WebAssign

4.3 Concavidad y Gráficas de Funciones (Homework)

Due: Saturday, May 4, 2019 11:59 PM CSTLast Saved: n/a Saving... ()

David Corzo Diferencial, section B, Spring 2019 Instructor: Christiaan Ketelaar

The due date for this assignment is past. Your work can be viewed below, but no changes can be made.

**Important!** Before you view the answer key, decide whether or not you plan to request an extension. Your Instructor may *not* grant you an extension if you have viewed the answer key. Automatic extensions are not granted if you have viewed the answer key.

Request Extension

**Current Score :** 64.7 / 52

1. 2.5/2.5 points | Previous Answers SCalcET8 4.3.001.

Use the given graph of f over the interval (0, 6) to find the following.



(a) The open intervals on which  $\emph{f}$  is increasing. (Enter your answer using interval notation.)

\$\$(1,3)\(0)(4,6)

(1, 3), (4, 6)

(b) The open intervals on which f is decreasing. (Enter your answer using interval notation.)

 $$$(0,1)\cup(3,4)$ 

**(**0, 1), (3, 4)

(c) The open intervals on which f is concave upward. (Enter your answer using interval notation.)

\$\$(0,2)

(0, 2)

(d) The open intervals on which f is concave downward. (Enter your answer using interval notation.)

\$\$(2,4)\(4,6)

(2, 4), (4, 6)

(e) The coordinates of the point of inflection.

 $(x, y) = \left(\begin{array}{c} \\ \$\$2,3 \\ \checkmark & \boxed{2,3} \end{array}\right)$ 

Solution or Explanation

Click to View Solution

2. 1/1 points | Previous Answers SCalcET8 4.3.003.

Suppose you are given a formula for a function f.

(a) How do you determine where f is increasing or decreasing?

If  $f'(x) > \emptyset$  > 0 on an interval, then f is increasing on that interval. If  $f'(x) < \emptyset$  < 0 on an interval, then f is decreasing on that interval.

(b) How do you determine where the graph of f is concave upward or concave downward?

If  $f''(x) > \checkmark$  > 0 for all x in I, then the graph of f is concave upward on I. If  $f''(x) < \checkmark$  < 0 for all x in I, then the graph of f is concave downward on I.

(c) How do you locate inflection points?

At any value of x where the function changes from increasing to decreasing, we have an inflection point at (x, f(x)).
 At any value of x where f'(x) = 0, we have an inflection point at (x, f(x)).

• At any value of x where the function changes from decreasing to increasing, we have an inflection point at (x, f(x)).

 $\bullet$  At any value of x where the concavity changes, we have an inflection point at (x, f(x)).

 $\bigcirc$  At any value of x where the concavity does not change, we have an inflection point at (x, f(x)).

Solution or Explanation

(a) Use the Increasing/Decreasing (I/D) Test.

(b) Use the Concavity Test.

(c) At any value of x where the concavity changes, we have an inflection point at (x, f(x)).

3. 3.5/3.5 points | Previous Answers SCalcET8 4.3.009.

Consider the equation below. (If an answer does not exist, enter DNE.)

$$f(x) = x^3 - 9x^2 - 21x + 7$$

(a) Find the interval on which f is increasing. (Enter your answer using interval notation.)

$$\checkmark \quad \boxed{(-\infty,-1),(7,\infty)}$$

Find the interval on which f is decreasing. (Enter your answer using interval notation.)



(b) Find the local minimum and maximum values of f.



(c) Find the inflection point.

$$(x, y) = ($$
 $$$$3,-110$ 
 $(3,-110)$ 

Find the interval on which  $\emph{f}$  is concave up. (Enter your answer using interval notation.)



Find the interval on which  $\emph{f}$  is concave down. (Enter your answer using interval notation.)

Solution or Explanation

(a) 
$$f(x) = x^3 - 9x^2 - 21x + 7 \Rightarrow f'(x) = 3x^2 - 18x - 21 = 3(x^2 - 6x - 7) = 3(x + 1)(x - 7).$$

| Interval                 | x + 1 | <i>x</i> – 3 |  | f'(x) | f                             |
|--------------------------|-------|--------------|--|-------|-------------------------------|
| x < -1                   | -     | 1            |  | +     | increasing on $(-\infty, -1)$ |
| -1 < <i>x</i> < <b>7</b> | +     | _            |  | _     | decreasing on $(-1, 7)$       |
| <i>x</i> > <b>7</b>      | +     | +            |  | +     | increasing on $(7, \infty)$   |

(b) f changes from increasing to decreasing at x = -1 and from decreasing to increasing at x = 7. Thus, f(-1) = 18 is a local maximum value and f(7) = -238 is a local minimum value.

