

Reduksi Dimensi

Bab 30 Reduksi Dimensi SVD

Setelah menyelesaikan bab ini Anda akan mengetahui:

- Reduksi dimensi merupakan proses mengurangi jumlah variabel input atau kolom di dalam proses membuat model
- SVD merupakan teknik aljabar linear untuk reduksi dimensi
- Bagaimana mengevaluasi model prediksi dengan input proyeksi SVD

Singular Value Decomposition

Singular Value Decomposition

- SVD biasanya digunakan pada sparse data
- Sparse data adalah jenis data yang memiliki banyak nilai kosong, misalnya recommender system dimana user hanya merating beberapa barang atau bag of words dimana sebuah teks hanya memiliki beberapa kata saja
- Contoh sparse data lainnya adalah:
 - Recommender systems
 - Customer-product purchases
 - User-song listen counts
 - User-movie ratings
 - Text classification
 - One-hot encoding
 - Bag-of-words counts
- SVD memproyeksikan data dengan m-fitur menuju subspace dengan ruang lebih kecil namun masih menjaga esensi data asal

$$A_{[m \times n]} = U_{[m \times r]} \Sigma_{[r \times r]} (V_{[n \times r]})^{T}$$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U: Left singular vectors
 - m x r matrix (m documents, r concepts)
- Σ: Singular values
 - r x r diagonal matrix (strength of each 'concept')
 (r: rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts)

- It is **always** possible to decompose a real matrix **A** into $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$, where
- **U**, Σ, **V**: unique
- U, V: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- Σ: diagonal
 - Entries (singular values) are positive, and sorted in decreasing order ($\sigma_1 \ge \sigma_2 \ge ... \ge 0$)

SVD - Interpretation #1

'movies', 'users' and 'concepts':

- U: user-to-concept similarity matrix
- V: movie-to-concept similarity matrix
- Σ: its diagonal elements: 'strength' of each concept

More details

Q: How exactly is dim. reduction done?

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.3 \end{bmatrix} \times \begin{bmatrix} 0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\ 0.40 & -0.80 & 0.40 & 0.09 & 0.09 \end{bmatrix}$$

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.13 & 0.02 \\ 0.41 & 0.07 \\ 0.55 & 0.09 \\ 0.68 & 0.11 \\ 0.15 & -0.59 \\ 0.07 & -0.73 \\ 0.07 & -0.29 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5$$

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

Melihat Contoh SVD Di Jupyter Lab