Serial Number:

Roll Number:

Important

- Any malpractice will lead to instant fail grade, irrespective of your performance in past/future quizzes.
- This is a question paper and answer sheet. Please provide only final answers in the spaces provided. Do not include derivations or proofs. You will be given a 8-page booklet for rough work.
- Write your roll number and "serial number" in this question/answer sheet. The serial number is available in the attendance list with the TA.
- No breaks during the exam. No books, notes, laptops, calculators, mobile devices etc. are allowed.

Instructions: Choose **ALL the correct options** for the following questions. If none of the options are correct, you must write "NONE OF THE ABOVE" as your answer.

Example. If the correct options to a question are both (a) and (b), then the only correct answer to this question is: "(a) and (b)". In this case the answers "(a)", "(b)", or "None of the above" will all be incorrect and will be awarded no marks.

- 1. (1 mark) Choose all the correct answers.
 - (a) If \mathcal{X} is a finite set then H(X) is finite.
 - (b) $H(X) \ge 0$.

Answer:

- 2. (1 mark) Which of the following statements are true for all jointly distributed random variables X, Y, Z?
 - (a) $H(Y|X=x) \leq H(Y)$ for all $x \in \mathcal{X}$.
 - (b) $H(Y|X, Z) \le H(Y|X)$.

Answer:

- 3. (1 mark) Choose all the correct answers.
 - (a) $D(p_{X,Y,Z} || p_X p_Y p_Z) = H(X) + H(Y) + H(Z) H(X, Y, Z).$
 - (b) $D(p_{X,Y|Z} || p_{X|Z} p_{Y|Z} || p_Z) = I(X; Y|Z).$

Answer:

- 4. (1 mark) Which of the following detection rules provide the smallest value of probability of error P_e ?
 - (a) $g(y) = \arg \max_{x \in \mathcal{X}} p_{X|Y}(x|y)$.
 - (b) $g(y) = \arg \max_{x \in \mathcal{X}} p_{X,Y}(x,y)$.

Answer:

Instructions: Provide only the final answers for the below questions.

5. (1 mark) Write the chain rule expansion of the joint entropy $H(X_1, \ldots, X_n)$.

Answer:

- 6. (1 mark) Write the chain rule expansion of $D(p_{X,Y}\|q_{X,Y})$. Answer:
- 7. (1 mark) Write the Fano's inequality for the case $|\mathcal{X}|=2$, i.e., write the inequality using the fact $|\mathcal{X}|-1=1$.

 Answer:
- 8. (2 marks) Let $\mathcal{X} = \{1, 2, 3, 4\}$ and let $P[X = k] = p_k$, for k = 1, 2, 3, 4. Let $h_2(\alpha) = \alpha \log\left(\frac{1}{\alpha}\right) + (1 \alpha)\log\left(\frac{1}{1-\alpha}\right)$ be the binary entropy function.

Write H(X) in terms of $h_2(p_1+p_2)$, $h_2\left(\frac{p_1}{p_1+p_2}\right)$ and $h_2\left(\frac{p_3}{p_3+p_4}\right)$.

Anguar

9. (2 marks) If X is distributed as follows, find the value of H(X).

$$P[X = k] = \frac{1}{2^k}$$
, for $k = 1, 2, 3, \dots$

Answer:

10. (1 mark) With X distributed as in the previous question, what is the value of $H(X | X \ge 3)$?

Answer: