Epreuve Finale de Physique 2 Durée : 1h

Exercice 1: (12points)

Deux charges électriques ponctuelles $q_1=4q$ et $q_2=-q$ (q>0) sont placées respectivement en x=0 et x=d. M est un point quelconque de l'axe Ox d'abscisse x, tel que x>d (voir figure 1).

Figure 1

- 1) Déterminer en fonction de x, d, q et K:
 - a) l'expression du potentiel électrique V_M créé par les charges q₁ et q₂ au point M.
 - b) l'expression du champ électrique \vec{E}_M créé par les charges q_1 et q_2 au point M.
- 2) On place une troisième charge q₃ au point M. Déterminer en fonction de x, d, q, q₃ et K:
 - a) l'expression de l'énergie potentielle électrique E_{p3} de la charge q_3 .
 - b) l'expression de l'énergie interne U du système formé par les trois charges.
 - c) l'expression de la force électrique \vec{F}_3 qui s'exerce sur la charge q_3 placée au point M.
- 3) Déduire la position d'équilibre de la charge q_3 en fonction de d.
- 4) On enlève la charge \mathbf{q}_3 et on place au point \mathbf{M} d'abscisse \mathbf{x} =4 \mathbf{d} un dipôle électrique orienté suivant l'axe $\mathbf{O}\mathbf{y}$, de moment dipolaire initial $\vec{p}_i = 10^{-28} \, \vec{\mathbf{j}}$ (Cm), tournant autour de sa position \mathbf{M} . Pour la suite, on donne : \mathbf{q} =10-9C, \mathbf{d} =1cm et \mathbf{K} =9×109 SI.
 - a) Calculer le vecteur champ électrique \vec{E}_{M} au point M.
 - b) Calculer l'énergie potentielle électrique E_{pi} du dipôle électrique dans sa position initiale.
 - c) Donner la position d'équilibre finale stable du dipôle électrique \vec{p}_f .
 - d) Représenter qualitativement le champ électrique $\vec{E}_{_M}$ et le dipôle électrique $\vec{p}_{_f}$.
 - e) En déduire la variation de l'énergie potentielle électrique du dipôle électrique ainsi que le travail des forces électrostatiques.

Exercice 2: (8 points)

Le circuit de la **figure 2** comporte deux générateurs identiques de f.e.m $E_1=E_2=E$, trois résistances R_1 , R_2 et R_3 , deux condensateurs en parallèle de capacités C_1 et C_2 respectivement et un interrupteur K.

On donne : E=18V, $R_1=R_2=6\Omega$, $R_3=15\Omega$, $C_1=3\mu F$ et $C_2=6\mu F$.

I) L'interrupteur K est ouvert.

- 1) Calculer l'intensité des courants I₁, I₂, et I₃.
- 2) Calculer la puissance fournie par les générateurs et celles dissipées par effet Joule dans les résistances. Faire le bilan d'énergie.
- 3) Calculer la différence de potentiel V_A-V_B.

II) L'interrupteur K est fermé.

On suppose que le régime permanent est atteint et que les condensateurs sont complètement chargés.

- 4) Déduire les valeurs des charges Q_1 et Q_2 emmagasinées par C_1 et C_2 .
- 5) Calculer l'énergie potentielle emmagasinée par chacun des deux condensateurs.

Figure 2

Corrigé de l'Epreuve Finale de Physique 2

Exercice 1: (12 points)

Sections 1-15

1.a) Potentiel électrique :
$$V_M = \frac{Kq_1}{x} + \frac{Kq_2}{x-d} = Kq\left(\frac{4}{x} - \frac{1}{x-d}\right)$$
 0.75+0.75

1.b) Champ électrique :
$$\vec{E}_{M} = \left(\frac{Kq_{1}}{x^{2}} + \frac{Kq_{2}}{(x-d)^{2}}\right)\vec{i} = Kq\left(\frac{4}{x^{2}} - \frac{1}{(x-d)^{2}}\right)\vec{i}$$
 1+1

2.a) Energie potentielle électrique :
$$E_{p3} = q_3 V_M = Kq q_3 \left(\frac{4}{x} - \frac{1}{x-d} \right)$$
 0.25+0.25

