Demand Side Management for a Campus Infrastructure

BATCH : **A6**

TYPE: IN-HOUSE

GUIDE: DR. SG BHARATHI DASAN

TEAM MEMBERS

ASWIN NATESH. V (212712105023)

BADRI NARAYANAN. N (212712105025)

GANDHI RAJAN. R (212712105031)

MOHAMMED SAQIB. M (212712105061)

1st Review

2nd Review

3rd Review

01 Introduction to DSM

01 Overview

01 Overview

02 Need for DSM

O2 Objective Load Curve

O2 Campus Data Analysis

03 DSM Techniques

03 Methodology

03 Average Load Technique

04 Literature survey

04 Genetic Algorithm

04 Simulation Results

05 Problem Formulation

05 Simulation & Results

05 Case Study

Block Diagram

CAMPUS LOAD STUDY

Period - (24 Hrs)

- 1. Mechanical
- 2. Electrical
- 3. Computer Science
- 4. Marine
- 5. ECE & Civil
- 6. Mechanical Workshop
- 7. Air Conditioners Overall
- 8. Canteen
- 9. Hostel
- 10. Library & Admin Block
- 11. Lighting Loads Classrooms

Campus Load Study - Individual Departments - 15th March 2016

Time Stamp	PSM8 1 & 4				PSMB 2			PSMB 3		PSMB 12		
		EEE Dept		MEC Dept		CSE Dept			MR Dept			
	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase
9:00:00 AM	5.00	12.50	10.00	16.60	5.00	20.00	51.00	47.20	52.00	47.00	75.00	60.00
9:30:00 AM	6.00	27.00	133.00	15.00	0.00	17.00	60.00	44.40	61.60	50.00	88.00	75.00
10:00:00 AM	5.00	45.00	12.00	18.00	0.00	20.00	57.50	47.10	62.60	75.00	150.00	80.00
10:30:00 AM	4.00	15.00	19.00	18.00	0.00	30.00	63.70	48.70	60.20	50.00	140.00	85.00
11:00:00 AM	10.00	20.00	12.00	10.00	0.00	12.00	53.90	49.50	60.40	78.00	135.00	90.00
11:30:00 AM	4.00	25.00	20.00	10.00	0.00	10.00	55.10	43.00	57.60	75.00	140.00	100.00
12:00:00 PM	10.00	26.00	25.00	10.00	0.00	25.00	41.00	31.80	49.20	75.00	150.00	125.00
12:30:00 PM	5.00	38.00	18.00	10.00	0.00	10.00	41.20	31.20	48.20	70.00	150.00	112.00
1:00:00 PM	5.00	25.00	15.00	40.00	0.00	40.00	50.10	40.70	65.80	80.00	160.00	120.00
1:30:00 PM	20.00	40.00	35.00	66.00	5.00	66.00	49.50	52.20	66.80	100.00	145.00	110.00
2:00:00 PM	25.00	50.00	38.00	35.00	0.00	35.00	53.30	41.70	64.90	105.00	125.00	110.00
2:30:00 PM	20.00	50.00	25.00	25.00	0.00	40.00	53.90	46.40	63.30	85.00	120.00	130.00
3:00:00 PM	10.00	20.00	20.00	30.00	0.00	13.00	52.50	45.90	62.00	55.00	120.00	125.00
3:30:00 PM	10.00	50.00	25.00	0.00	0.00	0.00	34.70	31.70	34.30	35.00	75.00	85.00
4:00:00 PM	5.00	37.50	17.50	0.00	0.00	0.00	20.85	20.35	22.05	17.50	37.50	46.25
4:30:00 PM	0.00	25.00	10.00	0.00	0.00	0.00	7.00	9.00	9.80	0.00	0.00	7.50
5:00:00 PM	0.00	17.50	5.00	0.00	0.00	0.00	7.05	9.15	10.00	0.00	0.00	7.50
5:30:00 PM	0.00	10.00	0.00	0.00	0.00	0.00	7.10	9.30	10.20	0.00	0.00	7.50
6:00:00 PM	5.00	10.00	0.00	0.00	0.00	0.00	6.90	9.35	10.15	12.50	0.00	3.75
6:30:00 PM	10.00	10.00	0.00	0.00	0.00	0.00	6.70	9.40	10.10	25.00	0.00	0.00
7:00:00 PM	10.00	10.00	0.00	0.00	0.00	0.00	6.70	9.40	10.10	25.00	0.00	0.00
7:30:00 PM	5.00	5.00	0.00	0.00	0.00	0.00	7.20	9.50	10.35	12.50	0.00	0.00
8:00:00 PM	0.00	0.00	0.00	0.00	0.00	0.00	7.70	9.60	10.60	0.00	0.00	0.00

