Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Cursos de Servicios programas virtuales Ingeniería

Álgebra Lineal Taller-Parcial 2

1. Para cada una de las siguientes proposiciones determine si son Verdaderas o son Falsas. Justifique cada respuesta.

- Si Q es una matriz ortogonal entonces $Q^2 = Id$.
- $\sin(x)$ y $\cos x$ son ortogonales en $C[-\frac{\pi}{2}, \frac{\pi}{2}]$ con el producto interno $(f, g) = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}} f(x)g(x)dx$.
- \blacksquare Si H es un subespacio de $\mathbb{R}^n,$ entonces $H\cap H^\perp=0$.
- En \mathbb{R}^2 si $x = (x_1, y_1), y = (x_2, y_2)$ entonces $(x, y) = x_1x_2 y_1y_2$ es un producto interno para \mathbb{R}^2 .
- Si V es un espacio vectorial, entonces el conjunto $H = \{v \in V : v \notin V\}$ es un subespacio de V.
- Si $\{u,v\}$ es base para un espacio vectorial V, entonces sin importar $x \in V$, se tiene $\{x+u,x+v\}$ también es base para V.
- Un conjunto generador de \mathbb{R}^3 contiene solo vectores L.I.
- Toda base de un espacio vectorial debe contener al vector cero $(\vec{0})$.
- Si $\{\vec{u}, \vec{v}\}$ son L.I. entonces $\{\vec{u} \vec{v}, \vec{u} + \vec{v}\}$ también.
- H es un subespacio de \mathbb{R}^n entonces $H \cap H^{\perp} = \{\overrightarrow{0}\}.$
- \blacksquare Es posible encontrar una base ortonormal para \mathbb{R}^3 donde todos los vectores sean de un mismo plano.
- Si A es una matriz de orden 4×5 donde $dimC_A = 2$ podemos decir que la nulidad de A debe ser 3.
- \bullet Para todo x,y en \mathbb{R}^n se cumple que $\|x\|+\|y\|\leq \|x+y\|$.
- Sea H un subespacio de \mathbb{R}^n y $v \in \mathbb{R}^n$. Si $proy_H(v) = 0$ entonces $v \in H^{\perp}$.
- 2. Dadas B_1 y B_2 bases para \mathbb{R}^3 , calcular la matriz de transición de B_1 a B_2 . Donde

$$B_1 = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 7\\0\\2 \end{pmatrix} \right\} \text{ y } B_2 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

- 3. Sea H el subespacio de \mathbb{R}^4 generado por $\left\{ \begin{pmatrix} 2\\3\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\1\\1 \end{pmatrix} \right\}$ Calcular una base ortonormal para H.
- 4. Sea $S = \left\{ \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \begin{pmatrix} \frac{-1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$ una base ortonormal de \mathbb{R}^3 , escribir el vector (1, 2, -1) en está base.
- 5. Dados los puntos (1,4), (3,7), (8,5), (6,9).
 - Determine la recta de mínimos cuadrados.
 - Determinar el polinomio cuadrático de mínimos cuadrados.
- 6. En \mathbb{R}^2 , si $\mathbf{x} = (x_1, x_2)$ y $\mathbf{y} = (y_1, y_2)$ definamos la siguiente operación.

$$(\mathbf{x}, \mathbf{y}) = 2x_1y_1 + 2x_2y_2$$

Determine si (\mathbf{x}, \mathbf{y}) es un producto interno en \mathbb{R}^2 .

- 7. Considere el conjunto $W = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4 : 2x = w ; y + z = 0 \right\}$ y $b = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}$
 - lacktriangle Justifique brevemente por qué W es un subespacio. Encuentre el vector en W que está más cerca a b
 - Halle vectores $p \ y \ q$ tal que $b = p + q \ \text{con} \ p \in W$ $y \ q \in W^{\perp}$.
 - Encuentre una base para W^{\perp} .
- 8. Para la matriz

$$A = \begin{bmatrix} 1 & -1 & -2 & 0 & 1 \\ -2 & 2 & 3 & 1 & -1 \\ -3 & 3 & 5 & 1 & 2 \end{bmatrix}$$

