# T-PMTH-402 — Math. appliquées à l'info. Chapitre 3 — Logique

Jean-Sébastien Lerat Jean-Sebastien.Lerat@heh.be



Haute École en Hainaut

2019-2020

### Plan

- Introduction
- 2 Logique propositionnelle
  - Syntaxe et sémantique
  - Tautologie
  - Formes normales

- 3 Logique des prédicats
  - Syntaxe et sémantique
- Exercices

### Introduction

La logique est l'étude des règles formelles que doit respecter toute argumentation correcte.

Origine Grèce antique, enseignement du discours et de la rhétorique. Objectif formaliser les règles de *déduction* (inférence).

### Syllogisme

- Tous les hommes sont mortels
- or x est un homme
- donc x est mortel.

Si 1 et 2 sont vrais, les règles de la logique assurent que 3 est vrai.

### Plan

- Introduction
- 2 Logique propositionnelle
  - Syntaxe et sémantique
  - Tautologie
  - Formes normales

- 3 Logique des prédicats
  - Syntaxe et sémantique
- 4 Exercices

# Logique propositionnelle

La logique propositionnelle est un système de logique où l'argumentation est démontrée à l'aide de propositions. Ces propositions sont définies sur base de propositions atomiques combinées à l'aide de connecteurs logiques.

#### Proposition atomique

Une **proposition atomique** est une phrase déclarative qui est soit vrai soit fausse.

#### Exemples

Mons est en Belgique Vrai 
$$1+2=5$$
 Faux

#### Contre exemples

Quelle heure est-il? est une phrase interrogative x+1=3 dépend de la valeur de x

```
propositions notées à l'aide de minuscules constantes 

⊤ signifie vrai, ⊥ signifie faux.
```

```
connecteurs logiques \Rightarrow implication, \Leftrightarrow, équivalence, \land et logique, \lor ou logique, \lnot négation et les parenthèses.
```

propositions notées à l'aide de minuscules constantes  $\top$  signifie vrai,  $\bot$  signifie faux.

connecteurs logiques  $\Rightarrow$  implication,  $\Leftrightarrow$ , équivalence,  $\land$  et logique,  $\lor$  ou logique, ¬ négation et les parenthèses.

Une formule propositionnelle phi suit la sémantique (sous la forme Backus-Naur (BNF)) suivante :

$$\phi = T$$

$$\phi = \bot$$

$$\phi = \phi_1 \lor \phi_2$$

$$\phi = \phi_1 \land \phi_2$$

$$\phi = \phi_1 \Rightarrow \phi_2$$

$$\phi = \phi_1 \Leftrightarrow \phi_2$$

$$\phi = \phi_1 \Leftrightarrow \phi_2$$

$$\phi = \neg \phi_1$$

où  $\phi_i$  est une proposition.

```
propositions notées à l'aide de minuscules
```

constantes  $\top$  signifie vrai,  $\bot$  signifie faux.

connecteurs logiques  $\Rightarrow$  implication,  $\Leftrightarrow$ , équivalence,  $\land$  et logique,  $\lor$  ou logique,  $\lnot$  négation et les parenthèses.

#### Exemple de proposition

 $p \Rightarrow (q \land r)$  p implique r et q, ou si p est vrai, alors q et r sont vrais.

 $\neg(p \land q)$  il est faux que p et q soient simultanément vrais.

# Sémantique – Ambiguïtés

### Comment interpréter ces propositions

$$\phi_1 \wedge \phi_2 \wedge \phi_3 \ (\phi_1 \wedge \phi_2) \wedge \phi_3 \text{ ou } \phi_1 \wedge (\phi_2 \wedge \phi_3)$$
$$\phi_1 \Rightarrow \phi_2 \Rightarrow \phi_3 \ (\phi_1 \Rightarrow \phi_2) \Rightarrow \phi_3 \text{ ou } \phi_1 \Rightarrow (\phi_2 \Rightarrow \phi_3)$$

# Sémantique – Ambiguïtés

#### Comment interpréter ces propositions

$$\phi_1 \wedge \phi_2 \wedge \phi_3 \ (\phi_1 \wedge \phi_2) \wedge \phi_3 \ \text{ou} \ \phi_1 \wedge (\phi_2 \wedge \phi_3)$$
  
 $\phi_1 \Rightarrow \phi_2 \Rightarrow \phi_3 \ (\phi_1 \Rightarrow \phi_2) \Rightarrow \phi_3 \ \text{ou} \ \phi_1 \Rightarrow (\phi_2 \Rightarrow \phi_3)$ 

Solution : priorités et parenthèsage comme en programmation.

