

Author Index

- Abbad, B., 13
Abe, N., 447
Abe, T., 387
Adachi, M., 81
Adams, C.J., 127, 133
Albert, B.R., 127, 133
Alberti, G., 297
Amano, J., 541
Anpo, M., 621
Ariyuki, M., 621
Asakura, K., 571
Attou, M., 13
- Banno, Y., 1
Basset, J.M., 81
Batamack, P., 565
Bayat, P., 183
Beelen, T.P.M., 263
Bellussi, G., 517
Berger, R., 403
Bhaumik, A., 497
Binder, G., 403
Blumenfeld, A., 19
Bosch, P., 19
Botto, R.E., 45
Bulbulian, S., 19
- Calis, H.P.A., 213
Calzaferri, G., 59
Carius, H.-E., 467
Carrado, K.A., 45
Chang, W.-T., 651
Chatterjee, A., 421
Cheetham, A.K., 127, 133
Chen, C.Y., 199
Chen, S., 7
Chen, X., 315
Chen, Y.-H., 651
Cheng, S., 505
Chiba, K., 395
Chippindale, A.M., 271
Choudhary, V.R., 91
Cleare, K., 371
Cook, D., 371
- Corker, J., 81
Corma, A., 487
Costantino, U., 297
Cowley, A.R., 271
Cruciani, G., 143
- Datka, J., 75
Davis, M.E., 173
de A. Gomes, G., 659
De Luca, P., 143
de Moor, P.-P.E.A., 263
Dědeček, J., 525
Demkov, A.A., 347
Dereppe, J.M., 645
Derevyankin, A.Y., 411
Devadas, P., 91
Dohba, M., 447
Domen, K., 429, 673
Dong, J., 7
Dorémieux-Morin, C., 565
Dutta, P.K., 103
Dyer, A., 27, 39
- Ebina, T., 421
Evans, J.S.O., 253
- Faghihian, H., 27, 39
Fenelonov, V.B., 411
Flesch, U., 111
Fraissard, J., 565
Francis, R.J., 253
Fricke, R., 467
Fripiat, J., 19
Frunza, L., 467
Frunza, S., 467
Fujikata, Y., 679
Fujino, T., 673
Fukuoka, A., 597
Fukushima, Y., 589, 597, 667
Fyfe, C., 183
- García, I., 19
Gerber, C., 403
Geus, E.R., 213

