Mining Frequent Patterns & Associations: Advanced Methods

Excerpt from "Data Mining: Concepts and Techniques", 3rd Ed. Jiawei Han, Micheline Kamber, and Jian Pei Chapter 7

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Mining Multiple-Level Association Rules

- Items often form hierarchies
- Flexible support settings
 - Items at the lower level are expected to have lower support
- Exploration of shared multi-level mining (Agrawal & Srikant@VLDB'95, Han & Fu@VLDB'95)

uniform support

reduced support

Multi-level Association: Flexible Support and Redundancy filtering

- Flexible min-support thresholds: Some items are more valuable but less frequent
 - Use non-uniform, group-based min-support
 - E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; ...
- Redundancy Filtering: Some rules may be redundant due to "ancestor" relationships between items
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - 2% milk ⇒ wheat bread [support = 2%, confidence = 72%]
 - The first rule is an ancestor of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Mining Multi-Dimensional Association

Single-dimensional rules:

```
buys(X, "milk") \Rightarrow buys(X, "bread")
```

- Multi-dimensional rules: ≥ 2 dimensions or predicates
 - Inter-dimension assoc. rules (no repeated predicates) age(X,"19-25") ∧ occupation(X,"student") ⇒ buys(X, "coke")
 - hybrid-dimension assoc. rules (repeated predicates) age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes: finite number of possible values, no ordering among values—data cube approach
- Quantitative Attributes: Numeric, implicit ordering among values—discretization

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Mining Quantitative Associations

Techniques can be categorized by how numerical attributes, such as age or salary are treated

- Static discretization based on predefined concept hierarchies (data cube methods)
- Dynamic discretization based on data distribution (quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)
- Clustering: Distance-based association (e.g., Yang & Miller@SIGMOD97)
 - One dimensional clustering then association
- Deviation: (such as Aumann and Lindell@KDD99)
 - Sex = female => Wage: mean=\$7/hr (overall mean = \$9)

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans
- Data cube is well suited for mining
- The cells of an n-dimensional cuboid correspond to the predicate sets
- Mining from data cubes can be much faster

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
 - Mining Multi-Level Association
 - Mining Multi-Dimensional Association
 - Mining Quantitative Association Rules
 - Mining Rare Patterns and Negative Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Negative and Rare Patterns

- Rare patterns: Very low support but interesting
 - E.g., buying Rolex watches
 - Mining: Setting individual-based or special group-based support threshold for valuable items
- Negative patterns
 - Since it is unlikely that one buys Ford Expedition (an SUV car) and Toyota Prius (a hybrid car) together, Ford Expedition and Toyota Prius are likely negatively correlated patterns
- Negatively correlated patterns that are also infrequent/rare tend to be more interesting than those that are frequent

Defining Negative Correlated Patterns (I)

- Definition 1 (support-based)
 - If itemsets X and Y are both frequent but rarely occur together, i.e.,
 sup(X U Y) < sup(X) * sup(Y)
 - Then X and Y are negatively correlated

When there are 10⁵ transactions, we have

- Problem: A store sold two types of needles A and B, 100 transactions including each type, only one transaction containing both A and B.
 - When there are in total 200 transactions, we have $s(A \cup B) = 0.005$, s(A) * s(B) = 0.25, $s(A \cup B) < s(A) * s(B)$
 - $s(A \cup B) = 1/10^5$, $s(A) * s(B) = 1/10^3 * 1/10^3$, $s(A \cup B) > s(A) * s(B)$
 - Where is the problem? —Null transactions, i.e., the support-based definition is not null-invariant!

Defining Negative Correlated Patterns (II)

- Definition 2 (Kulzynski measure-based) If itemsets X and Y are frequent, but (P(X|Y) + P(Y|X))/2 < ε, where ε is a negative-pattern threshold, then X and Y are negatively correlated.
- **Ex.** For the same needle package problem, when no matter there are 200 or 10^5 transactions, if $\epsilon = 0.01$, we have

$$(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$$

Null invariant!

