Akshay Badola

Properties of Random Variables Generating Functions MGF of Gaussian Some Identities

References

Likelihood

Akshay Badola 15MCPC15

School of Computer and Information Sciences University of Hyderabad

May, 2018

Akshay Badola

Some

Variables
Generating
Functions
MGF of
Gaussian

Some Identi Some Limit Theorems

Reference

Overview

1 Some Properties of Random Variables
Generating Functions
MGF of Gaussian
Some Identities
Some Limit Theorems

Variables Generating

Functions
MGF of
Gaussian
Some Identities
Some Limit
Theorems

Reference

Generating Functions

Analytic view of probability

• Recall the Taylor's series expansion of a function of one variable around $h. \ \ \,$

$$T_{a}(x) \equiv f(x) = f(a) + f'(a) \frac{(x-a)}{1!} + f''(a) \frac{(x-a)^{2}}{2!} + f'''(a) \frac{(x-a)^{3}}{3!} + \dots \equiv \sum_{n=0}^{\infty} f^{n}(a) \frac{(x-a)^{n}}{n!}$$

$$T_{h}(x) \equiv f(x+h) = f(h) + f'(h) \frac{(x)}{1!} + f''(h) \frac{(x)^{2}}{2!} + f'''(h) \frac{(x)^{3}}{3!} + \dots \equiv \sum_{n=0}^{\infty} f^{n}(h) \frac{(x)^{n}}{n!}$$

 Taylor's series describes an approximation technique for a function which is continuously differentiable to nth degree.

Generating Functions

Generating Functions

Analytic view of probability

 Recall the Taylor's series expansion of a function of one variable around h.

$$T_{a}(x) \equiv f(x) = f(a) + f'(a) \frac{(x-a)}{1!} + f''(a) \frac{(x-a)^{2}}{2!} + f'''(a) \frac{(x-a)^{3}}{3!} + \dots \equiv \sum_{n=0}^{\infty} f^{n}(a) \frac{(x-a)^{n}}{n!}$$

$$T_{h}(x) \equiv f(x+h) = f(h) + f'(h) \frac{(x)}{1!} + f''(h) \frac{(x)^{2}}{2!} + f'''(h) \frac{(x)^{3}}{3!} + \dots \equiv \sum_{n=0}^{\infty} f^{n}(h) \frac{(x)^{n}}{n!}$$

- Taylor's series describes an approximation technique for a function which is continuously differentiable to n^{th} degree.
- Now consider $M_X(t) = E[e^{tX}]$. Recall $E(f(x)) = \sum f(x)p(x)$.

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

MGF and CGF

Analytic view of probability contd.

- The function $M_X(t)$ computes all the moments of X and thus completely specifies a distribution, just as the Taylor's series completely specifies a function to an arbitrary extent.
- ullet To obtain any given moment from the function, we only need to differentiate it w.r.t. t.
- It can be helpful in getting a particular moment and for proofs of certain theorems.

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian Some Identities

References

MGF and CGF

Analytic view of probability contd.

- The function $M_X(t)$ computes all the moments of X and thus completely specifies a distribution, just as the Taylor's series completely specifies a function to an arbitrary extent.
- To obtain any given moment from the function, we only need to differentiate it w.r.t. t.
- It can be helpful in getting a particular moment and for proofs of certain theorems.
- Characteristic Function of X is $E[e^{itX}]$.
- It always exists for a continuous probability density while an MGF may or may not exist.

MGF of Gaussian

MGF of the Gaussian

MGF for the univariate Gaussian

As an example we'll find the MGF of the univariate Gaussian distribution.

- Recall, $M_X(t) = E[e^{tX}]$. For a gaussian $p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- $\bullet \ \mbox{So} \ M_{X=0}(t) = \\ \int\limits_{-\infty}^{\infty} e^{tx} \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$ $= \int_{-\infty}^{\infty} e^{tx} \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$ $= \frac{e^{\mu t}}{\sqrt{2\pi}} \int_{-\frac{1}{2}z^2 + t\sigma z}^{\infty} dz$

MGF of Gaussian

MGF of the Gaussian

MGF for the Gaussian contd.

