



## TREINAMENTO BÁSICO

04/04/2022

Esse programa tem o objetivo de garantir que os estudantes ingressantes no Hub de Inovação em Inteligência Artificial tenham conhecimentos basilares sobre Inteligência Artificial e Aprendizado de Máquina que os habilitem a contribuir de forma efetiva com os projetos desenvolvidos no H2IA.

## Link - Encontro Síncrono

## Quinta-Feira às 18h

NOVO: https://meet.google.com/rmm-wpfu-ijt

Pré-requisitos (Pre-Week)

#### **Atividades**

Introdução ao Github

Python com Jupyter e Colab

Maths With Python

Python Data Structures

Notebook Google Colab

### **Tarefas**

- 1. Criar um repositório no Github com o nome "treinamento-h2ia";
- 2. Criar um Notebook no Colab com práticas sobre o uso das bibliotecas Numpy e Matplotlib;
- 3. Compartilhar nesta tabela.

# 1º Semana - Introdução à Inteligência Artificial (IA)

## Introdução à Inteligência Artificial

#### Leituras

Introdução à Inteligência Artificial





A Brief Introduction to AI

Breve Histórico

#### Vídeos

Andrew Ng - Al for Everyone - Introduction to Al

#### **Tarefas**

Discussão na Reunião Semanal

## 2º Semana - Solucionando Problemas com IA

## Buscas sem Informação

## Leituras

Representação

Buscas - Resumido

Representando e Resolvendo Problemas com Buscas

## **Vídeos**

Representação do Conhecimento

Busca em Largura

Busca em Profundidade

### **Tarefas**

Resolver o problema do quebra-cabeças de blocos deslizantes:

Enviar para seu Github um Jupyter Notebook baseado em: <u>Modelo de</u> <u>Relatório.</u>

Enviar o link do arquivo no github pela tabela.

## 3º Semana - Solucionando Problemas com IA

## Buscas com Informação

## Leituras

Buscas - Resumido

Representando e Resolvendo Problemas com Buscas



#### Vídeos

Algoritmo A\*

Algoritmo A\* Pathfinder

<u>Heurísticas</u>

#### **Tarefas**

Resolver o problema do quebra-cabeças de blocos deslizantes usando o Algoritmo  $A^*$ :

Enviar para seu Github um Jupyter Notebook baseado em: <u>Modelo de</u> Relatório.

Enviar o link do arquivo no github pela tabela.

# 4ª Semana - Solucionando Problemas com IA

## Busca Local e Otimização

#### Leituras

Busca Local e Otimização

Livro - Norvig - Além da Busca Clássica

Local Search vs Global Search

#### Vídeos

- Busca Heurística: Busca Gulosa, Busca A\* e Busca Local Subida de En...
- Cadernos IA 3\_1 Busca Local Subida da Encosta

# 5ª Semana - Solucionando Problemas com IA

## Meta-heurísticas

### Leituras

Fundamentos de Otimização e Inteligência Artificial

Busca baseada em populações e Computação Evolutiva



## Vídeos

- Aula 1 Meta-heurísticas (Conceitos básicos)
- Aula 6 Meta-heurísticas (Simulated Annealing)
- Aula 7 Meta-heurísticas (Busca Tabu)

#### **Tarefas**

Utilizar Busca Tabu para solucionar o problema da mochila binária definido abaixo:

| Objeto i             | 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|----------------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Peso p_i             | 63  | 21 | 2  | 32 | 13 | 80 | 19 | 37 | 56 | 41 | 14 | 8  | 32 | 42 | 7  |
| Valor v_i            | 13  | 2  | 20 | 10 | 7  | 14 | 7  | 2  | 2  | 4  | 16 | 17 | 17 | 3  | 21 |
| Peso total aceitável | 275 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

Enviar o link do arquivo no github pela tabela.

# 6° Semana - Solucionando Problemas com IA

## Algoritmos Genéticos

## Leituras

Busca baseada em populações e Computação Evolutiva

Slides de Introdução-Linden

Slides de Princípios Biológicos - Linden

Slides de Conceitos Básicos - Linden

https://www.boente.eti.br/fuzzy/ebook-fuzzy-mitchell.pdf

## Vídeos

- Algoritmo Genético aplicado ao Problema da Mochila
- Algoritmos Genéticos Aula 1 de 3



Algoritmos Genéticos - Aula 2 de 3

#### **Tarefas**

Utilizar um Algoritmo Genético para solucionar o problema da mochila binária definido abaixo:

| Objeto i             | 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|----------------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Peso p_i             | 63  | 21 | 2  | 32 | 13 | 80 | 19 | 37 | 56 | 41 | 14 | 8  | 32 | 42 | 7  |
| Valor v_i            | 13  | 2  | 20 | 10 | 7  | 14 | 7  | 2  | 2  | 4  | 16 | 17 | 17 | 3  | 21 |
| Peso total aceitável | 275 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

Enviar o link do arquivo no github pela tabela.

# 7º Semana - Solucionando Problemas com IA

## Busca competitiva

## Leituras

Busca Competitiva ou Adversarial

LIVRO - CAP 5 - Busca Competitiva

#### **Vídeos**

- Algoritmos de Busca Parte 6: Busca adversária (ou competitiva) e o...
- Fundamentos de Sistemas Inteligentes Aula 4 Busca Competitiva

#### **Tarefas**

Usar minimax com poda alpha-beta para jogar "damas".

