IE 404 – Digital Image Processing

Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) End-Sem Examination, November 2019

[Time – 2 Hour 30 Minutes] [Total Marks - 65]

Instructions:

- There are 2 double sided pages (4 printed pages). Ensure that you have all the pages.
- Question paper contains 2 sections (A, and B).
 - o Section A contains 20 multiple choice questions, 1 mark will each question.
 - o Section B contains 3 descriptive questions, 15 marks for each question.
- Answer all question. All questions are self-explanatory and understanding of question is a part of evaluation.
- No query regarding questions will entertained during examination by course instructor or invigilator.

Section A

- 1. Formula $p_r = n/MN$ represents the
 - A. Coding redundancy
 - B. Spatial redundancy
 - C. Temporal redundancy
 - D. Irrelevant info
- 2. Histogram equalization refers to image
 - A. Sampling
 - B. Quantization
 - C. Framing
 - **D.** Normalization
- 3. Redundancy of data can be found using formula
 - A. 1-(1/c)
 - B. 1+(1/c)
 - C. 1-(-1/c)
 - D. (1/c)
- 4. Image can be blurred using
 - A. Low pass filter
 - B. Contouring
 - C. Erosion
 - D. High pass filter
- 5. Brightness of light is a subject
 - A. Oriented
 - **B.** Descriptor
 - C. Matter
 - D. Defined
- **6.** Color of an object is determined by light
 - A. Refracted
 - B. Transmitted
 - C. Reflected
 - D. Absorbed

- 7. Visible spectrum ranges
 - A. 300-600 nm
 - B. 400-700 nm
 - C. 500-800 nm
 - D. 600-900 nm
- **8.** For line detection we use mask that is
 - A. Gaussian
 - B. Laplacian
 - C. Ideal
 - D. Butterworth
- **9.** Gradient magnitude images are more useful in
 - A. Point detection
 - B. Line detection
 - C. Area detection
 - D. Edge detection
- 10. For noise reduction we use
 - A. Image smoothing
 - B. Image contouring
 - C. Image enhancement
 - D. Image recognition
- 11. For edge detection we use
 - A. First derivative
 - B. Second derivative
 - C. Third derivative
 - D. Both A and B
- 12. Sobel gradient is not that good for detection of
 - A. Horizontal lines
 - B. Vertical lines
 - C. Diagonal lines
 - D. Edges
- 13. Example of similarity approach in image segmentation is
 - A. Edge based segmentation
 - B. Boundary based segmentation
 - C. Region based segmentation
 - D. Both A and B
- 14. Reflection and translation of image objects are based on
 - A. Pixels
 - B. Frames
 - **C.** Structuring elements
 - D. Coordinates
- 15. With dilation process images get
 - A. Thinner
 - B. Thickened
 - C. Shrinked
 - D. Sharpened
- **16.** Power law transformation is useful in
 - A. Purification
 - B. Industry
 - C. Radar
 - D. MRI

- 17. Product of two functions in spatial domain is what, in frequency domain
 - A. Correlation
 - **B.** Convolution
 - C. Fourier transform
 - D. Fast Fourier transform
- **18.** Types of imaging sensors are
 - A. Two
 - B. Three
 - C. Four
 - D. Five
- 19. Image linear interpolation is given by formula
 - A. v(x,y) = ax+by+cxy+d
 - B. v(x,y) = ax+by+cxy
 - C. v(x,y) = ax+by+d
 - D. v(x,y) = by+cxy+d
- **20.** Visible red light is used in
 - A. Soil moisture
 - B. Mineral mapping
 - C. Water penetration
 - D. Vegetation discrimination

Section B

21. Consider the following image A, and let the structuring element be B.

$$A = \begin{bmatrix} 23 & 21 & 32 & 31 & 28 & 26 \\ 88 & 45 & 29 & 51 & 67 & 39 \\ 64 & 23 & 33 & 35 & 32 & 24 \\ 15 & 20 & 125 & 190 & 143 & 120 \\ 34 & 255 & 24 & 0 & 26 & 123 \\ 75 & 145 & 29 & 51 & 67 & 39 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Perform the following operations

