Induction for extended affine type A Soergel bimodules from a maximal parabolic

M. Mackaay*, V. Miemietz and P. Vaz

*Universidade do Algarve/CIDMA

Aveiro, September 12, 2025

Outline

- ▶ Brief history
- ► Categorical induction: the general idea
- ► Extended affine type A Soergel bimodules
- ▶ Induction from a maximal parabolic

► Finitary birepresentation theory of finitary bicategories: initiated by Mazorchuk and Miemietz in 2011.

- ► Finitary birepresentation theory of finitary bicategories: initiated by Mazorchuk and Miemietz in 2011.
- ▶ Wide finitary generalization: Macpherson, 2022.

- ► Finitary birepresentation theory of finitary bicategories: initiated by Mazorchuk and Miemietz in 2011.
- ▶ Wide finitary generalization: Macpherson, 2022.
- ► Triangulated birepresentations of extended affine type *A* Soergel bimodules:
 - ► Evaluation birepresentations (M.-Miemietz-Vaz, 2024).
 - ► Induction from maximal parabolics (M.-Miemietz-Vaz, arXiv:2507.02347).

Categorical induction: the general idea

Induction and restriction

▶ Representation: A - f.d. k-algebra, M - f.d. k-vector space and a homomorphism of k-algebras

$$M: A \to \operatorname{End}_{\Bbbk}(M)$$

Induction and restriction

▶ Representation: A - f.d. k-algebra, M - f.d. k-vector space and a homomorphism of k-algebras

$$M: A \to \operatorname{End}_{\Bbbk}(M)$$

 $ightharpoonup A \subset B$,

Induction and restriction

▶ Representation: A - f.d. k-algebra, M - f.d. k-vector space and a homomorphism of k-algebras

$$M: A \rightarrow \operatorname{End}_{\Bbbk}(M)$$

 $ightharpoonup A \subset B$,

▶ Induction: $\operatorname{Ind}_{B}^{A}(M) := A \otimes_{B} M$

Example: parabolic induction

▶ Maximal parabolic: n = k + m,

$$\mathbb{C}[S_k] \otimes_{\mathbb{C}} \mathbb{C}[S_m] \hookrightarrow \mathbb{C}[S_n]$$

 $s_i \otimes 1 \mapsto s_i \quad (i = 1, ..., k - 1)$
 $1 \otimes s_j \mapsto s_{k+j} \quad (j = 1, ..., m - 1)$

Note: this is the "product" of two commuting embeddings.

Example: parabolic induction

▶ Maximal parabolic: n = k + m,

$$\mathbb{C}[S_k] \otimes_{\mathbb{C}} \mathbb{C}[S_m] \hookrightarrow \mathbb{C}[S_n]
s_i \otimes 1 \mapsto s_i \quad (i = 1, ..., k - 1)
1 \otimes s_j \mapsto s_{k+j} \quad (j = 1, ..., m - 1)$$

Note: this is the "product" of two commuting embeddings.

▶ General case:
$$n = k_1 + \cdots + k_r$$
,

$$\mathbb{C}[S_{k_1}] \otimes_\mathbb{C} \cdots \otimes_\mathbb{C} \mathbb{C}[S_{k_r}] \hookrightarrow \mathbb{C}[S_n]$$

Categorical induction and restriction

 \blacktriangleright Birepresentation: ${\cal A}$ - finitary monoidal category, ${\cal M}$ -finitary category and a linear monoidal functor

$$M \colon \mathcal{A} o \mathcal{E}\mathrm{nd}_{\Bbbk}(\mathcal{M})$$

Categorical induction and restriction

ightharpoonup Birepresentation: $\mathcal A$ - finitary monoidal category, $\mathcal M$ - finitary category and a linear monoidal functor

$$\mathbf{M} \colon \mathcal{A} o \mathcal{E}\mathrm{nd}_{\Bbbk}(\mathcal{M})$$

 $ightharpoonup \mathcal{A} \subset \mathcal{B}$,

Categorical induction and restriction

▶ Birepresentation: \mathcal{A} - finitary monoidal category, \mathcal{M} - finitary category and a linear monoidal functor

$$\mathbf{M} \colon \mathcal{A} o \mathcal{E}\mathrm{nd}_{\Bbbk}(\mathcal{M})$$

 $ightharpoonup \mathcal{A} \subset \mathcal{B}$,

► Categorical induction:

$$\mathcal{I}\mathrm{nd}_\mathcal{B}^\mathcal{A}(\mathcal{M}) := \mathcal{A} \boxtimes_\mathcal{B} \mathcal{M}$$

