Álgebra Linear Douglas Smigly

MAT5730

2º semestre de 2019

Conteúdo

1	Esp	paços vetoriais	5
	1.1	Base e Dimensão	5
	1.2	Subespaços	
	1.3	Coordenadas	
2	Tra	nsformações Lineares 1	1
	2.1	Definições	1
	2.2	Espaço Dual	2
	2.3	Espaço Bidual	2
	2.4	Anuladores	3
	2.5	Transpostas	3
	2.6	Espaços Quocientes	4
3	Det	terminantes 1	7
	3.1	Formas Multilineares	7
	3.2	Determinantes	9
4	Formas Canônicas		3
	4.1	Autovalores e Autovetores	3
	4.2	Polinômio Minimal	
	4.3	Subespaços Invariantes	

CONTEÚDO

Capítulo 1

Espaços vetoriais

Durante este capítulo, sempre adotaremos K como sendo um corpo qualquer.

1.1 Base e Dimensão

Definição 1.1.1. Seja $V \neq 0$ um espaço vetorial sobre um corpo K. Um subconjunto $B \subseteq V$ chama-se uma **base** de V se:

- B é linearmente independente.
- B gera V.

Lembramos aqui que B é linearmente independente se todo subconjunto finito de B é linearmente independente, ou seja

$$\sum_{\substack{J\subseteq I\\|J|<\aleph_0}}\alpha_jv_j=0,\ \alpha_j\in K, v_j\in B\Rightarrow \alpha_j=0\ \forall j\in J$$

Teorema 1.1.2. Seja V um espaço vetorial e sejam $I\subseteq V$ linearmente independente e $S\subseteq V$ gerador de V tais que $I\subseteq S$. Então existe uma base B de V tal que

$$I \subseteq B \subseteq S$$
.

Demonstração. Consideremos o conjunto:

$$\mathcal{M} = \{ M \subseteq S \mid M \text{ \'e linearmente independente e } I \subseteq M \}$$

Então $\langle \mathcal{M}, \subseteq \rangle$ é um conjunto parcialmente ordenado indutivo (ou seja, todo subconjunto totalmente ordenado possui uma cota superior). De fato, $I \in \mathcal{M}$, o que nos mostra que $\mathcal{M} \neq \emptyset$, e para subconjunto totalmente ordenado não vazio $\mathcal{C} \subseteq \mathcal{M}$ então $\bigcup M \in \mathcal{M}$.

Logo, pelo Lema de Zorn, \mathcal{M} possui um elemento maximal B. Vamos provar que esse elemento maximal é de fato uma base para V.

- B é linearmente independente: segue da definição de \mathcal{M} .
- B gera V: Suponha por absurdo que B não gera V. Então existe $v \in S$ que não é combinação linear de elementos de B, aí $B \cup \{v\}$ é linearmente independente e $I \subseteq B \cup \{v\} \subseteq S$. Então $B \cup \sqsubseteq \in \mathcal{M}$, uma contradição, pois B já é um elemento maximal de \mathcal{M} e obviamente $B \subseteq B \cup \{v\}$. Logo B gera V. Portanto, B é uma base de V e $I \subseteq B \subseteq S$.

O resultado acima mostra que todo espaço vetorial tem base, bastando para isso tomar $I = \{v\}$ e S = V.

Corolário 1.1.3. Temos o seguinte:

- Todo espaço vetorial V tem uma base.
- ullet Para todo I \subseteq V linearmente independente, existe uma base B de V que contém I.
- Para todo $S \subseteq V$ gerador de V, existe uma base B de V tal que $B \subseteq S$.

Lema 1.1.4. Sejam $\{v_i\}_{i\in\mathbb{N}_{\leq n}}$ linearmente independente e $\{u_j\}_{j\in\mathbb{N}_{\leq m}}$ um conjunto gerador de V. Então $n\leq m$.

Sublema 1.1.5. Um conjunto $\{v_i\}_{i\in\mathbb{N}_{\leq n}}$ é linearmente dependente se e somente se existem $i\in\mathbb{N}_{\leq n}$ e um $\alpha:i\to K$ tais que

$$v_i = \sum_{j < i} \alpha_j v_j$$

Demonstração. Se $\{v_i\}_{i\in n}$ é linearmente dependente, então existe $\alpha:n\to K$ tal que $\exists i\in n:\alpha_n$ e $\sum_{i\in n}\alpha_iv_i=0$. Seja i o maior elemento de n tal que $\alpha_i\neq 0$. Então

$$\begin{split} \alpha_1 v_1 + \ldots + \alpha_i v_i &= 0 \Rightarrow \alpha_1 v_1 + \ldots + \alpha_{i-1} v_{i-1} = -\alpha_i v_i \Rightarrow \\ v_i &= -\sum_{i \in i} \frac{\alpha_j}{\alpha_i} v_j \end{split}$$

Vamos relembrar o que fizemos até aqui com um exemplo:

Exemplo 1.1.6. Considere $V = \mathbb{R}^4$ um \mathbb{R} -espaço vetorial. Sejam os vetores:

$$\begin{aligned} \mathbf{v}_1 &= (1,0,0,0) \\ \mathbf{v}_2 &= (0,1,0,-1) \\ \mathbf{v}_3 &= (0,0,1,-1) \\ \mathbf{v}_4 &= (1,-1,0,0) \\ \mathbf{v}_5 &= (1,2,1,0) \end{aligned}$$

Considere I = $\{v_1, v_2\}$ e S = $\{v_1, v_2, v_3, v_4, v_5\}$. Observe que I é LI; de fato,

$$\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 = 0 \Rightarrow \alpha_1(1,0,0,0) + \alpha_2(0,1,0,-1) = 0 \Rightarrow \left\{ \begin{array}{l} \alpha_1 = 0 \\ \alpha_2 = 0 \\ -\alpha_2 = 0 \end{array} \right. \Rightarrow \alpha_1 = \alpha_2 = 0$$

Ademais, tomando $v = (x, y, z, w) \in \mathbb{R}^4$, temos que

$$(x-z+w+y)v_1+(z-w-\varepsilon)v_2+(z-\varepsilon)v_3+(z-w-y+\varepsilon)v_4+\varepsilon_5=v_5$$

para todo $\varepsilon \in \mathbb{R}$. Logo, S gera V.

Então, existe uma base B de \mathbb{R}^4 tal que

$$\{v_1, v_2\} \subset B \subset \{v_1, v_2, v_3, v_4, v_5\}$$

De fato, esta base é $B\{v_1, v_2, v_3, v_4\}$, pois percebe-se que

$$v_5 = \frac{5}{2}v_1 + \frac{1}{2}v_2 - \frac{1}{2}v_3 - \frac{3}{2}v_4$$

Para trabalhar com a cardinalidade das bases, utilizaremos alguns fatos conhecidos, enunciados na

Proposição 1.1.7. Se λ e μ são cardinais, então:

- Se $\lambda \leq \mu$ e $\mu \leq \lambda$, então $\lambda = \mu$. (Teorema de Cantor-Bernstein)
- Se λ e μ são infinitos, então

$$\lambda + \mu = \lambda \mu = \max{\{\lambda, \mu\}}.$$

Teorema 1.1.8. Seja V um espaço vetorial, então duas bases quaisquer têm o mesmo cardinal.

Demonstração. Sejam B e C bases de V. Para $u \in C$ existem um conjunto finito $I_u \subseteq B$ e uma função $\alpha_u : I_u \to K$ tais que $u = \sum_{i \in I_u} \alpha_{u,i}$ i. Seja $I \subseteq \bigcup_{u \in C} \subseteq B$. Então I gera V, assim I = C. Desse modo:

$$|\mathrm{B}| = |\mathrm{I}| = \left| \bigcup_{u \in \mathrm{C}} \mathrm{I}_u \right| \leq \sum_{u \in \mathrm{C}} |\mathrm{I}_u| \leq \aleph_0 \cdot |\mathrm{C}| = |\mathrm{C}|,$$

assim $|B| \le |C|$. Analogamente $|C| \le |B|$. Portanto |B| = |C|.

Definição 1.1.9. Dizemos que a dimensão de um espaço vetorial é a cardinalidade de sua base.

1.2 Subespaços

Proposição 1.2.1. Seja V um espaço vetorial e seja \mathcal{W} um conjunto de subespaços. Então $\bigcap \mathcal{M}$ é um subespaço de V.

Definição 1.2.2. Se S é subconjunto de V, definimos:

$$\langle S \rangle = \left\{ \sum_{v \in I} \alpha_v v \mid I \subseteq S \text{ e I \'e finito e } \alpha \in K^I
ight\}$$

e chamamos de **subespaço gerado** por S.

Proposição 1.2.3. Se S é subconjunto de V, então:

$$\langle S \rangle = \{ W \mid W \text{ \'e subespaço de } V \text{ e } W \subseteq S \}.$$

A intersecção de subsespaços sempre é um subespaço, mas o mesmo não acontece com a união de subespaços.

Proposição 1.2.4. Se A e B são subespaços de V tais que A \nsubseteq B e B \nsubseteq A, então A \cup B não é subespaço de V.

Demonstração. Nesse caso, existe $a \in A$ tal que $a \notin B$ e existe $b \in B$ tal que $b \notin A$. Seja c = a + b. Então:

- Se $c \in A$, $b = c a \in A$, o que é impossível.
- Se $c \in B$, $a = c b \in b$, o que é impossível.

Logo, concluímos que $c \notin A \cup B$, absurdo.

Na verdade, $A \cup B$ é um subespaço se e somente se $A \subseteq B$ ou $B \subseteq A.$

Observação 1.2.5. Seja $K = F_2 = \{0, 1\}$, e tome $V = K^2$. Então,

$$V = \langle (0,1) \rangle \cup \langle (1,0) \rangle \cup \langle (1,1) \rangle$$

Na verdade, V só pode ser escrito como união de seus subespaços se K for um corpo finito.

