

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 13 ณ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร พระราชวังสนามจันทร์ วันอังคารที่ 6 มิถุนายน พ.ศ. 2560 เวลา 08.30 – 13.30 น.

พ เฉลยข้อสอบภาคทฤษฎี 🗷

6	. 0	<i>و</i>		
ราหสา	Iรขลา	ตัวสอบ		
a vibi U	וערשטו	ט טופט וא		

คำตอบข้อที่ 1 (3.5 คะแนน)

คาเดอบขอท 1 (3.5 คะแนน)					
1.1 (2 คะแนน)					
การจัดเรียงอิเล็กตรอนของ Fe ใน Fe ₄[<u>Fe</u> (CN)₀]₃					
$: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$	(0.5 คะแนน)				
แผนภาพการจัดเรียงอิเล็กตรอนชั้นนอกสุดของ Fe ใน Fe ₄[<u>Fe</u> (CN) ₆] ₃					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(0.5 คะแนน)				
3d 4s					
การจัดเรียงอิเล็กตรอนของ <u>Fe</u> ใน Fe ₄ [<u>Fe</u> (CN) ₆] ₃					
$: 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$	(0.5 คะแนน)				
แผนภาพการจัดเรียงอิเล็กตรอนชั้นนอกสุดของ <u>Fe</u> ใน Fe 4[<u>Fe</u> (CN) ₆] ₃					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(0.5 คะแนน)				
3d 4s					
1.2 (1 คะแนน)					
Fe ใน Fe ₄ [<u>Fe</u> (CN) ₆] ₃ มีความเป็นแม่เหล็ก (magnetism) แบบ \Box diamagnetic					
เหตุผล □ paramagnetic □ paramagnetic					
เพราะ <u>มีอิเล็กตรอนเดี่ยวใน 3d จำนวน 5 อิเล็กตรอน</u>	(0.5 คะแนน)				
1.3 (0.5 คะแนน) metal-based pigment มักมีสีที่คงทนกว่า organic pigment เพราะ					
สีของ organic pigment เกิดจาก conjugated π system ซึ่งเสีย (0.5 คะแนน) สภาพได้ง่ายเมื่อถูกออกซิไดซ์ด้วยอากาศหรือโดนแสง					

คำตอบข้อที่ 2 (8 คะแนน)

2.1 (2 คะแนน)

วิธีทำ

ปริมาณน้ำในข้าวเปลือก 1 เมล็ด คือ
$$\frac{13.08}{100} \times 0.0224$$
g เท่ากับ 0.00293 กรัม (0.5 คะแนน)

คิดเป็น
$$0.00293 \text{g} \times \frac{1 \, \text{mol}}{18.0 \, \text{g}}$$
 เท่ากับ $1.63 \times 10^{-4} \, \text{mol}$ (0.5 คะแนน)

จาก
$$PV = nRT$$

$$P = \frac{\left(1.63 \times 10^{-4} \, mol\right) \left(0.0821 \text{L} \cdot atm \cdot K^{-1} \cdot mol^{-1}\right) \left(482.60K\right)}{0.0170 cm^3 \left(\frac{1L}{1000 cm^3}\right)} \tag{0.5 คะแนน}$$

$$P = 379 \text{ atm}$$

2.2 (2 คะแนน)

ความร้อนที่ใช้ในการทำให้ข้าวเปลือกหนึ่งเมล็ดแตกออก =

วิธีทำ

ปริมาณน้ำในข้าวเปลือก 1 เมล็ด คือ $\frac{5.072}{100} \times 0.0224$ g เท่ากับ 0.00114 กรัม

คิดเป็น $0.00114 \mathrm{g} \times \frac{1\,\mathrm{mol}}{18.0\,\mathrm{g}}$ เท่ากับ $6.31 \times 10^{\text{-5}}\,\mathrm{mol}$

จาก

$$q = nC\Delta T$$

ความร้อนที่ใช้เพิ่มอุณหภูมิของน้ำ คือ

จาก

$$q = n\Delta H_{vap}$$

ความร้อนที่ใช้ในการกลายเป็นไอของน้ำ คือ

$$q_{\text{vap}} = (1.63 \times 10^{-4} \,\text{mol})(40.7 \,\text{kJ/mol})$$
 (0.5 คะแนน)
 $q_{\text{vap}} = 6.63 \,\text{J}$

จาก

$$q = nC\Delta T$$

ความร้อนที่ใช้เพิ่มอุณหภูมิของไอน้ำ คือ

$$q_g = (33.1 \text{ J/mol}^{\circ}\text{C})(1.63 \times 10^{-4} \text{ mol})(209.45 - 100.0 ^{\circ}\text{C})$$
 (0.5 คะแนน) $q_e = 0.591 \text{ J}$

$$q_{total} = q_l + q_{vap} + q_g = 0.858 + 6.63 + 0.591 J$$

= 8.08 J

J

2.3 (1 คะแนน)

วิธีทำ

พลังงานจลน์ของแก๊สอุดมคติ คือ
$$E_k = \frac{3}{2} nRT$$

จะได้
$$E_k = \frac{3}{2} (1.63 \times 10^{-4} \, mol) (8.314 J \cdot mol^{-1} \cdot K^{-1}) (482.60 \, K)$$

$$E_k = 0.981 J \tag{0.5 คะแนน}$$

2.4 (3 คะแนน)

