From Communication Complexity to an Entanglement Spread Area Law

Mehdi Soleimanifar (MIT)

(arxiv: 2004.15009)

Joint work with
Anurag Anshu (UC Berkeley)
Aram Harrow (MIT)

Communication Complexity

Ground State Entanglement

Communication Complexity

Ground State Entanglement

Jointly evaluate f(x, y)

Alice Bob y

Jointly evaluate f(x, y)

Communication Complexity =

Minimum number of exchanged bits to evaluate f(x, y)

Alice Bob

A B

Jointly perform U_{AB}

Alice
Bob
B

Jointly prepare $|\Omega\rangle_{AB}$

Test whether the shared state is $|\Omega\rangle_{AB}$

YES NO
$$\{|\Omega\rangle\langle\Omega|_{AB},I-|\Omega\rangle\langle\Omega|_{AB}\}$$

YES NO
$$\{|\Omega\rangle\langle\Omega|_{AB},I-|\Omega\rangle\langle\Omega|_{AB}\}$$

$$C(\Omega_{AB}) = Minimum \# of exchanged qubits$$

to perform $\{|\Omega\rangle\langle\Omega|_{AB}, I - |\Omega\rangle\langle\Omega|_{AB}\}$

Two-Outcome Measurement

 $C_{\varepsilon}(\Omega_{AB}) = \text{Minimum } \# \text{ of exchanged qubits}$ to perform $\varepsilon \text{ approximation of } \{|\Omega\rangle\langle\Omega|_{AB}, I - |\Omega\rangle\langle\Omega|_{AB}\}$

What property of $|\Omega\rangle_{AB}$ determines $C_{\varepsilon}(\Omega_{AB})$?

EPR Pairs

Bob

$$|\Omega\rangle_{AB} = \sum_{k=1}^r \sqrt{\lambda_k} |k\rangle_A |k\rangle_B$$

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_r = 1$$

Schmidt Form

Testing $|0\rangle_A^{\otimes n}|0\rangle_B^{\otimes n}$

Testing $|0\rangle_A^{\otimes n}|0\rangle_B^{\otimes n}$

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

Quantum Expanders

 $\{U_1, ..., U_d\}$ with $d = 1/\epsilon^c$ s.t.

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

Quantum Expanders

 $\{U_1, ..., U_d\}$ with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |\text{EPR}\rangle \langle \text{EPR}|^{\otimes n}$$

Alice

$$\frac{1}{\sqrt{d}}\sum_{k=1}^{d}|k\rangle_{\blacksquare}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

$$\{U_1, ..., U_d\}$$
 with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |EPR\rangle \langle EPR|^{\otimes n}$$

Alice Bob

$$\frac{1}{\sqrt{d}}\sum_{k=1}^{d}|k\rangle_{\blacksquare}\otimes(U_{k}\otimes I)|\psi\rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

$$\{U_1, ..., U_d\}$$
 with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |\text{EPR}\rangle \langle \text{EPR}|^{\otimes n}$$

Alice

Bob

$$\frac{1}{\sqrt{d}}\sum_{k=1}^{d}|k\rangle_{\blacksquare}\otimes(U_{k}\otimes I)|\psi\rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

$$\{U_1, ..., U_d\}$$
 with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |\text{EPR}\rangle \langle \text{EPR}|^{\otimes n}$$

Alice

$$\frac{1}{\sqrt{d}}\sum_{k=1}^{d}|k\rangle_{\blacksquare}\otimes(U_{k}\otimes U_{k}^{*})|\psi\rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

Quantum Expanders

 $\{\boldsymbol{U_1}, \dots, \boldsymbol{U_d}\}$ with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |\text{EPR}\rangle \langle \text{EPR}|^{\otimes n}$$

Alice

$$\frac{1}{\sqrt{d}}\sum_{k=1}^{d}|k\rangle_{\blacksquare}\otimes(U_{k}\otimes U_{k}^{*})|\psi\rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

Quantum Expanders

 $\{U_1, ..., U_d\}$ with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |\text{EPR}\rangle \langle \text{EPR}|^{\otimes n}$$

Alice

Bob

$$\frac{1}{d}\sum_{k=1}^{d}(U_{k}\otimes U_{k}^{*})|\psi\rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