Apesar de não podermos trabalhar com a união, podemos realizar a soma de subespaços, e esta sim é um subespaço:

Definição 1.2.6. Sejam $W_i \subseteq V$, $i \in I$, subespaços de V. Definimos:

$$\sum_{i \in I} W_i = \{w_{i_1} + \ldots + w_{i_k} | k \in \mathbb{N}, w_i \in W_i\}$$

Pode-se mostrar que $\sum\limits_{i\in I}W_i$ é subespaço de V.

Definição 1.2.7. Uma soma $\sum\limits_{i\in I}W_i$ chama-se soma direta se para todo $i\in I$

$$W_i \cap \left(\sum_{j \neq i} W_j
ight) = 0$$

Teorema 1.2.8. Para subespaço A de V, então existe subespaço $B \subseteq V$ tal que $V = A \oplus B$.

Teorema 1.2.9.

$$\dim(A+B)+\dim(A\cap B)=\dim(A)+\dim(B).$$

Demonstração. Seja E base de $A \cap B$. Então existe F tal que $B \cap F = \emptyset$ e $E \cup F$ seja base de A e existe G tal que $A \cap G = \emptyset$ e $E \cup G$ seja base de B. Então $E \cup F \cup G$ é base de A + B. Daí:

$$\dim(A + B) + \dim(A \cap B) = |E| + |F| + |G| + |E| = |E| + |F| + |E| + |G| = \dim(A) + \dim(B)$$

Exemplo 1.2.10. Considere novamente $V = \mathbb{R}^4$. Sejam

$$W_1=\{(x,y,z,t)\in\mathbb{R}^4|y+z+t=0\}$$

$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4 | x + y = 0 \text{ e } z - 2t = 0\}$$

 W_1 e W_2 são subespaços de V. Assim, W_1+W_2 e $W_1\cap W_2$ são subespaços de V. Vamos encontrar bases para eles. Note que

$$\begin{array}{lll} W_1 &=& \{(x,y,z,t) \in \mathbb{R}^4 | y+z+t=0 \} \\ &=& \{(x,y,z,-y-z) \in \mathbb{R}^4 | x,y,z \in \mathbb{R} \} \\ &=& \{(x,0,0,0)+(0,y,0-y)+(0,0,z,-z): x,y,z \in \mathbb{R} \} \\ &=& \langle (1,0,0,0),(0,1,0-1),(0,0,1,-1) \rangle \end{array}$$

Verifica-se também que (1,0,0,0), (0,1,0-1), (0,0,1,-1) são linearmente independentes. Logo, $B_1 = \{(1,0,0,0), (0,1,0-1), (0,0,1,-1)\}$ é base para W_1 . Analogamente, mostra-se que $B_2 = \{(1,-1,0,0), (0,0,2,1)\}$ é base para W_2 . Agora, para determinar uma base de $W_1 + W_2$, podemos escalonar a matriz

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 2 & 1
\end{pmatrix}
\rightarrow \cdots \rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Portanto, o conjunto

$$\mathcal{B} = \{(1,0,0,0), (0,1,0,-1), (0,0,1,-1), (1,-1,0,0)\}$$

é base de $W_1 + W_2$.

Para determinar uma base de $W_1 \cap W_2$, basta resolver o sistema

$$\begin{cases} y+z+t=0\\ x+y=0\\ z-2t=0 \end{cases}$$

Assim, $W_1 \cap W_2 = \langle (3, -3, 2, 1) \rangle$. Observe que

$$\dim(W_1\cap W_2)+\dim(W_1+W_2)=1+4=5=3+2=\dim(W_1)+\dim(W_2)$$

Como $\dim(W_1+W_2)=4$, temos que $W_1+W_2=V=\mathbb{R}^4$. Observe também que, como $\dim(W_1\cap W_2)=1$, a soma W_1+W_2 não é direta.

1.3 Coordenadas

Definição 1.3.1. Seja V um espaço vetorial de dimensão finita. Seja B uma base de V. Então para $v \in V$ existe um único $\alpha : B \to K$ tal que

$$\mathbf{v} = \sum_{\mathbf{b} \in \mathbf{B}} \alpha_{\mathbf{b}} \mathbf{b},$$

e chamamos esse α de [v]_B.

CAPÍTULO 1. ESPAÇOS VETORIAIS

1.3. COORDENADAS

Capítulo 2

Transformações Lineares

2.1 Definições

Definição 2.1.1. Uma função $T: U \to V$ se chama uma **transformação linear** se para quaisquer $\alpha, \beta \in K$ e $u, v \in V$ tivermos $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$.

Definição 2.1.2. Para espaços vetoriais U e V, denotamos o conjunto das transformações lineares de U a V por $\mathcal{L}(U, V)$.

Teorema 2.1.3. Sejam U e V espaços vetoriais sobre K, seja B uma base de U e $f: B \to V$ uma função. Então existe uma única transformação linear $T \in \mathcal{L}(U, V)$ tal que $\forall b \in B: T(b) = f(b)$.

Definição 2.1.4. Seja $T \in \mathcal{L}(U, V)$. Definimos $Ker(T) = \{u \in U : T(u) = 0\}$. Definimos Rank(T) = dim(Im(T)).

Proposição 2.1.5. Seja $T \in \mathcal{L}(U, V)$. Então:

- Ker(T) é um subespaço de U.
- Im(T) é um subespaço de V.
- T é injetora se e só se Ker(T) = 0.
- Se T é bijetora, então $T^{-1} \in \mathcal{L}(V, U)$.

Teorema 2.1.6. Seja $\mathcal{L}(U, V)$, seja B uma base de Ker(T), e seja C um conjunto tal que T[C] seja base de Im(T). Então B \cup C é base V.

 $\begin{array}{l} \textit{Demonstração}. \text{ Para } v \in V \text{ então } T(v) \in Im(T), \text{ então existem um conjunto finito } F \subseteq C \text{ e} \\ \alpha: F \to K \text{ tais que } T(v) = \sum\limits_{w \in F} \alpha_w T(w), \text{ assim } T\left(v - \sum\limits_{w \in F} \alpha_w w\right) = 0, \text{ aí } v - \sum\limits_{w \in F} \alpha_w w \in Ker(T), \\ \text{assim existem conjunto finito } E \subseteq B \text{ e função } \beta: B \to K \text{ tal que } v - \sum\limits_{w \in F} \alpha_w w = \sum\limits_{u \in E} \beta_u u, \text{ aí } \\ v = \sum\limits_{u \in E} \beta_u u + \sum\limits_{w \in F} \alpha_w w. \end{array}$

Por outro lado, para subconjunto finito $E \subseteq B \cup C$ e função $\alpha : E \to K$ tal que $\sum_{e \in E} \alpha_e e = 0$, então $\sum_{e \in E \cap C} \alpha_e T(e) = 0$, aí $\forall E \cap C : \alpha_e = 0$, aí bla.

Teorema 2.1.7 (Teorema do Núcleo-Imagem). Seja $T \in \mathcal{L}(U, V)$. Então

$$U = Ker(T) \oplus Im(T)$$

Corolário 2.1.8.

$$\dim V = \dim(Ker(T)) + \dim(Im(T)).$$

Definição 2.1.9. Se $T \in \mathcal{L}(U, V)$ é bijetora, dizemos que T é um **isomorfismo** de U a V.

Proposição 2.1.10. $T \in \mathcal{L}(U, V)$ é isomorfismo se e somente se T^{-1} também o é.

Proposição 2.1.11. dois espaços vetoriais U e V são isomorfos se e somente se quaisquer duas bases \mathcal{B} de U e \mathcal{C} de V possuem a mesma cardinalidade.

Teorema 2.1.12. Para espaços vetoriais $U \in V$, então U é isomorfo a V se e só se $\dim(U) = \dim(V)$.

2.2 Espaço Dual

Definição 2.2.1. Seja V um espaço vetorial sobre K. Denotamos $V^* = \mathcal{L}(V, K)$. O espaço V^* chama-se o **espaço dual** de V. Os elementos de V chama-se **funcionais lineares**.

Se $\dim(V) = n$, então $\dim(V^*) = n \cdot 1 = n$. Assim, V e V^* são isomorfos (no caso de $\dim(V) = n < \aleph_0$).

Teorema 2.2.2. Seja V um espaço vetorial com $\dim(V) = n$ e $B = \{v_i\}_{i \in n}$ uma base de V. Então existe uma base $B^* = \{f_i\}_{i \in n}$ de V^* tal que $f_i(v_j) = \delta_{i,j}$ para $i,j \in n$. Além disso, $\forall v \in V : v = \sum_{i \in n} f_i(v)v_i$ e $\forall f \in V^* : f = \sum_{i \in n} f(v_i)f_i$.

Demonstração. Para todo $i \in n$, existe uma única função linear $f_i: V \to K$ tal que:

$$f_i(v_j) = \left\{ \begin{array}{ll} 0, & i \neq j \\ 1, & i = j \end{array} \right.$$

Seja $\alpha: n \to K$ tal que:

$$\sum_{\mathbf{i} \in \mathbf{n}} \alpha_{\mathbf{i}} f_{\mathbf{i}} = 0.$$

Para $j \in n$, aplicando este funcional para o vetor $v_i \in B$, então:

$$0 = 0(v_j) = \sum_{i \in n} \alpha_i f_i(v_j) = \alpha_j,$$

ou seja, $\alpha_i = 0$. Portanto B* é linearmente independente.

Além disso, para $v \in V$ existe $\alpha : n \to K$ tal que $v = \sum_{i \in n} \alpha_i v_i$, aí para $i \in n$ temos $f_i(v) = \alpha_i f_i(v_i) = \alpha_i$; logo $f(v) = \sum_{i \in n} \alpha_i f(v_i) = \sum_{i \in n} f(v_i) f_i(v)$.

Definição 2.2.3. A base B* chama-se a base dual da base B.

2.3 Espaço Bidual

Definição 2.3.1. Seja V um espaço vetorial sobre K. O espaço $V^{**} = (V^*)^*$ chama-se o **espaço** bidual do espaço V.

