CHAPITRE 11

Variable

Première partie

Cours

1 Variables aléatoires discrètes

DÉFINITION 1: 1. Soit (Ω, A) un espace probabilisable. Une variable aléatoire discrète (vad) est une fonction X définie sur l'unitvers Ω telle que

- (a) l'ensemble $X(\Omega)$ des valeurs prises par X est fini ou dénombrable;
- (b) pour chaque valeur $a \in X(\Omega)$ prise par X, l'ensemble $X^{-1}(\{a\})$ est un événement, noté (X = a). Autrement dit,

$$orall a \in X(\Omega), (X=a)=X^{-1}(\{a\}) \in \mathcal{A}.$$

2. Soient (Ω, A, P) un espace probabilisé, et X une variable aléatoire discrète. La loi de probabilité de X est la fonction

$$egin{aligned} X(\Omega) & \longrightarrow [0,1] \ a & \longmapsto P(X=a). \end{aligned}$$

RAPPEL:

Soit $f: E \to F$ une fonction. On a

$$orall A \in \wp(E), \ f(A) = \{y \in F \mid \exists x \in A, \ y = f(x)\},$$

et

$$orall B \in \wp(F), \ f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$$

Ainsi, $x \in f^{-1}(B) \iff f(x) \in B$.

EXERCICE 2:

L'univers Ω , ensemble des résultats, est $[1, 6]^2$. Soit X la variable aléatoire, qui est la somme des deux dés : on a

$$egin{aligned} X:\Omega & \longrightarrow \mathbb{R} \ (x,y) & \longmapsto x+y. \end{aligned}$$

Ainsi, $X(\Omega) = [2, 12]$.

a	2	3	4	5	6	7	8	9	10	11	12
P(X=a)	36	$\frac{2}{36}$	36	4 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	4 36	3 3 6	$\frac{2}{36}$	1 36

Table 1 – Loi de probabilité de \boldsymbol{X}

Remarque 3: 1. On a $f^{-1}\Big(\bigcup_{i\in I}A_i\Big)=\bigcup_{i\in I}f^{-1}(A_i),$ et $f^{-1}\Big(\bigcap_{i\in I}A_i\Big)\Big)=\bigcap_{i\in I}f^{-1}(A_i).$

EXEMPLE 4:

c.f. polycopié

Proposition – Définition 5:

Soient (Ω, \mathcal{A}, P) un espace probabilisé, et une $vad\ X: \Omega \to E$ à valeurs dans un ensemble E.

- 1. Pour tout $A \in \wp(E)$, $X^{-1}(A) \in \mathcal{A}$ est un événement noté $(X \in A)$.
- 2. L'application

$$egin{aligned} P_X : \wp(E) &\longrightarrow A \ A &\longmapsto P(X \in A) \end{aligned}$$

est une probabilité sur l'espace probabilisable $(E, \wp(E))$.

Exercice 6 (tarte à la crème):

L'univers Ω est défini comme $\Omega = [\![1,N]\!]^n$: c'est l'ensemble des n-uplets de $[\![1,N]\!]$. La variable X est la fonction définie comme

$$X:\Omega \longrightarrow \llbracket 1,N
rbracket \ (x_1,\ldots,x_n) \longmapsto \max_{i\in \llbracket 1,n
rbracket} x_i.$$

On cherche la loi de probabilité de X. ATTENTION, on ne cherche pas P(X=a) pour tout a, mais $P(X\leqslant a)$ pour tout a. Cela correspond à l'événement « tous les numérons tirés sont inférieurs à a. » Par équiprobabilité,

$$egin{aligned} P(X \leqslant a) &= rac{\operatorname{Card}(X \leqslant a)}{\operatorname{Card}(\Omega)} \ &= rac{a^n}{N^n} \end{aligned}$$

Finalemement, pour tout $a \in [1, N]$, $P(X = a) + P(X \le a - 1) = P(X \le a)$; en effet, $(X \le a - 1) \cup (X = a) = (X \le a)$, et cette union est disjointe. D'où, $\forall a \in [1, N]$,

$$P(X = a) = P(X \leqslant a) - P(X \leqslant a - 1)$$

= $\left(\frac{a}{N}\right)^n - \left(\frac{a-1}{N}\right)^n$

2 La loi binomiale

DÉFINITION 7:

Soient $n \in \mathbb{N}^*$, $p \in]0,1[$, et q=1-p. On dit qu'une variable aléatoire discrète X suit une loi de binomiale de paramètres (n,p), et on note $X \sim \mathcal{B}(n,p)$ si

$$X(\Omega) = [\![1,n]\!], \quad \text{et} \quad \forall k \in X(\Omega), \; P(X=k) = {n \choose k} \cdot p^k \cdot q^{n-k}.$$

Une épreuve de Bernoulli de paramètre $p \in]0,1[$ est une expérience aléatoire qui peut donner deux résultats : un « succès » S avec une probabilité p, ou un « échec » E avec la probabilité q=1-p.

PROPOSITION 8:

Soient $n \in \mathbb{N}^*$ et $p \in]0,1[$. Soit X la vad égale au nombre de succès parmi n épreuves de Bernoulli de paramètre p. Si ces épreuves sont indépendantes, alors $X \sim \mathcal{B}(n,p)$.