(c) f''(x) = 6x - 18 = 6(x - 3).  $f''(x) > 0 \Leftrightarrow x > 3$  and  $f''(x) < 0 \Leftrightarrow x < 3$ . Thus, f is concave upward on  $(3, \infty)$  and concave downward on  $(-\infty, 3)$ . There is an inflection point at (3, -110).

4. 3/0 points | Previous Answers SCalcET8 4.3.013.MI.

Consider the equation below. (If an answer does not exist, enter DNE.)

$$f(x) = 5 \sin(x) + 5 \cos(x), \quad 0 \le x \le 2\pi$$

(a) Find the interval on which f is increasing. (Enter your answer using interval notation.)  $\$\$(0,\pi4)\cup(5\pi4,2\pi)$ 



Find the interval on which f is decreasing. (Enter your answer using interval notation.) \$\$(n4,5n4)



(b) Find the local minimum and maximum values of f.

local minimum value  $\begin{array}{c} \$\$ \pi 4 \\ \\ \times \\ -5\sqrt{2} \\ \$\$ 5 \pi 4 \\ \\ \text{local maximum value} \\ \\ \times \\ \hline \\ 5\sqrt{2} \\ \end{array}$ 

(c) Find the inflection points.

$$(x, y) = \frac{3\pi}{4}, 0$$

$$(x, y) = \frac{3\pi}{4}, 0 \text{ (smaller } x\text{-value)}$$

$$(x, y) = \frac{7\pi}{4}, 0 \text{ (larger } x\text{-value)}$$

Find the interval on which f is concave up. (Enter your answer using interval notation.)  $$$(3\pi4,7\pi4)$ 



Find the interval on which f is concave down. (Enter your answer using interval notation.)  $$$(0,3\pi4)\cup(7\pi4,2\pi)$ 



Solution or Explanation

Click to View Solution

### **5.** 3.5/3.5 points | Previous Answers SCalcET8 4.3.015.

Consider the equation below. (If an answer does not exist, enter DNE.)

$$f(x) = e^{3x} + e^{-x}$$

(a) Find the interval on which f is increasing. (Enter your answer using interval notation.)

$$\left(\frac{-\ln(3)}{4},\infty\right)$$

Find the interval on which f is decreasing. (Enter your answer using interval notation.)

 $$$(-\infty,-ln(3)4)$ 

$$\left(-\infty, \frac{-\ln(3)}{4}\right)$$

(b) Find the local minimum and maximum values of f.

local minimum value



p=-(3ln(3)4)+e(ln(3)4)

local maximum value

| 1 | DNE |
|---|-----|

(c) Find the inflection point.

$$(x, y) = ($$

$$$\$DNE$$

$$DNE$$

Find the interval on which f is concave up. (Enter your answer using interval notation.)

$$(-\infty,\infty)$$

$$(-\infty,\infty)$$

Find the interval on which f is concave down. (Enter your answer using interval notation.)

| \$\$ <i>C</i> | NE  |  |
|---------------|-----|--|
|               |     |  |
| <b>V</b>      | DNE |  |

Solution or Explanation

Click to View Solution

### 6. 2/2 points | Previous Answers SCalcET8 4.3.019.

Find the local maximum and minimum values of f using both the First and Second Derivative Tests.



Solution or Explanation

$$f(x) = 3 + 12x^2 - 8x^3 \Rightarrow f'(x) = 24x - 24x^2 = 24x(1 - x).$$

First Derivative Test:  $f'(x) > 0 \Rightarrow 0 < x < 1$  and  $f'(x) < 0 \Rightarrow x < 0$  or x > 1. Since f' changes from negative to positive at x = 0, f(0) = 3 is a local minimum value; and since f' changes from positive to negative at x = 1, f(1) = 7 is a local maximum value.

Second Derivative Test: f''(x) = 24 - 48x.  $f'(x) = 0 \Leftrightarrow x = 0, 1$ .  $f''(0) = 24 > 0 \Rightarrow f(0) = 3$  is a local minimum value.  $f''(1) = -24 < 0 \Rightarrow f(1) = 7$  is a local maximum value.

Preference: For this function, the two tests are equally easy.

7. 2/2 points | Previous Answers SCalcET8 4.3.024.

Sketch the graph of a function that satisfies all of the given conditions.

(a) 
$$f'(x) < 0$$
 and  $f''(x) < 0$  for all  $x$ 



(b) 
$$f'(x) > 0$$
 and  $f''(x) > 0$  for all x



Solution or Explanation

(a) 
$$f'(x) < 0$$
 and  $f''(x) < 0$  for all  $x$ 

The function must be always decreasing (since the first derivative is always negative) and concave downward (since the second derivative is always negative).







8. 1/1 points | Previous Answers SCalcET8 4.3.027.

