K-Nearest Neighbour

MACHINE LEARNING

K-Nearest Neighbour

- The k-nearest neighbors (KNN) algorithm is a simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems.
- K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories.
- K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm.
- K-NN is a **non-parametric algorithm**, which means it does not make any assumption on underlying data.
- It is also called a **lazy learner algorithm** because it does not learn from the training set immediately instead it stores the dataset and at the time of classification, it performs an action on the dataset.
- KNN algorithm at the training phase just stores the dataset and when it gets new data, then it classifies that data into a category that is much similar to the new data.
- Also, It is known as:
 - ✓ Memory-Based Reasoning
 - ✓ Example-Based Reasoning
 - ✓ Instance-Based Learning
 - ✓ Case-Based Reasoning

✓ Lazy Learning

Different Learning Methods

- Eager Learning
 - Explicit description of target function on the whole training set
- •Instance-based Learning
 - Learning=storing all training instances
 - Classification=assigning target function to a new instance
 - Referred to as "Lazy" learning

K-NN Fundamentals

Requires three things

- The set of stored records.
- Distance Metric to compute distance between records.
- The value of k, the number of nearest neighbors to retrieve.

To classify an unknown record:

- Compute distance to other training records.
- Identify K- nearest neighbors.
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote).

10/26/2022 4 4

Different Learning Methods

Eager Learning

Instance-based Learning

Instance-based Learning

- K-Nearest Neighbor Algorithm
- Weighted Regression
- Case-based reasoning

K-Nearest Neighbor

Features

- All instances correspond to points in an ndimensional Euclidean space
- Classification is delayed till a new instance arrives
- Classification done by comparing feature vectors of the different points
- Target function may be discrete or real-valued

K-? Nearest Neighbor

1-NN 2-NN 3-NN

Select K

- If K is too small, sensitive to noise points.
- If K is too large, neighborhood may include points from other classes.
- Coming to your question, the value of k is non-parametric and a general rule of thumb in choosing the value of k is k = sqrt(N)/2, where N stands for the number of samples in your training dataset.
- Keep the value of k odd, so that there is no tie between choosing a class but that points to the fact that training data is highly correlated between classes and using a simple classification algorithm such as k-NN would result in poor classification performance.

1-Nearest Neighbor

3-Nearest Neighbor

K-Nearest Neighbor

- An arbitrary instance is represented by $(a_1(x), a_2(x), a_3(x), ..., a_n(x))$
 - a_i(x) denotes features
- Euclidean distance between two instances $d(x_i, x_j)$ =sqrt (sum for r=1 to n $(a_r(x_i) a_r(x_j))^2$)
- Continuous valued target function
 - mean value of the k nearest training examples

K-Nearest Neighbor...

K-Nearest Neighbor...

- By calculating the Euclidean distance we got the nearest neighbors, as three nearest neighbors in category A and two nearest neighbors in category B.
- As we can see the 3 nearest neighbors are from category A, hence this new data point must belong to category A.

Distance-Weighted NN Algorithm

- Assign weights to the neighbors based on their 'distance' from the query point
 - Weight 'may' be inverse square of the distances
- All training points may influence a particular instance
 - Shepard's method

- Curse of Dimensionality

- Curse of Dimensionality

- Curse of Dimensionality

- Efficient memory indexing
 - To retrieve the stored training examples (kdtree)

K-NN Model

K-NN Algorithm

- 1. Load the data
- 2. Initialize K to your chosen number of neighbors
- 3. For each example in the data
 - 1. Calculate the distance between the query example and the current example from the data.
 - 2. Add the distance and the index of the example to an ordered collection
- 4. Sort the ordered collection of distances and indices from smallest to largest (in ascending order) by the distances.
- 5. Pick the first K entries from the sorted collection.
- 6. Get the labels of the selected K entries
- 7. If regression, return the mean of the K labels
- 8. If classification, return the mode of the K labels

Advantages

- The algorithm is simple and easy to implement.
- There's no need to build a model, tune several parameters, or make additional assumptions.
- The algorithm is versatile. It can be used for classification, regression, and search.
- It is robust to the noisy training data
- It can be more effective if the training data is large.

Disadvantages

- The algorithm gets significantly slower as the number of examples and/or predictors/independent variables increase.
- •Always needs to determine the value of K which may be complex some time.
- The computation cost is high because of calculating the distance between the data points for all the training samples.

Example 1

Consider a dataset of health status as given in Table. What will be the status of a sample (180, 65).

S.No.	Height	Weight	Status	
1	160	65	Unhealthy	
2	170	52	Healthy	
3	175	55	Healthy	
4	178	58	Healthy	
5	180	55	Unhealthy	
6	181	51	Unhealthy	
7	183	52	Unhealthy	
8	185	66 Healthy		
9	190	70	Healthy	

Distance		
20		
16.40122		
11.18034		
7.28011		
10		
14.03567		
13.34166		
5.09902		
11.18034		

Euclidean Distance (*D*) =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Example 1...

Test Sample :(180, 65).

S.No.	Height	Weight	Status	Distance	
8	185	66	Healthy	5.09902	
4	178	58	Healthy	7.28011	
5	180	55	Unhealthy	10	
3	175	55	Healthy	11.18034	
9	190	70	Healthy	11.18034	
7	183	52	Unhealthy	13.34166	
6	181	51	Unhealthy	14.03567	
2	170	52	Healthy	16.40122	
1	160	65	Unhealthy	20	

K=1, Healthy; K=2, Healthy; K=3, Healthy

Example 2

• Sanction of loan amount

K-NN Classification

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ	8000
		<	
48	\$142,000	∳ ?	

Euclidean Distance (*D*) =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$