Determinación de Órbitas Elípticas El Método de Laplace

Simón López Vico

Doble Grado en Matemáticas e Ingeniería Informática Universidad de Granada

Septiembre de 2020

Índice

- 1 Introducción
- 2 El Método de Laplace
- Órbita completa del cuerpo
- 4 Bondad del método
- 6 Conclusiones

Introducción

S

 ${}^{\bullet}E$

El Método de Laplace

Aproximando las derivadas

Tres observaciones: $(\lambda_1, \mu_1, \nu_1)$, $(\lambda_2, \mu_2, \nu_2)$, $(\lambda_3, \mu_3, \nu_3)$.

Aproximando las derivadas

Tres observaciones: $(\lambda_1, \mu_1, \nu_1)$, $(\lambda_2, \mu_2, \nu_2)$, $(\lambda_3, \mu_3, \nu_3)$.

Diferencia regresiva $(t_2 > t_1)$

$$\lambda_{12}' = \frac{\lambda_2 - \lambda_1}{t_2 - t_1}$$

Diferencia progresiva $(t_2 < t_3)$

$$\lambda_{23}' = \frac{\lambda_3 - \lambda_2}{t_3 - t_2}$$

Diferencia centrada $(t_2 - t_1 = t_3 - t_2)$

$$\lambda_2' = \frac{\lambda_{12}' + \lambda_{23}'}{2}$$

Cálculo de las distancias

Bondad del método

$$\sin^4\phi = M\sin\left(\phi + m\right)$$

Bondad del método

$$\sin^4 \phi = M \sin \left(\phi + m \right)$$

Condiciones:
$$\begin{cases} \phi \in (0, \pi) \\ \phi < \pi - \psi \end{cases}$$

Valores para ϕ

$$\rho = R \frac{\sin(\psi + \phi)}{\sin \psi} \qquad \qquad \rho' = \frac{D_2}{D} \left(\frac{1}{R^3} - \frac{1}{r^3} \right)$$

Utilizamos los valores calculados

El Método de Laplace

$$\rho = R \frac{\sin(\psi + \phi)}{\sin\psi}$$

$$\rho' = \frac{D_2}{D} \left(\frac{1}{R^3} - \frac{1}{r^3} \right)$$

Posición:

$$\begin{cases} x = \rho\lambda - X \\ y = \rho\mu - Y \\ z = \rho\nu - Z \end{cases}$$

Velocidad:

$$\begin{cases} x' = \rho'\lambda + \rho\lambda' - X' \\ y' = \rho'\mu + \rho\mu' - Y' \\ z' = \rho'\nu + \rho\nu' - Z' \end{cases}$$

Órbita completa del cuerpo

Elementos orbitales

Utilizando r = (x, y, z) y v = r' podemos obtener $(a, e, i, \omega, \Omega)$.

Utilizando r = (x, y, z) y v = r' podemos obtener $(a, e, i, \omega, \Omega)$.

Elipse:
$$(a\cos\theta + ae, a\sqrt{1 - e^2}\sin\theta, 0), \quad \theta \in (0, 2\pi)$$

Posición de la órbita

Bondad del método

Herramientas para el desarrollo

- Python: Numpy, Matplotlib, Astropy, etc.
- Tkinter
- Jet Propulsion Laboratory (JPL)
- Web Scraping

Cuerpos lejanos

Plutón (999), observaciones 6 de marzo, 6 de abril, 6 de mayo.

	Real	Aproximado
X	13.26236291	13.59730661
y	-31.31779618	-32.05011445
z	-0.48455854	-0.4966634

	Real	Aproximado
x'	0.0029688	0.00291106
y'	0.00056318	0.00065941
7'	-0.00090387	-0.00093223

Cuerpos muy excéntricos

Neowise (DES=2020 F3), observaciones con 8 horas de diferencia.

	Real	Aproximado
X	0.16652972	0.16854806
y	-0.24402154	-0.25029356
Z	0.32665628	0.32362519

	Real	Aproximado
x'	-0.01084886	-0.0106734
y'	-0.03392851	-0.03331783
7'	0.00860642	0.00864502

	Real	Aproximado
е	0.9992401080381	0.9623385094824
i	128.9372837890	129.87582386324
ω	37.28105014282	34.302810750239
0	61 01063134644	60 32375710162

 $a_{real} = 387,7566248050UA$ $a_{aprox} = 7,640204712942UA$

Conclusiones

Conclusiones

- El método de Laplace obtiene buena aproximación.
- Cuerpos cercanos → observaciones cercanas.
 Cuerpos lejanos → observaciones lejanas.
- Implementación software funciona al completo.

Muchas gracias por su atención

Correo de contacto: simondelosbros@correo.ugr.es