Sketch the graph of a function that satisfies all of the given conditions.

$$f'(0) = f'(2) = f'(4) = 0,$$
  
 $f'(x) > 0$  if  $x < 0$  or  $2 < x < 4,$   
 $f'(x) < 0$  if  $0 < x < 2$  or  $x > 4,$   
 $f''(x) > 0$  if  $1 < x < 3,$ 









Solution or Explanation

$$f'(0) = f'(2) = f'(4) = 0 \Rightarrow$$
 horizontal tangents at  $x = 0, 2, 4$ .

$$f'(x) > 0$$
 if  $x < 0$  or  $2 < x < 4 \Rightarrow f$  is increasing on  $(-\infty, 0)$  and  $(2, 4)$ .

$$f'(x) < 0$$
 if  $0 < x < 2$  or  $x > 4 \Rightarrow f$  is decreasing on  $(0, 2)$  and  $(4, \infty)$ .

$$f''(x) > 0$$
 if  $1 < x < 3 \Rightarrow f$  is concave upward on  $(1, 3)$ .

f''(x) < 0 if x < 1 or  $x > 3 \Rightarrow f$  is concave downward on  $(-\infty, 1)$  and  $(3, \infty)$ . there are inflection points where x = 1 and 3.



9. 1/1 points | Previous Answers SCalcET8 4.3.028.

Sketch the graph of a function that satisfies all of the given conditions.

```
f'(x) > 0 for all x \ne 1,
vertical asymptote x = 1,
f''(x) > 0 if x < 1 or x > 3,
f''(x) < 0 if 1 < x < 3
```









Solution or Explanation

f'(x) > 0 for all  $x \neq 1 \Rightarrow f$  is increasing on  $(-\infty, 1)$  and  $(1, \infty)$ .

Vertical asymptote x = 1

f''(x) > 0 if x < 1 or x > 3  $\Rightarrow$  f is concave upward on  $(-\infty, 1)$  and  $(3, \infty)$ .

f''(x) < 0 if  $1 < x < 3 \Rightarrow f$  is concave downward on (1, 3).

There is an inflection point at x = 3.



10.4/4 points | Previous Answers SCalcET8 4.3.037.

| Consider the function below. | (If an a | answer does  | not exist  | enter | DNE )  |
|------------------------------|----------|--------------|------------|-------|--------|
| Consider the function below. | ui aii a | iliswei uues | HUL EXIST, | enter | DIVL.) |

$$f(x) = x^3 - 12x + 3$$

(a) Find the interval of increase. (Enter your answer using interval notation.)

$$(-\infty, -2), (2, \infty)$$

Find the interval of decrease. (Enter your answer using interval notation.)





(b) Find the local minimum value(s). (Enter your answers as a comma-separated list.)

# \$\$-13





Find the local maximum value(s). (Enter your answers as a comma-separated list.)

# \$\$19





(c) Find the inflection point.

$$(x, y) = ($$

\$\$0,3



Find the interval where the graph is concave upward. (Enter your answer using interval notation.)

## \$\$(0,∞)





Find the interval where the graph is concave downward. (Enter your answer using interval notation.)



(d) Use the information from parts (a)-(c) to sketch the graph. Check your work with a graphing device if you have one.



Solution or Explanation

(a)  $f(x) = x^3 - 12x + 3 \implies f'(x) = 3x^2 - 12 = 3(x^2 - 4) = 3(x + 2)(x - 2)$ .  $f'(x) > 0 \implies x < -2$  or x > 2 and  $f'(x) < 0 \implies -2 < x < 2$ . So f is increasing on  $(-\infty, -2)$  and  $(2, \infty)$  and f is decreasing on (-2, 2).

(b) f changes from increasing to decreasing at x = -2, so f(-2) = 19 is a local maximum value. f changes from decreasing to increasing at x = 2, so f(2) = -13 is a local minimum value.

(c) f''(x) = 6x.  $f''(x) = 0 \Leftrightarrow x = 0$ . f''(x) > 0 on  $(0, \infty)$  and f''(x) < 0 on  $(-\infty, 0)$ . So f is concave upward on  $(0, \infty)$  and f is concave downward on  $(-\infty, 0)$ . There is an inflection point at (0, 3).

(d)



11.4.5/4.5 points | Previous Answers SCalcET8 4.3.040.MI.

| Consider the function | below. (If a | n answer does | not exist, er | nter DNE.) |
|-----------------------|--------------|---------------|---------------|------------|
|-----------------------|--------------|---------------|---------------|------------|

$$q(x) = 230 + 8x^3 + x^4$$

(a) Find the interval of increase. (Enter your answer using interval notation.)

\$\$(−6,∞)

$$\checkmark$$
  $(-6,\infty)$ 

Find the interval of decrease. (Enter your answer using interval notation.)

\$\$(-∞,-6)



(b) Find the local minimum value(s). (Enter your answers as a comma-separated list.)