•
$$M_{X=0}(t) = e^{\mu t + \frac{1}{2}t^2\sigma^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(z - t\sigma)^2} dz$$

= $e^{\mu t + \frac{1}{2}t^2\sigma^2}$

- $M_{X=\mu}(t) = E(e^{t(x-\mu)}) = e^{\frac{1}{2}t^2\sigma^2}$
- Now that we have the MGF, any moment of the distribution is: For $X \equiv \mathcal{N}(\mu, \sigma^2) E(X^n) = M^{\{n\}}(t)|_{t=0} = \frac{d^n}{dx^n} e^{\mu t + \frac{1}{2}t^2\sigma^2}|_{t=0}$
- E.g. $E(X) = M'(t)|_{t=0} = [(\mu + t\sigma^2)e^{\mu t + \frac{1}{2}t^2\sigma^2}]|_{t=0} = \mu$ $E(X^2) = M''(t)|_{t=0} =$ $[\sigma^2 e^{\mu t + \frac{1}{2}t^2\sigma^2} + (\mu + t\sigma^2)^2 e^{\mu t + \frac{1}{2}t^2\sigma^2}]|_{t=0} = \mu^2 + \sigma^2$
- From which we can get $Var(X) = E(X^2) - E^2(X) = u^2 + \sigma^2 - u^2 = \sigma^2$

Akshay Badola

Some Identities

Some useful identities

Markov's and Chebyshev's inequalities

• We start with Markov's inequality $P(X \ge a) \le E(X)/a$ The proof is fairly simple.

Some Identities

Some useful identities

Markov's and Chebyshev's inequalities

- We start with Markov's inequality P(X > a) < E(X)/aThe proof is fairly simple.
- Substituting q(X) for X, we get P(X > a) < E(q(X))/a
- If we put $g(X) = (X \bar{x})^2$, then $P((X - \bar{x})^2 > \epsilon^2) < \frac{E[(X - \bar{x})^2]}{\epsilon^2}$. Or, $P(|X - \bar{x}| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$.

Some useful identities

Markov's and Chebyshev's inequalities

- We start with Markov's inequality $P(X \ge a) \le E(X)/a$ The proof is fairly simple.
- Substituting q(X) for X, we get P(X > a) < E(q(X))/a
- If we put $g(X) = (X \bar{x})^2$, then $P((X - \bar{x})^2 > \epsilon^2) < \frac{E[(X - \bar{x})^2]}{\epsilon^2}$. Or, $P(|X - \bar{x}| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$. Or, $1 - P(|X - \bar{x}| < \epsilon) < \frac{Var(X)}{2}$. Or, $P(|X - \bar{x}| < \epsilon) > 1 - \frac{Var(X)}{2}$
- This is also known as weak law of large numbers. (How?)

Akshay Badola

Some Properties o Random

Generating Functions MGF of

Some Identities
Some Limit

Reference

Some useful identities

Weak law of large numbers

• Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?

Akshav Badola

Some Identities

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + ... + x_n}{n}$ with iid x_i , let $E(x_i) = \mu, Var(x_i) = \sigma^2$

Akshav Badola

Some Identities

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + \ldots + x_n}{n}$ with iid x_i , let $E(x_i) = \mu$, $Var(x_i) = \sigma^2$ So, $E(X) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{1}{n} [n\mu] = \mu$

Akshav Badola

Some Identities

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + \dots + x_n}{n}$ with iid x_i , let $E(x_i) = \mu$, $Var(x_i) = \sigma^2$ So, $E(X) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{1}{n} [n\mu] = \mu$ $Var(X) = E[(X - \bar{X})^2]$

Some Identities

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + \dots + x_n}{n}$ with iid x_i , let $E(x_i) = \mu$, $Var(x_i) = \sigma^2$ So, $E(X) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{1}{n} [n\mu] = \mu$ $Var(X) = E[(X - \bar{X})^2]$ $= E(X^2) - \mu^2$ $=\frac{1}{n^2}E(\sum x_ix_i)-\mu^2$

