# Introduction to Linear Algebra International Edition (2019)

### **Solutions to Selected Exercises**

#### **Problem Set 1.1, page** 8

- 1 The combinations give (a) a line in  $\mathbb{R}^3$  (b) a plane in  $\mathbb{R}^3$  (c) all of  $\mathbb{R}^3$ .
- **4** 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).
- **6** The components of every  $c\mathbf{v} + d\mathbf{w}$  add to zero. c = 3 and d = 9 give (3, 3, -6).
- **9** The fourth corner can be (4,4) or (4,0) or (-2,2).
- **11** Four more corners (1,1,0),(1,0,1),(0,1,1),(1,1,1). The center point is  $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ . Centers of faces are  $(\frac{1}{2},\frac{1}{2},0),(\frac{1}{2},\frac{1}{2},1)$  and  $(0,\frac{1}{2},\frac{1}{2}),(1,\frac{1}{2},\frac{1}{2})$  and  $(\frac{1}{2},0,\frac{1}{2}),(\frac{1}{2},1,\frac{1}{2})$ .
- **12** A four-dimensional cube has  $2^4 = 16$  corners and  $2 \cdot 4 = 8$  three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example **2.4 A**.
- **13** Sum = zero vector. Sum = -2:00 vector = 8:00 vector. 2:00 is  $30^{\circ}$  from horizontal =  $(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}) = (\sqrt{3}/2, 1/2)$ .
- **16** All combinations with c + d = 1 are on the line that passes through v and w. The point V = -v + 2w is on that line but it is beyond w.
- 17 All vectors cv + cw are on the line passing through (0,0) and  $u = \frac{1}{2}v + \frac{1}{2}w$ . That line continues out beyond v + w and back beyond (0,0). With  $c \ge 0$ , half of this line is removed, leaving a ray that starts at (0,0).
- **20** (a)  $\frac{1}{3}u + \frac{1}{3}v + \frac{1}{3}w$  is the center of the triangle between u, v and w;  $\frac{1}{2}u + \frac{1}{2}w$  lies between u and w (b) To fill the triangle keep  $c \ge 0$ ,  $d \ge 0$ ,  $e \ge 0$ , and c + d + e = 1.
- **22** The vector  $\frac{1}{2}(u+v+w)$  is *outside* the pyramid because  $c+d+e=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>1$ .
- **25** (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose u and v in different directions. A combination like w = u + v is in the same plane.

#### Problem Set 1.2, page 19

- **3** Unit vectors  $v/\|v\| = (\frac{3}{5}, \frac{4}{5}) = (.6, .8)$  and  $w/\|w\| = (\frac{4}{5}, \frac{3}{5}) = (.8, .6)$ . The cosine of  $\theta$  is  $\frac{v}{\|v\|} \cdot \frac{w}{\|w\|} = \frac{24}{25}$ . The vectors w, u, -w make  $0^{\circ}, 90^{\circ}, 180^{\circ}$  angles with w.
- **4** (a)  $\mathbf{v} \cdot (-\mathbf{v}) = -1$  (b)  $(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{w} \mathbf{w} \cdot \mathbf{w} = 1 + ( ) ( ) 1 = 0 \text{ so } \theta = 90^{\circ} \text{ (notice } \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} )$  (c)  $(\mathbf{v} 2\mathbf{w}) \cdot (\mathbf{v} + 2\mathbf{w}) = \mathbf{v} \cdot \mathbf{v} 4\mathbf{w} \cdot \mathbf{w} = 1 4 = -3$ .
- **6** All vectors  $\mathbf{w} = (c, 2c)$  are perpendicular to  $\mathbf{v}$ . All vectors (x, y, z) with x + y + z = 0 lie on a *plane*. All vectors perpendicular to (1, 1, 1) and (1, 2, 3) lie on a *line*.
- **9** If  $v_2w_2/v_1w_1 = -1$  then  $v_2w_2 = -v_1w_1$  or  $v_1w_1 + v_2w_2 = v \cdot w = 0$ : perpendicular!
- 11  $\boldsymbol{v} \cdot \boldsymbol{w} < 0$  means angle  $> 90^{\circ}$ ; these  $\boldsymbol{w}$ 's fill half of 3-dimensional space.
- **12** (1,1) perpendicular to (1,5) c(1,1) if 6 2c = 0 or c = 3;  $\mathbf{v} \cdot (\mathbf{w} c\mathbf{v}) = 0$  if  $c = \mathbf{v} \cdot \mathbf{w}/\mathbf{v} \cdot \mathbf{v}$ . Subtracting  $c\mathbf{v}$  is the key to perpendicular vectors.
- **15**  $\frac{1}{2}(x+y) = (2+8)/2 = 5$ ;  $\cos \theta = 2\sqrt{16}/\sqrt{10}\sqrt{10} = 8/10$ .
- **17**  $\cos \alpha = 1/\sqrt{2}$ ,  $\cos \beta = 0$ ,  $\cos \gamma = -1/\sqrt{2}$ . For any vector  $\boldsymbol{v}$ ,  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = (v_1^2 + v_2^2 + v_3^2)/\|\boldsymbol{v}\|^2 = 1$ .
- **21**  $2v \cdot w \le 2||v|||w||$  leads to  $||v+w||^2 = v \cdot v + 2v \cdot w + w \cdot w \le ||v||^2 + 2||v|||w|| + ||w||^2$ . This is  $(||v|| + ||w||)^2$ . Taking square roots gives  $||v+w|| \le ||v|| + ||w||$ .
- **22**  $v_1^2w_1^2 + 2v_1w_1v_2w_2 + v_2^2w_2^2 \le v_1^2w_1^2 + v_1^2w_2^2 + v_2^2w_1^2 + v_2^2w_2^2$  is true (cancel 4 terms) because the difference is  $v_1^2w_2^2 + v_2^2w_1^2 2v_1w_1v_2w_2$  which is  $(v_1w_2 v_2w_1)^2 \ge 0$ .
- 23  $\cos \beta = w_1/\|\boldsymbol{w}\|$  and  $\sin \beta = w_2/\|\boldsymbol{w}\|$ . Then  $\cos(\beta a) = \cos \beta \cos \alpha + \sin \beta \sin \alpha = v_1w_1/\|\boldsymbol{v}\|\|\boldsymbol{w}\| + v_2w_2/\|\boldsymbol{v}\|\|\boldsymbol{w}\| = \boldsymbol{v} \cdot \boldsymbol{w}/\|\boldsymbol{v}\|\|\boldsymbol{w}\|$ . This is  $\cos \theta$  because  $\beta \alpha = \theta$ .
- **24** Example 6 gives  $|u_1||U_1| \le \frac{1}{2}(u_1^2 + U_1^2)$  and  $|u_2||U_2| \le \frac{1}{2}(u_2^2 + U_2^2)$ . The whole line becomes  $.96 \le (.6)(.8) + (.8)(.6) \le \frac{1}{2}(.6^2 + .8^2) + \frac{1}{2}(.8^2 + .6^2) = 1$ . True: .96 < 1.
- **28** Three vectors in the plane could make angles  $> 90^{\circ}$  with each other: (1,0), (-1,4), (-1,-4). Four vectors could not do this  $(360^{\circ}$  total angle). How many can do this in  $\mathbb{R}^3$  or  $\mathbb{R}^n$ ?
- **29** Try  ${\boldsymbol v}=(1,2,-3)$  and  ${\boldsymbol w}=(-3,1,2)$  with  $\cos\theta=\frac{-7}{14}$  and  $\theta=120^\circ$ . Write  ${\boldsymbol v}\cdot{\boldsymbol w}=xz+yz+xy$  as  $\frac{1}{2}(x+y+z)^2-\frac{1}{2}(x^2+y^2+z^2)$ . If x+y+z=0 this is  $-\frac{1}{2}(x^2+y^2+z^2)=-\frac{1}{2}\|{\boldsymbol v}\|\|{\boldsymbol w}\|$ . Then  ${\boldsymbol v}\cdot{\boldsymbol w}/\|{\boldsymbol v}\|\|{\boldsymbol w}\|=-\frac{1}{2}$ .

#### **Problem Set 1.3, page** 29

**1**  $2s_1 + 3s_2 + 4s_3 = (2, 5, 9)$ . The same vector **b** comes from S times x = (2, 3, 4):

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} (\operatorname{row} 1) \cdot \boldsymbol{x} \\ (\operatorname{row} 2) \cdot \boldsymbol{x} \\ (\operatorname{row} 2) \cdot \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}.$$

**2** The solutions are  $y_1 = 1$ ,  $y_2 = 0$ ,  $y_3 = 0$  (right side = column 1) and  $y_1 = 1$ ,  $y_2 = 3$ ,  $y_3 = 5$ . That second example illustrates that the first n odd numbers add to  $n^2$ .

- 4 The combination  $0w_1 + 0w_2 + 0w_3$  always gives the zero vector, but this problem looks for other *zero* combinations (then the vectors are *dependent*, they lie in a plane):  $w_2 = (w_1 + w_3)/2$  so one combination that gives zero is  $\frac{1}{2}w_1 w_2 + \frac{1}{2}w_3$ .
- 5 The rows of the 3 by 3 matrix in Problem 4 must also be *dependent*:  $r_2 = \frac{1}{2}(r_1 + r_3)$ . The column and row combinations that produce 0 are the same: this is unusual.
- 7 All three rows are perpendicular to the solution x (the three equations  $r_1 \cdot x = 0$  and  $r_2 \cdot x = 0$  and  $r_3 \cdot x = 0$  tell us this). Then the whole plane of the rows is perpendicular to x (the plane is also perpendicular to all multiples cx).
- **9** The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ when } \mathbf{x} = \begin{bmatrix} c \\ c \\ c \\ c \end{bmatrix} = \text{ any constant vector.}$$

- **11** The forward differences of the squares are  $(t+1)^2-t^2=t^2+2t+1-t^2=2t+1$ . Differences of the nth power are  $(t+1)^n-t^n=t^n-t^n+nt^{n-1}+\cdots$ . The leading term is the derivative  $nt^{n-1}$ . The binomial theorem gives all the terms of  $(t+1)^n$ .
- **12** Centered difference matrices of *even* size seem to be invertible. Look at eqns. 1 and 4:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \quad \begin{array}{l} \text{First} \\ \text{solve} \\ x_2 = b_1 \\ -x_3 = b_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -b_2 - b_4 \\ b_1 \\ -b_4 \\ b_1 + b_3 \end{bmatrix}$$

**13** Odd size: The five centered difference equations lead to  $b_1 + b_3 + b_5 = 0$ .

$$\begin{array}{ll} x_2 &= b_1 \\ x_3 - x_1 = b_2 \\ x_4 - x_2 = b_3 \\ x_5 - x_3 = b_4 \\ - x_4 = b_5 \end{array} \qquad \begin{array}{ll} \text{Add equations } 1, 3, 5 \\ \text{The left side of the sum is zero} \\ \text{The right side is } b_1 + b_3 + b_5 \\ \text{There cannot be a solution unless } b_1 + b_3 + b_5 = 0. \end{array}$$

**14** An example is (a,b)=(3,6) and (c,d)=(1,2). The ratios a/c and b/d are equal. Then ad=bc. Then (when you divide by bd) the ratios a/b and c/d are equal!

#### Problem Set 2.1, page 40

- 1 The columns are i=(1,0,0) and j=(0,1,0) and k=(0,0,1) and b=(2,3,4)=2i+3j+4k.
- **2** The planes are the same: 2x = 4 is x = 2, 3y = 9 is y = 3, and 4z = 16 is z = 4. The solution is the same point X = x. The columns are changed; but same combination.
- 4 If z=2 then x+y=0 and x-y=z give the point (1,-1,2). If z=0 then x+y=6 and x-y=4 produce (5,1,0). Halfway between those is (3,0,1).
- **6** Equation 1 + equation 2 equation 3 is now 0 = -4. Line misses plane; no solution.

- **8** Four planes in 4-dimensional space normally meet at a *point*. The solution to Ax = (3,3,3,2) is x = (0,0,1,2) if A has columns (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1). The equations are x + y + z + t = 3, y + z + t = 3, z + t = 3, t = 2.
- **11** Ax equals (14, 22) and (0, 0) and (9, 7).
- **14** 2x+3y+z+5t=8 is Ax=b with the 1 by 4 matrix  $A=\begin{bmatrix}2&3&1&5\end{bmatrix}$ . The solutions x fill a 3D "plane" in 4 dimensions. It could be called a *hyperplane*.
- **16** 90° rotation from  $R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ ,  $180^\circ$  rotation from  $R^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$ .
- **18**  $E = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$  and  $E = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  subtract the first component from the second.
- **22** The dot product  $Ax = \begin{bmatrix} 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = (1 \text{ by } 3)(3 \text{ by } 1)$  is zero for points (x, y, z) on a plane in three dimensions. The columns of A are one-dimensional vectors.
- **23**  $A = \begin{bmatrix} 1 & 2 & ; & 3 & 4 \end{bmatrix}$  and  $\mathbf{x} = \begin{bmatrix} 5 & -2 \end{bmatrix}'$  and  $\mathbf{b} = \begin{bmatrix} 1 & 7 \end{bmatrix}'$ .  $\mathbf{r} = \mathbf{b} A * \mathbf{x}$  prints as zero.
- **25** ones $(4,4) * ones(4,1) = [4 \ 4 \ 4 \ 4]'; B * <math>\boldsymbol{w} = [10 \ 10 \ 10 \ 10]'.$
- **28** The row picture shows four *lines* in the 2D plane. The column picture is in *four*-dimensional space. No solution unless the right side is a combination of *the two columns*.
- **29**  $u_7, v_7, w_7$  are all close to (.6, .4). Their components still add to 1.
- **30**  $\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} .6 \\ .4 \end{bmatrix} = \begin{bmatrix} .6 \\ .4 \end{bmatrix} = steady state s.$  No change when multiplied by  $\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}$ .
- **31**  $M = \begin{bmatrix} 8 & 3 & 4 \\ 1 & 5 & 9 \\ 6 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 5+u & 5-u+v & 5-v \\ 5-u-v & 5 & 5+u+v \\ 5+v & 5+u-v & 5-u \end{bmatrix}; M_3(1,1,1) = (15,15,15);$   $M_4(1,1,1,1) = (34,34,34,34)$  because  $1+2+\cdots+16=136$  which is 4(34).
- **32** A is singular when its third column w is a combination cu + dv of the first columns. A typical column picture has b outside the plane of u, v, w. A typical row picture has the intersection line of two planes parallel to the third plane. *Then no solution*.
- **33** w = (5,7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av.
- $\mathbf{34} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \text{ has the solution } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 8 \\ 6 \end{bmatrix}.$
- **35**  $\boldsymbol{x}=(1,\ldots,1)$  gives  $S\boldsymbol{x}=$  sum of each row  $=1+\cdots+9=45$  for Sudoku matrices. 6 row orders (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) are in Section 2.7. The same 6 permutations of *blocks* of rows produce Sudoku matrices, so  $6^4=1296$  orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

#### Problem Set 2.2, page 51

- **3** Subtract  $-\frac{1}{2}$  (or add  $\frac{1}{2}$ ) times equation 1. The new second equation is 3y = 3. Then y = 1 and x = 5. If the right side changes sign, so does the solution: (x, y) = (-5, -1).
- **4** Subtract  $\ell = \frac{c}{a}$  times equation 1. The new second pivot multiplying y is d (cb/a) or (ad bc)/a. Then y = (ag cf)/(ad bc).
- **6** Singular system if b = 4, because 4x + 8y is 2 times 2x + 4y. Then g = 32 makes the lines become the *same*: infinitely many solutions like (8,0) and (0,4).
- **8** If k=3 elimination must fail: no solution. If k=-3, elimination gives 0=0 in equation 2: infinitely many solutions. If k=0 a row exchange is needed: one solution.
- **14** Subtract 2 times row 1 from row 2 to reach (d-10)y-z=2. Equation (3) is y-z=3. If d=10 exchange rows 2 and 3. If d=11 the system becomes singular.
- **15** The second pivot position will contain -2 b. If b = -2 we exchange with row 3. If b = -1 (singular case) the second equation is -y z = 0. A solution is (1, 1, -1).
- 17 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row 3 and there is no *third* pivot. If column 2 = column 1, then column 2 has no pivot.
- **19** Row 2 becomes 3y 4z = 5, then row 3 becomes (q + 4)z = t 5. If q = -4 the system is singular no third pivot. Then if t = 5 the third equation is 0 = 0. Choosing z = 1 the equation 3y 4z = 5 gives y = 3 and equation 1 gives x = -9.
- **20** Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes form a triangle. This happens if rows 1+2=row 3 on the left side but not the right side: x+y+z=0, x-2y-z=1, 2x-y=4. No parallel planes but still no solution.
- **25** a=2 (equal columns), a=4 (equal rows), a=0 (zero column).
- **28** A(2,:) = A(2,:) 3 \* A(1,:) will subtract 3 times row 1 from row 2.
- **29** Pivots 2 and 3 can be arbitrarily large. I believe their averages are infinite! *With row exchanges* in MATLAB's lu code, the averages are much more stable (and should be predictable, also for randn with normal instead of uniform probability distribution).
- **30** If A(5,5) is 7 not 11, then the last pivot will be 0 not 4.
- **31** Row j of U is a combination of rows  $1, \ldots, j$  of A. If Ax = 0 then Ux = 0 (not true if b replaces 0). U is the diagonal of A when A is lower triangular.

#### Problem Set 2.3, page 63

$$\mathbf{1} \ E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 7 & 1 \end{bmatrix}, \ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$\mathbf{3} \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \ M = E_{32}E_{31}E_{21} \ = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 10 & -2 & 1 \end{bmatrix}.$$

5 Changing  $a_{33}$  from 7 to 11 will change the third pivot from 5 to 9. Changing  $a_{33}$  from 7 to 2 will change the pivot from 5 to *no pivot*.

**9** 
$$M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
. After the exchange, we need  $E_{31}$  (not  $E_{21}$ ) to act on the new row 3.

$$\textbf{10} \ \ E_{13} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}; E_{31}E_{13} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}. \ \text{Test on the identity matrix!}$$

**12** The first product is 
$$\begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$
 rows and also columns The second product is 
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 0 & 2 & -3 \end{bmatrix}$$
.

**14** 
$$E_{21}$$
 has  $-\ell_{21} = \frac{1}{2}$ ,  $E_{32}$  has  $-\ell_{32} = \frac{2}{3}$ ,  $E_{43}$  has  $-\ell_{43} = \frac{3}{4}$ . Otherwise the E's match I

**14** 
$$E_{21}$$
 has  $-\ell_{21} = \frac{1}{2}$ ,  $E_{32}$  has  $-\ell_{32} = \frac{2}{3}$ ,  $E_{43}$  has  $-\ell_{43} = \frac{3}{4}$ . Otherwise the  $E$ 's match  $I$ .

**18**  $EF = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$ ,  $FE = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b+ac & c & 1 \end{bmatrix}$ ,  $E^2 = \begin{bmatrix} 1 & 0 & 0 \\ 2a & 1 & 0 \\ 2b & 0 & 1 \end{bmatrix}$ ,  $F^3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3c & 1 \end{bmatrix}$ .

**22** (a) 
$$\sum a_{3j}x_j$$
 (b)  $a_{21}-a_{11}$  (c)  $a_{21}-2a_{11}$  (d)  $(E_{21}Ax)_1=(Ax)_1=\sum a_{1j}x_j$ .

**25** The last equation becomes 
$$0 = 3$$
. If the original 6 is 3, then row  $1 + \text{row } 2 = \text{row } 3$ .

**27** (a) No solution if 
$$d=0$$
 and  $c\neq 0$  (b) Many solutions if  $d=0=c$ . No effect from  $a,b$ .

**28** 
$$A = AI = A(BC) = (AB)C = IC = C$$
. That middle equation is crucial.

**30** 
$$EM = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$
 then  $FEM = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$  then  $EFEM = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$  then  $EEFEM = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = B$ . So after inverting with  $E^{-1} = A$  and  $F^{-1} = B$  this is  $M = ABAAB$ .

#### Problem Set 2.4, page 75

**2** (a) A (column 3 of B) (b) (Row 1 of *A*) *B* (c) (Row 3 of *A*)(column 4 of *B*) (d) (Row 1 of C)D(column 1 of E).

$$\mathbf{5} \ \ (\mathbf{a}) \ \ A^2 = \begin{bmatrix} 1 & 2b \\ 0 & 1 \end{bmatrix} \ \text{and} \ A^n = \begin{bmatrix} 1 & nb \\ 0 & 1 \end{bmatrix}. \quad (\mathbf{b}) \quad A^2 = \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix} \ \text{and} \ A^n = \begin{bmatrix} 2^n & 2^n \\ 0 & 0 \end{bmatrix}.$$

- **9**  $AF = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix}$  and E(AF) = (EA)F: Matrix multiplication is associative.

**11** (a) 
$$B=4I$$
 (b)  $B=0$  (c)  $B=\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$  (d) Every row of  $B$  is  $1,0,0$ .

- **15** (a) mn (use every entry of A) (b)  $mnp = p \times part$  (a) (c)  $n^3$  ( $n^2$  dot products).
- **16** (a) Use only column 2 of B (b) Use only row 2 of A (c)–(d) Use row 2 of first A.
- 18 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix fits all four.