\$\$-202



Find the local maximum value(s). (Enter your answers as a comma-separated list.)

\$\$DNE



(c) Find the inflection points.

$$(x, y) = \left( \\ \$\$-4, -26 \right)$$

$$\checkmark$$
  $\begin{bmatrix} -4, -26 \end{bmatrix}$  (smaller x-value)  $(x, y) = ($ 

$$0,230$$
 (larger x-value)

Find the interval where the graph is concave upward. (Enter your answer using interval notation.)

 $\$\$(-\infty,-4)\cup(0,\infty)$ 



Find the interval where the graph is concave downward. (Enter your answer using interval notation.)

\$\$(-4,0)



(d) Use the information from parts (a)-(c) to sketch the graph. Check your work with a graphing device if you have one.



Solution or Explanation Click to View Solution 12.4/4 points | Previous Answers SCalcET8 4.3.041.

| Consider the function be | elow (If an    | answer does | not exist  | enter  | DNE )  |
|--------------------------|----------------|-------------|------------|--------|--------|
| Consider the function by | CIOVV. (II UII | unswer does | not chist, | CITCCI | DIVE., |

$$h(x) = (x+1)^9 - 9x - 3$$

(a) Find the interval of increase. (Enter your answer using interval notation.)

\$\$(-∞,-2)∪(0,∞)



Find the interval of decrease. (Enter your answer using interval notation.)

\$\$(-2,0)



(b) Find the local minimum value(s). (Enter your answers as a comma-separated list.)

\$\$-2 //

Find the local maximum value(s). (Enter your answers as a comma-separated list.)

\$\$14

(c) Find the inflection point.

(x, y) = ( \$\$-1,6  $\checkmark \left[ -1, 6 \right]$ 

Find the interval where the graph is concave upward. (Enter your answer using interval notation.)

 $\$\$(-1,\infty)$   $(-1,\infty)$ 

Find the interval where the graph is concave downward. (Enter your answer using interval notation.)

 $(-\infty, -1)$   $(-\infty, -1)$ 

(d) Use the information from parts (a)-(c) to sketch the graph. Check your work with a graphing device if you have one.







15

10

5

Solution or Explanation

(a)  $h(x) = (x+1)^9 - 9x - 3 \Rightarrow h'(x) = 9(x+1)^8 - 9$ .  $h'(x) = 0 \Leftrightarrow 9(x+1)^8 = 9 \Leftrightarrow (x+1)^8 = 1 \Rightarrow (x+1)^2 = 1 \Rightarrow x+1=1 \text{ or } x+1=-1 \Rightarrow x=0 \text{ or } x=-2$ .  $h'(x)>0 \Leftrightarrow x<-2 \text{ or } x>0 \text{ and } h'(x)<0 \Leftrightarrow -2 < x < 0$ . So h is increasing on  $(-\infty, -2)$  and  $(0, \infty)$  and h is decreasing on (-2, 0).

- (b) h(-2) = 14 is a local maximum value and h(0) = -2 is a local minimum value.
- (c)  $h''(x) = \frac{72}{(x+1)^7} = 0 \Leftrightarrow x = -1$ .  $h''(x) > 0 \Leftrightarrow x > -1$  and  $h''(x) < 0 \Leftrightarrow x < -1$ , so h is CU on  $(-1, \infty)$  and h is CD on  $(-\infty, -1)$ . There is a point of inflection at (-1, h(-1)) = (-1, 6).

(d)



13.5/5 points | Previous Answers SCalcET8 4.3.042.

Consider the function below. (If an answer does not exist, enter DNE.)

$$h(x) = 5x^3 - 3x^5$$

(a) Find the interval of increase. (Enter your answer using interval notation.)

\$\$(-1,0)\(\text{0}\)(0,1)

$$(-1,1)$$

Find the interval of decrease. (Enter your answer using interval notation.)

\$\$(-∞,-1)∪(1,∞)



(b) Find the local minimum value(s). (Enter your answers as a comma-separated list.)

\$\$-2





Find the local maximum value(s). (Enter your answers as a comma-separated list.)

\$\$2



(c) Find the inflection points.

$$(x, y) = \begin{cases} (x, y) = \\ -\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}} \end{cases} \text{ (smallest } x\text{-value)}$$

$$(x, y) = \begin{cases} (x, y) = \\ -\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}} \end{cases} \text{ (smallest } x\text{-value)}$$

$$(x, y) = \begin{cases} (x, y) = \\ -\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}} \end{cases} \text{ (smallest } x\text{-value)}$$

$$(x, y) = \begin{cases} (x, y) = \\ -\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}} \end{cases} \text{ (smallest } x\text{-value)}$$

Find the interval where the graph is concave upward. (Enter your answer using interval notation.)  $\$\$(-\infty, -\sqrt{0.5}) \cup (0, \sqrt{0.5})$ 

(largest x-value)

$$\left(-\infty, -\frac{1}{\sqrt{2}}\right), \left(0, \frac{1}{\sqrt{2}}\right)$$

Find the interval where the graph is concave downward. (Enter your answer using interval notation.)  $\$\$(-\sqrt{0.5},0)\cup(\sqrt{0.5},\infty)$ 



(d) Use the information from parts (a)-(c) to sketch the graph. Check your work with a graphing device if you have one.







