Xina 钱代小菊花解毒大力丸 (考研数学一二三完整版)

编者 Kira 张翀

微博 @Kira 言而信 公众号 @Kira 考研数学 淘宝 @Kira 考研周边小铺

编者简介:

Kira, 原名张翀, 长在山东烟台,本科上海交通大学数学系,2016 届考研上海交通大学应用统计(数三英一)416分,《Kira 高数葵花宝典》系列笔记编者,考研心态&方法论微博博主。

现研究生在读,兼任上海新东方考研数学主讲教师。

2017 年底开设"考研概统醒脑抢分班"网络课,半个月累计招生约 2000 人,课堂评分全五星,有效地帮助了在概统泥潭里挣扎的凉凉们瞬间上岸。

正在不断努力帮助同学们发现数学有趣的、不那么困难、能一语道破天机的一面,清清爽爽自信满满地战胜考研数学。

《Kira 线代小菊花解毒大力丸》使用说明

1. 《Kira 线代小菊花丸》内含三丸,依次是——筑基第一丸行列式&矩阵、重磅第二丸解方程组&向量、满分第三丸特征值特征向量&二次型,其中每丸包含两篇,每篇包含两个主题——必备常识/做题根基、解题套路。

在"必备常识/做题根基"主题下有三个模块——

- 1) 术语(主要概念):囊括了解决本丸问题所需的全部概念定义,并给出生动解释;
- 2) 必会公式定理:囊括了解决本丸问题所需的全部公式定理、并给出生动解释;
- 3) 必考解题套路:这个不是每篇都有的,只有必考的重大的计算套路才有,我在目录中描述为"求 XXXX 的成熟手法"

每个"解题套路"主题下再分若干种题型,是我根据历年真题和典型例题的考查方式 精心总结的题型分类,非常细致,大家可以根据自己的情况进行有针对性的学习,例 题的选择以历年有代表性的真题为主,同时选取了大量例题作为对真题题型的补充。

- 2. 《Kira 线代小菊花丸》的一大亮点是,我在大部分例题前面都写了一段"Kira 心路历程" ("心路历程"四个字引自狼人杀,跳预言家需要把"心路历程"说到饱满,做题也有心路历程),我会告诉你**拿道题目的时候,我看到了什么,我在想什么,我用什么方式把它做出来**,希望能给你一些参考。此外,与高数和概统相同,我添加了大量"Kira 备注"、"Kira 解析",有些是强调易错点,有些则是在进行口语化阐述,大家可根据自己的需要进行精读和跳读。
- 3. 《Kira 线代小菊花丸》每篇都被拆成了三~四大块,每一块内的知识点和例题相对独立,不同块之间难度深度循序渐进,确保读者在完整吸收好了一块内容后,再进行下一块。 包你学得扎扎实实,清清爽爽。
- 4. 关于阅读顺序, 你可以认为这三丸彼此之间是相对独立的, 而每丸内部联系十分紧密, 读者可以挑选自己认为最薄弱的一丸率先进行。处于强化阶段的同学可以从第三丸开始, 倒着刷回第一丸, 你会发现自己站的视角和高度完全不同, 通透舒服; 零基础的同学建议从第一丸开始, 排着往后刷, 知识都是层层递进的。
- 5. 做线代时,"数感"和"形感"很重要(我自己造的>-<)所谓数感就是快速找到计算量最小的方案,比如行列式计算快速找到对哪行(列)展开,比如对矩阵初等行变换时能快速而恰当地换行、处理、拿到行最简,这需要眼力,也需要大脑快速运转;所谓"形感"即对"虚实""满空"的感觉,矩阵发虚发空,就是不满秩,就是行列式为0,就有向量组相关,向量怎么乘是矩阵,怎么乘是常数,这些都是可以被感知的。
- 6. 很多同学在面对证明题都是道理都懂,也隐约能感知其中的逻辑,但就是下不去笔,为什么?因为你素材积累还不够,换言之,我建议你背诵默写证明题的标准答案,学习答案如何设,如何推,如何把抽象的逻辑用扎实的定理和数学语言叙述出来。像背诵英语和政治那样,数学也是一门语言。
- 7. 任何题型在第一次遇到时不会做,都可以不算是你的错,我们都不是天才,没办法一下

想到专业的方法,但我们可以学,再次见到同一题型就会做了,我还是那句话,"考试考的是经验"。

- 8. 笔记中每一处细节都欢迎指正、提出修改建议和与我进行讨论,我会定期进行修订, 努力让笔记内容更加完善。
- 9. 欢迎关注我的微信公众号Kira考研数学,微博@Kira 言而信 获取我的最新观点、产品和动态,有任何问题和反馈欢迎通过评论与我交流。愿我们都能在这最好的年纪里, 野蛮生长,得偿所愿。

Kira 2017/12/16

Kira 线代小菊花丸 地表最强目录

筑基第一丸——行列式、矩阵 P1

行列式篇

数字型行列式、行列式展开定理 P

- 余子式和代数余子式 P4
- 数字型行列式计算 P8
- 范德蒙行列式计算 P14

抽象型行列式、方阵的行列式 P

■ 利用行列式恒等变形求解抽象行列式 P15

代数余子式求和 P16

矩阵篇

矩阵运算、初等变换 P18

- 初等变换 P21~P22
- 矩阵基本运算、求 Aⁿ P22

可逆矩阵、伴随矩阵 P24

- 计算求逆的成熟手法 P26
- 初等矩阵的逆 P27
- 证明抽象矩阵可逆并求逆矩阵 P28
- 伴随矩阵与逆矩阵综合题 P29
- 抽象行列式综合计算 P30
- 求逆和初等变换综合题 P32

矩阵的秩 P32

■ 利用性质求矩阵的秩 P34

矩阵方程 P35

重磅第二丸——解线性方程组、向量 P37

线性方程组篇

引子——克拉默法则和高斯消元法 P39

齐次线性方程组、基础解系 P40

- 求齐次线性方程组基础解析的成熟手法 P43
- 已知抽象矩阵 A, 求 Ax=0 通解 P46
- 判别 Ax=0 是否有非零解 P49

非齐次线性方程组、解的结构 P51

- 求非齐次线性方程组通解的成熟手法 P52
- 非齐次线性方程组解判定的成熟思路 P54
- 求 AX=B 通解、解的判定 P55
- 己知 AX=B 解的信息, 确定 a 或秩 P59

■ 利用解的结构(基础解析)处理方程组 P61

公共解、同解 P64

- 求公共解的成熟思路 P64
- 同解的充分必要相关命题 P67

克拉默法则 P70

向量篇 P71

线性表出、向量组等价 P72

- 判断能否线性表出 P74
- 判断向量组、矩阵是否等价 P76

线性相关、线性无关 P78

- 相关无关的超级形象化感知 P80
- 判定向量组线性相关性 P82
- 判定矩阵向量的线性相关性 P83
- 证明向量组线性无关 P89

向量组的秩、极大无关组 P92

- 求向量组极大无关组的成熟思路 P94
- 求向量组的秩 P96
- 极大线性无关组与线性相关综合题 P97
- 用极大无关组证明向量组线性表出 P98
- 用列向量组的秩证明矩阵的秩(结合解向量的 秩) P99

向量空间(仅数一)P100

- 求过渡矩阵 P102
- 向量空间维数问题 P102

满分第三丸——特征值特征向量、二次型

特征值、特征向量篇

特征值、特征向量 P105

- 求矩阵特征值特征向量的成熟手法 P107
- 特殊数字型矩阵的特征值特征向量 P110
- 已知特征向量,求A的参数aP112
- 已知 f(A)=0, 求特征值 P113
- 由 AP=PB 确定 A 的特征值、特征向量 P113
- 由 A 的特征值求 f(A)的特征值 P114
- 利用解的结构求 A 的特征值和特征向量 P116

相似、对角化 P116

- 能不能相似对角化关键看这一点 P118
- 相似对角化计算的成熟手法 P119

- 相似的必要条件相关问题 P120
- 判断两矩阵是否相似 P120
- 证明两矩阵相似 P122
- 判断矩阵能否相似对角化 P124
- 利用相似对角化求 A^n P126

实对称矩阵 P127

- 施密特正交化法详解 P127
- 实对称矩阵的正交相似对角化手法 P128 等价、相似、合同 P145
- 利用 A 为实对称阵, 求 A 的一切 P131
- 求实对称抽象矩阵 A 的特征向量 P132
- 不得不说的透露特征值的线索 P133

二次型篇 P134

二次型的标准形、合同 P134

■ 利用正交变换法化二次型为标准形的成熟手

法 P136

- 利用配方法化二次型为标准形的成熟手法 P137
- 利用二次型性质和定义求 a P139
- 已知 A 相似于对角阵,求 A 的一切 P125 给定二次型的秩/特征值····求标准形 P141

二次型的规范形、惯性指数 P143

- 由惯性指数确定参数 a P144
- 已知二次型部分信息,求规范形 P145

正定 P148

- 判别矩阵是否正定 P149
- 已知二次型正定,求参数 a P149
- 证明矩阵为正定矩阵 P150
- 二次型与二次曲面综合题(仅数一)P156

	}
,	
筑基陽-九 ———	
行列式、灰色阵	
and the second of the second o	

₩ KINA 新言: 很遠过我商数笔记的同学都知道.我地极限、不定积分、这部分,求导四块范计算内房单独停出来 稀或 "大王小王",帮助大家提升计算,树立自信. 孩代我似从为没有太明显的大王小王",每一章都是大王小王"(笑),但是根是一定社行到式和知时,仍不需要把行到式和现阵钻到多深多难(因为你会发现后间下毒计算都是用最简单的计算方法),你只需用心地一遍遍地,记了至所有你 龙当记了到公式,性质结论,确保做题的方法是够正确, 寻法是够地闲就 ~ 加油胃 设于 熱尔胃

数字型行列式、行列式局开定理 抽象型行列式,方阵的行列式 计数分子式的计算

▶ 1. 数字型行列式

必备常识/极题很基

[[]本语(主要概念)

的行列式:行列式是一个把水子无表推某种法则*运算得到的算式,得到的教值部行到式的值

(日长城海注:0年顶上,行列式是"算式」,但在线付问题的处理中, 直接认为行列式是一个一数,就好,本部会始终默认这一点,30"平": 淡话间"即完全尼开式<涉及排列、连严等概念行处题用不着,本部不讲,可自行阅读教材。)

孝例———— 某数表。2 → 确定的二阶行列式 ad-bc → 并记作 12 d 行为: 6 行列心区,MENER , 机从ANUPIT 为1年。) 注意 只有几时方阵 才有行列式 (有同管穿3×4 块阵 10)我 地仍求行列式… 安方 [:::] ?

(3) 分子於 Mij: 到去 6 行了到剩下的加了行到於 (4) 代数分子於 Aij: C-1) 附 Mij, 即於 Mij 新添了亚质号 (6+) 为分数 添一号,计为偶数添十号,如 A4=-M4, A2=M22) [注意] 分子於 Aij 和代数分子於都是数:!! 不要看到大写字母 | 初以为是矩阵,看 Aij 就像 1 tu不得 3 和大矩阵,链, | 它们 专员 行列式 見数 更

今/ kira 助记:如何记年"Mij-杂子式-Mij" "Arj-代数东子式-(-1)"/Arj ① A是 Algebraic的循写,所以涉及"代数"两字用A; ② 化数价数 就是"多岸3-个数"(胡桃!),所以多岸5~1)"

 四级高性质定理 (加度)加入的行列式格开定理(相集)

它kina看注:0所有行到式用展开定理一定可以成功求出值来用的犯据行到式特点,从10秒到10小时不等……000克。

一步骤: <1>把第一行中的数一个个弯曲来,再乘对加京3六 Mij 一颗(-1)竹不含)>>>海项前添"十"或"一",比如"2"在1行2列, 则添 (-1)竹=-1 负号,添亚页-定是正页交错的(但含项 不定证页交错);>>>多项全部相力D.

③护师行(刘)尼开的决策,原则是抓 0最多的行(刘)尼升,因为尼开式出0最多,计算量最小。

推化:

- a. 当 j+kci, K= 132, ···, n) 和 有 air Aki+aiz Akz t···+ain Akn=0
- b.当过k(j,k=1,b,···,n)时有GijAx+GijAxx+···+GijAnx=0 时kina解读:AijAml和3aj所在行(到),MTW第;行和第j到 1 取值和Aij 毫无干积,即使把超介第i行预掉,Aij也不会改变 1 所以,比如:

対于 3×3 行列式 (as ar as) 光本
1 azı azz 053
an Azi+ an Azi+ ans Azi (注 aij Azi 自2行不同, 1电到是一一对证的)
则本质上的有个对第二行序开 1 矢壁 Air 在中的了!!!) TO
佛二行原来的3/7数 an, an an What 都为an, an ans.
RP (*)式安顶是对她下行到式掘第≥到路开:
an an ans
an are any
后面会学到"两行相同,则行到式为o",所以(+)式的值为o

(一行列式限升定理在含有"多处行"或多参到"的行列和推广 十分有效, 序章重息即是掌握利闭基本性顶和限升定理计算 简单行列式/AI的值,建议大家不要太关注、资的性状"行列式和 水值, 非考研重点) (2)基本远算性质(部分需借助矩阵概念,后面洋说) 例 131 = 13年 13旅行到) (i) $|A^{T}| = |A|$ (砂Kira看注:国此行到我中行和到是厚价的,各种性质把 "行旅戏列的鬼成之) 的将行列式任一两行成两列及振冠星行列式受多面器一部 特别地,老有网行(列)值相同,行列式为。例1引=0 (111) 将行列式的某一行(列)乘上;行列式值变力原来上倍例符号 特别地,某行例)元素全如,行列式为。 特别地,两行到流影对应成比例,行到成为。例约=0 (iv) 其行所有元素都是两数之和, 刚可写成两个行列式之和 特别地, 其行长信办至各一行,行列式的值不变 (台以上带信手指来,多待,取到成了

- (3) 常用计算公式管
- 的低阶行到式计算从式(主对两代相乘减剧对面残相乘)

| a1 a2 a3 | b1 b2 b3 | = a1 b2 C3 + a2 b3 C4 + 03 b2 C4 - C3 b2 C1 - a2 b2 C3 - a1 b3 C2

(治: 三阿也)用房市定理, 先此二时, 加快计算)

[id kina扫音: 17]主对角线指运条线上的流型设度电流掠""

(17) 上(下)三角行列式的值等于主对角线元素染积。1071=1001.

★重要思想: 未行的式除想尽各种瓜法打洞消。外、还要现入各种办法朝上之南行到式化,主要就这两大法宝!

副对角没行列於:

(11) 范德蒙行列式

日 k//a 解读: ① 特底是: 第一行全是1, 第二行随便写, 第三行用证每一行都是第二行对应元素的 n-1次方②行到划值为所有第二行的" 后闻元素 - 前闻 元素", 直至房屋所有可能.

例如: | xx xx = 176-76)(76-76)(x3-76) - 原理会观察形式

/解题基路/
●常见题型的水如(可先的多对待习过渡)
的刑用行列式降开定理
的利用上门三角行列或
(3) 南) 用范德蒙行到式
[]利用行列式化开定理 [[两条腿-起走]
国利用上(下) > 角行列式
—— 77 真题··································
行列式 スーロローニ
4 3 2 λ+1
(制) 行横着新征程序
(Ykiraw路而程:这个行列式有特色的多,且有大量入和一个组合
老抵把第一到前三行全部消成00将各列处程压加到富列)
解:将第二列的人信加到第一列,就后将第3列的人信加
到第一列地继续,有
$D = \begin{bmatrix} 0 & -1 & 0 & 0 \\ \lambda^2 & \lambda^{-1} & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & \lambda^{-1} & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} -1 & 0 & 0 \\ 0 & \lambda^{-1} & 0 \end{bmatrix}$
0 0 2-1 3 0 2-1
4+3/1 3 2 /41/ 4+3/13/2 3 2 /41/ 3 2 /41/ 3 2 /41/
$=(\lambda^4+\lambda^3+2\lambda^2+3\lambda+4)(-1)^{144}\cdot(-1)^3$
$= \lambda^4 + \lambda^3 + 2\lambda^2 + 3\lambda + 4$
(可kira长.传:①每次加利第一列都会出一个o,自机明确
②也可以直接对第一到(行)尼开, 犯算, 但教科氏且局的结
[] [] [] [] [] [] [] [] [] []
PMDM -X X X X X X
BMDM · -8-

后三行横着着很整齐

(in kira 提示:有大量。如相反数、考虑直接把所有行例)加到某一行的),使某行(列)只有一个排摩元)) 将各到均如到第一到,并振荡一到路升有.

$$D = \begin{vmatrix} \chi + 10 & 2 & 3 & 4 \\ 0 & \chi & 0 & 0 \\ 0 & -\chi & \chi & 0 \\ 0 & 0 & -\chi & \chi \end{vmatrix} = (\chi + 10) \begin{vmatrix} \chi & 0 & 0 \\ -\chi & \chi & 0 \\ 0 & -\chi & \chi \end{vmatrix} = \chi^2 (\chi + 10)$$

[记 king 提示: 这是一种考研热门行到式,即至对用线取一个基础 其他所有元素取一个数"处理方式和上一题相同,所有行政加到 第一行(列),配后地公园数提出去,会有神奇的事份主要 整个行列式将化出起多口,直接资二角阵 L 后面特征行列式 常用)]

角:把每行加至第一行,提取公园式 a+6cn-1) 有201-1),有201-1) 0+6cn-1) 0+6cn-1)

= (a+b(n-1)) | $\frac{1}{6}$ |

() kina 总信:这是种最远当略的就熟的行列式,这种干损物,如 | ta = ta = in | 即只要每行(例)和一样, 就考虑所有行(例)全加到第1行(例), 可最终还成专例>相同效果

— 13u > ———	-		
计算行列式 ▷=	a b c a atb atbtc a zatb 3utzbtc a 3atb bat3btc	6+6+c+d 4a+36+2c+d	
的感觉,需用	再慢慢医开;	文有很明确的方向 ② D的各行之间有 这行处理 且必须(中方法预为各行相	"阳绝进"
解: 从第4行十 D= a b a oH a 20 413-30℃ o a	tb, 店门港底 c d s arbic arbtictd rb sarbic 4at3bt2ctd za 6at3btc	11j, A a b c d = 0 a ath ath 0 a zath 3at 0 a 3ath 6a-	btc btc Btc
	b c d a ath ather a a rath a a ath	a b c d o a a+b a+b+c o a 2a+b o o a	$= a^4$
		东30每-行(列)乘1 卸加到第一行(列)	
-131)4 4 M1153)51	1030	. =	
Likira提示: 化简目标是上	(或下)三角行	以介"一下一,1K 列介"一下一,1K 列介,利用3.3.49) う对第一行

解用第一行减隔的知言信,减喘的的言信,减常四行和幸信,

$$D = \begin{vmatrix} 1 & 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 1 & 0 & 0 & 4 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} - \frac{1}{3} - \frac{1}{4} & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 4 & 0 \end{vmatrix} = -2$$

[扩kink 提示: 这是三对角线行列式, 隔于较难越型, 特点是三对角线完全对称, 可以一直写到 n的 因此通话是递掉证法, 低阶也可通过逐行相加, 把每行加到第一行 等投办进行三角化]

$$\begin{vmatrix}
4 & 3 & 0 & 0 \\
1 & 4 & 3 & 0
\end{vmatrix} = \begin{vmatrix}
0 & -13 - 12 & 0 \\
1 & 4 & 3 & 0
\end{vmatrix} = \begin{vmatrix}
1 & 4 & 3 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & 1 & 4
\end{vmatrix} = \begin{vmatrix}
0 & 0 & 40 & 39 \\
1 & 4 & 3 & 0
\end{vmatrix} = \begin{vmatrix}
1 & 4 & 3 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & 1 & 4
\end{vmatrix} = \begin{vmatrix}
1 & 4 & 3 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & 1 & 4
\end{vmatrix} = |2|$$

$$\begin{vmatrix}
1 & 4 & 3 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & 1 & 4
\end{vmatrix} = |2|$$

(法》(用图开公式直接选择) 拖第一行图开有

部有124=413-312 (分长ira.提示:选择并不是直接打开 煤, 而是超过移顶寻找规律, 一直递推了去找到和口的函数)。 那有 124-D3=3(D3-D3) => D3 - D2 = 31 D2 - D1) FO A-D = |4 3 |-4 = 13-4= => D4 -D3 = 32 (D1-D1)= 34 => D4 = D3 + 34 = D3 +3+34 = D3 +3+34=4+32+33+34=12 (再份-通正经递推(归的法)↓) >> 負題源值 (2008) 是npf托件·记明(A)=Un+1)an 浴 A= (可kiral心路历程:三对角线矩阵,想到对角化或递推 机们对南化相对解琐,导家上,选择是更为轮机陶洁的) <法→>由归纳法(1年为证明题,本题实际上降低3难度,积片 常验证 IAI= LN+1)an是含正确即月) 设入所行到式(A)值为 Dn の当n=1 Bd, D= 2a, D= n+na" TX之 包当n=2时, t2= |20 1 = 302. 四= (17+1) a" 成之. ③ 没nxk时命题正确 当几十时,据第一列陷开得 Dr= an An + an An =20 Dr-1 - a2 Dr-2 (因为太对初,最后,定念受成管线) = Jakak-1 -02(K-1)ak== (KH)ak 协命题证确.*

注:参划学归纳法存例种 0 號证八三月初, 命题延确 学旧内计图路设加KH,命题正确 圆证明 N-K+1 时, 命题150角 O 旋证几日和加加22时命题正确 胤

O假设 NCK时命题正确 粉馍 图证明 几十时命题正确

●如何选择? 答:先拣讨南町命题 和内阶命题的关系 fa=f=+3 (用第一声以) fn=2fn-6fn-2 (用第二次)

〈法〉(化为上之)南阵 (用逐行相)成) [A]=

iD King看注: 邀推公式型行列式米值属于考研近开来最高 难度的求行到我问题曾当思,多数时候我们还是要回归 本质、华荒行到式不是一个我们服务的工具,不要你看到 273 马上混到的不是别的,而是直接=(-1)4.1.1231, 只要 仍看到 248 能议的发现等于。能养成打洞"和"化 上三旬的女子习惯就已经算行列式过关了。毕竟孩什么此 行列式的防且还有矩阵、解方程阻、向量、特征的田野…… 最后来疏通一下特征行列式(第九世有洲解) 品

老 2-3 1 =0 刷の=
-i i \ \ -\ \ i
[一kira根示的征行列式面带很有特色也很巧念,往《两行时间
加加我减一定会有一行的现在因式,且其中一个元为。
如本题 [2-3 ① -] 可见第一行减第三行马上出口
一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
$ \hat{H} \lambda^{-1} = \lambda^{-2} 0 ^{2-\lambda} = \lambda^{-2} 0 ^{-1} $ $ \lambda^{-3} = \lambda^{-2} 0 ^{2-\lambda} = \lambda^{-2} 1 ^{2-\lambda} 1 ^{2-\lambda} = 1 ^{2-\lambda} =$
= (2-2) 1 2-5 2 -1 1 2-4 = (2-2) 2-5 2 1 2-4
1 1 2-4
-Q-2) (2-3)(1-6)=ロ ラハニンラルも、*
(日) 手感,顺滑,一气啊成~)
131利用范德豪行列式
计军行列式 1234
1 2 ³ 3 ³ 4 ⁵ 5 4 3 2 1 .
「它kina心路历程:一看这行列式都长这面)将33(充满3 a")
有远范德蒙,但形式不标准, 柳以先一为《北成桥准形式》
33. 11 > 34 1 > 24 1234 11111
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5432 6666 111 1233343
第15个年的不能报讯 第15-行上第一行。

▶>抽象型行列式

必备常识/做题限基/

II 1公公門顶定理

- ▲ w老A是几所文字阵, Dy /kA/= k*1A1
- ▲ (2) 若AB都見凡所大户阵·网 |AB|=|A11B|
 - (3) 若A是n阶矩阵, (A*1=1A1n-1

(5) 若A是几阶处阵, 入, (江)、2,111)是A的特征值例以后贯入,

的老几阶处阵A和B相似例例到制

17) 没A是加断方阵, B是几断方阵,有

 $\begin{vmatrix} A c \\ O B \end{vmatrix} = |A| |B|$, $\begin{vmatrix} A O \\ C B \end{vmatrix} = |A| |B|$, $\begin{vmatrix} O B \\ A O \end{vmatrix} = (-1)^{mn} |A| |B|$

又称拉鲁拉斯尼升应理(分块阵的上作)二角)

解题意路/

◎ 常见题型化次如【不涉及矩阵性质)

(1) 利用行列式性质恒等变形化的求值

- >> 復願漏稿、U993 松四) ---

先 α, α, α, β, β, π 是 4 作列 可量,且 4 所 行 列 介 |α, α, α, β, |= m, |α, α, β, α, α, β, α, α, β, +β, |= -.

