A RESEARCH PLANNING ASSESSMENT FOR APPLICATIONS OF ARTIFICIAL INTELLIGENC..(U) UNIVERSAL TECHNOLOGY CORP DAYTON OHIO M M HENGHOLD ET AL. JAN 86 AFMAL-TR-86-4018 F33615-83-C-5077 F/G 13/8 1/3 AD-A168 692 NL UNCLASSIFIED

A RESEARCH PLANNING ASSESSMENT FOR APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN MANUFACTURING

UNIVERSAL TECHNOLOGY CORPORATION 1270 N. FAIRFIELD ROAD DAYTON, OHIO 45432

AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT PATTERSON AIR FORCE BASE, OHIO 45433

JANUARY 1986

INTERIM REPORT FOR PERIOD FEBRUARY 1985 - AUGUST 1985

APPROVED FOR PUBLIC RELEASED DISTRIBUTION UNLIMITED

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

ONE FILE COP

86 6 11 054

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as, in any manner, licensing the holder or any other person or corporation, or corveying any rights or permission to manufacture, use, or sell any patented invention that may, in any way, be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for

publication.

ROGER D. GRISWOLD, Project Manager

Computer Integrated Manufacturing
Branch

GERALD C. SHUMAKER, Actg. Chief Computer Integrated Manufacturing

Branch

FOR THE COMMANDER:

WINCENT J. RUSSO/ Actg. Chief

Manufacturing Technology Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/MLTC, W-PAFB, OH 45433 to help maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AD-A168692 Unclassified SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE neport security classification Unclassified 1b. RESTRICTIVE MARKINGS 28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; Distribution 26. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited. A PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) AFWAL-TR-86-4018 64 NAME OF PERFORMING ORGANIZATION 66. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable) Universal Technology Corp. Materials Laboratory (AFWAL/MLTC) 6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code) 1270 North Fairfield Rd. Air Force Wright Aeronautical Laboratories Dayton OH 45432 Wright-Patterson AFB OH 45433 Se. NAME OF FUNDING/SPONSORING 86. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) <u>F33615-83-C-5077</u> Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO. 11. TITLE (Include Security Classification) A Research Planning Assessment for Applications of 78011F 12. PERSONAL AUTHOR(S) Henghold, William M. <u>Iriscari</u> Thomas (Air Force Institute of Technology) 136. TIME COVERED 15. PAGE COUNT Interim FROM <u>850201</u> _ то <u>_850831</u> January 1986 211 16. SUPPLEMENTARY NOTATION COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB. GR. Manufacturing, Manufacturing Technology, Artificial 09 02 Intelligence. 08 19. ABSTRACT (Continue on reverse if necessary and identify by block number) ABSTRACT - The Air Force Wright Aeronautical Laboratories Materials Laboratory is charged with developing a research program for applications of Artificial Intelligence (AI) as it relates to manufacturing. As a part of program development, advisory input was sought from experts from industry, academia, and government. A structured methodology was employed which featured a top-down approach leading from concept level articulation, through application area goals and objectives, to project level detail. This report documents the effort in terms of providing methodological background, application area goals and objectives, and results obtained from project generation and assessment.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASS	IFICATION
UNCLASSIFIED/UNLIMITED 🖫 SAME AS RPT. 🗆 DTIC USERS 🗀	Unclassified	
228. NAME OF RESPONSIBLE INDIVIDUAL	226 TELEPHONE NUMBER	22c OFFICE SYMBOL
Roger D. Griswold	(Include Area Code) 513-255-7371	AFWAL/MLTC

SECURITY CLASSIFICATION OF THIS PAGE	
BLOCK 11 Cont.	
Artificial Intelligence in Manufacturing.	(Unclassified)
·	
·	
	· ·
	!

PREFACE

This interim report describes work in support of the Air Force Wright Aeronautical Laboratories Materials Laboratory under contract F33615-83-C-5077 from February 1985 to August 1985. It is published for information only and does not necessarily represent the recommendations, conclusions, or approvals of the Air Force.

The Project Manager for the Air Force was Roger D. Griswold, Computer Integrated Manufacturing Branch, Manufacturing Technology Division. This report was prepared by the Universal Technology Corporation, Engineering Services Division, Dayton OH. The Principal Investigators and authors were Dr William M. Henghold of Universal Technology Corporation and Capt Thomas Triscari, Jr., of the Air Force Institute of Technology.

This report documents a group process and in large measure, it reports the efforts provided by the participants of a workshop held 31 July 1985 to 1 August 1985. The authors wish to thank all workshop participants for their contributions to this effort. In particular, we wish to thank the sub-panel members for their support in laying the goundwork. These people are George Chryssolouris, Mark Cutkosky, Bob Didocha, Ed Fisher, Geoff Goldbogen, Don Hillman, Dave Liu, Bob Lorenz, Dennis O'Conner, Pete Papas, Ben Peek, Andy Tang, Dave Yancey, and Bob Young. Their's is the creative effort.

Accesio	n For		
NTIS DTIC	•	4	
Unanno	ounced		
Justific	ation		
By Distribution/			
A	Availability Codes		
Dist	Avail a Spec		
A-1			

LIST OF FIGURES

FIGURE #	CAPTION PAGE
1	Unit Process Frequency Distributions 10
2	Manufacturing Systems Frequency Distributions 13
3	${ m I}^2$ H Frequency Distributions
4	Frequency Distributions for Intelligent Software Development Assistant
	LIST OF TABLES
TABLE #	CAPTION PAGE
1	Demographic Recompilation 8
2	Unit Process Rankings
3	Manufacturing Systems Rankings
4	I ² H Rankings
5	Group Means from Workshop Feedback Survey 19

TABLE OF CONTENTS

SECTION	DESCRIPTION	AGE
I.	INTRODUCTION	1
	 Background	1
II.	METHODOLOGY	3
	1. Overview	3 4 5 6
111.	DISCUSSION	8
	 Demographics	9
APPENDIX A APPENDIX B APPENDIX C APPENDIX D	UNIT PROCESS PANEL RESULTS	

SOURCE PROGRAM SERVICES SANDARDS PROGRAM RESIDENCE

INTRODUCTION

1. Background

Artificial intelligence (AI) is concerned with translating the understanding of how humans acquire, organize, and use information. Two central goals have been to understand the principles that make intelligence possible and to make computers more useful. AI appears to have significant application potential to many important manufacturing problems, ranging from production planning and control processes to shop floor automation(s). The techniques and theoretical results from this young field of inquiry hold promise for significant advances which lead from prototypes to applications that will meet manufacturing user needs.

The Air Force Wright Aeronautical Laboratories Materials Laboratory is charged with developing a research program for applications of AI as it relates to manufacturing. The R&D program must span the manufacturing environment, including the design and manufacturing interactions, in a comprehensive manner and be thoroughly integrated with on-going activities. The latter includes AI efforts not directly related to manufacturing (such as the Strategic Computing Program) as well as non-AI pursuits that do relate to manufacturing (such as the Computer Integrated Manufacturing Program). While the Materials Laboratory is the Air Force Center for Manufacturing R&D Projects there is relatively little "in-house" expertise in AI techniques. Thus, the task facing the Laboratory Management was how to incorporate a rapidly developing technology (AI) into its on-going research programs.

Although the final structure of the R&D program remains a management responsibility, it was recognized that industry and academia should be encouraged to provide input in the form of recommendations to the program's content and timing. By obtaining advisory inputs from such experts, the eventual AI in manufacturing R&D program should minimize unintentional research duplication (i.e., "reinventing the wheel") and increase the chances of finding opportunities for synergism with other research efforts.

There were seve al activities that the Materials Laboratory sponsored to initiate an AI in Manufacturing R&D Program. These were: an initial planning workshop for AI in manufacturing held 8-9 November, 1984; an assessment of AI applications to manufacturing, undertaken by members of the Industrial Automation Laboratory of Texas A&M University; and a study of the potential for in-house research activities undertaken by a select computer science advisory committee.

Of particular importance to this effort are the outcome and lessons learned from the November 1984 planning effort. Although this workshop did not yield any specific results for an AI in Manufacturing R&D Program, it had a number of positive attributes. There was a free and open exchange of information. The vocational composition of the approximately 75 attendees brought an excellent balance of academic, industry, and government perspectives to the discussions, and there was a definite feeling of commitment to the future. The outcome of this initial workshop highlighted the need for a follow-on activity with a more structured environment and

agenda to document goals and objectives and to drive below the concept level to specific projects.

It was decided that a second workshop, having more specified objectives, offered an excellent opportunity to build on past efforts. From an Air Force analysis, a framework emerged in the form of an overall strategy and methodology developed which called for significant pre-workshop preparation to support the follow-on activity. This report documents the methodology employed and provides the results obtained from the process.

2. Report Organization

THE CONTRACT OF THE PROPERTY O

The methodology employed in assessing AI needs in manufacturing involved concept definition, application area specific white papers that encapsulate the challenges of applying AI, project level detail, and statistical assessments of projects, coupled with expert commentary. The methodology is discussed in detail in Section II.

Section III presents a discussion of selected results. It includes demographic information, assessment highlights and commentary on both the methodology and the utility of the information captured.

The process utilized in obtaining the AI assessments started with a blank piece of paper and finished with completed workbooks for each participant. A completed workbook is found in the appendices to this report. Appendices A, B, and C give the results from the deliberations of the Unit Process, Manufacturing Systems, and Intelligent Information Handling ($\rm I^2H$) Panels. Each contains panel specific white papers, assessment criteria, example projects, assessment statistics, and expert commentary. Instructions and copies of forms are contained in Appendix D.

METHODOL OGY

1. Overview

The underlying rationale in planning and developing an R&D program for AI in Manufacturing was the idea that the collective efforts, information, and knowledge from various experts are needed to achieve an integrated program. The R&D planning methodology developed sought to provide a structured approach for facilitating and coordinating the communication of the participants both before and during the second workshop. The primary objectives of the R&D program planning methodology were:

- narrowing "manufacturing" into more specific application areas including potential goals and objectives for each application area;
- generating a potential list of R&D projects for the application areas; and.
- obtaining an assessment of the utility of the application area candidate projects.

In order to achieve the preceding objectives, a phased approach was selected. The phases called for application area definition, a ground work phase, a pre-workshop participation phase, and the workshop proper. These phases or activities contributed in an incremental way to further defining and planning the AI in Manufacturing Program. Each phase was pursued under an overall program strategy and associated goals.

2. Program Strategy and Goals

Laboratory Management provided strategic guidance for structuring the Air Force R&D Program for AI in manufacturing. It provided the basic foundation and direction for further planning activities. The following represent some of the major goals to be achieved with the R&D Program.

- 1) The overall goal of the program is to develop and apply AI techniques to manufacturing in such a manner that aerospace system life cycle costs are lowered, productivity is improved, and manufacturing responsiveness is increased.
- 2) The program will be an integral part of the total Air Force and other government manufacturing efforts.
- 3) The program will have its primary focus on batch manufacturing specific needs. The nature of the need that calls for Air Force investment must be articulated for any project that is proposed.

- 4) The program will be balanced among rear, medium, and long-term goals. There is a need to achieve a series or incremental gains as AI techniques are applied to recognized manufacturing problems. Some of the initial application oriented projects must produce tangible results to insure continuing and even increased support. There must be a careful weighing of problem complexity, potential gains, and the dollar/opportunity costs required to achieve the gains. At the same time, the program must support the basic research needed to provide the next generation of AI based solutions to manufacturing problems.
- 5) The overall strategy for the program will be built upon the balanced perspectives of academia, industry, and government and will include a combination of direct contract, in-house, and cooperative efforts; e.g., the Air Force proposed Research Institute for AI in Manufacturing. This combination recognizes the need to insure that AI efforts for manufacturing are supported across a broad base of industry, academia, and government. The combination also insures that there are vehicles for near and mid-term applications, as well as for more long-term projects. In addition, the combination insures program and project definitions are looked at from a variety of perspectives. Neither the Air Force, aerospace industry, or academic institutions can achieve maximum results by proceeding independently.

The above mentioned goals or principles provided a starting point or frame of reference required of any top-down approach to R&D program definition. As expressed by management, the goals, integration requirements, and need articulation, indicated a phased approach to project development and indicated a strategy that seeks synergism. The latter is important because although the activity is being lead by the Air Force, it is hoped the products will be applicable to a wide range of government, industry, and academic pursuits.

3. Application Areas

スタング していいいいかい こうじゅうしゅうしゃ 一名

In a broad sense, manufacturing can be thought of as beginning with product design and ending with support and maintenance of the product in the field. Manufacturing can be conceptualized as consisting of an information processing system and two general functions: (1) creating and using the manufacturing systems and (2) producing the product with unit processes. The activities associated with defining all the resources, products, plans, processes, schedules, materials requirements, etc. fall into the manufacturing systems area. The actual making of the product is considered the manufacturing unit process operation. In other words, manufacturing systems plan, schedule and control the support and implementation of the actual production, whereas the unit process operations execute the plan and perform the actual production. Overlayed on this overall manufacturing activity is the information system that contains the manufacturing data and its corrent state, its past history, and its planned (or proposed) rature. Internation systems are contained in computer data bases, files, and expertise of people and are an abstract representation of the physical centuring operation.

It is recognized that definitional boundaries may overlap and that gray areas may exist in any partitioning of the manufacturing whole into application areas. However, with the above perspective in mind, application areas were chosen as unit processes, manufacturing systems, and intelligent information handling (I^2H) .

4. Ground Work Phase

The ground work phase was the critical element in the overall methodology. A small number (4 or 5) of experts from industry and academia formed sub-panels for the unit process, manufacturing systems, and I^2H application areas. They undertook the arduous task of providing the structure for follow-on activities. To this end, they undertook the efforts required to:

- 1) Prepare a "White Paper" for each application area which gave an overview of the challenges and opportunities for the development and application of AI methodologies as related to the characteristics of the specific application area. These White Papers presented the state of technology as viewed from a unit process, manufacturing systems, or I²H perspective, including design interaction. Prime impediments to progress were emphasized and possible solutions highlighted. The White Paper served as a general thought piece that set the tone for group interaction by describing the environment and highlighting problems.
- 2) Prepare a succinct statement of the application area goal and sub-goals. This statement was application area specific in consonance with the overall goal of the program.
- 3) Prepared objectives that support the goals in an integrated, time-phased manner. These objectives focused on coordinated activities at both the basic and applied research levels, as well as those oriented toward near-term implementation.
- 4) Prepare examples of typical projects that support the thrust area goals and objectives. The examples typified that which was expected to emerge during the preparation phase. They detailed the "what" in terms of specific projects that build the body of AI knowledge, and the "why" in terms of a recognized manufacturing need and expected payoff. They presented an approximate time frame and resource requirement for project completion and demonstration. Project descriptions were limited to two pages and to a standard format.
- 5) Provide recommendations for proposed criteria for use in project assessment a J for eventual project selection.

During this phase, no requirement was made for standardization across the sub-panels as related to white paper content, goal/objective congruence, or criteria definition. This freedom was allowed in recognition or application area differences in terms of technology needs, of the advisory nature of eventual workshop products, etc.

The white papers, goals, objectives, criteria, and example projects are contained in Appendices A through C.

5. Preparation Phase

SEED RECORDER OF THE PROPERTY OF THE PROPERTY

The results of the sub-panel activities (ground work phase) were integrated with other materials and placed in a workbook format. The workbook contained a concept/strategy section, a section for each application area which consisted of the white papers and 4 to 5 example projects per application area, and an instruction section. The workbooks were mailed to participants approximately 6 weeks prior to the start of the workshop. Potential participants were asked to provide feedback on the workbook contents. This feedback was solicited to allow for definition debate, disagreements as to the prime impediments progress, etc.

Proposed projects were solicited for workshop assessment. Individuals desiring to attend the workshop were encouraged to submit a project as their "ticket for admission". These projects were submitted on a two-page description form and were treated anonymously. The form provided for definition of proposed application area (i.e., Unit Process, I²H, etc.), a descriptive title, problem definition/project objective, project description/approach, importance to manufacturing, potential payoff, contribution to science and technology base, project duration, major milestones, resource requirements and project classification in terms of basic research, exploratory development or manufacturing technology/advanced development. Definitions were given for all terms. Adherence to the form facilitated eventual assessment of the projects but constrained the level of detail available. Instructions and copies of the project description form are found in Appendix D.

Inputs from the participants were compiled and, where possible, fed back to them prior to the commencement of group activities at the workshop proper. This allowed for detailed study of projects in a pre-meeting participation mode.

6. Workshop Phase

The workshop was the primary session for final refinement and subsequent documentation of all preceding efforts. It was held on 31 July and 1 August 1985 in Dayton, Ohio. The two-day workshop activities centered on a series of facilitated project assessment rounds and supporting feedback.

At workshop check-in, each participant was assigned to one of three application area panels according to his or her preference. Once assigned, no "floating" was allowed. Thus, the workshop was actually a group of three concurrent workshops. Each participant was provided with an identification number. This number was used in all activities in order to provide for anonymity. Finally, the completeness of each participants workbook was checked and, where appropriate, late candidate projects were provided.

During the first assessment round, participants were asked to provide demographic information and assess the candidate projects for their respective panel. They assessed the projects, utilizing their workbook as a reference for project descriptions, against the panel specific criteria. A nine-point likert scalewas employed. The criteria utilized, scale, and associated anchors are in Appendices A, B, and C.

The results of the first assessment round were input to micro computers and statistics were compiled. These included group means, standard deviations, and frequency counts, on a criteria by criteria basis, for each project.

At the start of the second round, each participant was provided with a printout of his original assessments. Each response that was statistically different from the panel mean was flagged. Under the leadership of Air Force Panel Facilitators, the statistical feedback was used to identify areas of discussion, opinion revision or additional information. In those cases where individual responses were flagged as "outliers", participants were requested to reconcile or reassess in one of two ways. They could simply change their original assessment for the appropriate criteria. In the event they did not wish to change, they were requested to outline their reasons or rationale on a standard reconciliation form. This expert knowledge was captured and provided anonymously, to the group during the next round. Detailed discussion was discouraged during the second round until after the reconciliation process was complete.

Round three was essentially a repeat of round two with the primary difference being that facilitated discussion was encouraged. Both statistical feedback and outlier comments were provided to the panel participants. At the end of the discussion period, the panel experts were requested to reconcile or reassess based upon all information presented. They were free to reassess any response. Again, expert commentary was captured in written form as a required adjunct to numerical data.

DISCUSSION

1. Demographics

As a precursor to project discussion, a look at the demographics of workshop participants is in order. Table 1 shows a recompilation of the data obtained from the demographic forms. As can be seen from the employment data, industry participation was somewhat greater than academic, while government participation was considerably smaller than either. The latter is important in that anyone searching for the government bias in the analysis will not find it. In the AI interest portion, participants were allowed to select as many as three areas of interest. These data indicate that an expert system or knowledge representation bias may exist. These classifications are somewhat all encompassing, however. Note, in addition, that representation in some areas ranged from sparse to none. In the technical background section, of those selecting engineering, industrial engineers predominated with 9 of the 19 respondents. Finally, good representation of active programs for AI in manufacturing was obtained.

Table 1 Demographic Recompilation

CURRENT EMPLOYMENT ACADEMIA	U.P.	M.S.	12H	1
ACADEMIA			, ,,,	i
				1
	6	11	5	22
GOVERNMENT			-	-
Research	0	3	1	4
Management	0	2	1	3
INDUSTRY	1	ļ	1] "
Aerospace Product	6	7	1 4	17
Computer Hardware	1	1	0	2
Computer Software	0	3	4	7
Non-Aerospace Product	2	1 1	0	7 3
AI INTEREST(S)]]
Knowledge Representation	8	11	12	31
Artificial Vision	2	1	2	5
Pattern Recognition/Interpretation	1	ĺi	4	
Natural Language	1 1	1	3	5
Voice Recognition	0	Ó	Ö	
Robotics	7	8	3	18
Knowledge Acquisition	4	13	2	19
Knowledge Based Systems (ES)	13	22	12	47
Other (specify)	2	9	2	13
TECHNICAL BACKGROUND				l
Computer Science	1 1	7	6	14
Manufacturing Operations	1 1	3	ŏ	1 4
Manufacturing Research	1 4	5	4	13
Knowledge Engineering	i	1	ì	2
MATH/OR/MS	2	2	2	1
Engineer (specify)	7	10	2	19
ACTIVE PROGRAM FOR ALIN MANUFACTURING	[
YES	10	21	10	41
NO	5	7		17

2. Selected Results

The wealth of information captured in the process of workshop preparation and conduct is contained in the Appendices. Selected results from each panel are presented which typify what is available. In the process of selection, some "good" projects as well as some "bad" projects are displayed. The terms good and bad are used with caution because, as will be pointed out later, they are only relative measures that apply to the sample projects as written. They may or may not apply to the concepts that underlie the examples.

Projects are best discussed in terms of numerical or statistical parameters and written comments taken mainly from the reconciliation forms. In selecting examples for discussion, a ranking of convenience has been employed. This was accomplished by applying an ordinality to the assessment statistics on a criteria by criteria basis. The project with the highest group mean for a particular criteria was ranked a number 1, the second was ranked 2, etc. In case of a tie, duplicate ordinate scores were given. No consideration was given to the magnitude of difference in mean values. (i.e., a delta of .01 was treated the same as a delta of .1). The method was quick, simple, and adequate for the purposes of this document. It ignores the potential for statistical nuances such as weighting and summing, etc. and should be considered as a rough ordering only. In no way should an absolute priority be assumed.

Applying the above methodology yields the results shown in Table 2 for the 15 projects considered by the Unit Process Panel. Figure 1 shows criteria specific frequency distributions for three highly rated projects from unit process deliberations. In this figure, the ordinate represents the number of responses and the abscissa represents the score on the 9 point Likert-type scale.

The "Expert System for a Design of Castings" Project (Fig. 1a) is a advanced development type project which, in essence, attempts to capture and use experience based design rules. The reconciliation (also called the outlier) forms contained no comments. The session notes indicated that the project is feasible, has good benefit and provides valuable experience. Concern was expressed about the adequacy of the modeling/processing science base, the general nature of the project, and the potential for duplication with another Government funded effort.

The "Rule Based Process Diagnosis" project (Fig. 1b) was classified as basic research. It is an attempt to go from process diagnosis to machine compensation. Outlier comments indicated that the definition/specificity of inspection knowledge should aid considerably in inference engine development, that the project does provide AI for the inspection end of manufacturing, and that an initial limitation to milling and lathe operations would increase project feasibility. Worry was expressed about the "doability" of adaptive control to recover from changes in structure. Session notes classified the project as one that was very good, worthy of expansion/refinement, and one that captures the "system's nature" of unit process steps. Again, concern centered on building an adequate experience base, portability, and customization problems.

Table 2 Unit Process Rankings

TITLE	CONSISTENCY	IMPACT	PAYOFF	TECHNICAL FEASIBILITY	RESULTANT
Al Configuration Design of Modular Fixturing Based on					
System Dynamics	10	11	12	7	12
A Grasping Expert for an Automated Machining Cell	12	15	15	6	14
Intelligent Knowledge Base System for Computer-Aided	1		ļ]	1
Analysis Packages for Unit Processing	13	14	13	4	13
Rule Based System for Intelligent Integration of Multiple	1 (1
Sensors in Assembly Tasks	5 1	4	3	7	1 4
Intelligent Processing of Composite Materials	6	7	6	4	i
Adaptive Planning for Automated Fab/Assembly	1 1		(ĺ
Operations	1 2	1	1	12	1 3
A Teachable Unit Process	8	8	7	13	9
At Technology for Real Time Machine Control	9	9	10		10
Intelligent Knowledge Based Systems to Provide Format	1			-	, ,
Compatibility for Dissimilar NC Machine Control	ľ			ŀ	Ì
Combinations	14 (12	11	1 1	11
Expert System for the Design of Castings	3	5	3	l ž	i i
Machine Monitoring Expert System	1 11	10	ß	3	l j
Assembly Planning for Intelligent Robots	4	3	1 3	11	Ŕ
Distributed Intelligence Among Unit Processes	7	6	l å	14	ا آ
Rule-Based Process Diagnosis	1 1	2	1 2	10	, ,
Al for Process Design and Control Using High Speed	1	-	1 -	1	· •
Medium-to-Large Grain Parallel Computers	15	12	14	16	15

Figure 1 Unit Process Frequency Distributions

The "Adaptive Planning in Fabrication" Project (Fig. 1c) was classified as engineering development. This project is an attempt to provide process modification and contingency resolution through intelligent planning. The outlier comments indicated that the project was ambitious, technically difficult, and called for real time definitions in minutes or seconds. The facilitator notes indicate that the basic need is exception handling in the unit process sphere. There is considerable doubt about feasibility with respect to the availability of required modules for the project foundation and the learning situation of developing alternative plans.

The "AI for Process Design and Control Using High Speed Medium-to Large Grain Parallel Computers" Project was rated at or near the bottom for each criteria. It was viewed as having some important aspects but generally not a leverage project for either AI or manufacturing. This is pointed out by the following quotes taken from outlier comments.

"Parallel computing very important for process modeling. AI content not a major factor."

"Project has very good objective but does not appear applicable to the application of AI to manufacturing. I suggest the project be reclassified as part of a computer hardware/software development group."

"The need for parallel processors is limited and industry is very slow to adopt radically different computers in manufacturing. The impact and payoff would be very high for activities such as high speed flight simulations but not manufacturing."

"I see the project as highly oriented to generic parallel processing, not specific to AI in manufacture. Let Mathematical Sciences Division pay for it."

As can be seen from the above, the written comments generally contain a good deal of information relating to the assessment "why". For example, the top level strategy indicates that the need for any Air Force investment must be articulated for any project proposed. The following comments relate to this requirement as addressed to the "Intelligent Knowledge Base System for Computer-Aided Analysis Packages for Unit Processing."

"This type of expert system has been done and will become widely available without USAF funding. Therefore, feasibility is very high. I don't feel that objectives or scope were met because analysis packages are limited to a small part (i.e., design) of the total manufacturing process."

"This application of expert system is state-of-the-art already. The impact and payoff are limited to those groups that use the specific combination of analysis tools. It should be a commercially funded project. Hundreds of companies are already pursuing such projects. The Air Force should put its money elsewhere."

"There are already a multitude of commercial investments being made to address this area. The development is well under way and is not needing Air Force support."

Table 3 shows the rankings for the 20 projects considered by the Manufacturing Systems Panel. Highly rated projects are shown in Figure 2. The ordinate and abscissa have the same meaning as before.

The "Rule Based Process Diagnosis" Project (Fig. 2a) is the same project that was considered by the Unit Process Panel. The fact that the project was rated highly by both panels indicates some consistency between panels, even though there were definitional differences in criteria. It also lends credence to the feeling that a gray area exists between the manufacturing systems and unit process views of the manufacturing whole. While the statistics seem to indicate otherwise (e.g., better feasibility ranking by manufacturing systems than by unit process), the written comments indicate that manufacturing systems personnel are more concerned with the feasibility of this project. There was doubt expressed about the ability of rule based systems to produce effective explanations, the availability of data was questioned, as was the ability to understand the origin of defects. Feasibility for electronics or a rigid cell structure was considered adequate but one respondent indicated that feasibility coupled with manual control was "ridiculous." A previous meeting in the automotive industry pointed out the importance of this type project.

The "AI Applied to Mechanical Design" Project (Fig. 2b) was classified as exploratory development. Comments indicated that, as written, the project might be too all-encompassing, that relevance to CAD and data base development was doubted, and that the resource estimates were low. It was also suggested that AI for design advanced the state-of-the-art and that the project should be pursued under a proper heading of AI for design. It should be noted that the proposed project is presently on-going. The panel either missed that fact or considered that more resources required Air Force investment.

The "Generative Process Planning for Manufacturing" Project (Fig. 2c) was classified as basic research. It attempts to form an engineering design to manufacturing link by going from a coded description of part characteristics to a process plan. Comments expressed concern with the project's global nature (i.e., need to separate project into more definable parts such as feature extraction) and lack of specificity in the requirements area. Pre-workshop feedback was very sparse (only 3 inputs) vet the generative process planning was mentioned twice as an area with a great deal of industry initiated activity.

The "Expert System for Design and Analysis of Life Tests and Accelerated Life Tests" Project was classified as an advanced development type effort. It appears that the low ranking was a result of the manufacturing linkage being far from obvious. Panel members doubted the need, said it was design and not manufacturing, and doubted applicability to structural parts. Although no real analysis has been made, two quotes indicate that a project of this type may have significant importance to the electronics arena.

Table 3 Manufacturing Systems Rankings

TITLE	FEASIBILITY	IMPORTANCE	PAYOFF	CONTRIBUTION SCI/TECH	RESULTANT
Material Handling Equipment Selection Expert System	1	19	19	20	16
Realtime Control of Cell-Level Batch Manufacturing	11	3	5	5	5
Engineering Change Management	19	8 1	10	18	14
Intelligent Shop Floor Scheduling System	15	1 5	4	10	8
Generative Process Planning for Manufacturing	5	3	2	2	3
Software Tools for System Scheduling	18	14	15	8	14
Expert System Based Simulation Model for Flexible					
Manufacturing Systems (FMS) Design	10	12	17	9	12
Utilization of Expert Systems in Manufacturing as				_	
Training Tools	13	18	18	19	19
Manufacturing Planning and Scheduling Using Integrated		"		"	
Al and OR Methodologies	11	15	15		11
Machine Monitoring Expert System	7	10	7	14	9
Shop Floor Scheduling with Resource Constraints	20	16	13	12	17
Designing Appropriate Scheduling and Control Systems	14	12	12	12	13
Intelligent Purchasing Support System	8	1 11	11	16	10
Expert Systems for Design and Analysis of Life Tests and		''	•••	'*	
Accelerated Life Tests	17	17	14	14	18
Integration of Statistical Capabilities, AI, and a Simulation		"			
Language	16	20	20	17	20
Rule-Based Process Diagnosis	3	1 1		1 '2	-7
Al Tools for Product Design for Economical Manufacture	•	1 1	•	1 •	•
by Die Casting and Injection Molding	4	ا ء ا	9	11	7
Artificial Intelligence Applied to Mechanical Design	5		1	';	,
Object Oriented Design Tool	ž	ا ۾	ė	ا و ا	4
Manufacturing Expert Planning System	9	1 7	8	5	, , , , , , , , , , , , , , , , , , ,

Figure 2 Manufacturing Systems Frequency Distributions

"A critical issue in electronics manufacturing. Affects manufacturing floor space, cycle time, cost, performance in field. Resources do not match need. Have direct experience and am confident of estimate."

"Vital to electronics assembly and test based in personal experience in a number of companies and situations."

Table 4 shows the rankings for the 14 projects considered by the I^2H Panel. Highly rated projects are shown in Figure 3. The ordinate and abscissa have the same meaning as before. It should be noted that the I^2H Panel undertook a rewrite of their top projects during the workshop. The rewrite is considered in the discussion that follows.

The project entitled "An Expert System to Facilitate Design for Manufacturability" (Fig. 3a) was classified as exploratory development. The project attempts to use I²H to provide manufacturability advice. There were no written comments on the outlier forms. As a result of the rewrite, the title was changed to "A Designers Assistant to Facilitate Mechanical Design". In addition, it expanded the scope beyond manufacturability to include inspectability, quality, reliability, and life cycle cost factors. It called for the use of ES and other computer technologies. The later term was not defined.

The "Manufacturing Scheduling and Resource Management Using I^2H " Project (Fig 3b) was originally classified as advanced development. It attempts to model an entire manufacturing capability to provide a communication data base with linkages to product/process definition, production, distribution, etc. Comments indicated doubt in the ability to model an entire manufacturing capability in three years, doubt as to the existence of a generic manufacturing process, and concern over underestimating the resource requirements. In addition, it was thought that it should be moved to exploratory development as existing approaches are better in the near-term. In the rewrite, the management of global resources was changed to available resources, and the classification was changed to exploratory development.

The "Design and Implementation of a Decision Support System for Manufacturing Management" Project (Fig 3c) was classified as exploratory development. It attempts to develop and implement a DSS that integrates already developed analytic tools to do planning and scheduling using ES technology. Comments indicated that the project would be factory specific or too broad (i.e., a collection of expert subsystems). The rewrite changed the milestones to include a requirements analysis which would specify expert systems for various decision scenarios.

The project on ICONS for Manufacturing is an attempt to develop standard symbolic representations of manufacturing elements and by variation, depict the state of the manufacturing system. The results show the importance of various criteria in arriving at eventual project selection. The high feasibility is easily outweighed by problems that will be encountered in a standard development. Comments doubted the need for standard iconic representations and indicated that the project hits only a small portion of the important man-machine interface problem.

Table 4 I²H Rankings

TITLE	FEASIBILITY	IMPORTANCE	CONTRIBUTION SCI/TECH	PAYOFF	RESULTANT
2nd Generation Data Base Machine	14	12] 11]	14	14
Manufacturing Scheduling and Resource Management Using Intelligent Information Handling	7	2	2	2	2
An Al Tool to Assist the Development of CIM Information Systems	6	5	5	5	•
An Expert System to Facilitate Design for Manufacturability	4	1	3	1	1
ICONS for Manufacturing Including Chernoff Variations	1	14	14	13	11
Group Technology Learning Mechanisms for Assembly	5	8	5	3	6
Intelligent Software Development Assistant	17	11	13	11	13
Design and Implementation of a Data Model for Manufac-		ļ) j		}
turing	3	5	4	7	5
Standardized Knowledge Representation Scheme for					1
Product/Component Functions	11	7	9	8	8
Process Prediction Processor	11	13	8	12	12
Design and Implementation of a Decision Support System		ļ]]		j
for Manufacturing Management	2	4	7	3	3
Software Tools for System Scheduling	7	8	11	9	8
Expert Systems Specification and Design	10	10	9	10	10
Adaptive Data Base Systems for Computer-Integrated	,		1 . 1		_
Manufacturing	,	2	1 1	•	3

Figure 3 I²H Frequency Distributions

This panel gives another example of the wealth of information contained in the data. Figure 4 shows the frequency distributions for a project considered by the $\rm I^2H$ Panel entitled "Intelligent Software Development Assistant". The ordinate and abscissa are the same as the previous figures.

Figure 4 Frequency Distributions for Intelligent Software Development Assistant

An inspection of the figure shows substantial disagreement on all criteria. Some factors underlying this disagreement can be found from quotes taken from the reconciliation forms.

"There is absolutely no content in this project description to work on this important problem."

"I do not clearly see the need (most tools and their integration exists). Also, how can this be made computer independent?"

"Project hits an important need, but it is being addressed by other means in the industry. Hard to see that this project could produce a result that is broadly applicable. Severely underestimates the difficulty of developing software tools unless the project becomes very focused."

"Software development is too costly to be ignored in the realm of intelligent assistance. It touches every part of manufacturing and its size in manufacturing processes and systems will continue to grow. We must confine software's development costs."

Taking the numerical distribution and expert commentary together indicates that despite the lack of specificity of the project write-up, the area of intelligent software assistance is at least worth of further analysis.

At the end of the workshop phase, participants were asked to fill out a workshop feedback form. The form employed a seven-point Likert scale and also allowed for commentary. Table 5 shows the group means for the rating portion of the feedback. It is worthwhile to comment on information sufficiency (response 3 and 13) as it bears on results interpretation.

There were eleven participants who made comments concerning the lack of required specificity in the project write-ups. Comments indicated that the projects were, in some cases, vague, incomplete, insufficient to judge, lacked description for fair evaluation, and that they varied widely in quality. These appear to be valid comments. However, they are not "show stoppers". For example, the write-up for the manufacturing systems project on "Generative Process Planning for Manufacturing" was inadequate in that the importance to manufacturing words, as written, were nonresponsive and the resource estimate was extremely vague. Yet the participants were able to interpret and make value judgments. As a matter of fact, the project was ranked number 3 (out of 15) in terms of importance. If the goal had been to have work-ready projects, the specific wording of a project would be more critical. However, the experts were able to either interpret from as-written to as-intended or to use the reconciliation forms to highlight areas of concern.

The participants wanted more than the statistical information in order to reconcile differences. Ten participants commented on wanting more discussion time. This criticism is valid but care must be exercised in how improvements are implemented. It should be remembered that the purposes of the feedback were variance reduction and discussion generation on the important concepts. Free form discussion will evaporate. A project's score is important but the "why" behind the score is probably more important. While the concept of how best to reconcile differences is worth refinement, one cannot underestimate the need to "capture" as much expert information as possible. Thus, in the absence of taped sessions, the need to write down one's rationale is very important.

Using the above scale, please respond to the following questions concerning the Workshop and the manner in which it was conducted.

To what extent....

