AE 308: Control Theory AE 775: System Modelling, Dynamics and Control

Lecture 7: Time Response

Dr. Arnab Maity

Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, India

Table of Contents

- Introduction
- Pirst Order Systems
- Second Order Systems
- Steady State Errors

Introduction

- Once the mathematical representation of the system is obtained, the system is analyzed for its transient and steady state response.
- The output response of the system is sum of natural and forced response.

Table of Contents

- Introduction
- Pirst Order Systems
- Second Order Systems
- Steady State Errors

First Order Systems

First Order Systems

- A first order system without zeros can be described as shown in the figure.
- The output of the system is given as

$$C(s) = R(s)G(s).$$

If the input is step, then Laplace transform of the input is

$$R(s) = \frac{1}{s}.$$

• The step response of the system is given by

$$C(s) = \frac{a}{s(s+a)} = \frac{A}{s} + \frac{B}{(s+a)}.$$

First Order Systems

First Order Systems

ullet Simplifying the C(s) expression,

$$a = A(s+a) + Bs \implies A = 1, B = -1$$

ullet Taking inverse Laplace transform of C(s), the step response is given by

$$c(t) = c_f + c_n \implies 1 - e^{-at}$$

- The input pole at the origin generated force response $c_f = 1$.
- The system pole at -a generated natural response $c_n = e^{-at}$.

First Order Systems - Time Constant

- $\frac{1}{a}$ is called **Time Constant** of a system.
- Time constant is defined as time taken by e^{-at} to decay to its 36.8% of its initial value.
- Alternatively, from c(t), time constant is the time it takes for the step response to rise 63.2% of its final value.
- The time constant can be evaluated from the pole plot. Pole is located at reciprocal of time constant.
- Further the pole from origin, faster the transient response.

First Order Systems - Rise Time

Rise Time

- Rise Time is defined as time taken by system to go from 10% to 90% of its final value.
- The time taken by system to reach 10% of its final value is

$$c(t) = 0.1 = 1 - e^{-at_1} \implies t_1 = \frac{0.11}{a}$$

ullet The time taken by system to reach 90% of its final value is

$$c(t) = 0.9 = 1 - e^{-at_2} \implies t_2 = \frac{2.33}{a}$$

First Order Systems - Rise Time and Setting Time

Rise Time

Rise time is given as

$$T_r = t_2 - t_1 = \frac{2.2}{a}$$

Settling Time

- Settling Time is defined as time taken by system to reach and stay within 2% or 5% of its final value.
- Letting c(t) = 0.98 and finding the corresponding t, we have

$$0.98 = 1 - e^{-aT_s}$$

$$e^{-aT_s} = 0.02$$

$$T_s = \frac{4}{a}$$

First Order Systems

Question:

• Find the output response, settling and rise time of the following system

$$R(s) = \frac{1}{s} \longrightarrow \boxed{\frac{1}{s+1}} \longrightarrow C(s)$$

First Order Systems

Question:

Find the output response, settling and rise time of the following system

$$R(s) = \frac{1}{s} \longrightarrow \boxed{\frac{1}{s+1}} \longrightarrow C(s)$$

• The output response:

$$c(t) = 1 - e^{-t}.$$

Settling time:

$$T_s = 4s$$
.

Rise time:

$$T_r = 2.2s.$$

Table of Contents

- Introduction
- Pirst Order Systems
- **3** Second Order Systems
- 4 Steady State Errors

Second Order Systems - Introduction

- Second order system exhibits a wide range of response that has to be addressed and analyzed.
- Varying first order system's parameter changes the speed of the system.
- Varying second order systm's parameter will change the form of the response.

Overdamped Response

$$R(s) = \frac{1}{s} \underbrace{\begin{array}{c} 9 \\ \hline s^2 + 9s + 9 \end{array}} C(s)$$

• C(s) is given by

$$C(s) = \frac{9}{s(s+7.854)(s+1.146)}$$

- Pole at the origin generates a constant forced response.
- System poles generate a natural response whose frequency is equal to pole location.

Underdamped Response

0.4

C(s) is given as

$$C(s) = \frac{9}{s(s+1+\sqrt{8}i)(s+1-\sqrt{8}i)}$$

- Real part of the poles is responsible for exponential decay frequency of signal's amplitude
- Imaginary part of the poles is responsible for frequency of the signal oscillation.

Undamped Response

ullet C(s) is given as

$$C(s) = \frac{9}{s(s^2+9)}$$

- The pole at the origin generates a constant forced response.
- Two system poles on imaginary axis at $\pm 3j$ generate a sinusoidal natural response.

