

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика, системы управления и искусственный интеллект

КАФЕДРА Системы обработки информации и управления

## Лабораторная работа №1

# По курсу

«Методы машинного обучения в АСОИУ»
По теме «Создание "истории о данных" (Data Storytelling)»

Выполнил: Студент группы ИУ5-23М Печенкин П.Д. 22.03.2024

Проверил: **Гапанюк Ю.Е.** 

## Цель работы

Изучение различных методов визуализация данных и создание истории на основе данных.

## Задание

□ Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов <u>здесь.</u>

Для лабораторных работ не рекомендуется выбирать датасеты очень большого размера.

- □ Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:
- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.
- □ Сформировать отчет и разместить его в своем репозитории на github. Средства и способы визуализации данных можно посмотреть <u>здесь.</u>

# Импорт библиотек

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import re
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import mean_squared_error,r2_score
pd.options.display.float_format = '{:.2f}'.format
import warnings
warnings.filterwarnings("ignore")
```

### Загрузка данных

```
: car_data = pd.read_csv("Automobile.csv")
```

#### Основные характеристики датасета

Выведем первые строки

car\_data.head()

|   | name                      | mpg   | cylinders | displacement | horsepower | weight | acceleration | model_year | origin |
|---|---------------------------|-------|-----------|--------------|------------|--------|--------------|------------|--------|
| 0 | chevrolet chevelle malibu | 18.00 | 8         | 307.00       | 130.00     | 3504   | 12.00        | 70         | usa    |
| 1 | buick skylark 320         | 15.00 | 8         | 350.00       | 165.00     | 3693   | 11.50        | 70         | usa    |
| 2 | plymouth satellite        | 18.00 | 8         | 318.00       | 150.00     | 3436   | 11.00        | 70         | usa    |
| 3 | amc rebel sst             | 16.00 | 8         | 304.00       | 150.00     | 3433   | 12.00        | 70         | usa    |
| 4 | ford torino               | 17.00 | 8         | 302.00       | 140.00     | 3449   | 10.50        | 70         | usa    |

```
car_data.shape
```

(398, 9)

car\_data.describe()

|      | mpg      | cylinders | displacement | horsepower | weight  | acceleration | model_year |
|------|----------|-----------|--------------|------------|---------|--------------|------------|
| coun | t 398.00 | 398.00    | 398.00       | 392.00     | 398.00  | 398.00       | 398.00     |
| mea  | n 23.51  | 5.45      | 193.43       | 104.47     | 2970.42 | 15.57        | 76.01      |
| st   | d 7.82   | 1.70      | 104.27       | 38.49      | 846.84  | 2.76         | 3.70       |
| mi   | n 9.00   | 3.00      | 68.00        | 46.00      | 1613.00 | 8.00         | 70.00      |
| 25%  | 6 17.50  | 4.00      | 104.25       | 75.00      | 2223.75 | 13.83        | 73.00      |
| 50%  | 6 23.00  | 4.00      | 148.50       | 93.50      | 2803.50 | 15.50        | 76.00      |
| 75%  | 6 29.00  | 8.00      | 262.00       | 126.00     | 3608.00 | 17.18        | 79.00      |
| ma   | x 46.60  | 8.00      | 455.00       | 230.00     | 5140.00 | 24.80        | 82.00      |

#### car\_data.corr()

|              | mpg   | cylinders | displacement | horsepower | weight | acceleration | model_year |
|--------------|-------|-----------|--------------|------------|--------|--------------|------------|
| mpg          | 1.00  | -0.78     | -0.80        | -0.78      | -0.83  | 0.42         | 0.58       |
| cylinders    | -0.78 | 1.00      | 0.95         | 0.84       | 0.90   | -0.51        | -0.35      |
| displacement | -0.80 | 0.95      | 1.00         | 0.90       | 0.93   | -0.54        | -0.37      |
| horsepower   | -0.78 | 0.84      | 0.90         | 1.00       | 0.86   | -0.69        | -0.42      |
| weight       | -0.83 | 0.90      | 0.93         | 0.86       | 1.00   | -0.42        | -0.31      |
| acceleration | 0.42  | -0.51     | -0.54        | -0.69      | -0.42  | 1.00         | 0.29       |
| model_year   | 0.58  | -0.35     | -0.37        | -0.42      | -0.31  | 0.29         | 1.00       |

#### car\_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
                  Non-Null Count Dtype
    Column
0
                  398 non-null
    name
                                  object
                  398 non-null
1
                                  float64
    mpg
2
    cylinders
                  398 non-null
                                  int64
    displacement 398 non-null
3
                                  float64
4
    horsepower
                                  float64
                  392 non-null
5
                  398 non-null
                                  int64
    weight
    acceleration 398 non-null
                                  float64
6
    model_year
                  398 non-null
                                  int64
8
    origin
                  398 non-null
                                  object
dtypes: float64(4), int64(3), object(2)
memory usage: 28.1+ KB
```

