

### **Robotics**

#### Kinematics

3D geometry, homogeneous transformations, kinematic map, Jacobian, inverse kinematics as optimization problem, motion profiles, trajectory interpolation, multiple simultaneous tasks, special task variables, singularities, configuration/operational/null space

Marc Toussaint University of Stuttgart Winter 2016/17

Lecturer: Peter Englert

- Two "types of robotics":
  - 1) Mobile robotics is all about localization & mapping
  - 2) Manipulation is all about interacting with the world
  - 0) Kinematic/Dynamic Motion Control: same as 2) without ever making it to interaction..
- Typical manipulation robots (and animals) are kinematic trees
   Their pose/state is described by all joint angles

### **Basic motion generation problem**

 Move all joints in a coordinated way so that the endeffector makes a desired movement



01-kinematics: ./x.exe -mode 2/3/4

#### **Outline**

- Basic 3D geometry and notation
- Kinematics:  $\phi: q \mapsto y$
- Inverse Kinematics:  $y^*\mapsto q^*=\mathop{\rm argmin}_q\|\phi(q)-y^*\|_C^2+\|q-q_0\|_W^2$
- Basic motion heuristics: Motion profiles
- · Additional things to know
  - Many simultaneous task variables
  - Singularities, null space,

# **Basic 3D geometry & notation**

# Pose (position & orientation)



- A *pose* is described by a translation  $p \in \mathbb{R}^3$  and a rotation  $R \in SO(3)$ 
  - -R is an *orthonormal* matrix (orthogonal vectors stay orthogonal, unit vectors stay unit)
  - $-R^{-1}=R^{T}$
  - columns and rows are orthogonal unit vectors
  - $\det(R) = 1$

$$-R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$

#### Frame and coordinate transforms



- Let  $(o, e_{1:3})$  be the world frame,  $(o', e'_{1:3})$  be the body's frame. The new basis vectors are the *columns* in R, that is,  $e'_1 = R_{11}e_1 + R_{21}e_2 + R_{31}e_3$ , etc,
- x = coordinates in world frame  $(o, e_{1:3})$  x' = coordinates in body frame  $(o', e'_{1:3})$ p = coordinates of o' in world frame  $(o, e_{1:3})$

$$x = p + Rx'$$

## **Briefly: Alternative Rotation Representations**

```
See the "geometry notes" for more details:
```

```
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf
```

## **Euler angles**

- Describe rotation by consecutive rotation about different axis:
  - 3-1-3 or 3-1-2 conventions, yaw-pitch-roll (3-2-1) in air flight
  - first rotate  $\phi$  about  $e_3$ , then  $\theta$  about the new  $e_1'$ , then  $\psi$  about the new  $e_3''$
- Gimbal Lock



- Euler angles have severe problem:
  - if two axes align: blocks 1 DoF of rotation!!
  - "singularity" of Euler angles
  - Example: 3-1-3 and second rotation 0 or  $\pi$

#### **Rotation vector**

- vector  $w \in \mathbb{R}^3$ 
  - length  $|w| = \theta$  is rotation angle (in radians)
  - direction of w = rotation axis ( $\underline{w} = w/\theta$ )
- Application on a vector v (Rodrigues' formula):

$$w \cdot v = \cos \theta \ v + \sin \theta \ (\underline{w} \times v) + (1 - \cos \theta) \ \underline{w}(\underline{w}^{\mathsf{T}}v)$$

· Conversion to matrix:

$$R(w) = \exp(\hat{w})$$

$$= \cos \theta \ I + \sin \theta \ \hat{w}/\theta + (1 - \cos \theta) \ ww^{\top}/\theta^{2}$$

$$\hat{w} := \begin{pmatrix} 0 & -w_{3} & w_{2} \\ w_{3} & 0 & -w_{1} \\ -w_{2} & w_{1} & 0 \end{pmatrix}$$

( $\hat{w}$  is called skew matrix, with property  $\hat{w}v = w \times v$ ;  $\exp(\cdot)$  is called exponential map)

- Composition: convert to matrix first
- Drawback: singularity for small rotations

#### Quaternion

• A quaternion is  $r \in \mathbb{R}^4$  with unit length  $|r| = r_0^2 + r_1^2 + r_2^2 + r_3^2 = 1$ 

$$r = \begin{pmatrix} r_0 \\ \bar{r} \end{pmatrix}, \quad r_0 = \cos(\theta/2), \quad \bar{r} = \sin(\theta/2) \ \underline{w}$$

where  $\underline{w}$  is the unit length rotation axis and  $\theta$  is the rotation angle

Conversion to matrix

$$R(r) = \begin{pmatrix} 1 - r_{22} - r_{33} & r_{12} - r_{03} & r_{13} + r_{02} \\ r_{12} + r_{03} & 1 - r_{11} - r_{33} & r_{23} - r_{01} \\ r_{13} - r_{02} & r_{23} + r_{01} & 1 - r_{11} - r_{22} \end{pmatrix}$$

$$r_{ij} = 2r_{i}r_{j} , \quad r_{0} = \frac{1}{2}\sqrt{1 + \text{tr}R}$$

$$r_{3} = (R_{21} - R_{12})/(4r_{0}) , \quad r_{2} = (R_{13} - R_{31})/(4r_{0}) , \quad r_{1} = (R_{32} - R_{23})/(4r_{0})$$