Critically Damped Response

• C(s) is given by

$$C(s) = \frac{9}{s(s+3)^2}$$

- Pole at the origin generates a constant forced response.
- Two poles on real axis at -3 generate a natural response consisting of exponential, whose frequency is equal to location to poles.

General Second Order Systems - Definitions

- Two physical quantities are required to describe the transient response of a second order system.
- These two quantities are called natural frequency and damping ratio.
- Natural Frequency of a second order system is defined as the frequency of oscillation without damping.
- For example, the natural frequency of RLC circuit is oscillation of circuit without resistor.
- Damping Ratio, ζ , is defined as

$$\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency}}.$$

General Second Order Systems - Definitions

Consider a general second order system as

$$G(s) = \frac{b}{s^2 + as + b}.$$

• Without damping, the poles would be on imaginary axis and response would be pure sinusoid. For the poles to be imaginary, a=0, hence,

$$G(s) = \frac{b}{s^2 + b}.$$

The frequency of oscillation of this system is

$$s = \pm j\sqrt{b}$$

ullet According to the definition of natural frequency, b, is obtained as

$$\omega_n = \pm j\sqrt{b} \implies b = \omega_n^2$$

General Second Order Systems - Definitions

- Assuming the system is underdamped, the complex roots have a real part equal to $-\frac{a}{2}$.
- The magnitude of real part of complex roots is exponential decay frequency.
- The expression for damping ratio is obtained as

$$\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency}} = \frac{|\sigma|}{\omega_n} = \frac{\frac{a}{2}}{\omega_n}$$

$$a = 2\zeta\omega_n$$

• Hence the general second order system is expressed as

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• The step response of second order underdamped system is given as

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$
$$= \frac{k_1}{s} + \frac{k_2 s + k_3}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

Simplifying the above expression, the step response is obtained as

$$k_1 s^2 + k_1 2\zeta \omega_n s + k_1 \omega_n^2 + k_2 s^2 + k_3 s = \omega_n^2$$

Equating the constant coefficients of L.H.S. and R.H.S., we have

$$k_1\omega_n^2 = \omega_n^2 \implies k_1 = 1$$

ullet Equating coefficients of s^2 of L.H.S and R.H.S., we have

$$k_1 + k_2 = 0 \implies k_2 = -k_1 \implies k_2 = -1$$

ullet Equating coefficients of s of L.H.S and R.H.S., we have

$$2k_1\zeta\omega_n + k_3 = 0 \implies k_3 = -2\zeta\omega_n$$

• Substituting these coefficients in C(s), we have

$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
$$= \frac{1}{s} - \frac{s + \zeta\omega_n + \frac{\zeta}{\sqrt{1-\zeta^2}}\omega_n\sqrt{1-\zeta^2}}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• Simplifying the C(s) expression,

$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$= \frac{1}{s} - \frac{s + \zeta\omega_n + \frac{\zeta}{\sqrt{1 - \zeta^2}}\omega_n\sqrt{1 - \zeta^2}}{s^2 + 2\zeta\omega_n s + \omega_n^2 + \zeta^2\omega_n^2 - \zeta^2\omega_n^2}$$

$$= \frac{1}{s} - \frac{s + \zeta\omega_n + \frac{\zeta}{\sqrt{1 - \zeta^2}}\omega_n\sqrt{1 - \zeta^2}}{(s + \zeta\omega_n)^2 + \omega_n^2(1 - \zeta^2)}$$

Consider the following expression,

$$F(s) = \frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_n^2 \left(1 - \zeta^2\right)}$$

- Let us define $\omega_d = \omega_n \sqrt{1 \zeta^2}$
- Inverse Laplace transform of the above expression is

$$f(t) = e^{-\zeta \omega_n t} \cos \omega_d t$$

In similar lines,

$$F(s) = \frac{\omega_n \sqrt{1 - \zeta^2}}{(s + \zeta \omega_n)^2 + \omega_n^2 (1 - \zeta^2)}$$
$$f(t) = e^{-\zeta \omega_n t} \sin \omega_d t$$

 Using the above inverse Laplace transform, step response is obtained as

$$c(t) = 1 - e^{-\zeta \omega_n t} \cos \omega_d t - \frac{\zeta e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin \omega_d t$$

• Simplifying c(t), we have

$$c(t) = 1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1 - \zeta^2}} \left[\sqrt{1 - \zeta^2} \cos \omega_d t + \zeta \sin \omega_d t \right]$$

• Let $\zeta = \sin \phi$, then c(t) can be simplified as

$$c(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \left[\cos \phi \cos \omega_d t + \sin \phi \sin \omega_d t \right]$$

$$c(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \cos(\omega_d t - \phi)$$

Underdamped Systems - Definitions

- Rise Time, T_r , is defined as time required for system to move from 10% to 90% of its final value
- Peak Time, T_p , is defined as time required to reach first peak
- Settling Time, T_s , is the time required by system's transient damped oscillations to reach and stay within 2% or 5% of its final value.
- Percent Overshoot, %OS, is the amount that system overshoots from steady state value at peak time. It is expressed as percentage of steady state value.

