Aula 8: Máquina de Vetores de Suporte

Prof. Sérgio Montazzolli Silva smsilva@uel.br

Introdução

- Máquinas de Vetores de Suporte, ou Support Vector Machines (SVM) é um método de classificação baseado em kernels
- Considerado um dos classificadores mais poderosos que pode ser encontrado na literatura
- As SVMs foram (e ainda são) amplamente empregadas em diversas áreas da computação e também de áreas correlacionadas
- Ao contrário das RNAs, as SVMs podem ser utilizadas com grande efetividade até mesmo por pessoas sem um conhecimento técnico aprofundado

Introdução

- A idéia da SVM é treinar um classificador linear através de um sub-conjunto dos dados de treinamento, chamados de vetores de suporte
 - Isso faz com que o *consumo de memória seja eficient*e em tempo de treinamento
- O sub-conjunto de vetores de suporte inclui as amostras de classificação mais díficeis, ou seja, aquelas que estão mais próximas da fronteira de decisão
 - Logo, são amostras mais informativas, que acabam acelerando a convergência do treinamento

Introdução

- Muitas vezes um conjunto não-linearmente separável pode se tornar linearmente separável através da simples aplicação de uma heurística ou função sobre eles
- A SVM utiliza desta premissa para lidar com dados não-lineares, modificando o espaço dos dados de entrada
 - Este método é conhecido com *Kernel-Trick*

 Para um dado ano do curso de Ciênca da Computação, foi feito um levantamento de aspectos textuais dos TCCs, tanto de alunos aprovados como dos reprovados, e gerou-se o seguinte conjunto de dados:

- Qual o melhor hiperplano para este problema? (A,B ou C)
 - Todos resolvem o problema de separação
 - Porém a reta B parece mais adequado
 - Será que podemos encontrar a reta B com um neurônio artificial?

 Será que podemos encontrar a reta B com um neurônio artificial?

 Na teroria sim, porém durante o treinamento de um neurônio, as soluções A,B e C tem chances praticamente iguais de serem encontradas

- O treinamento de uma SVM ocorre de maneira um pouco diferente de uma RNA
- Ela seleciona um subconjunto de pontos que estão à margem da fronteira de decisão
 - Estes pontos são conhecidos como vetores de suporte
- A partir destes pontos, cria-se margens <u>paralelas</u>, para cada classe
- Estas margens estão separadas por uma distância 2d e, exatamente entre elas, existe um hiperplano de separação

Margens

• Exemplo:

Hard Margin

- O treinamento da SVM visa, além da minimização do erro, a maximização da distância \boldsymbol{d} entre as margens
- Na formulação original, chamada de *Hard Margin*, essa maximização não é robusta a ruídos nos dados

Soft Margin

 Para contornar este problema, foi adicionado um novo termo de penalidade na função de custo da SVM

 Este novo termo permite que dados ruidosos sejam desconsiderados ao gerar-se o plano e suas margens

 A permissividade deste novo termo é controlada por um parâmetro C

Parâmetro C

- A distância das margens pode ser configurada através deste parâmetro
- A grosso modo, C é inversamente proporcional a distância d, ou seja: quanto maior C, menos permissive, e portanto menor é a margem. E quanto menor C, maior é a margem

$$C \propto \frac{1}{d}$$

- Em geral, valores C muito grandes podem causar um excecivo sobre-ajuste dos dados (overfitting)
- E valores pequenos podem gerar sub-ajuste (underfitting)

Parâmetro C

Kernel Trick

- A utilização de kernels é o que faz a SVM ser um algoritmo de classificação poderosíssimo
- A idéia principal é utilizar os vetores suporte para gerar informações novas, que são acopladas como novas dimensões nos dados de entrada, sem alteralos diretamente
- O tipo de Kernel mais comum é o de base radial, que iremos tratar um pouco mais adianta nesta aula

Kernel Trick

- Imagine que podemos transformar um dado nãolinearmente separável em linearmente separável
- Por exemplo:

 Existe algum hiperplano que separe estes pontos corretamente?

Kernel Trick

• Agora, se adicionarmos uma nova dimensão, digamos x^2

- O Kernel mais utilizado junto a SVM é o de base radial, ou RBF (Radial Basis Function)
- Supondo um ponto \vec{x} e um conjunto de n <u>vetores</u> $\underline{suporte} \ X' = \{\vec{x}_1', \cdots, \vec{x}_n'\}$, temos:

$$f(\vec{x}) = \sum_{i=1}^{n} \alpha_i \exp\left(-\frac{\|\vec{x} - \vec{x}_i'\|^2}{2\sigma}\right)$$

• onde que $f(\vec{x})$ é o valor da nova dimensão, $\alpha_i \in \{-1,1\}$ o parâmetro que informa a classe ao qual \vec{x}_i' pertence, e σ (também chamado de γ) é um hiperparâmetro correspondente ao desvio padrão do kernel radial

Exemplo

$$f(\vec{x}) = \sum_{i=1}^{n} \alpha_i \exp\left(-\frac{\|\vec{x} - \vec{x}_i'\|^2}{2\sigma}\right)$$

- Sobre o parâmetro σ (ou γ):
 - Valores pequenos geram regiões radiais em volta de cada vetor suporte, podendo causar sobre-ajuste
 - Valores grandes fazem com que o Kernel RBF se aproxime do kernel linear, causando sub-ajuste
 - Ver implementação em <u>https://cs.stanford.edu/people/karpathy/svmjs/demo/</u>

• Valor σ pequeno ($\sigma = 0.1$)

• Valor σ padrão ($\sigma = 1$)

• Valor σ alto ($\sigma = 10$)

Problemas multi-classe

SVMs são por natureza classificadores binários

• Em problemas multi-classe, a estratégia mais comum é a utilização de uma SVM para cada classe

• Ou seja, se existem n classes, treina-se n-SVMs

 Cada SVM é treinada com os dados da classe correspondente como sendo os dados positivos, e todos os outros como sendo os negativos

Problemas multi-classe

- Outra estratégia é criar uma SVM para todas as combinações possíveis de classe-vs-classe
 - Ou seja, para um conjunto de n classes, temos:

$$n \cdot (n-1)/2$$

classificadores

 A rotulação final para uma certa entrada se dá pela classe mais votada, ou seja, aquela que foi selecionada por mais classificadores

