Asset-Pricing Moments in Benchmark RBC Model

Xiangyu Ding [dingdxy@connect.hku.hk]; Pantalfini Matteo [panta@connect.hku.hk]

January 27, 2023

1 Model Setup

- Representative Household:
 - Household provides labor H_t , own and lend capital K_t to firm, and trade consumption claim S_t with other household to maximize lifetime expected utility;
 - Consumption claim is traded at price P_t per unit at period t and gives consumption C_{t+1} next period. The simple return of consumption claim is $R_{t+1}^c = \frac{C_{t+1} + P_{t+1}}{P_t} 1$:
 - Zero coupon Risk free bond is traded at price P_t^{rf} and gives 1 consumption for sure next period. The simple return of risk-free bond is $R_t^f = \frac{1}{P^{rf}} 1$:

$$\max_{\{C_t, H_t, I_t, K_t, S_t, B_t\}} E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left(\log \left(C_{\tau} \right) - \theta \frac{H_{\tau}^{1+\psi}}{1+\psi} \right)$$
 (1.1)

s.t.
$$C_t + I_t + P_t S_t + P_t^{rf} B_t \le W_t H_t + R_t K_{t-1} + \Pi_t + (P_t + C_t) S_{t-1} + B_{t-1}$$
 (1.2)

$$K_t = \exp(b_t) I_t + (1 - \delta) K_{t-1}$$
(1.3)

$$\lim_{T \to +\infty} \beta^T M U_T K_T = 0 \tag{1.4}$$

- Representative Firm:
 - Firm hires labor and rents capital from household to produce perfectly substitutable capital and consumption goods to maximize firm value:

$$\max_{\{Y_t, \Pi_t, H_t, K_{t-1}\}} E_t \sum_{\tau=t}^{\infty} M_{t,\tau} \Pi_{\tau}$$
 (1.5)

s.t.
$$\Pi_t = Y_t - W_t H_t - R_t K_{t-1}$$
 (1.6)

$$Y_t = \exp\left(a_t\right) K_{t-1}^{\alpha} H_t^{1-\alpha} \tag{1.7}$$

• Model Closure:

- Consumption claim market clear:

$$S_t = 0 (1.8)$$

- Risk-free bond market clear:

$$B_t = 0 (1.9)$$

- Goods market clear:

$$C_t + I_t = Y_t \tag{1.10}$$

- Definition of return on consumption claim:

$$R_{t+1}^c = \frac{C_{t+1} + P_{t+1}}{P_t} - 1 (1.11)$$

- Definition of return on risk-free bond:

$$R_t^f = \frac{1}{P_t^{rf}} - 1 (1.12)$$

- Definition of SDF:

$$M_{t+1} = \beta \frac{C_t}{C_{t+1}} \tag{1.13}$$

Exogenous shocks:

$$\begin{pmatrix} a_t \\ b_t \end{pmatrix} = \begin{pmatrix} \rho & \tau \\ \tau & \rho \end{pmatrix} \begin{pmatrix} a_{t-1} \\ b_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_t \\ \nu_t \end{pmatrix}$$
 (1.14)

2 Dynamic System

The dynamic system contains 11 endogenous variables $(H, C, I, K, Y, M, W, PC, R, R^c, R^f)$ and 2 exogenous variables (a, b). We need to find 13 equations linking endogenous variables and exogenous variables:

- Consumer optimization condition:
 - Consumption-labor trade-off:

$$\theta H_t^{\psi} = \frac{1}{C_t} W_t \tag{2.1}$$

- Capital Euler equation:

$$E_{t} \left[M_{t+1} \frac{\exp(b_{t})}{\exp(b_{t+1})} \left(\exp(b_{t+1}) R_{t+1} + 1 - \delta \right) \right] = 1$$
 (2.2)

- Consumption claim investment Euler equation:

$$E_{t} \left[M_{t+1} \frac{P_{t+1} + C_{t+1}}{P_{t}} \right] = E_{t} \left[M_{t+1} \frac{1 + PC_{t+1}}{PC_{t}} \frac{C_{t+1}}{C_{t}} \right] = 1$$
 (2.3)

- Risk-free bond investment Euler equation:

$$E_t \left[M_{t+1} \left(1 + R_t^f \right) \right] = 1 \tag{2.4}$$

- Definition of consumption claim return:

$$R_t^c = \frac{1 + PC_t}{PC_{t-1}} \frac{C_t}{C_{t-1}} - 1 \tag{2.5}$$

- Definition of SDF:

$$M_t = \beta \frac{C_{t-1}}{C_t} \tag{2.6}$$

- Capital dynamic:

$$K_t = \exp(b_t) I_t + (1 - \delta) K_{t-1}$$
(2.7)

