1. ЛИН. ПР-ВО, РАЗМЕРНОСТЬ, БАЗИСЫ И КООРДИНАТЫ 5

- 1.1 Лин. пр-во 5
- 1.2 Размерность 5
- 1.3 Базис лин. пр-ва и координаты 6
- 1.4 ТРИВИАЛЬНАЯ СИС. ВЕКТОРОВ, ЛНЗ И ЛЗ СИС. ВЕКТОРОВ 7
- 1.5 Т. О 4-Х РАВНОСИЛЬНЫХ ОПР. БАЗИСА 7

2. МАТРИЦА ПЕРЕХОДА ОТ ОДНОГО БАЗИСА К ДРУГОМУ. СВЯЗЬ КООРДИНАТ ВЕКТОРА В РАЗНЫХ БАЗИСАХ 8

- 2.1 МАТРИЦА ПЕРЕХОДА 8
- *2.2 Вычисление матрицы перехода в пр-ве столбцов 9
- 2.3 СВЯЗЬ КООРДИНАТ ВЕКТОРА В РАЗНЫХ БАЗИСАХ 9
- 2.4 Св-ва матрица перехода 10

3. ПОДПР-ВА ЛИН. ПР-ВА. Т. О РАЗМЕРНОСТЯХ СУММЫ И ПЕРЕСЕЧЕНИЯ ПОДПРОСТРАНСТВ 10

- 3.1 Подпр-ва лин. пр-ва 10
- 3.2 Лемма о дополнения ЛНЗ системы до базиса 11
- 3.3 Т. О РАЗМЕРНОСТЯХ СУММЫ И ПЕРЕСЕЧЕНИЯ ПОДПРОСТРАНСТВ 11

4. ЗАДАНИЕ ПОДПР-ВА СИСТЕМОЙ ЛИНЕЙНЫХ УР-ИЙ 12

- 4.1 РЕШЕНИЯ СИСТЕМЫ ЛИН. УР-ИЙ, КАК ПОДПР-ВО 12
- 4.2 ЗАДАНИЕ ПОДПРОСТРАНСТВА КАК СЛУ 13
- *4.3 Лин. оболочка как подпро-во 13
- *4.4 Свойство линейной оболочки 13

5. ПРЯМАЯ СУММА ПОДПРОСТРАНСТВ 14

- 5.1 Определение прямой суммы 14
- 5.2 ТРИ РАВНОСИЛЬНЫХ УТВ. О ПРЯМОЙ СУММЕ 14

6. ЕВКЛИДОВЫ И УНИТАРНЫЕ ПР-ВА 14

- 6.1 Скалярное произведение 14
- 6.2 Евклидово пр-во 15
- *6.3 СВОЙСТВА СКАЛЯРНОГО ПРОИЗВЕДЕНИЯ В ЕВКЛИДОВОМ ПР-ВЕ 15
- 6.4 Унитарные пр-ва 15
- *6.5 ОРТОГОНАЛЬНОЕ ДОПОЛНЕНИЕ К ПОДПР-ВУ ЕВКЛИДОВА ПР-ВА 15

7. МАТРИЦА ГРАМА, ЕЁ ИЗМЕНЕНИЕ ПРИ СМЕНЕ БАЗИСА 16

- *7.1 ПРОЦЕСС ОРТОГОНАЛИЗАЦИИ БАЗИСА 16
- 7.2 МАТРИЦА ГРАМА 16
- 7.3 Св-ва матрицы Грама 16
- 7.4 Изменения матрицы Грама при смене базиса 16

8. НЕРАВ-ВО КОШИ-БУНЯКОВСКОГО 17

9. АЛГОРИТМ ОРТОГОНАЛИЗАЦИИ ГРАМА-ШМИДТА 17

- *9.1 Т. О СИСТЕМЕ ОРТОГОНАЛЬНЫХ ВЕКТОРОВ 17
- 9.2 Алгоритм ортогонализации 17
- *9.3 QR РАЗЛОЖЕНИЕ 18

10. ОРТОГОНАЛЬНЫЕ МАТРИЦЫ, КАК МАТРИЦЫ ПЕРЕХОДА ОТ ОДНОГО ОРТОГОНАЛЬНОГО БАЗИСА К ДРУГОМУ 19

11. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ ЛИНЕЙНЫХ ПРОСТРАНСТВ 20

- 11.1 Определение лин. отображения и св-ва 20
- 11.2 ПРОСТЕЙШИЕ СВОЙСТВА ЛИНЕЙНЫХ ОТОБРАЖЕНИЙ 20
- *11.3 Примеры линейных отображений 20

12. МАТРИЦА ЛИН. ОТОБРАЖЕНИЯ 21

12. Определение матрицы лин. отображ 21

- 12.2 Свойства матриц линейных отображений 21
- 12.3 Выбор базиса, в котором матрица отображения имеет вид Е $m{r}$ 000 22
- *12.4 Пример нахождения матрицы линейного отображения 22

13. ИЗМЕНЕНИЕ МАТРИЦЫ ЛИН. ОТОБРАЖЕНИЯ ПРИ СМЕНЕ БАЗИСА. 22

14. ИНВАРИАНТНЫЕ ПОДПР-ВА. ИНВАРИАНТНЫЕ ПОДПР-ВА И БЛОЧНО-ТРЕУГОЛЬНЫЕ МАТРИЦЫ

14.1 ИНВАРИАНТНЫЕ ПОДПР-ВА 23

23

- 14.2 Блочно-треугольная матрица 23
- *14.3 ЛЕММА ОБ ИНВАРИАНТНЫХ ПОДПР-ВАХ ЛИН. ОПЕРАТОРА 23
- *14.4 МАТРИЦА ОПЕРАТОРА, ПРЕДСТАВЛЕННОГО ПРЯМОЙ СУММОЙ 24
- 14.5 ПРИМЕРЫ ИНВАРИАНТЫХ ПОДПР-В 24

15. ЯДРО И ОБРАЗ ЛИН. ОПЕРАТОРА, ИХ РАЗМЕРНОСТИ 25

- 15.1 Опр. ядра и образа 25
- 15.2 Размерность ядра и образа лин. отображения 25
- *15.4 Ядро и образ, как подпр-ва 25
- *15.4 ПРИМЕРЫ ЯДРА И ОБРАЗА 25

16. СОБСТВЕННЫЕ ЧИСЛА И СОБСТВЕННЫЕ ВЕКТОРА. ХАРАКТЕРИСТИЧЕСКИЙ МНОГОЧЛЕН ОПЕРАТОРА. ЛИН. НЕЗАВИС. СОБСТВЕННЫХ ВЕКТОРОВ, ОТВЕЧАЮЩИХ РАЗЛИЧНЫМ СОБСТВЕННЫМ ЧИСЛАМ 26

- 16.1 СОБСТВЕННЫЕ ЧИСЛА И ВЕКТОРА 26
- 16.2 ХАРАКТЕРИСТИЧЕСКИЙ МНОГОЧЛЕН ОПЕРАТОРА 27
- 16.3 ТЕОРЕМА О НЕЗАВИСИМОСТИ ХАРАКТЕРИСТИЧЕСКОГО МНОГОЧЛЕНА ОТ ВЫБОРА БАЗИСА. 27
- 16.3 Т. О ЛИНЕЙНОЙ НЕЗАВИСИМОСТИ СОБСТВЕННЫХ ВЕКТОРОВ, ОТВЕЧАЮЩИХ РАЗЛИЧНЫМ СОБСТВЕННЫМ ЧИСЛАМ 27

17. ДИАГОНАЛИЗИРУЕМЫЙ ОПЕРАТОР, ДОСТАТОЧНЫЕ УСЛОВИЯ, ДИАГОНАЛИЗАЦИЯ МАТРИЦЫ ЛИН. ОПЕРАТОРА 28

- 17.1 КРИТЕРИЙ ДИАГОНАЛИЗИРУЕМОСТИ МАТРИЦЫ ЛИН. ОПЕРАТОРА 28
- 17.2 ДОСТАТОЧНЫЕ УСЛОВИЯ ДИАГОНАЛИЗИРУЕМОСТИ ЛИНЕЙНОГО ОПЕРАТОРА 28
- 17.3 АЛГЕБРАИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ КРАТНОСТЬ 28
- *17.4 Свойства собственных векторов 29

18. ОРТОГОНАЛЬНЫЕ МАТРИЦЫ 29

*19. ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА МАТРИЦЫ ЛИН. ОПЕРАТОРА 30

- *19.1 Понятие л-матрицы 30
- *19.2 ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА 30
- *19.3 ПРИВЕДЕНИЕ МАТРИЦЫ К ЖОРДАНОВОЙ (НОРМАЛЬНОЙ) ФОРМЕ 30

20. ИЗОМЕТРИЯ В ЕВКЛИДОВЫХ ПР-ВАХ. СВОЙСТВА СОБСТВЕННЫХ ЧИСЕЛ И СОБСТВЕННЫХ ВЕКТОРОВ ОПЕРАТОРА ИЗОМЕТРИИ 31

- 20.1 Оператор изометрии (ортогональный оператор) 31
- 20.2 СВОЙСТВА СОБСТВЕННЫХ ЧИСЕЛ И СОБСТВЕННЫХ ВЕКТОРОВ ОПЕРАТОРА ИЗОМЕТРИИ 32
- *20.3 Унитарный оператор 32

21. КАНОНИЧЕСКАЯ ФОРМА ОРТОГОНАЛЬНОГО ОПЕРАТОРА 33

- 21.1 ОБЩАЯ ТЕОРЕМА О КАНОНИЧЕСКОЙ ФОРМЕ ОРТОГОНАЛЬНОГО ОПЕРАТОРА 33
- 21.2 Док-во через индукцию и орт. доп. 34
- *21.3 ДРУГОЕ ДОК-ВО КАНОН. Ф-МЫ ОРТ. ОПЕР. 34
- 21.4 Т. О ПОДПРОСТРАНСТВЕ (ДЛЯ ДОК-ВА) 35

*22. НОРМАЛЬНЫЙ ОПЕРАТОР 36

- *22.1 Определение нормального оператора 36
- *22.2 Нормальная матрица 36

23. СОПРЯЖЕННЫЙ ОПЕРАТОР, ЕГО МАТРИЦА В ОРТОНОРМИРОВАННОМ БАЗИСЕ 37

23.1 Сопряжённый оператор 37

- 23.2 МАТРИЦА СОПРЯЖЕННОГО ОПЕРАТОРА В ОНБ 37
- *23.3 Свойства сопряженных операторов 37
- *23.4 Ялра и образы операторов \mathbf{A} и \mathbf{A} * 38
- *23.5 ОРТОГОНАЛЬНОЕ ДОПОЛНЕНИЕ СОПРЯЖЁННОГО ОПЕРАТОРА 38

24. САМОСОПРЯЖЕННЫЙ ОПЕРАТОР, СВОЙСТВА СОБСТВЕННЫХ ЧИСЕЛ И СОБСТВЕННЫХ ВЕКТОРОВ САМОСОПРЯЖЕННОГО ОПЕРАТОРА 38

- 24.1 Определение самосопряжённого оператора 38
- 24.2 ТЕОРЕМЫ О СОБСТВЕННЫХ ЧИСЛАХ И ВЕКТОРА САМОСОПРЯЖЁННОГО ОПЕРАТОРА 39

25. КАНОНИЧЕСКАЯ ФОРМА САМОСОПРЯЖЕННОГО ОПЕРАТОРА 39

- 25.1 Определение канонической формы самосопр. опр. 39
- 25.2 Равносильные условия самосопр. оператора 39

26. КВАДРАТИЧНЫЕ ФОРМЫ, МАТРИЦА КВАДРАТИЧНОЙ ФОРМЫ, ЕЕ ИЗМЕНЕНИЕ ПРИ ПРЕОБРАЗОВАНИИ КООРДИНАТ 40

- 26.1 Опеределения, связанные с квадратичной формой 40
- 26.2 ПРЕОБРАЗОВАНИЕ КВАДРАТИЧНЫХ ФОРМ 41

27. ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К СУММЕ КВАДРАТОВ МЕТОДОМ ЛАГРАНЖА 41

- 27.1 МЕТОД ЛАГРАНЖА 41
- 27.2 СВЯЗЬ С ТРЕУГОЛЬНЫМИ МАТРИЦАМИ В ОСНОВНОМ СЛУЧАЕ 42

28. ПРИВЕДЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ К СУММЕ КВАДРАТОВ ОРТОГОНАЛЬНЫМ ПРЕОБРАЗОВАНИЕМ. 42

- 28.1 Определение и основная теорема об орт. преобразования кв. формы 42
- 28.2 АЛГОРИТМ ПРИВЕДЕНИЯ КВАДРАТИЧНОЙ ФОРМЫ К СУММЕ КАДРАТОВ ОРТ. ПРЕОБРАЗ. 43
- *28.3 ТЕОРЕМЫ ОБ ОРТОГОНАЛЬНЫХ ПРЕОБРАЗОВАНИЯХ 43

29. ЗАКОН ИНЕРЦИИ 43

30. ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННЫЕ КВАДРАТИЧНЫЕ ФОРМЫ, КРИТЕРИЙ СИЛЬВЕСТРА 44

- 30.1 Положительно определённые квадратичные формы 44
- 30.2 КРИТЕРИЙ СИЛЬВЕСТРА 44
- *30.3 Следствия из критерия Сильвестра 45

31. ПРЕОБРАЗОВАНИЕ УРАВНЕНИЯ ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА К КАНОНИЧЕСКОМУ ВИДУ 45

32. КЛАССИФИКАЦИЯ КРИВЫХ ВТОРОГО ПОРЯДКА 47

- 32.1 Упрощение общего вида уравнения для кривых 2-ого порядка 47
- 32.2 Классификация, когда оба коэффициента при квадратах неравны 0 48
 - 32.2.1 Эллипс 48
 - 32.2.2 Гипербола 50
- 32.3 Классификация, когда один из коэффициентов = 0.51

33. КЛАССИФИКАЦИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА 52

- 33.1 Определение плоскостей второго порядка 52
- 33.2 Классификация поверхностей 2-ого порядка 52
 - 33.2.1 Все три коэфф. ≠ 0 52
 - 33.2.2 Один коэфф. = 0 55

приложения 58

- 1. МАТРИЦЫ ГЕОМЕТРИЧЕСКИХ ПРЕОБРАЗОВАНИЙ В ТРЁХМЕРНОМ ПР-ВЕ 58
- 2. Рисунки и уравнения плоскостей второго порядка 60
- 3. Краткая сводная таблица кривых 2-ого порядка 62
- 4. Для практики 63

Замечания по работе с документом.

- Знак "*" у любого пункта означает, что данный материал является дополнительным и не поздразумевает расписывание в контекте данного вопроса, но вполне может быть спрошен Жарковской.
- Все ссылки, кроме "подробнее" ведут в фрагмент данного документа.

1. Лин. пр-во, размерность, базисы и координаты

1.1 Лин. пр-во

Мн-во L наз-ся линейным (векторным) пр-вом над полем K, если для всех эл. (векторов) этого множества определены операции сложения и умножения на число (скаляр) $\alpha \in K$ и справедливы следующие $a\kappa cuombi$:

- 1. Каждой паре эл. х и у из L отвечает эл. х + у из L, называемый суммой х и у, причём:
 - а. x + y = y + x сложение коммутативно;
 - b. x + (y + z) = (x + y) + z сложение ассоциативно;
 - с. $\exists ! \ 0 : x + 0 = x, \forall x \in L$ существует единственный нулевой (нейтральный) эл.;
 - d. x + (-x) = 0, $\forall x \in L$ для каждого эл.а x из L существует единственный противоположный эл. x;
- 2. Каждой паре x и α отвечает эл. $\alpha \cdot x$, называемый произведением α и x, причём:
 - а. $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$ умножение на число ассоциативно;
 - b. \exists ! единичный эл.: $1 \cdot x = x$, $\forall x \in L$;
- 3. Операции + и * на скаляр связаны соотношениями:
 - а. $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ умножение на число дистрибутивно относ. сложения эл.;
 - b. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ умножение на вектор *дистрибутивно* относ. сложения чисел.

Примеры линейных пространств:

- 1. Мн-во векторов на плоскости;
- 2. Мн-во вещ-ых ф-ий C[a, b], опр. и непрерывных на [a, b];
- 3. $P_m[x]$ мн-во многочленов, степени не выше m: $a_0x^m + a_1x^{m-1} + \dots + a_m$, $a_i \in R$ лин. пр-во над полем вещ. чисел.
- 4. $M_{m \times n}(R)$ мн-во матриц, заданного размера с вещ. коэф.

1.2 Размерность

Лин. пр-во L наз-ся n-мерным (имеет размерность dim(L) = n), если в нём:

- 1. В базис, состоящий из п векторов (т.е. п ЛНЗ векторов);
- 2. любая сис. из n+1 векторов явл. ЛЗ (т.е. любой другой вектор можно выразить через базисные). Лемма 1.

Если dim(L) = n, то любые n линейно независимых эл. этого пр-ва образуют его базис (и любой другой эл. может быть выражен через него).

Доказательство:

Пусть e_1, e_2, \ldots, e_n — любая система из n ЛНЗ эл. пр-ва L (\exists хотя бы одной такой системы вытекает из опр.). Если х — любой эл. пр-ва L, то, согласно определению, система (n+1) эл. x, e_1, e_2, \ldots, e_n ЛЗ, т.е. найдутся не все равные нулю числа $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_n$ такие, что справедливо рав-во $a_0x + a_1e_1 + \cdots + a_ne_n = 0$. Заметим, что число α_0 заведомо отлично от нуля (ибо в противном случае из рав-ва вытекала бы лин. завис. эл. e_1, e_2, \ldots, e_n). Но тогда поделив рав-во на α_0 и положив $x_1 = -\frac{\alpha_1}{\alpha_0}, x_2 = -\frac{\alpha_2}{\alpha_0}, \ldots, x_n = -\frac{\alpha_n}{\alpha_0},$ мы получим $x = x_1e_1 + x_2e_2 + \cdots + x_ne_n$. Т.к. эл. x произвольный $\in L$, то это рав-во доказывает, что система эл. e_1, e_2, \ldots, e_n явл. базисом пр-ва L. ч.т.д.

Лемма 2.

Если лин. пр-во L имеет базис, состоящий из n эл., то $\dim(L) = n$.

Доказательство:

Пусть сист. из n эл. $e_1, e_2, ..., e_n$ явл. базисом пр-ва L. Достаточно док-ть, что любые (n+1) эл. этого пр-ва $x_1, x_2, ..., x_{n+1}$ ЛЗ. Разложив каждый эл. по базису, будем иметь:

$$x_1 = \alpha_{11}e_1 + \alpha_{12}e_2 + \dots + \alpha_{1n}e_n,$$

$$x_2 = \alpha_{21}e_1 + \alpha_{22}e_2 + \dots + \alpha_{2n}e_n,$$

 $x_{n+1} = \alpha_{(n+1)1}e_1 + \alpha_{(n+1)2}e_2 + \cdots + \alpha_{(n+1)n}e_n$, где $\alpha_{11}, \alpha_{12}, \ldots, \alpha_{(n+1)n}$ – некоторые скаляры из поля K. Очевидно, ЛЗ эл. $x_1, x_2, \ldots, x_{n+1}$ эквивалента ЛЗ строк матрицы:

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{(n+1)1} & \alpha_{(n+1)2} & \dots & \alpha_{(n+1)n} \end{pmatrix}$$

Но строки указанной матрицы заведомо ЛЗ, ибо порядок базисного минора ¹этой матрицы (содерж. (n+1) строк и n столбцов) $\leq n$, и хотя бы одна из (n+1) её строк не явл. базисной и по Т. о базисном миноре представляет собой линейную комбинацию базисных ($a \rightarrow u$ всех остальных) строк. ч.т.д.

Лемма 3.

Если dim(L) = n, то любая сис. из n + 1 вектора явл. ЛЗ.

Доказательство:

По усл. леммы, число векторов в базисе равно n и базис явл. порождающей системой², поэтому число векторов в любой ЛНЗ системе не может превосходить n.

1.3 Базис лин. пр-ва и координаты

$$e_1,e_2,\ldots,e_k\in L$$
 - базис $\Leftrightarrow \ \forall x\in L\ \exists !\ \alpha_1\ldots,\alpha_n\in K: x=\alpha_1e_1+\cdots+\alpha_ne_n$, где $n<\infty$.

Onp.: набор эл. лин. пр-ва (не обязательно конечномерного) наз-ся базисом этого пр-ва тогда и только тогда, когда $\forall x \in L$ ∃! набор скаляров, такой, что $x = \alpha_1 e_1 + \dots + \alpha_n e_n$. Это рав-во называют разложением эл. х по базису e_1, e_2, \dots, e_n , а числа $\alpha_1, \dots, \alpha_n$ называют *координатами* эл. х (относ. базиса e_1, e_2, \dots, e_n).

Т. 1 (о единственности разложения по базису)

Каждый эл. x лин. пр-ва L может быть разложен по базису $e_1, e_2, ..., e_n$ единственным образом, т.е. координаты каждого эл. x относ. базиса $e_1, e_2, ..., e_n$ опр-ся однозначно.

Доказательство:

Допустим, что для некоторого эл. x на ряду с разложением $x=x_1e_1+x_2e_2+\cdots+x_ne_n$ справедливо также другое разложения по тому же самому базису $x=x'_1e_1+x'_2e_2+\cdots+x'_ne_n$. Почленн. вычитание равенств приводит к соотнош. $(x_1-x'_1)e_1+(x_2-x'_2)e_2+\cdots+(x_n-x'_n)e_n=0$. В силу ЛНЗ базисных вект. e_1,e_2,\ldots,e_n , это соотнош. приводит к рав-вам $x_1-x'_1=0,x_2-x'_2=0,\ldots,x_n-x'_n=0$ или $x_1=x'_1,x_2=x'_2,\ldots,x_n=x'_n$. ч.т.д.

Значение базиса заключается также и в том, что операции сложения эл. и умножения их на числа при задании базиса превращаются в соответствующие операции над числами - координатами этих эл.

Примеры базиса (конкретных линейных пространств):

- Любые три некомпланарных вектора образуют базис в линейном пр-ве ВЗ;
- Совокупность п эл. образуют базис в линейном пр-ве An;
- Базис лин. пр-ва x состоит из одного эл-та, в качестве которого можно взять любой ненулевой эл. этого пр-ва (т.е. любое положительное вещественное число x_0 не равное 1).

Т. 2 (алгребраические операции над координатами)

При сложении 2-х эл. лин. пр-ва L их координаты (относ. любого базиса пр-ва L) складываются; при умножении произвольного эл. на любой скаляр λ все координаты этого эл. умножаются на λ .

Доказательство:

Пусть $e_1, e_2, ..., e_n$ произвольный базис пр-ва L, $x = x_1e_1 + x_2e_2 + \cdots + x_ne_n$ и $y = y_1e_1 + y_2e_2 + \cdots + y_ne_n$ – любые 2 эл. этого пр-ва.

Тогда в силу аксиом из <u>пункта 1.1</u>: $(x + y) = (x_1 + y_1)e_1 + (x_2 + y_2)e_2 + \dots + (x_n + y_n)e_n$, $\lambda x = (\lambda x_1)e_1 + (\lambda x_2)e_2 + \dots + (\lambda x_n)e_n$.

В силу единств. разложения по базису Т. доказана.

Операции над эл. сводятся к операциям над их координатами на основании свойств.

- Эл. явл. нулевым эл. лин. пр-ва тогда и только тогда, когда все его координаты в любом базисе равны нулю.
- Координаты суммы эл. в некотором базисе равны сумме соответствующих координат данных эл. в то же базисе.

 $^{^{1}}$ В матрице $A \ m \times n$ минор n-го порядка наз-ся базисным, если он отличен от нуля, а все миноры (n+1)-го порядка =0 или их вообще ∄.

 $^{^2}$ Система векторов $\{e_1,e_2,\ldots,e_k\}\in L$ над полем K наз-ся наз-ся порождающей (образующей) системой векторов этого векторного пространства, если она представляет любой его вектор, т.е. если $\forall x\in L$ найдется такой набор скаляров $\alpha_1,\alpha_2,\ldots,\alpha_n\in K$, что $x=\alpha_1x_1+\alpha_2x_2+\ldots+\alpha_nx_n$.

- Координаты произведения эл. на число равны произведению каждой координаты на это число (в одном и том же базисе).
- Два эл. равны тогда и только тогда, когда равны их соответствующие координаты в одном и том же базисе.
- Эл. x явл. линейной комбинацией эл. $x_1, x_2, ..., x_n$ тогда и только тогда, когда каждая координата эл. x явл. такой же линейной комбинацией соответствующих координат этих эл. в одном и том же базисе.

1.4 Тривиальная сис. векторов, ЛНЗ и ЛЗ сис. векторов

Лин. комбинация $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + ... + \alpha_n \overrightarrow{a_n}$ наз-ся *тривиальной*, если все коэффициенты $\alpha_1, \alpha_2, ..., \alpha_n$ равны нулю одновременно. Если хотя бы один из коэффициентов отличен от нуля, то *нетривиальной*.

Ненулевые векторы $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ называются J3, если нетривиальная лин. комбинация этих векторов равна нулевому вектору $\alpha_1 \overrightarrow{a_1} + \alpha_2 \overrightarrow{a_2} + ... + \alpha_n \overrightarrow{a_n} = 0$.

Ненулевые векторы $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$ называются $\mathcal{I}H3$, если только тривиальная лин. комбинация этих векторов равна нулевому вектору.

1.5 Т. о 4-х равносильных опр. базиса

Пусть e_1 , e_2 , ..., e_n – упорядоченная сис. векторов линейного пр-ва. Тогда следующие утверждения равносильны:

- 1. Сис. e_1 , e_2 , ..., e_n базис;
- 2. Сис. e_1 , e_2 , ..., e_n ЛНЗ и порождающая система векторов;
- 3. Сис. e_1 , e_2 , ..., e_n max ЛНЗ система векторов;
- 4. Сис. $e_1, e_2, ..., e_n$ min порождающая система векторов³.

Доказательство:

1) \Rightarrow 2). Пусть сис. векторов e_1 , e_2 , ..., e_n явл. базисом. Из его опр. \rightarrow , что эта сис. векторов явл. порождающей сис. векторов линейного пр-ва, поэтому нужно только док-ть её ЛНЗ.

Допустим, что данная сис. векторов ЛЗ. Тогда ∃ два представления нулевого вектора – тривиальное и нетривиальное, что противоречит определению базиса.

2) \Rightarrow 3). Пусть сис. векторов e_1 , e_2 , ..., e_n явл. ЛНЗ и порождающей. Нужно док-ть, что данная ЛНЗ сис. явл. максимальной.

Допустим противное. Пусть данная ЛНЗ сис. векторов не явл. максимальной. Тогда найдется вектор, который можно будет добавить к этой системе, и полученная сис. векторов останется ЛНЗ. Однако, с другой стороны, добавленный к сис. вектор может быть представлен в виде лин. комб. исход. системы векторов в силу того, что она явл. порождающей системой.

Получаем, что в новой, расширенной, системе векторов один из её векторов линейно выражается через другие вектора этой системы. Такая сис. векторов явл. ЛЗ. Получили противоречие.

- 3) \Rightarrow 4). Пусть сис. векторов e_1 , e_2 , ..., e_n векторного пр-ва L явл. тах ЛН3. Докажем, что она явл. тіп порождающей системой.
 - а) Сначала докажем, что она явл. порождающей системой.

Заметим, что в силу ЛНЗ, сис. e_1 , e_2 , ..., e_n не содержит нулевого вектора. Пусть $x \in L$ произвольный ненулевой вектор. Добавим его к данной сис. векторов: e_1 , e_2 , ..., e_n , x. Получившаяся сис. ненулевых векторов явл. ЛЗ, т.к. исход. сис. векторов максимальная ЛНЗ. Значит, в этой сис. найдётся вектор линейно выражающийся через предыдущие. В исход. ЛНЗ сис. e_1 , e_2 , ..., e_n ни один из векторов не может выражаться через предыдущие \rightarrow линейно выражается через предыдущие только вектор x. Таким

³ Система векторов векторного пространства наз-ся минимальной порождающей системой, если при удалении из этой системы любого вектора она перестает быть порождающей системой.

образом, через сис. e_1 , e_2 , ..., e_n можно выразить любой ненулевой вектор. Осталось заметить, что данная сис. представляет и нулевой вектор, т.е. сис. e_1 , e_2 , ..., e_n явл. порождающей.

- б) Теперь докажем ее минимальность. Допустим противное. Тогда один из векторов сис. может быть удален из неё, и оставш. сис. векторов по-прежнему будет порождающей сис. и, след., удалён. из сис. вектор тоже лин. выражается через оставшиеся вектора системы, что противоречит ЛНЗ исход. системы векторов.
- $4) \Rightarrow 1$). Пусть сис. векторов e_1 , e_2 , ..., e_n векторного пр-ва L явл. min-ой порождающей системой. \rightarrow она представляет любой вектор линейного пр-ва. Нужно док-ть единств. представления, чтобы придти к опр. базиса.

Допустим противное. Пусть какой-нибудь вектор x линейно выраж. через векторы данной сис. 2-мя различ. способами:

$$x = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n$$

$$x = \beta_1 e_1 + \beta_2 e_2 + \dots + \beta_n e_n$$

Вычитая из одного рав-ва другое, получаем: $(\alpha_1 - \beta_1)e_1 + \dots + (\alpha_n - \beta_n)e_n = 0$.

В силу <u>теоремы 1</u>, сис. e_1 , e_2 , ..., e_n явл. ЛНЗ, т.е. представляет нулевой вектор только тривиально, \rightarrow V коэф. этой лин. комбинации должны быть равны 0: $\alpha_1 = \beta_1$, $\alpha_2 = \beta_2$, ..., $\alpha_n = \beta_n$.

Таким образом, любой вектор x линейно выраж. через векторы данной сис. единств. способом, ч.т.д.

