PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-189296

(43) Date of publication of application: 10.07.2001

(51)Int.CI.

H01L 21/304 B24B 37/00 CO9K 3/00 H01L 21/3205

(21)Application number: 11-374487

(71)Applicant: NEC CORP

(P)

(22)Date of filing:

28.12.1999

(72)Inventor: TSUCHIYA YASUAKI

WAKE TOMOKO

(54) METHOD FOR FORMING METAL WIRING

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for forming a metal wiring by which dishing or erosion can be suppressed, variance in wiring resistance be eliminated, and highly reliable embedded wiring be formed. SOLUTION: This method for forming a metal wiring includes a step for forming recessed parts on an insulation film formed on a board, a step for forming a barrier metallic film on the insulation film, a step for forming a wiring metal film entirely so as to embed the recessed parts, and a step to polish the surface of the board by the chemical and mechanical and polishing method. In the polishing step, a first step where the board is polished so that the wiring metallic film is left partly on the surface other than the recessed parts, and a second polishing step where the board is polished by using a slurry for polishing, in which the polishing speed ratio of wiring metal to barrier metal is more than 1 and 3 or less until the surface of the insulation film other than the recessed parts is almost entirely exposed, are executed.

LEGAL STATUS

[Date of request for examination]

14.11.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出顧公開番号 ✓ 特期2001-189296

(P2001-189296A)

(43)公開日 平成13年7月10日(2001.7.10)

(51) Int.Cl. ⁷		識別記号	FI		3	f-7]-}*(多考)
H01L	21/304	6 2 2	H01L	21/304	6 2 2 X	3 C 0 5 8
B 2 4 B	37/00		B 2 4 B	37/00	Н	5 F O 3 3
C 0 9 K	3/00		C 0 9 K	3/00		
H01L	21/3205		H01L	21/88	K	

審查請求 有 請求項の数19 OL (全 18 頁)

(21)出願番号 特願平11-374487

(22)出願日 平成11年12月28日(1999.12.28) (71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 土屋 泰章

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 和氣 智子

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100088328

弁理士 金田 暢之 (外2名)

最終頁に続く

(54) 【発明の名称】 金属配線形成方法

(57)【要約】

【課題】 ディッシングやエロージョンの発生を抑え、 配線抵抗のバラツキが小さく、信頼性が高い埋め込み配 線の形成を可能とする金属配線形成方法を提供する。

【解決手段】 基板上に形成された絶縁膜に凹部を形成 する工程と、該絶縁膜上にバリア金属膜を形成する工程 と、前記凹部を埋め込むように全面に配線用金属膜を形 成する工程と、この基板表面を化学的機械的研磨法によ り研磨する工程を有する金属配線形成方法において、前 記研磨工程では、配線用金属膜が前記凹部以外の表面上 に部分的に残るように研磨する第1の研磨工程と、バリ ア金属に対する配線用金属の研磨速度比が1以上3以下 となる研磨用スラリーを用いて前記凹部以外の絶縁膜表 面がほぼ完全に露出するまで研磨する第2の研磨工程を 実施する。

(b)

【特許請求の範囲】

【請求項1】 基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を形成する工程と、前記凹部を埋め込むように全面に配線用金属膜を形成する工程と、この基板表面を化学的機械的研磨法により研磨する工程を有する金属配線形成方法において、前記研磨工程は、配線用金属膜が前記凹部以外の表面上に部分的に残るように研磨する第1の研磨工程と、バリア金属に対する配線用金属の研磨速度比が1以上3以下となる研磨用スラリーを用いて前記凹部以外の絶縁膜表面がほぼ完全に露出するまで研磨する第2の研磨工程を有することを特徴とする金属配線形成方法。

【請求項2】 第1の研磨工程では、配線用金属膜が、 凹部を除く基板表面の5%以上30%以下の面積分残る ように研磨する請求項1記載の金属配線形成方法。

【請求項3】 第1の研磨工程では、研磨材、酸化剤、 有機酸および下記一般式(1)で示されるアルカノール アミンを含有する研磨用スラリーを用いて研磨を行う請 求項1又は2記載の金属配線形成方法。

$$NR_{m}^{1} (R^{2}OH)_{n}$$
 (1)

(式中、 R^1 は水素原子または炭素数 1 以上 5 以下のアルキル基であり、 R^2 は炭素数 1 以上 5 以下のアルキレン基であり、mは 0 以上 2 以下の整数であり、n は 1 以上 3 以下の自然数であり、m+n=3 を満たす。)

【請求項4】 基板上に形成された絶縁膜に凹部を形成 する工程と、該絶縁膜上にバリア金属膜を形成する工程 と、前記凹部を埋め込むように全面に配線用金属膜を形 成する工程と、この基板表面を化学的機械的研磨法によ り研磨する工程を有する金属配線形成方法において、 前記研磨工程は、研磨材、酸化剤、有機酸および上記一 般式(1)で示されるアルカノールアミンを含有する研 磨用スラリーを用い、前記凹部以外の表面上に配線用金 属膜が残らないように且つバリア金属膜が完全に研磨 去されないように研磨する第1の研磨工程と、バリア金 属に対する配線用金属の研磨速度比が1以下となる研磨 用スラリーを用いて前記凹部以外の絶縁膜表面がほぼ完 全に露出するまで研磨する第2の研磨工程を有すること を特徴とする金属配線形成方法。

【請求項5】 前記アルカノールアミンとして、エタノールアミン、ジエタノールアミン及びトリエタノールアミンからなる群より選ばれる1種以上を含有する研磨用スラリーを用いる請求項3又は4記載の金属配線形成方法。

【請求項6】 第2の研磨工程では、バリア金属に対する絶縁膜の研磨速度比が0.01以上0.5以下となる研磨用スラリーを用いる請求項1~5のいずれか1項に記載の金属配線形成方法。

【請求項7】 第2の研磨工程では、シリカ研磨材と下 なる記一般式(2)又は(3)で示されるカルボン酸を含有 を用する研磨用スラリーを用いて研磨を行う請求項1~6の 50 法。

いずれか1項に記載の金属配線形成方法。

【化1】

$$\begin{array}{c}
R' \\
HOOC-(C) & n-COOH \\
R^2
\end{array}$$
(2)

 $(n t 0, 1, 2, 3 の いずれかを示し、<math>R^1$ 及び R^2 は結合する炭素原子毎にそれぞれ独立に水素原子、-O H又は-COOHを示す。)

10 【化2】

$$R^{3} R^{4}$$

$$HOOC-C=C-COOH \qquad (3)$$

【請求項8】 前記カルボン酸として、シュウ酸、マロン酸、酒石酸、リンゴ酸、グルタル酸、クエン酸、及びマレイン酸からなる群より選ばれた1種以上を含有する研磨用スラリーを用いて研磨を行う請求項7記載の金属 20 配線形成方法。

【請求項9】 第2の研磨工程では、シリカ研磨材と無機塩とを含有する研磨用スラリーを用いて研磨を行う請求項1~8のいずれか1項に記載の金属配線形成方法。

【請求項10】 前記無機塩として、水素酸塩、オキソ酸塩、ペルオキソ酸塩、及びハロゲンのオキソ酸塩からなる群より選ばれる1種以上を含有する研磨用スラリーを用いて研磨を行う請求項9記載の金属配線形成方法。

【請求項11】 基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を形成する工30 程と、前記凹部を埋め込むように全面に配線用金属膜を形成する工程と、この基板表面を、シリカ研磨材と上記一般式(2)又は(3)で示されるカルボン酸を含有する研磨用スラリーを用いて化学的機械的研磨法により研磨する工程を有する金属配線形成方法。

【請求項12】 前記カルボン酸として、シュウ酸、マロン酸、酒石酸、リンゴ酸、グルタル酸、クエン酸、及びマレイン酸からなる群より選ばれた1種以上を含有する研磨用スラリーを用いて研磨を行う請求項11記載の金属配線形成方法。

0 【請求項13】 基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を形成する工程と、前記凹部を埋め込むように全面に配線用金属膜を形成する工程と、この基板表面を、シリカ研磨材と、無機塩とを含有する研磨用スラリーを用いて化学的機械的研磨法により研磨する工程を有する金属配線形成方法。

【請求項14】 前記無機塩として、水素酸塩、オキソ酸塩、ペルオキソ酸塩、及びハロゲンのオキソ酸塩からなる群より選ばれる1種以上を含有する研磨用スラリーを用いて研磨を行う請求項13記載の金属配線形成方

【請求項15】 前記研磨用スラリーが酸化剤を含有する請求項7~14のいずれか1項に記載の金属配線形成方法。

【請求項16】 前記研磨用スラリーが酸化防止剤を含有する請求項15記載の金属配線形成方法。

【請求項17】 前記研磨用スラリーが酸化防止剤としてベンゾトリアゾール又はその誘導体を含有する請求項16記載の金属配線形成方法。

【請求項18】 前記バリア金属膜がタンタル系金属膜である請求項1~17のいずれか1項に記載の金属配線形成方法。

【請求項19】 前記配線用金属膜が銅又は銅合金膜である請求項1~18のいずれか1項に記載の金属配線形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置の製造において好適な、化学的機械的研磨法を用いた埋め込み 金属配線の形成方法に関する。

[0002]

【従来の技術】従来、埋め込み配線を形成する方法としては、基板上に形成された絶縁膜に溝や接続孔等の凹部を形成し、この絶縁膜上にバリア金属膜を形成した後、凹部を埋め込むように全面に導電性金属膜を形成し、この表面を化学的機械的研磨法(以下「CMP」という)により研磨を行う方法が採られている。以下、銅の埋め込み配線を形成する場合を例に説明する。

【0003】近年、微細化・高密度化が加速するULS I等の半導体集積回路の形成において、銅は、エレクト ロマイグレーション耐性に優れ且つ低抵抗であるため、 非常に有用な電気的接続材料として着目されている。

