Stock Market

• Initial investment Y_0 , daily return ratio r_i , in t-th day, your money is

$$Y_t = Y_0 r_1 \cdot \ldots \cdot r_t$$
.

• Now if returns ratio r_i are i.i.d., with

$$r_i = \begin{cases} 4, & \text{w.p. } 1/2 \\ 0, & \text{w.p. } 1/2 \end{cases}$$

- So you think the expected return ratio is $E[r_i] = 2$.
- And then

$$E[Y_t] = E[Y_0r_1 \cdot ... \cdot r_t] = Y_0(E[r_i])^t = Y_02^t$$
???

• With $Y_0 = 1$, actual return Y_t goes like

1 4 16 0 0 ...

- Why?
 - The 'typical' sequences will end up with 0 return.
 - Occasionally, we got high return.
 - The expected return is increasing.
 - Expectation does not show the typical feature of this random sequence. We can turn to typical set.

只看期望的话是纯增的 期望无法体现随机序到的典型特征. 需关注典型集.

Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Suppose that X_1, X_2, \dots, X_n are n independent, identically distributed (i.i.d.) random variables, then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to E[X] \qquad \text{in probability},$$

i.e. for every number $\epsilon > 0$,

$$\lim_{n\to\infty} \Pr\left[\left| \frac{1}{n} \sum_{i=1}^n X_i - E[X] \right| \le \epsilon \right] = 1.$$

Asymptotic Equipartion Property (AEP)

Definition (Convergence of random variables)

Given a sequence of random variables, X_1, X_2, \ldots , we say that the sequence X_1, X_2, \ldots converges to a random variable X:

- **1** In probability if for every $\epsilon > 0$, $\Pr[|X_n X| \ge \epsilon] \to 0$
- ② In mean square if $E[(X_n X)^2] \rightarrow 0$
- With probability 1 (a.k.a. almost surely) if $\Pr[\lim_{n\to\infty} X_n = X] = 1$

Theorem 3.1.1 (AEP) If X_1, X_2, \ldots are i.i.d. $\sim p(x)$, then $-\frac{1}{n}\log p(X_1,X_2,\ldots,X_n)\to H(X)$ in probability. Proof Since X_i are i.i.d., so are $\log p(X_i)$. Hence, by the weak law of $-\frac{1}{n}\log p(X_1,X_2,\ldots,X_n)=-\frac{1}{n}\sum_{i}\log p(X_i)$ $\rightarrow -E[\log p(X)]$ in probability = H(X)Y650 Typical Set lim Pr[[-1 logp(x1,...xn)-H(x)] < E] = 1 =>-E < - 1, Log P(X,...,Xn) - H(X) < E A typical set $A_{\epsilon}^{(n)}$ contains all sequence realizations $-n[H(x)-E] \ge \log p(x_1,...,x_n) \ge -n[H(x)+E]$ $2^{-n[H(x)-E]} \ge p(x_1,...,x_n) \ge 2^{-n[H(x)+E]}$ $(x_1, x_2, \dots, x_n) \in \mathcal{X}^n$ with $2^{-n(H(X)+\epsilon)} \leq p(x_1, x_2, \dots, x_n) \leq 2^{-n(H(X)-\epsilon)}.$ Consequences of AEP Theorem 3.1.2 • If $(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) - \epsilon \le -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \le H(X) + \epsilon.$ • $\Pr[(X_1, X_2, ..., X_n) \in A_{\epsilon}^{(n)}] > 1 - \epsilon$ for n sufficiently large. 上限是任何情况都成立、下限只在几是够大时的 • $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X)+\epsilon)}$, where |A| denotes the cardinality of the • $|A_{\epsilon}^{(n)}| \ge (1 - \epsilon)2^{n(H(X) - \epsilon)}$ for n sufficiently large. Proof. 1. Immediate from the definition of $A_{\epsilon}^{(n)}$. The number of bits used to describe sequences in typical set is approximately nH(X). Proof. 2. By Theorem 3.1.1, the probability of the event $(X_1, X_2, \dots, X_n) \in A_{\epsilon}^{(n)}$ tends to 1 as $n \to \infty$. Thus, for any $\delta > 0$, there exists an n_0 such that for all $n \ge n_0$, we have $\Pr\left\{\left|-\frac{1}{n}\log p\left(X_1,X_2,\ldots,X_n\right)-H(X)\right|<\epsilon\right\}>1-\delta.$ Setting $\delta=\epsilon$, the conclusion follows Proof. $=2^{-n(H(X)+\epsilon)}\left|A_{\epsilon}^{(n)}\right|.$ Proof. 4. For sufficiently large n, $\Pr[A_{\epsilon}^{(n)}] > 1 - \epsilon$, so that $\leq \sum_{i=1}^{n} 2^{-n(H(X)-\epsilon)}$ $=2^{-n(H(X)-\epsilon)}\left|A_{\epsilon}^{(n)}\right|$

Typical set diagram

This enables us to divide all sequences into two sets

• Typical set: high probability to occur, sample entropy is close 发生极率高,采样熵接近于真实端 to true entropy

- 秘忽略非典型集

- so we will focus on analyzing sequences in typical set
- Non-typical set: small probability, can ignore in general

Asyptotic Equipartion Property (AEP)

Theorem 3.2.1

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with distribution p(x), and $X^n = X_1 X_2 ... X_n$. For arbitrarily small $\epsilon > 0$, there exists a code that maps every realization $x^n = x_1 x_2 ... x_n$ of X^n into one binary string, such that the mapping is one-to-one (and therefore invertible) and

$$E\left[\frac{1}{n}\ell(X^n)\right] \le H(X) + \epsilon$$

for a sufficiently large n.

Proof.

Description in typical set requires no more than $n(H(X) + \epsilon) + 1$ bits (correction of 1 bit because of integrality).

Description in atypical set $A_{\epsilon}^{(n)^C}$ requires no more than $n\log |\mathcal{X}|+1$ bits.

Add another bit to indicate whether in $A_{\epsilon}^{(n)}$ or not to get whole description.

Proof.

Let $\ell(x^n)$ be the length of the binary description of x^n . Then, $\forall \epsilon > 0$, there exists n_0 s.t. $\forall n > n_0$, $E(\ell(X^n)) = \sum_{x^n} \rho(x^n) \ell(x^n)$ $= \sum_{x^n \in A_\epsilon^{(n)}} \rho(x^n) \ell(x^n) + \sum_{x^n \in A_\epsilon^{(n)}} \rho(x^n) \ell(x^n)$ $\leq \sum_{x^n \leq A_\epsilon^{(n)}} \rho(x^n) (n(H+\epsilon) + 2) + \sum_{x^n \in A_\epsilon^{(n)}} \rho(x^n) (n \log |\mathcal{X}| + 2)$ $= \Pr[A_\epsilon^{(n)}] (n(H+\epsilon) + 2) + \Pr[A_\epsilon^{(n)}] (n \log |\mathcal{X}| + 2)$ $\leq n(H+\epsilon) + \epsilon n(\log |\mathcal{X}|) + 2$ $= n(H+\epsilon')$ where $\epsilon' = \epsilon + \epsilon \log |\mathcal{X}| + \frac{2}{n}$ can be made arbitrarily small by choosing n properly.