ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΤΑΞΕΩΝ – ΔΙΑΝ. ΔΙΑΦΟΡΕΤΙΚΩΝ

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ www.psounis.gr

ΔΙΑΤΑΞΕΙΣ(εκθετική γεννήτρια)

Απαριθμητής: Για κάθε τύπο αντικειμένου

Όροι Απαριθμητών: Επιλέγουμε τους όρους από τον απαριθμητή

 $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^k}{k!}$ που εκφράζουν πόσα αντικείμενα μπορούμε να επιλέξουμε από κάθε τύπο αντικειμένου.

Συντελεστής: του όρου $\frac{x^k}{k!}$ όπου k: τα αντικ/να που

διατάσσω(θέσεις).

ΔΙΑΝΟΜΗ ΔΙΑΦΟΡΕΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΧΩΡΙΣ ΣΕΙΡΑ (εκθετική γεννήτρια)

Απαριθμητής: Για κάθε υποδοχή.

Όροι Απαριθμητών: Επιλέγουμε τους όρους από τον απαριθμητή

 $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^k}{k!}$ που εκφράζουν πόσα αντικείμενα επιτρέπεται να έχει η υποδοχή.

Συντελεστής: του όρου $\frac{x^k}{x}$ όπου k: τα αντικ/να που μοιράζω.

ΔΙΑΝΟΜΗ ΔΙΑΦΟΡΕΤΙΚΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΜΕ ΣΕΙΡΑ (τροποποίηση εκθετικής γεννήτριας)

Απαριθμητής: Για κάθε υποδοχή.

Όροι Απαριθμητών: Επιλέγουμε τους όρους από τον απαριθμητή

 $1+x+2!\frac{x^2}{2!}+3!\frac{x^3}{3!}+\cdots+k!\frac{x^k}{k!}$ που εκφράζουν πόσα αντικείμενα επιτρέπεται να έχει η υποδοχή.

Συντελεστής: του όρου $\frac{x^k}{k!}$ όπου k: τα αντικ/να που μοιράζω.

Αντικείμενα A (2...6) - 10: Θέσεις **B** (≤5) Θ.1 Θ.2 Θ.3 (≥4)

ΣΥΝΤΕΛΕΣΤΗΣ: του όρου $\frac{x^{10}}{10!}$ στο ανάπτυγμα της γεννήτριας.

Μοντελοποίηση της Διανομής Διαφορετικών Χωρίς Σειρα:

FENN:
$$\left(\frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^6}{6!}\right) \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^5}{5!}\right) \left(\frac{x^4}{4!} + \frac{x^5}{5!} + \dots + \frac{x^{10}}{10!}\right)$$

ΣΥΝΤΕΛΕΣΤΗΣ:του όρου $\frac{x^{10}}{10!}$ στο ανάπτυγμα της γεννήτριας.

Μοντελοποίηση της Διανομής Διαφορετικών Με Σειρά:

Χρησιμοποιούμε Εκθετική Γεννήτρια Συνάρτηση (Διανομή Διαφορετικών Χωρίς Σειρά) αλλά πολλαπλασιάζουμε κάθε όρο των απαριθμητών με το αντίστοιχο παραγοντικό που εκφράζει τους τρόπους των διατάξεων των αντικειμένων στην υποδοχή.

$$\begin{split} \text{FENN:} \left(2! \frac{x^2}{2!} + 3! \frac{x^3}{3!} + \cdots + 6! \frac{x^6}{6!} \right) \left(1 + x + 2! \frac{x^2}{2!} + \cdots + 5! \frac{x^5}{5!} \right) \\ \left(4! \frac{x^4}{4!} + 5! \frac{x^5}{5!} + \cdots + 10! \frac{x^{10}}{10!} \right) \end{split}$$

ΣΥΝΤΕΛΕΣΤΗΣ: του όρου $\frac{x^{10}}{10!}$ στο ανάπτυγμα της γεννήτριας.

ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΑΠΑΡΙΘΜΗΤΩΝ – ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ www.psounis.gr

ΠΙΝΑΚΑΣ ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΟΝ ΓΕΝΝΗΤΡΙΟΝ (ΓΝΟΣΤΟΝ ΠΡΟΒΛΗΜΑΤΟΝ)

ПРОВЛНМА	ГЕПИНТРІА	ΟΡΟΣ	ΣΥΝΤΕΛΕΣΤΗΣ
Διαταξεις k από n χωρίς επανάληψη	$(1+x)^n$	$\frac{x^k}{k!}$	P(n,k)
Διαταξεις k από n με επανάληψη	$\left(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\right)^n$	$\frac{x^k}{k!}$	n^k
Μεταθέσεις Ομάδων Ομοίων	$\frac{x^{q_1}}{q_1!} \cdot \frac{x^{q_2}}{q_2!} \cdot \frac{x^{q_3}}{q_3!} \frac{x^{q_k}}{q_k!}$	$\frac{x^n}{n!}$	$\frac{n!}{q_1!q_2!q_3!q_k!}$
Μεταθέσεις Διαφορετικών	x^n	$\frac{x^n}{n!}$	n!
Συνδυασμοί k από n χωρίς επανάληψη	$(1+x)^n$	x^k	$\binom{n}{k}$
Συνδυασμοί k από n με επανάληψη	$(1+x+x^2+x^3+)^n$	x^k	$\binom{n+k-1}{k}$
Διανομή η ομοίων σε m υποδοχές	$(1+x+x^2+x^3+)^m$	x^n	$\binom{n+m-1}{n}$
Διανομή η διαφ/κων σε m υποδοχές (χωρις σειρά)	$\left(1+x+\frac{x^2}{2!}+\frac{x^2}{3!}+\ldots\right)^m$	$\frac{x^n}{n!}$	m^n
Διανομή η διαφ/κων σε m υποδοχές (με σειρά)	$(1+x+x^2+x^3+)^m$	$\frac{x^n}{n!}$	$\frac{(m+n-1)!}{(m-1)!}$

ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΑΠΑΡΙΘΜΗΤΩΝ (σειρές Taylor)

 $\frac{1}{1-x} = \sum_{i=0}^{+\infty} x^{i} = 1 + x + x^{2} + x^{3} + \dots \left[(1-x)^{-n} = \left(\frac{1}{1-x} \right)^{n} = (1+x+x^{2}+\dots)^{n} \right]$ Συμβολισμοί σε Απλή Γεννήτρια:

Συμβολισμοί σε Εκθετική Γεννήτρια: $e^x = \sum_{l=0}^{+\infty} \frac{x^l}{l!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ $e^{ax} = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots\right)^a \left[\frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots\right] \left[\frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots\right]$