DÉMONSTRATION:

L'ensemble (X=k) est l'événement « obtenir k succès parmi n essais. » Autrement dit, c'est l'ensemble des n-listes (x_1,x_2,\ldots,x_n) dont le nombre de succès vaut k, et chaque $x_i\in\{S,E\}$. Réaliser cet événement, c'est (1) placer k succès parmi les n essais, et il y en a $\binom{n}{k}$ manières; (2) placer les n-k échecs, il y a 1 manière. Il y a donc $\binom{n}{k}$ listes favorables. La prboabilité de chacune de ces listes est $p^k\times q^{n-k}$ par indépendance.

EXEMPLE 9:

c.f. polycopié

EXERCICE 10:

On a $X \sim \mathcal{B}(n,p)$. Ainsi, d'après la définition 7, $X(\Omega) = [1,n]$, et $\forall k \in X(\Omega)$, $P(X = k) = \binom{n}{k} p^k q^{n-k}$. Montrons que $n-X \sim \mathcal{B}(n,q)$ avec q=1-p. On veut donc montrer que $\forall k \in (n-X)(\Omega)$, $P(n-X=k) = \binom{n}{k} \cdot q^k \cdot p^{n-k}$.

$$P(X=n-k)={n\choose n-k}p^{n-k}q^{n-(n-k)}$$

$$={n\choose n-k}q^kp^{n-k}$$

$$={n\choose k}q^kp^{n-k}$$
 par symétrie des coefficients binomiaux.

On peut également remarquer que la variable aléatoire n-X est le nombre d'echecs.

3 La loi géométrique

DÉFINITION 11:

Soit $p \in]0,1[$. On pose q=1-p. On dit qu'une $vad\ T$ suit une $loi\ g\'{e}om\'{e}trique$ de paramètre p, et on note $T\sim \mathcal{G}(p)$ si

$$T(\Omega) = \mathbb{N}^* \quad ext{et} \quad orall k \in T(\Omega), \; P(T=k) = p \cdot q^{k-1}.$$

On vérifie bien que $\sum_{k\in\mathbb{N}^*}P(X=k)=1.$ En effet, elle vaut

$$\begin{split} \sum_{k\in\mathbb{N}^*} pq^{k-1} &= p \sum_{k=1}^\infty q^{k-1} \\ &= p \sum_{k=0}^\infty q^k \\ &= p \times \frac{1}{1-q} \\ &= \frac{1-q}{1-q} = 1 \end{split}$$

Proposition 12:

Soit $p \in]0,1[$. Soit T la vad égale au temps d'attente du $1^{\underline{er}}$ succès lors d'une suite d'épreuve de Bernoulli de paramètre p. Si ces épreuves sont indépendantes, alors $T \sim \mathcal{G}(p)$.

DÉMONSTRATION:

L'événement (X=k) vaut $E_1 \cap E_2 \cap \cdots \cap E_{k-1} \cap S_k$, où S_i est l'événement « obtenir un succès au i-ème essai, » et E_i est l'événement « obtenir un échec au i-ème essai. 1 » Par hypothèse d'indépendance, on a

$$P(E_1 \cap E_2 \cap \cdots \cap E_{k-1} \cap S_k) = P(E_1) \times P(E_2) \times \cdots \times P(E_{k-1}) \times P(S_k).$$

EXERCICE 13 (« Remettre le compteur à zéro »):

Soit X une vad à valeurs dans \mathbb{N}^* telle que

$$\forall k \in \mathbb{N}, P(X > k) > 0.$$

On dit que X est sans mémoire si

$$orall k \in \mathbb{N}, \ orall n \in \mathbb{N}, \quad P(X > n+k \mid X > k) = P(X > n).$$

On veut montrer que la loi géométrique est une loi sans mémoire, et que c'est la seule.

- 1. Montrer que, X est sans mémoire
 - (a) si, et seulement si $\forall k \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $P(X > n + k) = P(X > n) \cdot P(X > k)$.
 - (b) si, et seulement si $\forall k \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $P(X = n + k \mid X > k) = P(X = n)$.
- 2. On suppose que X suit une loi géométrique de paramètre $p \in]0,1[$.
 - (a) Calculer la probabilité P(X>k) pour chaque $k\in\mathbb{N}$.
 - (b) Montrer que X est sans mémoire.
- 3. Réciproquement, montrer que si X est sans mémoire, alors X suit une loi géométrique.
- 1. (a)

$$X$$
 est sans mémoire $\stackrel{\mathrm{def.}}{\Longleftrightarrow} \forall k, \ \forall n, \ P_{(X>k)}(X>n+k) = P(X>n) \ \Leftrightarrow \ P(X>n+k) = P(X>n) \cdot P(X>k)$

car

$$P(X>n+k\mid X>k)=rac{Pig((X>n+k)\cap(X>k)ig)}{P(X>k)}=rac{P(X>n+k)}{P(X>k)}$$

comme $((X > n + k) \cap (X > k)) = (X > n + k)$ (par inclusion).

^{1.} Ainsi, on a $S_i = \bar{E}_i$.

(b) On a $(X>n+k-1)=(X=n+k)\cup(X>n+k)$ et cette union est disjointe, d'où

$$P_{(X>k)}(X>n+k-1)=P_{(X>k)}(X=n+k)+P_{(X>k)}(X>n+k).$$

D'où,

$$\begin{split} P_{(X>k)}(X=n+k) &= P_{(X>k)}(X>n+k-1) - P(X>n+k) \\ &= P(X>n-1) - P(X>n) \text{ par définition} \\ &= P(X=n) \text{ de même.} \end{split}$$

Réciproque à faire.