- 4.95 1. ...were you prepared for the workshop (e.g., did you read the projects prior to the workshop?)?
- 5.33 2. ...was preparation necessary or desirable?
- 3.18 3. ...did you find the information on the project description forms sufficient to make an assessment?
- 4.91 4. ...did the process facilitate or contribute to the attainment of the workshop objectives?
- 4.11 5. ...do you feel the criteria used for project assessment were adequate/comprehensive?
- 4.67 6. ...was the workshop process an effective use of your time?
- 5.67 7. ...did you have an opportunity to express your views/opinions?
- 4.98 8. ...were you personally satisfied with the results/outcomes of the group assessments?
- 3.93 9. ...do you feel your assessments are better overall evaluations of the projects than those determined by the group means?
- 2.93 10. ...did you feel forced to change your opinion to go along with the group?
- 4.11 ll. ...were you satisfied with the process used in the workshop?
- 5.56 12. ...did you feel the members of your application area were sufficiently knowledgeable to provide accurate assessments?
- 3.55
 13. ...did you receive enough information on the group assessments for reconciliation purposes (i.e., were means and standard deviations enough)?
- 4.79 14. ...do you feel the projects submitted were of sufficient quality to warrant this workshop?
- 5.15 15. ...do you feel you made a significant contribution to obtaining the objectives of the workshop?
- 6.50 16. ...would you like the results of the workshop made available?

Table 5 Group Means from Feedback Survey

The desire for more discussion time might also indicate a need for more immediate gratification of the usual workshop goals. That is, participants are usually an information sink at workshops, while the host organization is the source. In this case, these roles were reversed.

CLOSURE

The methodology employed in assessing AI needs in manufacturing involved concept definition, application area specific white papers that encapsulate the challenges of applying AI, project level detail, and statistical assessments of projects, coupled with expert commentary. The results indicate that particular attention needs to be paid to the trade between generic requirements (e.g., site independence) versus over generalization. A thrust relating to the idea of forging or closing the manufacturing to design link appears particularly worthwhile, with excellent projects in each of the application areas. Detailed analysis of the workshop data must consider the knowledge captured in comment form as well as numerical assessment. This project level information, coupled with goals, objectives, and concept constraints, provide a means for identification of research needs for AI in manufacturing.

APPENDIX A

UNIT PROCESS RESULTS

This appendix reflects the results from the deliberations of the Unit Process panel. It is organized as follows:

DESCRIPTION	PAGE
Sub-Panel White Paper Panel Specific Criteria Candidate Projects	A-2 A-5 A-7
Round 3 Assessment Statistics Reconciliation Comments	A-39 A-43

WHITE PAPER

FOR

UNIT PROCESSES

DEFINITION

A unit process transforms material(s) or assembles parts by utilizing a combination of machine(s), tool(s), handling and inspection device(s), and human being(s). A unit process can be conceived as e.g. a machine tool performing a certain manufacturing process (lathe-turning) or a group of machines, handling devices, and human beings performing a particular manufacturing/service operation (cell). A unit process incorporates, as part of the manufacturing function, other operations such as inspection, maintenance, quality control, local resource allocation/planning, etc.

Three major areas of interest in unit processing are:

o Design

- This is closely related to the processes/function(s) that the unit is supposed to perform. One important aspect is interfacing/integrating the design phase of the product or part with the unit process.
- Another aspect is the methodology/rules to be used to design the unit process itself.

o Operation

- An important aspect of this area is the degree of autonomy and intelligence which is to be integrated into the control system of the processing unit.
- o Interfacing with the manufacturing system.
 - This requires an intelligent means of collecting, processing and transmitting appropriate information/data.

MOTIVATION FOR RESEARCH

It has been posed that 60-80% of the cost of aerospace batch manufacturing costs reside in overhead. However, manufacturing experience would indicate that downtime and interruptions within the unit processes are substantial contributors to these overhead costs.

Cost reductions can be achieved by improving the utilization of manufacturing resources, e.g. machines, materials, human labor. Process level improvements can be accomplished by embedding sufficient intelligence at the unit process level to allow autonomous task planning in response to the goals and request of the manufacturing system. Additionally, the adaptability of the unit process to changing requirements and environmental status will reduce processing interruptions. Furthermore, by providing a bi-directional communication path between design and the unit process, better use of materials, labor and machines will be achieved.

An additional motivation is the desire to lessen the reliance on the skills of human operatives. AI will improve production consistency and allow for a continuous buildup of manufacturing skills and experience while eliminating recursive training of human operatives.

WHY AI?

AI has received a wave of publicity in recent years. With the decline of hardware costs and the availability of more sophisticated software tools, AI has emerged as a realistic technique that offers a very large variety of useful applications in unit processes in manufacturing practice. Some potential benefits are: (a) permanent and wider accessibility of human expertise, (b) a second opinion to that of a practicing expert, (c) the ability to handle uncertainty when data are incomplete, and (d) the ability to solve problems that have an extremely large set of possible solutions.

Due to the progress in e.g. knowledge representation, intelligent search techniques, and reasoning, AI is expected to make contributions in the following aspects of unit processes:

- computer-aided analysis, in terms of input preparation and result interpretation.
- process selection, in terms of resource utilization.
- process control, in terms of monitoring and adjustment of processing parameters due to disturbance.
- process understanding, in terms of timely feedback and reasoning of the current operation.
- user-system interface, in terms of intelligent display of the status of the process.
- flexibility and adaptability, in terms of quick process adjustments required by environment change.

However, the application of AI to unit processes is in its infancy. The elements of unit processes (transformation/assembly/service functions) have not been codified, nor has the knowledge base been organized. For example, for most unit processes the relationship of an operator's multi-sensory awareness to the decision rules to be invoked has not been established.

Because AI has not been widely applied to the unit process, the limits of the existing AI tools have not been established. However, it appears that knowledge acquisition at the unit process level represents a formidable challenge and may require additional concepts and tools.

GOALS/OBJECTIVES

In considering the potential benefits from applying AI to unit processes, we can list both broad goals and specific objectives. The former represent the long-term impact of AI on unit processes and the latter can be used as milestones to measure research progress.

The broad goals are:

- To improve the utilization of production resources.
- To improve the flexibility of unit processes.
- To improve the quality at the unit process level.

In addition, it is hoped that the application of AI to manufacturing will facilitate the discovery of new manufacturing technology and will inspire new AI techniques.

Some of the objectives in charting the progress toward the above goals are:

- Establishing adequate knowledge bases for unit processes.
- Develop and demonstrate sensor devices and strategies adequate for AI application.
- Develop inference engines and other AI tools proper for unit process control.
- Develop/apply AI techniques to improve the interaction between operators, designers, technicians, and automated manufacturing processes.
- Develop and demonstrate flexibility of a unit process to adapt to changes in local environmental status.
- Develop a system that maintains product quality despite changing process parameters.
- Improve the ability to furnish appropriate process information to the system level.
- Provide adaptive documentation/traceability information.

UNIT PROCESS PROJECT ASSESSMENT CRITERIA

USE THE FOLLOWING SCALE FOR CRITERIA 1 THROUGH 4

- C1. CONSISTENCY WITH OVERALL GOALS/OBJECTIVES. The goal of the proposed project is in keeping with the overall objectives of the program. For example, does the proposed project represent an innovative AI application to unit processing, will it improve a unit process and will it contribute to the knowledge base of manufacturing and AI applications?
- C2. IMPACT. The project makes significant contributions to: the technology base, the manufacturing community, and education in terms of the following attributes:
- 1. Breadth of impact, e.g., number of companies/institutions affected.
- 2. Depth of impact, e.g., number of processes affected.
- Potential spinoffs.
- C3. PAYOFF. The project provides a substantial payoff in terms of either financial benefit or mission capabilities or both. Financial benefit follows standard return on investment and cost reduction criteria for specific projects, technologies or classes of manufacturing firms. Mission capabilities are represented in the ability to produce high outputs during mobilization and high production quality and reliability as well as flexibility in set-up for new products or expanded processes.
- C4. TECHNICAL FEASIBILITY. The proposed project is feasible in terms of achieving its objectives and demonstrating soundness of approach.

USE THE FOLLOWING SCALE FOR CRITERION 5

C5. ESTIMATE REALISM. The project proposal reflects a realistic estimate of the required resources (in dollar and person-years) and the expected elapsed time.

FOR	WORK	SHOP	USE	
CODE	#	- 1		

PROJECT DESCRIPTION FORM

APPLICATION AREA (please check o	ne):
X UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
	Desire of Med Lee Cinterior Board on Contan
	on Design of Modular Fixturing Based on System
Dynamics	
PROBLEM DEFINITION/PROJECT OBJEC	TIVE: The project objective is to develop and
	e-based system which configures modular fixturing
for a unit process and learns to	revise its rules based on actual achieved performance
The design of modular fixturing o	configurations are currently limited by the experience
of the shop floor and engineering	g support in minimizing dynamic process problem
due to fixturing. The dynamic p	roperties of fixture modules are not well organized
as a knowledge base, and the into	erconnection problems are handled ad hoc, based on
shop floor experience.	
PROJECT DESCRIPTION/APPROACH:	The theoretical work will be bounded by addressing only
	illing. Similarly, the experimental work will address
	analytic problem of dynamic modeling will be handled
	ysis methodologies. This analytic portion will
	including the part) and will estimate system dynamics.
	he system to minimize dynamic interaction with the
process (chatter). Experimental	ly determined structural properties will be used to
modify the rule based on upgrade	d knowledge of the module interface efforts.
IMPORTANCE TO MANUFACTURING: The	e selection and evaluation of fixtures is one of the
	t unit processes for machining. In general, this
factor causes most machining sys	tems to be limited to problems for which proven
fixtures exist. Thus, manufactu	ring flexibility is severely limited. In order to
prove a new fixture, a combinati	on of analytic knowledge and shop floor experience
is used. Thus, the proposed AI	approach promises to improve the productivity of small
batch unit process milling operati	ons. Its impact will be felt across all types of
manufacturing organizations and	will be a significant addition to the technology base
required for truly flexible mach	ining cells.

				FOR WO	RKSHOP USE
CONTINUATION OF (pr	oject title)	AI Configuration	Design of Modu		
on System Dynamic					
POTENTIAL PAYOFF (c	quantitative, i	f possible): The	proposed pro	ject has the	potential
to reduce substant					
In addition, it w	ill promote a t	ruly flexible fixt	ure design wh	ich will subs	stantially
reduce the number	of specialized	fixtures which ar	e currently ma	aintained in	inventory.
The labor offset.	setup, reduced	engineering requ	rements, and i	reduced inver	ntory
cost should provid	<u>de a very attra</u>	ctive ROI for bate	h manufacturi	ng.	
CONTRIBUTION TO SCI	ENCE AND TECHNO	OLOGY BASE: The	tructural ana	lysis technol	logies
are well developed					
to handle the join	nt (and part-gr	ipping) interface.	Because modu	ılar fixtures	involve
<u>multiple</u> joints, e	experience must	be accrued for fi	xture configur	ation change	. This
_joint/interface_pr	roblem represen	ts a new knowledge	e base which w	11 be broad	implication
for machine design	n in general.				
PROJECT DURATION:	4 CALENDA	AR YEARS			
MAJOR MILESTONES (i	<u>.</u>				
	nclude timefram	ne):			
Design of modular					yr.1
Design of modular Development of sub-	fixture block	s	eir experiment	al verificat	yr.1
Development of sub	fixture block ostructured dyn	s amic models and th			7
-	fixture block ostructured dyn mbination schem	s amic models and th me and rules for co			7
Development of sub Development of con Demonstration of i	fixture block ostructured dyn mbination schem initial expert	s amic models and th me and rules for co system	onfiguration	yr. 2	7
Development of sub Development of con Demonstration of in Development of lea	fixture block ostructured dyn mbination schem initial expert arning rules ba	s amic models and th me and rules for co	onfiguration	yr. 2	7
Development of sub Development of con Demonstration of in Development of lea Demonstration of	fixture block ostructured dyn mbination schem initial expert arning rules ba	s amic models and the me and rules for co system sed on experimenta	onfiguration	yr. 2 3 4	7
Development of sub Development of con Demonstration of in Development of lea	fixture block ostructured dyn mbination schem initial expert arning rules ba	s amic models and the and rules for consystem sed on experimental fixture configurations.	onfiguration al data yr. tion yr. Software	yr. 2 3 4 Hardware	7
Development of sub Development of con Demonstration of i Development of lea Demonstration of A	fixture block ostructured dyn mbination schem initial expert arning rules bath AI learning in TS: Faculty	s amic models and the and rules for consystem sed on experimental fixture configurations Grad Student	onfiguration al data yr. tion yr. Software \$10,000	yr. 2 3 4 Hardware \$20,000	cions
Development of sub Development of com Demonstration of in Development of lea Demonstration of in RESOURCE REQUIREMENT Year One	fixture block ostructured dyn mbination schem initial expert arning rules bath learning in TS: Faculty	s amic models and the and rules for consystem sed on experimental fixture configurations Grad Student	onfiguration al data yr. tion yr. Software	yr. 2 3 4 Hardware	cions

Manufacturing Technology or Advanced Development (near-term)

__Basic Research (long-term) _____X Exploratory Development (mid-term)

PROJECT CLASSIFICATION (please check one):

PROJECT DESCRIPTION FORM

APPLICATION AREA (please chec	ck one):
X UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: A Grasping Ex	xpert for an Automated Machining Cell
PROBLEM DEFINITION/PROJECT OF	BJECTIVE: The objective is to provide robots with the
	up simple parts in order to fulfill assembly and fixture-
loading tasks. In addition,	the grasping expert will permit the robot to re-grasp or
modify an initial grasp in re	sponse to changing task descriptions.
PROJECT DESCRIPTION/APPROACH:	The project will focus on two basic part styles (with
	style). A simple gripper (e.g. parallel-jaw) will
	y or for loading into one of several different fixturing
	d system will build upon existing solid-modeling capa-
	ng manipulator language for motion description and output
	umed part orientation, gripper dimensions, and fixturing
dimensions are approximately	known.
IMPORTANCE TO MANUFACTURING:	Today's robots are tedious and time-consuming to
program for each new part sty	le. Whether the programming is done manually (by teaching
or off-line using a CAD descri	ption, the effort involved contributes substantially to
the expense of re-tooling for	a new part style. A robot with the ability to decide how
	easier to program. It would also be more tolerant of
	on. Finally, this work paves the way for robots that can
work in less structured envir	onments, including maintenance applications.

FOR WORKSHOP USE CODE # 2
CONTINUATION OF (project title) A Grasping Expert for an Automated Maching Cell
POTENTIAL PAYOFF (quantitative, if possible): A robot with the ability to grasp
would cut robot programming significantly. This is a first step toward robots that
require no manual teaching. In many cells, robot programming currently requires
10+ man hours per part change. An additional benefit is the reduction of interruption
and errors due to the inability of today's robots to cope with errors in part presentation.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The grasping expert will extend the current
understanding of grasping and manipulation. It is an important first step toward a
more general intelligence for parts handling. The expert will also build upon existing
kinematic theories, robot programming languages, and solid modeling techniques.
PROJECT DURATION:3 _CALENDAR YEARS MAJOR MILESTONES (include timeframe):
1 yr basic formulation of grasping rules.
develop interface with robot programming language & solid modeling.
2 yr demonstrate application with fixture loading.
3 yr extend rule base to allow for regrasping based on changes in task description
or reported error conditions. Demonstrate with basic part styles.
RESOURCE REQUIREMENTS:
Robot Solid Modeling & Robot Programming Language
Graphics Workstation (eg.SUN)
Labor: Estimate 3 Person years/year
PROJECT CLASSIFICATION (please check one):

X Basic Research (long-term) Exploratory Development (mid-term)

Manufacturing Technology or Advanced Development (near-term)

FOR	WORKSHOP	USE
CODE	#	

APPLICATION AREA (please check one):	
XUNIT PROCESSES	MANUFACTURING SYSTEMS
INTELLIGENT INFORMA	ATION HANDLING
PROJECT TITLE: <u>Intelligent Knowledge Base</u> Packages for Unit Processing.	
a repository for all computer-aided analysis development, future development) for use by base system developed will assist unit produced to apply based on their reads.	The knowledge base developed will serve as spackages (including existing, under the unit process designers. The knowledge
PROJECT DESCRIPTION/APPROACH: The project ing the knowledge embedded in the computer-	
The project will proceed with the: 1) compiand the requirement, and possible application packages; 2) development of a knowledge representing the knowledge compiled and synligent knowledge base system in assisting until knowledge base system will also provide modifications and the knowledge base system will also provide	resentation paradigm for structuring and thesized in 1); 3) development or an intel-nit processor to select/apply the packages.
number of computer-aided analysis packages years, yet many packages are not being used existing packages. By providing an intelli- appropriate packages can be selected and ap even eliminate redundant efforts in develop	due to the lack of the knowledge of the gent system to the unit process designers, plied, which in turn, will: " reduce or ing similar packages; 2) process designers ugh the use of the packages; 3) reduce amount

FOR	WOR	KSH0P	USE
CODE	#	3	

CONTINUATION OF (project title) Intelligent Knowledge Base System for Computer-Aided
Analysis Packages for Unit Processing.
POTENTIAL PAYOFF (quantitative, if possible): The potential payoff is significant, & is
derived from better use of R&D expenditures by the government and industries. With
the develoment of this system, existing unit process design packages can be more widely
and intelligently used.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Since the knowledge base will serve as a
repository for all computer-aided analysis pacakges for unit processes, the
contributions of this project are significant. In addition, this knowledge base can be
used to educate the unit process designers in applying state-of-the-art technology
with little effort.
PROJECT DURATION: 2 CALENDAR YEARS
MAJOR MILESTONES (include timeframe):
Start 6 month 12 month 18 month 24 month
knowledge compilation
knwoledge representation paradigm
knowledge base system development
RESOURCE REQUIREMENTS: Person years required: 5 (knowledge compilation = 2
knowledge representation = 1
knowledge base system = 2)
Hardware required: VAX Super Mini class computer (e.g. VAX 11/750)
Software required: FORTRAN, AI language (Common LISP)
Knowledge Engineering tool (e.g. ART by Inference Corp.)
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term)Exploratory Development (mid-term)
X Manufacturing Technology or Advanced Development (near-term)

APPLICATION AREA (please check one):
X UNIT PROCESSES MANUFACTURING SYSTEMS
INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Rule Based System For Intelligent Integration of Multiple Sensors In Assembly Tasks
PROBLEM DEFINITION/PROJECT OBJECTIVE: In assembly of irregular components, the use
of several types of sensory information is required for mating, insertion, interlocking
and other classes of assembly tasks. As yet, a methodology has not been developed
which would allow for the selection and appropriate utilization of sensory data in an
adaptable, dynamic environment to address these tasks. A generic rule based system
will be developed for a bounded set of parts, tasks, and sensors which could then
be further expanded for additive complexity.
PROJECT DESCRIPTION/APPROACH: This project would utilize tactile sensing in a robot
gripper and machine vision to assemble an irregular parts class of electronic cable
connectors and recepticle mating. The assembly task would be analyzed to determine t
knowledge base and inference rules required and to reduce the complex task into
discrete generic sub-problems. The vision and tactile sensor data outputs would be
classified orthogonally, according to their appropriate utilization in these sub-
problem in the form of an interaction matrix. A prototype system would be constructed
to demonstrate the resulting intelligent assembly of various connector types.
IMPORTANCE TO MANUFACTURING: _Cable interconnection of electronics units is an
area of assembly that has not been automated. With increasing use of electronic
components in manufactured items, this task is expected to grow in the forseeable
future. Automation of this task will establish a generic rule based methodology for
adaptive assembly of irregular parts. The system can be extended to include
additional sensors, parts classes, and assembly tasks to provide flexibility in unit
processing. These tasks are pervasive throughout manufacturing and will advance the
state-of-the-art in automated assembly technology.

COR WORKSH	
CONTINUATION OF (project title) Rule Based System for Intelligent Integration of	
Multiple Sensors in Assembly Tasks	
POTENTIAL PAYOFF (quantitative, if possible): Payoff from this task is achieved financially and in mission capabilities. Assembly of irregular items is a labor	
sive activity that has not been successfully automated. The flexibility of an a system to adaptively join items such as cable connectors has relevence in field t	automated
tasks as well as in the manufacturing context. Communication with the unit prod	cesses
during assembly would also assist scheduling and planning in assembly and inspec	ction
of finished products. A minimum of 25% ROI is anticipated through labor red. &	qual. impr
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This project would be the first att develop a generic rule based system for the integration of multiple sensors in to class of manipulative tasks. The fundamentals established would form a foundation advancing the state of the art in automation assembly.	this
advancing the state-of-the-art in automation assembly.	
PROJECT DURATION: 2.5 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): <u>I Determination of appropriate parts b</u> and selection of sensors - 1 month	ooundaries
II Analysis of assembly task sub-problems and sensory data application - 5 mont	:hs
III Structuring & formulation of knwoledge bases and inference rules - 6 months	
IV System component selection, procurement, and interconnection - 6 months	
V AI coding and component interfacing - 6 months	nultaneous
VI System testing and demonstrations - 6 months	
RESOURCE REQUIREMENTS: This project would require 5 to 8 professional man year	^S
to demonstrate the laboratory proof-of-concept system. A personal service budge	et of
approximately \$800,000 plus equipment (specialized) and travel as required is	
anticipated.	
PROJECT CLASSIFICATION (please check one):	

__Basic Research (long-term) ____X Exploratory Development (mid-term)

_Manufacturing Technology or Advanced Development (near-term)

APPLICATION AREA (please che	eck one):
X UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
DDOJECT TITLE. Indelligent	Durancing of Composite Materials
PROJECT TITLE: Intelligent	Processing of Composite Materials
	OBJECTIVE: The objective is to develop and demonstrate the models and knowledge based decision making for optimizing
	of composites. The emphasis will be on the thermal balance
during the curing process.	
·	H: At the present time one-dimensional heat transfer models the composite curing process; void and internal stress
	Extensive experience for processing composites relative to
	vailable. The goal will be to combine the thermal models
with the void/stress experi	
With the volta, solices experi	
IMPORTANCE TO MANUFACTURING:	At the present time, the control conditions for curing
composites are predetermine	d; after curing, the composite material quality is deter-
mined. The proposed approa	ch exploits both the heat transfer models as well as the
materials engineer's void/s	tress experience for on-line control of the curing process
Manufacturing applications	should be improved because of both heat transfer and void/
stress input on-line.	

CONTINUATION OF (project title) Intelligent Processing of Composite Materials
POTENTIAL PAYOFF (quantitative, if possible): The payoff includes fewer rejected parts
due to improved quality for existing materials. More importantly, new superior mater-
ials have a smaller processing window (more sensitive to initial conditions - history
of the precured material); these new materials have not been used extensively in manu-
facturing due to the cure cycle/quality control complexity.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The proposed project includes combining models and knowledge base data in a control environment.
moders and knowreage base data in a control environment.
PROJECT DURATION: 3 CALENDAR YEARS
MAJOR MILESTONES (include timeframe):
1.5 year: knowledge base program
2.0 year: combined model/knowledge base program
3.0 year: operational and verified program
RESOURCE REQUIREMENTS: 1 knowledge-base programmer/engineer for 3 years
l modeler/engineer for l year
l control engineer for l year
5 manyears total
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term) Exploratory Development (mid-term)
X Manufacturing Technology or Advanced Development (near-term)

FOR	A	0	RKSHOP	USE
COD	E	ŧ	6	

APPLICATION AREA (please check one):

X UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING

PROJECT TITLE: Adaptive Planning for Automated Fab/Assembly Operations

problem Definition/Project objective: Current automated flexible work cell concepts implicity assume man-in-the-loop operation, with computer control exercised through off-line programming. Fabrication and assembly operations in robotic work cells, to the extent that they exist, are programmed in detail for each operation and each part or sub-assembly. This requires on-going programming support for engineering changes as well as human intervention for unanticipated events during processing. The objective of this project is to develop an intelligent planning system capable of automatic process modification and contingency resolution, thus permitting true stand-alone cell operation.

PROJECT DESCRIPTION/APPROACH: The proposed planning scheme requires a CAD/CAM interface and a knowledge base in the form of a "how to" experiential data base representing the expert cell operator. The initial fab/assembly plan is automatically generated by backward dissolution from the CAD/CAM representation. The plan is then interactively executed with sensory feedback. Sensor information is used to verify pre and post conditions for each step in the plan. When these conditions are not met, an alternate plan is formulated and executed to restore the require conditions.

The proposed planner would be essentially a real-time executive controller for several of the other proposed intelligent modules, including expert grasping, rule based sensor integration, and modular fixturing. It would interface with those modules dealing with engineering change management, generative process planning, and shop scheduling.

CONTINUATION OF (project title)		

FOR WORKSHOP USE

CODE # 6

POTENTIAL PAYOFF (quantitative, if possible): A fully developed stand-alone work cell operating at full capacity eliminates at minimum a four man level of effort in DOC and a maximum of eight man level of effort in total cost. The minimum is simple man replacement. The maximum estimate includes savings due to decreased programming support, increased throughput, improved quality, and decreased manufacturing, engineering, and administrative support.

CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The research and development proposed for this project will make important contributions in the understanding and implementation of knowledge bases and the representation of human experience. The technology to be developed under this project is a necessary precursor to the implementation of a fully automated factory, because it integrates and directs many other segments of automation.

PROJECT DURATION: 4 CALENDAR YEARS

MAJOR MILESTONES (include timeframe): (1) Define a representative automated flexible fabrication or subassembly cell. Perform a detailed functional decomposition of the cell and concurrently develop experiential data base (2 years). (2) Concurrently develop the dynamic planner in hierarchial form, providing scars and hooks for intelligent sub-systems as well as factory level super-systems (2 years). (3) Perform brassboard demonstration of the system, interfacing with state-of-the-art CAD/CAM, sensory, and robotic hardware and software (2 years).

RESOURCE REQUIREMENTS: 1 Principal Researcher, 2 Senior Researchers, and 5 graduate students for 4 years. Existing robot and automation lab will be used. A new dedicated AI computer and interfacing will be required, cost approximately \$100,000.

PROJECT CLASSIFICATION (please check one):

 Basic Research (long-term)	<u>x</u> Ex	ploratory l	Development	(mid-term
 Manufacturing T	echnology or A	dvanced De	velopment	(near-term)	

APPLICATION AREA (please che	eck one):
XX UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: A TEACHABLE	UNIT PROCESS
PROBLEM DEFINITION/PROJECT C	OBJECTIVE: Expert systems are essentially a high-level pro-
	ition of their domain-dependent knowledge base is the main
	tation. This project would develop an interactive system
that, during a teaching peri	od, builds on previous knowledge, generating the required
domain-dependent program and	knowledge base.
PROJECT DESCRIPTION/APPROACH	: Although the teachability concept can be applied at any
level in the Unit Process, a	testbed of an assembly operation using a manipulator,
force/torque, tactile, and v	risual sensor would be used. A complete set of primitive
operations for each element	in the testbed would be defined and implemented as a basis
for future teaching. An ass	sembly program would be generated from the primitive opera-
tions (both manipulations an	d sensory feedback), previous plans, and operation instruc
tion. Teaching would consis	et of an operator monitoring task execution, examining the
sessions for an action, alte	ering the actions when desired, and inputting detailed
instructions when the system	does not know how to proceed.
IMPORTANCE TO MANUFACTURING:	Expert systems are extremely difficult to implement,
requiring a programmer to un	derstand both the shop floor operations and the complex
rule-based programming struc	tures (a rare combination). Using a teachable system
would remove the programmer	and allow a shop person to teach the system in a manner
similar to training a new em	ployee. This teaching system would supercede expert
system approaches allowing A	I to be incorporated into manufacturing processes in a
cost- and time-effective man	ner.

FOR	WOR	KSH0P	USE
CODE	#	7	

CONTINUATION OF (project title) A TEACHABLE UNIT PROCESS	
POTENTIAL PAYOFF (quantitative, if possible): This approach, though applied at manipulator level, could be used at any level, providing significant cost and	
savings. Acquiring an expert system knowledge base is extremely difficult and	
potentially stifle integration of AI into manufacturing processes. The teachi	
approach provides an alternative.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The intelligence of a system is a	quality
but can be quantified on a scale of knowledgable, communicative, teachable, at	le to
learn, and able to create. This system would extend the state of the art from	expert
systems that are knowledgable and communicative to systems that are teachable,	and
pave the way for systems that can learn without instruction.	
PROJECT DURATION:4.0CALENDAR YEARS MAJOR MILESTONES (include timeframe):	
I (Assuming the manipulator/sensor testbed exists) Creation and coding	0.5 yr
of the primitive operations	
II Development of a limited natural language interface	0.75 yr
III Development of an inference engine to generate alternative actions	1.25 yr
at any point in time, recording the new plan in memory	
IV Development of a control structure to interface the testbed, inference	1.0 yr
V System testing, demonstation, documentation engine, & operator RESOURCE REQUIREMENTS:	0.9 yr
Approximately a 20 man-year effort.	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term) x Exploratory Development (mid-term)	m)
Manufacturing Technology or Advanced Development (near-term)	

FOR	WORK	SHOP	USE
CODE	#	8	

APPLICATION AREA (please check one):
X UNIT PROCESSES MANUFACTURING SYSTEMS
INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: AI Technology for Real Time Machine Control
PROBLEM DEFINITION/PROJECT OBJECTIVE: The application of AI tools and concepts to
unit processing equipment holds great promise for improving utilization, flexibility,
and quality. However, current AI technology was largely developed in a "mainframe"
computer environment and concept formulation was emphasized over speed. The objective
for this project is to determine requirements and practical approaches for using
AI hardware and software for real time machine control.
PROJECT DESCRIPTION/APPROACH: The project will consist of three tasks: a) Marriage
and evaluation of an AI workstation and a machine (robot, machine tool, etc.)
demonstrating real time control; b) Development of relevant software techniques
including: 1. decision making under time constraints, 2. management of time uncertaintie
from dynamic memory, 3. flexible sensor monitoring strategies. c) A vendor program
to determine and communicate/advocate realistic requirements (packaging, performance,
price) to AI technology supplies.
IMPORTANCE TO MANUFACTURING: The results of this project are essential for the
practical implementation of AI-based approaches to improving unit processes. This
work will enable advances in unit processing in a broad range of industries.

	FUR WURKSHOP USE CODE # 🔗
CONTINUATION OF (project title)	
POTENTIAL PAYOFF (quantitative, if possible): The value of the	nis project is to allow
the capture of economic benefits from general AI research ad	lvances at the unit
processing level. The knowledge, tools, and computer system	ns produced will enable
manufacturers to implement these ideas and realize tangible	gains.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Research in this	area will advance scientifi
knowledge in temporal reasoning, planning and decision makin	g under time constraints,
and sensing strategies. In addition, the availability of an	AI workstation interface
for a machine (particularly a robot) will significantly enha	nce university-level
education. One major hurdle in graduate programs today is t	he lack of modern
factory equipment with an accessible, lower level software i	nterface for research.
PROJECT DURATION: 4 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): I. Analyze existing AI	······································
strategy, 1/2 year; II. Demonstrate running prototype, 2 ye	-
prototype field evaluation, 1 year; IV. Produce research su	
V. Initial vendor requirements, end of year 1; VI. Final vend of year 2.	endor requirements,
RESOURCE REQUIREMENTS: Manpower: 16 man years	
Hardware: 2 AI workstations	
2 unit processing machines	
Software: 2 knowledge representation	languago packagoo
(e.g., KEE, ART, CRL)	Tanguage puckages
PROJECT CLASSIFICATION (please check one): Basic Research (long-term) XX Exploratory De	velopment (mid-term)
Manufacturing Technology or Advanced Development (n	

APPLICATION AREA (please check one):
x UNIT PROCESSES MANUFACTURING SYSTEMS
INTELLIGENT INFORMATION HANDLING
DOOLECT TITLE. Taballicant Vanilates Based Conton to second a female conton
PROJECT TITLE: In*elligent Knowledge Based System to provide format compatibility
for dissimilar NC machine control combinations
PROBLEM DEFINITION/PROJECT OBJECTIVE: The objective of this project is to develop an
intelligent knowledge based system to permit proper execution of NC programs for
dissimilar NC machine control combinations. The result of the project will permit
more flexible scheduling of manufacturing facilities.
PROJECT DESCRIPTION/APPROACH: Many requirements for tape compatibility are avoided
because of undocumented features. These features require significant engineering
when encountered in a product already designed. The project will apply a rule based
design approach to permit easy initial design and allow accommodation to the
unexpected and undocumented requirements. The major steps are: 1) Determine the
tape format and critical postprocessor functions of 10 of the most commonly used
machines; 2) Develop a Rule Based System to provide NC data conversion between these
formats; and 3) Field test to verify interchangeability.
IMPORTANCE TO MANUFACTURING: Whenever an NC tape data set is produced, it is bound
to a particular machine/control combination. Because of this early binding,
constraints are placed on the operation of the manufacturing facility. Machines
with physical capacity to process a given part are excluded from selection because
they cannot assimilate the NC data stream of the selected machine. The BCL format is
one attempt to provide the standardization of input that would allow interchangeabili
of input data; however, there exists a large number of existing machines installed
in the field and a number of new machines not yet capable of reading the BCL data.
The development of a tape interchangeability device would provide many of the
benefits of BCL without awaiting the broad based installation of that technology.

CONTINUATION OF (project title) Intelligent Knowledge Based Sys	tem to provide format
compatibility for dissimilar NC machine control combinations	
POTENTIAL PAYOFF (quantitative, if possible): The result of this	
parts to be machined on any machine with the range, horsepower,	
the part requirements regardless of the manufacturer. This wil	
flexibility and competition in the development of subcontracts.	
operation of individual machining facilities will be enhanced by	y the increased
flexibility available to the shop management.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This would be an in	
embedded rule based system. It would also prove the value of ru	
the development of systems wherein the design parameters are inc	completely documented.
PROJECT DURATION: 1.25 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): Select the machine/control	combinations
Determine the conversion parameters. Develop the conversion sof	
performance.	tware. Verify the
	
RESOURCE REQUIREMENTS:	
1. Select the machine/control combinations	.1 MY
2. Determine the conversion specs	.25 MY
3. Develop the conversion software	.5 MY
Personnel Computer \$7000	
Rule Based Language \$3000	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term) Exploratory Develo	pment (mid-term)
X Manufacturing Technology or Advanced Development (near-	term)
(CONTINUED RESOURCE REQUIREMENTS)	
4. Verify the performance at 1 site 3 units	.5 MY
Additional computers and software \$30,000	

APPLICATION AREA (please check one):	
X UNIT PROCESSES	MANUFACTURING SYSTEMS
INTELLI	GENT INFORMATION HANDLING
PROJECT TITLE: Expert System for the De	sign of Castings
PROBLEM DEFINITION/PROJECT OBJECTIVE: A	s is the case with all manufacturing processes,
	or assembly, must be modified to make the part
"producible" via the manufacturing proce	ss under consideration. In case of castings,
certain part dimensions may be increased	, radii at junction of ribs may be modified and
so on. These design modifications are n	ot algorithmic and are made using experience
based design rules. Thus, a rule based E	xpert System would be extremely helpful to the
designer, would reduce training time and	help to maintain expertise recorded
systematically.	
——————————————————————————————————————	are involved. The first consists of gathering ype and material). These rules define the
	let radii, draft angles, if any, and all other
	second is the development of the Expert System
	must be interfaced with a commercially avail-
able geometric modeling CAD/CAM system s	
	t have to be redeveloped. Work could be done
	Based on progress, the system would be expanded
to handle 3-D geometries.	based on progress, the system would be enpanded
IMPORTANCE TO MANUFACTURING: Several as	pects are important:
1. The use of AI/Expert Systems techniq	ues to design for producibility can be applied
to nearly all processes casting, for	ging, injection molding, extrusion of shapes,
etc. Thus, a modern design techniqu	e would be created as an example.
2. The system would (a) save design tim	e and increase designer productivity,
(b) allow the storage of valuable e	xperience, (c) facilitate the training of
younger engineers, and (d) can be im	proved continuously by modifying the design
rules.	

FOR WORKSHOP OGE CODE # 10

CONT	INUATION OF (project title) Expert System for the Design of Castings
POTE	NTIAL PAYOFF (quantitative, if possible): <u>Difficult to quantify, but will</u>
a)	reduce lead times and design cost
ь)	increase design quality and reduce manufacturing problems due to faulty design, and
c)	provide an excellent interface between design and manufacture, which improves the
	entire production cycle.
CONT	RIBUTION TO SCIENCE AND TECHNOLOGY BASE:
1.	Systematic Storage of Design Rules for Castings
2.	Identification of areas that need R&D to improve casting shape complexity and
	reduce scrap.
3.	Development of a relatively objective methodology for design for producibility
	that can be applied to nearly all manufacturing processes.
PROJ	ECT DURATION: 3 CALENDAR YEARS
MA 10	R MILESTONES (include timeframe):
	Year a) Gathering of design rules, extensive communication with casting companies
	and b) Selection of appropriate AI tools for system development.
2nd	Year a) Develop a Prototype System, b) continue to gather rules, c) start Expert
	System development.
3rd	Year a) complete writing of Expert System, b) test in cooperation with casting
	companies.
RESO!	URCE REQUIREMENTS:
lst	Year 1.00 Man Years
2nd	Year 1.25 M.Y.
3rd	Year 1.25 M.Y.
PROJ	ECT CLASSIFICATION (please check one):
	Basic Research (long-term) Exploratory Development (mid-term)
	X Manufacturing Technology or Advanced Development (near-term)

APPLICATION AREA (please ch	neck one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Machine Moni	itoring Expert System
	OBJECTIVE: This Machine Monitoring Expert System will facturing equipment to detect changes in operational state
that indicate maintenance a	
	
	H: Impending bearing failures have been detected in
rotating machinery from cha	anges in the frequency response spectrum of accelerometer
	ystem would combine the AI techniques of expert systems
with the machine monitoring	g technologies. The system would detect imminent failure
diagnose them and suggest c	corrective action.
MPORTANCE TO MANUFACTURING:	. This system would improve maintenance and thus reduce
	abor in manufacturing. By monitoring the operational
	basis and detecting imminent failure the problem can be
corrected on a non-critical	time. This avoids the cost of a machine that breaks down
corrected on a non-critical in the middle of a producti	

CODE #	AKKZHOP OZE
CONTINUATION OF (project title) Machine Monitoring Expert System	
POTENTIAL PAYOFF (quantitative, if possible): Reduction of maintenance costs	, reduction
of down time during production and thus higher productivity from the manufa	cturing
facility.	
	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Application of AI to maintenance	e management
Capturing the knowledge of maintenance experts in a knowledge base.	
	
