Geração de Números Randômicos na Simulação ADS29009-Avaliação de Desempenho de Sistemas

Eraldo Silveira e Silva

24 de junho de 2025

Outline

- Introdução
- 2 Método Congruente Linear (LCM)
- 3 Linear-feedback shift register
- Geração de Números Randômicos a partir de uma Distribuição Uniforme
- 5 Validação de Sequências de Números Randômicos

Bibliografia para esta aula

- William J.Stewart. Probability, Markov Chains, Queues and Simulation.
- David J.Lilja. Measuring Computer Performance. A practitioner's guide.
- Michael K.Molly. Fundamentals of Performance Modeling.
- The Art Of Systems Performance Analysis. Raj Jain.1991.

Outline

- Introdução

Introdução

Simulação de um PE

Para simular um processo estocástico em um programa de computador tem-se que que gerar sequências de valores (realizações) associados a uma variável randômica que possui determinadas propriedades.

Exemplo

Para simular o lançamento de dois dados (soma dos dois) tem-se que gerar os valores 2,3,4,5,6,7,8,9,10,11,12 em uma sequência imprevisível com frequência de 1/36,1/18,1/12,1/9,5/36,1/6,5/36,1/9,1/12,1/18,1/36.

ATENÇÃO

É impossível gerar números randômicos de forma perfeita através de um programa de computador. O programa sempre será determinístico. O que se tem é PSEUDOGERADORES (PRNGs)que geram sequências que apresentam propriedades estatísticas. Quando executados na mesma condição inicial (semente), SEMPRE geram a mesma sequência.

Os PRNGS são, no entanto, interessantes para uma **simulação**: Pode-se repetir o experimento obtendo-se os mesmos resultados desde que se use as mesmas sementes.

Está necessitando de um verdadeiro gerador de número randômico(TRNG)?

Veja o "free service" de www.random.org Gera números a partir de ruídos atmosféricos...

Abordagem na geração PRNG

- gerar "pseudorandomicamente" sequências uniformemente distribuídas (usando alguma função). Pode ser U(0,1) pois a partir desta pode-se gerar outras distribuições;
- validar a uniformidade da sequência aplicando alguma técnica;
- verificar a independência;
- usar a sequência para gerar outras distribuições;

24 de junho de 2025

Abordagem histórica: Método Midsquare (Von Neumann)

Inicia-se a geração escolhendo um número (semente) e eleva-se ao quadrado. Seleciona-se os dígitos do meio e repete-se-se o processo.

Exemplo

Toma-se o número 12. O quadrado é 0144. Toma-se 14 com quadrado 0196. Toma-se 19 e obtém-se 0361. Obtém-se portanto uma sequência como 12, 14, 19, 36, 29, 84, ...

Problemas

Pode aparecer um 00 na seleção...

Características de um bom pseudogerador

- eficiente em termos computacionais;
- período longo: a sequência gerada é finita. Então o ciclo k deve ser longo: $x_{n+k} = x_n, x_{n+k+1} = x_{n+1}...$
- independente e uniformemente distribuído;
- reproduzível (que pode ser repetido);

Figura: Modificado de (Jain,91)

Outline

- Introdução
- 2 Método Congruente Linear (LCM)
- 3 Linear-feedback shift register
- Geração de Números Randômicos a partir de uma Distribuição Uniforme
- Validação de Sequências de Números Randômicos

Método Congruente Linear

Função Geradora

$$z_{n+1} = (az_n + c) mod m$$

- a,b e m são constantes a serem cuidadosamente escolhidas: a é o multiplicador, c é o incremento. O tamanho máximo (possível) de uma sequência é determinado por m.
- z₀ é a **semente** geradora.
- Se c > 0 o método é chamado misto congruente.
- Se c = 0 o método é chamado congruente multiplicativo.
- geração periódica garantida: quando a semente for reproduzida o ciclo se repete.

Método Congruente Linear

Tarefa em sala

- Implementar em C++ uma classe geradora de números randômicos usando o método congruente linear. Fazer uma função para setar a semente e outra para gerar (similar ao srnd e rnd)
- Testar com diferentes seeds (sementes) e parâmetros. Gerar com a=1103515245, c=12345, m=2147483648, seed =0 e comparar com outras equipes.
- Implementar uma função para descobrir o período (ciclo) do gerador.

Método Congruente Aditivo

Função Geradora

$$z_n = (z_{n-1} + z_{n-k}) mod m$$

Ou seja, z_n a base de geração é a soma do valor prévio de z_n com o kth valor.

Outline

- Introdução
- 2 Método Congruente Linear (LCM)
- 3 Linear-feedback shift register
- Geração de Números Randômicos a partir de uma Distribuição Uniforme
- Validação de Sequências de Números Randômicos

Linear-feedback shift register

- Baseado em um registrador de deslocamento cujo bit de entrada é uma função do estado atual do registro;
- Função normalmente usada é um XOR;
- Facilmente implementado em hardware.

24 de junho de 2025

Linear-feedback shift register

Fonte: Wikipedia

Mersenne Twister

- Baseado em um registrador de deslocamento;
- Longo período;
- Baixa correlação entre números sucessivos;
- Maior complexidade de implementação;
- Proposto por Matsumoto, Nishimura 1997.

