

EE141-Spring 2010 Digital Integrated Circuits

Lecture 22 Energy

EECS141 Lecture #22

Administrativia

- □ Midterm 2 over grades by next Wednesday
- □ DO NOT FORGET THE PROJECT! Due on Wednesday April 14
 - Extra office hours of TAs on Mo and Tu (during lab hours) in 353 Cory
- □ Project Phase 1 has been graded

Class Material

- □ Last lecture
 - Technology Scaling
 - Midterm
- □ Today's lecture
 - Adders
- □ Reading (Ch 5, Ch 11)

EECS141 Lecture #22

Project Phase-1 Grades □ Grading Policy Approach and Correctness (40%) ■ Results (30%) Creativity (10%) **Project Phase 1 - Distribution** ■ Report (20%) average: 80.4 stdev: 3 3 You will receive individual feedback. 0 0 50 60 70 90 100 80 EECS141 Lecture #22

Transition Activity and Power

 \square Energy consumed in N cycles, E_N :

$$E_N = C_L \cdot V_{DD}^2 \cdot n_{0 \rightarrow 1}$$

 $n_{0\rightarrow 1}$ – number of 0 \rightarrow 1 transitions in N cycles

$$P_{avg} = \lim_{N \to \infty} \frac{E_N}{N} \cdot f = \left(\lim_{N \to \infty} \frac{n_{0 \to 1}}{N} \right) \cdot C_L \cdot V_{DD}^2 \cdot f$$

$$\alpha_{0 \to 1} = \lim_{N \to \infty} \frac{n_{0 \to 1}}{N} \cdot f$$

$$P_{avg} = \alpha_{0 \to 1} \cdot C_L \cdot V_{DD}^2 \cdot f$$

EECS141

Lecture #2

9

Factors Affecting Transition Activity

- "Static" component (does not account for timing)
 - ⇒ Type of Logic Function (NOR vs. XOR)
 - ⇒ Type of Logic Style (Static vs. Dynamic)
 - ⇒Signal Statistics
 - \Rightarrow Inter-signal Correlations
- "Dynamic" or timing dependent component
 - ⇒ Circuit Topology
 - ⇒Signal Statistics and Correlations

Type of Logic Function: NOR

Example: Static 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities

$$p_{A=1} = 1/2$$

$$p_{B=1} = 1/2$$

Then transition probability

$$p_{0\rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

$$= 3/4 \times 1/4 = 3/16$$

If inputs switch every cycle

$$a_{0\to 1} = 3/16$$

EECS141 Lecture #22

Type of Logic Function: NAND

Example: Static 2-input NAND Gate

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

Assume signal probabilities

$$p_{A=1} = 1/2$$

 $p_{B=1} = 1/2$

Then transition probability

$$p_{0\rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

$$= 3/4 \times 1/4 = 3/16$$

If inputs switch every cycle

$$a_{0\to 1} = 3/16$$

Type of Logic Function: XOR

Example: Static 2-input XOR Gate

Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Assume signal probabilities

$$p_{A=1} = 1/2$$

 $p_{B=1} = 1/2$

Then transition probability

$$p_{0\rightarrow 1} = p_{Out=0} \times p_{Out=1}$$

=

If inputs switch in every cycle

EECS141 Lecture #22

Power Consumption of Dynamic Gates

Power only dissipated when previous Out = 0

Dynamic Power Consumption is Data Dependent

Dynamic 2-input NOR Gate

Α	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Assume signal probabilities

$$P_{A=1} = 1/2$$

 $P_{B=1} = 1/2$

. B=1 ..-

Then transition probability

$$P_{0\rightarrow 1} = P_{out=0} \times P_{out=1}$$

$$= 3/4 \times 1 = 3/4$$

Switching activity always higher in dynamic gates!

$$P_{0\rightarrow 1} = P_{out=0}$$

EECS141 Lecture #22 15

Clock

- □ Always switches
- □ Often consumes 25-50% of total power
- □ Clock gating commonly employed