Some Identities

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + \dots + x_n}{n}$ with iid x_i , let $E(x_i) = \mu$, $Var(x_i) = \sigma^2$ So, $E(X) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{1}{n} [n\mu] = \mu$ $Var(X) = E[(X - \bar{X})^2]$ $= E(X^2) - \mu^2$ $=\frac{1}{n^2}E(\sum x_i x_i) - \mu^2$ $=\frac{1}{n^2}\left[\sum E(x_ix_i)-n^2\mu^2\right]$

Some Identities Some Limit

Theorems

Reference

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + \ldots + x_n}{n}$ with iid x_i , let $E(x_i) = \mu$, $Var(x_i) = \sigma^2$ So, $E(X) = \frac{1}{n} \sum E(x_i) = \frac{1}{n} [n\mu] = \mu$ $Var(X) = E[(X - \bar{X})^2]$ $= E(X^2) - \mu^2$ $= \frac{1}{n^2} E(\sum x_i x_j) - \mu^2$ $= \frac{1}{n^2} [\sum E(x_i x_j) - n^2 \mu^2]$ $= \frac{1}{n^2} \sum [E(x_i x_j) - \mu^2]$

Some Identities Some Limit

Reference

Some useful identities

- Well that exists not for P(X) but P(E(X)). Recall the statement of the Weak law of large numbers?
- For $X = \frac{x_1 + x_2 + \ldots + x_n}{n}$ with iid x_i , let $E(x_i) = \mu, Var(x_i) = \sigma^2$ So, $E(X) = \frac{1}{n} \sum E(x_i) = \frac{1}{n} [n\mu] = \mu$ $Var(X) = E[(X - \bar{X})^2]$ $= E(X^2) - \mu^2$ $= \frac{1}{n^2} E(\sum x_i x_j) - \mu^2$ $= \frac{1}{n^2} [\sum E(x_i x_j) - n^2 \mu^2]$ $= \frac{1}{n^2} \sum [E(x_i x_j) - \mu^2]$ $= \frac{1}{n^2} [\sum (E(x_i^2) - \mu^2) + \sum_{x_i \neq x_j} (E(x_i x_j) - \mu^2)]$ $= \frac{1}{n^2} [n\sigma^2 + 0]$ $= \frac{1}{n} \sigma^2$

Some useful identities

Weak law of large numbers contd.

From the first variant of Chebyshev's inequality

$$P(|X - \bar{X}| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$
$$\lim_{n \to \infty} P(|X - \bar{X}| \ge \epsilon) = 0$$

- Also see this link¹
- Which method looks more correct?
- Are both the same?

Some useful identities

Weak law of large numbers contd.

From the first variant of Chebyshev's inequality

$$P(|X - \bar{X}| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$
$$\lim_{n \to \infty} P(|X - \bar{X}| \ge \epsilon) = 0$$

- Also see this link¹
- Which method looks more correct?
- Are both the same?
- Prove Bernoulli's Inequality: If X is distributed according the a binomial (Bernoulli) distribution, with the probability of succes p, then for some $\epsilon, \delta, \exists N$ depending on ϵ, δ such that

$$P[|\frac{X}{n} - p| < \epsilon] > 1 - \delta$$
, for $n > N$

Weak Law of Large Numbers at Woflram Mathworld.

Some Limit Theorems

Some Limit Theorems

There's a family of Central Limit Theorems

- You can see the wikipedia page² for small list of them.
- We'll mention two and prove one of them.
- Lindberg Levy CLT: For $\{X_1, X_2, ..., X_n\}$ sequence of (non-Normal)iid random variables with $E(X) = \mu$ and $Var[X_i] = \sigma^2 < \infty$

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)-\mu\right)\stackrel{d}{\to}N\left(0,\sigma^{2}\right).$$

²Central Limit Theorems. https://en.wikipedia.org/wiki/Central_limit_theorem. Accessed: 2018-06-01.

