1

31st January, 2024 Shift-2

EE24BTECH11063 - Y.Harsha Vardhan Reddy

INTEGER TYPE

- 1) Let A be a 3×3 matrix and det (A) = 2. If $n = \det(\underbrace{\operatorname{adj}(\operatorname{adj}(\ldots(\operatorname{adj}(A))\ldots))}_{2024 \text{ times}})$, then the remainder when n is divided by 9 is equal to
- 2) Let a, b, c be the length of three sides of a triangle satisfying the condition $(a^2 + b^2)x^2 2b(a + c)x + (b^2 + c^2) = 0$. If the set of all possible values of x is the interval (α, β) , then $12(\alpha^2 + \beta^2)$ is equal to
- 3) A line passes through A(4, -6, -2) and B(16, -2, 4). The point P(a, b, c) where a, b, c are non-negative integers, on the line AB lies at a distance of 21 units, from the point A. The distance between the points P(a, b, c) and Q(4, -12, 3) is equal to
- 4) Let y = y(x) be the solution of the differential equation $\sec^2 x \, dx + \left(e^{2y} \tan^2 x + \tan x\right) dy = 0$, $0 < x < \frac{\pi}{2}$, $y\left(\frac{\pi}{4}\right) = 0$. If $y\left(\frac{\pi}{6}\right) = \alpha$, then $e^{8\alpha}$ is equal to
- 5) $\left| \frac{120}{\pi^3} \int_0^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx \right|$ is equal to
- 6) Let $A = \{1, 2, 3, \dots 100\}$. Let R be a relation on A defined by $(x, y) \in R$ if and only if 2x = 3y. Let R_1 be a symmetric relation on A such that $R \subset R_1$ and the number of elements in R_1 is n. Then, the minimum value of n is
- 7) Let the coefficient of x^r in the expression of $(x+3)^{n-1} + (x+3)^{n-2} (x+2) + (x+3)^{n-3} (x+2)^2 + \cdots + (x+2)^{n-1}$ be α_i . If $\sum_{i=1}^n \alpha_i = \beta^n \gamma^n, \beta, \gamma \in \mathbb{N}$, then the value of $\beta^2 + \gamma^2$ equals
- 8) Let $\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + 3\hat{k}$ and \vec{c} be a vector such that $(\vec{a} + \vec{b}) \times \vec{c} = 2(\vec{a} \times \vec{b}) + 24\hat{j} 6\hat{k}$ and $(\vec{a} \vec{b} + \hat{i}) \cdot \vec{c} = -3$. Then $|\vec{c}|^2$ is equal to
- 9) If $\lim_{x\to 0} \frac{ax^2 e^x b \log_e{(1+x)} + cxe^{-x}}{x^2 \sin x} = 1$, then $16(a^2 + b^2 + c^2)$ is equal to
- 10) Let A(-2,-1), B(1,0), $C(\alpha,\beta)$ and $D(\gamma,\delta)$ be the vertices of a parallelogram ABCD. If the point C lies on 2x y = 5 and the point D lies on 3x 2y = 6, then the value of $|\alpha + \beta + \gamma + \delta|$ is equal to