

INVESTOR IN PEOPLE

The Patent Office Concept House

Cardiff Road

Newport

REO'D 2-9 NOV 2004 South Walks

NP10 8QQWIPO

PCT

PRIORITY COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely company to certain additional company law rules.

Signed

Dated

15 November 2004

BEST AVAILABLE COPY

ats Form 1/77

Patents Act 1977 (Rule 16) THE PATENT OFFICE Patent Office

280CT03 BEA7845-6 002895 P01/7700 10.00-0325129.53

28 OCT 2003

Request for grant of a patent

(See the notes on the back of this form: You can also get an

explanatory leaflet from the Patent Office to help you fill in this form)

b) there is an inventor who is not named as an

c) any named applicant is a corporate body.

applicant, or

See note (d))

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

Your reference PTD/2696GB 2. Patent application number 2 8 OCT 2003 0325129.5 (The Patent Office will fill in this part) Full name, address and postcode of the or of Smith & Nephew plc each applicant (underline all surnames) 15 Adam Street 3969284006. London WC2N 6LA Patents ADP number (if you know it) If the applicant is a corporate body, give the United Kingdom country/state of its incorporation Title of the invention Apparatus In Situ 5. Name of your agent (if you have one) Peter T Draggett Smith & Nephew Group Research Centre "Address for service" in the United Kingdom Group Patents & Trade Marks to which all correspondence should be sent York Science Park (including the postcode) Heslington 6314959004 York YO10 5DF Patents ADP number (if you know it) Date of filing Priority application number 6. If you are declaring priority from one or more Country (day / month / year) (if you know it) earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Date of filing 7. If this application is divided or otherwise Number of earlier application (day / month / year) derived from an earlier UK application, give the number and the filing date of the earlier application 8. Is a statement of inventorship and of right YES to grant of a patent required in support of this request? (Answer Yes' if: a) any applicant named in part 3 is not an inventor, or

٠(

Pa its Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document		
Continuation sheets of this form		
Description	42	
Claim (s)	A	والمستقد والمستقد المستقد المس
Abstract		
Drawing (s)	8 th	
10. If you are also filing any of the following, state how many against each item.		
Priority documents		
Translations of priority documents	egravitari (j. 150. ili dagraviva tadi, davida tetavitari (j. 17. ili	and the second of the second s
Statement of inventorship and right to grant of a patent (Patents Form 7/77)		
Request for preliminary examination and search (Patents Form 9/77)		
Request for substantive examination (Patents Form 10/77)		
 Any other documents (please specify) 		
11.	I/We request the grant of a patent	on the basis of this application.
	Signature for Sagat	Date 24-Oct-03
12. Name and daytime telephone number of person to contact in the United Kingdom	Peter Draggett	01904 824000
Warning After an application for a patent has been filed, the or communication of the invention should be prohi will be informed if it is necessary to prohibit or rest United Kingdom, Section 23 of the Patents Act 1977 written permission from the Patent Office unless an United Kingdom for a patent for the same invention communication has been given, or any such direction.	ibited or restricted under Section 22 of cict your invention in this way. Furth stops you from applying for a pater application has been filed at least 6 of and either no direction prohibiting on has been revoked.	of the Patents Act 1977. You hermore, if you live in the at abroad without first getting weeks beforehand in the publication or

APPARATUS IN-SITU

The present invention relates to apparatus and a medical wound dressing for cleansing wounds, and a method of treating wounds using such apparatus.

5

It relates in particular to such an apparatus, wound dressing and method that can be easily applied to a wide variety of, but in particular chronic, wounds, to cleanse them of materials that are deleterious to wound healing, whilst retaining materials that are beneficial in particular to wound healing.

10

15

20

Before the present invention, aspirating and/or irrigating apparatus were some known, and tended to be used to remove wound exudate during wounds assessed therapy. In known forms of such wound therapy, the offtake from the wound, especially when in a highly exuding state, is voided to waste, e.g. to a collection bag.

Materials deleterious to wound healing are removed in this way. However, materials that are beneficial in promoting wound healing, such as growth factors, cell matrix components, and other physiologically active components of the exudate from a wound are lost to the site where they can be potentially of most benefit, i.e. the wound bed, when such therapy is applied.

Such known forms of wound dressing and aspiration and/or irrigation therapy systems thus often create a wound environment under the dressing that may result in the loss of optimum performance of the body's own tissue healing processes and in slow healing, and/or in weak new tissue growth that does not have a strong three-dimensional structure adhering well to and growing from the wound bed. This is a significant disadvantage, in particular in chronic wounds.

30

35

25

It thus would be desirable to provide a system of therapy which

- a) can remove materials deleterious to wound healing from wound exudate, whilst
- a) retaining materials that are beneficial in promoting wound healing in contact with the wound bed.

Dialysis is a known method of treating bodily fluids such as blood ex vivo, to cleanse them of materials that are deleterious to the body systemically. Removal of such materials by contact with the dialysate is the prime purpose of dialysis, whilst also retaining materials such as blood, cells and proteins. Other materials that may have an additional positive therapeutic action are potentially lost to the system through the dialysis membrane, which is also permeable to them. The balance of such materials in the bodily fluid in recirculation may thus be further depleted.

It would be desirable to provide a system of therapy that can remove materials deleterious to wound healing from wound exudate, without substantially diluting materials that are beneficial in promoting wound healing in contact with the wound bed, and which can continuously supply and recirculate such materials to the wound simultaneously.

Dialysis for treating bodily fluids is also a systemic therapy, since the treated fluid is returned to within the body. This is in contrast to a topical therapy in which the treated fluid is recycled outside the body, e.g. to a wound.

Dialysis also requires large amounts either of bodily fluids, such as blood, or dialysate, and consequently the relevant devices tend not to be portable. Even when in a highly exuding state, chronic wounds produce relatively little fluid to be treated compared with internal bodily systems and relatively little materials that are beneficial in some therapeutic aspect to be retained in the wound and/or its environment.

25 It is an object of the present invention

5

10

20

- a) to obviate at least some of the abovementioned disadvantages of known aspiration and/or irrigation therapy systems, and
- b) to provide a system of therapy which can
 - i) remove materials deleterious to wound healing from wound exudate, whilst
 - ii) retaining materials that are beneficial in promoting wound bealing in

- to provide a system of therapy which can remove materials deleterious to wound healing from wound exudate, whilst retaining materials that are beneficial in promoting wound healing in contact with the wound bed,
- c) without affecting the body systemically.

5

10

35

It is a yet further object of the present invention

- a) to obviate at least some of the abovementioned disadvantages of known dialysis systems, and
- b) to provide a system of therapy which can remove materials deleterious to wound healing from wound exudate, whilst retaining materials that are beneficial in promoting wound healing in contact with the wound bed, and
- c) is portable.

Vascular supply to, and circulation in, tissue underlying and surrounding the wound is often compromised. It is a further object of the present invention to provide a system of therapy that retains and supplies therapeutically active amounts of materials that are beneficial in reversing this effect whilst removing deleterious materials, thereby promoting wound healing.

. موزا،

4

- Thus, according to a first aspect of the present invention there is provided an apparatus for cleansing wounds, comprising a conformable wound dressing, having
 - a backing layer which is capable of forming a relatively fluid-tight seal or closure over a wound and
- 25 characterised in that it also comprises
 - a) a cleansing means for selectively removing materials that are deleterious to wound healing from wound exudate, which means is under the backing layer and sits in the underlying wound in use and
 - b) a moving device for moving fluid through the cleansing means, and
- 30 c) optionally bleed means for bleeding the cleansing means.

Materials deleterious to wound healing are removed by the cleansing means, and the cleansed fluid remains in and/or is returned to the wound. The fluid thus retains naturally occurring materials in the wound exudate that are potentially beneficial to wound healing in therapeutically active amounts

The apparatus for cleansing wounds of this first aspect of the present invention is based on this principle: by moving fluid through the cleansing means, the moving device continually brings materials that are deleterious to wound healing and the cleansing means into mutual dynamic contact, rather than relying on the passive movement of such materials, e.g. by diffusion under a chemical potential gradient in a fluid. Their removal from the wound exudate occurs more rapidly with such fluid movement.

