Image Stitching

Image Stitching

261458 & 261753 Computer Vision

#11

#11

261458 & 261753 Computer Vision

#11

Image Stitching

Field of view

· Are you getting the whole picture?

Compact Camera FOV = 50 × 35°

 horizontal vertical

261458 & 261753 Computer Vision

261458 & 261753 Computer Vision

#11

Field of view

- · Are you getting the whole picture?
 - Compact Camera FOV = 50 × 35°

· Human FOV

 $= 200 \times 135^{\circ}$

261458 & 261753 Computer Vision

#11

Image Alignment

- 1D Rotations (θ)
 - Ordering ⇒ matching images

Field of view

Are you getting the whole picture?

Compact Camera FOV = 50 × 35°

• Human FOV = 200 × 135°

• Panoramic Mosaic = 360 × 180°

261458 & 261753 Computer Vision

#11

Image Alignment

• 1D Rotations (θ)

• Ordering ⇒ matching images

#11

Image Alignment

• 2D Rotations (θ, ϕ)

• Ordering ⇒ matching images

261458 & 261753 Computer Vision

#11

11

261458 & 261753 Computer Vision

#11

12

Image Stitching Algorithm Overview

- 1) Keypoint Detection
- 2) Keypoint Matching
- 3) Transformation Estimation
- 4) Image Warping
- 5) Image Blending

Image Stitching Algorithm Overview

Want to find this transformation function !!!!

$$(u^{(2)}, v^{(2)}) = H\{(u^{(1)}, v^{(1)})\}\$$

$$(u^{(1)}, v^{(1)}) = H^{-1}\{(u^{(2)}, v^{(2)})\}$$

#11

261458 & 261753 Computer Vision

#11

261458 & 261753 Computer Vision

#11

15

Pin-hole Camera

261458 & 261753 Computer Vision

#11

16

Modeling Projection

- Use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- The camera looks up the positive z axis
- Put the image plane (Projection Plane) in front of the COP

Modeling Projection

$$\begin{cases} \frac{x}{f} = \frac{X}{Z} \\ \frac{y}{f} = \frac{Y}{Z} \end{cases}$$

$$f(x, y) = \left(\frac{fX}{Z}, \frac{fY}{Z}\right)$$

261458 & 261753 Computer Vision

#11

Digital Image

(pixel)

#11

 $(x, y)_C \Rightarrow (x, y, 1)_H \qquad (X, Y, Z)_C \Rightarrow (X, Y, Z, 1)_H$

Homogeneous Image Coordinates (2D)

Homogeneous Scene Coordinates (3D)

Converting from homogeneous coordinates to Cartesian coordinate

$$(\widetilde{x},\widetilde{y},\widetilde{w})_{H} \Rightarrow (\frac{\widetilde{x}}{\widetilde{w}},\frac{\widetilde{y}}{\widetilde{w}})_{C} \qquad (\widetilde{X},\widetilde{Y},\widetilde{Z},\widetilde{w})_{H} \Rightarrow (\frac{\widetilde{X}}{\widetilde{w}},\frac{\widetilde{Y}}{\widetilde{w}},\frac{\widetilde{Z}}{\widetilde{w}})_{C}$$

$$(\widetilde{X},\widetilde{Y},\widetilde{Z},\widetilde{w})_{H} \Rightarrow (\frac{\widetilde{X}}{\widetilde{w}},\frac{\widetilde{Y}}{\widetilde{w}},\frac{\widetilde{Z}}{\widetilde{w}})_{C}$$

261458 & 261753 Computer Vision

#11

Transform to Digital Image Coordinate System

Apply scaling and translation of origin point (u_0, v_0) (s_u, s_v)

Cartesian Coordinates

$$(x, y)_C \Rightarrow (u, v)_C$$

$$(u,v)_C = (s_u x + u_0, s_v y + v_0)_C$$

Projection in Homogenous Coordinates

Cartesian Coordinates

 $(X,Y,Z)_C \Rightarrow (x,y)_C$

Homogenous Coordinates

 $(X,Y,Z,1)_H \Rightarrow (\widetilde{x},\widetilde{y},\widetilde{w})_H$

 $(x,y)_{C} = \left(\frac{fX}{Z}, \frac{fY}{Z}\right)_{C}$ $\begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{w} \end{bmatrix}_{H} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}_{H}$ is in the second of the contraction of

