National Institute of Technology, Durgapur Department of Electrical Engineering

Experiment No: 1

MEASUREMENT OF POWER IN SINGLE-PHASE CIRCUIT BY THREE-VOLTMETER METHOD AND THREE-AMMETER METHOD

Objective:

- (i) To measure the single-phase power in a single phase a.c. circuit by using three voltmeters.
- (ii) To measure the single-phase power in a single phase a.c. circuit by using three ammeters.

Apparatus Required: It consists of following instruments

Sr No	Instrument Name	Specification	Quantity	Makers Name

Theory

Power measurement in Single phase a.c. circuit by using three voltmeters

Power consumed by load= P=V2I cos Ø

From the phasor diagram we can write,

$$V_3^2 = V_1^2 + V_2^2 + 2$$
. V_1 . $V_2 \cos \Theta$

Power factor, $\cos \Theta = (V_3^2 - V_1^2 - V_2^2)/2$. V_1 . V_2

 $I=V_1/R$

Now,

 $P_{calculated} = V_2 I \cos \emptyset = V_2 (V_1/R) \cos \emptyset$

=
$$(V_1 V_2/R) ((V_3^2 - V_1^2 - V_2^2)/2. V_1. V_2) = (1/2R) * (V_3^2 - V_1^2 - V_2^2)$$

From the above equation it can observed that, the power and power factor in an a.c circuit can be measured by using 3-single phase voltmeters, instead of a wattmeter.

Percentage Error = (Pcalculated-Wattemter Reading) / Wattemter Reading

Single ph

Phasor diagram of the above circuit.

Power consumed by load= $P=VI_3 \cos \Theta$

From the phasor diagram we can write,

$$I_1^2 = I_2^2 + I_3^2 + 2.I_2.I_3 \cos \emptyset$$

Power factor, $\cos \emptyset = (I_1^2 - I_2^2 - I_3^2)/2.I_2.I_3$

$$I_2=V/R$$

Now,

P_{calculated} =VI₃ cos Ø= I₂R I₃ cos Ø

= R
$$I_2 I_3 ((I_1^2 - I_2^2 - I_3^2)/2.I_2.I_3) = (R/2) * (I_1^2 - I_2^2 - I_3^2)$$

From the above equation it can observed that, the power and power factor in an a.c circuit can be measured by using 3-single phase ammeters, instead of a wattmeter.

 $Percentage\ Error = (P_{calculated}\text{-}Wattemter\ Reading})\ /\ Wattemter\ Reading$

Phasor diagram of the above circuit.

Procedure:

Three-Voltmeter Method

- 1. Make connections according to circuit diagram.
- 2. Measure the value of R and record it in the observation table.
- 3. Observe V_1 , V_2 and V_3 for a given load and record these in the observation table. Calculate the power and power factor for the given load.
- 4. Change the load resistance R, measure it (after disconnecting the voltmeter V_2) and record its value in the observation table.
- 5. Take another set of observation of V_1 , V_2 and V_3 , calculate the power and power factor and record these in the observation table.
- 6. Take at least three sets of observations for three different values of R and calculate the power and power factor in each case. Take mean of the calculated values of power and power factor and record in the table.

Three-Ammeter Method

- 1. Make connections according to circuit diagram.
- 2. Measure the value of R and record it in the observation table.
- 3. Observe I_1 , I_2 and I_3 for a given load and record these in the observation table. Calculate the power and power factor for the given load.
- 4. Change the load resistance R, measure it (after disconnecting the Circuit) and record its value in the observation table.
- 5. Take at least three sets of observations for three different values of R and calculate the power and power factor in each case. Take mean of the calculated values of power and power factor and record in the table.

Experimental Results:

<u>Table1:</u> Three-Voltmeter Method

Sl No	R	V_1	V_2	V_3	Power	p.f	Mean	
	(ohm)	(Volt)	(Volt)	(Volt)	(Watt)		P	p.f

<u>Table1:</u> Three-Ammeter Method

Sl No	R	I_1	I_2	I_3	Power	p.f	Mean	
	(ohm)	(Amp)	(Amp)	(Amp)	(Watt)		P	p.f

Suggested Reading:

1. Electrical Measurement & Measuring Instrument by E.W.Golding