

Advanced Logic Design Project Guideline

Mingoo Seok Columbia University

Project

$$y[n] = \sum_{i=0}^{N} b_i \cdot x[n-i]$$

x[n] is the input signal, y[n] is the output signal, N is the filter order (number of taps), b_i is the filter coefficient

- Goal: Design a 64-tap 16-bit FIR filter
- This computation is also known as discrete convolution

Matlab Code

- https://www.mathworks.com/matlabcentral/fileexc hange/31085-design-and-implementation-of-fir-filter
- https://www.mathworks.com/help/fixedpoint/exa mples/implement-fir-filter-algorithm-for-floatingpoint-and-fixed-point-types-using-cast-andzeros.html
- https://www.mathworks.com/help/signal/ug/fir-filter-design.html

- Only coeff. are pre-loaded (using cin, caddr, and cload I/Os)
- Inputs go to the FIFO/synchronizer at 10 kS/s; Inputs are 16b fixed point (FX)
- Output throughput: 10 kS/s; outputs are 16b floating point (FP)
- din comes at clk1 (10 kHz) and the core runs at clk2 (you choose the freq)
- Phases of clk1 and clk2 are not synchronized

Building Blocks

- Dual-clock FIFO and/or synchronizer
- Coefficient memory, CMEM (64 x 2B)
- ALU and FX2FP converter
 - Somewhere, FX16 needs to be converted to FP16
 - Either FX or FP ALU
 - FP16: IEEE754 half-precision binary floating-point format
- Register file
- FSM
- Testbench needs to
 - Provide input at clk1
 - Provide clk1 and clk2
 - The spec for clk1 is 10 kHz; that for clk2 is designer-specified
 - Perform the signature analyzer

Milestones/Reports

- Submit the report for each milestone (LA5 – LA9)
- LA9 is the final report that summarizes all

W	Labs and project	LA
1	NDA & lab setting	
2	NDA & lab setting	
3	LB0: Design flow	
4	LB1: Verilog simulation	LA1
5	LB2: Synthesis	LA2
6	LB3: STA	LA3
7		
8	LB4: Memory complier	LA4
9	LB5: Golden block, architecture	LA5
10	LB6: ALU (FP), FX2FP converter	LA6
11	LB7: IMEM, CMEM, Reg	LA7
12	LB8: FIFO/synchronizer	LA8
13	LB9: Core	
14	LB10: Core continue	
15	Finalize	LA9

Milestones/Reports

LA5: Golden block in Matlab; Architect the FIR core;

LA6: Develop ALU: RTL coding, logic synthesis, func.

test, PPA analysis

LA7: Develop **IMEM & CMEM**: RTL coding, logic synthesis, func. test, PPA analysis; Develop **Register file**: RTL coding, logic synthesis, func. test, PPA analysis

LA8: Develop **FIFO/synchronizer**: RTL coding, logic synthesis, func. test, PPA analysis, metastability analysis (optional)

LA9: Develop **the FIR core**: RTL coding, logic synthesis, func. test, PPA analysis; Iterate till meeting the PPA target; Finalize; document the design details and metric

Metrics to Include

Methods

- Input: randomly generated 10k 16-bit real-valued numbers
- RTL coding from scratch: Yes
- Throughput: PT with DC-gen. sdf annotation
- Maximum clock frequency: PT with DC-gen. sdf annotation
- Energy efficiency: PT with the DC-gen. sdf and QS-gen. vcd annotations
- Area: DC-gen report
- Accuracy: RMSE against Matlab results in 32-b floating point numbers. Inputs are
 16-bit and generated by the random function of Matlab

Results

- Throughput: [kS/s]
- Maximum clock frequency: [MHz]
- Energy efficiency: [pJ/S]
- Area: [mm²]
- Accuracy: Worst case: % | Average: %