► Solution: Use algebra objects (Ostrik, 2003; M-Mazorchuk-Miemietz-Tubbenhauer 2019).

- ► Solution: Use algebra objects (Ostrik, 2003; M-Mazorchuk-Miemietz-Tubbenhauer 2019).
- ▶ Algebra (object) in a finitary monoidal category C:

$$X \in \mathcal{C}, \quad \mu \colon X \circ X \to X, \quad \iota : I \to X$$

satisfying the usual axioms of an algebra.

- ➤ Solution: Use algebra objects (Ostrik, 2003; M-Mazorchuk-Miemietz-Tubbenhauer 2019).
- ▶ Algebra (object) in a finitary monoidal category C:

$$X \in \mathcal{C}, \quad \mu \colon X \circ X \to X, \quad \iota : I \to X$$

satisfying the usual axioms of an algebra.

► Right X-module (object) in C:

$$M\in\mathcal{C},\quad \rho_M\colon M\circ X\to M$$

satisfying the usual axioms of a right module.

- ➤ Solution: Use algebra objects (Ostrik, 2003; M-Mazorchuk-Miemietz-Tubbenhauer 2019).
- ► Algebra (object) in a finitary monoidal category C:

$$X \in \mathcal{C}, \quad \mu \colon X \circ X \to X, \quad \iota : I \to X$$

satisfying the usual axioms of an algebra.

▶ Right X-module (object) in C:

$$M \in \mathcal{C}, \quad \rho_M \colon M \circ X \to M$$

satisfying the usual axioms of a right module.

▶ Right X-modules form a left C-birepresentation:

$$\begin{array}{ccc} \mathcal{C} \boxtimes \operatorname{mod}_{\mathcal{C}}(X) & \to & \operatorname{mod}_{\mathcal{C}}(X) \\ F \boxtimes M & \mapsto & F \circ M \end{array}$$

▶ Dual numbers: Let $D := \mathbb{C}[x]/(x^2)$. Note that D is a Frobenius algebra with counit (trace) and comultiplication

$$\epsilon_D \colon D \to \mathbb{C}, \qquad \delta_D \colon D \to D \otimes_{\mathbb{C}} D$$
 $\epsilon(a + bx) = b, \qquad \delta_D(1) = x \otimes 1 + 1 \otimes x.$

▶ Dual numbers: Let $D := \mathbb{C}[x]/(x^2)$. Note that D is a Frobenius algebra with counit (trace) and comultiplication

$$\epsilon_D \colon D \to \mathbb{C}, \qquad \delta_D \colon D \to D \otimes_{\mathbb{C}} D$$

 $\epsilon(a + bx) = b, \qquad \delta_D(1) = x \otimes 1 + 1 \otimes x.$

▶"Projective (*D*, *D*)-bimodules":

$$\mathcal{S} := \operatorname{add}(D \oplus (D \otimes_{\mathbb{C}} D)) \subset (D, D)$$
-bimod.

▶ Dual numbers: Let $D := \mathbb{C}[x]/(x^2)$. Note that D is a Frobenius algebra with counit (trace) and comultiplication

$$\epsilon_D \colon D \to \mathbb{C}, \qquad \delta_D \colon D \to D \otimes_{\mathbb{C}} D$$
 $\epsilon(a + bx) = b, \qquad \delta_D(1) = x \otimes 1 + 1 \otimes x.$

▶"Projective (*D*, *D*)-bimodules":

$$\mathcal{S} := \operatorname{add}(D \oplus (D \otimes_{\mathbb{C}} D)) \subset (D, D)$$
-bimod.

