# Simulation of Crude Oil Exploration & Production



**Project Overview** 



#### The Petroleum Industry

#### **Upstream**

The process of exploring potential oilfields and producing crude oil and natural gas when discovered (E&P)

#### **Midstream**

Primarily concerned with connecting the upstream and downstream with transportation and storage as well as some processing

#### **Downstream**

Refining the products, marketing, and point of sale operations are the bulk of the downstream sector



#### **Project Goals & Narrative**

- A firm is interested in drilling a single onshore well for crude oil in Northern Texas
- Analyze the costs of Exploration in detail
- Forecast the price of crude (WTI-spot)
- Generate production forecasts and costs
- Understand NPV of entire E&P operation
- 5 years to break even

## 2 — E&P Model





## **Pre-Hydrocarbon Discovery**

#### Seismic Methods

Consecutive swatches of land are scanned in 2D or 3D to provide an understanding of the geology of the area. Costs are driven by the dificulty of the terrain and technology used. Analysis and processing costs added.





#### **Exploratory Well**

## **Drilling Time**

The major cost of well drilling is the labor and equipment. Drilling prices are quoted in "dayrates," a contract cost per day.





## **Exploratory Well**

## **Drilling Depth**

A driver for numerous other exploratory costs, the depth of well is important to estimate.

#### 2016 Estimate

Point Forecast: 8075 ft 95% Interval:{7819 ft, 8332 ft}





## **Mud Analysis**

During and following exploratory drilling, samples of mud and extracted rock are continuously analyzed. The cost of these geological tests are based on drilling depth.





## **Probability of Finding Oil**

## Dry Hole Risk

Distinct chance of not finding any extractable crude oil.

 $P_{Successful\ Well} = P_{Hydrocarbons} \times P_{Reservoir} \times P_{Seal} \times P_{Structure}$ 



## **Exploration Simulation**



#### **Simulation Parameters**

-100,000 Iterations

-0.049% Blowout Probability

#### **Total Cost Descriptive Statistics**

min: 691.92

mean: 1988.20

max: 11747.77

std dev: 468.40

var: 219401.02





#### **Production Duration**

## **Exponential Decline**

As crude oil is extracted, the pressure from the water content decreases resulting in decline production

$$q_t = q_i e^{-Dt}$$

 $q_t$  = Rate of production at time t $q_i$  = Initial rate of production

D = decline rate %

t = time

#### **Production Over 2 Years**





#### Oil Price

#### West Texas Intermediate

Produced oil will be marked to the WTI spot price on a daily basis, and discounted to the present at the 10 year Treausry rate







## **Geometric Random Walk**

Due to the discussed recent changes, this model was implemented to simulate the price path of the asset in a conservative manner



# \$-2,198,004

## **Final Simulation**



## **Exploration Simulation**



#### **Simulation Parameters**

-100,000 Iterations

-0.049% Blowout Probability

#### **Total Cost Descriptive Statistics**

min: 691.92

mean: 1988.20

max: 11747.77 std dev: 468.40

var: 219401.02



#### Conclusion

#### **Exploration is EXPENSIVE**

Optimizing for oil price at T=0 as wel as years of production still made profit unlikely

#### **Production Decline is FAST**

Increasing the time of production greatly does not contribute much to revenue

#### **Dry Holes**

In the current economy, any project that is started is likely better off not finding oil

#### Oil Prices

Using previous "stable" values of \$80 and \$100 resulted in much more favorable estimates

#### Simulation Parameters

Computational limits made simulating past 1500 iterations for the final Monte Carlo challenging

#### **Assumptions**

This model assumes to know things many years away. Is best used on an ongoing basis.



## Thanks!

Any questions?