Analisi Matematica per Informatici – Esercitazione 9 a.a. 2006-2007

Dott. Simone Zuccher

01 Febbraio 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Calcolo di limiti tramite il teorema di de L'Hôpital

1.1 Esercizio

Utilizzando il teorema di de L'Hôpital si calcoli

$$\lim_{x \to \frac{\pi}{2}} \frac{\log \sin x}{\cos x}$$

1.1.1 Risoluzione

$$\lim_{x \to \frac{\pi}{2}} \frac{\log \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{-\sin^2 x} = 0$$

1.2 Esercizio

Utilizzando il teorema di de L'Hôpital si calcoli

$$\lim_{x \to 0} \frac{\log \sqrt{1 + x^2}}{1 - \cos x}$$

1.2.1 Risoluzione

$$\lim_{x \to 0} \frac{\log \sqrt{1+x^2}}{1-\cos x} = \lim_{x \to 0} \frac{\frac{1}{2}\log(1+x^2)}{1-\cos x} = \lim_{x \to 0} \frac{x}{(1+x^2)\sin x} = \lim_{x \to 0} \frac{1}{2x\sin x + (1+x^2)\cos x} = 1.$$

1.3 Esercizio

Utilizzando il teorema di de L'Hôpital calcolare

$$\lim_{x \to +\infty} x e^{-x} \qquad e \qquad \lim_{x \to 0^+} x \log x.$$

1.3.1 Risoluzione

Si noti che sono limiti nella forma $0 \cdot \infty$. Dagli esempi generali visti la scorsa esercitazione si sa già il risultato. Altrimenti, basta osservare che $\lim_{x \to +\infty} xe^{-x} = \lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$ e $\lim_{x \to 0^+} x \log x = \lim_{x \to 0^+} \frac{\log x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0$.

1.4 Esercizio

Utilizzando il teorema di de L'Hôpital si calcoli

$$\lim_{x \to 0} \left(\frac{x+1}{x} - \frac{1}{\log(x+1)} \right)$$

1.4.1 Risoluzione

Derivando una volta si ha $\lim_{x\to 0} \frac{(x+1)\log(x+1)-x}{x\log(x+1)} = \lim_{x\to 0} \frac{\log(x+1)}{\log(x+1)+x/(x+1)}$. Derivando ulteriormente oppure dividendo numeratore e denominatore per $\log(x+1)$ si ottiene $\lim_{x\to 0} \frac{1}{1+\frac{1}{x+1}\cdot\frac{x}{\log(x+1)}} = \frac{1}{2}$, ove si è tenuto conto del limite notevole noto.

1.5 Esercizio

Si calcoli il limite

$$\lim_{x \to +\infty} \frac{x + \sin x}{x + \cos x}$$

1.5.1 Risoluzione

Raccogliendo x al numeratore e al denominatore si ottiene banalmente $\lim_{x\to +\infty} \frac{x+\sin x}{x+\cos x} = \lim_{x\to +\infty} \frac{1+\frac{\sin x}{x}}{1+\frac{\cos x}{x}} = 1.$

Attenzione: se si fosse applicato de L'Hôpital (il limite si presenta nella forma ∞/∞), si sarebbe ottenuto $\lim_{x\to +\infty}\frac{x+\sin x}{x+\cos x}=\lim_{x\to +\infty}\frac{1+\cos x}{1-\sin x}=$ L'uguaglianza tra i due limiti rappresenta un nonsenso in quanto il limite del rapporto delle derivate non esiste e quindi il teorema di de L'Hôpital non è applicabile e nulla si può dire sul limite originale. Al contrario, la scrittura adottata porterebbe a concludere che $\lim_{x\to +\infty}\frac{x+\sin x}{x+\cos x}=$ A, che è falso. Pertanto, l'utilizzo dell'uguale (=) tra un passaggio e l'altro nell'applicazione di de L'Hôpital è prassi ma formalmente è consentito solo dopo aver verificato l'effettiva esistenza del limite del rapporto delle derivate.

2 Calcolo di limiti tramite sviluppi in serie di Taylor

Richiami utili al calcolo di limiti tramite sviluppi in serie di Taylor

• Sviluppi di McLaurin (ossia sviluppi di Taylor centrati nell'origine) per le principali funzioni.

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$\tan x = x + \frac{1}{3} x^{3} + o(x^{4})$$

$$\arcsin x = x + \frac{1}{6} x^{3} + o(x^{4})$$

$$\arcsin x = \frac{\pi}{2} - x - \frac{1}{6} x^{3} + o(x^{4})$$

• Proprietà del simbolo "o piccolo" o. $\forall m, n \in \mathbb{N}$ si ha:

1.
$$o(x^n) \pm o(x^n) = o(x^n)$$

$$2. \ a \cdot o(x^n) = o(x^n)$$

3.
$$x^m \cdot o(x^n) = o(x^{m+n})$$

$$4. \ o(x^m) \cdot o(x^n) = o(x^{m+n})$$

$$5. \ o(o(x^n)) = o(x^n)$$

6.
$$o(x^n + o(x^n)) = o(x^n)$$

2.1 Esercizio

Determinare gli sviluppi di McLaurin (ossia gli sviluppi di Taylor centrati nell'origine) di

$$\frac{1}{1+x}$$
 e $\sqrt{1+x}$

arrestati al second'ordine.

