SINS Simulating INdividuals in Space

Tiago Maié // Population and Conservation Genetics group

Instituto Gulbenkian de Ciência // 15.03.2017

A look into (a few) Population Genetics Models

Population genetics inference typically assumes simple non-structured models

Simulating INdividuals in Space

Forward in time simulation (past → present → future)

Explicit diploid individuals with a given sex

Independent neutral markers (no selection, no recombination)

- Sequences, microsatellites and SNPs
- Sexual chromosomes and mtDNA data

Population ecology and behavior

- Short and Long distance Migration (w/ sex-biased migration)
- Growth-rate
- Reproductive Success
- Admixture
- Competition
- Expansion/Colonization

Dynamic demographic and environmental events

- Carrying capacity
- Friction

Carrying capacity $(0 \le K < ?)$

Carrying capacity defines the (soft) maximum population size of a deme.

K is used to define the population at t + 1 Population size at t = 0 is defined by the user

Friction
$$(0 \le F \le 1)$$

Friction defines the difficulty to move to a deme.

F is used to define how migrants will be distributed among the neighbouring demes

Migration

Migration can only take place in four different direction at most as in a typical 2D stepping stone model

- Number of migrants
- Sex-biased migration

Migration - Number of migrants (M)

The number of migrants that each deme will have is deterministic and calculated as:

M = number of migrants

 N_{t} = number of individuals in the deme at time t

 n_d = number of receiving demes

m = migration rate

Migration - Sex-biased migration

After we calculate the number of migrants for each direction we apply a sex-ratio parameter (mSR) to determine how males and females will migrate ____

mSR > 0.5 females migrate more than males

$$mSR = \frac{m_f}{m_m + m_f}$$

mSR < 0.5 males migrate more than females

mSR = sex-biased migration ratio]0,1[m_f = female migration rate m_m = male migration rate

Reproductive Success (0 < RS ≤ 1)

Populations can have a complex social structure. We don't simulate this complex social structure (yet) but we can do an approximation by limiting the reproductive success of each sex.

₽RS>

PRS = ♂RS

♂RS↘

Folder and file structure

SINS_Sim

- Input/
 - o world.txt
 - o output_preferences.txt
 - o environment/
 - layer@[CC/F]Init.txt
 - o genetics/layer0/
 - genotype.txt (...)
 - o layer_parameters/
 - layer0.txt
 - layer0_init.txt
 - o sampling_preferences/
 - sampling_conf.txt
 - subset_map.txt

Name of layer: layer0

SINS Folder and file structure SINS_Sampler Name of layer: Input/ layer0 config_[name of project].txt o generations.txt SamplingGenFiles/ sampling[generation].txt

```
SINS
Class Exercise
1. In the "To_Participant/DAY_3_2017/" folder:
  a. Copy "SINS_Classes_Exercise" to your Desktop
      or working directory
   Open a Command Line Interface and "move" to
   "SINS_Classes_Exercise" in your working
   directory
   Run the "build_SINS_input.sh" script in your
   "SINS_Classes_Exercise" folder by typing:
  a. "./build_SINS_input.sh [name of your
      project]"
4. Inside your "SINS_Classes_Exercise" folder,
   explore the "SINS_Sim/input" and
   "SINS_Sampler/input" folder.
  a. Change the inputs accordingly
```

5. Inside vour "SINS Classes Exercise" folder.

Class Exercise

- 1. In the "To_Participant/DAY_3_2017/" folder:
 a. Copy "SINS_Classes_Exercise" to your Desktop
 or working directory
- 2. Open a Command Line Interface and "move" to "SINS_Classes_Exercise" in your working directory
- 3. Run the "build_SINS_input.sh" script in your "SINS_Classes_Exercise" folder by typing:
 a. "./build_SINS_input.sh [name of your project]"
- 4. Inside your "SINS_Classes_Exercise" folder,
 explore the "SINS_Sim/input" and
 "SINS_Sampler/input" folder.
 - a. Change the inputs accordingly
- Inside vour "SINS Classes Exercise" folder, run

Class Exercise

- 1. In the "To_Participant/DAY_3_2017/" folder:
 a. Copy "SINS_Classes_Exercise" to your Desktop
 or working directory
- 2. Open a Command Line Interface and "move" to
 "SINS_Classes_Exercise" in your working
 directory
- 4. Inside your "SINS_Classes_Exercise" folder,
 explore the "SINS_Sim/input" and
 "SINS_Sampler/input" folder.
 a. Change the inputs accordingly
- Inside vour "SINS Classes Exercise" folder, run

SINS Class Exercise

- 1. In the "To_Participant/DAY_3_2017/" folder:
 a. Copy "SINS_Classes_Exercise" to your Desktop
 or working directory
- 2. Open a Command Line Interface and "move" to "SINS_Classes_Exercise" in your working directory
- 4. Inside your "SINS_Classes_Exercise" folder,
 explore the "SINS_Sim/input" and
 "SINS_Sampler/input" folder.
 a. Change the inputs accordingly
- 5. Inside vour "SINS Classes Exercise" folder, run

SINS Class Exercise 1. In the "To_Participant/DAY_3_2017/" folder: a. Copy "SINS_Classes_Exercise" to your Desktop or working directory 2. Open a Command Line Interface and "move" to "SINS_Classes_Exercise" in your working directory 3. Run the "build_SINS_input.sh" script in your "SINS_Classes_Exercise" folder by typing: a. "./build_SINS_input.sh [name of your project]" 4. Inside your "SINS_Classes_Exercise" folder, explore the "SINS_Sim/input" and "SINS_Sampler/input" folder.

Inside vour "SINS Classes Exercise" folder, run

a. Change the inputs accordingly

Class Exercise

- 1. In the "To_Participant/DAY_3_2017/" folder:
 a. Copy "SINS_Classes_Exercise" to your Desktop
 or working directory
- 2. Open a Command Line Interface and "move" to "SINS_Classes_Exercise" in your working directory
- 4. Inside your "SINS_Classes_Exercise" folder,
 explore the "SINS_Sim/input" and
 "SINS_Sampler/input" folder.
 a. Change the inputs accordingly
- 5. Inside vour "SINS Classes Exercise" folder, run

