

1

CLAIMS

2 We claim the following invention:

3 4 1. A grid that monitors a design simulation to support design verification coverage
5 analysis, comprising:6 a monitor declaration that provides a unique name for the grid;
7 n ordered axis declarations wherein n is at least 1, each said axis declaration
8 names an axis comprising a first axis through a nth axis, wherein each said axis
9 corresponds to a functional attribute of the design and has an axis size that comprises
10 two or more functional states of said functional attribute and has a corresponding axis
11 variable;12 one or more logic expressions that evaluate whether the design has achieved
13 one or more of said functional states, said logic expressions set each one of said n axis
14 variables to an integer value corresponding to said functional state when said logic
15 expressions evaluate true; and16 a grid declaration that converts said n axis variables to a unique linear index
17 value that corresponds to the cross-product of said functional states achieved by the
18 design, said grid declaration also records a hit at said unique linear index value.19 2. A system that monitors a design simulation using a grid to support design
20 verification coverage analysis, comprising:21 a monitor declaration that provides a unique name for the grid;
22 n ordered axis declarations wherein n is at least 1, each said axis declaration
23 names an axis comprising a first axis through a nth axis, wherein each said axis
24 corresponds to a functional attribute of the design and has an axis size that comprises

1 two or more functional states of said functional attribute and has a corresponding axis
2 variable;

3 one or more logic expressions that evaluate whether the design has achieved
4 one or more of said functional states, said logic expressions set each one of said n axis
5 variables to an integer value corresponding to said functional state when said logic
6 expressions evaluate true; and

7 a grid declaration that converts said n axis variables to a unique linear index
8 value that corresponds to the cross-product of said functional states achieved by the
9 design, said grid declaration also records a hit at said unique linear index value.

10 3. A method that makes a grid that monitors a design simulation to support design
11 verification coverage analysis, comprising:

12 providing a monitor declaration that provides a unique name for the grid;

13 providing n ordered axis declarations wherein n is at least 1, each said axis
14 declaration names an axis comprising a first axis through a nth axis, wherein each said
15 axis corresponds to a functional attribute of the design and has an axis size that
16 comprises two or more functional states of said functional attribute and has a
17 corresponding axis variable;

18 providing one or more logic expressions that evaluate whether the design has
19 achieved one or more of said functional states, said logic expressions set each one of
20 said n axis variables to an integer value corresponding to said functional state when
21 said logic expressions evaluate true; and

1 providing a grid declaration that converts said n axis variables to a unique linear
2 index value that corresponds to the cross-product of said functional states achieved by
3 the design, said grid declaration also records a hit at said unique linear index value.

4 4. A method that monitors a design simulation using a grid to support design
5 verification coverage analysis, comprising:

6 declaring a monitor in a monitor declaration that provides a unique name for the
7 grid;

8 declaring n ordered axes using axis declarations, wherein n is at least 1, each
9 said axis declaration names an axis comprising a first axis through a nth axis, wherein
10 each said axis corresponds to a functional attribute of the design and has an axis size
11 that comprises two or more functional states of said functional attribute and has a
12 corresponding axis variable;

13 evaluating one or more logic expressions to determine whether the design has
14 achieved one or more of said functional states;

15 setting each one of said n axis variables to an integer value corresponding to
16 said functional state when said logic expressions evaluate true; and

17 using a grid declaration to convert said n axis variables to a unique linear index
18 value that corresponds to the cross-product of said functional states achieved by the
19 design and to record a hit at said unique linear index value.

20 5. A program storage device readable by a machine, tangibly embodying a program
21 of instructions executable by the machine to perform a method that monitors a design
22 simulation using a grid to support design verification coverage analysis, comprising:

1 declaring a monitor in a monitor declaration that provides a unique name for the
2 grid;

3 declaring n ordered axes using axis declarations, wherein n is at least 1, each
4 said axis declaration names an axis comprising a first axis through a nth axis, wherein
5 each said axis corresponds to a functional attribute of the design and has an axis size
6 that comprises two or more functional states of said functional attribute and has a
7 corresponding axis variable;

8 evaluating one or more logic expressions to determine whether the design has
9 achieved one or more of said functional states;

10 setting each one of said n axis variables to an integer value corresponding to
11 said functional state when said logic expressions evaluate true; and

12 using a grid declaration to convert said n axis variables to a unique linear index
13 value that corresponds to the cross-product of said functional states achieved by the
14 design and to record a hit at said unique linear index value.