Soient deux opérateurs  $\circ, \diamond$  qui sont respectivement de priorité  $p_{\circ}, p_{\diamond}$ .

Si 
$$p_{\circ} > p_{\diamond} \ \phi_1 \circ \phi_2 \diamond \phi_3$$
 est équivalent à  $(\phi_1 \circ \phi_2) \diamond \phi_3$ 

Si 
$$p_{\circ} < p_{\diamond} \phi_1 \circ \phi_2 \diamond \phi_3$$
 est équivalent à  $\phi_1 \circ (\phi_2 \diamond \phi_3)$ 

Si 
$$p_{\circ} = p_{\diamond}$$
 mais associatif gauche  $\phi_1 \circ \phi_2 \diamond \phi_3$  est équivalent à  $(\phi_1 \circ \phi_2) \diamond \phi_3$ 

précédence

# Sémantique – Ambiguïtés

#### Comment interpréter ces propositions

$$\phi_1 \wedge \phi_2 \wedge \phi_3 \ (\phi_1 \wedge \phi_2) \wedge \phi_3 \ \text{ou} \ \phi_1 \wedge (\phi_2 \wedge \phi_3)$$
  
 $\phi_1 \Rightarrow \phi_2 \Rightarrow \phi_3 \ (\phi_1 \Rightarrow \phi_2) \Rightarrow \phi_3 \ \text{ou} \ \phi_1 \Rightarrow (\phi_2 \Rightarrow \phi_3)$ 

Solution : priorités et parenthèsage comme en programmation.

Soient deux opérateurs  $\circ, \diamond$  qui sont respectivement de priorité  $p_{\circ}, p_{\diamond}$ .

Si 
$$p_{\circ} > p_{\diamond} \phi_1 \circ \phi_2 \diamond \phi_3$$
 est équivalent à  $(\phi_1 \circ \phi_2) \diamond \phi_3$ 

Si 
$$p_{\circ} < p_{\diamond} \phi_1 \circ \phi_2 \diamond \phi_3$$
 est équivalent à  $\phi_1 \circ (\phi_2 \diamond \phi_3)$ 

Si  $p_0 = p_0$  mais associatif gauche  $\phi_1 \circ \phi_2 \diamond \phi_3$  est équivalent à  $(\phi_1 \circ \phi_2) \diamond \phi_3$ 

#### Exemple sur les nombres

 $2 \times 3/4$  est équivalent à  $(2 \times 3)/4$ 

#### précédence

# Sémantique – Précédence

| Opérateur         | Priorité | Associativité |
|-------------------|----------|---------------|
| $\Leftrightarrow$ | 1        | gauche        |
| $\Rightarrow$     | 2        | droite        |
| V                 | 3        | gauche        |
| ^                 | 4        | gauche        |
| _                 | 5        | gauche        |

# Sémantique – Précédence

| Opérateur         | Priorité | Associativité |
|-------------------|----------|---------------|
| $\Leftrightarrow$ | 1        | gauche        |
| $\Rightarrow$     | 2        | droite        |
| \ \               | 3        | gauche        |
| $\wedge$          | 4        | gauche        |
| コ                 | 5        | gauche        |

### Exemple d'application des priorités

$$\neg a \land b \Rightarrow c$$
 est équivalent à  $((\neg a) \land b) \Rightarrow c$ 

## **Tautologie**

#### **Tautologie**

Une tautologie est une proposition qui est toujours vraie.

#### Exemple de tautologie

$$p \vee \neg p$$

| р | $\neg p$ | $p \lor \neg p$ |
|---|----------|-----------------|
| Т | 1        | Т               |
| 1 | Τ        | Т               |

## Formes normales

#### Forme normale conjonctive

Une formule est **en forme normale conjonctive** (FNC) si et seulement si c'est une conjonction (et logique) de propositions p atomiques, de la forme :

$$\bigwedge_{i} \left( \bigvee_{j} \left( \begin{array}{cc} p_{i,j} & \text{quand } p_{i,j} \text{ est vrai} \\ \neg p_{i,j} & \text{quand } p_{i,j} \text{ est faux} \end{array} \right) \right)$$

