DEPARTMENT OF THE INTERIOR CANADA

HON, W. J. ROCHE, Minister. W. W. CORT, C.M.G., Deputy Minister.

PUBLICATIONS PECOLE POSTECHNIQUE

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. II, No. 3

Orbit of \omega Cassiopeiæ

REYNOLD K. YOUNG, Ph. D.

OTTAWA GOVERNMENT PRINTING BURBAU 1915

MT 403 P02-03

16239

DEPARTMENT OF THE INTERIOR CANADA

HON, W. J. ROCHE, Minister. W. W. CORY, C.M.O., Deputy Minister.

PUBLICATIONS

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. II, No. 3

Orbit of \omega Cassiopeiæ

BY

(on+ 10)

REYNOLD K. YOUNG, Ph. D.

OTTAWA
GOVERNMENT PRINTING BUREAU
1915

CAI MT 403 Po2-03

48-035-302

ORBIT OF & CASSIOPELE.

BY REYNOLD K. YOUNG, Ph.D.

The binary character of ω Cassiopeiæ ($\alpha=1^{\rm b}$ 49°°·0, $\delta=+68^{\rm o}15'$, 1910, mag. 5·2, type B9) was announced by Adams in 1912.* Fifty two spectrograms, taken at this observatory during 1913, 1914, 1915, have been used in determining the orbit.

The general features of the spectrum may be judged from Table I which contains in order the elements, the wave-lengths used, the residuals, and the number of times each line was measured. The residual for any line is the mean (algebraic or arithmetic) of all the residuals for that line. The separate residuals are found by substracting the velocity as given by the plate from the velocity as given by the line.

TABLE I.

Element	Wave-Length	Algebraic Residual	Arithmetic Residual	Number of times measured
Calcium. Calcium. Helium. Hydrogen. Silicon. Carbon. Hydrogen. Helium. Helium. Magnesium.	3933 · 869 3968 · 625 4026 · 352 4101 · 890 4128 · 211 4131 · 047 4267 · 3 4340 · 634 4388 · 100 4471 · 676 4481 · 400	- 0·1 km. + 5·6 km. + 1·2 km. - 0·1 km. + 1·6 km. 0·0 km. - 5·8 km. 0·0 km. - 4·1 km. - 1·0 km. + 0·6 km.	3·4 km. 7·2 km. 7·1 km. 5·5 km. 5·5 km. 5·5 km. 5·8 lm. 4·6 km. 7·6 km. 6·9 km. 4·0 km.	41 3 30 1 24 21 2 47 30 46

^{*}Astrophysical Journal, vol. 35, p. 172.

TABLE II.

MT. WILSON AND YERKES OBSERVATIONS.

Observatory	Julian Date	Phase	Velocity	O-C
	2,418,570-78	32.60	- 35	+ 4.0
erkes.	9.023-65	65-95	+ 12	+ 10
It. Wilson	9.055.78	28 - 16	- 46	- 2
It. Wilson.	9.056-77	29 - 15	- 44	- 0
It. Wilson	9.267-84	30 - 46	- 28	+14-
erkes.	9.361-51	54 - 21	- 7	- 2
erkes		59.28	- 1	- 6
ferkes.	9,366-58		- 41	- 2
Mt. Wilson	9,410.71	33 - 49	- 41	-

