Algebraic Geometry Coursework 2

1. (a) Consider the objects $\max \operatorname{Spec}(\mathbb{C}[x])$, $\max \operatorname{Spec}(\mathbb{C}[x,1/x])$ and $\max \operatorname{Spec}(\mathbb{C}[x,1/x,y])$. They can be described as follows.

Proof. Noting that the maximal spectrum is given by the maximal ideals of the ring, we can see that

$$\begin{aligned} \max & \operatorname{Spec}(\mathbb{C}[x]) = \{(x-a) \mid a \in \mathbb{C}\}, \\ \max & \operatorname{Spec}(\mathbb{C}[x,1/x]) = \{(x-a,1/x-b) \mid a,b \in \mathbb{C}\}, \\ \max & \operatorname{Spec}(\mathbb{C}[x,1/x,y]) = \{(x-a,1/x-b,y-c) \mid a,b,c \in \mathbb{C}\}. \end{aligned}$$

Knowing our correspondence between the maximal spectrum and points in a variety, we can now instead describe the spectra as

$$\begin{split} \max & \operatorname{Spec}(\mathbb{C}[x]) = \mathbb{C}, \\ \max & \operatorname{Spec}(\mathbb{C}[x,1/x]) = \mathbb{C} \setminus \{0\} = \mathbb{C}^*, \text{ and} \\ \max & \operatorname{Spec}(\mathbb{C}[x,1/x,y]) = \mathbb{C}^* \times \mathbb{C}. \end{split}$$

(b) Consider the isomorphism $\varphi: \mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^1 \setminus \{0\}$ given by $a \mapsto 1/a$ and the pullback map between coordinate rings $\varphi^*: \mathbb{C}[x,1/x] \to \mathbb{C}[y,1/y]$. We have that $\varphi^*(1/x) = y$, $\varphi^*\left(2x^2 + \frac{2x^3 + 4x}{x^5}\right) = \frac{1}{y^2} + 2y^2 + 4y^4$ and $\varphi^*(2-x) = 2 - 1/y$.

Proof. We can explicitly compute each of these.

$$\varphi^*(1/x) = 1/\varphi(y) = y.$$

$$\varphi^* \left(2x^2 + \frac{2x^3 + 4x}{x^5} \right) = 2\varphi(y)^2 + \frac{2\varphi(y)^3 + 4\varphi(y)}{\varphi(y)^5}$$
$$= \frac{1}{y^2} + \frac{\frac{2}{y^3} + \frac{4}{y}}{\frac{1}{y^5}}$$
$$= \frac{1}{y^2} + 2y^2 + 4y^4.$$

$$\varphi^*(2-x) = 2 - \varphi(y) = 2 - 1/y.$$

- 2. Consider the affine algebraic hypersurface $V = \mathbb{V}(y ux) \subset \mathbb{A}^3$.
 - (a) The projection $\phi: \mathbb{A}^3 \to \mathbb{A}^2$ given by $\phi: (x, y, u) \mapsto (x, u)$ restricts to an isomorphism from V to \mathbb{A}^2 .

Proof. Clearly, ϕ is a morphism as each component is trivially a polynomial. Let $\psi(x,u)=(x,ux,u)$. We claim that this is an inverse to ϕ , and so is an isomorphism. Observe that $\phi(\psi(x,u))=\phi(x,ux,u)=(x,u)$ and $\psi(\phi(x,y,u))=\psi(x,u)=(x,ux,u)$. Noting that y-ux=0 and thus y=ux, we see that these are indeed mutually inverse and so isomorphisms.

(b) The projection $\phi: \mathbb{A}^3 \to \mathbb{A}^2$ given by $\phi: (x,y,u) \mapsto (x,y)$ does not restrict to an isomorphism from V to \mathbb{A}^2 .

Proof. First, we note that, clearly, ϕ is a morphism. However, we immediately see that it cannot restrict to an isomorphism as it does not have an inverse; we have that $\phi(x, y, u) = (x, ux)$ and so an inverse φ could not injectively map to V.

3. (a) Let $g \in \mathbb{C}[x,y]$ with homogenization $\tilde{g} \in \mathbb{C}[x,y,z]$. Then $\overline{\mathbb{V}(g)} = \mathbb{V}(\tilde{g})$.

Proof. Noting that $\mathbb{V}(g)$ is a closed affine algebraic variety, and that the homogenization of an ideal generated by a single element is the same as the ideal generated by the homogenization of that element, the result follows directly from Theorem 3.28 in the lecture notes.

(b) Consider the following 4 polynomials:

$$f_1(x,y) = x + y + 1$$

$$f_2(x,y) = x^2 + 6y^2 + 1$$

$$f_3(x,y) = x^2 + 3y + 1$$

$$f_4(x,y) = x^3 + 3xy^2 + 4.$$

For the points [1:0:0], [0:1:0] and [0:0:1], we have that the only cases where any of these points is contained in the projective closures of the given polynomials is that $[0:1:0] \in \overline{\mathbb{V}(f_3)}$ and $[0:1:0] \in \overline{\mathbb{V}(f_4)}$.

