Кусовая работа

Катнов Артем

Контактные

диссипации

Кинематика

Каскадный режим

Сме шанный

Водопадный

режим С превышением

критической частоты

Кусовая работа

Численное моделирование динамики частиц дроби в рудоразмольной мельнице методом дискретных элементов

Катнов Артем

Московский государственный технический университет им. Н.Э.Баумана

13 января 2021 г.

Кусовая работа

Катнов Артем

Метод дискретны элементов

Описание

Контактные

силы Силы

диссипации Кинематика частиц

Результаты работы

Каскадный режим Сме шанный режим

Водопадный режим С превышением

критической частоты

Доп.

1 Метод дискретных элементов

- 2 Описание модели
 - Контактные силы
 - Силы диссипации
 - Кинематика частиц
- 3 Результаты работы
 - Каскадный режим
 - Смешанный режим
 - Водопадный режим
 - С превышением критической частоты
- 4 Доп. материалы

Метод дискретных элементов

Кусовая работа

Катнов Артем

Метод дискретных элементов

Контактные

диссипации Кинематика

Каскадный

режим Сме шанный

Водопадный

критической

С превышением частоты

Рис.: Демонстрация сыпучей среды

Cundall P. A. A computer model for simulating progressive, large-scale movement in blocky rock system //Proceedings of the International Symposium on Rock Mechanics, 1971. - 1971.

Цель работы Шаровая мельница

Кусовая работа

Катнов Артем

Метод дискретных элементов

Контактные

диссипации

Кинематика

Каскадный режим

Сме шанный

режим Водопадный

С превышением критической частоты

Цель работы: исследование динамики системы частиц дроби во вращающемся барабане рудоразмольной мельницы.

Рис.: Схематическое изображение шаровой мельницы

Метод дискретных элементов Алгоритм метода

Кусовая работа

Катнов Артем

Метод дискретных элементов

Контактные

силы

Силы

диссипации

Кинематика частиц

Каскадный режим

Сме шанный

режим Водопадный режим

С превышением критической

частоты

Описание модели Контактные силы

Кусовая работа

Катнов Артем

Метод дискретны элементов

Описание

Контактные

силы

диссипации Кинематика частиц

Результа работы

Каскадный режим

Сме шанный режим

Водопадный

С превышением критической

критической частоты

Доп.

Syed Z., Tekeste M., White D. A coupled sliding and rolling friction model for DEM calibration //Journal of Terramechanics. – 2017. – T. 72. – C. 9-20.

Описание модели

Контактные силы в нормальном направлении

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описание модели

Контактные силы

диссипации Кинематика частиц

Результаты работы

Каскадный режим Смешанный

Сме шанный режим Водопадный

режим С превышением

критической частоты

$$F_n = k_n \cdot \delta_n \tag{1}$$

где F_n — контактная сила, возникающая в точке контакта и действующая на оба шара, [H]; k_n — коэффициент жёсткости, [H/м]; δ_n — взаимное проникновение, так называемое вхождение шаров друг в друга, [м].

$$k_n = \frac{4}{3} \cdot E_{eff} \cdot \sqrt{R_{eff} \cdot \delta_n} \tag{2}$$

где

$$\frac{1}{E_{\mathit{eff}}} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} \qquad \qquad \frac{1}{R_{\mathit{eff}}} = \frac{1}{R_1} + \frac{1}{R_2}$$

δ

Описание модели

Контактные силы в тангенциальном и окружном направлениях

Кусовая работа

Катнов Артем

Контактные

диссипации Кинематика

Каскадный

Сме шанный

Водопадный

С превышением

$$F_s = \mu_s \cdot F_n \cdot sign(v_{rel_tan})$$
 $v_{rel_tan} \neq 0$
 $M_s = F_s \cdot R_{eff}$
 $M_r = \mu_r \cdot F_n \cdot R_{eff} \cdot sign(\omega_{rel})$ $\omega_{rel} \neq 0$
 $v_{rel_tan}^1 = v_y^1 - v_y^2 - (\omega_1 \cdot R_1 + \omega_2 \cdot R_2)$
 $\omega_{rel} = \omega_1 + \omega_2$

Описание модели Контактные силы скольжения

Кусовая работа

Катнов Артем

Метод дискретны: элементов

Описания

Контактные

силы

Силы диссипации Кинематика

К инематика частиц

работы Каскадный

режим Сме шанный

режим Водопадный

режим С превышением

с превышен критической частоты

Доп.

