实验 10 正弦稳态谐振电路的研究

- 一、实验目的
 - 1) 研究正弦稳态下谐振电路的特性
 - 2) 学习谐振曲线的测量方法
- 二、实验原理及步骤
- 1) RLC串联电路的特性

RLC串联电路的阻抗Z是电源角频率 ω 的函数,即

$$Z = R + j(\omega L - \frac{1}{\omega C}) = |Z| / \angle \varphi$$

当 $\omega L - \frac{1}{\omega c} = 0$ 时,电路处于串联谐振状态:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $f_0 = \frac{1}{2\pi\sqrt{LC}}$

显然,谐振频率仅与元件电感L,电容C的数值有关,而与电阻R和激励电源的角频率 ω 无关。

2) RLC并联电路的特性

并联电路的导纳

$$Y(j\omega) = G + j(\omega C - \frac{1}{\omega L}) = G + jB$$

当 $Im[Y(j\omega)]=0$ 时,电路发生谐振,则有 $\omega_0 C-\frac{1}{\omega_0 L}=0$,即

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 $f_0 = \frac{1}{2\pi\sqrt{LC}}$

3)谐振电路的品质因数

在谐振时回路阻抗|Z|为最小值,电感(或电容)上的电压与激励电压之比称为品质因数Q,即

$$Q = \frac{U_L}{U_S} = \frac{U_C}{U_S} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}} \quad (\ddagger \sharp)$$

$$Q = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG} \qquad (\text{ } \mathring{\#} \text{ } \mathring{\text{B}})$$

- 4) 1. RLC 串联谐振电路
- ①测量并绘制 I-f谐振曲线
- ②测量并绘制 U_c -f谐振曲线
- ③测量并绘制 u_{ι} -f谐振曲线
- ④测量并计算Q、 f_c 、 f_t 、 f_0 值并与理论值相比较
- 2.RLC并联谐振电路
- ①列表点测并绘制I -f谐振曲线
- ②在谐振时测量计算Q,并与理论值相比较
- 3.选取步骤一中的串联谐振电路,选取不同电容值 C,(取 $C=0.022\mu F$ 、
- $0.047\mu F$ 、 $1\mu F$),取 R=200 Ω 、L=200mH,则电路 Q 值改变,将 Q、 ω_0 、 I_0 的变化填入表格。增加测试点,测量不同 $\frac{\omega}{\omega_0}$ 时对应的相对抑制比 $\frac{I}{I_0}$ 。
- 三、实验电路及元件参数

(1) RLC串联谐振电路

 $U = 5\sin\omega t \ V$ $R = 200\Omega \ L = 200mH \ C = 0.1\mu F$

(2) RLC并联谐振电路

 $U=5sin\omega t\ V$ $R2=30K\Omega$ L=200mH $C=0.1\mu F$

四、数据表格与实验分析

1.RLC串联谐振电路

f	0.1	1	1.125	1.5	2	2.5	3	3.5	4	5
ı	0.323	13.931	24.61	5.649	2.822	1.952	1.514	1.246	1.063	0.826
UC	5.04	21.886	36.367	5.916	2.217	1.226	0.793	0.56	0.418	0.26
UL	0.0408	17.735	35.246	10.787	7.184	6.211	5.784	5.553	5.413	5.257

(1) 数据分析:

在得到的数据表格中可以很明确地看出I、 U_C 、 v_L 都是按照先增大再

减小的规律变化。电路处于谐振状态时的特性,电路相当于纯电阻电路,此电流值达到最大,理论值 $f_0 = \frac{1}{2\pi\sqrt{LC}} = 1.125 KHZ$,通过作图得出曲线最高点对应频率在1KHZ左右。

(2) 实验过程分析:

在实验过程中考虑到电源的频率需要改变,我们将功率函数电源作为电路的电源,峰值5V,波形为正弦波。实验室中电感的适用范围为 $50mH \sim 450mH$,考虑到实验中要求 f_0 在2KHZ左右,功率函数电源输出功率较小应使L=200mH。当频率达到 $1\sim 1.5KHZ$ 时小心转动频率旋钮注意最大值对应的频率。测量电流电压时及时更换量程。

