Let Γ be a finite group, and let H be a finite admissible Γ -group, i.e. $gcd(\#H, \#\Gamma) = 1$ and H is generated by elements of the form $h^{-1}\gamma(h)$.

Recall 1 (Notation). Write $Q = \mathbb{F}_q(t)$ for some q. For an extension K/Q, we let $K^{\#}$ denote the maximal unramified extension of K of order prime to $|\mu_Q| |\Gamma| \operatorname{char}(Q)$ that is split completely at places of K over infinity. Let $\operatorname{rDisc} K = \operatorname{Nm}\operatorname{rad}\operatorname{Disc}(K/Q)$.

Let $E_{\Gamma}(D,Q) = \{K/Q \text{ totally real } \Gamma\text{-extension} : \text{rDisc } K = D\}$.

$$\lim_{\substack{N \to \infty \\ (q, |\Gamma||H|) = 1 \\ (q-1, |H|) = 1}} \frac{\sum_{n \le N} \sum_{K \in E_{\Gamma}(q^n, \mathbb{F}_q(t))} \left| \operatorname{Sur}_{\Gamma}(\operatorname{Gal}(K^{\#}/K), H) \right|}{\sum_{n \le N} \left| E_{\Gamma}(q^n, \mathbb{F}_q(t)) \right|} = \frac{1}{[H : H^{\Gamma}]}$$

where in the limit q is always a prime power.

Theorem 2 (Sur-moment in large q limit).

Let

$$N(H,\Gamma,D,Q) := \# \left\{ \varphi \in \operatorname{Sur} \left(\operatorname{Gal}(\overline{Q}/Q), H \rtimes \Gamma \right) \, \middle| \, \begin{array}{c} \operatorname{rDisc}(K_\varphi/Q) = D, \ K_\varphi/Q \text{ split completely at } \infty \\ \text{and } K/K^H \text{ everywhere unramified} \end{array} \right\}$$

Then,

$$\sum_{K \in E_{\Gamma}(D,Q)} \left| \operatorname{Sur}_{\Gamma}(\operatorname{Gal}(K^{\#}/K), H) \right| = \frac{1}{[H:H^{\Gamma}]} N(H, \Gamma, D, Q),$$

so to prove theorem, suffices to show

$$\sum_{n < N} N(H, \Gamma, q^n, \mathbb{F}_q(t)) \sim \sum_{n < N} \# E_{\Gamma}(q^n, \mathbb{F}_q(t))$$

as $q \to \infty$ (satisfying necessary coprimality conditions) then $N \to \infty$.

Recall 3. For A some group, and $c \subset A$ an appropriate subset, we have a scheme $\operatorname{Hur}_{A,c}^n/\mathbb{Z}[1/|A|]$ parameterizing triples $(X \xrightarrow{f} \mathbb{P}^1, G \xrightarrow{\sim} \operatorname{Aut}(f), P)$ where

- f is a tame Galois cover unramified above ∞ with inertia at each (branch) point generated by an element of c
- $P \in X$ is a point above ∞ .

Recall 4. Let $G_1 = H \rtimes \Gamma$ and let $c_1 \subset G_1$ be the set of elements who have the same order in G as their images in Γ . Then, for q relatively prime to |G| and $n \geq 0$,

$$\#\operatorname{Hur}_{G_1,c_1}^n(\mathbb{F}_q) = N(H,\Gamma,q^n,\mathbb{F}_q(t)).$$

Remark 5. One also has

$$\#\operatorname{Hur}_{\Gamma,\Gamma\setminus\{1\}}^n(\mathbb{F}_q)=E_\Gamma(q^n,\mathbb{F}_q(t)).$$

Split completely because Galois + exists an \mathbb{F}_p -point over ∞

TODO: Dif-

ferentiate G and G_1

places when $Q = \mathbb{Q}$

Product of ramified

Totally real = split completely over ∞

Have everything up to here written on board before talk starts Goal. Let $\pi_{G_1}(q, n)$ denote the number of Frob = Frob_{(Hur_{G_1,c_1}^n)_{\mathbb{F}_q}}-fixed components of $(\operatorname{Hur}_{G_1,c_1}^n)_{\overline{\mathbb{F}}_q}$, and let $\pi_{\Gamma}(q, n)$ denote the number of Frob-fixed components of $(\operatorname{Hur}_{\Gamma, \Gamma \setminus \{1\}}^n)_{\overline{\mathbb{F}}_q}$. Then,

$$\pi_{G_1}(q,n) \sim \pi_{\Gamma}(q,n).$$

More specifically, if $d_{\Gamma}(q)$ denotes the number of orbits of non-trivial conjugacy classes of Γ under taking qth powers of elements, then

 $\pi_G(q,n) = \pi_\Gamma(q,n) + O_G\left(n^{d_\Gamma(q)-2}\right)$

and (ignoring congruence subtleties) $\pi_{\Gamma}(q,n) \geq C_G n^{d_{\Gamma}(q)-1}$.

