Section 2

More on semantics

Previously ...

- ► Propositional logic
- ► Propositional formulas
- ightharpoonup Connectives: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- ► Truth tables
- ► Boolean semantics

Formal definition of interpretation of propositional variables and connectives

Definition

- ▶ Let S be a set of values that propositional formulas can take
- ► A **valuation** is a function

$$\mathbf{v}: \{P_1, P_2, \dots, P_n\} \longrightarrow S$$

that assigns values to the list P_1, P_2, \dots, P_n of propositional variables

► Assign interpretations in *S* to connectives

More on semantics 22

Interpretation of a propositional formula

Definition

Let A is any propositional formula that contains the propositional variables P_1, P_2, \ldots, P_n . Suppose v is a valuation for these propositional variables. The **interpretation** of A **relative to valuation** v is the value of the formula obtained by

- replacing each P_i by $v P_i$, and
- evaluating the assignment to the connectives

More on semantics

23

In the Boolean semantics

... the values are $S = \{1, 0\}$ S is known as the **two element Boolean** algebra $\mathbb B$

George Boole (1815-1864)

Thus

► A Boolean valuation v is a function

$$v: \{P_1, P_2, \dots, P_n\} \longrightarrow \{\mathbf{1}, \mathbf{0}\}$$

that assigns $\mathbf{1}$ or $\mathbf{0}$ to each propositional variable P_1, P_2, \dots, P_n

► The **Boolean interpretation** of a formula *A* relative to v is the value of the formula obtained by replacing each *P_i* by v *P_i* and calculating the truth value of *A* in accordance with the standard truth tables for the connectives

More on semantics 24

Boolean interpretation of a formula

Example

Consider

$$A = (P \land Q) \rightarrow (Q \lor \neg P)$$

Suppose v is the valuation, mapping

$$P$$
 to $\mathbf{1}$ and Q to $\mathbf{0}$

Interpretation of A relative to v

$$(\mathsf{v}\,P \land \mathsf{v}\,Q) \to (\mathsf{v}\,Q \lor \neg\,\mathsf{v}\,P)$$

More on semantics

25

Alternatively ...

Read off interpretation of A relative to our specific v from

P	Q	$(P \land Q) \to (Q \lor \neg P)$
1	1	1
1	0	1
0	1	1
0	0	1

Note

- ► Each line in a truth table gives the interpretation of a formula for a given valuation of its propositional variables
- ► Truth tables display all possible interpretations of a formula
- ► Computing the interpretation of a formula for a given valuation is a **model checking** task

en.wikipedia.org

More on semantics

26

Tautology

Definition

A propositional formula A is **tautology**, if the interpretation of A is $\mathbf{1}$, for all possible valuations v of the propositional variables occurring in A

P_1		P_n	Α
*		*	1
*		*	1
:	:	:	:
*	• • •	*	1

Example

$$(P \wedge Q) \rightarrow (Q \vee \neg P)$$
 is a tautology

Satisfiability, contradiction

Definition

A propositional formula A is **satisfiable**, if the interpretation of A is $\mathbf{1}$ for *some* valuation v

Otherwise, it is a **contradiction** (we also say it is **unsatisfiable**)

Example

- ► Suppose $A' = (P \lor Q) \land \neg (P \land Q)$, v $P = \mathbf{1}$ and v $Q = \mathbf{0}$
- \blacktriangleright We know how to calculate the interpretation of A' for v:

$$(\lor P \lor \lor Q) \land \neg(\lor P \land \lor Q)$$

= $(1 \lor 0) \land \neg(1 \land 0) = 1 \land \neg 0 = 1 \land 1 = 1$

ightharpoonup Thus, A' is satisfiable.

Is A' a contradiction? Is it a tautology?

More on semantics

28

Power set semantics

Historically, Boole actually worked with the **power set semantics of propositional logic**

Provides the foundation of

- ► algebra of logic
- ► logic-based systems used in Al knowledge representation, ontology-based knowledge processing

www.bbc.co.uk/ontologies/

More on semantics

In the power set semantics

... the values that propositional formulas can take are subsets of X, where X is an arbitrary (but fixed) non-empty set

Definition

- \triangleright $S = \mathcal{P}X$
- ► A valuation v is a function

$$v: \{P_1, P_2, \dots, P_n\} \longrightarrow \mathcal{P}X$$

that assigns subsets of X to the list P_1, P_2, \ldots, P_n

► To obtain the interpretation of a formula A relative to v

for conjunction \land use intersection \cap use union \cup use union \cup for negation \neg use complement $X \setminus -$ for $B \to B'$ use $(X \setminus S_B) \cup S_{B'}$

More on semantics

30

Computing the interpretation of a formula

Example

► Reconsider $A' = (P \lor Q) \land \neg (P \land Q)$ Suppose

$$X = \{a, b, c\},$$
 $v P = \{a, b\}$ and $v Q = \{b, c\}$

▶ Power set interpretation of A' for v:

Tautology, satisfiability, contradiction in the power set semantics

Definition

In the power set semantics:

- ► A propositional formula A is a **tautology**, if the interpretation of A is X, for all possible valuations v and any non-empty set X
- ► A is **satisfiable**, if the interpretation of A is a non-empty set, for *some* valuation v and *some non-empty set* X
- ► Otherwise, it is a contradiction

```
Is A' from the previous slide a tautology?

satisfiable?

a contradiction?
```

More on semantics

Tautology, satisfiability, contradiction in the power set semantics

Definition

In the power set semantics:

- ► A propositional formula A is a **tautology**, if the interpretation of A is X, for all possible valuations v and any non-empty set X
- ► A is **satisfiable**, if the interpretation of A is a non-empty set, for *some* valuation v and *some* non-empty set X
- ► Otherwise, it is a contradiction

Is A' from the previous slide a tautology?

satisfiable?

a contradiction?

Note: There is no need to calculate further assignments to establish A' is not a tautology

More on semantics

32

32

Electronic switching circuits

Propositional logic has direct applications in hardware design

Electronic switching circuits are built from logic gates

Wires can carry two voltage levels:

high voltage or low voltage

Source: http://www.nandland.com/articles/boolean-algebra-using-look-up-tables-lut.html

More on semantics 33

The logic circuit semantics

Logic gates:

1 represents high voltage

0 represents low voltage

In the **logic circuit semantics**: Each input wire of the circuit represents a propositional variable, and \land , \lor and \neg are respectively assigned to an AND-gate, an OR-gate and a NOT-gate

Thus: Propositional logic can be used to test if two circuits are equivalent

Source: http://newstudent.groups.et.byu.net/Labs/Logic%20Gates/LogicGates.html

More on semantics 34