ccfd

v1.0

Generated by Doxygen 1.8.18

Thu May 7 2020 11:26:22

1 @image{inline} html img/ccfd.png "ccfd"	1
1.1 Dependencies	1
1.2 Installation	1
1.2.1 Linux	2
1.2.2 MacOS	2
1.2.3 Windows	3
1.3 Usage	3
2 Bug List	5
3 Data Structure Index	7
3.1 Data Structures	7
4 File Index	9
4.1 File List	9
5 Data Structure Documentation	11
5.1 boundary_t Struct Reference	11
5.1.1 Detailed Description	11
5.1.2 Field Documentation	12
5.1.2.1 BCid	12
5.1.2.2 BCtype	12
5.1.2.3 connection	12
5.1.2.4 exactFunc	13
5.1.2.5 heatFlux	13
5.1.2.6 isAdiabatic	13
5.1.2.7 isTemperaturePrescribed	13
5.1.2.8 next	13
5.1.2.9 pVar	14
5.1.2.10 temperature	14
5.2 cartMesh_t Struct Reference	14
5.2.1 Detailed Description	14
5.2.2 Field Documentation	14
5.2.2.1 BCrange	15
5.2.2.2 BCtype	15
5.2.2.3 iMax	15
5.2.2.4 jMax	15
5.2.2.5 nBC	15
5.3 cmd_t Struct Reference	16
5.3.1 Detailed Description	16
5.3.2 Field Documentation	16
5.3.2.1 key	16
5.3.2.2 next	16
5.3.2.3 prev	17

5.3.2.4 value	17
5.4 elem_t Struct Reference	17
5.4.1 Detailed Description	18
5.4.2 Field Documentation	18
5.4.2.1 area	18
5.4.2.2 areaq	19
5.4.2.3 bary	19
5.4.2.4 cVar	19
5.4.2.5 cVarStage	19
5.4.2.6 domain	19
5.4.2.7 dt	20
5.4.2.8 dtLoc	20
5.4.2.9 elemType	20
5.4.2.10 firstSide	20
5.4.2.11 id	20
5.4.2.12 innerSides	21
5.4.2.13 next	21
5.4.2.14 nGP	21
5.4.2.15 node	21
5.4.2.16 pVar	21
5.4.2.17 source	22
5.4.2.18 sx	22
5.4.2.19 sy	22
5.4.2.20 u_t	22
5.4.2.21 u_x	22
5.4.2.22 u_y	23
5.4.2.23 venkEps_sq	23
5.4.2.24 wGP	23
5.4.2.25 xGP	23
5.5 node_t Struct Reference	24
5.5.1 Detailed Description	24
5.5.2 Field Documentation	24
5.5.2.1 id	24
5.5.2.2 next	24
5.5.2.3 x	25
5.6 outputTime_t Struct Reference	25
5.6.1 Detailed Description	25
5.6.2 Field Documentation	25
5.6.2.1 iter	26
5.6.2.2 next	26
5.6.2.3 time	26
5.7 recordPoint_t Struct Reference	26

5.7.1 Detailed Description	27
5.7.2 Field Documentation	27
5.7.2.1 elem	27
5.7.2.2 ioFile	27
5.7.2.3 nPoints	27
5.7.2.4 x	28
5.8 side_t Struct Reference	28
5.8.1 Detailed Description	29
5.8.2 Field Documentation	29
5.8.2.1 baryBaryDist	29
5.8.2.2 baryBaryVec	29
5.8.2.3 BC	29
5.8.2.4 BCid	30
5.8.2.5 BCtype	30
5.8.2.6 connection	30
5.8.2.7 elem	30
5.8.2.8 flux	30
5.8.2.9 GP	31
5.8.2.10 id	31
5.8.2.11 len	31
5.8.2.12 n	31
5.8.2.13 next	31
5.8.2.14 nextElemSide	32
5.8.2.15 node	32
5.8.2.16 pVar	32
5.8.2.17 w	32
5.9 sideList_t Struct Reference	33
5.9.1 Detailed Description	33
5.9.2 Field Documentation	33
5.9.2.1 BC	33
5.9.2.2 isRotated	34
5.9.2.3 node	34
5.9.2.4 side	34
5.10 sidePtr_t Struct Reference	34
5.10.1 Detailed Description	35
5.10.2 Field Documentation	35
5.10.2.1 next	35
5.10.2.2 side	35
5.11 wing_t Struct Reference	36
5.11.1 Detailed Description	36
5.11.2 Field Documentation	36
5.11.2.1 cd	37

5.11.2.2 cl	 37
5.11.2.3 firstPressureSide	 37
5.11.2.4 firstSuctionSide	 37
5.11.2.5 refLength	 37
5.11.2.6 wallId	 38
5.11.2.7 wingBC	 38
C File Decomposited	00
6 File Documentation	39
6.1 ccfd/src/analyze.c File Reference	
6.1.1 Detailed Description	
6.1.2.1 analyze()	
·	
6.1.2.3 evalRecordPoints()	
6.1.2.4 globalResidual()	
6.1.3 Variable Documentation	
6.1.3.1 doCalcWing	
6.1.3.2 hasExactSolution	
6.1.3.3 recordPoint	
6.1.3.4 wing	
6.2 ccfd/src/analyze.h File Reference	
6.2.1 Detailed Description	
6.2.2 Function Documentation	
6.2.2.1 analyze()	
6.2.2.2 calcErrors()	
6.2.2.3 globalResidual()	
6.2.3 Variable Documentation	
6.2.3.1 doCalcWing	
6.2.3.2 hasExactSolution	
6.2.3.3 recordPoint	
6.2.3.4 wing	
6.3 ccfd/src/boundary.c File Reference	
6.3.1 Detailed Description	
6.3.2 Function Documentation	
6.3.2.1 boundary()	
6.3.2.2 setBCatBarys()	
6.3.2.3 setBCatSides()	
6.3.3 Variable Documentation	
6.3.3.1 firstBC	
6.3.3.2 isPeriodic	
6.3.3.3 nBC	 50 50
n a construinmosty i ene senerence	511

6.4.1 Detailed Description	51
6.4.2 Function Documentation	51
6.4.2.1 boundary()	51
6.4.2.2 setBCatBarys()	52
6.4.2.3 setBCatSides()	52
6.4.3 Variable Documentation	53
6.4.3.1 firstBC	53
6.4.3.2 isPeriodic	53
6.4.3.3 nBC	53
6.5 ccfd/src/equation.c File Reference	53
6.5.1 Detailed Description	54
6.5.2 Variable Documentation	54
6.5.2.1 cp	54
6.5.2.2 doCalcSource	55
6.5.2.3 gam	55
6.5.2.4 gam1	55
6.5.2.5 gam1q	55
6.5.2.6 gam2	55
6.5.2.7 iFlux	56
6.5.2.8 intExactFunc	56
6.5.2.9 mu	56
6.5.2.10 pi	56
6.5.2.11 Pr	56
6.5.2.12 R	57
6.5.2.13 sourceFunc	57
6.5.2.14 sqrt2	57
6.5.2.15 sqrt3	57
6.5.2.16 sqrt3q	57
6.6 ccfd/src/equation.h File Reference	58
6.6.1 Detailed Description	59
6.6.2 Variable Documentation	59
6.6.2.1 cp	59
6.6.2.2 doCalcSource	59
6.6.2.3 gam	59
6.6.2.4 gam1	60
6.6.2.5 gam1q	60
6.6.2.6 gam2	60
6.6.2.7 iFlux	60
6.6.2.8 intExactFunc	60
6.6.2.9 mu	61
6.6.2.10 pi	61
6.6.2.11 Pr	61

6.6.2.12 R	. 61
6.6.2.13 sourceFunc	. 61
6.6.2.14 sqrt2	. 62
6.6.2.15 sqrt3	. 62
6.6.2.16 sqrt3q	. 62
6.7 ccfd/src/equationOfState.c File Reference	. 62
6.7.1 Detailed Description	. 63
6.7.2 Function Documentation	. 63
6.7.2.1 charCons()	. 63
6.7.2.2 consChar()	. 64
6.7.2.3 consPrim()	. 64
6.7.2.4 primCons()	. 64
6.8 ccfd/src/equationOfState.h File Reference	. 65
6.8.1 Detailed Description	. 66
6.8.2 Function Documentation	. 66
6.8.2.1 charCons()	. 66
6.8.2.2 consChar()	. 66
6.8.2.3 consPrim()	. 67
6.8.2.4 primCons()	. 67
6.9 ccfd/src/exactFunction.c File Reference	. 67
6.9.1 Detailed Description	. 68
6.9.2 Function Documentation	. 68
6.9.2.1 exactFunc()	. 69
6.10 ccfd/src/exactFunction.h File Reference	. 69
6.10.1 Detailed Description	. 70
6.10.2 Function Documentation	. 70
6.10.2.1 exactFunc()	. 70
6.11 ccfd/src/exactRiemann.c File Reference	. 71
6.11.1 Detailed Description	. 71
6.11.2 Function Documentation	. 72
6.11.2.1 exactRiemann()	. 72
6.11.2.2 preFun()	. 72
6.11.3 Variable Documentation	. 74
6.11.3.1 G	. 74
6.11.3.2 nlter	. 74
6.11.3.3 tol	. 74
6.12 ccfd/src/exactRiemann.h File Reference	. 75
6.12.1 Detailed Description	. 75
6.12.2 Function Documentation	. 75
6.12.2.1 exactRiemann()	. 75
6.13 ccfd/src/finiteVolume.c File Reference	. 76
6.13.1 Detailed Description	. 77

6.13.2 Function Documentation	77
6.13.2.1 fvTimeDerivative()	77
6.13.3 Variable Documentation	77
6.13.3.1 fluxFunction	78
6.13.3.2 spatialOrder	78
6.14 ccfd/src/finiteVolume.h File Reference	78
6.14.1 Detailed Description	78
6.14.2 Function Documentation	79
6.14.2.1 fvTimeDerivative()	79
6.14.3 Variable Documentation	79
6.14.3.1 fluxFunction	79
6.14.3.2 spatialOrder	79
6.15 ccfd/src/fluxCalculation.c File Reference	80
6.15.1 Detailed Description	81
6.15.2 Function Documentation	81
6.15.2.1 convectiveFlux()	81
6.15.2.2 flux_ausmd()	82
6.15.2.3 flux_ausmdv()	83
6.15.2.4 flux_cen()	83
6.15.2.5 flux_god()	84
6.15.2.6 flux_hll()	85
6.15.2.7 flux_hllc()	85
6.15.2.8 flux_hlle()	86
6.15.2.9 flux_lxf()	86
6.15.2.10 flux_roe()	87
6.15.2.11 flux_stw()	88
6.15.2.12 flux_vanleer()	88
6.15.2.13 fluxCalculation()	89
6.16 ccfd/src/fluxCalculation.h File Reference	89
6.16.1 Detailed Description	90
6.16.2 Function Documentation	90
6.16.2.1 fluxCalculation()	90
6.17 ccfd/src/initialCondition.c File Reference	90
6.17.1 Detailed Description	91
6.17.2 Variable Documentation	91
6.17.2.1 alpha	92
6.17.2.2 domainID	92
6.17.2.3 icType	92
6.17.2.4 nDomains	92
6.17.2.5 refState	92
6.17.2.6 rp1Dinterface	93
6.18 ccfd/src/initialCondition.h File Reference	93

6.18.1 Detailed Description	93
6.18.2 Variable Documentation	94
6.18.2.1 alpha	94
6.18.2.2 domainID	94
6.18.2.3 icType	94
6.18.2.4 nDomains	94
6.18.2.5 refState	94
6.18.2.6 rp1Dinterface	95
6.19 ccfd/src/linearSolver.c File Reference	95
6.19.1 Detailed Description	96
6.19.2 Function Documentation	96
6.19.2.1 buildMatrix()	96
6.19.2.2 calcDinv()	97
6.19.2.3 GMRES_M()	97
6.19.2.4 LUSGS()	98
6.19.2.5 matrixVector()	98
6.19.2.6 vectorDotProduct()	99
6.19.3 Variable Documentation	99
6.19.3.1 D	99
6.19.3.2 deltaXstar	99
6.19.3.3 Dinv	100
6.19.3.4 dRdU	100
6.19.3.5 eps2newton	100
6.19.3.6 eps2newton_sq	100
6.19.3.7 epsGMRES	100
6.19.3.8 gamEW	101
6.19.3.9 nGMRESiterGlobal	101
6.19.3.10 nInnerGMRES	101
6.19.3.11 nInnerNewton	101
6.19.3.12 nKdim	101
6.19.3.13 nNewtonIter	102
6.19.3.14 nNewtonIterGlobal	102
6.19.3.15 R0	102
6.19.3.16 R_XK	102
6.19.3.17 rEps0	102
6.19.3.18 srEps0	103
6.19.3.19 usePrecond	
6.19.3.20 V	103
6.19.3.21 W	103
6.19.3.22 XK	103
6.19.3.23 Z	104
6.20 ccfd/src/linearSolver.h File Reference	104

6.20.1 Detailed Description	105
6.20.2 Function Documentation	105
6.20.2.1 GMRES_M()	105
6.20.2.2 vectorDotProduct()	106
6.20.3 Variable Documentation	106
6.20.3.1 eps2newton	106
6.20.3.2 eps2newton_sq	107
6.20.3.3 epsGMRES	107
6.20.3.4 gamEW	107
6.20.3.5 nGMRESiterGlobal	107
6.20.3.6 nInnerGMRES	107
6.20.3.7 nInnerNewton	108
6.20.3.8 nKdim	108
6.20.3.9 nNewtonIter	108
6.20.3.10 nNewtonIterGlobal	108
6.20.3.11 R_XK	108
6.20.3.12 rEps0	109
6.20.3.13 srEps0	109
6.20.3.14 usePrecond	109
6.20.3.15 XK	109
6.21 ccfd/src/main.c File Reference	110
6.21.1 Detailed Description	110
6.21.2 Function Documentation	110
6.21.2.1 main()	111
6.22 ccfd/src/main.h File Reference	111
6.22.1 Detailed Description	113
6.22.2 Macro Definition Documentation	113
6.22.2.1 STRLEN	113
6.22.3 Enumeration Type Documentation	113
6.22.3.1 boundaryConditionType	113
6.22.3.2 cartesianMeshSides	114
6.22.3.3 clcdResiduals	114
6.22.3.4 conservativeVariables	114
6.22.3.5 directions	114
6.22.3.6 fluxFunction	115
6.22.3.7 generalParameters	115
6.22.3.8 ioFormat	115
6.22.3.9 limiterFunction	116
6.22.3.10 meshType	116
6.22.3.11 primitiveVariables	116
6.23 ccfd/src/memTools.c File Reference	117
6.23.1 Detailed Description	117

6.23.2 Function Documentation	118
6.23.2.1 dyn2DcgsizeArray()	118
6.23.2.2 dyn2DdblArray()	118
6.23.2.3 dyn2DintArray()	119
6.23.2.4 dyn3DdblArray()	119
6.23.2.5 dyn3DintArray()	120
6.23.2.6 dyn4DdblArray()	120
6.23.2.7 dynStringArray()	120
6.24 ccfd/src/memTools.h File Reference	121
6.24.1 Detailed Description	122
6.24.2 Function Documentation	122
6.24.2.1 dyn2DcgsizeArray()	122
6.24.2.2 dyn2DdblArray()	122
6.24.2.3 dyn2DintArray()	123
6.24.2.4 dyn3DdblArray()	123
6.24.2.5 dyn3DintArray()	124
6.24.2.6 dyn4DdblArray()	124
6.24.2.7 dynStringArray()	124
6.25 ccfd/src/mesh.c File Reference	125
6.25.1 Detailed Description	127
6.25.2 Function Documentation	127
6.25.2.1 compare()	127
6.25.2.2 createCartMesh()	127
6.25.2.3 createElemInfo()	129
6.25.2.4 createMesh()	129
6.25.2.5 createReconstructionInfo()	130
6.25.2.6 createSideInfo()	130
6.25.2.7 readCGNS()	131
6.25.2.8 readEMC2()	131
6.25.2.9 readGmsh()	132
6.25.3 Variable Documentation	132
6.25.3.1 BCside	132
6.25.3.2 cartMesh	133
6.25.3.3 dxRef	133
6.25.3.4 elem	133
6.25.3.5 firstBCside	133
6.25.3.6 firstElem	133
6.25.3.7 firstNode	134
6.25.3.8 firstSide	134
6.25.3.9 gridFile	134
6.25.3.10 meshFormat	134
6.25.3.11 meshType	134

6.25.3.12 nBCsides	
6.25.3.13 nElems	
6.25.3.14 nInnerSides	
6.25.3.15 nNodes	
6.25.3.16 nQuads	
6.25.3.17 nSides	
6.25.3.18 nTrias	
6.25.3.19 parameterFile	
6.25.3.20 side	136
6.25.3.21 strlniCondFile	136
6.25.3.22 strMeshFile	136
6.25.3.23 strMeshFormat	137
6.25.3.24 totalArea_q	137
6.25.3.25 xMax	137
6.25.3.26 xMin	137
6.25.3.27 yMax	137
6.25.3.28 yMin	138
6.26 ccfd/src/mesh.h File Reference	138
6.26.1 Detailed Description	139
6.26.2 Variable Documentation	140
6.26.2.1 BCside	140
6.26.2.2 cartMesh	140
6.26.2.3 dxRef	140
6.26.2.4 elem	140
6.26.2.5 firstBCside	141
6.26.2.6 firstElem	141
6.26.2.7 firstNode	141
6.26.2.8 firstSide	141
6.26.2.9 gridFile	141
6.26.2.10 meshFormat	142
6.26.2.11 meshType	142
6.26.2.12 nBCsides	142
6.26.2.13 nElems	142
6.26.2.14 nInnerSides	142
6.26.2.15 nNodes	143
6.26.2.16 nQuads	143
6.26.2.17 nSides	143
6.26.2.18 nTrias	143
6.26.2.19 parameterFile	143
6.26.2.20 side	
6.26.2.21 strlniCondFile	144
6.26.2.22 strMeshFile	144

6.26.2.23 strMeshFormat	144
6.26.2.24 totalArea_q	144
6.26.2.25 xMax	145
6.26.2.26 xMin	145
6.26.2.27 yMax	145
6.26.2.28 yMin	145
6.27 ccfd/src/output.c File Reference	146
6.27.1 Detailed Description	147
6.27.2 Function Documentation	147
6.27.2.1 cgnsFinalizeOutput()	147
6.27.2.2 cgnsOutput()	147
6.27.2.3 csvOutput()	148
6.27.2.4 curveOutput()	148
6.27.2.5 dataOutput()	149
6.27.3 Variable Documentation	149
6.27.3.1 doErrorOutput	149
6.27.3.2 OiterInterval	149
6.27.3.3 IOtimeInterval	150
6.27.3.4 iVisuProg	150
6.27.3.5 outputTimes	150
6.27.3.6 parameterFile	150
6.27.3.7 resFile	150
6.27.3.8 strOutFile	151
6.28 ccfd/src/output.h File Reference	151
6.28.1 Detailed Description	152
6.28.2 Function Documentation	152
6.28.2.1 dataOutput()	152
6.28.3 Variable Documentation	153
6.28.3.1 doErrorOutput	153
6.28.3.2 OiterInterval	153
6.28.3.3 IOtimeInterval	153
6.28.3.4 iVisuProg	153
6.28.3.5 outputTimes	154
6.28.3.6 parameterFile	154
6.28.3.7 resFile	154
6.28.3.8 strOutFile	154
6.29 ccfd/src/readInTools.c File Reference	154
6.29.1 Detailed Description	155
6.29.2 Function Documentation	156
6.29.2.1 countKeys()	156
6.29.2.2 deleteCmd()	156
6.29.2.3 fillCmds()	157

6.29.2.4 findCmd()	7
6.29.2.5 getBool()	8
6.29.2.6 getDbl()	8
6.29.2.7 getDblArray()	9
6.29.2.8 getInt()	9
6.29.2.9 getIntArray()	0
6.29.2.10 getStr()	0
6.29.3 Variable Documentation	1
6.29.3.1 firstCmd	1
6.30 ccfd/src/readInTools.h File Reference	1
6.30.1 Detailed Description	2
6.30.2 Function Documentation	2
6.30.2.1 countKeys()	2
6.30.2.2 fillCmds()	3
6.30.2.3 getBool()	3
6.30.2.4 getDbl()	3
6.30.2.5 getDblArray()	4
6.30.2.6 getInt()	5
6.30.2.7 getIntArray()	5
6.30.2.8 getStr()	6
6.31 ccfd/src/reconstruction.c File Reference	6
6.31.1 Detailed Description	7
6.31.2 Function Documentation	7
6.31.2.1 limiterBarthJespersen()	7
6.31.2.2 limiterVenkatakrishnan()	8
6.31.2.3 spatialReconstruction()	8
6.31.3 Variable Documentation	8
6.31.3.1 limiter	9
6.31.3.2 venk_k	9
6.32 ccfd/src/reconstruction.h File Reference	9
6.32.1 Detailed Description	9
6.32.2 Function Documentation	'0
6.32.2.1 spatialReconstruction()	'0
6.32.3 Variable Documentation	'0
6.32.3.1 limiter	'0
6.32.3.2 venk_k	'0
6.33 ccfd/src/source.c File Reference	'1
6.33.1 Detailed Description	'1
6.33.2 Function Documentation	'2
6.33.2.1 calcSource()	'2
6.33.2.2 evalSource()	'2
6.34 ccfd/src/source.h File Reference	'3

6.34.1 Detailed Description	'3
6.34.2 Function Documentation	3
6.34.2.1 calcSource()	'3
6.35 ccfd/src/timeDiscretization.c File Reference	4
6.35.1 Detailed Description	5
6.35.2 Function Documentation	5
6.35.2.1 calcTimeStep()	5
6.35.2.2 explicitTimeStepEuler()	6
6.35.2.3 explicitTimeStepRK()	6
6.35.2.4 implicitTimeStep()	7
6.35.2.5 timeDisc()	7
6.35.3 Variable Documentation	7
6.35.3.1 abortResidual	8'
6.35.3.2 abortVariable	8'
6.35.3.3 abortVariableName	8'
6.35.3.4 cdAbortResidual	8'
6.35.3.5 cfl	8'
6.35.3.6 clAbortResidual	9
6.35.3.7 deltaX	9
6.35.3.8 dfl	9
6.35.3.9 doAbortOnCdResidual	9
6.35.3.10 doAbortOnClResidual	9
6.35.3.11 F_X0	0
6.35.3.12 F_XK	0
6.35.3.13 inilterationNumber	0
6.35.3.14 isImplicit	0
6.35.3.15 isRestart	0
6.35.3.16 isStationary	1
6.35.3.17 isTimeStep1D	1
6.35.3.18 maxIter	1
6.35.3.19 nRKstages	1
6.35.3.20 printlter	1
6.35.3.21 printTime	2
6.35.3.22 Q	2
6.35.3.23 restartTime	2
6.35.3.24 RKcoeff	2
6.35.3.25 startTime	2
6.35.3.26 stopTime	3
6.35.3.27 t	3
6.35.3.28 timeOrder	3
6.35.3.29 timeOverall	3
6.36 ccfd/src/timeDiscretization.h File Reference	4

6	6.36.1 Detailed Description	185
6	6.36.2 Function Documentation	185
	6.36.2.1 timeDisc()	185
6	6.36.3 Variable Documentation	186
	6.36.3.1 abortResidual	186
	6.36.3.2 abortVariable	186
	6.36.3.3 abortVariableName	186
	6.36.3.4 cdAbortResidual	186
	6.36.3.5 cfl	186
	6.36.3.6 clAbortResidual	187
	6.36.3.7 dfl	187
	6.36.3.8 doAbortOnCdResidual	187
	6.36.3.9 doAbortOnClResidual	187
	6.36.3.10 inilterationNumber	187
	6.36.3.11 isImplicit	188
	6.36.3.12 isRestart	188
	6.36.3.13 isStationary	188
	6.36.3.14 isTimeStep1D	188
	6.36.3.15 maxlter	188
	6.36.3.16 nRKstages	189
	6.36.3.17 printlter	189
	6.36.3.18 printTime	189
	6.36.3.19 restartTime	189
	6.36.3.20 RKcoeff	189
	6.36.3.21 startTime	190
	6.36.3.22 stopTime	190
	6.36.3.23 t	190
	6.36.3.24 timeOrder	190
	6.36.3.25 timeOverall	190
Index		191

@image{inline} html img/ccfd.png "ccfd"

ccFd

The ccfd code is a drop-in replacement for cfdfv, a CFD code written in Fortran by the Institute of Aerodynamics and Gas Dynamics at the University of Stuttgart for a CFD programming course. This code itself is not available online, as far as I know, but it features a similar code structure to FLEXI. The program uses CGNS, for storing the calculation results.

1.1 Dependencies

- git
- gcc
- make
- cmake
- gnuplot (optional, for displaying calculation residuals, available here)
- gmsh (optional, for mesh generation, available here)
- paraview (optional, for post-processing the results, available here)

1.2 Installation

The installation process is easiest on Linux, but possible on MacOS and Windows.

1.2.1 Linux

First make sure that all necessary dependencies are all installed. These can usually be obtained through your distributions package manager, on Arch based systems the following command should suffice

```
# pacman -S git base-devel cmake
```

For an Ubuntu based system the following command should be enough

```
# apt-get install git build-essential cmake libomp-dev
```

Next, navigate to the directory where you want to keep ccfd, clone the git repository and compile the code

```
$ cd path/to/directory
$ git clone https://github.com/hhh95/ccfd.git
$ cd ccfd
$ make
```

There should now be two new folders, obj and bin, the last one containing the ccfd executable.

You can test the compiled binary file, by executing the following command \$ make check

This will execute cofd in the directory check on some small cases that test specific functions of the program.

Continue with Usage.

1.2.2 MacOS

I only had access to MacOS High Sierra, so some things might have changed, but the general procedure should still be the same on any MacOS version. First, install a package manager that can install all the necessary software for you. I suggest Homebrew. Head on over to their website and follow the installation instructions. Once you're done, install the necessary software to compile ccfd

```
$ brew update
$ brew upgrade
$ brew install git gcc make cmake libomp
```

Due to the fact, that on MacOS gcc is linked to clang per default, which does not work well with OpenMP, you will have to make a minor edit to the Makefile. Open the file with your favorite editor and find the line that defines the C compiler to be used

```
CC = gcc
```

Replace gcc with the version that you have installed, most likely it is gcc-9. To find out which version you have, do the following

```
$ ls /usr/local/bin/gcc*
```

Next, navigate to the directory where you want to keep ccfd, clone the git repository and compile the code

```
$ cd path/to/directory
$ git clone https://github.com/hhh95/ccfd.git
$ cd ccfd
$ make
```

There should now be two new folders, obj and bin, the last one containing the ccfd executable.

