, ,	111	MAG
	(I. I	ms

1	1. An interconnect structure comprising:
2	a plurality of nterconnected nodes including distinct nodes A, B, C, and D;
3	data interconnect lines AB1 and AB2 coupled from the node A to the node B
4	for sending data from the node A to the node B;
50	data interconnect lines CD ₁ and CD ₂ coupled from the node C to the node D
Q 6	for sending data from the node C to the node D;
\mathbb{Y}_7	a data interconnect line AD coupled from the node A to the node D for sending
8	data from the node A to the node D;
9	means for detecting a condition at the node C;
10	means for sending a control signal CS from the node C to the node A, the
11	control signal being determined at least in part by the condition at the
12	node C; and
13	means for sending a message M arriving at the node A to the node B or the
14	node D on a data interconnect line selected from among the data
15	interconnect lines AB, AB ₂ , and AD depending at least partly on the
16	control signal CS.
1	2. An interconnect structure according to Claim 1 wherein:
2	the control signal CS is carried from the node C to the node A on a control
3	interconnect line from the node C to the node A.
1	3. An interconnect structure according to Claim 2 wherein:
2	every output port reachable from the node A is reachable from the node C;
3	further comprising:
4	an output port that is reachable from node A and is not reachable from the
5	node D.
1	4. An interconnect structure according to claim 1 wherein:
2	the line AD passes directly from the node A to the node D.
	20
	2 3 4 5 7 8 9 10 11 12 13 14 15 16 1 2 3 1 2 3 4 5

5

6

7

8

9

	l'.
1	5. An interconnect structure according to Claim 1 wherein:
2	the line AD passes through a node between the node A and the node D on the
3	line AD
1	6. An interconnect structure according to Claim 1 wherein:
2	when the condition at the node C is that no messages are moving from the
3	node C to the node D and implicit in a message M at the node A is a
4	condition that a path exists from the node D to a target destination of
5	the message M and the message M has a level of quality of service not
6	less than the threshold of quality of service for the node A to send a
7	message to the node D, then the node A routs a message from the node
8	A to the node D.
1	7. An interconnect structure according to Claim 1 wherein:
2	when the condition at the node C is that a low quality of service (LQOS)
3	message is sent from the node C to the node D and no other message is
4	sent from the node C to the node D then the node A can send a high
5	quality of service (HQOS) message to the node D so long as a HQOS
6	message M is present at the node A and a path exists through the node
7	A to an acceptable output port for the message M.
1	8. An interconnect structure according to Claim 1 wherein:
2	when the condition at the node C is that a HQOS message is sent from the
3	node C to the node D and no other message is sent from the node C to

when the condition at the node C is that a HQOS message is sent from the node C to the node D and no other message is sent from the node C to the node D, then the node A can send either a HQOS or LQOS message from the node A to the node D so long as a message M is present at the node A such that the quality of service of the message M

exceeds the minimum quality of service level for sending messages from the node A to the node D and a path exists from the node D to an

acceptable output port for the message M.

1	9. An interconnect structure according to Claim 1 wherein:
2	when the condition at the node C is that the node C sends a message on each
3	line from the node C to the node D, then the node A can send no
4	messages to the node D.
1	10. An interconnect structure according to Claim 1 wherein:
2	when the condition at the node C is that a HQOS message and a LQOS
3	message are sent from the node C to the node D, then the node C sends
4	the HQQS message on the data interconnect line CD ₁ and the LQOS
5	message on the data interconnect line CD ₂ .
1	11. An interconnect structure according to Claim 1 wherein:
2	when a message M is sent from the node A to the node D, then the message M
3	is selected from the message set R containing each message at the node
4	A that can reach the target of the message M through the node D.
1	12. An interconnect structure according to Claim 11 wherein:
2	no message in the message set R has a higher level of QOS than the message
3	M. \
1	13. An interconnect structure according to Claim 12 wherein:
2	a message in the message set R with the same level of QOS as the message M
3	is not sent to the node D based on information from the node A.
1	14. An interconnect structure according to Claim 12 wherein:
2	the message selecting means selects a message at the node A from the message
3	set R for sending to the node D based on the level of QOS and the node
4	last visited prior to arrival at the node A of the messages in the
5	message set R.
1	15. A communication interconnect structure comprising:
2	a plurality of nodes including distinct nodes A, C, and D;

