Cualquier matriz $m \times n$, A, determina una aplicación de \mathbb{R}^n en \mathbb{R}^m definida como sigue: sea $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$; consideremos la matriz columna $n \times 1$ asociada a \mathbf{x} , que denotaremos temporalmente como \mathbf{x}^T

$$\mathbf{x}^T = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix},$$

y multiplicamos A por \mathbf{x}^T (considerada como una matriz $n \times 1$) para obtener una nueva matriz $m \times 1$:

$$A\mathbf{x}^T = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \mathbf{y}^T,$$

que corresponde al vector $\mathbf{y} = (y_1, \dots, y_m)^5$. Por tanto, aunque puede causar algo de confusión, escribiremos $\mathbf{x} = (x_1, \dots, x_n)$ e $\mathbf{y} = (y_1, \dots, y_m)$ como matrices columnas

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

cuando se trate de una multiplicación de matrices; es decir, *identificare-mos* estas dos formas de escribir vectores. Por tanto, eliminaremos la T de \mathbf{x}^T y consideraremos iguales \mathbf{x}^T y \mathbf{x} .

Por tanto, $A\mathbf{x} = \mathbf{y}$ "realmente" significará lo siguiente: se escribe \mathbf{x} como una matriz columna, se multiplica por A y el vector \mathbf{y} tiene como componentes las de la matriz columna resultante. La regla $\mathbf{x} \mapsto A\mathbf{x}$ define por tanto una aplicación de \mathbb{R}^n en \mathbb{R}^m . Esta aplicación es lineal; es decir, satisface

$$A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$$

 $A(\alpha \mathbf{x}) = \alpha(A\mathbf{x}), \quad \alpha \text{ es un escalar,}$

como se puede comprobar fácilmente. En un curso de álgebra lineal se aprende que, recíprocamente, cualquier transformación lineal de \mathbb{R}^n en \mathbb{R}^m se puede representar de esta forma mediante una matriz $m \times n$.

Si $A = [a_{ij}]$ es una matriz $m \times n$ y \mathbf{e}_j es el vector j-ésimo de la base canónica de \mathbb{R}^n , entonces $A\mathbf{e}_j$ es un vector de \mathbb{R}^m con componentes iguales a la j-ésima columna de A. Es decir, la i-ésima componente de $A\mathbf{e}_j$ es a_{ij} . Utilizando símbolos, $(A\mathbf{e}_j)_i = a_{ij}$.

⁵Al usar una matriz A para obtener una aplicación de vectores $\mathbf{x} = (x_1, \dots, x_n)$ a vectores $\mathbf{y} = (y_1, \dots, y_n)$, de acuerdo con la ecuación $A\mathbf{x}^T = \mathbf{y}^T$, escribimos los vectores en forma de columna \mathbf{x}^T en lugar de en forma de fila (x_1, \dots, x_n) . Este repentino cambio de escribir \mathbf{x} en forma de columna es necesario debido a los convenios usuales sobre multiplicación de matrices.