Distribution Transformer Data Period - (24 Hrs)

Time Stamp			R1	T							
R Pho	ase		TRANSFORMER 1			TRANSFORMER 2			TRANSFORMER 3		
		Y Phase	B Phase	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase		
9:00:00 AM	138.00	173.00	173.00	200.00	30.00	225.00	322.10	338.70	312.10	1911.90	
9:30:00 AM	152.00	187.00	172.00	340.00	30.00	325.00	391.00	371.00	337.00	2305.00	
10:00:00 AM	169.00	237.00	183.00	210.00	120.00	235.00	394.90	372.00	357.40	2278.30	
10:30:00 AM	149.00	205.00	179.00	200.00	120.00	210.00	379.00	330.00	331.60	2103.60	
11:00:00 AM	143.00	218.00	175.00	200.00	80.00	200.00	378.00	328.00	337.00	2059.00	
11:30:00 AM	130.00	214.00	160.00	220.00	25.00	220.00	375.50	313.90	327.90	1986.30	
12:00:00 PM	162.00	244.00	206.00	190.00	10.00	200.00	365.70	321.40	322.30	2021.40	
12:30:00 PM	181.00	260.00	235.00	180.00	10.00	180.00	390.50	356.30	352.10	2144.90	
1:00:00 PM	206.00	230.00	245.00	200.00	20.00	200.00	385.10	388.00	368.80	2242.90	
1:30:00 PM	214.00	235.00	205.00	225.00	25.00	225.00	425.50	421.60	385.10	2361.20	
2:00:00 PM	256.00	252.00	240.00	210.00	15.00	215.00	372.60	365.70	318.60	2244.90	
2:30:00 PM	220.00	240.00	265.00	230.00	15.00	230.00	390.00	375.30	333.60	2298.90	
3:00:00 PM	205.00	227.00	246.00	210.00	20.00	240.00	367.20	372.00	334.00	2221.20	
3:30:00 PM	150.00	220.00	166.00	150.00	10.00	150.00	235.30	240.20	205.70	1527.20	
4:00:00 PM	98.50	140.00	122.00	125.00	10.00	135.00	159.20	156.50	139.55	1085.75	
4:30:00 PM	47.00	60.00	78.00	100.00	10.00	120.00	83.10	72.80	73.40	644.30	
5:00:00 PM	40.50	45.00	70.00	110.00	10.00	120.00	74.35	65.35	73.45	608.65	
5:30:00 PM	34.00	30.00	62.00	120.00	10.00	120.00	65.60	57.90	73.50	573.00	
6:00:00 PM	45.50	15.00	48.00	150.00	15.00	160.00	71.78	68.90	75.65	649.83	
6:30:00 PM	57.00	0.00	34.00	180.00	20.00	200.00	77.96	79.90	77.80	726.66	
7:00:00 PM	57.00	0.00	34.00	180.00	20.00	200.00	77.96	79.90	77.80	726.66	
7:30:00 PM	41.00	9.50	42.00	165.00	20.00	175.00	61.43	69.05	79.70	662.68	
8:00:00 PM	25.00	19.00	50.00	150.00	20.00	150.00	44.90	58.20	81.60	598.70	

Without DC Grid

With DC Grid

Existing 35KW Solar Power

Methodology

Parameters Involved

- Device Type
- Device Number
- Delay parameter
- Consumption period
- Power rating of a particular device
- Actual Start time
- Operation time

VARYING PARAMETER

- Variable in load shifting technique DELAY
- Assume Delay=4 hours

Proposed load shifting technique is mathematically formulated as follows.