【0004】現在、銅を用いた配線の形成は、ドライエッチングによるパターニングが困難である等の問題から、上記のようなCMPを用いた埋め込み配線形成法が採られている。すなわち、絶縁膜に溝や接続孔等の凹部を形成し、バリア金属膜を形成した後にその凹部を埋め込むようにメッキ法により銅膜を全面に積層し、その後、CMPによって凹部以外の絶縁膜表面が完全に露出するまで研磨して表面を平坦化し、凹部に銅が埋め込まれた埋め込み銅配線やビアプラグ、コンタクトプラグ等の電気的接続部を形成している。

【0005】以下、図1を用いて、埋め込み銅配線を形成する方法について説明する。

【0006】まず、図1 (a) に示すように、シリコン 基板1上にシリコン窒化膜2及びシリコン酸化膜3をこ の順で形成し、次いでシリコン酸化膜3に、配線パター ン形状を有しシリコン窒化膜2に達する凹部を形成す る。

の上に、メッキ法により銅膜5を凹部が埋め込まれるように形成する。

【0008】その後、図1(c)に示すように、CMPにより銅膜5を研磨して基板表面を平坦化する。続いて、図1(d)に示すように、シリコン酸化膜3上の金属が完全に除去されるまでCMPによる研磨を継続する。

[0009]

【発明が解決しようとする課題】このような埋め込み金属配線の形成においては、配線用金属の絶縁膜中への拡散防止等のために下地膜としてバリア金属膜が形成される。しかし、バリア金属膜材料としてTaやTaN等のタンタル系金属のような化学的に非常に安定な金属を用いた場合、従来の研磨用スラリーを用いたCMPでは、バリア金属膜の研磨速度が配線用金属膜の研磨速度に対して小さく、すなわち配線用金属膜とバリア金属膜間の研磨速度差が大きく、ディッシングやエロージョンが発生する。

【0010】ディッシングとは、図2に示すように、凹 の内の配線用金属が過剰に研磨されてしまい、基板上の 絶縁膜平面に対して凹部内の配線用金属膜の中央部が窪 んだ状態になることをいう。従来の研磨用スラリーを用いたCMPでは、バリア金属膜の研磨速度が小さいため、絶縁膜(シリコン酸化膜3)上のバリア金属膜4を 完全に除去するためには研磨時間を十分にとらなければ ならない。しかし、バリア金属膜4の研磨速度に対して配線用金属膜(銅膜5)の研磨速度が大きいため、配線 用金属膜(銅膜5)が過剰に研磨されてしまい、その結果、このようなディッシングが生じる。

「【0011】一方、エロージョンとは、図1 (d) に示すように、配線密集領域の研磨が、配線孤立領域などの配線密度の低い領域に比べて過剰に研磨が進行し、配線密集領域の表面が他の領域より窪んでしまう状態をいう。配線用金属膜(銅膜5)の埋め込み部が多く存在する配線密集領域と配線用金属膜(銅膜5)の埋め込み部があまり存在しない配線孤立領域とが無配線領域などによりウェハ内で大きく隔てられている場合、バリア金属膜4や絶縁膜(シリコン酸化膜3)より配線用金属膜(銅膜5)の研磨がより速く進行すると、配線密集領域

では、配線孤立領域に比べてバリア金属膜4や絶縁膜(シリコン酸化膜3)に加わる研磨パッド圧力が相対的に高くなる。その結果、バリア金属膜4露出後のCMP工程(図1(c)以降の工程)では、配線密集領域と配線孤立領域とでは研磨速度が異なるようになり、配線密集領域の絶縁膜が過剰に研磨され、エロージョンが発生する。

【0012】上述のように半導体装置の埋め込み配線の 形成工程において、ディッシングが発生すると、配線抵 抗や接続抵抗が増加したり、また、エレクトロマイグレ ーションが起きやすくなるため妻子の信頼性が低下す る。また、エロージョンが発生すると、基板表面の平坦性が悪化し、多層構造においてはより一層顕著となるため、配線抵抗の増大やバラツキが発生する等の問題が起きる。

【0013】特開平8-83780号公報には、研磨用スラリーにベンゾトリアゾールあるいはその誘導体を含有させ、銅の表面に保護膜を形成することによって、CMP工程におけるディッシングを防止することが記載されている。また、特開平11-238709号公報にも同様にトリアゾール化合物によるディッシング防止効果 10について記載がある。しかしながら、この方法は、銅膜の研磨速度を低下させることによってディッシングを抑制するものであり、銅膜とバリア金属膜間の研磨速度の差は小さくなるものの、銅膜の研磨時間が長くなり、スループットが低下する。また、エロージョンについては何ら記載がない。

【0014】また、特開平10-44047号公報には、その実施例の欄において、アルミナ研磨材、過硫酸アンモニウム(酸化剤)、及び特定のカルボン酸を含有する研磨用スラリーを用いてCMPを行うと、配線用のアルミニウム層とシリコン酸化物との研磨速度の差が大きくなるとともに、バリア金属膜用のチタン膜の除去速度を高められることが記載されている。しかしながら、この実施例の方法では、バリア金属膜としてタンタル系金属のような化学的に非常に安定な金属を用いた場合については、前記のディッシングやエロージョンの問題を解決することはできなかった。

【0015】特開平10-46140号公報には、特定のカルボン酸、酸化剤及び水を含有し、アルカリによりpHが5~9に調整されてなることを特徴とする化学的機械研磨用組成物が記載されている。その実施例としては、カルボン酸としてリンゴ酸、クエン酸、酒石酸配料組成物(実施例1~4、7、8、11)、カルボン酸として以ンゴ酸、研磨材として酸化シリコンを含む研磨用組成物(実施例1~4、7、8、11)、カルボン酸としてリンゴ酸、研磨材として酸化シリコンを含む研磨用組成物(実施例12)が例示されている。しかしながら、この公報には、クエン酸等のカルボン酸の添加効果としては、研磨速度の向上と腐食痕に伴うディッシングの発生防止について記載されているだけであり、バリア金属膜の研磨やエロージョンについては何ら記載がない。

【0016】また、特開平10-163141号公報には、研磨材および水を含んでなる銅膜の研磨用組成物であって、さらにこの組成物中に溶存している鉄(III)化合物を含んでなることを特徴とする銅膜の研磨用組成物が開示されており、その実施例として、研磨剤にコロイダルシリカを用い、鉄(III)化合物にクエン酸鉄(III)や、クエン酸アンモニウム鉄(III)、シュウ酸アンモニウム鉄(III)を用いることによって、銅膜の研磨速度が向上し、且つディッシングやスクラッチ等の表

面欠陥の発生が抑えられることが記載されている。しかしながら、この公報においてもタンタル系金属のような化学的に非常に安定な金属からなるバリア金属膜の研磨や、エロージョンについては何ら記載されていない。

6

【0017】また、特開平11-21546号公報に は、尿素、研磨材、酸化剤、膜生成剤および錯生成剤を 含む化学的・機械的研磨用スラリーが開示されており、 その実施例として、研磨剤にアルミナ、酸化剤に過酸化 水素、膜生成剤にベンゾトリアゾール、錯生成剤に酒石 酸またはシュウ酸アンモニウムを用いて調製したpH 7. 5のスラリーによって、Cu、Ta及びPTEOS を研磨した例が記載されている。しかしながら、この公 報には、酒石酸やシュウ酸アンモニウム等の錯生成剤の 添加効果として、ベンゾトリアゾール等の膜生成剤によ り形成された不動態層を攪乱すること、及び、酸化層の 深さを制限すること、が記載されているだけである。バ リア金属としてTaやTaNは例示されているものの、 タンタル系金属のような化学的に非常に安定な金属から なるバリア金属膜に対する研磨作用や、エロージョンに ついては何ら記載されていない。

【0018】そこで本発明の目的は、ディッシングやエロージョンの発生を抑え、配線抵抗のバラツキが小さく、信頼性が高い埋め込み配線の形成を可能とする金属配線形成方法を提供することである。

[0019]

【課題を解決するための手段】本発明は、基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を形成する工程と、前記凹部を埋め込むように全面に配線用金属膜を形成する工程と、この基板表面を化学的機械的研磨法により研磨する工程を有する金属配線形成方法において、前記研磨工程は、配線用金属膜が前記凹部以外の表面上に部分的に残るように研磨する第1の研磨工程と、バリア金属に対する配線用金属の研磨速度比が1以上3以下となる研磨用スラリーを用いて前記凹部以外の絶縁膜表面がほぼ完全に露出するまで研磨する第2の研磨工程を有することを特徴とする金属配線形成方法に関する。

【0020】また本発明は、第1の研磨工程では、研磨材、酸化剤、有機酸および下記一般式(1)で示される アルカノールアミンを含有する研磨用スラリーを用いて研磨を行う上記本発明の金属配線形成方法に関する。

[0021]

$$NR_{m}^{1} (R^{2}OH)_{n}$$
 (1)

(式中、 R^1 は水素原子または炭素数 1 以上 5 以下のアルキル基であり、 R^2 は炭素数 1 以上 5 以下のアルキレン基であり、mは 0 以上 2 以下の整数であり、nは 1 以上 3 以下の自然数であり、m+n=3 を満たす。)

【0022】また本発明は、基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を 50 形成する工程と、前記凹部を埋め込むように全面に配線

用金属膜を形成する工程と、この基板表面を化学的機械 的研磨法により研磨する工程を有する金属配線形成方法 において、前記研磨工程は、研磨材、酸化剤、有機酸お よび上記一般式(1)で示されるアルカノールアミンを 含有する研磨用スラリーを用い、前記凹部以外の表面上 に配線用金属膜が残らないように且つバリア金属膜が完 全に研磨除去されないように研磨する第1の研磨工程 と、バリア金属に対する配線用金属の研磨速度比が1以 下となる研磨用スラリーを用いて前記凹部以外の絶縁膜 表面がほぼ完全に露出するまで研磨する第2の研磨工程 を有することを特徴とする金属配線形成方法に関する。

【0023】また本発明は、基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を形成する工程と、前記凹部を埋め込むように全面に配線用金属膜を形成する工程と、この基板表面を、シリカ研磨材と下記一般式(2)又は(3)で示されるカルボン酸を含有する研磨用スラリーを用いて化学的機械的研磨法により研磨する工程を有する金属配線形成方法に関する。

[0024] [化3]