วิธีทำ

งานอันเนื่องจากการขยายตัวของแก๊ส คือ W = -P $_{
m ext}\Delta$ V

(i) จาก
$$W = -(0)\Delta V = 0$$
 J (สุญญากาศ ความดันภายนอกจึงเป็นศูนย์) (0.5 คะแนน)

(ii) จาก PV = nRT

$$V = \frac{\left(1.63 \times 10^{-4} \, mol \right) \left(0.0821 \text{L} \cdot atm \cdot K^{-1} \cdot mol^{-1}\right) \left(482.60K\right)}{756 \, mmHg} \frac{1 \, atm}{760 \, mmHg}$$
 (1 คะแนน)

V = 0.00649L

จาก $W = -P_{ext}\Delta V$

$$W = -\left(756 \, mmHg \, \frac{10^5 \, Pa}{760 \, mmHg}\right) \left(0.00649 L \, \frac{1 \, m^3}{1000 L}\right) \tag{0.5 คะแนน}$$

W = -0.646J

ผลต่างของงานอันเนื่องจากการขยายตัวของแก๊ส เท่ากับ 0 - (-0.646) J = 0.646 J (0.5 คะแนน)

คำตอบข้อที่ 3 (9.5 คะแนน)

3.1 (3 คะแนน)

	สไปโรไพแรน (SP)	เมโรไซยานิน (MC)		
ไฮบริไดเซชันของอะตอม C*	\square sp \square sp ² \square sp ³ \bowtie sp ³ (0.5 คะแนน)	\square sp \square sp ² \square sp ³ \square sp ² (0.5 คะแนน)		
จำนวนอะตอมคาร์บอนใน ระบบคอนจูเกชันที่ยาวที่สุด	6 (0.5 คะแนน)	19 (0.5 คะแนน)		
จำนวนอิเล็กตรอนไม่ประจำที่	6 (0.5 คะแนน)	18 (0.5 คะแนน)		

3.2 (6 คะแนน)

	สไปโรไพแรน (SP)	เมโรไซยานิน (MC)	
ค่าคงที่ <i>R</i>	$R = \frac{\hbar^2}{2m_e r_0^2} = \left(1.5000000000000000000000000000000000000$	$\frac{05 \times 10^{-34} \mathrm{Js})^2}{^{-31} \mathrm{kg}) \times \left(1.40 \times 10^{-10} \mathrm{m}\right)^2}$	
	ตอบ 3.09 × 10 ⁻¹⁹ kg	m ² s ⁻² (Joule) (1.0 คะแนน)	
เลขควอนตัมของ $HOMO\left(n_1 ight)$	<u>±</u> 1 (0.5 คะแนน)	<u>±</u> 4 (0.5 คะแนน)	
เลขควอนตัมของ ${\sf LUMO}(n_2)$	<u>±</u> 2 (0.5 คะแนน)	土5 (0.5 คะแนน)	
รัศมีของวงแหวน (z)	1 (0.5 คะแนน)	3 (0.5 คะแนน)	

3.2 (ต่อ)

	สไปโรไพแรน (SP)			เมโรไซยานิน (MC)			
ค่าพลังงาน (Δ <i>E</i>)	<u>วิธีคำนวณ</u>	$9 \times 10^{-19}) \left[\left(\frac{2}{1}\right)^2 \right]$	$-\left(\frac{1}{1}\right)^2$	<u>วิธีคำนวณ</u> ΔE = ($(3.09 \times 10^{-19}) \left[\left(\frac{5}{3} \right)^2 \right]$		
ความยาวคลื่นแสง (λ)	ตอบ	9.26 × 10 ⁻¹⁹ (0.5 คะแนน) 5 × 10 ⁻³⁴ Js)(3.00 > 9.26 × 10 ⁻¹⁹ J	J < 10 ⁸ m s ^{−1})	ตอบ $ \begin{array}{c} $	3.09 × 10 ⁻¹⁹ (0.5 คะแนน) 1.05 × 10 ⁻³⁴ Js)(3.00 3.09 × 10 ⁻¹⁹ J	$\frac{\text{J}}{\text{× 10^8 m s}^{-1})}$	
		214			641		
	<u>ตอบ</u> (().5 คะแนน)	nm	<u>ตอบ</u>	(0.5 คะแนน)	nm	

3.3 (0.5 คะแนน)	🛘 สไปโรไพแรน (SP)	🗌 เมโรไซยานิน (MC)	
	🗖 มีสีทั้งสองโครงสร้าง	ไม่มีสีทั้งสองโครงสร้าง	
	🗵 เมโรไซยานิน (M	<mark>C)</mark>	(0.5 คะแนน)

คำตอบข้อที่ 4 (4.5 คะแนน)

4.1 (1 คะแนน)
$$\square$$
 ดูดพลังงาน ปริมาณพลังงาน $109 \, (0.5 \, \text{คะแนน})$ ถ้าตอบ -109 ให้ 0.25 kJ mol $^{-1}$ \square คายพลังงาน \square คายพลังงาน \square คายพลังงาน \square คายพลังงาน \square การยนไม่ต้องแสดง) $\Delta H = +D(C-O)-D(O-H) = +358-467 = -109 \, \text{kJ mol}^{-1}$

4.2 (2 คะแนน)

วิธีทำ

$$molal \ solute = \frac{\left(1 \ mol \ CVL \ + 10 \ mol \ DDG\right)}{\frac{90 \times 242.4}{1000} \ kg \ HD - OH}$$
 = $0.504 \ m$

$$\Delta T_f = K_f \cdot m = (17.6 \text{ °C/m})(0.504 \text{ m}) = 8.87 \text{ °C}$$
 (0.5 Abulu)

$$T_f' = T_f - \Delta T_f = 49.0 - 8.87 = 40.1$$
 °C (0.5 คะแนน)

