Curso: Engenharia de Computação

Disciplina: Sistemas Digitais para Computação

Lista de Exercícios – sem obrigação de entrega

Ensino Remoto Emergencial

ALUNO: _____

Parte 1:

1) Seia a tabela verdade a seguir.

				Coldes							
En	Entradas				Saídas						
Α	В	С	D	F	G	S ₁	S_2	S_3	S_4		
0	0	0	0	0	0	1	Χ	0	Χ		
0	0	0	1	0	1	Χ	Χ	0	0		
0	0	1	0	1	0	Χ	1	0	Χ		
0	0	1	1	1	1	Χ	0	1	1		
0	1	0	0	0	0	1	Χ	Χ	1		
0	1	0	1	0	1	0	1	Χ	Χ		
0	1	1	0	0	0	Χ	0	1	0		
0	1	1	1	1	1	Χ	1	0	1		
1	0	0	0	1	1	Χ	1	Χ	0		
1	0	0	1	1	0	1	0	1	1		
1	0	1	0	1	1	Χ	Χ	0	0		
1	0	1	1	0	0	1	1	0	Χ		
1	1	0	0	0	1	Χ	0	1	1		
1	1	0	1	1	0	Χ	1	0	1		
1	1	1	0	1	1	1	1	Χ	1		
1	1	1	1	0	0	0	Χ	1	Χ		

- a) Represente as funções F(A, B, C, D) e G(A, B, C, D) conforme tabela verdade na forma
 - soma de produtos \rightarrow ? $(A, B, C, D) = \sum m(?, ...,?)$, e
 - produtos de somas \rightarrow ? $(A, B, C, D) = \prod M(?, ..., ?);$
- b) Minimize as funções G(A, B, C, D) e Sx(A, B, C, D) usando mapas de Karnaugh;

2) Simplifique as expressões por álgebra booleana.

a)
$$S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.C+\overline{A}.B.\overline{C}+A.\overline{B}.\overline{C}+A.B.\overline{C}$$

c)
$$S=A.B.C.D+\overline{A.B.C.D}+A.B.\overline{C.D}+\overline{A.B.C.D}+A.B.C.\overline{D}+A.B.C.\overline{D}+A.\overline{B.C.D}+A.B.C.D$$

d)
$$S=A.\overline{\left\lceil\overline{B}.(\overline{C+D})+\overline{A}.(\overline{B+C})\right\rceil}+C.\overline{D}+A.\overline{B}.C+A.B$$

Respostas:

a)
$$S = \overline{C} + \overline{A}B$$

b)
$$S = \overline{A}C + B$$

c)
$$S = AB + C\overline{D}$$

d)
$$S = D.A + \overline{D}C + AB$$

3) Faça o circuito lógico que represente um codificador conforme figura e tabela.

Chave	Α	В	O	D	
Ch 0	0	0	0	0	
Ch 1	0	0	0	1	
Ch 2	0	0	1	0	
Ch 3	0	0	1	1	
Ch 4	0	1	0	0	
Ch 5	0	1	0	1	
Ch 6	0	1	1	0	
Ch 7	0	1	1	1	
Ch 8	1	0	0	0	
Ch 9	1	0	0	1	

4) Desenhe o circuito que executa a expressão:

$$S = \overline{A}. \overline{\left\lceil \overline{B}.C + A.(\overline{C + \overline{D}}) + B.\overline{C}.D \right\rceil} + (B.\overline{D} \oplus B.\overline{C})$$

5) Determine: a) A função lógica simplificada implementada pelo circuito abaixo. b) Um demultiplexador de 8 canais, a partir de 3 blocos demultiplex de 4 canais.

Prof.: Elder de Oliveira Rodrigues - CEFET-MG - Timóteo - Campus VII

Curso: Engenharia de Computação

Disciplina: Sistemas Digitais para Computação

PARTE 2: RESOLVA OS PROBLEMAS A SEGUIR

Obs: Para cada problema determine: a) Quantidade de variáveis de "Entrada e Saída"; b) Convenção de cada uma das variáveis; c) Tabela verdade conforme convenção adotada; d) Expressão da tabela e sua redução por Karnaugh; e) Circuito lógico.

- 1) Um circuito majoritário fornece saída 1 quando a maioria de suas entradas forem 1. Mostre a equação e o circuito para 5 entradas.
- 2) Projete um circuito de 4 entradas que sinalize quando 2 e apenas 2 de suas entradas forem 1.
- 3) Projete um circuito lógico para abastecer três tanques (T1, T2, e T3) de glicose em pavimentos distintos em uma Indústria de Balas e Biscoitos, através do controle de duas bombas conforme figura. O abastecimento principal é feito por caminhão-tanque que fornece o produto diretamente ao T1 disposto no piso térreo localizado à entrada da empresa. Desenvolva o projeto supondo que o nível máximo de T1 seja controlado pelo caminhão, coloque os sensores de controle nas caixas, convencione as variáveis e desenhe o circuito final simplificado. (ver resposta livro autor: Idoeta,

- 4) Considere um robô cuja plataforma possui um sistema de pára-choques com 4 sensores distribuídos conforme a figura abaixo (vista superior do robô). Projete um circuito combinacional que gere um código para os motores a fim de que o robô se desvie toda vez que se chocar com um obstáculo. Considere que este código é enviado aos motores durante o tempo de um segundo e depois o movimento original é restabelecido. O controle deverá obedecer a seguinte regra:
 - Se apenas o sensor F ou os 3 sensores frontais forem pressionados, o robô deverá andar para trás;
 - Se apenas F e D forem pressionados, giro para a esquerda;
 - Se apenas F e E forem pressionados, giro para a direita;
 - Se apenas D ou E for pressionado, giro para o lado oposto ao lado do choque;
 - Se apenas A for pressionado, movimento para frente;
 - Caso nenhum sensor seja pressionado e para as demais combinações (consideradas inválidas), o movimento original se mantém.

OBS: Especifique um código para os motores, construa a tabela verdade e encontre as expressões booleanas para o circuito combinacional do projeto. Não esquecer de montar o diagrama de portas lógicas correspondente.

5) Jesus é um funcionário que está sempre alegre com todos aqueles que conseguem passar pela <u>Porta</u> do CEU (Centro Esportivo Universitário). A porta do CEU possui 4 chaves, e é aberta somente pelos escolhidos funcionários consagrados como os Apóstolos do ano do CEU por Jesus. Jesus, com sua sabedoria distribuiu as chaves da seguinte forma:

Apóstolos	Chave(s)		
A→ João	1 e 2		
B→ Simão	2		
C→ Tiago	4		
D→ Mateus	2 e 4		
E → André	3		
F → Paulo	1 e 3		

Determine:

- a) Uma função P de Jesus, em forma de soma de produtos que faça a abertura da porta do CEU (considerando porta aberta igual a 1 (um), fechada 0 (zero);
- b) A expressão simplificada;
- c) O diagrama do circuito.