Model Explanation with Shapley Values

Zijing Ou ML Group, Tencent Al Lab

2021/12/10

This Talk

- 1. A brief intro: Shapley value
- 2. Model explanation with Shapley value
- 3. Shapley value estimation
- 4. Reliable post hoc explanations
- 5. Looking forward

Modern ML

- ML/AI becoming more widespread
- Black-box model now dominate
 - DNN
- Various concerns about model transparency

Eligible explainer:

- Model-agnostic (black-box)
- Measure the contribution of each feature to the output

Explainer
$$\phi_f: X_i \to \mathbb{R}$$

Obey some intuitive principles

Eligible explainer ϕ_f :

Null

if
$$\forall S \subseteq D_{-i}$$
, $f(x_{S \cup i}) = f(x_S)$, then $\phi_f(x_i) = 0$

Eligible explainer ϕ_f :

• Null

if
$$\forall S \subseteq D_{-i}$$
, $f(x_{S \cup i}) = f(x_S)$, then $\phi_f(x_i) = 0$

Symmetry

if
$$\forall S \subseteq D_{-i,j}$$
, $f(x_{S \cup i}) = f(x_{S \cup j})$,
then $\phi_f(x_i) = \phi_f(x_j)$

Eligible explainer ϕ_f :

Null

if
$$\forall S \subseteq D_{-i}$$
, $f(x_{S \cup i}) = f(x_S)$, then $\phi_f(x_i) = 0$

Symmetry

if
$$\forall S \subseteq D_{-i,j}$$
, $f(x_{S \cup i}) = f(x_{S \cup j})$,
then $\phi_f(x_i) = \phi_f(x_j)$

Marginalism

if
$$\forall S \subseteq D$$
, $f(x_{S \cup i}) - f(x_S) = g(x_{S \cup i}) - g(x_S)$,

$$then \phi_f(x_i) = \phi_g(x_i)$$

Shapley Value Equation

Weighted average across

all subsets where $i \notin S$

Inducing model behavior $f(x_S)$ for unfixed set of features

Local SHAP

$$\phi(x_i) = \frac{1}{n} \sum_{S \subseteq D_{-i}} {n-1 \choose |S|}^{-1} \left[v_{f,x}(S+i) - v_{f,x}(S) \right]$$

Conditional on fixed feature x_S

$$v_{f,x}(S) = \mathbb{E}_{p(X_{D \setminus S})}[f(X)|X_S = x_S]$$

Marginalize unfixed feature $x_{D \setminus S}$

Loss SHAP

$$\phi(x_i) = \frac{1}{n} \sum_{S \subseteq D_{-i}} {n-1 \choose |S|}^{-1} \left[v_{f,x,y}(S+i) - v_{f,x,y}(S) \right]$$

$$v_{f,x,y}(S) = -\ell(\mathbb{E}[f(X)|X_S = x_S], y)$$

Conduct on loss function $\ell(\hat{y}, y)$

Global SHAP

$$\phi_i = \frac{1}{n} \sum_{S \subseteq D_{-i}} {n-1 \choose |S|}^{-1} \left[v_f(S+i) - v_f(S) \right]$$

$$v_f(S) = -\mathbb{E}_{XY}[\ell(\mathbb{E}[f(X)|X_S = x_S], y)]$$

Expectation over dataset $(x, y) \sim \mathbb{P}_{XY}$

How to estimate the Shapley value?

$$\phi_i = \frac{1}{n} \sum_{S \subseteq D_{-i}} {n-1 \choose |S|}^{-1} \left[v(S+i) - v(S) \right]$$

