Praktikum z ekonometrie

VŠE Praha

Tomáš Formánek

Block 4 – Linear mixed effect models – Outline

- Introduction
- 2 LME model
- 3 Complex LME models
- 4 LME models references, R packages

LME generalization of a linear regression model:

$$y = X\beta + Zu + \omega,$$
 $u \sim N(0, G),$ $\omega \sim N(0, R),$

where

 \boldsymbol{y} is a vector of dependent variable observations,

X is a $(N \times p)$ matrix of N observations and p predictor variables,

 $\boldsymbol{\beta}$ is a vector of "fixed-effects" regression coefficients,

 \boldsymbol{Z} is a $(N \times s)$ design matrix for the s "random effects" \boldsymbol{u} that are complementary to $\boldsymbol{\beta}$,

 $\boldsymbol{\omega}$ is the error term,

u and ω are assumed normally distributed and mutually independent, with variance-covariance matrices G and R respectively.

LME generalization of a linear regression model – example:

$$y_i = \beta_0 + \beta_1 x_i + \omega_i.$$

If observations i = 1, ..., N are organized into j = 1, ..., J relevant groups, and assuming there are random effects on both β -coefficients, we may generalize the model into a LME (after re-arranging):

$$y_{ij} = (\beta_0 + u_{0j}) + (\beta_1 + u_{1j})x_{ij} + \omega_{ij},$$

where the combined ij subscript refers to an ith observation that belongs to a jth group.

In the LME model, u_{0j} and u_{1j} are stochastic deviations from β -coefficients that are associated with a particular jth group. While random effects may look like model coefficients, we are only interested in estimating their variances.

Linear mixed effect model (LME) – data types:

• Longitudinal data: repeated measurements are performed on each individual unit. Several units are sampled. Number of observations may differ across units.

```
y_{ti} - observation at time t for i-th individual.

y_{ij} - ith observation of jth individual (if time aspect not relevant).
```

• Hierarchical data structures: data with two or more groups/levels of observations. Number of observations may differ across units.

```
y_{ij} - observation for i-th company within j-th region. y_{ij} - observation for i-th student within j-th class.
```

- Combined: We can group observations at three levels (or more): y_{tij} measurement at time period t, admin. region i within state j.
- Note how indices are ordered (left to right) from individual to highest level of aggregation. (alternative orderings exist in literature).

5 / 27

Longitudinal data

- N individual CS units are followed over time.
- The observation set $\{y_{ti}, \mathbf{x}_{ti}\}$ denotes some *i*th individual observed at a time period *t*. The number of observations in time may differ among CS units and observations may occur at different time points.

Example: For a medical study, we measure child's weight (plus other data) at birth and repeatedly over a period of one year. For some y_{ti} observation, index t denotes days from birth. Due to doctor visit scheduling, children are weighted at different t "values". Typically, the number of doctor visits (observations) differs across children. Children in the study are born on different dates (say, Jan 2015 - Oct 2019).

Example extends easily to economic environment (we can follow newly founded companies, etc.).

Hierarchical data structures

- Nested/hierarchical structure of the LME model:
 - Individual units i (Level 1) are nested
 - within j groups (Level 2) with group-specific observation sizes n_j .
- One or more coefficient(s) can vary across groups ("random effects).

LME: Longitudinal vs. hierarchical data structures:

- Essentially, the same nesting/hierarchical framework applies to longitudinal data and their LME-based analysis:
 - Observations at time t (Level 1) are nested
 - within j individual units (Level 2).
 - ullet If appropriate, individual units can be nested in groups (Level 3) ...

- Mixed models are called "mixed", because the β -coefficients are a mix of fixed parameters and random variables
- Terms "fixed" and "random" have specific meaning for LMEs:
 - A fixed coefficient is an unknown constant to be estimated.
 - A random coefficient varies from "group" to "group". By "group", we mean Level 2 aggregation, if data have 2 levels.
 - coefficients vary among schools (Level 2), not within school.
 - coeffs. vary across individuals (Level 2), not over time (Level 1).
- LME models can have some added complexity:
 - Multiple levels of nesting
 - Crossed random effects
 - Correlations between different random coefficients.
- Random coefficients are not estimated, but they can be predicted.