- Gies, H., 183
 Gil, B., 75
 Gimzewski, J.K., 403
 Gjervan, T., 67
 Gobrecht, J., 403
 Guisnet, M., 91
 Halasyamani, P.S., 253
 Hanson, J., 253
 Hari Prasad Rao, P.R., 305
 Hashimoto, K., 679
 Hayashi, S., 289, 381
 Heeribout, L., 565
 Higashimoto, S., 621
 Hiraga, K., 581
 Hirose, C., 673
 Hirose, K.-i., 447
 Hölderich, W.F., 67
 Honda, T., 1
 Hsu, B.-Y., 505
 Hu, Z., 7
 Humbert, F., 645
 Hwang, L.-P., 651
 Ichikawa, M., 475, 597
 Idaka, S., 365
 Iguchi, A., 447
 Ikeda, H., 679
 Ikonnikov, I., 525
 Inagaki, S., 589, 597, 667
 Ingram, C., 371
 Inumaru, K., 629
 Ito, T., 629
 Iwamoto, M., 387
 Iwasaki, T., 421
 Iwasawa, Y., 571
 Izumi, Y., 227
 Jacobs, P.A., 475
 Jansen, J.C., 213, 403
 Jiang, P.-C., 651
 Johkan, K.-i., 637
 Jung, K.T., 281
 Kadokawa, J.-i., 395
 Kanada, Y., 557
 Kaneko, E., 615
 Kano, S.S., 673
 Kapteijn, F., 213
 Karasu, M., 395
 Kawase, M., 439
 Kessler, H., 13, 81
 Kevan, L., 371
 Kikuchi, E., 533
 Kim, J.M., 235
 Kiricsi, I., 453
 Kiyozumi, Y., 453
 Knops-Gerrits, P.-P., 475
 Knorr, K., 353
 Ko, C.H., 235
 Koegler, J.H., 213, 403
 Koizumi, K., 557
 Komanschek, B.U., 263
 Kondo, J.N., 429
 Kosslick, H., 467
 Kozlov, A., 571
 Krämer, M., 607
 Krink, K., 183
 Kudo, A., 615
 Kulkarni, S.J., 53
 Kumar, R., 497
 Kuwahara, T., 395
 Landmesser, H., 467
 Lang, H.P., 403
 Lee, G.S., 199
 Lefebvre, F., 81
 Leon y Leon, C.A., 305
 Lihui, W., 7
 Lindner, G.-G., 381
 MacKenzie, K.J.D., 289
 Mädler, F., 353
 Magnoux, P., 91
 Marler, B., 183
 Marmottini, F., 297
 Masuda, T., 679
 Matsukata, M., 305
 Matsumoto, Y., 461
 Matsuoka, O., 1
 Maunz, W., 111
 Mezzacasa, T., 403
 Mikami, K., 461
 Mishima, H., 621
 Misono, M., 629
 Miwa, M., 541
 Miyamoto, A., 421
 Mizukami, F., 453
 Möller, K.P., 607
 Montes, M., 117
 Moreaux, C., 645
 Moulijn, J.A., 213
 Müller, B.R., 59
 Müller, R., 111
 Murata, K., 557
 Murthy, K.V.V.S.B.S.R., 53
 Muto, A., 557
 Nagaiah, K., 53
 Nagamori, Y., 439
 Nagaoka, T., 395
 Nakagawa, Y., 199
 Nakamura, Y., 461
 Nakato, T., 637

- Nakazawa, H., 381
 Nakazawa, T., 325
 Nastro, A., 143
 Niederer, J.P.M., 67
 Nieen, T.E.W., 67
 Nikolakis, V., 337
 Niwa, S.-i., 453
 Norby, P., 253
 Nozoye, H., 1
 Nozue, Y., 245, 589
- O'Connor, C.T., 607
 O'Hare, D., 253
 O'Young, C.-L., 315
 Oberhagemann, U., 183
 Ogura, M., 533
 Ohnishi, N., 581, 589
 Ohsaki, T., 533
 Ohsuna, T., 581, 589
 Ohtsuka, H., 517
 Okada, K., 289
 Okubo, T., 325
 Okuhara, T., 637
 Oliver, C., 371
 Onaka, M., 227
 Osada, M., 597
- Pang, W., 245
 Papular, R.J., 353
 Pattison, P., 143
 Paukshtis, E.A., 411
 Pavan, P.C., 659
 Peng, S., 7
 Plog, C., 111
 Pope, C.G., 333
 Pophal, C., 549
- Qiu, S., 245
- Raghavan, K.V., 53
 Richter, M., 467
 Rius, J., 183
 Röger, H.P., 607
 Romannikov, V.N., 411
 Ryoo, R., 235
- Sabatino, L.M.F., 517
 Sadakata, M., 325
 Sakamoto, Y., 581, 589
 Sakata, Y., 557
 Sánchez, A., 117
 Sankey, O.F., 347
 Sansare, S.D., 91
 Sasaki, M., 597
 Sato, H., 447
 Scandella, L., 403
 Schoonheydt, R., 475
- Schreier, E., 467
 Segawa, K., 549
 Seki, K., 637
 Semmer, V., 565
 Shimai, A., 289
 Shimizu, S., 447, 453
 Shiraga, Y., 557
 Shul, Y.G., 281
 Simon, U., 111
 Singh, R., 103
 Sivadinarayana, C., 91
 Sobalík, Z., 525
 Solache, M., 19
 Steinike, U., 467
 Stuart, J.A., 133
 Subrahmanyam, M., 53
 Sugimoto, N., 597
 Sugiyama, S., 1
 Suib, S.L., 315
 Suzuki, M., 541
 Szostak, R., 371
- Tabata, T., 517
 Tagaya, H., 395
 Taguchi, A., 387
 Takei, T., 289
 Tanaka, M., 461
 Terada, M., 461
 Terasaki, O., 245, 581, 589
 Toba, M., 453
 Tsapatsis, M., 337
 Tsiao, C.-J., 45
- Uddin, MdA., 557
 Ueyama, K., 305
 Urabe, K., 227
- Valim, J.B., 659
 van Bekkum, H., 213
 van den Bleek, C.M., 213
 van der Puil, N., 213
 van Santen, R.A., 263
 Verberckmoes, A., 475
 Vivani, R., 297
 Vlacho, D.G., 337
 Vortmann, S., 183
- Wada, A., 673
 Wakabayashi, F., 429
 Wang, J.Y., 315
 Węglarski, J., 75
 Wichterlová, B., 525
 Wolf, I., 183
- Xu, R., 245