To count these components, we recall the lifting invariant.

Setup. Consider a finite group G with a chosen subset $c \subset G \setminus \{1\}$ which is closed under conjugation by elements of G and under invertible powers. Also assume c generates G.

Recall 6. Let

$$U(G,c) = \left\langle [g] : g \in G \left| [x][y][x]^{-1} = [xyx^{-1}] \right. \right\rangle \ \text{ and } \ K(G,c) := \ker \left(U(G,c) \xrightarrow{[g] \mapsto g} G \right).$$

For $k = \overline{k}$ a field where char $k \nmid |G|$, we let

$$\widehat{\mathbb{Z}}_k^{\times} := \varprojlim_n \mathbb{Z}/n\mathbb{Z} \text{ and } \widehat{\mathbb{Z}}(1)_k^{\times} := \varprojlim_n \mu_n(k)$$

with n ranging over integers coprime to char k. There is an action $\widehat{\mathbb{Z}}_k^{\times} \curvearrowright K(G,c)$ so that every component of $(\operatorname{Hur}_{G,c}^n)_k$ has a well-defined **lifting invariant**

$$\mathfrak{z} \in K(G,c) \left< -1 \right>_k := \mathrm{Mor}_{\widehat{\mathbb{Z}}_k^{\times}} \left(\widehat{\mathbb{Z}}(1)_k^{\times}, K(G,c) \right).$$

Furthermore, if $k = \overline{\mathbb{F}}_q$ and $\overline{s} \in \operatorname{Hur}_{G,c}^n(\overline{\mathbb{F}}_q)$, then for any $\zeta \in \widehat{\mathbb{Z}}(1)_{\overline{\mathbb{F}}_q}$, one has

$$\mathfrak{z}_{\mathrm{Frob}(\overline{s})}(\zeta) = q^{-1} * \mathfrak{z}_{\overline{s}}(\zeta).$$

Recall there's a map $U(G,c) \to \mathbb{Z}^{c/G}$. Write

- $\mathbb{Z}_{\geq M}^{c/G}$ for the subset of elements all of whose coordinates are $\geq M$.
- $\mathbb{Z}_{\equiv q}^{c/G}$ for the subset of elements whose coordinates which are fixed by the automorphism $e_{\overline{x}} \mapsto e_{\overline{x}^q}$ for $\overline{x} \in c/G$ $(x \in c)$.
- $\mathbb{Z}_n^{c/G}$ for the subset of elements with coordinates summing to n.

Use the same subscripts for K(G,c), e.g. write $K(G,c)_{\geq M} \langle -1 \rangle$ for the elements sending a generator to an element of $\mathbb{Z}^{c/G}_{>M}$.

Theorem 7. For $M \gg 0$, one has the following. Let $Y \hookrightarrow (\operatorname{Hur}_{G,c}^n)_{\overline{\mathbb{F}}_q}$ be the union of all components with lifting invariant in $K(G,c)_{\geq M} \langle -1 \rangle_{\overline{\mathbb{F}}_q}$. Then, components of Y are in bijection with their lifting invariants.¹

Ignore this bit

e.g. for quadratic extensions, the discriminant is always an even power of q (i.e. n is even)

 $g^n \in c \text{ if}$ $g \in c \text{ and}$ $(n, \operatorname{ord}(g)) = 0$

Get here in ≤ 25 minutes

Requires topological input. Need to know the components over \mathbb{C} , a comparison theorem, and this

 $^{{}^{1}\}mathrm{Hur}_{G,c}^{n}(\mathbb{C})$ components in bijection with B_{n} -orbits on c^{n} with product 1 generating G

So we can get our main term by counting Frob-fixed lifting invariants.

Proposition 8. Let $n \geq 0$ and let q be a prime power with (q, |G|) = 1. Let $d_{G,c}(q)$ be the number of orbits of qth powering on the conjugacy classes in c/G, and let b(G, c, q, n) be the number of Frob-fixed component invariants in $K(G, c)_{n, \geq 0} \langle -1 \rangle_{\overline{\mathbb{F}}_q}$. Then,

$$\pi_{G,c}(q,n) = b(G,c,q,n) + O_G\left(n^{d_{G,c}(q)-2}\right)$$

(and $\pi_{G,c}(q,n) = 0$ if b(G,c,q,n) = 0).

