Machine Learning from Data – IDC

HW5 - Theory + SVM: 304866551, 204118616

1. a. K, L are two kernels, therefore there are two mappings $\phi_{\it K}$, $\phi_{\it L}$ accordingly such that:

$$\forall x, y, K(x, y) = \langle \phi_K(x), \phi_K(y) \rangle$$

$$\forall x, y, L(x, y) = \langle \phi_L(x), \phi_L(y) \rangle$$

Now we will show that exists an additional mapping ϕ , such that:

$$\forall x, y, (\alpha K + \beta L)(x, y) = \langle \phi(x), \phi(y) \rangle \quad \alpha > 0, \beta > 0$$

Considering the following mapping ϕ as:

$$\phi(x) = (\sqrt{\alpha} \cdot \phi_K(x), \sqrt{\beta} \cdot \phi_L(x))$$

And since $\phi_{\it K}$, $\phi_{\it L}$ are mappings, thus ϕ is a mapping following:

$$\forall x, y, \langle \phi(x), \phi(y) \rangle = \langle \left(\sqrt{\alpha} \cdot \phi_K(x), \sqrt{\beta} \cdot \phi_L(x) \right), \left(\sqrt{\alpha} \cdot \phi_K(y), \sqrt{\beta} \cdot \phi_L(y) \right) \rangle =$$

$$= \langle \sqrt{\alpha} \cdot \phi_K(x), \sqrt{\alpha} \cdot \phi_K(y) \rangle + \langle \sqrt{\beta} \cdot \phi_L(x), \sqrt{\beta} \cdot \phi_L(y) \rangle =$$

$$= \alpha \cdot \langle \phi_K(x), \phi_K(y) \rangle + \beta \cdot \langle \phi_L(x), \phi_L(y) \rangle =$$

$$= \alpha \cdot K(x, y) + \beta \cdot L(x, y) = (\alpha K + \beta L)(x, y)$$

Therefore, $\alpha K + \beta L$ is a kernel.

b. i. K - L is a kernel:

Let's define,

- $K = (x \cdot y + 1)^2$ $L = (x \cdot y + 1)$

Then,

$$K - L = (x \cdot y + 1)^{2} - (x \cdot y + 1) =$$

$$= (x \cdot y)^{2} + 2(x \cdot y) + 1 - (x \cdot y + 1) =$$

$$= (x \cdot y)^{2} + 2(x \cdot y) + 1 - (x \cdot y) - 1 =$$

$$= (x \cdot y)^{2} + (x \cdot y)$$

Since $(x \cdot y)^2$ is a kernel, and $(x \cdot y)$ is a kernel, and sums of kernels are kernels as well, therefore $(x \cdot y)^2 + (x \cdot y)$ is also a kernel.

ii. K - L is not a kernel:

Let's define:

- $K = (x \cdot y + 1)$ $L = (x \cdot y + 1)^2$

Then,

$$K - L = (x \cdot y + 1) - (x \cdot y + 1)^{2} =$$

$$= (x \cdot y) + 1 - ((x \cdot y)^{2} + 2(x \cdot y) + 1) =$$

$$= (x \cdot y) + 1 - (x \cdot y)^{2} - 2(x \cdot y) - 1 =$$

$$= -(x \cdot y)^{2} - (x \cdot y) =$$

$$= -((x \cdot y)^{2} + (x \cdot y))$$

Let's define $W = (x \cdot y)^2 + (x \cdot y)$, and since $(x \cdot y)^2$ is a kernel and $(x \cdot y)$ is also a kernel, then $(x \cdot y)^2 + (x \cdot y)$ is also a kernel, according to the sum of kernels.

Therefore, $W = (x \cdot y)^2 + (x \cdot y)$ is a kernel, however -W is not a kernel.

$$-W = -((x \cdot y)^2 + (x \cdot y))$$

Proof:

Using contradiction, let's say that -W is a kernel, then there is a mapping such that:

$$\forall x, y, -W(x, y) = \langle \phi(x), \phi(y) \rangle$$

Since W is a non-zero kernel, then exists x such that W(x,x) > 0, hence:

$$-W(x,x)<0$$

But,

$$-W(x,x) = \langle \phi(x), \phi(x) \rangle = \|\phi(x)\| \geq 0$$

Which causes to contradiction, hence -W = K - L is not a kernel.

2. Function: $f(x, y, z) = x^2 + y^2 + z^2$.

Constraint: $g(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} = 1$.

Where $\alpha > \beta > 0$.

Therefore,

$$\exists \lambda \ s.t \ \nabla f(\vec{v}) + \lambda \nabla g(\vec{v}) = 0$$

$$L(x, y, z) = x^{2} + y^{2} + z^{2} + \lambda \left(\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}} + \frac{z^{2}}{\beta^{2}} \right)$$

$$\rightarrow \frac{\partial}{\partial x}L(x,y,z) = \frac{\partial}{\partial x}f(x,y,z) + \lambda \frac{\partial}{\partial x}g(x,y,z) = 0 \rightarrow$$

$$\rightarrow 2x + \lambda \frac{2x}{\alpha^2} = 0 \rightarrow$$

$$\rightarrow 2x\left(1+\frac{\lambda}{\alpha^2}\right)=0$$

$$\rightarrow \frac{\partial}{\partial y}L(x,y,z) = \frac{\partial}{\partial y}f(x,y,z) + \lambda \frac{\partial}{\partial y}g(x,y,z) = 0 \rightarrow$$

$$\rightarrow 2y + \lambda \frac{2y}{\beta^2} = 0 \rightarrow$$

$$\rightarrow 2y\left(1+\frac{\lambda}{\beta^2}\right)=0$$

$$\rightarrow \frac{\partial}{\partial z} L(x, y, z) = \frac{\partial}{\partial z} f(x, y, z) + \lambda \frac{\partial}{\partial z} g(x, y, z) = 0 \rightarrow$$

$$\rightarrow 2z + \lambda \frac{2z}{\beta^2} = 0 \rightarrow$$

$$\rightarrow 2z\left(1+\frac{\lambda}{\beta^2}\right)=0$$

$$\rightarrow \frac{\partial}{\partial \lambda} L(x, y, z) = \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} = 0$$

