Time-series Analytics

Giacomo Ziffer Politecnico di Milano

Decomposition & Detrending

Let's change perspective

Thinking ...

- If
 - stationary **implies** predictable
- and
 - changes in mean, variance
 - presence of seasonality
 - implies non-stationary
- can we try to remove what causes of non-stationarity?

Thinking ...

- If
 - stationary **implies** predictable
- and
 - changes in mean, variance
 - presence of seasonality
 - implies non-stationary
- can we try to remove what causes of non-stationarity?
- YES! Decomposing a time series

Time Series Decomposition

Time-Series Components

this charather is a placeholder for various mathematical operation used to assemble the components

Models to decompose time series:

Additive model

$$X_t = m_t + s_t + Y_t$$

Multiplicative model

$$X_t = m_t \, s_t \, Y_t$$

- Where
 - m_t is the trend component
 - s_t is the seasonal component
 - Y_t is the residual component

- How to Choose Between Additive and Multiplicative Decompositions
 - The additive model is useful when the seasonal variation is relatively constant over time.
 - The multiplicative model is useful when the seasonal variation increases over time.

Black box - we do not know anything

- Use statsmodels as a blackbox able to decompose a time-series
- Try both methods
 - Additive
 - Multiplicative

NOTE: for more information check out https://www.statsmodels.org/stable/examples/notebooks/generated/statespace_seasonal.html

Time series decomposition A comparison

Time series decomposition Let's see if you are following ...

- Q: Is additive better than multiplicative?
- Q: Why?

White box - we know everything

Two simplified time series models

Non-seasonal Decomposition Model with Trend

Decomposition Model with Trend and Seasonal Components

Non-seasonal Decomposition Models with Trend

- There are two basic methods for estimating/removing trend:
- Method 1: Trend elimination by differencing
 - Differencing one or more times removes the trend
- Method 2: Trend estimation by model fitting & removal
 - first we estimate the trend fitting a model
 - then we remove it

Non-seasonal Decomposition Models with Trend - Method 1 Trend elimination by differencing

• Differencing of a time series $\{X_t\}$ in discrete time t is the transformation of the series to a new time series $\{D_t\}$ where the values are the differences between consecutive values of $\{X_t\}$.

Day

Giacomo Ziffer 16

Day

Non-seasonal Decomposition Models with Trend - Method 1 Trend elimination by differencing (cont.)

- If a trend is linear differencing once is sufficient to remove it
- If a trend is quadratic, you need two difference twice
- If a trend can be model with a polynomial of order *n*, then you need to difference *n* times

Non-seasonal Decomposition Models with Trend - Method 1
Trend elimination by differencing

- 1. Generate synthetic data
- 2. Differencing one to remove a linear trend
- 3. Differencing twice to remove a quadratic trend

Non-seasonal Decomposition Models with Trend - Method 2 Trend estimation by model fitting & removal

Non-seasonal Decomposition Models with Trend - Method 2 Trend estimation by model fitting & removal

- 1. Generate synthetic data
- 2. Fit a linear regression
- 3. Fit a quadratic regression

Non-seasonal Decomposition Models with Trend

Combining Method 1 and 2

- 1. Generate synthetic data with quadratic trend
- 2. Differentiate
- 3. Observe the time-series still shows a trend
- 4. Detrend fitting a linear Regression

Decomposition Models with Trend and Seasonality

There are four basic methods for estimating/removing the trend and seasonal components:

- Method 1 Differencing
 - First we difference one or mote time to remove the trend
 - Then we perform "seasonal differencing" to directly removes the season
- Method 2 Filtering
 - First we estimate and remove the trend using a "centered" moving average
 - then we estimate and remove the seasonal component using "periodic averages"
- Method 3 Joint-fit method
 - fitting a combined polynomial and dynamic harmonic regression

Decomposition Models with Trend and Seasonality - Method 1 Seasonal differencing

• Seasonal differencing of a time series $\{X_t\}$ in discrete time t given the seasonality's period d is the transformation of the series to a new time series $\{S_t\}$ where the values are the differences between the value of $\{X_t\}$ at time t and the the value of $\{X_t\}$ a period d before.

$$s_t = x_t - x_{t-d}$$

Decomposition Models with Trend and Seasonality - Method 1 Seasonal differencing

- Generate synthetic data using a sine form
- 2. Apply "seasonal differencing"
- 3. Observe you removed the seasonality

Decomposition Models with Trend and Seasonality - Method 2 Estimate the trend using "centered" moving average

- Given the seasonality's period d
 - If d is even, the «centered» moving average is defined as

$$\widehat{m}_{t} = (0.5x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + 0.5x_{t+q})/d$$

• If *d* is odd, the «centered» moving average is defined as

$$\widehat{m_t} = \left(x_{t-q} + x_{t-q+1} + \dots + x_{t+q-1} + x_{t+q} \right) / d$$

- Notes:
 - there are no values for either the first q or the last q data points, because we do not have enough observations on either side to define the moving average for those values of t.
 - This «centered» moving average is different from the «normal» moving average

Decomposition Models with Trend and Seasonality - Method 2 Estimate the seasonal component

- To estimate the seasonal component using "periodic averages"
 - 1. Divide the detrended value in seasons of length d
 - 2. Compute the seasonal component values w_k by averaging each of the d points of the season (i.e., k = 1, ..., d)
 - 3. Compute adjusted the seasonal component values s_k to ensure that they add to zero

$$\hat{s}_k = w_k - d^{-1} \sum_{j=1}^d w_j, \ k = 1, \dots, d$$

- 4. String together the adjusted seasonal component values in a sequence
- 5. Replace the sequence for each season

Decomposition Models with Trend and Seasonality - Method 2 Estimate the seasonal component

• The case of air travel time-series

Decomposition Models with Trend and Seasonality - Method 2 Filtering

- 1. Load the time series
- 2. estimate the trend by the "centered" moving average
- 3. Remove the trend from the time series
- 4. Estimate the seasonal component using "periodic averages"
- 5. Remove it from the detrended series

Decomposition Models with Trend and Seasonality - Method 3 Joint-fit method

 we can fit a combined polynomial linear regression and harmonic functions to estimate and then remove the trend and seasonal component simultaneously as the following

$$X_{t} = m_{t} + s_{t} + Y_{t}$$

$$= (\beta_{0} + \beta_{1}t + \beta_{2}t^{2}) + \left[\sum_{j=1}^{k} (\alpha_{j}\cos(\lambda_{j}t) + \gamma_{j}\sin(\lambda_{j}t))\right] + Y_{t}$$

Decomposition Models with Trend and Seasonality - Method 3 Anatomy of the harmonic function

Decomposition Models with Trend and Seasonality - Method 3 Intuitively

Time-series Analytics

Giacomo Ziffer Politecnico di Milano