There are various embodiments of the apparatus of the first aspect of the present invention for different types of application, including in particular those that are described in detail hereinafter. No matter how different they may be, it is believed that they may be classified into the following functional types, typified by which fluid passes through the cleansing means:

15 1. A 'single-phase system'

In this, the fluid that is moved through the means for fluid cleansing is wound exudate optionally mixed with an irrigant.

This passes into, through and out of the cleansing means, e.g. a chamber under the backing layer, and back to the wound bed.

Materials deleterious to wound healing pass into and are removed by the means for fluid cleansing before return of the cleansed fluid to the wound bed.

2. A 'multiple-phase system'

25

In this, the wound exudate remains in the wound, and does not pass into the cleansing means on a macro-scale.

device for moving fluid is the cleansing fluid and/or the wound exudate optionally mixed with irrigant.

In both single- and multiple-phase systems, it may be appropriate to design and run the device to move fluid through the wound or the cleansing means as a 'circulating system', in which the relevant fluid passes through the cleansing means one or more times in only one direction.

Alternatively, where appropriate it may be provided in the form of a 'reversing system', i.e. the relevant fluid passes through the cleansing means at least 10 once in opposing directions.

The type of cleansing means may determine the appropriate design and mode of running the present apparatus.

15

5

The cleansing means may as desired be operated as a 'single-pass system', i.e. the relevant fluid passes through the cleansing means only once.

Alternatively, where appropriate it may be provided in the form of a 'multiplepass system', in which the relevant fluid passes through the cleansing means 20 and/or over the wound bed several times.

It will be seen that the combination of these parameters create a number of main embodiments of the present invention. In summary, these are:

25

30

1. A 'single-phase system'

- a) as a 'circulating system', in which the wound exudate and optionally irrigant passes through the cleansing means one or more times in only one direction (Examples of such a system are shown in Figures 1, 4, 5, 8 and 9 hereinafter.), or
- b) as a 'reversing system', i.e. the wound exudate and optionally irrigant passes through the cleansing means at least once in opposing directions. (Examples of such a system are shown in Figures 2, 3, and 6 and 7 hereinafter.)

35

This type of cleansing may be operated as a

- i) 'single-pass system', i.e. the relevant fluid passes through the cleansing means only once, or
- ii) as 'multiple-pass system', in which the relevant fluid passes through the cleansing means and/or over the wound bed several times.

5 2. A 'multiple-phase system'

- a) as a 'circulating system', in which
 - (i) the wound exudate and optionally irrigant and/or
 - (ii) a cleansing fluid
- each passes through the cleansing means one or more times in only
 one direction (Examples of such a system are shown in Figures 12-to
 - b) as a 'reversing system', i.e.
 - (i) the wound exudate and optionally irrigant and/or
 - 15 (ii) a cleansing fluid each passes through the cleansing means at least once in opposing directions.

This type of cleansing may be operated as a

- i) 'single-pass system', i.e. the relevant fluid passes through the cleansing means only once, or
 - ii) as 'multiple-pass system', in which the relevant fluid passes through the cleansing means and/or over the wound bed several times.
- In such a 'multiple-phase system', where both the cleansing fluid and/or the wound exudate optionally mixed with irrigant are moving, the flows may be cocurrent or countercurrent.

Examples of such circulating systems are shown in:

30 Figures 3 and 6, in which the exudate is static and a cleansing fluid passes through the elegating means one or more three in one, one

Figure 5, in which the exudate and optionally irrigant and a cleansing fluid each pass through the cleansing means one or more times in only one direction, here countercurrent to each other.

The general features of the dressing of the present invention will now be described, followed by specific features related to specific cleansing means within the dressing.

In all embodiments of the apparatus of this first aspect of the present invention for cleansing wounds, a particular advantage is the tendency of the wound dressing to conform to the shape of the bodily part to which it is a conformation to the shape of the bodily part to which it is a conformation to the shape of the bodily part to which it is a conformation to the shape of the bodily part to which it is a conformation to the shape of the bodily part to which it is a conformation to the shape of the bodily part to which it is a conformation to the shape of the bodily part to which it is a conformation to the shape of the bodily part.

The wound dressing comprises a backing layer with a wound-facing face which is capable of forming a relatively fluid-tight seal or closure over a wound.

The term 'relatively fluid-tight seal or closure' is used herein to indicate one which is fluid- and microbe-impermeable and permits a positive or negative pressure of up to 50% atm., more usually up to 15% atm. to be applied to the wound. The term 'fluid' is used herein to include gels, e.g. thick exudate, liquids, e.g. water, and gases, such as air, nitrogen, etc.

The shape of the backing layer that is applied may be any that is appropriate to aspirating, irrigating and/or cleansing the wound across the area of the wound.

Examples of such include a substantially flat film, sheet or membrane, or a bag, chamber, pouch or other structure of the backing layer, e.g. of polymer film, which can contain the necessary fluids.

The backing layer may be a film, sheet or membrane, often with a (generally uniform) thickness of up to 100 micron, preferably up to 50 micron, more preferably up to 25 micron, and of 10 micron minimum thickness.

Its largest cross-dimension may be up to 500 mm (for example for large torso wounds), up to 100 mm (for example for axillary and inguinal wounds), and

35

30

up to 200 mm for limb wounds (for example for chronic wounds, such as venous leg ulcers and diabetic foot ulcers.

Desirably the dressing is resiliently deformable, since this may result in increased patient comfort, and lessen the risk of inflammation of a wound.

Suitable materials for it include synthetic polymeric materials that do not absorb aqueous fluids, such as

polyolefins, such as polyethylene e.g. high-density polyethylene,

10 polypropylene, copolymers thereof, for example with vinyl acetate and

polyvinyl-alcohol, and mixtures thereof;

polysiloxanes;

25

polyesters, such as polycarbonates; polyamides, e.g. 6-6 and 6 - 10, and

15 hydrophobic polyurethanes.

They may be hydrophilic, and thus also include hydrophilic polyurethanes.

They also include thermoplastic elastomers and elastomer blends, for example copolymers, such as ethyl vinyl acetate, optionally or as necessary blended with high-impact polystyrene.

They further include elastomeric polyurethane, particularly polyurethane formed by solution casting.

Preferred materials for the present wound dressing include thermoplastic elastomers and curable systems.

The backing layer is capable of forming a relatively fluid-tight seal or closure over the wound and/or around the inlet and outlet pipe(s).

exudate. This may, e.g. be a material that is used in Smith & Nephew's Allevyn™, IV3000™ and OpSite™ dressings.

The periphery of the wound-facing face of the backing layer may bear an adhesive film, for example, to attach it to the skin around the wound. 5

This may, e.g. be a pressure-sensitive adhesive, if that is sufficient to hold the wound dressing in place in a fluid-tight seal around the periphery of the wound-facing face of the wound dressing.

10

Alternatively or additionally, where appropriate a light switchable adhesive could be used to secure the dressing in place to prevent leakage. (A light switchable adhesive is one the adhesion of which is reduced by photocuring. Its use can be beneficial in reducing the trauma of removal of the dressing.)

15

(

Thus, the backing layer may have a flange or lip extending around the proximal face of the backing layer, of a transparent or translucent material (for which it will be understood that materials that are listed above are amongst those that are suitable).

?

20

This bears a film of a light switchable adhesive to secure the dressing in place to prevent leakage on its proximal face, and a layer of opaque material on its distal face.

25

To remove the dressing and not cause excessive trauma in removal of the dressing, the layer of opaque material on the distal face of the flange or lip extending around the proximal wound is removed prior to application of radiation of an appropriate wavelength to the flange or lip.

30

35

If the periphery of the wound dressing, outside the relatively fluid-tight seal, that bears an adhesive film to attach it to the skin around the wound, is of a material that has a high moisture vapour permeability or is a switchable material, then the adhesive film, if continuous, should also have a high or switchable moisture vapour permeability, e.g. be an adhesive such as used in Smith & Nephew's Allevyn™, IV3000™ and OpSite™ dressings.

In a number of main embodiments of the present invention (summarised above), irrigant and/or wound exudate is moved in and out of the dressing.

This may be done under negative pressure on the dressing. Such a vacuum may be used to hold the wound dressing in place in a fluid-tight seal around the periphery of the wound-facing face of the wound dressing. This removes the need for adhesives and associated trauma to the patient's skin, and the wound dressing may be merely provided with a silicone flange or lip to seal the dressing around the wound.