•

(n t 0, 1, 2, 3のいずれかを示し、 R^1 及び R^2 は結合する炭素原子毎にそれぞれ独立に水素原子、-0 H又は-00 Hを示す。)

[0025]

【化4】

$$R^{3} R^{4}$$

HOOC-C=C-COOH (3)

【0026】また本発明は、基板上に形成された絶縁膜に凹部を形成する工程と、該絶縁膜上にバリア金属膜を形成する工程と、前記凹部を埋め込むように全面に配線用金属膜を形成する工程と、この基板表面を、シリカ研磨材と無機塩とを含有する研磨用スラリーを用いて化学的機械的研磨法により研磨する工程を有する金属配線形成方法に関する。

【0027】なお、本発明において「凹部」とは、埋め込み配線を形成するための溝や、コンタクトホールやスルーホール等の接続孔をいう。また、「基板上に形成された絶縁膜」は、下層配線層上に形成された層間絶縁膜を含む。

[0028]

【発明の実施の形態】以下、本発明の好適な実施の形態 について説明する。 【0029】本発明の金属配線形成方法において、第1の研磨工程と第2の研磨工程を有するCMP工程は以下の2通りの方法がある。まず、第1の研磨方法について説明する。

【0030】第1の研磨方法は、配線用金属膜が凹部以外の表面上に部分的に残るように研磨する第1の研磨工程と、バリア金属に対する配線用金属の研磨速度比が1以上3以下となる研磨用スラリーを用いて凹部以外の絶縁膜表面がほぼ完全に露出するまで研磨する第2の研磨工程を有する方法である。

【0031】一般に、配線パターンの疎密差が大きい場合、前述のように、配線孤立領域付近や無配線領域などの配線密度の低い領域(低密度配線領域)に比較して配線密集領域における研磨が速く進行する。そのため、低密度配線領域に比較して配線密集領域の配線間の絶縁膜が凹部内の金属とともに過剰に研磨され、エロージョンが発生する。そこで、第1の研磨工程において、図3

(a)に示すように、絶縁膜24に形成された凹部以外の表面上に配線用金属膜25が部分的に残るようにCM 20 Pを行うと、低密度配線領域に配線用金属膜25が部分的に残るとともに、配線密集領域の配線間の絶縁膜23 が研磨される前に研磨を停止することができる。

【0032】この第1の研磨工程において、配線用金属膜25は、凹部を除く基板表面の5%以上の面積分残すことが好ましく、また好ましくは30%以下、より好ましくは10%以下の面積分残すことが好ましい。第1の研磨工程において基板上の配線用金属膜25の面積は、例えば次のようにして測定することができる。

【0033】研磨面の最も研磨速度が遅くなる領域内で 30 且つ最もパターン密度が小さい領域が露出した時点を研 磨操作の最終点とし、この最終点とバリア金属膜が露出 し始めた時点の間において、予め、光学顕微鏡により 点の研磨時間での各研磨面を観察し、画像処理を行っ て、研磨時間と残った配線用金属膜の面積率との関係 求めておく。そして、実際の配線形成時の研磨におい て、バリア金属膜が露出した時点から、残す配線用金属膜の所定の面積に相当する時間分だけ研磨を継続すること とにより、ほぼ所定の面積分の配線用金属膜を残すこと ができる。なお、バリア金属膜が露出し始める時点は をトルクの検出により容易に判定できる。また、研磨操 作の上記最終点は、凹部以外の絶縁膜が完全に露出する 時点に相当する。

【0034】以上のようにして第1の研磨工程を行った後、第2の研磨工程として、バリア金属に対する配線用金属の研磨速度比を1以上3以下にできる研磨用スラリーを用いて凹部以外の絶縁膜表面が完全に露出するまで研磨する。研磨用スラリーの研磨速度比(配線用金属/バリア金属)が1未満であると、すなわちバリア金属膜の研磨速度より配線用金属膜の研磨速度が小さいと、部分的に残した配線用金属膜を完全に研磨除去することが

_ .

困難となり、研磨残りによる配線間の短絡が生じたり、 これを防ぐために研磨時間を長くする必要が生じてスル ープットが低下したり、研磨時間を長くすることにより 既に一次研磨によりバリア金属や絶縁膜が露出していた 領域を過剰に研磨してしまう(エロージョン)等の問題 が生じる。一方、研磨用スラリーの研磨速度比(配線用 金属/バリア金属)が3を超えて大きいと、すなわちバ リア金属膜の研磨速度より配線用金属膜の研磨速度が著 しく大きいと、凹部内の配線用金属が過剰に研磨されて ディッシングが生じやすくなる上、バリア金属の研磨速 度が小さいため絶縁膜上にバリア金属が残りやすく配線 間の短絡が生じたり、これを防ぐために研磨時間を長く するとスループットが低下したり、ディッシングをさら に進行させる等の問題が生じる。よって、第2の研磨工 程において、研磨速度比(配線用金属/バリア金属)が 1以上3以下となる研磨用スラリーを用いてCMPを行 えば、高いスループットで、凹部以外の絶縁膜上に金属 を残すことなく、しかもディッシングが抑えられ、さら に第1及び第2の研磨工程を通して、エロージョンが抑 制された埋め込み配線を形成することができる。第2の 研磨工程に用いる研磨用スラリーのより好ましい研磨速 度比(配線用金属/バリア金属)は1.5以上2.5以 下である。

【0035】次に、本発明の金属配線形成方法における CMP工程の第2の研磨方法について説明する。

【0036】この第2の研磨方法は、研磨材、酸化剤、有機酸および上記一般式(1)で示されるアルカノールアミンを含有する研磨用スラリーを用い、絶縁膜に形成された凹部以外の表面上に配線用金属膜が残らないように且つバリア金属膜が完全に研磨除去されないように研磨する第1の研磨工程と、バリア金属に対する配線用金属の研磨速度比が1以下となる研磨用スラリーを用いて前記凹部以外の絶縁膜表面がほぼ完全に露出するまで研磨する第2の研磨工程を有する方法である。

【0037】第2の研磨方法において、その第1の研磨 工程では、絶縁膜に形成された凹部以外の表面上に配線 用金属膜が残らないように且つバリア金属膜が完全に研 磨除去されないようにСMPを行うが、そのためには、 研磨材、酸化剤、有機酸および一般式(1)で示される アルカノールアミンを含有する研磨用スラリー(以下) 「アルカノールアミン含有スラリー」という)を用いて 研磨することが必要である。このアルカノールアミン含 有スラリーを用いれば、バリア金属膜4を、図3(b) に示すように配線用金属膜の研磨における実質的な停止 膜とすることができ、エロージョンを防止することがで きる。この第1の研磨工程においては、凹部内の配線用 金属の過度の研磨(ディッシング)を抑制する点から、 できるだけ凹部以外の絶縁膜上にバリア金属膜が残るよ うに、すなわち絶縁膜が露出しない時点で研磨を停止す ることが好ましい。

【0038】続く第2の研磨工程では、上記のアルカノールアミン含有スラリーに代えて、バリア金属に対する配線用金属の研磨速度比が1以下となる、すなわち配線用金属膜よりバリア金属膜の研磨速度を大きくできる研磨用スラリーに切替えてCMPを行う。これにより、ディッシングが抑制されるだけでなく、エロージョンが抑制されるだけでなく、エロージョンが抑制された埋め込み配線を形成することができる。エロージョンは、前述のように、配線密集領域において金属膜や絶縁膜に対して比較的大きいことに起因して発生する。第2の研磨方法の第2の研磨工程では、第1の研磨工程において残したバリア金属膜より配線用金属膜の研磨速度が遅いため、エロージョンは起きにくくなる。

10

【0039】第1の研磨工程に用いられる研磨用スラリーは、バリア金属膜が削れ過ぎず且つ均一に配線用金属膜を研磨する等の点から、バリア金属膜に対する配線用金属膜の研磨速度比(配線用金属/バリア金属)が好ましくは30以上、より好ましくは50以上、さらに好ましくは100以上に制御できるものが望ましい。

20 【0040】なお、第2の研磨方法に用いられるアルカ ノールアミン含有スラリーは、上記のように配線用金属 膜の研磨においてバリア金属膜の研磨ストッパーとして の機能を増大させ、エロージョンの発生を防止できるた め、前述の第1の研磨方法における第1の研磨工程でも 好適な研磨用スラリーとして使用できる。

【0041】また、第1および第2の研磨方法において、第1の研磨工程に用いられる研磨用スラリーは、配線用金属膜の研磨速度が、研磨効率等の点から好ましくは300nm/分以上、より好ましくは400nm/分以上、研磨精度やディッシング防止等の点から好ましくは1500nm以下、より好ましくは1000nm/分以下に制御できるものが好ましい。

【0042】一般式(1)で示されるアルカノールアミンとしては、メタノールアミン、ジメタノールアミン、トリメタノールアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、トリプロパノールアミン、ブタノールアミン、ジブタノールアミン、トリブタノールアミン、Nーメチルエタノールアミン、Nーエチルエタノールアミン、Nープロピルエタノールアミン、Nープチルエタノールアミンなどが例示できる。これらのアルカノールアミンのうち、水系媒体への溶解度が高く、バリア金属膜の研磨速度低下の効果が高いなどの理由により、エタノールアミン、ジエタノールアミン及びトリエタノールアミンが好ましく、トリエタノールアミンがより好ましい。

【0043】上記特定のアルカノールアミンの含有量は、バリア金属膜の研磨を抑制する点から、研磨用スラリー全体に対して0.01質量%以上が好ましく、0.5質量%以上が更に502質量%以上がより好ましく、0.5質量%以上が更に

る。

11. しい また 研磨用スラ

好ましい。また、研磨用スラリーのpHが高くなりすぎることを抑制する点から、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。

