PLP - 23 TOPIC 23—SET OPERATIONS

Demirbaş & Rechnitzer

SET OPERATIONS

UNION AND INTERSECTION

DEFINITION:

Let A,B be sets. The union of \overline{A} and \overline{B} is

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

DEFINITION:

The intersection of sets A and B, is

$$A\cap B=\{x\ :\ x\in A\ {\sf and}\ x\in B\}$$

If the intersection $A\cap B=\varnothing$, then we say that A and B are disjoint.

NOTES AND EXAMPLES

• Please use correct notation

$$A \cup B = ext{ unions of sets}$$
 $A \cap B = ext{ intersection of sets}$ $P \vee Q = ext{ disjunction of statements}$ $P \wedge Q = ext{ conjunction of statements}$

- There are *parallels* between set operations and logical operations but they are *not* the same
- Let $A = \{1, 2, 3, 4\}$, $B = \{p \ : \ p \ \mathsf{is \ prime}\}$ and $C = \{4, 5, 6, 7\}$

$$A \cup C = \{1, 2, 3, 4, 5, 6, 7\}$$
 $A \cap B = \{2, 3\}$ $B \cap C = \{5, 7\}$

VISUALISING THINGS

We can picture union and intersection using Venn diagrams

ANOTHER OPERATION

DEFINITION:

Let A and B be sets. Then the difference, A-B is

$$A-B=\{x\in A\ :\ x
otin B\}$$

UNIVERSALS AND COMPLEMENTS

DEFINITION:

Given a universal set U and $A\subset U$, the complement of A is

$$ar{A} = \{x \in U \ : \ x
otin A\}$$
 or equivalently $x \in ar{A} \iff x
otin A$

The universal set is the set from which we draw elements in the current *context*

NOTES AND EXAMPLES

- Compl-e-ment vs Compl-i-ment
- ullet A-B also written $A\setminus B$ and is called the <code>relative</code> complement of \overline{B} in \overline{A}
- ullet We have $A-B=A\cap ar{B}$
- ullet Let $U=\mathbb{N}, A=\left\{1,2,3,4
 ight\}, B=\left\{p\ :\ p ext{ is prime}
 ight\}$ and $C=\left\{4,5,6,7
 ight\}$

$$A-C=\{1,2,3\} \qquad A-B=\{1,4\} \qquad ar{A}=\{n\in\mathbb{N} \ : \ n\geq 5\}$$

ORDERED PAIRS

Sets don't care about order, but many applications need *pairs* of objects.

DEFINITION:

An ordered pair of elements is an ordered list of two elements.

The ordered pair of two elements a,b is written (a,b) and satisfies

- ullet (a,b)=(c,d) only when (a=c) and (b=d), and
- ullet $\overline{(a,b)}
 eq \overline{(b,a)}$ unless $\overline{(a=b)}$.

Warning

- ullet use correct notation: $\{1,\overline{3}\}$ is a set, $(1,\overline{3})$ is an ordered pair
- ullet we sometimes use $(1,3)=\{x\in\mathbb{R}\ :\ 1< x< 3\}$ give your reader context

CARTESIAN PRODUCT

DEFINITION: CARTESIAN PRODUCT.

The Cartesian product of sets A, B is

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

Note for A,B
eq arnothing , A imes B
eq B imes A unless A=B .

Let
$$A=\{a,b,c\}$$
 and $B=\{1,2\}$ then

$$A imes B = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$$