2. Матрица перехода от одного базиса к другому. Связь координат вектора в разных базисах

2.1 Матрица перехода

Пусть e_1 , e_2 , ..., e_n и f_1 , f_2 , ..., f_n – два базиса произвольного векторного пр-ва L над полем K. Назовем первый базис "старым", а второй "новым". Разложим векторы нового базиса по старому базису:

$$\begin{cases} f_1 = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n \\ f_2 = c_{12}e_1 + c_{22}e_2 + \dots + c_{n2}e_n \\ \dots \\ f_n = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n \end{cases}$$
(1)

Каждое рав-во в (1) можно записать в матричной форме, если мы формально воспользуемся правилом умножения строки на столбец. Пусть (e_1, e_2, \dots, e_n) — строка длины n, эл. которой являются векторы старого базиса. Аналогично, (f_1, f_2, \dots, f_n) — вектор—строка нового базиса.

Будем рассматривать эти строки как матрицы соответствующих размеров и производить с ними действия как с числовыми матрицами. Тогда, $\forall k=1,\ 2,\ ...,\ n,$

$$f_k = c_{1k}e_1 + c_{2k}e_2 + \dots + c_{nk}e_n = (e_1, e_2, \dots, e_n) \begin{pmatrix} c_{1k} \\ c_{2k} \\ \vdots \\ c_{nk} \end{pmatrix}$$
 (умножение "строка на столбец").

Если мы обозначим столбец координат вектора f_k (коорд. вектора, например, $f_1(c_{11}, c_{21}, ..., c_{n1})$) через F_k :

$$F_k = \begin{pmatrix} c_{1k} \\ c_{2k} \\ \vdots \\ c_{nk} \end{pmatrix}$$
, то последнее рав-во можно записать в виде: $f_k = (e_1, e_2, ..., e_n) F_k$,

а всю систему рав-в (1) — в виде: $(f_1, f_2, ..., f_n) = (e_1, e_2, ..., e_n)(F_1, F_2, ..., F_n)$, где

$$(F_1, F_2, \dots, F_n) = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}.$$

Таким образом, рав-ва (1) в матричной форме записи имеют вид:

$$(f_1, f_2, \dots, f_n) = (e_1, e_2, \dots, e_n) \cdot \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}.$$

$$(2)$$

Определение:

Матрица
$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

наз-ся матрицей перехода от старого базиса e_1 , e_2 , ..., e_n к новому базису f_1 , f_2 , ..., f_n .

Матрицу перехода от базиса e_1 , e_2 , ..., e_n к базису f_1 , f_2 , ..., f_n мы обозначать буквой С или \mathcal{C}_e^f или \mathcal{C}_e .

В этих обозначениях рав-во (2) принимает вид:

$$(f_1, f_2, \dots, f_n) = (e_1, e_2, \dots, e_n) \cdot C_e^f$$
 (3)

*2.2 Вычисление матрицы перехода в пр-ве столбцов

Замечание: также результат данного утверждения можно получить путём домножения (3) на обратную матрицу слева.

Для вычисления матрицы перехода применяется рав-во (3). Пусть векторы и старого и нового базиса являются столбцами одной высоты, т.е. являются векторами пр-ва K^n . Тогда столбцы старого и нового базисов образуют матрицы: $(f_1, f_2, ..., f_n) = F$ и $(e_1, e_2, ..., e_n) = G$.

Подставляя их в рав-во (3), получаем матричное рав-во:
$$\mathbf{F} = \mathbf{G} \cdot \mathbf{C}_{\mathbf{e}}^{\mathbf{f}}$$
. (4)

Обозначая искомую матрицу перехода буквой X, получаем матричное уравнение $F = G \cdot X$, которое можно решать методом Гаусса. Решая это матричное уравнение, находим матрицу перехода:

$$X = C_e^f = G^{-1}F. ag{5}$$

Заметим, что столбцы e_1, e_2, \dots, e_n являются базисом пр-ва столбцов, а потому линейно независимы.

2.3 Связь координат вектора в разных базисах

Пусть e_1 , e_2 , ..., e_n и f_1 , f_2 , ..., f_n – два базиса произвольного векторного пр-ва L и пусть $x \in L$ – произвольный вектор. Обозначим через X_e и X_f — столбцы координат вектора x относ. старого и нового базисов соответственно. В таких обозначениях справедлива следующая Т., которая устанавливает связь между координатами одного и того же вектора в 2-х различных базисах.

Теорема.

$$X_e = C_e^f \cdot X_f.$$

Доказательство:

По усл. теоремы

$$x=x_1e_1+x_2e_2+\cdots+x_ne_n=(e_1,e_2,\ldots,e_n)$$
 $\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}$ или $x=(e_1,e_2,\ldots,e_n)X_e,$ (6) где обозначено $X_e=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}$ — столбец координат вектора х относ. базиса $e_1,\ e_2,\ \ldots,\ e_n.$

Аналогично,

$$x = x_1'f_1 + x_2'f_2 + \dots + x_n'f_n = (f_1, f_2, \dots, f_n) \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$$
или $x = (f_1, f_2, \dots, f_n)X_f$, (7)

где обозначено

$$X_f = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$$
— столбец координат вектора х относ. базиса f_1 , f_2 , ..., f_n .

Ранее было показано, что $(f_1, f_2, ..., f_n) = (e_1, e_2, ..., e_n) \cdot C_e^f$, подставляя в (7) и (6) получаем: $x = (f_1, f_2, ..., f_n)X_f = (e_1, e_2, ..., e_n) \cdot (C_e^f \cdot X_f) = (e_1, e_2, ..., e_n)X_e$

Результатом произведения матрицы на столбец есть столбец, и из полученного рав-ва следует, что столбец $C_e^f \cdot X_f$ явл. столбцом координат вектора x относ. базиса $e_1, e_2, ..., e_n$. А из рав-ва (6) следует, что столбец X_e также явл. столбцом координат вектора x относ. базиса $e_1, e_2, ..., e_n$.

Т.к. любой вектор имеет относ. фиксированного базиса единственный столбец координат, то эти столбцы равны, т.е. $X_e = C_e^f \cdot X_f$ ч.т.д.

2.4 Св-ва матрица перехода

- 1. Матрица перехода от одного базиса n-мерного лин. пр-ва L над полем K к другому его базису явл. невырожденной матрицей n-го порядка с эл. из поля K.
- 2. Любая невырожденная квадратная матрица n-го порядка с эл. из поля K служит матрицей перехода от одного базиса n-мерного лин. пр-ва L над полем K к некоторому другому базису пр-ва L.

3. Подпр-ва лин. пр-ва. Т. о размерностях суммы и пересечения подпространств

3.1 Подпр-ва лин. пр-ва

Любое непустое подмн-во V векторного (иначе линейного) пр-ва L над полем K, которое само явл. векторным пр-вом над тем же самым полем K и относ. тех же операций сложения и умножения на скаляр, что и в векторном пр-ве L, наз-ся векторным nodnp-вом векторного пр-ва L.

Теорема о подпр-ве.

Пусть L — векторное пр-во над полем K и $L \subset V$ - его непустое подмн-во. Для того, чтобы подмн-во V было векторным подпр-вом векторного пр-ва L необходимо и достаточно, чтобы выполнялись следующие два условия:

 $1. \forall x, y \in V: x + y \in V$

2. $\forall \lambda \in K : \lambda x \in V$

Можно объединить в: $\forall \alpha, \beta \in K$ и $\forall x, y \in V$: $\alpha x + \beta y \in V$

Первое условие теоремы наз-ся замкнутостью подмножества V относ. сложения, а второе — замкнутостью подмножества V относ. умножения на скаляр.

Иначе данную теорему можно сформулировать так:

Для того, чтобы подмн-во V было векторным подпр-вом векторного пр-ва L необходимо и достаточно, чтобы подмн-во V было замкнуто относ. сложения и умножения на скаляр.

Доказательство:

Если подмн-во V само явл. векторным пр-вом, то оба условия теоремы очевидно выполняются в силу опр. векторного пр-ва. Пусть выполняются условия теоремы. Докажем, что V явл. векторным пр-вом.

Из условий теоремы следует, что на множестве V определена операция сложения и умножения на скаляр. Нам осталось только проверить выполнение всех аксиом векторного пр-ва.

1) Пусть $x, y, z \in V$ – произвольные векторы множества V. Т.к. $V \subset L$, то $x, y, z \in L$, а т.к. L – векторное пр-во, то в нем выполняется аксиома ассоциативности сложения:

$$x + (y + z) = (x + y) + z.$$
 (1)

Также, т.к. $x, y, z \in L$, то в силу условий теоремы, $y + z \in V$, откуда, в силу тех же условий, $x + (y + z) \in V$ и, аналогично, $(x + y) + z \in V$. Таким образом, рав-во (1) справедливо $\forall x, y, z \in V$, т.е. в V выполняется закон ассоциативности сложения векторов, ч.т.д.

Абсолютно аналогично доказывается, что в множестве V выполняются законы коммутативности сложения, ассоциативности умножения вектора на скаляр и оба закона дистрибутивности. Также, в силу замкнутости умножения на скаляр, выполняется аксиома умножения вектора на единицу поля K: $\forall x \in V, 1 \cdot x = x$.

Таким образом, осталось док-ть, что в множестве V содержится нулевой вектор пр-ва L и, что вместе с любым вектором множества V оно содержит противоположный ему вектор.

2) Пусть $x \in V$ — произвольный вектор и $0 \in K$ — нулевой скаляр поля K. Т.к. $L \subset V$, то $x \in L$. Из простейших свойств векторного пр-ва следует, что $0 \cdot x = 0 \in L$ — нулевой вектор векторного пр-ва V. С другой стороны, в силу условия замкнутости множества V относ. умножения на скаляр, $0 \cdot x = 0 \in V$, ч.т.д. (также можно сказать, что пересечение 2-х подпр. всегда непустое мн-во, содержащее нулевой эл.)

3) Пусть $x \in V$ – произвольный вектор. Т.к. $L \subset V$, то $x \in L$. Из простейших свойств векторного пр-ва следует, что $(-1) \cdot x = -x \in L$ – противоположный вектор.

С другой стороны, в силу условия замкнутости множества V относ. умножения на скаляр, $(-1) \cdot x = -x \in V$, ч.т.д.

Примеры векторных подпространств.

Пример 1. Пусть V - векторное пр-во. Тогда L=V тоже явл. векторным подпр-вом.

Пример 2. Пусть V - векторное пр-во. Тогда $V = \{0\}$ - мн-во, состоящее из одного нулевого вектора есть векторное подпр-во. Оно наз-ся нулевым подпр-вом.

Пример 3. Пусть K^n - арифметическое векторное пр-во столбцов высоты n. Обозначим через

$$V = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_{n-1} \\ 0 \end{pmatrix} \mid x_1, \dots, x_{n-1} \in K \right\} - \text{мн-во столбцов высоты n u c нулевой последней компонентой. Легко}$$

проверяется, что мн-во V замкнуто относ. сложения столбцов и относ. умножения столбца на скаляр.

Пример 4. Пусть E_3 — вещественное точечно-векторное пр-во векторов как направленных отрезков. (Напомним, что вектор этого пр-ва мы рассматриваем как радиус-вектор точки этого пр-ва.) и пусть E_2 — мн-во всех векторов коллинеарных какой-либо плоскости, проходящей через начало координат. Тогда E_2 — векторное подпр-во пр-ва E_2 . (Мы отождествляем E_2 с этой плоскостью.)

Аналогично, если E_1 — мн-во всех векторов коллинеарных какой-либо прямой, проходящей через начало координат и лежащей в плоскости E_2 , то E_1 есть векторное подпр-во E_2 . Таким образом, $E_1 \subset E_2 \subset E_3$ — цепочка подпространств.

3.2 Лемма о дополнения ЛНЗ системы до базиса

Линейно независимую систему векторов ненулевого конечномерного векторного пр-ва L, не являющуюся базисом пр-ва, можно дополнить до базиса пр-ва L.

Доказательство:

Пусть L векторное пр-во размерности n и e_1 , e_2 , ..., e_m некоторая линейно независимая Сис. его векторов. Тогда $m \le n$.

Если m = n, то по лемме 1, эта Сис. явл. базисом и доказывать нечего.

Если же m < n, тогда данная Сис. явл. не максимальной линейной независимой системой (иначе она была бы базисом, что невозможно, т.к. dim(L) = n). Следовательно, найдется вектор $e_{m+1} \in L$, такой, что Сис. $e_1, e_2, \ldots, e_m, e_{m+1}$ – линейно независимая.

Если, теперь m+1=n, то Сис. e_1 , e_2 , ..., e_m , e_{m+1} явл. базисом.

Если же m+1 < n, все повторяется. Процесс пополнения системы не может продолжаться бесконечно, т.к. на каждом шаге мы получаем линейно независимую систему векторов пр-ва L, а по предыдущей лемме число векторов в такой системе не может превышать размерности пр-ва. Следовательно, на каком-то шаге мы придем к базису данного пр-ва.

Т. доказана.

Следствие:

Если M – подпространство ЛП L, то $dim(M) \leq dim(L)$

3.3 Т. о размерностях суммы и пересечения подпространств

Пусть М и N — произвольные векторные подпр-ва пр-ва L. Cуммой М и N называют мн-во $M+N=\{x+y|x\in M,\ y\in N\}$.

Под *пересечением* векторных подпространств понимают их пересечение как множеств: $M \cap N = \{x | x \in M, x \in N\}.$

Св-ва:

- 1. $M \cap N \neq \emptyset$, т.е. не пересечение подпр-в не бывает пустым, т.к. любое подпр-в содержит 0-ой эл.;
- 2. M + N и $M \cap N$ сами являются подпр-вами.

Размерности суммы векторных подпространств

Размерность суммы векторных подпространств равна сумме их размерностей минус размерность их пересечения: $dim(N+M) = dim N + dim M - dim(N\cap M)$.

Доказательство:

Пусть N и M — произвольные векторные подпр-ва векторного пр-ва L, $N \cap M$ — их пересечение, N + M — их сумма. Обозначим:

 $\dim N \cap M = r$, $\dim N = s$, $\dim M = t$, $\dim(N + M) = m$.

Т.к. очевидны включения:

 $N\cap M\subset N\subset N+M,$ $N\cap M\subset M\subset N+M,$ то $r\leq s\leq m$ и $r\leq t\leq m.$ Нашей задачей явл. доказательство рав-ва: m=s+t-r.

Пусть $e_1, ..., e_r$ — базис пересечения $N \cap M$. Т.к. пересечение $N \cap M \subset N$, то его базис можно дополнить до базиса пр-ва N. Пусть $e_1, ..., e_r, f_1, ..., f_{s-r}$ — базис N.

Аналогично, базис пересечения можно дополнить до базиса пр-ва М. Пусть

 $e_1, \dots, e_r, g_1, \dots, g_{t-r}$ – базис M.

Докажем, что
$$e_1, \dots, e_r, f_1, \dots, f_{s-r}, g_1, \dots, g_{t-r}$$
 (2)

- базис N+M, откуда и будет следовать доказываемое рав-во (1).

Сначала докажем, что сис. векторов (2) явл. порождающей системой подпр-ва N+M.

Пусть $x + y \in N + M$ – произвольный вектор, где $x \in N$, $y \in M$. Разложим векторы x и y по базисам векторных подпространств N и M:

$$x = x_1 e_1 + x_2 e_2 + \dots + x_r e_r + a_1 f_1 + \dots + a_{s-r} f_{s-r},$$

$$y = y_1 e_1 + y_2 e_2 + \dots + y_r e_r + b_1 g_1 + \dots + b_{t-r} g_{t-r}$$

где
$$x_i, y_i, a_j, b_k \in K$$
, $i = 1, ..., r$; $j = 1, ..., s - r$; $k = 1, ..., t - r$.

Отсюда, $x+y=(x_1+y_1)e_1+\cdots+(x_r+y_r)e_r+a_1f_1+\cdots+a_{s-r}f_{s-r}+b_1g_1+\cdots+b_{t-r}g_{t-r}$, т.е. сис. (2) явл. порождающей для векторного подпр-ва N+M.

Теперь докажем, что сис. (2) явл. ЛНЗ.

Пусть $a_1e_1 + \dots + a_re_r + b_1f_1 + \dots + b_{s-r}f_{s-r} + c_1g_1 + \dots + c_{t-r}g_{t-r} = 0$.

Обозначим $a_1e_1 + \cdots + a_re_r + b_1f_1 + \cdots + b_{s-r}f_{s-r} = x$.

Тогда $x \in N$ и $x = -c_1g_1 - \cdots - c_{t-r}g_{t-r} \in M$, т.е. $x \in N \cap M$, следовательно, вектор x можно разложить по базису пересечения: $x = d_1e_1 + \cdots + d_re_r$, откуда следует рав-во: $-c_1g_1 - \cdots - c_{t-r}g_{t-r} = d_1e_1 + \cdots + d_re_r$ или $d_1e_1 + \cdots + d_re_r + c_1g_1 + \cdots + c_{t-r}g_{t-r} = 0$.

Т.к. сис. $e_1,\ldots,e_r,g_1,\ldots,g_{t-r}$ явл. базисом подпр-ва М, то она ЛНЗ, откуда следует, что $d_1=\cdots=d_r=c_1=\cdots=c_{t-r}=0$. Отсюда, в свою очередь следует, что $x=d_1e_1+\cdots+d_re_r=0$ и $a_1e_1+\cdots+a_re_r+b_1f_1+\cdots+b_{s-r}f_{s-r}=0$.

Сис. $e_1, \dots, e_r, f_1, \dots, f_{s-r}$ - базис подпр-ва N, т.е. ЛНЗ сис., поэтому, $a_1 = \dots = a_r = b_1 = \dots = b_{s-r} = 0$. Таким образом, сис. (2) представляет нулевой вектор только тривиально и, следовательно, явл. линейно независимой, ч.т.д.

4. Задание подпр-ва системой линейных ур-ий

4.1 Решения системы лин. ур-ий, как подпр-во

Мн-во реш. однородной системы линейных ур-ий с n неизвестными и с коэффициентами из поля K явл. векторным подпр-ом арифметического векторного пр-ва столбцов высоты n.

Доказательство:

Пусть A матрица $m \times n$ с эл. из поля K, X – столбец неизвестных высоты n. Тогда AX = 0 – матрич. форма записи однородной системы линейных ур-ий. Однородная сис. явл. совместной⁴, т.к. всегда имеет нулевое решение. Пусть S - мн-во всех реш. этой однородной системы линейных ур-ий: $S = \{X \in K^n | AX = 0\}$. Из опр. S следует, что $S \subset K^n$.

Пусть X_1 , $X_2 \in S$, тогда $AX_1 = 0$ и $AX_2 = 0$, т.е. $X_1 + X_2 \in S$.

Аналогично, пусть $X \in S$, тогда, AX = 0 и $\forall \lambda \in K$: $A(\lambda X) = \lambda(AX) = \lambda \cdot 0 = 0$, т.е. $\lambda X \in S$.

Таким образом, мн-во S замкнуто относ. сложения и умножения на скаляр и, следовательно, явл. векторным подпр-вом пр-ва L_n над полем K.

⁴ Система называется *совместной*, если она имеет хотя бы одно решение, и *несовместной*, если у неё нет ни одного решения. Решения считаются различными, если хотя бы одно из значений переменных не совпадает. Совместная система с единственным решением называется *определённой*, при наличии более одного решения — *недоопределённой*.

Мн-во всех линейных комбинаций системы векторов e_1 , ..., e_m наз-ся линейной оболочкой, натянутой на эту систему векторов.

Обозначение:

$$\mathcal{L}\{e_1, e_2, ..., e_m\} = \{\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_m e_m | \alpha_1, \alpha_2, \dots \alpha_m \in K\}.$$

4.2 Задание подпространства как СЛУ

Любое подпространство $M_k \subset L$ размерности k задается некоторой системой из n-k линейных однородных уравнений.

Доказательство:

Пусть
$$E=(e_1,\dots e_n)$$
 - базис L . Возьмем произвольный базис $M_k; A=(a_1,\dots,a_k)$. Выразим его через базис E , в матричной форме $A=E\times A'$, где $A'=\begin{pmatrix} \alpha_{11} & \dots & \alpha_{1k} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nk} \end{pmatrix}; rank(A')=k$. Если $X=(\alpha_{n1},\dots,\alpha_{nk})$

$$x_1e_1+\ldots+x_ne_n; X=egin{pmatrix} x_1\\ \dots\\ x_n \end{pmatrix}\in M\Leftrightarrow r(A')=r(A'|X)$$
 . Применим метод Гаусса на расширенную матрицу:
$$\begin{pmatrix} *&*&*&*&l_1(x_1\ldots x_n)\\ 0&*&*&*&l_2(x_1\ldots x_n)\\ \dots&\dots&\dots&\dots&\dots\\ 0&0&0&0&l_{r+1}(x_1\ldots x_n) \end{pmatrix}.$$

В матрице А: r ЛНЗ строк и n-r нулевых. Система будет иметь n-r ЛНЗ решений:

$$\begin{cases} x_1 = \alpha_{11}c_1 + \alpha_{12}c_2 + \dots + \alpha_{1k}c_k \\ \dots \\ x_n = \alpha_{n1}c_1 + \alpha_{n2}c_2 + \dots + \alpha_{nk}c_k \end{cases}$$

*4.3 Лин. оболочка как подпро-во

Пусть $A = (e_1, ..., e_m)$ — произвольная сис. векторов векторного пр-ва L. Тогда лин. оболочка $\mathcal{L}\{e_1, ..., e_m\}$ есть векторное подпр-во пр-ва L.

Доказательство:

Из опр. лин. оболочки \rightarrow , что $\mathcal{L}(A) \subset L$, поэтому достаточно док-ть, что лин. оболочка обладает свойствами замкнутости относ. сложения векторов и умножения вектора на скаляр.

Возьмём любые два вектора x и y из $\mathcal{L}(A)$ имеющие следующие разложения по векторам из A: $\vec{x} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \dots + \alpha_m \vec{e}_m$, $\vec{y} = \beta_1 \vec{e}_1 + \beta_2 \vec{e}_2 + \dots + \beta_m \vec{e}_m$.

 $\vec{x} + \vec{y} = (\alpha_1 + \beta_1)\vec{e}_1 + (\alpha_2 + \beta_2)\vec{e}_2 + \dots + (\alpha_m + \beta_m)\vec{e}_m \in \mathcal{L}$, т.к. представляет собой линейную комбинацию векторов системы A.

 $\forall \alpha \in K, \forall \vec{x} \in \mathcal{L}: \alpha \vec{x} = \alpha \alpha_1 \vec{e}_1 + \alpha \alpha_2 \vec{e}_2 + \dots + \alpha \alpha_m \vec{e}_m \in \mathcal{L},$ т.к. тоже представляет собой линейную комбинацию векторов системы A.

Замечание.

Из опр. линейной оболочки и опр. базиса векторного пр-ва сразу же следует, что любое векторное прво есть лин. оболочка системы базисных векторов, а т.к. любое векторное подпр-во, по определению, само явл. векторным пр-вом, то и любое векторное подпр-во есть лин. оболочка некоторой системы векторов данного подпр-ва.

Другими словами, если L – векторное пр-во и e_1 , ..., e_n – его базис, то $L = \mathcal{L}\{e_1, ..., e_n\}$.

*4.4 Свойство линейной оболочки

Пусть L – векторное пр-во над полем K и e_1, \dots, e_m – произвольная сис. векторов из L. Тогда, лин. оболочка $\mathcal{L}\{e_1, \dots, e_m\}$ явл. наименьшим (относ. включения) векторным подпр-вом, содержащим данную систему векторов.

Доказательство:

Пусть M — произвольное векторное подпр-во, содерж. сис. векторов e_1 , ..., e_m , т.е. e_1 , ..., $e_m \in M$. Тогда подпр-во M содержит любую линейную комбинацию данной системы векторов, т.е. содержит любой вектор подпр-ва \mathcal{L} и $\mathcal{L} \subset M$, ч.т.д.

5. Прямая сумма подпространств

5.1 Определение прямой суммы

Пусть N и M – произвольные векторные подпр-ва векторного пр-ва L. Сумма подпространств N+M наз-ся прямой суммой $F=N \oplus M$, если $\forall z \in (M+N)$ $\exists ! \ x,y : x \in M, y \in N, \ z=x+y$

Замечание. Если $L = N \oplus M$, то говорят, что векторное пр-во L разлагается в прямую сумму подпространств N и M.

5.2 Три равносильных утв. о прямой сумме

Пусть N и M — произвольные векторные подпр-ва векторного пр-ва L. Тогда следующие утверждения равносильны:

- 1. $L = N \oplus M$ (см. опр.).
- 2. Объединение базисов подпространств N и M явл. базисом векторного подпр-ва F.
- 3. Для того, чтобы n-мерное пр-во F представляло собой прямую сумму подпр-в M и N, достаточно, чтобы: a) dimL = dimN + dimM; b) $N \cap M = 0$.

Доказательство:

1) \Rightarrow 2). Пусть $L=N\oplus M, e_1, \dots, e_m$ — базис подпр-ва N, f_1, \dots, f_n — базис подпр-ва $M, z\in N\oplus M$ — произвольный вектор. Из опр. прямой суммы следует, что $\exists !$ пара векторов $(x,y): x\in M, y\in N$, такая, что z=x+y. Разложим векторы x и y по базисам подпространств M и N соответственно: $x=x_1e_1+x_2e_2+\dots+x_me_m$ и $y=y_1f_1+y_2f_2+\dots+y_nf_n$.

Векторы раскладываются по базису однозначно, т.е. вектор z представим в виде линейной комбинации системы векторов $e_1, \dots, e_m, f_1, \dots, f_n$ единственным способом: $z = x + y = x_1e_1 + \dots + x_me_m + y_1f_1 + \dots + y_nf_n$, откуда следует, что сис. $e_1, \dots, e_m, f_1, \dots, f_n$ явл. базисом прямой суммы, ч.т.д.

 $2)\Rightarrow 3)$. Пусть e_1,\dots,e_m — базис подпр-ва $N,\,f_1,\dots,f_n$ — базис подпр-ва M, а их объединение $e_1,\dots,e_m,f_1,\dots,f_n$ — базис их прямой суммы $N\oplus M$. Из опр. базиса \to , что $\forall z\in N\oplus M,$ $\exists !$ набор скаляров $(x_1,\dots,x_m,y_1,\dots,y_n)$, для которого $z=x_1e_1+\dots+x_me_m+y_1f_1+\dots+y_nf_n$. Обозначим через $x=x_1e_1+\dots+x_me_m,\,y=y_1f_1+\dots+y_nf_n$. Тогда z=x+y, где $x\in N,\,y\in M$, что означает, что $dim(N\oplus M)=dimN+dimM$.

Пусть далее, $z \in N \cap M$. Тогда, $z \in N$ и $z \in M$. Следовательно, вектор z можно разложить как по базису подпр-ва N, так и по базису подпр-ва M:

$$z = a_1e_1 + \dots + a_me_m = b_1f_1 + \dots + b_nf_n$$
. Отсюда, $a_1e_1 + \dots + a_me_m - b_1f_1 - \dots - b_nf_n = 0$.

По усл. сис. $e_1, \dots, e_m, f_1, \dots, f_n$ ЛНЗ, следовательно, все коэффициенты должны быть равны нулю: $a_1 = \dots = a_m = b_1 = \dots = b_n = 0$. Отсюда следует, что и z = 0, ч.т.д.

3) \Rightarrow 1). Пусть L = N + M и $N \cap M = 0$. Нам осталось док-ть, что $L = N \oplus M$. Пусть какой-нибудь вектор z из F двумя способами представлен в виде суммы вектора из подпр-ва N и вектора из подпр-ва M: z = x + y = x' + y', где $x, x' \in N$, $y, y' \in M$. Тогда, $x - x' = y' - y \in N \cap M = 0$, т.е. x = x', y = y', ч.т.д.

6. Евклидовы и унитарные пр-ва

6.1 Скалярное произведение

Пусть L лин. пр-во над полем K. Говорят, что в L введено скалярное произведение, если $\forall x, y \in L$, $\exists \alpha = (x, y) \in K$. такое, что выполняются след. св-ва:

- 1) (x, y) = (y, x) -коммутативность/симметрия;
- 2) $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$ дистрибутивность скалярного произведения относ. сложения;
- 3) $(\lambda x, y) = \lambda(x, y)$ для $\forall \lambda \in R$ дистрибутивность скалярного произведения относ. умножения на скаляр;
- 4) (x,x) > 0, если $x \neq \bar{0}$; (x,x) = 0, если $x = \bar{0}$ неотрицательность. Примеры скалярных произведений:
- 1) В арифметическом пр-ве A_n с базисом $e_1, e_2, ..., e_n$ если $x = \sum_{i=1}^n \xi_i e_i, y = \sum_{i=1}^n \eta_i e_i$ скалярное произведение можно вести по правилу: $(x, y) \equiv \sum_{i=1}^n \xi_i \eta_i$.

2) В пр-ве C[a, b] функций непрерывных на [a, b] по правилу:

$$(f,g) \equiv \int_a^b f(t)g(t)dt.$$

6.2 Евклидово пр-во

Конечномерное вещественное лин. пр-во со скалярным произведением наз-ся евклидовым пр-вом.

В евклидовом пр-ве E назовем

- Нормой (или длиной) эл. x число $|x| = \sqrt{(x,x)}$.
- Расстоянием между эл. x и y число |x y|.

*6.3 Свойства скалярного произведения в евклидовом пр-ве

- 1) $(0,x) = (0\cdot x, x) = 0(x,x) = 0;$
- 2) $(x, \alpha y) = (\alpha y, x) = \alpha(y, x) = \alpha(x, y)$;
- 3) (x, y + z) = (y + z, x) = (y, x) + (z, x) = (x, y) + (x, z);
- 4) $(x,y) = (\sum_{i=1}^{n} \xi_i e_i, \sum_{j=1}^{n} \eta_j e_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \xi_i \eta_j (e_i e_j).$

Последнее свойство говорит о том, что для того, чтобы задать скалярное произведение в пр-ве L достаточно задать скалярное произведение базисных векторов: $\gamma_{ij} = (e_i, e_j)$. При этом $\gamma_{ij} = \gamma_{ji}$. Эл. γ_{ij} образуют матрицу, называемую матрицей Γ рама. Матрица Γ рама в евклидовом пр-ве симметрична.

