Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky

Odhad relativní četnosti binomického rozdělení pomocí klasického a bayesovského přístupu v jazyce R

BAKALÁŘSKÁ PRÁCE

Studijní program: [Data Analytics]

Autor: [Bc. Michal Lauer]

Vedoucí práce: [Ing. Ondřej Vilikus, Ph.D.]

Praha, Prosinec 2024

Poděkování				
Děkuji svému vedoucímu za odborné neocenitelnou podporu.	vedení práce a p	orůběžné konzulta	ace a své přítelk	zyni za

Klíčová slova					
Bayesovská statistika, odhad relativní četnosti, jazyk R					
Abstract					
Abstract.					
Keywords					
Bayesian statistics, relative frequency estimation, R language					

Abstrakt

Abstrakt.

Obsah

U	vod			9	
1	Statistické metody				
	1.1	Infere	nce	10	
		1.1.1	Problematika výběrových šetření	10	
	1.2	Frekve	entistická inference	10	
		1.2.1	Testování hypotéz	10	
		1.2.2	Metriky při testování hypotéz	10	
		1.2.3	Jednovýběrový odhad poměru s velkým vzorkem	10	
		1.2.4	Jednovýběrový odhad poměru s malým vzorkem	10	
	1.3	Bayese	ovská inference	11	
2	Mo	nte Ca	rlo generování	12	
	2.1	Vyhod	lnocení generovaného rozdělení	12	
		2.1.1	Vyhodocení hypotéz	12	
		2.1.2	Odhad poměru	12	
3	Pra	ktické	odhady	13	
	3.1	Balíčk	y pro frekventistickou inferenci	15	
		3.1.1	base r	15	
		3.1.2	easystats	16	
		3.1.3	inferencer	17	
	3.2	Softwa	are pro bayesovskou statistiku	17	
		3.2.1	Balíček R2WinBUGS	17	
		3.2.2	Balíček jags	20	
		3.2.3	stan	20	
	3.3	Simula	ace	20	
		3.3.1	Malý vzorek	20	
		3.3.2	Velký vzorek	20	
		3.3.3	Porovnání výsledků	21	

Seznam obrázků

Seznam tabulek

Seznam zdrojových kódů

Seznam použitých zkratek

 ${f BCC}$ Blind Carbon Copy

CC Carbon Copy

 \mathbf{CERT} Computer Emergency Response

Team

CSS Cascading Styleheets

DOI Digital Object Identifier

HTML Hypertext Markup Language

REST Representational State Transfer

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtended Markup Language

Úvod

V úvodu závěrečné práce autor vysvětlí, proč si vybral zvolené téma, tedy **motivaci** celé závěrečné práce. V úvodu nesmí chybět přesně formulovaný **hlavní cíl** závěrečné práce (popř. dílčí cíle), měla by zde být nastíněna **metodika** celé závěrečné práce (popř. výzkumné otázky či hypotézy). Zvykem bývá rovněž nastínit **hlavní výsledky/výstupy** závěrečné práce.

Po úvodu následují jednotlivé **číslované kapitoly** členěné do podkapitol.

1. Statistické metody

Krátký úvod do historie, bayes, inferenční bayes (rozdělení) vs. inference (bod) citace Karla

1.1 Inference

proč to používáme, výběr vs. populace, reprezentativnost

1.1.1 Problematika výběrových šetření

reprezentativnost, definice populace, čas sběru, organizace sběru...

1.2 Frekventistická inference

Jak to funguje, jak to spoléhá na sampling distributions

1.2.1 Testování hypotéz

hladina významnosti, úroveň spolehlivosti, Testovací statistika, kritický obor, 1/2 stranný test p-hodnota, interval spolehlivosti

1.2.2 Metriky při testování hypotéz

Chyba I. a II. druhu, síla testu, velikost efektu

1.2.3 Jednovýběrový odhad poměru s velkým vzorkem

použití, předpoklady, poměrový Z test, binomický test, síla testu, velikost efektu

1.2.4 Jednovýběrový odhad poměru s malým vzorkem

Proč jsou důležité speciální metody, nějaké typy (wiki)

1.3 Bayesovská inference

Odvození bayesova vzorce, popis likelihood/aprior/data, druhy aprior/posterior

2. Monte Carlo generování

Halsing, Gibs, HMC

2.1 Vyhodnocení generovaného rozdělení

korelace, ESS, monte carlo error...

