Homework learning objectives: By the end of this homework, you should be able to:

- Plot the magnitude and of the discrete-time Fourier Transform of a signal
- Determine the Nyquist sampling rate of a signal
- Plot the Fourier transform of a sampled signal

Question #1: (1 pts) How many hours did you spend on this homework?

Question #2: (6 pts) Consider the discrete-time Fourier transform response

$$Z(\omega) = -\sum_{k=-\infty}^{\infty} 4u(\omega + \pi/2 - 2\pi k) - 4u(\omega - \pi/2 - 2\pi k)$$

- (a) Sketch the magnitude of $Z(\omega)$ (i.e., $|Z(\omega)|$) for $-4\pi \le \omega \le 4\pi$.
- (b) Sketch the phase $Z(\omega)$ (i.e., $\angle Z(\omega)$) for $-4\pi \le \omega \le 4\pi$.
- (c) Would you describe $Z(\omega)$ as a low pass filter, band pass filter, high pass filter, or none?

Question #3: (8 pts) Consider the discrete-time impulse response

$$h[n] = -\delta[n-2] + 2\delta[n-3] - \delta[n-4]$$

- (a) Determine the DTFT of h[n], i.e., $H(\omega)$.
- (b) Compute and sketch the magnitude of $H(\omega)$ (i.e., $|H(\omega)|$)
- (c) Compute and sketch the phase $H(\omega)$ (i.e., $\angle H(\omega)$).
- (d) Would you describe $H(\omega)$ as a low pass filter, band pass filter, high pass filter, or none?

Question #4: $(8 \ pts)$ Consider the discrete-time impulse response

$$h[n] = \delta[n - 10]$$

- (a) Determine the DTFT of h[n], i.e., $H(\omega)$.
- (b) Compute and sketch the magnitude of $H(\omega)$ (i.e., $|H(\omega)|$)
- (c) Compute and sketch the phase $H(\omega)$ (i.e., $\angle H(\omega)$).
- (d) Would you describe $H(\omega)$ as a low pass filter, band pass filter, high pass filter, or none?

Question #5: (10 pts) The Nyquist sampling rate of a signal is the minimum rate $\Omega_s = 2\pi/T_s$ for which the signal can be sampled and then perfectly recovered. Determine the Nyquist rate Ω_s (in angular frequency) for the following signals. Use the continuous-time transform tables to answer questions.

- (a) $x(t) = \sin(20\pi t + 1)$
- (b) $x(t) = 1 + \sin(15t) + \cos(66t)$
- (c) $x(t) = \cos(t)\cos(2t)\cos(3t)\cos(5t)$
- (d) $x(t) = e^{-2t}u(t)$
- (e) x(t), where the Fourier Trans. of x(t) is $X(\Omega) = \cos(4\Omega) \left[u(\Omega + 4) u(\Omega 4) \right]$
- (f) $x(t) * e^{-2t}u(t)$, where the Fourier Trans. of x(t) is $X(\Omega) = \cos(4\Omega) \left[u(\Omega + 4) u(\Omega 4) \right]$

Question #6: (10 pts) Consider the Fourier transform of x(t), shown below.

- (a) Determine the Nyquist sampling rate for $X(\Omega)$.
- (b) Sketch the Fourier transform $X_s(\Omega)$ of the sampled x(t) with a sampling rate of $\Omega_s = 10\pi$.
- (c) Sketch the Fourier transform $X_s(\Omega)$ of the sampled x(t) with a sampling rate of $\Omega_s = 8\pi$.
- (d) Sketch the Fourier transform $X_s(\Omega)$ of the sampled x(t) with a sampling rate of $\Omega_s = 6\pi$.
- (e) Sketch the Fourier transform $X_s(\Omega)$ of the sampled x(t) with a sampling rate of $\Omega_s = 4\pi$.