ML-PROJECT

TRANSACTIONS OF TAXIS IN NYC

NAME: SNEHA T

REGISTER NUMBER: 21BDA30

INTRODUCTION

FOR A NEW YORK CITY TAXI
DRIVER, BEING IN THE RIGHT
PLACE AT THE RIGHT TIME IS
OFTEN WHAT MAKES OR BREAKS
A DAY.

TO ASSIST DRIVERS IN THIS
DECISION, I EXPLORED WITH
RANDOM FOREST CLASSIFIER TO
FIGURE OUT WHICH WOULD BE
THE BEST INPUT FEATURE TO
PREDICT TOTAL AMOUNT GIVEN
MANY INPUT FEATURES.

Random Forest Classifier

WORKFLOW

- DOWNLOAD AND INSTALL STREAMLIT
- DECIDE ON DESIGN
- BRING IN THE DATA
- COLLECT USER INPUT
- MODEL TRAINING
- INTERPRETING THE RESULTS OF OUR CLASSIFIER
- OPTIMIZE THE APP'S RUNTIME
- PERSONALIZE THE APP

CONTENT INDEX

- VENDOR ID
- PICKUP DATE/TIME
- DROP DATE/TIME
- NO OF PASSENGERS

- TRIP DISTANCE
- PICKUP LOCATION
 ID
- DROP LOCATION ID
- FARE AMOUNT
- TIP AMOUNT
- TOTAL AMOUNT

WHAT DOES THE UI LOOK LIKE?

Let's train the model

e we can choose the hyperparameters of the model and see how the performance changes

What should the max_depth of the model be?

How many trees should there be?

Here is a list of input features in the d

Mean absolute error of the model:

21.45808583738046

Mean sqauared error of the model:

store_and_fwd_flag

PULocationID

DOLocationID

payment_type

fare_amount

extra

mta_tax

tip_amount

tolls_amount

improvement_surcharge

Which feature should be used as the input feature?

PULocationID

726.4638499822195

R sqaured score of the model:

-2.3357730262997043

FUTURE SCOPE

-THE APP IS ONLY RESTRICTED TO FINDING THE BEST INPUT PARAMETR TO PREDICT OUR TARGET VARIABLE. WE CAN EXTEND THE IDEA TO MAKE ACTUAL PREDICTIONS

-DEPLOY THE APP

THANKIOU