EXHIBIT (C-18
5/F
15/ 5/F
10/ 10/ 10/ 10/ 10/
10/ 305/ 1/12 119 3 luter of 500ml each dry ward 1 Tube resummed in 40 ul 5 m H HEI + 4 gul bangle ran 20 ul on well # 2 HUVE S/F media dialyse against INHAC Then 0.11 11 11 Ac for total of 24 les. 50gul tuber dry vecel. remyeld I luke in 20 cl 5 m M HCI plu 20 sight rights uned 20 d in well #4 HUVE S/F media Hup Sigh / ALP: 10 2 PDFF Column of the your of the contractor 5 ooul of 2 de parter + dry much. resumedel 1 tube on 40ml 5 ml HC1 it 40 ll segle lafter. Par 20 el m get will # 6 PAGF is 24 ng of Creature Rio Reptital.

10M 61: LL-UL= 9- 19 LCR= 9 8KG= 9 × 2 SIGMA= .2 1.00 8IP= SIS	00. 8: LL-UL = 9 - 19 LCR = 9 8KG = 8 × 2 SIGMA = .2 1 .00 8 BY LL-UL = 2 - 19 LCR = 9 8KG = 0 × 2 SIGMA = .2 1 .00 8 BY = SIS SCR = 8/8 K = 1.600 ST TIME CPMA/K XDEV CPMB/K XDEV QIP FLAGS SCR MIN 1 1.00 30651 1.14 29698 1.16 16.8 37 .969 1 2 1.00 13464 1.72 12950 1.76 17.8 15.9 37 .969 1 3 1.00 15974 1.58 15408 1.61 15.9 37 .965 4 1 1.00 31651 1.14 29698 1.16 16.8 37 .965 4 1 1.00 31651 1.35 11.90 1.85 31.90 37 .965 4 1 1.00 16974 1.58 15408 1.61 15.9 37 .965 4 1 1.00 16041 1.31 3249 3.51 14.9 37 .965 4 5 1.00 3431 3.41 3249 3.51 14.9 37 .947 6 6 1.00 3864 1.90 38234 1.60 37 .977 9 7 1.00 60448 .81 58777 .82 16.1 27 .967 8 8 1.00 3864 1.90 38234 1.62 2.972 10 10 1.00 26554 1.23 25769 1.25 16.4 27 .972 10 10 1.00 26554 1.23 25769 1.25 16.4 27 .972 10 11 1.00 33883 1.00 38264 1.02 18.4 27 .972 11 12 1.00 33884 1.00 32534 1.11 16.5 27 .972 14 13 1.00 3384 1.00 32534 1.11 16.5 27 .972 15 14 1.00 38947 1.01 37927 1.03 16.6 27 .975 18 14 1.00 38947 1.01 37927 1.03 16.6 27 .975 18 15 1.00 17644 1.51 17141 1.55 16.3 27 .975 18 16 1.00 28121 1.41 1738 2951 1.7 16.5 27 .975 18 16 1.00 3831 3.36 3377 3.44 15.9 27 .975 18 17 1.00 2114 1.33 29512 1.40 16.4 27 .970 22 18 1.00 3135 3.57 2883 3.66 15.8 22 .952 23 29 1.00 3549 3.36 3377 3.44 15.9 27 .972 22 19 1.00 3549 3.36 3377 3.44 15.9 27 .972 22 10 1.00 3549 3.36 3377 3.44 15.9 27 .972 22 11 1.00 3549 3.36 3377 3.44 15.9 27 .972 22 12 1.00 3549 3.36 3377 3.44 15.9 27 .952 23 20 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3377 3.44 15.9 27 .952 24 1.00 3549 3.36 3.36 3.377 3.44 15.9 27 .952 24 1.00 3549 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40	00K 8: "LL-UL= 9- 19 LCR= 9 BKG= 8 % 2 SIGMA= .2 1 1.00 BIP= SIS SCR= B/A K = 1.000 SE TIME CPMA/K %DEV CPMB/K %DEV QIP FLAGS SCR MIN 1 1.00 30651 1.14 29698 1.16 16.0 32 .969 1 2 1.00 130651 1.14 29698 1.16 16.0 32 .969 1 3 1.00 15974 1.58 15408 1.64 15.0 32 .965 4 4 1.00 13651 1.35 11590 1.85 31590 32 .965 4 5 1.00 13431 3.41 3249 3.51 14.0 22 .947 6 6 1.00 3341 3.41 3249 3.51 14.0 32 .947 6 6 1.00 13427 1.99 9755 2.02 16.1 22 .967 8 8 1.00 33964 1.00 38724 1.02 16.1 22 .972 10 10 1.00 26545 1.23 25769 1.25 16.4 22 .972 10 11 1.00 38983 1.00 38724 1.02 16.4 22 .972 10 12 1.00 38983 1.00 38761 1.02 16.4 22 .972 11 11 1.00 38883 1.00 38761 1.02 16.4 22 .972 14 12 1.00 38947 1.01 37597 1.05 16.5 22 .972 15 14 1.00 38947 