Extra sparse dimensionality reduction

Tjeerd Jan Heeringa, Christoph Brune, Mengwu Guo

MIA, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands

What we want

Many problems require computationally expensive problem

To remedy this, we want

- 1) to find a **small** set of representative variables
- 2) that accurately describes the full solution
- 3) and allows for **fast** computing of the full solution.

The optimisation problem

We look for the best parameters θ for an autoencoder $\phi_{\theta} =$ $\phi_{\theta,dec} \circ \phi_{\theta,enc}$ using

$$\theta^{\dagger} \in \arg\min_{\theta} \sum_{i} \|x_{i} - \phi_{\theta}(x_{i})\|_{2}^{2} + \lambda \left(\sum_{\ell=1}^{L} \|W^{\ell}\|_{1,2} + \|W^{L_{enc}}\|_{*}\right)$$
Accurate
fast

We solve this using Linearized Bregman iterations

$$v^{(k+1)} = v^{(k)} - \eta \nabla L(\theta^{(k)})$$
$$\theta^{(k+1)} = prox_R(v^{(k+1)})$$

where

$$prox_R(v) = \arg\min_{\theta} \frac{1}{2} ||v - \theta||_2^2 + R(\theta)$$

$$L(\theta) = \sum_{i} \|x_{i} - \phi_{\theta}(x_{i})\|_{2}^{2}$$

$$\text{Last layer of the encoder}$$

$$R(\theta) = \lambda(\sum_{i} \|W^{\ell}\|_{1,2} + \|W^{L_{enc}}\|_{*})$$

Similar accuracy Sparser network and smaller latent dimensionaility

We use POD to truncate the

number of latent variables.

We move all the biases corresponding to matrices with zero-rows to the next layer.

- 1. Suk et al., https://doi.org/10.1007/978-3-030-93722-5_11
- https://www.aip.org/publishing/journal-highlights/wind-energy-grid-checkerboard
- https://www.atriainnovation.com/en/digital-twins-what-are-they-advantages-and-applications
- Simplify, https://doi.org/10.1016/j.softx.2021.100907