**19** (a) 
$$a_{11}$$
 (b)  $\ell_{31} = a_{31}/a_{11}$  (c)  $a_{32} - (\frac{a_{31}}{a_{11}})a_{12}$  (d)  $a_{22} - (\frac{a_{21}}{a_{11}})a_{12}$ .

$$22 \ A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ has } A^2 = -I; BC = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};$$
 
$$DE = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = -ED. \text{ You can find more examples.}$$

**24** 
$$(A_1)^n = \begin{bmatrix} 2^n & 2^n - 1 \\ 0 & 1 \end{bmatrix}$$
,  $(A_2)^n = 2^{n-1} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $(A_3)^n = \begin{bmatrix} a^n & a^{n-1}b \\ 0 & 0 \end{bmatrix}$ .

**27** (a) (row 3 of A) • (column 1 of B) and (row 3 of A) • (column 2 of B) are both zero.

(b) 
$$\begin{bmatrix} x \\ x \\ 0 \end{bmatrix} \begin{bmatrix} 0 & x & x \end{bmatrix} = \begin{bmatrix} 0 & x & x \\ 0 & x & x \\ 0 & 0 & 0 \end{bmatrix}$$
 and 
$$\begin{bmatrix} x \\ x \\ x \end{bmatrix} \begin{bmatrix} 0 & 0 & x \end{bmatrix} = \begin{bmatrix} 0 & 0 & x \\ 0 & 0 & x \\ 0 & 0 & x \end{bmatrix}$$
: **both upper**.

**30** In **29**, 
$$c = \begin{bmatrix} -2 \\ 8 \end{bmatrix}$$
,  $D = \begin{bmatrix} 0 & 1 \\ 5 & 3 \end{bmatrix}$ ,  $D - cb/a = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$  in the lower corner of  $EA$ .

**32** A times  $X = [x_1 \ x_2 \ x_3]$  will be the identity matrix  $I = [Ax_1 \ Ax_2 \ Ax_3]$ .

**33** 
$$\boldsymbol{b} = \begin{bmatrix} 3 \\ 5 \\ 8 \end{bmatrix}$$
 gives  $\boldsymbol{x} = 3\boldsymbol{x}_1 + 5\boldsymbol{x}_2 + 8\boldsymbol{x}_3 = \begin{bmatrix} 3 \\ 8 \\ 16 \end{bmatrix}$ ;  $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$  will have those  $\boldsymbol{x}_1 = (1,1,1), \boldsymbol{x}_2 = (0,1,1), \boldsymbol{x}_3 = (0,0,1)$  as columns of its "inverse"  $A^{-1}$ .

$$\textbf{35} \ A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \ A^2 = \begin{bmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \end{bmatrix}, \ \ \begin{matrix} \textbf{aba, ada} \quad \textbf{cba, cda} \quad \text{These show} \\ \textbf{bab, bcb} \quad \textbf{dab, dcb} \quad 16 \text{ 2-step} \\ \textbf{abc, adc} \quad \textbf{cbc, cdc} \quad \text{paths in} \\ \textbf{bad, bcd} \quad \textbf{dad, dcd} \quad \textbf{the graph} \end{matrix}$$

#### Problem Set 2.5, page 89

**1** 
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{4} \\ \frac{1}{3} & 0 \end{bmatrix}$$
 and  $B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -1 & \frac{1}{2} \end{bmatrix}$  and  $C^{-1} = \begin{bmatrix} 7 & -4 \\ -5 & 3 \end{bmatrix}$ .

- 7 (a) In Ax = (1,0,0), equation 1 +equation 2 -equation 3 is 0 = 1 (b) Right sides must satisfy  $b_1 + b_2 = b_3$  (c) Row 3 becomes a row of zeros—no third pivot.
- **8** (a) The vector x = (1, 1, -1) solves Ax = 0 (b) After elimination, columns 1 and 2 end in zeros. Then so does column 3 = column 1 + 2: no third pivot.
- **12** Multiply C = AB on the left by  $A^{-1}$  and on the right by  $C^{-1}$ . Then  $A^{-1} = BC^{-1}$ .

**14** 
$$B^{-1} = A^{-1} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = A^{-1} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
: subtract column 2 of  $A^{-1}$  from column 1.

**16** 
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} ad-bc & 0 \\ 0 & ad-bc \end{bmatrix}$$
. The inverse of each matrix is the other divided by  $ad-bc$ 

- **18**  $A^2B = I$  can also be written as A(AB) = I. Therefore  $A^{-1}$  is AB.
- **21** Six of the sixteen 0-1 matrices are invertible, including all four with three 1's.

**27** 
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$
 (notice the pattern);  $A^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ .

**31** Elimination produces the pivots 
$$a$$
 and  $a-b$  and  $a-b$ .  $A^{-1} = \frac{1}{a(a-b)} \begin{bmatrix} a & 0-b \\ -a & a & 0 \\ 0 & -a & a \end{bmatrix}$ .

**33** 
$$x = (1, 1, ..., 1)$$
 has  $Px = Qx$  so  $(P - Q)x = 0$ .

$$\mathbf{34} \, \begin{bmatrix} I & 0 \\ -C & I \end{bmatrix} \text{ and } \begin{bmatrix} A^{-1} & 0 \\ -D^{-1}CA^{-1} & D^{-1} \end{bmatrix} \text{ and } \begin{bmatrix} -D & I \\ I & 0 \end{bmatrix}.$$

- **35** A can be invertible with diagonal zeros. B is singular because each row adds to zero.
- **38** The three Pascal matrices have  $P = LU = LL^{T}$  and then  $inv(P) = inv(L^{T})inv(L)$ .

**42** 
$$MM^{-1} = (I_n - UV) \ (I_n + U(I_m - VU)^{-1}V)$$
 (this is testing formula 3) 
$$= I_n - UV + U(I_m - VU)^{-1}V - UVU(I_m - VU)^{-1}V \text{ (keep simplifying)} \\ = I_n - UV + U(I_m - VU)(I_m - VU)^{-1}V = I_n \text{ (formulas 1, 2, 4 are similar)}$$

- **43** 4 by 4 still with  $T_{11} = 1$  has pivots 1, 1, 1, 1; reversing to  $T^* = UL$  makes  $T_{44}^* = 1$ .
- **44** Add the equations Cx = b to find  $0 = b_1 + b_2 + b_3 + b_4$ . Same for Fx = b.

#### Problem Set 2.6, page 102

**3**  $\ell_{31} = 1$  and  $\ell_{32} = 2$  (and  $\ell_{33} = 1$ ): reverse steps to get  $A \boldsymbol{u} = \boldsymbol{b}$  from  $U \boldsymbol{x} = \boldsymbol{c}$ : 1 times (x+y+z=5)+2 times (y+2z=2)+1 times (z=2) gives x+3y+6z=11.

**4** 
$$Lc = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 11 \end{bmatrix}; \quad Ux = \begin{bmatrix} 1 & 1 & 1 \\ & 1 & 2 \\ & & 1 \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}; \quad x = \begin{bmatrix} 5 \\ -2 \\ 2 \end{bmatrix}.$$

**6** 
$$\begin{bmatrix} 1 \\ 0 & 1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 & 1 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -6 \end{bmatrix} = U$$
. Then  $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} U$  is the same as  $E_{21}^{-1}E_{32}^{-1}U = LU$ . The multipliers  $\ell_{21}, \ell_{32} = 2$  fall into place in  $L$ .

**10** c=2 leads to zero in the second pivot position: exchange rows and not singular. c=1 leads to zero in the third pivot position. In this case the matrix is singular.

$$\mathbf{12} \ A = \begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDU; \ \boldsymbol{U} \ \text{is} \ \boldsymbol{L}^{\mathrm{T}}$$
 
$$\begin{bmatrix} 1 & 4 & 0 \\ 4 & 1 & \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 0 \\ 0 & -4 & 4 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 1 & \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}}.$$

**15** 
$$\begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} c = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$$
 gives  $c = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ . Then  $\begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$  gives  $x = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ .  $Ax = b$  is  $LUx = \begin{bmatrix} 2 & 4 \\ 8 & 17 \end{bmatrix} x = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$ . Forward to  $\begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} x = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = c$ .

- **18** (a) Multiply  $LDU = L_1D_1U_1$  by inverses to get  $L_1^{-1}LD = D_1U_1U^{-1}$ . The left side is lower triangular, the right side is upper triangular  $\Rightarrow$  both sides are diagonal. (b)  $L, U, L_1, U_1$  have diagonal 1's so  $D = D_1$ . Then  $L_1^{-1}L$  and  $U_1U^{-1}$  are both I.
- **20** A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot (one operation to find  $\ell$  and then one for the new pivot!). T= bidiagonal L times bidiagonal U.
- **23** The 2 by 2 upper submatrix  $A_2$  has the first two pivots 5, 9. Reason: Elimination on A starts in the upper left corner with elimination on  $A_2$ .
- **24** The upper left blocks all factor at the same time as A:  $A_k$  is  $L_kU_k$ .
- **25** The i, j entry of  $L^{-1}$  is j/i for  $i \ge j$ . And  $L_{i,i-1}$  is (1-i)/i below the diagonal
- **26**  $(K^{-1})_{ij} = j(n-i+1)/(n+1)$  for  $i \ge j$  (and symmetric):  $(n+1)K^{-1}$  looks good.

#### Problem Set 2.7, page 115

- **2**  $(AB)^{\rm T}$  is not  $A^{\rm T}B^{\rm T}$  except when AB=BA. Transpose that to find:  $B^{\rm T}A^{\rm T}=A^{\rm T}B^{\rm T}$ .
- **4**  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  has  $A^2 = 0$ . The diagonal of  $A^TA$  has dot products of columns of A with themselves. If  $A^TA = 0$ , zero dot products  $\Rightarrow$  zero columns  $\Rightarrow A =$  zero matrix.
- $\mathbf{6} \ \ M^{\mathrm{T}} = \begin{bmatrix} A^{\mathrm{T}} & C^{\mathrm{T}} \\ B^{\mathrm{T}} & D^{\mathrm{T}} \end{bmatrix}; M^{\mathrm{T}} = M \text{ needs } A^{\mathrm{T}} = A \text{ and } B^{\mathrm{T}} = C \text{ and } D^{\mathrm{T}} = D.$
- **8** The 1 in row 1 has n choices; then the 1 in row 2 has n-1 choices ... (n! overall).
- **10** (3,1,2,4) and (2,3,1,4) keep 4 in place; 6 more even P's keep 1 or 2 or 3 in place; (2,1,4,3) and (3,4,1,2) exchange 2 pairs. (1,2,3,4), (4,3,2,1) make 12 even P's.
- **14** The i, j entry of PAP is the n-i+1, n-j+1 entry of A. Diagonal will reverse order.
- **18** (a) 5+4+3+2+1=15 independent entries if  $A=A^{\rm T}$  (b) L has 10 and D has 5; total 15 in  $LDL^{\rm T}$  (c) Zero diagonal if  $A^{\rm T}=-A$ , leaving 4+3+2+1=10 choices.

$$\mathbf{20} \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -7 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}; \quad \begin{bmatrix} 1 & b \\ b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & c - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -\frac{1}{2} & 1 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ \frac{4}{3} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 1 & -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}.$$

$$\mathbf{22} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} A = \begin{bmatrix} 1 \\ 0 & 1 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ & 1 & 1 \\ & & -1 \end{bmatrix}; \begin{bmatrix} 1 \\ & 1 \end{bmatrix} A = \begin{bmatrix} 1 \\ 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ & -1 & 1 \\ & & 1 \end{bmatrix}$$

**24** 
$$PA = LU$$
 is  $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 8 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 & 1 \\ 0 & 1/3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 3 & 8 \\ -2/3 \end{bmatrix}$ . If we wait to exchange and  $a_{12}$  is the pivot,  $A = L_1 P_1 U_1 = \begin{bmatrix} 1 \\ 3 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ .

**26** One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then P is even or odd when that count is even or odd. Hard step: Show that an exchange always switches that count! Then 3 or 5 exchanges will leave that count odd.

- **32**  $Ax \cdot y$  is the *cost* of inputs while  $x \cdot A^Ty$  is the *value* of outputs.
- **33**  $P^3 = I$  so three rotations for  $360^\circ$ ; P rotates around (1, 1, 1) by  $120^\circ$ .
- **36** These are groups: Lower triangular with diagonal 1's, diagonal invertible D, permutations P, orthogonal matrices with  $Q^{\rm T}=Q^{-1}$ .
- 37 Certainly  $B^{\mathrm{T}}$  is northwest.  $B^2$  is a full matrix!  $B^{-1}$  is southeast:  $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$ . The rows of B are in reverse order from a lower triangular L, so B = PL. Then  $B^{-1} = L^{-1}P^{-1}$  has the *columns* in reverse order from  $L^{-1}$ . So  $B^{-1}$  is *southeast*. Northwest B = PL times southeast PU is (PLP)U = upper triangular.
- **38** There are n! permutation matrices of order n. Eventually two powers of P must be the same: If  $P^r = P^s$  then  $P^{r-s} = I$ . Certainly  $r-s \le n!$

$$P = \begin{bmatrix} P_2 & & \\ & P_3 \end{bmatrix} \text{ is 5 by 5 with } P_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } P_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } P^6 = I.$$

#### Problem Set 3.1, page 127

- 1  $x + y \neq y + x$  and  $x + (y + z) \neq (x + y) + z$  and  $(c_1 + c_2)x \neq c_1x + c_2x$ .
- **3** (a)  $c\mathbf{x}$  may not be in our set: not closed under multiplication. Also no  $\mathbf{0}$  and no  $-\mathbf{x}$  (b)  $c(\mathbf{x}+\mathbf{y})$  is the usual  $(xy)^c$ , while  $c\mathbf{x}+c\mathbf{y}$  is the usual  $(x^c)(y^c)$ . Those are equal. With c=3, x=2, y=1 this is  $3(\mathbf{2}+\mathbf{1})=8$ . The zero vector is the number 1.
- **5** (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the subspace must contain A B = I (c) Matrices whose main diagonal is all zero.
- 9 (a) The vectors with integer components allow addition, but not multiplication by ½
  (b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any c is allowed but not all vector additions.
- **11** (a) All matrices  $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$  (b) All matrices  $\begin{bmatrix} a & a \\ 0 & 0 \end{bmatrix}$  (c) All diagonal matrices.
- **15** (a) Two planes through (0,0,0) probably intersect in a line through (0,0,0)
  - (b) The plane and line probably intersect in the point (0,0,0)
  - (c) If x and y are in both S and T, x + y and cx are in both subspaces.
- **20** (a) Solution only if  $b_2 = 2b_1$  and  $b_3 = -b_1$  (b) Solution only if  $b_3 = -b_1$ .

- 23 The extra column b enlarges the column space unless b is already in the column space.  $\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$  (larger column space)  $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$  (b is in column space) (Ax = b) has a solution)
- **25** The solution to  $Az = b + b^*$  is z = x + y. If b and  $b^*$  are in C(A) so is  $b + b^*$ .
- **30** (a) If u and v are both in S+T, then  $u=s_1+t_1$  and  $v=s_2+t_2$ . So  $u+v=t_1$  $(s_1 + s_2) + (t_1 + t_2)$  is also in S + T. And so is  $cu = cs_1 + ct_1$ : a subspace.
  - (b) If S and T are different lines, then  $S \cup T$  is just the two lines (not a subspace) but S + T is the whole plane that they span.
- **31** If S = C(A) and T = C(B) then S + T is the column space of  $M = [A \ B]$ .
- **32** The columns of AB are combinations of the columns of A. So all columns of  $\begin{bmatrix} A & AB \end{bmatrix}$ are already in C(A). But  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  has a larger column space than  $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ . For square matrices, the column space is  $\mathbb{R}^n$  when A is invertible.

#### Problem Set 3.2, page 140

- **2** (a) Free variables  $x_2, x_4, x_5$  and solutions (-2, 1, 0, 0, 0), (0, 0, -2, 1, 0), (0, 0, -3, 0, 1)
  - (b) Free variable  $x_3$ : solution (1, -1, 1). Special solution for each free variable.
- **4**  $R = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \ R \text{ has the same nullspace as } U \text{ and } A.$
- **6** (a) Special solutions (3,1,0) and (5,0,1) (b) (3,1,0). Total of pivot and free is n. **8**  $R = \begin{bmatrix} 1 & -3 & -5 \\ 0 & 0 & 0 \end{bmatrix}$  with  $I = \begin{bmatrix} 1 \end{bmatrix}$ ;  $R = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  with  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ .
- **10** (a) Impossible row 1 (b) A = invertible (c) A = all ones (d) A = 2I, R = I.
- **14** If column 1 = column 5 then  $x_5$  is a free variable. Its special solution is (-1, 0, 0, 0, 1).
- 16 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is  $\mathbb{R}^5$ , because we can solve Ax = b and every b is in the column space.
- 20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With 4 pivots in the other columns, the special solution is s = (1, 0, 1, 0, 1). The nullspace contains all multiples of this vector s (a line in  $\mathbb{R}^5$ ).
- 24 This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.
- **26**  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  has N(A) = C(A) and also (a)(b)(c) are all false. Notice  $\text{rref}(A^T) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ .
- **32** Any zero rows come after these rows:  $R = \begin{bmatrix} 1 & -2 & -3 \end{bmatrix}$ ,  $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ , R = I.
- **33** (a)  $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$  (b) All 8 matrices are R's!
- **35** The nullspace of  $B = [A \ A]$  contains all vectors  $\boldsymbol{x} = \begin{bmatrix} \boldsymbol{y} \\ -\boldsymbol{y} \end{bmatrix}$  for  $\boldsymbol{y}$  in  $\mathbf{R}^4$ .
- **36** If Cx = 0 then Ax = 0 and Bx = 0. So  $N(C) = N(A) \cap N(B) = intersection$ .
- **37** Currents:  $y_1 y_3 + y_4 = -y_1 + y_2 + y_5 = -y_2 + y_4 + y_6 = -y_4 y_5 y_6 = 0$ . These equations add to 0 = 0. Free variables  $y_3, y_5, y_6$ : watch for flows around loops.

#### Problem Set 3.3, page 151

- 1 (a) and (c) are correct; (d) is false because R might have 1's in nonpivot columns.
- $\mathbf{3} \ \ R_A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad R_B = \begin{bmatrix} R_A & R_A \end{bmatrix} \quad R_C \longrightarrow \begin{bmatrix} R_A & 0 \\ 0 & R_A \end{bmatrix} \longrightarrow \begin{array}{c} \text{Zero rows go} \\ \text{to the bottom} \end{array}$
- **5** I think  $R_1 = A_1, R_2 = A_2$  is true. But  $R_1 R_2$  may have -1's in some pivots.
- **7** Special solutions in  $N = \begin{bmatrix} -2 & -4 & 1 & 0; & -3 & -5 & 0 & 1 \end{bmatrix}$  and  $\begin{bmatrix} 1 & 0 & 0; & 0 & -2 & 1 \end{bmatrix}$ .
- **13** P has rank r (the same as A) because elimination produces the same pivot columns.
- **14** The rank of  $R^T$  is also r. The example matrix A has rank 2 with invertible S:

$$P = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 2 & 7 \end{bmatrix} \qquad P^{T} = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 6 & 7 \end{bmatrix} \qquad S^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}.$$

- **16**  $(uv^{\mathrm{T}})(wz^{\mathrm{T}}) = u(v^{\mathrm{T}}w)z^{\mathrm{T}}$  has rank one unless the inner product is  $v^{\mathrm{T}}w = 0$ .
- **18** If we know that  $\operatorname{rank}(B^{\mathrm{T}}A^{\mathrm{T}}) \leq \operatorname{rank}(A^{\mathrm{T}})$ , then since rank stays the same for transposes, (apologies that this fact is not yet proved), we have  $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$ .
- **20** Certainly A and B have at most rank 2. Then their product AB has at most rank 2. Since BA is 3 by 3, it cannot be I even if AB = I.
- **21** (a) A and B will both have the same nullspace and row space as the R they share.
  - (b) A equals an *invertible* matrix times B, when they share the same R. A key fact!
- **22**  $A = (\text{pivot columns})(\text{nonzero rows of } R) = \begin{bmatrix} 1 & 0 \\ 1 & 4 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} +$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 8 \end{bmatrix}. \quad B = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{array}{c} \text{columns} \\ \text{times rows} \end{array} = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 0 & 3 \end{bmatrix}$$

- **26** The m by n matrix Z has r ones to start its main diagonal. Otherwise Z is all zeros.
- $\mathbf{27} \ R = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} r \text{ by } r & r \text{ by } n r \\ m r \text{ by } r & m r \text{ by } n r \end{bmatrix}; \mathbf{rref}(R^{\mathrm{T}}) = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}; \mathbf{rref}(R^{\mathrm{T}}R) = \mathrm{same} \ R$
- **28** The *row-column reduced echelon form* is always  $\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$ ; I is r by r.