 $(\widetilde{x},\widetilde{y},\widetilde{w})_{tt} = (fX,fY,Z)_{tt}$

261458 & 261753 Computer Vision

Transform to Digital Image Coordinate System

Homogenous Coordinates

 $(\widetilde{x},\widetilde{y},\widetilde{w})_{\scriptscriptstyle H} \Rightarrow (\widetilde{u},\widetilde{v},\widetilde{t})_{\scriptscriptstyle H}$

Scaling Translation $\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{t} \end{bmatrix}_{H} = \begin{bmatrix} s_{u} & 0 & u_{0} \\ 0 & s_{v} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{w} \end{bmatrix}_{H} \longrightarrow \begin{bmatrix} \widetilde{u} = s_{u}\widetilde{x} + u_{0}\widetilde{w} \\ \widetilde{v} = s_{v}\widetilde{y} + v_{0}\widetilde{w} \\ \widetilde{t} = \widetilde{w} \end{bmatrix}$

$$(u,v)_C \Rightarrow (\frac{\widetilde{u}}{\widetilde{t}}, \frac{\widetilde{v}}{\widetilde{t}})_C = (\frac{s_u \widetilde{x}}{\widetilde{w}} + u_0, \frac{s_v \widetilde{y}}{\widetilde{w}} + v_0)_C = (s_u x + u_0, s_v y + v_0)_C$$

(pixel)

Transform to Digital Image ² Coordinate System

261458 & 261753 Computer Vision

#11

23

#11

Transform to Digital Image Coordinate System

261458 & 261753 Computer Vision

#11

Camera Model

Camera Model

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{t} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \begin{bmatrix} \widetilde{u}' \\ \widetilde{v}' \\ \widetilde{t}' \end{bmatrix} = \alpha \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$(u, v)_{C} = (\frac{\widetilde{u}}{\widetilde{t}}, \frac{\widetilde{v}}{\widetilde{t}})_{C}$$
$$(u, v)_{C} = (\frac{\widetilde{u}'}{\widetilde{t}}, \frac{\widetilde{v}'}{\widetilde{t}'})_{C} = (\frac{\alpha \widetilde{u}}{\alpha \widetilde{t}}, \frac{\alpha \widetilde{v}}{\alpha \widetilde{t}})_{C}$$
$$= (\frac{\widetilde{u}}{\widetilde{t}}, \frac{\widetilde{v}}{\widetilde{t}})_{C}$$

- Scale doesn't affect in homogenous camera model
- However C is non-invertible matrix

24

Homography

261458 & 261753 Computer Vision

#11

27

Homography

261458 & 261753 Computer Vision

#11

Homography Estimation

$$\mathbf{p}_i^{(1)} \Leftrightarrow \mathbf{p}_i^{(2)}$$

$$\mathbf{p}_{i}^{(1)} = \mathbf{H}^{(1)} \mathbf{P}_{i}$$

$$\mathbf{p}_{i}^{(2)} = \mathbf{H}^{(2)} \mathbf{P}_{i}$$
Same scene point [X,Y,Z]

From different camera positions and rotations

$$\mathbf{P}_{i} = \left(\mathbf{H}^{(1)}\right)^{-1} \mathbf{p}_{i}^{(1)}$$
$$\mathbf{p}_{i}^{(2)} = \mathbf{H}^{(2)} \left(\mathbf{H}^{(1)}\right)^{-1} \mathbf{p}_{i}^{(1)}$$

