Lic. em Ciências da Computação Lic. em Matemática 2019/2020

Álgebra Universal e Categorias

Exercícios - Folha 5 -

28. Seja $\mathcal{A}=(\{a,b,c,d\},f)$ a álgebra de tipo (1) onde f é a operação definida por

Determine todas as relações de congruência em \mathcal{A} .

Resolvido na aula do dia 6 de março.

29. Considere o reticulado N_5 representado pelo diagrama de Hasse

Determine

(a) $\Theta(a,0)$;

(b) $\Theta(a, 1)$;

(c) $\Theta(a,b)$.

Apresenta-se a resolução da alínea (a). A resolução das restantes alíneas é análoga.

(a) Pretende-se determinar $\theta(a,0)$, ou seja, pretende-se determinar a menor relação $\theta \in \operatorname{Con} N_5$ que contém $\{(a,0)\}.$

Se θ é uma congruência em N_5 que contém $\{(a,0)\}$, então são satisfeitas as seguintes condições:

- (i) $(a, 0) \in \theta$;
- (ii) θ é reflexiva;
- (iii) θ é simétrica;
- (iv) θ é transitiva;
- (v) θ satisfaz a propriedade de substituição, ou seja, para quaisquer $a_1, b_1, a_2, b_2 \in N_5$,

$$((a_1, b_1) \in \theta \ e \ (a_2, b_2) \in \theta) \Rightarrow (a_1 \land a_2, b_1 \land b_2) \in \theta,$$

$$((a_1, b_1) \in \theta \ e \ (a_2, b_2) \in \theta) \Rightarrow (a_1 \lor a_2, b_1 \lor b_2) \in \theta.$$

Admitamos que θ é uma congruência em N_5 que contém $\{(a,0)\}$, então:

- (1) Considerando a condição (i), tem-se $(a, 0) \in \theta$.
- (2) Atendendo a (ii), vem que $\triangle_{N_5} \subseteq \theta$.
- (3) Por (i) e (3), $(0, a) \in \theta$.
- (4) Atendendo a que $(a,0) \in \theta$, $(c,c) \in \theta$ e considerando a condição (v), $(a \land c, 0 \land c) = (0,0) \in \theta$ e $(a \lor c, 0 \lor c) = (1,c) \in \theta$.
- (5) Como $(1, c) \in \theta$, então, por (iii), $(c, 1) \in \theta$.
- (6) Dado que $(c,1),(b,b)\in\theta$, tem-se $(c\wedge b,1\wedge b)=(0,b)\in\theta$ e $(c\vee b,1\vee b)=(1,1)\in\theta$ (por (v)).
- (7) Por (6) e (iii) também se tem $(b,0) \in \theta$.
- (8) De (1), (6) e (iv), vem que $(a, b) \in \theta$.
- (9) De (8) e (iii), $(b, a) \in \theta$.

A relação $\theta = \triangle_{N_5} \cup \{(a,0),(0,a),(c,1),(1,c),(0,b),(b,0),(a,b),(b,a)\}$ satisfaz as condições (i) a (v) (verificar), logo é uma congruência em N_5 que contém $\{(a,0)\}$; além disso θ é a menor congruência em N_5 que contém $\{(a,0)\}$. Logo $\Theta(a,b)=\theta$.

Alternativamente, a questão pode ser resolvida recorrendo à caraterização de congruências de reticulados referida no exemplo 2.3.2. Se $\mathcal{R}=(R;\wedge,\vee)$ é um reticulado, então $\theta\in\mathrm{Eq}(R)$ é uma congruência em \mathcal{R} se e só se:

- (1) cada classe de θ é um subrreticulado de \mathcal{R} ;
- (2) cada classe de θ é um subconjunto convexo de R;
- (3) as classes de equivalência de θ são fechadas para quadriláteros (i.e. sempre que a, b, c, d são elementos de R distintos tais que a < b, c < d e

$$(a \lor d = b \ e \ a \land d = c) \ ou \ (b \lor c = d \ e \ b \land c = a),$$

então $a \theta b$ sse $c \theta d$).