#### Problem Set 3.4, page 163

 $\mathbf{2} \begin{bmatrix} 2 & 1 & 3 & \mathbf{b}_1 \\ 6 & 3 & 9 & \mathbf{b}_2 \\ 4 & 2 & 6 & \mathbf{b}_3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 3 & \mathbf{b}_1 \\ 0 & 0 & 0 & \mathbf{b}_2 - 3\mathbf{b}_1 \\ 0 & 0 & 0 & \mathbf{b}_3 - 2\mathbf{b}_1 \end{bmatrix} \quad \text{Then } \begin{bmatrix} R & d \end{bmatrix} = \begin{bmatrix} 1 & 1/2 & 3/2 & \mathbf{5} \\ 0 & 0 & 0 & \mathbf{0} \\ 0 & 0 & 0 & \mathbf{0} \end{bmatrix}$ 

Ax = b has a solution when  $b_2 - 3b_1 = 0$  and  $b_3 - 2b_1 = 0$ ; C(A) = line through (2,6,4) which is the intersection of the planes  $b_2 - 3b_1 = 0$  and  $b_3 - 2b_1 = 0$ ; the nullspace contains all combinations of  $s_1 = (-1/2,1,0)$  and  $s_2 = (-3/2,0,1)$ ; particular solution  $x_p = d = (5,0,0)$  and complete solution  $x_p + c_1s_1 + c_2s_2$ .

**4** 
$$x_{\text{complete}} = x_p + x_n = (\frac{1}{2}, 0, \frac{1}{2}, 0) + x_2(-3, 1, 0, 0) + x_4(0, 0, -2, 1).$$

- **6** (a) Solvable if  $b_2 = 2b_1$  and  $3b_1 3b_3 + b_4 = 0$ . Then  $\boldsymbol{x} = \begin{bmatrix} 5b_1 2b_3 \\ b_3 2b_1 \end{bmatrix} = \boldsymbol{x}_p$ 
  - (b) Solvable if  $b_2 = 2b_1$  and  $3b_1 3b_3 + b_4 = 0$ .  $\boldsymbol{x} = \begin{bmatrix} 5b_1 2b_3 \\ b_3 2b_1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ .
- **8** (a) Every b is in C(A): independent rows, only the zero combination gives 0.
  - (b) Need  $b_3 = 2b_2$ , because (row 3) 2(row 2) = 0.
- **12** (a)  $x_1 x_2$  and **0** solve Ax = 0 (b)  $A(2x_1 2x_2) = 0$ ,  $A(2x_1 x_2) = b$
- **13** (a) The particular solution  $x_p$  is always multiplied by 1 (b) Any solution can be  $x_p$ 
  - (c)  $\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$ . Then  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  is shorter (length  $\sqrt{2}$ ) than  $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$  (length 2) (d) The only "homogeneous" solution in the nullspace is  $\boldsymbol{x}_n = \boldsymbol{0}$  when A is invertible.
- 14 If column 5 has no pivot,  $x_5$  is a *free* variable. The zero vector is not the only solution to Ax = 0. If this system Ax = b has a solution, it has *infinitely many* solutions.
- **16** The largest rank is 3. Then there is a pivot in every row. The solution always exists. The column space is  $\mathbb{R}^3$ . An example is  $A = \begin{bmatrix} I & F \end{bmatrix}$  for any 3 by 2 matrix F.
- **18** Rank = 2; rank = 3 unless q = 2 (then rank = 2). Transpose has the same rank!
- **25** (a) r < m, always  $r \le n$  (b) r = m, r < n (c) r < m, r = n (d) r = m = n.
- **28**  $\begin{bmatrix} 1 & 2 & 3 & \mathbf{0} \\ 0 & 0 & 4 & \mathbf{0} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & \mathbf{0} \\ 0 & 0 & 1 & \mathbf{0} \end{bmatrix}; \ \boldsymbol{x}_n = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}; \ \begin{bmatrix} 1 & 2 & 3 & \mathbf{5} \\ 0 & 0 & 4 & \mathbf{8} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -\mathbf{1} \\ 0 & 0 & 1 & \mathbf{2} \end{bmatrix}.$

Free  $x_2 = 0$  gives  $x_p = (-1, 0, 2)$  because the pivot columns contain I.

- $\mathbf{30} \begin{bmatrix} 1 & 0 & 2 & 3 & \mathbf{2} \\ 1 & 3 & 2 & 0 & \mathbf{5} \\ 2 & 0 & 4 & 9 & \mathbf{10} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 3 & \mathbf{2} \\ 0 & 3 & 0 3 & \mathbf{3} \\ 0 & 0 & 0 & 3 & \mathbf{6} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & -\mathbf{4} \\ 0 & 1 & 0 & 0 & \mathbf{3} \\ 0 & 0 & 0 & 1 & \mathbf{2} \end{bmatrix}; \begin{bmatrix} -4 \\ 3 \\ 0 \\ 2 \end{bmatrix}; \boldsymbol{x}_n = \boldsymbol{x}_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$
- **36** If Ax = b and Cx = b have the same solutions, A and C have the same shape and the same nullspace (take b = 0). If  $b = \text{column } 1 \text{ of } A, x = (1, 0, \dots, 0)$  solves Ax = b so it solves Cx = b. Then A and C share column 1. Other columns too: A = C!

#### Problem Set 3.5, page 178

- **2**  $v_1, v_2, v_3$  are independent (the -1's are in different positions). All six vectors are on the plane  $(1, 1, 1, 1) \cdot v = 0$  so no four of these six vectors can be independent.
- **3** If a=0 then column 1=0; if d=0 then  $b(\operatorname{column} 1)-a(\operatorname{column} 2)=0$ ; if f=0then all columns end in zero (they are all in the xy plane, they must be dependent).
- **6** Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3). Same column numbers (not same columns!) for A.
- 8 If  $c_1(\mathbf{w}_2 + \mathbf{w}_3) + c_2(\mathbf{w}_1 + \mathbf{w}_3) + c_3(\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{0}$  then  $(c_2 + c_3)\mathbf{w}_1 + (c_1 + c_3)\mathbf{w}_2 + c_3(\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{0}$  $(c_1 + c_2)w_3 = 0$ . Since the w's are independent,  $c_2 + c_3 = c_1 + c_3 = c_1 + c_2 = 0$ . The only solution is  $c_1 = c_2 = c_3 = 0$ . Only this combination of  $v_1, v_2, v_3$  gives 0.
- **11** (a) Line in  $\mathbb{R}^3$
- (b) Plane in  $\mathbb{R}^3$
- (c) All of  $\mathbf{R}^3$
- (d) All of  $\mathbf{R}^3$ .

- **12 b** is in the column space when Ax = b has a solution; **c** is in the row space when  $A^{T}y = c$  has a solution. False. The zero vector is always in the row space.
- **15** The n independent vectors span a space of dimension n. They are a *basis* for that space. If they are the columns of A then m is *not less* than n (m > n).
- **18** (a) The 6 vectors might not span  $\mathbb{R}^4$  (b) The 6 vectors are not independent (c) Any four might be a basis.
- **20** One basis is (2,1,0), (-3,0,1). A basis for the intersection with the xy plane is (2,1,0). The normal vector (1,-2,3) is a basis for the line perpendicular to the plane.
- **22** (a) True (b) False because the basis vectors for  $\mathbb{R}^6$  might not be in  $\mathbb{S}$ .
- **25** Rank 2 if c = 0 and d = 2; rank 2 except when c = d or c = -d.
- $\mathbf{28} \ \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}; \ \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \ \text{and} \ \begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}.$
- **32** y(0) = 0 requires A + B + C = 0. One basis is  $\cos x \cos 2x$  and  $\cos x \cos 3x$ .
- **34**  $y_1(x), y_2(x), y_3(x)$  can be x, 2x, 3x (dim 1) or  $x, 2x, x^2$  (dim 2) or  $x, x^2, x^3$  (dim 3).
- **37** The subspace of matrices that have AS = SA has dimension *three*.
- **39** If the 5 by 5 matrix  $[A \ b]$  is invertible, b is not a combination of the columns of A. If  $[A \ b]$  is singular, and the 4 columns of A are independent, b is a combination of those columns. In this case Ax = b has a solution.
- **41**  $I = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ . The six P's are dependent.
- **42** The dimension of **S** is (a) zero when x = 0 (b) one when x = (1, 1, 1, 1) (c) three when x = (1, 1, -1, -1) because all rearrangements have  $x_1 + \cdots + x_4 = 0$  (d) four when the x's are not equal and don't add to zero. No x gives  $\dim \mathbf{S} = 2$ .
- 43 The problem is to show that the u's, v's, w's together are independent. We know the u's and v's together are a basis for V, and the u's and w's together are a basis for W. Suppose a combination of u's, v's, w's gives 0. To be proved: All coefficients = zero. Key idea: The part x from the u's and v's is in V, so the part from the w's is -x. This part is now in V and also in W. But if -x is in  $V \cap W$  it is a combination of u's only. Now x x = 0 uses only u's and v's (independent in V!) so all coefficients of u's and v's must be zero. Then x = 0 and the coefficients of the w's are also zero.
- **44** The inputs to an m by n matrix fill  $\mathbf{R}^n$ . The outputs (column space!) have dimension r. The nullspace has n-r special solutions. The formula becomes r+(n-r)=n.

#### Problem Set 3.6, page 190

- 1 (a) Row and column space dimensions = 5, nullspace dimension = 4,  $\dim(\mathbf{N}(A^{\mathrm{T}}))$  = 2 sum = 16 = m + n (b) Column space is  $\mathbf{R}^3$ ; left nullspace contains only 0.
- **4** (a)  $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$  (b) Impossible: r + (n-r) must be 3 (c)  $\begin{bmatrix} 1 & 1 \end{bmatrix}$  (d)  $\begin{bmatrix} -9 & -3 \\ 3 & 1 \end{bmatrix}$ 
  - (e) Impossible Row space = column space requires m=n. Then m-r=n-r; nullspaces have the same dimension. Section 4.1 will prove N(A) and  $N(A^{T})$  orthogonal to the row and column spaces respectively—here those are the same space.

- **6** A: dim **2**, **2**, **2**, **1**: Rows (0,3,3,3) and (0,1,0,1); columns (3,0,1) and (3,0,0); nullspace (1,0,0,0) and (0,-1,0,1);  $N(A^{\rm T})(0,1,0)$ . B: dim **1**, **1**, **0**, **2** Row space (1), column space (1,4,5), nullspace: empty basis,  $N(A^{\rm T})(-4,1,0)$  and (-5,0,1).
- **9** (a) Same row space and nullspace. So rank (dimension of row space) is the same (b) Same column space and left nullspace. Same rank (dimension of column space).
- 11 (a) No solution means that r < m. Always  $r \le n$ . Can't compare m and n (b) Since m r > 0, the left nullspace must contain a nonzero vector.
- **12** A neat choice is  $\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 0 & 1 \end{bmatrix}; \ r + (n r) = n = 3 \text{ does not match } 2 + 2 = 4. \text{ Only } \boldsymbol{v} = \boldsymbol{0} \text{ is in both } \boldsymbol{N}(A) \text{ and } \boldsymbol{C}(A^{\mathrm{T}}).$
- **16** If  $A\mathbf{v} = \mathbf{0}$  and  $\mathbf{v}$  is a row of A then  $\mathbf{v} \cdot \mathbf{v} = 0$ .
- **18** Row 3-2 row 2+ row 1= zero row so the vectors c(1,-2,1) are in the left nullspace. The same vectors happen to be in the nullspace (an accident for this matrix).
- **20** (a) Special solutions (-1,2,0,0) and  $(-\frac{1}{4},0,-3,1)$  are perpendicular to the rows of R (and then ER). (b)  $A^{\mathrm{T}}y=0$  has 1 independent solution = last row of  $E^{-1}$ .  $(E^{-1}A=R)$  has a zero row, which is just the transpose of  $A^{\mathrm{T}}y=0$ ).
- **21** (a) u and w (b) v and z (c) rank < 2 if u and w are dependent or if v and z are dependent (d) The rank of  $uv^{T} + wz^{T}$  is 2.
- **24**  $A^{\mathrm{T}}y = d$  puts d in the *row space* of A; unique solution if the *left nullspace* (nullspace of  $A^{\mathrm{T}}$ ) contains only y = 0.
- **26** The rows of C = AB are combinations of the rows of B. So rank  $C \le \operatorname{rank} B$ . Also rank  $C \le \operatorname{rank} A$ , because the columns of C are combinations of the columns of A.
- **29**  $a_{11} = 1, a_{12} = 0, a_{13} = 1, a_{22} = 0, a_{32} = 1, a_{31} = 0, a_{23} = 1, a_{33} = 0, a_{21} = 1.$
- **30** The subspaces for  $A = uv^T$  are pairs of orthogonal lines  $(v \text{ and } v^{\perp}, u \text{ and } u^{\perp})$ . If B has those same four subspaces then B = cA with  $c \neq 0$ .
- **31** (a) AX = 0 if each column of X is a multiple of (1,1,1);  $\dim(\text{nullspace}) = 3$ . (b) If AX = B then all columns of B add to zero; dimension of the B's = 6. (c)  $3 + 6 = \dim(M^{3 \times 3}) = 9$  entries in a 3 by 3 matrix.
- **32** The key is equal row spaces. First row of A = combination of the rows of B: only possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G.

#### Problem Set 4.1, page 202

- **1** Both nullspace vectors are orthogonal to the row space vector in  $\mathbb{R}^3$ . The column space is perpendicular to the nullspace of  $A^T$  (two lines in  $\mathbb{R}^2$  because rank = 1).
- **3** (a)  $\begin{bmatrix} 1 & 2 & -3 \\ 2 & -3 & 1 \\ -3 & 5 & -2 \end{bmatrix}$  (b) Impossible,  $\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$  not orthogonal to  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$  (c)  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$  in C(A) and  $N(A^{\mathrm{T}})$  is impossible: not perpendicular (d) Need  $A^2=0$ ; take  $A=\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ 
  - (e) (1, 1, 1) in the nullspace (columns add to 0) and also row space; no such matrix.

- 6 Multiply the equations by  $y_1, y_2, y_3 = 1, 1, -1$ . Equations add to 0 = 1 so no solution: y = (1, 1, -1) is in the left nullspace. Ax = b would need  $0 = (y^T A)x = y^T b = 1$ .
- 8  $x = x_r + x_n$ , where  $x_r$  is in the row space and  $x_n$  is in the nullspace. Then  $Ax_n = 0$  and  $Ax = Ax_r + Ax_n = Ax_r$ . All Ax are in C(A).
- **9** Ax is always in the *column space* of A. If  $A^{T}Ax = 0$  then Ax is also in the nullspace of  $A^{T}$ . So Ax is perpendicular to itself. Conclusion: Ax = 0 if  $A^{T}Ax = 0$ .
- **10** (a) With  $A^{\rm T}=A$ , the column and row spaces are the same (b)  $\boldsymbol{x}$  is in the nullspace and  $\boldsymbol{z}$  is in the column space = row space: so these "eigenvectors" have  $\boldsymbol{x}^{\rm T}\boldsymbol{z}=0$ .
- **12**  $\boldsymbol{x}$  splits into  $\boldsymbol{x}_r + \boldsymbol{x}_n = (1,-1) + (1,1) = (2,0)$ . Notice  $\boldsymbol{N}(A^{\mathrm{T}})$  is a plane  $(1,0) = (1,1)/2 + (1,-1)/2 = \boldsymbol{x}_r + \boldsymbol{x}_n$ .
- 13  $V^TW = \text{zero makes each basis vector for } V$  orthogonal to each basis vector for W. Then every v in V is orthogonal to every w in W (combinations of the basis vectors).
- **14**  $Ax = B\hat{x}$  means that  $\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} x \\ -\hat{x} \end{bmatrix} = \mathbf{0}$ . Three homogeneous equations in four unknowns always have a nonzero solution. Here x = (3,1) and  $\hat{x} = (1,0)$  and  $Ax = B\hat{x} = (5,6,5)$  is in both column spaces. Two planes in  $\mathbf{R}^3$  must share a line.
- **16**  $A^{\mathrm{T}}y = \mathbf{0}$  leads to  $(Ax)^{\mathrm{T}}y = x^{\mathrm{T}}A^{\mathrm{T}}y = 0$ . Then  $y \perp Ax$  and  $N(A^{\mathrm{T}}) \perp C(A)$ .
- **18**  $S^{\perp}$  is the nullspace of  $A=\begin{bmatrix}1&5&1\\2&2&2\end{bmatrix}$ . Therefore  $S^{\perp}$  is a *subspace* even if S is not.
- **21** For example (-5,0,1,1) and (0,1,-1,0) span  $S^{\perp}$  = nullspace of  $A = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2 \end{bmatrix}$ .
- **23** x in  $V^{\perp}$  is perpendicular to any vector in V. Since V contains all the vectors in S, x is also perpendicular to any vector in S. So every x in  $V^{\perp}$  is also in  $S^{\perp}$ .
- **28** (a) (1, -1, 0) is in both planes. Normal vectors are perpendicular, but planes still intersect! (b) Need *three* orthogonal vectors to span the whole orthogonal complement. (c) Lines can meet at the zero vector without being orthogonal.
- **30** When AB=0, the column space of B is contained in the nullspace of A. Therefore the dimension of  $C(B) \leq \text{dimension of } N(A)$ . This means  $\text{rank}(B) \leq 4 \text{rank}(A)$ .
- **31** null(N') produces a basis for the *row space* of A (perpendicular to N(A)).
- **32** We need  $r^T n = 0$  and  $c^T \ell = 0$ . All possible examples have the form  $acr^T$  with  $a \neq 0$ .
- **33** Both r's orthogonal to both n's, both c's orthogonal to both  $\ell$ 's, each pair independent. All A's with these subspaces have the form  $[c_1 \ c_2]M[r_1 \ r_2]^T$  for a 2 by 2 invertible M.

#### Problem Set 4.2, page 214

**1** (a) 
$$a^{\mathrm{T}}b/a^{\mathrm{T}}a = 5/3$$
;  $p = 5a/3$ ;  $e = (-2, 1, 1)/3$  (b)  $a^{\mathrm{T}}b/a^{\mathrm{T}}a = -1$ ;  $p = a$ ;  $e = 0$ .

**3** 
$$P_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 and  $P_1 \boldsymbol{b} = \frac{1}{3} \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$ .  $P_2 = \frac{1}{11} \begin{bmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{bmatrix}$  and  $P_2 \boldsymbol{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ .

**6** 
$$p_1 = (\frac{1}{9}, -\frac{2}{9}, -\frac{2}{9})$$
 and  $p_2 = (\frac{4}{9}, \frac{4}{9}, -\frac{2}{9})$  and  $p_3 = (\frac{4}{9}, -\frac{2}{9}, \frac{4}{9})$ . So  $p_1 + p_2 + p_3 = b$ .

**9** Since A is invertible, 
$$P = A(A^TA)^{-1}A^T = AA^{-1}(A^T)^{-1}A^T = I$$
: project on all of  $\mathbb{R}^2$ .

**11** (a) 
$$\boldsymbol{p} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\boldsymbol{b} = (2,3,0), \boldsymbol{e} = (0,0,4), A^{\mathrm{T}}\boldsymbol{e} = \boldsymbol{0}$$
 (b)  $\boldsymbol{p} = (4,4,6), \boldsymbol{e} = \boldsymbol{0}$ .

**15** 
$$2A$$
 has the same column space as  $A$ .  $\hat{x}$  for  $2A$  is half of  $\hat{x}$  for  $A$ .

**16** 
$$\frac{1}{2}(1,2,-1) + \frac{3}{2}(1,0,1) = (2,1,1)$$
. So **b** is in the plane. Projection shows  $P\mathbf{b} = \mathbf{b}$ .

**18** (a) 
$$I-P$$
 is the projection matrix onto  $(1,-1)$  in the perpendicular direction to  $(1,1)$  (b)  $I-P$  projects onto the plane  $x+y+z=0$  perpendicular to  $(1,1,1)$ .

$$\mathbf{20} \ \ \boldsymbol{e} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \ \ \boldsymbol{Q} = \underbrace{\boldsymbol{e} \boldsymbol{e}^{\mathrm{T}}}_{\boldsymbol{e}^{\mathrm{T}} \boldsymbol{e}} = \begin{bmatrix} 1/6 & -1/6 & -1/3 \\ -1/6 & 1/6 & 1/3 \\ -1/3 & 1/3 & 2/3 \end{bmatrix}, \ \ \boldsymbol{I} - \boldsymbol{Q} = \begin{bmatrix} 5/6 & 1/6 & 1/3 \\ 1/6 & 5/6 & -1/3 \\ 1/3 & -1/3 & 1/3 \end{bmatrix}.$$

**21** 
$$(A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}})^2 = A(A^{\mathrm{T}}A)^{-1}(A^{\mathrm{T}}A)(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}$$
. So  $P^2 = P$ .  $Pb$  is in the column space (where  $P$  projects). Then its projection  $P(Pb)$  is  $Pb$ .

**24** The nullspace of 
$$A^{\mathrm{T}}$$
 is *orthogonal* to the column space  $C(A)$ . So if  $A^{\mathrm{T}}b = \mathbf{0}$ , the projection of  $b$  onto  $C(A)$  should be  $p = \mathbf{0}$ . Check  $Pb = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}b = A(A^{\mathrm{T}}A)^{-1}\mathbf{0}$ .

**28** 
$$P^2 = P = P^{\rm T}$$
 give  $P^{\rm T}P = P$ . Then the  $(2,2)$  entry of  $P$  equals the  $(2,2)$  entry of  $P^{\rm T}P$  which is the length squared of column 2.

**29** 
$$A = B^{T}$$
 has independent columns, so  $A^{T}A$  (which is  $BB^{T}$ ) must be invertible.

**30** (a) The column space is the line through 
$$a = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 so  $P_C = \frac{aa^T}{a^Ta} = \frac{1}{25} \begin{bmatrix} 9 & 12 \\ 12 & 25 \end{bmatrix}$ .

