

PCT

WORLD INTELLIGENT PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12Q 1/68, C07K 14/65, A01K 67/02		A2	(11) International Publication Number: WO 00/36143 (43) International Publication Date: 22 June 2000 (22.06.00)
<p>(21) International Application Number: PCT/EP99/10209</p> <p>(22) International Filing Date: 16 December 1999 (16.12.99)</p> <p>(30) Priority Data: 98204291.3 16 December 1998 (16.12.98) EP</p> <p>(71) Applicants (<i>for all designated States except US</i>): UNIVERSITY OF LIEGE [BE/BE]; 20 Bd de Colonster, B-4000 Liege (BE). MELICA HB [SE/SE]; Andersson, Leif, Bergagatan 30, S-752 39 Uppsala (SE). SEGHERSGENTEC N.V. [BE/BE]; Kapelbaan 15, B-9255 Buggenhout (BE).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): ANDERSSON, Leif [SE/SE]; Bergagatan 30, S-752 39 Uppsala (SE). GEORGES, Michel [BE/BE]; Rue Vieux Tige 24, B-3161 Villers-aux-Tours (BE). SPINCEMAILLE, Geert [BE/BE]; Sint Denijsstraat 26, B-8550 Zwevegem (BE).</p> <p>(74) Agent: OTTEVANGERS, S., U.; Vereenigde, Nieuwe Parklaan 97, NL-2587 BN The Hague (NL).</p>		<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>	
<p>(54) Title: SELECTING ANIMALS FOR PARENTALLY IMPRINTED TRAITS</p> <p>(57) Abstract</p> <p>The invention relates to methods to select breeding animals or animals destined for slaughter for having desired genotypic or potential phenotypic properties, in particular related to muscle mass and/or fat deposition. The invention provides a method for selecting a pig for trait locus (QTL) located at a <i>Sus scrofa</i> chromosome 2 mapping at position 2p1.7.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NB	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LJ	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Title: Selecting animals for parentally imprinted traits.

5

The invention relates to methods to select breeding animals or animals destined for slaughter for having desired genotypic or potential phenotypic properties, in particular related to muscle mass and/or fat deposition.

10 Breeding schemes for domestic animals have so far focused on farm performance traits and carcass quality. This has resulted in substantial improvements in traits like reproductive success, milk production, lean/fat ratio, prolificacy, growth rate and feed efficiency. Relatively

15 simple performance test data have been the basis for these improvements, and selected traits were assumed to be influenced by a large number of genes, each of small effect (the infinitesimal gene model). There are now some important changes occurring in this area. First, the

20 breeding goal of some breeding organisations has begun to include meat quality attributes in addition to the "traditional" production traits. Secondly, evidence is accumulating that current and new breeding goal traits may involve relatively large effects (known as major

25 genes), as opposed to the infinitesimal model that has been relied on so far.

Modern DNA-technologies provide the opportunity to exploit these major genes, and this approach is a very promising route for the improvement of meat quality,

30 especially since direct meat quality assessment is not viable for potential breeding animals. Also for other traits such as lean/fat ratio, growth rate and feed efficiency, modern DNA technology can be very effective. Also these traits are not always easy to measure in the

35 living animal.

The evidence for several of the major genes originally obtained using segregation analysis, i.e. without any DNA marker information. Afterwards molecular studies were performed to detect the location of these

genes on the genetic map. In practice, and except for alleles of very large effect, DNA studies are required to dissect the genetic nature of most traits of economic importance. DNA markers can be used to localise genes or 5 alleles responsible for qualitative traits like coat colour, and they can also be used to detect genes or alleles with substantial effects on quantitative traits like growth rate, IMF etc. In this case the approach is referred to as QTL (quantitative trait locus) mapping, 10 wherein a QTL comprises at least a part of the nucleic acid genome of an animal where genetic information capable of influencing said quantitative trait (in said animal or in its offspring) is located. Information at DNA level can not only help to fix a specific major gene 15 in a population, but also assist in the selection of a quantitative trait which is already selected for. Molecular information in addition to phenotypic data can increase the accuracy of selection and therefore the selection response.

20 Improving meat quality or carcass quality is not just about changing levels of traits like tenderness or marbling, but it is also about increasing uniformity. The existence of major genes provides excellent opportunities for improving meat quality because it allows large steps 25 to be made in the desired direction. Secondly, it will help to reduce variation, since we can fix relevant genes in our products. Another aspect is that selecting for major genes allows differentiation for specific markets. Studies are underway in several species, particularly, 30 pigs, sheep, deer and beef cattle.

In particular, intense selection for meat production has resulted in animals with extreme muscularity and leanness in several livestock species. In recent years it has become feasible to map and clone several of the genes 35 causing these phenotypes, paving the way towards more efficient marker assisted selection, targeted drug development (performance enhancing products) and transgenesis. Mutations in the ryanodine receptor (Fuji

et al, 1991; MacLennan and Phillips, 1993) and myostatin (Grobet et al, 1997; Kambadur et al, 1997; McPherron and Lee, 1997) have been shown to cause muscular hypertrophies in pigs and cattle respectively, while 5 genes with major effects on muscularity and/or fat deposition have for instance been mapped to pig chromosome 4 (Andersson et al, 1994) and sheep chromosome 18 (Cocket et al, 1996).

However, although there have been successes in 10 identifying QTLs, the information is currently of limited use within commercial breeding programmes. Many workers in this field conclude that it is necessary to identify the particular genes underlying the QTL. This is a substantial task, as the QTL region is usually relatively 15 large and may contain many genes. Identification of the relevant genes from the many that may be involved thus remains a significant hurdle in farm animals.

The invention provides a method for selecting a 20 domestic animal for having desired genotypic or potential phenotypic properties comprising testing said animal for the presence of a parentally imprinted qualitative or quantitative trait locus (QTL). Herein, a domestic animal is defined as an animal being selected or having been 25 derived from an animal having been selected for having desired genotypic or potential phenotypic properties.

Domestic animals provide a rich resource of genetic and phenotypic variation, traditionally domestication involves selecting an animal or its offspring for having 30 desired genotypic or potential phenotypic properties. This selection process has in the past century been facilitated by growing understanding and utilisation of the laws of Mendelian inheritance. One of the major problems in breeding programs of domestic animals is the 35 negative genetic correlation between reproductive capacity and production traits. This is for example the case in cattle (a high milk production generally results

in slim cows and bulls) poultry, broiler lines have a low level of egg production and layers have generally very low muscle growth), pigs (very prolific sows are in general fat and have comparatively less meat) or sheep 5 (high prolific breeds have low carcass quality and vice versa). The invention now provides that knowledge of the parental imprinting character of various traits allows to select for example sire lines homozygous for a paternally imprinted QTL for example linked with muscle production 10 or growth; the selection for such traits can thus be less stringent in dam lines in favour of the reproductive quality. The phenomenon of genetic or parental imprinting has never been utilised in selecting domestic animals, it was never considered feasible to employ this elusive 15 genetic characteristic in practical breeding programmes. The invention provides a breeding programme, wherein knowledge of the parental imprinting character of a desired trait, as demonstrated herein, results in a breeding programme, for example in a BLUP programme, with 20 a modified animal model. This increases the accuracy of the breeding value estimation and speeds up selection compared to conventional breeding programmes. Until now, the effect of a parentally imprinted trait in the estimation of a conventional BLUP programme was 25 neglected; using and understanding the parental character of the desired trait, as provided by the invention, allows selecting on parental imprinting, even without DNA testing. For example, selecting genes characterised by paternal imprinting is provided to help increase 30 uniformity; a (terminal) parent homozygous for the "good or wanted" alleles will pass them to all offspring, regardless of the other parent's alleles, and the offspring will all express the desired parent's alleles. This results in more uniform offspring. Alleles that are 35 interesting or favourable from the maternal side or often the ones that have opposite effects to alleles from the paternal side. For example, in meat animals such as pigs alleles linked with meat quality traits such as inta-

muscular fat or muscle mass could be fixed in the dam lines while alleles linked with reduced back fat could be fixed in the sire lines. Other desirable combinations are for example fertility and/or milk yield in the female 5 line with growth rates and/or muscle mass in the male lines.

In a preferred embodiment, the invention provides a method for selecting a domestic animal for having desired genotypic or potential phenotypic properties comprising 10 testing a nucleic acid sample from said animal for the presence of a parentally imprinted quantitative trait locus (QTL). A nucleic acid sample can in general be obtained from various parts of the animal's body by methods known in the art. Traditional samples for the 15 purpose of nucleic acid testing are blood samples or skin or mucosal surface samples, but samples from other tissues can be used as well, in particular sperm samples, oocyte or embryo samples can be used. In such a sample, the presence and/or sequence of a specific nucleic acid, 20 be it DNA or RNA, can be determined with methods known in the art, such as hybridisation or nucleic acid amplification or sequencing techniques known in the art. The invention provides testing such a sample for the presence of nucleic acid wherein a QTL or allele 25 associated therewith is associated with the phenomenon of parental imprinting, for example where it is determined whether a paternal or maternal allele of said QTL is capable of being predominantly expressed in said animal.

The purpose of breeding programs in livestock is to 30 enhance the performances of animals by improving their genetic composition. In essence this improvement accrues by increasing the frequency of the most favourable alleles for the genes influencing the performance characteristics of interest. These genes are referred to 35 as QTL. Until the beginning of the nineties, genetic improvement was achieved via the use of biometrical methods, but without molecular knowledge of the underlying QTL.

Since the beginning of the nineties and due to recent developments in genomics, it is conceivable to identify the QTL underlying a trait of interest. The invention now provides identifying and using parentally imprinted QTLs which are useful for selecting animals by mapping quantitative trait loci. Again, the phenomenon of genetic or paternal imprinting has never been utilised in selecting domestic animals, it was never considered feasible to employ this elusive genetic characteristic in practical breeding programmes. For example Kovacs and Kloting (Biochem. Mol. Biol. Int. 44:399-405, 1998), where parental imprinting is not mentioned, and not suggested, found linkage of a trait in female rats, but not in males, suggesting a possible sex specificity associated with a chromosomal region, which of course excludes parental imprinting, a phenomenon wherein the imprinted trait of one parent is preferably but gender-aspecifically expressed in his or her offspring.

The invention provides the initial localisation of a parentally imprinted QTL on the genome by linkage analysis with genetic markers, and the actual identification of the parentally imprinted gene(s) and causal mutations therein. Molecular knowledge of such a parentally imprinted QTL allows for more efficient breeding designs herewith provided. Applications of molecular knowledge of parentally imprinted QTLs in breeding programs include: marker assisted segregation analysis to identify the segregation of functionally distinct parentally imprinted QTL alleles in the populations of interest, marker assisted selection (MAS) performed within lines to enhance genetic response by increasing selection accuracy, selection intensity or by reducing the generation interval using the understanding of the phenomenon of parental imprinting, marker assisted introgression (MAI) to efficiently transfer favourable parentally imprinted QTL alleles from a donor to a recipient population, genetic engineering of the identified parentally QTL and genetic modification of the breeding stock using transgenic technology, development

of performance enhancing products using targeted drug development exploiting molecular knowledge of said QTL.

The inventors undertook two independent experiments to determine the practical use of parental imprinting of
5 a QTL.

In a first experiment, performed in a previously described Piétrain x Large White intercross, the likelihood of the data were computed under a model of paternal (paternal allele only expressed) and maternal
10 imprinting (maternal allele only expressed) and compared with the likelihood of the data under a model of a conventional "Mendelian" QTL. The results strikingly demonstrated that the QTL was indeed paternally expressed, the QTL allele (Piétrain or Large White)
15 inherited from the F₁ sow having no effect whatsoever on the carcass quality and quantity of the F₂ offspring. It was seen that very significant lodscores were obtained when testing for the presence of a paternally expressed QTL, while there was no evidence at all for the
20 segregation of a QTL when studying the chromosomes transmitted by the sows. The same tendency was observed for all traits showing that the same imprinted gene is responsible for the effects observed on the different traits. Table 1 reports the maximum likelihood (ML)
25 phenotypic means for the F₂ offspring sorted by inherited paternal QTL allele.

In a second experiment performed in the Wild Boar X Large White intercross, QTL analyses of body composition, fatness, meat quality, and growth traits was carried out
30 with the chromosome 2 map using a statistical model testing for the presence of an imprinting effect. Clear evidence for a paternally expressed QTL located at the very distal tip of 2p was obtained (Fig. 2; Table1). The clear paternal expression of a QTL is illustrated by the
35 least squares means which fall into two classes following the population origin of the paternally inherited allele (Table 1). For a given paternally imprinted QTL, implementation of marker assisted segregation analysis, selection (MAS) and introgression (MAI), can be performed

using genetic markers that are linked to the QTL, genetic markers that are in linkage disequilibrium with the QTL, or using the actual causal mutations within the QTL.

Understanding the parent-of-origin effect

5 characterising a QTL allows for its optimal use in breeding programs. Indeed, marker assisted segregation analysis under a model of parental imprinting will yield better estimates of QTL allele effects. Moreover it allows for the application of specific breeding schemes
10 to optimally exploit a QTL. In one embodiment of the invention, the most favourable QTL alleles would be fixed in breeding animal lines and for example used to generate commercial, crossbred males by marker assisted selection (MAS, within lines) and marker assisted introgression
15 (MAI, between lines). In another embodiment, the worst QTL alleles would be fixed in the animal lines used to generate commercial crossbred females by MAS (within lines) and MAI (between lines).

In a preferred embodiment of the invention, said
20 animal is a pig. Note for example that the invention provides the insight that today half of the offspring from commercially popular Piétrain_x Large White crossbred boars inherit an unfavourable Large White muscle mass QTL as provided by the invention causing considerable loss,
25 and the invention now for example provides the possibility to select the better half of the population in that respect. However, it is also possible to select commercial sow lines enriched with the in the boars unfavourable alleles, allowing to equip the sows with
30 other alleles more desirable for for example reproductive purposes.

In a preferred embodiment of a method provided by the invention, said QTL is located at a position corresponding to a QTL located at chromosome 2 in the
35 pig. For example, it is known form comparative mapping data between pig and human, including bidirectional chromosome painting, that SSC2p is homologous to HSA11pter-q13^{11,12}. HSA11pter-q13 is known to harbour a

cluster of imprinted genes: IGF2, INS2, H19, MAH2, P57^{KIP2}, K_vLQTL1, Tapal₁/CD81, Orctl2, Impt1 and Ip1. The cluster of imprinted genes located in HSA11pter-q13 is characterised by 8 maternally expressed genes H19, MASH2, 5 P57^{KIP2}, K_vLQTL1, TAPAL1/CD81, ORCTL2, IMPT1 and IP1, and two paternally expressed genes: IGF2 and INS. However, Johanson et al (Genomics 25:682-690, 1995) and Reik et al (Trends in Genetics, 13:330-334, 1997) show that the whereabouts of these loci in various animals are not 10 clear. For example, the HSA11 and MMU7 loci do not correspond among each other, the MMU7 and the SSC2 loci do not correspond, whereas the HSA11 and SSC2 loci seem to correspond, and no guidance is given where one or more of for example the above identified parentally expressed 15 individual genes are localised on the three species' chromosomes.

Other domestic animals, such as cattle, sheep, poultry and fish, having similar regions in their genome harbouring such a cluster of imprinted genes or QTLs, the 20 invention herewith provides use of these orthologous regions of other domestic animals in applying the phenomenon of parental imprinting in breeding programmes. In pigs, said cluster is mapped at around position 2p1.7 of chromosome 2, however, a method as provided by the 25 invention employing (fragments of) said maternally or paternally expressed orthologous or homologous genes or QTLs are advantageously used in other animals as well for breeding and selecting purposes. For example, a method is provided wherein said QTL is related to the potential 30 muscle mass and/or fat deposition, preferably with limited effects on other traits such as meat quality and daily gain of said animal or wherein said QTL comprises at least a part of an insulin-like growth factor-2 (IGF2) allele. Reik et al (Trends in Genetics, 13:330-334, 1997) 35 explain that this gene in humans is related to Beckwith-Wiedemann syndrome, an apparently parentally imprinted disease syndrome most commonly seen with human foetuses, where the gene has an important role in prenatal

development. No relationship is shown or suggested with postnatal development relating to muscle development or fatness in (domestic) animals.

In a preferred embodiment, the invention provides a
5 method for selecting a pig for having desired genotypic
or potential phenotypic properties comprising testing a
sample from said pig for the presence of a quantitative
trait locus (QTL) located at a *Sus scrofa* chromosome 2
mapping at position 2p1.7. In particular, the invention
10 relates to the use of genetic markers for the telomeric
end of pig chromosome 2p in marker selection (MAS) of a
parentally imprinted Quantitative Trait Locus (QTL)
affecting carcass yield and quality in pigs. Furthermore,
the invention relates to the use of genetic markers
15 associated with the IGF2 locus in MAS in pigs, such as
polymorphisms and microsatellites and other characterising
nucleic acid sequences shown herein, such as shown in
figures 4 to 10. In a preferred embodiment, the invention
provides a QTL located at the distal tip of *Sus scrofa*
20 chromosomes 2 with effects on varies measurements of
carcass quality and quantity, particularly muscle mass
and fat deposition.

In a first experiment, a QTL mapping analysis was
performed in a Wild Boar X Large White intercross
25 counting 200 F₂ individuals. The F₂ animals were
sacrificed at a live eight of at least 80 kg or at a
maximum age of 190 days. Phenotypic data on birth weight,
growth, fat deposition, body composition, weight of
internal organs, and meat quality were collected; a
30 detailed description of the phenotypic traits are
provided by Andersson *et al*¹ and Andersson-Eklund *et al*⁴.

A QTL (without any significant effect on back-fat
thickness) at an unspecified locus on the proximal end of
chromosome 2 with moderate effect on muscle mass, and
35 located about 30cM away from the parentally imprinted QTL
reported here, was previously reported by the inventors;
whereas the QTL as now provided has a very large effect,
explaining at least 20-30% of variance, making the QTL of

the present invention commercially very attractive, which is even more so because the present QTL is parentally imprinted. The marker map of chromosome 2p was improved as part of this invention by adding microsatellite 5 markers in order to cover the entire chromosome arm. The following microsatellite markers were used: *Swc9*, *Sw2443*, *Sw2623*, and *Swr2516*, all from the distal end of 2p'. QTL analyses of body composition, fatness, meat quality, and growth traits were carried out with the new chromosome 2 10 map. Clear evidence for a QTL located at the very distal tip of 2p was obtained (Fig. 1; Table 1). The QTL had very large effects on lean meat content in ham and explained an astonishing 30% of the residual phenotypic variance in the F₂ population. Large effects on the area 15 of the longissimus dorsi muscle, on the weight of the heart, and on back-fat thickness (subcutaneous fat) were also noted. A moderate effect on one meat quality trait, reflectance value, was indicated. The QTL had no significant effect on abdominal fat, birth weight, 20 growth, weight of liver, kidney, or spleen (data not shown). The Large White allele at this QTL was associated with larger muscle mass and reduced back-fat thickness consistent with the difference between this breed and the Wild Boar population.

25 In a second experiment, QTL mapping was performed in a Piétrain X Large White intercross comprising 1125 F₂ offspring. The Large White and Piétrain parental breeds differ for a number of economically important phenotypes. Piétrains are famous for their exceptional muscularity 30 and leanness ¹⁰(Figure 2, while Large Whites show superior growth performance. Twenty-one distinct phenotypes measuring growth performance (5), muscularity (6), fat deposition (6), and meat quality (4), were recorded on all F₂ offspring. In order to map QTL underlying the 35 genetic differences between these breeds, the inventors undertook a whole genome scan using microsatellite markers on an initial sample of 677 F₂ individuals. The following microsatellite marker map was used to analyse

chromosome 2; :SW2443, SWC9 and SW2623, SWR2516-(0,20)-SWR783-(0,29)-SW240-(0,20)-SW776-(0,08)-S0010-(0,04)-SW1695-(0,36)-SWR308. Analysis of pig chromosome 2 using a Maximum Likelihood multipoint algorithm, revealed highly significant lodscores (up to 20) for three of the six phenotypes measuring muscularity (% lean cuts, % ham, % loin) and three of the six phenotypes measuring fat deposition (back-fat thickness (BFT), % backfat, % fat cuts) at the distal end of the short arm of chromosome 2 (Figure 1). Positive lodscores were obtained in the corresponding chromosome region for the remaining six muscularity and fatness phenotypes, however, not reaching the experiment-wise significance threshold ($\alpha=5\%$. There was no evidence for an effect of the corresponding QTL on growth performance (including birth weight) or recorded meat quality measurements (data not shown). To confirm this finding, the remaining sample of 355 F₂ offspring was genotyped for the four most distal 2p markers and QTL analysis performed for the traits yielding the highest lodscores in the first analysis. Lodscores ranged from 2.1 to 7.7, clearly confirming the presence of a major QTL in this region. Table 2 reports the corresponding ML estimates for the three genotypic means as well as the residual variance. Evidence based on marker assisted segregation analysis points towards residual segregation at this locus within the Piétrain population.

These experiments therefore clearly indicated the existence of a QTL with major effect on carcass quality and quantity on the telomeric end of pig chromosome arm 2p; the likely existence of an allelic series at this QTL with at least three alleles: Wild-Boar < Large White < Piétrain, and possibly more given the observed segregation within the Piétrain breed.

The effects of the identified QTL on muscle mass and fat deposition are truly major, being of the same magnitude of those reported for the CRC locus though apparently without the associated deleterious effects on meat quality. We estimate that both loci jointly explain

close to 50% of the Piétrain versus Large White breed difference for muscularity and leanness. The QTL had very large effects on lean meat content in ham and explained an astonishing 30% of the residual phenotypic variance in 5 the F₂ population. Large effects on the area of the longissimus dorsi muscle, on the weight of the heart, and on back-fat thickness (subcutaneous fat) were also noted. A moderate effect on one meat quality trait, reflectance value, was indicated. The QTL had no significant effect 10 on abdominal fat, birth weight, growth, weight of liver, kidney, or spleen (data not shown). The Large White allele at this QTL, when compared to the Wild Boar allele, was associated with larger muscle mass and reduced back-fat thickness consistent with the difference 15 between this breed and the Wild Boar population. The strong imprinting effect observed for all affected traits shows that a single causative locus is involved. The pleiotropic effects on skeletal muscle mass and the size of the heart appear adaptive from a physiological point 20 of view as a larger muscle mass requires a larger cardiac output.

In a further embodiment, the invention provides a method for selecting a pig for having desired genotypic or potential phenotypic properties comprising testing a 25 sample from said pig for the presence of a quantitative trait locus (QTL) located at a Sus scrofa chromosome 2 mapping at position 2p1.7., wherein said QTL comprises at least a part of a Sus scrofa insulin-like growth factor-2 (IGF2) allele or a genomic area closely related thereto, 30 such as polymorphisms and microsatellites and other characterising nucleic acid sequences shown herein, such as shown in figures 4 to 10. The important role of IGF2 for prenatal development is well-documented from knock-out mice as well as from its causative role in the human 35 Beckwith-Wiedemann syndrome. This invention demonstrates an important role for the IGF2-region also for postnatal development.

To show the role of Igf2 the inventors performed the following three experiments:

A genomic IGF2 clone was isolated by screening a porcine BAC library. FISH analysis with this BAC clone 5 gave a strong consistent signal on the terminal part of chromosome 2p.

A polymorphic microsatellite is located in the 3'UTR of IGF2 in mice (GenBank U71085), humans (GenBank S62623), and horse (GenBank AF020598). The possible 10 presence of a corresponding porcine microsatellite was investigated by direct sequencing of the IFG2 3'UTR using the BAC clone. A complex microsatellite was identified about 800bp downstream of the stop codon; a sequence comparison revealed that this microsatellite was 15 identical to a previously described anonymous microsatellite, *Swc9*⁶. This marker was used in the initial QTL mapping experiments and its location on the genetic map correspond with the most likely position of the QTL both in the Piétrain X Large White and in the Large White 20 x Wild Boar pedigree.

Analysis of skeletal muscle and liver cDNA from 10-week old foetuses heterozygous for a nt241 (G-A) transversion in the second exon of the porcine IGFII gene and SWC9, shows that the IGFII gene is imprinted in these 25 tissues in the pig as well and only expressed from the paternal allele.

Based on a published porcine adult liver cDNA sequence¹⁶, the inventors designed primer pairs allowing to amplify the entire *IgfII* coding sequence with 222 bp 30 of leader and 280 bp of trailer sequence from adult skeletal muscle cDNA. Piétrain and Large White RT-PCR products were sequenced indication that the coding sequences are identical in both breeds and with the published sequence. However, a GA transition was found 35 in the leader sequence corresponding to exon 2 in man. Following conventional nomenclature, this polymorphism will be referred to as nt241(G-A). We developed a screening test for this single nucleotide polymorphism

9 (SNP) based on the ligation amplification reaction (LAR), allowing us to genotype our pedigree material. Based on these data, *IgfII* was shown to colocalize with the SWC9 microsatellite marker ($\theta=0\%$), therefore
5 virtually coinciding with the most likely position of the QTL, and well within the 95% support interval for the QTL. Subsequent sequence analysis demonstrated that the microsatellite marker SWC9 is actually located within the 3'UTR of the *IgfII* gene.

10 As previously mentioned, the knowledge of this QTL provides a method for the selection of animals such as pigs with improved carcass merit. Different embodiments of the invention are envisaged, including:
marker assisted segregation analysis to identify the
15 segregation of functionally distinct QTL alleles in the populations of interest; marker assisted selection (MAS) performed within lines to enhance genetic response by increasing selection accuracy, selection intensity or by reducing the generation interval; marker assisted
20 introgression (MAI) to efficiently transfer favourable QTL alleles from a donor to a recipient population, thereby enhancing genetic response in the recipient population. Implementation of embodiments marker assisted segregation analysis, selection (MAS) and introgression
25 (MAI), can be performed using genetic markers that are linked to the QTL; genetic markers that are in linkage disequilibrium with the QTL, the actual causal mutations within the QTL.

In a further embodiment, the invention provides a
30 method for selecting a pig for having desired genotypic or potential phenotypic properties comprising testing a sample from said pig for the presence of a quantitative trait locus (QTL) located at a *Sus scrofa* chromosome 2 mapping at position 2p1.7., wherein said QTL is
35 paternally expressed, i.e. is expressed from the paternal allele. In man and mouse, *Igf2* is known to be imprinted and to be expressed exclusively from the paternal allele in several tissues. Analysis of skeletal muscle cDNA from

pigs heterozygous for the SNP and/or SWC9, shows that the same imprinting holds in the pig as well. Understanding the parent-of-origin effect characterising the QTL as provided by the invention now allows for its optimal use
5 in breeding programs. Indeed, today half of the offspring from commercially popular Piétrain x Large White crossbred boars inherit the unfavourable Large White allele causing considerable loss. Using a method as provided by the invention avoids this problem.

10 The invention furthermore provides an isolated and/or recombinant nucleic acid or functional fragment derived thereof comprising a parentally imprinted quantitative trait locus (QTL) or fragment thereof capable of being predominantly expressed by one parental
15 allele. Having such a nucleic acid as provided by the invention available allows constructing transgenic animals wherein favourable genes are capable of being exclusively or predominantly expressed by one parental allele, thereby equipping the offspring of said animal
20 homozygous for a desired trait with desired properties related to that parental allele that is expressed.

In a preferred embodiment, the invention provides an isolated and/or recombinant nucleic acid or fragment derived thereof comprising a synthetic parentally
25 imprinted quantitative trait locus (QTL) or functional fragment thereof derived from at least one chromosome. Synthetic herein describes a parentally expressed QTL wherein various elements are combined that originate from distinct locations from the genome of one or more
30 animals. The invention provides recombinant nucleic acid wherein sequences related to parental imprinting of one QTL are combined with sequences relating to genes or favourable alleles of a second QTL. Such a gene construct is favourably used to obtain transgenic animals wherein
35 the second QTL has been equipped with paternal imprinting, as opposed to the inheritance pattern in the native animal from which the second QTL is derived. Such a second QTL can for example be derived from the same

chromosome where the parental imprinting region is located, but can also be derived from a different chromosome from the same or even a different species. In the pig, such a second QTL can for example be related to 5 an oestrogen receptor (ESR)-gene (Rothschild et al, PNAS, 93, 201-201, 1996) or a FAT-QTL (Andersson, Science, 263, 1771-1774, 1994) for example derived from an other pig chromosome, such as chromosome 4. A second or further QTL can also be derived from another (domestic) animal or a 10 human.

The invention furthermore provides an isolated and/or recombinant nucleic acid or functional fragment derived thereof at least partly corresponding to a QTL of a pig located at a *Sus scrofa* chromosome 2 mapping at 15 position 2p1.7 wherein said QTL is related to the potential muscle mass and/or fat deposition of said pig and/or wherein said QTL comprises at least a part of a *Sus scrofa* insulin-like growth factor-2 (*IGF2*) allele, preferably at least spanning a region between *INS* and 20 *H19*, or preferably derived from a domestic pig, such as a Pietrain, Meishan, Duroc, Landrace or Large White, or from a Wild Boar. For example, a genomic *IGF2* clone was isolated by screening a porcine BAC library. FISH analysis with this BAC clone gave a strong consistent 25 signal on the terminal part of chromosome 2p. A polymorphic microsatellite is located in the 3'UTR of *IGF2* in mice (GenBank U71085), humans (GenBank S62623), and horse (GenBank AF020598). The possible presence of a corresponding porcine microsatellite was investigated by 30 direct sequencing of the *IGF2* 3'UTR using the BAC clone. A complex microsatellite was identified about 800 bp downstream of the stop codon; a sequence comparison revealed that this microsatellite is identical to a previously described anonymous microsatellite, *Swc9*. PCR 35 primers were designed and the microsatellite (*IGF2ms*) was found to be highly polymorphic with three different alleles among the two Wild Boar founders and another two

among the eight Large White founders. *IGF2ms* was fully informative in the intercross as the breed of origin as well as the parent of origin could be determined with confidence for each allele in each F₂ animal.

5 A linkage analysis using the intercross pedigree was carried out with *IGF2ms* and the microsatellites *Sw2443*, *Sw2623*, and *Swr2516*, all from the distal end of 2p⁷. *IGF2* was firmly assigned to 2p by highly significant lod scores (e.g. Z=89.0, θ=0.003 against *Swr2516*). Multipoint analyses, including previously typed chromosome 2 markers, revealed the following order of loci (sex-average map distances in Kosambi cM): *Sw2443/Swr2516*-0.3-*IGF2*-14.9-*Sw2623*-10.3-*Sw256*. No recombinant was observed between *Sw2443* and *Swr2516*, and the suggested proximal location of *IGF2* in relation to these loci is based on a single recombinant giving a lod score support of 0.8 for the reported order. The most distal marker in our previous QTL study, *Sw256*, is located about 25 cM from the distal end of the linkage group.

10 15 15 20 25 30 35

20 The invention furthermore provides use of a nucleic acid or functional fragment derived thereof according to the invention in a method according to the invention. In a preferred embodiment, use of a method according to invention is provided to select a breeding animal or animal destined for slaughter, or embryos or semen derived from these animals for having desired genotypic or potential phenotypic properties. In particular, the invention provides such use wherein said properties are related to muscle mass and/or fat deposition. The QTL as provided by the invention may be exploited or used to improve for example lean meat content or back-fat thickness by marker assisted selection within populations or by marker assisted introgression of favorable alleles from one population to another. Examples of marker assisted selection using the QTL as provided by the invention are use of marker assisted segregation analysis

with linked markers or with markers in disequilibrium to identify functionally distinct QTL alleles. Furthermore, identification of a causative mutation in the QTL is now possible, again leading to identify functionally distinct 5 QTL alleles. Such functionally distinct QTL alleles located at the distal tip of chromosome 2p with large effects on skeletal muscle mass, the size of the heart, and on back-fat thickness are also provided by the invention. The observation of a similar QTL effect in a 10 Large White x Wild Boar as well as in a Piétrain x Large White intercross provides proof of the existence of a series of at least three distinct functional alleles. Moreover, preliminary evidence based on marker assisted 15 segregation analysis points towards residual segregation at this locus within the Piétrain population (data not shown). The occurrence of an allelic series as provided by the invention allows identifying causal polymorphisms which - based on the quantitative nature of the observed effect - are unlikely to be gross gene alterations but 20 rather subtle regulatory mutations. The effects on muscle mass of the three alleles rank in the same order as the breeds in which they are found i.e. Piétrain pigs are more muscular than Large White pigs that in turn have higher lean meat content than Wild Boars. The invention 25 furthermore provides use of the alleles as provided by the invention for within line selection or for marker assisted introgression using linked markers, markers in disequilibrium or alleles comprising causative mutations.

The invention furthermore provides an animal 30 selected by using a method according to the invention. For example, a pig characterised in being homozygous for an allele in a QTL located at a Sus scrofa chromosome 2 mapping at position 2p1.7 can now be selected and is thus provided by the invention. Since said QTL is related to 35 the potential muscle mass and/or fat deposition of said pig and/or said QTL comprises at least a part of a Sus scrofa insulin-like growth factor-2 (IGF2) allele, it is

possible to select promising pigs to be used for breeding or to be slaughtered. In particular an animal according to the invention which is a male is provided. Such a male, or its sperm or an embryo derived thereof can
5 advantageously be used in breeding animals for creating breeding lines or for finally breeding animals destined for slaughter. In a preferred embodiment of such use as provided by the invention, a male, or its sperm, deliberately selected for being homozygous for an allele
10 causing the extreme muscular hyperthropy and leanness, is used to produce offspring heterozygous for such an allele. Due to said allele's paternal expression, said offspring will also show the favourable traits for example related to muscle mass, even if the parent female
15 has a different genetic background. Moreover, it is now possible to positively select the female(s) for having different traits, for example related to fertility, without having a negative effect on the muscle mass trait that is inherited from the allele from the selected male.
20 For example, earlier such males could occasionally be seen with Piétrain pigs but genetically it was not understood how to most profitably use these traits in breeding programmes.

Furthermore, the invention provides a transgenic animal, sperm and an embryo derived thereof, comprising a synthetic parentally imprinted QTL or functional fragment thereof as provided by the invention, i.e. it is provided by the invention to introduce a favourable recombinant allele; for example introduce the oestrogen receptor
25 locus related to increased litter size of an animal homozygously in a parentally imprinted region of a grandparent animal (for example the father of a hybrid sow if the region was paternally imprinted and the grandparent was a boar); to introduce a favourable fat-related allele or muscle mass-related recombinant allele
30 in a paternally imprinted region, and so on. Recombinant alleles that are interesting or favourable from the maternal side or often the ones that have opposite effects to alleles from the paternal side. For example,

in meat animals such as pigs recombinant alleles linked with meat quality traits such as intra-muscular fat or muscle mass could be fixed in the dam lines while recombinant alleles linked with reduced back fat could be 5 fixed in the sire lines. Other desirable combinations are for example fertility and/or milk yield in the female line with growth rates and/or muscle mass in the male lines.

The invention is further explained in the detailed 10 description without limiting the invention.

Detailed description.

Example 1: Wild Boar x Large White intercrosses
15

Methods

Isolation of an *IGF2* BAC clone and fluorescent *in situ* hybridization (FISH). *IGF2* primers (F:5'-
20 GGCAAGTTCTTCCGCTAATGA-3' and R:5'-GCACCGCAGAATTACGACAA-
3') for PCR amplification of a part of the last exon and
3'UTR were designed on the basis of a porcine *IGF2* cDNA
sequence (GenBank X56094). The primers were used to
screen a porcine BAC library and the clone 253G10 was
25 isolated. Crude BAC DNA was prepared as described²⁴. The
BAC DNA was linearized with *EcoRV* and purified with
QIAEXII (QIAGEN GmbH, Germany). The clone was labeled
with biotin-14-dATP using the GIBCO-BRL Bionick labeling
system (BRL18246-015). Porcine metaphase chromosomes were
30 obtained from pokeweed (Seromed) stimulated lymphocytes
using standard techniques. The slides were aged for two
days at room temperature and then kept at -20°C until
use. FISH analysis was carried out as previously
described²⁵. The final concentration of the probe in the
35 hybridization mix was 10 ng/μl. Repetitive sequences were
suppressed with standard concentrations of porcine

genomic DNA. After post-hybridization washing, the biotinylated probe was detected with two layers of avidin-FITC (Vector A-2011). The chromosomes were counterstained with 0.3 mg/ml DAPI (4,6-Diamino-2-phenylindole; Sigma D9542), which produced a G-banding like pattern. No posthybridization banding was needed, since chromosome 2 is easily recognized without banding. A total of 20 metaphase spreads were examined under an Olympus BX-60 fluorescence microscope connected to an IMAC-CCD S30 video camera and equipped with an ISIS 1.65 (Metasystems) software.

Sequence, microsatellite, and linkage analysis.

About two µg of linearized and purified BAC DNA was used for direct sequencing with 20 pmoles of primers and BigDye Terminator chemistry (Perkin Elmer, USA). DNA sequencing was done from the 3' end of the last exon towards the 3' end of the UTR until a microsatellite was detected. A primer set (F:5'-GTTTCTCCTGTACCCACACGCATCCC-3' and R:5'-Fluorescein- CTACAAGCTGGGCTCAGGG-3') was designed for the amplification of the *IGF2* microsatellite which is about 250 bp long and located approximately 800 bp downstream from the stop codon. The microsatellite was PCR amplified using fluorescently labeled primers and the genotyping was carried out using an ABI377 sequencer and the GeneScan/Genotyper softwares (Perkin Elmer, USA). Two-point and multipoint linkage analysis were done with the Cri-Map software²⁶.

30

Animals and phenotypic data.

The intercross pedigree comprised two European Wild Boar males and eight Large White females, 4 F₁ males and 22 F₁ females, and 200 F₂ progeny¹. The F₂ animals were sacrificed at a live weight of at least 80 kg or at a

maximum age of 190 days. Phenotypic data on birth weight, growth, fat deposition, body composition, weight of internal organs, and meat quality were collected; a detailed description of the phenotypic traits are 5 provided by Andersson *et al.*¹ and Andersson-Eklund *et al.*⁴

Statistical analysis.

10 Interval mapping for the presence of QTL were carried out with a least squares method developed for the analysis of crosses between outbred lines²⁷. The method is based on the assumption that the two divergent lines are fixed for alternative QTL alleles. There are four possible 15 genotypes in the F₂ generation as regards the grandparental origin of the alleles at each locus. This makes it possible to fit three effects: additive, dominance, and imprinting². The latter is estimated as the difference between the two types of heterozygotes, 20 the one receiving the Wild Boar allele through an F₁ sire and the one receiving it from an F₁ dam. An F-ratio was calculated using this model (with 3 d.f.) versus a reduced model without a QTL effect for each cM of chromosome 2. The most likely position of a QTL was 25 obtained as the location giving the highest F-ratio. Genome-wise significance thresholds were obtained empirically by a permutation test²⁸ as described². The QTL model including an imprinting effect was compared with a model without imprinting (with 1 d.f.) to test 30 whether the imprinting effect was significant.

The statistical models also included the fixed effects and covariates that were relevant for the respective traits; see Andersson-Eklund *et al.*⁴ for a more detailed description of the statistical models used.

35 Family was included to account for background genetic

effects and maternal effects. Carcass weight was included as a covariate to discern QTL effects on correlated traits, which means that all results concerning body composition were compared at equal weights. Least-squares 5 means for each genotype class at the *IGF2* locus were estimated with a single point analysis using Procedure GLM of SAS²⁹; the model included the same fixed effects and covariates as used in the interval mapping analyses. The QTL shows a clear parent of origin-specific 10 expression and the map position coincides with that of the insulin-like growth factor II gene (*IGF2*), indicating *IGF2* as the causative gene. A highly significant segregation distortion (excess of Wild Boar-derived alleles) was also observed at this locus. The results 15 demonstrate an important effect of the *IGF2* region on postnatal development and it is possible that the presence of a paternally expressed *IGF2*-linked QTL in humans and in rodent model organisms has so far been overlooked due to experimental design or statistical 20 treatment of data. The study has also important implications for quantitative genetics theory and practical pig breeding.

IGF2 was identified as a positional candidate gene for this QTL due to the observed similarity between pig 25 chromosome 2p and human chromosome 11p. A genomic *IGF2* clone was isolated by screening a porcine BAC library. FISH analysis with this BAC clone gave a strong consistent signal on the terminal part of chromosome 2p (Fig. 1). A polymorphic microsatellite is located in the 30 3'UTR of *IGF2* in mice (GenBank U71085), humans (GenBank S62623), and horse (GenBank AF020598). The possible presence of a corresponding porcine microsatellite was investigated by direct sequencing of the *IGF2* 3'UTR using the BAC clone. A complex microsatellite was identified 35 about 800 bp downstream of the stop codon; a sequence comparison revealed that this microsatellite is identical

to a previously described anonymous microsatellite, *Swc9*⁶. PCR primers were designed and the microsatellite (*IGF2ms*) was found to be highly polymorphic with three different alleles among the two Wild Boar founders and 5 another two among the eight Large White founders. *IGF2ms* was fully informative in the intercross as the breed of origin as well as the parent of origin could be determined with confidence for each allele in each *F*₂ animal.

10 A linkage analysis using the intercross pedigree was carried out with *IGF2ms* and the microsatellites *Sw2443*, *Sw2623*, and *Swr2516*, all from the distal end of 2p⁷. *IGF2* was firmly assigned to 2p by highly significant lod scores (e.g. Z=89.0, θ=0.003 against *Swr2516*). Multipoint 15 analyses, including previously typed chromosome 2 markers⁸, revealed the following order of loci (sex-average map distances in Kosambi cM): *Sw2443/Swr2516*-0.3-*IGF2*-14.9-*Sw2623*-10.3-*Sw256*. No recombinant was observed between *Sw2443* and *Swr2516*, and the suggested proximal 20 location of *IGF2* in relation to these loci is based on a single recombinant giving a lod score support of 0.8 for the reported order. The most distal marker in our previous QTL study, *Sw256*, is located about 25 cM from the distal end of the linkage group.

