'อ-สกุล <u> </u>	หองหองรหสนกศกษา
	ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์
	สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
	วิชา Machine Learning Laboratory

ય ય

การทดลองที่ 4 : การทดลองปรับค่าพารามิเตอร์เพื่อสร้างโมเดลการแนะนำสินค้าและการจัดกลุ่ม วัตถุประสงค์

- 1. เพื่อศึกษาและทดลองการใช้งานโมเดลแนะนำสินค้า
- 2. เพื่อศึกษาและทดลองการปรับค่าพารามิเตอร์ที่เหมาะสมกับโมเดลสำหรับชุดข้อมูลทดสอบ

อุปกรณ์ และเครื่องมือที่ใช้ในการทดลอง

1. โปรแกรม python

ข้อกำหนดในการตรวจการทดลอง

- 1. แสดง source code และภาพผลการทดลองที่ทำพร้อมอธิบาย โดยกลุ่มใดพร้อม ให้ Post แจ้งชื่อกลุ่ม และ Email ที่ต้องการให้ติดต่อไว้ใน Facebook group เพื่อตรวจการทดลองตามหัวข้อส่งงาน โดยจะทำ การตรวจผ่าน google hangout -> share screen ตามลำดับที่แจ้งไว้
- 2. นศ.ที่ได้รับการตรวจจากอาจารย์เรียบร้อย อาจารย์จะเช็คส่งงานในระบบ
- 3. ให้นศ. นำ source code และ ภาพ figure ที่ให้แสดงทุกภาพ โพสลงใน google form พร้อมตอบ คำถามท้ายการทดลอง ส่งภายในวันที่ 13 เม.ย. 2563 เวลา 18.00 น.

ตอนที่ 1: การทดลองเตรียมข้อมูลและแสดงรายละเอียดข้อมูลเชิงกราฟ

- 1.1 Import Lib (numpy, pandas, matplotlib, sklearn, datetime)
- 1.2 โหลดข้อมูล MovieLens Dataset file ('ratings.csv', 'movies.csv', 'tags.csv') โดยใช้
- 1.3 Data Preprocessing
 - 1.3.1 Data Cleaning
 - 1.3.2 Data Preparation
 - เตรียมข้อมูล movie rating ด้วยการดึงข้อมูลปีคศ. ('year') จากข้อมูล UTC 'timestamp'
 - เตรียมข้อมูล movie genre feature โดยกำหนดให้มีคอลัมน์ดังนี้โดยกำหนดให้ปรับรูปแบบ genres เป็น multi-label binarization

No.	movieid	Movie	No genres	Action	Adventure	 Western
		title	Listed			
0	1	0	0	0	1	 0

- 1.4 Data Visualization แสดงกราฟข้อมูลการเปลี่ยนแปลงของ movie genres และ movie rating ใน แต่ละปี
 - กราฟที่ 1: แสดงกราฟค่า จำนวน released movies ในแต่ละปี
 - กราฟที่ 2: แสดงกราฟค่า จำนวนการให้ rating ในแต่ละปี
 - กราฟที่ 3: แสดงกราฟค่า จำนวน movies ในแต่ละ genre
 - กราฟที่ 4: แสดงกราฟ (y-axis: stacked graph) ค่าจำนวน movie แต่ละ genre ในแต่ละปี (x-axis)
 - กราฟที่ 5: แสดงกราฟ Histogram ของการกระจายของค่าเฉลี่ย movie rating ใน dataset
 โดยค่าเฉลี่ย movie rating คำนวณจาก ค่า rating เฉลี่ยของแต่ละ movie เพื่อ
 เป็นข้อมูล input ให้กับ histogram (โดยให้กำหนดจำนวน histogram bins ที่จะ
 เห็นรายละเอียด)

ตอนที่ 2: การทดลองสร้างระบบแนะนำสินค้า (Recommendation system) จากข้อมูล user_matrix

- 2.1 สร้างข้อมูลความชอบของผู้ใช้แต่ละคน (user_ matrix)
 - row: user id (sorted)
 - column: rating for each movie of each user

movield	1	2	3	4	5	6	7	8	9	10	 193565	193567	193571	193573	193579	193581	193583	193585	193587	193609
userld																				
1	4.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