(b) The row space is the line through 
$$v = (1, 2, 2)$$
 and  $P_R = vv^T/v^Tv$ . Always  $P_C A = A$  (columns of A project to themselves) and  $AP_R = A$ . Then  $P_C A P_R = A$ !

**31** The error 
$$e = b - p$$
 must be perpendicular to all the  $a$ 's.

**32** Since 
$$P_1 b$$
 is in  $C(A), P_2(P_1 b)$  equals  $P_1 b$ . So  $P_2 P_1 = P_1 = a a^{\mathrm{T}} / a^{\mathrm{T}} a$  where  $a = (1, 2, 0)$ .

**33** If 
$$P_1P_2 = P_2P_1$$
 then  $S$  is contained in  $T$  or  $T$  is contained in  $S$ .

**34** 
$$BB^{\mathrm{T}}$$
 is invertible as in Problem 29. Then  $(A^{\mathrm{T}}A)(BB^{\mathrm{T}}) = \operatorname{product}$  of  $r$  by  $r$  invertible matrices, so rank  $r$ .  $AB$  can't have rank  $< r$ , since  $A^{\mathrm{T}}$  and  $B^{\mathrm{T}}$  cannot increase the rank.

Conclusion: A (m by r of rank r) times B (r by n of rank r) produces AB of rank r.

#### Problem Set 4.3, page 226

**1** 
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
 and  $b = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$  give  $A^{T}A = \begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix}$  and  $A^{T}b = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$ .

$$A^{\mathrm{T}}A\widehat{m{x}}=A^{\mathrm{T}}m{b}$$
 gives  $\widehat{m{x}}=\begin{bmatrix}1\\4\end{bmatrix}$  and  $m{p}=A\widehat{m{x}}=\begin{bmatrix}1\\5\\13\\17\end{bmatrix}$  and  $m{e}=m{b}-m{p}=\begin{bmatrix}-1\\3\\-5\\3\end{bmatrix}$ 

- **5**  $E = (C-0)^2 + (C-8)^2 + (C-8)^2 + (C-20)^2$ .  $A^{\rm T} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$  and  $A^{\rm T}A = \begin{bmatrix} 4 \end{bmatrix}$ .  $A^{\rm T}b = \begin{bmatrix} 36 \end{bmatrix}$  and  $(A^{\rm T}A)^{-1}A^{\rm T}b = 9$  = best height C. Errors e = (-9, -1, -1, 11).
- **7**  $A = \begin{bmatrix} 0 & 1 & 3 & 4 \end{bmatrix}^{T}$ ,  $A^{T}A = \begin{bmatrix} 26 \end{bmatrix}$  and  $A^{T}b = \begin{bmatrix} 112 \end{bmatrix}$ . Best  $D = \frac{112}{26} = \frac{56}{13}$ .
- 8  $\hat{x} = 56/13$ , p = (56/13)(0, 1, 3, 4). (C, D) = (9, 56/13) don't match (C, D) = (1, 4). Columns of A were not perpendicular so we can't project separately to find C and D.

$$\begin{array}{lll} \textbf{Parabola} & \begin{array}{llll} \text{Parabola} & \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}. \ A^{\text{T}} A \widehat{\boldsymbol{x}} = \begin{bmatrix} 4 & 8 & 26 \\ 8 & 26 & 92 \\ 26 & 92 & 338 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \\ 400 \end{bmatrix}.$$

- **11** (a) The best line x = 1 + 4t gives the center point  $\hat{b} = 9$  when  $\hat{t} = 2$ .
  - (b) The first equation  $Cm + D \sum_i t_i = \sum_i b_i$  divided by m gives  $C + D\hat{t} = \hat{b}$ .
- **13**  $(A^TA)^{-1}A^T(b-Ax) = \hat{x} x$ . When e = b Ax averages to 0, so does  $\hat{x} x$ .
- **14** The matrix  $(\widehat{\boldsymbol{x}} \boldsymbol{x})(\widehat{\boldsymbol{x}} \boldsymbol{x})^{\mathrm{T}}$  is  $(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}(\boldsymbol{b} A\boldsymbol{x})(\boldsymbol{b} A\boldsymbol{x})^{\mathrm{T}}A(A^{\mathrm{T}}A)^{-1}$ . When the average of  $(\boldsymbol{b} A\boldsymbol{x})(\boldsymbol{b} A\boldsymbol{x})^{\mathrm{T}}$  is  $\sigma^2 I$ , the average of  $(\widehat{\boldsymbol{x}} \boldsymbol{x})(\widehat{\boldsymbol{x}} \boldsymbol{x})^{\mathrm{T}}$  will be the output covariance matrix  $(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\sigma^2 A(A^{\mathrm{T}}A)^{-1}$  which simplifies to  $\sigma^2(A^{\mathrm{T}}A)^{-1}$ .
- **16**  $\frac{1}{10}b_{10} + \frac{9}{10}\widehat{x}_9 = \frac{1}{10}(b_1 + \dots + b_{10})$ . Knowing  $\widehat{x}_9$  avoids adding all b's.
- **18**  $p = A\hat{x} = (5, 13, 17)$  gives the heights of the closest line. The error is b p = (2, -6, 4). This error e has Pe = Pb Pp = p p = 0.
- **21** e is in  $N(A^T)$ ; p is in C(A);  $\hat{x}$  is in  $C(A^T)$ ;  $N(A) = \{0\}$  = zero vector only.
- **23** The square of the distance between points on two lines is  $E=(y-x)^2+(3y-x)^2+(1+x)^2$ . Derivatives  $\frac{1}{2}\partial E/\partial x=3x-4y+1=0$  and  $\frac{1}{2}\partial E/\partial y=-4x+10y=0$ . The solution is x=-5/7,y=-2/7;E=2/7, and the minimum distance is  $\sqrt{2/7}$ .
- **25** 3 points on a line:  $Equal slopes (b_2-b_1)/(t_2-t_1) = (b_3-b_2)/(t_3-t_2)$ . Linear algebra: Orthogonal to (1,1,1) and  $(t_1,t_2,t_3)$  is  $\boldsymbol{y}=(t_2-t_3,t_3-t_1,t_1-t_2)$  in the left nullspace.  $\boldsymbol{b}$  is in the column space. Then  $\boldsymbol{y}^T\boldsymbol{b}=0$  is the same equal slopes condition written as  $(b_2-b_1)(t_3-t_2)=(b_3-b_2)(t_2-t_1)$ .
- **27** The shortest link connecting two lines in space is *perpendicular to those lines*.
- **28** Only 1 plane contains  $0, a_1, a_2$  unless  $a_1, a_2$  are dependent. Same test for  $a_1, \ldots, a_n$ .

#### Problem Set 4.4, page 239

- **3** (a)  $A^{T}A$  will be 16I (b)  $A^{T}A$  will be diagonal with entries 1, 4, 9.
- **6**  $Q_1Q_2$  is orthogonal because  $(Q_1Q_2)^{\mathrm{T}}Q_1Q_2 = Q_2^{\mathrm{T}}Q_1^{\mathrm{T}}Q_1Q_2 = Q_2^{\mathrm{T}}Q_2 = I$ .
- **8** If  $q_1$  and  $q_2$  are orthonormal vectors in  $\mathbf{R}^5$  then  $(q_1^{\mathrm{T}}b)q_1 + (q_2^{\mathrm{T}}b)q_2$  is closest to b.
- **11** (a) Two *orthonormal* vectors are  $\boldsymbol{q}_1 = \frac{1}{10}(1,3,4,5,7)$  and  $\boldsymbol{q}_2 = \frac{1}{10}(-7,3,4,-5,1)$  (b) Closest in the plane:  $project\ QQ^{\rm T}(1,0,0,0,0) = (0.5,-0.18,-0.24,0.4,0).$
- **13** The multiple to subtract is  $\frac{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{a}}$ . Then  $\boldsymbol{B} = \boldsymbol{b} \frac{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{a}}\boldsymbol{a} = (4,0) 2 \cdot (1,1) = (2,-2)$ .

$$\mathbf{14} \, \begin{bmatrix} 1 & 4 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \, \boldsymbol{q}_1 & \boldsymbol{q}_2 \, \end{bmatrix} \begin{bmatrix} \| \boldsymbol{a} \| & \boldsymbol{q}_1^{\mathrm{T}} \boldsymbol{b} \\ 0 & \| \boldsymbol{B} \| \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 2\sqrt{2} \\ 0 & 2\sqrt{2} \end{bmatrix} = QR.$$

- **15** (a)  $\boldsymbol{q}_1 = \frac{1}{3}(1,2,-2), \ \boldsymbol{q}_2 = \frac{1}{3}(2,1,2), \ \boldsymbol{q}_3 = \frac{1}{3}(2,-2,-1)$  (b) The nullspace of  $A^{\rm T}$  contains  $\boldsymbol{q}_3$  (c)  $\widehat{\boldsymbol{x}} = (A^{\rm T}A)^{-1}A^{\rm T}(1,2,7) = (1,2).$
- **16** The projection  $p = (a^{\mathrm{T}}b/a^{\mathrm{T}}a)a = 14a/49 = 2a/7$  is closest to b;  $q_1 = a/\|a\| = a/7$  is (4,5,2,2)/7. B = b p = (-1,4,-4,-4)/7 has  $\|B\| = 1$  so  $q_2 = B$ .
- **18**  $A = a = (1, -1, 0, 0); B = b p = (\frac{1}{2}, \frac{1}{2}, -1, 0); C = c p_A p_B = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -1).$  Notice the pattern in those orthogonal A, B, C. In  $\mathbf{R}^5, D$  would be  $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -1).$
- **20** (a) *True* (b) *True*.  $Qx = x_1q_1 + x_2q_2$ .  $||Qx||^2 = x_1^2 + x_2^2$  because  $q_1 \cdot q_2 = 0$ .
- **21** The orthonormal vectors are  ${m q}_1=(1,1,1,1)/2$  and  ${m q}_2=(-5,-1,1,5)/\sqrt{52}$ . Then  ${m b}=(-4,-3,3,0)$  projects to  ${m p}=(-7,-3,-1,3)/2$ . And  ${m b}-{m p}=(-1,-3,7,-3)/2$  is orthogonal to both  ${m q}_1$  and  ${m q}_2$ .
- **22** A = (1,1,2), B = (1,-1,0), C = (-1,-1,1). These are not yet unit vectors.
- **26**  $(q_2^{\mathrm{T}}C^*)q_2=\frac{B^{\mathrm{T}}c}{B^{\mathrm{T}}B}B$  because  $q_2=\frac{B}{\|B\|}$  and the extra  $q_1$  in  $C^*$  is orthogonal to  $q_2$ .
- **28** There are mn multiplications in (11) and  $\frac{1}{2}m^2n$  multiplications in each part of (12).
- **30** The wavelet matrix W has orthonormal columns. Notice  $W^{-1} = W^{T}$  in Section 7.3.

**32** 
$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 reflects across  $x$  axis,  $Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$  across plane  $y + z = 0$ .

**33** Orthogonal and lower triangular  $\Rightarrow \pm 1$  on the main diagonal and zeros elsewhere.

#### Problem Set 5.1, page 251

- **1**  $\det(2A) = 8$ ;  $\det(-A) = (-1)^4 \det A = \frac{1}{2}$ ;  $\det(A^2) = \frac{1}{4}$ ;  $\det(A^{-1}) = 2 = \det(A^{\mathrm{T}})^{-1}$ .
- **5**  $|J_5|=1$ ,  $|J_6|=-1$ ,  $|J_7|=-1$ . Determinants 1,1,-1,-1 repeat so  $|J_{101}|=1$ .
- **8**  $Q^{\mathrm{T}}Q=I\Rightarrow |Q|^2=1\Rightarrow |Q|=\pm 1;$   $Q^n$  stays orthogonal so  $\det$  can't blow up.
- **10** If the entries in every row add to zero, then  $(1,1,\ldots,1)$  is in the nullspace: singular A has  $\det=0$ . (The columns add to the zero column so they are linearly dependent.) If every row adds to one, then rows of A-I add to zero (not necessarily  $\det A=1$ ).
- **11**  $CD = -DC \Rightarrow \det CD = (-1)^n \det DC$  and  $not \det DC$ . If n is even we can have an invertible CD.
- **14** det(A) = 36 and the 4 by 4 second difference matrix has det = 5.
- **15** The first determinant is 0, the second is  $1 2t^2 + t^4 = (1 t^2)^2$ .
- **17** Any 3 by 3 skew-symmetric K has  $\det(K^{\mathrm{T}}) = \det(-K) = (-1)^3 \det(K)$ . This is  $-\det(K)$ . But always  $\det(K^{\mathrm{T}}) = \det(K)$ , so we must have  $\det(K) = 0$  for 3 by 3.
- 21 Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)
- **23**  $\det(A) = 10$ ,  $A^2 = \begin{bmatrix} 18 & 7 \\ 14 & 11 \end{bmatrix}$ ,  $\det(A^2) = 100$ ,  $A^{-1} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$  has  $\det \frac{1}{10}$ .  $\det(A \lambda I) = \lambda^2 7\lambda + 10 = 0$  when  $\lambda = \mathbf{2}$  or  $\lambda = \mathbf{5}$ ; those are eigenvalues.
- **27** det A = abc, det B = -abcd, det C = a(b-a)(c-b) by doing elimination.

#### Problem Set 5.2, page 263

- **2** det A = -2, independent; det B = 0, dependent; det C = -1, independent.
- **4**  $a_{11}a_{23}a_{32}a_{44}$  gives -1, because  $2 \leftrightarrow 3$ ,  $a_{14}a_{23}a_{32}a_{41}$  gives +1, det A = 1 1 = 0; det  $B = 2 \cdot 4 \cdot 4 \cdot 2 1 \cdot 4 \cdot 4 \cdot 1 = 64 16 = 48$ .
- **6** (a) If  $a_{11} = a_{22} = a_{33} = 0$  then 4 terms are sure zeros (b) 15 terms must be zero.
- **8** Some term  $a_{1\alpha}a_{2\beta}\cdots a_{n\omega}$  in the big formula is not zero! Move rows 1, 2, ..., n into rows  $\alpha$ ,  $\beta$ , ...,  $\omega$ . Then these nonzero a's will be on the main diagonal.
- **9** To get +1 for the even permutations the matrix needs an *even* number of -1's. For the odd P's the matrix needs an *odd* number of -1's. So six 1's and det =6 are impossible five 1's and one -1 will give  $AC = (ad bc)I = (\det A)I \max(\det) = 4$ .
- $\textbf{11} \ \ C = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \ D = \begin{bmatrix} 0 & 42 & -35 \\ 0 & -21 & 14 \\ -3 & 6 & -3 \end{bmatrix}. \quad \det B = 1(0) + 2(42) + 3(-35) = -21. \\ \text{Puzzle: } \det D = 441 = (-21)^2. \ \textit{Why?}$
- $\mathbf{12} \ \ C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} \text{ and } AC^{\mathrm{T}} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}. \text{ Therefore } A^{-1} = \frac{1}{4}C^{\mathrm{T}} = C^{\mathrm{T}}/\det A.$
- **13** (a)  $C_1=0,\ C_2=-1,\ C_3=0,\ C_4=1$  (b)  $C_n=-C_{n-2}$  by cofactors of row 1 then cofactors of column 1. Therefore  $C_{10}=-C_8=C_6=-C_4=C_2=-1$ .
- **15** The 1,1 cofactor of the n by n matrix is  $E_{n-1}$ . The 1,2 cofactor has a single 1 in its first column, with cofactor  $E_{n-2}$ : sign gives  $-E_{n-2}$ . So  $E_n = E_{n-1} E_{n-2}$ . Then  $E_1$  to  $E_6$  is 1, 0, -1, -1, 0, 1 and this cycle of six will repeat:  $E_{100} = E_4 = -1$ .
- **16** The 1,1 cofactor of the n by n matrix is  $F_{n-1}$ . The 1,2 cofactor has a 1 in column 1, with cofactor  $F_{n-2}$ . Multiply by  $(-1)^{1+2}$  and also (-1) from the 1,2 entry to find  $F_n = F_{n-1} + F_{n-2}$  (so these determinants are Fibonacci numbers).
- **19** Since x,  $x^2$ ,  $x^3$  are all in the same row, they are never multiplied in  $\det V_4$ . The determinant is zero at x=a or b or c, so  $\det V$  has factors (x-a)(x-b)(x-c). Multiply by the cofactor  $V_3$ . The Vandermonde matrix  $V_{ij}=(x_i)^{j-1}$  is for fitting a polynomial  $p(\boldsymbol{x})=\boldsymbol{b}$  at the points  $x_i$ . It has  $\det V=$  product of all  $x_k-x_m$  for k>m.
- **20**  $G_2 = -1$ ,  $G_3 = 2$ ,  $G_4 = -3$ , and  $G_n = (-1)^{n-1}(n-1) = (\text{product of the } \lambda \text{'s })$ .
- **24** (a) All L's have  $\det = 1$ ;  $\det U_k = \det A_k = 2, 6, -6$  (b) Pivots 5, 6/5, 7/6.
- **25** Problem 23 gives  $\det \begin{bmatrix} I & 0 \\ -CA^{-1} & I \end{bmatrix} = 1$  and  $\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = |A|$  times  $|D CA^{-1}B|$  which is  $|AD ACA^{-1}B|$ . If AC = CA this is  $|AD CAA^{-1}B| = \det(AD CB)$ .
- **27** (a) det  $A = a_{11}C_{11} + \cdots + a_{1n}C_{1n}$ . Derivative with respect to  $a_{11} = \text{cofactor } C_{11}$ .
- **29** There are five nonzero products, all 1's with a plus or minus sign. Here are the (row, column) numbers and the signs: +(1,1)(2,2)(3,3)(4,4) + (1,2)(2,1)(3,4)(4,3) (1,2)(2,1)(3,3)(4,4) (1,1)(2,2)(3,4)(4,3) (1,1)(2,3)(3,2)(4,4). Total -1.
- **32** The problem is to show that  $F_{2n+2} = 3F_{2n} F_{2n-2}$ . Keep using Fibonacci's rule:  $F_{2n+2} = F_{2n+1} + F_{2n} = F_{2n} + F_{2n-1} + F_{2n} = 2F_{2n} + (F_{2n} F_{2n-2}) = 3F_{2n} F_{2n-2}$ .
- **33** The difference from 20 to 19 multiplies its 3 by 3 cofactor = 1: then det drops by 1.
- **34** (a) The last three rows must be dependent (b) In each of the 120 terms: Choices from the last 3 rows must use 3 columns; at least one of those choices will be zero.

#### Problem Set 5.3, page 278

**2** (a) 
$$y = \begin{vmatrix} a & 1 \\ c & 0 \end{vmatrix} / \begin{vmatrix} a & b \\ c & d \end{vmatrix} = c/(ad - bc)$$
 (b)  $y = \det B_2/\det A = (fg - id)/D$ .

**3** (a) 
$$x_1 = 3/0$$
 and  $x_2 = -2/0$ : no solution (b)  $x_1 = x_2 = 0/0$ : undetermined.

**4** (a) 
$$x_1 = \det([\boldsymbol{b} \ \boldsymbol{a}_2 \ \boldsymbol{a}_3])/\det A$$
, if  $\det A \neq 0$  (b) The determinant is linear in its first column so  $x_1|\boldsymbol{a}_1\ \boldsymbol{a}_2\ \boldsymbol{a}_3|+x_2|\boldsymbol{a}_2\ \boldsymbol{a}_2|+x_3|\boldsymbol{a}_3\ \boldsymbol{a}_2\ \boldsymbol{a}_3|$ . The last two determinants are zero because of repeated columns, leaving  $x_1|\boldsymbol{a}_1\ \boldsymbol{a}_2\ \boldsymbol{a}_3|$  which is  $x_1 \det A$ .

**6** (a) 
$$\begin{bmatrix} 1 & -\frac{2}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & -\frac{7}{2} & 1 \end{bmatrix}$$
 (b) 
$$\frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
. An invertible symmetric matrix has a symmetric inverse.

$$\textbf{8} \ \ C = \begin{bmatrix} \ 6 & -3 & 0 \\ \ 3 & 1 & -1 \\ \ -6 & 2 & 1 \end{bmatrix} \text{ and } AC^{\mathrm{T}} = \begin{bmatrix} \ 3 & 0 & 0 \\ \ 0 & 3 & 0 \\ \ 0 & 0 & 3 \end{bmatrix}. \quad \begin{array}{l} \text{This is } (\det A)I \text{ and } \det A = 3. \\ \text{The } 1, 3 \text{ cofactor of } A \text{ is } 0. \\ \text{Multiplying by 4 or } 100 \text{: no change.} \\ \end{array}$$

**9** If we know the cofactors and  $\det A = 1$ , then  $C^{\mathrm{T}} = A^{-1}$  and also  $\det A^{-1} = 1$ . Now A is the inverse of  $C^{\mathrm{T}}$ , so A can be found from the cofactor matrix for C.

11 The cofactors of A are integers. Division by  $\det A = \pm 1$  gives integer entries in  $A^{-1}$ .

**15** For n=5, C contains 25 cofactors and each 4 by 4 cofactor has 24 terms. Each term needs 3 multiplications: total 1800 multiplications vs.125 for Gauss-Jordan.

