1. Kuinka monta on sellaisia 7-numeroisia luonnollisia lukuja, jotka eivät ala numerolla 1 eivätkä pääty numeroon 1?

Ratkaisu. Kaikki sellaiset luvut voivat alkaa kahdeksalla eri numerolla ja päättyä yhdeksällä eri numerolla. Muut viisi numeroa voidaan kukin valita kymmenellä eri tavalla. Siten vastaus on $8 \cdot 10^5 \cdot 9 = 7200000$.

2. Olkoon $C = \{c_1, c_2, \dots, c_n\}$ n kirjaimen joukko. Kutsumme sanaksi mitä tahansa m peräkkäisen joukosta C valitun kirjaimen jonoa, joka ei ala eikä pääty kirjaimella c_1 ja missä $m \leq n$.

Kuinka monta tällaista sanaa voimme muodostaa joukon C kirjaimista?

Ratkaisu. Olkoon $W(\ell)$ (missä $\ell \leq m$ on positiivinen kokonaisluku) ℓ kirjaimen mittaisten sanojen lukumäärä. On helppo nähdä, että W(1) = n - 1, $W(2) = (n-1)^2$, ja että $W(\ell) = (n-1)^2 n^{\ell-2}$ jokaisella $3 \leq \ell \leq m$. Kysytty lukumäärä on

$$\sum_{\ell=1}^{m} W(\ell) = (n-1) + (n-1)^{2} + \sum_{\ell=3}^{m} (n-1)^{2} n^{\ell-2} = n-1 + (n-1)^{2} \sum_{\ell=0}^{m-2} n^{\ell}$$

$$= n-1 + (n-1)^{2} \cdot \frac{n^{m-1}-1}{n-1} = (n-1) + (n-1)(n^{m-1}-1)$$

$$= n-1 + n^{m} - n - n^{m-1} + 1 = n^{m} - n^{m-1} = n^{m-1} (n-1).$$

 ${\bf 3.}$ Etsi kaikki kaksinumeroiset luonnolliset luvut a,joille löytyy positiiviset kokonaisluvut x ja y,joille

$$2^{x+y} = 2^x + 2^y + a.$$

Ratkaisu. Kirjoitetaan yhtälö muodossa

$$(2^x - 1)(2^y - 1) = a + 1.$$

Olemme siis oikeastaan kiinnostuneita löytämään ne positiiviset kokonaisluvut x ja y, joille vasemman puolen lauseke on välillä [11, 100]. Se hoituu helpoiten taulukoimalla. Symmetrisyyden nojalla riittää tarkastella vain pareja joille pätee $x \ge y$. Seuraavassa taulukossa on lausekkeen $(2^x - 1)(2^y - 1)$ arvoja:

$y \setminus x$	1	2	3	4	5	6	7
1	1	3	7	15	31	63	127
2		9	21	45	93	189	
3			49	105			

Relevantit arvot on vahvennettu ja kertovat, että kelvolliset luvun a arvot 14, 20, 30, 44, 48, 62 ja 92.

4. Olkoon kolmion piirin puolikas p ja olkoon sen sisäänpiirretyn ympyrän säde r. Osoita, että $p\geqslant 3\sqrt{3}\,r$. Milloin tässä vallitsee yhtäsuuruus?

Ratkaisu. Kolmion pinta-ala on pr ja käyttämällä Heronin kaavaa ja kolmen muuttujan aritmeettis-geometrista epäyhtälöä saamme:

$$p^2 r^2 = p (p - a)(p - b)(p - c) \leqslant p \left(\frac{p - a + p - b + p - c}{3}\right)^3 = p \left(\frac{p}{3}\right)^3 = \frac{p^4}{3^3}.$$

Jakamalla puolittain piirin puolikkaan neliöllä ja ottamalla puolittain neliöjuuret näemme, että

$$r \leqslant \sqrt{\frac{p^2}{3^3}} = \frac{p}{3\sqrt{3}}.$$

Yhtäsuuruus vallitsee täsmälleen silloin kun p-a=p-b=p-c, eli täsmälleen silloin kun a=b=c.

5. Olkoot x, y ja z sellaisia kokonaislukuja, että $x^2 + y^2 = z^2$. Osoita, että $3 \mid xy$ ja että $5 \mid xyz$.

Ratkaisu. Hyödynnämme niitä helposti tarkistettavissa olevia tosiasioita, että jokainen neliöluku on $\equiv 0$ tai 1 (mod 3), ja että jokainen neliöluku on $\equiv 0, 1$ tai $-1 \pmod 5$.

Jos olisi $3 \nmid xy$, niin olisi $x^2 \equiv y^2 \equiv 1 \pmod 3$, jolloin olisi myös $z^2 \equiv x^2 + y^2 \equiv 1 + 1 \equiv 2 \pmod 3$, mikä on mahdotonta, ja ensimmäinen väite on todistettu.

Jos 5 | xy, toinen väite pitää varmasti paikkaansa. Oletetaan siis, että on $5 \nmid xy$. Nyt kumpikin luvuista x^2 ja y^2 on kongruentti toisen luvuista ± 1 kanssa modulo 5. Jos olisi $x^2 \equiv y^2 \pmod 5$, niin olisi

$$z^2 \equiv x^2 + y^2 \equiv \pm 1 \pm 1 \equiv \pm 2 \pmod{5},$$

mikä on mahdotonta. Siis lukujen x^2 ja y^2 on oltava keskenään epäkongruentteja modulo 5, eli on oltava $z^2 \equiv \pm 1 \mp 1 \equiv 0 \pmod{5}$. Siis 5 | z^2 ja edelleen 5 | z.

