ANOVA - Aplicação Real de Índice de Qualidade Percebida de Telecomunicações

Estudo de Caso da ANATEL

Esse arquivo apresenta uma aplicação real de um projeto realizado na ANATEL.

Análise de Variância do IQP das Operadoras Brasileiras

Importando as Bibliotecas Necessárias

```
suppressMessages(library(car))
suppressMessages(library(agricolae))
suppressMessages(library(dplyr))
suppressMessages(library(ggplot2))
```

Fazemos em primeiro um passo a criação de funções que irão nos ajudar a manipular os dados como queremos

Funções

```
impute_na <- function(data, columns){</pre>
  # data: data.frame, columns: character
  demais_cols <- base::setdiff(names(data), columns)</pre>
  data0 <- data[demais_cols]</pre>
  data_na <- data[columns]</pre>
  replace_na <- function(x){</pre>
    x[is.na(x)] <- as.integer(mean(x, na.rm = TRUE))</pre>
    return(x)
  }
  data_na <- apply(</pre>
    X = data_na, MARGIN = 2, FUN = replace_na
  data <- cbind(data0, data_na)</pre>
  return(data)
wilcox_teste <- function(f., groups, values, data, verbose = FALSE){</pre>
  # f.: formula, groups: character(1), values: character(2)
  # results: htest
  index <- (data[[groups]] %in% values)</pre>
  data_sub <- data[index,]</pre>
```

```
test <- wilcox.test(f., data = data_sub, exact = FALSE)</pre>
 if (verbose) {
   cat("=======\n")
   msg <- paste0(</pre>
     values, collapse = ' VS '
   cat("Testando diferenças para: ", msg, '\n')
   print(test)
   cat("-----\n")
   return(invisible(test))
 return(test)
}
plot_media_indice <- function(data, servico){</pre>
 # data: data.frame, servico: character(1)
 title. <- pasteO('Média do índice para ', servico, ' - CI 95%')
 \#par(las = 1)
 gplots::plotmeans(
   indice ~ operadora, xlab = "Operadora", ylab = "Índice",
   main = title., data = data
}
```

Depois importarmos os dados dos IQPS de cada serviço de telecomunicações.

Carregando os dados de IQP

```
dados <- list(
  pospre = read.csv2("indices/indice-af-pospre.csv", stringsAsFactors = TRUE),
  bl = read.csv2("indices/indice-af-bl.csv", stringsAsFactors = TRUE),
  tv = read.csv2("indices/indice-af-tv.csv", stringsAsFactors = TRUE),
  tf = read.csv2("indices/indice-af-tf.csv", stringsAsFactors = TRUE)
)

cols_replace_na <- base::setdiff(names(dados$bl), c("response_id", "operadora"))

dados <- lapply(
  X = dados, FUN = impute_na, columns = cols_replace_na
)</pre>
```

Teste de Homogeneidade da variância do Erro

Como vimos na aula Teórica existe uma necessidade de se estimar um modelo homecedástico, ou seja , que os erros possuem variância comum.

```
levene_res <- lapply(
   X = dados, FUN = function(data){with(data, leveneTest(indice, operadora))}
)</pre>
```

```
bartlett_res <- lapply(</pre>
 X = dados, FUN = function(data){bartlett.test(indice ~ operadora, data = data)}
)
levene_resumo <- data.frame(</pre>
  servico = names(levene_res),
  estatistica_F = sapply(levene_res, function(x){x[['F value']][1]}),
 p valor = sapply(levene res, function(x)\{x[['Pr(>F)']][1]\}),
  row.names = NULL
bartlett_resumo <- data.frame(</pre>
  servico = names(bartlett_res),
  K_squared = sapply(bartlett_res, function(x){x[['statistic']][1]}),
 p_valor = sapply(bartlett_res, function(x){x[['p.value']][1]}),
 row.names = NULL
)
print(list(levene = levene_resumo, bartlett = bartlett_resumo))
## $levene
                                 p_valor
     servico estatistica F
## 1 pospre
                 0.7884381 0.5004946543
          bl
                 6.2871894 0.0003622947
## 3
                 0.5566365 0.6943282299
          t.v
                 0.5083372 0.6768924794
## 4
          tf
##
## $bartlett
     servico K_squared
##
                           p_valor
## 1 pospre 2.561017 0.46436478
          bl 9.804342 0.02030465
## 3
          tv 2.188735 0.70109211
## 4
          tf 2.140881 0.54368665
pos_pre = data.frame(dados["pospre"])
head(pos_pre)
##
     pospre.response_id pospre.operadora pospre.J1 pospre.J2 pospre.J3 pospre.J4
## 1
                     401
                                    CLARO
                                                   7
                                                             6
                                                                        6
                                                                                  7
## 2
                     406
                                    CLARO
                                                  10
                                                             9
                                                                        9
                                                                                  9
                                                             5
## 3
                     415
                                    CLARO
                                                   5
                                                                        5
                                                                                  4
                                    CLARO
                                                   7
                                                             10
## 4
                     421
                                                                       10
                                                                                 10
## 5
                     427
                                    CLARO
                                                   5
                                                             8
                                                                        5
                                                                                  5
## 6
                     433
                                    CLARO
                                                   8
                                                             9
                                                                        8
                                                                                  9
     pospre.J5 pospre.indice
## 1
            6
                     6.412921
## 2
             9
                     9.202964
## 3
             4
                    4.595887
## 4
            10
                     9.391108
## 5
             5
                    5.516528
             9
                     8.576289
anova_pos_pre <- aov(pospre.indice ~ pospre.operadora, data = pos_pre)</pre>
resumo_pos_pre <- summary(anova_pos_pre);resumo_pos_pre</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## pospre.operadora 3 21 7.103 1.259 0.287
## Residuals 818 4616 5.643
```

