

Numerical Analysis

by Csab Gáspár

Matrix decom positions

decomposition
The Cholesky decomposition
The QR

Numerical Analysis Matrix decompositions

by Csaba Gáspár

Széchenyi István University

2020, autumn semester

LU decomposition by Gaussian elimination

Numerical Analysis

by Csab Gáspár

Matrix decom positions

The LU decomposition
The Cholesky decomposition
The QR decomposition

Let $A = [a_{kj}] \in \mathbf{M}_{N \times N}$ be a regular matrix, for which the Gaussian elimination can be performed without swapping rows.

$LU\ { m decomposition}$

The matrix A can be uniquely decomposed in the following form:

$$A = LU$$

where L is a normed lower triangular matrix (i.e. $L_{kk} = 1$, and $L_{kj} = 0$, if j > k), and U is an upper triangular matrix (i.e. $U_{kj} = 0$, whenever j < k).

If a linear system Ax=b should be solved with a lot of different right-hand sides b, then it is much cheaper to solve the pairs of equations instead: Ly=b, Ux=y, since only forward and backwar substitutions have to be performed.

LU decomposition by Gaussian elimination

Numerical Analysis

Gáspár

Matrix decompositions

The LU decomposition The Cholesky decomposition The QR decomposition

Let $A = [a_{kj}] \in \mathbf{M}_{N \times N}$ be a regular matrix, for which the Gaussian elimination can be performed without swapping rows.

$LU\ { m decomposition}$

The matrix A can be uniquely decomposed in the following form:

$$A = LU$$

where L is a **normed lower triangular matrix** (i.e. $L_{kk} = 1$, and $L_{kj} = 0$, if j > k), and U is an **upper triangular matrix** (i.e. $U_{kj} = 0$, whenever j < k).

If a linear system Ax=b should be solved with a lot of different right-hand sides b, then it is much cheaper to solve the pairs of equations instead: Ly=b, Ux=y, since only forward and backward substitutions have to be performed.

Numerical Analysis

Gáspár

Matrix decompositions

- The product of (normed) lower triangular matrix is (normed) lower triangular
- The product of (normed) upper triangular matrix is (normed) upper triangular
- The inverse of a (normed) lower triangular matrix is (normed) lower triangular (if exists)
- The inverse of a (normed) upper triangular matrix is (normed) upper triangular (if exists)

Numerical Analysis

Gáspár

Matrix decompositions

- The product of (normed) lower triangular matrix is (normed) lower triangular
- The product of (normed) upper triangular matrix is (normed) upper triangular
- The inverse of a (normed) lower triangular matrix is (normed) lower triangular (if exists)
- The inverse of a (normed) upper triangular matrix is (normed) upper triangular (if exists)

Numerical Analysis

Gáspár

Matrix decompositions

- The product of (normed) lower triangular matrix is (normed) lower triangular
- The product of (normed) upper triangular matrix is (normed) upper triangular
- The inverse of a (normed) lower triangular matrix is (normed) lower triangular (if exists)
- The inverse of a (normed) upper triangular matrix is (normed) upper triangular (if exists)

Numerical Analysis

Gáspár

Matrix decompositions

- The product of (normed) lower triangular matrix is (normed) lower triangular
- The product of (normed) upper triangular matrix is (normed) upper triangular
- The inverse of a (normed) lower triangular matrix is (normed) lower triangular (if exists)
- The inverse of a (normed) upper triangular matrix is (normed) upper triangular (if exists)

LU decomposition by Gaussian elimination

Numerical Analysis

by Csab Gáspár

Matrix decompositions
The LU decomposition

decomposition
The Cholesky decomposition
The QR decomposition

Performing the decomposition by Gaussian elimination: At the elimination by the kth row, subtract the kth row multiplied by $l_{m,k} := a_{m,k}/a_{k,k}$ from the mth row (m = k + 1, ..., N).

From these numbers $l_{m,k}$, the matrix L can be assembled:

$$L = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{2,1} & 1 & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{N,1} & l_{N,2} & l_{N,3} & \dots & 1 \end{pmatrix}$$

After the elimination steps, from the original matrix A, we arrive at the matrix U.

LU decomposition by Gaussian elimination

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU decomposition

The Cholesky

Performing the decomposition by Gaussian elimination: At the elimination by the kth row, subtract the kth row multiplied by $l_{m,k} := a_{m,k}/a_{k,k}$ from the mth row (m = k + 1, ..., N).