Quantum Expanders

 $\{U_1, ..., U_d\}$ with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |\text{EPR}\rangle \langle \text{EPR}|^{\otimes n}$$

Alice

Bob

$$\frac{1}{d}\sum_{k=1}^{d}(U_{k}\otimes U_{k}^{*})|\psi\rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

$$\{U_1, ..., U_d\}$$
 with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |EPR\rangle \langle EPR|^{\otimes n}$$

$$\lambda_1 = \frac{1}{2^n}$$

$$pprox_{\varepsilon} | \text{EPR} \rangle \langle \text{EPR} | \otimes n \cdot | \psi \rangle_{AB}$$

[AHL+14]

Testing n EPR pairs $|\text{EPR}\rangle_{AB}^{\otimes n}$

$$\{\boldsymbol{U_1}, \dots, \boldsymbol{U_d}\}$$
 with $d = 1/\varepsilon^c$ s.t.

$$\frac{1}{d} \sum_{k=1}^{d} U_k \otimes U_k^* \approx_{\varepsilon} |EPR\rangle \langle EPR|^{\otimes n}$$

$$|\Omega\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle^{\otimes n} + |\text{EPR}\rangle^{\otimes n})$$

$$\approx \frac{1}{2}$$

$$\frac{1}{2^{n+1}}$$

Recap

How spread out or concentrated λ_k are

Recap

Entanglement Spread

[HW03]
$$\operatorname{ES}(\Omega_A) = \log(r\lambda_1) = \log(r) - \log(1/\lambda_1)$$

$$\Omega_A = \operatorname{Tr}_B|\Omega\rangle\langle\Omega|_{AB} = \operatorname{S}_{\max}(\Omega_A) - \operatorname{S}_{\min}(\Omega_A)$$

ε –Smooth Entanglement Spread

$$\mathrm{ES}_{\varepsilon}(\Omega_A) = S_{\mathrm{max}}^{\varepsilon}(\Omega_A) - S_{\mathrm{min}}^{\varepsilon}(\Omega_A)$$

 ε –Smooth min/max entropies

Communication Complexity ≥ Entanglement Spread

$$C_{\varepsilon}(\Omega_{AB}) \geq \mathrm{ES}_{\varepsilon}(\Omega_{A}) = \mathrm{S}_{\mathrm{max}}^{\varepsilon}(\Omega_{A}) - \mathrm{S}_{\mathrm{min}}^{\varepsilon}(\Omega_{A})$$

[HW03, CH19, HL11]

EPR Pairs

Communication Complexity ≥ Entanglement Spread

$$C_{\varepsilon}(\Omega_{AB}) \geq \mathrm{ES}_{\varepsilon}(\Omega_{A}) = \mathrm{S}_{\mathrm{max}}^{\varepsilon}(\Omega_{A}) - \mathrm{S}_{\mathrm{min}}^{\varepsilon}(\Omega_{A})$$

[HW03, CH19, HL11]

Holds even with EPR-assistance

Communication Complexity

Ground State Entanglement

Communication Complexity

Ground State Entanglement

Local Hamiltonians $H = \sum_{k \sim \ell} H_{k\ell}$

$$H = \sum_{k \sim \ell} H_{k\ell}$$

Quantum Analog of CSP (e.g. Max-Cut)

$$H = \sum_{k \sim \ell} (e_{k\ell} Z_k Z_\ell + f_{kl} Y_k Y_\ell + g_{k\ell} X_k X_\ell)$$

(Hamiltonian need not be 2-local)

This Talk: Gapped Ground States

Ground State |GS> $e_0 = 0$

Gapped Ground States

- Connected to central problems in physics (e.g. low T properties and novel phases of matter)
- Inherit locality of Hamiltonians

$$(I - H/||H||)^c \approx |GS\rangle\langle GS|$$
 AGSP Constructions [AKLV13]

- Exhibit exponential decay of correlations

$$\langle A \rangle = \operatorname{Tr}[A \cdot GS]$$
 [Hastings04, HK05] \forall $|\langle A \otimes B \rangle - \langle A \rangle \langle B \rangle| \leq ||A|| \cdot ||B|| \cdot e^{-\operatorname{dist}(A,B)/\xi}$

- Short-range entanglement

Ground State Entanglement

$$|\mathsf{GS}\rangle_{AB} = \sum_{k} \sqrt{\lambda_{k}} |k\rangle_{A} |k\rangle_{B}$$

