Факторизация полиномов: Линейный подъем по Гензелю:

$$Z_p \to Z_{p^2} \to Z_{p^3} \to \dots \to Z_{p^n} \to Z$$

SPACE = Z[x];

ЗАДАЧА

Требуется найти два полинома с целыми коэффициентами, произведение которых равно $f = x^6 + 25x^5 + 38x^4 + 977x^3 + 350x^2 + 494x + 182$.

Если известно, что образ полинома f при отображении $Z-->Z_p$ в простое поле по модулю p=11, будет полином

$$F_0 = x^6 + 3x^5 + 5x^4 + 9x^3 + 9x^2 - x + 6,$$

который раскладывается в $Z_p[x]$ на взаимно простые множители со старшими коэффициентами

 $a_0 = x^3 + 3x^2 + 2; b_0 = x^3 + 5x + 3$

Проверим это:

1:

 $c_0 = a_0 b_0; c_{map} = \mathbf{mod}(c_0, 11); f_{map} = \mathbf{mod}(f, 11); sub = \mathbf{mod}(f - F_0, 11); \quad \mathbf{print}(c_0, c_{map}, f_{map}, sub); out :$

$$c_0 = x^6 + 3x^5 + 5x^4 + 20x^3 + 9x^2 + 10x + 6$$

$$c_{map} = x^6 + 3x^5 + 5x^4 - 2x^3 - 2x^2 - x - 5$$

$$f_{map} = x^6 + 3x^5 + 5x^4 - 2x^3 - 2x^2 - x - 5$$

$$sub = 0$$

ОТСУПЛЕНИЕ о том как подбирались эти входные данные.

Были выбраны два случайных полинома

$$t1 = (x^3 + 25x^2 + 13); t2 = x^3 + 38x + 14;$$

Найдено их произведение

$$f = t1 \cdot t2;$$

out:

$$x^{6} + 25x^{5} + 38x^{4} + 977x^{3} + 350x^{2} + 494x + 182$$

ПРОДОЛЖЕНИЕ ОТСУПЛЕНИЯ.

Выбрано конечное поле и кольцо полиномов над ним:

$$SPACE = Zp32[x]; MOD32 = 11;$$

Отобразили полиномы в это кольцо и взяли как входные данные:

$$t1p = \mathbf{toNewRing}(t1); t2p = \mathbf{toNewRing}(t2); tFp = (t1p \cdot t2p);$$

 $\mathbf{print}(t1p, t2p, tFp)$

out:

$$t1p = x^3 + 3x^2 + 2$$

$$t2p = x^3 + 5x + 3$$

$$tFp = x^6 + 3x^5 + 5x^4 + 9x^3 + 9x^2 - x + 6$$

РЕШЕНИЕ

Пусть каждый коэффициент полинома записан, как целое число по основанию р. Тогда

$$f = f_0 + pf_1 + p^2f_2 + p^3f_3, (0)$$

где каждое слагаемое - это полином с коэффициентами, которые лежат в интервале [0,..,p-1], но еще имеют знак и домножены на степень числа p.

Устроим «лифт» по степеням р и будем поднимать решение последовательно до

 $Z/(p^2)Z, Z/(p^3)Z$, и так далее.

(1) Пусть pa_1 и pb_1 искомые добавки к a_0 и b_0 , такие, что

$$(a_0 + pa_1)(b_0 + pb_1) = \mathbf{mod}(f, p^2) = f_0 + pf_1 \tag{1}$$

Тогда по модулю p^2 верно равенство:

$$SPACE = Z[x]; pf_1 = p(a_0b_1 + b_0a_1) = (f - a_0b_0)$$

$$f_1 = a_0 b_1 + b_0 a_1 = (f - a_0 b_0)/p;$$

out:

$$2x^5 + 3x^4 + 87x^3 + 31x^2 + 44x + 16$$

Задача свелась к нахождению неизвестных сомножителей b_1 и a_1 в Евклидовом кольце $Z_p[x]$ в равенстве

$$a_0b_1 + b_0a_1 = f_1. (2)$$

Если b_1 и a_1 – некоторое решение, то прибавление к ним любого полинома, который кратен р, не влияет на равенство (1), так как эта добавка по модулю p^2 равна 0.

Так как a_0 и b_0 взаимно просты, то **extandedGCD** (a_0, b_0) вернет полиномы A и B, такие, что

$$Aa_0 + Bb_0 = 1.$$

Найдем их:

$$SPACE = Zp32[x]; MOD32 = 11; a_{p0} = \mathbf{toNewRing}(a_0); b_{p0} = \mathbf{toNewRing}(b_0); f_{p1} = \mathbf{toNewRing}(f_1);$$

 $VP = \mathbf{extendedGCD}(a_{p0}, b_{p0}); VP = (vp_i); A_p = vp_2; B_p = vp_3;$
 $gcd = A_pa_{p0} + B_pb_{p0};$
 $\mathbf{print}(A_p, B_p, acd);$

 $\mathbf{print}(A_p, B_p, gcd);$

out:

$$A_p = -2x^2 - 5x + 3$$
$$B_p = 2x^2 + 2$$
$$qcd = 1$$

Следовательно, частным решением будет

$$b_{p1} = A_p f_{p1},$$

$$a_{p1} = B_p f_{p1}.$$

Так как общим решением, соответствующего (2) однородного уравнения, будет $(qb_{p0}, -qa_{p0})$, где *q*- произвольный полином, то общее решение будет:

$$b_{p1} = A_p f_{p1} + q b_{p0},$$

$$a_{p1} = B_p f_{p1} - q a_{p0}$$

Вопрос: чем плохо частное решение и почему мы хотим иметь общее?