Underdamped Systems - Evaluation of T_p

Peak Time, T_p

- \bullet Peak time is obtained by differentiating step response c(t) and finding first zero crossing after t=0
- ullet The task is simplified by differentiating c(t) in frequency domain

$$\mathcal{L}(\dot{c}(t)) = sC(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$= \frac{\frac{\omega_n}{\sqrt{1-\zeta^2}}\omega_n\sqrt{1-\zeta^2}}{(s+\zeta\omega_n)^2 + \omega_n^2(1-\zeta^2)}$$

$$\dot{c}(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_d t)$$

• Peak time is obtained as follows $\dot{c}(t)|_{t=T_n}=0$

Underdamped Systems - Evaluation of T_p

Peak Time, T_p

• Hence, T_p is obtained as

$$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n T_p}\sin(\omega_d T_p) = 0$$
$$\sin(\omega_d T_p) = 0$$
$$\omega_d T_p = n\pi$$

• As we are interested in first peak, n = 1,

$$T_p = \frac{\pi}{\omega_d}$$

Underdamped Systems - Evaluation of %OS

Percentage Overshoot %OS

Percentage Overshoot is defined as

$$\%OS = \frac{c_{\mathsf{max}} - c_{\mathsf{final}}}{c_{\mathsf{final}}} \times 100$$

• c_{max} is c(t) evaluated at $t=T_p$. c_{max} is given as

$$c_{\text{max}} = 1 - e^{-\zeta \omega_n T_P} \left(\cos \omega_d T_P - \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d T_P \right)$$
$$= 1 - e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^2}}} \left(\cos \pi - \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \pi \right) = 1 + e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^2}}}$$

• Final value is $c_{\text{final}} = 1$. Hence %OS is given as

$$\%OS = \left(1 + e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} - 1\right) \times 100$$

Underdamped Systems- Evaluation of $\%OS \& T_s$

Percentage Overshoot, %OS

• Percentage Overshoot, %OS, is given as

$$\%OS = 100 \times e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$

Settling Time, T_s

- T_s is corresponding time for which c(t) stays within $\pm 2\%$ of steady state value.
- T_s is obtained as

$$0.98 = 1 - \frac{e^{-\zeta \omega_n T_s}}{\sqrt{1 - \zeta^2}} \cos(\omega_d T_s - \phi)$$

• Assume $\cos(\omega_d T_s - \phi) = 1$ at settling time

Underdamped Systems - Evaluation of T_s

Evaluation of T_s

• Simplifying the previous equation, we obtain

$$\frac{e^{-\zeta\omega_n T_s}}{\sqrt{1-\zeta^2}} = 0.02$$

$$T_s = -\ln\left(0.02 \frac{\sqrt{1-\zeta^2}}{\zeta\omega_n}\right)$$

• Varying ζ from 0 to 1, the T_s can be approximated as

$$T_s = \frac{4}{\zeta \omega_n}$$

Underdamped Systems - Evaluation of T_r

Evaluation of T_r

• Approximate T_r is obtained by letting $c(t)|_{t=T_r}=1$

$$c(T_r) = 1 = 1 - e^{-\zeta \omega_n T_r} \left[\cos \omega_d T_r + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d T_r \right]$$

• Assuming $e^{-\zeta \omega_n T_r} \neq 0$, we have

$$\cos \omega_d T_r + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d T_r = 0$$

$$\tan \omega_d T_r = -\frac{\sqrt{1 - \zeta^2}}{\zeta}$$

$$\tan \omega_d T_r = -\frac{\omega_n \sqrt{1 - \zeta^2}}{\zeta \omega_n}$$

Underdamped Systems - Evaluation of T_r

Evaluation of T_r

• Consider ω_d expression,

$$\omega_d^2 = \omega_n^2 (1 - \zeta^2)$$
$$\omega_d^2 + \omega_n^2 \zeta^2 = \omega_n^2$$

ullet From the figure, define eta as

$$\tan \beta = \frac{\omega_d}{\zeta \omega_n} = \frac{\omega_n \sqrt{1 - \zeta^2}}{\zeta \omega_n}$$

