

单个总体均值的检验

授课教师: 陈雄强

浙江财经大学 数据科学学院

总体均值的检验

研究的问题

假设	研究的问题		
	双侧检验	左侧检验	右侧检验
原假设: H ₀	$\mu = \mu_0$	$\mu \ge \mu_0$	$\mu \leq \mu_0$
备择假设: H ₁	$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$

总体均值的检验

检验统计量的选择

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

▶情形1: 方差σ²已知

▶情形2: 方差σ²未知, 但为大样本

▶情形3: 方差σ²未知, 且为小样本

情形1: 方差σ²已知 (双侧检验)

均值检验步骤

1.建立原假设和备择假设。

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu \neq \mu_0$

2.构建检验统计量。

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1).$$

情形1: 方差σ²已知 (双侧检验)

均值检验步骤

3.确定拒绝域

$$P\left\{\left|z\right|\geq z_{a/2}\right\}=\alpha.$$

4.作出统计决策

如果
$$|z| \geq z_{a/2}$$
,则拒绝原假设 H_0 ;

如果 $|z| < z_{a/2}$,则无法拒绝。

情形1: 方差σ2已知(双侧检验)

【例】某切割机正常工作时, 切割每段金属棒的平均长度为10.5cm, 标准差是0.15cm。今从一批产品中随机的抽取15段进行测量, 其结果如下:

10 .4 10 .6 10 .1 10 .4 10 .5 10 .3 10 .3 10 .2

10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度服从正态分布,且标准差没有变化,试问

该机工作是否正常? $(\alpha = 0.05)$

情形1: 方差σ2已知 (双侧检验)

检验步骤:

1.提出原假设与备择假设:

$$H_0$$
: $\mu = 10.5$; H_1 : $\mu \neq 10.5$

2.构建检验统计量:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

$$= \frac{10.48 - 10.5}{0.15 / \sqrt{15}} = -0.516$$

3.确定拒绝域 (a=0.05):

4.作出决策:

在 α = 0.05的水平上无法拒绝 H_0 说明该机器工作正常。

情形1: 方差σ²已知(单侧检验)

【例】某批发商欲从厂家购进一批灯泡,根据合同规定,灯泡的使用寿命平均不能低于1000小时。已知灯泡使用寿命服从正态分布,标准差为20小时。在总体中随机抽取100只灯泡,测得样本均值为960小时。批发商是否应该购买这批灯泡?(α

=0.05)

情形1: 方差σ²已知(单侧检验)

均值检验步骤:

1.提出原假设与备择假设:

 H_0 : $\mu \ge 1000$; H_1 : $\mu < 1000$

2.构建检验统计量:

$$Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
$$= \frac{960 - 1000}{20 / \sqrt{100}} = -2$$

3.确定拒绝域 (*a*=0.05) :

4.作出决策:

在a=0.05的水平上拒绝 H_0 ,即有证据表明这批灯泡的使用寿命低于1000小时。

情形2: 方差 2未知,但为大样本

均值检验方法

用 s^2 代替 σ^2 ,使用z统计量:

$$z = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim N(0,1).$$

情形3: 方差 2未知,且为小样本

均值检验方法

用 s^2 代替 σ^2 ,使用t统计量:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \sim t (n - 1)$$

单个总体均值的检验

谢 谢