- Yamada, K., 549
Yamada, T., 637
Yamamoto, S., 1
Yamashita, H., 621
Yasumori, A., 289
Yokomori, Y., 365
Yu, J., 245
Yuen, L.T., 199
Zaikovskii, V.I., 411
Zappelli, P., 297
Zhang, S.G., 621
Zhao, D., 371
Zhou, H., 315
Zhu, G., 245
Zones, S.I., 199
Zubowa, H.-L., 467

ELSEVIER

MICROPOROUS AND
MESOPOROUS MATERIALS

Microporous and Mesoporous Materials 21 (1998) 713–716

Subject Index

Acidity, 411, 439
Acidity scale of solids, 565
Adsorption, 411, 659
Adsorption of molecule, 637
Adsorption process, 679
Al-pillared clays, 117
Alkane oxidation, 575
Alkylation, 53, 213, 453
Alkytin, 81
All-organic synthesis, 381
Allophane, 381
Aluminophosphate molecular sieve, 505
Ammonia, 111
Analcime, 365
Anionic clay, 659
Anionic surfactant, 659
Aromatics, 497
Asymmetric catalysis, 461
Atomic force microscopy, 1

Baeyer–Villiger rearrangement, 497
Benzene adsorption, 651
Binaphthol, 461
Binuclear iron complex, 575
Birefringence, 235
Brønsted acid strength, 421
Brønsted hydroxyl group, 673
Bunching, 1
1-Butene, 429

Ca ions in zeolites, 525
Cantilever sensors, 403
Carbonyl-ene reaction, 461
Catalysis, 19, 173
Catalysis and magnetism, 597
Catalyst, 447, 505
Catalysts, 19
Catalytic degradation, 557
Catalytic properties, 411
Cationic exchange, 19
Chemical vapour deposition, 607
Chirality, 173
Clay, 227
Clay pillaring scale-up, 117

Clay structure, 45
Cloverite, 81
Clusters, 347
Co-loaded zeolite, 517
Cobalt, 19
Cogel, 281
Co ions in zeolites, 525
Coke characterization, 91
Coke, nature of, 91
Coke removal, 91
Commercialized aromatization process, 439
Composite catalyst, 213
Crystal growth mechanism, 589
Crystalline mesophase, 411
Crystallization, 305
Crystallization mechanism, 325
Crystal structure, 271, 365
Crystal structure analysis, 581
CVD, 541

Desorption process, 679
Diffusion, 27, 39, 645
Diffusivity, 679
Disorder, 353
Double-quantum filtered NMR, 651
Dry gel conversion, 305

Electron crystallography, 581
Electron diffraction, 581
Electron microscopy, 589
Epitaxy, 629
ESR, 571
ETS-4, 143
External surface, 7

Fe-ZSM-5, 549
Ferrierite, 525
Field emission scanning electron microscope, 325
Film formation, 325
Fine chemicals, 173
Fluoride, 13
FSM, 557
FSM-16, 589, 667
Fuel oil, 557