 \bullet Using β expression,

$$\tan \omega_d T_r = -\tan \beta \implies \omega_d T_r = \pi - \beta$$

$$T_r = \frac{\pi - \beta}{\omega_d}$$

Types of Response	Natural Response	Damping Ratio
Overdamped	$c(t) = K_1 e^{-\sigma_1 t} + K_2 e^{-\sigma_2 t}$	$\zeta > 1$
Underdamped	$c(t) = Ae^{-\sigma t}\cos(\omega_d t + \phi)$	$0 < \zeta < 1$
Undamped	$c(t) = A\cos(\omega_n t - \phi)$	$\zeta = 0$
Critically Damped	$c(t) = K_1 e^{-\sigma_1 t} + K_2 t e^{-\sigma_1 t}$	$\zeta = 1$

Table of Contents

- Introduction
- Pirst Order Systems
- Second Order Systems
- Steady State Errors

Steady State Errors - Introduction

• Steady State Error is defined as difference between input and output

• The steady state errors we study here are the errors that arise from the configuration of system and applied input.

Steady State Errors in Terms of G(s)

• The error is given as

- Since the feedback H(s) = 1, it is called unity feedback system.
- As it is unity feedback, the error is directly difference between output and input.
- Apply final value theorem to obtain steady state error.

$$E = R - Y$$

$$E = R - EG$$

$$E = \frac{R}{1 + G}$$

Steady State Errors in Terms of G(s)

• Apply final value theorem to obtain steady state error,

$$e(\infty) = \lim_{s \to 0} \frac{sR}{1 + G}$$

 Let us use three test signals and evaluate its effect on the steady state error using above equation.

Step Input

• The steady state error for step input is

$$e(\infty) = \lim_{s \to 0} \frac{s\frac{1}{s}}{1 + G}$$
$$= \frac{1}{1 + \lim_{s \to 0} G}$$

Position Constant, K_p

• The term $\lim_{s\to 0}G$ is DC gain of forward transfer function and it is called position constant, K_p .

$$K_p = \lim_{s \to 0} G$$

• In summary, for a step input to unity feedback system, the steady state error will go to zero, if $K_p = \infty$.

Ramp Input

• Consider ramp input to unity feedback system $(R(s) = \frac{1}{s^2})$, then error is obtained as

$$E(s) = \frac{1}{s^2(1+G)}$$

Using final value theorem, steady state error is obtained as

$$e(\infty) = \lim_{s \to 0} \frac{1}{s(1+G)} = \frac{1}{\lim_{s \to 0} sG}$$

• The term $\lim_{s \to 0} sG$ is called velocity constant, K_v

$$K_v = \lim_{s \to 0} sG$$

ullet To have zero steady state error, K_v has to be infinity

Parabolic Input

• Consider parabolic input to unity feedback system $(R(s) = \frac{1}{s^3})$, then error is obtained as

$$E(s) = \frac{1}{s^3(1+G)}$$

Using final value theorem, steady state error is obtained as

$$e(\infty) = \lim_{s \to 0} \frac{1}{s^2(1+G)} = \frac{1}{\lim_{s \to 0} s^2 G}$$

ullet The term $\lim_{s^2 o 0} sG$ is called acceleration constant, K_v

$$K_a = \lim_{s \to 0} s^2 G$$

• To have zero steady state error, K_a has to be infinity

Type of a System

- ullet Consider a following Unity feedback system, where z are zeros and p are poles.
- Type of the system is value of n in the denominator.
- If n=0, n=1, n=2, corresponding type of system is said to be Type 0, Type 1, Type 2.

References 1

- Brain Douglas: "The Fundamentals of Control Theory", 2019.
- Farid Golnaraghi and Benjamin C. Kuo: "Automatic Control Systems", John Wiley & Sons, Inc., New Jersey, Ninth Edition, 2010.
- Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini: "Feed-back Control of Dynamic Systems", Pearson Education, Inc., Upper Saddle River, New Jersey, Seventh Edition, 2015.
- Katsuhiko Ogata: "Modern Control Engineering", Pearson Education, Inc., Upper Saddle River, New Jersey, Fifth Edition, 2010.
- Karl Johan Åström and Richard M. Murray: "Feedback Systems An Introduction for Scientists and Engineers", Princeton University Press, Second Edition, 2019.
- Norman S. Nise: "Control Systems Engineering", John Wiley & Sons, Inc., New Jersey, Sixth Edition, 2011.

References II

- S. M. Joshi: "Cartoon Tour of Control Theory: Part I Classical Controls", 1990-2015.
- Benjamin Drew: "Control Systems Engineering", Lecture Notes, University of West England, Bristol, 2013.