Interactive Theorem Proving in HOL4

Course 06: Basic Tactics

Dr Chun TIAN chun.tian@anu.edu.au

Acknowledgement of Country

We acknowledge and celebrate the First Australians on whose traditional lands we meet, and pay our respect to the elders past and present.

More information about Acknowledgement of Country can be found here and here

Goal-Directed Proofs and Tactics

Goal-Directed Proofs

- User starts by setting a proof goal (as statements of the targeting theorem);
- ► Tactics (like CONJ_TAC) to reduce the current goal to zero or more subgoals;
- ► Tacticals (like THEN and THEN1) to organize tactics in tree-like structure.
- ▶ When no subgoal is left, the forward proof is automatically constructed from bottom up, to generate the final theorem.

Category of Built-in Tactics

- Goal deconstruction;
- Quantifiers;
- Assumption management;
- Subgoal management;

- Rewriting;
- Case analysis (case splits);
- Induction;
- Renaming and abbreviation;
- Automatic Provers.

3 HOL mini course C. Tian

Goal Deconstruction: Conjunctive Goals (1)

Prove two conjunctives separately

CONJ_TAC : tactic

Before

Initial goal:

P /\ Q: proof

After

Q

P (* first subgoal *)

2 subgoals

: proof

C. Tian

Goal Deconstruction: Conjunctive Goals (2)

Prove the first conjunctive, then use the first to prove the second

CONJ_ASM1_TAC : tactic

Before

Initial goal:

P /\ Q: proof

After

Q

0. P

Ρ

2 subgoals

Why it works?

$$\vdash P \land Q \iff P \land (P \Rightarrow Q).$$

Goal Deconstruction: Conjunctive Goals (3)

Use the 2nd conjunctive to prove the 1st one (then prove the 2nd)

CONJ_ASM2_TAC : tactic

Before

Initial goal:

P /\ Q: proof

After

Q

Ρ

.

0. Q

2 subgoals

Alternative Approach

Use ONCE_REWRITE_TAC [CONJ_SYM] to rewrite the goal to Q /\ P.

Goal Deconstruction: Conjunctive Goals (4)

hurdUtils.STRONG_CONJ_TAC : tactic

Before

Initial goal:

P /\ Q: proof

After

val it =

P ==> Q

Ρ

2 subgoals

For the other direction

Use ONCE_REWRITE_TAC [CONJ_SYM] and then STRONG_CONJ_TAC to get $Q \Rightarrow P$.

C Tian

Goal Deconstruction: Disjunctive Goals (1)

Prove the first disjunctive subgoal only

DISJ1_TAC : tactic

Before

Initial goal:

P \/ Q: proof

After

1 subgoal: val it =

: proof

See also

DISJ2_TAC for proving the second disjunctive only.

Goal Deconstruction: Disjunctive Goals (2)

Use the first (negated) disjunctive to prove the second

hurdUtils.STRONG_DISJ_TAC : tactic

Before

Initial goal:

~P \/ Q: proof

After

1 subgoal:

> val it =

Q

0. P

: proof

C. Tian

Quantifiers: Eliminate Universal Quantifier

```
qx_gen_tac : term quotation -> tactic
qx_genl_tac : term quotation list -> tactic
```

Before

Initial goal:

!x y. P x y: proof

Tactic

qx_genl_tac ['a', 'b']

After

1 subgoal:
val it =

Pab

: proof

Alternatives

X_GEN_TAC ''x'' >> X_GEN_TAC ''y''
"rpt GEN_TAC" or "NTAC 2 STRIP_TAC".

0 HOL mini course C. Tian

Quantifiers: Introduce Universal Quantifier

```
gspec_tac : term guotation * term guotation -> tactic
qid_spec_tac : term quotation list -> tactic
```

Before

Initial goal:

P a b: proof

Tactic

qspec_tac ('b', 'y')

After

1 subgoal: val it =

!y. Pay

: proof

Alternatives

qid_spec_tac 'a' is equivalent to qspec_tac ('a', 'a').

Quantifiers: Eliminate Existential Quantifier

```
qexists_tac : term quotation -> tactic
```

Before

Initial goal:

?n. SUC n = 1: proof

Tactic

qexists_tac '0'

After

1 subgoal:
val it =

SUC 0 = 1

: proof

C Tian

Quantifiers: Choose for Existential Quantifier

Choose a variable for existential quantifier and push to assumptions

```
Q.X_CHOOSE_TAC : term quotation -> thm_tactic
```

STRIP_TAC : tactic

Before

Initial goal:

(?x. P x) ==> Q: proof

Tactic

13

DISCH_THEN (Q.X_CHOOSE_TAC 'y')

After

1 subgoal: val it =

0. P v

Assumption Management (1)

Adding a theorem as a new assumption

ASSUME_TAC : thm_tactic (= thm -> tactic)

Before

Initial goal:

~P ==> ~Q: proof

Tactic

ASSUME_TAC (Q.SPECL ['P', 'Q']
CONTRAPOS_THM)

After

1 subgoal:
val it =

0. $^{\sim}P$ ==> $^{\sim}Q$ <=> P

Assumption Management (2)

Move proposition from goal to assumption

DISCH_TAC : tactic STRIP_TAC : tactic

Before

Initial goal:

P ==> Q

Tactic

DISCH_TAC

After

val it =

0. P

Assumption Management (3)

Moving last assumption to the goal

POP_ASSUM : thm_tactic -> tactic

MP TAC : thm tactic

Before

R.

