Assignment 3

1. Download And unzip dataset

run this to download the dataset directly to the kernal
!gdown 1xkynpL15pt6KT3YSlDimu4A5iRU9qYck

Downloading...
From: https://drive.google.com/uc?id=1xkynpL15pt6KT3YSlDimu4A5iRU9qYck
To: /content/Flowers-Dataset.zip
100% 236M/236M [00:00<00:00, 286MB/s]

Unzip
!unzip '/content/Flowers-Dataset.zip'</pre>

inflating: flowers/daisy/13826249325 f61cb15f86 n.jpg inflating: flowers/daisy/13901930939 a7733c03f0 n.jpg inflating: flowers/daisy/1392131677 116ec04751.jpg inflating: flowers/daisy/1392946544 115acbb2d9.jpg inflating: flowers/daisy/13953307149 f8de6a768c m.jpg inflating: flowers/daisy/1396526833 fb867165be n.jpg inflating: flowers/daisy/13977181862_f8237b6b52.jpg inflating: flowers/daisy/14021430525 e06baf93a9.jpg inflating: flowers/daisy/14073784469 ffb12f3387 n.jpg inflating: flowers/daisy/14087947408 9779257411 n.jpg inflating: flowers/daisy/14088053307 1a13a0bf91 n.jpg inflating: inflating: flowers/daisy/14147016029_8d3cf2414e.jpg inflating: flowers/daisy/14163875973 467224aaf5 m.jpg inflating: flowers/daisy/14167534527 781ceb1b7a n.jpg inflating: flowers/daisy/14167543177 cd36b54ac6 n.jpg inflating: flowers/daisy/14219214466 3ca6104eae m.jpg inflating: flowers/daisy/14221836990 90374e6b34.jpg inflating: flowers/daisy/14221848160 7f0a37c395.jpg inflating: flowers/daisy/14245834619 153624f836.jpg inflating: flowers/daisy/14264136211 9531fbc144.jpg inflating: flowers/daisy/14272874304 47c0a46f5a.jpg inflating: flowers/daisy/14307766919 fac3c37a6b m.jpg inflating: flowers/daisy/14330343061 99478302d4 m.jpg inflating: flowers/daisy/14332947164 9b13513c71 m.jpg inflating: flowers/daisy/14333681205 a07c9f1752 m.jpg inflating: flowers/daisy/14350958832 29bdd3a254.jpg inflating: flowers/daisy/14354051035 1037b30421 n.jpg inflating: flowers/daisy/14372713423 61e2daae88.jpg inflating: flowers/daisy/14399435971 ea5868c792.jpg inflating: flowers/daisy/14402451388 56545a374a n.jpg inflating: flowers/daisy/144076848 57e1d662e3 m.jpg inflating: flowers/daisy/144099102 bf63a41e4f n.jpg inflating: flowers/daisy/1441939151 b271408c8d n.jpg inflating: flowers/daisy/14421389519 d5fd353eb4.jpg

```
o e s/da sy/
                                 3895 9_d5 d353eb jpg
 inflating: flowers/daisy/144603918 b9de002f60 m.jpg
inflating: flowers/daisy/14471433500 cdaa22e3ea m.jpg
inflating: flowers/daisy/14485782498 fb342ec301.jpg
                                                         inflating:
flowers/daisy/14507818175 05219b051c m.jpg
                                                inflating:
flowers/daisy/14523675369 97c31d0b5b.jpg
                                              inflating:
flowers/daisy/14551098743 2842e7a004 n.jpg
                                                inflating:
flowers/daisy/14554906452 35f066ffe9 n.jpg
                                                inflating:
flowers/daisy/14564545365 1f1d267bf1 n.jpg
                                                inflating:
                                              inflating:
flowers/daisy/14569895116 32f0dcb0f9.jpg
flowers/daisy/14591326135 930703dbed m.jpg
                                                inflating:
flowers/daisy/14600779226 7bbc288d40 m.jpg
                                                inflating:
flowers/daisy/14613443462 d4ed356201.jpg
                                              inflating:
flowers/daisy/14621687774 ec52811acd n.jpg
                                                inflating:
flowers/daisy/14674743211 f68b13f6d9.jpg
                                              inflating:
flowers/daisy/14698531521 0c2f0c6539.jpg
                                              inflating:
flowers/daisy/147068564 32bb4350cc.jpg
                                            inflating:
flowers/daisy/14707111433 cce08ee007.jpg
                                              inflating:
flowers/daisy/14716799982 ed6d626a66.jpg
                                              inflating:
flowers/daisy/14816364517 2423021484 m.jpg
                                                inflating:
flowers/daisy/14866200659 6462c723cb m.jpg
                                                inflating:
flowers/daisy/14907815010_bff495449f.jpg
                                              inflating:
flowers/daisy/14921511479 7b0a647795.jpg
                                              inflating:
flowers/daisy/15029936576 8d6f96c72c n.jpg
```

Importing Necessary Libs

from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Convolution2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.preprocessing import image import numpy as np import matplotlib.pyplot as plt

