CSC236 Notes

Jenci Wei

Fall 2021

Contents

1	Simple Induction	:
2	Complete Induction	4
3	Structural Induction	Ę
4	Principle of Well-Ordering	6
5	Languages	7
6	Regular Expressions	ę
7	Deterministic Finite State Machine	10
8	Non-deterministic Finite State Machine	11
9	Regularity of Languages	12
10	Recurrences	14
11	Recursive Correctness	16
12	Iterative Correctness	17

1 Simple Induction

If the initial case works, and each case that works implies its successor works, then all cases work

$$[P(0) \land (\forall n \in \mathbb{N}, P(n) \implies P(n+1))] \implies \forall n \in \mathbb{N}, P(n)$$

Simple induction outline

- ullet Inductive step: introduce n and inductive hypothesis H(n)
 - Derive conclusion C(n): show that C(n) follows from H(n), indicating where H(n) is used and why that is valid
 - In simple induction, C(n) is H(n+1)
- ullet Verify base cases: verify that the claim is true for any cases not covered in the inductive step

2 Complete Induction

Notation:

$$\bigwedge_{k=0}^{k=n-1} P(k) := \forall k \in \mathbb{N}, k < n \implies P(k)$$

If all the previous cases always imply the current case, then all cases are true

$$\left(\forall n \in \mathbb{N}, \left[\bigwedge_{k=0}^{k=n-1} P(k)\right] \implies P(n)\right) \implies \forall n \in \mathbb{N}, P(n)$$

Complete induction outline

- Inductive step: state inductive hypothesis H(n)
 - Derive conclusion C(n): show that C(n) follows from H(n), indicating where H(n) is used and why that is valid
 - -H(n) assumes the main claim for every natural number from the starting point up to n-1
 - -C(n) is the main claim for n
- Verify base cases: verify that the claim is true for any cases not covered in the inductive step

3 Structural Induction

Recursively defined function: example

$$f(n) = \begin{cases} 1, & \text{if } n = 0\\ 2, & \text{if } n = 1\\ f(n-2) + f(n-1), & \text{if } n > 1 \end{cases}$$

Inductively defined set: example

- \bullet N is the smallest set such that
 - 1. $0 \in \mathbb{N}$ (basis)
 - 2. $n \in \mathbb{N} \implies n+1 \in \mathbb{N} \text{ (inductive step)}$
 - Smallest: no proper subsets satisfy these conditions
- ullet Define \mathcal{E} : the smallest set such that
 - 1. $x, y, z \in \mathcal{E}$
 - 2. $e_1, e_2 \in \mathcal{E} \implies (e_1 + e_2), (e_1 e_2), (e_1 \times e_2), (e_1 \div e_2) \in \mathcal{E}$

Structural induction

- Define P(e): vr(e) = op(e) + 1 where
 - -vr is the variable-counting function
 - op is the operator-counting function
- Verify base cases: show that the property is true for the simplest members, $\{x, y, z\}$; i.e. show
 - -P(x)
 - -P(y)
 - -P(z)
- Inductive step: let $e_1, e_2 \in \mathcal{E}$. Assume $H(\{e_1, e_2\})$, i.e. $P(e_1)$ and $P(e_2)$.
 - Show that $C(\{e_1, e_2\})$ follows: all possible combinations of e_1 and e_2 have the property, i.e.
 - * $P((e_1+e_2))$
 - $* P((e_1 e_2))$
 - * $P((e_1 \times e_2))$
 - * $P((e_1 \div e_2))$

4 Principle of Well-Ordering

Every non-empty subset of $\mathbb N$ has a smallest element

Proving a claim using Principle of Well-Ordering

- Assume the negation for a contradiction
- ullet Let S be some set
- \bullet Show that S is nonempty and $S\subseteq \mathbb{N}$
- ullet By the Principle of Well-Ordering S has a smallest element, call it s'
- \bullet From this, show that there exists an element s less than s'
- This is a contradiction, and so our assumption is false

5 Languages

Definitions

- Alphabet: finite, non-empty set of symbols
 - Conventionally denoted Σ
 - E.g. $\{a,b\}, \{0,1,-1\}$
- String: finite (including empty) sequence of symbols over an alphabet
 - $-\epsilon$ is the empty string
 - $-\Sigma^*$ is the set of all strings over Σ
 - E.g. abba is a string over $\{a, b\}$
- Language: subset of Σ^* for some alphabet Σ . Possibly empty, possibly infinite subset
 - $\text{ E.g. } \{\}, \{aa, aaa, aaaa, \ldots\}$
 - {} \neq { ϵ } since one has length 0 and the other has length 1