(I)
$$A^{C}$$

(II)
$$A \oplus B$$

- (III) $A\Theta B$
- $A^C \oplus B$ (IV) -20 -20 -20 -27 -25 -25 -22 -20 -28 -28 -27 -23 -14 -19 -22 -31 -23 -23 -14 -14 -19 1 -25 -23 -14 -19 1 -25 -33 -28 -23 1 -25 -38
- (VI) $(A \Theta B) \oplus B$
- (VII) $(A \oplus B)\Theta B$ 143 120 75 145
- 22. (A). 4 x 4 original image with 4 bits per pixel is given by [10,12,8,9; 10,12,12,14; 12,13,10,9; 14,12,10,12]
 - (i). Apply histogram equalization to the image by rounding image pixels to integers.
 - (ii). Sketch the histogram of the original image and histogram equalized image

10	12	8	9
10	12	12	14
12	13	10	9
14	12	10	12

Gray Level	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No. of Pixels	0	0	0	0	0	0	0	0	1	2	4	0	6	1	2	0

Histogram before equalization

Gray	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Level																
No. of	0	0	0	0	0	0	0	0	1	2	4	0	6	1	2	0
Pixels																
$\sum_{j=0}^{k} n_j$	0	0	0	0	0	0	0	0	1	3	7	7	13	14	16	16
$\sum_{i=1}^{k} n_{i}$	0/	0/	0/	0/	0/	0/	0/	0/	1/	3/	7/	7/	13/16	14/16	16/16	16/16
$s = \sum_{j=0}^{\infty} \frac{1}{n}$	16	16	16	16	16	16	16	16	16	16	16	16				
J=0 **	0	0	0	0	0	0	0	0	0.06	0.19	0.44	0.44	0.81	0.87	1	1
S * 15	0	0	0	0	0	0	0	0	0.9	2.85	6	6	12.15	13.05	15	15
	0	0	0	0	0	0	0	0	1	3	6	6	12	13	15	15

After Equalization

Gray Level	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No. of Pixels	0	1	0	2	0	0	4	0	0	0	0	0	6	1	0	2

(B). Determine the Convolution and Correlation between the following two images f(x, y) and g(x, y)

$$f(x,y) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad g(x,y) = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

and
$$g(x, y) = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Convolution

0 $0 \quad 0 \quad 0 \quad 0$ 0 0 1 2 3 0 6 8 6 0 0 1 0 1 6 16 16 12 0 4 12 18 15 8 3 0 0 7 8 16 12 14 0 7 8

Correlation

0 $0 \quad 0 \quad 0$ 0 0 0 0 0 9 8 0 0 9 14 12 4 0 9 14 24 14 8 0 0 6 8 12 15 12 7 0 3 2 4 8 0 0 0 3 2 1

23. (A). Consider an image that uses a window of size 5×5 . The gray level values inside the 5×5 Subimage are 15,17,15,17,16,10,8,9,18,15,16,12,14,11,15,14,15,11,100,15,14,13,12,12,17

What values could Assign to the central pixel of this sub-image by using following filter

- 1) A local averaging filter (mean)
- 2) A median filter
- 3) A mode filter
- 4) A max filter
- 5) A min filter

(i). Mean Filter	17.24
(ii). Median Filter	15
(iii). Mode Filter	15
(iv). Max Filter	100
(v). Min Filter	8

(B). Find the DFT transform of the image shown below:

$$f(x,y) = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 3 & 4 & 3 \\ 1 & 2 & 3 & 2 \end{bmatrix}$$

2D Discrete Fourier Transform (DFT)

$$F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi \left(\frac{k}{M}m + \frac{l}{N}n\right)}$$