Análisis de la asociación espacial

Correlación

Gerardo Martín 2022-06-29

Intro

Asociación estadística:

Probar la hipótesis de que dos variables se predicen mutuamente

Asociación espacial:

Variables con estructura espacial que se predicen mutuamente

Representación gráfica

Figure 1: Gráfico de dispersión de dos variables que se predicen mutuamente.

Figure 2: Gráfico de dispersión de dos variables que no se predicen mutuamente.

Medición de la asociación

- Prueba estadística por defecto: Coeficiente de correlación de Pearson
- · Estima cociente de covarianza y producto de desviación estándar:

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_x \sigma_y} \tag{1}$$

$$\mathrm{cov}(X,Y) = \mathbb{E}[(X-\mu_x)(Y-\mu_y)] \tag{2}$$

paso

Coeficiente de correlación paso a

El caso no espacial

Comenzamos con dos variables X y Y:

Table 1: Primeras seis filas de tabla que contiene X y Y.

X	У	
6.567783	8.377792	
9.385544	10.875437	
10.025123	8.902984	
9.477216	11.394629	
10.691021	11.163742	
11.768682	7.508639	

$$\mathrm{cov}(X,Y) = \mathbb{E}[(X-\mu_x)(Y-\mu_y)] \tag{3}$$

De adentro de paréntesis: - $\mu_x=$ Promedio de X; $\mu_y=$ Promedio de Y

- $\cdot \ \mu_x = 10.23; \mu_y = 10.22$
- Restamos μ de todos los valores de X y Y
- $\cdot \ X^* = X \mu_x; Y^* = Y \mu_y$

Entonces las variables centradas quedan así:

Table 2: Variables X y Y centradas (con media de 0).

X	У	
-3.6683642	-1.8473745	
-0.8506034	0.6502711	
-0.2110244	-1.3221819	
-0.7589320	1.1694628	
0.4548737	0.9385757	
1.5325346	-2.7165272	

· Multiplicamos cada valor X_i^st por su correspondiente Y_i^st

$$X_1^* \times Y_1^* = -3.668 \times -1.847 =$$
 6.776
 $X_2^* \times Y_2^* = -0.85 \times -0.65 =$ -0.553
 $X_3^* \times Y_3^* = -0.211 \times -1.322 =$ 0.279
:

- Terminamos haciendo: $\frac{1}{n}\sum X_i^*Y_i^*$, es decir el promedio de los productos

Producto de las desviaciones estándar

El denominador de la fórmula para la correlación es:

$$\sigma_x \sigma_y$$

donde σ indica la desviación estándar de la variable en el subíndice. Recordemos:

$$\sigma_x = \sqrt{\sum \frac{(X_i - \mu_x)^2}{n - 1}} \tag{4}$$

Producto de las desviaciones estándar

Dado que ya contamos con $X_i - \mu_x$ y $Y_i - \mu_x$, sólo tenemos que hacer ${X^*}^2$:

$$X_1^{*2} = 6.776^2 =$$
 45.92
 $X_2^{*2} = -0.553^2 =$ 0.305
 $X_3^{*2} = 0.279^2 =$ 0.077
:

Producto de las desviaciones estándar

Una vez, obtenidos $X^{*\,2}$ y $Y^{*\,2}$, las sumamos y dividimos entre n-1=99:

$$\sum X_i^{*2}/99 = 391.1758/99 = 3.951$$
$$\sum Y_i^{*2}/99 = 119.9985/99 = 1.191$$

Y terminamos sacando las raíces cuadradas:

$$\sqrt{9.951} = 1.987$$
 $\sqrt{1.191} = 1.0911.987 \times 1.091$
 $= 2.17$

Cálculo final de r

Una vez obtenidos:

$$\cdot \ \operatorname{cov}(X, Y) = 0.166$$

$$\sigma_x \sigma_y = 2.17$$

Tenemos:

$$\frac{\text{cov}(X,Y)}{\sigma_x \sigma_y} = \frac{0.166}{2.17} = 0.091$$

El resultado no es preciso por varias operaciones que obviaron decimales

Prueba de correlación en R

- · Función para hacer prueba cor.test
- · Uso:

- \cdot x y y son las variables X y X
 - · Deben existir en el espacio de trabajo de R

```
cor.test(x, v)
##
   Pearson's product-moment correlation
##
##
## data: x and y
## t = 0.76948, df = 98, p-value = 0.4435
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1207608 0.2698067
## sample estimates:
##
         cor
## 0.0774955
```

Interpretación

- t = 0.76948, valor del estadístico T-Student
- · df = 98, grados de libertad
- \cdot p-value = 0.4435, probabilidad de que r=0
 - · Probabilidad de que la correlación no exista
- · cor 0.0774955, valor del coeficiente de correlación estimado

Limitaciones - Ejemplo

Relación entre poblaciones de mariposas, toneladas de pesticida y televisiones (Reino Unido)

- · Toneladas de pesitida en aumento
- · Densidad de mariposas disminuye
- · Cantidad de licencias de televisión en aumento

Limitaciones - Gráficos

Densidad de mariposas

Limitaciones - Gráficos

Uso de pesticidas

Figure 3: Porcentaje de área cubierta con pesticida.

Figure 4: Número mensual promedio de licencias de televisión vendidas.

Limitaciones - Correlaciones entre variables

Limitaciones - Coeficientes de correlación

Table 3: Matriz de correlación entre todas las variables.

	mariposas	pesticida	licencias
mariposas	1.0000000	-0.7143064	-0.7764724
pesticida	-0.7143064	1.0000000	0.8986094
licencias	-0.7764724	0.8986094	1.0000000

Limitaciones - Conclusiones

La venta de licencias de televisión mata a las mariposas

Limitaciones - Conclusiones

- · La correlación no mide causa y efecto
- · Correlación puede ocurrir al azar
- · Sólo sirve para medir asociación
- Interpretación de asociación → Conocimiento del fenómeno estudiado
 - Es más probable que, aunque la correlación sea menor, la discminución sea producto del uso de pesticidas