Termination There are 4 aspects of the termination i) Alternative optimum ii) Unbounded ness iii) Infeasibility iv) eyeling

Alternative obtimum consider the following LPP. Max Z = 2x, +3x2 8.t. 5x1+3x2 < 15 $4x_1 + 6x_2 \le 12 - 2$ N1, N2 7, O We introduce slack variables x3 and xy to 1 and 2) then we have, Man = = 27/1+3/2+0/13+02/4 8.1. 571 +3712 +713 = 15 $4x_1 + 6x_2 + x_4 = 12$

N1 N5 N3 NM > O.

Cj 2	3 0	0		
CBBXBBBQ1	az az	ay.	min	operation
0 9 23 15 5	3 1	0	19/3=5	
09424 12 4	1610		12/6=2	
	2 -3 0	0		
25-65		-1/2	9/3=3	R= R1-382
1 0 as 23 9		/ / _	1	
* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5 1/4	2/2/3=3	5 R2= 82/6
	73 (1/6		
Zj-Cj 6 (Va - V		RI= R1/3
2 04 21 3	' 0 '	/3/ ⁻¹⁴	~	
$\left \left \left$	0 1 -	-2 5/	(8)	R21=R2-3K
744	010	C)	/_ \	
25-66		$\mathcal{M}_{\mathcal{C}}$	2+	

observation:

In iteration 2 the non-basic variable a, has 2j-cj is zero

o If we enter this variable we get mother optimum salution with same objective function value.

· It we enter as again we get the same values in iteration 2.

 $man 2 = 2 x_1 + 3 x_2 = 15 - 0$ $8.4.5 x_1 + 3 x_2 = 15 - 0$ $ux_1 + 6 x_2 = 12 - 2$ $x_1, x_2 > 0$.

Two points on (3,0)

Two points on (3,0)

two points on line objective function line objective function line $2x_1+3x_2=69$ (0,2) and (3,0)

(0,2) and (3,0)

Un bounded ness Consider the following LPP. man Z = 37,+422 8-t. - 2(+22 50 --7, +3 n2 = 3 -2 x, x2 70. After introducing slack variables me have, man Z = 37,+472+023 +024

Man 2 = 37, + 472 + 073 + 0748.4. -71, +72 + 73 = 0 -71 + 372 + 744 = 3-7, 72, 73, 74 > 0

[C131710]	
CB B XB ba, az az ay min	o perouting
0 9/1=0	
10/ay/24/3/4/3/0/1/3/3=1	
	<u></u>
2-60-3-400	
4 2 2 0 -1 1 1 0	R/ZRY1
	0/- 2 20
() ay 24 3 2 0 -3 1 3/2=15	R2-12-3.R1
1 2 2 2 4 (2)	
25-Ci 0 4 0 9 0	1
4/2/3/2011-1/2/2	R1 = R1+R2
2 a 7 1 3/2 1 0 -3/1 1/2	R= R2/2
7 -1364 7/2	
25-62 101011/21/2	

observation

the algorithm terminates but x_3 three to enter the basis, and there is no leaving variable

. This is called unboundedness.

Infeasibility

Man $Z = 5\pi_1 + 3\pi_2$ 8.t. $3\pi_1 + 3\pi_2 \le 1$ $3\pi_1 + 4\pi_2 \ne 12$ $3\pi_1 + 4\pi_2 \ne 12$ $3\pi_1, \pi_2 \ne 0$

Interduce slack variable x3 to (1) and surplus and artificial variables xy and x5 to (2), then we have.

man $Z = 5\pi_1 + 3\pi_2 + 0\pi_3 + 0\pi_4 - M\pi_5$ 8 t · $3\pi_1 + \pi_2 + \pi_3 = 1$ $3\pi_1 + 4\pi_2 - \pi_4 + \pi_5 = 12$ $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5 > 0$

· all zj- (j's are >0. Thus obtimal condition is reached

- · The artificial raniable still tresent in the basis.
 - maximam objective value is -8<0
 - The solution is not feasible.

eyeling comsider the LPP. minimise $Z = -\frac{2}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$ 4 ×1 -8×2-75+ 9×4 ≤0 -0 シャノ-12×2-シス3+3×4 ≤0 -2) ~3 <1-3 31,22,23, 24 >> 0 Reference E.M L. Beale, 1995. Maral research Logistic quaterly, 2, pp. 269-275

Maval research Logistic anaterly, 2

Pp. 269-275consider the standard form.

Max $z = \frac{3}{4}x_1-20x_2-\frac{1}{2}x_3-6x_4+0x_5+0x_6+0x_7$ st. $t_1x_1-8x_2-x_3+9x_4+x_5=0$ $\frac{1}{2}x_1-12x_2-\frac{1}{2}x_3+3x_4+x_6=0$

n, 22, ..., x770.

If we proceed in this may we see that the 7th iteration is same as iteration 1.