Proof. Consider the union Z_q of all components of $(\operatorname{Hur}_{G,c}^n)_{\overline{\mathbb{F}}_q}$ with lifting invariant sending a topological generator to an element with image in $\mathbb{Z}_{\equiv q}^{c/G}$ that has some coordinate < M. There are $O_G\left(n^{d_G(q)-2}\right)$ choices of $\underline{m} \in \mathbb{Z}_{n,\geq 0,\equiv q}^{c/G}$ with some component < M. A theorem of Ellenberg-Venkatesh says that there are $O_G(1)$ components corresponding to each \underline{m} , so we win by the previous theorem.

Fact. b(G, c, q, n) grows like $n^{d_G(q)-1}$ (ignoring modulus subtleties)

Let $G_1 = H \rtimes \Gamma$ with c_1 the (nonzero) elements of G that have the same order as their image in Γ , and let $G_2 = \Gamma$ with $c_2 = \Gamma \setminus \{1\}$. We want to show that

$$b(G_1, c_1, q, n) = b(G_2, c_2, q, n).$$

For this, I first need to quote some facts about the group theory of U(G,c).

Fact. There exists a group $\overline{S} \twoheadrightarrow G$ so that $U(G,c) \simeq \overline{S} \times_{G^{ab}} \mathbb{Z}^{c/G}$, $K(G,c) \simeq \ker(\overline{S} \to G) \times_{G^{ab}} \mathbb{Z}^{c/G}$, and $(q, \# \ker(\overline{S} \to G)) = 1.^2$ In this language, we can describe the action $\widehat{\mathbb{Z}}_k^{\times} \curvearrowright K(G,c)$.

In each conjugacy class $\gamma \in c/G$, pick some element x_{γ} along with a preimage \widehat{x}_{γ} in \overline{S} . If $y = gx_{\gamma}g^{-1}$, for some G, is in the same class, we set $\widehat{y} := \widetilde{g}\widehat{x}_{\gamma}\widetilde{g}^{-1}$ (independent of choice of g or $\widetilde{g} \in \overline{S}$). For $x \in c$, we define $[x] = (\widehat{x}, e_x) \in U(G, c)$. For $\alpha \in \widehat{\mathbb{Z}}_k^{\times}$ and $\gamma \in c/G$, we define $w_{\alpha}(\gamma) := (\widehat{x_{\gamma}})^{-\alpha}\widehat{x_{\gamma}^{\alpha}} \in \ker(\overline{S} \to G)$. This gives

$$W_{\alpha}: \mathbb{Z}^{c/G} \longrightarrow \ker(\overline{S} \to G)$$

 $e_{\gamma} \longmapsto w_{\alpha}(\gamma).$

The action $\widehat{\mathbb{Z}}_k^{\times} \curvearrowright K(G,c)$ is given by

$$\alpha \star (g, \underline{m}) = (g^{\alpha} W_{\alpha}(\underline{m}), \underline{m}^{\alpha}).$$

(action on $\mathbb{Z}^{c/G}$ comes from action on G by permuting basis elements)

Corollary 9.

$$\begin{split} b(G,c,q,n) &= \sum_{\underline{m} \in \ker \left(\mathbb{Z}_{\equiv q,n,\geq 0}^{c/G} \to G^{\mathrm{ab}} \right)} \mathrm{nr}_{q-1}(W_{q^{-1}}(\underline{m})) \\ &= \sum_{h \in \ker \left(\overline{S}^2 \to G_2 \right)} \mathrm{nr}_{q-1}(h) \# \left\{ \underline{m} \in \ker \left(\mathbb{Z}_{\equiv q,n,\geq 0}^{c/G} \to G^{\mathrm{ab}} \right) : W_{q^{-1}}(\underline{m}) = h \right\} \end{split}$$

Coordinates each ≥ 0 and sum to n

Ignore congruence subtleties

Coordinates constant on each set of conjugacy classes differing by qth powers

M only depends on G, c, not on n. Pick a coordinate, pick a number < M, pick $d_G(q)-2$ numbers < n, and then the last number is determined. Get $O(d_G(q)Mn^{\epsilon})$

²This kernel is $H_2(G,c)$, a quotient of $H_2(G,\mathbb{Z})$

where nr_{q-1} counts the number of (q-1)st roots of $W_{q^{-1}}(\underline{m}) \in \ker(\overline{S} \to G)$.