【0044】研磨用スラリーに含有されるアルカノール アミンは、バリア金属膜の研磨表面と研磨砥粒との間に 介在し、研磨表面の潤滑性を向上させるものと考えられ る。このため、アルカノールアミン含有スラリーを用い れば、研磨表面での研磨砥粒の滑りが大きくなり、研磨 砥粒による機械的研磨の効果が低下するものと考えられ る。タンタル系金属等の化学的に安定な金属からなるバ リア金属膜の場合、タンタル系金属膜のCMPは化学的 研磨の寄与が小さく機械的研磨が支配的である。よっ て、アルカノールアミン含有スラリーによれば、バリア 金属膜の機械的研磨が抑制され、すなわちバリア金属膜 の研磨速度が低下する。一方、配線用金属膜のCMPに おいては、酸化剤による化学的研磨の寄与が大きいため 配線用金属膜の研磨速度が低下しすぎることはない。結 果、アルカノールアミン含有スラリーによれば、バリア 金属膜の研磨速度を低下させるとともに、バリア金属膜 と配線用金属膜の研磨速度差を大きくすることができ、 そのため、配線用金属膜の研磨において、バリア金属膜 は停止膜(研磨ストッパー)としての機能が増大する。 【0045】次に、第1及び第2の研磨方法の第2の研 磨工程に好適な研磨用スラリーについて説明する。

【0046】本発明の金属配線形成方法において、第2の研磨工程に用いる研磨用スラリーは、第1の研磨方法では研磨速度比(配線用金属/バリア金属)が1以上3以下、第2の研磨方法では1以下に制御できるものを用いる。また、第2の研磨工程に用いる研磨用スラリーは、第1及び第2の研磨方法のいずれにおいても、バリ

は、第1及び第2の研磨方法のいずれにおいても、バリア金属に対する絶縁膜の研磨速度比が0.01以上0. 5以下に制御できるものであることが好ましい。

【0047】バリア金属膜にタンタル系金属のような化学的に安定な金属(例えば酸化されにくい金属)を3以下場合、研磨速度比(配線用金属/バリア金属)を3以下あるいは1以下にするためには、従来、酸化剤の量を減らしたり酸化防止剤を添加する等して化学的研磨作用を低下させ、配線用金属の研磨速度を低下させるしかなかなた。このような方法では、バリア金属膜の研磨速度が起きたり、これを防ぐために研磨時間を長くするとが発生したり、また機械研磨作用を強めず発生する等の問題が起きる。そこで、本発明の金属配線形と研磨面にスクラッチが発生したりエロージョンが発生する等の問題が起きる。そこで、本発明の金属配線形と研磨面にスクラッチが発生したりエロージョンが発生する等の問題が起きる。そこで、本発明の金属配線形と対していまた。

【0048】このような研磨用スラリーとしては2つの タイプがあり、まず、第1のスラリーについて説明す 【0049】第1のスラリーは、シリカ研磨材と、上記(2)式又は(3)式で示されるカルボン酸(以下「多価カルボン酸」という)と、水を含む。また、バリア金属膜上に形成された配線用金属膜の研磨を促進するためには、酸化剤を含有させることが好ましい。

12

【0050】シリカ研磨材としては、ヒュームドシリカやコロイダルシリカ等の二酸化ケイ素からなる砥粒を用いることができる。シリカ研磨材は、種々の公知の方法で製造されるが、例えば、四塩化ケイ素を酸素と水素の火炎中で気相合成したヒュームドシリカや、金属アルコキシドを液相で加水分解し焼成したシリカを挙げることができる。半導体装置の製造においては、これら二酸化ケイ素からなる砥粒のうち、低価格であり、不純物としてNa含有量が小さい等の点でヒュームドシリカが好ましい。

【0051】シリカ研磨材の平均粒径は、光散乱回折法により測定した平均粒径で5 n m以上が好ましく、50 n m以上がより好ましく、また500 n m以下が好ましく、300 n m以下がより好ましい。粒径分布は、最大粒径(d100)で3 μ m以下が好ましく、1 μ m以下がより好ましい。また、比表面積は、B. E. T. 法により測定した比表面積で5 m^2/g 以上が好ましく、20 m^2/g 以上がより好ましく、また1000 m^2/g 以下が好ましく、500 m^2/g 以下が好ましく、500 m^2/g 以下がより好ましい。

【0052】シリカ研磨材の研磨用スラリー中の含有量は、スラリー組成物全量に対して0.1~50質量%の範囲で研磨能率や研磨精度等を考慮して適宜設定される。好ましくは1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましい。上限としては、30質量%以下が好ましく、10質量%以下が好ましく、8質量%以下がさらに好ましい。

【0053】第1のスラリーに用いられる多価カルボン酸としては、1分子中に2以上のカルボキシル基を有するカルボン酸であり、例えば、シュウ酸、マロン酸、酒石酸、リンゴ酸、グルタル酸、クエン酸、及びマレイン酸、又はこれらの塩、或いはこれらの2種以上からなる混合物を用いることできる。

【0054】上記多価カルボン酸の含有量は、タンタル 系金属膜の研磨速度向上の点から、スラリー組成物全量 に対して0.01質量%以上が好ましく、0.05質量 %以上がより好ましい。研磨用スラリーのチクソトロピック性の発生を抑える点から、1質量%以下が好ましく、0.8質量%以下がより好ましい。

【0055】第1のスラリーは、研磨材としてシリカ砥粒と、上記多価カルボン酸を含むことによって、研磨面の傷の発生を抑えながら、タンタル系金属膜の研磨速度を大幅に向上させることが可能となる。これにより、タンタル系金属膜の研磨速度を向上させることによってバリア金属膜と配線用金属膜間の研磨速度差を小さくでき

•

るため、スループットを低下させることなく、ディッシ ングやエロージョンの発生を抑えることができ、良好な 埋め込み配線を形成することができる。

【0056】上記の多価カルボン酸は、水中に分散する シリカ粒子に対して凝集(フロキュレーション)作用を 有し、このカルボン酸により凝集した凝集シリカ粒子に よってメカニカル作用が増大し、その結果、バリア金属 膜の良好な研磨が行われるものと考えられる。また、こ の凝集は適度に弱く、比較的柔らかな凝集粒子が形成さ れるため、研磨面での傷の発生を抑えながら、バリア金 *10* 属膜の研磨速度を向上させることができるものと思われ る。

【0057】次に第2のスラリーについて説明する。

【0058】第2のスラリーは、シリカ研磨材と無機塩 と水を含有する。

【0059】この無機塩としては、水素酸塩、オキソ酸 塩、ペルオキソ酸塩、及びハロゲンのオキソ酸塩から選 ばれる1種以上の塩を用いることができる。

【0060】水素酸の塩としては、フッ化水素酸、塩 酸、臭化水素酸、ヨウ化水素酸、硫化水素、シアン化水 20 素酸、アジ化水素酸、塩化金酸、塩化白金酸などの塩を 例示することができる。

【0061】オキソ酸の塩としては硫酸、硝酸、リン 酸、炭酸、ホウ酸、ウラン酸、クロム酸、タングステン 酸、チタン酸、モリブデン酸などの塩を挙げることがで きる。

【0062】ペルオキソ酸の塩としてはペルオキソー硫 酸、ペルオキソ二硫酸、ペルオキソ硝酸、ペルオキソー リン酸、ペルオキソニリン酸、ペルオキソー炭酸、ペル オキソニ炭酸、ペルオキソホウ酸、ペルオキソウラン 酸、ペルオキソクロム酸、ペルオキソタングステン酸、 ペルオキソチタン酸、ペルオキソモリブデン酸などの塩 を挙げることができる。

【0063】ハロゲンのオキソ酸の塩としては過塩素 酸、過臭素酸、過ヨウ素酸などの塩を挙げることができ る。

【0064】また、ペルオキソ酸およびハロゲンのオキ ソ酸の塩は酸化剤として作用し、配線用金属膜の研磨速 度を化学的に向上するため好ましい。すなわち、半導体 化剤の代替や補助として使用することができる。

【0065】また、無機塩としては、アンモニウムイオ ンを含む塩、アルカリ金属イオンを含む塩、アルカリ土 類金属イオンを含む塩、第IIIB族金属イオンを含む 塩、第IVB族金属イオンを含む塩、第VB族金属イオン を含む塩、及び遷移金属イオンを含む塩から選ばれる1 種以上の塩を用いることができる。

【0066】アルカリ金属イオンとしては、Liイオ ン、Naイオン、Kイオン、Rbイオン、Csイオン、

eイオン、Mgイオン、Caイオン、Srイオン、Ba イオン、Raイオン等を、第IIIB族金属イオンとして はAlイオン、Gaイオン、Inイオン、Tlイオン等 を、第IVB族金属イオンとしてはSnイオン、Pbイオ ン等を、第VB族金属イオンとしてはBiイオンなど を、遷移金属イオンとしては、Scイオン、Tiイオ ン、Vイオン、Cェイオン、Mnイオン、Feイオン、 Coイオン、Niイオン、Cuイオン、Znイオン、Y イオン、Zェイオン、Nbイオン、Moイオン、Tcイ オン、Ruイオン、Rhイオン、Pdイオン、Agイオ ン、Cdイオン、La等のランタノイド金属のイオン、 Hfイオン、Taイオン、Wイオン、Reイオン、Os イオン、Iェイオン、Hgイオン、Ac等のアクチノイ ド金属のイオンなどを例示することができる。

【0067】以上に示した無機塩のうち、カリウム塩、 アンモニウム塩が好ましく、特に好ましいものとして、 硫酸カリウム、硫酸アンモニウム、塩化カリウム、ペル オキソニ硫酸カリウム、ペルオキソニ硫酸アンモニウ ム、過ヨウ素酸アンモニウム等を挙げることができる。 【0068】なお、2種類以上の上記無機塩を併用して もよい。また、半導体装置を作製する場合は、無機塩と してNaや重金属をできるだけ含有しないものが好まし い。NaはSiと容易に反応するため、洗浄後でもSi 基板に付着・残留しやすく、また重金属も残留し易いた めである。

