Motor Control with L298n

Figure 1: DC Motor and l298n Controller

In this workshop, we will explore how to control motors using the L298 motor driver and an Arduino. The L298 is a powerful driver that allows you to control the speed and direction of up to two motors independently.

Wiring the L298 to Arduino

Before beginning, ensure you have the required components: L298 motor driver, Arduino, motors, and connecting wires.

Power Supply

- **VCC** → Connect to the 5V pin on your Arduino to power the motor driver.
- **GND** → Connect to one of the GND pins on your Arduino to complete the circuit.

Signal Pins for Motor A

- **ENA** → Connect to a digital pin, for example, 9 (this pin enables the motor's speed control).
- **IN1** → Connect to a digital pin, for example, 7 (this controls the motor's direction).
- **IN2** → Connect to a digital pin, for example, 6 (this also controls the motor's direction).

Motor A

- Red wire → Connect to the OUT1 terminal on the L298.
- Black wire → Connect to the OUT2 terminal on the L298.

Programming

Step 1: Setup Pins

Set all relevant pins to output mode using the pinMode function at the beginning of your program in setup().

```
#define ENA 9
#define IN1 7
#define IN2 6

void setup() {
    // Set pin modes for motor control
    pinMode(ENA, OUTPUT);
    pinMode(IN1, OUTPUT);
    pinMode(IN2, OUTPUT);
}
```

Step 2: Control Motor Direction

Below is a motor behavior table based on L298 inputs. Use it to determine the necessary signal combinations for controlling motor direction and speed.

Direction	IN1	IN2
Forward	HIGH	LOW
Backward	LOW	HIGH
Stop	LOW	LOW

Example of sending signals to control motor A:

This code could be in the setup () function to test the motor's behavior.

Step 3: Implement Control Functions

For easier control, create functions to handle motor operations:

```
1 void motor_forward() {
       // Activate motor A and make it move forward at 50% speed
2
       analogWrite(ENA, 127);
3
       digitalWrite(IN1, HIGH);
       digitalWrite(IN2, LOW);
5
6 }
7
8 void motor_backward() {
       // Activate motor A and make it move backward at 50% speed
       analogWrite(ENA, 127);
10
       digitalWrite(IN1, LOW);
11
12
       digitalWrite(IN2, HIGH);
13 }
```

These functions simplify the process of controlling the motor by encapsulating the logic into reusable functions. Adjust pin values according to your setup.

```
1 void setup() {
2
       // Set pin modes for motor control
3
       pinMode(ENA, OUTPUT);
       pinMode(IN1, OUTPUT);
4
       pinMode(IN2, OUTPUT);
5
6
       // Use your functions to control the motor
7
       motor_forward();
8
       delay(500);
9
10
       motor_backward();
11 }
```

By following these steps, you can control the L298 motor driver effectively for any project involving motor control.