INFO90002 Tutorial – Week 11

(Tutorial: Data warehousing)

Objectives:

This tutorial will cover:

- I. Understand the fundamentals of dimensional modelling 20 mins
- II. Design a dimensional model using Kimball's four-step design process 25 mins
- III. Discuss the impact of grain on fact tables 10 mins

Key Concepts:

- Data warehouse
- Business events
- Dimensions, dimension tables and hierarchies
- Facts, fact tables and granularity
- Dimensional modelling the star schema

Exercise:

1. Designing a dimensional model

Wimmera Wines is a large company that takes deliveries of grapes from wine growers, produces and bottles wine, and sells those bottles to retailers and restaurants. They produce many different types of wine at a range of price points, from cheap cask wine to top-of-the-range vintage bottles.

Wimmera Wines' day-to-day OLTP database uses the following ER model:

Continued over page

The company is aiming to increase their product sales by 20% in comparison to the last 3 years. To help the business achieve their aim, you have been hired to design a data warehouse that can help business managers analyse data related to the sales theme.

The company is keen to understand <u>all the aspects</u> of their business that c<u>ontribute to strong sales</u>. For example, two business measures that have been mentioned are "total number of units of each product sold" and "revenue generated by each employee per year".

- a. As a class, brainstorm some more business measures that Wimmera Wines managers might need if they are to achieve their aim.
- b. Use <u>Kimball's four-step dimensional design process</u> to design a dimensional model for Wimmera Wines' product sales subject area.
 - i. Select and explain the business process.
 - ii. Declare the grain and justify your choice.
 - iii. Identify and explain the dimensions.
 - iv. Identify and explain the facts.

Continued over page

2. Fact tables in practice

Consider the following fact table:

Suppose the following sales data has been extracted from the business's operational database:

SaleID	SaleDate	CustomerID	CustomerCity	ProductID	Price	Quantity
54	2003-12-13 14:13	788	Melbourne	9644	\$10.00	2
54	2003-12-13 14:13	788	Melbourne	8574	\$15.00	1
67	2003-12-13 15:05	903	Melbourne	9644	\$10.00	1
76	2003-12-13 17:26	322	Sydney	9644	\$5.00	4
77	2003-12-14 09:58	292	Melbourne	8229	\$15.00	2

- a. Starting from this source data, <u>how many rows will be inserted</u> into the fact table <u>if an hourly</u> grain is selected?
- b. How many rows will be inserted into the fact table if a daily grain is selected?
- c. <u>At which level of granularity</u> can we answer questions about <u>hourly sales</u>? At which level of granularity can we answer questions about <u>daily sales</u>?