Eq. Laplace 2D

$$\frac{\partial^2}{\partial u^2} \Phi + \frac{\partial^2}{\partial x^2} \Phi = f(x, y)$$

Dove Φ é la funzione incognita e f(t,x) rappresenta la forzante.

Discretizziamo lo spazio ed il tempo: $x_i = i\Delta x$ e $y_j = j\Delta y$.

Utilizziamo il seguente schema centrato nello spazio (secondo ordine in Δx e Δy) assumendo $\Delta x = \Delta y = \Delta$

$$\Phi_{i+1,j} + \Phi_{i-1,j} + \Phi_{i,j-1} + \Phi_{i,j-1} - 4\Phi_{i,j} = \Delta^2 f_{i,j}$$

Introduciamo l'errore $\epsilon_{i,j}$ come:

$$\epsilon_{i,j} = \Phi_{i,j} - (\Phi_{i+1,j} + \Phi_{i-1,j} + \Phi_{i,j-1} + \Phi_{i,j-1} - \Delta^2 f_{i,j})/4$$

e costruiamo il seguente schema schema iterattivo

$$\Phi_{i,j}^{n+1} = \Phi_{i,j}^n - \alpha \epsilon_{i,j}^n$$

Come condizioni al contorno assumiamo una funzione nota sulla frontiera del dominio.

Nel codice allegato ho incluso due versioni dell'algoritmo, la prima calcola l'errore in ogni punto del dominio e poi aggiorna la Φ ed in questa versione α deve essere minore di uno ed abbiamo una lenta convergenza, dopo 100 iterazioni l'errore si circa dimezzato. La seconda versione aggiorna la Φ appena calcolato un errore, in questa versione α deve essere minore di due e la convergenza molto pi rapida, dopo cento iterazioni l'errore circa un millesimo.