Class 7

AUTHOR

Charlie Rezanka (A15837296)

#Clustering

First, lets make some data to cluster so we an get a feel for these methods and how to work with them.

We can use the <code>rnorm()</code> function to get random numbers from a normal distribution around a given <code>mean()</code>.

```
hist(rnorm(50, mean=3))
```

Histogram of rnorm(50, mean = 3)

Lets get 30 points with a mean of 3.

```
tmp <- c(rnorm(30, mean=3), rnorm(30, mean=-3))
tmp

[1] 3.9570370 3.0952452 2.9970242 2.8996540 2.1386816 3.2298037
[7] 2.0933567 3.1570108 2.6626312 3.5610050 3.3682637 4.8453481
[13] 2.4223204 3.8455682 2.2873779 3.0880848 0.8539646 4.0301493
[19] 3.8274040 4.4434410 3.4020797 4.1437456 2.8362601 2.7247062</pre>
```

localhost:4209 1/13

4/27/23, 12:15 PM

[10,] 3.5610050 -2.8254680 [11,] 3.3682637 -3.2855633 [12,] 4.8453481 -2.5177699 [13,] 2.4223204 -3.9837174 [14,] 3.8455682 -3.2073887 [15,] 2.2873779 -2.6430003 [16,] 3.0880848 -3.1605515 [17,] 0.8539646 -2.8229022 [18,] 4.0301493 -2.5975358 [19,] 3.8274040 -3.2648739 [20,] 4.4434410 -3.4294349 [21,] 3.4020797 -2.7621615 [22,] 4.1437456 -2.1133498 [23,] 2.8362601 -3.3883475 [24,] 2.7247062 -3.0638581 [25,] 2.7038369 -2.2807507 [26,] 4.0261389 -4.0421330 [27,] 5.2198345 -2.8005186 [28,] 2.6621672 -2.5205180 [29,] 4.2448935 -3.4754862 [30,] 2.4176223 -3.2896442 [31,] -3.2896442 2.4176223 [32,] -3.4754862 4.2448935 [33,] -2.5205180 2.6621672 [34,] -2.8005186 5.2198345 [35,] -4.0421330 4.0261389 [36,] -2.2807507 2.7038369 [37,] -3.0638581 2.7247062

```
Class 7
[25] 2.7038369 4.0261389 5.2198345 2.6621672 4.2448935 2.4176223
[31] -3.2896442 -3.4754862 -2.5205180 -2.8005186 -4.0421330 -2.2807507
[37] -3.0638581 -3.3883475 -2.1133498 -2.7621615 -3.4294349 -3.2648739
[43] -2.5975358 -2.8229022 -3.1605515 -2.6430003 -3.2073887 -3.9837174
[49] -2.5177699 -3.2855633 -2.8254680 -4.0132678 -2.5885968 -2.3400685
[55] -2.6285954 -3.6737060 -3.0679519 -2.9590448 -3.4484579 -1.6685597
Lets put these two together:
 x <- cbind(x=tmp, y=rev(tmp))</pre>
 Х
                          У
 [1,] 3.9570370 -1.6685597
 [2,] 3.0952452 -3.4484579
 [3,] 2.9970242 -2.9590448
 [4,] 2.8996540 -3.0679519
 [5,] 2.1386816 -3.6737060
 [6,] 3.2298037 -2.6285954
 [7,] 2.0933567 -2.3400685
 [8,] 3.1570108 -2.5885968
 [9,] 2.6626312 -4.0132678
```

[38,] -3.3883475 2.8362601 localhost:4209

2/13

```
[39,] -2.1133498 4.1437456
[40,] -2.7621615 3.4020797
[41,] -3.4294349 4.4434410
[42,] -3.2648739 3.8274040
[43,] -2.5975358 4.0301493
[44,] -2.8229022 0.8539646
[45,] -3.1605515 3.0880848
                 2.2873779
[46,] -2.6430003
[47,] -3.2073887 3.8455682
[48,] -3.9837174
                 2.4223204
[49,] -2.5177699 4.8453481
[50,] -3.2855633
                 3.3682637
[51,] -2.8254680 3.5610050
[52,] -4.0132678
                2.6626312
[53,] -2.5885968 3.1570108
[54,] -2.3400685
                 2.0933567
[55,] -2.6285954 3.2298037
[56,] -3.6737060 2.1386816
[57,] -3.0679519 2.8996540
[58,] -2.9590448 2.9970242
[59,] -3.4484579 3.0952452
[60,] -1.6685597 3.9570370
```

plot(x)

localhost:4209 3/13

##K-means Clustering

This is a very popular clustering method, especially for large datasets, that can be used with kmeans()

```
km <- kmeans(x, centers=2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
```

```
x y
1 3.239489 -2.995441
2 -2.995441 3.239489
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 33.80799 33.80799
(between_SS / total_SS = 94.5 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
```

[6] "betweenss" "size" "iter" "ifault"

""Q"" How many points are in each cluster??

