Complexity of recognizing Dyck languages of bounded height with quantum query algorithms.

Maxime CAUTRÈS

Faculty of Computing University of Latvia

31/08/2022

Sommaire

- Introduction.
 - Quantum query model and complexity.
 - Dyck languages of bounded height
 - History of the problem
- State of the art
- \bigcirc The progress to reduce the $\mathrm{DYCK}_{k,n}$ QQC .
- 4 New idea to get better quantum query complexity bounds

d. h.

 $|a\rangle$

 $|b\rangle$

 $|c\rangle$

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A Boolean circuit (Full adder).

Figure: A Quantum circuit.

Figure: A Quantum circuit.

Figure: A classical bit

Figure: A classical bit

Figure: A quantum bit.

Figure: A classical bit

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Figure: Truth table on 2 bits.

Figure: A quantum bit.

Figure: A classical bit

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Figure: Truth table on 2 bits.

Figure: A quantum bit.

Figure: Unitary matrix on 2 qubits.

Quantum query algorithm is just a quantum circuit.

Figure: Structure of a quantum query algorithm.

Dyck words

Dyck word of bounded hight

The trichotomy article

There is two main direction of study

Goal of the internship

Sommaire

- Introduction.
- State of the art
 - Lower bounds to the QQC of $DYCK_{k,n}$
 - ullet Upper bounds to the QQC of $\mathrm{DYCK}_{k,n}$
- 3 The progress to reduce the $\mathrm{DYCK}_{k,n}$ QQC.
- 4 New idea to get better quantum query complexity bounds

Dont speak to muck abour it

- By reduction:
- By adversary method:

MOre information in the report

Algorithms gives QQC upper bounds.

Reduction to transmit the QQC upper bounds .

Sommaire

- Introduction.
- State of the art
- \bigcirc The progress to reduce the $\mathrm{DYCK}_{k,n}$ QQC .
 - Why does the problem is not only a grover search
 - Original algorithm and small revisions
 - A new algorithm for k=2
- New idea to get better quantum query complexity bounds

FOr $k \ge 2$ it is not more easy

presentation of the algorithm

small revision

the new algorithm

can be plug in the big one

Sommaire

- Introduction
- State of the art
- 3 The progress to reduce the $DYCK_{k,n}$ QQC.
- New idea to get better quantum query complexity bounds
 - lower bounds: try to do reduction from other problem
 - Upper bounds: Trying not do to every node
 - Conclusion

 $\begin{array}{c} \text{Introduction.} \\ \text{State of the art} \\ \text{The progress to reduce the $\mathrm{DYCK}_{k,n}$ QQC} \ . \\ \text{New idea to get better quantum query complexity bounds} \end{array}$

lower bounds: try to do reduction from other problem Upper bounds: Trying not do to every node Conclusion $\begin{array}{c} \text{Introduction.} \\ \text{State of the art} \\ \text{The progress to reduce the $\mathrm{DYCK}_{k,n}$ QQC} \ . \\ \text{New idea to get better quantum query complexity bounds} \end{array}$

lower bounds: try to do reduction from other proble Upper bounds: Trying not do to every node

lower bounds: try to do reduction from other problen Upper bounds: Trying not do to every node Conclusion

Conclusion

What as been done:

.

Possible idea to go further:

•