4.3 (1.5 คะแนน) \square แสดงสีของ CVL \square ไม่แสดงสีของ CVL

เหตุผล

- - อุณหภูมิของร่างกาย = $\frac{5}{9}(102-32)$ = 38.9 °C ซึ่งต่ำกว่าจุดหลอมเหลวของ (0.5 คะแนน) ระบบสีย้อม ทำให้อยู่ในสถานะของแข็ง
 - กรดโดเดคซิลแกลเลตไม่สามารถโปรโตเนตโมเลกุล CVL ได้ ทำให้อยู่ในรูปเบสหรือมี (0.5 คะแนน)
 โครงสร้างแบบสไปโรไพแรน (SP)

คำตอบข้อที่ 5 (5 คะแนน)

5.1 (1 คะแนน) สมการนิวเคลียร์

$$^{27}_{13}$$
Al + $^{1}_{0}$ n $\longrightarrow ^{4}_{2}$ He + $^{24}_{11}$ Na (0.5 คะแนน)
$$^{24}_{11}$$
Na $\longrightarrow ^{24}_{12}$ Mg + $^{0}_{-1}$ e (0.5 คะแนน)

5.2 (3 คะแนน) ปริมาตรเลือดในร่างกาย

5.25 (0.5 คะแนน)

ลิตร

วิธีทำ

(ทศนิยม 2 ตำแหน่ง)

จากกราฟการสลายตัว ค่าครึ่งชีวิต = 15 hr

(0.5 คะแนน)

การสลายตัวเป็นปฏิกิริยาอันดับ 1 ดังนั้น $\lambda = \frac{\ln 2}{t_{_{1/2}}}$ (=0.0462 hr $^{-1}$)

(0.5 คะแนน)

ค่ากัมมันตภาพหลังเวลาผ่านไป 6 hr:

$$\frac{[A]_t}{[A]_0} = e^{-\lambda t}$$
 (หรือ $\ln \frac{[A]_t}{[A]_0} = -\lambda t$) $\frac{[Na]_t}{5 \times 10^{-8}} = e^{-\frac{\ln(2)}{15hr} \cdot 6hr}$; (1 คะแนน)

: $[Na]_t = 3.79 \times 10^{-8} \text{ Ci}$

$$\frac{3.79 \times 10^{-8} \text{ Ci}}{V_{total}} = \frac{7.22 \times 10^{-12} \text{ Ci}}{1 \text{ mL}}$$
; $V_{total} = 5,250 \text{ mL}$ (0.5 Asilul)

5.3 (1 คะแนน) โซเดียม-24 สลายตัวหมดในวันที่

12 (0.5 คะแนน)

มิถุนายน 2560 เวลา

14.00

<u>วิธีคิด</u> (ไม่ต้องแสดง) $\ln \frac{[A]_t}{[A]_0} = -\lambda t$ In $\frac{0.1}{100} = -\frac{\ln 2}{15 \ hr} t$; ∴ t = 149.5 → 150 hrs = 6 days 6 hrs

คำตอบข้อที่ 6 (10 คะแนน)

6.1 (3 คะแนน) ชนิดของแก๊ส รูปร่างและชื่อของไอออนเชิงซ้อนของ B

แก๊สที่เกิดขึ้นคือแก๊ส

ออกซิเจน (1 คะแนน)

รูปร่างของไอออนเชิงซ้อนของ **B**

เตตระฮีดรัล (1 คะแนน)

ไอออนเชิงซ้อนของ **B** มีชื่อว่า

tetrachlorocobaltate(II) หรือ tetrachloridocobaltate(II)
(1 คะแนน)

6.2 (2 คะแนน) สมการแสดงการสังเคราะห์สาร D จาก A โดยแสดงส่วนของไอออนเชิงซ้อนให้ชัดเจน

 $A \rightarrow D$

2[Co(H₂O)₆]Cl₂ + 2NH₄Cl + 10NH₃ + H₂O₂ \longrightarrow 2[Co(NH₃)₆]Cl₃ + 14H₂O (2 คะแนน)

6.3 (2 คะแนน) สารที่มี geometrical isomers คือ รูปแสดงโครงสร้างของสารเชิงซ้อน และระบุชื่อไอโซเมอร์

E (0.5 คะแนน)

6.4 (3 คะแนน) สูตรและชื่อของสารโคออร์ดิเนชันที่เป็น linkage isomers กัน

สูตร [Co(ONO)(NH3)5]Cl2 (1 คะแนน)

pentaamminenitritocobalt(III) chloride
(0.5 คะแนน)

สูตร

[Co(<u>N</u>O₂)(NH₃)₅]Cl₂(1 คะแนน)

pentaamminenitrocobalt(III) chloride (0.5 คะแนน)

ชื่อ

วิธีคิด (สำหรับอาจารย์ประจำศูนย์)

- สีของสารบอกว่าเป็นสารต่างชนิดกัน
- การนำไฟฟ้า บอกข้อมูลประจุบวก/ลบ กำหนดให้เป็น monovalent counterion เสมอ
- V_{gas} ของอิเล็กโตรไลซิส บอกจำนวน Cl $^-$ ที่เป็น counterion: PV = nRT, ที่ T = 298 K, แก๊ส 0.001 mol = 24.46 mL, or Cl $^-$ 1 atom ให้แก๊ส \sim 12.3 mL