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining constraint-based mining: constraint-pushing, similar to push selection first in DB query processing
 - Note: still find all the answers satisfying constraints

Constraints in Data Mining

- Knowledge type constraint:
 - correlation, association, etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago this year
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Interestingness constraint
 - strong rules: min_support ≥ 50%, min_confidence ≥ 60%
- Rule (or pattern) constraint
 - small sales (price < \$10) triggers big sales (sum > \$200)

Meta-Rule Guided Mining

 Meta-rule can be in the rule form with partially instantiated predicates and constants

$$P_1(X, Y) \wedge P_2(X, W) => buys(X, "iPad")$$

The resulting rule derived can be

$$age(X, "15-25") \land profession(X, "student") => buys(X, "iPad")$$

In general, it can be in the form of

$$P_1 \wedge P_2 \wedge ... \wedge P_1 => Q_1 \wedge Q_2 \wedge ... \wedge Q_r$$

- Method to find meta-rules
 - Find frequent (I+r) predicates (based on min-support threshold)
 - Push constants deeply when possible into the mining process (see the remaining discussions on constraint-push techniques)

Constraint-Based Frequent Pattern Mining

- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated as it won't be satisfied with itemset extension
 - Monotonic: If c is satisfied, no need to check c again as it will for sure be satisfied with every itemset extension
 - Succinct: c must be satisfied, so one can start with the data sets satisfying c
 - Convertible: c is not monotonic nor anti-monotonic, but it can be converted into it if items in the transaction can be properly ordered
- Data space pruning constraint
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned from its further mining

Pattern Space Pruning with Anti-Monotonicity Constraints

- A constraint C is anti-monotone if the super pattern satisfies C, all of its sub-patterns do so too
- In other words, anti-monotonicity: If an itemset S violates the constraint, so does any of its superset
- Ex. 1. sum(S.price) ≤ v is anti-monotone
- Ex. 2. range(S.profit) ≤ 15 is anti-monotone
 - Itemset ab violates C
 - So does every superset of ab
- Ex. 3. $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. support count is anti-monotone: core property used in Apriori

	<u> </u>
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

_	
Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Pattern Space Pruning with Monotonicity Constraints

- A constraint C is monotone if the pattern satisfies C, we do not need to check C in subsequent mining
- Alternatively, monotonicity: If an itemset S
 satisfies the constraint, so does any of its
 superset
- Ex. 1. sum(S.Price) ≥ v is monotone
- Ex. 2. min(S.Price) ≤ v is monotone
- Ex. 3. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Data Space Pruning with Data Anti-monotonicity

- A constraint c is data anti-monotone if for a pattern
 p cannot satisfy a transaction t under c, p's
 superset cannot satisfy t under c either
- The key for data anti-monotone is recursive data reduction
- Ex. 1. $sum(S.Price) \ge \nu$ is data anti-monotone
- Ex. 2. $min(S.Price) \le v$ is data anti-monotone
- Ex. 3. C: range(S.profit) ≥ 25 is data antimonotone
 - Itemset {b, c}'s projected DB:
 - T10': {d, f, h}, T20': {d, f, g, h}, T30': {d, f, g}
 - since C cannot satisfy T10', T10' can be pruned

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	c, e, f, g

c, e, i, g	
Item	Profit
a	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	-5

Pattern Space Pruning with Succinctness

Succinctness:

- Given $A_{1,}$ the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{1} , i.e., S contains a subset belonging to A_{1}
- Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
- $min(S.Price) \ge v$ is succinct
- $sum(S.Price) \ge v$ is not succinct

Naïve Algorithm: Apriori + Constraint

Constrained Apriori : Push a Succinct Constraint Deep

Constrained FP-Growth: Push a Succinct Constraint Deep

1-Projected DB

TID	Items
100	3
300	235

No Need to project on 2, 3, or 5

Constraint:

min{S.price } <= 1

Constrained FP-Growth: Push a Data Anti-monotonic Constraint Deep

Single branch, we are done

Constraint:

min{S.price } <= 1

Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - < a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

	<u> </u>
TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraints?

- A convertible, not monotone nor anti-monotone nor succinct constraint cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - Itemset df violates constraint C: avg(X) >= 25
 - Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned
- But it can be pushed into frequent-pattern growth framework!