Average (expectation) over all permutations

n! features permutations Π

$$\phi_i = \frac{1}{n!} \sum_{\Pi} [v(\Pi_{:i} + i) - v(\Pi_{:i})]$$

$$\phi_{i=c}^{(1)} = v(\{a,b\} + \{c\}) - v(\{a,b\})$$

$$\phi_i = \frac{1}{n!} \sum_{\Pi} [v(\Pi_{:i} + i) - v(\Pi_{:i})]$$

$$\phi_{i=c}^{(2)} = v(\{b\} + \{c\}) - v(\{b\})$$

$$\phi_i = \frac{1}{n!} \sum_{\Pi} [v(\Pi_{:i} + i) - v(\Pi_{:i})]$$

$$\phi_{i=c}^{(3)} = v(\{b,d\} + \{c\}) - v(\{b,d\})$$

$$\phi_i = \frac{1}{n!} \sum_{\Pi} [v(\Pi_{:i} + i) - v(\Pi_{:i})]$$

$$\phi_{i=c} = \frac{1}{3} \left(\phi_{i=c}^{(1)} + \phi_{i=c}^{(2)} + \phi_{i=c}^{(3)} \right)$$

Owen Sampling

$$\phi_i = \frac{1}{n} \sum_{S \subseteq D_{-i}} {n-1 \choose |S|}^{-1} \left[v(S+i) - v(S) \right]$$

Numerical quadrature

$$\phi_i^{os} = \int_0^1 \mathbb{E}_{q(S|x\mathbf{1},x_i=0)} [v(S+i) - v(S)] dx$$

Monte Carlo sampling

$$q(S|\mathbf{x}) \coloneqq \prod_{i \in S} x_i \prod_{j \notin S} (1 - x_j)$$

Owen Sampling

$$\phi_i^{os} = \int_0^1 \mathbb{E}_{q(S|x\mathbf{I},x_i=0)}[v(S+i) - v(S)]dx$$

$$\mathcal{G}(x;i)$$

Variance reduction with antithetic sampling

$$\phi_i^{as} = \int_0^{0.5} g(x; i) + g(1 - x; i) dx$$

Owen Sampling

$$\phi_i^{os} = \int_0^1 \mathbb{E}_{q(S|x\mathbf{I},x_i=0)}[v(S+i) - v(S)]dx$$

$$g(x;i)$$

Variance reduction with antithetic sampling

$$\phi_i^{as} = \int_0^{0.5} g(x; i) + g(1 - x; i) dx$$

$$Var(\phi_i^{as}) = Var(\phi_i^{os})(1 + \rho)$$

$$\rho = Corr(g(x), g(1 - x))$$

Kernel SHAP

$$\phi_i = \frac{1}{n} \sum_{S \subseteq D_{-i}} {n-1 \choose |S|}^{-1} [v(S+i) - v(S)]$$

$$p(s) \propto \frac{d-1}{\binom{d}{\mathbf{1}^{T}s} \cdot \mathbf{1}^{T}s \cdot (d-\mathbf{1}^{T}s)} \qquad \phi \coloneqq [\phi_{1}, ..., \phi_{d}]^{T}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{argmin} \mathbb{E}_{p(s)} [v(s) - v(\mathbf{0}) - s^{T} \phi]^{2}$$

$$\phi \qquad \qquad \uparrow$$

$$s. t. \mathbf{1}^{T} \phi = v(\mathbf{1}) - v(\mathbf{0}) \qquad \qquad s \coloneqq \{0,1\}^{d}$$

Kernel SHAP

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \mathbb{E}_{p(\boldsymbol{s})}[v(\boldsymbol{s}) - v(\boldsymbol{0}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

$$s. t. \mathbf{1}^T \boldsymbol{\phi} = v(\mathbf{1}) - v(\mathbf{0})$$

$$\widehat{\boldsymbol{\phi}}_n = \widehat{A}_n^{-1} (\widehat{\boldsymbol{b}}_n - \mathbf{1} \frac{\mathbf{1}^T \widehat{A}_n^{-1} \widehat{\boldsymbol{b}}_n - v(\mathbf{1}) + v(\mathbf{0})}{\mathbf{1}^T \widehat{A}_n^{-1} \mathbf{1}})$$

$$\hat{A}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{s}_i \mathbf{s}_i^T \qquad \hat{\mathbf{b}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{s}_i (v(\mathbf{1}) - v(\mathbf{0}))$$

