Tarea Cap 5 - GyA

Jose Antonio Lorencio Abril

Mayo 2020

5.2.5 Consideremos $\mathbb Z$ como subgrupo aditivo de $\mathbb Q.$ Fijamos un primo p y para cada entero no negativo n sea

$$X_n = \left\{rac{a}{p^k}: \ a \in \mathbb{Z}, \ 0 \leq k \leq n
ight\}$$
 $X = \cup_{n \geq 0} X_n$

Denotamos

$$A_n = rac{X_n}{\mathbb{Z}} \qquad \mathbb{Z}_{p^\infty} = rac{X}{\mathbb{Z}}$$

Demostrar:

1. $\frac{\mathbb{Q}}{\mathbb{Z}}$ es de torsión

Queremos ver que $\forall a \in \frac{\mathbb{Q}}{\mathbb{Z}}$, a tiene orden finito. La forma de a es $\frac{p}{q} \notin \mathbb{Z}$, pues si fuera entero, entonces sería $0 \mod \mathbb{Z}$, y tendría orden 1. Entonces, tenemos que (notación aditiva):

$$q \cdot \frac{p}{q} = p \in \mathbb{Z} \implies \left(\frac{p}{q}\right)^q = 0 \mod \mathbb{Z} \implies \left|\frac{p}{q}\right| = q$$

y el grupo es de torsión.

2. X y todos los X_n son subgrupos de $\mathbb Q$ que contienen a $\mathbb Z$

Empezamos por X:

- $0 \in X$: $\frac{0}{n^k} = 0 \in \mathbb{Z} \implies 0 \in X_n$ para todo $n \implies 0 \in X$
- Cerrado para la suma: sean $a, b \in X \implies a \in X_n, b \in X_m \implies a = \frac{a'}{p^k}, b = \frac{b'}{p^j}, 0 \le k \le n, 0 \le j \le m, a', b' \in \mathbb{Z}$. Y, entonces

$$a+b=\frac{a'}{p^k}+\frac{b'}{p^j}=\frac{a'p^j+b'p^k}{p^{k+j}}$$

y se tiene que $a'p^j+b'p^k\in\mathbb{Z}$ y $0\leq k+j\leq n+m$. Por lo que $a+b\in X_{n+m}\implies ab\in X$

• Cerrado para inversos: sea $a \in X$, entonces $a = \frac{a'}{p^k}, \ 0 \le k \le n, \ a' \in \mathbb{Z}$. Y se tiene que

$$\frac{a}{p^k} + \frac{b}{p^m} = 0 \iff \frac{ap^m + bp^k}{p^k p^m} = 0$$

tomando b = -a y m = k, tenemos que

$$\frac{ap^m + bp^k}{p^k p^m} = \frac{ap^k - ap^k}{p^{2k}} = \frac{0}{p^{2k}} = 0$$

1

Hemos visto que es subgrupo, y resta ver que contiene a \mathbb{Z} . Para ver esto, sea $a \in \mathbb{Z}$, entonces $a = \frac{a}{1} = \frac{a}{r^0}$, luego $a \in X$.

Pasamos a ver X_n :

- $0 \in X_n$, ya lo hemos visto antes
- Cerrado para la suma: sean $a, b \in X_n$, entonces $a = \frac{a'}{p^k}, b = \frac{b'}{p^j}, a, b \in \mathbb{Z}, 0 \le k, j \le n$. Y se tiene que

$$a + b = \frac{a'p^{j} + b'p^{k}}{p^{j+k}} = \begin{cases} \frac{a' + b'p^{k-j}}{p^{k}} & j \le k\\ \frac{a'p^{j-k} + b'}{p^{j}} & k \le j \end{cases}$$

y en cualquiera de los casos, el resultado está en X_n .

• Cerrado para inversos: en la parte anterior, hemos visto que el inverso de $a \in X$ está en el mismo X_n que a. Por lo que ya lo hemos probado.

Para ver que contiene a \mathbb{Z} , razonamos exactamente como en el caso anterior.

3.
$$A_n = \left\langle \frac{1}{p^n} + \mathbb{Z} \right\rangle_{p^n}$$

'⊃' Dado $a \in \left\langle \frac{1}{p^n} + \mathbb{Z} \right\rangle_{p^n}$, entonces existe $0 \leq k < p^n$ tal que $a = k \left(\frac{1}{p^n} + \mathbb{Z} \right) = \frac{k}{p^n} + \mathbb{Z}$. Y $\frac{k}{p^n} \in X_n$. Por tanto, $a \in A_n$.

'C' Dado $a \in A_n = \frac{X_n}{\mathbb{Z}}$, entonces $a = \frac{a'}{p^k} + \mathbb{Z}$, con $0 \le a' < p^k$. Y entonces $a'p^{n-k}\left(\frac{1}{p^n} + \mathbb{Z}\right) = \frac{a'}{p^k} + \mathbb{Z}$, luego $a \in \left\langle \frac{1}{p^n} + \mathbb{Z} \right\rangle_{p^n}$.

