| Date         | 1 November 2022                                                          |
|--------------|--------------------------------------------------------------------------|
| Team ID      | PNT2022TMID53144                                                         |
| Project Name | Visualizing and Predicting Heart Diseases with an Interactive Dash Board |

## **Sprint Delivery Plan**

## **Product Backlog, Sprint Schedule, and Estimation**

| Sprint   | Functional<br>Requirement         | User<br>Story<br>number | User story/task                                                                                                                                                                                                                 | Story point s | Priority | Team<br>Members |  |
|----------|-----------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----------------|--|
| Sprint 1 | Visualizations<br>and Exploration | USN-1                   | Need to see visualisations of Age by Chest pain type, BP by age, Exercise angin by chest pain type.                                                                                                                             | 3             | High     | 2               |  |
| Sprint 1 |                                   | USN-2                   | Visualisations for Max HR by Angina, Heart disease for chest pain type and sex.                                                                                                                                                 | 3             | High     | 2               |  |
| Sprint 1 |                                   | USN-3                   | Visualisations for cholesterol by age colored by sex, Max HR and angina by heart disease.                                                                                                                                       | 3             | High     | 2               |  |
| Sprint 2 | Front-end<br>Dashboard            | USN-4                   | Attractive dashboard for the application                                                                                                                                                                                        | 3             | Medium   | 2               |  |
| Sprint 2 |                                   | USN-5                   | The user will have to fill in the below 13 fields for the system to predict a disease -Age in year -Gender -Chest pain Type -Fasting Blood Sugar -Resting Electrographic Results -Exercise Induced Angina -Trust Blood Pressure | 7             | High     | 2               |  |

| Sprint 3 | Creating ML<br>Model and<br>Flask Interface | USN-6 | Creating the ML model                                                                                                                                | 6 | High   | 1 |
|----------|---------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|---|
| Sprint 3 |                                             | USN-7 | Connect the model to the interface using Flask                                                                                                       | 6 | High   | 1 |
| Sprint 4 | System requirements                         | USN-8 | Hardware Requirement 3. Laptop or PC • i5 processor system or higher • 4 GB RAM or higher • 128 GB ROM or higher 4.Mobile • (Android 12.0 and above) | 5 | Low    | 2 |
| Sprint 4 |                                             | USN-9 | Software requirement: Laptop or PC • Windows 10 or higher • Android Studio                                                                           | 5 | Medium | 4 |

## **Project Tracker, Velocity & Burndown Chart:**

| Sprint   | Total<br>Delivery<br>points | Duration | Sprint start date |      | Sprint end date  |      | Story<br>points<br>completed | Sprint<br>release<br>date |      |
|----------|-----------------------------|----------|-------------------|------|------------------|------|------------------------------|---------------------------|------|
| Sprint 1 | 9                           | 1 week   | 24 <sup>th</sup>  | Oct, | 30 <sup>th</sup> | Oct, | 9                            | 30 <sup>th</sup>          | Oct, |
|          |                             |          | 2022              |      | 2022             |      |                              | 2022                      |      |
| Sprint 2 | 10                          | 1 week   | 31 <sup>st</sup>  | Oct, | 06 <sup>th</sup> | Nov, | 10                           | 06 <sup>th</sup>          | Nov, |
|          |                             |          | 2022              |      | 2022             |      |                              | 2022                      |      |
| Sprint 3 | 12                          | 1 week   | 07 <sup>th</sup>  | Nov, | 13 <sup>th</sup> | Nov, | 12                           | 13 <sup>th</sup>          | Nov, |
|          |                             |          | 2022              |      | 2022             |      |                              | 2022                      |      |
| Sprint 4 | 10                          | 1 week   | 14 <sup>th</sup>  | Nov, | 20 <sup>th</sup> | Nov, | 10                           | 20 <sup>th</sup>          | Nov, |
|          |                             |          | 2022              |      | 2022             |      |                              | 2022                      |      |

## **Velocity:**

Imagine we have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV = Sprint duration / velocity = 20 / 6 = 3

**Burndown Chart:** A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies suchas Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

