1. Équations d'Euler

Une équation d'Euler est une équation linéaire du deuxième ordre de la forme :

$$t^2y'' + \alpha ty' + \beta y = c(t)$$

où α et β sont deux constantes.

Une méthode pour résoudre ce type d'équation sur $]0, +\infty[$ consiste à :

- trouver des fonctions solutions de l'équation homogène associée de la forme $t \to t^r$;
- appliquer la méthode de variation de la constante (ou des constantes) pour résoudre l'équation avec second membre.

Résoudre les équations différentielles :

(a)
$$t^2y'' + 4ty' + 2y = 2\ln^2 t + 12t$$
.

(b)
$$t^3y'' + 3t^2y' + ty = 6\ln t$$
.

(c)
$$t^2x'' - 2tx' + 2x = t^4\cos t - 1$$
.

2. Changement de fonctions inconnues

Pour résoudre des équations linéaires du second ordre, on peut, si l'on a trouvé une solution de l'équation homogène, effectuer un changement de fonction inconnue en posant $x = yu_0$ où y est la nouvelle fonction inconnue et u_o une solution de l'équation homogène.

Traiter les divers exemples en tenant compte de l'indication :

- (a) (2x+1)y'' + (4x-2)y' 8y = 0 sachant qu'elle admet une solution de la forme $x \to e^{\alpha x}$.
- (b) Résoudre : xy'' + 2y' + xy = 0 et xy'' + 2y' + xy = f où f est une fonction continue de \mathbb{R} dans \mathbb{R} . On pourra poser z = xy et déterminer la fonction inconnue z.

3. Changement de variables

Parfois, on peut aussi simplifier les équations différentielles en effectuant un changement de variable. Voyons cela sur des exemples...

(a) Soit l'équation différentielle

$$(H): (1+x^2)^2y'' + 2x(1+x^2)y' + y = 0.$$

On pose $x = \tan t$ et on cherche une équation satisfaite par la fonction z définie par : "z(t) = y(x)" (ie $z(t) = y(\tan t)$ ou encore $z(\operatorname{Arctan} x) = y(x)$).

Montrer que z est solution d'une EDLH du second ordre à coefficients constants.

(b) même démarche avec

$$(1+x^2)y'' + xy' + k^2y = 0$$
 avec $k > 0$. En posant $x = \text{sh}t$ (ie $z(t) = y(x)$).

4. Changement de variables

On cherche à résoudre sur \mathbb{R}_+^* l'équation différentielle :

$$x^2y'' - 3xy' + 4y = 0. \quad (E)$$

- (a) Analyse: Soit y une solution de (E) sur \mathbb{R}_+^* . Pour $t \in \mathbb{R}$, on pose $z(t) = y(e^t)$.
 - i. Calculer pour $t \in \mathbb{R}$, z'(t) et z''(t).
 - ii. En déduire que z vérifie une équation différentielle linéaire d'ordre 2 à coefficients constants que l'on précisera (on pourra poser $x = e^t$ dans (E)).
 - iii. Résoudre l'équation différentielle trouvée à la question précédente.
 - iv. En déduire le portrait robot de y.
- (b) Synthèse : Vérifier que, réciproquement, les fonctions trouvées à la fin de l'analyse sont bien toutes les solutions de (E) et conclure.

5. Variation de constantes

Résoudre les équations différentielles :

(a)
$$y'' + y = \tan t$$
 (b) $y'' + y = \tan^2 t$

6. Coefficient constants

On considère l'équation différentielle : $y'' - 4y' + 3y = te^t$ (E)

- (a) L'écrire sous forme matricielle X' = AX + B(t).
- (b) résoudre le système homogène : X' = AX. En déduire les solution de l'équation homogène (E_0) associée à (E).
- (c) On note z la solution de (E_0) qui vaut e en 1, on pose y = kz, où k est une fonction réelle de classe C^2 . Montrer que y est solution de (E) ssi k est solution de $k' 2k = te^t$. Finir la résolution.
- 7. Recollement de solutions

Résoudre sur \mathbb{R} les équations suivantes :

(a)
$$E: (t+1)y'' - (t+2)y' + y = 0$$

(b)
$$(t+1)^2y'' - 2(t+1)y' + 2y = 0$$

en commençant par rechercher les solutions polynomiales

8. Recherche de solutions DSE

On peut parfois tenter de trouver des solutions DSE d'une équation différentielle. On cherche à priori une solution sous la forme $y(x) = \sum_{n=0}^{+\infty} a_n x^n$. On reporte dans l'équation et l'on obtient une relation de récurrence entre les (a_n) . On vérifie alors que une telle fonction admet un rayon strictement positif et l'on reconnaît éventuellement le DSE d'une fonction...

