Gottesman-Kitaev-Preskill bosonic error correcting codes: a lattice perspective

Quantum 6, 648 (2022)

Jonathan Conrad, Jens Eisert, Francesco Arzani

Outline

- 1) Introduction and motivation
- 2) Some definitions: Lattices in a nutshell
- 3) Results: Lattice bases and symplectically equivalent codes
- 4) Conclusions

Part 1: Introduction and motivation

Information always encoded in phys. syst.

Always subject to **noise**

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Quantum: mostly qubits $|\alpha| |0\rangle + \beta |1\rangle$

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Quantum: mostly qubits $|\alpha| |0\rangle + \beta |1\rangle$

Bosonic codes: oscillators

EM field mode, LC circuit, ...

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Quantum: mostly qubits $\alpha |0\rangle + \beta |1\rangle$

Bosonic codes: oscillators

$$\frac{E}{\sqrt{x^2/2}}$$
 Ψ_1
 Ψ_2
 Ψ_2
 Ψ_1
 Ψ_2
 Ψ_3

$$\hat{\boldsymbol{x}} = (q_1, \dots, q_n, p_1, \dots, p_n)^T$$

$$[\hat{x}_j, \hat{x}_k] = iJ_{jk}$$

$$J = \left(egin{array}{cc} \mathbf{0} & \mathbb{I} \ -\mathbb{I} & \mathbf{0} \end{array}
ight)$$

EM field mode, LC circuit, ...

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Quantum: mostly qubits $|\alpha|0
angle + \beta|1
angle$

Bosonic codes: oscillators

$$\hat{\boldsymbol{x}} = (q_1, \dots, q_n, p_1, \dots, p_n)^T$$

$$[\hat{x}_j, \hat{x}_k] = iJ_{jk}$$

$$J = \left(egin{array}{cc} \mathbf{0} & \mathbb{I} \ -\mathbb{I} & \mathbf{0} \end{array}
ight)$$

We have *continuous* variables

$$|\psi\rangle = \int \mathrm{d}q\psi(q) \, |q\rangle$$

Infinite dimensional space! How to exploit?

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Quantum: mostly qubits $|\alpha|0
angle + \beta|1
angle$

Bosonic codes: oscillators

$$\hat{\boldsymbol{x}} = (q_1, \dots, q_n, p_1, \dots, p_n)^T$$

$$[\hat{x}_j, \hat{x}_k] = iJ_{jk}$$

$$J = \left(egin{array}{cc} \mathbf{0} & \mathbb{I} \ -\mathbb{I} & \mathbf{0} \end{array}
ight)$$

EM field mode, LC circuit, ...

We have *continuous* variables

$$|\psi\rangle = \int \mathrm{d}q\psi(q) \, |q\rangle$$

Infinite dimensional space! How to exploit?

Symmetries!

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

Quantum: mostly qubits $|\alpha|0
angle + \beta|1
angle$

Bosonic codes: oscillators

$$\hat{\boldsymbol{x}} = (q_1, \dots, q_n, p_1, \dots, p_n)^T$$

$$[\hat{x}_j, \hat{x}_k] = iJ_{jk}$$

$$J = \left(\begin{array}{cc} \mathbf{0} & \mathbb{I} \\ -\mathbb{I} & \mathbf{0} \end{array} \right)$$

We have *continuous* variables

$$|\psi\rangle = \int \mathrm{d}q\psi(q) \,|q\rangle$$

Infinite dimensional space! How to exploit?

Symmetries!

In phase space: Wigner Function

Quasi-probability distribution

EM field mode, LC circuit, ...

Information always encoded in phys. syst.

Always subject to **noise**

Error correction: redundancy

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i2\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}}D(\boldsymbol{\eta})D(\boldsymbol{\xi})$$

We have *continuous* variables

$$|\psi\rangle = \int \mathrm{d}q\psi(q) \, |q\rangle$$

Infinite dimensional space! How to exploit?

