

WEB DEVELOPER FULL STACK DEVELOPMENT

#6 - Tipologie di input e algoritmi di ordinamento

Valutare gli algoritmi in base all'input

In alcuni casi, gli algoritmi si comportano diversamente a seconda delle caratteristiche dell'input (come è organizzato l'input).

Conoscere in anticipo tali caratteristiche permette di scegliere il miglior algoritmo per una particolare situazione.

Tipologia di analisi

Analisi del caso pessimo (la più importante)

- Il tempo di esecuzione nel caso peggiore è un limite superiore al tempo di esecuzione per qualsiasi input
- Per alcuni algoritmi, il caso peggiore si verifica molto spesso (es.: ricerca di dati non presenti in un database)

Analisi del caso ottimo

• Può avere senso se si hanno informazioni particolari sull'input

Analisi del caso medio

- Difficile in alcuni casi: cosa si intende per "medio"?
- Algoritmi probabilistici (che non ci interessano)

Definizioni di base

Un algoritmo di ordinamento è un algoritmo che:

prende in input una sequenza $A = a_1, a_2, \ldots, a_n$ di n valori produce in output una sequenza $B = b_1, b_2, \ldots, b_n$ che sia una permutazione di A e tale per cui $b_1 \le b_2 \le \ldots \le b_n$.

Ce ne sono diversi: semplici, complicati, ricorsivi, iterativi, basati su confronti o meno, che usano strutture di appoggio o senza altri supporti oltre all'array (in-place).

E poi ci sono quelli brutti.

Name \$	Best +	Average +	Worst ♦	Memory +	Stable +
Quicksort	n	$n \log n$	n^2	$\log n$	No
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes
In-place merge sort	_		$n \log^2 n$	1	Yes
Introsort	$n \log n$	$n \log n$	$n \log n$	$\log n$	No
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No
Insertion sort	n	n^2	n^2	1	Yes
Block sort	n	$n \log n$	$n \log n$	1	Yes
Quadsort	n	$n \log n$	$n \log n$	n	Yes
Timsort	n	$n \log n$	$n \log n$	n	Yes
Selection sort	n^2	n^2	n^2	1	No
Cubesort	n	$n \log n$	$n \log n$	n	Yes
Shell sort	$n \log n$	$n^{4/3}$	$n^{4/3}$	1	No
Bubble sort	n	n^2	n^2	1	Yes
Binary tree sort	$n \log n$	$n \log n$	$n\log n$ (balanced)	n	Yes
Cycle sort	n^2	n^2	n^2	1	No
Library sort	n	$n \log n$	n^2	n	Yes
Patience sorting	n	_	$n \log n$	n	No
Smoothsort	n	$n \log n$	$n \log n$	1	No
Strand sort	n	n^2	n^2	n	Yes
Tournament sort	$n \log n$	$n \log n$	$n \log n$	n ^[12]	No
Cocktail sort	n	n^2	n^2	1	Yes
Comb sort	$n \log n$	n^2	n^2	1	No
Gnome sort	n	n^2	n^2	1	Yes
UnShuffle Sort ^[13]	n	kn	kn	n	No
Franceschini's method[14]	_	$n \log n$	$n \log n$	1	Yes
Odd-even sort	n	n^2	n^2	1	Yes

Dobbiamo saperli tutti?

Però è importante conoscere gli approcci più noti e meglio performanti; inoltre, in caso di necessità, meglio saperne almeno uno di quelli più intuitivi.

Proprietà degli algoritmi di ordinamento

- Stabilità: un algoritmo di ordinamento è stabile se preserva l'ordine iniziale tra due elementi con la stessa chiave
 - Ad esempio: ordinamento per nome e per cognome
- Ordinamento sul posto (o in place): si tratta di un algoritmo che non crea copie dell'input per generare la sequenza ordinata
- Adattatività: un algoritmo di ordinamento è adattativo se trae vantaggio dagli elementi già ordinati

Partiamo con un gioco

Immaginate che ad ognuno di voi siano state date 5 carte.

L'obiettivo è rimetterle in ordine dopo averle mescolate, senza però muovere più di una carta alla volta.

Lo sforzo che vi chiedo di compiere è quello di analizzare il vostro ragionamento, cercando di capire con quale criterio avete riordinato le carte.

Gli algoritmi di ordinamento più intuitivi

Tra i tanti, gli algoritmi che andremo ad analizzare sono:

- Selection Sort
- Insertion Sort
- MergeSort
- QuickSort

Selection Sort

L'algoritmo seleziona di volta in volta il numero minore nella sequenza ancora da ordinare e lo sposta nella sequenza ordinata.

La sequenza viene quindi divisa in due parti: la sottosequenza ordinata, che occupa le prime posizioni dell'array, e la sottosequenza da ordinare, che costituisce la parte restante dell'array su cui ri-applicare l'algoritmo.

Selection Sort in un'immagine

Ma prima...