25 QTL analyses of body composition, fatness, meat quality, and growth traits were carried out with the new chromosome 2 map using a statistical model testing for the possible presence of an imprinting effect as expected for *IGF2*. Clear evidence for a paternally expressed QTL 30 located at the very distal tip of 2p was obtained (Fig. 2; Table 1). The QTL had very large effects on lean meat content in ham and explained an astonishing 30% of the residual phenotypic variance in the *F*₂ population. Large effects on the area of the longissimus dorsi muscle, on 35 the weight of the heart, and on back-fat thickness

(subcutaneous fat) were also noted. A moderate effect on one meat quality trait, reflectance value, was indicated. The QTL had no significant effect on abdominal fat, birth weight, growth, weight of liver, kidney, or spleen (data 5 not shown). The Large White allele at this QTL was associated with larger muscle mass and reduced back-fat thickness consistent with the difference between this breed and the Wild Boar population. The strong imprinting effect observed for all affected traits strongly suggests 10 a single causative locus. The pleiotropic effects on skeletal muscle mass and the size of the heart appear adaptive from a physiological point of view as a larger muscle mass requires a larger cardiac output. The clear paternal expression of this QTL is illustrated by the 15 least squares means which fall into two classes following the population origin of the paternally inherited allele (Table 1). It is worth noticing though that there was a non-significant trend towards less extreme values for the two heterozygous classes, in particular for the estimated 20 effect on the area of longissimus dorsi. This may be due to chance, but could have a biological explanation, e.g. that there is some expression of the maternally inherited allele or that there is a linked, non-imprinted QTL with minor effects on the traits in question.

25 The *IGF2*-linked QTL and the *FAT1* QTL on chromosome 4 1, 9 are by far the two loci with the largest effect on body composition and fatness segregating in this Wild Boar intercross. The *IGF2* QTL controls primarily muscle mass whereas *FAT1* has major effects on fat deposition 30 including abdominal fat, a trait that was not affected by the *IGF2* QTL (Fig. 2). No significant interaction between the two loci was indicated and they control a very large proportion of the residual phenotypic variance in the F_2 generation. A model including both QTLs explains 33.1% of 35 the variance for percentage lean meat in ham, 31.3% for the percentage of lean meat plus bone in back, and 26.2%

for average back fat depth (compare with a model including only chromosome 2 effects, Table 1). The two QTLs must have played a major role in the response during selection for lean growth and muscle mass in the Large White domestic pig.

A highly significant segregation distortion was observed in the *IGF2* region (excess of Wild Boar-derived alleles) as shown in Table 1 ($\chi^2=11.7$, d.f.=2; P=0.003). The frequency of Wild Boar-derived *IGF2* alleles was 59% in contrast to the expected 50% and there was twice as many "Wild Boar" as "Large White" homozygotes. This deviation was observed with all three loci at the distal tip and is thus not due to typing errors. The effect was also observed with other loci but the degree of distortion decreased as a function of the distance to the distal tip of the chromosome. Blood samples for DNA preparation were collected at 12 weeks of age and we are convinced that the deviation from expected Mendelian ratios was present at birth as the number of animals lost prior to blood sampling was not sufficient to cause a deviation of this magnitude. No other of the more than 250 loci analyzed in this pedigree show such a marked segregation distortion (L. Andersson, unpublished). The segregation distortion did not show an imprinting effect, as the frequencies of the two reciprocal types of heterozygotes were identical (Table 1). This does not exclude the possibility that the QTL effects and the segregation distortion are controlled by the same locus. The segregation distortion maybe due to meiotic drive favoring the paternally expressed allele during gametogenesis, as the F₁ parents were all sired by Wild Boar males. Another possibility is that the segregation distortion may be due to codominant expression of the maternal and paternal allele in some tissues and/or during a critical period of embryo development. Biallelic *IGF2* expression has been reported to occur to some extent

during human development^{10, 11} and interestingly a strong influence of the parental species background on *IGF2* expression was recently found in a cross between *Mus musculus* and *Mus spretus*¹². It is also interesting that a 5 VNTR polymorphism at the insulin gene, which is very closely linked to *IGF2*, is associated with size at birth in humans¹³. It is possible that the *IGF2*-linked QTL in pigs has a minor effect on birth weight but in our data it was far from significant (Fig. 2) and there was no 10 indication of an imprinting effect.

This study is an advance in the general knowledge concerning the biological importance of the *IGF2* locus. The important role of *IGF2* for prenatal development is well-documented from knock-out mice¹⁴ as well as from its 15 causative role in the human Beckwith-Wiedemann syndrome¹⁵. This study demonstrates an important role for the *IGF2*-region also for postnatal development. It should be stressed that our intercross between outbred populations is particularly powerful to detect QTL with a 20 parent of origin-specific effect on a multifactorial trait. This is because multiple alleles (or haplotypes) are segregating and we could deduce whether a heterozygous F₂ animal received the Wild Boar allele from the F₁ male or female. It is quite possible that the 25 segregation of a paternally expressed *IGF2*-linked QTL affecting a trait like obesity has been overlooked in human studies or in intercrosses between inbred rodent populations because of experimental design or statistical treatment of data. An imprinting effect cannot be 30 detected in an intercross between two inbred lines as only two alleles are segregating at each locus. Our result has therefore significant bearings on the future analysis of the association between genetic polymorphism in the *insulin-IGF2* region and Type I diabetes¹⁶, 35 obesity¹⁷, and variation in birth weight¹³ in humans, as

well as for the genetic dissection of complex traits using inbred rodent models. A major impetus for generating an intercross between the domestic pig and its wild ancestor was to explore the possibilities to map and 5 identify major loci that have responded to selection. We have now showed that two single QTLs on chromosome 2 (this study) and 4¹, 2 explain as much as one third of the phenotypic variance for lean meat content in the F₂ generation. This is a gross deviation from the underlying 10 assumption in the classical infinitesimal model in quantitative genetics theory namely that quantitative traits are controlled by an infinite number of loci each with an infinitesimal effect. If a large proportion of the genetic difference between two divergent populations 15 (e.g. Wild Boar and Large White) is controlled by a few loci, one would assume that selection would quickly fix QTL alleles with large effects leading to a selection plateau. However, this is not the experience in animal breeding programs or selection experiments where good 20 persistent long-term selection responses are generally obtained, provided that the effective population size is reasonably large¹⁸. A possible explanation for this paradox is that QTL alleles controlling a large proportion of genetic differences between two populations 25 may be due to several consecutive mutations; this may be mutations in the same gene or at several closely linked genes affecting the same trait. It has been argued that new mutations contribute substantially to long-term selection responses¹⁹, but the genomic distribution of 30 such mutations are unknown.

The search for a single causative mutation is the paradigm as regards the analysis of genetic defects in mice and monogenic disorders in humans. We propose that this may not be the case for loci that have been under 35 selection for a large number of generations in domestic animals, crops, or natural populations. This hypothesis

predicts the presence of multiple alleles at major QTL. It gains some support from our recent characterization of porcine coat color variation. We have found that both the alleles for dominant white color and for black-spotting
5 differ from the corresponding wild-type alleles by at least two consecutive mutations with phenotypic effects at the *KIT* and *MC1R* loci, respectively^{20, 21}. In this context it is highly interesting that in the accompanying example we have identified a third allele at the *IGF2*-linked QTL. The effects on muscle mass of the three alleles rank in the same order as the breeds in which they are found i.e. Piétrain pigs are more muscular than Large White pigs that in turn have higher lean meat content than Wild Boars.
10
15 There are good reasons to decide that *IGF2* is the causative gene for the now reported QTL. Firstly, there is a perfect agreement in map localization (Fig. 2). Secondly, it has been shown that *IGF2* is paternally expressed in mice, humans, and now in pigs, like the QTL.
20 There are several other imprinted genes in the near vicinity of *IGF2* in mice and humans (*Mash2*, *INS2*, *H19*, *KVLQT1*, *TAPA1/CD81*, and *CDKN1C/p57^{KIP2}*) but only *IGF2* is paternally expressed in adult tissues²². We believe that this locus provides a unique opportunity for molecular
25 characterization of a QTL. The clear paternal expression can be used to exclude genes that do not show this mode of inheritance. Moreover, the presence of an allelic series should facilitate the difficult distinction between causative mutations and linked neutral
30 polymorphism. We have already shown that there is no difference in coding sequence between *IGF2* alleles from Piétrain and Large White pigs suggesting that the causative mutations occur in regulatory sequences. An obvious step is to sequence the entire *IGF2* gene and its
35 multiple promoters from the three populations. The recent

report that a VNTR polymorphism in the promoter region of the insulin (*INS*) gene affects *IGF2* expression²³ suggests that the causative mutations may be at a considerable distance from the *IGF2* coding sequence.

5 The results have several important implications for the pig breeding industry. They show that genetic imprinting is not an esoteric academic question but need to be considered in practical breeding programs. The detection of three different alleles in Wild Boar, Large
10 White, and Piétrain populations indicates that further alleles at the *IGF2*-linked QTL segregate within commercial populations. The paternal expression of the QTL facilitates its detection using large paternal half-sib families as the female contribution can be ignored.
15 The QTL is exploited to improve lean meat content by marker assisted selection within populations or by marker assisted introgression of favorable alleles from one population to another.

Example 2: Piétrain x Large White intercrosses

Methods

Pedigree material: The pedigree material utilized to map QTL was selected from a previously described Piétrain x Large White F2 pedigree comprising > 1,800 individuals^{6,7}. To assemble this F2 material, 27 Piétrain boars were mated to 20 Large White sows to generate an F1 generation comprising 456 individuals. 31 F1 boars were mated to unrelated 82 F1 sows from 1984 to 1989, yielding a total of 1862 F2 offspring. F1 boars were mated on average to 7 females, and F1 sows to an average of 2,7 males. Average offspring per boar were 60 and per sow 23.

15 *Phenotypic information:* (i) *Data collection:* A total of 21 distinct phenotypes were recorded in the F2 generation^{6,7}. These included:

- five growth traits: birth weight (g), weaning weight (Kg), grower weight (Kg), finisher weight (Kg) and
- 20 average daily gain (ADG; Kg/day; grower to finsher period);
- two body proportion measurements: carcass length (cm); and a conformation score (0 to 10 scale; ref.6);
- ten measurements of carcass composition obtained by
- 25 dissection of the chilled carcasses 24 hours after slaughter. These include measurements of muscularity: % ham (weight hams/carcass weight), % loin (weight loin/carcass weight), % shoulder (weight shoulder/carcass weight), % lean cuts (% ham + %loin + % shoulder); and measurements of fatness: average back-fat thickness (BFT; cm), % backfat (weight backfat/carcass weight), % belly (weight belly/carcass weight), % leaf fat (weight leaf fat/carcass weight), % jowl (weight jowl/carcass weight), and "% fat cuts" (% backfat + % belly + % leaft fat + % jowl).
- four meat quality measurements: pH_{L01} (*Longissimus dorsi* 1

hour after slaughter), pH _{Ld24} (*Longissimus dorsi* 24 hours after slaughter), pH _{G1} (*Gracilis* 1 hour after slaughter) and pH _{G24} (*Gracilis* 24 hours after slaughter). (ii) Data processing: Individual phenotypes were preadjusted for fixed effects (sire, dam, CRC genotype, sex, year-season, parity) and covariates (litter size, birth weight, weaning weight, grower weight, finisher weight) that proved to significantly affect the corresponding trait. Variables included in the model were selected by stepwise regression.

10

Marker genotyping: Primer pairs utilized for PCR amplification of microsatellite markers are as described¹⁹. Marker genotyping was performed as previously described²⁰. Genotypes at the CRC and MyoD loci were determined using conventional methods as described^{1,12}. The LAR test for the Igf2 SNP was developed according to Baron et al.²¹ using a primer pair for PCR amplification (5'-CCCCTGAACTTGAGGACGAGCAGCC-3'; 5'-ATCGCTGTGGCTGGTGGCTGCC-3') and a set of three primers for the LAR step (5'-FAM-CGCCCCAGCTGCC-3'; 5'-HEX-CGCCCCAGCTGCC-3'; 5'-CCTGAGCTGCAGCAGGCCAG-3').

Map construction: Marker maps were constructed using the TWOPOINT, BUILD and CHROMPIC options of the CRIMAP package²². To allow utilisation of this package, full-sib families related via the boar or sow were disconnected and treated independently. By doing so, some potentially usable information was neglected, yielding, however, unbiased estimates of recombination rates.

30

QTL mapping: (i) *Mapping Mendelian QTL:* Conventional QTL mapping was performed using a multipoint maximum likelihood method. The applied model assumed one segregating QTL per

chromosome, and fixation of alternate QTL alleles in the respective parental lines, Piétrain (P) and Large White (LW). A specific analysis program had to be developed to account for the missing genotypes of the parental generation,

5 resulting in the fact that the parental origin of the F1 chromosomes could not be determined. Using a typical "interval mapping" strategy, an hypothetical QTL was moved along the marker map using user-defined steps. At each position, the likelihood (L) of the pedigree data was

10 computed as:

$$L = \sum_{\varphi=1}^{2^r} \prod_{i=1}^n \sum_{G=1}^4 (P(G|M_i, \theta, \varphi) P(y_i|G))$$

P or right chromosome P), there is a total of 2^r combinations for r F1 parents.

15 $\prod_{i=1}^n n$ F2

$\sum_{G=1}^4$ ith F2 offspring, over the four possible QTL genotypes:
 P/P , P/LW , LW/P and LW/LW

$P(G|M_i, \theta, \varphi)$: the marker genotype of the ith F2 offspring and its F1 parents, (ii) : the vector of recombination rates

20 between adjacent markers and between the hypothetical QTL and its flanking markers, and (iii) θ the considered marker-QTL phase combination of the F1 parents.

Recombination rates and marker linkage phase of F1 parents are assumed to be known when computing this probability. Both

25 were determined using CRIMAP in the map construction phase (see above).

$P(y_i|G)$ of offspring i , given the QTL genotype under consideration. This probability is computed from the normal density function:

$$P(y_i|G) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \mu_G)^2}{2\sigma^2}}$$

μ_G is the phenotypic mean of the considered QTL genotype (PP, PL, LP or LL) and σ^2 the residual variance σ^2 was considered to be the same for the four QTL genotypic classes.

5 The values of μ_{PP} , $\mu_{PL}=\mu_{LP}$, μ_{LL} and σ^2 maximizing L were determined using the GEMINI optimisation routine²³. The likelihood obtained under this alternative H_1 hypothesis was compared with the likelihood obtained under the null hypothesis H_0 of no QTL, in which the phenotypic means of the
10 four QTL genotypic classes were forced to be identical. The difference between the logarithms of the corresponding likelihoods yields a lodscore measuring the evidence in favour of a QTL at the corresponding map position.

(ii) Significance thresholds: Following Lander & Botstein²⁴,
15 lodscore thresholds (T) associated with a chosen genome-wise significance level, were computed such that:

$$\alpha = (C + 9.21GT)\chi^2_2(4.6T)$$

C corresponds to the number of chromosomes (= 19), G corresponds to the length of the genome in Morgans (= 29),
20 and $\chi^2_2(4.6T)$ denotes one minus the cumulative distribution function of the chi-squared distribution with 2 d.f. Single point $2\ln(LR)$ were assumed to be distributed as a chi-squared distribution with two degrees of freedom, as we were fitting both an additive and dominance component. To account for the
25 fact that we were analysing multiple traits, significance levels were adjusted by applying a Bonferoni correction corresponding to the effective number of independent traits that were analyzed. This effective number was estimated at 16 following the approach described by Spelman et al.²⁵.
30 Altogether, this allowed us to set the lodscore threshold associated with an experiment-wise significance level of 5%

at 5.8. When attempting to confirm the identified QTL in an independent sample, the same approach was used, however, setting C at 1, G at 25cM and correcting for the analysis of 4.5 independent traits (as only six traits were analyzed in 5 this sample). This yielded a lodscore threshold associated with a Type I error of 5% of 2.

(iii). *Testing for an imprinted QTL:* To test for an imprinted QTL, we assumed that only the QTL alleles transmitted by the parent of a given sex would have an effect on phenotype, the 10 QTL alleles transmitted by the other parent being "neutral". The likelihood of the pedigree data under this hypothesis was computed using equation 1. To compute $P(y_i | G)$, however, the phenotypic means of the four QTL genotypes were set at $\mu_{PP} = \mu_{PL} = \mu_P$ and $\mu_{LP} = \mu_{LL} = \mu_L$ to test for a QTL for which the 15 paternal allele only is expressed, and $\mu_{PP} = \mu_{LP} = \mu_P$ and $\mu_{PL} = \mu_{LL} = \mu_L$ to test for a QTL for which the maternal allele only is expressed. It is assumed in this notation that the first subscript refers to the paternal allele, the second subscript to the maternal allele. H_0 was defined as the null-hypothesis 20 of no QTL, H_1 testing the presence of a Mendelian QTL; H_2 testing the presence of a paternally expressed QTL, and H_3 testing the presence of a maternally expressed QTL.

RT-PCR: Total RNA was extracted from skeletal muscle 25 according to Chirgwin et al.²⁶. RT-PCR was performed using the Gene-Amp RNA PCR Kit (Perkin-Elmer) The PCR products were purified using QiaQuick PCR Purification kit (Qiagen) and sequenced using Dye terminator Cycle Sequencing Ready Reaction (Perkin Elmer) and an ABI373 automatic sequencer.

In example 2 we report the identification of a QTL with major effect on muscle mass and fat deposition mapping to porcine 2p1.7. The QTL shows clear evidence for parental imprinting strongly suggesting the involvement of the *Igf2* locus.

5 A Piétrain X Large White intercross comprising 1125 F₂ offspring was generated as described^{6,7}. The Large White and Piétrain parental breeds differ for a number of economically important phenotypes. Piétrains are famed for their exceptional muscularity and leanness⁸ (Figure 2), while Large
10 Whites show superior growth performance. Twenty-one distinct phenotypes measuring (i) growth performance (5), (ii) muscularity (6), (iii) fat deposition (6), and (iv) meat quality (4), were recorded on all F₂ offspring.

In order to map QTL underlying the genetic differences
15 between these breeds, we undertook a whole genome scan using microsatellite markers on an initial sample of 677 F₂ individuals. Analysis of pig chromosome 2 using a ML multipoint algorithm, revealed highly significant lodscores (up to 20) for six of the 12 phenotypes measuring muscularity
20 and fat deposition at the distal end of the short arm of chromosome 2 (Figure 3a). Positive lodscores were obtained for the remaining six phenotypes, however, not reaching the genome-wise significance threshold ($= 5\%$). To confirm this finding, the remaining sample of 355 F₂ offspring was
25 genotyped for the five most distal 2p markers and QTL analysis performed for the traits yielding the highest lodscores in the first analysis. Lodscores ranged from 2.1 to 7.7, clearly confirming the presence of a major QTL in this region. Table 2 reports the corresponding ML estimates for
30 the three genotypic means as well as the corresponding residual variance.

Bidirectional chromosome painting establishes a correspondence between SSC2p and HSA11pter-q13^{9,10}. At least

two serious candidate genes map to this region in man: the myogenic basic helix-loop-helix factor, *MyoD*, maps to HSA11p15.4, while *Igf2* maps to HSA11p15.5. *MyoD* is a well known key regulator of myogenesis and is one of the first 5 myogenic markers to be switched on during development¹¹. A previously described amplified sequence polymorphism in the porcine *MyoD* gene¹² proved to segregate in our F₂ material, which was entirely genotyped for this marker. Linkage analysis positioned the *MyoD* gene in the SW240-SW776 (odds > 10 1000) interval, therefore well outside the lod-2 drop off support interval for the QTL (figure 1). *Igf2* is known to enhance both proliferation and differentiation of myoblasts *in vitro*¹³ and to cause a muscular hypertrophy when overexpressed *in vivo*. Based on a published porcine adult 15 liver cDNA sequence¹⁴, we designed primer pairs allowing us to amplify the entire *Igf2* coding sequence with 222 bp of leader and 280 bp of trailer sequence from adult skeletal muscle cDNA. Piétrain and Large White RT-PCR products were sequenced indicating that the coding sequences was identical 20 in both breeds and with the published sequence. However, a G A transition was found in the leader sequence corresponding to exon 2 in man (Figure 4). We developed a screening test for this single nucleotide polymorphism (SNP) based on the ligation amplification reaction (LAR), allowing us to 25 genotype our pedigree material. Based on these data, *Igf2* was shown to colocalize with the SWC9 microsatellite marker (= 0%), therefore located at approximately 2 centimorgan from the most likely position of the QTL and well within the 95% support interval for the QTL (figure 1). Subsequent sequence 30 analysis demonstrated that the microsatellite marker SWC9 is actually located within the 3' UTR of the *Igf2* gene. Combined with available comparative mapping data for the PGA and FSH loci, these results suggest the occurrence of an interstitial

inversion of a chromosome segment containing *MyoD*, but not *Igf2* which has remained telomeric in both species.

Igf2 therefore appeared as a strong positional allele having the observed QTL effect. In man and mouse, *Igf2* is known to be imprinted and to be expressed exclusively from the paternal allele in several tissues¹⁵. Analysis of skeletal muscle cDNA from pigs heterozygous for the SNP and/or SWC9, shows that the same imprinting holds in this tissue in the pig as well (Figure 4). Therefore if *Igf2* were responsible for the observed effect, and knowing that only the paternal *Igf2* allele is expressed, one can predict that (i) the paternal allele transmitted by F1 boars (P or LW) would have an effect on phenotype of F2 offspring, (ii) the maternal allele transmitted by F1 sows (P or LW) would have no effect on phenotype of F2 offspring, and (iii) the likelihood of the data would be superior under a model of a bimodal (1:1) F2 population sorted by inherited paternal allele when compared to a conventional "Mendelian" model of a trimodal (1:2:1) F2 population. The QTL mapping programs were adapted in order to allow testing of the corresponding hypotheses. H_0 was defined as the null-hypothesis of no QTL, H_1 as testing for the presence of a Mendelian QTL, H_2 as testing for the presence of a paternally expressed QTL, and H_3 as testing for the presence of a maternally expressed QTL.

Figure 3 summarizes the obtained results. Figure 3a, 3b and 3c respectively show the lodscore curves corresponding to $\log_{10} (H_2/H_0)$, $\log_{10} (H_3/H_0)$ and $\log_{10} (H_2/H_1)$. It can be seen that very significant lodscores are obtained when testing for the presence of a paternally expressed QTL, while there is no evidence at all for the segregation of a QTL when studying the chromosomes transmitted by the sows. Also, the hypothesis of a paternally expressed QTL is significantly more likely ($\log_{10} (H_2/H_1) > 3$) than the hypothesis of a "Mendelian" QTL

for all examined traits. The fact that the same tendency is observed for all traits indicates that it is likely the same imprinted gene that is responsible for the effects observed on the different traits. Table 2 reports the ML phenotypic means for the F2 offspring sorted by inherited paternal QTL allele. Note that when performing the analysis under a model of a mendelian QTL, the Piétrain and Large White QTL alleles appeared to behave in an additive fashion, the heterozygous genotype exhibiting a phenotypic mean corresponding exactly to the midpoint between the two homzygous genotypes. This is exactly what one would predict when dealing with an imprinted QTL as halve of the heterozygous offspring are expected to have inherited the P allele from their sire, the other halve the LW allele.

These data therefore confirmed our hypothesis of the involvement of an imprinted gene expressed exclusively from the paternal allele. The fact that the identified chromosomal segment coincides precisely with an imprinted domain documented in man and mice strongly implicates the orthologous region in pigs. At least seven imprinted genes mapping to this domain have been documented (*Igf2*, *Ins2*, *H19*, *Mash2*, *p57^{KIP2}*, *KvLQT1* and *TDAG51*) (ref. 15 and Andrew Feinberg, personal communication). Amongst these, only *Igf2* and *Ins2* are paternally expressed. While we cannot exclude that the observed QTL effect is due to an as of yet unidentified imprinted gene in this region, its reported effects on myogenesis *in vitro* and *in vivo*¹³ strongly implicate *Igf2*. Particularly the muscular hypertrophy observed in transgenic mice overexpressing *Igf2* from a muscle specific promotor are in support of this hypothesis (Nadia Rosenthal, personal communication. Note that allelic variants of the *INS* VNTR have recently been shown to be associated

with size at birth in man¹⁶, and that the same VNTR has been shown to affect the level of *Igf2* expression¹⁷.

The observation of the same QTL effect in a Large White x Wild Boar intercross indicates the existence of a series of 5 at least three distinct functional alleles. Moreover, preliminary evidence based on marker assisted segregation analysis points towards residual segregation at this locus within the Piétrain population (data not shown). The occurrence of an allelic series might be invaluable in 10 identifying the causal polymorphisms which - based on the quantitative nature of the observed effect - are unlikely to be gross gene alterations but rather subtle regulatory mutations.

The effects of the identified QTL on muscle mass and fat 15 deposition are truly major, being of the same magnitude of those reported for the CRC locus^{6,7} though apparently without the associated deleterious effects on meat quality. We estimate that both loci jointly explain close to 50% of the Piétrain versus Large White breed difference for muscularity 20 and leanness. Understanding the parent-of-origin effect characterizing this locus will allow for its optimal use in breeding programs. Indeed, today half of the offspring from commercially popular Piétrain x Large White crossbred boars inherit the unfavourable Large White allele causing 25 considerable loss.

The QTL described in this work is the second example of a gene affecting muscle development in livestock species that exhibits a non-mendelian inheritance pattern. Indeed, we have previously shown that the callipyge locus (related to the 30 qualitative trait wherein muscles are doubled) is characterized by polar overdominance in which only the heterozygous individuals that inherit the CLPG mutation from their sire express the double-muscling phenotype⁵. This

demonstrates that parent-of-origin effects affecting genes underlying production traits in livestock might be relatively common.

5 Example 3:

Generating a reference sequence of IGF2 and flanking loci in the pig.

10 The invention provides an imprinted QTL with major effect on muscle mass mapping to the IGF2 locus in the pig, and use of the QTL as tool in marker assisted selection. To fine tune this tool for marker assisted selection, as well as to further identify a causal mutation, we have further generated
15 a reference sequence encompassing the entire porcine IGF2 sequence as well as that from flanking genes.

To achieve this, we screened a porcine BAC library with IGF2 probes and identified two BACs. BAC-PIGF2-1 proved to
20 contain the INS and IGF2 genes, while BAC-PIGF2-2 proved to contain the IGF2 and H19 genes. The NotI map as well as the relative position of the two BACs is shown in Figure 5. BAC-PIGF2-1 was shotgun sequenced using standard procedures and automatic sequencers. The resulting sequences were assembled
25 using standard software yielding a total of 115 contigs. The corresponding sequences are reported in figure 6. Similarity searches were performed between the porcine contigs and the orthologous sequences in human. Significant homologies were detected for 18 contigs and are reported in Figure 7.

30

For BAC-PIGF2-2, the 24 Kb NotI fragment not present in BAC-PIGF2-1 was subcloned and sequenced using the EZ:::TN transposon approach and ABI automatic sequencers. Resulting

sequences were assembled using the Phred-Phrap-Consed program suit, yielding seven distinct contigs (figure 8). The contig sequences were aligned with the corresponding orthologous human sequences using the compare and dotplot programs of the 5 GCG suite. Figure 9 summarizes the corresponding results.

Example 4: Identification of DNA sequence polymorphisms in the IGF2 and flanking loci.

10 Based on the reference sequence obtained as described in Example 1, we resequenced part of the IGF2 and flanking loci from genomic DNA isolated from Piétrain, Large White and Wild Boar individuals, allowing identification of DNA sequence polymorphisms such as reported in figure 10.

Legends to the figures

Fig. 1: Test statistic curves obtained in QTL analyses of
5 chromosome 2 in a Wild Boar/Large White intercross. The graph
plots the F ratio testing the hypothesis of a single QTL at a
given position along the chromosome for the traits indicated.
The marker map with the distances between markers in Kosambi
centiMorgan is given on the X-axis. The horizontal lines
10 represent genome-wise significant ($P<0.05$) and suggestive
levels for the trait lean meat in ham; similar significance
thresholds were obtained for the other traits.

Figure 2: Piétrain pig with characteristic muscular
15 hypertrophy.

Figure 3: Lodscore curves obtained in a Piétrain x Large
White intercross for six phenotypes measuring muscle mass and
fat deposition on pig chromosome 2. The most likely positions
20 of the *Igf2* and *MyoD* genes determined by linkage analysis
with respect to the microsatellite marker map are shown. H_0
was defined as the null-hypothesis of no QTL, H_1 as testing
for the presence of a Mendelian QTL, H_2 as testing for the
presence of a paternally expressed QTL, and H_3 as testing for
25 the presence of a maternally expressed QTL. 3a: $\log_{10}(H_1/H_0)$,
3b: $\log_{10}(H_2/H_0)$, 3c: $\log_{10}(H_3/H_0)$

Figure 4: A. Structure of the human *Igf2* gene according to
ref. 17, with aligned porcine adult liver cDNA sequence as
30 reported in ref. 16. The position of the nt241(G-A)
transition and *Swc9* microsatellite are shown. B. The
corresponding markers were used to demonstrate the
monoallelic (paternal) expression of *Igf2* in skeletal muscle

and liver of 10-week old fetuses. PCR amplification of the nt421(G-A) polymorphism and Swc9 microsatellite from genomic DNA clearly shows the heterozygosity of the fetus, while only the paternal allele is detected in liver cDNA (nt421(G-A) and 5 Swc9) and muscle cDNA (Swc9). The absence of RT-PCR product for nt421(G-A) from fetal muscle points towards the absence of mRNA including exon 2 in this tissue. Parental origin of the foetal alleles was determined from the genotypes of sire and dam (data not shown).

10

Figure 5: A NotI restriction map showing the relative position of BAC-PIGF2-1 (comprising INS and IGF2 genes), and BAC-PIGF2-2 (comprising IGF2 and H19 genes).

15 Figure 6: Nucleic acid sequences of contig 1 to contig 115 derived from BAC-PIGF2-1 which was shotgun sequenced using standard procedures and automatic sequencers.

20 Figure 7: Similarity between porcine contigs of figure 6 and orthologous sequences in human.

Figure 8 Nucleic acid sequences of contig 1 to contig 7 derived from BAC-PIGF2-2, (the 24 Kb NotI fragment not present in BAC-PIGF2-1) which was subcloned and sequenced 25 using the EZ::TN transposon approach and ABI automatic sequencers.

30 Figure 9: Similarity between porcine contigs of figure 8 and orthologous sequences in human.

Figure 10: DNA sequence polymorphisms in the IGF2 and flanking loci from genomic DNA isolated from Piétrain, Large White and Wild Boar individuals.

REFERENCES

Literature cited with example 1

1. Andersson, L. et al. Genetic mapping of quantitative trait loci for growth and fatness in pigs. *Science* 263, 1771-1774 (1994).
2. Knott, S.A. et al. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. *Genetics* 149, 1069-1080 (1998).
3. Edfors-Lilja, I. et al. Mapping quantitative trait loci for immune capacity in the pig. *Journal of Immunology* 161, 829-835 (1998).
4. Andersson-Eklund, L. et al. Mapping quantitative trait loci for carcass and meat quality traits in a wild boar x Large White intercross. *Journal of Animal Science* 76, 694-700 (1998).
5. Fronicke, L., Chowdhary, B.P., Scherthan, H. & Gustavsson, I. A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. *Mamm Genome* 7, 285-90 (1996).
6. Alexander, L.J. et al. Physical assignments of 68 porcine cosmids and lambda clones containing microsatellites. *Mammalian Genome* 7, 368-372 (1996).
7. Rohrer, G.A. et al. A comprehensive map of the porcine genome. *Genome Research* 6, 371-391 (1996).
8. Marklund, L. et al. A comprehensive linkage map of the pig based on a wild pig-Large White intercross. *Anim Genet* 27, 255-69 (1996).
9. Marklund, L., Nyström, P.E., Stern, S., Andersson-Eklund, L. & Andersson, L. Quantitative trait loci for

fatness and growth on pig chromosome 4. *Heredity* In press(1998).

10. Ohlsson, R., Hedborg, F., Holmgren, L., Walsh, C. & Ekstrom, T.J. Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. *Development* 120, 361-368 (1994).

11. Ekström, T.J., Cui, H., Li, X. & Ohlsson, R. Promoter-specific IGF2 imprinting status and its plasticity during 10 human liver development. *Development* 121, 309-316 (1995).

12. Hemberger, M. et al. H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. *Dev. Genes Evol.* 208, 393-402 (1998).

13. Dunger, D.B. et al. Association of the INS VNTR with 15 size at birth. *Nature Genetics* 19, 98-100 (1998).

14. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. *Cell* 64, 849-859 (1991).

15. Sun, F.L., Dean, W.L., Kelsey, G., Allen, N.D. & Reik, 20 W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. *Nature* 389, 809-815 (1997).

16. Davies, J.L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. *Nature* 371, 130-136 (1994).

17. O'Dell, S.D. et al. ApaI polymorphism in insulin-like 25 growth factor II (IGF2) gene and weight in middle-aged males. *International Journal of Obesity* 21, 822-825 (1997).

18. Falconer, D.S. & Mackay, T.F.C. *Introduction to Quantitative Genetics*, (Longman, England, 1996).

19. Hill, W.G: Rates of change in quantitative traits from 30 fixation of new mutations. *Proc Natl Acad Sci U S A* 79, 142-145 (1982).

20. Marklund, S. et al. Molecular basis for the dominant white phenotype in the domestic pig. *Genome Research* 8, 826-833 (1998).
21. Kijas, J.M.H. et al. Melanocortin receptor 1 (*MC1R*) mutations and coat color in the pig. *Genetics In press*(1998).
- 5 22. Beechey, C.V. personal communication (1998).
23. Paquette, J., Giannoukakis, N., Polychronakos, C., Vafiadis, P. & Deal, C. The *INS* 5' variable number of tandem repeats is associated with *IGF2* expression in humans. *Journal 10 of Biological Chemistry* 273, 14158-14164 (1998).
24. Sambrook, J., Fritsch, E.F. & Maniatis, T. *Molecular cloning : A laboratory manual.*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).
25. Chowdhary, B.P., de la Sena, C., Harbitz, I., Eriksson, L. & Gustavsson, I. FISH on metaphase and interphase chromosomes demonstrates the physical order of the genes for GPI, CRC, and LIPE in pigs. *Cytogenetics Cell Genetics* 71, 175-178 (1995).
- 15 26. Green, P., Falls, K. & Crook, S. *Documentation for CRI- 20 MAP, version 2.1.*, (Washington University School of Medicine, St Louise, MO, 1990).
27. Haley, C.S., Knott, S.A. & Elsen, J.M. Mapping quantitative trait loci in crosses between outbred lines using least squares. *Genetics* 136, 1195-1207 (1994).
- 25 28. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. *Genetics* 138, 963-971 (1994).
29. Anonymous. *SAS version 6.10*, (SAS Institute Inc., Cary, NC., 1990).

30

References used with example 2:

1. Fuji, J.; Otsu, K.; Zorzato, F.; Deleon, S.; Khanna, V.K.; Weiler, J.E. O'Brien, P.J.; MacLennan, D.H. (1991). Identification of a mutation in the porcine ryanodine receptor associated with malignant hyperthermia. *Science* 253: 448-451.
2. MacLennan, D.H. & Phillips, M.S. (1993). Malignant hyperthermia. *Science* 256:789-794.
3. Grobet, L.; Royo Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.;
10 Ménissier, F.; Massabanda, J.; Fries, R.; Hanset, R.; Georges, M. (1997) A deletion in the myostatin gene causes double-muscling in cattle. *Nature Genetics* 17:71-74.
4. Andersson, L.; Haley, C.S.; Ellegren, H.; Knott, S.A.; Johansson, M.; Andersson, K.; Andersson-Eklund, L.; Edfors-
15 Lilja, I.; Fredholm, M.; Hansson, I.; Håkansson, J.; Lundström, K. (1994). Genetic mapping of quantitative trait loci for growth and fatness in pigs. *Science* 263:1771-1774.
5. Cockett, N.; Jackson, S.; Shaw, T.; Farnir, F.; Berghmans, S.; Snowder, G.; Nielsen, D.; Georges, M. (1996). Polar
20 overdominance at the ovine callipyge locus. *Science* 273:236-238
6. Hanset, R.; Dasnois, C.; Scalais, S.; Michaux, C.; Grobet, L. (1995). Genotypes at the locus for halothane sensitivity and performance in a Piétrain x Large White F2. *Genet. Sel. Evol.* 27: 63-76.
7. Hanset, R.; Dasnois, C.; Scalais, S.; Michaux, C.; Grobet, L. (1995). Introgression into the Piétrain genome of the normal allele at the locus for halothane sensitivity. *Genet. Sel. Evol.* 27: 77-88.
- 30 8. Olivier, L.; Lauvergne, J.J. (1967). A study of the inheritance of the muscular hypertrophy of the Piétrain pig: preliminary results. *Annales de Médecine Vétérinaire* 111:
104-109.

9. Rettenberger, G.; Klett, C.; Zechner, U.; Kunz, J.; Vogel, W.; Hameister, H. (1995). Visualisation of the conservation of synteny between humans and pigs by heterologous chromosome painting. *Genomics* 26: 372-378.
- 5 10. Goureau, A.; Yerle, M.; Schmitz, A.; Riquet, J.; Milan, D.; Pinton, P.; Frelat, G.; Gellin, J. (1996). Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. *Genomics* 36:252-262.
11. Yun, K.; Wold, B. (1996). Skeletal muscle determination
10 and differentiation: story of a core regulatory network and its context. *Current Opinion in Cell Biology* 8:877-889.
12. Knoll, A.; Nebola, M.; Dvorak, J.; Cepica, S. (1997). Detection of a DdeI PCR RFLP within intron 1 of the porcine MYOD1(MYF3) locus. *Animal Genetics* 28, 308-322.
- 15 13. Florini, J.R.; Ewton, D.Z.; McWade, F.J. (1995). IGFs, muscle growth, and myogenesis. *Diabetes Review* 3:73-92.
14. Catchpole, I.R.; Engström, W. (1990). Nucleotide sequence of a porcine insulin-like growth factor II cDNA. *Nucleic Acids Research* 18(21):6430.
- 20 15. Feil, R.; Moore, T.F.; Oswald, J.; Walter, J.; Sun, F.; Reik, W. (1997). The imprinted insulin like growth factor 2 gene. *Pp70 In Genomic Imprinting*. Eds. Reik & Surani. IRL Press at Oxford University Press.
16. Dunger, D.B.; Ong, K.K.L.; Huxtable, S.J.; Sherriff, A.;
25 Woods, K.A.; Ahmed, M.L.; Golding, J.; Pembrey, M.E.; Ring, S.; the ALSPAC study team, Bennett, S.T.; Todd, J.A. (1998). Association of the INS VNTR with size at birth. *Nature Genetics* 19: 98-100.
17. Paquette J, Giannoukakis N, Polychronakos C, Vafiadis P,
30 Deal C. (1998) The INS 5' variable number of tandem repeats is associated with IGF2 expression in humans. *J. Biol Chem* 273(23):14158-14164

18. Andersson-Eklund, L.; Marklund, L.; Lundström, K.; Haley, C.S.; Andersson, K.; Hansson, I.; Moller, M.; Andersson, L. (1998). Mapping Quantitative Trait Loci for carcass and meat quality traits in a Wild Boar x Large White intercross. *J. Anim. Sci.* 76:694-700.
19. Rohrer, G.A.; Alexander, L.J.; Hu, Z.; Keele, J.W.; Smith, T.P.; Beattie, C.W. (1996). A comprehensive map of the porcine genome. *Genome Research*, in the press.
20. Georges, M.; Nielsen, D.; Mackinnon, M.; Mishra, A.; Okimoto, R.; Pasquino, A.T.; Sargeant, L.S.; Sorensen, A.; Steele, M.R.; Zhao, X.; Womack, J.E.; Hoeschele, I. (1995). Mapping quantitative trait loci controlling milk production by exploiting progeny testing. *Genetics* 139: 907-920.
- 10 21. Baron, H.; Fung, S.; Aydin, A.; Bahring, S.; Luft, F.C.; Schuster, H. (1996). Oligonucleotide ligation assay (OLA) for the diagnosis of familial hypercholesterolemia. *Nat. Biotechnol.* 14(10):1279-1282.
- 15 22. Lander, E.; Green, P. (1987) Construction of multilocus genetic linkage maps in humans. *Proceedings of National Academy of Science (USA)* 84: 2363-2367.
- 20 23. Lalouel, J.M. (1983). Optimization of functions. *Contrib. Epidemiol.Biostat.* 4:235-259.
24. Lander, E.S. & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. *Genetics* 121:185-199.
- 25 25. Spelman RL, Coppeters W, Karim L, van Arendonk JAM, Bovenhuis H (1996) Quantitative trait loci analysis for five milk production traits on chromosome six in the dutch Holstein-Friesian population. *Genetics* 144:1799-1808.
- 30 26. Chirgwin, J.M.; Przybyla, A.E.; MacDonald, R.J.; Rutter, W.J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. *Biochemistry* 18:5294-5299

Table 1 Summary of QTL analysis for pig chromosome 2 in a Wild Boar/Large White intercross¹

Trait	F ratio ² QTL	Map Imprinting position ³	Percent of F ₂ variance ⁴	Least squares means ⁵ WP/WM	LP/LM	LP/WM
5	LP/LM			n=62	n=43	n=30
Body composition traits						
10	Lean meat in ham, %	24.4***	19.1***	30.6	63.6*	66.4 ^b
	Lean meat mass in ham, kg	18.1***	16.8***	1	24.3	4.69*
	Lean meat + bone in back, %	12.2**	9.6**	0	17.4	4.72*
	Longissimus muscle area, cm ²	10.3***	4.8*	1	15.4	66.3*
					31.9*	69.3*
					33.0*	34.5 ^b
					35.2 ^b	
Fatness traits						
15	Average back fat depth, mm	7.1*	8.7**	0	10.4	27.2*
						27.7*
						25.5 ^b
						24.7 ^b
Weight of internal organs						
20	Heart, gram	9.7**	11.4***	0	14.4	226*
						225*
						238 ^b
						244 ^b
Meat quality traits						
	Reflectance value, EEL	5.7	6.1*	1	8.1	18.6*
						18.4*
						21.8 ^b
						19.7 ^a

Table 1, continued

¹Only the traits for which the QTL peak was in the *IGF2* region (0-10 cM) and the test statistic reached the nominal significance threshold of F=3.9 are included.

