DC-AC Inverters – Fundamental Concepts

- DC-AC Converters are known as inverters
- Role is to convert a DC signal to AC
- Ideally, output should be sinusoidal.
 - In reality, they are non-sinusoidal and contain harmonics
 - This is fine for low and medium power applications
- Divided into two main types
 - Single Phase
 - Three Phase
- Semiconductor devices typically used

Important Performance Parameters

- Power Output: $I_o V_o cos\theta = I_0^2 R$, where I_0 and V_0 are the rms load voltage and current. θ is the angle of the load impedance.
- Input Power of Inverter: $P_S = I_S V_S$, where I_S and V_S are the average i/p current and voltage.
- Total Harmonic Distortion: $\frac{1}{V_{o1}} \left(\Sigma_0^\infty \ V_{0n}^2 \right)^{1/2}$, where V_{01} is rms value of fundamental component and V_{0n} is rms value of nth harmonic component.

(c) Load current with highly inductive load

 D_2

on

on

on

 Q_1

on

on

Parameter Equations

The root-mean-square (rms) output voltage can be found from

$$V_o = \left(\frac{2}{T_0} \int_0^{T_0/2} \frac{V_s^2}{4} dt\right)^{1/2} = \frac{V_s}{2}$$

The instantaneous output voltage can be expressed in Fourier series as

$$v_o = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$

Due to the quarter-wave symmetry along the x-axis, both a_0 and a_n are zero. We get b_n as

$$b_n = \frac{1}{\pi} \left[\int_{-\frac{\pi}{2}}^0 \frac{-V_s}{2} \sin(n\omega t) d(\omega t) + \int_0^{\frac{\pi}{2}} \frac{V_s}{2} \sin(n\omega t) d(\omega t) \right] = \frac{2V_s}{n\pi}$$

which gives the instantaneous output voltage v_o as

$$v_0 = \sum_{n=1,3,5,...}^{\infty} \frac{2V_s}{n\pi} \sin n\omega t$$
 $V_{o1} = \frac{2V_s}{\sqrt{2}\pi} = 0.45V_s$
= 0 for $n = 2, 4, ...$

Dc supply current. Assuming a lossless inverter, the average power absorbed by the load must be equal to the average power supplied by the dc source. Thus, we can write

$$\int_{0}^{T} v_{s}(t)i_{s}(t)dt = \int_{0}^{T} v_{o}(t)i_{o}(t)dt$$

where T is the period of the ac output voltage. For an inductive load and a relatively high switching frequency, the load current i_o is nearly sinusoidal; therefore, only the fundamental component of the ac output voltage provides power to the load. Because the dc supply voltage remains constant $v_s(t) = V_s$, we can write

$$\int_0^T i_s(t) dt = \frac{1}{V_s} \int_0^T \sqrt{2} V_{o1} \sin(\omega t) \sqrt{2} I_o \sin(\omega t - \theta_1) dt = TI_s$$

where V_{o1} is the fundamental rms output voltage;

 I_o is the rms load current;

 θ_1 is the load angle at the fundamental frequency.

Thus, the dc supply current I_s can be simplified to

$$I_s = \frac{V_{o1}}{V_s} I_o \cos(\theta_1)$$

Example

Finding the Parameters of the Single-Phase Half-Bridge Inverter

The single-phase half-bridge inverter in slide 5 has a resistive load of $R = 2.4 \Omega$ and the dc input voltage is $V_s = 48 \text{ V}$. Determine:

- (a) the rms output voltage at the fundamental frequency V_{01} ,
- (b) the output power P_0 ,
- (c) the average and peak currents of each transistor,
- (d) the peak reverse blocking voltage $V_{\rm BR}$ of each transistor,
- (e) the average supply current I_s ,
- (f) the THD,

Solutions

 V_S = 48 V and R = 2.4 Ω.

- **a.** $V_{01} = 0.45 * 48 = 21.6 \text{ V}.$
- **b.** $V_0 = V_S/2 = 48/2 = 24$ V. The output power $P_0 = V_0^2/R = 24^2/2.4 = 240$ W.
- **c.** The peak transistor current Ip = 24/2.4 = 10 A. Because each transistor conducts for 50% duty cycle, the average current of each transistor is IQ = 0.5 * 10 = 5 A.
- **d.** The peak reverse blocking voltage $V_{\rm BR}$ = 2 * 24 = 48 V.
- **e.** The average supply current: $I_S = P_0/V_S = 240/48 = 5$ A.
- **f.** $V_{01} = 0.45V_s$ and the rms harmonic voltage $V_h = 0.2176V_s$, THD = $10.2176V_s/10.45V_s = 48.34$.

Single Phase Bridge Inverter

Switch States

Switch States for a Single-Phase Full-Bridge Voltage-Source Inverter						
State	State No.	Switch State*	v_{ao}	v_{bo}	v_o	Components Conducting
S_1 and S_2 are on and S_4 and S_3 are off	1	10	V _S /2	$-V_S/2$	V_S	S_1 and S_2 if $i_o > 0$ D_1 and D_2 if $i_o < 0$
S_4 and S_3 are on and S_1 and S_2 are off	2	01	$-V_S/2$	$V_S/2$	$-V_S$	D_4 and D_3 if $i_o > 0$ S_4 and S_3 if $i_o < 0$
S_1 and S_3 are on and S_4 and S_2 are off	3	11	$V_S/2$	$V_S/2$	0	S_1 and D_3 if $i_o > 0$ D_1 and S_3 if $i_o < 0$
S_4 and S_2 are on and S_1 and S_3 are off	4	00	$-V_S/2$	$-V_S/2$	0	D_4 and S_2 if $i_o > 0$ S_4 and D_2 if $i_o < 0$
S_1 , S_2 , S_3 , and S_4 are all off	5	off	$-V_S/2$ $V_S/2$	$V_S/2 - V_S/2$	$-V_S \ V_S$	D_4 and D_3 if $i_o > 0$ D_1 and D_2 if $i_o < 0$

Parameter Equations

The rms output voltage can be found from

$$V_o = \left(\frac{2}{T_0} \int_0^{T_0/2} V_s^2 dt\right)^{1/2} = V_s$$

$$v_o = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_s}{n\pi} \sin n\omega t$$

$$V_{o1} = \frac{4V_s}{\sqrt{2}\pi} = 0.90V_s$$

$$i_0 = \sum_{n=1,3,5,\dots}^{\infty} \frac{4V_s}{n\pi\sqrt{R^2 + (n\omega L)^2}} \sin(n\omega t - \theta_n)$$

where
$$\theta_n = \tan^{-1}(n\omega L/R)$$
.

$$v_s(t)i_s(t) = v_o(t)i_o(t)$$

$$i_s(t) = \frac{1}{V_s}\sqrt{2}V_{o1}\sin(\omega t)\sqrt{2}I_o\sin(\omega t - \theta_1)$$

$$i_s(t) = \frac{V_{o1}}{V_s}I_o\cos(\theta_1) - \frac{V_{o1}}{V_s}I_o\cos(2\omega t - \theta_1)$$