You can test the compiled binary file, by executing the following command $\mbox{\ensuremath{\$}}$ $\mbox{\ensuremath{\mathtt{make}}}$ $\mbox{\ensuremath{\mathtt{check}}}$

This will execute cofd in the directory check on some small cases that test specific functions of the program.

Continue with Usage. When installing ParaView, do not choose the Linux version, but the MacOS version.

When using ccfd it is very handy to have the ability to open a terminal in a folder from Finder. This is possible, but has to be activated first. Go to *System-settings->**Keyboard*->*Services* and then check the box in front of the option *New Terminal at Folder*. Now, you can right click a folder in Finder and open a terminal in that folder.

1.3 Usage 3

1.2.3 Windows

I am still working on installing it on Windows directly, but have not yet managed to do so. For now it only works with a Linux Bash shell. Get the latest Ubuntu shell and complete the installation process. Next, start the Ubuntu shell and install the necessary utilities (if you have never used Linux before, \$ in front of a command means the command can be executed as a normal user and # in front of a command means, you need administrative rights; these can be obtained by typing sudo in front of the command and entering the password)

```
# apt update
# apt upgrade
# apt install git build-essential cmake libomp-dev
```

Now change to your desired working directory

```
$ git clone https://github.com/hhh95/ccfd.git
$ cd ccfd
$ make
```

There should now be two new folders, obj and bin, the last one containing the ccfd executable.

You can test the compiled binary file, by executing the following command

This will execute ccfd in the directory check on some small cases that test specific functions of the program.

After everything is set up, continue with Usage. However, when installing ParaView, do not install it in the Ubuntu shell, but rather install it normally for Windows. When you want to access the files created by ccfd from Windows, just type the following into the Ubuntu shell \$ explorer.exe .

This will open the directory in the Windows explorer and you can easily access the file with ParaView.

If, after trying to open ParaView, you get an error that a 'VCOMP140.DLL' library is missing, follow the explainatins of this Forum Post.

1.3 Usage

As a first step you should add the ccfd executable to your path. You can do so by running s source ccfdrc

Next, navigate to the calc folder. Here you will find example case files, contained in folder. First, try the Riemann problems. Navigate to the riemann folder with \circ cd riemann

Here you will find the SOD test case, as well as different versions of the case. Start a calculation with \$ ccfd sod.ini

and observe the output. There should be four new files. The initial condition of the case and the calculation results at t = 0.25 s. They should all be .csv files. You can examine them with any spreadsheet program you like. Alternatively you can use ParaView, a free post-processing program, that can visualize 1D, 2D, and 3D data. For Arch-based distributions you can install it from the package manager $\frac{1}{2} \frac{1}{2} \frac{1$

On Ubuntu, the ParaView program in the repositories does not read CGNS files correctly for some reason. You will need to download ParaView 5.8 from the ParaView website. Next do the following

```
$ cd folder/where/you/downloaded/paraview
$ tar -xvf ParaView-5.8.0-MPI-Linux-Python3.7-64bit.tar.gz
# mv ParaView-5.8.0-MPI-Linux-Python3.7-64bit.tar.gz /opt
$ echo "export PATH:$PATH:/opt/ParaView-5.8.0-MPI-Linux-Python3.7-64bit/bin" » ~/.bashrc
```

Next open ParaView in the directory where you performed the calculations

```
$ cd path/to/ccfd/calc/riemann
$ paraview &
```

Now, click on *File->**Open* and select both sets of .csv files. Because the results are 1D data, you need to change from *Render View* to *Line Chart View*. In the top right of the viewing area, click on the X button. Now select *Line Chart View* from the list. You should now see an empty grid with an x-, and a y-axis. In the *Pipeline Browser* to the left, click on the eye icons in front of the loaded files. A plot should appear on the axis grid. It will probably show the initial state. In the top bar, click on the play button. Now, the final state should be shown. You will see the analytical, or exact, solution, as well as the numerical solution.

For more information on the theory, maybe have a look at Wikipedia.

The procedure for running the other cases is the same. However, if the solution data is 2D, then you do not need to switch to *Line Chart View*. The 2D CGNS output files will usually have more than just the solution file. You can load everything at once by selecting the file that has <code>_Master</code> in its name. After loading the file, select all *Cell Arrays* in the *Pipeline Browser* and click on *Apply*. Then you can look at the different fields of the solution, by selecting them in the top bar (where it first says *Solid Color*).

Some files can only be run with the Navier-Stokes equations. In order the switch between Euler and Navier-Stokes equations, open the Makefile and change the EQNSYS parameter.

Bug List

Global flux_ausmdv (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

This function produces incorrect output, refrain from using it for the time being

6 Bug List

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

ooundar	y_ ι	
	Structure that holds the information of a boundary condition	11
cartMes	h_t	
	Structure holding the information for a cartesian mesh	14
cmd_t		
	A structure used to store the commands, read in from the parameter file	16
elem_t		
	Structure for a single element in the global element list	17
node_t		
	Structure for a single node in a linked list of nodes	24
outputTi		
	Output times linked list	25
recordPo	-	
	Recording point structure, used to output flow field at specific points	26
side_t		
	Structure for a single side in the global side list	28
sideList_	_	
	Helper structure for reading in the sides and deviding them into BC sides and non-BC sides	33
sidePtr_		
	Secondary side lists used for various things	34
wing_t		
	Collection of all necessary values for the calculation of CL and CD	36

8 Data Structure Index

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

ccid/src/analyze.c
Contains functions for analyzing flow results
ccfd/src/analyze.h
Contains the structure definitions of wing_t and recordPoint_t 4
ccfd/src/boundary.c
Contains the functions for initializing and applying boundary conditions
ccfd/src/boundary.h
Contains the structure definition of a boundary
ccfd/src/equation.c
Contains the function for initializing the physical constants
ccfd/src/equation.h
ccfd/src/equationOfState.c
Contains conversion functions between the different variable types
ccfd/src/equationOfState.h
ccfd/src/exactFunction.c
Contains the exact function evaluation function
ccfd/src/exactFunction.h
ccfd/src/exactRiemann.c
Contains the function to calculate the exact Riemann flux
ccfd/src/exactRiemann.h
ccfd/src/finiteVolume.c
Finite volume time derivative functions
ccfd/src/finiteVolume.h
ccfd/src/fluxCalculation.c
Contains the flux calculation functions
ccfd/src/fluxCalculation.h
ccfd/src/initialCondition.c
Functions involving the initialization and application of initial conditions
ccfd/src/initialCondition.h
ccfd/src/linearSolver.c
Contains the functions for solving the linear system of equations during implicit calculations 9
ccfd/src/linearSolver.h
ccfd/src/main.c
Contains the main function of ccfd
ccfd/src/main.h
Contains the global constants and definitions

10 File Index

ccfd/src/memTools.c
Memory management functions
ccfd/src/memTools.h
ccfd/src/mesh.c
Contains all the functions for reading and creating meshes
ccfd/src/mesh.h
Contains the definitions of all structs for the mesh handling
ccfd/src/output.c
Contains all functions used for writing flow solutions
ccfd/src/output.h
Contains output Time_t struct definition
ccfd/src/readInTools.c
Provides functions for reading data from the .ini parameter file
ccfd/src/readInTools.h
ccfd/src/reconstruction.c
Contains the reconstruction and limiter functions
ccfd/src/reconstruction.h
ccfd/src/source.c
Contains the functions for initializing and evaluating the source term
ccfd/src/source.h
ccfd/src/timeDiscretization.c
Contains the functions for performing the time stepping process
ccfd/src/timeDiscretization.h

Data Structure Documentation

5.1 boundary_t Struct Reference

Structure that holds the information of a boundary condition.

#include <boundary.h>

Collaboration diagram for boundary_t:

Data Fields

- int BCtype
- int BCid
- int exactFunc
- double pVar [NVAR]
- bool isAdiabatic
- bool isTemperaturePrescribed
- double temperature
- double heatFlux
- double * connection
- boundary_t * next

5.1.1 Detailed Description

Structure that holds the information of a boundary condition.

5.1.2 Field Documentation

5.1.2.1 BCid

int boundary_t::BCid

boundary condition ID

Referenced by cgnsWriteMesh(), connectPeriodicBC(), createMesh(), initBoundary(), and initWing().

5.1.2.2 BCtype

int boundary_t::BCtype

boundary type:

- 1: slip wall
- 2: Navier-Stokes wall
- 3: supersonic inflow
- 4: supersonic outflow
- 5: characteristic
- 6: exact solution
- 7: periodic boundary condition
- 8: pressure outflow

Referenced by boundary(), cgnsWriteMesh(), connectPeriodicBC(), createMesh(), initBoundary(), and initWing().

5.1.2.3 connection

 $\verb|double*| boundary_t::connection|$

connection coordinates for periodic BC

Referenced by connectPeriodicBC(), and initBoundary().

5.1.2.4 exactFunc

```
int boundary_t::exactFunc
```

exact boundary function identifier

Referenced by boundary(), and initBoundary().

5.1.2.5 heatFlux

```
double boundary_t::heatFlux
```

wall heat flux

5.1.2.6 isAdiabatic

```
bool boundary_t::isAdiabatic
```

adiabatic wall flag

Referenced by initBoundary().

5.1.2.7 isTemperaturePrescribed

bool boundary_t::isTemperaturePrescribed

is the temperature prescribed flag

Referenced by initBoundary().

5.1.2.8 next

```
boundary_t* boundary_t::next
```

pointer to next boundary condition

Referenced by cgnsWriteMesh(), createMesh(), freeBoundary(), initBoundary(), and initWing().

5.1.2.9 pVar

```
double boundary_t::pVar[NVAR]
```

inflow state

Referenced by boundary(), and initBoundary().

5.1.2.10 temperature

```
double boundary_t::temperature
```

wall temperature

Referenced by initBoundary().

The documentation for this struct was generated from the following file:

• ccfd/src/boundary.h

5.2 cartMesh_t Struct Reference

Structure holding the information for a cartesian mesh.

```
#include <mesh.h>
```

Data Fields

- int iMax
- int jMax
- int * nBC
- int BCtype [2 *NDIM][NBC]
- int BCrange [2 *NDIM][NBC][2]

5.2.1 Detailed Description

Structure holding the information for a cartesian mesh.

5.2.2 Field Documentation

5.2.2.1 BCrange

```
int cartMesh_t::BCrange[2 *NDIM][NBC][2]
```

list of BC ranges per side

Referenced by createCartMesh(), and readMesh().

5.2.2.2 BCtype

```
int cartMesh_t::BCtype[2 *NDIM][NBC]
```

list of BC types per side

Referenced by createCartMesh(), and readMesh().

5.2.2.3 iMax

```
int cartMesh_t::iMax
```

number of cells in x-direction

Referenced by createCartMesh(), and readMesh().

5.2.2.4 jMax

```
int cartMesh_t::jMax
```

number of cells in y-direction

Referenced by createCartMesh(), and readMesh().

5.2.2.5 nBC

```
int* cartMesh_t::nBC
```

number of different BC per side

Referenced by createCartMesh(), and readMesh().

The documentation for this struct was generated from the following file:

• ccfd/src/mesh.h

5.3 cmd t Struct Reference

A structure used to store the commands, read in from the parameter file.

Collaboration diagram for cmd_t:

Data Fields

- char key [STRLEN]
- char value [STRLEN]
- cmd_t * next
- cmd_t * prev

5.3.1 Detailed Description

A structure used to store the commands, read in from the parameter file.

5.3.2 Field Documentation

5.3.2.1 key

```
char cmd_t::key[STRLEN]
```

the key word of the command

Referenced by fillCmds(), and findCmd().

5.3.2.2 next

```
cmd_t* cmd_t::next
```

next command

Referenced by countKeys(), deleteCmd(), fillCmds(), findCmd(), freeCmds(), and ignoredCmds().

5.3.2.3 prev

```
cmd_t* cmd_t::prev
```

previous command

Referenced by deleteCmd(), fillCmds(), and freeCmds().

5.3.2.4 value

```
char cmd_t::value[STRLEN]
```

the vale of the command

Referenced by fillCmds(), and findCmd().

The documentation for this struct was generated from the following file:

• ccfd/src/readInTools.c

5.4 elem_t Struct Reference

Structure for a single element in the global element list.

```
#include <mesh.h>
```

Collaboration diagram for elem_t:

Data Fields

- int elemType
- long id
- int domain
- double bary [NDIM]
- double sx
- double sy
- double area
- · double areaq
- double pVar [NVAR]
- double cVar [NVAR]
- double cVarStage [NVAR]
- double u_x [NVAR]
- double u_y [NVAR]
- double u_t [NVAR]
- double source [NVAR]
- double dt
- double dtLoc
- double venkEps_sq
- · int innerSides
- int nGP
- double ** xGP
- double * wGP
- side_t * firstSide
- elem_t * next
- node_t ** node

5.4.1 Detailed Description

Structure for a single element in the global element list.

5.4.2 Field Documentation

5.4.2.1 area

double elem_t::area

area of the element

Referenced by calcTimeStep(), createElemInfo(), createReconstructionInfo(), and globalResidual().

5.4.2.2 areaq

double elem_t::areaq

inverse of element area

Referenced by createElemInfo(), and fvTimeDerivative().

5.4.2.3 bary

```
double elem_t::bary[NDIM]
```

coordinates ob element barycenter

Referenced by calcCoef(), calcErrors(), cgnsOutput(), connectPeriodicBC(), createElemInfo(), createMesh(), createReconstructionInfo(), createSideInfo(), csvOutput(), curveOutput(), initWing(), setBCatBarys(), setBCat \leftarrow Sides(), and setInitialCondition().

5.4.2.4 cVar

```
double elem_t::cVar[NVAR]
```

conservative variables of element

Referenced by explicitTimeStepEuler(), explicitTimeStepRK(), implicitTimeStep(), matrixVector(), and setInitial \leftarrow Condition().

5.4.2.5 cVarStage

```
double elem_t::cVarStage[NVAR]
```

conservative variables at initial Runge-Kutta stage

Referenced by explicitTimeStepRK().

5.4.2.6 domain

int elem_t::domain

flow domain number

Referenced by createMesh(), and setInitialCondition().

5.4.2.7 dt

double elem_t::dt

element time step

Referenced by analyze(), calcTimeStep(), evalRecordPoints(), and fvTimeDerivative().

5.4.2.8 dtLoc

double elem_t::dtLoc

local element time step

Referenced by fvTimeDerivative().

5.4.2.9 elemType

```
int elem_t::elemType
```

element type: triangle (3) or quadrangle (4)

Referenced by cgnsWriteMesh(), createElemInfo(), createMesh(), createReconstructionInfo(), and initRecord ← Points().

5.4.2.10 firstSide

```
side_t* elem_t::firstSide
```

pointer to the first side of the element

Referenced by buildMatrix(), createMesh(), createReconstructionInfo(), freeMesh(), fvTimeDerivative(), limiter \leftarrow BarthJespersen(), limiterVenkatakrishnan(), LUSGS(), and spatialReconstruction().

5.4.2.11 id

long elem_t::id

unique element Id

Referenced by buildMatrix(), cgnsOutput(), cgnsReadSolution(), createMesh(), LUSGS(), and setInitialCondition().

5.4.2.12 innerSides

```
int elem_t::innerSides
```

number of non-BC sides of element

5.4.2.13 next

```
elem_t* elem_t::next
```

pointer to the next element in global element list

Referenced by cgnsOutput(), cgnsReadSolution(), cgnsWriteMesh(), createMesh(), csvOutput(), curveOutput(), initRecordPoints(), and setInitialCondition().

5.4.2.14 nGP

```
int elem_t::nGP
```

number of Gaussian integration points

Referenced by calcErrors(), calcSource(), and createReconstructionInfo().

5.4.2.15 node

```
node_t** elem_t::node
```

pointer array of the element's nodes

Referenced by cgnsWriteMesh(), createElemInfo(), createMesh(), createReconstructionInfo(), freeMesh(), and initRecordPoints().

5.4.2.16 pVar

```
double elem_t::pVar[NVAR]
```

primitive variables of element

Referenced by buildMatrix(), calcErrors(), calcTimeStep(), cgnsOutput(), cgnsReadSolution(), csvOutput(), curve \leftarrow Output(), evalRecordPoints(), explicitTimeStepEuler(), explicitTimeStepRK(), fluxCalculation(), implicitTime \leftarrow Step(), limiterBarthJespersen(), limiterVenkatakrishnan(), matrixVector(), setBCatBarys(), setInitialCondition(), and spatialReconstruction().

5.4.2.17 source

```
double elem_t::source[NVAR]
```

source term

Referenced by calcSource(), fvTimeDerivative(), and initFV().

5.4.2.18 sx

```
double elem_t::sx
```

cell extension in x-direction

Referenced by calcTimeStep(), and createElemInfo().

5.4.2.19 sy

```
double elem_t::sy
```

cell extension in y-direction

Referenced by calcTimeStep(), and createElemInfo().

5.4.2.20 u_t

```
double elem_t::u_t[NVAR]
```

t-gradient of primitive variables

Referenced by buildMatrix(), explicitTimeStepEuler(), explicitTimeStepRK(), fvTimeDerivative(), globalResidual(), implicitTimeStep(), matrixVector(), and spatialReconstruction().

5.4.2.21 u_x

```
double elem_t::u_x[NVAR]
```

x-gradient of primitive variables

Referenced by calcErrors(), fluxCalculation(), limiterBarthJespersen(), limiterVenkatakrishnan(), and spatial \leftarrow Reconstruction().

5.4.2.22 u_y

```
double elem_t::u_y[NVAR]
```

y-gradient of primitive variables

Referenced by calcErrors(), fluxCalculation(), limiterBarthJespersen(), limiterVenkatakrishnan(), and spatial ← Reconstruction().

5.4.2.23 venkEps_sq

```
double elem_t::venkEps_sq
```

Venkatakrishnan limiter constant for element

Referenced by initFV(), and limiterVenkatakrishnan().

5.4.2.24 wGP

```
double* elem_t::wGP
```

Gaussian weights

Referenced by calcErrors(), calcSource(), createReconstructionInfo(), and freeMesh().

5.4.2.25 xGP

```
double** elem_t::xGP
```

Gaussian points for volume integral

Referenced by calcErrors(), calcSource(), createReconstructionInfo(), and freeMesh().

The documentation for this struct was generated from the following file:

• ccfd/src/mesh.h

5.5 node_t Struct Reference

Structure for a single node in a linked list of nodes.

```
#include <mesh.h>
```

Collaboration diagram for node_t:

Data Fields

- long id
- double x [NDIM]
- node_t * next

5.5.1 Detailed Description

Structure for a single node in a linked list of nodes.

5.5.2 Field Documentation

5.5.2.1 id

long node_t::id

unique node ID

Referenced by cgnsWriteMesh(), and createMesh().

5.5.2.2 next

```
node_t* node_t::next
```

next node in the list

Referenced by cgnsWriteMesh(), createMesh(), and freeMesh().

5.5.2.3 x

```
double node_t::x[NDIM]
```

coordinates of the node

 $Referenced \ by \ cgnsWriteMesh(), \ createElemInfo(), \ createMesh(), \ createReconstructionInfo(), \ createSideInfo(), \ and \ initRecordPoints().$

The documentation for this struct was generated from the following file:

· ccfd/src/mesh.h

5.6 outputTime_t Struct Reference

Output times linked list.

```
#include <output.h>
```

Collaboration diagram for outputTime_t:

Data Fields

- · long iter
- double time
- outputTime_t * next

5.6.1 Detailed Description

Output times linked list.

5.6.2 Field Documentation

5.6.2.1 iter

long outputTime_t::iter

iteration number at output

Referenced by cgnsFinalizeOutput(), and dataOutput().

5.6.2.2 next

```
outputTime_t* outputTime_t::next
```

pointer to next output time

Referenced by cgnsFinalizeOutput(), dataOutput(), and freeOutputTimes().

5.6.2.3 time

```
double outputTime_t::time
```

computational time at output

Referenced by cgnsFinalizeOutput(), and dataOutput().

The documentation for this struct was generated from the following file:

· ccfd/src/output.h

5.7 recordPoint t Struct Reference

Recording point structure, used to output flow field at specific points.

```
#include <analyze.h>
```

Collaboration diagram for recordPoint_t:

Data Fields

- int nPoints
- double ** x
- elem_t ** elem
- FILE ** ioFile

5.7.1 Detailed Description

Recording point structure, used to output flow field at specific points.

5.7.2 Field Documentation

5.7.2.1 elem

```
elem_t** recordPoint_t::elem
```

array of elements that contain a RP

Referenced by evalRecordPoints(), and initRecordPoints().

5.7.2.2 ioFile

```
FILE** recordPoint_t::ioFile
```

array of output file pointers

Referenced by evalRecordPoints(), initRecordPoints(), and timeDisc().

5.7.2.3 nPoints

 $\verb"int recordPoint_t::nPoints"$

number of recording points

Referenced by analyze(), evalRecordPoints(), initAnalyze(), initRecordPoints(), and timeDisc().

5.7.2.4 x

double** recordPoint_t::x

 ${\tt nPoints} \textbf{x} {\tt NDIM} \ \textbf{array of RP coordinates}$

Referenced by initRecordPoints().

The documentation for this struct was generated from the following file:

· ccfd/src/analyze.h

5.8 side_t Struct Reference

Structure for a single side in the global side list.

#include <mesh.h>

Collaboration diagram for side_t:

Data Fields

- long id
- int BCtype
- int BCid
- boundary_t * BC
- double pVar [NVAR]
- double n [NDIM]
- double len
- double baryBaryVec [NDIM]

- double baryBaryDist
- double GP [NDIM]
- double w [NDIM]
- double flux [NVAR]
- side_t * connection
- side_t * nextElemSide
- side_t * next
- node_t * node [2]
- elem_t * elem

5.8.1 Detailed Description

Structure for a single side in the global side list.

5.8.2 Field Documentation

5.8.2.1 baryBaryDist

```
double side_t::baryBaryDist
```

length of~baryBaryVec

Referenced by createReconstructionInfo(), and fluxCalculation().

5.8.2.2 baryBaryVec

```
double side_t::baryBaryVec[NDIM]
```

vector from element barycenter to barycenter of neighbor element

Referenced by createReconstructionInfo(), and fluxCalculation().

5.8.2.3 BC

```
boundary_t* side_t::BC
```

pointer to the boundary condition

Referenced by boundary(), cgnsWriteMesh(), connectPeriodicBC(), createMesh(), createSideInfo(), and initWing().

5.8.2.4 BCid

```
int side_t::BCid
```

boundary condition Sub-ID

5.8.2.5 BCtype

```
int side_t::BCtype
```

boundary condition type

5.8.2.6 connection

```
side_t* side_t::connection
```

neighbor side

Referenced by boundary(), buildMatrix(), connectPeriodicBC(), createMesh(), createReconstructionInfo(), create \leftarrow SideInfo(), fluxCalculation(), initWing(), limiterBarthJespersen(), limiterVenkatakrishnan(), LUSGS(), setBCat \leftarrow Barys(), setBCatSides(), and spatialReconstruction().

5.8.2.7 elem

```
elem_t* side_t::elem
```

pointer to the element of the side

Referenced by buildMatrix(), calcCoef(), connectPeriodicBC(), createMesh(), createSideInfo(), fluxCalculation(), freeMesh(), initWing(), limiterBarthJespersen(), limiterVenkatakrishnan(), LUSGS(), setBCatBarys(), setBCat \leftarrow Sides(), and spatialReconstruction().

5.8.2.8 flux

```
double side_t::flux[NVAR]
```

numerical flux of the side

Referenced by fluxCalculation(), and fvTimeDerivative().

5.8.2.9 GP

```
double side_t::GP[NDIM]
```

vector from element barycenter to the Gaussian point of the side

Referenced by calcCoef(), connectPeriodicBC(), createMesh(), createReconstructionInfo(), createSideInfo(), init Wing(), limiterBarthJespersen(), limiterVenkatakrishnan(), setBCatSides(), and spatialReconstruction().

5.8.2.10 id

```
long side_t::id
```

unique side ID

Referenced by createMesh().

5.8.2.11 len

```
double side_t::len
```

length of the side

Referenced by calcCoef(), createSideInfo(), and fluxCalculation().

5.8.2.12 n

```
double side_t::n[NDIM]
```

normal vector of side

 $Referenced \ by \ boundary(), \ calcCoef(), \ createMesh(), \ createSideInfo(), \ fluxCalculation(), \ and \ initWing().$

5.8.2.13 next

```
side_t* side_t::next
```

point to the next side in the global side list

Referenced by connectPeriodicBC(), and createMesh().

5.8.2.14 nextElemSide

```
side_t* side_t::nextElemSide
```

pointer to the next side of the element

Referenced by buildMatrix(), createMesh(), createReconstructionInfo(), freeMesh(), fvTimeDerivative(), limiter BarthJespersen(), limiterVenkatakrishnan(), LUSGS(), and spatialReconstruction().

5.8.2.15 node

```
node_t* side_t::node[2]
```

pointer array to the nodes of the side

Referenced by cgnsWriteMesh(), createMesh(), and createSideInfo().

5.8.2.16 pVar

```
double side_t::pVar[NVAR]
```

primitive variables state at side

Referenced by calcCoef(), fluxCalculation(), setBCatSides(), and spatialReconstruction().

5.8.2.17 w

```
double side_t::w[NDIM]
```

omegaX and omegaY entries for 2nd order gradient reconstruction

Referenced by createReconstructionInfo(), and spatialReconstruction().

The documentation for this struct was generated from the following file:

• ccfd/src/mesh.h

5.9 sideList_t Struct Reference

Helper structure for reading in the sides and deviding them into BC sides and non-BC sides.

Collaboration diagram for sideList_t:

Data Fields

- long node [2]
- bool BC
- side t * side
- bool isRotated

5.9.1 Detailed Description

Helper structure for reading in the sides and deviding them into BC sides and non-BC sides.

5.9.2 Field Documentation

5.9.2.1 BC

bool sideList_t::BC

flag for if the side is a BC side

Referenced by compare(), and createMesh().