5 ²"QTL" is the test statistic for the presence of a QTL under a genetic model with additive, dominance, and imprinting effects (3 d.f.) while "Imprinting" is the test statistic for the presence of an imprinting effect (1 d.f.), both obtained at the position of the QTL peak. Genome-wise significance thresholds, estimated by permutation, were used for the QTL test while nominal significance thresholds were used for the Imprinting test.

10 ³In cM from the distal end of 2p; *IGF2* is located at 0.3 cM.

15 ⁴The reduction in the residual variance of the *F₂* population effected by inclusion of an imprinted QTL at the given position.

20 ⁵Means and standard errors estimated at the *IGF2* locus by classifying the genotypes according to the population and parent of origin of each allele. *W* and *L* represent alleles derived from the Wild Boar and Large White founders, respectively; superscript *P* and *M* represent a paternal and maternal origin, respectively. Figures with different letters (superscript a or b) are significantly different at least at the 5% level, most of them are different at the 1% or 0.1% level.

25

Table 2 Maximum likelihood phenotypic means for the different F2 genotypes estimated under (i) a model of a mendelian QTL, and (ii) a model assuming an imprinted QTL.

Traits	Mendelian QTL				Imprinted QTL		
	$\mu_{LW/LW}$	$\mu_{LW/P}$	$\mu_{P/P}$	R	$\mu_{PAT/LW}$	$\mu_{PAT/P}$	R
BFT (cm)	2.98	2.84	2.64	0.27	2.94	2.70	0.27
% ham	21.10	21.56	22.15	0.83	21.23	21.9	0.83
% loin	24.96	25.53	26.46	0.91	25.12	26.1	0.93
% lean cuts	65.02	65.96	67.60	1.65	65.23	67.0	1.67
% backfat	6.56	6.02	5.33	0.85	6.43	5.56	0.85
% fat cuts	28.92	27.68	26.66	1.46	28.54	26.9	1.49

CLAIMS

1. A method for selecting a domestic animal for having desired genotypic properties comprising testing said animal for the presence of a parentally imprinted quantitative trait locus (QTL).
- 5 2. A method according to claim 1 further comprising testing a nucleic acid sample from said animal for the presence of a parentally imprinted quantitative trait locus (QTL).
3. A method according to claim 1 or 2 wherein in the pig said QTL is located at chromosome 2.
- 10 4. A method according to claim 2 or 3 wherein said QTL is mapping at around position 2p1.7.
5. A method according to claim 1 to 4 wherein said QTL is related to the potential muscle mass and/or fat deposition of said animal.
- 15 6. A method according to claim 5 wherein said QTL comprises at least a part of an insulin-like growth factor-2 (IGF2) gene.
7. A method according to anyone of claims 1 to 6 wherein in the pig said QTL comprises a marker characterised as nt241(G-A) or as Swc9, as identified in figure 4.
- 20 8. A method according to anyone of claims 1-7 wherein a paternal allele of said QTL is predominantly expressed in said animal.
9. A method according to anyone of claims 1-7 wherein a maternal allele of said QTL is predominantly expressed in said animal.
- 25 10. An isolated and/or recombinant nucleic acid comprising a parentally imprinted quantitative trait locus (QTL) or functional fragment derived thereof.
- 30 11. An isolated and/or recombinant nucleic acid comprising a synthetic parentally imprinted quantitative trait locus (QTL)

derived from at least one chromosome or functional fragment derived thereof.

12. A nucleic acid according to claim 10 or 11 at least partly derived from a *Sus scrofa* chromosome.

5 13. A nucleic acid according to claim 12 wherein said nucleic acid is at least partly derived from a *Sus scrofa* chromosome 2, preferably from a region mapping at around position 2p1.7.

14. A nucleic acid according to any one of claims 10 to 13 wherein said QTL is related to the potential muscle mass

10 and/or fat deposition of said animal.

15. A nucleic acid according to any one of claims 10 to 14 wherein said QTL comprises at least a part of a insulin-like growth factor-2 (IGF2) gene.

16. A nucleic acid according to anyone of claims 10 to 15 wherein a paternal allele of said QTL is capable of being predominantly expressed.

17. A nucleic acid according to anyone of claims 10 to 16 wherein a maternal allele of said QTL is capable of being predominantly expressed.

20 18. Use of a nucleic acid or fragment derived thereof according to claim 10 in a method according to anyone of claims 1-9.

19. Use according to claim 18 to select a breeding animal or animal destined for slaughter for having desired genotypic or

25 potential phenotypic properties.

20. Use according to claim 19 wherein said properties are related to muscle mass and/or fat deposition.

21. An animal such as pig selected by a use according to claim 18 to 20.

30 22. A animal according to claim 21 characterised in being homozygous for an allele at a paternally imprinted QTL, preferably located at a *Sus scrofa* chromosome 2 mapping at around position 2p1.7.

23. An animal according to claim 21 or 22 wherein said QTL is

35 related to the potential muscle mass and/or fat deposition of

said pig and/or wherein said QTL comprises at least a part of a insulin-like growth factor-2 (IGF2) allele.

24. A transgenic animal comprising a nucleic acid according to anyone of claims 11 to 16.

5 25. An animal according to anyone of claims 21-24 which is a male.

26. Sperm or an embryo derived from an animal according to anyone of claims 21-25.

27. Use of a sperm or an embryo according to claim 26 in

10 breeding animals destined for slaughter.

FIGURE 1

FIGURE 2

FIGURE 3A

SUBSTITUTE SHEET (RULE 26)

FIGURE 3B

SUBSTITUTE SHEET (RULE 26)

FIGURE 3C

SUBSTITUTE SHEET (RULE 26)

FIGURE 4

FIGURE 5

FIGURE 6

Contig 1 (500 bp)

GGGTGGGCAGCTTCCCTCCCAGACCGCAGGAGGCCAAGTTCCCTGCCCTGCCACUCAGGGCCAGCTGAAGC
 AGGTCAAGAGACACCGCTCTCTGCCCCCTCTGTCACCTAACCCAACAGGCCGGGCCAGGGACACAGGCCACA
 TGGCATCTCCCCCATGCCCTGCCCAAGGCCAGGCCAGCAGGTGAGGCTGGAGCAGAGTCTGGCTCTGCCGG
 CCAGACCGAGGGCAGGACAGCTGGCATCTGTCTCACAGTCCCCCGCTTGTGGGGAGGCCAGAGCCTC
ATCCAAGACGCCCGCAAGGAACGGGAGAAGGCCAGGCCGGCTGCCGAGGCCGGAGGCCCTGG
AAGTGGGGGCCCTTGCCGAGCCGGACGGGAAGGCCCTGCTGAACCTGCTCTCACCCCTGAGGGCCACCAAGCC
CCCCTCGCTTCCGGTCCCTGAAAAATTCTAGGTGAGGGGCCAGGGCTCCCGGG

Contig 2 (943 bp)

TGCTCCTCACACCCCGGGCGGGGCTGCTCTGGGCCATCTCCCCATGGGCCAGCACCAACTCTGGCTTC
 ACACCTGCCGTCTCTGGGAAGTCTCTGTTCCCAAGGAAAGTTCTGACGCTGGACAAGTGGCACACCACCTGG
TCACCAAGTTCGATCTCTGAGCTGGACCTGGACCACCCGTGAGCCGGTGCTCCCTCCCCGGGCCATGTC
TCCCACATCCCCAGGGGTGTCACACTCAGGGCCGGGACTGGCGTGAACCCCCGGTTGGGACGGATGTGGC
CTGCTGTGGCTCTGCCGAGAGGCCAGAGGGCTGGCTGGGTGCCACCCCAAGGGCCCCCGCATGACACGG
GCCGGCTCTGGCTGGGGGGAGGGGGGGAGGGC
AGGGCAGCCTCCGATGGCGTCCCCGGCTGTCACCAAGGGCTTCTCGGACCAAGTGTACCGCCAGCGCAGGAAGC
TGATTGCCAGATGCCCTTCCAGTACAGGCAGTAAGTCCCTCAGGGCTCAGCTGGGGCCAGACCTCAG
CCTGGGCCACGCCAGACCTGGGGTGGAGGAAGGGAGGTGCTTTCACAGCTGAGGAACACTGGGACAGAGTCTTAAGCATCT
GTCACCATGGTACCGACTCTGGTCCCCAAATCACAGCTGAGGAACACTGGGACAGAGTCTTAAGCATCT
TGCTGAAGCCACACAGCTGGGGAGCATTGGCCCCGGCCCTCTGCGGCTCCACACGTGCTCCTGAGGG
GCCCAGGACTGACAGCTGCCCCCTCAGAGGTG
ACCCATATTCCCCGGTGGAGTACACAGCCAGGGAGATTGCCACCTGGTGAGGCCCTGTGACAGGGCTGGGAG
GGGCGGAGTGGGGGAAGGGACAGGAAGACCTCAGAATTCCCGGTGGAACGTTGGTGGCCCTATCATGA

Contig 3 (1500 bp)

GGGGAGGGGATGTCAGACCCCTCTGGGAAGAAGAGAGGCCCTAGAAGAAATCCCTCCAAAGGTCAAGCGGG
 TGGAGGCCAGGGGGCCCGTAGGGGCCGATCCCCACAGCTGTGCTGCCACCTCTGGCGCTCCAGGAACACTGC
GGAGGGGGTGGGGGCCCTGGATGGTCCCCAGTGGCTCGCAGGAGACCCCTGGAGGGGTGCGGACACCCCC
AGCTGCCACTACAAGGTGCCAAGCGGGTGGCAATGGCTGAGCCTCTCCCCCTCTCTCCGAGGA
CATTGGCCTCGCATCCCTGGGGGTCTCGGACAGGAATTGAGAAAGCTGTCCACGGTGGTTCTCCCCCTGC
AGGGCCCTGGGTTCCAGCCAGGCCCTCTGTCCAA
GGGGTGTGTCCTCACGCTGTGACCGGCCGGAGCCTGGATCGGTCTGCCCTGGTGGCGGTGCCGGCCA
CGGGCAGCAGGGCAGCGGTGCCGCCAGCCGTGTCAGGCCCTTGCCCTGCCCCACAGCTGTAC
TGGTACGGTGGAGTTGGCTCTGCAACAGAACAGCAGGTGAAGGCCCTACGGGCTGGCTGCTGTCCCT
CCTACGGGAGCTCTGGTGGAGGCCCTCCCCACGCCTGGGCTGGTCCCCGGGGAGGTGACCCCTGCGG
TGCCCTGTGGATTCCAGCTCTGGAGGCTGGAGGCGAGGGGCTGCCCTCTGGGGCACCAAGAAAGCTGGTC
TGCGCCCCCTCTCCACACCTGTGCCCTGGGCC
GGGGGACCCCTGCTGGGGATGTTGGTGCACAGGCCAGGGCACCAGGGAGTCAGGACACGGGGCTCCCTTCCC
TCGGGTCCCTGAGACCCCTGGCTCCCCCAGCACTCCCTGTCCGAGGAGGCCAGATCCGGGCTTCGACCC
CGACCGGGCGGCCGTGCAAGCCCTACCAAGGACAGACCTACCAAGCCGTCTACTTGTGCTGAGAGTTTCAGT
GACGCCAAGGACAAGCTCAGGTGGCCGGGCCGGCCCCAAACTGGAGGATCCAGCCAGCCTGAGCCCCGCC
TATGAGCCCATTCCCAGCAGAGGAGCTGTGCGGACCCACCGTCACAACCCCCCTCCACAGCTGGAAAC
CCAGAAAGCCAGGGGAGGAGCTGCAGGGCTG
TGGCCAGGTCAAGGCCAGGCTGAGGCCAGGCTTTAGGGGTGAAGTCTGACTTTGTAACAGGGGTGCAGGGT
CCTTCCCAGCCTCTCCCTCGAGCAGCTGGGGCGGGCGGGGTGCGATGAAGGCAGAGATGACGCCAGCC
ACCCGTTACCCCTCAGGGAGGCCCTCTGTCCAGCCAGGCTCTGTTGTACAGGGGAAACTGAGGCCAGG
TGTGTGTGGGGGGTATTCTCACACACAAGCTAGGGACAGGGACATAACGGCTCTCCAGGGCACACAG
TCTGGAGG

Contig 4 (3024 bp)

TTAANTCCANGTGGCCGACAAGTTCCCCATTGAAAAGGGGCCAGTTAACCCCCAACNCAATTAAATTGG
 AAGTTAGCTCCCTCATTAGGCTCCCCAGNCCTTACNCTTATGTCCGGTCTGATTTGTGGGAATTGTA
 GCGGATAACAATTCTCTCAAGNAACCAGCTATGCCCATGATTACGCCGTACAGTAGTTCATGATCCCCCG
 CCCATGGGACAGCGAAGGGAAACCAGTATGCGTGGGGCGGGTCTAAAGGGTCAACACCAGGGAGGGCAGG
 GGCTCAGGAGGCCACTGAGCGTACCTGGTGGGGGAGGTGGTGGGGCCACACCCAGGAGTCTGTG
 CCCCCCCCACCTCCCGCCGTGGACATGAGAACAGGGGCCAGCCTGCGGGTCCCTGACTTCAGGCC
 CCCCCCAGGCCAGGCCAGGGGGTCTCAGCAGGCTGCTGCTGGGGGGGGGGCTTATGGRGCCCCGGAG
 CAGCCCCCCCCACGGCTTCAGAGCATCTGGGGCTCAGGGATGGGACGGGGGCTGCRGGCAGGTGCTC
 TCGGCCCTCCACTCCCTGGGCTATAACGTTGAAGATGCGGCCAACCCGGCGGTTGGCCTTGTCCCCAG
 CCAGTGGGACAGGCTGGCCCTCAGGCCGCTGTTAAGACTCTAATGACCTCAAGGCCCCAGAGGCCAG
 GACCCACGGAGATGATCCCGCAGGCCCTGGCAGCAGGGAAATGATCCAGAAAGTGGCACCTCAGCCCCAGGCCA

FIGURE 6, CONTD.

FIGURE 6, CONTD.

CCTGCGGGTCTGGGTCAAGGACCTGGTCCCCAGCAGTCGTCAGAGCCGTCACTGATGTGTTGGGATTTA
 CGCTAGAACACAGTTCCCTCGATTCTCAGAAACCAGCAGATCCTTAGGAGGGCGTGAGGTTAACCTG
 TGCTGCANNGCCCCCTGCCACCTGGTGGAGCCAGACGGCATCTAAAGATCAGTCCTCATCATCAGTT
 CGCAGTGTCTGGGTGGGGCAGATGAGAACCTCAGGGCTGGCGCAGAGGTGGGAGCCCGCTGGACCCGA
 CACTGCAGGGGGCCTCCCCCTGTAGGAAGAACATGTCGCTTGCACCCAGCCCTCCCCAGGGTGGCC
 CGAACTGTGCTCCTAAGACCTCTGGCTGTGTAATTCTATAAGTGGCCACCAGGTGTCAGCAGGGG
 CCACCTAACGATCCATGTGGGGAAACCTGGAGCTGGGCTTAAGGTCCTCGAGTGTCTCTGAATAA
 ATAGGCGCTGACCTGATCCCCAGGAAGGGATAACCTCTCCCAGGCCTAACAGGGAGTGGGCAATGAGGTT
 ATGTGTCACTGTACCCCCAAATGTCTCTCTTCCCTACCCCTGTCAGGCTCTGCCTCACGGGCCACCCGAGTGGC
 GTGGCAGGCTGCGGTACAGCCCTCACAGCCCCAAAGCTGAGGTGCTCTGCCTCACGGGCCACCCGAGTGGC
 TGGTCCCCCTGGGTCTCCCCACCCCTGACCCGTCCTGCTCTTCCCTCCCTTGTGTTAAATGCTCTGCCTTC
 AAGGTTCTGATGGAATAAAATAGCCCTGCACTGGTGTCTCTTGGGCTGCCCAGAAGTGGGAATTCA
 GACCAGGGCAGAGCTCAGATTCCACATACTGTGTTAGGGATGGCAGGTGCCACATTCCAGGAGTTTATTGG
 TGGTTTGTAAATGCTACTTCCGTTTCAGCCCCCTCAGCTGCCACCCCTCAATTAGGACCCCCCTTTGG
 CGGGTGGCCCATGGAACACATCATCTGGCTGGGTGAGCCCTTATCCTCCCTGGCCCACTGGGAGGGT
 TGGGAAGTCCCAGCTAAATTCTCCGTAGGGACCTGGAAGGAGCCCTGTGACATCTGGGACAGATAAGAG
 GTAGGGGACAGGGCGTGAACCTGAGCTGAGAGCCAGAGCAGCAGGAGCAAGTGAATGCTC
 CCCACCCCAAGAACATGTGGCTGGTCACACACTCCCCACTGTGTCCTGGACCTGACAGGGCTTATGCT
 CCCCTGCATCCCCCTCCCCACCCAAAGAACCCAGTGAGGCCACCCACTTGCCCTCTTGTGTTATGGCTCTG
 GGGCATCTGCATTITGTTAGGACACCCCCAGCTAGATTAACTCCCCCAAGTGTGACTCTTCCACTG
 AAAACCTGTCCCTCCACCAAAGGGCCATATCCCTTAGCTGAGCCAAGGAAATTCAAGGAGGGGCTTGAATG
 ACAAAAGGAAGAGGGGAGAGTTAAACCCCAACACTGGCTGGCAAGCTGGTGGGACACCCAGGGTCA
 GGGGTGCACTGAAGGTAGCGGCTGGCCTCTGAAACTACATGTGACTTCCCATTAGGTGAGTCTTGC
 TTTGCCCCCTGCTCTATCTGAGGCTTATGGAAGGTTAAATTCCAGGGACACTGGTCTAACCAAGGCAGC
 GCTTGATCTGGCCCCCTCCCCAGCTGCTGACCAACTCTGAGTCTGCCTTAGTGGAGTTGGCAAGCTC
 AAAGGGCTGGACCCAGCTACATCCCCACCCAGGGGTGCTGGCAGGGACGCTGCTGCCTGCATTTGCTC
 AGTATTGTCACTGTCCGGCACACACATGGTGCAGGGGTGCTGGTATCAGGTGCCACTGGGAAGGGAGAAA
 CTCCCAGGTGAGTCCCCCTGCTCTGGAAGCAAGATGACATGCCACTGTGTCAGCTGCATTGGAGGC
 CCCGAAGAAAAGATTTCTGATCTTCTGAAACCCUTGCTTCTCCCATATGCCCGCCCCCATTTTACCCGT
 GCCACGCCACTGGTGTGCCGGGTGTCACACTGACTGACAAGTGTCAATCTACTGAGGCCCTGCCACTCTCC
 ACCCCCCACATAGTCCCACCTCCAGCTGGCAGGGAGAACCTCCAGCTAATGCCCATGCCACAAATGTCTT
 TCTGTCACCCCTAGAGCTGACCAAATCTCACCCCTGTAACATGCTGTCCTGGCGTGGGAAGGGTCCAGAGC
 CAGTGGCCCAGCAGCCCCAGAACCCACTAAGTGGCACAAAGCTACCCAAATTGGAGGGCTGGGAAGGG
 CATGGAGGGGATGAGGGTGGAGGGGAAAACATTAATTCAAGTTAGCATTGAGCAGGTGCCACGCTCAGCGT
 GAGAGGCTCTTGTCTAGGGACCCATTATGATGACACGCTAAAGCGCCCTCACCACATCTCCAGCCT
 CAGCTTGTCCCCCTCCTCAGCGCAACCCGGCTGGAGGGCTGGCCACTACAGCCAGAGCGCCCC
 TACTTTGGTGGCAGTGTACTATGGCCCAACAGGGATCAGGGACTCAGGGACTACAGCAGTGGAGCTGG
 GGCACCACTGACTCCCCGTCCTCTTATCCACCAACCCAGGAGCTCAGGGACTACACAGCAGTAGAGGCC
 GTTAACTGGCTGCCCTCCCTAGGGCTGCCCTCAGAGTGTGAGAAAAGCTGCAATTGAGTGTGGTGC
 AGGTGGGCTGGGGCTGGGGCACCAACAGGAACGGGGACCTCTGCTTCCAGAGGACCCAGATCTGGC
 AAGCTTCGACTTTGGAGGGACAGGAAGACAGGTGGAGAGGGGACACTTCCCTCTGTACAGACGCCAC
 CGGGAGCCACAGAGGGCTTGTCAAGGAAAATAGGTTTCCCTCACTAATGAGCAGGCAAAATGGAGGGGCA
 GGGGTGGAGGGTAGTCCCCCGCCCCCAGCAGAGGGCACAGCTTCTGCAAATGAAAAAGCAGGGTT
 TTCTGTGAGAAGTTCCCTCTGCTGAGTCCCCACCCAGGCCACAAAGACAACAGGACACTGTGAGA
 GGGGCCAGAGCCCCAGATTTGGAGTGTGTTATGCAATATACATTTGAAAGCAAAGCTTCCCT
 CCCCTACTCCCTACATGTCCCCCTCACCAAAATCCCACCCACTGGAAGGGAGTGAGAAGGACGA
 CGAAGGGGACTGTCCCCCTCCCGTCCACAGGGGACTAAAGCTACAGCTTCCGCTCCGGACAGTGTGC
 CGCCCCCTGGCCCCCTGACGCTCCCCCTGCCGGGGCTGAGTGTGGGCCAGGGCTGTCTCAGGCA
 ATTATTTGTGCACTGAAGGTTTGTCCCACCCAGGCTGGTGTGGGGGAAGGGTTCATGTCTCAA
 GAAGGCCATCTCCCCCTCAGGCCACCTCAGCCGCCCTGCAAGGCAAGGAGCTGTGCTCTGTGCTGCTG
 GCCCCCTCTGCTCTTCAAGGTGGAGTGTGGGGGGAGGAGAAGAGTTTATATTGTGCTGTGATC
 CCCCGAGGAGGGCATTTGTGTCGGGCCCCAGGAGGGCTTCAAGGAGGGGATTTGAAAGAGAACAA
 AGGGTCTCTGCTGCTGGCTGAGGAGAACCCAGCTCTGGGAGACCCAGGAGATGGGCCAGCCTGCC
 CTGCTATTAAAGAAGGGAGAGCTGGGGGCCAGGGCACAGGGAGGGAGCCACGGCCCCAGGTCTGACAAGAT
 GACCTGCAGGGCCTCTCACCCAAAGAGTCGGGGTGGGGGGGAGTTGGTTGAAAAGAGAACAAATAGGAAC
 ACACCTTTATTTCCTCCAGGGGCGAACAGTCACCCCTGAACTTGAGGAGCAGGAGCCGGATTCCAGCCCC
 AGCCCCCAGGGCCCCACATCTCTCGGGCTCACCCGCGGCCAGCTGCCCTGCCAGCTGAGCTGCCAGGCC
 CAGGGCTGCCAGAGCCCCAGCCAGGGCAGCCACAGGGCTGAGTGTCTCCAGACCCAGGGCAGGGCC
 AACTGAGGGGGCAGCCCCACCCAGGGCTGAGTGTCTCCAGACCCAGGGCAGGGCCAGGGCC
 CGGCACAGAGAGCTCTCCAGCCCCAGACCTCCAGGGCTTTAGTCCCATCTCCCCCTGGGGAGGG
 TGGGGCTCAGAGGGGCTGGGTGCACTCGCAGAGCTGGGTGAGGGCTCCAGGTGCCCTCTCCTCAGGCC
 TGGCCCCGGAGGGGG

Contig 7 (2014 bp)

FIGURE 6, CONTD.

CTGGTCTTCGCACTCTCCGGGACTGTTGAAGTACGCCAGAGCGCNCGGAGCCCCGGGGCAGCGGGGGTGC
 GCCGCCGGGGGTGCTCCCGGCCCSCGGACCGAGCCAGGGACGAGCTGCCCGGGCGAGCCGGCAGCCGGGGCGCG
 CTTCGCTTAGGCTCACAGCGGGGAGCGCTGGGGACCCGAGCGCCGGGAGCAGGCCACGCCGGGCGCTCTCG
 CGGCCGACCGGGAGCCTGGGGACCCGAGCGCCGGGAGCAGGCCACGCCGGGCGCTCTCG
 GCTTCTCCCTTCCAGCCGGCCCGCGCCGGGCTCGGCACCCGGGCGCTCTCGAGTGGAGAAGCG
 TGCGCTCCCGGGGGTGGGGACCCGAGGAACCG
 CGCACCCGCTGGAGCGCCGGCGCCGGCCAGGGCTCGGTCCCCGGGGAGGGCGCCACTGCTCCCGCGCG
 CGTCCCCCGACGCCCGCGCTTCCCGGGGGATCTAACCTCTCTCGGTGCAGCCCGCAT
 CCCAGGGCTCCAGGCCCCGGAGCTTGCGCTCTCCAAATTGAGACACCAACTTTCTGGGACCTCC
 AAAGGACAGCCTGGCTCCAGGGTCCCCAGATACTTACCCATTCTCCAGATACAAGTGGTTTCCGG
 ACTAACTTCCAGAGACCTCAAAGCACATGAGCCCCACTGGCTTCCAGGTTCCACTAGTGGCCTCG
 CCACCTACTGGGATTGTCCTCCAGGCTCTCG
 GGTGTGATCCCACCCAT'ICCGCCCAAGGTCCCGCAGTGCCTAATCCCTCTAGAAAATTAACACTGACT
 CTGGTCTCCCCGTGAGGCTGCCAATGCGCTGACTCCCCAGAAGG'ATACCAAGTGTGTTCTGGCATTTGG
 CACCGTCCCCAAAACACGTGAAGCTCTTCCCGCTCCCATATAATTGGAGGCCAGGGCACCCAGCT
 TAGCGCCCTGTTGGCTCCCCAACACCGCGAAGCCCTGTCCTGGGGTTCACGAGCTTGGGACTTATC
 TGCCAAGTCCACAAACTGATTGGGCAAGCTGGGTCCTAAATTGACACAAAGAACCCAGCCCCCCCC
 CCCAACCTCAGTACAGGAAGCGATGGGGCAAGGGA
 CCCTCGAGTTGGAACGTTCTCTAACCT'TCACAAAAATTGAGGCTTCCCGCATGGCGCGTGTGCG
 CTTGCTGAATCAGAACACTCTGGCTCTGATTCTGTTCCACAAACCCGTAGAGCATGATTCTGGTCCCC
 CAAACTCACTGAGCAAAAATCTTGTGGGGCTGCAAAAGATAGGAGGCACTCTCTCCGAGCTCTCCAA
 CTCCCTGCTATAATCAAGTCCCTAAACTTAGACAGAGCTTCCAGGCCCCAGAGGCCACAGAGCCATT
 ATTGGAGCTSGTTAATGATGACAGGGACATGGGTATGCAGCTCCCCAAGTCACAAATGCCAGGGTAT
 CCTGGCTCCAGCCAAGCCAAAGCAAACCTTG
 ACAGATCCCATATCTGTTATGCAAGGCCCTTGGCTGCCCAGTAAACAAATAGTCTGAGTGTGTTCTCCAC
 CTCATAACATTCGGAATATTAAAAAATTCCCTGGGCCCCGGAGCTGACAGACAAGATCCGGGCTCTCAA
 ATTCAAGAACACTGATTCCCAAATCCAGGCCAACGCCAGACCTCTCCAAATCTGGAGCCCTCCACTGGACAC
 ACTGGACTCTAAAGTATTACGCGCTGCTCCAGGCCAAATGCAATTCAAAGTGAAGCTTGGTACAGA
 AAGGCACTGATTCTGGGCTCAAAGCAGGCAATGCAAGGGCGAGTCACCCAAACTTAGTCAGCATT
 GGCTCTCCCTCCGCACTGCAAACCTCCAACTGCG
 ACACCGGTTCTCAGGACCCACGCCCTAGACGGTCTTAATCCCTTCCCCAGACCTAGATTC
Contig 8 (371 bp)
 AGATTCAAAACTATTTCTGGCCCTCAAATTGAGGTGCTGCCAGTCTCCAAAATAACTGAGGG
 GTTTTTGTTGTTGTTTTTTGTTGTTGTTGTTTTTACCTTCCACGAAACAATCCAACTTTGG
 CCATTGATTATGGGCCCCGACTTTATGACCCCTGCCCCAAGTCCCCCTAAATGATAGGCCATTTCACGG
 GCCTCCAAAATGAAATTGCCAGATCCGCCAAAAAAATATCCCCGGGCTGGAAATCCAGGTATTACA
 GGCTGGGCTGACACCCCTCTGACTAACAGGTTCCGTAAGTTAGAGATCACTACCTAAATGAAACA
 ATCCAC
Contig 9 (2415 bp)
 CCAAAACTGGGCCCTATCTTACTAGGGTCCCTAAATGCCAGACAGGCCCGGGAAAATAGGGCGTTTT
 TCCCTGTTGCCAAAATAAAACTATTGAAACCAATTGAGAATTAAAATCTAAATGACCTGATTCTGC
 GTTCTCCAAATGACTTTACAGCCCAGGTGCCCCAGTTAGACGGTCTCTGAACTCTCAAAGCACC
 CTGAGGATTTCCTGGAGGAAGGCCACCAACTACGGAAATTACTGCTCTGGGGCCAAGCCTCCAGGCC
 ACCAACTGGATTCTAAACCGTGGAAATCAGCCTCCACTCCCTCCGCCACCCGGAGGGTCTGCTCAGACCC
 CCCAAACGTGCCGCTGTTCTCCCCCAAATT
 TTATTTAGAGAATATGCCCTCTCGGGTCTGCCAAGTTCCGCTGAGACTTCCCTGGTATCCCCAAATCC
 TCTTCCCCACAGTCCGGAGCCCCACAAGCTTACCGACCCACATGCTGGGTCCCCAACTAAACGCGATC
 CCCCCTGCCCCAGATTCACCGAGTGATTCCCTGGCTCTGAGACTGGGACTCTTTACTGGAGTCTGAAATT
 AGCCATTAAATCAAGTCTCCACTCCGACGAGGCTCCCTGGTCCCCACGTCGGGGACATGGGTTCTCTG
 CCTGCAAATCAGGCTGCTGACTTGACATTGAGGCTTGGCATTCTCCCCGGCCGGCTGGTCTCGGTT
 TCCCCCATCCGCGACGACGGGACTGGGTCTG
 GGCTCTGGGTCTCTTACAAGTCCCCGGAGCTCTCGGACTTGGGAACTGTCCTTGCGTTCCCCAAATAC
 ACTCGGGCCCGGAGTGTGTCGCCAGGACGTAAGGAGCTTCTCCCGCTCCAGGAAAACGACTGGGATTC
 CCCCCAGTTCCCCAAATTGGCATTGTCCTGGGCTTCAACGGACTGGGGCTGGGGCTGGGGGAGACTG
 GGACTGCCCCGGGGTCTCGCTCACCTCAGCGCGTCCACCGGCCGCTGCAGAGGCGCTCGCTCCGCTCTC
 GGCTCCCAAGCGCGTGGGACGAGGCCCTCCAGGCTTGGGTGAGCTCCCGTGGGCGCTCG
 CCCCCCGGCTCCAAACCCACTCGCCGCCGCTG
 CGCTGGGGCTGCCACTGGCTCCGGAGCTGCCGGGACCGGGAGCGCGGGAGGCTGCTGAGGCCA
 GCGCGTGGGCCGGGGCGGCCGCCCCCTGAAACCGCGCGGGCTTCTGTTGCTCTTGCACAAAGGTCA
 GAAAACGCTGGGGCCCCCAAGCAGGGCAGGAGGAGGGACACGCGGGAGGAGGAGC
 CGCGCTGGGGCGGCCAGCGCGGCCCTCACCGGCCGGGGAGGATCCCGGGAGGCGCGCGGGAGCG
 GCGAAGTGAATGATGCCGGAGCGAGGGGCAAGCGGATCGGGGCTTCCGGGGGGCTTCCGGGGGG
 GAGGGACTCGGGCGGGGGGGTTCTGGGGGGGG

FIGURE 6, CONTD.

CGGGGCGGGGGCTGTGCGTGGCTCCACTTGGTAAAAATCACAAAGACTTTACGTGCCCGACTCTC
 CAGGAGATGGTTTCCCAGACCCCCAATTATCGTGGTGCCTGGGCTGAACCGCGTCTACGCAAGGCC
 AACCGCCTGAGGACGGGGAACCATATTCCGATATTGGTGGGCCCCAAAGCGAGCTGCTTAGACGCC
 CCCGGTGAGCTCGGCTCTGCAGGTAGGCTTGAGCGAGGTTCCCGCCCTGCTCTCTCTTCGGGCAGGCG
 CGGCCAGGCCGCCGCCCTCCCCACGTACGGCACCTGCAGGCCGAGACGACTCCCCGGTTCCCGCG
 CACCGGGGGCGCTCGGCTCTGGCTCGCGCTCGA
 CGCGCTGCGCTGCTCGGCAAGGTGGAGGCTCACGCCGGGCCCGGCCAGGGACGACCCCTACCCCGAG
 GTCCCAGGGACTCGGGGCCCGATCCAGCGTCAGGCCACTGTGCCCGCACGCCGGAGGGCTTGTA
 SACCTACCCACCTGGCGCCCGCGTCCCCCGCGCACGAATGTAGGGATCTGACACCCGGAAACCTAAGAC
 GGGCCCCCATACACTTCTGACAGCGATTCGGGATTCTCGAACACTGACATCTGATGGCAAAGTTGA
 TGGCCTGCAATTATTTCTGATAATTACCGAAAGATGGGACCCAGAGACTATGCGCTCTGGTTAAAGGC
 GAAACCCAATTAAAGCATCTGTCACGAACAGAT
 ACAGCATACGTTTT
 Contig 10 (3753 bp)
 AGATTCCAATGGGGATCCCGATGAGGAAGCCGCTGCTCGTCGCTCGTCTTGGCCTTGGCTCGTGTG
 CTATGCTGCTTACCGCCCCAGTGAAGACTCTGTCGGCGGGAGCTGGTGGACACCCCTCACTTGTCTGCC
 GACCGCGGCTCTACTCAGTAAGTAGCTCAGCGGGGACCGGGGGGGCGGACACAGCGGTCTCCATCC
 GTGCTGCCCGGTACCTGTGCCGGCTTCGGGATGGATGGTGTGGGGGACGGGGGGGGGGGGGGCAAGG
 GAGGACCTCTCCGAGGGTCTGAGACTTCAGAGCGGGGCGCCCTGGCCCTGCCAGTGAATTGGCACCTGC
 CATGTGCTGGCTGGGCTCACACCCCTGACGTTCTGCAGCGTGACTCGAAACGGGAAACCGAAGGGACGG
 GTGGCACGGGTGGGGAGGCAGACGCTGAGCGTGCAGGGGTTCTTCGGGCGGGGGTGGCCAGGC
 AGGGCCCACAGGATGACAGCCTGTCCTCTGCTCTCCCTTGACCTGCCACAGCCAGGGCTGCAGGCACTG
 ACATTCAACCATGGTATTGTTGTCCTGACGCTTGGCAGTGGGATGGGTCATGCACTGTTGGATTGAAAG
 TGGAAATAAGATGGGTGAAAACCAATTAGAATAAAAGCGCGTGTGGCTGGGGCATCTGCGAGAGGTGACC
 TGCCCTCCCTGGGTTGGCTTGGGTTCCATGGGTGGGGGGGGCATGCCAGGGTGGCCCTGC
 TGGCCTCAGAGTGTCTTGCCTCATCTTCTCTGCCCCCGTCCCGCTCTGAGGCTGGCTGGCTGGCTGG
 CCCCGGGAGACCTCCGCTCCCGCTCGTCTGCCCAGGGAGCAGGGTGGACCCCTCCCTGGCTCTGC
 CACCTCCACAGGCTGGGCTCAGTGTCTTACCTGTAGGATGGGCAAGGGCGCTCTGGAGAGAGTCTCG
 GGACAATGGGGAGGCTGGGGAGGCCAGCTGACCCCTGAAGGTGGGAGTGTGTGCTCCCCCTGGCTCAG
 CAGCCGCGTGGGGGGGGAGGGGGTGGGGAGCAGGGCTGGGCAAGTTGTCAGGGCCGCCAGGGCTCACC
 ACCCATCTGGCATGCCAAGCTCTCTGTAAAAGCGTTGCTGCTTCTGATGCTCTGAGGCCCTGCAAATGG
 CCTGGGCTCTGAGCCCTCTCTGCTCGTTGGGGCAAGGGAGTGGCACCATAGAATCTGGCGCTGG
 CCTGGGGAGCGGCCCTCGTGCAGGCTTCCCAGAAGGAGGGCTGGCTGAGCTCCCAGCCCTTGGA
 CCTTACCCAGGACCCCTTACCAAGGGGTTCCCCCCCCCCCCGGTGGCGGGCTGGCTGGGCTGGGCTTT
 CCTTGAGCCGAGCTGGAGCTGTCGGAGGGCAGGGCAGGACGGGAAGAGAGGGAGGGCTGGTTCTGCTG
 CCTCAC'CTCTCTCCCTCTCTCTCTCCCTCCCTCCCTCCCTGATGCTGCTCCTGGGCTCCGGGCGAG
 GCTGCCAGGGCGCTGTGATCCATTGGGACCGCACTGGGCTCCCGTGGCTTGGGTGAGGTGACGTG
 CCACCTATTCCAACACGCTTGGCTGAGGGCCAAGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGG
 CCAAGAGGCCAGGGGCTGGTCCCAGGACGCCAGGGCAGGGCTCACCCCGCTGTCACCCCGCTGTC
 GGCCCCCTGTGACCCCACTCTCACTTCTGCTGAGGGCACAGGGCTGGCTGCCCCGAGGGCTGG
 CGTCTGCTGGAGGG
 CCTCCCCCTTGGCTCTGTTGAGCTTCAAGGCAGGGGGCAAGGGCGTGAAGGGGGGGGGGGGGGG
 AAGAGTGTGCTTCCGTAGCTGCACCTGGCCCTGCTGGAGACCTACTGCGCAACCCCGCCAAGTCC
 GGACGTGTGACCCCTCCGACCGTGTCTCCGGTAAGGCAGCCCTCTCTGGCAGCCCCCCCCGGGGGG
 GGCTGCTCTCTGAGCGGGGGACGGGGGGCAGGGCTCTGGCTCAAGTGTGCTGCCAGAGGGGCTTC
 CCCGCTGGGGACCCCTGGCAGAGCAGGGCAGTCTTCCCTGTCAGGGCAGGGCAGGGAGGAGG
 CAGAGGTTGTTGTTCTGGCAAGGGCTGGGGCAAGGCCCCCTGACGGGCCCCCTCCCCCTCTCAG
 ACTTCCCCAGATAACCCCGTGGCAAGTCTCCGCTATGACACCTGGAAGCAGTCCGCCAACGCC
 GGGCCTGCCGCCCTCTGCCGCCGCCGGGGTGCACGCCAGGCCAAGGGCTGGAGGGGGTCAAGAGGG
 AACCGTCACCGACCCCTGACGCCCGTCCCACCCAGGACGCCAGGGGCCACGGGGGCCCTCTCC
 CGGGCCATCGGAAGTGAACCAAATTGTCGTAATTGCGGTCGCCACATCCACCTCGTGA
 GGGACCGCTCCATCAGGTCCCCCTCTGAGATCTGTCACCTCTGTCGGGGCATCTCGGCC
 CGCGTCCCCAACCTCCCCATGTCAGGCTAGTCTCTCTGCCCCCTCCATGGGGGAGGGCATCC
 CAAACCCAATTGGCTGTATCTCCCCCAATTATGCCCAATTATCCCCAAGTTACATACCA
 TTGAACCCCTCAACCACCCCACATAACGCUCCCGTAAACGAATTGGCATTTAAACAC
 CGGAATTAGCTTTAAAAAAAAAAATAACCCAAATATCAATTAGCTGAAAAAAA : TACTAAA
 GCTTAAAAACAAATTGGCAAAATAAAAGAATTGCCCCCTTCCCTCTTCTTCTTCTGAGGTTA
 ATTGGCTGTGACCCATCATCCAGAAGAAAGGAAGGGACCAAAATTGCAAGGCTAGGCTTG
 CCATCTCCCTCTGACCCCTGACCCCTGACCCCTGACCCCTGACCCCTGACCTCTCG
 TCTAGCTCCATGACCGAGACGGGGTGGAGTTGGCTGGGAGACCCCGTGA
 CGAGAAAACCCAAACCTGCACAGGTACACATGACTGGCCCCCGCACGCC
 CAGGCCAACGCCACTCTCATCTGACAAACACACACACACACACACAC
 CGCACACACGCGCGACGCCACACACACTCATGCGTATACACACACACAC
 CGCACACACGCGCGACGCCACACACACTCATGCGTATACACACACACAC

FIGURE 6, CONTD.

