

Enhancing Embedded Device Vulnerability Analysis through Hardware Interfaces

Even 'secure' software can be insecure with hardware-based vulnerabilities

Owen Parkins – New Mexico Institute of Mining and Technology Robert Erbes – Idaho National Laboratory, Cyber Security R&D

Why use Hardware Interfaces?

- A device with a hardware vulnerability will be insecure even with secure software because the hardware cannot be trusted to perform requested actions and nothing else
- Hardware interfaces allow access to devices without malicious software deceiving researchers

What are Hardware Interfaces?

- Hardware Interfaces are exposed terminals on a device that allow interaction with running software from an external device
- These interfaces typically implement a communication protocol
- Examples of hardware interfaces include:
 - JTAG
 - Often used for debugging and programming
 - Universal Asynchronous Receiver and Transmitter (UART)
 - Provides a communication channel
 - Inter-Integrated Circuit (I²C)
 - Simple two wire communication protocol
 - Serial Peripheral Interface (SPI)
 - Synchronous communication protocol

Figure 2. The JTAGulator used to help find JTAG pinouts
Photo Credit: parallax.com

Not available for content . Not available for content

Figure 1. UART interface circled in red on a mobile router

Using Hardware Interfaces

- There are tools available to use hardware interfaces:
 - Shikra
 - The Shikra (see Figure 3) understands multiple protocols including JTAG, UART, and SPI
 - JTAGulator
 - The JTAGulator (see Figure 2) helps determine the JTAG pinout on an embedded device
 - This reduces research time because JTAG pinouts are not standardized among manufactures
 - GoodFET
 - An open-source adapter that specializes in communicating via the JTAG protocol
 - A newer version called the GreatFET is available

What can you do with Hardware Interfaces?

- Hardware interfaces can facilitate:
 - Removing malicious firmware from a device
 - Install custom, trusted firmware
 - Firmware dumps
 - Allows direct access to passwords, binaries, and more
 - Possibly unbrick a device if something went wrong
 - Interrupting bootloaders
 - Interact with system before security measures are initialized
 - Direct communication with software on device
 - Useful for vulnerability analysis and exploit development
 - Manipulation of microcontrollers
 - Bypass normal authentication methods

Figure 3. The Shikra tool used to communicate with a variety of protocols. Photo Credit: int3.cc

References:

Grusin, Mike. "Serial Peripheral Interface (SPI)." Serial Peripheral Interface (SPI), learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all. Hord, Mike. "I2C." I2C, learn.sparkfun.com/tutorials/i2c/all.

Nanda, Umakanta, and Sushant Kumar Pattnaik. "Universal Asynchronous Receiver and Transmitter (UART)." Universal Asynchronous Receiver and Transmitter (UART) - IEEE Conference Publication, ieeexplore.ieee.org/document/7586376.

"What Is JTAG and How Can I Make Use of It? - XJTAG Tutorial." XJTAG, www.xjtag.com/about-jtag/what-is-jtag.