5.9.2.2 isRotated

bool sideList_t::isRotated

flag for if the side is rotated

Referenced by createMesh().

5.9.2.3 node

long sideList_t::node[2]

node ID array of the side

Referenced by compare(), and createMesh().

5.9.2.4 side

```
side_t* sideList_t::side
```

pointer to the side

Referenced by createMesh().

The documentation for this struct was generated from the following file:

• ccfd/src/mesh.c

5.10 sidePtr_t Struct Reference

Secondary side lists used for various things.

```
#include <mesh.h>
```

Collaboration diagram for sidePtr_t:

Data Fields

- side_t * side
- sidePtr_t * next

5.10.1 Detailed Description

Secondary side lists used for various things.

5.10.2 Field Documentation

5.10.2.1 next

```
sidePtr_t* sidePtr_t::next
```

pointer to the next side in the secondary list

Referenced by calcCoef(), cgnsWriteMesh(), connectPeriodicBC(), createMesh(), freeAnalyze(), freeMesh(), and initWing().

5.10.2.2 side

```
side_t* sidePtr_t::side
```

pointer to a side

Referenced by calcCoef(), cgnsWriteMesh(), connectPeriodicBC(), createMesh(), freeMesh(), and initWing().

The documentation for this struct was generated from the following file:

• ccfd/src/mesh.h

5.11 wing_t Struct Reference

Collection of all necessary values for the calculation of CL and CD.

```
#include <analyze.h>
```

Collaboration diagram for wing_t:

Data Fields

- double refLength
- int wallId
- double cl
- double cd
- boundary_t * wingBC
- sidePtr t * firstPressureSide
- sidePtr_t * firstSuctionSide

5.11.1 Detailed Description

Collection of all necessary values for the calculation of CL and CD.

5.11.2 Field Documentation

5.11.2.1 cd

```
double wing_t::cd
```

drag coefficient

Referenced by analyze(), calcCoef(), and timeDisc().

5.11.2.2 cl

```
double wing_t::cl
```

lift coefficient

Referenced by analyze(), calcCoef(), and timeDisc().

5.11.2.3 firstPressureSide

```
sidePtr_t* wing_t::firstPressureSide
```

pointer to the first pressure side

Referenced by calcCoef(), freeAnalyze(), and initWing().

5.11.2.4 firstSuctionSide

```
sidePtr_t* wing_t::firstSuctionSide
```

pointer to the first suction side

Referenced by calcCoef(), freeAnalyze(), and initWing().

5.11.2.5 refLength

```
\verb|double wing_t::refLength|\\
```

reference length

Referenced by calcCoef(), and readWing().

5.11.2.6 wallId

```
int wing_t::wallId
```

BCid of the wall that represents the wing

Referenced by initWing(), and readWing().

5.11.2.7 wingBC

```
boundary_t* wing_t::wingBC
```

pointer to the BC of the wing

The documentation for this struct was generated from the following file:

• ccfd/src/analyze.h

Chapter 6

File Documentation

6.1 ccfd/src/analyze.c File Reference

Contains functions for analyzing flow results.

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include "analyze.h"
#include "readInTools.h"
#include "timeDiscretization.h"
#include "output.h"
#include "memTools.h"
#include "reconstruction.h"
#include "equation.h"
#include "equation.h"
#include dependency graph for analyze.c:
```


Functions

- · void initRecordPoints (void)
 - Initialize recording points.
- void initWing (void)

Initialize required data for calculation of CL and CD.

void readWing (void)

Get parameters for calculating aerodynamic coefficients.

void initAnalyze (void)

Initialize the analysis function.

void calcCoef (void)

Calculate CL and CD around the specified wall.

void evalRecordPoints (double time)

Evaluation of recording points.

void analyze (double time, long iter, double reslter[NVAR+2])

Compute aerodynamic coefficients and extract values at record points.

• void calcErrors (double time)

Calculate L1, L2, and Linf error norms, between the flow solution and the exact solution.

• void globalResidual (double resIter[NVAR+2])

Calculate the global residual of the conservative variables.

void freeAnalyze (void)

Free all memory that was allocated for the wing evaluation.

Variables

- bool doCalcWing
- wing_t wing
- · recordPoint t recordPoint
- · bool hasExactSolution

6.1.1 Detailed Description

Contains functions for analyzing flow results.

Author

hhh

Date

Sun 29 Mar 2020 06:29:36 PM CEST

6.1.2 Function Documentation

6.1.2.1 analyze()

Compute aerodynamic coefficients and extract values at record points.

Parameters

	in	time	Calculation time at output
ĺ	in	iter	Iteration count at output
	in,out	resIter	The residual vector containing the CL and CD residuals at 4th and 5th index position

References abortVariable, calcCoef(), wing_t::cl, doCalcWing, elem_t::dt, E, evalRecordPoints(), first← Elem, isStationary, recordPoint_t::nPoints, recordPoint, resFile, RHO, VX, VY, and wing.

Referenced by timeDisc().

6.1.2.2 calcErrors()

```
void calcErrors ( \label{eq:condition} \mbox{double $time$} \ )
```

Calculate L1, L2, and Linf error norms, between the flow solution and the exact solution.

Parameters

i	า	time	Calculation time at output
---	---	------	----------------------------

References elem_t::bary, elem, exactFunc(), intExactFunc, NDIM, nElems, elem_t::nGP, NVAR, P, elem_t::pVar, RHO, spatialReconstruction(), totalArea_q, elem_t::u_x, elem_t::u_y, VX, VY, elem_t::wGP, X, elem_t::xGP, and Y.

Referenced by timeDisc().

6.1.2.3 evalRecordPoints()

```
void evalRecordPoints ( \mbox{double $time$} \ )
```

Evaluation of recording points.

Parameters

in	time	Calculation time at output
----	------	----------------------------

References elem_t::dt, recordPoint_t::elem, recordPoint_t::ioFile, recordPoint_t::nPoints, P, elem_t::pVar, record← Point, RHO, VX, and VY.

Referenced by analyze().

6.1.2.4 globalResidual()

Calculate the global residual of the conservative variables.

Parameters

in,out	resIter	The residual vector containing the residuals of the conservative variables at the first four	
		positions	

References elem_t::area, E, elem, MX, MY, nElems, NVAR, RHO, totalArea_q, and elem_t::u_t.

Referenced by explicitTimeStepEuler(), explicitTimeStepRK(), and implicitTimeStep().

6.1.3 Variable Documentation

6.1.3.1 doCalcWing

bool doCalcWing

calculate CL CD flag

Referenced by analyze(), freeAnalyze(), initAnalyze(), and timeDisc().

6.1.3.2 hasExactSolution

 $\verb|bool| hasExactSolution| \\$

exact solution existence flag

Referenced by dataOutput(), initAnalyze(), and timeDisc().

6.1.3.3 recordPoint

recordPoint_t recordPoint

record flow field at a specific point

Referenced by analyze(), evalRecordPoints(), initAnalyze(), initRecordPoints(), and timeDisc().

6.1.3.4 wing

```
wing_t wing
```

holds data for coefficient calculation

Referenced by analyze(), calcCoef(), freeAnalyze(), initWing(), readWing(), and timeDisc().

6.2 ccfd/src/analyze.h File Reference

Contains the structure definitions of wing_t and $recordPoint_t$

```
#include <stdlib.h>
#include <stdbool.h>
#include "main.h"
#include "boundary.h"
#include "mesh.h"
```

Include dependency graph for analyze.h:

This graph shows which files directly or indirectly include this file:

Data Structures

· struct wing_t

Collection of all necessary values for the calculation of CL and CD.

struct recordPoint_t

Recording point structure, used to output flow field at specific points.

Functions

· void initAnalyze (void)

Initialize the analysis function.

· void analyze (double time, long iter, double resIter[NVAR+2])

Compute aerodynamic coefficients and extract values at record points.

• void calcErrors (double time)

Calculate L1, L2, and Linf error norms, between the flow solution and the exact solution.

• void globalResidual (double resIter[NVAR+2])

Calculate the global residual of the conservative variables.

void freeAnalyze (void)

Free all memory that was allocated for the wing evaluation.

Variables

- bool doCalcWing
- · wing twing
- recordPoint_t recordPoint
- · bool hasExactSolution

6.2.1 Detailed Description

Contains the structure definitions of wing_t and recordPoint_t

Author

hhh

Date

Sun 29 Mar 2020 05:51:23 PM CEST

6.2.2 Function Documentation

6.2.2.1 analyze()

Compute aerodynamic coefficients and extract values at record points.

Parameters

	in	time	Calculation time at output
ĺ	in	iter	Iteration count at output
	in,out	resIter	The residual vector containing the CL and CD residuals at 4th and 5th index position

References abortVariable, calcCoef(), wing_t::cl, doCalcWing, elem_t::dt, E, evalRecordPoints(), first← Elem, isStationary, recordPoint_t::nPoints, recordPoint, resFile, RHO, VX, VY, and wing.

Referenced by timeDisc().

6.2.2.2 calcErrors()

```
void calcErrors ( \label{eq:condition} \mbox{double time } \mbox{)}
```

Calculate L1, L2, and Linf error norms, between the flow solution and the exact solution.

Parameters

in	time	Calculation time at output
----	------	----------------------------

References elem_t::bary, elem, exactFunc(), intExactFunc, NDIM, nElems, elem_t::nGP, NVAR, P, elem_t::pVar, RHO, spatialReconstruction(), totalArea_q, elem_t::u_x, elem_t::u_y, VX, VY, elem_t::wGP, X, elem_t::xGP, and Y.

Referenced by timeDisc().

6.2.2.3 globalResidual()

Calculate the global residual of the conservative variables.

Parameters

in,out	resIter	The residual vector containing the residuals of the conservative variables at the first four	
		positions	

References elem_t::area, E, elem, MX, MY, nElems, NVAR, RHO, totalArea_q, and elem_t::u_t.

 $Referenced \ by \ explicit Time Step Euler(), \ explicit Time Step RK(), \ and \ implicit Time Step().$

6.2.3 Variable Documentation

6.2.3.1 doCalcWing

bool doCalcWing

calculate CL CD flag

Referenced by analyze(), freeAnalyze(), initAnalyze(), and timeDisc().

6.2.3.2 hasExactSolution

bool hasExactSolution

exact solution existence flag

Referenced by dataOutput(), initAnalyze(), and timeDisc().

6.2.3.3 recordPoint

recordPoint_t recordPoint

record flow field at a specific point

 $Referenced \ by \ analyze(), \ eval Record Points(), \ in it Analyze(), \ in it Record Points(), \ and \ time Disc().$

6.2.3.4 wing

wing_t wing

holds data for coefficient calculation

 $Referenced \ by \ analyze(), \ calcCoef(), \ free Analyze(), \ initWing(), \ readWing(), \ and \ timeDisc().$

6.3 ccfd/src/boundary.c File Reference

Contains the functions for initializing and applying boundary conditions.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "main.h"
#include "boundary.h"
#include "readInTools.h"
#include "equation.h"
#include "equationOfState.h"
#include "exactFunction.h"
Include dependency graph for boundary.c:
```


Functions

- void initBoundary (void)
 Initialize boundary conditions.
- void boundary (side_t *aSide, double time, double int_pVar[NVAR], double ghost_pVar[NVAR], double x[NDIM])

Set boundary condition value at x.

• void setBCatSides (double time)

Set the ghost values at sides.

void setBCatBarys (double time)

Set the ghost values at elements.

void freeBoundary (void)

Free all memory that was allocated for the boundary conditions.

Variables

- boundary_t * firstBC
- int nBC
- bool isPeriodic

6.3.1 Detailed Description

Contains the functions for initializing and applying boundary conditions.

Author

hhh

Date

Tue 24 Mar 2020 10:10:51 AM CET

6.3.2 Function Documentation

6.3.2.1 boundary()

Set boundary condition value at x.

Parameters

in	aSide	Pinter to a boundary side
in	time	Computation time at calculation
in	int_pVar	Internal cell primitive variables state
out	ghost_pVar	Ghost cell primitive variables state
in	Х	Barycenter coordinates of the ghost cell

References side_t::BC, boundary_t::BCtype, CHARACTERISTIC, charCons(), side_t::connection, consChar(), consPrim(), boundary_t::exactFunc, exactFunc(), EXACTSOL, gam, INFLOW, mu, MY, side_t::n, NDIM, NVAR, OUTFLOW, P, PRESSURE_OUT, primCons(), boundary_t::pVar, RHO, SLIPWALL, VX, VY, WALL, X, and Y.

Referenced by setBCatBarys(), and setBCatSides().

6.3.2.2 setBCatBarys()

Set the ghost values at elements.

Parameters

in <i>time</i>	Computation time at calculation
----------------	---------------------------------

References elem_t::bary, BCside, boundary(), side_t::connection, side_t::elem, nBCsides, and elem_t::pVar.

Referenced by spatialReconstruction().

6.3.2.3 setBCatSides()

Set the ghost values at sides.

Parameters

in	time	Computation time at calculation	
----	------	---------------------------------	--

References elem_t::bary, BCside, boundary(), side_t::connection, side_t::elem, side_t::GP, nBCsides, NDIM, side ← _t::pVar, X, and Y.

Referenced by fvTimeDerivative().

6.3.3 Variable Documentation

6.3.3.1 firstBC

```
boundary_t* firstBC
```

pointer to the first boundary condition

Referenced by cgnsWriteMesh(), createMesh(), freeBoundary(), initBoundary(), and initWing().

6.3.3.2 isPeriodic

```
bool isPeriodic
```

periodic boundary condition flag

Referenced by cgnsWriteMesh(), and connectPeriodicBC().

6.3.3.3 nBC

int nBC

number of boundary conditions

Referenced by cgnsWriteMesh(), and initBoundary().

6.4 ccfd/src/boundary.h File Reference

Contains the structure definition of a boundary.

```
#include <stdbool.h>
#include "main.h"
#include "mesh.h"
```

Include dependency graph for boundary.h:

This graph shows which files directly or indirectly include this file:

Data Structures

struct boundary_t

Structure that holds the information of a boundary condition.

Functions

void initBoundary (void)

Initialize boundary conditions.

• void setBCatSides (double time)

Set the ghost values at sides.

• void setBCatBarys (double time)

Set the ghost values at elements.

void boundary (side_t *aSide, double time, double int_pVar[NVAR], double ghost_pVar[NVAR], double x[NDIM])

Set boundary condition value at x.

void freeBoundary (void)

Free all memory that was allocated for the boundary conditions.

Variables

- boundary_t * firstBC
- int nBC
- bool isPeriodic

6.4.1 Detailed Description

Contains the structure definition of a boundary.

Author

hhh

Date

Tue 24 Mar 2020 10:02:10 AM CET

6.4.2 Function Documentation

6.4.2.1 boundary()

Set boundary condition value at x.

Parameters

in	aSide	Pinter to a boundary side
in	time	Computation time at calculation
in	int_pVar	Internal cell primitive variables state
out	ghost_pVar	Ghost cell primitive variables state
in	X	Barycenter coordinates of the ghost cell

References side_t::BC, boundary_t::BCtype, CHARACTERISTIC, charCons(), side_t::connection, consChar(), consPrim(), boundary_t::exactFunc, exactFunc(), EXACTSOL, gam, INFLOW, mu, MY, side_t::n, NDIM, NVAR, OUTFLOW, P, PRESSURE_OUT, primCons(), boundary_t::pVar, RHO, SLIPWALL, VX, VY, WALL, X, and Y.

Referenced by setBCatBarys(), and setBCatSides().

6.4.2.2 setBCatBarys()

Set the ghost values at elements.

Parameters

	in	time	Computation time at calculation	1
--	----	------	---------------------------------	---

 $References\ elem_t::bary,\ BCside,\ boundary(),\ side_t::connection,\ side_t::elem,\ nBCsides,\ and\ elem_t::pVar.$

Referenced by spatialReconstruction().

6.4.2.3 setBCatSides()

Set the ghost values at sides.

Parameters

in	time	Computation time at calculation

References elem_t::bary, BCside, boundary(), side_t::connection, side_t::elem, side_t::GP, nBCsides, NDIM, side _t::pVar, X, and Y.

Referenced by fvTimeDerivative().

6.4.3 Variable Documentation

6.4.3.1 firstBC

```
boundary_t* firstBC
```

pointer to the first boundary condition

Referenced by cgnsWriteMesh(), createMesh(), freeBoundary(), initBoundary(), and initWing().

6.4.3.2 isPeriodic

```
bool isPeriodic
```

periodic boundary condition flag

Referenced by cgnsWriteMesh(), and connectPeriodicBC().

6.4.3.3 nBC

int nBC

number of boundary conditions

Referenced by cgnsWriteMesh(), and initBoundary().

6.5 ccfd/src/equation.c File Reference

Contains the function for initializing the physical constants.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "equation.h"
#include "readInTools.h"
Include dependency graph for equation.c:
```


Functions

void initEquation (void)

Initialize equations.

Variables

- double pi
- bool doCalcSource
- double R
- double gam
- double gam1
- double gam2
- double gam1q
- double cp
- double Pr
- double mu
- int iFlux
- int intExactFunc
- int sourceFunc
- double sqrt2
- double sqrt3
- double sqrt3q

6.5.1 Detailed Description

Contains the function for initializing the physical constants.

Date

Tue 24 Mar 2020 08:30:28 AM CET

Author

hhh

6.5.2 Variable Documentation

6.5.2.1 cp

double cp

specific heat capacity

Referenced by calcCoef().

6.5.2.2 doCalcSource

bool doCalcSource

calculate source flag

Referenced by fvTimeDerivative(), and initEquation().

6.5.2.3 gam

double gam

specific heat ratio

Referenced by boundary(), calcTimeStep(), charCons(), consChar(), evalSource(), exactFunc(), exactRiemann(), flux_ausmd(), flux_ausmdv(), flux_god(), flux_hllc(), flux_hllc(), flux_hlle(), flux_lxf(), flux_roe(), flux_stw(), flux_valleer(), GMRES_M(), initBoundary(), initEquation(), and initInitialCondition().

6.5.2.4 gam1

double gam1

gam - 1

Referenced by consPrim(), evalSource(), exactFunc(), flux_god(), flux_hll(), flux_hllc(), flux_roe(), flux_stw(), flux vanleer(), and initEquation().

6.5.2.5 gam1q

double gam1q

1.0 / (gam - 1)

Referenced by charCons(), consChar(), flux_ausmd(), flux_ausmdv(), flux_cen(), flux_hll(), flux_hllc(), flux_hllc(), flux_lxf(), flux_roe(), flux_stw(), flux_vanleer(), initEquation(), and primCons().

6.5.2.6 gam2

double gam2

gam - 2

Referenced by flux_roe(), and initEquation().

6.5.2.7	iFlux
---------	-------

int iFlux

flux function control

Referenced by convectiveFlux(), and initEquation().

6.5.2.8 intExactFunc

int intExactFunc

exact function control

Referenced by calcErrors(), cgnsOutput(), csvOutput(), curveOutput(), initInitialCondition(), and setInitialCondition().

6.5.2.9 mu

double mu

dynamic viscosity

Referenced by boundary(), calcTimeStep(), evalSource(), and initEquation().

6.5.2.10 pi

double pi

pi

Referenced by calcCoef(), evalSource(), exactFunc(), initBoundary(), initEquation(), and initInitialCondition().

6.5.2.11 Pr

double Pr

Prandtl number

Referenced by calcTimeStep(), evalSource(), and initEquation().

6.5.2.12 R

double R

specific gas constant

Referenced by exactFunc(), and initEquation().

6.5.2.13 sourceFunc

int sourceFunc

source function control

Referenced by calcSource(), and initEquation().

6.5.2.14 sqrt2

double sqrt2

sqrt(2.0)

Referenced by initEquation().

6.5.2.15 sqrt3

double sqrt3

sqrt(3.0)

Referenced by initEquation().

6.5.2.16 sqrt3q

double sqrt3q

1.0 / sqrt(3.0)

Referenced by exactFunc(), and initEquation().

6.6 ccfd/src/equation.h File Reference

#include <stdbool.h>
Include dependency graph for equation.h:

This graph shows which files directly or indirectly include this file:

Functions

void initEquation (void)
 Initialize equations.

Variables

- double pi
- bool doCalcSource
- double R
- · double gam
- double gam1
- double gam2
- double gam1q
- double cp
- double Pr
- double mu
- int iFlux
- int intExactFunc
- int sourceFunc
- double sqrt2
- double sqrt3
- double sqrt3q

6.6.1 Detailed Description

Author

hhh

Date

Tue 24 Mar 2020 08:23:21 AM CET

6.6.2 Variable Documentation

6.6.2.1 cp

double cp

specific heat capacity

Referenced by calcCoef().

6.6.2.2 doCalcSource

bool doCalcSource

calculate source flag

Referenced by fvTimeDerivative(), and initEquation().

6.6.2.3 gam

double gam

specific heat ratio

Referenced by boundary(), calcTimeStep(), charCons(), consChar(), evalSource(), exactFunc(), exactRiemann(), flux_ausmd(), flux_god(), flux_hll(), flux_hllc(), flux_hlle(), flux_lxf(), flux_roe(), flux_stw(), flux_vanleer(), GMRES_M(), initBoundary(), initEquation(), and initInitialCondition().

6.6.2.4 gam1

```
double gam1
```

gam - 1

Referenced by consPrim(), evalSource(), exactFunc(), flux_god(), flux_hll(), flux_hllc(), flux_roe(), flux_stw(), flux vanleer(), and initEquation().

6.6.2.5 gam1q

```
double gam1q
```

1.0 / (gam - 1)

Referenced by charCons(), consChar(), flux_ausmd(), flux_ausmdv(), flux_cen(), flux_hllc(), flux_hllc(), flux_lxf(), flux_roe(), flux_stw(), flux_vanleer(), initEquation(), and primCons().

6.6.2.6 gam2

double gam2

gam - 2

Referenced by flux_roe(), and initEquation().

6.6.2.7 iFlux

int iFlux

flux function control

Referenced by convectiveFlux(), and initEquation().

6.6.2.8 intExactFunc

int intExactFunc

exact function control

Referenced by calcErrors(), cgnsOutput(), csvOutput(), curveOutput(), initInitialCondition(), and setInitialCondition().

6.6.2.9 mu

double mu

dynamic viscosity

Referenced by boundary(), calcTimeStep(), evalSource(), and initEquation().

6.6.2.10 pi

double pi

pi

Referenced by calcCoef(), evalSource(), exactFunc(), initBoundary(), initEquation(), and initInitialCondition().

6.6.2.11 Pr

double Pr

Prandtl number

Referenced by calcTimeStep(), evalSource(), and initEquation().

6.6.2.12 R

double R

specific gas constant

Referenced by exactFunc(), and initEquation().

6.6.2.13 sourceFunc

int sourceFunc

source function control

Referenced by calcSource(), and initEquation().

6.6.2.14 sqrt2

double sqrt2

sqrt(2.0)

Referenced by initEquation().

6.6.2.15 sqrt3

double sqrt3

sqrt(3.0)

Referenced by initEquation().

6.6.2.16 sqrt3q

double sqrt3q

1.0 / sqrt(3.0)

Referenced by exactFunc(), and initEquation().

6.7 ccfd/src/equationOfState.c File Reference

Contains conversion functions between the different variable types.

```
#include <math.h>
#include "main.h"
#include "equation.h"
```

Include dependency graph for equationOfState.c:

Functions

void primCons (const double pVar[NVAR], double cVar[NVAR])

Convert primitive variables into conservative variables.

• void consPrim (const double cVar[NVAR], double pVar[NVAR])

Convert conservative variables into primitive variables.

- void consChar (double cVar[NVAR], double charac[3], double pVarRef[NVAR])
 - Convert conservative variables to characteristic variables.
- void charCons (double charac[3], double cVar[NVAR], double pVarRef[NVAR])

Convert characteristic variables to conservative variables.

6.7.1 Detailed Description

Contains conversion functions between the different variable types.

Author

hhh

Date

Sat 28 Mar 2020 09:45:30 PM CET

6.7.2 Function Documentation

6.7.2.1 charCons()

Convert characteristic variables to conservative variables.

Parameters

in	charac	Characteristic variable vector
out	cVar	Conservative variable vector
in	pVarRef	Reference primitive variable vector

References E, gam, gam1q, MX, P, RHO, and VX.

Referenced by boundary().

6.7.2.2 consChar()

Convert conservative variables to characteristic variables.

Parameters

in	cVar	Conservative variable vector
out	charac	Characteristic variable vector
in	pVarRef	Reference primitive variable vector

References E, gam, gam1q, P, RHO, and VX.

Referenced by boundary().

6.7.2.3 consPrim()

```
void consPrim (  {\it const double $cVar[NVAR]$,} \\ {\it double $pVar[NVAR]$} \ )
```

Convert conservative variables into primitive variables.

This function is used during reconstruction, therefore it has to be checked if the resulting primitive variables are negative. It that is the case, they are set to zero.

Parameters

in	cVar	Conservative variable vector
out	pVar	Primitive variable vector

References E, gam1, MX, MY, P, RHO, VX, and VY.

 $Referenced\ by\ boundary(),\ exactFunc(),\ explicitTimeStepEuler(),\ explicitTimeStepRK(),\ implicitTimeStep(),\ and\ matrixVector().$

6.7.2.4 primCons()

```
void primCons (  {\it const double } \ pVar[NVAR], \\ {\it double } \ cVar[NVAR] \ )
```

Convert primitive variables into conservative variables.

Parameters

in	pVar	Primitive variable vector
out	cVar	Conservative variable vector

References E, gam1q, MX, MY, P, RHO, VX, and VY.

Referenced by boundary(), and setInitialCondition().

6.8 ccfd/src/equationOfState.h File Reference

#include "main.h"

Include dependency graph for equationOfState.h:

This graph shows which files directly or indirectly include this file:

Functions

void primCons (const double pVar[NVAR], double cVar[NVAR])

Convert primitive variables into conservative variables.

• void consPrim (const double cVar[NVAR], double pVar[NVAR])

Convert conservative variables into primitive variables.

void consChar (double cVar[NVAR], double charac[3], double pVarRef[NVAR])

Convert conservative variables to characteristic variables.

• void charCons (double charac[3], double cVar[NVAR], double pVarRef[NVAR])

Convert characteristic variables to conservative variables.

6.8.1 Detailed Description

Author

hhh

Date

Sat 28 Mar 2020 09:45:50 PM CET

6.8.2 Function Documentation

6.8.2.1 charCons()

Convert characteristic variables to conservative variables.

Parameters

	in	charac	Characteristic variable vector
Ī	out	cVar	Conservative variable vector
	in	pVarRef	Reference primitive variable vector

References E, gam, gam1q, MX, P, RHO, and VX.

Referenced by boundary().

6.8.2.2 consChar()

Convert conservative variables to characteristic variables.

Parameters

in	cVar	Conservative variable vector
out	charac	Characteristic variable vector
in	pVarRef	Reference primitive variable vector

References E, gam, gam1q, P, RHO, and VX.

Referenced by boundary().

6.8.2.3 consPrim()

Convert conservative variables into primitive variables.

This function is used during reconstruction, therefore it has to be checked if the resulting primitive variables are negative. It that is the case, they are set to zero.

Parameters

in	cVar	Conservative variable vector
out	pVar	Primitive variable vector

References E, gam1, MX, MY, P, RHO, VX, and VY.

Referenced by boundary(), exactFunc(), explicitTimeStepEuler(), explicitTimeStepRK(), implicitTimeStep(), and matrixVector().

6.8.2.4 primCons()

Convert primitive variables into conservative variables.

Parameters

in	pVar	Primitive variable vector
out	cVar	Conservative variable vector

References E, gam1q, MX, MY, P, RHO, VX, and VY.

Referenced by boundary(), and setInitialCondition().

6.9 ccfd/src/exactFunction.c File Reference

Contains the exact function evaluation function.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "main.h"
#include "mesh.h"
#include "equation.h"
#include "initialCondition.h"
#include "equationOfState.h"
#include "exactRiemann.h"
Include dependency graph for exactFunction.c:
```

stdio.h stdlib.h math.h initialCondition.h exactRiemann.h

Functions

• void exactFunc (int iExactFunc, double x[NDIM], double time, double pVar[NVAR])

Calculate an exact function.

