Esercizi Laboratorio Calcolo Numerico 1 - Settimana 5 -

Nota: per i comandi non esplicitamente introdotti nel video di spiegazione si può utilizzare help oppure doc dei comandi stessi

1. È dato il sistema non lineare

$$\begin{cases} F_1(x,y) \equiv x^2 + y^2 - 1 = 0, \\ F_2(x,y) \equiv 4x^2 - 4y - 1 = 0, \end{cases}$$

le cui due soluzioni "esatte", dette $P_{\pm} = (x_{\pm}, y_{\pm})$, appartenenti rispettivamente al primo e secondo quadrante, sono da calcolare con la function Matlab fsolve. Si approssimi la soluzione P_{+} appartenente al primo quadrante con il seguente metodo (giustificando perché possa funzionare):

- porre $x = \cos(u), y = \sin(u)$
- applicare il metodo di Newton alla equazione non lineare

$$g(u) = 4\cos^2(u) - 4\sin(u) - 1 = 0$$

Si utilizzi $u^{(0)} = 1$ e test di arresto

$$||\mathbf{F}(u^{(n)})||_2 < 10^{-8}$$

dove $\mathbf{F}(\cdot,\cdot) = (F_1(\cdot,\cdot), F_2(\cdot,\cdot))$. Osservando le simmetrie del sistema, si calcoli una approssimazione di P_- . Si calcoli quindi l'errore assoluto in norma 2 commesso approssimando P_+ e P_- , rispettivamente, e il numero di iterazioni necessarie.

- 2. Sia $f(x) = x^6 x 1$, e sia α la sua unica radice reale positiva. Si consideri il metodo di Newton per la sua approssimazione.
 - Si trovi la radice "esatta" α con il comando Matlab roots. Posto $x^{(0)}=1.5$, calcolare l'errore $|\alpha-x^{(k)}|$ per k=1,2,...,5 usando toll=1e-8, nmax=100
 - si verifichi che vale (si veda a questo proposito la dimostrazione teorica dell'ordine di convergenza del metodo di Newton)

$$\lim_{k\to +\infty} \frac{|\alpha-x^{(k)}|}{(\alpha-x^{(k-1)})^2} = |M|, \qquad \text{con} \quad M := \frac{-f''(\alpha)}{2f'(\alpha)}.$$

- 3. Sia data la funzione $f(x) = x^3 2x^2 + 1$ avente le radici reali $\alpha_1 < \alpha_2 < \alpha_3$.
 - Si applichi per la approssimazione di ciascuna delle tre radici il metodo di Newton con successivamente x0=[-1.5 0 0.5 1 1.5] con toll=1e-6 e test di arresto basato sulla differenza tra iterate successive. Per ciascun valore del dato iniziale, stabilire a quale radice il metodo converge

• Si consideri ora per la approssimazione delle radici il metodo delle secanti, la cui generica iterazione è data da

$$x_{i+1} = x_i - \frac{f(x_i)}{f(x_i) - f(x_{i-1})} \cdot (x_i - x_{i-1}), \qquad i = 1, 2, \dots,$$

dove x_0 e x_1 sono valori dati. Si applichi tale metodo alla ricerca delle radici della funzione f(x). Siano x_0 scelti come sopra e si prenda come valore x_1 quello generato da una iterazione del metodo di Newton partendo dal medesimo dato iniziale. Si consideri nuovamente toll=1e-6 e test di arresto basato sulla differenza $|x_{i+1}-x_i|$. Si determini anche in questo caso, per ciascun valore del dato iniziale, a quale radice il metodo converge.

Per ciascun metodo fornire il numero di iterazioni necessarie per convergere a ciascuna radice e la corrispondente soluzione approssimata.

- 4. Si consideri l'equazione non lineare $f(x) = x^3 3x^2 + 4 = 0$ avente una radice $\alpha < 0$ di molteplicità p_{α} e una radice $\beta > 0$ di molteplicità p_{β} . Trovare α e β utilizzando la function MATLAB roots.
 - Costruire la successione $\{x_n\}$, $n \ge 0$ del metodo di Newton applicato alla funzione f per approssimare α , con $x_0 = -5$. Sia N il numero di iterazioni tale per cui $|x_N x_{N-1}| < \varepsilon^2$, con $\varepsilon = 10^{-4}$.
 - Costruire la successione $\{t_k\}$, $k \geq 0$ del metodo di Newton applicato alla funzione f per ottenere un'approssimazione di β , con $t_0 = 3$. Sia K il numero di iterazioni tale per cui $|t_K t_{K-1}| < \varepsilon$. Costruire poi la successione $\{y_m\}$, $m \geq 0$ del metodo di Newton opportunamente modificato applicato alla funzione f per ottenere un'approssimazione più accurata di β , con $y_0 = t_K$. Sia M il numero di iterazioni tale per cui $|y_M y_{M-1}| < \varepsilon^2$.

Commentare i risultati tenendo conto della teoria del metodo di Newton per radici con molteplicità p > 1.