2. On suppose $X \sim \mathcal{G}(p)$. Ainsi, $X(\Omega) = \mathbb{N}^*$ et $\forall k \in X(\Omega)$, $P(X = k) = p \times q^{k-1}$.

(a) On a $(X > k) = \bigcup_{\ell=k+1}^{\infty} (X = \ell)$, et cette union est disjointe. D'où,

$$egin{aligned} P(X>k) &= \sum_{\ell=k+1}^{\infty} P(X=\ell) \ &= \sum_{\ell=k+1}^{\infty} p imes q^{\ell-1} \ &= p imes q^k \sum_{\ell=0}^{\infty} q^\ell \ &= p imes q^k imes rac{1}{1-q} ext{ car } |q| < 1 \ &= q^k \end{aligned}$$

On en déduit que

$$\forall k \in \mathbb{N}, \ P(X > k) = q^k.$$

(b) On utilise le 1.(a) et la question précédente :

$$P(X > n + k) = q^{n+k} = q^n \cdot q^k = P(X > n) \cdot P(X > k).$$

3. On suppose X sans mémoire. On utilise 1.(a):

$$\forall k, \ \forall n, \ P(X>n+k) = P(X>n) \cdot P(X>k).$$

On cherche une relation de récurrence, on pose donc k=1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=P(X>n)$. Ainsi,

$$u_{n+1} = u_n \cdot \underbrace{P(X > 1)}_{\heartsuit}.$$

D'où, par récurrence, $\forall n \in \mathbb{N}, \ u_n = \heartsuit^n \cdot u_0, \ \text{et} \ u_0 = P(X > 0) = 1 \ \text{comme} \ (X > 0) = \Omega.$ Ainsi,

$$orall n \in \mathbb{N}, \ u_n = \heartsuit^n = P(X > n).$$

On a, pour $n \in \mathbb{N}^*$, $(X > n-1) = (X = 1) \cup (X > n) = (X = n) \cup P(X > n)$, et cette union est disjointe. D'où, $\heartsuit^{n-1} = P(X = n)/\heartsuit^{n-1} - \heartsuit^n$.

4 La loi de Poisson

Définition 14:

Soit un réel $\lambda > 0$. On dit qu'une variable aléaroire discrète X suit une loi de Poisson de paramètre λ , et on note $X \sim \mathcal{P}(\lambda)$ si

$$X(\Omega) = \mathbb{N} \quad ext{ et } \quad orall k \in X(\Omega), \; P(X=k) = \mathrm{e}^{-\lambda} \cdot rac{\lambda^k}{k!}.$$

On vérifie que $\sum_{k \in X(\Omega)} P(X=k) = 1$. En effet,

$$\sum_{k \in X(\Omega)} P(X = k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \cdot e^{\lambda} = 1$$

Proposition 15:

Soit un réel $\lambda > 0$, et pour $n \in \mathbb{N}^*$, soit X_n une variable aléatoire suivant la loi binomiale $\mathcal{B}(n, p_n)$ avec $p_n \in]0, 1[$. Si $n \cdot p_n \xrightarrow[n \to \infty]{} \lambda$, alors

$$orall k \in \mathbb{N}, \ P(X_n = k) \xrightarrow[n o \infty]{} \mathrm{e}^{-\lambda} \cdot rac{\lambda^k}{k!}.$$

DÉMONSTRATION:

On pose, $q_n = 1 - p_n$. On a

$$\binom{n}{k}\,p_n^k\,(1-p_n)^{n-k}=\frac{n!}{k!\cdot(n-k)!}\cdot p_n^k\cdot(1-p_n)^{n-k}..$$

Or,

$$p_n^k \cdot \frac{n!}{(n-k)!} = p_n^k \cdot n \times (n-1) \times \dots \times (n-k+1)$$

$$= p_n^k \cdot n \times n \left(1 - \frac{1}{n}\right) \dots n \left(1 - \frac{k-1}{n}\right)$$

$$= (p_n n)^k \cdot \underbrace{\left(1 - \frac{1}{k}\right) \times \dots \times \left(1 - \frac{k-1}{n}\right)}_{\rightarrow \lambda^k}$$

De plus, $(1-p_n)^{n-k} = e^{(n-k)\ln(1-p_n)}$, et

$$(n-k)\ln(1-p_n) = (n-k)(-p_n+o(p_n))$$

= $-np_n+o(np_n)$

Par continuité de l'exponentielle, on a $(1-p_n)^{n-k} \xrightarrow[n \to \infty]{} \mathrm{e}^{-\lambda}$. Ainsi,

$$orall k \in \mathbb{N}, \ P(X_n = k) \xrightarrow[n o \infty]{} \mathrm{e}^{-\lambda} \cdot rac{\lambda^k}{k!}.$$

REMARQUE 16:

c.f. polycopié

5 Espérance

Définition 17:

Soient (Ω, \mathcal{A}, P) un espace probabilisé, et X une variable aléatoire réelle discrète (vard) telle que $X(\Omega) = \{a_i \mid i \in I\} \subset \mathbb{R}$. Si la série $\sum a_i P(X = a_i)$ converge <u>absolument</u>², alors

- 1. on dit que X est d'espérance finie ou que X possède une espérance, ou que $X \in L^1$;
- 2. cette espérance, notée $\mathrm{E}(X)$ est le nombre réel

$$\operatorname{E}(X) = \sum_{i \in I} a_i P(X = a_i).$$

^{2.} Ainsi, la série devient une famille sommable, et la somme devient commutative, même si elle est infinie.