String operations:

- |s|: string length, number of symbols in s
 - E.g. |bba| = 3
- s = t: iff |s| = |t| and $s_i = t_i$ for $0 \le i < |s|$
- s^R : reversal of s, obtained by reversing symbols of s
 - $E.g. 1011^R = 1101$
- st or $s \circ t$: concatenation of s and t, all characters of s followed by all those in t
 - $-bba \circ bb = bbabb$
- s^k : s concatenated with itself k times
 - $-ab^3 = ababab, 101^0 = \epsilon$
- Σ^n : all strings of length n over Σ
- Σ^* : all strings over Σ

Language operations:

- \overline{L} : complement of L, i.e. $\Sigma^* L$
 - E.g. if L is language of strings over $\{0,1\}$ that start with 0, then \overline{L} is the language of strings that begin with 1 plus the empty string
- $L \cup L'$: union
- $L \cap L'$: intersection
- L L': difference
 - E.g. $\{0,00,000\} \{10,01,0\} = \{00,000\}$
- Rev(L): $\{s^R : s \in L\}$
- LL' or $L \circ L'$: concatenation, $\{rt : r \in L, t \in L'\}$

– E.g.
$$L\left\{\epsilon\right\}=L=\left\{\epsilon\right\}L,\,L\left\{\right\}=\left\{\right\}=\left\{\right\}L$$

- L^k : exponentiation, concatenation of L k times
 - E.g. $L^0 = {\epsilon}$, even when $L = {\}}$
- L^* : Kleene star, $L^0 \cup L^1 \cup L^2 \cup \cdots$

6 Regular Expressions

The **regular expressions** over alphabet Σ is the *smallest* set such that

- 1. \emptyset , ϵ , and x, for every $x \in \Sigma$ are REs over Σ
- 2. If T and S are REs over Σ , then so are
 - (T+S) (union) lowest precedence operator
 - \bullet (TS) (concatenation) middle precedence operator
 - T^* (star) highest precedence

Regular expression to language

- The L(R), then language denoted by R is defined by structural induction:
 - Basis: If R is a regular expression by the basis of the definition of regular expressions, then define L(R):
 - * $L(\emptyset) = \emptyset$ (the empty language, no strings)
 - * $L(\epsilon) = \{\epsilon\}$ (the language consisting of just the empty string)
 - * $L(x) = \{x\}$ (the language consisting of the one-symbol string)
 - Induction step: If R is a reular expression by the induction step of the definition, then define L(R):
 - $*L((S+T)) = L(S) \cup L(T)$
 - *L((ST)) = L(S)L(T)
 - $* L(T^*) = L(T)^*$

Regular expression identities

- Commutativity of union: $R + S \equiv S + R$
- Associativity of union: $(R+S)+T\equiv R+(S+T)$
- Associativity of concatenation: $(RS)T \equiv R(ST)$
- Left distributivity: $R(S+T) \equiv RS + RT$
- Right distributivity: $(S+T)R \equiv SR + TR$
- Identity for union: $R + \emptyset = R$
- Identity for concatenation: $R\epsilon \equiv R = \epsilon R$
- Annihilator for concatenation: $\emptyset R \equiv \emptyset \equiv R \emptyset$
- Idempotence of Kleene star: $(R^*)^* \equiv R^*$

7 Deterministic Finite State Machine

Build an automaton with formalities

- Quintuple: $(Q, \Sigma, q_0, F, \delta)$
- \bullet Q is the set of states
- Σ is finite, non-empty alphabet
- q_0 is start state
- F is set of accepting states
- $\delta: Q \times \Sigma \to Q$ is transition function

Can extend $\delta: Q \times \Sigma \to Q$ to a transition function that tells us what state a *string s* takes the automaton to:

$$\delta^*:Q\times\Sigma^*\to Q \text{ defined by } \delta^*(q,s)=\begin{cases} q, & \text{if } s=\epsilon\\ \delta(\delta^*(q,s'),a), & \text{if } s'\in\Sigma^*, a\in\Sigma, s=s'a \end{cases}$$