From these numbers $l_{m,k}$, the matrix L can be assembled:

$$L = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ l_{2,1} & 1 & 0 & \dots & 0 \\ l_{3,1} & l_{3,2} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{N,1} & l_{N,2} & l_{N,3} & \dots & 1 \end{pmatrix}$$

After the elimination steps, from the original matrix A, we arrive at the matrix U.

Numerical Analysis

> by Csaba Gáspár

Matrix decompositions

The LU decomposition
The Cholesky decomposition
The OB

Determine the LU decomposition of the matrix

$$A = \left(\begin{array}{ccc} 2 & -6 & 10\\ 2 & -5 & 3\\ 3 & -2 & 1 \end{array}\right)$$

Numerical Analysis

by Csab Gáspár

Matrix decon

The LU

decomposition The Cholesky decomposition

decompositio

$$\begin{pmatrix}
2 & -6 & 10 \\
2 & -5 & 3 \\
3 & -2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -6 & 10 \\
0 & 1 & -7 \\
3 & -2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -6 & 10 \\
0 & 1 & -7 \\
0 & 7 & -14
\end{pmatrix}$$

$$\left(\begin{array}{ccc}
2 & -6 & 10 \\
0 & 1 & -7 \\
0 & 0 & 35
\end{array}\right) = U$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
. & 1 & 0 \\
. & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
& & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
\frac{3}{2} & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{array}\right) = L$$

Numerical Analysis

Gáspár

Matrix decon positions

The *LU*decomposition
The Cholesky
decomposition

 $\begin{pmatrix}
2 & -6 & 10 \\
2 & -5 & 3 \\
3 & -2 & 1
\end{pmatrix}$

$$\begin{pmatrix} 2 & -6 & 10 \\ 0 & 1 & -7 \\ 3 & -2 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & -6 & 10 \\
0 & 1 & -7 \\
0 & 7 & -14
\end{pmatrix}$$

$$\left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & -7\\ 0 & 0 & 35 \end{array}\right) = U$$

$$\left(\begin{array}{cccc}
1 & 0 & 0 \\
. & 1 & 0 \\
. & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \cdot & \cdot & 1 \end{array} \right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
\frac{3}{2} & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{array}\right) = L$$

Numerical Analysis

Gáspár

Matrix decompositions

The *LU* decomposition
The Cholesky decomposition

 $\begin{pmatrix}
2 & -6 & 10 \\
2 & -5 & 3 \\
3 & -2 & 1
\end{pmatrix}$

$$\begin{pmatrix} 2 & -6 & 10 \\ 0 & 1 & -7 \\ 2 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -6 & 10 \\ 0 & 1 & -7 \\ 0 & 7 & -14 \end{pmatrix}$$

$$\left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & -7\\ 0 & 0 & 35 \end{array}\right) = U$$

 $\left(\begin{array}{ccc}
1 & 0 & 0 \\
. & 1 & 0 \\
. & . & 1
\end{array}\right)$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
. & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
\frac{3}{2} & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{array}\right) = L$$

Numerical Analysis

by Csaba Gáspár

Matrix decon positions

$$\begin{pmatrix}
2 & -6 & 10 \\
2 & -5 & 3 \\
3 & -2 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -6 & 10 \\
0 & 1 & -7 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -6 & 10 \\
0 & 1 & -7
\end{pmatrix}$$

$$\left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & -7\\ 0 & 0 & 35 \end{array}\right) = U$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
. & 1 & 0 \\
. & . & 1
\end{array}\right)$$

$$\left(\begin{array}{cccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ & & 1 \end{array} \right)$$

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
\frac{3}{2} & . & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{array}\right) = L$$

Numerical Analysis

Gáspár

Matrix decom positions ___

The LU decomposition The Cholesky decomposition The QR

In the previous example, first, write down the entries of ${\cal L}$ and ${\cal U}$ which are a priori known:

$$U = \begin{pmatrix} 2 & -6 & 10 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -6 & 10 \\ 2 & 5 & 3 \end{pmatrix} - 1$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & \ell_{32} & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

Matrix decom positions

The LU decomposition The Cholesky decomposition The QR

Multiplying the 2nd row of L by the 2nd column of U, u_{22} can be computed: $u_{22}=1$.

$$U = \left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & u_{22} & u_{23}\\ 0 & 0 & u_{33} \end{array}\right)$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{3}{2} & \ell_{32} & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gaspar

positions
The LII

decomposition
The Cholesky decomposition
The QR

Multiplying the 2nd row of L by the 2nd column of U, u_{22} can be computed: $u_{22}=1$.

