Churn Prediction System

The goal of this project is to predict customer churn using machine learning techniques and help businesses reduce customer attrition by identifying high-risk segments in advance.

We built, tuned, and evaluated multiple classification models on real-world customer data (from the banking/telecom sector), then visualized the results using charts and dashboards.

Dataset:Bank Customer Churn Dataset(Kaggle)

- Records: ~10,000
- Features:
- Customer tenure
- Credit Score
- Geography
- Gender
- Age
- Balance
- Target: Exited (1 if customer left, 0 otherwise)

Tools Used

- Python Data preprocessing and modeling
- Pandas, NumPy Data handling
- Scikit-learn, XGBoost, LightGBM ML models
- Matplotlib, Seaborn Visualizations
- GitHub + Streamlit Cloud Deployment

Data loading

```
[ ] import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
[ ] df=pd.read_csv('Churn_Modelling.csv')
```

Nomination Casconer 2d Surfame Createscore deco	graphy Gender Age	: Tenure Balance	NumOfProducts HasCrCard	IsActiveMember EstimatedSalary Exited
0 1 15634602 Hargrave 619 F	France Female 42	2 2 0.00	1 1	1 101348.88 1
1 2 15647311 Hill 608	Spain Female 41	1 83807.86	1 0	1 112542.58 0
2 3 15619304 Onio 502 f	France Female 42	8 159660.80	3 1	0 113931.57 1
3 4 15701354 Boni 699 F	France Female 39	1 0.00	2 0	0 93826.63 0
4 5 15737888 Mitchell 850	Spain Female 43	3 2 125510.82	1 1	1 79084.10 0

Exploratory Data Analysis(EDA)

```
[ ] df.info()
   <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
                        Non-Null Count Dtype
     # Column
     0
        RowNumber
                        10000 non-null int64
     1
         CustomerId
                         10000 non-null
                         10000 non-null
         CreditScore
                         10000 non-null
         Geography
                         10000 non-null object
         Gender
                         10000 non-null object
                         10000 non-null int64
                         10000 non-null int64
         Tenure
     8
         Balance
                         10000 non-null
                                         float64
         NumOfProducts
                         10000 non-null
                                         int64
                         10000 non-null int64
     10 HasCrCard
     11 IsActiveMember
                         10000 non-null int64
     12 EstimatedSalary 10000 non-null float64
     13 Exited
                         10000 non-null int64
    dtypes: float64(2), int64(9), object(3)
    memory usage: 1.1+ MB
```


Handling categorical features

[] from sklearn.preprocessing import LabelEncoder
 le=LabelEncoder()
 df['Geography']=le.fit_transform(df['Geography'])
 df['Gender']=le.fit_transform(df['Gender'])

Handling Multi-Collinearity

Observation:No features are highly correlated

Handling imbalance dataset

Over-Sampling using SMOTE

```
[ ] from imblearn.over_sampling import SMOTE
    smote=SMOTE(sampling_strategy='minority',random_state=42)
    X=df.drop(columns=['Exited'])
    y=df['Exited']
    X_res,y_res=smote.fit_resample(X,y)
```

Splitting the data

Feature Scaling

```
[ ] from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()
    X_train_sc=scaler.fit_transform(X_train)
    X_test_sc=scaler.transform(X_test)
```

Training Classification Models

We trained and evaluated the following classification models:

- Logistic Regression
- Decision Tree
- K-Nearest Neighbors (KNN)
- Naive Bayes
- Random Forest
- XGBoost
- LightGBM

```
models = {
        "Logistic Regression": LogisticRegression(max_iter=1000),
        "Decision Tree": DecisionTreeClassifier(),
        "K-Nearest Neighbors": KNeighborsClassifier(),
        "Naive Bayes": GaussianNB(),
        "Random Forest": RandomForestClassifier(),
        "XGBoost": XGBClassifier(use_label_encoder=False, eval_metric='logloss'),
        "LightGBM": lgb.LGBMClassifier()
    results = []
    confusion matrices={}
    classification_reports={}
    for name, model in models.items():
        # Scale data only for models that require it
        if name in ["Logistic Regression", "K-Nearest Neighbors", "Naive Bayes"]:
            model.fit(X_train_sc, y_train)
            y_pred = model.predict(X_test_sc)
            y_proba = model.predict_proba(X_test_sc)[:, 1]
            model.fit(X_train, y_train)
            y_pred = model.predict(X_test)
            y_proba = model.predict_proba(X_test)[:, 1]
        acc = accuracy_score(y_test, y_pred)
        prec = precision_score(y_test, y_pred)
        rec = recall_score(y_test, y_pred)
        f1 = f1_score(y_test, y_pred)
        roc = roc_auc_score(y_test, y_proba)
        cm = confusion_matrix(y_test, y_pred)
        cr=classification_report(y_test,y_pred)
        results.append({
            "Model": name,
            "Accuracy": round(acc, 4),
            "Precision": round(prec, 4),
            "Recall": round(rec, 4),
            "F1 Score": round(f1, 4),
            "ROC-AUC": round(roc, 4)
        confusion_matrices[name] = cm
        classification_reports[name]=cr
    # Convert results to DataFrame
    results_df = pd.DataFrame(results)
```

Comparing Metrics

Confusion Matrix comparisons

	Model	Accuracy	Precision	Recall	F1 Score	ROC-AUC
0	Logistic Regression	0.7637	0.7525	0.7675	0.7600	0.8470
1	Decision Tree	0.8016	0.7817	0.8229	0.8018	0.8022
2	K-Nearest Neighbors	0.8315	0.8136	0.8487	0.8308	0.8997
3	Naive Bayes	0.7976	0.7940	0.7894	0.7917	0.8765
4	Random Forest	0.8610	0.8513	0.8661	0.8586	0.9369
5	XGBoost	0.8619	0.8463	0.8757	0.8608	0.9371
6	LightGBM	0.8540	0.8452	0.8577	0.8514	0.9333

XGBOOST performs the best!!

Accuracy: 86%, F1-score: 0.86

Hyper-parameter Tuning XGBoost

```
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
param_dist = {
    'n_estimators': [100, 200, 300],
    'learning_rate': [0.01, 0.05, 0.1, 0.2],
    'max_depth': [3, 4, 5, 6, 7],
    'min_child_weight': [1, 3, 5],
    'gamma': [0, 0.1, 0.3, 0.5],
    'subsample': [0.7, 0.8, 0.9, 1.0],
    'colsample_bytree': [0.7, 0.8, 0.9, 1.0],
xgb_clf = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
random_search = RandomizedSearchCV(
   estimator=xgb_clf,
   param_distributions=param_dist,
    n_iter=50,
    scoring='f1',
   CV=5,
    verbose=1,
   n_jobs=-1
random_search.fit(X_train, y_train)
print("Best Parameters:\n", random_search.best_params_)
best_xgb = random_search.best_estimator_
```

	precision	recall	f1-score	support			
9	0.89	0.86	0.87	1633			
1	0.85	0.89	0.87	1553			
accuracy			0.87	3186			
macro avg	0.87	0.87	0.87	3186			
weighted avg	0.87	0.87	0.87	3186			
ROC-AUC Score: 0.944225052433924							

Final Accuracy: 88%