1.01 37597 1.05 16.6 27 .972 15 15 1.00 37604 1.51 1.741 1.55 16.5 27 .975 18 16 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 17 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 18 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 19 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 10 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 10 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 11 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 12 1.00 38947 1.01 37597 1.03 16.6 27 .975 18 13 1.00 37594 1.51 1744 1.55 16.3 22 .975 18 14 1.00 38947 1.01 37597 1.03 16.5 27 .975 18 15 1.00 37594 1.51 1744 1.55 16.3 22 .975 22 15 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 16 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 17 1.00 20114 1.33 20512 1.40 15.4 27 .970 22 19 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 10 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 10 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 10 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 11 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 12 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 13 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 14 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 15 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 16 1.00 37594 1.51 17594 1.51 16.5 27 .975 18 17 1.00 37594 1.51 17594 1.51 17594 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.5	00. 8: LL-IV. = 0 - 19 LOR = 0 BKG = 0 % 2 SIGMA = .2 = 1.88 QIP = SIS	00 R : LL-UL						 -	_	•	• •			
1 1.00 30651 1.14 29698 1.16 16.0 37 .969 1 3 1.00 15974 1.58 15408 1.61 15.9 37 .965 1 3 1.00 15974 1.58 15408 1.61 15.8 37 .965 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 1.00 11639 1.89 15.9 37 .965 4 1.00 11639 1.89 15.9 37 .965 4 1.00 11627 1.39 .9795 2.02 16.1 27 .967 8 1.00 60448 .81 50777 .02 16.4 37 .972 9 9 1.00 45614 .94 44348 .95 16.5 27 .972 10 10 1.00 26545 1.23 25769 1.25 16.4 27 .972 11 1 1.00 3983 1.00 38761 1.02 16.4 27 .971 13 1 1 1.00 3983 1.00 38761 1.02 16.4 27 .971 13 1 1 1.00 38947 1.01 37927 1.03 16.6 27 .971 13 1 1 1.00 38947 1.01 37927 1.03 16.6 27 .972 15 1 1 1.00 38947 1.01 37927 1.03 16.6 27 .974 17 15 1.00 38947 1.01 37927 1.03 16.6 27 .971 15 1.00 17644 1.51 17141 1.53 16.5 27 .972 15 1 1 1.00 35602 1.06 34699 1.07 16.5 27 .973 18 6 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1.00 30651 1.14 20698 1.16 16.0 37 .969 1 2 1.00 13446 1.72 12950 1.76 15.9 37 .963 3 3 1.00 1574 1.58 15408 161 15.8 37 .965 4 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 5 1.00 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.00 16127 1.99 97.95 2.02 16.1 27 .967 8 8 1.00 3084 1.00 38777 .02 16.4 30 .972 9 9 1.00 45614 .94 44343 .95 16.5 27 .972 10 10 1.00 26545 1.23 25769 1.25 16.4 27 .972 11 11 1.00 39883 1.00 38761 1.00 16.4 27 .972 14 12 1.00 33284 1.10 32354 1.11 16.5 27 .972 14 13 1.00 33947 1.01 37927 1.03 16.6 27 .972 15 14 1.00 33502 1.00 34699 1.07 16.5 27 .974 17 15 1.00 17644 1.51 17141 1.53 16.3 27 .974 17 15 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 16 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 17 1.00 3013 3.50 3.36 33.77 3.44 15.9 27 .975 20 18 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 23 10 2101 4.36 1982 4.49 15.5 27 .952 24 HUVE S/F made for k/13 220 .952 24 HUVE S/F made for k/13 clause 1241 .54 16.4 27 244 fort for supported in 2241 .54 15.5 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 28 10 1.00 3145 3.50 206 206 206 206 206 206 206 206 206 20	1 1.00 30651 1.14 20698 1.16 16.0 37 .969 1 2 1.00 13446 1.72 12950 1.76 15.9 37 .963 3 3 1.00 1574 1.58 15408 161 15.8 37 .965 4 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 5 1.00 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.00 16127 1.99 97.95 2.02 16.1 27 .967 8 8 1.00 3084 1.00 38777 .02 16.4 30 .972 9 9 1.00 45614 .94 44343 .95 16.5 27 .972 10 10 1.00 26545 1.23 25769 1.25 16.4 27 .972 11 11 1.00 39883 1.00 38761 1.00 16.4 27 .972 14 12 1.00 33284 1.10 32354 1.11 16.5 27 .972 14 13 1.00 33947 1.01 37927 1.03 16.6 27 .972 15 14 1.00 33502 1.00 34699 1.07 16.5 27 .974 17 15 1.00 17644 1.51 17141 1.53 16.3 27 .974 17 15 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 16 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 17 1.00 3013 3.50 3.36 33.77 3.44 15.9 27 .975 20 18 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 23 10 2101 4.36 1982 4.49 15.5 27 .952 24 HUVE S/F made for k/13 220 .952 24 HUVE S/F made for k/13 clause 1241 .54 16.4 27 244 fort for supported in 2241 .54 15.5 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 28 10 1.00 3145 3.50 206 206 206 206 206 206 206 206 206 20	1 1.00 30651 1.14 20698 1.16 16.0 37 .969 1 2 1.00 13446 1.72 12950 1.76 15.9 37 .963 3 3 1.00 1574 1.58 15408 161 15.8 37 .965 4 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 5 1.00 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.00 16127 1.99 97.95 2.02 16.1 27 .967 8 8 1.00 3084 1.00 38777 .02 16.4 30 .972 9 9 1.00 45614 .94 44343 .95 16.5 27 .972 10 10 1.00 26545 1.23 25769 1.25 16.4 27 .972 11 11 1.00 39883 1.00 38761 1.00 16.4 27 .972 14 12 1.00 33284 1.10 32354 1.11 16.5 27 .972 14 13 1.00 33947 1.01 37927 1.03 16.6 27 .972 15 14 1.00 33502 1.00 34699 1.07 16.5 27 .974 17 15 1.00 17644 1.51 17141 1.53 16.3 27 .974 17 15 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 16 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 17 1.00 3013 3.50 3.36 33.77 3.44 15.9 27 .975 20 18 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 23 10 2101 4.36 1982 4.49 15.5 27 .952 24 HUVE S/F made for k/13 220 .952 24 HUVE S/F made for k/13 clause 1241 .54 16.4 27 244 fort for supported in 2241 .54 15.5 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 28 10 1.00 3145 3.50 206 206 206 206 206 206 206 206 206 20	1 1.00 30651 1.14 20698 1.16 16.0 37 .969 1 2 1.00 13446 1.72 12950 1.76 15.9 37 .963 3 3 1.00 1574 1.58 15408 161 15.8 37 .965 4 4 1.00 11639 1.85 11190 1.89 