Gráfico de Avaliação de Normalidade dos Resíduos

plot(anova_pos_pre)

Fitted values aov(pospre.indice ~ pospre.operadora)

Residuals vs Leverage

Leverage aov(pospre.indice ~ pospre.operadora)

```
bl = data.frame(dados["bl"])
head(bl)
     bl.response_id bl.operadora bl.J1 bl.J2 bl.J3 bl.J4 bl.J5 bl.indice
##
## 1
                  93
                        CLARO/NET
                                        8
                                              8
                                                    8
                                                                    7.805963
## 2
                        CLARO/NET
                                        4
                                              3
                                                           4
                                                                    4.006854
                  95
                                                     4
                                                                 5
## 3
                  96
                        CLARO/NET
                                        7
                                              6
                                                    7
                                                           7
                                                                     6.812817
                        CLARO/NET
## 4
                 102
                                        0
                                              0
                                                    0
                                                           0
                                                                     0.000000
## 5
                         CLARO/NET
                                        6
                                              6
                 105
                                                   10
                                                           0
                                                                 5
                                                                    5.425101
## 6
                 106
                        CLARO/NET
                                        5
                                              5
                                                     6
                                                                     5.419391
                                                           6
anova_bl <- aov(bl.indice ~ bl.operadora, data = bl)</pre>
resumo_bl <- summary(anova_bl);resumo_bl</pre>
##
                  Df Sum Sq Mean Sq F value Pr(>F)
                   3
                       55.6 18.536
                                        2.473 0.0615 .
## bl.operadora
## Residuals
                 359 2691.1
                               7.496
## Signif. codes:
                    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(anova_bl)
```


Teste ANOVA

```
anovas <- lapply(
  X = dados, FUN = function(data){aov(indice ~ operadora, data = data)}
)</pre>
```

```
anovas <- anovas[base::setdiff(names(anovas), 'bl')]</pre>
anovas_summary <- lapply(</pre>
  X = anovas, FUN = summary
# Teste robusto
reg_mean <- lm(indice ~ operadora, data = dados$bl)</pre>
anova bl <- Anova(reg mean, white.adjust = TRUE)
## Coefficient covariances computed by hccm()
extrair estat <- function(summary aov, estat){</pre>
  # summary_aov: summary.aov, estat: character(1)
  summary_aov[[1]][[estat]][1]
}
anova_resumo <- data.frame(</pre>
  servico = c(names(anovas_summary), 'bl'),
  estat_F = c(
    sapply(anovas_summary, extrair_estat, estat = 'F value'),
    anova_bl[1, 'F']
 ),
  p_valor = c(
    sapply(anovas_summary, extrair_estat, estat = 'Pr(>F)'),
    anova_bl[1, 'Pr(>F)']
  ),
 variancia_homo = c('SIM', 'SIM', 'SIM', 'NÃO'),
 row.names = NULL
)
print(list(anova_resumo))
## [[1]]
     servico
                           p_valor variancia_homo
              estat_F
## 1 pospre 1.2588355 0.28738126
                                              SIM
         tv 1.9194499 0.10713925
                                               SIM
## 3
                                              SIM
          tf 0.5457894 0.65143508
## 4
          bl 2.7265489 0.04400772
                                               NÃO
Teste Tukey
# POS e PRE
tuk pospre <- HSD.test(</pre>
  anovas$pospre, "operadora", group = T, alpha = 0.05, console = T
)
## Study: anovas$pospre ~ "operadora"
## HSD Test for indice
## Mean Square Error: 5.642676
```

```
## operadora, means
##
##
                              r Min Max
           indice
                        \operatorname{std}
## CLARO 7.588255 2.239637 179
         7.181139 2.509922 215
                                     10
         7.535949 2.358149 210
                                  0 10
## VIVO 7.339752 2.363808 218
                                  0 10
##
## Alpha: 0.05; DF Error: 818
## Critical Value of Studentized Range: 3.640638
## Groups according to probability of means differences and alpha level( 0.05 )
##
## Treatments with the same letter are not significantly different.
##
##
           indice groups
## CLARO 7.588255
         7.535949
## TIM
## VIVO 7.339752
## OI
         7.181139
plot(tuk_pospre)
```