Fast SHAP

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \mathbb{E}_{p(\boldsymbol{s})}[v(\boldsymbol{s}) - v(\boldsymbol{0}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

$$s. t. \mathbf{1}^T \boldsymbol{\phi} = v(\mathbf{1}) - v(\mathbf{0})$$

Neural network $oldsymbol{\phi}_{oldsymbol{ heta}} : X
ightarrow \mathbb{R}^d$

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{p(\boldsymbol{x})} \mathbb{E}_{p(\boldsymbol{s})} [v(\boldsymbol{s}) - v(\boldsymbol{0}) - \boldsymbol{s}^T \boldsymbol{\phi}_{\boldsymbol{\theta}}(\boldsymbol{x})]^2$$

Fast SHAP

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \mathbb{E}_{p(\boldsymbol{s})}[v(\boldsymbol{s}) - v(\boldsymbol{0}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

$$s. t. \mathbf{1}^T \boldsymbol{\phi} = v(\mathbf{1}) - v(\mathbf{0})$$

Neural network $\phi_{\theta}: X \to \mathbb{R}^d$

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{p(\boldsymbol{x})} \mathbb{E}_{p(\boldsymbol{s})} [v(\boldsymbol{s}) - v(\boldsymbol{0}) - \boldsymbol{s}^T \boldsymbol{\phi}_{\boldsymbol{\theta}}^{\mathsf{T}} (\boldsymbol{x})]^2$$

Is the estimation of Shapley value reliable?

Kernel SHAP Recap

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \sum_{\boldsymbol{s}} \pi(\boldsymbol{s}) [v(\boldsymbol{s}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

$$\pi(s) \propto \frac{d-1}{\binom{d}{\mathbf{1}^T s} \cdot \mathbf{1}^T s \cdot (d-\mathbf{1}^T s)}$$

Kernel SHAP Recap

Kernel SHAP Recap

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \sum_{\boldsymbol{s}} \pi(\boldsymbol{s}) [v(\boldsymbol{s}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

Kernel SHAP as linear regression models

- Dataset: $\mathcal{D} = \{\boldsymbol{v}, \boldsymbol{S}\}$ $\boldsymbol{S} = [\boldsymbol{s}_1, \boldsymbol{s}_2, \dots]^T \in \{0, 1\}^{2^d \times d}$ $\boldsymbol{v} = [v_1, v_2, \dots]^T \in \mathbb{R}^{2^d \times 1}$
- Goal: find $\pmb{\phi} \in \mathbb{R}^d$ such that $\|\pmb{v} \pmb{S} \pmb{\phi}\|^2 \approx 0 \quad \longleftarrow \text{ neglect } \pi(\pmb{s}) \text{ for brevity}$

Is the SHAP Reliable?

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \sum_{\boldsymbol{s}} \pi(\boldsymbol{s}) [v(\boldsymbol{s}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

Kernel SHAP as linear regression models

- Dataset: $\mathcal{D} = \{\boldsymbol{v}, \boldsymbol{S}\}$ $\boldsymbol{S} = [\boldsymbol{s}_1, \boldsymbol{s}_2, \dots]^T \in \{0, 1\}^{2^d \times d}$ $\boldsymbol{v} = [v_1, v_2, \dots]^T \in \mathbb{R}^{2^d \times 1}$
- Goal: find ${m \phi} \in \mathbb{R}^d$ such that $\|{m v} {m S}{m \phi}\|^2 pprox 0$

Why not apply **Bayesian** regression?

lower variance ⇔ more reliable

Is the SHAP Reliable?