Cours

Remarque 18: 1. La valeur de l'espérance ne dépend pas de l'ordre des valeurs a_i , c'est pour cela que l'on demande la convergence absolue.

- 2. Une vard peut ne pas avoir une espérance finie, par exemple $p_n=\frac{6}{\pi^2\,n^2}$. On a bien $\sum_{n=1}^{\infty}p_n=1$ mais la série $\sum n\,p_n$ diverge.
- 3. Si $X(\Omega)$ est fini, alors X est nécessairement d'espérance finie, car $\mathbb{E}(X)$ est une somme finie
- 4. Si X est bornée 3 (vue comme une fonction), alors X est d'espérance finie. Démonstration:

En effet, $\forall a \in X(\Omega)$, $0 \leqslant |a|P(X=a)| \leqslant MP(X=a)$ d'où la série $\sum |a|P(X=a)|$ converge, car $\sum MP(X=a)=M$ $\sum P(X=a)$ et $\sum P(X=a)$ converge.

5. L'espérance est linéaire : si X est un vard d'espérance finie, alors $\alpha X + \beta$ aussi, et

$$\mathbb{E}(\alpha X + \beta) = \alpha \, \mathbb{E}(X) + \beta.$$

De plus, l'application

$$\mathtt{E}: \mathtt{ensemble} \ \mathtt{des} \ \mathit{vard} \longrightarrow \mathbb{R}$$

$$X \longmapsto \mathtt{E}(X)$$

est une forme linéaire.

6. Si X est d'espérance finie, alors |X| aussi, et $|E(X)| \le E(|X|)$ (par inégalité triangulaire). En particulier, si X est positive, alors son espérance est positive.

EXERCICE 19:

Montrer que

1. si $X \sim \mathcal{B}(n,p)$, alors X est d'espérance finie, et $\mathbb{E}(X) = n \cdot p$. Indication, utiliser la formule

$$orall k \in \mathbb{N}^*, \ orall n \geqslant k, \ kinom{n}{k} = ninom{n-1}{k-1}.$$

- 2. si $T \sim \mathcal{G}(p)$, alors T est d'espérance finie, et $\mathbb{E}(T) = \frac{1}{p}$.
- 3. si $X \sim \mathcal{P}(\lambda)$, alors X est d'espérance finie, et $\mathbb{E}(X) = \lambda$.
- 1. La variable aléatoire X représente le nombre de succès, de n épreuves de Bernoulli indépendantes, et la probabilité d'un succès est p. De plus, on a $X(\Omega) = [\![0,n]\!]$, qui est un ensemble fini, il possède une espérance. On calcule

$$\begin{split} \mathbf{E}(X) &= \sum_{k=0}^{n} k \; P(X=k) \\ &= \sum_{k=0}^{n} k \, \binom{n}{k} \, p^k \, q^{n-k} \\ &= \sum_{k=0}^{n} k \, \binom{n}{k} \, p^k \, q^{n-k} \\ &= \sum_{k=1}^{n} k \, \binom{n}{k} \, p^k \, q^{n-k} \\ &= \sum_{k=1}^{n} k \, \binom{n}{k} \, p^k \, q^{n-k} \\ &= \sum_{k=1}^{n} n \, \binom{n-1}{k-1} \, p^k \, q^{n-k} \\ &= \sum_{k=1}^{n} n \, \binom{n-1}{k-1} \, p^k \, q^{n-k} \\ &= n \, p \, \binom{n-1}{k} \, p^{k-1} \, q^{n-k-1} \\ &= n \, p \, (n+p)^{n-1} \\ &= n \, p. \end{split}$$

2. La variable T correspond au temps d'attente du $1^{\underline{\operatorname{er}}}$ succès, sachant que la probabilité d'un succès est p. Ainsi, $T(\Omega)=\mathbb{N}^*$, et $\forall x\in T(\Omega),\ P(T=k)=p\cdot q^{k-1}$. La variable aléatoire est d'espérance finie car la série $\sum k\,P(T=k)$ converge absolument :

$$|k P(T = k)| = k P(T = k) = k p q^{k-1}.$$

^{3.} i.e. $\exists M \in \mathbb{R}^+$, $\forall \omega \in \Omega \ |X(\omega)| \leqslant M$

D'où $\sum |k\,P(T=k)| = \sum k\,p\,q^{k-1} = p\sum k\,q^{k-1}$. Or, la série entière $\sum x^k$ a pour rayon de converge 1. Et, on peut dériver terme à terme une série entière sans changer son rayon de convergence. D'où, le rayon de convergence de $\sum k\,x^{k-1}$ est aussi égal à 1. Or, $q\in]-1,1[$, d'où la série $\sum k\,q^{k-1}$ converge.

$$orall x \in \]-1,1[,\quad \sum_{k=0}^\infty x^k=rac{1}{1-x}.$$

Et, on peut dériver terme à terme une série entière sans changer son rayon de convergence. D'où,

$$orall x \in]-1,1[, \quad \sum_{k=1}^{\infty} kx^{k-1} = rac{\mathsf{d}}{\mathsf{d}x}rac{1}{1-x} = rac{1}{(1-x)^2}.$$

D'où,

$$\mathbb{E}(T) = \sum_{k=1}^{\infty} k \ P(T=k) = p imes rac{1}{(1-q)^2} = rac{1}{1-q} = rac{1}{p}.$$