- Budget constraint:

$$C_t + I_t = W_t H_t + R_t K_{t-1} (2.8)$$

- Firm optimization:
 - Production function:

$$Y_t = \exp\left(a_t\right) K_{t-1}^{\alpha} H_t^{1-\alpha} \tag{2.9}$$

- Optimal capital:

$$R_t = \alpha \frac{Y_t}{K_{t-1}} \tag{2.10}$$

- Optimal labor:

$$W_t = (1 - \alpha) \frac{Y_t}{H_t} \tag{2.11}$$

- Exogenous process:
 - Productivity:

$$a_t = \rho a_{t-1} + \tau b_{t-1} + \varepsilon_t \tag{2.12}$$

- Investment efficiency:

$$b_t = \tau a_{t-1} + \rho b_{t-1} + \nu_t \tag{2.13}$$

- shocks:

$$E\left(\varepsilon_{t}\right) = 0\tag{2.14}$$

$$E\left(\nu_{t}\right) = 0\tag{2.15}$$

$$E\left(\varepsilon_{t}\varepsilon_{s}\right) = \begin{cases} \sigma_{\varepsilon}^{2} & \text{if} \quad t = s\\ 0 & \text{if} \quad t \neq s \end{cases}$$

$$(2.16)$$

$$E(\nu_t \nu_s) = \begin{cases} \sigma_{\nu}^2 & \text{if} \quad t = s \\ 0 & \text{if} \quad t \neq s \end{cases}$$
 (2.17)

$$E\left(\varepsilon_{t}\nu_{s}\right) = \begin{cases} \varphi\sigma_{\varepsilon}\sigma_{\nu} & \text{if} \quad t = s\\ 0 & \text{if} \quad t \neq s \end{cases}$$

$$(2.18)$$

3 Deterministic Steady State

- Assume that $\varepsilon_t = \nu_t = 0, \forall t$:
 - From investment shocks and productivity shocks:

$$a_{ss} = 0 (3.1)$$

$$b_{ss} = 0 (3.2)$$

- From definition of SDF:

$$M_{ss} = \beta \tag{3.3}$$

- From consumption claim investment Euler equation:

$$PC_{ss} = \frac{\beta}{1-\beta} \tag{3.4}$$

$$R_{ss}^c = \frac{1}{\beta} - 1 \tag{3.5}$$

– From risk-free bond investment Euler equation:

$$R_{ss}^f = \frac{1}{\beta} - 1 \tag{3.6}$$

- From capital Euler equation:

$$R_{ss} = \frac{1}{\beta} - (1 - \delta) \tag{3.7}$$

- From capital dynamic:

$$I_{ss} = \delta K_{ss}$$

- Calculate labor capital ratio from optimal capital and production function:

$$\frac{1}{\beta} - (1 - \delta) = \alpha \left(\frac{H_{ss}}{K_{ss}}\right)^{1 - \alpha}$$

$$HK_{ss} \equiv \frac{H_{ss}}{K_{ss}} = \left(\frac{1}{\alpha\beta} - \frac{1-\delta}{\alpha}\right)^{\frac{1}{1-\alpha}} \tag{3.8}$$

- Calculate consumption capital ratio from budget constraint:

$$\frac{C_{ss}}{K_{ss}} + \delta = \left(\frac{H_{ss}}{K_{ss}}\right)^{1-\alpha}$$

$$CK_{ss} \equiv \frac{C_{ss}}{K_{ss}} = \frac{1}{\alpha\beta} - \frac{1-\delta}{\alpha} - \delta$$
(3.9)

- Combine Consumption-labor trade-off and optimal labor and production function:

$$\theta H_{ss}^{\psi} = \frac{1}{C_{ss}} (1 - \alpha) (HK_{ss})^{-\alpha} = \frac{1}{K_{ss}CK_{ss}} (1 - \alpha) (HK_{ss})^{-\alpha}$$

$$\theta H_{ss}^{\psi+1} = \frac{HK_{ss}}{CK_{ss}} (1 - \alpha) (HK_{ss})^{-\alpha}$$

$$H_{ss} = \left[\frac{1}{\theta} \frac{HK_{ss}}{CK_{ss}} (1 - \alpha) (HK_{ss})^{-\alpha} \right]^{\frac{1}{\psi+1}}$$
(3.10)