Solution or Explanation

(a)  $h(x) = 5x^3 - 3x^5 \Rightarrow h'(x) = 15x^2 - 15x^4 = 15x^2(1 - x^2) = 15x^2(1 + x)(1 - x)$ .  $h'(x) > 0 \Leftrightarrow -1 < x < 0$  and 0 < x < 1 [note that h'(0) = 0] and  $h'(x) < 0 \Leftrightarrow x < -1$  or x > 1. So h is increasing on (-1, 1) and h is decreasing on  $(-\infty, -1)$  and  $(1, \infty)$ .

(b) h changes from decreasing to increasing at x = -1, so h(-1) = -2 is a local minimum value. h changes from increasing to decreasing at x = 1, so h(1) = 2 is a local maximum value.

(c)  $h''(x) = 30x - 60x^3 = 30x(1 - 2x^2)$ .  $h''(x) = 0 \Leftrightarrow x = 0 \text{ or } 1 - 2x^2 = 0 \Leftrightarrow x = 0 \text{ or } x = \pm \frac{1}{\sqrt{2}}$ .  $h''(x) > 0 \text{ on } \left(-\infty, -\frac{1}{\sqrt{2}}\right)$  and  $\left(0, \frac{1}{\sqrt{2}}\right)$ , and h''(x) < 0 on  $\left(-\frac{1}{\sqrt{2}}, 0\right)$  and  $\left(\frac{1}{\sqrt{2}}, \infty\right)$ . So h is CU on  $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$  and  $\left(0, \frac{1}{\sqrt{2}}\right)$ , and h is CD on  $\left(-\frac{1}{\sqrt{2}}, 0\right)$  and  $\left(\frac{1}{\sqrt{2}}, \infty\right)$ . There are inflection points at  $\left(-\frac{1}{\sqrt{2}}, -\frac{7}{4\sqrt{2}}\right)$ , (0, 0), and  $\left(\frac{1}{\sqrt{2}}, \frac{7}{4\sqrt{2}}\right)$ .



14.3.2/0 points | Previous Answers SCalcET8 4.3.043.

| Consider the function below. | (If an answer doe | es not exist, enter DNE.) |
|------------------------------|-------------------|---------------------------|
|------------------------------|-------------------|---------------------------|

$$F(x) = x\sqrt{15 - x}$$

(a) Find the interval of increase. (Enter your answer using interval notation.)

# \$\$(-∞,10)



Find the interval of decrease. (Enter your answer using interval notation.)

\$\$(10,15)



(b) Find the local minimum value(s). (Enter your answers as a comma-separated list.)

\$\$DNE



Find the local maximum value(s). (Enter your answers as a comma-separated list.)

### \$\$10√5



(c) Find the inflection point.

$$(x, y) = ($$

$$$\$DNE$$

Find the interval where the graph is concave upward. (Enter your answer using interval notation.)

### \$\$DNE



Find the interval where the graph is concave downward. (Enter your answer using interval notation.)

 $$$(-\infty,15)$ 



(d) Use the information from parts (a)-(c) to sketch the graph. Check your work with a graphing device if you have one.



Solution or Explanation

(a) 
$$F(x) = x\sqrt{15 - x} \Rightarrow$$
  
 $F'(x) = x \cdot \frac{1}{2}(15 - x)^{-1/2}(-1) + (15 - x)^{1/2}(1) = \frac{1}{2}(15 - x)^{-1/2}[-x + 2(15 - x)] = \frac{-3x + 30}{2\sqrt{15 - x}}.$   
 $F'(x) > 0 \Leftrightarrow -3x + 30 > 0 \Leftrightarrow x < 10 \text{ and } F'(x) < 0 \Leftrightarrow 10 < x < 15. \text{ So } F \text{ is increasing on } (-\infty, 10) \text{ and } F \text{ is decreasing on } (10, 15).$ 

(b) F changes from increasing to decreasing at x = 10, so  $F(10) = 10\sqrt{5}$  is a local maximum value. There is no local minimum value.

