

COURSE HANDOUT

Session: 2023-2024 Sub Session: Semester I (Jul-Dec)

Course Name: Software Engineering (CS 301)

Course Incharge: Dr. Shweta R Malwe

Course Faculty:

Dr. Shweta R Malwe (Shweta.Malwe@niituniversity.in | Mobile No N/A)

Registered Batches:

B.Tech. - CSE 2019, CSE 2020, CSE 2021, CYS 2021

Course Description

This course will provide an understanding of how to develop a software system by guiding them through the development lifecycle and different methodologies. This course will also provide knowledge and expertise of system design technique with object-oriented approach using UML. The course will help students to learn software requirements analysis process, object-oriented design technique, use case, test plan and test case preparation as part of problem-solving activities. This course will also provide students an overall understanding of Project Management with Software Project Estimation, Project Scheduling, Risk Management, Configuration Management, Software Quality Assurance and Software Maintenance.

Course Outcomes

S.No.	Description
CO1	Knowledge about SE, SE activities, challenges and other issues
CO2	Understanding of software development life cycle, development methodologies, ability to select suitable methodology to use in software development. Ability to analyse, design and develop the system models.
CO3	Learn to apply different phase from Requirement Phase to testing and maintenance to a given project
CO4	Learn about the Process Planning and Estimation, Project Scheduling and Staffing, Risk Management, Quality Management, Software Quality control and Quality assurance, Metrics for Software Quality, Integrating Metrics within the Software Process
CO5	Learn to apply different Process Metrics and Project Metrics in a given project
CO6	Will be familiar with the new Software Engineering Process, technology as a driver, new modes of representing information, new tools and techniques

Course outcome mapping with Programme Outcomes:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	3	2	2	3	3	3	3
CO2	3	3	2	2	2	2	3	2	2	2	3	3
CO3	3	2	2	3	2	2	2	2	3	2	3	3
CO4	2	2	3	2	3	2	3	2	3	3	3	2
CO5	3	2	2	2	2	3	3	3	3	3	2	2
CO6	3	2	2	2	2	3	3	3	3	2	2	2
Max.	3	3	3	3	3	3	3	3	3	3	3	3

3 is High, 2 is Moderate, 1 is Low & - is Not Applicable

Tentative Lecture Plan

Units	Syllabus Details	Hours required to complete	Course Outcome	
1	Overview of Software Engineering What is Software Engineering, why it is required to study and learn as a part of Computer Science and Engineering course, Concepts about Software, SE activities	1	CO1	
2	What is well Engineered Software, Software Engineering key challenges. Reasons for Software project failure, Software Engineering Approach, ETVX approach	1	CO1	
3	Software Project milestones, Software project deliverables, Issues of professional responsibility	1	CO1	
4	Software Development Lifecycle Software Development Life Cycle (SDLC) Waterfall model, prototyping and interactive enhancement.	1	CO1	
5	Software Development Lifecycle Prototyping and interactive enhancement.	1	CO1, CO2	
6	Iterative and Spiral Model	1	CO1, CO2	
7	RAD and Agile process models and Test Driven Development.	1	CO1, CO2	
8	FDD and TDD	1	CO1, CO2	
9	Requirement Phase Requirement Elicitation, Problem Analysis	1	CO1, CO2	
10	Feasibility study of requirements Operational, Technical and Economic.	1	CO1, CO2	
11	Software Requirement Specification and Validation Decision Table	1	CO1, CO2	
12	Software Requirement Specification and Validation Requirements Prioritization.	1	CO1, CO2	
13	Decision Tree	1	CO1, CO2	
14	Planning of Software Project: Process Planning, Estimation, COCOMO Model, Project Scheduling and Staffing	1	CO1, CO2, CO3	
15	Practise on Planning of Software Project	1	CO1, CO2, CO3	
16	Design Phase Differences between analysis and design activities	1	CO1, CO2, CO3	
17	Problem partitioning	1	CO1, CO2, CO3	
18	Problem partitioning, abstraction, top down and bottom up design.	1	CO1, CO2, CO3	
19	Desirable characteristics of good software	1	CO1, CO2, CO3	
20	Data flow diagram, Structured approach	1	CO2, CO3	
21	Data flow diagram Functional versus object oriented approach	1	CO2, CO3	
22	Design Specification	1	CO2, CO3	
23	Coding standards and coding guidelines	1	CO1, CO2, CO3	
24	Coding structured programming, programming style, code reviews and inspections and documentation	1	CO2, CO3	
25	Code Inspections	1	CO2, CO3	
26	Testing different types and principles of software testing	1	CO2, CO3, CO4	
27	Levels of testing, functional testing	1	CO2, CO3, CO4	
28	Structural testing, test plan	1	CO2, CO3, CO4	
29	Test cases specification, reliability assessment	1	CO2, CO3, CO4	
30	Design test cases unit test cases, system integration test cases	1	CO2, CO3, CO4	
31	Maintenance Necessity of software maintenance, the types of software maintenance.	1	CO2, CO3, CO4	
32	Legacy software products and the problems in their maintenance	1	CO2, CO3, CO4	
33	Risk Management, Quality Management.	1	CO3, CO4	
34	Software Configuration Management (SCM), Project Monitoring plan	1	CO3, CO4	