PROJECT DURATION: 3 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): First year - build knowledge base; Sec	
build a prototype system for rotating machinery; Third year - build a gener	ic system
to allow for a wide variety of machines, sensors, and detection data for ge	neral
application.	
RESOURCE REQUIREMENTS: 5 man years	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term) Exploratory Development (mid-t	erm)
x Manufacturing Technology or Advanced Development (near-term)	

	-		J J L
CODE	#	12	

APPLICATION AREA (please check on	ne):
X UNIT PROCESSES	MANUFACTURING SYSTEMS
[NTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Assembly Planning	for Intelligent Robots -
PROBLEM DEFINITION/PROJECT OBJECT	IVE: The goal of the proposed project is to develop
a planning system that would be so	uitable for automatic assembly of parts by a robot in
a manufacturing environment. It	is assumed that the robot is equipped with visual,
tactile and force sensors and a de	extrous hand for manipulation. The planner will rely
on the sensors for environmental	information that may be required for planning
purposes. The planner would inter	rleave planning and execution, monitoring execution
of the plan/partial plan with the	aid of the sensors and replan where necessary.
PROJECT DESCRIPTION/APPROACH: The	ne planning problem in AI has received considerable
attention thus far. The problems	of representation and inferencing that occur in any
problem-solving system as well as	problems that are specific to planning such as sub-
goal interactions have been examin	ned. There is currently some work in progress to deal
with the explicit representation a	and reasoning of time. The robotics domain poses the
additional problems of incomplete	information and unexpected changes in the environment.
Our approach then is to build on t	he existing planning technology and use the availabilit
	namic nature of the environment. The focus of our work
	y information into the planning and execution monitoring
processes.	
	elieve that developing a dynamic planner as described
	e to the operational aspects of unit processes by
increasing the degree of autonomy	of the processing unit. It would serve to increase
the reliability of the processing	unit by making it more adaptable to changing require-
ments and environmental status. T	he work aims to improve to improve process understandin
by integrating sensors for providi	ng feedback and reasoning about assembly operations.

FOR WORKSHOP USE CODE # 12
CONTINUATION OF (project title) Assembly Planning for Intelligent Robots
POTENTIAL PAYOFF (quantitative, if possible): The specific advantages of this work would be in realizing a reduction in downtime and interruptions arising in unit
processes. The work is exploratory in nature and when completed, it would help evaluate
the cost/benefit of including more knowledge and reasoning capabilities into unit
processes.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The work attempts to model and integrate
the notions of perception, action and reasoning in a realistic and complex domain and
thus addresses a challenging and relevant problem in the field of AI.
PROJECT DURATION: CALENDAR YEARS MAJOR MILESTONES (include timeframe):1. 1. Development of a static planner for the assembly domain, focusing on the acquisition and organization of knowledge relating to assembly process and relying largely on existing planning technology for issues of representation and control. (6 months). 2. Extending the planner developed in the previous phase into a dynamic planner
with simulated sensory information and manipulator actions and developing satisfactory approaches, modifying representation and control mechanisms as necessary, for integrating the sensory information into the planning process, dealing with execution monitoring, and replanning. (18 months). 3. The last phase of this work will be the integration of the dynamic planner developed with actual sensors and dextrous hand and the study of real-time issues involved in the planning approach developed in the previous two phases. (12 months).
RESOURCE REQUIREMENTS: Currently the static planner is being developed on a Symbolics 3600 LISP Machine. Exploratory work in Phase 2 and all work in Phase 3 require use of a computer network (with systems for planning, vision and touch processing, and distributed motor control), sensors, and a robot equipped with (at least one) dextrous hand.
Budget: Planning Work \$ 100,000 annually; Related development of sensors and robot control system, \$ 150,000 annually.
PROJECT CLASSIFICATION (please check one):

APPLICATION AREA (please o	theck one):
x UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Distribute	d Intelligence Among Unit Processes
	a maringance and out Processes
PROBLEM DEFINITION/PROJECT	OBJECTIVE: In an uncertain environment, intermediate and
long-range planning are of	ten futile. It is better to make decisions as the need
	nce. The aim of this project is to develop the AI tools
	ons at the unit process level.
	
PROJECT DESCRIPTION/APPROA	CH: Decisions regarding part flow, resource usage, and
	de in a distributed or non-hierarchical manner. These
decisions are made at the	
	n_effective_communication_system, or "data highway",
	ther requires that the unit process themselves exhibit
considerable intelligence.	AI methods seem an appropriate vehicle to express that
intelligence.	
IMPORTANCE TO MANUFACTURIN	G: Distributed intelligence would improve throughout and
orovide the benefits associ	iated with that. The improvement should be particularly
	ith a great deal of uncertainty.

	FOR WORKSHOP USE CODE # 13
CONTINUATION OF (project title)	
POTENTIAL PAYOFF (quantitative, if possible):	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Improvements in developments in inter-process communication.	
PROJECT DURATION: 4 CALENDAR YEARS MAJOR MILESTONES (include timeframe):	_
RESOURCE REQUIREMENTS: 20 MY	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term) <u>x</u> Exploratory Developmen Manufacturing Technology or Advanced Development (near-term	

BACK SSSSSS BOOLANG PROPAGES CONSISS RESERVED

FOR	WORKSHOP	USE
CODE	#	14

APPLICATION AREA (please che	eck one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
-	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Rule-Based	Process Diagnosis
PROBLEM DEFINITION/PROJECT (DBJECTIVE: The quality control problem in a manufacturing
system can be decomposed int	three subproblems: recognizing a change in system behavior
(inspection); explaining the	e behavioral change in terms of changes to the system structure
(diagnosis); and recovering	from the changes in the system structure (adaptive control).
The objective of the project	is to develop a feasibility demonstration diagnosis system
that will generate explanati	ons of observed part quality problems in terms of defects in
the unit processes that proc	luced the part. Thus, it will serve as a bridge between the
part inspection and process	control functions of a manufacturing system.
PROJECT DESCRIPTION/APPROACH	: A rule base will be developed to model the causal relations
of unit processes and parts.	The model will relate symptoms (inspection data) to process
states, and relate process s	tates to physical defects in the process. An inference engine
will be developed to explain	part defects in terms of defects in one or more processes
involved in manufacturing th	e part. The project effort will include designing the rule
base structure, generating t	he rule base by interviewing experts, defining the structure of
the input data and the resul	ts of the diagnosis, implementing an infere ce engine, and
test and demonstration of th	e system. As a feasibility demonstration, the project will
be limited to the diagnosis	of simple milling and lathe operations.
IMPORTANCE TO MANUFACTURING:	The usual way of dealing with quality problems is to assemble
a material review board (MRE) to diagnose the problem. The MRB function is critical to
the future health of a syste	m; without accurate results, the system will continue to
create bad parts. The MRB f	unction is also one of the most difficult functions to
automate; it usually require	s the interaction of several experts. A rule-based diagnosis
system will provide a struct	ure that can incrementally capture the required expertise and
lead to an automated, reliab	le, and robust link between inspection and control.

	FOR WORKSHOP USE	
	CODE #14	_
CONTINUATION OF (project title) Rule-Based Process Diagnosis		-
POTENTIAL PAYOFF (quantitative, if possible): This project will achie	ve several goals.	- Tr
will demonstrate feasibility of an AI approach to MRB functions. It		~
the role of part inspection in an automated manufacturing system. A		-
contribute to defining data standards between inspection and control		-
		-
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The major issue in apply		-
diagnostics to manufacturing is that the processes involved in makin		On-
process may remove evidence that another process was out of control.		
processes may contribute errors. Finally, an error may not be attri		
process exclusively, but to the interaction between processes. Thes	e interactions	~
require new inference mechanisms capable of diagnosing multiple faul	ts.	_
PROJECT DURATION: 2.5 CALENDAR YEARS MAJOR MILESTONES (include timeframe): (times given are from start of	project)	-
 Design rule base structure: 6 months Develop rule base; 8 months 		•
3) Generate test data; 9 months		•
4) Implement inference engine for multiple-fault reasoning; 24 mont	hs	• -
5) Build prototype system; 28 months		•
6) Feasibility demonstration; 30 months		•
RESOURCE REQUIREMENTS: 8.5 staff-years, \$765K; AI Computer System,	\$30к.	
PROJECT CLASSIFICATION (please check one):		
XX Basic Research (long-term) Exploratory Development	(mid-term)	
Manufacturing Technology or Advanced Development (near-term)		

FOR	WORK	(SHOP	USE
CODE	#_	15	

APPLICATION THRUST AREA (please	check one):
x UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
	•
	Design and Control Using High Speed Medium - to Large-
Grain Parallel Computers	
PROBLEM DEFINITION/PROJECT OBJE	CTIVE: A large disparity in knowledge and experience
exists at all levels of design,	process analysis and control, and a major technology
gap exists between the largest a	nd smallest vendor industries. The project objective
is to develop an integrated AI-P	Process Modeling Software and Hardware System capable of
operating as number crunching wo	rkstations using computers such as IPSC, Mosaic, and
Norvon to achieve computing spee	ds approaching the giga-flop speed.
	<u> </u>
PROJECT DESCRIPTION/APPROACH. T	he project will apply AI by using it in combination with
	e Engineering, Data Base Management, and Operating Sys-
tems for high speed parallel com	puters. The project will proceed by: (1) selecting
the most appropriate parallel co	mputer design concept, (2) splitting the process models
into concurrent parts, (3) devel	oping a general methodology for combining and dissociatin
split and modular application pa	ckages, (4) compiling knowledge and identifying design
tasks required for simualtion, (5) developing a knowledge representation paradigm,
(6) designing a material and pro	cess data base structure, (7) automating CAE/CAD/CAM
tasks, and (8) providing ways to	modify and upgrade the knowledge base.
IMPORTANCE TO MANUFACTURING: The	e development of AI-Process Modeling Systems for medium
	is paramount to implementing this proven technology in
	rts vendors. It will: (1) improve product integrity
	ate process design, monitoring and control, (3) shorten
· · · · · · · · · · · · · · · · · · ·	4) extend the design scheming stage, (5) close gap be-
	rove productivity, just-in-time part delivery and defense
	reduce technology gap between vendors, (8) provide
	te a new methodology for synthesizing new manufacturing
	solve the need for greater computational power in manu-
	1) overcome the educational barrier.
· · · · · · · · · · · · · · · · · · ·	

FOR WORKSHOP USE CODE # 15
CONTINUATION OF (project title) AI for Process Design and Control Using High Speed
Medium - to Large-Grain Parallel Computers
POTENTIAL PAYOFF (quantitative, if possible): (1) Leastime before production will be reduced by 25%, (2) Products will be made right the first time, (3) Productivity will be
increased about 30%, (4) Machine utilization will increase about 50%, (5) Design scheming
stage will increase by about 25%, (6) part reject-rate will decrease by about 95%,
(7) Powerful CAE workstations will be affordable for the smallest DoD part vendor, and
(8) A new methodology will be created for synthesizin new manufacturing processes in
the computer.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This research will provide approaches to
solving the need in manufacturing for greater computational power at affordable cost.
and it will create meta-experts which are not available. It will resolve the criticial
technical issues which are related to computing speed and parallel computer architectures
which are most suitable for merging AI with scientific and engineering problem solving
methodologies and it will define the design tasks which must be accomplished by the AI
software to automate problem solving and decision making.
PROJECT DURATION: 5 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): <u>Evaluate Parallel Computer Architectures 0-6</u>
months, Split FE Codes into Concurrent Parts 0-24 months, Develop Modular Modeling
12-48 months, Compile Knowledge and Identify Tasks 12-48 months, Develop Knowledge
Representation Paradigm 18-48 months, Develop Material and Process Data Base Structure
O-24 months, Automate CAE/CAD/CAM Tasks 36-60 months, Provide Ways to Modify/Upgrade
Knowledge Base 48-60 months.
RESOURCE REQUIREMENTS: Person Years Required: 12 (knowledge compilation = 5, knowledge
representation = 3, FE Code Splitting 2, Parallelism = 2)
Hardware Required: IPSC Class Parallel Computer
Software Required: Fortran, C-Language, MLISP, TRAID-Information Analyzer and Developer,
etc.
PROJECT CLASSIFICATION (please check one):
<pre>X Basic Research (long-term)</pre> Exploratory Development (mid-term)
Manufacturing Technology or Advanced Development (near-term)

APPLICATION THRUST AREA (please check one):
X UNIT PROCESSES MANUFACTURING SYSTEMS
INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Design Feedback from a Manufacturing Process
PROBLEM DEFINITION/PROJECT OBJECTIVE: Despi* the trend toward integrating CAD & CAM
tools, the transition from a drawing on a screen to a finished part is rarely smooth.
Design errors, part programming bugs and imperfect knowledge of the conditions in a
particular process combine to prevent NC part programs from working correctly at
first. The principal problem is that there is a one-way flow of information from
CAD to CAM. The objective of this project is to develop a two-way dialogue.
PROJECT DESCRIPTION/APPROACH:Two parallel efforts will be directed at establishing
a dialogue between CAD & CAM in an on-campus machining application. The first effort
will require developing tools to gather and interpret process data (such as machining
parameters and fixture types) and to maintain the results in a relational data base.
The result is knowledge base that, unlike a machinists handbook, is tuned to the
local process. Rules will then be tested in an expert system (using design students
as a population sample) for aiding the designer in evaluating the ease of manufacturi
a design.
The second effort focuses on an intelligent, final design interface in which the
designer "machines" the part on screen using virtual tools. Again, the effectiveness
of specific rules will be tested on design students. MPORTANCE TO MANUFACTURING:
There is a basic need to reduce the leadtime in developing and producing new
products. Designers need feedback from the manufacturing process to ensure that thei
designs make effective use of available manufacturing facilities and are cost-effecti
to produce.

FOR WORKSHOP USE CODE # EXTRA
CONTINUATION OF (project title) Design Feedback from a Manufacturing Process
POTENTIAL PAYOFF (quantitative, if possible): <u>In the long-run, the expected payoff is</u> greatly reduced time and expense in bringing new designs to production. Delays
caused by faulty part programs, poor knowledge of the ideal manufacturing conditions,
too many set-ups, etc. should be greatly reduced.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Most efforts to date have focused on trying
to quantify the "manufacturability" of a completed design. The current proposal is
a new approach in which the designer must think about final design and part manufacture
concurrently. The local data base, combined with suggestions from an expert system with
knowledge of the local process, will be especially interesting to test on novice
designers.
PROJECT DURATION: 3 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): 1) create link between existing CAD & CAM
facilities so that process data is accessible by the LISP shell that currently
surrounds the CAD facilities, 0-18 mo. 2) statistical data interpretation & construction
of data base, 12-30 mo. 3) create interactive tool in which geometric primitives which
consist of input raw materials shapes & "virtual tools" are used to achieve final design,
12-30 mo. 4) embed rules in expert system & evaluate their effectiveness on novice
designers, 24-36 mo.
RESOURCE REQUIREMENTS:
(1) Principal Investigator @ 20% salary for 3 years
(2) Graduate Students for 3 years
Sensor & Interface Hardware (est. \$5K)
Machine Shop & Computational Resource Access
PROJECT CLASSIFICATION (please check one):

Manufacturing Technology or Advanced Development (near-term)

Basic Research (long-term)

X Exploratory Development (mid-term)

SESSION #: 3

AI/WORKSHOP EVALUATION
July 31, August 1, 1985
GROUP: 1

			CRITERIA	1	2	3	4	5
PROJECT	#:	1	MEAN ST. DEV.	5.60 1.35	5.27 1.16	5.40 1.12	5.80 1.47	4.47 1.25
PROJECT	#:	2	MEAN ST. DEV.	5.20 1.57	4.67 1.84	4.47 1.68		5.47 1.51
PROJECT	#:	3	MEAN ST. DEV.	5.00 2.14	4.80 2.21	5.13 1.64	6.40 1.92	4.00 1.77
PROJECT	#:	4	MEAN ST. DEV.	7.00 .93	6.73 1.22		5.80 1.52	4.13 1.13
PROJECT	#:	5		6.73 1.28	6.00 1.25	6.33 1.11		4.53 .92
PROJECT	#:	6	MEAN ST. DEV.	7.47 1.25	7.40 1.24	7.40 1.30	4.27 1.44	4.33 1.54
PROJECT	#:	7	MEAN ST. DEV.	6.00 2.07	5.93 2.31	5.87 2.33	4.07 1.75	4.9 3 2.3 1
PROJECT	#:	8	MEAN ST. DEV.	5.87 2.10	5.73 2.34	5.67 2.16	5.67 2.02	5.00 1.46
PROJECT	#:	9	MEAN ST. DEV.	4.53 1.51	5.13 1.41	5.60 1.50	6.60 2.16	3.27 1.33
PROJECT	#:	10	MEAN ST. DEV.	7.20 1.26	6.60 1.24			3.53 .92
PROJECT	#:	11	MEAN ST. DEV.	5.53 1.88	5.33 1.76	5.73 1.58	6.47 1.36	4.9 3 1.49
PROJECT	#:	12	MEAN ST. DEV.	7.13 1.13	7.13 1.06	6.67 1.05	5.20 1.32	3.67 1.11
PROJECT	#:	13	MEAN ST. DEV.	6.27 2.05	6.53 1.88	5.73 1.83	3.93 1.71	4.53 2.00
PROJECT	#:	14	MEAN ST. DEV.	7.53 1.06	7.33 .98	7.27 1.10	5.47 1.60	4.27 1.03
PROJECT	#:	15	MEAN ST. DEV.	3.93 1.83	5.13 1.25		3.60 1.12	3.47 1.36

SESSION #: 3

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 1

PROJECT # 1

CRIT. #	1	2	3	4	5	6	7	8	9	
1:	Ø	Ø	1	3	2	4	5	0	Ø	
	Ø	ø	1	3	4	5	2	ø	ø	
2: 3:	Ø	ø	ī	2	4	6	2	Ø	ø	
4:	Ø	Ø	1	2	3	4	3	2	ø	
4: 5:	Ø	Ø	5	2	4	4	Ø	Ø	Ø	
	PROJECT # 2									
CRIT. #	1	2	3	4	5	6	7	8	9	
1:	1	Ø	1	1	4	6	2	Ø	Ø	
2: 3:	1	1	2	2	4	2	3	ø	ø	
	1	1	2	3	3	4	1	Ø	Ø	
4: 5:	Ø	Ø	Ø	1	5	3 2	5	1	Ø	
5:	Ø	1	Ø	Ø	9	2	2	Ø	1	
				PI	ROJECT	# 3				
	1	2	3	4	5	6	7	8	9	
CRIT. #			J					0	9	
1:	1	2	1	1	3	1	6	Ø	Ø	
2:	1	3	1	Ø	3	2	5	ø	Ø	
3:	Ø	1	3	Ø	3	5	3	Ø	ø	
4:	1	Ø	Ø	Ø	3	2 2	5	3	ī	
5:	2	Ø	5	1	4	2	1	Ø	Ø	
				PF	ROJECT	# 4				
	1	2	3	4	5	_	_	•	_	
CRIT. #				4		6	7	- 8	9	
1:	Ø	Ø	Ø	Ø	1	3	6	5	ø	
2:	Ø	Ø	Ø	ø	3	3		3	ĺ	
3:	Ø	Ø	Ø	Ø	3	3	5 5 5	4	ø	
4:	1	Ø	Ø	Ø	3	6	5	Ø	Ø	
5:	1	Ø	2	5	7	Ø	Ø	Ø	Ø	
				PF	ROJECT	# 5				
	1	2	2		e	_	3	•	•	
CRIT. #	1	2	3	4	5	6	7	8	9	
1:	Ø	Ø	Ø	Ø	4	2	3	6	Ø	
2:	ø	Ø	Ø	1	6	2	4	2	Ø	
3:	ø	Ø	ø	ø	5	2	6	2	Ø	
4:	ø	ø	ĩ	Ø	4	2	4	3	1	
5:	ø	ø	2	5	6	2	ø	ø	ø	
								-	-	

SESSION #: 3

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 1

	GROOF. I									
	PROJECT # 6									
anta #	1	2	3	4	5	6	7	8	9	
CRIT. #	~			~						
1: 2:	Ø	Ø	Ø	Ø Ø	2 2	Ø 1	5 3	5 7	3 2	
3:	ø	Ø	Ø	Ø	1	3	3 4	3	4	
4:	Ø	2	2	5 5	3	2	1	Ø	Ø	
5:	ø	Ø	7	1	4	2	ø	1	Ø	
٠.	U	v	,		-3	2	v		v	
				PI	ROJECT	# 7				
	1	2	3	4	5	6	7	8	9	
CRIT. #										
1:	1	Ø	1	1	2	2	4	4	Ø	
2:	2	Ø	Ø	1	1	3	4	4	Ø	
3:	2	Ø	Ø	1	2	2	4	4	Ø	
4:	2	Ø	3	3	6	Ø	Ø	1	Ø	
5:	2	Ø	2	2	3	1	4	Ø	1	
				PI	ROJECT	# 8				
CRIT. #	1	2	3	4	5	6	7	8	9	
1:	1	Ø	ø	3	2	3	2	3	1	
2:	ī	ø	í	4	ī	ø	5	ĩ	2	
3:	1	Ø	1	3	ī	3	3	2	1	
4:	1	Ø	1	3	1	Ø	8	ī	Ø	
5:	1	Ø	1	Ø	9	2	2	Ø	Ø	
				PF	ROJECT	# 9				
									_	
CRIT. #	1	2	3	4	5	6	7	8	9	
1:	1	Ø	2	4	4	3	1	Ø	Ø	
2:	ø	ø	ī	6	2	2	4	Ø	Ø	
3:	ø	Ø	2	1	4	3	4	1	Ø	
4:	1	ĺ	ø	ø	ø	1	6	6	ø	
5:	ī	4	4	2	4	ø	ø	ø	ø	
	PROJECT # 10									
	_		_				_	_		
a n "	1	2	3	4	5	6	7	8	9	
CRIT. #										
1:	Ø	Ø	Ø	Ø		4	4		3	
2:	Ø	Ø	Ø	Ø	3	5	3	3	1	
3:	Ø	Ø	Ø	Ø	2		3	3	1	
4:	Ø	Ø	Ø	Ø	4	3	4	4	Ø	
5:	Ø	2	5	6	2	Ø	Ø	Ø	Ø	

SESSION #: 3

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 1

PROJECT # 11

	PROJECT # 11										
CRIT. #	1	2	3	4	5	6	7	8	9		
1:	1	Ø	Ø	4	2	1	6	1	Ø		
2:	Ø	1	1	4	1	3	4	1	Ø		
3:	ø	ī	Ø	2	3	3	5	1	Ø		
4:	Ø	Ø	Ø	ĺ	4	ĺ	5	4	ø		
5:	ø	ĩ	ĩ	3	6	2	ì	ī	ø		
				-	•	_	_	_	-		
				PI	ROJECT	# 12					
CRIT. #	1	2	3	4	5 	6	7	8	9		
1:	Ø	Ø	Ø	Ø	1	3	6	3	2		
2:	Ø	Ø	Ø	Ø	1	3	5	5	1		
2: 3:	õ	ø	ø	ø	2	5	4	4	Ø		
4:	Ø	Ø	2	1	8	Ø	4	Ø	Ø		
5:	ĩ	ĩ	3	7	3	Ø	Ø	Ø	Ø		
				PF	ROJECT	# 13					
anam H	1	2	3	4	5	6	7	8	9		
CRIT. #	1	Ø	Ø	2	2	Ø	5	5	ø		
2:	1	Ø	Ø	1	ø	3	5 5	5			
3:	l	Ø	1	Ø	4	2	6	1	Ø		
3. 4:			1						Ø		
5 :	2 2	2 Ø	3	2 Ø	6 6	2	Ø	Ø	Ø		
5;	2	ש	3	ש	О	2	1	1	Ø		
		PROJECT # 14									
CRIT. #	1	2	3	4	5	6	7	8	9		
1:	Ø	Ø	Ø	Ø	Ø	3	4	5	3		
2:	Ø	Ø	Ø	Ø	Ø	3	6	4	2		
3:	Ø	Ø	Ø	Ø	Ø	4	6	2	3		
4:	Ø	Ø	1	4	4	1	3	2	3 Ø		
5:	Ø	1	2	5	6	1	Ø	Ø	Ø		
				PF	ROJECT	# 15			-		
	1	2	3	4	5	6	7	8	9		
CRIT. #			 1								
1:	2	2	1	4	3	2	1	Ø	Ø		
2:	Ø	Ø	1	4	4	5	Ø	1	Ø		
3:	Ø	1	1	3	5	3	1	1	Ø		
4: 5:	1	1 3	4	6 2	3 5	Ø	Ø	Ø	Ø		
5:	1	3	4	2	5	Ø	Ø	Ø	Ø		

UNIT PROCESSES RECONCILIATION COMMENTS

Project 1

I rate consistency low because there is very little real AI - look at milestones - mostly finite element - and the AI reference "learns to revise its rules" is absurd. Either the author revers to "adaptively modify rule parameters" which is not AI - or really means what he says and that is well beyond state-of-AI-art, thus low feasibility.

Not a very important project in terms of impact

The project looks feasible. There are already commercially available modular fixture systems.

I still feel that only lip service is given to AI. The described "learn to modify its own rules" is too far beyond the state-of-the-art.

Project 2

There are many ways to solve this problem; for example, use interchangeable grippers, designed specifically for given shapes.

Independent of "AI" natural development of solid models of objects is the availability of these models to "robot programers", and independent of "AI" natural development of vision and tactical sensors will make it "much easier" and less expensive to program where and how to grasp parts.

Too narrow in scope.

The impact of the project is limited and therefore I agree with the estimated realism.

I view the project is limited in scope and easily realizable without application of artificial intelligence.

Doing geometric redesigning is not that difficult provided the proper representations are used. (4 years of experience/dissertation in this area)

Do not consider innovative AI application; and as stated, will not improve the unit process. As pointed out in discussion, it is a "academic look at an abstract problem".

Project 3

Commercial software available ("SACON" from Teknowledge) to do this job.

Methods to achieve the objective of the project are demonstrated and known. The payoff of additional investment is not needed to stimulate the extrapolation of this concept.

The project, as explained by its author, has a different objective than the one stated in the form.

This type of expert system has been done and will become widely available without USAF funding. Therefore, feasibility is very high. I don't feel that objectives or scope were met because analysis packages are limited to a small part (i.e., design) of the total manufacturing process.

This application of expert system is state-of-the-art already. The impact and payoff are limited to those groups that use the specific combination of analysis tools. It should be a commercially funded project. Hundreds of companies are already pursuing such projects. The Air Force should put its money elsewhere.

There are already a multitude of commercial investments being made to address this area. The development is well under way and is not needing Air Force support.

Project 5

It's not clear to me that the behavior of composites is well enough understood - even at a heuristic level - to make this feasible as a 2.5 year project.

Is the knowledge all there?

There is not adequate explanation about the performance strategy of this research project.

Impact is substantial - shows up wherever models and AI both are useful for different parts of same problem.

Project 6

Project is ambitious and technically difficult.

The project is feasible if approached as a shell of intelligence that integrates discrete process through a communication facility. The real-time definition would need, in this case, to be defined in terms of minutes or seconds.

I did not change my 2 on feasibility because I believe that it will be very difficult to "...formulate (swiftly) an alternate plan"... based on sensory input.

Project 7

No technical concept about how to do this project.

The project, as stated in the form, does not have any clear objectives and technical feasibility.

Scope and deliverables of proposed project are "modest" and not too difficult as I understand them.

The guts of this system already exist in the ITA planner (macro operations, pre/past conditions, etc.). Supervised generation of these operators is a logical next step, requiring a good operator interface.

Project 8

No technical concept. Just a batch of random hardware and software. No credible approach to real-time execution (i.e., what do you do if you cannot do the problem in real-time?)

This project provides an alternative approach to the control of flexible manufacturing systems. Individual real-time processors for machine control could compete for priority directly with other processors such as material handling systems, if fast enough. An understanding of the real-time capabilities is needed.

This is a "where the rubber meets the road" issue. Until someone works through the details and "gotcha's" of putting AI machines on the shop floor, very few of these unit processing projects can be put into production. We can do it "in the lab" forever, but the bottom line depends on practical, economical, reliable vehicles for implementing these ideas in production.

This capability is badly needed for metal fab machine tools, especially in the creation of flexible manufacturing systems.

Project 9

Not an AI problem. Should design post-processor for conversion.

The problem stated is valid, however, it can be formulated as a standardization problem.

The deliverable is a requirements document. From experience in computer vision, hardware/software/systems are operating in vacuums when it comes to emerging technologies. I'm sure the same is true of AI. Identifying and bridging these voids is very feasible and needs to be done.

Project 11

Project is conventional diagnostic expert system. Minimal research content. Level of resource not justified given commercial tools availability.

It seems that before expert systems will be ripe for appreciation, major problems in sensor technology, data interpretation, and perception must be ved first.

I consider the effort high if the project excludes development or research into machine monitoring technologies.

I would suggest expanding the project to encompass tool monitoring as well.

This is a very important application for quality and machine capacity utilization.

MAGNAGA MAGNAGA MAGNAGAN BEESEKIEN EGARAKKA ME

The hard part of this project is developing reliable monitoring techniques not creating an expert system. As written, the project assumes existing monitoring techniques will be used. I therefore believe this is a relatively simply project.

I still feel that the primary hurdle in this project - as written - may not be AI hurdles.

Project 12

The proposers of this project do not plan to use "solid geometric model" data to "help" the AI system but are depending excessively on sensors for environment information that will be used for planning. Hence, technique feasibility is in question and risky.

This project implicitly assumes a working, controllable, dexertrous hand with tactile sensing - but that alone would require a considerable effort to achieve. the state-of-the-art is not there yet.

The proposer of this project makes no mention of the intent to use digital data solid models as inputs to the "planner" which might be why there is discussion of "incomplete" information. Manufacturing is not as unstructured as a battlefield, because we do have "prints" of the parts to be assembled. Not to use these "prints" makes the job -- more fun and more interesting -- but more difficult.

Project 13

Really not enough information to evaluate. My criteria is that the burden of proof is on the proposer.

The project is so far in the future as to achievability that it sums many of the projects presented.

The approach is feasible for implementing flexible manufacturing systems. Conventional vertically integrated systems could be replaced by AI based systems that make industrial decisions based on peer-to-peer communications.

Project description very vague. My interpretation is that it does not belong to this panel.

If such a capability could be developed, it would be wonderous. Hence, 8, 8, and 8 for C1, C2, and C3, but the project is so poorly defined that it is unlikely that it could even happen. Therefore, a 1 for C4. Ditto for the 1 for C5. A-46

The projects goals are lofty hence 8's for C1, C2, and C3. But so vague that it won't happen hence a 1 for C4 and C5.

I rate feasibility very low because there simply is no adequate description of the project approach. Main thrust of project is data passing between distributed systems not advancing application of AI. Decision making priorities among intelligent nodes was not addressed either.

Project 14

Still have a problem with including "adaptive control" as an AI issue in recovering from changes in structure.

Why?

STATE STATES AND A CONTRACTOR

1- Adaptive control AI

2- Changes in structure require more

I viewed the project as feasible with respect to integration of automated statistical quality control within a flexible manufacturing system. Process diagnosis could result in automatic machine compensation to keep the process within acceptable limits.

The creation of a inference engine should be straight forward and the inspection knowledge is well defined and specific; these combine to make this a very feasible project.

I view this project as providing very important contributions to AI in manufacturing at the inspection end. The project will be limited to milling and lathe operations. With this limitation, I view the technique feasibility of the project to be quite high.

Project 15

Parallel computing very important for process modeling. AI content not a major factor.

This project could be used as a framework for the entire AI institute. Changes in the formulation regarding the use of AI should be made.

I do not feel that this project defines a significant application of AI even though it would be beneficial to manufacturing advances. Therefore, its impact and payoff are not relevant to this program.

Project has very good objective but does not appear applicable to the application of AI to manufacturing. I suggest the project be reclassified as part of a computer hardware/software development group.

Parallel processing requires a completely different mode of thinking. Dealing with this question is extremely relevant.

The deliverable, as I read it, would be a total system, not just a "parallel hardware machine". Should/could such a total system be developed it would solve all our problems. Hence, a 9 for C1, C2, and C3. But to develop a total system???

The need for parallel processors is limited and industry is very slow to adopt radically different computers in manufacturing. The impact and payoff would be very high for activities such as high speed flight simulations but not manufacturing.

I see the project as highly oriented to generic parallel processing, not specific to AI in manufacture Let Mathematical Sciences Division pay for it.

The project as stated assumes parallel computation will be this answer. Not so. But the narrative outlining "Importance of Manufacturing" is a superb overview of why AI/ES applies to manufacturing applications of the Unit Process Systems level is so important to the USAF.

APPENDIX B

MANUFACTURING SYSTEMS

This appendix reflects the results from the deliberations of the Manufacturing Systems Panel. It is organized as follows:

Sub-Panel White Paper Panel Specific Criteria Candidate Projects Round 3 Assessment Statistics Reconciliation Comments B-2 B-7 Candidate Projects B-9 Reconciliation Comments B-55	•

WHITE PAPER

FOR

MANUFACTURING SYSTEMS

DEFINITION

Manufacturing systems begin with product and supporting process design and end with the delivery of the complete definition for production and distribution. They also include generation of system metrics and measurement of system performance.

Examples of manufacturing system activities or areas of interest are:

- product definition,
- product planning,
- production planning,
- production scheduling,
- floor control,
- specification control.
- configuration management,
- tool management,
- materials planning,
- facilities layout,
- integrated design: product, process, system, etc.,
- all the non-touch labor areas, except those related to unit process operations.
- and specifying the information system needs and requirements.

MOTIVATION FOR RESEARCH

During the past 30 years, the number of people involved in touch labor in the United States has remained constant at approximately 19 million. During the same time, the output of these people has grown dramatically. Nonetheless, our overall manufacturing productivity is declining. A large contribution to this decline is the near exponential growth of non-touch labor. A major opportunity exists, therefore, to reduce product cost and increase the responsiveness of factories by improving the productivity of non-touch labor. Conversely, complete automation of the touch labor involved in actual production processes would only moderately improve total productivity or reduce product cost.

Non-touch labor is involved in the creation, receiving, sorting, transforming, and transmitting of information and decisions based thereon. Information can be thought of as the data, knowledge, and stills which exist in the data bases, filing cabinets, and people involved with manufacturing systems. Since current data processing approaches have not adequately addressed the information acquisition, management, and use issues

involved in manufacturing, a new approach is needed. Because of its ability to deal with the complex information and decision making issues involved in manufacturing systems, artificial intelligence promises to make non-touch labor more efficient and thus dramatically improve productivity.

In addition, other factors motivating research in the area are:

- a need for a unified interdisciplinary approach,
- insufficient, on-going research available (critical mass required),
- a need to expand the education base,
- the maintenance of national leadership in technology,
- a desire to accelerate technology,
- a need for cost competitiveness (reduced cost of system development),
- the desire to manage change and complexity,
- a need for improved decision/configuration management,
- and a desire to capture expertise.

WHY AI?

The constraint propagation properties of manufacturing problem solving match the problem characteristic requirements of most AI techniques. Consequently, there is a natural relationship that exists between the problem structure of the manufacturing system and the structure requirements of AI techniques.

Manufacturing is a nearly decomposable system in that it consists of loosely coupled subsystems. The interactions between the subsystems are in the form of constraints that:

- express existing relationships among subsystems by specifying conditions to be satisfied, and
- express commitments that can be made as a result of satisfying a condition.

The overall system goal is to manufacture a product on time and within budget that meets specifications. This goal is decomposed into subsystem goals and working backwards through constraint satisfaction, the Overall goal is met. The constraint propagation leads to a least commitment planning strategy that defers decisions as long as possible in meeting the goal.

Characteristics of AI techniques that facilitate the planning activities of manufacturing include:

- conflict resolution.
- coping with uncertainty in data and knowledge,
- dealing with complexity and ill-structuredness,
- pooling of expertise.
- and exception handling.

WHERE AI?

