Predicting Brazil's economic indicators: a two model comparison

A. Schmidt

UFSC - PPGECO Bayesian Econometrics - Seminar 2

04 July 2017

Previously...

On Bayesian Econometrics Seminar 01

Next steps

- · Get data
- · Implement (Uhlig 1997) algorithm
- · Write

Last slide from the previous seminar (prior)

Previously...

On Bayesian Econometrics Seminar 01

Next steps Implement Koop's algorithm for BVAR without SV

- · Implement (Uhlig 1997) algorithm
- Write

Last slide from the previous seminar (posterior)

Contents

- 1. Motivation
- 2. Data description
- 3. The BVAR model
 - 3.1 Structure
 - 3.2 Algorithm
 - 3.3 Results
- 4. Next steps

Motivation

- Bayesian VARs are pretty awesome
- "Relatively simple and inexpensive to use" [Litterman, 1986]
 - Tend to generate good predictions
 - Allow to give probabilities to different economic theories instead of using only one
 - There is no tradeoff between DF and the number of explanatory variables
- Don not impose restrictions on the parameters [Bańbura et al., 2008]
 - This allows to capture complex data relationships

Objective

To compare the predictions from simple BVAR and the BVAR with stochastic volatility for 1, 3 and 12 months ahead.

Motivation

- ▶ Bayesian VARs are pretty awesome
- "Relatively simple and inexpensive to use" [Litterman, 1986]
 - Tend to generate good predictions
 - Allow to give probabilities to different economic theories instead of using only one
 - There is no tradeoff between DF and the number of explanatory variables
- ► Don not impose restrictions on the parameters [Bańbura et al., 2008]
 - This allows to capture complex data relationships

Objective

To compare the predictions from simple BVAR and the BVAR with stochastic volatility for 1, 3 and 12 months ahead.

Motivation

- ▶ Bayesian VARs are pretty awesome
- "Relatively simple and inexpensive to use" [Litterman, 1986]
 - Tend to generate good predictions
 - Allow to give probabilities to different economic theories instead of using only one
 - There is no tradeoff between DF and the number of explanatory variables
- ► Don not impose restrictions on the parameters [Bańbura et al., 2008]
 - This allows to capture complex data relationships

Objective

To compare the predictions from simple BVAR and the BVAR with stochastic volatility for 1, 3 and 12 months ahead.

- ▶ 4 variables:
 - ► IBC-Br (index, monthly, without seas. adj. BACEN)
 - ► IPCA (index, monthly IBGE)
 - ► **SELIC** (%, monthly, over. BACEN)
 - ► Exchange Rate (R\$/US\$, monthly, com., buy, average BACEN)
- Range: from 01/2003 to 04/2017
- Transformation: raw data became index w/ base in 01/2003 and annual variations were calculated
- ► Lags:
- Forecasting: 3 steps

- ▶ 4 variables:
 - ► IBC-Br (index, monthly, without seas. adj. BACEN)
 - ► IPCA (index, monthly IBGE)
 - ► **SELIC** (%, monthly, over. BACEN)
 - ► Exchange Rate (R\$/US\$, monthly, com., buy, average BACEN)
- ► Range: from 01/2003 to 04/2017
- ► Transformation: raw data became index w/ base in 01/2003 and annual variations were calculated
- ► Lags: 1
- ► Forecasting: 3 steps

Data description¹

IBC-Br raw (left) and annual var. (right)

¹Codes are available in Aisha's github repo.

IBC-Br

ACF and PACF for IBC-Br (an. var.)

Data description IPCA

IPCA raw (left) and annual var. (right)

IPCA

ACF and PACF for IPCA (an. var.)

Data description **SELIC**

SELIC raw (left) and annual var. (right)

Data description SELIC

ACF and PACF for SELIC (an. var.)

Exchange rate

Ex. rate raw (left) and annual var. (right)

Exchange rate

ACF and PACF for Ex. Rate (an. var.)

Statistic	Ν	Mean	St. Dev.	Min	Max
IBC-Br	160	136.08	14.00	102.54	158.22
IBC-Br (12mo var)*	160	2.20	4.44	-7.94	12.23
IPCA	160	158.41	35.60	107.71	231.50
IPCA (12mo var)	160	6.06	1.67	2.96	10.71
SELIC	160	49.41	12.34	25.02	84.13
SELIC (12mo var)*	160	-0.75	24.09	-42.77	60.18
Ex. rate	160	67.80	17.66	45.47	117.86
Ex. rate (12mo var)*	160	2.20	19.69	-26.91	67.47

^{*} Rejected the null hypothesis of non-stationarity using ADF test with 5 lags and α = 0.05.