Some Limit Theorems

There's a family of Central Limit Theorems

- You can see the wikipedia page² for small list of them.
- We'll mention two and prove one of them.
- Lindberg Levy CLT: For $\{X_1, X_2, ..., X_n\}$ sequence of (non-Normal)iid random variables with $E(X) = \mu$ and $Var[X_i] = \sigma^2 < \infty$

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)-\mu\right)\xrightarrow{d}N\left(0,\sigma^{2}\right).$$

• We'll prove and alternative statement, that for $Z = \frac{(X-\mu)}{\sigma/\sqrt{n}}$, $Z \xrightarrow{d} N(0, \sigma^2)$

²Central Limit Theorems. https://en.wikipedia.org/wiki/Central_limit_theorem. Accessed: 2018-06-01.

Akshay Badola

Some Properties of

Variables
Generating

MGF of Gaussian Some Identities

Some Limit Theorems

References

Some Limit Theorems

Lindberg Levy CLT

• Proof:

$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$

Akshay Badola

Some Properties Random

Generating Functions MGF of

Some Identities
Some Limit
Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

• Proof:

$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$
$$= \int_{-\infty}^{\infty} e^{\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of

Some Identit

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

• Proof:

$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$

$$= \int_{-\infty}^{\infty} e^{\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t - \mu t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Identit
Some Limit
Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

Proof:

$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$

$$= \int_{-\infty}^{\infty} e^{\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t - \mu t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t \sqrt{n}}{\sigma}} e^{\frac{-\mu t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

Proof:

From:
$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$

$$= \int_{-\infty}^{\infty} e^{\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t - \mu t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} e^{\frac{-\mu t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

Generating Functions MGF of

Some Identit
Some Limit
Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

Proof:

From:
$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$

$$= \int_{-\infty}^{\infty} e^{\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t - \mu t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} e^{-\frac{\mu t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E[e^{\frac{\bar{X}t\sqrt{n}}{\sigma}}]$$

Generating Functions MGF of Gaussian

Some Identiti Theorems

Reference

Lindberg Levy CLT

Emaberg Levy C

• Proof:
$$M_z(t) = M_{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}(t) = E(\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}})$$

$$= \int_{-\infty}^{\infty} e^{\frac{(\bar{X} - \mu)t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t - \mu t}{\sigma/\sqrt{n}}} P(\bar{X}) d\bar{X}$$

$$= \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} e^{-\frac{\mu t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

$$= e^{\frac{\mu t\sqrt{n}}{\sigma}} \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} \int_{-\infty}^{\infty} e^{\frac{\bar{X}t\sqrt{n}}{\sigma}} P(\bar{X}) d\bar{X}$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E[e^{\frac{(\bar{X}X_t)t\sqrt{n}}{\sigma}}]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E[e^{\frac{(\bar{X}X_t)t\sqrt{n}}{\sigma}}]$$

Akshay Badola

Some Properties of Random

Functions
MGF of
Gaussian

Some Limit Theorems

References

Some Limit Theorems

Lindberg Levy CLT

$$=e^{\frac{-\mu t\sqrt{n}}{\sigma}}E[e^{\frac{(\frac{\sum X_i}{n})t\sqrt{n}}{\sigma}}]$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

$$\begin{split} &= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{\frac{(\sum X_i)t\sqrt{n}}{\sigma}}] \\ &= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t \sqrt{n}}{n\sigma}} e^{X_2 \frac{t \sqrt{n}}{n\sigma}} ... e^{X_n \frac{t \sqrt{n}}{n\sigma}}] \end{split}$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

• Proof contd:

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E\left[e^{\frac{(\sum X_i)t\sqrt{n}}{\sigma}}\right]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E\left[e^{X_1 \frac{t\sqrt{n}}{n\sigma}} e^{X_2 \frac{t\sqrt{n}}{n\sigma}} ... e^{X_n \frac{t\sqrt{n}}{n\sigma}}\right]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E\left[e^{X_1 \frac{t\sqrt{n}}{n\sigma}}\right] E\left[e^{X_2 \frac{t\sqrt{n}}{n\sigma}}\right] ... E\left[e^{X_n \frac{t\sqrt{n}}{n\sigma}}\right]$$

Why?