LME model example

• Data:

London Education Authority Junior School Project dataset,

- we have 887 students (i) in 48 different schools (j),
- we want to predict 5th-year math scores.
- We may start by ignoring the school grouping and any possible regressors we have a trivial model (*single-mean* model):

$$\mathtt{math5}_{ij} = \beta_0 + \varepsilon_{ij}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, M, \quad \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$$

where M=48 and n_j differ among schools, $\mathtt{math5}_{ij}$ is the observed math score of *i*-th student at school j, β_0 is the mean math score across our population (being sampled) and ε_{ij} is the individual deviation from overall mean.

Population mean math score & the variance of ε are estimated by taking their sample counterparts. Any "school effect" is ignored.

• The school effect (differences among schools) may be incorporated in the model by allowing the mean of each school to be represented by a separate parameter (fixed effect)

$$\mathtt{math5}_{ij} = \beta_{0j} + \varepsilon_{ij}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, M, \quad \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2)$$

where β_{0j} is the school-specific mean math score and ε_{ij} is the individual deviation from the school-specific mean.

- R syntax: $lm(math5 \sim School-1, data=...)$ $\Rightarrow M = 48$ school-specific intercepts are estimated.
- Using the terminology of LME, β_{0j} are fixed. Hence:
 - Estimated intercepts only model (refer to) the specific sample of schools, while -usually- the main interest is in the population from which the sample was drawn.
 - OLS regression does not provide an estimate of the between-school variability, which is also of central interest.

- Random effects approach: LME model can solve the above problem by treating school effects as random variations around population mean.
- Ordinary model (with *fixed effects*) can be reparametrized as:

$$y_{ij} = \beta_{0j} + \varepsilon_{ij}$$

$$y_{ij} = \frac{\beta_0}{\beta_0} + (\beta_{0j} - \frac{\beta_0}{\beta_0}) + \varepsilon_{ij},$$

Random effect: $u_{0j} = \beta_{0j} - \beta_0$ is the school-specific deviation from overall mean β_0 . It can be used to replace the the fixed effect β_{0j} :

$$u_{0j} = \beta_{0j} - \beta_0 \Rightarrow \beta_{0j} = \beta_0 + u_{0j}$$
. Hence:
 $y_{ij} = \beta_0 + u_{0j} + \varepsilon_{ij}$.

- u_{0j} is a random variable, specific for the j-th school, with zero mean and unknown variance σ_u^2 .
 - u_{0j} is a random effect, associated with the particular sample units (schools are selected at random from the population).

• LME model with random effects (on the intercept) is given as:

$$y_{ij} = \beta_0 + u_{0j} + \varepsilon_{ij}, \qquad u_{0j} \sim N(0, \sigma_u^2), \qquad \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2),$$

and we assume u_{0j} are *iid* and independent from ε_{ij} .

- Observations within the same school share the same random effect u_{0j} , hence are positively "correlated" with ICC = $\sigma_u^2/(\sigma_u^2 + \sigma_{\varepsilon}^2)$ (see ICC discussion on a separate slide).
- This random effects model has three parameters: β_0 , σ_u^2 and σ_{ε}^2 . (regardless of M, the number of schools).
- Note that the random effect u_{0j} "looks like" a coefficient, but we are only interested in estimating σ_u^2 .
- However, upon observed data (and estimated model), we do make predictions using fitted values of \hat{u}_{j} .

• Exogenous regressors can be used in LMEs (like in LRMs). For example, math5 grades depend on math3 (3rd year grades).

$$\mathtt{math5}_{ij} = (\beta_0 + u_{0j}) + \beta_1 \, \mathtt{math3}_{ij} + \varepsilon_{ij}$$

alternative notation:

$$\mathtt{math5}_{ij} = \beta_0 + \beta_1 \, \mathtt{math3}_{ij} + u_{0j} + \varepsilon_{ij}$$

alternative notation:

Level 1:
$$\text{math5}_{ij} = \beta_{0j} + \beta_1 \, \text{math3}_{ij} + \varepsilon_{ij}$$

Level 2: $\beta_{0j} = \beta_0 + u_{0j}$

- Intercept has a random effect, given the u_{0j} element.
- Slope of the regression line for each school is fixed at β_1math3 has a *fixed effect*.