6.4 Унитарные пр-ва

Пусть L лин. пр-во над полем \mathbb{C} . Говорят, что в L определено скалярное произведение, если $\forall x, y \in L, \exists \alpha = (x, y) \in \mathbb{C}$, определённое с теми же св-ми, что и в евклидовом.

Конечномерное комплексное лин. пр-во со скалярным произведением наз-ся унитарным пр-вом.

*6.5 Ортогональное дополнение к подпр-ву евклидова пр-ва

Вектор h наз-ся перпендикулярным к подпр-ву M пр-ва E, если $\forall y \in M$: (h, y) = 0.

Если $\{e_i\}_1^k$ базис в M (в подпр-ве), то $(h,e_i)=0$, $\forall i=1,2,...,k$.

Мн-во векторов $h \in E$ перпендикулярных к каждому элементу подпр-ва M наз-ся ортогональным дополнением к M и обозначается M^{\perp} .

Св-ва:

1) M^{\perp} явл. подпр-вом.

 \mathcal{A} ок-во: $x, y \in M^{\perp}$, $z \in M$, то $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, x) = \alpha \cdot 0 + \beta \cdot 0 = 0$, т.е. лин. комбинация эл. M^{\perp} остаётся в M^{\perp} .

2)
$$L = M \oplus M^{\perp}$$

 \mathcal{L} ок-во: Пусть e_1, \dots, e_k – ортогональный базис в M. Дополним его до ортогонального базиса 5L : $e_1, \dots, e_k, f_{k+1}, f_{k+2}, \dots, f_n$. Без ограничения общности можно считать его ортонормированным: $\forall x \in L \Rightarrow x = \sum_{1}^k \xi_i e_i + \sum_{k=1}^n \xi_i f_i = y + z$, где $y \in M$, $z \in M^\perp$ и это разложение единственно. Сумма является прямой по свойству 3.

3) $M \cap M^{\perp} = 0$.

Док-во: $x \in M$, $x \in M^{\perp} \Rightarrow (x, x) = 0 \Rightarrow x = 0$.

- 4) $\dim M + \dim M^{\perp} = \dim L$.
- 5) $(M^{\perp})^{\perp} = M$

Док-во: Согласно св-ву 2 можно разложить вектор единственным образом через $y \in M$ и $z \in M^{\perp}$. Тогда $c = a + b \in (M^{\perp})^{\perp}$, $a \in M$, $b \in M^{\perp}$; $\langle c, b \rangle = 0 = \langle c + b, b \rangle = \langle c, b \rangle + \langle b, b \rangle$; $\langle b, b \rangle = 0$; b = 0; $c = a \in M$.

⁵ Базис евклидова пространства называется *ортогональным*, если все образующие его векторы попарно ортогональны, т.е. $(e_i, e_j) = 0$ при $i \neq j$. Любую систему линейно независимых векторов, в частности, ортогональную (ортонормированную), можно дополнить до базиса. Применяя к этому базису процесс ортогонализации, получаем ортогональный базис. Нормируя векторы этого базиса, получаем ортонормированный базис.

7. Матрица Грама, её изменение при смене базиса

*7.1 Процесс ортогонализации базиса

Пусть даны n линейно независимых векторов $f_1, f_2, ... f_n$. Для построения по этим векторам n попарно ортогональных векторов $e_1, e_2, ... e_n$ необходимо провести следующую процедуру ортогонализации. Положим вначале $e_1 = f_1$. Затем вектор e_2 будем искать в виде $e_2 = f_2 + \alpha \cdot \vec{e}_1$.

По усл. ортогональности $(\mathbf{e}_1,e_2)=0$. Следовательно, $(f_2,e_1)+\alpha\cdot(\vec{e}_1,\vec{e}_1)=0$, откуда $\alpha=-\frac{(f_2,\mathbf{e}_1)}{(\mathbf{e}_1,\mathbf{e}_1)}=-\frac{(f_2,f_1)}{(f_1,f_1)}$. Предположим, что уже построено k-1 ортогональных векторов $\mathbf{e}_1,\mathbf{e}_2,\dots\mathbf{e}_{k-1}$. Будем искать e_k в виде $e_k=f_k+\lambda_1\cdot\mathbf{e}_1+\lambda_2\cdot e_2+\dots+\lambda_{k-1}\cdot\mathbf{e}_{k-1}$.

По усл. вектор e_k должен быть ортогонален $e_1, e_2, \dots e_{k-1}$, что даёт k-1 ур-ий для опр. k-1 неизвестных $\lambda_1, \lambda_2, \dots \lambda_{k-1}$. Выпишем эти уравнения с учётом ортогональности векторов $e_1, e_2, \dots e_{k-1}$: $(f_k, e_i) + \lambda_i \cdot (e_i, e_i) = 0, \ i = 1, 2, \dots (k-1)$, откуда получим $\lambda_i = -\frac{(f_k, f_i)}{(f_i, e_i)}, i = 1, 2, \dots (k-1)$.

7.2 Матрица Грама

Подробная инфа.

Пусть E-n-мерное Евклидово пр-во с базисом $e_1, ..., e_n$. Матрица Грама базиса $e_1, ..., e_n$ - это матрица, состоящая из всевозможных скалярных произведений этих векторов:

$$G(e_1,\dots,e_n) = \begin{pmatrix} (e_1,e_1) & \dots & (e_1,e_n) \\ \dots & \dots & \dots \\ (e_n,e_1) & \dots & (e_n,e_n) \end{pmatrix}$$

Определитель det(G) матрицы Грамма наз-ся определителем Грама (или грамианом).

7.3 Св-ва матрицы Грама

- 1. Скалярное произведение векторов $x=(\mathbf{x}_1,...,\mathbf{x}_n)$ и $\mathbf{y}=(\mathbf{y}_1,...,\mathbf{y}_n)$, заданных в базисе $e_1,...,e_n$, вычисляется по формуле $(x,y)=(\mathbf{x}_1...\mathbf{x}_n)_e^t\cdot\mathbf{G}\cdot(y_1,...,y_n)_e$, где \mathbf{G} матрица Грама для системы векторов $e_1,...,e_n$.
- 2. Подмн-во евклидова пр-ва E_n вида $\{x = \lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k \mid \lambda_i \in [0,1], i = 1,2,\dots,k\}$, где a_1,\dots,a_k ЛНЗ векторы, наз-ся k-мерным параллелепипедом, построенным на векторах a_1,\dots,a_k . Объем k-мерного параллелепипеда, построенного на векторах a_1,\dots,a_k , равен квадратному корню из определителя матрицы Грама для системы векторов a_1,\dots,a_k .
- 3. Матрица Грама любого евклидова пр-ва явл. невырожденной.
- 4. Если L евклидового пр-во, то м. Грама явл. симметричной, т.е. $G_A = G_A^t$ для любой системы A.
- 5. Если L унитарное пр-во, то $G_A = G_A^t$ для любой системы A.
- 6. Сис. A ортогональна $\leftrightarrow G_A$ диагональная.
- 7. Сис. A ортонормированная $\leftrightarrow G_A = E_n$.

7.4 Изменения матрицы Грама при смене базиса

Пусть $e = (e_1, ..., e_n)$ и $f = (f_1, ..., f_n)$ - два базиса евклидова пр-ва \mathbb{E} , а \mathbb{C} - матрица перехода от базиса e к базису f. Требуется найти связь матриц Грама систем векторов e и f.

По формуле $(x, y) = (x_1...x_n)_e^t \cdot G_e \cdot (y_1,...,y_n)_e = (x_1...x_n)_f^t \cdot G_f \cdot (y_1,...,y_n)_f$ вычислим скалярное произведение векторов в разных базисах. Подставляя в последнее рав-во выраж. $x_e = Cx_f$, $y_e = Cy_f$, получаем тождество⁶: $x_f^t C^t G_e Cy_f = x_f^t G_f y_f$.

Отсюда следует формула изменения матрицы Грама при переходе от одного базиса к другому:

$$G_f = C^t G_e C$$

Записав это рав-во для ортонормированных базисов e и f, получаем $\mathbf{E} = \mathbf{C}^t \mathbf{E} \mathbf{C}$, т.к. матрицы Грама ортонормированных базисов единичные: $G_e = G_f = E$. Поэтому матрица C перехода от одного ортонормированного базиса к другому явл. ортогональной: $C^{-1} = C^t$.

⁶ Первые два множителя берутся из правила транспонирования произведения матриц: $(AB)^t = B^t A^t$

8. Нерав-во Коши-Буняковского

Для любых 2-х эл. x и y евклидова пр-ва справедливо нерав-во $(x,y)^2 \le (x,x) \cdot (y,y)$, называемое нераввом Коши-Буняковского.

Доказательство:

Для $\forall \lambda \in R$ в силу аксиомы 4 (неотрицательности) скалярного произведения справедливо нерав-во $(\lambda x - y, \lambda x - y) \ge 0$. В силу аксиом 1-3, последнее нерав-во можно переписать в виде: $\lambda^2(x, x)$ — $2\lambda(x,y) + (y,y) \ge 0.$

Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена явл. неположительность его дискриминанта D:

 $D = (x, y)^2 - (x, x) \cdot (y, y) \le 0$. Из нерав-ва $D \le 0$ сразу же следует нерав-во Коши–Буняковского.

В том случае, когда (x, x) = 0 квадратный трехчлен $\lambda^2(x, x) - 2\lambda(x, y) + (y, y)$ вырождается в линейную функцию. Но в этом случае эл. x явл. нулевым, так что (x,y)=0, и нерав-во $D\leq 0$ также справедливо.

9. Алгоритм ортогонализации Грама-Шмидта

*9.1 Т. о системе ортогональных векторов

Любая ортогональная сис. ненулевых векторов ЛНЗ.

Рассмотрим произвольную ортогональную систему ненулевых векторов $e_1, ..., e_n$. Предположим, что для некоторых действительных коэффициентов $\alpha_1, ..., \alpha_n$ выполняется рав-во: $\alpha_1 e_1 + \cdots + \alpha_n e_n = 0$. Умножим это рав-во скалярно на какой-либо вектор e_i : $(\alpha_1 e_1 + \dots + \alpha_n e_n, e_i) = (0, e_i)$.

В силу свойства скалярного произведения правая часть полученного рав-ва равна нулю, и мы, преобразуя левую часть в соответствии со свойством⁸, получаем

$$\alpha_1(\boldsymbol{e}_1,\boldsymbol{e}_i) + \dots + \alpha_i(\boldsymbol{e}_i,\boldsymbol{e}_i) + \dots + \alpha_n(\boldsymbol{e}_n,\boldsymbol{e}_i) = 0$$
 (*)

Т.к. сис. векторов ортогональна, то все слагаемые слева, кроме одного, равны нулю, т.е. $\alpha_i(e_i, e_i) = 0$. (**) Т.к. вектор e_i ненулевой, то $(e_i, e_i) \neq 0$ (аксиома неторицательности скалярного умножения). Поэтому из (**) следует, что $\alpha_i = 0$. Индекс *i* можно было выбирать произвольно, так что на самом деле все коэфф. α_i являются 0-ми. Мы доказали, что рав-во (*) возможно лишь при 0-ых коэфф., а это, согласно опр. ЛНЗ системы, означает, что сис. векторов e₁, ..., e_n ЛНЗ.

9.2 Алгоритм ортогонализации

Алгоритм служит тому, чтобы найти ортонормированный базис на основе исходного в конечномерном евклидовом пр-ве. Формулярная запись алгоритма также cm. в контексте QR-разложения.

Пусть $e = (e_1, e_2, ..., e_n)$ – некоторый базис в n-мерном евклидовом пр-ве E. Модифицируя этот базис, мы будем строить новый базис $f = (f_1, f_2, ..., f_n)$, который будет ортонормированным. Последовательно вычисляем векторы:

 $g_1 = e_1$ - так выбираем первый вектор строящегося базиса.

$$f_1 = \frac{g_1}{|g_1|}$$
 - нормируем⁹ вектор g_1 .

 $g_2 = e_2 - (e_2, f_1) f_1$, где $(e_2, f_1) f_1$ - проекция вектора e_2 на f_1 вдоль нормированного вектора f_1 .

$$f_2 = \frac{g_2}{|g_2|};$$

$$g_3 = e_3 - (e_3, f_1)f_1 - (e_3, f_2)f_2;$$

 $f_3 = \frac{g_3}{|g_3|};$

$$f_3 = \frac{g_3}{|g_3|};$$

L

$$g_n = e_n - (e_n, f_1)f_1 - \dots - (e_n, f_{n-1})f_{n-1}.$$

 $^{^{7}(}x,0)=0$, что следует из $(\lambda x,y)=\lambda(x,y)$: $(x,0)=(x,0\cdot 0)=0(x,0)=0$

 $^{^{8}}$ $(\sum_{i=1}^{n}\alpha_{i}x_{i}$, $y)=\sum_{i=1}^{n}\alpha_{i}(x_{i},y)$, где $\alpha_{i}\in\mathbb{R}^{n}$, i=1...n.

⁹ Норма (длина вектора) |a| в линейном пространстве L порождается скалярным произведением |a| = $\sqrt{(a,a)}$, $a \in$

$$f_{n-1} = \frac{g_{n-1}}{|g_{n-1}|} \tag{*}$$

 Γ еометрическая иллюстрация этой последовательности вычислений при n=3 (лин. пр-во V_3) приведена на рис.

При практических применениях процесс Грама — Шмидта удобно модифицировать так, чтобы ограничиться вычислением векторов g_i и не использовать их нормированные варианты f_i . В этом случае нужно последовательно вычислить векторы g_1, g_2, \dots, g_n , а затем провести их нормировку, приводящую к векторам f_i . Чтобы модифицировать алгоритм вычислений, в левой колонке заменим векторы f_i на g_i согласно формулам в правой колонке. Получим:

$$\begin{split} g_1 &= e_1; \\ g_2 &= e_2 - \frac{(e_2,g_1)}{|g_1|^2} g_1; \\ g_3 &= e_3 - \frac{(e_3,g_1)}{|g_1|^2} g_1 - \frac{(e_3,g_2)}{|g_2|^2} g_2; \\ \dots \\ g_n &= e_n - \frac{(e_n,g_1)}{|g_1|^2} - \frac{(e_n,g_2)}{|g_2|^2} g_2 - \dots - \frac{(e_n,g_{n-1})}{|g_{n-1}|^2} g_{n-1}. \end{split}$$

Доказательство:

Для обоснования алгоритма нужно показать, что ни один из последовательно вычисляемых векторов g_i не явл. нулевым вектором (иначе процесс оборвался бы преждевременно) и что все векторы g_i , $i=1\dots n$, попарно ортогональны. Тогда и векторы f_i , $i=1\dots n$, образуют ортогональную сис., но при этом норма каждого из этих векторов равна единице. Ортогональная сис. из n ненулевых векторов, согласно m. 9.1, линейно независима и поэтому в m-мерном евклидовом пр-ве явл. базисом.

Доказательство опирается на метод математической индукции. В соответствии с этим методом мы будем доказывать, что для любого $k,\ k=1,...,n$, векторы $f_1,...,f_k$ образуют ортогональную систему и длины их равны единице. Это утверждение очевидно при k=1, т.к. в этом случае вектор g_1 ненулевой, потому что равен вектору $\frac{e_1}{|e_1|}$ единичной длины, а систему векторов, состоящую из одного вектора, считают ортогональной по определению.

Пусть векторы f_1, \dots, f_k образуют ортогональную систему. Вычислим новый вектор g_{k+1} по формуле: $g_{k+1} = e_{k+1} - (e_{k+1}, f_1) f_1 - \dots - (e_{k+1}, f_k) f_k \tag{**}$

Предположив, что $g_{k+1}=0$, заключаем, что $e_{k+1}=(e_{k+1},f_1)f_1+\cdots+(e_{k+1},f_{k-1})f_k$, т.е. вектор e_{k+1} явл. линейной комбинацией векторов f_1,\ldots,f_k , которые в силу (*) выражаются через векторы e_1,\ldots,e_k . Следовательно, этот вектор явл. линейной комбинацией системы векторов e_1,\ldots,e_k , а сис. векторов e_1,\ldots,e_k , 13. Но это противоречит усл. ЛНЗ системы e_1,\ldots,e_n .

Итак, предположение о том, что $g_{k+1}=0$, привело к противоречию и потому неверно. Нам остается убедиться, что вектор g_{k+1} ортогонален каждому из векторов f_1, \dots, f_k . Умножим рав-во (**) скалярно на вектор f_i , где $i \le k$. Учитывая, что векторы f_j попарно ортогональны при $j \le k$, получим:

$$(g_{k+1}, f_i) = (e_{k+1}, f_i) - (e_{k+1}, f_1)(f_1, f_i) - \dots - (e_{k+1}, f_{k-1})(f_k, f_i) = (e_{k+1}, f_i) - (e_{k+1}, f_i)(f_i, f_i) = (e_{k+1}, f_i) - (e_{k+1}, f_i) = 0$$

Т.к. $(f_i, f_i) = 1$. Следовательно, векторы f_1, \dots, f_k, f_{k+1} , где $f_{k+1} = \frac{g_{k+1}}{|g_{k+1}|}$ образуют ортогональную систему векторов и имеют единичную длину.

Итак, в *конечномерном* евклидовом *пр-ве* существует ортонормированный базис. В процессе ортогонализации любой вектор g_1 можно заменить на коллинеарный ему ненулевой вектор $\alpha \cdot g_1$ Если сис. e_1, \dots, e_k векторов линейно зависима, то в процессе ортогонализации будем получать (на некоторых шагах) нулевые векторы.

*9.3 QR - разложение

Для нахождения собственных значений матрицы, используя QR-алгоритм, необходимо предварительно использовать QR-разложение, которое представляет собой разложение матрицы в виде A = QR, где Q – ортогональная матрица; R – верхнетреугольная матрица. Одним из таких явл. алгоритм Грама – Шмидта.

Рассмотрим процесс Грама – Шмидта для некоторой матрицы $A = [\vec{a}_1, ..., \vec{a}_k]$. Определим проекцию $\Pi p_{\vec{e}} \vec{a} = \frac{\langle \vec{e}, \vec{a} \rangle}{\langle \vec{e}, \vec{e} \rangle} \vec{e}$, тогда

$$\begin{split} \vec{u}_1 &= \vec{a}_1, \quad \vec{e}_1 = \frac{\vec{u}_1}{|\vec{u}_1|}; \\ \vec{u}_2 &= \vec{a}_2 - \Pi \mathbf{p}_{\vec{e}_1} \vec{a}_2, \quad \vec{e}_2 = \frac{\vec{u}_2}{|\vec{u}_2|}; \\ \vec{u}_3 &= \vec{a}_3 - \Pi \mathbf{p}_{\vec{e}_1} \vec{a}_3 - \Pi \mathbf{p}_{\vec{e}_2} \vec{a}_3, \quad \vec{e}_3 = \frac{\vec{u}_3}{|\vec{u}_3|}; \\ &\dots \end{split}$$

$$\vec{u}_k = \vec{a}_k - \sum_{j=1}^{k-1} \prod p_{\vec{e}_j} \vec{a}_k$$
, $\vec{e}_k = \frac{\vec{u}_k}{|\vec{u}_k|}$.

Матрицы Q и R будем формировать следующим образом:

$$Q = [\vec{e}_1, \ \dots, \ \vec{e}_k], \quad R = \begin{pmatrix} \langle \vec{e}_1, \ \vec{a}_1 \rangle & \langle \vec{e}_1, \ \vec{d}_2 \rangle & \langle \vec{e}_1, \ \vec{d}_3 \rangle & \cdots & \langle \vec{e}_1, \ \vec{a}_k \rangle \\ 0 & \langle \vec{e}_2, \ \vec{a}_2 \rangle & \langle \vec{e}_2, \ \vec{a}_3 \rangle & \cdots & \langle \vec{e}_2, \ \vec{a}_k \rangle \\ 0 & 0 & \langle \vec{e}_3, \ \vec{a}_3 \rangle & \cdots & \langle \vec{e}_3, \ \vec{a}_k \rangle \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \langle \vec{e}_k, \ \vec{a}_k \rangle \end{pmatrix}.$$

Матрицу R можно найти и другим путем. Преобразуем выражение A=QR следующим образом: $Q^TA=Q^TQR$. Произведение Q^TQ есть единичная матрица. Отсюда следует, что, зная матрицу Q, мы можем определить матрицу R $R=Q^TA$.

Теперь мы можем осуществить **QR-разложение** матрицы:

Тогда для последовательности матриц A_1 , A_2 , ..., A_m ; Q_1 , Q_2 , ..., Q_m и R_1 , R_2 , ..., R_m запишем процесс:

- 1. Задаем $A_1 = A$, $Q_1 = Q$ и $R_1 = R$.
- 2. Вычисляем $A_2 = R_1 Q_1$, затем находим QR-разложение A_2 как $A_2 = Q_2 R_2$.
- 3. Определяем $A_3=R_2Q_2$ и представляем в виде $A_3=Q_3R_3$ и т. д.
- 4. Находим $A_m = R_{m-1}Q_{m-1}$, после чего записываем $A_m = Q_m R_m$.

На некотором шаге m матрица A_m становится треугольной или почти треугольной, поэтому ее собственные числа будут находиться на главной диагонали. Чем больше m, тем ближе собственные числа матрицы A_m к собственным числам матрицы A.

10. Ортогональные матрицы, как матрицы перехода от одного ортогонального базиса к другому

Пусть E — произвольное n-мерное евклидово линейное пространство, f_1, \dots, f_n и e_1, \dots, e_n - два ортонормированных базиса в нём (старый f и новый e соответственно), C - матрица перехода от f базиса к e.

Как следует из определения матрица перехода (i-й столбец матрицы перехода есть столбец координат i-го вектора нового базиса в старом), столбцы e_1, \ldots, e_n матрицы перехода C - это столбцы координат векторов нового базиса e относительно старого базиса f, т.е. $C = (e_1, \ldots, e_n)$, где $e_i = f e_i, i = 1, \ldots, n$. Поэтому:

$$\mathbf{C}^t C = \begin{pmatrix} e_1^t \\ e_2^t \\ \vdots \\ e_n^t \end{pmatrix} (e_1, e_2, \dots, e_n) = \begin{pmatrix} e_1^t e_1 & \dots & e_1^t e_n \\ \dots & \dots & \dots \\ e_n^t e_1 & \dots & e_n^t e_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & \dots & 1 \end{pmatrix} = E$$

Последнее равенство в приведенной выкладке следует из того, что столбцы e_1, \dots, e_n - это столбцы координат векторов ортонормированного базиса в ортонормированном базисе, а матричное произведение $e_i^t e_j$ представляет собой запись в координатах скалярного произведения (e_i, e_j) , которое в силу ортонормированности базиса e равно нулю при $i \neq j$ и единице при i = j.

Мы показали, что $C^t C = E$, а это, согласно определению и означает, что C - ортогональная матрица.

Замечание: Ортогональная матрица состоит из ортонормирован-ных столбцов и строк. Это мотивируется тем, что $O^tO=E$, $OO^t=E$, верно для любой ортогональной матрицы, что означает, что системы столбцов и строк матрицы O, рассматриваемых как элементы \mathbf{n} -мерного линейного арифметического пространства, являются ортонормированными.

Док-во через матрицу Грама:

В данных базисах матрица Грама является <u>единичной</u>, следовательно, из отношения: $G_e = C^t G_e C$ следует равенство $E = C^t E C$, или $E = C^t C$. Поскольку матрица перехода C <u>невырожденная</u>, то, окончательно, имеем $C^{-1} = C^t$ (т.е. то, что матрица C - ортогональная).

11. Линейные отображения линейных пространств

11.1 Определение лин. отображения и св-ва

Пусть L и M — произвольные векторные пр-ва над полем K. Отображение $f:L \to M$ наз-ся линейным отображением или гомоморфизмом векторного пр-ва L в векторное пр-во M, если оно обладает свойствами:

- 1. свойство аддитивности: $\forall x, y \in L, f(x+y) = f(x) + f(y)$;
- 2. свойство однородности: $\forall x \in L, \ \forall \lambda \in K, \ f(\lambda x) = \lambda f(x)$.

Если, кроме этого, гомоморфизм f явл. биекцией 10 , то он наз-ся изоморфизмом векторных пространств L и M.

Если существует изоморфизм $f: L \to M$, то векторные пр-ва L и M называются изоморфными.

Лин. отображение из векторного пр-ва L в себя: $f:L\to L$ наз-ся линейным оператором или эндоморфизмом векторного пр-ва L.

11.2 Простейшие свойства линейных отображений

Пусть $f: L \to M$ лин. отображение векторного пр-ва L в векторное пр-во M над полем K. Тогда справедливы следующие утверждения:

- 1. f(0) = 0;
- $2. \forall x \in L, f(-x) = -f(x);$
- 3. $\forall x_1, x_2, ..., x_n \in L, \forall \alpha_1, \alpha_2, ..., \alpha_n \in K$: $f(\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n) = \alpha_1 f(x_1) + \alpha_2 f(x_2) + ... + \alpha_n f(x_n)$;
- 4. Если вектора $x_1, ... x_n \in L Л3$, то их образы $f x_1, ... f x_n$ тоже Л3;
- 5. Если A взаимно однозначное линейное отображение векторного пр-ва L в векторное пр-во M, тогда определено обратное отображение A^{-1} пр-ва M в L.

Док-во:

Докажем, что оно также есть линейное отображ., т.е. что A^{-1} удовл. обоим усл-ям линейности: пусть x_1 и $x_2 \in L$ – произвольные векторы, пусть $x_1 + x_2 = x$. Надо доказать, что $A^{-1}x_1 + A^{-1}x_2 = A^{-1}x$. Пусть $y = A^{-1}x_1 + A^{-1}x_2$, тогда, вследствии линейности преобразования A, имеем: $Ay = AA^{-1}x_1 + AA^{-1}x_2$, т.е. $x_1 + x_2 = y$, но $x_1 + x_2 = x$, значит, Ay = x и $y = A^{-1}x$, ч.т.д. Положим теперь $y = A^{-1}x$. Тогда Ay = x и, в силу линейности отображения A, $A\lambda y = \lambda Ay = \lambda x$. Значит, $A^{-1}A\lambda y = A^{-1}\lambda x$, т.е. $\lambda y = A^{-1}\lambda x$, или, если подстваить в это рав-во и $y = A^{-1}x$, получим: $\lambda A^{-1}x = A^{-1}\lambda x$, ч.т.д.

*11.3 Примеры линейных отображений

Пример 1.

Пусть L и M – произвольные векторные пр-ва над полем K. Зададим отображение

 $0: L \to M$ с помощью правила: $\forall x \in L$ положим O(x) = 0.

Это отображение наз-ся нулевым отображением.

Очевидно, что нулевое отображение векторного пр-ва L в векторное пр-во M явл. линейным, поэтому оно наз-ся нулевым гомоморфизмом.

Пример 2.

Зададим отображение $id: L \to L$ с помощью правила: $\forall x \in L$ положим id(x) = x.

Это отображение наз-ся тождественным отображением (тождественным оператором) векторного пр-ва L в себя.

Легко проверить, что тождественное отображение векторного пр-ва L в себя явл. линейным.

¹⁰ Биекция - это взаимно однозначное отображение одного множество в другое.

^{1.} Переводит эл. мн-ва X в разные эл. мн-ва Y (т.е. выполняется взаимно однозначное отображ. - инъекция): $\forall x_1 \in X, \forall x_2 \in X, f(x_1) = f(x_2) \to x_1 = x_2$

^{2.} Любой эл. из Y имеет свой прообраз (т.е. выполняется сюръекция): $\forall y \in Y, \exists x \in X, f(x) = y$

Действительно, $\forall x, y \in L, \forall \lambda \in K$,

$$id(x) = x$$
, $id(y) = y$, $id(x + y) = x + y$, $id(\lambda x) = \lambda x$.

Отсюда,
$$id(x + y) = id(x) + id(y)$$
 и $id(\lambda \cdot x) = \lambda \cdot id(x)$.

Тождественный оператор наз-ся также тождественным или единичным эндоморфизмом и часто обозначается буквой Е.

Пример 3.

Пусть А – матрица размера $m \times n$ над полем K, K^n и K^m – арифметические векторные пр-ва столбцов высоты n и m соответственно над полем K. Устроим отображение $f: K^n \to K^m$ с помощью правила: $\forall X \in K^n$ положим f(X) = AX.

Проверим, что данное отображение явл. линейным. Пусть $\forall X, Y \in K^n$. Тогда

$$f(X + Y) = A(X + Y) = AX + AY = f(X) + f(Y).$$

Здесь мы воспользовались свойствами действий с матрицами, а именно законом дистрибутивности умножения матриц относ. их сложения.

Далее,
$$\forall X \in K^n$$
, $\forall \lambda \in K$, $f(\lambda \cdot X) = A(\lambda \cdot X) = \lambda \cdot (AX) = \lambda \cdot f(X)$.

Таким образом, умножение матрицы на столбец соответствующей высоты обладает свойствами аддитивности и однородности и, следовательно, явл. линейным отображением (линейным оператором, если m=n).

Пример 4.

Пусть L — произвольное векторное пр-во над полем K размерности n и K^n —пр-во столбцов высоты n. Зафиксируем в пр-ве L какой-нибудь базис. Отображение α : $L \to K^n$,

которое каждому вектору $x \in L$ ставит в соответствие упорядоченный набор

$$\alpha(X) = X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
его координат относ. данного базиса явл. биективным линейным отображением или

изоморфизмом векторных пространств.

