Matemáticas básicas

Universidad Nacional San Cristobal de Huamanga

Fisart.cf

Agradecimento a los estudiantes de la ESFAPA FGPA

A la UNSCH

Índice general

Ín	ndice de cuadros v								
Íne	ndice de figuras vii								
Re	sume	n	ix						
Int	trodu	cción	хi						
1.	Logi	ca	1						
2.	Conj	juntos	3						
	2.1.	Función proposicional y cuantificadores	3 3 4 7						
		Conjuntos Iguales	7						
	2.3.	Inclusión y subconjuntos	8						
	2.4. 2.5.	Conjuntos disjuntos	8						
	2.6. 2.7.	Representación Gráfica de los Conjuntos	9 9						
		2.7.1. Unión	9 9 10						
		2.7.4. Complemento2.7.5. Diferencia simétrica2.7.6. Ejercicios	10 10 11						
	2.8.	Número de elementos de un Conjunto. Propiedades	11						
3.	Fund	ciones y relaciones	13						
4.	Num	neros reales	15						
5.	Fund	ciones exponenciales logarítmicas	17						
6.	Indu	cción matemática	19						

iv	Contents
7. Suceciones	21
8. Números complejos	23
9. Polinomios	25
Apéndice	25

Índice de cuadros

l.1.	Sed	-
1.2.	Polígonos cerrados regulares]

Índice de figuras

Resumen

www.

Introducción

www.

Logica

Cuadro 1.1: Sed.

p	q	$w \to (\sim p \vee q)$	w
V	V	W	W
V	F	W	W
F	V	W	W
F	F	W	W

$$\iff \\ \iff \\ \iff \forall \land \rightarrow \left(\int_2^2\right) \left[\int_3^2\right] \{w,w,w,w,w,w,w/x \in W\}$$

Refiérase al cuadro 1.2 1.1

Cuadro 1.2: Polígonos cerrados regulares.

Tipo	Número de lados	Número de diagonales	Apotemas
Triángulo equilátero	3	0	3
Cuadrado	4	2	4
Pentágono	5	5	5
Exagono	6	6	6
Heptagono	7	7	7
•••	•••	•••	• • •

Conjuntos

$$p \wedge q \equiv q \wedge p \equiv \sim (\sim p \vee \sim q) \equiv \sim (p \to \sim q)$$

$$p \vee q \equiv \sim p \to q$$

$$[(A \cap B)\Delta C] - D$$

Definición 2.1 (Conjunto). Es una coleccion de elementos con caractersiticas similares

Definición 2.2 (Determinacion de conjuntos). Por extensión y comprensión

Cornutos universal, vacio, unitario

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}, \mathbb{C}$$

$$\phi = \{x/x \neq x\}$$

$$A = \{a\}$$

2.1. Función proposicional y cuantificadores

2.1.1. Función proposicional

Definición 2.3 (Función proposicional). Sea x una variable P(x) un *enunciado*, P(x) es una *función proposicional* si al sustituir la variable con una constante este se convierte en una *proposición*.

4 2 Conjuntos

Sea x una variable P(x) un *enunciado*, P(x) es una *función proposicional* si al sustituir la variable con una constante este se convierte en una *proposición*.

Por ejemplo P(x): x es un numero par

Al conjunto de todos lo valores de x se denomina domino de la variable

2.1.2. Cuantificadores

Definición 2.4 (Cuantificador existencial).

 \exists

Es una generalización de la disyunción Inclusiva. Por ello, es verdadero cuando al menos un valor de x perteneciente al Dominio de A, es Verdadero. Se denota; $\exists x/P(x)$ Se lee: "Existe al menos un x", "Algunos x", "Hay x", "Existe un x", etc.

 \exists

Es una generalización de la disyunción Inclusiva. Por ello, es verdadero cuando al menos un valor de x perteneciente al Dominio de A, es Verdadero. Se denota; $\exists x/P(x)$ Se lee:"Existe al menos un x","Algunos x"," Hay x","Existe un x", etc.

Definición 2.5 (Cuantificador universal).

 \forall

Es una generalización de la *conjunción*. Debido a esto es verdadero cuando todos los valores de x que pertenecen al Dominio de A son Verdaderos. Se denota: $\forall x; p(x)$ Se lee: "Para Todo x", "Para cada x", "Todos (as) las x", "Todo x".

 \forall

Es una generalización de la *conjunción*. Debido a esto es verdadero cuando todos los valores de x que pertenecen al Dominio de A son Verdaderos. Se denota: $\forall x; p(x)$ Se lee: "Para Todo x", "Para cada x", "Todos (as) las x", "Todo x".

Sea $A = \{1, 2, 3, 4, 5\}$ y la función proposicional 3x - 2 < 12 entonces las proposiciones

- 1. $\forall x \in A : 3x 1 < 14$ 2. $\exists x \in A : 3x - 2 < 12$
- son falsa y verdadera respectivamente

Definición 2.6 (Proposición universal). Una *proposición universal* es aquella que está provista de un *cuantificador universal*, y tiene la forma:

$$\forall x \in A : p(x)$$

Una *proposición universal* es aquella que está provista de un *cuantificador universal*, y tiene la forma:

$$\forall x \in A : p(x)$$

Definición 2.7 (Proposición existencial). Una *proposición existencial* es aquella que está provista de un *cuantificador existencial*, y tiene la forma:

$$\exists x \in A : p(x)$$

Definición 2.8 (www). wwwwwwwwwwwwwwwwwwwww

Una *proposición existencial* es aquella que está provista de un *cuantificador existencial*, y tiene la forma:

$$\exists x \in A : p(x)$$

Negación de las proposiciones universal y existencial

Cambiando el cuantificador universal por el cuantificador existencial, o viceversa, es decir

$$\sim [\exists x \in A; P(x)] \equiv \forall x \in A; \sim P(x)$$

$$\sim [\forall x \in A; P(x)] \equiv \exists x \in A; \sim P(x)$$

La negación del *cuantificador universal* es equivalente a la *afirmación de un cuantificador existencial* respecto de la *función proposicional negada*.

La negación de un *cuantificador existencial* es equivalente a la *afirmación de* un *cuantificador universal* respecto de la *función proposicional negada*.

Ejemplo 2.1. Dada la proposición: "Si todos los números primos son impares, los números positivos son mayores que -1"

- Expresarla simbólicamente
- Negar oracionalmente la proposición

Solución. Sea p(x) : números primos son impares y q(x) : números positivos mayores que -1

 $\forall x : [p(x) \to q(x)]$

6 2 Conjuntos

Negando el item anterior

que se lee: "Todos los números primos son impares y algunos números no son mayores que -1"

Sea p(x): números primos son impares y q(x): números positivos mayores que -1

- Negando el item anterior

$$\begin{split} \sim \{ \forall x : [p(x) \to q(x)] \} &\equiv \sim \{ \forall x : p(x) \to \forall x : q(x) \} \\ &= \sim \{ \sim [\forall x : p(x)] \lor \forall x : q(x) \} \\ &\equiv \forall x : p(x) \land \exists \ x : \sim q(x) \end{split}$$

$$w = \int_{1}^{3}$$

$$= \sum_{1}^{3} \lim_{x \to \infty} \prod_{n=1}^{\infty} \sum_{1}^{3} \sum_{n=1}^{\infty}$$

que se lee: "Todos los números primos son impares y algunos números no son mayo

Ejemplo 2.2. Dado el conjunto $A = \{x \in \mathbb{N} : -14 < x < 27\}$. Hallar el valor de verdad de

$$s = [(\sim p \land \sim q) \to (\sim q \land \sim r)] \leftrightarrow (\sim p \lor r)$$

si
$$p = (\forall x \in A, \exists y \in A, \forall z \in A)[x^2 - z^2 > y^2], q = (\exists y \in A, \forall z \in A, \exists x \in A)[2x - 4y < -z]$$
 y $r = (\forall z \in A, \exists x \in A, \forall y \in A)[3x^2 - z^2 > y]$

Solución. $A = \{1, 2, 3, \dots, 26\}$ luego el valor de V(p) = F, V(q) = V y V(r) = Vpues

- Si y=1 entonces $x^2-z^2>y^2\equiv x^2>1+z^2$ lo cual no es valido $\forall x,z\in A$ entonces V(p) = F
- \blacksquare Si $y=25\in A$ y $x=1\in A$ entonces $2x-4y<-z\equiv 2+z<100$ lo cual es valido $\forall z\in A$ entonces $\mathrm{V}(q)=V$ \blacksquare Si $x=26\in A$ entonces $3x^2-z^2>y\equiv 3(26)^2>z^2+y$ lo cual es valido
- $\forall z, y \in A \text{ entonces } V(r) = V$

por lo tanto

$$\begin{aligned} \mathbf{V}(s) &= \mathbf{V}[(\sim p \land \sim q) \Longrightarrow (\sim q \land \sim r)] \Longleftrightarrow (\sim p \lor r) \\ &= [(V \land F) \Longrightarrow (F \land F)] \Longleftrightarrow (V \lor V) \\ &= [F \Longrightarrow F] \Longleftrightarrow V \\ &= V \end{aligned}$$

Ejercicio 2.1. Dada la proposición: "Obtendré un puntaje aprobatorio si y solo si estudio concienzudamente el curso"

- Expresarla simbólicamente
- Negar oracionalmente la proposición

Ejercicio 2.2. Dado el conjunto $G=\{x\in\mathbb{Z}^+: -14<2x<20\}$. Hallar el valor de verdad de

$$s = (p \land \sim q) \to [(\sim q \land \sim r) \leftrightarrow (\sim p \lor r)]$$

si
$$p=(\forall x\in A,z\in\mathbb{N}_{\digamma})[xz\in\mathbb{Z}],$$
 $q=(\forall z\in A,\exists x\in A)[x\neq y]$ y $r=(\forall z\in A,\forall y\in A)[yx^2>500]$

2.2. Conjuntos Iguales

$$A = B \Longleftrightarrow \{(x \in A \to x \in B) \land (x \in B \to x \in A)\}$$

$$\Longleftrightarrow x \in A \leftrightarrow x \in B$$

$$A \neq B \Longleftrightarrow \{(\exists x \in A; x \notin B) \lor (\exists x \in B; x \notin A)\}$$
$$\iff x \in A \leftrightarrow x \in B$$

2.2.1. Propiedades

- $\blacksquare A = A$
- wwwwwwwwwwww
- $\quad \blacksquare \ A=B\to B=A$
- A = B y B = C entonces A = C

8 2 Conjuntos

2.3. Inclusión y subconjuntos

$$A \subset B \leftrightarrow \{x \in A \rightarrow x \in B\}$$
$$\leftrightarrow \{\forall x \in A, x \in B\}$$

$$A \not\subset B \leftrightarrow \exists x \in A \mid x \notin B$$

2.3.1. Propiedades

- \bullet $A \subset A$
- $\quad \blacksquare \ A \subset B \land B \subset A \to A \subset B$
- $\blacksquare \ A \subset B \land B \subset C \to A \subset C$
- $\quad \blacksquare \ \, \forall A \ \emptyset \subset A$

2.4. Conjuntos disjuntos

A disjunto de
$$B \leftrightarrow \nexists x \mid x \in A \land x \in B$$

esto es ϵ_1

$$w = w$$

2.5. Conjunto potencia

$$P(A) = \{X \mid X \subset A\}$$

Observación. * P(A) tiene 2^n elementos * $\emptyset \in P(A)$ * $A \in P(A)$

Propiedades

- $P(\emptyset) = \{\emptyset\}$
- $\bullet A \subset B \leftrightarrow P(A) \subset P(B)$
- $A = B \leftrightarrow P(A) = P(B)$

2.6. Representación Gráfica de los Conjuntos

Diagrama de euler

2.7. Operaciones entre conjuntos

2.7.1. Unión

$$A \cup B = \{x/x \in A \lor x \in B\}$$

$$x \in A \cup B \leftrightarrow x \in A \vee x \in B$$

$$\sum_{n=i}^{3} \int_{1}^{3} x_{2} y_{2} z_{3} r \sum_{w}^{w}$$

Propiedades

- $\blacksquare A \cup A = A$
- $A \cup \emptyset = A$
- $\quad \blacksquare \ A \cup U = U$
- $\quad \blacksquare \ A \cup B = B \cup A$
- $\quad \blacksquare \ (A \cup B) \cup C = A \cup (B \cup C)$

2.7.2. Intersección

$$A \cap B = \{x/x \in A \land x \in B\}$$

$$x \in A \cap B \leftrightarrow x \in A \land x \in B$$

Propiedades

- $\quad \blacksquare \ A \cap A = A$
- $A \cap \emptyset = \emptyset$
- $\blacksquare A \cap U = A$
- $\quad \blacksquare \ A\cap B=B\cap A$
- $\bullet \ (A\cap B)\cap C=A\cap (B\cap C)$

2.7.3. Diferencia

2 Conjuntos

$A - B = \{x/x \in A \land x \notin B\}$

$$x \in A - B \leftrightarrow x \in A \land x \notin B$$

Propiedades

- $A-A=\emptyset$
- $A \emptyset = A$
- $\quad \blacksquare \quad \emptyset A = \emptyset$
- $A B \subset A$
- $(A B) = (A \cup B) B) = A (A \cap B)$

2.7.4. Complemento

$$C_B A = B - A = \{x/x \in B \land x \notin A\}$$

$$x \in \mathcal{C}_B A \leftrightarrow x \in B \lor x \notin W$$

Si
$$B = U$$
 entonces $C_B A = A' = A^C = \overline{A}$

Propiedades

- $C_BA \subset B$ y $C_AB \subset A$
- $A' \cup A = U$ o $A \cup \mathcal{C}_A B = A$
- $A \cap A' = \emptyset$ o $A \cap \mathcal{C}_A B = \emptyset$
- $U' = \emptyset$ o $\mathcal{C}_A A = \emptyset$
- $(A')' = A \circ \mathcal{C}_B(\mathcal{C}_B A) = A$
- $A B = A \cap B'$ o $A B = A \cap C_A B$

2.7.5. Diferencia simétrica

$$A\Delta B = \{x/(x \in A \land x \in B) \lor (x \in A \land x \in B)\}\$$

$$x \in A\Delta B \leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in B)$$

Propiedades

- \bullet $A\Delta B = \emptyset$
- $A\Delta\emptyset = A$

- $\quad \bullet \quad A\Delta B = B\Delta A$
- $(A\Delta B)\Delta C = A\Delta (B\Delta C)$
- $(A\Delta B) \cap C = (A\Delta C)\Delta(B\Delta C)$
- $\bullet (A\Delta B) \cup (B\Delta C) = (A \cup B \cup C) (A \cap B \cap C)$

2.7.6. Ejercicios

- 1. Sea $U=\{x\in\mathbb{N}|0< x\leq 10\}$ y los subconjuntos: $A=\{x\in\mathbb{N}|x\text{ es primo}\},\ B=\{x\in\mathbb{N}|x\text{ es es un cuadrado perfecto}\}$ y $C=\{x\in\mathbb{N}|x\text{ es impar}\}.$ Hallar
 - $\blacksquare (A \cup B)' C$
 - $\blacksquare (A-C)'\cap B$
 - $\bullet (A\Delta B) (A\Delta C)$
 - $\blacksquare (A \cap C)' (B \cup C)'$
- 2. Dados los conjuntos $A=\{x\in\mathbb{Z}|\sim[x\le-2\lor x>3]\},$ $B=\{x\in\mathbb{N}|\sim[-1< x\le3\to x=5]\}$ y $C=\{x\in\mathbb{Z}|(x<-2\lor x\ge2)\to x>1\}$ Hallar el resultado de $(B\cap C)\Delta(A\cap B)$

2.8. Número de elementos de un Conjunto. Propiedades

n(A)

Funciones y relaciones

Numeros reales

Funciones exponenciales logarítmicas

Inducción matemática

Suceciones

Números complejos

Polinomios

Temas de reforzamiento o conocimientos preliminares que son necesarias para entender el contenido.

A

Trasformaciones