0. P

: proof

Tactic

POP_ASSUM MP_TAC

After

val it =

0. P

Assumption Management (4)

Moving matched assumption to the goal

Q.PAT_X_ASSUM : term quotation -> thm_tactic -> tactic

Before

R.

0. P

: proof

Tactic

Q.PAT_X_ASSUM 'P' MP_TAC

After

val it =

0. Q

: proof

C. Tian

Subgoal Management (1)

Using subgoals

- Goal-directed proofs do not always revert the informal proof;
- Good formal proofs are in forwarding direction, aligned with the informal proofs;
- Subgoals are stage work of the proof stored into assumptions;
- Subgoals make proofs read easier;
- Subgoals can be either in forward or backward styles.

Subgoal Management (2)

Prove and place a theorem on the assumptions of the goal

```
op by : term quotation * tactic -> tactic
```

Before

Initial goal:

!x. P x: proof

Tactic

'Q' by cheat

After

val it =

lx. Px

0. Q

: proof

The subgoal inherits all assumptions of the current goal.

Subgoal Management (3)

Prove and place a theorem into the goal

hurdUtils.Know : term quotation -> tactic

Before

Initial goal:

!x. P x: proof

Tactic

Know 'Q :bool'

After

2 subgoals: val it =

Q ==> !x. P x

Q

2 subgoals

Subgoal Management (4)

Replace the goal's conclusion with a sufficient alternative.

hurdUtils.Suff : term quotation -> tactic

Before

Initial goal:

!x. P x: proof

Tactic

Suff 'Q :bool'

After

Q

$$Q \Longrightarrow !x. P x$$

2 subgoals

Rewriting Tactics (1)

Rewriting goal using theorems

```
REWRITE_TAC : (thm list -> tactic)
```

Before

```
val it =
   Proof manager status: 1 proof.
1. Incomplete goalstack:
        Initial goal:
        SUC n = n + 1
   : proofs
> ADD1;
val it = |- !m. SUC m = m + 1: thm
```

Tactic

REWRITE_TAC [ADD1]

After

```
OK..
val it =
    Initial goal proved.
    |- SUC n = n + 1: proof
```


Rewriting Tactics (2)

Rewriting goal using theorems and assumptions

ASM_REWRITE_TAC : (thm list -> tactic)

Before

$$n + 1 = 2$$

0. n = 1

: proof

Tactic

ASM_REWRITE_TAC []

After

$$1 + 1 = 2$$

0. n = 1

Rewriting Tactics (3)

Rewriting goal and assumptions using simpset, theorems and newer assumptions

FULL_SIMP_TAC : simpset -> thm list -> tactic

Before

$$m + 1 = 2$$

0. m = n

1. n = 1

: proof

Tactic

FULL_SIMP_TAC std_ss []

After

1 subgoal: val it =

$$1 + 1 = 2$$

 $0. \quad m = 1$

1. n = 1

Rewriting Tactics (4)

Rewriting goal and assumptions using simpset, theorems and *older* assumptions

REV_FULL_SIMP_TAC : simpset -> thm list -> tactic

Before

$$m + 1 = 2$$

0. n = 1

1. m = n

: proof

Tactic

FULL_SIMP_TAC std_ss []

After

1 subgoal:
val it =

$$1 + 1 = 2$$

0. n = 1

 $1. \quad m = 1$

Induction (1)

How induction works

1. There must be an induction theorem to apply, e.g.:

[numTheory.INDUCTION]

$$\vdash P \ 0 \ \land \ (\forall n. \ P \ n \Rightarrow P \ (SUC \ n)) \Rightarrow \forall n. \ P \ n$$

2. The tactic HO_MATCH_MP_TAC is used for applying the induction theorem.

Before

Initial goal:

!n. n + n = 2 * n: proof

Tactic

HO_MATCH_MP_TAC numTheory.INDUCTION

After

val it =

$$0 + 0 = 2 * 0 /$$

!n. n + n = 2 * n ==>

$$n. n + n = 2 * n ==>$$

SUC
$$n + SUC n = 2 * SUC n$$

Induction (2)

Induction-related tactics

Induct : tactic

Induct_on : term quotation -> tactic

Before

Initial goal:

!n. n + n = 2 * n: proof

Tactics

Induct, or Induct_on 'n'

After

SUC n + SUC n = 2 * SUC n

0. n + n = 2 * n

0 + 0 = 2 * 0

2 subgoals

