DDA4230 Reinforcement learning	Greedy algorithms and ETC II
Lecture 6	
Lecturer: Baoxiang Wang	Scribe: Baoxiang Wang

1 Goal of this lecture

To analyze the regret of greedy algorithms and ETC. **Suggested reading**: Chapter 6 of *Bandit algorithms*;

2 Greedy algorithms and ETC

2.1 The greedy algorithm

The worst-case regret of the greedy algorithm is O(T).

2.2 The ε -greedy algorithm

If $\varepsilon_t > \varepsilon$ holds for some constant $\varepsilon > 0$, then the regret of the ε -greedy algorithm is O(T). By carefully choosing $\varepsilon_t = O(1/t)$, we can obtain an algorithm with its regret at most $O(\log T)$.

Theorem 1 Assume that r(i) is 1-subgaussian for each i. By choose $\varepsilon_t = \min\{1, Ct^{-1}\Delta_{\min}^{-2}m\}$ for some sufficiently large absolute constant C, the regret under the ε -greedy algorithm satisfies

$$\overline{R}_T \le C' \sum_{i>2} \left(\Delta_i + \frac{\Delta_i}{\Delta_{\min}^2} \log \max \left\{ e, \frac{T \Delta_{\min}^2}{m} \right\} \right), \tag{1}$$

where C' is an absolute constant.

Algorithm 2: The ε -greedy algorithm

Input: $\varepsilon_t, t \in \{0, 1, \dots, T\}$ the exploration parameters **Output:** $\pi(t), t \in \{0, 1, ..., T\}$ while $0 \le t \le m-1$ do $\pi(t) = t + 1$ while $m \le t \le T$ do $\pi(t) \sim \left\{ \underset{i \in [m]}{\arg \max} \left\{ \frac{1}{N_{t-1,i}} \sum_{t'=0}^{t-1} r_{t'} \mathbb{1} \{ a_{t'} = i \} \right\} \text{ with probability } 1 - \varepsilon_t$ $i \text{ with probability } \varepsilon_t / m, \text{ for each } i \in [m]$

poof: Let $x = \lfloor \frac{1}{2m} \sum_{t'=1}^{t} \varepsilon_{t'} \rfloor$. For an suboptimal arm i, at time t,

$$\mathbb{P}(a_t = i) \leq \frac{\varepsilon_t}{m} + (1 - \varepsilon_t) \mathbb{P}(\hat{\mu}_{t,i} \geq \hat{\mu}_{t,1})$$

$$\leq \frac{\varepsilon_t}{m} + (1 - \varepsilon_t) (\mathbb{P}(\hat{\mu}_{t,i} \geq \mu_i + \frac{\Delta_i}{2}) + \mathbb{P}(\hat{\mu}_{t,1} \leq \mu_1 - \frac{\Delta_i}{2}))$$

We then desire to bound $\mathbb{P}(\hat{\mu}_{t,i} \geq \mu_i + \frac{\Delta_i}{2})$ and $\mathbb{P}(\hat{\mu}_{1,i} \leq \mu_i - \frac{\Delta_i}{2})$. Let $\eta_{t',i}$ to be the empirical mean of arm i after t' pulls and $NR_{t,i}$ to be the number of pulls of arm i caused by random exploration up to time t.

$$\begin{split} \mathbb{P}(\hat{\mu}_{t,i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) &= \sum_{t'=0}^{t} \mathbb{P}(N_{t,i} = t', \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) \\ &= \sum_{t'=0}^{t} \mathbb{P}(N_{t,i} = t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) \mathbb{P}(\hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) \\ &\leq \sum_{t'=0}^{t} \mathbb{P}(N_{t,i} = t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) \exp(-\Delta_{i}^{2}t'/2) \\ &= \sum_{t'=0}^{x} \mathbb{P}(N_{t,i} = t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) \exp(-\Delta_{i}^{2}t'/2) \\ &+ \sum_{t'=x+1}^{\infty} \mathbb{P}(N_{t,i} = t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) \exp(-\Delta_{i}^{2}t'/2) \\ &\leq \sum_{t'=0}^{x} \mathbb{P}(N_{t,i} = t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) + \sum_{t'=x+1}^{\infty} \exp(-\Delta_{i}^{2}t'/2) \\ &\leq \sum_{t'=0}^{x} \mathbb{P}(N_{t,i} = t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) + \frac{2}{\Delta_{i}^{2}} \exp(-\Delta_{i}^{2}x/2) \end{split}$$

