

Minería de Datos

Clustering

	Algoritmo	Parámetro	Escalabilidad	Caso de uso	Geometría
	K-Means	Número de clusters	Escalable Mejora con modificación MiniBatch	Propósito general flat clustering K no muy grande	Distancia entre objetos
	Affinity Propagation	Coeficiente de damping	No escalable	Non-flat clustering K grande	Grafo de distancias
	Mean-shift	Ancho de banda	No escalable	Non-flat clustering K grande	Distancia entre objetos
	Spectral clustering	Número de clusters	Escalabilidad media	Non-flat clustering K no muy grande	Grafo de distancias
	Ward	Número de clusters	Escalable	K grande	Distancias entre objetos
	Clustering aglomerativo	Número de clusters	Escalable	Distancias no Euclideanas K grande	Distancias entre objetos
	DBSCAN	Tamaño del vecindario	Escalable	Clusters de tamaños distintos	Grafo de vecinos más cercanos
	Mezcla de Gaussianas	Muchos	No escalable	Flat clustering Estimación de densidad	Distancias Mahalanobis a centroides

Idea:

Idea:

Algorithm Basic agglomerative hierarchical clustering algorithm.

- 1: Compute the proximity matrix, if necessary.
- 2: repeat
- 3: Merge the closest two clusters.
- 4: Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.
- 5: **until** Only one cluster remains.

Estructura jerárquica de abstracción:

aglomerativo

Single Link:

Single Link:

$$d_{min}(C_i, C_j) = min_{\boldsymbol{p} \in C_i, \, \boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$$

 C_j

Single Link:

$$d_{min}(C_i, C_j) = min_{\boldsymbol{p} \in C_i, \, \boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$$

(a) Single link clustering.

(b) Single link dendrogram.

Average Link:

$$d_{avg}(C_i,C_j) = \frac{1}{n_i n_j} \sum_{\boldsymbol{p} \in C_i} \sum_{\boldsymbol{p}' \in C_j} |\boldsymbol{p} - \boldsymbol{p}'|$$

(a) Group average clustering.

(b) Group average dendrogram.

Método de Ward:
$$d_{ij}=d(\{X_i\},\{X_j\})=\|X_i-X_j\|^2.$$

Minimiza la varianza intra-cluster

Método de Ward:

$$d_{ij} = d(\{X_i\}, \{X_j\}) = \|X_i - X_j\|^2.$$

Minimiza la varianza intra-cluster

Método de Ward:

$$d_{ij} = d(\{X_i\}, \{X_j\}) = \|X_i - X_j\|^2.$$

$$\Delta(A,B) = \sum_{i \in A \bigcup B} ||\overrightarrow{x_i} - \overrightarrow{m}_{A \bigcup B}||^2 - \sum_{i \in A} ||\overrightarrow{x_i} - \overrightarrow{m}_A||^2 - \sum_{i \in B} ||\overrightarrow{x_i} - \overrightarrow{m}_B||^2 = \frac{n_A n_B}{n_A + n_B} ||\overrightarrow{m}_A - \overrightarrow{m}_B||^2$$

Minimiza la varianza intra-cluster

Método de Ward:

$$d_{ij} = d(\{X_i\}, \{X_j\}) = \|X_i - X_j\|^2.$$

#datos de cada cluster

$$\Delta(A,B) = \sum_{i \in A \ \bigcup B} ||\overrightarrow{x_i} - \overrightarrow{m}_{A \ \bigcup B}||^2 - \sum_{i \in A} ||\overrightarrow{x_i} - \overrightarrow{m}_{A}||^2 - \sum_{i \in B} ||\overrightarrow{x_i} - \overrightarrow{m}_{B}||^2 = \frac{n_A n_B}{n_A + n_B} ||\overrightarrow{m}_A - \overrightarrow{m}_B||^2$$
Centroide del nuevo cluster

Tarea: demostrar

Minimiza la varianza intra-cluster

Método de Ward:

$$d_{ij} = d(\{X_i\}, \{X_j\}) = \|X_i - X_j\|^2.$$

#datos de cada cluster

$$\Delta(A,B) = \sum_{i \in A \ \bigcup \ B} ||\overrightarrow{x_i} - \overrightarrow{m}_A \bigcup B||^2 - \sum_{i \in A} ||\overrightarrow{x_i} - \overrightarrow{m}_A||^2 - \sum_{i \in B} ||\overrightarrow{x_i} - \overrightarrow{m}_B||^2 = \frac{n_A n_B}{n_A + n_B} ||\overrightarrow{m}_A - \overrightarrow{m}_B||^2$$
Centroide del nuevo cluster

Tarea: demostrar

(a) Ward's clustering.

(b) Ward's dendrogram.

Limitaciones

- No escala a grandes volúmenes de datos.
- No existen criterios claros para elegir la función de distancia y el criterio de mezcla.
- No trabaja con *missing values*.
- No es claro como trabajar con datos mezclados.

Limitaciones

- No escala a grandes volúmenes de datos.
- No existen criterios claros para elegir la función de distancia y el criterio de mezcla.
- No trabaja con *missing values*.
- No es claro como trabajar con datos mezclados.

Cuando usarlo

- Data homogénea en espacio métrico.
- Volumen de datos a lo más de escala media (m ~ 10^4).
- Dendrogramas prestan mayor utilidad en datasets pequeños.

Clustering Jerárquico en sklearn

Setting:

```
> import numpy
> import sklearn
> import scipy
> import matplotlib
> from matplotlib import pyplot as plt
```

Dataset (digits):

```
> from sklearn import datasets
> digits = datasets.load_digits(n_class=10)
> X = digits.data
> y = digits.target
> n_samples, n_features = X.shape
```

Clustering Jerárquico en sklearn

Data embedding (en 2D):

```
> from sklearn import manifold
> X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)
```

Normalización:

```
> x_min, x_max = numpy.min(X_red, axis=0), numpy.max(X_red, axis=0)
> X_red = (X_red - x_min)/(x_max - x_min)
```

Agglomerative Clustering:

```
> from sklearn.cluster import AgglomerativeClustering as hac
> clustering = hac(linkage="complete", n_clusters=10)
> clustering.fit(X_red)
```

Clustering Jerárquico en sklearn

Visualización (en 2D):

```
> for i in range(X_red.shape[0]):
... plt.text(X_red[i,0], X_red[i,1], str(y[i]),
... color=plt.cm.spectral(clustering.labels_[i]/10.),
... fontdict={'weight': 'bold', 'size': 8})
...
> plt.show()
```