 $\label{eq:table_iii} \text{OTTAWA OBSERVATIONS OF } \omega \text{ CASSIOPELE.}$

Plate	Observer*	Date	Julian Date	Phase	Velocity	Weight	O-C
		1913					
5725	Y	Sept. 30	2,420,041-81	35-31	- 39.4	21	- 1
	Λ.	Oet. 7	048-80	42.30	- 29.5	21	- 0
5759	Pi	Oet. 13	054-80	48-30	- 24.7	31	- ti
5780	I.	Nov. 6	078 - 56	2.14	- 4.6	11	+ 5
5801	C	Dec. 8	110-63	34 - 21	- 35.6	1	+ 3
5811	P	Dec. 17	119-63	43 - 21	- 42.2	1	-15
5830	P ₁	Dec. 22	124-69	48 - 27	- 24.8	7	- 6
5845	P.	Dec. 31	133 - 65	57 - 23	- 5.6	3	- 5
5863	1	1914	*1712				
*een	Y	Jan. 1	134 - 54	58 - 12	- 2.7	2	- 4
5869 5879	p ₁	Jan. 5	318-65	62 - 23	+ 8.5	14	- (
	Y	Feb. 5	169 - 56	23 - 21	- 47.0	21	+ 1
5913 5932	H	Feb. 12	176-66	30.32	- 38.4	13	+ 4
	J.	Feb. 15	179 - 53	33 - 19	- 45.5	13	- 1
5938 5971	Y	Mar. 5	197 - 54	51.20	- 27.4	13	-14
5972	Y	Mar. 11	203 - 52	57-17	- 5.5	2	6
5984	Y	Mar. 19	211.52	65-18	+ 6.0	3	-
6294	Y	Aug. 21	366-82	10.72	- 47.9	3	- 1
6303	C	Aug. 24	369.80	13.70	- 46.9	24	-
6316	C	Aug. 26	371.87	15-77	- 49.4	11	-
6321	Y	Aug. 27	372.85	16.75	- 54.3	2	- 1
6378	Y	Sept. 15	391.67	35.57	- 41.1	31	-
6410	Y	Sept. 20	396.71	40.61	- 21.1	3	+1
6423	Y	Sept. 22	398-65	42.55	- 28.2	31	
6430	G	Sept. 25	401 - 86	45.76	- 26.7	21	-
6434	Y	Sept. 27	403-83	47 - 63	- 13.6	4	+
6448	G-C	Sept. 30	406.73	50.63	- 2.1	2	+1
6458	Y	Oct. 1	407.76	51-66	- 14.0	31	-
6467	C	Oct. 2	408 - 69	52.59	- 11.8	3	-
6481	Y	Oct. 4.	410.70	54.60	+ 3.5	21	+
6488	Y	Oct. 11	417.85	61-75	+ 11.9	31	+

 $\label{eq:table_iii.} \text{OTTAWA OBSERVATIONS OF } \omega \text{ CASSIOPEL} \underline{\mathcal{A}}\text{--}Continued.$

Plate	Observer*	Date	Julian Date	Phar	Velocity	Weight	o.c.
		1914					
6500	Y-H	Oct. 13	2,420,419-75	63 - 65	+ 9.9	11	- 0-
6506	Y	Oct. 20	426-67	0.65	- 0.5	31	+ 2
6516	p ₁	Oct. 21	427-82	1.80	- 15-6	4	- 6
6536	C	Oct. 28	434 - 80	8:78	- 27 · 1	31	+ 9
6539	Y	Oct. 31	437 - 84	11.81	- 44.9	2	- 1
6545	C	Nov. 2	439 - 78	13-76	- 43.7	3	+ 2
6552	H	Nov. 3	440-72	14+70	- 49-4	12	- 2
6651	Y	Dec. 2'	489 - 55	63 - 53	+ 13-2	3	+ 2
6656	PL-C	Dec. 23	490-58	64+56	+ 15.9	2	+ 5
6660	H-Y	Dec. 25	492-62	66 - 60	+ 13-4	2	+ 4
6665	Y	Dec. 30	497-61	1.66	- 4.8	5	+ 3
6672	Y	Dec. 31	498-66	2.72	- 19.1	3}	- 6
		1915					
6678	P1	Jan. 4	502 - 63	6-69	- 25.1	21	+ 4
6686	Y	Jan. 5	503 - 61	7-67	- 35.0	2	- 1
6700	Y	Jan. 10	508 - 50	12.56	- 46.7	3	- 2
6708	Y	Jan. 12	510-60	14-63	- 48.8	3	- 2
6717	Y	Jan. 16	514 - 46	18-52	- 45.0	10	+ 3
6718	1.	Jan. 19	517:66	21.72	- 50.9	2	- 2
6720	C	Jan. 20	518-61	22-67	- 55.7	1	- 7
6729	Y	Jan. 24	$522 \cdot 47$	26.5	- 40.1	3	+ 6
6739	Y	Jan. 26	524 - 46	28-52	- 41.2	31	+ 3
6741	Pı	Jan. 27	525.53	29.59	- 43.1	31	+ 0

 $^{{}^{*}}P = Plaskett; \ P^{t} = Parker; \ C = Cannon; \ H = Harper; \ G = Gibson; \ Y = Young.$

MEASURES OF ω CASSIOPELE.