12. Матрица лин. отображения

12. Определение матрицы лин. отображ

Пусть $A: L \to M$ - линейное отображение n-мерного пространства L в m-мерное пространство M. Зафиксируем в пространстве L произвольный базис e_1, \ldots, e_n , а в пространстве M базис f_1, \ldots, f_m . Разложим образы базисных векторов (e) по базису (f):

$$A(e_1) = \alpha_{11}f_1 + \alpha_{21}f_2 + \dots + \alpha_{m1}f_m$$

$$A(e_2) = \alpha_{12}f_1 + \alpha_{22}f_2 + \dots + \alpha_{m2}f_m$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A(e_n) = \alpha_{1n}f_1 + \alpha_{2n}f_2 + \dots + \alpha_{mn}f_m$$
Сопоставим матрицу:
$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{m1} & \alpha_{m2} & \dots & \alpha_{mn} \end{pmatrix}$$

A — матрица линейного отображения A в базисах (e) и (f).

Пусть $X \in L$; $x = x_1 e_1 + ... + x_n e_n$, тогда пусть $Y = x_1 f(e_1) + ... + x_n f(e_n)$. Справедлива формула Y = AX, где X и Y – матрицы-столбцы из координат векторов x в базисе $e_1, ..., e_n$ и y в базисе $f_1, ..., f_n$.

Столбцы матрицы лин. отображения – это координатные столбцы образов базисных векторов.

Еще примеры

12.2 Свойства матриц линейных отображений

При фиксированных базисах линейных пространств:

- 1) матрица суммы линейных отображений равна сумме их матриц;
- 2) матрица произведения линейного отображения на число равна произведению матрицы отображения на то же самое число;
- 3) матрица обратного отображения является обратной для матрицы отображения;

12.3 Выбор базиса, в котором матрица отображения имеет вид $egin{pmatrix} { m E}_r & {f 0} \\ {f 0} & {f 0} \end{pmatrix}$

Упрощение матрицы линейного отображения, в том случае, когда отображение осуществляется между разными линейными пространствами.

Теорема:

Для любого линейного отображения $f: L \to M$ из некоторого пр-ва L в некоторое другое пр-во M можно так выбрать базисы e_1, \dots, e_n и g_1, \dots, g_m для этих пр-в соотвественно, что матрица отображения будет иметь вид:

$$A = \begin{pmatrix} \mathbf{E}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
, где \mathbf{E}_r - единичная матрица порядка r .

Пусть ранг отображения A равен r. Базис e в пространстве L выберем следующим образом: вектора e_{r+1}, \ldots, e_n поместим в ядро отображения A (его размерность как раз равна n-r), а векторы e_1, \ldots, e_r можем выбрать произвольно. В силу такого выбора, каков бы ни был базис g в пространстве M, последние n-r столбцов матрицы будут нулевыми. Т.к. её rang=r, первые r столбцов должны быть ЛНЗ. Это означает, что ЛНЗ будут векторы $A(e_1), \ldots, A(e_r)$. Примем их за первые r базисных векторов в пространстве M: $g_1 = A(e_1), \ldots, g_r = A(e_r)$, а остальные векторы g_{r+1}, \ldots, g_m можем выбрать произвольно. При таком выборе базиса первые r столбцов матрицы будут первыми r столбцами единичной матрицы порядка m. Это и есть требуемый вид матрицы отображения.

*12.4 Пример нахождения матрицы линейного отображения

$$D: L \to L = Ze^x$$
, xe^x , x^2e^x ($e^x = e_1$, $xe^x = e_2$, $x^2e^x = e_3$) - базис

Рассмотрим образы всех базисных векторов

$$D(e_1) = e^x = e_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} D(e_2) = (xe^x)' = e^x, xe^x = e_1 + e_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} D(e_3) = (2xe^x + x^2e^x) = 2e_2 + e_3 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$f = 3x^{2}e^{x} + 2xe^{x} = 3e_{3} + 2e_{2} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \quad [D_{f}]_{e} = D_{e}^{e} \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 3 \end{pmatrix}$$
$$f = (3x^{2}e^{x} + 2xe^{x}) = 6xe^{x} + 3x^{2}e^{x} + 2e^{x} + 2xe^{x} = 2e^{x} + 8xe^{x} + 3x^{2}e^{x}$$

13. Изменение матрицы лин. отображения при смене базиса.

Пусть $f: L \to M$ - линейное отображение n-мерного пространства L в m-мерное пространство M.

Выберем в L два базиса: старый $e=(e_1,e_2,...,e_n)$ и новый $g=(g_1,g_2,...,g_n)$.

И в M два базиса: старый $f=(f_1,f_2,\dots,f_n)$ и новый $h=(h_1,h_2,\dots,h_n).$

Обозначим матрицы перехода от старых к новым: C_e^g , C_f^h и матрицы оператора: F_I в старых базисах, F_2 в новых.

Рассмотрим отображение в старых и новых базисах:

$$Y = FX$$
; Выразим отображение в пр-ве M через L : $\begin{cases} Y_f = F_1 X_e \\ Y_h = F_2 X_g \end{cases}$

Учитывая, что $Y_f = C_f^h Y_h; X_e = C_e^g X_g$ имеем:

 $Y_f = F_1 X_e = C_f^h Y_h = F_1 C_e^g X_g$. Так как C - матрицы преобразования базиса, то они невырожденные и имеют обратные матрицы. Выразим Y_h : $Y_h = \left(C_f^h\right)^{-1} F_1 C_e^g X_g$, при этом $Y_h = F_2 X_g$. Приравнивая и сокращая X_g получаем $F_2 = \left(C_f^h\right)^{-1} F_1 C_e^g$. Это и есть формула изменения матрицы лин. отображения при смене базисов, можно обозначит $F_1 = F_{cm}$; $F_2 = F_{hog}$

В случае линейного оператора $f: L \to L$ формула принимает вид $F_{HOB} = C^{-1}F_{cm}C$.

14. Инвариантные подпр-ва. Инвариантные подпр-ва и блочно-треугольные матрицы

14.1 Инвариантные подпр-ва

Пусть $f: L \to L$ — линейный оператор, N — подпр-во в L. Оно наз-ся *инвариантным относительно* оператора f, если $\forall x \in N$, $f(x) \in N$. Будем использовать обозначение $N \subseteq_f L$.

14.2 Блочно-треугольная матрица

Пусть M инвариантное относительно оператора A подпространство, e_1, \dots, e_m — базис M, $e_1, \dots, e_m, g_1, \dots, g_{n-m}$ — базис всего пр-ва L. Выясним вид, который имеет в этом базисе матрица оператора A. Так как векторы $Ae_1, \dots, Ae_m \in M$, т.е. являются линейными комбинациями лишь векторов e_1, \dots, e_m , то их координаты в выбранном базисе, начиная с m+1, равны нулю. Следовательно, матрица оператора A имеет вил:

$$\begin{pmatrix} a_{11} & \dots & a_{1m} & a_{1m+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m1} & \dots & a_{mm} & a_{mm+1} & \dots & a_{mn} \\ 0 & \dots & 0 & a_{m+1m+1} & \dots & a_{m+1n} \\ \dots & \ddots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_{nm+1} & \dots & a_{nn} \end{pmatrix},$$
 или сокращенно $\begin{pmatrix} A_m & B_{m\times n} \\ 0 & A_{m-n} \end{pmatrix}$, где $B_{m\times n}$ — матрица из m строк

и n столбцов. A_m - матрица оператора A на M.

В обратную сторону: док-ть, что евкилидово пр-во M, размерности r, - инвариантное относ. этого поля. Возьмём e_1, \dots, e_m - первые базисные вектора. $M = \mathcal{L}(e_1, \dots, e_m)$ - их лин. оболочка.

- а) это лин. оболочка m ЛНЗ векторов $dim \, M = m$
- b) докажем, что оно инвариантно: каждый образ эл. этого пр-ва лежит в пр-ве M.

Для $\forall e_k (1 \leq k \leq m)$: $Ae_k = a_{1k}e_1 + a_{2k}e_2 + \dots + a_{rk}e_r + 0e_{r+1} + \dots + 0e_n \in M$ т.е. образы всех базисов лежит в $M: \forall x \in M, A_x \in M$.

Вот такое разложение тут присутсвует:

$$\begin{cases} \mathcal{A}e_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{k1}e_k \\ \vdots \\ \mathcal{A}e_k = a_{1k}e_1 + a_{2k}e_2 + \dots + a_{kk}e_k \\ \mathcal{A}e_{k+1} = a_{1,k+1}e_1 + a_{2,k+1}e_2 + \dots + a_{k,k+1}e_k + a_{k+1,k+1}e_{k+1} + \dots + a_{n,k+1}e_n \\ \vdots \\ \mathcal{A}e_n = a_{1,n}e_1 + a_{2,n}e_2 + \dots + a_{k,n}e_k + a_{k+1,n}e_{k+1} + \dots + a_{n,n}e_n \end{cases}$$

*14.3 Лемма об инвариантных подпр-вах лин. оператора

Следующие условия для лин. оператора $f \colon L \to L$ и подпр-ва N в n-мерном векторном пр-ве L эквивалентны:

- 1. подпр-во N явл. инвариантным относительно оператора f;
- 2. для некоторого базиса $(e_1, ..., e_k)$ пр-ва N выполнены условия $f(e_i) \in N(1 \le i \le k)$;
- 3. \exists собственное инвар., относительно оператора f, подпр-во N (т.е. $0 \neq N \neq L$, $f(e) \subseteq N$);
- 4. в некотором базисе $e=(e_1,...,e_n)$ пр-ва L матрица лин. оператора f имеет полураспавшийся вид $[f]_e=\begin{pmatrix} A_p & C_{p imes q} \\ 0 & B_q \end{pmatrix}$. Квадратная матрица $[f]_e$ порядка n называется полураспавшейся, если

существуют натуральные числа p и q такие, что p+q=n и на пересечении последних q строк и первых p столбцов матрицы $[f]_e$ стоит нулевая матрица. Обозначим через A квадратную матрицу порядка p, стоящую на пересечении первых p строк и первых p столбцов полураспавшейся матрицы $[f]_e$, через B - квадратную матрицу порядка q, стоящую на пересечении последних q строк и последних q столбцов матрицы $[f]_e$, а через C - матрицу размера $p \times q$, стоящую на пересечении первых p строк и последних q столбцов матрицы $[f]_e$.

$$A \in M(k, F), B \in M(n-k, F), C \in M(k, n-k, F)$$
 и $D \in M(n-k, k, F)$

Доказательство:

- (1) ⇒ (2) Если N-f-инвариантное подпр-во, то $\forall e \in N : f(e) \in N$. В частности, это выполнено и для векторов любого базиса $(e_1, ..., e_k)$ пр-ва N.
- (2) \Rightarrow (1) Пусть теперь для векторов некоторого базиса $(e_1, ..., e_k)$ пр-ва N выполнено условие $f(e_i) \in N (1 \le i \le k)$. Докажем, что $\forall e \in N, f(e) \in N$: если $e = \alpha_1 \cdot e_1 + \cdots + \alpha_k \cdot e_k$ разложение по базису, то $f(e) = \alpha_1 \cdot f(e_1) + \cdots + \alpha_k \cdot f(e_k) \in N$.
- $(3)\Rightarrow (4)$ Пусть N собственное f-инвариантное подпр-во с базисом e_1,\dots,e_k и $0<\dim N=k<\dim L=n$. Дополним этот базис до базиса всего пр-ва L векторами e_{k+1} , ... , e_n и рассмотрим матрицу лин. оператора f в расширенном базисе $e=(e_1,\dots,e_k,e_{k+1},\dots,e_n)$. Имеем $[f]_e=\begin{pmatrix} A&C\\D&B \end{pmatrix}$, где $A\in M(k,F)$, $B\in M(n-k,F)$, $C\in M(k,n-k,F)$ и $D\in M(n-k,k,F)$. Первые k её столбцов это координатные столбцы $[f(e_1)]_e$, ... , $[f(e_k)]_e$, причём ввиду f-инвариантности подпр-ва $N=\mathcal{L}(e_1,\dots,e_k)$ выполнены включения $f(e_i)\in \mathcal{L}(e_1,\dots,e_k)$ ($1\leq i\leq k$). Таким образом, $f(e_i)=a_{1i}e_1+\dots+a_{ki}e_k+0\cdot e_{k+1}+\dots+0\cdot e_n$, т.е. $D=0_{(n-k)\times k}$ и матрица оператора полураспавшаяся в выбранном базисе.
- $(4)\Rightarrow (3)$ Пусть в некотором базисе $e=(e_1,...,e_k,e_{k+1},...,e_n)$ пр-ва L матрица $[f]_e$ полураспавшаяся $[f]_e=\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Докажем, что пр-во $N=\mathcal{L}$ $(e_1$, ..., e_k) явл. f-инвариантным подпр-вом в V. Действительно, $f(e_i)=(e_1,...,e_k,e_{k+1},...,e_n)\cdot [f]_e^{(i)}=(e_1,...,e_k,e_{k+1},...,e_n)\begin{pmatrix} a^{(i)} \\ 0 \end{pmatrix}=(e_1,...,e_k)\cdot a^{(i)}=a_{11}e_1+\cdots+a_{ki}e_1\in\mathcal{L}(e_1,...,e_k)=N$ Таким образом, подпр-во N явл. f-инвариантным. Лемма доказана.

*14.4 Матрица оператора, представленного прямой суммой

Если известен базис инвариантного подпр-ва, то вид матрицы оператора может быть упрощен. Именно, пусть e_1, \ldots, e_n - базис пр-ва L, U – подпр-во L, инвариантное относ. оператора A и имеющее размерность m. Пусть векторы e_1, \ldots, e_m принадлежат U. Тогда e_1, \ldots, e_m - базис подпр-ва U и $Ae_k = \sum_{j=1}^m a_{jk}e_j$, $k=1,\ldots,m$, $Ae_k = \sum_{j=1}^n a_{jk}e_j$, $k=m+1,\ldots,n$.

Эти рав-ва показывают, что эл. матрицы A_e , стоящие на пересечении первых m столбцов и последних (n-m) строк, — нули, следовательно, матрица A_e может быть записана как блочная 2×2 треугольная матрица: $A_e=\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$, где A_{11} - квадратная матрица размера m, A_{22} квадратная матрица размера n-m, 0 — нулевая матрица размера $(n-m)\times m$, A_{12} - матрица размера $m\times (n-m)$.

Еще большее упрощение матрицы A_e достигается, когда пр-во L представимо в виде прямой суммы инвариантных подпространств U_1 и U_2 : $L=U_1 \oplus U_2$ и базис e_1, \dots, e_n пр-ва L выбран так, что векторы e_1, \dots, e_m - базис подпр-ва U. Тогда, как нетрудно видеть, из представления матрицы в прошлом абзаце, матрица A_{12} будет нулевой, т. е. матрица $A_e = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$ принимает блочно диагональный вид.

Очевидно, верно и обратное, а именно, если матрица оператора в некотором базисе e_1, \dots, e_m имеет блочную структуру вида выше, то пр-во L представимо как прямая сумма 2-х подпространств, базисами этих подпространств будут векторы базиса e_1, \dots, e_n с номерами, совпадающими с номерами строк соответствующих блоков.

Вообще говоря, и подпр-ва U_1 и U_2 могут распадаться на прямые суммы инвариантных подпространств меньшей размерности. Тогда количество блоков, стоящих на диагонали матрицы A_e , будет увеличиваться, а их размеры будут уменьшаться.

14.5 Примеры инвариантых подпр-в

- 1. Очевидно, что $0 \subseteq_f L$ и $L \subseteq_f L$ для любого лин. оператора $f: L \to L$. Это *тривиальные* подпр-ва.
- 2. Если $f: L \to L$ линейный оператор, то $Ker(f) \subseteq_f L$ и $Im(f) \subseteq_f L$, т.к. $\forall k \in Ker(f) f(k) = 0 \in Ker(f)$ и $\forall v \in Im(f) f(v) \in Im(f)$.

3. Пусть линейный оператор $f\colon L\to L$ имеет в базисе e_1,e_2,e_3 матрицу $\begin{pmatrix} -1 & 1 & 3\\ 2 & -2 & 3\\ 0 & 0 & 2 \end{pmatrix}$. Тогда пр-во

 $L(e_1,e_2)$ явл. f-инвариантным.

Действительно, по определению матрицы лин. оператора имеем

$$f(e_1) = (e_1, e_2, e_3) \cdot \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = -e_1 + 2 \cdot e_2 \in L(e_1, e_2), f(e_2) = (e_1, e_2, e_3) \cdot \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = e_1 - 2 \cdot e_2 \in L(e_1, e_2)$$
 и поэтому
$$\forall l = \alpha_1 \cdot e_1 + \alpha_2 \cdot e_2 \in L(e_1, e_2)$$
 верно включение
$$f(l) = \alpha_1 \cdot f(e_1) + \alpha_2 \cdot f(e_2) \in L(e_1, e_2).$$

15. Ядро и образ лин. оператора, их размерности

15.1 Опр. ядра и образа

Пусть $f: L \to M$ - отображение векторных пространств.

Ядром лин. отображения f наз-ся мн-во: $Kerf = x \in L \mid f(x) = 0$.

Образом лин. отображения f называют мн-во: $Im f = y \in M \mid \exists x \in L : f(x) = y$.

Другими словами, ядро лин. отображения состоит из векторов пр-ва L, которые отображаются в нулевой вектор пр-ва M, а образ лин. отображения это просто мн-во значений функции f. Если f — линейный оператор, то говорят об ядре и образе лин. оператора.

15.2 Размерность ядра и образа лин. отображения

Пусть $f: L \to M$ лин. отображение векторных пространств. Тогда dim(L) = dim(Kerf) + dim(Imf). Доказательство:

Пусть dim(Kerf)=t и e_1,\ldots,e_t — базис ядра. Т.к. Kerf — подпр-во пр-ва L, то дополним базис ядра до базиса пр-ва L. Пусть $e_1,\ldots,e_t,u_1,\ldots,u_m$ — базис пр-ва L и $dim\,L=t+m$.

Докажем, что $f(u_1), ..., f(u_m)$ – базис Imf, откуда сразу же будет следовать Т.

1) Докажем, что $f(u_1), ..., f(u_m)$ явл. порождающей системой подпр-ва Im f. Пусть $y \in Im f$ произвольный вектор подпр-ва Im f. Тогда $\exists x \in L : f(x) = y$. Разложим вектор x по базису

 $e_1,\dots,e_t,u_1,\dots,u_m$ пр-ва L: $x=k_1e_1+\dots+k_te_t+s_1u_1+\dots+s_mu_m$, где $k_1,\dots,k_t,s_1,\dots,s_m\in K$. Отсюда, $y=f(x)=f(k_1e_1+\dots+k_te_t+s_1u_1+\dots+s_mu_m)=k_1f(e_1)+\dots+k_tf(e_t)+s_1f(u_1)+\dots+s_mf(u_m)=s_1f(u_1)+\dots+s_mf(u_m)$, ч.т.д.

Здесь, мы воспользовались свойством линейности гомоморфизма f и тем, что $e_1, ..., e_t \in Ker\ f$, откуда $f(e_1) = \cdots = f(e_t) = 0$.

2) Докажем, что $f(u_1), ..., f(u_m)$ явл. ЛНЗ системой. Пусть $\alpha_1 f(u_1) + ... + \alpha_m f(u_m) = 0$.

По свойствам линейности, $f(\alpha_1 u_1 + \dots + \alpha_m u_m) = 0 \implies v = \alpha_1 u_1 + \dots + \alpha_m u_m \in Ker f$.

Разложим вектор по базису ядра: $v = \beta_1 e_1 + \dots + \beta_t e_t$, откуда получаем рав-во:

$$\beta_1 e_1 + \dots + \beta_t e_t - \alpha_1 u_1 - \dots - \alpha_m u_m = 0.$$

Т.к. $e_1, ..., e_t, u_1, ..., u_m$ — базис пр-ва L, то все коэффициенты в этой линейной комбинации равны нулю, т.е. сис. $f(u_1), ..., f(u_m)$ может представлять нулевой вектор только тривиально и она явл. линейно независимой, ч.т.д.

*15.4 Ядро и образ, как подпр-ва

Пусть $f:L\to M$ лин. отображение векторных пространств. Тогда ядро лин. отображения Kerf явл. векторным подпр-вом пр-ва L, а образ $Im\ f$ — векторным подпр-вом пр-ва M.

Доказательство:

1) Пусть $x, y \in Ker\ f, \alpha \in K$. Тогда f(x) = f(y) = 0. Но f – гомоморфизм, поэтому, $f(x + y) = f(x) + f(y) = 0 \Rightarrow x + y \in Ker\ f, f(\alpha x) = \alpha f(x) = \alpha \cdot 0 = 0 \Rightarrow \alpha x \in Ker\ f.$ 2) $u, v \in Im\ f \Rightarrow \exists x, y \in L: f(x) = u,\ f(y) = v$. Т.к. f – гомоморфизм, то $f(x + y) = f(x) + f(y) = u + v \Rightarrow u + v \in Imf, \forall \alpha \in K, f(\alpha x) = \alpha f(x) = \alpha u \Rightarrow \alpha u \in Imf$. Т. доказана.

*15.4 Примеры ядра и образа

Пример 1.

Т.к. нулевое отображение $O: L \to M$ все векторы пр-ва L отображает в нулевой вектор пр-ва M, то из опр. ядра и образа лин. отображения сразу же следует, что $Ker\ O = L$ и $Im\ O = \{0\}$.

Пример 2.

Пусть $id: L \to L: \forall x \in L, id(x) = x$. Тогда, очевидно, Ker(id) = 0, Im(id) = L.

Пример 3.

Пусть $f:K^n \to K^m$: $\forall X \in K^n, f(X) = AX$, где A – матрица размера $m \times n$ над полем K. Тогда,

 $Ker\ f = \{X \in K^n | AX = 0\}$ — мн-во реш. однородной системы из m линейных ур-ий с n неизвестными, где A — матрица коэффициентов системы; $Im\ f = \{Y \in K^m | \exists X \in K^n : AX = Y\}$.

Изучим это мн-во подробнее. Обозначим через
$$A_1$$
, A_2 , ..., A_n — столбцы матрицы A , $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ — столбец

неизвестных. Тогда произведение матрицы A на столбец X можно представить в виде: $AX = x_1A_1 + x_2A_2 + ... + x_nA_n = < A_1$, A_2 , ..., $A_n > -$ лин. оболочка, натянутая на столбцы матрицы A. Следовательно, образ этого лин. отображения есть лин. оболочка, натянутая на столбцы матрицы A: $Im f = \mathcal{L} < A_1$, A_2 , ..., $A_n >$.

Замечание. Обычно лин. отображение $f: K^n \to K^m$ обозначают не буквой f, а той же буквой, что и матрицу, с помощью которой определяется это отображение: $A: K^n \to K^m$, где $\forall X \in K^n \to AX \in K^m$, т.е. это отображение, которое каждому столбцу $X \in K^n$ ставит в соответствие столбец $AX \in K^m$, так что $A(X) = A \cdot X$.

Обычно столбец AX обозначают буквой Y, т.е. AX = Y. И вместо того, чтобы говорить о ядре и образе лин. отображения $A: K^n \to K^m$, говорят: ядро матрицы A, образ матрицы A, молчаливо подразумевая под этим ядро и образ соответствующего лин. отображения.

16. Собственные числа и собственные вектора. Характеристический многочлен оператора. Лин. независ. собственных векторов, отвечающих различным собственным числам

16.1 Собственные числа и вектора

Ненулевой вектор $x \in L_n$ наз-ся **собственным вектором** лин. оператора f: $L_n \to L_n$, если $\exists \lambda \in R$, ($\lambda \in \mathcal{C}$ для комплексного L_n), такое, что $f(x) = \lambda x$. Число λ наз-ся **собственным числом** (собственным значением) оператора f, соответствующим этому собственному вектору. Собственные числа λ лин. оператора f: $L_n \to L_n$ - корни характеристического уравнения $\det \left| a_{ij} - \lambda \delta_{ij} \right| = 0$, где a_{ij} - матрица оператора f, а δ_{ij} - символ Кронекера¹¹.

Примеры (рассматриваем оператор A):

1. Проектирование

 $F\bar{x} = \lambda \bar{x}$ всякий вектор из ядра

- а) $\bar{x} = d\bar{k}$ $A\bar{x} = 0 = 0 \cdot \bar{x}$ вектор собственный с собственным числом 0.
- b) $\bar{x} = \alpha \bar{\imath} + \beta \bar{\jmath} \Rightarrow A\bar{x} = \bar{x}$ тоже собственный вектор с собственным числом 1.

Рассмотрим вектор $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, тогда Y = AX. $Y = AX = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2x - x$ собственный вектор с собственным числом 2.

3. A – поворот плоскости R^2 вокруг координат на 60° .

 $^{^{11}}$ Индикатор равенства элементов, формально: функция двух целых переменных, которая равна 1, если они равны, и 0 в противном случае: $\delta_{ij} = \begin{cases} 1, i=j \\ 0, i\neq j \end{cases}$

16.2 Характеристический многочлен оператора

Т.: A: L → L и пусть в нем зафиксирован базис, λ - собственное число оператора A, тогда оно удовлетворяет выражению: $det |A_e^e - \lambda E| = 0$, E - единичная матрица, λ - корень.

Замечание: многочлен $det |A_e^e - \lambda E| = \chi_A$ - характеристический многочлен оператора A.

Доказательство:

 λ - собственное число. Воспользуется изоморфизмом — зафиксируем базис: e_1 , ..., e_n ; A_e^e — матрица оператора.

 λ - собственное число, т.е. $\exists x \neq 0$, такой, что $Ax = \lambda x$ перейдем к рав-ву координатных столбцов $A_e^e X_e = \lambda E X_e$.

 $A_e^e X_e - \lambda E X_e = (A_e^e - \lambda E) X_e = 0$ - матричное рав-во, следовательно, сис. имеет решение $\neq 0$.

 $X_e \neq 0$ по правилу однородно СЛУ: $det |A_e^e - \lambda E| = 0$.

Пусть $det(A_e^e - \lambda E) = 0$. Докажем, что λ - собственное число. λ ÷ корень уравнения $det(A_e^e - \lambda E) = 0$.

Рассмотрим СЛУ: $(A_e^e - \lambda E)X = 0$, $\exists X \neq 0$, т.к. det = 0 и поскольку есть взаимно однозначное соответствие, т.е. и вектор.

 $\exists x: X = X_e, Ax = \lambda x; x$ -собственный вектор, λ - собственное число.

16.3 Теорема о независимости характеристического многочлена от выбора базиса.

 $\chi_A(\lambda)$ - не зависит от базиса.

Доказательство:

Рассмотрим 2 базиса: $e_1, ..., e_n f_1, ..., f_n$ - базисы, C_e^f - матрица перехода.

$$\chi_A(\lambda) = det(A_e^e - \lambda E)$$
 сравним $P = det(A_f^f - \lambda E)$

$$A_f^f = C_f^e A_e^e C_e^f = (C_e^f)^{-1} A_e^e C_e^f$$

$$P = \det(A_f^f - \lambda E) = \det((C_e^f)^{-1} A_e^e C_e^f - \lambda E) = \det((C_e^f)^{-1} A_e^e (C_e^f) - (C_e^f)^{-1} (\lambda E) C_e^f)) = \det(C_e^f)^{-1} (A_e^e - \lambda E) C_e^f) = \det(C_e^f)^{-1} \det(A_e^e - \lambda E) \det(C_e^f) = \det(A_e^e - \lambda E) \text{ ч.т.д.}$$

16.3 Т. о линейной независимости собственных векторов, отвечающих различным собственным числам

Пусть $\lambda_1, \dots, \lambda_k$, где $\lambda_i \neq \lambda_j$ для всяких $i \neq j$, - собственные числа оператора $A: L \to L$. Тогда отвечающие им собственные вектора ЛНЗ.

Доказательство:

Доказательство проведем методом математической индукции по количеству векторов.

<u>База индукции:</u> при k=1 по определению собственный вектор не нулевой, а набор из одного вектора ЛНЗ: $e_1 \neq 0$ и e_1 – ЛНЗ.

<u>Индукционное предположение:</u> допустим, что утверждение теоремы верно для k-1 векторов e_1, \ldots, e_{k-1} . <u>Индукционный переход:</u> добавим к этим векторам еще один вектор e_k .

Предположим, что эта система из k векторов ЛЗ, т.е. $\exists \alpha_1, \dots, \alpha_k$, одновременно не равные нулю, такие,

что:
$$\sum_{i=1}^k \alpha_i e_i = 0$$
. (*)

Применим к обеим частям равенства оператор:

$$\sum_{i=1}^k \alpha_i A(e_i) = 0.$$

Т.к. векторы e_1, \ldots, e_k - собственные, отвечающие различным собственным значениям $\lambda_1, \ldots, \lambda_k$, то: $\sum_{j=1}^k \alpha_j \lambda_j e_j = 0$ (здесь пользуемся $Ax = \lambda x$).

Вычтем из равенства (**) равенство (*), умноженное на λ_k :

 $\sum_{i=1}^{k-1} (\lambda_i - \lambda_k) \alpha_i e_i = 0$ (сумма до k-1, т.к. при совпадее индекса j и k один элемент обнулится).

Так как все числа λ_j различны (для нас важно, что одновременно не равны 0), то из ЛНЗ векторов e_1,\ldots,e_{k-1} следует равенство нулю коэффициентов $\alpha_1,\ldots,\alpha_{k-1}$. Но тогда из равенства (*) следует, что $\alpha_k=0$. Это означает, что векторы e_1,\ldots,e_k ЛНЗ (имеется только тривальное реш.) Теорема доказана.

Cледствие: Если характеристический многочлен линейного оператора имеет n различных корней, то существует базис, в котором матрица этого оператора имеет диагональный вид.

17. Диагонализируемый оператор, достаточные условия, диагонализация матрицы лин. оператора

17.1 Критерий диагонализируемости матрицы лин. оператора

Определение: Если в некотором базисе матрица оператора диагонализуема, этот оператор наз-ся диагонализуемым.