$$U = \left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & u_{23}\\ 0 & 0 & u_{33} \end{array}\right)$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & \ell_{32} & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

positions
The LU

decomposition
The Cholesky decomposition
The QR

Multiplying the 3rd row of L by the 2nd column of U, ℓ_{32} can be computed: $\ell_{32}=7$.

$$U = \left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & u_{23}\\ 0 & 0 & u_{33} \end{array}\right)$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & \ell_{32} & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

positions
The LU

The LU decomposition
The Cholesky decomposition
The QR

Multiplying the 3rd row of L by the 2nd column of U, ℓ_{32} can be computed: $\ell_{32}=7$.

$$U = \left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & u_{23}\\ 0 & 0 & u_{33} \end{array}\right)$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

positions

The LU decomposition The Cholesky decomposition The QR

Multiplying the 2nd row of L by the 3rd column of U, u_{23} can be computed: $u_{23}=-7$.

$$U = \begin{pmatrix} 2 & -6 & 10 \\ 0 & 1 & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{5} & 7 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

positions

The LU decomposition The Cholesky decomposition The QR

Multiplying the 2nd row of L by the 3rd column of U, u_{23} can be computed: $u_{23}=-7$.

$$U = \begin{pmatrix} 2 & -6 & 10 \\ 0 & 1 & -7 \\ 0 & 0 & u_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{5} & 7 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

positions
The LU

The LU decomposition
The Cholesky decomposition
The QR

Finally, multiplying the 3rd row of L by the 3rd column of U, u_{33} can be computed: $u_{33}=35$.

$$U = \begin{pmatrix} 2 & -6 & 10 \\ 0 & 1 & -7 \\ 0 & 0 & u_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{5} & 7 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

Numerical Analysis

The LUdecomposition

Finally, multiplying the 3rd row of L by the 3rd column of U, u_{33} can be computed: $u_{33} = 35$.

$$U = \left(\begin{array}{ccc} 2 & -6 & 10\\ 0 & 1 & -7\\ 0 & 0 & 35 \end{array}\right)$$

$$L = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{array}\right)$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{3}{2} & 7 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & -6 & 10 \\ 2 & -5 & 3 \\ 3 & -2 & 1 \end{pmatrix} = A$$

LU decomposition, numerical features

Numerical Analysis

Gáspár

Matrix decom positions The LU

 $\begin{array}{c} {\rm decomposition} \\ {\rm The~Cholesky} \\ {\rm decomposition} \\ {\rm The~} QR \\ \\ \end{array}$

Computational cost

The necessary number of arithmetic operations of the LU decomposition of an $N \times N$ matrix is $\mathcal{O}(N^3)$.

Calculation of the determinant

Once the LU decomposition A = LU has been performed, the determinant of A can be calculated as:

$$\det(A) = \det(L) \cdot \det(U) = u_{11} \cdot u_{22} \cdot \dots \cdot u_{NN}$$

LU decomposition, numerical features

Numerical Analysis

by Csaba Gáspár

Matrix decom

The LU decomposition
The Cholesky decomposition
The QR

Computational cost

The necessary number of arithmetic operations of the LU decomposition of an $N\times N$ matrix is $\mathcal{O}(N^3)$.

Calculation of the determinant

Once the LU decomposition A=LU has been performed, the determinant of A can be calculated as:

$$\det(A) = \det(L) \cdot \det(U) = u_{11} \cdot u_{22} \cdot \dots \cdot u_{NN}$$

Numerical Analysis

by Csab Gáspár

positions

The LU

The Cholesky decomposition The QR

Let $A \in \mathbf{M}_{N \times N}$ be a **self-adjoint, positive definite** matrix (which assures that the Gaussian elimination can be performed without swapping rows). Consider the LU decomposition of A:

$$A = LU$$

Denote by D the diagonal part of U, then U=DU', where U' is a normed upper trianglular matrix. Since A is self-adjoint, the uniqueness of the LU decomposition implies that

$$U' = L^*$$

therefore

$$A = LDL^*$$

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LUdecomposition

The LU decomposition
The Cholesky decomposition

Let $A \in \mathbf{M}_{N \times N}$ be a **self-adjoint, positive definite** matrix (which assures that the Gaussian elimination can be performed without swapping rows). Consider the LU decomposition of A:

$$A = LU$$

Denote by D the diagonal part of U, then U=DU', where U' is a normed upper trianglular matrix. Since A is self-adjoint, the uniqueness of the LU decomposition implies that