	5725	5759	5780	5801	5811	5830	5845
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
3933 - 869 4026 - 352 4101 - 890 4128 - 211 4131 - 047 4267 - 3 4340 - 634 4388 - 100 4471 - 676 4481 - 400	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 37·9 ½ - 49·1 ½ - 29·4 ¼ - 47·4 ½ - 39·8 ¾	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 29·3 1 - 38·2 1 - 24·8 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 16·7 ½
Weighted. mean V ₄ V ₄ Curv.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} - 41.7 \\ + 12.50 \\ - 0.04 \\ - 0.28 \end{array}$	- 35·4 + 11·06 - 0·07 - 0·28	- 8.6 + 4.22 + 0.04 - 0.28	- 29·2 - 6·08 - 0·05 - 0·28	- 33·1 - 8·79 - 0·05 - 0·28	- 14·2 - 10·21 - 0·16 - 0·28
Radial Velocity	- 39.4	- 29.5	- 24.7	- 4.6	- 35.6	- 42.2	- 24.8

MEASURES OF ω CASSIOPELE—Continued.

λ Vel.	5863	5869	5879	5913	5932	5938	5971
	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
3933 · 869 4026 · 352 4101 · 890 4128 · 211 4131 · 047 4340 · 634 4388 · 100 4471 · 676 4481 · 400	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 9·0 ½ + 7·7 ¼ + 3·4 ½ + 20·2 ½	$+ 18.9 \frac{1}{4}$ $+ 24.0 \frac{1}{4}$ $+ 25.0 \frac{1}{4}$ $+ 26.2 \frac{1}{4}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 7·4 ½ - 45·5 ¼ - 32·7 ½ - 29·9 ½	+ 4-1 - 7-9 - 5-6 - 5-7 - 13-7 - 26-4
Weighted mean Va Vd Curv.	+ 7·4 - 12·57 - 0·09 - 0·28	+ 10·40 - 12·77 - 0·03 - 0·28	+ 22·6 - 13·73 - 0·10 - 0·28	- 28·3 - 18·31 - 0·09 - 0·28	- 19·4 - 18·62 - 0·15 - 0·28	- 26·5 - 18·68 - 0·10 - 0·28	- 9·2 - 17·89 - 0·11 - 0·29
Radial Velocity	- 5.6	- 2.7	+ 8.5	- 47.0	- 38.4	- 45.5	- 27.5

MEASURES OF ω CASSIOPELE—Continued.

λ — Vel.	5972	5984	6294	6303	6316	6321	6378
	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
3933-869 4026-352 4101-890 4128-211 4131-047 4340-634 4471-676 4481-400	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+ 27 \cdot 2 + 16 \cdot 0 + 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 77·0 4 - 63·6 ½ - 69·4 ¼ - 70·9 ½ - 59·4 ½ - 57·4 ½	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Weighted mean V_a V_d Curv.	+ 12·15 - 17·25 - 0·12 - 0·28	$\begin{array}{r} + 22 \cdot 5 \\ - 16 \cdot 09 \\ - 0 \cdot 12 \\ - 0 \cdot 28 \end{array}$	- 66·0 + 18·25 + 0·12 - 0·28	$ \begin{array}{r} -64.9 \\ +18.23 \\ 0.00 \\ -0.28 \end{array} $	- 67·3 + 18·18 - 0·02 - 0·28	$ \begin{array}{r} - 72.7 \\ + 18.14 \\ 0.00 \\ - 0.28 \end{array} $	- 57·2 + 16·43 + 0·08 - 0·28
Radial Velocity	- 5:5	+ 6.0	- 47.9	- 46.9	- 49.4	- 54.8	- 41.0

MEASURES OF ω CASSIOPELÆ—Continued.