**17** Volume = 
$$\begin{vmatrix} 3 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 1 & 3 \end{vmatrix} = 20$$
. Area of faces length of cross product =  $\begin{vmatrix} i & j & k \\ 3 & 1 & 1 \\ 1 & 3 & 1 \end{vmatrix} = \begin{vmatrix} -2i - 2j + 8k \\ \text{length} = 6\sqrt{2} \end{vmatrix}$ 

**18** (a) Area 
$$\frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 3 & 4 & 1 \\ 0 & 5 & 1 \end{vmatrix} = 5$$
 (b)  $5 + \text{new triangle area } \frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 0 & 5 & 1 \\ -1 & 0 & 1 \end{vmatrix} = 5 + 7 = 12.$ 

**21** The maximum volume is  $L_1L_2L_3L_4$  reached when the edges are orthogonal in  ${\bf R}^4$ . With entries 1 and -1 all lengths are  $\sqrt{4}=2$ . The maximum determinant is  $2^4=16$ , achieved in Problem 20. For a 3 by 3 matrix,  $\det A=(\sqrt{3})^3$  can't be achieved.

**23** 
$$A^{\mathrm{T}}A = \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}} \\ \boldsymbol{b}^{\mathrm{T}} \\ \boldsymbol{c}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}^{\mathrm{T}}\boldsymbol{a} & 0 & 0 \\ 0 & \boldsymbol{b}^{\mathrm{T}}\boldsymbol{b} & 0 \\ 0 & 0 & \boldsymbol{c}^{\mathrm{T}}\boldsymbol{c} \end{bmatrix} \text{ has } \det A^{\mathrm{T}}A = (\|\boldsymbol{a}\|\|\boldsymbol{b}\|\|\boldsymbol{c}\|)^2 \det A = \pm \|\boldsymbol{a}\|\|\boldsymbol{b}\|\|\boldsymbol{c}\|$$

**25** The *n*-dimensional cube has  $2^n$  corners,  $n2^{n-1}$  edges and 2n (n-1)-dimensional faces. Coefficients from  $(2+x)^n$  in Worked Example **2.4A**. Cube from 2I has volume  $2^n$ .

**26** The pyramid has volume  $\frac{1}{6}$ . The 4-dimensional pyramid has volume  $\frac{1}{24}$  (and  $\frac{1}{n!}$  in  $\mathbf{R}^n$ )

**31** Base area 10, height 2, volume 20.

**35** S=(2,1,-1), area  $\|PQ\times PS\|=\|(-2,-2,-1)\|=3$ . The other four corners can be (0,0,0),(0,0,2),(1,2,2),(1,1,0). The volume of the tilted box is  $|\det|=1$ .

**39**  $AC^{\mathrm{T}} = (\det A)I$  gives  $(\det A)(\det C) = (\det A)^n$ . Then  $\det A = (\det C)^{1/3}$  with n = 4. With  $\det A^{-1}$  is  $1/\det A$ , construct  $A^{-1}$  using the cofactors. *Invert to find A*.

#### Problem Set 6.1, page 293

- 1 The eigenvalues are 1 and 0.5 for A, 1 and 0.25 for  $A^2$ , 1 and 0 for  $A^{\infty}$ . Exchanging the rows of A changes the eigenvalues to 1 and -0.5 (the trace is now 0.2 + 0.3). Singular matrices stay singular during elimination, so  $\lambda = 0$  does not change.
- **3** A has  $\lambda_1=2$  and  $\lambda_2=-1$  (check trace and determinant) with  $\boldsymbol{x}_1=(1,1)$  and  $\boldsymbol{x}_2=(2,-1)$ .  $A^{-1}$  has the same eigenvectors, with eigenvalues  $1/\lambda=\frac{1}{2}$  and -1.
- **6** A and B have  $\lambda_1 = 1$  and  $\lambda_2 = 1$ . AB and BA have  $\lambda = 2 \pm \sqrt{3}$ . Eigenvalues of AB are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved in section 6.6, Problems 18-19).
- **8** (a) Multiply Ax to see  $\lambda x$  which reveals  $\lambda$  (b) Solve  $(A \lambda I)x = 0$  to find x.
- **10** A has  $\lambda_1=1$  and  $\lambda_2=.4$  with  $\boldsymbol{x}_1=(1,2)$  and  $\boldsymbol{x}_2=(1,-1)$ .  $A^{\infty}$  has  $\lambda_1=1$  and  $\lambda_2=0$  (same eigenvectors).  $A^{100}$  has  $\lambda_1=1$  and  $\lambda_2=(.4)^{100}$  which is near zero. So  $A^{100}$  is very near  $A^{\infty}$ : same eigenvectors and close eigenvalues.
- 11 Columns of  $A \lambda_1 I$  are in the nullspace of  $A \lambda_2 I$  because  $M = (A \lambda_2 I)(A \lambda_1 I)$  = zero matrix [this is the *Cayley-Hamilton Theorem* in Problem 6.2.32]. Notice that M has zero eigenvalues  $(\lambda_1 \lambda_2)(\lambda_1 \lambda_1) = 0$  and  $(\lambda_2 \lambda_2)(\lambda_2 \lambda_1) = 0$ .
- **13** (a)  $Pu = (uu^{\mathrm{T}})u = u(u^{\mathrm{T}}u) = u$  so  $\lambda = 1$  (b)  $Pv = (uu^{\mathrm{T}})v = u(u^{\mathrm{T}}v) = 0$  (c)  $x_1 = (-1, 1, 0, 0), x_2 = (-3, 0, 1, 0), x_3 = (-5, 0, 0, 1)$  all have Px = 0x = 0.
- **15** The other two eigenvalues are  $\lambda = \frac{1}{2}(-1 \pm i\sqrt{3})$ ; the three eigenvalues are 1, 1, -1.
- **16** Set  $\lambda = 0$  in  $\det(A \lambda I) = (\lambda_1 \lambda) \dots (\lambda_n \lambda)$  to find  $\det A = (\lambda_1)(\lambda_2) \dots (\lambda_n)$ .
- 17  $\lambda_1=\frac{1}{2}(a+d+\sqrt{(a-d)^2+4bc})$  and  $\lambda_2=\frac{1}{2}(a+d-\sqrt{\phantom{A}})$  add to a+d. If A has  $\lambda_1=3$  and  $\lambda_2=4$  then  $\det(A-\lambda I)=(\lambda-3)(\lambda-4)=\lambda^2-7\lambda+12$ .
- **19** (a) rank = 2 (b)  $\det(B^T B) = 0$  (d) eigenvalues of  $(B^2 + I)^{-1}$  are  $1, \frac{1}{2}, \frac{1}{5}$ .
- **20** Last rows are -28, 11 (check trace and det) and 6, -11, 6 (to match  $\det(C \lambda I)$ ).
- **22**  $\lambda = 1$  (for Markov), 0 (for singular),  $-\frac{1}{2}$  (so sum of eigenvalues = trace =  $\frac{1}{2}$ ).
- **23**  $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ ,  $\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$ . Always  $A^2$  is the zero matrix if  $\lambda = 0$  and 0, by the Cayley-Hamilton Theorem in Problem 6.2.32.
- **28** B has  $\lambda = -1, -1, -1, 3$  and C has  $\lambda = 1, 1, 1, -3$ . Both have  $\det = -3$ .
- **32** (a) u is a basis for the nullspace, v and w give a basis for the column space
  - (b)  $x = (0, \frac{1}{3}, \frac{1}{5})$  is a particular solution. Add any cu from the nullspace
  - (c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.
- **34**  $\det(P-\lambda I)=0$  gives the equation  $\lambda^4=1$ . This reflects the fact that  $P^4=I$ . The solutions of  $\lambda^4=1$  are  $\lambda=1,i,-1,-i$ . The real eigenvector  $\boldsymbol{x}_1=(1,1,1,1)$  is not changed by the permutation P. Three more eigenvectors are  $(i,i^2,i^3,i^4)$  and (1,-1,1,-1) and  $(-i,(-i)^2,(-i)^3,(-i)^4)$ .
- **36**  $\lambda_1 = e^{2\pi i/3}$  and  $\lambda_2 = e^{-2\pi i/3}$  give  $\det \lambda_1 \lambda_2 = 1$  and trace  $\lambda_1 + \lambda_2 = -1$ .  $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$  with  $\theta = \frac{2\pi}{3}$  has this trace and  $\det$ . So does every  $M^{-1}AM!$

#### Problem Set 6.2, page 307

$$\mathbf{1} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}.$$

- **3** If  $A=S\Lambda S^{-1}$  then the eigenvalue matrix for A+2I is  $\Lambda+2I$  and the eigenvector matrix is still S.  $A+2I=S(\Lambda+2I)S^{-1}=S\Lambda S^{-1}+S(2I)S^{-1}=A+2I$ .
- **4** (a) False: don't know  $\lambda$ 's (b) True (c) True (d) False: need eigenvectors of S
- **6** The columns of S are nonzero multiples of (2,1) and (0,1): either order. Same for  $A^{-1}$ .

$$\begin{array}{l} \mathbf{8} \ \ A = S\Lambda S^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix}. \ S\Lambda^k S^{-1} = \\ \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2nd \ component \ \text{is} \ F_k \\ (\lambda_1^k - \lambda_2^k)/(\lambda_1 - \lambda_2) \end{bmatrix}. \end{array}$$

**9** (a) 
$$A = \begin{bmatrix} .5 & .5 \\ 1 & 0 \end{bmatrix}$$
 has  $\lambda_1 = 1$ ,  $\lambda_2 = -\frac{1}{2}$  with  $\boldsymbol{x}_1 = (1,1)$ ,  $\boldsymbol{x}_2 = (1,-2)$ 

(b) 
$$A^n = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1^n & 0 \\ 0 & (-.5)^n \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \to A^{\infty} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

**12** (a) False: don't know  $\lambda$  (b) True: an eigenvector is missing (c) True.

**13** 
$$A = \begin{bmatrix} 8 & 3 \\ -3 & 2 \end{bmatrix}$$
 (or other),  $A = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}$ ,  $A = \begin{bmatrix} 10 & 5 \\ -5 & 0 \end{bmatrix}$ ; only eigenvectors are  $\mathbf{x} = (c, -c)$ .

15  $A^k = S\Lambda^k S^{-1}$  approaches zero if and only if every  $|\lambda| < 1$ ;  $A_1^k \to A_1^\infty, A_2^k \to 0$ .

**19** 
$$B^k = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}^k \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5^k & 5^k - 4^k \\ 0 & 4^k \end{bmatrix}.$$

- **21** trace ST=(aq+bs)+(cr+dt) is equal to  $(qa+rc)+(sb+td)={\rm trace}\,TS.$  Diagonalizable case: the trace of  $S\Lambda S^{-1}={\rm trace}$  of  $(\Lambda S^{-1})S=\Lambda$ : sum of the  $\lambda$ 's.
- **24** The A's form a subspace since cA and  $A_1 + A_2$  all have the same S. When S = I the A's with those eigenvectors give the subspace of diagonal matrices. Dimension 4.
- **26** Two problems: The nullspace and column space can overlap, so x could be in both. There may not be r independent eigenvectors in the column space.

27 
$$R = S\sqrt{\Lambda}S^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 has  $R^2 = A$ .  $\sqrt{B}$  needs  $\lambda = \sqrt{9}$  and  $\sqrt{-1}$ , trace is not real. Note that  $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$  can have  $\sqrt{-1} = i$  and  $-i$ , trace 0, real square root  $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ .

**28**  $A^{\mathrm{T}} = A$  gives  $\boldsymbol{x}^{\mathrm{T}}AB\boldsymbol{x} = (A\boldsymbol{x})^{\mathrm{T}}(B\boldsymbol{x}) \leq \|A\boldsymbol{x}\|\|B\boldsymbol{x}\|$  by the Schwarz inequality.  $B^{\mathrm{T}} = -B$  gives  $-\boldsymbol{x}^{\mathrm{T}}BA\boldsymbol{x} = (B\boldsymbol{x})^{\mathrm{T}}(A\boldsymbol{x}) \leq \|A\boldsymbol{x}\|\|B\boldsymbol{x}\|$ . Add to get Heisenberg's Uncertainty Principle when AB - BA = I. Position-momentum, also time-energy.

- **32** If  $A = S\Lambda S^{-1}$  then  $(A \lambda_1 I) \cdots (A \lambda_n I)$  equals  $S(\Lambda \lambda_1 I) \cdots (\Lambda \lambda_n I) S^{-1}$ . The factor  $\Lambda \lambda_j I$  is zero in row j. The product is zero in all rows = zero matrix.
- **33**  $\lambda=2,-1,0$  are in  $\Lambda$  and the eigenvectors are in S (below).  $A^k=S\Lambda^kS^{-1}$  is

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \mathbf{\Lambda}^{k} \frac{1}{6} \begin{bmatrix} 2 & 1 & 1 \\ 2 & -2 & -2 \\ 0 & 3 & -3 \end{bmatrix} = \frac{2^{k}}{6} \begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} + \frac{(-1)^{k}}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

Check k = 4. The (2, 2) entry of  $A^4$  is  $2^4/6 + (-1)^4/3 = 18/6 = 3$ . The 4-step paths that begin and end at node 2 are 2 to 1 to 1 to 1 to 2, 2 to 1 to 2 to 1 to 2, and 2 to 1 to 3 to 1 to 2. Much harder to find the eleven 4-step paths that start and end at node 1.

- **35** B has  $\lambda = i$  and -i, so  $B^4$  has  $\lambda^4 = 1$  and 1 and  $B^4 = I$ . C has  $\lambda = (1 \pm \sqrt{3}i)/2$ . This is  $\exp(\pm \pi i/3)$  so  $\lambda^3 = -1$  and -1. Then  $C^3 = -I$  and  $C^{1024} = -C$ .
- **37** Columns of S times rows of  $\Lambda S^{-1}$  will give r rank-1 matrices (r = rank of A).

#### Problem Set 6.3, page 325

- $\mathbf{1} \ \ \boldsymbol{u}_1 = e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \boldsymbol{u}_2 = e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \text{ If } \boldsymbol{u}(0) = (5, -2), \text{ then } \boldsymbol{u}(t) = 3e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$
- $\begin{array}{l} \textbf{4} \ \, d(v+w)/dt = (w-v) + (v-w) = \textbf{0}, \text{ so the total } v+w \text{ is constant. } A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \\ \text{has} \ \, \begin{array}{l} \lambda_1 = 0 \\ \lambda_2 = -2 \end{array} \ \, \text{with } \boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \, \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}; \quad \begin{array}{l} v(1) = 20 + 10e^{-2} & v(\infty) = 20 \\ w(1) = 20 10e^{-2} & w(\infty) = 20 \end{array}$
- $8 \begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix} \text{ has } \lambda_1 = 5, \ \, \boldsymbol{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \, \lambda_2 = 2, \ \, \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \text{ rabbits } r(t) = 20e^{5t} + 10e^{2t}, \\ w(t) = 10e^{5t} + 20e^{2t}. \text{ The ratio of rabbits to wolves approaches } 20/10; e^{5t} \text{ dominates.}$
- **12**  $A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$  has trace 6, det 9,  $\lambda = 3$  and 3 with *one* independent eigenvector (1,3).
- **14** When A is skew-symmetric,  $\|u(t)\| = \|e^{At}u(0)\|$  is  $\|u(0)\|$ . So  $e^{At}$  is orthogonal.
- **15**  $u_p = 4$  and  $u(t) = ce^t + 4$ ;  $u_p = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$  and  $u(t) = c_1 e^t \begin{bmatrix} 1 \\ t \end{bmatrix} + c_2 e^t \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ .
- **16** Substituting  $u = e^{ct}v$  gives  $ce^{ct}v = Ae^{ct}v e^{ct}b$  or (A cI)v = b or  $v = (A cI)^{-1}b$  = particular solution. If c is an eigenvalue then A cI is not invertible.
- **20** The solution at time t+T is also  $e^{A(t+T)}u(0)$ . Thus  $e^{At}$  times  $e^{AT}$  equals  $e^{A(t+T)}$ .
- $\mathbf{21} \ \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{0} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{e^t} & 0 \\ 0 & \mathbf{1} \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} e^t & 4e^t 4 \\ 0 & 1 \end{bmatrix}.$
- **22**  $A^2 = A$  gives  $e^{At} = I + At + \frac{1}{2}At^2 + \dots = I + (e^t 1)A = \begin{bmatrix} e^t & e^t 1 \\ 0 & 1 \end{bmatrix}$ .
- $\mathbf{24} \ A = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{3} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}. \ \ \text{Then} \ \ e^{At} = \begin{bmatrix} e^t & \frac{1}{2}(e^{3t} e^t) \\ 0 & e^{3t} \end{bmatrix}.$

- **26** (a) The inverse of  $e^{At}$  is  $e^{-At}$  (b) If  $Ax = \lambda x$  then  $e^{At}x = e^{\lambda t}x$  and  $e^{\lambda t} \neq 0$ .
- **27**  $(x,y)=(e^{4t},e^{-4t})$  is a growing solution. The correct matrix for the exchanged u=(y,x) is  $\begin{bmatrix} 2 & -2 \\ -4 & 0 \end{bmatrix}$ . It *does* have the same eigenvalues as the original matrix.
- **28** Centering produces  $m{U}_{n+1} = \begin{bmatrix} 1 & \Delta t \\ -\Delta t & 1 (\Delta t)^2 \end{bmatrix} m{U}_n$ . At  $\Delta t = 1$ ,  $\lambda = e^{i\pi/3}$  and  $e^{-i\pi/3}$  both have  $\lambda^6 = 1$  so  $A^6 = I$ .  $m{U}_6 = A^6 m{U}_0$  comes exactly back to  $m{U}_0$ .
- **29** First A has  $\lambda=\pm i$  and  $A^4=I$  Second A has  $\lambda=-1,-1$  and  $A^n=(-1)^n\begin{bmatrix}1-2n&-2n\\2n&2n+1\end{bmatrix}$  Linear growth.
- **30** With  $a=\Delta t/2$  the trapezoidal step is  $\boldsymbol{U}_{n+1}=\frac{1}{1+a^2}\begin{bmatrix}1-a^2&2a\\-2a&1-a^2\end{bmatrix}\boldsymbol{U}_n.$  Orthonormal columns  $\Rightarrow$  orthogonal matrix  $\Rightarrow \|\boldsymbol{U}_{n+1}\|=\|\boldsymbol{U}_n\|$
- **31** (a)  $(\cos A)x = (\cos \lambda)x$  (b)  $\lambda(A) = 2\pi$  and 0 so  $\cos \lambda = 1, 1$  and  $\cos A = I$  (c)  $u(t) = 3(\cos 2\pi t)(1, 1) + 1(\cos 0t)(1, -1) [u' = Au \text{ has } \exp, u'' = Au \text{ has } \cos \lambda = 1$

#### Problem Set 6.4, page 337

- **3**  $\lambda = 0, 4, -2$ ; unit vectors  $\pm (0, 1, -1)/\sqrt{2}$  and  $\pm (2, 1, 1)/\sqrt{6}$  and  $\pm (1, -1, -1)/\sqrt{3}$ .
- $\mathbf{5} \ \ Q = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2 \end{bmatrix}. \quad \text{The columns of } Q \text{ are unit eigenvectors of } A \\ \text{Each unit eigenvector could be multiplied by } -1$
- **8** If  $A^3=0$  then all  $\lambda^3=0$  so all  $\lambda=0$  as in  $A=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ . If A is symmetric then  $A^3=Q\Lambda^3Q^{\rm T}=0$  gives  $\Lambda=0$ . The only symmetric A is  $Q\,0\,Q^{\rm T}=$  zero matrix.
- 10 If x is not real then  $\lambda = x^T A x / x^T x$  is *not* always real. Can't assume real eigenvectors!
- $\mathbf{11} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 2 \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} + 4 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}; \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix} = 0 \begin{bmatrix} .64 & -.48 \\ -.48 & .36 \end{bmatrix} + 25 \begin{bmatrix} .36 & .48 \\ .48 & .64 \end{bmatrix}$
- **14** M is skew-symmetric and orthogonal;  $\lambda$ 's must be i, i, -i, -i to have trace zero.
- **16** (a) If  $Az = \lambda y$  and  $A^{\mathrm{T}}y = \lambda z$  then  $B[y; -z] = [-Az; A^{\mathrm{T}}y] = -\lambda[y; -z]$ . So  $-\lambda$  is also an eigenvalue of B. (b)  $A^{\mathrm{T}}Az = A^{\mathrm{T}}(\lambda y) = \lambda^2 z$ . (c)  $\lambda = -1, -1, 1, 1; x_1 = (1, 0, -1, 0), x_2 = (0, 1, 0, -1), x_3 = (1, 0, 1, 0), x_4 = (0, 1, 0, 1)$ .
- **19** A has  $S=\begin{bmatrix}1&1&0\\1&-1&0\\0&0&1\end{bmatrix}$ ; B has  $S=\begin{bmatrix}1&0&1\\0&1&0\\0&0&2d\end{bmatrix}$ . Perpendicular for A Not perpendicular for B since  $B^T\neq B$
- $\textbf{21} \ \ \text{(a) False.} \ A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad \text{(b) True from } A^{\mathrm{T}} = Q\Lambda Q^{\mathrm{T}} \\ \text{(c) True from } A^{-1} = Q\Lambda^{-1}Q^{\mathrm{T}} \quad \ \text{(d) False!}$
- **22** A and  $A^{\mathrm{T}}$  have the same  $\lambda$ 's but the *order* of the  $\boldsymbol{x}$ 's can change.  $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$  has  $\lambda_1 = i$  and  $\lambda_2 = -i$  with  $\boldsymbol{x}_1 = (1,i)$  first for A but  $\boldsymbol{x}_1 = (1,-i)$  first for  $A^{\mathrm{T}}$ .