2.1.1 Vyhodocení hypotéz

Interval kredibility, ROPE, Bayesův faktor

2.1.2 Odhad poměru

3. Praktické odhady

Test

```
test
stats::t.test()
test
Jednoduchý T-test
set.seed(78)
x \leftarrow rnorm(n = 100, mean = 1, sd = 1)
t.test(x = x, mu = 0,
       alternative = "two.sided", conf.level = 0.95)
    One Sample t-test
data: x
t = 8.8438, df = 99, p-value = 3.621e-14
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.7158758 1.1300282
sample estimates:
mean of x
 0.922952
Simulace alfa = chyba 1. druhu
library(dplyr)
library(ggplot2)
# Nastavení
  <- 1000 # Počet simulací
    <- 200 # Velikost vzorku
mu0 <- 0 # Skutečný průměr
           # Populační směrodatná odchylka
sd0 <- 2
alpha <- 0.05 # Hladina významnosti
set.seed(639)
```

```
vzorky <- tibble()</pre>
# Simulace
for (i in seq_len(K)) {
    x \leftarrow rnorm(n = n, mean = mu0, sd = sd0)
    test <- t.test(x = x, mu = mu0, conf.level = 1 - alpha)</pre>
    vzorky <<- bind_rows(vzorky, tibble(n = i, vysledek = test$p.value <= alpha))</pre>
vzorky$cvysledky <- cummean(vzorky$vysledek)</pre>
ggplot(vzorky, aes(x = n, y = cvysledky)) +
    geom_line() +
    geom_hline(aes(yintercept = .05, color = "red"), linetype = "dashed") +
    scale_y_continuous(limits = c(0, .2)) +
    scale_x_continuous(labels = scales::label_number()) +
    theme_bw() +
    labs(
        title = "Procento falešných zamítnutí hO se blíží hladině významnosti",
        y = "Chyba I. druhu",
        x = "Počet simulací"
```

Procento falešných zamítnutí h0 se blíží hladine významnosti

3.1 Balíčky pro frekventistickou inferenci

3.1.1 base r

```
Test
test
stats::t.test()
test
Jednoduchý T-test
set.seed(78)
x \leftarrow rnorm(n = 100, mean = 1, sd = 1)
t.test(x = x, mu = 0,
       alternative = "two.sided", conf.level = 0.95)
    One Sample t-test
data: x
t = 8.8438, df = 99, p-value = 3.621e-14
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.7158758 1.1300282
sample estimates:
mean of x
 0.922952
Simulace alfa = chyba 1. druhu
library(dplyr)
library(ggplot2)
# Nastavení
  <- 1000 # Počet simulací
    <- 200 # Velikost vzorku
            # Skutečný průměr
mu0 <- 0
sd0 <- 2 # Populační směrodatná odchylka
alpha <- 0.05 # Hladina významnosti
set.seed(639)
vzorky <- tibble()</pre>
```

```
# Simulace
for (i in seq_len(K)) {
    x \leftarrow rnorm(n = n, mean = mu0, sd = sd0)
    test <- t.test(x = x, mu = mu0, conf.level = 1 - alpha)</pre>
    vzorky <<- bind_rows(vzorky, tibble(n = i, vysledek = test$p.value <= alpha))</pre>
vzorky$cvysledky <- cummean(vzorky$vysledek)</pre>
ggplot(vzorky, aes(x = n, y = cvysledky)) +
    geom_line() +
    geom_hline(aes(yintercept = .05, color = "red"), linetype = "dashed") +
    scale_y_continuous(limits = c(0, .2)) +
    scale_x_continuous(labels = scales::label_number()) +
    theme_bw() +
    labs(
        title = "Procento falešných zamítnutí hO se blíží hladině významnosti",
        y = "Chyba I. druhu",
        x = "Počet simulací"
```

Procento falešných zamítnutí h0 se blíží hladine významnosti

3.1.2 easystats

použití, výhody/nevýhody

3.1.3 inferencer

použití, výhody/nevýhody

3.2 Software pro bayesovskou statistiku

3.2.1 Balíček R2WinBUGS

podporuje WinBUGS, OpenBUGS

```
set.seed(123)
x \leftarrow rbinom(10, 1, .6)
bugs <- R2WinBUGS::bugs(</pre>
   data = list(
       N = length(x), # Počet pozorování
                         # Vstupní data
       x = x,
       alpha = 0.01,
                         # Hodnota parametru alpha
       beta = 0.01  # Hodnota parametru beta
   ),
    # Počáteční hodnoty
    inits = list(
       list(p = 0.5),
       list(p = 0.5)
   ),
   n.chains = 2, n.iter = 5000, n.burnin = 1000, n.thin = 1,
   # Parametry, které uložit
   parameters.to.save = c("p"),
   # Cesta k modelu
   working.directory = "prakticka",
   model.file = "r2winbugs.txt",
   # Cesta k programu WinBUGS
   bugs.directory = r"(C:\Users\Mike\Downloads\WinBUGS14\WinBUGS14)",
   # Odstraň pracovní soubory
   clearWD = T,
    # Replikovatelnost
    bugs.seed = 123
```

Výsledek

print(bugs)

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

```
DIC info (using the rule, pD = Dbar-Dhat) pD = 1.0 \ \text{and DIC} = 15.6 DIC is an estimate of expected predictive error (lower deviance is better).
```

Odhad parametru p.

Posteriorní rozdělení jednotlivých chainů.

Vývoj jednotlivých chainů.

3.2.2 Balíček jags

aplikace, R implementace, výhody/nevýhody, používá gibse

3.2.3 stan

aplikace, R implementace, výhody/nevýhody, používá hmc

3.3 Simulace

jak budou simulace provedné, jak budou vyhodnocené, nastavení ROPE/alternativ. pro odhad chyb

3.3.1 Malý vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.2 Velký vzorek

Bayes vs. vybraný vzorec vs. binomic

3.3.3 Porovnání výsledků

Jak testy dopadly