LME model: ICC

• ICC: Intra class correlation in a LME regression model:

$$ICC = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_\varepsilon^2}$$

- Describes how strongly units in the same group are "correlated".
- While interpreted as a type of correlation, ICC operates on groups, rather than paired observations.
- See <u>link</u> for relation between ICC and actual correlation.

LME model: ICC

• ICC: Intra class correlation in a LME regression model:

$$ICC = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_\varepsilon^2}$$

- Example: $\mathtt{math5}_{ij} = \beta_0 + \beta_1 \, \mathtt{math3}_{ij} + u_{0j} + \varepsilon_{ij},$ where $\sigma_u^2 = \mathrm{var}(u_{0j})$ and $\sigma_\varepsilon^2 = \mathrm{var}(\varepsilon_{ij}).$
- ICC: "correlation" between math5 observations (randomly chosen) within a given school.
- ICC has another useful interpretation: Say, ICC = 0.6 in our $\mathtt{math5}_{ij}$ example. Hence, differences between schools explain 60% of "remaining" variance i.e. after the variance explained by fixed effects (i.e. by $\mathtt{math3}_{ij}$) is subtracted.

LME model: random effects on intercept and slope

• If teaching is different from school to school, it would make sense to have different slopes for each of the schools.

Instead of using fixed effects on slopes (interaction terms math3:School), we use random slopes: $u_{1j} = \beta_{1j} - \beta_1$.

$$\texttt{math5}_{ij} = (\beta_0 + u_{0j}) + (\beta_1 \, \texttt{math3}_{ij} + u_{1j} \, \texttt{math3}_{ij}) + \varepsilon_{ij},$$
 alternative notation:

$$\mathtt{math5}_{ij} = \underbrace{\beta_0 + \beta_1 \, \mathtt{math3}_{ij}}_{fixed} + \underbrace{u_{0j} + u_{1j} \, \mathtt{math3}_{ij}}_{random} + \varepsilon_{ij},$$

- We can test whether this extra complexity is justified.
- u_{0j} and u_{1j} are often correlated, their independence can be tested.
- Fitted values of math 5_{ij} can be produced, along with \hat{u}_{0j} and \hat{u}_{1j} .

LME: matrix form re-visited

• LME model:

$$y = X\beta + Zu + \varepsilon$$
 $u \sim N(0, G)$ $\varepsilon \sim N(0, R)$,

where:

X is a $(n \times k)$ matrix, k is the number of fixed effects,

Z is a $(n \times p)$ matrix, p is the number of $random\ effects$,

 ${m G}$ is a $(p \times p)$ variance-covariance matrix of the $random\ effects,$

 \boldsymbol{R} is a $(n \times n)$ variance-covariance matrix of errors.

- Independence between u and ε is assumed,
- Often, $\mathbf{R} = \sigma_{\varepsilon}^2 \mathbf{I}_n$ is assumed,
- ullet G is diagonal if $random\ effects$ are mutually independent.
- Estimation: MLE, RMLE, penalized least squares https://www.jstatsoft.org/article/view/v067i01/0

For a single random effect (on the intercept):

• {nlme} package:

lme(y
$$\sim$$
 x + z, random = \sim 1 | g, data = df)

• {lme4} package:

lmer(y
$$\sim$$
 x + z + (1 | g), data = df)

• where y is the response variable with predictors x and z, and grouping factor variable g.