2. RLC并联谐振电路

f	1	1.1	1.125	1.2	1.5	2	3
ı	0.731	0.175	0.183	0.55	1.931	3.245	4.237
IC	3.048	3.387	3.464	3.675	4.264	4.689	4.909
IL	3.762	3.455	3.378	3.15	2.339	1.447	0.673
f					_	_	
_	4	4.5	5	5.5	6	6.5	7
i	4.577	4.668		4.779		4.842	4.864
ı		4.668			4.815		

(1)数据分析:

由于实际电感、电容存在内阻,在实验中我们选择将三个元件并联形成谐振电路。从上表中数据可得电流值先减小后增加,中间存在最低点。当电路发生并联谐振时电感电容断路,此时电流值最小,即最低点对应频率为谐振频率,其值约为1.125KHZ。当发生谐振时记录 $U_R=6.59V$ 、 $I_C=9.23mA$,计算可得 $Q\approx42.0$,理论值 $Q_0\approx42.5$,则 $E=\frac{Q_0-Q}{Q_0}=\frac{42.5-42.0}{42.5}=1.18%$

(2) 实验过程分析:

并联电路中需满足Q > 30,为得到合适电流值取 $R = 30K\Omega$ 、L = 50mH、 $C = 0.1\mu F$,当R较大时电流较小,所以电阻值可以尽量大一些,功率函数电源的设置不变。当电流值逐渐减小直至最小值时,测出 U_R 、 I_c 便于计算Q值。将谐振时的 I_c 与 I_L 相比较,若两者近似相等即此时电路发生并联谐振。

3.串联谐振通用曲线绘制

参考 RLC 串联谐振电路,选取不同的电容值(取 C=0.022 μF 、0.047

 μF 、1 μF),取 R=200 Ω 、L=200mH,则电路 Q 值改变,分别为(Q=15.075、10.314、2.236),谐振频率分别为($\omega_0 = \frac{1}{1368}$ 、 $\frac{1}{1620}$ 、 $\frac{1}{350}$),谐振电流分别为(I_0 =24.997、24.998、24.996)。增加测试点,测量不同 $\frac{\omega}{\omega_0}$ 时对应的相对抑制比 $\frac{I}{I_0}$ 填入表中。

$\frac{I}{I_0} \frac{\omega}{\omega_0}$	0.2	0.4	0.6	1	1.6	2	3
$Q_1 = 15.075$	0.013842	0.031564	0.062087	1	0.067848	0.044165	0.024843
$Q_2 = 10.314$	0.020202	0.046124	0.090567	1	0.098888	0.064485	0.036323
$Q_3 = 2.236$	0.093135	0.209353	0.389342	1	0.414106	0.284125	0.164746

分别绘制三条通用曲线如下:

(1) Q=15.075 时

(2) Q=10.314 时

(3) Q=2.236 时

五、关于实验的思考研究

在本实验中,遇到的一些问题:

- ① 电源:采用功率函数电源,因为它可以调节频率,但输出功率很小,为保证能测到数据,需设置适当的参数。
- ② 元件参数:由于实验中对参数有必须的要求,在满足要求的同时尽可能尽量合理利用电流表电压表量程,同时切记,实验室的元件有有限的可选值。
- ③ 频率: 当频率接近理论值范围时小心调节频率使其达到峰值。研究与思考:

在本次实验中品质因数 $Q_1 > 3$ 、 $Q_2 > 30$,串联电路中,Q值较小需要的R值较小,电路的通频带宽,使电路的精度高,数值更准确,更适用于电源内阻较小的情况;并联电路中,Q值越大,通频带窄,电路可选择性强。当电源内阻较大时,较大的R值会降低Q值而影响电路性能,因此高内阻电源更适合采用并联谐振电路。