5. Números Enteros

5.1. introducción

- Sistema Posicional:
 - Número en Base Decimal
 - o Dígitos, Valor?
 - o Centenas, decenas, unidades
 - $\circ \ Posici\'on \to \'indice$
 - \circ Posición \rightarrow pesos \rightarrow Potencias $base^{posición}$
 - o Valor= sumatorio de digitos ponderados con su peso posicional
 - o Ejemplo: 1197

5.2. Base binaria

- Base 2 . Digitos : 0,1.
- Pesos $2^0, 2^1, 2^2, 2^3, 2^4 \rightarrow 1, 2, 4, 8, 16$
- Conversión Decimal-Binaria:
 - Divisiones sucesivas / 2 → Dividendo1 = 2*Cociente1 + Resto1
 - Cociente1 = 2*Cociente2 + Resto2 \rightarrow Dividendo1 = 2* (2*Cociente2 + Resto2) + Resto1 = Resto1* 2^0 + Resto2* 2^1 + Cociente* 2^2
 - Resto1 es el dígito binario de la posición 0, Resto2 es el digito binario de la posición 1, Cociente es el dígito binario de la posición 2.
 - Regla: los digitos binarios son todos los restos y el último cociente.
 - La división se termina cuando un cociente no es divisible por 2, es decir, el cociente es 1. Este cociente es el MSB.
 - Ejemplo: decimal 1197 \rightarrow binario 10010101101

Cuadro 1: Conversión decimal binario

Número 1ª Div			2ª Div		3ª Div		4ª Div		5ª Div		6ª Div	
	Coc	Resto	Сос	Resto								
1197	598	1	299	0	149	1	74	1	37	0	18	1

Número	7 ^a Div		8 ^a Div		9 ^a Div		10° Div	
	Сос	Resto	Coc	Resto	Coc	Resto	Coc	Resto
1197	9	0	4	1	2	0	1	0

5.3. Base Octal

- Base 8
- Digitos: 0-7
- Pesos: 8 elevado a la posición
- En C se específica la base con el prefijo $0 \rightarrow \text{int} 077$;

- Conversión Octal ←→ Binario y viceversa → cada digito octal se descompone en un binario de 3 bits
- decimal $1197 \rightarrow \text{binario } 10010101101 \rightarrow \text{octal } 02255$

5.3.1. Base Hexadecimal

- Base 16
- Digitos: 0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F
- Pesos: 16 elevado a a la posición
- En C se específica la base con el prefijo $0x \rightarrow \text{int } 0xAF$;
- Hexadecimal ←→ Binario y viceversa → cada digito hexadecimal se descompone en un binario de 4 bits
- decimal 1197 \rightarrow binario 10010101101 \rightarrow 0x4AD

5.4. Calculadora

- Calculadora en el sistema Linux
 - candido@lur:~\$ echo "obase=2 ; ibase=16; 80AA010F" | bc
 - $\circ \ 100000001010101010000000100001111 \\$
 - echo "obase=10 ; ibase=16; 80AA010F" | bc \rightarrow es obligado poner primero la base del formato de salida \circ 2.158.625.039
 - Intérprete \$ bc

5.5. Python

- https://docs.python.org/3/tutorial/index.html
 - help(builtins)

```
bin(1197) -> '0b10010101101'
oct(1197) -> '02255'
hex(1197) -> '0x4ad'
int(0x4ad) -> 1197
```