Exercice 1 : Mise en équation et résolution de circuits linéaires en régime variable - Conditions initiales nulles *

Partie: 1 - Résolution temporelle *

On considère le circuit suivant :

Ce circuit est alimenté par un générateur de tension $e(t) = E \cdot u(t)$ où u(t) est un échelon unité. On considère que les conditions initiales sont nulles.

Question

1) Donner les valeurs de $i_1(0^+)$, $i_2(0^+)$, $u_L(0^+)$ et $u_C(0^+)$ en fonction de E et des valeurs des composants.

Solution

Question

2) a) Établir l'équation différentielle qui régit $i_1(t)$.

Indice

Solution

Question

2) b) Résoudre l'équation différentielle qui régit $i_1(t)$.

Indice

Chargement de [MathJax]/localization/fr/MathMenu.js

Solution

Question

3) a) Établir l'équation différentielle qui régit $i_2(t)$.

Indice

Solution

Question

3) b) Résoudre l'équation différentielle qui régit $i_2(t)$.

Solution

Question

4) Calculer le courant i(t).

Indice

Solution

Question

5) Quelles relations doit-il exister entre L, R_1 , R_2 et C pour que le courant i(t) soit indépendant du temps ?

Solution

Partie : 2- Résolution avec le formalisme de la transformée de Laplace

L'objectif de cette partie est de redémontrer les résultats obtenus précédemment en utilisant cette fois-ci le formalisme de la transformée de Laplace.

Question

6) Faire le schéma équivalent du circuit avec le formalisme de la transformée de Laplace en précisant les notations utilisées pour chaque grandeur électrique.

Solution

Question

7) a) Établir l'expression de $I_1(p)$ en fonction de E, R_1 et L.

Méthode?

Solution

Question

7) b) A partir du résultat de la question précédente, déterminer $i_1(t)$.

Indice

Solution

Chargement de [MathJax]/localization/fr/MathMenu.js

<u> นนยัรแบก</u>

8) a) Établir l'expression de $I_2(p)$ en fonction de E, R_2 et C.

Indice

Solution

Question

8) b) A partir du résultat de la question précédente, déterminer $i_2(t)$.

Indice

Solution

Question

9) Déterminer l'expression de i(t).

Indice

Solution

Partie: 3- Simulation 🗯

Question

10) Tracer les courants $i_1(t)$, $i_2(t)$ et i(t). Pour cela, on utilise Octave.

On prendra $R_1=R_2=100\,\Omega$, $C=100\,\mu F$ et $E=10\,V$.

Note : On utilisera l'expression trouvée dans la question précédente pour calculer la valeur de $m{L}$.

Note 2 : On veillera à choisir une gamme de temps adaptée pour le tracé des courbes.

Indice

Indice

Solution

Question

11) Utiliser Octave pour résoudre les équations différentielles qui régissent les courants $i_1(t)$ et $i_2(t)$ (obtenues aux questions 2)a) et 3)a)) avec les conditions initiales déterminées dans la question 1).

On utilisera la fonction *pretty* pour mettre en forme l'affichage de l'expression.

Résolution d'équation différentielle avec Octave ?

Syntaxe de pretty?

Solution

Question

12) Utiliser Octave pour calculer les transformées de Laplace inverse de $I_1(p)$ et $I_2(p)$ en Chargement de [MathJax]/localization/fr/MathMenu.js lux questions 7)a) et 8)a).

30/01/2025 23:00 Exercice 1 : Mise en équation et résolution de circuits linéaires en régime variable - Conditions initiales nulles [Circuits linéaire...

On utilisera la fonction *pretty* pour mettre en forme l'affichage de l'expression.

Calcul de la transformée de Laplace inverse avec Octave ?

Syntaxe de pretty?

Solution

Chargement de [MathJax]/localization/fr/MathMenu.js