	1
3	a plurality of interconnect lines coupling the nodes, the node D having one or
4	more message input interconnect lines coupled to the node A and one
5	dr more message interconnect lines coupled to the node C; and
6	a logic that enforces priority relationship rules, the priority relationship rules
7	induding:
8	rules governing the sending of messages from the nodes A and C to the
9	node D so that for a message MA arriving at node A and a
10	message MC arriving at node C, the message MC is not
11	blocked from traveling to node D by the message MA; and
12	rules governing the sending of messages from the node A to the node D
13	depending at least in part on quality of service levels of
14	messages at node A.
1	16. A communication interconnect structure according to claim 15 wherein:
2	the rules governing the sending of messages from the node A to the node D
3	depend at least in part on the number of messages that the node C
4	sends to the node b.
1	17. A communication interconnect structure according to claim 15 wherein:
2	the rules governing the sending of messages from the node A to the node D
3	depend at least in part on routing by the node D of message arriving at
4	a node subsequent to the node D.
1	18. A communication interconnect structure according to claim 17 wherein:
2	one or more messages N exist so that when the node C sends a message N to
3	the node D, then the node A is not allowed to send messages to the
4	node D.
1	19. A communication interconnect structure according to claim 15 wherein:
1	the rules governing the sending of messages from the node A to the node D
2	
3	depend at least in part on the quality of service levels of each of the
4	messages/that are sent from the node C to the node D.

	·\
1	20. A communication interconnect structure according to Claim 15 wherein:
2	the logic that determines the priority relationship associates a threshold value
3	$T_0(A,D)$ with the pair of nodes A and D; and
4	the rules specify that when the node C sends no messages to the node D then
5	the node A sends a message from the node A to the node D so long as a
6	message M at the node A has a quality of service level greater than
7	T ₀ (A,D) and a path exists from the node D to a target of the message
8	M.
1	21. A communication interconnect structure according to Claim 15 wherein:
2	the rules specify that when the node C sends no messages to the node D then
3	the node A sends a message from the node A to the node D so long as a
4	message M at is present at the node A and a path exists from the node

D to a target of the message M.

- 22. A communication interconnect structure according to Claim 15 wherein: the rules specify that when the node C sends one LQOS message to the node D and no other message to the node D, the node A sends one HQOS message to the node D so long as a HQOS message M is present at the node A and a path exists through the node D to a acceptable output port of the message M.
- 23. A communication interconnect structure according to Claim 15 wherein: the rules specify that when the node C sends one HQOS message to the node D and no other message to the node D, the node A sends a message to the node D so long as a message M exists at the node A and a path exists through the node D to an acceptable output port of the message M.
- 24. A communication interconnect structure according to Claim 15 wherein: the logic that determines the priority relationship associates a threshold value $T_0(A,D)$ with the pair of nodes A and D; and

1 2

the rules specify that when the node C sends one HQOS message to the node D, the node A sends a message to the node D so long as a message M exists at the node A such that a path exists through the node D to an acceptable output port of the message M and the quality of service level of the message M is not less than $T_0(A,D)$.

- 25. A communication interconnect structure according to Claim 15 wherein: the rules specify that when the node C sends one LQOS message to the node D and no other messages to the node D, a HQOS message is sent from the node A to the node D so long as a HQOS message M is available at the node A and the message M can reach an acceptable port of the message M through the node D.
- 26. A communication interconnect structure according to Claim 15 wherein: the rules specify that when the node C sends two messages to the node D, then no message is sent from the node A to the node D.
- 27. A communication interconnect structure according to Claim 15 wherein: the rules specify that when the node A sends two messages to the node D, then a message may be sent from the node A to the node D so long as logic that enforces priority relationship rules including logic governing the flow of data through the node A is informed that one or more of the messages traveling from the node A to the node D will be routed through the node D to a node X having the property that an output port that is reachable from the node D is not reachable from the node X.
- 28. A communication interconnect structure according to Claim 15 wherein the interconnect structure is an hierarchical interconnect structure with messages passing from a previous level to a subsequent level, the nodes C and D being on a level subsequent to the level of the node A, the interconnect structure further comprising:

6	a data interconnect line A1 coupled to the node A for receiving high quality of
7	service data at the node A from a source on the same level as the node
8	\mathbf{A}
9	a data interconnect line A2 coupled to the node A for receiving low quality of
10	service data at the node A from a source on the same level as the node
11	A; \
12	a data interconnect line A3 coupled to the node A for receiving data at the node
13	A from a source on a previous level to level of the node A; and
14	a logic associated with the node A that selects messages for transmission to the
15	node D from a message set arriving at the node A for sending from the
16	node A to the node D when the condition at the node C permits a
17	message to be sent to the node D from the node A.
1	29. A communication interconnect structure according to Claim 28 wherein:
2	the logic associated with the node A selects a HQOS message arriving at the
3	node A on the data interconnect line A ₁ over any other messages in the
4	message set.
1	
1	30. A communication interconnect structure according to Claim 28 wherein:
2	the logic associated with the node A selects a HQOS message arriving at the
3	node A on the data interconnect line A ₂ in the absence of a HQOS
4	message arriving at the node A on the data interconnect line A_1 .
1	31. A communication interconnect structure according to Claim 28 wherein:
2	the logic associated with the node A selects a HQOS message arriving at the
3	node A on the data interconnect line A ₃ in the absence of a HQOS
4	message arriving at the node A on the data interconnect line A ₁ or on
5	the data interconnect line A_2 .
1	32. A communication interconnect structure according to Claim 28 wherein:
2	the logic associated with the node A selects a LQOS message arriving at the
3	node A on the data interconnect line A2 in the absence of a HQOS
4	message arriving at the node A.

1	33. A communication interconnect structure according to Claim 28 wherein:
2	the logic associated with the node A selects a LQOS message arriving at the
3	node A on the data interconnect line A ₃ in the absence of a HQOS
4	message arriving at the node A or a LQOS message arriving at the
5	node A on the data interconnect line A ₂ .
1	34. A communication interconnect structure according to Claim 28 further
2	comprising:
3	a data interconnect line A ₄ coupled to the node A for receiving data at the node
4	A from a source on a previous level to level of the node A.
1	35. A communication interconnect structure according to Claim 34 wherein:
2	the logic associated with the node A selects a HQOS message arriving at the
3	node A on the data interconnect line A ₄ in the absence of a HQOS
4	message arriving at the node A on the data interconnect line A ₁ , the
5	data interconnect line A_2 , or the data interconnect line A_3 .
1	36. A communication interconnect structure according to Claim 34 wherein:
2	the logic associated with the node A selects a LQOS message arriving at the
3	node A on the data interconnect line A ₄ in the absence of a HQOS
4	message arriving at the node A or a LQOS message arriving at the
5	node A on the data interconnect line A2 or on the data interconnect line
6	A_3 .
1	37. An interconnect apparatus, comprising:
2	a plurality of nodes; and
3	a plurality of interconnect lines selectively coupling the nodes in a hierarchical
4	multiple level structure with the level\of a node being determined
5	entirely by the position of the node in the structure in which data
6	moves unilaterally from a source level to a destination level or laterally
7	along a level of the multiple level structure, a plurality of data
8	messages including high quality-of-service (HQOS) messages and low

tty. Dkt.: M-9051 US

9	quality-of-service (LQOS) messages being transmitted through the
10	multiple level structure from a source node to a designated destination
11	node, a level of the multiple levels including:
12	one or more groups of nodes, the data messages being transmitted to a
13	group of the one or more groups of nodes on a path to a target,
14	a group of the one or more groups including:
15	a plurality of nodes, a single data message being transmitted to
16	a node N of the plurality of nodes of a group unilaterally
17	toward the destination level if the node is not blocked
18	and otherwise one or more data messages being
19	transmitted laterally if the node is blocked, the data
20	messages being transmitted based at least partly on
21	quality of service of the messages.
1	38. A network communicating messages in a sequence of discrete time steps,
2	the network comprising:
3	a plurality of nodes, the nodes including communication devices that receive
4	messages and send messages, the messages including high quality-of-
5	service (HQOS) messages and low quality-of-service (LQOS)
6	messages; and
7	a plurality of interconnect lines L interconnecting communication devices at
8	the plurality of nodes, a node N of the plurality of nodes including:
9	a connection to one or more interconnect lines L _{UN} capable of
10	transmitting a plurality of messages from a device U to the node
11	N;
12	a connection to an interconnect line L _{VN} for transmitting a message
13	from a device V to the node N;
14	the network having a precedence relationship $P_N(U,V)$ relating to the node N
15	and the devices U and V such that the device U has precedence over
16	the device V in sending a message to the node N so that for one or
17	more messages M _U at the device U that are directed to the node N via
18	the interconnect lines L_{UN} at a time step t and a message M_V at the
19	device V that is directed to the node N via the interconnect line L _{VN}

