

Simulationstechnik A

Prof. Dr. Nicole Radde November 2, 2023 sebastian.hoepfl@isa.uni-stuttgart.de

Exercise 3 - Chemical Langevin Equation

For all our exercises, we will consider the following system consisting of substrate S_1 , enzyme S_2 , complex S_3 and product S_4 :

$$S_1 + S_2 \xrightarrow{c_1} S_3$$

$$S_3 \xrightarrow{c_2} S_1 + S_2$$

$$S_3 \xrightarrow{c_3} S_4 + S_2$$

It is often referred to as Michaelis Menten Kinetics and will serve as a manageable system to train techniques and algorithms from the lecture.

- 1. From τ -Leaping to the Chemical Langevin Equation (CLE) and beyond For τ -Leaping, the number of triggered reactions is given by a Poisson random variable \mathcal{P} .
 - a) What happens to a random variable \mathcal{P} that is Poisson-distributed with a very large mean (and equal variance)?
 - b) How do you modify the τ -Leaping code in order to create a solver for the CLE?
 - c) What do you observe when varying τ ?
 - d) How could you further modify your code to solve the Reaction Rate Equation (RRE)?
 - e) How does the solution look like for different numbers of traces and τ ?

2. An Overview

	CME	Gillespie	τ -Leaping	CLE	RRE
Overall accuracy					
Approximations (stacked)					
Quality of solution					
Conditions to control the error (stacked)					
Type of solution					
Algorithmic complexity					