#### Forme normale disjonctive

Une formule est en forme normale disjonctive (FND) si et seulement si c'est une disjonction (ou logique) de propositions p atomiques, de la forme :

$$\bigvee_{i} \left( \bigwedge_{j} \left( \begin{array}{cc} p_{i,j} & \text{quand } p_{i,j} \text{ est vrai} \\ \neg p_{i,j} & \text{quand } p_{i,j} \text{ est faux} \end{array} \right) \right)$$

## Formes normales

#### Forme normale conjonctive

Une formule est **en forme normale conjonctive** (FNC) si et seulement si c'est une conjonction (et logique) de propositions p atomiques

#### Forme normale disjonctive

Une formule est en forme normale disjonctive (FND) si et seulement si c'est une disjonction (ou logique) de propositions p atomiques

#### Exemple de formes normales

FNC 
$$p \wedge (q \vee \neg r) \wedge (\neg q \vee r)$$

FND 
$$p \lor (q \land \neg r) \lor (\neg p \land r)$$

## Changement de forme

$$\begin{array}{c}
p \Leftrightarrow p \lor \bot \\
\top \Leftrightarrow p \lor \top \\
p \Leftrightarrow p \land \top \\
\bot \Leftrightarrow p \land \bot \\
p \Leftrightarrow \neg(\neg p) \\
\top \Leftrightarrow p \lor (\neg p) \\
\bot \Leftrightarrow p \land (\neg p)
\end{array}$$

#### Commutativité

• 
$$p \wedge q = q \wedge p$$

#### Associativité

• 
$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$

• 
$$(p \land q) \land r \Leftrightarrow p \land (q \land r)$$

#### Distributivité

• 
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

• 
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

#### Loi de De Morgan

• 
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

$$\bullet \neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

## Changement de forme - exercices

Démontrez l'équivalence à l'aide d'une table de vérité :

- $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$
- $\bullet \ (p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$
- $\neg(p \Rightarrow q) \Leftrightarrow p \land \neg q$

### Plan

- Introduction
- 2 Logique propositionnelle
  - Syntaxe et sémantique
  - Tautologie
  - Formes normales

- 3 Logique des prédicats
  - Syntaxe et sémantique
- 4 Exercices

# Logique prédicats

La logique des prédicats, ou logique du premier ordre, est un système de logique qui étend la logique propositionnelle à l'aide de prédicats.

#### Prédicat

Un **prédicat** est une proposition paramétrés sous forme de fonction

$$P(x_1 \times \ldots \times x_n) : X_1 \times \ldots \times X_n \to \{\top, \bot\}$$

### Faiblesse de la logique propositionnelle

Certains étudiants assistent à tous les cours

Aucun étudiant assiste à un cours non intéressant

Dans toute salle d'examen, il y a un étudiant qui, s'il échoue,

alors tout le monde échoue.

⇒ Impossibilité d'exprimer les quantités.

Vrai

Faux

Quantificateur  $\forall$  « pour tout »,  $\exists$  « il existe ».

Propositions paramétrables par une lettre majuscule.

Variables correspondent à des propositions, lettres minuscules.

= spécifie que le terme de gauche est égal au terme de droite.

La priorité des propositions paramétrables est la plus élevées et sont associatives gauches.

Les quantificateurs ont une *portée* sur toute la suite de la proposition. Lorsque la proposition est parenthésée, la portée reste au sein des parenthèses et ont la même priorité que la négation.

#### Exemple sous la logique des prédicats

- $\forall x, \exists y (G(x, y) = c \land G(y, x) = c)$
- $\forall x \neg (F(x) = c)$

### Plan

- Introduction
- 2 Logique propositionnelle
  - Syntaxe et sémantique
  - Tautologie
  - Formes normales

- 3 Logique des prédicats
  - Syntaxe et sémantique
- Exercices

# Exercices -1/3

Soient les propositions atomiques suivantes :

$$p_1 \equiv 1 + 1 = 2$$
  $p_2 \equiv 1 > 5$   $p_3 \equiv 1 + 1 = 3$ 

- Déterminez la véracité de
  - a)  $p_1 \vee p_3$
  - b)  $p_2 \Rightarrow p_1$
  - c)  $p_3 \Rightarrow (p_1 \vee p_2)$
- **②** Construire la table de vérité de  $p_1 \Leftrightarrow p_2 \Rightarrow p_3$
- Prouvez les équivalences
  - a)  $p \lor p \Leftrightarrow p$
  - b)  $p \wedge p \Leftrightarrow p$
  - c)  $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

Le symbole ≡ signifie « est définit comme »

