

Modelagem matemática aplicada ao monitoramento e controle da dengue

Cláudia Codeço Fiocruz, Rio de Janeiro

Ministério da Saúde

FIOCRUZ

Fundação Oswaldo Cruz

Tópicos

- O problema
- Os dados
- Modelo fenomenológico
- Modelo mecanicista
- Conclusões e discussões

Dengue no Brasil

Padrão sazonal com anos epidêmicos Intercalados

Tendência de aumento da gravidade Tendência de redução da idade média

Febre Hemorrágica

Estudo longitudinal de 82 semanas (setembro 2006 a março de 2008)

Ortophoto: PoratalGeo - IPP- Rio de Janeiro

Digital map: Geoprocessing Laboratory - ICICT/ Flocruz

Existe relação entre infestação e clima?

Modelagem por modelos lineares

Hipóteses:

- Quanto maior a temperatura, maior a infestação
- Quanto mais chuva, maior a infestação

Temperatura (t-1)

Estrutura de auto-correlação

Modelos GLM:

$$Y_t \sim NegBin$$

$$E[Y_t] = a_0$$
 nulo

$$E[Y_t] = a_0 + a_1 Y_{t-1}$$
 AR1

$$E[Y_t] = a_0 + a_1 Y_{t-1} + a_2 Temp_{t-m} + temperatura$$

$$E[Y_t] = a_0 + a_1 Y_{t-1} + a_2 Temp_{t-m} + a_3 Chuva_{t-n} + chuva$$

Estimação no R

Comparação dos modelos:

- AIC
- Correlação de Pearson
- Auto-correlação
- Resíduos

Modelos GAM:

Termo smooth para temperatura

Efeito não linear da temperatura

- Forte efeito positivo e não linear da temperatura na semana anterior
- Fraco efeito da chuva

Vamos modelar de uma outra maneira

$$\frac{dOvos}{dt} = (tx \ reproducao) \ Adultos - (tx \ mortalidade) \ Ovos - (tx \ eclosao) \ Ovos$$

$$\frac{dLarvas}{dt} = tx \ eclosao \ (Ovos) - (tx \ mortalidade) \ Larvas - (tx \ pupamento) \ Larvas$$

$$\frac{dPupas}{dt} = tx \ pupamento \ (Pupas) - (tx \ mortalidade) \ Pupas - (tx \ emergência) \ Pupas$$

$$\frac{dAdultos}{dt} = tx \ emergência \ (Pupas) - (tx \ mortalidade) \ Adultos$$

$$\frac{dOvos}{dt} = (tx \ reproducao) \ Adultos - (tx \ mortalidade) \ Ovos - (tx \ eclosao) \ Ovos$$

$$\frac{dLarvas}{dt} = tx \ eclosao \ (Ovos) - (tx \ mortalidade) \ Larvas - (tx \ pupamento) \ Larvas$$

$$\frac{dPupas}{dt} = tx \ pupamento \ (Pupas) - (tx \ mortalidade) \ Pupas - (tx \ emergência) \ Pupas$$

$$\frac{dAdultos}{dt} = tx \ emergência \ (Pupas) - (tx \ mortalidade) \ Adultos$$

Taxas de mortalidade:

Ovos = 1/210 (por dia) Larvas = 1/20 (por dia) Pupas = 1/100 (por dia) Adultos = 1/30 (por dia)

K = capacidade de suporte (número de criadouros)

As taxas de desenvolvimento são dependentes da temperatura, De acordo com a fórmula:

$$R_D(T) = R_D(298K) \frac{(\frac{T}{298K})exp((\frac{\Delta H_A}{R})(\frac{1}{298K} - \frac{1}{T}))}{1 + exp(\frac{\Delta H_H}{R})(\frac{1}{T_{1/2}} - \frac{1}{T})}$$
 Schoofield et. al.(1981)

$$\frac{dOvos}{dt} = 0.5 (1 - Larvas/K) Adultos - (1/210) Ovos - Rd (temp) Ovos$$

$$\frac{dLarvas}{dt} = Rd (Temp) (Ovos) - (1/10) Larvas - Rd (Temp) Larvas$$

$$\frac{dPupas}{dt} = Rd (Temp) (Pupas) - (1/100) Pupas - Rd (Temp) Pupas$$

$$\frac{dAdultos}{dt} = Rd (Temp) (Pupas) - (1/30) Adultos$$

- •Condições iniciais: O(0)=0, L(0)=0, P(0)=0, A(0)=1
- Dados de temperatura do Rio de Janeiro
- •Resolver o sistema de equações diferenciais usando um integrador numérico
- •R, biblioteca odesolve

Ajustando o modelo aos dados

$$\frac{dOvos}{dt} = 0.5(1 - Larvas/K) Adultos - (1/210) Ovos - Rd (temp) Ovos$$

$$\frac{dLarvas}{dt} = Rd (Temp) (Ovos) - (1/10) Larvas - Rd (Temp) Larvas$$

$$\frac{dPupas}{dt} = Rd (Temp) (Pupas) - (1/100) Pupas - Rd (Temp) Pupas$$

$$\frac{dAdultos}{dt} = Rd (Temp) (Pupas) - (1/30) Adultos$$

Ovos/semana=Integral
$$(0.5(1-Larvas/K)Adultos)$$
, $\Delta t = 7 dias$

- •K=100 (Ajustar K aos dados)
- Método de mínimos quadrados
- Python

$$R2 = 0.75, r = 0.6$$

K alto K baixo K alto

Resumindo

Abordagem estatística (fenomenológica)

- Modelo linear generalizado
- Inferência bem desenvolvida
- Bom ajuste com GAM (estrutura flexivel)
- Pouco poder explicativo

Abordagem da física (mecanicista)

- Inferência rudimentar
- Estrutura mais rígida, embasada em teoria biológica
- Bom ajuste com K variando
- Bom poder explicativo

Palmares

E a dengue?

- Há um limiar em 22-24 graus, abaixo do qual a temperatura é protetora.
- A chuva não tem efeito linear forte no nivel de infestação.
- A chuva parece estar associada de forma mais qualitativa, criando um ambiente com maior ou menor capacidade de produção de adultos.

Agradecimentos

Entomologia, Fiocruz:

 Nildimar Honório, Ricardo Lourenço, Denise Valle, Rafael de Freitas,

Modelagem, Fiocruz e **UFOP:**

- Claudio Struchiner, Paula Luz, Arthur Weiss, Flavio Coelho, Raquel Lana, Tiago Carneiro
- Rede Pronex Modelagem em Dengue CNPa

Ministério da Saúde

FIOCRUZ Fundação Oswaldo Cruz