(日KIM 心路历程:现象研求行列式是如何从已知条件变及证首先的冰须换到最后一到,相加得101.02.03.18叶的1万再对换01和03~06.18叶的1万再对换01和03~06.18叶的1万

-1/5-

解: 103, x2,01, β+β2 =-101.02,03, β+β2 (マヨ 京 x1 オロロン) = イロ1,02,03, β1-101,02,03, β2 =-m+101,02, β2.03 = ルーm *
13/18 ——
已知 x,, x2, x3, β, Y均为4得到向量, 及A=(x1, x1, x3, β),
B=(a, a, a, y)、若1A1=3,181=2,1回1A+2B)=
[17/17] 1A+2A = 3x,,302,303,B+2Y =2] 1x,.0x,03,B+2Y
= 27 (x1, x2, x3, \$ + x1, x2, x3, 27)= 27 (A + 2 B)
50
(它KING看注:从IA+2B)的发,向IAI和IBI的具体形式靠拢
常和勤友的处理-庭授消:即某行。r列的公园式上了
以提到行列式外; 书有1 kA1,则有1+A1= K1A1.)
► 2 all * > > + \rangle + \rangle = 1
► 3.1七卷10A3 A3 A
/解與電路/
◎常见题型花次如了
11 已知行列式,安代勒京子式(介子式户和
<u></u>
浸(A)= -> > -> > 元(1) A41 +AR+ A93+ A94
1 1 1 (L) M31 + M32 + M33 + M84
(DK)A(1)路下海: A41+A42+A43+A4X是抵行列成第 4行居开且第4行元熟为1,1,1,1 畅行到成值。用1,11,11 增换宽四行,求行列成即可)
推按陽四行、水行列式即可)

一~ 2 -> 2 推荡网行防护 館: A41 + A42 + A43+ A44+ 为行到到了口; かり、この、故りがこの

PD M21 + M32 + M33 + M34 = A11 - A32 + A33 - A34 步行列式及= -2 2 -2 2 按写3行任于, D=0. 和内式多0

Ukina备注:在它可以在序的成件的存分式的添加了流面数 把州巷与含了方的系数。换进行列式的对应行,再求行列式即有

3 3 3 3 3 5 cm , 計算 至 A j
Os, Osa Osa Osa
Osu Osa Osa Osa
Osu Osa Osa Osa

由于是 Aij=(A11+A12+A13+A14)+(A21+A>>+A>+A>

 $+ (A_{31} + A_{32} + A_{33} + A_{34}) + (A_{41} + A_{42} + A_{43} + A_{44})$ $= A_{11} + A_{12} + A_{13} + A_{14} = \begin{vmatrix} 1 & 1 & 1 \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{34} & a_{42} & a_{43} \end{vmatrix} = \frac{1}{3} (A) = \frac{M}{3}$ $= \frac{1}{3} (A) = \frac{M}{3}$

(i) kina看注: To 3 个 括号可视力 言(3An+3 An+3An+3An)

in kina 解读: 来看具体如例操作, 1971 the A=[si] B=[] 4] 张AB ①先拿出B£爱到,/分别和A的第1/2行元素相乘再相 加.并把得到结果写在C的第一分] AB=[证别型]=[罚型]=[数] 其中(□=1x3+2x(-1)) 后] 3 = 3×3+6×(-1) ②再拿出B的第2列、分别与A的第2行元素相乘再相如, 并把结果写在C的第2分】最没有的=[16][134]=[324] 其它Aman Brus 国理操作、秘形为mas 矩阵 的转置处阵:没A=(aij)是mxn矩阵,发×nxmxè阵 $B = (a_{ji})^{j} = (a_{ji})$ 为久之阵的转置。这个 $B = A^{T}$

[例如A=(123),例AT=(25),即隔门放为隔门。 隔户到受成席行了

-◆於 kina直览训练 — Q= (1,1,1) , 计算 0 和 00T

亡客形成条件反射: 278是一个数 2台2. B和见到问量). 而 287 是一个 10×10 纯牌, "一】"是一个数, 舒服, "11口" 是一个实际,不舒服~. 有觉冒

161分块矩阵: 用水平和垂自的直线将矩阵A分成若于小块, 和A女分块矩阵,考研通篇只管推动下形式:dAB) ● A=(x,,x2,,,xn) (x,是列币量)成A=(p)(p)是行何量) · BMDM ·

▲19、初等处阵:单位处阵正路过一次和博变换所得到的

矩阵形为初等矩阵

★初學矩阵分为以下三种

「心Ein 表换E的常门行(在换E的精门到)

Em=[000]5 [3 (1) 他原局成列观解到

(11) 上了(15) 将正第1行的打造神器1行(将正常)到 处信加至第一到一个注意:行列的记录发的图

在13)= [30] 节对行顺着读: 把国行助引动到到了 它对列取着读: 把首列的引动到到

(iii) Ei(k); 陽;行(到)來 k

▲沉住符号 町、町(K). 町(4)及其对应意义

[2]以春克理HI顶(饼) 熟陈掌挥至汀军安心,顺泊的程度 のかれち始来的边算法例

A+B= B+A , LA+B)+C= A+(B+C)

k(LA)=(KL)A, KLA+B)=KA+KB, LK+L)A=KA+LA (3)转置的透算法例

(A+B) = AT + BT, (kA) = kAT, (AB) = BTAT

[7 加清加到培护、乘讯需要例过来]

(3) 乘法的运算活例(只要不改变左乘后乘,怎么乘都行亡) (AB) C= A(BC), CLA+B) = CA+CB

(A+B) c = AC+BC, (kA)B=ACKB)=K(AB)

[注意以下污论OAB+BA L没有交换律,甚至BA可能不存在)

② AB=0 \$ A=0 或B=0]
· A) 用初肾大阵 P左(左) 乘矩阵A, 其结果PA(AP) 就是
对处阵A1年-次相应的行的变换)
□□ 这个非常历售
teto $\begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ $\stackrel{\triangle}{=}$ $E_{12}(-4) \cdot A = C$
"左行友到"左乘初等阵即对A行变换,在乘则对A列象
E/2 (-4) 表示证明一行的分形如到第二行
所以对A进行的操作是把A第分到一4倍加至第二个
$\Rightarrow (=E_{1}(-4)) A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$
(台也就鬼说,我们不必弄书算矩阵乘法,直接进行
行受换成到受换动和外得到乘积了)
/辩随意路/
●常见是面型信以如下(东巨阵的屯真和等多族会游入每一年,在于

(它king海注: 97月A=0月7 La.p为人惟到问量),有A"=1""A, 其中 1=07月,有以直接作为话的记注图 00万= tr(0月7),其中tr(A) 形为"远",即A主对南线元表之部)
—————————————————————————————————————
し方析〕 由上起といる独注 、 $\sqrt{\alpha} = tr(\alpha \sqrt{3}) = 1 + 1 + 1 = 3$ (ok.) (这本年代2分の原理是当 $\alpha = (a_1, a_2, a_3)$ 、有 $\alpha \sqrt{\alpha} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} a_1^2 & a_1 & a_2 & a_3 \\ a_1 & a_2 & a_3 & a_3 \\ a_2 & a_3 & a_4 & a_3 & a_4 \end{bmatrix} = a_1^2 + a_2^2 I + a_3^2 $
M上为 A=αβT 求An. 再有 [000c]型
第 $A = \begin{bmatrix} 0 & 0 & 0 \\ \frac{3}{4} & 5 & 0 \end{bmatrix}$, $WA^{2} = A^{3} = $
一般律此种的矩阵,在小大幂值一个数 (其它闭眼写0) $A''=0$, h 次为以上者 見 0 例 $B^3= \begin{bmatrix} 0 & 0 & 0 & 24 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 別 $B^3= \begin{bmatrix} 0 & 0 & 0 & 24 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
13112

≥2可逆天色阵、件随矩阵 /必备停识/始题框基/

川水湾(主學概念)

▲(1) 伴随矢时:设在=(aij)是从阶矩阵,行创式 1A1的 每个元素 (aij 面代数分子式 Aij) 所加成如下配处阵.

物为A的将随注阵

· Kira 温馨腹示: ①An An, 是数 見和 bn, Co. 3, 4, 5 并无区别,不要把它们看了下文巨阵了,所以AX仅是个普通的 NXN 天色阵仍已,② A*夏转置排列的罗即 Asi 不是放在 2行1列, 而是1行2列,各10当10里 3③A+的引入月夏为3定义 逆并给做AT的程论16式,因此考试中AT面带R以小题形成 到现(这之式和子不用,主要用,成为AA*A*A=1A1E)

★マゴナン阶矩阵 [acb],田庭义A*=[db] 即"主对用这互独、到对团改变多"是指下的决,有大用里

(A) 可逆矩阵:设A是人阶矩阵,如果存在人阶处阵B 使得 AB=BA=E(单位矢包阵)成之,刚析A是可边际阵 或非奇异矩阵, B是A的逆矩阵 (注意曾定义要求 A. B 均为方阵)

图 1必合定理胜原储

10 若A为可逆矩阵, 刚矩阵A的逆矩阵 唯一, 记为A-1 (3) 几所究的内可逆⇔ IAI+0★ ⇔ FLAX=1 (下部的讲社) ⇒ A= AR…R, A是初野矩阵 ⇒ ATME-

⇒ AT, AT可論

的 关于选处阵的公式。

• $(A^{-1})^{-1} = A$; $(kA)^{-1} = kA^{-1} (k+0)$

· (AB)-1=B-1A-1; (A")-1=(A-1)";

· (A-1) = (AT) = ; |A-1 = |A|;

(4) 关于1年100天产14的公式

▶初写矩阵的违

(·v·其实这个不用算不是计算考验,我新面写漏了的双补无效里里 孔松沙人多沙比一下,因为指常重盘里)

定理 和写知时的通,且其连是同类型和写和阵.

PPO Ei (k) = E; (t) , @Eij (k) = Eij (k) , @Eij = Eij

(日长)不备注:以后看到初写阵不仅塞快速反应过来行到如何初遭变损,还要形算选成的看出是哪个初售阵的多里)

俯题套路

●常见题型治次也下:

- 心证明抽象矩阵可选并求选矩阵
- en利用 P'AP=B末台(初期,第3九特征值洋流)
- (3) A*5AT 结后
- (4) 抽象行列式存合广算。
- in AT与初学多换结合

四江明抽象农产药海并求通安产
[13r] (4
设内阶级阵A淌及Ai-3A+2E=0,江A·A+2E列选并水其选阵
(它 kira(v)路历程:此种题往往客限扩展义变形的A·□=E
⇒□为选;②左端把待证的A和A+2E提出来,并以其为
因式进行因式分解,在端多年的正移到在海里及调整系数
thb A (A-3E) = -2E
理的 图如A编训图的 (多方面E对为)方主持
调整补数 有 A·(-=)(A-3E)=E
⇒ A-1 存在且A-1=-=(A-3E) OK!
解 由A-2A+2E= A·(-号)(A-3E)=モラA-73を且A-7-一記A-3E)
同程 A-3A +2E = (A+2E)(A-5E)+10E+2E=0
> (A+2E)·(-½) (A-5Z)=Z
⇒ (A+2E) 1 存在且为一方A+ 12E. *
没A为A的形件零件,若A3=0,证EtA,E-A-同为可选为管件
1 记:
(它 Kira提示: 反臣阵多项式中的走,就如同我们对flx)配
为时的传教,可以随便写,只要最后把成为"两阵即可)
因为(E-A)(E+A+A²)= E-A³=E
(E+A)(E-A+A²)= E+A³=E %证. &
(亡当脚啦车题方法很多,用特征值也很便捷)
77 夏歇渡珠 (2000)
一
-26- 0-450
· BIIIDIII ·

MJ(ETB)-1 = _

[·DKINN的历程:这种题-庭别底于盘先对关系式 B=1E+A)=1(E-A)化简,往往底纸 (E+B)=加定义]

图 AYSAT结合出题

— >> 复题源(jō (2009数-==))— 没 A. B+月为之间东京阵, A*, B*/为别A. B的许随天产阵, 老 A=≥ 1别=3, 例 分块 天产阵 [常分] 的许阿天产阵为 A. [0 3B*], B. [0 ≥B*]

$$A = \begin{bmatrix} 0 & 3B^* \\ 2A^* & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 2B^* \\ 3A^* & 0 \end{bmatrix}$

$$C. \begin{bmatrix} 0 & 3A^* \\ 2B^* & 0 \end{bmatrix} \qquad D. \begin{bmatrix} 0 & 2A^* \\ 3B^* & 0 \end{bmatrix}$$

[分析]分块的件项没有公式,所以用 A+A=1A1E.

別
$$\begin{bmatrix} 0 & A \end{bmatrix}^* = \begin{bmatrix} 0 & A \end{bmatrix} \begin{bmatrix} 0 & A \end{bmatrix}^{-1} = \begin{bmatrix} 0 & A \end{bmatrix}^{-1} = \begin{bmatrix} 0 & A \end{bmatrix} \begin{bmatrix} 0 & B^{-1} \\ B & 0 \end{bmatrix} = \begin{bmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2|B|B^{-1} \\ 3A^{*} & 0 \end{bmatrix}$$

日かA= ラ[イラップ・网(A-1)*= _ [分析] 老规タE, M版名/広が写 (A-1)*(A-1)=|A-1|E=|A|+

刀負颞海(1996)——

设几阶矩阵 A 有道(172), A+是A的样随处阵, 120)(A+)=-. [分析] 表现还, 100着在成员, - 招通关~

 $(A^*)^*(A^*) = |A^*|E \Rightarrow (A^*)^* = |A^*|(A^*)^{-1} D$ $\nabla A^*A = |A|E \Rightarrow (A^*)^{-1} = |A|$ $(A^*)^*(A^*) = |A|^{n-1} \cdot \frac{A}{|A|} = |A|^{n-2}A. \quad o(C)$

4 抽象行列式原石计算

(多省公式多别题,形成快速反射就好了~)

[分析] 有用的条件就/向话 aij+Aij=0 → aij=-Aij (ij=1)3) → A⁷= -A* (台 我 前 固 搖 (图 包 A* 是 转置,这 了 式 3 万 元 不来 60 同 管 建 ix 取 2 (aij) = (-Aij) 矩 阵 观察。)

TA IAI= a. An+ a. Ar + a. Ar = - (ai + ai + ai) + 0.

[过 king解读: -aij=Aij=降而公关等交流后由平方数组成》

所以只电话阵A中存在非廖元、1必有1A1+0、四于Aij=Aij
型电话养敏感,度、形成的配]

——>>項題源係(≥0/0 数二三)—— 设A,B为3阶矩阵,且1A1=3,1B1=≥,[A7+B]=≥, Q1)1A+B-1)=—.

[UKira提示: ①IA+B)本有法则,制乱来; ②利用状》E=AA-1=BB-1 等各种恒等变形加强IABI=IAIIBI 极这种题简值是种等受且路子很多了

设入.日均为的研究时,且1A1=3,1B1=2,A*和B*/分别是A和B的作为成的阵,则1A-1B*-A*B-1=____.

13/115 -

【ロkira提示: 当A*和A*1同时公规的,先似A**A*1,再集中外区】 (第1) 由A*A=1AIE My 1A*1B*-A*B*1 |= | A*1 (2B*1)-(3A*1)B*1|=1-A*B*1 |= (-1)**1 | 1B*1 |= (-1)**1 | ※

(i) 此类问题P.强多注意 1 kA |= k^*(A), |A-1)= 古, |B+1= |B|^{n-1} 写作用

公式和局辖点,多作几道马上就设美键是手不能生息)
[5] A·1 与初势变换活合
一例16————————————————————————————————————
再交换 B的第三行专第3行得单位阵E.论P=[100],
P= [00], MI A= ()
HAPR (B) PPR C) RP (D) RP7
[分析] 先熟.待操作-波初等变换. 有
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A $
(<u></u>
(点油)如止 ;)
▶3.矩阵的状
▶3.5€7年的状
▶3.矩阵的状
→3.矩阵的状 /以角端水/放题根茎/ 用术语(主塞构态) (1) k断3式:在m×n 处阵中行取 k行, k约, 位于这些行例
→3.矩阵的状 /以循端水/放题框基/ / / / / / / / / / / / / / / / / / /
▶3.矩阵的状 (水角屬水/做题框基/ 用术语(主塞概念) (以上阶3式:在m×n 处阵中作取上行,上约,位于这些行到 交叉点上的 允介元素语其原外及阵A配次阵,可怕成 一个人阶行到式,就真为处阵A的一个人阶方式.
→3.矩阵的状 /以循端水/放题框基/ / / / / / / / / / / / / / / / / / /
→35年的形式 / 15分量等的形式 / 15分量等的形式 / 15分量等的形式 / 15分类: 在m×n 5年中1年取 12分,位于这些行到 及及点上的 16分元素 持其原来 5年 10年 10分式 - 17 12分式 , 和其为 5年 15年 16年 16年 16分式 (计 16分割式 , 是为 5年 16年 16年 16年 16年 16年 16年 16年 16年 16年 16
→ 3 矩阵的社 (1) 新篇: / 做题 框基/ (1) 上阶 3式: 在m×n 处阵中作取 上行. 上约, 位于这些行到 这足点上的 是介元素 据某原来处阵 A 取次产,而构成 一下 上阶 行到式, 和具为 矩阵 A 知一个 上阶 3分 (记 k) ra备注: 点阶 3 式是行到式, 是数 图)

(2) 矢色阵 A的秩、矢色阵 A的非麽 3式的最高阶数分析为 灰色阵 A的秩、记为 16A)、双龙 0 灰色碎形为。

且A没有4所多式。ATM人A和联办与

▲以下充电台付度视明白,并内化 (这文配)20年代的的设施 ① r(A)=r ⇔ A中有 r B介3式不为0,1700 r+1 B介3式1×分为0。 ② r(A) < r ←) A的1419 r 所3式不为0。 ② r(A) > r ⇔ A 中有 r 所3式不为0。

图1公会性质定理.

U,老A是A阶矩阵,PLAJEN ⇔ LAJEO ⇔ ARD造 PLA) <N ⇔ LAJEO ⇔ ARD造 (它我们)往往用 PLAJ推断 A是否可适,用AI或化 行阶梯形的指的行 知方式来推断 PLA))

- () Der (Amxn) Er (M,n) () ttxb 3×4久を時,水泉を取る)
- B) r(A)= r(AT) = r(kA) (k+0)
- ▲ (A) / (A+B) & r(A)+r(B)
- ▲ UI + LAB | E min (rLA), r(B))
- ★(b) 若A可逆, (m) ト(AB)=1(B), ト(BA)=1(B)
- ★(7) 茗 AB=0 ⇒ HA)+r(B)≤n (其中Amxx, Bnxs)
- ◆(8)没A是几何东西, Try r(A*)= sn, r(A)=n, r(A)=n-1

[台报言之, ト(A*) 有可能有3种取值, o, 1, n.
且对论的 FIA)也是固定的积 n, n-1, <n-1< td=""></n-1<>
(9) A与B写作⇔r(A)=r(B) (元息)
爾题套路
@常见题型花水如了:
(1) 求矩阵的状况制用积的性质)
(2)利用水头划定处阵等们(在第三九等价、相似合同讲)
では、1 つ 3k 10 11 11 11 11 11 11 11 11 11 11 11 11
[1分析]对A进行初售行变换化为行所扩制的块产件,
$A \sim \begin{bmatrix} 1 & 1 & k \\ 0 & k + 1 & k - 1 \\ 0 & 0 & -(k-1)(k+2) \end{bmatrix} \Rightarrow 4 = 1 \text{ Ard } A \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \Pi$
当 K=-2 bt, / CA)=2,
当 k=-2 且 k=1 led, r(A)=3 &
(Ukina看注: 水任意,处阵的状,用印下阶定义太麻烦,
一般不采用而是用初写行变顶化为行户广场形,业心行
行物即为此.)
设 Q. B为3作到何量, 这阵A=OUT+BBT,其中OT, BT分别
是 α, β 的 转置, 分配用:
J> 7× +(A) ≤ 2.

[Kirk解读:到入秋下,我们对何如即的甜醉便可以不限于"数"的"籽阵"层面而是更进步地, 大假则写, 露肠:指饮这一点:利用 r(AB) ≤ Min (r(A), r(B))即至.

取以下(BOT) ≤),抑脓来解决更多问题。]

迎: 因为α. β为3值到向量,例 ααT和ββT有p是3P扩充的 且 rlααT) ≤1, rlββT)≤1 ⇒ rlA)= r(ααT+ββT) ≤ r(ααT)+ r(ββT)≤2 *

[ina解析]看到AB根相实联系不写式。

AB=Em → FLAB)=M < mim (rLA), rLB))

WE TLA), METLB)

A是 M×n 文色内4, B是 N×m 大色内

→ M>r(A), M>r(B)

> r(A): r(B)=m

► 4. 矩阵方程(即含有未知矩阵的流星) (日即利用页色阵左张石张)

授 A= [0 33] , AX = A+2X, 水X

(i) kira 解析: te X1下为单独因式提取出来)
的: IA AX = A+2X = (A-2E)X=A ·因女A-2E可為
解: 由AX=A+2X = (A-2E)X=A。因为A-2E可适。 => X= (A-2E) TA 种用文色等來法傳出即可(點)
7,7-9,70,71
(シリンタン・男ンかる教育なるなってあれてると
(t) kina 看注:当入的永敬矩阵不可适时,不能力永适
矩阵,此时我们将AX=B中X和B按到分块,将
$A[X, X_2,, X_n] = [\beta_1,, \beta_n], 求确 bei 议 t 技 方线 [且,$
ALX, X2,…, Xn]=[R1,…, Bn], 求解此线时为线阻, 即为我们接了开塞度点得可知主于知识,考研大规
1.45度点 ()
·
· · · · · · · · · · · · · · · · · · ·

	,
- 7. HA	
重務第二九 ———	
Z 0 10	
,	
知られなる計2p 行号	
解找N生方程组. 何量.	
, , , , , , , , , , , , , , , , , , , ,	
mononimontonida il il iliana secono con mononimonimonimoni con mononimoni con il il respectivo con contrato mononimonimoni con contrato de certa de ce	

\$ ***************************************		:
,.	 	
8		
<u>.</u>	 	
	-	

@ Kira 前言:

- ·解弦性为程组社线化中分量非常重,每年考第一通线代大腿、等实上,线代这一学科本身就是为的解较性方程组而生物、何量是线代中最抽象的部分,也是重测点。
- 矩阵, 解放性流程组和何量知识点, 然底交往, 是较代 考察的真正例以与高潮, 建议读者学习本权时一气呵成, 将战性流程组和何量的一概会及相及轻换充分融合贯通

3分性方程狙編

齐次致胜为程组、基础解系 非济次较胜为程组、解的结构 加劣解、同解 克拉默治则

▶ 0. 刻子

一例 1

用克拉默试例 求解 7 列 方程 $\begin{cases} \chi_1 - \chi_2 - \chi_3 = 2 \\ 2\chi_1 - \chi_2 - 3\chi_3 = 1 \end{cases}$ (体隔最后作的 $\frac{1}{3}$ $\frac{1}{3}$

(它 km 总话。) 由例 1, 克拉默法则求解席多次求行到入值, 计算太融版, 不够发进 = 0=; ② 只针对方程介数: 产办数 介数"情形 (即系数知序A)必须为nxn方阵, 有局限性; ③ 考研中考查较少, 隔不重安知识点。)

用高斯消元法(对线附流程组初等变换)确加流程组,

領事:
$$\{\chi_1 - \chi_2 - \chi_3 = 2\}$$
 $\{\chi_1 - \chi_1 - \chi_3 = 2\}$ $\{\chi_2 - \chi_3 - \chi_4 - \chi_5 = 2\}$ $\{\chi_2 - \chi_3 = -3\}$ $\{\chi_2 - \chi_3 = -3\}$ $\{\chi_3 - \chi_4 - \chi_5 - \chi_5 = -6\}$

[中水水总传:①商期消充证即对方避阻进行初等变振,但常以下进:的将一排整常数水乘到方避两端;的将一种混开信加到另一方程上;的方班的方程位置)最后将方程阻化成"分阶水"(由①8岁),对方程作初售设施得到的新致性方程阻与原方程同解;②高其所消元法可求解任意形式方程组,具有通闭性,明显优于克拉默法则。③如果在上述消元过程中,不写出来知着又水,不、水,则消元过程如下:

$$\begin{bmatrix}
1 & -1 & -1 & 2 \\
2 & -1 & -3 & 1 \\
3 & 2 & -5 & 0
\end{bmatrix}
\xrightarrow{f_2 - 2f_1}
\begin{bmatrix}
1 & -1 & -1 & 2 \\
0 & 1 & -1 & -3 \\
0 & 5 & -2 & -6
\end{bmatrix}
\xrightarrow{f_2 - 2f_1}
\begin{bmatrix}
1 & -1 & -1 & 2 \\
0 & 1 & -1 & -3 \\
0 & 5 & -2 & -6
\end{bmatrix}
\xrightarrow{f_2 - 2f_1}
\begin{bmatrix}
1 & -1 & -1 & 2 \\
0 & 1 & -1 & -3 \\
0 & 0 & 1 & 3
\end{bmatrix}$$

(其中LAb) 称为增广阵) 则本版上是对增广阵LAb)进行初等变换、投系闭和等变换法本质上是对增广矩阵(非济次),系数矩阵(济次) 进行和跨行变换并判断解。

▶1. 齐次线性方程组. 基础解系

的看像很/做题限基/

(1) 齐次方程祖:方程祖(anxi+anxx+111+anxx=b)

加了方程,几个对外量的线性方程组(其中20,000) 办和数,m为方档的广数,b,,,b,为岸线顶)

地界常数顶的=b2====bn=0则称该方程组为齐次致H生 方程进.

