

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Selected Topics in Cryptography Quantum cryptanalysis

Szymon Szozda

Department of Telecommunications

04.12.2017

Quantum crypanalysis

Agenda

- 1. Bra-ket notation
- 2. Quantum gates
- 3. Grover's Database Search
- 4. Shore's factorization algorithm
 - Fast modular exponentiation
 - Quantum Fourier Transform

Bra-ket notation Origins

Bra–ket notation: $\langle x|y\rangle$ is a standard notation for describing quantum states. It can also be used to denote abstract vectors, linear functionals and scalar product in mathematics.

The left part: $\langle x |$, called the bra, is a row vector.

3/12

The right part: $|y\rangle$, called the ket, is a column vector.

Gates Origins

In quantum computing and specifically the quantum circuit model of computation, a quantum gate (or quantum logic gate) is a basic quantum circuit operating on a small number of qubits.

.

4/12

Fast database search

Grover's database search uses possibility to pararell process of qbit. The algorithm allows us to find selected element in unsorted set. Complexity \sqrt{n}

Overwiev of AES

Grover diffusion operator

Repeat $O(\sqrt{N})$ times

3.MixColumns

Each column is represented as four-bytes vector.

Each column of State is replaced by a new column which is formed by multiplying that column by a certain matrix of elements of the field.

Together with ShiftRows, MixColumns provides diffusion in the cipher.

MixColumns step is used in every cycle **except** the last one cycle.

3.MixColumns

It is also possible to see this operation as polynomial multiplication where each column is represented with polynomial a(x):

$$a(x) = c(x).a(x)modx^4 + 1 = (03x^3 + 01x^2 + 01x + 02).(a_3x^3 + a_2x^2 + a_1x^1 + a_0)modx^4 + 1$$

$$c(x) = \left[\begin{array}{cc} 02 & 03 \\ 01 & 02 \end{array} \right]$$

Key Schedule: Rcon Table

Rcon Constants			
Round	Constant(Rcon)	Round	Constant(Rcon)
1	01 00 00 00	6	20 00 00 00
2	02 00 00 00	7	40 00 00 00
3	04 00 00 00	8	80 00 00 00
4	08 00 00 00	9	1B 00 00 00
5	10 00 00 00	10	36 00 00 00

Time for questions

Bibliography

Bibliography:

- Joan Daemen, Vincent Rijmen, "The Design of Rijndael: AES The Advanced Encryption Standard", Springer, 2002.
- Joshua Holden, "The Mathematics of Cryptography", Princeton University Press, 2017
- Federal Information Processing Standards Publication 197: the official AES standard, United States National Institute of Standards and Technology, 2001
- Wikipedia, Advanced Encryption Standard, $https://en.wikipedia.org/wiki/Advanced_Encryption_Standard$

Thank you for attention!