Graha-Pollak Theorem [Juknas Theorem. The edges of a complete graph book Ky on n vertices cannot be decomposed into ferrer than n-1 edge disjoint Complete bipartite graphs.

Proof [Trevbery, 1980]:

What is the smallest tre t such that

$$S(x) := \sum_{1 \leq i < j \leq n} x_i x_j$$

 $x = (x^1, x^2, x^3)$

$$S(n) = \underbrace{\frac{t}{s \in A_{k}} x_{i}}_{k=1} \cdot \underbrace{\left(\underbrace{\frac{1}{s \in A_{k}} x_{i}}_{s \in A_{k}}\right) \cdot \left(\underbrace{\frac{1}{s \in B_{k}} x_{i}}_{s \in A_{k}}\right)}_{s \in A_{k}}$$

ALE[t], ALE[n),

 X_{1} is $X_{1} = 0$ X_{2} $X_{3} = 0$ X_{4} $X_{5} = 0$

Then, we know that there is a non-trivial solution to this system of linear equations.

Evaluating Eqn (2) at the above non-trivial solution gives a contradiction.

So our assumption that $t \le n-2$ is false. This completes the proof.

(b) f:(v;) = 0, & 1 \(1 \) \(

Then, f, fz, -., fm are linearly

independent in the vector space

JE Jover F. ger of all fan of the.

Suppose fi, fz, , Im

inearly dependent in the vertor space
not all of them zones, such that
not all of them zones, such that
Evaluate both sides on 4
Evaluate both sides on 4
$LHJ = (d, f, + d_2f_1 + d_m f_m)(v_i)$
$= d_1 f_1(v_1) + d_2 f_2(v_1) + \dots + d_m f_m(v_1)$
= d,f,(v,) + D + 0 + 0
$= d, f, (v_i)$ — G
RH = ((1)
= 0 _ 6
Jo we have, from (D) (2) and (A)
d, f(v) = 0
Since fi(v) to this implies that
d,=0. — (i)

So egn (A) he cames d2f2+d3f3+ ---+ dmm = 0 Evaluar both sides on vz, $LHJ = d_2 f_L(v_2)$ Since fr(v2) 70 me get $d_{i} = 0.$ (ii) Continuing in this footier we can Those trad 人、一人って·三人かる。 Thus, f, fz, , , fm are L.I. in the vector space IF over IF.