Second Order Classical Perturbation Theory For The Sticking Probability Of Heavy Atoms Scattered On Surfaces¹

Tapas Sahoo

Supervisor: Prof. Eli Pollak

Department of Chemical Physics, Weizmann Institute of Science, Israel

¹T. Sahoo and E. Pollak, J. Chem. Phys. **143**, 064706 (2015)

Introduction

Importance

- ▶ Atom surface scattering is a surface analysis technique used in materials science.
- ▶ It provides information about the surface structure and lattice dynamics of a material by measuring the diffracted atoms from a monochromatic helium beam incident on the sample.

Difference between Atom and electron scattering

Trapping of atom on metal surface

Trapping of atom on metal surface

A trajectory which undergoes $2K-1, K \ge 1$ sign changes before exiting to the asymptotic region will have undergone K traversals over the attractive well.

Some experimental observations

Experimental observation by Mullins et al. (Chem. Phys. Lett. 163, 111 (1989).)

ightharpoonup This probability decreases with increasing incident kinetic energy of Ar atom, E_i , in a manner that depends on both θ_i , and T_s .

Theoretical study

- ► For many years these phenomena have been considered theoretically in the framework of the "washboard model" [J. C. Tully, Surf. Sci. 111, 461 (1981)] in which the interaction of the incident particle with the surface is described in terms of hard wall potentials.
- ▶ Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] have applied a semiclassical perturbation (SCP) approximation to calculate the sticking probability for the He-W(110) and Ne-W(110) systems.
- Challenges To explain surface temperature effects, phonon bath effects on sticking and energy transfer processes
- Our main tool the classical perturbation theory for the atom surface scattering derived by Eli Pollak and his group².

²E. Pollak, J. Phys. Chem. A **115**, 7189 (2011), Y. Zhou, E. Pollak and S. Miret-Artes, J. Chem. Phys. **140**; 024709 (2014), ©

The model Hamiltonian

▶ We assume that the Hamiltonian has the following structure:

$$H = \frac{p_z^2}{2M} + V(z) + \frac{1}{2} \sum_{j=1}^{N} \left(p_j^2 + \omega_j^2 \left[x_j - \frac{c_j}{\sqrt{M} \omega_j^2} V'(z) \right]^2 \right) = H_0 + H_I.$$

▶ The zero-th order Hamiltonian is written as

$$H_0 = H_S + H_B, \quad ext{with} \quad H_S = rac{p_z^2}{2M} + V(z) \quad ext{and} \quad H_B = rac{1}{2} \sum_{j=1}^N \left(p_j^2 + \omega_j^2 x_j^2
ight).$$

- ▶ The initial conditions for the bath phase space variables are are taken from the canonical distribution $\exp(-\beta H_B)/Z_B$, with $\beta = 1/k_BT$.
- ▶ The time dependent system and bath phase space variables are expanded in powers of the coupling coefficients c_j :

$$\begin{array}{rclcl} z_t & = & \sum_{l=0}^{\infty} z_{t,l}, & & & & \\ & & & & \\ p_{z_t} & = & \sum_{l=0}^{\infty} p_{z_t,l}, & & & \\ & & & & \\ p_{j_t} & = & \sum_{l=0}^{\infty} p_{j_t,l}, & & j=1,...,N. \end{array}$$

Law of Energy Conservation

- ▶ The energy gained by the bath = The energy lost by the particle.
- ► The initial energy of the bath is

$$E_B(-t_0) = \frac{1}{2} \sum_{j=1}^{N} (p_{j,-t_0}^2 + \omega_j^2 x_{j,-t_0}^2).$$

► To second order, the final energy of the bath after the collision is:

$$\begin{split} E_B(t_0) &\equiv E_B(-t_0) &+ \sum_{j=1}^N [p_{j_{t_0},0}(p_{j_{t_0},1} + p_{j_{t_0},2})] + \omega_j^2 x_{j_{t_0},0}(x_{j_{t_0},1} + x_{j_{t_0},2})] \\ &+ \frac{1}{2} \sum_{j=1}^N (p_{j_{t_0},1}^2 + \omega_j^2 x_{j_{t_0},1}^2), \\ E_B(t_0) - E_B(-t_0) &\equiv \delta E_{B,1} + \delta E_{B,2} + \langle \Delta E_B \rangle. \end{split}$$

lacktriangledown $\langle \Delta E_B \rangle$ is the average energy gained by the bath when its temperature vanishes.