Item	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10
	!

Can FP-Growth Handle Convertible Constraints?

- C: avg(X) >= 25, $min_sup=2$
- List items in every transaction in value descending order R: <a, f, g, d, b, h, c, e>
 - C is convertible anti-monotone w.r.t. R
- Scan TDB once
 - remove infrequent items
 - Item h is dropped
 - Itemsets a and f are good, ...
- Projection-based mining
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)-monotone

Item	Value
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30
D (100110	(1110)

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e
40	f, g, h, c, e

Handling Multiple Constraints

- Different constraints may require different or even conflicting item-ordering
- If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R, then there is no conflict between the two convertible constraints
- If there exists conflict on order of items
 - Try to satisfy one constraint first
 - Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

What Constraints Are Convertible?

Constraint	Convertible anti- monotone	Convertible monotone
$avg(S) \le 1 \ge v$	Yes	Yes
$median(S) \le , \ge v$	Yes	Yes
sum(S) \leq v (items could be of any value, $v \geq 0$)	Yes	No
sum(S) \leq v (items could be of any value, $v \leq 0$)	No	Yes
sum(S) \geq v (items could be of any value, $v \geq 0$)	No	Yes
sum(S) \geq v (items could be of any value, $v \leq 0$)	Yes	No

Constraint-Based Mining — A General Picture

Constraint	Anti-monotone	Monotone	Succinct
v ∈ S	no	yes	yes
S⊇V	no	yes	yes
S⊆V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
$sum(S) \le v (a \in S, a \ge 0)$	yes	no	no
$sum(S) \ge v (a \in S, a \ge 0)$	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S) \theta v, \theta \in \{ =, \leq, \geq \}$	convertible	convertible	no
support(S) ≥ ξ	yes	no	no
support(S) ≤ ξ	no	yes	no

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Mining Colossal Frequent Patterns

- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07.
- We have many algorithms, but can we mine large (i.e., colossal)
 patterns? such as just size around 50 to 100? Unfortunately, not!
- Why not? the curse of "downward closure" of frequent patterns
 - The "downward closure" property
 - Any sub-pattern of a frequent pattern is frequent.
 - Example. If $(a_1, a_2, ..., a_{100})$ is frequent, then $a_1, a_2, ..., a_{100}, (a_1, a_2), (a_1, a_3), ..., (a_1, a_{100}), (a_1, a_2, a_3), ...$ are all frequent! There are about 2^{100} such frequent itemsets!
 - No matter using breadth-first search (e.g., Apriori) or depth-first search (FPgrowth), we have to examine so many patterns
- Thus the downward closure property leads to explosion!

Colossal Patterns: A Motivating Example

Let's make a set of 40 transactions

•

:

:

:

T40=1 2 3 4 39 40

Then delete the items on the diagonal

$$T_1 = 2 \ 3 \ 4 \ \dots \ 39 \ 40$$

$$T_2 = 1 \ 3 \ 4 \ \dots \ 39 \ 40$$

: .

.

•

: .

 $T_{40}=1234.....39$

Closed/maximal patterns may partially alleviate the problem but not really solve it: We often need to mine scattered large patterns!

Let the minimum support threshold σ = 20

There are $\binom{40}{20}$ frequent patterns of size 20

Each is closed and maximal

patterns =
$$\binom{n}{n/2} \approx \sqrt{2/\pi} \frac{2^n}{\sqrt{n}}$$

The size of the answer set is exponential to n

A Show of Colossal Pattern Mining!

