PROBLEM SET 3

PART A

Based on the reactions found on KEGG a stoichiometric matrix was formed using all the species contained in the reactions as well as boundary transport species. The fifth reaction EC# 1.14.13.39 was composed of a multi-step reaction with an intermediate that is completely consumed. The step reactions are RN R00558 & RN R00111. Based on what was provided the reaction is not balanced, to balance it we simply need two R00558 reactions for each R00111. Adding the reaction steps together then recovers the accurate RN 00557 described in EC 1.14.13.39. The full STOIC matrix is shown below along with the corrected matrix that does not include the intermediate species.

		R01 954	R01 086	R00 551	R01 398	R00 557	R00 557	R005 58	R00558	R001 11	Carbamoyl Phosphate	Aspart ate	Fumar ate	Ur ea	A TP	A M P	Diphosp hate	Orthophos phate	0 2	NAD PH	H +	N O	NAD P+	H2O	H2O
		v1	v2	v3	v4	v5_f or	v5_r ev	v5_1 for	v5_1_fo r adj	v5_2 for	b1	b2	b3	b4	b5	b6	b7	b8	b 9	b10	b 11	b 12	b13	b14_ for	b14_ rev
1	Carbamoyl Phosphate	0	0	0	-1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Citrulline	-1	0	0	1	2	-2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Aspartate	-1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Arginosucc inate	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Fumarate	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0
6	Arginine	0	1	-1	0	-2	2	-1	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	Orinithine	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	ATP	-1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
9	Urea	0	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0
1 0	Orthophos phate	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0
1	AMP	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0
1 2	Diphospha te	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
1	NO	0	0	0	0	2	-2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0
1 4	02	0	0	0	0	-4	4	-1	-2	-2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1 5	H+	0	0	0	0	-3	3	-1	-2	-1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1 6	NADPH	0	0	0	0	-3	3	-1	-2	-1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1 7	NADP+	0	0	0	0	3	-3	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0
1 8	H2O	0	0	-1	0	4	-4	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1
1 9	Hydroxyar ginine	0	0	0	0	0	0	1	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	1	R0195	R0108	R0055	R0139	R0055	R0055	Carbamo	Aspartat	Fumarat	Ure	AT	AM	Diphospha	Orthophospha	0	NADP	H+	NO	NADP	H2O	H2O
		4	6	1	8	7	7	yl Phosphat e	e	e	а	P	P	te	te	2	н			+		
		v1	v2	v3	v4	v5_for	v5_re v	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	b1 1	b1 2	b13	b14_fo r	b14_re v
1	Carbamoyl Phosphate	0	0	0	-1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Citrulline	-1	0	0	1	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Aspartate	-1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Arginosuccinat e	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	Fumarate	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0
6	Arginine	0	1	-1	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	Orinithine	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	ATP	-1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
9	Urea	0	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0
1	Orthophospha te	0	0	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0
1	AMP	1	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0
1 2	Diphosphate	1	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
1	NO	0	0	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0
1	02	0	0	0	0	-4	4	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1 5	H+	0	0	0	0	-3	3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1 6	NADPH	0	0	0	0	-3	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1 7	NADP+	0	0	0	0	3	-3	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0
1 8	H2O	0	0	-1	0	4	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	1

PART B

To check to see the reactions are balanced we need to perform an atom balance of the metabolites. The table for constructing the ATOM matrix is below.

		С	Н	N	0	Р	S
1	Carbamoyl Phosphate	1	4	1	5	1	0
2	Citrulline	6	13	3	3	0	0
3	Aspartate	4	7	1	4	0	0
4	Arginosuccinate	10	18	4	6	0	0
5	Fumarate	4	4	0	4	0	0
6	Arginine	6	14	4	2	0	0
7	Orinithine	5	12	2	2	0	0
8	АТР	10	16	5	13	3	0
9	Urea	1	4	2	1	0	0
10	Orthophosphate	0	3	0	4	1	0
11	AMP	10	14	5	7	1	0
12	Diphosphate	0	4	0	7	2	0
13	NO	0	0	1	1	0	0
14	02	0	0	0	2	0	0
15	H+	0	1	0	0	0	0
16	NADPH	21	30	7	17	3	0
17	NADP+	21	29	7	17	3	0
18	H2O	0	2	0	1	0	0

This is crossed with the STOIC matrix in the equation E = transpose(ATOM) X STOIC. If the values for the E are 0 then they are balanced. If not, they need to be adjusted. When running the matrix through my Julia program the resultant E was:

Reaction Set

 $[0\ 0\ 0\ 0\ 0; 0\ 0\ 0\ 0; 0\ 0\ 0\ 0; 0\ 0\ 0\ 0; 0\ 0\ 0\ 0; 0\ 0\ 0\ 0]$

Transport Set

Stoichiometric Matrix

 $[0\ 0\ 0\ 0\ 0\ 1\ 4\ -4\ -1\ 10\ -10\ 0\ 0\ 0\ 21\ 0\ 0\ -21\ 0\ 0;\ 0\ 0\ 0\ 0\ 0\ 4\ 7\ -4\ -4\ 16\ -14\ -4\ -3$

The values for the reaction set are 0 indicating that they are balanced. The transport values are no not though.

PART C

The optimization of the Urea flux was completed using a Julia code that references the Flux.jl code provided by the Varner lab which was then modified to solve the problem in our conditions. The output of the Solve.jl script is below. The max flux of Urea was 1.242 mmol/gDW-hr.