Se θ é uma congruência em N_5 que contém $\{(a,0)\}$, então $\triangle_{N_5}\subseteq \theta$ e $[a]_{\theta}=[0]_{\theta}$. Atendendo a que $(a,0)\in \theta$ e os pares (a,0) e (1,c) formam um quadrilátero, então $(1,c)\in \theta$; logo $[c]_{\theta}=[1]_{\theta}$. Uma vez que $(1,c)\in \theta$ e os pares (1,c) e (b,0) formam um quadrilátero, tem-se $(b,0)\in \theta$; assim $[b]_{\theta}=[0]_{\theta}=[a]_{\theta}$. A relação de equivalência associada à partição $\{\{a,b,0\},\{c,1\}\}$ de N_5 é a relação $\theta=\triangle_{N_5}\cup\{(a,0),(0,a),(c,1),(1,c),(0,b),(b,0),(a,b),(b,a)\}$. Esta relação é uma congruência em N_5 , pois satisfaz as condições (1), (2) e (3), e é a menor relação de congruência em N_5 que contém $\{(a,0)\}$; portanto, $\theta(a,0)=\theta$.

30. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $\theta\in\mathrm{Con}\mathcal{R}$. Mostre que, para quaisquer $a,b,c\in R$, se $a\leq c\leq b$ e $(a,b)\in\theta$, então $(a,c)\in\theta$ e $(b,c)\in\theta$.

Admitamos que $a \leq c \leq b$ e $(a,b) \in \theta$. Uma vez que $\theta \in \operatorname{Con}\mathcal{R}$, então θ é reflexiva e, portanto, $(c,c) \in \theta$. Considerando que $(a,b) \in \theta$, $(c,c) \in \theta$ e θ satisfaz a propriedade de substituição, tem-se $(a \wedge c, b \wedge c) = (a,c) \in \theta$ e $(a \vee c, b \vee c) = (c,b) \in \theta$. Uma vez que $(c,b) \in \theta$, por simetria vem que $(b,c) \in \theta$.

31. Sejam $\mathcal{S}=(S,\cdot)$ um semirreticulado e \leq a relação de ordem parcial em S definida por $x\leq y$ se $x\cdot y=x$. Dado $a\in S$, define-se

$$\theta_a = \{(b,c) \in S^2 \mid (a \le b \text{ e } a \le c) \text{ ou } (a \nleq b \text{ e } a \nleq c)\}.$$

Mostre que, para qualquer $a \in S$, θ_a é uma congruência em \mathcal{S} .

32. Seja $\mathcal{S}=(S;\cdot)$ um semigrupo. Um subconjunto não vazio I de S diz-se um *ideal* de S se, para quaisquer $s\in S$ e $i\in I$, tem-se $is\in I$ e $si\in I$. Mostre que, para qualquer ideal I, $I^2\cup\triangle_S$ é uma congruência em S, designada a *congruência de Rees induzida por* I.

Representemos $I^2 \cup \triangle_S$ por θ . Pretende-se provar que θ é uma congruência em S, ou seja, que θ é uma relação de equivalência em S que satisfaz a propriedade de substituição.

(i) θ é reflexiva

Uma vez que $\triangle_S \subseteq \theta$, é imediato que θ é reflexiva.

(ii) θ é simétrica

Para quaisquer $x, y \in S$,

$$(x,y) \in \theta \quad \Rightarrow \quad (x,y) \in I^2 \lor (x,y) \in \triangle_S$$

$$\Rightarrow \quad (x \in I \land y \in I) \lor (x=y)$$

$$\Rightarrow \quad (y \in I \land x \in I) \lor (y,x) \in \triangle_S$$

$$\Rightarrow \quad (y,x) \in I^2 \lor (y,x) \in \triangle_S$$

$$\Rightarrow \quad (y,x) \in \theta$$

(iii) θ é transitiva

Para quaisquer $x, y, z \in S$

$$(x,y) \in \theta \land (y,z) \in \theta \quad \Rightarrow \quad ((x,y) \in I^2 \lor (x,y) \in \Delta_S) \land ((y,z) \in I^2 \lor (y,z) \in \Delta_S)$$

$$\Rightarrow \quad ((x,y) \in I^2 \land (y,z) \in I^2) \lor ((x,y) \in I^2 \land (y,z) \in \Delta_S)$$

$$\lor ((x,y) \in \Delta_S \land (y,z) \in I^2) \lor ((x,y) \in \Delta_S \land (y,z) \in \Delta_S)$$

$$\Rightarrow \quad (x,y,z \in I) \lor (x,y \in I \land y = z) \lor (x = y \land y,z \in I)$$