CONTRACTOR DESCRIPTION OF STREET

There are AI systems at early stages of development in many manufacturing system problem areas including product and facilities design, scheduling, distribution, field service, and strategic management. Prime problem types for current application are diagnosis and structured selection. Other problem types such as planning, design, and model-based reasoning require additional research breakthroughs to provide the necessary reasoning power for fully addressing them.

A conceptual framework of possible applications of AI to manufacturing system problems is given in Figure 1. This framework was generated at the November 1984 workshop by the Manufacturing Systems Panel and provides an evaluation of manufacturing decision-making levels and their characteristics with regard to AI applications.

FIGURE 1: MANUFACTURING SYSTEM DECISION-MAKING LEVELS AND CHARACTERISTICS WITH REGARD TO AI APPLICATIONS

LIMITATIONS/EXPECTATIONS

AI is an emerging technology which is in its first generation of commercial products and applications. This means the product definition and appropriate manufacturing application are still being defined. Thus, the methodology currently used to solve real problems is incremental prototyping. The use of the technologies is limited by a lack of seasoned practitioners; thus, there is a real requirement for educational programs that help prepare industry for the fusion of this technology into existing methods of manufacturing operations. Most current tools are extensions of

research prototypes and are not turn-key systems. They suffer from poor documentation, lack of interface standards, corporate support services, and extensive use in wide ranging applications.

The limitations of the initial systems were that they were not general purpose systems and they focused on analytical/diagnostic processes and problems. These systems are not easily interfaceable to traditional data bases. Future systems should provide the capability for problem synthesis and have more general purpose functionality.

Managing the expectations of senior manufacturing management and the end user community is a critical task in order to provide the effective transfer of these new AI technologies within the manufacturing operations. It is not expected that the technology will create large displacements or disruptions in manpower but rather will augment/enhance their decision making and thus free up their time to focus on problems and issues not easily codified or automated. There is an expectation that these systems are capable of self-learning and can build models; however, the current generation of tools cannot. This is a major research area. Consequently, the expert will be needed to maintain the system for years to come.

Another expectation is that since the systems involve capturing the expertise of in-house experts, they can be developed quickly and painlessly. However, a current bottleneck in applying the technology is acquiring the knowledge and properly representing the knowledge that constitutes the expertise. There is also the need to allocate large amounts of the experts' time to the system development process. These activities require the dedication of full-time staff to learn the AI languages, methodologies, disciplines, understanding the development environments, and computational requirements.

Problems that don't address a real need and are not sufficiently bounded have a high probability of failure. The risk of failure can be reduced through realistic management of expectations, end user involvement throughout the system design cycle, and an incremental approach to solving the problem.

There are a number of hard and intractable problems where extensive research efforts must be brought to bear to gain insight to possible solutions. These problems are:

- machine understanding of human discourse,
- self-learning systems,
- self-modification by the system,
- knowledge representation,
- knowledge acquisition processes,
- automated expert system generators,
- and programming paradigms for parallel processors.

GOALS

The goals for supporting research in the application of AI to manufacturing systems include: strengthen national competitiveness by improving quality, productivity, reaction time, and cost effectiveness of batch manufacturing parts; contribute to the science and technology base supporting this area; and provide educational opportunities that expand the pool of people skilled in this area.

OBJECTIVES

The objectives are:

- Provide a framework for allowing total design and manufacturing integration.
- Provide improved tools for all elements of planning, scheduling, and controlling factory operations.
- Foster co-residency of AI based and traditional methods.
- Develop effective means for capturing, transmitting, and using manufacturing information.
- Establish common measures of effectiveness and efficiency of advanced manufacturing systems.
- Foster major advancements in AI methods and tools as they apply to manufacturing systems.
- Support problem driven research in such areas as reducing span time from concept to production, reducing inventories, increasing scarce resource utilization, etc.
- Demonstrate prototype developments.
- Establish a life-cycle definition and procedure for AI development programs.
- Increase the number of trained AI practitioners and educators involved in manufacturing systems.
- Foster technology transfer and commercialization of research results.

MANUFACTURING SYSTEMS PROJECT ASSESSMENT CRITERIA

USE THE FOLLOWING SCALE FOR CRITERIA 1 THROUGH 4

- C1. FEASIBILITY The project is feasible in that the problem is sufficiently understood and the approach sufficiently promising to determine if a solution is achievable and objectives can be met.
- C2. IMPORTANCE TO MANUFACTURING This project is significant in its contribution to the desires of the manufacturing community. Specifically, it exhibits breadth of utility across the manufacturing industry, applies to a variety of opportunities across manufacturing systems, and enables manufacturing systems organizations to achieve new capabilities.
- C3. PAYOFF The project exhibits potential for payoff in manufacturing. Payoff has two major attributes: return on current investments, and investment in future potential capabilities. Return of current investments requires the project be truly implementable with designated deliverables, milestones and quantifiable measurements of improvement for a current manufacturing need. Investment in future potential capability provides a process to research areas of uncertainty and high risk, but usually infers significant high payoffs by providing answers to research questions. It is assumed that where there is existing intense investment in R/D areas, that the future investment here should build upon the current effort, not reinvent it.
- C4. CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE The results of this project provide an original or innovative contribution to the understanding, methodologies, or tools needed to develop artificial intelligence applications for solving manufacturing systems problems.

USE THE FOLLOWING SCALE FOR CRITERIA 5 AND 6

- C5. TIME ESTIMATE The time estimate (in calendar years) is reasonable in light of the project's objective and approach.
- **C6. RESOURCE** ESTIMATE The resource estimate is reasonable in light of the project's objectives and approach.

FUR	WORKSHOP	USE	
CODE	#		

APPLICATION AREA (please check one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
INTELLIG	ENT INFORMATION HANDLING
PROJECT TITLE:Material Handlin	g Equipment Selection Expert System
PROBLEM DEFINITION/PROJECT OBJECTIV	/E:To develop an expert system that aids in the
selection of specific handling equ	ipment for a given material handling task. That is
selection from a list of M/H equip	ment options to move a load unit with some given
attributes from one location to an	other location. The objective of this project is
to develop a rule base that incorp	orates "generic" rules, "site-specific" rules,
and "meta-rules" that direct the p	roblem analysis.
PROJECT DESCRIPTION/APPROACH: A r	ule base will be developed containing the equipment
	experts. Because the knowledge needed for a variety
of equipment types is not commonly	available in a single human expert, multiple
experts will be used in gathering	expertise. It is intended that this system be used
	n (and retrofit) and frequently recurring M/H
selection decisions in existing fa	cilities. Elements of the project include knowledge
acquisition and integration, knowl	edge representation design, design of communication
dialog, and test/verification/vali	dation/demonstration of the system.
IMPORTANCE TO MANUFACTURING: The	facilities engineer that needs to choose material
handling equipment does not often	have available or understand the range of equipment
alternatives that exist and where	they are best fitted. This problem occurs across
a broad spectrum of industry. (It	is intended that this tool be adaptable to a variety
of industrial sites.) The propose	d system would allow the facilities engineer to
easily evaluate the available alte	rnatives.
•	•

	FOR WORKSHOP USE CODE #
CONTINUATION OF (project title) <u>Material Handling Equipment Select</u>	ion Expert S ystem
POTENTIAL PAYOFF (quantitative, if possible):Poorly_chosen_materia	al handling
equipment can be costly and adversely affect manufacturing system pro	oductivity. The
benefits from available expertise for material handling equipment se	
realized at frequent planning intervals with some companies using suc	ch a tool on a
weekly basis. Eventual additional payoff would come in a more sophis	sticated system
that selects material handling "systems".	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Contribution would be pr	rimarily in the
technology base in a form of a software tool for material handling ed	quipment selection
including selection knowledge and a data base of available equipment	types. It would
also provide an educational tool for material handling.	
	·
PROJECT DURATION: <u>1.0</u> CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): <u>Demonstrate prototype for cr</u>	ands trucks and
	unes, crueks, una
conveyor selection in 9 months.	
RESOURCE REQUIREMENTS:	
(1) Knowledge Engineer	.75 MY
(3) Experts in Material Handling Equipment Selection	.30 MY
	.10 MY
(1) Project Director (1) Microcomputer TOTAL	1.15 MY
(1) Knowledge Engineering Tool	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term) Exploratory Developmen	t (mid-term)

<u>X</u> Manufacturing Technology or Advanced Development (near-term)

FOR	WOR	KSHOP	USE	
CODE	#	2		

APPLICATION AREA	A (please check	one):			
UNIT	PROCESSES	<u> </u>	MANUFACTURI	ING SYSTEMS	
	INTEL	LIGENT INFORMA	TION HANDLIA	IG	
PROJECT TITLE:	Realtime Contr	ol of Cell-Lev	el Batch Man	ufacturing	· · · · · · · · · · · · · · · · · · ·
PROBLEM DEFINIT	ON/PROJECT OBJE	CTIVE: Curr	ent control	systems only automate	e material
handling and NC	program down-lo	ading because	the nature o	of automated batch mar	nufacturing
<u>generates large</u>	numbers of exce	ptions. These	exceptions	are currently handled	d manually
				The project objective	
	function as wel	1 as the excep	tion handlin	g using artificial in	<u>itelligence</u>
techniques.					
PROJECT DESCRIPT	FION/APPROACH: _	The approach	is a phased	development in which	n a standar
control archited	ture would be a	ugmented with	AI and evalu	lated to understand th	1 <u>e</u>
problems and tec	hnology gaps.	The results wo	uld be used	to structure technolo	ogy
developments to	enable the cont	rol system to	be built usi	ng a new structure ba	ased
upon unique appr	roaches suitable	to the proper	ties of AI t	echniques.	
			•	•	
IMPORTANCE TO MA	ANUFACTURING: _T	he manufacturi	ng system ex	spects a certain leve	1 of •
intelligence fro	om the cell. Th	is is currentl	y provided b	y the supervisor who	acts as
a cognitive buff	er between the	cell and the r	est of the m	nanufacturing system.	This
project addresse	s the cells cog	nitive needs a	ind would eli	minate the requiremen	nt for
the man-in-the-	loop operation.	·			
					

FOR WORKSHOP USE CODE # 2

CONTINUATION OF (projecttitle) Realtime Control of Cell-Level Batch Manufacturing
POTENTIAL PAYOFF (quantitative, if possible): These results would allow the cell to act as a truly felxible manufacturing system and process multiple part types dynamically
without the significant manual planning needed to support current systems.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: AI has not been successfully applied to complex realtime systems in a manufacturing environment. This project would
identify the key problem and technology issues and provide a proof of concept for their solution.
PROJECT DURATION: 7 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): (1) Build the control system using a standard
architecture, $1\frac{1}{2}$ yrs (2) Define the technology issues, 2 yrs (3) Solve the technology
issues, 4 yrs (4) Design a new AI based control architecture, 6 yrs (5) Build a prototype
for proof-of-concept demonstration, 7 yrs.
*
•
RESOURCE REQUIREMENTS: Cell emulator development, with attached AI processor, software
\$200,000 for equipment, 2 senior researchers and 4 graduate students for 7 years -
10 manyears.
•
PROJECT CLASSIFICATION (please check one):
X Basic Research (long-term)Exploratory Development (mid-term)
Manufacturing Technology or Advanced Development (near term)

FOR	WOR	KSHOP	USE
CODE	#	3	

APPLICATION AREA (please check one):	
UNIT PROCESSESX MANUFACTURING SYSTEMS	
INTELLIGENT INFORMATION HANDLING	
PROJECT TITLE: Engineering Change Management	
PROBLEM DEFINITION/PROJECT OBJECTIVE: In a batch manufacturing aerospace envi	ronmen
ngineering Change (EC) Management is difficult due to the large number of engine	
hange requests associated with the product through its entire production life cy	
This project would build an AI based system to perform configuration management.	
PROJECT DESCRIPTION/APPROACH: The system would monitor work orders and active equests continually to ensure a pending operation uses the most recent EC and the	
C currently active on previous operations are reflected in the parts. Since thi	S
s exception management, it is well suited to AI techniques. However, it also re	
he system to be integrated into the shop floor control system and the manufactur	ring
lata base.	
IMPORTANCE TO MANUFACTURING: A great deal of scrap results from part spoilage	
hrough unintentional use of dated engineering specifications. This is a result	of
poor engineering change management. An automated system would reduce this scrap	
ensure the delivered product met customer specifications.	
· · · · · · · · · · · · · · · · · · ·	
	•
	

FOR WORKSHOP US CODE # 3
CONTINUATION OF (projecttitle) Engineering Change Management
POTENTIAL PAYOFF (quantitative, if possible): The potential payoff is a reduction in
rework and scrap due to the unintentional use of improper engineering design specifi-
cations. It would eliminate the current practice of generating the manufacturing bill
of materials for a specific ship set from the completed product.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The design and implementation of a
system capable of automatically handling thousands of active EC relating to tens
of thousands of parts would provide the technology development necessary to implement
AI in large on-time production environments integrated with the existing manufacturing
systems.
PROJECT DURATION: 4 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): Define the EC problem - 1 yr; define the AI-EC
requirements & design specifications - $1\frac{1}{2}$ yr; design & implement, test and install -
4 yrs
RESOURCE REQUIREMENTS: 50 manyears

FOR	WOF	RKSHOP	USE
CODE	#	4	

APPLICATION AREA (please check one):				
UNIT PROCESSES	<u> </u>	MANUFACTURI	NG SYSTEMS	
INTELLIGEN	IT INFORM	ATION HANDLI	NG	
PROJECT TITLE: <u>Intelligent Shop Fl</u>	loor Sche	duling Syste	m	
				
PROBLEM DEFINITION/PROJECT OBJECTIVE:	This	Intelligent	Shop Floor Sched	duling System
will provide the following capabilitie				
Decter visibility of event status; que	ing redu	ction,; fast	response to cha	inges within
t <u>he operations.</u>	·			
				
				····
PROJECT DESCRIPTION/APPROACH: A speci	ific manu	facturing pr	ocess will be se	elected. Flow
chart the process as the first step in	_			
appropriate knowledge representation s	chemes.	Start the b	ase shell of the	Knowledge
Based System, and continue incrementin	ig the ba	<u>se prototype</u>	with knowledge	acquisition,
and expanded representations. Demo th	ie base s	hell early.	Ensure the base	system can
nterface to existing manufacturing in				
mere is that there are existing manufact	uring da	ta bases of I	high integrity a	nd accuracy.
				
TMPORTANGE TO MANUFACTURE				
IMPORTANCE TO MANUFACTURING: This sy				
rom the smallest shop to large corpor				
righ responsiveness to changes. This	system wo	bulo be porta	able to many loc	ations.
				
				

FOR WORKSHOP USE CODE # 4 CONTINUATION OF (project title) Intelligent Shop Floor Scheduling System POTENTIAL PAYOFF (quantitative, if possible): Reduction in manufacturing cycle time by 30%. Improved handling process (10% less defects), reduction of WIP by 35%, increase non-touch labor productivity by 28%, and improved decision response time by 40%, with improved shipment schedules. CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: New software structures for knowledge representation. New methods for fusing expert system knowledge bases and tradition manufacturing information system. PROJECT DURATION: 3½ CALENDAR YEARS MAJOR MILESTONES (include timeframe): Selection & flow chart of process-3/4 yr.: design the bare shell-1 yr.; demo 1-1 $\frac{1}{4}$ yr; expanding the shell-1 $\frac{1}{2}$ yr.; demo the shell 2-2 yr.; design test-24 yr.; interface to existing DB-3 yr.; put into production trial- $3\frac{1}{4}$ yr.; final acceptance- $3\frac{1}{2}$ yr. RESOURCE REQUIREMENTS: Ten manyears, availability of VAX 11750 system or equivalent.

Basic Research (long-term) X Exploratory Development (mid-term)

Manufacturing Technology or Advanced Development (near-term)

PROJECT CLASSIFICATION (please check one):

FOR	WOR	KSHOP	USE	
CODE	#	5		

PPLICATION AREA (please check one):	
UNIT PROCESSES X MANUFACTURING SYSTEMS	
INTELLIGENT INFORMATION HANDLING	
ROJECT TITLE: Generative Process Planning for Manufacturing	
OBLEM DEFINITION/PROJECT OBJECTIVE: This project would minimize the quality p	oro-
ems. schedule slippages, resource overloads, high part scrap rates and shop cong	<u>jestio</u> r
nditions that are currently a part of the manufacturing environment. It would b	<u>e</u>
signed for effective standardization and consistency between generated plans. I	<u>his</u>
stem would accept, as input, a coded description of the relevant characteristics	of_
e part to be planned and produce a process plan for that part. Such an applicat	ion
uld "read" the part geometry and part description information and create the coc	led
scription through the interface to CAD data base systems.	
ROJECT DESCRIPTION/APPROACH: This project requires an integration with both t	the
gineering design system and the manufacturing system. It requires the developme	ent of
mplex knowledge representation schemes to represent the relationship between par	
ature characteristics and properties and the manufacturing processes and resource	ces.
e actual planning activities are sufficiently complex to require significant	
vancement in the understanding of the general planning process.	
MPORTANCE TO MANUFACTURING:It would use search strategies to implement goal	
eking capabilities. That is, the system could use backtracking stragegies to pr	
ce plans which minimize set-up and/or maximize the use of particular sets of mac	chines
or example.	

FOR WORKSHOP USE CODE # 5
CONTINUATION OF (project title) <u>Generative Process Planning for Manufacturing</u>
POTENTIAL PAYOFF (quantitative, if possible): This project will reduce the effects of those required experienced in individuals who are retiring and are also in short
supply. As well as promoting the effective integration of CAD/CAM into the
manufacturing environments.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This project will provide extended
capabilities to generate classification structures from CAD data bases which currently
presents a significant void in this technology area. It would also extend the under-
standing of the general planning process and how it can be automated.
PROJECT DURATION: <u>10</u> CALENDAR YEARS
MAJOR MILESTONES (include timeframe): <u>Identify the generic data structures and</u>
knowledge representation requirements, 5 yrs; analyze & define the planning system
used by manual planners - 5 yrs.; determine how to automate the planning system, the
knowledge representation scheme & their dynamic interaction - 8 yrs.; determine how to
analyze CAD data to generate the knowledge - 7 yrs.; design & build the prototype - 10 y
RESOURCE REQUIREMENTS: 50 manyears
PROJECT CLASSIFICATION (please check one):
X Basic Research (long-term) Exploratory Development (mid-term)

Recede Sandana Province Price

_Manufacturing Technology or Advanced Development (near-term)

_			- J -
CODE	#	6	

APPLICATION AREA (please check	one):
UNIT PROCESSES	x MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Software To	ools for System Scheduling
PROBLEM DEFINITION/PROJECT OBJE	ECTIVE: Each manufacturing system has configuration and
	its environment these can be caused by physical constraints
personnel and equipment availab	bility or supplier reliability. The objective of this
project is to develop software	tools with the capability of representing a large variety
of manufacturing systems and de	eveloping an expert configurer and scheduler for each
system.	
PROJECT DESCRIPTION/APPROACH:	Initially one would build a skeletal interence system
which would consist of a method	d of representing the processes in the manufacturing
system and some general meta-re	ules for developing scheduling experts systems. The
process representation would be	e a frame based system with a frame for each process.
Slots would contain cost of ope	eration, retooling costs, suppliers etc. Overall system
inputs would include supplier	rates and desired output rates. When a user has input his
particular system the software	will then build an expert configurer and schedule.
IMPORTANCE TO MANUFACTURING. T	he flexibility of such a system will allow the represen-
·	s from unit processes to plant level networks. The
	will make the AI techniques available to a large
	oly output requirements or capabilities in the system
	chedule processes to maximize utility. Along with
	system can be used as tools for acquistion decisions.
Theory resemedating the s	Joseph San Road an energy ter modern and territories

CONTINUATION OF (project title) Software Tools for System Schedulin	CODE # <u>6</u>
POTENTIAL PAYOFF (quantitative, if possible): The payoff is two-fold manufacturing system an expert scheduler will improve product throu minimalizing the effect of equipment malfunction and supply shorta developing general tools this technology becomes widely applicable.	gh out while ge. Moreover in
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: (1) Development of general knowledge representation scheme for man (2) Development of meta-system for automatic expert system buildin	
PROJECT DURATION:3 CALENDAR YEARS MAJOR MILESTONES (include timeframe): (1) Development of knowledge representation scheme 1/2 year	
(2) Construction of network constructing software 1/2 year (3) Determination of meta-rules for automatic rule based system construction (4) Integration and testing	2 years
RESOURCE REQUIREMENTS: 2 senior researchers 1/2 time for 3 years 3 graduate students for 3 years 2 AI workstations	
PROJECT CLASSIFICATION (please check one): Basic Research (long-term) Exploratory Development X Manufacturing Technology or Advanced Development (near-term	

	APPLICATION AREA (please check one):
(\$	UNIT PROCESSESX MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
	PROJECT TITLE: Expert System Based Simulation Model for Flexible Manufacturing
	Systems (FMS) Design
	PROBLEM DEFINITION/PROJECT OBJECTIVE: There are currently three approaches to
	evaluating design proposals for flexible manufacturing systems: full scale
	implementation, pilot implementation, and computer simulation analysis. Of these
	methods, simulation is the most efficient; unfortunately, because of the level of
	expertise required, simulation has not achieved its potential as a design tool.
	The objective of this project is to embed a process design expert system in an FMS
	simulation model thus permitting designers to easily obtain acceptable designs.
	PROJECT DESCRIPTION/APPROACH: From emerging FMS simulation model literature, a
	generic FMS definition will be developed. Key operational and financial performance
	measures for FMS will be identified from the generic FMS definition. The FMS
249	definition will be analyzed to develop a knowledge base of performance/cost tradeoff
	relationships. Design principles, practices, and rules of thumb will be identified
	from available design sources, e.g., literature, engineering standards. An expert
	system using the knowledge base of design relationships and the design rules will be
	embedded as a control mechanism in an FMS simulator to guide the simulator toward
	acceptable design options.
•	IMPORTANCE TO MANUFACTURING: Some types of performance/cost evaluation is
	accomplished for every proposed FMS design. The evaluation may be an intuitive
	assessment of potential or a detailed analytical study, but every proposal is
	evaluated in some way. If an efficient approach to identifying designs which are
	acceptable with respect to both operational and financial performance objectives
	were available to process designers, it would surely dominate evaluation approaches.
	Thus the technology proposed has the potential of impacting practically every
	future FMS implementation.
	•
4	

	CONTINUATION OF (project title) Expert System Based Simulation Model for Flexible
	Manufacturing Systems (FMS) Design
<u></u>	POTENTIAL PAYOFF (quantitative, if possible): It is estimated that 1% of FMS
(, _x ;	implementation costs are spent on design evaluation studies. The actual alternative
	evaluation phase of simulation analysis represents approximately 20 percent of the
	analysis effort. It is expected that this could be cut in half with the proposed
	technology, hence the potential payoff of the technology is .1 of 1% of the
	implementation costs for <u>all</u> FMS for which the technology is used.
	CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This project represents the first
	attempt to use an expert system to guide a process design simulator toward
	acceptable solutions. The methodology could significantly contribute to simulation
	technology by defining an optimum solution seeking mechanism for simulation models
	in general.
	PROJECT DURATION: 2.5 CALENDAR YEARS
	MAJOR MILESTONES (include timeframe):
<i>(</i> ···	I. Develop a generic FMS definition. 4 months
("	II. Identify key operations and financial performance measures. 2 months
	III. Develop performance/cost relationship knowledge base. 6 months
	IV. Identify design principles, practices, guidelines. 6 months
	V. Develop code for the expert system and simulator. 12 months
	VI. Evaluation and testing. 6 months.
	RESOURCE REQUIREMENTS: This project would require approximately 5 manyears of
	technical effort; AI computing and laboratory facilities for the duration of the
	project would also be required. A total project budget of \$600,000 is anticipated.
	project would also be required. A total project budget of \$600,000 is anticipated.
	PRÛJECT CLASSIFICATION (please check one):
	Basic Research (long-term)Exploratory Development (mid-term)
	<u>x</u> Manufacturing Technology or Advanced Development (near-term)

(*)

COOE	#	8	

APPLICATION AREA (please check	one):
UNIT PROCESSES	XX MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Utilization Training Tool	of Expert Systems in Manufacturing As s.
PROBLEM DEFINITION/PROJECT OBJ Intelligent/Expert Sy	ECTIVE: As more and more Automation and Artificial stems are implemented in Manufacturing, the
new people on the Sho	p Floor are not able to experience the proper
"scenarios" to comple	tely understand the environment. The project
objective is to use tand to instruct peopl	he production expert systems as a training aid e on the shop floor logic of decision processes.
PROJECT DESCRIPTION/APPROACH:	Take existing Expert Systems and add the interactively instruct and to be able to
	in a controlled, training environment.
IMPORTANCE TO MANUFACTURING:	
2. Introduce people to controlled environ	in some of the 'black boxes' that they use to the functions of the shop floor in a nament.
3. Train new supervis	sors/operators in shop floor logic.
	ne ability of seeing what impact different
	thout affecting the shop floor.
	•

	•	Φ0E# _ 8
CONTINUATION OF (project	title) <u>Utilization of</u>	Expert Systems in
Manufacturing A	s Training Tools.	
POTENTIAL PAYOFF (quanti	tative, if possible):	
o Faster Train	i n n	
o Better man/m		
o More product	ive people, faster	
o Better accep	tance of new technology	
CONTRIBUTION TO SCIENCE A		
o Software too	l for training in new tec	chnology
o 8 mo - coding	ct definitions, selections, interfacing with existing, interacting and vali	n, design ing Expert System dating
RESOURCE REQUIREMENTS:	Training Specialist	2 0 my
ESOUNCE NEQUINEMENTS	Computer Scientist	2.0 my
	Coding Coding	1.0 my
		L. W. HLY
PROJEG: CLASSIFICATION (p		tonu David mant (mid tourn)
Basic Research		tory Development (mid-term)
Manufacturing T	echnology or Advanced Develop	ment (near-term)

(

りを重けられているを重ければれるのは、量があるのでは、全量をついたのでは、重要のというには、1種のできなのでは難しいできなった。 単しているのでは、1年間によっていた。

AD-R168 692	A RESEARCH ARTIFICIAL DAYTON OHIO	PLANNING AS INTELLIGENC H H HENGH	SESSMENT FOR (U) UNIVERS OLD ET AL. JI	APPLICATIONS SAL TECHNOLOGY RN 86 F/G	OF CORP	2/3 L
UNCLASSIFIED	H-ARE IN OU	73301				

£

APPLICATION AREA (please check	cone):
UNIT PROCESSES	x MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Manufacturing I	Planning and Scheduling Using Integrated AI and OR
PROBLEM DEFINITION/PROJECT OB	JECTIVE: Definition/Objective: The objective of this
project is to develop methodo	ologies and software which support the unification/inte-
gration of Operations Research	ch and Artificial Intelligence methodologies as applied
to manufacturing planning, so	cheduling, and analysis.
PROJECT DESCRIPTION/APPROACH:	This project will evaluate the potential for the inter-
	cation of OR techniques with the languages of AI. Project
<u></u> 	ation of opportunities, the evaluation of existing pro-
cedures/methods, development	of new methods, prototype software, and demonstrations
of OR-AI integration. Partic	cular emphasis will be placed on the opportunities relating
to expert system development.	OR techniques which are known to be effective in
supporting manufacturing ana.	lyses (e.g., inventory theory, queueing theory, simulation,
optimization) are to be used	in a complimentary nature either in descriptive or in
prescriptive contexts.	
IMPORTANCE TO MANUFACTURING: _	Operations Research tools offer a significant capability
for performing manufacturing	analysis, planning, and scheduling. An effective
mechanism for taking advantag	ge of these tools could complement the analytic potential
of expert systems and offer t	the opportunity to directly integrate existing manufacturing
models and analyses into expe	ert systems. In addition, the ES could provide expert
guidance in the development,	maintenance, and application of the OR analyses and models
	•

FOR	WORK	SHOP	USE
CODE	#	9	

CONTINUATION OF (project title) Manufacturing Planning and Scheduling Using Integrated AI and OR Methodologies
POTENTIAL PAYOFF (quantitative, if possible): A more effective use of OR methods and models; the union of symbolic and quantitative methods will provide a widely
applicable vehicle for the development of expert systems.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Contribution would be primarily in the technology base in the form of a set of software tools and methodologies for the
development of symbolic based/quantitative based expert systems.
PROJECT DURATION: 2 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): Conceptual design for integration, prototype software development, development of a demonstration expert system.
RESOURCE REQUIREMENTS: 6 manyears
PROJECT CLASSIFICATION (please check one): Basic Research (long-term)Exploratory Development (mid-term) Manufacturing Technology or Advanced Development (near-term)

APPLICATION AREA (please check	k one):
UNIT PROCESSES	x MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Machine Monito	ring Expert System
PROJECT TITLE: Machine House	Ting Dipote System
DDODLEM DESINITION (DDO)ECT OR	JECTIVE: This Machine Monitoring Expert System will
provide monitoring of manufac	turing equipment to detect changes in operational status
that indicate maintenance and	
PROJECT DESCRIPTION/APPROACH:	Impending bearing failures have been detected in
	es in the frequency response spectrum of accelerometers
used as detectors. This syst	em would combine the AI techniques of expert systems
with the machine monitoring t	echnologies. The system would detect imminent failures,
diagnose them and suggest cor	rective action.
IMPORTANCE TO MANUFACTURING:	This system would improve maintenance and thus reduce
_	or in manufacturing. By monitoring the operational
status on a short periodic ba	asis and detecting imminent failure the problem can be
corrected on a non-critical t	ime. This avoids the cost of a machine that breaks down
in the middle of a production	run.

CODE #
CONTINUATION OF (project title) Machine Monitoring Expert System
POTENTIAL PAYOFF (quantitative, if possible): Reduction of maintenance costs, reduction of down time during production and thus higher productivity from the manufacturing
facility.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Application of AI to maintenance management Capturing the knowledge of maintenance experts in a knowledge base.
PROJECT DURATION:3CALENDAR YEARS
MAJOR MILESTONES (include timeframe): First year - build knowledge base; Second year - build a prototype system for rotating machinery; Third year - build a generic system
to allow for a wide variety of machines, sensors, and detection data for general application.
RESOURCE REQUIREMENTS: 5 man years
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term)

FOR WORKSHOP USE

APPLICATION AREA (please check one):	
UNIT PROCESSES	xx MANUFACTURING SYSTEMS
	LIGENT INFORMATION HANDLING
PROJECT TITLE: _Shop Floor Schedulin	a with Resource Constraints
Shop Troot Schedulin	g with Resource Constitution
PROBLEM DEFINITION/PROJECT OBJECTIVE	Consider the situation in which there exists
a set of workers, X, jobs, Y, facili	ties, Z, and times, T. Although many mathematical
models and variants have been propos	ed (often integer programs), in practice,
constraints and time limitations of	a real operating environment, invalidate these
approaches. An expert "somehow" acc	ounts for reality.
PROJECT DESCRIPTION/APPROACH: _ A Dep	artment Head in a university setting must allocate
faculty (X) to courses (Y) in classr	ooms (Z) during periods of the day (T). Certain
"rules" are often implicitly develop	ed to assist in this task. This seems to be
analogous to a manufacturing setting	and, initially, more easily structured than
all the possible variants ir manufac	turing. Since there should be at least one
"expert" in attendance relative to t	hese matters (the writer), its examination
should be facilitated.	
IMPORTANCE TO MANUFACTURING: In any	batch manufacturing operation, resources must
be allocated in some manner to meet	production and delivery requirements in a
timely fashion. With more automated	facilities being acquired, there are decisions
to be made on how to allocate jobs b	etween the new and old equipment when each
worker, job and machine have differe	nt flexibility, capability and availability.
1	
_	

FOR WORKSHOP USE CODE #!
CONTINUATION OF (project title) Shop Floor Scheduling with Resource Constraints
POTENTIAL PAYOFF (quantitative, if possible): Often times, the final dispatching
task is the responsibility of a foreman with 25 years experience. The "factory of
the future" may not provide the opportunity for training these "foremen." An
expert system (software) may be necessary to manage the new hardware.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Scheduling of limited resources is a
generic issue in almost all human endeavors. Moreover, there is a large cadre of
scientists in the Decision Sciences who are looking for a link between formal
mathematical models and AI/Expert Systems. Scheduling problems could be that link.
PROJECT DURATION: 2 CALENDAR YEARS
MAJOR MILESTONES (include timeframe):
• Literature Survey (3 months)
• Rule Generation (6 months)
• Integration into Inference Engine (6 months)
Debugging/Testing (3 months)
• Final Evaluations/Testing (6 months)
RESOURCE REQUIREMENTS:
• VAX 11/780
• 2 man-years

8~30

Basic Research (long-term) ____Exploratory Development (mid-term)

** Manufacturing Technology or Advanced Development (near-term)

PROJECT CLASSIFICATION (please check one):

FOR	MOB	KSHOP.	USE
CODE	#	12	

APPLICATION AREA (please chec	k one):
UNIT PROCESSES	x MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
DDC 1507 TITLE Design to A	
PROJECT TITLE: Designing Ap	propriate Scheduling and Control Systems
PROBLEM DEFINITION/PROJECT OB	
	ace with manufacturing schemes. These approaches often
	t appropriate approach may be to design more effective
	which are simpler to schedule and control. The objecti
of this project would be to	specify a manufacturing system based upon cellular
manufacturing and then to de	sign appropriate scheduling and control systems for
this environment.	
PROJECT DESCRIPTION/APPROACH:	
(1) Specify the manufacturing	g entity, in a generic sense if possible.
	formation requirements necessary to schedule and/or
control this entity.	
	ta base for these information requirements.
- <u>-</u>	ing and control schemes which can react in the time
	his manufacturing entity.
	and control schemes, using AI, with hardware into
an integrated manufactur	
an integrated manufactur	ing process.
THE STATE OF THE S	
IMPORTANCE TO MANUFACTURING:	
(1) Develop a more competiti	
(2) Overall manufacturing co	st reductions.

CONTINUATION OF (project title)	
POTENTIAL PAYOFF (quantitative, if possible):	
(1) Simpler control methodologies resulting in less comp	lex operational systems.
(2) Reduction of information processing and paperwork re	quirements.
(3) Overall reduction of manufacturing costs.	
(4) Increased flexibility in manufacturing capabilities.	
CUNTRIBUTION TO SCIENCE AND TECHNOLOGY BASE:	
(1) Quantifying effects (processing costs, information p	rocessing times and
of alternate manufacturing configurations.	
(2) Assisting in determining levels and criticality of m.	anufacturing data
required to support control activities.	
MAJOR MILESTONES (include timeframe): (1) Specification of manufacturing organization	(ó months)
(2) Data Base Requirements	(6-8 months
(3) Simulation Model(s) Building and Testing	(9 months)
(4) Scheduling and Control Algorithms Development; Devel	
of AI (5) Interfacing Control schemes with simulation model; t	approaches. esting and (3-6 months
(6) Interfacing developed system with actual hardware su	Stitutes to
PESOURCE PEOUTREMENTS:	strate applicability.
Scheduling Specialist: Access	to both mini and
Software Development Specialist, mainfr	ame computer resources;
Manufacturing Systems Specialist; comput	
PA TELL A TIPICATION (please check one):	
$R_{\pm,\pm i}$ Research (long-term) $= -\mathbf{x}$ [+pioratory]	elei paunto defend
Manutacturing Technology or Advanced Development	

APPLICATION AREA (please check one):
UNIT PROCESSES MANUFACTURING SYSTEMS
INTELLIGENT INFORMATION HANDLING
PROJECT TITLE:Intelligent Purchasing Support System
PROBLEM DEFINITION/PROJECT OBJECTIVE: To develop an intelligent system that can aid the purchasing function in such areas as:
make or buy analysis
• vendor selection
• vendor performance evaluation
• combining of purchase requirements
PROJECT DESCRIPTION/APPROACH: This project is a long-term research effort to combine rule-based systems, knowledge-based systems, and traditional purchasing data bases. Multiple experts need to be used in the development of this system. The variety of the purchasing functions is the cause for this being a long-term effort.
IMPORTANCE TO MANUFACTURING: Purchased material represents a major portion of manufacturing costs. Therefore, any improved quality in purchasing decisions, will resu in significant cost, quality, and delivery improvements.
· · · · · · · · · · · · · · · · · · ·

FOR WORKSHOP USE CODE # 13

CONTINUATION OF (project title) Intelligent Purchasing Support System	
POTENTIAL PAYOFF (quantitative, if possible):	
 Reduction of the costs of purchased material. 	
 Improvement of the quality of purchased material. 	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE:	
 Combination of traditional, existing systems with the new expert systems 	
technology.	
 Putting it all together in one place (system) and making the expertise 	
available to the decision makers.	
PROJECT DURATION: 3 CALENDAR YEARS MAJOR MILESTONES (include timeframe): Year 1 - Scope and definition of purchasing functions. Year 2 - Search for expertise and extraction of existing knowledge. Year 3 - Development of prototype system.	
RESOURCE REQUIREMENTS:	
10 Manyear of knowledge engineering and AI programming	
3 Manyear of purchasing experts.	
PROJECT CLASSIFICATION (please check one):	
X Basic Research (long-term) Exploratory Development (mid-term)	
Manufacturing Technology or Advanced Development (near-term)	

CONTINUATION OF (project title) Expert Systems for Design and Analysis of Life
Tests and Accelerated Life Tests
POTENTIAL PAYOFF (quantitative, if possible): This project will help ensure the
matching of desired life characteristics of product with the actual product,
will lessen manufacturing costs, and lessen re-work and re-design costs.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This project will contribute to the
integration of management, manufacturing life characteristics, information
requirements for testing and testability, and engineering design.
PROJECT DURATION: 3 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): Analyze and define the design requirements
for testability and life characteristics; construct the sampling scheme for the
field - design - testing requirements; endow the analysis and experimental
design programs with intelligence.
RESOURCE REQUIREMENTS: 5 man years
\$100,000 equipment
DOOL OF CLASSIFICATION (alarge shack one).
PROJECT CLASSIFICATION (please check one): Basic Research (long-term) Exploratory Development (mid-term)
x Manufacturing Technology or Advanced Development (near-term)

SUCCESSION PROPERTY AND ASSESSMENT ASSESSMENT

APPLICATION AREA (please ch	eck one):
UNIT PROCESSES	X MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
	tems for Design and Analysis of Life Tests and
Accelerated Life Tests	
	OBJECTIVE: The objective is the development of an
	in the design of life and accelerated life tests,
	the results of the tests, assesses the results and
internal consistency of t	he results, evaluates warranty times, and makes
suggestions as to the nee	d and advisability of further tests.
PROJECT DESCRIPTION/APPROACH	H: The project integrates the engineering design and
	concerning the production of various products. In
particular an emphasis is	placed on design for testability and on integration of
	e spectrum of manufacturing activities. Experimental
design and response surfa	ce methodologies would play a prominent role in the
project. Sampling stra	tegies for following product in the field will be
developed for the mainten	ance of an intelligent information system.
IMPORTANCE TO MANUFACTURING:	The project ensures that the life characteristics of
the final product are bro	ught back to the design stage so that one of the most
important of all feedback	loops in manufacturing is explicitly involved in the
manufact ring endeavor.	

