EC 425/525, Set 9

Edward Rubin 19 May 2019

Prologue

Schedule

Last time

- Introduction to selection-on-unobservables designs
- Instrumental variables
- Two-stage least squares

Today

Regression discontinuity †

Upcoming

Midterm

[†] These notes largely follow notes from Michael Anderson and Imbens and Lemieux (2008).

Setup

We're still in the game of estimating the effect of a potentially endogenous treatment D_i on an outcome Y_i .

Setup

We're still in the game of estimating the effect of a potentially endogenous treatment D_i on an outcome Y_i .

Regression discontinuity (RD) offers a particularly clear/clean research design based upon an arbitrary threshold (the *discontinuity*).

Setup

We're still in the game of estimating the effect of a potentially endogenous treatment D_i on an outcome Y_i .

Regression discontinuity (RD) offers a particularly clear/clean research design based upon an arbitrary threshold (the *discontinuity*).

That said, most RDs boil down to an implementation of IV.

Setup

We're still in the game of estimating the effect of a potentially endogenous treatment D_i on an outcome Y_i .

Regression discontinuity (RD) offers a particularly clear/clean research design based upon an arbitrary threshold (the *discontinuity*).

That said, most RDs boil down to an implementation of IV.

In addition, while RD is all the rage in modern applied econometrics, Thistlewaite and Campbell wrote about it back in 1960.

Our framework

Back to our potential-outcome framework.

Our framework

Back to our potential-outcome framework.

We want to know the effect of D_i on Y_i .

$$\mathbf{Y}_i = \mathbf{D}_i \mathbf{Y}_{1i} + (1 - \mathbf{D}_i) \mathbf{Y}_{0i}$$

Our framework

Back to our potential-outcome framework.

We want to know the effect of D_i on Y_i .

$$Y_i = D_i Y_{1i} + (1 - D_i) Y_{0i}$$

New: Suppose D_i is determined by whether some variable X_i crosses a threshold c (the discontinuity).

Our framework

Back to our potential-outcome framework.

We want to know the effect of D_i on Y_i .

$$\mathbf{Y}_i = \mathbf{D}_i \mathbf{Y}_{1i} + (1 - \mathbf{D}_i) \mathbf{Y}_{0i}$$

New: Suppose D_i is determined[†] by whether some variable X_i crosses a threshold c (the discontinuity).

The variable X_i need not be randomly assigned—we will assume it is not (i.e., X_i correlates with Y_{0i} and Y_{1i}).

Our framework

Back to our potential-outcome framework.

We want to know the effect of D_i on Y_i .

$$\mathbf{Y}_i = \mathbf{D}_i \mathbf{Y}_{1i} + (1 - \mathbf{D}_i) \mathbf{Y}_{0i}$$

New: Suppose D_i is determined[†] by whether some variable X_i crosses a threshold c (the discontinuity).

The variable X_i need not be randomly assigned—we will assume it is not (i.e., X_i correlates with Y_{0i} and Y_{1i}).

We will assume that Y_{0i} and Y_{1i} vary smoothly in X_i .

Examples

We often apply regression-discontinuity designs in setting with some arbitrary threshold embeded within some bureaucratic decision.

Examples

We often apply regression-discontinuity designs in setting with some arbitrary threshold embeded within some bureaucratic decision.

- An elector candidate wins if her vote share exceeds her competitors.
- Election runoffs are triggered if "winner" is below 50%.
- Antidiscrimination laws only apply to firms with >15 employees.
- Prisoners are eligible for early parole if some score exceeds a threshold.
- An individual is eligible for Medicare if her age is at least 65.
- You get a ticket if your speed exceeds the speed limit.
- Fifteen-percent discount at Sizzler if your age exceeds 60.
- Counties with $PM_{2.5} > 35 \mu g/m^3$ are out of attainment.

Examples

We often apply regression-discontinuity designs in setting with some arbitrary threshold embeded within some bureaucratic decision.

- An elector candidate wins if her vote share exceeds her competitors.
- Election runoffs are triggered if "winner" is below 50%.
- Antidiscrimination laws only apply to firms with >15 employees.
- Prisoners are eligible for early parole if some score exceeds a threshold.
- An individual is eligible for Medicare if her age is at least 65.
- You get a ticket if your speed exceeds the speed limit.
- Fifteen-percent discount at Sizzler if your age exceeds 60.
- Counties with $PM_{2.5} > 35 \mu g/m^3$ are out of attainment.

In some cases, "treatment" is definite once we exceed the threshold.

Sharp vs. fuzzy

We distinguish RDs by how strong/definitive of the threshold is.

Sharp vs. fuzzy

We distinguish RDs by how strong/definitive of the threshold is.

