What is missing data?

Some definitions are based on representation:

Missing data is the lack of a recorded answer for a particular field.

Other definitions are based on context:

Missing data is lack of a recorded answer where we "expected" to find one

WHY DO WE CARE ABOUT MISSINGNESS?

Missing data can result in:

- Reduced statistical power
- Biased estimators
- Reduced representativeness of the sample
- Generally incorrect inference and conclusions

THERE IS NO ONE CLEAR ANSWER FOR HANDLING MISSINGNESS

- Throw out the missing data and make a note of it.
- Throw out missing data or fill it in and make an informative note of it.

Disguised Missingness

Don't assume it will be in native form

- Blanks
- Empty stings
- NA
- NULL
- Anything else that well intentioned humans may come up with
- •-999999
- "Did not answer"
- "Ugh, sensor was broken"

How is missingness represented in your dataset?

- Mixing of missing indicators, e.g. both NA and NULL in the same variable, may indicate different interpretations.
- Don't hesitate to reach out to the client or other subject matter experts.
- Null data can be visiualized in R
- naniar and Amelia packages can produce "missingness maps"

Mechanisms of Missingness

Missing Completely at Random (MCAR)

The data are equally likely to be missing.

2. Missing at Random (MAR)

The likelihood of being missing depends only on non-missing data.

• 3. Missing Not at Random (MNAR)

Missingness depends on unobserved data or the value of the missing data itself.

Imputing missing values

- R has robust packages for missing value imputations.
- These packages arrive with some inbuilt functions and a simple syntax to impute missing data at once.
- Some packages are known best working with continuous variables and others for categorical..

Injecting missing value

- set.seed(86)
- iris[sample(1:nrow(iris), 5), "Sepal.Width"] <- NA
- iris[sample(1:nrow(iris), 10), "Petal.Length"] <- NA
- iris[sample(1:nrow(iris), 8), "Sepal.Length"] <- NA

How to identify missing values

```
#Using is.na() fucntion
any(is.na(iris))
```

#complete.cases() function to get percentage of missing value nrow(iris[!complete.cases(iris),])/nrow(iris)*100

Next is to identify which variables and what percentage of observations from each variable are missing.

use md.pattern function from mice package in R. library(mice) md.pattern(iris)

Deleting missing observations

- When total number of missing observations is significant then we can think of removing those observations from the data.
- Imputing too many missing observations can lead to bias in the dataset.
- Also it can result into poor statistical models.
- We can delete the missing values at the data preparation stage or at the time of building the model.
- However, not all algorithms provide this option of deleting missing values while we train the model.

- iris <- iris[complete.cases(iris),]
- # or we can use na.omit() function
- iris <- na.omit(iris)

- For linear regression mtcars ignoring missing values while building Immodel
- Im(mpg ~ cyl + disp, data=mtcars, na.action=na.omit)

How to delete variables with missing values

- Sometimes one or two variables contribute to the most number of missing values.
- In such cases, deleting these variables with high percentage of missing values will help save lots of observations.
- According to we delete all variable which have more than 30% of missone thumb rule ing values.

- ## Removing columns with more than 30% NA
- iris[, -which(colMeans(is.na(iris)) > 0.3)]

Imputing Missing values

#Imputing missing values

 Replacing missing values with a rough approximate value is acceptable and could possibly result into satisfactory result. Let us look at some of the ways in which we can replace the missing values.

#Using mean/median/mode

• To replace missing values with mean, median or mode we can use impute function from Hmisc package. This can also be achieved by using square brackets[] or ifelse statement.

Other ways to replace missing values

- Using impute function from Hmisc package
- library(Hmisc)
- impute(iris\$Sepal.Length, mean) # replace with mean
- impute(iris\$Sepal.Length, median) # median

#Filling missing values with Mean

- iris\$Sepal.Length[is.na(iris\$Sepal.Length)] = mean(iris\$Sepal.Length, na.rm=TRUE)
- # alternative way is to use ifelse
- iris = transform(iris, y = ifelse(is.na(iris), mean(iris, na.rm=TRUE), Sepal.Length))

Multivariate Imputation By Chained Equations

- #The mice function from the package automatically detects the variables which have missing values.
- Once detected, the missing values are then replaced by Predictive Mean Matching (PMM), this is a default method.
- library(mice)
- # Imputing the values using mice
- imputed_iris <- mice(iris, m=5, method = 'pmm', seed = 101)
- # checking the summary
- summary(imputed_iris)
- #Checking the imputed values
- imputed_iris\$imp

Using Machine Learning Algorithms

- Using KNN to fill the missing values
- library(bnstruct)
- knn.impute(iris, k = 5, cat.var = 1:ncol(iris), to.impute = 1:nrow(iris),
 using = 1:nrow(iris))
- Using RandomForest to fill the missing values
- Set.seed(86)
- iris <- rflmpute(Species ~ ., iris.na)

Which is the best imputation method?

- Although there are many ways in which we can impute missing values, one cannot say with certainty, that a particular method provides a best result.
- Therefore, it is advised to test out some of these methods and see which one is providing the best result.
- As we know statistics is all about trial and error.