15 6. A dependent claim according to Claim 1, 2, 3, 4 or 5 wherein said grid
16 declaration maintains a map of hits at each linear index value determined during a
17 simulation, and downloads said map to a database.

18 7. A dependent claim according to Claim 1, 2, 3, 4 or 5 wherein said unique linear
19 index value is determined by multiplying the integer value of each said axis variable
20 except the nth said axis variable by the product of the sizes of each higher-order axis
21 than the axis to which said axis variable corresponds, summing the results, and adding
22 the integer value of the nth said axis variable.

1 8. A dependent claim according to Claim 1, 2, 3, 4 or 5, wherein said monitor
2 declaration, said axis declarations, said logic expressions, and said grid declaration are
3 translated into a computer program comprising a higher-order software language using
4 a parser.

5 9. A dependent claim according to Claim 8 wherein said parser further translates
6 each said unique linear index value to a character string comprising a concatenation of
7 character strings that correlate to said grid name and to each said functional state
8 within said cross-product achieved by the design.

9 10. A grid that monitors a design simulation to support design verification coverage
10 analysis, comprising:

11 a monitor declaration that provides a unique name for the grid;
12 n ordered axis declarations wherein n is at least 1, each said axis declaration
13 names an axis comprising a first axis through a nth axis, wherein each said axis
14 corresponds to a functional attribute of the design and has an axis size that comprises
15 two or more functional states of said functional attribute and has a corresponding axis
16 variable;

17 one or more logic expressions that evaluate whether the design has achieved
18 one or more of said functional states, said logic expressions set each one of said n axis
19 variables to an integer value corresponding to said functional state when said logic
20 expressions evaluate true;

21 a grid declaration that converts said n axis variables to a unique linear index
22 value that corresponds to the cross-product of said functional states achieved by the
23 design by multiplying the integer value of each said axis variable except the nth said

1 axis variable by the product of the sizes of each higher-order axis than the axis to which
2 said axis variable corresponds, summing the results, and adding the integer value of
3 the nth said axis variable, said grid declaration also records a hit and maintains a map
4 of hits at each linear index value determined during a simulation, and downloads said
5 map to a database; and

6 a parser that translates said monitor declaration, said axis declarations, said
7 logic expressions, and said grid declaration into a computer program comprising a
8 higher-order software language, said parser further translates each said unique linear
9 index value to a character string comprising a concatenation of character strings that
10 correlate to said grid name and to each said functional state within said cross-product
11 achieved by the design.

12

13 11. A system that monitors a design simulation using a grid to support design
14 verification coverage analysis, comprising:

15 a monitor declaration that provides a unique name for the grid;

16 n ordered axis declarations wherein n is at least 1, each said axis declaration
17 names an axis comprising a first axis through a nth axis, wherein each said axis
18 corresponds to a functional attribute of the design and has an axis size that comprises
19 two or more functional states of said functional attribute and has a corresponding axis
20 variable;

21 one or more logic expressions that evaluate whether the design has achieved
22 one or more of said functional states, said logic expressions set each one of said n axis

1 variables to an integer value corresponding to said functional state when said logic
2 expressions evaluate true;

3 a grid declaration that converts said n axis variables to a unique linear index
4 value that corresponds to the cross-product of said functional states achieved by the
5 design by multiplying the integer value of each said axis variable except the nth said
6 axis variable by the product of the sizes of each higher-order axis than the axis to which
7 said axis variable corresponds, summing the results, and adding the integer value of
8 the nth said axis variable, said grid declaration also records a hit and maintains a map
9 of hits at each linear index value determined during a simulation, and downloads said
10 map to a database; and

11 a parser that translates said monitor declaration, said axis declarations, said
12 logic expressions, and said grid declaration into a computer program comprising a
13 higher-order software language, said parser further translates each said unique linear
14 index value to a character string comprising a concatenation of character strings that
15 correlate to said grid name and to each said functional state within said cross-product
16 achieved by the design.