Risoluzione 2.1.1

Considerando lo sviluppo di $(1+x)^{\alpha}$, posto rispettivamente $\alpha=-1$ e $\alpha=1/2$, si ha $\frac{1}{1+x} = 1 - x + x^2 + o(x^2)$ e $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)$. Alternativamente, si poteva procedere calcolando le funzioni e le rispettive derivate (fino alla seconda) nel punto x=0.

Esercizio 2.2

Verificare che, per $x \to 0$, valgono gli sviluppi

$$\log(\cos x) = -\frac{1}{2}x^2 - \frac{1}{12}x^4 + o(x^4) \qquad e \qquad e^{\sin x} = 1 + x + \frac{1}{2}x^2 - \frac{1}{8}x^4 + o(x^4)$$

2.2.1Risoluzione

Dagli sviluppi del coseno, $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$, e del logaritmo, $\log(1+y) =$ $y - \frac{y^2}{2} + o(y^2)$, posto $1 + y = \cos x \Rightarrow y = -\frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$, si ha $\log(\cos x) = -\frac{y^2}{2} + o(x^5)$ $\left[-\frac{x^2}{2} + \frac{x^4}{24} + o(x^5) \right] - \frac{1}{2} \left[-\frac{x^2}{2} + \frac{x^4}{24} + o(x^5) \right]^2 + o([x^2]^2) = -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4).$ o stesso ragionamento si applica agli sviluppi dell'esponenziale e del seno.

2.3 Esercizio

Utilizzando gli sviluppi di Taylor si calcoli

$$\lim_{x \to 0} \frac{1 - \cos x + \log \cos x}{x^4}$$

2.3.1Risoluzione

Dall'esercizio precedente è noto lo sviluppo del log
$$\cos x$$
 per $x \to 0$, pertanto
$$\lim_{x \to 0} \frac{1 - \cos x + \log \cos x}{x^4} = \lim_{x \to 0} \frac{1 - \left[1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)\right] + \left[-\frac{x^2}{2} - \frac{x^4}{12} + o(x^4)\right]}{x^4} = \lim_{x \to 0} \frac{-\frac{x^4}{24} - \frac{x^4}{12} + o(x^4)}{x^4} = -\frac{1}{8}.$$

2.4Esercizio

Utilizzando gli sviluppi di Taylor si calcoli

$$\lim_{x \to 0^+} \frac{\sqrt{x} + \sin x}{\tan x}$$

2.4.1 Risoluzione

$$\lim_{x \to 0^+} \frac{\sqrt{x} + \sin x}{\tan x} = \lim_{x \to 0^+} \frac{\sqrt{x} + o(\sqrt{x})}{x} = +\infty.$$

2.5 Esercizio

Utilizzando gli sviluppi di Taylor si calcoli

$$\lim_{x \to 0^+} \frac{\log(1+x) - \sin x + x^2/2}{x^3}$$

2.5.1 Risoluzione

$$\lim_{x \to 0^+} \frac{\log(1+x) - \sin x + x^2/2}{x^3} = \\ \lim_{x \to 0^+} \frac{[x - x^2/2 + x^3/3 + o(x^3)] - [x - x^3/6 + x^5/120 + o(x^6)] + x^2/2}{x^3} = \\ \lim_{x \to 0^+} \frac{x^3/3 + x^3/6 + o(x^3)}{x^3} = \frac{1}{2}.$$

2.6 Esercizio

Utilizzando gli sviluppi di Taylor si calcoli

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$

2.6.1 Risoluzione

Dopo aver notato che lo sviluppo del $\sin^2 x = \left[x - x^3/6 + o(x^4)\right]^2 = x^2 - x^4/3 + o(x^4)$, si ha $\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right) = \lim_{x \to 0} \frac{\sin^2 x - x^2}{x^2 \sin^2 x} = \lim_{x \to 0} \frac{-x^4/3 + o(x^4)}{x^4 + o(x^6)} = -\frac{1}{3}$.

2.7 Esercizio

Utilizzando gli sviluppi di Taylor si calcoli

$$\lim_{x \to 0} \frac{e^{x^2} - 1 - x^2 + \log(1 + x^3)}{\sin x - x}$$

2.7.1 Risoluzione

Noti gli sviluppi $e^{x^2} = 1 + x^2 + x^4/2 + o(x^4)$, $\log(1+x^3) = x^3 + o(x^3)$ e $\sin x = x - x^3/6 + o(x^4)$, si ha $\lim_{x \to 0} \frac{e^{x^2} - 1 - x^2 + \log(1+x^3)}{\sin x - x} = \lim_{x \to 0} \frac{x^4/2 + o(x^4) + x^3 + o(x^3)}{-x^3/6 + o(x^4)} = \lim_{x \to 0} \frac{x^3 + o(x^3)}{-x^3/6 + o(x^4)} = -\frac{1}{6}$.