Composition

$$r \circ r' = \begin{pmatrix} r_0 r'_0 - \bar{r}^\top \bar{r}' \\ r_0 \bar{r}' + r'_0 \bar{r} + \bar{r}' \times \bar{r} \end{pmatrix}$$

- Application to vector v: convert to matrix first
- Benefits: fast composition. No sin/cos computations. **Use this!**

# Homogeneous transformations

- x<sup>A</sup> = coordinates of a point in frame A
   x<sup>B</sup> = coordinates of a point in frame B
- Translation and rotation:  $x^A = t + Rx^B$
- Homogeneous transform  $T \in \mathbb{R}^{4 \times 4}$ :

$$T_{A \to B} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix}$$
$$x^A = T_{A \to B} \ x^B = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x^B \\ 1 \end{pmatrix} = \begin{pmatrix} Rx^B + t \\ 1 \end{pmatrix}$$

in homogeneous coordinates, we append a 1 to all coordinate vectors

• The inverse transform is

$$T_{B \to A} = T_{A \to B}^{-1} = \begin{pmatrix} R^{-1} & -R^{-1}t \\ 0 & 1 \end{pmatrix}$$

#### Is $T_{A\rightarrow B}$ forward or backward?

- T<sub>A→B</sub> describes the translation and rotation of frame B relative to A
   That is, it describes the forward FRAME transformation (from A to B)
- $T_{A \to B}$  describes the coordinate transformation from  $x^B$  to  $x^A$  That is, it describes the backward COORDINATE transformation
- Confused? Vectors (and frames) transform covariant, coordinates contra-variant. See "geometry notes" or Wikipedia for more details, if you like.

# **Composition of transforms**



$$T_{W \to C} = T_{W \to A} T_{A \to B} T_{B \to C}$$
$$x^W = T_{W \to A} T_{A \to B} T_{B \to C} x^C$$

#### **Kinematics**

#### Kinematic structure



 A kinematic structure is a graph (usually tree or chain) of rigid links and joints

$$T_{W \to \text{eff}}(q) = T_{W \to A} T_{A \to A'}(q) T_{A' \to B} T_{B \to B'}(q) T_{B' \to C} T_{C \to C'}(q) T_{C' \to \text{eff}}$$

$$16/63$$

# Joint types

• Joint transformations:  $T_{A \to A'}(q)$  depends on  $q \in \mathbb{R}^n$ 

revolute joint: joint angle  $q \in \mathbb{R}$  determines rotation about x-axis:

$$T_{A \to A'}(q) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q) & -\sin(q) & 0 \\ 0 & \sin(q) & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

prismatic joint: offset  $q \in \mathbb{R}$  determines translation along x-axis:

$$T_{A \to A'}(q) = \begin{pmatrix} 1 & 0 & 0 & q \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

others: screw (1dof), cylindrical (2dof), spherical (3dof), universal (2dof)



# **Kinematic Map**

• For any joint angle vector  $q \in \mathbb{R}^n$  we can compute  $T_{W \to \text{eff}}(q)$  by *forward chaining* of transformations

 $T_{W \to \text{eff}}(q)$  gives us the *pose* of the endeffector in the world frame

# Kinematic Map

• For any joint angle vector  $q \in \mathbb{R}^n$  we can compute  $T_{W \to \text{eff}}(q)$  by *forward chaining* of transformations

 $T_{W \to \text{eff}}(q)$  gives us the *pose* of the endeffector in the world frame

• In general, a kinematic map is any (differentiable) mapping

$$\phi: q \mapsto y$$

that maps to *some arbitrary feature*  $y \in \mathbb{R}^d$  of the joint vector  $q \in \mathbb{R}^n$ 

# **Kinematic Map**

- The three most important examples for a *kinematic map*  $\phi$  are
  - A position v on the endeffector transformed to world coordinates:

$$\phi_{\mathsf{eff},v}^{\mathsf{pos}}(q) = T_{W \to \mathsf{eff}}(q) \ v \in \mathbb{R}^3$$

– A direction  $v \in \mathbb{R}^3$  attached to the endeffector in world coordinates:

$$\phi_{\mathsf{eff},v}^{\mathsf{vec}}(q) = R_{W \to \mathsf{eff}}(q) \ v \in \mathbb{R}^3$$

Where  $R_{A\to B}$  is the rotation in  $T_{A\to B}$ .

- The (quaternion) orientation  $u \in \mathbb{R}^4$  of the endeffector:

$$\phi_{\mathrm{eff}}^{\mathrm{quat}}(q) = R_{W \to \mathrm{eff}}(q) \in \mathbb{R}^4$$

• See the technical reference later for more kinematic maps, especially *relative* position, direction and quaternion maps.