APPLICATION AREA (please che	eck one):
UNIT PROCESSES	x MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
_	
	of Statistical Capabilities, AI, and a Simulation
Language	
PROBLEM DEFINITION/PROJECT O	BJECTIVE: This project would merge statistical
summarization, graphics, a	nd analysis software, and artificial intelligence
with respect to planning,	analysis, interpretation, and subsequent modification
into a current simulation	language, namely GPSS.
PROJECT DESCRIPTION/APPROACH	: Much of the software for the statistical and
	ects of this project are already available. The
	oftwares and endowing the result with intelligence
	e analysis scheme to make the result generally
u_aful.	
IMPORTANCE TO MANUFACTURING:	The resulting software will have extensive industrial
application in facilities	design and the development of flexible manufacturing
systems.	
	A

FOR WORKSHOP USE CODE # 15

CONTINUATION OF (project title) Integration of Statistical Capabilities, AI, and
a Simulation Language
POTENTIAL PAYOFF (quantitative, if possible): Reduction in design costs, increased
capability and productivity for design personnel, and improved decision response
time.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: New methods for integrating simulation
procedures, artificial intelligence, and design of systems.
PROJECT DURATION:3 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): Marriage of the simulation language and
statistical summarization and analysis packages, 1 year; endow intelligence,
2 years; enhance capabilities, 2 3/4 years.
DESCUIDED DECILIDEMENTS.
RESOURCE REQUIREMENTS: 6 man years
\$100,000 equipment, software
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term) Exploratory Development (mid-term)
<pre>x Manufacturing Technology or Advanced Development (near-term)</pre>

APPLICATION AREA (please check	one):
UNIT PROCESSES	XX MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Rule-Based Pr	ocess Diagnosis
PROBLEM DEFINITION/PROJECT OBJE	CTIVE: The quality control problem in a manufacturing
system can be decomposed into t	hree subproblems: recognizing a change in system behavior
(inspection); explaining the be	havioral change in terms of changes to the system structure
(diagnosis); and recovering fro	m the changes in the system structure (adaptive control).
The objective of the project is	to develop a feasibility demonstration diagnosis system
that will generate explanations	of observed part quality problems in terms of defects in
the unit processes that produce	d the part. Thus, it will serve as a bridge between the
part inspection and process con	trol functions of a manufacturing system.
PROJECT DESCRIPTION/APPROACH: A	rule base will be developed to model the causal relations
of unit processes and parts. T	he model will relate symptoms (inspection data) to process
states, and relate process stat	es to physical defects in the process. An inference engine
will be developed to explain pa	rt defects in terms of defects in one or more processes
involved in manufacturing the p	art. The project effort will include designing the rule
base structure, generating the	rule base by interviewing experts, defining the structure of
the input data and the results	of the diagnosis, implementing an inference engine, and
test and demonstration of the s	ystem. As a feasibility demonstration, the project will
be limited to the diagnosis of	simple milling and lathe operations.
IMPORTANCE TO MANUFACTURING: T	
	he usual way of dealing with quality problems is to assemble
	o diagnose the problem. The MRB function is critical to
	without accurate results, the system will continue to
	tion is also one of the most difficult functions to
	he interaction of several experts. A rule-based diagnosis
	that can incrementally capture the required expertise and
lead to an automated, reliable,	and robust link between inspection and control.
	•

	FOR WORKSHOP USE CODE # 16	
CONTINUATION OF (project title) Rule-Based Process Diagnosis		
POTENTIAL PAYOFF (quantitative, if possible): This project will achiev	to coveral scale	7.4
will demonstrate feasibility of an AI approach to MRB functions. It		IL
the role of part inspection in an automated manufacturing system. An		
	· · · · · · · · · · · · · · · · · · ·	
contribute to defining data standards between inspection and control	Tunctions.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The major issue in applyi		
diagnostics to manufacturing is that the processes involved in making		0ne
process may remove evidence that another process was out of control.		
processes may contribute errors. Finally, an error may not be attrib	utable to one	
process exclusively, but to the interaction between processes. These	interactions	
require new inference mechanisms capable of diagnosing multiple fault	s.	
PROJECT DURATION: 2.5 CALENDAR YEARS MAJOR MILESTONES (include timeframe): (times given are from start of 1) Design rule base structure: 6 months 2) Develop rule base; 8 months 3) Generate test data; 9 months 4) Implement inference engine for multiple-fault reasoning; 24 month 5) Build prototype system; 28 months 6) Feasibility demonstration; 30 months RESOURCE REQUIREMENTS: 8.5 staff-years, \$765K; AI Computer System, \$	S	
		1
PROJECT CLASSIFICATION (please check one): XX Basic Research (long-term) Exploratory Development Magnificationing Tochnology on Advanced Development (room term)	(mid-term)	

CODE	#	17	,		

APPLICATION AREA (please check one): UNIT PROCESSES X MANUFACTURING SYSTEMS INTELLIGENT INFORMATION HANDLING PROJECT TITLE: AI Tools for Product Design for Economical Manufacture by Die Casting and Injection Molding -PROBLEM DEFINITION/PROJECT OBJECTIVE: Productivity improvements are greatly influenced by the design of the products for ease of manufacture. Full advantage of any manufacturing process can be fully realized only when products have been designed to be manufactured most economically by the chosen process. The objectives of this project then are to develop a series of AI tools for the design of products for economic manufacture, extending the methodology used in the UMASS work on "Computer-Aided Product Design for Economical Fabrication by Forging," to microcomputer oriented systems for injection molding and die casting. PROJECT DESCRIPTION/APPROACH: What is required are systematic procedures, which embody this previous knowledge and experience, whereby designers may assess the manufacturing difficulty of a proposed part or product and subsequently determine the likely benefits or otherwise of design changes in terms of manufacturing costs. The product designer will want to know: if the part is produced by a given process will it be relatively difficult or not (preferably in terms of relative manufacturing costs); which features of the part lead to manufacturing difficulties and what will be the likely savings from eliminating such features; and what are the recommendations for detail design features of the part for ease of manufacture by the process? IMPORTANCE TO MANUFACTURING: The objective is not to produce detailed cost estimating systems for individual parts but to indicate general relative costs so that the product designer may be guided to avoid features which are difficult to produce. The designer may then classify the component and the code number obtained will indicate qualitatively the relative manufacturing difficulty. This will be used to extract quantitative data with which the relative costs can be determined. The coding system indicates which component features are leading to the difficulties and the designer may then, by recoding the part, determine the relative improvement in manufacturing costs resulting from the elimination of these features.

	CODE # 17
CONTINUATION OF (project title) AI Tools for Product Design for Econor	mical
Manufacture by Die Casting and Injection Molding	
POTENTIAL PAYOFF (quantitative, if possible): The ultimate benefit for	rom this work will
be the reduction in overall manufacturing costs by providing product of	designers with a
ready means of assessing quantitatively the manufacturing difficulty of	of proposed part
designs for specialized processes and determine the effects of design	changes on
manufacturing costs.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Plastic molding and die	casting will be
considered together because the same coding scheme and economic model	_
both cases, but a different data base will be required for each proces	ss. This investi-
gation will result in a data base of art and knowledge that can be use	ed to design parts
and products that are more economical to produce.	······································
PROJECT DURATION: 3 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): 1) Data collection: 2) Formulation	on of classification
systems which qualitively indicate manufacturing difficulty. 3) Simple	
of injection molding and die casting will be developed. 4) Data bases	
shape dependent cost information and factors will be established. 5)	
be converted to software for micro-computer systems for greater ease of	of use by product
designers. AI tools will be arranged to suggest general design change	s to the user in
order to reduce costs and to give an indication of the approximate sav	ings from these change
RESOURCE REQUIREMENTS: It is anticipated that the work would require	approximately
\$ 125,000 per year and that three years would be required to complete	
funds would be used to provide both student and faculty support, to co	
travel expenses related to the program and to provide the necessary su	

PROJECT CLASSIFICATION (please check one):

Basic Research (long-term) Exploratory Development (mid-term)

x' Manufacturing Technology or Advanced Development (near-term)

FOR	WORK	SHOP	USE
CODE	#	18	

APPLICATION AREA (please chec	ck one):
UNIT PROCESSES	X MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Artificial Int	telligence Applied to Mechanical Design
PROBLEM DEFINITION/PROJECT OF	BJECTIVE:
theories and software tools for applying program is an on-going collaboration research collaboration has a CAD/CIM environment to do on-line with features" as a method for creating design and analysis needs; and (3) to design and analysis needs;	e long-term goal of improving the practice of mechanical design by developing and AI to the mechanical design and manufacturing process. This research this as its objectives (1) to learn how to develop expert systems that can work in e evaluations of manufacturability of designs; (2) to learn how to use "design g design data bases that will serve manufacturing process planning as well as levelop a representation language tailored for expression of design knowledge, and thus facilitate the efficient construction of expert systems for mechanical
PROJECT DESCRIPTION/APPROACH:	
of the above areas in manageable step generalize the new tools that are our u (1) Development of an expert systems the optimum casting process for a pro- Development of an expert system to pro- (5) Development of an expert system to functional requirements input by the undecomposition using the design of post domain independent redesign; (8) A stur- The work done to date in this research research and development before our guithree major categories: redesign, deco-	
IMPORTANCE TO MANUFACTURING: plan for manufacturing. Thu	Our definition of "design" includes preparation of a s design includes evaluation for manufacturability early
in the design process. Spec	ifically, we are learning how to use AI to incorporate
knowledge into CAD systems s	o that manusacturability evaluation is done automatically
	le are also learning how to enable the design process to
develop a single data base r	epresentation of the design that will serve manufacturing
functions as well as designe	er needs. Finally, the language we ultimately expect to
	lopment of expert systems including manufacturing
considerations in the design	

	000c # 18
CONTINUATION OF (proje	ct title) Artificial Intelligence Applied to Mechanical Design
POTENTIAL PAYOFF (quant	itative, if possible): 1. CAD systems that aid manufacturabilit
evaluations; 2. Impro-	ved design methodology with design-with-features; 3. Improved CA
data base that serve C	IM; 4. A language that will facilitate development of expert
systems and Al applica	tions in design and manufacturing.
CONTRIBUTION TO SCIENCE	AND TECHNOLOGY BASE: 1. Knowledge and demonstration of how to
develop expert systems	within CAD environments. We plan to use injection molding as a
specific example; 2. T	est of concept of designing-with-feature as a design methodology
and as a method for pro	viding a suitable single CIM data base. We plan to use casting
a specific example; 3.	A new language for applying AI to design and manufacturing.
PROJECT DURATION: 3	CALENDAR YEARS
	
·	de timeframe): 1. Completion of phase II of domain-independent
·_ ···	ic): 18 months. 2. Completion of phase I of decomposition
	. Completion of data base/design-with-feature project: 36 month
 Completion of phase 	I of new language: 36 months.
RESOURCE REQUIREMENTS:	At UNIV : \$ 150,000 annually
	At Mous \$ 150,000 annually
•	
PROJECT CLASSIFICATION	(please check one):
X Basic Research	박
	(long-term) X Exploratory Development (mig-term) Technology or Advanced Development (pear-term)

CODE * 19

CONTINUATION OF (project title) Object Oriented Design Tool
POTENTIAL PAYOFF: The most significant savings would occur as a result of
eliminating the most difficult portion of the analysis required to automatically
determine how the part is to be manufactured. An additional system can be
made, using current technology, which would perform the remainder of this
analysis automatically and produce a complete process plan for the part. (see
Generative Process Planning for Manufacturing CODE* 5). This type of design
tool would also eliminate most of the cost of rework and redesign resulting
from manufacturing limitations discovered on the shop floor because they were
not accounted for in the original part design. In addition this system could
automatically produce a very complete part classification code as a byproduct
of the design process.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This project would solve
the problem of how to automatically recognize part features in a CAD system in
order to initiate automated process planning
PROJECT DURATION:3CALENDAR YEARS
MAJOR MILESTONES (include timeframe): 1) define system abilities.
application area and object representation methodology 1/4 yr. 2) create basic
operating structure of bit mapped 3-D display system 1 yr. 3) provide enough
graphic manipulation capability to result in a usable 3-D CAD tool 2 yr. 4)
create basic control mechanism to limit graphic manipulation 1/2 yr. 5)
provide scheme for explicit knowledge representation in program objects 1/2
yr. 6) provide working example of design tool library 1 yr.
RESOURCE REQUIREMENTS: 2 LISP machines (\$120,000), 12 manyears
2 grad students full time 3 years graphics development
2 grad students full time 2 1/2 years program development
1 Mfg. Engr/Process Planner/Machinist part time 1/2 yr
1 Sr. Researcher part time for duration
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term)Exploratory Development (mid-term)
XManufacturing Technology or Advanced Development (near-term)

FOR WORKSHOP USE CODE # 20

UNIT PROCESS	ES MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
PROJECT TITLE:MAN	UFACTURING EXPERT PLANNING SYSTEM
	•
PROBLEM DEFINITION/PR	OJECT OBJECTIVE: The generation of Classification and Coding
	ns for aircraft parts is presently a costly and labor intensive
	necessitated the services of experienced planners and
	personnel. Frequently as these experienced planners retire or
	some other reasons it becomes very hard to replace them. The
	oject is to automatically generate the CC and process plans by
incorporating artifi	cial intelligence (AI) technology.
ALMITTIRIZATION TO TOTAL ORG	PPROACH. A substantial amount of the information needed to
	PPROACH: A substantial amount of the information needed to
generate CC can be d	irectly derived from a digital representation (shape and non-shape
generate CC can be d data) of the enginee	irectly derived from a digital representation (shape and non-shape ring model. The remaining information needed consists of
generate CC can be d data) of the enginee decisions to be made	ring model. The remaining information needed consists of based on expertise of the process planner and the availability
generate CC can be d data) of the enginee decisions to be made of manufacturing res	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the
generate CC can be d data) of the enginee decisions to be made of manufacturing res planner's expertise	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of
generate CC can be deducted of the engineer decisions to be made of manufacturing resultant planner's expertise Classification and CC	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning
generate CC can be deducted of the engineer decisions to be made of manufacturing resultant planner's expertise Classification and CC	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of
generate CC can be deducted of the engineer decisions to be made of manufacturing resultant planner's expertise Classification and CC	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning
generate CC can be deducted ataly of the engineer decisions to be made of manufacturing results of manufacturing results of the engineer of manufacturing results of the engineer of the engin	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning
generate CC can be deducted of the engineer decisions to be made of manufacturing resultant planner's expertise Classification and Constant of the system. The system	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning will be developed to handle sheet metal, machined and composite pa
generate CC can be dedata) of the engineer decisions to be made of manufacturing results planner's expertise Classification and Company of the system. The system MPORTANCE TO MANUFAC judgemental knowledgemental knowledgeme	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning will be developed to handle sheet metal, machined and composite pa
generate CC can be dedata) of the engineer decisions to be made of manufacturing results planner's expertise Classification and Consystem. The system MPORTANCE TO MANUFAC judgemental knowledge experience. The system	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning will be developed to handle sheet metal, machined and composite particles. TURING: The expert system will be used to accumulate expertise, the and heuristics of process planners with many years of
generate CC can be dedata) of the engineer decisions to be made of manufacturing results planner's expertise Classification and Consystem. The system MPORTANCE TO MANUFAC judgemental knowledge experience. The system of changes to manufacturing results planner's experience.	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning will be developed to handle sheet metal, machined and composite particles. The expert system will be used to accumulate expertise, and heuristics of process planners with many years of tem will be flexible enough to allow modification in the event
generate CC can be dedata) of the engineer decisions to be made of manufacturing results planner's expertise Classification and Consystem. The system MPORTANCE TO MANUFAC judgemental knowledgexperience. The system of changes to manufacturing would provide an	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning will be developed to handle sheet metal, machined and composite particles. TURING: The expert system will be used to accumulate expertise, we and heuristics of process planners with many years of tem will be flexible enough to allow modification in the event accumulate practices. It can be used for training new planners.
generate CC can be deducted at a) of the engineer decisions to be made of manufacturing results and control of the engineer of manufacturing results and control of the expertise of changes to manufacturing results and control of the experience. The system of changes to manufacturing toward and significantly toward of the experience of the engineer	ring model. The remaining information needed consists of based on expertise of the process planner and the availability ources. An expert system will be developed to capture the and manufacturing practices for use, first in the generation of oding, and second to implement a generative process planning will be developed to handle sheet metal, machined and composite particles. The expert system will be used to accumulate expertise, we and heuristics of process planners with many years of tem will be flexible enough to allow modification in the event acturing practices. It can be used for training new planners. integrated approach to CAD and CAM. The system would contribute

Expert System development tool	
VAX 11/780, Symbolics 3670	
30 Man Years	
OURCE REQUIREMENTS:	
•	
Develop, evalute and integrate System - 3 years	
Develop a Prototype System - 1-1/2 years	
Prepare a Development Plan - i/2 years	
JECT DURATION: 3 CALENDAR YEARS OR MILESTONES (include timeframe):	
to automation of planning and sequencing operations.	
of the state-of-the-art technology in Process Planning and significantly conti	ribut
TRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This project will aid in the advance	
Technology concepts.	
link between CAD and CAM toward Computer Integrated Manufacturing. Enhances (Group
and consistency of Process Plans. Allow for optimum Process Plans. Provides	
involved in Process Planning and Work Order Release operations. Improved qua	<u>_</u> _
ENTIAL PAYOFF (quantitative, if possible): Reduction in manpower currently	

できるとは、自然などのなどのでは、自然などのなどは、自然などのでは、自然などのなどのできません。

__Manufacturing Technology or Advanced Development (near-term)

SESSION #: 3

AI/WORKSHOP EVALUATION
July 31, August 1, 1985
GROUP: 2

			CRI	TERIA	1	2	3	4	5	6
PROJECT	#:	1		MEAN DEV.	6.71 1.46	4.82 1.39	5.14 1.53	3.39 1.31	3.93 .90	4.07 1.12
PROJECT	#:	2		MEAN DEV.	5.39 1.85	7.39 1.47	6.75 1.73	6.50 1.77	6.18 1.59	5.21 1.34
PROJECT	#:	3		MEAN DEV.	4.32 1.79	6.68 1.28	6.39 1.40	4.14 1.86	5.93 1.21	6.5Ø 1.97
PROJECT	#:	4		MEAN DEV.	4.96 2.12	7.25 1.67	7.00 1.25	5.57 1.60	4.64 1.25	4.61 1.31
PROJECT	#:	5		MEAN DEV.	6.21 1.95	7.39 1.66	7.21 1.83	6.54 1.84	6.36 1.45	5.86 1.53
PROJECT	#:	б		MEAN DEV.	4.46 2.10	6.29 1.80	5.86 1.65	5.79 1.47	3.46 1.32	3.36 1.28
PROJECT	#:	7	ST.	MEAN DEV.	5.54 1.90	6.36 1.25	5.75 1.29	5.68 1.70	4.11 1.17	4.39 .92
PROJECT	#:	8		MEAN DEV.		5.50 1.75	5.46 1.79	3.79 1.79	5.07 1.30	5.18 1.52
PROJECT	#:	9			5.39 1.91	6.04 2.01	5.86 2.03	6.39 1.47	3.82 1.19	4.54 1.20
PROJECT	#:	10	ST.			6.64 1.16	6.64 1.06	5.43 1.37	5.11 .96	5.00 1.09
PROJECT	#:	11	ST.		4.11 1.99	5.96 2.08	5.96 2.01	5.46 2.17	3.68 1.54	3.54 1.50
PROJECT	#:	12 '	ST.			6.36 1.59	6.25 1.51	5.46 1.50	4.89 1.26	4.68 1.56
PROJECT	#:	13	ST.		5.89 1.62		6.32 .98	4.46 1.55	5.46 .74	6.29 1.21
PROJECT	#:	14	ST.		4.64 1.47	5.68 1.54	5.93 1.61	5.43 1.43	4.61 1.03	4.57 1.26
PROJECT	#:	15	ST.			4.64 1.54	4.68 1.47	4.32 1.54	5.46 1.26	5.39 1.23

SESSION #: 3

AI/WORKSHOP EVALUATION
July 31, August 1, 1985
GROUP: 2

		CRITERIA	1	2	3	4	5	6
PROJECT	#: 16	MEAN ST. DEV.	6.36 1.50	7.64 1.10	7.21 1.42	6.54 1.48	4.36 .91	4.82 1.25
PROJECT	#: 17	MEAN ST. DEV.	6.25 1.08	6.68 .98	6.50 1.07	5.50 1.37	5.21 .74	4.71 .90
PROJECT	#: 18	MEAN ST. DEV.	6.21 1.20	7.46 1.20	7.29 1.08	6.57 1.32	3.96 1.10	3.68 1.28
PROJECT	#: 19	MEAN ST. DEV.	6.46 1.35	7.14 1.48	6.71 1.24	6.54 1.71	4.32 .94	4.43 .92
PROJECT	#: 20	MEAN ST. DEV.	5.71 1.58	6.82 1.28	6.57 1.32	5.82 1.68	4.57 1.20	5.82 1.61

SESSION #: 3 AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 2

Ø

6:

Ø

Ø

AI/WORKSHOP EVALUATION FREQUENCIES SESSION #: 3 July 31, August 1, 1985 GROUP: 2

PRO.	JECT	#	6

				-					
CRIT. #	1	2	3	4	5	6	7	8	9
1:	2	2	7	4	5	3	2	2	1
2: 3:	1	Ø	2 1	Ø	5	4	9	6	1
3: 4:	Ø	Ø	2	2 4	7 6	6 5	8 8	2 3	1 Ø
5:	2	4	1ø	4	7	1	ø	Ø	Ø
6:	2	5	10	3	8	Ø	Ø	Ø	Ø
				P	ROJECT	# 7			
CRIT. #	1	2	3	4	5	6	7	8	9
1: 2:	2 Ø	1	1	3 1	3	5	13	Ø	Ø
3:	Ø	Ø Ø	ø 1	5	9 6	3 4	9 12	6 Ø	Ø
4:	i	Ø	2	3	6	4	11	ø	1
5:	1	Ø	8	7	11	Ø	1	Ø	Ø
6:	Ø	1	5	4	18	Ø	Ø	Ø	Ø
				P	ROJECT	# 8			
	1	2	3	4	5	6	7	8	9
CRIT. #	3	ø	3	-	4	2	11	1	ø
2:		Ø	ø	3	10	4	6	3	Ø
3:	2 2	Ø	Ø	5	6	7	6	1	1
4: 5:	4 Ø	3 Ø	5 3	4 4	10 15	Ø	1 3	1	Ø
6 :	Ø	Ø	4	4	11	2 5	1	Ø 2	1 1
				P.	ROJECT	# 9			
	1	2	3	4	5	6	7	8.	9
CRIT. # 1:	1	1	1	8	4	1	10	1	1
2:	ī	ø	ī	5	5	2	7	4	3
3:	1	1	1	5	4	1	9	5	1
4:	Ø	0	1	1	8	1	$\frac{12}{\alpha}$.	3	2
5 : 6:	Ø	5 Ø	7 6	4 7	12 12	Ø 1	Ø 1	Ø 1	Ø
•				P	ROJECT	# 10			
	1	2	3	4	5	6	7	8	9
CRIT. # 1:	ø	2	1	3	6	ø	9		ø
2:	Ø	Ø	Ø	Ø	7	4	9	7 8 7	Ø
3:	Ø	Ø	Ø	Ø	5	7	9 9	ኝ	Ø
4: 5:	Ø	l Ø	1 Ø	4 8	9 12	6	6	1	Ø
6:	Ø	Ø	1	9	12	6 5 3	3 4	Ø	Ø
••	•	_	-	-	- -	-	-	-	-

SESSION #: 3

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 2

PROJECT # 11

	1	2	3	4	5	6	7	8	9
CRIT. # 1:	1	6	 -	3	2	6	1	2	Ø
2: 3:	2 2	1	1	1	2 5	8	7	5 4	1
			ø 1	1	5 3	5 7	9 7	1	1 2
4: 5:	2 2	2 6	5	3	11	Ø	1	Ø	Ø
6:	2	6	7	3	9	Ø	1	Ø	Ø
				P	ROJECT	# 12			
CRIT. #	1	2	3	4	5	6	7	8	9
	1	2 1	1	6	6	6	3	3	Ø
1: 2:	Ø		Ø	1	9 10	1 4	7 5	9 8	Ø
3: 4:	Ø	1	Ø 1	Ø 5	9	3	7	2	Ø
5 : 6:	1 2	Ø Ø	3	2 3	15 16	5 2	2 1	Ø	Ø 1
0:	2	ש	3	3	10	4	T	ю	1
				P	ROJECT	# 13			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	1	Ø	1	3	6	1	15	1	Ø
2: 3:	Ø	Ø Ø	Ø	Ø	7 8	2	16	3 2	Ø
	1	и 1	Ø 8	ø 1	10	5 6	13 Ø	1	Ø Ø
4: 5:	Ø	Ø	Ø	Ø	19	5	4	Ø	Ø
6:	Ø	Ø	Ø	Ø	10	5	10	1	2
				P	ROJECT	# 14			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	Ø	2	5	5	8	6	1	1	Ø
2:	Ø	Ø	4	1	9	2	10	2	ø
3: 4:	Ø	Ø	2 3	2 5	1 ø 7	3 3	5 10	5 Ø	1 Ø
5:	Ø	Ø	6	3	16	2	1	Ø	Ø
6:	Ø	1	6	4	12	3	2	Ø	Ø
				P	ROJECT	# 15			
	1	2	3	4	5	6	7	8	9
CRIT. #	1	1	8	2	5	4	6	1	Ø
2:	1	Ø	7	4	8	4	4	Ø	Ø
3: 4:	1 1	1 1	4 10	4 1	11 7	4 7	3 1	Ø Ø	Ø
5 :	Ø	8	1	2	17	2	4	1	1
6:	Ø	Ø	1	4	15	Ø	7	1	Ø

SESSION #: 3 AI/V

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 2

PROJECT # 16

CDIM #	1	2	3	4	5	6	7	8	9
CRIT. # 1: 2: 3: 4: 5: 6:	Ø Ø Ø Ø Ø	1 Ø Ø Ø Ø	1 Ø 2 7 4	0 0 1 0 5	4 1 2 5 15	7 3 7 3 1 2	10 8 4 11 0 1	4 9 8 6 Ø Ø	1 7 6 1 Ø 1
				P	ROJECT	# 17			
CRIT. #	1	2	3	4	5	6	7	8	9
1: 2: 3: 4: 5: 6:	Ø Ø Ø Ø Ø	Ø Ø 1 Ø	Ø Ø 1 Ø 3	0 1 2 4 2 6	100 3 3 8 21 16	4 4 5 5 2 2	11 16 15 9 3	3 4 3 Ø Ø Ø	Ø Ø Ø Ø Ø
				P	ROJECT	# 18			
CRIT. #	1	2	3	4	5	6	7	8	9
1: 2: 3: 4: 5: 6:	Ø Ø Ø Ø 1	Ø Ø Ø 4 5	Ø Ø Ø 5 6	1 0 1 7 7	10 1 2 8 12 8	3 2 3 2 Ø 1	10 9 12 8 0	4 10 7 9 0 0	Ø 5 4 Ø Ø Ø
				P	ROJECT	# 19			
CRIT. #	1	2	3	4	5	6	7	8	9
1: 2: 3: 4: 5: 6:	Ø Ø Ø Ø Ø	Ø 1 Ø 1 Ø	Ø Ø 2 7 4	2 Ø 1 Ø 7 12	5 1 5 3 12 8	8 4 4 2 4	5 13 10 9 0	7 3 7 8 Ø Ø	1 6 1 1 0 0
				P	ROJECT	# 20	•		
CDIM #	1	2	3	4	5	6	7	8	9
CRIT. # 1: 2: 3: 4: 5: 6:	Ø Ø Ø 1 Ø	1 Ø Ø Ø 2	2 1 1 1 3 2	4 Ø Ø 4 5	3 4 6 4 15	7 2 4 6 1 3	9 13 9 10 2 7	2 7 8 1 Ø Ø	Ø 1 Ø 1 Ø 3

MANUFACTURING SYSTEMS RECONCILIATION COMMENTS

Project 1

The study of material handling is ideally suited to simulation technique when parameters relating to specific part families, inventory handling, procedure, customer order characteristics, etc. are nicely handled by queing techniques.

Problem is not understood; over simplification as to what is needed. I don't believe the approach, as stated, makes any contribution to understanding of AI techniques or applications. Resource is way too low to solve real problem behind material management selection. It is part of larger system design problem.

0.1 M:Y for the "expert" seems to be too short.

This seems to be a standard ES application. It could be easily implemented on a P.C. and wouldn't contribute any significant new knowledge to the field.

Feasibility - project is quite doable

Much material handling equipment is often times improperly selected because of the lack of information available to the decision maker.

The Material Handling Center at Georgia Institute of Technology should serve as a source of experts for some years to come. In general, if a center of expertise exists is an expert system needed? If so, shouldn't they be the ones who develop it?

Utility to manufacturing rated low due to situation specific nature. It appears common consensus that this is not valuable to pursue. (Note: It is interesting that in original ICAM roadmaps "material flow" never found support either.)

Might include an example of the rule type to be generated.

Material handling specifications are a natural for conventional simulation techniques. The problem to be addressed is how to keep inventory moving through a facility to avoid both bottlenecks and large static buffers. The emphasis should be placed on identifying the parameters needed to solve the problem.

It is doable without question. Ed Fisher at NC State currently has a prototype running.

Could be a transportation simulation system (rail, ship, truck, least cost, most efficient, etc.) that uses AI tools for user interface (like the project which would use AI tools to interface with other OR systems).

Project 2

The objective and approach says absolutely nothing! The design of a real-time control system for cell-level manufacturing, I believe, has major payback. I feel that more resources should be devoted to project.

I feel to accomplish the project objective will require development of learning capability which is a definite contribution to AI.

C1: NBS & TI are currently pursuing it.

C4: Exception handling involves context dependent diagnosis and planning integrated together in a near real-time environment. No work has been completed so the issue of architecture is an unanswered question.

Much of the software required has already been developed (will be shown at upcoming IJCAI in LA.).

C1: Approach is ill-defined, how augmented?

C4: Rule based controllers are in production use, nothing new.

The approach and milestones do not give a picture of what will be done. There are lots of buzz words, not much substance.

As a basic research proposal, there is no statement as to "new" idea being pursued. There exist real-time ES systems today for non-manufacturing applications. Should state why these won't work.

In our FMS environment, the exception handling capability is a significant cost driver. This is not basic research, it is advance development and the project should take only 3 years.

Real-time control is now non-existent (virtually) in manufacturing. Basic research is extremely important in this area.

There are many kinds of cells. Is the control system cell-specific, or can a generic control system be developed?

Tremendous controversy between those who think problem is solved and those seeing research requirements. No consensus.

Control important issue, proposal not good.

Might include example of type of rule to be generated.

for this and the other scheduling projects (Projects 4 & 12) my comments are the same: The system must interface to the shop floor equipment in a real-time manner through the use of sensors and status feedback to the cell. Emphasis needs to be placed on the parameters needed to make decisions. Also, the scheduling problem should be decomposed into sub-goals to allow the shop to perform at one level, the cells at a second level, and the work stations at a third level. We don't need optimal scheduling. What we need is a schedule that is feasible at time T. The schedule can be changed based on the environment at T+AT.

Texas A&M University is under contract to produce a proof of concept prototype by Christmas which controls an operating FMS for a large Texas based company.

The issue of AI based control for due-date driven systems has never been addressed for large or small systems and what architectures are appropriate is an open issue.

Project 3

This system would require total integration and re-structuring at the manufacturing system of a user company. Nobody would take the financial risk in a large organization at implementing this.

Problem is not understood by the proposer. This may be a case of solving the symptoms without understanding the disease - nothing to do with AI.

C4: This seems like a standard system to me. I don't see the AI content. It's hard, but it's not AI.

10 people working for 5 years seems unreasonable for a non-basic research project.

C4: I do not believe this is an AI/ES application. Technology exists or is easily developed today which promotes configuration management through the manufacturing process. Such technology is found in or may be easily added to system modules commonly found in MRPII type systems. Additionally, it may be found in certain CAD/CAM systems. Perhaps a program to integrate this technology is a better idea.

C4: Feel data base management technology could solve problem...don't see AI impact.

I have not changed C2, C5, and C6 since there is a very major problem in aircraft manufacturing and to do it is grossly underestimated. Have seen production write as many as 20 engineering changes stapled to engineering drawings when only 2 is max allowed.

No approach of any significance given as to how project would be accomplished.

For this project to be integrated with the shop floor control and manufacturing data base systems will be a significant contribution to the S and T base.

Not enough detail - 50 my for whom???

There are many good automated engineering change management systems. The problem does not require AI but requires a good data base facility.

C6: 50 man years looks high.

MARKETS CONTRACTOR CONTRACTOR

I believe this task can be better handled using conventional approaches rather than AI techniques.

Importance is obvious, but problem very large and infra structure of corporation will create difficulties. Don't miss impact on scheduling here.

Important problem - should identify the real cause of problem and create a technology answer to it.

C4: The project, as described, is not an AI problem. With the addition of the abilities to manage the implications of change and/or to make decisions on the best approach to the application of change, I would support the project. As written it is just a data management problem.

The project should be considered a problem of data base management., It is important to understand the data requirements of the systems that interface to an EC system and make sure that the preparation is available at all times. We need to pay special attention to tying the materials information into the design data base and into the production scheduling system.

Traceability is an advantage to be sought from an engineering change management system. It's needed for a failure analyses, evidence for product liability litigation and insurance, and feedback to designers.

This project should be re-written to propose the construction of a generic tool which would allow users to easily construct a model of their existing change management system. The model, with or without an attached expert system could provide the visibility needed to determine the impact of a proposed change. It's not practical for us to fund development of a system which, in order to be used, would require replacement or major reconfiguration of large portions of our existing manufacturing organization.

Although applications of AI can profitably be made in this are, the project as described here is not an AI project.

It does seem to be a data base management problem; possibly AI can help. The integration will be an advancement in the SOA.

This is not an AI system; what is suggested does not advance the scientific or industrial base.

As worded, probably not an AI application, but could be if expanded to include the impact of ECO's on systems.

Too little detail - shows a guess, not an estimate.

Project 4

C1: does not describe an approach - create a KBS says something.

C5: problem is complex!!!!!

3 people for 3.5 years seems practical to deliver a new piece of software.

C4: much of this technology already exists. In what way does this project propose to be something different than that which exists.?

C3: Shop floor scheduling has huge payoffs, as outlined in program description.

This project is only feasible as is stated in the descriptions if a manufacturing information data base system exists of high integrity and accuracy - to my knowledge, in aerospace, they really don't exist.

The approach described is process specific; I don't believe the result will have general applicability.

The approach says absolutely nothing. Emphasis needs to be placed on developing the constraints and parameters used in scheduling. A good scheduling system will need to integrate with the control operations on the shop floor.

A basic assumption is wrong. There are hundreds of projects on scheduling and thousands of papers. What reason is there to expect that AI will make a difference.