6.9.1 Detailed Description

Contains the exact function evaluation function.

Author

hhh

Date

Sat 28 Mar 2020 05:31:15 PM CET

6.9.2 Function Documentation

6.9.2.1 exactFunc()

Calculate an exact function.

This function contains the following exact functions:

- 1: Richtmyer-Meshkov
- · 2: Gaussian pressure pulse
- 3: Sinewave
- 4: Double mach reflection
- 5: 1D Riemann problem
- · 6: 1D sine wave

Parameters

in	iExactFunc The exact function control	
in	X	The coordinates for which to calculate the exact function
in	time	The time for which to compute the exact value
out	pVar	The resulting vector of primitive variables

References consPrim(), dxRef, E, exactRiemann(), gam, gam1, NVAR, P, pi, R, refState, RHO, rp1Dinterface, sqrt3q, VX, VY, X, xMax, xMin, Y, yMax, and yMin.

Referenced by boundary(), calcErrors(), cgnsOutput(), csvOutput(), curveOutput(), and setInitialCondition().

6.10 ccfd/src/exactFunction.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

void exactFunc (int iExactFunc, double x[NDIM], double time, double pVar[NVAR])
 Calculate an exact function.

6.10.1 Detailed Description

Author

hhh

Date

Sat 28 Mar 2020 05:55:25 PM CET

6.10.2 Function Documentation

6.10.2.1 exactFunc()

```
void exactFunc (
          int iExactFunc,
          double x[NDIM],
          double time,
          double pVar[NVAR] )
```

Calculate an exact function.

This function contains the following exact functions:

- 1: Richtmyer-Meshkov
- · 2: Gaussian pressure pulse
- 3: Sinewave
- 4: Double mach reflection
- 5: 1D Riemann problem
- 6: 1D sine wave

Parameters

in	<i>iExactFunc</i>	ExactFunc The exact function control	
in	X	The coordinates for which to calculate the exact function	
in	time	The time for which to compute the exact value	
out	pVar	The resulting vector of primitive variables	

References consPrim(), dxRef, E, exactRiemann(), gam, gam1, NVAR, P, pi, R, refState, RHO, rp1Dinterface, sqrt3q, VX, VY, X, xMax, xMin, Y, yMax, and yMin.

Referenced by boundary(), calcErrors(), cgnsOutput(), csvOutput(), curveOutput(), and setInitialCondition().

6.11 ccfd/src/exactRiemann.c File Reference

Contains the function to calculate the exact Riemann flux.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "equation.h"
```

Include dependency graph for exactRiemann.c:

Functions

- void preFun (double *f, double *fd, double p, double rhok, double pk, double ck)

 Helper function for exactRiemann
- void exactRiemann (double rhol, double rhor, double *rho, double ul, double ur, double *u, double pl, double pr, double *p, double al, double ar, double s)

Calculate the exact solution to the Riemann problem.

Variables

- double G [9]
- double tol = 1e-6
- int nlter = 1000

6.11.1 Detailed Description

Contains the function to calculate the exact Riemann flux.

Author

hhh

Date

Sun 29 Mar 2020 12:35:17 PM CEST

6.11.2 Function Documentation

6.11.2.1 exactRiemann()

Calculate the exact solution to the Riemann problem.

Parameters

in	rhol	Left side density
in	rhor	Right side density
out	rho	The resulting density
in	ul	Left side velocity
in	ur	Right side velocity
out	и	Resulting velocity
in	pl	Left side pressure
in	pr	Right side pressure
out	р	Resulting pressure
in	al	Left side speed of sound
in	ar	Right side speed of sound
in	s	Speed of the discontinuity

References G, gam, nlter, preFun(), and tol.

Referenced by exactFunc(), and flux_god().

6.11.2.2 preFun()

double pk, double ck)

Helper function for <code>exactRiemann</code>

Parameters

out	f	Flux
out	fd	Flux difference
in	р	Pressure
in	rhok	Critical density
in	pk	Critical pressure
in	ck	Critical speed of sound

References G.

Referenced by exactRiemann().

6.11.3 Variable Documentation

6.11.3.1 G

double G[9]

gamma vector

Referenced by exactRiemann(), and preFun().

6.11.3.2 nlter

int nIter = 1000

maximum number of iterations

Referenced by exactRiemann().

6.11.3.3 tol

double tol = 1e-6

tolerance for the iteration

Referenced by exactRiemann().

6.12 ccfd/src/exactRiemann.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

• void exactRiemann (double rhol, double rhor, double *rho, double ul, double ur, double *u, double pl, double pr, double *p, double al, double ar, double s)

Calculate the exact solution to the Riemann problem.

6.12.1 Detailed Description

Date

Sun 29 Mar 2020 12:35:26 PM CEST

Author

hhh

6.12.2 Function Documentation

6.12.2.1 exactRiemann()

Calculate the exact solution to the Riemann problem.

Parameters

in	rhol	Left side density
in	rhor	Right side density
out	rho	The resulting density
in	ul	Left side velocity
in	ur	Right side velocity
out	и	Resulting velocity
in	pl	Left side pressure
in	pr	Right side pressure
out	р	Resulting pressure
in	al	Left side speed of sound
in	ar	Right side speed of sound
in	s	Speed of the discontinuity

References G, gam, nlter, preFun(), and tol.

Referenced by exactFunc(), and flux_god().

6.13 ccfd/src/finiteVolume.c File Reference

Finite volume time derivative functions.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "main.h"
#include "finiteVolume.h"
#include "mesh.h"
#include "readInTools.h"
#include "reconstruction.h"
#include "timeDiscretization.h"
#include "fluxCalculation.h"
#include "equation.h"
#include "source.h"
```

Include dependency graph for finiteVolume.c:

Functions

void initFV (void)

Initialize the finite volume method.

• void fvTimeDerivative (double time)

Perform the spacial operator of the finite volume scheme.

Variables

- · int spatialOrder
- · int fluxFunction

6.13.1 Detailed Description

Finite volume time derivative functions.

Author

hhh

Date

Fri 27 Mar 2020 05:10:43 PM CET

6.13.2 Function Documentation

6.13.2.1 fvTimeDerivative()

```
void fvTimeDerivative ( \mbox{double $time$}\ )
```

Perform the spacial operator of the finite volume scheme.

First, the local time step is calculated, then spacial gradients inside of the cells are reconstructed. Following that, the boundary conditions at the sides are applied and the numerical flux is calculated, using the specified flux function. Finally, the source term is evaluated and the time derivatives of all the elements are calculated.

Parameters

ir	time	Calculation time at which to perform the finite volume differentiation	
----	------	--	--

References elem_t::areaq, calcSource(), doCalcSource, elem_t::dt, elem_t::dtLoc, E, elem, elem_t::firstSide, side_t::flux, fluxCalculation(), nElems, side_t::nextElemSide, RHO, setBCatSides(), elem_t::source, spatial Reconstruction(), timeOrder, elem_t::u_t, VX, and VY.

Referenced by buildMatrix(), explicitTimeStepEuler(), explicitTimeStepRK(), implicitTimeStep(), and matrixVector().

6.13.3 Variable Documentation

6.13.3.1 fluxFunction

int fluxFunction

the flux function to be used

6.13.3.2 spatialOrder

int spatialOrder

the spacial order to be used

Referenced by initFV(), and spatialReconstruction().

6.14 ccfd/src/finiteVolume.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

void initFV (void)

Initialize the finite volume method.

• void fvTimeDerivative (double time)

Perform the spacial operator of the finite volume scheme.

Variables

- int spatialOrder
- int fluxFunction

6.14.1 Detailed Description

Author

hhh

Date

Fri 27 Mar 2020 05:09:57 PM CET

6.14.2 Function Documentation

6.14.2.1 fvTimeDerivative()

Perform the spacial operator of the finite volume scheme.

First, the local time step is calculated, then spacial gradients inside of the cells are reconstructed. Following that, the boundary conditions at the sides are applied and the numerical flux is calculated, using the specified flux function. Finally, the source term is evaluated and the time derivatives of all the elements are calculated.

Parameters

ſ

References elem_t::areaq, calcSource(), doCalcSource, elem_t::dt, elem_t::dtLoc, E, elem, elem_t::firstSide, side_t::flux, fluxCalculation(), nElems, side_t::nextElemSide, RHO, setBCatSides(), elem_t::source, spatial Reconstruction(), timeOrder, elem_t::u_t, VX, and VY.

 $Referenced \ by \ build Matrix(), \ explicit Time Step Euler(), \ explicit Time Step RK(), \ implicit Time Step(), \ and \ matrix Vector().$

6.14.3 Variable Documentation

6.14.3.1 fluxFunction

int fluxFunction

the flux function to be used

6.14.3.2 spatialOrder

int spatialOrder

the spacial order to be used

Referenced by initFV(), and spatialReconstruction().

6.15 ccfd/src/fluxCalculation.c File Reference

Contains the flux calculation functions.

```
#include <math.h>
#include "main.h"
#include "mesh.h"
#include "equation.h"
#include "exactRiemann.h"
#include "boundary.h"
#include "linearSolver.h"
```

Include dependency graph for fluxCalculation.c:

Functions

void flux_god (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Godunov flux, which is the exact flux.

• void flux_roe (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Roe flux.

• void flux_hll (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

HLL flux.

• void flux_hlle (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

HLLE flux

• void flux_hllc (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

HLLC flux.

• void flux_lxf (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Lax-Friedrichs flux.

• void flux_stw (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Steger-Warming flux.

void flux_cen (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Central flux.

void flux_ausmd (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

AUSMD flux.

void flux_ausmdv (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

AUSMDV flux.

• void flux_vanleer (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Van Leer flux.

void convectiveFlux (double rhoL, double rhoR, double vxL, double vxR, double vyL, double vyR, double pL, double pR, double fluxLoc[4])

Select the convective flux.

void fluxCalculation (void)

Perform the flux calculation.

6.15.1 Detailed Description

Contains the flux calculation functions.

Author

hhh

Date

Tue 31 Mar 2020 05:18:40 PM CEST

6.15.2 Function Documentation

6.15.2.1 convectiveFlux()

Select the convective flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References AUSMD, AUSMDV, CEN, flux_ausmd(), flux_ausmdv(), flux_cen(), flux_god(), flux_hllc(), flux_hlle(), flux_lxf(), flux_roe(), flux_stw(), flux_vanleer(), GOD, HLL, HLLC, HLLE, iFlux, LXF, ROE, STW, and VANLEER.

Referenced by fluxCalculation().

6.15.2.2 flux_ausmd()

AUSMD flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, and gam1q.

Referenced by convectiveFlux().

6.15.2.3 flux_ausmdv()

AUSMDV flux.

Bug This function produces incorrect output, refrain from using it for the time being

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, and gam1q.

Referenced by convectiveFlux().

6.15.2.4 flux_cen()

Central flux.

Note

This flux is unconditionally unstable, it can be stabilized by adding artificial viscosity (Jameson method). This is not implemented, however.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam1q.

Referenced by convectiveFlux().

6.15.2.5 flux_god()

Godunov flux, which is the exact flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References exactRiemann(), gam, and gam1.

Referenced by convectiveFlux().

6.15.2.6 flux_hll()

HLL flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, gam1, gam1q, MX, and NVAR.

Referenced by convectiveFlux().

6.15.2.7 flux_hllc()

HLLC flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity

Parameters

in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, gam1, gam1q, MX, and NVAR.

Referenced by convectiveFlux().

6.15.2.8 flux_hlle()

HLLE flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, gam1q, MX, and NVAR.

Referenced by convectiveFlux().

6.15.2.9 flux_lxf()

```
double rhoR,
double vxL,
double vxR,
double vyL,
double pL,
double pR,
double fluxLoc[4])
```

Lax-Friedrichs flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, gam1q, and NVAR.

Referenced by convectiveFlux().

6.15.2.10 flux_roe()

Roe flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
Generated o	n Thu May 7 2	020 11:26:22 for ccfd by Doxygen

References gam, gam1, gam1q, and gam2.

Referenced by convectiveFlux().

6.15.2.11 flux_stw()

Steger-Warming flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, gam1, and gam1q.

Referenced by convectiveFlux().

6.15.2.12 flux_vanleer()

Van Leer flux.

Parameters

in	rhoL	Left side density
in	rhoR	Right side density
in	vxL	Left side x-velocity
in	vxR	Right side x-velocity
in	vyL	Left side y-velocity
in	vyR	Right side y-velocity
in	pL	Left side pressure
in	pR	Right side pressure
out	fluxLoc	The local numeric flux

References gam, gam1, and gam1q.

Referenced by convectiveFlux().

6.15.2.13 fluxCalculation()

Perform the flux calculation.

Calculation of left and right state, the velocity vector is transformed into the normal system of the cell interfaces. The function finishes with a back rotation of the velocity vector into global coordinate system.

References side_t::baryBaryDist, side_t::baryBaryVec, side_t::connection, convectiveFlux(), E, side_t::elem, side _t::flux, side_t::len, MX, MY, side_t::n, NDIM, nSides, NVAR, P, side_t::pVar, elem_t::pVar, RHO, side, elem_t::u_x, elem_t::u_y, VX, VY, X, and Y.

Referenced by fvTimeDerivative().

6.16 ccfd/src/fluxCalculation.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

void fluxCalculation (void)
 Perform the flux calculation.

6.16.1 Detailed Description

Author

hhh

Date

Tue 31 Mar 2020 05:18:46 PM CEST

6.16.2 Function Documentation

6.16.2.1 fluxCalculation()

Perform the flux calculation.

Calculation of left and right state, the velocity vector is transformed into the normal system of the cell interfaces. The function finishes with a back rotation of the velocity vector into global coordinate system.

References side_t::baryBaryDist, side_t::baryBaryVec, side_t::connection, convectiveFlux(), E, side_t::elem, side __ _t::flux, side_t::len, MX, MY, side_t::n, NDIM, nSides, NVAR, P, side_t::pVar, elem_t::pVar, RHO, side, elem_t::u_x, elem_t::u_y, VX, VY, X, and Y.

Referenced by fvTimeDerivative().

6.17 ccfd/src/initialCondition.c File Reference

Functions involving the initialization and application of initial conditions.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "main.h"
#include "readInTools.h"
#include "initialCondition.h"
#include "equation.h"
#include "memTools.h"
#include "timeDiscretization.h"
#include "mesh.h"
```

```
#include "exactFunction.h"
#include "equationOfState.h"
#include "cgnslib.h"
```

Include dependency graph for initialCondition.c:

Functions

· void initInitialCondition (void)

Get initial flow conditions from the parameter file.

void cgnsReadSolution (void)

Read a solution from a CGNS file, used at restart.

void setInitialCondition (void)

Set initial flow field in all cells.

void freeInitialCondition (void)

Free all memory that was allocated for the reference state.

Variables

- int icType
- int nDomains
- int * domainID
- double rp1Dinterface
- double alpha
- double ** refState

6.17.1 Detailed Description

Functions involving the initialization and application of initial conditions.

Author

hhh

Date

Fri 27 Mar 2020 02:31:24 PM CET

6.17.2 Variable Documentation

6.17.2.1 alpha

double alpha

incident angle of the flow

Referenced by calcCoef(), GMRES_M(), implicitTimeStep(), initBoundary(), initInitialCondition(), and matrixVector().

6.17.2.2 domainID

int* domainID

domain ID vector, from 1 to nDomains

Referenced by initInitialCondition().

6.17.2.3 icType

int icType

type of initial condition

Referenced by initInitialCondition(), and setInitialCondition().

6.17.2.4 nDomains

int nDomains

number of domains where initial conditions are applied

Referenced by initInitialCondition(), and setInitialCondition().

6.17.2.5 refState

double** refState

primitive variable state in domain

Referenced by calcCoef(), exactFunc(), freeInitialCondition(), initInitialCondition(), and setInitialCondition().

6.17.2.6 rp1Dinterface

double rplDinterface

interface for a Riemann problem

Referenced by exactFunc(), and initInitialCondition().

6.18 ccfd/src/initialCondition.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

- void initInitialCondition (void)
 - Get initial flow conditions from the parameter file.
- · void setInitialCondition (void)
 - Set initial flow field in all cells.
- void freeInitialCondition (void)

Free all memory that was allocated for the reference state.

Variables

- int icType
- int nDomains
- int * domainID
- double rp1Dinterface
- double alpha
- double ** refState

6.18.1 Detailed Description

Author

hhh

Date

Fri 27 Mar 2020 02:28:25 PM CET

6.18.2 Variable Documentation

6.18.2.1 alpha

double alpha

incident angle of the flow

Referenced by calcCoef(), GMRES_M(), implicitTimeStep(), initBoundary(), initInitialCondition(), and matrixVector().

6.18.2.2 domainID

int* domainID

domain ID vector, from 1 to nDomains

Referenced by initInitialCondition().

6.18.2.3 icType

int icType

type of initial condition

Referenced by initlnitialCondition(), and setInitialCondition().

6.18.2.4 nDomains

int nDomains

number of domains where initial conditions are applied

Referenced by initInitialCondition(), and setInitialCondition().

6.18.2.5 refState

double** refState

primitive variable state in domain

 $Referenced \ by \ calcCoef(), \ exactFunc(), \ freeInitialCondition(), \ initInitialCondition(), \ and \ setInitialCondition().$

6.18.2.6 rp1Dinterface

```
double rplDinterface
```

interface for a Riemann problem

Referenced by exactFunc(), and initInitialCondition().

6.19 ccfd/src/linearSolver.c File Reference

Contains the functions for solving the linear system of equations during implicit calculations.

```
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include "main.h"
#include "linearSolver.h"
#include "readInTools.h"
#include "mesh.h"
#include "timeDiscretization.h"
#include "memTools.h"
#include "fluxCalculation.h"
#include "equationOfState.h"
#include "finiteVolume.h"
Include dependency graph for linearSolver.c:
```


Functions

· void initLinearSolver (void)

Initialize linear solver.

double vectorDotProduct (double **A, double **B)

Compute dot product for two state vectors A and B for every element.

bool calcDinv (double **A, double **Ainv)

Compute inverse of a 4x4 matrix.

void buildMatrix (double time, double dt)

Compute the global Jacobian matrix by use of finite differences.

void LUSGS (double **B, double **delX)

LUSGS preconditioner.

• void matrixVector (double time, double dt, double alpha, double **v, double **res)

Computes matrix vector product using spatial operator and finite differences.

 void GMRES_M (double time, double dt, double alpha, double **B, double normB, double *abortCrit, double **delX)

Uses matrix free to solve the linear system.

void freeLinearSolver (void)

Free all memory that was allocated for.

Variables

- · int nKdim
- int nNewtonIter
- int nNewtonIterGlobal
- · int nGMRESiterGlobal
- int nInnerNewton
- int nInnerGMRES
- · bool usePrecond
- double rEps0
- double srEps0
- double eps2newton
- double eps2newton_sq
- double epsGMRES
- double gamEW
- double ** XK
- double ** R_XK
- double *** D
- double *** Dinv
- double ** dRdU
- double *** V
- double *** Z
- double ** R0
- double ** W
- double ** deltaXstar

6.19.1 Detailed Description

Contains the functions for solving the linear system of equations during implicit calculations.

Author

hhh

Date

Sat 28 Mar 2020 03:41:56 PM CET

6.19.2 Function Documentation

6.19.2.1 buildMatrix()

```
void buildMatrix ( \label{eq:double_time} \mbox{double $time,$} \mbox{double $dt$ )}
```

Compute the global Jacobian matrix by use of finite differences.

Parameters

in	time	Computation time at calculation
in	dt	Time step at calculation

References calcDinv(), side_t::connection, D, Dinv, dRdU, side_t::elem, elem, elem_t::firstSide, fvTimeDerivative(), elem_t::id, nElems, side_t::nextElemSide, NVAR, elem_t::pVar, R_XK, rEps0, srEps0, and elem_t::u_t.

Referenced by GMRES_M().

6.19.2.2 calcDinv()

Compute inverse of a 4x4 matrix.

Parameters

in	Α	The 4x4 matrix to be inverted
out	Ainv	The 4x4 inverse matrix of A

Returns

0 = Inverse does not exist, 1 = Inverse computed

Referenced by buildMatrix().

6.19.2.3 GMRES_M()

Uses matrix free to solve the linear system.

Parameters

in	time	Computation time at calculation
in	dt	Time step at calculation
in	alpha	Relaxation parameter
in Generated on Thu May 7 2020 11:2		Right hand side 6:22 for cold by Doxygen
in	normB	Norm of right hand side
in,out	abortCrit	GMRES abort criterium
out	delX	Resulting x vector of the linear system

References alpha, buildMatrix(), E, epsGMRES, gam, LUSGS(), matrixVector(), MX, MY, nElems, nGMRESiter Global, nInnerGMRES, nKdim, R0, RHO, t, usePrecond, V, vectorDotProduct(), W, and Z.

Referenced by implicitTimeStep().

6.19.2.4 LUSGS()

LUSGS preconditioner.

Parameters

in	В	Old vector, to be preconditioned
out	delX	Preconditioned vector

Note

This function is slow to execute, it might be possible to speed it up via the use of omp locks for every element

References side_t::connection, deltaXstar, Dinv, dRdU, side_t::elem, elem, elem_t::firstSide, elem_t::id, nElems, side_t::nextElemSide, and NVAR.

Referenced by GMRES_M().

6.19.2.5 matrixVector()

Computes matrix vector product using spatial operator and finite differences.

Parameters

in	time	Computation time at calculation
in	dt	Time step at calculation
in	alpha	Relaxation parameter
in	v	Input vector for the matrix vector product
out	res	Resulting vector of the matrix vector product

References alpha, consPrim(), elem_t::cVar, E, elem, fvTimeDerivative(), MX, MY, nElems, elem_t::pVar, R_XK, rEps0, RHO, elem_t::u_t, vectorDotProduct(), and XK.

Referenced by GMRES_M().

6.19.2.6 vectorDotProduct()

Compute dot product for two state vectors A and B for every element.

Parameters

in	Α	First state vector for every element
in	В	Second state vector for every element

Returns

```
sum(sum(A_ij * B_ij, i = RHO,MX,MY,E), i = 1..nElems)
```

References E, MX, MY, nElems, and RHO.

Referenced by GMRES_M(), implicitTimeStep(), and matrixVector().

6.19.3 Variable Documentation

6.19.3.1 D

double*** D

D-Matrix of LUSGS procedure

Referenced by buildMatrix(), freeLinearSolver(), and initLinearSolver().

6.19.3.2 deltaXstar

double** deltaXstar

temporary array, used in LUSGS

Referenced by freeLinearSolver(), initLinearSolver(), and LUSGS().

6.19.3.3 Dinv

double*** Dinv

inverse of D-Matrix

Referenced by buildMatrix(), freeLinearSolver(), initLinearSolver(), and LUSGS().

6.19.3.4 dRdU

double** dRdU

dR/dU

Referenced by buildMatrix(), freeLinearSolver(), initLinearSolver(), and LUSGS().

6.19.3.5 eps2newton

double eps2newton

square of newton relative epsilon

Referenced by implicitTimeStep(), and initLinearSolver().

6.19.3.6 eps2newton_sq

double eps2newton_sq

newton relative epsilon

Referenced by implicitTimeStep(), and initLinearSolver().

6.19.3.7 epsGMRES

double epsGMRES

GMRES relative epsilon

Referenced by GMRES_M(), and initLinearSolver().

6.19.3.8 gamEW

double gamEW

gamma parameter for Eisenstat Walker

Referenced by implicitTimeStep(), and initLinearSolver().

6.19.3.9 nGMRESiterGlobal

int nGMRESiterGlobal

global number of GMRES iterations

 $Referenced \ by \ GMRES_M(), \ in it Linear Solver(), \ and \ time Disc().$

6.19.3.10 nInnerGMRES

int nInnerGMRES

maximum number of GMRES iterations for one stage

Referenced by GMRES_M(), and initLinearSolver().

6.19.3.11 nInnerNewton

int nInnerNewton

maximum number of Newton iterations for one stage

Referenced by implicitTimeStep(), and initLinearSolver().

6.19.3.12 nKdim

int nKdim

number Krylov spaces

Referenced by GMRES_M(), and initLinearSolver().

6.19.3.13 nNewtonIter

int nNewtonIter

maximum number of Newton iterations

Referenced by implicitTimeStep(), and initLinearSolver().

6.19.3.14 nNewtonIterGlobal

int nNewtonIterGlobal

global number of Newton iterations

Referenced by implicitTimeStep(), initLinearSolver(), and timeDisc().

6.19.3.15 R0

double** R0

temporary array, used in GMRES

Referenced by freeLinearSolver(), GMRES_M(), and initLinearSolver().

6.19.3.16 R_XK

double** R_XK

residual of kth vector array

Referenced by buildMatrix(), freeLinearSolver(), implicitTimeStep(), initLinearSolver(), and matrixVector().

6.19.3.17 rEps0

double rEps0

DBL_EPSILON

Referenced by buildMatrix(), initLinearSolver(), and matrixVector().

6.19.3.18 srEps0

double srEps0

sqrt(DBL_EPSILON)

Referenced by buildMatrix(), and initLinearSolver().

6.19.3.19 usePrecond

bool usePrecond

use LUSGS preconditioner flag

Referenced by freeLinearSolver(), GMRES_M(), and initLinearSolver().

6.19.3.20 V

double*** V

temporary array, used in GMRES

Referenced by freeLinearSolver(), GMRES_M(), and initLinearSolver().

6.19.3.21 W

double** W

temporary array, used in GMRES

Referenced by freeLinearSolver(), GMRES_M(), and initLinearSolver().

6.19.3.22 XK

double** XK

kth X vector array

Referenced by freeLinearSolver(), implicitTimeStep(), initLinearSolver(), and matrixVector().

6.19.3.23 Z

double*** Z

temporary array, used in GMRES

Referenced by freeLinearSolver(), GMRES_M(), and initLinearSolver().

6.20 ccfd/src/linearSolver.h File Reference