Homography Estimation

$$\mathbf{p}_i^{(2)} = \mathbf{H}^{(2)} \left(\mathbf{H}^{(1)} \right)^{-1} \mathbf{p}_i^{(1)}$$

$$\mathbf{p}_i^{(2)} = \mathbf{H}_{21} \mathbf{p}_i^{(1)}$$

$$\begin{bmatrix} \widetilde{\boldsymbol{u}}^{(2)} \\ \widetilde{\boldsymbol{v}}^{(2)} \\ \widetilde{\boldsymbol{t}}^{(2)} \end{bmatrix}_{H} = \begin{bmatrix} h_{1} & h_{2} & h_{3} \\ h_{4} & h_{5} & h_{6} \\ h_{7} & h_{8} & h_{9} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{u}}^{(1)} \\ \widetilde{\boldsymbol{v}}^{(1)} \\ 1 \end{bmatrix}_{H}$$

28

261458 & 261753 Computer Vision

#11

$$\begin{bmatrix} \widetilde{u}^{(2)} \\ \widetilde{v}^{(2)} \\ \widetilde{t}^{(2)} \end{bmatrix}_{H} = \begin{bmatrix} h_{1} & h_{2} & h_{3} \\ h_{4} & h_{5} & h_{6} \\ h_{7} & h_{8} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{u}^{(1)} \\ \widetilde{v}^{(1)} \\ 1 \end{bmatrix}_{H}$$

- Scale doesn't affect in homogenous camera model
- We can set one element to 1
- Actually there are 8 unknown parameters in camera model

261458 & 261753 Computer Vision

#11

31

#11

Homography Estimation

$$u^{(2)} = \frac{h_1 u^{(1)} + h_2 v^{(1)} + h_3}{h_7 u^{(1)} + h_8 v^{(1)} + 1} \qquad v^{(2)} = \frac{h_4 u^{(1)} + h_5 v^{(1)} + h_6}{h_7 u^{(1)} + h_8 v^{(1)} + 1}$$

$$u^{(2)}(h_7u^{(1)} + h_8v^{(1)} + 1) - (h_1u^{(1)} + h_2v^{(1)} + h_3) = 0$$

$$v^{(2)}(h_7u^{(1)} + h_8v^{(1)} + 1) - (h_4u^{(1)} + h_5v^{(1)} + h_6) = 0$$

- Eight unknowns in homography (h_1 - h_8)
- Two linear equations can be obtained from a pair of matched keypoints

Homography Estimation

$$\begin{bmatrix} \widetilde{u}^{(2)} \\ \widetilde{v}^{(2)} \\ \widetilde{t}^{(2)} \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & 1 \end{bmatrix} \begin{bmatrix} \widetilde{u}^{(1)} \\ \widetilde{v}^{(1)} \\ 1 \end{bmatrix} \qquad (u^{(1)}, v^{(1)})_C = (\widetilde{u}^{(1)}, \widetilde{v}^{(1)})$$

$$(u^{(2)}, v^{(2)})_C = (\frac{\widetilde{u}^{(2)}}{\widetilde{t}^{(2)}}, \frac{\widetilde{v}^{(2)}}{\widetilde{t}^{(2)}})$$

$$u^{(2)} = \frac{\widetilde{u}^{(2)}}{\widetilde{t}^{(2)}} = \frac{h_1 \widetilde{u}^{(1)} + h_2 \widetilde{v}^{(1)} + h_3}{h_7 \widetilde{u}^{(1)} + h_8 \widetilde{v}^{(1)} + 1}$$
$$v^{(2)} = \frac{\widetilde{v}^{(2)}}{\widetilde{t}^{(2)}} = \frac{h_4 \widetilde{u}^{(1)} + h_5 \widetilde{v}^{(1)} + h_6}{h_7 \widetilde{u}^{(1)} + h_2 \widetilde{v}^{(1)} + 1}$$

