

XOR Gate (Exclusive-OR)

A B

- This is a XOR gate.
- The switching algebra symbol for this operation is \oplus , i.e.

 $\mathsf{A} \oplus \mathsf{B} \; .$

• A ⊕ B=A'B+AB'.

5

- NAND, NOR gates are called universal gate.
- AND, OR and NOT are called basic gates.
- XOR(EX-OR), XNOR(EX-NOR) are called derived gates.

7

XNOR Gate (Exclusive-NOR)

- This is an Exclusive-NOR gate
- The complement of the XOR gate.
- The switching algebra symbol for this operation is ⊙, i.e. A ⊙ B.
- A ⊙ B=AB+A'B'.

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1
		6

S-R Latch with NOR Gates

- S-R latch made from cross-coupled NORs
- If Q = 1, set state
- If Q = 0, reset state
- Usually S=0 and R=0 is called Memory state
- S=1 and R=1 generates undefined or indeterminate results.

S-R Latch with NAND Gates

- S-R Latch made from cross-coupled NANDs
- Sometimes called S'-R' latch
- Usually S=1 and R=1 is called Memory state
- S=0 and R=0 generates undefined or indeterminate results.

Clocks and synchronization

 A clock is a special device that whose output continuously alternates between 0 and 1.

- The time it takes the clock to change from 1 to 0 and back to 1 is called the clock period, or clock cycle time.
- The clock frequency is the inverse of the clock period.
 The unit of measurement for frequency is the hertz.

13

- S-R Latch with control input is called Flip-Flop
- Replace the two input NAND gate with the three input NAND gate to get a J-K Flip Flop from a S-R FF.
- C = 0 disables all the data changes
- Control signal C=1 enables data change when C = 1

15

Flip-Flops

- A flip-flop is a state of a latch that can be switched by momentary change in the control input.
- This momentary change is called a trigger and the transition it causes is said to trigger the flip-flop.
- The flip-flop is triggered every time the pulse goes to a high or logic level 1.

Response to positive level(Level Triggering)

- The problem with the flip-flops is that as long as the input clock pulse remains at this level, any changes in the input data will cause a change in the output and the state of the latch.
- Race around condition or Racing.

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in

a series configuration with the slave having an inverted clock pulse. The outputs

from Q and Q from the "Slave" flip-flop are fed back to the inputs of the "Master" with the outputs of the "Master" flip-flop being connected to the two inputs of the "Slave" flip-flop. This feedback configuration from the slave's output to the master's input gives the characteristic toggle of the JK flip-flop .

The input signals J and K are connected to the gated "master" SR flip-flop which "locks" the input condition while the clock (Clk) input is "HIGH" at logic level "1". As the clock input of the "slave" flip-flop is the inverse (complement) of the "master" clock input, the "slave" SR flip-flop does not toggle. The outputs from the "master" flip-flop are only "seen" by the gated "slave" flip-flop when the clock input goes "LOW" to logic level "0".

When the clock is "LOW", the outputs from the "master" flip-flop are latched and any additional changes to its inputs are ignored. The gated "slave" flip-flop now responds to the state of its inputs passed over by the "master" section. Then on the "Low-to-High" transition of the clock pulse the inputs of the "master" flip-flop are fed through to the gated inputs of the "slave" flip-flop and on the "High-to-Low" transition the same inputs are reflected on the output of the "slave" making this type of flip-flop edge or pulse-triggered.

Then, the circuit accepts input data when the clock signal is "HIGH", and passes the data to the output on the falling-edge of the clock signal. In other words, the **Master-Slave JK Flip-flop** is a "Synchronous" device as it only passes data with the timing of the clock signal.

19

The Solution

- A clock pulse goes through two transition from 0 to 1 and the return from 1 to 0
- The solution: by changing the operation of a flip-flop to trigger it only during a signal transition.
- Two types of transition: the positive transition (from 0 t0 1) and the negative transition (from 1 to 0)

Negative-edge response

Clocked J-K Flip Flop Two data inputs, J and K J-> set, K-> reset, if J=K=1 then toggle output CLK CLK CLK COMBO CHARGE CHARACTERISTIC Table

Registers

- A flip-flop can store only one bit data (0 or 1)
 - A single-bit register
- · Register consists of a group of flip-flops and gates
- An n-bit register consists of n-bit flip-flops
 - store n-bit information
- · Shift register is used to store and shift data.

26

Types of Shift Register

- Serial in serial out (SISO)
- Serial in Parallel out (SIPO)
- Parallel in serial out (PISO)
- Parallel in Parallel out (PIPO)

27

Shift Registers(SISO)

- Shifts binary information in one or both directions.
- On the positive edge of the first clock pulse, the signal on the in is latched in the first FF.
- On the next clock pulse, the data of the first FF is stored in the second FF, and the data present at the in is stored is the first FF, etc.

Counters

- Binary counter: follows the binary number sequence.
- An n-bit binary counter:
 - Consists of n flip-flops
 - Can count in binary from 0 to 2ⁿ 1
- A counter is a register that goes through a sequence of states.

29

Binary Ripple Counter

- All the J and K inputs of all the flip-flops are connected to a logic 1.
- Each flip-flop complement if the signal in its C input goes through a negative transition.
- The flip-flop holding the LSB receives the incoming count pulses.
- The count starts with binary 0 and increments by one with each count pulse input.

EC402 Digital Electronic Circuits Spring 2011 31

Counters

- · Counter categories:
 - Ripple counters
 - Synchronous counters
- Ripple counters: The flip-flop's output transition triggers other flip-flops.
- Synchronous counters: A common clock triggers all flip-flops simultaneously rather than one at a time in succession as in ripple counters.

30

3-bit Binary Ripple Counter

 Q_0 is complemented with the count pulse. Since Q_0 goes from 1 to 0, it triggers Q_1 and complements it. As a result, Q_1 goes from $1 \rightarrow 0$, which in turn complements Q_2 changing it from $0 \rightarrow 1$. Q_2 does not trigger Q_3 because Q_2 produces a positive transition. The flip-flops change one bit at a time in succession and the signal propagates through the counter in a ripple fashion from one stage to the next.

Problems with Ripple Counter

- Asynchronous or ripple counters are arranged in such a way that the output of one flip flop changes the state of the next.
- In a long chain of ripple counter stages, the last flip flop changes its state considerably later than the first FF due to propagation delays in each stage.
- Problems occur if this delay is longer than the response time of other logic elements connected to the circuit.