Занятие от 19.11. Геометрия и топология. 1 курс. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

20 ноября 2020 г.

Задача 30. Пусть $\{A_n\}_{n=0}^{\infty}$ — набор нигде не плотных множеств. Это значит, что $\operatorname{Cl}(\operatorname{Int}(\mathbb{R}\setminus A_n))=\mathbb{R}$, а значит любое открытое множество будет пересекаться с $\operatorname{Int}(\mathbb{R}\setminus A_n)$. Тогда если мы рассмотрим любое непустое открытое U, то множество $U\cap\operatorname{Int}(\mathbb{R}\setminus A_n)$ будет открытым и непустым. Это можно перефразировать так: в любом интервале прямой найдётся подинтервал, лежащий в $\operatorname{Int}(\mathbb{R}\setminus A_n)$ как подмножество. Тогда это будет значить, что в любом отрезке прямой будет подотрезок, лежащий в $\operatorname{Int}(\mathbb{R}\setminus A_n)$ как подмножество.

Тогда рассмотрим любой отрезок $S_0 \subseteq \operatorname{Int}(\mathbb{R} \setminus A_0)$, затем любой его подотрезок $S_1 \subseteq \operatorname{Int}(\mathbb{R} \setminus A_1)$ и т.д. Таким образом получим последовательность отрезков $(S_n)_{n=0}^{\infty}$. Заметим, что множество $\bigcap_{n=0}^{\infty} S_n$ непусто. Следовательно есть точка y, лежащая в каждом из отрезков S_n , а значит и в каждом множестве A_n . Таким образом для всякого $n \geqslant 0$ имеем, что $y \in \mathbb{R} \setminus A_n$, а значит $y \notin A_n$. Таким образом $\bigcup_{n=0}^{\infty} A_n$ не содержит y, а значит не совпадает с \mathbb{R} .

Это буквально значит, что \mathbb{R} не представляется в виде счётного набора нигде не плотных множеств.

Задача 31. Заметим, что если U открыто, то оно есть дизъюнктное объединение интервалов некоторого не более чем счётного семейства Σ . Пусть x — граничная точка U. Тогда $x \notin U$, но в каждой окрестности x находится некоторый элемент U. Тогда либо x является концом отрезка, либо во всякой окрестности x есть некоторый интервал из Σ . А тогда понятно, что Fr(U) есть замыкание множества концов интервалов из Σ .

Также очевидно, что $x \in \operatorname{Fr}(U)$ является концом интервала из Σ тогда и только тогда, когда в какой-то правой или левой окрестности x нет точек $\operatorname{Fr}(U)$.

Заметим ещё раз, что Fr(U) замкнуто, а тогда рассмотрим $F := \mathbb{R} \setminus Fr(U)$. Очевидно, что $U \subseteq F$. При этом в каждой окрестности $x \in Fr(U)$ есть точка из F, а значит и из F, поэтому $Cl(F) = \mathbb{R}$ (поэтому в том числе Fr(F) = Fr(U)).

Рассмотрим Λ — семейство интервалов, что их дизъюнктное объединение равно F. Тогда заметим, что для всякого $(a;b) \in \Sigma$ верно, $(a;b) \subseteq F$, а $a,b \in \operatorname{Fr}(F)$, следовательно $(a;b) \in \Lambda$. Поэтому $\Sigma \subseteq \Lambda$. Значит если у некоторого семейства открытых множеств границы равны границе U, то каждое множество из этого семейства есть объединение некоторого набора интервалов из Λ . т.е. их не более континуума.

Покажем, что континуум достигается. Рассмотрим семейство Λ интервалов, которые выкидываются из отрезка [0;1] при построении канторового множества (обозначим его за C): т.е. это (1/3;2/3), (1/9;2/9), (7/9;8/9), и т.д. Рассмотрим также последовательность $(I_n)_{n=0}^{\infty} := ((1/3^{n+1};2/3^{n+1}))_{n=0}^{\infty}$ интервалов из Λ . Также определим $\Lambda' := \Lambda \setminus \{I_n\}_{n=0}^{\infty}$.

Несложно видеть, что граница $F:=\bigcup_{I\in\Lambda}I$ есть C, так как это множество, которое содержит все концы интервалов из Λ' , а каждая точка C является пределом этих концов: каждая точка C

есть пересечение счётного числа отрезков, каждый из которых в 3 раза меньше предыдущего, но один из концов каждого отрезка совпадает с концом некоторого интервала, следовательно каждая точка C является пределом некоторых концов интервалов Λ .

Теперь поймём, что граница $F':=\bigcup_{I\in\Lambda'}I$ есть тоже C. Если $x\in C$ является концом интервала из Λ' , то оно так же лежит на границе F'. Если $x\in C$ было такой точкой, что в любой её правой (левой) проколотой окрестности были границы интервалов Λ , а $x\neq 0$, то в некоторой правой (левой) проколотой окрестности x множества U и U' (т.е. их пересечения с этой окрестностью совпадают), поэтому x является пределом концов интервалов из Λ' , а значит лежит на границе U'. Заметим также, что концы каждого интервала I_n также являются пределами других концов интервалов из Λ , поэтому они также лежат на границе U'. Осталось показать, что 0 лежит на границе U'. Можно легко заметить, что для всякого $n\geqslant 0$ интервал $(7/3^{n+2};8/3^{n+2})$ лежит в Λ' , следовательно точка $7/3^{n+2}$ является концом интервала из Λ' , а значит их предел и даст 0. Таким образом $\operatorname{Fr}(U')=\operatorname{Fr}(U)=C$.

Значит, если мы возьмём любое Σ , что $\Lambda'\subseteq\Sigma\subseteq\Lambda$, то граница $V:=\bigcup_{I\in\Sigma}I$ так же совпадёт с C. При этом $\Lambda\setminus\Lambda'$ счётно, поэтому таких Σ континуум, а значит и V тоже континуум.