenfehler der Satelliten (±2 Meter)
 - Mehrwegeeffekt (±1 Meter)
 - Störungen durch die Troposphäre (±0.5 Meter)
 - Rechnungs- und Rundungsfehler (±1 Meter)
- Basierend auf diesen Konfidenzintervallen sei angenommen, dass der Einfluss der Ionosphäre $\frac{5}{12}$ beträgt.
- Es gilt weiterhin anzunehmen, dass das Signallaufzeit größerer Beeinflussung unterliegt, wenn mehr Ionosphäre durchquert werden muss, da der Elevationswinkel niedriger ist.
- Berücksichtigung des Einflusses des Elevationswinkels ist essenziell, wenn untersucht werden soll, wie groß der Einfluss der Satellitenkonstellation auf die Genauigkeit ist.

Rauschsimulation III

- Die lonosphäre erstreckt sich (je nach Quelle) von 80km bis 1000km Höhe.
- Als Referenzwinkel ψ sei 45° gegeben.
- Die Referenzstrecke durch die Ionosphäre, die ein Satellitensignal zurücklegen muss $d(\psi)$ kann mit einfachen Kugel-Geraden-Schnitten bestimmt werden.
- Für jedes Signal kann nun der Faktor f_{ionos} abhängig vom Elevationswinkel ψ_i bestimmt werden:

$$f_{\mathsf{ionos}(\psi_i)} = \frac{d(\psi_i)}{d(\psi)}$$

Für die eigentlichen Untersuchungen soll nun der satellitenspezifische Fehler $\epsilon(\psi_i)$ folgender Verteilung folgen:

$$\epsilon(\psi_i) \sim \mathcal{N}\left(0, \frac{5}{12} \cdot p \cdot f_{\mathsf{ionos}(\psi_i)} + \frac{7}{12} \cdot p\right)$$

wobei p aus der Fixpunktiteration folgt.

Pfadsimulation

Figure 7: Testpfad sinusförmig auf dem Referenzellipsoiden

Unterschiedliche Satelliten Konstellationen

Figure 8: GPS: 6 Orbits mit je 4 Satelliten

Figure 9: Double: 8 Orbits mit je 6 Satelliten

Ergebnisse - Mit und ohne Kalmanfilter

Ergebnisse - Messwerte Lage und Einordnung

Figure 10: Simulation GPS mit 10km/h

➤ Mobile Phone Positioning M. Hanitzsch, C. Kaiser, J. Müller 10. Februar 2025 29/40

		Mathematics / Natural Sciences
Alpha-Intervall (%)	Maximale Abweichung (m)	Maximale Abweichung (%)
99.0	3026.511889	1089.457123
98.0	1530.357710	550.884705
96.0	898.630772	323.481199
94.0	378.861619	136.379273
92.0	215.388839	77.533779
90.0	135.894879	48.918243
88.0	95.345942	34.321793
86.0	65.037971	23.411797
84.0	40.733410	14.662854
82.0	33.858412	12.188053
80.0	30.774882	11.078071
78.0	30.410921	10.947056
76.0	29.923688	10.771666

Table 1: GPS 10 km/h. Erwartete Streckenlänge: 277.78 Meter

		Mathematics / Natural Sciences
Alpha-Intervall (%)	Maximale Abweichung (m)	Maximale Abweichung (%)
99.0	2015.149324	725.395725
98.0	1106.703695	398.381460
96.0	306.891404	110.472068
94.0	271.554483	97.751794
92.0	246.214430	88.630104
90.0	136.261918	49.050366
88.0	33.282190	11.980630
86.0	32.346884	11.643947
84.0	28.694683	10.329260
82.0	26.010139	9.362901
80.0	25.219556	9.078314
78.0	23.403811	8.424698
76.0	22.373046	8.053652

Table 2: "Double"-GPS 10 km/h. Erwartete Streckenlänge: 277.78 Meter

		Mathematics / Natural Sciences
Alpha-Intervall (%)	Maximale Abweichung (m)	Maximale Abweichung (%)
99.0	1964.607388	353.601042
98.0	745.780843	134.229813
96.0	345.102608	62.113500
94.0	194.503493	35.007828
92.0	104.154818	18.746368
90.0	56.000003	10.079194
88.0	33.634128	6.053659
86.0	31.933161	5.747509
84.0	31.317945	5.636779
82.0	31.111148	5.599559
80.0	30.886536	5.559132
78.0	30.648304	5.516253
76.0	30.424790	5.476024

Table 3: GPS 20 km/h. Erwartete Streckenlänge: 555.56 Meter

		Mathematics / Natural Sciences
Alpha-Intervall (%)	Maximale Abweichung (m)	Maximale Abweichung (%)
99.0	3667.098834	660.024988
98.0	2815.451991	506.740819
96.0	957.624783	172.358672
94.0	104.908628	18.882043
92.0	62.417142	11.234187
90.0	7.383547	1.328932
88.0	6.432558	1.157768
86.0	5.325022	0.958427
84.0	4.105298	0.738895
82.0	3.418947	0.615361
80.0	3.368427	0.606268
78.0	3.219179	0.579406
76.0	3.208990	0.577572