Рис.: Приведение силы трения скольжения к центру элемента

Описание модели

Кусовая работа

Катнов Артем

Метод дискретны элементов

Описани

модели

Контактные силы

Силы

диссипации Кинематика частиц

Результаты работы

Каскадный режим Смешанный

режим Водопадный

режим С превышением

С превышение: критической частоты

Доп.

$$\begin{aligned} D_n &= c_n \cdot v_{n_rel} \\ D_t &= c_t \cdot v_{t_rel} \\ c_n &= 2 \cdot \sqrt{m \cdot 2 \cdot E_{eff} \cdot \delta_n \sqrt{R_{eff}}} \cdot \zeta_n \\ c_t &= 4 \cdot \sqrt{m \cdot 2 \cdot G_{eff} \cdot \delta_n \sqrt{R_{eff}}} \cdot \zeta_t \end{aligned}$$

Караваев А. С., Копысов С. П., Сармакеева А. С. Моделирование динамики произвольных тел методом дискретных элементов //Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. — 2015. — Т. 25. — №. 4. — С. 473-482.

Описание модели Кинематика частиц

Кусовая работа

Катнов Артем

Контактные

диссипации

Кинематика частиц

Каскадный режим

Сме шанный

Водопадный

С превышением критической частоты

$$x = x_0 + v_0^x \cdot \Delta t + \frac{a_0^x \cdot \Delta t^2}{2} + \frac{b_0^x \cdot \Delta t^3}{6}$$
 (3)

$$y = y_0 + v_0^y \cdot \Delta t + \frac{a_0^y \cdot \Delta t^2}{2} + \frac{b_0^y \cdot \Delta t^3}{6}$$
 (4)

$$\vartheta = \vartheta_0 + v_0^{\vartheta} \cdot \Delta t + \frac{a_0^{\vartheta} \cdot \Delta t^2}{2} + \frac{b_0^{\vartheta} \cdot \Delta t^3}{6}$$
 (5)

$$b_n = \frac{a_{t+\Delta t} - a_t}{\Delta t} \tag{6}$$

$$b_t = \frac{a_{t+\Delta t} - a_t}{\Delta t} \tag{7}$$

$$b_{\vartheta} = \frac{\varepsilon_{t+\Delta t} - \varepsilon_t}{\Delta t} \tag{8}$$

$$\{b\}^{glob} = [T] \cdot \{b\}^{loc}$$

Описание модели Блок-схема итерационного уточнения

Кусовая работа

Катнов Артем

Контактные силы

диссипации Кинематика

частиц

Каскадный

режим

Сме шанный режим

Водопадный режим

С превышением критической

частоты

Описание модели Совокупность уравнений

Кусовая работа

Катнов Артем

Метод дискретны элементов

Описание

модели

Контактные

Силы

диссипации

Кинематика частиц

работы Каскадный

режим

Сме шанный режим

Водопадный режим

С превышением критической частоты

частоты

$$\begin{cases} \overline{m \cdot a_t} = \overline{F_n} + \overline{F_s} + \overline{D} + \overline{G} \\ \overline{I \cdot \varepsilon_t} = \overline{M_s} + \overline{M_r} \\ \overline{a_{t+\Delta t}} = \overline{a_t} + \overline{b_t} \cdot \Delta t \\ \overline{v_{t+\Delta t}} = \overline{v_t} + \overline{a_t} \cdot \Delta t + \frac{\overline{b_t} \cdot \Delta t^2}{2} \\ \overline{s_{t+\Delta t}} = \overline{s_t} + \overline{v_t} \cdot \Delta t + \frac{\overline{a_t} \cdot \Delta t^2}{2} + \frac{\overline{b_t} \cdot \Delta t^3}{6} \\ \dots \\ \vartheta_{t+\Delta t} = \vartheta_t + v_t^{\vartheta} \cdot \Delta t + \frac{a_t^{\vartheta} \cdot \Delta t^2}{2} + \frac{b_t^{\vartheta} \cdot \Delta t^3}{6} \end{cases}$$

