

A Brief Introduction to Bayesian Statistics

Frameworks of Statistical Inference

▶ Frequentist Hypothesis Testing: Evaluate the probability of observing the data, or more extreme data, given that the a hypothesis is true assuming that there is a single fixed True value for each parameter.

Frameworks of Statistical Inference

- ▶ Frequentist Hypothesis Testing: Evaluate the probability of observing the data, or more extreme data, given that the a hypothesis is true assuming that there is a single fixed True value for each parameter.
- ▶ Likelihood & Information Theoretic: Given the data at hand, compare multiple alternative hypotheses and evaluate the relative weight of evidence for each. Parameters again assumed to have True values.

Frameworks of Statistical Inference

- Frequentist Hypothesis Testing: Evaluate the probability of observing the data, or more extreme data, given that the a hypothesis is true assuming that there is a single fixed True value for each parameter.
- Likelihood & Information Theoretic: Given the data at hand, compare multiple alternative hypotheses and evaluate the relative weight of evidence for each. Parameters again assumed to have True values.
- ▶ Bayesian: Using prior information and data, evaluate the degree of belief in specific hypotheses, recognizing that data is one realization of some distribution of a parameter.

Bayes Theorem

Bayes Theorem

$$p(Hypothesis|Data) = \frac{P(Data|Hypothesis)p(Hypothesis)}{p(Data)}$$

Bayes Theorem

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{p(X)}$$

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{p(Yes)}$$

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{p(Yes)}$$

We know/assume:

$$p(Sun\ Explodes) = 0.0001,\ P(Yes\ |\ Sun\ Explodes) = 35/36$$

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{p(Yes)}$$

We know/assume:

$$p(Sun Explodes) = 0.0001, P(Yes | Sun Explodes) = 35/36$$

We can calculate:

$$\begin{split} p(Yes) &= P(Yes \mid Sun \; Explodes)p(Sun \; Explodes) + P(Yes \mid Sun \; Doesn't \; Explode)p(Sun \; Doesn't \; Explodes) \end{split}$$

= 35/36 * 0.0001 + 1/36 * 0.9999 = 0.0277775

credit: Amelia Hoover

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{p(Yes)}$$

$$p(SunExplodes|Yes) = \frac{0.0001 * 35/36}{0.028} = 0.0035$$

Incorporating Prior Information about the Sun Exploding gives us a very different answer

$$p(SunExplodes|Yes) = \frac{p(Yes|SunExplodes)p(SunExplodes)}{p(Yes)}$$

$$p(SunExplodes|Yes) = \frac{0.0001 * 35/36}{0.028} = 0.0035$$

Incorporating Prior Information about the Sun Exploding gives us a very different answer

Note, we can also explicitly evaluate the probability of an alternate hypothesis - p(Sun Doesn't Explode | Yes)

The Marginal Distribution in the Denominator

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$

The Marginal Distribution in the Denominator

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$

What are alternate parameter values but alternate hypotheses?

Denominator - marginal distribution - becomes an integral of likelihoods if θ is continuous. It normalizes the equation to be between 0 and 1.

▶ A prior is a powerful tool, but it can also influence our results of chosen poorly. This is a highly debated topic.

- ► A prior is a powerful tool, but it can also influence our results of chosen poorly. This is a highly debated topic.
- Conjugate priors make some forms of Bayes Theorem analytically solveable

- ▶ A prior is a powerful tool, but it can also influence our results of chosen poorly. This is a highly debated topic.
- Conjugate priors make some forms of Bayes Theorem analytically solveable
- ▶ If we have objective prior information from pilot studies or the literature - we can use it to obtain a more informative posterior distribution

- ▶ A prior is a powerful tool, but it can also influence our results of chosen poorly. This is a highly debated topic.
- Conjugate priors make some forms of Bayes Theorem analytically solveable
- If we have objective prior information from pilot studies or the literature - we can use it to obtain a more informative posterior distribution
- ▶ If we do not, we can use a weak or flat prior (e.g., N(0,1000)). Note: constraining the range of possible values can still be weakly informative and in some cases beneficial

The Influence of Priors

Here's the posterior distribution drawn using the same sample but in one case with a weak prior, and one a strong prior.

