Relatório LFA

Resolução dos exercícios feito em aula

Nome: Rosangela Miyeko Shigenari 92334

Thauany Moedano 92486

Kaio Henrique Dantas Maia 92420

Nickollas de Oliveira Aranha 77405

Aula 03/03

1.) Seja Gn =
$$\sum_{k=1}^{n} (k.k!)$$

Faça a demonstração por indução que a fórmula fechada de Gn é Gn = (n+1)! - 1

Resposta:

Base: n = 1.

$$G0 = (1+1)! -1 = 2 - 1 = 1.$$

Hipótese: K = n - 1

$$Gn-1 = (n+1-1)! - 1 = n! -1$$

Passo indutivo:

Gn =
$$\sum_{k=1}^{n-1} +(n.n!)$$

$$= (n! - 1) + (n.n!)$$

$$= n!(1+n) - 1$$

$$= (n+1)! - 1$$

2.) Prove por indução que a soma dos cubos de três inteiros positivos consecutivos é sempre divisível por 9.

Resposta:

Base: n = 0

$$2^3 + 1^3 + 0^3/9 = 1$$

Hipótese: k = n

$$n^3 + (n-1)^3 + (n-2)^3$$
 é divisível por 9.

Passo indutivo:

$$(n+1)^3 + n^3 + (n-1)^3 + [(n-2)^3 - (n-2)^3]$$

= $[n^3 + (n-1)^3 + (n-2)^3] + [(n-1)^3 - (n-2)^3]$

A primeira parcela da equação é divisível por 9 pela hipótese indutiva. Basta mostrar que a segunda parcela também é pois pela teoria matemática um número divisível por 9 somado a número divisível por 9 resulta em um número também divisível por 9.

$$(n+1)^3 + (n-2)^3$$

 $n^3 + 3n^2 + 3n + 1 - n^3 - 2n^2 - 4n^2 + 12n - 8$
 $9n^2 + 9n + 9$ que é um número divisível por 9.

Aula 10/03

1.) {w | w tem a forma "x01y", onde x{0,1}*}

2.) {w | w tem um número par de "0"s}

3. {w | w tem ao mesmo tempo um número par de "0"s e "1"s}

4. {w | w termina em "00"}

5. {w | w tem três "0"s consecutivos}

6. {w | w tem "011" como substring}

7. {w | w tem número de "0"s divisível por 5 e de "1"s divisível por 3}

Aula 15/03

Desenhe linguagens que aceitem as seguintes linguagens sobre o alfabeto {1,0} 1- Todos os strings que contêm exatamente 4 0's.

2- Todos os strings que terminam em "1101".

3- Todos os strings que contêm exatamente 4 0's e pelo menos 2 1's.

4- Todos os strings cujo valor binário é divisível por 5.

5-Todos os strings que contêm o substring "0101".

6- Todos os strings que começam com 0 e têm comprimento impar ou começam com 1 e têm comprimento par.

7- Todos os strings que não contêm o string 110.

8- Todos os strings com comprimento no máximo igual a 5.

9- Todos os strings que têm 1 em posições impares

Aula 17/03

1) Construir DFA para as seguintes linguagens

a){ $w \in \{0,1\}^*$ | cada 0 de w é imediatamente seguida de no minimo dois 1's}

b){ $w \in \{0,1\}^*$ | w não contém nem 000 nem 111.

c) $\{w \in \{a,b\}^* \mid w \text{ começa com a e tem tamanho par.}$

e) $\{w \in \{0,1\}^* \mid w \text{ apresenta cada 1 seguido imediatamente de dois 0's.}$

2) Implementar um programa na linguagem capaz de ler dois arquivos, sendo que o primeiro contém a descrição de um DFA e o segundo uma string para o reconhecimento.

Linha 1: Estados

Linha 2: Alfabeto

Linha 3:Estado inicial

Linha 4: Estados finais

Linha 5: Em frente tabela de transição

```
#include <iostream>
 #include <string>
 #include <algorithm>
 #include <vector>
 using namespace std;
void transforma (string& input, const string& oldInput, const std::string& nInput) {
     size t pos = 0;
     while (true) {
         input.replace(pos, oldInput.length(), nInput);
         pos += nInput.length();
     if((pos = input.find(oldInput, pos)) != std::string::npos)
         break;
-}
jint delta(int ini, vector< vector<int> >& tapela, string valor) {
    int first = 0, aux, res = ini;
    for, (i = 0, i < valor.size(), i++) {
         aux = (int) valor[i] - 48;
         result = tabela[ini+1][aux+1];
         ini = resut;
    return result;
```

Aula 22/03

1.) Construir NFA's para as seguintes linguagens regulares:

b.) Todos os strings em que o terceiro símbolo a partir da direita é 0

c.) Todos os strings em que ocorrem 2 0's separados por um string de comprimento 4i para algum i >= 0

d.) Todos os strings que contem o substring 0101

e.) Todos os strings que contem um num par de 0's ou exatamente dois 1's

f.) 0* 1* 0* 0

2.) Faça dois exemplos de transição para cada NFA produzido na questão 1 **Resposta:** As transições estão no próprio exercício 1