(c) 
$$F'(x) = -\frac{3}{2}(x - 10)(15 - x)^{-1/2} \Rightarrow$$
  
 $F''(x) = -\frac{3}{2}\left[(x - 10)\left(-\frac{1}{2}(15 - x)^{-3/2}(-1)\right) + (15 - x)^{-1/2}(1)\right]$   
 $= -\frac{3}{2} \cdot \frac{1}{2}(15 - x)^{-3/2}[(x - 10) + 2(15 - x)] = \frac{3(x - 20)}{4(15 - x)^{3/2}}$ 

F''(x) < 0 on  $(-\infty, 15)$ , so F is CD on  $(-\infty, 15)$ . There is no inflection point.

(d)



15.4.5/0 points | Previous Answers SCalcET8 4.3.047.

Consider the function below. (If an answer does not exist, enter DNE.)

$$f(\theta) = 2\cos(\theta) + \cos^2(\theta), \quad 0 \le \theta \le 2\pi$$

(a) Find the interval of increase. (Enter your answer using interval notation.)





Find the interval of decrease. (Enter your answer using interval notation.)

\$\$(0,п)



(b) Find the local minimum value(s). (Enter your answers as a comma-separated list.)

\$\$-1



Find the local maximum value(s). (Enter your answers as a comma-separated list.)

\$\$DNE

DNE

(c) Find the inflection points.

$$(x, y) = \frac{\pi}{3} \cdot \frac{5}{4}$$
 (smaller x-value)
$$(x, y) = \frac{\pi}{3} \cdot \frac{5}{4}$$
 (smaller x-value)
$$(x, y) = \frac{5\pi}{3} \cdot \frac{5}{4}$$
 (larger x-value)

Find the intervals where the graph is concave upward. (Enter your answer using interval notation.) \$\$(п3,5п3)



Find the interval where the graph is concave downward. (Enter your answer using interval notation.) \$\$(0,п3)∪(5п3,2п)



(d) Use the information from parts (a)-(c) to sketch the graph. Check your work with a graphing device if you have one.



## Solution or Explanation

(a)  $f(\theta) = 2\cos(\theta) + \cos^2(\theta)$ ,  $0 \le \theta \le 2\pi \implies f'(\theta) = -2\sin(\theta) + 2\cos(\theta)$   $(-\sin(\theta)) = -2\sin(\theta)(1 + \cos(\theta))$ .  $f'(\theta) = 0 \iff \theta = 0, \pi$ , and  $2\pi$ .  $f'(\theta) > 0 \iff \pi < \theta < 2\pi$  and  $f'(\theta) < 0 \iff 0 < \theta < \pi$ . So f is increasing on  $(\pi, 2\pi)$  and f is decreasing on  $(0, \pi)$ .

(b)  $f(\pi) = -1$  is a local minimum value.

(c) 
$$f'(\theta) = -2\sin(\theta)(1 + \cos(\theta)) \Rightarrow$$
  
 $f''(\theta) = -2\sin(\theta)(-\sin(\theta)) + (1 + \cos(\theta))(-2\cos(\theta))$   
 $= 2\sin^2(\theta) - 2\cos(\theta) - 2\cos^2(\theta)$   
 $= 2(1 - \cos^2(\theta)) - 2\cos(\theta) - 2\cos^2(\theta) = -4\cos^2(\theta) - 2\cos(\theta) + 2$   
 $= -2(2\cos^2(\theta) + \cos(\theta) - 1) = -2(2\cos(\theta) - 1)(\cos(\theta) + 1)$ 

Since  $-2(\cos(\theta)+1) < 0$  [for  $\theta \neq \pi$ ],  $f''(\theta) > 0 \Rightarrow 2\cos(\theta)-1 < 0 \Rightarrow \cos(\theta) < \frac{1}{2} \Rightarrow \frac{\pi}{3} < \theta < \frac{5\pi}{3}$  and  $f''(\theta) < 0 \Rightarrow \cos(\theta) > \frac{1}{2} \Rightarrow 0 < \theta < \frac{\pi}{3}$  or  $\frac{5\pi}{3} < \theta < 2\pi$ . So f is CU on  $\left(\frac{\pi}{3}, \frac{5\pi}{3}\right)$  and f is CD on  $\left(0, \frac{\pi}{3}\right)$  and  $\left(\frac{5\pi}{3}, 2\pi\right)$ . There are points of inflection at  $\left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right) = \left(\frac{\pi}{3}, \frac{5}{4}\right)$  and  $\left(\frac{5\pi}{3}, f\left(\frac{5\pi}{3}\right)\right) = \left(\frac{5\pi}{3}, \frac{5}{4}\right)$ .

(d)



16.2/2 points | Previous Answers SCalcET8 4.3.057.MI.

Suppose the derivative of a function f is  $f'(x) = (x + 2)^4(x - 5)^7(x - 6)^6$ . On what interval is f increasing? (Enter your answer in interval notation.)





Solution or Explanation Click to View Solution 17.2/2 points | Previous Answers SCalcET8 4.5.003.