3

20	also at a time step t, the one more messages M _U are successfully sent to
21	the node N and the node V uses a control signal to decide where to
22	send the message M_V , the precedence relationship $P_N(U,V)$ being
23	determined at least partly by quality of service of the messages.
1	39. A network comprising:
2	a plurality of nodes N; and
3	a plurality of interconnect lines L connecting the plurality of nodes N in a
4	predetermined pattern, the interconnect lines carrying messages M and
5	control signals C, the messages including high quality-of-service
6	(HQOS) messages and low quality-of-service (LQOS) messages, the
7	messages M and control signals C being received by a node of the
8	plurality of nodes at a discrete time step t and the messages M being
9	moved to subsequent nodes of the plurality of nodes in an immediately
10	subsequent discrete time step t+1, the plurality of interconnect lines L
11	connecting the plurality of nodes N to include:
12	a node A having a message input interconnection for receiving a
13	message M _A , a control input interconnection for receiving a
14	control signal $\dot{q}_{\!\scriptscriptstyle A}$, a direct message output interconnection to a
15	node D, a plurality of direct message output interconnections to
16	a node E, a direct control output interconnection to a device G,
17	and a control logic for determining whether the message MA is
18	sent to the node D or the node E based on:
19	(1) the control signal ϕ_A ;
20	(2) a location of the node A within the plurality of interconnect
21	lines L; and
22	(3) a routing information contained in the message M _A , the
23	routing information including an indication of quality of
24	service.
1	40. A network canable of carrying a plurality of messages M concurrently, the

messages including high quality-of-service (HQOS) messages and low quality-of-

service (LQOS) messages, the network comprising:

a pluranty of output ports 1,
a plurality of nodes N, the individual nodes N including a plurality of direct
message input interconnections and a plurality of direct message output
interconnections, the individual nodes N for passing messages M to
predetermined output ports of the plurality of output ports P, the
predetermined output ports P being designated by the messages M; and
a plurality of interconnect lines in an interconnect structure selectively
coupling the nodes in a hierarchical multiple level structure arranged to
include a plurality of J+1 levels in an hierarchy of levels arranged from
a lowest destination level L ₀ to a highest level L _J which is farthest from
the lowest destination level L ₀ , the output ports P being connected to
nodes at the lowest destination level L ₀ , the level of a node being
determined entirely by the position of the node in the structure,
the network including a node A of the plurality of nodes N, a control signal
operating to limit the number of messages that are allowed to be sent to
the node A to eliminate contention for the predetermined output ports
of the node A so that the messages M are sent through the direct
message output connections of the node A to nodes H that are a level L
no higher than the level of the node A, the nodes H being on a path to
the designated predetermined output ports P of the messages M, the
control signal being determined at least partly according to message
quality of service.
41. An interconnect apparatus, comprising:
a plurality of nodes; and
a plurality of interconnect lines in an interconnect structure selectively
coupling the nodes in a hierarchical multiple level structure arranged to
include:
a plurality of J+1 levels with J an integer greater than 0 in an hierarchy
of levels arranged from a lowest destination level L_0 to a
highest level L ₁ with the level of a node being determined

entirely by the position of the node in the structure, the

interconnect structure transmitting a plurality of multiple-bit

messages entering the interconnect structure unsorted through a
plurality of input ports, individual messages M of the plurality
of messages being self-routing and including high quality-of-
service (HQOS) messages and low quality-of-service (LQOS)
messages, the individual messages M moving in a plurality of
ways including three ways which are sufficient for the message
M to exit the interconnect structure through an output port
designated by the message M, movement of the message M
being determined by quality of service of the message M, the
three ways being.
(1) the message Menters a node in the interconnect structure
from a devide external to the interconnect structure, the
message M designating one or more designated output
ports;
(2) the message M moves through a node in the interconnect
structure to a designated output port, a time T being
associated with the node such that the message M
arriving at the node is selectively transmitted within the
time T of the message's arrival at the node; and
(3) the message M moves either: (i) through a node U on a level
Lk of the interconnect structure to a different node V on
the same level L _k in combination with another message,
if available, or (ii) moves through the node U on a level
Lk of the interconnect structure to a node W on a level
L_i nearer in the hierarchy to the destination level L_0 than
the level Lk, a time TU being associated with the node U
such that the message M arriving at the node U is
selectively transmitted within the time T _U of the
message M arrival at the node U.
42. An interconnect structure comprising:
a plurality of nodes; and

