Mathías Chaparro Duarte

- Administrador
- Ing. Comercial
- Especialista en Gestión Financiera
- Analista de datos en Itaú Paraguay
- Power BI and Data Analysis Consultant United Nations TFHS
- Microsoft Certified Data Analyst Associate

Estructura Power Bl

Power BI Desktop

En este módulo se obtienen los datos, se modelan los mismos, se realizan los cálculos necesarios mediante el lenguaje DAX y se crean visualizaciones interactivas.

La descarga e instalación del programa es completamente gratis.

Se dispone de visualizaciones nativas de Power BI y así también se tiene la posibilidad de incluir visualizaciones desde la galería de Microsoft.

Power BI Service

El archivo creado en la versión Desktop se puede publicar en la nube, se puede publicar en la web, se puede compartir con otros usuarios.

- Paneles con actualizaciones automáticas
- Consultas en lenguaje Natural (Q&A)
- Capacidad límite de la nube 10gb por usuario.
- Se pueden crear informes de Power Bl directamente en el servicio Power Bl

Power BI Mobile

Controle su negocio directamente desde el teléfono.

Acceda de forma segura y vea paneles e informes en directo de Power BI en cualquier dispositivo, con las aplicaciones de BI nativas y móviles para Windows, iOS y Android.

Microsoft Fabric en Power Bl

Una breve introducción a Fabric

Es una solución de análisis de datos todo en uno, desde el análisis en tiempo real y la inteligencia empresarial hasta la ciencia de datos. Las funcionalidades de inteligencia artificial se insertan sin problemas en Fabric, lo que elimina la necesidad de realizar una integración manual. ¿Qué es Fabric?

¿Son dos herramientas diferentes?

Power BI como servicio independiente

El servicio Power Bl de Microsoft se inició como una oferta de software como servicio (SaaS) independiente. Ese mismo servicio ahora es un componente de Microsoft Fabric.

Se puede seguir usando Power BI por sí mismo, si es lo que necesita. Además, puede usar las nuevas funcionalidades de Fabric con Power BI para hacer aún más con los datos.

Fases de Power BI

Obtener Datos

Tablas de Excel, PDF, Base de datos, Web, etc.

Preparación de datos

Organizar y transformar los datos en el Query Editor

Modelado de datos

Creación de estructuras para relacionar los datos

Visualización de datos

Representación de datos en forma gráfica, tabular, etc.

Reporte de datos

Publicación de reportes en el servicio

IMPORT DATA

- Se extraen los datos de la fuente de origen y se realiza una copia de los mismos en Power BI
- Todas las fuentes de datos aceptan este tipo de conexión
- Consume memoria y espacio de disco
- El volumen de los datos se comprime automáticamente (también se puede aumentar la compresión de manera manual)

IMPORT DATA

VENTAJAS

- Dispone de todas las expresiones DAX
- Conexiones rápidas
- Se pueden combinar distintas fuentes de datos
- Es posible ver el contenido de las tablas una vez que se importan los datos
- Funcionalidad total de Power Query para las transformaciones de datos

DESVENTAJAS

- Límite de 1Gb en el tamaño del dataset (10GB con licencias Premium)
- Se necesita un proceso de actualización de datos (manual o programado)
- Límite de actualizaciones (8 por día para la versión Pro y 48 por día para la versión Premium)

DIRECT QUERY

- Conexión directa a la fuente de datos (Estructura de tablas, nombre de columnas, etc.)
- Cada vez que se realice alguna acción o interacción con el reporte como filtros, el informe consulta a la fuente de datos
- Se utiliza para modelos de gran tamaño
- Solo algunas fuentes de datos permiten este tipo de conexión

DIRECT QUERY

VENTAJAS

- Prácticamente no existen límites de tamaño, ya que no se importa a Power BI
- Los datos están actualizados en todo momento
- No se necesitan actualizaciones programadas o manuales
- Si la fuente de origen esta optimizada, la velocidad de respuesta será rápida

DESVENTAJAS

- Limitaciones en la funcionalidad de expresiones DAX
- Limitaciones en la funcionalidad de Power Query para transformar datos
- No se puede visualizar la información dentro de la pestaña "Datos" en Power Bl Desktop
- Lenta interacción por conectividad ya que cada interacción es una consulta a la fuente de datos
- Los ajustes de rendimiento deben hacerse en la fuente de datos

¿Qué es un modelo de datos?

- Esta es una colección de tablas independientes, que no comparten conexiones o relaciones
- Si intentamos visualizar Profit y Quantity por Region de la tabla Ubicaciones, esto es lo que obtendremos

Region	Suma de Profit	Suma de Quantity
Central	236.853,05	30292
East	236.853,05	30292
South	236.853,05	30292
West	236.853,05	30292
Total	236.853,05	30292

Esto NO ES un modelo de datos 👺

¿Qué es un modelo de datos?