Definição 2.3.2. Para $v \in V$, definamos $\varphi_v : V^* \to K$ assim:

$$\forall f \in V^* : \varphi_v(f) = f(v).$$

Então $\varphi_{\mathbf{v}} \in \mathbf{V}^{**}$.

Proposição 2.3.3. $\varphi \in \mathcal{L}(V, V^{**})$ e φ é injetora.

Demonstração. Para $v \in Ker(\varphi)$, então $\varphi_v = 0$, aí para todo $f \in V^*$ temos $f(v) = \varphi_v(f) = 0$, aí para todo $i \in n$ temos $f_i(v) = 0$, aí $v = \sum_{i \in n} f_i(v) v_i = 0$, aí v = 0.

Seja B uma base de V, então para cada $a \in B$ definimos a transformação linear $f_a \in V^*$ por $f_a(b) = \delta_{a,b}$, então $(f_a)_{a \in B}$ é linearmente independente em V^* e para todo $v \in V$ existem um conjunto finito $F \subseteq B$ tal que $v = \sum_{b \in F} f_b(v)b$.

Corolário 2.3.4. Se $\dim(V) = n < \aleph_0$ então $\varphi : V \to V^{**}$ é um isomorfismo.

Demonstração.

$$\dim(V) = \dim(V^*) = \dim(V^{**}).$$

Observação 2.3.5. Nesse caso φ é um isomorfismo natural, ou seja, não depende da escolha de uma base.

Corolário 2.3.6. Se $\dim(V) < \aleph_0$, então toda base de V^* é a base dual para uma base de V.

Demonstração. Seja C uma base de V*. Consideremos a base dual C* de V**. Mas V** \cong V, então existe $v: C \to V$ tal que $\forall c \in C: f_c = \varphi_{v_c}$, assim:

$$c(v_d) = \varphi_{v_d}(c) = f_d(v_c) = \delta_{d,c} = \delta_{c,d},$$

logo C é base dual da base $(v_c)_{c \in C}$ de V.

2.4 Anuladores

Definição 2.4.1. Seja V um espaço vetorial e seja $S \subseteq V$ um subconjunto. Então definimos:

$$S^0=\{f\in V^*\mid \forall s\in S: f(s)=0\}.$$

O conjunto S^0 chama-se o **anulador** de S.

Proposição 2.4.2. S^0 é um subespaço de V.

Teorema 2.4.3. Seja V um espaço com $\dim(V) < \aleph_0$ e W \subseteq V um subespaço. Então:

$$\dim(V) = \dim(W) + \dim(V^0).$$

 $\begin{array}{ll} \textit{Demonstração}. \ \ Seja \ dim(V) = n \ e \ dim(W) = m. \ \ Escolhemos uma base \ (v_i)_{i \in m} \ de \ W \ e \ complete mola até uma base \ (v_i)_{i \in n} \ de \ V. \ \ Consideremos a base dual \ (f_{v_i})_{i \in n} \ de \ V^*. \ \ Mostraremos que \ (f_{v_i})_{i \in n \setminus m} \ é \ uma base \ de \ W^0. \ \ \acute{E} \ claro \ que \ \forall i \in n \setminus m : f_{v_i} \in W^0. \ \ Seja \ f \in W^0, \ então \ f = \sum_{i \in n} f(v_i) f_{v_i} = \sum_{i \in n \setminus m} f(v_i) f_{v_i}. \end{array}$

 $\textbf{Teorema 2.4.4.} \hspace{0.1cm} \text{Se dim}(V) < \aleph_0 \hspace{0.1cm} \text{e} \hspace{0.1cm} V = U \oplus W, \hspace{0.1cm} \text{ent} \\ \text{ão} \hspace{0.1cm} V^* = U^0 \oplus W^0 \hspace{0.1cm} \text{e} \hspace{0.1cm} U^0 \cong W^* \hspace{0.1cm} \text{e} \hspace{0.1cm} W_0 \cong U^*.$

Demonstração. Seja $B = B_U \cup B_W$ uma base de V, em que B_U é base de U e B_W é base de W. Então na base dual temos $B^* = B_U^* \cup B_V^*$, e pelo teorema anterior temos $\langle B_U^* \rangle = W^0$ e $\langle B_V^* \rangle = U^0$.

2.5 Transpostas

Definição 2.5.1. Sejam U e V espaços vetoriais sobre K, e T $\in \mathcal{L}(U, V)$. Então definimos a **transposta** de T como a função:

$$\begin{array}{ccc} T^t:V^t & \to & U^t \\ f & \mapsto & T^t(f) = f \circ T \end{array}$$

Proposição 2.5.2. Se dim(U) $< \aleph_0$ e T $\in \mathcal{L}(U, V)$, então:

a)
$$\operatorname{Ker}(T^t) = (\operatorname{Im}(T))^0$$
.

- b) $Rank(T^t) = Rank(T)$.
- c) $Im(T^{t}) = (Ker(T))^{0}$.

Demonstração. Temos o seguinte:

a) Temos:

$$\begin{array}{lll} Ker(T^t) & = & \{f \in V^* \mid T^t(f) = 0\} \\ & = & \{f \in V^* \mid f \circ T = 0\} \\ & = & \{f \in V^* \mid \forall u \in U : f(T(u)) = 0\} \\ & = & \{f \in V^* \mid f[Im(T)] = 0\} \\ & = & (Im(T))^0. \end{array}$$

b) Temos $Rank(T^t) = dim(Im(T^t))$ e Rank(T) = dim(Im(T)). Além disso:

$$\dim(\mathbf{V}^*) = \dim(\mathrm{Im}(\mathbf{T}^t)) + \dim(\mathrm{Ker}(\mathbf{T}^t))$$

$$\dim(V^*) = \dim(\operatorname{Im}(T)) + \dim(\operatorname{Im}(T))^0$$

 $\operatorname{mas} \dim(V^*) = \dim(V) \operatorname{e} \dim(\operatorname{Ker}(T^t)) + \dim(\operatorname{Im}(T))^0.$

c) Temos $\operatorname{Im}(T^t) \subseteq (\operatorname{Ker}(T))^0$. Seja $\varphi \in \operatorname{Im}(T^t)$, então existe $g \in V^*$ tal que $\varphi = T^t(g)$, aí para todo $u \in U$ nós temos $\varphi(u) = T^t(g)(u) = g(T(u))$. Se $u \in \operatorname{Ker}(T)$ então T(u) = 0, aí $\varphi(u) = 0$; logo $\varphi \in (\operatorname{Ker}(T))^0$. Além disso:

$$\dim(\mathbf{U}) = \dim(\mathrm{Ker}(\mathbf{T})) + \dim(\mathrm{Ker}(\mathbf{T}))^0$$

$$\dim(U) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T))$$

aí $\dim(\operatorname{Ker}(T))^0 = \dim(\operatorname{Im}(T))$, aí $(\operatorname{Ker}(T))^0 = \operatorname{Im}(T)$.

Teorema 2.5.3. Sejam U e V espaços vetoriais de dimensão finita com bases B e C e bases duais B^* e C^* . Se $T \in \mathcal{L}(U, V)$, então:

$$([T]_{B,C})^t = [T^t]_{C^*,B^*}$$

Corolário 2.5.4. Se $A \in M_{m,n}(K)$, então:

$$RowRank(A) = ColumnRank(A)$$
.

Demonstração. Consideremos $T:K^n\to K^m$ dada por T(v)=Av. Sejam B e C as bases canônicas de K^n e K^m , então $[T]_{B,C}=A$. Temos:

$$Rank(T) = ColumnRank(A)$$

 $Rank(T^t) = ColumnRank(A^t) = RowRank(A).$

2.6 Espaços Quocientes

Definição 2.6.1. Seja V um espaço, $W \subseteq V$ um subespaço. Para $u, v \in V$, digamos que $u \sim v$ se e só se $u - v \in W$. Então \sim é uma relação de equivalência, ou seja:

- Reflexiva, ou seja, $v \sim v$ sempre.
- Simétrica, ou seja, se v \sim u então u \sim v.
- Transitiva, ou seja, se v \sim u e u \sim w, então v \sim w.

Seja V/W o conjunto das classes de equivalência relativamente a \sim . Para v \in V seja \overline{v} a classe de equivalência de v.

- Definamos em V/W uma estrutura de espaço vetorial. Para $\overline{v}, \overline{w} \in V/W$ definamos $\overline{v} + \overline{w} = \overline{v + w}$.
- Para $\alpha \in K$ e $\overline{v} \in V$ definamos $\alpha \cdot \overline{v} = \overline{\alpha v}$. Então V/W é um espaço vetorial chamado **espaço** quociente.

Observação 2.6.2. As operações estão "bem definidas" pois:

- Se $\overline{v} = \overline{v'}$ e $\overline{u} = \overline{u'}$, então $v \sim v'$ e $u \sim u'$, aí v v', $u u' \in W$, aí $(v + u) (v' + u') = (v v') + (u u') \in W$, aí $\overline{v + u} = \overline{v' + u'}$, aí $\overline{v} + \overline{u} = \overline{v'} + \overline{u'}$.
- Analogamente para a outra propriedade.

Também verificaremos algumas propriedades, deixando o resto ao leitor.

- Temos a comutatividade da adição, pois $\overline{u} + \overline{v} = \overline{v} + \overline{u}$ equivale a $\overline{u+v} = \overline{v+u}$, que é verdade pois u+v=v+u.
- O que é o $\overline{0}$ de V/W? Temos $\overline{0} = W$, e também para todo $w \in W$ temos $w \sim 0$, aí $\overline{w} = \overline{0} = W$.

Também temos o seguinte:

- Se W = V, então $V/V = {\overline{0}}.$
- Se $W = \{0\}$, então $V/\{0\} \cong V$.

Proposição 2.6.3. Consideremos a aplicação:

$$\pi: V \to V/W, \qquad v \mapsto \overline{v}.$$

Então $\pi \in \mathcal{L}(V, V/W)$, com $Ker(\pi) = W$.

Notação 2.6.4. π chama-se a projeção canônica de V para V/W.