```
#include <stdbool.h>
#include "main.h"
#include "mesh.h"
```

Include dependency graph for linearSolver.h:

This graph shows which files directly or indirectly include this file:

Functions

· void initLinearSolver (void)

Initialize linear solver.

double vectorDotProduct (double **A, double **B)

Compute dot product for two state vectors A and B for every element.

void GMRES_M (double time, double dt, double alpha, double **B, double normB, double *abortCrit, double **deltaX)

Uses matrix free to solve the linear system.

void freeLinearSolver (void)

Free all memory that was allocated for.

Variables

- int nKdim
- · int nNewtonIter
- int nNewtonIterGlobal
- int nGMRESiterGlobal
- int nInnerNewton
- int nInnerGMRES
- bool usePrecond
- double rEps0
- double srEps0
- double eps2newton
- double eps2newton_sq
- double epsGMRES
- double gamEW
- double ** XK
- double ** R XK

6.20.1 Detailed Description

Author

hhh

Date

Sat 28 Mar 2020 03:09:46 PM CET

6.20.2 Function Documentation

6.20.2.1 GMRES_M()

Uses matrix free to solve the linear system.

Parameters

in	time	Computation time at calculation
in	dt	Time step at calculation
in	alpha	Relaxation parameter
in	В	Right hand side
in	normB	Norm of right hand side
in,out	abortCrit	GMRES abort criterium
out	delX	Resulting x vector of the linear system

References alpha, buildMatrix(), E, epsGMRES, gam, LUSGS(), matrixVector(), MX, MY, nElems, nGMRESiter Global, nInnerGMRES, nKdim, R0, RHO, t, usePrecond, V, vectorDotProduct(), W, and Z.

Referenced by implicitTimeStep().

6.20.2.2 vectorDotProduct()

Compute dot product for two state vectors A and B for every element.

Parameters

i	n	Α	First state vector for every element
i	n	В	Second state vector for every element

Returns

```
sum(sum(A\_ij*B\_ij, i = RHO,MX,MY,E), i = 1..nElems)
```

References E, MX, MY, nElems, and RHO.

Referenced by GMRES_M(), implicitTimeStep(), and matrixVector().

6.20.3 Variable Documentation

6.20.3.1 eps2newton

double eps2newton

square of newton relative epsilon

Referenced by implicitTimeStep(), and initLinearSolver().

6.20.3.2 eps2newton_sq

double eps2newton_sq

newton relative epsilon

Referenced by implicitTimeStep(), and initLinearSolver().

6.20.3.3 epsGMRES

double epsGMRES

GMRES relative epsilon

Referenced by GMRES_M(), and initLinearSolver().

6.20.3.4 gamEW

double gamEW

gamma parameter for Eisenstat Walker

Referenced by implicitTimeStep(), and initLinearSolver().

6.20.3.5 nGMRESiterGlobal

int nGMRESiterGlobal

global number of GMRES iterations

Referenced by GMRES_M(), initLinearSolver(), and timeDisc().

6.20.3.6 nInnerGMRES

int nInnerGMRES

maximum number of GMRES iterations for one stage

Referenced by GMRES_M(), and initLinearSolver().

6.20.3.7 nInnerNewton

int nInnerNewton

maximum number of Newton iterations for one stage

Referenced by implicitTimeStep(), and initLinearSolver().

6.20.3.8 nKdim

int nKdim

number Krylov spaces

Referenced by GMRES_M(), and initLinearSolver().

6.20.3.9 nNewtonIter

int nNewtonIter

maximum number of Newton iterations

Referenced by implicitTimeStep(), and initLinearSolver().

6.20.3.10 nNewtonIterGlobal

 $\verb"int nNewtonIterGlobal"$

global number of Newton iterations

Referenced by implicitTimeStep(), initLinearSolver(), and timeDisc().

6.20.3.11 R_XK

double** R_XK

residual of kth vector array

Referenced by buildMatrix(), freeLinearSolver(), implicitTimeStep(), initLinearSolver(), and matrixVector().

6.20.3.12 rEps0

double rEps0

DBL_EPSILON

Referenced by buildMatrix(), initLinearSolver(), and matrixVector().

6.20.3.13 srEps0

double srEps0

sqrt(DBL_EPSILON)

Referenced by buildMatrix(), and initLinearSolver().

6.20.3.14 usePrecond

bool usePrecond

use LUSGS preconditioner flag

 $Referenced\ by\ free Linear Solver (),\ GMRES_M (),\ and\ in it Linear Solver ().$

6.20.3.15 XK

double** XK

kth X vector array

 $Referenced \ by \ free Linear Solver (), \ implicit Time Step (), \ in it Linear Solver (), \ and \ matrix Vector ().$

6.21 ccfd/src/main.c File Reference

Contains the main function of ccfd

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include "readInTools.h"
#include "timeDiscretization.h"
#include "output.h"
#include "equation.h"
#include "boundary.h"
#include "mesh.h"
#include "initialCondition.h"
#include "finiteVolume.h"
#include "linearSolver.h"
#include dependency graph for main.c:
```


Functions

int main (int argc, char *argv[])
 Main function.

6.21.1 Detailed Description

Contains the main function of ccfd

Author

hhh

Date

Sat 21 Mar 2020 10:41:51 AM CET

6.21.2 Function Documentation

6.21.2.1 main()

```
int main (
          int argc,
          char * argv[] )
```

Main function.

This function starts the program by initializing all the necessary global variables and initializing the time discretization loop. The function finishes by deallocating all the allocated memory.

Parameters

in	argc	The number of command line arguments passed to main
in	argv	The argument vector containing the command line arguments

Returns

0 = Success, 1 = Error during execution

References fillCmds(), freeAnalyze(), freeBoundary(), freeInitialCondition(), freeLinearSolver(), freeMesh(), free OutputTimes(), getBool(), ignoredCmds(), inilterationNumber, initAnalyze(), initBoundary(), initEquation(), initFV(), initInitialCondition(), initLinearSolver(), initMesh(), initOutput(), initTimeDisc(), isRestart, isStationary, outputTimes, restartTime, setInitialCondition(), startTime, strIniCondFile, and timeDisc().

6.22 ccfd/src/main.h File Reference

Contains the global constants and definitions.

This graph shows which files directly or indirectly include this file:

Macros

• #define STRLEN 256

Enumerations

enum conservativeVariables {
 RHO,
 MX,
 MY,
 E }

Index aliases for the conservative variables vector.

```
• enum primitiveVariables {
 VX = 1,
 VY,
 P }
     Index aliases for the primitive variables vector.
enum directions {
 Χ,
 Y }
     Index aliases for the x- and y-components of a vector.

    enum boundaryConditionType {

 SLIPWALL = 1,
 WALL,
 INFLOW,
 OUTFLOW,
 CHARACTERISTIC,
 EXACTSOL,
 PERIODIC,
 PRESSURE_OUT }
     Aliases for the different boundary condition types.
• enum cartesianMeshSides {
 BOTTOM,
 RIGHT,
 TOP,
 LEFT }
     Aliases for the sides of a cartesian mesh.
enum meshType {
 UNSTRUCTURED,
 CARTESIAN }
     Flag for the mesh type.
enum fluxFunction {
 GOD = 1
 ROE,
 HLL,
 HLLE,
 HLLC,
 LXF,
 STW,
 CEN,
 AUSMD,
 AUSMDV,
 VANLEER }
     Aliases for the different flux functions.

    enum limiterFunction {

 BARTHJESPERSEN = 1,
 VENKATAKRISHNAN }
     Flag for the limiter function.
• enum generalParameters {
 NDIM = 2
 NVAR = 4,
 NBC = 20
     General parameters for the Program.
enum ioFormat {
 CGNS = 1,
 CURVE,
 CSV }
     Output format for the results.
```

```
enum clcdResiduals {
CL = 4,
CD }
```

Index aliases for the residual vector.

6.22.1 Detailed Description

Contains the global constants and definitions.

Author

hhh

Date

Sat 21 Mar 2020 10:44:50 AM CET

6.22.2 Macro Definition Documentation

6.22.2.1 STRLEN

#define STRLEN 256

string length

6.22.3 Enumeration Type Documentation

6.22.3.1 boundaryConditionType

 $\verb"enum" boundaryConditionType"$

Aliases for the different boundary condition types.

Enumerator

SLIPWALL	slip wall, or Euler wall
WALL	no slip wall, or Navier-Stokes wall
INFLOW	supersonic inflow
OUTFLOW	supersonic outflow
CHARACTERISTIC	characteristic BC, or subsonic inflow
EXACTSOL	exact solution
PERIODIC	periodic BC
PRESSURE_OUT	subsonic pressure outflow

Generated on Thu May 7 2020 11:26:22 for ccfd by Doxygen

6.22.3.2 cartesianMeshSides

enum cartesianMeshSides

Aliases for the sides of a cartesian mesh.

Enumerator

воттом	bottom side
RIGHT	right side
TOP	top side
LEFT	left side

6.22.3.3 clcdResiduals

enum clcdResiduals

Index aliases for the residual vector.

Enumerator

CL	lift coefficient
CD	drag coefficient

6.22.3.4 conservative Variables

enum conservativeVariables

Index aliases for the conservative variables vector.

Enumerator

RHO	density
MX	momentum in x-direction
MY	momentum in y-direction
Е	energy

6.22.3.5 directions

enum directions

Index aliases for the x- and y-components of a vector.

Enumerator

Х	x-direction
Υ	y-direction

6.22.3.6 fluxFunction

enum fluxFunction

Aliases for the different flux functions.

Enumerator

GOD	Godunov flux function
ROE	Roe flux function
HLL	HLL flux function
HLLE	HLLE flux function
HLLC	HLLC flux function
LXF	Lax-Friedrichs flux function
STW	Steger-Warming flux function
CEN	central flux function
AUSMD	AUSMD flux function
AUSMDV	AUSMDV flux function
VANLEER	Van Leer flux function

6.22.3.7 generalParameters

 $\hbox{\tt enum generalParameters}$

General parameters for the Program.

Enumerator

	NDIM	number of dimensions, cannot be changed
ſ	NVAR	number of variables, primitive or conservative
ſ	NBC	maximum number of boundary conditions

6.22.3.8 ioFormat

enum ioFormat

Output format for the results.

Enumerator

CGNS	.CGNS file format
CURVE	.curve file format
CSV	.csv file format

6.22.3.9 limiterFunction

enum limiterFunction

Flag for the limiter function.

Enumerator

BARTHJESPERSEN	Barth & Jespersen limiter
VENKATAKRISHNAN	Venkatakrishnan limiter

6.22.3.10 meshType

enum meshType

Flag for the mesh type.

Enumerator

UNSTRUCTURED	unstructured
CARTESIAN	cartesian

6.22.3.11 primitive Variables

 $\verb"enum primitiveVariables"$

Index aliases for the primitive variables vector.

Enumerator

VX	velocity in x-direction
VY	velocity in y-direction
Р	pressure

6.23 ccfd/src/memTools.c File Reference

Memory management functions.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cgnslib.h"
```

Include dependency graph for memTools.c:

Functions

```
    long ** dyn2DintArray (long I, long J)
```

Allocate a dynamic 2D array of integers.

cgsize_t ** dyn2DcgsizeArray (long I, long J)

Allocate a dynamic 2D array of cgsize_t.

double ** dyn2DdblArray (long I, long J)

Allocate a dynamic 2D array of doubles.

• long *** dyn3DintArray (long I, long J, long K)

Allocate a dynamic 3D array of integers.

• double *** dyn3DdblArray (long I, long J, long K)

Allocate a dynamic 3D array of doubles.

double **** dyn4DdblArray (long I, long J, long K, long L)

Allocate a dynamic 4D array of doubles.

• char ** dynStringArray (long I, long J)

Allocate a dynamic array of strings.

6.23.1 Detailed Description

Memory management functions.

Author

hhh

Date

Fri 27 Mar 2020 02:38:03 PM CET

Note

Manual Memory Management:

"The manual type involves malloc and free, and is where most of your segfaults happen. This memory model is why Jesus weeps when he has to code in C."

- Ben Klemens

6.23.2 Function Documentation

6.23.2.1 dyn2DcgsizeArray()

Allocate a dynamic 2D array of cgsize_t.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension

Returns

Pointer to a 2D cgsize_t array

Referenced by cgnsWriteMesh().

6.23.2.2 dyn2DdblArray()

Allocate a dynamic 2D array of doubles.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension

Returns

Pointer to a 2D double array

Referenced by cgnsWriteMesh(), createCartMesh(), createReconstructionInfo(), csvOutput(), curveOutput(), init← InitialCondition(), initLinearSolver(), initRecordPoints(), initTimeDisc(), readCGNS(), readEMC2(), and readGmsh().

6.23.2.3 dyn2DintArray()

```
long** dyn2DintArray (
          long I,
          long J )
```

Allocate a dynamic 2D array of integers.

Parameters

in	I	Number of elements in the first dimension
in	J	Number of elements in the second dimension

Returns

Pointer to a 2D integer array

Referenced by createCartMesh(), readCGNS(), readEMC2(), and readGmsh().

6.23.2.4 dyn3DdblArray()

Allocate a dynamic 3D array of doubles.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension
in	K	Number of elements in the third dimension

Returns

Pointer to a 3D double array

Referenced by initLinearSolver().

6.23.2.5 dyn3DintArray()

Allocate a dynamic 3D array of integers.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension
in	K	Number of elements in the third dimension

Returns

Pointer to a 3D integer array

6.23.2.6 dyn4DdblArray()

Allocate a dynamic 4D array of doubles.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension
in	K	Number of elements in the third dimension
in		Number of elements in the fourth dimension

Returns

Pointer to a 4D double array

6.23.2.7 dynStringArray()

Allocate a dynamic array of strings.

Parameters

in	1	Number of elements in the first dimension
in	J	String length of each element

Returns

Pointer to a string array

6.24 ccfd/src/memTools.h File Reference

#include "cgnslib.h"

Include dependency graph for memTools.h:

This graph shows which files directly or indirectly include this file:

Functions

long ** dyn2DintArray (long I, long J)

Allocate a dynamic 2D array of integers.

cgsize_t ** dyn2DcgsizeArray (long I, long J)

Allocate a dynamic 2D array of cgsize_t.

double ** dyn2DdblArray (long I, long J)

Allocate a dynamic 2D array of doubles.

• long *** dyn3DintArray (long I, long J, long K)

Allocate a dynamic 3D array of integers.

double *** dyn3DdblArray (long I, long J, long K)

Allocate a dynamic 3D array of doubles.

• double **** dyn4DdblArray (long I, long J, long K, long L)

Allocate a dynamic 4D array of doubles.

char ** dynStringArray (long I, long J)

Allocate a dynamic array of strings.

6.24.1 Detailed Description

Author

hhh

Date

Fri 27 Mar 2020 02:38:45 PM CET

6.24.2 Function Documentation

6.24.2.1 dyn2DcgsizeArray()

Allocate a dynamic 2D array of cgsize_t.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension

Returns

Pointer to a 2D cgsize_t array

Referenced by cgnsWriteMesh().

6.24.2.2 dyn2DdblArray()

```
double** dyn2DdblArray ( \label{eq:long_I} \mbox{long } \mbox{\it I,} \\ \mbox{long } \mbox{\it J} \mbox{\it )}
```

Allocate a dynamic 2D array of doubles.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension

Returns

Pointer to a 2D double array

Referenced by cgnsWriteMesh(), createCartMesh(), createReconstructionInfo(), csvOutput(), curveOutput(), init← InitialCondition(), initLinearSolver(), initRecordPoints(), initTimeDisc(), readCGNS(), readEMC2(), and readGmsh().

6.24.2.3 dyn2DintArray()

```
long** dyn2DintArray (
          long I,
          long J )
```

Allocate a dynamic 2D array of integers.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension

Returns

Pointer to a 2D integer array

Referenced by createCartMesh(), readCGNS(), readEMC2(), and readGmsh().

6.24.2.4 dyn3DdblArray()

Allocate a dynamic 3D array of doubles.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension
in	K	Number of elements in the third dimension

Returns

Pointer to a 3D double array

Referenced by initLinearSolver().

6.24.2.5 dyn3DintArray()

Allocate a dynamic 3D array of integers.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension
in	K	Number of elements in the third dimension

Returns

Pointer to a 3D integer array

6.24.2.6 dyn4DdblArray()

Allocate a dynamic 4D array of doubles.

Parameters

in	1	Number of elements in the first dimension
in	J	Number of elements in the second dimension
in	K	Number of elements in the third dimension
in	L	Number of elements in the fourth dimension

Returns

Pointer to a 4D double array

6.24.2.7 dynStringArray()

Allocate a dynamic array of strings.

Parameters

in	1	Number of elements in the first dimension
in	J	String length of each element

Returns

Pointer to a string array

6.25 ccfd/src/mesh.c File Reference

Contains all the functions for reading and creating meshes.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <float.h>
#include "main.h"
#include "mesh.h"
#include "readInTools.h"
#include "output.h"
#include "timeDiscretization.h"
#include "memTools.h"
#include "memTools.h"
#include "cgnslib.h"
```

Include dependency graph for mesh.c:

Data Structures

struct sideList_t

Helper structure for reading in the sides and deviding them into BC sides and non-BC sides.

Functions

void createReconstructionInfo (elem_t *aElem)

Compute required vectors for reconstruction.

void connectPeriodicBC (void)

Create connection for periodic BCs.

void createSideInfo (side_t *aSide)

Create side info: normal vector, side length, and ghost cells.

void createElemInfo (elem_t *aElem)

Compute the cell specific values: barycenter, area, projection length of an element.

int compare (const void *a, const void *b)

Compare two elements of the sideList list, used for sorting the list.

- void createCartMesh (double ***vertex, long *nVertices, long ***BCedge, long *nBCedges, long ***quad)

 Create a cartesian mesh.
- void readGmsh (char fileName[STRLEN], double ***vertex, long *nVertices, long ***BCedge, long *nB←
 Cedges, long ***tria, long ***quad)

Read in a gmsh mesh file.

void readEMC2 (char fileName[STRLEN], double ***vertex, long *nVertices, long ***BCedge, long *nB←
 Cedges, long ***tria, long ***quad)

Read in EMC2 mesh file.

void readCGNS (char fileName[STRLEN], double ***vertex, long *nVertices, long ***BCedge, long *nB←
 Cedges, long ***tria, long ***quad)

Read in a CGNS mesh.

void createMesh (void)

Create a cartesian or structured mesh.

void readMesh (void)

Read in and store the mesh parameters from the parameter file.

void initMesh (void)

Initialize the mesh and call readMesh

void freeMesh (void)

Free all allocated memory of the mesh.

Variables

- char parameterFile [STRLEN]
- char strMeshFormat [STRLEN]
- char strMeshFile [STRLEN]
- char strIniCondFile [STRLEN]
- cartMesh_t cartMesh
- char gridFile [STRLEN]
- int meshType
- · int meshFormat
- long nNodes
- long nElems
- long nTrias
- long nQuads
- · long nSides
- long nBCsides
- long nInnerSides
- double totalArea q
- double xMin
- double xMax
- double yMin
- double yMax
- double dxRef
- elem_t ** elem
- side_t ** side
- side_t ** BCside
- elem_t * firstElem
- node_t * firstNode
- side_t * firstSide
- sidePtr_t * firstBCside

6.25.1 Detailed Description

Contains all the functions for reading and creating meshes.

Author

hhh

Date

Tue 24 Mar 2020 12:45:57 PM CET

6.25.2 Function Documentation

6.25.2.1 compare()

```
int compare (  {\rm const\ void\ *\ a,}   {\rm const\ void\ *\ b\ )}
```

Compare two elements of the sideList list, used for sorting the list.

Sort sideList array in order to retrieve the connectivity info more efficiently. Basically we want to sort the sides on three different levels: first, by their first node ID, secondly, by their second node ID, and thirdly by if they are a boundary condition side. The result might look something like this: $3\ 3\ 1\ 1\ 2\ 0\ 2\ 1\ 1\ 3\ 0\ 1\ 2\ 0 --> 2\ 1\ 1\ 3\ 1\ 0\ 2\ 2\ 1\ 2\ 2\ 1\ 3\ 3\ 0\ 3\ 3\ 0\ 3\ 3\ 1$

Parameters

in	а	Pointer an element of the side list
in	b	Pointer an element of the side list

Returns

The difference of a and b, if the values are the same, the move to next sorting metric

References sideList_t::BC, and sideList_t::node.

Referenced by createMesh().

6.25.2.2 createCartMesh()

```
long *** BCedge,
long * nBCedges,
long *** quad )
```

Create a cartesian mesh.

Parameters

in,out	vertex	Pointer to 2D array, used for the vertices
in,out	nVertices	Pointer to the number of total vertices in vertex
in,out	BCedge	Pointer to 2D array, used for the BC edges
in,out	nBCedges	Pointer to the number of total BC edges
in,out <i>quad</i>		Pointer to a 2D array, used for the quadrangles

References cartMesh_t::BCrange, cartMesh_t::BCtype, BOTTOM, cartMesh, dyn2DdblArray(), dyn2DintArray(), cartMesh_t::iMax, cartMesh_t::iMax

Referenced by createMesh().

6.25.2.3 createElemInfo()

Compute the cell specific values: barycenter, area, projection length of an element.

Parameters

in	aElem	A pointer to an element
----	-------	-------------------------

References elem_t::area, elem_t::bary, elem_t::elemType, elem_t::node, elem_t::sx, elem_t::sy, totalArea_q, node_t::x, X, and Y.

Referenced by createMesh().

6.25.2.4 createMesh()

```
void createMesh (
     void )
```

Create a cartesian or structured mesh.

Read in of all supported mesh types:

- *.msh
- *.msh2
- *.msh4
- *.emc2
- *.cgns

References elem_t::bary, side_t::BC, sideList_t::BC, boundary_t::BCid, BCside, boundary_t::BCtype, CARTESIAN, compare(), side_t::connection, connectPeriodicBC(), createCartMesh(), createElemInfo(), createReconstruction Info(), createSideInfo(), elem_t::domain, side_t::elem, elem, elem_t::elemType, firstBC, firstBCside, firstElem, firstNode, firstSide, elem_t::firstSide, side_t::GP, node_t::id, side_t::id, elem_t::id, sideList_t::isRotated, side_t::n, n BCsides, nElems, node_t::next, boundary_t::next, side_t::next, sidePtr_t::next, elem_t::next, side_t::nextElemSide, nInnerSides, nNodes, side_t::node, sideList_t::node, elem_t::node, nQuads, nSides, nTrias, PERIODIC, readC GNS(), readEMC2(), readGmsh(), side, sidePtr_t::side, sideList_t::side, strMeshFile, strMeshFormat, totalArea_q, UNSTRUCTURED, node_t::x, X, xMax, xMin, Y, yMax, and yMin.

Referenced by initMesh().

6.25.2.5 createReconstructionInfo()

Compute required vectors for reconstruction.

Parameters

	in	aElem	A pointer to an element	
--	----	-------	-------------------------	--

References elem_t::area, elem_t::bary, side_t::baryBaryDist, side_t::baryBaryVec, side_t::connection, dyn2Ddbl ← Array(), elem_t::elemType, elem_t::firstSide, side_t::GP, NDIM, side_t::nextElemSide, elem_t::nGP, elem_t::nGP, elem_t::nGP, side_t::w, elem_t::wGP, node_t::x, X, elem_t::xGP, and Y.

Referenced by createMesh().

6.25.2.6 createSideInfo()

Create side info: normal vector, side length, and ghost cells.

Parameters

in <i>aSide</i>	A pointer to a side
-----------------	---------------------

References elem_t::bary, side_t::BC, side_t::connection, side_t::elem, side_t::GP, side_t::len, side_t::n, NDIM, side_t::node, node_t::x, X, and Y.

Referenced by createMesh().

6.25.2.7 readCGNS()

Read in a CGNS mesh.

Parameters

in	fileName Name of the mesh file	
in,out	vertex	Pointer to 2D array, used for the vertices
in,out	nVertices	Pointer to the number of total vertices in vertex
in, out BCedge in, out nBCedges		Pointer to 2D array, used for the BC edges
		Pointer to the number of total BC edges
in,out	tria	Pointer to a 2D array, used for the triangles
in,out	quad	Pointer to a 2D array, used for the quadrangles

References dyn2DdblArray(), dyn2DintArray(), nElems, nQuads, nTrias, X, and Y.

Referenced by createMesh().

6.25.2.8 readEMC2()

Read in EMC2 mesh file.

Parameters

in fileName in, out vertex		Name of the mesh file
		Pointer to 2D array, used for the vertices
in,out	nVertices	Pointer to the number of total vertices in vertex
in, out BCedge in, out nBCedges in, out tria in, out quad		Pointer to 2D array, used for the BC edges
		Pointer to the number of total BC edges
		Pointer to a 2D array, used for the triangles
		Pointer to a 2D array, used for the quadrangles

References dyn2DdblArray(), dyn2DintArray(), nQuads, nTrias, STRLEN, X, and Y.

Referenced by createMesh().

6.25.2.9 readGmsh()

Read in a gmsh mesh file.