► Monoidal structure:

$$\begin{array}{ccc} (D \otimes_{\mathbb{C}} D) \otimes_{D} (D \otimes_{\mathbb{C}} D) & \cong & D \otimes_{\mathbb{C}} (D \otimes_{D} D) \otimes_{\mathbb{C}} D \\ & \cong & D \otimes_{\mathbb{C}} D \otimes_{\mathbb{C}} D \\ & \cong & (D \otimes_{\mathbb{C}} D) \oplus (D \otimes_{\mathbb{C}} D) \in \mathcal{S}. \end{array}$$

Thus $S = (S, \otimes_D, D)$ is a finitary monoidal category.

▶ Algebra object 1: D is an algebra object in S, with

$$\mu_D \colon D \otimes_D D \to D$$
 and $\iota_D \colon D \to D$

the canonical isomorphisms.

▶ Algebra object 1: D is an algebra object in S, with

$$\mu_D \colon D \otimes_D D \to D$$
 and $\iota_D \colon D \to D$

the canonical isomorphisms.

► Algebra object 2: B := $D \otimes_{\mathbb{C}} D$ is an algebra object in S, with

$$\mu_{\mathrm{B}} \colon (D \otimes_{\mathbb{C}} D) \otimes_{D} (D \otimes_{\mathbb{C}} D) \to D \otimes_{\mathbb{C}} D$$

$$(f \otimes g) \otimes (h \otimes j) \mapsto \epsilon_{D}(gh)f \otimes j$$

$$\iota_{\mathrm{B}} \colon D \to D \otimes_{\mathbb{C}} D$$

$$1 \mapsto \delta_{D}(1)$$

▶ Algebra object 1: D is an algebra object in S, with

$$\mu_D \colon D \otimes_D D \to D$$
 and $\iota_D \colon D \to D$

the canonical isomorphisms.

► Algebra object 2: B := $D \otimes_{\mathbb{C}} D$ is an algebra object in S, with

$$egin{aligned} \mu_{\mathrm{B}} \colon (D \otimes_{\mathbb{C}} D) \otimes_{D} (D \otimes_{\mathbb{C}} D) & o & D \otimes_{\mathbb{C}} D \ (f \otimes g) \otimes (h \otimes j) & \mapsto & \epsilon_{D}(gh)f \otimes j \end{aligned} \ egin{aligned} \iota_{\mathrm{B}} \colon D & o & D \otimes_{\mathbb{C}} D \ 1 & \mapsto & \delta_{D}(1) \end{aligned}$$

▶ S-Birepresentations: We have

$$\operatorname{mod}_{\mathcal{S}}(D) \simeq \mathcal{S}$$
 and $\operatorname{mod}_{\mathcal{S}}(B) \simeq D$ -pmod.

Categorical induction using algebra objects

►Internal hom-construction:

Categorical induction using algebra objects

►Internal hom-construction:

such that $\mathbf{M} \simeq \operatorname{mod}_{\mathcal{C}}(X_{\mathbf{M}})$.

▶ Categorical induction: Let $\Psi \colon \mathcal{B} \to \mathcal{A}$ be a \Bbbk -linear monoidal functor/embedding. Define

$${}^{"}\mathcal{I}\mathrm{nd}_{\mathcal{B}}^{\mathcal{A}}\colon \mathcal{B} ext{-afmod} \ o \ \mathcal{A} ext{-afmod}{}^{"}$$
 $\mathrm{mod}_{\mathcal{B}}(\mathrm{X}) \ \mapsto \ \mathrm{mod}_{\mathcal{A}}(\Psi(\mathrm{X}))$

In the cases that we are interested in:.

In the cases that we are interested in:.

ightharpoonup C is not finitary, but wide finitary;

In the cases that we are interested in:.

- ightharpoonup C is not finitary, but wide finitary;
- ▶Embedding:

$$\Psi \colon \mathcal{B} \to \mathcal{K}^b(\mathcal{A});$$

In the cases that we are interested in:.

