## Differential Equations Qualifying Exam Spring, 2003 NAME:

1. Solve the problem:

$$\begin{cases} u \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 1, & -\infty < x < +\infty, \ y < 2, \\ u(x, x) = \frac{x}{2}, & \text{for } -\infty < x < 2. \end{cases}$$

- **2.** Show that  $(4\pi|x|)^{-1}e^{-c|x|}$  is a fundamental solution of  $-\Delta + c^2$  in  $\mathbb{R}^3$ .
- **3.** Describe the distributional derivative, f', of the function  $f(x) = \ln |x|$  on  $\mathbb{R}$ , i.e., find (and justify) a formula for  $\langle f', \eta \rangle$  for any test function  $\eta \in \mathcal{D}(\mathbb{R})$ . Is f' a tempered distribution?
- **4.** Let  $\Omega$  be a bounded domain in  $\mathbb{R}^3$  with smooth boundary  $\partial\Omega$ . Let u(x,t) be a sufficiently smooth solution of the problem

$$\begin{cases} u_t - \Delta u + u^3 = 0, & x \in \Omega, \ t > 0, \\ u|_{\partial\Omega} = 0. \end{cases}$$

Show that  $\int_{\Omega} |u(x,t)|^2 dx \to 0$  as  $t \to +\infty$ .

5. Find the 1-periodic in x solution u(x,t) of the problem

$$u_{tt} + 4\pi u_t - u_{xx} = 0,$$
  $u(x,0) = 0,$   $u_t(x,0) = \cos(2\pi x).$ 

## **6.** Consider the problem

$$\begin{cases} u_{tt} - u_{xx} - u_t + u = h(x, t), \\ u(0, x) = 0, \ u_t(0, x) = 0. \end{cases}$$

Show that if h(x,t) = 0 inside the right triangle Q,



then u(x,t) = 0 in Q.