Proof. Fix an element $\zeta \in \widehat{\mathbb{Z}}(1)_{\overline{\mathbb{F}}_q}^{\times}$ and so identify $K(G,c) \langle -1 \rangle$ with K(G,c). A lifting invariant $g = (h,\underline{m}) \in \ker(\overline{S} \to G) \times_{G^{ab}} \mathbb{Z}^{c/G} = K(G,c)$ is Frob-fixed iff

$$(h, \underline{m}) = g = q^{-1} \star g = \left(h^{q^{-1}} W_{q^{-1}}(\underline{m}), \underline{m}^{q^{-1}}\right).$$

Note that $\underline{m} = \underline{m}^{q^{-1}} \iff \underline{m} \in \mathbb{Z}_{\equiv q}^{c/G}$ and

$$h = h^{q^{-1}} W_{q^{-1}}(\underline{m}) \iff h^{q-1} = W_{q^{-1}}(\underline{m})^q,$$

so $\underline{m} \in \mathbb{Z}_{\equiv q}^{c/G}$ with trivial image in G^{ab} has $\operatorname{nr}_{q-1}(W_{q^{-1}}(\underline{m})^q)$ elements $g \in K(G,c)$ mapping to it s.t. $g = q^{-1} \star q$.

Since q is relatively prime to $\ker(\overline{S} \to G)$, we have $\operatorname{nr}_{q-1}(W_{q^{-1}}(\underline{m})^q) = \operatorname{nr}_{q-1}(W_{q^{-1}}(\underline{m}))$ whence the claim.

Theorem 10. $b(G_1, c_1, q, n) = b(G_2, c_2, q, n)$

Proof. We start with some compatibility between $G_1 = H \rtimes \Gamma$ and $G_2 = \Gamma$.

First note that $(h, \gamma) \in c_1$ iff it gives a splitting of the cyclic subgroup generated by $\gamma \in \Gamma$. Since $(\#H, \#\Gamma) = 1$, Schur-Zassenhaus will tell us that any two such splittings are conjugate (and that there always exists such a splitting) so all elements of G_1 over a fixed $\gamma \in c_1$ are conjugate. Thus, $c_1/G_1 \to c_2/G_2$ is a bijection, so $\mathbb{Z}^{c_1/G_1} \xrightarrow{\sim} \mathbb{Z}^{c_2/G_2}$ and so $d_{G_1,c_1}(q) = d_{G_2,c_2}(q)$.

Need $(g^{-1}\gamma(g), \gamma) = (h, \gamma) \text{ for } some \ g \in H$

Fact. We can choose groups \overline{S}^i for G_i (i = 1, 2) as before so that

$$\mathbb{Z}^{c_1/G_1} \xrightarrow{W_{q-1}^1} \ker \left(\overline{S}^1 \to G_1\right)$$

$$\cong \downarrow \qquad \qquad \downarrow f$$

$$\mathbb{Z}^{c_2/G_2} \xrightarrow{W_{q-1}^2} \ker (\overline{S}^2 \to G_2)$$

commutes and $(\# \ker(f), q - 1) = 1$.

In particular, any element of $\ker(\overline{S}^2 \to G_2)$ has the same number of (q-1)st roots as any of its preimages in $\ker(\overline{S}^1 \to G_1)$. Hence,

$$b(G_{1}, c_{1}, q, n) = \sum_{\widetilde{h} \in \ker(\overline{S}^{1} \to G_{1})} \underbrace{\operatorname{nr}_{q-1}(\widetilde{h})}_{\operatorname{nr}_{q-1}(f(\widetilde{h}))} \# \left\{ \underline{m} \in \ker\left(\mathbb{Z}_{\equiv q, n, \geq 0}^{c_{1}/G_{1}} \to G_{1}^{\operatorname{ab}}\right) : W_{q^{-1}}^{1}(\underline{m}) = \widetilde{h} \right\}$$

$$= \sum_{h \in \ker(\overline{S}^{2} \to G_{2})} \operatorname{nr}_{q-1}(h) \# \left\{ \underline{m} \in \ker\left(\mathbb{Z}_{\equiv q, n, \geq 0}^{c_{1}/G_{1}} \to G_{1}^{\operatorname{ab}}\right) : W_{q^{-1}}^{1}(\underline{m}) \in f^{-1}(h) \right\}$$

$$= \sum_{h \in \ker(\overline{S}^{2} \to G_{2})} \operatorname{nr}_{q-1}(h) \# \left\{ \underline{m} \in \ker\left(\mathbb{Z}_{\equiv q, n, \geq 0}^{c_{2}/G_{2}} \to G_{2}^{\operatorname{ab}}\right) : W_{q^{-1}}^{2}(\underline{m}) = h \right\}$$

$$= b(G_{2}, c_{2}, q, n)$$

f surjects onto image of $W_{q^{-1}}^2$ by commutativity