

Se la proposizione scritta in questo riquadroè vera allora

tu sei Superman

13. Lezione Corso di Logica 2020/2021

26 novembre 2020

Maria Emilia Maietti

email: maietti@math.unipd.it

Significato della scrittura $fr[x/t_{ter}]$??

$$fr[x/t_{ter}]$$

indica la formula ottenuta

dopo aver sostituito TUTTE le occorrenze libere della variabile x

in ${\tt fr}$ con il termine t_{ter}

Esempio di sostituzione

$$\mathbf{A}(\mathbf{x})[\mathbf{x}/\mathbf{t_{ter}}] = \mathbf{A}(\mathbf{t_{ter}})$$

sta ad indicare la formula ottenuta

DOPO aver **sostituito** nel predicato atomico $\mathbf{A}(\mathbf{x})$

il termine $\mathbf{t_{ter}}$ al posto di \mathbf{x}

Calcolo dei sequenti della logica predicativa classica ${\cal LC}$

$$\frac{\Gamma, \ \forall x \ \text{fr}, \ \text{fr}[x/t_{ter}] \vdash \nabla}{\Gamma, \ \forall x \ \text{fr} \vdash \nabla} \ \forall -S$$

$$\frac{\Gamma \vdash \text{fr}[x/w], \ \nabla}{\Gamma \vdash \forall x \ \text{fr}, \ \nabla} \ \forall -D \ (w \not\in VL(\Gamma, \forall x \ \text{fr}, \nabla))$$

$$\frac{\Gamma, \ \text{fr}[x/w] \vdash \nabla}{\Gamma, \ \exists x \ \text{fr} \vdash \nabla} \ \exists -S \ (w \not\in VL(\Gamma, \exists x \ \text{fr}, \nabla))$$

$$\frac{\Gamma \vdash \text{fr}[x/t_{ter}], \ \exists x \ \text{fr}, \nabla}{\Gamma \vdash \exists x \ \text{fr}, \nabla} \ \exists -D$$

Calcolo dei sequenti della logica predicativa classica ${\cal LC}$ (versione alternativa)

ove le regole si intendono chiuse su sostituzione di predicati atomici con formule arbitrarie

$$\frac{\Gamma \vdash A(w) , \nabla}{\Gamma \vdash \forall x \, A(x) , \nabla} \, \forall -D \, (w \not\in VL(\Gamma, \forall x \, A(x), \nabla)) \qquad \frac{\Gamma, \, \forall x \, A(x) , \, A(x)(t_{ter}) \vdash \nabla}{\Gamma, \, \forall x \, A(x) \vdash \nabla} \, \forall -S$$

$$\frac{\Gamma, \, A(w) \vdash \nabla}{\Gamma, \, \exists x \, A(x) \vdash \nabla} \, \exists -S \, (w \not\in VL(\Gamma, \exists x \, A(x), \nabla)) \qquad \frac{\Gamma \vdash A(t_{ter}) , \, \exists x \, A(x) , \nabla}{\Gamma \vdash \exists x \, A(x) , \nabla} \, \exists -D$$

Nozione di sequente derivabile in LC

un sequente $\Gamma \vdash \Delta$ è derivabile nel calcolo LC

sse

esiste una derivazione in **LC** con $\Gamma \vdash \Delta$ come radice

(ovvero un albero costruito con regole di LC e foglie di soli assiomi di LC).

Esempio di derivazione

possiamo derivare

$$\forall x (U(x) \rightarrow M(x)), U(\overline{s}) \vdash M(\overline{s})$$

per esempio in tal modo

$$\frac{U(\overline{s}) \ , \forall x \ (U(x) \to M(x) \) \vdash U(\overline{s}) \ , M(\overline{s}) \qquad U(\overline{s}) , \forall x \ (U(x) \to M(x) \) \ , M(\overline{s}) \vdash M(\overline{s})}{U(\overline{s}) \ , \forall x \ (U(x) \to M(x) \) \ , U(\overline{s}) \to M(\overline{s}) \vdash M(\overline{s})} \qquad \forall -S \\ \frac{U(\overline{s}) \ , \forall x \ (U(x) \to M(x) \) \vdash M(\overline{s})}{\forall x \ (U(x) \to M(x) \) \ , U(\overline{s}) \vdash M(\overline{s})} \qquad \forall -S$$

È una derivazione corretta in LC??

ax-id

$$\frac{A(w) \vdash A(w)}{A(w) \vdash \forall z \ A(z)} \ \forall -\mathbf{D}$$
$$\frac{\exists z \ A(z) \vdash \forall z \ A(z)}{\exists z \ A(z) \vdash \forall z \ A(z)} \ \exists -\mathbf{S}$$

È una derivazione corretta in LC??

ax-id

$$\frac{A(w) \vdash A(w)}{\exists z \ A(z) \vdash A(w)} \ \exists -S$$
$$\exists z \ A(z) \vdash \forall z \ A(z) \ \forall -D$$