Aula 24/03

1.) Mostre que a seguinte linguagem en regular: L = {conjunto de strings que contêm igual número de ocorrências de 01 e 10}

2.) Converta o seguinte NFA em DFA

	0	1
->p	{p,q}	{p}
q	{r}	{r}
r	{s}	λ
*s	{s}	{s}

3.) Converta o seguinte NFA em DFA

	0	1
->p	{q,s}	{q}
*q	{r}	{q,r}
* r	{s}	{p}
*s	λ	{p}

4.) Converta o seguinte NFA em DFA

	0	1
->p	{p,q}	{p}
q	{r,s}	{t}
r	{p,r}	{t}
*s	λ	λ
*t	λ	λ

5.) Converta o seguinte NFA da Linguagem 0*1*0*0 em DFA

Aula 29/03

1.) Considere o NFA

	λ	а	b	С
->p	λ	{p}	{q}	{r}
q	{p}	{q}	{r}	λ
*r	{q}	{r}	λ	{p}

a.) Calcule o $\,\epsilon\text{-fechamento}$ de cada estado

Resposta:

p: {p}

q: {q, p}

r:{r, p,q}

b.) Converta o autômato para DFA

2.) Repita o exercício 01 para

	λ	а	b	С
->p	{q,r}	λ	{q}	{r}
q	λ	{p}	{r}	{p,q}
*r	λ	λ	λ	λ

Resposta:

p: {p,q,r}

q: {q}

r: {r}

3.) Prove que a linguagem é regular: Conjunto de todas strings tais que cada bloco de 5 símbolos consecutivos contem pelo menos dois 0's.

Resposta: Podemos provar que uma linguagem é regular a partir do Lema do Bombeamento: que segue as seguintes propriedades

- u = xyz (x é um prefixo, z é um sufixo)
- |y | ≥ 1 (a parte do meio y é não vazia)
- $|xy| \le p$ (bomb. nos p primeiros simbolos)
- $xy^iz \in L \quad \forall i \geq 1$

Tomando que p = 7 e S representa os símbolos

<u>S</u>	<u>s</u>	<u>S</u>	<u>S</u>	<u>s</u>	<u>0</u>	<u>0</u>
		х			у	Z

Para o caso base representado acima, temos:

- u = SSSSS00
- |y| = 1
- |xy| ≤ 7
- $xy^1z \in L \quad \forall i \geq 1$

A RE é $(S^5 0^n)^*$ para $n \ge 2$

Podemos escrever que o primeiro bloco de símbolos será o x da nossa string, o y será o primeiro bloco de 0's e o z como sendo o último 0.

Assim, para $\forall i \ge 1$ garanto que xy^iz pertence à minha linguagem e a string terá no mínimo 2 zeros seguidos de um bloco com 5 símbolos.

4.) Considere o autômato M = ({q0, q1}, {0,1}, L, q0, {q0, q1}) onde a função L é especificada pelo diagrama

a.) Qual a linguagem reconhecida por M?

Resposta: Todas as strings que começam com 0 e terminam com 1 Linguagem que reconhece a RE 01*

b.) Considere M' = ({q0, q1}, {0,1}, δ , q0, ϵ } M' é automato complementar de M? **Resposta:** Não, para que seja um autômato complementar, as palavras que não são aceitas por M terá que ser aceita por M', o que não ocorre já que o estado de aceitação é ϵ .

c.) Construa o automato complementar de M

Resposta: O primeiro é o M e o segundo o M' (complementar)

Aula 31/03

Crie expressões regulares $\Sigma = \{0,1\}$

1.) {w | w contêm um único 1}

Resposta:

L = (0)*1(0)*

2.) {w | w contêm pelo menos um 1}

Resposta:

L = 0*(1 + 1*)(0+1)*

3.) {w | w contêm a string 001 como substring}

Resposta:

L = (1*+0*)001(1*+0*)

4.) {w | |w| e par}

Resposta:

 $L = ((0+1)(0+1))^*$

5.) {w | |w| e múltiplo de 3}

Resposta:

$$L = ((0+1)(0+1)(0+1))^*$$

6.) {w | 6 simbolo direita/esquerda e 1}

Resposta:

$$L = (0+1)*1(0+1)(0+1)(0+1)(0+1)(0+1)$$

7.) Descreva em português o conjunto denotado por cada uma das expressões regulares:

a.) 1*0

Resposta: Todas as strings que possuem apenas 1's e terminam com zero

b.) 1*0(0)*

Resposta: Todas as strings que tem uma sequencia com qualquer quantidade de 1's seguida de uma sequencia de zeros que contenha pelo menos um zero.

c.) 111 + 001

Resposta: A string 111 ou 001

d.) (1 + 00)*

Resposta: Qualquer string que tem quantidade par de zeros com dois zeros consecutivos

e.) (0(0)*1)*

Resposta: Todas as strings que começam com zero, terminam com 1 e não aceitam 1's consecutivos

f.) (0+1)(0+1)*00

Resposta: Todas as strings de tamanho maior ou igual a 3 e terminam com 00.

Aula 05/04

1.) Conjunto de strings sobre o alfabeto {a,b,c} que contem pelo menos um a e pelo menos um b.