12) 教教汉的年:A= an an an 水子为该方程组的教教 an an an xin

(3) 基础解系:设作,小小儿是Ax-o的解何量,杂①介,….介t 没时生无失.@ Ax-0的任-阿量和可由 7,,..., n+线时生意出 则孙力,····nt是AX=0的-汀基础解系

[注 济次伐性方程组AX=0的基础解系中间量不数为 A-7(A);

▲②由极大无关阻的付生质·Az=o的门道, n-MA)个线付生无关 的解都是 AT = 0 的基础解系]

(i) kina 猫注 此处涉及"线性无关""线性表出"市本人 无关准,当何量概念、读者可能合何量的讲解进行理解, 此队尽露直观理解为处阵[ŋ,...,ŋ+]到满秋,即循水的刻, 接下来人家只要跟住我的节奏,会计算力,八月就可以了一)

(4) 齐次方程进的逾解:如耳川…川·是齐次方程组Ax=0的一组

是新尔克程组Ax=o的通解

[注: 即 AX=o的基础解系如线性表示Ax=o的任一解]

国必合定理性质图

10 第次该性方程阻解的制定 [已 Kira 解读 ② 该性方程组的解的情况合为3种 — 无解、有唯一解、有无穷多醉(没蜡,与解存在时,不是 唯一,就是无伤到② 齐次钱性与程组的性质非常也,

时一,就是无历分包开次线性与程组的性质非解放,它一定有解、只常分泌= … = 2n=0(天生自带厚解),因此只需研究解是否唯一,即有无非逻辑(解唯一取下有逻辑;解不唯一(有无历多解)即存在非逻辑。]

● 齐次线H生方程组(anixi+··+anixin=o 有非逻辑)

⇔ KLA)<凡(即"A的秩<米XD数了数")

↔ A=1(a1,111) 加到向量成时相关 ◆在何量探讨

的 当m=n时, IAI=0

[推记: 当 m<n (方程/7 数<未知数/数例) ⇒ Ax=01x有准0解]

(日Km 备注: 0 页见,A有非磨解 ⇔ A的到不满积; ② 当方程阻(系数矩阵)长得很"扁",即 A的到多于行,以有非磨解。)

● 齐次线性方程组Ax=o R有逻辑

(⇒) A=(×1,...,×n)的间量无关 ← 在"向量"探讨

€> トCA)=凡二A的列数(列稿限)

台 当m=n时, |A) ≠0

(亡) 图 KM 提示:方程组解的制定-质学扎实,这里学不好,

压回向量相关无关也完蛋了…)
图1x考计算套路(+仓重要)
〈和此处面条路大湖级了城中的诗话带我们死飞》>
▶ 求齐次议性方程组的基础附系/面解
一例3(先彻底折分步骤,五治标准烙束 2)
秋下到齐次方程组的基础解系并含d通解
(x1+7x2+7x3- x4=0
${3x_1+6x_2-x_3-3x_4=0}$
\$x1+10x2+x3-5x4=0
解:「stepin 把新数矩阵化力"行最简纯阵"比能行变换)
$A = \begin{bmatrix} 1 & 2 & 1 & -1 \\ 2 & 6 & -1 & -3 \\ 5 & 10 & 1 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & -4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(它 kiro看注:此处我们将A化为3行最简纯阵,每实上
只需把A的其中上到地方[3][3][3][3][6][4](A)),当题,
在阵幕呈视所稀型. 这些型B=[=100]→[100] ok!
清迈闭你的超强观察力和花话计算力,以最快速逐攻~)
②自由变量 n-r(A) 个
Step 2 确质自由变量的广始水上ruA)及为自由受量的利值
の 自由改量行数为 ルート CA)=4-2=2, RP基础研系向量个数为2
②在行所梯形 [□] > □ □ □ 見主変量,剩下的 ② ● 是自由变量。
[[]。]。] 是自由设量。
0 2 B Q
My 基础附于 7,=(,1,0)
$\eta_{>}=$ $($ $)^{7}$
所以基础附予 7,=(, , , 。) 7 ル= (, , , , , , , , , , , , , , , , , ,

Step4 写出齐次线性为程组的顶解

所以方程组Ax=0面解为k, (-2.1,0,0) T+ kz (1,0,01) K, kz 为任意实数

(亡 Kira 追加-131):阿加岛(20的通南发 & KL-1,1,0,0)T 人为作的安建了

►MT完整理的创3的标准答案(卷件) h-r(A) = 4-2=2 J. 基础解系介=(-2,1,0,0)T, M=(1,0,0,1)7

口当思,,有时化行最简很麻烦,而用逐渐消乱钻出下往上 求解则非常方便▲

求 Ax=o 的基础解补,其中A= 3-1-1

A=[3-1] → [1-62] 化到此步发现 -17-5] * 不易处理为行最简,那直接从下往上求解

h-r(A)= 3-2=

10 Kira 101路下程1日1775-573=0, 图型直接72=5,73=17最快 1 41入第一行 X-6×5+≥X17=0 →X=-4. 金雕直接看出~排焊板板

· 基础解系 7/= (-4,5,17)

/ 舒斯 秦路/
◎常见题型位次如了:
山之外A和信息,我AX=OF的面解;
(2) 划划Ax=o的解的情况(发育非爱解);
(3) 已知解的情况(是否有非蹩种)/面解、确定A
[] 已知A的意息,对Ax=0的面解
() 当A 旅途时承逾酹的方法已详细讲过,此处再介绍几种
A较为抽象时的题型 把握原则型敌酶系件行量个表
カルートLA);色寻找并利用tis AB=O(B列向最近提供解)))
没A= (x1, x2, x3, x4) 是4时处阵, A+为A的样理文的阵,
老(1,0,1,0)T是方程AX=0的一个基础解系,则A*X=0的
1 基础解系分为()
(A) (X1, X2) (B) (X1, O2 (C) (X1, X2, O3 (D) (X1, X3, X4
(in kina lu的标题) 其配解系(1.0.1.0) 直接代进A200
コ 以与以相关、排版Ac > 图 由基础解系仅含一个何量
FMm 4-r(A)=1 ⇒ r(A)=3 ⇒ r(A*)=1 ⇒ 4-r(A*)=3
Axx =o 的基础解系含于无关问量,选DiO由A*A=JAIE=o
新以A的到回蒙地放在中文的面解)
[分析] 见心路而程"。(注:此处图制3 产的形块相关结论
和 rca*)= {n·老rca)=n,1的题为1以信于孩子
1, 港r(A)=1-1
lo, 若 ruaven-1

一例5一次A是A阶矩阵,积入(A)=A-1 以老矩阵A先行元款之和均为D,则AX二节酒解是___。 (2) 老行列式IA) 的付款分3式A11,70,则为程组Ax=0 的酒解是___

③ 由 AA*=0, 所以A*到何是是AX=0的解, 又A11 +0, 那所求非疼解就敢 A11 断在到咯~

解: 由ルーHA)=ハ-(ハ-ハ=) なみなーの通路を切り、不需当找Aなーの 動一丁非露解部の以了 い由A各行え熱を予める コ A Cハハハハフ = 0、例のり= [:] カ Ax=の もノーソル溶解、田北通解を 人口、ハハハノンT

故(An,An,···,Am)型Axxo的排露解. 因此Axxo的面解为及(An,An,···,Am)"。

(它kina 总结: 片笆n阶碎A不满秩,就有IA)=0. 就有 A*A=0 (A到荷是A*X=0解) 协AA* (A*到何曼

是Ax=0的这俩非常好面的对子,非零解随便用~)
─> 有题源练 (2015 卷b-==) ——
已知三門於西耳A的第一行是(a.b.c). a.b.c不全为零, 经产车
B=[13](上为常数),且AB=0, 范AX=0的酒解。
B=[1 2 3](上为常数),且AB=0, 范AX=0的通解。
[Ti kira W 路劢程、AB To 老朋友了 B的引向是都是A和
的解,又由基础解系的何量介数 N-MA,所以需证证MA)
再从月中和对应数且的到何量用了
确:
(2) 由AB=0 => r(A)+r(B) = 3 : A+0, B+0
23 MA) >1,2 > MB> 1 + 下国逐个河边 MA) 和HB)
157 (1) 光 r(A)=2, r(B)=1 コルニタ 新日能報道(21)(12)(11)
山 ル-r(A)= β-2=1
所以通解为 b. (1,2,3)7 · k为广志常数
(2) (1) 若+(A)=1. +(B)=2 => k #9
由 n-1(A) = }-1=2
阿加通解为 k2(1,23) T+ k3(3,6,长) T, kx k3 对意得数
A-YLA)=2 4·0·B含不公的无关列而是了,你能在自己来
a か
日 CA)=1日本 11分 Caib.C) - MMX A373 (20K) BO1CN 「a b c] 有 ax=-bx-cx, 1日 aib. c から** 0
不妨没 ato 得通解 kg(-岩,1.0)+ kg(-岩,0,1)T
(分据说此题与年平均2分求通解从AB=o和B中含到历度,
(分据说此题当年平均2分求通解从Ab=0和b中等到所度, 国说 n-rua)打转~永远有思路里)

区划别Ax=o的解的情况(是否有非零解)
(> kina 提示: 思路非常单池, 抓出37礼电齐件十一个推论
用"方程数、水沟量数"不即[A]=0"划断有非零解都非虚快)
ラフルリ b
高水线用方程组 {λx,+xz+xz=0, 下有零解,则入龙满足
$\gamma + \lambda \gamma_1 + \gamma_2 = 0$
$\frac{1}{ x_1 + x_2 + x_3 } = 0$
60条17是
解: () 略电别说了,用[A] +0), A = () ~ () = (\lambda - 1) * +0 \lambda \rangle +1
没有矛众谈性的强阻
$\int (1+a) \chi_1 + \chi_2 + \cdots + \chi_n = 0$
hxithxxt··· + (n+a)xn=0
试问 a 为何值时、该新导阻有非零解,并水其通解
解。(图约时第1行)
次 多数 2000 A 1010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
解: (国行加中場) (国行加中場) (国行加中場) (国行加中場) (国行加中場) (コーローローローローローローローローローローローローローローローローローローロ
, , , , , , , , , , , , , , , , , , ,
$= (a+\frac{1}{2}(n+1)n) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & a & \cdots & 0 \end{vmatrix} = (a+\frac{1}{2}(n+1)n)a^{n-1}$
·AX=0有洲廖解 ⇔ a=0 成 a=-≤(n+1)n
D当 A=0 T11117 T17117
A= ?? -? > 0 0 0 0 n-H(A)=n-1
D当 a=0 A= [?? ··· ?] → [] 0 ··· ?] n-H(A)=n-1 F7MA 社体系 カー(-1,1,0,1,0) , カー= (-1,0,1,0,0), カー,(-1,0) T
Ellipsical partialists in a 1875 - 18 18 18 18 18 18 18 18 18 18 18 18 18

[已 大冰湾重心长地说: 闭到较性为程组的知识清澈很浅的, 你对这种履所有的恐惧, 本质上都是来自于求行到式和纯陷行变换的恐惧, 把握住我们第一杠的各种原则, 每一种信目之交可以揭延里]

3 已知解的情况(是否有非廖解)/通解、确定A [城来说去都是n-rcA)...=0=)

$$A \cdot \begin{pmatrix} -2 & 1 & 1 \\ 4 & -2 & -2 \end{pmatrix} \qquad B \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$C. \begin{pmatrix} -2 & 0 & 1 \\ 4 & 0 & -2 \end{pmatrix} \qquad D. \begin{pmatrix} -1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$

[古台下的路历特仪,以元光,初加几个人人)=3-1(A)>2(确)

就再),所以FCA) EI. B於D都語,再刊以而或进去有 是否满足Axin。Mynx选A
是有病及Axo,所以这A·
▶ 2. 非齐次该性方程组、解的结构
心看岸水/松处地基
M 水泥(主客概念)
am. X, +am= Xz+ ···+ Como Xo = bm
世界障基项 b. b., 加不全为的, 机为沙齐汉改附方程组(2) 导出组: 将(计)中的) 军数项改为。,得到的齐汉伐州生产的
组即为原方程但的导出组。 当增于纯许、A=[an ae ··· an be an in an
国的全定理性质的重要
以北方次改性方程组解的划定★
Lis Km解读:方角次线性方程因不同,非角次的解可能
公观分种情况。那无解,有归于解,有无厉多解。(不再关)
廖丽也没有廖丽门
无解 () r(A,b) 4 第3-77年0 66、那時
●升· 矛次改件注方准组Ax=b(有解「无病多种」 トレA)=+(A,b)< n
1/42 22 1 4 5 mm n

121 A2-b解的性质(不要死背!不要死背!不要死背!拿眼看~) (1)如果以及是改性方性组Ax=b的两个角子、刚以一及是Ax=oping (00成话!因为《Ad=b & ,0-&当然有A1d-β)=0,任及数电还看) (j) 如果以是 Ax=b的解, 为是Ax=o的解,则以+为是Az=b的确。 (BD 旅行》因为[Ax=bo ①+②当然有ALX+为)=b.) [日我的的话:是解你就什一代:"代进ATEb清清爽爽~] B) ★ Aπ-b解的话啊. (基本篇识) x对非济水线附为程组Ax=b,老r(A)=r(A)=r目已知引,几~几~~ 是导出阻Ax=·的基础解系, 多, 是Ax=o的其了已知解, 例 AX= b初面解为多。+cin,+…+Cn-nn-r,其中G,…Cn+为行志 (台即"非齐西=特解+齐通"~下面31价绍 神速算法~) 图以为计算套路(十分重要) ▶ 或非矛次钱性方程组的酒解l有矛次功后后这个soealy! >> 頂胍源待、(>eng 数-二三局部)-设A=[1+1] 引=[7] *满及48=3, A3=3, D (它-道)服解AX=b大题) [step]对增于处阵作行受换化为阶梯形(西新办相园) [Step2] 确定解的结构及为自由设量的价值

1-1-(A)= 3-2=1

通解为(,0,)+k,(,,)+

Step3 根据主变量取值,将通解填写完整

特解把电直接从第一行往了抄,不受专

通解为 (0,回,1)T+k(-1,四,-2)T,K,为任意岸数 喜欢解系老规矩, 变色护进来人图

从加到= (-k, k, 1-2k,), k,是任意席数

Lira 维注最后一步就是把超解两排合并起来,考试 建议大家把到具体写出,以便老师给步骤分里)

▶M了完整理出呈现在卷面的标准答东:

1, n-1(A)=3-2=1

得 Ax=3.的面解力(0,0,1)T+以-1,1,-2)T 从而多二(一长,长,1-24)丁、大,影孩,像生

简单面) 由于A=[220],对Ax=5,由增于矩阵权初售

得 Ax= 3: 的通解力 (-1.00) + k(-1.00) + k(0.00)

国的量自战员 ()第2列,因为合第2个生物1

从而多=(-芝上, 人, 人, 人, 人, 为任意, 常数

(KINA海河以上步骤在MX租)幅约, 厚阶上还是通过高斯

清沅洁德水路自由变量赋值,比如由 [1] 得到 {21.+762=0 自由设量 3-2=1个 $\chi_2 + \chi_3 = 1$ 下MM、 $\{\chi_1 + \chi_2 = 0\}$ $\{\chi_1 = 0\}$ $\{\chi_1 = 0\}$ $\{\chi_2 = 0\}$ $\{\chi_3 = 0\}$ $\{\chi_4 = 0\}$ $\{\chi_5 = 0\}$ $\{\chi_$ ▶ 非矛次伐附为程徂解的判定(何时无解、无殇解、唯一解?) ->> 131 8-门地入的值,使《入水十水十水》=1 以无解 ; 內有唯一解 (水, +水水十水)=1 以无解 ; 內有唯一解 (水, +水水十水)=1 ()无路多解 ISTEPIN 对A=(A.b)进行初等行变换化为阶梯和 $\widetilde{A} = \begin{bmatrix}
\lambda & 1 & 1 & 1 \\
1 & \lambda & 1 & \lambda
\end{bmatrix} \rightarrow
\begin{bmatrix}
1 & 1 & \lambda & \lambda^{2} \\
0 & \lambda & 1 & \lambda & \lambda(1-\lambda) \\
0 & 0 & (1-\lambda)(0+\lambda) & (1-\lambda)(\lambda+1)^{2} \\
0 & 0 & \boxed{3}
\end{bmatrix}$ 讨论状不断 Step2)当r(A)<r(A)的元解 最本一列腿乐出来了 (已kira洗白了: ①最后一个元本。,但田最后一个元不为。 当 rla) < rla,b1 那 (1-1)(2+1)=0 且L1-1)(1+1)2 \$0时 元解,此时入二-2 Step37 当r(A)=r(A,b)=n,rd,有脏品解《A满满的》 (已kira洗白了:A满识有唯一解,即A每一分都不能冷化。 配也不能全化0 Pr(A)=3 那从r(A,b)-克得于3 产表。 れい配例 しーストレメナリンと 当 FCA)=TLA,b)=3 87 LI-A)(>+A)+O 存入+1且入+2 [Step4] 当 FCA)=FCA, b)< 机时有形移输(ASCF的) (日KINA说自了:到到巴最后一约全打成的

当rlA)=r(A, b) c> 即 (1-1)(2+11)=0且(1-11)(1+1)=0 ⇒入=1 此間由 A→[111111] 米将通解す

(1,0,0)T+从(-1,1,0)T+从(-1,0,1)T,从收缴。 (日长1/10万日:现在仍会直接款供与通解了吗?不会和348 项目前面的操作手动成?

解题索路/

》常见题型作次如了:

- 的水AX=B或AX=b(已讲)的通解(与矩阵运算信念)
- (2) AX=B或AX=b(B讲)解的判定并求通解(即结合的)
- (3) 已知AX=B解的意识,确定A.B中的环境数a/A.B的环头(4)利用解的信仰处理抽象方程组

□ 求AX-B的通解(与矩阵还算结合)

[O kina規立: AX=B, B为及巨阵(b, b, m) 事实上为解多介 改计分程 AX=b, , AX=b, , AX=b, ,其中X=(x, ,,,,xn)]

一》真题族游、(2014 数-22 亚)——— 没A=[1-23-4],正为3阶单位知時

2) 水为程组Ax=0的一个基础解系

办主动及AB-E的所有矩阵B

[i k ra lo 路历税: 山送分四种本AX=[;], AX=[;], AX=[;]

如为作为=(-1,2,5,1)T(过程略) 亚考查>T非齐汉线附流程组Ax=[6],Ax=[6],Ax=[6]

由于这三个方形型的系数矩阵相同, 全A=(A;E)作物等行物

$$A = (AiE) = \begin{bmatrix} 1 & -2 & 3 & -4 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 0 & 0 \\ 1 & 2 & 0 & -3 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 3 & -4 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 0 & 0 \\ 0 & 0 & 1 & -3 & | & -1 & 0 \\ 0 & 0 & 1 & -3 & | & -1 & 0 \end{bmatrix}$$

() kira 看注: 研究 AX=B的非常壮观 隔壁对(A(B) 整体 行变振, 写图求解的,再把"["石侧-列列抽份条看,就像 我们求 AX=b 和"许, A.不过来3 子宁 AX=b)

由此得三个方程组为遍解:

$$(2,-1,-1,0)^T + k_1(-1,2,3,1)^T + 月私心门秋码了(6,-3,-4,0)^T + k_2(-1,2,3,1)^T(-1,1,1.0)^T + k_3(-1,2,3,1)^T$$

(甘止)~循注:何个通解下为则向量、坚着排成台)

EL AXIB解的情况的判定

(台km 提示:伦默对(AiB)整体行受换, 相指HA)和 H(A;B)的失态平时见,和维, 作客附四)

当 a 为何值时, 为程AX-B无解, 有唯一解, 有无唇多解? 在有解时, 求解此为程 (in kina lu略而程:双现规矩矩的一道规则,按片部州真职的) 鮪. 对增了矩阵(A·B)进行和等行变换化为所稀积 $\begin{vmatrix} 1 & -1 & -1 & | & 2 & 2 \\ 2 & 0 & 1 & | & 1 & 0 \\ -1 & 1 & 0 & | & -2 & | & -2 & | & -3 & 0 \\ -1 & 1 & 0 & | & -1 & -2 & | & -2 & | & -3 & | & -3 & | & -3 \\ -1 & 1 & 0 & | & -1 & -2 & | & -3 & | &$ ①当ト(A)=r(A,B)=3时,有唯一解.此时 a-1+0且afz+o 即有 at/ll at-2 $(A \cdot B) \to \begin{bmatrix} 1 & 0 & 0 & 1 & \frac{3a}{a+2} \\ 0 & 1 & 0 & 1 & 0 & \frac{-b}{a+2} \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$ →谜侯此行最简 F/m X= [1 20 α+2] 0 α+2 α+2] 再拍到排一起 ①当F(A)=M(A,B)<3时,有无伤多解,此时(a=)+最后行物。 (A·B) - 0 1 1 -1 -1 Ax= b 的海解为 (1,-1,0) + k,(0,-1,1) (注意的 Ax=bz 的海解力 (1,-1,0) + k,(0,-1,1) (k) 和 kz l 所以通解X=[1-k, 1-k],其中k,,长为行流降卷之. 图当+(A)<+(A,B)时元解, 当 a=1 时 +(A)=+(A.B)=2, 不满足;当 a=-2时,(A/B) 1-1-1-1-2 2 有MA)=2 for(A,B)=} Fmy 无触 - >7 真颞痿镬 (1997) — 非并以钱性方程组AX=b中办量了数为n 方能了数为m