- Las tablas están conectadas por relaciones basadas en campos en comun
- Ahora estas tablas pueden ser filtradas, usando campos de la tabla Ubicaciones o Personas

Sub-Category	Ventas Netas	Margen	
Accessories	142.366	35.534	
Appliances	92.219	15.679	
Art	21.061	5.121	
Binders	159.924	25,482	
Bookcases	94.843	-3.126	
Chairs	251.208	19.635	
Copiers	138.678	52.705	
Envelopes	12.621	5.469	
Fasteners	2.363	771	
Furnishings	77.879	11.086	
Labels	9.645	4.260	

Esto SI ES un modelo de datos 😊

Tipos de esquemas

Estrella

Un esquema en estrella es el más simple y común. tipo de modelo de datos, caracterizado por un solo hecho

tabla rodeada de tablas de dimensiones relacionadas

Copo de nieve (Snowflake)

Un esquema de copo de nieve es una extensión de una estrella,

e incluye relaciones entre dimensiones tablas y tablas de subdimensiones relacionadas

Tipos de tablas

Hecho (Fact Tables)

Es la tabla principal del modelo dimensional

Contienen campos claves que se unen a las tablas de dimension

Tienen muchos registros (millones) de datos cuantificables

Contiene datos asociados con el procesamiento del negocio (ventas, compras, asientos contables)

Dimensión (dimension table)

Se unen a la tabla de hechos por un campo clave

Los atributos de la tabla ofrecen información de atributos para complementar la información disponible en la tabla de hechos

Suelen tener pocos registros únicos (filas) y muchas columnas

Se utiliza la información descriptiva de estas tablas para filtrar la tabla de hechos

Tablas de Dimensiones 02

1. DAX

¿Qué es DAX?

Data Analysis eXpressions es una recopilación de funciones, operadores y constantes que se pueden usar en una fórmula o expresión para calcular y devolver uno o varios valores. Dicho más fácilmente, DAX ayuda a crear información de datos nueva que ya está en un modelo.

- A. El nombre de la medida. Las fórmulas para medidas pueden incluir el nombre de la medida, seguido de dos puntos, seguido de la fórmula de cálculo.
- B. El operador del signo igual (=) indica el principio de la fórmula de cálculo.
- C. La función SUM suma todos los números de la columna [SalesAmount].
- D. Los paréntesis () alrededor de uno o más argumentos. Todas las funciones requieren al menos un argumento
- E. La tabla a la que se hace referencia FactSales.
- F. La columna a la que se referencia [SalesAmount] en la tabla FactSales. Con este argumento, la función SUM sabe qué columna agregar a SUM.

Copiando el código DAX de un blog

1. Tipos de Medidas

Medidas implícitas

Las medidas implícitas son útiles para principiantes que necesitan una manera sencilla de empezar a trabajar.

Con este método, solo tiene que arrastrar un campo desde una tabla y, después, colocarlo donde quiera.

Las medidas implícitas usan una columna de una tabla de datos (por ejemplo, Importe de ventas) para lo que se arrastra el campo a un objeto visual en Power BI.

Estas medidas permiten calcular operaciones Suma, Contar, Promedio, Mín, Máx y DistinctCount.

Estos tipos de medidas funcionan para tablas y resúmenes básicos, pero son limitadas en comparación con las medidas explícitas

Medidas explícitas

Para las medidas explícitas es necesario usar el lenguaje de fórmulas DAX para escribir explícitamente la expresión.

Estas medidas son mejores durante un tiempo prolongado y le permitirán crear métricas analíticas personalizadas.

Estas medidas ofrecen la máxima flexibilidad y permiten usar todas las funcionalidades de DAX.

Columnas Calculadas

Una columna calculada es como cualquier otra columna de una tabla y podemos usarla en filas, columnas, filtros o valores de una matriz o cualquier otro informe.

También podemos usar una columna calculada para definir una relación, si es necesario.

La expresión DAX definida para una columna calculada opera en el contexto de la fila actual de la tabla a la que pertenece la columna calculada.

n.	Clasificación	*	Vendedor	*	Costo Unit.	+	Precio Unit.	*	Unidades
ande	Compra Gran	Z	Ernesto Rui	105		22.4	12	17	
ande	Compra Gran	Z	Ernesto Rui	105		22.4	12	12	
ande	Compra Gran	z	Ernesto Rui	105		22.4	12	23	
gular	Compra Regu	Z	Ernesto Rui	105		22.4	12	8	
gular	Compra Regu	Z	Ernesto Rui	105	1	22.4	12	10	
ande	Compra Gran	Z	Ernesto Rui	105	-	22.4	12	14	
ande	Compra Gran	Z	Ernesto Rui	105		22.4	12	13	
ande	Compra Gran	Z	Ernesto Rui	105		22.4	12	15	
gular	Compra Regu	z	Ernesto Rui	105		22.4	12	1	
gular	Compra Regu	Z	Ernesto Rui	105	1	22.4	12	9	
gular	Compra Regu	z	Ernesto Rui	105		22.4	12	4	
gular	Compra Regu	Z	Ernesto Rui	105		22.4	12	4	
ande	Compra Gran	Z	Ernesto Rui	105		22.4	12	30	

