GEODÄTEN

Definition 4.5.1. Sei S eine reguläre Fläche mit riemannscher Metrik g. Sei $c:I\to S$ eine parametrisierte Kurve. Dann ist die *Länge* von c (bzgl. (S,g)) definiert durch

 $L[c] := \int_{I} \sqrt{g_{c(t)}(\dot{c}(t), \dot{c}(t))} dt.$

Definition 4.5.2. Sei S eine reguläre Fläche mit riemannscher Metrik g. Sei $c:I\to S$ eine parametrisierte Kurve. Dann ist die *Energie* von c (bzgl. (S,g)) definiert durch

 $E[c] := \frac{1}{2} \int_{I} g_{c(t)}(\dot{c}(t), \dot{c}(t)) dt.$

Satz 4.5.5 (Variation der Energie). Sei S eine reguläre Fläche mit riemannscher Metrik g. Seien $p,q \in S$. Sei $c: (-\varepsilon,\varepsilon) \times [a,b] \to S$ eine glatte Abbildung, so dass für $c_s: [a,b] \to S$, $c_s(t):=c(s,t)$, gilt

$$c_s(a) = p, \quad c_s(b) = q.$$

Sei $V(t) := \frac{\partial c}{\partial s}(0,t)$ das so genannte Variationsvektorfeld. Dann gilt:

$$\frac{d}{ds}E[c_s]\Big|_{s=0} = -\int_a^b g_{c_0(t)}\bigg(V(t), \frac{\nabla}{dt}\dot{c}_0(t)\bigg)dt.$$

Korollar 4.5.6. Sei S eine reguläre Fläche mit riemannscher Metrik g. Seien $p,q \in S$. Ist $c:[a,b] \to S$ eine Verbindungskurve von p nach q mit minimaler Energie, so gilt

$$\frac{\nabla}{dt}\dot{c}_0(t) = 0$$

 $f\ddot{u}r$ alle $t \in [a, b]$.

Definition 4.5.7. Sei S eine reguläre Fläche, I ein Intervall. Eine parametrisierte Kurve $c:I\to S$ heißt Geodätische, falls

$$\frac{\nabla}{dt}\dot{c}(t) = 0$$

für alle $t \in I$ gilt.