Приложение В. Руководство пользователя АННОТАЦИЯ

В данном программном документе приведено руководство пользователя приложения с предиктивной коррекцией ошибок управления (на примере ООО «Центр инновационных разработок ВАО»).

В разделе «Назначение программы» указаны краткие сведения о программе.

В разделе «Условия выполнения программы» указаны требования к оборудованию и программному обеспечению для функционирования программы.

В разделе «Выполнение программы» указана инструкция для работы с программой.

СОДЕРЖАНИЕ

1.	НАЗНАЧЕНИЕ ПРОГРАММЫ	3
2.	УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ	4
_ `		
3.	ВЫПОЛНЕНИЕ ПРОГРАММЫ	5

1. НАЗНАЧЕНИЕ ПРОГРАММЫ

Функциональным назначением программы является приложение для управления платформой-носителем, при помощи которого можно упростить работу в условиях опасных для человека, снизить вероятность получения травм, вредных факторов способных навредить здоровью на предприятиях (опасность обрушения, радиационная, биологическая или химическая угроза, высокие температуры) с возможностью быстрой замены полезной нагрузки.

2. УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ

В таблице 1 представлены минимальные технические средства для использования программы.

Таблица 1 – Технические средства.

No	Тип оборудования	Название средства
1	2	3
1	Размер экрана	10"
2	Разрешение экрана	1360x720
3	Линейка процессора	Intel Core i3
4	Количество ядер процессора	1
5	Оперативная память	6 ГБ
6	Тип видеокарты	Любой
7	Видеокарта	Любая
8	Конфигурация накопителей	Любая
9	Общий объём всех накопителей	Минимум 128 ГБ
10	Операционная система	Windows 10
11	Клавиатура	Есть
12	Компьютерная мышь	Есть

В таблице 2 представлены программные средства для использования программы.

Таблица 2 – Программные средства.

$N_{\underline{0}}$	Тип средства	Название средства	Назначение
1	2	3	4
1	Операционная система	Microsoft Windows 10	Организация взаимодействия программ и
			пользователя

3. ВЫПОЛНЕНИЕ ПРОГРАММЫ

3.1. Действия для установки программы

Загрузите приложение и SDK платформы с официального репозитория проекта.

Рисунок 1 - Скачивание решения

Скопируйте скачанный SDK в папку библиотек вашего AVR-GCC компилятора.

Рисунок 2 - Подключение библиотеки к программе

Откройте файл "Main.c" из папки "Examples" и скомпилируйте его. Данный файл является базовым и может быть дополнен вашей управляющей программой. Документация по SDK находится в папке "Docs". Скопируйте полученный при компиляции бинарный файл "PlatformControl.hex" в корень карты памяти программатора.

Рисунок 3 - Файл прошивки

Вставьте карту памяти в программатор и включите его. Подключите программатор к платформе-носителю через интерфейс MasterLink.

При помощи кнопок "вверх" и "вниз" на программаторе выберите необходимую версию прошивки для загрузки и нажмите на кнопку "ОК". Программатор начнет прошивку платформы и в зависимости от результата на дисплее программатора отобразится надпись "ОК" или "ERROR". Не отключайте программатор до завершения прошивки платформы.

Перезагрузите платформу, переподключив питание. Платформа готова к подключению к управляющему персональному компьютеру.

3.2. Действия для работы с программой

Для установки приложения, необходимо перейти в папку с инсталляционным проектом и запустить приложение «PlatformDesktop.exe»

Рисунок 4 – Инсталляционный файл

3.3. Для ознакомления и изучения функциональных особенностей приложения, ниже приведена инструкция (см. Рис 2-4).

Рисунок 5 – Инструкция главного окна

Рисунок 6 - Инструкция окна с графиками с телеметрии

Рисунок 7 - Инструкция окна с настройками

Рисунок 8 – Инструкция окна с ручным управлением порта MasterLink

Рисунок 9 - Инструкция окна с нагрузкой дисплей

3.4. Действия для подключения приложения к платформе

После установки приложения и действий для установки работы с платформой, необходимо запустить программу, после чего программа начнет «стучать» во все СОМ-порты и ждать ответа. Если в ответ приходит строка, то программа инициализирует платформу по ID, далее отображает имя платформы в комбо-боксе, после чего нужно нажать на кнопку подключение.

Рисунок 10 - Подключение к платформе

3.5. Подробное описание строения графика

Шкала оси Y (вертикальная) означает значение на примере гироскопа, значение в градусах, ось X означает текущее время. При переключении отображения кривой X/Y/Z, на графике перестанет/начнет отображаться линия X/Y/Z. Линия имеет определённый цвет, который указан слева от оси Y. Кнопки снизу графика отключает/включает работу данного графика.

Рисунок 11 - Описание графика

3.6. Действия для удаления программы

Для удаления программы, необходимо удалить приложение и все скаченные библиотеки.

3.7. Пример кода программы для доработки разработчиком.

```
1 #include "Platform.h"
3 Platform platform;
5□void setup() {
    Serial1.begin(9600); //GPS
   platform.begin("Example", "12345678");
    platform.initControlUARTData(platform, 34); //57600 bod
    platform.initMPU();
10 }
11
12□ void loop() {
13□ while (1) {
     platform.getMPUData();
14
     platform.getGPSData(&Serial1);
15
16
17
     //Put your code here
    }
18
19 }
```

Рисунок 12 - Пример кода для доработки