Math 156, Sec 4, H.W. 4 Franchi-Pereira, Philip

February, 26, 2024

Problem 1 Suppose $n \in Integers$. If n^2 is odd then n is odd.

Proof by contrapositive: Suppose n is even, then there exists a $k \in \mathbb{Z}$ such that n = 2k. Therefore, $n^2 = (2k)^2 = 4k^2 = 2(2k^2)$, and since $2k^2$ is also an integer, $2(2k^2)$ is even, and so n^2 is even.

Problem 2 Suppose $a, b, c \in Integers$. If a does not divide bc then a does not divide b.

Proof by Contrapositive: Suppose a does divide b. Then there exists a $q \in \mathbb{Z}$ such that b = aq, and so bc = aqc. It is clear that a|aqc. Therefore a|bc.

Problem 3 For any $a, b \in \mathbb{Z}$, it follows that $(a+b)^3 = a^3 + b^3 \pmod{3}$.

Direct Proof: Expanding the terms, we see that $(a+b)^3 = (a^3 + b^3) + 3(a^2b + ab^2)$, and so $(a+b)^3 - (a^3 + b^3) = (a^3 + b^3) + 3(a^2b + ab^2) - (a^3 + b^3) = 3(a^2b + ab^2)$. Since $3|(a+b)^3 - (a^3 + b^3)$, by the definition of modulus it follows that $(a+b)^3 = a^3 + b^3 \pmod{3}$.

Problem 4 Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$, then x > -1.

Proof by Contrapositive Suppose instead $x \le -1$. Then $x^2 \ge 1$. Next multiply both sides by x, and since x is known to be negative, we flip the inequality to get $x^3 \le x$ and finally $x^3 - x \le 0$.

- Note for the HW. For the following proofs, the logic statement required by the assignment is the first line of the proof.
 - Problem 5 There exist no integers a and b for which 21a + 30b = 1. **Proof by contradiction**: Suppose there exists two integers a and b such that 21a + 30b = 1. That would mean that 3(7a + 10b) = 1. Letting k = 7a + 10b, the equation becomes 3k = 1. This is a contradiction, as there is no such integer.

Problem 6 If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.

Proof by contradiction: Suppose instead that if a and b are positive

real numbers, then $a+b<2\sqrt{ab}$. Without loss of generality, say $a\geq b$. Then a=b+r, for some $r\in\mathbb{R}$ and so a+b=2b+r. Meanwhile $2\sqrt{ab}=2\sqrt{b^2+br}$. Since both sides of the inequality are clearly positive, we may square both sides, showing

$$(2b+r)^{2} < 2\sqrt{b^{2}+br}$$

$$4b^{2}+4br+r^{2} < 4b^{2}+4br$$

$$r^{2} < 0$$

However, for any value of $r \in \mathbb{R}$, r^2 is clearly greater than or equal to 0 and so this is a contradiction.

Problem 7 Prove by contradiction that no odd integer can be expressed as the sum of three. even integers.

Proof by contradiction: Assume there exists an odd integer x, and even integers a, b, c such that x = a + b + c. Since a, b, c are even, there exists some $k_1, k_2, k_3 \in \mathbb{Z}$ such that $a = 2k_1, b = 2k_2, c = 2k_3$. The sum of these integers is then $x = a + b + c = 2k_1 + 2k_2 + 2k_3 = 2(k_1 + k_2 + k_3)$. Since $k_1 + k_2 + k_3$ is an integer, $2(k_1 + k_2 + k_3)$ is even. But since x was assumed to be odd, that is a contradiction.