#### **Jacobian**

- When we change the joint angles,  $\delta q$ , how does the effector position change,  $\delta y$ ?
- Given the kinematic map  $y=\phi(q)$  and its Jacobian  $J(q)=\frac{\partial}{\partial q}\phi(q),$  we have:

$$\delta y = J(q) \, \delta q$$

$$J(q) = \frac{\partial}{\partial q} \phi(q) = \begin{pmatrix} \frac{\partial \phi_1(q)}{\partial q_1} & \frac{\partial \phi_1(q)}{\partial q_2} & \dots & \frac{\partial \phi_1(q)}{\partial q_n} \\ \frac{\partial \phi_2(q)}{\partial q_1} & \frac{\partial \phi_2(q)}{\partial q_2} & \dots & \frac{\partial \phi_2(q)}{\partial q_n} \\ \vdots & & & \vdots \\ \frac{\partial \phi_d(q)}{\partial q_1} & \frac{\partial \phi_d(q)}{\partial q_2} & \dots & \frac{\partial \phi_d(q)}{\partial q_n} \end{pmatrix} \in \mathbb{R}^{d \times n}$$

# Jacobian for a rotational degree of freedom



$$a_i = R_{W \to i}(q) \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

• We consider an infinitesimal variation  $\delta q_i \in \mathbb{R}$  of the ith joint and see how an endeffector position  $p_{\mathsf{eff}} = \phi^{\mathsf{pos}}_{\mathsf{eff},v}(q)$  and attached vector  $a_{\mathsf{eff}} = \phi^{\mathsf{vec}}_{\mathsf{eff},v}(q)$  change.

# Jacobian for a rotational degree of freedom



Consider a variation  $\delta q_i$   $\rightarrow$  the whole sub-tree rotates

$$\delta p_{\mathsf{eff}} = [a_i \times (p_{\mathsf{eff}} - p_i)] \ \delta q_i$$
  
 $\delta a_{\mathsf{eff}} = [a_i \times a_{\mathsf{eff}}] \ \delta q_i$ 

⇒ Position Jacobian:

$$J_{\mathrm{eff},v}^{\mathrm{pos}}(q) = \begin{pmatrix} \overbrace{\overset{\circ}{[c]}_{d}} & & \overbrace{\overset{\circ}{[c]}_{d}} \\ -1 & -1 & & -1 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & & & \times \\ \times & \times & & \cdots & \times \\ \underbrace{\overset{\circ}{[c]}_{eff,v}} & \underbrace{\overset{\circ}{[c]}_{eff,v}}$$

### Jacobian for general degrees of freedom

- Every degree of freedom  $q_i$  generates (infinitesimally, at a given q)
  - a rotation around axis  $a_i$  at point  $p_i$
  - and/or a translation along the axis  $b_i$

#### For instance:

- the DOF of a hinge joint just creates a rotation around  $a_i$  at  $p_i$
- the DOF of a prismatic joint creates a translation along  $b_i$
- the DOF of a rolling cylinder creates rotation and translation
- the first DOF of a cylindrical joint generates a translation, its second DOF a translation
- We can compute all Jacobians from knowing  $a_i$ ,  $p_i$  and  $b_i$  for all DOFs (in the current configuration  $q \in \mathbb{R}^n$ )

### **Inverse Kinematics**

### **Inverse Kinematics problem**

- Generally, the aim is to find a robot configuration q such that  $\phi(q)=y^*$
- Iff φ is invertible

$$q^* = \phi^{\text{-}1}(y^*)$$

- But in general,  $\phi$  will not be invertible:
  - 1) The pre-image  $\phi^{\text{-}1}(y^*)=$  may be empty: No configuration can generate the desired  $y^*$
  - 2) The pre-image  $\phi^{\text{-}1}(y^*)$  may be large: many configurations can generate the desired  $y^*$

# Inverse Kinematics as optimization problem

We formalize the inverse kinematics problem as an optimization problem

$$q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

 $\bullet\,$  The 1st term ensures that we find a configuration even if  $y^*$  is not exactly reachable

The 2nd term disambiguates the configurations if there are many  $\phi^{-1}(y^*)$ 



# Inverse Kinematics as optimization problem

$$q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

- The formulation of IK as an optimization problem is very powerful and has many nice properties
- We will be able to take the limit  $C \to \infty$ , enforcing exact  $\phi(q) = y^*$  if possible
- $\bullet\,$  Non-zero  $C^{\text{-}1}$  and W corresponds to a regularization that ensures numeric stability
- Classical concepts can be derived as special cases:
  - Null-space motion
  - regularization; singularity robutness
  - multiple tasks
  - hierarchical tasks

### **Solving Inverse Kinematics**

- The obvious choice of optimization method for this problem is Gauss-Newton, using the Jacobian of  $\phi$
- We first describe just one step of this, which leads to the classical equations for inverse kinematics using the local Jacobian...

