Evolution Strategies for Approximate Solution of Bayesian Games

7 un Li Michael P. Wellman

Computer Science & Engineering University of Michigan, Ann Arbor

AAAI, Feb 2021

Main Results Summary

- Goal: Compute Bayes-Nash equilibria (BNE) for Bayesian games with
 - Many (N > 2) symmetric players
 - High-dimensional types, actions
 - Black-box access to
 - Type distribution
 - Payoff values

Main Results Summary

- Goal: Compute Bayes-Nash equilibria (BNE) for Bayesian games with
 - Many (N > 2) symmetric players
 - High-dimensional types, actions
 - Black-box access to
 - Type distribution
 - Payoff values
- Approach:
 - Represent strategy as a neural network
 - Exploit evolutionary computation and game symmetry

Main Results Summary

- Goal: Compute Bayes-Nash equilibria (BNE) for Bayesian games with
 - Many (N > 2) symmetric players
 - High-dimensional types, actions
 - Black-box access to
 - Type distribution
 - Payoff values
- Approach:
 - Represent strategy as a neural network
 - Exploit evolutionary computation and game symmetry
- Main contribution: Algorithms for
 - Computing pure BNE via minimax optimization
 - Computing mixed BNE via incremental strategy generation

Symmetric Bayesian Games (SBGs)

• Strategy is a mapping from types to actions

Symmetric Bayesian Games (SBGs)

- Strategy is a mapping from types to actions
- Types are agents' private knowledge of the game, which are i.i.d. sampled
 - Ex: in a multi-object auction, type is a vector defining one's valuation for sets of goods, and actions are bids for these goods

SBG Payoff Functions

- Payoff for one player: a function of (joint action, own type)
- Typically, structured functional form
 - Ex: valuation(outcome bundle) payment

SBG Payoff Functions

- Payoff for one player: a function of (joint action, own type)
- Typically, structured functional form
 - Ex: valuation(outcome bundle) payment
- Anonymity: Payoff is permutation-invariant wrt other-player actions
 - Ex: only the highest other-player bid matters
- Symmetry: Each player has same payoff function

Strategy Space for SBGs

- A pure strategy s is a deterministic mapping from types to actions
- \bullet A mixed strategy σ is a probability measure over a set of pure strategies

Strategy Space for SBGs

- A pure strategy *s* is a deterministic mapping from types to actions
- \bullet A mixed strategy σ is a probability measure over a set of pure strategies
- We consider cases where both types and actions represented by real vectors
- We represent a pure strategy as a neural network

Bayes-Nash Equilibrium

- We seek symmetric equilibria
- Denote the $u(\sigma', \sigma)$ the expected payoff received when one play σ' while all the rest N-1 adopt σ , marginalized over all joint type realization
- $Regret(\sigma) = \max_s u(s, \sigma) u(\sigma, \sigma)$, and we seek for σ that minimize its regret

Natural Evolution Strategies

- Goal: optimize a black-box function $F(\theta)$ with respect to network weights θ
- Approach: optimize a Gaussian smoothed function $\mathbb{E}_{\varepsilon \sim \mathcal{N}(0,I)}[F(\theta + \nu \varepsilon)]$ by constructing finite difference approximation of the gradients

Algorithm 1: Natural Evolution Strategies

```
Input: Black-box function F, hyperparameters J, \alpha, \nu
   Output: Approximate maximum \theta of F
   Algorithm NES(F, J, \alpha, \nu)
          Initialize \theta:
2
          for i = 1, 2, ... do
3
                 Sample \varepsilon_1, \ldots, \varepsilon_I \sim \mathcal{N}(0, \mathbf{I});
4
                \forall j, r_{i+} \leftarrow F(\theta + \nu \varepsilon_i), r_{i-} \leftarrow F(\theta - \nu \varepsilon_i); r_i \leftarrow r_{i+} - r_{i-};
5
                \theta \leftarrow \theta + \alpha \frac{1}{l_{ij}} \sum_{i} r_{i} \varepsilon_{i};
6
          end
7
          return \theta, F(\theta);
8
```

Natural Evolution Strategies

• A minimax formulation: $\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

Multiple calls on points around s_1

Best response NES

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

• A minimax formulation: $\min_s Regret(s) = \min_s \max_{s'} u(s', s) - u(s, s)$

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

Multiple calls on points around s_2

Best response NES

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

A minimax formulation:
 min_s Regret(s) = min_s max_{s'} u(s', s) - u(s, s)

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

Multiple calls on points around s_3

Best response NES

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

• A minimax formulation: $\min_s Regret(s) = \min_s \max_{s'} u(s', s) - u(s, s)$

• A minimax formulation:

$$\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$$

Approximate PBNE s*

Regret minimization NES

Minimax-NES for Computing PBNE

• A minimax formulation: $\min_{s} Regret(s) = \min_{s} \max_{s'} u(s', s) - u(s, s)$

```
Algorithm 2: Minimax-NES for PBNE
```

Input: Payoff Oracle \mathcal{O} , hyperparameters $J_1, J_2, \alpha_1, \alpha_2, \nu_1, \nu_2$

Output: Approximate PBNE s_{θ}

- 1 **Function** MinusRegret(heta)
- 2 | $V \leftarrow \mathcal{O}(s_{\theta}, s_{\theta})$;
- 3 θ' , $DEV \leftarrow NES(\mathcal{O}(\cdot, s_{\theta}), J_1, \alpha_1, \nu_1)$;
- 4 return V DEV;
- 5 Algorithm MiniMax()
- 6 return NES(MinusRegret, J_2, α_2, ν_2)

Results for Games with Analytical Solutions

- Canonical solution for *N*-player single-item first-price auction FP[N] is $s(t) = \frac{N-1}{N}t$.
- Second-price SP[N] : s(t) = t.
- Third-price $TP[N]: s(t) = \frac{N-1}{N-2}t$.

