Автоматическое дополнение плейлистов в рекомендательной системе пользователей

Кислинский Вадим Геннадьевич

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 574, весна 2018

Цель исследование

Цель

Решить задачу top-N рекомендаций

Метод

Матричная факторизация, учитывающая дополнительные знания о плейлистах и треках

Литература

Обзор классических методов

1 Paolo Cremonesi al. *Performance of recommender algorithms on top-n recommendation tasks.* 2010

Метод совместной факторизации

2 Dimitrios Rafailidis al. *Modeling the Dynamics of User Preferences in Coupled Tensor Factorization*. 2013

Алгоритм LCE

3 Martin Saveski al. *Item Cold-Start Recommendations:* Learning Local Collective Embeddings. 2014

Постановка задачи

Дано

- $\bigcirc U$ множество из n плейлистов,
- \bigcirc I множество из m треков,
- **3** $D = \{(u, i) | u \in U, i \in I\}$ множество транзакций,
- **4** R матрица $n \times m$, где $R_{ui} = 1$, если $(u, i) \in D$,
- $oldsymbol{\circ}$ X_U матрица $n \times v$ признакового описания плейлистов,
- \bullet X_I матрица $m \times w$ признакового описания треков

Задача

Для плейлиста u построить вектор \mathbf{r} из m элементов, которые означают насколько треки подходят данному плейлисту

Постановка задачи

Оптимизационная задача

$$\begin{split} \arg \min_{\mathbf{W},\mathbf{H_I},\mathbf{H_U}} (\alpha ||\mathbf{X_U} - \mathbf{W}\mathbf{H_U}||^2 + (1-\alpha)||\mathbf{R} - \mathbf{W}\mathbf{H_I}||^2 + \\ + \lambda (||\mathbf{W}||_F^2 + ||\mathbf{H_U}||_F^2 + ||\mathbf{H_I}||_F^2)) \\ s.t.\mathbf{W} \geq 0, \mathbf{H_U} \geq 0, \mathbf{H_I} \geq 0 \end{split}$$

Вычисляем г для пользователя и

Пусть х - признаковое описание плейлиста.

Решим систему $\mathbf{x} = \mathbf{H}_{\mathbf{U}}^{\mathsf{T}} \mathbf{w}$ относительно \mathbf{w} , и определим

$$\boldsymbol{r} = \boldsymbol{H}_{\boldsymbol{I}}^{\boldsymbol{T}}\boldsymbol{w}$$

Постановка задачи

Метрики качества

R - список top-N рекомендаций, G - список настоящих треков плейлиста

$$R@call = \frac{|G \cap R_{1:|G|}|}{|G|}$$

$$\textit{Presicion} = \frac{|G \cap R_{1:|G|}|}{|R_{1:|G|}|}$$

Эксперимент

Данные

Выборка из 20000 плейлистов, содержащая 265464 различных треков, количество транзакций - 1302790.

Базовый алгоритм - PureSVD

Неизвестные значения матрицы ${f R}$ заполняются нулями и делается SVD разложение, полученной матрицы.

$$\begin{split} \hat{R} &= U \boldsymbol{\Sigma} \boldsymbol{Q}^T \\ R &= P \boldsymbol{Q}^T, P = U \boldsymbol{\Sigma} = R \boldsymbol{Q} \\ \hat{r}_u &= r_u \boldsymbol{Q} \boldsymbol{Q}^T \end{split}$$

Результаты эксперимента

Рис.: Зависимость метрики от ранга разложения.