EECS151: Introduction to Digital Design and ICs

Lecture 17 – Flip-Flops

Bora Nikolić and Sophia Shao

Introducing the new SiFive U8-Series Core IP

Nov. 2, 2019. Russian startup <u>Promobot</u> is now selling autonomous androids — and buyers can choose to make the robots look like any person on Earth..

https://futurism.com/the-byte/russian-startup-selling-robotclones-real-paper

Review

- Binary multipliers have three blocks:
 - Partial-product generation (NAND or Booth)
 - Partial-product compression (ripple-carry array, CSA or Wallace)
 - Final adder
- Multipliers are often pipelined
- Constant multipliers can be optimized for size/speed
- Shifters and crossbars are common building blocks in digital systems
 - Often require customization

Timing

Nikolić, Shao Fall 2019 © UCB

Synchronous Timing

Latch Parameters

Latch is transparent high or low

module latch

input clk,

input d,

Delays can be different for rising and falling data transitions

Flip-Flop Parameters

Flip-flop is edge-triggered

module flipflop

Delays can be different for rising and falling data transitions

6

Clock Uncertainties

Clock arrival time varies in space and time

Sources of clock uncertainty

Clock Nonidealities

- Clock skew
 - ullet Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}
- Clock jitter
 - Temporal variations in consecutive edges of the clock signal; modulation + random noise
 - Cycle-to-cycle (short-term) t_{JS}
 - (there also exists long term jitter t_{II})
- Variation of the pulse width
 - Important for level sensitive clocking with latches

EECS151/251A L17 FLIP-FLOPS

8

Clock Skew and Jitter

- Both skew and jitter affect the effective cycle time
- Only clock distribution skew affects the race margin

Timing Constraints

• First flip-flop launches data on the first clock edge, the second one captures on the second clock edge

Minimum cycle time is set by the longest logic path:

$$T - t_{sk} - t_{j} = t_{c-q} + t_{su} + t_{logic,max}$$

Worst case is when receiving edge arrives early

10

Timing Constraints

Launching flip-flop shoudn't contaminate its own data

Hold time constraint:

$$t_{c-q} + t_{logic, min} > t_{hold} + t_{sk}$$

Worst case is when receiving edge arrives late Race between data and clock

1.1

Slack

Visualizing arrival times

EECS151/251A L17 FLIP-FLOPS
Nikolić, Shao Fall 2019 © UCB

Timing Analysis

Report timing

Startpoint: dig_agc_0/int_term_reg_0_

(rising edge-triggered flip-flop clocked by clk_agc)

Endpoint: dig_agc_0/int_term_reg_0_

(rising edge-triggered flip-flop clocked by clk_agc)

Point	Fanout	Derate	Incr	Path	Volta
clock clk agc (rise edge)		0.00	0.00)	-
clock source latency		3.13	3.13	3 r	
timing_control_0/C1276/Y (AND2X3)		0.00	3.13	3 r 3.00)
timing control 0/o clk agc (net) 2	2	0.00	3.13	3 r	
dig_agc_0/BUFX8_G6B1I2/A (BUFX8)		0.00	& 3.13	3 r 3.00)
dig_agc_0/o_clk_agc_G6B1I2 (net)	L5	0.00	3.91	L r	
dig_agc_0/int_term_reg_0_/CP (SDFFCQX2)		0.01	& 3.92	2 r 3.00)
					
clock reconvergence pessimism		0.00	3.92	2	
clock uncertainty			0.10	4.02	
dig_agc_0/int_term_reg_0_/CP (SDFFCQX2)		0.00	4.02	2 r	
library hold time		-0.48	3.54	l	
data required time			3.54	1	
data required time			3.54	 !	-
data arrival time			-5.57	7	
slack (MET)			2.03	 3	-

Administrivia

- Midterm 2 on Wednesday!
 - Covers material up to last Wednesday (adders)
 - One-page cheat sheet
 - Review session tomorrow
- Lecture 16 recorded
- Homework posted on Friday
 - No new homework this week
- No lecture on Monday (Veterans' Day)

EECS151/251A L17 FLIP-FLOPS Nikolić, Shao Fall 2019 © UCB

EECS151/251A L17 FLIP-FLOPS
Nikolić, Shao Fall 2019 © UCB

• Is there a possible problem in this path?

Two clock phases

- Two consecutive latches are never transparent at the same time
 - Conservative

Single clock phase

Clk

- Possibility of a race condition
 - Needs timing analysis (EE241B/EECS251B)

Latches

EECS151/251A L17 FLIP-FLOPS
Nikolić, Shao Fall 2019 © UCB

Cross-Coupled Inverter

Positive feedback stores the data

Writing into a Static Latch

Use the clock as a control signal (to break the positive feedback), that distinguishes between the transparent and opaque states

Converting into a MUX

Forcing the state (depends on sizing)

Tri-State Inverter

Out is Z when Clk=0

Latch

Clk-Q Delay

Setup and Hold Times

Circuit before clock arrival (Setup-1 case)

25

Circuit before clock arrival (Setup-1 case)

26

Circuit before clock arrival (Setup-1 case)

27

Circuit before clock arrival (Setup-1 case)

28

Circuit before clock arrival (Setup-1 case)

Hold-1 case

30

Hold-1 case

31

Hold-1 case

32

Hold-1 case

33

Hold-1 case

Flip-Flops

EECS151/251A L17 FLIP-FLOPS
Nikolić, Shao Fall 2019 © UCB

Types of Flip-Flops

Latch Pair (Master-Slave) Pulse-Triggered Latch

Transmission Gate Flip-Flop

Two back-to-back latches

EECS151/251A L17 FLIP-FLOPS Nikolić, Shao Fall 2019 © UCB

Aside: Inverter Fork

• Often found in flip-flops: equalize Ck, Ckb delays

Clk-Q, Setup and Hold Times

EECS151/251A L17 FLIP-FLOPS Nikolić, Shao Fall 2019 © UCB

Review

- Timing analysis for early and late signal arrivals
- Flip-flop-based pipelines are a lot easier to analyze than latch-based ones
- Latches are based on positive feedback
- Clk-Q delay calculated similarly to combinational logic
- Setup, hold defined as D-Clk times that correspond to CLk-Q delay increases
- Flip-flop is typically a latch pair

Nikolić, Shao Fall 2019 © UCB