Akshay Badola

Some Properties of Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

• Proof contd:

$$\begin{split} &= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{\frac{(\sum X_i}{n})t\sqrt{n}}] \\ &= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t \sqrt{n}}{n\sigma}} e^{X_2 \frac{t \sqrt{n}}{n\sigma}} ... e^{X_n \frac{t \sqrt{n}}{n\sigma}}] \\ &= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t \sqrt{n}}{n\sigma}}] E[e^{X_2 \frac{t \sqrt{n}}{n\sigma}}] ... E[e^{X_n \frac{t \sqrt{n}}{n\sigma}}] \end{split}$$

 X_i are i.i.d.! E(X,Y) = E(X)E(Y) if X,Y are independent

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

$$\begin{split} &=e^{\frac{-\mu t\sqrt{n}}{\sigma}}E[e^{\frac{(\sum X_i)t\sqrt{n}}{\sigma}}]\\ &=e^{\frac{-\mu t\sqrt{n}}{\sigma}}E[e^{X_1\frac{t\sqrt{n}}{n\sigma}}e^{X_2\frac{t\sqrt{n}}{n\sigma}}...e^{X_n\frac{t\sqrt{n}}{n\sigma}}]\\ &=e^{\frac{-\mu t\sqrt{n}}{\sigma}}E[e^{X_1\frac{t\sqrt{n}}{n\sigma}}]E[e^{X_2\frac{t\sqrt{n}}{n\sigma}}]...E[e^{X_n\frac{t\sqrt{n}}{n\sigma}}]\\ &=e^{\frac{-\mu t\sqrt{n}}{\sigma}}E^n[e^{X\frac{t}{\sqrt{n}\sigma}}] \end{split}$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E\left[e^{\frac{\left(\sum \frac{X_i}{n}\right)t \sqrt{n}}{\sigma}}\right]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E\left[e^{X_1 \frac{t \sqrt{n}}{n \sigma}} e^{X_2 \frac{t \sqrt{n}}{n \sigma}} \dots e^{X_n \frac{t \sqrt{n}}{n \sigma}}\right]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E\left[e^{X_1 \frac{t \sqrt{n}}{n \sigma}}\right] E\left[e^{X_2 \frac{t \sqrt{n}}{n \sigma}}\right] \dots E\left[e^{X_n \frac{t \sqrt{n}}{n \sigma}}\right]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E^n \left[e^{X \frac{t}{\sqrt{n} \sigma}}\right]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} \left[M_X \left(\frac{t}{\sqrt{n} \sigma}\right)\right]^n$$

Some Limit Theorems

Some Limit Theorems

Lindberg Levy CLT

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{\frac{(\sum X_i)t\sqrt{n}}{\sigma}}]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t\sqrt{n}}{n\sigma}} e^{X_2 \frac{t\sqrt{n}}{n\sigma}} ... e^{X_n \frac{t\sqrt{n}}{n\sigma}}]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t\sqrt{n}}{n\sigma}}] E[e^{X_2 \frac{t\sqrt{n}}{n\sigma}}] ... E[e^{X_n \frac{t\sqrt{n}}{n\sigma}}]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E^n[e^{X \frac{t}{\sqrt{n}\sigma}}]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} [M_X(\frac{t}{\sqrt{n}\sigma})]^n$$
Or, $\ln M_z(t) = \frac{-\mu t \sqrt{n}}{\sigma} + n \ln[M_X(\frac{t}{\sqrt{n}\sigma})]$

Some Limit Theorems

Some Limit Theorems

Lindberg Levy CLT

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{\frac{(\sum X_i)t\sqrt{n}}{\sigma}}]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t\sqrt{n}}{n\sigma}} e^{X_2 \frac{t\sqrt{n}}{n\sigma}} ... e^{X_n \frac{t\sqrt{n}}{n\sigma}}]$$

