Neural Networks & Deep Learning - Part II

Neural Networks Representation

 $a = \sigma(z)$

ΑI

Neural Networks Representation Learning Given input x: x_1 x_2 x_3 x_4 x_4 x_4 x_5 x_6 x_1 x_4 x_5 x_6 x_1 x_4 x_5 x_6 x_1 x_4 x_5 x_6 x_1 x_4 x_5 x_6 x_6 x_1 x_1 x_2 x_4 x_5 x_6 x_6

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$(4,1) \quad (4,3)(3,1) \quad (4,1)$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$(4,1) \quad (4,1)$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$(1,1) \quad (1,4)(4,1) \quad (1,1)$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$(1,1) \quad (1,1)$$