Use the guidelines of this section to sketch the curve.

$$y = x^4 - 4x$$









Solution or Explanation

$$y = f(x) = x^4 - 4x = x(x^3 - 4)$$

**A.** 
$$D = \mathbb{R}$$

**B.** x-intercepts are 0 and  $\sqrt[3]{4}$ , y-intercept = f(0) = 0

# C. No symmetry

D. No asymptote

**E.** 
$$f'(x) = 4x^3 - 4 = 4(x^3 - 1) = 4(x - 1)(x^2 + x + 1) > 0 \Leftrightarrow x > 1$$
, so  $f$  is increasing on  $(1, \infty)$  and decreasing on  $(-\infty, 1)$ .

**F.** Local minimum value f(1) = -3, no local maximum

**G.**  $f''(x) = \frac{12}{x^2} > 0$  for all x, so f is CU on  $(-\infty, \infty)$ . No IP.

н.



18.2/2 points | Previous Answers SCalcET8 4.5.006.

Use the guidelines of this section to sketch the curve.

$$y = x^5 - 5x$$









Solution or Explanation

$$y = f(x) = x^5 - 5x = x(x^4 - 5)$$

**A.**  $D = \mathbb{R}$ 

**B.** x-intercepts  $\pm \sqrt[4]{5}$  and 0, y-intercept = f(0) = 0

**C.** f(-x) = -f(x), so f is odd; the curve is symmetric about the origin.

D. No asymptote

**E.**  $f'(x) = 5x^4 - 5 = 5(x^4 - 1) = 5(x^2 - 1)(x^2 + 1) = 5(x + 1)(x - 1)(x^2 + 1) > 0 \Leftrightarrow x < -1 \text{ or } x > 1, \text{ so } f \text{ is increasing on } (-\infty, -1) \text{ and } (1, \infty), \text{ and } f \text{ is decreasing on } (-1, 1).$ 

**F.** Local maximum value f(-1) = 4, local minimum value f(1) = -4.

**G.**  $f''(x) = 20x^3 > 0 \Leftrightarrow x > 0$ , so f is CU on  $(0, \infty)$  and CD on  $(-\infty, 0)$ . IP at (0, 0).

н.



19.2/2 points | Previous Answers SCalcET8 4.5.009.

Use the guidelines of this section to sketch the curve.

$$y = \frac{x}{x - 4}$$



Solution or Explanation Click to View Solution 20.2/2 points | Previous Answers SCalcET8 4.5.011.

Use the guidelines of this section to sketch the curve.

$$y = \frac{x - x^2}{4 - 5x + x^2}$$









Solution or Explanation 
$$y = f(x) = \frac{x - x^2}{4 - 5x + x^2} = \frac{x(1 - x)}{(1 - x)(4 - x)} = \frac{x}{4 - x} \text{ for } x \neq 1. \text{ There is a hole in the graph at } \left(1, \frac{1}{3}\right).$$

**A.** 
$$D = \{x \mid x \neq 1, \frac{4}{4}\} = (-\infty, 1) \cup (1, \frac{4}{4}) \cup (\frac{4}{4}, \infty)$$

**B.** x-intercept = 0, y-intercept = 
$$f(0) = 0$$

C. No symmetry

**D.** 
$$\lim_{x \to \pm \infty} \frac{x}{4 - x} = -1$$
, so  $y = -1$  is a HA.  $\lim_{x \to 4^{-}} \frac{x}{4 - x} = \infty$ ,  $\lim_{x \to 4^{+}} \frac{x}{4 - x} = -\infty$ , so  $x = 4$  is a VA.

**E.** 
$$f'(x) = \frac{(4-x)(1)-x(-1)}{(4-x)^2} = \frac{4}{(4-x)^2} > 0 \ [x \neq 1, 4], \text{ so } f \text{ is increasing on } (-\infty, 1), (1, 4), \text{ and } (4, \infty).$$

F. No extrema

**G.**  $f'(x) = 4(4-x)^{-2} \Rightarrow f''(x) = -8(4-x)^{-3}(-1) = \frac{8}{(4-x)^3} > 0 \Leftrightarrow x < 4$ , so f is CU on  $(-\infty, 1)$  and (1, 4), and f is CD on  $(4, \infty)$ . No IP

н.



21.2/2 points | Previous Answers SCalcET8 4.5.013.

