Systemy wbudowane dla automatyki W05

dr inż. Krzysztof Urbański

Dodatkowe materialy do kursu

na prawach rękopisu

Źródła: materiały własne, publicznie dostępne dokumenty w dostępie otwartym oraz noty katalogowe i oficjalna dokumentacja prezentowanych rozwiązań.

Komentarze do quizu

Wyjście typu open drain.

Wyjście push-pull

wejście, stan '1'

wejście, stan '0'

Walka o energię: fizyka, podzespoły, oprogramowanie

Figure 2-3	Crystal	layout	for low	power	oscillator
		,		P	

Rodzina	Tryb	Pobór prądu	Czas	
Kinetis L	WAIT VLPW STOP VLPS VLLS3 VLLS1 VLLS0	3.18 mA @ 48 MHz (66 μA/MHz) 93.4 μA @ 4 MHz (23.4 μA/MHz) 255 μA 1.86 μA 1.24 μA 0.6 μA 160 nA	0 0 4.5 μs 4.5 μs 47 μs 105 μs 106 μs	
LPC800 Sleep mode Deep-sleep mode Power-down mode Deep power-down mode with wake-up timer without wake-up timer		1.8 mA @ 30 MHz (60 μA/MHz) 150 μA 0.9 μA 1 μA 170 nA	2.6 μs 4 μs 50 μs brak danych	
SAM D20	IDLE0 IDLE1 IDLE2 STANDBY	2.35 mA @ 48 MHz (49 μA/MHz) 1.9 mA 1.7 mA 2 μA	3.5 μs 12 μs 12.5 μs 20 μs	
EFM32 Zero Gecko	EM1 Sleep Mode EM2 Deep Sleep EM3 Stop Mode EM4 Shutoff Mode	1.15 mA @ 24 MHz (48 μA/MHz) 0.9 μA 0.5 μA 20 nA	0 2 μs 2 μs 160 μs	

Projekt PCB: XTAL i konfiguracja PLL krytycznie ważne W RP2350 dojdą dodatkowo komponenty przetwornicy DC-DC.

Rys. po prawej: Kilka przykładów trybów pracy energooszczędnych MCU, typowe wartości prądów i czasy wybudzenia.

RP2350: low-power states (dla porównania)

Low Power State	VREG_VIN (µA)	VREG_AVDO (µA)	10VDD (µA)	QSPI_IOVDD (µA)	ADC_IOVDO (µA)	USB_OTP_VDD (µA)	Total Power (µW)
P1.0	128	0.5	11	22	1	3.5	548
P1.1	77	0.5	11	22	1	3.5	380
P1.2	79	0.5	11	22	1	3.5	380
P1.3	26	0.5	11	22	1	3.5	204
P1.4	120	0.5	11	22	1	3.5	520
P1.5	67	0.5	11	22	1	3.5	345
P1.6	68	0.5	11	22	1	3.5	350
P1.7	19	0.5	11	22	1	3.5	188
RUN=low	40	187	69	22	1	35	1170

[→] Patrz dokumentacja RP2350.

Wniosek: to nie jest MCU który może pracować 2 lata zasilany z niewielkiej baterii.

Zadanie: RP2350 jest zasilany z baterii 3.0V, 50 mAh. MCU działa w trybie P1.7, ale co minutę wybudza się na 5 sekund do trybu RUN (PLL=50MHz). Po jakim czasie trzeba będzie wymienić baterię?

RP2350: energia - typowe scenariusze użycia

Use Case	Condition	VREG_VIN (µA)	VREG_AVDD (µA)	IOVDD (µA)	QSPI_IOVDD (µA	ADC_IOVDD (µA)	USB_OTP_VDD (µA)	Total Power (mW)
USB Boot mode	Bus Idle (average)	6530	220	437	22	1	375	25
	During Boot (peak)						6050	
	During UF2 write (average)						1280	
hello_serial		14690	216	506	22	1	62	51.1
hello_usb		14700	216	453	22	1	570	52.7
hello_adc		14680	216	506	22	142	62	51.6
CoreMark benchmark	Single core @150MHz	11000	212	455	22	1	90	38.7