Demonstração. Temos o seguinte:

- $\pi(v + u) = \overline{v + u} = \overline{v} + \overline{u} = \pi(v) + \pi(u)$.
- $\pi(\alpha \mathbf{v}) = \overline{\alpha}\overline{\mathbf{v}} = \alpha\overline{\mathbf{v}} = \alpha\pi(\mathbf{v}).$

Além disso, se $w \in W$ então $\pi(w) = \overline{w} = W$

Proposição 2.6.5. Seja $T \in \mathcal{L}(U, V)$ e $W \subseteq U$ tal que $W \subseteq Ker(T)$. Então existe um único $\overline{T} \in \mathcal{L}(U/W, V)$ tal que para todo $u \in U$ tenhamos:

$$\overline{\mathrm{T}}(\overline{\mathrm{u}}) = \mathrm{T}(\mathrm{u}).$$

Demonstração. Temos o seguinte:

- 1) Mostraremos que \overline{T} está "bem definida". Se $\overline{u} = \overline{v}$, então $u v \in W \in Ker(T)$, aí T(u v) = 0, aí T(u) = T(v).
- 2) Mostraremos que \overline{T} é uma transformação linear.
 - $\bullet \ \ \overline{T}(\overline{u}+\overline{v})=\overline{T}(\overline{u+v})=T(u+v)=T(u)+T(v)=\overline{T}(\overline{u})+\overline{T}(\overline{v}).$

•

CAPÍTULO 2. TRANSFORMAÇÕES LINEARES

2.6. ESPAÇOS QUOCIENTES

Teorema 2.6.6. Sejam U e V espaços vetoriais sobre K, e seja $T \in \mathcal{L}(U, V)$. Então $U/Ker(T) \cong Im(T)$.

Demonstração. Pela proposição anterior, existe uma única $\overline{T}: U/Ker(T) \to V$ tal que para todo $u \in U$ tenhamos:

$$\overline{\mathrm{T}}(\overline{\mathrm{u}}) = \mathrm{T}(\mathrm{u}).$$

Observemos que $Im(\overline{T}) = Im(T) = \{T(u) \mid u \in U\}.$

Além disso, para $\overline{u} \in Ker(\overline{T})$, então $T(u) = \overline{T}(\overline{u}) = 0$, aí $u \in Ker(T)$, aí $\overline{u} = \overline{0}$, de modo que \overline{T} é injetora.

Teorema 2.6.7. Seja W subespaço de V. Então todos os complementos de W em V são isomorfos ao V/W.

Demonstração. Seja $V=W\oplus U$. Consideremos a projeção canônica:

$$\pi: V \to V/W$$
.

Seja $\overline{\pi} = \pi \upharpoonright U$. Então $\operatorname{Ker}(\overline{\pi}) = U \cap \operatorname{Ker}(\pi) = U \cap W = \{0\}$. Logo $\overline{\pi}$ é injetora.

Para $\overline{v} \in V/W$, seja v = w + u, com $w \in W$ e $u \in U$. Então $\pi(v) = \pi(w) + \pi(u) = \pi(u) = \overline{\pi}(u)$, aí $\overline{v} = \overline{\pi}(u)$, assim $\overline{\pi}$ é sobre V/W.

Corolário 2.6.8. Seja $W \subseteq V$ um subespaço. Então $\dim V = \dim W + \dim V/W$.

Demonstração. Seja V = W \oplus U, então dim V = dim W + dim U, mas U \cong V/W, aí dim U = dim V/W.

Observação 2.6.9. Existem espaços vetoriais W e U e W' e U' tais que $W \oplus U \cong W' \oplus U'$ e $W \cong W'$, mas $U \ncong U'$. De fato podemos tomar $W = \bigoplus_{i=0}^{\infty} Ke_{2i}$ e $U = \bigoplus_{i=0}^{\infty} Ke_{2i+1}$ e $W' = \bigoplus_{i=0}^{\infty} Ke_{i}$ e $U' = \{0\}$.

Capítulo 3

Determinantes

3.1 Formas Multilineares

Definição 3.1.1. Seja V um espaço vetorial e $V^r = V \times \cdots \times V$. Uma forma r-linear sobre V é uma função:

$$F:V^r\to K, \qquad (v_i)_{i\in r}\mapsto F((v_i)_{i\in r})\in K$$

que é linear em cada argumento, ou seja, para i \in r temos:

$$F(v_0,\ldots,\alpha v_i+\beta v_i',\ldots,v_{r-1})=\alpha F(v_0,\ldots,v_i,\ldots,v_{r-1})+\beta F(v_0,\ldots,v_i',\ldots,v_{r-1}).$$

Denotamos por $L_r(V)$ o conjunto das formas r-lineares sobre V.

Exemplo 3.1.2. Seja $V = K^2$ e:

$$F((x_0, y_0), (x_1, y_1), (x_2, y_2)) = x_0y_1x_2 - x_0x_1x_2.$$

Então F é uma forma 3-linear.

Definição 3.1.3. Uma forma $F \in L_r(V)$ chama-se **alternativa** se e só se para $v \in V^r$, se v não é injetora, então F(v) = 0. Denotamos por $A_r(V)$ o conjunto das formas r-lineares alternativas.

Definição 3.1.4. Uma forma F é chamada **antissimétrica** se para $v \in V^r$ e para $i, j \in r$ tais que $i \neq j$, então:

$$F(v_0, \dots, v_i, \dots, v_i, \dots, v_{r-1}) = -F(v_0, \dots, v_i, \dots, v_i, \dots, v_{r-1}).$$

Proposição 3.1.5. Toda forma alternativa é antissimétrica.

Demonstração. Seja $F \in A_r(V)$. Sejam $v \in V^r$ e i, $j \in r$ tais que $i \neq j$. Então:

$$\begin{array}{lll} 0 & = & F(v_0,\ldots,v_i+v_j,\ldots,v_i+v_j,\ldots,v_{r-1}) \\ & = & F(v_0,\ldots,v_i,\ldots,v_i,\ldots,v_{r-1}) + F(v_0,\ldots,v_i,\ldots,v_j,\ldots,v_{r-1}) \\ & & + F(v_0,\ldots,v_j,\ldots,v_i,\ldots,v_{r-1}) + F(v_0,\ldots,v_j,\ldots,v_j,\ldots,v_{r-1}) \\ & = & F(v_0,\ldots,v_i,\ldots,v_j,\ldots,v_{r-1}) + F(v_0,\ldots,v_j,\ldots,v_i,\ldots,v_{r-1}) \end{array}$$

Proposição 3.1.6. Se a característica do corpo $é \neq 2$, então toda forma antissimétrica é reflexiva.

 $\label{eq:demonstração.} \textit{Para} \ F \ \textit{antissimétrica} \ e \ v \in V^r \ e \ i,j \in r \ tais \ que \ i \neq j, \ se \ v_i = v_j, \ sendo \ v = v_i, \ então:$

$$F(v_0,\ldots,v,\ldots,v,\ldots,v_{r-1}) = -F(v_0,\ldots,v,\ldots,v,\ldots,v_{r-1}),$$

aí:

$$2F(v_0, \ldots, v, \ldots, v, \ldots, v_{r-1}) = 0,$$

aí:

$$F(v_0, ..., v, ..., v, ..., v_{r-1}) = 0.$$

Definição 3.1.7. Seja $F \in L_r(V)$ e $\sigma \in S_r$ uma permutação. Então, para $v \in V^r$, definamos $(\sigma F)(v) = F(v \circ \sigma)$. Então é fácil ver que $\sigma F \in L_r(V)$.

Observação 3.1.8. Para $F \in L_r(V)$, então F é antissimétrica se e somente se para toda transposição $\tau \in S_r$ tivermos $\tau F = -F$.

Proposição 3.1.9. Seja $F \in L_r(V)$ uma forma antissimétrica. Então para $\sigma \in S_r$, temos $\sigma F = (sgn\sigma)F$.

Demonstração. Para $\sigma \in S_r$, então σ pode ser escrita como $\sigma = \tau_0 \dots \tau_{k-1}$, em que τ_i são transposições, e σ é par se e só se k é par.

Temos
$$\sigma F = (\tau_0 \dots \tau_{k-1})F = (-1)^k F = (\operatorname{sgn} \sigma)F$$
, pois $\operatorname{sgn} \sigma = (-1)^k$.

Proposição 3.1.10. Toda forma r-linear determina uma forma r-linear alternada da seguinte maneira:

$$F \mapsto \varphi(F) = \sum_{\sigma \in S_r} \operatorname{sgn}\sigma(\sigma F).$$

Demonstração. Seja $v_i = v_j = v$ com $i \neq j$. Precisamos provar que $\varphi(F)(v) = 0$. Seja τ a transposição (i,j), então $S = A_r \cup A_r \tau$ e $A_r \cap A_r \tau = \emptyset$. Então temos o seguinte:

$$\begin{array}{lcl} \varphi(F)(v) & = & \sum_{\sigma \in S_r} (\mathrm{sgn}\sigma)(\sigma F(v)) \\ & = & \sum_{\sigma \in A_r} (\sigma F(v)) - \sum_{\sigma \in A_r} (\sigma \tau F(v)) \\ & = & \sum_{\sigma \in A_r} (\sigma F(v)) - \sum_{\sigma \in A_r} (\sigma F(v)) \\ & = & 0 \end{array}$$

Observação 3.1.11. Se $F \in A_r(V)$ e $v \in V^r$ é linearmente dependente, então:

$$F(v) = 0.$$

Lema 3.1.12. Seja dim V=n e $F\in A_n(V)$. Seja $(e_i)_{i\in n}$ uma base de V, então F é completamente determinada pelo valor F(e).

