

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Randomized Algorithms

- Exploit randomness during computation
 - Pivot selection in Quicksort
 - Average case analysis
 - Primality testing
- Question: How many comparisons are needed to find the second largest number on a sequence of n numbers?
 - Naive algorithm: 2n-3 comparisons why?
 - \triangleright Divide and Conquer algorithm: 3n/2 comparisons why?
 - ➤ Simple randomized algorithm: n-1+2logn comparisons on the average why?

SYNOPSIS

- Expectation versus High Probability
- Finding The Two Largest
- Find the kth smallest element
- Quicksort
- Analysis of Quicksort

Expected vs. High Probability Bounds.

- Expected bounds
 - the average case across all random choices used in the algorithm
 - Once in a while, the work could be much larger
- High-probability bounds
 - > it is very unlikely that the cost will be above some bound
 - an algorithm on n elements has O(n) work with probability at least 1-1/n⁵
 - This means that only once in about n^5 tries will the algorithm require more than O(n) work

Expected vs. High Probability Bounds.

- we had 100 students take exams, most of the time each student takes 1 hour, but that once on every 100 exams or so, each student gets hung up and takes 101 hours
 - > The average for each student is (99*1+1*101)/100 = 2 hours
 - > the expected maximum will be close to 100 hours
 - on most exams with a hundred students one student will get hung up, so the expected maximum will be close to 100 hours, not 2 hours
 - > Every student will finish in 2 hours with probability 1-1/n5

剛

SYNOPSIS

- Discrete Probability: Let's Toss Some Dice
- Finding The Two Largest
- Find the kth smallest element
- Quicksort
- Analysis of Quicksort

Finding The Top Two Elements

```
max2 S =
   let
3
       replace ((m_1, m_2), v) =
         if v \leq m_2 then (m_1, m_2)
         else if v \leq m_1 then (m_1, v)
         else (v, m_1)
      val init = if S_1 \geq S_2 then (S_1, S_2) else (S_2, S_1)
 8
   in
      iter replace init S\langle 3,\ldots,n\rangle
10 end
```

- We will do exact analysis
- 1+2(n-2)=2n-3 comparisons in the worst case (Why?)
- A Divide and Conquer algorithm gives 3n/2-2 (how?)

Worst Case Analysis

```
max2 S =
   let
       replace ((m_1, m_2), v) =
         if v \leq m_2 then (m_1, m_2)
         else if v \leq m_1 then (m_1, v)
         else (v, m_1)
      val init = if S_1 \geq S_2 then (S_1, S_2) else (S_2, S_1)
 8
   in
       iter replace init S\langle 3,\ldots,n\rangle
10 end
```

- An already sorted sequence (e.g.,<1,2,3,...,n>) will need exactly
 2n-3 comparisons
- But this happens with 1/n! chance (Why?)

A Randomized Algorithm

- The worst-case analysis is overly pessimistic (why?)
- Consider the following variant
 - **➢**On input of a sequence *S* of *n* elements
 - 1. Let T=permute(S, π), where π is a random permutation (i.e., we choose one of the n! permutations)
 - ✓ 2. Run the max2 algorithm on T
 - No need to really generate the permutation!
 - ✓ Just pick an unprocessed element randomly until all elements are processed
 - ✓ It is convenient to model this by one initial permutation!

```
max2 S =
2 let
     replace ((m_1, m_2), v) =
        if v \leq m_2 then (m_1, m_2)
        else if v \leq m_1 then (m_1, v)
        else (v, m_1)
 val init = if S_1 \geq S_2 then (S_1, S_2) else (S_2, S_1)
  in
     iter replace init S\langle 3,\ldots,n\rangle
  end
```

- X_i: an indicator random variable, denoting whether
 Line 5 gets executed for the value at S_i
- Y is the number of comparisons


```
max2 S =
   let
      replace ((m_1, m_2), v) =
         if v \leq m_2 then (m_1, m_2)
         else if v \leq m_1 then (m_1, v)
      else (v, m_1)
      val init = if S_1 \geq S_2 then (S_1, S_2) else (S_2, S_1)
8 in
      iter replace init S\langle 3,\ldots,n\rangle
10 end
```


$$Y(e) = \underbrace{1}_{\text{Line 7}} + \underbrace{n-2}_{\text{Line 4}} + \underbrace{\sum_{i=3}^{n} X_i(e)}_{\text{Line 5}}$$

- This expression in true regardless of the random choice we're making
- We're interested in computing the expected value of Y
- By linearity of expectation, E[Y] =?