## Solution using the local linearization

• When using the local linearization of  $\phi$  at  $q_0$ ,

$$\phi(q) \approx y_0 + J(q - q_0), \quad y_0 = \phi(q_0)$$

• We can derive the optimum as

$$f(q) = \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

$$= \|y_0 - y^* + J(q - q_0)\|_C^2 + \|q - q_0\|_W^2$$

$$\frac{\partial}{\partial q} f(q) = 0^\top = 2(y_0 - y^* + J(q - q_0))^\top CJ + 2(q - q_0)^T W$$

$$J^\top C(y^* - y_0) = (J^\top CJ + W)(q - q_0)$$

$$q^* = q_0 + J^{\sharp}(y^* - y_0)$$

with  $J^{\sharp} = (J^{\top}CJ + W)^{-1}J^{\top}C = W^{-1}J^{\top}(JW^{-1}J^{\top} + C^{-1})^{-1}$  (Woodbury identity)

- For  $C \to \infty$  and W = I,  $J^{\sharp} = J^{\mathsf{T}} (JJ^{\mathsf{T}})^{-1}$  is called *pseudo-inverse*
- -W generalizes the metric in q-space
- *C* regularizes this pseudo-inverse (see later section on singularities)

## "Small step" application

- This approximate solution to IK makes sense
  - if the local linearization of  $\phi$  at  $q_0$  is "good"
  - if  $q_0$  and  $q^*$  are close
- This equation is therefore typically used to iteratively compute small steps in configuration space

$$q_{t+1} = q_t + J^{\sharp}(y_{t+1}^* - \phi(q_t))$$

where the target  $y_{t+1}^*$  moves smoothly with t

# Example: Iterating IK to follow a trajectory

 Assume initial posture q<sub>0</sub>. We want to reach a desired endeff position y\* in T steps:

```
\begin{array}{lll} \textbf{Input:} & \text{initial state } q_0, \text{ desired } y^*, \text{ methods } \phi^{\text{pos}} \text{ and } J^{\text{pos}} \\ \textbf{Output:} & \text{trajectory } q_{0:T} \\ \text{1: Set } y_0 = \phi^{\text{pos}}(q_0) & \textit{// starting endeff position} \\ \text{2: } \textbf{for } t = 1: T \textbf{ do} \\ \text{3:} & y \leftarrow \phi^{\text{pos}}(q_{t-1}) & \textit{// current endeff position} \\ \text{4:} & J \leftarrow J^{\text{pos}}(q_{t-1}) & \textit{// current endeff Jacobian} \\ \text{5:} & \hat{y} \leftarrow y_0 + (t/T)(y^* - y_0) & \textit{// interpolated endeff target} \\ \text{6:} & q_t = q_{t-1} + J^{\sharp}(\hat{y} - y) & \textit{// new joint positions} \\ \text{7:} & \text{Command } q_t \text{ to all robot motors and compute all } T_{W \rightarrow i}(q_t) \\ \text{8:} & \textbf{end for} \\ \end{array}
```

01-kinematics: ./x.exe -mode 2/3

### Example: Iterating IK to follow a trajectory

 Assume initial posture q<sub>0</sub>. We want to reach a desired endeff position y\* in T steps:

```
\begin{array}{lll} \textbf{Input:} & \text{initial state } q_0, \text{ desired } y^*, \text{ methods } \phi^{\mathsf{pos}} \text{ and } J^{\mathsf{pos}} \\ \textbf{Output:} & \text{trajectory } q_{0:T} \\ \text{1: Set } y_0 = \phi^{\mathsf{pos}}(q_0) & \textit{// starting endeff position} \\ \text{2: } \textbf{for } t = 1: T & \textbf{do} \\ \text{3:} & y \leftarrow \phi^{\mathsf{pos}}(q_{t-1}) & \textit{// current endeff position} \\ \text{4:} & J \leftarrow J^{\mathsf{pos}}(q_{t-1}) & \textit{// current endeff Jacobian} \\ \text{5:} & \hat{y} \leftarrow y_0 + (t/T)(y^* - y_0) & \textit{// interpolated endeff target} \\ \text{6:} & q_t = q_{t-1} + J^{\sharp}(\hat{y} - y) & \textit{// new joint positions} \\ \text{7:} & \text{Command } q_t \text{ to all robot motors and compute all } T_{W \rightarrow i}(q_t) \\ \text{8:} & \textbf{end for} \\ \end{array}
```

```
01-kinematics: ./x.exe -mode 2/3
```

- Why does this not follow the interpolated trajectory  $\hat{y}_{0:T}$  exactly?
  - What happens if T = 1 and  $y^*$  is far?

#### Two additional notes

What if we linearize at some arbitrary q' instead of q<sub>0</sub>?

$$\phi(q) \approx y' + J (q - q'), \quad y' = \phi(q')$$

$$q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) - y^*\|_C^2 + \|q - q' + (q' - q_0)\|_W^2$$

$$= q' + J^{\sharp} (y^* - y') + (I - J^{\sharp}J) h, \quad h = q_0 - q'$$
(1)

- What if we want to find the exact (local) optimum? E.g. what if we want to compute a big step (where q\* will be remote from q) and we cannot rely only on the local linearization approximation?
  - Iterate equation (1) (optionally with a step size < 1 to ensure convergence) by setting the point y' of linearization to the current  $q^*$
  - This is equivalent to the Gauss-Newton algorithm

#### Where are we?

- We've derived a basic motion generation principle in robotics from
  - an understanding of robot geometry & kinematics
  - a basic notion of optimality