Demonstração. Seja $v \in V^n$. Então existe $\alpha : n \times n \to K$ tal que:

$$v_i = \sum_{i \in n} \alpha_{i,j} e_j.$$

Assim:

$$\begin{array}{lcl} F(v) & = & F((\sum_{j \in n} \alpha_{i,j} e_j)_{j \in n}) \\ & = & \sum_{j \in n^n} \prod_{i \in n} \alpha_{i,j(i)} F(e \circ j) \\ & = & \sum_{\sigma \in S_n} \prod_{i \in n} \alpha_{i,\sigma(i)} F(e \circ \sigma) \\ & = & \left(\sum_{\sigma \in S_n} \prod_{i \in n} \alpha_{i,\sigma(i)} \mathrm{sgn}\sigma\right) F(e). \end{array}$$

Note então que o valor $\sum_{\sigma \in S_n} \prod_{i \in n} \alpha_{i,\sigma(i)} \operatorname{sgn}\sigma \ determina \ F$ para qualquer $v \in V^n$. Chamaremos este valor de **determinante** de F.

Exemplo 3.1.13.

3.2 Determinantes

Seja K um corpo e consideremos o anel das matrizes $M_n(K)$. Identificaremos os elementos de $M_n(K)$ com os elementos de $(K^n)^n$ assim:

$$A = (a_{i,j})_{(i,j) \in n \times n} \leftrightarrow ((a_{i,j})_{j \in n})_{i \in n}$$

Portanto, uma função n-linear aqui é uma função n-linear nas linhas da matriz.

Definição 3.2.1. Uma função det : $M_n(K) \to K$ é dita uma função **determinante** se e só se det é n-linear alternada e det(I) = 1.

Pelo que vimos, existe e é única a função determinante: É a forma n-linear alternada que vale 1 na base canônica de K^n .

Logo, se $A = (a_{i,j}) \in M_n(K)$, então:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i \in n} a_{i,\sigma(i)}.$$

Exemplo 3.2.2. Para n = 2, temos $S_2 = \{I, (0, 1)\}$, e assim, sendo:

$$A = egin{pmatrix} a_{0,0} & a_{0,1} \ a_{1,0} & a_{1,1} \end{pmatrix},$$

então temos:

$$\det(A) = a_{0,0}a_{1,1} - a_{0,1}a_{1,0}.$$

Exemplo 3.2.3. Agora, se n=3, então $S_3=\{I,(0,1,2),(0,2,1),(0,1),(0,2),(1,2)\}$, e assim, sendo:

$$\mathbf{A} = egin{pmatrix} \mathbf{a}_{0,0} & \mathbf{a}_{0,1} & \mathbf{a}_{0,2} \ \mathbf{a}_{1,0} & \mathbf{a}_{1,1} & \mathbf{a}_{1,2} \ \mathbf{a}_{2,0} & \mathbf{a}_{2,1} & \mathbf{a}_{2,2} \end{pmatrix},$$

então temos:

$$\det(A) = a_{0,0}a_{1,1}a_{2,2} + a_{0,1}a_{1,2}a_{2,0} + a_{0,2}a_{1,0}a_{2,1} - a_{0,1}a_{1,0}a_{2,2} - a_{0,2}a_{1,1}a_{2,0} - a_{0,0}a_{1,2}a_{2,1}.$$

Proposição 3.2.4. Temos as seguintes propriedades:

- 1) Para todo $A \in M_n(K)$ temos $det(A) = det(A^t)$.
- $2)\ \operatorname{Para}\, A,B\in \operatorname{M}_n(K)\ \operatorname{vale}\, \det(AB)=\det(A)\det(B).$
- 3) Para $A \in M_n(K)$, então A é inversível se e só se $det(A) \neq 0$. Neste caso, temos $det(A^{-1}) = (det(A))^{-1}$.

Demonstração. Temos o seguinte:

1) Sendo $A = (a_{i,j})_{(i,j) \in n \times n}$, então temos:

$$\begin{array}{lll} \det(A) &=& \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i \in n} a_{i,\sigma(i)} \\ &=& \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i \in n} a_{\sigma^{-1}(i),i} \\ &=& \sum_{\tau \in S_n} \operatorname{sgn}(\tau^{-1}) \prod_{i \in n} a_{\tau(i),i} \\ &=& \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i \in n} a_{i,\tau(i)}^t \\ &=& \det \Big(A^t\Big). \end{array}$$

- 2) Seja $F_A: M_n(K) \to K$ tal que $\forall X \in M_n(K): F_A(X) = \det(AX)$. Então a função F_A é uma função n-linear alternada sobre as colunas, mas também $F_A(I) = \det(A)$, aí $F_A(B) = \det(A) \det(B)$, assim $\det(AB) = \det(A) \det(B)$
- 3) Se A é inversível, então existe a inversa A^{-1} , assim $1 = \det(I) = \det(AA^{-1}) = \det(A) \det(A) \det(A)^{-1}$, aí $\det(A) \neq 0$ e $\det(A^{-1}) = (\det(A))^{-1}$. Por outro lado, se $\det(A) \neq 0$, então $\det(A^t) \neq 0$, aí as colunas de A são linearmente independentes, aí consideremos $T: K^n \to K^n$ tal que $[T]_{can} = A$, então T é inversível, assim $A = [T]_{can}$ é inversível.

Assim lembremo-nos do seguinte: a função det é uma função n-linear e alternada nas linhas (ou nas colunas) da matriz, logo:

- 1) Trocar duas linhas (ou colunas) da matriz muda o sinal do determinante.
- 2) Somar a uma linha (ou coluna) uma combinação linear das demais linhas (colunas) não altera o valor do determinante.
- 3) Ao multiplicar uma linha (ou coluna) por um escalar, o determinante fica multiplicado por esse escalar.

Proposição 3.2.5. Temos o seguinte:

- 1) O determinante de uma matriz triangular é o produto dos elementos da diagonal da matriz.
- 2) Se:

$$\mathbf{A} = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$$

em que $B \in M_r(K)$ e $D \in M_{n-r}(K)$ e $C \in M_{n-r,r}(K)$ e $0 \in M_{r,n-r}(K)$, então:

$$\det(A) = \det(B) \det(D)$$
.

Demonstração. Temos o seguinte:

1) Seja $A = (a_{i,j})_{(i,j) \in n \times n}$ uma matriz triangular inferior, então para $i, j \in n$ tais que i < j temos $a_{i,j} = 0$, mas a única permutação $\sigma \in S_n$ tal que $\forall i \in n : i \geq \sigma(i)$ é a identidade, assim temos:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i \in n} a_{i,\sigma(i)} = \operatorname{sgn}(I) \prod_{i \in n} a_{i,I(i)} = \prod_{i \in n} a_{i,i}.$$

2) Seja F: $M_r(K) \to K$ tal que:

$$\mathrm{F}(\mathrm{X}) = \det egin{pmatrix} \mathrm{X} & 0 \ \mathrm{C} & \mathrm{D} \end{pmatrix}.$$

Então F é r-linear alternada nas linhas de X, assim $F(X) = F(I) \det(X)$.

Agora consideremos $G: M_{n-r}(K) \to K$ tal que:

$$\mathrm{G}(\mathrm{Y}) = \det \left(egin{matrix} \mathrm{I} & 0 \ \mathrm{C} & \mathrm{Y} \end{matrix}
ight)$$

Então G é (n-r)-linear alternada nas colunas de Y, logo $G(Y) = G(I) \det(Y)$. Mas:

$$G(I) = \det \begin{pmatrix} I & 0 \\ C & I \end{pmatrix} = 1,$$

assim G(Y) = det(Y), aí F(I) = G(D) = det(D), assim F(X) = F(I) det(X) = det(X) det(D), aí acaba.

Agora temos a regra de Laplace:

Teorema 3.2.6. Dada $A \in M_n(K)$, indicaremos por $M_{i,j}$ a matriz quadrada de tamanho n-1 obtida a partir de A eliminando a linha i e a coluna j.

Para cada $i \in n$, então vale:

$$\det(A) = \sum_{j \in n} (-1)^{i+j} a_{i,j} \det \Big(M_{i,j} \Big).$$

Para cada $j \in n$, então vale:

$$\det(A) = \sum_{i \in n} (-1)^{i+j} a_{i,j} \det\Bigl(M_{i,j}\Bigr).$$

Demonstração. Provaremos a primeira afirmação pois a segunda é análoga.

AULA DE 19 DE AGOSTO (COLOCAREI ASSIM QUE CONSEGUIR)- FICOU FALTANDO A PROVA DA REGRA DE LAPLACE E A PARTE DE MATRIZES SOBRE ANEIS COMUTATIVOS Bláa blá blá

Capítulo 4

Formas Canônicas

4.1 Autovalores e Autovetores

Definição 4.1.1. Seja V um espaço vetorial sobre um corpo K e seja $T \in \mathcal{L}(V)$. Um vetor $v \in V$ é um vetor próprio ou autovetor de T se existe $\lambda \in K$ tal que $T(v) = \lambda v$. O escalar λ é um valor próprio ou autovalor do operador T. Dizemos que v é um autovetor associado com o autovalor λ .

Exemplo 4.1.2. Seja $V = \mathbb{C}^1(\mathbb{R})$ e considere o operador linear $T \in \mathcal{L}(V)$ tal que T(v) = v' para cada $v \in V$. Considere $v = e^{\lambda x}$ com $\lambda \in K$. Então $T(v) = \lambda e^{\lambda x} = \lambda v$. Ou seja v é um autovetor associado com o autovalor λ .

Definição 4.1.3. Seja V um espaço vetorial sobre um corpo K e seja $T \in \mathcal{L}(V)$. O spectrum do operador T é o conjunto

$$Spec(T) := \{ \lambda \in K : \lambda \text{ \'e autovalor de } T \}.$$

Para cada $\lambda \in \operatorname{Spec}(T)$, denotamos o conjunto dos autovetores associados a λ como $V_T(\lambda)$.