 $A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$ **Т.**: Оператор $A: L \to L$ диагонализуем тогда и только тогда, когда \exists базис в L, состоящий из собственных векторов оператора $Ae_i = \lambda_i e_i$;

Доказательство:

Пусть преобразование A имеет n ЛНЗ векторов e_1, \ldots, e_n , соответствующих собственным числам $\lambda_1, \dots, \lambda_n$. Так как векторы e_1, \dots, e_n ЛНЗ, то они образуют базис. Найдем матрицу преобразования A в этом базисе. Её первый столбец является координатным столбцом вектора $A(e_1)$. Так как e_1 - собственный вектор, то $A(e_1) = \lambda_1 e_1 + 0 e_2 + \dots + 0 e_n$. Координатный столбец этого вектора:

. Второй столбец матрицы A является координатным столбцом вектора $A(e_2)$.

Аналогично $A(e_2) = 0e_1 + \lambda_2 e_2 + \dots + 0e_n$. И координатный столбец: $\begin{pmatrix} 0 \\ \lambda_1 \\ 0 \\ \vdots \end{pmatrix}$. Вычисляя дальше остальные

столбцы, получаем, что матрица линейного преобразования A в базисе e_1, \ldots, e_n имеет вид A =

$$egin{pmatrix} \lambda_{11} & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & \dots & \lambda_{nn} \end{pmatrix}$$
. Первая часть теоремы доказана.

Пусть в некотором базисе e_1, \dots, e_n матрица линейного преобразования имеет вид, показанный

выше. Найдем образ вектора e_1 . Этот вектор имеет координатный столбец $\begin{pmatrix} 1 \\ 0 \\ \vdots \end{pmatrix}$, его образ имеет

координатный столбец:

$$A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda_{11} & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & \dots & \lambda_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

Следовательно, λ_1 - собственное число преобразования A, а e_1 - соответствущий ему собственный вектор. Аналогично находим, что любой базисный вектор e_i является собственным вектором преобразования A, соответствующим собственному числу λ_i .

Следствие из теоремы ЛНЗ собственных векторов: если все собств. числа различны и их количество = dim(L), то оператор диагонализуем.

17.2 Достаточные условия диагонализируемости линейного оператора

Достаточным условием диагонализируемости линейного оператора является следстсвие из его критерия (см. выше). Также можно заметить, что вследствие условия о том, что все собственные числа различны, а их кол-во равно n, алгебраическая кратность каждого собственная числа равна его геометрической кратность (вытекает из того, что геом. \leq алг., а последняя = 1).

17.3 Алгебраическая и геометрическая кратность

 λ – собственное число линейного оператора $f:L\to L$

Алгебраическая кратность λ - его кратность, как корня характеристического многочлена $\chi(\lambda)$. Геометрическая кратность λ - размерность его собственного подпространства $ker(A-\lambda E)$.

Из критерия собственного значения следует, что геометрическая кратность собственного числа строго положительна, а так же то, что геометрическая кратность не превосходит алгебраическую. Отсюда следует, что если алгебраическая кратность равно 1, то геометрическая тоже равна 1.

*17.4 Свойства собственных векторов

- 1. Если a собственный вектор матрицы A, а λ соответствующее ему собственное значение, то при любом $\alpha \neq 0$ вектор $b = \alpha a$ также явл. собственным вектором этой матрицы, соответствующим этому же собственному значению.
 - ► Действительно, $Ab = A(\alpha a) = \alpha(Aa) = \alpha(\lambda a) = \lambda(\alpha a) = \lambda b$. \blacktriangleleft

Замечание. Любой собственный вектор матрицы определяет целое направление собственных векторов этой матрицы с одним и тем же собственным значением.

- 2. Собственные векторы матрицы, соответствующие *различным* её собственным значениям, *линейно независимы*.
 - ▶ Доказательство. Пусть (λ_1, r_1) и (λ_2, r_2) собственные пары матрицы A, где $\lambda_1 \neq \lambda_2$. Предположим, что r_1 и r_2 ЛЗ векторы.

Если r_1 и r_2 ЛЗ, то хотя бы один из этих векторов можно представить в виде линейной комбинации другого (пусть $r_2 = \alpha r_1$).

Тогда
$$\lambda_2 r_2 = A r_2 = A(\alpha r_1) = \alpha (A r_1) = \alpha \lambda_1 r_1 = \lambda_1 (\alpha r_1) = \lambda_1 r_2$$
, откуда следует, что $(\lambda_1 - \lambda_2) r_2 = 0$. Т.к. $r_2 \neq 0$, то $\lambda_1 = \lambda_2$.

Полученное противоречие доказывает утверждение. ◀

- 3. Если a и b линейно независимые собственные векторы матрицы A, соответствующие одному и тому же собственному значению λ , то любая нетривиальная лин. комбинация этих векторов $c = \alpha a + \beta b \ (|\alpha| + |\beta| \neq 0)$ также явл. собственным вектором этой матрицы, соответствующим этому же собственному значению λ .
- ► Действительно, $Ac = A(\alpha a + \beta b) = A(\alpha a) + A(\beta b) = \alpha(Aa) + \beta(Ab) =$ = $\alpha(\lambda a) + \beta(\lambda b) = \lambda(\alpha a) + \lambda(\beta b) = \lambda(\alpha a + \beta b) = \lambda c$, что и требовалось док-ть. \blacktriangleleft
- 4. Если матрица $A = (a_{ij})$ диагональная $(a_{ij} = 0 \text{ при } i \neq j)$, то ее собственные значения совпадают с диагональными эл. этой матрицы $(\lambda_i = a_{ii} \ (i = 1, 2, ..., n))$, а единичный вектор e_i явл. собственным вектором, соответствующим собственному значению $\lambda_i = a_{ii}$.
 - ▶ Действительно, $Ae_i = a_{ii}e_i \ (i = 1, 2, ..., n)$. ◀

18. Ортогональные матрицы

Квадратная матрица P наз-ся opmoгoнальной, если $P^{-1}=P^t$. Умножив на P слева, получим $PP^t=E$, или, в развёрнутом виде:

$$\begin{pmatrix} p_{11} & \dots & \hat{\boldsymbol{p}}_{1n} \\ \dots & \dots & \dots \\ \boldsymbol{p}_{n1} & \dots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \dots & \boldsymbol{p}_{n1} \\ \dots & \dots & \dots \\ \boldsymbol{p}_{1n} & \dots & p_{nn} \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & \dots & 1 \end{pmatrix}.$$

Это означает, что каждая строка представляет собой вектор длины 1, ортогональный всем остальным строкам. Умножив на P справа, получим, что $P^tP=E$, т.е. сказанное для строк справедливо и для столбцов.

Свойства:

- Если матрица P ортогональна, то P^{-1} тоже ортогональна. (Очевидно, т.к. $P^{-1} = P^t$ по определению, а ортогональность есть что для строк, что для столбцов.)
- Произведение ортогональных матриц ортогонально: $(P_1P_2)^{-1} = P_2^{-1}P_1^{-1} = P_2^tP_1^t = (P_1P_2)^t$.
- Единичная матрица ортогональная: $E^{-1} = E = E^{t}$.
- При замене старого ОНБ e на новый f матрица перехода ортогональна. $Teopema\ 1$:

Для ортогональной матрицы P справедливо рав-во $det P = \pm 1$:

С одной стороны
$$|P||P^t|=|E|=1$$
. С другой, $|P||P^t|=|P||P|=1$. $|P|^2=1$, $|P|=\pm 1$.

Теорема 2:

 $|sin\varphi - cos\varphi|$

Каждая ортогональная матрица второго порядка A, для которой $det\,A=1$ может быть представлена в виде: $\begin{vmatrix} cos\phi & -sin\phi \\ sin\phi & cos\phi \end{vmatrix}$, где ϕ — некоторое число, а каждая ортогональная матрица с detA=-1 в виде: $\begin{vmatrix} cos\phi & sin\phi \end{vmatrix}$

*19. Жорданова нормальная форма матрицы лин. оператора

*19.1 Понятие λ-матрицы

Всякая матрица с комплексными эл. ами приводится во множестве комплексных чисел $\mathbb C$ к жордановой нормальной форме.

Опр.: Квадратная матрица порядка n, эл.ами которой служат многочлены произвольной степени от переменной λ с коэффициентами из множества комплексных чисел \mathbb{C} , наз-ся λ -матрицей (или многочленной матрицей, или полиномиальной матрицей).

Примером многочленной матрицы служит характеристическая матрица $A - \lambda E$ произвольной квадратной матрицы A. На главной диагонали стоят многочлены первой степени, вне ее – многочлены нулевой степени или нули. Обозначим такую матрицу как $A(\lambda)$.

Канонической λ-матрицей наз-ся λ-матрица, обладающая следующими свойствами:

- 1) матрица $A(\lambda)$ диагональная;
- 2) всякий многочлен $e_i(\lambda)$, i = 1, 2, ..., n нацело делится на $e_{i-1}(\lambda)$;
- 3) старший коэффициент каждого многочлена $e_i(\lambda)$, i = 1, 2, ..., n равен 1, или этот многочлен равен нулю.

$$\mathbf{A}(\lambda) = \begin{pmatrix} e_1(\lambda) & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & e_2(\lambda) & \dots & \mathbf{0} \\ \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \dots & e_n(\lambda) \end{pmatrix}.$$

Замечание. Если среди многочленов $e_i(\lambda)$ встречаются нули, то они занимают на главной диагонали последние места, если есть многочлены нулевой степени, то они равны 1 и занимают на главной диагонали первые места.

Всякая λ-матрица эквивалентна некоторой канонической λ-матрице (т.е. она приводится эл.арными преобразованиями к каноническому виду)

*19.2 Жорданова нормальная форма

Жордановой клеткой порядка k, относящейся к числу λ_0 , наз-ся матрица порядка k, $1 \le k \le n$, имеющая вид

$$\begin{pmatrix} \lambda_0 & 1 & 0 & \cdots & 0 \\ 0 & \lambda_0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda_0 & 1 \\ 0 & 0 & \cdots & 0 & \lambda_0 \end{pmatrix}$$
, на ее главной диагонали стоит одно и то же число λ_0 , а на параллельной ей сверху

диагонали стоят единицы, все же остальные эл.ы равны нулю. Например: (λ_0) , $\begin{pmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{pmatrix}$, $\begin{pmatrix} \lambda_0 & 1 & 0 \\ 0 & \lambda_0 & 1 \\ 0 & 0 & \lambda_0 \end{pmatrix}$ — жордановы клетки первого, второго и третьего порядков соответственно.

Жордановой матрицей порядка
$$n$$
 наз-ся матрица порядка n , имеющая вид: $J = \begin{pmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & J_S \end{pmatrix}$. В

ней вдоль главной диагонали идут жордановы клетки $J_1, J_2, ..., J_s$ некоторых порядков, не обязательно различных, и относящиеся к некоторым числам, тоже не обязательно различным. Все места вне этих клеток заняты нулями. При этом $s \ge 1$, т.е. одна жорданова клетка порядка n так же считается жордановой матрицей и $s \le n$.

3амечание. Говорят, что матрица J имеет нормальную жорданову форму. Диагональная матрица явл. частным случаем жордановой матрицы, у нее все клетки имеют порядок 1.

*19.3 Приведение матрицы к жордановой (нормальной) форме

Жорданова нормальная форма определяется для матрицы однозначно с точностью до порядка расположения жордановых клеток на главной диагонали.

Приведем матрицу $A(\lambda) = A - \lambda E$ к каноническому виду с помощью эл.арных преобразований.

$$\mathbf{A} - \lambda \mathbf{E} = \begin{pmatrix} 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 1 & 0 & 0 & 0 & 0 \\ 0 & \cdots & 0 & e_{n-j+1}(\lambda) & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & 0 & e_{n-1}(\lambda) & 0 \\ 0 & \cdots & 0 & 0 & 0 & 0 & e_n(\lambda) \end{pmatrix}.$$

Отличные от единицы многочлены $e_{n-j+1}(\lambda)$, ..., $e_{n-1}(\lambda)$, $e_n(\lambda)$ называют *инвариантными* множителями матрицы $A(\lambda)$. Среди них нет многочленов равных нулю, сумма степеней всех этих многочленов равна n, и все они раскладываются на линейные множители над мн-вом комплексных чисел. Пусть $e_{n-j+1}(\lambda)$ раскладывается в произведение следующих множителей: $(\lambda - \lambda_1)^{k_{1j}}$, $(\lambda - \lambda_2)^{k_{2j}}$, ..., $(\lambda - \lambda_t)^{k_{tj}}$. Назовем эти множители э*л.арными делителями* многочлена $e_{n-j+1}(\lambda)$.

20. Изометрия в евклидовых пр-вах. Свойства собственных чисел и собственных векторов оператора изометрии

20.1 Оператор изометрии (ортогональный оператор)

Определение: изометрией 12 (или ортогональным оператором) в евклидовом или унитарном пр-ве, назся обратимое лин. отображение, которое сохраняет значения скалярных произведений для любых 2-х векторов. $A: L \to L$; $\forall x, y \in L: (Ax, Ay) = (x, y)$. Т.е. операторы изометрии сохраняют метрику: расстояния, длины и углы.

Примеры: поворот на угол, отражение относ. плоскости

Простейшие свойства вещественной изометрии:

- 1. $ker A = \{0\}$ (состоит только из 0) Д: $Ax = 0 \Rightarrow (Ax, Ax) = 0 \Rightarrow x = 0$
- 2. Im A = L (отображение невырожденное)
- 3. $Ax = \lambda x \Rightarrow |\lambda| = 1$ (собственные числа ± 1) Д: $(x, x) = (Ax, Ax) = (\lambda x, \lambda x) = \lambda^2(x, x) \Rightarrow \lambda^2 = 1$
- 4. $Ax = \lambda_1 x$, $Ay = \lambda_2 y$, $\lambda_1 \neq \lambda_2 \Rightarrow x \perp y$ (если собств. числа разл., то вектора ортогональны)
- Д: $(x,y) = (Ax,Ay) = (\lambda_1 x, \lambda_2 y) = \lambda_1 \lambda_2 (x,y) = -1(x,y) = (x,y) \Rightarrow (x,y) = 0$
- 5. Если $e_1, ..., e_n$; $(e_i, e_j) = \delta_{ij} \Rightarrow A^t A = E$ (т.е. если базис ортонормированный, то матрица ортогональна).
- 6. Если подпространство *U* инвар. относит. *A*, т.е. $AU \subset U$, тогда U^{\perp} также инвар., т.е. $AU^{\perp} \subset U^{\perp}$ Д: Прежде всего, $ker(A) = \{0\}$; $AU \subset U = > AU = U$.

Возьмем $y \perp x$: $\forall x \in U$, рассмотрим (Ay, x). A – биекция, то есть взаимно однозначное отображение, так что $\exists z \in U$: x = Az. Тогда произведение принимает вид (Ay, x) = (Ay, Az) = (y, z) = 0. То есть $Az \subset U^{\perp}$.

Теорема о 4-х условиях изометрии:

Если A - линейный оператор в евклидовом или унитарном пр-ве (A: $E \to E \ (U \to U)$), то он явл. изометрией $mor\partial a$, когда выполнено одно из следующих утверждений:

- $1. \forall x (Ax, Ax) = (x, x)$
- 2. Если задан ортонормированый базис $e_1, ..., e_n$ в евклидовом пр-ве, то матрица оператора удовлетворяет усл.:
- 1) в $E: A^t A = E$, т.е. A ортогональна

в U: $A^t \bar{A} = E$, где \bar{A} – комплексно сопряжённая матрица.

2)
$$(x, y) = X^{t}Y$$

Док-во свойства в Е:

 $X^tY = (AX)^t(AY) = X^tA^tAY;$

 $^{^{12}}$ Изометрия — это отображение сохраняющее углы и расстояния.

$$A^t A = 1 \text{ т.к. } X = \begin{pmatrix} 0 \\ \dots \\ 1_i \\ 0 \\ \dots \\ 0 \end{pmatrix}, Y = \begin{pmatrix} 0 \\ \dots \\ 1_j \\ 0 \\ \dots \\ 0 \end{pmatrix} \rightarrow X^t CY = X^t \begin{pmatrix} c_{1j} \\ c_{1j} \\ \dots \\ c_{nj} \end{pmatrix} = C_{ij} \rightarrow A^t A = 1$$

- 3. Оператор A переводит ортонормированый базис в ортонормированый.
- 4. G матрица Грама в базисе $e_1, ..., e_n$, тогда A_e матрица оператора A в этом базисе, и должно выполняться рав-во: $A_e^t G A_e = G$. Данное рав-во верно для E, в U должно выполняться: $A_e^t G \bar{A}_e = G$ До-во первого:

$$(x,y) = X^tGY$$
, $(Ax,Ay) = (AX)^tG(AY)$, так что $X^tGY = X^tA^tGAY \rightarrow G = A_e^tGA_e$.

20.2 Свойства собственных чисел и собственных векторов оператора изометрии

Вещественные изометрии в пространстве малой размерности

1.
$$dimL = 1, L = \mathcal{L}\lbrace e \rbrace, Ae = \lambda e$$

$$(Ae, Ae) = (\lambda e, \lambda e) = \lambda^2(e, e) = (e, e)$$
, т.к. λ оператора изометрии $= \pm 1$

2. dimL = 2

 e_1 , e_2 -базис L. Выберем ортонормированный базис: $\left(e_i,e_j\right)=\delta_{ij}$

$$A_e = \begin{pmatrix} a & b \ c & d \end{pmatrix}$$
 – матрица опреатора (она ортогональна, т.е. $A^t A = E$)

$$A_e = {a \choose c} {d \choose c}$$
 — матрица опреатора (она ортогональна, т.е. $A^t A = E$)
$$A_e^t A_e = {a \choose b} {d \choose c} {a \choose c} {d \choose c} = {a^2 + c^2 \choose ab + cd} = E$$
 исходя из этого должны выполняться след. усл.:
$$a = \cos \alpha$$

$$a = \cos \alpha$$

$$a = \cos \alpha$$

$$b^2 + d^2 = 1 \quad c = \sin \alpha$$

$$b^2 + d^2 = 1 \rightarrow b = \cos \beta$$
;
$$ab + cd = 0 \quad d = \cos \beta$$

$$a = \cos \alpha$$

$$(a^2 + c^2 = 1)$$

$$c = \sin \alpha$$

$$\begin{cases} b^2 + d^2 = 1 \rightarrow b - \cos \theta \end{cases}$$

$$ab + cd = 0$$
 $d = cos \beta$

Последнее рав-во даёт: $cos \alpha \cdot cos \beta + sin \alpha \cdot sin \beta = 0 \rightarrow cos (\alpha - \beta) = 0 \rightarrow \alpha - \beta = \frac{\pi}{2} + \pi k, k \in Z$

Рассмотрим случаи, когда $\alpha = \frac{\pi}{2} + 2\pi k$ и когда $\alpha = -\frac{\pi}{2} + 2\pi k$:

a)
$$\alpha = \beta + \frac{\pi}{2} \rightarrow \alpha = \cos\alpha = \cos\left(\beta + \frac{\pi}{2}\right) = -\sin\beta; c = \sin\left(\beta + \frac{\pi}{2}\right) = \cos\beta \rightarrow \cos\beta$$

$$A = \begin{pmatrix} -\sin\beta & \cos\beta \\ \cos\beta & \sin\beta \end{pmatrix}$$

$$A = \begin{pmatrix} -\sin\beta & \cos\beta \\ \cos\beta & \sin\beta \end{pmatrix}$$
 $\chi_A(t) = \begin{vmatrix} -\sin\beta - t & \cos\beta \\ \cos\beta & \sin\beta - t \end{vmatrix} = t^2 - \sin^2\beta - 2\sin\beta t - \cos^2\beta = t^2 - 1 \rightarrow t = \pm 1 \rightarrow \text{пр-во сумма двух}$ инвариантных подпр-в: $Ae_1 = e_1, Ae_2 = -e_2$. b) $\alpha = \beta - \frac{\pi}{2} \rightarrow a = \cos\alpha = \cos\left(\beta - \frac{\pi}{2}\right) = \sin\beta; c = \sin\alpha = \sin\left(\beta - \frac{\pi}{2}\right) = -\cos\beta \rightarrow$

b)
$$\alpha = \beta - \frac{\pi}{2} \rightarrow a = \cos\alpha = \cos\left(\beta - \frac{\pi}{2}\right) = \sin\beta; c = \sin\alpha = \sin\left(\beta - \frac{\pi}{2}\right) = -\cos\beta \rightarrow \cos\beta$$

$$A = \begin{pmatrix} \sin\beta & \cos\beta \\ -\cos\beta & \sin\beta \end{pmatrix}$$

$$A = \begin{pmatrix} sin\beta & cos\beta \\ -cos\beta & sin\beta \end{pmatrix}$$
 $\chi_A(t) = \begin{vmatrix} sin\beta - t & cos\beta \\ -cos\beta & sin\beta - t \end{vmatrix} = t^2 + sin^2\beta - 2sin\beta t - cos^2\beta \rightarrow$ вещественных решений нет

*20.3 Унитарный оператор

Над полем комплексных чисел С.

Если в унитарном простанстве зафиксирован некоторый e_1, \dots, e_n , то каждому унитарному оператору Aставится в соответствие его матрица A в этом базисе. Как известно, матрица A удовлетворяет соотнош. $A^{t}\bar{A}=E$. Матрицы, удовлетворяющие данному усл., называются унитарными матрицами.

Свойства:

1.
$$A^{t}\bar{A} = E$$
;

$$2. |det A| = 1;$$

3.
$$\sum_{i=1}^{n} a_{ik} \bar{a}_{ip} = \delta_{kp};$$

$$4. \sum_{i=1}^{n} a_{ki} \bar{a}_{pi} = \delta_{kp}.$$

21. Каноническая форма ортогонального оператора

21.1 Общая теорема о канонической форме ортогонального оператора

Для каждого ортогонального преобразования A <u>евклидова</u> пр-ва E^n существует ортонормированный базис, в котором матрица A преобразования имеет вид:

$$A = \begin{pmatrix} E_l & 0 & 0 & \dots & 0 \\ 0 & -E_r & 0 & \dots & 0 \\ 0 & 0 & A(\varphi_1) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A(\varphi_k) \end{pmatrix}, \tag{1}$$

где E_l и $-E_r$ - единичные матрицы, а $A(\varphi_i)$ матрицы 2 × 2 вида: $\begin{pmatrix} cos\varphi_i & -sin\varphi_i \\ sin\varphi_i & cos\varphi_i \end{pmatrix}$, причем числа k, l, r могут быть равны нулю. Все остальные эл. = 0.

Доказательство:

Для док-ва используем метод индукции по размерности пр-ва n.

База индукции: при n=1 имеем ортогональное преобразование A одномерного векторного пр-ва ($\det A = \pm 1, \lambda = \pm 1$). Т.к. |Au| = |u|, то Au = u или Au = -u.

При n=2 имеем ортогональное преобразование двумерного векторного пр-ва — поворот на угол α , $0 \le \alpha < 2\pi$ вокруг центра плоскости и отражение относ. некоторой проход. через центр прямой. В данном пр-ве \exists ОНБ e_1, \ldots, e_n , в котором оператор имеет либо вещественную диагональную матрицу, либо вещественную матрицу, вида $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$, $\beta \ne 0$.

В первом случае на диагонали расположены собственные значения оператора A, $\lambda=\pm 1$. Во втором случае $\alpha^2+\beta^2=1=|\det A_e|$. Положим $\alpha=\cos \phi$, $\beta=-\sin \phi \implies A_e=\begin{pmatrix}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{pmatrix}$, $\phi\neq \pi k$.

 A_e - недиагональная матрица, т.к. $(\cos \varphi - \lambda)^2 + \sin^2 \varphi = \lambda^2 - 2\lambda \cdot \cos \varphi \cdot \sin \varphi + 1$, $\frac{D}{4} = \cos^2 \varphi \cdot \sin^2 \varphi - 1$ в любом случае $< 0 \rightarrow$ не имеет вещественных корней.

Таким образом, для любого ортогонального оператора в двумерном евклидовом пр-ве существует ОНБ, в котором оператор имеет одну из следующих матриц:

$$\begin{pmatrix}1&0\\0&1\end{pmatrix}$$
, $\begin{pmatrix}1&0\\0&-1\end{pmatrix}$, $\begin{pmatrix}-1&0\\0&-1\end{pmatrix}$, $\begin{pmatrix}\cos\varphi&-\sin\varphi\\\sin\varphi&\cos\varphi\end{pmatrix}$. Значит, для $n\leq 2$ т. доказана.

Предположим, что она доказана для евклидовых пр-в E^n размерности < n; докажем её для E^n . Имеются два возможных случая:

- 1. Преобразование A имеет хотя бы одно вещественное характеристическое число.
- 2. Вещественных характеристических чисел преобразование А не имеет.

В случае 1 преобразование имеет вещественный собственный вектор, соответствующий собств. числу (свво $\underline{20.1}$) $\lambda = \pm 1$. Этот вектор определяет подпространство E_1^1 .

Возьмем ортогональное дополнение E_2^{n-1} к инвариантному под-пространству E_1^1 . Оно также инвариантно по отношению к преобразованию A.

Так как преобразование A, рассматриваемое в E_2^{n-1} , продолжает быть ортогональным, то, согласно предположению индукции, в $E_3^{n-1} \, \exists \, \text{ОНБ} \, e_2, \ldots, e_n$, относительно которого матрица преобразования A в E_2^{n-1} имеет канонический вид (1). Взяв в E_1^1 собственный вектор e_1 длины 1, видим, что матрица A_1 преобразования A в пространстве E_1^1 состоит из одного элемента ± 1 .

В полученном базисе e_1, e_2, \dots, e_n матрица A имеет, согласно <u>теореме</u> о разложении пр-ва на прямую сумму подпр-в, указанной ниже, вид: $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} = \begin{pmatrix} \pm 1 & 0 \\ 0 & A_2 \end{pmatrix}$.

Так как A_2 имеет канонический вид (1), то и вся матрица A имеет после необходимого, быть может, изменения нумерации векторов e_1, \dots, e_n канонический вид.

В случае 2 преобразование A имеет двумерное инвариантное подпр-во E_1^2 . В нем имеется ортонормальный базис e_1, e_2 , относительно которого матрица A_1 преобразования A (рассматриваемого лишь в E_1^2) имеет вид 13 : $A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$.

Обозначим через E_2^{n-2} ортогональное дополн. к подпр-ву к E_1^2 ; про-во E_2^{n-2} инвар. относ. преобраз-ие A; след., согл. предположению индукции, в нём \exists базис e_3, \dots, e_n , относ. которого преобраз-ие A (рассматриваемое в E_2^{n-2}) имеет матрицу A_2 канон. вида.

В базисе $e_1, e_2, e_3, ..., e_n$ всего пространства E^n преобразование A имеет матрицу: $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi & 0 \\ 0 & A_2 \end{pmatrix}$, которая (даже и без изменения нумерации векторов) имеет канон. вид.

21.2 Док-во через индукцию и орт. доп.

Пусть $A: E \to E$ — вещественная изометрия евклидова пр-ва (т.е. (Ax, Ay) = (x, y)). Тогда в пр-ве \exists ОНБ, в котором матрица оператора блочно-диагональная и блоки имеют следующий вид: E_l , $-E_r$,

$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Индукция по размерности пр-ва:

- 1. dimL = 1 и dimL = 2 база индукции (см. выше)
- 2. Индукционное предположение: dimL = N + 1

 $\exists U \subset L$ такое, что $AU \subset U$ – инвариантно, $dimU \leq 2$

Рассмотрим ортогональное дополнение U^\perp - инвариантное, при этом $L=U\oplus U^\perp$

$$dim U^{\perp} = \left\{ egin{align*} N+1-1 \\ N+1-2 \end{array} \le N
ightarrow$$
для ортогонального оператора т. верна.

Матрица в ОМБ см. выше.

Развитие этой темы здесь.

*21.3 Другое док-во канон. ф-мы орт. опер.

Пусть $A: V \to V$ - ортогональный оператор в евклидовом пр-ве V. (Ax, Ay) = (x, y) - изометрия евклидова пр-ва.

Тогда в пр-ве \exists ортонормированный базис e_1, \dots, e_n , в котором матрица оператора A блочнодиагональная и блоки имеют следующий вид:

$$A = egin{pmatrix} E_l & 0 & 0 & \dots & 0 \\ 0 & -E_r & 0 & \dots & 0 \\ 0 & 0 & A(arphi_1) & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A(arphi_k) \end{pmatrix}$$
, где E_l и $-E_r$ - единичные матрицы, причем числа k , l , r могут быть

равны нулю.

Доказательство:

Собств. знач. оператора A в поле $\mathbb R$ равны ± 1 (или оба, или одно из них, или собственных чисел может не быть вообще). Обозначим за V_1 - подпр-во с $\lambda = +1$, и через V_2 - подпр-во с $\lambda = -1$. Возможно, что либо одно из этих подпространств, либо даже оба они нулевые. Покажем, что в любом случае, если $\forall \ v_1 \in V_1, v_2 \in V_2$, то $(v_1, v_2) = 0$. По предположению, $Av_1 = v_1, Av_2 = -v_2$. Из ортогональности оператора A следует, что $(v_1, v_2) = (Av_1, Av_2) = (v_1, -v_2) = -(v_1, v_2)$. Отсюда $(v_1, v_2) = 0$, а \rightarrow сумма $V_1 + V_2$ явл. прямой (т.к. из ортогональности векторов \rightarrow их ЛНЗ).

Рассмотрим орт. подпр-во $W = (V_1 \oplus V_2)^{\perp}$. $V = V_1 \oplus V_2 \oplus W$, причем подпр-ва V_1, V_2, W являются инвар. относ. оператора A. Ограничение¹⁴ оператора A на W явл. ортогональным оператором на W. Однако, у него нет собств. знач. и собств. векторов. В самом деле, если нашлось бы собственное значение, то оно

¹³ Преобразовани A в E_1^2 не может иметь матрицу $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, так как тогда оно (а следовательно, и преобразование A всего E^n) имело бы вещественное характеристическое число.

¹⁴ Ограничением линейного оператора A на инвариантное подпространство M называется отображение $A|_M$: $M \to M$, которое действует на каждый вектор $x \in M$, так же, как оператор A, т.е. $\forall x \in M$: $A|_M(x) = Ax$.

