Two Sample Discrimination

Chandi Bhandari, Rahul Kumar Brian Robinson, and Simon Stolarczyk

Gretton et. al RKHS method

How do you tell when two samples come from different distributions?

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon Stolarczyk

December 1, 2015

Motivating Scenario

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon

Gretton et. al. RKHS method

Motivating Scenario

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon Stolarczyk

Gretton et. al. RKHS method

Basic Question

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar Brian Robinson, and Simon Stolarczyk

Gretton et. al

Given two distributions p and q, how do we test whether they are different on the basis of samples drawn from each of them?

$$X = (X^1, ..., X^m)$$
 drawn from p

$$Y = (Y^1, ..., Y^n)$$
 drawn from q

Example

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar Brian Robinson, and Simon Stolarczyk

Gretton et. al RKHS metho

$$X = (1.4110420, -0.6491983, -0.2034312, ..., 0.5670504)$$

$$Y = (2.10555009, 1.59182751, 0.85874229, ..., 0.38632577)$$

Example

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar Brian Robinson, and Simon Stolarczyk

Gretton et. al

$$X = (1.4110420, -0.6491983, -0.2034312, ..., 0.5670504)$$

$$Y = (2.10555009, 1.59182751, 0.85874229, ..., 0.38632577)$$

$$H_0: p=q$$

Basic Plotting

Two Sample Discrimination

Chandi Bhandari, Rahul Kuma Brian Robinson, ar Simon Stolarczyk

Gretton et. a RKHS metho Useful for lower dimensional data, but how do we visualize the difference when $p = N_d(\mu, I)$ when d >> 3?

Permutation Testing

Two Sample Discrimination

Chandi Bhandari, Rahul Kuma Brian Robinson, an Simon Stolarczyk

Gretton et. a RKHS metho

- Develop a statistic given the samples.
- Permute the samples and run the statistic again.
- See where the original statistic falls on a plot of the statistic for different permutations.

Kolmogorov-Smirnov Test

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon

Gretton et. al

Motivating Fact

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon Stolarczyk

Gretton et. al. RKHS method Expectations over all continuous functions can distinguish probability distributions:

$$p = q$$
 iff. $E_p[f(x)] = E_q[f(y)] \ \forall f \in C(X)$

Mean Maximum Discrepancy

Two Sample Discrimination

Bhandari, Rahul Kuma Brian Robinson, an Simon Stolarczyk

Gretton et. al. RKHS method

For a set of functions ${\mathcal F}$ define

$$\mathsf{MMD}[\mathcal{F}, p, q] = \sup_{f \in F} (E_p[f(x)] - E_q[f(y)])$$

MMD Estimator

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon Stolarczyk

Gretton et. al. RKHS method

$$MMD_b[\mathcal{F}, p, q] = \sup_{f \in \mathcal{F}} (\frac{1}{m} \sum_{i=1}^m f(x_i) - \frac{1}{n} \sum_{i=1}^n f(y_i))$$

How to choose ${\mathcal F}$

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar Brian Robinson, and Simon Stolarczyk

Gretton et. al. RKHS method

We need something computationally feasible. We want our space $\mathcal F$ to be a Hilbert Space with the nice property that taking the expectation of any function is the same as the inner product with some special function

$$E_{x}f = \langle f, \mu_{p} \rangle_{\mathcal{H}}$$

and we want

$$k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$$

Estimator

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon

Gretton et. al. RKHS method

$$\begin{split} MMD_{u}^{2}[\mathcal{F},X,Y] &= \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j \neq i}^{m} k(x_{i},x_{j}) \\ &+ \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} k(y_{i},y_{j}) \\ &- \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} k(x_{i},y_{j}) \end{split}$$

Linear Estimator

Two Sample Discrimination

Chandi Bhandari, Rahul Kuma Brian Robinson, ar Simon Stolarczyk

Gretton et. al. RKHS method

$$MMD_I^2[\mathcal{F}, X, Y] = \frac{2}{m} \sum_{i=1}^{m/2} h((x_{2i-1}, y_{2i-1}), (x_{2i}, y_{2i}))$$

where

$$z \sim (x, y), h(z_i, z_j) := k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)$$

Applying the tests to artificially generated data

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon Stolarczyk

Gretton et. al. RKHS method

Apply the test to experimental data

Two Sample Discrimination

Chandi Bhandari, Rahul Kumar, Brian Robinson, and Simon Stolarczyk

Gretton et. al. RKHS method

- Medical data
- The distributions for connections on a graph.
- other from Dr. Fu