Attenzione alle condizioni su variabili

ax-id

$$\frac{\mathbf{A}(\mathbf{w}) \vdash \mathbf{A}(\mathbf{w})}{\mathbf{A}(\mathbf{w}) \vdash \forall \mathbf{z} \ \mathbf{A}(\mathbf{z})} \ \forall -D \ NO!!!}{\exists \mathbf{z} \ \mathbf{A}(\mathbf{z}) \vdash \forall \mathbf{z} \ \mathbf{A}(\mathbf{z})} \ \exists -S$$

NON è derivazione corretta:

NON si può applicare $\forall -D$ perchè \mathbf{w} è libera nel contesto a \mathbf{sx} di \vdash ovvero in $\mathbf{A}(\mathbf{w}) \vdash \forall \mathbf{z} \ \mathbf{A}(\mathbf{z})$

ax-id

$$\frac{\mathbf{A}(\mathbf{w}) \vdash \mathbf{A}(\mathbf{w})}{\frac{\exists \mathbf{z} \ \mathbf{A}(\mathbf{z}) \vdash \mathbf{A}(\mathbf{w})}{\exists \mathbf{z} \ \mathbf{A}(\mathbf{z}) \vdash \forall \mathbf{z} \ \mathbf{A}(\mathbf{z})}} \exists -S \ NO!!!}{\exists \mathbf{z} \ \mathbf{A}(\mathbf{z}) \vdash \forall \mathbf{z} \ \mathbf{A}(\mathbf{z})} \ \forall -D$$

NON è derivazione corretta:

NON si può applicare $\exists -S$ perchè \mathbf{w} è libera nel contesto a dx di \vdash ovvero in $\exists \mathbf{z} \ \mathbf{A}(\mathbf{z}) \vdash \mathbf{A}(\mathbf{w})$

Significato della quantificazione universale a dx

$$\frac{\Gamma \vdash A(w) , \nabla}{\Gamma \vdash \forall x A(x) , \nabla} \ \forall -D (w \not\in VL(\Gamma, \forall x A(x), \nabla))$$

segue dalla legge logica

$$\forall w \ (\Gamma^{\&} \to A(w) \lor \nabla^{\lor}) \leftrightarrow (\Gamma^{\&} \to \forall x \ A(x) \lor \nabla^{\lor})$$

(valida in quanto la *variabile* \underline{w} *NON* è *libera in* $\Gamma, \forall x \ A(x), \nabla \text{ !!!}$)

Tale legge rende la regola \forall -D sicura!!

esempio

ponendo

A = Suona l'allarme

S(x) = x scappa

O = viene dato ordine di non muoversi.

la regola

$$\frac{A \vdash S(w), O}{A \vdash \forall x \ S(x), O} \ \forall -D \ (w \not\in VL(A, \forall x \ S(x), O))$$

formalizza

"Assumendo che,

chiunque, se suona l'allarme, scappa oppure viene dato l'ordine di non muoversi ne segue che

se suona l'allarme tutti scappano oppure viene dato l'ordine di non muoversi."

Significato della regola esistenziale a sx

$$\frac{\Gamma, \mathbf{fr}[x/w] \vdash \Delta}{\Gamma, \exists x \, \mathbf{fr} \vdash \Delta} \ \exists -\mathrm{S}(w \not\in VL(\Gamma, \exists x \, \mathbf{fr}, \Delta))$$

la regola $\exists -S$ segue dalla seguente legge logica:

$$\forall w \ (\Gamma^{\&} \& \mathbf{fr}[x/w] \rightarrow \Delta^{\lor}) \leftrightarrow (\Gamma^{\&} \& \exists x \, \mathbf{fr} \rightarrow \Delta^{\lor})$$

che rende la regola $\exists -S$ sicura!!

Esempio

Ponendo

$$B(x) = x$$
 bussa alla porta

A = io apro la porta

$$\frac{B(w) \vdash A}{\exists x \ B(x) \vdash A} \ \exists -S(w \not\in VL(\exists x \ B(x), A))$$

formalizza

"Assumendo che,

chiunque (=w) esso sia, se bussa alla porta allora io apro la porta ne segue che

se qualcuno bussa alla porta allora io apro la porta."

Spiegazione regola universale a sinistra

La regola della quantificazione universale a sinistra

$$\frac{\Gamma, \ \forall x \ A(x), \ A(x)(t_{ter}) \ \vdash \nabla}{\Gamma, \ \forall x \ A(x) \vdash \nabla} \ \forall -S$$

segue dalla seguente legge logica

$$((\Gamma^{\&} \& \forall x \, A(x)) \& A(t_{ter}) \rightarrow \nabla^{\lor}) \rightarrow (\Gamma^{\&} \& \forall x \, A(x) \rightarrow \nabla^{\lor})$$

e dato che è una tautologia

$$\forall x \, A(x) \, \& \, A(t_{ter}) \leftrightarrow \forall x \, A(x)$$

la regola $\forall -S$ è sicura!!