•
$$\sum_{t=1}^{N} (PLoad(t) - Objective(t))^2$$

- Where Objective(t) is the value of the objective curve at time t
- PLoad(t) is the actual consumption at time t.

• . Objective(t) =
$$\frac{Pload_{avg}}{Pload_{max}} \times \frac{1}{Pload(t)} \times \sum_{s=1}^{24} Pload(s)$$

Average Load Curve Fitting

- Education institution follows flat tariff for electricity.
- Tracking dynamic pricing is difficult in this scenario
- Hence, we divide the time period into four phases.
- The Average is calculated for the each phase.
- Average Load = (Load factor) * (Maximum Demand)

PLoad(t)=Forecast(t)+Connect(t)+Disconnect(t)

- Where Forecast(t) is the forecasted consumption at time t ,and
- Connect(t) and Disconnect(t) are the amount of loads to be connected and disconnected at time t respectively during the load shifting.

- Connect(t) is made up of two parts:
 - The increment in the load at time t due to the connection times of devices shifted to time t.
 - The increment in the load at time t due to the device connections scheduled for times that precede t.

· Connect(t)=
$$\sum_{i=1}^{N} \sum_{k=1}^{D} X_{kit} P_{1k} + \sum_{l=1}^{j-1} \sum_{i=1}^{t-1} \sum_{k=1}^{D} X_{ki(t1)} P_{(1+l)k}$$

- Where X_{kit} is the number of devices of type that are shifted from time step i to t.
- D is the number of device types, P_{1k} and $P_{(1+l)k}$ are the power consumptions at time steps 1 and (1+l)
- Similarly ,Disconnect() also consists of two parts:
 - The decrement in the load due to delay in connection times of devices that were originally supposed to begin their consumption at time step t.
 - The decrement in the load due to delay in connection times of devices that were expected to start their consumption at time steps that precede t.

$$\cdot \ \, \mathsf{Disconnect(t)} = \sum_{q=t+1}^{t+m} \sum_{k=1}^{D} X_{kqt}. \mathsf{P_{1k}} + \sum_{\substack{j-1 \\ l=1}}^{j-1} \sum_{\substack{q=t+1 \\ q=t+1}}^{t+m} \sum_{k=1}^{D} X_{kq(t-1)} \mathsf{P_{(1+l)k}}$$

- Where X_{kta} is the number of devices of type that are delayed from time step t to q
- m is the maximum allowable delay.

The number of devices shifted cannot be a negative value.

- $X_{kit} > 0$ for all i,j,k.
- The number of devices shifted away from a time step cannot be more than the number of devices available for control at the time step.
 - $\sum_{t=1}^{N} X_{kit} \leq Ctrlable(i)$
 - Where Ctrlable(i) is the number of devices of type k available for control at time step i.

The Process Flow

In the genetic algorithm process is as follows:

- Step 1. Determine the number of chromosomes, generation, and mutation rate and crossover rate value
- Step 2. Generate chromosome-chromosome number of the population, and the initialization value of the genes chromosome-chromosome with a random value
- Step 3. Process steps 4-7 until the number of generations is met
- Step 4. Evaluation of fitness value of chromosomes by calculating objective function
- Step 5. Chromosomes selection
- Step 5. Crossover
- Step 6. Mutation
- Step 7. New Chromosomes (Offspring)
- Step 8. Solution (Best Chromosomes)

Genetic Algorithm Evolution Flow

Initialization

- The most common type of genetic algorithm works as follows
- A population is created with a group of individuals created randomly.
- The random no generation is possible with rand() function.
- The population is initialized keeping in account the **constraints** of the given problem.
- Chromosome is initialized based on the constraints with the help of following logic

chromosome(I,j)=
$$\sum_{i=1}^n \sum_{j=1}^k (A(j)+(B(j)-A(j))*rand())$$

NOTE: rand() generates values between 0 and 1

 \rightarrow

Evaluation and Selection...