3	a plurality of interconnect lines in an interconnect structure selectively
4	coupling the nodes in a structure, the interconnect structure
5	transmitting a plurality of multiple-bit messages entering the
6	interconnect structure unsorted through a plurality of input ports, an
7	individual message M of the plurality of messages being self-routing,
8	the interconnect structure including:
9	a node E having a first data input interconnection from a node A and a
10	second data input interconnection from a node F distinct from
11	the node A; and
12	a control interconnection between the node A and node F for carrying a
13	control signal to resolve contention for sending messages to the
14	node E, the control signal resolving contention at least partly or
15	the basis of quality of service.
1	43. A method of moving messages through an interconnect structure
2	comprising:
3	providing:
4	a plurality of nodes interconnected in a hierarchy including distinct
5	nodes A, B, C, and D, the nodes A and B being on a level in the
6	hierarchy and the nodes C and D being on a next level in the
7	hierarchy;
8	data interconnect lines B and B ₂ coupled from the node A to the node
9	B for sending data from the node A to the node B;
10	a data interconnect line D ₁ coupled from the node C to the node D for
11	sending data from the node C to the node D;
12	a data interconnect line D ₂ coupled from the node C to the node D for
13	sending data from the node C to the node D;
14	a data interconnect line D ₃ coupled from the node A to the node D for
15	sending data from the node A to the node D; and
16	a control interconnect line S coupled from the node C to the node A for
17	sending a control signal from the node C to the node A;
18	detecting a condition at the node C;

19	sending a control signal CS on the line S from the node C to the node A, the
20	control signal being determined by the condition at the node C; and
21	sending a message M arriving at the node A to the node B or the node D on a
22	data interconnect line selected from among the data interconnect lines
23	B_1 , B_2 , and D_3 depending at least partly on the control signal CS.
1	44. A method according to Claim 43 further comprising:
2	sending the message M from the node A to the node D when the condition at
3	the node C is that no messages are moving from the node C to the node
4	D and a path exists from the node D to the target destination of the
5	message M.
1	45. A method according to Claim 43 further comprising:
2	when the condition at the node C is that a low quality of service (LQOS)
3	message M_{LQOS} arrives at the node C with no high quality of service
4	(HQOS) message, sending the message M _{LQOS} from the node C to the
5	node D on the line D2 for carrying low quality of service messages and
6	sending the control signal CS on the control interconnect line S to
7	indicate the condition,
8	in response to the control signal CS indicative of the condition, the node A is
9	capable of sending a high quality of service (HQOS) message MHQOS
10	arriving at the node A to the node D on the line B3 but is not capable of
11	sending a LQOS message to the node D on the line B ₃ .
1	46. A method according to Claim 45 further comprising:
2	in response to the control signal CS indicative of the condition, the node A car
3	send a LQOS message arriving at the node A to the node B on the line
4	$\mathbf{B_2}$.
1	47. A method according to Claim 43 further comprising:
2	when the condition at the node C is that a high quality of service (HQOS)
3	message M _{HQOS} arrives at the node C with no low quality of service
4	(LQOS) message, sending the message M _{HQOS} from the node C to the

5	node D on the line D ₁ for carrying high quality of service messages and
6	sends the control signal CS on the control interconnect line S to
7	indicate the condition,
8	in response to the control signal CS indicative of the condition, the node A is
9	capable of sending either a high quality of service (HQOS) message or
10	a low quality of service (LQOS) message arriving at the node A to the
11	node D on the line B_3 .
1	48. A method according to Claim 43 further comprising:
2	when the condition at the node C is that a high quality of service (HQOS)
3	message M_{HQOS} and a low quality of service (LQOS) message M_{LQOS}
4	simultaneously arrive at the node C, sending the message M _{HQOS} from
5	the node C to the node D on the line D ₁ for carrying high quality of
6	service messages, sends the message M _{LQOS} to the node D on the line
7	C2 for carrying low quality of service messages, and sends the control
8	signal CS on the control interconnect line S to indicate the condition,
9	in response to the control signal CS indicative of the condition, the node A
10	sends neither a high quality of service (HQOS) message nor a low
11	quality of service (LQOS) message arriving at the node A to the node
12	D on the line B_3 .
1	49. A method according to Claim 48 further comprising:
2	in response to the control signal CS indicative of the condition, the node A can
3	send a HQOS message and/or a LQOS message arriving at the node A
4	to the node B.
1	50. A method according to Claim 43 further comprising:
2	selecting the message M from among a message set R including high quality
3	of service (HQOS) messages and low quality of service (LQOS)
4	messages, the messages having a header including quality of service
5	information and information specifying a target destination for
6	ultimately receiving the message.
	Y