Dobbiamo velocemente aggiustare la funzione min()

```
egin{aligned} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

```
int min(ITEM[] A, int i, int n)

% Posizione del minimo parziale
int min = i
for j = i + 1 to n do

if A[j] < A[min] then

% Nuovo minimo parziale
min = j

return min
```


Selection Sort, lo pseudocodice

SelectionSort(ITEM[] A, int n)

```
for i = 1 to n - 1 do
\begin{array}{c} \text{int } min = \min(A, i, n) \\ A[i] \leftrightarrow A[min] \end{array}
```

int min(ITEM[] A, int i, int n)

```
% Posizione del minimo parziale int min = i for j = i + 1 to n do

| if A[j] < A[min] then
| % Nuovo minimo parziale min = j
```

return min

Qual è la complessità:

- Nel caso pessimo?
- Nel caso medio?
- Nel caso ottimo?

Selection Sort, lo pseudocodice

SelectionSort(ITEM[] A, int n)

$$\begin{array}{c|c} \mathbf{for} \ i = 1 \ \mathbf{to} \ n - 1 \ \mathbf{do} \\ & \mathbf{int} \ min = \min(A, i, n) \\ & A[i] \leftrightarrow A[min] \end{array}$$

int min(ITEM[] A, int i, int n)

% Posizione del minimo parziale int min = i for j = i + 1 to n do | if A[j] < A[min] then | % Nuovo minimo parziale min = j

return min

Qual è la complessità:

Alla prima chiamata eseguo n confronti, alla seconda n-1, alla terza n-2, ecc.

$$\sum_{i=2}^{n} i = \left(\sum_{i=2}^{n} i\right) - 1$$
$$= \frac{n(n+1)}{2} - 1 = O(n^2)$$

Analisi dei casi

In questo caso specifico non esiste un caso "ottimo", "pessimo" o "medio", perché in qualunque caso l'algoritmo scorre sempre tutta la sequenza $O(n^2)$ volte.

Provate a testare l'algoritmo con questi input:

- 1,2,3,4,5,6,7,8
- 8,7,6,5,4,3,2,1
- 5,4,7,2,1,8,3,6

Il comportamento è identico.

Insertion Sort

E' un algoritmo efficiente per ordinare piccoli insiemi di elementi e si basa sul principio di ordinamento di una "mano" di carte da gioco: ogni carta viene presa dalla posizione in cui si trova per essere spostata dove sarà maggiore di tutte le carte precedenti (o all'inizio).

Insertion Sort in un'immagine

insertionSort(ITEM[] A, int n)

for i = 2 to n do

ITEM temp = A[i]int j = iwhile j > 1 and A[j - 1] > temp do A[j] = A[j - 1] j = j - 1 L'idea è che, per ogni elemento, memorizzo il valore A[i] e, se necessario, "sposto" tutti valori maggiori di A[i] verso destra, creando uno spazio per inserire A[i] nella corretta posizione.

insertionSort(ITEM[] A, int n)

for i = 2 to n do

$$\begin{aligned} &\text{ITEM } temp = A[i] \\ &\textbf{int } j = i \\ &\textbf{while } j > 1 \textbf{ and } A[j-1] > temp \textbf{ do} \\ & \quad \left\lfloor \begin{array}{c} A[j] = A[j-1] \\ j = j-1 \end{array} \right. \end{aligned}$$

Qual è la complessità:

- Nel caso ottimo?
- Nel caso pessimo?
- Nel caso medio?


```
insertionSort(ITEM[] A, int n)
```

for i = 2 to n do

$$\begin{aligned} &\text{ITEM } temp = A[i] \\ &\textbf{int } j = i \\ &\textbf{while } j > 1 \textbf{ and } A[j-1] > temp \textbf{ do} \\ & \quad \left\lfloor \begin{array}{c} A[j] = A[j-1] \\ j = j-1 \end{array} \right. \end{aligned}$$

Qual è la complessità:

• Nel caso ottimo?

Nel caso ottimo (quando l'array è già ordinato) il ciclo while non viene mai eseguito (A [j-1] >temp è sempre falsa), quindi devo solo scorrere gli elementi.

$$T(n) = 3c * n = O(n)$$

insertionSort(ITEM[] A, int n)

for i = 2 to n do

$$\begin{aligned} &\text{ITEM } temp = A[i] \\ &\textbf{int } j = i \\ &\textbf{while } j > 1 \textbf{ and } A[j-1] > temp \textbf{ do} \\ & \quad \left\lfloor \begin{array}{c} A[j] = A[j-1] \\ j = j-1 \end{array} \right. \end{aligned}$$

Qual è la complessità:

• Nel caso pessimo?

Nel caso pessimo (quando l'array è ordinato in ordine inverso) il ciclo while viene eseguito prima (n-1) volte, poi (n-2), ecc.

$$T(n) = O(n^2)$$


```
insertionSort(ITEM[] A, int n)
```

for i = 2 to n do

$$\begin{aligned} &\text{ITEM } temp = A[i] \\ &\textbf{int } j = i \\ &\textbf{while } j > 1 \textbf{ and } A[j-1] > temp \textbf{ do} \\ & \quad \left\lfloor \begin{array}{c} A[j] = A[j-1] \\ j = j-1 \end{array} \right. \\ & \quad A[j] = temp \end{aligned}$$

Qual è la complessità:

• Nel caso medio?

Nel caso medio, senza entrare nei dettagli della dimostrazione, ci saranno elementi che devo spostare da un estremo all'altro del vettore, quindi "in media".

$$T(n) = O(n^2)$$

Insertion VS Selection

Insertion sort, nel caso ottimo, si comporta meglio di Selection sort, che è $O(n^2)$ sempre.

Questo è vero anche quando l'input è "parzialmente ordinato", ad es. in una sequenza come [1,2,5, 4,6,7,8].

L'unico scambio da effettuare è quello tra 4 e 5, quindi Insertion sort sarà più rapido di Selection.

Nel caso pessimo, si comportano in modo uguale (dal punto di vista della complessità).

Esercizi

• Per il puro spirito di esercizio, implementateli!

