Anomaly Detection Dataset { x (1), x (2), ..., x (m)] New-engine: Xtest. * * * * * * * * * * * * * anomaly Density estimation. P(Ytest) < E - Flag anomaly. how avainaly ? Ex. Fraud detection. . x(i) = features of user i's activities . model p(x) from data. . identify unusual users by checking p(x) < \varepsilon. Ex. Manufacturing Ex. Monitoring computers in a data centre. · x(i) = features of machine i. · n, = memory use, x= number of disk accesses / sec. · X3 = CPU load , X4 = CPU load / network traffic.

Gaussian Distribution

X & 112 , XN N(µ, 02)

or "homal"

Mean variance.

$$P(x; \mu, \sigma^2) \stackrel{\triangle}{=} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Pavameter Estimation

Dataset 1x11), x12), ..., x1m1 } , x1j+1R

of ne expect. x(1) N (1,02)

$$\mu = \frac{1}{M} \cdot \frac{M}{3} \times (i)$$

$$\sigma^{2} = \frac{1}{M} \cdot \frac{M}{3} \cdot [\times (i) - \mu]^{2}$$

$$(so metales)$$

Algorithm

Thaining set. 4x", ..., x(m) 3. Each example is x+1R"

$$p(x) = \prod_{i=1}^{n} p(x_i j \mu_i, \sigma_i^2)$$

1. Choose features is that you think might be indirative of anomalous examples. 2. Fit parameters | \u_1...\u_1...\u_1...\u_n...\u_n | (j=1...\u)

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} \chi_{j}^{(i)} \qquad j = \frac{1}{m} \sum_{i=1}^{m} (\chi_{i}^{(i)} - \mu_{j})^{\perp}$$

$$\frac{|u|^2}{|u|^2} \left(\frac{|u|}{|u|} \right) = \frac{|u|}{|u|} \frac{|u|}{|u|^2} \chi^{(i)}$$

$$p(x) = \prod_{j=1}^{n} p(x_j) \mu_j, \sigma_j^{\perp}$$

$$= \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi i} \sigma_j} \exp\left(-\frac{(x_j - \mu_j)^{\perp}}{2\sigma_j^{\perp}}\right) \stackrel{?}{\geq} \varepsilon \quad \text{an annels}$$

"Assuring a Granssian distribution, defensive an amoly based on a threshold & "

anomalous.

Developing and Evaluating an Anomaly Detection

· real number evaluation.

Algorithm evaluation

. fit model p(z) on training set . 4 16 (1), ... x (m) 3

. On a CVI test x, product. $y = \begin{cases} 1 \\ 0 \end{cases}$, $p(x) \in \{anomaly\}$

stened data set. (should trespositive, pressur recall, +1 score)

Anomaly betection us Supervised Learning

Evamples

Hany drift. types of anomalies Ewough positive examples for algorithm to get a cense of what positive examples are cikely.

Choosing what Features to use

or constant

· Nou-guacerau - log (x+c), x a.

(trausformat m)

· error analysis for anomaly detection

- Want: p(x) large for nomal examples x

pic) small for anomalous example x.

- common publem: p(x) is comparable (say, Loth large) for normal

and anomalous examples.

Kultivariate Guassian.

Z + IRM . Dow' model p(x1), p(x2), ..., etc. separately.

Model pcz) all in one-go.

Parameters: $\mu \in \mathbb{R}^{n}$, $\Sigma \in \mathbb{R}^{n \times n}$. [avariance matrix]

 $p(x; \mu, \Xi) = \frac{1}{(2\pi)^{\frac{M}{2}} \cdot |\Xi|^{\frac{1}{2}}} exp. \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$

b determinant.

I = (0.6 0) - variance < hindred > nanomer distribution

flatter.

Anomaly Detection with the multivariate Guassian.

1) Fit model p(x) by setting

$$\mu = \frac{1}{m}$$
, $\Sigma = \frac{1}{m} \left(x^{(i)} - \mu \right) \cdot \left(x^{(i)} - \mu \right)^{7}$.

2) Grown a new example x, compute

$$P(\mathcal{L}) = \frac{1}{(2\pi)^{\frac{2}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\frac{1}{2}}\cdot\Sigma^{\frac{1}{2}}(x-\mu)\right).$$

anomaly (=> p(x) { E.

original model
$$p(z) = [T p \cdot (\lambda i, \mu i, \nabla i^2)] \Leftrightarrow p \cdot (\lambda i, \mu i) = \frac{1}{(2\pi)^{\frac{1}{2}}} \frac{e^{i}}{|\Sigma|^2} \frac{e^{i}}{|\Sigma|^2} \frac{1}{|\Sigma|^2} \frac{1}$$

special case.

. When to use?

original model.

Manually create features
to capture anomalies where

X1, X2 take unusual combinations

of values.
$$x_2 = \frac{x_1}{\chi_2}$$

· Mau In.

multivarinte Guassian

$$P = \frac{1}{(2\pi)^{\frac{1}{2}} |\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T}, \frac{2}{2}, -1\right)$$

- · Hatomatnally captures comelations Letween features.
- . Computationally expensive.
- · Emvertible (=> m>n.

(m>,104 in practize)

to reduced out Fratures when n 9

Recommender system (use antent of movie to predict ratings)

- 1. Problem formulation: produt users movie valing to generate recommendations
- 2. Content Lased recommendation

For each nurie, form "feature vector"
$$= \begin{pmatrix} x_0 \\ x_1 \\ \end{pmatrix} \rightarrow \text{Nomance}$$

A cution

- for each user j, learn parameter $\theta^{(j)} \in \mathbb{R}^3$. Redut user j as ruting movie j i with $(\theta^{(j)})^7\chi^{(i)}$ starts.
- 3. Formulation.

·
$$\theta^{(j)}$$
 - parameter vector for user j.

constant, can pull out.

Feature	Leaning:	Collaborative	Filtenny

- · Groven a dutaset, but no knowledge of each movie.
- · However, has user data o parameter.
- 1. Formulation.

Can cascade to improve.

3. Collaborative Filtering Algorithm

- . XtIRM, OciRM on No need to hardwoode xo = 1. since we our generating the features.
- 1. Imitialize $x^{(1)}, \dots, x^{(m)}$; $0^{(1)}, \dots, 0^{(Mn)}$ to small vaudom values. 2. $um \cdot J(x^{(1)}, \dots, x^{(km)})$, $0^{(1)}, \dots, 0^{(kn)}$) using gradient descent.
- 3. For a user with parameters O, and a movie w/ learned features x, predict a star rating of oTx.

Me	۸N	N	lon	nal	7-6	atio	14	_																													
														0.4			D			_	λ		- 7		(y	(i)	<u>, </u>			<u>^</u>	7	5 (B	נדו	. 2		
					l er) V	150	75	:				-)		~					2		- <	•	(~	Ł.)			2				k	,		
																														Ø=	- /	0	1				
																															_\	; b	J				
																							o.	۲.	X	=	0	•	t>	•	17a	te	ei	ver	y	ø	
				Me	all	. h	m	alī	tat	M												w	s w	_											J		
											_	>	w	ow	Lal	lre		ھ			vol hus			ø.													
											ধ	Les	w	L	0	(3)	,	X	<i>ii</i>)																		
			Ŧ.	r	use	かう		w	ov)e	2 7		ρhe	di	ኒቲ	,																						
						,) .	•	ke i																			
											_	, 			_		=	# i	_																		
												٥																									