Примеры

Характеристики векторного поля.

Пример 1:

Вычислить дивергенцию векторного поля

$$\bar{a}(M) = (x^2 + y) \cdot \bar{i} + (y^2 + z) \cdot \bar{j} + (z^2 + x) \cdot \bar{k}$$

Определить, что находится в точке $M_{\scriptscriptstyle 0}$ (1;–2;3) - источник или сток.

Решение:

Дивергенция векторного поля находится по формуле:

$$\operatorname{div} \overset{-}{a}(M) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

В нашем случае имеем:

$$\bar{div}\,\bar{a}(M)=(2x+2x+2z)\big|_{M_0}=2-4+6=4>0$$
 , следовательно в точке $M_0(1;\!-2;\!3)$

находится источник.

Пример 2:

Найти циркуляцию векторного поля

 $\bar{a}(M) = \{x - 2z; x + 3y + z; 5x + y\}$ вдоль кривой Γ , «пробегаемой» против часовой стрелки, если

 Γ : треугольник ABC такой, что A(1;0;0); B(0;1;0) и C(0;0;1).

Решение:

В нашем случае $\Gamma = \Gamma_{AB} \cup \Gamma_{BC} \cup \Gamma_{CA}$, где

$$\Gamma_{AB}$$
: $y = 1 - x$; $z = 0$; $dz = 0$; $x \in [1, 0]$

$$\Gamma_{BC}$$
: $z = 1 - y$; $x = 0$; $dx = 0$; $y \in [1; 0]$

$$\Gamma_{CA}$$
: $z = 1 - x$; $y = 0$; $dy = 0$; $x \in [0; 1]$

Тогда циркуляция векторного поля $\bar{a}(M)$ в нашем случае равна:

$$circul_{\Gamma}\bar{a} = \oint_{\Gamma} (x - 2z)dx + (x + 3y + z)dy + (5x + y)dz =$$

$$= \int_{\Gamma_{AB}} + \int_{\Gamma_{BC}} + \int_{\Gamma_{CA}} = \int_{1}^{0} (x - 0)dx + (x + 3 - 3x)(-dx) +$$

$$+ \int_{1}^{0} (0 + 3y + 1 - y)dy + (0 + y)(-dy) +$$

$$+ \int_{1}^{1} (x - 2 + 2x)dx - (5x + 0)(-dx) = \dots = \frac{3}{2} - \frac{3}{2} - 3 = -3.$$

Пример 3:

По формуле Стокса найти циркуляцию векторного поля $\bar{a}(M) = \{y; x^2; -z\}$ вдоль кривой Γ , «пробегаемой» против часовой стрелки, если

$$\Gamma: \begin{cases} x^2 + y^2 = 4 \\ z = 3 \end{cases}$$
.

Решение:

В качестве поверхности σ выбирем плоскость z=3, ограниченную поверхностю $x^2+y^2=4$.

Таким образом σ : z = 3.

$$\Pi p_{xy}\sigma=D_{xy}$$
: $x^2+y^2=4$; $\bar{n}_0=\{0;0;1\}$ —нормаль к плоскости $z=3$.

$$rot\bar{a}(M) = \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x^2 & -z \end{vmatrix} = (0-0)i + (0-0)\bar{J} + (2x-1)\bar{k}.$$

Тогда

$$circul_{\Gamma}\bar{a}(M) = \iint_{\sigma} rot\bar{a}(M) \cdot \bar{n}_0 d\sigma = \iint_{\sigma} (2x - 1) d\sigma =$$

т.к. нормаль \bar{n}_0 к поверхности σ (z=3) с положительным направлением оси Оz острый ($\bar{n}_0||0z$), то перед двойным интегралом выбираем знак «+»

$$= + \iint\limits_{D_{xy}} (2x-1)\sqrt{1+0+0} dx dy = \int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{2} (2r cos\varphi - 1) r dr = -2\pi \frac{r^{2}}{2} \Big|_{0}^{2\pi} =$$

$$= -4\pi.$$

Пример 4:

Найти направление и величину наибольшей плотности циркуляции векторного поля a(M) в точке M_0 . Выяснить, что находиться в этой точке источник или сток , если

$$\bar{a}(M) = x^2 \bar{\iota} - xy^2 \bar{\jmath} + z^2 \bar{k}$$
 и $M_0(0;1;-2)$.

Решение:

Направлению, вокруг которого циркуляция имеет наибольшую плотность, соотвествует направление ротора векторного поля a(M) в точке M_0

Найдем ротор векторного поля:

$$rot\bar{a}(M) = \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & -xy^2 & z^2 \end{vmatrix} = (0-0)\bar{\iota} + (0-0)\bar{J} - y^2\bar{k}.$$

Т.о. направление, вокруг которого циркуляция имеет наибольшую плотность — это вектор с координатами $\{0;0;-y^2\}$. В точке M_0 этот вектор имеет координаты $\{0;0;-1\}$ - направление, вокруг которого циркуляция имеет наибольшую плотность в точке M_0

Наибольшую плотность циркуляции векторного поля $\bar{a}(M)$ равна $|rot\bar{a}(M_0)|$.

Следовательно, $|rot\bar{a}(M_0)| = \sqrt{0+0+1} = 1$ — наибольшую плотность циркуляции векторного поля a(M) в точке M_0

Для ответа на вопрос, что находиться в этой точке источник или сток , надо найти дивергенцию векторного поля a(M) в точке M_0

$$div\bar{a}(M) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 2x - 2xy + 2z.$$

Тогда $div\bar{a}(M_0)=0+0-4=-4<0$, следовательно в точке M_0 векторное поле a(M) имеет сток.