

Equivalences in FOL

- The concept of (semantic) **equivalence** can be translated into **FOL** in the obvious way:
 - \square two formulas F and G of **FOL** are equivalent (symbolically F \equiv G) if for all structures $\mathcal A$ which are suitable for both F and G,

$$\mathcal{A}(\mathsf{F}) = \mathcal{A}(\mathsf{G})$$

Also we observe that all equivalences which have been proved for formulas in propositional logic still hold in predicate logic, e.g. deMorgan's law:

$$\neg (F \land G) \equiv (\neg F \lor \neg G)$$

 For the purpose of manipulating formulas of FOL, to convert them to certain normal forms etc., we need equivalences which also include quantifiers.

Equivalences in FOL

■ Theorem:

- \Box Let F and G be arbitrary formulas:
 - 1. $\neg \forall x F \equiv \exists x \neg F$ $\neg \exists x F \equiv \forall x \neg F$
 - 2. If x does not occur free in G, then

$$\begin{array}{ccc} (\forall x F \wedge G) & \equiv & \forall x (F \wedge G) \\ (\forall x F \vee G) & \equiv & \forall x (F \vee G) \\ (\exists x F \wedge G) & \equiv & \exists x (F \wedge G) \\ (\exists x F \vee G) & \equiv & \exists x (F \vee G) \end{array}$$

- 3. $(\forall x F \land \forall x G) \equiv \forall x (F \land G)$ $(\exists x F \lor \exists x G) \equiv \exists x (F \lor G)$
- 4. $\forall x \forall y F \equiv \forall y \forall x F$ $\exists x \exists y F \equiv \exists y \exists x F$

Note: x does not occur free in $G \Leftrightarrow G$ does not contain x

3

Equivalences in FOL

Important notes

□ $\forall x \exists y F(x,y) \neq \exists y \forall x F(x,y)$. Why?

Example: Assume that domain, $U = \mathbb{Z}$ and

- F(x,y) = True if x < y, otherwise False
- For every integer x there is an integer y such that x < y" is true, but</p>
- There is an integer y such that for every integer x, x < y is false
- □ We cannot conclude that

$$\forall x F(x) \lor \forall x G(x) \equiv \forall x (F(x) \lor G(x))$$

- **Example:** Assume that domain, $U = \mathbb{N} = \{0,1,2,...\}$ and
 - \Box F(x) = True, if (x = 0); otherwise False
 - \Box G(x) = True, if (0 < x); otherwise False
 - □ Then
 - $\forall x(x = 0) \lor \forall x(0 < x)$ and $\forall x((x = 0) \lor (0 < x))$ are **not equivalent**, for \mathbb{N}
 - the first is **false** in N, whereas
 - the second is **true** in N

 $\forall x F(x) \lor \forall x G(x) \not\equiv \forall x (F(x) \lor G(x))$

Prenex form

Definition (prenex form):

• A formula is in **prenex** form it has the form

$$Q_1x_1Q_2x_2...Q_nx_nF$$

where $\mathbf{Q}_i \in \{\exists, \forall\}$, n > 0, and the \mathbf{x}_i are variables. Further, \mathbf{F} does not contain a quantifier.

A list of quantifiers $Q_1x_1Q_2x_2...Q_nx_n$ is called **prefix** and **F** is called the **matrix** of a formula. Here **F** is represented in **CNF**.

Theorem:

 For every formula F there exists an equivalent formula G in prenex form.

5

Prenex form. Reduction

Algorithm (to transform a formula into **≡ CN prenex Form**):

- Step 1:
 - □ Transform a formula into ≡ **CNF** (see algorithm from **COT3541_2.PDF** slides).
- Step 2:
 - □ Positioning of "¬" just before the predicates:

 - $\neg ((\exists x)P(x)) \equiv (\forall x)(\neg P(x))$ (2)
- Step 3:
 - □ Movement of the quantifiers with changing variables, if necessary: (by R we will denote a predicate without a variable x)
 - $(Qx)P(x) \vee R \equiv Qx(P(x) \vee R)$ (3)
 - $(Qx)P(x) \wedge R \equiv Qx(P(x) \wedge R)$ (4)
 - $(\forall x)P(x) \wedge (\forall x)R(x) \equiv \forall x(P(x) \wedge R(x))$ (5)
 - $(\exists x)P(x) \lor (\exists x)R(x) \equiv \exists x(P(x) \lor R(x))$ (6)
 - $(Q_1x)P(x) \wedge (Q_2x)R(x) \equiv (Q_1x)(Q_2z)(P(x) \wedge R(z))$ (7)
 - $(Q_3x)P(x) \lor (Q_4x)R(x) \equiv (Q_3x)(Q_4z)(P(x) \lor R(z))$ (8