- $ightharpoonup \mathcal{C}$ is **not** finitary, but wide finitary;
- ►Embedding:

$$\Psi \colon \mathcal{B} \to \mathcal{K}^b(\mathcal{A});$$

► The internal hom-construction is not well understood yet.

In the cases that we are interested in:.

- $ightharpoonup \mathcal{C}$ is **not** finitary, but wide finitary;
- ▶Embedding:

$$\Psi \colon \mathcal{B} \to \mathcal{K}^{b}(\mathcal{A});$$

- ▶ The internal hom-construction is not well understood yet.
- ► The algebra objects are infinite countable coproducts of indecomposable objects.

In the cases that we are interested in:.

- ightharpoonup C is not finitary, but wide finitary;
- ▶Embedding:

$$\Psi \colon \mathcal{B} \to \mathcal{K}^b(\mathcal{A});$$

- ▶ The internal hom-construction is not well understood yet.
- ► The algebra objects are infinite countable coproducts of indecomposable objects.
- ▶ There is no general theorem saying that $mod_{K^b(\mathcal{A})}(\Psi(B))$ is triangulated.

Extended affine type A Soergel Bimodules

Diagrammatic calculus for ${\cal S}$

Recall $D = \mathbb{C}[x]/(x^2)$, $S = \operatorname{add}(D \oplus B)$, with $B := D \otimes_{\mathbb{C}} D$.

▶Generators:

Diagrammatic calculus for ${\cal S}$

Recall $D = \mathbb{C}[x]/(x^2)$, $S = \operatorname{add}(D \oplus B)$, with $B := D \otimes_{\mathbb{C}} D$.

▶Generators:

$$\mathrm{id}_{\mathrm{B}} := \left[\begin{array}{ccc} ^{\mathrm{B}} & \iota_{\mathrm{B}} := \left[\begin{array}{ccc} ^{\mathrm{B}} & \mu_{\mathrm{B}} := \left[\begin{array}{ccc} ^{\mathrm{B}} & \delta_{\mathrm{B}} := \end{array} \right] \right] \\ & \delta_{\mathrm{B}} := \left[\begin{array}{ccc} ^{\mathrm{B}} & \delta_{\mathrm{B}} := \end{array} \right] \right]$$

► Relations:

Diagrammatic calculus for \mathcal{S}

- ► Composition: stacking (vertical).
- ► Monoidal product: juxtaposition (horizontal).

Diagrammatic calculus for \mathcal{S}

- ► Composition: stacking (vertical).
- ▶ Monoidal product: juxtaposition (horizontal).
- ▶ Linearity: The diagrammatic category \mathcal{BS} is a \mathbb{C} -linear and monoidal.
- ▶ Envelopes: $S \cong Kar(Mat(BS))$.

Elias-Khovanov, Elias, M.-Thiel: The \mathbb{R} -linear monoidal category of $\widehat{\mathfrak{BS}}_n^{\mathrm{ext}}$ of Bott-Samelson bimodules:

Elias-Khovanov, Elias, M.-Thiel: The \mathbb{R} -linear monoidal category of $\widehat{\mathfrak{BS}}_n^{\text{ext}}$ of Bott-Samelson bimodules:

▶ Objects: products of $B_{\rho}, B_{\rho^{-1}}, B_0, \dots, B_{n-1}$ (*R* is the identity object).

Note: indices of the B_i belong to $\mathbb{Z}/n\mathbb{Z}$.

Elias-Khovanov, Elias, M.-Thiel: The \mathbb{R} -linear monoidal category of $\widehat{\mathfrak{BS}}_n^{\text{ext}}$ of Bott-Samelson bimodules:

▶ Objects: products of $B_{\rho}, B_{\rho^{-1}}, B_0, \dots, B_{n-1}$ (*R* is the identity object).

Note: indices of the B_i belong to $\mathbb{Z}/n\mathbb{Z}$.