Symmetries!

In phase space: Wigner Function

Quasi-probability distribution

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: **stabilized** by (commuting) **displacement** operators

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: **stabilized** by (commuting) **displacement** operators

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: **stabilized** by (commuting) **displacement** operators

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right)=e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j}+\boldsymbol{\xi}_{k}\right)$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\mathcal{D}\left(oldsymbol{\xi}_{k}
ight)=e^{if\left(j,k
ight)}\mathcal{D}\left(oldsymbol{\xi}_{j}+oldsymbol{\xi}_{k}
ight)$$

$$\mathcal{S}\cong\mathcal{L}=\{\sum_{j}z_{j}oldsymbol{\xi}_{j}\;:\;z_{j}\in\mathbb{Z}\}$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right) = e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j} + \boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S}\cong\mathcal{L}=\{\sum_{j}z_{j}oldsymbol{\xi}_{j}\ :\ z_{j}\in\mathbb{Z}\}$$

Ex:1 qubit in 1 mode
$$\rightarrow \boldsymbol{\xi}_q, \ \boldsymbol{\xi}_p$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right) = e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j} + \boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S}\cong\mathcal{L}=\{\sum_{j}z_{j}oldsymbol{\xi}_{j}\ :\ z_{j}\in\mathbb{Z}\}$$

Ex:1 qubit in 1 mode
$$\rightarrow \xi_q$$
, ξ_p

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right) = e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j} + \boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S}\cong\mathcal{L}=\{\sum_{j}z_{j}oldsymbol{\xi}_{j}\ :\ z_{j}\in\mathbb{Z}\}$$

Ex:1 qubit in 1 mode
$$\rightarrow \boldsymbol{\xi}_q, \boldsymbol{\xi}_p$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right) = e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j} + \boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S}\cong\mathcal{L}=\{\sum_{j}z_{j}oldsymbol{\xi}_{j}\;:\;z_{j}\in\mathbb{Z}\}$$

Ex:1 qubit in 1 mode
$$\rightarrow \boldsymbol{\xi}_q, \; \boldsymbol{\xi}_p$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right) = e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j} + \boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S}\cong\mathcal{L}=\{\sum_{j}z_{j}oldsymbol{\xi}_{j}\;:\;z_{j}\in\mathbb{Z}\}$$

$$\mathcal{L}^{\perp}$$
 \rightarrow Logical Pauli operators

Ex: 1 qubit in 1 mode
$$\rightarrow \xi_q, \xi_p$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right)=e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j}+\boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S} \cong \mathcal{L} = \{\sum_j z_j \boldsymbol{\xi}_j \; : \; z_j \in \mathbb{Z} \}$$

$$\mathcal{L}^{\perp}$$
 \rightarrow Logical Pauli operators

Ex:1 qubit in 1 mode
$$\rightarrow \xi_q, \xi_p$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001) GKP codes

$$\mathcal{S} = \langle \mathcal{D}\left(\boldsymbol{\xi}_{1}\right), ..., \mathcal{D}\left(\boldsymbol{\xi}_{2n}\right) \rangle$$
 Code: $\mathcal{D}\left(\boldsymbol{\xi}_{j}\right) |\psi\rangle = |\psi\rangle$

$$\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\mathcal{D}\left(oldsymbol{\xi}_{k}
ight)=e^{if\left(j,k
ight)}\mathcal{D}\left(oldsymbol{\xi}_{j}+oldsymbol{\xi}_{k}
ight)$$

$$\mathcal{S} \cong \mathcal{L} = \{\sum_j z_j oldsymbol{\xi}_j \; : \; z_j \in \mathbb{Z} \}$$

$$\mathcal{L}^{\perp}$$
 - Logical Pauli operators

Good protection against common noise processes
 Albert et al, PRA 97 (2018)

