Bibliotheken-Befehlsreferenz

i2cMaster / anadigMaster

Es muss jeweils ein Objekt der entsprechenden Klasse aus der Bibliothek *i2cMaster* bzw. *anadigMaster* erzeugt werden:

klassenname objektname;

Display (Library i2cMaster)

Funktion	Parameter	Anmerkung
start()	keine	sollte in setup() stehen
clear()	keine	Löschen des Display-Inhalts
print(inhalt)	Zahl oder "Text"	Display-Ausgabe des Inhalts
print(zahl, n)	float zahl, byte n	Ausgabe der Zahl mit n Nachkommastellen
println(inhalt)	Zahl oder "Text"	Wie print, mit abschließendem Zeilenumbruch
setRow(reihe)	byte reihe	Festlegung der nächsten Zeile (1 4)

In zeitkritischen Programmteilen für Sensoren oder Motoren sollten möglichst keine Display-Funktionen verwendet werden, da der I2C-Bus zusätzlich belastet wird.

ColorSensorA (Library i2cMaster) ColorSensorB (Library i2cMaster)

Funktion	Parameter	Rückgabewert (int16_t)	Anmerkung
start()	keine	kein	sollte in setup() stehen
calibrate()	keine	Attribute r0, g0, b0	Dunkel-Kalibierung
reset()	keine	kein	r0, g0, b0 auf 0
getRGB()	keine	Attribute r, g, b	Durchführung der Farbmessung
getRGB(r, g, b)	Variablennamen r, g, b (uint16_t)	Variablen r, g, b	Farbmessung und Speicherung in den Variablen
hue()	keine	Hue-Wert des HSL- Modells	Berechnet aus letzten Messwerten (-179 180)
hue(r, g, b)	Farbanteile (uint16_t)	Hue-Wert des HSL- Modells	Berechnet aus den Parametern
saturation()	keine	Sättigung des HSL- Modells	Berechnet aus letzten Messwerten (0 100)
saturation(r, g, b)	Farbanteile (uint16_t)	Sättigung des HSL- Modells	Berechnet aus den Parametern
color()	keine	Farbcode*	Berechnet aus letzten Messwerten (05)
color(r, g, b)	Farbanteile (uint16_t)	Farbcode*	Berechnet aus den Parametern
intens()	keine	Intensität	Berechnet aus letzten Messwerten (0 ca.2500)

intens(r, g, b)	Farbanteile (uint16_t)	Intensität	Berechnet aus den Parametern
r	(Variable uint16_t)	Rotanteil	letzter Messwert
g	(Variable uint16_t)	Grünanteil	letzter Messwert
b	(Variable uint16_t)	Blauanteil	letzter Messwert

* Farbcodes:

Code #	0	1	2	3	4	5
Farbe	BLACK	RED	YELLOW	GREEN	BLUE	WHITE
alternativ	SCHWARZ	ROT	GELB	GRUEN	BLAU	WEISS

Battery (Library anadigMaster)

Funktion	Parameter	Rückgabewert	Anmerkung
getVoltage()	keine	float Spannung	in Volt
percent(voltage)	float Spannung	uint16_t Prozent Ladezustand (LiPo)	0% = 10.5 V ; 100% = 12.4 V

Button (Library anadigMaster)

Funktion	Parameter	Rückgabewert	Anmerkung
pressed()	keine	bool 0 = offen ; 1 = gedrückt	
wait(dly)	uint32_t Verzögerung ms	kein	Warten bis Taster gedrückt + dly ms

Led (Library anadigMaster)

Funktion	Parameter	Anmerkung
on()	keine	Schaltet LED ein
off()	keine	Schaltet LED aus
blink(count, period)	uint8_t Anzahl Blinker, uint16_t Periode in ms	LED blinkt

LineSensor (Library anadigMaster)

Funktion	Parameter	Rückgabewert	Werte
getAmbient(a1, a2)	Variablennamen a1, a2 (int16_t)	Variablen a1, a2	1 1023
getReflections(a1, a2)	Variablennamen a1, a2 (int16_t)	Variablen a1, a2	1 1023
getDiff()	keine	int16_t Differenz der Reflexionen	a1 - a2
getSum()	keine	int16_t Summe der Reflexionen	a1 + a2
getAmbientDiff()	keine	int16_t Differenz der Lichter	a1 - a2
getAmbientSum()	keine	int16_t Summe der Lichter	a1 + a2

ledOn()	keine	kein	
ledOff()	keine	kein	

ServoMotor (Library anadigMaster)

Bei der Objektdefinition muss der Typ angegeben werden (port = 8 oder 9 je nach Controllerbuchse): ServoMotor servo(GEEK, port); oder ServoMotor servo(MINI, port);

Funktion	Parameter	Anmerkung
turnTo(winkel)	int16_t Zielwinkel	Absoluter Winkel gegen UZS GEEK: 0 360 MINI: 0 180
slowTo(winkel, speed)	int16_t Zielwinkel, int16_t Speed	Drehung mit speed Grad/Sek.
coast()	keine	Servomotor stromlos geschaltet

Drivetrain = Fahrmotoren-Steuerung (Library i2cMaster)

Steuerung der Schrittmotoren durch I2C-Kommandos:

Die Bibliotheks-Funktionen werden über den I2C-Bus übertragen.