*Number of lectures may vary.					
	Total lecture required	40*			
40	The Road Ahead The new Software Engineering Process, technology as a driver, new modes of representing information, new tools and techniques	1	CO6		
39	Object Oriented Metrics, UseCase Oriented Metrics, Role of metrics and measurement	1	CO4, CO5		
38	Role of Management in software development.	1	CO4, CO5		
37	Function-Oriented Metrics, Reconciling LOC and FP Metrics	1	CO4, CO5		
36	Metrices for Process and Projects Process Metrics, Project Metrics, Size Oriented Metrics	1	CO4, CO5		
35	Software Quality control and Quality assurance, Metrics for Software Quality, Integrating Metrics within the Software Process, Reliability issues and metrics	1	CO4, CO5		

Book Details

Text Books

- 1. R. S. Pressman, Software Engineering: A Practioners Approach, 5th Ed, McGraw-Hill, 2001.
- 2. Sommerville, Software Engineering, 7th Ed, Addison-Wesley, 2005.

Reference Books

- 1. Pankaj Jalote, Software Engineering: A Precise Approach, 3rd Edition, 2013.
- 2. Rajib Mall, Fundamentals of Software Engineering, 3rd Edition ,2013.
- 3. C. Ghezzi, M. Jazayeri and D. Mandrioli, Fundamentals of Software Engineering, 2nd Ed, Prentice Hall of India, 2003.

Online course work/ Massive Open Online Course/ Open source web material

Lecture notes, online references

Evaluation Scheme (Theory/ Practical)

Evaluation Component	Exam Month	Exam Duration (in Hrs)	Mode of Examination	Weighted Marks
Attendance	Not Applicable	Not Applicable	Not Applicable	10.00
MSI	September	1	Pen-Paper	15.00
MSII	October	1	Pen-Paper	20.00
Project and Seminar	November	Not Applicable	Online	15.00
Lab Assignment	Not Applicable	Not Applicable	Online	10.00
Comprehensive Exam	December	2	Pen-Paper	30.00

Mode of Practical Exam

Offline class work

List of Tentative Practical

List of Practical Project Work

- Introduction of Collaboration Tools.
- · Software Requirements Specification (SRS) Document preparation
- Use Cases diagrams
- Class Diagrams
- Sequence Diagram
- Test cases preparation
- Preparation of Project Deployment plan (Development to Production environment)

Test cases preparation

Problem based on Software Metric Problem based on CPM

Proiect Work:

Create SRS based on a given system

Create RDD and Design document based on the above system

Project Discussion Individual Groups (Coding issues)

Project Discussion Individual Groups (Testing)

Preparation of Project Deployment plan (Development to Production

environment)

Course outcome mapping with evaluation components:

СО	Comprehensive Exam	Lab Assignment	MSI	MSII	Project and Seminar
CO1	3	3	3	2	3
CO2	3	3	3	2	2
CO3	3	3	3	3	3
CO4	3	3	2	3	3
CO5	3	2	2	3	3
CO6	3	1	1	1	2
Max.	3	3	3	3	3

³ is High, 2 is Moderate, 1 is Low & - is Not Applicable

Make up Policy

Students who are likely to miss a component of evaluation due to any genuine reason may be given a make-up for that component by the Course In-Charge. The students are required to approach the Course In-Charge immediately for the same before the conduct of the evaluation component. It is the responsibility of the student to approach the Course In-Charge. The Course In-Charge will not allow makeup, if a student approaches 7 days after the evaluation component (Student Handbook R 35). No makeup for Quiz component.

<u>Plagiarism</u>

We are committed to uphold the standards of academic integrity and honesty. Plagiarism in any form is unacceptable and will be treated seriously (Student Handbook R 49).

Grading Policy

Marks obtained in all the components of evaluation shall be totaled and the final marks shall be converted in the letter grades, namely A, B, C, D, E and NC. The grading is relative and normally, it is centered around the average of a class. Mid-Semester grading will be announced after the completion of about 50% of the evaluation components (Student Handbook R 40).

University Attendance Policy

Students are requested to go through the Student Handbook for better understanding of the attendance policy. Students is advised to regularly check his/her attendance on ERP. In case of any discrepancy in attendance record, student should report only through e-mail/written communication (no oral communication will be entertained) to the Course In-Charge in the same week itself, otherwise request will be not considered (Student Handbook R 37 and NU Attendance policy).

Consultation Hours

All information regarding course will be posted on Moodle. Students are requested to check Moodle regularly. Additionally, the student may approach the Course-In-Charge by email to schedule appointments.