The First and Second Order Components of Energy Loss

▶ The fluctuational energy loss to the bath has two components:

$$\langle \delta E_{B,1} \rangle = 0,$$
 and $\langle \delta E_{B,1}^2 \rangle = \frac{2}{\beta} \langle \Delta E_B \rangle.$

► For Ohmic friction

$$\gamma(t) = 2\gamma \delta(t).$$

► The First and Second Order Components of Energy Loss are:

$$\langle \triangle E_B \rangle_{OHM} = \frac{\gamma}{M} \int_{-\infty}^{\infty} dt \, V''(z_{t,0})^2 \dot{z}_{t,0}^2, \qquad \langle \delta E_{B,2} \rangle_{OHM} = -\frac{\gamma}{M^2 \beta} \int_{-\infty}^{\infty} dt V''(z_{t,0})^2.$$

The final momentum distribution

▶ The final momentum distribution averaged over the thermal bath is defined to be:

$$P(p_{z_f}) = \int_{-\infty}^{\infty} \prod_{j=1}^{N} dp_{j,-t_0} dx_{j,-t_0} \frac{\beta \omega_j}{2\pi} \exp\left(-\frac{\beta}{2} \sum_{j=1}^{N} [p_{j,-t_0}^2 + \omega_j^2 x_{j,-t_0}^2]\right) \times \delta(p_{z_f} + p_{z_i} - p_{z_{t_0},1} - p_{z_{t_0},2})$$

(1)

The Final Energy Distribution

lacktriangle The final energy distribution is Gaussian distributed through the fluctuational term $\delta E_{B,1}$.

$$P_1(E_f|E_i) = \left(\frac{\beta}{4\pi\langle \triangle E_B \rangle}\right)^{\frac{1}{2}} \exp\left(-\frac{\beta(E_f - E_i + \langle \triangle E_B \rangle + \langle \delta E_{B,2} \rangle)^2}{4\langle \triangle E_B \rangle}\right).$$

We note that this distribution is normalized by allowing the final energy to range between -∞ and ∞:

$$\int_{-\infty}^{\infty} dE_f \, P_1(E_f|E_i) = 1$$

and has the correct average energy loss:

$$\int_{-\infty}^{\infty} dE_f P_1(E_f|E_i)(E_i - E_f) = \langle \triangle E_B \rangle + \langle \delta E_{B,2} \rangle.$$

The Trapping Probabilty

- To obtain the sticking probability, we follow the multiple collision theory of Fan and Manson³.
- The probability T_1 that the particle escapes after this first traversal is:

$$T_1 = \int_0^\infty dE_f P_1(E_f|E_i) = \frac{1}{2} \mathrm{erfc} \left(\frac{\sqrt{\beta} \left(\langle \Delta E_B \rangle + \langle \delta E_{B,2} \rangle - E_i \right)}{2\sqrt{\langle \Delta E_B \rangle}} \right).$$

Iterating, we find that the final energy distribution for a particle undergoing K traversals is

$$P_K(E_f|E_i) = \int_{-\infty}^{0} dE P_1(E_f|E) P_{K-1}(E|E_i).$$

The fraction that escapes after the K-th traversal is:

$$T_K = \int_0^\infty dE_f P_K(E_f|E_i).$$

The fraction of particles which remain in the well after K traversals is:

$$R_K = 1 - \sum_{j=1}^{K} T_j.$$

The sticking probability is then:

$$P_{stick} = \lim_{K \to \infty} R_K$$
.

³Phys. Rev. B **79**, 045424 (2009), J. Chem. Phys. **130**, 064703 (2009)

Morse potential analytical model

$$V(z) = V_0(1 - \exp(-\alpha z))^2 - V_0.$$

► Analytic forms of energy transfer:

$$\frac{\langle \delta E_{B,2} \rangle_{OHM}}{V_0} = -\frac{2\tilde{\gamma}}{\beta V_0} \sqrt{\frac{E_i}{V_0}} \left(5 + \frac{8}{3} \frac{E_i}{V_0} + \Phi \left[4 \sqrt{\frac{E_i}{V_0}} + 5 \sqrt{\frac{V_0}{E_i}}\right]\right)$$

and

$$\frac{\langle \triangle E_B \rangle_{OHM}}{V_0} \quad = \quad 2\tilde{\gamma} \sqrt{\frac{E_i}{V_0}} \left(3 + 4\frac{E_i}{V_0} + \frac{16}{15}\frac{E_i^2}{V_0^2} + \Phi \sqrt{\frac{V_0}{E_i}} \left[3 + 5\frac{E_i}{V_0} + 2\frac{E_i^2}{V_0^2} \right] \right),$$

where

$$\tilde{\gamma} = \gamma \omega_0^3$$

► Parameters for numerical calculation:

Well depth, $V_0=88$ meV; Stiffness parameter, $\alpha=0.5\ \mathring{A}^{-1}$; Mass of Ar, M=39.948 amu; Reduced friction coefficient, $\tilde{\gamma}=0.00182$.