$$U' = L^*$$

therefore

$$A = LDL^*$$

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LUdecomposition

The Cholesky

decomposition

Let $A \in \mathbf{M}_{N \times N}$ be a **self-adjoint, positive definite** matrix (which assures that the Gaussian elimination can be performed without swapping rows). Consider the LU decomposition of A:

$$A = LU$$

Denote by D the diagonal part of U, then U=DU', where U' is a normed upper trianglular matrix. Since A is self-adjoint, the uniqueness of the LU decomposition implies that

$$U' = L^*$$

therefore

$$A = LDL^*$$

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU

The Cholesky decomposition The QR

LDL^* decomposition

Every self-adjoint, positive definite matrix \boldsymbol{A} can be uniquely decomposed in the following form:

$$A = LDL^*$$

where L is a normed lower triangular matrix and D is a diagonal matrix, the diagonal entries of which are positive.

Numerical Analysis

by Csaba Gáspár

Matrix dec

The LU decompositi

The Cholesky decomposition

Let $A \in \mathbf{M}_{N \times N}$ be a self-adjoint, positive definite matrix with the LDL^* decomposition:

$$A = L_0 D L_0^*$$

Ther

$$A = L_0 \sqrt{D} \sqrt{D} L_0^* = (L_0 \sqrt{D}) \cdot (L_0 \sqrt{D})^* =: LL^*$$

Cholesky decomposition

Every self-adjoint, positive definite matrix A can be uniquely decomposed in the following form:

$$A = LL^*$$

where L is a not necessarily normed lower triangular matrix, with positive diagonal elements.

Numerical Analysis

by Csaba Gáspár

positions
The LU

The $L\,U$ decomposition

The Cholesky decomposition
The QR

Let $A \in \mathbf{M}_{N \times N}$ be a self-adjoint, positive definite matrix with the LDL^* decomposition:

$$A = L_0 D L_0^*$$

Then

$$A = L_0 \sqrt{D} \sqrt{D} L_0^* = (L_0 \sqrt{D}) \cdot (L_0 \sqrt{D})^* =: LL^*$$

Cholesky decomposition

Every self-adjoint, positive definite matrix A can be uniquely decomposed in the following form:

$$A = LL^*$$

where L is a not necessarily normed lower triangular matrix, with positive diagonal elements.

Numerical Analysis

by Csaba Gáspár

positions
The LU

The LU decomposition

The Cholesky decomposition
The QR

Let $A \in \mathbf{M}_{N \times N}$ be a self-adjoint, positive definite matrix with the LDL^* decomposition:

$$A = L_0 D L_0^*$$

Then

$$A = L_0 \sqrt{D} \sqrt{D} L_0^* = (L_0 \sqrt{D}) \cdot (L_0 \sqrt{D})^* =: LL^*$$

Cholesky decomposition

Every self-adjoint, positive definite matrix A can be uniquely decomposed in the following form:

$$A = LL^*$$

where L is a not necessarily normed lower triangular matrix, with positive diagonal elements.

Numerical Analysis

by Csab Gáspár

Matrix decor

The LU

The Cholesky decomposition
The QRdecomposition

Let $A \in \mathbf{M}_{N \times N}$ be a self-adjoint, positive definite matrix with the LDL^* decomposition:

$$A = L_0 D L_0^*$$

Then

$$A = L_0 \sqrt{D} \sqrt{D} L_0^* = (L_0 \sqrt{D}) \cdot (L_0 \sqrt{D})^* =: LL^*$$

Cholesky decomposition

Every self-adjoint, positive definite matrix A can be uniquely decomposed in the following form:

$$A = LL^*$$

where ${\cal L}$ is a not necessarily normed lower triangular matrix, with positive diagonal elements.

The Cholesky decomposition, numerical features

Numerical Analysis

by Csab Gáspár

Matrix dec

The LU decompositi

The Cholesky decomposition The QR

Computational cost

The number of necessary arithmetic operations of the Cholesky decomposition of an $N\times N$ self-adjoint, positive definite matrix is $\mathcal{O}(N^3)$.

The Cholesky decomposition is less sensitive to the roundoff errors than the LU decomposition.

If a linear system Ax = b should be solved with a lot of different right-hand sides b, then it is cheaper to solve the pairs of equations instead: Ly = b, $L^*x = y$, since only forward and backward substitutions have to be performed.

