LIFT数据采集系统使用说明书

```
—— 00-sh #配置&启动脚本
1
       ROS
      └── ROS2
     — ARX_CAN #CAN配置文件
     - ARX_VR_SDK #VR SDK
5
       ├─ ROS
6
      └── ROS2
7
     - body #机身SDK
8
      --- Python
    | ⊢ ROS
10
      └── ROS2
11
12
   └── LIFT_ARM #机械臂SDK
      <u></u> ру
13
      ROS
14
     └── ROS2
15
```

一、硬件连接

机器人上电: 先点按再长按,即可开启电源或关闭电源。此电源给整个机器人供电。

大疆电池:TB48s

连接VR和本体: 笔记本电脑要获取VR的数据进行计算才会给本体发送信号,连接方式如下:

实物连接

连接笔记本的是usb接口,连接VR的是type-c接口。

二、环境配置

自带miniPC已配好,可忽略

ROS安装:

20.04安装ROS noetoc;

22.04安装ROS2 humble;

wget http://fishros.com/install -0 fishros && . fishros

配置can环境

1 配置can

- 2 sudo apt install can-utils
- 3 sudo apt install net-tools

三、编译

0.设置can规则

参考配置CAN手册

1.编译

进入"00-sh"文件夹:

根据系统配置

20.04进入ROS文件夹

22.04进入ROS2文件夹

- № 01make.sh
- 02make.sh
- 1 #先执行"01make.sh"
- 2 ./01make.sh

```
arx@arx: -/桌面/gitee/Lift... × arx@arx: -/桌面/gitee/Lift... × arx@arx: -/桌面/gitee/Lift... × v 安装依赖
正在读取软件包列表... 完成
正在设析软件包的依赖关系树
正在读取状态息... 完成
ros-noettc-sertal 已经是最新版(1.2.1-1focal.20220104.154733)。
升级了 o 个软件包,新安装了 o 个软件包,要卸载 o 个软件包,有 o 个软件包未被升级。
ls: 无法访问 '/dev/trytACM'': 沒有那个文件或目录
udev 规则文件已存在: /etc/udev/rules.d/99-ttyACM.rules
重新加载 udev 规则...
确保当前用户已被添加到 dialout 组...
操作完成。请重新登录,或运行 'newgrp dialout' 使更改生效。
您可以通过以下命令验证组成员信息:
groups arx
arx@arx:-/桌面/gitee/Lift_ALL_IN_ONE_SOK/ARX_VR_SOK/ROS$ ■
```

1 #再执行" 02make.sh "

2 ./02make.sh

```
arx@arx: ~/桌面/gitee/LIFT ALL IN ONE SDK/ARX VR SDK/... 〇 🗏 🗕
  arx@arx: ~/桌面/gitee/LIFT ALL IN O... ×
                                      arx@arx: ~/桌面/gitee/LIFT ALL IN O...
  0%] Built target rosgraph msgs generate messages py
  0%] Built target roscpp generate messages nodejs
  0%] Built target rosgraph_msgs_generate_messages_nodejs
  0%] Built target roscpp generate messages cpp
  0%] Built target _pos_cmd_msg_generate_messages_check_deps_PosCmd
canning dependencies of target pos_cmd_msg_generate_messages_lisp
 canning dependencies of target pos_cmd_msg_generate_messages_cpp
Scanning dependencies of target pos_cmd_msg_generate_messages_py
Scanning dependencies of target pos_cmd_msg_generate_messages_eus
Scanning dependencies of target pos cmd msg_generate_messages_nodejs
 11%] Built target pos cmd msg generate messages lisp
 22%] Built target pos cmd msg generate messages cpp
44%] Built target pos cmd msg generate messages py
 66%] Built target pos_cmd_msg_generate_messages_eus
77%] Built target pos cmd msg generate messages nodejs
Scanning dependencies of target pos_cmd_msg_generate_messages
Scanning dependencies of target serial_port
 77%] Built target pos cmd msg generate messages
 88%] Building CXX object serial port/CMakeFiles/serial port.dir/src/serial por
[100%] Linking CXX executable /home/arx/桌面/gitee/LIFT_ALL_IN_ONE_SDK/ARX_VR_SD
K/ROS/devel/lib/serial_port/serial_port
[100%] Built target serial port
  x@arx:~/桌面/gitee/LIFT ALL IN ONE SDK/ARX VR SDK/ROSS
```

