

Client-Server Model

TRADITIONAL PC

VS

CLOUD COMPUTER

All data is stored on an internal hard drive.

All data is stored in the cloud, or an external serve

Equipment failure or theft usually means the loss of all or part of the data.

Data is stored safely in the cloud; equipment failure or theft does not result in loss of dat

Each additional program requires installation and often expanded IT knowledge.

You only need to install one application, which is a "gateway" to our resources in the cloud where a set of verified applications is already waiting for you.

You are forced to bear the costs of hardware and operating system; you also have to pay for almost any additional application you wish to install.

S One subscription fee gives you access to a computer with an operating system and an application package performance parameters of the service, such as disk space, may be increased at any time.

Efficiency and speed of your computer depends on its parameters and computing power; if your equipment is old and inefficient, some applications may not work properly.

Operation of the computer in the cloud is completely independent of parameters and computing power of the equipment you us

The operating system and software are inextricably linked to a specific device - if you do not have access to the device, you cannot connect to its resources.

You can access your resources from anywhere, using any device

Business Intelligence (BI)

Why study SQL?

Data Science

SQL = Structured Query Language

1. a programming language specifically designed for working with databases

- create
- manipulate DATA
- share from Relational Database Management Systems

DBMS

The Client-Server Model

The program we will be working with in this course is called MySQL Workbench. It is the Oracle visual tool for database design, modelling, creation, manipulation, maintenance, and administration. Professionals refer to this type of software as "Integrated Development Environment" or IDE. So, Workbench will be our IDE.

And, if you wonder what *Oracle* is, this is the software company that owns the MySQL version of SQL.

provided by ORACLE

You could also wonder why we would need a server. Sticking to the basic theory of operation of computer networks, MySQL Workbench acts as a client program - a client of a MySQL Server.

MySQL Server

Briefly, the server will perform all calculations and operations you execute in Workbench. You will be <u>writing queries</u> through the Workbench interface, in the form of raw code, which MySQL server understands and processes.

Finally, when it finalizes its calculations, it will bring the respective results back to you in the form of an output displayed on your screen.

The Client-Server Model

VARIABLE VA		SALES		
	purchase_number	date_of_purchase	customer_id	item_code
record	1	03/09/2016	1	A_1
record	2	02/12/2016	2	C_1
	3	15/04/2017	3	D_1
100 November 201	4	24/05/2017	1	B_2
	5	25/05/2017	4	B_2
	6	06/06/2017	2	B_1
	7	10/06/2017	4	A_2
	8	13/06/2017	3	C_1
	9	20/07/2017	1	A_1
	10	11/08/2017	2	B_1

field = a column in a table containing specific information about every record in the table						
	SALES					
purchase_number	date_of_purchase	customer_id	item_code			
1	03/09/2016	1	A_1			
2	02/12/2016	2	C_1			
3	15/04/2017	3	D_1			
4	24/05/2017	1	B_2			
5	25/05/2017	4	B_2			
6	06/06/2017	2	B_1			
7	10/06/2017	4	A_2			
8	13/06/2017	3	C_1			
9	20/07/2017	1	A 1			
10	11/08/2017	2	B_1			

ourchase_number	date_of_purchase	customer_id	first_name	last_name	eil_addres	r_of_complaints	item_id	item unit	_price_usd	company	headquarters_phone_numl
1	03/09/2016	cust_1	John	McKinley	john.mckinle\ co	0	A_1	Lamp	20	Company A	+1 (202) 555-01
2	02/12/2016	cust_2	Elizabeth	McFarlane	e.mcfarlane@5	2	C_1	Chair	150	Company C	+1 (229) 853-99
3	15/04/2017	cust_3	Kevin	Lawrence	kevin.lawrence@365	1	D_1	Loudspeakers	400	Company D	+1 (618) 369-7
4	24/05/2017	cust_1	John	McKinley	john.mckinley@365care	0	B_2	Desk	350	Company B	+1 (202) 555-0
5	25/05/2017	cust_4	Catherine	Winnfield	c.winnfield@365caree	0	B_2	Desk	350	Company B	+1 (202) 555-0
6	06/06/2017	cust_2	Elizabeth	McFarlane	e.mcfarlane@365care	2	B_1	Lamp	30	Company B	+1 (202) 555-0
7	10/06/2017	cust_4	Catherine	Winnfield	c.winnfield@365car	3	A_2	Desk	250	Company A	+1 (202) 555-0
8	13/06/2017	cust_3	Kevin	Lawrence	kevin.lawrence@365c		C_1	Chair	150	Company C	+1 (229) 853-
9	20/07/2017	cust_1	John	McKinley	john.mckinley@365	3	A_1	Lamp	20	Company A	+1 (202) 555-
10	11/08/2017	cust_2	Elizabeth	McFarlane	e.mcfarlane@36	2	B_1	Lamp	30	Company B	+1 (202) 555-0