	6410	6423	6430	6434	6448	6458	6467
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wi.
3933 - 869 4026 - 352 4101 - 890 4128 - 211 4131 - 047 4340 - 634 4388 - 100 4471 - 676 4481 - 400	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 33·5 ½ - 4C 6 ¼ - 34·2 ¼ - 51·8 ½ - 36·1 ¼ - 52·0 - 38·7 ½	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} & -14.7 & \frac{1}{2} \\ & -25.0 & \frac{1}{2} \\ & -9.0 & \frac{1}{2} \\ & -15.0 & \frac{1}{2} \end{array} $	- 33·6 1 - 11·3 ½ - 29·4 ½	- 25·5 1 - 34·9 1 - 21·2 1
Weighted mean V _a V _d Curv.	- 36·7 + 15·87 + 0·06 - 0·28	- 43·6 + 15·56 + 0·09 - 0·28	- 41·4 + 15·01 - 0·05 - 0·28	- 27·90 + 14·65 - 0·05 - 0·28	- 16·0 + 14·09 + 0·03 - 0·28	- 27·6 + 13·88 0·00 - 0·28	- 27·20 + 13·69 + 0·04 - 0·28
Radial Velocity	- 21·1	- 28.2	- 20.7	- 13.6	- 2.2	- 14.0	- 13.8

MEASURES OF ω CASSIOPELE Continued

	6481	6488	6300	6506	6516	6536	6539
λ	V() Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt	Vel Wt	Vel Wt	Vel. Wt
3933-869 3968-625 4026-352 4101-890 4128-211 4131-047 4340-633 4471-076 4481-400	- 11 2 4 - 9 5 1 2 - 3 3 2 - 9 5 1 4 - 5 7 1 4 - 12 8 1 2 - 7 7 2	+ 3·8 ½ - 0·9 ½ - 6·6 ¼ - 9·5 ¼ + 4·5 - 7·4 ½ + 7·5 ½	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 36·2 \\ - 14·2 \\ \\ - 14·2 \\ \\ \\ - 39·6 \\ \\ - 29·3 \\ \\ - 30·9 \\ \\ \\ - 34·9 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	= 49-2 } = 50-7 } = 51-1 1
Weighted mean V: V: Curv.	- 9·6 + 13·25 + 0·03 - 0·28	+ 0·7 + 11·60 - 0·09 - 0·28	+ 1·1 + 11·13 - 0·02 - 0·28	- 9·5 + 9·31 + 0·03 - 0·28	= 24·20 + 8.40 = 0·09 = 0·28	- 33·7 + 6·98 - 0·09 - 0·28	- 50 6 + 6.07 - 0.11 - 0.28
Radial Velocity	+ 3.5	+ 11.9	+ 9.9	- 0.5	- 15.6	- 27·1	- 44:9

MEASURES OF & CASSIOPELE.-Continued

		-	: 1	ī		ī	:
	6545	6552	6651	4656	6660	6665	6672
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
3933-869 3968-625 4026-352 4101-890 4128-211 4131-047 4267-3 4340-634 4471-676 4481-400	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 36.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 10·1 ½ + 28·0 ½ + 30·6 ½ + 28·8 ½	+ 20·8 ½ + 25·2 ½ + 24·7 ½ + 28·3 ½	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} - & 5 \cdot 7 & 1 \\ - & 14 \cdot 8 & \frac{1}{4} \\ - & 5 \cdot 6 & \frac{1}{4} \\ - & 1 \cdot 1 & 1 \\ - & 10 \cdot 0 & 1 \end{array} $
Weighted mean V _a V _d Curv.	- 48·8 + 5·48 - 0·10 - 0·28	- 54·1 + 5·19 - 0·04 - 0·28	+ 21·6 - 10·11 0·00 - 0·28	+ 26·7 - 10·40 - 0·03 - 0·28	+ 24·7 - 10·99 - 0·06 - 0·28	+ 7·6 - 12·20 + 0·04 - 0·28	- 6·2 - 12·49 - 0·10 - 0·28
Radial Velocity	- 43.7	- 49.4	+ 11-2	- 16.0	+ 13.4	- 4.8	- 19·1