Typical CoreMark single core DVDD Current

Częściej będzie to praca na akumulatorze, wtedy jak najbardziej warto zacząć od kontroli częstotliwości pracy rdzenia >todo, laborka zegarowa

RP2350: schemat blokowy

RP2350: źródła RESET

Reset Source	SW-DP	AON Scratch	POWMAN	Power State	Double Tap	Rescue
POR	reset	reset	hard reset	→ P0.0	reset	reset
BOR	reset	reset	hard reset	→ P0.0	reset	reset
EXTERNAL RESET (RUN)	reset	reset	hard reset	→ P0.0	_	reset
DEBUGGER RESET REQ	_	_	hard reset	→ P0.0	_	reset
DEBUGGER RESCUE	-	_	hard reset	→ P0.0	_	set
WATCHDOG POWMAN ASYNC RESET	_	_	hard reset	→ P0.0	_	_
WATCHDOG POWMAN RESET	_	_	soft reset	→ P0.0	_	-
WATCHDOG SWCORE RESET	-	_	_	→ P0.0	_	-
SWCORE POWERDOWN	_	_	_	→ P0.x	_	-
GLITCH_DETECTOR	_	-	_	_	_	-
WATCHDOG RESET PSM	_	_	_	-	_	_

Laborka 3.1 poszła nieźle, 3.2 przetarte szlaki (i wyżej podniesioną poprzeczkę).

Wskazówka: Watchdog jako programowy reset.

Jest kilka innych sposobów, ale niektóre internetowe propozycje zawierają poważne błędy (stany początkowe rejestrów, jest więcej niż 1 rdzeń – a wszystkie trzeba poprawnie zresetować!). Jest też inny powód dla którego warto wybrać WD zamiast np. kombinować z resetowaniem poprzez fizyczny pin RUN, ma to związek z oszczędzaniem energii.

RP2350: domeny zasilania

Power State	Description	AON	SWCORE	XIP	SRAM0	SRAM1
P0.0	Normal Operation	on	on	on	on	on
P0.1	Normal Operation (SRAM1 off)	on	on	on	on	off
P0.2	Normal Operation (SRAM0 off)	on	on	on	off	on
P0.3	Normal Operation (SRAM0 & SRAM1 off)	on	on	on	off	off
P1.0	Low Power	on	off	on	on	on
P1.1	Low Power (SRAM1 off)	on	off	on	on	off
P1.2	Low Power (SRAM0 off)	on	off	on	off	on
P1.3	Low Power (SRAM0 & SRAM1 off)	on	off	on	off	off
P1.4	Low Power (XIP off)	on	off	off	on	on
P1.5	Low Power (XIP & SRAM1 off)	on	off	off	on	off
P1.6	Low Power (XIP & SRAM0 off)	on	off	off	off	on
P1.7	Low Power (XIP & SRAM0 & SRAM1 off)	on	off	off	off	off
OFF	Not Powered	off	off	off	off	off

Wskazówka: zauważ AON z uzupełnionej instrukcji do Lab03. Przypadek? Nie sądzę.

RP2350: Zasilanie rdzenia

Wewnętrzna przetwornica (nie jest to LDO!), z zaprojektowanym dedykowanym induktorem:

"...Raspberry Pi have worked with Abracon to create a custom 2.0×1.6mm 3.3μH polarity marked inductor, part number AOTA-B201610S3R3-101-T"

Napięcie rdzenia: 1.1 V → mniejszy dynamiczny pobór prądu.

RP2350: zegary

Do wyboru: XCLK, PLL, XOSC, ROSC (4..20 MHz), LPOSC 32 kHz

Jak tego użyć w realnym projekcie?

```
#include "hardware/clocks.h"
#include "hardware/pll.h"
//sprawdzanie na czym stoimy:
uint f pll sys = frequency count khz(CLOCKS FC0 SRC VALUE PLL SYS CLKSRC PRIMARY);
uint f_rosc = frequency_count_khz(CLOCKS_FC0_SRC_VALUE_ROSC_CLKSRC);
uint f clk peri = frequency count khz(CLOCKS FC0 SRC VALUE CLK PERI);
//...oraz kilka innych → patrz przykłady lub nagłówki
pll deinit(pll sys);
Przykład: 50 MHz
// switch system clock to reference (XOSC)
clock configure(clk sys, CLOCKS CLK SYS CTRL SRC VALUE CLK REF, 0, 12E6, 12E6);
pll init(pll sys, 1, 1500E6, 6, 5);
// configure sys pll to 50MHz
clock configure(clk sys,
    CLOCKS CLK SYS CTRL SRC VALUE CLKSRC CLK SYS AUX,
    CLOCKS CLK SYS CTRL AUXSRC VALUE CLKSRC PLL SYS, 50E6, 50E6);
stdio init all(); //inaczej UART się zdziwi
```