Incremental Strategy Generation for Computing MBNE

- ISG discreterizes the strategy space as a finite strategy set *S*, and iteratively enlarges *S* via best responses
- two components: a meta-solver and a best response oracle

```
Input: Payoff Oracle \mathcal{O}. Meta-solver MS. Hyperparameters J, \alpha, \nu; Output: A finite strategy set S, a mixed strategy \sigma over S

1 Initial strategy set S = \{s_0\}, a singleton distribution \sigma with \sigma(s_0) = 1;

2 for i = 1, 2, \ldots do

3 \sigma \leftarrow MS(\mathcal{O}, S, \sigma);

4 \sigma' \leftarrow MS(\mathcal{O}, S, \sigma);

5 \sigma' \leftarrow S \cup \{s'\};

6 end
```

Incremental Strategy Generation for Computing MBNE

• Given an iteration with restricted strategy set S, a meta-solver outputs a probability mixture over S, which could be:

```
Input: Payoff Oracle \mathcal{O}. Meta-solver MS. Hyperparameters J, \alpha, \nu; Output: A finite strategy set S, a mixed strategy \sigma over S

1 Initial strategy set S = \{s_0\}, a singleton distribution \sigma with \sigma(s_0) = 1;

2 for i = 1, 2, \ldots do

3 \sigma \leftarrow MS(\mathcal{O}, S, \sigma);

4 \sigma' \leftarrow MS(\mathcal{O}, S, \sigma);

5 \sigma' \leftarrow S \cup \{s'\};

6 end
```

Incremental Strategy Generation for Computing MBNE

- Given an iteration with restricted strategy set S, a meta-solver outputs a probability mixture over S, which could be:
 - Self-play: all mass on the last pure strategy
 - Fictitious play: uniform mixture on S
 - Replicator dynamics: a Nash equilibrium calculated by RD on the finite game defined by S

```
Input: Payoff Oracle \mathcal{O}. Meta-solver MS. Hyperparameters J, \alpha, \nu; Output: A finite strategy set S, a mixed strategy \sigma over S

1 Initial strategy set S = \{s_0\}, a singleton distribution \sigma with \sigma(s_0) = 1;

2 for i = 1, 2, \ldots do

3 \sigma \leftarrow MS(\mathcal{O}, S, \sigma);

5 \sigma \leftarrow S \cup \{s'\};

6 end
```

Computing MBNE via Incremental Strategy Generation

 And then NES generates a best response strategy against this mixture into S

```
Input: Payoff Oracle \mathcal{O}. Meta-solver MS. Hyperparameters J, \alpha, \nu; Output: A finite strategy set S, a mixed strategy \sigma over S

1 Initial strategy set S = \{s_0\}, a singleton distribution \sigma with \sigma(s_0) = 1;

2 for i = 1, 2, \ldots do

3 \sigma \leftarrow MS(\mathcal{O}, S, \sigma);

5 \sigma \leftarrow MS(\mathcal{O}, S, \sigma);

5 \sigma \leftarrow S \cup \{s'\};

6 end
```

Model Learning

- To calculate an NE on the game defined by S, one needs access to its $u(s, \sigma)$.
- Direct Monte-Carlo via sampling could be expensive and induce large variance for each update in RD

Model Learning

- To calculate an NE on the game defined by S, one needs access to its $u(s, \sigma)$.
- Direct Monte-Carlo via sampling could be expensive and induce large variance for each update in RD
- Approach: learn a value network $\hat{u}:\Delta(S)\to\mathbb{R}^M$ via simulation to estimate these deviation payoffs, where M=|S|.

Model Learning

- To calculate an NE on the game defined by S, one needs access to its $u(s, \sigma)$.
- Direct Monte-Carlo via sampling could be expensive and induce large variance for each update in RD
- Approach: learn a value network $\hat{u}:\Delta(S)\to\mathbb{R}^M$ via simulation to estimate these deviation payoffs, where M=|S|.
- then run RD on \hat{u} to get an approximate NE

Evaluation Metrics

- Four methods: minimax-NES and self-play computing PBNE; fictitious play and replicator dynamics solving for MBNE
- Environments: N-player K-good market-based scheduling (MBS[N, K]) & homogeneous-good auctions (HG[N, K]).
 Both multidimensional types and actions possess no analytic solutions

Self-play cycles

- Self-play cycles
- RD slightly outperforms FP

- Self-play cycles
- RD slightly outperforms FP
- Minimax-NES behaves less robust than mixed equilibria in MBS, but outpeforms the others in HG

Comparison to Hand-Crafted Strategies

 Compare against the state-of-the-art class of hand-crafted strategies called self-confirming bidding strategies (SC).

Instance	SP	MM	FP	RD	SC
<i>MBS</i> [5, 5]	19.1	3.51	3.47	2.51	5.30
<i>HG</i> [5, 5]	49.7	7.62	28.9	26.0	11.0

Table: Regret of SC compared with other methods within \overline{S}

Instance	SP	MM	FP	RD
<i>MBS</i> [5, 5]	0.0	3.46	0.74	1.71
<i>HG</i> [5, 5]	0.45	3.05	0.0	0.0

Table: Regret of our methods with respect to SC

Conclusion

- Our algorithms need not to know type distribution & utility functional form but only black-box samples
- Both PBNE and MBNE computation methods employ NES as a powerful optimization procedure, which can be replaced by other methods (e.g. genetic algorithms)
- Both methods conduct a many-to-two game reduction by exploiting player symmetry