Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrif
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkei
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkei
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkei:
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkei
- 13. coNP
- 14. PSPACI

Definition (Nichtdeterministische Turing-Maschine)

$$\delta \subseteq (Z \setminus E) \times \Gamma \times Z \times \Gamma \times \{L, R, N\}$$

- "Folgekonfiguration"-Relation \vdash_M^1 von M spannt Berechnungsbaum auf
- ► NTM akzeptiert ⇔ es gibt Berechnungspfad zu akzeptierender Konfiguration

Definition (Co-Nichtdeterministische Turing-Maschine)

- "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ► coNTM akzeptiert ⇔ alle Berechnungspfade erreichen akzeptierende Konfiguration

Definition (Co-Nichtdeterministische Turing-Maschine)

- "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ► coNTM akzeptiert ⇔ alle Berechnungspfade erreichen akzeptierende Konfiguration

 $\underline{\operatorname{time}_{coN}}$ und $\underline{\operatorname{coNTIME}}(f(n))$ analog zu $\underline{\operatorname{time}}_N$ und $\underline{\operatorname{NTIME}}(f(n))$

Länge des länsten Berechnugspfade

Problème die von coNTM in f (6) Zeit entschieden werden können

Definition (Co-Nichtdeterministische Turing-Maschine)

- "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ► coNTM akzeptiert ⇔ alle Berechnungspfade erreichen akzeptierende Konfiguration

 $time_{coN}$ und coNTIME(f(n)) analog zu $time_N$ und NTIME(f(n))

Definition (coNP)

$$co\underline{NP} := \bigcup_{k \ge 1} contime (n^k).$$

"co-nichtdeterministisch, in Polynomzeit"

Definition (Co-Nichtdeterministische Turing-Maschine)

- "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- $time_{coN}$ und coNTIME(f(n)) analog zu $time_N$ und NTIME(f(n))

Definition (coNP)

$$\mathsf{coNP} := \bigcup_{k > 1} \mathsf{coNTIME}\left(n^{k}\right).$$

"co-nichtdeterministisch, in Polynomzeit"

Theorem (Alternative Definition für NP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in NP, gdw. ein Polynom $p: \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte DTM M (d.h. $time_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt $x \in L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M)$

$$x \in L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \underbrace{\langle x, u \rangle \in I(N)}_{\langle x, u \rangle}$$

 $x \in L \Leftrightarrow \exists_{u \in \Sigma_{P(|x|)}} \overline{\langle x, u \rangle} \in T(M).$ beziehungsweise

Definition (Co-Nichtdeterministische Turing-Maschine)

- "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ▶ coNTM akzeptiert \Leftrightarrow alle Berechnungspfade erreichen akzeptierende Konfiguration time_{coN} und coNTIME (f(n)) analog zu time_N und NTIME (f(n))

Definition (coNP)

$$coNP := \bigcup_{k>1} conTIME(n^k).$$

"co-nichtdeterministisch, in Polynomzeit"

Theorem (Alternative Definition für coNP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in coNP, gdw. ein Polynom $p : \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte DTM M (d.h. $\operatorname{time}_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt

$$x \in L \Leftrightarrow \bigvee_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M)$$

beziehungsweise $x \in L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M).$

Definition (Co-Nichtdeterministische Turing-Maschine)

- "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ▶ coNTM akzeptiert \Leftrightarrow alle Berechnungspfade erreichen akzeptierende Konfiguration time_{coN} und coNTIME (f(n)) analog zu time_N und NTIME (f(n))

Definition (coNP)

$$coNP := \bigcup_{k>1} coNTIME(n^k).$$

"co-nichtdeterministisch, in Polynomzeit"

Theorem (Alternative Definition für coNP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in coNP, gdw. ein Polynom $p : \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\operatorname{time}_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt

beziehungsweise

$$x \in L \Leftrightarrow \forall_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M) \iff x \notin L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \notin T(M). \implies 2$$

Definition (Co-Nichtdeterministische Turing-Maschine)

- ightharpoonup "Folgekonfiguration"-Relation \vdash^1_M von M spannt Berechnungsbaum auf
- ▶ coNTM akzeptiert \Leftrightarrow alle Berechnungspfade erreichen akzeptierende Konfiguration $time_{coN}$ und coNTIME(f(n)) analog zu $time_N$ und NTIME(f(n))

Definition (coNP)

 $\mathsf{coNP} \coloneqq \bigcup_{k \ge 1} \mathsf{coNTIME}\left(n^k\right).$

"co-nichtdeterministisch, in Polynomzeit"

coNP

Theorem (Alternative Definition für coNP ("Guess and Check"))

