CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 21, 2017

GENERAL

- Recitation tomorrow (9/22) 10am in J309.
 - Will go over topics relevant to Pset.
- Office hours from 5:30-6:30 in J517.
- Look at course resources for Python and Math
- Refresh Trigonometric and Complex number identities
 - $(x_1 + jy_1)(x_2 + jy_2) = (x_1x_2 y_1y_2) + j(x_1y_2 + x_2y_1)$
 - $\cos -\theta = \cos \theta$, $\sin -\theta = -\sin \theta$, $\cos(\pi \theta) = -\cos \theta$, ...

Surface Normals

Equation for a Line

$$x \cos \theta + y \sin \theta = c$$
$$\langle [x, y], [\cos \theta, \sin \theta] \rangle = c$$
$$\langle [x, y], \hat{n} \rangle = c$$

Defined at a point, Normal to the tangent at that point

$$\hat{n} = [\hat{n}_x, \hat{n}_y]$$

$$y = f(x) \qquad x = g(y)$$

$$\frac{\partial y}{\partial x} = \frac{\hat{n}_x}{\hat{n}_y} \qquad \frac{\partial x}{\partial y} = \frac{\hat{n}_y}{\hat{n}_x}$$

Surface Normals

Equation for a Line

$$\langle [x,y], \hat{n} \rangle = c$$

Defined at a point, Normal to the tangent at that point

$$\hat{n} = [\hat{n}_x, \hat{n}_y]$$

$$y = f(x) \qquad x = g(y)$$

$$\frac{\partial y}{\partial x} = \frac{\hat{n}_x}{\hat{n}_y} \qquad \frac{\partial x}{\partial y} = \frac{\hat{n}_y}{\hat{n}_x}$$

Surface Normals

Equation for a Plane

$$\langle [x, y, z], \hat{n} \rangle = c$$

Surface

Defined at a point, Normal to the tangent plane at that point

$$\hat{n} = [\hat{n}_x, \hat{n}_y, \hat{n}_z]$$

$$z = f(x, y)$$

$$\nabla z = \left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right] = \left[\frac{\hat{n}_x}{\hat{n}_z}, \frac{\hat{n}_y}{\hat{n}_z}\right]$$

Surface Normals

3-D

Equation for a Plane

$$\langle [x, y, z], \hat{n} \rangle = c$$

Defined at a point, Normal to the tangent plane at that point

$$\hat{n} = [\hat{n}_x, \hat{n}_y, \hat{n}_z]$$

$$z = f(x, y)$$

$$\nabla z = \left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right] = \left[\frac{\hat{n}_x}{\hat{n}_z}, \frac{\hat{n}_y}{\hat{n}_z}\right]$$

Normal Field

$$\hat{n}(x,y,z)$$
 $\hat{n}(x,y)$

Defined only on surface points

If only one z = f(x,y)

Gradient Field

$$\nabla Z(x,y) = \left[\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right]_{(x,y)}$$

Gradient / Normal fields are integrable, i.e., integrating along a closed curve gives 0.

Angle subtended by a curve on a point, is length of curve projected on unit circle

Angle subtended by a curve on a point, is length of curve projected on unit circle

Angle between two lines is the angle subtended by any curve joining the two lines.

Measured in Radians

Differential angle

Take an infinitesimal part of a curve, that can be assumed to be a line segment, and find the angle it subtends

Differential angle

Differential solid angle

$$d\omega = \sin\theta d\theta d\phi$$

$$\phi \in [0, 2\pi]$$

$$\theta \in [0, \pi/2] \text{ or } [0, \pi]$$

Radiance

$$L(\theta, \phi) = \frac{P}{(dA\cos\alpha)d\omega}$$

Radiance L in a specified direction is defined in terms of power P that the infinitesimal patch dA is pushing out in the infinitesimal solid angle $\text{d}\omega$

Radiance along an unobstructed ray stays constant.

Irradiance

How much light is arriving at a surface?

Irradiance

How much light is arriving at a surface?

Irradiance

What happens next? If this is a sensor, that's what it measures.

Bi-directional Reflectance Distribution Function

(Non illuminant) Surfaces will Absorb and Reflect portions of the incident light, in different directions.

Bi-directional Reflectance Distribution Function

(Non illuminant) Surfaces will Absorb and Reflect portions of the incident light, in different directions.

$$\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{L_o(\theta_o, \phi_o)}{L_i(\theta_i, \phi_i) \cos \theta_i d\omega_i}$$

Bi-directional Reflectance Distribution Function

Total radiance in output direction from integrating contributions from all incoming radiance:

$$L_o(\theta_o, \phi_o) = \int \rho(\theta_i, \phi_i, \theta_o, \phi_o) L_i(\theta_i, \phi_i) \cos \theta_i \ d\omega_i$$

- So, the BRDF describes how every incoming ray gets reflected by the surface.
 - How much energy in which direction
 - This is actually a function of wavelength λ

Bi-directional Reflectance Distribution Function

Properties

- Positivity: $\rho(\theta_i, \phi_i, \theta_o, \phi_o) \ge 0$
- Helmholtz Reciprocity: $\rho(\theta_i, \phi_i, \theta_o, \phi_o) = \rho(\theta_o, \phi_o, \theta_i, \phi_i)$
- Total Energy leaving surface is less than total energy arriving

$$\int L_i(\theta_i, \phi_i) d\omega_i \ge \int \left[\int \rho(\theta_i, \phi_i, \theta_o, \phi_o) L_i(\theta_i, \phi_i) \cos \theta_i \ d\omega_i \right] \cos \theta_o d\omega_o$$

BRDF

Essentially a material property.

Outward Radiance in all directions same, but still a function of input direction to normal.

Most of the radiance is in the mirror direction

Specular Highlights

BRDF

Essentially a material property.

The appearance won't change from change in viewing direction

Most of the radiance is in the mirror direction

Specular Highlights

BRDF

Source: Matusik et al., A Data Driven Reflectance Model, TOG 2003

BRDF

In all cases, reflected radiance depends on surface geometry,

which we can exploit to estimate shape.