► Morphisms: Identity morphisms

$$\mathrm{id}_{\mathrm{B}_{\rho}} := \bigcap_{i} \mathrm{id}_{\mathrm{B}_{\rho-1}} := \bigcup_{i} \mathrm{id}_{\mathrm{B}_{i}} := \bigcup_{i}$$

► Soergel bimodules: $\widehat{\mathbb{S}}_n^{\text{ext}} := \text{Kar}(\text{Mat}(\widehat{\mathbb{B}}\widehat{\mathbb{S}}_n^{\text{ext}})).$

- + lots of relations (implying e.g. ${
 m B}_{
 ho^{-1}} \simeq {
 m B}_{
 ho}^{-1}$)
 - ► Soergel bimodules: $\widehat{\mathbb{S}}_n^{\text{ext}} := \text{Kar}(\text{Mat}(\widehat{\mathbb{B}}\widehat{\mathbb{S}}_n^{\text{ext}})).$
 - ▶ Categorification theorem: $[\widehat{S}_n^{\text{ext}}]_{\oplus} \cong \widehat{H}_n^{\text{ext}}$.

▶ Rouquier complexes: Define $T_i^{\pm 1} \in K^b(\widehat{\mathbb{S}}_n^{\text{ext}})$:

$$T_i := \underline{B_i} \xrightarrow{\P} R, \qquad T_i^{-1} := R \xrightarrow{\underline{b_i}} \underline{B_i}$$

for
$$i = 0, ..., n - 1$$
.

▶ Rouquier complexes: Define $T_i^{\pm 1} \in K^b(\widehat{\mathbb{S}}_n^{\text{ext}})$:

$$T_i := \underline{B_i} \xrightarrow{\P} R, \qquad T_i^{-1} := R \xrightarrow{\underline{b_i}} \underline{B_i}$$

for i = 0, ..., n - 1.

▶ Braid relations (Rouquier): $T_iT_{i+1}T_i \simeq T_{i+1}T_iT_{i+1}$ ($n \ge 3$).

▶ Rouquier complexes: Define $T_i^{\pm 1} \in K^b(\widehat{\mathbb{S}}_n^{\text{ext}})$:

$$T_i := \underline{B_i} \xrightarrow{\P} R, \qquad T_i^{-1} := R \xrightarrow{\underline{b_i}} \underline{B_i}$$

for i = 0, ..., n - 1.

- ▶ Braid relations (Rouquier): $T_iT_{i+1}T_i \simeq T_{i+1}T_iT_{i+1}$ ($n \ge 3$).
- ► Bad news: There is no Rouquier calculus, let alone Rouquier-Soergel calculus.

▶ Rouquier complexes: Define $T_i^{\pm 1} \in K^b(\widehat{\mathbb{S}}_n^{\text{ext}})$:

$$T_i := \underline{B_i} \xrightarrow{\P} R, \qquad T_i^{-1} := R \xrightarrow{\underline{b_i}} \underline{B_i}$$

for i = 0, ..., n - 1.

- ▶ Braid relations (Rouquier): $T_iT_{i+1}T_i \simeq T_{i+1}T_iT_{i+1}$ ($n \ge 3$).
- ► **Bad news**: There is no Rouquier calculus, let alone Rouquier-Soergel calculus.
- ► Good news: Partial calculus suffices. DIY!

Induction from a maximal parabolic

A symmetric pair of monoidal functors

► Embeddings:

$$\Psi_L \colon \widehat{\mathfrak{BS}}_k^{\mathrm{ext}} \to K^b(\widehat{\mathbb{S}}_n^{\mathrm{ext}}) \quad \mathrm{and} \quad \Psi_H \colon \widehat{\mathfrak{BS}}_{n-k}^{\mathrm{ext}} \to K^b(\widehat{\mathbb{S}}_n^{\mathrm{ext}})$$

A symmetric pair of monoidal functors

► Embeddings:

$$\Psi_L \colon \widehat{\mathcal{BS}}_k^{\text{ext}} \to K^b(\widehat{\mathcal{S}}_n^{\text{ext}}) \quad \text{and} \quad \Psi_R \colon \widehat{\mathcal{BS}}_{n-k}^{\text{ext}} \to K^b(\widehat{\mathcal{S}}_n^{\text{ext}})$$

▶ Symmetric braiding: $\Psi_L \Psi_R \cong \Psi_R \Psi_L$.

