$$[(x_1,y_1)]_{\sim} * [(y_1,x_1)]_{\sim} = [(x_1 \circ y_1, x_1 \circ y_1)]_{\sim} = [(e,e)]_{\sim}, \text{ denn } x_1 \circ y_1 \circ e = e \circ x_1 \circ y_1$$

d) $f: A \to B, x \mapsto [(x, e)]_{\sim}$ ist die gesuchte Abb.

0.3 Übung 2, 15.11.2004

0.3.1 Aufgabe 1

 (A, \circ) endliche Gruppe, e neutr. Element; $x \in A$ fest

a) z.Z.: Es gibt ein kleinstes $k \in \mathbb{N}$ mit $x^k = e$. Beweis: $B := \{x, x^2, ..., x^n, x^{n+1}\} \subset A$ mit |A| = n

$$\begin{split} &\Rightarrow |B| \leq n \\ &\Rightarrow \exists i,j \in \{1,...,n+1\} : i < j \quad \text{und} \quad x^i = x^j = x^i \circ x^{j-1} \\ &\Rightarrow x^{j-1} = e \quad \text{und} \quad 1 \leq j-1 \leq n \end{split}$$

Damit ist $M:=\{m\in N|x^m=e\}\neq\emptyset$. Da $(j-i)\in M$ ex. außerdem $k=\min M$.

- b) z.Z.: $B := \{x, x^2, ..., x^n\}$ ist eine Untergruppe von A Beweis:
 - $B \neq \emptyset$, da $x \in B$
 - Seien $y, z \in B$. Dann $\exists i, j \in \{1, ..., k\}$ mit $y = x^i$ und $z = x^j$ $y \circ z^{-1} = x^i \circ x^{k-j} = x^{i+k-j} = \begin{cases} x^{k+i-j}, \text{ falls } i \leq j \\ x^{i-j}, \text{ falls } i > j \end{cases}$ In beiden Fällen $y \circ z^{-1} \in B$.
 - Seien $y, z \in B$. Dann $\exists i, j \in \{1, ..., k\}, y = x^i, z = x^j$ $y \circ z = x^i \circ x^j = x^{i+j} = x^{j+i} = z \circ y$

z.Z.: Ann.: |B| < k. Dann $\exists i, j \in \{1, ..., k\}$ mit i < j und $x^i = x^j$ $\Rightarrow x^{j-1} = e \quad \text{und} \quad 1 \le j-1 < k`$ $\Rightarrow |B| = k$

0.3.2 Aufgabe 3

a) z.Z.: Die Menge $\{Ba|a\in A\}$ (mit $Ba=\{b\circ a|b\in B\}$) bildet eine Partition von A.

Beweis: Für alle $a \in A$ gilt $a \in Ba$, da $e \in B$ und somit $e \circ a \in Ba$ ist.

Damit gilt: $Ba \neq \emptyset$ für alle $a \in A$ und $\bigcap_{a \in A} Ba = a$.

Sei $a, a' \in A$ und $Ba \cap Ba' \neq \emptyset$. Dann ex. $Ba \cap Ba'$ und es gibt $b, b' \in B$ mit $x = b \circ a$ und $x = b' \circ a' \Rightarrow a = \underbrace{b^{-1} \circ b'}_{\in B} \circ a'$ und $a' = \underbrace{b'^{-1} \circ b}_{\in B} \in B \circ a$

$$\Rightarrow a \in Ba' \text{ und } a' \in Ba$$

 $\Rightarrow Ba \subset Ba' \Rightarrow Ba = Ba'.$

b) z.Z.: |B| teilt |A|

Beweis:

(1) Wir zeigen: |Ba| = |B| für alle $a \in A$

 $h: B \to Ba, h \mapsto b \circ a$ ist bijektiv denn $h^{-1}: Ba \to B, x \mapsto x \circ a^{-1}$ ist ihre Umkehrabbildung. $\Rightarrow |Ba| = |B|$ für alle $a \in A$

(2) z.Z.: $\exists m \in \mathbb{N} : m|B| = |A|$ Wir zeigen aus a), dass $A = \bigcup_{\cdot} Ba$

Wir definieren $m := \{Ba | a \in A\}$ (die Anzahl der verschiedenen Nebenklassen) Dann gilt |A| = m|B|.

c) z.Z. $\forall a \in A : a^{|A|} = e$

Beweis: Sei k die Ordnung von a

 $B := \{a, a^2, ..., a^k\}$

Wir wissen aus Aufgabe 1: B ist Untergruppe von A. Dann ex. wegen b) ein $m \in \mathbb{N}$ mit |A| = mk.

Somit: $a^{|A|} = a^{mk} = a^{k^n} = e^m = e$

d) z.Z.: $|A| \ge Z : |A|$ ist Primzahl $\Leftrightarrow \{e\}$, A sind die einzigen Untergruppen von A

"⇒" Wegen b) gilt für jede Untergrupp B, dass |B|teilt|A|.

"
—" Wegen $|A| \ge 2$ gibt es $x \in A \setminus \{e\}$. Also ist die Ordnung k von x echt größer 1.

 $\{e\} \subsetneq \{a, a^k\} = A \text{ (nach Vor.) und } k = |A|$

Falls: |A| keine Primzahl ist, so ex. $m \neq 1 \neq n$ mit |A| = mn = e.

 $\{a^n, a^{2n}, a^{3n}, ..., a^{nm}\}$ ist Untergruppe von A und $1|\{a^n, ..., a^{n^m}\} = m < k$ ist Widerspruch zur Vor.

Also gilt: |A| ist Primzahl

0.3.3 Aufgabe 2

b)

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 5 & 4 & 8 & 6 & 2 & 1 \end{pmatrix}$$

$$\Leftrightarrow \tau^{(1,8)} \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 5 & 4 & 1 & 6 & 2 & 8 \end{pmatrix}$$

$$\Leftrightarrow \tau^{(2,7)} \circ \tau^{(1,8)} \circ \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 5 & 4 & 1 & 6 & 7 & 8 \end{pmatrix}$$
...
$$\Leftrightarrow id = \tau^{(1,2)} \circ \tau^{(1,3)} \circ \tau^{(1,5)} \circ \tau^{(2,7)} \circ \tau^{(1,8)} \circ \pi$$

$$\Leftrightarrow \pi = \tau^{(1,8)} \circ \tau^{(2,7)} \circ \tau^{(1,5)} \circ \tau^{(1,3)} \circ \tau^{(1,2)}$$