Kernel SHAP as Bayesian regression models

- $s \in \{0,1\}^d$: input feature; $v \in \mathbb{R}$: output value
- Model assumes as noisy output with Gaussian noise

$$v = \mathbf{s}^{T} \boldsymbol{\phi} + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \beta^{-1})$$

$$\Rightarrow \qquad p(v|\mathbf{s}, \boldsymbol{\phi}) = \mathcal{N}(v; \mathbf{s}^{T} \boldsymbol{\phi}, \beta^{-1})$$

• Prior distribution $p(\boldsymbol{\phi}) = \mathcal{N}(\boldsymbol{\phi}; \boldsymbol{0}, \lambda^{-1} \mathbb{I})$

Goal: find posterior $p(\boldsymbol{\phi}|\boldsymbol{S},\boldsymbol{v})$

Is the SHAP Reliable?

$$v = \mathbf{s}^{T} \boldsymbol{\phi} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \beta^{-1})$$
$$p(\boldsymbol{\phi}) = \mathcal{N}(\boldsymbol{\phi}; \mathbf{0}, \lambda^{-1} \mathbb{I})$$

Apply normal normal-mean conjugacy

$$p(\pmb{\phi}|\pmb{S},\pmb{v}) = \mathcal{N}(\pmb{\phi};\mu_n,\Sigma_n)$$
 $\mu_n = \beta \Sigma_n^{-1} \pmb{S}^T \pmb{v}$ Mean of Shapley value $\Sigma_n = \lambda \mathbb{I} + \beta \pmb{S}^T \pmb{S}$ Variance of Shapley value

Set $\beta = \lambda = 1$, μ_n recovers the original shapley value.

Bayes SHAP

A Bayesian framework for Shapley value estimation: measure the uncertainty and reliability.

Applications:

- How many perturbations to sample (Hypothesis testing)
- How to sample for fast convergence (active learning)

Bayes SHAP

$$v = \mathbf{s}^T \boldsymbol{\phi} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

 $p(\boldsymbol{\phi}) = \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I}) \quad \sigma^2 \sim \text{Inv}\chi^2(n_0, \sigma_0^2)$

Apply normal normal-inverse-chi-square conjugacy

$$p(\pmb{\phi}|\pmb{S},\pmb{v},\sigma^2)=\mathcal{N}(\widehat{\pmb{\phi}};\pmb{V}^{-1}\;\sigma^2)$$
 — Uncertainty: estimate via sampling $\widehat{\pmb{\phi}}=\pmb{V}^{-1}\pmb{S}^T\pmb{S}\pmb{v}$ — Mean: recover the Shapley value $\pmb{V}=\pmb{S}^T\pmb{S}+\mathbb{I}$

Looking forward

Bayes SHAP

$$\underset{\boldsymbol{\phi}}{\operatorname{argmin}} \sum_{\boldsymbol{s}} \pi(\boldsymbol{s}) [v(\boldsymbol{s}) - \boldsymbol{s}^T \boldsymbol{\phi}]^2$$

Data:
$$(v, s) \in \mathcal{V} \times \{0, 1\}^d$$

Likelihood:
$$p_{\theta}(v) \coloneqq Normal(v; s^T \phi_{\theta}; \sigma^2)$$

Prior: $p(\phi, \sigma^2)$

Let's try to do Bayesian inference for the Shapley value estimation!

Meta SHAP

FastSHAP:

train for each model separately Model *f* Learning to learn Shapley value FastSHAP Dataset $X \longrightarrow$

Value ϕ

MetaSHAP: train once, plug and play

Gray SHAP

Gray SHAP

Antithetic sampling

$$\phi_i^{os} = \int_0^1 \mathbb{E}_{q(S|x\mathbf{1},x_i=0)}[v(S+i)-v(S)]dx$$

$$\uparrow$$
Gradient guided sampling

Intuition: reducing variance by gradient!

Fair SHAP

Intuition: the value of sensitive feature is zero!

Thank you!