30 points in each cluster

""Q"" What component of your result corresponds to cluster size (A), cluster assignment (B), and cluster center (C)

- A km\$size
- B km\$cluster
- C km\$centers

km\$size

[1] 30 30

km\$cluster

localhost:4209 4/13

km\$centers

```
x y
1 3.239489 -2.995441
```

2 -2.995441 3.239489

""Q"" Plot x colored by the kmeans cluster assignment and add cluster centers as blue points

```
plot(x, col=km$cluster)
points(km$centers, col="blue", pch=15, cex=3)
```


##pch assignes the centers a shape similar to colors
#cex determines the size of the shape

""Q"" Lets cluster into 3 groups or some x data to make a plot.

```
km <- kmeans(x, centers=3)
plot(x, col=km$cluster)</pre>
```

localhost:4209 5/13

#Hierarchical Clustering

We can use the hclust() function for Hierarchical clustering. Unlike kmeans(), where we can just pass in our data as input, we need to give hclust() a "distance matrix".

We will use the dist() function to start with.

```
d=dist(x)
hc <- hclust(d)
hc</pre>
```

Call: hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

```
plot(hc)
```

localhost:4209 6/13

Cluster Dendrogram

d hclust (*, "complete")

I can now "cut" my tree with cutree() to yield a cluster membership vector

```
grps <- cutree(hc, h=8)</pre>
```

You can also tell <code>cutree()</code> to cut where it yields "k" groups.

```
cutree(hc, k=2)
```

```
plot(x, col=grps)
```

localhost:4209 7/13

#Principal Component Analysis, PCA Worksheet

Data will first be plotted along a primary axis (PC1) to show variability. Subsequent criteria for variability are added as additional axis and the variance of points for that criteria is shown as distribution.

```
x<- read.csv("https://tinyurl.com/UK-foods", row.names = 1)
x</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506

localhost:4209 8/13

Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

""Q1"" How many rows and columns are in this dataset? What functions can you use to answer this question?

17 rows, 4 columns. nrow and ncol can be used respectively. dim() also works.

```
nrow(x)
```

[1] 17

```
ncol(x)
```

[1] 4

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

Wales Scotland N.Ireland 105 103 103 66 227 245 242 267 685 803 750 586 147 160 122 93 193 235 184 209 156 175 147 139

x < -read.csv(url, row.names = 1) head(x)` is the preferred code because running the earlier code will cause the number of columns to repeatedly shift.

This can be graphed:

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```

localhost:4209 9/13

[&]quot;"Q2"" Which sorting approach is preferred?

""Q3"" Changing what optional argument in the above barplot() function results in the following plot?

Change the beside factor from true to false

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```

localhost:4209 10/13

""Q5"" Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

```
pairs(x, col=rainbow(10), pch=16)
```

localhost:4209 11/13

Each plot is a similarity graph between the y axis country and x axis country. Each dot represents an area of comparison (ex. fresh fruit). The x and y axis are the levels of consumption for the respective country. The closer a point is to the middle of the graph, the more evenly distributed consuption of that food is between the two countries.

How can we generate a PCA function of this data? The main PCA function is called <code>prcomp()</code>, which expects the transpose of our data.

```
pca<- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3
Standard deviation 379.8991 260.5533 1.515e-13
Proportion of Variance 0.6801 0.3199 0.000e+00
Cumulative Proportion 0.6801 1.0000 1.000e+00
```

```
attributes(pca)
```

\$names

```
[1] "sdev" "rotation" "center" "scale" "x"
```

localhost:4209

```
$class
[1] "prcomp"
```

```
pca$x
```

```
PC1 PC2 PC3
Wales -288.9534 226.36855 2.296774e-14
Scotland -141.3603 -284.81172 4.517428e-13
N.Ireland 430.3137 58.44317 -1.407069e-13
```

```
pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", col=c("orange", "red", "blue", "darkgreen"), pch=16)
pca$x[,1], pca$x[,2], colnames(x))
```


localhost:4209 13/13