- Finally equilibrium capital, consumption, investment, and production:

$$K_{ss} = \frac{H_{ss}}{HK_{ss}} \tag{3.11}$$

$$C_{ss} = CK_{ss}K_{ss} (3.12)$$

$$I_{ss} = \delta K_{ss} \tag{3.13}$$

$$Y_{ss} = K_{ss}^{\alpha} H_{ss}^{1-\alpha} \tag{3.14}$$

4 Dynare Code

```
%% Macro Finance Homework 1: Solve asset prices in RBC Model
1
     % Author: Xiangyu DING and Pantalfini Matteo
2
     % Xiangyu DING <dingdxy@connect.hku.hk>; Pantalfini Matteo <panta@connect.hku.hk>
     % The model is a modified version of https://www.dynare.org/assets/tutorial/guide.pdf
     %% 1. Variables
     var
     h
              $H$
                                   (long_name = 'Labor')
              $C$
                                   (long_name = 'Consumption')
10
              $1$
                                   (long_name = 'Investment')
11
     ii
                                   (long_name = 'Capital')
12
     k
              $K$
                                   (long_name = 'Production')
              $Y$
13
                                   (long_name = 'SDF')
              $M$
14
              $W$
                                   (long_name = 'Wage')
15
              $a$
                                   (long_name = 'Log Productivity')
16
              $ъ$
                                   (long_name = 'Log Investment Efficiency')
17
              $PC$
                                   (long_name = 'Price to Consumption Ratio')
18
     рс
              $R$
                                   (long_name = 'Return on Capital')
19
              $R^c$
                                   (long_name = 'Return on Consumption Claim')
20
     rc
              $R^f$
                                   (long_name = 'Risk Free Return');
21
     rf
```

```
22
23
     varexo
            $\varepsilon_t$
                                 (long_name = 'Productivity Shocks')
24
            \sum_{t}
                                 (long_name = 'Investment Efficiency Shocks');
25
26
     %% 2. Parameters
27
28
    parameters
    BETA $\beta$
                                (long_name = 'Discount Factor')
29
    ALPHA $\alpha$
                               (long_name = 'Capital Share')
30
    DELTA $\delta$
                               (long_name = 'Depreciation Rate')
31
                               (long_name = 'Labor Disutility Level')
    THETA $\theta$
32
                               (long_name = 'Fisher Elasticity of Labor')
    PSI
            $\psi$
33
                                (long_name = 'VAR Shock Self-Autogression')
    RHO
            $\rho$
34
    TAU $\tau$
                                (long_name = 'VAR Shock Spillover');
35
36
     %% 3. Calibration
37
     % We use the value provided from dynare tutorial, see following link
38
     % https://www.dynare.org/assets/tutorial/guide.pdf
39
     % Quarter (4 month) value since BETA = 0.99
40
     ALPHA = 0.36;
41
    RHO = 0.95;
42
    TAU = 0.025;
43
    BETA = 0.99;
44
45
     DELTA = 0.025;
46
     PSI = 0;
     THETA = 2.95;
47
48
     PHI = 0.1;
49
50
     %% 4. Steady State Values
51
     a_ss = 0;
52
     b_ss = 0;
53
    m_ss = BETA;
54
     pc_ss = BETA/(1-BETA);
55
    rc_ss = 1/BETA - 1;
56
    rf_ss = 1/BETA - 1 ;
57
    r_ss = 1/BETA - (1-DELTA);
58
59
60
     % hk for h/k: labor to capital ratio
     hk_ss = (1/(ALPHA*BETA) - (1-DELTA)/ALPHA)^(1/(1-ALPHA));
61
62
63
     % ck for c/k: consumption to capital ratio
64
     ck_ss = 1/(ALPHA*BETA) - (1-DELTA)/ALPHA - DELTA;
     h_{ss} = ((1/THETA)*(hk_{ss}/ck_{ss})*(1-ALPHA)*(hk_{ss}^{-(-ALPHA)}))^{(1/(1+PSI))};
65
     k_ss = h_ss/hk_ss;
66
     c_ss = ck_ss*k_ss;
67
     ii_ss = DELTA*k_ss;
68
    y_ss = (k_ss^ALPHA)*(h_ss^(1-ALPHA));
69
     w_ss = (1-ALPHA)*y_ss/h_ss;
70
71
72
    %% 5. Model
73
    model;
74
     [name = '1. Consumption-labor trade-off']
75
    THETA*(h^PSI) = w/c;
76
```

```
77
      [name = '2. Capital Euler equation']
78
      m(+1)*(exp(b)/exp(b(+1)))*(exp(b(+1))*r(+1)+1-DELTA)=1;
79
80
      [name = '3. Consumption claim investment Euler equation']
81
      m(+1)*((pc(+1)+1)/pc)*(c(+1)/c)=1;
82
83
      [name = '4. Risk-free bond investment Euler equation']
84
      m(+1)*(rf+1) = 1;
85
86
      [name = '5. Definition of consumption claim return']
87
      rc = (pc+1)*(c/c(-1))/pc(-1) - 1;
88
89
      [name = '6. Definition of SDF']
90
      m = BETA*c(-1)/c;
91
92
      [name = '7. Capital dynamic']
93
      k = \exp(b)*ii+(1-DELTA)*k(-1);
94
95
      [name = '8. Budget constraint']
96
      c+ii = w*h+r*k(-1);
97
      [name = '9. Production function']
99
100
      y = \exp(a)*(k(-1)^ALPHA)*(h^(1-ALPHA));
101
      [name = '10. Optimal capital']
102
      r = ALPHA*y/k(-1);
103
104
      [name = '11. Optimal labor']
105
      w = (1-ALPHA)*y/h;
106
107
      [name = '12. Productivity shocks']
108
      a = RH0*a(-1)+TAU*b(-1) + e;
109
110
      [name = '13. Investment shocks']
111
      b = TAU*a(-1)+RHO*b(-1) + u;
112
113
      end;
114
      %% 6. Initative Values
115
116
      initval;
117
     h = h_s;
118
      c = c_s;
119
     ii = ii_ss;
     k = k_s;
120
     y = y_s;
121
     m = m_s;
122
     r = r_s;
123
     w = w_s;
124
     a = a_s;
125
     b = b_s;
126
     pc = pc_ss;
127
     rc = rc_ss;
128
     rf = rf_ss;
129
      end;
130
131
```

```
%% 7. Check steady-state
132
      steady;
133
134
      check;
135
      %% 8. Exogenous shocks
136
137
      shocks;
      var e; stderr 0.009;
138
      var u; stderr 0.009;
139
      var e, u = PHI*0.009*0.009;
140
141
142
      %% 9. Simulation
143
      stoch_simul(periods=200000, order = 2,pruning ,nograph);
144
145
      %% 10. Write LaTex File
146
147
148
      write_latex_definitions;
149
      write_latex_parameter_table;
150
      write_latex_original_model;
151
      write_latex_dynamic_model;
152
      write_latex_static_model;
      collect_latex_files;
153
154
155
      if system(['pdflatex -halt-on-error -interaction=batchmode ' M_.fname '_TeX_binder.tex'])
156
          warning('TeX-File did not compile; you need to compile it manually')
157
      end
158
159
      %% 11. Calculate Moment
160
      a_sd = diag(sqrt(oo_.var))*sqrt(4)*100;
      a_moment = [
161
          oo_.mean(11)*400 ...
162
          (oo_.mean(11)-DELTA)*400 ...
163
          a_sd(11) ...
164
          oo_.mean(12)*400 ...
165
          a_sd(12)...
166
          oo_.mean(13)*400 ...
167
          a_sd(13)]';
168
169
      Labels =['E[r]
170
                                 ';
              'E[r]-\delta
171
                                  ';
              'Sd[r]
172
                                  ';
              'E[rc]
173
                                  1;
               'sd[rc]
174
               'E[rf]
                                  ١;
175
                                  '];
               'sd[rf]
176
      [Labels num2str(a_moment,'%2.3f')]
177
```