Priors and Sample Size

The influence of priors decreases with same size. A large sample size 'overwhelms' the prior.

Evaluation of a Posterior: Frequentist Confidence Intervals

In Frequentist analyses, the **95% Confidence Interval** of a parameter is the region in which, were we to repeat the experiment an infinite number of times, the *true value* would occur 95% of the time. For normal distributions of parameters:

$$\hat{\beta} - t(\alpha, df)SE_{\beta} \le \beta \le \hat{\beta} + t(\alpha, df)SE_{\beta}$$

Evaluation of a Posterior: Bayesian Credible Intervals

In Bayesian analyses, the **95% Credible Interval** is the region in which we find 95% of the possible parameter values. The observed parameter is drawn from this distribution. For normally distributed parameters:

$$\hat{\beta} - 2 * \hat{SD} \le \hat{\beta} \le \hat{\beta} + 2 * \hat{SD}$$

where \hat{SD} is the SD of the posterior distribution of the parameter β . Note, for other types of parameters, the distribution may be different.

Bayes Theorem Expanded

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\displaystyle\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$
 - Algebraically Solvable

Bayes Theorem Expanded

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\displaystyle\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$
 - Algebraically Solvable

$$p(\theta|X)=\frac{p(X|\theta)P(\theta)}{\int p(X|\theta)p(\theta)d\theta}$$
 - Analytically Solveable for Conjugate Priors

Bayes Theorem Expanded

$$p(\theta|X) = \frac{p(X|\theta)P(\theta)}{\displaystyle\sum_{i=0}^{j} p(X|\theta_i)p(\theta_i)}$$
 - Algebraically Solvable

$$p(\theta|X)=\frac{p(X|\theta)P(\theta)}{\int p(X|\theta)p(\theta)d\theta}$$
 - Analytically Solveable for Conjugate Priors

 $p(\theta|X) = \frac{\int p(X|\theta)P(\theta|\eta)p(\eta)d\eta}{\int \int p(X|\theta)p(\theta)d\theta d\eta}$ - Hierarchical Model: need numerical integration approach with random hyperparameters

Markov Chain Monte Carlo Sampling (MCMC)

densityDeterisityt(orf=(lynterictelpt)= width

Markov Chain Monte Carlo Sampling (MCMC)

If we cannot analytically solve a distribution, we can still simulate from it:

- ► Chose a set of starting values X at t=0
- ► Chose a random set of parameters, Y, from the distribution parameterized by X
- Select a uniorm random number between 0 and 1, U
- ▶ If $U \le f(X,Y)$, X(t+1) = Y. Otherwise, X(t+1) = X.
- Rinse and repeat

Markov Chain Monte Carlo Sampling (MCMC)

This is a time series. To use it for inference to sample from the final stationary distribution:

- ▶ Discard a 'burn in' set of samples
- 'Thin' your chain to reduce temporal autocorrelation
- Examine chain for convergence on your posterior distribution
- Evaluate multiple chains to ensure convergence to a single distribution

Many different samplers using different decision rules for f. We use the Gibbs Sampler commonly.

Software Options for MCMC

- ▶ WinBUGS http://www.mrc-bsu.cam.ac.uk/bugs/
- ▶ OpenBUGS http://www.openbugs.info/w/
- ▶ JAGS http://mcmc-jags.sourceforge.net/
- STAN http://mc-stan.org/
- MCMCglmm in R
- MCMCpack in R

BUGS code for a Simple Linear Regression

```
model {
# Prior
    alpha ~ dnorm(0,0.001)
    beta ~ dnorm(0,0.001)
    sigma ~ dunif(0,100)
# Likelihood
for (i in 1:n){
    y[i] ~ dnorm(mu[i],tau)
    mu[i] <- alpha + beta*x[i]
    }
}</pre>
```

Example: The RIKZ Beaches and Tide Height

```
rikz <- read.csv("./data/rikz.csv")
rikz$Beach <- factor(rikz$Beach)
#
library(MCMCglmm)
NAPMod <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)</pre>
```

Plots of Chains

plot(NAPMod\$Sol)

