More Exemples of Groups Groups from Modular Arithmetic Let $n \in \mathbb{Z}$, $n > 1 \in \text{`moduls'}$ Definition: Two integers $x_1 y \in \mathbb{Z}$ are congruent modulo n written $x = y$ (mad n) If $x - y$ is divisible by n^* . $x - y = kn$ for some $k \in \mathbb{Z}$ Equivalently, $x = y$ (mod n) if x and y have the same remainder when divided by n . Examples: • $19 = 12$ (mod 13) • $29 = 16$ (mod 13) • $3 = 7$ (mod 10) or $3 = 7$ (mod 10) or $3 = 7$ (mod $3 = 7$) We can use congruence mod $3 = 7$ (mod $3 = 7$) construct two families of groups, as follows:	18MAA242 Lecture 12	1
Let $n \in 7$, $n \neq 1 \in \text{moduls}^s$ Definition: Two integers $x_1y \in 7$ are congruent modulo n written $x \equiv y \pmod{n}$ if $x = y$ is divisible by $n = x = y$. Equivalently, $x \equiv y \pmod{n}$ if $x = x = y = y = y = y = y = y = y = y = $	More Examples of Groups	
Definition: Two integers $x_1y \in 7/$ are congruent modulo n written $x \equiv y \pmod{n}$ if $x - y$ is divisible by n : $x - y = kn \text{for some } k \in 7/$ Equivalently, $x \equiv y \pmod{n}$ if $x \text{ and } y \text{ have}$ the same remainder when divided by n . Examples: • $19 \equiv 12 \pmod{7}$ • $29 \equiv 16 \pmod{13}$ • $-3 \equiv 7 \pmod{10}$ or $2 \text{ or } 5$ We can use congruence mod n to construct two families of $n \in 3$	Groups from Modulan Arithmetic	
written $X \equiv y \pmod{n}$ if $x-y$ is divisible by n . $x-y = kn$ for some $k \in \mathbb{Z}$. Equivalently, $x \equiv y \pmod{n}$ if x and y have the same remainder when divided by n . Examples: • $19 \equiv 12 \pmod{7}$ • $29 \equiv 16 \pmod{7}$ • $29 \equiv 16 \pmod{13}$ • $-3 \equiv 7 \pmod{10}$ are or 5 We can use congruence mod n to construct two families of $n = 10$		
if $x-y$ is divisible by n ? $x-y=kn$ for some $k \in \mathbb{Z}$. Equivalently, $x \equiv y \pmod{n}$ if x and y have the same remainder when divided by n . Examples: • $19 \equiv 12 \pmod{7}$ • $29 \equiv 16 \pmod{13}$ • $-3 \equiv 7 \pmod{10}$ or $2 \text{ or } 5$ We can use congruence mod n to construct two families of $n = 10$	Definition: Two integers X, y 6 7/2 are congruent modulo n	
if $x-y$ is divisible by n ? $x-y=kn$ for some $k \in \mathbb{Z}$. Equivalently, $x \equiv y \pmod{n}$ if x and y have the same remainder when divided by n . Examples: • $19 \equiv 12 \pmod{7}$ • $29 \equiv 16 \pmod{13}$ • $-3 \equiv 7 \pmod{10}$ or $2 \text{ or } 5$ We can use congruence mod n to construct two families of $n = 10$	written $X \equiv y \pmod{n}$	
$x-y=kn$ for some $k \in \mathbb{Z}$. Equivalently, $x \equiv y \pmod{n}$ if x and y have the same remainder when divided by n . $x \equiv y \pmod{n}$ $y \equiv y \equiv y \pmod{n}$ $y \equiv y \equiv$		
the same remainder when divided by n. $E \times cmples$: o $19 \equiv 12$ or $5 \text{ or } -2 \text{ or }$ o $29 \equiv 16$ (mod 13) o $-3 \equiv 7$ (mod 10) or $2 \text{ or } 5$ We can use congruence mod n to construct two families of groups,	X-y= kn for some k ∈ 7/.	
the same remainder when divided by n. $E \times cmples$: o $19 \equiv 12$ or $5 \text{ or } -2 \text{ or }$ o $29 \equiv 16$ (mod 13) o $-3 \equiv 7$ (mod 10) or $2 \text{ or } 5$ We can use congruence mod n to construct two families of groups,	Equivalently, X= y (mod n) if x and y have	
$0.19 \equiv 12 \pmod{7}$ $0.29 \equiv 16 \pmod{13}$ $0.73 \equiv 7 \pmod{10}$ $0.72 \text{ or } 5$ We can use congruence mod n to $0.72 \text{ construct two families of groups}$	the same remainder when divided by n.	
· -3 = 7 (mod 10) or 2 or 5 We can use congruence mod n to construct two "families" of groups,	Exemples: $0.19 \equiv 12 \pmod{7}$	
We can use congruence mod n to construct two "families" of groups,	· 29 = 16 (mod 13)	
We can use congruence mod n to construct two "families" of groups,		
construct two "families" of groups,		

Ident; ty element: 1

Inverses: 1 = 1, $2^{-1} = 3$ 3 = 2, 4 = 4

Groups from Geometry	4
Let XCRn be any subset ; e.g.	
think of a plane polygon or a solid in space	,
Definition: the symmetry group Sym(X) is the	
set of all maps for Rn - sich that	
of presences distances - "isometry"	
· f(X) = X -fmcps X to itself.	
Group operation is composition of maps:	
$(f,g) \mapsto fg$	
where fg: Rh - IR' is defined by	
(fg)(x) = f(g(x)).	
Check group axioms:	
a associativity: composition of maps is associa	tive
· identity : identity map id : Rn -) R'
o inverses: isometries are bijective,	
therefore invertible.	

Example: Dihedral groups

 $D_n := Sym(P_n)$

- symmetry group of regular n-gon Pn

Example n=3

- identity map e

by
$$\begin{cases} 2\pi / 3 - r \\ 4\pi / 3 - r^2 \end{cases}$$

$$S_1, S_2, S_3$$

Important: Can write all elements

$$S_2 = \Gamma^2 S$$
 $S_3 = \Gamma S$.


```
For example associativity
                         r (sr2) s
                         r(sr)(rs)
             relation3
 (15)(Sr)=
  rs2r=
                         r(r^2s)(rs)
             assoc.
                         r^3 (sr) s
            relations
                          (Sr) S
             relation3
                         (r2s)s
             C(55 C)
                         r252
            relation 2 (
Similarly for cry n the dihedral group Dn
  can be defined algebraically as
D_n = \{e, r, ..., r^{n-1}, S, Sr, ..., Sr^{n-1}\}
  v=rot 25/2 rotations reflections
 where r and s satisfy the relations
       r^n = s^2 = e, sr = r^{n-1}s.
    (Sr)^2 = SrSr = S^2r^{n-1}r = r^n = e (Sr^k)^2 = e
                                   Prove this :.
```