6. Olkoot $a, b, c \in \mathbb{R}$, ja oletetaan, että

$$(2b-a)^2 + (2b-c)^2 = 2(2b^2 - ac).$$

Osoita, että luvut $a,\ b$ ja c ovat jonkin aritmeettisen jonon kolme peräkkäistä elementtiä.

Ratkaisu. Kun neliöt kerrotaan auki, saadaan yhtälö

$$4b^2 + a^2 + c^2 - 4ab - 4bc + 2ac = 0.$$

Mutta nyt

$$\left(a - 2b - c\right)^2 = 0,$$

eli a - 2b + c = 0, ja a - b = b - c.

7. Kolmion $\triangle ABC$ sivujen BC, CA ja AB keskipisteet ovat L, M ja N, tässä järjestyksessä. Osoita, että

$$\widehat{LAC} = \widehat{ABM}$$
jos ja vain jos $\widehat{ANC} = \widehat{ALB}.$

Ratkaisu. Olkoon G kolmion $\triangle ABC$ painopiste.

Koska $NL \parallel AC$, on aina $\widehat{LAC} = \widehat{ALN}$, eli $\widehat{LAC} = \widehat{ABM}$ jos ja vain jos $\widehat{ALN} = \widehat{ABM}$. Nyt $\widehat{ALN} = \widehat{ABM}$ jos ja vain jos nelikulmio BNGL on jännenelikulmio.

Toisaalta $\widehat{ANC} = \widehat{ALB}$ jos ja vain jos $\widehat{BNG} + \widehat{GLB} = 180^\circ$, eli täsmälleen silloin kun BNGL on jännenelikulmio, ja olemme valmiit.

8. Etsi kaikki alkuluvut p, q ja r, joille p > q > r ja joille myös luvut p - q, p - r ja q - r ovat alkulukuja.

Ratkaisu. Koska $r \ge 2$, ovat alkuluvut p ja q parittomia. Nyt p-q on parillinen alkuluku, ja siis yhtä kuin kaksi. Luvut p-r ja q-r eroavat kahdella ja ovat siis samaa parillisuutta. Koska ne kuitenkin ovat erisuuria, on niiden molempien oltava parittomia. Täten r on parillinen ja r=2.

Nyt luvut q-2, q ja q+2 ovat kaikki alkulukuja. Ainakin yksi niistä on jaollinen kolmella, ja jokainen niistä on vähintään kolme. Täten q-2=3 ja päättelemme, että q=5 ja p=7.

Näin saatu alkulukukolmikko $\langle p,q,r\rangle$ toteuttaa vaaditut ehdot, sillä erotukset $7-5=2,\, 7-2=5$ ja 5-2=3 ovat kaikki alkulukuja.

9. Olkoon $\triangle ABC$ teräväkärkinen kolmio, olkoot D ja E sen kärjistä A ja B piirrettyjen korkeusjanojen kannat, olkoot A' ja B' janojen AD ja BE keskipisteet, olkoon X suorien CA' ja BE leikkauspiste, ja olkoon Y suorien CB' ja AD leikkauspiste. Osoita, että pisteet A', B', X ja Y ovat saman ympyrän kehällä.

Ratkaisu. Kolmiot $\triangle ADC$ ja $\triangle BEC$ ovat yhdenmuotoiset, mistä seuraa helposti, että $\widehat{BB'C} = \widehat{CA'A}$. Nyt todistus jakautuu kahteen osaan sen mukaan, leikkaavatko janat A'X ja B'Y vai eivät. Edellisessä tapauksessa kulmat $\widehat{XA'Y}$ ja $\widehat{XB'Y}$ ovat toistensa vieruskulmia ja A'XB'Y on jännenelikulmio. Jälkimmäisessä tapauksessa $\widehat{XA'Y} = \widehat{XB'Y}$ ja pisteet A', B', X ja Y ovat saman ympyrän kehällä kehäkulmalauseen nojalla.

10. Olkoot a, b ja c sellaisia reaalilukuja, että $abc \neq 0, a+b+c=0$ ja $a^3+b^3+c^3=a^5+b^5+c^5.$ Osoita, että

$$a^2 + b^2 + c^2 = \frac{6}{5}.$$

Ratkaisu. Koska

$$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca) = 0,$$

on
$$a^3 + b^3 + c^3 = 3abc$$
. Nyt

$$\begin{aligned} 3abc &= a^3 + b^3 + c^3 = a^5 + b^5 + c^5 \\ &= \left(a^2 + b^2 + c^2\right)\left(a^3 + b^3 + c^3\right) \\ &- \left(a^2b^3 + a^2c^3 + b^2a^3 + b^2c^3 + c^2a^3 + c^2b^3\right) \\ &= 3abc\left(a^2 + b^2 + c^2\right) - \left(a^2b^2\left(a + b\right) + a^2c^2\left(a + c\right) + b^2c^2\left(b + c\right)\right) \\ &= 3abc\left(a^2 + b^2 + c^2\right) + \left(a^2b^2c + a^2bc^2 + ab^2c^2\right) \\ &= 3abc\left(a^2 + b^2 + c^2\right) + abc\left(ab + bc + ca\right). \end{aligned}$$

Täten

$$a^{2} + b^{2} + c^{2} = 1 - \frac{ab + bc + ca}{3}$$
.

Mutta $2(ab+bc+ca) = (a+b+c)^2 - (a^2+b^2+c^2) = -(a^2+b^2+c^2)$, ja siten

$$a^{2} + b^{2} + c^{2} = 1 + \frac{a^{2} + b^{2} + c^{2}}{6},$$

eli $\frac{5}{6} (a^2 + b^2 + c^2) = 1$, eli

$$a^2 + b^2 + c^2 = \frac{6}{5}.$$