Lecture 1

Introduction for Programing

BY

MOHAMMED ABDELFATTAH ALI

What Is a Computer?

What Is a Computer?

Computer Types

Personal Computer

 A microcomputer designed for individual use, as by a person in an office or at home or school.

Smartphone

 A small, pocket sizes, single-user computer based on a microprocessor.

Mainframe

 A powerful multi-user computer capable of supporting many hundreds or thousands of users simultaneously.

Supercomputer

 An extremely fast computer that can perform hundreds of millions of instructions per second.

Operating System

- Interface between a user and the computer hardware
- Provides an environment in which a user can execute programs
- Goals
 - Make the computer system convenient to use
 - Use the computer hardware (resources) in an efficient manner

What is Computer Science?

- Computer science is the study of computation
 - Investigating problems that can be solved computationally
 - Programming languages used to describe computations
 - Machines that carry out computations
 - ▶ Theoretical limits of computation (what is or is not computable)

Algorithms

- ▶ The sequence of steps carried out during a computation are defined by an algorithm
 - an algorithm can be thought of as a "prescription"
 - "follow these steps and you will solve your problem"
- An algorithm includes a complete description of
 - ▶ the set of *inputs*, or starting conditions
 - ▶ a full specification of the problem to be solved
 - ▶ the set of outputs
 - descriptions of valid solutions to the problem
 - a sequence of operations that will eventually produce the output
 - ▶ steps must be simple and precise

languages

- A set of rules ,symbols and characters that allows the user to communicate with the computer.
- The three major families of languages are:

Translation process

• FORTRAN	Formula Translation Language
-----------	------------------------------

• COBOL Common Business Oriented Language

• ALGOL Algorithmic Language

• RPG Report Program Generator

• APL A Programming Language

• BASIC Beginners All Purpose Symbolic Instruction Code

• PL/I Programming Language I

• PASCAL Named after Blaise Pascal, a French Philosopher

• Ada Named after Lady Lovelace Ada

• C General Purpose Programming Language

• C++ Object Oriented Programming Language

• JAVA Object Oriented Programming Language

Example of Programing Languages Levels

High-level program

Low-level program

Executable Machine code

```
class Triangle {
    ...
    float surface()
      return b*h/2;
}
```

```
LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET
```

Machine

Language

Compilation into Assembly L

Assembler

Language

Compilation vs. Interpretation

- Compilation:
 - Syntax errors caught before running the program
 - ▶ Better performance
 - Decisions made once, at compile time
- ▶ Interpretation:
 - Better diagnostics (error messages)
 - More flexibility
 - Supports late binding (delaying decisions about program implementation until runtime)
 - Can better cope with PLs where type and size of variables depend on input
 - Supports creation/modification of program code on the fly (e.g. Lisp, Prolog)

Storage (Hard Disk)

Storage Capacities

- bit smallest capacity
- ▶ nibble = 4 bits
- ▶ byte = 2 nibbles = 8 bits
 - storage for one character
- ▶ 1 kilobyte (KB) = 1024 bytes
- ▶ 1 megabyte (MB) = 1024 KB
- ▶ 1 gigabyte (GB) = 1024 MB

Storage Capacities

Disk Organization

Illustration of a Hard Disk Platter divided in sectors

Types of Data (Value, Built-In)

- Numeric Data
- Character data (alphanumeric)
- Boolean data (TRUE/FALSE)
- Other Data Types (Enum, ... etc.)

Data Manipulation

- = assignment
- + addition
- subtraction
- * multiplication
- / division
- % modulus
- ++ increment by one
- -- decrement by one

Assignment Operations

```
Set x = 1

Set x = x + 1

Set counter = counter + 1
```

Assignment statements change the value in a variable Take the value of counter, add 1, and store the result back in the same variable.

Integer Data Type

Expression	Value	Comment	
5+3	8		
5 – 3	2		
5 * 3	15		
5/3	1	no fractional part	
5 % 3	2	remainder	
1/0		run-time error	
3 * 5 - 2	13	* has precedence	
3+5/2	5	/ has precedence	
3 – 5 - 2	-4	left associative	
(3-5) - 2	-4	better style	
3 – (5-2)	0	unambiguous	

Boolean Comparison

operation	meaning	true	false
==	equals	2 == 2	2 == 3
!=	Not equals	3 != 2	2 != 2
<	Less than	2 < 13	2 < 2
<=	Less than or equal	2 <= 2	3 <= 2
>	Greater than	13 > 2	2 > 13
>=	Greater than or equal	3 >= 2	2 >= 3

Thanks