Forma VELOCE e NON sicura della regola universale a sinistra

$$\frac{\Gamma, \mathbf{A}(t_{ter}) \vdash \nabla}{\Gamma, \forall x \ \mathbf{A}(x) \vdash \nabla} \ \forall -Sv$$

segue dalla legge logica

$$(\Gamma^{\&} \& A(t_{ter}) \to \nabla^{\lor}) \to (\Gamma^{\&} \& \forall x A(x) \to \nabla^{\lor})$$

MA **NON** è una regola sicura

esempio

Ponendo

 $G = \grave{E} giorno$

B(x) = x brilla nel cielo

T = Il cielo è del tutto coperto di nubi

s =Sole

la regola

$$\frac{G, B(s) \vdash \neg T}{G, \forall x B(x) \vdash \neg T} \ \forall -Sv$$

formalizza

"Assumendo che,

se è giorno e il sole brilla nel cielo allora il cielo non è del tutto coperto di nubi allora ne segue che

se è giorno e tutto brilla nel cielo allora il cielo non è del tutto coperto di nubi."

Controsempio a validità inversa della regola $\forall -Sv$

$$\frac{\Gamma, \forall x \ A(x) \vdash \nabla}{\Gamma, A(t_{ter}) \vdash \nabla} \ \text{inv} - \forall - \mathbf{S}v \quad \text{NON è sempre vera perchè}$$

ponendo

A(x) = x ha la cintura allacciata

P = l'aereo parte

m = Mario

$$\frac{\forall x \ A(x) \vdash P}{A(m) \vdash P} \ \text{inv} - \forall -Sv$$

formalizza l'argomentazione scorretta

"Assumendo che,

se tutti hanno le cinture allacciate allora l'aereo parte ne segue che

se Mario ha la cintura allacciata allora l'aereo parte."

Spiegazione quantificazione esistenziale a dx

$$\frac{\Gamma \vdash A(t_{ter}) , \exists x A(x) , \nabla}{\Gamma \vdash \exists x A(x) , \nabla} \exists -D$$

segue dalla legge logica

$$(\Gamma^{\&} \to (A(t_{ter}) \lor \exists x \ A(x)) \lor \nabla^{\lor}) \quad \to \quad (\Gamma^{\&} \to \exists x \ A(x) \lor \nabla^{\lor})$$

e dato che è una tautologia

$$\exists x \ A(x) \lor A(t_{ter}) \leftrightarrow \exists x \ A(x)$$

la regola \exists —D è **sicura**!!

Forma VELOCE e NON sicura della regola esistenziale a destra

$$\frac{\Gamma \vdash A(t_{ter}), \nabla}{\Gamma \vdash \exists x \ A(x), \nabla} \ \exists -Dv$$

segue dalla legge logica

$$(\Gamma^{\&} \to A(t_{ter}) \vee \nabla^{\vee}) \longrightarrow (\Gamma^{\&} \to \exists x \ A(x) \vee \nabla^{\vee})$$

MA **NON** è una regola sicura

esempio

A(x)=x è arrivato in stazione

P(x)=le porte del treno x sono aperte

ponendo

$$S(x,y)=x$$
 sale su y .

m=Marco

v=treno per Venezia

la regola

$$\frac{A(v) \vdash S(m, v), \neg P(v)}{A(v) \vdash \exists x S(x, v), \neg P(v)} \exists -Dv$$

formalizza

"Assumendo che,

se il treno per Venezia è arrivato in stazione allora o Marco sale sul treno per Venezia oppure le porte del treno per Venezia non sono aperte

ne segue che

se il treno per Venezia è arrivato in stazione allora o qualcuno sale sul treno per Venezia oppure le porte del treno per Venezia non sono aperte."

Controsempio a validità inversa della regola $\exists -Dv$

ponendo

A(x)=x è arrivato in stazione

P(x)=le porte del treno x sono aperte

S(x,y)=x sale su y.

g=il giornalaio della stazione v=il treno per Venezia

$$\frac{A(v) \vdash \exists x \, S(x, v), \neg P(v)}{A(v) \vdash S(q, v), \neg P(v)} \text{ inv} - \exists -Dv$$

"Assumendo che,

se il treno per Venezia è arrivato in stazione allora o qualcuno sale sul treno per Venezia oppure le porte del treno per Venezia non sono aperte."

ne segue che

se il treno per Venezia è arrivato in stazione allora o il giornalaio sale sul treno per Venezia (??) oppure le porte del treno per Venezia non sono aperte. (??)"

in quanto le porte del treno potrebbero essere aperte e il giornalajo al suo posto a vendere giornali!