In sharp RDs, individuals move from control to treatment when their \mathbf{X}_i passes our threshold c

Sharp vs. fuzzy

We distinguish RDs by how strong/definitive of the threshold is.

In sharp RDs, individuals move from control to treatment when their X_i passes our threshold c, i.e., D_i switches from 0 to 1 when X_i moves across c.

Sharp vs. fuzzy

We distinguish RDs by how strong/definitive of the threshold is.

In sharp RDs, individuals move from control to treatment when their X_i passes our threshold c, i.e., D_i switches from 0 to 1 when X_i moves across c.

E.g., a politician wins an election when the difference between her vote share and her competitor's vote share exceeds zero.

Sharp vs. fuzzy

We distinguish RDs by how strong/definitive of the threshold is.

In sharp RDs, individuals move from control to treatment when their X_i passes our threshold c, i.e., D_i switches from 0 to 1 when X_i moves across c.

E.g., a politician wins an election when the difference between her vote share and her competitor's vote share exceeds zero.

In fuzzy RDs, the probability of treatment $\Pr(D_i = 1)$ discontinuously jumps at the threshold c, but it does not move from 0 to 1.

Sharp vs. fuzzy

We distinguish RDs by how strong/definitive of the threshold is.

In sharp RDs, individuals move from control to treatment when their X_i passes our threshold c, i.e., D_i switches from 0 to 1 when X_i moves across c.

E.g., a politician wins an election when the difference between her vote share and her competitor's vote share exceeds zero.

In fuzzy RDs, the probability of treatment $\Pr(D_i = 1)$ discontinuously jumps at the threshold c, but it does not move from 0 to 1.

E.g., crossing some GRE threshold discontinuously increases your chances of getting into some grad schools (but doesn't guarantee admittance).

Setup

With sharp regression discontinuity, the probability of treatment changes from 0 to 1 as X_i moves across threshold c.

Setup

With sharp regression discontinuity, the probability of treatment changes from 0 to 1 as X_i moves across threshold c.

Thus, treatment status totally depends upon whether $X_i \geq c$, i.e.,

Setup

With sharp regression discontinuity, the probability of treatment changes from 0 to 1 as X_i moves across threshold c.

Thus, treatment status totally depends upon whether $X_i \geq c$, i.e.,

$$\mathrm{D}_i = \mathbb{I}\{\mathrm{X}_i \geq c\}$$

Setup

With sharp regression discontinuity, the probability of treatment changes from 0 to 1 as X_i moves across threshold c.

Thus, treatment status totally depends upon whether $X_i \geq c$, i.e.,

$$\mathrm{D}_i = \mathbb{I}\{\mathrm{X}_i \geq c\}$$

To estimate the causal effect of D_i on Y_i , we compare the mean of Y_i just above the threshold to the mean of Y_i just below the threshold.

More formally

We can write the comparison of means at the threshold as

$$\lim_{x\downarrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x]$$

More formally

We can write the comparison of means at the threshold as

$$egin{aligned} \lim_{x\downarrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] \ &= \lim_{x\downarrow c} E[\mathrm{Y}_{1i} \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_{0i} \mid \mathrm{X}_i = x] \end{aligned}$$

More formally

We can write the comparison of means at the threshold as

$$egin{aligned} \lim_{x\downarrow c} E[\mathbf{Y}_i \mid \mathbf{X}_i = x] - \lim_{x\uparrow c} E[\mathbf{Y}_i \mid \mathbf{X}_i = x] \ &= \lim_{x\downarrow c} E[\mathbf{Y}_{1i} \mid \mathbf{X}_i = x] - \lim_{x\uparrow c} E[\mathbf{Y}_{0i} \mid \mathbf{X}_i = x] \ &= au_{\mathrm{SRD}} \end{aligned}$$

More formally

We can write the comparison of means at the threshold as

$$egin{aligned} \lim_{x\downarrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] \ &= \lim_{x\downarrow c} E[\mathrm{f Y}_{1i} \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{f Y}_{0i} \mid \mathrm{X}_i = x] \ &= au_{\mathrm{SRD}} \end{aligned}$$

Assumption $E[\mathbf{Y}_{1i} \mid \mathbf{X}_i = x]$ and $E[\mathbf{Y}_{0i} \mid \mathbf{X}_i = x]$ are continuous in x.