Ex:1 qubit in 1 mode
$$\rightarrow$$
 $oldsymbol{\xi}_q, \ oldsymbol{\xi}_p$

« lives » on \mathcal{L}^{\perp}

« lives » on \mathcal{L}^{\perp}

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\mathcal{D}\left(oldsymbol{\xi}_{k}
ight)=e^{if\left(j,k
ight)}\mathcal{D}\left(oldsymbol{\xi}_{j}+oldsymbol{\xi}_{k}
ight)$$

$$\mathcal{S} \cong \mathcal{L} = \{\sum_j z_j oldsymbol{\xi}_j \; : \; z_j \in \mathbb{Z} \}$$

$$\mathcal{L}^{\perp}$$
 \rightarrow Logical Pauli operators

- Good protection against common noise processes
 Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations ("easy" good for EC & QIP)
 Gottesman, Kitaev, Preskill PRA 64 (2001)

Ex:1 qubit in 1 mode
$$\rightarrow \boldsymbol{\xi}_q, \ \boldsymbol{\xi}_p$$

« lives » on \mathcal{L}^{\perp}

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Grid codes: **stabilized** by (commuting) **displacement** operators → underlying **lattice**

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}
ight)=e^{if\left(j,k
ight)}\mathcal{D}\left(\boldsymbol{\xi}_{j}+\boldsymbol{\xi}_{k}
ight)$$

$$\mathcal{S} \cong \mathcal{L} = \{\sum_j z_j oldsymbol{\xi}_j \; : \; z_j \in \mathbb{Z} \}$$

$$\mathcal{L}^{\perp}$$
 $ightarrow$ Logical Pauli operators

- Good protection against common noise processes Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations ("easy" good for EC & QIP) Gottesman, Kitaev, Preskill PRA 64 (2001)
- Can be used as effective qubits and combined with stabilizer codes Vuillot et al, PRA 99 (2019) Noh&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001) **GKP** codes

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\mathcal{D}\left(oldsymbol{\xi}_{k}
ight)=e^{if\left(j,k
ight)}\mathcal{D}\left(oldsymbol{\xi}_{j}+oldsymbol{\xi}_{k}
ight)$$

$$\mathcal{S} \cong \mathcal{L} = \{\sum_j z_j oldsymbol{\xi}_j \; : \; z_j \in \mathbb{Z} \}$$

→ Logical Pauli operators

- Good protection against common noise processes Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations ("easy" good for EC & QIP) Gottesman, Kitaev, Preskill PRA 64 (2001)
- Can be used as effective qubits and combined with stabilizer codes Vuillot et al, PRA 99 (2019) Noh&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)
- Can protect CV systems

Noh et al, PRL 125 (2020)

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

<u>Grid codes</u>: stabilized by (commuting) displacement operators → underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001) **GKP** codes

$$\mathcal{S}=\left\langle \mathcal{D}\left(oldsymbol{\xi}_{1}
ight),\;...,\;\mathcal{D}\left(oldsymbol{\xi}_{2n}
ight)
ight
angle$$
 Code: $\mathcal{D}\left(oldsymbol{\xi}_{j}
ight)\left|\psi
ight
angle =\left|\psi
ight
angle$

$$\mathcal{D}\left(\boldsymbol{\xi}_{j}\right)\mathcal{D}\left(\boldsymbol{\xi}_{k}\right)=e^{if\left(j,k\right)}\mathcal{D}\left(\boldsymbol{\xi}_{j}+\boldsymbol{\xi}_{k}\right)$$

$$\mathcal{S} \cong \mathcal{L} = \{\sum_j z_j oldsymbol{\xi}_j \; : \; z_j \in \mathbb{Z} \}$$