Customers						
customer_id	first_name	last_name	email_address	number_of_complaints		
1	John	McKinley	john.mackinley@365careers.com	0		
2	Elizabeth	McFarlane	e.mcfarlane@365careers.com	2		
3	Kevin	Lawrence	kevin.lawrence@365careers.com	1		
4	Catherine	Winnfield	c.winnfield@365careers.com	0		

SALES							
purchase_number	date_of_purchase	customer_id	item_code				
1	03/09/2016	1	A_1				
2	02/12/2016	2	C_1				
3	15/04/2017	3	D_1				
4	24/05/2017	1	B_2				
5	25/05/2017	4	B_2				
6	06/06/2017	2	B_1				
7	10/06/2017	4	A_2				
8	13/06/2017	3	C_1				
9	20/07/2017	1	A_1				
10	11/08/2017	2	B_1				

	Items							
item_code	item	unit_price_usd	company_id	company	headquarters_phone_number			
A_1	Lamp	20	1	Company A	+1 (202) 555-0196			
A_2	Desk	250	1	Company A	+1 (202) 555-0196			
B_1	Lamp	30	2	Company B	+1 (202) 555-0152			
B_2	Desk	350	2	Company B	+1 (202) 555-0152			
C_1	Chair	150	3	Company C	+1 (229) 853-9913			
D_1	Loudspeakers	400	4	Company D	+1 (618) 369-7392			

relational algebra allows us to retrieve data efficiently

IS EXCEL A DATABASE?

Databases vs. Spreadsheets

pre-set the type of data contained in a certain field

relational databases

data stored in a record of a table

Spreadsheets

data stored in a cell

formatting 🗸

different cells can contain calculations (functions and formulas)

all calculations and operations are done after data retrieval

you can do calculations in "views"

record of data \neq calculation

DATA INTEGRITY

Relational Schemas: Primary Key

all the numbers in this column will be different

Relational Schemas: Primary Key

Primary Key

a column (or a set of columns) whose value exists and is unique for every record in a table is called a **primary key**

- each table can have one and only one primary key
- in one table, you cannot have 3 or 4 primary keys

Sales							
purchase_number	date_of_purchase	customer_id	item_code				
1	9/3/2016	1	A_1				
2	12/2/2016	2	C_1				
3	4/15/2017	3	D_1				
4	5/24/2017	1	B_2				
5	5/25/2017	4	B_2				
6	6/6/2017	2	B_1				
7	6/10/2017	4	A_2				
8	6/10/2017	3	C_1				
9	7/20/2017	1	A_1				
10	8/11/2017	2	B_1				
		-					

Relational Schemas: Primary Key

Primary Key

a column (or a set of columns) whose value exists and is unique for every record in a table is called a **primary key**

- each table can have one and only one primary key
- in one table, you cannot have 3 or 4 primary keys
- primary keys are the unique identifiers of a table
- cannot contain null values!

Sales

<u>purchase</u> number

date_of_purchase

customer_id (FK)

item_code (FK)

Table name: Sales

Primary key: <u>purchase number</u>

Other fields: date_of_purchase, customer_id, item_code

Sales

purchase number

date_of_purchase

customer_id (FK)

item_code (FK)

Sales						
purchase_number	date_of_purchase	customer_id	item_code			
1	9/3/2016	1	A_1			
2	12/2/2016	2	C_1			
3	4/15/2017	3	D_1			
4	5/24/2017	1	B_2			
5	5/25/2017	4	B_2			
6	6/6/2017	2	B_1			
7	6/10/2017	4	A_2			
8	6/10/2017	3	C_1			
9	7/20/2017	1	A_1			
10	8/11/2017	2	B_1			

	Customers				
	customer_id	first_name	last_name	email_address	number_of_complaints
	1	John	McKinley	john.mackinley@365careers.com	0
	2	Elizabeth	McFarlane	e.mcfarlane@365careers.com	2
primary key	3	Kevin	Lawrence	kevin.lawrence@365careers.com	1
	4	Catherine	Winnfield	c.winnfield@365careers.com	0