ใช้แค่ข้อมูลการนำไฟฟ้าหรืออิเล็กโตรไลซิสอย่างใดอย่างหนึ่งก็ได้

- V_{NaOH} ที่ใช้ บอกว่ามี NH $_3$ ใน coordination sphere เท่าไหร่ ใส่ HCl ไป 0.01 mol ∴ จำนวน NH $_3$ = [0.01-(V_{OH} ×0.0004)]/0.001
- มีแค่หนึ่งตัวที่ไม่ใช่ออกตะฮีดรัล จากผัง จึงควรเป็น B ลิแกนด์ควรเป็น Cl⁻ ข้อมูลพื้นฐานของเด็กระดับนี้
 ควรนำไปสู่เลขโคออร์ดิเนชัน 4 ซึ่งควรเป็นเตตระฮีดรัลมากกว่าสี่เหลี่ยมแบนราบ (Co เป็นทรานสิชันแถว
 แรก)
- C-D เกิดการเปลี่ยนแปลงเลขออกซิเดชัน (จากออกซิเจนในอากาศ)
- **G-H** เป็น linkage isomer กัน เพราะตั้งทิ้งไว้ก็เปลี่ยนแปลงสี แสดงว่ามี isomerization เกิดขึ้นโดยไม่มีการ เปลี่ยนแปลงสูตรเคมี (จากสูตร ไม่มี geometrical isomer) โดย **F** เปลี่ยนเป็น **G** จากการแทนที่ Cl^- เป็น NO_2^- (จำนวน NH_3 เท่าเดิม ประจุแบบเดิม) จากข้อมูลยังบอกไม่ได้ว่าตัวไหนเป็น nitrito- หรือ nitro- (สี แดงคือ nitrito สีเหลือง nitro)

	สี	การนำไฟฟ้า	V_{gas}	#Cl⁻	V_{NaOH}	#NH ₃	สูตร
Α	ชมพู	(NH ₄) ₂ SO ₄			25.00	0	[Co(H ₂ O) ₆]Cl ₂
В	น้ำเงินเข้ม	Ba(NO ₃) ₂					[CoCl ₄] ²⁻
С	เหลืองฟาง	Na ₂ C ₂ O ₄	24.3	2	10.10	6	[Co(NH ₃) ₆]Cl ₂
D	ส้มน้ำตาล	Na ₃ PO ₄	36.5	3		6	[Co(NH ₃) ₆]Cl ₃
Е	เขียว	KCl	12.2	1	15.15	4	[CoCl ₂ (NH ₃) ₄]Cl
F	ม่วงอ่อน	Ba(NO ₃) ₂		2	12.60	5	[CoCl(NH ₃) ₅]Cl ₂
G	แดง			2		5	$[Co(NO_2)(NH_3)_5]Cl_2$
Н	เหลือง	(NH ₄) ₂ SO ₄	24.2	2	12.65	5	$[Co(\underline{N}O_2)(NH_3)_5]Cl_2$

คำตอบข้อที่ 7 (10 คะแนน)

7.1 (2 คะแนน) วาดการจัดเรียงตัวของไอออน Na^+ และ Cl^- ในโครงสร้างผลึก

$$Na^+ =$$

7.2 (1 คะแนน) สูตรเคมื่อย่างง่าย (chemical formula) ของ alloy นี้คือ

AXM

(1 คะแนน)

7.3 (1 คะแนน) สูตรเคมีของสารที่มีโครงสร้างนี้คือ

Na₃Cl (1 คะแนน)

7.4 (3.5 คะแนน) ปริมาตรสารประกอบ =

วิธีทำ

(ตอบในรูป A imes 10 n และเลขนัยสำคัญ 3 ตัว)

เนื่องจากรัศมี $Na^+ =$ รัศมี Cl^- และ unit cell length c = 2a โครงสร้างผลึกนี้ จึงเสมือนกับ body centered cubic cell (bcc) มาซ้อนกันตามแนว unit cell length c ดังแสดงในรูป ด้านบน ดังนั้น ปริมาตรของ unit cell เป็น 2 เท่าของปริมาตร bcc ด้านขวา (ภาพขยาย)

$$x = 4r = \sqrt{a^2 + 2a^2} = \sqrt{3}x \ a$$

$$a = 4r/\sqrt{3} \tag{1 Arman}$$

∴ ปริมาตรผลึก = $2a \times a \times a = 2a^3$ (0.5 คะแนน)

$$= \frac{128}{3\sqrt{3}}r^3 = \frac{128}{3\sqrt{3}}x (1.01x \cdot 10^{-10}m)^3$$
 (1 คะแนน)

$$= 2.54 \times 10^{-29} \text{ m}^3$$

7.5 (2.5 คะแนน) ความหนาแน่นของสารประกอบ =

6.83 (0.5 คะแนน)

g/cm³

วิธีทำ

(ทศนิยม 2 ตำแหน่ง)

มวล = MW(Na₃Cl) (g/mol) x จำนวนโมเลกุลต่อ unit cell (molecule)/ 6.02 x 10²³ (molecule/mol)

=
$$104.5 \times 1 / 6.02 \times 10^{23}$$
 g

(1 คะแนน)

 $= 17.36 \times 10^{-23} \text{ g}$

ปริมาตร =
$$2.54 \times 10^{-29} \text{ m}^3 \times 10^6 \text{ cm}^3/\text{m}^3 = 2.54 \times 10^{-23} \text{ cm}^3$$

(0.5 คะแนน)

