1、1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带(2/3)e的上夸克和两个带(-1/3)e的下夸克构成。若将夸克作为经典粒子处理(夸克线度约为
$10^{-20}\mathrm{m}$),中子内的两个下夸克之间距离 $2.06\times10^{-15}\mathrm{m}$ 。则它们之间的相互作用力大小
为。
2 、由两个、、、、相距为 r_0 的点电荷构成的电荷系称为电偶极子。
若每个点电荷带电量绝对值为 q,则该电偶极子的电偶极矩的数学表示为:;
其中 r_0 矢量的方向规定为:。
3 、点电荷 q_1, q_2 和 q_3 在真空中的分布如图所示。图中曲线 为 闭 合 曲 面 , 则 通 过 该 闭 合 曲 面 的 电 通 量 为 q_1
$\iint_{S} \vec{E} \cdot d\vec{S} =$ 。 式中的 \vec{E} 是点电 $\bigoplus_{\mathbf{q}_{3}}$
在闭合曲面上任一点产生的场强的矢量和。
4、 我们把通过电场 中某一个面的电场线数目,叫做通过这个面的电场强度通量。对任意电场空间任意面的通量数学计算表述为: Φ =; 通量计算中我们引入面积矢量 S 的概念,规定其大小为,其方向为; 通量是。 5、 一个电量为 q 的点电荷处于一个立方体的中心处,则通过立方体任意一个表面的电场强度通量为。
6 、若"无限大"带电板均匀带电,其电荷面密度为 σ ,则带电板附件的电场强度大小为
7 、一半径为 R 的无限长均匀带电圆柱面,其电荷面密度为 σ 。该圆柱面内、外场强分布为(r 表示在垂直于圆柱面的平面上,从轴线处引出的矢径): E (r) = r <r ,<="" td=""></r>
E(r)=r>R。

二、计算题:

- 1.在平面直角坐标系中,在 x=0, y=0. 1m 处和在 x=0, y=-0. 1m 处分别放置一电荷量 $q=10^{-10}$ C 的点电荷。求: (1)在 x=0. 2m, y=0 处一电荷量为 $Q=10^{-8}$ C 的点电荷所受的力的大小和方向; (2) 在 x 轴上 Q 受力最大时的位置。
- 2. 若电荷 Q 均匀分布在长为 L 的细棒上。求在棒的延长线上,且离棒中心为 r 处的电场强度。
- 3、如图所示,一个细的带电塑料圆环,半径为 R,所带电荷线密度 λ 和 θ 有 $\lambda = \lambda_0 \sin \theta$ 的 关系,求在圆心处的电场强度的方向和大小。

4. 内外半径分别为 R_1 和 R_2 均匀带电球壳, 电荷体密度为 P_2 。试求球体内外各点的场强分布。