AEM 668 Project 4

MIMO LTI Feedback Control of Tail-Controlled Rocket

Learning Objective

This project is intended to introduce dynamics and control analysis in the presence of uncertainties for a tail-controlled rocket. The equations of motion are taken from R.T. Reichert, "Autopilot Design Using μ -Synthesis," American Control Conference, 1990.

Dynamical System

The nonlinear state dynamics for a tail-controlled rocket can be modeled as

$$\begin{bmatrix} \dot{\alpha} \\ \dot{q} \end{bmatrix} = f(\alpha, q, \mathcal{M}) = \begin{bmatrix} f_1(\alpha, q, \mathcal{M}) \\ f_2(\alpha, q, \mathcal{M}) \end{bmatrix} = \begin{bmatrix} \frac{\cos \alpha}{mc_s \mathcal{M}} \left(Q_{\infty} S_f C_n(\alpha, \mathcal{M}, \delta) \right) + q \\ \frac{1}{I_{yy}} \left(Q_{\infty} S_f d C_m(\alpha, \mathcal{M}, \delta) \right) \end{bmatrix}$$

$$\begin{bmatrix} \alpha \\ q \\ a_z \end{bmatrix} = \begin{bmatrix} \alpha \\ q \\ \frac{Q_{\infty} S_f C_n(\alpha, \mathcal{M}, \delta)}{mg_0} \end{bmatrix}$$
(1)

where α is the angle of attack in degrees, q is the pitch rate in degrees/second, a_z is the vertical acceleration in g's, g_0 is the standard acceleration due to gravity, \mathcal{M} is the Mach number, c_s is the speed of sound, Q_{∞} is the free-stream dynamic pressure and can be modeled as

$$Q_{\infty} = \frac{1}{2} \gamma_{s-h} P_{s,\infty} \mathcal{M}^2 \tag{2}$$

 γ_{s-h} is the specific heat ratio, $P_{s,\infty}$ is the static pressure of the free-stream, S_f is the fin reference area, d is the diameter of the rocket fuselage, m is the mass, I_{yy} is the pitch moment of inertia, g is the acceleration due to gravity, C_n is the nondimensional aerodynamic coefficient for the vertical force modeled as

$$C_n(\alpha, \mathcal{M}, \delta) = sign(\alpha) \left(n_3 |\alpha|^3 + n_2 \alpha^2 + (n_{1,\mathcal{M}} \mathcal{M} + n_{1,0}) |\alpha| \right) + n_0 \delta$$
 (3)

 C_m is the nondimensional aerodynamic coefficient for the pitching moment modeled as

$$C_m(\alpha, \mathcal{M}, \delta) = sign(\alpha) \left(m_3 |\alpha|^3 + m_2 \alpha^2 + (m_{1,\mathcal{M}} \mathcal{M} + m_{1,0}) |\alpha| \right) + m_0 \delta$$
 (4)

and δ is the tail fin deflection in degrees which is actuated. The acutator can be modeled by a second-order transfer function

$$A_{fin}(s) = \frac{\delta(s)}{\delta_c(s)} = \frac{\omega_a^2}{s^2 + 2\zeta_a \omega_a s + \omega_a^2}$$
 (5)

where $\omega_a = 150$ rad/s is the actuator undamped natural frequency and $\zeta_a = 0.7$ is the actuator damping ratio. In addition, this actuator is mechanically limited to $\pm 20^{\circ}$ deflection and a deflection rate of $\pm 600^{\circ}$ per second.

These equations can be used to form a linearized, time-invariant state-space model for the plant, G(s), about trim values $\bar{\alpha}$, \bar{q} , $\bar{\delta}$, \bar{a}_z , for some Mach number, \mathcal{M} , as

$$\begin{bmatrix} \Delta \dot{\alpha} \\ \Delta \dot{q} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}(\alpha, q, \mathcal{M})}{\partial \alpha} & \frac{\partial f_{1}(\alpha, q, \mathcal{M})}{\partial q} \\ \frac{\partial f_{2}(\alpha, q, \mathcal{M})}{\partial \alpha} & \frac{\partial f_{2}(\alpha, q, \mathcal{M})}{\partial q} \end{bmatrix}_{\bar{\alpha}, \bar{q}, \bar{\delta}, \bar{a}_{z}} \begin{bmatrix} \Delta \alpha \\ \Delta q \end{bmatrix} + \begin{bmatrix} \frac{\partial f_{1}(\alpha, q, \mathcal{M})}{\partial \delta} \\ \frac{\partial f_{2}(\alpha, q, \mathcal{M})}{\partial \delta} \end{bmatrix}_{\bar{\alpha}, \bar{q}, \bar{\delta}, \bar{a}_{z}} \Delta \delta$$