No contexto da definição anterior, considere $\lambda \in \operatorname{Spec}(T)$. Então

$$\begin{split} v \in V_T(\lambda) &\iff T(v) = \lambda v \\ &\iff (T - \lambda I)(v) = 0 \\ &\iff v \in \operatorname{Ker}(T - \lambda I). \end{split}$$

ALGUMA COISA QUE EU PERDI

Ainda no mesmo contexto, vamos assumir agora que $\dim(V) = n < \infty$. Então temos que

$$\lambda \in \operatorname{Spec}(T) \implies \operatorname{Ker}(T - \lambda I) \neq \{0\} \implies \det(T - \lambda I) = 0.$$

Reciprocamente, se $\det(T - \lambda I) = 0$ então $V_T(\lambda) = Ker(T - \lambda I) \neq \{0\}.$

Definição 4.1.4. Seja V um espaço vetorial sobre um corpo K e seja $T \in \mathcal{L}(V)$. O polinômio característico de T é a função $p_T(\lambda) \colon K \to K$ dada por

$$p_T(\lambda) := det(T - \lambda I)$$
, para cada $\lambda \in K$.

Note que $\lambda \in \operatorname{Spec}(T)$ se e só se λ é raiz de $p_T(\lambda)$. Além disso, note que se B e B' são bases V, então $p_T(\lambda) = p_{[T]_B}(\lambda)$. De fato, se P é a matriz de mudança da base B para a base B', então

$$[\lambda I - T]_{R'} = P^{-1}[\lambda I - T]_{B}P$$

Isso implica que

$$\det([\lambda I-T]_{B'})=\det(P^{-1})\det([\lambda I-T]_B)\det(P).$$

Ou seja, $\det([\lambda I - T]_{B'}) = \det([\lambda I - T]_{B}).$

Exemplo 4.1.5. Seja $T \in \mathcal{L}(\mathbb{R}^2)$ tal que

$$[\mathrm{T}]_{\mathrm{can}} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}.$$

Isto é, T((x,y))=(-y,x) para cada $(x,y)\in\mathbb{R}^2$. Então

$$\mathrm{p_T}(\lambda) = \det \left(\begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix} \right)$$

$$= \lambda^2 + 1.$$

Dessa forma, $\operatorname{Spec}(T) = \emptyset$ pois $\operatorname{p}_T(\lambda)$ não possui raízes em $K = \mathbb{R}$.

Exemplo 4.1.6. Seja $T \in \mathcal{L}(\mathbb{R}^3)$ tal que

$$[\mathrm{T}]_{\mathrm{can}} = egin{pmatrix} 3 & 1 & -1 \ 2 & 2 & -1 \ 2 & 2 & 0 \end{pmatrix}.$$

Então

$$\mathbf{p}_{\mathrm{T}}(\lambda) = \det \left(\begin{pmatrix} 3-\lambda & 1 & -1 \\ 2 & 2-\lambda & -1 \\ 2 & 2 & -\lambda \end{pmatrix} \right)$$

$$= (\lambda - 1)^2 (\lambda - 2).$$

Isso implica que $Spec(T) = \{1, 2\}$. Além disso, temos que

$$\mathrm{V}_{\mathrm{T}}(1)=\mathrm{Ker}(\mathrm{T}-\mathrm{I})=\mathrm{Ker}(egin{pmatrix} 2&1&-1\ 2&1&-1\ 2&2&-1 \end{pmatrix})=\langle (1,0,2)
angle.$$

e ainda

$$V_T(2)=\mathrm{Ker}(T-2I)=\mathrm{Ker}(\begin{pmatrix}1&1&-1\\2&0&-1\\2&2&-2\end{pmatrix})=\langle(1,1,2)\rangle$$

Exemplo 4.1.7. Seja $T \in \mathcal{L}(\mathbb{R}^3)$ tal que

$$[T]_{can} = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & -1 \\ 2 & 2 & -2 \end{pmatrix}.$$

Neste caso temos que

$$p_{T}(\lambda) = \det\begin{pmatrix} 1 - \lambda & 2 & -1 \\ -2 & -3 - \lambda & -1 \\ 2 & 2 & -2 - \lambda \end{pmatrix}$$

$$= (\lambda + 1)^{2}(\lambda + 2).$$

Isso implica que $Spec(T) = \{-1, -2\}$ e ainda

$$V_{T}(-1) = \langle \{(1,0,2), (0,1,2)\} \rangle$$

e

$$V_T(-2) = \langle (1, -1, 1) \rangle$$

. Uma vez que os autovetores acima são L.I, eles formam uma base B de \mathbb{R}^3 e

$$[T]_{B} = \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -2 \end{pmatrix}$$

é uma matriz diagonal.

Teorema 4.1.8. Seja V um espaço vetorial sobre um corpo K tal que $\dim(V) = n < \infty$ e seja $T \in \mathcal{L}(V)$. São equivalentes:

- 1. T é diagonalizável.
- 2. $p_T(t) = (t \lambda_1)^{n_1} \dots (t \lambda_k)^{n_k}$ e $\dim(V_T(\lambda_i)) = n_i$ para cada $i \in [k]$.
- 3. $\dim((V_T(\lambda_1)) + \ldots + \dim(V_T(\lambda_k)) = \dim(V) = n$.

Lema 4.1.9. Seja $\{\lambda_i\}_{i\in[k]}\subseteq \operatorname{Spec}(T)$.

- 1. Se $v_i \in V_T(\lambda_i)$ para cada $i \in [k]$ e $v_1 + \ldots + v_k = 0$, então $v_1 = \ldots = v_k = 0$.
- 2. Se $B_i\subseteq V_T(\lambda_i)$ é L.I para cada $i\in [k],$ então $\bigcup_{i\in [k]}B_i$ é L.I.

Demonstração do Lema.

1. Vamos provar essa afirmação por indução em k. Primeiro note que o resultado é trivial quando k=1. Agora seja $k\in\mathbb{N}$ e assuma que o resultado vale para cada natural i< k. Sejam v_1,\ldots,v_k tais que $v_i\in V_T(\lambda_i)$ para cada $\beta\in[k]$ e $v_1+\ldots+v_k=0$. Então temos que

$$\lambda_1(v_1 + \ldots + v_k) = 0\lambda_1 = 0.$$
 (4.1)

Além disso, é claro que

$$T(v_1 + ... + v_k) = \lambda_1 v_1 + ... + \lambda_k v_k = 0.$$
 (4.2)

Subtraindo a Equação 4.1 de 4.2, obtemos

$$(\lambda_1 - \lambda_1)v_1 + (\lambda_2 - \lambda_1)v_2 + \dots + (\lambda_k - \lambda_1)v_k = 0.$$
(4.3)

Agora notamos que cada termo no lado esquerdo é um autovetor de T e aplicamos a hipótese de indução para concluir que $v_2=\ldots=v_k=0$. Finalmente, como sabemos que $v_1+\ldots+v_k=0$ e $v_2=\ldots=v_k=0$, obtemos que $v_1=0$ também, o que conclui nossa prova.

2. Seja $S\subseteq\bigcup_{i\in[k]}B_i$ finito e seja $\alpha\colon S\to\mathbb{R}$. Note que $V_T(\lambda_i)\cap V_T(\lambda_j)=\{0\}$ sempre que $i,j\in[k]$ e $i\neq j$ e então podemos escrever

$$\sum_{v \in S} \alpha_i v_i = \sum_{v \in S_1} \alpha_v v + \ldots + \sum_{v \in S_k} \alpha_v v,$$

onde $S_i \subseteq B_i$ é finito para cada $i \in [k]$. Utilizan do o fato de que o termo $\sum_{v \in S_i} \alpha_v v \in V_T(\lambda_i)$ para cada $i \in [k]$ e aplicando o item anterior, obtemos que

$$\sum_{v \in S_1} \alpha_v v = \ldots = \sum_{v \in S_k} \alpha_v v = 0.$$

Finalmente como como $S_i \subseteq B_i$ para cada $i \in [k]$ e B_i é sempre L.I por hipótese segue que a restrição de α a cada S_i é identicamente nula. Como $S = \bigcup_{i \in [k]} S_i$ segue que α é indenticamente nula.

Demonstração.

(i) ⇒(ii): Sejam $(v_{i,j})_{j\in n_i}$ autovetores associados a $\lambda_i\in \operatorname{Spec}(T)$ TERMINAR ESSA IMPLICAÇÃO

• (ii)⇒(iii):

$$\dim(V_T(\lambda_1)) + \ldots + \dim(V_T(\lambda_k)) = n_1 + \ldots + n_k = \deg(p_T(t)) = \dim(V) = n.$$

• (iii) \Rightarrow (i): Para cada $i \in [k]$ considere uma base B_i de $V_T(\lambda_i)$. Seja $B = \bigcup_{i \in [k]} B_i$. Pelo lema anterior, temos que B é L.I. Como |B| = n segue que B é uma base de V. Além disso, B é uma base de autovetores de T. Logo, T é diagonalizável.

4.2 Polinômio Minimal

Definição 4.2.1. Seja V um espaço sobre K, dim $V = n < \infty$, $T \in \mathcal{L}(V)$. Definamos por recursão $T^0 = I$ e $T^{k+1} = T^k \circ T$. Se $p(t) \in K[t]$, $p(t) = a_0 + a_1t + \cdots + a_mt^m$, então está bem definido o operador $p(T) = a_0 \cdot I + a_1 \cdot I + \cdots + a_m \cdot T^m \in \mathcal{L}(V)$.

Lembremo-nos de que, se $\dim(U)=m$ e $\dim(V)=n$, então $\dim\mathcal{L}(U,V)=mn$. Assim, se V é um espaço vetorial tal que $\dim(V)=n<\infty$, então $\dim\mathcal{L}(V)=n^2$, de modo que existe $m\leq n^2+1$ tal que os operadores I,T,T^2,\ldots,T^m sejam linearmente dependentes. Seja m um número minimal tal que $T^m\in\langle I,T,\ldots,T^{m-1}\rangle$. Então $T^m=a_0\cdot I+a_1\cdot T+\ldots a_{m-1}T^{m-1}$, com $a_i\in K$. Seja $m_T(t)=t^m-a_{m-1}t^{m-1}-\cdots-a_1t-a_0$, então $m_T(t)=0$, e $m_T(t)$ é um polinômio de menor grau tal que $m_T(t)=0$.

