Basic Notions 1

Definition 1. Let $\vec{u} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ b_n \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ be two vectors in \mathbb{R}^n . We define the *dot product*

to be

$$\vec{u} \cdot \vec{v} = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$

Example 1. Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$

$$\vec{u} \cdot \vec{v} = 1(4) + 2(5) + 3(6)$$

Theorem 1. Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^n and $c \in \mathbb{R}$.

- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$
- $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot c\vec{v}$
- $\vec{u} \cdot \vec{u} > 0$ and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = 0$.

Definition 2. We define the *norm* (magnitude, length) of a vector \vec{u} to be $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$. A vector with length 1 is called a unit vector. We define the distance between two vectors \vec{v} and \vec{u} is defined to be $||\vec{v} - \vec{u}||$.

Note that $\frac{\vec{v}}{||\vec{v}||}$ is always a unit vector.

Definition 3. We say that \vec{u} is *orthogonal* (perpendicular) to \vec{v} , written $\vec{u} \perp \vec{v}$, if and only if $\vec{u} \cdot \vec{v} = 0.$

Definition 4. If W is a subspace, we say \vec{v} is orthogonal to W, written $\vec{v} \perp W$ if and only if $\vec{v} \perp \vec{w}$ for all $\vec{w} \in W$. We call the set of all vectors $\vec{v} \perp W$ the orthogonal complement of W and denote this set W^{\perp} .

Proposition 2. W^{\perp} is a subspace. Moreover, $\vec{v} \perp W$ if and only if $\vec{v} \perp \vec{w_i}$ for $i = 1, \ldots, p$ where $\{\vec{w}_1, \dots \vec{w}_p\}$ is a basis for W.

Definition 5. A set of vectors $\{\vec{u}_1,\ldots,\vec{u}_p\}$ is orthogonal if and only if

$$\vec{u}_i \cdot \vec{u}_j = 0$$
 when $i \neq j$.

An orthogonal basis is a basis which is also an orthogonal set. An orthonormal basis is an orthogonal basis consisting of unit vectors.

Theorem 3. An orthogonal set of vectors is linearly independent. Moreover, if an orthogonal set $\{\vec{u}_1, \dots \vec{u}_p\}$ spans a subspace U then $\{u_1, \dots \vec{u}_p\}$ is a basis for U.

Note that if W is an n dimensional vector space, any set of n orthogonal vectors is automatically a basis for W.

2 Orthogonal Projections

Definition 6. Given two vectors \vec{v} and \vec{u} we define

$$\hat{v} = \left(\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$$

to be the orthogonal projection of \vec{v} onto \vec{u} . This is sometimes denoted

$$\hat{v} = \operatorname{proj}_{\vec{u}}(\vec{v}).$$

In the above picture the green vector \vec{v} is being projected onto the blue vector \vec{u} and the resulting red vector is the projection. Notice that the projection points in the same direction as \vec{u} .

Moreover,

$$\vec{z} = (\vec{v} - \hat{v}) \bot \vec{u}$$

and the length of $\vec{z} = \vec{v} - \hat{v}$ is represented by the dashed line.

Definition 7. Let \vec{v} and \vec{u} be two vectors let \hat{v} be the projection of \vec{v} onto \vec{u} . If we define $\vec{z} = \vec{v} - \hat{v}$ then

$$\vec{v} = \hat{v} + \vec{z}$$

where \hat{v} is parallel to \vec{u} and \vec{z} is perpendicular to \vec{u} . We call \hat{v} the component of \vec{v} parallel to \vec{u} and \vec{z} is the component of \vec{v} perpendicular to \vec{u} .

Example 2. Let $\vec{v} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\vec{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

$$\vec{v} \cdot \vec{u} = 40, \qquad \vec{u} \cdot \vec{u} = 20, \qquad \hat{v} = \frac{40}{20}\vec{u} = 2\vec{u}$$

Hence we have that,

$$\vec{z} = \vec{v} - \hat{v} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.$$

Notice that,

$$\vec{z} \cdot \vec{u} = 0$$

and

$$\vec{v} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \hat{v} + \vec{z}$$

Orthogonal basis are convenient for the following reason.