Parameters

in	fileName	Name of the mesh file
in,out	vertex	Pointer to 2D array, used for the vertices
in,out	nVertices	Pointer to the number of total vertices in vertex
in,out	BCedge	Pointer to 2D array, used for the BC edges
in,out <i>nBCedges</i>		Pointer to the number of total BC edges
in,out	tria	Pointer to a 2D array, used for the triangles
in,out	quad	Pointer to a 2D array, used for the quadrangles

References dyn2DdblArray(), dyn2DintArray(), nQuads, nTrias, STRLEN, X, and Y.

Referenced by createMesh().

6.25.3 Variable Documentation

6.25.3.1 BCside

```
side_t** BCside
```

global BC side pointer array

Referenced by createMesh(), freeBoundary(), setBCatBarys(), and setBCatSides().

6.25.3.2 cartMesh

cartMesh_t cartMesh

cartesian mesh structure

Referenced by createCartMesh(), and readMesh().

6.25.3.3 dxRef

double dxRef

reference x length

Referenced by exactFunc(), and initMesh().

6.25.3.4 elem

```
elem_t** elem
```

global element pointer array

Referenced by buildMatrix(), calcErrors(), calcSource(), calcTimeStep(), createMesh(), explicitTimeStepEuler(), explicitTimeStepRK(), fvTimeDerivative(), globalResidual(), implicitTimeStep(), initFV(), LUSGS(), matrixVector(), and spatialReconstruction().

6.25.3.5 firstBCside

```
sidePtr_t* firstBCside
```

pointer to first BC side

Referenced by cgnsWriteMesh(), connectPeriodicBC(), createMesh(), freeMesh(), and initWing().

6.25.3.6 firstElem

elem_t* firstElem

pointer to first element

 $Referenced \ by \ analyze(), \ cgnsOutput(), \ cgnsReadSolution(), \ cgnsWriteMesh(), \ createMesh(), \ csvOutput(), \ curve \leftarrow Output(), \ initRecordPoints(), \ and \ setInitialCondition().$

6.25.3.7 firstNode

```
node_t* firstNode
```

pointer to first node

Referenced by cgnsWriteMesh(), createMesh(), and freeMesh().

6.25.3.8 firstSide

```
side_t* firstSide
```

pointer to first side

Referenced by connectPeriodicBC(), and createMesh().

6.25.3.9 gridFile

```
char gridFile[STRLEN]
```

complete name of the output mesh file

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), and initMesh().

6.25.3.10 meshFormat

int meshFormat

code for the mesh format

6.25.3.11 meshType

int meshType

code for the mesh type

6.25.3.12 nBCsides

long nBCsides

global number of BC sides

Referenced by cgnsWriteMesh(), createMesh(), setBCatBarys(), and setBCatSides().

6.25.3.13 nElems

long nElems

global number of elements

Referenced by buildMatrix(), calcErrors(), calcSource(), calcTimeStep(), cgnsFinalizeOutput(), cgnsOutput(), cgnsReadSolution(), cgnsWriteMesh(), createMesh(), csvOutput(), curveOutput(), explicitTimeStepEuler(), explicitTimeStepEuler(), fvTimeDerivative(), globalResidual(), GMRES_M(), implicitTimeStep(), init← FV(), initLinearSolver(), initMesh(), initTimeDisc(), LUSGS(), matrixVector(), readCGNS(), spatialReconstruction(), and vectorDotProduct().

6.25.3.14 nInnerSides

long nInnerSides

global number of non BC sides

Referenced by createMesh().

6.25.3.15 nNodes

long nNodes

global number of nodes

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), and createMesh().

6.25.3.16 nQuads

long nQuads

global number of quadrangles

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), createCartMesh(), createMesh(), readCG \leftarrow NS(), readEMC2(), and readGmsh().

6.25.3.17 nSides

long nSides

global number of sides

Referenced by connectPeriodicBC(), createMesh(), and fluxCalculation().

6.25.3.18 nTrias

long nTrias

global number of triangles

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), createMesh(), readCGNS(), readEMC2(), and readGmsh().

6.25.3.19 parameterFile

```
char parameterFile[STRLEN]
```

parameter file name

6.25.3.20 side

```
side_t** side
```

global side pointer array

Referenced by createMesh(), fluxCalculation(), and freeMesh().

6.25.3.21 strlniCondFile

```
char strIniCondFile[STRLEN]
```

file name of the initial conditions file

Referenced by cgnsReadSolution(), and main().

6.25.3.22 strMeshFile

 $\verb|char| strMeshFile[STRLEN]|$

mesh file base name

Referenced by createMesh(), and readMesh().

6.25.3.23 strMeshFormat

char strMeshFormat[STRLEN]

mesh format string

Referenced by createMesh(), and readMesh().

6.25.3.24 totalArea_q

double totalArea_q

inverse of the global area of the mesh

Referenced by calcErrors(), createElemInfo(), createMesh(), globalResidual(), and initMesh().

6.25.3.25 xMax

double xMax

minimum x-direction extension

Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh().

6.25.3.26 xMin

double xMin

maximum x-direction extension

Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh().

6.25.3.27 yMax

double yMax

minimum y-direction extension

Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh().

6.25.3.28 yMin

double yMin

maximum y-direction extension

Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh().

6.26 ccfd/src/mesh.h File Reference

Contains the definitions of all structs for the mesh handling.

```
#include "main.h"
#include "boundary.h"
Include dependency graph for mesh.h:
```


This graph shows which files directly or indirectly include this file:

Data Structures

• struct node_t

Structure for a single node in a linked list of nodes.

struct side_t

Structure for a single side in the global side list.

struct sidePtr_t

Secondary side lists used for various things.

• struct elem_t

Structure for a single element in the global element list.

struct cartMesh_t

Structure holding the information for a cartesian mesh.

Functions

- void initMesh (void)
 - Initialize the mesh and call readMesh
- void freeMesh (void)

Free all allocated memory of the mesh.

Variables

- char parameterFile [STRLEN]
- char strMeshFormat [STRLEN]
- char strMeshFile [STRLEN]
- char strIniCondFile [STRLEN]
- cartMesh t cartMesh
- char gridFile [STRLEN]
- int meshType
- · int meshFormat
- long nNodes
- long nElems
- long nTrias
- long nQuads
- · long nSides
- long nBCsides
- long nInnerSides
- double totalArea_q
- double xMin
- double xMax
- · double yMin
- double yMax
- double dxRef
- elem_t ** elem
- side t ** side
- side t ** BCside
- elem_t * firstElem
- node_t * firstNode
- side t * firstSide
- sidePtr_t * firstBCside

6.26.1 Detailed Description

Contains the definitions of all structs for the mesh handling.

Author

hhh

Date

Tue 24 Mar 2020 12:45:49 PM CET

6.26.2 Variable Documentation

6.26.2.1 BCside

```
side_t** BCside
```

global BC side pointer array

Referenced by createMesh(), freeBoundary(), setBCatBarys(), and setBCatSides().

6.26.2.2 cartMesh

cartMesh_t cartMesh

cartesian mesh structure

Referenced by createCartMesh(), and readMesh().

6.26.2.3 dxRef

double dxRef

reference x length

Referenced by exactFunc(), and initMesh().

6.26.2.4 elem

elem_t** elem

global element pointer array

Referenced by buildMatrix(), calcErrors(), calcSource(), calcTimeStep(), createMesh(), explicitTimeStepEuler(), explicitTimeStepRK(), freeMesh(), fvTimeDerivative(), globalResidual(), implicitTimeStep(), initFV(), LUSGS(), matrixVector(), and spatialReconstruction().

6.26.2.5 firstBCside

```
sidePtr_t* firstBCside
```

pointer to first BC side

Referenced by cgnsWriteMesh(), connectPeriodicBC(), createMesh(), freeMesh(), and initWing().

6.26.2.6 firstElem

```
elem_t* firstElem
```

pointer to first element

Referenced by analyze(), cgnsOutput(), cgnsReadSolution(), cgnsWriteMesh(), createMesh(), csvOutput(), curve \leftarrow Output(), initRecordPoints(), and setInitialCondition().

6.26.2.7 firstNode

```
node_t* firstNode
```

pointer to first node

Referenced by cgnsWriteMesh(), createMesh(), and freeMesh().

6.26.2.8 firstSide

```
side_t* firstSide
```

pointer to first side

Referenced by connectPeriodicBC(), and createMesh().

6.26.2.9 gridFile

```
char gridFile[STRLEN]
```

complete name of the output mesh file

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), and initMesh().

6.26.2.10 meshFormat

int meshFormat

code for the mesh format

6.26.2.11 meshType

 $\verb"int meshType"$

code for the mesh type

6.26.2.12 nBCsides

long nBCsides

global number of BC sides

Referenced by cgnsWriteMesh(), createMesh(), setBCatBarys(), and setBCatSides().

6.26.2.13 nElems

long nElems

global number of elements

Referenced by buildMatrix(), calcErrors(), calcSource(), calcTimeStep(), cgnsFinalizeOutput(), cgnsOutput(), cgnsReadSolution(), cgnsWriteMesh(), createMesh(), csvOutput(), curveOutput(), explicitTimeStepEuler(), explicitTimeStepRK(), freeMesh(), fvTimeDerivative(), globalResidual(), GMRES_M(), implicitTimeStep(), init \leftarrow FV(), initLinearSolver(), initMesh(), initTimeDisc(), LUSGS(), matrixVector(), readCGNS(), spatialReconstruction(), and vectorDotProduct().

6.26.2.14 nInnerSides

long nInnerSides

global number of non BC sides

Referenced by createMesh().

6.26.2.15 nNodes

long nNodes

global number of nodes

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), and createMesh().

6.26.2.16 nQuads

long nQuads

global number of quadrangles

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), createCartMesh(), createMesh(), readCG \leftarrow NS(), readEMC2(), and readGmsh().

6.26.2.17 nSides

long nSides

global number of sides

 $Referenced \ by \ connect Periodic BC(), \ create Mesh(), \ and \ flux Calculation().$

6.26.2.18 nTrias

long nTrias

global number of triangles

Referenced by cgnsFinalizeOutput(), cgnsOutput(), cgnsWriteMesh(), createMesh(), readCGNS(), readEMC2(), and readGmsh().

6.26.2.19 parameterFile

char parameterFile[STRLEN]

parameter file name

name of the parameter file

6.26.2.20 side

```
side_t** side
```

global side pointer array

Referenced by createMesh(), fluxCalculation(), and freeMesh().

6.26.2.21 strlniCondFile

```
char strIniCondFile[STRLEN]
```

file name of the initial conditions file

Referenced by cgnsReadSolution(), and main().

6.26.2.22 strMeshFile

```
char strMeshFile[STRLEN]
```

mesh file base name

Referenced by createMesh(), and readMesh().

6.26.2.23 strMeshFormat

```
char strMeshFormat[STRLEN]
```

mesh format string

Referenced by createMesh(), and readMesh().

6.26.2.24 totalArea_q

```
double totalArea_q
```

inverse of the global area of the mesh

Referenced by calcErrors(), createElemInfo(), createMesh(), globalResidual(), and initMesh().

6.26.2.25 xMax

double xMax minimum x-direction extension Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh(). 6.26.2.26 xMin double xMin maximum x-direction extension $Referenced \ by \ createCartMesh(), \ createMesh(), \ exactFunc(), \ and \ readMesh().$ 6.26.2.27 yMax double yMax minimum y-direction extension Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh(). 6.26.2.28 yMin double yMin

maximum y-direction extension

Referenced by createCartMesh(), createMesh(), exactFunc(), and readMesh().

6.27 ccfd/src/output.c File Reference

Contains all functions used for writing flow solutions.

```
#include <stdio.h>
#include <omp.h>
#include <omp.h>
#include "main.h"
#include "output.h"
#include "readInTools.h"
#include "timeDiscretization.h"
#include "analyze.h"
#include "equation.h"
#include "cgnslib.h"
#include "memTools.h"
Include dependency graph for output.c:
```


Functions

void initOutput (void)

Initialize output.

void csvOutput (char fileName[STRLEN], double time, bool doExact)

Tabular CSV output, only for 1D data.

• void cgnsOutput (char fileName[STRLEN], double time, bool doExact)

Write solution to CGNS file.

• void curveOutput (char fileName[STRLEN], double time, bool doExact)

Curve data output, only for 1D data.

• void dataOutput (double time, long iter)

Perform a data output, dependent on the output format.

void cgnsFinalizeOutput (void)

Finalize CGNS output.

void finalizeDataOutput (void)

Finalize the data output, if necessary.

void cgnsWriteMesh (void)

Write the generated mesh to a CGNS mesh file.

void freeOutputTimes (void)

Free all memory that was allocated for the output times.

Variables

- char strOutFile [STRLEN]
- double IOtimeInterval
- int lOiterInterval
- int iVisuProg
- char parameterFile [STRLEN]
- FILE * resFile
- bool doErrorOutput
- outputTime_t * outputTimes

6.27.1 Detailed Description

Contains all functions used for writing flow solutions.

Author

hhh

Date

Mon 23 Mar 2020 10:42:06 PM CET

6.27.2 Function Documentation

6.27.2.1 cgnsFinalizeOutput()

Finalize CGNS output.

References gridFile, isStationary, outputTime_t::iter, nElems, outputTime_t::next, nNodes, nQuads, nTrias, output
Times, STRLEN, strOutFile, and outputTime t::time.

Referenced by finalizeDataOutput().

6.27.2.2 cgnsOutput()

Write solution to CGNS file.

Parameters

	in	fileName	The name of the output file
ĺ	in	time	The computational time of the output result
	in	doExact	If the exact exact solution should be written, instead of the computed flow results

References elem_t::bary, exactFunc(), firstElem, gridFile, elem_t::id, intExactFunc, nElems, elem_t::next, nNodes, nQuads, nTrias, NVAR, P, elem_t::pVar, RHO, STRLEN, timeOverall, VX, and VY.

Referenced by dataOutput().

6.27.2.3 csvOutput()

Tabular CSV output, only for 1D data.

Parameters

in fileName The name of the output file in time The computational time of the output result		The name of the output file	
		The computational time of the output result	
Ī	in	doExact	If the exact exact solution should be written, instead of the computed flow results

References elem_t::bary, dyn2DdblArray(), exactFunc(), firstElem, intExactFunc, nElems, elem_t::next, NVAR, P, elem_t::pVar, RHO, VX, and X.

Referenced by dataOutput().

6.27.2.4 curveOutput()

Curve data output, only for 1D data.

Parameters

in fileName The name of the output file		The name of the output file	
in time The computational time of the output result		The computational time of the output result	
Ī	in	doExact	If the exact exact solution should be written, instead of the computed flow results

References elem_t::bary, dyn2DdblArray(), exactFunc(), firstElem, intExactFunc, nElems, elem_t::next, NVAR, P, elem_t::pVar, RHO, VX, and X.

Referenced by dataOutput().

6.27.2.5 dataOutput()

Perform a data output, dependent on the output format.

Parameters

in	time	The computational time of the output result
in	iter	The iteration number of the output result

References CGNS, cgnsOutput(), CSV, csvOutput(), CURVE, curveOutput(), hasExactSolution, isStationary, outputTime_t::iter, iVisuProg, outputTime_t::next, outputTimes, STRLEN, strOutFile, and outputTime_t::time.

Referenced by timeDisc().

6.27.3 Variable Documentation

6.27.3.1 doErrorOutput

bool doErrorOutput

error output flag

6.27.3.2 IOiterInterval

int IOiterInterval

iteration interval for data output

Referenced by initOutput(), initTimeDisc(), and timeDisc().

6.27.3.3 IOtimeInterval

double IOtimeInterval

time interval for data output

Referenced by initOutput(), initTimeDisc(), and timeDisc().

6.27.3.4 iVisuProg

int iVisuProq

output format code

Referenced by dataOutput(), finalizeDataOutput(), initMesh(), and initOutput().

6.27.3.5 outputTimes

outputTime_t* outputTimes

the first output time object

Referenced by cgnsFinalizeOutput(), dataOutput(), freeOutputTimes(), and main().

6.27.3.6 parameterFile

char parameterFile[STRLEN]

name of the parameter file

6.27.3.7 resFile

FILE* resFile

residual file pointer

Referenced by analyze(), initAnalyze(), and timeDisc().

6.27.3.8 strOutFile

```
char strOutFile[STRLEN]
```

name of the output file

Referenced by calcCoef(), cgnsFinalizeOutput(), dataOutput(), initAnalyze(), initMesh(), initOutput(), and init← RecordPoints().

6.28 ccfd/src/output.h File Reference

Contains output Time_t struct definition.

```
#include <stdbool.h>
#include <stdlib.h>
```

Include dependency graph for output.h:

This graph shows which files directly or indirectly include this file:

Data Structures

struct outputTime_t

Output times linked list.

Functions

void initOutput (void)

Initialize output.

• void dataOutput (double time, long iter)

Perform a data output, dependent on the output format.

void finalizeDataOutput (void)

Finalize the data output, if necessary.

void cgnsWriteMesh (void)

Write the generated mesh to a CGNS mesh file.

void freeOutputTimes (void)

Free all memory that was allocated for the output times.

Variables

- char strOutFile [STRLEN]
- double IOtimeInterval
- int lOiterInterval
- int iVisuProg
- char parameterFile [STRLEN]
- FILE * resFile
- bool doErrorOutput
- outputTime_t * outputTimes

6.28.1 Detailed Description

```
Contains output Time_t struct definition.
```

Author

hhh

Date

Mon 23 Mar 2020 10:37:31 PM CET

6.28.2 Function Documentation

6.28.2.1 dataOutput()

Perform a data output, dependent on the output format.

Parameters

in	time	The computational time of the output result
in	iter	The iteration number of the output result

References CGNS, cgnsOutput(), CSV, csvOutput(), CURVE, curveOutput(), hasExactSolution, isStationary, outputTime_t::iter, iVisuProg, outputTime_t::next, outputTimes, STRLEN, strOutFile, and outputTime_t::time.

Referenced by timeDisc().

6.28.3 Variable Documentation

6.28.3.1 doErrorOutput

bool doErrorOutput

error output flag

6.28.3.2 | OiterInterval

int IOiterInterval

iteration interval for data output

Referenced by initOutput(), initTimeDisc(), and timeDisc().

6.28.3.3 IOtimeInterval

double IOtimeInterval

time interval for data output

Referenced by initOutput(), initTimeDisc(), and timeDisc().

6.28.3.4 iVisuProg

int iVisuProg

output format code

 $Referenced \ by \ dataOutput(), \ finalizeDataOutput(), \ initMesh(), \ and \ initOutput().$

6.28.3.5 outputTimes

```
outputTime_t* outputTimes
```

the first output time object

Referenced by cgnsFinalizeOutput(), dataOutput(), freeOutputTimes(), and main().

6.28.3.6 parameterFile

```
char parameterFile[STRLEN]
parameter file name
```

name of the parameter file

6.28.3.7 resFile

```
FILE* resFile
```

residual file pointer

Referenced by analyze(), initAnalyze(), and timeDisc().

6.28.3.8 strOutFile

```
char strOutFile[STRLEN]
```

name of the output file

Referenced by calcCoef(), cgnsFinalizeOutput(), dataOutput(), initAnalyze(), initMesh(), initOutput(), and init← RecordPoints().

6.29 ccfd/src/readInTools.c File Reference

Provides functions for reading data from the .ini parameter file.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <stdbool.h>
#include "main.h"
```

Include dependency graph for readInTools.c:

Data Structures

· struct cmd_t

A structure used to store the commands, read in from the parameter file.

Functions

void fillCmds (char iniFileName[STRLEN])

Read parameter file and create commands list.

void deleteCmd (cmd t *aCmd)

Delete a single node of the command list.

char * findCmd (const char *key, char defMsg[8], const char *proposal)

Find a command in the commands list.

char * getStr (const char *key, const char *proposal)

Get a string from the commands list.

• int countKeys (const char *key, const int proposal)

Count how often a key appears.

• int getInt (const char *key, const char *proposal)

Get an integer from the commands list.

double getDbl (const char *key, const char *proposal)

Get a double from the commands list.

bool getBool (const char *key, const char *proposal)

Get a boolean from the commands list.

int * getIntArray (const char *key, const int N, const char *proposal)

Get an integer array from the commands list.

double * getDblArray (const char *key, const int N, const char *proposal)

Get a double array from the commands list.

void freeCmds (void)

Delete all commands in the commands list.

void ignoredCmds (void)

Print out all remaining commands in the list.

Variables

cmd_t * firstCmd

6.29.1 Detailed Description

Provides functions for reading data from the .ini parameter file.

Author

hhh

Date

Sat 21 Mar 2020 10:46:32 AM CET

6.29.2 Function Documentation

6.29.2.1 countKeys()

Count how often a key appears.

Count all occurrences of key in parameter file and return them. If the key is not specified, the proposal will be returned. If the proposal is -1, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

How often the ${\tt key}$ appeared in the command list

References firstCmd, and cmd_t::next.

Referenced by initBoundary().

6.29.2.2 deleteCmd()

Delete a single node of the command list.

Before deleting the command, the previous command is connected to the next command and vice versa.

Parameters

in	aCmd	A pointer to the command that is to be deleted
----	------	--

References firstCmd, cmd_t::next, and cmd_t::prev.

Referenced by findCmd().

6.29.2.3 fillCmds()

Read parameter file and create commands list.

Read .ini file and parse each line into a cmd_t object. All cmd_t objects are connected in a list of commands starting with firstCmd.

Parameters

	in	iniFileName	The name of the parameter file
--	----	-------------	--------------------------------

References firstCmd, cmd_t::key, cmd_t::next, cmd_t::prev, STRLEN, and cmd_t::value.

Referenced by main().

6.29.2.4 findCmd()

Find a command in the commands list.

Find the provided key in the list of commands, and return the address of the corresponding value string. Return NULL if key was not found. Once a key was read from the commands list, it is deleted from the list.

Parameters

in	key	Key string of the command to be found
out	defMsg	String, that indicates if an actual value or the proposal was returned
in	proposal	The default value that is used if the key was not specified

Returns

Pointer to the value string, or NULL

References deleteCmd(), firstCmd, cmd_t::key, cmd_t::next, and cmd_t::value.

Referenced by getBool(), getDbl(), getDblArray(), getInt(), getIntArray(), and getStr().

6.29.2.5 getBool()

```
bool getBool (  {\rm const~char~*~} key, \\ {\rm const~char~*~} proposal~)
```

Get a boolean from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown. The value in the parameter file is accepted as true, if it is a 'T', 't', 'True', or 'true', otherwise it is false.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

The value of the parameter, or the default value

References findCmd().

Referenced by initAnalyze(), initBoundary(), initEquation(), initLinearSolver(), initTimeDisc(), and main().

6.29.2.6 getDbl()

Get a double from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

	in	key	Key string of the command to be found
ĺ	in	proposal	The default value that is used if the key was not

Returns

The value of the parameter, or the default value

References findCmd().

Referenced by initBoundary(), initEquation(), initFV(), initInitialCondition(), initLinearSolver(), initOutput(), initTime Disc(), and readWing().

6.29.2.7 getDblArray()

Get a double array from the commands list.

Find the key in the command list and return the corresponding integer array. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

	in	key	Key string of the command to be found
	in	Ν	Length of the array that is to be read in
Ī	in	proposal	The default value that is used if the key was not

Returns

A pointer to the value array of the parameter, or the default value array

References findCmd(), and STRLEN.

Referenced by initBoundary(), initInitialCondition(), initRecordPoints(), and readMesh().

6.29.2.8 getInt()

Get an integer from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

The value of the parameter, or the default value

References findCmd().

Referenced by initAnalyze(), initBoundary(), initEquation(), initFV(), initInitialCondition(), initLinearSolver(), init \leftarrow Output(), initTimeDisc(), readMesh(), and readWing().

6.29.2.9 getIntArray()

Get an integer array from the commands list.

Find the key in the command list and return the corresponding integer array. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

	in	key	Key string of the command to be found
Ī	in	N	Length of the array that is to be read in
Ī	in	proposal	The default value that is used if the key was not

Returns

A pointer to the value array of the parameter, or the default value array

References findCmd(), and STRLEN.

Referenced by readMesh().

6.29.2.10 getStr()

Get a string from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

Pointer to the value string, containing the parameter, or the default value, if the parameter was not specified

References findCmd().

Referenced by initOutput(), and readMesh().

6.29.3 Variable Documentation

6.29.3.1 firstCmd

cmd_t* firstCmd

first command of the list

Referenced by countKeys(), deleteCmd(), fillCmds(), findCmd(), freeCmds(), and ignoredCmds().

6.30 ccfd/src/readInTools.h File Reference

#include <stdbool.h>
#include "main.h"

Include dependency graph for readInTools.h:

This graph shows which files directly or indirectly include this file:

Functions

· void fillCmds (char iniFileName[STRLEN])

Read parameter file and create commands list.

char * getStr (const char *key, const char *proposal)

Get a string from the commands list.

int countKeys (const char *key, const int proposal)

Count how often a key appears.

int getInt (const char *key, const char *proposal)

Get an integer from the commands list.

double getDbl (const char *key, const char *proposal)

Get a double from the commands list.

bool getBool (const char *key, const char *proposal)

Get a boolean from the commands list.

• int * getIntArray (const char *key, const int N, const char *proposal)

Get an integer array from the commands list.

double * getDblArray (const char *key, const int N, const char *proposal)

Get a double array from the commands list.

void ignoredCmds (void)

Print out all remaining commands in the list.

6.30.1 Detailed Description

Author

hhh

Date

Sat 21 Mar 2020 10:51:13 AM CET

6.30.2 Function Documentation

6.30.2.1 countKeys()

Count how often a key appears.

Count all occurrences of key in parameter file and return them. If the key is not specified, the proposal will be returned. If the proposal is -1, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

How often the key appeared in the command list

References firstCmd, and cmd_t::next.

Referenced by initBoundary().

6.30.2.2 fillCmds()

Read parameter file and create commands list.

Read .ini file and parse each line into a cmd_t object. All cmd_t objects are connected in a list of commands starting with firstCmd.

Parameters

in	iniFileName	The name of the parameter file
----	-------------	--------------------------------

References firstCmd, cmd_t::key, cmd_t::next, cmd_t::prev, STRLEN, and cmd_t::value.

Referenced by main().

6.30.2.3 getBool()

Get a boolean from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown. The value in the parameter file is accepted as true, if it is a 'T', 't', 'True', or 'true', otherwise it is false.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

The value of the parameter, or the default value

References findCmd().

Referenced by initAnalyze(), initBoundary(), initEquation(), initLinearSolver(), initTimeDisc(), and main().

6.30.2.4 getDbl()

Get a double from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found	
in	proposal	The default value that is used if the key was not	

Returns

The value of the parameter, or the default value

References findCmd().

Referenced by initBoundary(), initEquation(), initFV(), initInitialCondition(), initLinearSolver(), initOutput(), initTime Disc(), and readWing().

6.30.2.5 getDblArray()

Get a double array from the commands list.

Find the key in the command list and return the corresponding integer array. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

	in <i>key</i>		Key string of the command to be found	
Ī	in	N	Length of the array that is to be read in	
Ī	in	proposal	The default value that is used if the key was not	

Returns

A pointer to the value array of the parameter, or the default value array

References findCmd(), and STRLEN.

Referenced by initBoundary(), initInitialCondition(), initRecordPoints(), and readMesh().

6.30.2.6 getInt()

Get an integer from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found	
in	proposal	The default value that is used if the key was not	

Returns

The value of the parameter, or the default value

References findCmd().

Referenced by initAnalyze(), initBoundary(), initEquation(), initFV(), initInitialCondition(), initLinearSolver(), init← Output(), initTimeDisc(), readMesh(), and readWing().

6.30.2.7 getIntArray()

Get an integer array from the commands list.

Find the key in the command list and return the corresponding integer array. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

	in <i>key</i> in <i>N</i>		Key string of the command to be found
			Length of the array that is to be read in
	in	proposal	The default value that is used if the key was not

Returns

A pointer to the value array of the parameter, or the default value array

References findCmd(), and STRLEN.

Referenced by readMesh().

6.30.2.8 getStr()

Get a string from the commands list.

Find the key in the command list and return the corresponding value. If the key is not specified, the proposal will be returned. If the proposal is NULL, but the key is not in the list, an error will be thrown.

Parameters

in	key	Key string of the command to be found
in	proposal	The default value that is used if the key was not

Returns

Pointer to the value string, containing the parameter, or the default value, if the parameter was not specified

References findCmd().

Referenced by initOutput(), and readMesh().

6.31 ccfd/src/reconstruction.c File Reference

Contains the reconstruction and limiter functions.