Eine Sprache $L \subseteq \Sigma^*$ ist in coNP, gdw. ein Polynom $p : \mathbb{N} \to \mathbb{N}$ und eine polynomiell zeitbeschränkte **D**TM M (d.h. $\operatorname{time}_M(n) \in O(n^c)$) existieren, sodass für jedes $x \in \Sigma^*$ gilt

$$x \in L \Leftrightarrow \forall_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M)$$

beziehungsweise $x \notin L \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \notin T(M).$

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\underline{\mathsf{coNP}} = \{ L \subseteq \Sigma^* \mid \underline{\bar{L}} \in \mathsf{NP} \}.$$

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

Beweis

Sei $L \subseteq \Sigma^*$.

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

Beweis

Sei $L \subseteq \Sigma^*$. "Guess and Check" $\leadsto \underline{\overline{L}} \in \mathsf{NP}$ genau dann wenn es eine polynomiell zeitbeschränkte DTM M gibt mit

$$\underline{x \in \overline{L}} \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M).$$

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

Beweis

Sei $L \subseteq \Sigma^*$. "Guess and Check" $\sim \bar{L} \in NP$ genau dann wenn es eine polynomiell zeitbeschränkte DTM M gibt mit

$$x \in \overline{L} \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M).$$

Eine solche DTM M gibt es genau dann, wenn es auch eine polynomiell zeitbeschränkte DTM M' gibt, die genau dann ablehnt, wenn M akzeptiert.

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

Beweis

Sei $L \subseteq \Sigma^*$. "Guess and Check" $\sim \bar{L} \in NP$ genau dann wenn es eine polynomiell zeitbeschränkte DTM M gibt mit

$$(\clubsuit) \quad x \in \overline{L} \Leftrightarrow \exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M).$$

Eine solche DTM M gibt es genau dann, wenn es auch eine polynomiell zeitbeschränkte DTM M' gibt, die genau dann ablehnt, wenn M akzeptiert. Also gilt

$$\underline{x \in L} \Leftrightarrow \underline{x \notin \underline{L}} \Leftrightarrow \neg \left(\exists_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M) \right) \\
\Leftrightarrow \underline{\forall_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \notin T(M)} \\
\Leftrightarrow \underline{\nabla_{u \in \Sigma^{p(|x|)}} \langle x, u \rangle \in T(M')}$$

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

Bemerkungen:

► coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$coNP = \{ L \subseteq \Sigma^* \mid \overline{L} \in NP \}.$$

- ▶ coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)
- ▶ $P \subseteq NP \cap coNP$ (da $L \in P \Leftrightarrow \overline{L} \in P$)

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

- ▶ coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)
- ▶ $P \subseteq NP \cap coNP (da L \in P \Leftrightarrow \overline{L} \in P)$
- ► coNP-Vollständigkeit analog zu NP-Vollständigkeit:

$$A \subseteq \Sigma^*$$
 ist coNP-vollständig $\Leftrightarrow \forall_{L \in coNP} \ L \leq_m^p A$ und $\underline{A \in coNP}$

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\overline{\mathsf{coNP}} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

- ▶ coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)
- ▶ $P \subseteq NP \cap coNP (da L \in P \Leftrightarrow \overline{L} \in P)$
- ► coNP-Vollständigkeit analog zu NP-Vollständigkeit: $A \subseteq \Sigma^*$ ist coNP-vollständig $\Leftrightarrow \forall_{L \in \text{coNP}} \ L \leq_m^p A$ und $A \in \text{coNP}$
- ▶ $\overline{SAT} := \langle \varphi \rangle | \varphi$ ist unerfüllbar $\} \in coNP$ (sogar coNP-vollständig)

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \bar{L} \in \mathsf{NP} \}.$$

- ▶ coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)
- ▶ $P \subseteq NP \cap coNP (da L \in P \Leftrightarrow \overline{L} \in P)$
- ▶ coNP-Vollständigkeit analog zu NP-Vollständigkeit: $A \subseteq \Sigma^*$ ist coNP-vollständig $\Leftrightarrow \forall_{L \in coNP} \ L \leq_m^p A$ und $A \in coNP$
- ▶ $\overline{SAT} := \{ \varphi \mid \varphi \text{ ist unerfullbar} \} \in coNP \text{ (sogar coNP-vollständig)}$
- $(P = NP) \Rightarrow (NP = coNP = P)$ für alle $L \in coNP$ gilt: $\overline{L} \in NP \Rightarrow \overline{L} \in P \Rightarrow L \in P$ und somit $L \in NP$

Erinnerung: Sei $L \subseteq \Sigma^*$, dann ist $\overline{L} := \Sigma^* \setminus L$ das Komplement von L.

