5 Sumy i sumy proste podprzestrzeni liniowych

Niech V bedzie przestrzenią liniową nad ciałem K a V_1 oraz V_2 będą podprzestrzeniami V. Pokazaliśmy w poprzednich rozdziałach, że $V_1 \cap V_2$ jest podprzestrzenią przestrzeni V. Pokazaliśmy, tez że $V_1 \cup V_2$ jest podprzestrzenią V wtedy i tylko wtedy gdy $V_1 \subseteq V_2$ lub $V_2 \subseteq V_1$.

Definicja 5.1. Niech V bedzie przetrzenią liniową nad ciałem K a V_1, V_2, \ldots, V_k będą podprzestrzeniami V. Definiujemy

$$V_1 + \ldots + V_k = \{v \in V; v = v_1 + \cdots + v_k, v_i \in V_i\}.$$

Zauważmy, że jeśli V_1, V_2, \ldots, V_k będą podprzestrzeniami V to $V_1 + \ldots + V_k$ jest podprzestrzenią V. Nazywamy ją sumą podprzestrzeni V_1, V_2, \ldots, V_k .

Lemat 5.2.
$$V_1 + ... + V_k = \mathcal{L}(V_1 \cup V_2 \cup ... \cup V_k)$$

Niech teraz $V_i = \mathcal{L}(\mathcal{B}_i)$. Wtedy oczywiste jest, że $V_1 + \ldots + V_k = \mathcal{L}(\mathcal{B}_1 | \ldots | \mathcal{B}_k)$.

Twierdzenie 5.3. Niech V_1 , V_2 bedą skończenie wymiarowymi podprzestrzeniami przestrzeni V. Wówczas

$$dim(V_1 + V_2) = dimV_1 + dimV_2 - dim(V_1 \cap V_2)$$

Definicja 5.4. Przestrzeń V jest sumą prostą swoich podprzestrzeni V_1, V_2, \ldots, V_k , jesli każdy wektor $v \in V$ daje się jednoznacznie przedstawić jako $v = v_1 + \cdots + v_k$, $v_i \in V_i$. Piszemy wówczas $V = V_1 \oplus \cdots \oplus V_k$.

Oczywiście każda suma prosta jest suma podprzestrzeni.

Twierdzenie 5.5. Niech V_1, V_2 będą podprzestrzeniami przestrzeniV. Wówczas

$$V = V_1 \oplus V_2 \quad \Leftrightarrow \quad V = V_1 + V_2, \quad V_1 \cap V_2 = 0.$$

W przypadku sumy więcej niz dwu podprzestrzeni warunek po prawej stronie jest bardziej skomplikowany.

Wniosek 5.6. Niech V_1, V_2 będą podprzestrzeniami skończenie wymiarowej przestrzeni V. Załóżmy, ze $V_1 \cap V_2 = 0$. Wówczas

$$V = V_1 \oplus V_2 \quad \Leftrightarrow \quad V = V_1 + V_2.$$

Twierdzenie 5.7. Niech $V = V_1 + \cdots + V_k$ oraz niech \mathcal{B}_i będzie bazą przestrzeni V_i , dla $i = 1, \dots, k$. Wtedy następujące warunki są równoważne:

- 1. $V = V_1 \oplus \cdots \oplus V_k$.
- 2. Układ $(\mathcal{B}_1 | \ldots | \mathcal{B}_k)$ jest bazą przestrzeni V.
- 3. $Układ(\mathcal{B}_1 | \ldots | \mathcal{B}_k)$ jest liniowo niezależny.

Niech teraz W będzie podprzestrzenią skończenie wymiarowej przestrzeni V. Istnieje podprzestrzeń U < V, taka że $V = W \oplus U$. Podprzestrzeń taką nazywamy podprzestrzenią dopełniającą. Nie jest ona wyznaczona jednoznacznie, ale wszystkie podprzestrzenie dopełniające mają ten sam wymiar równy dimV - dimW. Róznicę wymiarów dimV - dimW nazywamy kowymiarem podprzestrzeni W i oznaczamy codimW.