Resposta:

L = (a+b+c)*(ab)(a+b+c)* + (a+b+c)*(ba)(a+b+c)* + (ab)(a+b+c)* + (a+b+c)*(ab) + (ba)(a+b+c)* + (a+b+c)*(ba) + b(a+b+c)*a + a(a+b+c)*b

2.) Conjunto de todos os strings de 0's e 1's tais que todo par de 0's adjacentes aparece antes de qualquer par de 1'd adjacentes

Resposta:

$$L = (0+10*)(e+1)(1+01*)(e+0)$$

3.) O conjunto de todos strings que não contem o substring 101

Resposta:

$$L = (1+e)(0+100+11)*(1+e)$$

4.) O conjunto de todos os strings que tem no máximo um par de 0's consecutivos ou um par de 1's consecutivos.

Resposta:

$$L = (1+e)(01)*(00)(10)*(1+e) + (0+e)(10)*(11)(01)*(0+e) + (1+e)(01)*(0+e) + (0+e)(10)*(1+e)$$

- 5.) Dar um ε -NFA equivalente as expressões regulares
- a.) 0*1*

b.) 00*11*

c.) (00)*(11)*

Input	Result	
000111	Accept	
1111	Accept	
0000	Accept	
010101	Reject	
01	Reject	
10	Reject	
0011	Accept	
011	Reject	
001	Reject	
	Accept	

d.) (0+1)(0+1)*00

Input	Result
10101011	Reject
010101100	Accept
1011100100	Accept
0101110011011	Reject
00	Reject

6.) Determine a RE da linguagem aceita pelo autômato abaixo

Resposta: A linguagem aceita é o ciclo 01, que pode ou não existir seguido de 0, escrevendo a RE temos (01)*0.

7.) Construir o automato correspondente a RE ((00)*(11)*)*, utilizando o algoritmo que transforma RE em autômato. No final, utilize um algoritmo de minimização de estados de automato a fim de minimizar o automato produzido pelo algoritmo de transformação.

Resposta: Esta linguagem é um conjunto de zeros e uns desde que se aparece zero ou um, aparece pelo menos dois. O DFA construído foi:

Input	Result
000111100	Accept
00011	Accept
11100000	Accept
0101	Reject
1010101	Reject
1110000	Accept
111010111	Reject

Tabela de estados distinguíveis

q1	х			
q2	Х	Х		
q3	х	х	х	
q4	х	х	х	х
	q0	q1	q2	q3

Todos os estados são distinguíveis, portanto o DFA já está minimizado.

Aula 07/04

1.) Construa o DFA com o número mínimo de estados

	0	1
->A	В	Α
В	Α	С
С	D	В
*D	D	Α
E	D	F
F	G	E
G	F	G
Н	G	D

Esse é o DFA, contruído a partir das entradas da tabela

Agora, verificaremos se podemos minimizá- la construindo a tabela de equivalência de estados.

А								
В	Х							
С	Х	Х						
D	Х	Х	Х					
E	Х	Х	EQ	Х				
F	Х	EQ	Х	Х	X			
G	EQ	X	X	X	X	X		
Н	Х	Х	Х	Х	X	X	X	
	А	В	С	D	E	F	G	Н

Assim, temos os estados q0(A,G); q1(B,F); q2(C,E); q3(D); q4(H) minimizados, gerando o DFA mínimo abaixo, já que os estados são equivalentes, cada entrada irá gerar uma saída igual, ao original.

2.) Construa o DFA com o número mínimo de estados

	0	1
->A	В	E
В	С	F
*C	D	Н
D	E	Н
E	F	I

*F	G	В
G	н	В
Н	I	С
*	A	Е

Temos que o o DFA gerado com os dados da tabela é:

Verificaremos se é possível construir um DFA mínimo, construindo a tabela de equivalências:

Α									
В	Х								
С	X	X							
D	EQ	X	X						
E	X	X	Х	Х					
F	X	X	EQ	Х	Х				
G	EQ	X	X	EQ	Х	X			
Н	X	EQ	X	X	EQ	X	X		
I	X	X	EQ	Х	Х	EQ	Х	Х	
	A	В	С	D	E	F	G	Н	I

Assim, na minimização, podemos criar os estados q0(A,D,G), q1(B,E,H), q2(C,F,I)

Input	Result
0 1 0	Reject
10110000	Reject
1111	Accept
1101110	Accept
001010	Accept
10100	Reject

3.) Forneça um DFA mínimo que aceita todas as strings de 0's e 1's que termina em 001. Prove que é minimo.

Resolução: Para ser mínimo deve obedecer as seguintes propriedade:

- 1. Deve ser Determinístico (DFA)
- 2. Não pode ter estados inacessíveis (não atingíveis a partir do estado inicial)
- 3. A função programa deve ser total (a partir de qualquer estado são previstas transições para todos os símbolos do alfabeto)

Como observamos pelas transições, o DFA obedece as propriedades citadas acima.

