Exercice 1 [Famille régularisante] Soit $N \ge 1$ et soit $\rho \in C_c^{\infty}(\mathbb{R}^N, \mathbb{R})$ t.q. $\rho \ge 0$, $\{x \in \mathbb{R}^N : \rho(x) \ne 0\} \subset B_1$ et $\int \rho(x) dx = 1$. On appelle famille régularisante (ou famille de noyaux régularisants) la famille de fonctions $(\rho_n)_{n \in \mathbb{N}^*} \subset C_c^{\infty}(\mathbb{R}^N, \mathbb{R})$ définie par $: \rho_n(x) = n^N \rho(nx), x \in \mathbb{R}^N, n \in \mathbb{N}^*$.

Soit $N \geq 1$, $(\rho_n)_{n \in \mathbb{N}^*}$ une famille régularisante. Soient $p \in [1, +\infty[$ et $f \in L^p(\mathbb{R}^N)$.

- 1. Montrer que $f \star \rho_n \in C^{\infty}(\mathbb{R}^N, \mathbb{R})$.
- 2. Montrer que $f \star \rho_n \to f$ dans $L^p(\mathbb{R}^N)$ lorsque $n \to +\infty$.
- 3. Montrer que $C_c^{\infty}(\mathbb{R}^N,\mathbb{R})$ est dense dans $L^p(\mathbb{R}^N)$.

Exercice 2 [Quelques exemples de distributions] Soit $1 \leq p \leq +\infty$. On note $L_{loc}^p(\Omega)$ l'ensemble des fonctions f sur Ω telles que pour tout compact K de Ω ,

$$\int_K |f(x)|^p \, dx < \infty$$

(vérifier que pour ces espaces, $p \leq q$ implique $L_{loc}^q \subset L_{loc}^p$).

1. Montrer qu'à une fonction f de L_{loc}^p correspond une unique distribution T_f qui vérifie

$$\forall \varphi \in \mathcal{D}(\Omega), \ \langle T_f, \varphi \rangle = \int_{\Omega} f(x) \varphi(x) dx.$$

Montrer que la masse de Dirac δ ne correspond à aucune fonction de L^1_{loc} (donc à aucune fonction de L^p_{loc} pour $1 \leq p \leq +\infty$).

Montrer que l'application $f \to T_f$ est une injection de L^p dans $\mathcal{D}'(\Omega)$.

2. Montrer que si une distribution T vérifie

$$\exists C > 0 \mid \forall \varphi \in \mathcal{D}(\Omega), |\langle T, \varphi \rangle| \leq C \|\varphi\|_{L^2}$$

alors il existe une unique fonction $f \in L^2$ telle que $T = T_f$.

- 3. Ici ; et ensuite $\Omega=\mathbb{R}$. Calculer les deux premières dérivées, au sens des distributions, de l'application $x\to |x|$
- 4. Montrer que la formule suivante définit une distribution (notée vp. $(\frac{1}{x})$)

$$\left\langle \operatorname{vp.}\left(\frac{1}{x}\right), \varphi \right\rangle = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\varphi(x)}{x} \, dx.$$

Montrer que la formule suivante définit une distribution (notée Pf. $\left(\frac{1}{r^2}\right)$)

$$\left\langle \operatorname{Pf.}\left(\frac{1}{x^2}\right), \varphi \right\rangle = \lim_{\epsilon \to 0} \left\{ \int_{|x| > \epsilon} \frac{\varphi(x)}{x^2} \, dx - 2 \frac{\varphi(0)}{\epsilon} \right\}.$$

- 5. Calculer la dérivé de $x \to \ln(|x|)$
- 6. Définir Pf. $\left(\frac{1}{x^k}\right)$ pour k entier non-nul.
- 7. Définir en dimension 2 et 3 la distribution 1/|x| où |.| désigne la distance euclidienne.

Exercice 3 [Fundamental theorem of calculus] Dans tout l'exercice, on fixe $\Omega = \mathbb{R}$ et χ dans $\mathcal{D}(\mathbb{R})$ telle que $\int \chi(x)dx = 1$.

1. Montrer que φ , appartenant à $\mathcal{D}(\mathbb{R})$, admet une primitive dans $\mathcal{D}(\mathbb{R})$ si et seulement si $\int \varphi(x) dx = 0$. En déduire que

$$\forall \varphi \in \mathcal{D}(\mathbb{R}), \exists ! C_{\varphi} \in \mathbb{R}, \varphi \in \mathcal{D}(\mathbb{R}) \mid \varphi - C_{\varphi}\chi = \varphi'.$$

- 2. Montrer que si T'=0 alors $T=\langle T,\chi\rangle\mathbb{1}$. Que se passe-t-il si T' est nulle sur U ouvert connexe de \mathbb{R} ?
- 3. Application : montrer que si T vérifie l'équation différentielle suivante (au sens des distributions)

$$T' + g(x)T = 0,$$

avec $g \in \mathcal{D}(\mathbb{R})$, alors T est une fonction \mathcal{C}^{∞} qui vérifie l'équation différentielle au sens ordinaire.

Exercice 4 [Équation de transport à coefficients constants avec bord] On s'intéresse au problème linéaire suivant (a est un réel strictement positif) :

$$\begin{cases}
\forall x \in \mathbb{R}, t \ge 0, & \partial_t u + a \partial_x u = 0 \\
\forall x \in \mathbb{R}, & u(0, x) = u_0(x)
\end{cases}$$
(1)

où u_0 est dans $L^{\infty}(\mathbb{R})$ donnée.

- 1. Construire les caractéristiques du problème. En déduire une construction explicite de la solution.
- 2. Vérifier que la solution ainsi construite est bien une solution faible. Montrer que la solution faible est unique.
- 3. On suppose que $u_0 \in C^{\infty}(\mathbb{R})$. Soit u solution faible de (1). A-t-on pour tout $t \geq 0$, que $u(t,\cdot) \in C^{\infty}(\mathbb{R})$?