Proof. From the previous part, we know that $\overline{\mathbb{V}(f_i)} = \mathbb{V}(\tilde{f}_i)$ for each polynomial f_i . Thus, noting that

$$\tilde{f}_1(x, y, z) = x + y + z$$

$$\tilde{f}_2(x, y, z) = x^2 + 6y^2 + z^2$$

$$\tilde{f}_3(x, y, z) = x^2 + 3yz + z^2$$

$$\tilde{f}_4(x, y, z) = x^3 + 3xy^2 + 4z^3,$$

we can examine the varieties of each homogenization. To determine if each variety includes the provided points, we can, in a sense, "plug in" our values. Converting from homogenous coordinates to lines in \mathbb{C}^3 , we take our points now as the lines (t,0,0), (0,t,0) and (0,0,t) where $t \in \mathbb{C} \cup \{\infty\}$. Plugging in our values, we get the following results:

2

Jay Bates 2205824

$$\begin{array}{c|ccccc} & (t,0,0) & (0,t,0) & (0,0,t) \\ \hline \mathbb{V}(\tilde{f}_1) & t=0 & t=0 & t=0 \\ \mathbb{V}(\tilde{f}_2) & t^2=0 & 6t^2=0 & t^2=0 \\ \mathbb{V}(\tilde{f}_3) & t^2=0 & 0t=0 & t^2=0 \\ \mathbb{V}(\tilde{f}_4) & t^3=0 & 0t^2=0 & 4t^3=0 \\ \end{array}$$

We note that we haven't simplified the two highlighted terms. This is because, unlike every other variety, these equations are satisfied for all $t \in \mathbb{C} \cup \{\infty\}$, not just at t = 0. Thus, we can see that the entire line, and so the projective point [0:1:0] is included in these varieties, whereas none of the other points are included in any other variety. That is, $[0:1:0] \in \mathbb{V}(\tilde{f}_3)$ and $[0:1:0] \in \mathbb{V}(\tilde{f}_3)$ only.

- (c) We claim that a necessary and sufficient condition for $g \in \mathbb{C}[x,y]$ such that $\mathbb{V}(\tilde{g})$ does not pass through any of [1:0:0], [0:1:0] and [0:0:1] is that every term in g consists of either a constant term or of precisely one variable of degree equal to $\deg \tilde{g}$.
- 4. (a) The space \mathbb{P}^n is compact with respect to the quotient Euclidean topology from $\mathbb{A}^{n+1}\setminus\{0\}$.

Proof. We first note that, as already shown in previous coursework, any closed affine algebraic variety is compact, and thus $\mathbb{A}^{n+1} \setminus \{0\}$ is compact. It's a standard topological result that the quotient of a compact space is compact, and so, as \mathbb{P}^n is defined as the quotient space of the compact space $\mathbb{A}^{n+1} \setminus \{0\}$, it is compact.

(b) There is no projective closure of $\mathbb{V}(y - \sin(x))$.

Proof. This follows from Chow's Lemma. Assume \overline{V} is the projective closure of the variety $V = \mathbb{V}(y - \sin(x))$. We know, as $y = \sin x$ is analytic, \overline{V} is an analytic subvariety of \mathbb{P}^1 . By Chow's Lemma, we then conclude that \overline{V} is algebraic. However, as shown in Example 3.43, V, and thus its closure, cannot be algebraic, as this would contradict Bézout's Theorem. Thus, no such \overline{V} can exist.

5. (a) A line in \mathbb{P}^2 is a variety given by $ax + by + cz \in \mathbb{C}[x, y, z]$ for $a, b, c \in \mathbb{C}$. Two distinct lines intersect at exactly one point.

Proof. Let $\ell_1, \ell_2 \in \mathbb{P}^2$ be two lines given as

$$\ell_1 = \mathbb{V}(a_1x + b_1y + c_1z)$$

 $\ell_2 = \mathbb{V}(a_2x + b_2y + c_2z)$

for $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{C}$. At their point(s) of intersection, we know that $\ell_1 = \ell_2$, and so

$$\ell_1 = \ell_2$$

$$\implies a_1 x + b_1 y + c_1 z = a_2 x + b_2 y + c_2 z$$

$$\implies (a_1 - a_2) x + (b_1 - b_2) y + (c_1 - c_2) z = 0.$$

From here, let z=1 to find a point $[x:y:1]\in\mathbb{P}^2$ on the intersection between the two lines, as

$$\left[x:-\frac{(a_2-a_1)x+(c_2-c_1)}{b_2-b_1}:1\right].$$

3

Finally, by similarly letting y=1 and performing the same substitution, we see that ℓ_1 and ℓ_2 intersect at

$$\left[-\frac{c_2 - c_1 + b_2 - b_1}{a_2 - a_1} : 1 : 1 \right],$$

precisely one point in \mathbb{P}^2 .