Определим уникальные значения для целевого признака (год производства):

```
car_data['origin'].unique()
```

```
array(['usa', 'japan', 'europe'], dtype=object)
```

Целевой признак содержит только 3 значения.

#### Визуальное исследование датасета

Диаграмма рассеяния - распределение двух столбцов данных и отображение визуальной зависимости между ними:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(x='acceleration', y='mpg', hue='cylinders', data=car_data)
plt.xlabel('Acceleration')
plt.ylabel('MPG')
plt.title('Scatter Plot of MPG vs. Acceleration (Colored by Cylinders)')
plt.legend(title='Number of Cylinders',loc = "best")
plt.show()
```





Гистограмма отображает плотность вероятности распределения данных:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(car_data['mpg'])
```

<Axes: xlabel='mpg', ylabel='Density'>



Комбинация гистограмм и диаграмм рассеивания выполняется с помощью jointplot:

```
sns.jointplot(x='mpg', y='acceleration', data=car_data)
```

<seaborn.axisgrid.JointGrid at 0x2b5f01ea0>



Данные можно представить в виде парных диаграмм - матрицы графиков:

```
sns.pairplot(car_data, hue="origin")
```

< <seaborn.axisgrid.PairGrid at 0x2b62d5240>



#### Отображение в виде "Ящика с усами":

```
sns.boxplot(data=car_data,x='model_year')
plt.title('boxplot of model_year\n')
plt.show()
```

boxplot of model\_year



```
sns.boxplot(x='cylinders', y='horsepower', data=car_data)
```

<Axes: xlabel='cylinders', ylabel='horsepower'>



Он показывает мощность двигателя автомобиля в зависимости от цилиндра.

```
sns.violinplot(x='cylinders', y='horsepower', data=car_data)
```

<Axes: xlabel='cylinders', ylabel='horsepower'>



average\_mpg\_year\_origin = df.groupby(['model\_year', 'origin'])['mpg'].mean().unstack()
average\_mpg\_year\_origin

| origin     | europe | japan | usa   |
|------------|--------|-------|-------|
| model_year |        |       |       |
| 70         | 25.20  | 25.50 | 15.27 |
| 71         | 28.75  | 29.50 | 18.10 |
| 72         | 22.00  | 24.20 | 16.28 |
| 73         | 24.00  | 20.00 | 15.03 |
| 74         | 27.00  | 29.33 | 18.33 |
| 75         | 24.50  | 27.50 | 17.55 |
| 76         | 24.25  | 28.00 | 19.43 |
| 77         | 29.25  | 27.42 | 20.72 |
| 78         | 24.95  | 29.69 | 21.77 |
| 79         | 30.45  | 32.95 | 23.48 |
| 80         | 37.29  | 35.40 | 25.91 |
| 81         | 31.57  | 32.96 | 27.53 |
| 82         | 40.00  | 34.89 | 29.45 |

```
average_mpg_year_origin.plot(marker='o')
plt.xlabel('\nYear')
plt.ylabel('Average MPG\n')
plt.title('Average MPG across Years and Origins\n')
plt.legend(title='Origin')
plt.show()
```

#### Average MPG across Years and Origins



Показывает как средний показатель MPG варьируется в зависимости от года и происхождения?

```
plt.figure(figsize = (8, 6))
ax = df["horsepower"].value_counts().head(10).plot(kind = 'bar', color = sns.color_palette("ch:s=.25,rot=-.25"), rot

for p in ax.patches:
    ax.annotate(int(p.get_height()), (p.get_x() + 0.25, p.get_height() + 1), ha = 'center', va = 'bottom', color = 'ax.tick_params(axis = 'both', labelsize = 15)

plt.xlabel('Horsepower', fontsize = 14, labelpad = 20)
plt.ylabel('Count', fontsize = 14, labelpad = 20);
plt.title('Top 10 horsepower\n')
```

Text(0.5, 1.0, 'Top 10 horsepower\n')



<Axes: ylabel='origin'>



Процент автомобилей произведенной той или иной страной

#### Информация о корреляции признаков

Проверка корреляции помогает найти корреляции с целевом признаком (информативные для машинного обучения), а также выявить линейно независимые нецелевые признаки.