CCACACACACACATGCATTACACACACACACACTCGTCATAACACACGCGCGCACACACACACACA
CACACTCTCTCTGTGGGATCCCTGAG

Contig 19 (500 bp)

TGGCTCTGGCATAGGCTGGCAGCTGCAGCTGACTGGACCCCTTGCCTG
GGAACCTCCATATGCCGTGGAAGCGGCCCTAGAAAAGGCAGAAAAAA
AAAAAAAAAAACAACCAACAAACAACAAAGGCCAACACAGAAC
ACAGACACAAGAAGAGACTGGTGTGCCAAGGTGGGTCGAGGGTGGG
AAAAATGAGGAGGAGGGGCAAACACACAAACGTCAGCCATAAAATGGT
AAAGTCCGGGACCTCCGGTAGCGCTGTGGGACTCGGTTGAGAAC
CACCGTGATGTATTCGGAGTGTAAAGAGTCCCTGTGGAGAACAA
ATGCGTATCGACGTGTGAAATGAAAGTAAACCCGACTGCTGTGAT
CACTTGCAACACATACAGACATAGAACATTATGTTTACCCCTGGAGC
TGACAGCGTTATACGTCCCCCAGCCTCAATTAAAACAGCGTGTG

Contig 20 (400 bp)

TTCATACTGTGCAATGCCAGCCTAAATGCACAGAGGAGAGCATTAACCT
CTTGCAAGAATCACTGAAATGATACCACTCATGTTTGCACATTGCACTT
GGCGTTATTTTATTGGTGCAGGAAACAGCGCCGATGTGGCACCAAACTAG
CGCCGCTGTTTTATTCGGTATCCGGCTCTCGCTGTCTTCCCC
CCCTTCCGCTTGCAGCTGGAGAAAGGGCTGAGAGGAGGAAAGTCTGCATT
CACCCATCTCCCCCTGCTCTGTGTCATCCTTCACAGAAGTGGTGGCCT
GTGGGGAAAGTCACTAAACCTAGGCAGGTGTCCCCTGGGTCATGCTTG
TTACACCTTGTGCACCTGGCCAAGTTCTGGTGGAGCGAGAACGTGGC

Contig 21 (559 bp)

AGCTAGCCCCCCCAGCCAGGGCCAGGCCCTCCTGCCACCCGCCAGCCA
GCATGTCAGAGGAGGGGCCCTCAAGGGATGAGGACCTGCTCCAGTC
GGAGACACGAAGGCCCGCCGGCTCTCCCCGAAAGTCCAGCTGCGGCTT
CGAGCAGCGCTGCCCTCGTCAATCATTTCAGCCACAGAAGTGAAGG
CGCTTCGTCGGCCAGGGCAGGGGGACACAGAATGCAATCCCACCCAGA
GCGAAGAGCCGCCGGTGGTGAAGGGGTCCTGGTGGGACCGGGCCGG
AACTTCACATGGGGTCGCTGTCCCCATCTCCCCATCGTCATTACTGCAG
GGGCTGCCACACCCGGAGCTGCCGGCCAGTGCTGGACACTGGACCT
GGCCTCGTCTATGATGTCATGGGGCGGGCCAGCACAGGGCAGTGGC
CACACCTCGGCCCTCCAGCACCAGCCAGGATGGCAGAGGGCCCCACCC
ACCACGGGCATGTACATCCCAGAGGACCAGCTGAGCAAGGTTGATANG
GGCTTCAAC

Contig 22 (450 bp)

CGTGCAGGGACCCGTGCAGGGCCTTCCTGTGGCACAGAGAACAAACAC
CATTATCTCAGCCCCACCCGCCGGCTGTTAATGGGTAACCTGGGCAA
GGGGGCCCTGCTGAGGCCGGGGTGGGAGGCCAGGCATGGCCTGTG
GCCCAACCCCAGTCCTCAGGGCCTGCTGTCTGCACGGGGGCCAG
GAAGCAGAGCACCCAGCTCTCCCCCTATTCTAGAACCCAGGGCAG
CTGGACCCAGACCCAGGCCAGGGGATACTGACAGAGGCCAGGCAG
GCCACTCCACACCCACAGAGGGCCAGCAACACCCAGTCAGTGCAGC
CCATGCCAGGGGCAGATGGGACACGAGAGCAGCCCTCATCCACAGCAG
GCAGGGGAGTGAAGTGGTCAAAACGGGGCGGTTCCACGAAAGTTAAC
Contig 23 (535 bp)

TGCCAGAGAACCTCAGAGACTGGCTCTGCCCTCCGGCTGACACGGAGGG
CTGTGGCTTCACCAACCCCCAGGCCACAGCCAGCCTGCCAAGTCCCTGAA
GTGTCCCCAGAGGTGGGCTGCCCTCACGCCAACATCAGGCCGCTGCA
GCCCTGGACGGCCCCCTGTCCCCGGAGGCCCTCGGGGCTCTCGCGTC
GCCCTGGGAAACCTCGGTAATGTGGCCAGCCGTGCAAGTGGCCGGATC
ATTGCTCAGGGGGCCAAGGCAGGGGGGTGACACATCCGAAGTACCG
CATATGCACAGGATATGGATTGGGTGGAATTAACTTTGCAAAATGT
CTCTGCCGGTACAATATTGTTCTAATCCTCTGCCCTGGCTGAGCCGGTG
AGTCTGCCGGAGCTGCCGGAGCTGGCTGCTGAACCTGCCCTGGCC
CCACCCCCAAGGGAGCCCCGGCAGTGCTGAGGGCAGGAAGCTTGGCA
CAGGCTGCAGAGGCCAGGCCAGTGGCCCTCAGTCACCT

Contig 24 (868 bp)

TATTGAAGACCCATCATGAGTTCCCAGAGCGGAGGGGTGGAAGCAGGG
CCTACAGCCCACCTCCCATCACTCCAGACCCGTCCGGGGCTGGTGTCCCC
TGCCCCCTACTCCTGCTCTGGTGGCGGACGCTGCAAGGGAGGCAGTC
GCCCTGGAGCCTGGAGGGTCCCTGAACCTCCGCTGCCACCTGGGCCCTCG
GCCTCCCTGCGCTGGGACCCGCCGGTGGTGGGAAGCAGCCCTGCTCAGTG
GGAGGAGGAGGGCTGTGGCCGCCACGGCCCTGGGGGGACGCACG

FIGURE 6, CONTD.

CAGGACGCANGGGCGTGTGACTCCGCTACACGCCAGGCAAGGGC
 GGCGCGACCGGCCCCAGGGTGGCAGCCCCAGCCTCACGCCAGGGCGCTCTCT
 GGGGCTCAGGCTGCCCGACGGGAGATGAGGGGTGAGGCCAGTCTGGG
 CTGCTGCCAGAACCTCGCCACGCTGGCAGCTGGCACAGGGAGACCTG
 TACTCCCAGAACCTGAGGCTGGACGTCGAGACCCGCGTGCCGGCCTT
 GGGTGCTGGTCAGGGTCTCTTCTGGTTGTGGCAGAACCTCCTCAG
 CGCCTCTTGCAATGGGTGCTAATCACGGAGTAAGGAGCAGAGAAATGAG
 GCACGGAGTATCCAGTGTAAACCTGGAGTATGGAGACGGGAGTACTAAT
 TGTGGAGCATGGCTCTAACCAATGGAGTATTCTCACGGAGAACGCCGG
 CGGGTGAATAACGGAGAGCGGCCGTACGGACAACGGGGACGGGTATCCG
 AAGGGGAGGATGGAGTATCGGCCGGAGGGTGGAGAATGGACACTAGAGGA
 TGTATANGGCGTCAAT

Contig 25 (500 bp)

ACCAGTTTCGATGAGCAAATCCCAGCGCGTAACATTATGGCTGCAGCCTG
 GTCAATGCCGGTGGAGTTGAACCTCCACGCGTGGCGATTGGTAGATA
 AATCGACATGGACCAGGGAGTTGATTGAACATAACGGTAATTGGCATHC
 GTTATCCUGGGCGTTCAGCAACTAACGGTGGCGTGGCGGTGGGAAGTGT
 GTCGGGGCGTGTGAAGATAAATTAAATTGCTATGGCATCCGGTTGTGA
 GAGGCCGGTATTGTTGCCTCTGGTCAGGAAAAATGTCTGGCGTGG
 ATGGAGTGTGATTGCTACCTGCAGCTTCTGGCAAGAAGAATACGACAC
 GCTTTGGCGAAGTAGTACGGCAGACGGTATTGTCG
 AAGGCCGCTGGCAGTTGATGATAAGCTCAATACGTIGCATCATTA
 GGTGCTGGGACGTTTGTACCGCGCAAGCGTGTACGGCGGGTTAACG
 Contig 26 (900 bp)

ATGTTTGATGTCGCCGTGCTGTAAAAATTACGCTGCTCGCCTTCTT
 GGCTTCGTCACCACCGAAAACCGACAAAATTCCGTACACCTTTT
 CTTTCAGCGGAAGCCAATGTCGTAATCTCAGTAAGACTCTGCACGTCG
 AAAGCAATACCGTACCGTCAGCTAACAGTGCAGTCACGGCGCGCG
 GAAACAGGTCGGCAGCGCTGGCAGGGACTTGTCCGGCGAGGGCTTCAC
 GCACCGGAAACATTTGCCATGCAAGCTCTGAAACATCAATGTAAGTC
 ATGCTGGTGAAGTGCCTCATTGGCTTGCAACGGGATACACGGGACTCG
 AATCAGATCTTACGCTCGACCAAGATAGTTGAACAGACGCAATTCCATCG
 GTGAAATCACATCTCGCGTCATGCGAATAAAACCGAGCAAAAGCGAAA
 TTGGCGTACGCTCAATTGGGTGATGGCTCCAGCAGCTGTTACGGCGGGTTAACG
 GTCGGCTTGCTGGGGCCAGGACGCGCAGACTACCTTATGCACAT
 TCGGGAAGCGAGCGCACACTTCGTCACACATCACGCTGAGTATCGGGGTCG
 TTGGGGTAGGTGCCAACAAAGATATGATAGTTCTGCTAGTCGAGCGTGGT
 CGCCGCCAGCTGGCATATTGCCATGACGGCCCGTATTCACTTCACGCG
 GAACCATATCGTAACCGTTTCATCTGGTTATACAGTTGCGGTAA
 CTCATTGCGGGTAGCGCGATAAACACTCAACTTGCCTTAATGCGCG
 TACCCAGTATACGACATCTATAAAATCTGCTCAGCCCGTGTGAAACA
 TGATGACCGCTAACGTTATCGCGATTACTTTAAGCCGTATAGCCAGGTA

Contig 27 (500 bp)

AGCTGGATGCCCGCAGCTGTTGGCTCTCCCTCCCTCAGGGCAGGTTCT
 GTCCCTCTGCAAGCCACCGTCACTGCTGTGGACAGGTCTGCACACCCGCC
 GTCCACCAAGAGCGTGCAGGCTCCCTGGCACGGGCGCGCTGACGCA
 CCATGTTCAAGGCAAGAGCACTGGACAGAGGGTCCAGACGTCCTGG
 TCCCTGCTCAAGGCAAGAGCACTGGACAGAGGGGAGAGGCCCTGGCA
 TCAGAGCCTCTGTTGGCTGGAGCTGGGCCCTGGCCCTCCCCACCTCCGT
 CCTGCTCTCGCCGCGCTGCACGGACCTCTCCCGGCCCCCAGGCTCATT
 ACTCTTAAGGACCTAGCCCCCTATGCTGAAATGCTGTACCTCGTGTGTT
 TTTTCATCTGTTATTACCTTATCTTACCTGCTGTTATAGGACACTGT
 TATTCTTATTGATTATATATCTTGTGTTATAGGACACTGT

Contig 28 (450 bp)

AGTGCAGGGCGGGCGTCTGACGCTCAACACCGTATTCCACGCCAGCG
 GGATTCAACCTGGTCACCGACGCCATGTAGACATGTTGGGGTTACGC
 GCAGAGAACGCGACCTGCTCAACCGCTGGTGAGTCGGGCCGCTTCGCC
 AGACCGATGGAGTCGTTGGTGTAAACCATCACCTGACGCTGTTCATCAG
 CGCAGCCATACGTCAGCGTTACGTGCGTATTCACGAACATCAGGAAGG
 TGGAGGTGTACGGCAGGAAGCCACCGTGCAGGGAGATACCGTTAGCAATC
 CGGTCATACCGAACTCGCGAACACCGTAGTGGATGTAGTTACCCGCAGC
 ATCTCGTTGATTGTTAGAACCAAGACCACAGGGTCAGGTTAGACGGCG
 CGGGTCAGCAGAACCGCCGAGGAATTCCGGAACAGCCGACGAACGCT

Contig 29 (450 bp)

FIGURE 6, CONTD.

TCAGGGCAATCTGCTGGTCTCAATGGGACAATTGGTTCTTAGGCT
 TCTGTCCAATGGTCCGAATGGCCCACCCCCGGCGCCGGCCAAGGGTCC
 TCTGTGCCCTGGGTGGCTGGCACGGACGGCCCCAAGGTCTGCCCCAGCC
 CCGTCACCGGGGCCAGAAGCTCAGGGCTCTAGCTGCTAGTCGGGCTG
 CTGTGCAAGGGGGCTGCGCTGGGGCAGAGGCAGGGCTGAGGTAAACCTC
 CCAGCCGCCGGGCTCTGCCAGGCCCTAGGCAGGGAGACGGCTGGCTG
 GGTGGTACCGCCAGACCCGAGGGCTCGGGCCGGTACAGCTCTGAGACCC
 TCGCACAGCTCGAGCTCTTGCTCATCAGGGCTCATCCCTGGACC
 TCTCCTACTGCCCCACCTCACCCGCCCTGGACCCATGAAGCCCCGGGA
 Contig 30 (600 bp)
 TAAAATAGCTCTAGATAAACATTATTAAAAAATAAAAACCTGACT
 ACGTCGGGAGTTCCCGTTGCGCTCAGTGGTTGACGAATCCGATGAGGA
 CCATGAGGTGCGAGTTCGATCCCTGGCCTCGCTCCGGTTGAGGATC
 CGGCCTGCCGCTGGCTGTGGTGTAGGTTGAGATGAGGCTGGATCCTG
 CGTGGCTGTGGCTGGGTGTAGGCCGGCTACAGCTGTGAGACCC
 CTAGCCTGGGAACTCCACATGCCCTGGGAGTGGCCCTAGAAAAGGGCA
 AAAGACAAAAAAACAAAAGAAAAGGAAATAAATAAAAAGACTATGT
 AAATGAAATTAACGACTGCCCTAGGGTGGGATTACAGCATGGGAAGTACA
 GCATGGCGTGTACAGTGAAGGGTGAAGGGAAAATGAAATAGTTAG
 GTGAGTTCTCCTGCTATTGCTATGTGGCTGCTATCGCTGAAGACGG
 ACTGCAGTGAAGATAATATGTACAGTAAGCATCCGAAACCCAGAAC
 GGAAACCGAATGACTCCAAGTAAGAACCCAAAAGAGAAAAGGAATAAT
 Contig 31 (450 bp)
 SCGCAGGGCGTCCGCTGGGTATTAACGTGGTACCGGTTGGCGGGC
 CGGGTCCGTAACGACTGACAGTAACCCGCTGGTGCACAAACTGTCGTT
 TACCGGTTCCGACGAAATTGGCCGCAAGTAAATGGAACAGTGCACGAAAG
 ACATCAAGAAAGTGTGCTGGAGCTGGCCGTAACGCCGTTATCGTC
 TTGACCGATGCCGACCTGCAACAAAGCCGTGAAGGCCGCTGGCTCGAA
 ATTCCGAAACGCCGGCAAACCTGCGTCTGGCAACCCGCTGTATGTGC
 AGGACGGCGTGTATGACCGTTTGCGAAAATTGAGCAGGCAATGAGC
 AAAC TGACATCGGCACGGCCTGGATAACGCCGTACCCATGGCCGCT
 GATCGATGAAAATCGGTATCAAAGTGGAAAGGCATATTGCCGATGCGC
 Contig 32 (450 bp)
 GGTGGATGCTGGCGATAGCGTCATCCTCGTTATGCCGTGAGGGCAA
 GGATAAAAGCCGCGATAAACATGACCCGCATCAGCCCCATGCCGAGA
 GTACGGATTACCTTCCGGTCAGCGCCAGCGTGTAAATGCGTGCAGCGT
 GATACCGCCGCTAAAGCGATGGTGGCGTACGTTGGTGGCGCGCG
 GCGATTTTACCGCGTTTCCACCGCTTGGAAACCGGTGTAACCACAG
 CGTTTCTGGCAATGCCCGCACCTCTGATTATAATCTGGACA
 GCTCCAGATACGGCTCGTAAGCCAGCACCTGGAAGCAGGTGTGCGACAGT
 TTTTCACTGCCCTCCACCGCGGCCACCACTTCGGATGCAAGTGCC
 GGTATTGAGCACCGTAATCCGCCCGCAAATCAAGATACTCACGGCCT
 Contig 33 (500 bp)
 ACGTGAGGTTGGGGAGGAAAGCGGGGACGAGCAGCCGAGAGGAGTG
 GGGGCTGGCTGTGGCTGATCAAACCTGAGAAGGTTAAGAGGCCCCATT
 TTGCTTCTCTTTTATTATGAAAATTCCAATGGATGCAAAGTC
 CCAAACCTAACGACATCTTCTGGTACCGAGAACGGTCAAGGCACTTAT
 GATGCACCGAGCCCCAGGGAAAACCCCTGCCGCTGGAGGCCACGGTC
 CAGCAGGGCACAGGCCAGCCGAAGGGCACGGCTGAGTCAGTGA
 ATGGCGTCCCTCTGGTCAAGCACGGGACTCTGGACCCAGGGAGCCT
 CTGAGGAGCCCCCTTACAGCGTAAAAACTGTTAACAGGGCATGTTCG
 CACCCCCACACACCTGGTTAGAAGCAGACCCAGGCATCGTAATATG
 TCATCCGTGAGTCCCTGTGCCCCAACAGAAAGCCATCGTCACGTT
 Contig 34 (400 bp)
 CGGCATCGATGTACATGGTACGCAAGGCACCTGTAAGGCCCCGAGCCT
 AGGCCTTGTCAATTGTCAGTGTGCTCGGGGGATCAGCAGCCAGGCTTG
 TGACCCCGGCCACTTGTACAGATAAGGACACAGAGGGCCACAGCACTGG
 TGTGAGGGCCCACAGCCAGCAGCCAGGGCAGGGAGGACTGGGCTCACC
 TGCCCTCAGCTGGGCCAGCCTCCCTGGAGTCCGGAGTCCTCCAGCTT
 AGGAGTGTCCCTGGAACCCCTTCTCTCCCCCTCCCGCCCTCACCGGAC
 CCCCTGCCCTCCCCCACCACCCCTCCCCCTCCCTTACCTGAG
 CTCCCCCTGAGGACCTACTGTTCTGCTTATCCTCCCCTTGAGCCA
 Contig 35 (500 bp)
 TGGCGGTGAACTATGTCGTGCGTGAAGAGCATTGTTGGTAGCGCGT

FIGURE 6, CONTD.

TATATGCGGGAGTTAGCGAAGTGGACAGCCTGGGTTATCCGTAGC
 GAAATCCGCTTCACGGTAAAACGCTGCTAGCGCTGGGAAAAAGCGCA
 GACATTGCCGAAGATGCCAACCGCAGGGATGCTTAACCTGATGGACA
 TGCCGGGTTA'CGTAAAGCGTTAACCGGATTAAGCTGCTGATTAACG
 GTGAGCGAAACCGATAAGATCAGGCCAATTGCTGGCATCGCTGGCA
 AATCAACCAACTGCTGAACGGCACTGAAACTGAAACCGCAGAACATT
 TGCCGGAGCTGATTTCCGAGCTGGCTGGTGAGCTGATGGCGGAAGCATT
 ACACAAATTATTCAGGAATATCCGAACTAAATCTCCGAGCCGACT
 GGGCGCCTCAGGCCACATCCGGCTCGCAAACATACAAATCCAACACC
 Contig 36 (500 bp)
 GATTTCACAAGGCTGACCCACGGGAAATGCGCTAACAGCGTAAAGTCGT
 CGGGCAGAATTTCGCTCTTCGCTTGCCTCAATTCAAAAGTCAGC
 GCTACGCCATCAGCATCTCATGATGATTCAGCGTCCACGGCAGGTT
 CGGGCAAAACCGTGCAGGCCAGACCTTGTGCCCCGGGACCAAACC
 ACGGCCAGCAACCCGGTACGCCACCGCAATAGCGACGCCATTTCGAAAC
 GGTGTGTTGCTCAACCACAGAACTTCTTCACCCGAGGTTCCA
 CGAGAGAAGGTGTGCGCCCTGAAATGCAAAGAGGCTTTACCTGGGAT
 GATCGACCACAATGAGGTCCAGTTCATCCAGTTACGACGGGAGAGGACA
 GGGGAGATTGTCGATGACCGGAAGGGCAAAATTTCTTAATCATGAC
 GCAGCTCTTAACCTCATTTATCAGGTAAGGGAGAGCGACCGAAGTC
 Contig 37 (300 bp)
 ACCTGATCAGGCTCTGCACTGTGTTCATCAGCGGAGCCGAGATATTGAC
 CGCCCCATGCATAACGGAAAGGCGTGGGAAACCCCCGGCGCTTCTT
 TATCAAGATGACGTTGAAATATTCCGGCAGGTGCAAGTTGTTATTCCAG
 AAAGCGTTGAGCGCTATGAAATAATTCTGTGGGATTGAAAGCATCCT
 TTCCCTCTTCGGTGAATGCCGAAACGGCTATTCCAGCCGTTCA
 GGGTACGCCGATAATTGCAATTAAACCATTTATTGGTACTTTT
 Contig 38 (450 bp)
 ATCC'IT'TGGGGTCTGGCAATTACGCAATAAGAAGGCCCCATGCGATT
 AAAGTCACCGGCCACTGTGCTTAATCATGGAGAATTGTCATCAGTG
 GGGTCTCGATGGCAGGGATTGCTCTGCCTCTGGGGATCTTAGCG
 AAAACATTGCCAGTGGTCAATTAGTGCAGTGCTACCGGAATATTACAG
 CCAGCGAACGTCGGCTTATGTTCAAGGCTGGCAGTCAGCGAA
 AGTGCAGATAACGGTAGACTTTACGCCAGTATTGCGAGCACTACC
 GGAATGTTCACTGTTGCACTGCCTGATTATGATTCAATTATGGGTTGA
 TATCAGTTAAACCTGATTTCCTCTAGCCCTACAGATTGGT
 AGCATATTACCTTAAACGCGCATGATCAAAGATAATTGAAGAGGTTA
 Contig 39 (450 bp)
 AATGTAACGGCAAGGCCAAATGGCGAACGGCTGGGAAACGTTACATGCTC
 TGCTGGCGATATTAAATAGTCAGGGTCAGGTGAGATGGCAGTCAGGC
 GGCATCTATGATAAGCTATGCGCCCTCGGTTGATCATCGAAAACGG
 TCAGCAGAACGGTGGCCTAAATCTCGCTCAGGTGAAGGGATTCTTTA
 TCCGTCCTGGCGCGTGTATTGTCGCGGAGATAAAAGTCGGCATCGTT
 CGTCTGGATGCCTCAGGAGATTCAAGTTGCGGTGCAAGTC
 AGGGCCAATGTTGATGGAAACGGTGAATTAAATCCCGTATTATCCC
 ACGTGCCCTCAAGCAAAATTCTGAAACGGTGGTGGGATTAATAAACATGG
 GAACGCCGTTTTGAGCCAGCAGGCAACAAATTATGATTGTT
 Contig 40 (400 bp)
 GACATTAATCATTCAAAATCAAAGCCCCGTTTCCATGCCGTTGG
 TGGCGTGGCACTGAACGCAATCGTTACGAGTGTAAATAGTAAATGCGCATG
 ATTGCTATTCCGTTAAATGAAGATAACGGCGCGATGATACGCGTGGG
 TTGTCCTCTGTTGATACAGAGATACTAGATGAGTTGAAAAAGATTCA
 ACCACACAATATAGCCCAGTAGGGGTCGAAATTACCTGGATATGAGC
 GTGACGGGGTAGGGGATTGATTGATTCACCAAGGCAAAAGAAACCCCG
 AAGACAGGCTCGGGTCAAAGACGCGTATTATTATCATTTTGCACTA
 CGATTGCGCATGCTAACAGTGCAGGCAACAAATTATCTACCGCAGCTG
 Contig 41 (500 bp)
 GCAAAATCACGTCCCGCACCTGGCGTTCTGGCTGGGCAATTGGCAAAG
 GAGCTGGATTGCGGTGCGCTGCAAAAGTGCCTGAAATAATGCCATTGCTCTG
 TACCGGGAAAGAAACCTTCCGGAATGAACACCCACAGCAGCACGCTAAGCA
 GCAGCGTGTGAGTGCACGCTTAAGGTCAAGCCACGGATGATCAGCACT
 TTCGCCAGTCCACGACCATAGCGGGGATATTCTGTCGAACATTTC
 CGAGGCACGGGAGAAGCGGTTCTGTTACGCAACGACTCCTGGCTGAGCA
 TCCGCGCACATCATCGGTGTCAGGGTCAGCGACACCACCGCTGAGATC

FIGURE 6, CONTD.

AAAATCGCTACCGCCAGGGTAATACCAATTCCGGGAAACAGTCGCCCGAC
 GATATCGCCCATAAACAGCAGTGGGATCAACACCCGAATCAGTGAGAAGG
 TCAGCGAGATAATGGTAAAGCCGATTCACCTGGCCCTTGAGGCCGCC
 Contig 42 (400 bp)
 AGCTATCTACGGCAAAGGCACGGTAGTCATTTGTTCTTAAATACATC
 AAGCGTTGGCGCCGAAATACCATCTGCAGATGCCATTTCATTCTGTAG
 CGCACTGCATAACGGCTACCGGATGCAGTACGTCAAACCGAACTGGGGC
 CGGAAGGAGTTAGCTTTCTGAATACACC GGCGGACCCACTGGTGTGGC
 GAAAGGCAGCGATGCTGACTCACCGCAATATGCTGGCGAACCTGGAACAGG
 TTAACCGCGACCTATGGTCCGTTGCATCCGGGAAAGAGCTGGTGTGCTG
 ACGGCGCTGCCGCTGTATCACATTGGCCCTGACCATTAAC TGCTGCT
 GTTTATCGAACTGGTGGGAGAACCTGCTTATCAGTAACCCGCCGATA
 Contig 43 (450 bp)
 GATTAGCGCCAGATGCTGCCATCGAAAAGTTGAATCAACCCCCAGCTGCG
 GGTAAATAAGTGCCTGACTCACCGAACAAATTCACTATCCAGGGCTATGCCCGA
 AAGGCACGGACGCCCTCACACAAAGAACGCCAGCGATCCCTCGTGGTAAT
 CATTGGTAATTCAAATTGTTCTCTTCTCTTCTCTCTCTCTCTCTCTCTCT
 CGGATTAACCGCGCTCTGACGACTCACTAACGCTCAGGCTTTATTGTCC
 ACTTTGCCGCGCTCTGTCAGTAATTCTCGTGCAGGCTTATTGTCC
 GTTAGATTTCGGTAACTCATCACGAAACTCCACCAGCTCGTACTTTGT
 ATCCCGTGAGCTGACGGCGCCAAAAGTCACCACTGACTCTCGTAAAGC
 GATGGATCTTTTCACTACGAAGATTTCACCGCTTACCACTGGAGCC
 Contig 44 (750 bp)
 GAGCAGCCCGCGTGTGACAGGCATGCCGCCGCGTCCGCTCTCTCTCTCT
 GGTGCACTGAGTCACAGGAAGGGCGCTGGGCGCGTGGCGCGTGGAGCGGT
 CCTGGAGGGCTGGGAGGGAGGATGCCCTCAAGCTGGCTCCCGTGGGGC
 TGGCCCGGAGTAGCCTCCGTGAGGGCACCGTGTCTGCTCCAGAGGCCCGC
 TCCCCGGCTGCCCTGCCCTCCCTGCCCTGCCCTGCCCTGCCCTGCCCTGCC
 TGGATGGGAGTGGGAGGGCGCCCTGGGAGACGGGACAGGGAGGGGGCC
 AGAGCTCTGAGGCCACCCAGACCTGGCCAGGACCCCTGCTGGGAAGAAGAG
 GTGGGCCCAAAGGCACCTAGAGAGAGGGAGGCTCTGCTGGCTGGGGGGC
 CTTCCAGGGGGCTTCCAGGCAGGGCCAGTGTCTGGGGCTGGAGGGGA
 GTCCCTGGCTGCTGGGGGGCGCAGGAGCACCTGGGGCTTGGGAAGAG
 AGCGGGAGGAGACTGGAGCCAAGTGGGGGACAGAGGGAGGGTCAACCC
 CAGCGGTGGTGTGGGGGTGCTGGTGGTGGAGGGCCCTGAGAGGCTGTGCT
 GGGGGCCAGAGCGGGTCTGGAGGGGAGAAGGGGTCCCCAGGGCTCATG
 GGGCCCTCCAGCAGTGGCAGTTGGGTGGGTGGCTGCTCTAGGGCTGT
 ACCACGGTGGGTGCCCTGGAGAAAGAGGTCTTACCCCTAGTCTTGTGCA
 Contig 45 (300 bp)
 TGGGGACCCCCTCCAGGCCACTGAGTGACGCCGCCCTGTGGTCCCA
 CCGCCAAACCTGCTCACACCAAGAGGGCTGTGGCCACACCTTGTCACA
 GCCTGTCCTGAGACCACGAGCCCCCGGGCTCAGCCCCCTCTCACCCCT
 GGACCGAGGAGAACCCCCCACCTGGGCTCAGCTTGTGAGCTAAACTCC
 AGGAAGGTTCTGGTCCCTGGGTCTTAGAGCATGGTGGGGAGGGGATG
 CTGGTGGGGGCGCAAGCCCTCCCCACATTGCACTCGACCCGGTGGNG
 Contig 46 (300 bp)
 CCGGCTAGAAGCCACGAGAGGCCAGGCCAGGCCAGCTCTCCCTGC
 AGGGATTGGCAGCCCTGGGGCACAGGGCTGAGCACCTTGGGTTC
 CGGTGTGACTCCAGCCAGGGTCCCTACTGTGTAGGCACCCAGGGCAGAGTC
 AGCCCTGCCACCATGGCACAGCTGCTCCGCTGAGCCGGGGCCCCCGC
 CCAGGTGGGCCCTCAGTGCAGTGTCCCAAGCCAGCTGCTCTCCCCAC
 CTCCACCTCTCCATCCAGGTCTGCCACGGCCCTTGCTCAGGGCCAG
 Contig 47 (500 bp)
 TTGACTGGCACTAGCACGAGCTCTGTACCCGGGATCTGGCTCGGGAGA
 AGGGAGACCCCCCAGCCCGAGGGCGCTGTACACCCATGACTCT
 CAGCCTCCCCACCCGACGGACAAGACTGACCCCTCTCCAAGCCCCACT
 CACCCAGGACCGCACACCCCGTAGCTCTGGAGTGGGGGGGGCTCAGGG
 GCCCCGAGTCCAAGGGAGTCTGCTGGCCCTGGGGGGAGGGGAAGCAGC
 AGGGTGGTACGGGTCTCCCTGGTGGCAGGGACCAAGCTCAGCCCCCT
 GCCTCCCAAGGGGAGCCGGACACCAACCTGGGGGACCCACGTAC
 TCAGCTGCTGCAGGTGGCCACTCATCCAGCCCTACCCCTTCC
 GTGCTCCCATGGACAGCTGCCACTCATCCAGCCCTACCCCTGGCCCTCC
 GGGTCCAGTGTCCGGCCGGCCACCCGCCCTGCCAGCCCTGGCCCTCC
 Contig 48 (500 bp)

FIGURE 6, CONTD.

GGGGTTGCCGCAGGCTGCTGTAGCTCGCAGACCCAGCTGGATCTGGC
 GTGGCTGGCTGTGGCTGTGGCATAGTCAGCCACTGCAGTC
 CGATTGACCCCCAGCCGCAACTCCACATGGCACAGTGAGCAGGG
 AAAATAATAAATGAAATAAAAATAGGTGAAGACAGTGGATTTCATCTCT
 TGGGTTGCGGTAGCTACACAATAGGGAGTTTACCTGTT
 TCAAGTGGCACTGAGTCAGCTACAGTCAGGCCCACAGATGCCGTC
 TGCCCTGGGAGATTGTCCTCTCACCAACTGCCCTCTGCCCCACTAA
 TACTCACTGCCCTCCCCCTCCCAAGGGCCCTGCCCAACCTCTGCTTCC
 TGCTCTGAACCTGCTGGCACCGCAGCACCCTGTGGTACACTCTTC
 GCCCCCATTTGTCACACCCACCTGCCCTCTCCCCGGATGGCAGAN
 Contig 49 (600 bp)
 GGGATATTGGGGCATATTGGGGGGAGATCCCCACAAGGCATTGGG
 GTTGTGGTTTGAATGCCCGGGGGATGGAGGGGGGGGGGGAGAA
 TCTAAGCCTACTTGGGGAGGCTGGGGGGGGGGGGGGGGGGGG
 GCCCCAAGACAGAACAGGTGTACAAAATTCTCAAAGGGTACCCCTTAAT
 GAAACGGGTCGGCTTGGAAAGAGGTACCCAGGGGGATTGGTGGCACCG
 CAGAATTACGACATTGGCTCTTCCAATGGCCGGACGCCCTGGGAT
 AGGGCCCGGGTGGACGGGGGTCTGGGCTGGACGGGGGTGG
 CGGTACGCTGGCTCTGACCGCCCTCAGCTCTGGCAGCGTGC
 AGCCGGGGGGCGCAGGAGGGCCGCAGGCCCTGCGCAGCGTTGG
 GCGGACTGCTTCAGGTGTCATAGCGGAAGAACTTGCCCACGGGTATCT
 GGGGAAGTTGTCCTGAGAGGGGAAGGGCCCTGCAGGGGGGGCTGGCCC
 CCCAGCCCTGTCAGAACAAACCTTGCGGGGCTCTGCCCTGCC
 Contig 50 (179 bp)
 ATCTCATATTGCAAGAACACTCTCTGCCCTTCTATCTGGGAA
 AAGGACGATGTCACTTATGCAATAAGCCCACCTGCTGGCCGGGCTTGA
 CATTATTCCCTCTGCTGGCTGACCGTATTGAAACTGAGTTAATGG
 GCAAAATTGATGAAGGTAAACTGCCACC
 Contig 51 (500 bp)
 CTCGGGCTGCTTCAAGGGGGCTTGGGAGCCATAGAATGCTTGGAGCA
 AGAGAGTGCTATGGTCAGACGACTTGGGGAGGTCTGGAGAAGAGGG
 GTGACTGCCACTGTGATAAGAGTGGGGCTTCTGAGATAACACGGT
 GGGCAGCCGAGGTGGACCTGTGAGGTGGAGAAGGCCCTGCCGGGCC
 AGTACGTGGCTCTGGCTGCCGGACACGAGAACGCCACCTCACGGCTG
 CCTCCAGGGGCCCTTCCTCTTACACCGCCGGGCATGCCAGGTGC
 AGGTGCCATCAGAGGGTGCTCAAGAGAACGCTCTGGGTGGGTG
 GGTCCCCGAAGGCCCTGTGTCAGGGGCCACCTGAGGAAGCGTGGCG
 CAGAGACTGCTCTCGGTGTCAGAGAGGGTCCCGTCCCACGGCAAGCA
 CGCCCAAGGGGGAGGTGGTCAAGGGTCTGGGAGGGAGATGGCCCG
 Contig 52 (900 bp)
 TGTGTTGCACCTGTCGCTGACTCTAGAGGATCAATACTCCCTA
 CATAATTAGGAGAACAAATGGAATTAAAAAATTGATGGGACATATT
 CTATTATCCCCGATTACAGACAAGCCTGGAAATGGAACATAAGTTATCG
 GATATTCTACTGTTGACTATTGCGCTTATTCTGAGAACAGGCTG
 GGAAGATATAGAGGATTGGGAAACACATCCCGATTGGTGAAGCAAT
 ATGGTATTGAAATGTTGCTTACGACACCATGCCAGAGTT
 GTATCCGTATCAGCTCTGCAAAATTACGAGTGTTTAACTGGAT
 CGGTACTGCCATCTTCAGATGATAAGACGTATTGCAATTGATGGAA
 AACGCTCCGGCTTCTTATGATAAGAGTCGGCAGGGAGCGATT
 GTCATAGTGCCTCTCAACATGCACTGAGCTGGTACGGACAGATCAA
 GACGGATGAAATCTAATGAGATTACAGTATCCCAGAACATTCTAAACA
 TGCTGGATATTAAGGAAATCAGTACACTGATGCGATGGGTTGCCAG
 AAAGATATTGCAAGAGAACGAGATACAAAAACAGGGAGGTGATT
 TGTAAGGAAACAGGGCGCTAAATAAGCTTGAGGAAATTTC
 CGCTGAAAGAACATTAAATAATCAGCGCATGACAGTTACGCAATGAGTGA
 AAGAGTCACGGCAGAGAACGAAATCCGCTTCAATTGTTGCGATG
 TGATGAACATTGTTGACGTTGAATAGAAAGGGCTGAAGAAATT
 GCGTGGCAGTCTCTTCCGTCATAATGCAAGAACAAAAGAACAGCTC
 Contig 53 (450 bp)
 CCAGCCACCAAGCTGGACCCCTCCGGAGAGGGGCTGCCCTCTTCCGC
 CCAGACGCCCAAGCAACTGTGGCAAGAGGGAGTGATACCGAACAG
 GCCACATGGGGGCCAGCCACAGGGAACCCAGGAAGCGCTGGACCG
 TCAGGAGTCAGGGCTGTGCAACCATGTGGCTGGGACTTCCACAG
 CCTGGTGGAGATGCCGGCACACCGCTGCCCTGGGGAACGTGCACAG

FIGURE 6, CONTD.

GGTGGTACATGTGGCCGGAGCCCAGGGCACAGGGTGAGGGGAGAAGGGAG
 CATGGGGTGCAGACTCGGAGCCCGCGCGTGGGTGCTGGGTCTCAGGA
 CACGCTCTGGGAGTGGAGGACCCCCATCACGCCCTACCCAGTGTG
 CGCGCTGCTCCCCCGGAAACCCCTCACAGACAGCAGGGCACACCCAGCCCC
Contig 54 (1133 bp)

ATGGCGCTCATAGAATTGACCTCGGTACCTGGGATCTTTGACCCCT
 ACCTCACGCCATCTAACACATTACCTCGAATGAATGAGAGACACCAA
 AGCAAATTCTAGAAGAGAAAAAGGTAACCTGGACTTTAAAAATGTAA
 ACTTCTGCTCTTAAAAGGCACTGCTAATGAAGTCAAATACAACCACA
 GACCATAAGAAAATCTTCAAATCTTGTCTGACAAAGACTAGTGTCA
 GAACATACGACGATCAGGGAGAGGAAACAGCAATCTATAAAACTGGA
 CAAAGAATTGGGGGAAAAAAACCACTTGGCAAGAAGTTGGTAAATA
 AGGCCATGAAAACATGCTCACATCATGAGTCATTAGAAAATGCAAATT
 AAAATTATAATGAGATACTACACAGCTATTGAATGGATAAAAATG
 TTTTAAAATGATAACCCAGGTTGGCAAGAACATGAGAAACGAGAT
 TTTCACACGATTGGTGGAAAAACAGAAAATGGTCCACCCACTTGGAAA
 AGAGCTGGGCACTTCCCTCAAAGTTAACATACATCCAGGACCTCACAC
 AGGCTTCCACCACAGGTGTTTATCCAGAGACATGAAAGCGCTCATCCA
 CACAAAGACTCGAAATGAAGGTTATAGCACCGTTGTGGCCCGAAGT
 AGAAAACCCAAATGACCTTAAACCAGAGAATATCTAAACAAAATATCCAT
 TCACATTAATCACCCATAAGAAGGACGGGCTATGGGACGGGAAACCGTA
 TTGAAGAGGGTCAAATACATACGCACTCAAAGAAGCCTGCCAAAGG
 ACACACACTGCAGGGTCCATGGACTGAAACTCGAGAAGGCTGAAAACCTCG
 CCAGCAGTGAACAGAGCAGGGAGATCAACCTGATGTGGAGGAAAGT
 GAAACCTCGTGCCTTGTGGCAGGACTATAACTGGAGCAGCCCCCTACGG
 ACAACAGTAGCCCCGGGCTCCTCTCCATCTCCCTGGGGAGCCTGAGCC
 TTGAGACGCTGGGCAAGTGCACGGCATGCTGCCTCACGTGGGGCCCCGG
 TGAAAACACGTGGCAGCTGGGAAAGAACATCGTA

Contig 55 (735 bp)

TACTGCCTGTCTATGGACTTGACTCCTCGGGACTTCATGGAGGG
 TCTTACAGAATTGTCCTTTGCATCTGGCTTGTTCACTGAGCATCGTG
 TCCCCAAGGCTCCATCCATGGTCAGCCTGTCAGGATTCTCTCTCTT
 CAAGGCTGAATAGTACTCCACTTGCGGGATGGACCACGTTTGATTATCC
 ATACTAGTAAATCATACTAAACTTGTCACTGAAGCCCACAGCTTAT
 GCTACCTCCGTGGCTCCTCCCTGCCCTGTCTCACGCCCTCTGCTATA
 GCCCCATCCCCCTCATCCAGGCCACGCCCTCTGCTCCCTGGACACTGTC
 CCAGAAGCCAACTGCCCTCTGACTGCTCTCGCGTACGGAGGACAAG
 GCAGGCTCAGGGTCCACGGCTGGGCCCCAGGGCTCCCATGGCTGGT
 GCCCCCTCTGATTCAGAAGTACAGTGGCAGCACCAGCTTCCAGCTGC
 CCCACCTCTGTCGCGAGGCTGCTGGGGGGCAGGTGGCAGTGATG
 TCACCTGCTGTAACACCCCTACCGTGCCTCATCCCTGTCCAGGAGGTAC
 GGTGACCTTGGCAACATTCTGAACAACACACACCTCCCTGCTTAGAG
 GCCGGGGCCTCCCCGGGTACTGGGGCACAGGCTGACCCCAGCCTGTC
 TCTGTTCTGAAGGACATGATAAGTACTGCAACA

Contig 56 (500 bp)

AGGAAGAACAGGAAACAAACGGGGTTGAGGAGAAGAACGGGTGTCCTGGCA
 GGGCCACGTGCCAACGGTCCACCGGGTCTGCCGCGCTGCCCTGGCGC
 CAGAGGGGGCAGCTCCGCCCTCGGGCCGCGCCCTGCCGCTGTGCTGGC
 TCGCGGCTGGCTCTGCTGGCTGGTTACAGCTGGGTGAGCCGCAAGGC
 TGTGGTGGGTGCCCGGGTCAGCCAGCCCCCCCCACCCGGCCCGTCTC
 GCCGGGCTGGCCCCGGCAGCCCTCTGCACTGAGGAGTCGCCCTGACGG
 CCTGATTGGTCCACAGCCTCAGATGCAAACCAAGCCCCACGTGCTGGAGC
 CAGCCAGCCCCGGACCCCTGGTGGAGGCAAGGAGCAGCAGCTGGAGA
 GCCCGCCGGATGATGCTGCCGGAAACCGGGCTCCGCCGGGGGCC
 TGGCTCTGGCAGGCTTGGCTTGAATGCTGACGTGAGCGGTGGCCCTATA
Contig 57 (500 bp)

TGGCGTTGCAGTGGCTCTGGGGAGGCCGGCTACAGCTCCGATTGGA
 CCCCTAGGCTGGGAACCTCCATAAGCTGCGGTGCAAGCCCTAAAAGCAA
 AAAACCCCAACATATATATATATATATATAATTATGGTAAAATACA
 CATAAAATAGAATTACCTCTTAAATTTCACTGCAAAATTCACTGG
 CACTAACGACATTCATGCCGGCTGTCACCTGCTCCAGAACCTTCATCT
 ACCCAAACGGACTCTCCGCCCATGGAACACGCCCTGCCCTCCCCCG
 GCCCTGCCGCCAGCTCCCTGTGCTGTGGATCCGGCTCCTCCAGG

FIGURE 6, CONTD.