ความหนาแน่น = มวล / ปริมาตร =
$$17.36 \times 10^{-23}$$
 g / 2.54×10^{-23} cm³

(0.5 คะแนน)

 $= 6.83 \text{ g/cm}^3$

คำตอบข้อที่ 8 (9 คะแนน)

8.1 (2 คะแนน) สูตรเคมีของสารประกอบ คือ

Na₃P₃O₉ (2 คะแนน) ต้องถูกทั้งหมด

8.2 (1 คะแนน) โครงสร้างและประจุของไอออนลบในสารประกอบ X คือ

8.3 (1.5 คะแนน) เลขออกซิเดชันของ E คือ

+5 (0.5 คะแนน)

ไฮบริดออร์บิทัลของ E คือ

*sp*³ (1 คะแนน)

8.4 (1.5 คะแนน) สมการ

2Na + O_2 \rightarrow Na₂O₂ (1 คะแนน)

อ่านชื่อ

Sodium peroxide (0.5 คะแนน)

8.5 (3 คะแนน)

8.5.1 การจัดอิเล็กตรอน

[Xe] $4f^{14}$ $5d^{10}$ $6s^2$ (Bi(III)) หรือ [Xe] $4f^{14}$ $5d^{10}$ (Bi(V)) (1 คะแนน)

8.5.2 สมการ

 $3Zn + Bi_2O_3 \rightarrow 3ZnO + 2Bi$ (1 คะแนน)

♠ Bi₂O₅ + 5 Zn → 5ZnO + 2Bi (1 คะแนน)

8.5.3 สมการ

3NaBiO₃ (s) + 2MnO₂ (s) + 10H⁺ (aq) \longrightarrow $2MnO_4^{-} (aq) + 3Bi^{3+} (aq) + 3Na^{+} (aq) + 5H_2O (l)$ (1 คะแนน)

คำตอบข้อที่ 9 (6 คะแนน)

(2.5 คะแนน) มวลต่อโมลของกรดอ่อน = 9.1

116 (0.5 คะแนน)

g/mol

วิธีทำ

(ตอบเลขจำนวนเต็ม)

สารละลาย pH = 2.00 แสดงว่า [H_3O^+] = 1.0×10^{-2} M

เนื่องจาก $K_{a1} >> K_{a2}$ ดังนั้น pH ของสารละลายจึงขึ้นกับการแตกตัวของกรดอ่อนในขั้นที่ 1 ดังนี้

$$H_2A + H_2O \rightleftharpoons HA^- + H_3O^+$$
 ความเข้มข้นที่สมดุล $C_{H2A} - x + x + x$ จาก $K_{a1} = \frac{[HA^-][H_3O^+]}{[H_2A]} = \frac{(x)(x)}{(C_{H2A} - x)} = 1.3 \times 10^{-2}$

(0.5 คะแนน)

จาก
$$K_{a1} = \frac{[HA^{-}][H_{3}O^{+}]}{[H_{2}A]} = \frac{(x)(x)}{(C_{H2A} - x)} = 1.3 \times 10^{-2}$$

เมื่อ
$$x = 1.0 \times 10^{-2} \,\mathrm{M}$$
 จะได้ $C_{\mathrm{H2A}} = 1.8 \times 10^{-2} \,\mathrm{M}$ (0.5 คะแนน)

$$mol H_2A = \frac{1.8 \times 10^{-2} mol H_2A}{1000 mL} \times 50.0 mL = 9.0 \times 10^{-4} mol$$
 (0.5 คะแนน)

molar mass
$$H_2A = \frac{0.104 \text{ g H}_2A}{9.0 \text{x} 10^{-4} \text{ mol H}_2A}$$
 (0.5 Algebra)

= 115.6 g/mol ปัดเป็น 116 g/mol (คะแนนคำตอบให้ช่องคำตอบข้างบน)

9.2 (2 คะแนน)

สูตรโมเลกุลของกรดอ่อนคือ

 $C_4H_4O_4$

(0.5 คะแนน)

คำอธิบาย โจทย์กำหนดว่าเป็นกรด 2 โปรตอน กราฟไทเทรตมี 2 จุดสมมูล มี C, H และ O เป็นองค์ประกอบ กรดนี้จึงมี –COOH 2 หมู่ (2×45 g) เมื่อ molar mass = 116 g/mol ดังนั้น เหลือ 116-90 = 26 g จึงเป็นส่วนของ 2C และ 2H ดังนั้น สูตรโมเลกุล จึงเป็น C₄H₄O₄

สูตรโครงสร้าง<u>ที่เป็นไปได้ทั้งหมด</u>ของกรดอ่อน **(ถ้าตอบเกินจะถูกหักคะแนน)**

9.3 (1.5 คะแนน)

จุดที่ 1 : H_2A > HA^- > A^{2-}

จุดที่ 2 : HA^- > A^{2-} > H_2A

จุดที่ 3 : A²⁻ > HA⁻ > H₂A

คำตอบข้อที่ 10 (4 คะแนน)

วิธีทำ (ทศนิยม 2 ตำแหน่ง)

หลังปฏิกิริยาสะเทินมี A⁻ ซึ่งเป็นเบสอ่อน แตกตัวได้ดังนี้

$$A^{-}$$
 + $H_{2}O$ \rightleftarrows HA + OH^{-} ความเข้มข้นที่สมดุล $0.11-x$ + x + x (0.5 คะแนน)