Outline

- Geração de Números Randômicos a partir de uma Distribuição Uniforme

Outline

- Geração de Números Randômicos a partir de uma Distribuição Uniforme
 - Método da Função Inversa

Um problema que surge na simulação de modelos estocásticos é o da geração randômica de números com distribuição qualquer. Por exemplo como gerar números a partir de uma distribuição exponencial? Uma possibilidade é aplicar o método da função inversa da CDF:

Método da Inversão da CDF

Baseia-se no fato de que a a **variável aleatória** Y computada como $Y = F_x(X)$ a partir de uma CDF de uma **variável aleatória** X qualquer, é **uniforme** no intervalo [0,1]. Pode-se ter observações de X usando a inversa de sua CDF:

$$X = F_{\times}^{-1}(Y)$$

Figura: Mapeamento inverso de observações

[Fonte: By LarsWinterfeld - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=50228282]

Demonstração

Sabe-se que podemos construir variáveis aleatórias como função de outras variáveis. Imagine que X é uma V.A. com CDF $F_X(x)$. Seja Y uma V.A. elaborada a partir da CDF de X:

$$Y = F_X(X)$$

Por definição da CDF tem-se:

$$F_Y(y) = Prob\{Y \leq y\}$$

Se $F_X(.)$ possui inversa e sendo estritamente crescente tem-se que:

$$Prob\{Y \le y\} = Prob\{F_X(X) \le y\} = Prob\{F_X^{-1}(F_X(X)) \le F_X^{-1}(y)\}$$

Cont. da Demonstração

Portanto:

$$F_Y(y) = Prob\{Y \le y\} = Prob\{X \le F_X^{-1}(y)\} \text{ para } 0 \le y \le 1$$

Mas $Prob\{X \leq x\} = F_X(x)$, então:

$$F_{Y}(y) = F_{X}(F_{X}^{-1}(y)) = y \text{ para } 0 \le y \le 1$$

O que caracteriza uma distribuição uniforme!!!

Problemas associados ao método

Pode ser difícil ou impossível obter a inversa da função... Felizmente não é o caso de uma distribuição exponencial

Gerando Números Randômicos com Distribuição Exponencial com método da Inversa

Lembrando a PDF da Distribuição Exponencial:

$$f_X(x) = Pr[X = x] = \lambda e^{-\lambda x} \quad \lambda, x \ge 0$$
 (1)

E a CDF da Distribuição Exponencial:

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}$$
 (2)

Invertendo a $F_X(x)$ da exponencial tem-se

$$x = \frac{\ln(1 - F_X(x))}{-\lambda} \tag{3}$$

Observar que $1 - F_X(x)$ também é uniformemente distribuída então também pode-se também usar:

Invertendo a $F_X(x) = da exponencial tem-se$

$$x = \frac{\ln(y)}{-\lambda} \tag{4}$$

Ou seja, pode-se gerar uma sequência uniformemente distribuída entre [0,1] e aplicar a equação acima para gerar números randômicos com distribuição exponencial.

24 de junho de 2025

Tarefa em sala

 Acrescentar na classe criada anteriormente para geração de números randômicos, um gerador de números que seguem uma distribuição exponencial;

Outline

- Introdução
- Método Congruente Linear (LCM)
- 3 Linear-feedback shift register
- Geração de Números Randômicos a partir de uma Distribuição Uniforme
- 5 Validação de Sequências de Números Randômicos

Validação de Sequências de Números Randômicos

- abordagem empírica: testes envolvendo várias gerações e aplicando testes estatísticos sobre os dados gerados;
- análise matemática das funções geradas (não será visto aqui);

24 de junho de 2025

Abordagem Empírica

Se enquadram em duas ctegorias:

- testes com objetivo de validar sequências distribuídas uniformemente em [0, 1]:
 - Teste Chi-square "goodness-of-fit";
 - Teste de Komolgorov-Smirnov, entre outras;
- testes com objetivo de verificar a independência na sequência: run test, gap test e poker test

Abordagem Empírica

testes para validar sequências distribuídas

• Utilizam-se de um nível de significância α (normalmente entre 0.01 e 0.05 que é a probabilidade de rejeitar a hipótese nula dado que ela é na realidade verdadeira:

$$\alpha = Prob\{H_0 \text{ ser rejeitada}|H_0 \text{ \'e verdadeira}\}$$

- Exemplo: Para $\alpha = 0.05$ tem-se:
 - Em 20 sequências espera-se rejeitar 1;
 - Em 100 sequências espera-se rejeitar 5;

24 de junho de 2025

Teste Chi-Square "Goodness-of-Fit"

Compara uma amostra de uma distribuição gerada com uma teórica (resultado teórico);

Particiona-se (binning) um intervalo de n números pseudorandômicos em k subintervalos iguais e compara-se a contagem de números em cada intervalo com contagem teórica n/k

Para ser significativo tem-se:

- k >> 10
- n >> 10k

Teste Chi-Square "Goodness-of-Fit"

A variável Chi-Square

Pode -se usar uma variável randômica definida da forma:

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - \bar{n}_i)}{\bar{n}_i}$$

Onde n_i e $\bar{n_i}$ são respectivamente a quantidade de números pesudorandômicos no $bin\ i$ e a quantidade teórica no $bin\ i$; A hipótese de que a sequência é uniformemente distribuída é provada quando:

$$Prob\{\chi^2 \le \chi^2_\alpha\} = 1 - \alpha$$

Teste Chi-Square "Goodness-of-Fit"

Figura: Significado do teste Chi-Square "Goodness-of-Fit"