String s is accepted iff $\delta^*(q_0, s) \in F$, and rejected otherwise

Product construction

- $\bullet \ Q = Q_1 \times Q_2$
- Σ does not change
- $q_0 = \left(q_0^{(1)}, q_0^{(2)}\right)$
- $F = F_1 \times F_2$ for intersection or $\{(q_1, q_2) \in Q : q_1 \in F_1 \lor q_2 \in F_2\}$ for union
- $\delta((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c))$

8 Non-deterministic Finite State Machine

Difference from DFSA

• δ can have multiple outputs

Convert NFSA to DFSA - subset construction

- E.g. $\Sigma = \{0, 1\}$
- Start at the start state combined with any states reachable from the start with ϵ -transitions
- If there are any 1-transitions from this new combined start state, combine them into a new state
- If there are any 0-transitions from this new combined start state, combine them into a new state
- Repeat for every state reachable from the start

Equivalence between machines and expressions

$$L = L(M) \text{ for some DFSA } M$$

$$\iff L = L(M') \text{ for some NFSA } M'$$

$$\iff L = L(R) \text{ for some regular expression } R$$

Convert DFSA to regular expression - eliminate states

- 1. s_1, \ldots, s_m are states with transitions to q, with labels S_1, \ldots, S_m
- 2. t_1, \ldots, t_n are states with transitions from q, with labels T_1, \ldots, T_n
- 3. Q is any self-loop on q
- 4. Eliminate q, and union transition label $S_iQ^*T_j$ from s_i to t_j
- Start from s_i , S_i to the former q, then Q any number of times, then T_j to the destination t_j Summary

9 Regularity of Languages

Regular languages closure

- L regular $\Longrightarrow \overline{L}$ regular
- L regular $\Longrightarrow Rev(L)$ regular
- If |L| is finite, then L is regular
- If L is a language in which every string has length $\leq k$ for some $k \in \mathbb{N}$, then L is regular

Pumping Lemma

- If $L \subseteq \Sigma^*$ is a regular language, then there is some $n_L \in \mathbb{N}$ such that if $x \in L$ and $|x| \geq n_L$, then
 - $-\exists u, v, w \in \Sigma^*$ such that x = uvw (x is a sandwich)
 - -|v| > 0 (sandwich filling is not empty)
 - $-|uv| \le n_L$ (first two layers not bigger than n_L)
 - $\forall k \in \mathbb{N}, uv^k w \in L$ (filling can be "pumped")

Proof of irregularity using Pumping Lemma

- Assume for contradiction that L is regular
- Let m > 0
- Let $x = ... \in L$, satisfying $|x| \ge m$
- By Pumping Lemma, x = uvw, where $|uv| \le m$, and |v| > 0, and for all $k \in \mathbb{N}$, $uv^k w \in L$.
- Then $uvvw \in L$, however it is not in L
- Which is a contradiction, and so the assumption is false. Therefore L is not regular.

Myhill-Nerode

• If machine M(L) has $|Q| = n_L$, $x \in L \land |x| \ge n_L$, denote $q_i = \delta^*(q_0, x[:i])$, so x "visits" $q_0, q_1, \ldots, q_{n_L}$ with the $n_L + 1$ prefixes of x (including ϵ), so there is at least one state that x visits twice (by pigeonhole principle, and x has $n_L + 1$ prefixes)

Proof of irregularity using Myhill-Nerode

- Assume for contradiction that L is regular
- There is some FSA M that accepts L, where M has |Q| = m > 0
- Consider the prefixes x^0, x^1, \dots, x^m , which are valid prefixes of...
- Since ther are m+1 prefixes and m states, there are at least 2 prefixes that drive M to the same state, so there are $0 \le h < i \le m$ such that x^h and x^i drive M to the same state
- So, since $x^h y$ is accepted, $x^i y$ must also be accepted
- But $x^i y$ is not accepted
- This is a contradiction, and so the assumption is false. Therefore L is not regular

PDA

• DFSA plus an infinite stack with finite set of stack symbols

- Each transition depends on the state, (optionally) the input symbol, (optionally) a pop from stack
- Each transition results in a state, (optional) push onto stack

Linear bounded automata

- Finite states
- Read/write a tape of memory proportional to input size
- Tape moves on one position from left to right
- Most realistic model of our current computing capability

Turing machine

- Finite states
- Read/write an infinite tape of memory
- Tape moves on one position from left to right
- Model that we usually use to say what is computable

