CMOS Digital VLSI Design

Prof. Habil. Dr. Ing. Decebal Popescu

Modulul 2

Inversorul CMOS

Inversorul CMOS

- Ideea de bază a unui inversor CMOS
- Modelul de tip switch al unui inversor
- Comportament static
- Caracteristicile de transfer ale tensiunii V_{Tc} în cazul în care variez tensiunea de intrare (V_{in}) de la 0V la 5V cum se va comporta tensiunea de ieșire (V_{out})
- Comutarea switching threshold acea tensiune la care tranziția din 0 în 1 sau din 1 în 0 are loc
- Zgomot orice semnal introdus în price circuit are un zgomot, de aceea în prima fază dorim să rejectăm acest zgomot
- Calculul câștigului = $\frac{\partial V_{out}}{\partial V_{in}}$

Inversorul CMOS

Α	Υ
0	
1	

MOSZOFF. prussiu mad saturat.

(JG = 1/1H) 1 MOS 20PF MMOS 20N uppos functioneagé ân modul Saturat PMOS functiones E ch anto ff.

Inversorul ca un comutator – switch model

Operarea în modul static

Mod static det. & Switch din o du 1 san din 1 1) Na se consuma partere D'ale directa intre UDB & GND 2). Z imbruatateste fanout -Do-France 1 = 4. Steady state. 3). Impedanté micé le jestre farsnigeaté atennares 2 gomotului

Operarea în modul static

- M1 se mai numește și dispozitiv pull down – PDD – 1 în 0
- M2 se mai numește și dispozitiv pull up (PUD) – 0 în 1
- Tot ce este deasupra lui V_{out} este PUD
- Tot ce este sub V_{out} este PDD

Cracteristicile de transfer pentru tensiune - V_{TC}

$$Vdd = 2.5$$

Source: prof. Sudeb Dasgupta course

$$I_{DSp} = -I_{DSn}$$
 -» (+ pentru că avem electroni și – pentru că avem găuri)

$$V_{GSn} = V_{in}$$

$$V_{GSp} = V_{in} - V_{DD}$$

$$V_{DSn} = V_{out}$$

$$V_{DSp} = V_{out} - V_{DD}$$

Cracteristicile de transfer pentru tensiune - V_{TC}

Source: Digital Integrated Circuits (2nd Edition)- Jan M. Rabaey

Cracteristicile de transfer pentru tensiune - V_{TC}

Pragul de comutare

• Din figura anterioară avem că tranzistorul nMOS este în modul saturat ca și tranzistorul pMOS deci $I_{DSn}=-I_{DSp}$ adică $I_{DSn}+I_{DSp}=0$ ceea ce conduce la următoarea exprimare

$$k_n V_{DSATn} \left(V_M - V_{Tn} - \frac{V_{DSATn}}{2} \right) + k_p V_{DSATp} \left(V_M - V_{DD} - V_{Tp} - \frac{V_{DSATp}}{2} \right) = 0$$

unde

$$k_n = \mu_n C_{ox} \frac{W}{L}$$

de unde rezultă V_M

$$V_M = \frac{\left(v_{Tn} + \frac{v_{DSATn}}{2} \right) + r\left(v_{DD} + v_{Tp} + \frac{v_{DSATp}}{2} \right)}{1 + r} \text{ unde } r = \frac{k_p v_{DSATp}}{k_n v_{DSATn}}$$

Presupunând că $V_{DSATp} = V_{DSATn}$ atunci r se va deveni $r = \frac{\mu_p W_p}{\mu_n W_n}$

Pragul de comutare

• Dacă presupun că r=1 iar $V_{tn}=V_{tp}$ și $V_{DSATn}=-V_{DSATp}$ atunci $V_m=rac{V_{DD}}{2}$

• Totodată
$$\frac{\mu_p W_p}{\mu_n W_n} = 1 \ \Rightarrow \frac{\mu_p}{\mu_n} = \frac{W_n}{W_p}$$

• Având în vedere faptul că mobilitatea electronilor este de 3 ori mai mare decât mobilitatea găurilor, deci raportul de $\frac{1}{3}$ va trebui menținut și în partea dreaptă a egalității ceea ce conduce la faptul că W_p este mai mare decât W_2 de cel puțin 3 ori.

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

Α	В	Y
0	0	1
0	1	
1	0	
1	1	
)o_

0	0	4
	O	1
0	1	1
1	0	
1	1	

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Poarta CMOS NOR

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y = 0 dacă toate intrările sunt 1
- Y = 1 dacă toate intrările sunt 0

Layout

- Chip-urile sunt specificate printr-un set de măști
- Dimensiunea minimă a măstilor determină mărimea tranzistorului (deci viteza, costul, și puterea)
- Dimensiunea trăsăturii f = distanța dintre drenă și sursă
 - Setată de lățimea minimă a polysilicon
- Dimensiunea trsăturii crește cu 30% la fiecare 3 ani
- Normalizarea dimensiunii trăsăturii când descriem regulile proiectării
- Regulile se exprimă în termeni de $\lambda = f/2$
 - a.î. $\lambda = 0.3 \, \mu \text{m} 0.6 \, \mu \text{m}$ intr-un proces

Reguli de proiectare

Reguli de proiectare elementare

Inversorul

- Dimensiunile tranzistorului sunt specificate ca Lăţime/Lungime
 - Dimensiunea minimă 4λ / 2λ , uneori denumită unitatea 1
 - Pentru un proces de 0.6 μm, W=1.2 μm, L=0.6 μm

Sumar 1

- Tranzistoarele MOS sunt o stivă de porți, oxid, silicon
- Pot fi vizualizate ca switch-uri controlate electric
- Construim porți logice din switch-uri
- Desenăm măștile layout-ului specific din tranzistori