Advanced Sampling Techniques

LSST Discovery Fellowship Program Day 3

Modeling choices

Physical

What processes do you include? What approximations do you make?

Statistical

Are data i.i.d.?

Is there correlated noise?

Do you account for data collection?

Model specification

Parameterization

Priors

Convergence criteria

Sampler

Grid search
Maximum likelihood
Markov Chain Monte Carlo
Nested Sampling

Bayes Theorem

Hierarchical Bayesian Modelings self-consistently modifies the prior

Hierarchical Bayes Theorem

$$P(\theta,\alpha\mid D) = \frac{P(D\mid\theta)P(\theta\mid\alpha)P(\alpha)}{P(D)}$$

The prior can be thought of as the population-level distribution

The Eight Schools Problem

The set-up: students from eight schools have participated in a test-prep program. The mean score improvement ΔS and uncertainty on the mean σ_{μ} for each school are recorded.

$$\mu = [28, 8, -3, 7, -1, 1, 18, 12]$$

$$\sigma_{\mu} = [15, 10, 16, 11, 9, 11, 10, 18]$$

Question: can the measured effect size for School A (28 pts) be attributed to the test-prep program?

The Eight Schools Problem

Question: can the measured effect size for School A (28 pts) be attributed to the test-prep program?

Running 1000 bootstrap trials suggests NO

Modeling Options

Independent: Each school is analyzed separately

Pooled: All schools are analyzed in one group

Hierarchically: The relationships between groups are considered

Independent

$$\mu = [28, 8, -3, 7, -1, 1, 18, 12]$$
 $\sigma_{\mu} = [15, 10, 16, 11, 9, 11, 10, 18]$

Pooled

$$\Delta S = 7.7 \pm 4.1$$

Hierarchical Eight School Model

$$\alpha_{\mu} \sim \text{Normal}(\mu, \sigma)$$
 $\alpha_{\sigma} \sim \text{Half-Cauchy}(\beta)$

The hyper-parameters $\alpha \equiv \{\alpha_{\mu}, \alpha_{\sigma}\}$ describe the population distribution (i.e. the prior)

$$\Delta S_i \sim \text{Normal}(\alpha_{\mu}, \alpha_{\sigma})$$

Each school's $\theta_i \equiv \{\Delta S\}_i$ is drawn from a Gaussian described by α

We will simultaneously and self-consistently infer the population hyper-parameters α and the individual member values θ

Hierarchical Eight School Model