- Halle bases para los subespacios C_A , R_A , N_A
- lacksquare Comprobar el teorema del rango para la matriz A
- 9. Si $\beta = \{1 x; 1 + x\}$ es base para \mathcal{P}_1 y $q(x) \in \mathcal{P}_1$ tal que $[q(x)]_{\beta} = \begin{bmatrix} 1/2 \\ -1/3 \end{bmatrix}$
 - Si $\mathcal{P}_{\varepsilon \longleftarrow \beta} = \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix}$ para cierta base ε de \mathcal{P}_1 , encuentre los elementos que forman a ε .
 - ullet Escriba a q(x) como combinación lineal de los vectores de ε utilizando la parte anterior
- 10. Sean $x, y \in \mathbb{R}^n$. Demuestre que si $||x||^2 = ||y||^2$ entonces $||x + y||^2 = ||x||^2 + ||y||^2$.
- 11. En los numerales (a) y (b) determine si H es subespacio del espacio vectorial V.
 - $V = \mathbb{M}_{2\times 2}, \ \mathbf{y} \ H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2x2} : ab cd \ge 0 \right\}$
 - $V = \mathbb{P}_2(x), H = \{A \in M_{2x2} : A^T + A = 0\}.$
- 12. Para que valores de α los vectores $u=(1,2,1),\,v=(2\alpha,3,-1)$ y $w=(4,7,\alpha)$ son L.I. ?
- 13. Determine si $\{-2x, x + 3x^2, x + 2\}$ forma una base para P_2 . En caso afirmativo encuentre las coordenadas con respecto a esa base de $p(x) = x^2 + 3x 5$
- 14. En \mathbb{R}^2 suponga que $(x)_{\beta_1} = (1, -3), \beta_1 = \{(2, 1), (2, 0)\}$. Escriba x en terminos de la base $\beta_2 = \{(0, 3), (5, -1)\}$.
- 15. Utilice las coordenadas en una base adecuada para verificar si los siguientes conjuntos son linealmente independientes.
 - a) En P_2 $x 4x^2$, 1 + 2x, $4 + x + 2x^2$
 - b) En P_3 $x^3 1$, x + 1, $x^2 + 4x 2$, $2x^2 + 5$
- 16. Encuentre el rango y la nulidad de la matriz $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 5 & 2 \\ 3 & -1 & 2 \end{pmatrix}$.
- 17. Encuentre una base ortonormal para el subespacio $H = \{(x, y, z) \mid x 3y + z = 0\}$
- 18. Demuestre que si Q es una matriz ortogonal entonces det $Q=\pm 1$
- 19. Sea A la matriz definida por:

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 \\ 0 & -2 & -2 & 3 & 1 \\ 2 & 4 & 6 & 6 & 7 \end{pmatrix}$$

Calcular el espacio fila asociado a la matriz, el espacio columna asociado a la matriz, el rango de la matriz y la nulidad de la matriz.

20. Dadas B_1 y B_2 bases para \mathbb{R}^3 , calcular la matriz de cambio de base de B_1 para B_2 . Donde

$$B_1 = \left\{ \begin{pmatrix} 11\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 7\\0\\2 \end{pmatrix} \right\} \text{ y } B_2 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

- 21. Sea H el subespacio vectorial de \mathbb{R}^3 definido por $H = \{(x, y, z) \in \mathbb{R}^3 / 2x + 3y z = 0\}$ Calcular una base ortonormal para H.
- 22. Sea $S = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} \frac{0}{\sqrt{2}}\\\frac{\sqrt{2}}{\sqrt{2}}\\\frac{\sqrt{2}}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0\\-\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{\sqrt{2}} \end{pmatrix} \right\}$ una base ortonormal de \mathbb{R}^3 , escribir el vector V = (1,2,-1) en está base.
- 23. Dados los puntos (1,4), (3,7), (8,5), (6,9).
 - a) Determine la recta de mínimos cuadrados.
 - b) Determinar el polinomio cuadrático de mínimos cuadrados.
- 24. En \mathbb{R}^2 , si $\mathbf{x} = (x_1, x_2)$ y $\mathbf{y} = (y_1, y_2)$ definamos la siguiente operación.

$$(\mathbf{x}, \mathbf{y}) = 2x_1y_2 + 2x_2y_1$$

Determine si (\mathbf{x}, \mathbf{y}) es un producto interno en \mathbb{R}^2 .

25. En \mathbb{R}^2 , si $\mathbf{x}=(x_1,x_2)$ y $\mathbf{y}=(y_1,y_2)$ definamos la siguiente operación.

$$(\mathbf{x}, \mathbf{y}) = 2x_1y_1 + 2x_2y_2$$

Determine si (\mathbf{x}, \mathbf{y}) es un producto interno en \mathbb{R}^2 .

- 26. En \mathbb{R}^2 suponga que $(x)_{\beta_1}=(2,-1),\ \beta_1=\{(1,1),(2,3)\}.$ Escriba x en terminos de la base $\beta_2=\{(0,3),(5,-1)\}.$
- 27. Utilice las coordenadas en una base adecuada para verificar si los siguientes conjuntos son linealmente independientes.
 - a) En P_2 $x + 4x^2$, -2 + 2x, $2 + x + 12x^2$
 - b) En P_2 $x^2 + 1$, x + 1, $x^2 + 4$