The population fractions remaining in the well

Figure: The population fractions remaining in the well. The fraction remaining after K=1-5 traversals is plotted as a function of the reduced incident energy $\frac{E_i}{V_0}$ for a model of the Ar-LiF system at a surface temperature of $T=200~\rm K.$

The Energy Loss and Relative Contribution of The Second Order Term

The relative contribution ΔT_1 of the second order term $\delta E_{B,2}$ to the fraction of particles escaping the interaction region after one traversal of the well.

$$\Delta T_1 = \frac{T_1 \left(\delta E_{B,2}\right) - T_1 \left(\delta E_{B,2} = 0\right)}{T_1 \left(\delta E_{B,2}\right)}$$

Figure: The fraction of particles remaining in the interaction region after K traversals of the well, ΔR_K as a function of the reduced energy at T=200 K (panel (a)) and T=300 K (panel(b)).

Sticking probability at 200K

Figure: The sticking probability (assuming convergence after 5 traversals of the well region) is plotted as a function of the (reduced) incident energy for four different values of the friction coefficient at a surface temperature of $T=200\,$ K.

Sticking probability at 300K

Figure: The sticking probability (assuming convergence after 5 traversals of the well region) is plotted as a function of the (reduced) incident energy for four different values of the friction coefficient at a surface temperature of $T=300\,$ K.

Validity of our theory

- ▶ We do note that at very low energies the perturbation theory is no longer valid.
- A condition for the first order perturbation theory to be valid is

$$\left. \frac{\langle \Delta E_B \rangle}{E_i} \simeq \left| \left\langle \frac{p_{z_{t_0,1}}}{p_{zi}} \right\rangle \right| \ll 1.$$

In the limit of vanishing incident energy

$$\lim_{E_i \to 0} \frac{\langle \Delta E_B \rangle_{OHM}}{V_0} = 6\pi \tilde{\gamma}$$

implying that the perturbation theory is valid provided that

$$\frac{E_i}{V_0} \gg 6\pi \tilde{\gamma}.$$

Summary

- We have derived an expression for the temperature dependence of the energy loss of a heavy atom scattered on a surface based on second order classical perturbation theory and valid for arbitrary time dependent friction.
- The model used for describing the scattering process on a thermal (uncorrugated) surface was that of a space dependent generalized Langevin equation. The new feature of the present treatment is the inclusion of the thermal surface induced energy transfer to the particle, which reduces the sticking probability.
- ► Comparison of the theory with numerically exact simulations showed that quantitative agreement between numerics and analytical theory is possible only if one includes the added surface temperature induced term.
- ► The comparison with the numerical results also justifies the multiple collision theory of Fan and Manson for the sticking probability.
- ► The present theory can be further developed by applying it also to a corrugated surface, employing the second order perturbation theory used previously with respect to the corrugation height as well as the coupling to the surface phonons.
- ► Finally, the present second order perturbation theory may also be used in the context of a semiclassical theory of sticking.

Acknowledement

- ▶ Professor Eli Pollak
- ▶ Deans support of postdoctoral fellowship
- ▶ Department of Chemical Physics, Weizmann Institute of Science

The End

- ▶ Thank you for your patience
- ► Quenstions?

Numerical Results of Energy Loss

$$\begin{split} \langle \Delta E_B \rangle &= \frac{1}{2M} \int_{-\infty}^{\infty} dt' \int_{-\infty}^{\infty} dt'' \frac{dV'(z_{t',0})}{dt'} \frac{dV'(z_{t'',0})}{dt''} \gamma(t''-t'), \\ \text{where} \quad \gamma(t) &= \sum_{j=1}^{N} \frac{c_j^2}{\omega_j} \cos(\omega_j t). \end{split}$$

We do note that at very low energies the perturbation theory is no longer valid.

A condition for the first order perturbation theory to be valid is

$$\frac{\langle \Delta E_B \rangle}{E_i} \simeq \left| \left\langle \frac{p_{z_{t_0,1}}}{p_{zi}} \right\rangle \right| \ll 1.$$

In the limit of vanishing incident energy

$$\lim_{E_i \to 0} \frac{\langle \Delta E_B \rangle_{OHM}}{V_0} = 6\pi \tilde{\gamma}$$

implying that the perturbation theory is valid provided that

$$\frac{E_i}{V_0} \gg 6\pi\tilde{\gamma}.$$