1
1
]
2
J
7
) ← n
) ć n
MA)
MA)
) (n T/A) (x) -

图 已知AX=B解的意息活南页AB中参数a/A·B的社 (→ km 提示: 上一部分的铁链集团; 与外列则用解配及义, 代入 Ax=B中、得别关于补参数的方程组) n 頂頭源係 (2010 松-二三) 设A=[2], b=[9], 已知欲性为难阻Ax=b存在29 不同的解 小术》、a 小术方程(用Ax=b和河解 [记上以心路历程:已知有2丁不同解·琥明无厉多下解(因如假-解和无解的情况都被否挥了)到用 FLAJ=F(A,b)<的讨论入和a 又A是39万多阵由1A1=0,马上的入了 解 砂固为方程组AX的为≥「不同解,所以+LA)= トロ)cn. 极 1A1= 1分分分 2010 (A-1) 1 = (A+1)(A-1)2=0 解约入=1 成入=1 柳有 λ=-1, α= 2 Δ> 3 λ=-1, α= -2 PT A= [0 1 0 -1 13] 所以AX=b的通路女 (多,一步,0)7+k(1,0,1)7, 大约境情态

没A=[10], B=[06], 为a,b为河值时,存在较碎C.
使AC-CA-B,并求出轮阵C
[记 K M 解读 作 省 是 处 阵 题 , 本版 是 解 为 程 组 , 你 因 4 阵 我 们 4 个 为 程 是 裙 汤 的 [] , 本题 方 件 [] 。
$\frac{\partial P}{\partial x_1} \begin{bmatrix} x_1 + \alpha x_2 & x_2 + \alpha x_4 \\ x_1 & x_1 \end{bmatrix} - \begin{bmatrix} x_1 + x_2 & \alpha x_1 \\ x_3 + x_4 & \alpha x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & b \end{bmatrix}$
$ \frac{1}{4} \sum_{-\alpha x_1 + x_2 + \alpha x_4 = 1}^{-\alpha x_1 + x_2 + \alpha x_4 = 1} = 0 - a \circ 0 \\ - a \circ a \circ $
$\chi_1 - a\chi_2 = b$
→ 1 0 -1 -1 1
选时得通解放 (1.0,0,0)7+ k,(1,-1,1,0)+k,(1,0,0,1),
k_1 , k_2 为(花底) k_1) k_2 k_2 k_2 , k_2 , k_2 , k_2 k_3 .
(记k冰片店: 起隔于题型"已知Ax=b有解,求a.b和通解")
一例8————————————————————————————————————

[\(\forall k)\) 版 [\(\forall k)\) 的 第一个 [\(\forall k)\) (\(\f

图别用解的结构(基础解充等条件)处理相象方程但(它 kina 提示:此处需用到解的结构和解的性质等知识,是很多同学不舒服的题型,清水家把排码我之前打破的原则:不客批准,具体可题具体对象。)

爾: 四>由HA)=2 => n-r(A)=3-2=1.
FMA AX=0 的面解なん(ハン,-1)」、人が存存告。
又自= M+02+03 => (X,02,03)(!)= β => A(!)= β

由陷	的防机	AX= B的通解X	k(1, 2,-1)	+(1,1,1)T
k*1	花传数.			*

13:19

4阶的内部状(A)=>, 们,们,们是Ax=b的了解同量 其中か、一か、ことし、のろ、一年で、り、十か、ことろ、と、して」で、カスナンカンことにしのらりて Bu Ax=b 的通解

[日Kira小路历程:这种题学到于,首先觉得肯定能作之, 只待我猜加强理、 ria)=> => r-ria)=4-2=2,基础解部之了 方流是厚着An=b,An=b,An=b,An=b,如如取取表一湊"Ax=o"]

解: r(A)=>コハ-+(A)=4->=> F/TM基础開発包含2月元美丽 カーラ (カーカン)+ (カーナル)]= [1,1,2,-3] (W 電彩AX=の 阿解、 保留 国· A7,=b, A7,=b, A7=b MINZ (ACM, - M2) =0

AXI特的解理小小儿 于那自连地们,小小全部3 1万正水洋的凌息

日(カーカン)=の 其中リーカル=[-1,0,3,-4]、カーカ=[1,2,子,0]、 易验证カーかちルール元美 下州以AX=b自可通解o り、+k、(ハール)+k:(ルーリ、) 即[[1,1,2,-3]+ k,[-1,0,3,-4]+ k,[1,2,-3,0]] 从为沧海教

亡kina信信:▲①AM,-凡)=0是解的作质,有直接用,但我更喜欢 这两自己推,一条省去记忆的新城,二来适用于更表活了没

的题目,比如 A(1);+12-2/3)=0就设试作,但我们可以 打张来, 表活应战, 这于不败之地里 @ 解的竹顶- 般以 小题出现, 下于从基础解系见含解何量个基区 N-MA)出发, Ax=0 的解由①中我说的于法自动表面篇为1,-72. 写。

没4元排系次方程阻 Ax=b中 FLA)=3, 已知小小小为其 3个酮,且有 Ŋ= [素], Ŋ=+別=[素] ,求为程趣解

[inkina带证证法的再次实践一下如初端的推动和双色地的 有先还是从n-rua)着手了

解: れート(A)=4-3=1 所以通解可以表示为 kg+7, 其中 3为 Ax=10 的基本解系. 田 Aŋ,=b. Aŋ=b. Aŋ=b. 信信已知条件加加液成 有A (ŋ>+7)3=91)=0 コ (1,2,3,4)-2(2,3,4,5) = -(3,4,5,6) 和 g = (3,4,5,6) 所以通解为 1,+ は, kガト後写数.

> 3. 公务解同解 /必备篇识/1枚题根基/

①术语(海城高)

11)公务解:对于方程组(1)和到>,如果《就是方程组(1)和解, 《世是亚》的解,则形《是方程组(工)和(I)的仍有解。

(2)同解: 对于方指组(工)和(工)如果《是(工)的解,则《1》是(工)的解,例《有《世是(工)的解,例以有《世是(工)的解,则称(工)方面>同解

日以冷庭理性质的

1) 同解的必要条件

Ax=0 5 Bx=0 同静 > F(A)=F(B)

(日King看注:顶部,形局及不同解)

团以公计算金路

► ポAX=O ホルカX=O ある名解

主路方法有:①洛网个方程组{= {= } ← 對定求解即可

②伤两祖基础用部以从以外和别风油

かまゆう Y= x, x, + xxx+ xxx = -4, β, -4, β2

得 21×1+22×+22×+4月+4月=0

方程祖,从向确定偏数,进加确定公务解

及浅門方程往 (21+25+23=0 与方程元+225+23=a-有效剂) (21+225+023=0) (21+425+023=0)

末 a的 值及所有公文解

[Step] 联元元程组AX的和BX=0并对A行步项化阶梯形

口和自动公女解,那为联党的建组

$$(x_1 + x_2 + x_3 = 0)$$

 $(x_1 + 2x_2 + ax_3 = 0)$
 $(x_1 + 4x_2 + ax_3 = 0)$
 $(x_1 + 2x_2 + ax_3 = 0)$
 $(x_1 + 2x_2 + x_3 = a - 1)$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a-1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a-1 & 0 \\ 0 & 3 & a^2-1 & 0 \\ 0 & 1 & 0 & a-1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 1-a \\ 0 & 1 & 0 & 1 & a-1 \\ 0 & 0 & 0 & 1 & a-1 \\ 0 & 0 & 0 & 1 & a-1 \end{pmatrix}$$

[Step 2] 根据原则公共南部谷件讨论并求解

图为③有解,有下(A)=r(A)所以(a-1)(a-2)=0限 a=1 成 a=2

belt 有唯一/万文解 α= (0,1,-1)™

77 真肠痨练(2002)

没4元齐次效附为程阻 (1)为

$$\begin{cases} 2\chi_{1} + 3\chi_{2} - \chi_{3} = 0 \\ \chi_{1} + 2\chi_{2} + \chi_{3} - \chi_{4} = 0 \end{cases}$$

而已知另一十元齐次改胜方程组(亚)的一个基础研系为

V= (2,-1, a+2,1), N= (-1, 2,4, a+8)

D 本方程组(I>的一个基础解系)

四、当人为何值时,方程组(1)与(正)有非零公文解? 化有非零石灰解时, 承出在部非零石东船

(它kira]的路: 公共解问题两条路,第一条联立走不通, 自默想到第二条用两组基础解系,何况第一万已在提示 这样开始了。)[step] 胶集AX=o和 部部的 助基础解系 解: 47 对方程组心的杂类对形对各作初势行变项 有 [2 3 -1 0] → [1 0 -5 3] 11-11B)=4-2=2,例以基础解系为 月=(5,-3,1,0)で、月=(-3,2,0、1)で |Step2 沿出公文解 /、列关ラで表席数的方程但并求解 没 /是<17种<1>的沙葵(欢解)[[] ソニkiβi+kzβz=Liai+lzaz、其中ki、人、不分力の、Li.lz不分力の 有上月·+ k2月2-110、-1202 =0 即 k[-3] + k[-3] - [-1] - [-1] - [-1] =0 得不次为追阻(ID) 5 tk,-3k,-24+1=0 1-3k,+2k+11-21=0 ks - (a+2) L - 4/2 =0 k2-61-60+8) 62=0 对系数矩阵初写变换,存 $C = \begin{bmatrix} 1 & -3 & -2 & 1 \\ -3 & 2 & 1 & -2 \\ 1 & 0 & -a-2 & -4 \\ 0 & 1 & -1 & -a-8 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 0 & -a-2 & -4 \\ 0 & 1 & -1 & -a-8 \\ 0 & 2 & 3a-5 & -14 \\ 0 & -3 & 5648 & 24 \end{bmatrix}$ 】(1)为(I)有排壓/在本解,却 Cx=0有非壓耐 与且仅当 α=1 βσ , ト(C)=2<4, CX=0有非原館, し, 山胆 于是η=6, +6, α=4(2-1,1)7+6, С-1, 2,4,7)7 . h. 小張作也。

(\time kira 备注:这通题有仓的好好性, C→ [0017-7] N-r(c)=2 Mm l, L都是自由受量可取 作被常数,直接 Y= Lox, + Lox soux 来了. 当见 你我解问题 中 l, 和 L 也可能受孕种限定,具体问题具体分析。 the 2007 上一直例题。)

解题套路

@常见题型依次如下:

以话两代性方程组,判有无依核解(E)讲)

- 四洛两孩性流程组,已知有玩农解,非参数及(已讲)
- (3) 同解的充分必要相关命题
- 4) P知同个, 水参数 a.

习同解的充分中期关命题

— >> 真販演练(2003 数-) —

没有矛次线性方程组 Ax20 和 Bx20,其中A. B. 明为m xn Sei阵,现有4个命题

Un若Ax=o解均是BX=o的解,刚张FLA)>FLB)

- 心老HA)>T(B)、例AX的解坍是BX=O的酶.
- (3) 老AX=0与BX=0同解,例积+LA)=r(B)
 - (4) 若NA)=r(B)/N AないちBX=0同時 以上命题中正師的是

A) 10 (2) (B) (1) (B) (C) (P) (P) (P) (B) (4)

[日长ira心路历程:①(1)和的 3为逆部颗、的和(4) 劲逆命题 独杂/片可以推移条件,这道题投机取巧也可以,因为解有公共及集一定是比于大灾强的条件(1)完白了于大小和保证不了),也界回达二、肯定是(1)日);②同解》 N(A)=N(B)(已讲),心用何量、浅性表出证是最好面,也可以直观想想,心说明"A解集口解集"(下部分计)

· BMDM ·

说明B的自由受量更多,能取到A 取不到的两种,可 n-HB)>n-HA) 1. r(B) & r(A). 7 [分析] 的是同解以冤祭件;的(可答答完何量再回来者)设 α...., α.是 Ax-o的基础解系,β,...β及βχ=ο 的基础 解散,因为从一切是和一种解,所以以,…,处以引进 月, 月, い, 月s 13/14表は、又田の、ハ, 04元失、ta有tes 取り t=n-ria) = n-rib)=s ハria)>rib) ハロン ->>真馴瀕练(200 \$ 数三). 已知矛次为程 $\begin{cases} \chi_{1} + 2\chi_{2} + 3\chi_{3} = 0 \\ 2\chi_{1} + 3\chi_{2} + 5\chi_{3} = 0 \end{cases} \qquad \begin{cases} \chi_{1} + b\chi_{2} + c\chi_{3} = 0 \\ 2\chi_{1} + b\chi_{2} + c\chi_{3} = 0 \end{cases} \qquad \begin{cases} \chi_{1} + b\chi_{2} + c\chi_{3} = 0 \\ 2\chi_{1} + b\chi_{2} + c\chi_{3} = 0 \end{cases}$ 同解,求abc的值 [分kirx提示:从除题中的内域读出以下信息量①I·这有 沙爾因为方程数小于未知数广数户为程广数和同也可以 同酶、失键还是军者状、即"有效方程广卷",即使到100个方程, 水为150治,有效方程也只有一个;③证明同解闭剂要系件, 研络Ax-o的解代入BX-o成主,将BX=o的解代入Ax-o也成主"夏 解;)由亚四同解 当下(A)=下(B) <2<3 对机(A)=0 取 | 1 2 3 | = 2-a = 0 => a=2 | 2 3 5 | | 上部心的存在文化符化为 $A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 3 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ N-HA)=1 => k[-1, +, 1] T是(]) 知面解, ki为0

· BMDM ·

— 例12—— 设A是mxn 阶矩阵,证明并次钱性方程组 (2) ATA x=0 与(II) AX =0 同解

[过kina 提示:这是一通非常数学、非常高代的题,考研主要还是计算,而不是硬刚证明;就本题而言,证明同解于两件身必摘定,一、没以是公的解,证代入企成定;二没以是亚和解证代入企成定;二没以是亚和解证代入企成定;二没以是亚和解证代入企成之;

证: 由耳又是正面解,例AX = 0 层积,ATAX = 0 → 2是四面解 (日上)和备注: 0 制度来1200 矩阵都是0) 田界X是江面解,新ATAX = 0, 到p/11 届1120有解 2TA'AX = 0.0=0 即(ATX) (AX) = 0 即11AX11'=0 改AX = 0 → 2是 I面解 万行加入55人还同解,(Ps. 内部11AX11下一部分件), (日本小月区国路:安证《是 AO》的解,就便劲凑AO》。 一酒 ATAO》的 AO IO 只多選,写上欧洲栾彻前进了 地址题处理方外作为经验设主义

▶ 4. 免拉默法师 (克拉默法刚作为一个用于解方握组的非核心知识点,我决定 地仓等到外销讲解(加非行时),我们已经诊了的方涯阻最高效的方法 即局斯消元法, 整套思路成熟且成体系, 再管充在默法 则作为补充即可 /必须落水/始观形是 17 12公性质定理 ·· 到拉默法例: 若几个方程几个并知数的线性方程组 (anx,+ a,zxz+ ... anxn=b, 则为程阻有唯一解 $\chi_{1} = \frac{D_{1}}{|A|}, \quad \chi_{2} = \frac{D_{1}}{|A|}, \quad \chi_{3} = \frac{D_{1}}{|A|}$ $\chi_{1} = \frac{D_{1}}{|A|}, \quad \chi_{2} = \frac{D_{1}}{|A|}, \quad \chi_{3} = \frac{D_{1}}{|A|}$ $\chi_{1} = \frac{D_{1}}{|A|}, \quad \chi_{2} = \frac{D_{1}}{|A|}, \quad \chi_{3} = \frac{D_{1}}{|A|}$ $\chi_{3} = \frac{D_{1}}{|A|}, \quad \chi_{3} = \frac{D_{1}}{|A|}$ $\chi_{4} = \frac{D_{1}}{|A|}, \quad \chi_{4} = \frac{D_{1}}{|A|}$ $\chi_{5} = \frac{D_{1}}{|A|}, \quad \chi_{5} = \frac{D_{1}}{|A|}, \quad \chi_{5} = \frac{D_{1}}{|A|}$ $\chi_{5} = \frac{D_{1}}{|A|}, \quad \chi_{5} = \frac{D_{1}}{|A|}, \quad \chi_{5} = \frac{D_{1}}{|A|}, \quad \chi_{5} = \frac{D_{1}}{|A|}$ $\chi_{5} = \frac{D_{1}}{|A|}, \quad \chi_{5} = \frac{D_{1}}{|A|}, \quad$

(它Di即用1b,...,b,)T对电A第1到旅游,画来行到式)

King 角注: ①克拉默法则在以下题型中起局斯清元法好用()题目中指明求某个对: 泊河吹大量构造Di=0(tk++)(量)和A中景引

相同时)

ア真風源縣[1996]
没名= [1 1 … 1]、
$$X= \begin{bmatrix} x_1 \\ \gamma x_2 \\ \vdots \\ \gamma x_n \end{bmatrix}$$
 , $B= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 其中 $a:+a_1 \in I = 1$ (i.j=1,2,...,n)

则找性为程祖ATX=B的解是_____

() Kira 心略历程: 厚利题第一眼有到范德蒙行列式,心思水 IAI = 可ien (ai-aj) #0 = IATI 直接出了主一解;再看AT有[]到=B,用克拉默法则口算即可)

▶1. 淡性多似、阿量组等价 术语(主要概念) (1)何量: n.丁娄a,,,, an 组成的有序数组 O=[a,...,an] 成 O=[a,...an] 孙为 h往河量 其中前者和为刘何量,后者和为行何量 (Skira 看注的阿曼等成行或列都对的阿姆自成矩阵;) (2) 何量狙: 由多个问型何量(作数相同且和为行何量或例何量) 组成的集合称为何量组 B) 何量近算:没入推问量 N=[a, az, ··· an] , B=[b, bz, ··· bn] · 同量的流 处房= [aitbi, aitbi, ..., antbi]; · 教教何号 la=[ka,,...,kan]; 同量内部(σ.β)= σβ=βσ=a,b,+ a,b,+v,+ a,b,n. H kira 备注:阿量内部本质是网络时相乘,即 腿就是一个女子对应无相乘用相如最后得一个卷文 · 向量的长度(模): ||a||=|vtv=|a+a2+…an

★15 线性表出: 对礼准何量 a as 和 B. 如存社员	数 ki, w. ks
$12 k_1 \alpha_1 + k_2 \alpha_1 + \cdots + k_5 \alpha_5 = \beta$	
则形度是01,100的残性组合,成形的由口1,000	v, /x)H43ay
Dikira 海海·克,…从可以和助的,也可以和助的,	<u> </u>
	rŧ. u
1 0.0x+0·0x+···+0·0x=β也が月前由 α····································	+0
老元记点,…, ks 取间值 作值 ko xit ko xxitks xx	117 1 TZ71
则和为月不能由口,,,,,公钱胜表出人世月三门, 公二	[0],00=[0])
16何量阻害价:设有两个何量阻(I) x1, ~, x5 i之)	3. B. Mas
世界(工)中国ケ何量Q: (i=1,2,~,5)赤アの由田中的何量	
作语也,例初有量组(I)可由何量组(I) 13个性表出。	
如果(1)(工)这两个何量组和从在相线性表出,则初	
担当价	
(1)[对比)矩阵等价圈·老戏阵A张过有限次和	当 设顿
夏利矩阵B. 刷形A与B等价, 设作ANB	
安斯A与B肾们的礼徒科件	•
·A孩子和的写像换化成员	
A⇔B⇔。存在老子初等好户,,Ps.Q,,Q	D D AD O -P
·杨起可选矩的P,以,使PAOSB	FITESTICKT OF TO
	
矩阵A与B 写价的对象判定	
%阵A与B写价⇔A与B同型且rLA)=rlB)	
(i) kira 备注:即同型且积相等多上出处阵等1	Ĩ
A BAD INTE GE	
D1以后定理时顶伸)	
的议性是公的当何条件(紧张行位时为于3里)	
何重月的由何重众心的线性表出	//
□1必念及程形版图 n 议性表面暂价条件(紧宏结仓解为程组) 何量月旬由何量 α, ~ ~ ~ 或线性表出 台 非系次线性方程组 [α, ~ ~ ~] [流]= β有解	民全场合刻找出
	· BMDM·
<u> </u>	empa)

⇔水大(a,,,,, as)=r(a,,,,, as, β) (向量组的状后间况)
/ 新克拉·东 路上/
● 備见见近空行之入七丁:
(1)判断何量组队是一是否(何时)由历量祖《以及代表出
们判断何量(组)能飞(何时)由何量组以心(戌)性表出
(in kina 提示, 其实是一个视科的别 Axeb 解的问题, 将同量是过来
四塘广阵(A.b.,根形在大力是否有解来判断"是否可线性表出") ——>>> 真题演传(2011,数-2=)——
设何量阻 a,=(1,0,1) ^T , a=(0,1,1) ^T , a,=1,3,5) ^T 不能由
万量狙β,=L1,1,1)T,β=(3,4,0)T线附表示。
2> 未 a 15值
亚洲岛岛岛南州山山外线村巷东。
(日上ina心防防理:不能表出的(β、β、β、β、)[炎]=(α、α、α、α、α、α、α、α、α、α、α、α、α、α、α、α、α、α、α、
元解 rlB) <r(b,a)=3 181="0" 3="" td="" 即张出《他们结合后围<=""></r(b,a)=3>
相关为关来分析 OCLIFFIED RP来面到3齐次线HIS 方程且
(0,0,0,0,)[次]=1月,月,月,月) (主意由维起,排弃地产生处理)
链: ①> 图为 [xi, xi, xi)= 1013 =1 +0 附加 xivxx, x3元失 因xi. xx, xx 不能由 8, 8, 8, 表表示, 所加 r(8, 8, 8,)
田山、山、水水地由 B、B、B、B、克克、新加工(B、B、B、B)
$\frac{\partial P}{\partial x} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{3}{3} = $
(日长心看注:此处分方便叙述,每用3线性相关和同量组秩的

何度来做,读者可学完何量用旧来吸收,或使用"白kira小龄历程"中的利益与方式证181=0〉

西向量组β,, β, δ) 有方程组Ax=B有解对增了矩阵行变换

ラフ真髄療持(2004 数三)—— Box = (1, 2, 0)^T, ας = (1, α+2, -3α)^T, ας = (-1, -b-2, α+2b)^T, β=(1, 3, -3)^T, i式対でα, b方何値か。

五, p不能由从如, 93线性表示

D) B可由以 D、D3 1主- 依性表示、并求公表示入

四月日由以2003线性表示作表示式不唯一并求出表示式

(可长》A1V路70程:哈拉微说3.还能再露屑点吗……这就是上一年Ax-b解的划定的另一套说话)

J> 当 ato, a-b +obo, r(A)=3,Axp有吗的 $(A,\beta) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & -\frac{1}{a} \\ 0 & 1 & 0 & -\frac{1}{a} \\ 0 & 0 & 1 & 0 \end{bmatrix}$ 有唯一辦、聖让A滿科. 砂每-阶梯第-个数丰。 解为X=(+t, d,0)7 お β= (1- a) x1+ tx 有玩多解,最后一行心 今方の,10万 a-b=0,再格削) ト(A)=r(A,B) 也为当 ato, a-b=0 时 $(A,\beta) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & \frac{1}{\alpha} \end{bmatrix}$ $r(A) = r(A,\beta) = 2 < \frac{1}{2}$ Az=β有流多解 (1-t, t, 0)+k(0,1,1)^T 即有 β= (1-t)/α, + (t+k) α + kα, k为1·旅游数. 面由ou, au, as 级性表示, 且不唯一 [2] 何量祖等们、矩阵等们 - ア真顕演练(2013 数-ニミ). 没A.A.C均为几阶矩阵, 港AB=C, 且的通, 例() (A) 矩阵 c 190分间量阻与矩阵 A 100分向量阻挡价 (B) 矩阵C的到所量阻与矩阵A的到阿曼阻等价 (C) 矩阵 c的行阿量阻与矩阵与助行何量阻等们。 D, 矩阵 C的列向量组专矩阵 B的到面量组 塔们 (可Kina心路历程:有到AB=CB上由我们熟悉的记忆写出 又B可适,题目穿到断写价,所以到换一下A和L700/2置 CBT=A, 有(V,,...,Vn)B=(a,...an),这是A由C专出到) [分析] 对 A. c.分别报列分块,记A=101,…, on), C=17,…, /2)

用AB=C·有

$$(\alpha_1, \alpha_2, \dots, \alpha_n) \begin{bmatrix} b_1, & b_1 a & \dots & b_1 n \\ b_2 1 & b_2 2 & \dots & b_2 n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{n_1} & \vdots & \vdots & \vdots & \vdots \\ b_{n_2} & \dots & \vdots & \vdots \\ b_{n_n} & \vdots & \vdots \\ b_{n_n} & \vdots & \vdots & \vdots \\ b_{n_n} & \vdots & \vdots \\$$

即亡的到质量阻耳以A的到质量阻挠附表出。 由 B可逆存 CBT=A,类咖啡,A到阿量组可由(到质量组 线性表出。 选B.

