Hellsten – Linja-aho – Mauno – Mäkinen – Piiroinen – Sottinen . . .

Avoin matikka 1

Kirja on työn alla!

MAA1 – Funktiot ja yhtälöt

Sisältö

1 Esipuhe 4

1	Lukualueet
5	
2	Luonnolliset luvut 6
3	Joukko-oppia 7
4	Logiikkaa 8
5	Kokonaisluvut 9
6	Kokonaislukujen aritmetiikkaa 10
7	Jaollisuus & tekijät 11
8	Rationaaliluvut ja laskusäännöt 12
9	Potenssisäännöt & murtolausekkeiden
	sieventämistä 13
10	Juuret 14
11	Murtopotenssi 15
12	Irrationaaliluvut 16
13	Reaaliluvut 17
14	Kompleksiluvut 18
15	
.,	VI 1 "1" 1
11	Yhtälöt
20	
16	Yhtälöiden teoriaa 21
17	Yleinen potenssi ja potenssiyhtälö 23
18	Kertaustiivistelmä 24

III Funktiot

SISÄLTÖ 3

25	
19	Funktio 26
20	Erilaisia funktioita 27
IV	Lukualueet
28	
21	Luonnolliset luvut 29
22	Joukko-oppia <i>30</i>
23	Logiikkaa 31
24	Kokonaisluvut 32
25	Kokonaislukujen aritmetiikkaa 33
26	Jaollisuus & tekijät 34
27	Rationaaliluvut ja laskusäännöt 35
28	Potenssisäännöt & murtolausekkeiden
	sieventämistä 36
29	Juuret 37
30	Murtopotenssi 38
31	Irrationaaliluvut 39
32	Reaaliluvut 40
33	Kompleksiluvut 41
34	Kertaustiivistelmä 42
V	Sovelluksia
43	
35	Verrannollisuus 44
36	Verrannollisuus: sovelluksia 45
37	Prosenttilaskentaa - perustilanteet 46
38	Prosenttiyhtälöitä ja sovelluksia 47
39	Kertaustiivistelmä 48
VI	Kertaus ja harjoituskokeita
49	Nortaus ja Harjoituskokoitu
40	Verrannollisuus 50

Luku 1 Esipuhe

Lorem ipsum...

Tässä on ältsin hieno teoriaboksi. Tänne voi laittaa myös kaavoja

$$(a+b)^2 = a^2 + 2ab + b^2$$
 (1.1)

ja toimii kuin junan vessa.

Teoreema 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $\alpha_1, \alpha_2, \ldots, \alpha_m$. If γ is a closed rectifiable curve in G which does not pass through any of the points α_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; \alpha_k) \operatorname{Res}(f; \alpha_k).$$

Another nice theorem from complex analysis is

Teoreema 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

$$\max\{|f(z)|:z\in G^-\}=\max\{|f(z)|:z\in\partial G\}.$$

Osa I Lukualueet

Luku 2 Luonnolliset luvut

Luku 3 Joukko-oppia

Luku 4 Logiikkaa

Luku 5 Kokonaisluvut

Luku 6 Kokonaislukujen aritmetiikkaa

Luku 7 Jaollisuus & tekijät

Luku 8 Rationaaliluvut ja laskusäännöt

Luku 9 Potenssisäännöt & murtolausekkeiden sieventämistä

Luku 10 Juuret

Luku 11 Murtopotenssi

Luku 12 Irrationaaliluvut

Luku 13 Reaaliluvut

Luku 14 Kompleksiluvut

Luku 15 Kertaustiivistelmä

Osa II Yhtälöt

Luku 16 Yhtälöiden teoriaa

Monissa käytännön tilanteissa saamme samalle asialle kaksi erilaista esitystapaa.

Esimerkki: Meillä on orsivaaka, joka on tasapainossa. (kuva!) Toisessa vaakakupissa on kahden kilon siika ja toisessa puolen kilon ahven sekä tuntematon määrä lakritsia. Kuinka paljon vaakakupissa on lakritsia? (Ratkaistaan...) (Muita esimerkkejä, vähitellen vaikeutuvia (1. asteen) yhtälöitä)

Määritelmä: Yhtälöksi kutsutaan kahden lausekkeen merkittyä yhtäsuurutta. Siis mielivaltaisille lausekkeille A ja B merkitään A=B. (Esim. A=3x+5 ja B=7x+7). Yhtälö on tosi, jos sen molemmat puolet todella ovat yhtäsuuret. Jos yhtälö ei ole tosi, se on epätosi. Tosi ja epätosi ovat totuusarvoja.