$$\lor (x = y \land y = z)$$

$$\Rightarrow \quad (x,z \in I) \lor (x,z \in I) \lor (x,z \in I) \lor (x = z)$$

$$\Rightarrow \quad (x,z) \in I^2 \lor (x,z) \in \Delta_S$$

$$\Rightarrow \quad (x,z) \in \theta.$$

(iv) θ satisfaz a propriedade de substituição

Para quaisquer $x, y, z, w \in S$,

$$(x,y) \in \theta \land (z,w) \in \theta \quad \Rightarrow \quad ((x,y) \in I^2 \lor (x,y) \in \triangle_S) \land ((z,w) \in I^2 \lor (z,w) \in \triangle_S)$$

$$\Rightarrow \quad ((x,y) \in I^2 \land (z,w) \in I^2) \lor ((x,y) \in I^2 \land (z,w) \in \triangle_S)$$

$$\lor ((x,y) \in \triangle_S \land (z,w) \in I^2) \lor ((x,y) \in \triangle_S \land (z,w) \in \triangle_S)$$

$$\Rightarrow \quad (x,y,z,w \in I) \lor (x,y \in I \land z = w) \lor (x = y \land z,w \in I)$$

$$\lor (x = y \land z = w)$$

$$\Rightarrow \quad (x \cdot z \in I, y \cdot w \in I) \lor (x \cdot z \in I, y \cdot w \in I) \lor (x \cdot z \in I, y \cdot w \in I)$$

$$\lor (x \cdot z = y \cdot w)$$

$$\Rightarrow \quad (x \cdot z, y \cdot w) \in I^2 \lor (x \cdot z, y \cdot w) \in \triangle_S$$

$$\Rightarrow \quad (x \cdot z, y \cdot w) \in \theta.$$

De (i), (ii), (iii), (iv) conclui-se que θ é uma congruência em S.

33. Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo $(O;\tau)$. Mostre que $\triangle_A=\{(a,a)\,|\,a\in A\}$ e $\nabla_A=\{(a,b)\,|\,a,b\in A\}$ são congruências em \mathcal{A} .

A relação \triangle_A é uma relação de equivalência. Sendo assim, resta provar que \triangle_A satisfaz a propriedade de substituição.

Seja $f \in O_n$. Para quaisquer $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$,

$$\begin{array}{ll} (a_1,b_1)\in\triangle_A\wedge\ldots\wedge(a_n,b_n)\in\triangle_A&\Rightarrow&a_1,\ldots,a_n,b_1,\ldots,b_n\in A\wedge a_1=b_1\wedge\ldots\wedge a_n=b_n\\ &\Rightarrow&f^{\mathcal{A}}(a_1,\ldots,a_n),\;f^{\mathcal{A}}(b_1,\ldots,b_n)\in A\\ &&\wedge f^{\mathcal{A}}(a_1,\ldots,a_n)=f^{\mathcal{A}}(b_1,\ldots,b_n)\;(f^{\mathcal{A}}\text{ \'e uma operaç\~ao em }A)\\ &\Rightarrow&(f^{\mathcal{A}}(a_1,\ldots,a_n),f^{\mathcal{A}}(b_1,\ldots,b_n))\in\triangle_A. \end{array}$$

Logo \triangle_A satisfaz a propriedade de substituição e, portanto, \triangle_A é uma congruência em \mathcal{A} .

A relação ∇_A é uma relação de equivalência. Resta provar que ∇_A satisfaz a propriedade de substituição.

Seja $f \in O_n$. Para quaisquer $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$,

$$(a_1,b_1) \in \nabla_A \wedge \ldots \wedge (a_n,b_n) \in \nabla_A \Rightarrow f^{\mathcal{A}}(a_1,\ldots,a_n), f^{\mathcal{A}}(b_1,\ldots,b_n) \in A \ (f^{\mathcal{A}} \text{ \'e uma operação em } A) \Rightarrow (f^{\mathcal{A}}(a_1,\ldots,a_n),f^{\mathcal{A}}(b_1,\ldots,b_n)) \in \nabla_A \ (\text{ definição de } \nabla_A).$$

Logo ∇_A satisfaz a propriedade de substituição e, portanto, ∇_A é uma congruência em \mathcal{A} .