- Gallery height, 45
 Gallophosphate cloverite, 567
 Gas translation model, 59
 Gel, 337
 Gibbs, 333
 Gismondine framework, 127, 133
 Grafting reaction, 81
 Growth, 245, 337

 H-gallosilicate (MFI) zeolite, 91
 Heteropolyacid, 227, 629
 Heulandite, 1
 Hexagonal structure, 387
 High-resolution electron microscopy, 581
 Highly crystalline low-silica CaP zeolite, 127
 Highly crystalline low-silica NaP zeolite, 133
 High silica zeolite, 305
¹H MAS NMR, 565
 Host–guest interaction, 615
 Host–guest interaction, 567
 Hydrogenation, 213
 Hydrogenation of alkenes, 637
 Hydrophobicity, 667
 Hydrothermal chemistry, 253
 Hydrothermal synthesis, 387
 Hydrothermal treatment, 439
 Hysteresis, 667
 HZSM-5, 7, 453

 Impedance spectroscopy, 111
 Influence of defects, 565
 In situ IR spectroscopy, 59
 Interaction of TEA⁺ ions with zeolite, 305
 Interfacial free energy, 333
 Intergrowth, 281
 Ion exchange, 27, 39
 Ionic conductivity, 111
 IR, 429
 Isomorphous substitution, 421

 Kanemite, 183
 Kaolinite, 289

 Large single crystals, 245
 Layered double hydroxides, 659
 Layered oxide, 615
 Layer silicates, 183
 Liquid-phase organic reactions, 227
 Liquid crystal, 567
 Local density functional, 421
 Luminescence, 615

 Manganese oxide, 315
 MAS NMR, 13
 Maximum entropy, 353
 MCM-22, 487
 Membrane, 213

 Merocyanine, 395
 Mesopores of FSM-16, 597
 Mesoporous, 589, 667
 Mesoporous oxides, 575
 Mesoporous silica, 235, 557
 Mesoporous zeolite, 621
 Mesostructured material, 387
 MESP map, 421
 Metakaolinite, 289
 Metal substitution, 505
 Metal surfactant, 7
 Methanol, 53
 Methanol amination, 7
 2-Methyl-1-naphthol, 53
 MFI, 497
 MFI-type zeolite, 679
 Microcrystallite, 629
 Micromechanical devices, 403
 Micropore, 1
 Microporosity, 629
 Microporous, 271
 Microporous heteropoly compounds, 637
 Microporous materials, 253
 Microporous pillared materials, 297
 Microporous silica, 289
 Microstructure, 337
 Modeling, 337, 353
 Modification, 7
 Molecular sieve, 235, 315
 Molybdenum hexacarbonyl, 59
 Monolith, 281
 Montmorillonite, 227
 Mordenite, 1
 Mössbauer spectroscopy, 575
 4-M-pentyl-4'-cyano-biphenyl, 567

 Nano-wire, 597
 Nanospheres, 381
 1-Naphthol, 53
 Natrolite, 27
 n-Hexane adsorption, 13
 (NH₄)₃[Ti(O₂)F₅], 67
 Nitrogen oxide, 517
 Nitrous oxide, 549
 NMR spectroscopy, 19
 4-n-octyl-4'-cyanobiphenyl, 567
 NO reduction, 541
 NU-86, 487
 NU-87, 487
 Nuclear magnetic resonance, 645
 Nucleation, 199, 245, 325, 333, 337

 Olefinic light hydrocarbons, 439
 Open framework, 271
 Organic–inorganic hybrid, 173
 Oxidation, 497
 Oxidative dehydrogenation, 315