- **23** A is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diagonalizable, Markov. A allows  $QR, S\Lambda S^{-1}, Q\Lambda Q^{\mathrm{T}}; B$  allows  $S\Lambda S^{-1}$  and  $Q\Lambda Q^{\mathrm{T}}$ .
- **24** Symmetry gives  $Q\Lambda Q^{\mathrm{T}}$  if b=1; repeated  $\lambda$  and no S if b=-1; singular if b=0.
- **25** Orthogonal and symmetric requires  $|\lambda|=1$  and  $\lambda$  real, so  $\lambda=\pm 1$ . Then  $A=\pm I$  or  $A=Q\Lambda Q^{\rm T}=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\begin{bmatrix}1&0\\0&-1\end{bmatrix}\begin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}=\begin{bmatrix}\cos2\theta&\sin2\theta\\\sin2\theta&-\cos2\theta\end{bmatrix}.$
- 27 The roots of  $\lambda^2 + b\lambda + c = 0$  differ by  $\sqrt{b^2 4c}$ . For  $\det(A + tB \lambda I)$  we have b = -3 8t and  $c = 2 + 16t t^2$ . The minimum of  $b^2 4c$  is 1/17 at t = 2/17. Then  $\lambda_2 \lambda_1 = 1/\sqrt{17}$ .
- **29** (a)  $A=Q\Lambda\overline{Q}^{\,\mathrm{T}}$  times  $\overline{A}^{\,\mathrm{T}}=Q\overline{\Lambda}^{\,\mathrm{T}}\overline{Q}^{\,\mathrm{T}}$  equals  $\overline{A}^{\,\mathrm{T}}$  times A because  $\Lambda\overline{\Lambda}^{\,\mathrm{T}}=\overline{\Lambda}^{\,\mathrm{T}}\Lambda$  (diagonal!) (b) step 2: The 1,1 entries of  $\overline{T}^{\,\mathrm{T}}$  T and  $T\overline{T}^{\,\mathrm{T}}$  are  $|a|^2$  and  $|a|^2+|b|^2$ . This makes b=0 and  $T=\Lambda$ .
- **30**  $a_{11}$  is  $[q_{11} \dots q_{1n}] [\lambda_1 \overline{q}_{11} \dots \lambda_n \overline{q}_{1n}]^T \le \lambda_{\max} (|q_{11}|^2 + \dots + |q_{1n}|^2) = \lambda_{\max}.$
- **31** (a)  $\boldsymbol{x}^{\mathrm{T}}(A\boldsymbol{x}) = (A\boldsymbol{x})^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}}A^{\mathrm{T}}\boldsymbol{x} = -\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x}$ . (b)  $\overline{\boldsymbol{z}}^{\mathrm{T}}A\boldsymbol{z}$  is pure imaginary, its real part is  $\boldsymbol{x}^{\mathrm{T}}A\boldsymbol{x} + \boldsymbol{y}^{\mathrm{T}}A\boldsymbol{y} = 0 + 0$  (c)  $\det A = \lambda_1 \dots \lambda_n \geq 0$ : pairs of  $\lambda$ 's = ib, -ib.

#### Problem Set 6.5, page 350

- $\begin{array}{ll} \textbf{3} & \text{Positive definite} \\ & \text{for } -3 < b < 3 \\ & \text{Positive definite} \\ & \text{for } c > 8 \\ \end{array} \quad \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 9 b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 9 b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = LDL^{\mathrm{T}}$
- **4**  $f(x,y) = x^2 + 4xy + 9y^2 = (x+2y)^2 + 5y^2$ ;  $x^2 + 6xy + 9y^2 = (x+3y)^2$ .
- $\mathbf{8} \ \ A = \begin{bmatrix} 3 & 6 \\ 6 & 16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}. \quad \begin{array}{l} \text{Pivots } 3,4 \text{ outside squares, } \ell_{ij} \text{ inside.} \\ \boldsymbol{x}^{\text{T}}A\boldsymbol{x} = 3(x+2y)^2 + 4y^2 \end{array}$
- $\textbf{10} \ \ A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \ \ \begin{array}{l} \text{has pivots} \\ 2, \frac{3}{2}, \frac{4}{3}; \end{array} \ \ B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \ \text{is singular; } B \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$
- **12** A is positive definite for c > 1; determinants  $c, c^2 1, (c 1)^2(c + 2) > 0$ . B is *never* positive definite (determinants d 4 and -4d + 12 are never both positive).
- **14** The eigenvalues of  $A^{-1}$  are positive because they are  $1/\lambda(A)$ . And the entries of  $A^{-1}$  pass the determinant tests. And  $\mathbf{x}^{\mathrm{T}}A^{-1}\mathbf{x} = (A^{-1}\mathbf{x})^{\mathrm{T}}A(A^{-1}\mathbf{x}) > 0$  for all  $\mathbf{x} \neq \mathbf{0}$ .
- 17 If  $a_{jj}$  were smaller than all  $\lambda$ 's,  $A a_{jj}I$  would have all eigenvalues > 0 (positive definite). But  $A a_{jj}I$  has a zero in the (j,j) position; impossible by Problem 16.
- **21** A is positive definite when s > 8; B is positive definite when t > 5 by determinants.

$$\mathbf{22} \ R = \begin{bmatrix} 1 & -1 \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{9} \\ \sqrt{1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -\frac{1}{1} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; R = Q \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} Q^{\mathrm{T}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

**24** The ellipse  $x^2 + xy + y^2 = 1$  has axes with half-lengths  $1/\sqrt{\lambda} = \sqrt{2}$  and  $\sqrt{2/3}$ .

$$\mathbf{25} \ \ A = C^{\mathrm{T}}C = \begin{bmatrix} 9 & 3 \\ 3 & 5 \end{bmatrix}; \begin{bmatrix} 4 & 8 \\ 8 & 25 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

- **29**  $H_1 = \begin{bmatrix} 6x^2 & 2x \\ 2x & 2 \end{bmatrix}$  is positive definite if  $x \neq 0$ ;  $F_1 = (\frac{1}{2}x^2 + y)^2 = 0$  on the curve  $\frac{1}{2}x^2 + y = 0$ ;  $H_2 = \begin{bmatrix} 6x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$  is indefinite, (0,1) is a saddle point of  $F_2$ .
- **31** If c>9 the graph of z is a bowl, if c<9 the graph has a saddle point. When c=9 the graph of  $z=(2x+3y)^2$  is a "trough" staying at zero on the line 2x+3y=0.
- **32** Orthogonal matrices, exponentials  $e^{At}$ , matrices with  $\det = 1$  are groups. Examples of subgroups are orthogonal matrices with  $\det = 1$ , exponentials  $e^{An}$  for integer n.
- **34** The five eigenvalues of K are  $2-2\cos\frac{k\pi}{6}=2-\sqrt{3},\,2-1,\,2,\,2+1,\,2+\sqrt{3}:$  product of eigenvalues  $=6=\det K.$

#### Problem Set 6.6, page 360

- **1**  $B = GCG^{-1} = GF^{-1}AFG^{-1}$  so  $M = FG^{-1}$ . C similar to A and  $B \Rightarrow A$  similar to B.
- **6** *Eight families* of similar matrices: six matrices have  $\lambda=0,1$  (one family); three matrices have  $\lambda=1,1$  and three have  $\lambda=0,0$  (two families each!); one has  $\lambda=1,-1$ ; one has  $\lambda=2,0$ ; two have  $\lambda=\frac{1}{2}(1\pm\sqrt{5})$  (they are in one family).
- **7** (a)  $(M^{-1}AM)(M^{-1}x) = M^{-1}(Ax) = M^{-1}0 = 0$  (b) The nullspaces of A and of  $M^{-1}AM$  have the same *dimension*. Different vectors and different bases.
- 8 Same  $\Lambda$  Same S But  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$  have the same line of eigenvectors and the same eigenvalues  $\lambda = 0, 0$ .
- $\textbf{10} \ \ J^2 = \begin{bmatrix} c^2 & 2c \\ 0 & c^2 \end{bmatrix} \text{ and } J^k = \begin{bmatrix} c^k & kc^{k-1} \\ 0 & c^k \end{bmatrix}; J^0 = I \text{ and } J^{-1} = \begin{bmatrix} c^{-1} & -c^{-2} \\ 0 & c^{-1} \end{bmatrix}.$
- **14** (1) Choose  $M_i$  = reverse diagonal matrix to get  $M_i^{-1}J_iM_i=M_i^{\rm T}$  in each block (2)  $M_0$  has those diagonal blocks  $M_i$  to get  $M_0^{-1}JM_0=J^{\rm T}$ . (3)  $A^{\rm T}=(M^{-1})^{\rm T}J^{\rm T}M^{\rm T}$  equals  $(M^{-1})^{\rm T}M_0^{-1}JM_0M^{\rm T}=(MM_0M^{\rm T})^{-1}A(MM_0M^{\rm T})$ , and  $A^{\rm T}$  is similar to A.
- 17 (a) False: Diagonalize a nonsymmetric  $A=S\Lambda S^{-1}$ . Then  $\Lambda$  is symmetric and similar (b) True: A singular matrix has  $\lambda=0$ . (c) False:  $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$  and  $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$  are similar (they have  $\lambda=\pm 1$ ) (d) True: Adding I increases all eigenvalues by 1
- **18**  $AB = B^{-1}(BA)B$  so AB is similar to BA. If  $AB\mathbf{x} = \lambda \mathbf{x}$  then  $BA(B\mathbf{x}) = \lambda(B\mathbf{x})$ .
- **19** Diagonal blocks 6 by 6, 4 by 4; AB has the same eigenvalues as BA plus 6-4 zeros.
- **22**  $A=MJM^{-1}, A^n=MJ^nM^{-1}=0$  (each  $J^k$  has 1's on the kth diagonal).  $\det(A-\lambda I)=\lambda^n$  so  $J^n=0$  by the Cayley-Hamilton Theorem.

#### Problem Set 6.7, page 371

$$\mathbf{1} \ A = U \Sigma V^{\mathrm{T}} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \\ & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ \frac{3}{\sqrt{10}} \end{bmatrix} \begin{bmatrix} \sqrt{50} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ \frac{2}{\sqrt{5}} \end{bmatrix}$$

- **4**  $A^{\mathrm{T}}A = AA^{\mathrm{T}} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$  has eigenvalues  $\sigma_1^2 = \frac{3+\sqrt{5}}{2}$ ,  $\sigma_2^2 = \frac{3-\sqrt{5}}{2}$ . But A is indefinite  $\sigma_1 = (1+\sqrt{5})/2 = \lambda_1(A)$ ,  $\sigma_2 = (\sqrt{5}-1)/2 = -\lambda_2(A)$ ;  $u_1 = v_1$  but  $u_2 = -v_2$ .
- **5** A proof that *eigshow* finds the SVD. When  $V_1=(1,0), V_2=(0,1)$  the demo finds  $AV_1$  and  $AV_2$  at some angle  $\theta$ . A  $90^\circ$  turn by the mouse to  $V_2, -V_1$  finds  $AV_2$  and  $-AV_1$  at the angle  $\pi-\theta$ . Somewhere between, the constantly orthogonal  $v_1$  and  $v_2$  must produce  $Av_1$  and  $Av_2$  at angle  $\pi/2$ . Those orthogonal directions give  $u_1$  and  $u_2$ .
- **9**  $A = UV^{\mathrm{T}}$  since all  $\sigma_i = 1$ , which means that  $\Sigma = I$ .
- **14** The smallest change in A is to set its smallest singular value  $\sigma_2$  to zero.
- **15** The singular values of A + I are not  $\sigma_i + 1$ . Need eigenvalues of  $(A + I)^T (A + I)$ .
- 17  $A = U\Sigma V^{\mathrm{T}} = [\text{cosines including } \boldsymbol{u}_4] \ \operatorname{diag}(\operatorname{sqrt}(2 \sqrt{2}, 2, 2 + \sqrt{2})) [\text{sine matrix}]^{\mathrm{T}}.$   $AV = U\Sigma \text{ says that differences of sines in } V \text{ are cosines in } U \text{ times } \sigma$ 's.

#### Problem Set 7.1, page 380

- **3**  $T(\boldsymbol{v}) = (0,1)$  and  $T(\boldsymbol{v}) = v_1 v_2$  are not linear.
- **4** (a) S(T(v)) = v (b)  $S(T(v_1) + T(v_2)) = S(T(v_1)) + S(T(v_2))$ .
- **5** Choose v = (1, 1) and w = (-1, 0). T(v) + T(w) = (0, 1) but T(v + w) = (0, 0).
- 7 (a) T(T(v)) = v (b) T(T(v)) = v + (2,2) (c) T(T(v)) = -v (d) T(T(v)) = T(v).
- **10** Not invertible: (a) T(1,0) = 0 (b) (0,0,1) is not in the range (c) T(0,1) = 0.
- **12** Write v as a combination c(1,1) + d(2,0). Then T(v) = c(2,2) + d(0,0). T(v) = (4,4); (2,2); (2,2); if  $v = (a,b) = b(1,1) + \frac{a-b}{2}(2,0)$  then T(v) = b(2,2) + (0,0).
- **16** No matrix A gives  $A \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ . To professors: Linear transformations on matrix space come from **4** by **4** matrices. Those in Problems 13–15 were special.
- 17 (a) True (b) True (c) True (d) False.
- **19**  $T(T^{-1}(M)) = M$  so  $T^{-1}(M) = A^{-1}MB^{-1}$ .
- **20** (a) Horizontal lines stay horizontal, vertical lines stay vertical onto a line (c) Vertical lines stay vertical because  $T(1,0)=(a_{11},0)$ .
- 27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).
- **29** (a) ad bc = 0 (b) ad bc > 0 (c) |ad bc| = 1. If vectors to two corners transform to themselves then by linearity T = I. (Fails if one corner is (0,0).)

#### Problem Set 7.2, page 395

- **3** (Matrix A)<sup>2</sup> = B when (transformation T)<sup>2</sup> = S and output basis = input basis.
- **5**  $T(v_1 + v_2 + v_3) = 2w_1 + w_2 + 2w_3$ ; A times (1, 1, 1) gives (2, 1, 2).
- **6**  $v = c(v_2 v_3)$  gives T(v) = 0; nullspace is (0, c, -c); solutions (1, 0, 0) + (0, c, -c).
- **8** For  $T^2(v)$  we would need to know T(w). If the w's equal the v's, the matrix is  $A^2$ .
- 12 (c) is wrong because  $w_1$  is not generally in the input space.

**14** (a) 
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$
 (b)  $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$  = inverse of (a) (c)  $A \begin{bmatrix} 2 \\ 6 \end{bmatrix}$  must be  $2A \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ .

**16** 
$$MN = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -1 \\ -7 & 3 \end{bmatrix}.$$

- **18**  $(a,b) = (\cos \theta, -\sin \theta)$ . Minus sign from  $Q^{-1} = Q^{T}$ .
- **20**  $w_2(x) = 1 x^2$ ;  $w_3(x) = \frac{1}{2}(x^2 x)$ ;  $y = 4w_1 + 5w_2 + 6w_3$ .
- 23 The matrix M with these nine entries must be invertible.
- **27** If T is not invertible,  $T(v_1), \ldots, T(v_n)$  is not a basis. We couldn't choose  $w_i = T(v_i)$ .
- **30** S takes (x, y) to (-x, y). S(T(v)) = (-1, 2). S(v) = (-2, 1) and T(S(v)) = (1, -2).
- **34** The last step writes 6, 6, 2, 2 as the overall average 4, 4, 4 plus the difference 2, 2, -2, -2. Therefore  $c_1 = 4$  and  $c_2 = 2$  and  $c_3 = 1$  and  $c_4 = 1$ .
- **35** The wavelet basis is (1, 1, 1, 1, 1, 1, 1, 1) and the long wavelet and two medium wavelets (1, 1, -1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, -1, -1) and 4 wavelets with a single pair 1, -1.
- **36** If Vb = Wc then  $b = V^{-1}Wc$ . The change of basis matrix is  $V^{-1}W$ .
- **37** Multiplication by  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  with this basis is represented by 4 by 4  $A = \begin{bmatrix} aI & bI \\ cI & dI \end{bmatrix}$
- **38** If  $w_1 = Av_1$  and  $w_2 = Av_2$  then  $a_{11} = a_{22} = 1$ . All other entries will be zero.

#### Problem Set 7.3, page 406

$$\mathbf{1} \ \ A^{\mathrm{T}}A = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix} \ \text{has} \ \lambda = 50 \ \text{and} \ 0, \ \ \boldsymbol{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \ \boldsymbol{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}; \ \sigma_1 = \sqrt{50}.$$

$$A oldsymbol{v}_1 = rac{1}{\sqrt{5}} egin{bmatrix} 5 \\ 15 \end{bmatrix} = \sigma_1 oldsymbol{u}_1 ext{ and } A oldsymbol{v}_2 = oldsymbol{0}. \quad oldsymbol{u}_1 = rac{1}{\sqrt{10}} egin{bmatrix} 1 \\ 3 \end{bmatrix} ext{ and } A A^{\mathrm{T}} oldsymbol{u}_1 = 50 \ oldsymbol{u}_1.$$

**3** 
$$A=QH=\frac{1}{\sqrt{50}}\begin{bmatrix} 7 & -1\\ 1 & 7\end{bmatrix}\frac{1}{\sqrt{50}}\begin{bmatrix} 10 & 20\\ 20 & 40 \end{bmatrix}$$
.  $H$  is semidefinite because  $A$  is singular.

$$\textbf{4} \ A^+ = V \begin{bmatrix} 1/\sqrt{50} & 0 \\ 0 & 0 \end{bmatrix} U^{\mathrm{T}} = \tfrac{1}{50} \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}; \ A^+A = \begin{bmatrix} .2 & .4 \\ .4 & .8 \end{bmatrix}, \ AA^+ = \begin{bmatrix} .1 & .3 \\ .3 & .9 \end{bmatrix}.$$

$$\mathbf{7} \ \left[ \ \sigma_1 \boldsymbol{u}_1 \quad \sigma_2 \boldsymbol{u}_2 \ \right] \begin{bmatrix} \boldsymbol{v}_1^{\mathrm{T}} \\ \boldsymbol{v}_2^{\mathrm{T}} \end{bmatrix} = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^{\mathrm{T}}. \text{ In general this is } \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^{\mathrm{T}} + \dots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\mathrm{T}}.$$

**9**  $A^+$  is  $A^{-1}$  because A is invertible. Pseudoinverse equals inverse when  $A^{-1}$  exists!

$$\textbf{11} \ \ A = [\ 1\ ] \ [\ 5 \quad 0 \quad 0\ ] V^{\mathrm{T}} \ \ \text{and} \ \ A^{+} = V \left[ \begin{array}{c} .2 \\ 0 \\ 0 \end{array} \right] = \left[ \begin{array}{c} .12 \\ .16 \\ 0 \end{array} \right]; \ A^{+} A = \left[ \begin{array}{ccc} .36 & .48 & 0 \\ .48 & .64 & 0 \\ 0 & 0 & 0 \end{array} \right]; AA^{+} = [\ 1\ ]$$

- **13** If det A = 0 then rank(A) < n; thus rank $(A^+) < n$  and det  $A^+ = 0$ .
- **16**  $x^+$  in the row space of A is perpendicular to  $\hat{x} x^+$  in the nullspace of  $A^T A =$  nullspace of A. The right triangle has  $c^2 = a^2 + b^2$ .
- 17  $AA^+p = p$ ,  $AA^+e = 0$ ,  $A^+Ax_r = x_r$ ,  $A^+Ax_n = 0$ .
- **19** L is determined by  $\ell_{21}$ . Each eigenvector in S is determined by one number. The counts are 1+3 for LU, 1+2+1 for LDU, 1+3 for QR, 1+2+1 for  $U\Sigma V^{\mathrm{T}}$ , 2+2+0 for  $S\Lambda S^{-1}$ .
- **22** Keep only the r by r corner  $\Sigma_r$  of  $\Sigma$  (the rest is all zero). Then  $A=U\Sigma V^{\rm T}$  has the required form  $A=\widehat{U}M_1\Sigma_rM_2^{\rm T}\widehat{V}^{\rm T}$  with an invertible  $M=M_1\Sigma_rM_2^{\rm T}$  in the middle.
- $\mathbf{23} \, \begin{bmatrix} 0 & A \\ A^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} A \boldsymbol{v} \\ A^{\mathrm{T}} \boldsymbol{u} \end{bmatrix} = \sigma \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{bmatrix}. \quad \text{The singular values of } A \text{ are } eigenvalues \text{ of this block matrix.}$

#### Problem Set 8.1, page 418

- **3** The rows of the free-free matrix in equation (9) add to  $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$  so the right side needs  $f_1+f_2+f_3=0$ .  $\boldsymbol{f}=(-1,0,1)$  gives  $c_2u_1-c_2u_2=-1, c_3u_2-c_3u_3=-1, 0=0$ . Then  $\boldsymbol{u}_{\text{particular}}=(-c_2^{-1}-c_3^{-1},-c_3^{-1},0)$ . Add any multiple of  $\boldsymbol{u}_{\text{nullspace}}=(1,1,1)$ .
- $\mathbf{4} \ \int -\frac{d}{dx} \left( c(x) \frac{du}{dx} \right) dx = \left[ c(x) \frac{du}{dx} \right]_0^1 = 0 \ (\text{bdry cond}) \ \text{so we need} \ \int \! f(x) \, dx = 0.$
- **6** Multiply  $A_1^{\mathrm{T}}C_1A_1$  as columns of  $A_1^{\mathrm{T}}$  times c's times rows of  $A_1$ . The first 3 by 3 "element matrix"  $c_1E_1=\begin{bmatrix}1&0&0\end{bmatrix}^{\mathrm{T}}c_1\begin{bmatrix}1&0&0\end{bmatrix}$  has  $c_1$  in the top left corner.
- **8** The solution to -u'' = 1 with u(0) = u(1) = 0 is  $u(x) = \frac{1}{2}(x x^2)$ . At  $x = \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$  this gives u = 2, 3, 3, 2 (discrete solution in Problem 7) times  $(\Delta x)^2 = 1/25$ .
- 11 Forward/backward/centered for du/dx has a big effect because that term has the large coefficient. MATLAB:  $E = \text{diag}(\text{ones}(6,1),1); \ K = 64*(2*\text{eye}(7)-E-E'); \ D = 80*(E-\text{eye}(7)); \ (K+D)\backslash \text{ones}(7,1); \ \% \ \text{forward}; \ (K-D')\backslash \text{ones}(7,1); \ \% \ \text{backward}; \ (K+D/2-D'/2)\backslash \text{ones}(7,1); \ \% \ \text{centered} \ \text{is usually the best: more accurate}$

#### Problem Set 8.2, page 428

- **1**  $A = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$ ; nullspace contains  $\begin{bmatrix} c \\ c \\ c \end{bmatrix}$ ;  $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$  is not orthogonal to that nullspace.
- **2**  $A^{\mathrm{T}}y = 0$  for y = (1, -1, 1); current along edge 1, edge 3, back on edge 2 (full loop).
- **5** Kirchhoff's Current Law  $A^{\mathrm{T}} y = f$  is solvable for f = (1, -1, 0) and not solvable for f = (1, 0, 0); f must be orthogonal to (1, 1, 1) in the nullspace:  $f_1 + f_2 + f_3 = 0$ .

