SEMICONDUCTORS

Transistors

Michael D'Argenio – Electrical Engineering – SS 2019 – Duke TIP

BJTs

BJT – Bipolar Junction Transistor

A BJT is a type of transistor that uses both electron

and hole charge carriers.

They come in two types:

- NPN
- PNP
- Emitter always has arrow
 - NPN not pointing in
 - PNP pointing in proudly

BJT Functionality

- BJTs work as current-controlled current regulators.
- In other words, BJTs restrict the amount of current passed according to a smaller, controlling current.
- BJTs can be used both as amplifiers and as switches.
- They have 3 terminals:
 - Collector
 - Base
 - Emitter
- Uses both hole and electron charge carriers.

BJT: 3 Operating Modes

- Cut-off the transistor is fully "off" operating as a switch and I_c = 0
- Active Region the transistor operates as an amplifier and I_c = β*I_b
- Saturation the transistor is fully "on" operating as a switch and I_c = I_{saturation}

NPN

- A small current entering the base is amplified to output a large emitter current.
- Only when the base voltage is high relative to the emitter voltage. i.e. V_{BF} = 0.7 V

- KCL: $I_E = I_C + I_B$
- KVL: $V_{BC} = V_{BE} V_{CE}$
- Note: $V_{CE} = V_C V_E$

3 Operating Regions of NPN

- Cut-off: Logic "off"
 - V_{BF} < 0.7 V (BE is reverse biased)
 - $I_{C} = 0, I_{B} = 0$
- Active: Partially "on"
 - $V_{BF} = 0.7 \text{ V (BE is forward biased)}$
 - $V_{CF} \ge 0.7 \text{ V (BC is reverse biased)}$
 - $I_C = \beta I_B I_B > 0$; β is given characteristic
- Saturation: Logic "on"
 - $V_{BF} = 0.7 \text{ V (BE is forward biased)}$
 - $V_{CF} = 0.2 \text{ V (BC is forward biased)} \text{saturation voltage}$

PNP

- A small current leaving the base is amplified to output a large collector current.
- Only when the base voltage is high relative to the emitter voltage. i.e. V_{FR} = 0.7 V

- KCL: $I_E = I_C + I_B$
- KVL: $V_{CB} = V_{EB} V_{EC}$
- Note: $V_{EC} = V_E V_C$

3 Operating Regions of PNP

- Cut-off: Logic "off"
 - $V_{FR} < 0.7 \text{ V (EB is reverse biased)}$
- Active: Partially "on"
 - $V_{FB} = 0.7 \text{ V (EB is forward biased)}$
 - $V_{FC} \ge 0.7 \text{ V (CB is reverse biased)}$
 - $I_C = \beta I_B I_B > 0$; β is given characteristic
- Saturation: Logic "on"
 - $V_{FB} = 0.7 \text{ V (EB is forward biased)}$
 - $V_{FC} = 0.2 \text{ V (CB is forward biased)} \text{saturation voltage}$

Common Emitter Amplifier

- Voltage amplifier
- Boosts Vin at Vout

Common Collector Amplifier

- AKA Emitter Follower
- Voltage buffer
- If no more available current for Vin, use voltage buffer to draw current from V+

Common Base Amplifier

- Current buffer or voltage amplifier
- Current is sunk from the emitter, providing voltage difference causing the transistor to conduct.
- The current conducted via the collector is proportional to the voltage across the base-emitter junction.

Activity: Metronome

■ Pg. 104

OR CHANGING CI'S VALUE.

SIREN CLOSE SI AND THE R1 22K SPEAKER EMITS A TONE THAT RISES IN FREQUENCY (AS C1 CHARGES). OPEN SI AND THE TONE FALLS 470 IN FREQUENCY (AS CI 22 MF DISCHARGES). LIKE THIS: 2N2222 47K В 02 R۷ 202907 39 K 8Ω SPKR CLOSE OPEN HINT: CHANGE RI TO CHANGE UP-DOWN TIME.

