1	CLAIMS
2	
3	What is claimed is:
4	
5	Claim 1. A process for time-based proportional control of
6	chemical values in a water treatment system wherein a measured
7	signal value is generated, comprising the steps:
8	selecting an offset sensitivity value; and
9	calculating a setpoint offset value (SOV) to determine
10	said measured signal value;
11	wherein said measured signal value approximates an ideal
12	proportional control response.
13	
14	Claim 2. A process in accordance with claim 1 wherein:
15	said setpoint offset value is calculated according to the
16	formula
17	SOV = (SD/PB) * OS * PB
18	where SD equals the sustained deviation from setpoint
19	PB equals Proportional Band Width
2()	OS equals Offset Sensitivity Value.
21	
22	Claim 3. In a process for time-based proportional control
23	of chemical values in a water treatment system wherein a

1	measured signal value is generated, the improvement comprising:
2	modifying said measured signal value to be within a range
3	defined by a particular proportional band width;
4	verifying that said signal value lies within a hysteresis
5	value about a particularly defined setpoint;
6	measuring said signal value to confirm that said signal
7	value is steady or retreating from said setpoint during a
8	selected time duration ;
9	selecting an offset sensitivity value; and
10	calculating a setpoint offset value (SOV) according to the
11	formula
12	SOV = (SD/PB) * OS * PB
13	where SD equals the sustained deviation from setpoint
14	PB equals Proportional Band Width
15	OS equals Offset Sensitivity Value;
16	wherein said measured signal value approximates an ideal
17	proportional control response.
18	
19	Claim 4. A process in accordance with claim 3 wherein:
20	said particular proportional band width is between about
21	5 and 500 mV.
22	

Claim 5. A process in accordance with claim 3 wherein:

23

1	said particular proportional band width is between about
2	0.1 and 5.0 pH units.
3	
4	Claim 6. A process in accordance with claim 3 wherein:
5	said particular proportional band width is between about
6	10 and 5000 microsiemens.
7	
8	Claim 7. A process in accordance with claim 3 wherein:
9	said time base is between about 15 and 600 seconds.
10	
11	Claim 8. A process in accordance with claim 3 wherein:
12	said selected time duration is a multiple of the time
13	base.
14	
15	Claim 9. A process in accordance with claim 3 wherein:
16	said hysteresis value is between about 0 and 10 mV.
17	
18	Claim 10. A process in accordance with claim 3 wherein:
19	said hysteresis value is between about 0 and 1.0 pH units.
20	
21	Claim 11. A process in accordance with claim 3 wherein:
22	said particular proportional band width is between about
23	0 and 1000 microsiemens.

0 and 1000 microsiemens.

1	Claim 12. A process in accordance with claim 3 wherein:
2	said setpoint is between about 150 and 780 mV.
3	
4	Claim 13. A process in accordance with claim 3 wherein:
5	said setpoint is between about 2 and 12 pH units.
6	
7	Claim 14. A process in accordance with claim 3 wherein:
8	said setpoint is between about 1000 and 4000 microsiemens.
9	
10	Claim 15. A process in accordance with claim 3 wherein:
11	said offset sensitivity value is within the range of about
12	0 and 100 percent.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	