ต้องใช้ K_b ในการคำนวณ ซึ่งสามารถหาได้โดยใช้ข้อมูลสารละลาย Y ซึ่งเป็นคู่เบสของ HA สารละลาย Y มี pH = 8.00 แสดงว่า $[H_3O^+] = 1.0 \times 10^{-8}~M$ หรือมี $[OH^-] = 1.0 \times 10^{-6}~M$

$$A^{-}$$
 + $H_{2}O$ \rightleftarrows HA + OH^{-} ความเข้มข้นที่สมดุล 0.010 − x + x + x (0.5 คะแนน)

จาก
$$K_b = \frac{[\text{HA}] [\text{OH}^{-}]}{[\text{A}^{-}]}$$
 เมื่อ $x = 1.0 \times 10^{-6} \text{ M}$ จะได้ $K_b = 1.0 \times 10^{-10}$ (0.5 คะแนน)

จาก
$$K_b = \frac{[HA][OH^-]}{[A^-]} = \frac{x^2}{0.11 - x} = 1.0 \times 10^{-10}$$
 (0.5 คะแนน)
$$x = [OH^-] = \sqrt{1.0 \times 10^{-10} \times 0.11} = 3.3 \times 10^{-6} \text{ M}$$
 (0.5 คะแนน)

pOH =
$$-\log [OH^-] = -\log (3.3 \times 10^{-6}) = 5.48$$

ดังนั้น pH = $14.00 - 5.48 = 8.52$

คำตอบข้อที่ 11 (11 คะแนน)

11.1 (0.5 คะแนน) ปฏิกิริยาการเผาไหม้ของซัลเฟอร์

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$
 (0.5 คะแนน)

11.2 (0.5 คะแนน) ปฏิกิริยาออกซิเดชันของซัลเฟอร์ไดออกไซด์

$$SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$$
 (0.5 คะแนน)

(0.5 คะแนน) ปฏิกิริยาการเกิดฝนกรด

$$SO_3(g) + H_2O(g,l) \longrightarrow H_2SO_4(aq)$$
 (0.5 คะแนน)

กราฟเทียบมาตรฐาน

11.4 (2 คะแนน) ปริมาณแก๊สซัลเฟอร์ไดออกไซด์ =

15 (1 คะแนน)

ตัน/ปี

วิธีทำ

(ตอบเลขจำนวนเต็ม)

$$SO_2 = \frac{5 \operatorname{ton coal}}{1 \operatorname{day}} \times \frac{365 \operatorname{days}}{1 \operatorname{year}} \times \frac{0.4 \operatorname{ton S}}{100 \operatorname{ton coal}} \times \frac{64 \operatorname{ton SO}_2}{32 \operatorname{ton S}}$$
 (1 คะแนน)

11.5 (4.5 คะแนน) ปริมาตรน้ำทะเล =

2,532 (1 คะแนน)

m³/day

วิธีทำ

(ตอบเลขจำนวนเต็ม)

ระบบบัฟเฟอร์
$$HCO_3^- \iff H^+ + CO_3^{2-} \quad K_a = 4.7 \times 10^{-11}$$

$$pH = pKa + log \frac{[CO_3^{2-}]}{[HCO_3^-]} \tag{0.25 คะแนน}$$

ถ้าน้ำทะเลมี pH = 7.5 แทนค่าสมการ จะได้
$$7.5 = 10.3 + \log \frac{[{\rm CO}_3^{2^-}]}{[{\rm HCO}_3^-]}$$
 (0.25 คะแนน)

$$\log \frac{[\text{CO}_3^{2^-}]}{[\text{HCO}_3^-]} = -2.8 \qquad \Im \text{To} \qquad \frac{[\text{CO}_3^{2^-}]}{[\text{HCO}_3^-]} = 10^{-2.8} = 1.585 \times 10^{-3} \qquad (0.25 \, \text{Pellul})$$

พิจารณาสมดุล (0.5 คะแนน)

$$HCO_3^- \longleftrightarrow H^+ + CO_3^{2-}$$

Initial (µmol/L) 1800

250

Equili (µmol/L)

1800+x

250-x

$$\frac{[CO_3^{2^-}]}{[HCO_3^-]} = 1.585 \times 10^{-3} = \frac{[250 - x]}{[1800 + x]}$$
 จะได้ $x = 246.8 \mu mol/L$ (0.5 คะแนน)

ปฏิกิริยา
$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$
 $2SO_3(g) + 2H_2O(g,l) \longrightarrow 2H_2SO_4(aq)$

$$2CO_3^{2-}(aq) + 2H_2SO_4(aq) \longrightarrow 2SO_4^{2-}(aq) + 2CO_2(g)^{\uparrow}$$

ปฏิกิริยารวม $2CO_3^{2-}(aq) + 2SO_2(g) + O_2(g) \longrightarrow 2SO_4^{2-}(aq) + 2CO_2(g)$ (0.5 คะแนน)

11.5 (ต่อ)

จากการคำนวณข้างต้น x = 246.8 µmol/L

จากปฏิกิริยารวม 2 mol ${\rm CO_3}^{2^-}$ ทำปฏิกิริยาพอดีกับ 2 mol ${\rm SO_2}$

ดังนั้น น้ำทะเล 1 L จะกำจัด
$$SO_2$$
 ได้ 246.8 µmol ทำให้ pH ของน้ำทะเล = 7.5 (0.25)

ปริมาณ SO₂ ที่เกิดจากการเผาไหม้ต่อวัน หาได้จาก

$$SO_2 = \frac{5 \text{ ton coal}}{1 \text{ day}} \times \frac{0.4 \text{ ton S}}{100 \text{ ton coal}} \times \frac{64 \text{ ton SO}_2}{32 \text{ ton S}} = 0.04 \text{ ton/day หรือ 40 kg/day}$$
 (0.5)