Theorem 4. Let $\{\vec{u}_1, \dots \vec{u}_p\}$ be an orthogonal basis for W. For all $\vec{y} \in W$ we have

$$\vec{y} = c_1 \vec{u}_1 + \ldots + c_n \vec{u}_n \tag{1}$$

and

$$c_j = \left(\frac{\vec{y} \cdot \vec{u}_j}{\vec{u}_j \cdot \vec{u}_j}\right) \text{ for } j = 1, \dots, p$$
 (2)

The above formulas (1) and (2) will make a bit more sense after the following definition.

Definition 8. Let W be a subspace of \mathbb{R}^n . Then each $\vec{v} \in W$ can be written uniquely in the form

$$\vec{v} = \hat{v} + \vec{z}$$

where $\hat{v} \in W$ and $\vec{z} \in W^{\perp}$. We call \hat{v} the orthogonal projection of \vec{v} onto W, sometimes denoted $\hat{v} = \operatorname{proj}_W(\vec{v})$. Moreover, if $\{\vec{u}_1, \dots, \vec{u}_p\}$ is an orthogonal basis for W then

$$\hat{v} = \left(\frac{\vec{v} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1}\right) \vec{u}_1 + \ldots + \left(\frac{\vec{v} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p}\right) \vec{u}_p$$

In the above picture, W is a 2 dimensional subspace with basis vectors \vec{u}_1 and \vec{u}_2 (blue vectors). The red vector, \hat{v} , is the projection of the green vector, \vec{v} onto W. Moreover, the dashed line is the length of the vector $\vec{v} - \hat{v}$.

Definition 9. The distance between a vector \vec{v} and a subspace W is given by $\|\vec{z}\| = \|\vec{v} - \hat{v}\|$.

Notice, (1) and (2) makes some more sense in the context of the above definition. If \vec{y} is in the subspace W then it is equal to its projection onto W, i.e. $\vec{y} = \hat{y}$.

3 Gram Schmidt

The Gram Schmidt process allows us to get an orthogonalized version of any basis. Essentially, at each step of the process you subtract off the projection onto a subspace. Moreover, we can rescale at each step since if $\vec{v} \perp \vec{u}$ the $c\vec{v} \perp \vec{u}$.

Theorem 5. Given a basis $\{\vec{x}_1, \ldots, \vec{x}_p\}$ for a subspace W of \mathbb{R}^n . Define,

$$\begin{split} \vec{v}_1 &= \vec{x}_1 \\ \vec{v}_2 &= \vec{x}_2 - \left(\frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1 \\ \vec{v}_3 &= \vec{x}_3 - \left(\frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1 - \left(\frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2}\right) \vec{v}_2 \\ &\vdots \\ \vec{v}_p &= \vec{x}_p - \left(\frac{\vec{x}_p \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1 - \left(\frac{\vec{x}_p \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2}\right) \vec{v}_2 - \ldots - \left(\frac{\vec{x}_p \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}}\right) \vec{v}_{p-1} \end{split}$$

Then $\{\vec{v}_1, \dots, \vec{v}_p\}$ is an orthogonal basis for W and

$$span\{\vec{v}_1,\ldots,\vec{v}_k\} = span\{\vec{x}_1,\ldots,\vec{x}_k\}$$
 for $k=1,\ldots,p$.

Example 3. Let

$$\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Step 1:

Set $\vec{v}_1 = \vec{x}_1$.

$$ec{v}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}$$
 .

Step 2:

Set
$$\vec{v}_2 = \vec{x}_2 - \left(\frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1$$

$$\vec{v}_2 = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} - \left(\frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} - \left(\frac{3}{4}\right) \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3/4\\1/4\\1/4\\1/4 \end{bmatrix}.$$

Step 3:

Rescale

$$\vec{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}.$$

Step 4:

Set
$$\vec{v}_3 = \vec{x}_3 - \left(\frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1 - \left(\frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2}\right) \vec{v}_2$$

$$\vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \left(\frac{2}{4}\right) \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \left(\frac{2}{12}\right) \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}.$$

Step 5:

Rescale

$$\vec{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}.$$

Result:

We have that

$$\vec{v}_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$