15.9 37 .965 4 5 1.00 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.00 16127 1.99 97.95 2.02 16.1 27 .967 8 8 1.00 3084 1.00 38777 .02 16.4 30 .972 9 9 1.00 45614 .94 44343 .95 16.5 27 .972 10 10 1.00 26545 1.23 25769 1.25 16.4 27 .972 11 11 1.00 39883 1.00 38761 1.00 16.4 27 .972 14 12 1.00 33284 1.10 32354 1.11 16.5 27 .972 14 13 1.00 33947 1.01 37927 1.03 16.6 27 .972 15 14 1.00 33502 1.00 34699 1.07 16.5 27 .974 17 15 1.00 17644 1.51 17141 1.53 16.3 27 .974 17 15 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 16 1.00 2011 1.41 19548 1.43 16.3 27 .975 18 17 1.00 3013 3.50 3.36 33.77 3.44 15.9 27 .975 20 18 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 22 19 1.00 3135 3.57 2983 3.66 15.8 27 .975 23 10 2101 4.36 1982 4.49 15.5 27 .952 24 HUVE S/F made for k/13 220 .952 24 HUVE S/F made for k/13 clause 1241 .54 16.4 27 244 fort for supported in 2241 .54 15.5 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3135 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 25 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 24 10 1.00 3145 3.57 2983 3.66 15.8 27 .975 28 10 1.00 3145 3.50 206 206 206 206 206 206 206 206 206 20	ON 8: "	. LL-	-IJ <u>L</u> =		19 LOR=	Ð	-	=	0 % 2 0 % 2	SIGMA= SIGMA=	. 2 . 2	
1 1.88 38651 1.14 29693 1.16 16.8 3? .969 1 2 1.88 13446 1.72 12958 1.76 15.9 3? .963 1 3 1.08 15974 1.58 15408 1.76 15.8 3? .965 4 4 1.08 11639 1.85 15408 1.61 15.8 3? .965 4 5 1.08 3431 3.41 3249 3.51 14.8 3? .947 6 6 1.08 10127 1.99 9795 2.02 16.1 2? .967 8 8 1.00 39364 1.00 38734 1.02 16.4 2? .972 10 10 1.00 6048 .81 5877 .02 16.4 2? .972 10 11 1.00 39384 1.00 38734 1.02 16.4 2? .972 10 12 1.00 39384 1.00 38761 1.02 16.4 2? .971 13 11 1.00 39383 1.00 38761 1.02 16.4 2? .971 13 12 1.00 32384 1.10 32354 1.11 18.5 2? .972 14 13 1.00 32384 1.10 37927 1.03 16.6 2? .972 15 14 1.00 35602 1.06 34699 1.07 16.5 2? .975 15 15 1.00 17644 1.51 17141 1.53 16.3 2? .975 17 16 1.00 20121 1.41 1.38 20512 1.40 16.4 2? .970 20 17 1.00 20141 1.38 20512 1.40 16.4 2? .972 20 18 1.00 3549 3.36 3377 3.44 18.9 2? .952 23 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 19 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 10 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3377 3.44 18.9 2? .952 24 11 1.00 3549 3.36 3.00 300 300 300 300 300 300 300 300 30	1 1.80 38651 1.14 29638 1.16 16.0 37 .969 1 2 1.80 13446 1.72 12950 1.76 15.9 37 .9663 3 4 1.80 15974 1.58 15488 1.61 15.8 37 .965 4 4 1.80 11639 1.85 15488 1.61 15.8 37 .965 4 5 1.80 13639 1.85 11196 1.89 15.9 37 .3661 5 6 1.80 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.80 60448 .81 58777 .82 16.4 27 .972 9 9 1.80 45614 .94 4348 .95 16.5 27 .972 10 10 1.80 26545 1.23 25769 1.25 16.4 27 .972 10 11 1.80 33284 1.10 32354 1.11 16.5 27 .972 11 11 1.80 33834 1.80 32354 1.11 16.5 27 .972 14 13 1.80 33834 1.80 32354 1.11 16.5 27 .972 15 14 1.80 35602 1.86 34699 1.07 16.5 27 .975 18 15 1.80 17644 1.51 17441 1.53 16.3 27 .975 18 16 1.80 28121 1.41 19548 1.43 16.3 27 .975 18 17 