2. Data Augmnetaion

```
# For training

train_datagen = ImageDataGenerator(rescale=1./255,
horizontal_flip=True,
zoom_range=0.2)

# for testing test_datagen =

ImageDataGenerator(rescale=1./255)

# To split the dataset into Train and test

!pip install split_folders import
splitfolders input_folder =
"/content/flowers" output =
```

```
"/content/Dataset"
splitfolders.ratio(input folder,
output=output, seed=42,
ratio=(0.7,0.3)
    Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-w
    Requirement already satisfied: split folders in /usr/local/lib/python3.7/dist
    Copying files: 4317 files [00:01, 3937.44 files/s]
# data generation
xtrain = train datagen.flow from directory('/content/Dataset/train',
target size=(64,64),
                                           class mode='categorical',
batch size=100)
xtest = test datagen.flow from directory('/content/Dataset/val',
target size=(64,64),
                                         class mode='categorical',
batch size=100)
    Found 3019 images belonging to 5 classes.
    Found 1298 images belonging to 5 classes.
```

3. Build Model

Adding layers

```
# Build a CNN block
```

```
model = Sequential() # Initializing sequential model
model.add(Convolution2D(32,(3,3),activation='relu',input_shape=(64,64,3))) # convol
model.add(MaxPooling2D(pool_size=(2, 2))) # Max pooling layer model.add(Flatten())
# Flatten layer model.add(Dense(300,activation='relu')) # Hidden layer 1
model.add(Dense(150,activation='relu')) # Hidden layer 2
model.add(Dense(5,activation='softmax')) # Output layer
```

Compiling Model

```
# Compiling the model

model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']
```

Fit Model

Train model

```
model.fit(xtrain,
  steps_per_epoch=len(xtrain),
  epochs=50,
  validation_data=xtest,
  validation_steps=len(xtest))
```

```
Epoch 1/50
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
31/31 [============= ] - 13s 432ms/step - loss: 0.8382 - accu
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
```

4. Save Model

```
model.save('Flowers.h5') 5.
```

Testing The Model

With Test Data Images

```
# Testing 1 # Daisy flower Image
predict_flower('/content/Dataset/val/daisy/1150395827_6f94a5c6e4_n.jpg') #
Predicti
Daisy
```


predict_flower(

'/content/Dataset/val/dandelion/1128626197_3f52424215_n.jpg')

- # Testing 3
- # Dandelion flower Image

predict_flower('/content/Dataset/val/dandelion/14199664556_188b37e51e.jpg') Rose

Testing 4 # Rose flower Image
predict_flower('/content/Dataset/val/rose/12202373204_34fb07205b.jpg')
Rose

predict_flower('/content/Dataset/val/rose/15820572326_be2ea4a55c_n.jpg')
Rose

Testing 6 # Sunflower Image
predict_flower('/content/Dataset/val/sunflower/1596293240_2d5b53495a_m.jpg')
SunFlower

Testing 7 # Sunflower Image predict_flower('/content/Dataset/val/sunflower/210076535_80951bc5d5.jpg')

SunFlower

Testing 8 # Tulip Flower Image
predict_flower('/content/Dataset/val/tulip/13530690445_9f1f5cf43a_n.jpg') Rose

Testing 9 # Tulip Flower Image
predict_flower('/content/Dataset/val/tulip/16680927427_07ca6e4552_n.jpg')
Tulip

predict_flower(
'/content/Dataset/val/daisy/34542837641_10492bf600_n.jpg')

With Google Images

```
# Run To download test images
!gdown 1Q-QTRIfXjVOBbLcIvopbiYfbAD3hJfmw

    Downloading...
    From: https://drive.google.com/uc?id=1Q-QTRIfXjVOBbLcIvopbiYfbAD3hJfmw
    To: /content/IBM Flower_Test dataset.zip 100%
    1.01M/1.01M [00:00<00:00, 163MB/s]

# unzip
!unzip '/content/IBM Flower_Test dataset.zip'
    Archive: /content/IBM Flower_Test dataset.zip
    replace IBM Flower_Test dataset/tulip_2.jpg? [y]es, [n]o, [A]11, [N]one, [r]e

# Test 1
# Dandelion Flower predict_flower('/content/IBM Flower_Test
dataset/Dandelion.jpeg') Tulip</pre>
```


Test 2 # Dandelion Flower predict_flower('/content/IBM
Flower_Test dataset/Dandelion_2.jpeg')

Test 3 # Rose Flower predict_flower('/content/IBM
Flower_Test dataset/Rose.jpeg')

Test 4 # Rose Flower predict_flower('/content/IBM

Flower_Test dataset/Rose_2.jpeg')

Rose

Test 5 # Daisy Flower predict_flower('/content/IBM Flower_Test dataset/daisyflower-1532449822.jpg') Daisy

Test 6 # Daisy Flower predict_flower('/content/IBM Flower_Test dataset/photo-1606041008023-472dfb5e530f.j Rose

Test 8 # Sun Flower predict_flower('/content/IBM Flower_Test
dataset/sunflower_2.jpeg')

Test 9 # Tulip Flower predict_flower('/content/IBM
Flower Test dataset/tulip.webp') Tulip

Test 10 # Tulip Flower predict_flower('/content/IBM
Flower_Test dataset/tulip_2.jpg')

Colab paid products - Cancel contracts here