Groups and Range


```
# TV
tuk_tv <- HSD.test(
  anovas$tv, "operadora", group = T, alpha = 0.05, console = T
)</pre>
```

```
##
## Study: anovas$tv ~ "operadora"
##
## HSD Test for indice
```

```
##
## Mean Square Error: 6.510203
##
## operadora,
               means
##
##
               indice
                           std
                                         Min Max
             7.517112 2.156280
                                28 1.9935552
## CLARO/NET 6.407584 2.545175 144 0.0000000
## OI
             6.135902 2.531356
                                13 0.8333357
             7.101252 2.567359
## SKY
                                87 0.0000000
## VIVO
             6.529988 2.864186 30 0.3629215
##
## Alpha: 0.05; DF Error: 297
## Critical Value of Studentized Range: 3.881465
## Groups according to probability of means differences and alpha level( 0.05 )
##
## Treatments with the same letter are not significantly different.
##
##
               indice groups
## CLARO
             7.517112
## SKY
             7.101252
## VIVO
             6.529988
## CLARO/NET 6.407584
## OI
             6.135902
plot(tuk_tv)
```

Groups and Range


```
## Study: anovas$tf ~ "operadora"
## HSD Test for indice
## Mean Square Error: 5.62389
## operadora,
               means
##
##
               indice
                           std r
## CLARO/NET 7.247677 2.410059 84 0.000000
             7.054390 2.454974 86 0.000000
## TIM
             7.812645 1.701315 11 5.378155
             6.933335 2.294477 63 0.000000
## VIVO
## Alpha: 0.05; DF Error: 240
## Critical Value of Studentized Range: 3.658742
## Groups according to probability of means differences and alpha level( 0.05 )
## Treatments with the same letter are not significantly different.
##
               indice groups
## TIM
             7.812645
## CLARO/NET 7.247677
## OI
             7.054390
## VIVO
             6.933335
plot(tuk_tf)
```

Groups and Range

Teste Não Paramétrico de Mann-Whitney

```
data bl <- dados$bl
data_bl <- data_bl %>%
  mutate(operadora = as.character(operadora))
resumo_bl <- data_bl %>%
  group_by(operadora) %>%
  summarise(
   N = n(),
    iqp_medio = mean(indice, na.rm = TRUE),
    std = sd(indice, na.rm = TRUE),
    .groups = 'drop'
  ) %>%
  arrange(desc(iqp_medio)) %>%
  as.data.frame()
print(resumo_bl)
     operadora N iqp_medio
## 1 CLARO/NET 127 6.332651 2.292885
          SKY 58 5.741163 2.945023
## 3
          VIVO 65 5.734353 2.911336
## 4
           OI 113 5.383967 2.975917
# Gerando pares de operadoras para teste
operadoras <- unique(data_bl$operadora)</pre>
operadoras <- combn(</pre>
 x = operadoras, m = 2, simplify = FALSE
)
names(operadoras) <- sapply(</pre>
  operadoras, function(x){paste(x, collapse = '-')}
# Testando pares de operadoras
testes_wilcox <- lapply(</pre>
 X = operadoras, FUN = wilcox_teste, f. = indice ~ operadora,
  groups = 'operadora', data = data_bl
resumo wilcox <- data.frame(
 comparacao = names(testes_wilcox),
  statistic_W = sapply(testes_wilcox, `[[`, i = 'statistic'),
 p_valor = sapply(testes_wilcox, `[[`, i = 'p.value'),
  row.names = NULL
print(list(resumo_wilcox))
## [[1]]
##
         comparacao statistic_W
                                   p_valor
## 1
      CLARO/NET-OI 8402.0 0.02237521
## 2 CLARO/NET-SKY
                       4071.5 0.25081532
## 3 CLARO/NET-VIVO
                       4613.0 0.18313091
                     3069.5 0.49930586
## 4
            OI-SKY
```

```
## 5
                         3390.0 0.39407453
            OI-VIVO
## 6
           SKY-VIVO
                         1903.5 0.92730525
# Média do índice por operadaora
medias_bl <- data_bl %>%
  group_by(operadora) %>%
  summarise(indice_medio = mean(indice), .groups = 'drop')
medias_nulo <- medias_bl %>%
 mutate(indice_medio = 0)
medias <- rbind(medias_bl, medias_nulo)</pre>
p1 <- medias_bl %>%
  ggplot(aes(x = operadora, y = indice_medio)) +
  geom_point(color = '#808000', size = 2.5) +
  geom_line(data = medias, aes(x = operadora, y = indice_medio), color = '#808000') +
  theme_light() +
  labs(
   x = 'Operadora', y = 'Índice',
   title = 'Índice médio por operadora - BL'
  ) +
  theme(
    plot.title = element_text(hjust = .5)
print(p1)
```

Índice médio por operadora - BL

