

Classificação dos biomateriais

- quanto à origem (natural ou sintética)
- quanto à resposta do organismo (bioinertes, bioreabsorvíveis, bioativos)
- > quanto ao tipo de aplicação (estrutural ou não estrutural)
- quanto às características dos materiais (densa, porosa)

	VANTAGENS	DESVANTAGENS
AUTÓGENOS	menor rejeiçãomaior eficácia	duas intervençõespouco material
ALÓGENOS	única intervençãoquantidade razoável	risco de rejeiçãocontaminaçõescusto elevado
XENÓGENOS	· quantidade à vontade	maior rejeiçãotransmissão de doenças

Engenharia de tecidos (Tissue Engineering)

Ciência que estuda a possibilidade de combinar células, materiais de engenharia e fatores bioquímicos para melhorar ou substituir uma função biológica.

Fabricação de scaffolds

Scaffolds - estruturas (arcabouços) tridimensionais, biocompatíveis, porosas e biodegradáveis capazes de suportar o crescimento celular.

... então o que é um biomaterial?

material sintético, natural ou natural modificado, destinado a estar em contacto e a interagir com o sistema biológico.

ISO 10993-1:2007

Biological evaluation of medical devices Part 1: Evaluation and testing

... os BIOMATERIAIS surgem como uma forma de tratar doenças/lesões, tais como:

- ✓ substituição de parte do corpo que perdeu a função
- ✓ corrigir anormalidades
- ✓ melhorar uma função
- ✓ auxiliar na cicatrização (efeitos farmacêuticos: suturas, libertação de fármacos)

... requisitos?

- biocompatibilidade e biofuncionalidade
- aceitação farmacológica (não tóxico, não alérgico e não carcinogénico)
- > inerte quimicamente
- propriedades mecânicas adequadas
- densidade e peso adequado
- processamento fácil, produção em grande escala; propriedades reprodutíveis; passível de esterilização, custo etc....

Com a idade surgem certas doenças...

- √ biocompatibilidade e biofuncionalidade
- ✓ resistência mecânica; fixação
- ✓ boa lubrificação

Vantagens, desvantagens e aplicações dos principais tipos de materiais usados como biomateriais

Materials	Advantages	Disadvantages	Examples
Polymers (nylon, silicone	Resilient	Not strong	Sutures, blood vessels
rubber, polyester,	Easy to fabricate	Deforms with time	other soft tissues, sutures,
polytetrafuoroethylene, etc)		May degrade	hip socket, ear, nose
Metals (Ti and its alloys, Co-Cr	Strong, tough	May corrode	Joint replacements, dental
alloys, Au, Ag stainless steels, etc.)	ductile	Dense	root implants, pacer and
		Difficult to make	suture wires, bone plates and screws
Ceramics (alumina zirconia,	Very bio-	Brittle	Dental and orthopedic
calcium phosphates including	compatible	Not resilient	implants
hydroxyapatite, carbon)		Weak in tension	
Composites (carbon-carbon,	Strong, tailor-	Difficult to make	Bone cement,
wire- or fiber- reinforced	made		Dental resin
bone cement)			

Campos de aplicação...

Ortopedia

Aplicações cardiovasculares

Odontologia

Oftalmologia

Cirurgia plástica

Farmacêutica

Application	Biomaterials Used	Number/Year – World (or World Market in US\$)
Skeletal system		
Joint replacements (hip, knee, shoulder)	Titanium, stainless steel, polyethylene	2,500,000
Bone fixation plates and screws	Metals, poly(lactic acid) (PLA)	1,500,000
Spine disks and fusion hardware	2000 200 200 200 200 200 200 200 200 20	800,000
Bone cement	Poly(methyl methacrylate)	(\$600M)
Bone defect repair	Calcium phosphates	
Artificial tendon or ligament	Polyester fibers	
Dental implant-tooth fixation	Titanium	(\$4B)
Cardiovascular system		
Blood vessel prosthesis	Dacron, expanded Teflon	200,000
Heart valve	Dacron, carbon, metal, treated natural tissue	400,000
Pacemaker	Titanium, polyurethane	600,000
Implantable defibrillator	Titanium, polyurethane	300,000
Stent	Stainless steel, other metals, PLA	1,500,000
Catheter	Teflon, silicone, polyurethane	1B (\$20B)
Organs		6.8 595 5 7
Heart assist device	Polyurethane, titanium, stainless steel	4000
Hemodialysis	Polysulfone, silicone	1,800,000 patients (\$70B)
Blood oxygenator	silicone	1,000,000
Skin substitute	Collagen, cadaver skin, nylon, silicone	(\$1B)
Ophthalmologic	ಕ್ಷಾಣ ಪ್ರಾಕ್ಷ್ಮಿ ಚ	6.48 (4)
Contact lens	Acrylate/methacrylate/silicone polymers	150,000,000
Intraocular lens	Acrylate/methacrylate polymers	7,000,000
Corneal bandage lens	hydrogel	S -
Glaucoma drain	Silicone, polypropylene	(\$200M)
Other	1110 Me No	
Cochlear prosthesis	Platinum, platinum-iridium, silicone	250,000 total users
Breast implant	Silicone	700,000
Hernia mesh	Silicone, polypropylene, Teflon	200,000 (\$4B)
Sutures	PLA, polydioxanone, polypropylene, stainless steel	(\$2B)
Blood bags	Poly(vinyl chloride)	-
Ear tubes (Tympanostomy)	Silicone, Teflon	1,500,000
Intrauterine device (IUD)	Silicone, copper	1,000,000

^{*}Data compiled from many sources – these numbers should be considered rough estimates that are changing with growing markets and new technologies. Where only US numbers are available, world usage is estimated at approximately 2.5× of US usage.