10

5

Alternatively, the flow of irrigant and/or wound exudate in and out of the difference dressing may be under positive pressure, which will tend to act at peripheral points to lift and remove the dressing off the skin around the wound.

In such use of the apparatus, it may thus be necessary to provide means for forming and maintaining such a seal or closure over the wound against such positive pressure on the wound, to act at peripheral points for this purpose.

Examples of such means include light switchable adhesives, as above, to secure the dressing in place to prevent leakage.

Since the adhesion of a light switchable adhesive is reduced by photocuring, thereby reducing the trauma of removal of the dressing, a film of a more aggressive adhesive may be used, e.g. on a flange, as above.

25

30

Examples of suitable fluid adhesives for use in more extreme conditions where trauma to the patient's skin is tolerable include ones that consist essentially of cyanoacrylate and like tissue adhesives, applied around the edges of the wound and/or the proximal face of the backing layer of the wound dressing, e.g. on a flange or lip.

THE PROPERTY AND AND THE PROPERTY OF THE PROPE

The latter include, e.g. elastic tubular hose or elastic tubular stockings that are a compressive fit over a limb wound to apply suitable pressure to it when the therapy is applied in this way.

Suitable examples also include inflatable cuffs, sleeves, jackets, trousers, sheathes, wraps, stockings and hose that are a compressive fit over a limb wound to apply suitable pressure to it when the therapy is applied in this way.

Such means may each be laid out over the wound dressing to extend beyond the periphery of the backing layer of the wound dressing, and as appropriate will be adhered or otherwise secured to the skin around the wound and/or itself and as appropriate will apply compression (e.g. with elastic bandages, stockings) to a degree that is sufficient to hold the wound dressing in place in a fluid-tight seal around the periphery of the wound,

Such means may each be integral with the other components of the dressing, in particular the backing layer.

Alternatively, it may be permanently attached or releasably attached to the dressing, in particular the backing layer, with an adhesive film, for example, or these components may be a Velcro ™, push snap or twist-lock fit with each other.

The means and the dressing may be separate structures, permanently unattached to each other.

In a more suitable layout for higher positive pressures on the wound, a stiff flange or lip extends around the periphery of the proximal face of the backing layer of the wound dressing as hereinbefore defined.

The flange or lip is concave on its proximal face to define a peripheral channel or conduit.

It has a suction outlet that passes through the flange or lip to communicate with the channel or conduit and may be connected to a device for applying a vacuum, such as a pump or a piped supply of vacuum.

The backing layer may be integral with or attached, for example by heatsealing, to the flange or lip extending around its proximal face.

15

20

10

30

To form the relatively fluid-tight seal or closure over a wound that is needed and to prevent passage of irrigant and/or exudate under the periphery of the wound-facing face of the wound dressing, in use of the apparatus, the dressing is set on the skin around the wound.

The device then applies a vacuum to the interior of the flange or lip, thus forming and maintaining a seal or closure acting at peripheral points around the wound against the positive pressure on the wound.

10

15

20

25

30

(

With all the foregoing means of attachment, and means for forming and maintaining a seal or closure over the wound, against positive or negative pressure on the wound at peripheral points around the wound, the wound dressing sealing periphery is preferably of a generally round shape, such as an ellipse, and in particular circular.

As noted above, the cleansing means for selectively removing materials that are deleterious to wound healing from wound exudate, which means is under the backing layer and sits in the underlying wound in use, often comprises a chamber. A permeable integer, e.g. a sheet, film or membrane, forms part of the chamber wall.

In single-phase systems, the device to move fluid moves wound exudate in and out of the cleansing means through the permeable integer, either as a 'circulating system' or a reversing system.

In two-phase systems, the chamber contains a cleansing fluid, most usually a fluid (dialysate) phase. The latter is separated from the wound exudate by means of the permeable integer. The fluid that is moved through the means for fluid cleansing by at least one device for moving fluid is the cleansing fluid charter the wound exudate college.

favourably urged by its own resilience against the backing layer to apply gentle pressure on the wound bed.

The cleansing chamber may be integral with the other components of the dressing, in particular the backing layer. 5

Alternatively, it may be permanently attached to them/it, with an adhesive film, for example, or by heat-sealing, e.g. to a flange or lip extending from the proximal face, so as not to disrupt the relatively fluid-tight seal or closure over the wound that is needed.

Less usually, the cleansing chamber is releasably attached to the backing layer, with an adhesive film, for example, or these components may be a push, snap or twist-lock fit with each other.

The cleansing chamber and the backing layer may be separate structures, permanently unattached to each other.

It may be in the form of, or comprise one or more conformable hollow bodies defined by a film, sheet or membrane, such as a bag, pouch or other like 20 structure.

The film, sheet or membrane, often has a (generally uniform) thickness similar to that of films or sheets used in conventional wound dressing backing layers.

That is, up to 100 micron, preferably up to 50 micron, more preferably up to 25 micron, and of 10 micron minimum thickness, and is often resiliently flexible, e.g. elastomeric, and preferably soft.

Such a filler is often integral with the other components of the dressing, in particular the backing layer, or permanently attached to them/it, with an adhesive film, for example, or by heat-sealing, e.g. to a flange

However, when used herein the term 'chamber' includes any hollow body or bodies defined by a film, sheet or membrane, and is not limited to a bag, 35

15

25

30

10

. . <u>4.</u> :

ú

, ,,

pouch or other like structure. It may be formed of a film, sheet or membrane of a polymeric material is in a more convoluted form.

This may be in the form of elongate structures, such as pipes, tubes hollow fibres or filaments or tubules, e.g. in an array with spaces therebetween, running between an inlet and an outlet manifold.

The specific nature of the chamber will depend largely on the type of cleansing means that is employed.

10

20

The apparatus of the invention for aspirating, irrigating and/or cleansing wounds is provided with means for fluid cleansing, which may be

- a single-phase system, such as an ultrafiltration unit, or a chemical adsorption unit; or
- 15 b) a two-phase system, such as a dialysis unit.

In the former, circulating fluid from the wound passes through a single flow path in which materials deleterious to wound healing are removed and the cleansed fluid, still containing materials that are beneficial in promoting wound healing is returned to the wound.

Examples of such systems are shown in Figures 1 and 2 hereinafter.

The means for fluid cleansing in such a system may include a macro- or microfiltration unit, which appropriately comprises one or more macroscopic and/or microscopic filters. These are to retain particulates, e.g. cell debris and micro-organisms, allowing proteins and nutrients to pass through.

The membrane may preferably be of a hydrophilic polymeric material, such as a cellulose acetate – nitrate mixture, polyvinylidene chloride, and, for example hydrophilic polyurethane.

It has microapertures or micropores, the maximum cross-dimension of which will largely depend on the species that are to be selectively removed in this way and those to which it is to be permeable.

- The former may be removed with microapertures or micropores, e.g. typically with a maximum cross-dimension in the range of 20 to 700 micron, e.g. 20 to 50 nm (for example for undesired proteins), 50 to 100 nm, 100 to 250 nm, 250 to 500 nm and 500 to 700 nm.
- Alternatively, this part of a means for wound exudate cleansing may be essentially a stack of such filters connected in series with decreasing cross-dimension of the apertures or pores in the direction of the fluid flow.
- It may include an ultrafiltration unit, which appropriately comprises one or more ultrafiltration filters, such as a one in which the cleansing integer is a filter for materials deleterious to wound healing, for example a high throughput, low protein-binding polymer film, sheet or membrane which is selectively impermeable to materials deleterious to wound healing, which are removed and the cleansed fluid, still containing materials that are beneficial in promoting wound healing is passed by it.

The permeable integer in such a system may be a selective 'low pass' system film, sheet or membrane with relatively small apertures or pores.

25 Suitable materials for the filter include those organic polymers listed above for macro- and micro-filters.

30

35

It will be appropriate to design and run the apparatus with this type of cleansing means as a 'circulating system', in which the relevant fluid passes through the cleansing means one or more times in only one direction, since this is necessary for retaining the filter residue out of the wound exudate.