- ツ頂駒渡猿(とのり数四)----

没有何量祖(I): Δ(=(1,012)^T, Δ(=(1,1,3)^T, Δ(=(1,-1,10+2)^T)
和何量祖(I): β(=(1,2,0+3)^T, β(=(2,1,0+6)^T), β(=(2,1,0+4)^T)
以问: 当α为何值时(I)与(I)与(I)写(T? 当α为何值时,(I)与(I)
不写价?

[分长水a/心路历程: 记4]>亚笃价, 即证Ax=B有酶, BX=A世有酶, BP又T (A,B)和(B,A)化析稀的, 讨记解的情况和a的取值 ② 往往有几分现成 亚分型是天然成立和(考试来回让考生算两趟没意义), 当 Alto 网,AX=B1以有明-解;当1例+10, BX=A1必有明-确, 用收运个?]

解·由于行到式 1 β1. β2. β3) = 2 1 1 2 0 = b = 0

以 V a , 三个为程组 x β, + x

以当方程但无解时(四不能由山线性毛出,山与四不等价 比时有 Q+1=0 即 Q=一; 当方程阻有解时(四)可以由(三)线性毛出,山与亚等价, 此时有 Q±一一。 徐上, Q±-1时何重阻(三)和(四等价, Q=-1时(三)(四)不等价, 必

— 1到 13——

设加阶矩阵 A与B 笃竹, 刚以有() 的当 [A]=a Ht,]B]=a. (B)当 [A]=a(a+o) [Ht. 18]=-a.

(C) 当 1A120,1B120 (D)当1A)=0时,1B1=0,

原解析是按"充分条件"思路来给的,即问哪个选项可⇒A与B等价,此时选B

【可以证的路面程:施查A和B是否同型(果然同型、都的下) 只需再检查是含有 riA)=1/B);(A)(C)(D)都可能有(A)=1B)=0, 不满铁则 riA)和riB)=切皆有可能和钴;(B)有riA)=riB)=1/8

但本题应选D, 问 "A≌B⇒?"?显<u>然有r(A)=r(B)</u>

▶ 2. 线性排头、该性无关。当 | A | =0 时,r(A)=r(B) < n

必看第次/1放题根基/

⇒|B|=0 ✓ D正确

A, B, C不能确定 | B | 的值

川水浩(主要城后)

 市场线性无关(线性无关取 k,a,+~+k,a,=0 成到当上级当 k,=k=~=k,=0)

一些能再接现原出的问是且该性相关性是

- ①含的局量的向量组织相关。(的地口以二(1,1,1)了,以三(1,2,3),从三(1,0,0)了有口以+0以+0以二)对样)
- ②食成批例何量的何量组必相关(例如以=(1,2,3),从一(2,4,6)了,从一(3,4,6)了,有 20,一02 for 03 = 0 = 相关)
- (罗文此,大家礼当能说原刊,相关和孩性花出,和(以)如,的)加致都有原力关系》)

(:)那如如何快速判断何是祖是下战性相关呢?请体会,感知并为此以下定理)。

区1的合性顶处理 体分成物 网络

台 勿量用的秩 ト(M, ···, M) < S</p>

1 di, ..., de 1 = 0

(1· n阶为阵就是方便一直接求行刘式)

(记因为到形不可能超过n.到有一列合消成0)

(2) 向量组以, ω, α, 附相关(Δ) ω, ω, α, 中砂有一个向量 是其在m-1个向量的线性组合(注意:亚维反维部成2号) □ ヒル解读、即向量组中公3-17 "可被格代"的多乐 何量(这个何量和以被其余何量级性甚出)多它一个不多,力它一个不少,这样一个缩有余地的同量组,就是线性相关的;及之,如其何量组里任何一个何量者和"不可替代"(每个何量都不能被其它何量线性表出),采明这个何量组没有余地,每年何量和有用,则何量组成性无关。体会感知

的如果何量组成…,从的一个部分组成性相关,那么何量组 α., …, αs 也线性相关,反之也果众,,…, αs无关,可以定的社一部分组都无关。(下价是每一个通行分配)

⇒ King解读:向量组以,…, M的部分组相关,谈明部分组里有多尔向量",这个"多尔向量也在以,…, 以中,所以以,…, 以相关 及之向量组 从,…, 以无关,说明其中每下向量都不可替代, 部分组中的每个万量,就更不可替代了。

部分组化,如水相关,取以为多分为量。 23=21+22,例以在21,22,22,24中免款 (03) 很多条,因为仓化概,可以20,22,24,22+0,24 被找性是出人能感觉出处,"20,4个常地") 整个月,月,月,元关,取部分 组月,月上还是无关,每个何是 都有用,不可插代没有条地

(4)如果以,如,…,如无关,则它的延伸祖[成],[成],…,[成]世形关 反之如果[於],…,[成]相关,则也的循矩组以,…,以相关 (限句题 会连否命题)

io kina 解读: Or, Man 戏H生形关规 无记对它们进行怎样

的花式筏H生租仓、为不能出起,以一个 + ksos=0 (当k,... k,不分的) 那我再添个后缀变成 [常],...,[常]有个即用吗?并不有冒到时后,...,[常]花式筏性租仓也依不來0,因为心,...,众。阿拉京心行来远此不出0,所以[常],....[於]整个世化不出0,所以[常],....[於]程作也比不出0,所配值就有起[常]+…+ks[常]=[8](k1,...,k1,不分的),这当题,建立社点以,+…+ksos=0 之上证,所以
无关于伸充无关 (相关 > 宿坛电相关)

▲的如果 ~, ..., os 线性无关, x, ..., os , β 线性相关, 则 β 同由 Q , , ..., os 线性表出, 且表示法唯一. 【过版题神器图】(备注: 只是充分条件初已成 1) (应 k) x 解: 京: 即如果 s 午 何量无关, 再添一个后新何量推相关, 那么新添那个何量可由 B 来的 s 午 何量线性表出, 且表示法唯一)

Dkira解读:如果的,"多元失的话,它有多个"不可看代"的同意那当七个时,如,如无话是出房,…房的因为七个都不同多下的以只有当身,…房,相关,即其中有"多分何量时,才有可能被更为的同量以,…,然是出

雅心

如果 β,,..., β, 元文, 且它们由x,,..., α, 表出则 s ≤ t,

□□ · 没好~ 以上我格大家较为的家地梳理了相关无关的各种 这理,其实也不多智能够合工的从头到尾背出是最好的(完全可以

办到:就像背政治和专业混和样一)一定一定要信信任金和 感知感受何量组中是否有多分的(可以消失的)何量,当然流 将以式+与做题=建立不假思索的反射"是最好的、管教管 一定不能情趣, 成果与训练量成正比一所有的初篇都是自己和曾

解题底路

- 常见题型论次如了 山 判定具体何量祖的残怕相知性
- 0. 圳定抽象矩阵的浅附相关性.
- 的证明阿量组役性无关

(4)已知 向是狙的相关性, 对本知考数 a/ 别能否议胜表出 (记提示以下题型多有涉及向量阻的形式,读者可先自行领热了节 关于张的内容,以便更好地调解使用张砂做法)

划定其体何量租的伐性相关性

-例14

划员7到历量狙的战性相关性.

(1) $\alpha_1 = [-1, 3, 1]^T$, $\alpha_2 = [2, 1, 0]^T$, $\alpha_3 = [1, 4, 1]^T$ (1) $\beta_1 = [a, 1, b, 0, 0]^T$, $\beta_2 = [c, 0, d, b, 0]$, $\beta_3 = [a, 0, c, 5, 6]^T$

它king 提示: 给其件向量进划找附相关性有以下思路:

- ① 阿曼(x,,,,ας) 网出》表成方阵的(地车题)、哈电战说了 直接水行列式最快
- ②何量矩阵不是方阵的话,由 Ax=0有沙廖醉 台州关 则对101,…0约进行行变换,行满被则成关,不满秩 则相关

爾元[2][21,02,03]= | 3 | 4 = | 0 | 1 | = 0 知相关》

(Tikin看注:不管原题的以,以是行何量还是列向量,为方便起见,别相关估证的人全里起来排成矩阵就可以了。[『广广广门]

四(日本iralo的标题。遇到这种特别我的向量,就应当考底一下关于现象组的定理了,从中把无关的部分会采用)。 因为 1000 ≠0 ⇒ [1.0.0] 、[0.6.0] 、[0.5.1] 无关 → 其识的组 「 a. l. b. 0.0] 、 「C. o. d. 6.0] 、 [a. o. c. 5.6]

→ 其與神祖 [a, 1, b, o, o] T, [c, o, d, 6, o] T, [a, o, c, s, b] T

->真频源弦(20/2 数-二三) ----

设以=10,0,C,)T,从=(0,1,公)T,从=(1,-1,公)T,从=(-1,1,C4) 其中C, C, C, C, C,为作意常数,则下列向量组设性相关的为() (A)从,从,从, (D)从,从,从, (D)从,从,从,

(已以)的心格历程: C,不确定所以先有前两个分量, 雷顿, 马惟何量相关(它们)的二维缩短值以先相关, 因此排陷(201, 201, 203)(201, 201)和(201, 201)和(201, 201, 201)和(201, 201, 201)(201, 201, 201)和(201, 201, 201, 201)和(201, 201, 201, 201)和(201, 201, 201, 201, 201)。

(巴 K M 总信: 已和具体们量组的相关时利定方法是容易知,关键 在3提高观察逐度,一眼有原 Ax to 是否有非的解的能力)

国判员抽象论阵的级胜相到性

液性表本,沒下的品品了=[an, an, as]C
RUB. B2, B3元美会 C1 #0 (別C可色. C-両方失)
(用来处理"色知心,如此无关却)后,后相关性频响自大乐器)
没入,入是我阵A的两个不同特征值,对社的特征同量分分)*
Q1,00,例01,A(U)3次性无关的充壤条件是()
A) A=0 (B). A=to (C) X=0 (D) X=0
[in kin 提示 此处用到特征值的知识,原题隐含以下两下条件
の Aα:λα, Aα三λα ② α、了α、元克, 河河与15的村记]
$[\sqrt{2}\pi/2] [\exists \forall (\alpha, A(\alpha+\alpha_2)) = (\alpha, \lambda, \alpha+\lambda, \alpha_2) = (\alpha, \alpha_2) [(\alpha, \alpha_2)]$
图此(以,A(以+以))无关的充实各行为)。 \
(10 kma备注:此法肯定是我们相关时的首选,逻辑通畅
一气的成界成用逐义、没 k, X, + k, A(X, +Xx)=0, 形有
(b,+),k2)(x,+)2k2(x)=0,] [x,+), (x, x, x
又 k, >0, kz=0 ⇔x1, A(x1+x2)元关⇔(x)Pi有惠解⇔(1公)(○入+0
しい、これなるのではない。
Dikira扫音: 成许有些同学还是不适应用矩阵来流来表示
阿量支系,我们来结了一下~ 针如得 x, + 02 +03, 30, -03, 02写 成矩阵 承洗形式 "先进xi, x, or 抽出来, 写tis"=(x, \und)[]
からない度である。
一种印度到看第一个万量《十分2十分2=1·21+1·25+1·25=121.从20[] 一把(1.1.1)5号第一到,再伦比发推2.3到,得到=(21.20.03)[13]
可以感受一下,手段是非像顺嘴的人里
(再得通同类型题,实际并7进侵1本会处阵相乘法和定公司)
一例15—— 电知几值何量α., α., α., β., β., 证明 3α, τ2α, , α., α., α.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
·证:(污知 安色阵不用被洗了[3,0-5]]=[x1,0x10][3,0-5]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

图为 | 30-5 | =22 = 10 且以, 此以戏性元美,

37772 301+201. 85-15, 45-501 浅州北流

(法: 旋火汛)

校 k, (301+202)+k21020x,)+k3(403-50x,)=0 取(3k-5k3)の1+(2k1+k2)の2+1-k2+4kx)の3=0 国政の、の2、の3元美、有

一利田は多、神でかえ来 助めいれ、水下風

APril ki - kai karo

> 3k-5k3=0 [=+7] 30-5 = 22=0 2k1+k2=0 | 210 -k2+4k3=0 | 0-14

齐次方程进入有零解, k=0, k=0, k=0, k=0.

ж

的的事非视为各件的视力非体属各件

(C) 无/为1×理各件 (D) 既非充分电非1×度各件。

(已知解析者到如今,000的钱性组合自此很大的车相乘车33年)不过作为小题而言,直接取特值就可以种分了)

a. a. 该性无关 是 a. a. a. 我 (18年入り) (元历刊《虚) 洋解: (B. B2)=101+kaz, Ox+lox)=(x,x,ax)[2] €" αιμα, 机类(α, α, α, α, ρ) 道, to r(β, β,)= r[2] = 2 AP aitkor, authoring "=) " Tozito x, x, x, + laz
"=) " Tozito x, x, x, + laz 浅胜无失,但么,么,处我怕相关 (it kina 提示: 对主") "时是两向量元关) 三向量可能相关。 那就强行物造"3了相关何是,其中有两个不相关"即可。) 过对于各向量个数较多的向量组,用矩阵相乘的方法 七块吃力,此时直造龙义和科、并信含相关无关一部列判定定理开处理 - 77 真颞-演练 (2006 巻ターニミ) ― 设以, as, ..., as 均为几准到向量, A是mxn分的车, 不到 进顶亚确的是 (A, 老小…以线性相关, MAXI…A的线性相关 (c) 老 x,..., x, 3文性元矣, 例 Aa, ..., Ax, 线性元矣 过长的10路的程:简言之,这通题在比较 a,…, as 和 Axi.-, Axi 的铁与与的大小关系老孩小的两个,那张大的冰满袄洗 秋秋的不满形,到秋小的也不满秋(不是死背的,养成知,感知) 秩尽能难欲远两种情况;而以,,以作为条件且张大于Aa,...,Ax。 所以这是道"不满祛与不满秘"的题即"相关习相关" 选好了图这段话我写得长~但思考你是很快的)

-131/16 ----

7到命题正确的是()

A.若何量阻以…,众议性相关,例以,可由处,… Os 试附毛亦

B. 弗有不全为0的入,…,入,()技入以,+…+入,以,+入局,+入局,+心外。而成之,阳人人,…,公,线性相关,局,,…,局,线性相关

C. 港場式入口、that +1.+2xx+2, β, +1...+2xβ=01x社 入1:2=…2x时成立,则以+β1, 02+β2, ..., 04+β5成附及

D. 岩口, Qu, ~~100s线性相关,自, ~~月。亦成性相关,则 存在不全为o的卷入1, ~~ 入s 便 A101+~~十分以 = 0 和入1月十一十分是= 0 同时成立.

(日kiralu酚石程:这道读完证到选完. So easy ? A和B 淡白了一问话—"乱气鸳鸯谱",我们谈过相关是至少有 某一个切量"多东"3、那个何量是谁?看不出来,不一定见A的放,

- 77 集動源值 (2004 哲-==) ---

没AB为满足ABTO的任意两个非爱矩阵,例以有()

- (A) A的到何量线性相关,B的行何量组线性相关。
 - (B) A的到向量组成性相关, B的到向量组践性相关,
 - (C) A的行向量组议性相关,B的到向量组议性相关
 - (D) A的行何量组线性相关,后的到何量组线性相关

(T) kind提示。首先要注意一般性,不要用 n 所为阵对论这个问题 事 Amxn, Bns; 自最值接的方法是因此,没吃过猪肉,咱见过 猪跑 分, 物性表出(方程相有醉) 成们是这么拼加 (x1, ..., xn) B=Qustan, A用到向量组,而对于B肯定要 動物过来式 A[影]=Omxc 3 B 比较高级的位效法是用来, AB=o 肯定都不满架,再区分不满的是到 就还是行来到可;

因为B+O所以的现在组队和的Abombin-bis可得的一个相关。 Cirkira 难注者为写成来解析、道理很成白很素朴里) 同理 [an an an Cin][即]=0

(日 K) 确注: 关键词"n", n是A的引和B的行,决定3A 到不满动, B行不满社)

得 Γ(α,...,α,)< n ,α,...,α,是A际到何量 Γ(β,,...,β,)T< n , β,...,β,是B际行问量 银阳到何量相关,B行向量相关 *

(法)设A=(1,0), 是1011) 存品。,但A到何量组相关。 自行何量组相关,只能选A.

图证明何量组试性无关.

(分加水提示:证明成性无关是很数管的一种题型,高雪代数以为题,对于为研存流证明题的考频还是极低的:定义法是题法(可适当待分反证证) 闭延义来证逻辑是非常通顺的,对于广岛) 情识题型,可采用之高洲边的比矩阵相乘等方法)

一1917——— 设A是A阶处阵,从是A作到同量,若Amaxo,在Amaxo,在那同量组 a. Ao, Ao, Man, Amaxi 设性无关。 (口 kina 心路历始: 室,正准无关,知把谁的钱胜组合式摆上。 银估对 kina 和期值具体可题具体分析)

用于A™Q=0 90 A™Q=0, A™Q=0,...
用A™1左乘(*) 两端, 有 kA™2 =0, 因为 A™2 +0; ik;=0 同理用A™2 左乘上式, 有距 kiA™2=0 ·· ks>0 类似可得 k3=0, ··· kn=0 从而 Q AQ, ··· A™2 钱附近x

图 它 kira 锦囊:有 A 0xi=0, A 0y +0 (溶解的题目,用现阵压来, 含得到大量0,从而拿到系数 ki= kx===k,====k=0 (将10xx)-19) 作为品验论注合用。属于准度较大的题)。

它 Kira/小路下避·看到AB+O不更太明显成了1分减速用A压强了) 证:设有一组数从从从从上发行

成身+ k(β+0,)+k,(β+0,)+···+k;(β+0.)+o (x)
N)因 (x,···, 0.) 是 Ax=の記解· スカAxi= o. (i=,,·····+t)
別 (A 左東 (*)) 的流 有 (k+k+k++++++t) AB= o

因为AB + 5 Fmx k+ b+··+ k+=0 (*4)—(得到花论赵祭回代!

▲ JE(xx)1+1×(x), 重新分组压有 (与)115篇!

田为山、一、北是基础解示,他们钱性无关、初以有人的一人人。人人之。 …, 处于 州入(*)有人=0

and the case of a contract of the contract of
田山向量祖民, Bta,,,, Ptat 线性扩发 *
(日 kira 总话: 球长是个漫长的过程, 塞管今不断左乘A,
不断国代已张出的人二0,不断充分利用条件,直到全部上分0,
清鸡以上的名义真掌握,再不断去现中实践)
图已知何量用的相关性、求参数分别能否线性专出
(in kin 提示: 1克思·结合好之前带大家感知过的那的介定理,
根据不同题没尿注处理)
<u></u>
若x=[1,3,4,2] 1,02=[2,1,3,t] · 03=[3,-1,2,0] T
找性相关, lau t=
(它 Kira 1心肠历程: 给具体向量坚着排成为野生物行受项
使人(人),人,人,人)、一种(人)、人人,人,人,人,人,人,人,人,人,人,人,人,人,人,人,人,人,人,
V., X., XI, 否则直接令行列式加强为方便)
(研: 永巻) 年 (ロ、, ロン, ロ3) = [1 2 3] → [1 3 3 2 2 4 3 2 2] → [1 3 3 2 2 2 2 4 3 2 2 2 2 2 2 2 2 2 2 2 2
[4 } 2] [0 0 b-2lt+4]
以, as. as 浅性排放分(xx, as, x=0有非多解.
Ør (01, , 02, 03) < 3 AP 6-2(++4)=0 → t=-1 &
茅甸量组α, β, γ改性无关; α, β, δ改性、相关, M)
(人)以190日日月,7,8钱性巷方。由月次不可由以1,83代性巷方。
(C) 81×月进心民义设性超点。(D) 81分为团以民义设胜超点。
(过 Kiral的路历程: 相关组批无关组号3·78, 战朋口身都不可为 而分省分"(定理5),少直接变0.7, 树以选C.一般初出来3)
而分省有"(及程分),少直接、多0.7,折以选C.一般的心外分
FAMIL NBVAX DOBAX DOBAX DOBA
[分析] (1) 人人大头》 (1) 无关,又以及,多相关, 建了
所以S的由企,及线性表示,所以S为由心的,以改胜基本。

				1.	:	
	76702	源练	. 00.	ω,		
7	E 57	カングロンスは	((7))2	Z 77.7	-)	-
//	ツベ	ベノ・フィルコ		ールス		

没向量组队公众残胜相关、同量组队公众残胜无关。问以公能各组公众、改胜表出了证明不知结论。

(台 kira 心路而程: 这种题目我个人倾向于用相关形象的 定理和定义来的, 对用张相对无感,此处只讲我自己的方法, 大家面以怕蹩其它真躯护学更多方法)

(白大熟练了!这一套真的是太熟练了!例作的流!)

(2) (日本176小路历程: 肯定不能的. 04. 专《礼》, 无关, 06. 又有以顶成以和公, 那么和它们全还是无关)

[顶远] T酸没 x4= k101+ k105 由小设 c1= L02+603, 得 c2=(k,l2+ k2)02+(k,l3+ k3)05 取 x43以由以和03表出,与颞没引值。 因此043转由02和03表出

□ kta 提示: ①不少同学的)这几又情况要注意我们没 k,, k2, k3, l1, l3 的它们都可以\$10 的。这是孩性意思 不是孩性无关,不要走错片极量 ② 及证法处理无法表出时 图的用。

→ 的有量组的秩、极大无关组.

① 龙法(主要概念)

(1)根对线的生无关组在阿量组 (1), (1), (1), (1) 地存在 1个 阿量 (1), (1), (1) 议性无关, 再加进行一个阿量(j=1,2,...,5)阿量阻(xi,, a)2,...(a);, a) 就我性相关,则称心,,心,是何量么,一么的一个 极戏性无关键。

(in kina解读:说的,5/7万量中最有十个不可代格)如不为少, 到了的都多分"可以被精代)

四 何量祖的铁:阿量祖成,成,…, 众的极大钱胜无关祖中 所含何量的个数一部为这个何量组的秩

(注: 零何量组成的何量组,没有极大农性无关组,规税状为。)

-孝例 何量组 x=[1], x=[1], x=[0], x4=[2], x5=[3]中. U、023分时元英、再流了2-05、则0100001110相关 所以以, as是 a, ... 26 部一个顶大元关组 同量组的孩为 2.