4.) Forneça um DFA mínimo que aceita todas as strings de 0's e 1's que contenha 110 como substring verifique que o automato seja mínimo

Input	Result
11001100	Accept
00110101	Accept
10101010	Reject
00001100	Accept
100110011	Accept
0011	Reject
0 0	Reject
110	Accept

Tabela de Equivalências:

->q0				
q1	х			
q2	х	х		

q3	х	х	х		
q4	х	x	x	x	
	->q0	q1	q2	q3	q4*

Como não há nenhum estado que é equivalente ao outro, temos que o DFA mínimo será igual ao inicial

Aula 14/04

1. Prove que a linguagem L={w|w consiste em todos os strings com igual número de 0's e 1's} é não regular.

Resposta:

Usando Lema do Bombeamento: que segue as seguintes propriedades

- 1. u = xyz ($x \in um \text{ prefixo}$, $z \in um \text{ sufixo}$)
- 2. |y | ≥ 1 (a parte do meio y é não vazia)
- 3. $|xy| \le p$ (bomb. nos p primeiros simbolos)
- 4. $xy^iz \in L \quad \forall i \geq 1$

Seja $0^n 1^n$ uma das formas que aceitam as strings com número iguais de 0's e 1's. Consideremos $0^p 1^p$, por hipótese, a parte a ser bombeada deve estar contida nos p primeiros elementos da string.

Tomando como o caso base, tamanho de bombeamento p = 2:

xyz = 0011

temos que a string sera aceita para i = 1, mas se i >1:

0(00...)11, faz com que o número de 0's seja maior que o número de 1's, não satisfazendo a condição 4.

2. Tente provar que a linguagem (00+11)* é não regular.

Resposta: Usando o lema do bombeamento:

Temos por definição de fechamento, que a string a ser aceita pode ser $\{\epsilon, 00, 11...\}$, para que seja uma linguagem regular, necessita que pelas condições citadas no exercício anterior, a string possa ser escrita da forma u = xyz,

- Se u = ε
- Implica que |y| <1, portanto. não satisfaz a condição 2
- 3. Seja $\Sigma = \{0,1\}$. Se L1 = $\{0\}$ e L2 = $\{1\}^*$. Determine:

- a) L1 U L2 e L1 ∩ L2
 - Resposta: $(0+1^*)$ e ε
- b) L1* e L2*
 - **Resposta:** 0* e (1*)*
- c) (L1 U L2)*
 - **Resposta:** (0+1*)*
- d) (L1 ∩ L2)*
 - Resposta: ε
- e) (\sum^*-L1)
 - **Resposta:** (00*1*) + (1*00*)
- f) (∑*-L2) ∩ L1*
 - Resposta: 0*
- g) (L1.L2)^R
 - Resposta: (L2.L1)

Aula 19/04

- 1. Gere o CFG:
- a){ $a^{i}b^{j}c^{k}$ / i \neq j ou j \neq k}

Resposta:

- S -> AC | BC | DE | DF
- A -> a | aA | aAb
- B -> b| Bb| aBb
- C->c | cC
- D->a | aD
- E-> b | bE |bEc
- F-> c| Fc| bFc
- b){w / w termina e começa com o mesmo símbolo}

Resposta:

- (0(0+1)*0) + (1(0+1)*1)
- S->A+A
- A->0B| 1B | 0 | 1 | ε
- B-> S*0| S*1
- c){w / w é ímpar e seu símbolo do meio é 0}

Resposta:

- R -> 0S1 | 1S1
- S -> 0S0 | 0S1 | 1S0 | 1S1 | 0

d)Strings binárias com duas vezes mais 1's do que 0's

Resposta:

R -> R -> 011R | 01R1 | 0R11 | R011 | 110R | 11R0 | 1R10 | R110 | R101 | 101R | ϵ

2. A Gramática a seguir gera a linguagem regular: 0*1(0+1)*

S -> A1B

A -> 0A | ε

B -> 0B |1B | ε

Forneça a derivação mais a esquerda e mais a direita das strings

a.) 00101

Resposta:

Esquerda

S -> A1B

S -> 0A1B

S -> 00A1B

 $S \rightarrow 00 \epsilon 1B$

S -> 0010B

S -> 00101B

S -> 00101ε

Direita

S -> A1B

S -> A10B

S -> A101B

S -> A101 ε

S-> 0A101

S -> 00A101

 $S -> 00 \epsilon 101$

b.) 1001

Esquerda:

S -> A1B

 $S \rightarrow \epsilon 1B$

S -> 10B

S -> 100B

S -> 1001B

 $S -> 1001 \epsilon$

Direita:

- S -> A1B
- S -> A10B
- S -> A100B
- S -> A1001B
- S -> A1001 ε
- S-> ε1001
- c.) 00011

Esquerda:

- S -> A1B
- S -> 0A1B
- S -> 00A1B
- S -> 000A1B
- S -> 000 ε 1B
- S -> 00011B
- S -> 00011ε

Direita:

- S -> A1B
- S -> A11B
- S -> A11ε
- S -> 0A11
- S -> 00A11
- S -> 000A11
- $S -> 000 \varepsilon 11$

Aula 26/04

- 1.) Construa CFG's que gerem as seguintes linguagens:
- a.) {w / |w| é par e maior que 0}

Resposta:

- S -> A11A | A10A | A00A | A01A
- A -> 10A | A10 | A00 | 00A | A11 | 11A | A01 | 01A | ϵ
- b.) {w / w contém um número par de 0's}

Resposta:

- A -> 1A | R | E
- R -> 00A | 0A0 | A00

c.) {w / w possui o 3° símbolo da direita para a esquerda igual a 1}

Resposta: (0+1)*1(0+1)(0+1)

- 1.S->E*1E
- 2.E->(E)| E+E| EE
- 3.E->1|0
- d.) Strings que sejam comentários da forma /#(a+b)*#/

Resposta:

- 1. S-> /E/
- 2. E->#E#| (E) | A+A
- 3. A-> a | b
- e.) {w / w possui um número igual de 0's e 1's}

Resposta:

```
1.S-> 0S1 | 1S0 | A01A | A10A |ε
2.A-> ε / 0A1A / 1A0A
```

Resposta:

2.) Mostre para toda linguagem regular há uma gramática regular

Resposta:

Para mostrar que uma RE possui uma CFG, basta mostrar que os operdores conctenação, união e fehamento são formados por uma CFG. Logo:

União: (a+b) = U ->a|b

Concatenação : ab = U-abFechamento: $a^* = U-aU$

então qualquer RE pode ser transformada em uma CFG

3.) Monte uma CFG que reconhece double numa linguagem de programação

Resposta:

N->0| 1| 2|...|9

M->+| - | ε

E->MNF | ε

F->NFIε

S->MNF.FE | MF.NFE | MNFE

Aula 28/04

1.) Construa um CFG's que gere as linguagens:

a)
$$\{a^i b^j c^k / i \neq j\}$$

Resposta:

A \rightarrow aAbb | aaAb | C | ϵ | aA | Ab

$$C \rightarrow cC \mid \epsilon$$

b)
$$\{a^i b^j c^k / i = j + k\}$$

Resposta:

 $R \rightarrow aRc \mid K \mid \epsilon$

$$K \rightarrow aKb \mid \epsilon$$

c)
$$\{a^{k+1} b c^{2k} / k \ge 1\}$$

Resposta:

 $B \to bB \mid \epsilon$

 $C \rightarrow aCcc \mid B$

$$S \rightarrow aC$$

d)
$$\{a^m b^m c^n d^n / m >= 1, n >= 1\}$$

Resposta:

 $A \rightarrow aAb \mid \epsilon$

 $B \rightarrow cBd \mid \epsilon$

 $S \rightarrow aAbcBd$

e)
$$\{a^n b^m c^{2n+m} / m, n > 0\}$$

Resposta:

 $A \rightarrow aRcc \mid B \mid \epsilon$

 $B \rightarrow bBc \mid \epsilon$

 $C \rightarrow aABccc$

f)
$$\{a^m b^n / 0 \le n \le m \le 3n\}$$

Resposta:

S ightarrow aSb | aaaSb | ϵ

g)
$$\{a^m b^i a^n / i = m+n\}$$

A -> aAb | ε

B -> bBa | ε

R -> AB

h)
$$\{a^n b^m c^i / 0 \le n + m \le 1\}$$

Resposta:

 $A \rightarrow aAc \mid B \mid \epsilon$

$$B \rightarrow bB \mid \epsilon$$

$$\mathsf{C} \to \mathsf{Ac}$$

i)
$$\{a^n b^{2n} c^m / m, n \ge 0\}$$

Resposta:

$$A \rightarrow aAbb \mid C$$

$$\mathsf{C}\,\to\,\mathsf{c}\mathsf{C}$$

Aula 03/05

- 1.) Seja G a gramática:
 - S -> abSc | A
 - A -> cAd | cd
- a.) Dê uma derivação de ababccddcc
- S -> abSc
- S -> ababScc
- S -> ababcAdcc
- S -> ababccddcc
- b.) Construa a árvore de análise sintática do item a

c.) Use a notação de conjunto para definir L(G).

Resposta: $L(G) = (ab)^i c^i d^i c^i$

2.) Seja G a gramática:

S -> ASB | ε

A -> aAb | ε

B -> bBa | ε

a.) Dê uma derivação mais à esquerda de aabbba

Resposta:

- S -> ASB
- S -> aAbSB
- S -> aaAbbSB
- $S \rightarrow aa \epsilon bbSB$
- S -> aabbεB
- S -> aabbbBa
- S -> aabbb εa
- b.) Dê uma derivação mais à direita de abaabbbabbaa

Resposta:

- S -> ASB
- S -> ASbBa
- S -> ASbbBaa
- S -> ASbbεaa
- S -> AASBbbaa
- S -> AASbBabbaa
- S -> AASbεabbaa
- S -> AA εbabbaa
- S -> AaAbbabbaa
- S -> AaaAbbbabbaa
- S -> Aaa εbbbabbaa
- S -> aAbaabbbaabbaa
- S -> aεbaabbbabbaa

abaabbbabbaa

c.) Construa a árvore de análise sintática para as derivações de a e b

d.) Use a notação de consumo para definir L(G)

Resposta: L(G) = a(ab+ba)*a

- 3.) Seja G a gramática:
 - S -> SAB | ε
 - A -> aA | ε
 - B -> bB | ϵ

a.) Dê uma derivação à esquerda de abbaab

Resposta:

- S -> SAB
- S -> SABAB
- $S \rightarrow \epsilon ABAB$
- S -> aABAB
- $S \rightarrow a \epsilon BAB$
- S -> abBAB
- S -> abbBAB

- $S \rightarrow abb \epsilon AB$
- S -> abbaAB
- S -> abbaaAB
- S -> abbaa εB
- S -> abbaabB
- S -> abbaab ε
- b.) Dê duas derivações à esquerda de aa

Resposta:

- S -> SAB
- $S \rightarrow \epsilon AB$
- S -> aAB
- S -> aaAB
- $S \rightarrow aa \varepsilon B$
- S -> aa ε
- S -> SAB
- S -> SABAB
- $S \rightarrow \epsilon ABAB$
- S -> aABAB
- S -> aaABAB
- S -> aa ε BAB
- S -> $aa \varepsilon BAB$
- S -> aa ε AB
- S -> aa εB
- S -> aa ε

c.) Construa as árvores de análise sintática de b

d.) Dê uma expressão regular de L(G)

Resposta: $L(G) = (a^* + b^*)^*$

4.) Mostre que a gramática abaixo é ambígua:

S-> 0A | 1B B-> 1BB | 0S | 0

A -> 0AA | 1S | 1

Resposta:

Basta mostrar duas derivações mais à esquerda que resultam em strings diferentes.

Derivação 1.

S -> 0A

S -> 0AA

S -> 01A

S -> 011

Derivação 2.

S -> 0A

S -> 0AA

S -> 01SA

S -> 010AA

S -> 0101

S -> 01011

5.) Dado a gramática

S->AB | aaB

A-> a | aA

B-> b

a.) Dê duas derivações mais à esquerda para aab.

Resposta:

S->AB S->aaB

S->aAB S->aab

S->aab

b.) Dê as duas árvores de análise sintática

c.) Encontre uma gramática ambígua.

Resposta: S -> (S)S | ϵ

Aula 12/05

1.) Construa um PDA para as linguagens abaixo:

a.) Strings com número igual de 0's e 1's

Input	Result	
0 1 1	Reject	
10101001	Accept	
01010100	Reject	
0 1 1	Reject	
1000001	Reject	
1100	Accept	
0 1	Accept	
1001	Accept	
Load Inputs Run Inputs	Clear Enter A View Trace	

c.) $\{ww^r \mid w \text{ está em } (0+1)^*\}$

Aula 17/05

1.) Construa PDA's p/ as linguagens:

b.) $0^m 1^n 0^m \setminus m, n >= 0$

c.) $a^i b^j c^k \setminus i = j \ ou \ j = k$

d.) $a^{n}1^{k} \setminus n \le k < 2n$ a1

2.) Construa PDA's determinísticos para:

a.) Strings binários com duas vezes mais 1's que 0's

Paiact	
Reject	
Accept	

b.) Strings binárias que começam e terminam com o mesmo símbolo e tem o mesmo número de 0's e 1's.

3)Apresente um exemplo de ID para cada PDA dos exercícios 1 e 2.

1.

a)String abcccc

(qo, abcccc, zo)

(q₁, bcccc, az₀)

(q₂, cccc, abz_o)

(q₂, ccc, abz_o)

 (q_2, cc, bz_o)

 (q_2, c, bz_0)

 $(q_2, , z_o)$

 (q_3, z_0)

b)String 010

- $(q_0, 010, z_0)$
- $(q_1, 10, 0z_0)$
- $(q_2, 0, 0z_0)$
- (q_2, z_0)
- (q_3, z_0)

c)String bc

- (q_0, bc, z_0)
- (q_1, bc, z_0)
- $(q2, c, bz_0)$
- (q_3, z_0)
- $(q_4, , z_0)$

d)String a1

- $(q_0, a1, z_0)$
- $(q_0, 1, az_0)$
- (q_1, z_0)
- (q_2, z_0)

2.a) String **011**

- (q0, 011, z0)
- (q0, 11, 00z0)
- (q0, 1, 0z0)
- (q0, z0)
- (q1, , z1)

b.) String 1001

- (q0, 1001, z0)
- (q3, 001, 1z0)
- (q3, 01, z0)
- (q3, 1, 0z0

Aula 19/05

1.) Responda:

a.) Em que casos se diz que uma gramática é ambígua?

Resposta: Quando a gramática gera pelo menos uma sentença que possui 2 ou mais sequências de derivações, sendo elas mais à esquerda ou mais a direita, ou também quando possui mais de uma árvore de derivação distinta.

b.) Em que casos se diz que uma linguagem é ambígua? Dê um exemplo.

Resposta: Ocorre quando não é possível evitar a geração de strings ambíguas de uma gramática sem alterar a linguagem.

Um exemplo comum de ambiguidade em linguagens de programação são os condicionais se-então-senão.

- $S \rightarrow se b então S$ senão S $S \rightarrow se b$ então S $S \rightarrow p$
- c.) Há interesse prático em se trabalhar com gramática ambígua?

Resposta: Não pois um computador é determinístico e uma gramática ambígua poderia gerar erros de sistema.