$$= e^{\frac{-\mu t \sqrt{n}}{\sigma}} E[e^{X_1 \frac{t\sqrt{n}}{n\sigma}} e^{X_2 \frac{t\sqrt{n}}{n\sigma}} ... e^{X_n \frac{t\sqrt{n}}{n\sigma}}]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E[e^{X_1 \frac{t\sqrt{n}}{n\sigma}}] E[e^{X_2 \frac{t\sqrt{n}}{n\sigma}}] ... E[e^{X_n \frac{t\sqrt{n}}{n\sigma}}]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E^n[e^{X \frac{t}{\sqrt{n\sigma}}}]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} [M_X(\frac{t}{\sqrt{n\sigma}})]^n$$
Or, $\ln M_z(t) = \frac{-\mu t\sqrt{n}}{\sigma} + n \ln[M_X(\frac{t}{\sqrt{n\sigma}})]$

$$= \frac{-\mu t\sqrt{n}}{\sigma} + n \ln E[e^{\frac{tX}{\sqrt{n\sigma}}}]$$

Some Limit Theorems

Some Limit Theorems

Lindberg Levy CLT

Proof contd.

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E\left[e^{\frac{(\sum X_i)}{n}t\sqrt{n}}\right]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E\left[e^{X_1 \frac{t\sqrt{n}}{n\sigma}} e^{X_2 \frac{t\sqrt{n}}{n\sigma}} ... e^{X_n \frac{t\sqrt{n}}{n\sigma}}\right]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E\left[e^{X_1 \frac{t\sqrt{n}}{n\sigma}}\right] E\left[e^{X_2 \frac{t\sqrt{n}}{n\sigma}}\right] ... E\left[e^{X_n \frac{t\sqrt{n}}{n\sigma}}\right]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} E^n \left[e^{X \frac{t}{\sqrt{n}\sigma}}\right]$$

$$= e^{\frac{-\mu t\sqrt{n}}{\sigma}} [M_X(\frac{t}{\sqrt{n}\sigma})]^n$$

$$\frac{c^{\mu t\sqrt{n}}}{\sigma} + n \ln[M_X(\frac{t}{\sqrt{n}\sigma})]$$

Or, $\ln M_z(t) = \frac{-\mu t \sqrt{n}}{\sigma} + n \ln[M_X(\frac{t}{\sqrt{n}\sigma})]$ $=\frac{-\mu t\sqrt{n}}{1}+n\ln E[e^{\frac{t\Delta}{\sqrt{n}\sigma}}]$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \left[\int \left(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \frac{X^2}{2!} + \dots \right) P(X) dX \right]$$

Akshay Badola

Some Properties o Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

So,
$$\ln M_z(t) = \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \left[\int \left(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \frac{X^2}{2!} + \ldots \right) P(X) dX \right]$$

Akshay Badola

Some Properties of Random

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

So,
$$\ln M_z(t) = \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \left[\int \left(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \frac{X^2}{2!} + \ldots \right) P(X) dX \right]$$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \left[1 + \frac{t}{\sqrt{n}\sigma} \mu_1 + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \mu_2 / 2! + \ldots \right]$$

Akshay Badola

Some Properties of Random

Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

$$\begin{split} &\text{So, } \ln M_z(t) = \\ &\frac{-\mu t \sqrt{n}}{\sigma} + n \ln \Big[\int \Big(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \frac{X^2}{2!} + \ldots \Big) P(X) dX \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \Big[1 + \frac{t}{\sqrt{n}\sigma} \mu_1 + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \mu_2 / 2! + \ldots \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + n \Big[\Big(\frac{t}{\sqrt{n}\sigma} \mu_1 + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \mu_2 / 2! + \ldots \Big) - \frac{1}{2} \Big(\frac{t}{\sqrt{n}\sigma} \mu_1 + \ldots \Big)^2 + \ldots \Big] \end{split}$$

Some Identit
Some Limit
Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

$$\begin{split} &\text{So, } \ln M_z(t) = \\ &\frac{-\mu t \sqrt{n}}{\sigma} + n \ln \Big[\int \Big(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \frac{X^2}{2!} + \ldots \Big) P(X) dX \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \Big[1 + \frac{t}{\sqrt{n}\sigma} \mu_1 + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \mu_2 / 2! + \ldots \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + n \Big[\Big(\frac{t}{\sqrt{n}\sigma} \mu_1 + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \mu_2 / 2 + \ldots \Big) - \frac{1}{2} \Big(\frac{t}{\sqrt{n}\sigma} \mu_1 + \ldots \Big)^2 + \ldots \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + \frac{\sqrt{n}t\mu}{\sigma} + \frac{1}{2} \frac{t^2}{\sigma^2} (\mu_2 - \mu^2) \end{split}$$