• The fitness function of individuals in the population are then evaluated.

```
Fitness = \frac{1}{1 + \sum\limits_{t=1}^{n} (PLoad(t) - Objective(t))^{2}}.
(i=1->n)Prob(i) = \sum\limits_{i=1}^{n} (Fitness(i)/total), \text{ Here total} = \sum\limits_{i=1}^{n} Fitness(i)
(i=1->n) \text{ Cummprob}(i) = \sum\limits_{i=1}^{n} Cummprob(i-1) + Prob(i)
Ra = \text{rand}() \text{ [Random no is generated(0->1)]}
if(Ra(i) < \text{cummprob}(j)) \text{ // Selection process..}
for m = 1:k
newc(i,m) = p(j,m);
```

The higher the fitness, the higher the chance of chromosome being selected.

Cross over

```
Three Steps involved in cross over
i).Parent Selection ii).N possibilities iii). Position for
cross over
Step(i)
For k=1:n
R[k] \leftarrow random(0-1);
if (R[k] < \rho c) then
select Chromosome[k] as parent;
Step (ii):
For example: If three parents are selected then
possibilities of crossover are,
Chromosome[1] >< Chromosome[4]</pre>
Chromosome[4] >< Chromosome[5]</pre>
Chromosome[5] >< Chromosome[1]
```

```
Step(iii)
m=floor((k-1)*rand()+1); (random no between 1 to
(lengthofchromo-1)
for j=1:k
    if(j<=m)
        child(i,j)=parent(i,j);
    else
        child(i,j)=parent(i+1,j);
m points to position of crossover</pre>
```


Mutation

- Total_gen(noe) = number_of_gen_in_Chromosome * number of population.
- mut=pm*noe; where pm is the mutation rate.
- totalmut=round(mut);
- pos=floor((1+(noe-1)*rand(totalmut,1)));

- The value of mutated gens at mutation point is replaced by random number.
- for m=1:totalmut
- if((i==row(m)) && (j==col(m)))
- newc(i,j)=s(j)+(r(j)-s(j))*rand();
- And after mutation process the next iteration starts and the process continues till we get the best chromosome...

S No	Ο	Time	Load Factor before DSM (%)	Load Factor after DSM (%)	Peak reduction (%)	Over all Peak Reduction (%)	Overall Peak Reduction with DC Grid (%)
1		08:30 - 12:30	82.75	90.12	10.57		
2		13:00 – 15:30	83.87	92.55	7.26	7.06	44.25
3		16:00 – 21:30	38.90	39.50	0	7.26	11.25
4		22:00 - 08:00	19.75	19.78	0		

Case Study

The system considered for simulation is from Mumbai, the capital city of Maharashtra state in India.

Case Study

Time	Price	Hourly Forecasted Load (kW)					
		Residential	Industrial				
08:00 - 09:00	12.00	729.4	2045.5				
09:00 - 10:00	9.19	713.5	2435.1				
10:00 – 11:00	12.27	713.5	2629.9				
11:00 – 12:00	20.69	808.7	2727.3				
12:00 – 13:00	26.82	824.5	2435.1				
13:00 – 14:00	27.35	761.1	2678.6				
14:00 – 15:00	13.81	745.2	2678.6				
15:00 – 16:00	17.31	681.8	2629.9				
16:00 – 17:00	16.42	667	2532.5				
17:00 – 18:00	9.83	951.4	2094.2				
18:00 – 19:00	8.63	1220.9	1704.5				
19:00 – 20:00	8.87	1331.9	1509.7				
20:00 – 21:00	8.35	1363.6	1363.6				
21:00 – 22:00	16.44	1252.6	1314.9				
22:00 – 23:00	16.19	1046.5	1120.1				
23:00 – 00:00	8.87	761.1	1022.7				
00:00 - 01:00	8.65	475.7	974				
01:00 - 02:00	8.11	412.3	876.6				
02:00 - 03:00	8.25	364.7	827.9				
03:00 - 04:00	8.10	348.8	730.5				
04:00 - 05:00	8.14	269.6	730.5				
05:00 – 06:00	8.13	269.6	779.2				
06:00 – 07:00	8.34	412.3	1120.1				
07:00 - 08:00	9.35	539.1	1509.7				

