Teoria da Computação

Forma Normal de Chomsky

José Osvano da Silva, PMP

Sumário

> 5. GRAMÁTICAS

- Normalização de gramáticas;
- Forma Normal de Chomsky;
- Exemplos
- Exercícios

Análise

- Dada uma cadeia de terminais w, queremos saber se w ∈ L(G) ou não.
- Se for o caso, poderemos querer achar uma derivação de w.
- >Um algoritmo que pode nos dizer se w ∈ L(G) é um algoritmo de pertinência
- >O termo **análise** descreve o modo de achar uma sequência de produções pela qual é derivada w∈L(G).

Análise

- > Análise óbvia se w está L(G):
 - construir todas as possíveis (e.g. as mais à esquerda) derivações e verificar se alguma coincide com W.
- > análise de pesquisa exaustiva
- > Problemas:
 - não é eficiente;
 - é possível que ele nunca termine w∉L(G).
 Por causa de produções da forma
 A→B e A→?

Ambiguidade

>Uma gramática livre de contexto G é **ambígua** se existe w ∈ L(G) com no mínimo **duas** árvores de derivação.

>ambiguidade ⇒ a existência de duas ou mais derivações à esquerda e à direita.

Exemplo:

A gramática com produções S→aSb | SS | ? é ambígua.

aabb tem duas árvores de derivação:

Ambiguidade - Solução

>Re-escrever a gramática tal que exista somente uma análise possível;

- >Associar regras de precedência
- >existem exemplos onde é impossível remover a ambiguidade da gramática.

Ambiguidade - Solução

não-ambígua:

> existe uma gramática para L que é não-ambígua;

inerentemente ambígua:

> se toda gramática para L é ambígua.

ex.:

 $L=\{a^nb^nc^m \mid n,m>0\} \cup \{a^nb^mc^m \mid n,m>0\}$

Normalização de Gramáticas

- A definição de uma CFG não impõe qualquer restrição no lado direito de uma produção.
- >Em muitas situações (aplicações) é desejável colocar restrições.
- Estudaremos métodos de transformar uma CFG arbitrária numa equivalente que satisfaz certas restrições sobre sua forma.

Forma Normal de Chosmky

Uma gramática livre de contexto está na forma normal de Chomsky se todas as produções são da forma

$$A \rightarrow BC$$
 ou $A \rightarrow a$

onde A, B, $C \in V$ e a $\in T$.

Forma Normal de Chosmky

Algoritmo:

Simplificar a Gramática:

- 1°) Eliminar as produções vazias;
- 2°) Eliminar as produções unitárias;
- 3°) Eliminar as variáveis inúteis.

Forma Normal de Chosmky (FNC):

Considere a Gramática $G = (\{S\}, \{a, b, c\}, P, S),$ onde P =

$$S \rightarrow AB \mid SCB$$

$$A \rightarrow aA \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid ?$$

1°) Eliminar produções vazias:

$$V_{2} = \{C, A\}$$

```
1°) Eliminar produções vazias: V_2 = \{C, A\}
S \rightarrow AB \mid SCB
A \rightarrow a\underline{A} \mid \underline{C}
B \rightarrow bB \mid b
C \rightarrow cC \mid ?
S \rightarrow AB \mid B \mid SCB \mid SB
A \rightarrow aA \mid a \mid C
B \rightarrow bB \mid b
C \rightarrow cC \mid c
```

2º: Eliminar as produções unitárias: (Criar conjuntos chamados de Fecho)

```
S \rightarrow AB \mid B \mid SCB \mid SB
A \rightarrow aA \mid a \mid C
B \rightarrow bB \mid b
C \rightarrow cC \mid c
Fecho \rightarrow S = {B}
Fecho \rightarrow A = {C}
Fecho \rightarrow B = { }
Fecho \rightarrow C = { }
```

2º: Eliminar as produções unitárias:

```
S \rightarrow AB \mid bB \mid b \mid SCB \mid SB
```

 $A \rightarrow aA \mid a \mid cC \mid c$

 $B \rightarrow bB \mid b$

 $C \rightarrow cC \mid c$

3º: Eliminar as variáveis inúteis:

$$S \rightarrow AB \mid bB \mid b \mid SCB \mid SB$$

$$A \rightarrow aA \mid a \mid cC \mid c$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid c$$

Nessa gramática não tem nenhuma variável inútil, um exemplo seria algo como:

 $D \rightarrow aA$.

Forma Normal de Chosmky - Exemplo

FNC:

$$S \rightarrow AB \mid bB \mid b \mid SCB \mid SB$$

$$A \rightarrow aA \mid a \mid cC \mid c$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid c$$

Deixar no formato de: $A \rightarrow BC$ ou $A \rightarrow a$

FNC:

$$S \rightarrow AB$$

$$S \rightarrow bB$$

$$S \rightarrow b$$

$$S \rightarrow SCB$$

$$S \rightarrow SB$$

$$A \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow cC$$

$$A \rightarrow c$$

$$B \rightarrow bB$$

$$B \rightarrow b$$

$$C \rightarrow cC$$

$$C \rightarrow c$$

Forma Normal de Chosmky - Exemplo

FNC:

$$S \rightarrow ABok$$

$$S \rightarrow bB_{N\tilde{a}o}OK = DB_{OK}$$

$$S \rightarrow bok$$

$$S \rightarrow SCBNão OK = EBOK$$

$$S \rightarrow SB OK$$

$$A \rightarrow aANão OK = FA OK$$

$$A \rightarrow aok$$

$$A \rightarrow CC_{N\tilde{a}o}OK = GC_{OK}$$

$$A \rightarrow Cok$$

$$B \rightarrow bBNão OK = DBOK$$

$$B \rightarrow bok$$

$$C \rightarrow CCNão OK = GCOK$$

$$C \rightarrow c_{OK}$$

$$D \rightarrow bok$$

$$E \rightarrow SC$$
 ok

$$F \rightarrow a_{ok}$$

FNC:

```
S \rightarrow AB \mid DB \mid b \mid EB \mid SB
```

$$A \rightarrow FA \mid a \mid GC \mid c$$

$$B \rightarrow DB \mid b$$

$$C \rightarrow GC \mid c$$

$$D \rightarrow b$$

$$E \rightarrow SC$$

$$F \rightarrow a$$

$$G \rightarrow c$$

```
FNC (Algumas regras)
Se X \rightarrow xY
    X \rightarrow X_1 Y
    X_1 \rightarrow X
Se X \rightarrow XYZ
                                            X3 \rightarrow X_1Y
    X \rightarrow X_1Z
                                          ^{\star} X \rightarrow X_3 X_2
    X_1 \rightarrow XY
Se X \rightarrow aYb
    X \rightarrow X_1 Y X_2
       X_1 \rightarrow a
       X_2 \rightarrow b
```

FNC - Exercício de Fixação

1) Normalize a gramática a seguir usando a FNC:

```
S \rightarrow ASA \mid aB
```

 $A \rightarrow B \mid S$

 $B \rightarrow bb \mid ?$

Dúvidas