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 3135 3.57 2983 3.66 13.8 27 .972 28 18 1.80 3135 3.57 2983 3.66 15.8 27 .972 28 18 1.80 3549 3.36 3377 3.44 15.9 27 .952 23 29 1.80 3549 3.36 3377 3.44 15.9 27 .952 24 HUVE S/F make for Secol (cold of J.S. of J.	1 1.80 38651 1.14 29638 1.16 16.0 37 .969 1 2 1.80 13446 1.72 12950 1.76 15.9 37 .9663 3 4 1.80 15974 1.58 15488 1.61 15.8 37 .965 4 4 1.80 11639 1.85 15488 1.61 15.8 37 .965 4 5 1.80 13639 1.85 11196 1.89 15.9 37 .3661 5 6 1.80 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.80 60448 .81 58777 .82 16.4 27 .972 9 9 1.80 45614 .94 4348 .95 16.5 27 .972 10 10 1.80 26545 1.23 25769 1.25 16.4 27 .972 10 11 1.80 33284 1.10 32354 1.11 16.5 27 .972 11 11 1.80 33834 1.80 32354 1.11 16.5 27 .972 14 13 1.80 33834 1.80 32354 1.11 16.5 27 .972 15 14 1.80 35602 1.86 34699 1.07 16.5 27 .975 18 15 1.80 17644 1.51 17441 1.53 16.3 27 .975 18 16 1.80 28121 1.41 19548 1.43 16.3 27 .975 18 17 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 3135 3.57 2983 3.66 13.8 27 .972 28 18 1.80 3135 3.57 2983 3.66 15.8 27 .972 28 18 1.80 3549 3.36 3377 3.44 15.9 27 .952 23 29 1.80 3549 3.36 3377 3.44 15.9 27 .952 24 HUVE S/F make for Secol (cold of J.S. of J.	1 1.80 38651 1.14 29638 1.16 16.0 37 .969 1 2 1.80 13446 1.72 12950 1.76 15.9 37 .9663 3 4 1.80 15974 1.58 15488 1.61 15.8 37 .965 4 4 1.80 11639 1.85 15488 1.61 15.8 37 .965 4 5 1.80 13639 1.85 11196 1.89 15.9 37 .3661 5 6 1.80 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.80 60448 .81 58777 .82 16.4 27 .972 9 9 1.80 45614 .94 4348 .95 16.5 27 .972 10 10 1.80 26545 1.23 25769 1.25 16.4 27 .972 10 11 1.80 33284 1.10 32354 1.11 16.5 27 .972 11 11 1.80 33834 1.80 32354 1.11 16.5 27 .972 14 13 1.80 33834 1.80 32354 1.11 16.5 27 .972 15 14 1.80 35602 1.86 34699 1.07 16.5 27 .975 18 15 1.80 17644 1.51 17441 1.53 16.3 27 .975 18 16 1.80 28121 1.41 19548 1.43 16.3 27 .975 18 17 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 3135 3.57 2983 3.66 13.8 27 .972 28 18 1.80 3135 3.57 2983 3.66 15.8 27 .972 28 18 1.80 3549 3.36 3377 3.44 15.9 27 .952 23 29 1.80 3549 3.36 3377 3.44 15.9 27 .952 24 HUVE S/F make for Secol (cold of J.S. of J.	1 1.80 38651 1.14 29638 1.16 16.0 37 .969 1 2 1.80 13446 1.72 12950 1.76 15.9 37 .9663 3 4 1.80 15974 1.58 15488 1.61 15.8 37 .965 4 4 1.80 11639 1.85 15488 1.61 15.8 37 .965 4 5 1.80 13639 1.85 11196 1.89 15.9 37 .3661 5 6 1.80 3431 3.41 3249 3.51 14.8 37 .947 6 7 1.80 60448 .81 58777 .82 16.4 27 .972 9 9 1.80 45614 .94 4348 .95 16.5 27 .972 10 10 1.80 26545 1.23 25769 1.25 16.4 27 .972 10 11 1.80 33284 1.10 32354 1.11 16.5 27 .972 11 11 1.80 33834 1.80 32354 1.11 16.5 27 .972 14 13 1.80 33834 1.80 32354 1.11 16.5 27 .972 15 14 1.80 35602 1.86 34699 1.07 16.5 27 .975 18 15 1.80 17644 1.51 17441 1.53 16.3 27 .975 18 16 1.80 28121 1.41 19548 1.43 16.3 27 .975 18 17 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 28121 1.41 19548 1.43 16.3 27 .975 28 18 1.80 3135 3.57 2983 3.66 13.8 27 .972 28 18 1.80 3135 3.57 2983 3.66 15.8 27 .972 28 18 1.80 3549 3.36 3377 3.44 15.9 27 .952 23 29 1.80 3549 3.36 3377 3.44 15.9 27 .952 24 HUVE S/F make for Secol (cold of J.S. of J.	5# 7	TIME	CPMAZK	%DEV	CPMB/K	%DEV	QIP	FLAG	S 50R	MIN		•