Table 4: "Double"-GPS 20 km/h. Erwartete Streckenlänge: 555.56 Meter

		Mathematics / Natural Sciences
Alpha-Intervall (%)	Maximale Abweichung (m)	Maximale Abweichung (%)
99.0	1500.382402	180.053090
98.0	888.635504	106.640526
96.0	328.466245	39.417526
94.0	199.655552	23.959625
92.0	72.996362	8.759914
90.0	49.246490	5.909815
88.0	48.565809	5.828130
86.0	48.375501	5.805292
84.0	48.147529	5.777935
82.0	48.021209	5.762776
80.0	47.834961	5.740425
78.0	47.756801	5.731045
76.0	47.672975	5.720986

Table 5: GPS 30 km/h. Erwartete Streckenlänge: 833.34 Meter

	Mathematics / Natural Sciences
Maximale Abweichung (m)	Maximale Abweichung (%)
2769.397351	332.340976
1571.762205	188.619009
446.869685	53.626507
139.437698	16.733193
137.716636	16.526657
45.725838	5.487320
6.340185	0.760853
6.334762	0.760202
6.317149	0.758088
6.312492	0.757529
6.309332	0.757150
6.292177	0.755091
6.215314	0.745867
	2769.397351 1571.762205 446.869685 139.437698 137.716636 45.725838 6.340185 6.334762 6.317149 6.312492 6.309332 6.292177

Table 6: "Double"-GPS 30 km/h. Erwartete Streckenlänge: 833.34 Meter

Fazit und Einordnung

- "Double"-GPS zeigt für jede Messung zuverlässigere Ergebnisse und weniger Ausreißer
- Es gilt aber anzumerken, dass die Ergebnisse für einen Fitness-Tracker bei weitem nicht gut genug sind
- Es sollte deshalb ein Fitness-Tracker weder lediglich mit GPS noch mit dem hier entwickelten Modell betrieben werden
- Herzstück der zuverlässigen Positionsbestimmung ist eindeutig der Kalmanfilter und GDOP zeigt anders als vermutet auf diesem Niveau keinen nennenswerten Einfluss
- Ein Fitness-Tracker sollte daher nicht einfach mehr Satelliten verwenden, sondern den Kalmanfilter gezielt für die aktuellen Daten "einstellen"
- Dazu sind vermutlich lokale Beschleunigungssensoren besonders gut geeignet

Ausblick

- Testen anderer Filtermethoden
- Untersuchung der Genauigkeit unter Einbeziehung von
 - Simulierte Sensordaten
 - Simulierte DGPS

References I

- [1] Sakurambo, "Sistema de coordenadas cartesianas tridimensional," (2007), [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/350px-3D_coordinate_system.svg.png.
- [2] unbekannt, "Breitengrade (latitude) links, längengrade (longitude) rechts," (2005), [Online]. Available:
 https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:
 FedStats_Lat_long.svg.
- [3] C. F. F. Karney, "Algorithms for geodesics," Journal of Geodesy, vol. 87, no. 43–55, 2013. DOI: 10.1007/s00190-012-0578-z. [Online]. Available: https://link.springer.com/article/10.1007/s00190-012-0578-z#citeas.
- [4] J. Wehrstein, "Universität stuttgart satelliten navigation," (2017), [Online]. Available: https: //youtube.com/playlist?list=PLGb_SlVxt9GxsBVrwyAXH3sHLmaPCYfps&si=-acJjJ54qBsS-4qj.

References II

- [5] FleetGO, "Gps: Wissenswertes zum positionsbestimmungssystem fleetgo," (2024), [Online]. Available: https://fleetgo.de/kb/glossar/g/gps/#:~: text=Der%20Bereich%20von%20GPS%2C%20der, Schnitt%20bei%203%2C6%20Metern.
- [6] L. München, "Gps technology medieninformatik," (2007), [Online]. Available: https://www.medien.ifi.lmu.de/lehre/ws0607/mmi1/essays/Andreas-Rogge-Solti.xhtml.
- [7] "Active satellite tle data and information," (2025), [Online]. Available: https://orbit.ing-now.com/.
- [8] "Keplersche gesetze," (2025), [Online]. Available: https://de.wikipedia.org/wiki/Keplersche_Gesetze.
- [9] "Spezifischer drehimpuls," (2021), [Online]. Available: https://www.biancahoegel.de/astronomie/drehimpuls_spezi.html.
- [10] "Geodesics on an ellipsoid," (2025), [Online]. Available: https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid.

References III

- [11] L. GmbH, "Azimut lexikon der geowissenschaften," (), [Online]. Available: https://www.spektrum.de/lexikon/geowissenschaften/azimut/1311.
- [12] G. Walz, "Großkreis lexikon der mathematik," (), [Online]. Available: https://www.spektrum.de/lexikon/mathematik/grosskreis/3640.
- [13] S. Ali-Löytty, J. Collin, and N. Sirola, MAT-45806 Mathematics for positioning MAT-45807 Mathematics for positioning (Tampere University of Technology. Department of Mathematics), English. Tampere University of Technology, 2010, Contribution: organisation=mat,FACT1=0.5
br/>Contribution: organisation=tkt,FACT2=0.5.
- [14] D. Neumann, "Kalman-filter und partikelfilter zur selbstlokalisation,", 2002. [Online]. Available:
 https://www.allpsych.uni-giessen.de/dirk/projects/particle.pdf.