#### Where are we?

- We've derived a basic motion generation principle in robotics from
  - an understanding of robot geometry & kinematics
  - a basic notion of optimality
- In the remainder:
  - A. Discussion of classical concepts
  - B. Heuristic motion profiles for simple trajectory generation
  - C. Extension to multiple task variables

## **Discussion of classical concepts**

- Singularity and singularity-robustness
- Nullspace, task/operational space, joint space
- "inverse kinematics" ↔ "motion rate control"

#### **Singularity**

- In general: A matrix J singular  $\iff$   $\operatorname{rank}(J) < d$ 
  - rows of J are linearly dependent
  - dimension of image is < d
  - $\delta y = J \delta q \;\; \Rightarrow \;\; {\rm dimensions \; of } \; \delta y \; {\rm limited}$
  - Intuition: arm fully stretched

#### **Singularity**

- In general: A matrix J singular  $\iff$  rank(J) < d
  - rows of J are linearly dependent
  - dimension of image is < d
  - $-\delta y = J\delta q \;\;\Rightarrow\;\; {\rm dimensions\;of}\; \delta y \;{\rm limited}$
  - Intuition: arm fully stretched
- Implications:

$$\det(JJ^{\top}) = 0$$

- $\rightarrow$  pseudo-inverse  $J^{\top}(JJ^{\top})^{-1}$  is ill-defined!
- $\rightarrow \ \ \text{inverse kinematics} \ \delta q = J^{\!\top} \! (JJ^{\!\top})^{\!-\!1} \delta y \ \text{computes "infinite" steps!}$
- Singularity robust pseudo inverse  $J^{\top}(JJ^{\top} + \epsilon \mathbf{I})^{-1}$ The term  $\epsilon \mathbf{I}$  is called **regularization**
- Recall our general solution (for  $W = \mathbf{I}$ )

$$J^{\sharp} = J^{\top} (JJ^{\top} + C^{-1})^{-1}$$

is already singularity robust

## Null/task/operational/joint/configuration spaces

• The space of all  $q \in \mathbb{R}^n$  is called **joint/configuration space** The space of all  $y \in \mathbb{R}^d$  is called **task/operational space** Usually d < n, which is called **redundancy** 

## Null/task/operational/joint/configuration spaces

- The space of all  $q \in \mathbb{R}^n$  is called **joint/configuration space** The space of all  $y \in \mathbb{R}^d$  is called **task/operational space** Usually d < n, which is called **redundancy**
- For a desired endeffector state  $y^*$  there exists a whole manifold (assuming  $\phi$  is smooth) of joint configurations q:

$$\mathbf{nullspace}(y^*) = \{q \mid \phi(q) = y^*\}$$

We have

$$\begin{split} \delta q &= \operatorname*{argmin}_{q} \|q - a\|_{W}^{2} + \|Jq - \delta y\|_{C}^{2} \\ &= J^{\#} \delta y + (\mathbf{I} - J^{\#}J)a \;, \quad J^{\#} = W^{\text{-}1}J^{\top}(JW^{\text{-}1}J^{\top} + C^{\text{-}1})^{\text{-}1} \end{split}$$

In the limit  $C \to \infty$  it is guaranteed that  $J\delta q = \delta y$  (we are exacty on the manifold). The term a introduces additional "nullspace motion".

#### **Inverse Kinematics and Motion Rate Control**

Some clarification of concepts:

- The notion "kinematics" describes the mapping  $\phi: q \mapsto y$ , which usually is a many-to-one function.
- The notion "inverse kinematics" in the strict sense describes some mapping g: y → q such that φ(g(y)) = y, which usually is non-unique or ill-defined.
- In practice, one often refers to  $\delta q = J^{\sharp} \delta y$  as **inverse kinematics**.
- When iterating  $\delta q = J^\sharp \delta y$  in a control cycle with time step  $\tau$  (typically  $\tau \approx 1-10$  msec), then  $\dot{y} = \delta y/\tau$  and  $\dot{q} = \delta q/\tau$  and  $\dot{q} = J^\sharp \dot{y}$ . Therefore the control cycle effectively controls the endeffector velocity—this is why it is called **motion rate control**.

## **Heuristic motion profiles**

## **Heuristic motion profiles**

• Assume initially  $x=0, \dot{x}=0$ . After 1 second you want  $x=1, \dot{x}=0$ . How do you move from x=0 to x=1 in one second?



The sine profile  $x_t = x_0 + \frac{1}{2}[1 - \cos(\pi t/T)](x_T - x_0)$  is a compromise for low max-acceleration and max-velocity

Taken from http://www.20sim.com/webhelp/toolboxes/mechatronics\_toolbox/motion\_profile\_wizard/motionprofiles.htm

## **Motion profiles**

Generally, let's define a motion profile as a mapping

$$MP : [0,1] \mapsto [0,1]$$

with  $\mathsf{MP}(0) = 0$  and  $\mathsf{MP}(1) = 1$  such that the interpolation is given as

$$x_t = x_0 + \mathsf{MP}(t/T) (x_T - x_0)$$

For example

$$\begin{aligned} \mathsf{MP}_{\mathsf{ramp}}(s) &= s \\ \mathsf{MP}_{\mathsf{sin}}(s) &= \frac{1}{2}[1 - \cos(\pi s)] \end{aligned}$$