For random effects on the intercept and x:

• {nlme} package:

```
lme( y \sim x + z, random = \sim 1 + x | g, data = df ) lme( y \sim x + z, random = \sim x | g, data = df )
```

• {lme4} package:

```
lmer( y \sim x + z + ( 1 + x | g ), data = df )
lmer( y \sim x + z + ( x | g ), data = df )
```

For uncorrelated random effects on the intercept and x:

• {nlme} package:

```
lme( y \sim x + z, random = list ( g = pdDiag ( \sim x ) ) , data = df )
```

• {lme4} package:

```
lmer( y \sim x + z + ( 1 | g ) + (0 + x | g) , data = df ) lmer( y \sim x + z + ( x || g ) , data = df )
```

Complex LME models - brief outline

Different types of LME models exist:

- LME models with (multilevel) nested effects,
- LME models with crossed effects,
- Complex behavior of the error term in LME models can be addressed (heteroscedasticity and serial correlation).
- LME models with non-Gaussian dependent variables (binary, Poisson, etc.).

LME models with multilevel nested effects

Multi-level model example: For 17 years, we follow a total of 86 individual states organized within 9 "global-level" regions (e.g. South America, Europe, Middle East, etc.).

- GDP_{tij} represents individual GDP per capita measurements for: t-th time period, e.g. with values (t = 2000, ..., 2016). i-th state nested within region j $(i = 1, ..., M_j)$, j-th region (j = 1, ..., 9),
- We fit GDP as a function of productivity P and unemployment U. States are nested in regions, we have 2 levels of random intercepts: $u_{0i(j)}$ for each state (within a region), v_{0j} for the regions, random slopes can be added as well.
- $GDP_{tij} = \beta_0 + \beta_1 P_{tij} + \beta_2 U_{tij} + u_{0i(j)} + v_{0j} + \varepsilon_{tij}$.

For intercept varying among g1 and g2 within g1: For intercept & x varying among g1 and g2 within g1:

• {nlme} package:

```
lme( y \sim x + z, random = \sim 1 | g 1 / g 2 , data = df ) lme( y \sim x + z, random = \sim x | g 1 / g 2 , data = df )
```

• {lme4} package:

```
lmer( y \sim x + z +( 1 | g 1 / g 2 ), data = df ) lmer( y \sim x + z +( x | g 1 / g 2 ), data = df )
```

LME models with crossed random effects

Crossed random effects example:

- Grunfeld (1958) analyzed data on 10 large U.S. corporations, collected annually from 1935 to 1954 to investigate how investment I depends on market value M and capital stock C.
- Here, we want *random effects* for a given firm and year. We want the year effect to be the same across all firms, i.e. not nested within firms.
- $\mathbf{I}_{ti} = \beta_0 + \beta_1 \, \mathbf{M}_{ti} + \beta_2 \, \mathbf{C}_{ti} + u_{0i} + v_{0t} + \varepsilon_{ti}$. where $i = 1, \dots, 10$ and firms are followed over $t = 1, \dots, 20$ years. (the usual "it" index ordering can be used as well)

For intercept varying among g1 and g2

• {lme4} package:

lmer(y
$$\sim$$
 x + z + (1 | g 1) + (1 | g 2), data = df)

LME with heteroscedasticity and serial correlation

{nlme} package:

• Heteroscedastic residual variance at level 1:

```
lme( y \sim x + z, random = \sim 1 | g , weights = varIdent ( form = \sim 1 | g ) , data = df )
```

• Autoregressive ar(1) residuals:

```
lme( y \sim x + z, random = \sim time | g , correlation = corAR1 ( ) , data = df )
```

• General residuals (HAC estimation):

```
lme( y \sim x + z, random = \sim time | g , weights = varIdent ( form = \sim 1 | time ) , correlation = corAR1 ( ) , data = df )
```

LME models – references, R packages

- {lme4} package https://www.jstatsoft.org/article/view/v067i01/0
- {nlme} package https://cran.r-project.org/web/packages/nlme/nlme.pdf
- https://www.r-bloggers.com/2017/12/ linear-mixed-effect-models-in-r/
- https://rpsychologist.com/r-guide-longitudinal-lme-lmer
- Finch, Bolin, Kelley: Multilevel Modeling Using R (2014).