The Cholesky decomposition, numerical features

Numerical Analysis

by Csab Gáspár

positions

The LU decompositi

The Cholesky decomposition The QR

Computational cost

The number of necessary arithmetic operations of the Cholesky decomposition of an $N\times N$ self-adjoint, positive definite matrix is $\mathcal{O}(N^3)$.

The Cholesky decomposition is less sensitive to the roundoff errors than the LU decomposition.

If a linear system Ax = b should be solved with a lot of different right-hand sides b, then it is cheaper to solve the pairs of equations instead: Ly = b, $L^*x = y$, since only forward and backward substitutions have to be performed.

The Cholesky decomposition, numerical features

Numerical Analysis

Gáspár

positions

The LU

The Cholesky decomposition

Computational cost

The number of necessary arithmetic operations of the Cholesky decomposition of an $N\times N$ self-adjoint, positive definite matrix is $\mathcal{O}(N^3)$.

The Cholesky decomposition is less sensitive to the roundoff errors than the ${\cal L}{\cal U}$ decomposition.

If a linear system Ax=b should be solved with a lot of different right-hand sides b, then it is cheaper to solve the pairs of equations instead: Ly=b, $L^*x=y$, since only forward and backward substitutions have to be performed.

Numerical Analysis

The Cholesky decomposition

$$A := \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{\frac{3}{2}} & 0 \\ 0 & 0 & \sqrt{\frac{4}{3}} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \end{pmatrix}$$

Numerical Analysis

by Csaba Gáspár

Matrix decompositions

The LU

The Cholesky decomposition

 $A := \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$

The LU decomposition (please check):

$$A = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

Thus, the Cholesky decomposition: $A = L \cdot L^*$, where

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{\frac{3}{2}} & 0 \\ 0 & 0 & \sqrt{\frac{4}{3}} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \end{pmatrix}$$

Numerical Analysis

by Csaba Gáspár

Matrix decor positions

The LU decomposition

The Cholesky decomposition The QR

$$A := \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

The LU decomposition (please check):

$$A = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

Thus, the Cholesky decomposition: $A = L \cdot L^*$, where

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{\frac{3}{2}} & 0 \\ 0 & 0 & \sqrt{\frac{4}{3}} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \end{pmatrix}$$

Numerical Analysis

by Csab Gáspár

Matrix decor positions

The LU

The Cholesky decomposition The QR

$$A := \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

The LU decomposition (please check):

$$A = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

Thus, the Cholesky decomposition: $A = L \cdot L^*$, where

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 2 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{\frac{3}{2}} & 0 \\ 0 & 0 & \sqrt{\frac{4}{3}} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{3}} & \frac{2}{\sqrt{3}} \end{pmatrix}$$

Numerical Analysis

Gáspár

positions

decomposition The Cholesky decomposition In the previous example, first, write down the entries of ${\cal L}$ which are a priori known:

$$L^* = \begin{pmatrix} \ell_{11} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

Matrix decor positions

The LU decompositio

The Cholesky decomposition The QR

Multiplying the first row of L by the first column of L^* , ℓ_{11} can be computed: $\ell_{11} = \sqrt{2}$.

$$L^* = \left(\begin{array}{ccc} \ell_{11} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & \ell_{33} \end{array}\right)$$

$$L = \begin{pmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

Gáspár

Matrix decon positions

The Cholesky decomposition

Multiplying the first row of L by the first column of L^* , ℓ_{11} can be computed: $\ell_{11} = \sqrt{2}$.

$$L^* = \begin{pmatrix} \sqrt{2} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csaba Gáspár

Matrix decompositions

The LU

The Cholesky decomposition

Multiplying the 2nd and 3rd rows of L by the first column of L^* , ℓ_{21} , ℓ_{31} can be computed: $\ell_{21} = \sqrt{\frac{1}{2}}$, $\ell_{31} = 0$.

$$L^* = \begin{pmatrix} \sqrt{2} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The Cholesky decomposition

Multiplying the 2nd and 3rd rows of L by the first column of L^* , ℓ_{21} , ℓ_{31} can be computed: $\ell_{21} = \sqrt{\frac{1}{2}}$, $\ell_{31} = 0$.

$$L^* = \begin{pmatrix} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \ell_{22} & \ell_{32}\\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \ell_{22} & 0 \\ 0 & \ell_{22} & \ell_{22} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU decompositio

The Cholesky decomposition The QR

Multiplying the 2nd row of L by the 2nd column of L^* , ℓ_{22} can be computed: $\ell_{22} = \sqrt{\frac{3}{2}}$.

