Семинар №15

План

$$\begin{cases} Y = A \cdot K^{\alpha} \cdot L^{\beta}; \\ A > 0; 0 < \alpha; 0 < \beta; \end{cases}$$
 (1)

$$\begin{cases} Y = A \cdot K^{\alpha} \cdot L^{\beta} + u; \\ E(u) = 0; Var(u) = \sigma_{u}^{2}; \end{cases}$$
 (2)

$$(A, \alpha, \beta; \sigma_u^2) \tag{3}$$

$$\ln Y = \ln A + \alpha \cdot \ln K + \beta \cdot \ln L \tag{4}$$

$$\begin{cases} Y = A \cdot K^{\alpha} \cdot L^{\beta} \cdot e^{u}; \\ E(u) = 0; Var(u) = \sigma_{u}^{2}; \end{cases}$$
 (5)

$$\begin{cases} \ln Y = \ln A + \alpha \cdot \ln K + \beta \cdot \ln L + u; \\ y = a_0 & x_1 & x_2 \\ E(u) = 0; Var(u) = \sigma_u^2; \end{cases}$$
 (6)

$$(A, \alpha, \beta; \sigma_u)$$
 (7)

$$\alpha + \beta = 1 \tag{8}$$

$$Y = A \cdot K^{\alpha} \cdot L^{1-\alpha}; \tag{1'}$$

$$\frac{Y}{L} = A \cdot \left(\frac{K}{L}\right)^{\alpha} \tag{9}$$

Задача №1. Трансформировать в ситуации (8) модель (5) к линейной модели парной регрессии.

Решение:

$$\ln Y = \ln A + \alpha \cdot \ln K + (1 - \alpha) \cdot \ln L$$

$$E(u) = 0; Var(u) = \sigma_u^2;$$

$$\begin{cases} Y = A \cdot K^{\alpha} \cdot L^{1 - \alpha} \cdot e^u; \\ E(u) = 0; Var(u) = \sigma_u^2; \end{cases}$$

$$\frac{Y}{L} = A \cdot \left(\frac{K}{L}\right)^{\alpha} \cdot e^u;$$

$$\begin{cases} \ln \frac{Y}{L} = \ln A + \alpha \cdot \ln \frac{K}{L} + u; \\ y & X \end{cases}$$

$$E(u) = 0; Var(u) = \sigma_u^2;$$

$$(11)$$

Задача №2. По данным ВВП основного капитала и труда в России оценить модель производства товара и услуг в стране, предполагая, что значения эластичности α и β удовлетворяют условию (8) "Постоянства отдачи от масштабов производства".

Решение:

Шаг 1. Составляем спецификаю эконометрической модели (10) и затем трансформируем эту модель к модели парной линейной регрессии (11).

Шаг 2. Переносим информацию в Excel

Год	Ү(млрд. рублей)	К (млрд. рублей)	L(млн. чел.)
2000	7305	4306	65273
2001	7678	4979	65124
2002	8042	5518	66266
2003	8633	6640	67152
2004	9250	8103	67134
2005	9839	9207	68603
2006	10597	11277	69157
2007	11455	13403	70814
2008	12097	15527	70603
2009	11205	13100	69410
2010	11652	14444	69934
2011	12212	16120	70857

Шаг 3. Готовим уравнения наблюдей в качестве уравнений (11).

Год	LN(Y/L)	LN(K/L)
2000	4.717736	4.189186203
2001	4.769821	4.336691202
2002	4.798756	4.42209381
2003	4.856389	4.593908536
2004	4.925688	4.79329902
2005	4.965773	4.899383078
2006	5.031947	5.09414125
2007	5.086125	5.24317712
2008	5.14364	5.393263086
2009	5.084084	5.24033656
2010	5.115681	5.330482442
2011	5.149511	5.427152255

Шаг 4. Обращаемся к функции ЛИНЕЙН метода наименьших квадратов.

alpha	a0
0.35046	3.248419898
0.001476	0.007280466
0.999823	0.002155382
56355.51	10
0.261809	4.64567E-05

Шаг 5. Записываем оценённую модель (11)

$$\begin{cases} \ln \frac{Y}{L} = 3.25 + 0.35 \cdot \ln \left(\frac{K}{L}\right) + u \\ R^2 = 0.99 \end{cases}$$
 (12)

Это обозначает, что относительное влияние на уровень ВВП неучтённых факторов состовляет 0.2.

Шаг 6. От трансформированной модели (12) возвращаемся к оценённой модели (10), для этого найдём оценки A при помощи операции потанцеирования. A=25.75, записываем оценённую модель.

$$\begin{cases} Y = 25.75 \cdot K^{0.35} \cdot L^{0.65} \cdot e^{u = 0.002} \\ S_{\pi} = ? & 0.0015 & 0.0015 \end{cases}$$
 (13)

ДЗ По статестическим данным оценить модель со спецификацией (6), не предполагая справедливость равенства (8).

ДЗ Факультативная Вернёмся к оценённым моделям (12) и (13). Оценка \widetilde{A} вычислена по правилу (14):

$$\widetilde{A} = e^{\widetilde{a}_0}, \ S\widetilde{a}_0 = 0.007 \tag{14}$$

Рассуждая в дифференциалах получить ошибку \tilde{A} .