【0069】上記無機塩の含有量は、バリア金属膜の研 磨速度向上の点から、スラリー組成物全量に対して 0. 01質量%以上が好ましく、0.05質量%以上がより 好ましい。上限としては、研磨用スラリーのチクソトロ 30 ピック性の発生を抑える点から、10質量%以下が好ま しく、5質量%以下がより好ましい。なお2種類以上の 無機塩を含有する場合、上記含有量は総和を意味する。 【0070】シリカ研磨材としては、第1のスラリーと 同様な研磨砥粒を同様な含有量で用いることができる。 【0071】第2のスラリーは、シリカ砥粒と無機塩と を含むことによって、研磨面の傷の発生を抑えながら、 バリア金属膜の研磨速度を大幅に向上させることが可能 となる。これにより、バリア金属膜の研磨速度を向上さ せることによってバリア金属膜と配線用金属膜間の研磨 装置の製造に使用される研磨用スラリーに添加される酸 40 速度差を小さくできるため、スループットを低下させる ことなく、ディッシングやエロージョンの発生を抑える ことができ、良好な埋め込み配線を形成することができ

【0072】上記の無機塩は、水中に分散するシリカ粒 子に対して凝集(フロキュレーション)作用を有し、こ の無機塩により凝集した凝集シリカ粒子によって機械的 研磨作用が増大し、その結果、バリア金属膜の良好な研 磨が行われるものと考えられる。また、この凝集は適度 に弱く、比較的柔らかな凝集粒子が形成されるため、研 Frイオン等を、アルカリ土類金属イオンとしては、B 50 磨面での傷の発生を抑えながら、バリア金属膜の研磨速 度を向上させることができるものと思われる。

•

【0073】以上に説明した第1又は第2のスラリーを 用いたCMPによれば、高い研磨速度で、すなわち高ス ループットで、且つディッシングやエロージョンの発生 を抑え、信頼性の高い電気的特性に優れた埋め込み配線 を形成することができる。なお、第1及び第2のスラリ ーの主要成分である多価カルボン酸と無機塩をいずれも 含有するスラリーを用いてもよい。

【0074】また、第1及び第2のスラリーは、バリア金属膜の研磨速度を、好ましくは25 nm/分以上、より好ましくは30 nm/分以上、さらに好ましくは35 nm/分以上に制御できるものであることが好ましい。上限としては、特に第1の研磨方法においては、好ましくは100 nm以下、より好ましくは80 nm以下、さらに好ましくは70 nm以下に制御できるものであることが好ましい。

【0075】また、第1及び第2のスラリーは、研磨工程を2段階で研磨を行う前述の第1及び第2の研磨方法に好適に用いることができるが、研磨工程を1段階で行う場合でも、研磨速度比(配線用金属/バリア金属)を調整することにより、従来の技術に比べて、高スループットで且つディッシングやエロージョンの発生を抑え、信頼性の高い電気的特性に優れた埋め込み配線を形成することができる。研磨工程を1段階で行う場合の好ましい研磨速度比(配線用金属/バリア金属)は1付近であり、具体的には0.5以上が好ましく、0.8以上がより好ましく、上限として2以下が好ましく、1.5以下がより好ましく、1.5以下がより好ましく、1.2以下がさらに好ましい。

【0076】以下、第1のスラリー、第2のスラリー及び前述のアルカノールアミン含有スラリーについてさらに説明する。なお、特にことわらない限り研磨用スラリーといえばこれらの3種のスラリーをいう。

【0077】第1のスラリー及び第2のスラリーでは、研磨材としてはシリカからなる研磨砥粒を研磨材主成分とすることが必要であるが、アルカノールアミン含有スラリーではシリカ研磨材に限定されず、種々の研磨材が使用可能である。例えば、αーアルミナやθーアルミナ、γアルミナ、ヒュームドアルミナ等のアルミナ、ヒュームドシリカやコロイダルシリカ等のシリカ、チタニア、ジルコニア、ゲルマニア、セリア、及びこれらの金属酸化物研磨砥粒からなる群より選ばれる2種以上の混合物を用いることができる。中でもシリカ又はアルミナが好ましい。

【0078】研磨用スラリーのpHは、研磨速度や腐食、スラリー粘度、研磨剤の分散安定性等の点から、pH4以上が好ましく、pH5以上がより好ましく、またpH9以下が好ましく、pH8以下がより好ましい。

【0079】研磨用スラリーのpH調整は、公知の方法で行うことができ、例えば、研磨材を分散し且つ有機酸を溶解したスラリーに、アルカリを直接添加して行うこ

16 とができる。あるいは、添加すべきアルカリの一部又は 全部を有機酸のアルカリ塩と添加してもよい。使用する

全部を有機酸のアルカリ塩と添加してもよい。使用するアルカリとしては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩、アンモニア、アミン等を挙げることができる。

【0080】研磨用スラリーには、バリア金属膜上に形成される配線用金属膜の研磨を促進するために酸化剤を添加することが好ましい。但し、第2の研磨方法においては、第1の研磨工程で凹部以外のバリア金属膜上の配線用金属膜が完全に除去された場合、第2の研磨工程で用いる研磨用スラリーに酸化剤を含有させなくてもよい。

【0081】酸化剤としては、導電性金属膜の種類や研 磨精度、研磨能率を考慮して適宜、公知の水溶性の酸化 剤から選択して用いることができる。例えば、重金属イ オンのコンタミネーションを起こさないものとして、H 2O2、Na2O2、Ba2O2、(C6H5C)2O2等の過酸 化物、次亜塩素酸(HC1O)、過塩素酸、硝酸、オゾ ン水、過酢酸やニトロベンゼン等の有機過酸化物を挙げ ることができる。なかでも、金属成分を含有せず、有害 な複生成物を発生しない過酸化水素(H₂O₂)が好まし い。研磨用スラリーに含有させる酸化剤量は、十分な添 加効果を得る点から、研磨用スラリー全量に対して 0. 01質量%以上が好ましく、0.05質量%以上がより 好ましい。ディッシングの抑制や適度な研磨速度に調整 する点から、15質量%以下が好ましく、10質量%以 下がより好ましい。なお、過酸化水素のように比較的経 時的に劣化しやすい酸化剤を用いる場合は、所定の濃度 30 の酸化剤含有溶液と、この酸化剤含有溶液を添加するこ とにより所定の研磨用スラリーとなるような組成物を別 個に調整しておき、使用直前に両者を混合してもよい。 【0082】酸化剤の酸化を促進し、安定した研磨を行 うために、プロトン供与剤として公知のカルボン酸やア ミノ酸等の有機酸を添加してもよい。(2)式又は (3) 式で示される多価カルボン酸は、このプロトン供 与剤としても機能することが可能であるが、別途に異な るカルボン酸やアミノ酸等の有機酸を添加してもよい。 【0083】カルボン酸としては、(2)式又は(3) 式で示される多価カルボン酸以外に、例えば、ギ酸、酢 酸、プロピオン酸、酪酸、吉草酸、アクリル酸、乳酸、 コハク酸、ニコチン酸及びこれらの塩などが挙げられ

【0084】アミノ酸としては、例えば、L-グルタミン酸、D-グルタミン酸、L-グルタミン酸一塩酸塩、L-グルタミン酸サトリウム一水和物、L-グルタミン、グルタチオン、グリシルグリシン、DL-アラニン、L-アラニン、β-アラニン、D-アラニン、γ-アミノ酪酸、ε-アミノカプロン酸、L-アルギニン一塩酸塩、L-50 アスパラギン酸、L-アスパラギン酸ー水和物、L-アスパ

る。

•

ラギン酸カリウム、L-アスパラギン酸カルシウム三水 塩、D-アスパラギン酸、L-チトルリン、L-トリプトファ ン、L-スレオニン、L-アルギニン、グリシン、L-シスチ ン、レーシステイン、レーシステイン塩酸塩一水和物、レーオ キシプロリン、L-イソロイシン、L-ロイシン、L-リジン 一塩酸塩、DL-メチオニン、L-メチオニン、L-オルチニ ン塩酸塩、L-フェニルアラニン、D-フェニルグリシン、 L-プロリン、L-セリン、L-チロシン、L-バリンなどが挙 げられる。

【0085】有機酸の含有量は、プロトン供与剤として の十分な添加効果を得る点から、研磨用スラリー全体量 に対して0.01質量%以上が好ましく、0.05質量 %以上がより好ましい。ディッシングの抑制や適度な研 磨速度に調整する点から、上記 (2) 式又は (3) 式で 示される多価カルボン酸を含めた含有量として、5質量 %以下が好ましく、3質量%以下がより好ましい。

【0086】研磨用スラリーに酸化剤を添加する場合 は、さらに酸化防止剤を添加してもよい。酸化防止剤の 添加により、導電性金属膜の研磨速度の調整が容易とな り、また、導電性金属膜の表面に被膜を形成することに よりディッシングも抑制できる。

【0087】酸化防止剤としては、例えば、ベンゾトリ アゾール、1,2,4ートリアゾール、ベンゾフロキサ ン、2, 1, 3ーベンゾチアゾール、o-フェニレンジ アミン、m-フェニレンジアミン、カテコール、o-ア ミノフェノール、2-メルカプトベンゾチアゾール、2 ーメルカプトベンゾイミダゾール、2-メルカプトベン ゾオキサゾール、メラミン、及びこれらの誘導体が挙げ られる。中でもベンゾトリアゾール及びその誘導体が好 ましい。ベンゾトリアゾール誘導体としては、そのベン ゼン環にヒドロキシル基、メトキシやエトキシ等のアル コキシ基、アミノ基、ニトロ基、メチル基やエチル基、 ブチル等のアルキル基、又は、フッ素や塩素、臭素、ヨ ウ素等のハロゲン置換基を有する置換ベンゾトリアゾー ルが挙げられる。また、ナフタレントリアゾールや、ナ フタレンビストリアゾール、上記と同様に置換された置 換ナフタレントリアゾールや、置換ナフタレンビストリ アゾールを挙げることができる。

【0088】このような酸化防止剤の含有量としては、 十分な添加効果を得る点から、研磨用スラリー全体量に 対して 0.0001質量%以上が好ましく、0.001 質量%以上がより好ましい。適度な研磨速度に調整する 点から、5質量%以下が好ましく、2、5質量%以下が より好ましい。

【0089】研磨用スラリーには、その特性を損なわな い範囲内で、広く一般に研磨用スラリーに添加されてい る分散剤、緩衝剤、粘度調整剤などの種々の添加剤を含 有させてもよい。