According to the equations above, λ cannot revoke any of them, therefore the solutions are:

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\beta^2} = 1$$

$$x = 0, y = 0 \Rightarrow z = \pm \beta$$

$$x = 0, z = 0 \Rightarrow y = \pm \beta$$

$$y = 0, z = 0 \Rightarrow x = \pm \alpha$$

Then the maximum or minimum values of the function are amongst the points below:

$$(x,y,z)=(\pm\alpha,0,0)$$

$$(x, y, z) = (0, \pm \beta, 0)$$

$$(x, y, z) = (0, 0, \pm \beta)$$

Since it is given that $\alpha > \beta > 0$,

The maximal points are: $(\pm \alpha, 0,0)$, and the minimal points are: $= (0,0,\pm \beta)$.

Hence:

The $\underline{\text{maximum}}$ value of the function subject to the given constraints is: α^2 .

The $\underline{\text{minimum}}$ value of the function subject to the given constraints is: β^2 .

3.
$$X = \mathbb{R}^3$$
, $C = H = \{h(a, b, c) = \{(x, y, z) \text{ s. } t | x| \le a, |y| \le b, |z| \le c\} \text{ s. } t \text{ a, b, } c \in \mathbb{R}_+$

The Algorithm

The algorithm will produce a hypothesis which is the smallest relevant area within the centered box which contains all the positive points (label: +). Our algorithm seeks to return a hypothesis $h \in H$.

- Let D be set of points (considering m sampled data points, $D \in \Omega^m$) in the plain labeled as positive (+) and negative (-) classes.
- **Time complexity**: the algorithm can be done in O(m).

Consistent Learner

Denotes as L, find points follows as below, and draws edges accordingly:

- $L(D) = h \in H$.
- Max and min x.
- Max and min y.
- Max and min z.

Returns h such that h(x) = 1 => c(x) = 1, but not necessarily the opposite. Both directions are true on the training data.

The Concept

For every $c \in C$, we will now bound all training datasets, D, that can lead to h = L(D) with $err(h,c) > \varepsilon$ into a union of sets (subsets of X^m , where $X = \mathbb{R}^3$) characterizable by regions that they do not visit.

We will estimate the probability of each such set of instances and finally their union. From that we will infer a bound-on sample complexity, **as a function of** ε **and** δ ($\varepsilon > 0$ and $\delta > 0$).

The Learning Axes Aligned Rectangles

Considering each region B_i , generated by the concept c, as a wall that wraps the consistent hypothesis area.

Each region could contain the errors, and is defined as:

Let's define k, k', l, l', w, w' $\in \mathbb{R}_+$ as an arbitrary number.

- $B_1 = \{(x, y, z) \ s.t a k \le x \le a, \ |y| \le b, \ |z| \le c\} \ s.t \ a, c, b \in \mathbb{R}_+.$
- $B_2 = \{(x, y, z) \ s.t \ |x| \le a, \ -b \le y \le b+l, \ |z| \le c\} \ s.t \ a, c, b \in \mathbb{R}_+.$
- $B_3 = \{(x, y, z) \ s.t a \le x \le a + k', \ |y| \le b, \ |z| \le c\} \ s.t \ a, c, b \in \mathbb{R}_+.$
- $B_4 = \{(x, y, z) \ s.t \ |x| \le a, \ -b l' \le y \le b, \ |z| \le c\} \ s.t \ a, c, b \in \mathbb{R}_+.$
- $B_5 = \{(x, y, z) \text{ s.t } |x| \le a, |y| \le b, -c w \le z \le c\} \text{ s.t } a, c, b \in \mathbb{R}_+.$
- $B_6 = \{(x, y, z) \ s.t \ |x| \le a, |y| \le b, \ -c \le z \le c + w'\} \ s.t \ a, c, b \in \mathbb{R}_+.$

$$P(B_i) = \frac{\varepsilon}{6}$$

The Sample Complexity

Consider training data, $D \in X^m$.

Assume that D visits each one of the 6 sets B_i (defined above), we can evaluate err(h,c) as following:

$$P(B_1UB_2UB_3UB_4UB_5UB_6) \le \sum_{i=1}^6 B_i \le \varepsilon \to Union \ of \ bound.$$

 $P(B_i) \ge \frac{\varepsilon}{6} \to \text{Needs to have never visited at least one of them.}$

$$=> P(D \in X^m: err(h, c) > \varepsilon\}) \le \sum_{i=1}^{6} \left(P(X - B_i)\right)^m \le 6\left(1 - \frac{\varepsilon}{6}\right)^m \le 6e^{-\frac{m\varepsilon}{6}}$$
$$=> 6e^{-\frac{m\varepsilon}{6}} \le \delta$$

$$=> m \ge \frac{6}{\varepsilon} (\ln(6) + \ln(\frac{1}{\delta}).$$

Q.E.D