

| Semester: August 2021 – December 2021                        |                    |           |                              |                    |  |
|--------------------------------------------------------------|--------------------|-----------|------------------------------|--------------------|--|
|                                                              | amination: ESE Exa |           |                              |                    |  |
| Programme code: 01 (16)                                      |                    |           |                              | Semester: III (SVU |  |
| Programme: B.TECH                                            |                    | Class: SY |                              | 2020)              |  |
| Name of the Constituent College:                             |                    |           | Name of the Department       |                    |  |
| K. J. Somaiya College of Engineering                         |                    |           | COMP/IT (Common for COMP/IT) |                    |  |
| Course Code: 116U01C302                                      | Name of the Cours  |           |                              |                    |  |
| Duration: 1 Hour 45 Minutes (15 minutes extra for uploading) | Maximum Marks      | : 5       | 0                            |                    |  |
| Instructions:                                                |                    |           |                              |                    |  |
| 1)Draw neat diagrams 2) Assume suitable data if necessary    |                    |           |                              |                    |  |

| Question |                                                                                                                         | Max   |
|----------|-------------------------------------------------------------------------------------------------------------------------|-------|
| No.      |                                                                                                                         | Marks |
| Q1 (A)   | 1. If the size of the stack is 10 and we try to add the 11th element in the stack then the condition is known as        | 01    |
|          | a) Underflow                                                                                                            |       |
|          | b) Garbage collection                                                                                                   |       |
|          | c) Overflow                                                                                                             |       |
|          | d) None of the above                                                                                                    |       |
|          | 2. Which data structure is mainly used for implementing the recursive algorithm?                                        | 01    |
|          | a) Queue                                                                                                                |       |
|          | b) Stack                                                                                                                |       |
|          | c) Binary tree                                                                                                          |       |
|          | d) Linked list                                                                                                          |       |
|          | 3. Which one of the following is the overflow condition if a circular queue is implemented using array having size MAX? | 01    |
|          | a) rear= MAX-1                                                                                                          |       |
|          | b) rear=MAX                                                                                                             |       |
|          | c) front=(rear+1) mod max                                                                                               |       |
| -        | d) front = $MAX + 1$                                                                                                    |       |
|          | 4. Which of the following option is true if implementation of Queue is from the linked list?                            | 01    |
|          | a) In enqueue operation, new nodes are inserted from the beginning and in                                               |       |
|          | dequeue operation, nodes are removed from the end.                                                                      |       |
|          | b) In enqueue operation, new nodes are inserted from the end and in                                                     |       |
|          | dequeue operation, nodes are deleted from the beginning.                                                                |       |
|          | c) In enqueue operation, new nodes are inserted from the end and in                                                     |       |
|          | dequeue operation, nodes are deleted from the end.                                                                      |       |

|        | d) Both a and b                                                                 |    |
|--------|---------------------------------------------------------------------------------|----|
|        | 5. Which of the following options is not true about the Binary Search tree?     | 01 |
|        | a) The value of the left child should be less than the root node                |    |
|        | b) The value of the right child should be greater than the root node.           |    |
|        | c) The left and right sub trees should not be a binary search tree              |    |
|        | d) The leaf nodes can be present at any level.                                  |    |
|        | 6. What is the result of the following postfix expression?                      | 01 |
|        | <b>ab*cd*</b> + where a=2,b=2,c=3,d=4.                                          |    |
|        | a) 16                                                                           |    |
|        | b) 12                                                                           |    |
|        | c) 14                                                                           |    |
|        | d) 10                                                                           |    |
|        | 7. What is an AVL tree?                                                         | 01 |
|        | a) a tree which is balanced and is a height balanced tree                       |    |
|        | b) a tree which is unbalanced and is a height balanced tree                     |    |
|        | c) a tree with three children                                                   |    |
|        | d) a tree with atmost 3 children                                                |    |
|        | 8. A full binary tree can be generated using                                    | 01 |
|        | a) post-order and pre-order traversal                                           |    |
|        | b) pre-order traversal                                                          |    |
|        | c) post-order traversal                                                         |    |
|        | d) in-order traversal                                                           |    |
|        | 9. Which of the following is not a technique to avoid a collision?              | 01 |
|        | a) Make the hash function appear random                                         |    |
|        | b) Use the chaining method                                                      |    |
|        | c) Use uniform hashing                                                          |    |
|        | d) Increasing hash table size                                                   |    |
|        | 10. In which case adjacency list is preferred in front of an adjacency matrix?  | 01 |
|        | a) Dense graph                                                                  |    |
|        | <ul><li>b) Sparse graph</li><li>c) Adjacency list is always preferred</li></ul> |    |
|        | d) Complete graph                                                               |    |
| Q1 (B) | Attempt any FIVE questions out of the following (any 5 out of 7)                |    |

| 1. Find the postorder traversal of the binary tree shown below                                                                                                                                                                                         | 02 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| S T U X                                                                                                                                                                                                                                                |    |
| 2. How do you count the number of elements in the circular linked list?                                                                                                                                                                                | 02 |
| 3. Discuss set and map data structure.                                                                                                                                                                                                                 | 02 |
| 4. Consider the following in C programming language.                                                                                                                                                                                                   | 02 |
| struct node { int data;  struct node * next; } typedef struct node NODE; NODE *ptr;                                                                                                                                                                    |    |
| Which of the following c code is used to create new node? Explain the same.  a) ptr = (NODE*)malloc(sizeof(NODE)); b) ptr = (NODE*)malloc(NODE); c) ptr = (NODE*)malloc(sizeof(NODE*)); d) ptr = (NODE)malloc(sizeof(NODE));                           |    |
| 5. What will be the output of the following program?                                                                                                                                                                                                   | 02 |
| <pre>main() { char str[]="Algorithms";   int len = strlen(str);   int i;   for(i=0;i<len;i++) an="" element="" for(i="0;i&lt;len;i++)" from="" into="" pop();="" pops="" pre="" push(str[i]);="" pushes="" stack="" stack<="" the=""></len;i++)></pre> |    |
| 6. Construct a binary search tree with given data: 10, 4, 3, 5, 11, 12, 14, 8, 1                                                                                                                                                                       | 02 |
| 7. Using division method, in a given hash table of size 157, the key of value 172 be placed at which position?                                                                                                                                         | 02 |
| Q. 2 Write pseudo code for polynomial addition using single linked list. Explain the logic with an example.                                                                                                                                            | 10 |

|      | OR   Write algorithm for infix to postfix conversion.   Convert $A * (B + C) - D / E$ into postfix expression. Show all steps. |    |
|------|--------------------------------------------------------------------------------------------------------------------------------|----|
| Q. 3 | Construct an AVL tree by inserting the following elements in the given order  63, 9, 19, 27, 18, 108, 99, 81  OR               | 10 |
|      | Write algorithm of BFS traversal of a graph. Show working of algorithm on the given graph.                                     |    |
| Q. 4 | Write notes on any TWO                                                                                                         | 10 |
| Q. 4 | Dictionary ADT and application of Dictionaries                                                                                 | 10 |
|      | 2. Insertion Sort                                                                                                              |    |
|      | 3. Collision handling techniques in hashing                                                                                    |    |