【0090】研磨用スラリーの製造方法は、一般的な遊

なわち、分散媒に研磨材粒子を適量混合する。必要であ るならば保護剤を適量混合する。この状態では、研磨材 粒子表面は空気が強く吸着しているため、ぬれ性が悪く 凝集状態で存在している。そこで、凝集した研磨材粒子 を一次粒子の状態にするために粒子の分散を実施する。

18

分散工程では一般的な分散方法および分散装置を使用す ることができる。具体的には、例えば超音波分散機、各 種のビーズミル分散機、ニーダー、ボールミルなどを用 いて公知の方法で実施できる。なお、(2)式又は

(3)式で示される多価カルボン酸や無機塩は、シリカ 粒子のフロキュレーション化を引き起こすと同時にチキ ソトロピック性を高める場合もあるため、良好に分散を 行うためには、分散終了後に添加し、混合することが好 ましい。

【0091】本発明におけるCMP法による研磨は、例 えば次のような一般的なCMP装置を用いて行うことが できる。配線用金属膜が成膜されたウェハは、スピンド ルのウェハキャリアに設置される。このウェハの表面 を、回転プレート(定盤)上に貼り付けられた多孔性ウ レタン等よりなる研磨パッドに接触させ、研磨用スラリ ー供給口から研磨用スラリーを研磨パッド表面に供給し ながら、ウェハと研磨パッドの両方を回転させて研磨す る。必要により、パッドコンディショナーを研磨パッド の表面に接触させて、研磨パッド表面のコンディショニ ングを行う。

【0092】次に、CMPにおける研磨の終了操作につ いて説明する。

【0093】第1の研磨方法における第1の研磨工程 は、例えば、前述のとおり、予め求めた、研磨時間と残 30 った配線用金属膜の面積率との関係を基にして、バリア 金属膜が露出し始めた時点から所定時間経過後に研磨を 終了する。

【0094】その他の研磨工程における研磨は例えば次 のようにして終了させる。

【0095】第1の例として、金属膜の研磨速度を予め 測定しておき、所定の厚さの金属膜を除去するに必要な 時間を算出し、研磨開始後、算出された時間が経過した 時点から所定の時間が経過後に研磨を終了する。

【0096】第2の例として、研磨速度を測定しながら 40 CMPを行い、研磨速度が急激に低下し始めた時点から 所定の時間が経過後に研磨を終了する。

【0097】第3の例として、回転プレートの回転軸な どに回転トルク計を設置しておき、回転軸に掛る回転ト ルクの変化を測定しながらCMPを行う。そして、金属 膜が除去されバリア金属膜が露出したことに伴う回転ト ルクの変化を検出した時点から所定の時間が経過後に研 磨を終了する。

【0098】第4の例として、研磨表面に光を照射し、 反射光を測定しながらСMPを行う。すなわち、配線用 離砥粒研磨スラリー組成物の製造方法が適用できる。す 50 金属膜からバリア金属膜、絶縁膜へ研磨が進行すると、

研磨表面に存在する材料が変化するため、反射光強度が変化する。この反射光強度が変化し始めた時点から所定の時間が経過後に研磨を終了する。

【0099】また、これらの方法を適宜組み合わせて研 磨の終点を決定してもよい。

【0100】以上に説明した本発明の金属配線形成方法において、絶縁膜としては、シリコン酸化膜、BPSG膜、SOG膜等の絶縁膜が挙げられ、配線用金属としては、銅、銀、金、白金、チタン、タングテン、アルミニウム、これらの合金を挙げることができ、バリア金属としては、Ta、TiN、W、WN、WSiN等を挙げることができる。本発明の金属配線形成方法は、特に、配線用金属膜が銅又は銅を主成分とする銅合金膜であり、バリア金属膜がTa膜又はTaN膜である場合に好適である。

【0101】本発明の金属配線形成方法は、従来の種々の埋め込み配線形成法に適用可能であり、例えば多層配線構造の上層配線層の形成や、デュアルダマシン配線の形成にも適用できる。

[0102]

•

【実施例】以下、実施例により本発明をさらに詳細に説明する。

【0103】(CMP用基板の作製)まず、トランジスタ等の半導体素子が形成された6インチのウェハ(シリコン基板)上に(図示せず)、下層配線(図示せず)を有するシリコン酸化膜からなる下層配線層1を形成し、図1(a)に示すように、その上にシリコン窒化膜2を形成し、その上に厚さ500nm程度のシリコン酸化膜3を形成し、通常のフォトリソグラフィー工程および反応性イオンエッチング工程によりシリコン酸化膜3を形成した。次いで、図1mの配線用溝および接続孔を形成した。次いで、図1(b)に示すように、スパッタリング法により厚さ50nmのTa膜(タンタル膜)4を形成し、引き続きスパッタリング法により50nm程度の銅膜を形成後、メッキ法により800nm程度の銅膜を形成した。

【0104】また、実施例20においては、Ta膜(バリア金属膜)の研磨速度の測定を目的として、6インチのシリコン基板上にスパッタリング法によりTa膜を成膜し、この基板をCMP用基板とした。

【0105】(CMP条件) CMPは、スピードファム・アイペック社製372M型を使用して行った。研磨機の定盤には研磨パッド(ロデール・ニッタ社製IC 1400)を張り付けて使用した。研磨条件は、研磨荷重(研磨パッドの接触圧力):27.6kPa、定盤回転数:55rpm、キャリア回転数:55rpm、スラリー研磨液供給量:100mL/分とした。

【0106】(研磨速度の測定)ウェハ上に一定間隔に並んだ4本の針状電極を直線上に置き、外側の2探針間に一定電流を流し、内側の2探針間に生じる電位差を測

定して抵抗(R')を求め、更に補正係数RCF(Resis tivity Correction Factor)を乗じて表面抵抗率(ρ s')を求める。また厚みがT(nm)と既知であるウェーハ膜の表面抵抗率(ρ s)を求める。ここで表面抵抗率は、厚みに反比例するため、表面抵抗率が ρ s'の時の厚みをdとするとd(nm)=(ρ s×T)/ ρ s'が成り立ち、これより厚みdを算出することができ、更に研磨前後の膜厚変化量を研磨時間で割ることにより研磨速度を算出した。表面抵抗率の測定には、三菱 10 化学社製四探針抵抗測定器(Loresta-GP)を用いた。

20

【0107】(実施例1~6:第2の研磨方法、アルカノール アミン含有スラリー)表1に示すように、住友化学工業社製 θ アルミナ(AKP-G008)を5質量%、関東化学社製 H2O2を2、 5質量%、関東化学社製トリエタノールアミンを0.0 1~10質量%含有し、KOHにより p Hを5.5に調整した研磨用スラリー(アルカノールアミン含有スラリー)を調製し、この研磨用スラリーを用いて、凹部以外の絶縁膜上の銅膜が完全に除去されるまでCMPを行った。次に、20 研磨用スラリーを後述の実施例21の研磨用スラリー

(研磨速度比(Cu/Ta)=0.15)に切り替え、凹部を除く絶縁膜表面が完全に露出するまでCMPを行った。【0108】なお、比較例1として、トリエタノールアミンを添加しないこと以外は実施例1~6と同様にして研磨用スラリーを作製し、1段階でCMPを行った。

【0109】結果を表1に示す。表1から明らかなとおり、トリエタノールアミンを添加することにより、Ta膜の研磨速度が著しく低下した。また、実施例の基板の断面をSEMにより観察したところ、ディッシング及び30 エロージョンが抑制されていることが確認できた。

【0110】(実施例7、8:第2の研磨方法、アルカノール アミン含有スラリー)表1に示すように、トリエタノールアミンをジエタノールアミン又はエタノールアミンに代えた以外は、実施例3と同様な研磨用スラリーを調製し、同様なCMPを行った。

【0111】結果を表1に示す。表1から明らかなとおり、ジエタノールアミン又はエタノールアミンを添加することによっても、Ta膜の研磨速度が著しく低下した。基板の断面をSEMにより観察したところ、ディッ40 シング及びエロージョンが抑制されていることが確認できた。

【0112】(実施例9:第2の研磨方法、アルカノールアミン含有スラリー)表1の実施例9に示すように、研磨砥粒としてアルミナをトクヤマ社製ヒュームドシリカQsー9に代えた以外は、実施例3と同様な研磨用スラリーを調製し、同様なCMPを行った。

【0113】結果を表1に示す。表1より明らかなとおり、研磨砥粒がシリカの場合も、トリエタノールアミンを添加することにより、Ta膜の研磨速度が著しく低下 50 していた。基板の断面をSEMにより観察したところ、

ディッシング及びエロージョンが抑制されていることが 確認できた。

【0114】(実施例10~13:第2の研磨方法、アル カノールアシン含有スラリー) クエン酸を実施例10~13に示し た有機酸に代えた以外は、実施例3と同様な研磨用スラ リーを調製し、同様なCMPを行った。

【0115】結果を表1に示す。表1から明らかなとお (表1)

り、クエン酸以外の種々の有機酸を用いた場合も、トリ エタノールアミンを添加することにより、Ta膜の研磨 速度が著しく低下した。基板の断面をSEMにより観察 したところ、ディッシング及びエロージョンが抑制され ていることが確認できた。

[0116]

【表 1】

	研摩砥粒	有機酸	アルカノールアミン	Ta研跨速度
	(質量%)	(質量%)	(質量%)	(nm/分)
実施例	アルミナ	クエン酸	トリエタノールアミン	9.75
1	(5)	(1.5)	(0.01)	
実施例	アルミナ	クエン酸	トリエタノールアミン	4.67
2	(5)	(1.5)	(0.50)	
実施例	アルミナ	クエン酸	トリエタノールアミン	3.48
3	(5)	(1.5)	(1.00)	
実施例	アルミナ	クエン酸	トリエタノールアミン	2.11
4	(5)	(1.5)	(2.00)	
夹施例	アルミナ	クエン酸	トリエタノールアミン	1.02
5	(5)	(1.5)	(5,00)	
実施例	アルミナ	クエン酸	トリエタノールアミン	0.53
6	(5)	(1.5)	(10.00)	
実施例	アルミナ	クエン酸	ジエタノールアミン	3.12
7	(5)	(1.5)	(1.00)	
夹施例	アルミナ	クエン酸	エタノールアミン	1.89
8	(5)	(1.5)	(1.00)	
実施例	シリカ	クエン酸	トリエタノールアミン	2.11
9	(5)	(1.5)	(1.00)	•
実施例	アルミナ	グルタル酸	トリエタノールアミン	3.69
10	(5)	(1.5)	(1.00)	
実施例	アルミナ	酒石酸	トリエタノールアミン	3.45
1 1	(5)	(1.5)	(1.00)	
実施例	アルミナ	リンゴ酸	トリエタノールアミン	3.53
1 2	(5)	(1.5)	(1.00)	
実施例	アルミナ	グリシン	トリエタノールアミン	3.73
13	(5)	(1.5)	(1.00)	
比較例	アルミナ	クエン酸	なし	16.18
1	(5)	(1.5)		

