$\label{lem:https://teorth.github.io/equational} he orieshttps://github.com/teorth/equational_theorieshttps://teorth.github.io/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.io/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth/equational_theorieshttps://teorth.github.com/teorth/equational_theorieshttps://teorth/equational_theoriesh$

Equational theories

Terence Tao

September 28, 2024

Introduction

Definition 1.1. Magma A Magma is a set G equipped with a binary operation $\circ: G \times G \to G$.

A law is an equation involving a finite number of indeterminate variables and the operation \circ . A magma G then obeys that law if the equation holds for all possible choices of indeterminate variables in G. For instance, the commutative law

$$x \circ y = y \circ x$$

holds in a magma G if and only if that magma is abelian.

We will be interested in seeing which laws imply which other laws, in the sense that magmas obeying the former law automatically obey the latter. We will also be interested in *anti-implications* showing that one law does *not* imply another, by producing examples of magmas that obey the former law but not the latter.

The number of finite magmas of length $n=0,1,2,\ldots,$ up to isomorphism, is

 $1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, \dots$

(https://oeis.org/A001329). It is likely that there are some equational laws which are satisfied only by infinite magmas; the corresponding claim for groupoids was proven in [?].

Subgraph equations

In this project we study the 4694 equational laws (up to symmetry and relabeling) that involve at most four applications of the binary operation \circ . The full list of such laws may be found here, and a script for generating them may be found here.

Selected equations of interest are listed below, as well as in this file. Equations in this list will be referred to as "subgraph equations", as we shall inspect the subgraph of the implication subgraph induced by these equations.

Definition 2.1 (Equation 1). Equation 1 magma-def Equation 1 is the law x = x.

This is the trivial law, satisfied by all magmas.

Definition 2.2 (Equation 2). Equation 2 magma-def Equation 2 is the law x = y.

This is the singleton law, satisfied only by the empty and singleton magmas.

Definition 2.3 (Equation 3). Equation 3 magma-def Equation 3 is the law $x = x \circ x$.

This is the idempotence law.

Definition 2.4 (Equation 4). Equation 4 magma-def Equation 4 is the law $x = x \circ y$.

This is the left absorption law.

Definition 2.5 (Equation 5). Equation5magma-def Equation 5 is the law $x = y \circ x$.

This is the right absorption law (the dual of Definition ??).

Definition 2.6 (Equation 6). Equation6magma-def Equation 6 is the law $x = y \circ y$.

This law is equivalent to the singleton law.

Definition 2.7 (Equation 7). Equation 7 magma-def Equation 7 is the law $x = y \circ z$.

This law is equivalent to the singleton law.

Definition 2.8 (Equation 8). Equation8magma-def Equation 8 is the law $x = x \circ (x \circ x)$.

Definition 2.9 (Equation 38). Equation 38 magma-def Equation 38 is the law $x \circ x = x \circ y$.

This law asserts that the magma operation is independent of the second argument.

Definition 2.10 (Equation 39). Equation 39 magma-def Equation 39 is the law $x \circ x = y \circ x$.

This law asserts that the magma operation is independent of the first argument (the dual of Definition ??).

Definition 2.11 (Equation 40). Equation 40 magma-def Equation 40 is the law $x \circ x = y \circ y$.

This law asserts that all squares are constant.

Definition 2.12 (Equation 41). Equation 41 magma-def Equation 41 is the law $x \circ x = y \circ z$.

This law is equivalent to the constant law, Definition ??.

Definition 2.13 (Equation 42). Equation 42 magma-def Equation 42 is the law $x \circ y = x \circ z$.

Equivalent to Definition ??.

Definition 2.14 (Equation 43). Equation 43 magma-def Equation 43 is the law $x \circ y = y \circ x$.

The commutative law.

Definition 2.15 (Equation 46). Equation 46 magma-def Equation 46 is the law $x \circ y = z \circ w$.

The constant law: all products are constant.

Definition 2.16 (Equation 168). Equation 168 magma-def Equation 168 is the law $x = (y \circ x) \circ (x \circ z)$.

The law of a central groupoid.

Definition 2.17 (Equation 387). Equation 387 magma-def Equation 387 is the law $x \circ y = (y \circ y) \circ x$.

[width=0.5]../../images/implications.png

Figure 2.1: Implications between the above equations.

Definition 2.18 (Equation 4512). Equation 4512 magma-def Equation 4512 is the law $x \circ (y \circ z) = (x \circ y) \circ z$.

The associative law.

Definition 2.19 (Equation 4513). Equation 4513 magma-def Equation 4513 is the law $x \circ (y \circ z) = (x \circ y) \circ w$.

Definition 2.20 (Equation 4522). Equation 4522 magma-def Equation 4522 is the law $x \circ (y \circ z) = (x \circ w) \circ u$.

Definition 2.21 (Equation 4582). Equation 4582 magma-def Equation 4582 is the law $x \circ (y \circ z) = (w \circ u) \circ v$.

