JIANFENG CHEN

http://www4.ncsu.edu/~jchen37

919-457-2034 ♦ jchen37@ncsu.edu ♦ github: ginfung ♦ linkedin: janfengcs

Simplified models can be efficient & beautiful. Software systems should not be too complex. Future software engineers should reduce the system complexities by combining automated SE and machine learning.

EDUCATION

Doctor of Philosophy in Computer Science

Aug 2014 - Dec 2018 (expected)

North Carolina State University, GPA: 3.97/4.0

Coursework: Data Mining | DevOps | Advanced AI | Algorithm Analysis | Graph Theory | Automated SE

Bachelor of Engineering in Computer Science

Sep 2010 - May 2014

Shandong University, China, GPA: 91.1/100

Coursework: Data Structure | OS | Networking | Database System | numerical analysis | Image Processing

SKILLS AND STRENGTHS

Languages Proficient: Python | Java | Languages | Proficient: Python | Python |

Data Analysis Tools Scikit-learn, SciPy, jMetal, Gephi

DevOps Tools Jenkins, Ansible, Travis-CI, AWS Elasticsearch, S3, Docker

INTERNS AND PROJECTS

(Intern) Brahms Model Verification with Java Pathfinder platform

May 2016 - Aug 2016

Intern in Google Summer of Code program 2016

- · Accepted by Google GSoC2016 program among 18,981 applicants (accept rate: 6%).
- · Basing on the JPF platform, found the most promising sub-state space in the NASA Brahms models.

Sampling vs. Searching in Configuring Large Software Systems

Dec 2014 - Present

NSF funded project in RAISE Lab

- · Created a fast sampling technique to replace the common MOEA in Search-based Software Engineering.
- · By combining SAT solvers with software product lines, found a way to configure large software systems **2000 times** faster.

LACE Data Privatization Tools and its Application

Aug 2016 - Nov 2016

NSA funded project in RAISE Lab

- · Implemented the Large-scale Assurance Confidential Environment (LACE) in python; released the code and documents to python package index (pip).
- · Applied LACE algorithm to business and medical data sets. Evaluated the privatization by adversarial accuracy gain, association rules and correlation matrix.

Building Movie Recommendation System

Aug 2015 - Dec 2015

"Netflix Prize" completion extension

- · Worked in a team of three to build a movies rating prediction and recommendation system.
- · Trained from 100 million Netflix ratings by Decision Tree, SVM and ANN.
- · Deployed the training process into high performance computing (HPC) server by MPI modules.
- · Crawled cast, critic reviews from rotten tomatoes and classified the movies basing on Jaro-Winkler Distance.

PUBLICATIONS

- [1] Chen, J., Nair, V., Krishna, R., and Menzies, T.. Is "Sampling" better than "Evolution" for Search-based Software Engineering.arXiv preprint arXiv:1608.07617 (2016).
- [2] Nair, V., Menzies, T., and Chen, J. An (accidental) exploration of alternatives to evolutionary algorithms for SBSE. International Symposium on Search Based Software Engineering, 2016.
- [3] Yang, Y., Zeng, W., and Chen, J. Equiareal parameterizations of NURBS surfaces. Graphical Models 76.1 (2014): 43-55.