(実施例14~19:第2の研磨方法、アルカノールアミン含有ス ラリー) 有機酸として、0.16質量%のグルタル酸、

1. 5質量%のクエン酸および0. 3質量%のグリシン からなる混合酸を用い、酸化防止剤として0.005質 量%のベンゾトリアゾールを添加した以外は、実施例1 ~6と同様な研磨用スラリーを調製し、同様なCMPを 行った。

【0117】なお、比較例2として、アルカノールアミ ンを含有しないこと以外は、実施例14~19と同様な 40 【表2】 研磨用スラリーを調製し、1段階でCMPを行った。

【0118】結果を表2に示す。表2から明らかなとお り、Ta膜の研磨速度が著しく低下し、Ta膜の研磨速 度に対する銅膜の研磨速度の比は著しく向上した。すな わち、トリエタノールアミンを添加することにより、銅 膜の研磨選択性が向上することが判った。実施例の基板 の断面をSEMにより観察したところ、ディッシング及 びエロージョンが抑制されていることが確認できた。

[0119]

(表2)

(女2)							
	研算移拉	有機酸	酸估防止剤	アルカノールアミン	Ta研修速度	Cu研查速度	Cu研究速度
	(質量%)	(質量%)	(質量%)	(質量%)	(nm/分)	(n m∕//))	/Ta研密速度
判的 列	アルミナ	混合酸	ベンゾトリアゾール	トリエタノールアミン	9, 89	1040.5	105
14	(5)	(1. 96)	(0.005)	(0.01)			
突納列	アルミナ	混合酸	ベンゾトリアゾール	トリエタノールアミン	4. 55	1013. 2	223
15	(5)	(1. 96)	(0. 005)	(0.50)			
为施列	アルミナ	混合酸	ベンゾトリアノール	トリエタノールアミン	3. 48	911.1	262
16	(5)	(1. 96)	(0.005)	(1.00)			
実施列	アルミナ	混合酸	ベンソトリアノール	トリエタノールアミン	2. 05	808.8	395
17	(5)	(1.96)	(0. 005)	(2.00)			
实施列	アルミナ	混合酸	ベンソトリアソール	トリエタノールアミン	1.03	543. 7	528
18	(5)	(1. 96)	(0.005)	(5.00)			
实施例	アルミナ	混合跋	ベンゾトリアゾール	トリエタノールアミン	0.47	387.6	825
19	(5)	(1. 96)	(0.005)	(10.00)			
比較例	アルミナ	混合酸	ベンゾトリアゾール	なし	15. 32	1060.8	69
2	(5)	(1. 96)	(0.005)				

磨用スラリー中の(2)式又は(3)式で示される多価 カルボン酸の効果を示すために、6インチのシリコン基 板上にスパッタリング法により堆積させたTa膜に対し て表3~5に示す種々の研磨用スラリーを用いてCMP を行い、それぞれの研磨速度を測定した。なお、シリカ 研磨材はトクヤマ社製のヒュームドシリカQs-9を用 い、スラリーNo. 1 は比較のため多価カルボン酸を含有 していない例である。表3は、多価カルボン酸としてグ ルタル酸を用い、その含有量が異なる種々の研磨用スラ リーを用いた結果を示す。表4は、多価カルボン酸とし てグルタル酸を用い、pHやpH調製剤が異なる種々の 研磨用スラリーを用いた結果を示す。表5は、種々の多 価カルボン酸を含有する研磨用スラリーを用いた結果を 示す。

【0120】表3から明かなように、グルタル酸を添加 することによりTa膜の研磨速度が著しく向上し、グル タル酸の添加量(含有量)が増大することにより研磨速 度は増加している。

【0121】また、研磨用スラリーの色もグルタル酸の 添加により半透明から白濁した。これは、凝集により粒 40 径の大きい粒子が形成され散乱強度が増大したことを示

(実施例20:第1のスラリーによるTa膜の研磨)研 20 している。これらより、多価カルボン酸の添加によっ て、溶液中のイオン強度が増加し電気二重層が圧迫さ れ、粒子間に働く電気的反発力が減少するとともに、一 分子中に2以上のカルボキシル基を有する多価カルボン 酸とシリカ粒子との相互作用により凝集化(フロキュレ ーション化)が起こり、この凝集化により適度に柔らか に凝集したシリカ粒子が研磨材粒子として作用し機械的 研磨作用が増大したためTa膜の研磨速度が向上したも のと考えられる。

> 【0122】表3及び表4に示すように、研磨用スラリ 30 ーの p H が 4 . 5 ~ 6 . 5 の範囲で変化しても高い研磨 速度で研磨できた。また表 4 に示す結果から、p H調整 剤をKOHからNH4OHに代えても同様に高い研磨速 度を示した。

【0123】表5に示す結果から、グルタル酸の他、

(2) 式又は(3) 式で示される特定の構造を有する多 価カルボン酸であれば、Ta膜の研磨速度を向上できる ことがわかる。また、表中に示したいずれのカルボン酸 を含有する場合でも添加により研磨用スラリーの色が半 透明から白濁した。

[0124]

【表3】

表3

スラリー No.	研磨材 (含有量/wt %)	カルポン酸 (含有量/wt %)	pH 超型 剂	ρН	Ta 研磨速度 (nm/分)	
1	ヒュームドシリカ (5mtx)		KOH	6.5	72.1	
2	ヒュームドシリカ (5ゃれ)	グルタル酸(0.02)	KOH	6,5	29.2	
3	ヒュームドシリカ (5wt%)	グルタル酸(0.04)	KOH	6.5	29.3	
4	ヒュームドシリカ (5wc%)	グルタル酸(0.08)	KOH	6.5	42.3	
5	ヒュームドシリカ (5mは)	グルタル酸 (0.16)	KOH	6.5	46.5	
В	ヒュームドシリカ (5mx)	グルタル酸 (0.27)	KOH	6.5	56.5	

25

[0125]

【表4】

表4

スラリー No.	研磨材 (含有量/wt %)	カルボン酸 (含有量/wt %)	pH調查剤	ρН	Ta 研學速度 (nm/分)
7	ヒュームドシリカ (5mtx)	グルタル酸(0.16)	KOH	4.5	51.2
8	ヒュームドシリカ (5mtX)	グルタル酸(0.16)	KOH	5.0	52.5
9	ヒュームドシリカ (Swtk)	グルタル酸 (0.16)	КОН	5,5	50
10	ヒュームドシリカ (5wck)	グルタル酸 (0.16)	NH4OH	4.5	50.9
11	ヒュームドシリカ (Swt.K)	グルタル酸 (0.16)	NH40H	5.0	52.1
12	ヒュームドシリカ (5wt%)	グルタル酸 (0.16)	NH4OH	5.5	49.3

[0126]

10 【表5】

	_
-	
-	•

スラリー No.	研磨材 (含有量/wt %)	カルボン酸 (含有量/wt %)	pH與臺剤	pΗ	Ta 研磨速度 (nm/分)	
13	ヒュームドシリカ (5かん)	リンゴ酸 (0.536)	КОН	<i>5.5</i>	58.8	
14	ヒュームドシリカ (5かん)	酒石酸 (0.6)	KOH	5.5	36.1	
15	ヒュームドシリカ (5かん)	マレイン酸 (0.46)	КОН	5.5	36.2	
16	ヒュームドシリカ (5wt%)	マロン酸 (0.416)	KOH	5.5	46.9	
17	ヒュームドシリカ (5かん)	シュウ酸 (0.36)	КОН	5.5	48.2	
18	ヒュームドシリカ (5mth)	クエン酸 (0.33)	КОН	6.5	97.1	

(実施例21:第1のスラリーによる1段階研磨)表6に示す種々の研磨用スラリーを調製し、これらの研磨用スラリー用いて、凹部を除く絶縁膜表面が完全に露出するまで1段階でCMPを行い、銅膜、Ta膜、シリコン酸化膜(SiO2絶縁膜)に対してそれぞれ研磨速度を測定した。

【0127】この結果から、(2)式又は(3)式で示される多価カルボン酸単独或いはそれらの混合物と、酸化剤(H_2O_2)、酸化防止剤(ベンゾトリアゾール(BTA))の組成比によって、Ta 膜と銅膜間の研磨速度比を調整することができることがわかる。従来は、銅膜の研磨速度を低下させることによって研磨速度比を調整していたのに対して、本発明ではTa 膜の研磨速度を向上させることによっても研磨速度を調整(研磨速度差を

小さく) できるため、スループットを大幅に向上するこ 20 とができる。

【0128】また、基板の断面をSEMにより観察したところ、ディッシング及びエロージョンが抑制されていることが確認できた。このことは、銅膜とTa膜間の研磨速度差が適度に小さいため銅膜が過剰に研磨されることがなく、また、絶縁膜の研磨速度が十分に低いため絶縁膜が十分にストッパーとして働き、ディッシングやエロージョンの発生が防止されたことを示している。また、研磨面をSEMにより観察したところ、問題となるような傷の発生は見受けられなかった。

30 [0129]

