Case study for EPSDock

1, Experimental Environment:

Windows 11 and Ubuntu 18.04

Install MGL Tools in the Ubuntu 18.04 environment:

Download link: https://ccsb.scripps.edu/mgltools/downloads/

2. Download PDB file for RNA target (use PDB ID: 1EHT as an example).

3. Prepare the RNA receptor PDB file.

In Windows, use PyMOL to extract the receptor macromolecule (1eht_r) and the ligand small molecule (1eht_l) from the 1eht co-crystallized compound, remove water molecules from the environment, and save the files in .pdb format as 1eht_r.pdb and 1eht_l.pdb. Open the receptor PDB file using the ADT (AutoDock Tools) software.

4. Use ADT to preprocess the RNA receptor file

- Preparing receptor and ligand files using AutoDock Tools (ADT) software:
 Go to File → Preferences → Set → Startup Directory → Set it to the folder containing the receptor and ligand files → Click Make Default → Close the window.
- 2) Go to File \rightarrow Preferences \rightarrow Set \rightarrow Startup Directory \rightarrow Set it to the folder containing the receptor and ligand files \rightarrow Click Make Default \rightarrow Close the window.
- 3) Go to File \rightarrow Read Molecule \rightarrow Select the receptor macromolecule .pdb file \rightarrow Click **Open**.

- 4) Go to Edit \rightarrow Hydrogens \rightarrow Add \rightarrow Click OK.
- 5) Go to Edit \rightarrow Charges \rightarrow Compute Gasteiger \rightarrow Click **OK**.
- 6)Navigate to Edit \rightarrow Charges \rightarrow Compute Gasteiger \rightarrow Click OK

5. Use Grid to prepare the RNA receptor and ligand file

1) Go to Grid \rightarrow Macromolecule \rightarrow Choose \rightarrow Select the receptor molecule \rightarrow Select Molecule \rightarrow Click OK \rightarrow Save to the working folder \rightarrow Save.

2) Edit—>Delete All Molecules—>CONTINUE;

3) Go to File \rightarrow Read Molecule \rightarrow Select the ligand molecule 1eht_l.pdb \rightarrow Click Open.

4) Edit—>Hydrogens—>Add—>OK;

5) Go to Edit \rightarrow Charges \rightarrow Compute Gasteiger \rightarrow Click **OK**

6) Go to Ligand \rightarrow Input \rightarrow Choose \rightarrow Select the ligand molecule \rightarrow Select Molecule for AutoDock4 \rightarrow Click OK

7) Ligand—>Torsion Tree—>Detect Root;

Ligand—>Torsion Tree—>Show Root Expansion;

- 9) Ligand—>Torsion Tree—>ShowHide Root Marker;
- 10) Ligand—>Torsion Tree—>Choose Torsions—>Done;

Ligand—>Output—>Save as PDBQT;

12) Edit—>Delete All Molecules—>CONTINUE;

13) Go to $\mathbf{Grid} \to \mathbf{Macromolecule} \to \mathbf{Open} \to \mathbf{Select}$ the receptor .pdbqt file \to Click $\mathbf{Open} \to \mathbf{Yes} \to \mathbf{OK} \to \mathbf{OK} \to \mathbf{OK}$

14) Go to Grid \rightarrow Set Map Types \rightarrow Open Ligand \rightarrow Select the ligand molecule .pdbqt file \rightarrow Click Open.

15) In the DejaVu GUI, navigate to the root object → Select the ligand molecule → Open Preferences Uncheck the box next to "Transt Root Only" \rightarrow Right-click the ligand molecule \rightarrow Move the ligand molecule outside of the receptor molecule → Open Preferences again → Check the box next to "Transt Root Only".

16) Go to Grid \rightarrow Grid Box \rightarrow Adjust the box size to enclose the entire protein \rightarrow File \rightarrow Close Saving Current.

17) Navigate to Grid \rightarrow Grid Box \rightarrow Adjust the box size to ensure it encloses the entire protein \rightarrow Go to File \rightarrow Select Close Saving Current.