**6** 
$$A^{\mathrm{T}}Ax = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}x = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix} = f$$
 produces  $x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} c \\ c \\ c \end{bmatrix}$ ; potentials  $x = 1, -1, 0$  and currents  $-Ax = 2, 1, -1$ ;  $f$  sends 3 units from node 2 into node 1.

$$\textbf{7} \ A^{\mathrm{T}} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} A = \begin{bmatrix} 3 & -1 & -2 \\ -1 & 3 & -2 \\ -2 & -2 & 4 \end{bmatrix}; \ \textbf{\textit{f}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ yields } \textbf{\textit{x}} = \begin{bmatrix} 5/4 \\ 1 \\ 7/8 \end{bmatrix} + \text{ any } \begin{bmatrix} c \\ c \\ c \end{bmatrix};$$
 potentials  $\textbf{\textit{x}} = \frac{5}{4}, 1, \frac{7}{8}$  and currents  $-CA\textbf{\textit{x}} = \frac{1}{4}, \frac{3}{4}, \frac{1}{4}$ .

- **9** Elimination on Ax = b always leads to  $y^Tb = 0$  in the zero rows of U and R:  $-b_1 + b_2 b_3 = 0$  and  $b_3 b_4 + b_5 = 0$  (those y's are from Problem 8 in the left nullspace). This is Kirchhoff's *Voltage* Law around the two *loops*.
- $\mathbf{11} \ A^{\mathrm{T}}A = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \ \begin{array}{l} \mathrm{diagonal\ entry = number\ of\ edges\ into\ the\ node} \\ \mathrm{the\ trace\ is\ } 2 \mathrm{\ times\ the\ number\ of\ nodes} \\ \mathrm{off\mbox{-}diagonal\ entry = -1\ if\ nodes\ are\ connected} \\ A^{\mathrm{T}}A \mathrm{\ is\ the\ } \mathbf{graph\ Laplacian}, A^{\mathrm{T}}CA \mathrm{\ is\ } \mathbf{weighted\ } \mathrm{by\ } C \end{bmatrix}$

$$\mathbf{13} \ A^{\mathrm{T}}CA\boldsymbol{x} = \begin{bmatrix} 4 & -2 & -2 & 0 \\ -2 & 8 & -3 & -3 \\ -2 & -3 & 8 & -3 \\ 0 & -3 & -3 & 6 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \ \text{ gives four potentials } \boldsymbol{x} = (\frac{5}{12}, \frac{1}{6}, \frac{1}{6}, 0)$$
 I grounded  $x_4 = 0$  and solved for  $\boldsymbol{x}$  currents  $\boldsymbol{y} = -CA\boldsymbol{x} = (\frac{2}{3}, \frac{2}{3}, 0, \frac{1}{2}, \frac{1}{2})$ 

17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f's add to zero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

#### Problem Set 8.3, page 437

$$\mathbf{2} \ A = \begin{bmatrix} .6 & -1 \\ .4 & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ & .75 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -.4 & .6 \end{bmatrix}; A^{\infty} = \begin{bmatrix} .6 & -1 \\ .4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -.4 & .6 \end{bmatrix} = \begin{bmatrix} .6 & .6 \\ .4 & .4 \end{bmatrix}.$$

**3** 
$$\lambda = 1$$
 and .8,  $x = (1,0)$ ; 1 and  $-.8$ ,  $x = (\frac{5}{9}, \frac{4}{9})$ ;  $1, \frac{1}{4}$ , and  $\frac{1}{4}$ ,  $x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ .

**5** The steady state eigenvector for  $\lambda = 1$  is (0, 0, 1) = everyone is dead.

**6** Add the components of  $Ax = \lambda x$  to find sum  $s = \lambda s$ . If  $\lambda \neq 1$  the sum must be s = 0.

**7** 
$$(.5)^k \to 0$$
 gives  $A^k \to A^\infty$ ; any  $A = \begin{bmatrix} .6 + .4a & .6 - .6a \\ .4 - .4a & .4 + .6a \end{bmatrix}$  with  $a \le 1$   $.4 + .6a \ge 0$ 

- **9**  $M^2$  is still nonnegative;  $\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} M = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$  so multiply on the right by M to find  $\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} M^2 = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \Rightarrow$  columns of  $M^2$  add to 1.
- **10**  $\lambda = 1$  and a + d 1 from the trace; steady state is a multiple of  $x_1 = (b, 1 a)$ .
- **12** B has  $\lambda=0$  and -.5 with  $\boldsymbol{x}_1=(.3,\ .2)$  and  $\boldsymbol{x}_2=(-1,1)$ ; A has  $\lambda=1$  so A-I has  $\lambda=0$ .  $e^{-.5t}$  approaches zero and the solution approaches  $c_1e^{0t}\boldsymbol{x}_1=c_1\boldsymbol{x}_1$ .
- **13**  $\boldsymbol{x} = (1, 1, 1)$  is an eigenvector when the row sums are equal;  $A\boldsymbol{x} = (.9, .9, .9)$ .

**15** The first two 
$$A$$
's have  $\lambda_{\max} < 1$ ;  $p = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$  and  $\begin{bmatrix} 130 \\ 32 \end{bmatrix}$ ;  $I - \begin{bmatrix} .5 & 1 \\ .5 & 0 \end{bmatrix}$  has no inverse.

- **16**  $\lambda = 1$  (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).
- 17 No, A has an eigenvalue  $\lambda = 1$  and  $(I A)^{-1}$  does not exist.
- **19**  $\Lambda$  times  $S^{-1}\Delta S$  has the same diagonal as  $S^{-1}\Delta S$  times  $\Lambda$  because  $\Lambda$  is diagonal.
- **20** If B > A > 0 and  $Ax = \lambda_{\max}(A)x > 0$  then  $Bx > \lambda_{\max}(A)x$  and  $\lambda_{\max}(B) > \lambda_{\max}(A)$ .

#### Problem Set 8.4, page 446

- **1** Feasible set = line segment (6,0) to (0,3); minimum cost at (6,0), maximum at (0,3).
- **2** Feasible set has corners (0,0), (6,0), (2,2), (0,6). Minimum cost 2x y at (6,0).
- **3** Only two corners (4,0,0) and (0,2,0); let  $x_i \to -\infty$ ,  $x_2 = 0$ , and  $x_3 = x_1 4$ .
- **4** From (0,0,2) move to  $\boldsymbol{x}=(0,1,1.5)$  with the constraint  $x_1+x_2+2x_3=4$ . The new cost is 3(1)+8(1.5)=\$15 so r=-1 is the reduced cost. The simplex method also checks  $\boldsymbol{x}=(1,0,1.5)$  with cost 5(1)+8(1.5)=\$17; r=1 means more expensive.
- **5**  $c = \begin{bmatrix} 3 & 5 & 7 \end{bmatrix}$  has minimum cost 12 by the Ph.D. since x = (4,0,0) is minimizing. The dual problem maximizes 4y subject to  $y \le 3$ ,  $y \le 5$ ,  $y \le 7$ . Maximum = 12.
- 8  $y^{\mathrm{T}}b \leq y^{\mathrm{T}}Ax = (A^{\mathrm{T}}y)^{\mathrm{T}}x \leq c^{\mathrm{T}}x$ . The first inequality needed  $y \geq 0$  and  $Ax b \geq 0$ .

#### Problem Set 8.5, page 451

- 1  $\int_0^{2\pi} \cos((j+k)x) dx = \left[\frac{\sin((j+k)x)}{j+k}\right]_0^{2\pi} = 0$  and similarly  $\int_0^{2\pi} \cos((j-k)x) dx = 0$ Notice  $j-k \neq 0$  in the denominator. If j=k then  $\int_0^{2\pi} \cos^2 jx dx = \pi$ .
- **4**  $\int_{-1}^{1}(1)(x^3-cx)\,dx=0$  and  $\int_{-1}^{1}(x^2-\frac{1}{3})(x^3-cx)\,dx=0$  for all c (odd functions). Choose c so that  $\int_{-1}^{1}x(x^3-cx)\,dx=[\frac{1}{5}x^5-\frac{c}{3}x^3]_{-1}^{1}=\frac{2}{5}-c\frac{2}{3}=0$ . Then  $c=\frac{3}{5}$ .
- **5** The integrals lead to the Fourier coefficients  $a_1 = 0$ ,  $b_1 = 4/\pi$ ,  $b_2 = 0$ .
- **6** From eqn. (3)  $a_k = 0$  and  $b_k = 4/\pi k$  (odd k). The square wave has  $||f||^2 = 2\pi$ . Then eqn. (6) is  $2\pi = \pi (16/\pi^2)(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots)$ . That infinite series equals  $\pi^2/8$ .
- **8**  $\|\boldsymbol{v}\|^2 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$  so  $\|\boldsymbol{v}\| = \sqrt{2}$ ;  $\|\boldsymbol{v}\|^2 = 1 + a^2 + a^4 + \dots = 1/(1 a^2)$  so  $\|\boldsymbol{v}\| = 1/\sqrt{1 a^2}$ ;  $\int_0^{2\pi} (1 + 2\sin x + \sin^2 x) \, dx = 2\pi + 0 + \pi$  so  $\|f\| = \sqrt{3\pi}$ .
- **9** (a) f(x) = (1 + square wave)/2 so the a's are  $\frac{1}{2}$ , 0, 0, ... and the b's are  $2/\pi$ , 0,  $-2/3\pi$ , 0,  $2/5\pi$ , ... (b)  $a_0 = \int_0^{2\pi} x \, dx/2\pi = \pi$ , all other  $a_k = 0$ ,  $b_k = -2/k$ .
- **11**  $\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$ ;  $\cos(x + \frac{\pi}{3}) = \cos x \cos \frac{\pi}{3} \sin x \sin \frac{\pi}{3} = \frac{1}{2}\cos x \frac{\sqrt{3}}{2}\sin x$ .
- **13**  $a_0=\frac{1}{2\pi}\int F(x)\,dx=\frac{1}{2\pi}, a_k=\frac{\sin(kh/2)}{\pi kh/2}\to \frac{1}{\pi}$  for delta function; all  $b_k=0$ .

#### Problem Set 8.6, page 458

- **3** If  $\sigma_3 = 0$  the third equation is exact.
- **4** 0,1,2 have probabilities  $\frac{1}{4},\frac{1}{2},\frac{1}{4}$  and  $\sigma^2=(0-1)^2\frac{1}{4}+(1-1)^2\frac{1}{2}+(2-1)^2\frac{1}{4}=\frac{1}{2}$ .
- **5** Mean  $(\frac{1}{2},\frac{1}{2})$ . Independent flips lead to  $\Sigma = \mathbf{diag}(\frac{1}{4},\frac{1}{4})$ . Trace  $= \sigma_{\text{total}}^2 = \frac{1}{2}$ .
- **6** Mean  $m = p_0$  and variance  $\sigma^2 = (1 p_0)^2 p_0 + (0 p_0)^2 (1 p_0) = p_0 (1 p_0)$ .
- 7 Minimize  $P=a^2\sigma_1^2+(1-a)^2\sigma_2^2$  at  $P'=2a\sigma_1^2-2(1-a)\sigma_2^2=0$ ;  $a=\sigma_2^2/(\sigma_1^2+\sigma_2^2)$  recovers equation (2) for the statistically correct choice with minimum variance.
- 8 Multiply  $L\Sigma L^{\mathrm{T}} = (A^{\mathrm{T}}\Sigma^{-1}A)^{-1}A^{\mathrm{T}}\Sigma^{-1}\Sigma\Sigma^{-1}A(A^{\mathrm{T}}\Sigma^{-1}A)^{-1} = P = (A^{\mathrm{T}}\Sigma^{-1}A)^{-1}.$
- **9** Row 3 = -row 1 and row 4 = -row 2: A has rank 2.

#### Problem Set 8.7, page 464

- **1** (x, y, z) has homogeneous coordinates (cx, cy, cz, c) for c = 1 and all  $c \neq 0$ .
- **4**  $S = \operatorname{diag}(c, c, c, 1)$ ; row 4 of ST and TS is 1, 4, 3, 1 and c, 4c, 3c, 1; use vTS!

**5** 
$$S = \begin{bmatrix} 1/8.5 \\ 1/11 \\ 1 \end{bmatrix}$$
 for a 1 by 1 square, starting from an 8.5 by 11 page.

**9** 
$$n = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$$
 has  $P = I - nn^{\mathrm{T}} = \frac{1}{9} \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}$ . Notice  $\|n\| = 1$ .

- **10** We can choose (0,0,3) on the plane and multiply  $T_-PT_+ = \frac{1}{9} \begin{bmatrix} 5 & -4 & -2 & 0 \\ -4 & 5 & -2 & 0 \\ -2 & -2 & 8 & 0 \\ 6 & 6 & 3 & 9 \end{bmatrix}$ .
- **11** (3,3,3) projects to  $\frac{1}{3}(-1,-1,4)$  and (3,3,3,1) projects to  $(\frac{1}{3},\frac{1}{3},\frac{5}{3},1)$ . Row vectors!
- **13** That projection of a cube onto a plane produces a hexagon.

**14** 
$$(3,3,3)(I-2nn^{\mathrm{T}}) = \begin{pmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{pmatrix} \begin{bmatrix} 1 & -8 & -4 \\ -8 & 1 & -4 \\ -4 & -4 & 7 \end{bmatrix} = \begin{pmatrix} -\frac{11}{3}, -\frac{11}{3}, -\frac{1}{3} \end{pmatrix}.$$

**15** 
$$(3,3,3,1) \to (3,3,0,1) \to (-\frac{7}{3},-\frac{7}{3},-\frac{8}{3},1) \to (-\frac{7}{3},-\frac{7}{3},\frac{1}{3},1).$$

17 Space is rescaled by 1/c because (x, y, z, c) is the same point as (x/c, y/c, z/c, 1).

#### Problem Set 9.1, page 472

- **1** Without exchange, pivots .001 and 1000; with exchange, 1 and -1. When the pivot is larger than the entries below it, all  $|\ell_{ij}| = |\text{entry/pivot}| \le 1$ .  $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$ .
- **4** The largest  $\|x\| = \|A^{-1}b\|$  is  $\|A^{-1}\| = 1/\lambda_{\min}$  since  $A^{T} = A$ ; largest error  $10^{-16}/\lambda_{\min}$ .
- **5** Each row of U has at most w entries. Then w multiplications to substitute components of x (already known from below) and divide by the pivot. Total for n rows < wn.
- **6** The triangular  $L^{-1}$ ,  $U^{-1}$ ,  $R^{-1}$  need  $\frac{1}{2}n^2$  multiplications. Q needs  $n^2$  to multiply the right side by  $Q^{-1} = Q^T$ . So QRx = b takes 1.5 times longer than LUx = b.
- 7  $UU^{-1}=I$ : Back substitution needs  $\frac{1}{2}j^2$  multiplications on column j, using the j by j upper left block. Then  $\frac{1}{2}(1^2+2^2+\cdots+n^2)\approx \frac{1}{2}(\frac{1}{3}n^3)=$  total to find  $U^{-1}$ .
- **10** With 16-digit floating point arithmetic the errors  $\|x x_{\text{computed}}\|$  for  $\varepsilon = 10^{-3}$ ,  $10^{-6}$ ,  $10^{-9}$ ,  $10^{-12}$ ,  $10^{-15}$  are of order  $10^{-16}$ ,  $10^{-11}$ ,  $10^{-7}$ ,  $10^{-4}$ ,  $10^{-3}$ .

**11** (a) 
$$\cos\theta = \frac{1}{\sqrt{10}}$$
,  $\sin\theta = \frac{-3}{\sqrt{10}}$ ,  $R = Q_{21}A = \frac{1}{\sqrt{10}}\begin{bmatrix} 10 & 14 \\ 0 & 8 \end{bmatrix}$  (b)  $\lambda = 4$ ; use  $-\theta$   $x = (1, -3)/\sqrt{10}$ 

13  $Q_{ij}A$  uses 4n multiplications (2 for each entry in rows i and j). By factoring out  $\cos \theta$ , the entries 1 and  $\pm \tan \theta$  need only 2n multiplications, which leads to  $\frac{2}{3}n^3$  for QR.

#### Problem Set 9.2, page 478

- **1**  $\|A\|=2$ ,  $\|A^{-1}\|=2$ , c=4;  $\|A\|=3$ ,  $\|A^{-1}\|=1$ , c=3;  $\|A\|=2+\sqrt{2}=\lambda_{\max}$  for positive definite A,  $\|A^{-1}\|=1/\lambda_{\min}$ ,  $c=(2+\sqrt{2})/(2-\sqrt{2})=5.83$ .
- **3** For the first inequality replace x by Bx in  $||Ax|| \le ||A|| ||x||$ ; the second inequality is just  $||Bx|| \le ||B|| ||x||$ . Then  $||AB|| = \max(||ABx||/||x||) \le ||A|| ||B||$ .
- 7 The triangle inequality gives  $||Ax + Bx|| \le ||Ax|| + ||Bx||$ . Divide by ||x|| and take the maximum over all nonzero vectors to find  $||A + B|| \le ||A|| + ||B||$ .
- **8** If  $Ax = \lambda x$  then  $||Ax||/||x|| = |\lambda|$  for that particular vector x. When we maximize the ratio over all vectors we get  $||A|| \ge |\lambda|$ .
- **13** The residual  $b Ay = (10^{-7}, 0)$  is much smaller than b Az = (.0013, .0016). But z is much closer to the solution than y.
- **14** det  $A=10^{-6}$  so  $A^{-1}=10^3\begin{bmatrix} 659 & -563 \\ -913 & 780 \end{bmatrix}$ :  $\|A\|>1, \ \|A^{-1}\|>10^6$ , then  $c>10^6$ .
- **16**  $x_1^2 + \dots + x_n^2$  is not smaller than  $\max(x_i^2)$  and not larger than  $(|x_1| + \dots + |x_n|)^2 = \|x\|_1^2$ .  $x_1^2 + \dots + x_n^2 \le n \, \max(x_i^2)$  so  $\|x\| \le \sqrt{n} \|x\|_{\infty}$ . Choose  $y_i = \operatorname{sign} x_i = \pm 1$  to get  $\|x\|_1 = x \cdot y \le \|x\| \|y\| = \sqrt{n} \|x\|$ .  $x = (1, \dots, 1)$  has  $\|x\|_1 = \sqrt{n} \|x\|$ .

