

Module 4

Outline

- Internal Organization of Memory Chip
- Organization of a SRAM memory unit
- Design of memory modules

- It's all about storing bits binary digits
- Vacuum tubes, CRT, Drums, Disks and ICs
- Issues size, cost and speed
- Semiconductor memories (Chips)

Terminology

- Memory Access Time: Time between read and the MFC (Memory Function Complete) signal.
- Memory Cycle Time: The minimum time delay required between the initiation of two successive memory operations.
- Random Access Memory (RAM): Any location can be accessed for a read or write operation in some fixed amount of time that is independent of the location's address.

Semiconductor RAM Memories

- Semiconductor memories are available in a wide range of speeds.
- Their cycle time range from 100ns to less than 10ns.
- Obviously the speed of the processor depends on the speed of the memory

Internal Organization of Memory Cells

Internal Organization of Memory Cells

- Above Example: I28 bit chip
 - Olt has 4 address lines and 8 data lines
 - Ousing 4 address lines $(A_3A_2A_1A_0)$ 16 word signals $(W_{15}...W_1W_0)$ are generated with help of decoder 4:16 decoder
 - \bigcirc 16 words of each 8 bits (= 16 x 8 bits = 16 bytes)
 - O For any given input address lines $(A_3A_2A_1A_0)$ only one of the word lines from $W_{15} ... W_0$ will be active at a time.
 - OWhich in turn enable the complete row of the memory cells connected to W_i bit
 - Ousing R/W and CS signal one can enable the Sense/Write Circuits of the all bits ranging from b_7 to b_0

Chip with 1024 Memory Cells

- 1024 bits can be planned as 128 x 8 memory
- Total address lines required $128 = 2^{N} \rightarrow N = \log_2 128$ =7, it means it should have A6 ..A₁A₀
- It means 128 x 8 bits (Similar to 16 x 8 bits)

8 Data Lines

Dr. Ilavarasi A K

Chip with 1024 Memory Cells

Or it could be 1024 x 1

Organization of a IK × I memory chip

Larger Memories Using Multiple Chips

512K x 8 Memory Chip

- Organization of a 2M x 32 memory module using 512K x 8 static memory chips
- 2M x 32 \rightarrow 2 x 2^{10} x 2^{10} x 32 \rightarrow 2^{21} x 32
- No. of 512K x 8 required = $(2^{21} \times 32) / (2^9 \times 2^{10} \times 8) = 16$ nos.

Larger Memories Using Multiple Chips

Larger Memories Using Multiple Chips

- Assembly of several memory chips on a separate small board (PCB) that plugs vertically into a single socket on the motherboard called as Memory Modules
 - SIMMs Single In-line Memory Modules
 - DIMMs Dual In-line Memory Modules

Memory System Considerations

- The choice of a RAM chip for a given application depends on several factors
 - O Cost,
 - **O** Speed
 - Power dissipation and
 - Size of the chip
- Static RAMs are generally used only when very fast operation is the primary requirement
 - They are used mostly in cache memories
- Dynamic RAMs are the predominant choice for implementing computer main memories