RP2350: PLL

Do zadania na laborkę z zegarami:

- 1500 MHz VCO / 6 / 2 = 125 MHz
- 750 MHz VCO / 6 / 1 = 125 MHz
- Ta sama "legalna" częstotliwość może być uzyskana na kilka sposobów → jitter, zużycie energii
- Nie wszystkie kombinacje ustawień są dozwolone \rightarrow w SDK jest skrypt vcocalc.py który to policzy. https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_clocks/scripts/vcocalc.py

PLL (phase-locked loop)

- wymaga rezonatora kwarcowego (stabilność!),
- częstotliwość minimalna rzędu 1..50 MHz,
- większe zużycie prądu w porównaniu do FLL,
- w niektórych układach wymaga starannego zaprojektowania filtra dolnoprzepustowego,
- mniejsza stabilność, ryzyko utraty synchronizacji, dłuższy czas "rozruchu".

FLL (frequency-locked loop)

- sygnał wejściowy: oscylator RC lub kwarc,
- działa dla częstotliwości f0 rzędu 32 kHz, ale także rzędu MHz,
- stabilniejsze działanie
- sygnał wyjściowy niezgodny w fazie z wejściowym,
- szybsze osiągnięcie synchronizacji,
- zużywa mniej energii.

OOK!

OOK: On-off keying

Sprzęt: przykładowa oferta z popularnego portalu (wysyłka gratis). Dlaczego tak tanio?!

1: ANT 2:GND 3:DATA 4:VCC → 1-bitowa linia danych?

OOK, podejście 1.

Podejście naiwne: bit '0' wyłącza nośną, bit '1' włącza.

Pytanie: dlaczego tak się nie robi?

OOK, podejście 1b.

- Można modulować nośną sygnałem i niższej częstotliwości gdy '1' (nadawany jest ton) lub cisza gdy '0', ale to nie jest już OOK, oraz nie rozwiązuje problemu ciągów 00000 czy 11111.
- Energetycznie niekorzystne (długi czas emisji nośnej).
- Wolniejsza transmisja gdy niska częstotliwość tonu, albo wracamy do punktu wyjścia.

OOK, podejście 2. Wikipedia

- Odporność na długie strumienie 00..000/111...111
- bieżąca synchronizacja zegarów Tx/Rx
- Utrzymanie ARW (AGC) w odbiorniku RF
- Bipolar: zmniejszenie pasma sygnału
- Skąd wiemy że zaczyna się ramka?
- Jak wstępnie ustawić 'tick' (jednostkowy takt zegara)?

OOK: typowy scenariusz przekazu danych cyfrowych

- Odbiornik czeka na preambułę (preamble).
- Gdy odbierze pierwsze bity (preambuły? Jeszcze nie wiemy), to może być zmierzona prędkość modulacji strumienia bitów (*clock recovery*) oraz podjęta decyzja o ew. kontynuacji odbierania i dekodowania dalszych bitów.
- Tor analogowy odbiornika dostosowuje wzmocnienie (AGC) i częstotliwość (AFC) do parametrów odbieranego sygnału.
- Kiedy ciąg bitów zostanie poprawnie zdekodowany jako preambuła, to odbiornik jest gotowy do przyjęcia danych (czas tego dostosowania to settling time).

Przykład:

Cisza radiowa (idle): 000000.... – nadajnik wyłączony.

Preambuła: 101010101010 [N par '10'], bit '0': 001, bit '1': 011.

Średnio nadajnik emituje fale radiowe przez 50% czasu trwania ramki, łatwo można to zmienić inaczej kodując preambułę i bity 0/1, np. '0':10000, '1':11000