Point Set Topology

Emmanuel Flores

October 21, 2024

Problem 1 Recall that \mathbb{R} with the standard topology is a Hausdorff space. A subset $S \subset \mathbb{R}$ is said to be sequentially compact provided that every sequence in S has a subsequence that converges to a point in S.

- 1. Prove that S is sequentially compact if and only if S is closed and bounded. (This is known as the Bolzano-Weierstrass Theorem).
- 2. Prove that if S is compact in the standard topology of \mathbb{R} , then S is closed and bounded, hence sequentially compact. (Note: This has now established the Heine-Borel Theorem on \mathbb{R} with the standard topology: Every closed bounded subset of \mathbb{R} is compact.)
- 3. Prove that if S is sequentially compact then it is compact in the standard topology of \mathbb{R} .

Problem 2 For two points $x = (x_k)_{k=1}^n$, $y = (y_k)_{k=1}^n \in \mathbb{R}$, consider the following three functions:

- 1. Verify that each of these functions defines a metric on \mathbb{R}^n .
- 2. Prove that the three distances generate the same topology on \mathbb{R}^n .

Problem 3 A topological space (E, \mathcal{T}) is said to be locally compact provided that it is Hausdorff and every point in E has a least on compact neighborhood.

- 1. Prove that every compact space is locally compact.
- 2. Prove that E equipped with the discrete topology is locally compact.
- 3. Every closed subspace of a locally compact space is locally compact.

Problem 4 Let d, d' be two metrics on a set E, and let $\psi:[0,\infty][0,\infty]$ be an increasing function whose derivative $\psi:[0,\infty)[0,\infty]$ is also increasing with $\psi(0)=\psi'(0)=0$. Suppose that for all $x,y\in E$

$$d'(x,y) \le \varphi(d(x,y))$$
 and $d(x,y) \le \varphi'(d'(x,y))$

Prove that these two distances generate the same topology on E.

Problem 5 Let (A_n) be a decreasing sequence of subsets of R, each of which is a finite union of pairwise disjoint closed intervals. We also assume that each of the intervals making up A_n contains exactly two of the intervals which make up A_{n+1} , and that the diameter of these intervals tends to 0 with 1/n. Show that the set $A = \bigcap_n A_n$ is a compact set without any isolated points.