12 1.00 33284 1.10 32354 1.11 16.5 2? .972 14 13 1.00 38947 1.01 37927 1.03 16.6 2? .974 17 14 1.00 35602 1.06 34693 1.07 16.5 2? .975 18 15 1.00 17644 1.51 17141 1.53 16.3 2? .975 18 16 1.00 20121 1.41 19548 1.43 16.3 2? .971 19 17 1.00 21141 1.38 20512 1.40 16.4 2? .972 20 18 1.00 3135 3.57 2983 3.66 15.8 2? .970 22 19 1.00 3549 3.36 3377 3.44 15.9 2? .952 23 20 1.00 2101 4.36 1982 4.49 15.5 2? .943 25 HUVE S/F media from 6/23 column High Epph + C-18 Huve S/F media from 6/23 column High Epph + C-18 Jan 1	12 1.88 33284 1.18 32354 1.18 16.4 2? .972 14 13 1.88 38347 1.81 32354 1.11 16.5 2? .972 15 14 1.88 35682 1.86 34633 1.87 16.5 2? .974 17 15 1.88 17644 1.51 17141 1.53 16.3 2? .971 19 16 1.88 28121 1.41 19548 1.43 16.3 2? .971 19 17 1.88 21141 1.38 28512 1.40 16.4 2? .972 28 18 1.80 3135 3.57 2983 3.66 15.8 2? .972 28 19 1.80 3549 3.36 3377 3.44 15.9 2? .952 23 20 1.80 2101 4.36 1982 4.49 15.5 2? .943 25 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 - 1 20191	12 1.88 33284 1.18 32354 1.18 16.4 2? .972 14 13 1.88 38347 1.81 32354 1.11 16.5 2? .972 15 14 1.88 35682 1.86 34633 1.87 16.5 2? .974 17 15 1.88 17644 1.51 17141 1.53 16.3 2? .971 19 16 1.88 28121 1.41 19548 1.43 16.3 2? .971 19 17 1.88 21141 1.38 28512 1.40 16.4 2? .972 28 18 1.80 3135 3.57 2983 3.66 15.8 2? .972 28 19 1.80 3549 3.36 3377 3.44 15.9 2? .952 23 20 1.80 2101 4.36 1982 4.49 15.5 2? .943 25 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 - 1 20191	12 1.88 33284 1.18 32354 1.18 16.4 2? .972 14 13 1.88 38347 1.81 32354 1.11 16.5 2? .972 15 14 1.88 35682 1.86 34633 1.87 16.5 2? .974 17 15 1.88 17644 1.51 17141 1.53 16.3 2? .971 19 16 1.88 28121 1.41 19548 1.43 16.3 2? .971 19 17 1.88 21141 1.38 28512 1.40 16.4 2? .972 28 18 1.80 3135 3.57 2983 3.66 15.8 2? .972 28 19 1.80 3549 3.36 3377 3.44 15.9 2? .952 23 20 1.80 2101 4.36 1982 4.49 15.5 2? .943 25 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 6/23 column Hyp Gpth + C-18 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 HUVE S/F midia from 3 2291 - 1201, 5 ml 1201 - 1 20191	12 1.00 33284 1.10 32354 1.11 16.5 2? .972 14 13 1.00 38947 1.01 37927 1.03 16.6 2? .972 15 14 1.00 35602 1.06 34699 1.07 16.5 2? .974 17 15 1.00 17644 1.51 17141 1.53 16.3 2? .971 19 16 1.00 20121 1.41 19548 1.43 16.3 2? .971 19 17 1.00 21141 1.38 20512 1.40 16.4 2? .972 20 18 1.00 3135 3.57 2908 3.66 15.8 2? .972 20 19 1.00 3549 3.36 3377 3.44 15.9 2? .952 23 20 1.00 2101 4.36 1982 4.49 15.5 2? .943 25 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 HUVE S/F milia from 6/23 column Hyrkyh + C-19 120 putt 50001 - remipeld in 1001 - 1 sample	8 1 9 1 10 1	1.99 1.99 1.99 1.99 1.99 1.99	13446 15974 15973 1437 19127 60448 39864 456545	1.72 1.58 1.85 1.99 1.00 1.94	12950 15408 11190 3249 9795 58777 38734 44348	1.76 1.61 1.89 3.91 2.82 1.95	15.9 15.9 14.4 16.4 16.5	333332322	.96 .96 .96 .97 .97	9354568901 134568901 11		/-2