« lives » on \mathcal{L}^{\perp}

- Good protection against common noise processes Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations ("easy" good for EC & QIP) Gottesman, Kitaev, Preskill PRA 64 (2001)
- Can be used as effective qubits and combined with stabilizer codes Vuillot et al, PRA 99 (2019) Noh&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)
- Can protect CV systems Noh et al. PRL 125 (2020)
- Logical states thought hard to realize, now there are experiments! Flühmann et al, Nature 566 (2019) Campagne-Ibarcg et al, Nature 584 (2020)

For exponential noise suppression: more oscillators

For exponential noise suppression: more oscillators

Up to now: *concatenation* → regard as effective qubits, add qubit-level code

For exponential noise suppression: more oscillators

- Up to now: *concatenation* → regard as effective qubits, add qubit-level code
 - → "lattice picture" only for individual oscillators, not for whole code

For exponential noise suppression: more oscillators

Up to now: *concatenation* → regard as effective qubits, add qubit-level code

→ "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

For exponential noise suppression: more oscillators

Up to now: *concatenation* → regard as effective qubits, add qubit-level code

→ "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

upshot:

lattices are very well studied!

J. Conway and N. Sloane. Sphere packings, lattices and groups, volume 290. 1988

For exponential noise suppression: more oscillators

- Up to now: *concatenation* → regard as effective qubits, add qubit-level code
 - → "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

upshot:

lattices are very well studied!

J. Conway and N. Sloane. Sphere packings, lattices and groups, volume 290. 1988

...but not so much for GKP!

Gottesman, Kitaev, Preskill PRA 64 (2001) Harrington, Preskill PRA 64 (2001) Hänggli, Heinze, König, PRA 102 (2020) Hänggli, König, IEEE TIT 68(2) (2021)

For exponential noise suppression: more oscillators

- Up to now: *concatenation* → regard as effective qubits, add qubit-level code
 - → "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

upshot:

lattices are very well studied!

J. Conway and N. Sloane. Sphere packings, lattices and groups, volume 290. 1988

...but not so much for GKP!

Gottesman, Kitaev, Preskill PRA 64 (2001)

Harrington, Preskill PRA 64 (2001)

Hänggli, Heinze, König, PRA 102 (2020)

Hänggli, König, IEEE TIT 68(2) (2021)

Since our work came out:

Schmidt, van Loock, PRA 105 (2022)

Royer, Singh, Girvin, PRX Quantum 105 (2022)

The lattice point of view

For exponential noise suppression: more oscillators

- Up to now: *concatenation* → regard as effective qubits, add qubit-level code
 - → "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more? Yes!

upshot:

lattices are very well studied!

J. Conway and N. Sloane. Sphere packings, lattices and groups, volume 290. 1988

...but not so much for GKP!

Gottesman, Kitaev, Preskill PRA 64 (2001)

Harrington, Preskill PRA 64 (2001)

Hänggli, Heinze, König, PRA 102 (2020)

Hänggli, König, IEEE TIT 68(2) (2021)

Since our work came out:

Schmidt, van Loock, PRA 105 (2022) Royer, Singh, Girvin, PRX Quantum 105 (2022) Quantum 6, 648 (2022)

Results

- 1. Code properties from lattice bases
- 2. Symplectic operations
- 3. Distance bounds for GKP codes
- 4. Decoding problem and Θ functions
- 5. GKP codes beyond concatenation

The lattice point of view

For exponential noise suppression: more oscillators

- Up to now: *concatenation* → regard as effective qubits, add qubit-level code
 - → "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more? Yes!

upshot:

lattices are very well studied!

J. Conway and N. Sloane. Sphere packings, lattices and groups, volume 290. 1988

...but not so much for GKP!