Результаты работы Постановка задачи

Кусовая работа

Катнов Артем

Контактные силы

Силы диссипации

Кинематика частиц

Результаты работы Каскадный режим

Сме шанный режим Водопадный

режим

С превышением критической частоты

Модуль продольной упругости	$2 imes10^{11}$ Па
Модуль сдвига	$8{ imes}10^{10}$ Па
Плотность материала	7800 кг/м ³
К-т диссипации в норм-ом направлении	0.1
К-т диссипации в танген-ом направлении	0.1
К-т трения скольжения	0.1
К-т трения качения	0.05
Радиус шаровой мельницы	2.5 м
Радиус шаров	0.1 м
Количество шаров	120
Процент заполненности мельницы	21 %
Шаг по времени	$10^{-5}\;$ сек

Результаты работы Каскадный режим

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описание

модели Контактные

силы

Силы диссипации

Кинематика частиц

Результат работы

Каскадный режим

Сме шанный режим Водопадный

. С превышением критической

критической частоты

Доп.

Каскадный режим работы шаровой мельницы (2 об/мин)

Рис.: Теоретическая картина каскадного режима

Результаты работы Каскадный режим

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описание

модели Контактные

силы Силы диссипации

диссипации Кинематика частиц

Результать

Каскадный режим

Сме шанный режим Водопадный

режим С превышением критической

доп.

Каскадный режим работы шаровой мельницы (2 об/мин)

Рис.: График изменения энергии во времени при каскадном режиме работы мельницы

Результаты работы

Кусовая работа

Катнов Артем

Метод дискретны> элементов

Описание

Модели Контактные

СИЛЫ

Силы

диссипации Кинематика частиц

Результать

Каскадный режим

Смешанный

Водопадный режим

С превышением критической частоты

Доп.

Смешанный каскадно-водопадный режим работы (14 об/мин)

Рис.: Теоретическая картина смешанного режима

Результаты работы

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описание

модели Контактные

силы

диссипации Кинематика

Результат

Каскадный

Смешанный

режим Водопадный

С превышением критической частоты

Доп.

Смешанный каскадно-водопадный режим работы (14 об/мин)

Рис.: График изменения энергии во времени при смешанном каскадно-водопадном режиме работы мельницы

Результаты работы Водопадный режим

Кусовая работа

Катнов Артем

Метод дискретны> элементов

Описание

модели

Контактные силы

Силы диссипации Кинематика

Кинематика частиц

работы

Каскадный режим

Сме шанный режим

Водопадный режим -

С превышением критической частоты

Доп.

Водопадный режим работы шаровой мельницы (17 об/мин)

Рис.: Теоретическая картина водопадного режима

Результаты работы Водопадный режим

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описание

модели

Контактные силы

диссипации Кинематика

К инематика частиц

Каскадный

Сме шанный

Водопадный

С превышением критической частоты

Доп.

Водопадный режим работы шаровой мельницы (17 об/мин)

Рис.: График изменения энергии во времени при водопадном режиме работы мельницы

Результаты работы С превышением критической частоты

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описание

модели Контактные

силы Силы диссипации

Кинематика частиц

Результать работы

Каскадный режим

Сме шанный режим

Водопадный режим

С превышением критической частоты

Доп.

Превышение критической частоты (33 об/мин)

Рис.: Теоретическая картина закритического режима

Результаты работы С превышением критической частоты

Кусовая работа

Катнов Артем

Метод дискретны: элементов

Описание

модели Контактные

силы

диссипации Кинематика

Кинематика

Каскадный

режим Смешанный

режим Водопадный

С превышением критической частоты

Доп.

Превышение критической частоты (33 об/мин)

Рис.: График изменения энергии во времени при превышении критической частоты

Кусовая работа

Катнов Артем

Метод дискретных элементов

Описани

модели

Контактные силы

Силы

диссипации Кинематика частиц

Результаты

Каскадный

режим Сме шанный

режим

Водопадный режим

С превышением критической частоты

Доп. материалы

Спасибо за внимание!

Доп. материалы Шар-стенка

Кусовая работа

Катнов Артем

Контактные

силы Силы

диссипации

Кинематика частиц

Каскадный режим

Сме шанный режим

Водопадный

режим С превышением

критической частоты

Доп. материалы

Доп. материалы Упрощения МДЭ

Кусовая работа

Катнов Артем

Контактные

силы Силы

диссипации

Кинематика частиц

Каскадный режим

Сме шанный

режим Водопадный

режим С превышением

критической частоты

Доп. материалы

