Fundamental Limits of Singular Value Based Signal Detection from Randomly Compressed Signal-plus-Noise Matrices

Nicholas Asendorf, Ph.D. asendorf@umich.edu

Prof. Raj Nadakuditi rajnrao@umich.edu

Department of Electrical Engineering and Computer Science University of Michigan

Asilomar Conference on Signals, Systems, and Computers

November 11, 2015

Data Model

Signal-plus-noise Matrix

$$\widetilde{X}_n = \sum_{i=1}^r \theta_i u_i v_i^T + X_n.$$

Parameters

- * $u_i \in \mathbb{C}^{n \times 1}$, $u_i^H u_j = \delta_{i=j}$
- $*\ v_i \in \mathbb{C}^{N \times 1}, \, v_i^H v_j = \delta_{i=j}$
- $* \theta_i > 0$
- * $X_n \in \mathbb{C}^{n \times N}$ random matrix with singular values $\sigma_1, \dots, \sigma_{\min(n,N)}$
- * Empirical singular value distribution:

$$\mu_{X_n} = \frac{1}{\min(n, N)} \sum_{i=1}^{\min(n, N)} \delta_{\sigma_i}.$$

Signal Detection and Random Projections

Goal

Detect the presence of the *r* signals

Standard Operating Procedure

- * Take SVD of X_n to get $\widehat{\sigma}_i$
- * Compare singular values to a threshold to determine significance
- * The corresponding singular vectors, \hat{u}_i , estimate signals

Challenges in High Dimensions

* As $n, N \to \infty$, computing the SVD of \widetilde{X}_n becomes prohibitive

Idea

- * Project \widetilde{X}_n to a lower dimensional space, $Y_n = P_n^H \widetilde{X}_n$
- * $P_n \in \mathbb{C}^{n \times m}$
- * Take SVD of Y_n to detect signals

Paper Goals

Goals

- * Quantify how m, n, N, θ affect the behavior of the singular values of Y_n
- * Uncover fundamental signal detection limits
- * Compare the performance of Gaussian and unitary projection matrices

Gaussian Projection Matrix

- * P_n has i.i.d. $\mathcal{CN}(0,1)$ entries
- * Gaussian-like matrix, $P_n = G_n$

$$G_{ij} = \begin{cases} 1 & \text{w.p. } 1/2 \\ -1 & \text{w.p. } 1/2 \end{cases}$$

Unitary Projection Matrix

- * $P_n = Q_n$ s.t. $Q_n^H Q_n = I_m$
- * Discrete Fourier matrix, $Q_n = F$

$$F_{kj} = \frac{1}{\sqrt{n}} \exp\left\{\frac{-2\pi i(k-1)(j-1)}{n}\right\}$$

Main Theoretical Results

Theorem (Almost sure limit of singular values of Y_n)

The largest r singular values of Y_n exhibit the following behavior as $n, m, N \to \infty$ with $n/N \to c_1$ and $m/n \to c_2$. For each fixed $1 \le i \le r$, $\sigma_i(Y_n)$ solves

$$\sigma_i^2 \varphi_F(\sigma_i) \varphi_H(\sigma_i) = \frac{1}{\theta_i^2},$$

where

$$\varphi_{F}(\sigma_{i}) \xrightarrow{a.s.} -\mathbb{E} \left[x m_{\mu_{RS|R}} \left(\sigma_{i}^{2}, x \right) \right]_{\mu_{R}}$$
$$\varphi_{H}(\sigma_{i}) \xrightarrow{a.s.} -\frac{n}{N} m_{M_{3}}(\sigma_{i}^{2}) -\frac{1}{\sigma_{i}^{2}} \frac{n-N}{N}$$

where

- * m_{μ_M} is the Stieltjes transform of a matrix M defined as $m_{\mu_M}(z) = \int \frac{1}{x-z} \mu_M(x)$
- * μ_R is the limiting eigenvalue density of either $G_nG_n^H$ or $Q_nQ_n^H$
- * μ_S is the limiting eigenvalue density of $X_n X_n^H$
- * $m_{\mu_{RS|S}}$ is the Stieltjes transform of the limiting conditional density
- * $m_{\mu_{M_3}}$ is the Stieltjes transform of $G_nG_n^HX_nX_n^H$ or $Q_nQ_n^HX_nX_n^H$.

Corollary (Fundamental detection limit)

Define the critical SNR threshold as

$$heta_{crit} = rac{1}{b\sqrt{arphi_F(b)arphi_H(b)}}.$$

When $\theta_i < \theta_{crit}$, then

$$\sigma_i \stackrel{a.s.}{\longrightarrow} b,$$

where b is the almost sure limit of the largest singular value of $P_n^H X_n$.

Corollary (Closed form solution for unitary *P*)

When Y_n is a generated using a unitary matrix Q_n , we have that for each fixed $1 \le i \le r$,

$$\sigma_i \xrightarrow{a.s.} \begin{cases} \sqrt{\frac{c_1}{\theta_i^2} + c_2\theta_i^2 + 1 + c_1c_2} & \text{if } \theta_i \geq \left(\frac{c_1}{c_2}\right)^{1/4} \\ \sqrt{c_1c_2} + 1 & \text{if } \theta_i < \left(\frac{c_1}{c_2}\right)^{1/4} \end{cases}.$$

Empirical Results - Singular Value Prediction

* Parameters: r = 1, n = 1000, N = 1220 and m = 100, 500 trials

Empirical Results - Phase Transition Prediction

* KS Statistic: r = 1, n = 1000, 500 trials

Discussion and Conclusion

Takeaways

- * Accurately predict top singular values
- * Accurately predict detection limit
- * Unitary projection outperforms Gaussian projection
- Theory allows practitioners to set system parameters to achieve desired performance
- * No closed form for Gaussian relies on numerical techniques

Generating projection matrices

- * Easy Gaussian, Gaussian-like (i.i.d. entries)
- * Hard Unitary
- * Easy Fourier