Построим корреляционную матрицу:

car\_data.corr()

|              | mpg   | cylinders | displacement | horsepower | weight | acceleration | model_year |
|--------------|-------|-----------|--------------|------------|--------|--------------|------------|
| mpg          | 1.00  | -0.78     | -0.80        | -0.78      | -0.83  | 0.42         | 0.58       |
| cylinders    | -0.78 | 1.00      | 0.95         | 0.84       | 0.90   | -0.51        | -0.35      |
| displacement | -0.80 | 0.95      | 1.00         | 0.90       | 0.93   | -0.54        | -0.37      |
| horsepower   | -0.78 | 0.84      | 0.90         | 1.00       | 0.86   | -0.69        | -0.42      |
| weight       | -0.83 | 0.90      | 0.93         | 0.86       | 1.00   | -0.42        | -0.31      |
| acceleration | 0.42  | -0.51     | -0.54        | -0.69      | -0.42  | 1.00         | 0.29       |
| model_year   | 0.58  | -0.35     | -0.37        | -0.42      | -0.31  | 0.29         | 1.00       |

Выше была построена матрица корреляции по Пирсону, но также можно построить матрицы по критерию Кендалла и Спирмена.

car\_data.corr(method='kendall')

|              | mpg   | cylinders | displacement | horsepower | weight | acceleration | model_year |
|--------------|-------|-----------|--------------|------------|--------|--------------|------------|
| mpg          | 1.00  | -0.69     | -0.68        | -0.68      | -0.69  | 0.30         | 0.41       |
| cylinders    | -0.69 | 1.00      | 0.79         | 0.69       | 0.74   | -0.37        | -0.27      |
| displacement | -0.68 | 0.79      | 1.00         | 0.72       | 0.80   | -0.35        | -0.22      |
| horsepower   | -0.68 | 0.69      | 0.72         | 1.00       | 0.70   | -0.49        | -0.28      |
| weight       | -0.69 | 0.74      | 0.80         | 0.70       | 1.00   | -0.27        | -0.20      |
| acceleration | 0.30  | -0.37     | -0.35        | -0.49      | -0.27  | 1.00         | 0.20       |
| model_year   | 0.41  | -0.27     | -0.22        | -0.28      | -0.20  | 0.20         | 1.00       |

car\_data.corr(method='spearman')

|              | mpg   | cylinders | displacement | horsepower | weight | acceleration | model_year |
|--------------|-------|-----------|--------------|------------|--------|--------------|------------|
| mpg          | 1.00  | -0.82     | -0.86        | -0.85      | -0.87  | 0.44         | 0.57       |
| cylinders    | -0.82 | 1.00      | 0.91         | 0.82       | 0.87   | -0.47        | -0.34      |
| displacement | -0.86 | 0.91      | 1.00         | 0.88       | 0.95   | -0.50        | -0.31      |
| horsepower   | -0.85 | 0.82      | 0.88         | 1.00       | 0.88   | -0.66        | -0.39      |
| weight       | -0.87 | 0.87      | 0.95         | 0.88       | 1.00   | -0.40        | -0.28      |
| acceleration | 0.44  | -0.47     | -0.50        | -0.66      | -0.40  | 1.00         | 0.27       |
| model_year   | 0.57  | -0.34     | -0.31        | -0.39      | -0.28  | 0.27         | 1.00       |

Для визуализации корреляционных матриц используют тепловую карту:

```
sns.heatmap(car_data.corr(), annot=True, fmt='.1f')
```

<Axes: >



```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(car_data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.1f')
sns.heatmap(car_data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.1f')
sns.heatmap(car_data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.1f')
fig.suptitle('Корреляционные матрицы, построенные методами Пирсона, Кендалла и Спирмана')
```

Text(0.5, 0.98, 'Корреляционные матрицы, построенные методами Пирсона, Кендалла и Спирмана')

Корреляционные матрицы, построенные методами Пирсона, Кендалла и Спирмана



#### Также можно вывести треугольную матрицу:

```
mask = np.zeros_like(car_data.corr(), dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
sns.heatmap(car_data.corr(), mask=mask, annot=True, fmt='.1f')
```

#### <Axes: >