This law asserts that all triple constants (regardless of bracketing) are constant.

Implications between these laws are depicted in Figure ??.

General implications

In this chapter we record some general implications between equational laws.

Theorem 3.1 (Singleton law implies all other laws). The singleton law (Definition ??) implies all other laws.

Proof. This is clear from substitution. \Box

Theorem 3.2 (All laws imply the trivial law). All laws imply the trivial law (Definition ??).

Proof. Trivial.
$$\Box$$

Every law E has a dual E^{op} , formed by replacing the magma operation \circ with its opposite $\circ^{\mathrm{op}}:(x,y)\mapsto y\circ x$. For instance, the opposite of the law $x\circ y=x\circ z$ is $y\circ x=z\circ x$.

The implication graph has a duality symmetry:

Theorem 3.3 (Duality). If E, F are equational laws, then E implies F if and only if E^{op} implies F^{op} .

Proof. This is because a magma M obeys a law E if and only if the opposite magma M^{op} obeys E^{op} .

Some equational laws can be "diagonalized":

Theorem 3.4 (Diagonalization). An equational law of the form

$$F(x_1, \dots, x_n) = G(y_1, \dots, y_m),$$
 (3.1)

where x_1, \ldots, x_n and y_1, \ldots, y_m are distinct indeterminates, implies the diagonalized law

$$F(x_1,\ldots,x_n)=F(x_1',\ldots,x_n').$$

In particular, if $G(y_1, \ldots, y_m)$ can be viewed as a specialization of $F(x'_1, \ldots, x'_n)$, then these two laws are equivalent.

Proof. From two applications of (??) one has

$$F(x_1,\ldots,x_n)=G(y_1,\ldots,y_m)$$

 $\quad \text{and} \quad$

$$F(x_1',\ldots,x_n')=G(y_1,\ldots,y_m)$$

whence the claim.

Thus for instance, Definition ?? is equivalent to Definition ??.

Subgraph implications

Interesting implications between the subgraph equations in Chapter ??. To reduce clutter, trivial or very easy implications will not be displayed here.

Theorem 4.1 (387 implies 43). eq387, eq43Subgraph. Equation387, $implies_Equation43Definition??impliesDefinition?$

Proof. (From MathOverflow). By Definition ??, one has the law

$$(x \circ x) \circ y = y \circ x. \tag{4.1}$$

Specializing to $y = x \circ x$, we conclude

$$(x \circ x) \circ (x \circ x) = (x \circ x) \circ x$$

and hence by another application of (??) we see that $x \circ x$ is idempotent:

$$(x \circ x) \circ (x \circ x) = x \circ x. \tag{4.2}$$

Now, replacing x by $x \circ x$ in (??) and then using (??) we see that

$$(x \circ x) \circ y = y \circ (x \circ x)$$

so in particular $x \circ x$ commutes with $y \circ y$:

$$(x \circ x) \circ (y \circ y) = (y \circ y) \circ (x \circ x). \tag{4.3}$$

Also, from two applications of (??) one has

$$(x \circ x) \circ (y \circ y) = (y \circ y) \circ x = x \circ y.$$

Thus (??) simplifies to $x \circ y = y \circ x$, which is Definition ??.

Subgraph counterexamples

Some counterexamples for the anti-implications between the subgraph equations in Chapter ??. **Theorem 5.1** (46 does not imply 4). Subgraph. Equation 46_n ot implies Equation 4eq46, eq 4Definition?? does not *Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y := 0$. **Theorem 5.2** (4 does not imply 4582). Subgraph. Equation 4_n or implies Equation 4582 eq. 4, eq. 4582 Definition?? d *Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y := x$. **Theorem 5.3** (4 does not imply 43). Subgraph. Equation $4_n ot_i mplies_E quation 43 eq 4, eq 43 Definition?? does not$ *Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y := x$. **Theorem 5.4** (4582 does not imply 42). Subgraph. Equation 4582_n or $implies_E$ quation 42eq4582, eq42Definition*Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y$ equal to 1 if x = y = 0and 2 otherwise. **Theorem 5.5** (4582 does not imply 43). Subgraph. Equation 4582_n or $implies_E$ quation 43eq4582, eq43Definition*Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y$ equal to 3 if x = 1 and y = 2 and 4 otherwise. **Theorem 5.6** (42 does not imply 43). Subgraph. Equation 42_n or implies Equation 43eq42, eq 43Definition? does *Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y := x$. **Theorem 5.7** (42 does not imply 4512). Subgraph. Equation 42_n or $implies_E$ quation 4512eq42, eq4512Definition*Proof.* Use the natural numbers \mathbb{N} with operation $x \circ y := x + 1$.

Theorem 5.8 (43 does not imply 42). Subgraph. Equation 43_n or implies Equation 42eq43, eq 42Definition?? does

Proof. Use the natural numbers \mathbb{N} with operation $x \circ y := x + y$.