Entanglement Entropy $S(GS_A) = -\sum_k \lambda_k \log(\lambda_k)$

[Hast07, ALV12, AKLV13] - Area Law in 1D

$$S(GS_A) \leq \widetilde{O}\left(\frac{|\partial A|}{gap}\right)$$

Used to find efficient MPS approximation

[AAG20, Abr19,...] - Progress in 2D and Trees

Ground State Entanglement

$$|\mathsf{GS}\rangle_{AB} = \sum_{k} \sqrt{\lambda_{k}} |k\rangle_{A} |k\rangle_{B}$$

Entanglement Entropy $S(GS_A) = -\sum_k \lambda_k \log(\lambda_k)$

[Hast07, ALV12, AKLV13] - Area Law in 1D

$$\mathbf{S}(\mathbf{GS}_A) \leq \widetilde{\boldsymbol{O}}\left(\frac{|\partial A|}{\mathsf{gap}}\right)$$

Used to find efficient MPS approximation

- [AAG20, Abr19,...] Progress in 2D and Trees
 - [AHL+14] Counter Example on General Graphs

Ground State Entanglement

$$|\mathsf{GS}\rangle_{AB} = \sum_{k} \sqrt{\lambda_{k}} |k\rangle_{A} |k\rangle_{B}$$

Other structural properties for ground state entanglement?

$$\mathsf{ES}_{\varepsilon}(\mathsf{GS}_A) = \mathsf{S}^{\varepsilon}_{\mathsf{max}}(\mathsf{GS}_A) - \mathsf{S}^{\varepsilon}_{\mathsf{min}}(\mathsf{GS}_A)$$

Our Result: Area law for Entanglement Spread on any Graph

$$\mathrm{ES}_{\varepsilon}(\mathrm{GS}_A) \leq \widetilde{O}\left(\frac{|\partial A|}{\mathrm{gap}} \cdot \log \frac{1}{\varepsilon}\right)$$
 — By designing a testing protocol

Communication Complexity ≥ Entanglement Spread

$$C_{\varepsilon}(GS_{AB}) \geq ES_{\varepsilon}(GS_A)$$

Testing Gapped Ground States

Measure energy $\langle \psi | H | \psi \rangle$

- Yes: $\langle \psi | H | \psi \rangle \leq \text{gap}/2$
- No: $\langle \psi | H | \psi \rangle > \text{gap}/2$

Quantum Phase Estimation

$$W|0^m\rangle|GS\rangle = |0^m\rangle|GS\rangle$$

$$W|0^m\rangle|\Omega_k\rangle = \left(\sqrt{p_k}|0^m\rangle + \sqrt{1-p_k}|0^\perp\rangle\right)|\Omega_k\rangle, \qquad p_k \ll 1$$

Repeat for
$$O\left(\log \frac{1}{\varepsilon}\right)$$
 to get $p_k = O(\varepsilon)$

Communication Complexity ≥ Entanglement Spread

$$C_{\varepsilon}(GS_{AB}) \geq ES_{\varepsilon}(GS_A)$$

Area law for Entanglement Spread on any Graph

$$\mathrm{ES}_{\varepsilon}(\mathrm{GS}_A) \leq \widetilde{O}\left(\frac{|\partial A|}{\mathrm{gap}} \cdot \log \frac{1}{\varepsilon}\right)$$

Testing Gapped Ground States

Communication Protocol

For
$$O\left(\log \frac{1}{\varepsilon}\right)$$
 rounds

1) Alice shares
$$\frac{1}{\sqrt{1/\mathrm{gap}}}\sum_{t=0}^{1/\mathrm{gap}-1} |t\rangle_A |t\rangle_B$$

$$O\left(\log \frac{1}{\text{gap}}\right)$$
 communications

$$\longrightarrow$$

- 2) Jointly apply $e^{itH_{AB}}$
- $O\left(\frac{|\partial A|}{\mathrm{gap}}\right)$ communications
- 3) Bob sends back $O\left(\log \frac{1}{\text{gap}}\right)$ qubits

Overall Communication Cost: $\widetilde{O}(|\partial A|/\text{gap} \cdot \log 1/\epsilon)$

Hamiltonian Simulation (Performing $e^{itH_{AB}}$)

Depth of Hamiltonian simulation algorithms is $O(t||H_{AB}||)$

Communication cost of $e^{itH_{AB}}$ is $O(t||H_{AB}||)$

How to improve this to $O(t||H_{\partial A}||)$?

