

Operating system

徐子川 大连理工大学

内容纲要

5.4 调度算法Part2

- 一、RR调度算法原理
- 二、RR调度算法性能分析

一、RR调度算法原理

- ・轮转调度 (Round Robin)
 - 基本思想: 进程轮流使用CPU

RR算法基本做法:

- ① 系统将所有就绪进程按到达时间的先后次序排成一个队列
- ② 进程调度程序总是选择就绪队列中第一个进程执行 ,即先来先服务的原则,但仅能运行一个时间片
- ③ 在使用完一个时间片后,即使进程并未完成其运行 ,它也必须释放出(被剥夺)处理机给下一个就绪 的进程,而被剥夺的进程返回到就绪队列的末尾重 新排队,等候再次运行

一、RR调度算法原理

・轮转调度调度算法示意

关键参数: 时间片 (示例中为3)

一、RR调度算法原理

示例 (Time Quantum=4)

Process	Burst Time			
P1	24			
P2	3			
P3	3			

轮转调度作用于示例的甘特图

	P ₁	P ₂	P ₃	P ₁				
0	4	_	70 1	0 1	4 1	8 22	2 20	6 30

二、RR调度算法分析

时间片越短,上下文切换次数越大

二、RR调度算法分析

• RR vs. FCFS

- 时间片越大,RR越接近与FCFS调度
- 时间片越小,上下文切换次数越大

本讲小结

- RR调度算法原理
- RR调度算法评价