(It would be inappropriate to run the system in the form of a 'reversing system', since the fluid passing through the cleansing means at least once in the reverse direction would return these materials into the wound.)

An example of such systems is shown in Figures 1, 4, 5, 8 and 9 hereinafter.

The filter integer may be a flat sheet or membrane of a polymeric material, or (less usually) a in a more convoluted form, e.g. in the form of elongate structure, such as pipes, tubules, etc.

5

It may be intended that respectively the chamber or the dressing is disposable. In such case, the device for moving fluid through means for wound exudate cleansing is then started and run until no significant amounts of materials deleterious to wound healing remain in the wound.

10

The dressing and/or the cleansing chamber under the backing layer is then removed and discarded, to remove the materials deleterious to wound healing from wound exudate.

A single-phase system cleansing means may comprise a chemical adsorption unit, for example one in which a particulate, such as a zeolite, or a layer, e.g. of a functionalised polymer has sites on its surface that are capable of removing materials deleterious to wound healing on passing the circulating fluid from the wound over them.

20

The materials may be removed, e.g. by destroying or binding the materials that are deleterious to wound healing, by, for example chelators and/or ion exchangers, and degraders, which may be enzymes.

In this type, the chamber wall film, sheet or membrane is not an integer selectively permeable to materials deleterious to wound healing. The chamber, however, contains one or more materials that can remove materials deleterious to wound healing from wound exudate, by being antagonists to such species.

30

For elements, where the wound, significance contains

TILLESS. The response of the second contains and c

(

5

15

30

pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF α) and interleukin 1 beta (IL-1 β),

oxidants, such as free radicals, e.g., e.g. peroxide and superoxide; and metal ions, e.g. iron II and iron III; all involved in oxidative stress on the wound bed,

The cleansing chamber may contain, behind the permeable integer at least one of the following antagonists captive in a part of the chamber,

protease inhibitors, such as serine protease inhibitors, such as 4-(2-10 aminoethyl)-benzene sulphonyl fluoride (AEBSF, PefaBloc) and Nα-p-tosyl-L-lysine chloromethyl ketone (TLCK) and ε-aminocaproyl-pchlorobenzylamide; cysteine protease inhibitors; matrix metalloprotease inhibitors; and carboxyl (acid) protease inhibitors;

binders and/or degraders, such as anti-inflammatory materials to bind or destroy lipopolysaccharides, e.g. peptidomimetics;

anti-oxidants, such as 3-hydroxytyramine (dopamine), ascorbic acid (vitamin C), vitamin E and glutathione, and stable derivatives thereof, and mixtures thereof; to relieve oxidative stress on the wound bed

It will be appropriate to design and run the apparatus with this type of cleansing means either as a 'circulating system', or in the form of a 'reversing system', since the fluid passing through the cleansing means at least once in the reverse direction would return these materials into the wound.)

25 An example of such systems is shown in Figures 1 and 2 hereinafter.

A second, selectively permeable integer, again suitably a flat sheet or membrane of a polymeric material may be required to form part of a distal chamber wall in the flowpath in any appropriate part of the apparatus to retain materials that are deleterious to wound healing and antagonists or other active materials in the chamber.

A particular advantage of this form of the system, is that where a material that can remove materials deleterious to wound healing from wound exudate is (cyto)toxic or bioincompatible, or not inert to any components that are beneficial in promoting wound healing, the system does not allow any significant amounts of it to pass into the wound.

In two-phase systems, the chamber contains a cleansing fluid, most usually a fluid (dialysate) phase. The latter is separated from the wound exudate by means of a permeable integer.

5

10

15

25

At least one fluid is moved through the means for fluid cleansing by at least one device, in particular across the permeable integer, for example the polymer film, sheet or membrane. This promotes the passage of relatively high concentrations of solutes or disperse phase species, including deleterious materials, from the wound exudate into the cleansing fluid and the chamber and optionally the system in which the cleansing fluid are recirculates. Such systems are described further below.

The fluid that is moved through the means for fluid cleansing by the device for moving fluid is

- a) the cleansing fluid or
- b) the wound exudate optionally mixed with irrigant, or
- c) both.
- 20 Examples of such systems are shown in Figures 3 to 6 hereinafter, in which

Figures 3 and 6 show such a system, such as a dialysis unit, in which the circulating fluid is only the cleansing fluid separated from the wound exudate; Figure 4 shows such a system, such as a dialysis unit, in which the circulating fluid is only the wound exudate optionally with irrigant; and Figure 5 shows such a system, such as a dialysis unit, in which the circulating fluid is the cleansing fluid and the wound exudate optionally with irrigant.

30 The cleansing fluid is less usually static as in Figure 4, as this may not be a system with sufficient (dynamic) outlice attended remove materials deleterious

- ---

The integer may be a film, sheet or membrane, often of the same type, and of the same (generally uniform) thickness, as those used in conventional twophase system, such as a dialysis unit for systemic therapy.

5

15

25

35

As noted above, the film, sheet or membrane may be substantially flat, but, especially where the cleansing fluid circulates, it may more suitably be in the form of pipes, tubes or tubules in an array.

If both fluids move it may be in co- or preferably counter-current direction. 10

Again, materials deleterious to wound healing are removed into the dialysate, and the cleansed fluid, still containing materials that are beneficial in promoting wound healing, remains or is returned by recirculation to the wound.

Examples of these deleterious materials as above include oxidants, such as free radicals, e.g. peroxide and superoxide; iron II and iron III; all involved in oxidative stress on the wound bed;

proteases, such as serine proteases, e.g. elastase and thrombin; cysteine proteases, matrix metalloproteases, e.g. collagenase; and carboxyl (acid) 20 proteases;

endotoxins, such as lipopolysaccharides;

autoinducer signalling molecules, such as homoserine lactone derivatives, e.g. oxo-alkyl derivatives;

inhibitors of angiogenesis such as thrombospondin-1 (TSP-1), plasminogen activator inhibitor, or angiostatin (plasminogen fragment)

pro-inflammatory cytokines such as tumour necrosis factor alpha (TNFlpha) and interleukin 1 beta (IL-1β); and

inflammatories, such as lipopolysaccharides, and e.g. histamine. 30

Examples of suitable materials for the film, sheet or membrane (typically in the form of conformable hollow bodies defined by the film, sheet or membrane, such as the structures described hereinbefore) include natural and synthetic polymeric materials.

The membrane may be of one or more hydrophilic polymeric materials, such as a cellulose derivative, e.g. regenerated cellulose, a cellulose mono-, di- or tri- esters, such as cellulose mono-, di- or tri-acetate, benzyl cellulose and Hemophan, and mixtures thereof.

5

(

Examples of other materials include hydrophobic materials, such as aromatic polysulphones, polyethersulphones, polyetherether-sulphones, polyetherether-polyetherether-sulphones, polyetherether-ketones, and sulphonated derivatives thereof, and mixtures thereof.

10

15

20

Examples of other materials include hydrophobic materials, such as polyesters, such as polycarbonates and polyamides, e.g. 6-6 and 6 – 10; polyacrylates, including, e.g. poly(methyl methacrylate), polyacrylonitrile and copolymers thereof, for example acrylonitrile - sodium metallosulphonate copolymers; and poly(vinylidene chloride).

Suitable materials for the present membranes include thermoplastic polyolefins, such as polyethylene e.g. high-density polyethylene, polypropylene, copolymers thereof, for example with vinyl acetate and polyvinyl alcohol, and mixtures thereof.

The dialysis membrane should have a molecular weight cut off (MWCO) chosen to allow selective perfusion of species deleterious to wound healing that have been targeted for removal from the wound. For example, perfusion of the serine protease elastase (molecular weight 25900 Dalton) would require a membrane with MWCO >25900 Dalton. The MWCO threshold can be varied to suit each application between 1 and 3000000 Dalton.

Preferably, the MWCO should be as close as possible to this weight to exclude interference by larger competitor species.

30

Such use of the present apparatus is, e.g. favourable to the wound healing process in chronic wounds, such as diabetic foot ulcers, and especially decubitus pressure ulcers.

5

15

As noted hereinafter, antagonists, for example degrading enzymes, or sequestrating agents for elastase on the dialysate side of the membrane, may be used to enhance the removal of this protease from wound exudate.

