- 4주차 (2025.3.25 ~ 2025.4.01) - 캡돌 + i

3.26 - 세부기능 정의서 작성

이전에 작성하였던 기능정의에서 좀 더 세부화된 기능들 (조명 -> 조명의 밝기, 조리개 등)을 정의해 나가며 정리하였습니다.

1 작업조명

- i) 조명 조사범위 조절 : 조명 부 앞에 조리개를 설치하여 빛의 영역을 조절
- ii) 조명 빟 세기 조절
- iii) 조명 색온도 조절

2 조명 로봇팔

- i) 객체 추적 모드 : 사용자의 손 움직임을 추적하며 일정거리를 유지
- ii) 추적 모드 활성화/비활성화
- iii) 음성 명령 제어 : 음성 명령으로 조명 조사 위치를 제어

3. 작업용 루페

- i) 음성 명령 돋보기 제어
- ii) 버튼을 통한 돋보기 호출 : yaw방향 회전으로 작업영역/대기영역 이동

4. 안전 관리

- i) VOC가스 변화 감지
- ii) VOC가스 농도에 대해 경고 : 기관에서 정의한 유해 농도에 대해 감지 및 경고
- iii) 위험 농도 감지시 시각적 알림

3.27 - 세부기능 평가표 작성

교수님의 피드백을 받고, 1년에 걸쳐(1~2학기) 작업할 것들에 대해 기술하였으며 그에따른 정량적 평가방법을 논의하여 작성 후 lms 게시판에 업로드하였습니다.

목표	세부내용	기한	평가방법
작업 조명	가변식 조리개를 활용하여 조명의 조사 범위를 조절	1	책상으로부터 30cm 높이에 조명을 위치시켜, 조리개 단계별로 바닥에 형성되는 빛의 원형 지름을 줄자로 측정. 1단계: 5± 0.5cm, 2단계: 15±1cm, 3단계: 30±2cm 범위로 조절 가능한가.
	조명의 세기를 5단계로 조절	1	사용자가 1개의 버튼을 조작하여 버튼이 눌릴 때마다 조명의 밝 기가 1단계 ~ 5단계로 범위를 변화시킬 수 있는가. 단계의 기준 Lux기준으로 나눌 예정
	조명의 색온도 조절	2학기 예정	사용자가 버튼 1개를 조작하여 조명의 색온도가 버튼이 눌릴때 마다 1000씩 증가하며 7000 이후론 4000으로 다시 돌아가는, 4000k~7000k (1000단위) 범위에서 4단계로 변화시킬 수 있는가.
	조명 음성 제어	2학기 예정	조명의 전원 on,off 기능과 위에서 정의한 조리개 개폐 조절, 조명 세기 조절, 색온도 조절 기능을 1m 거리에서 50~60db의 음성명령(조명 켜줘, 꺼줘, 밝기 올려줘, 좁게, 넓게, 따뜻한 조명으로바꿔줘, 색온도 기본으로 바꿔줘)으로 구현하고 인식률 테스트.

3.30 - 캡스톤 디자인 교과목 재료비 신청서 작성

Discord 회의

라즈베리 파이를 비롯한 워크 베이스 구성에 필요로 하는 부품들을 리스트업하여 적절한 부품들을 찾아 기입하는 시간을 가졌습니다. 로봇팔의 움직임 학습을 위해 리드암, 팔로우 암 구성으로 2개의 암을 이용하기로 결정하면서 모터가 다수 필요 하게 되었고, 워크 베이스 (작업대) 하드웨어 구성을 위해 포맥스를 선정하였습니 다. 가스 감지 기능을 위한 가스 센서와 객체 및 음성 인식을 위해 웹캠 구성을 이 용하기로 결정하였습니다.

	
弄	규 곀
서보모터1	Dynamixel XL330-M077-T
서보모터2	Dynamixel XL430-W250-T
서보모터3	Dynamixel XL330-M288-T
모터 <u>힌지프레임</u>	FPX330-H101 4pcs
모터 베어링	HN11-I101 Set
보드	Raspberry Pi 5
보드 쿨러	Active Cooler
마이크로 sd카드	[SanDisk] Ultra microSDXC 64GB
LED 조명	NeoPixel Ring - 16 RGBW LEDs 6000k
VOC <u>가스센서</u>	Adafruit SGP30 Air Quality Sensor Breakout
가연성 <u>가스센서</u>	MQ-4 아두이노 메탄/LNG 가스 센서
카메라 및 마이크	[<u>Coms</u>] AU100 웹캠
전원공급장치	5V Power Supply
포맥스	3T 포맥스 (흰색) 450x450mm
포맥스	5T 포맥스(회색) 300x450mm
필라멘트	eSUN PLA+필라멘트 1Kg 1.75mm