

从零手写VIO-第七期 第二次作业 思路讲解

第二次作业

基础作业、必做

① 设置 IMU 仿真代码中的不同的参数,生成 Allen 方差标定曲线。 allan 方差工具:

https://github.com/gaowenliang/imu_utils https://github.com/rpng/kalibr_allan

...

② 将 IMU 仿真代码中的欧拉积分替换成中值积分。

提升作业,选做

阅读从已有轨迹生成 imu 数据的论文, 撰写总结推导:

 2013年 BMVC, Steven Lovegrove ,Spline Fusion: A continuous-timerepresentation for visual-inertial fusion withapplication to rolling shutter cameras.

● 使用Allan曲线标定IMU参数

修改kalibr需要对代码有一定的理解 使用kalibr可以直接得到结果,比较简单直接。如果遇到NaN,可以适 当调大仿真参数

homework 2 figure gyroscope

 $\sigma = 0.015137 \text{ rad/s}^{1} \text{sgrt(Hz)}$

0.000048 rad/s²sgrt(Hz)

100

₫ 10⁻³

10°Z

● 使用Allan曲线标定IMU参数

参数名称	陀螺仪 bias 随机游走偏差 σ _{bg}	陀螺仪白噪声 σ _g	加速度计 bias 随机游走偏差 σ _{ba}	加速度计 白噪声 σ_a
设定值	0.000050	0.015000	0.000500	0.019000
标定值	0.000048	0.015137	0.000443	0.019110
相对误差	4.0%	0.9%	11.4%	0.6%

10-1 10-1		
Normal Allan Deviation [m/s]		
Man 10-3		
N 10-4	$\alpha = 0.019110 \text{ m/s}^2 \text{sqrt(Hz)}$ $b = 0.000443 \text{ m/s}^3 \text{sqrt(Hz)}$	x-acceleration y-acceleration z-acceleration average data1 data2
10-5	2 10 ⁰ r [sec]	10 ²

参数名称	陀螺仪 bias 随机游走偏差	陀螺仪白噪声 σ _g	加速度计 bias 随机游走偏差	加速度计 白噪声
设定值	σ_{bg} 0.000250	0.075000	σ _{ba} 0.002500	0.095000
标定值	0.000255	0.075900	0.002462	0.095929
相对误差	2.0%	1.2%	1.5%	1.0%

默认值

x-gyroscope

y-gyroscope

z-gyroscope

average

datal

data2

默认值放大5倍

• 使用imu_utils的步骤

- (1) workspace的src中加入code_utils,编译
- (2) 加入imu_utils,编译(否则会报错)

● 使用imu_utils的结果后处理

▶用到的量

- ·白噪声 white noise 双对数图上拟合斜率为-0.5的直线与τ=1s的交点纵坐标
- ·零偏不稳定性bias instability 一般取双对数图上斜率为零且最小的纵坐标
- ·速率随机游走rate random walk 双对数图上拟合的斜率为0.5的直线与τ=3s的交点纵坐标

▶需要标定的量

- · 白噪声 white noise
- ·速率随机游走rate random walk

- 使用imu_utils的结果处理
 - ▶从离散到连续,除以sqrt(200)

$$\sigma_d = \frac{\sigma}{\sqrt{\Delta t}}$$
$$\sigma = \frac{\sigma_d}{\sqrt{f}}$$

● 使用imu_utils出现的问题

未找到backward.hpp

解决方法是在CMakeLists.txt添加include_directories("include/code_utils")

- 使用ROS的问题
 - (1) 查找.bag文件publish的topic名称: rosbag info
 - (2) rqt_graph可以查看节点信息是否接通

- 产生动态数据,使用欧拉积分和中值积分处理离散测量值 使用非ROS版本的代码,修改其中的数值积分部分,画出轨迹
- 中值积分和欧拉积分

第一中值积分
$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$
$$\int_{a}^{b} f(x)dx \approx \frac{f(b) + f(a)}{2}(b-a)$$
$$\int_{a}^{b} f(x)dx \approx f(a)(b-a)$$

• 对比欧拉积分和中值积分

中值积分(红色) 欧拉积分(绿色)

回环误差:

	欧拉积分	中值积分	
误差	0.9076	0.0348	

提升作业

Lovegrove, Steven, Alonso Patron-Perez, and Gabe Sibley. "Spline Fusion: A continuoustime representation for visual-inertial fusion with application to rolling shutter cameras." BMVC. Vol. 2. No. 5. 2013.

目的

用离散位姿拟合曲线,获得连续运动方程,用于优化高频、异步的传感器融合算法.

提升作业

● 为什么论文得到连续运动方程又离散化?

通过视觉估计的位姿是低频的(10-30Hz),IMU测量数据是高频的(100Hz以上)。通过B样条估计相机的连续运动方程,再 求导得到合成的(synthesized)IMU测量值。

在线问答

感谢各位聆听 / Thanks for Listening •