Theorem 5.9 (43 does not imply 4512). $Subgraph.Equation 43_not_implies_Equation 4512eq 43, eq 4512 Definition$
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x \cdot y + 1$.
$\textbf{Theorem 5.10} \ (4513 \ does \ not \ imply \ 4522). \ \textit{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation4513} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation452} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 Degraph. \\ \textbf{Subgraph.Equation452} \\ \textit{not}_{i} mplies_{E} quation 4522 eq 4513, eq 4522 eq 4522 eq 4513, eq 4522 eq 4522$
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x\circ y$ equal to 1 if $x=0$ and $y\leq 2,$ 2 if $x=0$ and $y>2,$ and x otherwise.
$\textbf{Theorem 5.11} \ (4512 \ \text{does not imply } 4513). \ \textit{Subgraph.Equation4512} \\ \textit{not}_{i} mplies_{E} quation 4513 eq 4512, eq 4513 Delegan \\ Delegan of the property of $
<i>Proof.</i> Use the natural numbers $\mathbb N$ with operation $x \circ y := x + y$.
$\textbf{Theorem 5.12} \ (387 \ does \ not \ imply \ 42). \ \textit{Subgraph.Equation} \\ 387_not_implies_Equation \\ 42eq 387, eq 42Definition \\ \textbf{??} \\ \textbf$
<i>Proof.</i> Use the boolean type Bool with $x \circ y := x y$.
$\textbf{Theorem 5.13} \ (43 \ does \ not \ imply \ 387). \ \textit{Subgraph.Equation} \\ 43_not_implies_Equation \\ 387eq \\ 43, eq \\ 387Definition \\ \textbf{??} \\ \textbf{??}$
<i>Proof.</i> Use the natural numbers $\mathbb N$ with $x \circ y := x + y$.
$\textbf{Theorem 5.14} \ (387 \ \text{does not imply } 4512). \ \textit{Subgraph.Equation} \\ 387_not_implies_Equation \\ 4512eq \\ 387, eq \\ 4512Defination \\ 4512eq \\ 387, eq \\ 4512Defination \\ 4512eq \\ 387, eq \\ 4512Defination \\ 4512eq $
<i>Proof.</i> Use the reals \mathbb{R} with $x \circ y := (x+y)/2$.
$\textbf{Theorem 5.15} \ (3 \ does \ not \ imply \ 42). \ \textit{Subgraph.Equation} \\ 3_not_implies_Equation \\ 42eq \\ 3, eq \\ 42Definition \\ \textbf{??} \\ does \\ not \\ ??$
<i>Proof.</i> Use the natural numbers \mathbb{N} with $x \circ y := y$.
$\textbf{Theorem 5.16} \ (3 \ does \ not \ imply \ 4512). \ \textit{Subgraph.Equation} \\ 3_not_implies_Equation \\ 4512eq3, eq4512Definition \\ \textbf{??} \\ ?$
<i>Proof.</i> Use the natural numbers $\mathbb N$ with $x\circ y$ equal to x when $x=y$ and $x+1$ otherwise. \square
$\textbf{Theorem 5.17} \ (46 \ does \ not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation3eq46, eq3Definition \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ref{eq:continuous}. \\ does not \ imply \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ 4). \\ does not \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ 4). \\ does not \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equation \ 4). \\ does \ 3). \ \textit{Subgraph.Equation46}, ot_implies_Equati$
<i>Proof.</i> Use the natural numbers \mathbb{N} with $x \circ y := 0$.
$\textbf{Theorem 5.18} \ (43 \ does \ not \ imply \ 3). \ \textit{Subgraph.Equation43} \\ \textit{not}_{i} \textit{mplies}_{E} \textit{quation3eq43}, \textit{eq3Definition??} \\ \textit{does not}_{i} \textit{mplies}_{E} \textit{quation3eq43}, \textit{eq3Definition??} \\ \textit{does not}_{i} \textit{mplies}_{E} \textit{quation3eq43}, \textit{eq3Definition??} \\ \textit{does not}_{i} \textit{mplies}_{E} \textit{quation3eq43}, \textit{eq3Definition?} \\ \textit{does not}_{i} \textit{mplies}_{E} \textit{quation4eq43}, \textit{eq3Definition?} \\ \textit{does not}_{E} \textit{quation4eq43}, \textit{eq3Definition4eq43}, \textit{eq3Definition4eq443}, \textit{eq3Definition4eq444}, \textit{eq3Definition4eq444}, \textit{eq3Definition4eq444}, \textit{eq3Definition4eq444}, \textit{eq3Definition4eq444}, \textit{eq3Definition4eq444}, eq3Definition4eq44$
<i>Proof.</i> Use the natural numbers \mathbb{N} with $x \circ y := x + y$.

Bibliography

[1] Andrzej Kisielewicz. Varieties of algebras with no nontrivial finite members. In *Lattices, semigroups, and universal algebra (Lisbon, 1988)*, pages 129–136. Plenum, New York, 1990.