17 12. A method that makes a grid that monitors a design simulation to support design
18 verification coverage analysis, comprising:

19 providing a monitor declaration that provides a unique name for the grid;
20 providing n ordered axis declarations wherein n is at least 1, each said axis
21 declaration names an axis comprising a first axis through a nth axis, wherein each said
22 axis corresponds to a functional attribute of the design and has an axis size that

1 comprises two or more functional states of said functional attribute and has a
2 corresponding axis variable;

3 providing one or more logic expressions that evaluate whether the design has
4 achieved one or more of said functional states, said logic expressions set each one of
5 said n axis variables to an integer value corresponding to said functional state when
6 said logic expressions evaluate true;

7 providing a grid declaration that converts said n axis variables to a unique linear
8 index value that corresponds to the cross-product of said functional states achieved by
9 the design by multiplying the integer value of each said axis variable except the nth said
10 axis variable by the product of the sizes of each higher-order axis than the axis to which
11 said axis variable corresponds, summing the results, and adding the integer value of
12 the nth said axis variable, said grid declaration also records a hit and maintains a map
13 of hits at each linear index value determined during a simulation, and downloads said
14 map to a database; and

15 providing a parser that translates said monitor declaration, said axis declarations,
16 said logic expressions, and said grid declaration into a computer program comprising a
17 higher-order software language, said parser further translates each said unique linear
18 index value to a character string comprising a concatenation of character strings that
19 correlate to said grid name and to each said functional state within said cross-product
20 achieved by the design.

21 13. A method that monitors a design simulation using a grid to support design
22 verification coverage analysis, comprising:

1 declaring a monitor in a monitor declaration that provides a unique name for the
2 grid;

3 declaring n ordered axes using axis declarations, wherein n is at least 1, each
4 said axis declaration names an axis comprising a first axis through a nth axis, wherein
5 each said axis corresponds to a functional attribute of the design and has an axis size
6 that comprises two or more functional states of said functional attribute and has a
7 corresponding axis variable;

8 evaluating one or more logic expressions to determine whether the design has
9 achieved one or more of said functional states;

10 setting each one of said n axis variables to an integer value corresponding to
11 said functional state when said logic expressions evaluate true;

12 using a grid declaration that converts said n axis variables to a unique linear
13 index value that corresponds to the cross-product of said functional states achieved by
14 the design by multiplying the integer value of each said axis variable except the nth said
15 axis variable by the product of the sizes of each higher-order axis than the axis to which
16 said axis variable corresponds, summing the results, and adding the integer value of
17 the nth said axis variable, said grid declaration also records a hit and maintains a map
18 of hits at each linear index value determined during a simulation, and downloads said
19 map to a database; and

20 translating said monitor declaration, said axis declarations, said logic
21 expressions, and said grid declaration into a computer program comprising a higher-
22 order software language, and translating each said unique linear index value to a
23 character string comprising a concatenation of character strings that correlate to said

1 grid name and to each said functional state within said cross-product achieved by the
2 design.

3 14. A program storage device readable by a machine, tangibly embodying a program
4 of instructions executable by the machine to perform a method that monitors a design
5 simulation using a grid to support design verification coverage analysis, comprising:

6 declaring a monitor in a monitor declaration that provides a unique name for the
7 grid;

8 declaring n ordered axes using axis declarations, wherein n is at least 1, each
9 said axis declaration names an axis comprising a first axis through a nth axis, wherein
10 each said axis corresponds to a functional attribute of the design and has an axis size
11 that comprises two or more functional states of said functional attribute and has a
12 corresponding axis variable;

13 evaluating one or more logic expressions to determine whether the design has
14 achieved one or more of said functional states;

15 setting each one of said n axis variables to an integer value corresponding to
16 said functional state when said logic expressions evaluate true;

17 using a grid declaration that converts said n axis variables to a unique linear
18 index value that corresponds to the cross-product of said functional states achieved by
19 the design by multiplying the integer value of each said axis variable except the nth said
20 axis variable by the product of the sizes of each higher-order axis than the axis to which
21 said axis variable corresponds, summing the results, and adding the integer value of
22 the nth said axis variable, said grid declaration also records a hit and maintains a map

1 of hits at each linear index value determined during a simulation, and downloads said
2 map to a database; and
3 translating said monitor declaration, said axis declarations, said logic
4 expressions, and said grid declaration into a computer program comprising a higher-
5 order software language, and translating each said unique linear index value to a
6 character string comprising a concatenation of character strings that correlate to said
7 grid name and to each said functional state within said cross-product achieved by the
8 design.