$$L^* = \left(\begin{array}{ccc} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \ell_{22} & \ell_{32}\\ 0 & 0 & \ell_{33} \end{array}\right)$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \ell_{22} & 0 \\ 0 & \ell_{32} & \ell_{33} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspár

Matrix decor

The LU
decomposition

The Cholesky decomposition The QR

Multiplying the 2nd row of L by the 2nd column of L^* , ℓ_{22} can be computed: $\ell_{22} = \sqrt{\frac{3}{2}}$.

$$L^* = \begin{pmatrix} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \sqrt{\frac{3}{2}} & \ell_{32}\\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \ell_{22} & \ell_{23} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspái

Matrix decor positions

The LU

The Cholesky decomposition

Multiplying the 3rd row of L by the 2nd column of L^* , ℓ_{32} can be computed: $\ell_{32} = \sqrt{\frac{2}{3}}$.

$$L^* = \begin{pmatrix} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \sqrt{\frac{3}{2}} & \ell_{32}\\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \ell_{22} & \ell_{23} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspái

Matrix deco positions

The Cholesky decomposition
The QR

Multiplying the 3rd row of L by the 2nd column of L^* , ℓ_{32} can be computed: $\ell_{32} = \sqrt{\frac{2}{3}}$.

$$L^* = \begin{pmatrix} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \sqrt{\frac{3}{2}} & \sqrt{\frac{2}{3}}\\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{2}} & \ell_{33} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspár

Matrix decor

The Cholesky decomposition

Finally, multiplying the 3rd row of L by the 3rd column of L^* , ℓ_{33} can be computed: $\ell_{33}=\sqrt{\frac{4}{3}}$.

$$L^* = \begin{pmatrix} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \sqrt{\frac{3}{2}} & \sqrt{\frac{2}{3}}\\ 0 & 0 & \ell_{33} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{3}} & \ell_{33} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU decompositio

The Cholesky decomposition The QR

Finally, multiplying the 3rd row of L by the 3rd column of L^* , ℓ_{33} can be computed: $\ell_{33} = \sqrt{\frac{4}{3}}$.

$$L^* = \begin{pmatrix} \sqrt{2} & \sqrt{\frac{1}{2}} & 0\\ 0 & \sqrt{\frac{3}{2}} & \sqrt{\frac{2}{3}}\\ 0 & 0 & \sqrt{\frac{4}{3}} \end{pmatrix}$$

$$L = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ \sqrt{\frac{1}{2}} & \sqrt{\frac{3}{2}} & 0 \\ 0 & \sqrt{\frac{2}{2}} & \sqrt{\frac{4}{2}} \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A$$

The Gram-Schmidt orthogonalization

Numerical Analysis

decomposition

Let $a_1, a_2, ..., a_N \in \mathbf{R}^N$ be linearly independent vectors. Define $ilde{e}_1:=a_1$, $e_1:=rac{ ilde{e}_1}{|| ilde{e}_1||}$, and for k=2,3,...,N:

$$\tilde{e}_k := a_k - \sum_{j=1}^{k-1} \langle a_k, e_j \rangle e_j, \qquad e_k := \frac{\tilde{e}_k}{||\tilde{e}_k||}$$

The Gram-Schmidt orthogonalization

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU decomposition

The Cholesky decomposition

The QRdecomposition Let $a_1, a_2, ..., a_N \in \mathbf{R}^N$ be linearly independent vectors. Define $\tilde{e}_1 := a_1$, $e_1 := \frac{\tilde{e}_1}{||\tilde{e}_1||}$, and for k = 2, 3, ..., N:

$$\tilde{e}_k := a_k - \sum_{j=1}^{k-1} \langle a_k, e_j \rangle e_j, \qquad e_k := \frac{\tilde{e}_k}{||\tilde{e}_k||}$$

Gram-Schmidt orthogonalization

The vectors $e_1,e_2,...,e_N$ form an **orthonormal vector system** (i.e. $\langle e_k,e_j\rangle=0$, if $k\neq j$, and $||e_k||=1$), and the vector systems $a_1,a_2,...,a_k$ and $e_1,e_2,...,e_k$ generate the same subspace of \mathbf{R}^N for all k=1,2,...,N.

Orthogonal matrices

Numerical Analysis

The matrix $A \in \mathbf{M}_{N \times N}$ is called **orthogonal**, if its column vectors form an orthonormal system in \mathbf{R}^N .

decomposition

The QR

Example: The 2-by-2 matrix
$$A:=\begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}$$
 is an orthogonal matrix.

