Redes

Definição: Uma REDE DE TRANSPORTE (ou simplesmente REDE) é um grafo simples dirigido com pesos, tal que:

- (a) possui um vértice sem arestas entrantes que é chamado de fonte ("source"),
- (b) possui um vértice sem arestas saintes que é chamado de SUMIDOURO ("sink")
- (c) o peso C_{ij} da aresta dirigida (i,j) é não-negativo e chamado de CAPACIDADE DE (i,j)
- a: fonte
- z: sumidouro

Fluxo

Definição: Dado G=(V,E) uma rede com capacidade C_{ij} , $(i,j)\in E$, um FLUXO F associa a cada aresta dirigida $(i,j)\in E$ um número não-negativo F_{ij} tal que:

- $F_{ij} \leq C_{ij}$
- Para cada vértice j, que não é nem fonte nem semidouro,

$$\sum_{i/(i,j)\in E} F_{ij} = \sum_{i/(i,j)\in E} F_{ji} \quad (*)$$

(conservação do fluxo)

No exemplo anterior:

Observação: A equação (*) pode ser escrita na forma compacta:

$$\sum_i F_{ij} = \sum_i F_{ji}$$

onde é considerado que $F_{ij}=0$ se $(i,j)
ot\in E$

Fluxo da Aresta

Definição: Chamamos de FLUXO DA ARESTA (i,j) ao valor de F_{ij} . Dado um vértice j, $\sum_i F_{ij}$ é o FLUXO ENTRANTE e $\sum_i F_{ji}$ é o FLUXO SAINTE.

Teorema

Dado um fluxo F numa rede G, tem-se que:

$$\sum_i F_{ai} = \sum_i F_{iz}$$

Prova

$$G = (V, E)$$

Dada $e \in E$, escrevemos F_e p/o fluxo nessa aresta:

$$\sum_{e \in E} F_e = \sum_{j \in V} \left(\sum_{i \in V} F_{ij}
ight) = \sum_{j \in V} \left(\sum_{i \in V} F_{ji}
ight)$$

Logo,

$$0 = \sum_{j \in V} \left(\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji} \right)$$

$$= \underbrace{\left(\sum_{i \in V} F_{iz} - \sum_{i \in V} F_{zi} \right)}_{j=z} + \underbrace{\left(\sum_{i \in V} F_{ia} - \sum_{i \in V} F_{ai} \right)}_{j=a}$$

$$+ \sum_{j \in V, \ j \neq a,z} \underbrace{\left(\sum_{i \in V} F_{ij} - \sum_{i \in V} F_{ji} \right)}_{=0 \text{ pela conservação de fluxo em } j \in V \setminus \{a,z\}$$

Então:

$$\sum_{i \in V} F_{iz} - \sum_{i \in V} F_{ai} = 0$$

Valor do Fluxo

Definição: Dado um fluxo F em G, chamamos de VALOR DO FLUXO F ao número:

$$\sum_i F_{ai} = \sum_i F_{iz}$$