Polling Errors

Graham Tierney

11/6/2020

Assuming unbiased polls

Most of you did something like this. For each poll k of state s at time t, Y_{stk} gives the two-party support share of a candidate.

$$E[Y_{stk}] = \theta_{s,t}$$

$$\theta_{s,t} \sim N(\theta_{s,t-1}, \sigma_{\theta})$$

Winner determined by $\theta_{s,1} > 50\%$.

Checking bias

You could do this:

$$E[Y_{stk}] = \theta_{s,t} + \alpha_s$$
$$\theta_{s,t} \sim N(\theta_{s,t-1}, \sigma_{\theta})$$
$$\alpha_s \stackrel{iid}{\sim} N(\mu_{\alpha}, \sigma_{\alpha})$$

Winner determined by $\theta_{s,1} > 50\%$.

How to set hyper parameters?

Could set $\mu_{\alpha} = \text{mean}(b_1, \dots, b_S)$ and $\sigma_{\alpha} = \text{sd}(b_1, \dots, b_S)$ where b_s is a point estimate of polling error in 2016 in state s (lots of analysts have made these). Could look at longer historical data by state.

Because the polling data cannot separate θ and α , sensitivity checks, particularly in μ_{α} , are very important. Could make a plot of P(Biden Win) vs μ_{α} .

How to estimate?

Note lack of information in data is a blessing and a curse. Curse is obvious, you can't learn them easily. But the blessing is you don't necessarily need to re-estimate your model.¹

If you have your simulated draws of $\theta_{s,1}$, don't need to re-estimate model. For draw of $\theta_{s,1}$, subtract rnorm $(1,\mu_{\alpha},\sigma_{\alpha})$ and recompute who wins.

¹The priors do technically give you some identifiability, and a fully Bayesian approac would be to re-estimate the model many times for different priors on α_s .