I do not believe it feasible to devise an intelligent schedule by putting rules into a standard expert system shell. Different techniques will be required. Furthermore, even if the problem could be solved using a standard expert system shell, this would constitute no significant scientific advance. It would simply be an application of existing technology to a new area.

The write-up neglects the importance of understanding the relationships in the manufacturing systems under study. Not as straight forward as presented.

Much too broad a problem statement. Recommend attack project #6 first to set stage.

The scheduling problems are important, but represent heavily plowed ground. I would like to see more evidence that AI will help or be useful in this area. The approach and milestones should therefore be more clearly stated.

Twenty-five percent of the projects were on scheduling.

Suggest you get a copy of the white paper on the subject from Prof. Wm. Maxwell, College of Engineering, Cornell University, before proceeding in this area.

I have reservations about the use of the term "expert system" in the project description. I think AI techniques, in general, are useful here, but expert systems techniques are too limited to be of major use. If "expert system" were replaced by "AI system", then I would change C1 from 3 to 6 or 7.

I just do not see how the proposed system would be "more efficient". I think there may be applications for AI in shop scheduling, but the subject needs much more thought and discussion.

One can make a contribution to this area without reorganizing General Motors, i.e., the author's estimates in C5 and C6 are reasonable.

Project 5

C1: The author states in milestones "Determine how to analyze CAD data to generate knowledge" - this is a difficult problem in its own right and shouldn't be mixed into a generative planner.

If the project were intended as exploratory development or advanced development, I would agree with the assessment, but I don't think a "basic research" project would require that much time.

I strongly feel that the project is feasible since processes are known today except they reside within the experience of the process planner. If design information can be passed from engineering to manufacturing in terms of features, tolerances, and specifications, it is possible to combine this information with a rule based system to create process plans.

Generative process planning should be addressed in exploratory range. Other efforts are already generating results and potential near-term benefits. This statement is so general that it would not contribute to knowledge of an expert in the area and would not advance payoff a significant increment.

The project is too far-out and too general.

I have revised C5 and C6 but only on the basis a 3-D solid geometric CAD system that is a real-time system, is available for design and detailing and dimensioning.

C6: no change - not enough detail to evaluate - 50 my for whom?

To accomplish objective will result in significant step in feature recognition and thus contribution to AI.

This project is so global, so poorly defined, that it has no value in its present form.

Approach is not clear. If it's not feasible it's not important and has no payoff. 10 cy and 50 my also make me question feasibility.

The response does not address the issue of importance to manufacturing.

Not easy. Secret is to segregate process requirements from equipment capabilities. Then generic approach is feasible.

While much work is being done in this area, it is sufficiently complicated to warrant closer study. Generative process planning is a fertile area for research and development.

I think the scope is too wide. Specifically, feature extraction should be a separate project.

Would like to see project separated into more definable parts.

Important problem - I feel it is part of unit process activity.

Scope needs redefining - must carve out the basic research, not "the whole enchalada".

Not enough detail in resource estimate.

A lot of projects are in progress already on computer-aided process planning. A clearer, more comprehensive write-up is needed.

Experience in building this type of system has taught us that generative planning software flexible enough to apply to a broad range of manufacturing environments would be so unstructured that it would be practically indistinguishable from commercial AI development software currently available or soon to be introduced.

Needs to be split and made more specific. Apparently applies only to fabrication and should say so.

Still too general and global to be accomplished.
Time and resource estimates are too low for such a difficult project.

Project 6

We do not know how to create a very good scheduler for a specific environment let alone a general scheduler building system. Smacks of automatic programming.

Not clear what is being proposed. No clear, real manufacturing problem in mind.

An efficient tool of this type is essential and it does not exist today.

I think the ability to schedule with an ES is very important and has good payback in today's complex shop floor decision environment.

I feel that a good software system that can represent the factory and its capabilities is extremely important and has a big payoff. Such a system helps in defining the design of a factory and understanding the interface problems when systems are integrated.

Commercially available systems (i.e. KEE) will/should decrease difficulty/increase feasibility.

There are already many many projects in progress on system scheduling. The approach described does not generate confidence of success.

'I don't believe this is a feasible project, given the timeframe or resources.

It's important. This should be combined with #15 and #9 under category of knowledge-based systems designs aids for developers.

Good project with good insight. Pursue aggressively.

To be used as a consulting tool? For what other purpose? Sounds like a tailorable MRPII system.

Problem important. I feel approach is wrong. Need understanding of context or

Still the payoff & contribution is very high when you apply AI//es to specific areas.

Project 7

C1: The FMS design cycle is incorrect and contrary to the problem statement. Simulation is highly successful as a design tool. Also, design criteria are dependent upon management policy, so no "generic" criteria readily exists.

C4: The system cannot optimize as stated since the criteria for acceptability is a management policy decision which is highly situation dependent.

C1: 2 This project would attempt the automatic re-configuration at a plant cell layout to optimize output. Establishing the rule base to treat an individual situation would take far longer than arriving at an optimization manually if the simulation allowed easy manual alteration. Such a simulation has already been built with a simulation tool which will be displayed at IJCAI in LA.

FMS development is not to the point where this potential level of inference can be obtained. Not sure because of its complexity that it would be worthwhile, even if the proposed work could be done. Believe this is more of a "blue sky" effort.

Simulation interfaced with expert systems seems to invoke something that doesn't mix real well. Simulation will be the expert? If so, needs to be readdressed.

Poorly worded with debateable integration of simulation and ES.

No clear statement of technical objective or approach.

A lukewarm response due to other projects of greater importance.

FMS design assistance is absolutely needed.

If contribution to science is higher than 3, should be able to see the next and subsequent steps. I cannot.

Role of simulators and expert systems important. Possible topics:

- 1. ES to aid building and evaluating simulations
- 2. Simulators as a form of expertise.
- 3. ES to guide simulators: Turn simulators into "prescriptive tool" from being a "descriptive" tool.

Simulation systems are shipped as part of the product when FMS's are shipped. Suggest John Hughes of Kearny and Trecker Co., Milwaukee, as a source of information on the subject.

I stand by my opinion that this is an ill-conceived and impossible project because FMS system design is not performed in this manner. It ignores the use of analytical models designers use to select configurations (e.g. Purdue's CAN-Q) prior to simulating for detail design information.

This project probably not feasible because it proposes automatic re-configuration of the simulation.

Project 8

C2 & C3: Training will be a very important component in properly operating these upcoming, complicated and non-physically visible (i.e. computer) systems. If the training system is done right, there should be much better operation of the systems.

We experimented with teaching machines in the 60's with disasterous results. This project is not desirable because of lack of assessment of social/psychological effects.

Are they talking about an expert system for training or training on an expert system?

This is business gaming not AI!

I feel that the project is totally ill-defined. The training can be better accomplished using simulation tools.

C1: doesn't provide an approach.

C4: training is a significant problem in some organizations.

C5 & C6: underestimates size of project in order to build good interfaces.

Contribution to science would be in the area of training, not manufacturing. The payoff would be questionable there.

This approach was tried with Mccin and didn't work (Clancey). If you just want to run sample cases and let a trainer see results and a list of rules that failed, this is trivial. True intelligent tutoring systems are among the most difficult of all AI problems.

Excellent problem area. Proposer has not identified resource to acquire training knowledge.

C1: 8 This project is very feasible. We intend to implement one of our expert systems within 6.9 months and are already certain it can be used as a training aid.

Training tool development seems to me to add little to nothing to the science and technology base.

Mediocre impact potential compared to other projects.

Intelligent tutoring is very, very difficult. HONEST!

Suggest that training assistance is important and needed, but much more work needs to be done in learning how the mind learns before applying AI techniques to that task. With as many "educators" present in the workshop as there were, I though some good discussion of this project would be forthcoming.

Is it an expert system for training or vice-versa?

The importance of training not covered in discussion. It may be one of the most important near-term applications of knowledge based systems.

Eminently feasible - in fact, this capability is a "textbook" advantage of expert systems in general, often cited.

I think the project is tomorrow in scope. If it is just to help in shop-floor scheduling then simulation tools are better. However, I feel that expert systems to instruct staff in many aspects of manufacturing, inspection, NC programming, process planning, etc. would be very useful.

I see some merit in this from an educational standpoint. Who should support it?

Contribution to science low - if any, it relates to training technology and manufacturing.

Project 9

Approach is not clear as to what will be done, or how. Six MY is too much for an exploratory project.

I think that it is absurd to combine AI and OR directly. An option for determining when it is more efficient to use one methodology over the other based on the problem domain would be useful.

OR tools can solve problems; however, the problem with OR is its accessability to the engineer confronted with the problem. This project would use AI to make these tools accessible and thereby open up a large problem solving paradigm to manufacturing.

Too broad, too much against the current areas of AI and OR expertise. The OR techniques cannot talk to the shop floor variabilities that the ES can. They should communicate but not be integrated.

Too abstract to determine importance or payoff - statements do not get to the bottom line, only abstractions to the people in the research area.

Description of "approach" is really another statement of objectives. No approach given.

From planning the integration of our simulation program and our expert system for our own FMS, I found the estimate to be very high.

This is my original assessment, which only became an outliner on this last round. The payoff in fusing AI/OR is high because it provides capabilities from the "best of both worlds" (symbolic, qualitative, inferential)/(quantitative, concrete, well-understood). The AI planner/analyzer must have some grist for its mill.

Tie to project #6 as thrust for tools to support such areas as scheduling.

Good application for AI tools.

Would like to encourage work along these lines.

Future payoffs greatest where multiple computer approaches may be brought together into single system.

Tremendous benefits could be realized in systems development area (ref. Intellicorp's push to develop SIMKIT)...Both cost reduction and avoidance would help make better systems design decisions the first time. IMPORTANT!

To reiterate, AI will provide access to these tools for an engineer both to help in tool selection and to help in model formulation, execution and result interpretation.

Project 10

A lot of this kind of work has already been done. Is this really AI? If so, what will be done?

C3: I don't know where the sensory information about impending failures will come from. Sophisticated multi-sensory inspection techniques are difficult issues, but assumed here. The ES may not have many symptoms for its data base.

The project is incomplete. It must also analyze sensor data to take appropriate action. The problem is better suited to conventional techniques other than AI.

I believe this belongs in the unit process group.

C1 & C2: This system is absolutely necessary for successful automation of complex systems.

I still wonder how easy it is to "detect" failure across a broad range of applications. This capability is the starting point of the project. Can we monitor the machine only, or must we inspect the output of the machine - part inspection, a highly difficult proposition.

Good project. Important but belongs under preview of unit processes.

Building an AI system using inputs from adaptively-controlled machines and "expert" reasons is a really good idea, but I'm not sure that this isn't a basic research issue.

Very good proposal.

al paracoura paracoura paracoura magazinari describitas

Is this really AI? Consider combining with Project 16.

Project 11

This is short term. Integrated programming is the proper approach.

I disagree that the payoff and importance to manufacturing can be gleaned directly (e.g. MT) from this approach but I will agree that this could be exploratory development in nature.

In shop floor scheduling, most of the companies face resource constraints and goal of schedule would be to optimize those resources. That is very important to a company's survival and profitability. This may be the most important project of all! This AI system would solve many problems I have faced while developing 3 different scheduling systems in 3 different manufacturing environments.

Approach is not well worded but concept (the same as others in the scheduling ES) is sound.

Project description is vaque throughout.

C1 & C3: very important problem.

C5 & C6: underestimates difficulty of problem.

I don't think it is feasible to construct a good shop floor scheduler by looking at how to schedule courses. I doubt the problems are similar enough if the goal is to produce something to be used on the factory floor.

C1: the approach, as stated, is to solve a different problem unrelated to manufacturing under the false assumption it is analogous.

C4: similar to project #4, C4. Scheduling improvements have large payoff potential.

Approach is not clear - simplistic!

Still more scheduling "research". Approach is not specific therefore, importance and feasibility are both rated low.

No objective is stated.

This project proposed does not understand the problem of the shop floor in a major aerospace company with hundreds of shop orders - MRB's, etc., floating through the system.

Lesser potential than Projects 4 or 6 and I question transportability of result from academic scheduling to job shop.

Scheduling topic important. Don't see an objective here.

Not a real clear proposal; sounds like resource/facility usage optimization. AI tools used as interface to existing OR techniques might work OK.

Without having had an opportunity to discuss this, I see no reason to change my viewpoint. As I said the last time, I don't think a system designed to do course scheduling in an university will be of direct use on a shop floor.

Typical scheduling with resource constraints - very feasible but site-specific.

Project 12

C1: We intend to do this within the next 3 years.

C5 & C6: Finally some detail in the time and resource estimate and it is very reasonable.

Response does not address the issue.

morrows receded 12222, ed. contents bibliotical

No statement of objective. What is given does not make any sense.

C2: The project described (objective) is to specify a manufacturing system based on cellular manufacturing. This is easy to do with rotational symetrical parts but not double creased sheet metal parts (i.e. aircraft structure) thus, in aerospace it will not cover many of the manufacturing parts - also project is grossly underestimated in time and resources.

Lesser potential than Project 6 but approach stated more clearly. Would merge with 4, 6, 9, and 11 to create CIM research thrust.

Better project definition required, other than that, a good proposal.

I'm just not sure this is a well thought-out idea. What about changing the proposal so that it attends to project management issues (task identification, estimating, resource allocation, etc.).

Project 13

This project is an implementation of existing concepts. There is no additional contribution for the advancement of technology.

AI is not necessary for this project.

C4: basic research on purchasing data bases?? What science or technology advance?

1) Purchasing/procurement functions are well understood, 2) many of the decision support elements required may already exist.

Vague approach.

Design of experiments is an excellent application area for capturing existing layman knowledge.

C4: much attention has historically been given to procuring parts in one's own shop; little at all has been given to efficiently procuring from outside sources. While vendor selection performance evaluation, and purchase activity optimization has been done to some degree, no attempt to my knowledge, has been made to intelligently treat vendors as resources which need to be evaluated, selected, managed, and controlled.

In our (defense electronics) business area, this is a tremendous problem - judicious selection of materials can have many benefits well downstream of purchasing activity!

Possibly the greatest payback to manufacturing lies with this family of projects for material strategic and tactical planning. Another thrust appropriate here.

Not basic research as described. Construction would be to place purchasing in the global, strategic problem of material management.

Good problem - experts exist. Activities possible in all 3 categories (research - MANTECH).

It's not clear how or whether AI would help.

I really think this system has merit, especially when the "global" aspects of outside procurement are considered. Remember, too, our factories are moving rapidly towards increased outside sourcing.

Project 14

It is important to close the loop from field experience (or simulations of) to manufacturing designers.

This project seems to be more of an engineering program than a manufacturing program.

C1: I think this is feasible only as a research project or if it is applied in electronics or some other field where design parameters are well known and controlled. Structural design is still too unstructured a field to allow success for this type of project.

I don't see any clear statement of how expert systems are to used for this task. It's not clear to me that the proposer of this project really knows what he wants to do.

I do not have an appreciation for the need of this project.

A critical issue in electronics manufacturing. Affects manufacturing floor space, cycle time, cost, performance in field. Resources do not match need. Have direct experience and am confident of estimate.

The approach is just a statement of good intentions.

This is design and not manufacturing and I really don't understand the significance of it!

Again, far reaching implications. Product test performance is used as a basis for existing product design as well as new systems costing/bidding. Many systems are "over-tested" simply because there is no knowledge-base for doing otherwise!

Mediocre project compared to others. Probably fits into unit processes area.

Vital to electronics assembly and test based in personal experience in a number of companies and situations.

Good project.

A source of information on this would be Prof. Douglas Marriott, U. of Illinois.

Still don't agree it is applicable to structural parts.

It's not stated, but a major payoff would be in the area of marketing research. Product life cycle planning could be more easily done, with the larger result of making more clear necessary company strategic issues and decisions. I think this proposal needs more work but there are some really good potential benefits of applying AI here.

This project is rated highly because of its contemporary interest, visibility, and clear importance.

Not a manufacturing problem - engineering and design.

Project 15

I don't believe that good planning software is available, as stated. I believe graphic feedback and simulation, with statistics about uncertainties, will be critical for complicated tasks.

Integration of ES with stat packages for intelligent use of statistics is a very worthwhile activity that could be done in a short amount of time. In general, aids for using tools in a more intelligent fashion is a highly desirable goal.

We are working on a similar project in my company. My projected estimate is lower than the ones stated on this statement.

Analysis of manufacturing will become a major consumer of resources.

I do not see anything really being proposed in this project other than what is done separately by the packages now.

I believe it's quite feasible.

Project is too vague. Why do we really need this work?

6 man years is too much for the benefit.

Integrate with Projects 7 and 9 to form decision support package for simulation.

Projects 6, 9, and 15 should all be combined.

I like the idea of using AI tools to front-end OR packages.

Needs more delineation.

seem perfective engineer programme and progr

Very important to provide feedback under conditions with corsiderable variation (uncertainty) - simulation and statistical information provide invaluable insight. I still disagree that most of the "planning" software exists, as assumed, and that dramatically affects required resources. Further, how do you "use intelligence" to "modify" a plan or schedule based on statistical information. I have spent 4 years working or determining how uncertainty in spatial relationships is compounded in order to address the correct development of plans that can succeed given accuracy constraints on some relationships.

Project 16

Response does not address this issue.

Rule based systems are too shallow to produce these explanations effectively. Some sort of causal model or qualitative physics approach would be better. The program should "understand" the origin of the defects rather than just identify them by rules.

I think 8.5 my is too much effort.

C1: Perhaps feasible in electronics manufacturing or for a ridgedly structured cell environment, but determining the cause of defects produced in a shop with manually controlled machines by looking only at the end result is ridiculous.

C4: There are a number of inductive techniques coming on the open market (i.e., EXPERT-EASE) which directly address this problem. Therefore, I don't see this pushing SOA.

C6: Seems well-estimated to me.

Note: The "Achilles Heel" of this project is that it assumes the existence of a large amount of data! Basically, you must instrument every process parameter capable of being a casual factor of a given condition. Data of this scope/quality doesn't ordinarily exist in a manufacturing enterprise (at least not now)...big practical problem!

Different approach, use causal model. This would be an advance in the state-of-the-art if done using some sort of causal reasoning.

This had the highest importance rating. In a meeting with GM, Ford, and Chrysler engineers about 18 months ago, a very similar topic was emphasized as important.

Very important, fundamental project but appears to fit under unit processes.

I still think that with sufficient inspection data this work can be accomplished in less than 8.5 MY.

Great idea, but I think some application in industry is possible in addition to basic research.

Project 17

Payoff and contribution are factored by the selection of die casting and injection molding processes. More technology change and foreign competition prove areas would improve.

Watch out! We're talking about eliminating Industrial Engineers!

A source of information on this would be Prof. K. K. Wang, Mechanical Engineering Department, Cornell University.

More dynamic area would have higher payoff. MANTECH emphasis not new knowledge of the science.

Project 18

C4: MCDG isn't AI based but it has addressed may of these issues.

People have been trying to do this for years. I don't believe the estimated resources are even close.

This project has very little relevance to the CAD and development of a single data base relevant in the design in complex aerospace manufacturing systems.

The project is too all-encompassing to be feasible.

AI techniques for design will advance the SOA.

Great idea, but I really do feel the time estimate is low.

Often overlooked is the support E.S. can provide in conceptual and preliminary design. A legitimate thrust is the area of AI for design of which this is a subset.

Project 19

Yield to others who know more about this area.

A design improvement which will impact manufacturing only to the degree manufacturablitt is or is not considered. The proposed contribution does not appear to be a primary objective - mainly application of existing knowledge.

Projects of this type is sorely needed, none exist today.

Milestones indicate an emphasis on graphics which is not the issue. Issue is representation of information.

Fantasmagorical! While some IE's might object to it, this project really hits on one of the biggest (if not the biggest) problems still faced by industry today. The problem has been around since the Industrial Revolution, but it has never been solved. This idea really could be the solution to it. Of all the ideas submitted, this one should receive the highest priority for future work.

Had 5th place when ranked by importance. The high ratings for design-related projects reflect the need for improvements in the design process.

Graphics focus misses the real issues. Proposer needs to clearly understand relationship between form and content of computer languages and systems.

Limited to mechanical design and would have to be constrained to certain objects or classes. The science base exists; they would apply it and develop new tools rather than technology.

Probably qualifies as exploratory development. Lots to do before we can evaluate how to approach the issue.

Still seems to short-change the complexity of 3D geometrical reasoning. "Feature" has wide connotations. Does the system "provide feature detection" because the feature information is called out "a priori" in model definition?

Project 20

For the reasons I gave for Project 5, I feel a process planning system that relies heavily on engineering input and an expert system can be developed that has significant importance to manufacturing, particularly to the aerospace industry.

C1: The approach "...just build an expert system to do..." is to simplistic and indicates low experience.

Think project topic is important. Do not believe approach will allow project to be completed in anywhere near the 3 calendar years. Not enough homogenity in this area to allow this degree of generalization to occur.

I think this is an extremely difficult problem. A system that can do CC from the feature data automatically will be making a big contribution to manufacturing technology.

19年後を大力の人

If you were to use AI, you don't need CC. The entire process is automated, and CC is only for assisting the planner.

C5: We are deeply involved in this activity and have already attempted some of the approaches suggested by this project. The project is doable but not in this manner.

Too long - the capability now exists. Should be a 10 MY effort for near-term implementation as manufacturing technology.

This is similar to other proposals, but it has as much merit as them anyhow. The areas of Group Technology Classification Coding and Generative Process Planning all need - and deserve - AI support.

Experience in building this type of system has taught us that the there is much more effort required for this than the author seem to realize.

Here is area where there are real experts - ideal for application of expert systems.

Probably qualifies as exploratory development. Lots to do before we can evaluate how to approach the issue.

APPENDIX C

INTELLIGENT INFORMATION HANDLING

This appendix reflects the results from the deliberations of the Intelligent Information Handling Panel. It is organized as follows:

DESCRIPTION	PAGE
Sub-Panel White Paper Panel Specific Criteria Candidate Projects Round 3 Assessment Statistics	C-3 C-7 C-9 C-47
Reconciliation Comments	C-51

It should be noted that the I^2H Panel undertook a rewrite of selected projects. These have been numbered with an R and are behind the project that served as their genesis (i.e., 2R, 8R, etc.).

WHITE PAPER

FOR

INTELLIGENT INFORMATION HANDLING

DEFINITION

Intelligent Information Handling (I^2H) for manufacturing comprises a body of evolving procedures and techniques for bringing expert human knowledge to bear on manufacturing problems. The procedures are implemented in software, and exemplify various AI techniques for the analysis, extraction, and representation of expert manufacturing knowledge. I^2H builds upon current manufacturing expertise to establish a powerful new information handling methodology. Its novelty and power are due to the unique knowledge base that is created when human expertise is systematically combined with factual information to drive the manufacturing process. This knowledge base is unique because it:

- operates in a distributed environment.
- integrates information and data from many different sources.
- facilitates the application of problem-solving knowledge to manufacturing.
- derives its knowledge from heterogeneous sources.

The overall emphasis of I^2H is on the automation of manufacturing knowledge and its application throughout the manufacturing cycle.

MOTIVATION FOR RESEARCH

Current deficiencies in distributed manufacturing information systems point out the need to research and develop intelligent information handling systems. Current information systems are characterized by slow response time, out-of-date and sometimes inconsistent data, and incompatible heterogeneous data base systems. Furthermore, the present systems are large and complex, making it difficult to understand and maintain the entire structure and volume of data. It is sometimes difficult to produce suitable reports, given the constraints of the data structure. One major void is the inability to reference geometric data in terms of features. Current systems do not offer user-friendly interfaces. These needs drive the requirement for better information systems, that is intelligent information handling.

CHARACTERISTICS OF AI TO HELP INTELLIGENT INFORMATION HANDLING

The purpose of intelligent information handling is to provide the right information to the decision makers. The request for the desired information is usually articulated imprecisely. Natural language interfaces ease the literacy required for interacting with the system. AI concepts of intentions, themes, scripts, and conceptual dependency are useful in understanding questions which are inexact. Reasoning characteristics of AI systems provide the much needed inferencing capability for deriving information which is not explicitly mapped out in advance. Logic programming contributes unification. Heuristic search techniques facilitate path selection and navigation through the data bases. Knowledge representation techniques can be used to define the user view and the world model. Knowledge representation techniques can also be used to map the world model into the conceptual schema.

Expert systems technology is a relatively mature AI technology which can perform intelligent information handling for the product and process (CAD/CAM) definition phase, the knowledge acquisition and data generation phase, the resource planning and allocation phase, the production phase, the quality assurance phase, the distribution and logistic phase, and finally the administrative and management facets of manufacturing.

A distributed problem solving paradigm is needed for today's heterogeous and distributed manufacturing environment. AI can coordinate and synchronize the use of autonomous data bases.

FROM DATA BASE TO KNOWLEDGE BASE

- Transition Stages

COUNTRY CONTROL STATEMENT STATEMENT CONTROL

and the second second second

Information systems transform raw data to information. This is usually accomplished by organizing data items into patterns that correspond to user views or perspectives. Data base management systems take the process one step further by providing answers to queries that can be posed in a variety of different ways. A data base itself can be thought of as a collection of information items of interest to manufacturing. There are lower-level data bases consisting of operational data as well as higher-level data bases that focus on management problems. The typical elements of a data base are factual items, and current data base systems answer queries by retrieving factual data.

By contrast, a knowledge base consists not only of a body of factual data but also a collection of rules (her istics) for making inferences from the data. This provides a much greater explanatory power than can be achieved with a data base system alone. The rules constitute procedural knowledge, and are usually extracted from some expert source, such as an experienced human. In manufacturing, the base would contain expert knowledge about manufacturing processes as well as factual knowledge about the product being manufactured.

- Content and Processing of Knowledge Base

An intelligent information handling system will include a set of data bases that are likely to be both distributed and heterogeneous. The usual data base problems of updating, deleting old records, inserting new items, and concurrency control will arise in such an environment. In addition, there will be problems of processing the body of procedural knowledge. These problems concern the rules that are to be invoked under specified circumstances, the choice of one course of action over another, the justification for such a choice, the consequences of a given decision if it were taken, the impact of the decision on the manufacturing process, and so on.

The knowledge base will be managed by another body of inferential techniques (inference engines) designed to handle this kind of higher-level processing. The content of the knowledge base will be expert manufacturing knowledge, and the inferential rules will judge how and when the knowledge is to be invoked. Design knowledge and product history must also be incorporated in the system. Relevant knowledge must be extracted and represented to facilitate efficient processing to support the needs of different users.

- Variety of Users

The man-machine interfaces, enhanced by AI, can be improved to support the needs of a wide variety of users. The users of the system will include for example, managers, operators, and designers. Managers require global views of plant operation and status, while the operators will need detailed knowledge of particular processes. Designers will need knowledge concerning manufacturability, maintainability, testability, marketability, costs, and design data. Any product being manufactured can be represented in many different ways, and the role of the knowledge-based system will be to support these different representations.

GOALS

The goals of the research of AI applied to intelligent information handling are to provide solutions and foundations for solutions for advanced manufacturing needs. These include short-range goals that apply AI solutions to existing manufacturing data problems and extend to long-range goals for AI solutions that require new views of manufacturing. One underlying concept in these goals is knowledge, its capture, utilization, and manipulation. This research has at its core the intelligent handling of manufacturing data. Broader goals include: strengthening national competitiveness by improving quality, productivity, reaction time, and cost effectiveness of batch manufacturing; contributing to the science and technology base supporting this area; and providing educational opportunities that increase the number of people skilled in this area.

OBJECTIVES

The following research objectives address the preceding goals:

- Establish a methodology for utilizing existing manufacturing data bases from a knowledge perspective. Such a perspective would allow reasoning about the data in the data base.
- Extend traditional relational data base constructs so that the data base has knowledge built-in. This new type of knowledge based information system would have features of relational data bases and of knowledge systems.
- Create a model which facilitates the integration or combination of existing data bases. Included would be a tool to facilitate mapping between data storage methods, a procedure to translate (map) between the data storage methods, and a procedure for translating requests formulated in one query language to corresponding requests of another query language.
- Provide a mechanism to perform automatic geometric data interpretation.
- Define a mechanism for distributed intelligence in the manufacturing domain that insures security, establishes a global data base, and provides for synchronization and concurrency of data.
- Provide hardware designs to support the increased performance requirements of AI architectures.
- Develop knowledge acquisition and representation techniques for manufacturing.
- Develop an AI tool for the development of intelligent information handling systems.

USE THE FOLLOWING SCALE FOR CRITERIA 1 THROUGH 4

- C1. FEASIBILITY. The project is feasible in terms of:
 - Technical Feasibility Are there known constraints that make the selected problem impossible or too difficult to solve given the proposed approach? Is there adequate knowledge of related work in this area? Have similar attempts failed? If so, what guarantee or likelihood is there that this project will succeed?
 - Availability of Expertise Is there adequate access to a source of expertise, human, or otherwise? Is there a suitable plan for extracting the knowledge from the expert source?
 - Soundness of Technical Approach Is the research plan clearly set forth and justified? Is the methodology properly explained? Is the plan coherent? Is it logically arranged? Are there adequate check points to measure progress? Does the plan show a good understanding of the problem?
- C2. IMPORTANCE. The project is important when assessed in terms of the categories listed below:
 - utility across the manufacturing industry,
 - enhancement to product quality,
 - reduction in cycle time,
 - extension of capability,
 - productivity improvement,
 - broad applicability.
- C3. CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE. This project contributes to the manufacturing science base and AI. This contribution may be at any point in the spectrum of pure research to applied technology. The project demonstrates originality in its application of existing techniques or creation of new ones.
- C4. PAYOFF. The project contributes to cost reduction, product quality, process responsiveness, and reduction of support services. Support service cost drivers include software engineering and data management.

USE THE FOLLOWING SCALE FOR CRITERIA 5 AND 6

- C5. TIME ESTIMATE. The time estimate (in calendar years) is reasonable in light of the project's objective and approach.
- C6. RESOURCE ESTIMATE. The resource estimate is reasonable in light of the project's objectives and approach.

APPLICATION AREA (please check one):	
UNIT PROCESSES MANUFACTURING SYSTE	MS
X INTELLIGENT INFORMATION HANDLING	
PROJECT TITLE: 2nd Generation Pata Base Machine	
PRODUCTIVE PROTECTION (PROTECT OR PERTYUS Create a data base machine to s	onuico
PROBLEM DEFINITION/PROJECT OBJECTIVE: Create a data base machine to s	
tomorrow's distributed intelligent environment. Intelligent decision mak	
anisms need high speed devices to perform inferential based retirval of	
ledge. In a highly distributed environment, there is a need for a common	
which manages shared data and knowledge. Inferential capability needs to	be added to
today's 1st generation data base machine. Derivation-based retrieval all	ows for
inexact mapping of information and implicit declaration of relationships	•
PROJECT DESCRIPTION/APPROACH: Design a prolog-like environment in har	dware.
Unification and defer binding is used on both the data, conceptual schema	and meta-
conceptual schema to facilitate derivation of information. One approach	is to extend
existing relational data base and accompanying query language with featur	es such as
recursion and data structure. This approach takes maximum advantage of t	oday's
technology and paves the way for a smooth transition. An alternative app	roach is to
design a completely new machine with logic programming as its foundation.	The bridge
to today's data base structure will be an add-on item for the 2nd approac	h.
IMPORTANCE TO MANUFACTURING: One of the most critical and knowledge into	ensive task
in manufacturing is in the interpretation of the engineering drawing. Mo	st of the
producibility, planning, control, and logistic decisions are made based o	n how the
engineering drawing was interpreted. Interpretation is based mostly on in	mplicit or
derived information. A high speed device which performs derivation-based	retrival is
a springboard to automatic understanding of engineering drawing. Another	important
aspect is that this 2nd generation data base machine will ease the config	uration
management of manufacturing knowledge in a distributed environment. Cont	rolling
a common repository is simpler than controlling disbursed knowledge based	•

CONTINUATION OF (project	title) 2nd Generation	n Data Base Machine
		A device which can service multiple
		ge and computational requirement of each.
It also reduces the man	power requirements for c	configuration management and maintenance
of shareable knowledge.	<u>It would also relax th</u>	ne need for special purpose machines
for the decision makers	. It will also facilita	ate and minimize the manufacturing
applications which are	derivation-based.	
		is a major contributor in the develop-
		needed general purpose tool which is
missing today.		
PROJECT DURATION: 3	CALENDAR YEARS	
MAJOR MILESTONES (include	e timeframe):	
Model Construction	0-16 mo.	
Software Development	40.04	
Hardware Design	12-24 mo.	
Integration	24 30	
Demonstration	30 mo.	
Refinement	36 mo.	
RESOURCE REQUIREMENTS:		
1 - System Engineer for	3 MY H	lardware - 4 Engineers - Work Station or
2 - Software Engineers		Periferals
2 - Computer Engineer f		
1 - Communicative for 3		
2 - Data Base for 6 MY		
DDO 25. T. CLASSIFICATION /	alassa shack anal:	
PROJECT CLASSIFICATION (volonatory Davalonment (mid-term)
Basic Research	-	xploratory Development (mid-term)
manufacturing	Technology or Advanced D	everopment (near-term)

APPLICATION AREA (please check one):	
UNIT PROCESSES MANUFACTURING SYSTEMS	
X INTELLIGENT INFORMATION HANDLING	
PROJECT TITLE:Manufacturing Scheduling and Resource Management Using Intelligen Information Handling	t
PROBLEM DEFINITION/PROJECT OBJECTIVE: The scheduling and resource management of	
qlobal facilities and multiple manufacturing resources (internal and external) can b	— е
addressed using intelligent information handling (I ² H) and artificial intelligence	
to model an entire manufacturing capability. That is a communication data base with	
linkages to product/process definition, manufacturing plans, production, quality,	
distribution, and management.	
PROJECT DESCRIPTION/APPROACH: <u>Create a</u> knowledge base of global resources (plants,	,
machines, people) and a model of the generic manufacturing process. Using artificia	_
intelligence techniques, model an expert system, to expedite information and product	
flow through the sequential manufacturing model for each product (product class)	
fabricating a real time production and resource schedule. Related work includes	
programs in LISP (FAITH, DEVISOR & CONNIVER) at JPL to schedule and manage deep spac	e
probe including"processes" like "fly by", camera management, antennae management,	
health and status, etc.	
IMPORTANCE TO MANUFACTURING: Manufacturing systems (people, facilities & data base	s)
could learn and improve a manufacturing process through maintenance of a single	
global model and the model would reflect schedule and resource utilization in real-	
time. Intelligent information handling would facilitate scheduling and resource	
management of a global manufacturing environment, emperically collecting real-time	
performance statistics to feedback to the model.	

