4^a Tarefa de Métodos Numéricos I – Interpolação Numérica

Nome: Matrícula:

Ouestão 1:

A tabela abaixo relaciona o calor específico da água em função da temperatura, medida em uma experiência feita em laboratório. Pede-se para calcular o calor específico da água, a uma temperatura de 25 °C, usando para isso um polinômio de 3° grau e 5 casas decimais e:

- a) Solução por sistema linear, usando o método de Eliminação de Gauss.
- b) Solução por Lagrange, escolhendo a quantidade de valores adequados.
- c) Solução por Newton, escolhendo a quantidade de valores adequados.
- d) Diga qual o resultado mais correto, sabendo-se que o valor real é 0,99852.
- e) Implemente todos os métodos e verifique se seus resultados estão corretos.

Temperatura (°C)	Calor específico
20	0,99807
30	0,99826
45	0,99849
55	0,99919

Ouestão 2:

Usando-se a mesma descrição do problema anterior e a mesma tabela para a temperatura e o calor específico, e considerando-se um polinômio de 2º grau e 5 casas decimais, pede-se:

- a) Calcule a temperatura para um calor específico de 0,99835 por Lagrange.
- b) Calcule a temperatura para um calor específico de 0,99835 por Newton.
- c) Ache o erro absoluto entre as soluções para os dois métodos realizados.
- d) Ache o erro relativo em relação a Lagrange e depois em relação a Newton.
- e) Implemente todos os métodos e verifique se seus resultados estão corretos.

Ouestão 3:

Um carro percorreu 160 km em uma rodovia levando 2 horas e 20 minutos nesse percurso. A tabela abaixo mostra o tempo gasto e a distância percorrida em alguns pontos do trajeto. Nessa situação e considerando-se um polinômio quadrático e 4 casas decimais, pede-se:

- a) Ache a distância percorrida na metade da viagem, usando o método de Lagrange.
- b) Se a 60 minutos do fim da viagem o carro foi abastecido com 8 litros de combustível que foi usado no restante da viagem, calcule o rendimento do carro (km/l) nesse trecho.
- c) Implemente todos os métodos e verifique se seus resultados estão corretos.

Tempo	0	10	30	60	90	120	140
Distância	0	8	27	58	100	140	160