$$\begin{bmatrix} \Delta \alpha \\ \Delta q \\ \Delta a_{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\pi}{180} \left(\frac{Q \omega S_{f}}{m g_{0}} \right) \frac{\partial C_{n}(\alpha, \mathcal{M}, \delta)}{\partial \alpha} & \left(\frac{Q \omega S_{f}}{m g_{0}} \right) \frac{\partial C_{n}(\alpha, \mathcal{M}, \delta)}{\partial q} \end{bmatrix}_{\bar{\alpha}, \bar{q}, \bar{\delta}, \bar{a}_{z}} \begin{bmatrix} \Delta \alpha \\ \Delta q \end{bmatrix}$$

$$+ \begin{bmatrix} 0 \\ 0 \\ \frac{\pi}{180} \left(\frac{Q \omega S_{f}}{m g_{0}} \right) \frac{\partial C_{n}(\alpha, \mathcal{M}, \delta)}{\partial \delta} \end{bmatrix}_{\bar{\alpha}, \bar{q}, \bar{\delta}, \bar{a}_{z}} \Delta \delta$$

$$(6)$$

where $\Delta \bullet = \bullet - \overline{\bullet}$ for \bullet as α , q, δ , and n_z .

For this project, the values of the model parameters for this rocket-powered flight vehicle are:

Model Parameter	Symbol	Value
Fin Reference Area	S_{ref}	0.44 ft^2
Diameter	d	0.75 ft
Mass	m	13.98 slugs
y-moment of inertia	I_{yy}	182.5 slug-ft ²
Standard acceleration due to gravity at 20,000 ft	g	32.2 ft/s^2
Specific heat ratio of air	γ_{s-h}	1.40
Static pressure at 20,000 ft	$P_{s,\infty}$	973.3 lbs/ft ²
First-order C_n term w.r.t δ	n_0	-0.034 /deg
First-order C_n term w.r.t α	$n_{1,0}$	-0.3392 /deg
First-order C_n w.r.t \mathcal{M} & α	$n_{1,\mathcal{M}}$	0.0565333 /deg
Second-order C_n term w.r.t α	n_2	$-0.0094457 / \text{deg}^2$
Third-order C_n term w.r.t α	n_3	$0.000103 / \text{deg}^3$
First-order C_m term w.r.t δ	m_0	-0.206 /deg
First-order C_m term w.r.t α	$m_{1,0}$	-0.357 /deg
First-order C_m w.r.t \mathcal{M} & α	$m_{1,\mathcal{M}}$	0.136 /deg
Second-order C_m term w.r.t α	m_2	$-0.019546 / deg^2$
Third-order C_m term w.r.t α	m_3	$0.000215 / \text{deg}^3$

A state feedback robust servomechanism control system is to be used to track acceleration commands to the rocket as

where

$$\Delta \delta_c = K \begin{bmatrix} \int a_{z,c} - a_z \\ \Delta \alpha \\ \Delta q \\ \Delta \delta \\ \Delta \dot{\delta} \end{bmatrix}$$
 (7)

For this project, the control design objectives for this rocket-powered flight vehicle are:

- 1. Track commanded step inputs for acceleration maneuvers $a_{z,c}$ up to $\pm 0.1~g$ with:
 - (a) steady-state error of < 1%;
 - (b) 5%-settling time < 20 seconds;
 - (c) overshoot < 50%; and
 - (d) no position or rate saturation of the fin deflection, δ .
- 2. Robust stability to gain and phase variations in the actuator system and unmodeled high-frequency vibration modes across the range of flight conditions

Project Assignment and Deliverables

For this project, determine in MATLAB/Simulink:

- a) Construct a function (at the bottom of the script or as a separate file) to return the linearized, time-invariant state-space model for the plant at a given trim angle of attack, $\bar{\alpha}$, and Mach number, $\bar{\mathcal{M}}$.
 - As a check, the linearization at $\bar{\alpha} = 0^{\circ}$ and $\mathcal{M} = 3$ should be

$$A = \begin{bmatrix} -0.6 & 1.0 \\ 32.4 & 0 \end{bmatrix} \tag{8}$$

$$B = \begin{bmatrix} -0.12 \\ -130.9 \end{bmatrix} \tag{9}$$

$$C = \begin{bmatrix} 1.0 & 0\\ 0 & 1.0\\ -1.02 & 0 \end{bmatrix} \tag{10}$$

$$D = \begin{bmatrix} 0\\0\\-0.2038 \end{bmatrix} \tag{11}$$

• and at $\bar{\alpha} = 20^{\circ}$ and $\mathcal{M} = 3$ should be

$$A = \begin{bmatrix} -1.30 & 1.0 \\ -300.2 & 0 \end{bmatrix} \tag{12}$$

$$B = \begin{bmatrix} -0.11 \\ -130.9 \end{bmatrix} \tag{13}$$

$$C = \begin{bmatrix} 1.0 & 0\\ 0 & 1.0\\ -2.54 & 0 \end{bmatrix} \tag{14}$$

$$D = \begin{bmatrix} 0\\0\\-0.204 \end{bmatrix} \tag{15}$$

- b) Design a robust servomechanism, LTI, state feedback controller for the linearized plant at $\bar{\alpha} = 0^{\circ}$ and $\mathcal{M} = 3$
 - use the ss function for A_{fin} as a state-space system to output both $\Delta\delta$ and $\Delta\dot{\delta}$;
 - use the tf function for the tracking error integrator block, $\frac{1}{s}$;
 - use the connect function to form the generalized plant;
 - determine the controllability of the generalized plant;
 - determine the gain and phase margins, use the 1×1 open-loop transfer function matrix at the plant input, i.e., $L_{in}(s) = [K(s)][T_{A\&G}(s)]$; and
 - (optional) use the place function to set the poles of the feedback control system.

- c) Simulate the MIMO LTI system with your robust servomechanism state feedback controller at $\bar{\alpha} = 0^{\circ}$ and $\mathcal{M} = 3$, actuator, and linearized and nonlinear plants with different step inputs for $a_{z,c}$
 - start with the provided Simulink model, "rocket.mdl;"
 - output the step response with a suitably small $a_{z,c}$ such that the linearized and nonlinear plants agree; and
 - \bullet output the step response with five increasingly larger $a_{z,c}$ until the linearized and nonlinear plants disagree significantly, in your own opinion.
- d) Construct an uncertain LTI system for the linearized dynamics model as

- $\bar{\alpha} \in [0^{\circ}, 10^{\circ}]$ as real parametric uncertainty;
- Δ_{vib} models high-frequency vibration modes;
- $W_{act} = 0.6$: roughly corresponds to gain variations of 0.6 to 2.5 and phase variations
- $W_{vib} = \frac{150s^3 + 13,000s^2 + 70,000s + 48,000}{s^3 + 2,000s^2 + 2,000,000s + 62,000,000}$; use the ureal function on $\bar{\alpha}$ with the ss function to form the uncertain plant $G(\bar{\alpha})$ for $\mathcal{M} = 3$ with the *quadratic approximation* for $\cos \alpha$ and $\sin \alpha$ (in radians);
- use the simplify function with the 'full' option to eliminate redundant copies of the α uncertainty for this uncertain plant;
- use the ultidyn function to form the LTI uncertainties, Δ_{act} and Δ_{vib} ;
- use the connect function to form the system interconnections; and
- output the Bode plot of the open-loop transfer functions, $\Delta \alpha / \Delta \delta_c$, $\Delta q / \Delta \delta_c$ and $\Delta a_z / \Delta \delta_c$, using the bode function of the uncertain LTI model to generate several samples of the open-loop response.
- e) Output to the command window the closed-loop robust stability margin, robust performance, and worst-case gain, for your robust servomechanism controller in part b) shown below for the flight condition $\mathcal{M} = 3$

- use the connect function to form the uncertain LTI feedback control system with generalized disturbance, $a_{z,c}$, and generalized error, e_{a_z} ;
- use the robstab and wcgain functions to determine the stability margin, worst-case gain, and worst-case uncertainty of your uncertain system; and
- interpret the meaning of the outputs of these functions.