18) Go to Grid \rightarrow Output \rightarrow Save GPF \rightarrow Save the .gpf file

19) Navigate to the folder containing the protein receptor and ligand files using the cd command, then execute the following command:

// autogrid4 -p 1eht.gpf

20) After the Grid calculation completes, proceed to:

Docking \rightarrow **Macromolecule** \rightarrow **Set Rigid Filename** \rightarrow Select the RNA molecule (to set the RNA molecule as rigid)

6. Perform docking

- After the Grid process is completed, go to Docking → Macromolecule → Set Rigid Filename → Select the RNA molecule (to set the RNA molecule as rigid)
- 2)Docking \rightarrow Ligand \rightarrow Open \rightarrow Select the ligand \rightarrow Accept.
- 3) Docking \rightarrow Ligand \rightarrow Choose \rightarrow Select 1eht_1_2 \rightarrow Select Ligand \rightarrow Accept.
- 4) Docking → Search Parameters → Genetic Algorithm (GA) → Accept
- 5)Docking—>Docking Parameters—>Accept;
- 6) Go to Docking \rightarrow Output \rightarrow Lamarkian GA \rightarrow Save the file in .dpf format

7) Modify the run parameters of the search algorithm in 1eht.dpf, Original search algorithm parameter settings:

```
# number of individuals in population
ga_pop_size 150
                                 # maximum number of energy evaluations
ga_num_evals 2500000
ga_num_generations 27000
                                   # maximum number of generations
ga_elitism 1
                          # number of top individuals to survive to next generation
ga mutation rate 0.02
                               # rate of gene mutation
ga crossover rate 0.8
                              # rate of crossover
ga window size 10
ga_cauchy_alpha 0.0
                               # Alpha parameter of Cauchy distribution
ga_cauchy_beta 1.0
                              # Beta parameter Cauchy distribution
                         # set the above parameters for GA or LGA
set_ga
sw max its 300
                             # iterations of Solis & Wets local search
sw_max_succ 4
                             # consecutive successes before changing rho
sw_max_fail 4
sw_rho 1.0
                           # consecutive failures before changing rho
                          # size of local search space to sample
sw lb rho 0.01
                            # lower bound on rho
ls_search_freq 0.06
                             # probability of performing local search on individual
                          # set the above pseudo-Solis & Wets parameters
set psw1
unbound_model bound
                                  # state of unbound ligand
ga_run 10
                          # do this many hybrid GA-LS runs
analysis
                         # perform a ranked cluster analysis
```

```
# the First Confidence Coefficient
pso c1 2.05
pso c2 2.05
                            # the Second Confidence Coefficient
pso_k 50
                     # Max number of particles informed by a given one
pso swarm moves 2500000
                                 # total swarm Moves
pso size 50
                       #swarm size
pso n exec 100
                        #Number of requested PSO runs or the total running times
sw_max_its 50
                        # iterations of Solis & Wets local search
sw_max_succ 2
                        # consecutive successes before changing rho
sw_max_fail 2
                        # consecutive failures before changing rho
sw_rho 1.0
                       # size of local search space to sample
sw lb rho 0.01
                        # lower bound on rhon
ls_search_freq 0.06
                         # probability of performing local search on individual
                       # set the above pseudo-Solis & Wets parameters
set psw1
                              # state of unbound ligand
unbound_model bound
do cpso
analysis
                      # perform a ranked cluster analysis
```

9) Navigate to the directory containing the receptor and ligand files, then execute the following command to run the docking experiment:

//epsdock -p 1eht.dpf

10) Extracting docking results:

Open the docking log file 1eht.dlg to view the results, including:

The lowest energy conformation of the docked structure.

The docking coordinates of the ligand.

```
USER
       RMSD from reference structure
                                       = 2.689 A
USER
USER
       Estimated Free Energy of Binding = -5.78 \text{ kcal/mol} [=(1)+(2)+(3)-(4)]
       Estimated Inhibition Constant, Ki = 58.27 uM (micromolar) [Temperature = 298.15 K]
USER
USER
USER (1) Final Intermolecular Energy = -5.78 kcal/mol
         vdW + Hbond + desolv Energy = -5.68 kcal/mol
USER
USER
         Electrostatic Energy = -0.09 kcal/mol
USER (2) Final Total Internal Energy = +0.00 kcal/mol
                                  = +0.00 kcal/mol
USER (3) Torsional Free Energy
USER (4) Unbound System's Energy [=(2)] = +0.00 kcal/mol
```

As a reference, EPSDock Experimental Setup:

Software Environment:

OS: Ubuntu Desktop 18.04 LTS

Docking Tools: EPSDock, FIPSDock, AutoDock, AutoDock Vina, rDock,

Glide

Visualization/Analysis: PyMOL, ADT (AutoDock Tools 4.6)

Hardware Environment:

CPU: Intel i9-9900 @ 3.1 GHz

GPU: NVIDIA GTX 1060

(Note: This configuration assumes all software is properly installed and configured for GPU acceleration where applicable.)