Theorem

$$\mathsf{coNP} = \{ L \subseteq \Sigma^* \mid \overline{L} \in \mathsf{NP} \}.$$

Bemerkungen:

- ► coNP ist nicht das Komplement von NP (z.B. $H \notin NP$ und $H \notin coNP$)
- ▶ $P \subseteq NP \cap coNP (da L \in P \Leftrightarrow \overline{L} \in P)$
- ▶ coNP-Vollständigkeit analog zu NP-Vollständigkeit: $A \subseteq \Sigma^*$ ist coNP-vollständig $\Leftrightarrow \forall_{L \in \text{coNP}} \ L \leq_m^p A$ und $A \in \text{coNP}$
- $\blacktriangleright \ \overline{SAT} \coloneqq \{\varphi \mid \varphi \text{ ist unerfullbar}\} \in \mathsf{coNP} \text{ (sogar coNP-vollständig)}$

Berechenbarkeit und Komplexität

- ► (P = NP) \Rightarrow (NP = coNP = P) für alle $L \in \text{coNP}$ gilt: $\bar{L} \in \text{NP} \Rightarrow \bar{L} \in \text{P} \Rightarrow L \in \text{P}$ und somit $L \in \text{NP}$
- ▶ Offen: (NP = coNP) \Rightarrow (P = NP)?
 - Vorsieht: konnen nicht ohne Veiteres NTH & coNTM "Zusammenstecken"

(x v x)

TAUT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F eine **Tautologie**, d.h. wird F für **alle** $\{0,1\}$ -wertigen Belegungen der in F

verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

TAUT

Eingabe: aussagenlogische Formel *F*

Ist F eine **Tautologie**, d.h. wird F für alle $\{0,1\}$ -wertigen Belegungen der in F Frage:

verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Theorem

TAUT ist coNP-vollständig.

TAUT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F eine **Tautologie**, d.h. wird F für **alle** $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Theorem

TAUT ist coNP-vollständig.

Beweis

1. $TAUT \in coNP$ via "Guess and Check" (nicht-erfüllende Belegung zertifiziert $F \notin TAUT$)

TAUT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F eine **Tautologie**, d.h. wird F für **alle** $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Theorem

TAUT ist coNP-vollständig.

Beweis

- 1. $TAUT \in coNP$ via "Guess and Check" (nicht-erfüllende Belegung zertifiziert $F \notin TAUT$)
- 2. TAUT ist coNP-schwer (d.h. $\forall_{L \in coNP} L \leq_m^p TAUT$):

Da $\overline{L} \in NP$, gilt $\overline{L} \leq_m^p SAT$ vermöge einer Polynomzeitreduktion $f: x \mapsto F_x$. Also

TAUT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F eine **Tautologie**, d.h. wird F für **alle** $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Theorem

TAUT ist coNP-vollständig.

Beweis

- 1. $TAUT \in coNP$ via "Guess and Check" (nicht-erfüllende Belegung zertifiziert $F \notin TAUT$)
- 2. TAUT ist coNP-schwer (d.h. $\forall_{L \in coNP} L \leq_m^p TAUT$):

Da $\bar{L} \in NP$, gilt $\bar{L} \leq_m^p \mathrm{SAT}$ vermöge einer Polynomzeitreduktion $f: \underline{x} \mapsto F_x$. Also

$$x \in L \Leftrightarrow x \notin \overline{L} \Leftrightarrow F_x \notin SAT \Leftrightarrow \neg F_x \in TAUT.$$

Redulationseige-schaft v. L

TAUT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F eine **Tautologie**, d.h. wird F für **alle** $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Theorem

TAUT ist coNP-vollständig.

Beweis

- 1. $TAUT \in coNP$ via "Guess and Check" (nicht-erfüllende Belegung zertifiziert $F \notin TAUT$)
- 2. TAUT ist coNP-schwer (d.h. $\forall_{L \in coNP} L \leq_m^p TAUT$):

Da $\bar{L} \in NP$, gilt $\bar{L} \leq_m^p \mathrm{SAT}$ vermöge einer Polynomzeitreduktion $\underline{f: x \mapsto F_x}$. Also

$$x \in L \Leftrightarrow x \notin \overline{L} \Leftrightarrow F_x \notin SAT \Leftrightarrow \neg F_x \in TAUT.$$

Also ist $g: x \mapsto \neg F_x$ eine Polynomzeitreduktion von \underline{L} auf TAUT.