Problems

- 1. Charged kaon decay: A charged kaon K^+ is produced in a collision at FRIB. The K^+ is an unstable particle, which decays after some time, see e.g. the particle listings of the particle data group, https://pdg.lbl.gov.
 - (a) (10 pts) At a speed of 0.99c, how far will the K^+ travel on average before it decays?
- 2. Alarm clock: At exactly 6:00 am Eastern Standard Time your alarm clock goes off. At a time $\Delta t = 10^{-5}$ s later the alarm clock of a University of Michigan graduate student goes off, exactly 100 km away.
 - (a) (10 pts) Find a Lorentz frame in which the UM student's alarm clock goes off before yours.
 - (b) (10 pts) For each of the following cases, draw a Minkowski diagram (ct vs. x), where x is the distance from East Lansing, and denote two events in it.
 - (i) [A] your alarm clock goes off, [B] the UM alarm clock goes off at a time, which is later in any frame of reference.
 - (ii) [A] your alarm clock goes off, [B] the UM alarm clock goes off, such that it depends on the frame which one is first.
 - (c) (10 pts) What is the largest time-difference Δt for which it is possible to find a Lorentz frame that can swap the time-ordering of the alarms?
- 3. Colliding rockets: A person on Earth observes two rocket ships moving directly toward each other and colliding. At time t=0 in the Earth frame, the Earth observer determines that rocket A, travelling to the right at $v_A=0.8c$, is at point a and rocket B is at point b, travelling to the left at $v_B=0.6c$. They are separated by a distance $l=4.2\cdot 10^8$ m.
 - (a) (15 pts) How fast is rocket B approaching in A's frame? How fast is rocket A approaching in B's frame?
 - (b) (15 pts) How much time will elapse in A's frame from the time rocket A passes point a until collision? How much time will elapse in B's frame from the time rocket B passes point b until collision?
- 4. **General boost:** Given a four vector $x^{\mu} = (5, 4, 3, 2)$ m (with $x^{0} = ct$) in a frame F, consider how it is observed in a frame F' which moves with velocity $\vec{v}_{0} = (0.4, 0.5, 0.6)c$ with respect to F.
 - (a) (10 pts) Calculate the four vector x'^{μ} observed in the frame F'. You may just look up the necessary formula and use it without derivation, but please indicate your reference.

- (b) (10 pts) Determine the rapidity of the Lorentz boost from F to F'.
- (c) (10 pts) Is the four vector x^{μ} time-like, space-like or light-like respectively ? What about x'^{μ} ? Suppose $x^{\mu} = x_A^{\mu} x_B^{\mu}$ for two events A and B with four-vectors x_A^{μ} and x_B^{μ} , respectively (and the value for x^{μ} as before). Could there be a causal connection between the two events?