-	51. Am interconnect structure for communicating data in packets, the
2	interconnect structure comprising:
3	a collection of nodes including distinct nodes A, B, C, and D;
4	a collection of interconnect lines selectively coupling the nodes of the
5	interconnect structure, and
6	a logic for routing packets through the interconnect structure so that:
7	the node A s capable of sending packets to the node B or the node D;
8	and \
9	for a packet PA arriving at the node A and a packet PC arriving at the
10	node C, the node C has routing priority over the node A to send
11	messages to the node D in which:
12 -	routing of the packet PA at the node A depends upon routing of
13	the packet PC at the node C, and
14	routing of the packet PC at the node C depends at least partly
15	on a quality of service of the packet PC.
1	52. An interconnect structure according to Claim 51 wherein:
2	routing of the packet PC at the node C does not depend on routing of the
3	packet PA at the node A;
4	the logic routes the packets depending at least in part on N quality of service
5	threshold values T _i (A,D) for routing data from the node A to the node
6	D, the number N being two or more, the threshold values $T_i(A,D)$
7	being increasing in value from $T_0(A,D)$ to $T_{N-1}(A,D)$;
8	the collection of interconnect lines including control signal lines for carrying
9	control signal information CS(0) to CS(N-1) corresponding to the
10	threshold values $T_0(A,D)$ to $T_{N-1}(A,D)$;
11	a plurality of nodes are capable of sending control signals CS(i) to the node A;
12	on receipt of control information CS(j) at the node A, j being between 0 and
13	N-1, if a packet PA is present at the node A, a path exists through the
14	node D to an acceptable target of the packet PA, and the level of QOS
15	for the node A is at least T _j (A,D), then the node A will send a packet to
16	the node D.

1		53. An interconnect structure according to Claim 52 wherein:
2 .		the logic routes the packets depending at least in part on N quality of service
3		threshold values T _i (A,D) for routing data from the node A to the node
4		D including the threshold values $T_0(A,D)$ and $T_1(A,D)$;
5		the collection of interconnect lines including control signal lines for carrying
6		control signal information CSI(i) corresponding to the threshold values
7		T _i (A,D) including the control signal information CSI ₀ (A,D) and
8		CS ₁ (A,D); and
9	٠.	in the presence of control signal information CS _N (A,D), if a packet PA exists
10		at the node A, a path exists through the node D to an acceptable output
11		port of the packet PA, and the level of QOS for the packet PA is at
12	•	least T _N (A,D), then the node A sends a packet to the node D.
1		54. An interconnect structure according to Claim 52 wherein:
2		the control signal information CS(i) sent by the plurality of control signal
3		sending nodes depends at least partially upon the routing of messages
4		through the node C.
1		55. An interconnect structure according to Claim 52 wherein:
2		the control signal information CS(i) sent by the plurality of control signal
3		sending nodes depends at least partially upon the future routing of
4		messages through the node D
1	4	56. An interconnect structure comprising:
2		a plurality of nodes including the distinct nodes A, B, C, and D;
3		a collection of lines selectively coupling the nodes of the interconnect
4		structure, including one or more data carrying lines allowing the node
5		A to send messages to the node B, one or more data carrying lines
6		allowing the node A to send data to the node D, and one or more data
7		carrying lines allowing for the node C to send data to the node D; and
8		a logic for routing packets through the interconnect structure so that:

M-9051 US

a message M_C arriving at the node C is not blocked from being routed to the node D by a message M_A arriving at the node A; messages arriving at the node A are routed by a logic associated with the node A to other nodes in the interconnect structure; and the logic at node A uses quality of service information from the messages arriving at node A at least in part to route the messages arriving at node A to other nodes in the interconnect structure