Χ

regentishamitha@gmail.com ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course outline

How does an NPTEL online course work?

Week 0

Week 1

Week 2

Week 3

week 4

Week 5

Week 6

Week 7

- Bias and Variance (unit? unit=91&lesson=92)
- Train error vsTest error (unit?unit=91&lesson=93)

Assignment 7

The due date for submitting this assignment has passed.

Due on 2021-03-10, 23:59 IST.

Assignment submitted on 2021-03-10, 23:30 IST

- 1) Mathematically, The Simple model has a high bias, and the complex model has a low 1 point bias.
 - True
 - False

Yes, the answer is correct.

Score: 1

Accepted Answers:

True

2) Related to variance, which one of the following is true?

1 point

 $((\hat{f}(x)) = E[(\hat{f}(x) - E[\hat{f}(x)])^{2}]$ $((\hat{f}(x)) = E[(\hat{f}(x) + E\hat{f}(x)])^{2}]$ $((\hat{f}(x)) = E[(\hat{f}(x) - E\hat{f}(x)])]$

 $((\hat{f}(x)) = E[(\hat{f}(x) - [\hat{f}(x)])^2]$

Yes, the answer is correct.

Score: 1

Train error vs	
Test error	
(Recap) (unit?	
unit=91&lesson=94)

- True error and Model complexity (unit? unit=91&lesson=95)
- L2 regularization (unit? unit=91&lesson=96)
- Dataset
 augmentation
 (unit?
 unit=91&lesson=97)
- Parameter sharing and tying (unit? unit=91&lesson=98)
- Adding Noise to the inputs (unit? unit=91&lesson=99)
- Adding Noise to the outputs (unit? unit=91&lesson=100)
- Early stopping (unit? unit=91&lesson=101)
- Ensemble
 Methods (unit?
 unit=91&lesson=102)
- Dropout (unit? unit=91&lesson=103)
- Lecture
 Material for
 Week 7 (unit?
 unit=91&lesson=104)
- Quiz: Assignment 7 (assessment? name=185)
- Week 7Feedback FormDeep

Accepted Answers:

$$((\hat{f}(x)) = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

- 3) As the model complexity increases, train_{error} becomes overly optimistic and gives a **1 point** wrong picture of how close \hat{f} is to f.
 - True
 - False

Yes, the answer is correct.

Score: 1

Accepted Answers:

True

- 4) Related to the Model complexity, S_1 and S_2 are two statements. Choose the correct **1** point option.
- S₁. As the Model complexity increases, the training error go to almost zero.
- S₂. As the Model complexity increases, the validation error decreases up to certain point.
 - \bigcirc S₁ is true and S₂ is false.
 - S₁ is false and S₂ is true.
 - \bigcirc Both S₁ and S₂ are true.
 - \bigcirc Both S₁ and S₂ are false.

Yes, the answer is correct.

Score: 1

Accepted Answers:

Both S_1 and S_2 are true.

- 5) S_1 , S_2 and S_3 are three statements with respect to Deep neural networks, choose the **1 point** correct option.
 - S₁:Highly complex models.
 - S₂: Many parameters, many non-linearities.
 - S₃. Does not need any form of regularization.
 - \bigcirc S₁ is true, S₂ is false, S₃ is true.
 - S₁ is false, S₂ is true, S₃ is false.
 - \bigcirc S₁ is true, S₂ is true, S₃ is false.
 - \bigcirc S₁ is true, S₂ is true, S₃ is true.

No, the answer is incorrect.

Score: 0

Accepted Answers:

 S_1 is true, S_2 is true, S_3 is false.

6) Dropout is a technique which addresses issues of train time computation and test time *1 point* computation.

Learning - IIT	True	
Ropar (unit? unit=91&lesson=105)	False	
	Yes, the answer is correct.	
Week 8	Score: 1	
Week 9	Accepted Answers: True	
week 10	7) Bagging forms is an ensemble method, which can be used for instance of the classifier.	s 1 point
Week 11	Different, Same	
We als 40	◯ Same, Different	
Week 12	◯ Same, Same	
Download	O Different, Different	
Videos	Yes, the answer is correct. Score: 1	
Text Transcripts	Accepted Answers: Different, Same	
	Consider the equation of expected squared error: $mse = rac{1}{k}V + rac{k-1}{k}C$ If the	1 point
	errors are independent, then covariance is	
	O 1	
	© 0	
	O 2	
	○ 3	
	Yes, the answer is correct.	
	Score: 1	
	Accepted Answers:	
	9) For a simple input and output neural network, adding Gaussian noise to the input is equivalent to weight decay (L2 regularization).	1 point
	True	
	False	
	Yes, the answer is correct. Score: 1	
	Accepted Answers:	
	True	
	10) How many thinned networks can be formed, if given a total number of n nodes?	1 point
	2^n	
	$2^n + 1$	
	2^n-1	

 $2^n + 1$

Yes, the answer is correct. Score: 1

 $\begin{array}{c} \text{Accepted Answers:} \\ 2^n \end{array}$