● 기본 데이터

name price company

0	MOUSE	100	Α
1	SSD	200	В
2	CPU	300	С

● 합쳐질 두번째 데이터

```
df2 = pd.DataFrame([
     ['LAN', 100, 'A']
], columns=['name', 'price', 'company'])
df2
```

name price company

0	LAN	100	Α
_			

- DataFrame 합치기
 - oncat()
 - index 중복

pd.concat([df, df2])

	name	price	company
0	MOUSE	100	Α
1	SSD	200	В
2	CPU	300	С
0	LAN	100	Α

- index 정렬

pd.concat([df, df2], ignore_index=True)

	name	price	company
0	MOUSE	100	А
1	SSD	200	В
2	CPU	300	С
3	LAN	100	Α

- append()
 - index 중복

 ${\sf df.append}({\sf df2})$

	name	price	company
0	MOUSE	100	Α
1	SSD	200	В
2	CPU	300	С
0	LAN	100	Α

- index 정렬

df .append(df2, [ignore_index=True]

	name	price	company
0	MOUSE	100	А
1	SSD	200	В
2	CPU	300	С
3	LAN	100	А

● 기본 데이터

```
df1 = pd.DataFrame([
   {'name':'John', 'age':20},
    {'name':'Liam', 'age':21},
    {'name':'Noah', 'age':22}
], columns=['name', 'age'])
df2 = pd.DataFrame([
    { 'name': 'Logan', 'age':23},
    { 'name': 'Lucas', 'age':24},
   {'name':'Mason', 'age':25}
]. columns=['name'. 'age'])
df3 = pd.DataFrame([
   {'job':'developer', 'area':'seoul'},
   {'job':'driver', 'area':'jeju'},
   {'job':'chef', 'area':'busan'},
], columns=['job', 'area'])
df4 = pd.DataFrame([
   {'job':'salesman', 'area':'gwangju'},
   {'job':'analyst', 'area':'cheonnan'},
   {'job':'broadcaster', 'area':'daejeon'},
], columns=['job', 'area'])
```

- oncat()
 - index 중복

pd.concat([df1, df2])

	name	age
0	John	20
1	Liam	21
2	Noah	22
0	Logan	23
1	Lucas	24
2	Mason	25

- index 정렬

pd.concat([df1, df2], ignore_index=True)

	name	age
0	John	20
1	Liam	21
2	Noah	22
3	Logan	23
4	Lucas	24
5	Mason	25

- append()
 - index 중복

df1.append(df2)

	name	age
0	John	20
1	Liam	21
2	Noah	22
0	Logan	23
1	Lucas	24
2	Mason	25

- index 정렬

df1.append(df2, ignore_index=True)

	name	age
0	John	20
1	Liam	21
2	Noah	22
3	Logan	23
4	Lucas	24
5	Mason	25

- 열 합치기
 - axis 지정

pd.concat([df1, df3], axis=1)

	name	age	job	area
0	John	20	developer	seoul
1	Liam	21	driver	jeju
2	Noah	22	chef	busan

- axis 미지정

pd.concat([df1, df3])

	age	area	job	name
0	20.0	NaN	NaN	John
1	21.0	NaN	NaN	Liam
2	22.0	NaN	NaN	Noah
0	NaN	seoul	developer	NaN
1	NaN	jeju	driver	NaN
2	NaN	busan	chef	NaN

merge

```
고객번호
df1 = pd.DataFrame({
                                                                                           이름
   '고객번호': [1001, 1002, 1003, 1004, 1005, 1006, 1007],
                                                                                    1001
                                                                                           둘리
'이름': ['둘리', '도우너', '또치', '길동', '희동', '마이콜', '영희']
}, columns=['고객번호', '이름'])
                                                                                    1002 도우너
                                                                                    1003
                                                                                           또치
                                                                               3
                                                                                           길동
                                                                                    1004
                                                                                          희동
                                                                                    1005
                                                                                    1006 마이콜
                                                                                           영희
                                                                                    1007
```

```
df2 = pd.DataFrame({
    '고객번호': [1001, 1001, 1005, 1006, 1008, 1001],
    '금액': [10000, 20000, 15000, 5000, 100000, 30000]
}, columns=['고객번호', '금액'])
```

	고객번호	금액
0	1001	10000
1	1001	20000
2	1005	15000
3	1006	5000
4	1008	100000
5	1001	30000

● 기본사용

pd.merge(df1, df2)

	고객번호	이름	금액
0	1001	둘리	10000
1	1001	둘리	20000
2	1001	둘리	30000
3	1005	희동	15000
4	1006	마이콜	5000

df1

	고객번호	이름
0	1001	둘리
1	1002	도우너
2	1003	또치
3	1004	길동
4	1005	희동
5	1006	마이콜
6	1007	영희

df2

	고객번호	금액
0	1001	10000
1	1001	20000
2	1005	15000
3	1006	5000
4	1008	100000
5	1001	30000

outer

pd.merge(df1, df2, how='outer')

	고객번호	이름	금액
0	1001	둘리	10000.0
1	1001	둘리	20000.0
2	1001	둘리	30000.0
3	1002	도우너	NaN
4	1003	또치	NaN
5	1004	길동	NaN
6	1005	희동	15000.0
7	1006	마이콜	5000.0
8	1007	영희	NaN
9	1008	NaN	100000.0

df1

	고객번호	이름
0	1001	둘리
1	1002	도우너
2	1003	또치
3	1004	길동
4	1005	희동
5	1006	마이콜
6	1007	영희

df2

	고객번호	금액
0	1001	10000
1	1001	20000
2	1005	15000
3	1006	5000
4	1008	100000
5	1001	30000

left

pd.merge(df1, df2, how='left')