```
#include <math.h>
#include "main.h"
#include "reconstruction.h"
#include "finiteVolume.h"
#include "mesh.h"
```

Include dependency graph for reconstruction.c:

Functions

void limiterBarthJespersen (elem_t *aElem)

Limiter after Barth & Jespersen.

• void limiterVenkatakrishnan (elem_t *aElem)

Limiter after Venkatakrishnan, with additional limiting parameter k.

• void spatialReconstruction (double time)

Compute the gradients of dU/dx.

Variables

- int limiter
- double venk_k

6.31.1 Detailed Description

Contains the reconstruction and limiter functions.

Author

hhh

Date

Sat 28 Mar 2020 10:17:02 AM CET

6.31.2 Function Documentation

6.31.2.1 limiterBarthJespersen()

Limiter after Barth & Jespersen.

Note

2D, unstructured limiter

Parameters

in	aElem	Pointer to an element

References side_t::connection, side_t::elem, elem_t::firstSide, side_t::GP, side_t::nextElemSide, NVAR, P, elem_ t::pVar, RHO, elem_t::u_x, elem_t::u_y, VX, VY, X, and Y.

Referenced by spatialReconstruction().

6.31.2.2 limiterVenkatakrishnan()

Limiter after Venkatakrishnan, with additional limiting parameter k.

Note

2D, unstructured limiter

Parameters

in <i>aE</i>	lem Pointe	er to an element
--------------	------------	------------------

References side_t::connection, side_t::elem, elem_t::firstSide, side_t::GP, side_t::nextElemSide, NVAR, P, elem_ t::pVar, RHO, elem_t::u_x, elem_t::u_y, elem_t::venkEps_sq, VX, VY, X, and Y.

Referenced by spatialReconstruction().

6.31.2.3 spatialReconstruction()

```
void spatial
Reconstruction ( double time )
```

Compute the gradients of dU/dx.

Parameters

	in <i>tim</i>	Calculation time at which to perform the spatial reconstruction
--	---------------	---

References BARTHJESPERSEN, side_t::connection, side_t::elem, elem, elem_t::firstSide, side_t::GP, limiter, limiterBarthJespersen(), limiterVenkatakrishnan(), nElems, side_t::nextElemSide, NVAR, P, side_t::pVar, elem_← t::pVar, RHO, setBCatBarys(), spatialOrder, elem_t::u_t, elem_t::u_x, elem_t::u_y, VENKATAKRISHNAN, VX, VY, side_t::w, X, and Y.

Referenced by calcErrors(), and fvTimeDerivative().

6.31.3 Variable Documentation

6.31.3.1 limiter

int limiter

limiter selection

Referenced by initFV(), and spatialReconstruction().

6.31.3.2 venk k

double venk_k

constant for Venkatakrishnan limiter

Referenced by initFV().

6.32 ccfd/src/reconstruction.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

void spatialReconstruction (double time)
 Compute the gradients of dU/dx.

Variables

- int limiter
- double venk_k

6.32.1 Detailed Description

Author

hhh

Date

Sat 28 Mar 2020 10:16:16 AM CET

6.32.2 Function Documentation

6.32.2.1 spatialReconstruction()

```
void spatialReconstruction ( double time )
```

Compute the gradients of dU/dx.

Parameters

in	time	Calculation time at which to perform the spatial reconstruction
----	------	---

Referenced by calcErrors(), and fvTimeDerivative().

6.32.3 Variable Documentation

6.32.3.1 limiter

int limiter

limiter selection

Referenced by initFV(), and spatialReconstruction().

6.32.3.2 venk_k

double venk_k

constant for Venkatakrishnan limiter

Referenced by initFV().

6.33 ccfd/src/source.c File Reference

Contains the functions for initializing and evaluating the source term.

```
#include <math.h>
#include "main.h"
#include "equation.h"
#include "mesh.h"
```

Include dependency graph for source.c:

Functions

- void evalSource (int iSource, double x[NDIM], double time, double source[NVAR]) Evaluate the source term.
- void calcSource (double time)

Calculate the contribution of the source terms.

6.33.1 Detailed Description

Contains the functions for initializing and evaluating the source term.

Author

hhh

Date

Wed 01 Apr 2020 12:25:11 PM CEST

6.33.2 Function Documentation

6.33.2.1 calcSource()

Calculate the contribution of the source terms.

Parameters

	in	time	The computation time at which the evaluate the source term]
--	----	------	--	---

References E, elem, evalSource(), nElems, elem_t::nGP, NVAR, RHO, elem_t::source, sourceFunc, VX, VY, elem ← _t::wGP, and elem_t::xGP.

Referenced by fvTimeDerivative().

6.33.2.2 evalSource()

Evaluate the source term.

Parameters

	in	iSource	The source control integer
	in	X	The coordinates at which to evaluate the source term
	in	time	The computation time at which the evaluate the source term
ĺ	out	source	The source term contribution

References E, gam, gam1, mu, pi, Pr, RHO, VX, VY, X, and Y.

Referenced by calcSource().

6.34 ccfd/src/source.h File Reference

This graph shows which files directly or indirectly include this file:

Functions

• void calcSource (double time)

Calculate the contribution of the source terms.

6.34.1 Detailed Description

Author

hhh

Date

Wed 01 Apr 2020 12:25:19 PM CEST

6.34.2 Function Documentation

6.34.2.1 calcSource()

```
void calcSource ( \label{eq:control} \mbox{double $time$ )}
```

Calculate the contribution of the source terms.

Parameters

in	time	The computation time at which the evaluate the source term

References E, elem, evalSource(), nElems, elem_t::nGP, NVAR, RHO, elem_t::source, sourceFunc, VX, VY, elem ← _t::wGP, and elem_t::xGP.

Referenced by fvTimeDerivative().

6.35 ccfd/src/timeDiscretization.c File Reference

Contains the functions for performing the time stepping process.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <omp.h>
#include <float.h>
#include "main.h"
#include "timeDiscretization.h"
#include "readInTools.h"
#include "output.h"
#include "mesh.h"
#include "equation.h"
#include "analyze.h"
#include "linearSolver.h"
#include "equationOfState.h"
#include "finiteVolume.h"
#include "memTools.h"
```

Include dependency graph for timeDiscretization.c:

Functions

- · void initTimeDisc (void)
 - Initialize the time discretization.
- void calcTimeStep (double pTime, double *dt, bool *viscousTimeStepDominates)

Compute the time step.

void explicitTimeStepEuler (double time, double dt, double resIter[NVAR+2])

Performs explicit time step using Euler scheme.

• void explicitTimeStepRK (double time, double dt, double resIter[NVAR+2])

 $\textit{Performs explicit time step using Runge-Kutta scheme} \ \textit{nRKstages stages}.$

• void implicitTimeStep (double time, double dt, double resIter[NVAR+2])

Euler implicit time integration.

void timeDisc (void)

Main time discretization loop.

Variables

- double cfl
- · double dfl
- · double t
- double timeOverall
- · int timeOrder
- bool isTimeStep1D
- · bool isStationary
- long maxIter
- double stopTime
- long inilterationNumber
- double startTime
- double abortResidual
- · int abortVariable
- char abortVariableName [4]
- · double clAbortResidual
- double cdAbortResidual
- · bool doAbortOnClResidual
- bool doAbortOnCdResidual
- bool isRestart
- · double restartTime
- · int printIter
- double printTime
- int nRKstages
- double RKcoeff [6] = {0.0}
- · bool isImplicit
- double ** deltaX
- double ** Q
- double ** F_X0
- double ** F_XK

6.35.1 Detailed Description

Contains the functions for performing the time stepping process.

Author

hhh

Date

Sat 21 Mar 2020 07:52:42 PM CET

6.35.2 Function Documentation

6.35.2.1 calcTimeStep()

Compute the time step.

Parameters

in	pTime	The print time interval	
out	dt	The resulting time step	
out	viscousTimeStepDominates	Flag for if the viscous time step is dominating	

References elem_t::area, cfl, dfl, elem_t::dt, elem, gam, isTimeStep1D, mu, nElems, P, Pr, elem_t::pVar, RHO, stopTime, elem_t::sx, elem_t::sy, t, VX, and VY.

Referenced by timeDisc().

6.35.2.2 explicitTimeStepEuler()

Performs explicit time step using Euler scheme.

Parameters

in	time	Computation time at calculation Time step at calculation	
in	dt		
out	resIter	Residual vector for time step	

References consPrim(), elem_t::cVar, E, elem, fvTimeDerivative(), globalResidual(), MX, MY, nElems, elem_t::pVar, RHO, and elem_t::u_t.

Referenced by timeDisc().

6.35.2.3 explicitTimeStepRK()

Performs explicit time step using Runge-Kutta scheme nRKstages stages.

Parameters

in	time	Computation time at calculation	
in	dt	Time step at calculation	
out	resIter	Residual vector for time step	

References consPrim(), elem_t::cVar, elem_t::cVarStage, E, elem, fvTimeDerivative(), globalResidual(), MX, MY, nElems, nRKstages, elem_t::pVar, RHO, RKcoeff, and elem_t::u_t.

Referenced by timeDisc().

6.35.2.4 implicitTimeStep()

Euler implicit time integration.

The non-linear equations require the use of a Newton method with internal sub-iteration, using a GMRES method.

Parameters

in	time	Computation time at calculation
in	dt	Time step at calculation
out	resIter	Residual vector for time step

References alpha, consPrim(), elem_t::cVar, deltaX, E, elem, eps2newton, eps2newton_sq, F_X0, F_XK, fvTime
Derivative(), gamEW, globalResidual(), GMRES_M(), MX, MY, nElems, nInnerNewton, nNewtonIter, nNewtonIter
Global, elem_t::pVar, Q, R_XK, RHO, t, elem_t::u_t, vectorDotProduct(), and XK.

Referenced by timeDisc().

6.35.2.5 timeDisc()

```
void timeDisc (
     void )
```

Main time discretization loop.

Selection of temporal integration method, as well as management of data output and analysis tools.

References abortResidual, abortVariable, abortVariableName, analyze(), calcErrors(), calcTimeStep(), wing_t::cd, cdAbortResidual, wing_t::cl, clAbortResidual, CPU_TIME, dataOutput(), deltaX, doAbortOnCdResidual, doAbort OnClResidual, doCalcWing, E, explicitTimeStepEuler(), explicitTimeStepRK(), F_X0, F_XK, finalizeDataOutput(), hasExactSolution, implicitTimeStep(), inilterationNumber, recordPoint_t::ioFile, IOiterInterval, IOtimeInterval, is Implicit, isStationary, maxIter, MX, MY, nGMRESiterGlobal, nNewtonIterGlobal, recordPoint_t::nPoints, nRKstages, NVAR, printIter, printTime, Q, recordPoint, resFile, RHO, stopTime, t, timeOrder, and wing.

Referenced by main().

6.35.3 Variable Documentation

6.35.3.1 abortResidual

double abortResidual

residual at which to abort the calculation

Referenced by initTimeDisc(), and timeDisc().

6.35.3.2 abortVariable

int abortVariable

abort variable

Referenced by analyze(), initTimeDisc(), and timeDisc().

6.35.3.3 abortVariableName

char abortVariableName[4]

string of the abort variable

 $Referenced\ by\ initAnalyze(),\ initTimeDisc(),\ and\ timeDisc().$

6.35.3.4 cdAbortResidual

double cdAbortResidual

CD abort residual

Referenced by initTimeDisc(), and timeDisc().

6.35.3.5 cfl

double cfl

Courant-Friedrichs-Lewy number

Referenced by calcTimeStep(), and initTimeDisc().

6.35.3.6 clAbortResidual

double clAbortResidual

CL abort residual

Referenced by initTimeDisc(), and timeDisc().

6.35.3.7 deltaX

double** deltaX

variable used in implicit calculation

Referenced by implicitTimeStep(), initTimeDisc(), and timeDisc().

6.35.3.8 dfl

double dfl

diffusive Courant-Friedrichs-Lewy number

Referenced by calcTimeStep(), and initTimeDisc().

6.35.3.9 doAbortOnCdResidual

 $\verb|bool| doAbortOnCdResidual|$

CD abort flag

Referenced by initTimeDisc(), and timeDisc().

6.35.3.10 doAbortOnClResidual

bool doAbortOnClResidual

CL abort flag

Referenced by initTimeDisc(), and timeDisc().

6.35.3.11 F_X0

```
double** F_X0
```

variable used in implicit calculation

Referenced by implicitTimeStep(), initTimeDisc(), and timeDisc().

6.35.3.12 F_XK

```
double** F_XK
```

variable used in implicit calculation

Referenced by implicitTimeStep(), initTimeDisc(), and timeDisc().

6.35.3.13 inilterationNumber

long iniIterationNumber

initial iteration number

Referenced by initTimeDisc(), main(), and timeDisc().

6.35.3.14 isImplicit

bool isImplicit

implicit calculation flag

Referenced by freeLinearSolver(), initLinearSolver(), initTimeDisc(), and timeDisc().

6.35.3.15 isRestart

bool isRestart

restart flag

Referenced by initAnalyze(), initMesh(), initTimeDisc(), main(), and setInitialCondition().

6.35.3.16 isStationary

bool isStationary

flag for stationary problem

Referenced by analyze(), cgnsFinalizeOutput(), dataOutput(), initAnalyze(), initTimeDisc(), main(), and timeDisc().

6.35.3.17 isTimeStep1D

bool isTimeStep1D

flag for 1D problem

Referenced by calcTimeStep(), and initTimeDisc().

6.35.3.18 maxIter

long maxIter

maximum number of iterations

Referenced by initTimeDisc(), and timeDisc().

6.35.3.19 nRKstages

int nRKstages

number of Runge-Kutta stages

Referenced by explicitTimeStepRK(), initTimeDisc(), and timeDisc().

6.35.3.20 printlter

int printIter

iterations after which to output

Referenced by initTimeDisc(), and timeDisc().

6.35.3.21 printTime

```
double printTime
```

calculation time after which to output

Referenced by initTimeDisc(), and timeDisc().

6.35.3.22 Q

```
double** Q
```

variable used in implicit calculation

Referenced by implicitTimeStep(), initTimeDisc(), and timeDisc().

6.35.3.23 restartTime

```
double restartTime
```

calculation time for restart

Referenced by initTimeDisc(), and main().

6.35.3.24 RKcoeff

```
double RKcoeff[6] = \{0.0\}
```

array of Runge-Kutta coefficients

Referenced by explicitTimeStepRK(), and initTimeDisc().

6.35.3.25 startTime

double startTime

starting time

Referenced by main().

6.35.3.26 stopTime

double stopTime
simulation end time
Referenced by calcTimeStep(), initTimeDisc(), and timeDisc().
6.35.3.27 t
double t
global calculation time
Referenced by calcTimeStep(), cgnsReadSolution(), GMRES_M(), implicitTimeStep(), initTimeDisc(), and time-disc().
6.35.3.28 timeOrder
int timeOrder
order of the time integration
Referenced by fvTimeDerivative(), initTimeDisc(), and timeDisc().
6.35.3.29 timeOverall
double timeOverall
overall time

Referenced by cgnsOutput(), and cgnsReadSolution().

6.36 ccfd/src/timeDiscretization.h File Reference

#include <stdbool.h>
#include <time.h>

Include dependency graph for timeDiscretization.h:

This graph shows which files directly or indirectly include this file:

Macros

• #define CPU_TIME() ((double)clock() / (double)CLOCKS_PER_SEC)

Get the CPU time for a serial program.

Functions

void initTimeDisc (void)

Initialize the time discretization.

void timeDisc (void)

Main time discretization loop.

Variables

- double cfl
- double dfl
- double t
- double timeOverall
- int timeOrder
- bool isTimeStep1D
- bool isStationary
- long maxIter

- · double stopTime
- long inilterationNumber
- · double startTime
- double abortResidual
- · int abortVariable
- char abortVariableName [4]
- · double clAbortResidual
- · double cdAbortResidual
- · bool doAbortOnClResidual
- · bool doAbortOnCdResidual
- bool isRestart
- double restartTime
- · int printIter
- double printTime
- · int nRKstages
- double RKcoeff [6]
- · bool isImplicit

6.36.1 Detailed Description

Author

hhh

Date

Sat 21 Mar 2020 07:48:34 PM CET

6.36.2 Function Documentation

6.36.2.1 timeDisc()

```
void timeDisc (
     void )
```

Main time discretization loop.

Selection of temporal integration method, as well as management of data output and analysis tools.

References abortResidual, abortVariable, abortVariableName, analyze(), calcErrors(), calcTimeStep(), wing_t::cd, cdAbortResidual, wing_t::cl, clAbortResidual, CPU_TIME, dataOutput(), deltaX, doAbortOnCdResidual, doAbort OnClResidual, doCalcWing, E, explicitTimeStepEuler(), explicitTimeStepRK(), F_X0, F_XK, finalizeDataOutput(), hasExactSolution, implicitTimeStep(), inilterationNumber, recordPoint_t::ioFile, IOiterInterval, IOtimeInterval, is Implicit, isStationary, maxIter, MX, MY, nGMRESiterGlobal, nNewtonIterGlobal, recordPoint_t::nPoints, nRKstages, NVAR, printIter, printTime, Q, recordPoint, resFile, RHO, stopTime, t, timeOrder, and wing.

Referenced by main().

6.36.3 Variable Documentation

6.36.3.1 abortResidual

double abortResidual

residual at which to abort the calculation

Referenced by initTimeDisc(), and timeDisc().

6.36.3.2 abortVariable

int abortVariable

abort variable

Referenced by analyze(), initTimeDisc(), and timeDisc().

6.36.3.3 abortVariableName

char abortVariableName[4]

string of the abort variable

Referenced by initAnalyze(), initTimeDisc(), and timeDisc().

6.36.3.4 cdAbortResidual

double cdAbortResidual

CD abort residual

Referenced by initTimeDisc(), and timeDisc().

6.36.3.5 cfl

double cfl

Courant-Friedrichs-Lewy number

Referenced by calcTimeStep(), and initTimeDisc().

6.36.3.6 clAbortResidual

double clAbortResidual

CL abort residual

Referenced by initTimeDisc(), and timeDisc().

6.36.3.7 dfl

double dfl

diffusive Courant-Friedrichs-Lewy number

Referenced by calcTimeStep(), and initTimeDisc().

6.36.3.8 doAbortOnCdResidual

bool doAbortOnCdResidual

CD abort flag

Referenced by initTimeDisc(), and timeDisc().

6.36.3.9 doAbortOnCIResidual

 $\verb|bool| doAbortOnClResidual|$

CL abort flag

Referenced by initTimeDisc(), and timeDisc().

6.36.3.10 inilterationNumber

long iniIterationNumber

initial iteration number

Referenced by initTimeDisc(), main(), and timeDisc().

6.36.3.11 isImplicit

bool isImplicit

implicit calculation flag

Referenced by freeLinearSolver(), initLinearSolver(), initTimeDisc(), and timeDisc().

6.36.3.12 isRestart

bool isRestart

restart flag

Referenced by initAnalyze(), initMesh(), initTimeDisc(), main(), and setInitialCondition().

6.36.3.13 isStationary

bool isStationary

flag for stationary problem

Referenced by analyze(), cgnsFinalizeOutput(), dataOutput(), initAnalyze(), initTimeDisc(), main(), and timeDisc().

6.36.3.14 isTimeStep1D

bool isTimeStep1D

flag for 1D problem

Referenced by calcTimeStep(), and initTimeDisc().

6.36.3.15 maxlter

long maxIter

maximum number of iterations

Referenced by initTimeDisc(), and timeDisc().

6.36.3.16 nRKstages

int nRKstages

number of Runge-Kutta stages

 $Referenced \ by \ explicit Time Step RK(), \ in it Time Disc(), \ and \ time Disc().$

6.36.3.17 printlter

int printIter

iterations after which to output

Referenced by initTimeDisc(), and timeDisc().

6.36.3.18 printTime

double printTime

calculation time after which to output

Referenced by initTimeDisc(), and timeDisc().

6.36.3.19 restartTime

 ${\tt double \ restartTime}$

calculation time for restart

Referenced by initTimeDisc(), and main().

6.36.3.20 RKcoeff

double RKcoeff[6]

array of Runge-Kutta coefficients

Referenced by explicitTimeStepRK(), and initTimeDisc().

6.36.3.21 startTime

double startTime

starting time

Referenced by main().

6.36.3.22 stopTime

double stopTime

simulation end time

Referenced by calcTimeStep(), initTimeDisc(), and timeDisc().

6.36.3.23 t

double t

global calculation time

Referenced by calcTimeStep(), cgnsReadSolution(), GMRES_M(), implicitTimeStep(), initTimeDisc(), and time \leftarrow Disc().

6.36.3.24 timeOrder

int timeOrder

order of the time integration

Referenced by fvTimeDerivative(), initTimeDisc(), and timeDisc().

6.36.3.25 timeOverall

double timeOverall

overall time

Referenced by cgnsOutput(), and cgnsReadSolution().