GACCCCGTGCCTGGGCTCACAGAGTGTGTCCTCTGTGACCGATCGTC
GTGCCCCGAGGCCCGTTCTGTCAGCTGCCTATGACCGACTACCTTC
GAATGCTCAGTGCCTGCATTGGACACGCAGTCCTGCTACCCCTTTTC

Contig 58 (550 bp)

TGCTTCTGTGCCTCCAGCTTGGGACCCAGCAGGGCAAGGGGTGT
ATAGGGCTTAAGGAGGCAGGGGGCGTCTCTCCGCTGGCTGCCAGAGC
ACCCCCAGCCCCCTGCCCTCGTCCATCTCCAGCTGTCTTCTCTGT
GCCCTCCCTGTCCCGGGCGGCCGCACACTGGCTTCACCTCCCCACCCA
ACTGGCGGCCCGGTCTTGCTGAGGCACCCCGAGGTCCCCGCTGCTG
GGGACCAGCTGCCAGGTGGCTCCACTGCTTCTCAGCGTGGCTTGG
GGGGGGATCTCACATACCATCCCTCAGGCCCGTGGGAGGCTGGGA
CCATCCGGGACCCCTGTGGGCAGGCCAGAGGACTGCCAGGAAGAGACCC
AGGGGACCAAGGCAGCTCCAGGCCTCTCAGCTCAGGCCAGGGAGGCCA
CCCCCAGGTGGCAGGTGAAGGCAGGCCAACCCACAAAATGCCCGCA
GGGAAGTAGGAGGGACAGGAGGAGGGAGGCCAGGCCGGGCCCTTG

Contig 59 (800 bp)

TGAGGAGCGCAGGCCAGGCCCTGAGTGTGCCAGCTACACCCCTGGCAG
CTTCGTCCTCCCTGGCCCTAACCCCACTCTACCCCAAGCAGGGCTC
CCCCGGTGGGCCCTGGTGAAGCTGTGACTGGGTTGGAGTCAGGTCTG
TCCAGGTCAAGCCCCATCCCAAGGGTGCCTGCAGCACTGTCCTCAC
CCCTAGCGCCCCAGACCTTCGCCCTCCAGCCTGGATGTACCCACGGA
CCCTGAAAAGTGGGCTGAGCAGGTGCCCTGGCTGGAGTCAGGTCTGACTT
GGGGCTGGGCCAGCTGCCCTGGAGGGCTGTGGGGCACAGCCTGCCCA
GGGGGGCGCTGGCACTGGCTCTGGACCTGACGACAGGCAAGGCCCTCT
TCCCTGGCGGGCCACACCTGGCTGGGTTGGGCAAGGCGGGCAG
CCCCATGTCAAGGGGGCGAACCCAGGTAATTACAGCTGGCAGCCCCT
CCCCAGACCCCCAGCCCCGGAGGGCCCCAACCCAGGCTGTGCCACCAAGA
CCTGGCACTCAGGGCCCCAAAGCAGCTAAGGGCAGCTGCTACAGATTCTT
TTAAGTTGAGACAGAATCGACACATGACAAGTTCTGGTTAGGTACTT
CGCTGCCGGGCCAGTCAGTTAGTGAACCCACACACACAGG
TACAATTGCTCTCTCAAAAGAGGCCCTGAGAGAGGCCCTGTCTGGCT
CAGGGTAATGAGCCCATAATGGGTATCCATGAGGTTGCCGGGTTCCATCCCC
GGCCTCGCGCGTGGTTA

Contig 60 (500 bp)

GGCTCAGGAAGCGCAGGGCAGCGTGTGGGGCAGGGAAACCATGGGGT
CTGCTTCCCGCCTCTCTCAAGCCCACGGGCTGTGCCACCTCCGAC
TCTGCAGCCAGCATGCCGCTAGAGCCCTGTGCACCCAGCTGGTGGCCT
CTGGCTAAGGGCAGTGTGGCTGTGGACCGCTGTCCCCCTCCCCAGCAGCC
CAAGGGTCCCACATGCCAGGCTGGTGGCTGAGGTCTGCCCTGTGSGTCC
TTGCAAAACCCCCCCCCTCTCTGCCCTTGAGGCGTGGAGGGAGACCCGG
GCTGGCGGATGCCCTCGGGCACAGCCGCCGGTGGCGCCCTGTCAG
GAGGGGGCTCCGACGTGCCCTGACGGCCCTGGCCGGGAGAGGGTGA
GCCACCTCTGGCACGTCACCCAGCTGCCACGCCGCTAGCCAGTGGC
CCGGGGCCAAGTCAGCAGAGUCAGGCTCCGACAAGCAGAGGCTGTAGGC

Contig 61 (700 bp)

GATGAGGAAGCCGCTGCTCGTGTGCTCTTCTTGGCCTTGGCCTCGT
GCTGCTATGCTGCTTACCGCCCCAGTGAGACTCTGTGCCGGGGAGCTG
GTGGACACCCCTCAGTTGTCGCGGGGACCGCGCTCTACTTCAGTAA
GTAGCTCAGCGGGCACGGGGCGGGCGACACAGCAGGTGTCATCG
GTGCTGCCCGGTACCTGTGGCTCTTGAGGATGGATGGTGTGGGGGA
CGGGGGCGGGGGCGCCAACGGAGGACCTCTCCGAGGGTCTGAGA
CTTCAGACCGGGGCGCCCTGCCGTGCGCATTGATTGGCACCTGCCATG
TGCCTGGCTGGGCTCACACCCCTGACGTTCTGCAAGCGTGAUTCGAAA
CGGGAAACCGAAGGGACGGTGGCACGGGGGGAGGCAGACCGTGAGT
GGCAGGGCGTGCAGGGGGTCTTCTGGCGGGTGGCCAGGCAGGGCCCA
CAGGATGACAGCTGTCCCCCTCTGCTCTCTTGACTGCCCCACAGCCA
GGGCTGCAGGCAGTCACATTCAACCATGGTATTGTGGCTTGACGTCT
TGGCAGTGGCATTGGTTATGGACTGTTGGATTGAAAAGTGGGAATA
AGATGGGTTGAAAAACCAATTAAAGAATAAAAGGGGCCCTGTGGC

Contig 62 (300 bp)

TTTGAAGGAAATTTGAGTCAGTGCAGAATTGCATCTATTCCGCATTCAAG
CTCTCCCTGTTCTCACCTTGCCTTGTGCGGATCTCTATAACCACACAG
TGACGTTTCAAGGTACTTATTGAATAATAAGAAAAAGTGCACACAAT
CATGTAGTTAACCTCTGTGCTTTGCCAGTTGAAGGGACCCCTTTT

FIGURE 6, CONTD.

21/48

TTTCCTTTAGGGCTTCGCCGACGGAAGTCCCCGGCTAGGGGTTGAGT
CAGAGCTGCAGCTGCTGGCCTACAGCACAGCTCTGGCGGCGATGGATCC
Contig 53 (450 bp)

TCCTGGGCCACAGGCTGCAGCAGCTCACCTGGGGCTGGGTCTCGCTCT
GCGGATGGACCCATGAAGGCCGGAGCCAGGTGGGGCCGAGACGGCAGGG
CAAAGGGTCTGCACACACAGCGTCCCCCGACCCGCTTCTGGGTTCT
TGGGGGTTGGCAGGGCTTCTCACTGGGTITCTGGGAACCTTCA
AGAACTGGGAAGTCTTCCAGAAAGTGGGTGAGGGACGTACCCCPAA
GTGCTGCTCTGCCCCATCCCCACCCCGCTGTCCATGGCGAGACCCC
GGACCGCCGTCTCCCTGCCAGGTGTGGGCTCCCCCTCTGCCGGCCAG
GCTGGCAGGGTGAGGCCCTGCTCTGCACTGGGACTCAGCCTGG
GAAGGCCGGCCAGGAGGTCTCTGGCTGGACGGCAGTGACCTTCCACCG
Contig 64 (500 bp)

TGTGCATCCAACCCCAGTGGCCACGGGGGTGACCTCTGGCCGTAGCC
GCCCGCGTCTCCACGGAACCGGGCTTGGCTGAGGCAGAAGGACCCAG
GACTCCATCCCTGCCCCGGACTCTGCCAGGGTGGGTCTGCACAGAGA
CCCTGTGGGGGTAGGGCCGGTGGGTGAAGATGGGATGGTCAG
GGCGGCCCCCGGGGCTGCAGGAGGTGGGTGAAGGAGGGGGCCAGCT
CAGACGCCCCAACACTAGCTTGGGAGAGCTCCAGCCCCGCCCCGTCAAT
CGCACAGCCTGCCACAGAAGGCATTCAAATGAGAGACAAATATTGGG
CTTGAAGACTATAACCCAGCACGTCTTTGGGAGCCAAGCTGCTCCA
GGCCCTATTGGTATTAATTGGTTTCTTAGAGATTGCATGCTTA
TCAATGGGCACTGGCGCTGGCTGGATGCGTCCAGGCTTGTATG
Contig 65 (661 bp)

TCCCACGACCTGCCCTCCAGGGCACATCTGGCGACACCGTGCAGAG
TTGGACCGGCCTGGTGTGGCCACAGCCTAGGCCCTGTCTGGCCGCCAG
GCCGGCTCCAGGTCCAAGGAGCTCTGCCCTGCCCTCCGAACCCAGCA
CCCCGGCCCGCTTCCCACAGACCTGTTTCCAGGTCAAGGTACAG
CTAATTGGCTAAACTGGACAAGGAGGCCATTCTGGAGCAGGCTCCC
GGCCCTTGGCTCTGCCCTGGGAGGCCCTCCAGGGCTGTGT
TGGCGCTGACCGCTGAGCCCTGAGCTGAACCCGATAAGGAGGGACCCC
ACCTGGGCTGGAGGCCAGAGACCCCTCGTCCCCAGCTCCGCAGGGTTCTC
ACAGTCCCCTGCCCTGGGACCTGGACGTCCCCAGCAGGTGAAAG
GTCCAGATGCCCTCTGACTAGAGGCTCTGGCTGAGACATGCTCCCT
TCCCGACCGAGGACGAGACTCAGCAGCCCTGCGTGGCTGGGTGCGG
ACCCCAAGGCGTCTGAGTGTGTTCTAATGGGAGCCGTGGGGCTCAA
CACTGGGGTGGCACTGGAGGGAGCCCTCCCCACAGCTGCCCAAGATG
GGCCCTGGACT

Contig 66 (500 bp)

TTTGTGGATGAATGAATCATGAGAAAGTGATTGGACCGCCCCCTTCGT
CCAGCTGCTTGCAGCTGCTTGTAAAGATGACCTCTCACCTTCTCAGAG
GCCTGGCCGGCCAGGTGGCAGTCAGCTGAGATGCCATGCTTGTGGC
ACGTGGGAGGCCCTGTCCACGGCGTGGGTGCGCTTGTCTAAATCAGG
GTCAGGGGAGCAGCAGGTGCAGGGCACATGTGGGGCGGGGGCGATGTC
TGGGGAGGGCGGGAGGGAGGGGTGTGCGGAGGCCGTTGTGGGGTGCAGG
GGACAGACCCAGCGAGACCCCTCCCTGGCCAGGCCAGGACAGGTGATG
GGGGCCGCTCGGGCGTGTGACAGAACCCCTCTCAGAGGAGGCCCTCC
CACGGTCTCTGGACCATCAAGGGACCGGGCGCTGGCTGGGGTCAAC
ACCCAGCTGGCCGCCAGCCCCGGTGGGTGGAGGCCGGCAGTTCAC
Contig 67 (550 bp)

GGGCAGGAGGGCCGGCTGGTGGAGGGTGGAGGTGGCAGGAGG
GTGTGAGGCAGGGCTCACTGAGCGTGCAGGGCTGGCTGTGCCCTAGAGTG
GTTAGCACGTGCCCTCACCTCCAGTGTGCGCTCTGTCACCTGTGCCCTGG
CTCACAGGTGTGGAAACTGAGACTCGGGTGTGATGAGCTTCCAGGATG
AGAATCAGCAGGCTTCCCAGGGCAGGGCTGTGTCGGGGCTCTGGGCTTT
ACCAAGGAGGGACACCCAGGGACAGCCCTGCTGGGGTGTGGCTGG
CCAGGCTGGGTGGCTCTCTGGCTGGCAGGCCCTGGCAGTCACCCCC
TTACCCCTCAACTGCCCTCAGTGTGAGACACGACCTCCCTGAGGCCCTG
TCCACCCAGACACTCACTGCCTCTCCAGGAAGCCTCCAGGGCTGCC
CGGGCTGGTCTGAGCAGGAGACAGAGAGAGAGGGTGGGCCAGGAGCAGA
GGCAGGCAGCCAGAGGGGAAGGCCAGGGGCCACTCACCCCTGGGGCC
Contig 68 (500 bp)

TTTGCATTAGCTCGTACCCGGATCTTCCGGGCTCTGGGGTGGG

FIGURE 6, CONTD.

GGATGGGGTCAAGGGCAGCTGTATCTGCCCTGTCACCTGCTCTCAC
AGGCTGGCCCTGGAGCCCTGGCTCTCTAGGGCACATCAGGTTTGG
GGGAGGCCAGCCCACCGTCCACCTCAAGACCACAGCTGGAGCCTGC
CCCCAAGCCTAGACCTAGTGGGCTCTGCCAGGCCAGGCCCCCACCTC
ATGCTGCACCCACCAAGGTGGACAGTGCAGCCAGCACATCCAGCTTC
GGAGCTGGCCAGGOTCAGCACAGCTGGTACCCCTAGGGAGCAGGTAC
CAGGGCCCTGGCAGGCCCTGGGAGCAGGGGGTAGGGTGGGAGCAA
AAGAACCTCTGAGCTGGGCGGGGGTGGTGAAGGGGGGGGGCAGCG
GGCTGTGCGTGGCCCTGAGCCCGTGCAGACGCAGACCTGGGTGGT
Contig 69 (550 bp)
TGTGCTGCTGTGGCTGTGGTAGGCCAGCTGCAGCTGTGATTGGAA
CTCCTAGCCTGCGAACCTCCATATGCTGCTAAAAAGACAAACATAAAA
TAAAATGGGTGCGCTGTTAATTGAAACACTCTGCCCTCCAGAGACAG
GCCGAAACAGGCCCTCTGAAGGTCCCACCTGGCAGGGAGGAGGAG
GCCCGTGGGGGCAGAGAGAACCCGATGTCAGACACACGCCA
GGGACCGTGGCCCCGCTGCCAGCCCCGCCGGGGGAGGGAGGCCAGAG
ACTCCAGCAGCCCCAACAGGACCTGGTGGCACAGGACACAAACACAGG
GACGGCTGGGTGGCCCTGGGTTCCCCCTGGGACAGACAGGACA
ACAAGAGGCCAGCGTGTGACGCCAGGAGCCTGGATGAAGC
TGGACACCCAGAGTCCACACTGTGTGATTAGGCTGACGTGAAGTTAAGA
ACAAGCGGGTGGCTCAGCGTGAAGGCAGAACAAAGGCCGGAGGGAG
Contig 70 (1300 bp)
ATGTCAGGATAGTAACCTGGGGTGTGCACTGACAATGCCAGATCCTAA
CCACTGTGCCACAAGGGAACTCCTTGACCTAGAATCTATACCCACTGCA
AATATATTCTAAAAAAAGGTAAGCTCTGAGCAGAAAACCAAAATGGGAT
AATTCTATTCTGGAAAGACCTTCTGTTAAAGGAAGTTTTTGACGTGA
TGAAGGTGAAACTCGGAGGCCACAAAGAAAGAAAGAAAGAGCAC
TGGAAACGGAGCAAATAAGGTAAGGTTAAAGGATCTCATCTTCTCATTT
TTAATTGCTCCAAGGATAGCTGACCTCTAAAGTAAAGTATAGCAATGATA
TGTAGCATATGCTCTAGCTGAAATTAAAGTATAACTTATAGCAATGATA
CCCCAAATAAGGAGGAATTGAGAATATACAGTGTGCTCTCCATGTT
GGCTCAGCACTAATGAACCTGGCTAATATCCATGAGGTGCAAGGTC
CCCTGGCTCACTCAGGGTTAAAGGATCCAGGGTTGCACTGAGATGT
ACGTATGTCACAGACGTGGCTGGATCTGGATTCTGTGACTGTGGTG
TGGTGTAGGCCAGCATCTGCACCTCGATTGACCCCTAGGCTGGGAAAC
ACCATATGCTGGGTGTGGCCCTAACAGACACAAATAAAATAAAATA
AAAGAGAGAGAGAATATACCATTTGTAAGATTCTCATGACACAAAGAG
TATGTCATATTATTGGTATATGGTATTGATGTCAGATGTTAAGGATTTATCATA
TATTGATTCAAGATGTATATTCCTTCTAAAAAGAGATTATACAC
TAAGGCAAGACTGAAATAAGTGGATGCTAAAGAATGTTAATCCAA
AGAAGGGAGAAAATGGGAAAGACATATAACAGATGGACAAATAAA
AGAGCTAATGAGATTGTAAGGTTAAATCCAAACATACAGATAATCCCAT
AAATTAAACACTCTAACACATTGATTAAAGGAAATTGTCAAATTGAA
AAACAAAGCAAGACCCAACTAGATGCACTATGAAAACCCACTTCAT
TAAAGACATGGTAGGTTAGGAGCAGAATGATGGGAAACCATGTCACG
AAACATTGTCAAAATAAGCTGGTGTGGTGTATTGATCTCAGACACA
CAGACTTCAGAACAGAAACACTGCAACAGGATGAAAGAGATACTGCATA
TGATAAAGGGATCAATTTCACAGTGCAGGCTCCAAACACAGGAGTTT
Contig 71 (500 bp)
TGACCTCATACTGAATCGAGCTGGTATCAGGGATCTCTCAGCTGGGG
GGAGGGCAATGGGCATTGCTGAGGATGCCAGGGCAGGCCATTG
CTGGTTGGTGCCTGCCCCATGCCCTGGGACAGCTGGCCCTGCTG
GCCAGGGACCCCTCTGGAGTTAGGGATTGGGGTGGGAAACAGGCTT
GCAGTAATCCAGCCCCAGGGCCCTCCCTCCCCGCCCTCAGGACCCC
AGCCCGCCCCACACAGTCTCAGTGTGACAGCTCACCCCTGGGTCA
GTCTGTCTCTCGGGCCCCGGTGGCAGTGGAGCCAGCTAGGTGAGA
GCACAGGCCACTAGGGGGTGGCAGTGTGAGGAGACAGTGTGAGCCAG
GGCTTGAGCAGGCCAGCAGCTGAGACAGTGTGAGCCAGGCTCCAGG
TTCCCAAGGGAGGGTCCCTGAATGTCACCTTCTGTGACATCGGGTGAC
Contig 72 (550 bp)
AGTCCATTAGGGAAGGGATTGTGCAAACACAGAGACAGGTGAGGGCT
GCCAGCTGCTGGCTGGGCTCTCAAGGCCAGTAAACCCCTCCC
CCAGGCCCTGCCCAAGGTCTGTGTCACCCCTGGGGCTGCTG
TTCCCGGGCTGTGCTGCAACCGACTCCGTTACCCCTGAGCAC

FIGURE 6, CONTD.

TGCCTGGAGGCCGGCTGCCAGGCAGGGACGGGCCCCCTCAGGGCTGGGCTGG
 CTCTTGGCCTGTGTTCATTTCTGACCAGGTCTCTCACTGGGGGGCTGCCCCAGTGGG
 CTCGGGTGAAGCAGGCATGTGCACCACGGGGCCCTGTGCCCCAGTGGG
 TCCCTGGGCGCTTGCTGGCCCCAAACCCCCAGGCCGTGTGCATCATAC
 'TCACCCCTGAGCCCCAGCGAACCCGGACATGTGCTGGGGGACCCCTGGG
 CACAGGGGGTGAAGGGAGCAGTGGCCTTGGTGAAGCCCAGCCTGGCACCT
 GGGGAGGGGGTGCATCTGGCATGCTGTGTAACCAAGCCCAGGGCAGG
 Contig 73 (950 bp)
 GACGTGCAGTAGCCATGACCTTACGGCCCCACTGACCAGCCCGTGTCC
 TTGTCGGAGACCGACCCCTAAGCAATAGGATGCAAGCAGAAGTGACAGAA
 CGGCCTCCGCATGAGGTGCGAGGGCTCTGGCTTGACTCAGGCCCCCT
 CATCCCTCGCTCTGGAGCAGGGCAGGTAGGGCCCCCAGAGACCC
 CCTAGAGGAGGTACGGGAGCCAGGCCAGGGCTCTGGCACAGTCTCCAGGAGCCCC
 ACCAGGGAACAGAACGGCACAGGTCTGGCACAGTCTCCAGGAGCCCC
 CTGGTGGCACAGAAATCTGACCGGCCAGTGGAGGGGCTGGGGGGGGGGGGGGGG
 CTCGGGAGGAGGGACTGGGTGAGGCCGCTGACTCTGGCTGAGCGCCG
 CATACTTGCTGCCCTGGCCAGATGCCGGGCCAGGCCCTTCCGCACGGACCC
 AGGCTCACATTGGCCCTACATGCCACTGTGCTGGGAGTTGGGATGGTGTG
 CCCGCTGGGCCCCGGGGTCAAGGCACGGCTTCCAGAGGAGCGGGTTCCAG
 AAGGGCCAGGTGGAGAGGCAGTGGAGGGCTCCAGGGGGCTTCCAGGCC
 ACCTGCGAGGACCCCTGGGGGAAGGGAGCGGAGGGAGACAGCCGGGT
 CCCTTGGCCAAGGCTGAGTTGTGACCGCAGGGAGAGGAGAGAAGGAGCA
 CCCACAGCAGGGCAGGGCTGGGGAGGCTGTGCTGGGTGGCCGGGGTGGT
 GGGCTGGGGCCAGGACCGTGGGAGGCCTCGAGGGGGGACCAAGGCACGG
 GAGGGCCCCCTGGACGGCAGAGTCCCTGCTCCAGCTGCCGGCCGGACCC
 AGGTCCACCTCATTTACAGCCTGGCCCCGGCCGCTGACCCGGCCCT
 GCCCAGGTGAGCTGGGGCAGTGAGGGCCAGGCTCCGGCCGTCCCCAA
 Contig 74 (450 bp)
 GCAGGGCCTGGCAGCAGGGAAATGATCCAGAAAGTGCACCTCAGCCCCCA
 GCCATCTGCCACCCACCTGGAGGCCCTCAGGGCCGGCCGGGGGCA
 GGCCTATAAGCCGGCCGGCCAGCCGGCCAGCCCTCTGGGACAG
 CTGCGTCTCCAGGCCGCGCAAGCAGGTCTGCCCCCTGGCTCCGTC
 AGCTGGCTGGCTGCTCTGGGCTGGGAGCCAGGGCATCTGGCAGGAGAC
 GTGGGCTCTCTCTCGGAGCCCTGGGGGTGAGGCTGGTGGGGCTGCA
 GGTGCCCCCTGGGCTGGCCTAACGCGCCGGTCCCGAGGTCTCACCC
 CCCGCATGGGCCCCCTGTGGACCGCCTCTGCCCAAGGCTGGGCCCCCTG
 TGCCCCCTGGAGCACCCGGCCCCGGCCAAAGCCTTCATGAACA
 Contig 75 (1363 bp)
 CCTCCAGCTGGGCCGGCAGGGCACCGTCCCCCTAGGGACACACAGGG
 GGGCACAGTGGCTCTCTGCTCCAGGCTCTGCTCCGGCTGGGGCCCC
 CTGGGGCCGGCCCATGGCAAGGGAAACTCCCACTGCGGCTGGCGTC
 TGGGCAAAGAGGCCAGGCCAGGCCCGCGTGGCTTAGCAGGCACTGGCGA
 TGCGNTAACTAACCTTTCTCCGAGGAGTCCGAATCTGCTCTGACCA
 CGGGCCTAAAAATCGCTCTGGCCCGAGAGGATCCCCAACAGCGGGG
 CTGCGCTCTGCTCTCTGCGGGCCGGCACTCGGAGGCCAGTGGCGCTC
 GTCGCCCCAGTCTGCAACCGTCCCGTGTACGATCCCCAGAGTCCCA
 CGCGGGCAGCTTTCCACACCCGACGGCCCCGGAGCTGCCGGG
 ACCCAAGATGCCCTGACGCCCTTGTCTTAATTCTGTAACATACAT
 AACGTCCTTGACGTTGTCCATTTCACGGGACAATTCTGTTGGCCG
 TAGGTACACTCCCCCTGGGGCGCAGCCATCGCACCATCCGCTTCCAGGAG
 GTCCCGTGTCCCAAGATGGACACTGTCCCCACTGATCCCTAATTCCCTGT
 CCCCCCAGCCCTGCCCTTCTGTCTGTGGCCCTGGCGCCTCCAGGGGA
 GCCCTGTGCGTGGGATCACAAAAGTGTGTCCTTGTGCGTCCGGTGT
 GTCTCTGAGCATCCGGAGCTGGGGTGTCTCACGCGTGCCTGTGTCAG
 GACGTCTTCCCTTTGCGGCTGCGCGATGCTCCCCGTGGGGCTGCCCA
 CACTGCGCGTGTGCTCATCCACTAAGGCTGAGTTACTTGGCG
 GTTGTGAATAACTGCTGTGTAACACGGGGCGTCAAATACCTGCTGGAGGC
 CATGCTTCTAGGCCCTCGGGGGCACACCCAGAGCGGATATGCTCAATA
 AGGTAATTCTGTTAGCTTTGGGGAAACCATCAGGCTGGTCTCCAGA
 GTGACGGAGCATCGCTCGCATTACAGGAATGGTGTGCTGAGGCTTGAGG
 TCTCCACCACCGCTTCTATTCTGTGCGTCAACAGCGTCCGAACGGC
 TGGGTGGTGCCTGTGTTGCTCAATGTGCTTTTCTCTGGCTAT
 GAGGTGAGCGTTTTATGTAATTGCTGGCCATTGCGAGGGTTTGGG
 GTTCTTTCTTTGGGACGGCGCCAGAGCGTATAGAAGT

FIGURE 6, CONTD.

TCCCTGGCTGGGACTGAATCAGAGCTGCCAGCTGCCAGCTAGCCCACCGCAGCAACGCA
Contig 76 (500 bp)
TCATGCCATGCCACCGCCCCCACCCGACGTTCAAACACCAAGAACCA
CCCCCTGGCGGCAGAGAGAGGACCGGAAGGAGAGACAGCTGGTCCCAA
GGCTCGCCCGGTCTGTCTCGAGCGACATTCTCTGTTTCCCTC
CTCCGCGTCCAAGTTACCCCATCAGAGGGCAGTGTGTTTCATCATCTG
AAAAAAATCTGTCTCTTAATAAAGAACACAGAAAAAGTAGCCTTGAG
AGAAAAGCACATGAATATGTCGCTGGCAGCTGCTGGCGGCCTCTGA
GCCGTGGGGAGGGGGAGGCCAGCGGAGGACCTGACCGGAGTACAGTGACC
CACGTCTCTCTGACAGCTGGCTGACCTGACCGGGCACAGGGAC
CCAGCCTCTGCCAGCAGGTACCCGACCCGGCTCTGTGAGGGAGG
GGCAGCGTTGCCCTCTGAGGGTGGGCTGCTCTGAGGGGGCTCTTGGCC
Contig 77 (626 bp)
GCCATGGCTGCGCGGTTACCGGGCTTGCCGGCTGCCCTGGAAAGTCCC
ACAGGACCAAGGGAGGGCACGTACGACAGGGCCCCGGCACGGACGG
TGCCCCCGACGCCCGCCCCCGCCCTCCAGACAGGACGGGGTACCC
TTGGGGGAGCAGCGGCTCGCTGCGCTGAGCAGAAGAAGTGGAGACTGG
GTGACAGGGGCCCGGGGGAGAGGAGGGGAGCAGCGGGGGTGGAGCGGG
TCCGGCCCTGCTCGGGACCAGCCCCCTGGCTTGGCGCCTCCCTCCCG
TCCTTAACCGGGCCAGCCTTGGGCTGACCCAAAGGCTGTITTCGAA
AATAGGTGGACCGTGGCCCTGACCGAAGGCCAGCGGGGACCCGGAGTGG
GTCCCCAATGGATCAGCAGCGCTGGGCAGGCTGCGGCCCGGGAGCG
GAGACACAGGTGGGAATGGGAGGAGGAGGAGAAGACGGGAGGAGGGAG
TGAGGACAGCAGAAACCACGCCCTCTCTCTTCCCGTCTCGCCCTCC
CTCGACAGCTCCGACTGGCTGCAAGGAAAGGCCCCAGCCCAGCCCG
CGCCACGG
Contig 78 (500 bp).
TACTCGGGTTGTATTACCACTGACCCACAAAGGGAGCTCTAAAAATAATA
ATTTCTTAAGCCAATGACATGGAGAGCAGTTAGGGTGAGGCTGGTGG
GTGGTGGGGCGCGGGCAGGCGCCCTGAAGGTCTGAGTGGCACCCCTGG
GGGGGAGGTGGGTGGCGAGGGGTGTTGAGAAGGGGAGGGCCCTCG
GGCAGGAAGGAAGGCCAGTGGCTCCAGTCCCTGACCTTGCTGCC
GAGCTGGTTCTCCCCAAATTCTGTCTGTGTCCTTCACTTACCGAAG
CTTGGGGCCGTTGCCAGGGAGACAGATGGCTGGTACACCCAAATGAG
GCCACAGGAGGGGGCACTGACTTTAGCCAGCCGGTACATCAAGAAC
AAACAGGCCCGGGCTGCTGTAAAGGCAGCTTGGGCTGGGTCCGGAG
CACCCCCCTGGCTGGGAAAGGGGGTCTCTCAGGCCCCCGGAGGATG
Contig 79 (427 bp)
TCTATTGCCGTGGCGGAAGAGGCTAACCGTACATTGACCGGGCATCTG
GCGATGTATCACTTCTCTCAACCGAAACTCCCGCAAACCTGCTCG
TGAAACGTTGCCGATAGCGAATCTCATTACCGGTAAATACAGTCATTG
ATGCACTGTTATGGTGCCTGACCAAGGTGATGAGCAGCGACAAGCTGCG
TCAGAACTGGCGCAAATTACCGTTATCGACCCCGATAAAAGATGAT
CTGGTACCGGTACAGCGTGAGAGTTCGGCTGTTGGCTTGAAGAAA
CTGCCACCGCGCTGGCAGACATGCCACCACCGACCAGGACATCCAGATT
CTCTATCCGGTGCATCTCAACCCGAACGTCAGAGAACCGGTCAATCGC
CTGGGGCATGTGAAAAATGTCATTCT
Contig 80 (650 bp)
GGCGTTGCCGTGAGCTGGTGCCTGGGTCACAGATGGGCTCAGATCCCC
CTGGCTGGCTCTGGCTAGGCCCTGGCGCTGAGCTCCGATTGACCCC
GGCTGGGAGCCTCCATATGCTGGGGAGCAGCCCTAAAAAAA
AAAAAAAGAAGAAAAGAGAAGAAGAAGAAAAGAAAAGACAAAAGTCAA
AGCTCCCCGTAGCGATGTCTGTCTACGAGCAGGTCCCTGGAGGCTGAG
CAGGGTGAGCCCTGGACCCCTGAGGGCCACTCCAGACTCAGTGTCTCAC
GGCCAAAGGTCTTGGGAGCCGGCTGGGGCGCGCAGGCTAAGGAGGA
GTCAGAGGAGGGGGCTCAGGCTGCAGGGCAGCGCAGCTCTGGGCCCC
GGGGGGGGGGAGATGGGCTGAGGGCTTGGGGGGCTGGAGGGTGGGG
CTTCCCTGGAGTGGGAAAGACGGGAAGCCAGGTGAGGGAGGAGGAGCGAGG
CTGAAGCTCTGGAAAGGCCTGGCTACCCCGACTGGCCCTGGGGGGGG
CACATTCAACGCCACCCGGCTGCTGGTCTGGGAGGGCTTGGCAGAA
AGCCCCAAGGGCCCCAGCCTGGCCCTCTGGGCTAAAGAGCCAAGCCCC
Contig 81 (550 bp)
TAACCCACGGAGCAAGGCTGGGATCGAACCTGTAACCTCGTGGCTCT

FIGURE 6, CONTD.

CGTCGGATTCGTTAACCACTCGGCCACGACGGGACCCCCCAGGGCTGG
 STTCCCTCTGTGACACAGTGGACCTGAGCCAACCAGCAGGCCCTTC
 ACCACCACGGCGAAGAGTCGGCAGCAAGAGAGCAGTGTCTATGGCTCA
 CTTCTCCCTTCCCCGGAGTGGTACAAAACCCGCCACCGACT
 CGGTAGACAAGGCGGTGCCAGTCCCCGTCTGCACCCGACGGCAC
 GGCCTCTCTTCTCGGGCTCCACCACAGTGTCTCATGGCT
 ATGAGAGTACCGGGCTGGGGGTGGTGGCTCTGGGTGGGGCGTG
 AGGCAGGGCTGGCTGGGGAGGGCAGGTCTTGCCCATTACGGGGGG
 CAGACTCCACATCACACGCTCTGTGCTCTGGCTGCCTGACACCAG
 GACTCAAACAGAACAGCGTGGAGGATTGCAGCCCAGGGCCGGUTT
 Contig 82 (550 bp)
 TGACACCTCCAGCAGGAGGGTGCAGGTGGGTCCAGTAATGGTGTG
 CTGGCCTGTGGGCGTGGCTCAGCTTAGGATGGTGGCTGGCGCCG
 ACCCAGCAAGGACAGGGTATGGCAGGTGTGGCTCAGCAAATGAGTGC
 CCAGGTTGTGGGGTGGGACTTGGGCTCAGGGAAAGCTCATCAGCTTG
 GAGAGGACGGGGAGGGAGGGAGGGCCAGTGGCCAGATGCCTG
 GATGTGAGCACTACGTCCCCGGGTCCACCTCCCTCAGTGCATCT
 GGGCAGGAGGCTCGATGCCCTGGGACCCGCTGTCTGAATGAG
 GTTCACTTGGTGCCTTCCCAGAGATGCTCGGTGGAAAGCTGACGAGGC
 AGGAGTGCACAAGGGTCTGGGAAATGGAGCAGTGCAGGGTGGGAC
 GAGCTGCCCCAGCCTGGAAAGATGGGAGCTTGCAAGGGTACCCCC
 CAGCTGTGGGGCTGGATAACCAAGGGTGTGAAGAGGCTGAAGAGCGA
 Contig 83 (984 bp)
 CTGACCCCAGCTATGTAGATTAGACCCCCGGTCCGTCCCAAATTCTCTCA
 AAGCTGTCCCAGATGAGAGATGAGCTTCCTGTGCTCTCCCTG
 CTTCCCTGGGATGTGCCCTAGGGTGGAGAGGGTGTGCTCCAGGGCTCA
 GCAGGGGCTCCATCTTCCCAGAGACGGGAGAGATCCCCCTCTCGGG
 CCTGCCCCACGGCCCCACAGACACCCCCCCCCCGCATGGCACCCAT
 GCACCTGCCATGTGCCAGTAGGGATGGTTGGCAGACTGCCACATG
 GCTGTAGCCAGTGAGACATGCCCTGCCAGTAGGCTGACCCCTGGGTGT
 GCTCTGTGAGATCTGGGACCCCCAGCACACCTAGGGATCATTTGCCA
 GCCTCTGGGAGGCTCTCAGAAATGGGGCCCCAGAAGGCTGGCAAAG
 GTGATGGGAGCGTGGGAAGTCTGGGGTGGCGGGTGGGTGGGGCA
 GTGCGGCTGGGGGGGTGCTCCGGGTCGAAGTGGTCCAGCAAGGT
 TTTGGACACAAAGTCAGGAGGAAGGAGTGACGAGGAGACTTGCAAGATTA
 CAGGTAGAAATCAGGAACCCACATCGACGCCAATTGATCTATCCCCCTT
 TGATTCTTCTCTGGCTTTCCNTTTTTTTTTTTTTTTTTTT
 TTAATCCCTCTTAGCTTTACGGCTAACACCAAATTAAACGTACTC
 CCCACCCACGTAAACAGGGGGCGGTGACCCGAAGGAGGACACAG
 AAGCCACCATCCGTACCTTGGCGGCACCAAGCCGCTGCTGCCCTCCGC
 CCATTATGCCCTGAATTGATTTGCTCTGTCTGTCCCTGTCGCTT
 GGGTAGAGTGGAAAGGGAACCTGTGGGGTGCAGCCACTGGCCCC
 CCAAAGATTCAGGGAAATGAAACGGCTGCCGCC
 Contig 84 (550 bp)
 TGCCCCCTGACAACCC'GCCCTGTTAGCCACACTCGCAGTAATAAGGCGA
 GAGGTGAGGGCGACCCCCACGGGAGAAAGTGCCTCCGTGCCCTCACC
 CCTGGCTCTGATGGCCAGGCCATGGCACCCCAAGGTGGCTCGGCCCT
 ACCTCCAAGGTCCAGGCATGTCAAGCACCAGCAGAAGCTCTCCAGG
 GTTGGTGCCTGCTCAGGCAGAAAGCAGGGGTGAGGCTCCCCAAAGGGCC
 ACTGGCACCAATCCCCCAGGCAGCCCCAGCGAAGGGACAGCCCCCCCC
 CAGCCCCGGGACGCAGGCCATGGGAACCCAGAGCAGGGCC
 AAGGGGAGCAGACCCCCCTCTCCGGACTTGAATCTTCCGGGGCC
 CAGGGAGCTGGGCTCTGCAGAGGGCACTTCAAAATACGGCCCCACCCCC
 AATTGCCACGTGGGCCACAGAGCAAGGAGTCGCTGCCAAAGTGGCTGG
 TTCAGCGCAGGAAGTCTCCCTCTGGGCCCTCCCTCTATAGGCACAGG
 Contig 85 (500 bp)
 TGAGCCAGGGCTGGCCAGCTAACGGCCCTGGAGCCCTCCGGCTGTT
 CCTGCC'CCCATGCTGGCGAGCTGGCTTACTGAGCAGGGGGCCAGGCCA
 GTGTGGCTGTGGAGGTAGATTCCACTCAGCTGGAGGTTGAAGTGGCAGG
 GGGCCGAGACCCCTCAGGCCAGCTCTGGCCCTGGCTTGTCTGGCCCT
 CCCGGCTGGCTCCCCGTCCTGCCCTGGCTTGTCTGGCCCT
 GACAAGCTCTGTGGCTCTGCCCTCAGGAGAGACACTGGCTCCCCGCTC
 TCGGATGAGGACGGGCTTCTGCACAAGTCTGCCCAAGAATGTTGG
 GGCAGCCAGCTGAGGCCAGCAGTCTCCCCCTGCCCTGGCTGGACAC

FIGURE 6, CONTD.

