Lab02 – Modeling, synthesis, simulation & implementation of sequential (synchronous) logic circuits using FPGAs

Dragomir MILOJEVIC, v3.3

1 Objectives

Learn how to model digital sequential logic circuits in Verilog.

2 Exercises

2.1 8-bit parallel/serial load shift register

Write Verilog model of an 8-bit parallel/serial load shift register with a synchronous reset. The operation of the register is defined as follows:

- Load operation is enabled when input signal LD is set to 1
- Parallel load is enabled when LD & P_in are both set to 1; 8-bit word at input PD_in is loaded in a single clock cycle (PD_in is a vector)
- Serial load is enabled when LD is set to 1 and P_in to 0; 8 bits are presented one at a time (one per clock cycle) on input SD_in
- If LD=0 & SHIFT=1, the content of the register is shifted right, that is LSB is forgotten, bit MSB-1 is set to MSB, and MSB to 0
- For any other input combination, the register will simply hold the stored value

2.2 n-bit parallel/serial load shift register

Modify Verilog model of the register above to enable implementation of arbitrary sized input word. You should use generic for this.

2.3 Receiver/decoder module

Digital receiver module receives 4-bits word encoded using Gray code (see table below). Transmission & reception are done serially using one bit-line D_in. Beginning of the transmission is indicated with start=1, after which the MSB is sent first, followed by three other bits. Incorrect codes might appear due to transmission errors (codes not listed in the table). Once

Decimal	Gray	BCD
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	0100
5	0111	0101
6	0101	0110
7	0100	0111
8	1100	1000
9	1101	1001

all 4 bits are transmitted, receiver module outputs decimal value of the word on output D_out. If error(s) occurred during transmission, output E must be set to 1, and D_out must be set to 1111. D_out and E should change at the same time.

2.4 State machines (FSM)

Design a very simple Moore state machines with at least 4 states. Pick transitions freely. Do the implementation using minimal encoding (can you explain what this is?), and one-hot. What can you conclude from 2 different implementations?

2.5 To do

For each circuit:

- 1. Write Verilog model of the circuit.
- 2. For each Verilog module write a test-bench.
- 3. Perform functional simulation using Model/QuestaSim and show correct functional behavior of the circuit.
- 4. Do synthesis, place and route (P&R) and analyze various generated reports. Make a (very) short summary of performance using these reports. Derive minimum period, and maximum operating frequency.
- 5. Do post P&R simulation and show impact of switching and propagation delays on timing.