Practice Exam 3

March 6, 2009

1 Set up the integral to find the arc length of $y = x \sin(x)$ from 0 to 6π . Approximate this integral by using midpoint rule with n = 3.

2 The demand curve of tortillas is D(x) = 1984 - 12x and the supply is s(x) = 19x. Find the consumer surplus and the producer surplus for a tortilla selling company.

3 Find the volume of the solid obtained by rotating the region between $y = x \sin 3x$ when x is in the interval $[0, \pi]$ about the y - axis.

4 Find the area of the region between $y = x^2 + 7x$ and y = 12x - 6.

5 The height of a monument is 20m. A horizontal cross-section at a distance x meters from the top is an rectangle with width $\frac{1}{4}x$ meters and length e^{x^2} . Find the volume of the monument.

6 Find the derivative of the following function:

$$g(x) = \int_{\ln x}^{x^2} \frac{t}{\sqrt{2+t^2}} dt$$

7 Evaluate the following integrals:

$$\int_0^2 \sqrt{4 - x^2} \, dx$$

$$\int_1^7 2^x \, dx$$

$$\int (x+1)^2 e^{2x} \, dx$$

$$\int x \sin x \, dx$$

$$\int x^2 (x^3 - 2x + 1)^7 \, dx$$

8 Find the volume obtained by rotating the region between $y = x^2$ and y = x rotated around y = 3.

9 If Superman fought Yoda, who would win and why?