(它kira看注:0万瓦要求何量阻的秩,先确定版的关组 ② 凡电存心, 处社, 处,处,就是得多全义它们不再能放这个 向量组退快更多"信息"); B. 湿默, 板大孔头组不唯一, then Q.和Qu也完全可以胜行,担极大无关组包含何量的分数 是恒克的,也就是说,向量组的秩是恒定的)

国以会定理性质

伪递胜》)

≤ r (β,, ..., βs) (i) Kira解读即以,,公,,,,。助于政线性流类组(效为A。)可由 B.s. Bt 的形式线性无关组(设为品)苦也,则有上(Ao)至上(Bo) 和(B,,,,,,,,,)和加大战性和失进仓向量广播以不为于广(x,,,,,),众s) 自然入(月,,,,,,月)不小于八(以)、)这是极大大组的良好

· BWDW ·

进犯加累(I)(I)是两个等价何量组,加下(I)=下(I) (它kina复引所谓等价为量组取的面面或价格也,可由 由工资性表出)

(2) 处阵A的积(A)(即非塞分式的最高阶数) 即借于其红向量组的技,也当于其处向量组的技 有* r(A)=A的行战=A的到战

★初導電振不放電子的時、何量祖的所 (日本地行電狹成列電振動不放電)

· 向量组写介 翠 秋相等

(3) 任一何量祖与自己的极大农性无关祖等价。 图记的何量祖的自己的价格大致性无关祖等价。 ● 售价何量祖的极大无关祖等价。

(4) 何量祖往落,两个极大无关组彻层的何量个数相等

因必会计算套路

▶我们量祖的极大形美组(轻取公对棒吸税)

一的门。 写出了到向量组的形,极大线性无关组,并用极大 线性无关组表示其存向量。

 $\alpha = [2, 1, 4, 3]^T$, $\alpha = [-1, 1, -6, 6]^T$, $\alpha = [-1, -2, 2, -9]^T$ $\alpha = [1, 1, -2, 7]^T$, $\alpha = [2, 4, 4, 9]^T$

解: [Step 1] 将M有向量以到向量形式组成纯阵(坚着多)

切りの5 ニレの、+30x-30xy ※ の い下完整なな上世例題をを理が行答束 (し 见了一個)

解:
$$(\alpha_1, \alpha_1, \alpha_3, \alpha_4, \alpha_5) = \begin{bmatrix} 2 - 1 + 1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 - 6 & 2 & -24 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix}$$

「所以「可量組配が失为。 頂大後出入美祖 $\alpha_1, \alpha_2, \alpha_4$ 成 $\alpha_1, \alpha_3, \alpha_5$ 及 $\alpha_1, \alpha_3, \alpha_4$ 成 $\alpha_1, \alpha_3, \alpha_5$ 不 $\alpha_1, \alpha_3, \alpha_4$ 成 $\alpha_1, \alpha_3, \alpha_5$
$$\frac{1}{2} \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} = (-3) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

有 $\alpha_3 = -\alpha_1 - \alpha_2$, $\alpha_4 = 4\alpha_1 + 3\alpha_2 - 3\alpha_4$ ×

解题度路/

- ●常见题型依次如下(大题考察较少)
- 山水向量组的秩
- 的加大线性无关阻方线性相关结合出题。
- (3) 用极大浅组证明何量组线性专会
- 的 用到向量阻的放证明知阵的秩 (结合解何量的秩)

们亦何是阻的秋

>> 真拠源流(2017巻2-三)-设矩阵A=[[0]], a, D, a, a, 为线性无关的洲到何量

则向量组 Aou, Aou, Aou, 的状态

LUKITON是:我有100种方法和这道题...你也有... 洲道狸、孔有A能求积啊岳,把MA)一求就万事。143 下面我们逻辑于明她来推下一次有的新东西都做过) 解: (Aa, Aa, Aa)=Ala, a, a, b) 国から領面量a, a, a, 元光, Ffm 矩阵(x, a, x,)可逆 引見ト(Aa, Ax, Aa,)=ト(A) マA=[101]→[101]→ r(A)=2⇒r(Ax, Aa, Aa, Aa, Aa)=2.

可 kino 备注: 数学最重要是每一先有理有报" α, , ω, ω, 及 剂 到 列展"这个各种 看 wx 不起 肥, 反则 很关键 P. 有 方阵 才可 递, 只有 c 刃 色 才有" A = BC ⇒ MA) = M(B)", 一环 扣一环。 这 通 题 很 容易 就 可 以 蒙 对, 但如 果 小 每 一 步 都 如 此 有 理 有 据 能 动 行 和 , 我 都 打 包票, 你 1 的 题 将 战 元 不 胜 ?

巨板找付生无关组专线性相关结合出题

→ 項題廣為 (2006 較三四) —— 设四维问量组α= [1+a,1,1,1] T, α= [2,2+a,2,2] T. α= [3,3,3+a,3] T, α4= [4,4,4,4+a] T, 间 a为何值时, α.α.α.α,α4 该性相关7 当α.,α.α.α.α,改性相关的末一下极大 无关组并将其余的量用液体改成性无关组线性表数。

(亡kiralの協劢程:®4/74维问量,犯赖,可以直接写行到介. ②相关⇔Ax→有非廖解⇔HLA)<4 图求版状无关组例做分底,0比)

当a=-10成0时,A=0,01,02,03,04浅性相关 0当a=0时更胜0.为on,02,04的-个极大线性元气组 且05=201,03=301,04=401

の当
$$\alpha = -10$$
 , 対 $A1$ 表が当 対後 校本
$$\begin{bmatrix}
-9 & 2 & 3 & 4 \\
1 & -8 & 3 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
-9 & 2 & 3 & 4 \\
10 & -10 & 0 & 0 \\
1 & 2 & -7 & 4 \\
1 & 2 & 3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
10 & 0 & -10 & 0 \\
10 & 0 & -10 & 0 \\
10 & 0 & -10 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 & 0
\end{bmatrix}$$

图 用加大无关组证明向量组之间的钱性表出

已知何量组(工): 01,02,11,05 方(工): 01,02,11,05,11,11,11,11 相同的秩,证明 月, 月, …月 可以由 d., d., …, d. 孩性表出

(HOKITO W的防程型首先看到 Q,,,,, Qs同时的现在分和工时 说明两何量祖同型,这时我们一切讨论的前提;包括这 一抽象概念展生可以具象化为报大元美进、在西江之间的量 组之间传递,这是我觉得顶头无关狙十分产力的原因。)

证明: 由于(1)和团,有相同的形式,因此它们极大无关组所含 何量个数相同,设处以及以及正是何量组1上的相关线性 元关组, 显然 06, 00, 00, 00, 也是1时的1713时元六 的用量

又用为ト(I)=r(I)=r, 所以以, , , , Qir 电是 11>的 极大线性无关阻,因此的……所有以由(),…, (),以附

取0部可必我限,大概犯到司管面和证明题都是道理

潮情,也能感知其中的逻辑,就是下不去笔,为什么?

因为你没有认真积累素材,换言之,我建议仍强润默写证明题的或程签案,等习答案如何没,如何推进的理解用扎实的觉得和数学语言取述欲,想自己会证明,先谓调默写证明,像谓调英洁作为和情,像对同处治情,不是你的答案是一个话言,你是怎么学会写英语作为的,你就可以愿心学会写证明。 勿第一次遇到证明不会不是你的错。我们都不是天才,巧妙的方法不好思,但我们可以管,再见到类似处题,就会证了。我还是那何话,考试考的是经验。

何用的何是阻的我证明矩阵的我(法分解何事的秩)

(i) kira小路历程:看到AB=0, 当上条件反射的两件事—— ① B的到向量是方程 Az=0的解 ②积 FLA)+ TLB) ≤ N, 1年为 常识论往使用,此题用①⇒②)

证: 对关色阵 B 据到分块, 元 B= [β, β, ..., β,], ..., β,], ..., β,] = [0,0,...,0)

AB=A [β, β, ...,β,] = [Aβ, Aβ, ..., Aβ,] = [0,0,...,0)

可是 Aβ j=0 (j=1,2,...,5)

即 B 的 到 同量 均是 矛 欢 为 程 狙 A x = 10 解 , 由于 方程 狙 A x = 10 解 何量 6 b 元 大 太 Λ - Γ (A) ⇒ Γ (β, β, ...,β,) = Λ - Γ (A)

又 Λ (β, ...,β,)= Γ (B) , Μ π カ ۲ (A) + Γ (B) ≤ Λ.

▶4 阿量穷间 (仅数学-)

必有常识/级题吧基/

图本语(主要概念,)

10 何量后用:设以是人往上面量加入的非定集金、且V对于 同量的加法和数率两种运算封闭 (+)即V中间量 切加法和数率运算得到的新向量仍在V中),则 V 为何量层间. (本质上,何量层间是一个何量组(x,,,x,,))

的新衣服的板组

- (2) 基于阿量空间的极大无关组(本质上基是阿量组(α.......αn)的极大无关组)
- 的伯教:基包括向量的行数(本质上,是ト(水、、、、、、、、、)

(4)生标:设处……如是对主向量空间V的一个基,对于元素XeV. 总有且仅有一组数次,次,…, Xm使X= 2,0,+260x+1…+260x。 Lx, x2, …, 26)7 和为X在基础、从,…, xx 下的发标。

ら、基変板、过渡矩阵 5坐板変板及式、设α,,α,,...,α,, 5 μ,β,...β,和見 n维何量を同 ν 的基,且

$$\begin{cases} \beta_1 = \alpha_1 \alpha_1 + \alpha_1 \alpha_2 + \cdots + \alpha_n \alpha_n \\ \beta_2 = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_2 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 = \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_2 = \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_1 + \cdots + \alpha_n \\ \beta_n = \alpha_1 + \alpha_1 + \alpha_1 + \cdots + \alpha_n = \alpha_$$

$$\begin{array}{cccc}
\overline{AP} & (\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \cdots, \alpha_n) \\
\overline{Color & \alpha_2} & \cdots & \alpha_{2n} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots & \overline{Color & \alpha_{2n}} \\
\overline{Color & \alpha_{2n}} & \cdots &$$

形式基础处别基础各心的的对源环阵 ① 成图形为基设振公式

(已kina看注:(β1,...,βn)号左边,(α1,...,αn)写在边,用(α1,...,αn) 杂钱附表出(民,...,民)和为"基《→基月"百河渡港阵, 逻辑很面顺到写成。

生物变换石式:设《《人及在基础,…,从下的性的》(下)、)、 在基局,…局下的性的力(y,,…,yn)T,且(β,,…,βn)=(x,…,xn)C

16) 亚交基及规范正交基

何量空间的一组基心具其中的向量两两正交、秘形为正交基; 岩亚交基中每个向量和是单位何量,就可其如规范亚交基.

(施密特正文化试数-二三均有要求,在第三九特征值特征问量 部分1年净细洲解)

in kira 提示 考向量空间考的就是概念,所以一定不要混淆 尤其是向量准数和空间准数,例如

αι= [½], α= [0] 是多维河量(分有3个分量)

但由的和处性成的前量后的上(的,的)是2个是7个量层的(形物)

辦题套路/

11) 术迅渡天时

•
四 何量居间准数问题
(3) 向量定间保含大题(例也)2015(20)可后期帽作得习)
[] 建过渡处阵
() 化阿曼阻为矩阵弧法,老朋友~)
——>>>
改α,,α,α,及,往河量信用人3的一组基,闽田基α, 5×2, 支×3
到基础中级,成中级,成中的规范强处阵力。
$(A) \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix} B) \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & 0 & 3 \end{bmatrix} (C) \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{6} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{2} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{2} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{2} \end{bmatrix} (D) \Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} $
(沙kira (心肠历程:「抄题时间红街题时间久系列)
解 $(\alpha_1+\alpha_2, \alpha_2+\alpha_3, \alpha_3+\alpha_1) = (\alpha_1, \frac{1}{2}\alpha_2, \frac{1}{2}\alpha_3)$ ith
先告好[],然后到之观察,填数]
口向量房间往数问题
浴x,=(1,2,-1,0)™, X=(1,1,0,2)™, X=(2,1.1,a)™, 格由
X1.01.03.12成的向量空间的作数为2.则a=
(Y KITAIN酪历程:即人(XI,OX,O3)=2·特曼顿即到进分题)
解: 由何量空间往都是2 ⇒ > (01,02,03)=2
$ \alpha \wedge \alpha \rangle = \alpha \wedge \alpha \rangle $
$(\alpha, \alpha_{\lambda}, \alpha_{5}) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 2 & A \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & A - b \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow 0 \ge 6$

	<u>, 1</u> 77-
	4,24
满分第三九———	
がめ/カ/あシ打 .――――	
Note of the Boundary	
特征值特征向量、二次型	
77-15-107-12	
·	

an Kira前言:

近十年夏题中,本九年年贡献(至少)一道大题和芳干道小题,其地位之的不言加则、毕竟,不过考察的征值、相似对原地、二次型等知识点的同时,也考察与行列对,矩阵,何量和解方程组的熟稔度,可以谈论缩为孩代全部的特许,含定量和高,一道顶十道~

特征值各特征何量得

好征值、特征阿星 相似 A~B, 对审化 A~A 实对称处阵

▶], 特征值,特征何量

必备常水/放题根基/

11) 特征值和特征问量:设A力入断矩阵,老仔在岸数入和非零几往同量《,便Ax=入《,则称入为A的特征值。 《是A的属于入的对征问量。(它king看注:入不-定复实数。)

Dkira海注:時征多项式125-A1年-看是行到成,是"猪", 其实化于3就是我们加多题库用的(2-2)(2+3)形外外上 考失于2的多项式。) [2] 以合定理性质(背)

· (1) 几阶矩阵有几个特征值,任一均征值都有无历多特征历量; 若X1, X2,…,Xn.都是人属于人的特征向量,则点不十一十九分。 也是人属于入的特征向量(上,,…, ks 不全为0)

(已kina看注:即xi...,a)的排的成性组合仍是入知特征何割

★(2) 不同特征值的特征何量议性无关。

★的 A重特征值至多有 K 个 3 以 附 元 关 和 時征 何 量

(它kira看注:①不需要对A加强的处理,高air-定肾于高入i ②式在求IAI中非常作用,当A不满识时,显然 有特征值为O.

★(5) 的f(x)为行為多项式,即f(A)=0⇒ f(x)=0(X为A的)主一。 特证值)

· BMDM ·

例切: ひちの A3+A=の コスキス=のコス=1枚の (if kina看注:fla)=o洗明A的每个入都满足于W=o, 但入不一定能取到于(1)=0的所有犯,以上例为役).分为 特征值面能全分一,可能全分。,也可能有。有一,具体定

根据题中等1年平分析) ★(6)设于(x)为行意活动式,规于(A) x= f(x) x, f(A) x= f(大) x, tb(A+A) x= (X+x) x

★17)指下这个表格 (高频考真题)→

纯碎	Α	kA+E	kΑ	A ^k	A-1	A	P'AP	f(A)
特征值	>	k2+1	kл	λ_{k}	<u> </u>	IA)	λ	fu)
姆亚河尾	X	×	×	×	×	×	Po	< ✓

3阿矩阵A的特征值为1,2,3,求了到矩阵特征值(1)等) OATZE: 3.4,5; OAT: 1, 2, 3; $\emptyset A^{2} + E : |^{2} + 1, |^{2} + 1, |^{2} + 1; \quad \emptyset (A^{3} + E)^{2} = (\frac{6}{1} + 1)^{2}, (\frac{6}{2} + 1)^{2}, (\frac{6}{3} + 1)^{2}$ 其中1A1= 元入; =1x2x3=6 (污污污用!)

设3PTX包存A分对到100百为2,-2,1,B=A-A+E,其中 E为3阿单位对阵,则181=

6年 B=A-A+E向特征值为2-2+1,(-2)-(-2)+1,1-1+1 取Pかる.7.1 :1B1=3×7×1=21 Lira 备注: 由表格中 fla)的特征值为fla) 所以A-A+E的均红值直接写入-A+1就可以地!)

团业为计算查验 ▶ 求知年A的特征值和特征何量 (多为3时矩阵A)

知特征慎与特征何量 来郊野 A= 南年为建 1AE-AI=0得到)特征值.(有路代》,不要动A) (主对用冷变》-aii 其合元全部变号取两一) ABB: 寻找这样的两分例 0个差后消出。如心所补 ②同时你现成比例的2个 含入的礼物42种44 利用成比例,泉断) 再消,个0 →(拆第-行除开) = (1-4) ((1+2)1-3) $= (\lambda - 1)(\lambda - 4)(\lambda + 5) = 0$ 得到轮阵A的特征值是入二,入三4,入三-3 Step2)将每一个入代入(NE-A)X=O求的对应特征阿量 ①当入=1时,由(E-A)X=0,即 倡基础解系: T kira拼作:此处在顶并处理削约行 并直接把最后一行全打成0 X1=(1,1,1)T 大丁中國此处是亦在帝的神平之军,非常的团员原理

-108-

· BMDM ·

世下: 首先,入二是一重限,放入(E-A)>≥(基础解系分多有 一个元美向量;又因为(E-A)X=O以有解的(E-A)<多;所以 HE-A)长能等于2,所以行变换后必然合出一个0行

常性在一开始就直接把和多算《不喜欢的行金写成》 这样处理绝不会影响最终的基础潮流,海到心梗用, 北海省力里

②当入二4时,由(4E-A)X=0

得基础解系∞= 1-4,5,17)T

あ当ハニーろ时,油(-3E-A)X=0

$$\begin{bmatrix}
-4 & -1 & 1 \\
-1 & -1 & -2 \\
3 & -1 & -6
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 2 \\
0 & -4 & -12 \\
0 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}$$

得基础解系 以二(1,一3,1)

[step3] 将基础解除写成特值问量 (即施龙) 所以纯阵A关于特征值1.4.一3的特征何量分别是 kivi, kivi, kivi, 其中 ki. ki, ki 全不为。

/船随套路/

●常见题型伦次如下

- 1. 已知数字型文色阵A, 水A的特证值和特征向是。
- 2、已知A的特征何量, 水A中未知考数Q(反求A)
- 1. 由 flA)=0 水 A的特征值

4 国 A(x,x,x)=(x,x,x)B确定A的特征值,而是

5. 油A的特征值未各种fla>(theb A*+E)的特征值

6. 利用解的结构求 A的特征值和均征阿曼

IT 已知数字型处阵A,或A的特征值和特征同量

计了自我们来有一些特殊软件 A

解:阻(AE-A)= 1 -1 -1 =(A-1)(A-2)(A-3)=0

得人的特征值为入二1,2=2,入,5多

[A 已 kira 总法: 上: 南, 下:南, 双南约至10月到2011直为主对南汶 上的元素~直接1成:1,2,3号]

正.当rlA)=1,即A条行(到)成比例 求矩阵 A= [2] 13 自为特征值与特征何量

解: 田NE-A = | 1-2 -1 -3 | = | 1-2 -1 0 | -4 1-2 -3 A | -4 1-3 A |

$$= \begin{vmatrix} \Lambda - \lambda & -1 & 0 \\ -2\lambda & \Lambda - 11 & 0 \\ -6 & -3 & \Lambda \end{vmatrix} = \lambda |\Lambda^{2} - 13\lambda| = 0.$$

得到矩阵A的特征值为入口的人工之人了一口。

当入=13时,由(13E-A)X=o,RP

$$\begin{bmatrix} 1 & -1 & -3 \\ -4 & 11 & -6 \\ -6 & -3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 7 & -5 \\ -4 & 11 & -6 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 7 & -5 \\ 0 & 3 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

得基础解系(Δ)=[1,2,3] T, 围吡属于λ=13 加特亚际是及,α,

当入=0时,由(0.E-A)X=0 即
$$\begin{bmatrix} -2 & -1 & -3 \\ -4 & -2 & -6 \\ -6 & -3 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

信見が解於 (x=[-1,2,0] , x=[-3,0,2] T 团此隔于入二0的特征阿是为 kixxx kixx (kz. ki 不全为0)

【▲ 大小a的话: 对为)的邻耳A特征值为入=是air, ハンニ 入、ニ・・・ニスハニの、司P.有一个時祖直为truA)(司PA 的主对角元之和),其条心个特征值均为0~ 直接城: 2+2+9,0.0

亚 当A呈 [gab]型,即主对南元一个数其合元一个数 求纯阵A=「122]的全部特征值

图两种底路:

所い、A的特色で植か入ニハニー」、入るこり

所以 B-巨的特征值为 5,-1,-1

国已知A的特征内量,我A中未知参数a(反求A)

(· tra Tip:从完义A a = 入以下手)

$$\begin{bmatrix} 4 & 1 & -2 \\ 1 & 2 & a \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 3+2a \\ 2 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda \\ 2\lambda \end{bmatrix}$$

吸三阶级存A 满足Ax(=ix; (i=1,2/3), 其中到向量 α,= [1,2,2] , α,=[2,-2,1] , α,= [-2,-1,2] ix 水A.

爾:

由Axi=xi,Ax=2x,Ax=3x, xi,x,x,x元美, 所以x,x,x,为则是特征值,2.3的特征何是,有 A[x,x,x]=[x,2x,3x], 由[x,x,x]列连 切A=[xi,2x,3x,][xi,x,x,]]

$$= \begin{bmatrix} 1 & 4 & -b \\ 2 & -4 & -3 \\ 2 & 2 & b \end{bmatrix}, \begin{bmatrix} 1 & 2 & 2 \\ 4 & 2 & -2 & 1 \\ -2 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 0 & -1 \\ 0 & 5 & -2 \\ -2 & -2 & b \end{bmatrix}$$

[b kirals.信: 水出了特征值部分的企同量,直接 利用A [以,从,从) = [k,以, k,以, k,x,] 马是如果]

③由flA)=0求A的特征值(即Prob (10个性质的)
一次真题·黄陈(2010 数-= 6)————————————————————————————————————
则A对目似于()
$A : \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} (B) \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix} (D) \begin{bmatrix} -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$
解: 田A+A=O ラ ハースロ
即的特征值只能取0成一1.
因为A为4户厅实习称阵,P们以A~人(后面讲) 因为rtA)=3,所以A的特征值只能是一一小一,0
选(D)
[i kira 花传: 闭始 fun)=0 > fun)=0 (Problet)的旧译编述
图用A(x), x, x,)= (x, x, x, x, B确定A的特征值,特征同量
(in king Tip:
遇到了固这种题子,不管三七二十一,他从从底上(水水)[2]
1013 1190 - 37. 19 121 12 12 12 12 12 12 12 12 12 12 12 12
>> 負販演拣 (≥008 数- /3) ———
设A为2阶矩阵, XI. XX 的对形元关的2维到阳量,
Axi=0,Axi=2xi+xx,则A的沙漠对征值为
爾: Ala, a,)= (0,20,+0,)= (0,0,1 [0]
0=0·0/1+0·02, 于巴口。0堰 =2·以+0/2、,于巴2·1堰 → 拼放 [0~] 起奔写第1列;[0]
(* Kira 表本: 这震写法非常顺于、我超喜欢一员)

1017
5月12A A 63 好流行自为 O,1 、结【 *
进步,因为B=[02]关于0.1的特征问量分别是(1)和(2)
我据 x) A * (b+AD) () = 0 (!) = AD(!) = 0 P(b) & A A = 0 × 1
P
同理 p-1AP/=)=1·/=) ⇒ AP(=)=1·P(=) 見PA(≥N+ON)=2N+ON
同理 p→Ap(=)=1·(=) ⇒ Ap(=)=1·p(=) 限PA(≥X+0X)=2X+0X 阿加人A关于对于证值0.1的特征问量分别为点X1.710k2(≥X+0X)。
·jkira 备注:
1 以上过程自以解琐,家则当作结论试注意用即可,即
1 当 p-1AP=B时发格B的好证阿曼是X,刚A对处特征阿曼尼
TRA的特征向量是《阅B对处特征向量Pa
(自改规律省,很好样!我有加观感就说注了!)
く法二> 用庭文(ふー気槍)
曲Ax1=0=0×1、A(2x1+x2)=Ax=≥x1+x2
(亡 k)~备注:拿着在边形式往左边抬号里硬填。。。)
知铁阵A和特征值是o示口,特征向量是 kixi升
Rz(ZXi+Xz), k, kz 全不力o. *
厅由A的特征值求各种fiA)的特征值(送分题)
r->>> 真販演债 (2015 数二三)
没分阶轮阵A的特征值为2,-2,1,8=A2-A+E.其中
E为3阿单位矩阵,则行刘式1B)=
确: A的特征值为2,-2,1~> A A+E的对自和值为
2-2+1, (-2)2-(-2)+1, 12-1+1, 東アラ、フ・1
⇒1B]=3×7×1=21 ("~"計構元期~) ※
7 101 -3^ /^1-1 (V " 17 TU 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