ปริมาตรน้ำทะเล (
$$m^3$$
) (0.5)

$$=\frac{40 \text{ kg SO}_2}{1 \text{ day}} \times \frac{1000 \text{ g}}{1 \text{ kg}} \times \frac{1 \text{ mol SO}_2}{64.0 \text{ g SO}_2} \times \frac{1 \text{ L}}{246.8 \, \mu \text{mol SO}_2} \times \frac{1 \text{ x} 10^6 \, \mu \text{mol}}{1 \, \text{mol}} \times \frac{10^3 \text{ cm}^3}{1 \text{ L}} \times \frac{1 \text{ m}^3}{10^6 \text{ cm}^3} \times \frac{1 \text{ m}^3}{10^6 \text{ cm}^3} \times \frac{1 \text{ mol SO}_2}{1 \text{ mol some}} \times \frac{1 \text{ mol some}}{1 \text{ mol some}} \times \frac{1 \text{ mol some}} \times \frac{1 \text{ mol some}}{1 \text{ mol some}} \times$$

$$= 2,532 \text{ m}^3/\text{day}$$

คำตอบข้อที่ 12 (10 คะแนน)

12.1 (3 คะแนน) ร้อยละโดยมวลของ Cu ในทองเหลือง =

64.3

(0.5 คะแนน)

วิธีทำ

(ตอบเลขนัยสำคัญ 3 ตัว)

กระแสไฟฟ้า = ประจุ/เวลา ดังนั้น 65.0% ของประจุไฟฟ้าที่ใช้ ทำให้เกิด Cu(s) และ 35.0% ทำให้เกิด Zn(s) สมมุติว่าใช้ประจุไฟฟ้า 100 คูลอมบ์

ประจุไฟฟ้าที่ทำให้เกิด Cu(s) =
$$\frac{65.0}{100.0}$$
 \times 100 C = 65.0 C

ประจุไฟฟ้าที่ทำให้เกิด
$$Zn(s) = \frac{35.0}{100.0} \times 100 C = 35.0 C$$

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\circ} = +0.34 \text{ V}$

$$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$$
 $E^{\circ} = -0.76 \text{ V}$

มวลของ
$$Cu(s) = 65.0 \text{ C} \times \frac{1 \, \text{mol e}^-}{96,500 \, \text{C}} \times \frac{1 \, \text{mol Cu}}{2 \, \text{mol e}^-} \times \frac{63.5 \, \text{g Cu}}{1 \, \text{mol Cu}} = 0.0214 \, \text{g Cu}$$
 (1 คะแนน)

มวลของ
$$Zn(s) = 35.0 \text{ C} \times \frac{1 \, \text{mol e}^-}{96,500 \, \text{C}} \times \frac{1 \, \text{mol Zn}}{2 \, \text{mol e}^-} \times \frac{65.4 \, \text{g Zn}}{1 \, \text{mol Zn}} = 0.0119 \, \text{g Zn}$$
 (1 คะแนน)

%Cu โดยมวล =
$$\frac{0.0214 \,\mathrm{g\,Cu}}{(0.0214 + 0.0119) \,\mathrm{g\,brass}} \times 100$$
 (0.5 คะแนน)

%Cu โดยมวล = 64.3%

12.2 (4 คะแนน)

12.2.1 ปฏิกิริยาที่แคโทดเป็นดังสมการ

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$

(0.5 คะแนน)

ปฏิกิริยาที่แอโนดเป็นดังสมการ

$$2H_2O(l) \rightleftharpoons O_2(g) + 4H^+(aq) + 4e^-$$

(0.5 คะแนน)

ปฏิกิริยารวมของเซลล์เป็นดังสมการ

$$2Cu^{2+}(aq) + 2H_2O(l) \rightleftharpoons 2Cu(s) + O_2(g) + 4H^+(aq)$$
 (0.5 คะแนน)

วิธีคิด (นักเรียนไม่ต้องแสดง)

ที่ Cathode อาจเกิดรีดักชันของ Cu^{2+} , H^+ และ H_2O

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\circ} = +0.34$

$$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$$
 $E^{\circ} = 0.00 \text{ V}$

$$2H_2O(l) + 2e^- \rightleftharpoons H_2(g) + 2OH^- \qquad E^\circ = -0.83 \text{ V}$$

 $E^{\circ}_{
m red}$ ของ ${
m Cu}^{2+}$ มากที่สุด รีดักชันของ ${
m Cu}^{2+}$ จึงเกิดได้ดีกว่า

ที่ Anode อาจเกิดออกซิเดชันของ SO_4^{2-} และ H_2O $2SO_4^{2-}(aq) \rightleftharpoons S_2O_8^{2-}(aq) + 2e^ E^\circ_{ox} = -2.01 \text{ V}$ $2H_2O(l) \rightleftharpoons O_2(g) + 4H^+(aq) + 4e^ E^\circ_{ox} = -1.23 \text{ V}$ E°_{red} ของ O_2/H_2O ต่ำที่สุด ออกซิเดชันของ H_2O จึงเกิด ได้ดีกว่า

V

12.2.2 ต้องให้ศักย์ไฟฟ้าภายนอกน้อยที่สุด =

0.71

(0.5 คะแนน)

วิธีทำ

(ตอบเลขนัยสำคัญ 2 ตัว)