- Particle size in clay pillaring, 117
 Pd/ZSM, 541
 PE, 557
 Permeation, 213, 281
 Photocatalytic reaction, 621
 Photochemistry, 615
 Photochromism, 395
 Photoluminescence quenching, 621
 Picolinic acids, 571
 Pillared clays, 45
 Pillared zirconium phosphates, 297
 Pinacol rearrangement, 505
 Polymer degradation, 557
 Pore mouth, 679
 Pore size effect, 621
 Porous nuclei, 333
 Powder diffraction, 127, 183, 353
 PP, 557
 Probe reaction, 607
 Propane, 517
 Propane aromatization, 91
 Propene adsorption, 549
 Pt clusters, 597
 Pulsed gradient, 645
 $\text{PW}_{11}\text{O}_{39}^{7-}$ heteropoly anion, 387
 Pyridine, 447
- Quadrupolar relaxation, 651
- $R\bar{3}$, 365
 Radioactive waste, 27, 39
 Rare earth, 615
 Regeneration, 447
 Residual interactions, 651
 Rietveld analysis, 183
 Rietveld refinement, 143
 Rigid lattice NMR, 565
 Rotary echo, 645
 RUB-15, 183
 RUB-18, 183
- SAPO-31, 13
 Schiff bases, 571
 Se, 347
 Second harmonic generation, 235
 Selective catalytic reduction, 549
 Selective catalytic reduction by hydrocarbons, 517
 Selective leaching, 289
 Self-assembly, 629
 Sensor, 111
 Shape-selective catalysis, 1
 Shape selectivity, 453, 637
 Silica-sodalite, 353
 Silica matrix, 395
 Silicoaluminophosphate, 13
 Skeletal isomerization of n-butane, 637
 Sol-gel reaction, 395
- Solid-state NMR, 81
 Solid acid catalysts, 227
 Solid state NMR, 381
 Solid state zeolite synthesis, 453
 Solid vibration model, 59
 Solvent-free, 497
 Solvent effect, 505
 Solvothermal synthesis, 271
 Sorption, 59
 Spectroscopical characterisation, 133
 Spin echo, 645
 Spiropyran, 395
 SSZ-26, 487
 Stilbite, 39
 Structure, 411
 Structure refinement, 127, 133
 Structure solution, 183
 Supralattices, 347
 Surface hydroxyl, 1
 Synchrotron radiation, 253
 Synthesis, 13, 67, 133, 245, 365, 447
 Synthesis of coatings, 213
- Template effect, 387
 Tetraethoxysilane, 607
 Theory, 347
 Thermal stability, 305
 Thermodynamic parameters, 27, 39
 Thin layer, 59
 $[\text{Ti}]$ -MCM-41, 67
 Time-resolved X-ray diffraction, 253
 Titanium complex, 461
 Titanium silicate, 497
 Titanium source, 67
 Titanosilicates, 143
 Transition-metal gallium phosphate, 271
 Transmission electron microscopy, 381
 Triammonium pentafluoroperoxotitanate, 67
 Trigonal, 365
 1,2,4-Trimethylbenzene, 607
 Triphase, 497
 Tritiated water, 27, 39
 TS-1, 281
- USY zeolite, 651
- Vanadium oxide species, 621
 Vibrational dynamics, 673
 VNI, 183
- Water, 673
 Water tolerance, 541
 Water vapor, 667
- XAFS, 571
 ^{129}Xe NMR, 45

- X-ray diffraction, 19, 589
X-ray photoelectron spectroscopy, 103

Y-type zeolite, 679
Y-zeolite, 59

Zeolite, 1, 7, 19, 27, 39, 235, 245, 337, 429, 447, 461, 581
Zeolite-encapsulated vanadium (4+) complexes, 571
Zeolite acid strength, 565
Zeolite BEA, 517
Zeolite BEA (beta), 305
Zeolite beta, 111
Zeolite devices, 403
Zeolite disc, 453
Zeolite geochemistry, 103

Zeolites, 53, 173, 183, 325, 347
Zeolite solubility, 103
Zeolites SSZ-41, 42 and UTD-1, 199
Zeolites with 10–12-member rings, 487
Zeolite synthesis, 103, 333
Zeolite X, 103
Zeolite Y, 103
Zeolithic reagents, 199
Zeta potential, 659
Zinc aluminate, 439
Zirconia, 411
 α -Zirconium phosphate, 297
Zn/H-ZSM-5/Al₂O₃, 439
Zorite, 143
ZSM-5, 421, 525, 607