Plots of Chains

plot(NAPMod\$VCV)

density.dellenks(ty=of),umidsh = width

N = 1000 Bandwidth = 0.928

Sometimes Problems are Obvious

Did you Thin Enough?

```
autocorr(NAPMod$Sol)
 , , (Intercept)
         (Intercept) NAP
# Lag 0 1.000000 -0.338722
# Lag 10 0.030775 -0.009913
# Lag 50 0.003102 -0.015534
# Lag 100 -0.050866 0.031194
# Lag 500 -0.077621 0.031906
#
 , , NAP
         (Intercept) NAP
# Lag 0 -0.338722 1.00000
# Lag 10 -0.008204 0.01056
# Lag 50 -0.008502 0.03985
# Lag 100 0.038907 -0.01880
# Lag 500 0.046233 0.01864
```

Did You Converge: Assessing with Multiple Chains

```
NAPMod2 <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)
NAPMod3 <- MCMCglmm(Richness ~ NAP, data=rikz, verbose=F)
#
library(coda)
chainList <- mcmc.list(NAPMod$Sol, NAPMod2$Sol, NAPMod3$Sol)</pre>
```

Did You Converge: Assessing with Multiple Chains

plot(chainList)

The Gelman-Rubin Diagnostic

Diagnostic should be close to 1.

```
gelman.diag(chainList)

# Potential scale reduction factors:

# Point est. Upper C.I.

# (Intercept) 1 1.01

# NAP 1 1.00

# Multivariate psrf

# # 1
```

Evaluating Results

```
#
# Iterations = 3001:12991
# Thinning interval = 10
# Sample size = 1000
....
```

Evaluating Results

```
summary(NAPMod)

....

# R-structure: ~units

#

# post.mean 1-95% CI u-95% CI eff.samp

# units 18.2 11.4 26.7 867

#

....
```

Evaluating Results

```
summary(NAPMod)
....
# Location effects: Richness ~ NAP
#
# post.mean 1-95% CI u-95% CI eff.samp pMCMC
# (Intercept) 6.71 5.34 8.00 1000 <0.001
# NAP -2.85 -4.02 -1.54 1000 <0.001</pre>
```

Your 95% Credible Interval

```
# lower upper

# (Intercept) 5.345 7.997

# NAP -4.019 -1.536

# attr(,"Probability")

# [1] 0.95
```

The Bayesian Approach to MMI: The DIC

$$DIC = \bar{D(\theta)} + pD$$

from Spiegelhalter et al 2002

 $\bar{D(\theta)}$ is the average deviance and pD = Effective # of parameters

The Bayesian Approach to MMI: The DIC

$$DIC = \overline{D(\theta)} + pD$$

from Spiegelhalter et al 2002

 $D(\theta)$ is the average deviance and pD = Effective # of parameters

$$pD = \bar{D(\theta)} - D(\bar{\theta})$$

The Bayesian Approach to MMI: The DIC

$$DIC = \bar{D(\theta)} + pD$$

from Spiegelhalter et al 2002

 $D(\theta)$ is the average deviance and pD = Effective # of parameters

$$pD = D(\bar{\theta}) - D(\bar{\theta})$$

NAPMod\$DIC

[1] 260

Setting Priors

Strong Priors Can Alter Parameters

```
# post.mean 1-95% CI u-95% CI eff.samp pMCMC
# (Intercept) 6.710 5.345 7.997 1000 0.001
# NAP -2.849 -4.019 -1.536 1000 0.001

summary(NAPMod_Prior)$solutions

# post.mean 1-95% CI u-95% CI eff.samp pMCMC
# (Intercept) 6.696 5.355 7.863 1000 0.001

# NAP -2.884 -3.838 -1.917 1000 0.001
```

Random Effects

MCMCglmm allows random effects & family much like nlme

```
MCMCglmm(y ~ x, random = z + x:z)
```

Implies that the intercept varies randomly by z and the slope of x varies by z. Equivalent to (1+x \mid z)

Exercise: Off the MCMC Shorline

- ► Fit a model with a NAP*angle1 interaction and random effect of beach
- Evaluate the model and whether it is fit well
- ► Compare the coefficients to a model with a strong prior that the interaction is -5.