Pregunta 1 (3 puntos)

Sea $N \in \mathbb{N}$ fijo tal que $N \ge 2$. Sea $F_N = \{x = \{x_n\}_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) \colon \sum_{n=1}^N x_n = 0\}$.

- a) Demuestre que F_N es un subespacio vectorial cerrado de $\ell^2(\mathbb{N})$.
- b) Demuestre que $F_N^{\perp}=\left\{x=\{x_n\}_{n\in\mathbb{N}}\in\ell^2(\mathbb{N})\colon\,x_1=x_2=\cdots=x_N\ \mathrm{y}\ x_n=0\ \mathrm{si}\ n>N\right\}.$
- c) Sea $\mathbf{e}_1 = \{a_n\}_{n \in \mathbb{N}}$ tal que $a_1 = 1$ y $a_n = 0$ para todo $n \geq 2$. Calcule la distancia de \mathbf{e}_1 a F_N .

Pregunta 2 (2 puntos) Sean \mathcal{H} un espacio prehilbertiano y $\{x_1, x_2, \dots, x_N\}$ un sistema de \mathcal{H} tal que

$$\forall n \in \{1, 2, ..., N\}, ||x_i|| \ge 1 \quad \text{y} \quad \forall x \in \mathcal{H}, ||x||^2 = \sum_{i=1}^N |\langle x, x_i \rangle|^2.$$

Demuestre que $\{x_1, x_2, \ldots, x_N\}$ es una base ortonormal de \mathcal{H} .

Pregunta 3 (2,5 puntos)

Sea $\{\alpha_n\}_{n\in\mathbb{N}}$ una sucesión de números complejos. Sea la aplicación:

$$T: \quad \ell^2(\mathbb{N}) \longrightarrow \ell^2(\mathbb{N})$$

 $x = \{x_n\}_{n \in \mathbb{N}} \longmapsto T(x) = \{\alpha_n x_n\}_{n \in \mathbb{N}}$

- a) Demuestre que el operador lineal T es acotado si y sólo si la sucesión $\{\alpha_n\}_{n\in\mathbb{N}}$ es acotada. Determine en ese caso la norma de T.
- b) Supongamos que $\{\alpha_n\}_{n\in\mathbb{N}}$ es acotada. ¿Qué debe cumplir $\{\alpha_n\}_{n\in\mathbb{N}}$ para que T sea un operador autoadjunto?

Pregunta 4 (2,5 puntos)

Sabiendo que la transformada de Fourier de la función $g(t)=e^{-|t|}$ es $\sqrt{\frac{2}{\pi}}\frac{1}{1+\omega^2}$ se pide:

- a) La transformada de Fourier de $f(t) = \frac{1}{1+t^2}$.
- b) La transformada de Fourier de $h(t) = \frac{t}{(1+t^2)^2}$. Indicación: calcule previamente una primitiva de h.
- c) La transformada de Fourier de $k(t) = \frac{t^2}{(1+t^2)^2}$.
- d) La transformada de Fourier de $f^2(t) = \frac{1}{(1+t^2)^2}$. Indicación: exprese f^2 en función f y k.