

Il team

- ► Il team nasce nel febbraio del 2017 al Politecnico di Torino e si è occupato in passato di ideare e successivamente realizzare oggetti di uso quotidiano che cercassero di incontrare le necessità dei bambini portatori di disabilità con cui ha collaborato.
- I nostri progetti vengono realizzati insieme agli utilizzatori finali e personalizzati con loro, favorendo l'accessibilità e là riproducibilità dei prototipi tramite condivisione Open Source.

La tavola pitagorica

Il prototipo, in plexiglass, si propone come strumento compensativo per lo studio della matematica nei primi anni dell'istruzione

Eat-easy & Take-it-Easy

Progetto per mangiare, scrivere e disegnare con facilità, regolabile in diverse misure

SMArty

SMArty è un supporto brachiale in acciaio e alluminio agganciabile alla carrozzina realizzato per Martina, bambina affetta da SMA1

EN.EAT

Supporto per consentire di mangiare in autonomia ad Enea, un ragazzo con ridotta mobilità (lesione alla vertebra C4)

In corso...

Guida allo studio

Fascicolo e versione multimediale di consigli da applicare al metodo di studio, derivanti dall'esperienza di Enea e di altri che hanno incontrato difficoltà di apprendimento

In corso...

Water-up!

Supporto sviluppato per aiutare il disabile in carrozzina pensato per ottenere l'autonomia in bagno

Obiettivo: far parlare Federica!

Sistema di comunicazione attuale: tavola alfabetica

Sistema di comunicazione in sviluppo: dispositivo per comunicazione tramite Morse

Brainstorming...

Le prime proposte sono state:

- Un **puntatore laser** con tavola etran munita di fotoresistenze. Puntando la lettera con il laser la fotoresistenza lo rileva e tramite un software di conversione viene scritta su schermo.
 - ▶ Abbandonato: richiedeva troppa precisione di movimento.
- Uno o più pulsanti utilizzati per comunicare tramite codice morse; un software di conversione traduce il codice morse in codice ASCII in modo che la parola o la frase sia visualizzata su schermo.
 - Risposta positiva: Federica si è subito impegnata ad imparare il linguaggio Morse!

Sviluppo:

Primo prototipo

Case stampato in 3D con due pulsanti commerciali di tipo arcade corrispondenti a linea e punto, che riproducono due suoni differenti. Circuito interno Arduino®; il dispositivo funziona collegato ad una batteria

Sviluppo:

Miglioramenti Necessari

- Incrementare il numero di tasti per aumentare le funzionalità
- Aggiungere un display sul dispositivo stesso
- Inserire dei minigiochi per migliorare l'apprendimento del codice morse
- Elaborare il software di conversione da codice morse ad ASCII
- Aumentare l'aderenza del dispositivo sul piano d'appoggio

I pulsanti

Si è deciso di sviluppare un architettura custom per i pulsanti considerati i seguenti vantaggi:

- Massima flessibilità di progettazione
- Spessore totale del dispositivo drasticamente ridotto
- Possibilità di ottenere arbitrariamente forme diverse per ogni tasto migliorando l'intuitività del sistema
- Maggiore confort al tatto

Sviluppo del pulsante

Il primo approccio esplorativo si basava su sensori di vibrazione piezo, particolarmente sottili ed economici.

Questi però non si sono dimostrati reattivi in specifici casi di interazione e per questo abbandonati in favore dei più classici switch tattili.

Sviluppo:

Secondo prototipo

Case stampato in 3D, 5 pulsanti custom made di cui due tasti funzione, due punto/linea, un cancella parola/fine lettera. È presente uno schermo retroilluminato (LCD 20x4), circuito basato su Arduino® nano. Stampa in PLA.

Sviluppo: Step successivi

Per il terzo prototipo si prevede di:

- Inserire una batteria interna
- Cambiare il display (contrasto migliore e grandezza lettere maggiore)
- Inserire dei minigiochi per migliorare l'apprendimento del codice morse
- Elaborare il software di conversione da codice morse ad ASCII
- Manuale di utilizzo
- Tasti in Filaflex® o gomma colabile e stampa case in ABS
- Inserire e predisporre modulo Bluetooth