обязательно было бы равно +1 или -1, а тогда собственный вектор из W, отвечающий этому собственному значению, был бы и собственным вектором A, отвечающим тому же собственному значению. Но все такие собств. вектора должны содержаться в подпр-вах V_1 и V_2 , которые имеют с W нулевое пересечение.

Таким образом, у ограничения A на W нет одномерных инвар. подпр. Индукцией по m = dim(W)покажем, что W есть прямая сумма 2-ых инвар. (относ. ограничения A на W, а значит, и относ. самого A) подпр. По <u>теореме</u> при отсутствии одномерных инвар. подпр. всегда \exists 2-ое инвар. подпр-во $W_1 \subseteq W$. Таким образом, при m=2 наше утверждение справедливо. В общем случае рассмотрим $W_2=W_1^{\perp}$. Ввиду $W = W_1 \oplus W'$ будем иметь dim(W') < m. Подпр-во W' инвариантно относ. ограничения A на W, а значит, и относ. самого A, причем в нем нет одномерных подпр., инвар. относ. A (ибо все такие подпр-ва содержатся либо в V_1 , либо в V_2). Поэтому к W' применимо предположение индукции, т.е. $W' = W_2 \oplus$... $\bigoplus W_k$, где все подпр-ва W_j , $2 \le j \le k$ двумерны, взаимно ортогональны, и инвар. относ. A. Но тогда точно такими же свойствами обладает и разложение $W = W_1 \oplus W_2 \oplus ... \oplus W_k$. Таким образом, получено разложение в прямую сумму попарно взаимно ортогональных инвариантных относ. А подпространств: $V = V_1 \oplus V_2 \oplus W_1 \oplus W_2 \oplus ... \oplus W_k$. Выберем в каждом из этих инвариантных подпространств ортонормированный базис. Объединение этих базисов есть ортонормированный базис V, и матрица оператора А в этом базисе будет иметь следующий вид:

$$A = egin{pmatrix} E_l & 0 & 0 & \dots & 0 \\ 0 & -E_r & 0 & \dots & 0 \\ 0 & 0 & A_1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_k \end{pmatrix}$$
, здесь $l = dim(V_1)$, матрица ограничения A на V_1 есть E_l , $r = dim(V_2)$,

матрица ограничения A на V_2 есть $-E_r$, и для каждого $j, 1 \le j \le k$, матрица A_j есть 2×2 -матрица ограничения A на W_i . Ограничение A на W_i есть ортогональный оператор. Остается показать, что для любого ортогонального оператора на двумерном пр-ве (в котором нет одномерных инвар. подпр.!) и любого ортонормированного базиса в этом пр-ве матрица оператора в этом базисе будет иметь вид $A(\varphi)$.

Итак, рассмотрим произвольную ортогональную матрицу $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Из условия $A^t = A^{-1}$ следует $AA^t = E$. Вычисляя определители левой и правой частей этого рав-ва, получаем $|A|^2 = 1$, т.е. либо |A| = 1+1 либо |A| = -1. При |A| = ad - bc = -1 многочлен $|A - xE| = x^2 - (a+d)x + (ad - bc) = x^2 - (a+d)x$ (a + d)x - 1 имеет два вещественных корня (т.к. $(a + d)^2 - 4(-1) > 0$). Но это противоречит предположению об отсутствии одномерных инвариантных подпространств. Следовательно, |A| = adbc = 1. Это позволяет вычислить по известным формулам матрицу A^{-1} :

$$A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Теперь используем условие ортогональности:
$$A^t = A^{-1}$$
:
$$\binom{d - b}{-c \ a} = \binom{a \ b}{c \ d}, \text{ отсюда получаем } a = d, -b = c. \text{ Рав-во } ad - bc = 1 \text{ превращается в } a^2 + c^2 = 1.$$
 Полагая $a = cos \varphi, c = sin \varphi$ для соответствующего φ , получаем требуемое утверждение.

Дополнение:

В трехмерном евклидовом пр-ве для каждого неединичного (т.е. не равного ε) ортогонального оператора с определителем, равным единице, существует ортонормированный базис, в котором матрица оператора имеет вид:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{pmatrix}, 0 < \varphi < 2\pi.$$

21.4 Т. о подпространстве (для док-ва)

Пусть V — векторное пр-во над полем \mathbb{C} . У любого лин. оператора $f:V\to V$ \exists одномерное инвар. подпр-во. Если же V — векторное пр-во над \mathbb{R} , то каждый линейный оператор f обладает либо одномерным, либо двумерным инвариантным подпр-вом.

*22. Нормальный оператор

*22.1 Определение нормального оператора

Оператор $A \in \mathcal{L}(L,L)$ ($A \in \mathcal{L}(\mathbb{E},\mathbb{E})$) наз-ся нормальным, если $AA^* = A^*A$. Матрица $A \in \mathbb{C}^{n \times n}$ ($A \in \mathbb{R}^{n \times n}$) наз-ся нормальной, если $AA^* = A^*A$ ($A^* = \overline{A^t}$).

Свойства нормальных операторов:

Пусть $A \in \mathcal{L}(L, L)(A \in \mathcal{L}(\mathbb{E}, \mathbb{E}))$ – нормальный оператор, тогда:

- 1) $\forall x, y \in L: (Ax, Ay) = (A^*x, A^*y);$
- 2) $\forall x \in L$: $||Ax|| = ||A^*x||$;
- 3) Если e_0 собственный вектор лин. оператора A, отвечающий собственному значению λ_0 , то e_0 собственный вектор A^* , отвечающий собственному значению $\overline{\lambda_0}$.
- 4) Собственные векторы нормального оператора, отвечающие различным собственным значениям, попарно ортогональны.
- 5) $\dim L = n, e$ собственный вектор A, то $L = L(e) \oplus L^{\perp}$, где L(e) лин. оболочка e, L^{\perp} ортогональное дополнение к L(e). Кроме того L(e) и L^{\perp} инвариантные подпр-ва относ. A, A^* .
 - $\blacksquare 1) (Ax, Ay) = (x, A^*Ay) = \overline{(A^*Ay, x)} = \overline{(AA^*y, x)} = \overline{(A^*y, A^*x)} = (A^*x, A^*y).$
 - $2) \leftarrow 1$).
 - 3) $Ae_0 = \lambda_0 e_0$; $(\lambda_0 A)^* = \overline{\lambda_0} A^*$.
 - а) Покажем, что, если A нормальный, то $(A \lambda_0 I)$ нормальный, т.к.

$$(A - \lambda_0 I)(A - \lambda_0 I)^* = (A - \lambda_0 I)(A^* - \overline{\lambda_0} I) = AA^* - \lambda_0 IA^* - \overline{\lambda_0} AI + \lambda_0 \overline{\lambda_0} I = AA^* - \lambda_0 A^* - \overline{\lambda_0} A + \lambda_0 \overline{\lambda_0} I = A^*A - \lambda_0 A^* - \overline{\lambda_0} A + \lambda_0 \overline{\lambda_0} I = (A^* - \overline{\lambda_0} I)A - \lambda_0 (A^* - \overline{\lambda_0} I) = (A^* - \overline{\lambda_0} I)(A - -\lambda_0 I) = (A - \lambda_0 I)^*(A - \lambda_0 I).$$

b) e_0 - собственный вектор лин. оператора $A \Rightarrow (A - \lambda_0 I)e_0 = \theta \Rightarrow$ т.к. $(A - \lambda_0 I)$ - нормальный оператор (свойство 2):

$$0 = \|(A - \lambda_0 I)e_0\| = \|(A - \lambda_0 I)^*e_0\| = \|(A^* - \overline{\lambda_0} I)e_0\| \implies (A^* - \overline{\lambda_0} I)e_0 = \theta \implies$$

 $A^*e_0=\overline{\lambda_0}e_0\Rightarrow e_0$ - собственный вектор A^* , отвечающий собственному значению $\overline{\lambda_0}$.

Следствие 1.

Если A - нормальный оператор, то $\ker A = \ker A^*$, т.к. нетривиальные векторы являются собственными векторами, отвечающие собственному значению $\lambda = 0$.

Следствие 2.

Если A - нормальный оператор, то $\ker A = (\operatorname{im} A)^{\perp}$, $\ker A^* = (\operatorname{im} A^*)^{\perp}$.

4) Пусть
$$Ae_1 = \lambda_1 e_1$$
, $Ae_2 = \lambda_2 e_2$, $\lambda_1 \neq \lambda_2$.

$$(Ae_1, e_2) = (e_1, A^*e_2); (Ae_1, e_2) = (\lambda_1 e_1, e_2) = \lambda_1 (e_1, e_2), (e_1, A^*e_2) = (e_1, \overline{\lambda_2}e_2) = \lambda_2 (e_1, e_2) \Longrightarrow (\lambda_1 - \lambda_2)(e_1, e_2) = 0, \lambda_1 \neq \lambda_2 \implies (e_1, e_2) = 0.$$

5) $Ae = \lambda e, e$ - собственный вектор A, отвечающий собственному значению λ . L(e) - лин. подпр-во.

По Т. о разложении унитарного пр-ва в прямую сумму:

$$L = L(e) \oplus L^{\perp}(e)$$
.

Докажем инвариантность относ. A и A^* .

$$\forall x \in L(e) \Rightarrow x = \alpha e \Rightarrow Ax = \alpha A e = \alpha \lambda e \in L(e); A^*x = \alpha A^*e = \alpha \overline{\lambda} e \in L(e).$$

$$L_1 = L^{\perp}(e); y \in L^{\perp}(e) \Leftrightarrow (y, e) = 0.$$

$$(Ay, e) = (y, A^*e) = (y, \overline{\lambda} e) = \lambda(y, e) = 0 \Rightarrow Ay \in L^{\perp}(e);$$

$$(A^*y, e) = (y, Ae) = (y, \lambda e) = \overline{\lambda}(y, e) = 0 \Rightarrow A^*y \in L^{\perp}(e) \text{ ч.т.д.}$$

*22.2 Нормальная матрица

Оператор $A \in \mathcal{L}(L,L)$ нормален \Leftrightarrow в ОНБ $\vec{e} = (e_1, ..., e_n)$: $(A)_e$ - нормальная матрица.

Доказательство:

$$\dim L = n, \vec{e} = (e_1, ..., e_n) - \text{OHF B } L. (A)_e = A_e, (A^*)_e$$

 A_e - нормальная матрица $\Leftrightarrow A_e(A_e)^* = (A_e)^*A_e \Leftrightarrow$ (по Т. 1.5) $A_e(A^*)_e = (A^*)_eA_e \Leftrightarrow AA^* = A^*A \Leftrightarrow A$ нормальный оператор ч.т.д.

23. Сопряженный оператор, его матрица в ортонормированном базисе

23.1 Сопряжённый оператор

Определение:

Пусть \mathcal{E} — евклидово пространство.

Линейный оператор $A^*: \mathcal{E} \to \mathcal{E}$ называют сопряженным к линейному оператору $A: \mathcal{E} \to \mathcal{E}$, если для $\forall x, y \in \mathcal{E}$ верно равенство: $(Ax, y) = (x, A^*y)$.

Лемма:

Если квадратные матрицы M и N порядка n таковы, что для $\forall x,y \in \mathbb{R}^n$ выполняется соотношение $x^t M y = x^t N y$, то M = N.

Док-во:

Пусть m_{ij} , n_{ij} - элементы матриц M и N соответственно, стоящие в i-й строке и j-м столбце.

Для произвольной пары индексов i и j выберем такие вектор-столбцы x и y:

$$x = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow \begin{matrix} i\text{-}\mathbf{g} \\ \text{cTpoka} \end{matrix}, \qquad y = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow \begin{matrix} j\text{-}\mathbf{g} \\ \text{cTpoka} \end{matrix},$$

в которых присутствует только один ненулевой элемент, равный единице и стоящий на указанном месте. Записав равенство $x^t M y = x^t N y$ с выбранными столбцами x и y и вычислив обе стороны равенства, получаем $m_{ij} = n_{ij} \to N = M$.

23.2 Матрица сопряженного оператора в ОНБ

Для всякого лин. оператора - преобразования конечномерного евклидова пр-ва $\exists !$ сопряженный, причем его матрицей в любом ортонормированном базисе e является A^t , транспонированная матрице A линейного оператора A в том же базисе e.

Доказательство:

Доказательство теоремы основано на том, что фиксированный базис евклидова пространства \mathcal{E} позволяет установить взаимно однозначное соответствие между линейными операторами из $L(\mathcal{E},\mathcal{E})$ и матрицами из $M_n(\mathbb{R}), n = dim\mathcal{E}$. Это соответствие заключается в сопоставлении линейному оператору его матрицы в фиксированном базисе.

Докажем, что линейный оператор В с матрицей $B = A^t$ в базисе e является сопряженным к линейному оператору A. Для этого достаточно проверить выполнение равенства (Ax, y) = (x, By) (*) для $\forall x, y \in \mathcal{E}$.

Пусть x, y - столбцы координат векторов x, y в базисе e. Тогда вектор Ax имеет столбец координат Ax, а левая часть равенства (*) равна $(Ax)^t y$, что следует из ортонормированности базиса. Аналогично правая часть этого равенства имеет вид $x^t(By)$. Следовательно, (*) в координатной записи имеет вид: $(Ax)^t y = x^t(By)$.

Так как $(Ax)^t = x^t A^t$ в силу свойств матричных операций, равенство (**) эквивалентно равенству $x^t A^t y = x^t B y$ (***), которое при $A^t = B$ превращается в тождество.

Если некоторый линейный оператор B является сопряженным к линейному оператору A, то для любых векторов x и y выполняется равенство (*). начит, для матриц A и B этих операторов равенство (***) выполняется для любых столбцов x и y. Согласно лемме, $A^t = B$. Поэтому линейный оператор B определен однозначно, так как однозначно определена его матрица.

*23.3 Свойства сопряженных операторов

- 1) $I^* = I$;
- 2) $(A + B)^* = A^* + B^*$;
- 3) $(\lambda A)^* = \bar{\lambda} A^*$;
- 4) $(AB)^* = B^*A^*$;
- 5) $(A^{-1})^* = (A^*)^{-1}$;

6) $(A^*)^* = A$ Выполнены для любых операторов, для которых определены указанные операции. $\forall x,y \in L$. 1) $(x,y) = (Ix,y) = (x,I^*y) \Rightarrow y = I^*y \Rightarrow I = I^*y$. 2) $((A+B)x,y) = (x,(A+B)^*y)$ $((A+B)x,y) = (Ax,y) + (Bx,y) = (x,A^*y) + (x,B^*y) = (x,(A^*+B^*)y)$. 3) $((\lambda A)x,y) = (x,(\lambda A)^*y)$

 $((\lambda A)x,y) = \lambda(Ax,y) = \lambda(x,A^*y) = (x,(\overline{\lambda}A^*)y).$

 $4) ((AB)x, y) = (x, (AB)^*y)$

 $((AB)x,y) = (A(Bx),y) = (Bx,A^*y) = (x,B^*A^*y).$

5) $A \in \mathcal{L}(L, L)$, $\exists A^{-1} \iff A \cdot A^{-1} = I$; $(A \cdot A^{-1})^* = I^* = I$; $(A^{-1})^*A^* = I \implies (A^{-1})^* = (A^*)^{-1}$.

6) $(Ax, y) = (x, A^*y) = \overline{(A^*y, x)} = \overline{(y, (A^*)^*x)} = ((A^*)^*x, y).$

23.4 Ядра и образы операторов A и A^

Для $\forall A \in \mathcal{L}(L, L)$: $\ker A = \operatorname{im}^{\perp} A^*$, $\ker A^* = \operatorname{im}^{\perp} A$.

Доказательство:

 $\forall x \in \ker A \Leftrightarrow Ax = \theta; \ \forall y \in \operatorname{im} A^* \Leftrightarrow \exists y_1 : A^* y_1 = y;$

 $(x,y) = (x,A^*y_1) = (Ax,y_1) = (\theta,y_1) = 0 \implies x \perp y \implies \ker A \subseteq \operatorname{im}^{\perp}A^*.$

С другой стороны: $\dim \ker A = \dim L - \dim \operatorname{im} A = (\operatorname{rang} A^* = \operatorname{rang} A) = \dim L - \dim \operatorname{im} A^* = (L = L \oplus L^{\perp}) = \dim (\operatorname{im} A^*)^{\perp}$.

Второе аналогично.

*23.5 Ортогональное дополнение сопряжённого оператора

Если подпр-во L инвариантно относ. A, то его ортогональное дополнение L^{\perp} - относ. A^* : $\forall x \in L \to Ax \in L => \forall y \in L^{\perp} \to A^*y \in L^{\perp}$.

Доказательство:

 $\forall x \in L$, $Ax \in L$, $\forall y \in L^{\perp} \Longrightarrow 0 = (Ax, y) = (x, A^*y) \Longrightarrow A^*y \in L^{\perp}$.

24. Самосопряженный оператор, свойства собственных чисел и собственных векторов самосопряженного оператора

24.1 Определение самосопряжённого оператора

Линейный оператор A, действующий в унитарном (евклидовом) пр-ве наз-ся *самосопряженным*, если $A = A^*$ (где A^* - эрмитово-сопряжённая матрица). Или (Ax, y) = (x, Ay), если указанное соотношение выполняется, то, согласно определению сопряжённого оператора, линейный оператор A является сопряженным оператором к самому себе, т.е. $A^* = A$.

Самосопряженный оператор в унитарном пр-ве называют эрмитовым, в евклидовом – симметрическим. Квадратная матрица A наз-ся самосопряженной, если $A = A^*$, т.е. $A = \overline{A^t}$.

Комплексную самосопряженную матрицу называют эрмитовой, вещественную – симметрической.

Свойства самосопряженных операторов:

- 1. Самосопряженный оператор <u>нормальный</u> (\Longrightarrow удовлетворяет свойствам нормальных операторов). Д.: $AA^* = AA = A^*A \Longrightarrow A$ - нормальный оператор.
- 2. Все собственные значения самосопряженного оператора вещественны.

- 3. A самосопряженный оператор \Leftrightarrow в любом ОНБ $A_e = (A)_e$ эрмитова матрица¹⁵.
 - Д.: $(A)_e$ эрмитова матрица, т.е. $(A)_e = (A_e)^* \Leftrightarrow$ в любом ОНБ $(A)_e = (A^*)_e \Leftrightarrow A = A^*$
- 4. $\det(A)_e \in \mathbb{R}$.

 $^{^{15}}$ Эрмитова (или самосопряжённая) матрица — квадратная матрица, элементы которой являются комплексными числами, и которая, будучи транспонирована, равна комплексно сопряжённой: $A^t = \bar{A}$. То есть, для любого столбца i и строки j справедливо равенство $a_{i,j} = \overline{a_{j,i}}$. Она получена из исходной матрицы A транспонированием и заменой каждого элемента комплексно-сопряжённым ему.

Д.: $(\det A)^2 = \det A \cdot \det A = \det A \cdot \det A^* = \det A \cdot \det \overline{A^T} = \det A \cdot \overline{\det A} \Longrightarrow \det A = \overline{\det A} \Longrightarrow \det A \in \mathbb{R}.$

24.2 Теоремы о собственных числах и вектора самосопряжённого оператора

Теорема 1:

Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Доказательство:

Рассмотрим самосопряженный оператор A и два его собственных вектора x_1 и x_2 , отвечающие различным собственным значениям λ_1 и λ_2 . Тогда $Ax_1 = \lambda_1 x_1$ и $Ax_2 = \lambda_2 x_2$. Поэтому $(Ax_1, x_2) = (\lambda_1 x_1, x_2) = \lambda_1 (x_1, x_2)$ (*). Но так как A является самосопряженным оператором, то $(Ax_1, x_2) = (x_1, Ax_2)$. Значит, $(Ax_1, x_2) = (x_1, Ax_2) = (x_1, \lambda_2 x_2) = \lambda_2 (x_1, x_2)$ (**). Приравнивая правые части соотношений (*) и (**), получаем: $\lambda_1 (x_1, x_2) = \lambda_2 (x_1, x_2)$ или $(\lambda_1 - \lambda_2) (x_1, x_2) = 0$. (***)

Так как $\lambda_1 \neq \lambda_2$, из равенства (***) следует, что $(x_1, x_2) = 0$, что и означает ортогональность векторов x_1 и x_2 .

Теорема 2:

Если собственные значения $\lambda_1, \ldots, \lambda_n$ самосопряженного оператора A, действующего в n-мерном евклидовом пространстве E, попарно различны, то в E существует ортонормированный базис, в котором матрица этого линейного оператора A имеет диагональный вид, причем диагональными элементами такой матрицы являются собственные значения $\lambda_1, \ldots, \lambda_n$.

Доказательство:

Поскольку собственные значения $\lambda_1,\dots,\lambda_n$ попарно различны, то, выбрав для каждого λ_i соответствующий ему собственный вектор e_i , получим систему e ненулевых векторов, которые по теореме 1 попарно ортогональны. Согласно теореме о том, что вектора, отвечающие различным собств. числам, ЛНЗ, получаем, что сис. e — базис, т.к. также содержит n векторов. Этот базис является ортогональным, а чтобы его превратить в ортонормированный, достаточно каждый вектор e_i нормировать делением на его длину. Таким образом, в условиях теоремы существует базис из собственных векторов самосопряжённого оператора A, а значит и выполняется условие теоремы.

Следствие:

Любая симметрическая матрица M порядка n подобна некоторой диагональной, т.е. существует такая невырожденная матрица P порядка n, что $P^{-1}MP = diag(\lambda_1, ..., \lambda_n)$. Последовательность $\lambda_1, ..., \lambda_n$ из n чисел представляет собой перечень всех корней характеристического уравнения матрицы M с учетом их кратностей.

Доказательство:

Рассмотрим в n-мерном евклидовом пространстве \mathbb{R}^n стандартный ортонормированный базис, и пусть матрица M является матрицей в этом базисе некоторого линейного оператора M. Тогда этот оператор будет самосопряженным. По теореме 3 для него существует ортонормированный базис, в котором его матрица M' имеет диагональный вид $M' = diag(\lambda_1, \ldots, \lambda_n)$. Матрица M' получается из исходной матрицы M при помощи матрицы перехода P из стандартного базиса в указанный ортонормированный базис: $M' = P^{-1}MP$.

25. Каноническая форма самосопряженного оператора

25.1 Определение канонической формы самосопр. опр.

Пусть задан оператор $A: E \to E$ и $A^* = A$, тогда \exists базис $e_1, \dots, e_n, \left(e_i, e_j\right) = \delta_{ij}$, в котором матрица оператора диагональна: $A_e = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$.

25.2 Равносильные условия самосопр. оператора

(1) Для каждого самосопряжённого оператора \exists ортонормированный базис из собственных векторов, т.е. $\exists (e_i, e_i) = \delta_{ij}; Ae_i = \lambda_i e_i. \leftrightarrow A = A^*$ (в обратную сторону);

(2) Пусть
$$A^t = A$$
 тогда $\exists D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$ и ортогональная матрица $Q^t = Q^{-1} \to D = Q^t A Q$ при

этом столбцы матрицы Q явл. собственные вектора матрицы A.

Доказательство:

- (1): Индукцией по размерности пр-ва (dimE):
 - 1. Если dimE = 1, $(a, a) = \delta |a|^2$, $(a, b) = \delta |a||b|$ очевидно.
 - 2. Индукционное предположение: $dimE \le N$ верно;
 - 3. Индукционный переход: dimE = N + 1, докажем, что для него т. верна.

 $A = A^* \rightarrow \exists$ вещественные корни $\chi_A = 0 \rightarrow \exists x \neq 0, x \in E$

 $Ax = \lambda x$, $U = \mathcal{L}\{x\}$ – инвариантное подпр-во.

 $AU \subset U o$ ортогональное дополнение $U^{16}U^{\perp}$ - инвариантно.

При том $dim \mathbf{U}^\perp = N \to$ для \mathbf{U}^\perp т. верна $\to \exists \mathbf{U}^\perp$: $e_1, ..., e_N$, такой что $\exists (e_i, e_j) = \delta_{ij}$.

$$Ae_i = \lambda_i e_i, e_{N+1} = \frac{x}{|x|}, e_{N+1} \neq e_i, i \leq N, Ae_{N+1} = \lambda e_{N+1}$$

На каждую вещественную симметричную матрицу можно смотреть как на матрицу самосопряжённого оператора в ортонормированном базисе.

$$(Ax, y) = (x, Ay) \leftrightarrow (AX)^t Y = X^t Y$$

$$D = Q^t A Q$$

Комплексная ситуация:

$$(Ax, y) = (x, Ay)$$

$$\bar{A}^t = A -$$
эрмитова матрица

Доказательство:

$$e_1, \dots, e_n; \ e_i \perp e_j; \ Ae_i = \lambda e_i, \lambda \in R$$

$$A_{e} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix}, x = \sum \alpha_{i} e_{i}$$

$$(Ax,y) = (AX)^t Y = X^t A^t Y = X^t (AX) = (x,Ay)$$

26. Квадратичные формы, матрица квадратичной формы, ее изменение при преобразовании координат

26.1 Опеределения, связанные с квадратичной формой

 Φ орма - однородный многочлен (от нескольких переменных, у которого все слагаемые имеют одинаковую степень).

Например: $x^3 + xyz - 3z^3$ (3-я степень формы => кубическая форма).

Квадратичной формой n переменных x_1, x_2, \dots, x_n , принимающих числовые значения, наз-ся числовая функция вида:

$$\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_{i}x_{j}=a_{11}x_{1}^{2}+a_{12}x_{1}x_{2}+\cdots+a_{1n}x_{1}x_{n}+a_{21}x_{2}x_{1}+a_{22}x_{2}^{2}+\cdots+a_{2n}x_{2}x_{n}+\cdots+a_{n1}x_{n}x_{1}+a_{n2}x_{n}x_{2}+\cdots+a_{nn}x_{n}^{2}$$
, где a_{ij} - числа, называемые коэффициентами квадратичной формы.

Матрицей квадратичной формы п переменных $x_1, x_2, ..., x_n$, наз-ся симметрическая матрица порядка n, эл. главной диагонали которой совпадают с коэффициентами при квадратах переменных, а каждый недиагональный эл., расположенный в i —ой строке j —ом столбце, равен половине коэффициента при $x_i x_j$ в квадратичной форме.

Рангом квадратичной формы наз-ся ранг её матрицы. Квадратичная форма может быть записана в матричном виде $f(x) = x^t A x$, где A —матрица квадратичной формы и $x = (x_1, x_2, ... x_n)$.

Квадратичная форма наз-ся *канонической* (имеет канонический вид), если коэффициенты $a_{ij}=0$ при $i\neq j$, т.е., если матрица квадратичной формы диагональная и, следовательно,

¹⁶ Пусть $A \subset E$, $A \neq 0$. Тогда ортогональным дополнением к множеству A наз-ся множ-во: $A^{\perp} = \{x \in E | \forall \alpha \in A: (x, a) = 0\}$.

$$f(x) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 = \sum_{i=1}^n a_{ii}x_i^2$$
, где не все коэффициенты $a_{ii} \neq 0$.

На любую симметричную матрицу можно смотреть как на самосопряженный оператор.

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}; \ a_{ij} = a_{ji}; \ X^t A X = \begin{pmatrix} \sum_{i=1}^n a_{1i} x_i \\ \vdots \\ \sum_{i=1}^n a_{ni} x_i \end{pmatrix} = \sum_{i,j} a_{ij} x_i x_j = F(x_1, \dots, x_n);$$

 $F(x_1,...,x_n) = X^t A X - матрич.$ форма записи квадратичной формы.

26.2 Преобразование квадратичных форм

Пусть дана квадратичная форма $F(x_1, ..., x_n) = X^t A X, x = (x_1 x_2 ... x_n)^t$. В n-мерном линейном пр-ве L с фиксированным базисом e она определяет функцию $f(x) = X_e^t A X_e$, заданную через координаты X_e вектора x в базисе e. Найдем представление этой же функции в некотором другом базисе f. Пусть C матрица перехода от e к f. Тогда координаты X_e вектора x в старом базисе e и координаты X_f того же вектора в новом базисе f будут связаны соотнош.: $X_e = CX_f$.

Функция f(x) в новом базисе будет выражаться через новые координаты вектора x следующим образом: $X_e^t A X_e = (CX_f)^t A (CX_f) = X_f^t (C^t A C) X_f = X_f^t A' X_f$.

Итак, функция f в новом базисе также записывается при помощи квадратичной формы, причем матрица A' этой квадратичной формы связана с матрицей A исход, квадратичной формы соотнош.: $A' = C^t A C$.

27. Приведение квадратичной формы к сумме квадратов методом Лагранжа

27.1 Метод Лагранжа

Покажем, как привести квадратичную форму к сумме квадратов, т.е. выбрать такой базис в котором квадратичная форма имеет наиболее простой (канонический) вид. А именно: $A(x; x) = \lambda_1 \alpha_1^2 + \dots + \lambda_n \alpha_n^2$ (Смысл заключается в поочередном выделении полных квадратов вида $(a^2 + 2ab + b^2)$ и сворачивании их в $(a + b)^2$, а потом замене на другую переменную).

Теорема:

Для каждой квадратичной формы a(x,x) \exists базис, в котором $a(x,x) = \sum_{i=1}^n \lambda_i (x_i)^2 = \lambda_1 (x_1)^2 + \cdots +$ $\lambda_n(x_n)^2$, т.е. матрица квадратичной формы явл. диагональной.

