VERY MANY TERM CLONES IN A VERY SMALL VARIETY

MARTIN GOLDSTERN

ABSTRACT. We give a nice example of a finitely based locally finite variety which has uncountably many term clones.

Term clones. Let $\mathfrak{A} = (A, \Omega)$ be a universal algebra. A term function is a function $f: A^n \to A$ (for some $n \in \{0, 1, 2, \ldots\}$) which is induced by a term. A term clone of \mathfrak{A} is a set of term functions which contains all the projections $\pi_k^n: A^n \to A$ and is closed under composition (also called "superposition"). The full term clone of \mathfrak{A} is the set of all term functions.

Let \mathbb{V} be a variety, $F_{\mathbb{V}}$ the free algebra in \mathbb{V} on countably many generators $\{x_1, x_2, \ldots\}$. A term clone of \mathbb{V} is a term clone of $F_{\mathbb{V}}$; since term functions are induced by elements of $F_{\mathbb{V}}$, we can equivalently view a term clone of \mathbb{V} as a subset S of $F_{\mathbb{V}}$ which contains all the generators and is closed under the following "substitution" operation:

(**) Whenever $t(x_1, \ldots, x_n) \in S$, and $t_1, \ldots, t_n \in S$, then also $t(t_1, \ldots, t_n) \in S$.

Our variety. Ivan Chajda has asked whether there is a locally finite variety V (preferably: finitely based) which has uncountably many term clones. We give here a nice example of such a variety.

Our language contains one binary operation symbol * and two constant symbols p and 0. We write a*b*c for (a*b)*c.

The laws of our variety V are

$$0*x = x*0 = 0,$$
 $x*y*z = x*z*y,$ $x*(y*z) = 0,$ $x*y*y = 0.$

The free algebra: elements. Let $0, p, x_1, x_2, \ldots$ be distinct objects.

We will describe an algebra $\mathfrak{F} = (F, *, p, 0) \in \mathbb{V}$ containing all \mathbf{x}_i (in fact, \mathfrak{F} will be freely generated by the \mathbf{x}_i in \mathbb{V}).

In addition to 0, the set F will contain the following distinct objects:

- (1) Letters: p, x_1, x_2, \ldots
- (2) Words: A word is a pair w = (x, Y), where x is a letter and Y is a finite nonempty set of letters. Instead of $w = (x, \{y_1, \ldots, y_k\})$ (with all y_i distinct), we write w also as the string $x y_1 \cdots y_k$. We have to keep in mind that two apparently different

Date: 2004-05-06; revised 2004-07-28.

²⁰⁰⁰ Mathematics Subject Classification. 08A40, 08B20.

¹Ágnes Szendrei has pointed out that in fact many such varieties are known; any minimal variety generated by a finite primal algebra (which has at least 3 elements) will have all the required properties.

strings such as $x y_1 y_2$ and $x y_2 y_1$ are only two different notations for the same word $(x, \{y_1, y_2\})$.

We define the *length* of 0 to be 0, the length of any letter is 1, and the length of any word $(x, \{y_1, \ldots, y_k\})$ (with all y_i distinct) is k + 1.

The free algebra: operations.

- The constant symbols 0 and p are interpreted as the objects 0 and p, respectively.
- The product is defined naturally as follows:
 - If x = 0 or y = 0, then x*y = 0.
 - If x and y are letters, then x*y = xy.
 - If y is a word, then x*y = 0.
 - If x is a word, say $x = x_0 x_1 \cdots x_k$ with $k \ge 1$, and y is a letter, $y \in \{x_1, \dots, x_k\}$, then x * y = 0.
 - If x is a word, say $x = x_0 x_1 \cdots x_k$ with $k \ge 1$, and y is a letter, but $y \notin \{x_1, \ldots, x_k\}$, then $x * y = x_0 x_1 \cdots x_k y$.

It is easy to check (case by case) that this operation yields an algebra in \mathbb{V} , and it is also straightforward to see that this algebra is free over $\{x_1, x_2, \dots\}$.

Local finiteness. The free algebra over the empty set has just 3 elements: $\{0, p, p * p\}$. The free algebra over one free generator x is the set

$$\{0, p, x, pp, px, xp, xx, xxp = xpx, ppx = pxp\}.$$

In general, the \mathbb{V} -free algebra over n elements has exactly $1 + (n+1) \cdot 2^{n+1}$ elements, so \mathbb{V} is locally finite.

Uncountably many term clones. For any set $A \subseteq \{1, 2, 3, ...\}$, we let S(A) consist of the element 0, plus the set of all words that start with p whose length is in A, i.e., all words of the form

$$p x_{i_2} \cdots x_{i_n}$$
 i_2, \dots, i_n are all distinct, and $n \in A$

or

$$p p x_{i_3} \cdots x_{i_n}$$
 i_3, \dots, i_n are all distinct, and $n \in A$

Applying the operation (**) to any element $w \in S(A)$ will either result in 0, or in a word or letter w' of the same length as w.

[Applying (**) to a word of the form $w = x y_1 \cdots y_n$, where x is one of the letters \mathbf{x}_i , may of course change the length of w; but the first letter of any word in S(A) is the constant letter \mathbf{p} , so all applications of (**) to a word in S(A) will either just rename variables, or produce 0 because of x * (y * z) = 0.]

So S(A) is closed under the operation (**). For $A \neq A'$ we have $S(A) \neq S(A')$. So each S(A) induces a different clone of term functions.

DMG/ALGEBRA, TECHNISCHE UNIVERSITÄT WIEN

WIEDNER HAUPTSTR 8-10, 1040 WIEN, AUSTRIA (EUROPE)

 $E ext{-}mail\ address: Martin.Goldstern@tuwien.ac.at}$