Model

We can write the VAR model using a multivariate regression model system:

$$Y_{t} = \beta_{(0)}C_{t} + \underbrace{\beta_{(1)}Y_{t-1} + \ldots + \beta_{(k)}Y_{t-k}}_{B'X_{t}} + \epsilon_{t} \qquad \epsilon_{t} \sim I\mathcal{N}(0, \Sigma)$$
 (1)

So, using the data, the model (for one lag) is given by:

$$\begin{bmatrix} \mathsf{IBCBr}_t \\ \mathsf{IPCA}_t \\ \mathsf{SELIC}_t \\ \mathsf{CAM}_t \end{bmatrix} = \underbrace{ \begin{bmatrix} \phi_0^{\mathsf{IBCBr}_t} \\ \phi_0^{\mathsf{IPCA}_t} \\ \phi_0^{\mathsf{CAM}_t} \\ \phi_0^{\mathsf{CAM}_t} \\ \phi_0^{\mathsf{CAM}_t} \end{bmatrix}}_{\beta_{(0)C_t}} + \underbrace{ \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \phi_{14} \\ \phi_{21} & \phi_{22} & \phi_{23} & \phi_{24} \\ \phi_{31} & \phi_{32} & \phi_{33} & \phi_{34} \\ \phi_{41} & \phi_{42} & \phi_{43} & \phi_{44} \end{bmatrix} \begin{bmatrix} \mathsf{IBCBr}_{t-1} \\ \mathsf{IPCA}_{t-1} \\ \mathsf{SELIC}_{t-1} \\ \mathsf{CAM}_{t-1} \end{bmatrix}}_{\beta_{(0)C_t}} + \underbrace{ \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} & \phi_{14} \\ \phi_{21} & \phi_{22} & \phi_{23} & \phi_{24} \\ \phi_{31} & \phi_{32} & \phi_{33} & \phi_{34} \\ \phi_{41} & \phi_{42} & \phi_{43} & \phi_{44} \end{bmatrix} \underbrace{ \begin{bmatrix} \mathsf{IBCBr}_{t-1} \\ \mathsf{IPCA}_{t-1} \\ \mathsf{CAM}_{t-1} \end{bmatrix}}_{\mathsf{CAM}_{t-1}} + \underbrace{ \begin{bmatrix} \epsilon_t^{\mathsf{IBCBr}_t} \\ \epsilon_t^{\mathsf{IPCA}_t} \\ \epsilon_t^{\mathsf{CAM}_t} \end{bmatrix}}_{\mathsf{B'X_t}}$$

Code structure²

Koop's code structure

²Codes are available in Aisha's github repo.

Code structure³

Algorithm's setup used in this work

 $^{^{3}}$ Codes are available in Aisha's github repo.

Minnesota Prior

Minnesota Prior structure

BVAR Results

Posterior

► Posterior means

	IBC-Br	IPCA	SELIC	EXRate
Cons	3,61	0,05	-26,98	-2,48
IBC-Br _{−1}	0,47	0,08	1,91	0,50
IPCA ₋₁	-0,39	0,88	3,77	0,30
SELIC ₋₁	-0,05	0,00	0,76	0,10
EXRate ₋₁	-0,06	0,02	0,04	0,81

$$\alpha | Y, \widehat{\Sigma} \sim \mathcal{N}(\bar{\alpha}_{MN}, \bar{V}_{MN})$$

$$\bar{\alpha}_{MN} = \bar{V}_{MN} \left[\underline{V}_{MN}^{-1} \underline{\alpha}_{MN} + \left(\widehat{\boldsymbol{\Sigma}}^{-1} \otimes \boldsymbol{X} \right)' \, \boldsymbol{Y} \right]$$

Residuals

Residuals

IBC-Br residuals

IPCA residuals

SELIC residuals

ExRate residuals

Next Steps

- 1. Get data
- 2. Implement the BVAR model
- 3. Implement Uhlig's model
- 4. (Understand and) Compare results
- 5. Write

References I

Bańbura, M., Giannone, D., and Reichlin, L. (2008). Large bayesian VARs. Working Paper - European Central Bank.

Litterman, R. (1986).

Forecasting with bayesian vector autoregressions — five years of experience. *International Journal of Forecasting*, 2(4):497–498.