Use the guidelines of this section to sketch the curve.

$$y = \frac{x}{x^2 - 16}$$









Solution or Explanation

$$y = f(x) = \frac{x}{x^2 - 16} = \frac{x}{(x+4)(x-4)}$$

**A.** 
$$D = (-\infty, -4) \cup (-4, 4) \cup (4, \infty)$$

**B.** 
$$x$$
-intercept = 0,  $y$ -intercept =  $f(0) = 0$ 

**C.** f(-x) = -f(x), so f is odd; the graph is symmetric about the origin.

**D.** 
$$\lim_{x \to 4^+} \frac{x}{x^2 - 16} = \infty$$
,  $\lim_{x \to 4^-} f(x) = -\infty$ ,  $\lim_{x \to -4^+} f(x) = \infty$ ,  $\lim_{x \to -4^-} f(x) = -\infty$ , so  $x = \pm 4$  are VAs.  $\lim_{x \to \pm \infty} \frac{x}{x^2 - 16} = 0$ , so  $y = 0$  is a HA.

**E.** 
$$f'(x) = \frac{(x^2 - 16)(1) - x(2x)}{(x^2 - 16)^2} = -\frac{x^2 + 16}{(x^2 - 16)^2} < 0$$
 for all  $x$  in  $D$ , so  $f$  is decreasing on  $(-\infty, -4)$ ,  $(-4, 4)$  and  $(4, \infty)$ .

F. No local extrema

G. 
$$f''(x) = -\frac{(x^2 - 16)^2(2x) - (x^2 + 16)2(x^2 - 16)(2x)}{[(x^2 - 16)^2]^2}$$
$$= -\frac{2x(x^2 - 16)[(x^2 - 16) - 2(x^2 + 16)]}{(x^2 - 16)^4}$$
$$= -\frac{2x(-x^2 - 48)}{(x^2 - 16)^3}$$
$$= \frac{2x(x^2 + 48)}{(x + 4)^3(x - 4)^3}.$$

f''(x) < 0 if x < -4 or 0 < x < 4, so f is CD on  $(-\infty, -4)$  and (0, 4), and CU on (-4, 0) and  $(4, \infty)$ . IP at (0, 0)

н.



22.2/2 points | Previous Answers SCalcET8 4.5.015.

Use the guidelines of this section to sketch the curve.

$$y = \frac{x^2}{x^2 + 12}$$









Solution or Explanation  

$$y = f(x) = \frac{x^2}{x^2 + 12} = \frac{(x^2 + 12) - 12}{x^2 + 12} = 1 - \frac{12}{x^2 + 12}$$

**A.**  $D = \mathbb{R}$ 

**B.** y-intercept: f(0) = 0; x-intercepts:  $f(x) = 0 \Leftrightarrow x = 0$ 

**C.** f(-x) = f(x), so f is even; the graph is symmetric about the y-axis.

**D.**  $\lim_{x \to \pm \infty} \frac{x^2}{x^2 + 12} = 1$ , so y = 1 is a HA. No VA.

**E.** Using the Reciprocal Rule,  $f'(x) = -12 \cdot \frac{-2x}{(x^2 + 12)^2} = \frac{24x}{(x^2 + 12)^2}$ .  $f'(x) > 0 \Leftrightarrow x > 0$  and  $f'(x) < 0 \Leftrightarrow x < 0$ , so f is decreasing

on  $(-\infty, 0)$  and increasing on  $(0, \infty)$ .

**F.** Local minimum value f(0) = 0, no local maximum.

 $\textbf{G.} \ \ f''(x) = \frac{(x^2+12)^2 \cdot 24 - 24x \cdot 2(x^2+12) \cdot 2x}{[(x^2+12)^2]^2} = \frac{24(x^2+12)[(x^2+12) - 4x^2]}{(x^2+12)^4} = \frac{24(12-3x^2)}{(x^2+12)^3} = \frac{-72(x+2)(x-2)}{(x^2+12)^3}$   $f''(x) \ \ \text{is negative on } (-\infty, -2) \ \ \text{and } (2, \infty) \ \ \text{and positive on } (-2, 2), \ \ \text{so } f \ \text{is CD on } (-\infty, -2) \ \ \text{and } (2, \infty) \ \ \text{and CU on } (-2, 2). \ \ \text{IP at } \left(\pm 2, \frac{1}{4}\right).$ 



23.1/0 points | Previous Answers SCalcET8 4.5.024.

Use the guidelines of this section to sketch the curve.

$$y = \sqrt{x^2 + 3x} - x$$









Solution or Explanation Click to View Solution 24.2/2 points | Previous Answers SCalcET8 4.5.029.

Use the guidelines of this section to sketch the curve.

$$y = x - \frac{2}{2}x^{1/3}$$



Solution or Explanation Click to View Solution 25.1/0 points | Previous Answers SCalcET8 4.5.030.

Use the guidelines of this section to sketch the curve.

$$y = x^{5/3} - 5x^{2/3}$$



-10

-15

Solution or Explanation Click to View Solution -10

-15

26.2/2 points | Previous Answers SCalcET8 4.5.031.

Use the guidelines of this section to sketch the curve.

$$y = \sqrt[3]{x^2 - 16}$$



Solution or Explanation Click to View Solution