MOSFETs

Intro to FETs

- BJTs seem simple. They are just 2 diodes put together, but the math quickly got difficult.
- FETs, or field effect transistors, are much simpler!
- Their construction is more complex than BJTs, but they operate much more like a true switch.
- A FET is an electronic device which uses an electric field to control the flow of current.
- This means they are much easier to turn on and turn on much faster!

MOSFETs

- We will focus on one type of FET, a MOSFET.
- MOSFET Metal-Oxide Semiconductor FET
- MOSFET a type of FET most commonly fabricated by the controlled oxidation of silicon.
- They are voltage-controller and require virtually no current to turn on as compared to BJTs.
- They come in pMOS and nMOS.
- Millions of them in phones and computers!

BJTs vs. MOSFETs

	BJTs	MOSFETs
	BJTs are current-controlled. They require a biasing current to the base terminal for operation.	FETs are voltage-controlled. They only require voltage applied to the gate to turn the FET either on or off. They do not require a biasing current for operation.
	BJTs offer smaller input impedances, meaning they draw more current from the power circuit feeding it, which can cause loading of the circuit.	FETs offer greater input impedance than BJTs. This means that they practically draw no current and therefore do not load down the power circuit that's feeding it.
Gain	BJTs offer greater gain at the output than FETs.	The gain of FETs are smaller than for BJTs.
	BJTs are larger in size and therefore take up more physical space than FETs normally.	FETs can be manufactured much smaller than BJTs. This is especially important for integrated circuits that are composed up of many transistors.
Popularity	BJTs are less popular and less widely used	FETS are definitely more popular and widely used in commercial circuits today than BJTs
Cost	BJTs are cheaper to manufacture	MOSFETs are more expensive to manufacture

How a MOSFET works

- A MOSFET is acts just like a switch.
- It either connects the drain to the source (short) or disconnects the drain from the source (open).
- It does this based on the gate voltage V_{GS}, which is the voltage difference between the gate and source.
- Every MOSFET has a V_{GS,threshold} characteristic.
- Once V_{GS} exceeds V_{GS,threshold}, the MOSFET will connect drain to source.

MOSFET Characteristics

- MOSFET V_{GS} Thresholds
 - nMOS have a positive threshold voltages
 - pMOS have a negative threshold voltages
- The threshold voltages depend on the specific MOSFET, but most are between 2.5 and 10V for nMOS or -2.5 and -10V for pMOS.

MOSFET Type	V _{GS} ≪0	$V_{GS} = 0$	V _{GS} ≫ 0
nMOSFET	OFF	OFF	ON
pMOSFET	ON	OFF	OFF

PMOS & NMOS Construction

Structure of N-channel MOSFET

Structure of P-channel MOSFET

nM0S

- V_{DS} is positive.
 - Drain to Source voltage.
 - This means that if you're switching on a positive voltage source, it should be connected to Drain.
- V_{GS,threshold} is positive.
 - Source should be tied to ground.
 - That way you can easily turn on the nMOS by applying a voltage to Gate.

pM0S

- V_{DS} is negative.
 - Drain to Source voltage.
 - This means that if you're switching on a positive voltage source, it should be connected to Source.
- V_{GS,threshold} is negative.
 - If there is a positive voltage at the Source, you can likely drive Gate to ground to turn on pMOS.
 - To turn off pMOS, the Gate voltage will have to be the same or higher than the Source voltage.

MOSFET Uses

- Used in processors for computers, phones, etc.
 because it is a quick, low-power switching device
 - Computational logic
 - Storage
- Used in many different integrated circuits (ICs)
- Power supplies
- Variable frequency motor drivers

Moore's Law

- Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every two years. Projected in 1965.
- Moore's law is an observation and projection of a historical trend and not a physical or natural law.
- Although the rate held steady from 1975 until around 2012, the rate was faster during the first decade.
- End of Moore's Law?

MOSFET Simulations

LTspice

Activity: Use nMOS to drive a motor

Activity: Reverse Polarity Protection

 Design a circuit that provides reverse polarity protection using a PMOS.