4.
$$t_p\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) = \mathbb{Z}_{p^{\infty}}$$

'C' Si $\frac{a}{b} + \mathbb{Z} \in \frac{\mathbb{Q}}{\mathbb{Z}}$ es de orden p^k , eso quiere decir que $p^k \frac{a}{b} \in \mathbb{Z}$, o sea, que $b | p^k a$. Pero $b \nmid a$, pues si así fuera, entonces $\frac{a}{b} = c \in \mathbb{Z}$ y tendría orden 1 en $\frac{\mathbb{Q}}{\mathbb{Z}}$. Por tanto, $b | p^k \implies b = p^j$, $0 < j \le k$. O sea, $\frac{a}{b} + \mathbb{Z} = \frac{a}{p^j} + \mathbb{Z} \in \mathbb{Z}_{p^{\infty}}$.

'⊃' Si $\frac{a}{p^k} + \mathbb{Z} \in \mathbb{Z}_{p^{\infty}}$, claramente $\frac{a}{p^k} + \mathbb{Z} \in \mathbb{Z}$ y se tiene que $p^k \frac{a}{p^k} + \mathbb{Z} = a + \mathbb{Z} = 0 + \mathbb{Z}$, por lo que tiene orden potencia de p, y así $\frac{a}{p^k} + \mathbb{Z} \in t_p\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right)$

5.
$$\frac{\mathbb{Q}}{\mathbb{Z}} = \bigoplus_{p \in \mathbb{P}} \mathbb{Z}_{p^{\infty}}$$

Por el ejercicio 5.2.4, basta ver $t\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) = \frac{\mathbb{Q}}{\mathbb{Z}}$, y entonces $\frac{\mathbb{Q}}{\mathbb{Z}} = t\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) \stackrel{5.2.4}{=} \oplus_{p \in P} t_p\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) \stackrel{(4)}{=} \oplus_{p \in P} \mathbb{Z}_{p^{\infty}}$.

Que $t\begin{pmatrix} \mathbb{Q} \\ \mathbb{Z} \end{pmatrix} = \frac{\mathbb{Q}}{\mathbb{Z}}$ es fácil de ver, ya que si $\frac{a}{b} + \mathbb{Z} \in \frac{\mathbb{Q}}{\mathbb{Z}}$, entonces $b\frac{a}{b} + \mathbb{Z} = a + \mathbb{Z} = 0 + \mathbb{Z}$, por lo que $\frac{a}{b}$ tiene orden finito y la otra inclusión es obvia.

6. Todo subgrupo propio de $\mathbb{Z}_{p^{\infty}}$ es igual a A_n para algún $n \geq 0$.

Sea G un subgrupo propio de $\mathbb{Z}_{p^{\infty}}$. $\natural \exists n \in \mathbb{N}: G = A_n$?

Bueno, claramente A_n es un subgrupo propio de $\mathbb{Z}_{p^{\infty}}$, ya que $\frac{1}{p^{n+1}} \notin A_n$. Por tanto, falta ver la otra inclusión. Pero si $g \in G \implies g \in \mathbb{Z}_{p^{\infty}} = \frac{X}{\mathbb{Z}} \implies g' + \mathbb{Z} \in \frac{X}{\mathbb{Z}} \implies g' \in X \implies g' \in X_n$, para algún n, entonces $g' + \mathbb{Z} \in \frac{X_n}{\mathbb{Z}} = A_n$.

2

5.3.17 Demostrar que todo grupo abeliano finito no cíclico contiene un subgrupo isomorfo a $\mathbb{Z}_p \times \mathbb{Z}_p$ para algún primo p.

Como no es cíclico, entonces no es indescomponible. Luego admite una descomposición primaria

$$G = \langle a_1 \rangle_{p_1} \oplus ... \oplus \langle a_m \rangle_{p_m}$$

sabemos que esto podemos expresarlo como

$$G \simeq \langle a_1 \rangle_{p_1} \times ... \times \langle a_m \rangle_{p_m}$$

De forma que $p_m|p_{m-1}|...|p_2|p_1$ y podemos supones que no tomamos ningún subgrupo trivial. Entonces, no puede haber un único subgrupo, de este tipo, pues en tal caso $G = \langle a_1 \rangle_{p_1}$ y es cíclico, en contra de la hipótesis. Entonces, encontramos un subgrupo $\langle a_1 \rangle_{p_1} \times \langle a_2 \rangle_{p_2}$ tales que $\exists p$ primo tal que $p|p_1$ y $p|p_2$, ya que $p_2|p_1$. Este subgrupo es un producto de dos grupos cíclicos, que por tanto tienen subgrupo de cualquier orden que divida a su orden, en particular tienen subgrupos cíclicos de orden p. Es decir, que podemos encontrar un subgrupo de la forma

$$\langle a \rangle_p \times \langle b \rangle_p$$

pero todo subgrupo cíclico de orden p es isomorfo a \mathbb{Z}_p , por lo que este producto es isomorfo a $\mathbb{Z}_p \times \mathbb{Z}_p$, como queríamos ver.

De hecho, es $a=a_1^{\frac{p_1}{p}}$ y $b=a_2^{\frac{p_2}{p}}.$