Enviar o link do arquivo no github pela <u>tabela</u>.

# 8ª Semana - Aprendizado de Máquina

Fundamentos de Aprendizado de Máquina

Dados, dados, dados ...



## Leituras

Introdução ao Aprendizado de Máquina (1)

Introdução ao Aprendizado de Máguina (2)

Aprendizado Supervisionado

Clever methods of overfitting

A Few Useful Things to Know About Machine Learning

Machine Learning Fundamentals

#### **Vídeos**

- Abertura da 1a Escola de Verão do H2IA Introdução ao Aprendizado...
- A Chat with Andrew on MLOps: From Model-centric to Data-centric Al
- Lecture 1.1 What Is Machine Learning [ Machine Learning | Andr...
- Lecture 1.2 Supervised Learning [ Machine Learning | Andrew N...
- Lecture 1.3 Unsupervised Learning [ Machine Learning | Andrew...

#### Tarefa

Enviar o link do arquivo no github pela tabela.

9ª Semana - Aprendizado de Máquina Não-Supervisionado

## Agrupamentos usando K-means

#### Leituras

K-means Explained

A Simple Explanation of K-Means Clustering

Step by Step KMeans Explained in Detail

**K-means Clustering** 

#### Vídeos

■ Lecture 13.2 — Clustering | KMeans Algorithm — [ Machine Learning ...





StatQuest: K-means clustering

Clustering: K-means and Hierarchical

■ Lecture 1.3 — Unsupervised Learning — [ Machine Learning | Andrew...

#### Tarefa

Criar um modelo de agrupamento para o problema das espécies de Iris.

https://en.wikipedia.org/wiki/Iris\_flower\_data\_set

Implemente o algoritmo k-means em um notebook e demonstre os agrupamentos criados por seu modelo.

**Dica:** o dataset tem 4 características, você precisará usar algum método de redução dimensional para criar gráficos com esses agrupamentos.

Principal Component Analysis pode ser uma alternativa.

https://pt.wikipedia.org/wiki/An%C3%A1lise\_de\_componentes\_principais

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition. PCA.html

StatQuest: Principal Component Analysis (PCA), Step-by-Step

Enviar o link do arquivo no github pela tabela.

10° Semana - Aprendizado de Máquina Supervisionado

## K-Nearest Neighbors (KNN)

#### Leituras

The KNN Algorithm – Explanation, Opportunities, Limitations

A Quick Introduction to K-Nearest Neighbors Algorithm

An introduction to KNN

Avaliação dos modelos

Performance Metrics in Machine Learning [Complete Guide] - neptune.ai

20 Popular Machine Learning Metrics. Part 1: Classification & Regression Evaluation Metrics

88 Responses to Tour of Evaluation Metrics for Imbalanced Classification



#### Vídeos

- StatQuest: K-nearest neighbors, Clearly Explained
- ▶ KNN Algorithm using Python | How KNN Algorithm works | Python D...
- What Is The Difference Between KNN and K-means?

#### **Tarefas**

Criar um modelo de classificação para o problema das espécies de Iris.

Enviar o link do arquivo no github pela tabela.

11ª Semana - Aprendizado de Máquina Supervisionado

## Árvores de Decisão

#### Leituras

Aprendizado com Árvores de Decisão

Árvores de Decisão

ID3 algorithm (wikipedia.org)

Árvores de Decisão

## Vídeos

Árvore de Decisão ID3

https://www.youtube.com/watch?v=7VeUPuFGJHk

## Tarefas

Implementar o algoritmo ID3 para o problema: Wine recognition dataset

7.1. Toy datasets — scikit-learn 0.24.2 documentation

Enviar o link do arquivo no github pela tabela.

12ª Semana - Aprendizado de Máquina Supervisionado

Perceptron e Multilayer perceptron (MLP)



## Leituras

Perceptrons

Multilayer Perceptron - DeepLearningBook

Redes Neurais

#### Vídeos

□ Introdução às Redes Neurais

#### **Tarefas**

Crie uma rede neural MLP para classificar o dataset MNIST.

Enviar o link do arquivo no github pela tabela.

# 13ª Semana - Aprendizado de Máquina Supervisionado

## Regressão

#### Leituras

**Perceptrons** 

REGRESSÃO.pdf

Minimos Quadrados

## **Vídeos**

- Estatística Correlação e Regressão Linear
- How to calculate linear regression using least square method

#### **Tarefas**

Utilizar Regressão Linear (Mínimos Quadrados) no dataset Diabetes

7.1. Toy datasets — scikit-learn 1.0 documentation

Enviar o link do arquivo no github pela tabela.

14ª Semana - Aprendizado de Máquina Supervisionado





## **Redes Neurais Convolucionais**

#### Leituras

**Convolutional Networks** 

<u>Tópico 10 - Redes Neurais Convolucionais - Deep Learning</u>

## Vídeos

- Redes Neurais Convolucionais (CNNs)
- Criando redes neurais com Pytorch
- □ Implementação e aplicação de CNNs
- Lecture 5 | Convolutional Neural Networks

## **Tarefas**

Utilizar CNNs no CIFAR-100

CIFAR-10 and CIFAR-100 datasets

Enviar o link do arquivo no github pela tabela.