

- 一、实验导入
- 二、实验目的
- 三、实验原理与实验仪器
- 四、实验内容与步骤
- 五、数据记录及处理要求
- 六、注意事项及误差分析

一、实验导入

- ◆量子霍尔效应(Quantum Hall Effect):低温强磁场,霍尔电阻与磁场不再呈现线性关系,出现量子化平台。
- ◆ 量子反常霍尔效应 (Quantum anomalous Hall effect) : 2013年,清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所团队,实验观测到量子反常霍尔效应。2020年获得菲列兹·伦敦奖。

薛琪坤院士 实验首次观测到量子反常霍尔效应

1982年美籍华裔物理学家崔琦 分数量子霍尔效应 1998年的诺贝尔物理学奖

-1945-

二、实验目的

- 1.掌握用霍尔效应法测量磁场的原理
- 2.测量螺线管线圈中心轴线的磁感应强度的分布
- 3.研究霍尔电势差与磁感应强度、霍尔元件的工作电流关系
- 4.了解负效应产生及消除的方法
- 5.霍尔效应的应用

霍尔效应

$$ec{F}_{\scriptscriptstyle m} = q ec{v} imes ec{B} \qquad ec{F}_{\scriptscriptstyle E} = q ec{E}_{\scriptscriptstyle H}$$
 $ec{F}_{\scriptscriptstyle m} = ec{F}_{\scriptscriptstyle E}$

$$V_{H} = \frac{1}{nqd} I_{S} B = K_{H} I_{S} B \qquad B = \frac{V_{H}}{I_{S} K_{H}}$$

如图所示:电流流过垂直放置在磁场中的半导体薄片时,电荷的流向由于洛伦茨力的作用而发生改变,导致在薄片两个横向面之间产生与电流、磁场垂直的电势差,这一现象称为<u>霍尔效应</u>,电势差称为霍尔电压。

▶ N型、P型半导体横向电场方向不同,因此霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型

霍尔系数: $R_H=$

霍尔元件灵敏度: $K_H = \frac{1}{nqd}$

螺线管线圈中心轴线磁感应强度

螺线管中心处的磁场强度: $B_{\oplus \oplus} = \frac{\mu_0 N_{\oplus} I_M}{\sqrt{L^2 + D^2}}$

N_总: 螺旋管总匝数 L: 螺线管长度

Jo: 介质磁导率 D: 螺线管的平均直径

螺线管线圈中心轴线磁感应强度

霍尔效应
$$B = \frac{V_H}{I_S K_H}$$

霍尔电压的测定,并非理想VH,有附加效应

- 1. 埃廷斯豪森效应──温差电动势 🗜
- 2. 能斯特效应 V_N
- 3. 里纪-勒杜克效应 V₈
- 4. 不等位效应 V₀

注意:不同附加效应与磁场、电流关系

-1945-

引线不在等势面上

三、实验原理与实验仪器

不等位电势差

附加效应

V₀ 2 V_y 2 V_E 2

引线接触电阻热效应

、里纪-勒杜克效应 B

斯脱热电流的爱廷豪森效应

运动

速率

分布

能

$$+I$$
, $+B$

$$V_1 = V_H + V_0 + V_N + V_L + V_E$$

$$+I$$
, $-B$

$$V_2 = -V_H + V_0 - V_N - V_L - V_E$$

$$-I, -B$$

$$V_3 = V_H - V_0 - V_N - V_L + V_E$$

$$-I$$
, $+B$

$$V_4 = -V_H - V_0 + V_N + V_L - V_E$$

$$\frac{V_1 - V_2 + V_3 - V_4}{4} = V_H + V_E \stackrel{V_E << V_H}{\Rightarrow} V_H = \frac{V_1 - V_2 + V_3 - V_4}{4}$$
$$V_H = (|V_1| + |V_2| + |V_3| + |V_4|)/4$$

每次改变一个参数,测量值正负改变一次, V_E 和 V_H 始终方向相同,所以无法通过换向法消除

螺线管实验装置、测试架

JK50电压测量、双路恒流电源

FB400型螺线管磁场测定仪

- 1) 砷化镓霍尔传感器, N型半导体材料
- 2) 双刀双向继电器换向开关
- 3) 螺线管 L=280mm ,D_内=14mm, D_外=34mm, N=2700 匝

四、实验内容与步骤

- 1、调零: 断开电路调节 $I_M = 0$; 调节 $I_S = 0$; 调节 $V_H = 0$,
- 2、测量通电螺线管轴向磁场分布:

调节励磁电流 I_M =500mA,调节霍尔片电流为I_S =4mA。根据表1中的要求确定I_M和I_S的方向。根据表1中x的数据测量霍尔片在不同位置处的霍尔电压。记下仪器标注的霍尔灵敏度,把霍尔电压换算成磁感应强度,作磁场分布B----X 曲线。计算x=0处磁场强度的理论值,并计算相对不确定度。

3、验证霍尔电势差V_H与螺线管内磁感应强度成正比:

 $I_S=4mA$,霍尔传感器位于螺线管"轴线中心"(螺线管拉杆上刻度尺为X=0处),按表格2依次改变励磁电流,改变 I_M 和 I_S 的方向测出各励磁电流对应的 V_H 填入表格2中。

-1945

五、实验数据与处理

1) 螺线管轴线上磁场分布: I_M=500mA, I_S=4mA, B=V_H/(K_HI_S)

x/cm	V_1/mV	V_2/mV	V_3 /mV	V_4 /mV	$V_{\rm H}/{ m mV}$	B/mT
	$+B,+I_s$	$-B,+I_s$	$-B,-I_s$	$+B,-I_s$		
0.0						
2.0						
4.0						
12.0						
12.5						
13.0						
13.5						
14.0						

$$K_H = \underline{\qquad} mV/(mAT)$$

$$B_{\oplus \dot{\psi}} = \frac{\mu_0 N_{\dot{\omega}} I_M}{\sqrt{L^2 + D^2}}$$

- 1. 描点作图B-x关系曲线
- 2. 求出螺线管中点即 x=0.0cm处的相对不确 定度?

$$A = \frac{B_{\parallel} - B_{\perp}}{B_{\perp}} \times 100\%$$

五、实验数据与处理

2) 验证霍尔电势差 V_H 与螺线管内磁感应强度成正比: $I_S=4.00mA$,霍尔传感器位于螺线管"轴线中心"(螺线管拉杆上刻度尺为X=0)

I _M /mA	V_1/mV + I_{S} + I_M	V_2/mV + I_S ,- I_M	V_3/mV $-I_{S'}+I_M$	V_4/mV $-I_{S'}-I_{M}$	<i>V̄</i> /mV
0	J.	J. I			
100					
200	Ĩ				
300					
400					
500					
600					
700					
800	The state of the s				
900					

1. 作 $V_{H'}I_{M}$ 关系曲线,求出 线性关系方程式

六、注意事项及误差分析

- ◆霍尔效应-磁场不太强
- ◆霍尔片电极不对称、结晶不均匀及热磁效应等多种因素引起的副效应,通过改变电流磁场方向来消除。
- $◆V_E$ 和 V_H 始终方向相同换向法不能消除 V_E ,在非大电流、非强磁场下, $V_H>>>V_E$
- ◆I_M、I_S不能接错
- ◆课本P116 温馨提醒