261458 & 261753 Computer Vision

#11

Homography Estimation

• To estimate homography, we need at least 4 pairs of matched keypoints (8 equations)

$$-u_{1}^{(1)}h_{1}-v_{1}^{(1)}h_{2}-h_{3}+u_{1}^{(1)}u_{1}^{(2)}h_{7}+v_{1}^{(1)}u_{1}^{(2)}h_{8}+u_{1}^{(2)}=0$$

$$-u_{1}^{(1)}h_{4}-v_{1}^{(1)}h_{5}-h_{6}+u_{1}^{(1)}v_{1}^{(2)}h_{7}+v_{1}^{(1)}v_{1}^{(2)}h_{8}+v_{1}^{(2)}=0$$

$$-u_{2}^{(1)}h_{1}-v_{2}^{(1)}h_{2}-h_{3}+u_{2}^{(1)}u_{2}^{(2)}h_{7}+v_{2}^{(1)}u_{2}^{(2)}h_{8}+u_{2}^{(2)}=0$$

$$-u_{2}^{(1)}h_{4}-v_{2}^{(1)}h_{5}-h_{6}+u_{2}^{(1)}v_{2}^{(2)}h_{7}+v_{2}^{(1)}v_{2}^{(2)}h_{8}+v_{2}^{(2)}=0$$

$$\vdots$$

$$-u_{K}^{(1)}h_{1}-v_{K}^{(1)}h_{2}-h_{3}+u_{K}^{(1)}u_{K}^{(2)}h_{7}+v_{K}^{(1)}u_{K}^{(2)}h_{8}+u_{K}^{(2)}=0$$

$$-u_{K}^{(1)}h_{4}-v_{K}^{(1)}h_{5}-h_{6}+u_{K}^{(1)}v_{K}^{(2)}h_{7}+v_{K}^{(1)}v_{K}^{(2)}h_{8}+v_{1}^{(2)}=0$$

Solve this linear equations then we can obtain H

32

33

Outliers

• Assume we have matched points with outliers: How do we compute homography H?

HZ Tutorial '99

261458 & 261753 Computer Vision

#11

35

#11

RANSAC [RANdom SAmple Concensus]

261458 & 261753 Computer Vision

#11

RANSAC [RANdom SAmple Concensus]

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample

RANSAC [RANdom SAmple Concensus]

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point

261458 & 261753 Computer Vision

#11

39

RANSAC [RANdom SAmple Concensus]

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis

261458 & 261753 Computer Vision

#11

RANSAC [RANdom SAmple Concensus]

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling

RANSAC [RANdom SAmple Consensus]

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis
- Repeat sampling

261458 & 261753 Computer Vision

#11

#11

Estimation with RANSAC

1. Choose number of samples N

For probability p of no outliers:

$$N = \log(1 - p) / \log(1 - (1 - \epsilon)^s)$$

- N, number of samples
- s, size of sample set
- \bullet ϵ , proportion of outliers

	Sample size	Proportion of outliers ϵ						
$\mbox{e.g. for } p = 0.95$	8	5%	10%	20%	25%	30%	40%	50%
	2	2	2	3	4	5	7	11
	3	2	3	5	6	8	13	23
	4	2	3	6	8	11	22	47
	5	3	4	8	12	17	38	95
	6	3	4	10	16	24	63	191
	7	3	5	13	21	35	106	382
	8	3	6	17	29	51	177	766

HZ Tutorial '99

261458 & 261753 Computer Vision

#11

Automatic Homography Estimation with RANSAC

- 1. Choose number of samples N
- 2. Choose 4 random potential matches
- 3. Compute H
- 4. Project points from **x** to **x**' for each potentially matching pair:
- 5. Count points with projected distance < t
 - $t \sim 6 \sigma$; σ is measurement error (1-3 pixels)
- 6. Repeat steps 2-5 for *N* times
 - Choose **H** with most inliers

261458 & 261753 Computer Vision

Image Warping

$$(u^{(2)}, v^{(2)}) \Rightarrow (u^{(1)}, v^{(1)})$$

Interpolation for unknown intensity in the I₁ grid

Augmented Reality

AR [Augmented Reality]

http://www0.cs.ucl.ac.uk/staff/ucacsjp/Papers/PrinceXu.pdf

261458 & 261753 Computer Vision

#11

Marker based AR

http://www.hitl.washington.edu/artoolkit/documentation/userarwork.htm

261458 & 261753 Computer Vision

#11

Marker based AR

#11