#### Joint space interpolation

1) Optimize a desired final configuration  $q_T$ : Given a desired final task value  $y_T$ , optimize a final joint state  $q_T$  to minimize the function

$$f(q_T) = \|q_T - q_0\|_{W/T}^2 + \|y_T - \phi(q_T)\|_C^2$$

- The metric  $\frac{1}{T}W$  is consistent with T cost terms with step metric W.
- In this optimization,  $q_T$  will end up remote from  $q_0$ . So we need to iterate Gauss-Newton, as described on slide 33.
- 2) Compute  $q_{0:T}$  as interpolation between  $q_0$  and  $q_T$ : Given the initial configuration  $q_0$  and the final  $q_T$ , interpolate on a straight line with a motion profile. E.g.,

$$q_t = q_0 + \mathsf{MP}(t/T) (q_T - q_0)$$

## Task space interpolation

1) Compute  $y_{0:T}$  as interpolation between  $y_0$  and  $y_T$ : Given a initial task value  $y_0$  and a desired final task value  $y_T$ , interpolate on a straight line with a motion profile. E.g,

$$y_t = y_0 + \mathsf{MP}(t/T) (y_T - y_0)$$

2) Project  $y_{0:T}$  to  $q_{0:T}$  using inverse kinematics: Given the task trajectory  $y_{0:T}$ , compute a corresponding joint trajectory  $q_{0:T}$  using inverse kinematics

$$q_{t+1} = q_t + J^{\sharp}(y_{t+1} - \phi(q_t))$$

(As steps are small, we should be ok with just using this local linearization.)





- Assume we have m simultaneous tasks; for each task i we have:
  - a kinematic map  $\phi_i: \mathbb{R}^n \to \mathbb{R}^{d_i}$
  - a current value  $\phi_i(q_t)$
  - a desired value  $y_i^*$
  - a precision  $\varrho_i$  (equiv. to a task cost metric  $C_i = \varrho_i \ \mathbf{I}$ )

- Assume we have m simultaneous tasks; for each task i we have:
  - a kinematic map  $\phi_i: \mathbb{R}^n \to \mathbb{R}^{d_i}$
  - a current value  $\phi_i(q_t)$
  - a desired value  $y_i^*$
  - a precision  $\varrho_i$  (equiv. to a task cost metric  $C_i = \varrho_i \ \mathbf{I}$ )
- Each task contributes a term to the objective function

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \varrho_1 \|\phi_1(q) - y_1^*\|^2 + \varrho_2 \|\phi_2(q) - y_2^*\|^2 + \cdots$$

- Assume we have m simultaneous tasks; for each task i we have:
  - a kinematic map  $\phi_i: \mathbb{R}^n \to \mathbb{R}^{d_i}$
  - a current value  $\phi_i(q_t)$
  - a desired value  $y_i^*$
  - a precision  $\varrho_i$  (equiv. to a task cost metric  $C_i = \varrho_i \mathbf{I}$ )
- Each task contributes a term to the objective function

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \varrho_1 \|\phi_1(q) - y_1^*\|^2 + \varrho_2 \|\phi_2(q) - y_2^*\|^2 + \cdots$$

which we can also write as

$$\begin{split} q^* &= \operatorname*{argmin}_q \|q - q_0\|_W^2 + \|\Phi(q)\|^2 \\ \text{where } \Phi(q) &:= \begin{pmatrix} \sqrt{\varrho_1} \ (\phi_1(q) - y_1^*) \\ \sqrt{\varrho_2} \ (\phi_2(q) - y_2^*) \\ \vdots \end{pmatrix} \quad \in \mathbb{R}^{\sum_i d_i} \end{split}$$

• We can "pack" together all tasks in one "big task"  $\Phi$ .

Example: We want to control the 3D position of the left hand and of the right hand. Both are "packed" to one 6-dimensional task vector which becomes zero if both tasks are fulfilled.

- The big  $\Phi$  is scaled/normalized in a way that
  - the desired value is always zero
  - the cost metric is I
- Using the local linearization of  $\Phi$  at  $q_0,\,J=\frac{\partial\Phi(q_0)}{\partial q},$  the optimum is

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \|\Phi(q)\|^2$$
$$\approx q_0 - (J^{\mathsf{T}}J + W)^{-1}J^{\mathsf{T}} \Phi(q_0) = q_0 - J^{\#}\Phi(q_0)$$



- We learnt how to "puppeteer a robot"
- We can handle many task variables (but specifying their precisions  $\varrho_i$  becomes cumbersome...)
- In the remainder:
  - A. Classical limit of "hierarchical IK" and nullspace motion
  - B. What are interesting task variables?

