Peripheral control of posture & movement

The control of posture and movement

The control of posture and movement

Ludwig van Beethoven - Moonlight Sonata (3rd Movement) Tina S, Cover

Simple diagram of the control of posture and movement

Stretch reflex

Stretch reflex

Golgi structure

Golgi structure

Golgi reflex

The Golgi organ measures the tension of the muscle

Pain reflex and stretch reflex:

- Subconscious movement control
- > Protective role

Pain reflex and stretch reflex:

- Subconscious movement control
- ➤ Protective role

Muscle spindle reflex

The muscle spindle measures the length of the muscle

Sensory Ia nerve fibers

Red: Slow tonic myosin heavy chain marking the muscle

Green: NF-H, anulospiral marker of nerve fibres

Nerves in the muscle spindle: type and structure

Type	Subtype	Afferents	Endings	Efferents	Endings
Nuclear Chain Fibers					
	Ia	Ia	Annulo-spiral	$\gamma_{ m s}$	Trail
	II	II	Annulo-spiral	$\gamma_{ m s}$	Trail
			Flower spray		
Nuclear Bag Fibers					
	Bag1				
		Ia	Annulo-spiral	$\gamma_{ m d}$	Plate
		II	Flower spray	$\gamma_{ m d}$	Plate
	Bag2				
		Ia	Annulo-spiral	$\gamma_{ m s}$	Trail
				$\gamma_{ m d}$	Plate
		II	Flower spray	$\gamma_{\rm s}$	Trail

7

Action potential freq of spindle Ia afferent nerve fiber to step input

Static response of the spindle to stretch

Action potential frequency of spindle Ia afferent nerve fiber to steady-state stretch

Comparison of the responses of de-efferented primary and secondary endings to a ramp stretch by means of a direct display of their 'instantaneous' frequency of firing.

25

The relation between the dynamic index and the velocity of stretching for a primary and a secondary ending in the same soleus muscle.

Effect of gamma fiber stimulation on the response of the spindle to linear stretch

Effect of γ denervation on static firing

The relation between the frequency of static firing and the extension, determined on stretching the muscle to a series of different lengths. This was done for a pair of endings in the soleus muscle of the same decerebrate cat both in the presence of spontaneous fusimotor activity (V.R. intact) and after its abolition by ventral root section (V.R. cut).

Stimulation of static and dynamic gammas increases static discharge of the Ia and II afferent fibers

Stimulation of static gammas decreases the dynamic discharge

Stimulation of dynamic gammas increases de dynamic discharge

The effect of varying the frequency of fusimotor stimulation on the size of the 'dynamic index' found for particular velocities of stretching. A, stimulation of dynamic fusimotor fibre. B, stimulation of static fibre.

Bode diagram of the response of spindle Ia afferent

Bode diagram of the response of spindle Ia afferent

Bode diagram of the response of spindle Ia afferent

Model of the stretch reflex

Classical representation of the spindle

Mechanical model of the spindle

The control of posture and movement

Ludwig van Beethoven - Moonlight Sonata (3rd Movement) Tina S, Cover

The control of posture and movement

Motor learning (conscious and non-conscious) in sport & other activities | Prof Rich Masters, HKU

https://www.youtube.com/watch?v=jif6TMe_DcY

Motor Control, Motor Learning and Brain-Computer Interfaces

https://www.youtube.com/watch?v=O7Dlyplv7Sk

The control of posture and movement

Motor Control, Motor Learning and Brain-Computer Interfaces

https://www.youtube.com/watch?v=O7Dlyplv7Sk

The ClC family of voltage-gated chloride channels

			expression	function	disease	KO mouse
	Γ	CIC-0				
		CIC-1 7q35	skeletal muscle	stabilization of plasma membrane V	myotonia congenita	myotonia congenita (adr mouse)
		CIC-2 3q27	broad	transepithelial transport? pH,volume regulation?	?	degeneration: testes and retina
		CIC-Ka 1p36	kidney, inner ear*	transepithelial transport	? (BSND)*	nephrogenic diabetes insipidus
		CIC-Kb 1p36	kidney, inner ear*	transepithelial transport	Bartter's syndrome (BSND)*	-
		CIC-3 4q33	broad (brain, kidney, liver)	acidification of endosomes, synaptic vesicles	?	degeneration: hippocampus and retina
		CIC-4 Xp22.3	broad (brain, muscle)	?	?	?
		CIC-5 Xp11.22	kidney (intestine, liver)	acidification of endosomes	Dent's disease	defect in renal endocytosis
		CIC-6 1p36	broad	?	?	?
	<u></u>	CIC-7 16p13	broad	acidification of lysosomes, resorption lacuna of osteoclasts	osteopetrosis	osteopetrosis

The myotonic goat

Cause: defect in CIC-1

Normal goat

ClC-1 mutant goat

Normal goat, 9-AC

Pain reflex and stretch reflex:

- Subconscious movement control
- > Protective role

TRPA1: a sensor of harmful cold

