Outline

Remedial Measures: Transformation

Remedial Measures: Weighted Least Squares

Remedial Measures

- Nonlinearity of regression function:
 - Transformation.
 - Polynomial regression.
 - Nonlinear regression.
- Nonequal error variance:
 - Transformation.
 - Weighted least squares.
- Nonindependence of error terms:
 - Models with correlated error terms.
- Nonnormality of error terms.
 - Transformation.
 - Nonparametric methods.
 - Generalized linear models.
- Presence of outliers:
 - Removal of outliers (with caution).
 - Robust estimation.

Data consist of number of surviving bacteria after exposure to X-rays for different periods of time.

- Let *t* denote time (in number of 6-minute intervals)
- let n denote number of surviving bacteria (in 100s) after exposure to X-rays for t time.

	t	1	2	3 197	4	5	6	7	8
_	n	355	211	197	166	142	166	104	60
	t	9	10	11	12	13	14	15	
	n	56	38	36	32	21	19	15	

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	267.010	22.170	12.044	2.0e-08 ***
t	-19.893	2.438	-8.158	1.8e-06 ***

Residual standard error: 40.8 on 13 degrees of freedom Multiple R-squared: 0.8366, Adjusted R-squared: 0.824 F-statistic: 66.56 on 1 and 13 DF, p-value: 1.804e-06

• Here there is a theoretical model:

$$n_t = n_0 e^{\beta t},$$

where

- t is time,
- n_t is the number of bacteria at time t,
- n_0 is the number of bacteria at the start (t = 0), and
- β is a decay rate with β < 0.
- Consider a log transformation:

$$ln(n_t) = ln(n_0) + \beta t = \alpha + \beta t,$$

by setting $\alpha = \ln(n_0)$.

Interpretation: _____

The transformed data are as follows.

			2						
In(<i>r</i>	<u>1)</u>	5.87	5.35	5.28	5.11	4.96	5.11	4.64	4.09
t		9	10	11	12	13	14	15	
In(<i>r</i>	<u>1)</u>	4.03	3.64	3.58	3.47	3.04	2.94	2.71	

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	6.028695	0.088259	68.31	< 2e-16 ***
t	-0.221629	0.009707	-22.83	7.1e-12 ***

Residual standard error: 0.1624 on 13 degrees of freedom Multiple R-squared: 0.9757, Adjusted R-squared: 0.9738 F-statistic: 521.3 on 1 and 13 DF, p-value: 7.103e-12

$$\hat{n}_0 = e^{\hat{\alpha}} = 415.30$$

but

$$E(\hat{n}_0) \neq n_0!$$

Transformation: Remarks

- Ideally, theory should dictate what transformation to use.
 as is in the bacteria count example
- In practice, transformation is usually chosen empirically.
 based on data analysis
- Usually it is best to start with a simple transformation and experiment.
 - To meet the linearity assumption, transformation could be that of X, or Y, or both.
 - Common transformations are \log_{10} , \ln , $\sqrt{\cdot}$. Less common transformations are Y^2 , 1/Y, $1/Y^2$, $\arcsin \sqrt{Y}$.
- Another advantage of transformation is to control unequal variance.

Transformation: Remarks

Consider a transformation ladder for Z = X or Y.

- Transforming Y can affect both linearity and equal variance, but transforming X can affect only linearity.
- Sometimes solving one problem can create another.

Box-Cox Transformation

- **Box-Cox method** is a formal approach to selecting λ to transform Y.
- The idea is to consider

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \epsilon_i.$$

- Estimate λ (along with $\beta_0, \beta_1, \sigma^2$) using ML.
- Choose an interpretable $\hat{\lambda}$ within a 95% CI. In the surviving bacteria example, the Box-Cox method gives $\hat{\lambda}=-0.0202$. Implication:

R command: boxcox(object, ...) in the MASS library

Outline

Remedial Measures: Transformation

Remedial Measures: Weighted Least Squares

A study examines the effectiveness of a therapy to life quality. Data consist of the records of 11 patients:

- Let X denote the number of therapy sessions a patient has completed over 6 months;
- Let Y denote an index of quality of life computed from a series of questions the patient responds to at the end of the 6-month period.

i	1	2	3	4	5	6	7	8	9	10	11
									20		
- y _i	17.5	20.5	24.0	32.5	26.5	36.0	38.5	57.0	51.5	42.0	75.5

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	15.0080	4.3651	3.438	0.007412 **
Х	2.0190	0.3175	6.359	0.000132 ***

Residual standard error: 7.86 on 9 degrees of freedom Multiple R-squared: 0.8179, Adjusted R-squared: 0.7977

F-statistic: 40.43 on 1 and 9 DF, p-value: 0.0001315

Weighted Regression Model

 We extend the usual SLR model to a weighted linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$$

where

$$\varepsilon_i \sim \text{ind} \quad N(0, {\sigma_i}^2),$$

for observations $i = 1, \dots, n$.