Cathode: $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$ $E^{\circ} = +0.34 \text{ V}$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$
 or $E = E^{\circ} - \frac{0.0592}{n} \log Q \, \mathring{n} \, 25^{\circ}C$

$$E_{\text{Cu}^{2+}/\text{Cu}} = E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} - \frac{0.0592}{2} \log \frac{1}{[\text{Cu}^{2+}]}$$
(0.25 Arilly)

$$E_{\text{Cu}^{2+}/\text{Cu}} = 0.34 - \frac{0.0592}{2} \log \frac{1}{0.0100} = 0.28 \text{ V}$$
 (0.5 คะแนน)

Anode: $O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(l)$ $E^\circ = +1.23 \text{ V}$

$$E_{O_2/H_2O} = E_{O_2/H_2O}^{\circ} - \frac{0.0592}{4} \log \frac{1}{p_{O_2}[H^+]^4}$$
 (0.25 Ariuu)

$$E_{O_2/H_2O} = 1.23 - \frac{0.0592}{4} \log \frac{1}{1.00(1.00 \times 10^{-4})^4} = 0.99 \text{ V}$$
 (0.5 Ariuu)

$$E_{\text{cell}} = E_{\text{cathode}} - E_{\text{anode}} = 0.28 - 0.99$$
 (0.5 คะแนน)

$$E_{\text{cell}} = -0.71 \text{ V}$$

หรือ $2Cu^{2+}(aq) + 2H_2O(l) \rightleftharpoons 2Cu(s) + O_2(g) + 4H^+(aq)$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{cathode}} - E^{\circ}_{\text{anode}} = 0.34 - 1.23 = -0.89 \text{ V}$$
 (0.5 คะแนน)

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0592}{4} \log \frac{p_{O_2}[H^+]^4}{[Cu^{2+}]^2}$$
 (0.5 คะแนน)

$$E_{\text{cell}} = -0.89 - \frac{0.0592}{4} \log \frac{1.00(1.00 \times 10^{-4})^4}{(0.0100)^2} = -0.89 - (-0.18)$$
 (0.5 คะแนน)

$$E_{cell} = -0.71 \text{ V}$$

Μ

12.3 (3 คะแนน)

12.3.1 ค่าคงที่สมดุล (
$$K$$
) = 7.6×10^{-10} (0.5 คะแนน)

วิธีทำ

(ตอบในรูป A
$$\times$$
 10 $^{\rm n}$, เลขนัยสำคัญ 2 ตัว)

วิธีทำ

(ตอบเลขนัยสำคัญ 2 ตัว)

ความเข้มข้นของ
$$\mathrm{HNO_3} = \mathrm{C_{HNO_3}} = \mathrm{[H^+]} = \mathrm{[NO_3^-]}$$
 $2\mathrm{H^+(aq)} + 2\mathrm{NO_3^-(aq)} + \mathrm{NO(g)} \rightleftharpoons 3\mathrm{NO_2(g)} + \mathrm{H_2O(l)}$ $K = \frac{(p_{\mathrm{NO_2}})^3}{\mathrm{[H^+]^2[NO_3^-]^2}p_{\mathrm{NO}}} = 7.6 \times 10^{-10}$ $(0.5\ \mathrm{คะแนน})$ $p_{\mathrm{NO_2}} = \frac{0.20\ \mathrm{mol\ NO_2}}{100\ \mathrm{mol\ total}} \times 1.00\ \mathrm{atm} = 2.0 \times 10^{-3}\ \mathrm{atm}$ $p_{\mathrm{NO_2}} = 1.00 - 2.0 \times 10^{-3} = 0.998\ \mathrm{atm}$ $(0.25\ \mathrm{คะแนน})$ $(0.25\ \mathrm{hellow})$ $(0.25\ \mathrm{hellow})$

 $C_{21}H_{27}CI_3N_2O_3$

Solution to Problem 13 : Synthetic scheme

Answer to Problem 13 (9 points)

13.1 (6 points) Structures of compounds **A** to **E** and the structure of Reagen**t X** are:

MgBr	Br
Compound A (1 point)	Compound B (1 point)
	CI N—OH
Compound C (1 point)	Compound D (1 point)
CI N N ONa	O H CI
Or -COO ⁻	
Compound E (1 point)	Reagent X (1 point)

13.2 (2 points) The structure of compound **F** as its ionic form with the protons at their correct positions:

0.5 point for correct skeletal structure (no change from **E**)

0.5 point for correct placement of each proton x 3 positions = 1.5 points

13.3 (1 point) A reagent which may also be used instead of PBr₃ is

HBr or PBr₅

Solution to Problem 14 : Synthetic scheme

 $MsCl = CH_3SO_2Cl$

Answer to Problem 14 (7 points)

Structures of compounds A to F are:

Compound A (1 point)

Compound B (1 point)

Compound C (1 point)

Compound **D** (1 point)

Compound E (1 point)

- Structure regardless of stereochem = 1 point
- Correct stereochemistry = 1 point

Compound F (2 points)

Answer to Problem 15 (13.5 points)

15.1 (2 points) Structure of C3 epimer of D-arabinose

15.2 (2 points) Structure of the enantiomer of D-xylose

15.3 (4.5 points) Structure of compound A, B and C

(3 points) Structure of saccharide **D** 15.4

The pH of the solution of saccharide **D** should be

- \square pH is less than 7.
- \square pH is about 7. \square pH is more than 7.

☑ pH is less than 7. (1 point)

15.5 (2 points) Structure of L-talose