$T_1 = 23$	4	39 40
$T_2 = 13$	4	39 40
:	•	
:	•	
:	•	
:		•
$T_{40}=12$	3 4	39
T ₄₁ = 41	42 43	79
$T_{42} = 41$	42 43	79
:	•	
:	•	
$T_{60} = 41$	42 43	79

Let the min-support threshold σ = 20

Then there are $\binom{40}{20}$ closed/maximal frequent patterns of size 20

However, there is only one with size greater than 20, (*i.e.*, colossal):

$$\alpha = \{41, 42, ..., 79\}$$
 of size 39

The existing fastest mining algorithms fail to complete running

Colossal Pattern Set: Small but Interesting

 It is often the case that only a small number of patterns are colossal, i.e., of large size

 Colossal patterns are usually attached with greater importance than those of small pattern sizes

Mining Colossal Patterns: Motivation and Philosophy

- Motivation: Many real-world tasks need mining colossal patterns
 - Micro-array analysis in bioinformatics (when support is low)
 - Biological sequence patterns
 - Biological/sociological/information graph pattern mining
- No hope for completeness
 - If the mining of mid-sized patterns is explosive in size, there is no hope to find colossal patterns efficiently by insisting "complete set" mining philosophy
- Jumping out of the swamp of the mid-sized results
 - What we may develop is a philosophy that may jump out of the swamp of mid-sized results that are explosive in size and jump to reach colossal patterns
- Striving for mining almost complete colossal patterns
 - The key is to develop a mechanism that may quickly reach colossal patterns and discover most of them

Methodology of Pattern-Fusion Strategy

- Pattern-Fusion traverses the tree in a bounded-breadth way
 - Always pushes down a frontier of a bounded-size candidate pool
 - Only a fixed number of patterns in the current candidate pool will be used as the starting nodes to go down in the pattern tree
 thus avoids the exponential search space
- Pattern-Fusion identifies "shortcuts" whenever possible
 - Pattern growth is not performed by single-item addition but by leaps and bounded: agglomeration of multiple patterns in the pool
 - These shortcuts will direct the search down the tree much more rapidly towards the colossal patterns

Robustness of Colossal Patterns

 Core Patterns: Intuitively, for a frequent pattern α, a subpattern β is a τ-core pattern of α if β shares a similar support set with α, i.e.,

$$\frac{\mid D_{\alpha}\mid}{\mid D_{\beta}\mid} \geq \tau \qquad 0 < \tau \leq 1$$

where τ is called the core ratio and D is dataset support for a given pattern

- Robustness of Colossal Patterns: A colossal pattern is (d,τ)-robust if d is the maximum number of items that can be removed from α while the remaining pattern is still a core pattern of α
 - Colossal patterns are robust, hence they tend to have much more core patterns than small patterns

Observation: Colossal Patterns and Core Patterns

Subpatterns α_1 to α_k cluster tightly around the colossal pattern α by sharing a similar support. We call such subpatterns *core patterns* of α

Example: Core Patterns

- A colossal pattern has far more core patterns than a small-sized pattern
- A colossal pattern has far more core descendants of a smaller size c
- A random draw from a complete set of pattern of size c would more likely to pick a core descendant of a colossal pattern
- A colossal pattern can be generated by merging a small subset of core patterns

Transaction (# of Ts)	Core Patterns ($\tau = 0.5$)
(abe) (100)	(abe), (ab), (be), (ae), (e)
(bcf) (100)	(bcf), (bc), (bf)
(acf) (100)	(acf), (ac), (af)
(abcef) (100)	(ab), (ac), (af), (ae), (bc), (bf), (be) (ce), (fe), (e), (abc), (abf), (abe), (ace), (acf), (afe), (bcf), (bce), (bfe), (cfe), (abcf), (abcef)

Robustness of Colossal Patterns

- (d,τ)-robustness: A pattern α is (d, τ)-robust if d is the maximum number of items that can be removed from α for the resulting pattern to remain a τ-core pattern of α
- For a (d, τ)-robust pattern α , it has $\Omega(2^d)$ core patterns
- Pattern distance: For patterns α and β , the pattern distance of α and β is defined to be $\left|D_{\alpha} \cap D_{\beta}\right|$

 $Dist(\alpha, \beta) = 1 - \frac{\left| D_{\alpha} \cap D_{\beta} \right|}{\left| D_{\alpha} \cup D_{\beta} \right|}$

If two patterns α and β are both core patterns of a same pattern, they would be bounded by a "ball" of a radius specified by their core ratio τ

$$Dist(\alpha, \beta) \le 1 - \frac{1}{2/\tau - 1} = r(\tau)$$

 Once we identify one core pattern, we will be able to find all the other core patterns by a bounding ball of radius r(τ)

