Operation Research: Mini Project

Transportation Problem:

If there are more than one centres, called origins from where goods need to be shipped to more than one places called "destinations" and the cost of shipping from each of the origins to each of the destinations being different andknown, the problem is to ships the goods from various origins to different destinations in a such manner that the cost of shipping or transportation is minimum.

The transportation problem is to transport various amounts of single homogenous commodity, that are initially stored atvarious origins to different destinations in such a way thatthe total transportation cost is minimum.

There are 3 method's in transportation problem:

- 1. Least Cost Cell Method
- 2. Northwest Corner Method
- 3. Vogel's Approximation Method

Solving the below problem using transportation method.

The DREAM - DRINK Company has to work out a minimum cost transportation schedule to distribute crates of drinks from three of its factories X, Y, and Z to its three warehouses A, B, and C. The required particulars are given below. Find the least cost transportation schedule.

From/To	A	В	С	Crates Avaiable	
X	75	50	50	1040	
Y	50	25	75	975	
Z	25	125	25	715	
Crates required.	1300	910	520	2730	

1. Solve using Least Cost Method.

131	215 77	DU++	NT. LOI	00 1.	has to was to pot a taken such a trom three of the housen ABEC.	3
	Frantio X X Z Creater Resurred Demond	75 50 36 1300	B 50 25 125 910	C 50	1040 975 715	
	Demond Demond	nd = 130	B 50 25 125 910 07910- 07910-	C 50 75 25 620 +620 = +715=	t (ell metrod. sopply 1040 975 715 2730 2730 2730 2730	
	6000	, Using	Leas	t lost	(el methal.	

Implementation of above problem in R language.

Code:

```
library(lpSolve)
```

```
costs <- matrix(c(75,50,50,
75,25,75,
25,125,25), nrow = 3, byrow = TRUE)
colnames(costs) <- c("A","B","C")
rownames(costs) <- c("X","Y","Z")
```

```
row.signs <- rep("<=",3)
row.rhs <- c(1040, 975, 715)
col.signs <- rep(">=",3)
col.rhs <- c(1300, 910, 520)
```

TotalCost <- lp.transport(costs,"min",row.signs,row.rhs,col.signs,col.rhs)

lp.transport(costs,"min",row.signs,row.rhs,col.signs,col.rhs)\$solution
print(TotalCost)