Definição 4.2.2. Um polinômio mônico de grau mínimo tal que $m_T(t) \in K[t]$ tal que $m_T(t) = 0$ chama-se um **polinômio minimal** do operador T. Chamemos um polinômio $f(t) \in K[t]$ de um **polinômio anulador** de T se f(T) = 0.

Lema 4.2.3. Seja $f(t) \in K[t]$ tal que f(T) = 0. Então $m(t) \mid f(t)$.

Demonstração. Dividimos f(t) por m(t) (com resto):

$$f(t) = m_T(t) \cdot q(t) + r(t), \qquad \deg(r(t)) < \deg(m_T(t)) \text{ ou } r(t) = 0.$$

Como
$$f(T) = 0$$
 e $m_T(t) = 0$, então $r(T) = 0$, aí $r(t) = 0$.

Corolário 4.2.4. O polinômio $m_T(t)$ é único.

Se V é um espaço vetorial e $T \in \mathcal{L}(V)$, então V tem uma estrutura de K[t] módulo à esquerda: Se $f(t) \in K[t]$, para $v \in V$ definimos:

$$f(t) \cdot v = f(T)(v)$$
.

Além disso, se considerarmos:

$$\begin{array}{ccc} \varphi: K[t] & \to & End(V) \\ f(t) & \mapsto & f(T), \end{array}$$

então φ é um homomorfismo de K-álgebras e portanto $Ker(\varphi)$ é um ideal de K[t].

Teorema 4.2.5. Os polinômios $p_T(t)$ e $m_T(t)$ têm as mesmas raízes em K (a menos de multiplicidade). Em outras palavras, $m_T(\lambda) = 0 \Leftrightarrow \lambda \in \operatorname{Spec}(T)$.

Demonstração. Se $m_T(\lambda)=0$, então $m_T(t)=(t-\lambda)q(t).$ Por minimalidade de $m_T(t)$, $q(T)\neq 0$, então existe $w\in V$ tal que $q(T)(w)\neq 0$, aí seja v=q(T)(w), então $v\neq 0$ e:

$$\begin{array}{lcl} (T-\lambda I)(v) & = & (T-\lambda I)q(T)(w) \\ & = & m_T(t)(w) = 0, \end{array}$$

aí $T(v) = \lambda v$, aí $\lambda \in Spec(T)$.

Por outro lado, se $\lambda \in \operatorname{Spec}(T)$, seja $v \in V$ tal que $v \neq 0$ e $T(v) = \lambda v$, então $T(T(v)) = \lambda^2 v, \ldots, T^m(v) = \lambda^m v, \ldots$, aí para $f(t) \in K[t]$ temos $f(T)(v) = f(\lambda) \cdot v$, aí $0 = m_T(T)(v) = m_T(\lambda) \cdot v$, aí $m_T(\lambda) = 0$.

Corolário 4.2.6. Se T é diagonalizável e Spec $(T) = \{\lambda_i\}_{i \in r}$, então $m_T(t) = \prod_{i \in r} (t - \lambda_i)$.

Se Spec(T) = $\{\lambda_i\}_{i \in \mathbf{r}}$, então:

$$V = \sum_{i \in r} V_T(\lambda_i).$$

 $\begin{array}{l} \textit{Demonstração}. \ \ \text{Já sabemos que } m_T(t) = \left(\prod_{i \in r} (t-\lambda_i)^{k_i}\right) \ \text{em que } q(t) \ \text{não tem raízes em } K. \ \ \text{Basta} \\ \text{provar que } \left(T-\lambda_0 I\right) \dots \left(T-\lambda_{r-1} I\right) = 0. \ \ \text{Seja} \ \ v \in V, \ v = v_0 + \dots + v_{r-1}, \ \text{com } v_i \in V_T(\lambda_i), \ \text{então temos } (T-\lambda_i I)(v_i) = 0, \ \text{portanto } ()(v_i) = 0, \ \text{e logo } ()(v) = 0. \ \ \text{Então o polinômio } f(t) = (t-\lambda_0) \dots \\ \text{\'e um polinômio anulador para } T, \ \text{a\'e } m_T(t) \mid f(t), \ \text{a\'e } m_T(t) = f(t). \end{array}$

4.3 Subespaços Invariantes

Definição 4.3.1. Seja $T \in \mathcal{L}(V)$. Um subespaço $W \subseteq V$ chama-se T-invariante se $T(W) \subseteq W$.

Observação 4.3.2. Um subespaço é T-invariante se e só se é um K[t]-submódulo.

Exemplo 4.3.3. Seja $V = \mathbb{C}(\mathbb{R})$ e considere o operador D: $f \to f'$. Então o subespaço

$$P_n \coloneqq \{f(t) \in \mathbb{R}[t] : \deg(f) \le n\}$$

é D-invariante.

Seja $\dim(V) = n$ e $T \in \mathcal{L}(V)$, $W \subseteq V$ um subespaço T-invariante. Escolhemos uma base $B_1 = \{v_i\}_{i \in m}$ de W e completemo-la até uma base $B = \{v_i\}_{i \in n}$ do espaço V. Qual é a matriz $[T]_B$? Vamos começar notando que T é W-invariante e então

$$\begin{split} T(v_1) &= \sum_{i \in m} \alpha_{1i} v_i \\ T(v_2) &= \sum_{i \in m} \alpha_{2i} v_i \\ \dots \\ T(v_m) &= \sum_{i \in m} \alpha_{mi} v_i \\ T(v_{m+1}) &= \sum_{i \in n} \alpha_{(m+1)i} v_i \\ \dots \\ T(v_n) &= \sum_{i \in n} \alpha_{ni} v_i. \end{split}$$

Dessa forma segue que

$$[T]_B = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1m} & \alpha_{1(m+1)} & \dots & \alpha_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{m1} & \dots & \alpha_{mm} & \alpha_{m(m+1)} & \dots & \alpha_{mn} \\ 0 & \dots & 0 & \alpha_{(m+1)(m+1)} & \dots & \alpha_{(m+1)n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \alpha_{n(m+1)} & \dots & \alpha_{nn} \end{pmatrix}.$$

Isto é, a matriz de T na base B tem a forma

$$[T]_{\mathrm{B}} = \begin{pmatrix} \mathrm{A} & * \\ 0 & \mathrm{B} \end{pmatrix},$$

onde $A \in M_m(K)$ e $B \in M_{n-m}(K)$. Note que A é a matriz da restrição de T a W na base B_1 .

Vamos agora considerar a restrição de T a W, denotada por T \(^{\text{V}}\) W. Claramente, temos que T \(^{\text{V}}\) W \(\in \mathcal{L}(W). Considere $\bar{V} := \frac{V}{W}$ e seja $\pi \colon V \to \bar{V}$ uma projeção. Seja $\bar{T} := \pi \circ T$. Então $\bar{T} \in \mathcal{L}(V, \bar{V})$ e W \(\subseteq \text{Ker}(\bar{T}). De fato, para cada w \(\in W\) temos

$$\pi(T(w)) \in \pi(W) = 0.$$

Além disso, \bar{T} induz um operador linear $\tilde{T} \in \mathcal{L}(\bar{V})$ definido por $\tilde{T}(v+W) = \bar{T}(v)$.

Proposição 4.3.4. Seja V um espaço vetorial sobre um corpo K, seja $T \in \mathcal{L}(V)$ e seja W um subespaço T-invariante de V. Considere $B := B_1 \cup B_2$ onde B é uma base de V e B_1 é uma base de W. Então

$$[T]_B = \begin{pmatrix} A & * \\ 0 & X \end{pmatrix}$$

onde $A = [T \upharpoonright W]_{B_1} e X = [\tilde{T}]_{B_2}.$

Demonstração. COMPLETAR

Lema 4.3.5. Seja dim(V) = n, $T \in \mathcal{L}(V)$ e $W \subseteq V$ um subsepaço T-invariante. Então:

$$p_T(t) = p_{T_1}(t) \cdot p_{T_2}(t)$$

em que $T_1 \in \mathcal{L}(W)$ e $T_2 \in \mathcal{L}(W)$ com $T_1(w) = T(w)$ e $T_2(v + W) = T(v) + W$.

Demonstração. Escolhamos B_1 e B
 como bases de W e V tais que $B_1\subseteq B,$ então:

$$\begin{split} p_T(t) &= \det[tI - T]_B \\ &= \det\begin{pmatrix} tI_m - A & * \\ 0 & tI_{n-m} - B \end{pmatrix} \\ &= \det(tI_m - A)\det(tI_{n-m} - B) \\ &= p_A(t)p_B(t) = p_{T_1}(t)p_{T_2}(t) \end{split}$$

Observação 4.3.6. O mesmo não ocorre para polinômios minimais. De fato, seja $T = I_V$ e seja W um subespaço T-invariante (De fato, quando T é a identidade, todo subespaço de V é T-invariante), então $T_1 = I_W$ e $T_2 = I_{V/W}$ e aí $m_T(t) = m_{T_1}(t) = m_{T_2}(t) = t - 1$.

Teorema 4.3.7 (Teorema da Cayley-Hamilton). Seja V um espaço vetorial de dimensão finita sobre um corpo K, e seja $T \in \mathcal{L}(V)$. Então $p_T(T) = 0$, onde $p_T(t) \in K[t]$ é um polinômio característico de T.