A less conventional type of two-phase system (see above) may be used as 10 the means for fluid cleansing. In this type, the dialysis polymer film, sheet or membrane is not an integer selectively permeable to materials deleterious to wound healing, such as

proteases, such as serine proteases, e.g. elastase, and thrombin; cysteine proteases; matrix metalloproteases, e.g. collagenase; and carboxyl (acid) proteases:

endotoxins, such as lipopolysaccharides;

inhibitors of angiogenesis such as thrombospondin-1 (TSP-1), plasminogen activator inhibitor, or angiostatin (plasminogen fragment)

pro-inflammatory cytokines such as tumour necrosis factor alpha (TNFlpha) and 20 interleukin 1 beta (IL-1β); and oxidants, such as free radicals, e.g., e.g. peroxide and superoxide; and metal ions, e.g. iron II and iron III; all involved in oxidative stress on the wound bed.

25

It will however also permit components of the exudate from a wound and/or irrigant fluid that may be larger or smaller molecules, but are beneficially involved in wound healing to pass into and through it.

In the dialysate, or preferably in one or more solid structural integers with at least one surface in contact with the dialysate, in the means for fluid 30 cleansing, there are one or more materials that can remove materials deleterious to wound healing from wound exudate, by being antagonists to such species, for example enzymes or others, such as protease inhibitors, such as serine protease inhibitors, such as 4-(2aminoethyl)-benzene sulphonyl fluoride (AEBSF, PefaBloc) and $N\alpha$ -p-tosyl-35 ε-aminocaproyl-pand (TLCK) ketone chloromethyl L-lysine

chlorobenzylamide; cysteine protease inhibitors; matrix metalloprotease inhibitors; and carboxyl (acid) protease inhibitors;

binders and/or degraders, such as anti-inflammatory materials to bind or destroy lipopolysaccharides, e.g. peptidomimetics;

- anti-oxidants, such as 3-hydroxytyramine (dopamine), ascorbic acid (vitamin C), vitamin E and glutathione, and stable derivatives thereof, and mixtures thereof; to relieve oxidative stress on the wound bed; and chelators and/or ion exchanges, such as desferrioxamine (DFO), 3-hydroxytyramine (dopamine),
- They further include peptides (including cytokines, e.g. bacterial cytokines, such as α-amino-γ-butyrolactone and L-homocarnosine); and sacrificial redox materials that are potentially or actually beneficial in promoting wound healing, such as iron III reductants; and/or regeneratable materials of this type, such as glutathione redox systems; and

15 other physiologically active components.

In use of the two-phase system dialysis unit, of this less conventional type, a broad spectrum of species will usually pass into the dialysate from the exudate.

20

Some (mainly ionic) species will pass from the dialysate into the irrigant and/or wound exudate through the dialysis polymer film, sheet or membrane that is not very selectively permeable to materials deleterious to wound healing.

25

The components of the exudate from a wound and/or irrigant fluid will diffuse freely to and fro through it.

A steady state concentration equilibrium is eventually set up between the dialysate and the irrigant and/or wound exudate, which is 'topped up' from the wound irresump.

.....

The target materials deleterious to wound healing also pass into the dialysate from the exudate through the dialysis polymer film, sheet or membrane that is not very selectively permeable to materials deleterious to wound healing.

5

10

Unlike the other components of the exudate from a wound and/or irrigant fluid, the target materials deleterious to wound healing come into contact with the dialysate, or preferably with one or more solid structural integers with at least one surface in the dialysate, and are removed by the appropriate antagonists, binders and/or degraders, chelators and/or ion exchangers and redox agents, etc. The cleansed fluid, still containing some materials that are beneficial in promoting wound healing, is returned to the recirculation tube.

Unlike the other components of the exudate from a wound and/or irrigant fluid the target materials are constantly removed from the dialysate, very little of these species will pass from the dialysate into the irrigant and/or wound exudate, and a steady state concentration equilibrium is not set up, even if the species are constantly 'topped up' from the wound dressing.

It is believed that circulating one or both fluids aids in removal from recirculation of the materials deleterious to wound healing from wound exudate, whilst retaining materials that are beneficial in promoting wound healing in contact with the wound.

A particular advantage of this form of the two-phase system, is that where a material that can remove materials deleterious to wound healing from wound exudate is (cyto)toxic or bioincompatible, or not inert to any components that are beneficial in promoting wound healing, the system does not allow any significant amounts of antagonist to diffuse freely out of the dialysate into the irrigant fluid. The active material can act beneficially on the fluid however.

The film sheet or membrane is preferably a dialysis membrane of molecular weight cut off (MWCO) (as conventionally defined) chosen to allow perfusion of species targeted for sequestration or destruction.

35

For example, sequestration of the serine protease elastase (molecular weight 25900 Dalton) would require a membrane with MWCO >25900 Dalton.

The MWCO threshold can be varied to suit each application between 1 and 3 000 000 Dalton. Preferably, the MWCO should be as close as possible to this weight to exclude sequestering interference by larger competitor species.

5

10

15

It will be seen that in most of the embodiments of the apparatus of this first aspect of the present invention for cleansing wounds, the irrigant and/or wound exudate and/or the cleansing fluid passes from the wound dressing and is returned via a recirculation path to it, through the backing layer with a wound-facing face which is capable of forming a relatively fluid-tight seal or closure over a wound.

Each recirculation path will require at least one inlet pipe for connection to a fluid recirculation tube, which passes through the wound-facing face of the backing layer, and

and at least one outlet pipe for connection to a fluid offtake tube, which passes through the wound-facing face of the backing layer,

the point at which the or each inlet pipe and the or each outlet pipe passes through and/or under the wound-facing face forming a relatively fluid-tight seal or closure over the wound.

20 seal

The or each inlet pipe or outlet pipe may be in the form of an aperture, such as a funnel, hole, opening, orifice, luer, slot or port for connection as a female member respectively to a mating end of

a fluid recirculation tube and/or fluid supply tube or a fluid offtake tube (optionally or as necessary via means for forming a tube, pipe or hose, or nozzle, as a male member.

Where the components are integral they will usually be made of the same material (for which it will be understood that materials that are listed above are amountables that are suitable.

The backing layer may often have a rigid and/or resiliently inflexible or stiff area to resist any substantial play between the or each pipe and the or each mating tube, or deformation under pressure in any direction.

It may often be stiffened, reinforced or otherwise strengthened by a boss 5 projecting distally (outwardly from the wound) around each relevant tube, pipe or hose, or nozzle, hole, opening, orifice, luer, slot or port for connection to a mating end of a fluid recirculation tube and/or fluid supply tube or fluid offtake tube.

10

Alternatively or additionally, where appropriate the backing layer may have a stiff flange or lip extending around the proximal face of the backing layer to stiffen, reinforce or otherwise strengthen the backing layer.

Both the single-phase system, such as an ultrafiltration unit, and two-phase 15 system, such as a dialysis unit, may be in modular form that is relatively easily demountable from the apparatus of the invention.

Each recirculation flow path (whether in a single-phase system, such as a filter, or a two-phase system, such as an dialysis unit) requires a means for 20 moving fluid.

Suitable means will be apparent to the skilled person, but the following types of small pump may be used as desired:

25

small reciprocating pumps, such as:

diaphragm pumps - where pulsations of one or two flexible diaphragms displace liquid while check valves control the direction of the fluid flow.

syringe and piston 30 pumps

- where pistons pump fluids through check valves, in particular for positive and/or negative pressure on the wound bed;

7.

small rotary pumps, such as: 35

rotary vane pumps - with rotating vaned disk attached to a drive shaft moving fluid without pulsation as it spins. The outlet can be restricted without damaging the pump.

- with peripheral rollers on rotor arms acting on a flexible fluid circulation tube to urge fluid current flow in the tube in the direction of the rotor.

The type and/or capacity of the device will be largely determined by the appropriate or desired fluid volume flow rate of irrigant and/or wound exudate from the wound for optimum performance of the wound healing process, and by factors such as portability, power consumption and isolation from contamination.

Such a device may also suitably be one that is capable of pulsed, continuous, variable, reversible and/or automated and/or programmable fluid movement. It may in particular be a pump of any of these types.

20

25

30

It will usually apply positive pressure (i.e. above-atmospheric pressure) to the wound bed.

