IRF7842PbF

Applications

- Synchronous MOSFET for Notebook Processor Power
- Secondary Synchronous Rectification for Isolated DC-DC Converters
- Synchronous Fet for Non-Isolated DC-DC Converters
- Lead-Free

Benefits

- Very Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Charge
- Fully Characterized Avalanche Voltage and Current

HEXFET® Power MOSFET

V_{DSS}	R _{DS(on)} max	Qg (typ.)	
40V	$5.0 \text{m}\Omega @V_{\text{GS}} = 10V$	33nC	

Dage Dage Number	Doolsono Tuno	Standard Pack		Orderable Part Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
IRF7842PbF	SO-8 Tube/Bulk Tape and Re	SO 9	Tube/Bulk	95	IRF7842PbF
IRF/042PDF		Tape and Reel	4000	IRF7842TRPbF	

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	40	V
V _{GS}	Gate-to-Source Voltage	± 20	Ī
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	18	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	14	A
I _{DM}	Pulsed Drain Current ①	140	Ī
P _D @T _A = 25°C	Power Dissipation ®	2.5	W
P _D @T _A = 70°C	Power Dissipation @	1.6	Ī
	Linear Derating Factor	0.02	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ©		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @S		50	

Notes ① through ⑤ are on page 10

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	40		_	٧	V _{GS} = 0V, I _D = 250μA
ΔBV _{DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient		0.037			Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.0	5.0	mΩ	V _{GS} = 10V, I _D = 17A ③
			4.7	5.9		V _{GS} = 4.5V, I _D = 14A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35		2.25	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		- 5.6		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 32V, V_{GS} = 0V$
				150		$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	81			S	$V_{DS} = 20V, I_{D} = 14A$
Q _q	Total Gate Charge		33	50		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		9.6			V _{DS} = 20V
Q_{gs2}	Post-Vth Gate-to-Source Charge		2.8		nC	V _{GS} = 4.5V
Q_{gd}	Gate-to-Drain Charge		10			I _D = 14A
Q_{qodr}	Gate Charge Overdrive		10.6			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		12.8			
Q _{oss}	Output Charge		18		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.3	2.6	Ω	
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = 20V, V _{GS} = 4.5V ③
t _r	Rise Time		12			I _D = 14A
t _{d(off)}	Turn-Off Delay Time		21		ns	Clamped Inductive Load
t _f	Fall Time		5.0			
C _{iss}	Input Capacitance		4500			V _{GS} = 0V
C _{oss}	Output Capacitance		680		рF	V _{DS} = 20V
C _{rss}	Reverse Transfer Capacitance		310			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		50	mJ
l _{AB}	Avalanche Current ①		14	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			3.1		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			140		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 14A, V_{GS} = 0V 3$
t _{rr}	Reverse Recovery Time		99	150	ns	$T_J = 25^{\circ}C, I_F = 14A, V_{DD} = 20V$
Q _{rr}	Reverse Recovery Charge		11	17	nC	di/dt = 100A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Threshold Voltage Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

200 E_{AS,} Single Pulse Avalanche Energy (mJ) I_D TOP 6.7A 7.5A 160 BOTTOM 14A 120 80 40 0 25 50 100 125 150 Starting T_J , Junction Temperature (°C)

Fig 12. On-Resistance Vs. Gate Voltage

Fig 13a. Unclamped Inductive Test Circuit

Fig 13c. Maximum Avalanche Energy Vs. Drain Current

Fig 14a. Switching Time Test Circuit

Fig 13b. Unclamped Inductive Waveforms

Fig 14b. Switching Time Waveforms

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Test Circuit

Fig 17. Gate Charge Waveform

MILLIMETEDS

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM	I IIVC	пЕЗ	IVIILLIIVI	LIIVIETERO	
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е			3.80	4.00	
е			1.27 BASIC		
еl	.025 B	ASIC	0.635 E	BASIC	
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016 .050		0.40	1.27	
У	0°	8°	0°	8°	

INCHES

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA $\,$
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Consumer (per JEDEC JESD47F ^{††} guidelines)		
Moisture Sensitivity Level	SO-8 MSL1 (per JEDEC J-STD-020D ^{††})		
RoHS compliant		Yes	

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.5mH $R_G = 25\Omega$, $I_{AS} = 14$ A.
- ③ Pulse width ≤ 400 μ s; duty cycle ≤ 2%.
- When mounted on 1 inch square copper board

Revision History

Date	Comment	
	Updated data sheet based on corporate template.	
7/8/2014	Added Qual level on page10.	
770/2014	Added ordering information on page1	
	Updated Max RG from "TBD" to "2.60hm" on page2.	

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.