## Exercices -1/3

Soient les propositions atomiques suivantes :

$$p_1 \equiv 1 + 1 = 2$$
  $p_2 \equiv 1 > 5$   $p_3 \equiv 1 + 1 = 3$ 

- Déterminez la véracité de
  - a)  $p_1 \vee p_3 \top$
  - b)  $p_2 \Rightarrow p_1 \top$
  - c)  $p_3 \Rightarrow (p_1 \vee p_2) \top$
- ② Construire la table de vérité de  $p_1 \Leftrightarrow p_2 \Rightarrow p_3$

$$\begin{array}{c|cccc} p_1 & p_2 & p_3 & p2 \Rightarrow p_3 \\ \hline \top & \bot & \bot & \top \\ \end{array}$$

- 3 Prouvez les équivalences Voir slide changement de forme
  - a)  $p \lor p \Leftrightarrow p \mathsf{Si} \ p = \top : \top \lor \top \Rightarrow \top = \top \Rightarrow \top \ (\top), \mathsf{sinon} \ \bot \lor \bot \Rightarrow \bot \ (\bot \Rightarrow \top \mathsf{est} \ \top)$
  - b)  $p \land p \Leftrightarrow p \text{ Si } p = \top : \top \land \top \Rightarrow \top = \top \Rightarrow \top (\top), \text{ sinon } \bot \land \bot \Rightarrow \bot (\bot \Rightarrow \top \text{ est } \top)$
  - c)  $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$  par distributivité on a  $((p \lor q) \land (p \lor r)) = ((p \lor q) \land (p \lor r)$

## Exercices -2/3

- Soit  $A = \{1, 2, 3, 4, 5\}$  le domaine des prédicats (liste exhaustive des prédicats). Vérifiez la véracité de
  - a)  $\exists x, (x + 3 = 5)$
  - b)  $\exists x, (x+1=15)$
  - c)  $\forall x, (x < 4)$
  - d)  $\forall x, (x+10 < 25)$
  - e)  $\forall x, ((x > 6) \Rightarrow (x < 2))$
  - f)  $\exists x, ((x^2 = 121) \land (x > 0))$
- Soient  $x_i \in A$ ,  $P(x_i, x_j)$  (toutes valeurs possibles), vérifiez les tautologies suivantes :
  - a)  $\forall x_1 \exists x_2 P(x_1, x_2) \Leftrightarrow \exists x_2 \forall x_1 P(x_1, x_2)$
  - b)  $\exists x_1, \forall x_2 P(x_1, x_2) \Rightarrow \forall x_2 \exists x_1 P(x_1, x_2)$
  - c)  $\forall x, P(x) \Rightarrow \exists x, P(x)$
- **3** Lorsque les prédicats sont dans  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$  et  $\mathbb{R}$ , vérifiez :
  - a)  $\forall x, \exists y, (y < x)$
  - b)  $\forall x_1, \forall x_2((x_1 < x_2) \Rightarrow \exists y(x_1 < y < x_2))$
  - c)  $\exists x, (x^2 = 2)$
  - d)  $\exists x. (x^2 + 1 = 0)$

## Solution -2/3

- Soit  $A = \{1, 2, 3, 4, 5\}$  le domaine des prédicats (liste exhaustive des prédicats). Vérifiez la véracité de
  - a)  $\exists x, (x + 3 = 5)$  Oui,  $x = 2, x \in A, 2 + 3 = 5$
  - b)  $\exists x, (x+1=15) \ 1+1 \neq 15, \ 2+1 \neq 15, \ 3+1 \neq 15, \ 4+1 \neq 15$  et  $5+1 \neq 15$
  - c)  $\forall x, (x < 4), \text{ Non, } x = 4, x \in A, 4 \nleq 4$
  - d)  $\forall x, (x+10 < 25)$  Oui, 1+10 < 25, 2+10 < 25, 3+10 < 25, 4+10 < 25 et 5+10 < 25
  - e)  $\forall x, ((x > 6) \Rightarrow (x < 2))$  Vrai car  $\forall x \in A, x < 6$  et  $\bot \Rightarrow p$  est toujours vrai
  - f)  $\exists x, ((x^2 = 121) \land (x > 0))$  Non, le seul x tel que  $x^2 = 121$  est vrai est  $x = 11, x \notin A$ .  $\bot \land \top$  est  $\bot$