【表 6】

スラリー No.	研磨材 (含有量/wt %)	カルポン酸 (含有量/wt %)	酸化防止剤 (含有量/wtX)	酸化剂 (含有量/wt %)	pH 以 亞利	рН	Ta 研磨速度 (nm/分)	Cu 研磨速度 (nm/分)	SiO ₂ 研磨速度 (nm/分)
19	ヒュームドシリカ (8かだ)	グルタル酸(0.16)	BIA(0.005)	H2O2(0.093)	KOH	4.5	45.3	50.3	2.0
20		GLU(0.16)+0UE(0.05) *	BTA (0.005)	H2O2 (1.53)	KOH	6.0	37	80.2	20
21	ヒュームドシリカ (8well)	クエン酸(0.05)	BTA (0.005)	H2O2 (1.53)	КОН	6.0	47	55.6	2.0

* GLU: グルタル酸. QUE: クエン酸

40

(実施例22~29:第2のスラリーによる1段階研磨)トクヤマ社製のヒュームドシリカQsー9を5質量%、関東化学社製の硫酸カリウムを0.1~3質量%を含むpH4.5の研磨用スラリーを調製した。この研磨用スラリーを用いて、凹部を除く絶縁膜表面が完全に露出するまで1段階でCMPを行い、銅膜およびTa膜の研磨速度を測定した。結果を表7に示す。

【0130】表7から明かなように、硫酸カリウムを添 ームドシリカの粒子間に働く電気的反発力が減少すると加することにより、銅膜の研磨速度を低下させることな ともに、無機塩とシリカ粒子との相互作用により凝集化く、Ta膜の研磨速度を著しく増加でき、硫酸カリウム 50 (フロキュレーション化)が起こり、この凝集化により

の添加量(含有量)を増大することによりタンタルの研 磨速度を増大させることができた。

【0131】また、研磨用スラリーの色も硫酸カリウムの添加により半透明から白濁した。これは、凝集により粒径の大きい粒子が形成され散乱強度が増大したことを示している。このことから、無機塩の添加によって、溶液中のイオン強度が増加し電気二重層が圧迫され、ヒュームドシリカの粒子間に働く電気的反発力が減少するとともに、無機塩とシリカ粒子との相互作用により凝集化(フロキュレーション化)が起こり、この凝集化により

27

[0132]

適度に柔らかく凝集したシリカ粒子が研磨材粒子として 作用し機械的研磨作用が増大したためTa膜の研磨速度 が向上したものと考えられる。

【表7】

(表 7)

	硫酸カリウム	Ta研磨速度	Cu研磨速度
	(實量%)	(nm/分)	(nm/分)
比較例3	0	25.7	8. 1
実施例 22	0.10	32.1	測定せず
実施例 23	0.25	39.9	測定せず
実施例 24	0.50	50.3	源定せず
実施例 25	0.75	58.5	測定せず
実施例 26	1.00	67.2	9.8
実施例 27	2.00	97.1	測定せず
実施例 28	2.50	105.1	測定せず
実施例 29	3.00	109.2	11.8

(実施例30、31:第2のスラリーによる1段階研 磨)硫酸カリウムに代えて硫酸アンモニウム及び塩化カ リウムを用いた以外は、それぞれ実施例26及び実施例 29と同様にして研磨用スラリーを調製し、同様にCM Pを行い、研磨速度を測定した。結果を表8に示す。

20 【0133】表8から明らかなとおり、硫酸カリウム以 外の無機塩として硫酸アンモニウム及び塩化カリウムを 添加した場合も、Ta膜の研磨速度が上昇した。

[0134]

【表8】

(書席)

(200)	無機酸塩	無機酸塩濃度 (質量%)	Ta研磨速度 (nm/分)	Cu研磨速度 (nm/分)
実施例 30	硫酸アンモニウム	1.0	5 9 . 1	9. 6
実施例 31	塩化カリウム	30 3.0	102.1	11.1

(実施例32~37:第2のスラリーによる1段階研 磨) 硫酸カリウムに代えて、表 9 に示す酸化作用を有す る種々の無機塩を含有する以外は実施例24、26又は 27と同様な研磨用スラリーを調製し、同様なCMPを 行った。なお、比較のため、実施例37では酸化作用の ない無機塩である硫酸カリウムと2.5質量%の過酸化 水素とを含有する研磨用スラリーを調製し、その結果を 実施例26の結果とともに表中に記載した。

【0135】表9に示されているように、酸化作用を有 40

する無機塩を添加した場合も、タンタルの研磨速度が上 昇した。さらに、無機塩の酸化作用により、実施例26 と比較して、銅の研磨速度が著しく上昇した。また、実 施例37と比較すると、酸化作用を有する無機塩を添加 することにより、過酸化水素を含有する場合と同程度に まで、銅の研磨速度が上昇していることがわかる。

[0136]

【表 9】

	無機酸塩	無機酸塩濃度 (質量%)	過酸化水素 (質量%)	Ta研磨速度 (nm/分)	Cu研磨速度 (nm/分)
実施例 32	ペルオキソニ硫酸カリウム	0.5	0	50.5	247.8
実施例 33	ベルオキソニ硫酸カリウム	1.0	0	71.2	468.6
実施例 34	ベルオキソニ硫酸カリウム	2.0	0	79.8	623.2
実施例 35	ベルオキソニ硫酸アンモニウム	1.0	0	68.3	480.3
実施例 36	過ヨウ素酸アンモニウム	1.0	0	69.5	470.0
実施例 37	硫酸カリウム	1.10	2.5	70.8	472.2
実施例 26	硫酸カリウム	1.0	0	67.2	9.8
		i !		<u> </u>	

(実施例38~41:第2のスラリーによる1段階研 磨)表10に示すように、硫酸カリウム、関東化学社製 の過酸化水素、関東化学社製のシュウ酸またはリンゴ 酸、関東化学社製のベンゾトリアゾールを含有する研磨 用スラリーを調製し、これらの研磨用スラリーを用いて 1段階でСMPを行った。研磨速度の測定結果を表10 に示す。

【0137】表10から、有機酸や酸化剤の濃度を変化 20 【0139】 させることにより、タンタルの研磨速度を維持したまま

銅の研磨速度を変化させる、すなわち、タンタルの研磨 速度を維持したまま、銅/タンタル研磨速度比を制御で きることがわかる。

30

【0138】また、基板断面をSEM観察したところ、 ディッシング及びエロージョンが抑制されていた。ま た、研磨面をSEMにより観察したところ、問題となる ような傷は発生していなかった。

【表10】

(主10)

	硫酸カリウム (質量%)	過酸化水素 (質量%)	有機酸	有機酸濃度 (質量%)	ベンゾトリアゾール (質量%)	Ta研磨速度 (nm/分)	Cu研磨速度 (nm/分)
実施例 38	1.0	2.5	シュウ酸	0.1	0.001	65.2	29.8
実施例 39	1.0	2.5	リンゴ酸	0.02	0.005	64.0	38.1
実施例 40	1.0	2.5	リンゴ酸	0.03	0.005	64.3	65.2
実施例 41	1.0	2.5	リンゴ酸	0.04	0.005	64.7	100.5

(実施例42及び43:第2のスラリーによる1段階研 30 a膜の研磨速度を維持したまま銅の研磨速度が低下して 磨) 表11に示す組成の研磨用スラリーを調製し、この 研磨用スラリーを用いて同様に1段階でCMPを行っ た。その際の研磨速度の測定結果を表11に示す。

【0140】この結果をみると、ペルオキソニ硫酸カリ ウムの一部を硫酸カリウムに置き換えることにより、T

いる。このことから、酸化剤を用いなくても、無機塩の 組み合わせにより、銅とTa膜との研磨速度比が調整で きることがわかる。

[0141]

【表11】

(表11)

	硫酸カリウム	ベルオキソ	過酸化水素	有機酸	有機酸濃度	ベンゾトリ	Ta研遊連皮	Cu研磨速度
	(質量%)	二硫酸カリ	(質量%)		(質量%)	アゾール	(R m/分)	(nm/分)
		ウム				(質量%)		
		(質量%)		40				
卖施例 42	0	0.5	0	リンゴ酸	0.15	0.005	47.5	128.3
実施例43	0.25	0.25	0	リンゴ酸	0.15	0.005	48.1	71.2

(実施例44:第1の研磨方法)第1の研磨工程では、 トリエタノールアミンを含有する実施例18の研磨用ス ラリーを用いてCMPを行い、凹部を除く絶縁膜上に、 凹部を除く基板表面の約15%の面積分の銅膜が残った 時点で研磨を停止した。

【0142】次に、第2の研磨工程として、実施例21 で用いたスラリーNo. 20の研磨用スラリーを用いて、

凹部を除く絶縁膜表面が完全に露出するまでCMPを行 った。なお表6から、この研磨用スラリーの研磨速度比 (C u / T a / 酸化シリコン)は2.2/1/0.05 である。

【0143】研磨後の基板断面をSEMにより観察した ところ、ディッシング及びエロージョンはほぼ完全に防 50 止されていた。また、研磨面をSEMにより観察したと

ころ、問題となるような傷は発生していなかった。

[0144]

【発明の効果】以上の説明から明らかなように、本発明 によれば、ディッシングやエロージョンの発生を抑え、 配線抵抗のバラツキが小さく、信頼性が高い埋め込み配 線の形成がを可能となる。

【図面の簡単な説明】

【図1】従来の金属配線形成方法を説明するための工程 断面図である。

【図2】従来の金属配線形成方法により埋め込み銅配線 10 24 バリア金属膜 を形成した場合の配線部の断面の形状を示す図である。

【図3】本発明の金属配線形成方法を説明するための埋 め込み配線層の断面図である。

【符号の説明】

- 1 下層配線層
- 2 シリコン窒化膜
- 3 シリコン酸化膜
- 4 バリア金属膜
- 5 銅膜
- 23 絶縁膜
- - 25 配線用金属膜

[図1]

【図3】

(b)

【図2】

、 フロントページの続き

F ターム(参考) 3C058 AA07 AC01 AC04 BC02 CA01

CB01 CB03 DA12

5F033 HH11 HH12 HH21 JJ11 JJ12

JJ21 MM01 MM12 MM13 NN06

NN07 PP15 PP26 PP33 QQ09

QQ13 QQ37 QQ48 QQ49 QQ50

RRO4 WWOO XXOO XXO1