Name of Activity: A spacecraft voyage, part 1: Spacecraft and Earth

Approximate Duration: 45 minutes

Relevant Section of Text: 3.6

Write on Board

• Review previous programs (Motion part 2 & Gravitational Force Calculation).

- Read and Follow Instructions!
- Do not run the program until directed to do so in the instructions.

Checking Questions/Things to look for

- Students must make a prediction of what they would expect to see when they run the program before doing so.
- If students produce an incorrect prediction, ask students to justify why their prediction was incorrect, or why the visual output produced the observed behavior of the spacecraft.
- Encourage groups to use earlier programs for reference.
- Emphasize the importance of initial conditions and time steps.
- Make sure they only update the position and axis of the arrow inside the while loop and NOT the whole arrow.
- Ask them the questions from the handout and emphasize the difference between momentum and change in momentum.
 - Why does spacecraft move faster when closer to the Earth?

Main Points:

- * **NOT** because the force is bigger (this implies the mistaken idea that p is proportional to F rather than Δp is proportional to F).
- * On the way toward the Earth there is a parallel component of the force in the direction of motion, which increases the magnitude of momentum.
- * It goes slower away from the Earth because on the way away from the Earth there is a parallel component of the force opposite to the motion, which decreases the magnitude of momentum.
- * Use example of spring-mass system to make the contrast: the net force is greatest when the speed is zero, and the net force is smallest when the mass has its maximum speed.
- What is the direction of momentum?

Main Point: Along the direction of motion $(\Delta \vec{p})$ is in the direction of the net force)

• Final program should have an elliptical orbit and an arrow to represent the momentum.

Grading

- Program is running and looks reasonable
- Proper initial conditions
- Correct physics
 - Gravitational force calculated correctly
 - Position update and momentum principle used correctly
 - Arrow points in the correct direction
 - Arrow has correct magnitude (should represent momentum) and changes appropriately
- Reasonable scale factor
- Extra credit for force arrow

General Grading Key for VPython

- 100% of total points for a program that runs correctly and exhibits all the required features.
- 0% for a program that does not run (i.e. produces an error message and quits).
- For partially correct or partially complete programs, give:
 - 90\% for a program with no physics errors, but one missing feature
 - -80% for a program with no physics errors, but several missing features
 - 50-70\% for a program with some physics errors
 - 40% for a rudimentary program that is not complete