Each machine has a corresponding **grammar**

• E.g. FSAs use regexes

10 Recurrences

Recursive definition example: Fibonacci patterns

$$F(n) = \begin{cases} n, & \text{if } n < 2 \\ F(n-2) + F(n-1), & \text{if } n \ge 2 \end{cases}$$
 For a natural number n

Closed form for F(n):

$$F(n) = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \text{ where } \phi = \frac{1 + \sqrt{5}}{2}, \hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

Mergesort complexity

1. Derive a recurrence to express worst-case run times in terms of n = |A|:

$$T(n) = \begin{cases} c', & \text{if } n = 1\\ T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n, & \text{if } n > 1 \end{cases}$$

2. Repeated substitution/unwinding in special case where $n=2^k$ for some natural number k leads to

$$T(2^k) = 2^k T(1) + k2^k = c'n + n \log n$$

Conjecture: $T \in \Theta(n \log n)$

- 3. Prove T is non-decreasing
- 4. Prove $T \in \mathcal{O}(n \log n)$ and $T \in \Omega(n \log n)$

Divide-and-conquer general case

$$T(n) = \begin{cases} k, & \text{if } n \leq B \\ a_1 T\left(\left\lceil \frac{n}{b} \right\rceil\right) + a_2 T\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n), & \text{if } n > B \end{cases}$$

where b, k > 0, $a_1, a_2 \ge 0$, and $a = a_1 + a_2 > 0$. f(n) is the cost of splitting and recombining.

- b: number of pieces we divide the problem into
- a: number of recursive calls of T
- f: cost of splitting and later re-combining the problem input

Master Theorem: if $f \in \Theta(n^d)$, then

$$T(n) \in \begin{cases} \Theta(n^d), & \text{if } a < b^d \\ \Theta(n^d \log_b n), & \text{if } a = b^d \\ \Theta(n^{\log_b a}), & \text{if } a > b^d \end{cases}$$

• d: degree of polynomial expressing splitting/recombining costs

Master Theorem examples

- Binary search: b = 2, d = 0, a = 1, so the complexity is $\Theta(\log n)$
- Mergesort: b = 2, d = 1, a = 2, so the complexity is $\Theta(n \log n)$

To prove the Master Theorem:

1. Unwind the recurrence, and prove a result for $n = b^k$

- 2. Prove that T is non-decreasing
- 3. Extend to all n

Binary multiplication

- Want to multiply bits but they do not fit into a machine instruction
- Cut down each multiplier in $x \times y$ in the middle, resulting $x_1x_0 \times y_1y_0$

$$xy = (2^{n/2}x_1 + x_0)(2^{n/2}y_1 + y_0) = 2^n x_1 y_1 + 2^{n/2}(x_1 y_0 + y_1 x_0) + x_0 y_0$$

- Divide each factor (roughly) in half b = 2
- Recursively multiply the halves a = 4
- Combine the products with shifts and adds d=1
- Complexity: $\Theta(n^2)$
- Gauss's trick

$$xy = 2^{n}x_{1}y_{1} + 2^{n/2}x_{1}y_{1} + 2^{n/2}((x_{1} - x_{0})(y_{0} - y_{1}) + x_{0}y_{0}) + x_{0}y_{0}$$

- a becomes 3 since we only recursively multiplicate 3 times
- Complexity: $\Theta(n^{\log_2 3})$

11 Recursive Correctness

Want to prove: precondition \implies termination and postcondition

Proof example: by induction on n

- Base case: $n = \dots$
 - Terminates because there are no loops or further calls
 - Returns ..., so postcondition satisfied
- Induction step: Assume $n > \dots$ and that the postcondition is satisfied for inputs of size $1 \le k < \dots$, and the function terminates on such inputs.
 - Show that IH applies to the recursive call
 - Translate the postcondition to the recursive call
 - Show that the original call satisfies postcondition

12 Iterative Correctness

Loop invariant

- Come up with a loop invariant
- Prove by induction

Prove termination

- ullet Associate a decreasing sequence in $\mathbb N$ with loop iterations
- By the Principle of Well-Ordering, there must be a smallest, and hence last, element of the sequence, which is linked to the last iteration
- Could add a loop invariant to do so

Prove partial correctness

- ullet precondition \wedge execution \wedge termination \Longrightarrow postcondition
- ullet Assume loop terminates after iteration f
- By loop condition ..., we have ..., which is the postcondition

Putting everything together, we have iterative correctness