2 A wooden block moves along a horizontal frictionless surface, as shown in Fig. 2.1.

Fig. 2.1

The block has mass 85 g and moves to the left with a velocity of $2.0\,\mathrm{m\,s^{-1}}$. A steel ball of mass 4.0 g is fired to the right. The steel ball, moving horizontally with a speed of $45\,\mathrm{m\,s^{-1}}$, collides with the block and remains embedded in it. After the collision the block and steel ball both have speed v.

(a) Calculate v.

			$v = \dots ms^{-1}$ [2]
(b)	(i)		the block and ball, state
		1.	the relative speed of approach before collision,
			relative speed of approach = ms ⁻¹
		2.	the relative speed of separation after collision.
			relative speed of separation = m s ⁻¹ [1]
	(ii)		your answers in (i) to state and explain whether the collision is elastic or inelastic.
			[1]
(c)		Ne	ewton's third law to explain the relationship between the rate of change of momentum

of the ball and the rate of change of momentum of the block during the collision.