5 Result

Table 1: Quarter Calibration (as in Dynare Tutorial)

Parameter	Value	Description
β	0.990	Discount Factor
α	0.360	Capital Share
δ	0.025	Depreciation Rate
heta	2.950	Labor Disutility Level
ψ	0.000	Fisher Elasticity of Labor
ho	0.950	VAR Shock Autoregression
au	0.025	VAR Shock Spillover
$\sigma_{arepsilon}$	0.009	Productivity Shock Std
$\sigma_{ u}$	0.009	Investment Efficiency Shock Std
φ	0.100	Shocks Correlation

Table 2: Asset Pricing Moments

Parameter	Value	Description
E[R]	14.036%	Mean Capital Return Before Depreciation
$E[R] - \delta$	4.036%	Mean Capital Return After Depreciation
Std[R]	0.446%	Std Capital Return
$E[R^c]$	4.049%	Mean Consumption Claim Return
$Std[R^c]$	1.337%	Std Consumption Claim Return
$E[R^f]$	4.038%	Mean Risk-free Return
$Std[R^f]$	0.518%	Std Risk-free Return

As documented by Jermann (1998), Table 2 illustrates that benchmark RBC model with no habit formation and no adjustment cost cannot match asset-pricing moments. Because firms can perfectly adjust capital facing productivity shocks, capital (and consumption) are nearly risk free in this model.

References

Jermann, U. J. (1998). Asset pricing in production economies. Journal of monetary Economics, 41(2), 257-275.