Index

abortResidual	side_t, 29
timeDiscretization.c, 177	sideList_t, 33
timeDiscretization.h, 186	BCid
abortVariable	boundary_t, 12
timeDiscretization.c, 178	side t, 29
timeDiscretization.h, 186	BCrange
abortVariableName	cartMesh t, 14
	- ·
timeDiscretization.c, 178	BCside
timeDiscretization.h, 186	mesh.c, 132
alpha	mesh.h, 140
initialCondition.c, 91	BCtype
initialCondition.h, 94	boundary_t, 12
analyze	cartMesh_t, 15
analyze.c, 40	side t, 30
analyze.h, 44	BOTTOM
analyze.c	main.h, 114
analyze, 40	boundary
calcErrors, 41	boundary.c, 48
doCalcWing, 42	boundary.h, 51
evalRecordPoints, 41	boundary.c
globalResidual, 41	boundary, 48
hasExactSolution, 42	firstBC, 49
recordPoint, 42	isPeriodic, 49
wing, 42	nBC, 49
analyze.h	setBCatBarys, 48
analyze, 44	setBCatSides, 49
calcErrors, 45	boundary.h
doCalcWing, 45	boundary, 51
globalResidual, 45	firstBC, 53
hasExactSolution, 46	isPeriodic, 53
recordPoint, 46	nBC, 53
wing, 46	setBCatBarys, 52
area	setBCatSides, 52
elem_t, 18	boundary_t, 11
areaq	BCid, 12
elem_t, 18	BCtype, 12
AUSMD	connection, 12
main.h, 115	exactFunc, 12
AUSMDV	heatFlux, 13
main.h, 115	isAdiabatic, 13
	isTemperaturePrescribed, 13
BARTHJESPERSEN	next, 13
main.h, 116	
	pVar, 13
bary	temperature, 14
elem_t, 19	boundaryConditionType
baryBaryDist	main.h, 113
side_t, 29	buildMatrix
baryBaryVec	linearSolver.c, 96
side_t, 29	
BC	calcDinv

linearSolver.c, 97	CD
calcErrors	main.h, 114
analyze.c, 41	cd
analyze.h, 45	wing_t, 36
calcSource	cdAbortResidual
source.c, 172	timeDiscretization.c, 178
source.h, 173	timeDiscretization.h, 186
calcTimeStep	CEN
timeDiscretization.c, 175	main.h, 115
CARTESIAN	cfl
main.h, 116	timeDiscretization.c, 178
cartesianMeshSides	timeDiscretization.h, 186
main.h, 114	CGNS
cartMesh	main.h, 116
mesh.c, 132	cgnsFinalizeOutput
mesh.h, 140	output.c, 147
cartMesh_t, 14	cgnsOutput
BCrange, 14 BCtype, 15	output.c, 147 CHARACTERISTIC
iMax, 15	
	main.h, 113 charCons
jMax, 15 nBC, 15	
ccfd/src/analyze.c, 39	equationOfState.c, 63 equationOfState.h, 66
ccfd/src/analyze.h, 43	CL equationOlState.n, 00
ccfd/src/boundary.c, 47	main.h, 114
ccfd/src/boundary.h, 50	cl
ccfd/src/equation.c, 53	wing_t, 37
ccfd/src/equation.h, 58	clAbortResidual
ccfd/src/equationOfState.c, 62	timeDiscretization.c, 178
ccfd/src/equationOfState.h, 65	timeDiscretization.h, 186
ccfd/src/exactFunction.c, 67	clcdResiduals
ccfd/src/exactFunction.h, 69	main.h, 114
ccfd/src/exactRiemann.c, 71	cmd_t, 16
ccfd/src/exactRiemann.h, 75	key, 16
ccfd/src/finiteVolume.c, 76	next, 16
ccfd/src/finiteVolume.h, 78	prev, 16
ccfd/src/fluxCalculation.c, 80	value, 17
ccfd/src/fluxCalculation.h, 89	compare
ccfd/src/initialCondition.c, 90	mesh.c, 127
ccfd/src/initialCondition.h, 93	connection
ccfd/src/linearSolver.c, 95	boundary_t, 12
ccfd/src/linearSolver.h, 104	side_t, 30
ccfd/src/main.c, 110	consChar
ccfd/src/main.h, 111	equationOfState.c, 63
ccfd/src/memTools.c, 117	equationOfState.h, 66
ccfd/src/memTools.h, 121	conservativeVariables
ccfd/src/mesh.c, 125	main.h, 114
ccfd/src/mesh.h, 138	consPrim
ccfd/src/output.c, 146	equationOfState.c, 64
ccfd/src/output.h, 151	equationOfState.h, 67
ccfd/src/readInTools.c, 154	convectiveFlux
ccfd/src/readInTools.h, 161	fluxCalculation.c, 81
ccfd/src/reconstruction.c, 166	countKeys
ccfd/src/reconstruction.h, 169	readInTools.c, 156
ccfd/src/source.c, 171	readInTools.h, 162
ccfd/src/source.h, 173	ср
ccfd/src/timeDiscretization.c, 174	equation.c, 54
ccfd/src/timeDiscretization.h, 184	equation.h, 59
	•

createCartMesh	initialCondition.c, 92
mesh.c, 127	initialCondition.h, 94
createElemInfo	dRdU
mesh.c, 129	linearSolver.c, 100
createMesh	dt
mesh.c, 129	elem_t, 19
createReconstructionInfo	dtLoc
mesh.c, 130	elem_t, 20
createSideInfo	dxRef
mesh.c, 130	mesh.c, 133
CSV	mesh.h, 140
main.h, 116	dyn2DcgsizeArray
csvOutput	memTools.c, 118
output.c, 148	memTools.h, 122
CURVE	dyn2DdblArray
main.h, 116	memTools.c, 118
curveOutput	memTools.h, 122
output.c, 148	dyn2DintArray
cVar	memTools.c, 119
elem_t, 19	memTools.h, 123
cVarStage	dyn3DdblArray
elem_t, 19	memTools.c, 119
010111_1, 10	memTools.h, 123
D	dyn3DintArray
linearSolver.c, 99	memTools.c, 119
dataOutput	memTools.h, 123
output.c, 149	dyn4DdblArray
output.h, 152	memTools.c, 120
deleteCmd	
readInTools.c, 156	memTools.h, 124
deltaX	dynStringArray
timeDiscretization.c, 179	memTools.c, 120
deltaXstar	memTools.h, 124
linearSolver.c, 99	E
dfl	main.h, 114
timeDiscretization.c, 179	elem
timeDiscretization.h, 187	mesh.c, 133
Diny	mesh.h, 140
linearSolver.c, 99	recordPoint_t, 27
directions	side_t, 30
main.h, 114	
doAbortOnCdResidual	elem_t, 17
	area, 18
timeDiscretization.c, 179	areaq, 18
timeDiscretization.h, 187 doAbortOnClResidual	bary, 19 cVar, 19
timeDiscretization.c, 179	cVarStage, 19
timeDiscretization.h, 187	domain, 19
doCalcSource	dt, 19
equation.c, 54	dtLoc, 20
equation.h, 59	elemType, 20
doCalcWing	firstSide, 20
analyze.c, 42	id, 20
analyze.h, 45	innerSides, 20
doErrorOutput	next, 21
output.c, 149	nGP, 21
output.h, 153	node, 21
domain	pVar, 21
elem_t, 19	source, 21
domainID	sx, 22

sy, 22	charCons, 66
u_t, 22	consChar, 66
u_x, 22	consPrim, 67
u_y, 22	primCons, 67
venkEps_sq, 23	evalRecordPoints
wGP, 23	analyze.c, 41
xGP, 23	evalSource
elemType	source.c, 172
elem_t, 20	exactFunc
eps2newton	boundary_t, 12
linearSolver.c, 100	exactFunction.c, 68
linearSolver.h, 106	exactFunction.h, 70
eps2newton_sq	exactFunction.c exactFunc, 68
linearSolver.c, 100	exactFunction.h
linearSolver.h, 106	exactFunc, 70
epsGMRES	exactRiemann
linearSolver.c, 100	exactRiemann.c, 72
linearSolver.h, 107	exactRiemann.h, 75
equation.c	exactRiemann.c
cp, 54	exactRiemann, 72
doCalcSource, 54	G, 74
gam, 55	nlter, 74
gam1, 55	preFun, 72
gam1q, 55	tol, 74
gam2, 55	exactRiemann.h
iFlux, 55	exactRiemann, 75
intExactFunc, 56	EXACTSOL
mu, 56	main.h, 113
pi, 56	explicitTimeStepEuler
Pr, 56	timeDiscretization.c, 176
R, 56	explicitTimeStepRK
sourceFunc, 57 sqrt2, 57	timeDiscretization.c, 176
sqrt2, 37 sqrt3, 57	
sqrt3q, 57 sqrt3q, 57	F_X0
equation.h	timeDiscretization.c, 179
cp, 59	F_XK
doCalcSource, 59	timeDiscretization.c, 180
gam, 59	fillCmds
gam1, 59	readInTools.c, 156
gam1q, 60	readInTools.h, 162
gam2, 60	findCmd
iFlux, 60	readInTools.c, 157 finiteVolume.c
intExactFunc, 60	fluxFunction, 77
mu, 60	fvTimeDerivative, 77
pi, 61	spatialOrder, 78
Pr, 61	finiteVolume.h
R, 61	fluxFunction, 79
sourceFunc, 61	fvTimeDerivative, 79
sqrt2, 61	spatialOrder, 79
sqrt3, 62	firstBC
sqrt3q, 62	boundary.c, 49
equationOfState.c	boundary.h, 53
charCons, 63	firstBCside
consChar, 63	mesh.c, 133
consPrim, 64	mesh.h, 140
primCons, 64	firstCmd
equationOfState.h	readInTools.c, 161
	•

firstElem	finiteVolume.c, 77
mesh.c, 133	finiteVolume.h, 79
mesh.h, 141	main.h, 115
firstNode	fvTimeDerivative
mesh.c, 133	finiteVolume.c, 77
mesh.h, 141	finiteVolume.h, 79
firstPressureSide	mile volume.ii, 70
	G
wing_t, 37	exactRiemann.c, 74
firstSide	gam
elem_t, 20	equation.c, 55
mesh.c, 134	equation.h, 59
mesh.h, 141	gam1
firstSuctionSide	equation.c, 55
wing_t, 37	equation.h, 59
flux	gam1q
side_t, 30	equation.c, 55
flux_ausmd	equation.h, 60
fluxCalculation.c, 82	-
flux_ausmdv	gam2
fluxCalculation.c, 82	equation.c, 55
flux_cen	equation.h, 60
fluxCalculation.c, 83	gamEW
flux_god	linearSolver.c, 100
fluxCalculation.c, 84	linearSolver.h, 107
flux_hll	generalParameters
fluxCalculation.c, 84	main.h, 115
flux_hllc	getBool
fluxCalculation.c, 85	readInTools.c, 157
flux_hlle	readInTools.h, 163
fluxCalculation.c, 86	getDbl
flux_lxf	readInTools.c, 158
	readInTools.h, 163
flux Calculation.c, 86	getDblArray
flux_roe	readInTools.c, 158
fluxCalculation.c, 87	readInTools.h, 164
flux_stw	getInt
fluxCalculation.c, 88	readInTools.c, 159
flux_vanleer	readInTools.h, 164
fluxCalculation.c, 88	getIntArray
fluxCalculation	readInTools.c, 159
fluxCalculation.c, 89	readInTools.h, 165
fluxCalculation.h, 90	getStr
fluxCalculation.c	readInTools.c, 160
convectiveFlux, 81	readInTools.h, 165
flux_ausmd, 82	globalResidual
flux_ausmdv, 82	analyze.c, 41
flux_cen, 83	analyze.h, 45
flux_god, 84	GMRES M
flux_hll, 84	linearSolver.c, 97
flux_hllc, 85	linearSolver.h, 105
flux_hlle, 86	GOD
flux lxf, 86	main.h, 115
flux_roe, 87	GP
flux_stw, 88	side_t, 30
flux_vanleer, 88	gridFile
fluxCalculation, 89	-
fluxCalculation.h	mesh.c, 134
fluxCalculation, 90	mesh.h, 141
fluxFunction	hasExactSolution
now another	Had Exact Odiation

analyze.c, 42	isAdiabatic
analyze.h, 46	boundary_t, 13
heatFlux	isImplicit
boundary_t, 13	timeDiscretization.c, 180
HLL	timeDiscretization.h, 187
main.h, 115	isPeriodic
HLLC	boundary.c, 49
main.h, 115	boundary.h, 53
HLLE	isRestart
main.h, 115	timeDiscretization.c, 180
	timeDiscretization.h, 188
ісТуре	isRotated
initialCondition.c, 92	sideList_t, 33
initialCondition.h, 94	isStationary
id	timeDiscretization.c, 180
elem_t, 20	timeDiscretization.h, 188
node_t, 24	isTemperaturePrescribed
side_t, 31	boundary_t, 13
iFlux	isTimeStep1D
equation.c, 55	timeDiscretization.c, 181
equation.h, 60	timeDiscretization.h, 188
iMax	iter
cartMesh_t, 15	outputTime_t, 25
implicitTimeStep	iVisuProg
timeDiscretization.c, 177	output.c, 150
INFLOW	output.h, 153
main.h, 113	output.ii, 130
inilterationNumber	jMax
timeDiscretization.c, 180	cartMesh_t, 15
timeDiscretization.h, 187	odrawoon_t, To
initialCondition.c	key
alpha, 91	cmd_t, 16
domainID, 92	
icType, 92	LEFT
nDomains, 92	main.h, 114
refState, 92	len
rp1Dinterface, 92	side_t, 31
initialCondition.h	limiter
alpha, 94	reconstruction.c, 168
domainID, 94	reconstruction.h, 170
icType, 94	limiterBarthJespersen
nDomains, 94	reconstruction.c, 167
refState, 94	limiterFunction
rp1Dinterface, 94	main.h, 116
innerSides	limiterVenkatakrishnan
elem t, 20	reconstruction.c, 168
intExactFunc	linearSolver.c
equation.c, 56	buildMatrix, 96
equation.h, 60	calcDinv, 97
ioFile	D, 99
recordPoint_t, 27	deltaXstar, 99
ioFormat	Dinv, 99
main.h, 115	dRdU, 100
lOiterInterval	eps2newton, 100
output.c, 149	eps2newton_sq, 100
output.h, 153	epsGMRES, 100
IOtimeInterval	gamEW, 100
output.c, 149	GMRES_M, 97
output.h, 153	LUSGS, 98
outputti, 100	L0000, 30

matrixVector, 98	CSV, 116
nGMRESiterGlobal, 101	CURVE, 116
nInnerGMRES, 101	directions, 114
nInnerNewton, 101	E, 114
nKdim, 101	EXACTSOL, 113
nNewtonIter, 101	fluxFunction, 115
nNewtonIterGlobal, 102	generalParameters, 115
R0, 102	GOD, 115
R_XK, 102	HLL, 115
rEps0, 102	HLLC, 115
srEps0, 102	HLLE, 115
usePrecond, 103	INFLOW, 113
V, 103	ioFormat, 115
vectorDotProduct, 99	LEFT, 114
W, 103	limiterFunction, 116
XK, 103	LXF, 115
Z, 103	meshType, 116
linearSolver.h	MX, 114
eps2newton, 106	MY, 114
eps2newton_sq, 106	NBC, 115
epsGMRES, 107	NDIM, 115
gamEW, 107	NVAR, 115
GMRES_M, 105	OUTFLOW, 113
nGMRESiterGlobal, 107	,
nInnerGMRES, 107	P, 116
nInnerNewton, 107	PERIODIC, 113
nKdim, 108	PRESSURE_OUT, 113
nNewtonIter, 108	primitiveVariables, 116
nNewtonIterGlobal, 108	RHO, 114
R_XK, 108	RIGHT, 114
rEps0, 108	ROE, 115
srEps0, 109	SLIPWALL, 113
usePrecond, 109	STRLEN, 113
vectorDotProduct, 106	STW, 115
XK, 109	TOP, 114
LUSGS	UNSTRUCTURED, 116
linearSolver.c, 98	VANLEER, 115
LXF	VENKATAKRISHNAN, 116
main.h, 115	VX, 116
,	VY, 116
main	WALL, 113
main.c, 110	X, 115
main.c	Y, 115
main, 110	matrixVector
main.h	linearSolver.c, 98
AUSMD, 115	maxIter
AUSMDV, 115	timeDiscretization.c, 181
BARTHJESPERSEN, 116	timeDiscretization.h, 188
BOTTOM, 114	memTools.c
boundaryConditionType, 113	dyn2DcgsizeArray, 118
CARTESIAN, 116	dyn2DdblArray, 118
cartesianMeshSides, 114	dyn2DintArray, 119
CD, 114	dyn3DdblArray, 119
CEN, 115	dyn3DintArray, 119
CGNS, 116	dyn4DdblArray, 120
CHARACTERISTIC, 113	dynStringArray, 120
CL, 114	memTools.h
clcdResiduals, 114	dyn2DcgsizeArray, 122
conservativeVariables, 114	dyn2DdblArray, 122

dyn2DintArray, 123	nNodes, 142
dyn3DdblArray, 123	nQuads, 143
dyn3DintArray, 123	nSides, 143
dyn4DdblArray, 124	nTrias, 143
dynStringArray, 124	parameterFile, 143
mesh.c	side, 143
BCside, 132	strlniCondFile, 144
cartMesh, 132	strMeshFile, 144
compare, 127	strMeshFormat, 144
createCartMesh, 127	totalArea_q, 144
createElemInfo, 129	xMax, 144
createMesh, 129	xMin, 145
createReconstructionInfo, 130	yMax, 145
createSideInfo, 130	yMin, 145
dxRef, 133	meshFormat
elem, 133	mesh.c, 134
firstBCside, 133	mesh.h, 141
firstElem, 133	meshType
firstNode, 133	main.h, 116
firstSide, 134	mesh.c, 134
gridFile, 134	mesh.h, 142
meshFormat, 134	mu ,
meshType, 134	equation.c, 56
nBCsides, 134	equation.h, 60
	MX
nElems, 134	main.h, 114
nInnerSides, 135	MY
nNodes, 135	main.h, 114
nQuads, 135	,
nSides, 135	n
nTrias, 135	side_t, 31
parameterFile, 136	NBC
readCGNS, 130	main.h, 115
readEMC2, 131	nBC
readGmsh, 132	boundary.c, 49
side, 136	boundary.h, 53
strIniCondFile, 136	cartMesh_t, 15
strMeshFile, 136	nBCsides
strMeshFormat, 136	mesh.c, 134
totalArea_q, 137	mesh.h, 142
xMax, 137	NDIM
xMin, 137	main.h, 115
yMax, 137	nDomains
yMin, 137	initialCondition.c, 92
mesh.h	initialCondition.h, 94
BCside, 140	nElems
cartMesh, 140	mesh.c, 134
dxRef, 140	mesh.h, 142
elem, 140	next
firstBCside, 140	boundary_t, 13
firstElem, 141	cmd_t, 16
firstNode, 141	elem_t, 21
firstSide, 141	node_t, 24
gridFile, 141	outputTime_t, 26
meshFormat, 141	side_t, 31
meshType, 142	sidePtr_t, 35
nBCsides, 142	nextElemSide
nElems, 142	side_t, 31
nInnerSides, 142	nGMRESiterGlobal

linearSolver.c, 101	dataOutput, 149
linearSolver.h, 107	doErrorOutput, 149
nGP	lOiterInterval, 149
elem_t, 21	IOtimeInterval, 149
nInnerGMRES	iVisuProg, 150
linearSolver.c, 101	outputTimes, 150
linearSolver.h, 107	parameterFile, 150
nInnerNewton	resFile, 150
linearSolver.c, 101	strOutFile, 150
linearSolver.h, 107	output.h
nInnerSides	dataOutput, 152
mesh.c, 135	doErrorOutput, 153
mesh.h, 142	lOiterInterval, 153
nlter	IOtimeInterval, 153
exactRiemann.c, 74	iVisuProg, 153
nKdim	outputTimes, 153
linearSolver.c, 101	parameterFile, 154
linearSolver.h, 108	resFile, 154
nNewtonIter	strOutFile, 154
linearSolver.c, 101	outputTime_t, 25
linearSolver.h, 108	iter, 25
nNewtonIterGlobal	next, 26
linearSolver.c, 102	time, 26
linearSolver.h, 108	outputTimes
nNodes	output.c, 150
mesh.c, 135	output.h, 153
mesh.h, 142	D
node	P
elem_t, 21	main.h, 116
side_t, 32	parameterFile
sideList_t, 34	mesh.c, 136
node_t, 24	mesh.h, 143
id, 24	output.c, 150
next, 24	output.h, 154
x, 24	PERIODIC
nPoints	main.h, 113
recordPoint_t, 27	pi
nQuads	equation.c, 56
mesh.c, 135	equation.h, 61
mesh.h, 143	Pr 50
nRKstages	equation.c, 56
timeDiscretization.c, 181	equation.h, 61
timeDiscretization.h, 188	preFun
nSides	exactRiemann.c, 72
mesh.c, 135	PRESSURE_OUT
mesh.h, 143	main.h, 113
nTrias	prev
mesh.c, 135	cmd_t, 16
mesh.h, 143	primCons
NVAR	equationOfState.c, 64
main.h, 115	equationOfState.h, 67
	primitiveVariables
OUTFLOW	main.h, 116
main.h, 113	printIter
output.c	timeDiscretization.c, 181
cgnsFinalizeOutput, 147	timeDiscretization.h, 189
cgnsOutput, 147	printTime
csvOutput, 148	timeDiscretization.c, 181
curveOutput, 148	timeDiscretization.h, 189

pVar	nPoints, 27
boundary_t, 13	x, 27
elem_t, 21	refLength
side_t, 32	wing_t, 37
	refState
Q	initialCondition.c, 92
timeDiscretization.c, 182	initialCondition.h, 94
	rEps0
R	linearSolver.c, 102
equation.c, 56	linearSolver.h, 108
equation.h, 61	resFile
R0	output.c, 150
linearSolver.c, 102	output.h, 154
R_XK	restartTime
linearSolver.c, 102	timeDiscretization.c, 182
linearSolver.h, 108	timeDiscretization.h, 189
readCGNS	RHO
mesh.c, 130	main.h, 114
readEMC2	RIGHT
mesh.c, 131	main.h, 114
readGmsh	RKcoeff
mesh.c, 132	
readInTools.c	timeDiscretization.c, 182
countKeys, 156	timeDiscretization.h, 189
deleteCmd, 156	ROE
fillCmds, 156	main.h, 115
findCmd, 157	rp1Dinterface
firstCmd, 161	initialCondition.c, 92
getBool, 157	initialCondition.h, 94
_	actPCatParva
getDbl. 158	setBCatBarys
getDblArray, 158	boundary.c, 48
getInt, 159	boundary.h, 52
getIntArray, 159	setBCatSides
getStr, 160	boundary.c, 49
readInTools.h	boundary.h, 52
countKeys, 162	side
fillCmds, 162	mesh.c, 136
getBool, 163	mesh.h, 143
getDbl, 163	sideList_t, 34
getDblArray, 164	sidePtr_t, 35
getInt, 164	side_t, 28
getIntArray, 165	baryBaryDist, 29
getStr, 165	baryBaryVec, 29
reconstruction.c	BC, 29
limiter, 168	BCid, 29
limiterBarthJespersen, 167	BCtype, 30
limiterVenkatakrishnan, 168	connection, 30
spatialReconstruction, 168	elem, 30
venk_k, 169	flux, 30
reconstruction.h	GP, 30
limiter, 170	id, <mark>31</mark>
spatialReconstruction, 170	len, 31
venk_k, 170	n, 31
recordPoint	next, 31
analyze.c, 42	nextElemSide, 31
analyze.h, 46	node, 32
recordPoint_t, 26	pVar, 32
elem, 27	w, 32
ioFile, 27	sideList_t, 33
-· ··-, - ·	

BC, 33	main.h, 115
isRotated, 33	SX
node, 34	elem_t, 22
side, 34	sy
sidePtr_t, 34	elem_t, 22
next, 35	t
side, 35	timeDiscretization.c, 183
SLIPWALL	timeDiscretization.h, 190
main.h, 113	temperature
source	boundary_t, 14
elem_t, 21	time
source.c	outputTime_t, 26
calcSource, 172	timeDisc
evalSource, 172	timeDiscretization.c, 177
source.h	timeDiscretization.h, 185
calcSource, 173	timeDiscretization.c
sourceFunc	abortResidual, 177
equation.c, 57	abortVariable, 178
equation.h, 61	abortVariableName, 178
spatialOrder	calcTimeStep, 175
finiteVolume.c, 78	cdAbortResidual, 178
finiteVolume.h, 79	cfl, 178
spatialReconstruction	clAbortResidual, 178
reconstruction.c, 168	deltaX, 179
reconstruction.h, 170	dfl, 179
sqrt2	doAbortOnCdResidual, 179
equation.c, 57	doAbortOnClResidual, 179
equation.h, 61	explicitTimeStepEuler, 176
sqrt3	explicitTimeStepRK, 176
equation.c, 57	F_X0, 179
equation.h, 62	F_XK, 180
sqrt3q equation.c, 57	implicitTimeStep, 177
•	inilterationNumber, 180
equation.h, 62 srEps0	isImplicit, 180
linearSolver.c, 102	isRestart, 180
linearSolver.h, 109	isStationary, 180
startTime	isTimeStep1D, 181
timeDiscretization.c, 182	maxIter, 181
timeDiscretization.h, 189	nRKstages, 181
stopTime	printlter, 181
timeDiscretization.c, 182	printTime, 181
timeDiscretization.h, 190	Q, 182
strIniCondFile	restartTime, 182 RKcoeff, 182
mesh.c, 136	startTime, 182
mesh.h, 144	stopTime, 182
STRLEN	t, 183
main.h, 113	timeDisc, 177
strMeshFile	timeOrder, 183
mesh.c, 136	timeOverall, 183
mesh.h, 144	timeOverall, 183
strMeshFormat	abortResidual, 186
mesh.c, 136	abortVariable, 186
mesh.h, 144	abortVariable, 186
strOutFile	cdAbortResidual, 186
output.c, 150	cfl, 186
output.h, 154	clAbortResidual, 186
STW	dfl, 187
	Gii, 107

doAbortOnCdResidual, 187	venkEps_sq
doAbortOnClResidual, 187	elem_t, 23
inilterationNumber, 187	VX
isImplicit, 187	main.h, 116
isRestart, 188	VY
isStationary, 188	main.h, 116
isTimeStep1D, 188	
maxIter, 188	W
nRKstages, 188	linearSolver.c, 103
printlter, 189	w
printTime, 189	side t, 32
restartTime, 189	WALL
RKcoeff, 189	main.h, 113
startTime, 189	wallId
stopTime, 190	wing t, 37
t, 190	wGP
timeDisc, 185	elem t, 23
	wing
timeOrder, 190	analyze.c, 42
timeOverall, 190	analyze.h, 46
timeOrder	-
timeDiscretization.c, 183	wing_t, 36
timeDiscretization.h, 190	cd, 36
timeOverall	cl, 37
timeDiscretization.c, 183	firstPressureSide, 37
timeDiscretization.h, 190	firstSuctionSide, 37
tol	refLength, 37
exactRiemann.c, 74	wallld, 37
TOP	wingBC, 38
main.h, 114	wingBC
παπ.π, ττ τ	9= -
totalArea_q	wing_t, 38
	wing_t, 38
totalArea_q mesh.c, 137	•
totalArea_q	wing_t, 38
totalArea_q mesh.c, 137	wing_t, 38
totalArea_q mesh.c, 137 mesh.h, 144	wing_t, 38 X main.h, 115
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22	wing_t, 38 X main.h, 115 x
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x	wing_t, 38 X main.h, 115 x node_t, 24
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27
totalArea_q	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP
totalArea_q	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103	wing_t, 38 X main.h, 115 X node_t, 24 recordPoint_t, 27 XGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond	wing_t, 38 X main.h, 115 X node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 u_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 U_y elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct	wing_t, 38 X main.h, 115 X node_t, 24 recordPoint_t, 27 XGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137 mesh.h, 145
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99 linearSolver.h, 106	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137 mesh.h, 145 yMin
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99 linearSolver.h, 106 venk_k	wing_t, 38 X main.h, 115 X node_t, 24 recordPoint_t, 27 XGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137 mesh.h, 145 yMin mesh.c, 137 mesh.h, 145 yMin mesh.c, 137
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99 linearSolver.h, 106 venk_k reconstruction.c, 169	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137 mesh.h, 145 yMin
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99 linearSolver.h, 106 venk_k reconstruction.c, 169 reconstruction.h, 170	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137 mesh.h, 145 yMin mesh.c, 137 mesh.h, 145 yMin mesh.c, 137 mesh.h, 145
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99 linearSolver.h, 106 venk_k reconstruction.c, 169 reconstruction.h, 170 VENKATAKRISHNAN	wing_t, 38 X
totalArea_q mesh.c, 137 mesh.h, 144 u_t elem_t, 22 u_x elem_t, 22 UNSTRUCTURED main.h, 116 usePrecond linearSolver.c, 103 linearSolver.h, 109 V linearSolver.c, 103 value cmd_t, 17 VANLEER main.h, 115 vectorDotProduct linearSolver.c, 99 linearSolver.h, 106 venk_k reconstruction.c, 169 reconstruction.h, 170	wing_t, 38 X main.h, 115 x node_t, 24 recordPoint_t, 27 xGP elem_t, 23 XK linearSolver.c, 103 linearSolver.h, 109 xMax mesh.c, 137 mesh.h, 144 xMin mesh.c, 137 mesh.h, 145 Y main.h, 115 yMax mesh.c, 137 mesh.h, 145 yMin mesh.c, 137 mesh.h, 145 yMin mesh.c, 137 mesh.h, 145