MEASURES OF ω CASSIOPELE.+Continue to

	6678	6686	6700	6708	6717	6718	6720
λ	Vel. Wt	Vel. [Wt]	Vel. (Wt.	Vel. Wr.	Vel. Wt.	Vel. Wt.	Vel Wi
3933 - 869 4026 - 352 1101 - 890 4128 - 211 1131 - 047 1340 - 634 1471 - 676 1481 - 400	- 8·1 ½ - 10·2 ¼ - 3·8 ½ - 14·7 1 - 16·7 ⅓	- 26·1 4 - 11·5 4 - 20·3 1 - 25·0 2	- 28·9′ 1 - 30·6 1 - 39·8′ ½ - 31·3′ ½	- 33·7 1 - 19·0 1 - 46·7 1 - 29·6 1 - 44·8 1 - 28·8 1	$ \begin{array}{c cccc} -18 \cdot 5 & \frac{1}{4} \\ -36 \cdot 6 & \frac{1}{8} \\ -37 \cdot 2 & \frac{1}{2} \\ -22 \cdot 6 & \frac{1}{2} \\ -27 \cdot 5 & \frac{1}{2} \end{array} $	- 32·3 4 - 35·3 4 - 35·4 4 - 30·3 3	- 41·8 } - 36·8 }
Weighted tuean V. V. V. Curv.	- 11·4 - 13·32 - 0·09 - 0·28	- 21·1 - 13·55 - 0·08 - 0·28	- 31·7 - 14·72 - 0·02 - 0·28	- 33·3 - 15·13 - 0·10 - 0·28	- 28·9 - 15·84 - 0·00 - 0·28	- 34·3 - 16·36 0·00 - 0·28	- 39 0 - 16 52 - 0 11 - 0 28
Radiol Velocity	- 25.1	- 35.0	- 46.7	- 48.8	- 45.0	- 50.9	- 55 7

MEASURES OF ω CASSIOPELE.—Concluded

	6729	6739	6741	6741			
λ	vel Wr.	Vel Wt	Vel. Wt.	Vel Wt	Vel Wt	Vel W	t Vel Wt
3933+869 1026+352 4101+890 4128+211 4131+047 1340+634 4388+100 4471+676 4481+400	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Weighted mean V _a V _d Curv.	- 22·7 - 17·10 - 0·06 - 0·28	- 23·6 - 17·35 - 0·01 - 0·28	- 25·3 - 17·46 - 0·08 - 0·28				· · · · · · · · · · · · · · · · · · ·
Radial Velocity	- 40.1	- 41.2	- 43-1				

A period was roughly determined from the Ottawa series of spectrograms and this approximate period adjusted more carefully from eight plates taken at the Mt. Wilson and Yerkes observatories (Table II). The interval separating the earliest and the most recent plates is thirty periods. With the period 69.92 days thus determined, the fifty-two plates taken here were combined into thirteen normal places.

NORMAL PLACES.

	Julian Day	Phase	Velocity	Weight	O-C Preliminary	O-C Final
2 3 4 4 5 6 6 7 8 9 0 0	2,420,427-82 433-73 438-52 441-49 447-55 454-56 460-59 468-19 473-54 477-54 482-80 488-81 491-46	1·42 7·33 12·12 15·09 21·15 28·16 34·19 41·79 47·14 56·40 62·41 65·06	- 9·3 - 28·4 - 46·1 - 50·4 - 48·7 - 41·1 - 40·9 - 27·8 - 19·8 - 13·0 - 2·4 + 11·3 + 10·9	1·5 0·8 1·3 0·8 0·7 1·2 0·9 1·0 1·0 1·0 0·9 0·7	$\begin{array}{c} -2 \cdot 2 \\ +6 \cdot 0 \\ 0 \cdot 0 \\ -1 \cdot 2 \\ +1 \cdot 1 \\ +4 \cdot 2 \\ -2 \cdot 0 \\ +0 \cdot 4 \\ -0 \cdot 7 \\ -2 \cdot 0 \\ -2 \cdot 6 \\ +0 \cdot 4 \\ -0 \cdot 8 \end{array}$	- 1·3 + 5·1 - 1·6 - 2·8 - 0·3 + 3·· + 3·· + 0· - 1· + 0· - 1· + 1· + 0·