Medidas

Las medidas se usan para calcular valores agregados, tales como la sumatoria o la media de una columna. Las medidas se calculan en el momento de la consulta, lo que significa que no se almacenan en la memoria de la base de datos, pero usan capacidad de procesamiento para ejecutar la consulta en el momento que se requiere.

Debido a que no se almacenan en memoria, suelen ejecutarse más rápido.

Utiliza el contexto de filtro.

```
Clasificación Medida =
IF( SUM( Ventas[Unidades] ) > 10 , "Compras Grandes" , "Compras Regulares" )
```


Similitudes y Diferencias

Similitudes

- Cálculos que puede agregar al modelo de datos.
- Se definen mediante una fórmula DAX.
- Se hace referencia a ellas en fórmulas DAX incluyendo sus nombres entre corchetes.

Diferencias

- Propósito: las columnas calculadas amplían una tabla con una nueva columna, mientras que las medidas definen cómo resumir los datos del modelo.
- Evaluación: las columnas calculadas se evalúan mediante contexto de fila en tiempo de actualización de datos, mientras que las medidas se evalúan mediante contexto de filtro en tiempo de consulta
- Almacenamiento: las columnas calculadas (en tablas con el modo de importación de almacenamiento) almacenan un valor de cada fila de la tabla, pero una medida nunca almacena valores en el modelo.
- Uso de objetos visuales: las columnas calculadas (como cualquier columnas) se pueden usar para filtrar, agrupar o resumir (como medida implícita), mientras que las medidas están diseñadas para resumir.

Operadores de comparación

Operador	Significado	Ejemplo		
=	Igual que	[Mes] = "Enero"		
==	Estrictamente Igual que	[Descuento] == 0		
>	Mayor que	[Nro. Mes] > 6		
<	Menor que	[Nro. Mes] < 6		
>=	Mayor o igual que	[Importe] >= 1500		
<=	Menor o igual que	[Importe] <= 1000		
<>	No es igual a	[Tipo] <> "Contado"		

Operadores de texto y lógicos

Operador de Texto	Significado	Ejemplo		
& (Ampersand)	Concatena valores	[Mes] & "-" & [Año]		
&& (Doble Ampersand)	Condición lógica Y (AND)	[Mes] = "Noviembre" && [Año] = 2022		
(Doble barra vertical)	Condición lógica O (OR)	[Mes] = "Enero" [Mes] = "Marzo"		
IN	Condición lógica O (OR) usando constructor de tablas	[Mes] IN { "Enero", "Marzo"}		

Funciones Comunes

MATEMATICAS & ESTADISTICAS	LOGICAS	TEXTO	FILTRO	TABLA	FECHA Y HORA	RELACIONES
Usadas para agregación, iteración o cálculos a nivel de fila	Utilizan expresiones condicionales	Usadas para manipular texto y formatear valores	Usadas para manipular filtros y tablas	Usadas para crear y manipular tablas	Manipular tiempo y realizar cálculos de int. de tiempo	Usadas para manipular y modificar las relaciones
• SUM • AVERAGE • MAX/MIN • DIVIDE • COUNT/COUNTA • COUNTROWS • DISTINCTCOUNT Iteradoras • SUMX • AVERAGEX • MAXX/MINX • RANKX • COUNTX	• IF • IFERROR • AND • OR • NOT • SWITCH • TRUE • FALSE	• CONCATENATE • COMBINEVALUES • FORMAT • LEFT/MID/RIGHT • UPPER/LOWER • LEN • SEARCH/FIND • REPLACE • SUBSTITUTE • TRIM	• CALCULATE • FILTER • ALL • ALLEXCEPT • ALLSELECTED • KEEPFILTERS • REMOVEFILTERS • SELECTEDVALUE	• SUMMARIZE • ADDCOLUMNS • GENERATESERIES • DISTINCT • VALUES • UNION • INTERSECT • TOPN	• DATE • DATEDIFF • YEARFRAC • YEAR/MONTH • DAY/HOUR • TODAY/NOW • WEEKDAY • WEEKNUM • NETWORKDAYS Inteligencia de tiempo • DATESYTD • DATESMTD • DATEADD • DATESBETWEEN	• RELATED • RELATEDTABLE • CROSSFILTER • USERELATIONSHIP