## Solution -2/3

- Soient  $x_i \in A$ ,  $P(x_i, x_j)$  (toutes valeurs possibles), vérifiez les tautologies suivantes :
  - a)  $\forall x_1 \exists x_2 P(x_1, x_2) \Leftrightarrow \exists x_2 \forall x_1 P(x_1, x_2)$  « Faux »
  - b)  $\exists x_1, \forall x_2 P(x_1, x_2) \Rightarrow \forall x_2 \exists x_1 P(x_1, x_2)$  « Vrai »
  - c)  $\forall x, P(x) \Rightarrow \exists x, P(x)$  « Vrai »
- **3** Lorsque les prédicats sont dans  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$  et  $\mathbb{R}$ , vérifiez :
  - a)  $\forall x, \exists y, (y < x) \ \mathbb{N} = \bot, \mathbb{Z} = \top, \mathbb{O} = \top \text{ et } \mathbb{R} = \top$
  - b)  $\forall x_1, \forall x_2((x_1 < x_2) \Rightarrow \exists y(x_1 < y < x_2)) \ \mathbb{N} = \bot, \ \mathbb{Z} = \bot, \ \mathbb{Q} = \top \text{ et } \mathbb{R} = \top$
  - c)  $\exists x, (x^2 = 2) \mathbb{N} = \bot, \mathbb{Z} = \bot, \mathbb{O} = \bot \text{ et } \mathbb{R} = \top$
  - d)  $\exists x, (x^2 + 1 = 0)$   $\mathbb{N} = \bot$ ,  $\mathbb{Z} = \bot$ ,  $\mathbb{Q} = \bot$  et  $\mathbb{R} = \bot$

# Exercices – 3/3

- Soient P(x) = x est un multiple de 2 et Q(x) = x est un multiple de 4 les deux prédicats de domaine  $\mathbb{N}$ 
  - a)  $\forall x, (P(x) \Rightarrow Q(x))$
  - b)  $\forall x, (Q(x) \Rightarrow P(x))$
  - c)  $\exists x, (P(x) \Rightarrow Q(x))$
  - d)  $\neg(\forall x (P(x) \Rightarrow \neg Q(x)))$
- ② Soit  $\mathbb{R}$  le domaine des prédicats. Trouvez des formules de la logique des prédicats ne faisant pas apparaître de quantificateurs  $(\forall, \exists)$  équivalentes aux formules suivantes :
  - a)  $\exists x, ax + b = 0$
  - b)  $(a \neq 0) \land (\exists x, ax^2 + bx + c = 0)$
  - où a, b et c sont dans  $\mathbb{R}$ .

## Exercices -3/3

- Soient P(x) = x est un multiple de 2 et Q(x) = x est un multiple de 4 les deux prédicats de domaine  $\mathbb{N}$ 
  - a)  $\forall x, (P(x) \Rightarrow Q(x))$  Faux car  $\exists n(n=2), P(2) = \top \not\Rightarrow Q(2) = \bot$
  - b)  $\forall x, (Q(x) \Rightarrow P(x)) \forall x,$ 
    - Si  $\neg Q(x)$  alors  $Q(x) \Rightarrow P(x)$  est vrai
    - Sinon  $x \mod 4 = 0$ , or  $4 \mod 2 = 0 \Rightarrow x \mod 2 \Rightarrow (Q(x) \Rightarrow P(x))$
  - c)  $\exists x, (P(x) \Rightarrow Q(x))$  Vrai, prenons x = 4,  $P(4) = \top$ ,  $Q(4) = \top$ .  $P(4) \Rightarrow Q(4)$ .
  - d)  $\neg(\forall x (P(x) \Rightarrow \neg Q(x)))$  Pour montrer que  $\forall x (P(x) \Rightarrow \neg Q(x))$  est faux, il faut  $\exists x, (P(x) \Rightarrow \neg \neg Q(x)) \Leftrightarrow \exists x (P(x) \Rightarrow Q(x))$  cfr. solution précédente
- **③** Soit  $\mathbb{R}$  le domaine des prédicats. Trouvez des formules de la logique des prédicats ne faisant pas apparaître de quantificateurs ( $\forall$ ,  $\exists$ ) équivalentes aux formules suivantes :
  - a)  $\exists x, ax + b = 0$   $a \neq 0 \land b = 0$  (si b = 0 alors x = 0, sinon  $x = -\frac{b}{a}$ )
  - b)  $(a \neq 0) \land (\exists x, ax^2 + bx + c = 0)$   $(a \neq 0) \lor (b^2 4ac \ge 0)$  où a, b et c sont dans  $\mathbb{R}$ .