FOR	WCR	KSHOP	USE
CODE	#	2	

CONTINUATION OF (project title) Manufacturing Scheduling and Resource Management Using Intelligent Information Handling	-
POTENTIAL PAYOFF (quantitative, if possible): Optimum schedule and resource utilizatio	- n
for a global manufacturing capability that could handle multiple plants (subcontractor	-
expediting all products from a globally optimum view. Goal would be to improve pro-	•
ductivity by, at minimum, 25%.	-
	- -
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: (1) Proof that multiple cooperative	-
expert systems can use a global intelligent information system in a coordinated manner	<u>:</u>
(2) Formalization of manufacturing models for specific products and technologies.	
	•
	-
	-
PROJECT DURATION: 3 CALENDAR YEARS	-
MAJOR MILESTONES (include timeframe): (1) Global resource set partitioned (2) Person	nel
and skills inventory, complete. (3) Rough model established with functional partition	_
(4) Product knowledge representation and knowledge acquisitions complete (5) Model	_
operational (6) Process (multiple) monitor sched. & res. mgr (7) Exped. oper (8) Proj.	_comp
(1) (2) (3) (PDR) (4) (CDR)(5) (6) (7) (8)	_
ime 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12	-
Year 1 Year 2 Year 3	_
RESOURCE REQUIREMENTS: 24 MY + \$330,000 computing hardware	
3 Knowledge Engineers - 3 yrs = 9 MYRS	-
4 Programmers (AI) - 3 yrs. = 12 MYS	_
3 Symbolics 3640 computers @ \$60K = \$180 K	_
1 Symbolics 3670 computer @ \$150 K = \$150 K	_
1 Mgr Project Engineer - 3 yrs = 3 MYS Estimated @ \$2,500,000.	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term)Exploratory Development (mid-term)	
X Manufacturing Technology on Advanced Development (near-term)	

APPLICATION THRUST AREA (please check one):
UNIT PROCESSESMANUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Manufacturing Scheduling and Resource Management Using Artificial
Intelligence
PROBLEM DEFINITION/PROJECT OBJECTIVE: The scheduling and resource management of
facilities and multiple manufacturing resources (internal and external) can be
addressed using artificial intelligence to represent an entire manufacturing capability
The representation would draw from a data base integrating/process definition, manufac-
turing plans, actual production, and quality control.
PROJECT DESCRIPTION/APPROACH: Create a knowledge base of available resources
(plants, raw materials, machines, people, etc.) and constraints and a model of the generic manufacturing process. Using artificial intelligence techniques, develop an
expert system to expedite information and product flow through the sequential manufac-
turing process for each product (product class), generating or revising (using feedback
a real-time production and resource schedule. Related work may include programs
in LISP (FAITH, DEVISOR & CONNIVER) at JPL to schedule and manage deep space probe
including "processes" like "fly by", camera management, antennae management, health
and status, etc.
and status, etc.
IMPORTANCE TO MANUFACTURING: Manufacturing processes could be improved by use of an
integrated model reflecting schedule and resource utilization in real-time.

r OR	WUR	KSH0P	USE
CODE	#	2R	

CONTINUATION OF (project title) Manufacturing Scheduli Using Artificial Intelligence	ng and Resource Management
POTENTIAL PAYOFF (quantitative, if possible): Optimum s for a total manufacturing environment would result in m	
Tor a total manufacturing environment would result in in	ore entitient production.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Formalizat	
model. Demonstration that models of the product life c	
planning, production, and quality control) can be integ	rated in an expert system that
uses feedback for optimum control.	
PROJECT DURATION: 3 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): (1) Resource set	
(2) Preliminary model established with functional partic	
knowledge representation and expert knowledge acquisition (4) Protestype experting (26 mg)	ons complete (24 mo).
(4) Prototype operational (36 mo). (1) (2) (3)	(4)
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12	
Year_1 Year 2	Year 3
	Tour o
RESOURCE REQUIREMENTS:	
21 MY + computing hardware + subject matter experts	Subject Matter Functo
3 Knowledge Engineers - 3 yrs. = 9 MYRS 3 Programmers (AI) - 3 yrs. + 9 MYRS	Subject Matter Experts
3 Symbolics 3640 computers @ \$60 K = \$180 K	1 yr. each total (throughout project)
1 Manager - Project Engineer - 3 yrs = 3 MYRS	(em oughout project)
PROJECT CLASSIFICATION (please check one):	u David Jamant (million)
	y Development (mid-term)
Manufacturing Technology or Advanced Developmen	t (near-term)

FOR	WORKSHOP		USE
CODE	#	3	

APPLICATION AREA (please che	ck one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
	X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE:An Al Tool	to Assist the Development of CIM Information Systems
	OBJECTIVE: This tool will have an intelligent and graphica stem designers and a computer representation of the CIM
system (embodied largely in	a global data dictionary). The tool will structure the
design activity to insure a	hierarchical description of the CIM information system,
allowing decomposition and e	diting and viewing in a level by level and level to level
mode.	
PROJECT DESCRIPTION/APPROACH	: 1) Study literature, especially data base design/
modeling, expert systems/adv	ice givers, intelligent editors. 2) Extract important
ideas from IDEF(0), IDEF(1),	Entity-Relationship model, and expert systems. 3) Design
an appropriate data dictiona	ry structure with hooks in it for knowledge and inferencing
4) Design a mechanism for co	nstruction of the data dictionary via the intelligent
interface.	
IMPORTANCE TO MANUFACTURING:	The design of an Information System for Computer
Integrated Manufacturing (CI	M) is a difficult task. The designers are confronted with
	f entities, relations, and functions that relate in a
complex way. Furthermore, th	he system will be implemented in a distributed computer
	ponse time requirements. Current tools like IDEF(0).
IDEF(1), and S/R modeling are	
Since all CIM systems v	will have an Information System, the importance of this
project is great.	

FOR	WOR	KSHOP	USE
CODE	#	3	

CONTINUATION OF (projecttitle) AN AT Tool to Assist the Development of CIM
Information Systems.
POTENTIAL PAYOFF (quantitative, if possible): This tool will substantially reduce
the manhours needed to produce the CIM Information System design and implementation.
It will allow a CIM facility to be constructed in a shorter time frame. It will
also improve the quality of the design.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Contributions include a data dictionary,
designed with knowledge, as well as a development tool. Some insights and contributions
could be made to expert systems, especially with respect to graphical interfaces.
PROJECT DURATION: 2-21 CALENDAR YEARS
MAJOR MILESTONES (include timeframe):(Times from start date given)
Literature Study (annotated) 4-6 months
Data Dictionary 1-1½ years
System Designed 1½-2 years
System Implemented 2-2½ years
RESOURCE REQUIREMENTS: Powerful LISP/graphical development system required, preferable
on a LISP machine or AI workstation.
1 faculty 20% Acad Year, 50% summers for 2-2½ years.
1-2 PhD level students in manufacturing and/or computer science (knowledge engineer)
1-2 Masters level students in manufacturing and/or computer science (knowledge engineer)
Cost = \$500,000
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term)Exploratory Development (mid-term)
X Manufacturing Technology or Advanced Development (near-term)

SOUTH PRODUCTOR SOURCES ACCORDING

APPLICATION AREA (please check on	e):
UNIT PROCESSES	MANUFACTURING SYSTEMS
X I	NTELLIGENT INFORMATION HANDLING
PROJECT TITLE: An Expert System	to Facilitate Design for Manufacturability
PROBLEM DEFINITION/PROJECT OBJECT	IVE: Present manufacturing information and CAD/CAM
systems are incapable of retrievi	ng geometric designs by features or other attributes,
	c data to relevant manufacturability data. The objective
of the project is to develop a sm	art system using I ² H that will provide manufacturability
advice to the designer.	
PROJECT DESCRIPTION/APPROACH: T	he approach is as follows: (1) extract expert knowledge
from human in the areas of design	, manufacturing, new product history, (2) represent
the different types of knowledge	in an expert system. (3) using group technology as
a basis, develop procedures for d	efining similarities between parts dynamically to
assist in revrieval. (4) develop	intelligent interface between the bodies of knowledge
so as to provide expert advice on	manufacturability.
IMPORTANCE TO MANUFACTURING: A	t present, designers work at a disadvantage by
	rning a product's manufacturability, maintainability,
	ost. In addition, relevant design data are difficult
	fashion. If successful, the project would point the
way toward a truly integrated des	ign and manufacturing environment.
	

	FUR WORKSHOP USE CODE # 4
CONTINUATION OF (project title) An Expert System to Facilitate Desi	an for
Manufacturability	
POTENTIAL PAYOFF (quantitative, if possible): <u>The payoff is to be mea</u> shortened time to develop and manufacture a product, cost savings in	
market, greater productivity, fewer product failures, and better qual	ity assurance.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: <u>The major contribution</u> understanding of the dynamic interactions between radically different	
and to the development of a body of problem-solving knowledge incorpo	
intelligent system supporting the entire manufacturing cycle.	
PROJECT DURATION: 4 CALENDAR YEARS	
MAJCR MILESTONES (include timeframe):(1) extraction and representat	ion of
manufacturing and design knowledge (1.5 yrs.) (2) incorporation of k	nowledge in a
prototype expert system. (2 yrs.) (3) development of procedures to d	efine similarities
dynamically (3 yrs.) (4) testing of prototype (4 yrs.)	

PROJECT	CLASSIFICATION (please check one)	:	
_	Basic Research (long-term)	<u> Y</u> Exploratory Dc. (lopment (mid-term)
	Manufacturing Technology or Adv	anced Development (near-term)	

effort.

RESOURCE REQUIREMENTS: Access to sources of expert knowledge (human and textual);

use of computer facilities (e.g. VAX 11/780, Symbolics 3600); expert system software;

12 man years of senior personnel; 20 man years of junior personnel; \$2 million for total

OR	WO	P.KSHOP	USE
CODE	#	<u>4</u> R	

APPLICATION THRUST AREA (please check one):
UNIT PROCESSES MANUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: A Designer's Assistant to Facilitate Mechanical Design
PROBLEM DEFINITION/PROJECT OBJECTIVE: Engineering design has a major impact on
product life-cycle cost (LCC), quality, product cycle time, etc. Designers have
limited access to certain classes of data from downstream functions that impact these
product factors. The objective of this project is to develop a system, using
appropriate I ² H and computing technologies, that will provide advice to the designer
on manufacturability, inspectability, LCC factors, and other important product factors.
PROJECT DESCRIPTION/APPROACH: (1) Select a family of parts for the project. (2) Extract
expert knowledge in the areas of interfacing design and manufacturing, product history,
LCC factors, and quality and reliability. (3) Where possible, mechanize the knowledge
in expert systems and other computer technologies (4) Use techniques such as group
technology to assist in data retrieval from a product data base. (5) Develop a user
interface to provide expert advice to designer (6) Demonstrate concepts with a proto-
type demonstration for the selected family of parts.
IMPORTANCE TO MANUFACTURING: At present, designers work at a disadvantage by having
limited knowledge concerning a product's manufacturability, maintainability, testability
and LCC. By providing designers better access to appropriate knowledge, the project
will aid in product LCC reduction, product cycle-time reduction, and better quality
and reliability.

FOR WORKSHOP USE CODE # 4R
CONTINUATION OF (project title) A Designer's Assist to Facilitate Mechanical Design
POTENTIAL PAYOFF (quantitative, if possible): Shortened time to develop and manufacture a product, savings in LCC, greater productivity, fewer product failures, and better quality assurance.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: The major contribution will be an understanding of the interactions between different bodies of knowledge and practice associated with different functions within the total product life cycle. A better understanding of the opportunities and limitations of current techniques for intelligen design assists will be developed.
PROJECT DURATION:3CALENDAR YEARS
MAJOR MILESTONES (include timeframe):
(1) Extraction and representation of appropriate knowledge (1.5 yrs)
(2) Where possible, mechanization of the knowledge using appropriate computing tech-
nology (2 yrs)
(3) Development of prototype (2½ yrs)
(4) Testing of prototype (3 yrs)
RESOURCE REQUIREMENTS: Access to selected manufacturing process and product data.
Access to sources of expert knowledge (human and textual). Use of computer facilities;
expert system software.
6 manyears of senior personnel; 9 manyears of junior personnel

Basic Research (long-term)

X Exploratory Development (mid-term)

Manufacturing Technology or Advanced Development (near-term)

\$2 million for total effort

PROJECT CLASSIFICATION (please check one):

APPLICATION AREA (please check one):
UNIT PROCESSES MANUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
DDO 1507 TITLE
PROJECT TITLE: ICONS for Manufacturing Including Chernoff Variations
PROBLEM DEFINITION/PROJECT OBJECTIVE: The objective of this project is to develop
standard symbolic representation(s) of manufacturing elements and by variation,
depict the state of the manufacturing system.
DROJECT DESCRIPTION (APPROACH). A 1/5/1/1 intelligence techniques tools and methods
PROJECT DESCRIPTION/APPROACH: Artificial intelligence techniques, tools, and methodo-
logies will be used to determine which data best represent manufacturing elements,
how states are defined and differentiated and what symbology best communicates these
elements and their state. This symbology will be linked to the Intelligent Information
Handling System for generation. The symbology will be tested for acceptability by
management and staff. Accepted symbology will be produced as a national standard.
IMPORTANCE TO MANUFACTURING: Manufacturing has many diverse elements (inventory,
costs, quality, schedule) at many levels of indenture (raw material, components,
modules, sub-assemblies, assemblies, completed procedures, and delivered product)
for each phase of a product life cycle (concept, design, development, production, use,
modification) in each phase of a factory life cycle (start-up, transient, steady state
correction). Standard symbology is needed to depict these elements and their state
in order to permit rapid and accurate communication for management decision to adjust
processes or continue as is.

CONTINUATION OF (project title) ICONS for Manufacturing Including Chernoff Variations
POTENTIAL PAYOFF (quantitative, if possible): Many resources are required to assemble and array many data in a variety of formats to communicate the state of manufacturing
to management. Management requires much time to assimilate and integrate these data.
The payoff will be reduction in time to assemble, array, and assimilate these data.
Potential payoff is 85% reduction in assimilation time.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE:
(1) Manufacturing symbology standards
(2) Graphic symbolic processing
(3) Universal knowledge transfer
PROJECT DURATION:3 CALENDAR YEARS
MAJOR MILESTONES (include timeframe): (1) Study complete (2) Draft symbology
(3) Symbology variations complete (4) ICON man-machine interface complete
(5) I ² H interfaces defined (6) Prototype, operational (7) Operational parametric
simulation and demonstration (8) Demonstration complete (9) Standards published
(10) Standards accepted (11) Project complete
RESOURCE REQUIREMENTS: (1) Knowledge Eng X 1 X 3 yrs = 3myrs
(2) Programmers (AI) X 2 X 3 yrs = 6 myrs
(3) Mfg. Expert X 1 X 5 yrs = 5 myrs
(4) Computer System (AI) @ \$90,000 = \$90,000
(5) PE X 1 X 5 yrs = 5 myrs
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term) X Exploratory Development (mid-term)
Manufacturing Technology or Advanced rivelopment (near term)

APPLICATION AREA (please check one):
UNIT_PROCESSES MANUFACTURING SYSTEMS
XX INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Group Technology Learning Mechanisms for Assembly
PROBLEM DEFINITION/PROJECT OBJECTIVE: The objective of the project is to build a group
technology (GT) coding and classification system that will support assembly process
planning. The system will: (1) classify individual assembly steps for process selecti
and (2) implement a learning mechanism so the coding rules and classification rules
evolve over time based on actual assembly plans generated by the assembly planning
system.
PROJECT DESCRIPTION/APPROACH: The GT system will support an existing assembly planning system. The GT system will implement the traditional functions of attribute coding and
problem classification. These functions will be driven by a data base of rules for the
classification scheme and the definitions of the attributes. Behind this rule base
will be an experience data base of past assemblies and associated plans. As the
experience feature design processes, which will modify the rule base controlling the
coding and classification. Over time, the GT system will converge to providing optimal
classifications for assembly planning.
IMPORTANCE TO MANUFACTURING: The basis of GT problem solving is that similar problems
have similar solutions. The purpose of coding and classification are to define
similarity classes among problems. The benefits of GT-based problem solving are:
stability of the planning process; use of past experience to improve efficiency and
accuracy; and the ability to use analysis of past decisions in future planning. The
major problems in applying GT to assembly are in defining what it means for two
problems to be similar. This system will demonstrate how past experience can be
codified, analyzed, and used to modify the definition of similarity used by the GT
system.

FOR WORKSHOP USE CODE # 6

CONTINUATION OF (project title) Group Technology Learning Mechanisms for Assembly	
POTENTIAL PAYOFF (quantitative, if possible): An assembly plan is valuable in two ways	s:
it describes how the assembly is to be created, and it is a record of the fact that the	at pl
creates that assembly. The latter benefit, however, is rarely realized. Ironically,	in an
automated environment, where the information is more readily available, there is less	chanc
that it will be used than in a manual shop, where the planner learns from experience.	This
can be integrated over time to provide drastic improvements in efficiency and stability	 у
of the planning process. It is estimated that throughput can be increased by up to 70% the use of GT-based planning with a good classification scheme. CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Learning mechanisms in rule-based system	
are still a research topic. The learning mechanism to be used involves using the	
explanatory capabilities of rule-based planning systems to capture knowledge about what	<u>t </u>
part attributes were important in the decisions made. This is a novel use of expert	
systems for learning, and will provide insight into the use of explanation as a	
learning mechanism.	
PROJECT DURATION: ² CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): (times given are from start of project)	
1) Implement Attribute Coding System: 4 months; 0.5 SY	
2) Create Initial Attribute Definition Rules: 6 months; 0.5 SY	
3) Implement Classification System: 9 months; 1 SY	
Define Experience Data Base Structure: 12 months; 1 SY	
6) Generate Test Data: 12 months; 0.5 SY 6) Implement Attribute Inference System:	16
nonths; 1 SY 7) Implement Classification Inference System: 20 months; 1 SY 8) System	m
Demonstration: 24 months; 0.5 SY RESOURCE REQUIREMENTS: 6 staff-years: \$550K; AI computer system: \$30K	_
	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term) XX Exploratory Development (mid-term)	
Manufacturing Technology or Advanced Development (near-term)	

APPLICATION AREA (please check one):	
UNIT PROCESSES MANUFACTURING SYSTE	:MS
X INTELLIGENT INFORMATION HANDLING	
PROJECT TITLE: Intelligent Software Development Assistant	
PROBLEM DEFINITION/PROJECT OBJECTIVE: The objective is to provide software with a tool to assist them when performing software design and development including editing tools, debuggers, testing aids, maintenance assistance	nt. possibly
PROJECT DESCRIPTION/APPROACH: <u>1) Identify what steps in software develo</u>	
best utilize intelligent assistance. 2) Gain expertise of software deve	
develop the intelligent assistant. 3) Develop a natural language interf	
system. 4) Refine the system. (It may be best to integrate 2 and 3 abo	ve)
	<u> </u>
IMPORTANCE TO MANUFACTURING: The purpose of manufacturing is to produce	
If a great deal of time and money is spent on software development, it ho	lds up
production. We want to speed this process.	

FOR	WORK	40HZ	USE
CODE	#	7	

CONTINUATION OF (project title) Intelligent Software Development Assistant	
POTENTIAL PAYOFF (quantitative, if possible): Software development has become one	
the most costly parts of any kind of manufacturing system development. If softwa	
development time can be shortened while increasing reliability and completeness o	<u>+</u>
software, great savings will be realized.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Contributes a generic tool to assist	
manufacturing software developers in shortening development time and insuring	
completeness of software development	uage
interface interaction research.	
PROJECT DURATION: 5 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe): 1) Identification of software development areas needing intelligent assistance	
2) Knowledge collection/Expert system development	6 mo. 2 yrs.
3) Natural language interface development	2 yrs.
4) System refinement	6 mo.
- y - system - e - themens	
RESOURCE REQUIREMENTS: Knowledge Engineers: 3 Full time, 3 yrs. total (1,2,4 abov	e
plus possible interaction in #3). Experts (manufacturing software developers) :	
4-5 (for concensus) 12-time, 5 years. For #3 above: 2 12-time faculty (2 yrs.),	
3 5-time PhD students (2yrs.). Hardware/software: preferably a LISP machine with	an
expert system development tool such as ART by Interface Corp.	
PROJECT CLASSIFICATION (please check one):	
Basic Research (long-term)X_Exploratory Development (mid-term)	
Manufacturing Technology or Advanced Development (near-term)	

UNIT PROCESSES MANUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Design and Implementation of a Data Model for Manufacturing
PROBLEM DEFINITION/PROJECT OBJECTIVE: A data base which can support expert systems used
for generating manufacturing instructions must support versioned data and data types
appropriate to manufacturing. The objective of this project is to develop data types
which accurately reflect the world of manufacturing, and to implement this model using
a relational data base.
PROJECT DESCRIPTION/APPROACH: First develop the specification for abstract data types
corresponding to devices (robots, machine tools, fixtures, etc.), parts, sensors,
and so forth. This work will be guided by the ideas of Sowa, Reiter, Brodie, and
others on applying concepts from mathematical logic and logic programming to data
base design. Since currently available relations DBMS's do not recognize these
semanitically complex entities it will be necessary to build a data base interface
which manipulates these data types while maintaining their semantic integrity.
IMPORTANCE TO MANUFACTURING: As expert systems are incorporated into the manufacturing
process the interface of the expert system to the corporate data base will become
essential. Since many such systems are "object oriented", the data base will have
to deal in some way with this object orientation. Otherwise the interface between the
expert system and the data base becomes encountry to applicated. This project will
result in a flexible and maintainable incorfact between expert systems and relational
data bases.

CONTINUATION OF (project title)	FOR WORKSHOP USE CODE # 8
POTENTIAL PAYOFF (quantitative, if possible): This is a necessary step knowledge-based systems technology on the large scale needed to suppose manufacturing operations.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Contributions include the data types, and operations on those data types, which are appropriate the manufacturing environment. This is needed not only for data base for construction of languages and user interfaces to support off-lime of robots, machine tools, coordinate measuring machines, and so fort	te for representing se design but also ne programming
PROJECT DURATION: 2 CALENDAR YEARS MAJOR MILESTONES (include timeframe):	
Literature study 4 - 8 months	
Development of data types 8 - 12 months	
Design of data base interface 8 - 12 months	
implementation of data types in a relational DBMS 12-18 months (conceptual schema to support manufacturing)	
construction of interface 12- 18 months test interface with expert system 18- 24 months	
RESOURCE REQUIREMENTS:	
Relational data base manager	
List environment (workstations)	
2 people full time the first year	
4 people full time the second year	

FOR	WORKSHO	P USE
CODE	# 8R	

APPLICATION THRUST AREA (please	e check one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
	INTELLIGENT INFORMATION HANDLING
	_
PROJECT TITLE: <u>Intelligent I</u>	ntegration of Knowledge Based Systems in Manufacturing
DDADLEM DEETHITION (DDATECT OF 1)	CCTIVE. The chiestive of this preject is to develop a
	ECTIVE: The objective of this project is to develop a
	ss and update of current manufacturing data base systems
from knowledge based applicati	ons and vice versa.
PROJECT DESCRIPTION/APPROACH:	First, perform an analysis of manufacturing knowledge
representation and organizatio	n requirements for manufacturing ES applications.
Secondly, design abstract data	types to support the mapping from these knowledge
organizations to current manuf	acturing data base structures. This work would build
on the ideas of Sowa Reiter, B	rodie, and others on applying concepts from mathematical
logic and logic programming to	data base design. Finally, the project would produce a
a set of software utilities to	implement these data types in knowledge base systems.
Currently, available manufactu	ring DBMS's do not recognize semantically complex
entities. It will be necessar	y for the developed data base interface to manipulate
these data types while maintaí	ning their semantic integrity.
IMPORTANCE TO MANUFACTURING:	As expert systems are incorporated into the manufacturing
	expert system to the corporate data base will become
essential. Since many such sy	stems are "object oriented", the data base will have
to deal in some way with this	object orientation. Otherwise the interface between the
expert system and data base be	comes obscure. This project will result in a flexible
	ween expert systems and relational data bases.

FOR	WOR	KSHOP	USE
con	F #	QD	

CONTINUATION OF (project title) Intelligent Integration of Knowledge Based Systems
in Manufacturing
POTENTIAL PAYOFF (quantitative, if possible): This is a necessary step in applying
knowledge-based systems technology on the large scale needed to support many
manufacturing operations. It enhances basic functionality with the state-of-the-art
AI and computer technology in manufacturing.
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE:
Contributions include:
- Identification of common manufacturing knowledge representation and organization
requirements.
- Development of data types appropriate for mapping these representations to
manufacturing data base structures.
- Provision of a set of utilities for effecting KBS to DBMS interfaces.
PROJECT DURATION: 3 CALENDAR YEARS
MAJOR MILESTONES (include timeframe):
- Requirements Analysis
- Development of data types
- Construction of interfaces
- Integration of utilities
- Test interface with expert
RESOURCE REQUIREMENTS: Access to Relational, Network, hierarchical DBMS's
LISP environments
2 FTE Senior & 4 Junior FTES
Cost \$900,000
PROJECT CLASSIFICATION (please check one):
Basic Research (long-term) \underline{X} Exploratory Development (mid-term)
Manufacturing Technology or Advanced Development (near-term)

APPLICATION AREA: (Pleas	e check one)	
UNIT PROCESSES	MANUFACTURING SY	STEMS
X	INTELLIGENT INFOMRATION HANDLING	

PROJECT TITLE:

Standardized Knowledge Representation Scheme for

Product/Component Functions

PROBLEM DEFINITION/PROJECT OBJECTIVE: The objective of this project is to develop a standardized way of representing that knowledge pertaining to the function of a product, or product component, in a larger system.

PROJECT DESCRIPTION/APPROACH: AI knowledge representation techniques (such as conceptual dependency, state analysis) will be examined to evaluate their applicability to the problem of representing the function of a component in a system (i.e., why is it there, how does it contribute to the entire system, what are the critical factors in the performance envelope?). The resulting symbology will be applied to a number of test cases to insure the general applicability of the technique. The accepted KR scheme will become a national standard.

IMPORTANCE TO MANUFACTURING: Many relationships in the manufacturing enterprise depend upon the functional dependence of the different components of a system, not just the geometric dependence (size, shape, etc.) or logistics (procurement) considerations. True optimization of a manufacturing system (design-to-cost, producibility engineering) will only occur when such knowledge is considered in the analysis, so that the relationships may be adjusted accordingly. It follows that a way of representing such knowledge is needed, and that a standardized method for this is highly desirable in order to achieve rapid and accurate communication among all manufacturing areas (or even vendors).

POTENTIAL PAYOFF: Skilled resources with high domain-knowledge levels are currently needed to perform the analyses that use this information. There is currently no standard vehicle for an enterprise to manage this information (other than managing the people containing it). The proposed scheme would function as a personnel-independent knowledge base, enable rapid knowledge retrieval for use in future designs, aid the training process for new personnel involved in the design process, aid the exchange of like data between different manufacturing/ design areas, and facilitate upstream cost/function tradeoff studies.

CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE:

(1) Manufacturing standards

PROJECT DURATION: 3 calendar years

MAJOR MILESTONES (include timeframe):

(1) Problem definition 1 myr (2 x 6 mo.) (2) KR scheme analysis complete $.5 \text{ myr} (1 \times 6 \text{ mo.})$ (3) Draft symbology complete .25 myr (1 x 3 mo.) (4) Operational prototype .25 myr (2 x 6 mo.) (5) Selected experiments 1 myr (3 x 3 mo.) .25 myr (1 x 3 mo.) (6) Symbology revised (7) Symbology published .25 myr (1 x 3 mo.) (8) Symbology accepted .5 myr (1 x 6 mo.)

Total 4 myr.

parasan systems analytical variables of constant

RESOURCE REQUIREMENTS:

- (1) Knowledge Engineer
- (1) Domain expert (generalist)
- (3) Domain experts (specific)
- (1) AI computer system (VAX-11/780 w/ LISP or equivalent)

PROJECT CLASSIFICATION:

Manufacturing Technology or Advanced Development (near-term)

r OR	WOR	KSH0P	USE	
CODE	#	10		

APPLICATION THRUST AREA	(please check one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
	XINTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Process	Prediction Processor
	CT OBJECTIVE: The objective of this project is to develop a
	ligent (AI) based run time internal operating systems (OS)
	lyze the Job queques of an OS using Al driven run time
diagnostics for the purp	oses of determining preprocessing and optimizing potentials
in direct support of sca	lor, vector, and parallel processors required to support
manufacturing applicatio	ns.
PROJECT DESCRIPTION/APPR	OACH: Determine the requirements for an Artificial
Intelligents Process Pre	diction Processor by building models of the various types of
	processing conditions. The solution concepts and designs
	Artificial Intelligence techniques, tools, and methodologies.
	ration will be in a homogenous and heterogenous distributed
	ment of manufacturing production.
IMPORTANCE TO MANUFACTUR	ING: The CIM application technologies are beginning to find
their way into the produ	ction arena and as the demand for information increases, newer
faster computers with sm	arter information handling methods will become mandatory. The
processing power of the	hardware has physical limits. The operating systems that drive
the hardware must compen	sate. The user in the manufacturing environment has instantaneous
needs for new data of hi	gh quality and accuracy for making decisions. The problem to be
solved is the producing	of an Artificially Intelligent Engine that will, where possible,
predict with a great dea	l of accuracy potential occurrences of problem conditions in
the work place. Predict	ions with associated data needs to be presented to the manufac-

12.73

turing decision maker prior to the occurrence with sufficient and reaction time.

CONTINUATION OF	(project	title)	Process Prediction	Frocessor

POTENTIAL PAYOFF (quantitative, if possible): A set of software programs which can function in multiple operating systems environments reducing inefficiency in program execution time, storage, accessability, schedules, configuration management, and administration will increase internal throughput and the overall production capability of a computing environment. Support requirements of production control and data administration people are reduced. Coexistence of scalor, vector, and parallel processing capabilities will reduce the span time of product flow through the manufacturing entities facilities. CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: This AI tool is greatly needed today to reduce the size of technical support staff to the computing production environment and to increase throughput of computer production. Few tools are available today in this area of support and those that do exist are not Al oriented. UCC7 is probably the most sophisticated. UCC7 is manually driven and does not perform internal diagnostics or internal optimizations at run time. Run time interactive tools rather than batch tools will provide a quantum leep in manufacturing support. PROJECT DURATION: 10 CALENDAR YEARS 3YR 3YR MAJOR MILESTONES (include timeframe): 4 Yrs.-PHASE I PHASE2 PHASE3 Model Construction 12 mos. 6 mos. 3 mos. Requirements Definition 8 mos. 2 mos. 1 mos. 12 mos. 12 mos. Design 14 mos. Software Development & Testing 10 mos. 12 mos. 18 mos. Integration and Testing 12 mos. 6 mos. 8 mos. Demonstration and Refinement 18 mos. 18 mos. 18 mos. RESOURCE REQUIREMENTS: People: Hardware: Facilities: Program mgr. & Tech. Mgr. Sr. Data Base Adm. Comm. Netwk. Computer Rms. Sr. Oper. Sys. Engineer Sr. Comm. Engr. Scalor Comp. Storage Rms. 2 Sr. Systems Engineers Sr. Comp. Prod. Cont. Engr. Vector Comp. Parallel Work Space 6-8 Software Engineers 10-15 Comp. Oper. & Tech. Sup. Proc. Comp. **Briefing Space**

PROJECT CLASSIFICATION (please check one): 3Yrs/
4Yrs/Phase-1.Basic Research (long-term) Phase-2 Exploratory Development (mid-term)
3Yrs/Phase-3 Manufacturing Technology or Advanced Development (near-term)

2-3 Tech. Writers & Doc'mt Spec. Peripherals

Sr. Computer Hw. Engineer

PROJECT DESCRIPTION FORM

APPLICATION AREA (please c	heck one):
UNIT PROCESSES	MANUFACTURING SYSTEMS
	X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Design and	Implementation of a Decision Support System for
Manufacturi	ng Management
PROBLEM DEFINITION/PROJECT	OBJECTIVE: There are several different components to
managing a manufacturing f	acility that range from operational questions such as
machine scheduling to long	-range planning including the design of facilities. The
objective is to design and	implement a decision support system that integrates
analytic tools to do sched	uling and planning using expert system technology. A
natural language front end	, graphics, and forms would be important user interfaces.
PROJECT DESCRIPTION/APPROAG	CH: Study the behavior of human experts in machine
scheduling, inventory mana	gement, facilities layout, etc., including their use of
software packages to carry	out specific functions. Develop rules including
likelihood factors. Desig	n the data base, forms, graphics, possibly spreadsheets
to integrate with expert r	ules. Implement and test prototype.
IMPORTANCE TO MANUFACTURING	3: A decision support system that integrates already
developed scheduling and p	lanning tools using expert systems should aid significantly
in increasing productivity	of managers of manufacturing facilities. Advances in
M.R.P., scheduling and fac	ilities layout can be integrated with a data base under
control of an expert syste	m. The expert system will incorporate knowledge on how
these analytic tools shoul	d be employed. The manufacturing decision support system
should be networked to the	corporate information systems.

	FOR WORKSHOP USE CODE #)
CONTINUATION OF (project title) Design and Implementation of a Decision	
for Manufacturing Management	
POTENTIAL PAYOFF (quantitative, if possible): A decision support system	
the many advances in scheduling and planning in an artificial intellig	ence framework
will increase the productivity of manufacturing management.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Applying artificial intell	igence techniques
to analytic models written in a procedural language should lead to a n	ew understanding
of how artificial intelligence and Industrial Engineering concepts can	be synergistically
combined. Exploration of various reasoning techniques in a manufactur	ing setting
should be significant.	
PROJECT DURATION: 2 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe):	
Literature study	4 mos.
Design of data base (specification of fields, tables, etc.)	4 mos.
Development of expert rules for managing and integration of analytic t	ools 8 mos.
Specification of user interface	8 mos.
Software testing	4 mos.
(some activities will be carried out in parallel)	
RESOURCE REQUIREMENTS:	
Artificial intelligence environment that integrates data base, spreads	heet, graphics,
text processing, natural language processing, procedural programming	with expert systems
GURU from Micro Data Base Systems (\$30,000)	
VAX 11/780 networked with IBM/AT workstations or equivalent	
2 senior investigators and 2 graduate students (\$200,000)	······································
PROJECT CLASSIFICATION (please check one):	

Basic Research (long-term) \underline{x} Exploratory Development (mid-term)

Manufacturing Technology or Advanced Pevelopment (near-term)

OR	WO	RKSHOP	USE	
CODE	#	116	₹	

PROJECT DESCRIPTION FORM

APPLICATION THRUST AREA (please check one):
UNIT PROCESSES MANUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE:Intelligent Interface for Manufacturing Management DSS
PROBLEM DEFINITION/PROJECT OBJECTIVE: There are several different components to
managing a manufacturing facility that range from operational questions such as
machine scheduling to long-range planning including the design of facilities. The
objective is to design and implement a decision support system that integrates analytic
tools to support expert system technology, scheduling, planning, and decision making.
A natural language front end, graphics, and forms would be important user interfaces.
PROJECT DESCRIPTION/APPROACH: Study behavior of human experts in machine scheduling,
inventory management, facilities layout, etc., including their use of software packages
to carry out specific functions. Based on study results, specify requirements for
expert systems in support of decision scenarios. Provide an improved man-machine
interface for a manager in his system of support development and test a prototype.
The expert system will incorporate knowledge on how these analytic tools should be
employed. The manufacturing decision support system should be networked to the
corporate information systems.
IMPORTANCE TO MANUFACTURING: A decision support system that integrates already
developed scheduling and planning tools, using expert systems should aid significantly
in increasing productivity of managers of manufacturing facilities. Advances in MRP,
scheduling, and facilities layout can be integrated with a data base under control of
an expert system.
-

FOR WORK CODE #	KSHOP USE 11R
CONTINUATION OF (project title) Intelligent Interface for Manufacturing Man	nagement DSS
POTENTIAL PAYOFF (quantitative, if possible): the many advances in operations research, within an artificial intelligence f will increase the use of these OR results by manufacturing management.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Applying artificial intelligence to the development and use of OR models should lead to a new understanding of artificial intelligence and Industrial Engineering concepts can be synergist combined. Exploration of various techniques in manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will cantly improve the general capability of designing information support for manufacturing reasoning will design the cantly improve the general capability of designing information support for manufacturing reasoning will be added to a new understanding the cantly improve the general capability of designing information support for manufacturing reasoning will be added to a new understanding the capability of designing information support for manufacturing reasoning will be added to a new understanding the capability of designing information support for manufacturing reasoning the capability of designing the capability of	f how ically signifi-
PROJECT DURATION:3CALENDAR YEARS	
MAJOR MILESTONES (include timeframe):	
Requirement Analysis	6 mos.
Design of data base (specification of fields, tables, etc.)	6 mos.
Development of expert rules for managing and integration of analytic tools	12 mos.
Specification of user interface	12 mos.
Software testing	6 mos.
(some activities will be carried out in parallel)	
RESOURCE REQUIREMENTS: Artificial intelligence environment that integrates da spreadsheet, graphics, text processing, natural language processing, procedu	
gramming with expert systems when someone thinks of old days, old times, old friends.	
GURU from Micro Data Base Systems (\$30,000) VAX 11/780 networked with IRM/AT workstations or equivalent \$1,500	000
VAX 11/780 networked withIBM/AT workstations or equivalent 🔪 \$1,500	,000

CODE	#	12

PROJECT DESCRIPTION FORM

APPLICATION AREA (please check one):	
UNIT PROCESSES	MANUFACTURING SYSTEMS
X INTELLIGENT	INFORMATIC: HANDLING
PROJECT TITLE: Software Tools for System	m Scheduling
	t these can be caused by physical constraint
personnel and equipment availability or supp	
	e capability of representing a large variety
of manufacturing systems and developing an e	xpert configurer and scheduler for each
system.	
PROJECT DESCRIPTION/APPROACH: Initially one	
which would consist of a method of represent	
system and some general meta-rules for devel	
process representation would be a frame bas	
Slots would contain cost of operation, retor	
particular system the software will then but	red output rates. When a user has input his
particular system the software will then but	Ta an expert configurer and schedule.
IMPORTANCE TO MANUFACTURING: The flexibility	
tation of manufacturing systems from unit pr	
availability of such software will make the	
	rirements or capabilities in the system
would cause the expert to reschedule process	
intelligent rescheduling the system can be u	used as tools for acquistion decisions.

CONTINUATION OF (project title) Software Tools for System Schedulin	g
POTENTIAL PAYOFF (quantitative, if possible): The payoff is two-fold manufacturing system an expert scheduler will improve product through minimalizing the effect of equipment malfunction and supply shortal developing general tools this technology becomes widely applicable.	gh out while ge. Moreover in
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: (1) Development of general knowledge representation scheme for manual (2) Development of meta-system for automatic expert system building	ufacturing processes
PROJECT DURATION: 3 CALENDAR YEARS MAJOR MILESTONES (include timeframe): (1) Development of knowledge representation scheme 1/2 year (2) Construction of network constructing software 1/2 year	
(3) Determination of meta-rules for automatic rule based system construction (4) Integration and testing	2 years
RESOURCE REQUIREMENTS: 2 senior researchers 1/2 time for 3 years 3 graduate students for 3 years 2 AI workstations	
PROJECT CLASSIFICATION (please check one): Basic Research (long-term)Exploratory Developmen X Manufacturing Technology or Advanced Development (near-term	

APPLICATION AREA: Intelligent Information Handling

PROJECT TITLE: Expert Systems Specification and Design

PROBLEM DEFINITION/PROJECT OBJECTIVE: The objective of the project will be the identification of needs, requirements, designs and prototype of a system to support the developers of expert systems.