- (a) Résoudre y'' + xy' + y = 0.
- **(b)** Résoudre xy'' + 2y' xy = 0
- (c) Résoudre x(x-1)y'' + 3xy' + y = 0.
- (d) Résoudre $(1+t^2)y''(t) + 4ty'(t) + 2y'(t) = 0$.
- (e) Résoudre l'équation différentielle tx'' + 2x' tx = 0. Trouver une solution DSE puis utiliser la variation de la constante.
- (f) Résoudre l'équation différentielle $2xy' + y = 3x \cos x^{3/2}$.
- (g) Donner la solution sur \mathbb{R} DSE de l'équation d'Airy : y'' + xy = 0 telle que y(0) = 1 et y'(0) = 0.
- 9. Équations de Bernoulli et Riccatti
 - (a) Équation de Bernoulli
 - i. Montrer que l'équation de Bernoulli

$$y' + a(x)y + b(x)y^n = 0$$
 $n \in \mathbb{Z}$ $n \neq 0, n \neq 1$

se raméne à une équation linéaire par le changement de fonction $z(x) = 1/y(x)^{n-1}$.

- ii. Trouver les solutions de l'équation $xy' + y xy^3 = 0$.
- (b) Équation de Riccati
 - i. Montrer que si y_0 est une solution particulière de l'équation de Riccati

$$y' + a(x)y + b(x)y^2 = c(x)$$

alors la fonction définie par $u(x) = y(x) - y_0(x)$ vérifie une équation de Bernoulli (avec n = 2).

ii. Résoudre $x^2(y'+y^2)=xy-1$ en vérifiant d'abord que $y_0(x)=\frac{1}{x}$ est une solution.

(c) Autre exemple

Résoudre l'équation dite « de Bernoulli » $xy' + y = (1 - x^2)y^2$ à l'aide du changement de fonction inconnue $z = \frac{1}{y}$ (on cherche seulement des solutions ne s'annulant pas).

- **10.** Résoudre l'équation (E): 4xy'' + 2y' + y = 0 sachant que (E) admet deux solutions y et z telles que $yz \equiv 1$.
- 11. Soit $\lambda > 0$ et y une solution de l'équation différentielle $y'' + (1 + \frac{\lambda}{t^2})y = 0$. Montrer que pour tout $a \in \mathbb{R}$, la fonction y s'annule en un point de l'intervalle $]a, a + \pi[$. Indication: Etudier le wronskien de y et φ où φ est définie par : $\varphi(t) = \sin(t - a)$.
- 12. Solution qui s'annule

Soit $p: \mathbb{R} \to \mathbb{R}_+$ une fonction continue non identiquement nulle. On se propose de démontrer que toutes les solutions de l'équation différentielle y''(x) + p(x)y(x) = 0 s'annulent. Pour cela, on raisonne par l'absurde et on suppose que f est une solution ne s'annulant pas.

- (a) Justifier que f est de signe constant. Dans la suite, quitte à changer f en -f, on supposera f > 0.
- (b) Soit $a \in \mathbb{R}$ quelconque. Justifier que la courbe représentative de f est en-dessous de sa tangente en (a, f(a)).
- (c) En déduire que f'(a) = 0.
- (d) Conclure.

13. Solutions bornées

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue intégrable. On considère l'équation y'' + f(t)y = 0.

- (a) Soit y une solution bornée de l'équation. Montrer que y' tend vers 0 en $+\infty$.
- (b) Soit y_1 , y_2 deux solutions. Montrer que leur déterminant wronskien $W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}$ est constant.
- (c) En déduire que l'équation admet une solution non bornée.

14. Nombre fini de zéros

On considère l'équation différentielle y''(t) + b(t)y(t) = 0 où b désigne une application continue de \mathbb{R} dans \mathbb{R} . On considère y une solution non identiquement nulle de cette équation et on souhaite démontrer que, pour tout segment $[\alpha, \beta] \subset \mathbb{R}$, le nombre de zéros de y dans $[\alpha, \beta]$ est fini. Pour cela, on raisonne par l'absurde et on suppose qu'il existe une solution y qui possède un nombre infini de zéros dans $[\alpha, \beta]$.

- (a) Démontrer qu'il existe dans $[\alpha, \beta]$ une suite $(z_n)_{n \in \mathbb{N}}$ de zéros de y deux à deux distincts convergeant vers un réel $\gamma \in [\alpha, \beta]$.
- (b) Démontrer que $y(\gamma) = 0$.
- (c) Démontrer que, à partir d'un certain rang, le quotient $T_n = \frac{y(z_n) y(\gamma)}{z_n \gamma}$ est bien défini et que $y'(\gamma) = 0$.
- (d) En déduire que la solution y est nécessairement identiquement nulle et conclure.