Problem: Reconvergent Fanout

$$P(Z = 1) = P(B = 1) \cdot P(X = 1 \mid B=1)$$

Becomes complex and intractable fast

EECS141 Lecture #22

Inter-Signal Correlations

Logic without reconvergent fanout

Logic with reconvergent fanout

$$p_{0\to 1} = (1 - p_{\bar{A}}p_B) p_{\bar{A}}p_B$$
 $P(Z = 1) = p(C=1 \mid B=1) p(B=1)$ $p_{0\to 1} = 0$

- □ Need to use conditional probabilities to model inter-signal correlations
- □ CAD tools best for performing such analysis

Principles for Power Reduction

- □ Most important idea: reduce waste
- Examples:
 - Don't switch capacitors you don't need to
 - Clock gating, glitch elimination, logic re-structuring
 - Don't run circuits faster than needed
 - Power α $V_{\text{DD}}{}^2$ can save a lot by reducing supply for circuits that don't need to be as fast
 - Parallelism falls into this category
- □ Let's say we do a good job of that then what?

EECS141 Lecture #22 21

Energy – Performance Space

- □ Plot all possible designs on a 2-D plane
 - No matter what you do, can never get below/to the right of the solid line
- □ This line is called "Pareto Optimal Curve"
 - Usually (always) follows law of diminishing returns

Optimization Perspective

- □ Instead of metrics like EDP, this curve often provides information more directly
 - Ex1: What is minimum energy for XX performance?
 - Ex2: Over what range of performance is a new technique (dotted line) actually beneficial?

EECS141 Lecture #22 23

Adders

The Binary Adder

$$S = A \oplus B \oplus C_{i}$$

$$= A\overline{B}\overline{C}_{i} + \overline{A}B\overline{C}_{i} + \overline{A}\overline{B}C_{i} + ABC_{j}$$

$$C_{0} = AB + BC_{i} + AC_{i}$$

EECS141 Lecture #22 3

Express Sum and Carry as a function of P, G, K

Define 3 new variable which ONLY depend on A, B

Generate (G) = AB

Propagate (P) = A ⊕ B

KiII = A B

$$C_o(G, P) = G + PC_i$$

$$S(G, P) = P \oplus C_i$$

Can also derive expressions for S and C_o based on K and PNote that we will sometimes use an alternate definition for Propagate(P) = A + B

Simplest Adder: Ripple-Carry

Worst case delay linear with the number of bits

$$t_d = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

Goal: Make the fastest possible carry path circuit

EECS141 Lecture #22 33

Complementary Static CMOS Full Adder: "Direct" Implementation

28 Transistors

$$\begin{split} \bar{S}(A,B,C_{i}) &= S(\overline{A},\overline{B},\overline{C}_{i}) \\ \overline{C_{o}}(A,B,C_{i}) &= C_{o}(\overline{A},\overline{B},\overline{C}_{i}) \end{split}$$

Sizing the Mirror Adder: Fanout • Since LE of carry gate is 2, want f of 2 to get EF of 4 • Use min. size sum gates to reduce load on carry. • Total load on carry gate is: $C_{load} = C_{Ci} + (6+6+9)$ $C_{load} = 2C_{Ci}$ Lecture #22 Sizing the Mirror Adder: Fanout • Since LE of carry gate is 2, want f of 2 to get EF of 4 • Use min. size sum gates to reduce load on carry.

- $C_{load} = C_{Ci} + (6+6+9) = 2C_{Ci}$
- \rightarrow C_{Ci} = 21
- Minimum size G and K stacks to reduce diffusion loading

Mirror Adder Summary

- •The NMOS and PMOS chains are completely symmetrical. Maximum of two series transistors in the carry-generation gate.
- •When laying out the cell, the most critical issue is the minimization of the capacitance at node C_o . Reduction of the diffusion capacitances is particularly important.
- •Carry signals are critical transistors connected to C_i are placed closest to the output.
- •Only the transistors in the (propagate) carry chain have to be optimized for speed. All transistors in the sum stage can be minimal size.