Доказательство:

Изначальный вид $F = a_{11}x_1^2 + \ldots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \ldots + 2a_{1n}x_1x_n + 2a_{23}x_2x_3 + \ldots$

Во время применения метода Лагранжа могут возникать такие варинанты:

1) Основной вариант, $a_{11} ≠ 0$

Выделим в форме все члены с
$$x_1$$
 и приведем к виду $F = a_{11} \left(x_1^2 + 2 \frac{a_{12}}{a_{11}} x_1 x_2 + \ldots + 2 \frac{a_{1n}}{a_{11}} x_1 x_n \right) +$

 $F'(x_2,...,x_n)$ Дополним сумму в скобке до полного квадрата, причем в дополнении содержащие лишь квадраты и попарные произведения членов $a_{12}x_2,\ldots,a_{1n}x_n$. Таким образом, квадратичная форма принимает вид:

$$F = a_{11} \left(x_1^2 + \frac{a_{12}}{a_{11}} x_2 + \ldots + \frac{a_{1n}}{a_{11}} x_n \right)^2 + F_1(x_2, \ldots, x_n)$$
. Далее метод Лагранжа применяется на квадратичную

форму
$$F_1$$
. Для замены переменых необходимо положить $y_1 = \left(x_1^2 + \frac{a_{12}}{a_{11}}x_2 + \ldots + \frac{a_{1n}}{a_{11}}x_n\right)$

Замечание: если на каждом шаге приведения к.ф. к сумме квадратов реализуется основной в-т м. Лагранжа, то матрица итоговой замены переменных является верхней унитреугольной ¹⁷

$$C = \begin{pmatrix} 1 & \dots & * \\ \dots & \ddots & \dots \\ 0 & \dots & 1 \end{pmatrix}$$
2) Form $a_{++} = 0$: $\exists a_{++} \neq 0$

²⁾ Если $a_{11} = 0$; $\exists a_{kk} \neq 0$

¹⁷ Унитреугольная матрица (верхняя или нижняя) — треугольная матрица А, в которой все элементы на главной диагонали равны единице: $a_{ij} = 1$.

Сделаем замену $y_1=x_k; y_k=x_1; y_i=x_i (i\neq k,1)$, в таком случае реализуется основной варинат (1). 3) $\forall i: a_{ii}=0; \exists \ a_{ij}\neq 0$ Сделаем замену $x_i=y_i+y_j; x_k=y_k (k\neq i)$ Тогда $F=2\sum_{k\neq l}a_{kl}x_kx_l=2a_{ij}x_ix_j+2\sum_{\substack{k\neq l\\k,l\neq i,j}}a_{kl}x_kx_l=2\ a_{ij} \big(y_i+y_j\big)y_j+2\sum_{\substack{k\neq l\\k,l\neq i,j}}a_{kl}y_ky_l=2a_{ij}y_j^2+\dots$ Получили квадрат переменной y_i , можно воспользоваться случаем (2) и затем случаем (1).

27.2 Связь с треугольными матрицами в основном случае

Рассмотрим замены переменных в квадратичной форме.

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n \\ & \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n \end{cases}$$

Установим по какому закону формируются ее коэффициенты. С этой целью введем в рассмотрение матрицу замены переменных:

$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n1} & \dots & c_{nn} \end{pmatrix}; \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \leftrightarrow C = CY.$$

При этом $B = C^t A C$ - матрица квадратичной формы в новых переменных.

Теорема:

Если в ходе применения метода Лагранжа к квадратичной форме X^TAX реализуется основной вариант, то он эквивалентен методу Гаусса приведения матрицы A к треугольному виду.

$$F(x_1...x_n) = X^TAX = a_{11}y_1^2 + F_1(x_2...x_n)$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11} & | & \dots \\ 0 & | & \dots \\ \vdots & \ddots & | & \dots \\ 0 & | & \dots \end{pmatrix} (\text{м. } \Gamma \text{аусса})$$

$$T = \begin{pmatrix} 1 & \dots & * \\ \dots & \ddots & \dots \\ 0 & \dots & 1 \end{pmatrix}; T^TAT - \text{симметричная верхнетреугольная} - \text{диагональная. } A = (T^T)^{-1}DT^{-1}$$

$$F = X^TAX = X^T(T^T)^{-1}DT^{-1}X = (T^{-1}X)^TDT^{-1}X = Y^TDY ; X = TY$$

$$\Phi \text{ормула } \mathcal{S} \text{коби}:$$

Квадратичная форма приводится к каноническому виду заменой переменных, задаваемой верхней унитреугольной матрицей тогда и только тогда, когда все главные миноры матрицы A отличны от нуля. Этот канонический вид представлен формулой Якоби:

$$y_1^2 det A_1 + y_2^2 \frac{det A_2}{det A_1} + \dots + y_n^2 \frac{det A_n}{det A_{n-1}}$$

28. Приведение квадратичной формы к сумме квадратов ортогональным преобразованием.

28.1 Определение и основная теорема об орт. преобразования кв. формы

Матрица A квадратичной формы при переходе к новому базису изменяется по формуле $A' = C^t A C$, где C - матрица перехода. Если рассматривается евклидово пр-во, а старый и новый базисы выбраны ортонормированными, то матрица перехода C явл. ортогональной ($C^t = C^{-1}$) и мы имеем дело с ортогональным преобразованием квадратичной формы, можем привести матрицу кв. ф. к диагональному виду $D = Q^{-1}AQ$, где Q - ортогональная матрица перехода.

28.2 Алгоритм приведения квадратичной формы к сумме кадратов орт. преобраз.

Матрица *А* квадратичной формы (она обязательно симметрическая) интерпретируется как матрица сим. лин. оператора в ОНБ. Его матрица будет иметь диагональный вид (а значит, квадратичная форма примет канонический вид) в ортонормированном базисе из собственных векторов этого оператора.

- 1. Находим собственные значения линейного оператора, решая характеристическое уравнение $det(A \lambda E) = 0$.
- 2. Для каждого собственного значения находим собственные векторы, решая систему линейных уравнений $(A \lambda E)x = 0$. (У этой системы мы должны найти фундаментальную систему решений).
- 3. Если собственное значение λ имеет кратность, большую 1 (в характеристическом уравнении), то векторы из ФСР могут оказаться не ортогональными друг другу в этом случае к ним надо применить процесс ортогонализации.
- 4. Нормируем найденные собственные векторы, т.е. каждый вектор делим на его длину.
- 5. Записываем канонический вид квадратичной формы и преобразование координат, приводящее её к этому виду.

Док-во того, что в базисе собсвтенных векторов матрица линейного оператора имеет диагональный вид содержится в пункте 17.1.

*28.3 Теоремы об ортогональных преобразованиях

Теорема 1:

При ортогональном преобразовании квадратичной формы характеристическое уравнение ее матрицы не изменяется.

■ Пусть A - матрица заданной квадратичной формы. При ортогональном преобразовании эта матрица изменяется по формуле $A' = C^t A C$, где C - ортогональная матрица. Согласно свойству ортогональной матрицы 18 , ортогональная матрица C имеет обратную, причем $C^{-1} = C^t$. Поэтому $A' = C^t A C = C^{-1} A C$, и мы видим, что матрицы A' и A подобны. Согласно теореме, приведённой ниже, характеристические уравнения подобных матриц совпадают. ■

Теорема 2:

Характеристические многочлены (уравнения) подобных матриц совпадают.

■ Пусть квадратные матрицы A' и A одного порядка подобны, т.е. существует такая невырожденная матрица P того же порядка, что $A' = P^{-1}AP$. Тогда в силу свойств определителей имеем $\mathcal{X}_{A'}(\lambda) = \det(A' - \lambda E) = \det(P^{-1}AP - \lambda P^{-1}EP) = \det(P^{-1}(A - \lambda E)P) = \det(P^{-1}\det(A - \lambda E)\det(P - \lambda E) = \det(A - \lambda E)$ = $\mathcal{X}_{A}(\lambda)$ ■.

29. Закон инерции

Если квадратичная форма приведена двумя различными способами (в 2-х различных базисах) к сумме квадратов, то число положительных, отрицательных и нулевых коэффициентов в обоих случая одинаковы. Доказательство:

Пусть в базисе e_1, \dots, e_n квадратичная форма A(x,x) имеет вид: $A(x;x) = \alpha_1^2 + \alpha_2^2 + \dots + \alpha_p^2 - \alpha_{p+1}^2 - \dots - \alpha_{p+q}^2$ (1), где $\alpha_1, \dots, \alpha_n$ - координаты вектора x, т.е. $x = \alpha_1 e_1 + \dots + \alpha_p e_p + \alpha_{p+1} e_{p+1} + \dots + \alpha_{p+q} e_{p+q} + \dots + \alpha_n e_n$.

Пусть в базисе f_1, \dots, f_n эта квадратичная форма имеет вид: $A(x;x) = \beta_1^2 + \dots + \beta_{p'}^2 - \beta_{p'+1}^2 - \dots - \beta_{p'+q'}^2$ (2), где β_1, \dots, β_n - координаты вектора x в базисе f_1, \dots, f_n .

Нужно док-ть, что p = p', q = q'.

Докажем это от противного. Предположим, что p>p'. Рассмотрим подпр-во $L'=L(e_1,\ldots,e_p)$, $\dim L'=p$, $L''=L(f_{p'+1},\ldots,f_n)$, $\dim L''=n-p'$.

Т.к. n-p'+p>n (из-за предположения), то \exists ненулевой вектор x, принадлежащий пересечению: $x\in (L'\cap L''), x\neq 0$.

¹⁸ Матрица, обратная к ортогональной матрице O, совпадает с ее транспонированной матрицей, т.е. $0^{-1} = 0^t$.

Тогда $x = \alpha_1 e_1 + \dots + \alpha_p e_p = \beta_{p'+1} f_{p'+1} + \dots + \beta_n f_n$.

В базисе e вектор x имеет координаты $x_e = (\alpha_1, \alpha_2, ..., \alpha_p, 0, ..., 0)$, а в базисе f: $x_f =$

$$(0, ..., 0, \beta_{p'+1}, \beta_{p'+2}, ..., \beta_n).$$

Подставляя эти представления в формулы (1, 2), мы получаем с одной стороны, что $A(x;x)=\alpha_1^2+\cdots+\alpha_p^2>0$ (т.к. не все числа α_1,\ldots,α_n равны нулю). Если подставить в формулу (2), то имеем, что $A(x;x)=-\beta_{p'+1}^2-\cdots-\beta_{p'+q'}^2\leq 0$ (Т.к. хотя среди чисел $\beta_{p'+1},\ldots,\beta_n$ есть отличные от нуля, возможно, что $\beta_{p'+1}=\cdots=\beta_{p'+q'}=0$).

Противоречие, следовательно, нерав-во p > p' неверно. Аналогично доказывается, что невозможны нерав-ва p < p', q < q', q > q'.

Определение:

Число r, отличных от нуля коэффициентов λ_i в каноническом виде квадратичной формы. Чтобы найти ранг квадратичной формы нужно вычислить ранг ее матрицы в какойлибо одной системе координат.

Определение:

Назовем число положительных i_+ и число отрицательных i_- коэффициентов в каноническом виде квадратичной формы соответственно положительными и отрицательными индексами инерции: $r=i_++i_-$

Определение:

Если r=n, то квадратичная форма наз-ся *невырожденной*. Разность между положительными и отрицательными индексами инерции наз-ся *сигнатурой*.

30. Положительно определенные квадратичные формы, критерий Сильвестра

30.1 Положительно определённые квадратичные формы

Квадратичную форму $f(x) = x^t A x, x = (x_1 \ x_2 \ ... \ x_n)^t$, будем называть:

- положительно (отрицательно) определенной, если для любого ненулевого столбца x выполняется неравенство: f(x) > 0 (f(x) < 0);
- неотрицательно (неположительно) определенной, если $f(x) \ge 0$ ($f(x) \le 0$) для любого столбца x, причем существует ненулевой столбец x, для которого f(x) = 0;
- знакопеременной (неопределенной), если существуют такие столбцы x и y, что f(x) > 0 и f(y) < 0.

Тип квадратичной формы зависит только от множества значений, которые она принимает, но не зависит от переменных, в которых она записана. Поэтому, представив квадратичную форму в каноническом виде, сразу получаем следующие критерии для типа квадратичной формы в зависимости от множества собственных значений ее матрицы:

Тип квадратичной формы	Множество собственных значений	
Положительно определенная	Все собственные значения положительны	
$(\forall x \neq 0 : f(x) > 0)$	$(\lambda_i > 0, i = \overline{1, n})$	
Отрицательно определенная	Все собственные значения отрицательны	
$(\forall x \neq 0 : f(x) < 0)$	$(\lambda_i < 0, i = \overline{1, n})$	
Знакопеременная	Есть собственные значения разных знаков	
$(\exists x: f(x) > 0, \exists y: f(y) < 0)$	$(\exists \lambda_i > 0, \exists \lambda_j < 0)$	
Вырожденная	Есть нулевое собственное значение	
(матрица формы вырожденная),	$(\exists \lambda_i = 0).$	

30.2 критерий Сильвестра

Пусть матрица квадратичной формы $f(x) = x^t A x$ имеет вид:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
, где $a_{ij} = a_{ji}$, $i,j = 1 \dots n$.

Чтобы квадратичная форма была положительно определённой, необходимо и достаточно чтобы все угловые миноры матрицы квадратичной формы были положительны, т.е., чтобы $\Delta_1>0, \Delta_2>0, \dots, \Delta_n>0$. Здесь $\Delta_1, \Delta_2, \dots, \Delta_n$ -угловые миноры матрицы квадратичной формы.

Доказательство:

$$f(x) = x^t A x$$
.

Необходимость:

Предположим, что $f(x_1, ..., x_n) > 0$. Тогда существует подстановка X = BY с невырожденной матрицей B, преобразующей форму $\alpha_1 y_1^2 + \cdots + \alpha_n y_n^2$ при $\alpha_i > 0$. Тогда $B^t AB = diag(\alpha_1, ..., \alpha_n)$ и $\det(B^t AB) = \alpha_1 \cdot ... \cdot \alpha_n > 0$. Но $\det(B^t AB) = \det(B^t) \det(A) \det(B) = \det(A) (\det B)^2$. Следовательно, $\det A = \Delta_n > 0$. Теперь рассмотрим часть формы $f(x_1, ..., x_n)$:

$$f'(x_1, \dots, x_k) = (x_1, \dots, x_k, 0, \dots, 0) = a_{11}x_1^2 + \dots + a_{1k}x_1x_k + \dots + a_{k1}x_kx_1 + \dots + a_{kk}x_k^2.$$

Эта форма рассматривается как форма от x_1, \dots, x_k , положительно определена, ибо её значения при не равных одновременно x_1, \dots, x_k суть значения формы $f(x_1, \dots, x_k, \dots x_n)$ при неравных одновременно значениям для $x_1, \dots, x_k, \dots x_n$.

Поэтому $\Delta_k > 0$, k = 1 ... n - 1.

Достаточность:

Пусть $\Delta_k > 0$ при, $k = 1 \dots n$. Тогда форма $f(x_1, \dots, x_n)$ может быть преобразована к каноническому виду посредством преобразования переменных к верхней унитреугольной матрице¹⁹ и каноническая форма будет равна: $\Delta_1 y_1^2 + \frac{\Delta_2}{\Delta_1} y_2^2 + \dots + \frac{\Delta_n}{\Delta_{n-1}} y_n^2$.

Все коэффициенты при квадратах новых переменных положительны и, следовательно, исходная форма положительно определена.

*30.3 Следствия из критерия Сильвестра

Следствие 1:

Для того чтобы квадратичная форма f(x) была отрицательно определённой, необходимо и достаточно, чтобы знаки угловых миноров матрицы квадратичной формы чередовались следующим образом: $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, ..., (-1)^n \Delta_n > 0$.

Следствие 2:

Невырожденная квадратичная форма знакопеременна тогда и только тогда, когда для матрицы квадратичной формы выполнено хотя бы одно из условий:

- один из угловых миноров равен нулю;
- один из угловых миноров четного порядка отрицателен;
- два угловых минора нечетного порядка имеют разные знаки.

Спедствие 3

Если симметрическая матрица положительно определена, то все ее диаго-нальные элементы положительны.

31. Преобразование уравнения поверхности второго порядка к каноническому виду

Поверхностью второго порядка наз-ся совокупность точек пр-ва, координаты которых (x, y, z) удовлетворяют уравнению:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0$$
 (1)

Преобразованием прямоугольных координат (выполняя вполне очевидные операции из алгебры) получили для поверхностей 2-го порядка уравнение вида:

$$s_1 x'^2 + s_2 y'^2 + s_3 z'^2 + 2a'_{14} x' + 2a'_{24} y' + 2a'_{34} z' + a'_{44} = 0.$$
 (2)

1). Пусть $s_1 \neq 0$, $s_2 \neq 0$, $s_3 \neq 0$. Применяя выделение полного квадрата для переменных x', y', z', затем преобразование координат параллельный перенос, приведем уравнение (2) к виду:

$$s_1 x^2 + s_2 y^2 + s_3 z^2 + a_{44}'' = 0$$
, и далее, в зависимости от значения a_{44}'' : (3)

Замечание: в уравнении (3) переменные (x, y, z) записаны без штрихов, чтобы дальнейшие записи были проще по форме!

а) если
$$a_{44}'' \neq 0$$
, то $\frac{x^2}{-\frac{a_{44}''}{S_1}} + \frac{y^2}{-\frac{a_{44}''}{S_2}} + \frac{z^2}{-\frac{a_{44}''}{S_2}} = 1$; б) если $a_{44}'' = 0$, то $\frac{x^2}{-\frac{1}{s_1}} + \frac{y^2}{-\frac{1}{s_2}} + \frac{z^2}{-\frac{1}{s_3}} = 0$. (4)

¹⁹ Унитреугольная матрица (верхняя или нижняя) — треугольная матрица A, в которой все элементы на главной диагонали равны единице: $a_{ij} = 1$.

Уравнение (4) в зависимости от значений параметров могут дать подробно рассмотренный ранее набор поверхностей 2-го порядка:

	S_1	S_2	S 3	a_{44}''	Каноническое уравнение	Название
					поверхности	поверхности
1	±	±	±	Ŧ	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ $x^2 + y^2 + z^2$	Эллипсоид
2	±	<u>±</u>	<u>±</u>	土	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$	Мнимый эллипсоид
3	±	±	±	0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$	Точка или мнимая коническая поверхность
4	±	±	Ŧ	Ŧ	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Однополостный гиперболоид
5	±	±	Ŧ	±	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	2-хполостный гиперболоид
6	±	±	Ŧ	0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	Коническая поверхность

2) Пусть *один* из коэффициентов s_1, s_2, s_3 , уравнения (2) равен нулю, например $s_3 = 0$ $s_1 \neq 0$, $s_2 \neq 0$ и $a'_{34} \neq 0$. Применяя **выделение полного квадрата** для переменных x', y', z', затем преобразование координат параллельный перенос, приведем (2) к виду:

$$s_1 x^2 + s_2 y^2 + a'_{34} z = 0,$$
 (5)

Уравнение (5) определяет эллиптический параболоид, если s_1, s_2 имеют одинаковые знаки, и гиперболический параболоид, если знаки s_1, s_2 различные.

Замечание: в уравнении (5) переменные (x, y, z) записаны без штрихов, чтобы дальнейшие записи были проще по форме!

3). Пусть *один* из коэффициентов s_1, s_2, s_3 , уравнения (2) равен нулю, например s_3 =0, $s_1 \neq 0$, $s_2 \neq 0$ и $a'_{34} = 0$. Применяя выделение полного квадрата для переменных x', y', z', затем преобразование координат *параллельный перенос*, приведем (2) к виду:

$$s_1 x^2 + s_2 y^2 + a_{44}'' = 0$$
, и далее, в зависимости от значения a_{44}'' ; (6)

$$s_1 x^2 + s_2 y^2 + a_{44}'' = 0$$
, и далее, в зависимости от значения a_{44}'' ; (6)
а) если $a_{44}'' \neq 0$, то $\frac{x^2}{-\frac{a_{44}''}{s_1}} + \frac{y^2}{-\frac{a_{44}''}{s_2}} = 1$; б) если $a_{44}'' = 0$, то $\frac{x^2}{-\frac{1}{s_1}} + \frac{y^2}{-\frac{1}{s_2}} = 0$. (7)

Замечание: в уравнениях (6) и (7) переменные (x, y, z) записаны без штрихов, чтобы дальнейшие записи были проще по форме!

Уравнения (7) в зависимости от значений параметров могут дать подробно рассмотренный ранее набор поверхностей 2-го порядка

	S_1	S_2	a ₄₄ "	Каноническое уравнение поверхности	Название поверхности
1	±	±	Ŧ	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Эллиптический цилиндр
2	±	±	±	$\frac{a^2 + \frac{1}{b^2}}{\frac{x^2}{a^2} + \frac{y^2}{b^2}} = 1$	Мнимый эллиптический цилиндр
3	±	±	0	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	Пара мнимых плоскостей с общей действительной прямой
4	±	Ŧ	+ или -	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \mp 1$	Гиперболический цилиндр
5	±	Ŧ	0	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	Пара пересекающихся плоскостей

4). Пусть **два** из коэффициентов s_1, s_2, s_3 , уравнения (2) равны нулю, например: $s_1, s_2 = 0$, $s_1 \neq 0$, но, по крайней мере, один из коэффициентов при первой степени y' или z' не равен нулю, т.е. $a_{24}^{'2} + a_{34}^{'2} \neq 0$.

В этом случае уравнение (2) преобразуется в зависимости от значений параметров a'_{24} , a'_{34} по-разному.

Пусть, например, $a_{34}'' \neq 0$. Применяя **выделение полного квадрата** для переменных x', y', z', затем преобразование координат **параллельный перенос**, приведем (2) к виду:

$$s_1 x''^2 + 2a'_{34} y'' + 2a'_{34} z'' = 0.$$
 (8)

Если к уравнению (8) применить еще преобразование поворота системы координат O'X''Y''Z'' вокруг оси O'X'' по формулам:x=x'', $y=\frac{a'_{24}y''-a'_{34}z''}{\sqrt{a'^2_{24}+a'^2_{34}}}, \ z=\frac{a'_{24}y''+a'_{34}z''}{\sqrt{a'^2_{24}+a'^2_{34}}},$

получим следующее уравнение поверхности:

$$s_1 x + 2 \sqrt{{a'}_{24}^2 + {a'}_{34}^2} y = 0$$
 параболический цилиндр. (9)

5). Пусть **два** из коэффициентов s_1, s_2, s_3 , уравнения (2) равны нулю, например: $s_1, s_2 = 0$, $s_1 \neq 0$, а также $a'_{24} = 0$ и $a'_{34} = 0$ при первой степени y'и z'. Применяя **выделение полного квадрата** для переменной x', приведем (2) к виду: $s_1x^2 + a''_{44} = 0$. (10)

Уравнение (10), в зависимости от значений параметров, определяет:

а) если
$$s_1 \cdot a_{44}^{"} < 0$$
 – пара действительных параллельных плоскостей; (11)

б) если
$$s_1 \cdot a_{44}^{"} > 0$$
 – пара мнимых параллельных плоскостей; (12)

в) если
$$s_1 \cdot a_{44}^{"} = 0$$
 – пара совпавших плоскостей. (13)

Итак, общее уравнение (2), в зависимости от исходных значений коэффициентов-параметров, определяет 17 различных видов поверхностей 2-го порядка!

32. Классификация кривых второго порядка

32.1 Упрощение общего вида уравнения для кривых 2-ого порядка

Общее уравнение кривой второго порядка имеет вид $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0.$ (1)

Если это уравнение не содержит члена с произведением координат, т. е. 2B=0, то дополняя члены, содержащие x,y, до полных квадратов, при помощи параллельного переноса можно привести уравнение к каноническому виду.

Если же $2B \neq 0$, то с помощью поворота осей можно избавиться от члена с произведением координат. В результате получим канонические уравнения.

Параллельный перенос системы координат

Рассмотрим две системы координат Oxy и O_1XY с одинаковым направлением осей координат, но разными началами координат. Пусть на плоскости взята точка M и пусть (x,y) – ее координаты в Oxy и (X,Y) – в системе O_1XY , а координаты точки O_1 в системе Oxy: Oxional Oxion

или, в координатах,
$$X + a = x$$
 и $Y + b = y$.

Имеем формулы для перехода от старых координат точки M к ее новым координатам:

$$\begin{cases} x = X - a \\ y = Y - b \end{cases}$$
, аналогично можно выразить новые координаты через старые. (2)

График квадратного трехчлена

Пусть дано уравнение $y = Ax^2 + Bx + C$.

Чтобы получить простейшее уравнение данной кривой, подставим вместо старых координат x, y их выражения через новые координаты X, Y из формул параллельного переноса (2) в уравнение $y = Ax^2 + Bx + C$:

$$Y + b = A(X + a)^{2} + B(X + a) + C.$$

После упрощений получим $Y = AX^2 + (2Aa + B)X + Aa^2 + Ba + C - b$.

Выберем координаты нового начала a и b так, чтобы в правой части последнего уравнения коэффициент при X и свободный член обратились в нуль:

$$\begin{cases} 2Aa + B = 0 \\ Aa^2 + Ba + C - b = 0 \end{cases}$$

Решая эту систему ур-ий относ. неизвестных a,b, получим $a=-\frac{B}{2A}$, $b=\frac{4AC-B^2}{4A}$.

При таком выборе начала координат O_1 новой системы координат уравнение $y = Ax^2 + Bx + C$ примет вид $Y = AX^2$, т. е. будет простейшим уравнением параболы, для которой ось O_1Y явл. осью симметрии.

Поворот системы координат

Рассмотрим выражение $Ax^2 + 2Bxy + Cy^2$,

(3)

которое представляет собой многочлен второй степени относ. переменных x и y и наз-ся $\kappa вадратичной формой.$

Тогда матрица $\begin{pmatrix} A & B \\ B & C \end{pmatrix}$ наз-ся матрицей квадратичной формы.

Рассмотрим лин. преобразование, заданное данной матрицей. Пусть λ_1 и λ_2 - его собственные числа, а $\overline{a_1} = (\alpha_1, \beta_1)$ и $\overline{a_2} = (\alpha_2, \beta_2)$ - собственные векторы.

Нормируем векторы $\overline{a_1}$ и $\overline{a_2}$: $\overline{l_1} = \frac{\overline{a_1}}{|\overline{a_1}|} = (\frac{\alpha_1}{|\overline{a_1}|}, \frac{\beta_1}{|\overline{a_1}|}), \overline{l_2} = \frac{\overline{a_2}}{|\overline{a_2}|} = (\frac{\alpha_2}{|\overline{a_2}|}, \frac{\beta_2}{|\overline{a_2}|})$ и составим матрицу $S = \frac{1}{2}$

$$\begin{pmatrix} \frac{\alpha_1}{|\overline{a_1}|} & \frac{\alpha_2}{|\overline{a_2}|} \\ \frac{\beta_1}{|\overline{a_1}|} & \frac{\beta_2}{|\overline{a_2}|} \end{pmatrix}$$

Лин. ортогональное преобразование $\binom{x}{y} = \begin{pmatrix} \frac{\alpha_1}{|\overline{a_1}|} & \frac{\alpha_2}{|\overline{a_2}|} \\ \frac{\beta_1}{|\overline{a_1}|} & \frac{\beta_2}{|\overline{a_2}|} \end{pmatrix} \cdot \binom{x_1}{y_1}$ осуществляет поворот системы координат.

Ортами, задающими новую систему $0x_1y_1$, являются векторы $\overline{l_1}$ и $\overline{l_2}$, а выражение (3) в системе $0x_1y_1$ примет вид $\lambda_1x_1^2 + \lambda_2x_2^2$.

Замечание: Определитель матрицы S равен ± 1 . В том случае, когда |S|=1, взаимная ориентация новых координатных осей сохраняется; если |S|=-1, их ориентация меняется на противоположную.

32.2 Классификация, когда оба коэффициента при квадратах неравны 0

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0, AB \neq 0$$

$$A\left(x^{2} + \frac{D}{A}x + \frac{D^{2}}{4A^{2}} - \frac{D^{2}}{4A^{2}}\right) + B\left(y^{2} + \frac{E}{B}y + \frac{E^{2}}{4B^{2}} - \frac{E^{2}}{4B^{2}}\right) + F = A\left(x + \frac{D}{2A}\right)^{2} + \left(y + \frac{E}{2B}\right)^{2} + T$$

Если коэффициенты при квадратах $\neq 0$, то параллельным переносом относ. осей можно избавится от линейных слагаемых соотвествующих переменных.

$$Ax^2 + By^2 + F = 0$$

- 1. AB > 0, $AF > 0 \emptyset$, т.е. уравнение никакой геометрии не описывает;
- 2. F = 0, AB > 0 точка в начале координат;
- 3. $AB > 0, AF < 0, \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ эллипс.
- 4. AB < 0, F < 0 (можно сказать, что просто $F \neq 0$)

Если
$$A > 0$$
, $B < 0$, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ — гипербола.

32.2.1 Эппипа

Эллипсом наз-ся мн-во точек плоскости, сумма расстояний от каждой из которых до 2-х данных точек F_1 и F_2 этой плоскости, называемых фокусами эллипса, есть величина постоянная, равная 2a (a>0), большая, чем расстояние между фокусами.

Для составления уравнениэллипса выберем прямоугольную декартову систему координат так, чтобы ось OX проходила через фокусы F_1 и F_2 , а начало координат — точка O находилась в середине отрезка F_1F_2 .

Обозначим $F_1F_2 = 2c$. Тогда $F_1(-c,0)$, $F_2(c,0)$. Пусть M(x,y)— произвольная точка эллипса. Тогда $MF_1+MF_2=2a,\ a>c$.

Т.к. $a > c \Rightarrow a^2 - c^2 = b^2 > 0$, и уравнение принимает вид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Пусть координаты точки $M_1(x_1,y_1)$ удовлетворяют уравнению (2).

Обозначим $\mathbf{r}_1 = \mathbf{F}_1 \mathbf{M}_1$, $\mathbf{r}_2 = \mathbf{F}_2 \mathbf{M}_2$ — фокальные радиусы точек \mathbf{M}_1 , \mathbf{M}_2 . Тогда $r_1 = a + \frac{c}{a} x_3$, $r_2 = a - \frac{c}{a} x_2$, значит, $\mathbf{r}_1 + \mathbf{r}_2 = 2a$.

Теперь по свойствам уравнения (2) исследуем геометрические свойства эллипса.