Hamiltonian Simulation (Performing $e^{itH_{AB}}$)

$$e^{itH_{AB}} = e^{itH_A} \cdot e^{itH_B} \cdot e^{itH_{\partial A}}$$
 when H_A , H_B , $H_{\partial A}$ Commute

Interaction Picture: Time-dependent Hamiltonian [LW18]

$$H_I(t) = e^{-it(H_A + H_B)} \cdot H_{\partial A} \cdot e^{it(H_A + H_B)}$$

$$e^{itH_{AB}} = e^{itH_A} \cdot e^{itH_B} \cdot e^{\int_{ au=0}^t iH_I(au) d au}$$

Communication Cost of $O(t||H_I||) = O(t||H_{\partial A}||)$

EPR Pairs

Communication Complexity > Entanglement Spread

$$C_{\varepsilon}(GS_{AB}) \ge ES_{\varepsilon}(GS_A) = S_{\max}^{\varepsilon}(GS_A) - S_{\min}^{\varepsilon}(GS_A)$$

EPR Pairs

Communication Complexity ≥ Entanglement Spread

$$C_{\varepsilon}(GS_{AB}) \ge ES_{\varepsilon}(GS_A) = S_{\max}^{\varepsilon}(GS_A) - S_{\min}^{\varepsilon}(GS_A)$$

Time complexity of Alice and Bob doesn't matter so

Modify LCU [BCC+15] and use EPR-assistance to implement Taylor expansion of e^{iHt}

Summary

Communication Complexity ≥ Entanglement Spread

$$\begin{aligned} & \textit{C}_{\varepsilon}(\Omega_{AB}) \geq \textit{ES}_{\varepsilon}(\Omega_{A}) \\ & = \textit{S}_{max}^{\varepsilon}(\Omega_{A}) - \textit{S}_{min}^{\varepsilon}(\Omega_{A}) \end{aligned}$$

Area law for Entanglement Spread on any Graph

$$\mathrm{ES}_{\varepsilon}(\mathrm{GS}_{\mathrm{A}}) \leq \widetilde{O}\left(\frac{|\partial A|}{\mathrm{gap}} \cdot \log \frac{1}{\varepsilon}\right)$$

Improvement for Lattices

Sub-Area law for Entanglement Spread on *lattices* (Tight)

$$\mathrm{ES}_{\varepsilon}(\mathrm{GS}_A) \leq \widetilde{O}\left(\sqrt{\frac{|\partial A|}{\mathrm{gap}}} \cdot \log \frac{1}{\varepsilon}\right)$$

Gives evidence for Li-Haldane Conjecture [LH08] in physics

$$GS_A \approx e^{-H_{\partial A}}$$
 Then $ES(GS_A) = O(\sqrt{|\partial A|})$

Improvement for Lattices

Sub-Area law for Entanglement Spread on lattices (Tight)

$$\mathbf{ES}_{\varepsilon}(\mathbf{GS}_{A}) \leq \widetilde{O}\left(\sqrt{\frac{|\partial A|}{\mathsf{gap}}} \cdot \log \frac{1}{\varepsilon}\right)$$

Implication for Entropy Area Law

Gapped ground states always have small Entanglement Spread

$$S_{\max}^{\varepsilon}(GS_A) - S_{\min}^{\varepsilon}(GS_A)$$

 $S^{\epsilon}_{min}(GS_A)$ is small \rightarrow Entropy Area Law

 $S_{\min}^{\varepsilon}(GS_A)$ is large \rightarrow Violated Entropy Area Law [AHL+14]

Open questions

1) Efficient contraction of tensor network representation of gapped ground states from entanglement spread area law? [AAJ16], [CPSV11]

2) Other applications for our AGSP based on QPE and Hamiltonian simulation?

3) Other universal properties of gapped ground states?

From Communication Complexity to an Entanglement Spread Area Law

Mehdi Soleimanifar (MIT)

(arxiv: 2004.15009)

Joint work with
Anurag Anshu (UC Berkeley)
Aram Harrow (MIT)