- 34. Sejam θ , ψ relações binárias num conjunto A. Mostre que:
 - (a) Se θ e ψ são relações de equivalência em A, não é necessariamente verdade que $\theta \cup \psi$ e $\theta \circ \psi$ sejam relações de equivalência em A.

Sejam A= $\{1,2,3\}$ e $\theta=\triangle_A\cup\{(1,2),(2,1)\}, \psi=\triangle_A\cup\{(2,3),(3,2)\}\in A^2$. As relações θ e ψ são relações de equivalência em A. A relação $\theta\cup\psi=\triangle_A\cup\{(1,2),(2,1),(2,3),(3,2)\}$ não é uma relação de equivalência, pois não é transitiva. A relação $\theta\circ\psi=\triangle_A\cup\{(2,3),(3,2),(3,1)\}$ também não é uma relação de equivalência, uma vez que não é simétrica

(b) Se θ e ψ satisfazem a propriedade de substituição numa álgebra $\mathcal{A}=(A;F)$, então $\theta\circ\psi$ satisfaz a propriedade de substituição em \mathcal{A} .

Sejam θ e ψ relações binárias em A que satisfazem a propriedade de substituição em $\mathcal{A}=(A;F)$.

Seja f um símbolo de operação de aridade n. Para quaisquer $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$,

$$(a_1, b_1) \in \theta \circ \psi, \dots, (a_n, b_n) \in \theta \circ \psi \quad \Rightarrow \quad \exists_{c_1 \in A} \left((a_1, c_1) \in \psi \land (c_1, b_1) \in \theta \right),$$

$$\vdots$$

$$\exists_{c_n \in A} \left((a_n, c_n) \in \psi \land (c_n, b_n) \in \theta \right)$$

$$\stackrel{(*)}{\Rightarrow} \quad \exists_{f^A(c_1, \dots, c_n) \in A} \left(f^A(a_1, \dots, a_n), f^A(c_1, \dots, c_n) \right) \in \psi,$$

$$\left(f^A(c_1, \dots, c_n), f^A(b_1, \dots, b_n) \right) \in \theta$$

$$\Rightarrow \quad \left(f^A(a_1, \dots, a_n), f^A(b_1, \dots, b_n) \right) \in \theta \circ \psi$$

Logo $\theta \circ \psi$ satisfaz a propriedade de substituição.

- (*) $f^{\mathcal{A}}$ é uma operação em A e θ e ψ satisfazem a propriedade de subsituição em \mathcal{A} .
- (c) Se θ e ψ são congruências numa álgebra $\mathcal{A}=(A;F)$, então $\theta\cap\psi$ e a relação $\theta*\psi$ definida por

$$\theta * \psi = \{(x,y) \in A^2 \mid \exists n \in \mathbb{N}, \exists z_0, z_1, \dots, z_n \in A, x = z_0, y = z_n \\ e \ \forall 1 \le k \le n, z_{k-1} \theta z_k \text{ ou } z_{k-1} \psi z_k \},$$

são conguências em ${\mathcal A}$.

Sejam θ e ψ são congruências numa álgebra $\mathcal{A} = (A; F)$.

$$[\theta * \psi \in \text{Con}\mathcal{A}]$$

Para quaisquer $\theta, \psi \in \text{Con}\mathcal{A}, \ \theta * \psi \in \text{Eq}(A)$. As relações $\theta \in \psi$ são relações de equivalências, então:

- para qualquer $a \in A$, $(a,a) \in \theta$ (e $(a,a) \in \psi$), logo existem $z_0 = a \in A$ e $z_1 = a \in A$ tais que $(z_0,z_1) \in \theta$. Logo $(a,a) \in \theta * \psi$. Assim, $\theta * \psi$ é reflexiva.
- para quaisquer $a, b \in A$

$$\begin{array}{ll} (a,b) \in \theta * \psi & \Rightarrow & \exists_{z_0,\dots,z_{n-1},z_n \in A} \ z_0 = a,\dots,z_n = b \ \mathrm{e} \\ & \forall 1 \leq k \leq n, z_{k-1} \ \theta \ z_k \ \mathrm{ou} \ z_{k-1} \ \psi \ z_k \} \\ \\ \Rightarrow & \exists_{w_0 = z_n = b, w_1 = z_{n-1},\dots,w_n = z_0 = a \in A} \ w_0 = b,\dots,w_n = a \ \mathrm{e} \\ & \forall 1 \leq k \leq n, w_{k-1} \ \theta \ w_k \ \mathrm{ou} \ w_{k-1} \ \psi \ w_k \} \ (\theta, \psi \ \mathrm{s\~{ao}} \ \mathrm{s\~{im\'{e}tricas}} \) \\ \Rightarrow & (b,a) \in \theta * \psi. \end{array}$$

Logo $\theta * \psi$ é simétrica.