Orthogonal matrices

Numerical Analysis

decomposition

The QR

The matrix $A \in \mathbf{M}_{N \times N}$ is called **orthogonal**, if its column vectors form an orthonormal system in \mathbf{R}^N .

Example: The 2-by-2 matrix
$$A:=\begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}$$
 is an orthogonal matrix.

Orthogonal matrices

Numerical Analysis

by Csab Gáspár

The QRdecomposition The matrix $A \in \mathbf{M}_{N \times N}$ is called **orthogonal**, if its column vectors form an orthonormal system in \mathbf{R}^N .

Example: The 2-by-2 matrix
$$A:=\begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}$$
 is an orthogonal matrix.

The inverse of orthogonal matrices can be computed in an extremely simple way:

If the matrix $A \in \mathbf{M}_{N \times N}$ is orthogonal, then $A^{-1} = A^*$

The QR decomposition

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU decomposition

The Cholesky decomposition

The OR

decomposition

Every regular matrix $A \in \mathbf{M}_{N \times N}$ can be uniquely decomposed in the form A = QR, where Q is an orthogonal matrix, R is an upper triangular matrix with positive diagonal entries.

Denote by $a_1,a_2,...,a_N$ its column vectors. Consider the orthonormal basis $e_1,e_2,...,e_N$ obtained from $a_1,a_2,...,a_N$ by a Gram-Schmidt orthogonalization. Then

$$Q = \left(\begin{array}{c|ccc} e_1 & e_2 & \dots & e_N \end{array} \right), \qquad R = \left(\begin{array}{cccc} r_{11} & r_{12} & r_{13} & \dots \\ 0 & r_{22} & r_{23} & \dots \\ 0 & 0 & r_{33} & \dots \\ \dots & \dots & \dots & \dots \end{array} \right)$$

where $r_{kj} := \langle e_k, a_j \rangle$

After performing the QR decomposition, the solution of the linear system Ax = b is extremely simple with low computational cost:

$$Rx = Q^{-1}b = Q^*b$$

The QR decomposition

Numerical Analysis

by Csaba Gáspár

Matrix decompositions

The LUdecomposition

The Cholesky
decomposition

The QRdecomposition

Every regular matrix $A \in \mathbf{M}_{N \times N}$ can be uniquely decomposed in the form A = QR, where Q is an orthogonal matrix, R is an upper triangular matrix with positive diagonal entries.

Denote by $a_1,a_2,...,a_N$ its column vectors. Consider the orthonormal basis $e_1,e_2,...,e_N$ obtained from $a_1,a_2,...,a_N$ by a Gram-Schmidt orthogonalization. Then

$$Q = \left(\begin{array}{c|c|c} e_1 & e_2 & \dots & e_N \end{array} \right), \qquad R = \left(\begin{array}{cccc} r_{11} & r_{12} & r_{13} & \dots \\ 0 & r_{22} & r_{23} & \dots \\ 0 & 0 & r_{33} & \dots \\ \dots & \dots & \dots & \dots \end{array} \right)$$

where $r_{kj} := \langle e_k, a_j \rangle$

After performing the QR decomposition, the solution of the linear system Ax = b is extremely simple with low computational cost:

$$Rx = Q^{-1}b = Q^*b$$

The QR decomposition

Numerical Analysis

by Csab Gáspár

Matrix decompositions

The LU decomposition

The Cholesky decomposition

The OR

decomposition

Every regular matrix $A \in \mathbf{M}_{N \times N}$ can be uniquely decomposed in the form A = QR, where Q is an orthogonal matrix, R is an upper triangular matrix with positive diagonal entries.

Denote by $a_1,a_2,...,a_N$ its column vectors. Consider the orthonormal basis $e_1,e_2,...,e_N$ obtained from $a_1,a_2,...,a_N$ by a Gram-Schmidt orthogonalization. Then

$$Q = \left(\begin{array}{c|c|c} e_1 & e_2 & \dots & e_N \end{array} \right), \qquad R = \left(\begin{array}{cccc} r_{11} & r_{12} & r_{13} & \dots \\ 0 & r_{22} & r_{23} & \dots \\ 0 & 0 & r_{33} & \dots \\ \dots & \dots & \dots & \dots \end{array} \right)$$

where $r_{kj} := \langle e_k, a_j \rangle$

After performing the QR decomposition, the solution of the linear system Ax=b is extremely simple with low computational cost:

$$Rx = Q^{-1}b = Q^*b$$

Numerical Analysis

Gaspar

Matrix decon positions

decomposition
The Cholesky

The Cholesky decomposition

The QR decomposition

Compute the QR decomposition of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.