			Sales	
	item_code	customer_id	date_of_purchase	purchase_number
	A_1	1	9/3/2016	1
	C_1	2	12/2/2016	2
	D_1	3	4/15/2017	3
	B_2	1	5/24/2017	4
		4	5/25/2017	5
reign key	for	2	6/6/2017	6
cigit itcy	101	4	6/10/2017	7
	C_1	3	6/13/2017	8
	A_1	1	7/20/2017	9
	B_1	2	8/11/2017	10

Customers					
number_of_complaints	email_address	last_name	first_name	customer_id	
0	john.mackinley@365careers.com	McKinley	John	1	
2	e.mcfarlane@365careers.com	McFarlane	Elizabeth	2	
1	kevin.lawrence@365careers.com	Lawrence	Kevin	3	
0	c.winnfield@365careers.com	Winnfield	Catherine	4	

	Sales		
purchase_number	date_of_purchase	customer_id	item_code
1	9/3/2016	1	A_1
2	12/2/2016	2	C_1
3	4/15/2017	3	D_1
4	5/24/2017	1	B_2
5	5/25/2017	4	B_2
6	6/6/2017	2	B_1
7	6/10/2017	4	A_2
8	6/10/2017	3	C_1
9	7/20/2017		A_1
10	8/11/2017	2	B_1

Functions

Introduction to Joins

INNER JOIN

the area that belongs to both circles, which is filled with red, represents all records belonging to both the "Department Manager Duplicate" and the "Departments Duplicate" tables

LEFT JOIN

1) all matching values of the two tables +2) all values from the left table that match no values from the right table

RIGHT JOIN

dept_manager_dup

dept_no CHAR(4)

emp_no INT

from_date DATE

to_date DATE

departments_dup

dept_no CHAR(4)

dept_name VARCHAR(40)

Typical Data Science workflow

ETL = Extract, Transform, Load

Why ETL?

Need to load the data warehouse regularly (daily/weekly) so that it can serve its purpose of facilitating business analysis.

Extract - data from one or more OLTP systems and copied into the warehouse

Transform – removing inconsistencies, assemble to a common format, adding missing fields, summarizing detailed data and deriving new fields to store calculated data.

Load

Load - map the data and load it into the DW

Data Warehouse

Data Lake

Lakehouse

Structured, Semi-Structured and Unstructured Data

SOURCE: DATABRICK

SQL

NoSQL

A NON-RELATIONAL DATABASE
DOES NOT INCORPORATE THE
TABLE MODEL INSTEAD, DATA
CAN BE STORED IN A SINGLE
DOCUMENT FILE.

A RELATIONAL DATABASE TABLE
ORGANIZES STRUCTURED DATA
FIELDS INTO DEFINED COLUMNS.

		Relational		Non-Relational
Analytics	Proprietary Storage	Amazon Redshift EMC Greenplum HP Vertica	IBM Netezza Oracle Teradata MPP	
	Hadoop Storage	Cloudera Impala Presto	Hive SQL-on-Hadoop	MapReduce
Operational	Proprietary Storage	Traditional SQL	NewSQL	NoSQL
		Oracle DB2 SQL Server MySQL	User-Sharded MySQL NuoDB Clustrix On-Disk MemSQL VoltDB In-Memory	Key Value: Aerospike, Riak Column Family: Cassandra Document: MongoDB Graph: Neo4j, InfiniteGraph
	Hadoop Storage		Splice Machine On-Hadoop	Column Family: HBase

Non-relational

Relational

monolithic

Tend to be larger,

Newer field, lots of players

The key difference between a NoSQL and SQL is that a SQL database is considered a relational database. **A** relational database stores data in tables, which are organized into columns. Each column stores one datatype (integer, real number, string, date etc.) and each row represents an instance of the table. Non-relational databases do not store data in tables- instead there are multiple ways to store data in NoSQL databases (Keyvalue, Document-based, Column-based).

Types of Non-relational Databases

PROGRAMMING + SOFTWARE APPLICATIONS

 specifically designed for the domain of the RDBMS

Tableau

- business intelligence and analytics
- visualizations of datasets

- operating systems
- graphic design applications

- complex mathematical computations
- business, statistics, finance

PROGRAMMING + SOFTWARE APPLICATIONS

Tableau

Tableau

- graphs
- charts
- reportsdashboards

allow end users to understand the core of a business + extract insights

PROBLEM STRUCTURE

- 1. Receive a business task
- 2. Use SQL to execute a query retrieving a relevant dataset from the database
- 3. Export the newly obtained data in a CSV file to be used in Tableau
- 4. Create a professional and understandable visualization in Tableau