3. On a $X(\Omega)=\mathbb{N}$, et $\forall k\in X(\Omega)$, $P(X=k)=\mathrm{e}^{-k}\frac{\lambda^k}{k!}$. La $vard\ X$ possède une espérance car la série $\sum k\,P(X=k)$ converge absolument. En effet, $\sum \left|k\,\mathrm{e}^{-\lambda}\frac{\lambda^k}{k!}\right|=\lambda\,\mathrm{e}^{-\lambda}\sum k\,\frac{\lambda^{k-1}}{k!}$. Or, la série entière $\sum x\,\frac{k}{k!}$ a pour rayon de converge $+\infty$. Et, on peut dériver terme à terme une série entière sans changer son rayon de convergence. D'où, le rayon de convergence de $\sum k\,\frac{x^{k-1}}{k!}$ est aussi égal à $+\infty$. De plus,

$$\begin{split} \mathbf{E}(X) &= \sum_{k \in X(\Omega)} k \, P(X = k) \\ &= \sum_{k = 0}^{\infty} k \, \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \\ &= \sum_{k = 1}^{\infty} k \, \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \\ &= \sum_{k = 1}^{\infty} k \, \mathrm{e}^{-\lambda} \, \frac{\lambda^k}{k!} \\ &= \lambda \, \mathrm{e}^{-\lambda} \, \sum_{k = 0}^{\infty} \frac{\lambda^k}{k!} \\ &= \lambda \, \mathrm{e}^{-\lambda} \, \mathrm{e}^{\lambda} = \lambda \end{split}$$

Proposition 20 (version non rigoureuse):

$$E(X) = \sum_{k=0}^{\infty} k P(X = k)$$

$$= 0 \times P(X = 0) + 1 \times P(X = 1) + 2 \times P(X = 2) + 3 \times P(X = 3) + \cdots$$

$$= P(X = 1) + P(X = 2) + P(X = 2) + P(X = 3) + P(X = 3) + P(X = 3) + \cdots$$

$$+ \vdots + \vdots + \vdots + \cdots$$

$$= P(X \ge 1) + P(X \ge 2) + P(X \ge 3) + \cdots$$

Les hypothèse de ce théorème sont

- la variable X est d'espérance finie.
- la série $\sum P(X \geqslant n)$ converge (c'est donc une famille sommable, car $P(X \geqslant n) \geqslant 0$). Ainsi, on peut sommer par paquets.

REMARQUE 21:

Si X est une vard est $\varphi:X(\Omega)\to\mathbb{R}$, alors

Ι Cours

- 1. $\varphi \circ X$ est aussi une *vard* notée $\varphi(X)$;
- 2. on pose $(\varphi \circ X)(\Omega) = \{b_j \mid j \in J\}$. Si $\varphi(X)$ possède une espérance $\mathbb{E}(\varphi(X))$, alors cette espérance est égale à

$$\sum_{j\in J} b_j \; Pig(arphi(X) = b_jig)$$

par définition de l'espérance, mais aussi à

$$\sum_{i \in I} arphi(a_i) \ P(X=a_i),$$

d'après le théorème suivant, que nous admettrons.

Soient Ω , \mathcal{A} , P un espace probabilisé, X une vard , et $\varphi: X(\Omega) \to \mathbb{R}$. On pose $X(\Omega) = \{a_i \mid i \in I\}$. Alors, $\varphi(X)$ est d'espérance finie si, et seulement si la série $\sum \varphi(a_i) P(X = a_i)$ converge absolument. Et, alors, $\mathbb{E}(\varphi(X))$ vaut la somme $\sum_{i \in I} \varphi(a_i) P(X = a_i)$ de cette série.

6 Variance et écart-type

Plus tard (définition 25), on définira respectivement la variance et l'écart-type comme

$${ t V}(X) = { t E}\Big(ig[X-E(X)ig]^2\Big) \qquad \qquad \sigma(X) = \sqrt{{ t V}(X)}.$$

DÉFINITION 23:

On définit le moment d'ordre $k \in \mathbb{N}$ comme

$$\sum_{a \in X(\Omega)} a^k \, P(X=a).$$

On dit qu'une variable aléatoire possède un moment d'ordre k si la série $\sum a_n{}^k P(X=a_n)$ converge absolument.

Ainsi, le moment d'ordre 1 est E(X), le moment d'ordre 2 est $E(X^2)$, le moment d'ordre 3 est $E(X^3)$, etc.

LEMME 24:

Si une vard possède un moment d'ordre k+1, alors elle possède aussi un moment d'ordre k.

Pour tout réel, $x \ge 0$, alors $0 \le x^k \le x^{k+1} + 1$ (distinguer le cas $x \ge 1$ et x < 1). Ainsi, en multipliant par P(X = a), on a

$$x^k P(X=a) \leqslant x^{k+1} P(X=a) + P(X=a).$$

La série $\sum P(X=a)$ converge absolument, et la série $\sum a^{k+1} P(X=a)$ converge absolument aussi. Alors, la série $\sum a^k P(X=a)$ converge absolument.