The device is favourably a small peristaltic pump or diaphragm pump, e.g. preferably a miniature portable diaphragm or peristaltic pump. These are preferred types of pump, in order in particular to reduce or eliminate contact of internal surfaces and moving parts of the pump with (chronic) wound exudate, and for ease of cleaning.

Where the pump is a diaphragm pump, and preferably a small portable diaphragm pump, the one or two flexible diaphragms that displace liquid may each be, for example a polymer film, sheet or membrane, that is connected to means for creating the pulsations. This may be provided in any form that convenient interior and an electromachunical oscillator. A plantaction

It therefore does not require any inlet pipe for connection to a fluid recirculation or any outlet pipe for connection to a fluid offtake tube, which passes through the wound-facing face of the backing layer.

In such an embodiment, the prime purpose of the moving device is to move the cleansing fluid. In such an embodiment, amongst suitable devices are:

10

15

20

25

30

35

Suitable examples of such a dressing include, e.g. those making use of rotary impellers, such as: vane impellers, with rotating vaned disk attached to a drive shaft, propellers on a drive shaft, etc.

Such devices may be integral with the dressing. It will be seen that the corresponding apparatus disadvantageously has a need to ensure a fluid-tight seal or closure of the chamber around any part of the moving device where it passes through the chamber wall or wound dressing. They may (disadvantageously) not be portable.

The possibility of using this type of wound dressing may be largely determined by the ability to achieve such a relatively fluid-tight seal or closure. It may be desirable that no part of the moving device pass through the chamber wall or wound dressing.

They may be separate structures, capable of interacting as appropriate for the purpose of moving cleansing fluid along a desired flow path across the selectively permeable integer, effectively in a 'multiple-pass system' within the interior of the chamber.

The moving device may drive the cleansing fluid inside the chamber remotely to set it in motion.

Such an embodiment of the apparatus advantageously enables a tight seal or closure over the wound, and no part of the moving device need pass through the chamber wall or wound dressing.

This avoids the need to ensure a fluid-tight seal or closure of the chamber around it.

The chamber may thus, e.g. be provided in a form with at least one magnetic follower enclosed within it and acted upon by a magnetic stirrer to impel the cleansing fluid. The magnetic stirrer to impel the cleansing fluid may be mounted on, e.g. releasably attached to the other components of the dressing, in particular the backing layer, with a Velcro ™ attachment, an adhesive film (e.g. of pressure-sensitive adhesive) or elastic or non-elastic straps, bands, ties, bandages, e.g. compression bandages, sheets or covers, or be a push, snap or twist-lock fit with it/tem.

It may be mounted, e.g. centrally, on the backing layer above a circular or concentric toroidal hollow body that effectively forms an annular chamber-provided with at least one magnetic follower within it. In use, the magnetic stirrer impels the magnetic follower enclosed within respectively the circular or the annular chamber to cause the wound cleansing fluid to circulate.

15

5

The film, sheet or membrane is often selectively permeable, contains the cleansing fluid, and should have the right resilience against the pulsing pressure to allow significant compression or decompression of the chamber to recirculate the wound cleansing fluid through it.

20

25

30

All such remote devices may be integral with or permanently attached to the dressing, in particular the backing layer, with an adhesive film, for example, or by heat-sealing, or these components may be releasably attached by a Velcro™ attachment, with an adhesive film (e.g. with pressure-sensitive adhesive) or with elastic and non-elastic straps, bands, ties, bandages, e.g. compression bandages, sheets or covers, or they may be permanently unattached to each other.

Another such a device may be provided in the form of at least one ball or sphere, e.g. a solid metal ball or sphere.

Alternatively, the top of a compressible chamber may be provided with a trackway, around which the patient may run his or her fingers to move the fluid around the chamber.

In practice, even from a wound in a highly exuding state, such a rate of exudate flow is only of the order of up to 75 microlitres / cm²/ hr (where cm² refers to the wound area), and the fluid can be highly mobile (owing to the proteases present). Exudate levels drop and consistency changes as the wound heals, e.g. to a level for the same wound that equates to 12.5 – 25 microlitres / cm²/ hr.

Where materials deleterious to wound healing are removed by a two-phase system (see below.), such as a dialysis unit, fluid is also potentially lost to the system through the means for fluid cleansing.

This may occur, e.g. through a dialysis polymer film, sheet or membrane which is also permeable to water, in addition to materials deleterious to wound healing.

15

The balance of fluid in recirculation may thus further decrease, but may be adjusted to minimise this undesired loss in a routine manner. For example the wound may be flooded with irrigant before the dressing is applied to it and run as described herein.

Equally, the balance in any circulating fluid from the wound may be adjusted by means of a means for bleeding the relevant recirculation flowpath. The means for bleeding the flowpath may be situated in any appropriate part of the apparatus that is in contact with the irrigant and/or wound exudate or cleansing fluid respectively, but may be on the relevant offtake and/or recirculation tubes.

It may be a regulator, such as a valve or other control device, e.g. a valve that is turned to switch between bleed and closure, for bleeding fluids from the apparatus, e.g. to a waste reservoir, such as a collection bag.

The inlet and/or outlet pipes, the fluid recirculation tube and the fluid offtake tube, etc. where present may be of conventional type, e.g. of elliptical or

(

5

10

15

30

circular cross-section, and may suitably have a uniform cylindrical bore, channel, conduit or passage throughout their length.

Depending on the desired fluid volume flow rate of irrigant and/or wound exudate from the wound, and the desired amount in recirculation, suitably the largest cross-dimension of the bore may be up to 10 mm for large torso wounds, and up to 2 mm for limb wounds.

The tube walls should suitably thick enough to withstand any positive or negative pressure on them, in particular if the volume of irrigant and/or wound exudate from the wound in recirculation is increased by continuing addition to it of wound exudate, and/or fluid passing from a cleansing fluid through a selectively permeable integer, for example the polymer film, sheet or membrane of a two-phase system, such as an dialysis unit. However, as noted below with regard to pumps, the prime purpose of such tubes is to convey fluid irrigant and exudate through the length of the apparatus flow path, rather than to act as pressure vessels. The tube walls may suitably be at least 25 micron thick.

The whole length of the apparatus for aspirating, irrigating and/or cleansing wounds should be microbe-impermeable once the wound dressing is over the wound in use.

It is desirable that the wound dressing and the interior of the apparatus for aspirating, irrigating and/or cleansing wounds of the present invention is sterile.

The fluid may be sterilised in the system in which the fluid recirculates, including the means for fluid cleansing, by ultraviolet, gamma or electron beam irradiation. This way, in particular reduces or eliminates contact of whereast surfaces and the fluid with any distilling against

fluid antiseptics, such as solutions of chemicals, such as chlorhexidine and povidone iodine; metal ion sources, such as silver salts, e.g. silver nitrate; and hydrogen peroxide;

although the latter involve contact of internal surfaces and the fluid with the sterilising agent.

It may be desirable that the interior of the wound dressing, the rest of the system in which the fluid recirculates, and/or the wound bed, even for a wound in a highly exuding state, are kept sterile, or that at least naturally occurring microbial growth is inhibited.

It is also desirable to provide a system in which physiologically active components of the exudate that are beneficial to wound healing are not removed before or after the application of fluid cleansing, e.g. by the passive deposition of materials that are beneficial in promoting wound healing, such as proteins, e.g. growth factors.

This may occur at any point at least one inlet or outlet pipe through at least one aperture, hole, opening, orifice, slit or slot.

大學一切 安日 一衛

The fluid contained in the hollow body may the deposition of materials that are beneficial in promoting wound healing, and consequent coating,

- a) may be added to the irrigant initially, and as desired the amount in recirculation increased by continuing addition, or
- 25 b) may be used at any point or on any integer in the recirculation path in direct contact with the fluid, e.g. on the means for fluid cleansing or any desired tube or pipe.

Examples of coating materials for surfaces over which the circulating fluid passes include

anticoagulants, such as heparin, and high surface tension materials, such as PTFE, and polyamides, which are useful for growth factors, enzymes and other proteins and derivatives.

5

10

15

In all embodiments of the apparatus the type and material of the tubes throughout the apparatus of the invention for aspirating, irrigating and/or cleansing wounds will be largely determined by their function.