Preliminary elements were obtained graphically,

P = 69.92 days

e = 0.3

 $\omega = 53^{\circ}$

 $K = 31 \cdot 1 \text{ km}.$

 $\gamma = 24.82 \text{ km}.$

 $T = 2,420,426 \cdot 4$ J. D.

and a least-squares solution was carried through for all the elements save P.

OBSERVATION EQUATIONS.

	x	y	z	p	q	- Fi	Weight
1	1	+ 0-569	+ 0.034	- 1.161	+ 1.536	+ 2.2	1.5
2	1	- 0.307	- 1.260	- 1.113	+ 1.097	- 6.0	0.8
3	1	- 0.685	- 0.471	- 0.740	+ 0.465	0.0	1-3
4	1	- 0.785	+ 0.104	- 0.498	+ 0.204	+ 1.2	0.8
5	1	- 0-805	+ 0.830	- 0.070	- 0-101	- I-I	0.7
6	1	- 0.659	+ 0.954	+ 0.304	- 0.280	- 4.2	1.2
7	1	- 0.452	+ 0.658	+ 0.535	- 0.381	+ 2.0	0.9
8	1	- 0:108	- 0.022	+ 0.718	- 0-494	- 0.4	1.0
9	1	+ 0.183	- 0.566	+ 0.760	- 0.579	+ 0.7	1.0
0	1	+ 0-443	- 0.920	+ 0.725	- 0.643	+ 2.0	1.0
1	1	+ 0.805	- 0.999	+ 0.541	- 0.669	+ 2.6	1.0
2	1	+ 1.148	+ 0.063	+ 0.011	- 0.312	- 0.4	0.9
3	1	+ 1.174	+ 0.806	- 0.356	+ 0.170	+ 0.8	0.7

where
$$x = \delta \gamma$$

 $y = \delta K$
 $z = K \delta e$
 $p = K \delta \omega$
 $q = \frac{K\mu}{(1 - e^2)^{\frac{3}{2}}} \delta T$

NORMAL EQUATIONS.

whence
$$\delta \gamma = 0.00$$
 km.
 $\delta K = -1.46$ km.
 $\delta e = 0.00$
 $\delta \omega = -3.03$
 $\delta T = -0.38$ day

The above corrections lowered Σpv^z from 75.0 to 51.5 and agreement between the residuals computed from the ephemeris and the observation equations showed that further solutions would leave the elements unaltered.

FINAL ELEMENTS.

$$P = 69 \cdot 92 \text{ days}$$

$$e = 0 \cdot 30 \pm 0 \cdot 024$$

$$\omega = 49^{\circ} \cdot 97 \pm 4^{\circ} \cdot 08$$

$$K = 29 \cdot 64 \text{ km.} \pm 0 \cdot 73$$

$$\gamma = -24 \cdot 82 \text{ km.} \pm 0 \cdot 10$$

$$T = 2,420,426 \cdot 02 \text{ J. D.} \pm 0 \cdot 67$$

$$a \sin i = 27,190,000 \text{ km.}$$

$$\frac{m_i^3 \sin^3 i}{(m + m_i)^2} = 0 \cdot 164 \text{ O}$$

The individual observations were represented graphically and the residuals are shown in Tables II and III. The probable error of a single plate, no attention being given to the weight, is 2.8 km.

Dominion Observatory,

Ottawa,

February, 1915.

Velocity Curve of ω Cassiopeiæ.

CA1 MT 403 P02-03

3 0 AVR. 1399 Am

16239