	고객번호	이름	금액
0	1001	둘리	10000.0
1	1001	둘리	20000.0
2	1001	둘리	30000.0
3	1002	도우너	NaN
4	1003	또치	NaN
5	1004	길동	NaN
6	1005	희동	15000.0
7	1006	마이콜	5000.0
8	1007	영희	NaN

right

pd.merge(df1, df2, how='right')

	고객번호	이름	금액
0	1001	둘리	10000
1	1001	둘리	20000
2	1001	둘리	30000
3	1005	희동	15000
4	1006	마이콜	5000
5	1008	NaN	100000

● 동일한 컬럼명이 2개 이상인 경우

df2 = pd.DataFran	ne({
'고객명': ['﴿	현향', '몽룡'],
'데이터': ['(계자', '남자']})

	고객명	날짜	데이터
0	춘향	2018-01-01	20000
1	춘향	2018-01-02	30000
2	몽룡	2018-01-01	100000

	고객명	데이터
0	춘향	여자
1	몽룡	남자

pd.merge(df1, df2, on='고객명')

	고객명	날짜	데이터_x	데이터_y
0	춘향	2018-01-01	20000	여자
1	춘향	2018-01-02	30000	여자
2	몽룡	2018-01-01	100000	남자

● 동일한 컬럼명이 없는 경우

```
df1 = pd.DataFrame({
 '이름': ['영희', '철수', '철수'],
 '성적': [1, 2, 3]})
df1
```

	이름	성적
0	영희	1
1	철수	2
2	철수	3

df2 = pd.DataFrame({ '성명': ['영희', '영희', '철수'], '성적2': [4, 5, 6]})
df2

	성명	성적2
0	영희	4
1	영희	5
2	철수	6

pd.merge(df1, df2, left_on='이름', right_on="성명")

	이름	성적	성명	성적2
0	영희	1	영희	4
1	영희	1	영희	5
2	철수	2	철수	6
3	철수	3	철수	6

● 기본 데이터

join_date

- 0 2004-08-09
- 1 2009-11-19
- 2 2012-03-25
- 3 2013-09-01
- 4 2016-04-26

● 인자 1개

```
def get_year(date):
    return date.split('-')[0]

df.join_date.apply(get_year)

0    2004
1    2009
2    2012
3    2013
4    2016
Name: join_date, dtype: object
```

df['year'] = df.join_date.apply(get_year)
df

	join_date	year
0	2004-08-09	2004
1	2009-11-19	2009
2	2012-03-25	2012
3	2013-09-01	2013
4	2016-04-26	2016

● 인자 2개

```
def [get_continuous_year](year], [now_year]):
    return now_year - int(year)

df [year].apply([get_continuous_year], [now_year]=2018)

0    14
1    9
2    6
3    5
4    2
Name: year, dtype: int64

df ['continuous_year'] = df.year.apply(get_continuous_year, now_year=2018)
df
```

	join_date	year	continuous_year
0	2004-08-09	2004	14
1	2009-11-19	2009	9
2	2012-03-25	2012	6
3	2013-09-01	2013	5
4	2016-04-26	2016	2

● 기본 데이터

```
import pandas as pd
import numpy as np

arr = np.arange(1, 26).reshape(5, 5)

arr = arr + 0.4
arr[1] = arr[1] + 0.2
arr

array([[ 1.4,  2.4,  3.4,  4.4,  5.4],
       [ 6.6,  7.6,  8.6,  9.6,  10.6],
       [11.4,  12.4,  13.4,  14.4,  15.4],
       [16.4,  17.4,  18.4,  19.4,  20.4],
```

[21.4, 22.4, 23.4, 24.4, 25.4]])

● 외부 함수 적용 (Numpy around)

```
df = pd.DataFrame(arr)
df
```

	0	1	2	3	4
0	1.4	2.4	3.4	4.4	5.4
1	6.6	7.6	8.6	9.6	10.6
2	11.4	12.4	13.4	14.4	15.4
3	16.4	17.4	18.4	19.4	20.4
4	21.4	22.4	23.4	24.4	25.4

df.apply(np.around)

	0	1	2	3	4
0	1.0	2.0	3.0	4.0	5.0
1	7.0	8.0	9.0	10.0	11.0
2	11.0	12.0	13.0	14.0	15.0
3	16.0	17.0	18.0	19.0	20.0
4	21.0	22.0	23.0	24.0	25.0

■ 함수 적용 - map

● 기본 데이터

```
import pandas as pd

df = pd.read_csv('data/customer.txt')
df
```

	name	role	salary
0	John	Director	9000.0
1	Liam	Manager	NaN
2	Noah	Staff	3300.0
3	Logan	Manager	5500.0
4	Lucas	Director	8500.0
5	Mason	Manager	6200.0
6	Oliver	Staff	NaN
7	Ethan	Staff	3800.0

■ 함수 적용 - map

● Dictionary 활용 데이터 변경 - 특정 값 변경

```
df['role'] = df.role.map({'Director':'부장', 'Manager':'과장', 'Staff':'사원'})
df
```

	name	role	salary
0	John	부장	9000.0
1	Liam	과장	NaN
2	Noah	사원	3300.0
3	Logan	과장	5500.0
4	Lucas	부장	8500.0
5	Mason	과장	6200.0
6	Oliver	사원	NaN
7	Ethan	사원	3800.0