Colossal Patterns Correspond to Dense Balls

- Due to their robustness, colossal patterns correspond to dense balls
 - $\Omega(2^d)$ in population
- A random draw in the pattern space will hit somewhere in the ball with high probability

Idea of Pattern-Fusion Algorithm

- Generate a complete set of frequent patterns up to a small size
- Randomly pick a pattern β, and β has a high probability to be a core-descendant of some colossal pattern a
- Identify all a's descendants in this complete set, and merge all of them — This would generate a much larger core-descendant of a
- In the same fashion, we select K patterns. This set of larger core-descendants will be the candidate pool for the next iteration

Pattern-Fusion: The Algorithm

- Initialization (Initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (Iterative Pattern Fusion):
 - At each iteration, k seed patterns are randomly picked from the current pattern pool
 - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
 - All these patterns found are fused together to generate a set of super-patterns. All the super-patterns thus generated form a new pool for the next iteration
- Termination: when the current pool contains no more than K patterns at the beginning of an iteration

Why Is Pattern-Fusion Efficient?

- A bounded-breadth pattern tree traversal
 - It avoids explosion in mining mid-sized ones
 - Randomness comes to help to stay on the right path
- Ability to identify "short-cuts" and take "leaps"
 - fuse small patterns together in one step to generate new patterns of significant sizes
 - Efficiency

Outline

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

Mining Compressed Patterns: δ -clustering

- Why compressed patterns?
 - too many, but less meaningful
- Pattern distance measure

$$D(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- δ-clustering: For each pattern P, find all patterns which can be expressed by P and their distance to P are within δ (δ-cover)
- All patterns in the cluster can be represented by P
- Xin et al., "Mining Compressed Frequent-Pattern Sets", VLDB'05

ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
Р3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
P5	{39,16,18,12}	161576

- Closed frequent pattern
 - Report P1, P2, P3, P4, P5
 - Emphasize too much on support
 - no compression
- Max-pattern, P3: info loss
- A desirable output: P2, P3, P4

Redundancy-Aware Top-k Patterns

- Why redundancy-aware top-k patterns?
- Desired patterns: high significance & low redundancy
- Propose the MMS
 (Maximal Marginal
 Significance) for
 measuring the
 combined significance
 of a pattern set
- Xin et al., Extracting Redundancy-Aware

significance

(a) a set of patterns

Top-K Patterns, KDD'06 (c) traditional top-k

(b) redundancy-aware top-k

(d) summarization

Outline

- Pattern Mining: A Road Map
- Pattern Mining in Multi-Level, Multi-Dimensional Space
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Mining Compressed or Approximate Patterns
- Pattern Exploration and Application
- Summary

How to Understand and Interpret Patterns?

Not all frequent patterns are useful, only meaningful ones ...

Annotate patterns with semantic information

Word: "pattern" – from Merriam-Webster

Non-semantic info.

Main Entry: 1 pat tern

Pronunciation: 'pa-tərn

Function: noun

Etymology: Middle English patron, from Middle French, from Medieval

Latin patronus

Date: 14th century

1: a form or model proposed for imitation: EXEMPLAR

2 : something designed or used as a model for making things (a dressmaker's pattern)

3: a model for making a mold into which molten metal is poured to form a casting

4: an artistic, musical, literary, or mechanical design or form

5: a natural or chance configuration (frost pattern) (the pattern of events)

11: a discernible coherent system based on the intended interrelationship of component parts (foreign policy patterns)

12: frequent or widespread incidence (a pattern of dissent)

synonyms see MODEL

-patterned\-ternd\ adjective

-patternless adjective

Word: "pattern" – from Merriam-Webster

Main Entry: 1 pat tern

Pronunciation: 'pa-tərn

Function: *noun*

Etymology: Middle English patron, from Middle French, from

Latin *patronus*

Date: 14th century

Non-semantic info.