GAATCCGGCATCGAGGCGGGAAAGGGGATGGAGGGATGGGGCTACCCA
 CCCCTGCTCCCACCCAGAATAGCTGGCGGCCCATGGAGGCCGCCCC
 Contig 86 (913 bp)
 CTGTTTCACGTCTTCTGAGGACACACCCAGAAGAGGGCTGCAGGCC
 CATGGTGACTCCATGTGTTACTGCTGAGGCCCTGCAGACCGTCTCCCG
 CAGCAGCCGCACCCGTTCCATGCCACCAACAGCGTGCAGGCCGACTG
 TCCCCACGGCTGTGCAACTGTTGAATCTGAGTTATAAGAACAGAC
 GCTCCTCAAACACACTCACGTGCACACGTGCGCACAGGCCACAGACAC
 ACACACGGAGTAATAGGCCTCCCCCCCCCTCCCTGAGGCCAGAGGGGCT
 GGGCCCTGGAGCCTGTCTTAGGGCTTTAGGAAAGCTGGTGCCTCC
 CAGAGGGGCCCGCCGAGCGTGGCTTCCAGTCCCACCAACCCTCGA
 CAGACTCAAACGTTGGTTCTTCGTCTTGCCTTGCAGGAACTCGCTCCCG
 AGGTGGCCCTGCTGAGGTTTCAGGCCAGCGCCCCAGGCACCCCTTCT
 CCCGGTCCCCGCCACTCATGGGACAGCGGGCC'ITCCCCCACGGTGTCC
 CCTGGGTTGTGCTGCTTCTGTAATGAGACGGAGGAGGTGACCTGTCC
 TGGGGTGAATTCTCTCTGAGGAACCTCGCTCCCGCGCTGGTCTG
 CTGTCCTCGGTGTTGAACTCTCGTACCAAGAAAGGGTGGCTGTGAC
 GTGCCCTTCCCTCGTGGCTTGCAGTCTGGCTTCTCGGGGAACC
 TGCCCCAAAGGGGAGTGAACCCCCCAGAGGGAGACGTAGCTCTGTGG
 CGACAGCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 TGACGCTGCCCTGGACGAGGGCAGCTCAAGGGAGCTTGTGCTGCCA
 CGAGCCACAGGCA

Contig 87 (650 bp)
 TCCACACCTGTGGAGCCGCTGCCCTGATGCCCTGCCCAGCTGATG
 GTCAAGGTGCCAGACTTGGGGCTCAGTCAAACAGGGGCCACAGGTGCT
 GCACCTGGGAAGGGAGCCTGTGCGCAGGCCCTCAGGTGTCAGGCTCG
 CTGGGACCGAAGCGCACTGGGCTCTGGACTCCGGCTTCCCCAGGGCTG
 CTCGGGCCACCTGGAAATGAAGCCCCACCTGGCTCATAGGGTCCACGTG
 AGGGCCCTGAGGCCACCAAGGACAAACTCAGTTAAGGGAGGGAG
 CTTGGGCTGCTAACGTCACGGGGAGCGGCCACTCAGCACTGCCT
 CTCTGCCAGCCAGCCGCCAGCTTGTGACGTCCTCCAGGCAAGGGAC
 CCTGTCCCACAGATGCTGGGCCCTCCAGTCTGTCTGCCCTGGAGGGCCT
 GGGCACTGTGTTGGGACACAGCCCCCACCCCTGTAAAGGAAGGGAAAGG
 CCCCATCCTAAAAAAGCCGTGGCAGGTGGCCATGATGGTCTCCGAG
 GCAGGTCTCTGGACCCCTGCTCCCTGGGCTGCCAGGAGGCC
 AGGTCTGGCTGATTAACCTGCCCGCATGTCATTCAAAACTGGCTT
 Contig 88 (700 bp)

TGGGGCCCTTGGGGGGAGGGCCAGTCTGCTGGGCCGGAGGAGGG
 GGTCTCTGTCCGCAGGGAGGGGGCTGGCTCAGGGGAGGAGAGGAGGA
 GGTCTCACCTGAAAGGATCTGCC'ITCTCCTCAGGCCCTGGGATGCC
 GCAGAGAAACCAGAAGGAAGGCCAAACTTGCTGGCTGGTGGGGATGGGG
 CGGGGGTCGC'TCCGGCACACCCCCCACAACCCACCTTAGTGGCAA
 AGTGGGTGTCATGATGGCACTGACCTCACGGGGCGCAGGAGACAAACAA
 AATTCAGCCACTTGGGGGAAGGACACTTGCTGGCTGAGTCTTAGGGG
 CTGAGTTCTGGGGGGACCCCAAGCTCTCCCCCAGTATGAGACACCC
 CCCACTCCTCCAGCTGCTCCCAAACCCAGTGCTCTGGACGCCATCT
 CCCCGUTGCCCTGCAAGCGCTGCTCTGACCATGTCCTCCCCACCT
 CCCCTCTGCAAGGGCCAGGCCCTCAGGGAGGAGCAGGCCAGGCC
 GACTGAGCTGGGGACCGAGACCCCAAGTCCCACCCGGCTCTGCGTTAG
 AGAGGGGGTCCGGGGGGCACCCCTGGGCCACTGGGGGGGGGGAGGA
 GAGCCCTGGGCCCTGGAAAGGTCTGGGAGGGAGGGAGGGGTTTGC
 Contig 89 (1400 bp)

GCACACCCGGAGAACAGAGGGAGGGCTCTTACAGTCTCAGGGTTTTT
 TGGGGATTCTTGAACCTGCCATTGGTTCTGAGGCTCTGTTCTC
 CAATCCCCCTCTGAACCCCCAAAATGGTTCAAGCCCCACCCAG
 CCAGAGGAACCAATTGGGGATTGGGGAGGCGGGGCCAGCAAAGCC
 TTGGGCCCCAGCCCCCTGGCTTGGCCTCTGGCCTGCCAGGTAGGGGG
 AGGGACCGCGGTGACCTCCGGGGCCTGGCACGGACTCTGCC
 CAGGGCAGACGTGACAGGAGGGAGAGGCTCCGAGGAATGAGGCC
 AAGGGACAGGTGAGGCCACGAGGCCCTGGACCTGGAAGTGTGTTAGGGC
 GGGGGACGAGGCTGCCCTGGGCTCCGTGGTCAGGAGGCC
 CACTGAGCAGCTCCACACTGGCACAGGCCCTCTGGGTCCGGCTG

FIGURE 6, CONTD.

GTCTCCGGCAGGGGTGCGCTCTGAACGTCCAGCTCCGAGACAAATCAGA
TTCCCCCGAGCCCTGAGAAAGCCCCCTCCCCAGCCGTCTCCCCAACCTG
TCGGTGGACAGAGTGACCCCTGCTGACCCCTGCCGGGCTCCGCAGGA
GATGTGAGAGAGTAAGAGGCGGTACAGGACGGCUGGGCGGCCGGGCA
GGTGCAGGTGCTGGGTGAGGCTGGCACAGGCTGGCACAGCCTCCCT
GGCCCAGTCCCTGGCCACCTCTGGCACCTCGGTGTGCTGCCCTCTGA
AGGGATCACCCCTCAGCACCTCTCGGGCACCCCCACCCACCC
CCAGGCTACAGATGCCCTGCCATTGCCCAAGTGTCTGGACCCGGAG
CCAGGCAGGCCACCCCTCAGGGCTGGCACAGGCCAGCGTGGCCTTCAG
CCCTCCCTCCCTCCGGGCTCTCGCCTCGTCTCCTCAGGTGGAAAGC
CCCTCCACCTGCCATCTGCTCGGCCAGGATACACCCCTCAACTCA
AGGCCTCACTCTCGCCCTCTCCAGGCTCTGGCAGGCCCTCTCTGAC
CTGGCACCCACCTGCCCTCTGGCAGCCCGAACCCCCCTGCCACAG
TCCACGACAGTCTCTCTGGCTGCCCCCAGGATGCTTAGAACCTGG
GGGGGGGGTCTCCAGCCCACGGCAGCATCCACTGGGCCCTGGGCTCCCT
CCCCAGGTGCCCTCAGAGCTTGCAGCTGGTGCAGACGGCTGCTCCGA
ACCCATGCTCCCTGCCCTGGACCTGGTGAGATGTTGCAGGTCTATTG
GCTGCACCCAAAAGAGTGGCCCTCAGGGTCCCGCTGCCCTCCATC

Contig 90 (350 bp)

Contig 91 (1464 bp)

TCCAGGACCTGTAGCAGCAGCCACGTCCGGAGGCCCTCCACGAGGCC
CTTGTGACCAGCGTAGGGAAAGGGGACAGGGAGATGCTGAGAACGGGG
CCTTCGGAGGGGAGGGACTGACTGTACCCAAACACTCCCCACCCC
CCTCTCCGCTCCAGGGTGCCAGCTGGAAAGCTGGCAAAGTCCAAATCC
ACAGGGTGGCTCACGTGGGAGCTCGTGGCCCCCACCTGGTGGGGCCC
AAGCTGCCCTGGGGGGGGCTGCTCCAGCAGGGTCCCATCCAG
CTTCTCCCTGGGGAGACTCACAGTTCTGGGAGAAGGGTCTGACTGCACC
GCAGCGCCGCCCTCCCAAGACTCACCCAAGTTCTCTCTGCATCGG
TGACTGGTCTCCCATTTGCCAGGCTGGCATCTGCCACAGGATAAGCT
CCAAAGGCAGGGCAAAGCCGGGGCCGTCCCCCGGAGCTCCACAGGCC
TGAGGGCTGGGCTGGATCTCGGGGGGGTGGAGGGAGGACTCAGAAGGT
CAGCGGGGTGGAGCCAGGCTGAGCAAGGTGACCGGAGGGCCAGAGAA
GCGGAGGGGGCAGGAGGAGAGAGGCCAGCTGGAGGGGGTGGTGGC
CTGGGGAGGTCTGGGCTCAAGAAGAAGAGAGTGTGTCAGGGGCTG
TCCAAGCTGCCGGGAGGCTGCCCTGCCACCTCCAGGGAGCAAAAGCAGG
AGGCTGAGCTGCCGGGGCCGCTCTCCAGGACACCGCTGGCCOCAG
GCCTCAACGCTCTCCCACAGCCAGGAGACCCAGGGCACCCGGTCCATT
TACCGCAGGCTCCGGTCCGTTGCTGCGCCCTGGGATGGACTGTGGG
GCGGGGGCCTGCTGGGAGGAGGGAGGTCTGAGGCTGGACACCTGA
AGGCAGGTGAGAGTGAAGGCTGCCCTGCGCAGGAGCCTCGGCTCTGGATT
CTGGCCCTGAGCGAGGGGCTGGCTGGAAACTGGGCCGGGCTGCCAGG
AGAGTGTGCAAGGAGAGGAGACGGGGTTGGCCCGGAGGTGCCGGGTG
GTGCCCTGGAGTCGGCTGAGGGGAAGTGGGTGTTGGCGTCTGGAGACG
GGGGGTCTGGGCTGGGATGGTACAAGACCCCCCAGTGGAGGCGCC
GCAGAGGAGGAGCAGAGAACGCCAGGGCCCAGCCCCACCGCGGGAGGCTGGG
AGTCAGGAGGGACCAGCAGAGGCCCTGGGCTCAGTGTCAACCGTCTGGCA
CCTCGCCGACGGATGTCTGGCCGTGCACTGGTTGTCACCCCTCACCTGAG
CCCTGAGAACCATGCAAGGATGCTGGTGTCAACAGCAGGAGAGGGGCCAGGGC
CTGGGGAGGAGGACTTACTGGAAAGGCCCTCTCCCTGGTTGCACTGGAG
GGAATCACTCCCC

GGAATGACTGGGGG
Contig 02 4624 1

Contig 92 (694 bp)
TGGAGGCCAGGGCACGGCAGAGCGGTCCCGAGGCCGTGCGTGACCCGG
GGGATGGCGGACCTGGGGGTGGGCTGTGAGCCCCACCCATAACGGAGGGG

FIGURE 6, CONTD.

ACTTGGGCACGCCAGGTGGGGCCGGGCAAGGGGAACAAGGACGCTGGC
 CTCCAAGGGCCCACGTGGCACAGAGAAGAGCGCACCCAGGTTGTGG
 CGCATCGAACCCCCACTCTGGGGCCAGGAGGCCAACGTCCTCAAGGGC
 TGAGGCTGGGAGGAAGACTCCCTTGAGTCAGTGTCCCTTG
 GGTGGCCCCCTGCCACTGGGCCACCTCTGACCCCAACTCCTTGCGGGTG
 GACGGTGGATGGATTCTCGCAGCCTTCCTC'GGAATAGTCTGTGCCAT
 CCTCGGGAAAGCAGTGATTGCTCTGCCAACCTCCAGGGCCCTGCAA
 GGTGCTCCCACCCAAATGAGCCCCGGACAGTTCGAGGGCTCTCACGC
 TACTGAGGGGTATGAACAGCTGTCCCCCTCGGAAAGTGGGGGACAGGCC
 CTGCCACTCCATCTCGGGACGCCGGTCTAGTCACCACTGTCTCCCTG
 CCTTGCGCCCCCTGACCTTTTGAGGACCATCAAACCTCAGCCTCTG
 CCCCCAGGAGGTCAAGCCCCCTCCCCAGCCCCAGACCAGCA
 Contig 93 (900 bp)
 CCAGCCCCATCCCCCGGCTGGTCCCCCACACAGAGCCCCGTTCCC
 AGGGGACAGCACAGCCTGCCAACGGTCTACATAAAGTCACCTCTCAG
 AGCTCCTGTGCGGGCTAGGGGAATGAATCTGACCAGCATCCATGAGGAC
 ACAGGTTGATCCCAGGCCCGCTAGCAGGTTAAGGATCTGGCCTGCC
 GTGAGCTGTGGGGAGGTGCGAAGACGTCAGATCTGGTGTGGCTGT
 GACTGAGGTGGGGCCAGCAGCTGCAGCTGATTGACCCCTAGCCTGG
 GAACCTCCATATGCCGGGGTGCAGCCCTGAAAGGACAAAATAAATAA
 TAAATAAAAGAATAAACACCTCTAGCCATAACCACCTGCCCTAGG
 GGCAGGGGCCACGAAGCGGCCACCCCCCGCCAGGCTGCCCTGCC
 CGGGCAGGCGGCTCAGCCTGCTTTCTGTGATGTGAGCCGCCAGC
 CCCACATGGAGGGCTGGGCTGCGCAGTAACCTGCTTAACGTACGGGAGC
 TTGACAGCAATTCAACAGGGCATGCAGCCGGAAAGGGAAAGTTATT
 GTGTAGCTATTAGGCAGGGACTGAGGGTGTGCCCTGCCCTGGGCCA
 CCCCTGGGGGAGGCATCACAGGGTTTGAAACACCTGCCATAACACG
 GGGCAAAAGCCAGCAAGGGGAGGTGCTGAGGCTGGGACCAACCCG
 TGTCTGAAATCAGGGAAATGCCACTGCAGGATCTTCAAAGGGTCAA
 GACGGGGCTCTGCTGAGAAGGACTGGCGAAGGCCACTACAAAAGC
 ACCCTCTGTGCAAAACCCCAACCAATGAAACAAAACCTCAGAGGGCCA
 Contig 94 (550 bp)
 AGTCTGGGCTGTGTCATGGGTTGCCAAGGTGCCAGGCAGAGACCTTGG
 GGACAAAGGTCTGTGAGCAGAAGGACATGCCACGTCCTC'GCTCAGCA
 GGTGCCAGGCTGGGTCTGATGCCCTCGCTGGGTGGGGGGGGTTGAG
 GGGCAGGCCAGACACCCCTCGCTGCCGGAGTTGTTGCCCTCTG
 TTCTGGAAAGGCCCTGCAAGGTACAGGAGGCCCTGGGCTGAUGCTG
 CACCTCTGACACCTGTGGTCTGGGATGGACAGGACAGGGACACCC
 UGGGCTGGACGGAGCGGGTAAGACAGAGTTGACTCTGTCTCGAGTCT
 STGCAGGGCTGCCCCCTGGGCTTCGCTGCAAGGCCCTTCGGGTCA
 GGGTGGCTCAAGGTGACGAAGACCTGGCTCTGGGAGTCTGCAGGGCA
 AAAGTGGAGGCCACCCCCCGGGAGGGGCCCAAGGACAGGAGGGCC
 CAGGGAAAGTCAGGGCTGCAAGGCCGTGGGCTGGGAAAGGCCAAGGT
 Contig 95 (1200 bp)
 GTTTGCTCTCAGCAGGAAGGCCCTCGAGGCCCTTAATAGCCCATAATGA
 CAGCGCCCGCTCTGCCATGGGCCCCGCTGGCATGGGCAGGGAGGG
 CAGAGCAAGCAGCATGCAGCTCTACCTTCTCCTGACCTCGTGGCCCT
 TCCGAGGCCCTCAGGGGCTCCCGAGTGGACCCAGCCCTGGCTCTCT
 CTCCAGAGCAGGCCCAAGGCTGGAGTGGCCAGAGATGAGGGTGCCG
 AGCAGGGCACTGCCTTGGCTCCCCATCCCTGGGCC'CAAGGGCGTACT
 CTCCAAACCAAAAGAAAGCAGTCAGCAAACCTCTCCAGCAAGCTGG
 GTCAAAGGTGCTCCGAGGCGTATCAGGGTGGCTTGCTACTGTAC
 CGTGTGCCCTGGGAGGGCACAGGGACACAGACACACCTCCGAGAAC
 TGGGGCTTCCAGGGCTCAGGCTGCCATCCCCGGCCCTGTGGT
 CCCAGGATCTGCCGGACCGTGAGGCTGCTGCCACCCCTGCTGGGA
 CAGGCCACAGAGTCACAGCCAGGGACGGGGACGGGGACAGGGCCCGCTG
 GCCACCTGCCCTCAGGCCCTGGGCCCCAGGCCCTGTGCCCTGC
 GACACCCCTGAGTCTCAGGACGGGCCGGACAAAGGCCCGGGCCCTCC
 CCCGGCTGGGAGGGACCCGCCCTGACGTGTGGCTGTAGAGC
 TGAAATGTACAGCAATTAGCCCTAACGAGGCCAGGGAGGGAGGCC
 GGAGGCCGGAGGGATCCACAGGCCAGGGGGGGAGCTGGCAACCC
 CACCGGTGATTCCAGGCACTCAGGATAATTGGGTGTTAGAACTCAGG
 CGGCAGCAGAGAGCGGGCAGGCCGGCTGTGCCCTCCCCACCGCC
 TTAACAGGTGCCGAACACGCAGGTCTGGGAGATGCTGAGGTGCCAAG

FIGURE 6., CONT'D.

GGCACCCCTGGCGTGCAGGGGTGCTATGCTGGTCGGCACCAGGGAG
 CTGCACCTGCAGCTGATTGGCTGTGTGTGTGTGTGTGTGTGTGTGT
 GCGTGTGTACGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT
 GGGGGGGGGGGCAAGCCCAGCGGTGTGGTGCACAGTAGACATTAGAAGGT
 Contig 96 (600 bp)
 GGGGACCAAGGGCCCAGCCCTCCAGCTCCACGCATACTGCTAGGAGCTT
 CCAACCTGCAGAGCTTGTGGACCCCCCTGCCGGTGACCCCTGAAGCTG
 GCAGCTCTCTGGCTCTGCAGCGGCTCTACACTACCCCTCTCCAGC
 GGCCTGGGGCCCAGACATCACCCACCCGCAAGGGAAAGCAGCAAGCATCCA
 CCAGCTGGGCCCTTTCCCCCAGCTGTGACCGGCUUCGCGCCCCCTCAC
 ACCTCTGCAGGTCCAAGACCCCTCTGGCTGGGCCCTGGTGTGCCCTTG
 CGTGCACATCTGGGTCCATACCCACAAACAGGCCCACTTTCTGTC
 TCCCAGTGTCCCCCTCAGCTGCCTGATGGGCCACACCTGGCTCTG
 CTGCCCCCTTGAGCCAAAAGACTGGGGTCCAGGACCCCCCTGCCCAT
 GACTGCCCTGGAAGACCTCAAGCCCTCCTCAATCCTGACCCCTTAAG
 GCTCTTGCCACGGAGAAAGCGCTGGGGTGGGGAGGGTGTGGGTCCCA
 AAGCAGCTGCATACTCTCTGACTGGAGCTCATCCTCCACAGCGTG
 Contig 97 (1350 bp)
 CCCGCCTTATTTAAATTTCGAAAACAAAAACACACCTCTCCGTCC
 CCGAAAATTATTTGGTATAGTCTTATTCAAAGAAGTCTGCCACTGAAGC
 CCACCTGTCTGTCCGGGTGTTGGCAAGGGCCCTGACGGGCCAG
 GGTGGCTCATCCCGCATCCCGCAGAGGCCGCTTCACATCCATGCGG
 GAGCTGGCTTCCGGCACCCGGCTGCCCCCTCGCTGTGGCCATGACTGC
 TTGCGAGACATAGGGCCACAACATGGACAGCCTCGCTGTGCTCGC
 TGTGGTTCGCTGAACCTCTAGCTGGACATCTGGCACCAACACCCCA
 GCTTGCTTCAGGCTCTGGTCCAGGCCTGGCCCTCTGGCCCTGGCC
 CTGGGTGCAAGCAGGGCTGGTCCGGCTGTGCCCCGGTCTATAAGAAGC
 CTCTGCAAGGCTTCCACAGCAGGCTGGGATTGGGGCTGCCGGAC
 TGAGGCCCTCTGAGTCTGACCCCCCATCCTCCCTCCACACAGGCC
 CCCGCCCTCTGCTTCAGTGAGGCCACCCCTGCTCACTCGCTGA
 CATTCCAGAACAGGGGTTCCAGGAAGCCCTGAGCTGCAGGGACTCA
 GTGACCAAGCCGCTCTGAATTTCCTCTGATCTCTGGAGACACGT
 CTGGCTCAGCTGGCTCGAGTCCCCTGAGCTGGGACAGCACACCTG
 CAGATGGAGGTCTGAGCCTGGCAGGGCAGGGCCAAAGGCTCAGGGAGAA
 ATTGCAAGGTGTGAGATCAATGACCGGAGCCTGGATGGGCCGCCCCCTGGCC
 AGGGCAGTTCTCCCTGCACTGCTCCCTGCACTGTCCTCCCAACTCTGG
 GCTCTGCTCTGGACCACTTCTGTTCTCCCTCTCCAGCCAGGCCAC
 CCTCCCCCATCTGCCCCCCCCAATCCAACACCCATCTGTTGGAAACAGT
 GGAGCTGAAGAAGGACCCCCAAGGGCCCCCAGCCCTGTAATCTTG
 GGGGCCCTCTGCCAGGTGCCAGGTCTCGGGCAGGAGGGCCGCGGGCACA
 GCGTGGCAGATGCCCTCCAAAGCTGGCTCGGAGGGAGCCCCGCC
 ACTGACATTTCCAGGCCGCCCTGCAAGACCCGGCTGGCGTGTGATATTAA
 GACAGGGCTATTGCGTGTACTGGTTTGATGACTTTGGGGCCAGGA
 TGAGCTCAGCCGAGGCCCGCTGGCCACCTTGGTCTCAGCTGGTTG
 ATAATATAACGCCTCAACTGAACCGCTGACGCCCTGGCGAGGCC
 Contig 98 (1354 bp)
 GCTTGCACTAGTTCATCAGATGGACGACTCATAAATGTCAGACATCTA
 AAAGATGGTGCATCCAATCATTTCCACAGGGTTGTTTTTGTAGATGT
 CAAGAAGCTGACCAAAACTCACGTGGAAATGCACGTCAACTGGAGAG
 TTGAAACAATTCTAAAAGAAGAAGGACGCTGTGGGAGGACTCTTCGCG
 CTCTTGGTTTCGTTCACTTTATATTAGTTACTGATTTCTCTAAAG
 GCTGCACTAGTCCAGACAGTGGCCCTCTATGAAGGGAGGGCTCAGAGAT
 GGTTGGGACAGATAGAAAGCCAGAAACGGACCCCCGCAAATGTGGTCA
 ATTGAGTTGGCAAGGATGTGAAAGCGGTTCACTGAGGAGAGACTTTT
 CAAGAAATCTCTGGCTCTGGATCCACTGCTCATCCAGGCCAAAGAGTGA
 CTTGGCCACATTCTCACAGTGTATAACAAAAGTACTCAAATATTCA
 ACATACCGTGTAGCGTATGAAGGCCATGAAACATCCAGAAGAAAATCT
 CGTAACCTCAGGGCATCTGGGCCCTCCACCTCAGCACCACTGGCCTTG
 GGGCCAGATACTTACGTGTCTCTGTGCACGTGGGACGTCAGGCCAAA
 CCCAACAAAGGTGACCATCAGAAATGTCTCCAGACGTCGCCAAATAACTG
 CCAGAGAGCACAGGAGCCCCCTACTGAGAACACAGGGTGGGGCAGAGAG
 ATCTCAGACATGACACGATTAGGGAAAACAATCTGACACACTGGCTTG
 TTAAATTAAAATTTCCCCCTGAAAGGCAATGGTAAGACATTAAGAG
 GCGAAGTGGCAGACTGGGAGAAAATTTCCAAATCATGTATCAGATACC

FIGURE 6., CONTD.

AAGAAGATGCAGGAAATCCTCAAAGTTCA GT CACAAGAAAACCCATTCA
 AAAACCAGCAGACAGACATA CG ATGGCAAATA ACCAC GAGA AGTCAGC
 ACCCGCTGCTCCCTGGGGGAGCGAGTCAAAGCCAGGAGGACACCAGGAT
 ATGCCCACTGCCAAGGCTACGGATAACCGGAAGCAAGAGACACAGACAGA
 AAGGATGCTTCGGTCTGGGGAGGGTGGGGTGGGGGGGGGTCCCCCCC
 TGGAGCAGGATGTGAAGGCAC TTGGGGGGGGCTGC ACT CCTGGGGGCC
 TTTGGCACAGGGGGAGGGGGGGGGAGGGCTAGGGGACGGAGAGGGGT
 GCCAGGCTCCTACCCAGCCAGGACAGACCAGGGCTGTCA TGAGCCT
 GACGTGCAGCAGCAAGGACAA CATGCTACAGACATGTGTCTGTGTG
 TGTG

Contig 99 (1000 bp)

GGTTCTCAGGCCACGGGGCAGAGGCTGAGGGTCCGAGGGGCTTGGGTC
 CTGGAAAGCCTGAGTTGAATCCCAGCTCGGTTCTAAAGCTGTGCTC
 CACGGCCAAGGAATGGGCCCTCTCTGGGGAAAGGTCTGGGTGAGGCTGGC
 GGGACCTGCGAGGGGGCATCTGACCAAGACAGCTCTCAAGCTCA
 CAGGGCTTCATGGCAGGATGGGAAGGCTGTGGTGGGGAGTGGGAGCAC
 TCGACACCCCTGCCAGGCTTGTAGTCACGGTGGCCTCTGAAAAGGGT
 TCTCTGTGTCCAATGAGCAAGTCTTGTCGGGGCAGGATTACTAAGTCC
 AAGGGTGTCTGCCCTCCGTGGGCACAGAGCAGGGGCCCCAGATCACGT
 GGCTGTAACTGCCAGGTTGCAAAGCCTGCCACCATGTCCCCTGTTCT
 CCAGTTACCTTGGGAGGTGCAAGGGTGGGTGATGGGAAACTGAGGCAGA
 GAGCTGGAAAAGAGTGC CGGCAGGGACTGCGGGGCCAGACCCAGCTAA
 CGAACCTCACACGGAGCTGCTTCACTTGCAGCCTGGACGTGGAAAAA
 GGT TACCCCACAGCAGCGTGTGCAGGCACGCTGGTATGTCTGTGACTTA
 TGCATATGTTCTAGTGCATGCACGTGAGTGTGCTGTGCATTGTGCCT
 GTGTGTGTGTGCATGTGTGCACTCATGTGTCTATACGTGTGTGAG
 TGAATGCTTGTGCATGTGTATTGTGATGTGTATGTTGACCTGTGCAGT
 GAATGCATGTGTGTGCAGTGGCCGCATGTGCGTGTGCGCATGTGTCTG
 TTTATACCTGTGTGAGTGAATGCATGTGCATGTGTGTTACATGTGC
 ACAGTGAAGATGTGCACTCGTCATGTTGCATGTGAGTTCATGTACACA
 TGCTTTAACGTGTGCACGTGTGCACATCTGTTCTGTGTCCCTGCACG

Contig 100 (1500 bp)

CGTATAAATATATAATATAGAATAAAATAGATTGATAATATAGATAAAC
 TAAACCCATTATCAATACGGGTGGCCCCAGCAAAGGATACTAGCCAGTT
 TATCAAGGTGCTAAGTCAGCACATAGAATGGCACAALCGAAAACCTGTA
 CTGCCATGTCCACTCTAATGGAGTATGCCACTGACATCAGTGGTAGGTG
 AGCTGAGTCCATCTGGCTCCAGTTCGGGCCCGTGTCCCCAACCG
 AGGTTCTTCCAGGGTCCCCAACCGGGCCCCCAGGTCTCCCTG
 TCTTGACTCGTTCTGGAGTCTCTGGGCTCTGAGCTCCCTTGTG
 GGGCTCTGTCCCCCTGCCCTGGCTTGCGGCTGCCCTGCCCTGG
 TCCCCGGCTCGGGCTACCCCTCTTCCCTGGAAAGAGAGGGAGCC
 AGGCTGGGGGGCCAGGAGGAATGCGCTGACTCTGCTCCAGATGGAC
 AGGTGGGACATGCACTGGCTCGCCTGGCTGCTGAGCCAGAGCAGG
 ACGGTTCTTCTGGAAATCTGGGCCAGCCAGGTTCA CGCGTGTGGTGG
 CAGCCGCCAGCATGTCA CGGGCCGTGCAAGGGGGGGAAATGACCTCGA
 CTTCTGCTTGGCACCCAGCTTGGAACAGCCCCCTGGGAGCCTCC
 AGAGCTGGGCCAGGGTCCCCCTGTGCCGGGGACCCAGCAGGGCCCTC
 CCTGACTCTCCAACCCACCTGCCCTGGGAGGAGTGGCCCCCTGCC
 GGATCTCTGGTGGGGCTCAGCCGGCTTGACAGCTGGAAACAGGAAT
 GCACATCCCCAGGCCCTGGCCACACCTTCCACCGGGAGCGGGCGGA
 ATCTGCTGCCAGGCTCTGGGGCAGCTCTGAGAGGCCCCGGTCTGGAGCC
 CAGCCGTGGCGTTGACGCCCTGGGGCTGTGGACAGCGTGTCTCATT
 GCCCCCTGGAGGTGGGGCCAGGTTCTGGGAGGAGTGGCCCCCTGCC
 CTCTCCCCACCAACCAACTCTGCTGTGCAAGGGGGACACACACT
 CCGGTTCAAGGACCTTGTGACGTGCCGCTTCTCTGCAAGAGAAATGCC
 GAGCAGATTTGTCCGCACGGCTGCTCCCGAGGGCTACCGAGAGCCCC
 TCACCTAAACGGGGGGCTCAGCAGCCCCGGGGCTGTCCCCACCGCC
 AGGTGGGGTTCTCTGTGCCAGTGTGGGCATCTCTGTAAGATACCTGT
 TTATCTGCTCATGCTGGTCTCCCCAGAAGGTAGAGCAGGGGGCGCA
 CAGCCGTCCCTGGGGTGGCCACTGCCCTGGGGCTAGGCTCCATGCAG
 GGAGGGACGCCCTGGTGAACAGAGAGCCCCGTGTGAGTGTGCC
 AGCCTGCCCTAGGTACAGCCAAAGCCGGCATTAACCACCAGGCC
 CGA

FIGURE 6, CONTD.

Contig 101 (600 bp)

TCTAGAATACCTGGCCCTCAGGGACGTGCTCTGTAGCTGC GGCTTCAAG
 GGCAAAGTSTAATTAAACATCCCCAGGGCTTCCAGTTGGCACAGGG
 CACCCACATGAGGAGCAGCCTCTGGTGCAAAGGGGCCACTGGTGCAG
 GCGCTGGGCTGACTGCACCCCCGATGCTTCCCCTCACTCACCTGCTGG
 CCCACCCCTGACCACAGCACCTGTGGAACACTAGGCCTGGCAGCCACA
 CGCTGCTCACTGGAGGCCAGTGCAGGCCAGGCTGGCTACGCTAG
 CAGATGCCGCTGCCCTGCCCTAGCCATGCCAGGAGGCCAG
 GGTGGGGCACAGGAAGGACGATGGGGCCCCAGGTGAGGCCACATCCAGGC
 CACAGCCGTGGCACACGAAGGGGCCCTGAAGGGGGTTGGGGGGCAGA
 CCC'TGCCCCCCCCCTGCCGCCAGCCTGCCCTTGCCCTCAAGGCCTCTA
 TGTTGCACTGGGTGGGCCAGCCTGCCCTTGCCCTCAAGGCCTCTA
 AAATGCCCTTTCTGTAACAGGACTTACCAAGCTAGCGAGGCCCTC

Contig 102 (1867 bp)

AGTATATCGGGTGGAGACTGGGGACCGGTCTGCCGGAAAGCCCCACCATAA
 AGGCCACGTTGGGCCACAGTCCGGGCCAGTGAGTCGGGGGGTCCCGCG
 GGTCTGCTTGTGAACACCAGGATCTAAGAGGTACCGAGGCCAGGCCAA
 CTTACGTGAGCAAGTGAAGCAAATGACTGAATGAGAGCGTGAGCGAATGA
 GTGAGGGGTGAGTCCGTACCACCGCAGGCTAGGCTAGCCAACCGCTGT
 CCCCGC'CTCCACTGGTACCGAGAACGAAAGAGTGGGAAAGAGTGGT
 TGTCCTCCACAACCCAGTCCCCAACCCCCCTGGACGCCACCCCTCCAG
 GGGTCCGGGCTGGCTGTGGGCCCCAGTCTGGAGGCTCTGCCACCTTC
 CTCATCCGTTCTCCAGCACCCAGGTTCTGCTGAGGCCCTCTGGGCCA
 CAGGCCCTGGGGACAAAGAGGGCACCTGGAGGCTAGGGAGCCTCACCT
 GCCTCGTGGTCTGGCGGAGGCGGGTCTGGACATGTGATAGACGGGCTG
 GGCTCAGCAGCTCTGTTGAAGATGTCAGGGACAGCCTGGGCACTCTC
 CCACCAAGGAGAACTTATTCCCTGGTGGGTCCCCCGGGGAAGGGATGGG
 ATCCCCAGGGGGACCCCAGAGCTCCACACGGACCTGCTCCCTCCAGC
 CCCTGGCCCACACGGATGTCACAGTCAGCCTCGAACACGGCACCTGTTG
 GACTTTGCTCTGAGGGTCTCTCAGGGACGGGCTCCGCTGCA
 TGGTCTGGAAGGCCAGTGGGACTCGGTGGTACAGGGACAGGGCTCTT
 GGAGTGGGTGCGGGGGAGCCCCAGGGAGCTGCTTGGCCTTGTGAGG
 CTGAGTGGCTGAAGTCAGGCAAGCTCCCCAGGGCTCCCTGACCCCCC
 CACCTAAAAAATCCAGAGCATCCTTGTCTGGTCTGGTCAAGGCTCTC
 TGAGGTCAACCCCTGCGTGGCTGGCCAGTGGGCTGGAGCAGGAAGAAA
 GCAGGACAGCCCCCGCCCTGGCCAGACTCCCCAAACCCAGCAGGAGAC
 ACCTGAAACGGGATGGAACCATCCTGAAAAGAGCCACCTCTCCCTTA
 TGCATCAGCTGGGGGCTCTGGGGGCCGCCAGGCCAGATGTCGG
 GCTGCTCCCGTCACTCCAGGGTTCTGGGCCAGGACTCTGTC
 CCAAGCATGCAGAGGGTCCAGGCTGGGCTCTCATGCTGCCGTGCA
 TGGTGGGAAGGAAGGGGACAGTCTGGAGACCCCCGCCCTCCCATGCG
 TGGCGCCGGGGACAAAGCCGGCTGGGCTCAGGTTGGGTTAGAGCA
 AACG'TGATCTGACCTGGTTCTGAGATGTCGGGGGAGCTGGGCTGTG
 CGCTCGCATTTCTGTTTCTCTGGGAGGCCCTGCGTGCCTGTC
 CCGGCCAGCCCCACGGAGGGACGCAGGGTGGCTGGGGCTCTGGGCC
 CCTGCCCGACCCAGAACGTCGGCTCAGCTTTTGTCCTGACCCATC
 ACTAAGGGCACCCTCTGACCCGGAGCCCTGCTCCAGGTGGGATTGG
 GGGCTCCCTGGGTCATAGGACCTGGTGGGGCATCCAGGGCTGTG
 CATGCCCTCCCCAGAAGACTCTGGGGCTGCGGGAGGGTTCCCCAGCT
 TCGGGCCAGCTGGGGAGGGCGGAAGGCGCTGGAGGCCCTGCTGCCCC
 GGGAGCATGGCTCGCTGAGACTGGGCCAGACACCCAGCCACCACT
 GGCGTCTGGAAAGCACT

Contig 103 (650 bp)

GTTGAGGATTCCCTCGGCAATTCTCGTCACTGGCGCTCCAATCGCCTCG
 ATGGGCTTCTCCTCCAGATAACAGCTGCAGATCCTGGGGGCCACACCGTT
 GAGCGTCACCTCGTACTGCAGATTGCACTCGTGTCAATGGACATCAGG
 CCATGCCGACGGCATGTGGATTCTGCACTCCGTGCTCTGCGCTTC
 AGCAGAATGGGTTCCGGCAGTCCCGAGCATCGGCCACTGGACGGGGCAC
 TAGGCGGCCACGGCATAGGCTCGTCTCATGCTCGGTGGGCCACATTAACGC
 CCAGTTCGCCGGCATACAGCGACTCGAGGGACCTTGGGACCCAACCTCTCC
 ACACTACCAATGGCCTGGTTGAAGTGAAGCTCGGCGTCAAGATCTCCAG
 CTTGGCCTTCCGCTGCCCTGCTCTCAATCAAACGTGATGTTGGGCTAT
 CCCGGGTGTTACGTGCTCGTTCGATGTTGAGGCCAGAGATCCATCG
 GTGTTCAAGTAGACCCACGCCAAACCCCTGCTCTGGTCAAGGATTCCGGC

FIGURE 6, CONTD.

ACTGTGCGGCCAGCAGGGTCTGGAAGATTCGCAGCTGGCTCGGTCA
 CGATGTGCCCTGGATGCCAGATGTGGTACTTCTGGACTCCACGGTC
 Contig 104 (1630 bp)
 GGTGTTGTCAGTCTGTTGGCTCAGACCCCTGCTGTGGCACAGGGTCCATC
 CTTAGCCCAGAACTTGCACATGCCACAGGTGCACCCAAAAGAAAATTCT
 TACTAATAAGTTGTCATTGCCCTTACGGTAGGTGGCATCAAACAGCAA
 ATTTAAAACACCATCTATCAAATACATAGACCGCGTCAAGGGAAAGAAC
 TTTCTATTTCAGCACCTTAACATGGCTTGCCCCAATTGGGACCAGGG
 TGCTGTTTCATCTCTCCCTGCAGGTGGTCCCCAGATGACCAAGGCCGG
 TCCTGGGGGGAGCCGGACTGTGGATCCAGTTGCTTCCCAGACAGG
 CTGACAGGAGAGCAGCAAGGCCACCCCAACCGAAACCAAAGCCAGAAC
 GAGCAGAAAGATGCCGTCTTCAAGTGGGGCTGGGAGCTTCCTCCATC
 CTCCGGAGCCGTGAGGCTGCCCTGGAGCTGGAGGCCACAGAGGGACCC
 GGCTTGACCGCCCTCTGGGACCCAAATCAGGACCCCTGACTCAGATGC
 TGAGGGGCTGCCACAACACCCAGGACCCCTGCTGCTTCCCAGAACCGCT
 GTGTCCATCAAGGTCAGATGGCACCCGTGCTCCCAGTGGAGCACGGACT
 CGGTGGGCAGGCTTCCCT'GGGCACCGATGCACCTTGAGGGCAGAGAC
 GGGGCCAATAACGTTCCAAACCAAGTGGGTGAGGGACCCGACCGGGCC
 GACACGGCAGCCGGATGCAGGGACTCCGTGCTGGCCAGCCTCCCTTG
 GGGTGGTCTGTGCTCAGGGGTGGATAGGCCATCATGTGGGTGGCTC
 TGGGACATCCGTTCTCTGATGGGTGAGTT'ICAGCCACAGAGATAATTCC
 CAGGACTACAAAGCTGGTCCCTGGGCACCTGCTGTCACAAAAAGACA
 AGGCCCTGACCCCCAGTAGCCAAGTCCCCCAGGGGCTCCCCAGGGTCTG
 GTCATCCAGACTGTGCCAGCCGTGCTGCCGCCAGTCCCTGCTGACCC
 GAGTCTCTGTAACATCCCCGGCCCAACCTTACCCAAAGGCCAAGGCCA
 AAGCACCAGCCCCCTGCACACAGATGAGGCCCCATGGCTCCCCGACC
 TAACTCTGCTGAGTTGGCTTCAGGCTCGGGTGGGGCAAGGGCTGC
 ATCTCAGGCTCCGGGAGAAGTTGCTGCTCCACAGCACAGCCAGGGCC
 TGCTGACCACCTGGGCCGGTGGATCTGGCTAGAAATGCTGCTAAGGTG
 TCCTTGCAAGCAGCCCCGGGGCCGGCCCTCCAGGAAGGAAGGGGACA
 TTGCCAGGACTCAGCAATGAAGCCATCCCAGGTTTGAAATCCCGGTCCC
 ACCACCTCCACCTCTGACCTCAGGCACTCGGCTTCAGAGCTGCCCTT
 TCTGACTCTGGACACGGGGCTGTGAGGCCCTCTCGTGTGACAGCTG
 GGGGGGGCACTCTAACGAGGTGGGCCGTGCUAGGTGACTGACCA
 GCCCTTCTCTCAAAACGCCGCCAGTGACCTCACGGGAGGCAG
 GGCAGGAACCCAAACCAAACAGAACATCA
 Contig 105 (1820 bp)
 AGTGAGCCCTGCAGGACAGTCTGCTGAGGGGTGTCCTGGCTCCTCAGAGG
 CTCATGCCACGGCACTGGGAGGATAGCAGGTGGACCCCTGCATCCAGG
 TCCCAGGTCCCAGGTCCCAGACCCCCGGACAGGCTTCTATCTGCAGGAG
 GGGGGCTCTGGGGCAGCAGGGATGTGGCTGTGAGGCCCTGTCAGTCTC
 CTGTTTCTATCTCTCTGATCACACACACACACACACACACA
 CACACACACACGCAACGCAACACACAGAGGCGTGAACAGGGCTGCA
 GACAGGGCCATGGGAGGACTGCCGGCAGTGCACCCAGATGCCACACGG
 TGGGGCCCTGCTCCACTTTGCTGCTGATGCTTCCGCCAGGCTGCTGG
 GAGCAAGCACTAGCTCCAGGGCTCTGACACAGAGAGGGATGGGAGGGT
 CATGGGTCAACAGGCCAGGGAAATGGGAATAGGATCTGAGGGGGGG
 GCAAGGGGCCAGGGCAGGCTGCACTGCCAGAGCTCCCTGCACCTGCAG
 GACCAGCCACAGGCAACAGCTGCAAGGCAGAGCAGGGCTCTGCTCC
 CAGAAGCTGCCACAGCACATGGGTCTGACAGCCCCACCCGGCTCCC
 ACAGAGGGCGGGTCCCCAAACTCCTCCCCGTCCCACCTCACAGCTCA
 GCATCTCACTGCCGTGAGGACGCCAACACACGGCACACACACACAT
 GCACGCACACACATGAATGCACTGCAAGCACACACTCACAGCTAAC
 GTACACACATGCACTCACAAACACAGTACATGCAAGCACATGCTGGTCT
 TTGCCCCGTGGAGGGAGGATGGAGGCCAGCCCCGTGGGAGGGCATGT
 GGAGTGTGGGGGCTGGCTCAACGCCCTGCTCAACAGGCCACCAACGC
 TGGACTGAGATAAGCCGGGGCCGCTGGCTCCCTGGGGCCGCTCAGCAGG
 TTGACGCCACACAGGTGGCACTGCCTCTTCAAGAGACGGATGTGGCC
 ATGCCACCTCACGCCCTCACAGTCCCCCTCAGCTTGTGCTGTCCC
 TGTCAGTGTACCCGGGCCCTCTCTTCCAGGGCAAAGCGAGTTCA
 GGGACAGTGGCGCCCCATAATTACTCACCCAGGTGCTGCTCTGTGG
 TGGCCTTGAGGCCAAGGTGCTCCATGGGGGCCACAGGGCTGGCAGGGT
 CACTTCTGAGGCACCCAGGGCCAGGGGGTGGGCCAGGCCCTGGCCGGT

FIGURE 6, CONTD.