#### **Hierarchical IK & nullspace motion**

- In the classical view, tasks should be executed *exactly*, which means taking the limit  $\varrho_i \to \infty$  in some prespecified hierarchical order.
- We can rewrite the solution in a way that allows for such a hierarchical limit:
- One task plus "nullspace motion":

$$\begin{split} f(q) &= \|q - a\|_W^2 + \varrho_1 \|J_1 q - y_1\|^2 \\ q^* &= [W + \varrho_1 J_1^\top J_1]^{-1} \left[W a + \varrho_1 J_1^\top y_1\right] \\ &= J_1^\# y_1 + (\mathbf{I} - J_1^\# J_1) a \\ J_1^\# &= (W/\varrho_1 + J_1^\top J_1)^{-1} J_1^\top = W^{-1} J_1^\top (J_1 W^{-1} J_1^\top + \mathbf{I}/\varrho_1)^{-1} \end{split}$$

• Two tasks plus "nullspace motion":

$$f(q) = \|q - a\|_W^2 + \varrho_1 \|J_1 q - y_1\|^2 + \varrho_2 \|J_2 q - y_2\|^2$$

$$q^* = J_1^\# y_1 + (\mathbf{I} - J_1^\# J_1)[J_2^\# y_2 + (\mathbf{I} - J_2^\# J_2)a]$$

$$J_2^\# = (W/\varrho_2 + J_2^\top J_2)^{-1} J_2^\top = W^{-1} J_2^\top (J_2 W^{-1} J_2^\top + \mathbf{I}/\varrho_2)^{-1}$$

etc...

## Hierarchical IK & nullspace motion

- The previous slide did nothing but rewrite the nice solution  $q^*=-J^\#\Phi(q_0)$  (for the "big"  $\Phi$ ) in a strange hierarchical way that allows to "see" nullspace projection
- The benefit of this hierarchical way to write the solution is that one can take the hierarchical limit  $\varrho_i \to \infty$  and retrieve classical hierarchical IK
- The drawbacks are:
  - It is somewhat ugly
  - In practise, I would recommend regularization in any case (for numeric stability). Regularization corresponds to NOT taking the full limit  $\varrho_i \to \infty$ . Then the hierarchical way to write the solution is unnecessary. (However, it points to a "hierarchical regularization", which might be numerically more robust for very small regularization?)
  - The general solution allows for arbitrary blending of tasks

#### Reference: interesting task variables

The following slides will define 10 different types of task variables. This is meant as a reference and to give an idea of possibilities...

#### **Position**

| Position of some point attached to link $i$ |                                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------------|
| dimension                                   | d=3                                                                                |
| parameters                                  | link index $i$ , point offset $v$                                                  |
| kin. map                                    | $\phi_{iv}^{pos}(q) = T_{W \to i} \ v$                                             |
| Jacobian                                    | $J_{iv}^{pos}(q)_{\cdot k} = [k \prec i] \; a_k \times (\phi_{iv}^{pos}(q) - p_k)$ |

#### Notation:

- $-a_k, p_k$  are axis and position of joint k
- $[k \prec i]$  indicates whether joint k is between root and link i
- $J_{\cdot k}$  is the kth column of J

#### **Vector**

| Vector attached to link i |                                                  |
|---------------------------|--------------------------------------------------|
| dimension                 | d=3                                              |
| parameters                | link index $i$ , attached vector $v$             |
| kin. map                  | $\phi_{iv}^{vec}(q) = R_{W \to i} \ v$           |
| Jacobian                  | $J_{iv}^{vec}(q) = A_i 	imes \phi_{iv}^{vec}(q)$ |

#### Notation:

- $A_i$  is a matrix with columns  $(A_i)_{\cdot k} = [k \prec i] \; a_k$  containing the joint axes or zeros
- the short notation " $A \times p$ " means that each *column* in A takes the cross-product with p.

#### Relative position

| Position of a point on link $i$ relative to point on link $j$ |                                                                                                               |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| dimension                                                     | d=3                                                                                                           |
| parameters                                                    | link indices $i, j$ , point offset $v$ in $i$ and $w$ in $j$                                                  |
| kin. map                                                      | $\phi^{pos}_{iv jw}(q) = R_j^{-1}(\phi^{pos}_{iv} - \phi^{pos}_{jw})$                                         |
| Jacobian                                                      | $J_{iv jw}^{pos}(q) = R_j^{-1}[J_{iv}^{pos} - J_{jw}^{pos} - A_j \times (\phi_{iv}^{pos} - \phi_{jw}^{pos})]$ |

#### Derivation:

For y=Rp the derivative w.r.t. a rotation around axis a is  $y'=Rp'+R'p=Rp'+a\times Rp$ . For  $y=R^{-1}p$  the derivative is  $y'=R^{-1}p'-R^{-1}(R')R^{-1}p=R^{-1}(p'-a\times p)$ . (For details see http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf)

#### **Relative vector**

| Vector attached to link $i$ relative to link $j$ |                                                                           |
|--------------------------------------------------|---------------------------------------------------------------------------|
| dimension                                        | d=3                                                                       |
| parameters                                       | link indices $i, j$ , attached vector $v$ in $i$                          |
| kin. map                                         | $\phi^{vec}_{iv j}(q) = R_j^{-1} \phi^{vec}_{iv}$                         |
| Jacobian                                         | $J_{iv j}^{vec}(q) = R_j^{-1}[J_{iv}^{vec} - A_j \times \phi_{iv}^{vec}]$ |

