PODS Lab 4: Probability Distributions, Central Tendency, and Dispersion

Hamza Alshamy

Center for Data Science, NYU ha2486@nvu.edu

02/14/25

- Probability Distributions
- Central Tendency and Ergodicity
- O Dispersion

What Are Probability Distributions?

- Probability distributions describe how probabilities are assigned to different possible outcomes of a random variable.
- They are governed by parameters, which control their shape and properties.

Why Are They Relevant?

- Describing Random Variables: Distributions characterize the behavior of random variables, assigning probabilities to their possible values.
- Probabilistic Modeling: If we have data, we can use distributions to model uncertainty and make predictions.

Example of Probability Distributions

Continuous: Normal Distribution

Normal Distribution Equation:

$$P(\mathfrak{X}=x;\mu,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Example of Probability Distributions Continuous: Normal Distribution

Normal Distribution Equation:

$$P(\mathfrak{X}=x;\mu,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- In English: "The probability of the random variable \mathfrak{X} taking on the value x given the parameters, the mean μ and standard deviation σ "
- **Logic:** Many natural phenomena (e.g., heights, test scores) follow a normal distribution.
- Parameters:
 - \mathbf{Q} μ (mean): Determines the center of the distribution.
 - σ (Standard Deviation): Controls the spread of the distribution.

Example of Probability Distributions Continuous: Normal Distribution

Notice how the shape of the normal distributions differs based on the parameters (μ, σ)

Example of Probability Distributions Discrete: Poisson Distribution

Poisson Distribution Equation:

$$P(\mathfrak{X}=k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k=0,1,2,\dots$$

- ▶ In English: "The probability of the random variable \mathfrak{X} taking on the value k given the rate parameter λ ."
- ► Logic: Models the number of events occurring in a fixed interval of time or space when events happen independently at a constant average rate.
- Parameter:
 - **1** λ (Rate Parameter): Represents the expected number of occurrences in the given interval.
- ► Example: Model the number of earthquakes that will occur given a time interval.

Random Variables and Probability Distributions Example: Measuring IQ

- Random variables can follow specific probability distributions.
- **Example:** Let \mathfrak{X} represent IQ scores.

$$\mathfrak{X} \sim \mathcal{N}(\mu = 100, \sigma = 15)$$

- **In English:** "The random variable \mathfrak{X} follows a normal distribution with mean $\mu = 100$ and standard deviation $\sigma = 15$."
- Interpretation:
 - Most IQ scores will be close to 100, with variation controlled by $\sigma = 15$.
 - About 68% of IQ scores fall within one standard deviation. $(85 < \mathfrak{X} < 115)$.
 - Approximately 95% of IQ scores lie within two standard deviations $(70 < \mathfrak{X} < 130)$.

Central Tendency, Typical Value, Average

▶ Definition: Measures of central tendency describe a typical or central value of a dataset.

Relevance:

- If you know nothing about the data, the best guess for an unknown value is often the *average*.
- Helps summarize data with a single representative value.

Main Measures of Central Tendency:

- (Arithmetic) Mean: The average of all values.
- Median: The middle value when data is ordered.
- Mode: The most frequently occurring value.

(1) The Arithmetic Mean

Best used when:

- (Approximately) Normal or symmetrical data
- No (or few) extreme values Mean is not very robust
- Not heavily skewed Mean will be dragged towards the tail

Example:

$$Set = \{9, 3, 300, 8, 7, 10, 8, 5\}$$

Calculation of the Mean:

(1) The Arithmetic Mean

Best used when:

- (Approximately) Normal or symmetrical data
- No (or few) extreme values Mean is not very robust
- Not heavily skewed Mean will be dragged towards the tail

Example:

$$Set = \{9, 3, 300, 8, 7, 10, 8, 5\}$$

Calculation of the Mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{9+3+300+8+7+10+8+5}{8} = \frac{350}{8} = \boxed{43.75}$$

► The mean is dragged towards the outlier (300), making it not representative of most values in the set.

(2) The Median

- **Definition:** The middle value when data is ordered.
- Best used when:
 - Extreme values Median is more robust than the mean.
 - Data is skewed (not symmetrical).

Example:

$$\begin{aligned} \text{Set} &= \{9, 3, 300, 8, 7, 10, 8, 5\} \\ &= \{3, 5, 7, 8, 8, 9, 10, 300\} \end{aligned} \quad \text{(Ordered)}$$

Calculation of the Median:

$$Median = \frac{8+8}{2} = \boxed{8}$$

- Notice how the median is not affected by the extreme value (300), unlike the mean.
 - Representative of the set!

Central Tendency and Ergodicity

00000000

(3) The Mode

- **Definition:** The most frequently occurring value in a dataset.
- Best used when:
 - With categorical data.
 - When numbers are used as labels.

Example: Diagnosing Disorders in DSM-IV

$$\begin{aligned} \text{Disorders} &= \{\text{Anxiety, Depression}\} \\ \text{Disorder Codes} &= \{300.00, 311.00\} \end{aligned}$$

Incorrect Approach (Mean):

$$\frac{300.00 + 311.00}{2} = 305.5 \quad \text{(Code for Opioid Abuse)}$$

(3) The Mode

- ▶ **Definition:** The most frequently occurring value in a dataset.
- Best used when:
 - With categorical data.
 - When numbers are used as labels.

Example: Diagnosing Disorders in DSM-IV

$$\begin{aligned} & \text{Disorders} = \{\text{Anxiety, Depression}\} \\ & \text{Disorder Codes} = \{300.00, 311.00\} \end{aligned}$$

Incorrect Approach (Mean):

$$\frac{300.00 + 311.00}{2} = 305.5$$
 (Code for Opioid Abuse)

- The mean does not represent the state of the patients.
- ► Correct Approach (Mode):
 - ► With categorical data, the most frequent value (mode) is used to represent the typical case.