- Problem boils down to computing $E[X_i]$, for i=3,...,n!
- What is the probability that T_i>m₂?
 - $T_i > m_2$ holds when T_i is either the largest or the second largest in $\{T_1, ..., T_i\}$
- So, what is the probability that T_i is one of the two largest elements in a randomly permuted sequence of length i?

•
$$E[X_i] = 1 \cdot 2/i = 2/i$$

- $H_n \leq 1 + \log_2 n$
- $E[Y] \leq n-2+2\log_2 n$

SYNOPSIS

- Discrete Probability: Let's Toss Some Dice
- Finding The Two Largest
- Find the kth smallest element
- Quicksort
- Analysis of Quicksort

- Input: a sequence of n numbers (not necessarily sorted)
- Output: the Kth smallest value in S (i.e.,(nth (sort S) k))
- Requirement: O(n) expected work and O(log²n) span
- We can't really sort the sequence!


```
1 \quad kthSmallest(k,S) = \mathbf{let}
2 \quad p = S_0
3 \quad L = \langle x \in S \mid x 
<math display="block">4 \quad R = \langle x \in S \mid x > p \rangle
5 \quad \mathbf{in}
6 \quad \mathbf{if} \quad (k < |L|) \quad \mathbf{then} \quad kthSmallest(k,L)
7 \quad \mathbf{else} \quad \mathbf{if} \quad (k < |S| - |R|) \quad \mathbf{then} \quad p
8 \quad \mathbf{else} \quad kthSmallest(k - (|S| - |R|), R)
```

Let X = max{|L|,|R|} / |S|, which

$$W(n) = W(X \cdot n) + O(n)$$

$$S(n) = S(X \cdot n) + O(\log n)$$

- We want to find E [X]?
 - > The probability that we land on a point on the x axis is 1/n:

$$\mathbf{E}[X] = \frac{1}{n} \sum_{i=0}^{n-1} \max\{i, n-i-1\}/n$$

> the size of L and size of R:

$$\sum_{i=x}^{y} i = \frac{1}{2}(x+y)(y-x+1).$$

- Theorem 10.16. Starting with size n, the expected size of S in algorithm kthSmallest after i recursive calls is (3/4)ⁱn
 - ➤ Let Yi be the random variable representing the size of the result after step (recursive call) i

$$Y_i = n \prod_{j=1}^i X_j$$

$$\mathbf{E}[Y_i] = \mathbf{E}\left[n\prod_{j=1}^i X_j\right] = n\prod_{j=1}^i \mathbf{E}[X_j] \le \left(\frac{3}{4}\right)^i n$$

- W=?
 - > The work at each step is linear: W_{contract}(n)≤ k₁n+k₂

$$\mathbf{E}\left[W_{\texttt{kthSmallest}}(n)\right] \leq \sum_{i=0}^{n} (k_1 n \left(\frac{3}{4}\right)^i + k_2)$$

why?
$$\leq k_1 n \left(\sum_{i=0}^n \left(\frac{3}{4}\right)^i\right) + k_2 n$$

$$\leq 4k_1n + k_2n$$
 $\in O(n)$

- S=? /参
 - The span at each step is linear: $S_{contract}(n) \le k_1 \log n + k_2$
- Bound the span of the algorithm
 - Consider step i = 10 log₂ n
 - > expected size upper bounded by n(3/4)10log n
 - $> n(3/4)^{10\log_2 n} \approx n \times n^{-10\log_2(4/3)} \approx n^{-3.15}$
 - > According Markov's Inequality:

What this mean?

$$\Pr\left[Y_{10\log_2 n} \ge 1\right] \le E[Y_{10\log_2 n}]/1 = n^{-3.15}$$

- > the number of steps is O(log n) with high probability
- ➤ Each step has span O(log n) so the overall span is O(log² n) with high probability

SYNOPSIS

- Discrete Probability: Let's Toss Some Dice
- Finding The Two Largest
- Find the kth smallest element
- Quicksort
- Analysis of Quicksort

Quicksort

- Originally invented and analyzed by Hoare in 1960's
- I strongly urge to watch Jon Bentley on "Three beautiful Quicksorts" at
 - > www.youtube.com/watch?v=QvgYAQzg1z8

M Sequential Quicksort


```
int i, j;
for (i = low, j = high - 1; ;)
   while ( a[ ++i ] < pivot );
   while (pivot < a[ --j ]);
   if(i >= j)
   break;
   swap(a, i, j);
// Restore pivot
swap(a, i, high - 1);
quicksort(a, low, i - 1); // Sort small elements
quicksort(a, i + 1, high); // Sort large elements
```