#### Problem Set 9.3, page 489

- **2** If  $Ax = \lambda x$  then  $(I A)x = (1 \lambda)x$ . Real eigenvalues of B = I A have  $|1 \lambda| < 1$  provided  $\lambda$  is between 0 and 2.
- **6** Jacobi has  $S^{-1}T=\frac{1}{3}\begin{bmatrix}0&1\\1&0\end{bmatrix}$  with  $|\lambda|_{\max}=\frac{1}{3}.$  Small problem, fast convergence.
- 7 Gauss-Seidel has  $S^{-1}T = \begin{bmatrix} 0 & \frac{1}{3} \\ 0 & \frac{1}{9} \end{bmatrix}$  with  $|\lambda|_{\max} = \frac{1}{9}$  which is  $(|\lambda|_{\max}$  for Jacobi)<sup>2</sup>.
- **9** Set the trace  $2-2\omega+\frac{1}{4}\omega^2$  equal to  $(\omega-1)+(\omega-1)$  to find  $\omega_{\rm opt}=4(2-\sqrt{3})\approx 1.07$ . The eigenvalues  $\omega-1$  are about .07, a big improvement.
- **15** In the jth component of  $Ax_1$ ,  $\lambda_1 \sin \frac{j\pi}{n+1} = 2\sin \frac{j\pi}{n+1} \sin \frac{(j-1)\pi}{n+1} \sin \frac{(j+1)\pi}{n+1}$ . The last two terms combine into  $-2\sin \frac{j\pi}{n+1}\cos \frac{\pi}{n+1}$ . Then  $\lambda_1 = 2 2\cos \frac{\pi}{n+1}$ .
- **17**  $A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$  gives  $u_1 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ ,  $u_2 = \frac{1}{9} \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ ,  $u_3 = \frac{1}{27} \begin{bmatrix} 14 \\ 13 \end{bmatrix} \rightarrow u_{\infty} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$ .
- **18**  $R = Q^{\mathrm{T}} A = \begin{bmatrix} 1 & \cos\theta\sin\theta \\ 0 & -\sin^2\theta \end{bmatrix}$  and  $A_1 = RQ = \begin{bmatrix} \cos\theta(1+\sin^2\theta) & -\sin^3\theta \\ -\sin^3\theta & -\cos\theta\sin^2\theta \end{bmatrix}$ .
- **20** If A cI = QR then  $A_1 = RQ + cI = Q^{-1}(QR + cI)Q = Q^{-1}AQ$ . No change in eigenvalues because  $A_1$  is similar to A.
- **21** Multiply  $Aq_j = b_{j-1}q_{j-1} + a_jq_j + b_jq_{j+1}$  by  $q_j^{\mathrm{T}}$  to find  $q_j^{\mathrm{T}}Aq_j = a_j$  (because the q's are orthonormal). The matrix form (multiplying by columns) is AQ = QT where T is *tridiagonal*. The entries down the diagonals of T are the a's and b's.

- **23** If A is symmetric then  $A_1 = Q^{-1}AQ = Q^{T}AQ$  is also symmetric.  $A_1 = RQ = R(QR)R^{-1} = RAR^{-1}$  has R and  $R^{-1}$  upper triangular, so  $A_1$  cannot have nonzeros on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry for the upper part of  $A_1$ ) the matrix  $A_1 = RAR^{-1}$  is also tridiagonal.
- **26** If each center  $a_{ii}$  is larger than the circle radius  $r_i$  (this is diagonal dominance), then 0 is outside all circles: not an eigenvalue so  $A^{-1}$  exists.

#### Problem Set 10.1, page 498

- **2** In polar form these are  $\sqrt{5}e^{i\theta}$ ,  $5e^{2i\theta}$ ,  $\frac{1}{\sqrt{5}}e^{-i\theta}$ ,  $\sqrt{5}$ .
- **4**  $|z \times w| = 6$ ,  $|z + w| \le 5$ ,  $|z/w| = \frac{2}{3}$ ,  $|z w| \le 5$ .
- **5**  $a+ib=\frac{\sqrt{3}}{2}+\frac{1}{2}i, \frac{1}{2}+\frac{\sqrt{3}}{2}i, i, -\frac{1}{2}+\frac{\sqrt{3}}{2}i; \ w^{12}=1.$
- **9** 2+i; (2+i)(1+i)=1+3i;  $e^{-i\pi/2}=-i$ ;  $e^{-i\pi}=-1$ ;  $\frac{1-i}{1+i}=-i$ ;  $(-i)^{103}=i$ .
- **10**  $z + \overline{z}$  is real;  $z \overline{z}$  is pure imaginary;  $z\overline{z}$  is positive;  $z/\overline{z}$  has absolute value 1.
- **12** (a) When a=b=d=1 the square root becomes  $\sqrt{4c}$ ;  $\lambda$  is complex if c<0 (b)  $\lambda=0$  and  $\lambda=a+d$  when ad=bc (c) the  $\lambda$ 's can be real and different.
- 13 Complex  $\lambda$ 's when  $(a+d)^2<4(ad-bc)$ ; write  $(a+d)^2-4(ad-bc)$  as  $(a-d)^2+4bc$  which is positive when bc>0.
- **14**  $\det(P \lambda I) = \lambda^4 1 = 0$  has  $\lambda = 1, -1, i, -i$  with eigenvectors (1, 1, 1, 1) and (1, -1, 1, -1) and (1, i, -1, -i) and (1, -i, -1, i) = columns of Fourier matrix.
- **16** The symmetric block matrix has real eigenvalues; so  $i\lambda$  is real and  $\lambda$  is pure imaginary.
- **18** r=1, angle  $\frac{\pi}{2}-\theta$ ; multiply by  $e^{i\theta}$  to get  $e^{i\pi/2}=i$ .
- **21**  $\cos 3\theta = \text{Re}[(\cos \theta + i\sin \theta)^3] = \cos^3 \theta 3\cos \theta \sin^2 \theta$ ;  $\sin 3\theta = 3\cos^2 \theta \sin \theta \sin^3 \theta$ .
- **23**  $e^i$  is at angle  $\theta=1$  on the unit circle;  $|i^e|=1^e$ ; Infinitely many  $i^e=e^{i(\pi/2+2\pi n)e}$ .
- **24** (a) Unit circle (b) Spiral in to  $e^{-2\pi}$  (c) Circle continuing around to angle  $\theta = 2\pi^2$ .

#### Problem Set 10.2, page 506

- **3** z= multiple of (1+i,1+i,-2); Az= **0** gives  $z^HA^H=$  **0**  $^H$  so z (not  $\overline{z}$ !) is orthogonal to all columns of  $A^H$  (using complex inner product  $z^H$  times columns of  $A^H$ ).
- **4** The four fundamental subspaces are now C(A), N(A),  $C(A^{\rm H})$ ,  $N(A^{\rm H})$ .  $A^{\rm H}$  and not  $A^{\rm T}$ .
- **5** (a)  $(A^{\rm H}A)^{\rm H}=A^{\rm H}A^{\rm HH}=A^{\rm H}A$  again (b) If  $A^{\rm H}Az=0$  then  $(z^{\rm H}A^{\rm H})(Az)=0$ . This is  $\|Az\|^2=0$  so Az=0. The nullspaces of A and  $A^{\rm H}A$  are always the *same*.
- **6** (a) False  $A = U = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$  (b) True: -i is not an eigenvalue when  $A = A^{\mathrm{H}}$ .
- **10**  $(1,1,1), (1,e^{2\pi i/3},e^{4\pi i/3}), (1,e^{4\pi i/3},e^{2\pi i/3})$  are orthogonal (complex inner product!) because P is an orthogonal matrix—and therefore its eigenvector matrix is unitary.

**11**  $C = \begin{bmatrix} 2 & 5 & 4 \\ 4 & 2 & 5 \\ 5 & 4 & 2 \end{bmatrix} = 2 + 5P + 4P^2$  has the Fourier eigenvector matrix F.

The eigenvalues are 2+5+4=11,  $2+5e^{2\pi i/3}+4e^{4\pi i/3}$ ,  $2+5e^{4\pi i/3}+4e^{8\pi i/3}$ .

**13** Determinant = product of the eigenvalues (all real). And  $A = A^{H}$  gives  $\det A = \det A$ .

**15** 
$$A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1+i \\ 1+i & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ -1-i & 1 \end{bmatrix}.$$

- **18**  $V = \frac{1}{L} \begin{bmatrix} 1 + \sqrt{3} & -1 + i \\ 1 + i & 1 + \sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{L} \begin{bmatrix} 1 + \sqrt{3} & 1 i \\ -1 i & 1 + \sqrt{3} \end{bmatrix}$  with  $L^2 = 6 + 2\sqrt{3}$ . Unitary means  $|\lambda| = 1$ ,  $V = V^H$  gives real. Then trace zero gives  $\lambda = 1$  and -1.
- **19** The  $\boldsymbol{v}$ 's are columns of a unitary matrix U, so  $U^{\mathrm{H}}$  is  $U^{-1}$ . Then  $\boldsymbol{z} = UU^{\mathrm{H}}\boldsymbol{z} = (\text{multiply by columns}) = \boldsymbol{v}_1(\boldsymbol{v}_1^{\mathrm{H}}\boldsymbol{z}) + \cdots + \boldsymbol{v}_n(\boldsymbol{v}_n^{\mathrm{H}}\boldsymbol{z})$ : a typical orthonormal expansion.
- **20** Don't multiply  $(e^{-ix})(e^{ix})$ . Conjugate the first, then  $\int_0^{2\pi} e^{2ix} dx = [e^{2ix}/2i]_0^{2\pi} = 0$ .
- **21**  $R + iS = (R + iS)^{H} = R^{T} iS^{T}$ ; R is symmetric but S is skew-symmetric.
- **24** [1] and [-1]; any  $\begin{bmatrix} e^{i\theta} \end{bmatrix}$ ;  $\begin{bmatrix} a & b+ic \\ b-ic & d \end{bmatrix}$ ;  $\begin{bmatrix} w & e^{i\phi}\overline{z} \\ -z & e^{i\phi}\overline{w} \end{bmatrix}$  with  $|w|^2+|z|^2=1$  and any angle  $\phi$
- 27 Unitary  $U^{\rm H}U=I$  means  $(A^{\rm T}-iB^{\rm T})(A+iB)=(A^{\rm T}A+B^{\rm T}B)+i(A^{\rm T}B-B^{\rm T}A)=I.$   $A^{\rm T}A+B^{\rm T}B=I$  and  $A^{\rm T}B-B^{\rm T}A=0$  which makes the block matrix orthogonal.
- **30**  $A=\begin{bmatrix}1-i&1-i\\-1&2\end{bmatrix}\begin{bmatrix}1&0\\0&4\end{bmatrix}\frac{1}{6}\begin{bmatrix}2+2i&-2\\1+i&2\end{bmatrix}=S\Lambda S^{-1}.$  Note real  $\lambda=1$  and 4.

#### Problem Set 10.3, page 514

- **8**  $c \rightarrow (1,1,1,1,0,0,0,0) \rightarrow (4,0,0,0,0,0,0,0) \rightarrow (4,0,0,0,4,0,0,0) = F_8 c.$   $C \rightarrow (0,0,0,0,1,1,1,1) \rightarrow (0,0,0,0,4,0,0,0) \rightarrow (4,0,0,0,-4,0,0,0) = F_8 C.$
- **9** If  $w^{64} = 1$  then  $w^2$  is a 32nd root of 1 and  $\sqrt{w}$  is a 128th root of 1: Key to FFT.
- **13**  $e_1=c_0+c_1+c_2+c_3$  and  $e_2=c_0+c_1i+c_2i^2+c_3i^3$ ; E contains the four eigenvalues of  $C=FEF^{-1}$  because F contains the eigenvectors.
- **14** Eigenvalues  $e_1 = 2 1 1 = 0$ ,  $e_2 = 2 i i^3 = 2$ ,  $e_3 = 2 (-1) (-1) = 4$ ,  $e_4 = 2 i^3 i^9 = 2$ . Just transform column 0 of C. Check trace 0 + 2 + 4 + 2 = 8.
- **15** Diagonal E needs n multiplications, Fourier matrix F and  $F^{-1}$  need  $\frac{1}{2}n\log_2 n$  multiplications each by the **FFT**. The total is much less than the ordinary  $n^2$  for C times  $\boldsymbol{x}$ .

## **Conceptual Questions for Review**

#### Chapter 1

- 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)?
- 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths. Which is larger? Whose inequality?
- 1.3 What is the cosine of the angle between v and w in Question 1.2? What is the cosine of the angle between the x-axis and v?

- 2.1 Multiplying a matrix A times the column vector  $\mathbf{x} = (2, -1)$  gives what combination of the columns of A? How many rows and columns in A?
- 2.2 If Ax = b then the vector b is a linear combination of what vectors from the matrix A? In vector space language, b lies in the \_\_\_\_\_ space of A.
- 2.3 If A is the 2 by 2 matrix  $\begin{bmatrix} 2 & 1 \\ 6 & 6 \end{bmatrix}$  what are its pivots?
- 2.4 If A is the matrix  $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$  how does elimination proceed? What permutation matrix P is involved?
- 2.5 If A is the matrix  $\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$  find **b** and **c** so that Ax = b has no solution and Ax = c has a solution.
- 2.6 What 3 by 3 matrix L adds 5 times row 2 to row 3 and then adds 2 times row 1 to row 2, when it multiplies a matrix with three rows?
- 2.7 What 3 by 3 matrix E subtracts 2 times row 1 from row 2 and then subtracts 5 times row 2 from row 3? How is E related to E in Question 2.6?
- 2.8 If A is 4 by 3 and B is 3 by 7, how many *row times column* products go into AB? How many *column times row* products go into AB? How many separate small multiplications are involved (the same for both)?

- 2.9 Suppose  $A = \begin{bmatrix} \mathbf{I} & \mathbf{U} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$  is a matrix with 2 by 2 blocks. What is the inverse matrix?
- 2.10 How can you find the inverse of A by working with  $\begin{bmatrix} A & I \end{bmatrix}$ ? If you solve the n equations Ax = columns of I then the solutions x are columns of \_\_\_\_\_.
- 2.11 How does elimination decide whether a square matrix A is invertible?
- 2.12 Suppose elimination takes A to U (upper triangular) by row operations with the multipliers in L (lower triangular). Why does the last row of A agree with the last row of L times U?
- 2.13 What is the factorization (from elimination with possible row exchanges) of any square invertible matrix?
- 2.14 What is the transpose of the inverse of AB?
- 2.15 How do you know that the inverse of a permutation matrix is a permutation matrix? How is it related to the transpose?

- 3.1 What is the column space of an invertible n by n matrix? What is the nullspace of that matrix?
- 3.2 If every column of A is a multiple of the first column, what is the column space of A?
- 3.3 What are the two requirements for a set of vectors in  $\mathbb{R}^n$  to be a subspace?
- 3.4 If the row reduced form R of a matrix A begins with a row of ones, how do you know that the other rows of R are zero and what is the nullspace?
- 3.5 Suppose the nullspace of A contains only the zero vector. What can you say about solutions to Ax = b?
- 3.6 From the row reduced form R, how would you decide the rank of A?
- 3.7 Suppose column 4 of A is the sum of columns 1, 2, and 3. Find a vector in the nullspace.
- 3.8 Describe in words the complete solution to a linear system Ax = b.
- 3.9 If Ax = b has exactly one solution for every b, what can you say about A?
- 3.10 Give an example of vectors that span  $\mathbb{R}^2$  but are not a basis for  $\mathbb{R}^2$ .
- 3.11 What is the dimension of the space of 4 by 4 symmetric matrices?
- 3.12 Describe the meaning of basis and dimension of a vector space.

- 3.13 Why is every row of A perpendicular to every vector in the nullspace?
- 3.14 How do you know that a column u times a row  $v^{T}$  (both nonzero) has rank 1?
- 3.15 What are the dimensions of the four fundamental subspaces, if A is 6 by 3 with rank 2?
- 3.16 What is the row reduced form R of a 3 by 4 matrix of all 2's?
- 3.17 Describe a pivot column of A.
- 3.18 True? The vectors in the left nullspace of A have the form  $A^{T}y$ .
- 3.19 Why do the columns of every invertible matrix yield a basis?

| 4.1 | What does | the | word | complement | mean | about | orthogonal | subspaces? | • |
|-----|-----------|-----|------|------------|------|-------|------------|------------|---|
|-----|-----------|-----|------|------------|------|-------|------------|------------|---|

- 4.2 If V is a subspace of the 7-dimensional space  $\mathbb{R}^7$ , the dimensions of V and its orthogonal complement add to \_\_\_\_\_.
- 4.3 The projection of b onto the line through a is the vector \_\_\_\_\_.
- 4.4 The projection matrix onto the line through a is  $P = \underline{\hspace{1cm}}$ .
- 4.5 The key equation to project b onto the column space of A is the *normal equation* .
- 4.6 The matrix  $A^{T}A$  is invertible when the columns of A are \_\_\_\_\_.
- 4.7 The least squares solution to Ax = b minimizes what error function?
- 4.8 What is the connection between the least squares solution of Ax = b and the idea of projection onto the column space?
- 4.9 If you graph the best straight line to a set of 10 data points, what shape is the matrix A and where does the projection p appear in the graph?
- 4.10 If the columns of Q are orthonormal, why is  $Q^{T}Q = I$ ?
- 4.11 What is the projection matrix P onto the columns of Q?
- 4.12 If Gram-Schmidt starts with the vectors  $\boldsymbol{a}=(2,0)$  and  $\boldsymbol{b}=(1,1)$ , which two orthonormal vectors does it produce? If we keep  $\boldsymbol{a}=(2,0)$  does Gram-Schmidt always produce the same two orthonormal vectors?
- 4.13 True? Every permutation matrix is an orthogonal matrix.
- 4.14 The inverse of the orthogonal matrix Q is \_\_\_\_\_.

- 5.1 What is the determinant of the matrix -I?
- 5.2 Explain how the determinant is a linear function of the first row.
- 5.3 How do you know that  $\det A^{-1} = 1/\det A$ ?
- 5.4 If the pivots of A (with no row exchanges) are 2, 6, 6, what submatrices of A have known determinants?
- 5.5 Suppose the first row of A is 0,0,0,3. What does the "big formula" for the determinant of A reduce to in this case?
- 5.6 Is the ordering (2,5,3,4,1) even or odd? What permutation matrix has what determinant, from your answer?
- 5.7 What is the cofactor  $C_{23}$  in the 3 by 3 elimination matrix E that subtracts 4 times row 1 from row 2? What entry of  $E^{-1}$  is revealed?
- 5.8 Explain the meaning of the cofactor formula for  $\det A$  using column 1.
- 5.9 How does Cramer's Rule give the first component in the solution to Ix = b?
- 5.10 If I combine the entries in row 2 with the cofactors from row 1, why is  $a_{21}C_{11} + a_{22}C_{12} + a_{23}C_{13}$  automatically zero?
- 5.11 What is the connection between determinants and volumes?
- 5.12 Find the cross product of u = (0, 0, 1) and v = (0, 1, 0) and its direction.
- 5.13 If A is n by n, why is  $det(A \lambda I)$  a polynomial in  $\lambda$  of degree n?

- 6.1 What equation gives the eigenvalues of A without involving the eigenvectors? How would you then find the eigenvectors?
- 6.2 If A is singular what does this say about its eigenvalues?
- 6.3 If A times A equals 4A, what numbers can be eigenvalues of A?
- 6.4 Find a real matrix that has no real eigenvalues or eigenvectors.
- 6.5 How can you find the sum and product of the eigenvalues directly from A?
- 6.6 What are the eigenvalues of the rank one matrix  $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ ?
- 6.7 Explain the diagonalization formula  $A = S\Lambda S^{-1}$ . Why is it true and when is it true?

- 6.8 What is the difference between the algebraic and geometric multiplicities of an eigenvalue of A? Which might be larger?
- 6.9 Explain why the trace of AB equals the trace of BA.
- 6.10 How do the eigenvectors of A help to solve  $d\mathbf{u}/dt = A\mathbf{u}$ ?
- 6.11 How do the eigenvectors of A help to solve  $u_{k+1} = Au_k$ ?
- 6.12 Define the matrix exponential  $e^A$  and its inverse and its square.
- 6.13 If *A* is symmetric, what is special about its eigenvectors? Do any other matrices have eigenvectors with this property?
- 6.14 What is the diagonalization formula when A is symmetric?
- 6.15 What does it mean to say that A is positive definite?
- 6.16 When is  $B = A^{T}A$  a positive definite matrix (A is real)?
- 6.17 If A is positive definite describe the surface  $x^{T}Ax = 1$  in  $\mathbb{R}^{n}$ .
- 6.18 What does it mean for A and B to be *similar*? What is sure to be the same for A and B?
- 6.19 The 3 by 3 matrix with ones for  $i \ge j$  has what Jordan form?
- 6.20 The SVD expresses A as a product of what three types of matrices?
- 6.21 How is the SVD for A linked to  $A^{T}A$ ?

- 7.1 Define a linear transformation from  $\mathbb{R}^3$  to  $\mathbb{R}^2$  and give one example.
- 7.2 If the upper middle house on the cover of the book is the original, find something nonlinear in the transformations of the other eight houses.
- 7.3 If a linear transformation takes every vector in the input basis into the next basis vector (and the last into zero), what is its matrix?
- 7.4 Suppose we change from the standard basis (the columns of I) to the basis given by the columns of A (invertible matrix). What is the change of basis matrix M?
- 7.5 Suppose our new basis is formed from the eigenvectors of a matrix A. What matrix represents A in this new basis?
- 7.6 If A and B are the matrices representing linear transformations S and T on  $\mathbb{R}^n$ , what matrix represents the transformation from  $\mathbf{v}$  to  $S(T(\mathbf{v}))$ ?
- 7.7 Describe five important factorizations of a matrix A and explain when each of them succeeds (what conditions on A?).