Gottesman, Kitaev, Preskill PRA 64 (2001)

Harrington, Preskill PRA 64 (2001)

Hänggli, Heinze, König, PRA 102 (2020)

Hänggli, König, IEEE TIT 68(2) (2021)

Since our work came out:

Schmidt, van Loock, PRA 105 (2022) Royer, Singh, Girvin, PRX Quantum 105 (2022) Quantum 6, 648 (2022)

Results

- 1. Code properties from lattice bases
- 2. Symplectic operations
- 3. Distance bounds for GKP codes
- 4. Decoding problem and Θ functions
- 5. GKP codes beyond concatenation

Part 2 : Definitions

Start from

$$S = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \quad \leftrightarrow \quad M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

$$\Longrightarrow \left[S \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\} \right]$$

Start from

$$S = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \quad \leftrightarrow \quad M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

$$\Longrightarrow S \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Commutation \leftrightarrow Integer symplectic product $\left[D\left(\boldsymbol{\xi}_{j}\right),D\left(\boldsymbol{\xi}_{j}\right)\right]=0\Leftrightarrow\boldsymbol{\xi}_{j}^{T}J\boldsymbol{\xi}_{k}\in\mathbb{Z}$

Start from

$$S = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \quad \leftrightarrow \quad M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

$$\Longrightarrow S \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Commutation \leftrightarrow Integer symplectic product $\left[D\left(\boldsymbol{\xi}_{j}\right),D\left(\boldsymbol{\xi}_{j}\right)\right]=0\Leftrightarrow\boldsymbol{\xi}_{j}^{T}J\boldsymbol{\xi}_{k}\in\mathbb{Z}$

$$A_{jk} = \left(MJM^T\right)_{jk} \in \mathbb{Z}$$
 Symplectically integral lattices

Symplectic Gram matrix

Start from

$$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \quad \leftrightarrow \quad M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

$$\Longrightarrow \quad \mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Commutation \leftrightarrow Integer symplectic product $\left[D\left(\mathbf{\xi}_{j}\right),D\left(\mathbf{\xi}_{j}\right)\right]=0\Leftrightarrow\mathbf{\xi}_{j}^{T}J\mathbf{\xi}_{k}\in\mathbb{Z}$

$$A_{jk} = \left(MJM^T\right)_{jk} \in \mathbb{Z}$$
 Symplectically integral lattices

Symplectic Gram matrix

Each linearly independent generator "discretizes" 1 direction in phase space

Focus on full rank lattices: $\det M \neq 0 \Rightarrow d < \infty$ Logical dimension

Logical Pauli operators:

all displacements that commute with stabilizers

Logical Pauli operators:

all displacements that commute with stabilizers

all vectors that have integer symplectic product with lattice vectors

$$\left\{\boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2n} \mid \left(\boldsymbol{\xi}^{\perp}\right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \ \forall \boldsymbol{\xi} \in \mathcal{L}\right\}$$

Logical Pauli operators:

all displacements that commute with stabilizers

all vectors that have integer symplectic product with lattice vectors

$$igsplace$$
 (symplectically) dual lattice $\mathcal{L}^\perp = \left\{m{\xi}^\perp \in \mathbb{R}^{2n} \mid \left(m{\xi}^\perp
ight)^T J m{\xi} \in \mathbb{Z} \; orall m{\xi} \in \mathcal{L}
ight\}$

Logical Pauli operators:

all displacements that commute with stabilizers

all vectors that have integer symplectic product with lattice vectors

(symplectically) dual lattice
$$\mathcal{L}^\perp = \left\{m{\xi}^\perp \in \mathbb{R}^{2n} \mid \left(m{\xi}^\perp
ight)^T J m{\xi} \in \mathbb{Z} \; orall m{\xi} \in \mathcal{L}
ight\}$$

Dual lattice generator (finite logical dimension) : $M^{\perp} = (JM^T)^{-1}$

Logical Pauli operators:

all displacements that commute with stabilizers

all vectors that have integer symplectic product with lattice vectors

(symplectically) dual lattice
$$\mathcal{L}^\perp = \left\{ oldsymbol{\xi}^\perp \in \mathbb{R}^{2n} \mid \left(oldsymbol{\xi}^\perp
ight)^T J oldsymbol{\xi} \in \mathbb{Z} \; orall oldsymbol{\xi} \in \mathcal{L}
ight\}$$