- 2.2 คำนวณความคล้ายกันของความชอบดูหนังของคู่ 'userld' ใดๆ
 - 2.2.1 สุ่มหยิบข้อมูล user_matrix มาจำนวน nUser ไม่น้อยกว่า 20 คน
 - 2.2.2 คำนวณความคล้ายของความชอบ movie ของคู่ user โดยใช้ตัววัด cosine_similarity()
 สำหรับข้อมูล user_matrix ที่สุ่มขึ้นมาจากข้อ 2.2.1 โดยใช้
 cosine similarity(user matrix)
 - 2.2.3 คำนวณความคล้ายของความชอบ movie ของคู่ user โดยใช้ตัววัด Pearson's similarity()
 สำหรับข้อมูล item_matrix ที่คำนวณจาก user_matrix (user_matrix transpose) โดยใช้

 df.user_matrix.T.corr (method ='pearson')
- 2.3 แสดงตารางรายการดังนี้
 - 2.3.1 ตาราง user ที่มีความชอบคล้ายกันที่สุด 5 อันดับ (เปรียบเทียบจากการวัดความคล้ายด้วย cosine_similarity() ข้อ 2.2.2 และ Person's similarity ข้อ 2.2.3
 - 2.3.2 ตาราง user ที่มีความชอบตรงกันข้ามกันที่สุด 5 อันดับ (จากการวัดความคล้ายด้วย Pearson's similarity ข้อ 2.2.3)
 - 2.3.3 ตาราง จากผลการวัดความคล้ายกันของแต่ละ user_matrix ให้สร้างรายการของคนที่มี
 ความชอบคล้ายกันที่สุด และรายการคนที่มีความชอบตรงข้ามกันที่สุด โดยแสดงในรูปของ
 กราฟความชอบ
- 2.4 แสดงรูปภาพ
 - 2.4.1 กราฟความคล้ายของความชอบ movie ที่วัดด้วย Pearson's similarity() โดยให้แสดงเส้นเชื่อม ความชอบของคู่ user ตามเงื่อนไข 2 แบบต่อไปนี้

- เฉพาะความชอบคล้ายกันที่เกินค่าที่กำหนด (Th) เป็นสี โดยแบ่งระดับความชอบที่เกินค่าที่ กำหนดเป็น 3 ช่วงระดับ เพื่อแสดงเส้นกราฟเป็นสี 3 สี (ให้เลือกสีที่ให้ความรู้สึกทางบวก)
- เฉพาะความชอบที่ตรงข้ามกันที่เกินค่าที่กำหนด (Th) เป็นสี โดยแบ่งระดับความชอบตรงข้ามที่ เกินค่าที่กำหนดเป็น 3 ช่วงระดับ เพื่อแสดงเส้นกราฟเป็นสี 3 สี (ให้เลือกสีที่ให้ความรู้สึกทางลบ)

โดยใช้ฟังก์ชันกราฟดังนี้

```
from networkx import nx
from matplotlib.lines import Line2D
```

```
# Create New Graph
```

G = nx.Graph()

Create #node = #user ใน Pearson's similarity และใส่ label เป็น user_id ในแต่ละ node for x in (user id จาก ความคล้ายจาก Pearson's Similarity):

```
G.add node(x, label)
```

Create #edge of graph ตามค่าใน Pearson's similarity ที่เป็นตามเงื่อนไข 2 เงื่อนไขที่ตั้งไว้ข้างต้น คือแสดงสีเฉพาะ user ที่ชอบคล้ายกันเกิน Th 3 ระดับสี และชอบตรงข้ามกันเกิน Th 3 ระดับสี Ex.

Add Edges with weight and assign color to the lines depend on 3 conditions for x in range(#user id in Pearson's similarity)):

for y in range(x+1, len (#user_id in Pearson's similarity)):

if Pearson's similarity [index(x), index(y)] > Th1:

G.add edge(x, y,

weight = Pearson'similarity ของคู่ user (x,y),

color="color#1")

elif Pearson's similarity [index(x), index(y)] > Th2:

G.add edge(x, y,

weight = Pearson'similarity ของคู่ user (x,y),

color="color#2")

2.4.2 แสดงรูปตาราง movie title ที่ rating สูงสุด ที่ควรแนะนำของคนที่มีความชอบคล้ายกันที่สุด ที่ควรแนะนำให้ดู

Row: user_id in Pearson's similarity

Column:

#1: user id ที่ชอบคล้ายที่สุด

#2: movie title ที่ user_id นั้น ให้ rating สูงสุด

#3: movie rating ของ #2

2.4.3 แสดงรูปตาราง movie title ที่ rating สูงสุด ของคนที่มีความชอบตรงข้ามกันที่สุด ที่ไม่ควร แนะนำให้ดู

Row: user_id in Pearson's similarity Column:

#1: user_id ที่ชอบตรงข้ามที่สุด

#2: movie title ที่ user_id นั้น ให้ rating สูงสุด

#3: movie rating ของ #2

ตอนที่ 3: การทดลองสร้างระบบแนะนำสินค้า (Recommendation system) จากข้อมูล movie_matrix

- 3.1 คำนวณความคล้ายกันของ movie genre ของคู่ 'movield' ใดๆ จากตาราง movie genre feature จากข้อ 1.3.2 โดย
 - 3.1.1 สุ่มหยิบข้อมูล movie_matrix จำนวน n movies จาก movie genre feature (ไม่น้อยกว่า 20 เรื่อง)
 - 3.2.2 คำนวณโดยใช้ตัววัด cosine_similarity() สำหรับข้อมูล movie_matrix จากข้อ 3.2.1
 - 3.2.3 คำนวณโดยใช้ตัววัด Pearson's similarity สำหรับข้อมูล movie matrix จากข้อ 3.2.1

Ex.

movieId	2606	162578	175475
movieId			
2606	1.000000	-0.166667	0.326732
162578	-0.166667	1.000000	0.490098
175475	0.326732	0.490098	1.000000

3.2 แสดงรูปภาพ

- 3.2.1 รายการของ movie ที่มีประเภท (genre) คล้ายกันที่สุด 5 อันดับ พร้อมค่า Pearson's Sim
- 3.2.2 รายการของ movie ที่มีประเภท (genre) ตรงข้ามกันที่สุด 5 อันดับ พร้อมค่า Pearson's Sim
- 3.2.3 รายการของ user ที่ให้ rating >= 3.0 ซึ่งสามารถแนะนำ movie ในรายการข้อ 3.2.1 ให้ได้

ตอนที่ 4: การจัดกลุ่ม User ที่มีความชอบคล้ายกันด้วยเทคนิค k-mean และ Gaussian Mixture

4.1 สร้างข้อมูลความชอบของ user ตาม genre ของ movie ในรูปของ genre_rating_matrix โดย

Row: user_id

Column: average rating for each genre of each user

- 4.2 สำหรับ K-mean model ให้กำหนดจำนวน n cluster
 - ตัวอย่าง Lib: from sklearn.cluster import KMeans (สามารถใช้ตัวอื่นได้)
 - ประกาศโมเดล: Kmean(n_clusters)
 - แบ่งข้อมูลเป็นชุด Train, Validate, Test
 - Train: model.fit()
 - Validation Test: model.prdict(validate)
 - แสดงรูปภาพผลลัพธ์ของการจัดกลุ่ม กำหนดให้เทียบรูปภาพอย่างน้อย n_cluster อย่างน้อย 3 ค่า
 - List ของ kmeans.cluster centers
 - 2D Scatter Plot
 - 1. Plot DataSamples: เลือก features 1 คู่ที่เมื่อแสดงภาพแล้วเห็นการแบ่งกลุ่ม ตาม จำนวน n_clusters ได้ดีที่สุด

plt.scatter(f1, f2,

c=prediction_label,

s=radius1, cmap='...')

2. Plot Cluster Center:

plt.scatter(f1 centriod, f2 centroids, c = selected color, s = radius2)

- 4.3 สำหรับ Gaussian Mixture Model
 - ตัวอย่าง Lib: from sklearn.mixture import GMM (สามารถใช้ตัวอื่นได้)
 - ประกาศโมเดล: GMM(n_components, covariance_type='full' , random_state)
 - แบ่งข้อมูลเป็นชุด Train, Validate, Test
 - Train: model.fit()
 - Validation Test: model.prdict(validate)
 - แสดงรูปภาพผลลัพธ์ของการจัดกลุ่ม กำหนดให้เทียบรูปภาพอย่างน้อย n cluster อย่างน้อย 3 ค่า
 - List ของ gmm_model.means_, gmm_model.covars_, gmm_model.weights_

Tutorial

Recommendation Dataset

[1] MovieLens: https://grouplens.org/datasets/movielens/