>>真题源陈(2003 敬-) 58 A= [3 22] , P= [0 10] , B= PTA*P, 求 B+2E的特征值与特征阿曼,其中A+为A的特础 矩阵, 巨为3阿单位矩阵 所购领阵A和特任直入=7, かこか=1 入和以 当入二7时A的特征阿曼为以二上1,1,1] (过转略) 当入二时特征何量可取为以二口小可以为二口小小门 7 1A1= 7x1x1=7 1. A+的特征值为Ai 即 1,7,7 一志格的 对应特征问量为 x1, x2, x1 · B+2E= PTA*P+2E的特征值为Hz,7+2,7+2图>3,9.9 由日关于党的特征问看是严义 ◆ 表格的 有(B+2E)(PTX)=(1A1+2)(PTX) (Step) 所以 B+2E 头 特征值 吳+2 和特征阿曼及 P*x 求B12届 水得P1=[?67],有 YAMA P-1 100 1 = [1] · BHZ下两于入=3和对直征何量为 k,(0,1,1)7, k,+0. 参加2te,有P'x=(1,+,0),P'x=(-1,-1,1), 小BHIE属于入=9和特征阿尾为 k2 [-1] + k3 [-1] , k2, k3 7 2 30 * (i) King看注:同一特心值的特征可是最级路整合成后或HA 这种钱胜很有形式。)

· BMDM •

(in King 补充: ①本题还可以求出A*和PT,就算~ ② P107 老格大题双题和直接表示使用。 不必证明 利用解的结构求A的特征值和特征同量 Bir A是3PT的好地果非新次线性为程阻AX=b有通 解了b+kn,+kn,z,米A和特征值和特征何量 解(king B上发现分)由解的话机 ← Ax=b 部特丽弘 S A15b)=b A们=O AX=O的简介和可2 (in Axixx似) > {Ab= fb >b是小于的特征问是 A7,=0.7, 7,100元头特征万量.
A7,=0.7, 7,100元头特征万量. > A和特征值是 专,0,0. 特征问是是 k,b, k,n,+k,n, (k,+0, k,,从不分) I.相似(A~B),相似对南化(A~A) 必备停识/1级题限基 □ 水湾 (主要概念) ★·11 相似矩阵:没A和日为加门方阵,如果存在可选矩阵P. 仅PIAP=B则和A与B相似,记为A~B(相似紧饰) (2)相似对面化 (流自3)就是找一个与人相似的对面阵人) 几門的阵荡与对角阵人相似,则称A可以下即双对南 化,况为人一人,并和人是人知神的以亦得的

区1必会定理性质(达到雪钻白纸公外会跌写的水准) ①相似的性质 第一组 (①対 VnPjj 元時 A. 7ji A~A ② A~B ⇒ B~A ③ A~B, B~C ⇒ A~C (Kira 编注 : ⑤\$这~用一 A~A, B~A ⇒ A~ B) ●第二组 AnB ⇒ { ① f(A)nf(B),其中f(x)为多项式+tnAiAnBi+B ② AT ~ BT ←(PTAIPT) = BT) ③ AT ~ BT, 弗A可達(PTAIP=BT) · | 第三阻 A~B → (OIA)=1B| @ FLA)= TLB) (-15/默4介行不行?!) (油值行!!!) ③ INE-AI= INE-BI, 部A和B特征值相同 (O trua)=trua) KINA 届注图 以上结心区过程不成之 经典权例: A= [86], B= [88] A. Bi两及: [A]=[B], 均如頂相同, tr(A)=tr(B) 1月A升PB不作目加以 (r(A) + r(B) 省定A 5B不利的以) ② A~ A (A可对南北)的充电条件和充分条件 ●充室新生(·)远沙河话说并天其实一个意思。满足其中2-即有A-A) ⇒ A有n了该附无关和特征阿冕 A~A ⇒对A的每个方重特征值入i,18个个个 无关特征何量

() M(NE-A)=M

· Kira 海州解释·
也就是说中户界纯许A的特征值为3,3,1耳A八人:
⇒,2里特征值的一定在2了元务特征阿童.
● 3E-A 加入-定是1 (即有2行为0) [6000]
(Kina透露:162题主要用这一何,把多重特征值的AE-A
写出来,可对面化的话,放一定为"九一人的重数"。)
上 = 7
板过来,如果块的车A的特征值为3.3.1.
且之重特征值马有之了无关特征问意。
那子E-A的效果1(即有2行为0)[****]
□ → A ~ A · A 可相似对角化」.
◆p◆ kina 型。
517以,A能方相似于人,关键取决于A的多度特征[
大鬼多重特征值入的人(AE-A)等于几一"人的重要的",
(11年一点,从E-A)行为项压可以得到"入重备"个03了
七四"二重特级值入的(NE-A)失管等可比出了了09
可之即准 A~人,彻完全不必考虑,单特征值(一重特征
国为对于每特征值而言,以上3个充要条件值成之
● 充分条件 「OA有 n.7不同知特征值. ⇒ A~A
IOA有n个不同知特征值。 > A~A
(②A 是实对称矩阵 ⇒ A~人(高频)
③对南阵人的优点:
$\frac{1}{2}$ $\frac{1}$

那求行到式1人1方便,求n次为人个方便,求选入了方便

习以考计算套路

→ 加州对闭化计算, 求入和PP (B为3M-A) step1 求 A和对证值入,,入2,入3 Step2. 求 对证特征问量 α,, α, α, Step3. 页边阵 P= (α, α, α, α, 1 P-AP= (^1, 2, 2, 3)

(记长)不由海流:1月3个特征闪星排成户,3个特征值到市成人,注意入;和以;定对处起来,150户部)

- 为复数演练(2015 卷)-==)-----

液体样
$$A = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix}$$
相似于矩阵 $B = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}$

小水 a. b的值

可, 对可通知阵P,使PAP为对南纯阵

解: 47 由trlA)=tr(B) => 3+a= b+2 0

掛1A1=1B1 ⇒ 2a-3=b ②

瓣绸 a=4, b=5

(日kirang,按:日知A~B求外外参数a和b,两个形的数字的一种常性两个方程,另上调用PIII 我们会数别公式们是数,trla)=trlB)和/AI=1BI算起来最快~彻先考虑)

俯题底路

●常见题型伦次如丁

- 1. 利用相似的必要剂排制的。
- 2. 判断网络阵是否相似;证明两种阵相似;

3. 判断矩阵能后相似双南红。(判断A~A?) 4. 已知A~A。及求A的考查之/求IAI/r(A)…
J. 求An
□利用相侧的1×1电/1×1电/1×1电/1+ □—>> 有题源值 (2016 数-==)———————————————————————————————————
设A.B是有逆矩阵,且A与B相似,到下到信饱销误的是 (A) A75B7相加入 (B) A-15B-1相加入
(C) A+ AT 与 B+ BT 相加以 (D) A+ AT 与 B+ BT 有的人
 → Kiv a 府本析: (A) 対 (B) 是默写版的,显然对, C和 > 用 / A / B
一万真贩演陈(2009 卷2= 14)————————————————————————————————————
() kira解析: 由纯阵部分的织水, βtx=trloβT)=2+0+0=2 清到βTo 和 αβT B上视到 远阳失烈.而A~B也有trlA)=tHB 树出答算~)

— 181) z ———	
先3阶层阵A和引加于B,处断A的特础直	L 1,≥,},
司PM 2B-E =	
Kira 随柳: · A~B ⇒ B的特征值为	,,,≥,}.
=>28-モ助均和直为いる。5	
=> RB-E1= 15	
成· A~B⇒ 2B-E~2A-E	
而2A-E和特征值为1/3.J	
⇒ 12B-E =12A-E =15.	*
区划断独特相似/证明网轮阵相似	
->> 真販源练(2013. 数-ニミ)	
文字[1 a 1] 与[2 0 0]相似的[a b a] 与[0 b 0]	充分必要各件为
(A) a=0, b=2 (B) a=0, b=> 12. 15. 15	军 教
(C) a=2, b=0 (D) a=2, b为住意。	
<i>Y</i>	
O Kira Tip: 微端结准出 ANB, 9	
A-1. IB-1 这一震路,只要A.B	都可对南北,且
有相同的特征值入即大功专政。	
[分析] 显然 [26] 已对南化里特征值	→ z, b, o
aba 为家对形起阵 与 为才	到外对南化
a b a 対象対形延阵 ⇒ ので (店面件) 又 NE-A = NI(N->)(N-b)-2~	(本AAW)(U)包含色)
$\mathbb{R}\left[\lambda\mathbb{E}^{-}A\right] = \left[\lambda^{-1} - a - b - a\right] = \lambda\mathbb{E}(\lambda^{-1})(\lambda - b) - 2a^{2}$) == NIA-21(A-b)

;						
見知	a =	0,	b *1	淹岸生	2. 进	В

Á

证: () 完全拓联工一页 kim tip 来走 极 A= [! :::] B= [0:::0;]

下国历的求外的A和BAS特征值与特征问量

 $|AE-A| = \left| \frac{\lambda-1}{\lambda-1} \frac{\lambda-1}{\lambda-1} \right| = (\lambda-n) \lambda^{n-1}$

所以A的特征值为入二几入三分:一二入二口 因为A是实对部处时,例以可以有效对用化A~[no...。

加加

 $|VE-B| = \begin{vmatrix} 0 & 0 & -\sqrt{y} & 1 \\ 0 & \sqrt{y} & -\sqrt{y} \\ 0 & \sqrt{y} & -\sqrt{y} \end{vmatrix} = (y-y)y_{y-1}$

取PB的几个特征值多入icn, Az=Azz····= An=10 对于 (n-1) 审特征值 o , r(OE-B)=r(-B)=1 F/Trn B-页可以有m从对闭化,B~ [no...]

Min A~B

×

它k冰用豬湖:

- ① 池州以三岁走: A~A → B~A → A~B B so easy D
- ② 有能在时用化下抓多重特征值即可,比奶抓 B的 n-1重特征值出来看, NE-B 动为1(能化n-1个0行),所以B-人)

一例为 ————————————————————————————————————				
在了到我许中,				
A= [3 2 1] , 內內科內外的文色	B= [3 2	0 7 , C =	[231]	, D= 0 0 1
かけれるみかかるうると	し () O O C	٠, ١	ار ، ، ، ک	1003
123 (23) 10000	7 ×			
Kira解析:				
先排除明显	不相似的	(利"环难	アルバ川県	通附版.
和科教如何				
				
	trcc) = 2			
	断以两两	7目如2百0	是A和D	0×!)
再证明一下15	Z是A~A,	BON 7	7~B, 老朋	7友3)
(上海阵)A加特有	_			_
山 rco·E-A				
同程 D ~ [3 0]	Flina A-	- D	*
习判断矩阵能	る相似マ	可角化	l判断A~	∧ :)
W Kira Tip: O先方	旅充分条件	— 有nT	孙司特征1	直19c有AへA;
習 kira Tip:0先考 实对形形有A~	/ ነව ጉቭ	物是充分各	件的再角	多重特征值入
BO / LAE-A)	(公里是)	主席准了)		
<u></u>				
不能相/吸对角	心的神等	Į		· · · · · · · · · · · · · · · · · · ·
(A) [121]	(B) [1 2 17		
0 5 0		0 10		•.

(C) $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

知确析:

① 先抓充分条件:· A有3个不同特征值 1.3.0 ⇒ A~A · D 家对孙 ⇒ D~A

② 再省多重特征值的情况

·对台的二重特征值1,有个日份=[0~2~1]=2 +1
所以日不可相似对角化

· 对 c的=厚特征值 o,有 t L D.E-C)=[-2-2-2]=1=) C~A 选(B)

(一)非常清晰冒其他题相讲,一个震略

4 B知AnA . TorkA/ 水/A1/ト(A)...

它 kira tip:已知 A~人,马上充催条件都可以用,依默,从 多重特征值入的 rlat-A) 箱手.

->> 負題源语 (2003.数二)---

老矩阵 A= [3 2 0] 相似于对闭阵 人, 试确定障务。a

的值,并求可选矩阵P,使PAP=人

确: 纯阵A和对证号顺式为

函

$$|\lambda = A| = |\lambda - 2| - 2| 0 = (\lambda - 6)[(\lambda - 2)^2 - 16] = (\lambda - 6)^2(\lambda + 2) = 0$$

所以A的特征值入二人。6,入35-2

▶ 亚. 宾对称矩阵

心海传识/做题根基。

的家对形矩阵:若AT=A,例A为实对形矩阵。 施家特正为化方法(Schmidt 正文化) 医哈多维化化复了如果向量阻心, 以、以浅性无关。令

$$\beta_1 = 0$$
,
 $\beta_2 = 0$, $-\frac{(0, \beta_1)}{(\beta_1, \beta_2)}\beta_1$
 $\beta_3 = 0$, $-\frac{(0, \beta_1)}{(\beta_1, \beta_2)}\beta_1 - \frac{(0, \beta_2)}{(\beta_2, \beta_2)}\beta_2$

那么月,月,月两两政人所为政府是祖、将其身位化

从处,从成为了人,为之为这一过程中水和 Schmidt 正就

★··· KM 说话是好巧话酸

13-1-40 ON= [01112] , OX=[1,0,1], OX=[1,1,0]

| 30人 | 分限(x, p)= [1,0,1][2]=2,对应元相来再相加,拿配有为算 0+0+2=2即可,非常怀?分明是(g, p), 0+1+2=5, 以算?

$$\beta_{3} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \frac{1}{5} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} - \frac{3}{50} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 10 - 0 - 5 \\ 10 - 2 + 2 \\ 0 - 4 - 1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 5 \\ 10 \\ -5 \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

函 图 展示压制下等肥有着等,此先可自略

一种民的主,民的主)通通招推;全计算的方法中的双音[2]

- 有(0+12+2)=打极[2]外添系数产,[3]供持不复;
- ▶世对为三十[4]标准化,不考虑于,直接「疗+(-2)計=面。 故[4]外派系数点,[4]外游不变;
- →同理对的= 步[4] 麻净化, 四二古[4]

〇十十净净,清清爽爽里)

②必会性质定理(肾)

的安对初、纯阵的任顶:

即有 QTAR A

★·01公可以相似对角化。且可用政策等以相似对角化 Kina 说明: 所谓"正交纯与", RP 到何量为单位何是(即[盆] 有Jai+ai+ai=1,模长为1) 且两两亚交(即任德阿列内积为0)

★·②不同特征值的特征阿曼以相互正交

• ⑤ 对征值以是实数

它 Kiro 备注: 由①自知,所有 A个人的流军等件的社 A乡贫对孙阵上都起用、比如 K重生到到直水有长个 无关特征问量)

》提示:因为二次型的矩阵为侯对和阵,所以侯对那矩阵 的对面化与二次型化为标准型家和相关

图18岁计算虚路

▶实对于东地阵的正交相似对角化(*A.使仅AQ=人) [方强点拨]和在A-人产户=(21,20,20)知及社上,对 a., a., a, 进行单位性当x, a, a, 已远), 或对x, a, 先正到七国自任化(老有多电特征直和特征行量不相互致)

从而得到正友阵 Q=(V,, 人, 为),有QTAQ=人 - >7真駒溪礁 (2006 改編) -A見3阶京对称阵,务行流均为, X= (-1,2,-1)T U水A的特征值,特证阿量 以水正交轨阵Q,使 QTAQ=人 ◆|洋讲] 的本A及(A-3E)6 附 求众的Stepi 求特征值和特征何量 (本题降低与维度,设置3第117间) Ad: =0= 0. a., Ad=0= 0. d. ··入之。是A的特征值,从,从是入之的死无关的特征可是 R A (1)=3(1) , Ø3=(1) ··入·3見A的特征值,以是入23和特征阿竟 ⇒ Am特配值为入に入るこの、入るころ 特征值 0对和即当征向量为 kixi+ kixi (ki, kix会动) H着征值与对社的特征历色为 day (k) 70) 花的step2 对如此或政党化和单位化 (本题 a, 和为与A市风不同,所以公文生与以以正交直接单位化 只需对二重特征值的特征向量以,从正文化 (2) $\beta_1 = \alpha_1 = (-1, 2, -1)^T$ 务见Pa7 印 $\beta_{n} = \alpha - \frac{(\alpha_{2} \cdot \beta_{1})}{(\beta_{1} \cdot \beta_{1})} \beta_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} - \frac{-3}{6} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ 精油油的 0375特征值与XI.Q不同一定与XIX正复 易必抵我前便 自拉儿 /1= 市(学), /2=市(学), /2=市(学) 一种的的成单位 家好的step3 15次 15次 15次 14. 对和作 食の=(が、み、火),有はイローロームモーハニ

(3)
$$A = Q \wedge Q^7 = \begin{bmatrix} -\frac{1}{16} & -\frac{1}{15} & \frac{1}{15} \\ \frac{1}{16} & 0 & \frac{1}{15} \end{bmatrix} = \begin{bmatrix} 0 & 1 & \frac{1}{16} & \frac{1}{16} \\ -\frac{1}{15} & 0 & \frac{1}{15} \\ -\frac{1}{15} & \frac{1}{15} & \frac{1}{15} \end{bmatrix} = \begin{bmatrix} 0 & 1 & \frac{1}{16} & \frac{1}{16} \\ -\frac{1}{15} & \frac{1}{15} & \frac{1}{15} \end{bmatrix}$$

和开办流:辛苦地和起来,但效果还可以分分"

家对孙郑特 A-部~ N-記 且有 日(A-3E) Q= 日内 Q-301Q= 人一多E : (A-3E) = Q(A-3E)6Q-1

$$= \mathcal{Q} \begin{bmatrix} 0 - \frac{3}{2} \\ 0 - \frac{3}{2} \\ 3 - \frac{3}{2} \end{bmatrix} \mathcal{Q}^{-1} = \mathcal{Q} \begin{bmatrix} -\frac{3}{2} \\ -\frac{3}{2} \\ \frac{3}{2} \end{bmatrix} \mathcal{Q}^{-1}$$

$$= Q \cdot \frac{1}{5} \cdot \frac{1}{5}$$

(in kira备注发现了本有人已知及和人质求A的 大极处在于不必像以前那前辛苦求P-13.直接较置就是D-1、非常河里~正文郑阵大法好里)

解题套路/

- ●常见题型行为为了(大多和二次型联系像切,下一部分讲)
- 1 A为家对初码, 我(riA) / IA)/…
- 2. A为实对形抽象矩阵,求均征向量(利用正效) 求A价有的特征值和特征何是
- 3. 对A正初期以对角化(求以) [巴讲]

□ A为京对市路,並NA)/IAI/…	
的 king 解读:本质上还是在利用 A一人的各种必要系	14,
九不过前旬了3一先:A女家对和路 → A~人)	
—— 77 真颗源练 (2012 数-二) ———	
设《为3个往单位问量,云为3阶单位处阵,则矩阵正	- XXT
旬录 为	
[冷析],	
(由我在矩阵部分给大家反复说用的的话记 →) x=(a,,,)	2203)T

(由我在矩阵部分给大家反复·扎用包部信记 b) x=(a,,a,a,) T x7x= [:][···] =a,2+a,2+a,2 是一个筛卷2里(不用背,自己打开写写~)
xxT=[:][···] 是一个3x3 矩阵且HvvT)=1, tr(xxT)=a,2+a,2+a,2

(讨kina 提示: 看到 xx7, x7x, βx7, β7x)要有多功度,不要如临大敌、自己的主省一省 [:][:], [:][····) 宿、箱、有熟知明白了)

[少析] 由A-A=0 ⇒ A-A=0 设入是A的了王-特亚值
··A的特征直为1或。
因为A夏食对和好 > A~A , 又以 r(A)=r(A)=2
· 八=[1,0] =) A知特征值为1,1,0.
(于 Kina 备注: 老米给 A 家对称 和 r(A)=2, lay-Lita知的 入
的具体情况,只能粗踢拿到入口或1、具体原因了的有
· 沃明)
[2] A为家对称阵,我A的特征值和特征问是(利用正交)
(b) kina Tip:由于原对形阵不同特征值的特征阿量正友,
所以万以在不知道人具体元素的情况下,有求特征何量息)
设A为3阶层对利、矩阵, HA)=2.且
$A\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$
小水A的所有特征值和特征问量;
四> 求矩阵A
确: (kira备注: 我看一眼这道题, 直接: 读成 A[a,, a,]=[-a,, a,]
太阴显了!)
a> 由于A为三阶家对于阵,FLA)=2,所以入二。是A和特征值
MM 2=1, な! 是A的特征頂, 20x=(1,0,-1)7,
03=(1,0,1)7 阳) 八种小沟流特征同量分别为点,02,
点ox, 起, 起, 在不为o
利用 kira lip 和的表演 中的表演 中的表演 「
- BMDM · - 132-

因为 A 为 与对 和 矩 阵, 所 应 不 同 将 征 值 对 之 即 特 证 同 量 相 互 正交,有 (1,0,-1)(次)=0,(1,0,1)(次)=0 ◆ ≪,≪静政 配石量就也》 $\overline{\mathcal{A}}_{i}^{p} \left\{ \begin{array}{c} \chi_{i} - \chi_{j} = 0 \\ \end{array} \right. \Rightarrow \left. \chi_{i} = (0,1,0)^{T} \right.$ り質! ·· 入一0对社的特征问量为 La., k,为任意非零常数 · 办 (老腿型) うな P= (x1. xx, xx) = 「0 1 1 1 人= 「0 -1] 四.)由题可知 P'AP=人、职 $A = P \wedge P^{-1} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ \frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ (P. 斧-例,其他同理) 图 0日 A亚文相似的用地(求反)[已讲] 没A为3所知中,已为D-2E+A不可造,13E+A1=0.(E-A)X有非摩 解, M(A)= ij Kinz解析: 油lat-Al=o,你能发现的人与了东洋都跨示了 項如值财务 Of Course? 「① (-kE+A) かのき >1-kE+A|=(-1)" | kiE-A|=0 > A有時徑直去 @ | KE+A = 0 => (-1)" |-KE-A = 0 => |-KE-A = 0 SA有特征值-KZ L③(KE-A)X=o有非零解⇒1KE-A/=o⇒A有特個值Ki 孫上、原颇中A有特征值2,-3,1,あ1A)=と(-3):1=-6

		1	
	二次型篇	1	
1	<u> </u>	リメ	

二次型的标准形、合同二次型的规范形,惯性指数

▶1、二次型的标准形。后同

瓜海岸水/牧艇根基/

□水浸(连城岛)

(1) 二次型:含有水厂设量化、、、Xm和二次开次多项式flx、X、、、、Xm) =: 岩產 ajxixj l其中aij=aji)和为力元二次型。

日二次型的次的年: 二次型有知序车表示 f(X1,X2,111,Xn)=XTAX 其中 x=[X1,X2,111,Xn]T. A= [an an an an] 初か二次型的处理 an an an an an an

A的旅刊为二次型的社(AIX级为原对机阵)

(过 kina 解读:根据二次型写出A是基本功,其中平分质系数aii 写到了简致,二次质系数除以之,对形有写的对原线两侧 例如 flx.,x。)= xi+3xi+6xx

的标准的:如果二次型中只含有多量的平方顶,所有混合顶流线(的)系数力。,即对Axi dixi+dxi+…+dnxi*,和为种准形"

 的合同。两个几阶矩阵A和B,如存在可逆矩阵C,使CTAC=B 就称A和B合同,记作 A企B,并称由A到B的变换为合同变换(它长冰看注:此处C未必亚交,即不一定有CT=CT和AB)

121以各定理性质 僧

- 山·治的九元二次型 xiAx 级生的变换 x=cyE, 或为y的 九元二次型 yiBy, 其中B=ciAc (日Kira 备注: 这是我们 后面变生的变换 x=cy, 将二次型化标准形 yi/y Bs 理论基础 包显数 A 2 B)
 - ·特别地,若x=Cy是正交变换,即C是正交矩阵,则有B=CTAC=CTAC,即该进正交变换,A企B且A~B
- (2) 任意 A元> 太型 xTAx有两双通过 (一个很好的生标改换 化成 标准形 dry; + dry; + m + dry; , 其中di e R.
- (3) 任一几所家对形阵A,然可以合同于一个对面这样,即 CTAC=[ada],其它可是
- (□k)na缩注:这个定理真是太棒3℃以实对形在,都有A2人,即有CTAC=人(cA色),前面又学过以实对形在,都有A个人,都有PTAP=人(p可多),那么CTAC=八种PTAP-人物完美交集当处就是c为正交处中车啦~且人就是[八二] 请有性质的◆)