CCCCATCTGGAAATGAGGGCCTTGCAGAGGGCGGTGCACCCCTTTACA
 GCAGCCCCGGGGAGAGTGACTCCTCGCTCATGGACCTGGGGCTGACCT
 GTCACGTGTCGCCCCAGTTGCACCCCATCCATTCCGGGTGGAAGGGAC
 AAAGCCATCTGGTCGTCTAGAGGACCTGGAGCCCTTGGCCCCAGC
 AGCCCAGCCCCCTCCGGGCCGCATCTGCCCCACCCAAAATCACCTGT
 GCCCACAGGGTCCCCCTCTGGGTGTCAGGGCGACCCAGAACTGCCCTG
 CAGACACACCCAGCCCAGGACATGGCCCTTGCCGGCTGTGCTGCTG
 GGGCAGCCTGACTGCCACAGACAGGGCCTTGGAGGACCATGCTGAG
 CCCCAAGGCACATCCCACGGGCCACACAGCCAGCGCCTGTAGACGAT
 GCCACTTGGGGTGGGGGAG

Contig 106 (1500 bp)

TGCCGAATAGAGGTGAAACCAAGACCCAAAAAATGTCCACATTTCA
 ATTATTAGAAATTAGAATAATTTACAGGAGTAAAAGGTATTCCAT
 TCTGGGGCGGGTGGGCATGCCACGGCATGCAGGCATTCCCCGACCAGC
 GACTGAACTCGAGGCCACGGCAGTCACCATGCTGGATCCTAACCTGCTGA
 GCCCTGGGCACTCCAGACACTCCATATTCAATGTAACATTTTAAC
 CAAAAAAATGACAAAGCTTTCAAAACAAAACACATTCAATGGAAGAGT
 GGCATTGCTTACGCCCTGGATGGTCGCTGCCGCTTGCAGGGACGACGAGGG
 CCCCCGGGGAGGCCCTCCGCACGGCATCAGGACGTGGTCTCAGGG
 AGCGGGGCACTCAGGCCCTCGGGTGCCTGGGTTCTTTCAGGG
 ACCACACCCGGACTCAGCATTGGGGTCTTAAACCTGAGAGGCACAGC
 GGGGCTGAAAGCCACATCACTGACCTCCAGACTCTGTTATGTGAAAAC
 CCATCCGTCACGGAGACCAAAGAGACAGACGAACAAACGCAAGGTGGC
 CTAGGTGGGACAGCATGAGGGCAGAGCGGAAACCTCCGAAATCCCG
 GCGAACCTGGACGTCGCCAGCTTACTTGACGCAAACATAGGGGATT
 CAGGAACCTCTTACCGATTGCAATTAAATTGCTGCAAATCTAAAAT
 CGTCTCAAGCACAATGCTCACTGCATGGAAAAACCCAGGGTAGGTCTCG
 CCCGATCAGGATGTTTCCCGTGCCTCTGTGCGGGTGTGCCCCCTGCG
 CTGGTCACTGGAGAGTGTCTCCACCGACGACATGAAACTTCCAGGTC
 CACGCTCTCTGCTGCCAGGAAACCTCATCTCTGTGAATCTCCGCC
 AGCTCCGGGGAGCCTCCAGGGCTGGAGGACGGCCGCTCCAGG
 GGGCAGGTGCACGCTCCAAAGCTCCGCTCTGCTAGGACGCTCAGAC
 GGCATCACCCACAAACCCACGAACCTGTTCCCTGAGGCGACAGGCTCG
 CCCTCTCCGAGAACGAGCCGACACGTCAGCAAGGGGCCAGTC
 TTGTAACCAAATGGCCACATAGAGTTGCTCTGGAGGCACGGGGTCTGT
 CTGGCCGACCAACTGCACACGCAAGAATATGCTGGACACGCTCCGGGGT
 CCAGCTCATGAAATTAAAGTTACTGCTTCACCAAGTACATTCTTA
 AGTGTAGCTGGCCGCCAGCTGGGGCTCGCTCCGAGGCTGCCTCTGC
 CTGGAACCTTGTGCTGGGACCCCTCTCCAGCCCCACCCAGCCCC
 AGCCCAAGGCAACATCCTTCTGTAAGACACCCGCTACCCCTGCCCTCCGC
 TTCTCCTCTGGATCCAATCTCCTCCGCTTCAAGCTCTTGAGGCT

Contig 107 (550 bp)

ATGGCACTCGCGTTGTGACTGAGCTACCGGACGGCCGACAGGGCCAC
 GAGGGCGACAAGCGGGCTGAGAACCTGTGCGAGGGCAGGTCCCTGCG
 GCTGCAGACAAGCCCTCATCGCAGGCCACAGACAGGAGCCCCCGTGTGA
 CCCTCAGGCTGCCAGGACCAAAGTCACGGCTCTGCTGGAAAACCTCGAAC
 CTGATGACTGGGGGGTGACCCCTGAGGCTTGAATTCCGGCTCTGCAGA
 ACGCTCTGAGCTACGGGAGTGGCCACCCCTCTCGGTTAGCCCTGTGTC
 TTCCCTGGCTTCCAGCCTAGAGCAAAGCATTAATCACAGTGTGGCCA
 GCCCCGGACCGTGCAGGACCTTAGACAAAAGAGGAGGGAGAGAGATGAG
 GCAGAGAGGAGAGACAGAGGAGAGACAGATAGACAGAGACAGAG
 GCAGAGAGAGACAGACAGAGACAGAGACAGAGGCGGAGAGACAGACAG
 ACAGAGGTGGAGAGACAGGCAGACAGAGACAGAGGCCAGAGAGAGACAG

Contig 108 (900 bp)

TTCTAAACTCTTACTAGTTCTAGTTCTATTGTTCTGGGGGGT
 TCTATAAACATCGTGTGATTGGAGATGGTTTGTGTTTCTCT
 CCAAACCTGTATGCTCATGTTCTTCTGTCTTACACTGGCTAG
 GACTTCCAGTAAACACTAGATGAAACATGAGAGGAGAGCCAGGCC
 CTTCTCAGTCTGGAGGAAACAGTCAGTCTTCCTCATTTAGAATGAGAG
 CTTTCTTTCTTTCTTCTTCTTCTTTCTTTCTTTAATAGGTT
 AAGGAACCTCTGTATTCTTATTTTTAGAGTTGTTATTTTT
 CTCTCTTTAGGGCTGCACCCGAGGCATATGGAGGTTCTAAGGCTGGGG
 TCGAATTGGAGCTACAGTCGATGGCCTACGCCACAGCAATGTGAGATCTG
 AGCCACATCTGCACCTATACACAGCTCACAGCAATGTCAGATGGTAA

FIGURE 6., CONTD.

CCCACTGAACAAGGCCAGGGATTGAGCCCGATCCTCATGGATGCCAGTC
 AGTTTCGTGACCGCTGAGCCATGAAGGAACTTCCAATAATGCACCAATT
 TTAATGAAAAAGACAAAGCATCCAGCCCACAGCCTGACTAAGGAGTTG
 GAGGCTGACCCCTGCGTGGCTGGGCTGGGCTGGCTGGTCGGGGT
 GGGGGGGGGTGGGGGGACCTGTGGACCCCTCCCTCAGCCAGGCCTG
 CCCCTCCATCCCTAGCTGTGGGGCTGGAGGAAGGCCGGTGGATGACG
 GTCCCTGGGACCCCTCCTCATATGTATCTGGGTCCCTGGTCCCTGAGG
 CCCAGGTCAAGTCATGGGACTCAAAGGTCAGCCAAGGGTAGGCCAGAG
 Contig 109 (950 bp).

TAACCCACTGACCGAGGCCAGGGATCAAACCTGCAACCTCATGCTTCTA
 GTCGGTTCGTAACCACACTGCCACAACGGAACTCCTTGCTTTGTTT
 TAGGATTCACATACACGTGATAACGTGCGTATTATCTTCTCATCT
 GAATTATTCACCTAGCCTAACGCCCTCAGGGTCCATCCATGGTGCCTGG
 AGTGGCAGGATTGCTTCTTTTTTTTTTTGTGGCTGAAATCAG
 TCCAGGATTATCTCTTTCTGTTCATCTGTGGAGGACACAGGCTGCGT
 CCGTGTGACGCTGCGGGAAATACGGGGCCATGCCCTTCTGAGGCCAG
 TGTTCTCATTTCTGGAGAAGTACCCGGAGTGGAACGGCTGGTCGTC
 CTGAGTTCTGTGCTGATTTTGAAAGACGCTGGAGCGCTTCCACAG
 TGGCTGACCGACTGACATTCCCACCGAACGTGACCGGATTCCCCATCCT
 TTTTCCACGTTTCCCGCACTTGCTATTGGCCCTGCGATGTCGGCC
 TCTCGTCAGGTGTGAGGGGAGTCTCGTGCAGGGGAGGAGGAC
 CGTGAACGCTGTTCACGTTCTGTTGGGCCACCTGGCTGGCTTCTCCGG
 AAAAAGGGCTGTTAGGCTCTGCCCATTCTCAGTCTGATTGTTGG
 GGTTTGCTGTTGAGTTGTGAGTCCGACGTATGGGGGCATCAACC
 CTTTACGCTATGCAATTGGCAAGTCCGTTCTCCATGTTCCGCGGCC
 GCCTTGGCACGTGAGGGCTCTTGGCTTCTGGTGCAGAAGGC
 TTCGGTCTGATGTCGGGCCATTGTTATCTCTTTCTTCTCACCGT
 TGTTTGATGTCAGATGCAAAATCCATTGCCAGGGCTGTGCCAGAAC
 Contig 110 (306 bp)

CGCCACCTCAATGCCGGTTGTTCTGCAACACGGTCAGATAACACAGCG
 CACCTAACAGGTCGAACACTGCCAGAACTGCGAACAGCGGCTGAAGCCG
 ATGGTGTCAAGCCAGTGCACCGACAACCCAGCGAACAGCGTACTGCCAG
 CCATGCCGACATCCGGTTAACCCGTTGCGCTGCCACTTCGTTACGAC
 CAAACACATCGGAAGAGAGCGTAATCAGCGGCCAGACAGTGCCTGGTGG
 GCAAAACACCAGATAACAGCAGCATAATTGCGACATACGGGTTGGTGAA
 CAGGCC

Contig 111 (800 bp)

GTTTTCCATGATGCCAACAGGGGGCCGGGACCGCAGCAGGGAAAGGCTCA
 TCCTGGCTCTGTAAGACCTGAAAACACCTCATTCCTCTGGCTTGGCCT
 GCTCTCGGTACGCAAGTTGCTGAGACTGATGTTGGGATCAGTGGGAG
 CAGGAATCTTCTGATTGCGCTTCAAAGTGTCCCAGCAGAACGCTGT
 GATGGCAATGCCAAGGCTATCCATGGAGGTGGCTGTGCCAGGGCCCCAT
 TTCCCTGGAGGCCATTCCAGGAAGGAATCTGTAGCCCCAGGCTCCAGC
 AGCCAGTGCACGGCCCTGGACTATCCGGTAGATCAGAGGGAGGAACA
 GAGCTGTTGATGTAAGCAGGGCCAAAGTCAATTATGTCTGGTC
 CCAGCAGGGTGGCCAGGAGGCCCTCGTAACTCTTAAGAATCTGGTCTG
 GTCACTAAATTGATGACCAATTGACTGAGCACACATCCGTTAAGTA
 GAATTTCAGGATGACTAGGAGTTGCCACCTGAAGGCAGGAAGGGCAT
 TCCAGGCAGAGGGTACAGAGGTGAGAGGGAGGCCCTGACACTTTGGCGT
 GCAGGGGGTTGATGTAAGCAGGGCCACACAGTGTATGCCAGGCCT
 GGCACGGCTGTGGTGTGGCTGGAGAGGAAGGGAGGGTGAAGTGC
 AAGGTCTCCAGGCCAAAGACTGAAGGTGACCGCCGCTGCCGGGCTG
 GCCCGCAGACCAGGAGGGAGCAGGTGGAGCTGGCTTGTGTCGGGGAC
 Contig 112 (3062 bp)

CACACCCACGGAGAGGAAAGACCCACACAGTCTGATGACAGCTGGCTC
 GGGGCTGGAGCCCCGAGTTATAATGTCCATCACGAGCTGTGTTCTGTC
 GAGCCATCAGTGGAGGCCAGGGCAGCTCAGCAGCCAAAAATGAAGAG
 CTAGGTCTGGGATTGGCCCAAGCAGAGGGCACAGGAAGCCACATAAAC
 AAGGCACCCAAACCCCCCTGTCATCCACCAATGTCACATTCAAGTCACACC
 CCTGGCTCTGGGGAGGTCCCTAAGATCCGGTGGCAGGGGAGGAAGGAAA
 GTCTGACTGGATTCTGACAGGTGTATCAGGGAGGCCAGGGAGGTG
 CTCGGGCAGTGCACCTCCCAGGGCATGATGGTCAATGGACCAAGATGGCA
 GTTATGGGAGGAACCTCCCCCTGGTCAAGGCTGTGGTGTACCTGG
 TCATGCATTCGAGTGGAAAGGAAAGAACATACAACACTCCACCCAGC

FIGURE 6, CONTD.

AGCTTTAGGCTGGTCAAAGCTCTGCCCTCTGGAAAGAGACAGCCT
 CTGTCAGCGAACACTGCTAAACCTAAAGGAAGAACTGCCACC'TGGTCAG
 GGACTTCCTAGCCAACCAACCTACAGGTGACGGCCGGAGCATCACGAG
 GAGGTAGGGGACGGGAAGGGATGCATTGCTGCTAGCGGATCCACTGGG
 GCCTTCTGGAGCCCCACGCCCACACTTACTGCAAATGCACAAGCCCC
 AGGCAGCAGGACAAGTCACAGTAGCTGGGTTATCCAAGGAGTCAGGGA
 CCTACCTGGAAAGAGTCTAGAACAGGTGACAGGGAGGGAGAGGATGGTAC
 CAGCAGTATAGGGAGAATCAGAAATCTGACCCACCCCTGGGGCTGACTG
 ACTCCCAGACCAAATGCCACACTCAGGTTCCCGTCTGCACCTCCA
 GGGCTGGGCCACGGGAGTTAGGGCCCAGGTAGCATCAGAGGCTCCAG
 GTACAGGCACAAGCAGCAACCACAGGAGGGATCCAGGCCAGGGAGCATCC
 AAGAACAGCAGAAGCTCACCTAGGTACAGTTCTGGCACCTCAAGTT
 GAGAACATCTCTAGACAGTGCTGACCCAAACCAATGGAGTGTCTGG
 ACTAGACTAGGGCACGCCATTGGTCCAGGTGCCCCATCTGTACAAAG
 GGTGTGCGGCCCGGGACACAATGAGCTCCATGGGAAGGGTCTTG
 CGAATCTCTAGAACAGCAGATGTAAGAGGTGACGTTCCAGCTTGCCCTGG
 GATGTTAGAAGTGGAAAAGCACCCCTCCCCGACAAGGGATGAAAGCAAGA
 GGCACAAAACAACCTGAAATTCCAACGCCCTGGAGATCCTGGAGAAC
 TGGGATTCTCACCTGTAGGGCACCTGTAGGGAGGGCTGTGAGCAC
 CTGCTGACCTGCAACAGAGATGCCAATACTAACAGAACATCAGCTAAAA
 GTCTCCAGGAATCTGGAGCTGAGGAAGGGCTCAGGAGAGGTCACAGA
 AGCCCTGGGCTATAGATAAAGGACGTGACACCCACTTGCAAGGTCCC
 CATGGACCCCGGGACATTCAACTGATGGGCAAGATTCCAAAATGCAC
 CCCTGTGTGGGGCTGGTGGGGTCAGCAGACACCCACACCAAGG
 CACAAAGCACACCCCTCAGGCTACTCTCTCCCTCCCTTGGAACA
 TGAGCCTTGAGATGCTGGGACGTGAAAACACTGTCACACTTAGTCC
 TGGTAAAACACTGACTGCGCCCGAGGGAAAGAATCATAAAGACCCCTACACC
 CACACACAGCTTAATTACAGCTGTGAGTGGGCTGGAGGCCAAGAATG
 TCTACACCCATAAGACATAGCTTAATCAGAAAACAAGAACAGCCCCAA
 CCCACACCCAGGCTGACAACAAAGGTCACTGGGAATATCACTGGGA
 ATGTTCTAGGAGTGTAGAAAGACACACCAACTAGGGCATGATGCAAAGAT
 AATACTTCAGCCTGGGAGTGGATGTGACACAGGGAAAGCATAAAGTGT
 GGCAGAGGACTTTGATGTCAGTGAGGAAAGGCCACAAAAACTCTAGCTTA
 GCTCCATTCCACAAGATTGACTGCAAAACCCCATGCTAAACACAGCA
 AAAAGAAAAGAATCTCATTCCAGGCATAAAATTTCCTCCCTAGTCTG
 CTGTCCTCCATAAGATGCTGATTTCAACAGGAATTACGAGGCTATAAGA
 AAGGAAGAAAACACTACACACTGTCAAGAGAAAGCAGAACATAACCA
 GACTCGTAGCACAGACACTGGAATTGTCAGGATATTAAATAACCGTGA
 CAAATCATTAAGATTCTAATGAGAAGGGGTAGACATGTAAGATCACA
 TAGATTTCAGCAAAGAGATGAAACTCGAAGGAAAATTAAATGGGAGCCCT
 AGAGTAAAACACTGTAGCAGAGAAGATGGGTCATCCGTAAACATGAC
 ACAGCTTAGGAAAGAATCAGTGAACTTGAGACAGGCCACAGAAATAT
 CCAAAC'GAAATGCAAGGGAGAAAATAATGAAAGGGGGAGAGGAGAAAAA
 ATAAGAACAAACATCCAAGAGCTGGAGGGTGACACTGAAGAACAGAG
 CATAGGCATAGCTGGAAATCTCAGAAAGAGAGAAAAGAACATAACCCAGATG
 TAATGGATGAGAAATTTCACAGAACGCGTGTCAAGCAACAAACCATACATC
 CAAGAACGCTCAGAGAACACCAAGCAAGTAAGTACTGTAAAAAAATAGCC
 CGAGGTATAACCTCATTCAAGGCTGCTGAAATCCATGACAAAAGAAGTCTT
 GAAAGTAGGCAAGAACAGAAGGGCTGTTCCATTCAAGAGGGAAAGACACC
 ATTGTTGCCAGAAACCAAATAACCAAGGGCTGAAAGGGTAAAACTTTTT
 TTTTTTTTTTTTTGGCCATGCTGTGCCATGTGGAGGT'TCCCGA
 TCAGGGATCAAC
 Contig 113 (1300 bp)
 AACGGATAAATACAGGTGACCCACAGGAGAACGCTGAACTACAAACAGT
 TCACAAACGGCACCAAAAAATACCGAAGGCTCAAGGTTAAATCTGACCC
 AGATGAAAGGCCTCTCACGGAAATGGCAAAGTGGCGCTGAGAGGCATG
 AGAGGTTCGAATAGTGGAGGGCTCCGCCGTTTCCGGGTGGAGGATT
 CAGTGACGTACCGACGCCAATCTCTGAAACGCGCTCTAGGTTAGTG
 CAGCCAGACCCACTGGCAGGCCCTCGCTGAGAGAACAGCCAGCTGG
 GTCTTGAGGTTCTACAGCGAAGCAAAGGGTCTAGAAAAAGCAGACGTCT
 CTGGAAAGGGAGAAGCAGCCGATGGATTGCACTACGGGAGAGGAGATT
 CTCGGACAGTGGCACAGGAGAGGGTGGACAGAGACTGGTGCACCCAG
 CGGGCCAGGAATAAGTCCACACCCACACGTACCATCTGTTGTTATT
 ATTTTTCCCTTTCAAGGGCCACTCCTGGGCATGTGGAGGCTCCAGCC

FIGURE 6, CONTD.

AGGAGTCGAATCGGAGCTGCAGCTACAAGCCTACCCCACAGGCCACAGCGA
 CACAGGATCTGAGCCATGTCTGCAGCCTACACCACAGCTCCCCGCAATAT
 TGGATCCTTAACCCACTGAGCAACGCCAGGGACTGAACCCACGTGCTCAT
 GGATACTAGTTGGTTGTTACCACTGAGTCACAGTGGGAACCTCTTAA
 TTTTAATTGGTGAAGGTTAGAAGACTCTTAATTGGTAGGTATAGA
 TTATATTACGCACCATTCTTCTGACTTCGGTGCACGGCTTCAACAA
 ATGGGTGCTGGACCTGCTGGTGCCTCTTCAAATGAACCACAAGCCCTC
 CCTCGCGCCGTATGAAAATTAACTCGAGGGCTCATAGACATAACGT
 AAACCTCTAAAGCTATAAAATTCCAGAAGAAAAGCTAAGGAAACCTTTG
 GGGTCTGGCAAAGATTCTTACCCATGACAGCAAAATTCAATCTACA
 GAAGAACCTGGTGGCTTATCGCATTAAAACACCTGCCCTTGATGA
 TGCTGCGAAAACCGAACATGCAGCAAAACGGATGGAACAGCAGGTCT
 CACACTCAGTGCACGCTCAGCAGCAAAAGGGAAAGACACGCCACGTGACATCC
 CTAGATGCAGAAATGAAAAACACGGCCCCGTGAACCCACCT'CAAGAGAG
 AGACAGACCTACAGACGCAGCAAATTGGGTTGCCAGGGGATGCCGG
 Contig 114 (3000 bp)
 TGTGAGACCCCTTGGGGCCAGGACCCCCAAGGTGACCGAAGGCCCTCA
 GCGCCCCCAGCCGCCCATCCCCCTTTCCGACACAGGATTTTCC
 CACCAAGCTCTGTTCCCTGGTCAGCCTCAGCTGACTTGGTGTGCAACCC
 CTCCCGGTGCCTGTATCCACGACAGCGTGACCTCTGGTGTGCAACCC
 AGGACCCCACGCTGGCAGGCCACGCCCTCCAGAGCACCCCCGCCATCC
 TCAGAGTCCAGAGGAAAGGCCCATGGACCCAGAAACCAAAGCAGA
 GACTCTGGGACGCCAGCAAGAACGTACACTGACTCCACCTGCTTCAGGC
 ACGGAGGCAGGGGTTATGAGCAGCCCTGGAAAGGGCTTCTTGTGTC
 CATCGAGGGGCTTCCAGGGCTCCTAGACGGGGATGAGTGTGGCAACATG
 TCGCCGATTACAAAAGACCTGCACTGCTGGATGGGTCCCCCGGC
 TAGAAAAGCAAAGGATTCCAGGCCAGTCGAGTAGGAGGGCGCTGGAGG
 CTGAGAGGCGGGGGCTGACCACACTCGGAAGCCCCGTGTTGG
 AGGGGAGCCGGCCGGCTGAGCCGGTGCAGCCCTCCGGATAAGCTCTA
 AGAGGGCGCTGCCCATGACCGCGTGACACACTCGCTGCCAGGG
 TCCCTCAGCACAGACCTTGTGGGAGGGACCTGGCAGGGGTGTGGCT
 CTGGGGAAAGGGTGTGCCCAGGAACCTGTTCTGGATTGGGGTGGG
 GTGGATATCCGCTCCAACCTACAGAAGGGAGGGCTTAAAAAGAGCCCC
 TTTGGTGTAGGGGCCAGCAATCCTTGGCTTTCTGGCCACTTGG
 GCTTGACGCTGGTCAGTGAATGGGAGGCCAGGGCAGAGGGGGCAGCCG
 GGCTGAGGCCAGGTTAGGCCAACCATCTCTGGCCACACTCCGAGGTG
 GGCAGCTACGGGGCCCCAGAGACACAAGCCCCAGGGCTTCCCCCCC
 GCCCTGCCAGATCACCAGGAGACCCAAAGCACCTCTGCCCTCCCCGT
 CCTGAGAAATGCCCATCTGGTACCCAAATCACCTCCAGAAGGTACA
 GTGGGGGGCAGGACAGGGGACCCCTGTTACAGAGCCCAGGGAGGCT
 TCCCAGGGCGAGGGGACTCCGTTGGGACAGACGGAGGCAGAGCGGG
 CTGATGGATTCTCCCGGTTCAAGGGATGCTGGCTGCCCTCCAGGA
 GCCGGCGGTGCCATCTGATCTGATTAAGGCCCTGCAGTCCCAGCTGGCG
 GCACAGCCTGGGGCTGGCGGGCAGGGAAAGGGCTGCTGCCCTCCAGC
 CGGTCAAGGCTCGTTCTCTCATTCCTCTCCATTAAAGTGTCAAC
 CATTATTGATTTTAAATCAGGACGTGCTGTCGTGACACAGCAAAGT
 GAACAAAATCAGAGCAAAGAGAGGCCAGGGCTGAAGCCCCAGAGGGCG
 GCCCTCAAATCGGGGTGTGCCCGGGCTCAAGCCCCCTTCTCTGG
 GGTCTGGGCATCGCTGGCTCTGTCTCATGACGACCGTGTGTTCCATATC
 TACGGAAACAGCTCGCATTAACAGGCAGGGAGGGCTGTTCTCCTT
 TATCTGCCACCATCGCGCTGGGCCAGCTGGAGCCCCAGCCGCTGACT
 TCCCCTCGCAGCAGGGCACTGATTGCAAGAACGGGACATCCAGCCCC
 CGCCTCTCAATGCCCGGGTGTGAGAGCATTCTGCCCAAACGGCTTGG
 TGGGACAAGGGATGGAGCTGTGCCAGGGCTGGCTGGGAGAAGGG
 GGCCTGCCGTGTGCCGTGGCTCCAGCACCCCTCGCTGCCAGGCTG
 CTCTGGAGAGGTGCCGGGGCCAGGGCAGGGCACCCCTGTTCTGCC
 CACGTCTCTGTCTGCTGAAAGTCCACAGACGCGTGTATACCCCTG
 GGAGTCAGGAGGATGGGGATAGTGGGCTGACGTGTTCTGAAAA
 AACACCGTTCCCTGAAATATATATGTATTAAATTCTGCAAGATAAA
 ACTGTGATAGTTCTGTTGAGAAGAAAACGCATCCATCTCCCTAGAAA
 GCCTGAAGAGGTACAGGAGCCTATAAAGGACAAGATGACAGATGCCCTA
 ACGCACACCAAATGTGGCTGGCCCCAGGGGACCGCATAGACGGGGCG
 CTCCAGATGCCACCGTGTGCGAGGGACACGGTTCAAGGGTGGCAGAGTAT

FIGURE 6, CONTD.

TCCTGGGGGGGGGGGCTCAGCGGTCCCATTTCCCCCTCCCTTCC
 TTCATTTCTTCCTTCTTCTTTCTTGTGTTTAGGGCCGCACCCG
 CGGCGTGTGGAGGTTCCCAGCCTAGGGTCTAATCAGAGCTACAGCTGCC
 GCCCTCCACCACAGCTCACGGCAACGCCGATCCTAACCCACGGAGCGA
 GACCAAGGGATGGAACCTGGGACCTATGGATCTTAGTTGGGTTTCTCC
 GCTGAGCCACAACGGGAACTCCAGCCATCCCATTCTTGCTCCAGTTCC
 AAGAAATTCCAATTCTTATTCTGTTCTTAAGGCCAGGGCGACAGCCAC
 GCCGAGTCCCAGAACGAGGGCTCAAGGGATGCTGCTGTTACTGTGTC
 GGGCGGGGGGGAGGTGATAAGAACCCCCAACACAGGGTGGCCAGCAAC
 GGGGGAGGGAGGGAGGGGGCTGGTGGGGAAAAGTCCCCCTGAACCCCATGG
 GCTGCCCTCCAGGCTGGGCACGACCCCGAGCCCCATGGGGAGGGAG
 AAACGGTCCCAGCCCCAGGCTGGGCTCCCGACCCCTGCCCTGACCCGC
 Contig 115 (1895 bp)
 TCATGGAAGCCCTTATCACAAACCTCGGATCCAAAACCCACTGCGCGAGTC
 CAGGGATAGAACTCGCATCCCCACAGCCCTATGTTGGGTCTTAACCG
 CTGAGCCACATGAAACTGGTAATCTATTTAGATGTTCCCTAGGGTTT
 TTGGCCTGCCTCTACGTGGGACCCCTGCTGGGCCAGGGATCAAACCCGC
 GCCACAGCTGTGACCCAAGCAGAGCACTGACAGCACCCGATCCTTAAGCA
 CGAGGGCAGAGGGAGGGCTGTGTTAGATTTGGTGGAGGATACTGCGT
 GGGATTCAGGATATTCACTTGGGCTGTGGAATTGGGAAATCCCTGTT
 AAGCAAAGAGAAATCCCTTCACTCTGTGTAAGTGGTAACTCTGCCACCAA
 ATGCCAGACCAGCGCTTCCGTGAGATCCGCTTTGTTGCAAATATCTGG
 TTTGAATGCTTTGATGCCCGACCAGACAGGGTGGGGAGCGCCGCCG
 GGGACCCGACGTGACCATCGTGCTCTGATCCGCCCTCTCCGGCACG
 CGCCCCCTGGTGCCTCTGGCTGCTTTAGTGGAGGAAGCTGAAGCCTCGC
 CACCCAGACCCCGAGACCGCAGGACCCAAATGCTCAAACACCTGCCCT
 CTGACTTTACAGGTCAGGTCAGGTCAGGTCAGGCTTCCACACCCCTAAGAGGG
 ACAGAGAGCACGGTGGCGCCAAGCCTCCACTGGAGTTTATAAGGTCTC
 CCTCCAGCTCGCAATGAAAATGAGCTGTGATAAGGAAAGACAAAATTAG
 TATGAAATCCAGATGCTCATCTACAATACAATGACCCGGGATTGGGT
 CTGAGCGACTGAAATCAAGGGGGCTCCGGAGGGAGGCTGTTAGAGGAA
 AGGCATTACGGAGGCTCAGGTCAGGAGGGCTTCCACACCCCTAAGAGGG
 CTGAGACGGCAAGTAGGGACCAAGCCCCGAGTCGGGAGAGCTGGCAGG
 AAGGAAGTCTGAGGTGACCCCCACCTGGGAGGAAGCTGCCTAGAGAAGCG
 GGGGCGGGAAAGCAGGGGATGCCCAAGGACAGGGACAGGGCGGAAA
 GGGCTCTGCAAGGCCCTCAATGCTGCCACAGTGTCCCTCGTAAGAGGGAG
 GCAGAGAGAATTGACACCGGGAGACCAACGGGACCACGGAGGTGGAGACC
 GGGCTGCCCGCGCTGCCAGTTGCTCCGAAGCCGCCCTCCCCAGAG
 CCTTTGGGAAGAGGCCAACCTGCAGTTGCTACTCGGGGACAGGGAC
 AGGGACAGCCCCCTGGAGGCCCTCTTAGGGCAGCATCCCCCAGAACCT
 TCCCTAACAGACCATCTGGAGAGAGATGGGCTGGGCTGCAGCTCTGG
 ACTGTTTGGCCACCCCGCGAGCACCAGTGGGTGCCAGCCTGGGCTGCC
 AGCCTAGGGCCGGGGAGGGCTGAGGGACTGGGCGCTCTGGGACT
 CCCCTGCTCCTGCCGTGAGGACAGCCACCTCCCAGCATCTGCTTCC
 GCCACCCACATCCCCAGGACGGTCAGCCAGGCATGCCCTGGCGTC
 CACTCACACCACAGGCCAGGAACCAAGGGGCAACACAGAAGGGCAGTT
 GCCATCTGCAGATCAAATGGACAAACTGGGGTCCGTGATGATGGCAGGCT
 CTGGGCGCCCGGGCTGGCAGGGGAGCCAGGACTGTGCGGCGATCACAGGA
 AGGGCATGACGGGGTAAAGCAAGAGTGGAAACCTCTGCCACCCGCTGG
 GCGCACATACCGGCCACCCCTGAGCCCCACCCCATTTGTTGCT

FIGURE 7

FIGURE 8

Contig 1 (1040 bp)

GGCGCCGGATCTTAATTAAGTCTGAGAGATCTGGGCCGCGGCCAGGGCTGCTTC
 CCCAAGTGTGGGCTCTGCATCCTGGCTGGAGGTCCACCCATGCCAAAGCTGGG
 TCCTCCACTGAATATTGGGGTCCACTCGCCAAGGCTGGGTGTCCAGTGTGCCAA
 CGGTACATGGAAGCAATGTCTCCAAAGGACCGTCCAAGGTGTGGCTAGGCCTGGACAGC
 TGTGAGCTCTGGGACTAGACTTGGTGCCGAACCTAGGGACCGTGGCCGAGGGCCC
 CCACGAGGCCAGGTGTTGGCCCAGGGACAGAACGGCAAGGGTGGCCGAGGGTTCTTT
 TGTTTGTCTTCTCTTCTTCTTCTTGGCCGAGGGTCTTAAAGCGCTCTCTG
 CTCTTGTCCCGATCCTGAGCGGGCAGTGTCTGGTGGGTGGGTGCTGGCAGCCGAG
 CAGGGCTGAGAGAGCCGGTGTCACTAGGGCGCCCCGGTGGCCAGCGGGCATGGC
 TGTCCAGACCTTGGATGGGGCAGCGAGGGACTGGGTGCCCCAGCCCCCGTGGGAAGCC
 CGCCCTGTGGAAGCCGCTGTGCTGCCAACAACAGCACCGTCGACTAGCTGGTGAATCAG
 CGCCCTGTGCCCGCTTAATCCACGGCGTTCTGCCAACCTGAGCCCTGACCCACACC
 CCTTGGCAGACCTCCCTGGACCCCTGGGGCGATGAGGTGAACCGTGGCTGGCATCGT
 GTGGCAGACGGTGGCACACCCGGCCTGGGGCGATGAGGTGAACCGTGGCTGGCATCGT
 GCACCCAGTGGGGCTGGGAGGGACATATCCGGACGATGCCAGACCTGTCTGTGGGGGA
 TTTCGACCCGGAGTGGGAAGGGACATATCCGGACGATGCCAGACCTGTCTGTGGGGGA
 GGGGGAGAAGGCCCTTTGGAGAATTCCAGGACGGGTGAGGAACGTGTGCTGGACCGGC
 CGGGTCGGACGCTGGGCTTG

Contig 2 (9234 bp)

GGCAACCAGGGAAAGATGGGAAAGCGGGGTGCAGGGGTTTGGCCGGGCAAGGACAC
 CTTGGAAATCTGGAGCCCTGGCAGGAGCGGCCAGGGTGGAGGGCTGGCTGGCAGGGC
 TGGCTGGCACCTGGAGCCCTGGGGGTTGAGGTCCGGGCTCCCAGGTGCCCTATAGGCA
 GGGCAACATCGGCATGGGGGTGACAGGCCCCAGCTGGGTGCGGAGGGAAAGAGGGGGA
 GCCAGGCATTCACTCCGGTCAATTGGTTCAAGTGTGTCGGGGCTGGTGGTCAAGGGGA
 GTTGGAGAGAGGTTGGCCGGGCTGGGCAGCGAGGTGAGCTGGCAGCTGTGGC
 AGGTGAGGACAGCCGTCTGGGGCCAGGTGAGTCCCCCTCCCTCCCAGGCCTGGT
 TCTGGCCTCTGCATCCGGAGGTTCTGGGGAGCGAGGGCCGGCGAGCGAAGCGGCTGAC
 CCCCCGGCAGAGTGGGGGGGAGCACAGGCAAGGGGGGAGAACAGGTGACACGTCAG
 GGGGAGCTGGGACGGGGCGGGCTGGGGGGGGGGGGCTCCAGGTGAAAGAGCATCT
 CAAGCGAGTCTGGGGAGACGAGGCAGGGCTGGCAGCAGGGGGAGGAGACGCAACAGCG
 GGGGCATTCCAGGCCGGGTGGACAGGACCCCTGGGGGGGTGTCAGGACAGTGGGTCCC
 CAGCCGCCACTTCACCCACTGCAATTCAATTAGTAGCAGGTACAGGAGGGCTGGCCG
 GGCCTCTGAGGGCTGAGCTGGAGGCTCGAGGGCGGAATGGAAAGAAGGTGCAAGT
 TGCCAGACAGCTCACCTGGAGGGAGCACGGCGTGGGGACGGCCCCAGAGAGATT
 GGCAGCAGGGAGGCTGGCGGGGCCCAGCTGGGAGCTGGTCTCCACGCAGCACTGCG
 CCCAGGGCTGGCGGGCAGGGGGGGGGTGCCTTGGGACTGTGCGCCCTCGCCG
 TCCCCCTGGGACTGGCACGGCAGACAGGACAGCACCCAGGGAGTCAGGGACTGACG
 AGACCAAGACTAGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 GGGGACCGAGGAGGG
 CTGGGGTGAACAATGAGCACATATGGTACCTTCTGGCTCGCACGGGAGACAGGTGAGT
 GTCTGGGCCCCGGCTGGCCCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 AGGGGCCCCCTGCTTCCCCACAGGCTGGTCTCCAGTGGGGGGGGGGGGGGGGGG
 CAGGG
 ACAGACGTGACGCCGTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 CAGGG
 GGG
 GCATGACTGCTGCTCTGGGACCCAGAACCTCAAACGACAAGGTGAGGCAGGTCC
 CTCGG
 CCTGGAGAGATGGTGTACCCAGTCATGCCCTGGGGCTTGGGACCCGGACTTCTTCAAGT
 CCTCTAGCTGACTCAAGAATATGTCGATCTGGAGCCACTACACTACTTGACTCAGG

FIGURE 8, CONTD.

FIGURE 8., CONTD.