确保都是100%编译,否则再执行一次。

以上操作,仅在第一次使用时进行。

四、软件启动

进入"00-sh"文件夹

选择ROS/ROS2

```
1 ./remote_LIFT.sh
```

或桌面双击此脚本

下面就是进入VR眼镜中的应用软件,进行操作。

4.启动VR

长按VR眼镜左侧的按键开机

开机后视野下方会有一个菜单栏(如果没有就按下右手柄上那个平的按键,也称为meta键)

从这个菜单栏右侧开始数第三个图标(黑色背景,白色正方体)就是控制本体的应用了。进入应用后 (手柄对准这个图标,按下食指扳机(左右手都行)即为点击),先"解锁"再"校准原点"。

解锁的方法如下图所示,解锁后可以控制双臂运行和身体的升降,但是控制底盘还需要一道解锁步骤,按B解锁,Y锁定

"校准原点"的意思是以当前VR眼镜的位置和姿态为原点,获取手柄的位姿和姿态,因为每次操作人员站的位置和身体的比例可能都不相同,所以最好每次都做一下这个操作,方法就是,<mark>(在采集员移动位置后)右手柄按下meta键,持续两秒左右即可</mark>,注意在校准原点时,大臂应为竖直,小臂应为水平,即大小臂夹角为90度,同时这也是机械臂的初始位型。这一步骤不影响底盘。

下面截取VR SDK说明文档中,关于VR操作的说明:

调整坐姿,确保您可以看到机械臂操纵位置,佩戴VR,拿起手柄(开启应用后请勿随意变换方向) 打开VR菜单栏,选择右下角 X5 MR,手柄食指扳机键按下打开应用 应用开始后会开启透视,画面会呈现周围姿态(透视模式) 语音提示会重复提醒 锁定,锁定,锁定,锁定

开机启动操作		
1.同时按下 AB(右手)XY(左手)双手持握	解锁 (锁定语音消失,表示手持部分已解锁)
2.同时长按左右摇标	F键(直至语音提示控	制器上线)机械臂完整解锁
操作方式	按键映射	行为
按下右手	食指扳机	右侧机械臂1比1空间移动
按下左手	食指扳机	左侧机械臂1比1空间移动
松开右手	食指扳机	右侧机械臂保持空间位姿
松开左手	食指扳机	左侧机械臂保持空间位姿
按下右手	侧方扳机	右侧机械臂夹爪线性闭合
按下左手	侧方扳机	左侧机械臂夹爪线性闭合
长按右手	A按键	右侧机械臂归0
长按左手	X按键	左侧机械臂归0

Rift空间抓取额外按键						
首先开启底盘保护: 右摇杆 B解除保护, 左摇杆 Y开启保护						
操作方式	按键映射	行为				
左摇杆	前进	工作平台上移				
左摇杆	横移	底盘转向				
右摇杆	前进	底盘向前走				
右摇杆	横移	NULL				

解锁后按照上表中的方式,控制机器人运动。

五、操作方式及注意事项

当双臂和VR都启动后,就可以通过VR手柄控制机械臂了。

1、VR的数据发送

VR眼镜通过视觉和imu获取手柄的位姿,其中视觉占主要,所以在操作时需要保证手柄要在VR眼镜的摄像头视野范围内,或者不要遮挡手柄,否则VR可能会向程序发送奇怪的值导致机械臂不正常工作。

VR眼镜和手柄在电量过低,或者长时间运行(半小时左右,VR眼镜很容易发热),会导致网络连接中断,此时应插拔与VR眼镜连接的网线水晶头即可,然后尝试闭合夹爪,看是否恢复连接。实在不行就重启VR的SDK,或者给VR充电,再或者让VR散散热。

2、机械臂的限制

机械臂除了有工作空间的限制,还有关节角度的限制,一般情况下少量关节到达限位时,机械臂仍能正常解算,但如果过多的关节到达限制位时,机械臂有可能卡顿或者抖动(奇异的情况)。所以要注意在抓取"奇异"位置的物品时,尽量移动底盘和升降,让机械臂可以以一个比较自然的"姿势"完成抓取。机械臂的工作空间被限制在其肩部以下,所以在VR手柄超过肩部时,机械臂就不会再跟踪。如果机械臂出现卡在某个位置的情况时,可以通过"机械臂归0"来让机械臂复位。

由于VR手柄没有任何限制,所以手柄可能到达一些机械臂无法到达的地方。