Definitions indicating semantics

1: a form or model proposed for imitation: EXEMPLAR

2 : something designed or used as a model for making things (a dressmaker's pattern)

3: a model for making a mold into which molten metal is poured to form a casting

4: an artistic, musical, literary, or mechanical design or form

5: a natural or chance configuration (frost pattern) (the pattern of events)

11: a discernible coherent system based on the intended interrelationship of component parts $\langle ext{foreign policy } ext{patterns}
angle$

12: frequent or widespread incidence (a pattern of dissent)

synonyms see MODEL

-patterned\-ternd\ adjective

-patternless adjective

Word: "pattern" – from Merriam-Webster Non-semantic info. Main Entry: lpat term Pronunciation: pa-tern Function: Middle English patron, from Middle French, from Definitions indicating Etymology: Date: 14th century semantics 1: a form or model proposed for imitation: EXEMPLAR 2 : something designed or used as a model for making thing: (a dressmaker) (pattern) 3: a model for making a mold into which molten metal is poured to form/a casting 4: an artistic, musical, literary, or mechanical design or form 5: a natural or chance configuration (frost pattern) the pattern amples of Usage 11: a discernible coherent system based on the intended interrelationship of component parts (foreign policy patterns) 12: frequent or widespread incidence (a pattern of dissent synonyms see MODEL -patterned\-ternd\ adjective -patternless adjective

Semantic Analysis with Context Models

- Task1: Model the context of a frequent pattern Based on the Context Model...
- Task2: Extract strongest context indicators
- Task3: Extract representative transactions
- Task4: Extract semantically similar patterns

Annotating DBLP Co-authorship & Title Pattern

Semantic Annotations

Pattern	{ x_yan, j_han}
Non	Sup =
CI	{p_yu}, graph pattern,
Trans.	gSpan: graph-base
SSPs	{ j_wang }, {j_han, p_yu},

Context Units

< { p_yu, j_han}, { d_xin }, ..., "graph pattern",
... "substructure similarity", ... >

Pattern = {xifeng_yan, jiawei_han}

Annotation Results:

Context Indicator (CI)	graph; {philip_yu}; mine close; graph pattern; sequential pattern;
Representative Transactions (Trans)	> gSpan: graph-base substructure pattern mining; > mining close relational graph connect constraint;
Semantically Similar Patterns (SSP)	{jiawei_han, philip_yu}; {jian_pei, jiawei_han}; {jiong_yang, philip_yu, wei_wang};

Summary

- Roadmap: Many aspects & extensions on pattern mining
- Mining patterns in multi-level, multi dimensional space
- Mining rare and negative patterns
- Constraint-based pattern mining
- Specialized methods for mining high-dimensional data and colossal patterns
- Mining compressed or approximate patterns
- Pattern exploration and understanding: Semantic annotation of frequent patterns

Ref: Mining Multi-Level and Quantitative Rules

- Y. Aumann and Y. Lindell. A Statistical Theory for Quantitative Association Rules, KDD'99
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95.
- R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97.
- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96.
- K. Wang, Y. He, and J. Han. Mining frequent itemsets using support constraints. VLDB'00
- K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear regions for association rules. KDD'97.

Ref: Mining Other Kinds of Rules

- F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98
- Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of Functional and Approximate Dependencies Using Partitions. ICDE'98.
- H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern Extraction with Fascicles. VLDB'99
- B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97.
- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96.
- A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of customer transactions. ICDE'98.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov.
 Query flocks: A generalization of association-rule mining. SIGMOD'98.

Ref: Constraint-Based Pattern Mining

- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang. Exploratory mining and pruning optimizations of constrained association rules. SIGMOD'98
- G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00
- J. Pei, J. Han, and L. V. S. Lakshmanan. Mining Frequent Itemsets with Convertible Constraints. ICDE'01
- J. Pei, J. Han, and W. Wang, Mining Sequential Patterns with Constraints in Large Databases, CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated
 Data Reduction in Constrained Pattern Mining, PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07

Ref: Mining Sequential Patterns

- X. Ji, J. Bailey, and G. Dong. Mining minimal distinguishing subsequence patterns with gap constraints. ICDM'05
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. DAMI:97.
- J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. ICDE'01.
- R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. EDBT'96.
- X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. SDM'03.
- M. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning:01.

