Transport Layer

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences University of Massachusetts

Class textbook: Computer Networking: A Top-Down Approach (8th ed.) J.F. Kurose, K.W. Ross Pearson, 2020

Evolving transport-layer functionality

- TCP, UDP: principal transport protocols for 40 years
- different "flavors" of TCP developed, for specific scenarios:

Scenario	Challenges
Long, fat pipes (large data	Many packets "in flight"; loss shuts down
transfers)	pipeline
Wireless networks	Loss due to noisy wireless links, mobility;
	TCP treat this as congestion loss
Long-delay links	Extremely long RTTs
Data center networks	Latency sensitive
Background traffic flows	Low priority, "background" TCP flows

- moving transport—layer functions to application layer, on top of UDP
 - HTTP/3: QUIC

QUIC: Quick UDP Internet Connections

- application-layer protocol, on top of UDP
 - increase performance of HTTP
 - deployed on many Google servers, apps (Chrome, mobile YouTube app)

QUIC: Quick UDP Internet Connections

adopts approaches we've studied in this chapter for connection establishment, error control, congestion control

- error and congestion control: "Readers familiar with TCP's loss detection and congestion control will find algorithms here that parallel well-known TCP ones." [from QUIC specification]
- connection establishment: reliability, congestion control, authentication, encryption, state established in one RTT

- multiple application-level "streams" multiplexed over single QUIC connection
 - separate reliable data transfer, security
 - common congestion control

QUIC: Connection establishment

TCP (reliability, congestion control state)

- + TLS (authentication, crypto state)
 - 2 serial handshakes

QUIC: reliability, congestion control, authentication, crypto state

1 handshake

QUIC: streams: parallelism, no HOL blocking

Transport layer: Summary

- principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control
- instantiation, implementation in the Internet
 - UDP
 - TCP

Up next:

- leaving the network "edge" (application, transport layers)
- into the network "core"
- two network-layer chapters:
 - data plane
 - control plane

Transport Layer

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

COMPSCI 453 Computer Networks

Professor Jim Kurose

College of Information and Computer Sciences University of Massachusetts

Class textbook: Computer Networking: A Top-Down Approach (8th ed.) J.F. Kurose, K.W. Ross Pearson, 2020

Video: © 2020, J.F. Kurose, All Rights Reserved

Powerpoint: ©1996-2020, J.F. Kurose, K.W. Ross, All Rights Reserved