Dual lattice generator (finite logical dimension) : $M^{\perp} = (JM^T)^{-1}$

One can show that the logical dimension *d* is computed from:

$$d^2 = |\mathcal{L}^{\perp}/\mathcal{L}| = |\det M|/|\det M^{\perp}| = \det A = (\det M)^2$$

Part 3: Results

Basis (stabilizer generators) not unique given lattice (code)

$$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle$$

$$M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

Basis (stabilizer generators) not unique given lattice (code)

Example: square lattice

$$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle$$

$$M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

Basis (stabilizer generators) not unique given lattice (code)

Example: square lattice

Exploit basis choice and properties to study codes

$$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle$$

$$M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

Basis (stabilizer generators) not unique given lattice (code)

Example: square lattice

 $S = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle$ $M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$

Exploit basis choice and properties to study codes

Theorem (Hadamard's bound):

Let
$$C = \max_{j} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M$$
. Then $k \leq 2n \log_{2} C$

Basis (stabilizer generators) not unique given lattice (code)

Example: square lattice

 $\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle$ $M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$

Exploit basis choice and properties to study codes

Theorem (Hadamard's bound):

Let
$$C = \max_{j} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M$$
. Then $k \leq 2n \log_{2} C$

Intuitively : $C\sim$ maximum interaction strength with ancilla to measure a stabilizer generator

Basis (stabilizer generators) not unique given lattice (code)

Example: square lattice

Exploit basis choice and properties to study codes

Theorem (Hadamard's bound):

Let
$$C = \max_{j} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M$$
. Then $k \leq 2n \log_{2} C$

Intuitively : $C \sim$ maximum interaction strength with ancilla to measure a stabilizer generator Encoding ratio related to "hardness" of measuring generators in the chosen basis

Concatenation:

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

qubits/modes on vertices

Concatenation: 1) fix a qubit in each of *n* modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

$$\circ \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$
 $\circ \exp\left(-i2\sqrt{\pi}\hat{p}_j\right)$ GKP qubits

qubits/modes on vertices

Concatenation: 1) fix a qubit in each of n modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

$$\circ \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$
 $\circ \exp\left(-i2\sqrt{\pi}\hat{p}_j\right)$ GKP qubits

- **Concatenation**: 1) fix a qubit in each of n modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

qubits/modes on vertices

$$\circ \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$
 $\circ \exp\left(-i2\sqrt{\pi}\hat{p}_j\right)$ GKP qubits

$$\bullet \prod_{l(j)} Z_{l(j)}^{(L)} = \prod_{l(j)} D\left(\boldsymbol{\eta}_{l(j)}\right)$$

- **Concatenation**: 1) fix a qubit in each of *n* modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators
 - 2) enlarge stabilizer to include additional *logical* Pauli strings → displacements in <u>dual lattice</u>

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

$$2n + n - 1 = 26$$
 stab.

$$\bigcirc \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$

$$\circ \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$
 $\circ \exp\left(-i2\sqrt{\pi}\hat{p}_j\right)$ GKP qubits

$$\bullet \prod_{l(j)} Z_{l(j)}^{(L)} = \prod_{l(j)} D\left(\boldsymbol{\eta}_{l(j)}\right)$$

Concatenation: 1) fix a qubit in each of n modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

Overall code still has to be stabilized by a (new) lattice of displacements (with smaller d)

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

$$2n + n - 1 = 26$$
 stab.

$$0 \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$

$$\exp\left(-i2\sqrt{\pi}\hat{p}_j
ight)$$
 GKP qubits

Concatenation: 1) fix a qubit in each of *n* modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

> 2) enlarge stabilizer to include additional *logical* Pauli strings → displacements in <u>dual lattice</u>

Overall code still has to be stabilized by a **(new) lattice** of displacements (with smaller d) **But**: 2n vectors are always sufficient to define a full dimensional lattice!