· BMDM ·

The same of the standard control of the same of the sa	
(4) 对(12 A元二次型 a7Ax,其中A为复对初码,必否在	
正交变报 7=1Qy(Q是正交知中),便对Ax 社为抗海的	
2,4,2+2,4,2+11+2,44,2	
这里入入,心入是A如几个特征值(注:只有正交变项	a.
化成的物理形件物源卷2为特征值;没晚正交到处心标准形,几	<u> </u>
(5)合同的性质(角) 补加不定是特征值)	
[v AT ~ BT	
· A2B ⇒ (O* MA)=MB)	
在正交相似変換下) ③ A7287 . 老A 引送	
在正交相似变换下)【③ A72B7 ·老A9选 ● S73和从即在,例 A2B ⇒ A~B(合同以相似)	
③ 13水は塩煮路、(因为CTAC=C TAC=B,正交阵CT=C-1)	
▶利用正交多派法化二次型为标准形	
[步骤点拨] 序版上是形正交阵 @ 伊田和 AR=Q AQ=八、震路与	-
"宗对形阵的正交相似对角化"基本相同,开头加一步写出二	-
次型矩阵A",最后发展建写成=次型形式。即"锅生的变	换
x=Py 得 ズイス= yi/y = ハリナーナンツァン	
设=外型f(x,,x,,x3)=2x)-ない+ax3+2x1x2-8xx3+2x1x3	
在正交变换 χ= Qy下的协治部分入以产+入少;	
少求 a \$b)值	
业 求正交元阵仪	
化标准型的Step1 写的二次型的矩阵A	
② >次型和分块内 A= [2 1 → 由内性型>>、以升入州、	-
(4 · 4 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	
MINA IAI= 21-4 = -3a+6=0 編を2	
<u> </u>	
化杨程型的step2 描述和吸羽南班的老规处求反	:

→利用配方法化二次型为标准形 一上次提示。此法多用于二次型矩阵 A 的 从E-A | 因为分解 有困难成配方一有就很为便时。

[步骤高战] 山冷有平方顶的二次型:①达一个平分项, tt如加水。包对所有含化的顶触方(把四周指号中)③从剩下来配方 的车方项中国站一个配方,比如企业以产到对所有含油的项 配方... 日循环以上步骤, 直至所有项和同念在平和项件. 田园公生的变换(冷约二等的个个的,反解公元Cy) ->項题演练L20/4截-二三改了部)-冯二次型 f(x,,x,,x3)=x,一x2+2ax1x3+4x1x, 化如杨种利到, 并含此时用生脏变换 解:(YK)m备注。这道用二次形形阵A杂价的话,不不好 水,而配方是较为轻水的) [Step1]可所有含化的项册方(zex的系数团括号外) f(x,, x, x,) = (x,2+2ax, x, +ax2) - 22 +4224, -a222 サルカルンス、コンス、ロス、 多からるが、 破湊-顿车方项 a≥x2 比处成去 = (x1+0x3)2-x2+46xx3-22x3 对所有含化的项配方(把水部(一)阻括号外) = (74+075)2-(76-47675+4752)-0752+4252 = (x,+ax;)=(x,-2x3)+4-a2) 232 循环以上先移。直至所有顶部包含在平方顶中(已完成) step4 写出生标变换(定作二第2个被平方项反解出X=Cy) 亚对于不含有平方质的二次型:①选一个非零混合项, tubo

例题-用配方法化二次型fx,x,x,x,二2,204 422次 刚冷水=4,+4,, x=4,-4, x=4, 有 fix., x2, x3)=2(y,+y2)(y,-y2)+4(y,+y2)y3 = 2y, -2y, +4y,y2+4y2y, (此时作为各种反行 [step2] 再售近>中东西 = 24,2+44,45+2432-242+44243-243 =214,+42)2-2142-43)2 (3)= y,+y, 司 (y=3,-5) (3)= y,-y, (3)= y,-y, (3)= y,-y, (3)= 3,+3, (3)= 3,+3, (2)= 3,-3,->3, (2)= 3,-3,->3, (2)= 3,->3, (3)= 3,->3, (3)= 3,->3, (4)= 3,->3, (4)= 3,->3, (5)= 3,->3, (5)= 3,->3, (6)= 3,->3, (6)= 3,->3, (7) 二次型化为的准形于138-28%_

解题集路/

- ●常见题型信次切上:
- 1 利用:办型定义和附质未参数a
- 2. %灾二次到的敌人特征从求标准形
- 3. 利用正多变换 B 配方法将二次型化为标准形(Bit)

III 利用: 次型足文和附质求考数a

(日知总结:本题对二次型部分知识用到了"二次到的秩和为二次型义即有的形式",就会求自的工作的预计前的车的功度;二次到的积为高频考点,带翘,随掌握).

一個」 设二次型 f= xi+xi+xi+xi+zi+2axixx + 2bxxx + 2xx 16並変変球 スンPy 1七次 f= ysi+2ysi, 其中x= (xixxxx)でかり=1y, yx, ys)で P 見三町正文を呼、式ず常養シa, b にないa自z い路方程, そ知 二次型 かか注形, 底全不以着が

加加对东						
解: 由题设	A = [1 a 1 b 1 b 1] , B: [2	影で担	亚克阵
					-2ab-a²-b -2ab=o	

(日长水本总话:本题用到了"二次型化标准形(私政变换下)"这一气干知识点。因为P是正交阵,所以B是A正交相以对用比得到的发挥;到自我的以下传预于"相级的以管条件"动向)

回旋之次型的积/特征值/特征问量... 求的往形

已知二次型于1×1,×2,×3)= 石产5次2+次2+26次元+2元次+26元为 百分成为2,且(2,1,2)>是A知特征问量,那么伦亚交变项二次型的抗陷形是

[是Kira Tip - 特征向量信心用?赔:利用Ax >xx建污难组 解: A = [1 a 1],由(2,1,2),是A的特征向量

团 NA)=2 ⇒ 1A1=0, 于是入=0是A的特征值 又 Iaii=Inii ⇒ 1-5+1 = 0+3+入; ⇒入;=-6是A的特征

值,因此正交受换了二次型的标准型为 沙产 64%。 ※ (川及芹无所谓)

(分的法法:求协准型本质是一道花式水特征值的)题

and managed a second control of the
马上考底从烧×A×=入×和炒质(A)=直入心气(a)=三入心中 马找入的信息、不颇全用到了~一面自题!)
多找入的信息、r本题全用到3~~面百题!)
1列 3
已为之元二次型XAX中,二次型文主阵A的各行元素之和均为6.
且滿足AB二。其中 B= [-2-1-3], 用正交受换化二次型于
为标准的,并写的所用的金标变换。
[分长》在101路加程:0角到客行元款之和"不废话,马上A[]=6[]], ②AB与这种方程组形式和惯性有了AB=0日,马上摘定1、总之一切公的现在上去了
②AB的这种方程但形式和惯性看作AB和B、B上的定义后之一切
往将征值上于止~]
海·油A的各行元素为6.有A[1]=6[1]。 以入1=6为A的特征值,对处特征问量为以=[1]。
TA AB=0 30 A[2]=0=0[2], A[1]=0=0[1]
も $\lambda_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\lambda_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 是 A 属于特征值 $\lambda_1 = \lambda_2 = 0$ あ行征内党 $\lambda_2 = \lambda_3 = \lambda$
2. 03 to 2 25 m 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
β3 = α5 - [-1] - [-1] - [-2] - [-1] - [-2] - [-1] - [-2] - [-2] - [-1] - [-2]
冯α.β.β.角角位化分分]得
7)= 袁[] , 7= 福[] , 7= 志[]
今日三月·几月了,则经正交变成工。09. 化二次型力和强的 64°

图利用正交变换各两方法将二次型化为旅程形(包件)

▶I二次型的观范形,1惯性指数

似角岸水/放艇招基/

①本港(主要概念)&日的会定理性质

- "以现税形"在标准型中,如平方项系数。对为1/1或ο 可χτΑα=α+α²+···+χρ²-τρɨ,-···-πρɨg 则和其为二次型的双轨形。
- 四惯性定程(十分重要的提前讲):对于一个二次型,不论选取低档的生标变换使它比为含乎和的标准形,其中正平分项的个数户,须平分项的个数分都是油所给二次型1)建一确定的。

- (3) 惯性指数:在二次型xTAX的标准型中,正平顶的介数 P和为二次型的亚惯性指数,负平方面的介数 9. 和为二次型的负责性指数。 (今三次型的形 /cf)=>cA)=>+8,也就是实对和阵A的非0均和值为 8+8个)
 - ▲ 实对和纯特 A OB ⇔ TAX 与XT BX 有相同的 正、页/提供抽数

解题基路

●常见颜型仓汉世下。

- 1. A和正员惯性其物/双壳形,求参数a的范围/值
- 2. 已知 f=双x的部分信息, 水规范形
- 3. 1当们、相似、方同

D 已知证负惯性指数/规范形,或参数a (高频)

[日本17010路历程: 安想、闭川贯性扩散、1次舰先让二次型为标准形, 再涌体4分项总数个有一个为分~ So easy 是] 解: 二次型的标准形象 (况+0次)*-(况-2次)*+(4-0*) 及*
(闭配方法, 前点详细利起)
由九惯性指数为1 => 40° >> 程P-><0 < 2 . ※

XE-A = X-a 0 (-) 0 X-a (-) -1 1 X-a+1	= (x-a)[x-(a+1)][x-(a+2)]
与 A的特征值为 入	1=a, 2=a+1, 23= a+2
	Yi コ 入1,入2,入3 中有一个为0,两个为正
∑ a < a+1 < a+2	F1712 α=0 \ ★

国已知了=对AX的部分信息,求规范形

[\(\) kira 心肠历程: %A =>A =>E =0 多上有 \(\) =>A => =>0 再对 A 进行分析, 看是否有 \(\) => 最后信后 \(\) =1 . 即确定 \(\) 及其重数 \(\)

由A²-2A-5E=0 ⇒ A²-2A-3=0 所以A=3或-1 又因为 A(A-2E)=3E ⇒ A 可逆 ⇒ r(A)=3=p+を 由 p=1 ⇒ 8=2 それ以 f あり 持犯値か3,-1,-1 所以入 ンス型的表現を形力 yi-yi-yi-yi-

图 等价、相似与合同 () 上水强注: 只要仍在分别等习"等价"相似""今间"的 水多准然过是以和性质,就绝对不会混淆,按照它们 各目的规矩来就到了~)

一中概念时间: □ · A与B 写介 ⇔ A络初写海顶得到 B ⇔ M O = B. P. O 可适 (A ← B)

► A5B-HIMX ⇔PTAP=B⇒ (四了)10宝条件随手级写(A~B)

· A 5 B 房同 ⇔ CAC=B, C 可添 ⇔ xiAx与xiBx有相同正广愣性措格。

[i kina Tip: 10 两年阵是否等17, 相似, 含同这种题 窜优先从反面排序的,一眼抓出不满足必要条件的充安 各件, 马上推"不笃价"不相响"不合同"]

◎ - 些常用影灯●

①当A和B有以下任一情况成立,则不相心:

· 入A キ入B ; ト(A) キト(B); |A| キ1B); をaii チをbii (四水) · A~人 7日日不能相似对初化」

② 記BA AへBBO方法: ANABBAA; PTAP=B;

③ 判断悬陷目的方法: A.B亚质惯性指数是有(AB家对析)
④ 家对析A.B. 网有 AVB ⇒ A≥B,1E及程本成立。

① 判断是否等价的方法: ACA)=>(B) 则当们,否则不等价(最简单~)

例5 设A是3阶度对形纯阵,将矩阵的1,2两行瓦顶后再1,2 两到至顶得到轮阵B,试判断 A与B是否写价,相似。分同? 解

① 朱辫A的物学逐换得到B, 和A与B等们

②团脚能有 [010] A [010] = B

所以ASB等价、相似合同

(i) km看注、版着题意写、用的等价、种似。含同定义.)

>>直题源荷.	(2007)-	
没说阵 A= T2	-1 -1] , B=	T1007,721/A5B
/ / 	27	010
) =	1 X 7 11	

(c) 不合同但相似(D) 现入合同,也不相似

[分析]

- D I aii + I bii 小不相似 (当然, 总猪疤电设事 反正还是要求特征值...)
- ② B 初州はけます事物: x Bx = x + x シア=2,8=0 ハモーA1= (λ-3)(パー3) コハニハ=3, 入3=0 F17mx x Ax = 3x,2+3 な ア=2,8=0. い合同 現 B

- 洛瓦例 -----

海产阶矩阵的例子,它们有相同的特征值但不相似 Ebking心路历程:满足相同入(1)以降条件)却不相似

那么只需不满足其东行心室系件中行一个就可以了,或者。 肥于春村①、只需和人们的不能对角化,而决定能否对 南北的唯一国家是多重入所对礼的广UEA)~分析完毕~) 僻: 例A=[00],B=[01]满足特征值相同,但MA)=FLB),不相加入 (kna,在治历K特征值相同,最为便是全写上海阵,直接对闸筏 职特征值,如以上两矩阵都有入二人之二口; ②岛家上对日有海特和值入一的下(0)毛子)=1丰口, FMW B不可相似对闭化、彻A是对同阵,所以不相似) ▶11.正定 必须降水/16混灰根基/ 川水溶(建概念) い正定: 港二次型 f= 2PAX 对任何2+0都有f>o,例称

f为正定二次型,正定二次型的矩阵A形为正定矩阵 (i) kina海注:对象完全,另于正定时,f=xiAx=0 和 "二"成之) 当里仅当X二0; 千完全有写了。的权和), 5不过不必须取0)

四级处理性质介 山 亚定的 礼安养 件

⇔Vx≠0,性有f=TAx>0 (证于正定常用) 的f=xiax的病准型中的几个系卷分全对o れえに次型でAx正定 ⇔xAx知正機性措施をアニル

⇔ A的特征通风是亚数、(证于政,常用)

O A与E房同职习可选D. 使A-DTD

◆(2) X(A) 正质的)必要引行: (1) Q1170 (常用) (2) [A)>0 (常用)

- ◎常见题型浴水也了.
- 人别别矩阵是否正负
- 2. 巴知二次型亚尾,水差数。
- 文证B月知时力亚定矩阵

[] 判划独阵是否正定

- BYT---

划断以下知时是否正定

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 6 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 5 & 6 & 7 \end{bmatrix} \quad D = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$

[沙本类题逾用心路历程:①先有是否为实对称阵,若不是实对阵,他然不正定;②再角 avi 是否都为正,若气对甲、後出现 0 或复数,1必数不正定③最后考虑充军条件。各阶)顺行主3 式 大于。,则正定.]

[份析] A主对角残有一5, B主对角线有 o. 那脐、A.B. c 耐二阿顺序主3式 | 14 = -6 < 0 排除 C 枪站 D 部一, 二、三阿主3式切大于0. 所以 D 正定

[2] 已知二次型亚庭,求参数 a.

- 1918 ----

f(x,x,x)=({x,-x2+ax,12+(x+x-x3)2+(2x-x2+x3)22 正定 会 a 滿足

- 1319 ----

解: 二次型矩阵 A= [a 4 2] 的顺序主分划分大于。

₽P Δ=170; Δ= | a 4 | =4-a270 => -2< a<2

A3= 1A1= -4a- 4a+8=0 ⇒ -2<a<1

- 131/10 -

设A是3阿京对环处阵,且A3+2A=0.老kA+正是正庭处阵,则上

(宁 kina 心脉历程: 海到 府以20 康省 2年以20 原题 同就要到什么120 来776)

每. là A+2A=0 > X+2N=0 > 入=0或-2.

· AA+E面对征值为 kA+1 部 1 或 -2k+1 又 KA+E亚克 · · -2k+170 → k<==

闭证明知识处理

>>貧類渡猿 (2010 卷2-): D头D二次型f(xi, xi, xi)=x7Ax在正交资换≈=Qy下的标准形 为外北,直风的第分到为(景,口,是)下 小求说件A; 四、证明 A+E为正定矩阵,其中E为3阶单位阵 [To Kira lu)路历程:路子标准形子上入三小小。第三列对社 0 的特征河量,再用亚交为村主门的特征河量,从向求出A; ②证明正定三条路、测度主义式,特征直,定义,本题层处 显抗特征值的· OK~ 福: 3> 用防湿型 5°+9°产5万以二次型5户车A的特征值入1二人二1, 铁浅后 入5-0.且(的第分) 0、二(星,0.豆)T、就是对批特征值 THE. 入3~0的特征何量 用为A家对称,所以A的不同特征值对社的特征向量正交 五份入 水醉所 限PX1+23=0. 193号9=L0110)↑ , 82=L1,0,7)↑ +(日的脑 有特征 用于3, 9, 已正交. 放入解单位化: e= (0,1,0)7, e=(皇,0,-皇)7 因此正交阵 Q=(e,e,e)= [0] 皇皇] 何是,人 £XXXA (A) Q AO=[',) = A=O[',) Q'== 1/0 20] ◆田A的特征值为1:1.0,所以A+飞和特征值为2,2,1; 图A和E都够对称阵,INDA+E为京对称阵, A+E的特征指和大于爱所以A+E是正定现许必 (· kina 在注: 江州正庭-英记得先看一家时际,先在实了形, 朱有家对称!再验礼客条件)

一例!!

沒 A 为正定矩阵,证明AT也是正定矩阵
[日 k /m 心路历程: 先证实对称,再用特征值或定义证明,
AT的特征值语方废者出,证案闭特征值法]

解:由A亚定所以A=A,且A的特征值有入170...,入170 随刻和{由(A+))=(A7)+=A+得A+为实对和环境车 1000 {A+的特征值为太,...,太,得A+的特征值全为正卷之 1000 {的以A-1卫定

解: OBT =LAE+ATA)T= (AE)T+(ATA)T= AE+ATA=B
MNAB是的原对和环境等。

O 构造二次型XBX,有

「おれてなるの当Xものお当然有ズスフの」(AX)「AX >の。 「内部ズスシの当Xものお当然有ズスフの」(AX有有能取の

所以,当入20时,对VX和有

オアBx = λxTx + (Ax)T(Ax) > 。 即=次型 xTBx亚定,故B是亚定汽车。 (它kira备注:使义法的操作和追称是构造符证矩阵的 二次则对Bx, 再进行构分和组合, 化成一定好:0 知 对及 及 对Ax (当A亚定) 成 (Ax) (Ax) (各 Ax-o h有 o 解),此时 1的有二次则 对Bx正定 ▲注意:x7x、对Ax、(Ax) (Ax) 都是一个集之图)

——例12——— 设A是mxn家对和知识(m>n),证明ATA正定的充分必要 各件是r(A)=n.

[也从心肠历程:在我们的情报之一通真题之后,念发现本题比上一题缺少了"入臣",我们关去了确保正定的公文即能是求出路,本题处设方式在本页上方已仅及出版布望大家当行基本经验算很不来。]

簡: 因为 (ATA)T = ATAT)T = ATA, FITURATA是实对现程阵
">" 沒 ATAI定,间对记忆x + 0 頂 でATAX > 0 BP (AX)TAX > 0
全 AX=X /配角 QTX=1 X1 > 0
「何 X是MX1到厅屋: xxx 集物
FITUR当 以 + 0 剥PRT + X + 0, 都存 AX + 0
从而方程组 AX=0 片有零酶 : L(A)=れ

で 设 FLA)=れ、伤久池 ATA 正庭、P. 記 VX+0、有 xTATA(x > 0

BP (Ax)T(Ax)>0 、 BP VX+1)必有 Ax+0

因か FLA)=ル PHM Ax=3 ド有の配

マ V X + 0 作有 Ax+0 ⇒ (Ax)TAx)>0

ハATA 正定 ※

(日 kira 总传: 本题源层3同量、分程组的解导知识。 四数学思维考察较深;创度后强行论注,用后可含用类似题)

最后	东-发		優待
\Box			

/ 1		-44	7
/ たら_	يترح	/なり	_//
-ax			#

ーファ頂駅候補、(2015数-ンミ)-

设二次创 fix., x., X,) 杜亚及变换不 Py 下的标准形为 24,2+4,2-4; 其中 P= (e1. es. e1), 老 O=(e1. -es. e1) 刷 fix., x1, x3) 在亚支 受 预 x= Dy 下的标准形为 1

(C) 24; -4; (B) 24; +4; +4; +4; (C) 24; -4; (D) 24; +4; +4;

[记 k/na 解析: 快看看 Q= (e, ,e₃, e₄)给了啥?这就是我之制 及复强国知"顺序",正文阵中e;的排序1外领与标准的对处, e. 顶到最后一列, 那 A=1 世宴到最后, 取"+yō"; -e, 提到第二列 (添"-"并减的中分还是个一的特征阿量),则 个一室提到第二个写,积"一yò"; e. 不受,从"不受 与相当于把户的顺序论辑"3,那我们就将辑就经常一进A)

DOTAQ =CILPTAP) C = [20], 的社正交後接X=Qy下

的那种形为 29~934 93

×

—— 77真题源栋(2013.数-2三)-

设二次型 f(x,x,x)=2(a,x,+a,x,+a,x,)+(bx,+b,x,+b,x,)

$$iZ_{1}\alpha = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}, \beta = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

山、证明二次型于对应的矩阵为200°平月月下 山、港口、月正交上均为单位同量、证明于社正交资换下的标准形分 24°2+42°

[k/m 構作化分: ① 先现露于(x,x,x),像 (a/x+a/x)2 完全 新水析成何量表示.从加顺程成章等到 2000年月87;②★月志打,"正交且为单位历量"是非常非常重要的暗示,公和β直接就是正交降的两个列质量且肯定是属于两不同避征值的特征何是,为210用 Ax=λ,x 形和=228- 定会出特征值 2和1 0勘证判许以2) 另一个特征值为。,可以从 HLA)或 1A1 等处入于~0k2]

证:公冯二次到矩阵胜开,有

$$f(x_1, x_2, x_3) = 2(a_1x_1 + a_2x_2 + a_3x_3)(a_1x_1 + a_1x_2 + a_3x_3)$$

$$+ (b_1x_1 + b_2x_2 + b_3x_3)(b_1x_1 + b_2x_2 + b_3x_3)$$

$$= 2(x_1, x_2, x_3)\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \cdot [\alpha_1, \alpha_2, \alpha_3]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$+ (x_1, x_2, x_3)\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}[b_1, b_2, b_3]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= (x_1, x_2, x_3) \quad 2\alpha\alpha^T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + (x_1, x_2, x_3)\beta\beta^T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= (x_1, x_2, x_3) \quad (2\alpha\alpha^T + \beta\beta^T)\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

那二次型于的对应的矩阵为2000T+月月. 四>记到阵A=2007+月月,因为0.月正交且均为单位同量, 有070=月月二,07月=月10=0

f在正交多换了的办准的式力 f=24,2+422

(DKTa 总结: 远道下-有是证明,其实是计算的简化版 试想,原题老双为"4>用X和β表示f的矩阵;以下来于在正交变换 下的标准形",那如准度就陡然上升300 既然已知标准 形为24,3+432,虚默有入3=0,那似证的(4)<3便是水到深成 的争情,很强易想到~) (数三三完信格放入、多マダ、)

数一多数

2016 二次型与二次曲面沿分-

设二次型f(x,, x2, x3)=x3+x3+x3+4x7x+4x1x3+4x6x3,14x6x3。则f(x,, x2, x3)=2在房间直角生游系下的二次曲面为((A, 阜叶双曲面 (B) 双叶双油囱 (O)帕球面 (D)下油

[日山西解析: 旧种曲圈对社的方档信办》 荒井的一荒日 $\frac{2^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{3^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{3^{2}}{b^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{b^{2}} = 1$ 地加色间的差别在于平方项的条数的工物等。故解题方向为他实现无形(从本题可以有出二次型和二次由固为程存在结合在一)]

解: 由题, 二次型对应的矩阵A= [2] 2],由以于AI=0解得处阵A的特征值为入二步, 入二入二一,故二次型的 现范形为于是了一般,于是fix...机以三之表示的二次 脚圈 31°-36°-22岁双叶双时烟. (数一度活動ない、東タル

· BMDM ·