

HarmonyOS元服务的设计与开发解析

趋势: 适应万物互联时代的元服务新赛道已经展现

元服务的应用场景快速增加

数据来源: CNNIC、eMarketer、阿拉丁

来源: https://www.statista.com/statistics/678739/forecast-on-connected-devices-per-person/

案例分享: 优酷× HarmonyOS , 使能大小屏联动看剧

大小屏相互通信

实时触发联动看剧

大屏看剧情主线

小屏看精彩看点

用户旅程

目录

- 关键技术解析
- 单设备场景设计与开发
- 多设备场景设计与开发

元服务关键特征:可分、可合、可流转

HarmonyOS**服务**

FA (Feature Ability)

PA (Particle Ability)

• FA: FA有UI界面,提供与用户交互的能力

• PA: 无UI界面,提供后台 运行任务的能力以及统一 的数据访问抽象; 仅对系 统服务有依赖, PA之间不 存在依赖

HarmonyOS元服务开发框架

目录

- 关键技术解析
- 单设备场景设计与开发
- 多设备场景设计与开发

服务卡片:

快捷高效获取应用内重要信息和高频功能

重要信息直接展示

无需打开便可获取应用内重要信息展示和动态变化

高频功能一步直达

支持应用内高频功能的快捷入口直达

免安装打开约束

建议每个免安装的服务HAP包大小<=5MB

UI编程框架

支持主流的语言生态 – Java & JS (JavaScript)

	Java UI	JS UI
语言生态	Java	JS
接口方式		声明式; 相对高层的UI描述
执行方式	开发者处理,基于 API驱动的UI变更	框架层处理,基于数 据驱动的UI自动变更

<div class="musicPlayBG">

@media screen and (device-type: watch) {

样式

```
<div class="musicPlayerInfo">
   </div>
   <div class="musicPlayerControl">
       <div class="playProgressDiv">
                                                                           数据绑定
        cprogress percent="{{progress}}"></progress>
                                                                           事件绑定
       <div class="playControlBtnDiv">
        <button icon="{{playImg}}" onclick="musicPlay()"></button>
                                                                           扩展能力
       </div>
   </div>
                             模板
                                                                          多设备UI自适应
</div>
@media screen and (device-type : tv) {
                                           export default {
   .musicPlayerInfo {
                                               data: {
                                                  playImg = "common/playImg.png"
       /* flex布局支持 */
                                                  progress = 0; // 数据绑定
       flex-direction: row;
       flex-grow: 1;
                                               async musicPlay() { //事件绑定
                                                  // Ability调用
   .musicPlayerControl {
                                                  var result =
      flex-direction: column;
                                                  await FeatureAbility.callAbility(action);
                                                  var ret = JSON.parse(result);
                                                   if (ret.code == 0) {
                                                      progress = ret.progress;
/* MediaQuery支持多设备UI自适应 */
```

业务逻辑

关键技术

关键技术

测试部典型应用	评测维度	典型场景	友商方案	ACEJS
无干扰	性能体验	冷启动时延 (ms)	534	525
	内存开销	冷启动内存 (MB)	43	40
视频播放	性能体验	视频播放帧率(fps)	58	59.8
	内存开销	视频播放内存 (MB)	200	80
	功耗开销	视频播放功耗 (mA)	790	232
复杂动效	性能体验	复杂动效帧率(fps)	59	59.8
	内存开销	复杂动效内存(fps)	220	120
	功耗开销	复杂动效功耗(fps)	438	438

目录

- 关键技术解析
- 单设备场景设计开发
- 多设备场景设计开发

协同设计

连续性设计

分布式连续性体验设计

应用(A设备) 应用(B设备) Ability.continueAbility() IAbilityContinuation.onStartContinuation() IAbilityContinuation.onSaveData() DISTRIBUTED DATASYNC IAbilityContinuation.onRestoreData() Ability.onSart() DISTRIBUTED_DATASYNC IAbilityContinuation.onCompleteContinuation()

Ability implements IAbilityContinuation

关键技术

接口名称	说明
onStartContinuation()	Page请求迁移后,系统首先回调此方法, 开发者可以在此回调中决策当前是否可 以执行迁移。
onSaveData()	Page请求迁移后,系统首先回调此方法, 开发者可以在此回调中决策当前是否可 以执行迁移。
onRestoreData()	源侧设备上Page完成保存数据后,系统在目标侧设备上回调此方法,开发者在此回调中接受用于恢复Page状态的数据。注意,在目标侧设备上的Page会重新启动其生命周期,无论其启动模式如何配置。且系统回调此方法的时机在onStart()之前。
onCompleteContinuation()	目标侧设备上恢复数据一旦完成,系统就会在源侧设备上回调Page的此方法, 以便通知应用迁移流程已结束。开发者可以在此检查迁移结果是否成功,并在此处理迁移结束的动作,例如,应用可以在迁移完成后终止自身生命周期。

元服务 实现跨端部署的基础单元

• 关键技术:可分、可合、可流转

• 单设备体验:轻量直达、性能高效

• 多设备体验:无缝一体、服务随行

手表

大屏

智能家居

手机

平 板

THANK YOU

欢迎访问HarmonyOS开发者官网

欢迎关注HarmonyOS开发者微信公众号