Yhtälöitä voidaan muokata siten, että niiden totuusarvo ei muutu. Tällaisia sallittuja muunnoksia ovat: (A) Yhtälön molemmat puolet voidaan kertoa samalla luvulla a != 0. (B) Yhtälön molemmille puolille voidaan lisätä tai molemmilta puolilta vähentää luku b.

Muuttujaksi kutsutaan symbolia, jonka arvoa ei ole kiinnitetty. Muuttujia merkitään usein kirjaimilla x, y ja z. Yhtälöissä muuttujaa voidaan käyttää kuvaamaan tuntematonta määrää, jolloin yhtälöä muokkaamalla ("ratkaisemalla yhtälö") saadaan selville tuntematon.

Yhtälöitä on oleellisesti kolmenlaisia: (1) Yhtälö, joka on aina tosi. Esimerkiksi yhtälöt 8=8 ja x=x. (2) Yhtälö, joka on joskus tosi. Esimerkiksi yhtälö x=1 on tosi jos ja vain jos x=1. Muuttujan arvoja, joilla tällainen yhtälö toteutuu, kutsutaan yhtälön ratkaisuiksi tai juuriksi. (3) Yhtälö, joka ei ole koskaan tosi. Esimerkiksi yhtälö 0=1. Tämän kurssin ja ylipäätään matematiikan kannalta selvästi tärkein yhtälötyyppi on (2).

Teoreema 3. Yleinen lähemistymistapa muotoa Ax + B = Cx + D olevien yhtälöiden ratkaisuun on:

- (1) Vähennä molemmilta puolilta Cx. Saat yhtälön (A C)x + B = D.
- (2) Vähennä molemmilta puolita B. Saat yhtälön (A C)x = D B.
- (3) Jaa (A C):llä. Saat yhtälön ratkaistuun muotoon $x = \frac{D-B}{A-C}$.

Esimerkki Yhtälön 7x + 4 = 4x + 7 ratkaisu saadaan seuraavasti:

7x + 4 = 4x + 7 | Vähennetään molemmilta puolilta 4x.

3x + 4 = 7 | Vähennetään molemmilta puolilta 4.

3x = 3 | Jaetaan molemmat puolet kolmella eli kerrotaan $\frac{1}{3}$:lla.

x = 1 | Saimme yhtälön ratkaistuun muotoon. x = 1 on siis yhtälön rat

Luku 17 Yleinen potenssi ja potenssiyhtälö

Luku 18 Kertaustiivistelmä

Osa III Funktiot

Luku 19 Funktio

Luku 20 Erilaisia funktioita

Osa IV Lukualueet

Luku 21 Luonnolliset luvut

Luku 22 Joukko-oppia

Luku 23 Logiikkaa

Luku 24 Kokonaisluvut

Luku 25 Kokonaislukujen aritmetiikkaa

Luku 26 Jaollisuus & tekijät

Luku 27 Rationaaliluvut ja laskusäännöt

Luku 28 Potenssisäännöt & murtolausekkeiden sieventämistä

Luku 29 Juuret

Luku 30 Murtopotenssi

Luku 31 Irrationaaliluvut

Luku 32 Reaaliluvut

Luku 33 Kompleksiluvut

Luku 34 Kertaustiivistelmä

Osa V Sovelluksia

Luku 35 Verrannollisuus

Luku 36 Verrannollisuus: sovelluksia

Luku 37 Prosenttilaskentaa - perustilanteet

Luku 38 Prosenttiyhtälöitä ja sovelluksia

Luku 39 Kertaustiivistelmä

Osa VI Kertaus ja harjoituskokeita

Luku 40 Verrannollisuus

Kertausosio (teoria ja esimerkit) Kertaustehtäväsarjoja Harjoituskokeita "Näihin pystyt jo" -yo-tehtäviä (myös lyhyestä) "Näihin pystyt jo" -pääsykoetehtäviä (moooonilta eri aloilta! kauppatieteellinen, tradenomi (jos löytyy), kansantaloustiede, arkkitehtuuri, DI-haku, AMK tekniikan alat, fysiikka, tilastotiede, ...) Vastauksia ja ratkaisuja Suomi-ruotsienglanti-sanasto ja hakemisto symbolitaulukko