First,
$$a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$.

Next, perform a Gram-Schmidt-ortogonalization for these vectors:

$$\tilde{e}_1 = a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

$$\tilde{e}_2 = a_2 - \langle a_2, e_1 \rangle \cdot e_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\tilde{e}_3 = a_3 - \langle a_3, e_1 \rangle \cdot e_1 - \langle a_3, e_2 \rangle \cdot e_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad e_3 = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

Numerical Analysis

Gáspár

Matrix decom positions

The LU
decomposition
The Cholesky

decomposition

The QR decomposition

Compute the QR decomposition of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.

First,
$$a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$.

Next, perform a Gram-Schmidt-ortogonalization for these vectors:

$$\tilde{e}_1 = a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

$$\tilde{e}_2 = a_2 - \langle a_2, e_1 \rangle \cdot e_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\tilde{e}_3 = a_3 - \langle a_3, e_1 \rangle \cdot e_1 - \langle a_3, e_2 \rangle \cdot e_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad e_3 = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

Numerical Analysis

latrix decom

 $\begin{array}{c} \textbf{positions} \\ \textbf{The } LU \\ \textbf{decomposition} \end{array}$

The Cholesky decomposition

The $\overline{Q}R$ decomposition

Compute the QR decomposition of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.

First,
$$a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $a_3 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$.

Next, perform a Gram-Schmidt-ortogonalization for these vectors:

$$\tilde{e}_1 = a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

$$\tilde{e}_2 = a_2 - \langle a_2, e_1 \rangle \cdot e_1 = \left(egin{array}{c} 0 \\ 2 \\ 0 \end{array}
ight), \quad e_2 = \left(egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight)$$

$$\tilde{e}_3 = a_3 - \langle a_3, e_1 \rangle \cdot e_1 - \langle a_3, e_2 \rangle \cdot e_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad e_3 = \begin{pmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}$$

Numerical Analysis

The QRdecomposition

Thus we have obtained:
$$Q = \begin{pmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$$

$$r_{11} = ||\tilde{e}_1|| = \sqrt{2},$$
 $r_{12} = \langle e_1, a_2 \rangle = 0,$ $r_{13} = \langle e_1, a_3 \rangle = 2\sqrt{2}$
 $r_{22} = ||\tilde{e}_2|| = 2,$ $r_{23} = \langle e_2, a_3 \rangle = 0$

$$r_{33} = ||\tilde{e}_3|| = \sqrt{|\tilde{e}_3|}$$

$$R = \left(\begin{array}{ccc} \sqrt{2} & 0 & 2\sqrt{2} \\ 0 & 2 & 0 \\ 0 & 0 & \sqrt{2} \end{array}\right)$$

Numerical Analysis

The QRdecomposition

Thus we have obtained:
$$Q = \left(\begin{array}{ccc} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{array} \right)$$

Moreover:

$$r_{11} = ||\tilde{e}_1|| = \sqrt{2},$$
 $r_{12} = \langle e_1, a_2 \rangle = 0,$ $r_{13} = \langle e_1, a_3 \rangle = 2\sqrt{2}$
 $r_{22} = ||\tilde{e}_2|| = 2,$ $r_{23} = \langle e_2, a_3 \rangle = 0$

$$r_{33} = ||\tilde{e}_3|| = \sqrt{2}$$

and therefore:
$$R = \left(\begin{array}{ccc} \sqrt{2} & 0 & 2\sqrt{2} \\ 0 & 2 & 0 \\ 0 & 0 & \sqrt{2} \end{array}\right)$$

Numerical Analysis

The QRdecomposition

Thus we have obtained:
$$Q = \left(\begin{array}{ccc} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{array} \right)$$

Moreover:

$$r_{11} = ||\tilde{e}_1|| = \sqrt{2},$$
 $r_{12} = \langle e_1, a_2 \rangle = 0,$ $r_{13} = \langle e_1, a_3 \rangle = 2\sqrt{2}$
 $r_{22} = ||\tilde{e}_2|| = 2,$ $r_{23} = \langle e_2, a_3 \rangle = 0$

$$r_{33} = ||\tilde{e}_3|| = \sqrt{2}$$

and therefore:
$$R = \begin{pmatrix} \sqrt{2} & 0 & 2\sqrt{2} \\ 0 & 2 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$