PROJECT DESCRIPTION/APPROACH: The project will focus upon the utilization of the ICAM developed IDEFO and IDEF1 methodologies as the foundation for expert systems development. Special emphasis will be placed on the evaluation of IDEF1's entity/relation/attribute structure and its applicability to specifying rules and information structure for expert systems. The project will identify a methodology to integrate function and information models. The methodology will define procedures for constructing models which show classes of information common to all of the functions within an enterprise. This combination of function and information will make it possible to prototype not only the information structure but also the applications which must process the information.

IMPORTANCE TO MANUFACTURING: The experts in manufacturing are resident in the industry. Considerable resources have been spent in educating the aerospace community to the world of structured analysis and design. The MANTECH and Industrial modernization programs have placed heavy emphasis on the use of functional decomposition (IDEFO) and information analysis (IDEF1) as the methodologies for manufacturing systems analysis and design. An approach which integrates the information and functions will support rapid prototyping of many different systems.

POTENTIAL PAYOFF: A significant portion of the aerospace community is trained in the application of the IDEF methodologies to document and understand manufacturing systems. A significant number of models representing a variety of manufacturing systems have already been developed by industry experts.

APPLICATION TITLE: Expert Systems Specification and Design

CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: Industry has yet to establish an easily understood methodology to support expert systems development. The development of such a system will provide topic experts an easy to use and flexible support tool to develop the rules and information structure required in the target system. This will be accomplished without the aid of a computer programmer or analyst.

PROJECT DURATION: 36 . Months

MAJOR MILESTONES:

Phase I - 6 Months - Needs/Requirements Analysis

Phase II - 18 Months Design and Prototype implementation

Phase III - 12 Months Implementation and Operation

RESOURCE REQUIREMENTS: 6700 Hours Phase I 20160 Hours Phase II 9600 Hours Phase III

PROJECT CLASSIFICATION: Manufacturing Technology or Advanced Development

PROJECT DESCRIPTION FORM

APPLICATION AREA (please check one):
UNIT PROCESSES MANUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Adaptive Database Systems for Computer-Integrated Manufacturing
PROBLEM DEFINITION/PROJECT OBJECTIVE: A vital element in the data-driven automation
of manufacturing will be an adaptive database system that, on the one hand, can evolve
itself to respond to the changing needs or characteristics of flexible batch manu-
facturing and, on the other hand, can integrate into a logical whole the many heter-
ogeneous and yet synergistic databases a CIM information system usually includes. This
project will create a model facilitating the development of such adaptive systems
using a data model independent architecture and an intelligent "control engine" based
on AI principles.
PROJECT DESCRIPTION/APPROACH: A new Two-Stage Entity Relationship approach developed
recently by the author will be employed as the basis for unification of differing data
models at the conceptual level, thereby permitting an overall control of the otherwise
autonomous databases. Inter-database mappings at both the external query level and the
storage method level will also be supported by the construct. Decision rules will be
derived from expert heuristics and analytical methods to evolve and optimize the data-
bases according to real-time monitoring of usage. The resultant model will be tested
through a pilot CIM factory being constructed; a prototype adaptive system will
be developed and implemented for the testing.
IMPORTANCE TO MANUFACTURING: Inasmuch as existing database technology does not
support sufficiently the development of I ² H systems in CIM settings, the proposed
research will fill a critical void in the design methodology for data-driven auto-
mation. It will resolve some of the deficiencies experienced in the current manu-
facturing information systems, and the control engine it will provide can also
alleviate the problem of system reconfiguration that is characteristic of the CIM
environment.

	FOR WORKSHOP USE
CONTINUATION OF (project title) at the Date of Continue	CODE # 14
CONTINUATION OF (project title) Adaptive Database Systems for Computer	Integrated
Manufacturing.	
POTENTIAL PAYOFF (quantitative, if possible): The proposed research wieffectiveness of CIM databases in terms of data integrity, quality, and	11 enhance the other performance
constraints. It will also improve the system's efficiency for better res	
reater usability, and less computing costs. But more important, through	effecting the
² H and communications the results of this project will facilitate virtu	ually every
aspect of the CIM system.	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE: (1) Establish a methodology	y for controlling
and integrating heterogeneous databases without resorting to the univers	
approach that has been shown as impractical. (2)Extend the usual databas	
construct to include a decision analytic "shell" added on to the databas	
thus set the stage for the incorporation of AI results into the system(e	
engine). (3) Create a model for data-driven automation of manufacturing.	
PROJECT DURATION: 3 CALENDAR YEARS	
MAJOR MILESTONES (include timeframe):	·
(1) Comparative study of I ² H systems(field visit and literature survey	<u>() 0 - 8 months</u>
(2) Model construction	0 - 18 mos
(3) Application of model to CIM project	10 - 18 mos
(4) Development of Adaptive database system(prototype)	16 - 28 mos
(5) Testing of prototype	26 - 34 mos
(6) Verification and standardization of model	30 - 36 mos
RESOURCE REQUIREMENTS: Computer system: LISP, 2 comprehensive DBMS's(1	relational 1 networ
1 faculty, 20% academic years 70% summers	
1 research scientist in manufacturing	
2 Ph.D students in manufacturing and systems	
Estimated cost: \$350,000.	

X Manufacturing Technology or Advanced Development (near-term)

____Exploratory Development (mid-term)

PROJECT CLASSIFICATION (please check one):

Basic Research (long-term)

PROJECT DESCRIPTION FORM

APPLICATION THRUST AREA (please check one):
UNIT_PROCESSES MARIUFACTURING SYSTEMS
X INTELLIGENT INFORMATION HANDLING
PROJECT TITLE: Intelligent Control Adaptive Data Base Systems for Computer-Integrated
Manufacturing
PROBLEM DEFINITION/PROJECT OBJECTIVE: A vital element in the data-driven automation
of manufacturing will be an adaptive data base system that, on the one hand, can evolve
itself to respond to the changing needs or characteristics of flexible batch
manufacturing and, on the other hand, can integrate into a logical whole, the many
heterogeneous and yet synergistic data bases a CIM information system usually includes.
This project will create a model facilitating the development of such adaptive systems
using a data model independent architecture and an intelligent "control engine" based
on AI principles.
PROJECT DESCRIPTION/APPROACH: A new Two-Stage Entity Relationship approach developed
recently by the author will be employed as the basis for unification of differing data
models at the conceptual level, thereby permitting an overall control of the otherwise
autonomous data bases. Inter-data base mappings at both the external query level and
the storage method level will also be supported by the construct. Decision rules will
be derived from expert heuristics and analytical methods to evolve and optimize the
data bases according to real-time monitoring of usage. The resultant model will be
tested through a pilot CIM factory being constructed; a prototype adaptive system will
be developed and implemented for the testing.
IMPORTANCE TO MANUFACTURING: <u>In as much as existing</u> data base technology does not
support sufficiently the development of I ² H systems in CIM settings, the proposed
research will fill a critical void in the design methodology for data-driven automation
It will resolve some of the deficiencies experienced in the current manufacturing
information systems, and the control engine it will provide can also alleviate the
problem of system reconfiguration that is characteristic of the CIM environment.

FOR WORKSHOP USE CODE # 14R

CONTINUATION OF (project title) <u>Intelligent Control Adaptive Data Base</u> Computer-Integrated Manufacturing	Systems for
POTENTIAL PAYOFF (quantitative, if possible): The proposed research will endefectiveness of CIM data bases in terms of data integrity, quality, and	
constraints. It will also improve the system's efficiency for better res	ponse time,
greater usability, and less computing costs. But more important, through	effecting
the I ² H and communications the results of this project will facilitate vi	rtually every
aspect of the CIM system.	
	
contribution to science and technology BASE: (1) Establish a methodology for and integrating heterogeneous data bases without resorting to the universe	al single
data base approach that has been shown as impractical. (2) Extend the usual data base approach that has been shown as impractical.	
concept and construct to include a decision analytic "shell" added on to	
system proper, thus set the stage for the incorporation of AI results into	
(e.g., the control engine). Create a data base schema to support manufac	curing.
PROJECT DURATION: 5 CALENDAR YEARS MAJOR MILESTONES (include timeframe):	
(1) Identification of I ² H systems (field visit and literature survey)	0-8 mos.
(2) Model construction	0-30 mos.
(3) Application of model to CIM project	10-30 mos.
(4) Development of Adaptive data base system (prototype)	18-40 mos.
(5) Testing of prototype	36-60 mos.
RESOURCE REQUIREMENTS: Computer system: LISP, 2 comprehensive DBMS's (1 re- 2 faculty, 20% academic years 70% summers (Requirement: 1 knowledge engine 2 research scientists in Al 1 professional data base engineer	
2 Ph. D. students in manufacturing and systems 2 Ph.D. in AI	
Estimated cost: \$350,000./yr. 3 undergraduate 1-780 VAX 2 -Symbolics 3-Terminals	
PROJECT CLASSIFICATION (please check one):	-term)

SESSION #: 3

AI/WORKSHOP EVALUATION
July 31, August 1, 1985
GROUP: 3

	CRITERIA	1	2	3	4	5	6
PROJECT #: 1	MEAN	4.47	5.60	5.27	4.53	3.33	4.20
	ST. DEV.	1.77	2.16	1.91	2.29	1.11	1.66
PROJECT #: 2	MEAN	6.07	6.93	6.73	6.73	4.27	5.67
	ST. DEV.	1.03	1.53	1.49	1.71	.88	1.53
PROJECT #: 3	MEAN	6.40	6.67	6.00	6.47	3.53	3.27
	ST. DEV.	1.30	1.45	1.46	1.30	1.13	.88
PROJECT #: 4	MEAN	6.67	7.67	6.27	7.20	5.07	5.27
	ST. DEV.	1.11	.90	1.10	1.01	1.22	1.39
PROJECT #: 5	MEAN	6.93	4.67	4.27	4.60	5.00	5.40
	ST. DEV.	1.10	1.80	1.22	1.64	1.56	1.45
PROJECT #: 6	MEAN	6.53	6.33	6.00	6.60	4.20	4.00
	ST. DEV.	1.25	1.23	1.56	1.12	.68	.85
PROJECT #: 7	MEAN	5.13	5.87	4.93	5.20	4.60	3.80
	ST. DEV.	2.56	2.23	2.46	2.48	1.59	1.47
PROJECT #: 8	MEAN	6.80	6.67	6.20	6.33	4.27	4.60
	ST. DEV.	1.15	1.63	1.57	1.63	1.16	1.06
PROJECT #: 9	MEAN	5.13	6.47	5.60	5.67	3.67	3.27
	ST. DEV.	2.00	1.96	2.10	2.53	1.40	1.16
PROJECT #: 10	MEAN	5.13	5.27	5.67	4.73	5.13	5.13
	ST. DEV.	1.41	2.05	1.99	1.98	1.68	1.51
PROJECT #: 11	MEAN	6.80	6.87	5.87	6.60	3.87	3.53
	ST. DEV.	1.52	1.06	1.19	1.59	.99	1.19
PROJECT #: 12	MEAN	6.07	6.33	5.27	5.47	4.73	4.40
	ST. DEV.	1.33	1.18	.88	1.36	.70	.99
PROJECT #: 13	MEAN	5.27	5.93	5.60	5.33	4.8Ø	5.27
	ST. DEV.	2.28	2.31	1.84	2.13	1.26	1.62
PROJECT #: 14	MEAN	6.07	6.93	6.87	6.40	4.13	3.87
	ST. DEV.	1.44	2.02	1.73	2.03	.99	1.19

SESSION #: 3 AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 3

				P	ROJECT	# 1			
anim #	1	2	3	4	5	6	7	8	9
CRIT. # 1:	1	1	2	4	2	3	2	ø	Ø
2: 3:	1	1	Ø	2	3	1	4	3	Ø
		Ø	Ø	4	5 2	l Ø	1 2	3 1	Ø 1
4: 5:	1	1 2	4 5	3 5	2	Ø	Ø	ø	ø
6:	1	1	3	4	2	3	1	Ø	Ø
				PF	ROJECT	# 2			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	Ø	Ø	Ø	1	4	3	7	Ø	Ø
2:	Ø ~	Ø	1	Ø	1	2 4	6 4	3 4	2 1
3: 4:	Ø	Ø 1	1 Ø	Ø	$\frac{1}{1}$	4	3	5	l
5:	Ø	Ø	3	6	5	1	Ø	Ø	Ø
6:	Ø	Ø	2	3	6	2	1	Ø	1
				PF	ROJECT	# 3			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	Ø	Ø	Ø	Ø	5	3	4	2	1
2: 3:	Ø	Ø Ø	Ø Ø	Ø 3	3 2	6 5	2 3	1 1	3 1
4:	Ø	Ø	Ø	1	3	2	7	1	i
5 :	1	1	5	5	3	Ø	Ø	Ø	Ø
6:	0	3	6	5	1	Ø	Ø	Ø	Ø
				PF	ROJECT	# 4			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	Ø	Ø	Ø	1	1	3	7	3	Ø
2: 3:	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø 5	1 3	6 5	5 2	3 Ø
4:	Ø	ø	ø	Ø	1	1	9	2	2
5:	Ø	Ø	Ø 1	4 2	9 8	1 2	Ø	Ø	1
6:	Ø	Ø	1	2	8	2	L	Ø	1
				Pf	ROJECT	# 5			
CDIT 4	1	2	3	4	5	6	7	8	9
CRIT. # l:	Ø	Ø	Ø	Ø	2	3	4	6	Ø
2:	l	1	l	4	3	2	3	Ø	Ø
3: 4:	Ø	1 1	3	5 3	3 4	3 4	Ø 1	Ø Ø	Ø Ø
5 :	Ø	1	L	4	4	1	4	Ø	ø
6:	Ø	Ø	1	4	4	Ø	6	Ø	Ø

SESSION #: 3

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 3

PROJECT	#	ė

					100201	"			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	Ø	ø	Ø	1	2	4	4	4	Ø
2: 3:	Ø	Ø	Ø	1	3	4	4	3	Ø
	Ø	Ø	2	Ø	3	3	5	2	Ø
4: 5:	Ø	Ø Ø	Ø 2	Ø 8	3 5	4 Ø	4 Ø	4 Ø	Ø Ø
6 :	Ø	1	2	8	4	Ø	Ø	Ø	Ø
0.	v	1	2	3	*	D	~	J	•
				P	ROJECT	# 7			
CRIT. #	1	2	3	4	5 	6	7 	8	9
1:	1	3 1	1	Ø	3	1	2	4	Ø
			Ø	2	1	2	4	4	Ø
3: 4:	1 1	2 2	3 2	ø 1	2 Ø	2 3	3 4	1 1	1 1
5 :	1		1		6	3	1	Ø	Ø
6:	ĺ	1 3	2	2 1	8	Ø	Ø	ø	Ø
				P	ROJECT	# 8			
	1	2	3	4	5	6	7	8	9
CRIT. #		~							~
1: 2:	Ø Ø	Ø 1	Ø	1 Ø	Ø 1	5 3	4 6	5 3	Ø 1
3:	Ø	ì	ø	ø	3	4	4	3	ø
4:	1	Ø	Ø	Ø	1	3	9	i	Ø
5 :	1	Ø	2	3	9	Ø	Ø	Ø	Ø
6:	1	Ø	Ø	2	12	Ø	Ø	Ø	Ø
				P	ROJECT	# 9			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	1	1	1	2	2	4	3	1	Ø
2:	Ø	1	Ø	1	3	1	4	3	2
3:	1	1	Ø	1	4	1	6	Ø	1
4:	1	1	1	2	2	2	1	3	2
5 : 6:	1 1	2 3	4 4	3 5	4 2	1 Ø	Ø	Ø Ø	Ø Ø
0.	•	5	•				υ	v	v
				P	ROJECT	# 10			
CDIM "	1	2	3	4	5	6	7	8	9
CRIT. # 1:	Ø	Ø	ø	<u>-</u>	2	Ø	5	Ø	Ø
2:	1	1	9	3	2	4	3	ø	1
3:	ĩ	ø	ø	1	6	4	Ø	1	2
4:	1	1	2	3	2	3	2	1	Ø
5:	1	Ø	Ø	2	8	2	l	Ø	1
6:	1	Ø	Ø	2	7	2	3	Ø	Ø

SESSION #: 3

AI/WORKSHOP EVALUATION FREQUENCIES July 31, August 1, 1985 GROUP: 3

				P	ROJECT	# 11			
CDIM #	1	2	3	4	5	6	7	8	9
CRIT. # 1:	Ø	Ø	1	Ø	1	4	3	5	1
3:	Ø	Ø	Ø	ø 1	2 5	2 6	8 2	2 Ø	1
4: 5:	Ø	Ø	1	ø	3	Š	4	4	1
	Ø	2	2 6	7 3	4	Ø	Ø Ø	Ø	Ø
6:	1	1	6	3	4	Ø	Ø	и	Ø
				P	ROJECT	# 12			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	Ø	Ø	1	Ø	5	1	7	1	Ø
2:	0	Ø	Ø	Ø	5 9	3 2	4 2	3 Ø	Ø
3: 4:	Ø	Ø	Ø 1	2 3	4	2	5	0	Ø
5 :	ø	ø	1	3	10	1	ø	ø	ø
6:	Ø	ì	2	2	10	Ø	Ø	Ø	Ø
				P	ROJECT	# 13			
CRIT. #	1	2	3	4	5	6	7	8	9
1:	1	2	1	ø	3	2	4	2	ø
2:	2	Ø	Ø	1	1	3	4	4	Ø
3:	Ø	2	1	Ø	1	6	4	1	Ø
4: 5:	1 Ø	2 1	Ø 2	1 1	2 6	2 5	7 Ø	Ø	Ø Ø
6 :	Ø	1	1	2	5	2	3	1	Ø
0.	v	1	•		ROJECT		-	_	-
CRIT. #	1	2	3	4	5	6	7	8	9
1:	ø	Ø	Ø	2	5	1	4	3	Ø
2:	1	Ø	Ø	Ø	1	2	5	3	3
3: 4:	ø 1	1 Ø	Ø	Ø Ø	Ø 4	5 1	3 5	4 2	3 2 2 Ø
5 :	Ø	1	3	4		Ø	0	Ø	0
6:	ø	3	2	4	7 6	Ø	ø	ø	ø

This is an important problem, with high payoff and a very hard problem. I see no evidence of any ideas of actually how to work the problem. Just the statement "extract expert knowledge ... represent it in experts system, etc." Thus, I question the feasibility of the proposed effort.

My issue with C1 is with the use of group technology rather than other more powerful reasoning techniques for information retrieval and presentation of manufacturability advice.

Project 5

Why are iconic representations needed for much of this? The time estimate is not feasible given that one of the objectives is a national standard. Once the work is done, the standards effort will take another 2-3 years.

Developing and getting concurrence on standards is expensive and time consuming.

Project hits only a small portion of the man-machine interface problem. It is likely that icons will not become broadly used. The desire for a "standard symbology" is unrealistic.

Project 6

I don't believe the project has a great contribution to make in terms of advancement of science.

Unlike frame based rule driven inferencing techniques GT schemes essentially freeze knowledge about a domain into one efficient but rigid structure. I do not believe that development of another GT scheme is a relevant AI topic nor do I believe that an approach predicated on achieving an optimal GT system could ever converge.

Project 7

Such a product is easily within the grasp of current AI and software engineering technology.

constant recovered translated landered beleased by

AI as a programming paradigm is in and of itself a significant prototyping tool for software engineers.

Useful and directly applicative results are achievable in the short range with a reasonable amount of effort.

I give it a high feasibility rating because it is already being done. It seems to be an extension to work being done at MIT

There is absolutely no content in this project description to work on this important problem.

INTELLIGENT INFORMATION HANDLING RECONCILIATION COMMENTS

Project 1

The need in this area is not for hardware, but for the correct requirements. A study of what is needed at what cost is a good project. Industry could then build the hardware.

Project 2

The cost of 4 symbolics is sky high. Much cheaper computers can be used.

I doubt that it is feasible to model an "entire manufacturing capability", such as aircraft manufacturing or computer manufacturing in 3 years. The project needs a more specific focus. I doubt that there is "a generic manufacturing process".

With no group discussion and no conflicting data from the computer analysis I can find no reason to revise. The reason for the importance is the fact that little actual scheduling is done today essentially rule based dispatching is what is performed. I believe that KB techniques applied to scheduling algorithm selection and supervisor level is important.

I feel very strongly that this comprehensive project would, like HEARSAY, produce significant manufacturing and AI contributions, but will take an effort that may exceed what is listed, definitely time resources. To produce a useful result would take a large effort, at least more than 3 years, I believe.

The project is an attempt within a near-term timeframe to solve problems that are better addressed in the near-term with existing approaches. Over the long-term, the program goals make sense - but an exploratory or basic research program is different from the program described. This program will develop models and techniques that no one will use in real factories. The program could become acceptable with a reduced level-of-effort, longer timeframe and shift to exploratory development or basic research.

Wasted resources are so common and cost so much that the importance of getting a handle on them cannot be over-emphasized.

Project 3

The time estimates are unrealistic.

This is key to integrated information systems.

This project addresses a real and widespread problem. The potential user community is large enough to cause a large payoff in a short amount of time.

Massive undertaking. It appears to me to be a major software project but little theoretical development for support.

I do not clearly see the need (most tools and their integration exists). Also, how can this be made computer independent.

Project hits an important need, but it is being addressed by other means in the industry. Hard to see that this project could produce a result that is broadly applicable. Severely underestimates the difficulty of developing software tools unless the project becomes very focused. Also, no content.

Software development is too costly to be ignored in the realm of intelligent assistance. It touches every part of manufacturing and its size in manufacturing processes and systems will continue to grow. We must confine software's development costs.

A good toolbox of software development aids is critical to the success of complex software systems. End products do not materialize out of thin air, tools are needed to support the development. Also, end products will need to be tailored for each implementation site. Development tools are the mechanisms used to provide the tailoring in a cost-effective manner.

Very important and needed.

Again, this is a very important project area. I feel it was heavily criticized because of the lack of specifics and definition. I suggest review of the recent Kester Report on KB programmers assistant and I will send in some specific projects.

Project 8

The problem which this project addresses is one of the key problems which our current assessment has found with trying to use existing AI/ES development tools to explore manufacturing problems.

C2: programming language project - attempts to design a data base using logic are unrealistic

C3: object oriented programming area is well developed field using logic for data base design has been proposed years ago.

C4: I don't think the project is feasible in terms of data base design.

This is a very key project but also very difficult.

Project 9

Work in this direction is being done in the CAD Lab at MIT, at Control Data, and at FMC Corp. Capturing designer intent and relating it to functional requirements is very important.

Presumably important but I don't see the results being widely applicable. I don't see a great contribution to science and technology. Since I don't see the results generalizing, I don't expect a big payoff.

Key project - very difficult.

Indicated partial physical regions, contactor decidents

The problem of standards in manufacturing is being addressed through Air Force activities (IGES, PDES, etc.) and industry activities such as MAP. Another standards activity is not appropriate.

Historically, the development and acceptance of industry standards requires industry-wide participation, lead times on the order of years (e.g., 10 years), and large budgets expended by the industry as a whole. Even then, acceptance of a standard is far from assured. One exception - an industry leader, or first-with-the-technology, can sometimes impose a de facto standard unilaterally.

Project 10

I believe significant results can be achieved in much less than 10 years. Look at the Yale work with T.

I think this is an extremely hard problem so likelihood of doing it is slim. If done, it would be an achievement for AI because of the requirement that it be reliably interfaced with a real-time control system (operating system).

Not clear that this is doable in a non-hardware dependent manner. Also, I doubt the need, or at least the use of such a system if it was available.

In order to use new AI techniques and tools being developed, our operating system must be able to keep up: indeed add to the new faster, more efficient methods. If we do not prepare ourselves in the operating system area, some of our other efforts will be wasted.

The problem is payoff. I can't see this program giving significant cost savings and other direct benefits. Very exploratory. We are working this problem now without AI; can't see that using AI to find the ever-evasive "optimum" will give much incremental payoff. Also, the idea in the project is unclear.

Non-AI algorithms to handle computer queues have been in use for 30+ years. They work reasonably well. There is little payoff for successful AI here. Also, AI uses major computer resources and would slow computer operation much more than compensated by any gain in efficiency. Better to put the money into more computers and operate them stupidly - i.e., the old way.

Important and needed work.

Project 11

C1: The integration of operations research tools in the framework of an expert system is feasible and should lead to the construction of an important productivity tool.

C2: Many specific analytic tools for planning and control have been developed - utilizing these tools by managers will be facilitated by incorporating the expertise of tool experts i.e., OR experts, in the form of expert rules.

C3: There are no significant projects that I am aware of that apply expert systems to help managers carry out their decision making task.

There should be a high payoff to a project that builds on the enormous development of analytic approaches developed in the OR field - placing these tools in a DSS framework is significant.

Based on the labs IDSS experience, I consider this project under-funded.

The project is too broad and too fuzzy in its definition. It seems to be just an umbrella for developing expert subsystems and somehow tying them together. There is no real focus, thus, little hope of success.

Resident seconds seconds

The program is too "factory specific". Very little broad tool development. Is this not a new look at what the Air Force ICAM programs have addressed. Cannot see what will be new and lasting from this activity.

Project 12

I just don't believe there are any ideas here about what to actually do. Sounds like someone just learned about "frames" and "slots".

Project 13

The project description seems to bear no relation to the importance and payoff descriptions.

Many other heavily funded groups are working this problem in an intensively competitive R&D community effort. Given this, the proposal seems quite unsound to me.

We have used IDEFO and IDEF2 successfully with minor modifications to support the process of building ES systems manually and I believe, with reasonable funding, that a powerful AI Dev tool could be developed.

This can be done nicely with the ART expert system tool which runs on the LMI and Symbolics Lisp machine.

Very hard problem if done correctly and completely.

It is too early to attempt to standardize development of expert systems. This project will inhibit rather than help.

Project 14

Adaptive data base systems are a good idea but the project proposes (on a minimal budget) to try to redo the IISS and multibase technology

- no new or real AI concepts.
- unrealistic expectations.

This a very important topic but I question the feasibility of solving many problems in distributed data bases in 3 years. There is already a lot of unsuccessful work in this area.

Very hard problem. Not clear new approach will solve the basic problem.

I feel strongly about importance, contribution to science, and payoff of this project. I believe this would revolutionize our capability to solve many problems.

APPENDIX D

FORMS AND INSTRUCTIONS

This appendix provides examples of the forms and instructions utilized during the preparation and workshop phases of the process. The panel specific criteria are found in the preceding appendices and have not been reproduced here.

INSTRUCTIONS

INTRODUCTION: Although the workshop proper convenes on 31 July, it actually started with your receipt of this workbook. Your active pre-meeting participation is a key contributor to the workshop success. This section provides the details to insure a smooth flow of communication supporting the workshop.

ACTIVITIES: There are a number of activities/events that build the foundation for the workshop. These are:

- Registration: Invitees are encouraged to confirm their intent to participate by pre-registering as soon as possible. This insures that they receive all follow-on mailings required for active participation.
- Feedback and Project Generation: Each participant should provide his or her thoughts and ideas on the workshop as well as suggested project(s). Directions and blank forms are provided herein. The results of your efforts should be received at Universal Technology Corporation (UTC) by 9 July 1985.
- Feedback and Project Compilation: Inputs from participants, received by the above due date, will be compiled such that summary feedback and suggested projects can be provided to participants by 24 July 1985. This will allow a week for study prior to the commencement of group activities at the workshop proper.

FEEDBACK: This workbook was developed to provide a starting point or framework for follow-on activities. An attempt has been made to specify attainable goals and objectives, statements of challenges and opportunities, and characteristics of areas for development/application of AI methodologies to batch manufacturing. "White Papers", providing this framework, were generated by sub-panels composed of volunteer experts from industry and academia. The white papers represent an integration of ideas from many different sources and are not intended to be "position papers". It is recognized that there is room for definitional debate, disagreements as to the prime impediments to progress, etc. Your thoughts and recommendations for changes and additions are solicited. You may have a different view of the effect of technical voids, of too great or too little requirements focus, of the dangers of overenthusiastic claims of potential, etc.

You are encouraged to provide your feedback on the contents of the "White Papers" and other sections of this workbook. Your response should be typed doubled spaced on plain bond. Responses will be treated anonymously and will be integrated to a summary form.

PROPOSED PROJECT(S): Participants should provide at least one proposed project not later than three weeks prior to the July workshop. Ideas should be submitted via the project description form and according to the directions shown on page 5-. Adherence to the form provided to identify and describe the effort facilitates eventual assessment of the projects at the workshop. Submitted project descriptions should:

- Be typed on the form,
- Be limited to the space(s) provided (no attachments),
- Be prioritized by the respondent in the event he or she desires to submit more than one project.

In the event of near duplicate projects or an overabundance of proposals for a particular panel, a filtering process may be necessary. In this event, the filtering will be accomplished by ML personnel; otherwise all projects will be used as submitted.

ASSESSMENT: Projects will be assessed against established criteria at the workshop. A technique will be employed which can be viewed as an advance form of opinion survey. It has three major features:

- anonymity;
- opportunity for opinion revision; and,
- summary feedback.

Opportunity for opinion revision and information/knowledge transfer is obtained by conducting the overall survey in a series of "rounds," wherein each round the participants are allowed to provide revised opinions and/or expert information. Statistical feedback is obtained by providing participants with a summary of the responses from the previous round before asking for revised opinions or additional information. Detailed instructions concerning the assessment methodology and criteria will be provided at the time of check-in at the workshop.

CORRESPONDENCE: All correspondence should be addressed to:

Universal Technology Corporation Research Planning Workshop 1616 Mardon Drive Dayton, OH 43432

A Reminder - your input is needed by 9 July 1985.

CLOSURE: We recognize that the development of a program for AI applications in manufacturing is a process of iteration and refinement. We feel that the program's success hinges on the commitment evident in the past which will hopefully continue. Our thoughts are put forward in a spirit of cooperation. We are willing and anxious to listen to better ideas.

INSTRUCTIONS FOR COMPLETING PROJECT DESCRIPTION FORMS

- Application Area: Check the area that, in your opinion, the proposed project best fits under.
- Project Title: (limited to 15 words and must reflect manufacturing area/problem)
- Problem Definition/Project Objective: Provide a statement of the problem/opportunity and the anticipated outcome or result of performing the research effort.
- Project Description/Approach: Provide brief description of the nature of the research effort, and major technology areas the project focuses upon. Reference known on-going activities and explain relationships. Discuss why AI technology is applicable.
- Importance to Manufacturing: Describe how this project is significant in its contribution to the desires of the manufacturing community.

 Consider:
 - the breadth of utility across the manufacturing industry.
 - the application to a variety of opportunities across unit process, manufacturing systems, or information systems as appropriate.
 - how the project enables manufacturing organizations to achieve new or expanded capabilities.
 - how the approach is innovative.
- Potential Payoff: Describe this project's potential payoff in terms of return of current investments and/or investment in future potential capabilities. Return on current investments requires the project be truly implementable with designated deliverables, milestones and quantifiable measurements of improvement for current manufacturing needs. Investment in future potential capability provides a mechanism to research areas of uncertainty and high risk, but usually infers significantly high payoffs by providing answers to research questions. Provide quantitative measures, if possible.
- Contribution to Science and Technology Base: Discuss the project's contribution to the understanding, methodologies, or tools needed to develop artificial intelligence applications for solving batch manufacturing problems. If applicable, include contributions to the education process.

- Project Duration: Estimate the duration of the project in calendar years.
- Major Milestones: Identify the major activities and events to measure project performance and provide calendar timeframe for them.

exest becomes seesess.

- Resource Requirements: Estimate the resources required to complete the research effort (including the number of person-years, hardware and software needs).
- Project Classification: Classify the project according to one of the following: (time is from start to potential implementation and is not necessarily the same as project duration)
 - Basic Research: long-term undertakings (7 or more years) to identify and develop research base, including fundamental investigations towards the increased understanding of natural phenomena.
 - Exploratory Development: medium-term efforts (4-7 years) toward the solution of specific problems including the evaluation of the practicability and feasibility of proposed solutions.
 - Manufacturing Technology or Advanced Development: near-term (1-4 years) where technologies are combined to become a stage for actual production/implementation.

PROJECT DESCRIPTION FORM

APPLICATION AREA (please check one):
UNIT PROCESSES MANUFACTURING SYSTEMS INTELLIGENT INFORMATION HANDLING
PROJECT TITLE:
PROBLEM DEFINITION/PROJECT OBJECTIVE:
PROJECT DESCRIPTION/APPROACH:
MPORTANCE TO MANUFACTURING:

	FOR WORKSHOP USE CODE #
CONTINUATION OF (project title)	
POTENTIAL PAYOFF (quantitative, if possible):	
CONTRIBUTION TO SCIENCE AND TECHNOLOGY BASE:	
PROJECT DURATION:CALENDAR YEARS	
MAJOR MILESTONES (include timeframe):	
RESOURCE REQUIREMENTS:	
PROJECT CLASSIFICATION (please check one): Racic Poscarch (long-torm) Exploratory	Development (mid-term)
Basic Research (long-term)ExploratoryManufacturing Technology or Advanced Development	

DEMOGRAPHIC FORM

PURPOSE: To provide anonymous demographic information for post-workshop statistical analysis.

INSTRUCTIONS

- 1. Insure that your correct ID# is entered on the form.
- 2. Complete the remainder of the form.
- 3. Return form to facilitator prior to starting the assessment round.

ASSESSMENT FORM

PURPOSE: To provide independent assessments of the project attributes based upon the criteria developed for your particular panel.

INSTRUCTIONS

- 1. Insure that your ID# is entered on each form you use.
- Using your workbook as a reference for project descriptions, assess each project against the appropriate criteria. Use integer values only.

Note - Apply your expertise for interpretation on the projects as written. You will have an opportunity to reassess during the reconciliation rounds.

- 3. Please use white forms for projects 1 through 15 and blue forms for projects 16 and above.
- 4. Return the white form to the facilitator prior to starting on the blue form.

ASSESSMENT DEMOGRAPHICS

ID#	
Α.	Please check the appropriate category corresponding to your current employment.
	Academia:
	Government: Research Management
	Industry: Aerospace Product Computer Hardware Computer Software Non-Aerospace Product
В.	Please indicate your area of primary interest in AI. You may rank order (maximum of three) if you have more than one.
	Knowledge Representation Artificial Vision Pattern Recognition/Interpretation Natural Language Voice Recognition Robotics Knowledge Acquisition Knowledge Based Systems (ES) Other (specify)
c.	Please classify your technical background.
	Computer Science Manufacturing Operations Manufacturing Research Knowledge Engineering MATH/OR/MS Engineer (specify)
	Years of experience in technical background
D.	Does your program have active AI programs in manufacturing?
	Yes No

PROJECT ASSESSMENT FORM

I	D	#	

PROJECT	Cl	C2	C3	C4	C5
1	***********				
2					
3					
4					
5					
6					
7					
8					
9					
10					
11				-	
12					
13					
14					
15		,			

PLEASE TURN IN TO FACILITATOR UPON COMPLETION

RECONCILIATION FORM

PURPOSE: This form is provided to reconcile significant differences in individual assessments from the group mean. It is to be used for those projects where at last one criterion has been flagged on print-outs obtained prior to the feedback session.

INSTRUCTIONS

- 1. Please insure that your ID# is entered on each form you use.
- 2. Enter the project number in the space provided.
- 3. You may elect to reconcile/reassess in one of two ways, both of which ask you to review the basis of your assessment.
 - CASE 1: If you desire to change your original assessment of a criterion or criteria (possibly based on a review of group data or a discussion), check the box labeled "1". Record your new assessment score for the appropriate criteria. Be sure you refer to the appropriate criteria scale provided to you earlier.
 - CASE 2: If your assessment differed significantly from the group mean and you do <u>not</u> wish to change your original assessment (possibly based on your specialized knowledge/experience), check the box labeled "2". Outline your reasons/rationale for your assessment in the space provided. This information will be provided, anonymously, to the group during the next feedback session.
- 4. The form allows you to reconcile two projects. Please use white forms for projects 1 through 15 and blue forms for projects 16 and above.

RECONCILIATION FORM

	ID#:
rolect Num	mber:
dditional	Feedback:
1)	_ I wish to update my assessment as follows: (use scale)
	C1 C2 C3 C4 C5
2)	I do not wish to revise my assessment for the following reasons:
rolect Num	mber:
	mber:
roject Num dditional	
dditional	
dditional	Feedback:
dditional	Feedback: _ I wish to update my assessment as follows: (use scale)
dditional	Feedback: _ I wish to update my assessment as follows: (use scale)
dditional	Feedback: _ I wish to update my assessment as follows: (use scale)
dditional	Feedback: _ I wish to update my assessment as follows: (use scale)
dditional	Feedback: _ I wish to update my assessment as follows: (use scale)
dditional	Feedback: _ I wish to update my assessment as follows: (use scale)

THE US COMERNMENT PHINTING OFF, F. 239. T. D. O. A. TOUR