2.) Mostre que a linguagem $0^n 1^n 0^n \setminus n > 0$ pode ser reconhecida por um PDA que se move tanto para a direita quanto para a esquerda (ou um PDA com duas pilhas).

Esse PDA de duas pilhas trabalha movendo para a direita através do string para certificar-se que ele começa com 0ⁿ 1ⁿ. Então ele se move para a esquerda, até o início dos 1s e continua para a direita, para verificar 1ⁿ 0ⁿ.

Aula 24/05

Dado o PDA abaixo:

- a.) Faça a tabela de transição de M
- δ (q0,b,)={q0,B}
- δ (q0,a,)={q0,A}
- $\delta(q0,\epsilon,)=\{q1,\epsilon\}$
- δ (q1,a,A)={q1, ϵ }
- δ (q1,b,B)={q1, ϵ }
- b.) Apesente todas as computações de abb

Resposta:

(q0,abb,z0)

(q0,bb,Az0)

(q1,b, BAz0)

(q1, , Bz0)

c.) Mostre que baab e L(M)

Resposta:

(q0,baab,z0)

(q0,aab,Bz0)

(q1,ab, ABz0)

(q1, b, Bz0)

(q1, , z0)

Chegamos a um estado final e toda a string foi consumida. Logo baab pertence a L(M).

d.) Mostre que aaa não pertence L(M)

Resposta:

(q0, aaa, z0)

(q1,aa, Az0)

(q1, a, z0)

Como chegamos a um estado que não possui transição, ou seja um estado inválido a string aaa não pertence a L(M).

2.) Construir um PDA correspondente à gramática

S-> aABB / aAA

A-> aBB / a

B -> bBB / A

3.) Mostre que L = $\{1 \ 0^n \ 1^n \setminus n > 0\} \cup \{110^n 1^{2n}\}$ é determinística

Resposta: Basta construir um PDA determinístico para cada parte da união.

Input	Result		
0 1 1	Reject		
110000	Reject		
010101111	Reject		
10011	Accept		

Result		
Reject		
Accept		

4.) Prove que L = $a^i b^{2i} c^j \setminus i, j >= 0$ é livre de contexto

Resposta: Basta construir um CFG que represente a linguagem. CFG abaixo:

A -> aAbb | E

C -> cC | E

S -> AC

5.) Prove que a linguagem L = $1^k 0^i 0^j 1^j 0^k \setminus i, j, k > 0$ é livre de contexto

Resposta: Baste construir um CFG que represente a linguagem? CFG abaixo:

K -> 1K0 | 0H0W1

W -> 0W1 | E

H -> 0H | E

Aula 31/05

- 1. Projete máquinas de turing para as seguintes linguagens:
- a.) Conjunto de strings com um número igual de 0's e 1's.

b.) $\{a^nb^nc^n \setminus n >= 1\}$

c.) { $ww^r \setminus w$ é qualquer string de 0's e 1's}

2. Considere a máquina de Turing $M = (\{q0,q1,q2,qf\}, \{0,1\}, \{0,1,B\},, q0, B, \{qf\})$

Descreva de maneira informal, mas clara, a linguagem L(M) se consistir nos seguintes conjuntos de regras:

- a) δ (q0, 0) = (q1, 1, R); δ (q1, 1)= (q0, 0,R); δ (q1, B)= (qf, B,R); **Resposta**: Troca os 0's e 1's de uma string. (troca 0 por 1, e 1 por 0, apenas uma vez).
- b) δ (q0, 0) = (q0, B,R); δ (q0,1)= (q1,B,R); δ (q1, 1)= (q1,B,R); δ (q1, B) = (qf, B,R); Resposta: Apaga uma string, trocando todos seus caracteres para branco.
- c) δ (q0, 0) = (q1, 1, R); δ (q1, 1) = (q2, 0, L); δ (q2, 1) = (q0,1, R); δ (q1, B) = (qf, B,R);

Resposta: Percorre a string trocando sequências de 01's por 10's.

Aula 02/06

1. Mostre as IDs da máquina de Turing da linguagem 0^n1^n , tal que n1, se a fita contém de entrada:

A máquina de turing pode ser representada como:

$$\delta(q_0,0)=(q_1, x, R)$$

$$\delta(q_1,0)=(q_1, 0, R)$$

$$\delta(q_1, y) = (q_1, y, R)$$

$$\delta(q_1, 1) = (q_1, y, L)$$

$$\delta(q_2,y)=(q_2, y, L)$$

$$\delta(q_2,0)=(q_2, 0, L)$$

$$\delta(q_2, \mathbf{x}) = (q_0, x, R)$$

$$\delta(q_0, y) = (q_3, y, R)$$

$$\delta(q_3, B) = (q_4, B, R)$$

(a) 00

Resposta: q_0 00 |- x q_1 0 |- x0 q_1 |- q_2 x0|- x q_0 0 |- xx q_1

Como não existe $\delta(q_1,B)$ 00 não pertence à linguagem

(b) 000111

Resposta:

 q_0 000111 |- x q_1 00111 |- x0 q_1 0111|- x00 q_1 111|- x0 q_2 0y11|- x q_2 00y11|- q_2 x00y11|-