Example: L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

qubits/modes on vertices

$$2n + n - 1 = 26$$
 stab.

$$\exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$

$$\exp\left(-i2\sqrt{\pi}\hat{p}_j\right)$$

$$\exp\left(-i2\sqrt{\pi}\hat{p}_j
ight)$$
 GKP qubits

$$\bullet \prod_{l(j)} Z_{l(j)}^{(L)} = \prod_{l(j)} D\left(\boldsymbol{\eta}_{l(j)}\right)$$

Concatenation: 1) fix a qubit in each of *n* modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

> 2) enlarge stabilizer to include additional *logical* Pauli strings → displacements in <u>dual lattice</u>

Overall code still has to be stabilized by a **(new) lattice** of displacements (with smaller d) **But**: 2n vectors are always sufficient to define a full dimensional lattice!

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

qubits/modes on vertices

$$2n + n - 1 = 26$$
 stab.

$$\bigcirc \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$

$$ullet$$
 $\prod_{l(j)} Z_{l(j)}^{(L)} = \prod_{l(j)} D\left(oldsymbol{\eta}_{l(j)}
ight)$

$$M_{
m conc} = \left(egin{array}{c} M_{
m GKP} \\ M_{
m Q} \end{array}
ight)$$
 lattice basis reduction $M_{
m min}$ $2n$ = 18 stab. gen. can do respecting weights and geometric locality!

Concatenation: 1) fix a qubit in each of n modes (logical dimension $d = 2^n$) (think 1 square lattice for each mode) $\rightarrow 2n$ generators

Overall code still has to be stabilized by a **(new) lattice** of displacements (with smaller *d*) **But** : *2n* vectors are always sufficient to define a full dimensional lattice !

Example : L=3 GKP-surface code (n = 9 modes, logical dimension d = 2)

qubits/modes on vertices

$$2n + n - 1 = 26$$
 stab.

$$\circ \exp\left(i2\sqrt{\pi}\hat{q}_j\right)$$

 $\exp\left(-i2\sqrt{\pi}\hat{p}_j
ight)$ GKP qubits

$$\bullet \prod_{l(j)} X_{l(j)}^{(L)} = \prod_{l(j)} D\left(\boldsymbol{\xi}_{l(j)}\right)$$

$$\bullet \prod_{l(j)} Z_{l(j)}^{(L)} = \prod_{l(j)} D\left(\boldsymbol{\eta}_{l(j)}\right)$$

Higher level code

$$M_{
m conc} = \left(\begin{array}{c} M_{
m GKP} \\ M_{
m Q} \end{array} \right)$$

lattice basis reduction

$$M_{
m min}$$

2n = 18 stab. gen.

can do respecting weights and geometric locality!

less measurements per EC cycle

$$egin{align} U_S &= \exp\left(-ioldsymbol{\hat{x}}^T H oldsymbol{\hat{x}}
ight) \ U_S oldsymbol{\hat{x}} U_S^\dagger &= S oldsymbol{\hat{x}} & S \in \operatorname{Sp}(2n), \quad SJS^T = J \ \end{pmatrix}$$

$$egin{align} U_S &= \exp\left(-i \hat{m{x}}^T H \hat{m{x}}
ight) \ U_S \hat{m{x}} U_S^\dagger &= S \hat{m{x}} \quad S \in \mathrm{Sp}(2n), \quad SJS^T = J \ \end{pmatrix} \qquad A = MJM^T \ \end{pmatrix}$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T \text{ iff } MJM^T = NJN^T \text{ (in canonical form)}$$

