Computer Science 384 St. George Campus Version S22.1 University of Toronto

Problem Set 2: Knowledge

- 1. Someone stole Chandra's laptop to try to find the final exam. He has hired a detective to solve the case. The detective determines that:
 - **S1**: The laptop was stolen in the library at 12 p.m.
 - **S2**: Anyone who was in the library at 12 p.m had an opportunity to steal the laptop.
 - **S3**: Abel was in the library at 12 p.m, and had the motive to steal the laptop.
 - **S4**: Anyone who stole the laptop must have had the motive and opportunity to do so.
 - (a) Formulate each of the statements, **S1** to **S4** in first-order logic using the following vocabulary:
 - Constants:
 - **Abel**; refers to Abel
 - laptop; refers to Chandra's laptop.
 - **library**; refers to the library.
 - **12**; refers to 12 p.m.
 - Variables: x, y, z
 - Functions:
 - location(x,t); the location of x at time, t
 - Predicates:
 - stole(x, y, l, t); x stole y at the location l at time t
 - motive(x); x had the motive to steal the laptop.
 - opportunity(x); x had the opportunity to steal the laptop.

S1	3 x (stole (x, laptop, library, 12))
S2	$\forall x (location(x,12) = library \rightarrow opportunity(x))$
S3	(location (Abel, 12) = library) 1 motive (Abel)
S4	$\forall x (stole(x, aptop, ibrary, 2) \Rightarrow motive(x) \land opportunity(x))$

(b) The detective claims makes the following claim:

Q: Abel stole the laptop.

You are a part of Abel's defense team. Show that the detective's claim may be incorrect by finding a model of $\{S1, ..., S4\}$ that is not a model of $\{S1, ..., S4, Q\}$.

$$D = \begin{cases} \begin{cases} \{a, c, l, t, r\} \end{cases} \end{cases}$$

$stole^{\mathscr{M}}$	{< Γ, C, l, t73
motive $^{\mathscr{M}}$	{<0>,<<73
opportunity $^{\mathcal{M}}$	{ <a>>,<<>>}

$$\operatorname{location}^{\mathcal{M}}(d) = \begin{cases} \operatorname{location}^{\mathcal{M}}(a,t) = l \\ \operatorname{location}^{\mathcal{M}}(r,t) = l \\ \operatorname{location}^{\mathcal{M}}(c,t) = l \\ \operatorname{location}^{\mathcal{M}}(l,t) = l \end{cases}$$

$$\mathsf{Abel}^\mathscr{M} = \ \ \boldsymbol{\overset{\wedge}{\sim}}$$

$$laptop^{\mathscr{M}} = \mathscr{C}$$

$$library^{\mathscr{M}} = \mathscr{L}$$

2. Given predicates P, Q, R and variables x, y, z; convert the following sentences to clausal form: Clearly indicate any Skolem functions or constants used in the conversion. You need not fill every row.

(a)
$$\forall x (R(x) \rightarrow \exists y P(x,y))$$

C1	∀x (¬R(x) v ∃yP(xy))
C2	Yx (7 R(x) v P(x, g(x))
C3	$\neg R(x) \lor P(x, g(x))$
C4	
C5	

```
Skolem constants = \{ \{ \{ \{ \{ \} \} \}
```

(b) $\exists x \forall y ((Q(x,y) \land Q(y,x)) \lor \neg R(y))$

C1	∀y [(Q(c,y)ΛQ(y,c)) ν¬R(y)]
C2	Yy [(Q(6,4) V 7 R(4)) 1 (Q(4,6) V 7 R(4))]
C3	[Q(c,y) V7R(y)] 1 [Q(y,c) V7R(y)]
C4	Q(1,4) V 7 R(4), Q(4,6) V 7 R(4)
C5	

```
Skolem constants = \{ \mathcal{L} \}
Skolem functions = \{ \mathcal{L} \}
```

- 3. Let move be a 3-ary predicate name. Assume functions and constants are lower case and variables are upper case. For each of the pairs below, give the most general unifier (MGU) or write 0 to denote that no MGU exists.
 - (a) move(f(X), f(h(Y)), g(h(Y))) and move(Z, f(h(a)), g(X))

$$\delta = \begin{cases} \frac{1}{2} = f(h(a)), \forall = a, X = h(a) \end{cases}$$

(b) move(X, h(Y), f(X)) and move(f(Y), h(b), f(g(a)))

$$\delta = \bigcirc$$

۲

3.

a) Heration