## Alignment

| Alignment of a vector attached to link $i$ with a reference $\boldsymbol{v}^*$ |                                                                       |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| dimension                                                                      | d=1                                                                   |
| parameters                                                                     | link index $i$ , attached vector $v$ , world reference $v^{\ast}$     |
| kin. map                                                                       | $\phi_{iv}^{\mathrm{align}}(q) = v^{*\top}  \phi_{iv}^{\mathrm{vec}}$ |
| Jacobian                                                                       | $J_{iv}^{\mathrm{align}}(q) = v^{*\top} J_{iv}^{\mathrm{vec}}$        |

 $\text{Note:} \quad \phi^{\text{align}} = 1 \leftrightarrow \text{align} \quad \phi^{\text{align}} = -1 \leftrightarrow \text{anti-align} \quad \phi^{\text{align}} = 0 \leftrightarrow \text{orthog}.$ 

# **Relative Alignment**

| Alignment a vector attached to link $i$ with vector attached to $j$ |                                                                                                                                                       |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| dimension                                                           | d=1                                                                                                                                                   |
| parameters                                                          | link indices $i, j$ , attached vectors $v, w$                                                                                                         |
| kin. map                                                            | $\phi_{iv jw}^{\mathrm{align}}(q) = (\phi_{jw}^{\mathrm{vec}})^{\!\top}  \phi_{iv}^{\mathrm{vec}}$                                                    |
| Jacobian                                                            | $J_{iv jw}^{\mathrm{align}}(q) = (\phi_{jw}^{\mathrm{vec}})^{\!\top} J_{iv}^{\mathrm{vec}} + \phi_{iv}^{\mathrm{vec}}^{\!\top} J_{jw}^{\mathrm{vec}}$ |

#### **Joint limits**

| Penetration of joint limits |                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|
| dimension                   | d=1                                                                                                                  |
| parameters                  | joint limits $q_{\mathrm{low}}, q_{\mathrm{hi}},$ margin $m$                                                         |
| kin. map                    | $\phi_{\text{limits}}(q) = \frac{1}{m} \sum_{i=1}^{n} [m - q_i + q_{\text{low}}]^+ + [m + q_i - q_{\text{hi}}]^+$    |
| Jacobian                    | $ \boxed{ J_{\text{limits}}(q)_{1,i} = -\frac{1}{m}[m-q_i+q_{\text{low}}>0] + \frac{1}{m}[m+q_i-q_{\text{hi}}>0] } $ |

$$[x]^+ = x > 0$$
? $x : 0$  [···]: indicator function



#### **Collision limits**

| Penetration of collision limits |                                                                                                           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|
| dimension                       | d=1                                                                                                       |
| parameters                      | margin $m$                                                                                                |
| kin. map                        | $\phi_{\text{col}}(q) = \frac{1}{m} \sum_{k=1}^{K} [m -  p_k^a - p_k^b ]^+$                               |
| Jacobian                        | $J_{\text{col}}(q) = \frac{1}{m} \sum_{k=1}^{K} [m -  p_k^a - p_k^b  > 0]$                                |
|                                 | $(-J_{p_{k}^{a}}^{pos} + J_{p_{k}^{b}}^{pos})^{	op} rac{p_{k}^{a} - p_{k}^{b}}{ p_{k}^{a} - p_{k}^{b} }$ |

A collision detection engine returns a set  $\{(a,b,p^a,p^b)_{k=1}^K\}$  of potential collisions between link  $a_k$  and  $b_k$ , with nearest points  $p_k^a$  on a and  $p_k^b$  on b.

## **Center of gravity**

| Center of gravity of the whole kinematic structure |                                                              |
|----------------------------------------------------|--------------------------------------------------------------|
| dimension                                          | d=3                                                          |
| parameters                                         | (none)                                                       |
| kin. map                                           | $\phi^{cog}(q) = \sum_{i} mass_{i} \; \phi^{pos}_{ic_{i}}$   |
| Jacobian                                           | $J^{\mathrm{cog}}(q) = \sum_{i} mass_{i} \ J^{pos}_{ic_{i}}$ |

 $c_i$  denotes the center-of-mass of link i (in its own frame)

#### Homing

| The joint angles themselves |                                 |
|-----------------------------|---------------------------------|
| dimension                   | d = n                           |
| parameters                  | (none)                          |
| kin. map                    | $\phi_{qitself}(q) = q$         |
| Jacobian                    | $J_{qitself}(q) = \mathbf{I}_n$ |

Example: Set the target  $y^*=0$  and the precision  $\varrho$  very low  $\to$  this task describes posture comfortness in terms of deviation from the joints' zero position. In the classical view, it induces "nullspace motion".

#### Task variables – conclusions



- There is much space for creativity in defining task variables! Many are extensions of  $\phi^{\text{pos}}$  and  $\phi^{\text{vec}}$  and the Jacobians combine the basic Jacobians.
- What the right task variables are to design/describe motion is a very hard problem! In what task space do humans control their motion? Possible to learn from data ("task space retrieval") or perhaps via Reinforcement Learning.
- In practice: Robot motion design (including grasping) may require cumbersome hand-tuning of such task variables.