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$A_{M,N} = \left(\begin{array}{cc} 0 & D \\ -D & 0 \end{array}\right)$$

$$egin{align} U_S &= \exp\left(-i \hat{m{x}}^T H \hat{m{x}}
ight) \ U_S \hat{m{x}} U_S^\dagger &= S \hat{m{x}} \quad S \in \mathrm{Sp}(2n), \quad SJS^T = J \ \end{pmatrix} \qquad A = MJM^T \ \end{pmatrix}$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T \text{ iff } MJM^T = NJN^T \text{ (in canonical form)}$$

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$A_{M,N} = \left(\begin{array}{cc} 0 & D \\ -D & 0 \end{array}\right)$$

Intuition: logical dimensions are distributed in the same way across oscillators

$$egin{align} U_S &= \exp\left(-i \hat{m{x}}^T H \hat{m{x}}
ight) \ U_S \hat{m{x}} U_S^\dagger &= S \hat{m{x}} \quad S \in \mathrm{Sp}(2n), \quad SJS^T = J \ \end{pmatrix} \qquad A = MJM^T \ \end{pmatrix}$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T \text{ iff } MJM^T = NJN^T \text{ (in canonical form)}$$

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$A_{M,N} = \left(\begin{array}{cc} 0 & D \\ -D & 0 \end{array}\right)$$

Intuition: logical dimensions are distributed in the same way across oscillators

Corollary:

Any code with
$$d = 2$$
 is s.e. to $S_{\square}^{(2)} = \left\langle e^{i2\sqrt{\pi}\hat{q}_1}, e^{-i2\sqrt{\pi}\hat{p}_1}, e^{i\sqrt{\pi}\hat{q}_j}, e^{i\sqrt{\pi}\hat{p}_j} \right\rangle, \ j > 1$

one qubit in mode 1, a fixed state on others

$$egin{align} U_S &= \exp\left(-i\hat{m{x}}^T H \hat{m{x}}
ight) \ U_S \hat{m{x}} U_S^\dagger &= S \hat{m{x}} \quad S \in \mathrm{Sp}(2n), \quad SJS^T = J \ \end{pmatrix} \qquad A = MJM^T \ \end{pmatrix}$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T \text{ iff } MJM^T = NJN^T \text{ (in canonical form)}$$

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$A_{M,N} = \left(\begin{array}{cc} 0 & D \\ -D & 0 \end{array}\right)$$

Intuition: logical dimensions are distributed in the same way across oscillators

Corollary:

Any code with
$$d=2$$
 is s.e. to $\mathcal{S}_{\square}^{(2)} = \left\langle e^{i2\sqrt{\pi}\hat{q}_1}, e^{-i2\sqrt{\pi}\hat{p}_1}, e^{i\sqrt{\pi}\hat{q}_j}, e^{i\sqrt{\pi}\hat{p}_j} \right\rangle, \ j>1$

one qubit in mode 1, a fixed state on others

- Generalizes to higher logical dimensions
- Can be used to bound distance of (any) given grid code (see paper)

Part 4: Conclusions

Presentation

- Bosonic error correction
- Lattice formalism
- Basis reduction
- Symplectic equivalence

Paper

Presentation

- Bosonic error correction
- Lattice formalism
- Basis reduction
- Symplectic equivalence

- Code distance
 - Maximum-Likelihood decoding
 - New code constructions

J. Conrad, J. Eisert, FA Quantum 6, 648 (2022)

Lattices for bosonic codes

Paper

Presentation

- Bosonic error correction
- Lattice formalism
- Basis reduction
- Symplectic equivalence

Code distance

- Maximum-Likelihood decoding
 - New code constructions

J. Conrad, J. Eisert, FA Quantum 6, 648 (2022) • Efficient decoding

New codes

Fault tolerant schemes

Lattices for bosonic codes

Paper

Presentation

- Bosonic error correction
- Lattice formalism
- Basis reduction
- Symplectic equivalence

Code distance

- Maximum-Likelihood decoding
 - New code constructions

J. Conrad, J. Eisert, FA Quantum 6, 648 (2022) Efficient decoding

New codes

Fault tolerant schemes

Thank you!