Quicksort

Is there parallelism in quicksort?

```
1 sort S =
3 else
               let
              p = pick \ a \ pivot \ from \ S
                S_1 = \langle s \in S \mid s 
         S_2 = \langle s \in S \mid s = p \rangle
                  S_3 = \langle s \in S \mid s > p \rangle
                  (R_1,R_3) = (sort S_1 \parallel sort S_3)
        10
               in
                  R_1 ++ S_2 ++ R_3
        11
```


12

end

Quicksort

- Each call to Quicksort either makes
 - > No recursive calls (base case), or
 - > Two recursive calls
- Call tree is a binary
- Depth the call tree determines the span of the

algorithm

<7, 4, 2, 3, 5, 8, 1, 6>

Picking The Pivot

- Always pick the first element
 - **Why?** Worst case O(n²) work **Why?**
 - ➢ In practice, almost sorted inputs are not uncommon
- Pick the median of 3 elements (e.g., first, middle and last elements)
 - > could possible divide evenly
 - worst case is still bad
- Pick an element at random
 - we hope this divides evenly in expectation
 - \triangleright leading to expected $O(n\log n)$ work and $O(\log^2 n)$ span

SYNOPSIS

- Discrete Probability: Let's Toss Some Dice
- Finding The Two Largest
- Find the kth smallest element
- Quicksort
- Analysis of Quicksort

Picking The Pivot

- Pick first element
 - **→** Worst case *O*(*n*²) work
 - > Expected O(nlogn) work
 - ✓ Averaged over all possible orderings
 - ➤ Work well on the average
 - Slow on some, possibly common, cases
- Pick a random element
 - Expected worst-case O(nlogn) work
 - ✓ For input in any order, the expected work is O(nlogn)
 - \triangleright No input has expected $O(n^2)$ work
 - With a small probability, we could be unlucky and have $O(n^2)$ work

M Randomized Quicksort

Assign a uniformly random priority to each number in

```
[0,1]
                 fun quicksort(S) =
                    if |S| = 0 then S
                    else let
                          val p = pick as pivot the highest priority element from S
                          val S_1 = \langle s \in S \mid s 
                          val S_2 = \langle s \in S \mid s = p \rangle
                          val S_3 = \langle s \in S \mid s > p \rangle
                          val (R_1, R_3) = (quicksort(S_1) \parallel quicksort(S_3))
                       in
                           append(R_1, append(S_2, R_2))
                       end
```

Once the priorities are assigned, the algorithm is deterministic

Randomized Quicksort

- Count comparisons made!
 - Almost all the work is comparisons
 - $X_n =$ # of comparisons quicksort makes on input of size n
- Find E[X_n] for any input sequence S
- Notation:
 - ➤ Let **T**=sort (S)
 - T_i and T_j refer to elements in the final sorted order and i < j and $T_i \le T_i$
 - $\triangleright p_i$ refers to priority chosen for T_i
 - $\triangleright A_{i,j} = 1$ if T_i and T_j were ever compared during the sort

- Crucial point is how to model A_{i,i}
- In any one call to quicksort, there are three cases
 - \rightarrow Pivot p is either T_i or $T_j \Rightarrow A_{i,j} = 1$
 - $> T_i$
 - Either $p < T_i$ or $p > T_j \Rightarrow T_i$, $T_j \in S_1$ or T_i , $T_j \in S_2$
- If two elements are compared in a quicksort call, they will never be compared again in any other call!

HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOG

$$X_n \leq \sum_{i=1}^n \sum_{j=i+1}^n A_{ij}$$

- The non-optimized code compares each element to pivot 1 times

 - | ½...
 | 2 | val S₁ = <s∈S| s<p> | s | val S₁ = <s∈S| s<p> | val S₁ = <s<p> | val S₁ = <s<
 - 3 val $S_2 = \langle s \in S | s = p \rangle$ 4 val $S_3 = \langle s \in S | s > p \rangle$
- By linearity of expectation

$$\mathbf{E}\left[X_n
ight] \leq \sum_{i=1}^n \sum_{j=i+1}^n \mathbf{E}\left[A_{ij}
ight]$$

- Consider first when the pivot is one of T_i, T_{i+1},..., T_i
- T_i and T_i are compared $\Leftrightarrow p_i$ or p_i is the highest priority among $\{p_i, p_{i+1}, ..., p_i\}$
 - \triangleright Assume T_{k} , i < k < j has higher priority
 - For any subdivision..., T_i , ..., T_i , T_k will become a pivot and separate T_i and T_i
 - T_i and T_i will never be compared!