- (b) Let $C_1, C_2 \subset \mathbb{A}^2$ be two closed affine algebraic curves.
 - i. We have the inclusion $\overline{C_1 \cap C_2} \subset \overline{C_1} \cap \overline{C_2}$.

Proof. Let $C_1 = \mathbb{V}(\{f_i\}), C_2 = \mathbb{V}(\{g_j\})$ for polynomials f_i, g_j and, for notational ease, let $I = (f_1, ..., f_n), J = (g_1, ..., g_m)$ be the ideals generated by these polynomials. By Theorem 3.28, we know that

$$\overline{C_1} = \mathbb{V}(\tilde{I}), \text{ and } \overline{C_2} = \mathbb{V}(\tilde{J}).$$

Now, observe that

$$\overline{C_1 \cap C_2} = \overline{\mathbb{V}(I) \cap \mathbb{V}(J)}$$
$$= \overline{\mathbb{V}(I \cap J)}$$
$$= \mathbb{V}(\widetilde{I \cap J})$$

Letting $a \in \overline{C_1 \cap C_2}$, we can see therefore there exists some $f \in I \cap J$ such that $\tilde{f}(a) = 0$, and thus $a \in \mathbb{V}(\tilde{I})$ and $a \in \mathbb{V}(\tilde{J})$. That is,

$$a \in \mathbb{V}(\tilde{I}) \cap \mathbb{V}(\tilde{J}) = \overline{C_1} \cap \overline{C_2}$$

and so $\overline{C_1 \cap C_2} \subseteq \overline{C_1} \cap \overline{C_2}$.

ii. The curves C_1, C_2 given by

$$C_1 = \mathbb{V}(y - x^2), \quad C_2 = \mathbb{V}(z - xy)$$

satisfy the strict inclusion

$$\overline{C_1 \cap C_2} \subset \overline{C_1} \cap \overline{C_2}.$$

Proof. We first note that $C = C_1 \cap C_2 = \mathbb{V}(y - x^2, z - xy)$ is the twisted cubic given in Examples 1.8.4, 2.41(a) and 3.34. Through homogenization, we can see that $\overline{C_1} = \mathbb{V}(wy - x^2)$ and $\overline{C_2} = \mathbb{V}(wz - xy)$. Finally, as demonstrated in Example 3.34, we then have that

$$\overline{C_1} \cap \overline{C_2} = \mathbb{V}(wy - x^2) \cap \mathbb{V}(wz - xy) = \overline{C} \cup \{[x:y:z:w] \in \mathbb{P}^3 \mid w = x = 0\} \supset \overline{C}.$$

As
$$\overline{C} = \overline{C_1 \cap C_2}$$
, our result holds.

6. (a) Let Y be a closed affine algebraic variety and $O \subseteq Y$ open. Then $\mathcal{O}_Y(O)$ is a \mathbb{C} -algebra.

4

Proof. We use the test given in Example 2.4 of the notes, where any ring containing \mathbb{C} as a subring is a \mathbb{C} -algebra. Thus, we proceed by verifying that $\mathbb{C} \subset \mathcal{O}_Y(V)$ and that $\mathcal{O}_Y(V)$ is indeed a ring.

First, let $f_1, f_2 \in \mathcal{O}_Y(V)$ be regular, and so there exists $g_1, g_2, h_1, h_2 \in \mathbb{C}[x_1, ..., x_n]$ such that

$$f_1(p) = \frac{g_1(p)}{h_1(p)}$$
, and $f_2(p) = \frac{g_2(p)}{h_2(p)}$

for all $p \in O$, with $h_1(p) \neq 0$ and $h_2(p) \neq 0$. Now, consider,

$$f_1(p) + f_2(p) = \frac{g_1(p)}{h_1(p)} + \frac{g_2(p)}{h_2(p)} \qquad f_1(p)f_2(p) = \frac{g_1(p)}{h_1(p)} \frac{g_2(p)}{h_2(p)}$$
$$= \frac{g_1(p)h_2(p) + g_2(p)h_1(p)}{h_1(p)h_2(p)} \qquad = \frac{g_1(p)g_2(p)}{h_1(p)h_2(p)}$$

and, knowing that $h_1(p) \neq 0$ and $h_2(p) \neq 0$, we have that $h_1(p)h_2(p) \neq 0$. Thus, $f_1 + f_2$ and f_1f_2 are both regular, and so $\mathcal{O}_Y(O)$ is a ring.

Finally, each $f: O \to C \in \mathcal{O}_Y(O)$ maps into \mathbb{C} , and the constant functions

$$(a,0,0,...,0) \mapsto a \in \mathbb{C}$$

are regular. Thus, identifying each of these constant functions with the complex constant it maps to, we can see that $\mathbb{C} \subset \mathcal{O}_Y(O)$ as a subring, and so our two conditions are met, allowing us to conclude that $\mathcal{O}_Y(O)$ is a \mathbb{C} -algebra.

(b) -