To be suitable for use, in particular on chronic timescales, the material should be non-toxic and biocompatible, inert to any active components, as appropriate of the irrigant and/or wound exudate and of any dialysate. It should not allow any significant amounts of extractables to diffuse freely out of it in use of the apparatus.

10

25

It should be sterilisable by ultraviolet, gamma or electron beam irradiation and/or with fluid antiseptics, such as solutions of chemicals, fluid- and microbe-impermeable once in use, and flexible.

15 Examples of suitable materials include synthetic polymeric materials, such as polyolefins, such as polyethylene, e.g. high-density polyethylene and polypropylene.

Suitable materials for the present purpose also include copolymers thereof, for example with vinyl acetate and mixtures thereof. Suitable materials for the present purpose further include medical grade poly(vinyl chloride).

For the purposes of fluid cleansing in the apparatus of the present invention, both the single-phase system, such as an ultrafiltration unit, and two-phase system, such as a dialysis unit, may have captive (non-labile, insoluble and/or immobilised) species such as the following, bound to an insoluble and/or immobilised) substrate over and/or through which the irrigant and/or wound exudate from, the wound dressing passes in turn to the fluid recirculation tube(s):

30 antioxidants and free radical scavengers, such as 3-hydroxytyramine (doesnins), especial editionin (d), vitamin E and obtainions, and stable

inicipae dieli dei modernie modernie ilei diele ilei diele d

-

protease inhibitors, such as TIMPs and alpha 1-antitrypsin (AAT); serine protease inhibitors, such as 4-(2-aminoethyl)-benzene sulphonyl fluoride (AEBSF, PefaBloc) and $N\alpha$ -p-tosyl-L-lysine chloro-methyl ketone (TLCK) and ϵ -aminocaproyl-p-chlorobenzylamide; cysteine protease inhibitors; matrix metalloprotease inhibitors; and carboxyl (acid) protease inhibitors;

sacrificial redox materials that are potentially or actually beneficial in promoting wound healing, by the removal of materials that trigger the expression into wound exudate of redox-sensitive genes that are deleterious to wound healing;

autoinducer signalling molecule degraders, which may be enzymes; and anti-inflammatory materials to bind or destroy lipopolysaccharides, e.g. peptidomimetics

Other physiologically active components of the exudate that are deleterious to wound healing may be removed in this way.

These may be removed with suitable chelators and/or ion exchangers, degraders, which may be enzymes, or other species.

The following types of functionalised substrate has sites on its surface that are capable of removing materials deleterious to wound healing on passing the circulating fluid from the wound over them:

heterogeneous resins, for example silica-supported reagents such as:

25

5

10

metal scavengers,

- 3-(diethylenetriamino)propyl-functionalised silica gel
- 2-(4-(ethylenediamino)benzene)ethyl-functionalised silica gel
- 3-(mercapto)propyl-functionalised silica gel
- 30 3-(1-thioureido)propyl-functionalised silica gel triamine tetraacetate-functionalised silica gel

or electrophilic scavengers,

- 4-carboxybutyl-functionalised silica gel
- 4-ethyl benzenesulfonyl chloride-functionalised silica gel
 propionyl chloride-functionalised silica gel
 3-(isocyano)propyl-functionalised silica gel

3-(thiocyano)propyl-functionalised silica gel

	3-(2-succinic anhydride)propyl-functionalised silica gel
	3-(maleimido)propyl-functionalised silica gel
	3-(Malelinido)propyr-turiotionalised elited get
5	or nucleophilic scavengers,
	3-aminopropyl-functionalised silica gel
	3-(ethylenediamino)-functionalised silica gel
•	2-(4-(ethylenediamino)propyl-functionalised silica gel
	3-(diethylenetriamino)propyl-functionalised silica gel
10	4-ethyl-benżenesulfonamide-functionalised silica gel
	2-(4-toluenesùlfonyl hydrazino)ethyl-functionalised silica gel
	3-(mercapto)propyl-functionalised silica gel
	dimethylsiloxy-functionalised silica gel
	or base or acid scavengers,
15	3-(dimethylamino)propyl-functionalised silica gel
10	3-(1,3,4,6,7,8-hexahydro-2H-pyrimido-[1,2-α]pyrimidino)propyl-functionalised
	silica gel
	3-(1-imidazol-1-yl)propyl-functionalised silica gel
	3-(1-morpholino)propyl-functionalised silica gel
20	3-(1-piperazino)propyl-functionalised silica gel
	3-(1-piperidino)propyl-functionalised silica gel
	3-(4,4'-trimethyldipiperidino)propyl-functionalised silica gel
	2-(2-pyridyl)ethyl-functionalised silica gel
	3-(trimethylammonium)propyl-functionalised silica gel
25	5-(Hillouty tartition and property)
20	or the reagents,
	3-(1-cyclohexylcarbodiimido)propyl-functionalised silica gel
	TEMPO-functionalised silica gel
	2-(diphenylphosphino)ethyl-functionalised silica gel
30	2-(3,4-cyclohexyldiol)propyl-functionalised silica gel
-	Gegt-reiden propyt-functionalised silles get
	• 100 100 100 100 100 100 100 100 100 10

- 2-(carbomethoxy)propyl-functionalised silica gel
- 3-(4-nitrobenzamido)propyl-functionalised silica gel
- 3-(ureido)propyl-functionalised silica gel
- 5 or any combinations of the above.

15

20

30

The use of such captive (non-labile, insoluble and/or immobilised) species, such as the foregoing, bound to an insoluble and immobilised) substrate over and/or through which the irrigant and/or wound exudate from, the wound dressing passes has been described hereinbefore as suitable for the means for fluid cleansing.

However, they may additionally, where appropriate, be used in any part of the apparatus that is in contact with the irrigant and/or wound exudate, but often within the dressing, for removal of materials deleterious to wound healing from wound.

In a second aspect of the present invention there is provided a method of treating wounds to promote wound healing using the apparatus for aspirating, irrigating and/or cleansing wounds of the present invention.

The present invention will now be described by way of example only with reference to the accompanying drawings in which:

25 Figures 1 to 13 are cross-sectional views of apparatus for cleansing a wound according to the first aspect of the present invention.

Figures 1 to 10 show apparatus with a single-phase means for wound exudate cleansing, and of these:

Figures 1, 3, and 6 and 7 show a reversing system, in which the wound exudate and optionally irrigant passes through the cleansing means one or more times at least once in opposing directions; and

Figures 2, 4, 5, and 8 show a circulating system, in which it/they pass in only one direction; and

Figures 11 to 13 show apparatus with a two-phase means for wound exudate cleansing, and of these:

Figure 11 shows such apparatus in which the cleansing phase is static.

Figures 12 and 13 show such apparatus in which the cleansing phase passes through the cleansing means.

Referring to Figures 1 to 10, the apparatus (1) for cleansing wounds comprises

a conformable wound dressing (2), having
a backing layer (3) which is capable of forming a relatively fluid-tight seal or
closure over a wound and bears an adhesive film (25), to attach it to the skin

sufficiently to hold the wound dressing (2) in place;

a cleansing means (4) for selectively removing materials that are deleterious to wound healing from wound exudate, which means is under the backing layer (3) and sits in the underlying wound in use; and a moving device (7) for moving fluid through the cleansing means.

Optional bleed means (8) for bleeding the cleansing means (4) are omitted in most of the Figures.

In Figure 1, a reversing system is shown (wound exudate passes through the cleansing means at least once in opposing directions). The microbe-impermeable film backing layer (3) bears a centrally attached proximally projecting recessed boss (11).

A porous film (12) and a permeable membrane (13) mounted in the recess (14) of the boss (11) define a cleansing chamber (15) which contains a solid particulate (not shown) for sequestering deleterious materials from but initially separated from the wound studies. These integers from the

<u>-</u>_ :-

10

25

30

An inlet and outlet pipe (19) passes centrally through the boss (11) and communicates between the interior of the boss (11) and a syringe barrel (20), which is part of a syringe moving device (7).

5

In use, movement of the syringe plunger (22) sucks and forces wound exudate to and fro through the cleansing means (4).

The apparatus (1) in Figure 2, is a circulating system (wound exudate passes

10 through the cleansing means one or more times in only one direction).