Summary of Measures of Central Tendency

Given Set:

$$\begin{aligned} \text{Set} &= \{9, 3, 300, 8, 7, 10, 8, 5\} \\ &= \{3, 5, 7, 8, 8, 9, 10, 300\} \end{aligned} \quad \text{(Ordered)}$$

Summary Table:

	Mean	Median	Mode
Value	43.75	8	8

- Measures of central tendency allow us to summarize data with a single representative value.
- ► The **median is more robust than the mean** because it is not affected by extreme values.
- The mode is best suited for categorical data, where taking an average does not make sense.

Note: The Mean and Ergodicity

Law of Large Numbers (LLN):

- Given enough samples, the sample mean \bar{x} converges to the expected value $\mathbb{E}[X]$.
- ► However, this only holds if the system is ergodic!
 - Otherwise, the mean is not very meaningful.

Note: The Mean and Ergodicity (cont.)

What is Ergodicity?

- ➤ The average of the results obtained from a large number of independent random samples converge to the true value
- ► The measure of an individual (one coin flip) over time is predictive of the ensemble average (1000 coin flips)

Assumptions:

- Stationary: Statistical Properties are constant over time
 - The mean, variance, and probability distribution of the system remain consistent.
- State Space Convergence: The System Must Visit All Possible States
 - Over time, air molecules will spread everywhere in the room.
- Non-Determinism: Future events are independent of past events.

Ergodicity: Examples

Ergodic: Roulette (Assume it's fair)

► Total pockets: 37 → Read: 18, Black: 18, Green: 1

►
$$P(red) = \frac{18}{37}$$
, $P(black) = \frac{18}{37}$, $P(green) = \frac{1}{37}$

Results are about the same if you spin 1000 roulettes at the same time or soon one roulette 1000 times

Non-ergodic: Russian Roulette

Total chambers in a revolver: 6 and 5 are empty

▶ 60 people playing at the same time: Survival rate is $\frac{5}{6} \approx 83.4\%$

▶ One person playing 60 times: Survival rate is $(\frac{5}{6})^{60} \approx 1.7\%$

A Second Way to Characterize Data: Dispersion

- **Central Tendency:** If I don't know anything about the data, which single value best represents a typical value?
- **Dispersion:** How much the data deviates from the center.
- Main Measures of Dispersion:
 - **Standard Deviation** (σ) Least robust (sensitive to outliers).
 - Mean Absolute Deviation (MAD) More robust than standard deviation.
 - Median Absolute Deviation (MeAD) Most robust (resistant to extreme values).

(1) Standard Deviation (σ)

Arriving at the Standard Deviation (SD):

$$\frac{1}{n}\sum_i(x_i-\bar{x}) \qquad \text{(Always } = 0)$$

$$\frac{1}{n}\sum_i(x_i-\bar{x})^2 \qquad \text{(Better, but large deviations has large effects)}$$

$$\sigma = \boxed{\sqrt{\frac{1}{n}\sum_{i}(x_{i}-\bar{x})^{2}}} \qquad \text{(Taking the square root mitigates that it)}$$

- Interpretation:
 - Low SD: Data points are clustered close to the mean
 - **High SD:** Data points are more dispersed and further away from the mean
- **Issue:** Influenced by outliers because of squaring!

Effect of an Outlier on Standard Deviation

Example: Without an Outlier

$$s = \{5, 6, 7, 8, 9\},$$
 Mean = 7

Squared deviations:

$$\{(5-7)^2, (6-7)^2, (7-7)^2, (8-7)^2, (9-7)^2\} = \{4, 1, 0, 1, 4\}$$

► Variance: $\frac{4+1+0+1+4}{5} = 2 \implies \sigma = \sqrt{2} \approx \boxed{1.41}$

Example: With an Outlier (Changing 9 to 99)

$$s = \{5, 6, 7, 8, 99\},$$
 Mean =25

Squared deviations:

$$\{(5-25)^2, (6-25)^2, ..., (99-25)^2\} = \{400, 361, 324, 289, 5476\}$$

Variance:

$$\frac{400+361+324+289+5476}{5} = 1470 \implies \sigma = \sqrt{1470} \approx \boxed{38.36}$$

(2) Mean Absolute Deviation (MAD)

- ► Logic: Squaring values in standard deviation magnifies deviations, making it sensitive to outliers.
- **Instead:** Use absolute values to measure dispersion without over-emphasizing large deviations.

Formula:

$$\mathsf{MAD} = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

- More robust than standard deviation because outliers have less influence.
- Unlike standard deviation, MAD does not disproportionately weight large deviations.

(3) Median Absolute Deviation (MeAD)

- **Logic:** In Mean Absolute Deviation (MAD), we use the **mean**, which is sensitive to outliers.
- **Instead,** use the **median**, which is **more robust** to extreme values.

Formula:

$$MeAD = Median(|x_i - Median(X)|)$$

- **Most robust** measure of dispersion outliers have **minimal** influence.
- Often used in non-parametric statistics where distributions may he skewed

Summary of Measures of Dispersion and Central Tendency

Central Tendency

- Mean
- Median
- Mode

Example Set:

 $s = \{3, 6, 7, 8, 8, 10, 12, 25\}$

Computed Central Tendencies:

Measure	Value	
Mean	9.88	
Median	8	
Mode	8	

Dispersion

- Standard Deviation
- Mean Absolute Deviation
- Median Absolute Deviation

Computed Dispersion

ivieasures.			
Measure	Value		
Standard Deviation	6.67		
Mean Absolute Deviation	4.59		
Median Absolute Deviation	2		