 $\mathbf{x}\,q_0$ 00y11 |- $\mathbf{xx}\,q_1$ 0y11 |- $\mathbf{xx}0\,q_1$ y11|- $\mathbf{xx}0\mathbf{y}\,q_1$ 11|- $\mathbf{xx}\,q_2$ 0yy1 |- $\mathbf{x}\,q_2$ x0yy1|- $\mathbf{xx}\,q_0$ 0yy1 |-

 $\mathsf{xxx}\,q_1\,\,\mathsf{yy1}\,\,|-\,\,\mathsf{xxxy}\,q_1\,\,\mathsf{y1}\,\,|-\,\,\mathsf{xxxy}\,q_2\,\,\mathsf{yy}|-\,\,\mathsf{xxx}\,q_2\,\,\mathsf{yyy}\,\,|-\,\,\mathsf{xx}\,q_2\,\,\mathsf{xyyy}\,\,|-\,\,\mathsf{xxx}\,q_0\,\,\mathsf{yyy}\,\,|-\,\,\mathsf{xxx}\,q_2\,\,\mathsf{yyy}\,\,|-\,\,\mathsf{xxx}\,q_2\,\,\mathsf{xyyy}\,\,|-\,\,\mathsf{xxx}\,q_0\,\,\mathsf{yyy}\,|-\,\,\mathsf{xxx}\,q_0\,\,\mathsf{yyy}\,\,|-\,\,\mathsf{xxx}\,q_0\,\,\mathsf{yyy}\,\,|-\,\,\mathsf{xxx}$

 $xxxy q_3 yy |- xxxyy q_3 y |- xxxyyy q_3 |- xxxyyy q_4$

Portanto a string é aceita pela linguagem

(c) 00111

Resposta:

 q_0 00111|- x q_1 0111 |- x0 q_1 111 |- x q_2 0y11 |- q_2 x0y11 |- x q_0 0y11 |- xx q_1 y11 |- xxy q_1 11 |- xx q_2 yy1 |- xx q_0 yy1 |- xxy q_3 y1 |- xxyy q_3 1

Como não foi atingido um estado de aceitação, a string não pertence à linguagem

1. Considere M a máquina de Turing definida por:

	В	а	b	С
q0	(q1,B,R)			
q ₁	(q ₂ ,B,L)	(q ₁ ,a,R)	(q ₁ ,c,R)	(q ₁ ,c,R)
q_2	-	(q ₂ ,c,L)	-	(q ₂ ,b,L)

(a) Faça a computação da string aabca

Resposta:

q0BaabcaB |- Bq1aabcaB |- Baq1abcaB |- Baaq1bcaB |- Baacq1caB |- Baaccaq1B |- Baaccaq1B |- Baaccaq2aB |- Baacq2ccB |- Baaq2cbcB |- Baq2abbcB |- Bq2acbbcB |- q2BccbbccB

(b) Faça a computação da string bcbc

Resposta:

q0BbcbcB |- Bq1bcbB |- Bcq1cbcB |- Bccq1bcB |- Bcccq1B |- Bcccq1B |- Bcccq2cB |- Bccq2cbB |- Bcq2cbbB |- Bq2cbbbB |- g2BbbbbB

(c) Dê o diagrama e transição de M

(d) Descreva o resultado de uma computação de M

Resposta: Troca toda letra *a* pela letra *c* e toda letra *c* pela letra *b*.

3. Construa uma máquina de Turing com alfabeto {a,b} para aceitar cada linguagem a seguir por estado final:

(a)
$$a^{i}b^{j} \setminus i >= 0, j >= i$$

(b) $a^i b^j a^i b^j \setminus i, j > 0$

(c) $a^n b^{2n} \setminus n > 0$

Aula - Semana do Congresso

1. Construa uma TM que tenha como entrada um número N e adicione 1 para este número em binário. Para ser preciso, a fita inicialmente contêm um \$ seguido por N em binário. A cabeça está inicialmente lendo o \$ no estado q0. Sua TM deverá parar com N+1, em binário, gravado na fita, lendo o símbolo mais a esquerda de N+1, no estado qf. Você pode destruir o \$ para criar N+1, se necessário.

Exemplos: q0\$10011 +* \$qf10100 e q0\$11111 +* \$qf100000

(a) Dê o diagrama de transição da sua TM e explique o propósito de cada estado.

Resposta:

Estado	0	1	\$	В
->q0	(q0,0,R)	(q0,1,R)	(q0,\$,R)	(q1,B,L)
q1	(q2,1,R)	(q1,0,L)	(q2,1,R)	-
*q2	-	-	-	-

(b) Mostre a sequência de IDs da sua TM para a seguinte entrada: \$111

Resposta:

2. Construa uma TM sobre o alfabeto {a,b} para realizar as seguintes operações:

(a) Mover a entrada uma célula para a direita (Exemplo: q0BwB ⊢* qfBBwB).

(b) Concatenar uma cópia do reverso de uma string de entrada (Exemplo: q0BwB ⊢* qfBwwrB).

(c) Apagar os "b"s de uma entrada (Exemplo: q0BbabaababB ⊢* \$qfBaaaaB).