It is similar in construction to Figure 1, but differs mainly in that an inlet pipe (20) passes in a bend through the boss (11) and communicates between the interior of the chamber (16) and the syringe barrel (19) via a low resistance non-return valve (21).

ŧ

.3:

In use, the plunger (22) of the syringe moving device (7) is withdrawn to suck wound exudate into the cleansing means (4), which sequesters deleterious materials from the wound exudate.

20

15

The plunger (22) of the syringe moving device (7) is then returned to force cleansed wound exudate through the valve (21) into the annular chamber (16), and thence through the porous film (17) back into the wound.

The apparatus (1) in Figure 3 differs mainly from that in Figure 2 in the position of the porous film (12) in the flow path.

The mode of use is the same: movement of the syringe plunger (22) sucks and forces wound exudate to and from through the cleansing means (4).

30

35

The apparatus (1) in Figure 4 differs from that in Figure 2 in the moving device (7).

This is a press-button pump in place of a syringe. The pump (7) is mounted on the distal face of the backing layer (3).

It comprises a resiliently compressible intake chamber (26), connected by an outlet pipe (19) to the cleansing means (4) and by a transfer tube (27) via a low resistance non-return valve (31) to a resiliently compressible output chamber (36), connected by an inlet pipe (20) to the interior of the chamber 5 - (16).

In use, the intake chamber (26) is manually compressed and released, its return to its original configuration causing wound exudate to be drawn through the cleansing means (4).

10

30

The output chamber (36) is then manually compressed and released, its return to its original configuration causing cleansed wound exudate to be drawn through the non-return valve (21) from the intake chamber (26).

- The cycle is repeated as long as desired, and from the second cycle onwards, when the output chamber (36) is manually compressed, it causes cleansed wound exudate to be forced through the annular chamber (16), and thence through the porous film (17) back into the wound.
- Referring to Figures 5 to 7 and 10, the apparatus (1) in each comprises a cleansing means (4), which comprises a chamber (5), here a conformable hollow bag, defined by the backing layer (3) and a polymer film (6) that is permeable and permanently attached to the proximal face of the backing layer (3). It sits under the domed backing layer (3) in the underlying wound in use, and contains a cleansing fluid absorbed in a resiliently flexible foam (41).

Figures 5 to 7 and 10 show different methods of moving wound exudate in and out of the cleansing means (4).

In Figure 5, an electromechanical oscillator or piezoelectric transducer (33) is

the bleed valve (8) may be opened and excess fluid vented off, and any excess pressure relieved.

- In Figure 6, the foam (41) has a resiliently flexible, balloon core (47), which is inflatable and deflatable with a fluid, such as a gas, e.g. air of nitrogen, or a liquid, such as water or saline, to apply varying pressure to the chamber (5) via an inlet and outlet pipe (48) mounted at the periphery of the backing layer (3).
- The pipe (48) is connected to a suitable moving device (58) (not shown) for move moving the inflating fluid-in and out of the core (47) and thus to move wound exudate in and out of the cleansing means (4). Such a device is suitably one that is capable of optionally pulsed, reversible fluid movement.
 - It may in particular be a small peristaltic pump or diaphragm pump, e.g. preferably a battery-driven miniature portable diaphragm or peristaltic pump, e.g. mounted centrally on the backing layer (3) above the chamber (5) and is releasably attached to the backing layer (3) with a Velcro™ attachment.

* ***

中一 三十二十二十二

Figure 7 shows a variant of the apparatus (1) of Figure 6. The resiliently flexible, balloon core (47) under the backing layer (3) is replaced by a resiliently flexible, balloon chamber (49), defined by the backing layer (3) and a rigid polymer dome (50) that is impermeable and permanently attached to the distal face of the backing layer (3).

25

30

35

- It is also inflatable and deflatable with a fluid, such as a gas, e.g. air or nitrogen, or a liquid, such as water or saline, to apply varying pressure to the chamber (5) via an inlet and outlet pipe (51) mounted at the periphery of the backing dome (50).
- A suitable moving device (58) (not shown) is used for moving the inflating fluid in and out of the core (47) and thus to move wound exudate in and out of the cleansing means (4), as noted in respect of Figure 6, and may be mounted on the dome (50) rather than the backing layer (3).
- In Figure 10, an electromagnetic solenoid core (53) within an electrical coil (54) is mounted centrally in contact with the backing layer (3) on a rigid

flange (55). The electrical coil (54) is connected electrically to an appropriate alternating electrical power source (60) (shown schematically).

The chamber (5) is provided at its base with an attached disc (56) of a ferromagnetic material sheathed from the wound exudate and cleansing fluid:

As the direction of current flow alternates, the solenoid core follows, and so compresses and releases the chamber (5), and hence causes wound exudate to be forced to and fro through the cleansing means (4).

10

15

20

25

30

- -- 5-

(

Figures 8 and 9 shows a variant-of the apparatus (1)-of Figures 1 and 4. The moving device (7) in both cases that respectively replaces the syringe and the press-button pump is a small peristaltic pump or diaphragm pump, e.g. preferably a battery-driven miniature portable diaphragm or peristaltic pump, e.g. mounted centrally on the backing layer (3) above the chamber (5) and is releasably attached to the backing layer (3) with a Velcro ™ attachment.

Figure 11 show apparatus with a two-phase means for wound exudate cleansing in which the cleansing phase is static. It is similar in structure to the apparatus shown in Figures 5 to 7 and 10.

The apparatus (1) comprises a cleansing means (4), which comprises a chamber (5), here a conformable hollow bag, defined by the backing layer (3) and a polymer film (6) that is permeable and permanently attached to the proximal face of the backing layer (3). It contains a cleansing fluid absorbed in a resiliently flexible foam (41).

However, the resiliently flexible foam (41) is contained in a permeable membrane (43) and contains a material for sequestering deleterious materials from the wound exudate.

e.g. mounted centrally on the backing layer (3) above the chamber (5) and releasably attached to the backing layer (3) with a Velcro ™ attachment.

An inlet pipe (20) passes peripherally through the backing layer (3) and communicates between the wound space and the pump.

In use, wound exudate is moved by the pump (7) through the cleansing means (4), and the foam (41) sequesters deleterious materials from the wound exudate.

10

...5

ा करणांक के ान्मियारक 12 shows apparatus with a∵two-phase means for wound exudate र करणांक प्राप्त cleansing in which the cleansing phase moves.

The apparatus (1) comprises a cleansing means (4), which comprises a chamber (5), here in the form of tubules in an array under the backing-layer 15 (3) between a first boss (71) and a second boss (72) both mounted in the backing layer (3). The tubules are made from a polymer membrane that is selectively permeable to deleterious materials in the wound exudate, and contain a dialysate fluid.

20

25

An inlet pipe (20) passes from the first boss (71) and communicates between the interior of the chamber (5) and a pump (7), e.g. preferably a batterydriven miniature portable diaphragm or peristaltic pump, e.g. mounted centrally on the backing layer (3) above the chamber (5) and releasably attached to the backing layer (3) with a Velcro™ attachment.

An outlet pipe (21) passes from the second boss (72) and communicates between the interior of the chamber (5) and the pump (7).

In use, dialysate fluid is moved by the pump (7) through the cleansing means 30 (4), and it removes deleterious materials from the wound exudate.

Figure 13 shows apparatus with a two-phase means for wound exudate cleansing in which the cleansing phase moves.

The apparatus (1) comprises a cleansing means (4), which comprises a chamber (5), here in the form of bag, which contains dialysate fluid, under the backing layer (3) and under a foam filler (81).

An outlet pipe (89) passes through the backing layer (3) and communicates between the interior of the chamber (5) and a pump, e.g. preferably a battery-driven miniature portable diaphragm or peristaltic pump, e.g. mounted centrally on the backing layer (3) above the chamber (5) and releasably attached to the backing layer (3) with a Velcro TM attachment.

10

An inlet pipe (90) passes peripherally through the backing layer (3) and communicates between the chamber (5) and the pump.

In use, dialysate is moved by the pump (7) through the cleansing means (4), and removes deleterious materials from the wound exudate.

Figure 2

Figure 3

Figure 4b

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

4 4 4 2 3

Figure 11

Figure 12

Figure 13

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.