Prene

Prenex form. Reduction

Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example: Convert the following formula into **EXAMPLE** CONVERTED TO The Example Convert th

 $(\forall x)(\forall y)((\exists z)(P(x,z)\land P(y,z))\rightarrow (\exists z)Q(x,y,z))$

Attention with the (..)

$$(\forall x)(\forall y)((\exists z)(P(x,z)\land P(y,z))\rightarrow (\exists z)Q(x,y,z))$$

Implication rule

$$\equiv (\forall x)(\forall y)(\neg((\exists z)(P(x,z)\land P(y,z)))\lor (\exists z)Q(x,y,z))$$

deMorgan Law

$$\equiv (\forall \vec{x})(\forall y)((\forall z)(\neg P(x,z) \lor \neg P(y,z)) \lor (\exists z)Q(x,y,z))$$

Changing variables

$$\equiv (\forall x)(\forall y)(\forall z)(\exists w)(\neg P(x,z) \lor \neg P(y,z) \lor Q(x,y,w))$$

7

Prenex form. Reduction

Exercise: Convert the following formula into **EXERCISE** Exercise: Convert Exercise Exer

$$F = (\forall x \exists y P(x, g(y, f(x))) \lor \neg Q(z)) \lor \neg \forall x R(x, y)$$

Skolem normal form.

Definition (Skolem Normal Form):

A formula is in Skolem Normal Form it has the prenex normal form:

$$Q_1x_1Q_2x_2...Q_nx_nF_r$$

where

 $Q_i \in \{\forall\}, 1 \le i \le n, and$

the matrix of the formula doesn't contain free variables.

- Examples (SNF):
 - $\Box \forall x \forall y (P(x) \lor \neg Q(a,y))$
- The process of eliminating existential quantifiers and replacing the corresponding variable by a constant or a function is called skolemisation

Thoralf Albert Skolem (May/1887 – March/1963) was a Norwegian mathematician who worked in mathematical logic and set theory.

Skolemisation

• Let a formula be already in a prenex normal form:

$$Q_1x_1Q_2x_2...Q_nx_nF$$
,

- where F is in a CNF.
 - □ Let $\mathbf{Q_r}$ be an <u>existential quantifier</u> in the prefix $\mathbf{Q_1x_1Q_2x_2...Q_nx_n}$, $1 \le r \le n$.
- Case #1: If <u>no universal quantifier appears before Q</u>_r, we do the following:
 - □ choose a new constant c different from other constants occurring in F;
 - \Box replace all x_r appearing in F by c;
 - \Box delete (Q_rx_r) from the prefix.
- **Example:** $(\exists x)(\forall y)(\forall z)(P(x,y) \land Q(x,z))$

 $(\forall y)(\forall z)(P(a,y) \land Q(a,z))$

Skolemisation (cont...)

• Let a formula be already in a prenex normal form

$$Q_1x_1Q_2x_2...Q_nx_nF$$
,

- where F is in a conjunctive normal form.
 - □ Let $\mathbf{Q_r}$ be an <u>existential quantifier</u> in the prefix $\mathbf{Q_1x_1Q_2x_2...Q_nx_n}$, $1 \le r \le n$.
- Case #2: If $Q_{s_1},...,Q_{s_m}$ are all the universal quantifiers appearing before Q_r , $1 \le s_1 \le s_2 \le ... \le s_m \le r$, we do the following:
 - □ choose a new m-place function symbol f different from other function symbols occurring in F;
 - \Box replace all y_r appearing in F by $f(x_{s_1}, x_{s_2}, ..., x_{s_m})$;
 - \Box delete (Q_rx_r) from the prefix.
- Example #1: $(\forall x)(\exists y)(\exists z)((\neg P(x,y) \lor Q(x,z))$

 $(\forall x)((\neg P(x, f(x)) \lor Q(x, g(x)))$

11

Skolemisation (cont...)

- Example #2:
 - □ Obtain a **Skolem normal form** of the formula $(\exists x)(\forall y)(\forall z)(\exists u)(\forall v)(\exists w)P(x,y,z,u,v,w)$
 - \square ($\exists x$) is preceded by no universal quantifiers, ($\exists u$) is preceded by ($\forall y$) and ($\forall z$), and ($\exists w$) by ($\forall y$), ($\forall z$) and ($\forall v$).
 - □ Therefore, we replace the existential variable x by a constant a, u by a two-place function f(y,z), and w by a three-place function g(y,z,v).
 - □ The **Skolem normal form** of the formula is $(\forall y)(\forall z)(\forall v)P(a,y,z,f(y,z),v,g(y,z,v))$