Proposition - Définition 25:

Soit (Ω, \mathcal{A}, P) un espace probabilisé, et soit X une vard. Si X^2 est d'espérance finie, alors Xaussi, et on appelle variance le réel positif

$$\mathbf{V}(X) = \mathbf{E}\Big(\big[X - \mathbf{E}(X)\big]^2\Big) = \underbrace{\mathbf{E}(X^2) - \big(\mathbf{E}(X)\big)^2}_{\text{Relation de K\'onig \& HUYGENS}} \geqslant 0.$$

L'écart-type $\sigma(X)$ est la racine carrée de la variance

$$\sigma(X) = \sqrt{V(X)}.$$

DÉMONSTRATION:

On pose $\mu=\mathbb{E}(X)$, et on a $[X-\mu]^2=X^2-2\mu X+\mu^2$. D'où, par linéarité de l'espérance,

$$\begin{split} \mathbb{E}\big((X - \mu)^2\big) &= \mathbb{E}(X^2 - 2\mu X + \mu^2) \\ &= \mathbb{E}(X^2) - 2\mu \mathbb{E}(X) + \mu^2 \\ &= \mathbb{E}(X^2) - 2\mu^2 + \mu^2 \\ &= \mathbb{E}(X^2) - (\mathbb{E}(X))^2. \end{split}$$

De plus, d'après le lemme précédent, si X^2 est d'espérance finie, alors X est d'espérance finie.

Remarque 26: 1. La variance mesure la dispersion, ou l'étalement des valeurs a_i autour de l'espérance E(X). En particulier, s'il existe $a \in \mathbb{R}$ tel que P(X=a)=1, alors E(X)=a et V(X)=0. (C'est même une équivalence.)

- Si la variable X a une unité (km/s, V/m, etc.), alors l'écart type a la même unité (d'où l'intérêt de calculer la racine carrée de la variance).
- 3. Soient α et β deux réels. Si X^2 est d'espérance finie, alors

$$V(\alpha X + \beta) = \alpha^2 \cdot V(X).$$

(Une translation ne change pas la dispersion des valeurs, et multiplier par un réel multiplie l'espérance, mais aussi la dispersion, d'où le carré.)

EXERCICE 27:

Montrer que

- 1. si $X \sim \mathcal{B}(n,p)$, alors X^2 est d'espérance finie et $V(X) = n \cdot p \cdot q$.
- 2. si $T \sim \mathcal{G}(p)$, alors T^2 est d'espérance finie et $V(T) = \frac{q}{r^2}$.
- 3. si $X \sim \mathcal{P}(\lambda)$, alors X^2 est d'espérance finie et $V(X) = \lambda$.
- 1. Si $X \sim \mathcal{B}(n,p)$, alors $X(\Omega) = [0,n]$ et, pour $k \in X(\Omega)$, $P(X=k) = \binom{n}{k} p^k q^{n-k}$. On a déjà montré que $E(X) = n \cdot p$. On va montrer que V(X) = n p q. La variable aléatoire X^2 est d'espérance finie car $X(\Omega)$ est fini. Et,

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} P(X = k)$$
$$= \sum_{k=0}^{n} k^{2} {n \choose p} p^{k} q^{n-k}$$
$$= \dots$$

En effet, d'après la "petite formule," on a

$$orall k\geqslant 1, \quad kinom{n}{k}=ninom{n-1}{k-1}$$

d'où,
$$\binom{(k-1)\binom{n-1}{k-1}=(n-1)}{\binom{n-2}{k-2}}$$
. Ainsi,

$$orall k\geqslant 2, \quad k(k-1)inom{n}{k}=n(n+1)inom{n-2}{k-2}.$$

2. Si $T \sim \mathcal{G}(p)$, alors $T(\Omega) = \mathbb{N}^*$ et $\forall k \in T(\Omega), \ P(T=k) = p \times q^{k-1}$. On a déjà prouvé que $\mathbb{E}(T) = \frac{1}{p}$. On veut montrer que $\mathbb{V}(T) = \frac{q}{p^2}$. Montrons que la variable T^2 possède une espérance : la série $\sum k^2 \ P(T=k)$ converge absolument car $k^2 \ P(T=k) = k^2 \cdot p \cdot q^{k-1}$. Or, pour $k \geqslant 2$, $\frac{\mathrm{d}^2}{\mathrm{d}x^2}x^k = k(k-1)x^{k-2}$. Et, on peut dériver terme à terme une série entière sans changer son rayon de convergence, et la série $\sum x^k$ a pour rayon de convergence 1. D'où, $\sum k(k-1)x^{k-2}$ a pour rayon de convergence 1. Or, $q \in]0,1[\]-1,1[\]$ donc la série $\sum k(k-1)q^{k-2}$ converge. De plus, $\sum k(k-1)q^{k-2} = \sum k^2 q^{k-2} - \sum k q^{k-2}$. D'où, $\sum k^2 q^{k-2} = \sum k(k-1)q^{k-2} + \sum k q^{k-2}$, qui converge.

Par suite,

$$\begin{split} \sum_{k=1}^{\infty} k^2 \, P(T=k) &= \sum_{k=1}^{\infty} k^2 \, p \, q^{k-1} \\ &= p + p q \sum_{k=2}^{\infty} k^2 q^{k-2} \\ &= p + p q \sum_{k=2}^{\infty} k (k-1) \, q^{k-2} + p \sum_{k=2}^{\infty} k \, q^{k-1} \\ &= p + p q \, \frac{2}{(1-q)^3} + p \left(\frac{1}{(1-q)^2} - 1\right) \qquad \textit{c.f.} \text{ en effet après} \\ &= p + p q \, \frac{2}{p^3} + p \left(\frac{1}{p^2} - 1\right) \\ &= \frac{2q}{p^2} + \frac{1}{p} \\ &= \frac{2q + p}{p^2} \\ &= \frac{2q + (1-q)}{p^2} \\ &= \frac{q+1}{p^2}. \end{split}$$