Attenzione: se si fosse arrestato lo sviluppo di e^{x^2} a $e^{x^2} = 1 + x^2 + o(x^2)$ si sarebbe ottenuto $\lim_{x\to 0} \frac{e^{x^2} - 1 - x^2 + \log(1+x^3)}{\sin x - x} = \lim_{x\to 0} \frac{o(x^2)}{-x^3/6 + o(x^4)} = \infty$, che è evidentemente sbagliato!

Esercizio 2.8

Utilizzando gli sviluppi di Taylor, discutere al variare del parametro a il seguente limite

$$\lim_{x \to 0} \frac{a \log(1+x) - 6x + 3x^2 - 2x^3}{x^4}$$

Risoluzione 2.8.1

$$\lim_{x \to 0} \frac{a \log(1+x) - 6x + 3x^2 - 2x^3}{x^4} = \lim_{x \to 0} \frac{a[x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)] - 6x + 3x^2 - 2x^3}{x^4} = \lim_{x \to 0} \frac{(a-6)x + (3-\frac{a}{2})x^2 + (\frac{a}{3}-2)x^3 - \frac{a}{4}x^4}{x^4}.$$
 Quindi, per $a = 6$ il limite vale $-\frac{3}{2}$; per $a \neq 6$ vale ∞ .

2.9 Esercizio

Utilizzando gli sviluppi di Taylor si calcoli

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$$

2.9.1 Risoluzione

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2} = \lim_{x \to 0} e^{\frac{1}{x^2} \log \frac{\sin x}{x}} = \lim_{x \to 0} e^{\frac{1}{x^2} \log \frac{x - x^3/6 + o(x^3)}{x}} = \lim_{x \to 0} e^{\frac{1}{x^2} \log[1 - x^2/6 + o(x^2)]} = \lim_{x \to 0} e^{\frac{-x^2/6 + o(x^2)}{x^2}} = e^{-1/6}$$

2.10 Esercizio

Utilizzando gli sviluppi di Taylor calcolare i seguenti limiti

a)
$$\lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)^{1/x^2}$$
 b) $\lim_{x \to 0} \left(\frac{\sin 3x}{3x} \right)^{1/x^2}$ c) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x}$

2.10.1Risoluzione

Procedendo come nell'esercizio precedente, si ricava facilmente (a) $e^{-2/3}$; (b) $e^{-3/2}$; (c) 1.

3 Determinazione di eventuali asintoti di una funzione

Richiami utili per la determinazione degli asintoti.

- Asintoti orizzontali.
 - 1. Se $\lim_{x\to +\infty} f(x) = l_1 \in \mathbb{R}$, allora la retta $y = l_1$ si dice asintoto orizzontale destro per f(x).
 - 2. Se $\lim_{x\to-\infty} f(x) = l_2 \in \mathbb{R}$, allora la retta $y=l_2$ si dice asintoto orizzontale sinistro per f(x).
 - 3. Se $\lim_{x\to +\infty} f(x) = \lim_{x\to -\infty} f(x) = l$, allora la retta y=l si dice asintoto orizzontale per f(x).
- Asintoti verticali.

Se una funzione ammette limite (o semplicemente limite destro, oppure limite sinistro) infinito per $x \to x_0, x_0 \in \mathbb{R}$, allora la retta $x = x_0$ si dice asintoto verticale per f(x) (anche in questo caso si può distinguere tra asintoto da destra e da sinistra nel caso uno dei due limiti sia infinito e l'altro o non lo sia o non esista). In pratica, basta che sia verificata una delle seguenti condizioni $\lim_{x\to x_0^{\pm}} f(x) = +\infty$ oppure $-\infty$ oppure ∞ .

• Asintoto obliquo.

Se $f(x) \sim mx + q$ per $x \to +\infty$ (oppure per $x \to -\infty$), allora la retta y = mx + q si dice asintoto obliquo per f(x) (anche qui si può distinguere tra asintoto destro e sinistro nel caso siano diversi tra loro). Questa condizione si può riscrivere come $\lim_{x \to +\infty} [f(x) - (mx + q)] = 0$ (rispettivamente $\lim_{x \to -\infty} [f(x) - (mx + q)] = 0$). Praticamente, $m \in q$ vengono determinati come segue, purchè entrambi i limiti esistano finiti:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 $q = \lim_{x \to \pm \infty} [f(x) - mx]$

3.1 Esercizio

Determinare eventuali asintoti di $f(x) = \frac{x}{x+1}$, $f(x) = \sqrt{x^2+1}$ e $f(x) = x + \sqrt[3]{x}$.

3.1.1 Risoluzione

 $f(x) = \frac{x}{x+1}$. Asintoto orizzontale y = 1, asintoto verticale x = -1.

 $f(x) = \sqrt{x^2 + 1}$. Asintoto obliquo y = x per $x \to +\infty$, e altro asintoto obliquo y = -x per $x \to -\infty$.

 $f(x) = x + \sqrt[3]{x}$. Non ammette asintoti. Infatti, $f(x) \sim x$ per $x \to +\infty$, ma $[f(x) - x] \to +\infty$ per $x \to +\infty$.