Some Limit Theorems

Some Limit Theorems

Lindberg Levy CLT

So,
$$\ln M_z(t) = \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \left[\int \left(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \frac{X^2}{2!} + \ldots \right) P(X) dX \right]$$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \left[1 + \frac{t}{\sqrt{n}\sigma} \mu_1 + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \mu_2 / 2! + \ldots \right]$$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + n \left[\left(\frac{t}{\sqrt{n}\sigma} \mu_1 + \left(\frac{t}{\sqrt{n}\sigma} \right)^2 \mu_2 / 2 + \ldots \right) - \frac{1}{2} \left(\frac{t}{\sqrt{n}\sigma} \mu_1 + \ldots \right)^2 + \ldots \right]$$

$$= \frac{-\mu t \sqrt{n}}{\sigma} + \frac{\sqrt{n}t\mu}{\sigma} + \frac{1}{2} \frac{t^2}{\sigma^2} (\mu_2 - \mu^2)$$

$$= \frac{t^2}{2}$$

Generating Functions MGF of Gaussian

Some Limit Theorems

Reference

Some Limit Theorems

Lindberg Levy CLT

• Proof contd:

$$\begin{split} &\text{So, } \ln M_z(t) = \\ &\frac{-\mu t \sqrt{n}}{\sigma} + n \ln \Big[\int \Big(1 + \frac{t}{\sqrt{n}\sigma} \frac{X}{1!} + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \frac{X^2}{2!} + \ldots \Big) P(X) dX \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + n \ln \Big[1 + \frac{t}{\sqrt{n}\sigma} \mu_1 + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \mu_2 / 2! + \ldots \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + n \Big[\Big(\frac{t}{\sqrt{n}\sigma} \mu_1 + \Big(\frac{t}{\sqrt{n}\sigma} \Big)^2 \mu_2 / 2 + \ldots \Big) - \frac{1}{2} \Big(\frac{t}{\sqrt{n}\sigma} \mu_1 + \ldots \Big)^2 + \ldots \Big] \\ &= \frac{-\mu t \sqrt{n}}{\sigma} + \frac{\sqrt{n}t\mu}{\sigma} + \frac{1}{2} \frac{t^2}{\sigma^2} (\mu_2 - \mu^2) \\ &= \frac{t^2}{2} \end{split}$$

Or, $M_z(t)=e^{\frac{t^2}{2}}$, which is of the form for MGF of a standard normal.

Theorems Reference

Lyapunov's CLT

A more general CLT

• Lyapunov's CLT generalizes the notion of the CLT to the case where X_i are allowed to have different distributions. For $\{X_1, X_2, ..., X_n\}$ a sequence of independent random variables, each with finite mean μ_i and variance σ_i^2 , let,

$$s_n^2 = \sum_{i=1}^n \sigma_i^2$$
,

if for some $\delta>0$, Lyapunov's Condition holds, i.e.,

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n \mathbf{E}\left[|X_i - \mu_i|^{2+\delta}\right] = 0$$

then, the sum $\frac{X_i - \mu_i}{s_n}$ converges in distribution. Or,

$$\frac{1}{s_n} \sum_{i=1}^n (X_i - \mu_i) \xrightarrow{d} N(0,1), \text{ as } n \to \infty.$$

Akshay Badola

Properties of Random

Generating Functions MGF of Gaussian Some Identities Some Limit Theorems

References

References I

- [1] Central Limit Theorems. https://en.wikipedia.org/wiki/Central_limit_theorem. Accessed: 2018-06-01 (22, 23).
- [2] Weak Law of Large Numbers at Woffram Mathworld. http://mathworld.wolfram.com/WeakLawofLargeNumbers.html. Accessed: 2018-05-30 (20, 21).