- Example #3:
 - □ Obtain a **Skolem normal form** of the formula $(\forall x)(\exists y)(\exists z)((\neg P(x,y) \land Q(x,z)) \lor R(x,y,z)).$
 - □ First, the matrix is transformed into a **CNF**: $(\forall x)(\exists y)(\exists z)((\neg P(x,y) \lor R(x,y,z)) \land (Q(x,z) \lor R(x,y,z)))$
 - □ Then, since ($\exists y$) and ($\exists z$) are both preceded by ($\forall x$), the existential variables y and z are replaced, respectively by one-place functions f(x) and g(x).
 - □ The **Skolem normal form** of the formula is $(\forall x)((\neg P(x,f(x))\lor R(x,f(x),g(x)))\land (Q(x,g(x))\lor R(x,f(x),g(x))))$

13

Exercise:

☐ Obtain a **Skolem normal form** of the formula:

$$F = \neg \exists x \forall y (P(x, y) \land \exists x (P(x, x) \rightarrow Q(z))).$$

Solution:

 $F = \neg \exists x \forall y (P(x,y) \land \exists x (P(x,x) \rightarrow Q(z)))$ $\equiv \forall x \exists y (\neg P(x,y) \lor \forall x (P(x,x) \land \neg Q(z)))$ $\equiv \forall x \exists y (\neg P(x,y) \lor \forall u (P(u,u) \land \neg Q(z)))$ $\equiv \forall x \exists y \forall u (\neg P(x,y) \lor (P(u,u) \land \neg Q(z)))$ $\equiv_s \exists z \forall x \exists y \forall u (\neg P(x,y) \lor (P(u,u) \land \neg Q(z)))$ $\equiv_s \forall x \forall u (\neg P(x,f(x)) \lor (P(u,u) \land \neg Q(a))).$

CNF:

Skolem form is not unique!

- Example:
 - □ Consider the following formula:

$$F = (\forall x)P(x) \land (\exists y)Q(y)$$

$$\mathsf{F}_1 = (\forall \mathsf{x})(\exists \mathsf{y})(\mathsf{P}(\mathsf{x}) \land \mathsf{Q}(\mathsf{y}))$$

$$F_2 = (\exists y)(\forall x)(P(x) \land Q(y))$$

 F_1 and F_2 are prenex normal forms

$$F_1 \stackrel{\text{Skolem}}{\Rightarrow} S_1 = (\forall x)(P(x) \land Q(f(x)))$$

$$F_2 \stackrel{\text{Skolem}}{\Rightarrow} S_2 = (\forall x)(P(x) \land Q(a))$$

We want to find **Skolem forms** which are as simple as possible then the strategy is to move 3 to the left as much is possible

15

Given a formula F and S that represents a Skolem normal form of F.

We can write that $F \equiv S$?

- Nope!
 - □ Counter-example:
 - $F = (\exists x)P(x)$ and S = P(a)
 - Let $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}}), U_{\mathcal{A}} = \{1, 2\}$ and $a^{\mathcal{A}} = 1$ and $\{P^{\mathcal{A}}(1) = False, P^{\mathcal{A}}(2) = True\}$
 - then $\mathcal{A} \models \mathbf{F}$ but $\mathcal{A} \not\models \mathbf{S}$ therefore in general $\mathbf{S} \not\equiv \mathbf{F}$

Skolem form. Preserving Inconsistency

Theorem: (inconsistency preservation of Skolem form)

Let F be a formula and S be a set of clauses in Skolem normal form that represents the formula F. Then F is inconsistent/contradiction if and only if S is inconsistent/contradiction.

(see the Proof in the text book for the course)

- Then we have:
 - S ≡ F iif F is inconsistent
 - □ S ≠ F if F isn't inconsistent
 - (we can find and interpretation I, such that I ⊨ S and I ⊭ F or reverse)
- Prenex Normal Form preserves equivalence
- Skolemization preserves satisfiability

4-

Skolem form. Preserving Inconsistency

Example (home work):

Suppose S = $(\exists x)(\forall y)P(x,y)$ is a **prenex normal form** of F

Prove that F is valid iff $S' = (\exists x)P(x,f(x))$ is valid.

Solution:

- F is valid $\leftrightarrow \neg$ F is inconsistent $\leftrightarrow \neg$ S is inconsistent
- $\neg S \equiv \neg (\exists x)(\forall y)P(x,y) \equiv (\forall x)(\exists y)\neg P(x,y) = F'$
- \blacksquare F' is inconsistent \leftrightarrow F'_{Skol} is inconsistent, where F'_{Skol} is the Skolem normal form of the formula F'
- $F'_{Skol} \equiv (\forall x) \neg P(x,f(x)) \equiv \neg ((\exists x)P(x,f(x))) \equiv \neg S'$
- $\neg S'$ is is inconsistent $\leftrightarrow S'$ is valid