AAGAGCAACGTCTGAGCTAGCTTCCACCGTGGGTCCATCTCGGCCAGGTTAATGAGCC
 ACTTTCAGGCAGGGATTGCACAGGAGGAGGGTGGGAAGTGGCTCTGCTCAGACCCCTGA
 ACAGGGTCTGGAGATTCTCCAAGGCACAAAAGAACGAGCATGCCCTGGGTCAAGCGA
 CAATGCTCCCTGAGAAATCTTGCACACAGGGCTGGGCTTGCGAGGTGGCCCTCGCC
 ACCCCAGCCTCTGGAGGACAACCCTGCACCTGCTCCAGAGCTGGGGGGCGCACACGT
 GGGGCACAGGGAGCATGGGCCGAATTCCAGGCCTGGGCTCCCTCTCGTGTCCAGGATCTC
 CCCGTGCTTGTCTCAACAAGCCCTGACTTGGAGGCCUCCAGGTGACCCCCCTAAAGGGG
 GAACAGAAGGTTCTAGAAGGAGCGTGGCAGCTTGCCTTCCCTAGGGCTCTGGTACCA
 CACTGGGCCACGGCCAGGCACCCCCACCCGCCTCTCCCTGGCCCTCCUCCCTCCC
 CGCACCTCTCCCTGCCCTGCACCTGGTACACGGCTGGCTCCAGGCCAGGGCTAGGGGG
 ACCAGCGGGGCCCCCTCTGGAAAGCCACCTGCAGGCCGCTGCTGGGAAGGGGCTGC
 TCCCTGGGGCCCCACCCGCCGGGGCGTTTCCTGGAAGGCCACCTGCAGGCCGCTGCTGGGAAGGGGCTGC
 CCTTGTCAAGCGCCAGCTGCATAAGCAGACACTGACCTCTTGTCTCCGGGAGCACG
 CGCTCCATCACCGAACACCTGGCGGACACAGGGGGCAGCCGGCTGGGGAGAGCAGCG
 CGGGCTGGGGCGGAGCAACAGATCACGGGCCAGGGCAGGCCGGCTGGGGAGGGGG
 TGCAGGCCGCCCCCACGTGCCACGGCCAGGGTCCCCATCTGCAGGCTGGGGAGGG
 TGTGGGGCAGAGCTGAGAAGGGGGCAGAGGCACTGGGGGGGACAGCCGTGTTCCCACA
 CTTTGAGAAACCTGGCCGGCTGGATGTCCTGCTGGAGAGCTGGGGAGGGGAGAGCAGG
 GCAGGAAGCCGGTCCCCCGAGGGGGTAGGAAGAGGCTGGCCCTGGGAGGGAGGG
 GGGGAGGGCAGTGAATGAAAGAGCACCAAGGGCTGAGGCTTCTTCTGGAACAAGGA
 CTAGAAGGAGGAGGCCGGCAGCTGCTTGGATGCTTGAACAGGCCGGCCCCAGTGTG
 ACAGGGACGTGACCTGGGGGGCTCCGGGCCAGGGGGCTGGGAGGGCGCTGGTGG
 GTCAGCGCCACTCAGGCCCTGGCAGCAGGGGGCTGGCACGGCTGCAGGACAGAGCTC
 AGGACACAGATGGGGCGAGGACTGAGTGGGCACACAGATGTCCTCAGGAGGTGGCCA
 AGGAGTGGCTTGGATCCCAGGATGGCCCTGGTCCCAGAAGATGCGCAGGCCAAGGG
 CCAGGCCAGGGCCCCAGGGGCCACAATCTGAGCAGGGCTCAGGCCAGGGCAGAGGCC
 CCTCCCACCCAGCCCTCCCTGGGCCCTCTCC
 GTGCAGGCAGTGGCTCAGATGGGCAGACATGAGACCAGGTCCAGGGAGAAGGGGG
 CCTTGGCTTCACTCAGGTGCTTCAGACCGGCCCTGGCTGGCAAGGCCACAGCGC
 TCAGGAGCACAGACCCCCACACGGGCTCCCCCAGGTTGGCGGTGACATGCCCTG
 TGTCAACAGCAGGAGCTGGCAGCTCCCACCGGGCTTAGGGAGCAGGGACCCCTGAGCCA
 CCCTGCCACCGCCCCACCCACCTGGCAGCAGGGGGCTGCTCTGGTCTGGGG
 CCAAGGCCCCCAGGCCCTGGCAGTGTCTGCCCTCCCGTGGCTCTCGTCTCCAGTG
 TCCCCGCCAGAGAGCATGGGCCACAGGCCATGGCAGTGGCAGGCTCCCTCTGGAGG
 GGGCTGAGGTTTGGGGTTCACAGAGTGGCCTCCGGGTTGGTCCAGGCCAGCGAGG
 CAAAGGGACCCAGGGAGTCCCGGGAATGTGGGAGCAGCCCCCGTAGATCTGGGG
 GGCAAGCTGGTGGTACCTCCATCCTGGGCTGTGGGCTTTGGTAGTGGGAGGGTC
 ATGACACCCAGCCACCAAGCTGGTACAGCCCTGGACGTGCCGCTCAGGCTGCC
 CCTCTGCAGCCTGAACCCCTGTTCTGGAGTGGGGCGCAGGGGGGCCGGCAGGG
 TGAGAGACGAGGCCCTCTTCCAGAACTCTGCTGGCTGGATGAGGACCCAGCAGGG
 TCTCCTCAGGAGGGCCCTGGCGCTGCAGGGCCCCAGAGAGGCCAGAGGCTGGAGG
 CGGGCCTTGGGAAGAGGCCGACTTCCAGAACACCAGTGCCTGCCCTGGCAGGCC
 GCCCACTTGGGAGGGGGCGGCCCGGCTGGCCCTGGGACTCTGCTGGGGCC
 CAATAAAAGTTTGTCCCTGCTGGTACTGTCGGTGTCTGAGAGGTTCTGGAGCCTGG
 CAATGGGCTCAGGATGCGGCTGGAGGGAGCCTCGCAGAGTGTGCTGGTCTCG
 ACAGGCCCGGCCGCCCTGGCCAGGCCCTGCTCTGGACAGATGGGTGGGGGGTGT
 GAGGGGGTTGGAGAGGGTGGGGAGCAGGGGCTTCCCTGACTCTGCTCCAGGG
 GGGACCAAGGAGGGGACAGCCCCCGGTACCAGGAGGGCTGTCCCTCTCAGGG
 GACAGGTGAGCTCCCGGAGGCCCTCTGGGACAGGCCAGGGCCAGGCCACGG
 CCCCCCAGGGCTGGGCTTCCAGGGCTGCCAGGGCCCTGGGGGCCAGGGGCC
 CCCGCTCCCCGTTGGGCTTCCAGGGCTGCCAGGGCCCTGGGACGTGGGAGAGGG
 AGGCGCCAACAGATGACCCCCCTGGGACACGTGGCTGTTGAGTCTGAGGG
 TAAAGCGCTGTTTCCAGTGGCTCAGGGCAGAGGGGGCAGGGGGCAGCCCCAGTC
 AAGGCCGGCCGCTGCCCTGGGCTCCCTCTGTGCGGAGGGAGGGGGGGGGTGC
 AGCCCCCTGCCGCCGCCGCCGCCGCCAGGGCACCGTGGGACCCGCCCTGGT
 CCCCCGCCCTGCTCAGGGCCAGGCCCTCTGTGGTCCAGGACGCCCGGCC
 CGGCCAGAGACTCCAGTGTAGCTCCACGTGTGGGATCTGTCTATGCGACAGC
 TTAACTCAGGCCGAATTCTATGGTCTGGATTGGTGGGACGGCCCTGCACAGCG
 GGCTGGAAGCTAAGGCCGTGGCGTGGGGTGAGAGGCCGAGAACACAGGAGGG
 CTGGGACACTCAAGGGTTGACATGCTATGCCGTACGGATAATGC

Contig 3 (5347 bp)

AGATGTGTATAAGAGACAGGGCTGGTGGGAAGGACAGAGGGTGGGCCGGAGGAATG

FIGURE 8, CONTD.

GGATGCGAGGCCACCGTGCAGCCTCTGCTGGCTTTGAGCCTCGTGAGTCGCAAGAAG
CCCTCGGGCTGGAAACAGACCCCCGGCCCCCACCCCACCCGGCCCCGGATTACCCC
GGCATGGCTGGAGGGCCCGAGAACGCCACCCAGGCTTCCGTGCGGAGCTGGGTGCTGGC
CCAGCGAGGGCTTGACGCCACGTTAGCCCTCCCCAGGGAGGCCAGGGTCCGAAGGA
AGAGGCCCCGGAGGGCCSTGGCCGTCAGGCTGGAGGGCCCCCGGGTCAGGATGGG
CCCCAGACGCTCCCGCTCCCCGCCATCGTCAGGGAGCTGTCACCAGGAACGTGCTCC
AGACGTGCTTCCCTGCCGCCAGGGCCAGCAGGCTCCAGGCCCCCACCCCCGAACG
CCCACGCACACCTCGGTCTCGAAGACACCCCTGCCGTATCCGGTGGCCCCGGTTCCCG
GCCCGCGCCATCCGGTGGCCCCCTCCCTGGTCGGGGGCCATGCCCTCAGCGGGCAC
GCAGGCTGTGCAGGTCTGTTCTGACTCTCCCAAAGACGCAGGCCGGCTGCCGGCGCC
CCGACCTCGTCTGAGGCCGTTGCTCACTGGCTCTCAGAGAAAGGGTGGCTGAGGCCAA
AAGCGCGTGTCCCTGGGCCGAAGGCAAGGGAGGCCACCCCAAGGGTGGCTGAGGCCAA
TGGCCAGGGCCTTAAGGAGTCCCTGGGGGCCGGCGCTGCCAGCTTGAGGAGGAGA
GCCCTGGCTCTGCTCCCCCGGGCAGGTGAGGCCACGGCAGGGGCCCTCCAGCAGCCTTG
GCAGGAAGCAGTGAGGAAGGGTGGAGGATGAAGGCAAGGGGCCCTGCCGGACTTGGGCA
AAGCCCCCTGAAGAACTGAGTTCTCGGAAGGCCGGAGCCCTCAGCCAGCCTCGGCC
CGAGCGATGGAGGCCGGCACCTCGGCCCCAGGGTGCAGCTGTGCATCCGTCCCCCTCG
GCCCTCCCCCTGCCCCCCCCGGGACACACTCTCCCTTTGCCCTTGATCACTTGAGT
GCGACAGCTTGTGCGGCCCTGAGCCCCAGAGCCGTCGCCCCCTGCCGCCAGCCCCACGG
GACCCTCCACCTGGGCTGGCTGGGCACTCATCCCTCCCGATGAGGCCCTTCTAGCCT
GGGCCCCCGGGAGCGCGCAGACCCAGCCCTGCCCTCCCCAGTGAAGGTGCTGC
CTGGTGTCTGGGAAGCCCTGGAACAGGGGCGCAGGTCCACAGGGTGCCTCTGGG
TCCAGCTGCCAGGGAGGGCCCGCTAGGGCAGGGTCCCTCACCAGAACGCCAGGGC
CCTGGGAAAACCTGTCGTGTAACAGGCCGCTCCCGGACTCCACGGAGAGGTGCG
AGGGACCCCTGAGCACCCACGCCACTAAGGGGCCAGCCAGCTCGGGTGCAAGCAGC
CGGCTGGCGCTCACATGCATACTGCTCTGGTTGTGTGCGCTGGTTGGGTGGGTG
AGCGGAGGTCTGGGAAGGGGAAGACCCACCCCTCCACTCGGGACCTATTCAGCAAGA
AGACGGATGGGACTGCCGGCATGGACAAGGAACAGGATGAACCTTCTGAAACGCC
GGCTTCACGGCTGACGGCTCATGGACAAGGAACAGGATGAACCTTCTGAAACGCC
TCCATTCCCCAGCCCTCGAGAGGGGAGGGACTCATGGCACTGACCTCGAGGCTGAGAGAGCTCTGG
GGCGCTCCACAGGGCAAAGTCCCAGGGACTGACCTCGAGGCTAACAGGCAACCCAGGG
GCTGGGCCCACCAGGGAGCCGGGGCAGGTCAAGGTCAAGGGCCAGTGCAGGGAAAGG
GTGGCGTTGCTTGGGGCGGGGGCGCAGACGGCCCTCGCACCCCCCGACAGCC
GGAGCTAGTGAGGCCGCGGTACCTGGCTGGGGTCTCTGCGACCCGGCAC
CCCAGCTCAGGTACCTTGCTGTACCGCAGAGGGCAGGGGTTCTGAGCAGGGACAGGG
TGGGGCCCGCAGGAAGCCCCCTCTCTGAGGCTGCCGGGCTGGAGCCTCTGGG
GCATGCCACCCCTCTCACAGACGCCCTCAGGAGGCCCACTTCTGCTGCGTGGTGAG
GGTGTCTCTCACCGGATTCTGGCCCTGCAAGGTGAGTGAGTCCCTGCTAACGCTGGGG
TGGAGCAGGTGCAAGGCATCACACAGCAGCAGAGGCTGTGGGGCCCTGAGAGGC
GCTCCCAGGTACCCCTCAGGGGCTGAGGGGTTGACCCGGGACCTCGCTGCC
CAAAGCCGGGCCCTCCCGCCCGCCGACCAGGGCAGAGAACAGGGTGTGGGGCG
CACAAACCCAAGTCAGCTCCAGATCCCTGCTGGGGCCCGTTGAAACTCGAACGCC
GCTGGGAGGTCTAGACACCCCTGCCAGACCCAGCAGCTGGGCTGCTCACAGCTGCC
GGGGCCCAAGGGTGCACCTGCCCTGTGGGTGGGGTCAAGAGGGCAGGGAACCC
AGGTCCTTCCAGGTCAAGGTTGGGCTAAGCTCCGGTGAACCTCTGGGAAGTCTGGGCTG
GGTTTGTCTTCCAGGGAGAGGGAGAGGGGCACTAGCCTCAGAGGGGCTGTGG
GGCCCGAGGTGACCCCAAGCGTGCAGCAAGGCCCTTACTGCAAG
GCAAAGGGCAGAGGTGGGGTGGGAGGCCCTCAGGAGGCCAGGTACACAGGGGAAG
GGCGAGGGATCCGGCAGGGGCCACCCCGCAGGGCCACAGGGCAGGCCACAAAGC
CCGGAGCCCCAGATGGGGCCAGGCCACCTCTGGGAAACAGTCTTCCCAAGAATT
CTGGGTACCAACAGGGCTGCCGGGCCAGAGCCCTGGGCTGGTCAAGGCC
GGGATCTCTAACAGTGCAAGGCCCTGTGGGAGGGGCTGGTGAAGAGGCCACTCTGG
AGACCCCCAGCCACCTGGAGGCCCTAGCCACTGCCCTGCTGCGGCTCCCTAGGG
GCCATCAGAGAAGTCCAGCGACACTGTTATTTCAATGACACTTTAAGAAAAACA
GCCCTCACCCAATGCTTGGCCCTGAGTCGTGGAATGTGCAAGACAGACAGCTGCC
AGAGCCTGCACGGCCCTCCGGTGGGGAGGGAGGCCAGGGCACCCCTGG
AGGCTGTCAGGGCAGGAACGTGTCCTGGGCCCTGCTCAATTCCGGTGC
CCCCAACTTCCCAGCAGCACCCAGCAGGGCCCCAGCTTGCTTGGCTGGCGCTGG
GTCACCCAGGCTGGAGTTCTGGAAGATTCTGCTCTGCTCCCTGGTGC
CCCCGGGGCAGGCCCTGCACTTCTGTTCTGCTGGGCTCCCTGCC
GCAGCCCCCTGATCTCCAGGTCTCCAGGCCAGGGCCAGGGCCCTGG
AGAGCTCAGGAGGGTCCAGGTTCCCCACAAGCCCTGGGCA
GCTGCTAGGGTCCAGGTTCCCCACAAGCCCTGGGCA
GGAGACAACGGCTCCAGGGCCTGCCCTAGACGGGTT
GGGGGGAGGGCGTCCCCAGCGGG

FIGURE 8, CONTD.

CACCCACTGAGTTTGAACACTTGGGCCACCCCCACACCCCAGGGCGTGGCCAGGAGGC
 CTCTGGGCAGCAGACAGTCGTGAGCTGCCCTGGGCTCTGACCTGGCGCTGG
 CCCAGCCCTGGCACAGCTTCCAGATCTGCCTGCCCTCCAGGCTGCCCTGGCC
 CCTCCCGCTGGGGTCCCCAGCTTTCCAGGATGCCACCCCTGCCCATGGTCAGG
 GAGGGCTGAGAAACCCCACCTCGTGCCTGCCCGGCCATGCCAGGGAACCAAGGTT
 CCTCCCGAGGAGGGACCGAGTCCCTGAAGCCCAGTCAGAGGGAGGGAGGTGCC
 CTCTGCCCTCAGGCCACCAACCCCGTGGCTCTGAGCCACAAAGCACTAAA
 GGCGCAGGCTGGAACATCAAAGACCCGGAGTCATTGATTAATTGAGGTAAA
 TGAGCTGAGGCCTGCGCTTCCCACAATTACCGCTGCCCGGAAGGGCTCCGG
 AACCGACACAGCCCCCAGGGGCCATGCCATGTGGGAGGCCAGGCTGCCGAAGAAG
 CCCCATAAAGTGGACCCCCACTTIGAGCCCCCACGAGACTGGCAAGGACCAGGTAGGG
 GCTGCCAGGCTCTGGCCTCTGCCCTGCCAGGTGGCTCCCTCGGGGCCAGCCTGG
 CCTGCAGGACCTCCCACGCTGAGTTCCCAGCCTGGTACGGCTAGTGGACGGCAGCC
 ATGCCCAAGCACTCAGGGGCCAGGGACAGAGCGGAACCTCAGCCCCGGGTCCCGC
 CCCTAGGATCCTCTAGGTGGGAAGCCAAGGGAGCAGAGGGTGAAACGCACTGTG
 GGGCCCAAGGCTGCCAGACAGCCCCCTCTGCTCCACTCTCGGCCAGTGGCGCCAG
 ATGCCGGGGCAGTGCCTTCCCAGGCGCACCGAGGCTCCAGAGGGAGTGAAGGCACG
 AGCTGGGAGGGAGGGCGGGGGCTGGAGTCATGACCCAGGGATTATCGTGTGGGCTTTGCAAA
 GTTGGCTGAGCAAACGCCAGGGCAAGGGTCAAGGGAGACGGGACTGGCGGGCCCCGCG
 CCCCCCTTCCCTTCTGGAAAAAGCCTGTTCCCAGGCTAAACATCCAGCTCATGATCCG
 CCCCCTTGGGACTGATGTTAGGGCCAGTGGTCCCAGCACCCTGTGCCACCCGCCCC
 CCCACGCTCCCGGGGCCAACCCCTGTGGCTGCAGGTGCGGGCACCTCTCCCTCG
 AAGCAAAGCCCTGCCCTGCGTGGCAGCGTATTCTGCTCTGGGCTGACTTTG
 ACTGGGTGGGGGGTGG

Contig 4 (1592 bp)

AGCCCCTCAUCCCCCCTCGAGCAGCTGCTGGCTCAGCGGGCTGCCCGGATGTGCC
 CCTCCATAATCAATCATGGAGGGCCGGCCGGGGGGCGGGCCGACCTGTCAGCCAGC
 TCCAAGGGCAGGGACAGCTGCTTCCGGAGGGTCCAGGGGCCAGCCCCACCAGACAG
 CGGCCCTCGSCCCCCCTTCCCGAGGGCACCCCCACGGAGGGCCAGACGGAGGGACTC
 GGGGCCAGAGGCCAGGGCAAGAGTGAAGGCAGGCCGGTGGGAGCGGGCGGTAGCGGG
 TCCAGGCTTCAGTTCCAAGGAGCCCCATGCCCTGAGCCGCAGTGGCCCTGTGCAAGC
 TGTGGGTGCCGCCAGGGCCACCCCGCCCCCACAGCCTGGGTGAGGGAGGAG
 GGGTGGCTGACGGATGGTAACAGCTGCTCCCCCACCTCGCCGGTGGACAGGGCTC
 GCTTCTCTGCCAGGCCCGGCTGCCCATCCGTACGCCAACCCAGGACTGTGCGT
 CCAGCCTCCCTCCCTTAATCCCCCGCATTTCGAATTCTCGGCCACTGCTGCTTC
 CTCCCTCAAATTCTGGCCCCCTGCCCATCCCCGCAATGGAAAGGGCGCGATGCCA
 GGACACTGTCGTCGGCGGGGGAGGGAGCAGCTGGCTGGGCCGGCAGCTGT
 GAGGTGGGGGGTGCAGGGAGAAGGGCCAGATTAGGGGGCTCATGGAAAGCTGGGA
 GGGAACGCTACCCAGAGCCCCCTGCCAGGGCAGCTGCTGCTCCCTCGCATTTCTG
 GCCTCTGAGTGCCTCTGGAGGGAGGGACACTGTCGTCGGCGGCCCTGGCTCTGCC
 AGGAATGTCATCTGTCGGGGGGTTACCTGGCTCAGAGCTGGTACCGCTCATCC
 AGCCCTGACGCCCTGCTCTGGGAACAGTGGATGGGCAGGCCAGGGCCAGCAG
 GCTGGGCTCCACAGACGGGCCGGATGCCAGGGAGGGGGGGCGCCCCAGGGCGAG
 GCTCCCTCTGGAGGGCTAGAGTGTGGCTGCCAGGGAGGGAGGGAGGGAGGGCAGGC
 CAGGTGAGGG
 CCAGGAGGCCAGGGCACAGGCCCTCAGGGACAGACCCCTCAGAGCCACAGCAGGAAGCCTG
 GTGGCAGTAGCTGG
 TCCCTGCTGATGACAGGGCTTCTCTGCTCCCCCTGGGGGGGGGGGGGGGGGGGG
 ACCCCGGGCCCTCTCGCACGATTCCAGGGCAGGCCCTGGCTCAGGCAGTCCAAGGTG
 CACAATGGTCTCCATGTCAGAGTTGCAAGGCCAGCAGTCCCAACTGGACGGGG
 GGGGTGGCTGCACGCCGCTAGGGCTCAGGGCGGGGCCAGCCNCCGCAGGCC
 TTGACCCCTGTCTCTTATACACATCTAACCCCTG

Contig 5 (831 bp)

TGAGATGTGATAAGAGACAGGCCCTGACCTGGGCTGGCTCAGCTGCCGCCCTCTC
 CTTGCAGCTCCGCCCTCGACCCCCATCCATCAGCCATTCTACCCCTCTGTAATAAAAA
 ACCCGAAGCGGGCTGGGCCCTGTCGGCTGGGGTGAUTGCCCTGCTGCCCTGGCTC
 CCACCTGG
 GGAGGG
 TCCCTCTCCCGGCCACCCCTGCAAGGCCGGGGGGTGCCTGGGGGGGGGGGGGG
 TTGACCCCTGTCTCTTATACACATCTAACCCCTG

FIGURE 8, CONTD.

```

ACTCAGCATTCCCAGGGCACCTGCTGATGGTGCCAGACCCC3CGGCCCTTCCCGCCGG
GCCGGCCCCACGTGCCCTCCAGTGCCACAGCGGGCTGGCCAAGGCTGGAGTT
TGCACGGGCTGGGGAGGAAGGCAGGGAGAGGGGACAGTCTCTGCCGGACGAGGG
TGGGGCAGCAGGTGGGAGTCCCACAGCGGGCAGCGGACGCCCTGGCTGCCCT
GGTCTCAGCGGGAGAGTGCACCAGGAGAGAGACGGCAGACAGTACAGCCCACCCG
TTTATATCTCTCAGGCGTCTGTCTTATTGGGTAATATGAGGACATAGAAACT
CTGCCACTGGACCCCTGGCCGGGACACAGCAGGGCATTGCATGCTTCGGGTGCA
GCGAGCCAGCACCAGGCCAGACCCCCATCTCCGATCAACCGGAC

```

Contig 6 (4634 bp)

```

CTCTGGGCTAGCACCGTGGGGCTTGGCAGAGTGGAACTGAACCTGGTCCACCCCGGAG
CCCAGAGGGCGGTGAATGGGAGGCAGAGCCATCCTGGGAATGGACCAGAAGAAAGGGAG
CGGGGGTGGGGAAGGGCATCAGATCTGGCTCTTGTGCCCTGCCCTCTGC
CACCACTCCCCAAGCTGATCTGGAGCACCGCTTAAAGCCGCACTGAGGCC
CTTCTGACAGACGGAAGGGCAGAGTGCCTTCTCACCGGCTGCCCTGGAGGCC
CTCCCTCAGGCCAGGAAGGCCAGCAGCAGGTGACAGAGCCAGGGCCAGGGCCAGGG
ACGGGCTCGCGCCGAGCCGGGGTCCCTGGCTTCCCTGGCTTCCCTGGAGGCC
CTCTGGGTGACCACAGGAATGTGCAAGGGCAGCCGGGGTGGCGGGGGAGGCGGGGTG
GGAGGCGGGGGGTGGCTTCACTGGGGGGCTGAGAGATGGCGCCCTGGGGCC
TGGCGTCATCGTCTCCCGCTCTACCCACTGAGCAAAGACACGAAATGAAGCTCGAA
CGACCACAGCAAAGAACGCCCTTCTGCTCTTCTTAATCCCTTGGCTTAGGGT
TTCCCGGCTGGACAGCCTGCCAAGGGCACATGGGCATCCGTCGGGGACATTAGGCA
GTGACCAATCCCAGGCCACCCAGGCTGTGCCCCGTGCTGTTGGCCAT'ITCCCAGCCGGC
AGAGATGGGAGCAGCACTGGGGTCCCCAGGTCTCGTGTGAGACAGTCAAGGATGGACCTT
GGATGGAGACGGCGTGGCGCATTCCTGGGTGAGAGGGCGTGCAGGCCGTGCTGGG
GGACATGGTTGCTGTCCTGGCAAAACCATGAAAAGCAGCCCTCTCCCCAACCCCCA
GCACCAACCCGAGACCACCCCTGGCCGAGGCCAGCGGCCACCGTCACGTCTGGTC
GTCCAGCTTGGGACAGGTCACT'ITCCCAGATGTCCAGGCTGGAGCTGGCTTGAAGATCC
TAGGGGTCAGCCCAGCACAGGAGGGCAGGTGAGAGCCCCCTGTGGTTCTAAGGATGCA
ACCAGGGGTCGGGGGTGCTGCCCTAGAGGGGTAACCTGGCCCCCTGGGACAGTC
ACCCCAAGGAGTCCCCAGAGGCCAGCTGGAGGGCACAGGTGCCAGAGTCCCACCTGG
GGAAGGCTGCCCTCTGCCAGGGGGGGCTGGGCCGGCGTCCAGGCCG
ACCCGGGGAGATATTCCCCCTGGGGGGTGAATCAGGGGGGGAGCCCATGTTT
CACTCTTCTCCCCTCCAGGCCCTCAGGAGAAAGGGTGTGAACTGGTCCCCCTGG
AGGCTCTGAGCCCCAGAACAGTGCCTCTGAGCAGACGGCACTCTCAGACAGCTCAC
GCTGGACAAGTCAGCTCTGCCCTGATGGGGCC'IT'GGGAGAAGCAGACATGGT
AGGAAAAGGCCCTGTGCCCTCACCTAATTCCCAGCCCCAGTCCCACCTGGTGGC
AGCTCAACCTAACGAAATAATTCTGTGCCCTCTAAACAAACGCGCAGGAATCCCACCTG
CCTTCCCCCGCCCCCCCC
ACCCCTGGCTTGACCTCCAAAAGCACTGAGGGGTTTCTCAGACACCCCTCCAAACCC
CGACCCCATGAAGAAGGGGTATGGGCTGTTACCCAAACAAGCAAGAGAACGACCGGCA
GAGAGGAGTGGCGTGGACAGCAGGGTCAGGCCCTTGGAAAAGCACGGGAAATGAGCACACCTGGCTCT
AGAAGGTTCTCAGACCTCTGGGGCTGAGTCATTCAACACTCTGGGCCGGCAGGG
CTTCTTCTGGCCCCAGGGACAAGGCTCCCTCGTCGGGGGGTACGGCCCTGGACCC
CTGCCCCCGCACCCACCTGCCCTGGTGAAGGCCGGCCAGCTCTGGACACAGAT'C
CCTCAGAGCCCCCTCTCCCCTCGTCCTCGTCTCCAGGCTTCCAAAGATGCCGGCTCCAGG
TGGGCAGCCAGGGCAGAATGTGGTCAGGCCCTCTGGGCCACCCACACCCCCCTGC
TCTGCCCTGACAGCCTCAAGACGCAAGCAGCTGCTGCCCTGCGTCTGTCTCTCA
TGGCACAAAACGGTGCCCGCTAGCTCCCCAGAGAAGGGAGATCGTGTCCCCGGACG
GACCTGCTCTGCCCTGCCCTCCGCCCTGCCCTCAGGGCTCTCCCAAGGGTGGCGCG
AGGAGGCCCTGCCCTGGGACAGGGGCTCCCATCTCCGAGGCCAGGCCCTGGGCC
TGGTGGTCCAGCCTTCCCCAGGCCCTTGCTCCCCAGGAAGACCTCCACCCCTGCCATTACAGCTC
TCGCCCAACCTCCCAGCCACCCCCCTCTCCCATCTCCCTGGAAAGCTCCCACCTCTTC
CCGTCCTCCCAGGCAGCAGAGGGTCAAGCAGCTCAGGGCTCTGGGCCGTGGAGATGGCC
TGCCCGGGGTCTGCTGACCCCTCTACGGAAGCTGTGCGGGGGGGTGGGGTGTCTC
TGCCCGAACGGCTGGAGGACGAGCCACATCCAGGGCAGCCGAACCTGCGTCTGGTCT
GAGACGGAGGGCTGGGCTGAGGTGCTGAGGGCCTGCACACAGCTGGCTGGGGTCC
CCTAGGTGACAACACTGGCTGAAACACTCATGGCTGCTCCCCCTCCAGGGTGAACCTGGGG
TCCCCGTGTGGCCCTCAGGGCACACGGGGGGGGGACCCAGGCCCTACAGAACCCCAGTGGG
ACTGCCACCCAGGGCCCACAGAACGTCGGGGGACTGGGGTCCAGAAACAAACCCACAAC

```

FIGURE 8, CONTD.

CAGGCCAAGGTGGCAAGCCCTACTCGAGCGGGGCTGCCGTCCTAACAGAGACTCTGGCC
 AGTCGTCCGGATCCAGCTTCCCAGGGCCGGCGCCGCTGGGCTCCAGGCGGTTCTGG
 GCGCCCTCCCCGGGGTTGCCCTCCGCTCTCAGCAGCAGGAAGAGGAGCGCGGCCAGC
 GGATGGGAGAAAGAGGGCAGCCATCTTGCTCCCTGGACTTGAGGAGGGTCTC
 GGGCCGGGAGGGACAGGGGACCCGGAGCCACAGAGACCCCTGGAGGAGGCAGCATGGCGGGAG
 GTGACCGGGGAAGAGGGCGGTGCTCCAGGCTCACAGCCGCTGGCCGCCGGCCCTCG
 GGAGGCCTGCCCTGACCGCTGGGGAGGTTTGCTGCTGTGGGTTTGAGAAAGT
 GCTGAGCTGCTGAGCCCACAGGCCAGGCTCAGAGGGCACAGGAAGGGAGGTTGCTGCCAG
 CCTCAGGGACTGCTGACCCATCTCCGTTCCAGGGCACAGGCCACCTTAATCTGCCGG
 CTCTGTGCCAGGGACAGGGCTGCTGATCTCAAGGGCGGCCCTCCGCTTCCCTGG
 GAGAGGGTTAACATCCAGCCCCAGCCAGCATCTCGGGCAGGTCTCTGGCTCCCCCGCT
 CGTGCCTCCTCTGAGACCCCTGGCGCACACCTTCCCTTGAGAGGGAGGAGGAGGAA
 AGCGGATGGAACCAAGTGAACCTGCAGCCCTGAGGGCACCTTCCACGTCCCCCGCC
 CCCCCGCTCTCGCCCCCAAGTTCTCACGGCCCTAGCTCTGATGGAGGGAGGGCAGCTC
 CGGGCTCCCTGGCTCCGGCTCCGGAAAGACAGGGCCGCTGGCTGGGCTGAGGGAA
 GGGGCCGAGACGGAGGGAGGCAACCCCGCGCGTCTCCAGAAGGGAGG
 CCTGGCAGGGGAGGGGTTGCCACACTGCTGCTCTCTGTCGACAGTGGAGGGTGT
 GGGGGGGCAGTGGCGGGGTGGAAGTGCAGAAAGACCCCTGGACCGTGGGCTGGGCC
 ACGGGGGAGCGGGCTGTCAAGGACCCCTGGGGAGGGAGGCAAGGGCTGGGAGG
 CGGGATCACTCCAGATTGCTGTCAGGACCAAGGGCCGGACCTGGGGTGCACCTTTTC
 TGTGCTGCCACAGGGGGCCCGCGAGGTACACCGAAGGGGCTTCGGACCTGGCCT
 AACAAAGCCCACCTCCCAGGAAGATGCAAGGGGAGGCAGCGGAAGGGCGAAGGGGGCGA
 TCGGGGGACACCGCGGCAGGGCCGGGAGAGAAGGGAGGCAGAGGGCAGAGAAGGGAGG
 CAGAGGGCACAGAAGGGAGGCAGAGGGCCACATGCTTGGAGGGCAGGGAGGAGCGGGAA
 ACGGCGTCCGGCTCCAGGCCGAATCAGGCCGTCAAGGCCGAGGGTGCCTGGACCTGCC
 TGGCTTCACGAGCACAGTCAGCAGGCTGCTCTTACACATCTCAACCATCAT

Contig 7 (482 bp)

AGCAATGGGGCCGTGACCTAACGGAGGCAGGCCAGGTCACTGGGGTGACCTCTCGTGGCC
 CCGATTTGGAAATCCCCAAATCAAATGACCCATCCGACAAGCTTGATGCCAGG
 TCGACTCTACAGGATCCCCGGTACCGAGCTGAATTGCCCTATACTGAGTCGTATTAC
 AATTCACTGCCGTGTTTACAACCTCGTGAATGGAAAACCCCTGGCTAACCAACTT
 AATGCCCTGCAGCACATCCCCCTTCGCCAGCTGGCTATAAGCGAAGAGGCCGCACC
 GATGCCCTTCCCAACAGTTCCGCAGCCTGAATGGCAATGGGCCCTGATCCGGTATTT
 CTCCTACGCATCTGCGGTATTCACACCGCATATGGTGCAC'CTCAGTACAATCTGC
 TCTGATGCCGATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCCAACCC
 TT

FIGURE 9

Human clone af087017.em_hum1: H19 gene + flanking sequences

FIGURE 10

IDENTIFIED POLYMORPHISMS:POLYMORPHISMS TYROSINE HYDROXYLASE GENE - CONTIG C3 (figure 6)

1	GGATCCAGCC (A:T) GCAGCC	1081 bp
2	ACAACCCCC (-:C) TCCCACAG	1149 bp
3	TGCGGAGGGG (A:G) GACCTG	1186 bp
4	AGGT (CAAGGCCAGGT:-) CGAGG	1210 bp

POLYMORPHISMS INSULIN-IGF2 - CONTIG C4 (figure 6)

5	CCC (C:A) CCCC (A:C) CGCCGC	438 bp
6	CCC (C:A) CCCC (A:C) CGCCGC	443 bp
7	CGCCGCAGCA (G:A) GCCG	455 bp
8	GCTTATGG (G:A) GCCGGG	503 bp
9	CACGGC (T:C) TC (G:A) GAGCA	525 bp
10	CACGGC (T:C) TC (G:A) GAGCA	528 bp
11	GTCTGC (A:G) GGCAGGTG	571 bp
12	CAAGCCCCG (G:T) CGGTT	636 bp
13	ACCTC (A:G) AGGCCCA	710 bp
14	GC (C:T) GGGCCCAGCCGC	867 bp
15	ACCAGCTG (C:T) GTTCCC	903 bp
16	GGC (C:G) CTCTGGCGCC	1148 bp
17	GGGGG (C:T) GTCCCCGGGA	1305 bp

FIGURE 10, CONTD.

18	GCGGT (C:T) GGGGGAGTT	1320 bp
19	CGCCC (C:T) GGTCCCGCT	1400 bp
20	TCCC (G:A) TCTGCCGGCC	1519 bp
21	GA (T:A) GCCCCATCCCCC	1547 bp
22	GG (C:T) GGCTGCTGCGGC	1607 bp
23	TGGCTGC (G:A) GTCTGGG	2222 bp

POLYMORPHISMS IN CODING REGION - CONTIG C10 (figure 6)

24	GCGCA (G:T) TGATTGGCA	341 bp
25	CGCCCCCCCC (-:C) (G:C) GG	2247 bp
26	CGCCCCCCCC (-:C) (G:C) GG	2248 bp
27	GCAGCCGGCTC (C:T) TGG	2257 bp
28	GTTGTTG (C:T) TCTGGGA	2413 bp

MICROSATELLITES

29 *PIGQTL1*: (AT)¹¹ 112 to 133 bp Contig 57

30 *PIGQTL2*: (GT)⁸ CCACGGGTGTGCGTGTCAC (GT)¹⁷ 1074 to 1144 bp Contig 95

31 *PIGQTL3*: (CA)¹⁹ 223 to 260 bp Contig 105

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12Q 1/68, C07K 14/65, A01K 67/02		A3	(11) International Publication Number: WO 00/36143
			(43) International Publication Date: 22 June 2000 (22.06.00)
(21) International Application Number: PCT/EP99/10209		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 16 December 1999 (16.12.99)			
(30) Priority Data: 98204291.3 16 December 1998 (16.12.98) EP			
(71) Applicants (<i>for all designated States except US</i>): UNIVERSITY OF LIEGE [BE/BE]; 20 Bd de Colonster, B-4000 Liege (BE). MELICA HB [SE/SE]; Andersson, Leif, Bergagatan 30, S-752 39 Uppsala (SE). SEGHERSGENTEC N.V. [BE/BE]; Kapelbaan 15, B-9255 Buggenhout (BE).			
(72) Inventors; and		Published <i>With international search report.</i>	
(73) Inventors/Applicants (<i>for US only</i>): ANDERSSON, Leif [SE/SE]; Bergagatan 30, S-752 39 Uppsala (SE). GEORGES, Michel [BE/BE]; Rue Vieux Tige 24, B-3161 Villers-aux-Tours (BE). SPINCEMAILLE, Geert [BE/BE]; Sint Denijssstraat 26, B-8550 Zwevegem (BE).		(88) Date of publication of the international search report: 26 October 2000 (26.10.00)	
(74) Agent: OTTEVANGERS, S., U.; Vereenigde, Nieuwe Parklaan 97, NL-2587 BN The Hague (NL).			
(54) Title: SELECTING ANIMALS FOR PARENTALLY IMPRINTED TRAITS			
(57) Abstract			
<p>The invention relates to methods to select breeding animals or animals destined for slaughter for having desired genotypic or potential phenotypic properties, in particular related to muscle mass and/or fat deposition. The invention provides a method for selecting a pig for having desired genotypic or potential phenotypic properties comprising testing a sample from said pig for the presence of a quantitative trait locus (QTL) located at a Sus scrofa chromosome 2 mapping at position 2p1.7.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 99/10209

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12Q1/68 C07K14/65 A01K67/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, CHEM ABS Data, EMBASE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ANDERSSON-EKLUND ET AL.: "MAPPING QUANTITATIVE LOCI FOR CARCASS AND MEAT QUALITY TRAITS IN A WILD BOAR X LARGE WHITE INTERCROSS" J.ANIM.SCI., vol. 76, 1998, pages 694-700, XP002104406 cited in the application See page 696, "Carcass Composition" and page 698, Fig. 1b. the whole document ----	1-3, 10-12
Y	----- -/-	4-9, 13-27

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- &* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
1 August 2000	08/08/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Hagenmaier, S

INTERNATIONAL SEARCH REPORT

Int. Application No

PCT/EP 99/10209

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication where appropriate of the relevant passages	Relevant to claim No
X	KOVACS AND KLÖTING: "MAPPING OF QUANTITATIVE TRAIT LOCI FOR BODY WEIGHT ON CHROMOSOMES 1 AND 4 IN THE RAT" BIOCHEMISTRY AND MOLECULAR BIOLOGY INTERNATIONAL, vol. 44, no. 2, February 1998 (1998-02), pages 399-405, XP002104407 the whole document	1,2,10, 11
Y	JOHANSSON ET AL.: "COMPARATIVE MAPPING REVEALS EXTENSIVE LINKAGE CONSERVATION-BUT WITH GENE ORDER REARRANGEMENTS-BETWEEN THE PIG AND THE HUMAN GENOMES" GENOMICS, vol. 25, 1995, pages 682-690, XP000610181 See Fig.1, pig chromosome 2 the whole document	4-9, 13-27
Y	REIK W ET AL: "IMPRINTING IN CLUSTERS: LESSONS FROM BECKWITH-WIEDEMANN SYNDROME" TRENDS IN GENETICS, vol. 13, no. 8, 1 August 1997 (1997-08-01), page 330-334 XP004084608 Igf2 the whole document	4-9, 13-27
Y	CATCHPOLE AND ENGSTRÖM: "NUCLEOTIDE SEQUENCE OF A PORCINE INSULINE-LIKE GROWTH FACTOR II cDNA" NUCLEIC ACIDS RESEARCH, vol. 18, no. 21, 1990, page 6430 XP002104409 cited in the application the whole document	15
A	ANDERSSON L ET AL: "GENETIC MAPPING OF QUANTITATIVE TRAIT LOCI FOR GROWTH AND FATNESS IN PIGS" SCIENCE, vol. 263, 25 March 1994 (1994-03-25), pages 1771-1774, XP002018359 cited in the application the whole document	
A	KNOTT ET AL.: "MULTIPLE MARKER MAPPING OF QUANTITATIVE TRAIT LOCI IN A CROSS BETWEEN OUTBRED WILD BOAR AND LARGE WHITE PIGS" GENETICS, vol. 149, June 1998 (1998-06), pages 1069-1080, XP002104410 cited in the application the whole document	

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 99/10209

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 03682 A (UNIV IOWA RES FOUND) 29 January 1998 (1998-01-29) the whole document ---	
P,X	JEON ET AL.: "A PATERNALLY EXPRESSED QTL AFFECTING SKELETAL AND CARDIAC MUSCLE MASS IN PIGS MAPS TO THE IGF2 LOCUS" NAT.GENET., vol. 21, February 1999 (1999-02), pages 157-158, XP002104411 the whole document ---	1-27
P,X	NEZER ET AL.: "AN IMPRINTED QTL WITH MAJOR EFFECT ON MUSCLE MASS AND FAT DEPOSITION MAPS TO THE IGF2 LOCUS IN PIGS" NAT.GENET., vol. 21, February 1999 (1999-02), pages 155-156, XP002104412 the whole document -----	1-27

INTERNATIONAL SEARCH REPORT

Information on patent family members			International Application No PCT/EP 99/10209	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9803682 A	29-01-1998	US 5935784 A AU 3513297 A BR 9710875 A CN 1230227 A CZ 9900161 A EP 0958376 A PL 331353 A US 5939264 A		10-08-1999 10-02-1998 11-01-2000 29-09-1999 16-06-1999 24-11-1999 05-07-1999 17-08-1999