- Consider a simple form for the (unequal) variance σ_i^2 .
- For example, suppose X > 0 and c > 0 is a constant.
 Some possible forms for the variance are

$$\sigma_i^2 = cX_i$$
, $\sigma_i^2 = cX_i^2$, $\sigma_i^2 = cX_i^3$, $\sigma_i^2 = cX_i^4$.

• As X_i increases, the corresponding variance σ_i^2 increases, for the *i*th observation.

Weighted Least Squares

• The method of weighted least squares (WLS) finds β_0 , β_1 that minimize the weighted error sum of squares:

$$Q_{W}(\beta_{0},\beta_{1}) = \sum_{i=1}^{n} w_{i} \{Y_{i} - (\beta_{0} + \beta_{1}X_{i})\}^{2}$$

where $w_i \propto 1/\sigma_i^2$.

• For example, suppose $\sigma_i^2 = cX_i^2$. Then

$$Q_W(\beta_0, \beta_1) = \sum_{i=1}^n \frac{1}{X_i^2} \{ Y_i - (\beta_0 + \beta_1 X_i) \}^2.$$

That is, the weight is inversely proportional to X_i^2 .

Weighted Least Squares

• Recall that the LS estimates of β_0 , β_1 are:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})(X_{i} - \bar{X})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}},
\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}.$$

• The WLS estimates of β_0, β_1 are:

$$\hat{\beta}_{1}^{w} = \frac{\sum_{i=1}^{n} w_{i}(Y_{i} - Y^{w})(X_{i} - X^{w})}{\sum_{i=1}^{n} w_{i}(X_{i} - \bar{X}^{w})^{2}},$$

$$\hat{\beta}_{0}^{w} = \bar{Y}^{w} - \hat{\beta}_{1}^{w} \bar{X}^{w},$$

where

$$\bar{X}^w = rac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}$$
 and $\bar{Y}^w = rac{\sum_{i=1}^n w_i Y_i}{\sum_{i=1}^n w_i}$

are the weighted averages of X_i 's and Y_i 's.

Weighted Least Squares

More generally, consider a general linear model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \text{where} \quad \boldsymbol{\varepsilon} \sim \mathcal{MVN}(\mathbf{0}, \sigma^2 \boldsymbol{\Sigma}),$$

where $X \in \mathbb{R}^{n \times 2}$ and Σ is a known matrix. (What is Σ in SLR? How about in WLS?).

Proof: the least-square estimates are

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y})$$

and

$$\hat{\sigma}^2 = \frac{1}{n-2} \boldsymbol{Y}^T \left(\boldsymbol{\Sigma}^{-1} - \boldsymbol{\Sigma}^{-1} \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \right) \boldsymbol{Y}$$

Proof in class.

HW: What is the sampling distribution of $\widehat{\beta}$?

Standardized residual plots with $\sigma_i^2 = cX_i$, cX_i^2 , cX_i^3 , and cX_i^4 .

WLS (X^3) :

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	15.5380	0.2252	68.99	1.43e-13 ***
X	1.9454	0.1548	12.57	5.20e-07 ***

Residual standard error: 0.1379 on 9 degrees of freedom Multiple R-squared: 0.9461, Adjusted R-squared: 0.9401 F-statistic: 157.9 on 1 and 9 DF, p-value: 5.196e-07

Source	df	SS	MS
X	1	3.00061	3.0006
Error	9	0.17103	0.0190
Total	10	3.17164	_

$$SS_T = \sum_{i=1}^n (Y_i - \bar{Y})^2$$
, $SS_E = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$, $SS_X = SS_T - SS_X$

Weighted Least Squares: Remarks

- The purpose of weighted regression is to meet the model assumptions as transformation, but the approach is different.
- Standardized residuals are recommended for weighted regression.
- In the QoL example, with $\sigma_i^2 = cX_i^3$, the studentized residual plot shows that the fit improves the most.

Weighted Least Squares: Remarks

- Both WLS and transformation provide an approach to stabilize variance.
- Statistical software packages give sums of squares and coefficient of determination (R²) for WLS, but their interpretation is not straightforward.
 Formulas for the s.e.(β̂₀) and s.e.(β̂₁) are more complicated than SLR.
- When to use transformation and when to use WLS?
 In practice, consider WLS if a linear-line relationship between X and Y is obvious and unequal variance is a problem.