HUTE S/F media from 6/13 Court of 1.5 ml perton) tule dried down recognited 10 jul - 1 sample secured 500 lule in 20 jul - 10 jul ful ful	HUVE S/F value for a color of 1.5 ml perla) Tule HUVE S/F value for a color Hersel + C-18 2nd furter 5 cont - resupported in 10 pt - 1 sample	HUVE S/F value for a color of 1.5 ml perla ture HUVE S/F value for a color Herself to 1 sample 2nd furter 5 coul - resupported in 10 perla to 10 per	HUVE S/F vide for some of some of some some some some some some some some	HUVE S/F media from 6/23 colored (and of 1.5 ml penton) Ture dried down recognished 10 pel - 1 sample Recognished 50 and tour in 20 pel - 10 pel, 5 ml , by l HUVE S/F media from 1 colored Hepsight + C-18 2nd fruite 50 and - recompended in 10 pel - 1 sample	12 13 14 15 16 17 18 11 19	. 89 . 89 . 89 . 89 . 89 . 89	33284 38947 35602 17644 20121 21141 3135 3549	1.01 1.01 1.05 1.51 1.38 3.36	32354 37927 34699 17141 19548 20512 2983 3377	1.03 1.03 1.53 1.40 1.40 3.44	16.5 16.5 16.3 16.3 16.3 15.9	2? 2? 2? 2? 2? 2? 2?	.97: .97: .97: .97: .97: .952	2 15 4 17 18 19 20 22 23 24		e cerd
	HUVE S/F media for : idea Hepsquh + C-18 2nd futer 5 coul - resumpered le in 10 ul - 1 sample	HUVE S/F media for : idea Hensigh + C-18 2nd futer 5 coul - resumpered le in 10 ul - 1 sample	HUVE S/F media for in when Hepsquh + C-18 2nd fouter 5 coul - resumpered in 10 pl - 1 sample	HUVE S/F media for in clean Hensigh + C-18 2nd fuite 5 coul - resumped d. in 10 ul - 1 sample		HC	2 p	JF whin	media frest m resu	medel	2 10	Jul	- / 2	angle	(,) le	ele
2nd parter 5 coul - resupered in 10 ul - 1 sample																<u></u>
	Refer to western of the for the of above of					: 2	nd	rusta.	medes of	l -	nen	aplan	l S. L	n 10,	ul - 1	sample

3 AFF: 6/24 20-9 Affi 10 6/21 1-ractions 2,3,4 A LL 10 6/24 500, AT Le 20-6 A FF: 10 ALLIO ALC10 6/24 509ul 6/21 Frontiers 2,3,4 12-2/ 6/24. 20-12 12 1 Oct 9 / 2 8 10 11 HUUF 5/15 C-18 6/23 5-00 1740E 5)E C-18 6/23 5-000 HUUE HUVE SIF HAZ dinged 5 tgs HUVE HUVE 5/F 6/23 5'00 of 20-2 pl 5/F E-18 6/23 5000 1 21 frac S/F HAC Liebyd Sapt 20-12-00 18 HUUE created Costs Crecies Curlis Black 5/F 6/23 C-18 /23 2001 · 100g 2 14 2 3 20 21 22 2 4 Black 5:00 p

Milizenie Assay NRK alls (1:411-1.) HUVE S/F 12 10 200 frontion 6/24 500 we have resupended in 16 pt 5 m 11 HCI - This used on I sample \$500 jul tube resurpended in 20 jul - well as 12 ul, 5 ul, Ltul, Est senter HUVE 5/F ASF: 10 from , fraction 2, 3, 4 - 100 pl serverpended thin in 12 yel - und an Bul and 2 jel samples. HUVE S/F HAC dialysel 500, dialysel media resumented in 20 d 5 min 401 - und as 1 HUVE 5/F media pom 6/23 Column Henright + C-18 1st partie fort 500 w (out of 1.5 me partin) tule dried down resumed 10 pl - 1 sample
rescaped 500 tup in 20,0 - 10,0, 5,00, 5,00 HUVE 5/F medie for 6/23 them Hepsigh + C-18

2nd factor 5 coul - resumped I in 10 ul - 1 sample Refer to western of -- for blots of above I samples