En effet, $\forall x \in]-1,1[$, $\sum_{k=0}^{\infty}x^k=\frac{1}{1-x}.$ D'où, pour $x \in]-1,1[$,

$$\sum_{k=1}^{\infty} k \, x^{k-1} = rac{1}{(1-x)^2} \quad ext{ et } \quad \sum_{k=2}^{\infty} k (k-1) \, x^{k-2} = rac{2}{(1-x)^3}.$$

Ainsi, $\mathrm{E}(T^2)=rac{q^{+\,1}}{p^2}$. D'où

$$\begin{split} \mathbf{V}(T) &= \mathbf{E}(T^2) - \left(\mathbf{E}(T)\right)^2 \\ &= \frac{q+1}{p^2} - \left(\frac{1}{p}\right)^2 \\ &= \frac{q}{p^2} \end{split}$$

3. À tenter

7 LES INÉGALITÉS DE MARKOV ET DE BIENAYMÉ-TCHEBYCHEV, INÉGALITÉS DE CONCENTRATION

LEMME 28 (Markov):

Soit (Ω, A, P) un espace probabilisé, et soit X une variable aléatoire positive. Si X est d'espérance finie, alors

$$orall a>0, \quad P(X\geqslant a)\leqslant rac{\mathrm{E}(X)}{a}.$$

DÉMONSTRATION:

On suppose X d'espérance finie. Ainsi, on a

$$\mathtt{E}(X) = \sum_{x \in X(\Omega)} x \, P(X = x).$$

Soit I l'ensemble $I = \{x \in X(\Omega) \mid x \geqslant a\}$. Alors,

$$\mathbb{E}(X) = \underbrace{\sum_{x \in I} x \; P(X = x)}_{\text{ici } x \geqslant a} + \underbrace{\sum_{x \in X(\Omega) \backslash I} x \; P(X = x)}_{\geqslant 0 \text{ par hypothèse}}.$$

D'où,

$$\mathbb{E}(X)\geqslant\sum_{x\in I}x\;P(X=x)\geqslant\sum_{x\in I}a\;P(X=x)=a\sum_{x\in I}P(X=x)\geqslant a\;P(x\geqslant a).$$

Proposition 29 (BIENAYMÉ-TCHEBYCHEV):

Soit (Ω, A, P) un espace probabilisé, et soit X une vard. Si X^2 est d'espérance finie, alors

$$orall a>0, \qquad P\Big(ig|X-\mathbb{E}(X)ig|\geqslant a\Big)\leqslant rac{\mathrm{V}(X)}{a^2}.$$

DÉMONSTRATION:

On pose $\mu=\mathbb{E}(X)$. L'événement $(|X-\mu|\geqslant a)=((X-\mu)^2\geqslant a^2)$, d'où, les probabilités

$$P(|X - \mu| \geqslant a) = P(\underbrace{(X - \mu)^2}_{>0} \geqslant \underbrace{a^2}_{>0} \geqslant 0).$$

On valide donc une des hypothèses de l'inégalité de Markov. De plus, l'autre hypothèse est vérifiée : X^2 est d'espérance finie, donc $(X-\mu)^2$ aussi. On en déduit, d'après le lemme de Markov, que

$$Pig((X-\mu)^2\geqslant a^2ig)\leqslant rac{\mathbb{E}ig((X-\mu)^2ig)}{a^2}=rac{\mathrm{V}(X)}{a^2}.$$

8 Série génératrice

DÉFINITION 30:

Soit X une vad telle que $X(\Omega) \subset \mathbb{N}$. La série génératrice de X est la série entière $\sum a_n x^n$ de coefficients $a_n = P(X = n)$.

La série $\sum a_n$ converge car sa somme vaut $\sum_{n=0}^{\infty} a_n = 1$. D'où,

- le rayon de convergence R de la série est supérieur ou égal à 1.
- la série génératrice converge normalement sur [-1,1], car la série $\sum |a_n|$ converge, or, $\forall x \in [-1,1], |p_n t^n| \leq |p_n|$, d'où la convergence normale. D'où la fonction génératrice

$${
m G}_X\colon t\longmapsto \sum_{n=0}^\infty p_n t^n$$

est définie et même continue sur [-1,1], car la convergence est uniforme.

— la fonction génératrice G_X est de classe \mathcal{C}^{∞} sur]-1,1[et

$$orall k \in \mathbb{N}, \quad P(X=k) = a_n rac{\mathrm{G}_X{}^{(k)}(0)}{k!}$$

La fonction génératrice de X permet donc de retrouver la loi de probabilité de X.

Cette série génératrice permet de calculer l'espérance et la variance de X. Si R>1, alors $1\in]-R,R[,$ d'où

$$\mathrm{G}_X'(1) = \sum_{n=1}^\infty n a_n \qquad ext{et} \qquad \mathrm{G}_X''(1) = \sum_{n=2}^\infty n (n-1) \, a_n,$$

car on peut dériver terme à terme sans changer de convergence. On en déduit que X^2 est d'espérance finie et que

$$\operatorname{\mathbb{E}}(X) = \operatorname{G}_X'(1) \qquad ext{ et } \qquad \operatorname{V}(X) = G_X''(1) + G_X'(1) - \left[G_X'(1)
ight]^2.$$

Également, même si inintéressant du point de vue théorique, ceci peut être utile pour vérifier les résultats en exercice

$$G_X(1) = \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} P(X = n) = 1.$$

Proposition 31:

Soit X une vard telle que $X(\Omega) \subset \mathbb{N}$, et soit G_X sa fonction génératrice.