- para quaisquer $a, b, c \in A$,

$$\begin{array}{ll} (a,b) \in \theta * \psi, (b,c) \in \theta * \psi & \Rightarrow & (\exists_{z_0,\dots,z_n \in A} \ z_0 = a,\dots,z_n = b \ \mathsf{e} \\ & \forall 1 \leq k \leq n, z_{k-1} \ \theta \ z_k \ \mathsf{ou} \ z_{k-1} \ \psi \ z_k \}) \\ & \wedge (\exists_{w_0,\dots,w_m \in A} \ w_0 = b,\dots,w_m = c \ \mathsf{e} \\ & \forall 1 \leq k \leq m, w_{k-1} \ \theta \ w_k \ \mathsf{ou} \ w_{k-1} \ \psi \ w_k \}) \\ & \Rightarrow & (\exists_{s_0,\dots,s_{n+m-1} \in A} \ s_0 = a,\dots,s_n = z_n = w_0 = b,\dots,s_{n+m-1} = c \ \mathsf{e} \\ & \forall 1 \leq k \leq m, s_{k-1} \ \theta \ s_k \ \mathsf{ou} \ s_{k-1} \ \psi \ s_k \}) \end{array}$$

Logo $\theta * \psi$ é transitiva.

Uma vez que $\theta * \psi$ é reflexiva, simétrica e transitiva, então $\theta * \psi$ é uma relação de equivalência. Resta mostrar que $\theta * \psi$ satisfaz a propriedade de substituição.

Para tal, comecemos por observar que

- (1) $\theta * \psi = \theta \cup \theta \circ \psi \cup \theta \circ \psi \circ \theta \cup \theta \circ \psi \circ \theta \circ \psi \cup \dots$
- (2) $\theta \subseteq \theta \circ \psi \subseteq \theta \circ \psi \circ \theta \subseteq \theta \circ \psi \circ \theta \circ \psi \subseteq \dots$
- (3) se θ_1, θ_2 são relações binárias em A que satisfazem a propriedade de substituição, então $\theta_1 \circ \theta_2$ também satisfaz a propriedade de substituição.

Representemos por C o conjunto $\{\theta, \theta \circ \psi, \theta \circ \psi \circ \theta, \theta \circ \psi \circ \theta \circ \psi, \ldots\}.$

Para qualquer símbolo de operação n-ário f e para quaisquer $a_1,\dots,a_n,b_1,\dots,b_n\in A$,

$$\begin{array}{ll} \forall i \in \{1,\ldots,n\}, (a_i,b_i) \in \theta * \psi \\ \Rightarrow & \forall i \in \{1,\ldots,n\} \; \exists \gamma_i \in C, (a_i,b_i) \in \gamma_i \qquad (\text{ por } (1)) \\ \Rightarrow & \exists \gamma \in C \; \forall i \in \{1,\ldots,n\}, (a_i,b_i) \in \gamma \qquad (\text{ por } (2)) \\ \Rightarrow & \exists \gamma \in C, (f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)) \in \gamma \qquad (\text{ por } (3)) \\ \Rightarrow & (f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)) \in \theta * \psi \qquad (\text{ por } (1)) \end{array}$$

logo $\theta * \psi$ satisfaz a propriedade de substituição.

Uma vez que $\theta*\psi$ é uma relação de equivalência e satisfaz a propriedade de substituição, $\theta*\psi\in\mathrm{Con}\mathcal{A}$.

- 35. Sejam $\mathcal{A}=(A;F)$ uma álgebra e $X,Y\subseteq A\times A$. Mostre que
 - (a) $X \subseteq \Theta(X)$.
 - (b) $X \subseteq Y \Rightarrow \Theta(X) \subseteq \Theta(Y)$.
 - (c) $\Theta(\Theta((X)) = \Theta(X)$.
 - (d) $\Theta(X) = \bigcup \{\Theta(Z) \mid Z \text{ \'e um subconjunto finito de } X\}.$