QUESTION

out:

QUESTION

Каждое произведение $A_p f_{p1}$ и $B_p f_{p1}$ может иметь степень больше, чем f_{p1} на степень полинома A_p или B_p , соответственно. Конечно, в сумме (2) они взаимно уничтожатся. Поэтому надо сразу найти такое частное решение, которое будет иметь наименьшую степень.

Возьмем в качестве q – целую часть частного от деления $B_p f_{p1}$ на a_{p0} , т.е. **quotient** $(B_p f_{p1}, a_{p0})$. Тогда полином $B_p f_{p1} - q a_{p0}$ будет равен остатку при этом делении и его степень будет меньше, чем a_{p0} .

Понятно, что это наименьшая возможная степень у полинома $B_p f_{p1} - q a_{p0}$.

Мы получим в кольце Z/pZ[x]:

$$\begin{split} a_{p1} &= \mathbf{remainder}(B_p \ f_{p1}, a_{p0}); \\ b_{p1} &= A_p \ f_{p1} \ + \ b_{p0} \mathbf{quotient}(B_p \ f_{p1}, a_{p0}); \\ \mathbf{print}(a_{p1}, b_{p1}); \end{split}$$

out:

$$a_{p1} = 2x^2 + 1$$

$$b_{p1} = -8x + 1$$

А может ли быть у b_1 высокая степень?

Как видно из равенства (2) сумма степеней b_1 и a_0 не может быть больше степени f_1 .

Мы нашли $A_1 = a_0 + pa_1$, $B_1 = b_0 + pb_1$.

 $SPACE = Z[x]; a_1 = \mathbf{toNewRing}(a_{p1}); b_1 = \mathbf{toNewRing}(b_{p1});$

 $A_1 = a_0 + pa_1; B_1 = b_0 + pb_1;$

Это второй этаж. Проверим это;

 $F_1 = f - A_1 B_1; p2 = p^2; R_1 = \mathbf{mod}(F_1, p2); \mathbf{print}(A_1, B_1, R_1); out:$

 $A_1 = x^3 + 25x^2 + 13$ $B_1 = x^3 - 83x + 14$

 $R_1 = 0$

Как подняться выше?

(2) Пусть p^2a_2 и p^2b_2 искомые добавки к A_1 и B_1 , такие, что

$$F_2 = (A_1 + p^2 a_2)(B_1 + p^2 b_2) = \mathbf{mod}(f, p^3).$$
 (3)

Так как $F_2 = A_1 B_1 + p^2 f_2$ то

$$f_2 = A_1 b_2 + B_1 a_2 = (f - A_1 B_1)/p^2$$
; **print** (f_2) ;

Достаточно знать a_2 и b_2 в Z/pZ[x],так как равенство (3) не изменится при добавлении к ним любого кратного p. Вспомним, что $A_1=a_0+pa_1$, $B_1=b_0+pb_1$ и

будем решать уравнение

$$a_0b_2 + b_0a_2 = f_2. (4)$$

в кольце $\mathbb{Z}/p\mathbb{Z}[x]$. Можно воспользоваться алгоритмом, который применяли на первом шаге: out :

$$f_2 = x^4 + 25x^3 + 13x$$

$$SPACE = Zp32[x]; MOD32 = 11; f_{p2} = \mathbf{toNewRing}(f_2);$$

```
a_{p2}=\mathbf{remainder}(B_p\ f_{p2},a_{p0}); b_{p2}=A_p\ f_{p2}\ +\ b_{p0}\mathbf{quotient}(B_p\ f_{p2},a_{p0}); \mathbf{print}(a_{p2},b_{p2}); Отметим, что здесь те же A и B, что и на предыдущем шаге.- out: a_{p2}=0 b_{p2}=x SPACE=Z[x]; a_2=\mathbf{toNewRing}(a_{p2}); b_2=\mathbf{toNewRing}(b_{p2}); A_2=(A_1+p^2a_2); B_2=(B_1+p^2b_2); F_3=f-A_2B_2; \mathbf{print}(F_3,A_2,B_2); out: F_3=0 A_2=x^3+25x^2+13 B_2=x^3+38x+14
```

Когда заканчивается подъем?

Когда разность $f - A_k B_k$ на очередном шаге будет равна нулю.

А если исходный полином в целых числах не раскладывается на множители, то надо поднимать до такой степени n при которой число p^n будет больше, чем $2\alpha+1$, где α - наибольший возможный коэффициент.

Если ноль в разности не был получен до этого, то дальше подниматься нет смысла.

Такой метод решения известен под названием «Линейный подьем по Гензелю».

[Курт Вильгельм Себастьян Гензель (Kurt Wilhelm Sebastian Hensel, 1861—1941) родился в Кёнигсберге. Учился в Берлинском и Боннском университетах у Леопольда Кронекер и Карла Вейерштрасса. Преподавал в Марбургский университет (полный профессор с 1901). В 1897 году Гензель открыл р-адические числа.]

(Известен еще и квадратичный подъем, когда степени берутся не порядке $p^1, p^2, p^3, ...$, а порядке $p^1, p^2, p^4, p^8...$. Для этого (0) нужно было бы расписать по таким степеням, а в формуле (3) брать модуль не по p^3 , а сразу по p^4 , а потом P^8 и так далее. Но тогда требуется пересчитывать расширенный алгоритм Евклида на каждом шаге. Такой алгоритм, в итоге, имеет большую сложность, чем линейный.)

END out:

END