2.b) Energie interne du système :
$$U = \frac{Kq_1q_2}{d} + \frac{Kq_1q_3}{x} + \frac{Kq_2q_3}{x-d} = Kq\left(-\frac{4q}{d} + \frac{4q_3}{x} - \frac{q_3}{x-d}\right)$$

2.c) Force électrique :
$$\vec{F}_3 = q_3 \vec{E}_M = Kqq_3 \left(\frac{4}{x^2} - \frac{1}{(x-d)^2} \right) \vec{i}$$
 0.5+0.5

3) Position d'équilibre :
$$\vec{F}_3 = \vec{0} \implies \frac{4}{x^2} - \frac{1}{(x-d)^2} = 0 \implies \begin{cases} x = 2d \\ x = 2d \end{cases} \implies x = 2d$$

$$0.5$$

4.a) Champ électrique :
$$\vec{E}_{M}(x=4d)=1.25\times10^{4} \ \vec{i} \ (V/m)$$

4.b) Energie potentielle électrique :
$$E_{pi} = -\vec{p}_i \cdot \vec{E}_M = 0$$
 0.5

4.c) Position d'équilibre finale stable :
$$\vec{p}_f = 10^{-28} \vec{i} (Cm)$$

4.d)
$$\frac{\vec{i}}{\vec{p}_f} = \frac{M \quad \vec{E}_M}{0.5}$$

4.e) Variation de l'énergie potentielle électrique :

$$\Delta E_{p} = E_{pf} - E_{pi} = (-\vec{p}_{f} \cdot \vec{E}_{M}) - (-\vec{p}_{i} \cdot \vec{E}_{M}) = -\|\vec{p}_{f}\| \|\vec{E}_{M}\| = -1.25 \times 10^{-24} J$$

Travail des forces électrostatiques :
$$W_i^f = -\Delta E_p = 1.25 \times 10^{-24} \text{ J}$$
 0.5

Exercice 2: (8 points)

1) Intensité des courants :

Loi des nœuds : $I_3 = I_1 + I_2$ -----Eqt.1 0.5

Loi des mailles : $\begin{cases} -E_1 + R_1 I_1 + R_3 I_3 = 0 \\ -E_2 + R_2 I_2 + R_3 I_3 = 0 \end{cases} \Rightarrow \begin{cases} 6I_1 + 15I_3 = 18 - - - - \text{ Eqt. 2} \\ 6I_2 + 15I_3 = 18 - - - - \text{ Eqt. 3} \end{cases} 0.5$

Eqt.2 + Eqt3 et en tenant compte de l'Eqt.1 $\Rightarrow I_3 = 1A$ 0.5

Eqt.2 $\Rightarrow I_1 = 0.5 A$ 0.25 Eqt.3 $\Rightarrow I_2 = 0.5 A$ 0.25

2) Puissance fournie par les générateurs : $P_G = E_1 I_1 + E_2 I_2 = 18W$ 0.5+0.5

Puissance dissipée par effet Joule : $P_J = R_1 I_1^2 + R_2 I_2^2 + R_3 I_3^2 = 18W$ 0.5+0.5

Bilan d'énergie : $P_G = P_J$ 0.5

3) La ddp V_A - V_B : V_A - $V_B = R_3I_3 = 15V$ 0.25+0.25

4) Charges emmagasinées : $\begin{cases} V_{A}-V_{B}=V_{C1}=V_{C2} & 0.25+0.25 \\ V_{C1}=\frac{Q_{1}}{C_{1}} & 0.25 & \Rightarrow \begin{cases} Q_{1}=C_{1}(V_{A}-V_{B})=45\mu C & 0.25 \\ Q_{2}=C_{2}(V_{A}-V_{B})=90\mu C & 0.25 \end{cases}$ $V_{C2}=\frac{Q_{2}}{C_{2}} & 0.25$

5) Energies emmagasinées : $\begin{cases} E_{C1} = \frac{Q_1^2}{2C_1} = 337.5 \,\mu J \approx 0.34 \,mJ & 0.25 + 0.25 \\ E_{C2} = \frac{Q_2^2}{2C_2} = 675 \,\mu J \approx 0.68 \,mJ & 0.25 + 0.25 \end{cases}$