More formally

We can write the comparison of means at the threshold as

$$egin{aligned} \lim_{x\downarrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] \ &= \lim_{x\downarrow c} E[\mathrm{f Y}_{1i} \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{f Y}_{0i} \mid \mathrm{X}_i = x] \ &= au_{\mathrm{SRD}} \end{aligned}$$

Assumption $E[\mathbf{Y}_{1i} \mid \mathbf{X}_i = x]$ and $E[\mathbf{Y}_{0i} \mid \mathbf{X}_i = x]$ are continuous in x.

$$\implies au_{ ext{SRD}} = E[rac{\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{X}_i = c]}{}$$

More formally

We can write the comparison of means at the threshold as

$$egin{aligned} \lim_{x\downarrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_i \mid \mathrm{X}_i = x] \ &= \lim_{x\downarrow c} E[\mathrm{Y}_{1i} \mid \mathrm{X}_i = x] - \lim_{x\uparrow c} E[\mathrm{Y}_{0i} \mid \mathrm{X}_i = x] \ &= au_{\mathrm{SRD}} \end{aligned}$$

Assumption $E[\mathbf{Y}_{1i} \mid \mathbf{X}_i = x]$ and $E[\mathbf{Y}_{0i} \mid \mathbf{X}_i = x]$ are continuous in x.

$$\implies au_{ ext{SRD}} = E[rac{\mathbf{Y}_{1i}}{\mathbf{Y}_{0i}} \mid \mathbf{X}_i = c]$$

I.e., Because we don't observe \mathbf{Y}_{0i} for treated individuals, we extrapolate $E[\mathbf{Y}_{0i} \mid \mathbf{X}_i = c - \varepsilon]$ to $E[\mathbf{Y}_{0i} \mid \mathbf{X}_i = x + \varepsilon]$ for small ε .

Estimation

Thus, we estimate

$$au_{ ext{SRD}} = \lim_{x\downarrow c} E[ext{Y}_i - ext{X}_i = x] - \lim_{x\uparrow c} E[ext{Y}_i \mid ext{X}_i = x]$$

as the diffrence between two regression functions estimated "near" c.

Estimation

Thus, we estimate

$$au_{ ext{SRD}} = \lim_{x \downarrow c} E[ext{Y}_i - ext{X}_i = x] - \lim_{x \uparrow c} E[ext{Y}_i \mid ext{X}_i = x]$$

as the diffrence between two regression functions estimated "near" c.

We must stay "near" to c to minimize the bias from extrapolating $E[Y_{0i} \mid X_i = c - \varepsilon]$ to $E[Y_{0i} \mid X_i = c + \varepsilon]$ (and assuming continuity).

Let's start with $E[\mathbf{Y}_{0i} \mid \mathbf{X}_i]$

Let's start with $E[Y_{0i} \mid X_i]$ and $E[Y_{1i} \mid X_i]$.

You only win an election if your margin of victory exceeds zero.

 $E[Y_{1i} \mid X_i] - E[Y_{0i} \mid X_i]$ at the discontinuity gives τ_{SRD} .

Real data are a bit trickier. We must estimate $E[Y_{1i} \mid X_i]$ and $E[Y_{0i} \mid X_i]$.

Questions

- 1. How should we estimate $E[Y_{1i} \mid X_i]$ and $E[Y_{0i} \mid X_i]$?
- 2. How much data should we use—i.e., what is the right bandwidth size?

Option 1a Linear regression with constant slopes (and all data)

Option 1a Linear regression with constant slopes (and all data)

Option 1b Linear regression with constant slopes; limited to +/- 50%.

Option 2a Linear regression with differing slopes (and all data)

Option 2b Linear regression with differing slopes; limited to +/- 50%.

Option 2c Linear regression with differing slopes; limited to +/- 25%.

Option 3 Differing quadratic regressions (limited to +/- 50%).

Option 4a Differing local (LOESS) regressions (limited to +/- 50%).

Option 4b Differing local (LOESS) regressions (all data).

The continuity of $E[Y_{0i} | X_i = x]$ (in x) is also very important. No sorting.

Sharp RDs

In practice

Gelman and Imbens (2018) on functional form:

We argue that controlling for global high-orderpolynomials in regression discontinuity analysis is a flawed approach with three major problems: it leads to noisy estimates, sensitivity to the degree of the polynomial, and poor coverage of confidence intervals. We recommend researchers instead use estimators based on local linear or quadratic polynomials or othersmooth functions.

Sharp RDs

In practice

Gelman and Imbens (2018) on functional form:

We argue that controlling for global high-orderpolynomials in regression discontinuity analysis is a flawed approach with three major problems: it leads to noisy estimates, sensitivity to the degree of the polynomial, and poor coverage of confidence intervals. We recommend researchers instead use estimators based on local linear or quadratic polynomials or othersmooth functions.

See Imbens and Kalyanaraman (2012) for optimal bandwidth selection.

Fuzzy RDs

Fuzzy RDs

Setup

Table of contents

Admin

1. Schedule

RD

- 1. Setup
- 2. Framework
- 3. Examples
- 4. Sharp vs. fuzzy
- 5. Sharp RDs
 - Setup
 - (Semi) Formally
 - Estimation
 - Examples
 - In practice
- 6. Fuzzy RDs