- 1. Оси ОХ и ОУ являются осями симметрии эллипса. Следовательно, эллипс достаточно исследовать только в первой координатной четверти.
- 2. Эллипс пересекает координатные оси в точках $A_1(-a,0)$, $A_2(a,0)$, $B_1(0,b)$, $B_2(0,-b)$, называемых вершинами эллипса.
- 3. Эллипс расположен в прямоугольнике, ограниченном прямыми $x=\pm a, y=\pm b$.
- 4. Из ур-ий следует, что при возрастании х от 0 до \boldsymbol{a} в первой координатной четверти, \boldsymbol{y} убывает от \boldsymbol{b} до 0.

По полученным свойствам строим эллипс Отрезок A_1A_2 и его длина 2a называются большой осью эллипса, а отрезок B_1B_2 и его длина 2b называются малой осью эллипса. Отрезок OA_1 с длиной a и отрезок OB_1 с длиной b называются соответственно большой и малой полуосями эллипса. Длина отрезка F_1F_2 =2c наз-ся фокусным расстоянием, начало координат— центр эллипса.

Уравнения $x = a\cos t$, $y = b\sin t$ - параметрические уравнения эллипса.

Гиперболой наз-ся мн-во точек плоскости, абсолютная величина разности расстояний от каждой из которых до 2-х данных точек F_1 и F_2 , называемых фокусами гиперболы, есть величина постоянная, равная 2a, a > 0, меньшая чем расстояние между фокусами.

Выберем декартову прямоугольную систему координат ОХҮ так, как показано на рисунке. Тогда $F_1F_2=2c$, $F_1(-c,0)$, $F_2(c,0)$. Для произвольной точки M(x,y), принадлежащей гиперболе, имеем $MF_1-MF_2=\pm 2a$, a< c.

По свойствам уравнения (3) исследуем свойства гиперболы:

1. Координатные оси являются осми симметрии гиперболы. Поэтому гиперболу достаточно исследовать только в первой координатной четверти.

- 3. Т.к. $y = \pm \frac{b}{a} \sqrt{x^2 a^2}$, $|x| \ge a$. Поэтому гипербола расположена вне полосы, ограниченной прямыми $x = \pm a$.
- 4. Если х возрастает от a до +∞, то у возрастает от 0 до +∞ в первой координатной четверти.
- 5. $y = \pm \frac{b}{a} x$ наклонные асимптоты гиперболы. По полученным свойствам строим гиперболу. Отрезок

По полученным свойствам строим гиперболу. Отрезок A_1A_2 и его длина 2a называются действительной осью гиперболы, а отрезок OA_1 и его длина a — действительной полуосью. Отрезок B_1B_2 и его длина 2b — мнимая ось гиперболы, а отрезок OB_1 и его длина b — мнимая полуось. Длина отрезка $F_1F_2=2c$ наз-ся фокусным расстоянием, начало координат — центр гиперболы. x^2 — $y^2=a^2$

M(x,y)

F2(c,0)

F1(-c,0)

Определение. Эксцентриситетом гиперболы наз-ся величина $\varepsilon = \frac{c}{a}$.

Т.к. для гиперболы c > a, и следовательно, чем меньше ϵ , тем более сжата гипербола к оси OX.

Т.. Отношение расстояния от любой точки эллипса (гиперболы) до фокуса к расстоянию до соответствующей директрисы есть величина постоянная, равная эксцентриситету эллипса (гиперболы).

Доказательство, например для эллипса, следует из того, что MF_1 =a+ ϵx , MF_2 =a— ϵx .

Заметим, что, Т.к. все точки параболы равноудалены от директрисы и фокуса, то отношение этих расстояний равно 1. По этому можно

говорить об эксцентриситете параболы и считать его равным 1. Как уже отмечалось, эксцентриситет окружности равен нулю.

Фокальный параметр эллипса и гиперболы

Пусть эллипс и гипербола заданы соответственно своими каноническими уравнениями. Проведем через один из фокусов этих кривых прямую перпендикулярную оси ОХ и обозначим точки ее пересечения с кривой через Р и Р'.

Обозначим длину отрезка PP' через 2р. Тогда величина p(p>0) наз-ся фокальным параметром эллипса (гиперболы) и равна: $p=\frac{b}{a}$.

Если обозначить через d – расстояние между фокусом и деректрисой, то $d = \frac{p}{s}$.

Т.к. для параболы $\varepsilon = 1$ и d = p, то делаем следующий

Вывод: для эллипса (кроме окружности), гиперболы, парабол фокальный параметр р равен: p=εd, где с — эксцентриситет, d — расстояние от фокуса до соответствующей директрисы. Заметим, что для окружности фокальный параметр равен ее радиусу.

32.3 Классификация, когда один из коэффициентов = 0

$$Ax^2 + Ey + F = 0$$

- 1. $E = 0, AF > 0 \emptyset;$
- 2. $F = 0, E = 0, Ax^2 = 0 \text{прямая } x = 0;$
- 3. $E \neq 0$, $Ax^2 + E\left(y + \frac{F}{E}\right) = 0$ —парабола $y = ax^2$

Парабола

Параболой наз-ся геометрическое место точек плоскости, равноудаленных от некоторой точки, называемой фокусом параболы и некоторой прямой, называемой директрисой параболы.

Уравнение параболы принято записывать в следующем виде: $y^2 = 2px$, p > 0 (1)

- каноническое уравнение параболы.

Свойства параболы непосредственно следуют из свойств уравнения:

- 3. Абсцисса любой точки параболы неотрицательна.
- 4. Парабола проходит через начало координат.
- 5. Парабола симметрична относ. оси абсцисс.
- 6. При неограниченном возрастании абсциссы х ордината у возрастает по абсолютной величине.
- 7. Расстояние от вершины параболы до фокуса равно расстоянию от вершины до директрисы.

Точка $F(\frac{p}{2};0)$ наз-ся фокусом параболы, прямая $x=-\frac{p}{2}$ - директрисой. Величина р наз-ся фокальным параметром или просто параметром параболы.

33. Классификация поверхностей второго порядка

33.1 Определение плоскостей второго порядка

Поверхностью второго порядка наз-ся $\Gamma M T^{20}$ пр-ва M(x, y, z), координаты которых удовлетворяют алгебраическому уравнению 2-й степени с тремя неизвестными:

$$Ax^{2} + By^{2} + Cz^{2} + 2Dxy + 2Exz + 2Fyz + Gx + Hy + Iz + J = 0.$$
 (1)

$$A = \begin{pmatrix} A & D & E \\ D & B & F \\ E & F & C \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

 $Ax^2 + By^2 + Cz^2 + 2Dxy + 2Exz + 2Fyz = X^tAX, A = A^t \rightarrow \exists D = diag(d_1, ..., d_3), Q^t = Q^{-1}$ (ортогональная).

$$D = Q^t A Q$$

$$A = QDQ^t \rightarrow X^tAX = X^tQDQ^tX$$
. Обозначим $Q^tX = Y \rightarrow X^tAX = Y^tDY = \sum d_iy_i^2$.

Замена переменной X = QY даёт отсутствие в новых переменных произведения разных переменных.

- D дианональная матрица, на диагонали собственные числа;
- Q столбцы собственные вектора A, нормированные и расположенные в том же порядке. Свойства:

Не умоляя общности, допустим, что в ур-ях плоскости 2-ого порядка отсутсвует произведение переменных.

Если в уравнении имеется отличный от 0 коэффициент при квадрате некоторой переменной, то || переносом координатных осей можно перейти к уравнению, в котором отсутсвует лин. слагаемое степени соотвествующей переменной (выделить полный квадрат).

Пусть
$$A \neq 0$$
, тогда $Ax^2 + Gx = A\left(x^2 + \frac{G}{A}x + \frac{G^2}{4A^2} - \frac{G^2}{4A^2}\right) = A\left(x + \frac{G}{2A}\right)^2 - \frac{G^2}{4A}$.

Вводим замену: $\begin{cases} x + \frac{G}{A} = u \\ y = v \end{cases}$ и получаем, что в новых переменных слагаемые, содержащие переменную z = w

х отсутсвуют.

33.2 Классификация поверхностей 2-ого порядка

Идея классификации поверхностей основана на приведении их ур-ий к каноническому виду в результате преобразования системы координат в *каноническую*.

$$Ax^2 + By^2 + Cz^2 + Gx + Hy + Iz + J = 0$$

33.2.1 Все три коэфф. ≠ 0

- **I.** Все 3 коэффициента при переменных не равны $0 (A, B, C \neq 0) \rightarrow$ игнорируем все линейные члены.
 - 1) Все коэффициенты одного знака (для определённости A > 0, B > 0, C > 0):

$$a.J > 0 \to \emptyset$$
 $b.J = 0 \to x = y = z$ — точка $c.J < 0 \to \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ — эллипсоид

Отметим, что при a = b = c приведенное уравнение

равносильно уравнению $x^2 + y^2 + z^2 = a^2$, которое задает сферу радиуса a с центром в начале координат.

Для построения используем метод сечений 21 , т.е. рассматриваем плоскость \bot координатной оси. Суть метода:

 $^{^{20}}$ ГМТ – геометрическое множество точек

 $^{^{21}}$ Для выяснения формы поверхности в пространстве по ее уравнению $\Psi(x,y,z)=0$ часто используют так называемый метод сечений. Он состоит в анализе пересечений поверхности с плоскостями, параллельными координатным плоскостям, например с плоскостями вида z=c, где параметр с пробегает все действительные значения. Для каждого значения с система уравнений $\begin{cases} \Psi(x,y,z)=0\\ z=c \end{cases}$, где c – некоторая константа, задает соответствующее пересечение. Критерием принадлежности точки M(x,y,z) этому пересечению являются следующие условия: а) z=c; b) координаты x и y ее проекции на координатную плоскость x O y, т.е. координаты точки N(x,y,0), удовлетворяют уравнению $\Psi(x,y,z)=0$.

Рассмотрим сечения поверхности плоскостями, параллельными координатным плоскостям (эти плоскости имеют уравнения вида x = h, y = h и z = h, где h — некоторая константа). В сечениях получаются кривые, вид которых мы распознаем. Проведя достаточно много таких сечений, мы в итоге получим представление о форме поверхности.

Будем рассматривать кривые, получающиеся в сечении той или иной поверхности плоскостями с уравнениями вида w=h, где w — одна из букв x, y и z. Для экономии места мы вместо записи общего уравнения полученнной кривой вида $\begin{cases} F(x,y)=0\\ w=h \end{cases}$, будем писать только уравнение F(x,y)=0 и называть его уравнением полученной кривой внутри плоскости w=h (или просто «плоскостным» уравнением этой кривой).

Рассмотрим сечение эллипсоида плоскостями вида z=h. Получим кривую, которая внутри этой плоскости задается уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}$.

При |h| > c эта кривая явл. пустым мн-вом, при - точкой, а при |h| < c - эллипсом с «плоскостным» уравнением (объяснение того, откуда взялись верхние с.):

$$\frac{x^2}{a^2\left(1-\frac{h^2}{c^2}\right)} + \frac{y^2}{b^2\left(1-\frac{h^2}{c^2}\right)} = 1.$$

При h=0 полуоси этого эллипса имеют наибольшие значения (равные а и b), с ростом |h| они уменьшаются и стремятся к 0 при $|h| \rightarrow c$. Абсолютно аналогично

устроены сечения эллипсоида плоскостями вида x = h и y = h (надо только соответствующим образом заменить неизвестные и параметры a, b, c в уравнении получающегося эллипса.

2) При
$$A > 0$$
, $B > 0$, $C < 0$
a. $J < 0 \rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Это уравнение наз-ся каноническим уравнением однополостного гиперболоида.

Изучим форму этой поверхности методом сечений. В сечении плоскостью z=h получается эллипс с полуосями $a\sqrt{1+\frac{h^2}{c^2}}$ и $b\sqrt{1+\frac{h^2}{c^2}}$. Значения полуосей минимальны при h=0 и возрастают с ростом |h|.

В сечении плоскостью x = h получается:

• при |h| < а — гипербола, задаваемая внутри этой плоскости уравнением

$$\frac{y^2}{b^2 \left(1 - \frac{h^2}{a^2}\right)} + \frac{z^2}{c^2 \left(1 - \frac{h^2}{a^2}\right)} = 1;$$

действительной и мнимой осями гиперболы являются проекции осей Oy и Oz соответственно на плоскость x=h, полуоси гиперболы максимальны при h=0 и убывают с ростом h;

- при $h = \pm a$ пара пересекающихся прямых, задаваемых внутри плоскости x = h уравнения: $y = \frac{b}{c} \cdot z$ и $y = -\frac{b}{c} \cdot z$;
- $\frac{b}{c} \cdot z \text{ и } y = -\frac{b}{c} \cdot z;$ при |h| > a гипербола, задаваемая «плоскостным» уравнением: $\frac{z^2}{c^2 \left(\frac{h^2}{a^2} 1\right)} + \frac{z^2}{b^2 \left(\frac{h^2}{a^2} 1\right)} = 1;$

действительной и мнимой осями гиперболы являются проекции осей Oz и Oy соответственно на плоскость x = h; полуоси гиперболы возрастают с ростом h;

Сечения плоскостями вида y = h устроены аналогично сечениям плоскостями вида x = h. В целом однополостный гиперболоид выглядит так, как показано на рисунке:

$$b.J > 0 \rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} - 1$$

Это уравнение наз-ся каноническим уравнением двуполостного гиперболоида.

Как и предыдущих случаях, изучим форму этой поверхности методом сечений. В сечении плоскостью z=h получается кривая, которая внутри этой плоскости задается уравнением: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 + \frac{h^2}{c^2}$. Если |h| < c, то эта кривая представляет собой пустое мн-во; если |h| = c, то наша кривая явл. точкой; если же |h| > c, то эта кривая явл.

$$\frac{x^2}{a^2\left(-1+\frac{h^2}{c^2}\right)} + \frac{y^2}{b^2\left(-1+\frac{h^2}{c^2}\right)} = 1$$
 полуоси которого растут с ростом $|h|$.

В сечении плоскостями x = h и y = h получаются гиперболы с «плоскостными уравнениями:

эллипсом с «плоскостным» уравнением:

$$\frac{z^2}{c^2\left(1+\frac{h^2}{a^2}\right)} - \frac{y^2}{b^2\left(1+\frac{h^2}{a^2}\right)} = 1 \text{ и } \frac{z^2}{c^2\left(1+\frac{h^2}{b^2}\right)} - \frac{x^2}{a^2\left(1+\frac{h^2}{b^2}\right)} = 1 \text{ соответственно,}$$

полуоси которых минимальны при h=0 (т. е. при сечении координатными плоскостями x=0 и y=0) и растут с ростом h.

В результате получаем двуполостный гиперполоид, показанный на рисунке:

$$c.J = 0 \rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

Это уравнение наз-ся конической поверхностью. Если y=0, то $\frac{x}{a}=\pm\frac{z}{c}$.

II. Рассмотрим случай, когда $A, B \neq 0$, а C = 0: $Ax^2 + By^2 + Iz + J = 0$.

1) При
$$I = 0$$
: $Ax^2 + By^2 + J = 0$

$$a.A > 0, B > 0, J > 0 \rightarrow \emptyset$$

 $b.A > 0, B < 0, J = 0 \rightarrow \frac{x^2}{a^2} = \frac{y^2}{b^2}$ – пара пересекающихся плоскостей в пр-ве:

с.
$$A > 0$$
, $B < 0$, $J \neq 0 \rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ – уравнение гиперболы в плоскости XY .

На рисунке изображён *гиперболический цилиндр* в случае J < 0, при J > 0 данная картина развернётся на 90°:

$$d.A > 0, B > 0, J < 0 \rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

При $a \ge b$ получаем эллиптический цилиндр (образующие — паралелльыне оси z, а направляющей линией явл. эллипс), при a = b — круговой цилиндр.

e.
$$A > 0, B > 0, J = 0 \rightarrow Ax^2 + By^2 = 0$$

 $x = 0 = y, z - \forall$

В теории, в данном случае, приведя уравнение к виду $y^2 = 2px$, где p > 0 можно получить *параболический цилиндр*. р – это расстояние от фокуса до директриссы параболы, а образующая – прямая, параллельная оси Oz. При p = 0 поверхность вырождается в плоскость.

2) При
$$A, B \neq 0, C = 0, I \neq 0$$
 из последнего следует, что свободный член роли не играет: $Ax^2 + By^2 + Iz + J = 0 \rightarrow Ax^2 + By^2 + I\left(z + \frac{y}{I}\right) = 0$

Параллельным переносом координатных осей можно перейти к уравнению, в котором отсутсвует свободный член.

$$z = Ax^2 + By^2$$

a.
$$A > 0$$
, $B > 0 \rightarrow z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

Эллиптическим параболоидом наз-ся мн-во всех точек пр-ва, координаты которых в подходящей системе координат удовлетворяют уравнению вида:

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$, где a, b > 0 и a > b. Это уравнение наз-ся каноническим уравнением эллиптического параболоида.

В сечении этой поверхности плоскостью z = h получается:

- при h < 0 пустое мн-во;
- при h = 0 точка (начало координат);
- при h > 0 эллипс с «плоскостным» уравнением:

 $\frac{x^2}{2ha^2} + \frac{y^2}{2hb^2} = 1$, полуоси которого растут с ростом h.

В сечении плоскостью у = h получается кривая с «плоскостным» уравнением:

$$x^2 = 2a^2 \left(z - \frac{h^2}{2b^2} \right)$$

Это парабола с параметром a^2 , ветви которой направлены вверх, т. е. в положительном направлении оси Oz. При h=0 ее вершина совпадает с началом координат, с увеличением |h| она поднимается вдоль оси Oz.

Аналогичным образом устроено сечение плоскостью x = h: это парабола с «плоскостным» уравнением:

$$y^2 = 2b^2\left(z - \frac{h^2}{2a^2}\right)$$
, параметр которой равен b^2 , а вершина совпадает с началом координат при

h = 0 и поднимается вдоль оси 0z с ростом |h|.

Оптическое свойство эллиптического параболоида

Сечения эллиптического параболоида плоскостями

x = h и y = h являются параболами. Пучок лучей, параллельных оси

соответствующей параболы.

$$b.A > 0, b < 0: z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Гиперболическим параболоидом наз-ся мн-во всех точек пр-ва, координаты которых в подходящей системе координат удовлетворяют уравнению вида:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$
, где $a, b > 0$. Это уравнение наз-ся каноническим уравнением гиперболического параболоида.

Рассмотрим сечение этой поверхности плоскостью z = h. Получим кривую, которая внутри этой плоскости имеет уравнение $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 2h$.

При h=0 в сечении получается пара пересекающихся прямых, которые в плоскости 0xy задаются уравнениями $\frac{x}{a}+\frac{y}{b}=0$ и $\frac{x}{a}-\frac{y}{b}=0$. При h>0 наше сечение явл. гиперболой с «плоскостным» уравнением:

 $\frac{x^2}{2a^2\mathrm{h}} + \frac{y^2}{2b^2\mathrm{h}} = 1$, у которой ортогональные проекции осей 0x и 0y на плоскость z = h являются действительной и мнимой осью соответственно, а полуоси гиперболы растут с ростом h.

При h < 0 также получается гипербола, только здесь полуоси гиперболы «меняются ролями» (по сравнению со случаем h > 0), а ее полуоси растут с убыванием h.

Рассмотрим теперь сечение гиперболического параболоида плоскостью y = h. Получим кривую, задаваемую внутри плоскости уравнением: $x^2 =$

$$2a^2\left(z+\frac{h^2}{2b^2}\right).$$

Это парабола с параметром a^2 , ветви которой направлены вверх, т. е. в положительном направлении оси Oz. При h = 0 ее вершина совпадает с началом координат, с увеличением |h| она поднимается вдоль оси 0z.

Аналогичная картина получается при сечении плоскостью x = h: вновь возникает парабола, которая теперь имеет «плоскостное» уравнение:

$$y^2 = -2b^2 \left(z - \frac{h^2}{2a^2} \right).$$

Ее параметр равен b^2 , ветви параболы направлены

вниз (в отрицательном направлении оси Oz). При h=0 вершина параболы совпадает с началом координат, а с увеличением |h| она опускается вдоль оси Oz.

Данный график также иногда называют "седлом". Также он явл. линейчатой поверхностью.

Общее уравнение поверхности второго порядка: $Ax^2 + By^2 + Cz^2 + 2Fyz + 2Gzx + 2Hxy + 2Px + 2Qy + 2Rz + D = 0$, где x, y, z – координаты точек поверхности, A, B, C,... - действительные числа.

T.C 1	1		U			
Классио	hикания	поверхност	ей второго	э порялка	по инва	пиантам
Italacolliq	ринскищим	110Depinioe1	. OII DIOPOI	о поридни	IIO IIIIDO	·piiaii i am

#	Ранг (e)	Ранг (E)	Δ	Знаки к	Вид поверхности
1	3	4	< 0	Одинаковые	Эллипсоид
2	3	4	> 0	Одинаковые	Мнимый эллипсоид
3	3	4	> 0	Разные	Однополостный гиперболоид
4	3	4	< 0	Разные	Двуполостный гиперболоид
5	3	3		Разные	Коническая поверхность
6	3	3		Одинаковые	Мнимая коническая поверхность
7	2	4	< 0	Одинаковые	Эллиптический параболоид
8	2	4	> 0	Разные	Гиперболический параболоид
9	2	3		Одинаковые	Эллиптический цилиндр
10	2	3		Одинаковые	Мнимый эллиптический цилиндр
11	2	3		Разные	Гиперболический цилиндр
12	2	2		Разные	Пересекающиеся плоскости
13	2	2		Одинаковые	Мнимые пересекающиеся плоскости
14	1	3			Параболический цилиндр
15	1	2		_	Параллельные плоскости
16	1	2		_	Мнимые параллельные плоскости
17	1	1	-	_	Совпадающие плоскости

Данная классификация основана на рассмотрении инвариантов поверхностей второго порядка. Инварианты представляют собой специальные выражения, составленные из коэффициентов общего уравнения, которые не меняются при параллельном переносе или повороте системы координат.

В качестве инвариантов используются ранги матриц e и E, определитель матрицы E и знаки корней характеристического уравнения для матрицы e. Указанные матрицы имеют вид:

$$e = \begin{pmatrix} A & H & G \\ H & B & F \\ G & F & C \end{pmatrix}, E = \begin{pmatrix} A & H & Q & P \\ H & B & F & Q \\ G & F & C & R \\ P & Q & R & D \end{pmatrix}, \Delta = det(E),$$

а корни k_1, k_2, k_3 находятся из решения уравнения:

$$\begin{vmatrix} A-k & H & G \\ H & B-k & F \\ G & F & C-k \end{vmatrix} = 0.$$

Приложения

1. Матрицы геометрических преобразований в трёхмерном пр-ве

Переход из одной прямолинейной координатной системы в трёхмерном пр-ве к другой описывается в общем случае следующим образом:

$$x *= \alpha_1 x + \alpha_2 y + \alpha_3 z + \lambda$$

$$y *= \beta_1 x + \beta_2 y + \beta_3 z + \mu$$

$$z *= \gamma_1 x + \gamma_2 y + \gamma_3 z + \nu$$

или в матричном виде:

$$[x * y * z * 1] = [xyz1][A]$$

$$A = \begin{bmatrix} \alpha_1 & \beta_1 & \gamma_1 & 0 \\ \alpha_2 & \beta_2 & \gamma_2 & 0 \\ \alpha_3 & \beta_3 & \gamma_3 & 0 \\ \lambda & \mu & \nu & 1 \end{bmatrix}$$

Рассмотрим матрицы, соответствующие следующим базовым геометрическим преобразованиям:

• Повороты

$$[R_x] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\varphi & \sin\varphi & 0 \\ 0 & -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

вокруг оси Y на угол $^{\not W}$

$$[R_y] = \begin{bmatrix} \cos\psi & 0 & -\sin\psi & 0 \\ 0 & 1 & 0 & 0 \\ \sin\psi & 0 & \cos\psi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

вокруг оси Z на угол \mathcal{X}

$$[R_z] = \begin{bmatrix} \cos \chi & \sin \chi & 0 & 0 \\ -\sin \chi & \cos \chi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Растяжение (сжатие):

$$[D] = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

если $\alpha, \beta, \gamma > 1$ - растяжение, $0 < \alpha, \beta, \gamma < 1$ - сжатие

• Отражение (зеркалирование):

относительно плоскости ХОУ

$$[M_z] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

относительно плоскости YOZ

$$[M_x] = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

относительно плоскости *ZOX*

$$[M_y] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Перенос (сдвиг, перемещение) на вектор (λ, μ, ν) :

$$[T] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \lambda & \mu & \nu & 1 \end{bmatrix}$$

Важно:преобразование точки (с сохранением расположения исход. системы координат) соответствует выполнению обратной операции по отношению к преобразованию системы координат. Например, поворот точки на некоторый угол по часовой стрелке вокруг оси X соответствует повороту системы координат против часовой стрелки на тот же угол.

2. Рисунки и уравнения плоскостей второго порядка

Уравнения с графиками Эллипсоид $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Однополостный гиперболоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 1$$

$$M$$
нимый эллипсоид $rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = -1$

Однополостный гиперболоид
$$rac{x^2}{a^2}+rac{y^2}{b^2}-rac{z^2}{c^2}=1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

$$K$$
оническая поверхность $rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} = 0$

$$M$$
нимая коническая поверхность $rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 0$

 Γ иперболический параболоид $rac{x^2}{a^2}-rac{y^2}{b^2}-z=0$

$$\frac{x^2}{3} - \frac{y^2}{13} - z = 0$$

Эллиптический цилиндр $rac{x^2}{a^2}+rac{y^2}{b^2}=1$

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

Mнимый эллиптический уилиндр $rac{x^2}{a^2} + rac{y^2}{b^2} = -1$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

 Γ иперболический цилиндр $rac{x^2}{a^2}-rac{y^2}{b^2}=1$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 Π араболический цилиндр , $rac{x^2}{a^2}-y=0$

$$\frac{x^2}{x^2} - y = 0$$

Пересекающиеся плоскости $rac{x^2}{a^2}-rac{y^2}{b^2}=0$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

Mнимые пересекающиеся плоскости $rac{x^2}{a^2} + rac{y^2}{b^2} = 0$

$$\frac{x^2}{x^2} + \frac{y^2}{h^2} = 0$$

 Π араллельные плоскости $rac{x^2}{a^2}=1$

$$\frac{x^2}{x^2} = 1$$

Мнимые паразлельные плоскости

$$\frac{x^2}{a^2} = -1$$

Совпадающие плоскости

$$x^2 = 0$$

Уравнение сферы с центром в начале координат

Сфера является частным случаем эллипсоида, когда все его полуоси одинаковы (и равны радиусу сферы). Уравнение сферы с центром в начале координат и радиусом R выражается формулой $x^2+y^2+z^2=R^2$.

3. Краткая сводная таблица кривых 2-ого порядка

Названия	Канон. ур.	Графическое представление	Доп. информация	Вычисления для построения
Эллипс	$\frac{x^2}{a^2} + \frac{y^2}{B^2} = 1;$ а, b – полуоси	-a B a A A A A A A A A A	ГМТ, для которых сумма расстояния до фиксированных точек (фокусы) есть величина постоянная = 2a.	$r_1 = \sqrt{(x+c)^2 + y^2}, r_2 = \sqrt{(x-c)^2 + y^2}$ $ \sqrt{(x+c)^2 + y^2} - \sqrt{(x+c)^2 + y^2} = 2a$ $\varepsilon_{\scriptscriptstyle 3ЛЛ} = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} = \sqrt{1 - \left(\frac{b}{a}\right)^2}$ Директрисы: $x = \pm \frac{a}{\varepsilon}$
Гипербола	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	F ₁ a F ₂	ГМТ на плоскости, для которых модуль разности расстояний до 2 фиксированных точек F ₁ и F ₂ есть постоянная величина = 2a.	$c = \sqrt{a^2 + b^2}$ $r_1 = \sqrt{(x+c)^2 + y^2}, r_2 = \sqrt{(x-c)^2 + y^2}$ $\left \sqrt{(x+c)^2 + y^2} - \sqrt{(x+c)^2 + y^2} \right = 2a$ Директрисы: $x = \pm \frac{a}{\varepsilon}$
Парабола	$y^2 = 2px$	$x^{2} = 2py$ $y^{2} = -2px$ $y^{2} = 2px$ $x^{2} = -2py$	Расстояние от вершины параболы до фокуса равно расстоянию от вершины до директрисы.	

4. Для практики

Как найти матрицу перехода, зная координаты векторов обоих базисов (e_1,\ldots,e_n) и (e'_1,\ldots,e'_n) пространства K^n в стандартном базисе. Зашинем координаты векторов первого базиса по столбцам матрицы A, а второго — по столбцам матрицы B рядом с A. Получим $(n\times 2n)$ -матрицу (A|B), которую приведём к главному ступенчатому виду. Так как матрица A невырожденная, то мы получим на её месте единичную матрицу E: $(A|B) \leadsto (E|C)$. Тогда C — искомая матрица.

Обоснование: столбцы матрицы C выражаются через столбцы матрицы E точно так жее, как столбцы матрицы B через столбцы матрицы A (почему?), то есть с помощью искомой матрицы перехода.

Как меняется матрица оператора при переходе к другому базису.

Бескоординатная записьВ базисе
$$(e_1, \dots, e_n)$$
В базисе (e'_1, \dots, e'_n) $y = Ax$ $Y = AX$ $Y' = A'X'$ $x, y \in V, A: V \to V$ $X, Y \in K^n$ — столбцы. $A \in M_n(K)$ $X', Y' \in K^n$ — столбцы. $A' \in M_n(K)$

Так как X = CX' и Y = CY', то

$$Y=AX\iff CY'=ACX'\iff CA'X'=ACX'-$$
для всех $X'\in K^n$, откуда
$$CA'=AC\iff \boxed{A'=C^{-1}AC}.$$

Как быстро найти матрицу $C^{-1}AC$? Элементарными преобразованиями: $(C \mid AC) \leadsto (E \mid C^{-1}AC)$.