Introduction to Bioinformatics

Chris Miller, Ph.D. Washington University in St Louis

Bioinformatics Workshop 2023-2024

Supported by – ICTS Precision Health

 We aim to catalyze genomic research by providing grant review, development services, guidance and resources for genomic researchers and genomics education in the community.

Cite the **NIH CTSA Grant #UL1 TR002345** when research is supported by ICTS/CTSA funding or any ICTS Core Services

BFX Workshop – contact Jenny if you haven't received the following

Slack access, welcome email, Outlook bfx-workshop-2023 group invite

https://redcap.link/BFX2023

ICTS Precision Health

Support Transdisciplinary Research

- Match clinicians and investigators
- Review grants
- Fund Precision Health Innovation awards

Develop Common Workflows

- Genomic consent and return of results
- Enable access to large genomic data sets
- Develop infrastructure to speed discovery translation

Educate the Community

- Expand access to educational research programs
- Educate scientific and clinical community in precision health
- Engage broader STL community in genomic research

Leadership Team

Megan Cooper, MD, PhD

Chris Gurnett, MD. PhD

Precision Health Led Projects

icts-precisionhealth.wustl.edu

j.mckenzie@wustl.edu

- Pilot funding & Research reviews
 - Precision Health Innovation Awards; ICTS Research Development Program
 - Return of Results (ROR) for Research Participants
 - Genetic counseling, process for returning ACMG secondary results
 - Genomic Database Access and Submission
 - UK Biobank, All of Us Research Program, dbGaP, AnVIL, SRA
 - Assistance to submit human genomic data to shared repository
 - Institutional Genomic Consent
 - One Protocol One Consent, BJC-Webb electronic biobank
 - Community Education & Engagement
 - Precision Health for the Ages Workshop Series

Providing Support For

- Core Services
 - WU Biological Therapy Core Facility (BTCF), McDonnell Genome Institute (MGI)
- Informatics Tools for Precision Health
 - Bioinformatics Workshop (BFX), pVAC, CIViC,
- Communications and Outreach
 - Women in Innovation and Technologies (WIT) program, EQUALIZE program through OTM
- Educational Opportunities
 - Precision medicine pathway, Bioinformatics Workshop (BFX), Genomics in Medicine

Why learn bioinformatics?

- Biology is now a quantitative discipline - especially genomics

Cost per Genome

Why learn bioinformatics?

- Biology is now a quantitative discipline especially genomics
- Skills in programming, statistics, and visualization help you get the most out of your data

People who need complex data analysis

People who know how to do complex data analysis

Why learn bioinformatics?

- Biology is now a quantitative discipline especially genomics
- Skills in programming, statistics, and visualization help you get the most out of your data
- This course aims to teach you the theory and practice of computational biology, with a focus on genomics but lessons that apply broadly

What is bioinformatics?

What is bioinformatics?

More Computational More biological

Algorithm design Building Pipelines Developing Assays Analysis of my

experiment

Common skills

- Statistics
- Programming
- Visualization

"Data science"

Deep understanding of the biological system and experiments

What is bioinformatics?

- Application of computational techniques to biological data
- Covers a lot of ground!
 - Population genetics
 - Cancer genomics
 - Microbial genomics
 - Proteomics
 - Ecology/Evolution
 - Medical informatics/EHR mining
 - computational behavioral biology

- Epidemiology
- Protein folding
- CryoEM or tomography
- Drug design/molecular dynamics
- Algorithmic design/optimization
- Metabolomics
- Mathematical Biology

Goals:

- To empower you to improve and expedite your research
- To expose you to new ideas and techniques that may advance your research program

Who we are, and why you should trust us

Chris Miller, Ph.D.

Course Director
Assistant Professor
Division of Oncology

Almost 20 years of experience in Bioinformatics and Computational Biology

Other Lecturers/Organizers include:

Jason Walker Susanna Kiwala Malachi Griffith
Aadel Chaudhuri

Jennifer Foltz Brigida Rusconi

Who we are, and why you should trust us

Chris Miller, Ph.D.

Course Director
Assistant Professor
Division of Oncology

Jenny McKenzie, Ph.D.

Course Coordinator ICTS Precision Health Program Scientist

Almost 20 years of experience in Bioinformatics and Computational Biology

Other Lecturers/Organizers include:

Jason Walker Susanna Kiwala Malachi Griffith
Aadel Chaudhuri

Jennifer Foltz Brigida Rusconi

Don't trust your data

Trusting your data

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x : σ^2	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y : σ^2	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression : \mathbb{R}^2	0.67	to 2 decimal places

Datasaurus Dozen

Summary statistics are dangerous

- Visualize your data!
- A picture is worth a thousand p-values

"If your experiment needs statistics, you ought to have done a better experiment"

- Ernest Rutherford

I obviously don't subscribe to this, but he's not completely wrong either! If you can't make a plot convincing you that an effect is real, how confident are you, really?

- The bioinformatics core aligned the data and sent me a list of differentially expressed genes. I'm done, right?
- We ran Mutect to call somatic mutations in this tumor genome. Let's take it to the bank

Lessons to be learned

- Check and double check and triple check your data and your scripts
- Visualize your data!
- Admit when mistakes are made

Errors

- Will happen!
- Errors of commission vs omission
- Type 1 errors False positives
- Type 2 errors False negatives

"Analyzing your data means inherently distrusting your data until you have exhausted yourself into giving up and trusting it."

-Aaron Quinlan

Course structure

- Pair an introduction to a biological or technical concept with some of the tools needed to analyze it

- Next week:
 - command line skills, plotting with R
- Following week:
 - Sequence data generation
 - How to read, manipulate, and run quality control on sequence data

Prerequisites

- You do not need to know all of these things on Day 1
 - Tutorials and documentation in today's notebook
- But you do need to get moving!
 - Hands-on learning is *essential*. If you can't follow along and do the assignments, you will not get the most out of this course

Homework

- Will not be turned in or graded
- Will be useful for understanding subsequent lectures
- Posted on the course page
 - https://github.com/genome/bfx-workshop

Computing Environments

- Laptop
 - You administer
 - You control completely

Computing Environments

- Laptop
 - You administer
 - You control completely
- Shared compute cluster
 - A sysadmin or group administers it
 - You control very little

Docker containers

Computing Environments

- Laptop
 - You administer
 - You control completely
- Shared compute cluster
 - A sysadmin or group administers it
 - You control very little
- Docker (containers)
 - Sysadmins handle the hardware
 - You control the software almost completely

Finding docker images

- Search engines
 - "docker bedtools"
- Repositories Bioconda/Quay.io/Dockerhub
 - "docker mosdepth quay"
- Slack ask in #docker

- Building your own

Turning data into insight