Dazu muss ein Objekt der Klasse *Drivetrain* aus der Bibliothek *i2cMaster* erzeugt werden (am Beginn der ino-Datei):

#include "i2cMaster.h"

Drivetrain robotDrive(4); // I2C address

Die Motor-Kommandos werden per I2C-Bus übertragen mit Hilfe des Befehls: robotDrive.sendCommand(command, wert);

command #	Command (unit8_t)	Bedeutung	Einheit	Wert/Bereich (int16_t)
0	NONE_S	keine		0
1	GO	Starte Antrieb		0
2	STOP	Stoppe Bewegung		0
3	SPEED	Setze Geschwindigkeit	Steps/s	-2000 +2000 *
4	STEERING	Setze Lenkwert		-100 +100
5	ACCEL	Setze Beschleunigung	Steps/s ²	100 5000 *
6	DECEL	Setze Bremsverzögerung	Steps/s ²	100 5000 *
7	TARGET	Setze Ziel	Steps	1 32767
8	COAST	Setze Freilaufmodus		0
9	BRAKE	Setze Blockiermodus		0

^{*} praktische Grenze

Bibliotheks-Funktionen:

Funktion	Parameter (int16_t)	Bedeutung	Einheit	Bereich (int16_t)	Default wert
sendCommand	command, wert	Motor-Kommando über I2C (s. oben)	s. oben	s. Tabelle oben	

setTargetSteps	steps	Schritte zum Ziel	steps	-32768 – +32767	
setSpeed	speed	Geschwindigkeit	20 steps/s cm/s #	-100 - +100 *	
setSteering	steering	Lenkwert		-100 - +100	
setAccelerations	accel, decel	Beschleunigungen	20 steps/s ² cm/s ² #	10 – 500 *	250
go()		Start der Roboterfahrt			
stop()		Sofortiger Stopp			
brake()		Motoren im Bremsmodus			
coast()		Motoren im Freilaufmodus			
getStatus()		Rückgabe (int16_t) des Fortschritts	steps	0 – 32767 -1 = Motoren aus -9 = Fehler	
estimateTime	distance, speed, accel, decel	Rückgabe (int16_t) der Fahrzeit	ms	wie Einzelparameter	

[#] mit 200 mm Radumfang und 400 steps/Umdrehung

Nach Start der Fahrbewegung mittels go() lassen sich die Zielschritte (setTargetSteps), Geschwindigkeit (setSpeed) und Beschleunigungen (setAccelerations) nicht mehr verändern. Lediglich der Lenkwert (setSteering) kann während des Laufs variieren (z.B. für eine Linienverfolgung). getStatus() ist immer abrufbar und die Motoren lassen sich mittels stop() jederzeit stoppen.

MotorsX = Hilfsmotoren-Steuerung (Library i2cMaster)

Die folgenden Funktionen basieren auf Schrittmotoren mit 400 Halbschritten/Umdrehung (0.9 °/step).

Steuerung der Schrittmotoren durch I2C-Kommandos

Die Bibliotheks-Funktionen werden über den I2C-Bus übertragen.

Dazu muss ein Objekt der Klasse *MotorsX* aus der Bibliothek *i2cMaster* erzeugt werden (am Beginn der ino-Datei):

#include "i2cMaster.h"

MotorsX motorAB(5); // I2C address

Die Motor-Kommandos werden übertragen mit Hilfe des Befehls:

motorAB.sendCommand(command, wert);

command #	command (unit8_t)	Bedeutung	Einheit	Wert/Bereich (int16_t)
0	NONE_X	keine		0
1	GO_A	Starte Antrieb		0
2	STOP_A	Stoppe Bewegung		0

^{*} praktische Grenze

3	SPEED_A	Setze Geschwindigkeit	steps/s	-1200 +1200 *
4	ACCEL_A	Setze Beschleunigung	steps/s ²	100 10000 *
5	DECEL_A	Setze Bremsverzögerung	steps/s ²	100 10000 *
6	TARGET_A	Setze Ziel	steps	1 32767
7	COAST_A	Setze Freilaufmodus		0
8	BRAKE_A	Setze Blockiermodus		0
9	GO_B	Starte Antrieb		0
10	STOP_B	Stoppe Bewegung		0
11	SPEED_B	Setze Geschwindigkeit	steps/s	-1200 +1200 *
12	ACCEL_B	Setze Beschleunigung	steps/s ²	100 10000 *
13	DECEL_B	Setze Bremsverzögerung	steps/s ²	100 10000 *
14	TARGET_B	Setze Ziel	steps	1 32767
15	COAST_B	Setze Freilaufmodus		0
16	BRAKE_B	Setze Blockiermodus		0

_A, _B entsprechend Motor

Bibliotheks-Funktionen:

Funktion	Parameter (int16_t)	Bedeutung	Einheit	Bereich (int16_t)	Default wert
setTargetSteps_A setTargetSteps_B	steps	Schritte zum Ziel	Steps (0.9°/step)	-32768 - +32767	
setSpeed_A setSpeed_B	speed	Geschwindigkeit	°/s	-1080 - +1080 *	
setAccelerations()		Beschleunigungen	°/s²		5000
setAccelerations_A setAccelerations_B	accel, decel	Beschleunigungen	°/s²	100 – 10000 *	
go_A() go_B()		Start der Drehbewegung			
stop_A() stop_B()		Sofortiger Stopp			
brake_A() brake_B()		Beide Motoren im Bremsmodus			
coast_A() coast_B()		Beide Motoren im Freilaufmodus			
getStatus()		Rückgabe (int16_t) des Fortschritts		0 = beide ruhig 1 = MotorA bew. 2 = MotorB bew. 3 = beide bewegt -9 = Fehler	

^{*} praktische Grenze

^{*} praktische Grenze