ESQUEMA PARA EL ANÁLISIS DE SOSTENIBILIDAD

PIEZAS DISEÑADAS E IMPRESAS EN 3D

TECNOLOGÍA 4º ESO - IES

INTRODUCCIÓN

Este documento proporciona un marco estructurado para analizar la sostenibilidad de tus diseños e impresiones 3D. La sostenibilidad es un aspecto fundamental en el desarrollo de productos y debe considerar aspectos ambientales, económicos y sociales.

Los proyectos de fabricación digital tienen un impacto en nuestro entorno, y es responsabilidad de los diseñadores e ingenieros evaluar y minimizar dicho impacto. Este análisis te ayudará a reflexionar sobre tus decisiones de diseño y a identificar oportunidades de mejora desde la perspectiva de la sostenibilidad.

1. INFORMACIÓN BÁSICA DEL PROYECTO

Nombre del proyecto	
Autor/es	
Fecha	
Función principal del objeto	
Material/es utilizado/s	

2. ANÁLISIS DEL CICLO DE VIDA

El ciclo de vida de un producto abarca desde la extracción de materias primas hasta su disposición final. Analiza cada fase para tu pieza impresa en 3D.

2.1 Extracción y producción de materias primas

Analiza el impacto de los materiales que has utilizado: ¿De dónde proceden? ¿Qué recursos naturales se utilizan en su fabricación? ¿Qué huella de carbono tienen?

Material	Origen	Impacto ambiental	Alternativas más sostenibles consideradas

2.2 Proceso de fabricación (impresión 3D)

Analiza el consumo energético, los residuos generados durante la impresión y las estrategias de optimización implementadas.

Aspecto	Medición/Estimación	Estrategias de optimización aplicadas
Tiempo de impresión		
Consumo energético		
Material de soporte		
Fallos/Reimpresiones		
Material desperdiciado		

2.3 Fase de uso

Analiza cómo el objeto será utilizado: durabilidad, mantenimiento, consumibles necesarios, etc.

Criterio	Evaluación	Justificación/Comentarios
Vida útil estimada		
Facilidad de mantenimiento		
Necesidad de consumibles adicionales		
Impacto durante el uso		

2.4 Fin de vida

Analiza qué ocurrirá con el objeto cuando termine su vida útil: ¿Es reciclable? ¿Biodegradable? ¿Reutilizable?

Opción de fin de vida	¿Es viable para este objeto?	¿Qué facilita o dificulta esta opción?
Reciclaje		
Reutilización		
Biodegradación		
Vertedero		

3. CRITERIOS DE ECODISEÑO APLICADOS

Evalúa en qué medida has aplicado diferentes criterios de ecodiseño en tu proyecto.

Criterio	Aplicación en el proyecto	Puntuación (0- 10)	¿Cómo podría mejorar?
Minimización de material			
Reducción del volumen total			
Optimización de la estructura interna			
Eliminación de elementos no funcionales			
Eficiencia energética			
Optimización de la orientación para impresión			
Reducción del tiempo de impresión			
Minimización de soportes			
Durabilidad			
Resistencia mecánica adecuada			
Refuerzo en puntos críticos			
Protección contra agentes externos			
Multifuncionalidad			
Integración de múltiples funciones			
Adaptabilidad a diferentes usos			
Reparabilidad			
Diseño modular			
Facilidad de sustitución de componentes			
Accesibilidad para reparación			
Reciclabilidad			
Uso de un solo material (monomaterial)			
Facilidad de desmontaje			
Uso de materiales reciclables			

4. HUELLA AMBIENTAL

4.1 Estimación de la huella de carbono

Realiza una estimación aproximada de la huella de carbono de tu pieza. Puedes utilizar calculadoras online específicas para impresión 3D.

Fase	CO ₂ estimado	Fuente de datos/Método de cálculo
Producción del material		
Proceso de impresión		
Transporte (si aplica)		
Uso (si consume energía)		
Fin de vida		
TOTAL		

4.2 Consumo de recursos

Recurso	Cantidad	¿Cómo se podría reducir?
Plástico (g)		
Electricidad (kWh)		
Agua (si aplica)		
Otros materiales		

5. CONEXIÓN CON LOS OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

Analiza cómo tu proyecto contribuye (positiva o negativamente) a los ODS de la ONU. Selecciona al menos tres ODS relevantes para tu proyecto.

ODS	¿Cómo contribuye tu proyecto?	¿Qué mejoras podrías implementar?
ODS X: [Nombre]		
ODS Y: [Nombre]		
ODS Z: [Nombre]		

6. COMPARATIVA CON ALTERNATIVAS CONVENCIONALES

Compara tu pieza impresa en 3D con alternativas fabricadas mediante métodos convencionales.

Criterio	Tu pieza impresa en 3D	Alternativa convencional	¿Cuál es más sostenible? ¿Por qué?
Consumo de materiales			
Consumo energético			
Residuos generados			
Emisiones de CO ₂			
Transporte y logística			
Durabilidad			

7. PROPUESTAS DE MEJORA

A partir del análisis realizado, identifica aspectos que podrías mejorar en futuras versiones o iteraciones de tu diseño.

Aspecto a mejorar	Propuesta concreta	Beneficio esperado	Dificultad de implementación

8. AUTOEVALUACIÓN GLOBAL DE SOSTENIBILIDAD

Realiza una autoevaluación global de la sostenibilidad de tu proyecto utilizando la siguiente escala:

1 = Muy deficiente, 2 = Deficiente, 3 = Aceptable, 4 = Bueno, 5 = Excelente

Dimensión	Puntuación (1-5)	Justificación
Ambiental		
Uso eficiente de materiales		
Eficiencia energética		
Minimización de residuos		
Fin de vida		
Económica		
Coste-eficiencia		
Durabilidad/Vida útil		
Mantenimiento		
Social		
Utilidad/Funcionalidad		
Accesibilidad		
Impacto cultural		
GLOBAL		

9. CONCLUSIONES

Resume las principales conclusiones de tu análisis de sostenibilidad y reflexiona sobre cómo este ejercicio ha influido en tu perspectiva sobre el diseño y la fabricación digital.

10. REFERENCIAS

Cita las fuentes que has utilizado para este análisis (calculadoras de impacto, artículos, guías de ecodiseño, etc.)

- 1.
- 2.
- 3.

ANEXO: RECURSOS ÚTILES PARA EL ANÁLISIS DE SOSTENIBILIDAD

Calculadoras de impacto ambiental para impresión 3D:

- Calculadora de huella de carbono para impresión 3D:
- Estimador de consumo energético:

Guías de ecodiseño:

- Principios de diseño circular para impresión 3D
- Estrategias de optimización topológica

Bases de datos de materiales sostenibles:

- Comparativa de materiales biodegradables para impresión 3D
- Filamentos reciclados y su impacto ambiental

Este análisis de sostenibilidad forma parte de la evaluación del proyecto y representa el 25% de la calificación final. Se valorará tanto la profundidad del análisis como la implementación efectiva de criterios de sostenibilidad en el diseño.