1. X est d'espérance finie si, et seulement si la fonction ${\rm G}_X$ est dérivable en 1. Dans ce cas.

$$\mathrm{E}(X)=\mathrm{G}_X'(1).$$

2. X^2 est d'espérance finie si, et seulement si la fonction G_X est deux fois dérivable en 1. Dans ce cas.

$$V(X) = G''_X(1) + G'_X(1) - [G'_X(1)]^2.$$

DÉMONSTRATION:

On remarque que $G_X''(1) = \sum_{n=2}^{\infty} n(n-1) a_n = \mathbb{E}(X(X-1)) = \mathbb{E}(X^2) - \mathbb{E}(X)$. Ainsi,

$$\begin{aligned} \mathbf{V}(X) &= \mathbf{E} \Big[\big(X - \mathbf{E}(X) \big)^2 \Big] \\ &= \mathbf{E}(X^2) - \big(\mathbf{E}(X) \big)^2 \\ &= \mathbf{E}(X^2) - \mathbf{E}(X) + \mathbf{E}(X) - \big(\mathbf{E}(X) \big)^2 \\ &= \mathbf{G}_X''(1) + \mathbf{G}_X'(1) - \big(\mathbf{G}_X'(1) \big)^2 \end{aligned}$$

Mais, la fonction G_X est elle,

- dérivable en 1? Oui, si la variable X est d'espérance finie.
- dérivable deux fois en 1? Oui, si la variable X^2 est d'espérance finie.

EXERCICE 32:

Le programme

dit que l'on doit être ca-

pable de le

retrouver

rapidement.

Soient $p \in]0,1[$, et $\lambda > 0$. On pose q = 1 - p. Soit X une variable aléatoire. Montrer que

1.
$$\operatorname{si} X \sim \mathcal{B}(n,p)$$
, alors

$$orall t \in \mathbb{R}, \quad \mathrm{G}_X(t) = (pt+q)^n$$
 ;

2. si
$$T \sim \mathcal{G}(p)$$
, alors

$$\forall t \in \left] - rac{1}{a}, rac{1}{a} \right[\quad \mathrm{G}_T(t) = rac{pt}{1 - at}$$
 ;

3. si
$$X \sim \mathcal{P}(\lambda)$$
, alors

$$orall t \in \mathbb{R}, \quad \mathrm{G}_X(t) = \mathrm{e}^{-\lambda} \cdot \mathrm{e}^{\lambda t}.$$

En déduire l'espérance et la variance de chacune de ces vard.

1. La série génératrice est $\sum P(X=k)\,t^k$, et la fonction génératrice est $\sum_{k\in X(\Omega)} P(X=k)\,t^k$. Comme $X\sim \mathcal{B}(n,p)$, on a $X(\Omega)=[\![0,n]\!]$, et $\forall k\in X(\Omega),\, P(X=k)=\binom{n}{k}p^k\,q^{n-k}$. La série ne peut pas diverger, car il y a un nombre fini de termes. D'où,

$$egin{aligned} orall t \in \]-\infty, +\infty[, & \mathrm{G}_X(t) = \sum_{k=0}^n inom{n}{k} q^{n-k} \ t^k \ & = (pt+q)^n \end{aligned}$$

La fonction G_X est dérivable en 1, donc la variable aléatoire X est d'espérance finie, et $\mathbb{E}(X)=G_X'(1)$. Or, $\forall t\in\mathbb{R},\ G_X'(t)=n\ p\ (pt+q)^{n-1}$. D'où, $\mathbb{E}(X)=G_X'(1)=n\ p$. Mieux: G_X est deux fois dérivable en 1. Ainsi, X^2 est d'espérance finie, et

$$egin{aligned} \mathbb{V}(X) &= \mathbb{G}_X''(1) + \mathbb{G}_X'(1) - ig[\mathbb{G}_X'(1) ig]^2 \ &= n \cdot (n-1) \cdot p^2 + n \cdot p - (n \cdot p)^2 \ &= n \cdot p - n \cdot p^2 = n \cdot p \cdot (1-p) \ &= n \cdot p \cdot q \end{aligned}$$

2. Si $T\sim \mathcal{G}(p)$, alors $T(\Omega)=\mathbb{N}^*$, et $\forall k\in T(\Omega)$, $P(T=k)=p\times q^{k-1}$. La série génératrice de la variable T est

$$\sum P(T=k)t^k = \sum p q^{k-1} t^k = p t \sum (qt)^{k-1},$$

c'est une série géométrique de raison qt. Elle converge si, et seulement si |qt|<1. D'où, le rayon de convergence de la série génératrice vaut $R=\frac{1}{q}$. Et,

$$egin{aligned} orall t \in \left] -rac{1}{q}, rac{1}{q}
ight[, \quad \mathbf{G}_T(t) = p\,t \sum_{k=1}^\infty (qt)^{k-1} \ &= pt \sum_{k=0}^\infty (qt)^k \ &= pt \cdot rac{1}{1-qt} \, \operatorname{car} \, |qt| < 1 \end{aligned}$$

 ${\rm G}_X$ est dérivable en 1, d'où, la variable aléatoire T est d'espérance finie, et ${\rm E}(T)={\rm G}_T'(1).$

$$orall t\in \left]-rac{1}{q},rac{1}{q}
ight[,\quad \mathrm{G}_T'(t)=rac{p(1-qt)-pt(-q)}{(1-qt)^2}=rac{p}{(1-qt)^2}.$$

D'où,
$$\mathrm{E}(t)=rac{p}{(1-q)^2}=rac{1}{p}.$$