$$\mathbf{E}[A_{ij}] = \mathbf{Pr}[A_{ij} = 1]$$

$$= \mathbf{Pr}[p_i \text{ or } p_j \text{ is the maximum in } \{p_i, \dots, p_j\}]$$

$$= \frac{2}{j-i+1} \text{ (Why ?)}$$

- j-i +1 elements between p_i and p_j and each is equally likely to be the maximum
- We want either p_i or p_j , hence 2/(j-i+1)
- T_i is compared to T_{i+1} with probability 1

$$\mathbf{E}[X_n] \le \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[A_{ij}]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} n \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\le 2 \sum_{i=1}^{n-1} H_n$$

$$= 2nH_n \in O(n \log n)$$

- Indirectly, average work for basic deterministic quicksort is O(nlogn)
 - > Just shuffle data randomly and apply the basic algorithm
 - to picking random priorities

Exercise 10.20. Rewrite the quicksort algorithm so that it takes a comparison function $cmp: \alpha \times \alpha \rightarrow order$ and a sequence of type α seq, and only uses the comparison once when comparing the pivot with each key. The type order is the set $\{Less, Equal, Greater\}$.

Alternative Analysis

$$X(n) = X(Y_n) + X(n-Y_n-1) + n-1$$

• Random variable Y_n is the size of S_1

$$\mathbf{E}[X(n)] = \mathbf{E}[X(Y_n) + X(n - Y_n - 1) + n - 1]$$

$$= \mathbf{E}[X(Y_n)] + \mathbf{E}[X(n - Y_n - 1)] + n - 1$$

$$= \frac{1}{n} \sum_{i=0}^{n-1} (\mathbf{E}[X(i)] + \mathbf{E}[X(n-i-1)]) + n - 1$$

M Alternative Analysis

$$\mathbf{E}[X(n)] = \frac{1}{n} \sum_{i=0}^{n-1} (\mathbf{E}[X(i)] + \mathbf{E}[X(n-i-1)]) + n - 1$$

$$= \frac{2}{n} \sum_{i=0}^{n-1} \mathbf{E}[X(i)] + n - 1$$

With telescoping, this also solves as O(nlogn)

們

Expected Span

- S is split into L(ess), E(qual) and (g)R(eater)
- Let $X_n = \max\{|L|,|R|\}$
- We use filter to partition
 - $S(n) = S(X_n) + O(\log n)$

Why?

The only thing is to calculate the depth of the pivot tree!

Expected Span

- the depth of the pivot tree is O(log n) by relating it to the number of contraction steps of the randomized kthSmallest
- In kthSmallest, we have analyzed
 - each node had depth greater than 10 lg n with probability at most 1/n^{3.15}
 - part has any node of depth 10 lg n is also 1/n3.15?
 - ➤ It is wrong!

Expected Span

- we have multiple nodes the probably increases that at least one will go above the bound
- Here is where we get to apply the union bound
 - For a collection of events $A_1,...,A_n$ the bound is

$$\left| \mathbf{Pr} \left[\bigcup_{1 \le i \le n} A_i \right] \le \sum_{i=1}^n \mathbf{Pr} \left[A_i \right]$$

Expected Span

- Here is where we get to apply the union bound
 - the individual events are the depths of each node being larger 10 lg n
 - the union is the probability that any of the nodes has depth larger than 10 lg n
 - There are n events each with probability 1/n^{3.15}, so the union bound states

Pr [depth of quicksort pivot tree >
$$10 \lg n$$
] $\leq \frac{n}{n^{3.15}} = \frac{1}{n^{2.15}}$

Alternative Analysis

Bernoulli's Inequality

$$\int_{a}^{a} (1^{2} + x)^{\alpha} \ge 1 + \alpha \cdot x \quad (x > -1, \alpha > 0)$$

- Assume $x = -\frac{1}{n^{3.15}}, \alpha = n$
- Then, we can get

$$(1 - \frac{1}{n^{3.15}})^n \ge 1 - n \cdot \frac{1}{n^{3.15}} = 1 - \frac{1}{n^{2.15}}$$

10)3

Alternative Analysis

$$\Pr\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} A_{ij} > 0\right] = 1 - \Pr\left[\sum_{i=1}^{n} \sum_{j=i+1}^{n} A_{ij} = 0\right]$$

$$1 - \Pr\left[\prod_{i=1}^{n} x_{i} = 0\right]$$

$$= 1 - \left(1 - \frac{1}{n^{3.15}}\right)^{n}$$

$$\leq 1 - \left(1 - n \cdot \frac{1}{n^{3.15}}\right)$$

$$=\frac{1}{n^{2.15}}$$

¹⁹ SUMMARY

- Discrete Probability: Let's Toss Some Dice
- Finding The Two Largest
- Finding The kth Smallest Element
- Quicksort
- Analysis of Quicksort