Mining Graph and Structured Patterns

- A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. PKDD'00
- M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. ICDM'01.
- X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. ICDM'02
- X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns.
 KDD'03
- X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent structure analysis. ACM TODS, 30:960–993, 2005
- X. Yan, F. Zhu, P. S. Yu, and J. Han. Feature-based substructure similarity search. ACM Trans. Database Systems, 31:1418–1453, 2006

Ref: Mining Spatial, Spatiotemporal, Multimedia Data

- H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent spatiotemporal sequential patterns. ICDM'05
- D. Gunopulos and I. Tsoukatos. Efficient Mining of Spatiotemporal Patterns.
 SSTD'01
- K. Koperski and J. Han, Discovery of Spatial Association Rules in Geographic Information Databases, SSD'95
- H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, and J. S. Yoo. A framework for discovering co-location patterns in data sets with extended spatial objects. SDM'04
- J. Yuan, Y. Wu, and M. Yang. Discovery of collocation patterns: From visual words to visual phrases. CVPR'07
- O. R. Zaiane, J. Han, and H. Zhu, Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. ICDE'00

Ref: Mining Frequent Patterns in Time-Series Data

- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98.
- J. Han, G. Dong and Y. Yin, Efficient Mining of Partial Periodic Patterns in Time Series Database, ICDE'99.
- J. Shieh and E. Keogh. iSAX: Indexing and mining terabyte sized time series. KDD'08
- B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris. Online
 Data Mining for Co-Evolving Time Sequences. ICDE'00.
- W. Wang, J. Yang, R. Muntz. TAR: Temporal Association Rules on Evolving Numerical Attributes. ICDE'01.
- J. Yang, W. Wang, P. S. Yu. Mining Asynchronous Periodic Patterns in Time Series Data.
 TKDE'03
- L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. KDD'09

Ref: FP for Classification and Clustering

- G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. KDD'99.
- B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule Mining. KDD'98.
- W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. ICDM'01.
- H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data sets. SIGMOD' 02.
- J. Yang and W. Wang. CLUSEQ: efficient and effective sequence clustering. ICDE'03.
- X. Yin and J. Han. CPAR: Classification based on Predictive Association Rules. SDM'03.
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification", ICDE'07

Ref: Privacy-Preserving FP Mining

- A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke. Privacy Preserving Mining of Association Rules. KDD'02.
- A. Evfimievski, J. Gehrke, and R. Srikant. Limiting Privacy Breaches in Privacy Preserving Data Mining. PODS'03
- J. Vaidya and C. Clifton. Privacy Preserving Association Rule Mining in Vertically Partitioned Data. KDD'02

Mining Compressed Patterns

- D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancyaware top-k patterns. KDD'06
- D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. VLDB'05
- X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: A profile-based approach. KDD'05

Mining Colossal Patterns

- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns by core pattern fusion. ICDE'07
- F. Zhu, Q. Qu, D. Lo, X. Yan, J. Han. P. S. Yu, Mining Top-K Large Structural Patterns in a Massive Network. VLDB'11

Ref: FP Mining from Data Streams

- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-Dimensional Regression Analysis of Time-Series Data Streams. VLDB'02.
- R. M. Karp, C. H. Papadimitriou, and S. Shenker. A simple algorithm for finding frequent elements in streams and bags. *TODS* 2003.
- G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. VLDB'02.
- A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and top-k elements in data streams. ICDT'05

Ref: Freq. Pattern Mining Applications

- T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining Database Structure; or How to Build a Data Quality Browser. SIGMOD'02
- M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han. DustMiner: Troubleshooting interactive complexity bugs in sensor networks., SenSys'08
- Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste and related bugs in operating system code. In Proc. 2004 Symp. Operating Systems Design and Implementation (OSDI'04)
- Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit programming rules and detecting violations in large software code. FSE'05
- D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun. Classification of software behaviors for failure detection: A discriminative pattern mining approach. KDD'09
- Q. Mei, D. Xin, H. Cheng, J. Han, and C. Zhai. Semantic annotation of frequent patterns.
 ACM TKDD, 2007.
- K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions. EDBT'02.