GATE CSE NOTES

by

UseMyNotes

£XTRAS

* DFA for L= { w & {a,by* | may.3 > mby.3}

- →	ma/.3	n 6%3	Cond'sa	tisfied?	
P 0	0	0	* *	Make product DFA $ \begin{bmatrix} n_a / .3 = 0 \\ n_b / .3 = 0 \end{bmatrix} $	
\$ 1 B	0	0	×	Final states are -	
I L I	1	1 2	*	910,920,9	21 ·
TIES	2 2 2	2	×		

* Pormal longuage is the obstraction of generalized characteristic of programming languages.

(FA < DPDA < NPDA or PDA < LBA < HTM < TM)

(FA = TIM with read only tape = TM with uniderectional tape = TM with finite tape = PDA with finite

(PDA = FA with Stack)

(TM = PDA with additional stack = FA with 2 stacks)

(related to) Compiler TOC Lexical Analysu FA RL Syntax n CFG PDA CCL Semantic n LI3 A REL Logic (Whole TH compiler)

* TOC * Grammar-decidable/undecidable CSL RECL REL DCFL &CFL RL Decision Problem Membership well UD D D D D D Emptimess L= +? UD UD D UD D D Finiteness " D UD UD D UD D Equivalence L= L2? UD UD UD D UD Inters empty 4112=4? UD UD UD UD D UD Totality L= Z*? UD UD UD UD D Subset L, C L2? (Containment) Inters" finiteness (Line tink?) UDS UD UD UD D UD UDI UD UD UD UD Coffniteness (I finite?) UD UD UD UD Regularity (1= reg ?) UD UD UU UD D D UDA UD UD Ambiguity UD

· Arbitrary CFGs G, G, G, G, & orbitrary Regex R, undecidable - whether L(R) S L(G), whether L(G) is DCFL, whether L(G)=L(R). decidable - Whether L(q) & L(R) [test L(G) 1 L(R) = 0 or not]

D

D

D

UD I

CI same type?

I LIALz is same tappe?

Haltins

UD

UP

UD

D

UD

D

UD

UD

· Arbritary DCFGs G, G, G, G2 & arbitrary reger R, decidable - whether L(G) = L(R), whether L(G) (L(R), Whether L(R) SL(G), whether L(G) is CFL. (trivial)

Algo / Program Algo w/o using any FA memory Algo wring 1 stack PDA (Palindrome) Bounded memory LBA Any algo TM

* (DFA = NFA) < DPDA < NPDA < LBA < (NTM = DTM)

FA with 1 Stack = PDA FA with 2 stacks = TM.

Sutomata with a guerre a TM TM with 3 states & TM & Multitage TM with stay'& at most a states. ENPDA with a independent stacks.

NDTM with only stack = PDA

TH with fronte tope = FA MTM with part of tape only where ip is present = LBA (we to check CSL)

* L accepted by LBA {anbaca|n>1}, {an! |n>0}, {an |n prime {a", n=m2, m >1}, {a" | n not poime}, { WW | W ∈ (a,b)+), { W" | W ∈ (a,b)+,n>1}, { WWW | WE (a,b)+} Closure property

NAND

	RL	DCFL	CFL	CSL	RECL	REL
Square root of L, TL						
Square of L	×					
Shuffle (L1, L2)	~					
One-third of L	V	V				
Half of L	V					
Sub seguence	/					
Subword	~				friggt or	and the
/ Subset	X		X			
Superset		×	×			

· Decd

	RL	DCFL	CFL	RECL	REL		
Membership	D	D	Þ	X D	(Semidec)		
Halting	D	D	D	X D.	UD (Semidec.)		
Emptiness	D	D	D	UD (mon-re)	UD (non-re)		
Finiteness	Dx	D	D	(non-re)	UD (non-re)		
Totality	D X	D	(non-re)	UD (non-re)	(non-re)		
Equivalonce	D	D	UD (non-re)	UD (non-re)	UD (non-re)		
Disjoint	D	(non-re)	(non-re)	UP (non-re)	(non-re)		
Set contain .	D	UD (non-re)	UD (mon-10)	UD (non-re)	.UD (non-re)		
Amb iguity"	D	VO	UD	UD	Up		
Marvelous humble employee failed to							
equate dogs & cats. & ants.							
Regularity	D	D	UD PON-TE	OD POD-TE	non-re		

Non-membership Decidable upto RECL. For REL, undecidable (non-RE).

Non-emptiness

{(H) | L(H) \neq p}

For TM, it is

Semidecidable.

Non-equivalence

mon-re for TM.

SD for PDA, HTM.

Decision pooblem	RL	DCFL	CFL	RECL	REL
Membership	D	70	Þ	b	UD RE, not RE
Halting	D	D	D	D	UD RE, not red
Emptiness	D	D	D	UD mon-RE	UD non-RE
Finiteness	D	D	D	UD mon RE (nt)	U D (117)
Totality	D	b	UD	UD	UD
Eguivalence	D	D	UD nr	VD nr	UD
Dissoint	D	UD nr	U D nr	UD nr	VD ne
Set containment	D	UD nr	UD nr	UD nr	UD nr
Ambaguity	D	UD nr	ND nr	UD no	UD nr
Regularity	D	D	UD	עט	Non-re

Decidable upto RECL

For REL, non-RE.

Non-emptiness:

{M} | L(M) \neq 0}

For RE, semidecidable

· Non-membership:

For CFL, RECL Semidecidable

for REL, non-RE.

Marvelous humble employee failed to equate dogs, cats, ants, rats.