60080079 Introduction to Statistical Methods Semester 2 2023-2024 Handout 1_2

Describing Some of the High School and Beyond Data Variables

1. Opening file in SPSS

The Data View tab lists the cases (rows) and the variables (columns) in the file.

The Variable View tab lists the variables (rows) and their properties (columns).

2. Pie Chart: Sex

Graphs \rightarrow Legacy Dialogs \rightarrow Pie...

Choose Summaries for groups of cases (default) under Data in Char Are, then click Define.

Click Sex into the Define Slices by box, the hit OK.

You should get the pie chart below.

3. Bar Graph: Socio-Economic Status

Graphs → **Legacy Dialogs** → **Bar...**

Choose Simple (default) under Bar Charts and Summaries for groups of cases under Data in the Chart Are, then click Define.

Click Socioeconomic status into the Category Axis box, then hit OK.

You should get the following bar chart:

4. Histogram: Math Score

Graphs → Legacy Dialogs → Histogram...

Click Math score into the Variable box, then hit OK.

You should get the following histogram:

5. Boxplot: Math Score

Graphs → **Legacy Dialogs** → **Boxplot...**

Choose Simple (default) under Boxplot and Summaries for separate variables (NOT default) for Data in Chart Are, then click Define.

Click Math score into the Boxes Represent box, then hit OK.

You should get the following boxplot:

6. <u>Descriptive Statistics: Math Score</u>

Analyze \rightarrow Descriptive Statistics \rightarrow Explore...

Click Math score into the Dependent List box and choose Both (default) under Display, then hit OK.

The first output contains the number of cases that were processed.

Case Processing Summary

	Cases					
	Va	ılid	Mis	sing	Total	
	N	Percent	N	Percent	N	Percent
Math score	600	100.0%	0	0.0%	600	100.0%

The second output contains the descriptive statistics.

Descriptives

		ptives		
			Statistic	Std. Error
Math score	Mean		51.8490	.38436
	95% Confidence Interval for	Lower Bound	51.0942	
	Mean	Upper Bound	52.6038	
	5% Trimmed Mean		51.6537	
	Median		51.3000	
	Variance		88.637	
	Std. Deviation		9.41474	
	Minimum		31.80	
	Maximum		75.50	
	Range		43.70	
	Interquartile Range		14.02	
	Skewness		.264	.100
	Kurtosis		641	199

The third output is a stemplot.

Math score Stem-and-Leaf Plot

Frequency	Stem &	Leaf
7.00 47.00 105.00 107.00 111.00 97.00 69.00 35.00 20.00	3 . 4 . 4 . 5 . 6 . 7 .	33& 5556666677778888888899 0000000001111111111111111122222222222
Stem width: Each leaf:	10.0	0 case(s)

[&]amp; denotes fractional leaves.

What is the fourth output?

7. Normal Quantile Plot: Math Score

Option 1 (Plot only): Analyze \rightarrow Descriptive Statistics \rightarrow Q-Q Plots...

Option 2 (Plot and Test): Analyze \rightarrow Descriptive Statistics \rightarrow Explore...

Click the Plots button and then check the Normality plots with tests option.

Hit Continue then OK.

In addition to the regular **Explore** output, you should also get the following:

Tests of Normality

	Kolm	Kolmogorov-Smirnov ^a Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.
Math score	.056	600	.000	.984	600	.000

a. Lilliefors Significance Correction

A Basic Way to Create an SPSS Data File

Suppose we want to create a file the following ten cases and four variables (Data View tab):

We also have the following information about the variables (Variable View tab):

1. Click the Windows icon, and open SPSS. In this example, it is IBM SPSS Statistics 23.

2. This will open a blank SPSS file. Go to **Variable View** tab and type ONLY the names of the variables (i.e., column 1).

SPSS will fill in the default entries for the remaining columns.

3. To change a cell entry, **double click** the cell and **type or choose** the appropriate entry.

For example, we want the <u>variable</u> **SEX** to have **no** <u>Decimals</u>, the <u>Label</u> **Sex**, Values of **1 for Male** and **2 for Female**, and to note that this is a **Nominal** <u>Measure</u>.

Double click Decimals and choose the down button to set the number of decimal points to **0**.

Type **Sex** as the Label.

After double clicking the Values cell, click the **Option** button to input values and labels.

To note that 1 corresponds to Male, type 1 in the <u>Value</u> box and **Male** in the <u>Label</u> box, then click **Add**.

Do the same for Female.

Choose **Nominal** as the Measure for **SEX**.

Make sure that the rest of the variables have the correct information.

When you switch to the **Data View** tab, you should get the following:

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transform	<u>A</u> nalyze	Graphs	<u>U</u> tilities	Add-ons	<u>W</u> ind	ow
a						1		M	*5	
14:										
		ID)	LOC_CON	SCIENCE	MA	TH	SEX	var	
	1									
	2									
	3									
7/	4									
3	5									
	-									

We are now ready to enter the data points.

To check data are correctly entered, do Analyze → Descriptive Statistics → Explore...

Use MATH in the Dependent List and SEX in the Factor List to get the following results:

Descriptives

	Sex			Statistic	Std. Erro
Math score	Male	Mean	44.5750	5.51866	
		95% Confidence Interval for Mean	Lower Bound	27.0122	
			Upper Bound	62.1378	
		5% Trimmed Mean	30.200	44.4389	
		Median		43.3500	
		Variance		121.822	
		Std. Deviation		11.03732	
		Minimum	32.70		
		Maximum	58.90		
		Range	26.20		
		Interquartile Range		21.07	
		Skewness		.596	1.014
	10	Kurtosis		.488	2.619
	Female	Mean		50.5500	4.44115
		95% Confidence Interval for Mean	Lower Bound	39.1337	
			Upper Bound	61.9663	
		5% Trimmed Mean		50.0667	
		Median		45.4500	
		Variance		118.343	
		Std. Deviation		10.87856	
		Minimum		41.80	
		Maximum		68.00	
		Range		26.20	
		Interquartile Range		19.30	
		Skewness		1.050	.845
		Kurtosis		603	1.741

