Design: built upon cutting-edge ML methods such as MAE & Vision Transformer

Masked Auto-encoders

Learning with fill in the blanks

The "How":

- Mask: A large portion of the input (e.g., 75% of patches)
- Encode: A deep Encoder processes only the visible patches.
- Reconstruct: A Decoder guess the missing patches.

• The Goal: force Encoder to learn a rich representation of the data, not just surface-level details.

Vision Transformer

Self-attention to access global features

The "How":

- Patchify: An image is broken down into a sequence of patches.
- Embed: Each patch is converted to feature vector + positional info
- Transformer Encoder: <u>self-attention</u> to model the token relation

 The Goal: capture long-range dependencies and global context across the entire input.

Self-Supervised?

Pipeline

- What does it mean self-supervised?
 - A type of Al that learns from large amounts of unlabeled data by creating its own "labels" or "supervision" from the structure of the data itself - by predicting missing or altered parts of the input

Info on the masked part?: Occupancy, not the Energy