NOM: PRÉNOM:

Soit f une fonction de classe \mathcal{C}^n au voisinage de a, avec n entier naturel. Donner la formule de Taylor-Young à l'ordre n en a.

1)
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + o((x-a)^n)$$

Donner un DL de:

2)	$\cos(x)$	en x = 0	à l'ordre n	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$
3)	e^{3x}	en $x = 0$	à l'ordre 4	$1 + 3x + \frac{9x^2}{2} + \frac{9x^3}{2} + \frac{27x^4}{8} + O(x^5)$
4)	$\sin(2x)$	en $x = 0$	à l'ordre 4	$2x - \frac{4x^3}{3} + O\left(x^5\right)$
5)	$e^{3x}\sin\left(2x\right)$	en $x = 0$	à l'ordre 2	$2x + 6x^2 + O\left(x^3\right)$
6)	$e^{3x} - \sin(2x)$	en $x = 0$	à l'ordre 3	$1 + x + \frac{9x^2}{2} + \frac{35x^3}{6} + O\left(x^4\right)$
7)	$\frac{1}{x^2+1}$	en x = 0	à l'ordre 4	$1 - x^2 + x^4 + O(x^5)$
8)	$\sqrt{x+3}$	en $x = 1$	à l'ordre 2	$2 + \frac{1}{4}(x-1) - \frac{1}{32}\frac{(x-1)^2}{2} + o((x-1)^2)$
9)	$3x^5 - 4x^2 + x$	en $x = 0$	à l'ordre 3	$x - 4x^2 + O\left(x^4\right)$
10)	$x^4 - 2x^3 + 1$	en x = 1	à l'ordre 3	$-2(x-1) + 2(x-1)^3 + o((x-1)^3)$