A symmetric pair of monoidal functors

► Embeddings:

$$\Psi_L \colon \widehat{\mathfrak{BS}}_k^{\mathrm{ext}} \to K^b(\widehat{\mathbb{S}}_n^{\mathrm{ext}}) \quad \mathrm{and} \quad \Psi_R \colon \widehat{\mathfrak{BS}}_{n-k}^{\mathrm{ext}} \to K^b(\widehat{\mathbb{S}}_n^{\mathrm{ext}})$$

▶ Symmetric braiding: $\Psi_L \Psi_R \cong \Psi_R \Psi_L$.

Theorem (M.-Miemietz-Vaz)

The symmetric pair Ψ_L, Ψ_R induces a linear monoidal functor

$$\Psi_{k,n-k}\colon \widehat{\mathbb{S}}_k^{\text{ext}} \boxtimes \widehat{\mathbb{S}}_{n-k}^{\text{ext}} \to K^b(\widehat{\mathbb{S}}_n^{\text{ext}})$$

such that

$$\Psi_{k,n-k}(X\boxtimes Y) := \Psi_{L}(X)\Psi_{R}(Y)$$

$$\Psi_{k,n-k}(f\boxtimes g) := \Psi_{L}(f)\Psi_{R}(g),$$

▶ Let **V** be the trivial birepresentation of $\widehat{\mathbb{S}}_1^{\text{ext}} = \langle \mathbf{B}_{\rho} \rangle$.

- ▶ Let **V** be the trivial birepresentation of $\widehat{\mathbb{S}}_1^{\text{ext}} = \langle \mathbf{B}_{\rho} \rangle$.
- ▶ Algebra object for $V: X \in \widehat{\mathbb{S}}_1^{ext, \diamond}$ is given by

$$X := \coprod_{r \in \mathbb{Z}} B_{\rho}^{r}.$$

Note: $B_{\rho}X \cong X$.

- ▶ Let **V** be the trivial birepresentation of $\widehat{\mathbb{S}}_1^{\text{ext}} = \langle \mathbf{B}_{\rho} \rangle$.
- ▶ Algebra object for $V: X \in \widehat{\mathcal{S}}_1^{ext, \diamond}$ is given by

$$X := \coprod_{r \in \mathbb{Z}} B_{\rho}^{r}.$$

Note: $B_{\rho}X \cong X$.

▶ Induction: $Y := \Psi_{1,1}(X \boxtimes X) \in K^b(\widehat{\mathbb{S}}_2^{ext,\diamond})$, where

$$Y\cong\coprod_{r\in\mathbb{Z}}\coprod_{s\in\mathbb{Z}}(B_{\rho}T_{1})^{r}(T_{1}^{-1}B_{\rho})^{s}.$$

- ▶ Let **V** be the trivial birepresentation of $\widehat{\mathbb{S}}_1^{\text{ext}} = \langle \mathbf{B}_{\rho} \rangle$.
- ▶ Algebra object for $V: X \in \widehat{\mathcal{S}}_1^{ext, \diamond}$ is given by

$$X := \coprod_{r \in \mathbb{Z}} B_{\rho}^{r}.$$

Note: $B_{\rho}X \cong X$.

▶ Induction: $Y := \Psi_{1,1}(X \boxtimes X) \in K^b(\widehat{\mathbb{S}}_2^{ext,\diamond})$, where

$$Y \cong \coprod_{r \in \mathbb{Z}} \coprod_{s \in \mathbb{Z}} (B_{\rho}T_1)^r (T_1^{-1}B_{\rho})^s.$$

▶ Induced triangulated birepresentation: By a general construction due to Fan–Keller–Qiu, there is a triangulated closure of

$$\text{add}\left\{\text{FY}\mid \text{F}\in \textit{K}^{\textit{b}}(\widehat{\mathbb{S}}_{\textit{n}}^{\text{ext}})\right\}\subset \textit{K}^{\textit{b}}(\widehat{\mathbb{S}}_{2}^{\text{ext},\diamond}).$$

The end

Thanks!