Case Study – Residential Area

	Hourly Co	Number of		
Device Type	1st Hr	2nd Hr	3rd Hr	Devices
Dryer	1.2	-	-	189
Dish Washer	0.7	-	-	288
Washing	0.5	0.4	-	268
Machine				
Oven	1.3	-	1	279
Iron	1.0	-	-	340
Vacuum Cleaner	0.4	-	-	158
Fan	0.20	0.20	0.20	288
Kettle	2.0	-	-	406
Toaster	0.9	-	-	48
Rice-Cooker	0.85	-	1	59
Hair Dryer	1.5	-	-	58
Blender	0.3	-	-	66
Frying Pan	1.1	-	-	101
Coffee Maker	0.8	-	-	56
Total	-	-	-	2604

Residential Area – Convergence Characteristics

Case Study – Industrial Area

	H	ourly Co	nsumpti	on of De	evice (kV	V)	
Device Type	1st	2nd	3rd	4th	5th	6th	Number
	Hr	Hr	Hr	Hr	Hr	Hr	Devices
Water							
Heater	12.5	12.5	12.5	12.5	-	-	39
Welding							
Machine	25.0	25.0	25.0	25.0	25.0	-	35
Fan/AC	30.0	30.0	30.0	30.0	30.0	-	16
Arc Furnace	50.0	50.0	50.0	50.0	50.0	50.0	8
Induction							
Motor	100	100	100	100	100	100	5
DC Motor	150	150	150	-	-	-	6
Total	-	-	-	-	_	-	109

Industrial Area – Convergence Characteristics

Result & Conclusion

Cost Reduction with & without using DSM

	Residential	Industrial
Peak Reduction (%)	7.78	13.87
Cost without DSM (Rs)	230,300	571,200
Cost with DSM (Rs)	223,420	476,200
Cost Reduction (%)	2.98	16.62

Contribution to the Society:

- Smartness: Effectively managing loads in a power grid by adopting intelligent DSM Controllers.
- **Smart Pricing**: Automatic metering that allows consumers to make informed decisions regarding their energy consumption, and peak load pricing.
- Virtual Power Plant: Voluntarily lowering consumers demand for electricity
- Carbon Footprint: Reduced greenhouse gas emissions.

References:

- [1] Nandkishor Kinhekar and Narayana Prasad Padhy, "Utility Oriented Demand Side Management Using Smart AC and Micro DC Grid Cooperative", Year: 2015, Volume: PP, Issue: 99 Pages: 1 10.
- [2] Thillainathan Logenthiran and Dipti Srinivasan, "Demand Side Management in Smart Grid Using Heuristic Optimization", Year: 2012, Volume: 3, Issue: 3 Pages: 1244 1252.
- [1] Q. Li and M. Zhou, "The future-oriented grid-smart grid," J. Comput., vol. 6, no. 1, pp. 98–105, 2011.
- [2] P. Agrawal, "Overview of DOE microgrid activities," in Proc. Symp. Microgrid, Montreal, QC, Canada, 2006 [Online]. Available: http://der.lbl.gov/2006microgrids_files/USA/Presentation_7_Part1_Poonumgrawal.pdf
- [3] S. Rahman and Rinaldy, "An efficient load model for analyzing demand side management impacts," IEEE Trans. Power Syst., vol. 8, no.3, pp. 1219–1226, Aug. 1993.
- [4] A. I. Cohen and C. C. Wang, "An optimization method for load management scheduling," IEEE Trans. Power Syst., vol. 3, no. 2, pp.612–618, May 1988.
- [5] K.-H. Ng and G. B. Sheblé, "Direct load control-A profit-based load management using linear programming," IEEE Trans. Power Syst., vol. 13, no. 2, pp. 688–694, May 1998.
- [6] F. C. Schweppe, B. Daryanian, and R. D. Tabors, "Algorithms for a spot price responding residential load controller," IEEE Trans. Power Syst., vol. 4, no. 2, pp. 507–516, May 1989.

Thank You!!