 $\begin{array}{l} \textit{Demonstração}. \ \ \text{Basta provar que } p_T(T)(v) = 0 \ \text{para cada } v \in V. \ \ \text{Se } v = 0 \ \text{o resultado \'e evidente}. \\ \text{Então seja } 0 \neq v \in V. \ \ \text{Note que como } V \ \text{tem dimensão finita temos que existe um } m \leq n = \dim(V) \\ \text{mínimo tal que existem coeficientes } \alpha_0, \ldots, \alpha_{m-1} \ \text{tais que } T^m(v) = \sum_{i=0}^{m-1} \alpha_i T^i(v). \ \ \text{Para tal } m \in \mathbb{N}, \\ \text{considere o conjunto } \{v, T(v), \ldots, T^{m-1}\} \ \text{e seja } W \ \text{o subespaço gerado por ele. } \ \ \text{Note que } W \ \text{\'e} \\ \text{T-invariante e ainda} \end{array}$

$$[T \upharpoonright W]_B] \begin{pmatrix} 0 & 0 & \dots & 0 & \alpha_0 \\ 1 & 0 & \dots & 0 & \alpha_1 \\ 0 & 1 & \dots & 0 & \alpha_2 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & \alpha_{m-1} \end{pmatrix} = A.$$

Então, pelo Exercício 18 da lista 1, segue que

$$p_A(t) = p_{T_{\upharpoonright W}}(t) = t^m - \alpha_{m-1}t^{m-1} - \ldots - \alpha_1t - \alpha_0.$$

E também

$$p_{T_{\uparrow W}}(T) = T^m - \alpha_{m-1} T^{m-1} - \ldots - \alpha_1 T - \alpha_o I.$$

Aplicando essa última função a v segue:

$$p_{T_{\uparrow W}}(T)(v) = T^m(v) - \alpha_{m-1}T^{m-1}(v) - \ldots - \alpha_1T(v) - \alpha_o v = 0.$$

Para concluir que $p_t(T)(v)=0$ escrevemos $p_T(T)=p_{T_{\dagger W}}q(T).$

Corolário 4.3.8. Se $A \in M_n(K)$ então $P_A(A) = 0$, onde $P_A(t) = det(tI - A)$.

Exemplo 4.3.9. Considere a matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Então temos que $p_A(t) = t^2 - (a+d)t + (ad-bc)$ e também

$$\begin{split} P_A(A) &= A^2 - (a+d)A + (ad-bc)I \\ &= \begin{pmatrix} a^2 + bc & ab + ad \\ ac + dc & bc + d^2 \end{pmatrix} - \begin{pmatrix} a^2 + ad & ab + bd \\ ac + dc & ad + d^2 \end{pmatrix} + det(A)I \\ &= \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} + \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = 0. \end{split}$$

Teorema 4.3.10 (Decomposição Primária). Seja V um espaço vetorial sobre um corpo K tal que $\dim(V) = n < \infty$ e seja $T \in \mathcal{L}(V)$. Suponhamos que f(T) = 0, onde

$$f(t) = p_1^{k_1}(t) \dots p_r^{k_r}(t)$$

e cada $p_i(t) \in K[t]$ é irredutível. Então $V = V_1 \oplus \ldots \oplus V_r$ onde cada V_i é T-invariante e $p_i^{k_i}(T_{\upharpoonright V_i}) = 0$.

Lema 4.3.11. Seja f(T)=0 onde $f(t)=f_1(t)f_2(t)$ com f_1 e f_2 primas entre si. Então $V=V_1\oplus V_2$ onde V_1 e V_2 são T-invariantes, $f_1(T_{\upharpoonright V_1})=0$ e $f_2(T_{\upharpoonright V_2})=0$.

Sublema 4.3.12 (Identidade de Bezout). Se $m.d.c(f_1(t),f_2(t))=1$ então existem $r(t),s(t)\in K[t]$ tais que

$$f_1(t)r(t) + f_2(t)s(t) = 1.$$

Demonstração do Lema. Considere $V_2 := \operatorname{Im}(f_1(T))$ e $V_1 := \operatorname{Im}(f_1(T))$. Vamos verificar que que V_1 e V_2 são T-invariantes. Seja $v \in V_1$. Então $v = f_2(T)(w)$ para algum $w \in V$. Dessa forma,

$$T(v) = Tf_2(T)(w) = f_2(T)(T(w)) = f_2(T)(T(w)) \in Im(f_2(T)) = V.$$

e analogamente para V_2 . Além disso, mostremos que $V=V_1+V_2$. De fato, para cada $v\in V$ temos

$$v = f_1(T)r(T)(v) + f_2(T)s(T)(v).$$

Como $f_1(T)r(T)(v) \in V_2$ e $f_2(T)s(T)(v) \in V_1$ concluímos que $v \in V_1 + V_2$. Agora vamos mostrar que $V_1 \cap V_2 = \{0\}$. Para tal, vamos verificar que $V_1 \subseteq \mathrm{Ker}(f_1)(T)$ e $V_2 \subseteq \mathrm{Ker}(f_2(T))$. Seja $v \in V_1$. Então $v = f_2(T)(w)$ para algum $w \in V$.

$$f1(T)(v) = f_1(T)f_2(T)(w) = f(T)(w) = 0.$$

Também vejamos que que $Ker(f_1)(T) \cap Ker(f_2)(T) = \{0\}$. Seja $v \in Ker(f_1(T)) \cap Ker(f_2(T))$. Então temos por definição que $f_1(T)(v) = f_2(T)(v) = 0$. Segue

$$v = r(T)f_1(T)(v) + s(T)f_2(T)(v) = 0$$

. Assim concluímos que $V=V_1\oplus V_2$. Finalmente, note que como $V_1\subseteq \mathrm{Ker}(f_1(T))$ e $V_2\subseteq \mathrm{Ker}(f_2(T))$ segue que $f_1(T_{\upharpoonright V_1})=0$ e $f_2(T_{\upharpoonright V_2})=0$.

Demonstração do Teorema. Vamos mostrar este resultado por indução sobre r. Note que o resultado é óbvio para r=1. Agora suponhamos que o resultado vale para o caso r-1. Então consideramos $f(t)=f_1(t)f(t),$ onde $f_1(t)=p_1^{k_1}(t)\dots p_{r-1}^{k_{r-1}}(t)$ e $f_2(t)=p_r^{k_r}(t)$. Então $m.d.c\{f_1(t),f_2(t)\}=1$. Aplicando o lema o resultado segue.

 $\begin{array}{l} \textbf{Corolário 4.3.13.} \ \ Seja \ V \ um \ espaço \ vetorial \ tal \ que \ dim(V) = n < \infty, \ seja \ T \in \mathcal{L}(V), \ e \ seja \ m_T(t) = p_1^{k_1}(t) \dots p_r^{k_r}(t) \ com \ p_i(t) \ irredutíveis \ e \ primos \ entre \ si. \ Então \ V = V_1 \oplus \ldots \oplus V_r \ onde \ V_i \ são \ T-invariantes \ e \ m_{T_{\uparrow V_i}}(t) = p_i^{k_i}(t). \end{array}$

 $\begin{array}{l} \textit{Demonstração}. \ \, \text{Temos por definição que } m_T(T) = 0. \ \, \text{Portanto, pelo teorema temos que } V = V_1 \oplus \ldots \oplus V_r, \, \text{onde cada } V_i \, \text{\'e T-invariante.} \, \, \text{Considere } T_i \coloneqq T_{\upharpoonright V_i} \, \text{para cada } i \in [r]. \, \text{Temos que } p_i^{k_i}(T_i) = 0. \, \text{Então segue que } M_{T_i}(v)|p_i^{k_i}(t), \, \text{ou seja, } m_{T_i}(t) = p_i(t)^{m_i}, \, \text{onde } m_i \leq k_i. \, \text{Suponhamos que } m_i < k_i \, \text{e consideremos } g(t) = p_1^{k_1}(t) \ldots p_i^{m_i}(t) \ldots p_r^{k_r}(t), \, \text{e então deg}(g(t)) < \text{deg}(m_T(t)). \\ \text{Provaremos que } g(T) = 0, \, \text{o que ir\'a contradizer a minimalidade do grau de } m_t(t). \, \text{Se } v \in V_j \, \text{com } j \neq i \, \text{então } p_j^{k_j}(v) = 0 \, \text{e portanto } g(T)(v) = 0. \, \text{Se } v \in V_i \, \text{então } p_i^{m_i}(T)(v) = 0 \, \text{e } g(T)(v) = 0. \, \text{Assim concluímos que } g(T_k) = 0 \, \text{para cada } k = 1, \ldots, r \, \text{e logo } g(T) = 0. \, \text{Isso implica que } g(T) \, \text{\'e o polinômio minimal de } T, \, \text{absurdo.} \\ \\ \Box$

Corolário 4.3.14. Seja V um espaço vetorial tal que $\dim(V) = n < \infty$, seja $T \in \mathcal{L}(V)$, e seja $p_t(t) = p_1^{k_1}(t) \dots p_r^{k_r}(t)$ com $p_i(t)$ irredutíveis e primos entre si. Então $V = V_1 \oplus \dots \oplus V_r$, com V_i T-invariantes e $p_{T_{|V_i}}(t) = p_i(t)^{k_i}$.

Demonstração. PROF NÃO TERMINOU ESSA PROVA

Corolário 4.3.15. Um operador $T \in \mathcal{L}(V)$ é diagonalizável se, e somente se $m_T = (t - \lambda_1) \dots (t - \lambda_r)$ com $\lambda_i \neq \lambda_j$ sempre que $i \neq j$.

Demonstração. A ida já foi provada em algum momento do passado, então vamos mostrar apenas a volta. Pelo primeiro Corolário, temos que $V = V_1 \oplus \ldots \oplus V_r$ com $m_{T_{|V_i}} = t - \lambda_i$, ou seja $T_{|V_i|} = \lambda_i I_{V_i}$ e ainda $V_i = V_T(\lambda_i)$.

Considere $\{T_i : i \in I\} \subseteq \mathcal{L}(V)$. Quando os operadores T_i podem ser diagonalizados simultaneamente?

Teorema 4.3.16. Um conjunto $\{T_i : i \in I\}$ pode ser diagonalizado simultaneamente se, e somente se cada T_i é diagonalizável e $T_iT_j = T_jT_i$ para todo $i, j \in I$.

Demonstração. PROF TB NÃO TERMINOU ESSA PROVA □

CAPÍTULO 4. FORMAS CANÔNICAS

4.3. SUBESPAÇOS INVARIANTES

Índice

Espaço Vetorial

Base, 5

Base dual, 12

Dimensão, 7

Soma direta, 8

Teorema do Núcleo-Imagem, 11 Transformações Lineares, 11

Teorema de Cantor-Bernstein, 7 Transformações Lineares Isomorfismos, 12