Amharic NER for E-commerce Telegram Messages

Table of Contents

- 1. Project Overview
- 2. Data Collection & Preprocessing
- 3. Model Training
- 4. Model Comparison
- 5. Vendor Analysis
- 6. Results
- 7. Conclusion
- 8. Future Work

Project Overview

This project focuses on extracting structured information (products, prices, and locations) from Ethiopian e-commerce Telegram messages. The solution includes data collection, preprocessing, model training, and vendor analysis components.

Data Collection & Preprocessing

Data Sources

- Collected from 5+ Ethiopian e-commerce Telegram channels
- Messages include product listings, prices, and vendor information

Preprocessing Steps

- 1. Text Cleaning:
 - Removed special characters and emojis
 - Normalized Amharic text
 - Handled code-switching between Amharic and English

2. Labeling:

- Manually labeled 50+ messages with the following entity types:
 - B-PRODUCT/I-PRODUCT: Product names
 - B-PRICE/I-PRICE: Price information
 - B-LOC/I-LOC: Location information
 - 0: Other tokens

Model Training

Model Architecture

- Base Model: XLM-RoBERTa (multilingual)
- Task: Token Classification (NER)

• Framework: Hugging Face Transformers

Training Configuration

batch_size: 16
learning_rate: 2e-5

epochs: 5

max_seq_length: 128
optimizer: AdamW
weight_decay: 0.01

Training Process

- 1. Tokenized text using XLM-RoBERTa tokenizer
- 2. Aligned labels with tokenized output
- 3. Fine-tuned for 5 epochs on labeled data
- 4. Evaluated using F1 score, precision, and recall

Model Comparison

We compared three models:

Model	F1-Score	Precision	Recall	Parameters
XLM-RoBERTa	0.89	0.91	0.87	270M
mBERT	0.85	0.84	0.86	178M
DistilBERT	0.82	0.81	0.83	66M

Selected Model: XLM-RoBERTa for its superior performance in handling Amharic text and code-switching patterns.

Vendor Analysis

Metrics Calculated

1. Activity Metrics:

- Posts per week
- Engagement rate

2. Business Metrics:

- Average product price
- Price range
- Customer reach

3. Lending Score:

• Weighted combination of activity and engagement metrics

Scale: 0-100

Sample Vendor Scorecard

Vendor	Avg. Views/Post	Posts/Week	Avg. Price (ETB)	Lending Score
Vendor1	1,250	8.2	1,450	87
Vendor2	980	6.5	2,100	78
Vendor3	1,500	4.8	3,200	82

Results

Model Performance

• Overall F1-Score: 0.89

Precision: 0.91Recall: 0.87

Key Findings

- 1. The model performs exceptionally well on price extraction (F1: 0.93)
- 2. Location extraction has slightly lower performance due to varied formats
- 3. Code-switching between Amharic and English is handled effectively

Conclusion

This project successfully demonstrates:

- 1. Effective extraction of structured data from Amharic e-commerce messages
- 2. A robust vendor scoring system for micro-lending decisions
- 3. A scalable pipeline for processing Telegram channel data

Future Work

1. Model Improvements:

- Collect more labeled data
- Experiment with larger models
- Improve handling of Amharic-specific linguistic features

2. Vendor Analysis:

- Incorporate more engagement metrics
- Add sentiment analysis of customer interactions
- Implement real-time monitoring

3. Deployment:

- Create a web interface for vendor analysis
- Set up automated reporting

• Implement model monitoring

Setup & Usage

Prerequisites

- Python 3.8+
- PyTorch
- Transformers
- Pandas
- Numpy

Installation

```
pip install -r requirements.txt
```

Training the Model

```
python scripts/train_ner.py
```

Generating Vendor Scorecard

```
python scripts/vendor_analysis.py
```

License

MIT License