Example of Bayes predictor

TABLE DES MATIÈRES

1	Bayes estimator and Bayes risk			1
	1.1	Soluti	on	1
		1.1.1	Bayes predictor, general case	1
		1.1.2	Application	2
		1.1.3	Bayes risk, general case	2
		1.1.4	Application	2

1 BAYES ESTIMATOR AND BAYES RISK

Consider the following joint random variable (X, Y).

$$-- \mathfrak{X} = \{0, 1, 2\}$$

$$-- y = \{0, 1\}.$$

— X follows a uniform law on \mathfrak{X} .

$$Y = \left\{ \begin{array}{l} B(1/5) \text{ if } X = 0 \\ B(3/4) \text{ if } X = 1 \\ B(2/3) \text{ if } X = 2 \end{array} \right.$$

With B(p) a Bernoulli law with parameter p.

Compute the Bayes estimator and the bayes risk.

1.1 Solution

1.1.1 Bayes predictor, general case

We prove again the general result on the Bayes predictor in the case of binary classification. We have seen that the Bayes predictor is defined by

$$f^*(x) = \underset{z \in \mathcal{Y}}{\arg\min} \, \mathbb{E}\left[l(y, z) | X = x\right] \tag{1}$$

Hence

$$f^{*}(x) = \underset{z \in \mathcal{Y}}{\arg \min} E \left[l(y, z) | X = x \right]$$

$$= \underset{z \in \mathcal{Y}}{\arg \min} P(Y \neq z | X = x)$$

$$= \underset{z \in \mathcal{Y}}{\arg \min} 1 - P(Y = z | X = x)$$

$$= \underset{z \in \mathcal{Y}}{\arg \max} P(Y = z | X = x)$$

$$= \underset{z \in \mathcal{Y}}{\arg \max} P(Y = z | X = x)$$
(2)

The optimal classifier selects the most probable output given X = x.

In this case:

$$- f^*(0) = 0$$

$$- f^*(1) = 1$$

$$- f^*(2) = 1$$

1.1.3 Bayes risk, general case

We have also seen that using the law of total expectation, with the "o-1" loss,

$$R^* = E[l(Y, f^*(X))]$$

$$= E_X[E_Y(l(Y \neq f^*(X)|X)]$$

$$= E_X[P(Y \neq f^*(X)|X)]$$
(3)

But we have

$$P(Y \neq f^*(X)|X = x) = P(Y \neq f^*(x))$$
(4)

We note $\eta(x) = P(Y = 1|X = x)$. Then,

— If
$$\eta(x) > \frac{1}{2}$$
, then $f^*(x) = 1$, and $P(Y \neq f^*(x)) = P(Y = 0) = 1 - \eta(x)$

— If
$$\eta(x) < \frac{1}{2}$$
, then $f^*(x) = 0$, and $P(Y \neq f^*(x)) = P(Y = 1) = \eta(x)$

In both cases, $P(Y \neq f^*(x)) = \min(\eta(x), 1 - \eta(x))$.

We conclude that

$$R^* = E_X \left[\min(\eta(X), 1 - \eta(X)) \right]$$
 (5)

1.1.4 Application

In this setting:

$$R^* = \frac{1}{3} \frac{1}{5} + \frac{1}{3} \frac{1}{4} + \frac{1}{3} \frac{1}{3}$$

$$= \frac{1}{3} \left(\frac{1}{5} + \frac{1}{4} + \frac{1}{3} \right)$$

$$= \frac{1}{3} \left(\frac{12}{60} + \frac{15}{60} + \frac{20}{60} \right)$$

$$= \frac{1}{3} \left(\frac{47}{60} \right)$$

$$= \frac{47}{180}$$
(6)