$$\leq \sum_{t'=0}^{x} \mathbb{P}(NR_{t,i} \leq t' \mid \hat{\eta}_{t',i} \geq \mu_{i} + \frac{\Delta_{i}}{2}) + \frac{2}{\Delta_{i}^{2}} \exp(-\Delta_{i}^{2}x/2)
\leq \sum_{t'=0}^{x} \mathbb{P}(NR_{t,i} \leq t') + \frac{2}{\Delta_{i}^{2}} \exp(-\Delta_{i}^{2}x/2)
\leq (x+1)\mathbb{P}(NR_{t,i} \leq x) + \frac{2}{\Delta_{i}^{2}} \exp(-\Delta_{i}^{2}x/2)
\leq (x+1)\exp(-x/5) + \frac{2}{\Delta_{i}^{2}} \exp(-\Delta_{i}^{2}x/2).$$

By the choice of ε_t , we have $x \geq \frac{C}{\Delta_i^2} \log \frac{t\Delta_i^2 \sqrt{e}}{Cm}$, which upper bounds the probability of pulling arm i by $O(\log t)/t^{(1+\varepsilon)}$ at time t for some ε . We then have $\sum_t \frac{\varepsilon_t}{m} + (1-\varepsilon_t)(\mathbb{P}(\hat{\mu}_{t,i} \geq \mu_i + \frac{\Delta_i}{2}) + \mathbb{P}(\hat{\mu}_{t,1} \leq \mu_1 - \frac{\Delta_i}{2})) = O(\log T)$, as desired.

2.3 Explore-then-commit algorithms

Algorithm 3: The explore-then-commit algorithm

Input: k: number of exploration on each arm

Output: $\pi(t), t \in \{0, 1, ..., T\}$

while $0 \le t \le km - 1$ do

$$a_t = (t \bmod m) + 1$$

while $km \le t \le T-1$ do

$$a_t = \underset{i \in [m]}{\arg \max} \frac{1}{k} \sum_{t'=0}^{mk} r_{t'} \mathbb{1} \{ a_{t'} = i \}$$

Theorem 2 Assume that r(i) is 1-subgaussian for each i. The regret under ETC satisfies

$$\overline{R}_T \le k \sum_{i \in [m]} \Delta_i + (T - mk) \sum_{i \in [m]} \Delta_i e^{-k\Delta_i^2/4}.$$
 (2)

Particularly, for two-armed bandits (m=2), taking $k = \lceil \max\left\{1, 4\Delta_2^{-2} \log(T\Delta_2^2/4)\right\} \rceil$ yields

$$\overline{R}_T \le \Delta_2 + (4 + e^{-2})\sqrt{T}.\tag{3}$$

We refer the proof to Section 6 and Exercise 6.1 of Bandit algorithms.

In fact, if the rewards are Gaussian with variance 1, the gap-dependent regret bound under m=2 can be further improved by a more careful choice of k. Denote $\Delta=\Delta_2$ and the π below denotes the Archimedes' constant instead of a policy.

Theorem 3 Assume that r(i) is 1-subgaussian for each i and $T \ge 4\sqrt{2\pi e}/\Delta^2$. By choosing $k = \lceil \frac{2}{\Delta^2} W(\frac{T^2 \Delta^4}{32\pi}) \rceil$, the regret of ETC satisfies

$$O(\frac{1}{\Delta}\log T\Delta^2) + o(\log T) + \Delta,\tag{4}$$

where $W(y) \exp(W(y)) = y$ denotes the Lambert function.

Proof: Let $A = r_0 - r_1 + r_2 - \cdots - r_{2k-1}$. The regret is composed of a deterministic exploration regret of $k\Delta$ and a regret $(T-2k)\Delta$ of exploitation which happens when $A \leq 0$. As $A \sim N(k\Delta, 2k)$,

$$\begin{split} \overline{R}_T &= \Delta(k + (T - 2k)\mathbb{P}(A \le 0)) \\ &\leq \Delta(k + T\mathbb{P}(N(0, 1) \le -\Delta\sqrt{\frac{k}{2}})) \\ &\leq \Delta(\frac{2}{\Delta^2}W(\frac{T^2\Delta^4}{32\pi}) + 1 + T\mathbb{P}(N(0, 1) \le -\sqrt{W(\frac{T^2\Delta^4}{32\pi})}))) \\ &\leq \Delta(\frac{2}{\Delta^2}W(\frac{T^2\Delta^4}{32\pi}) + 1 + T\frac{\frac{1}{\sqrt{2\pi}}\exp(-W(\frac{T^2\Delta^4}{32\pi}))}{\sqrt{W(\frac{T^2\Delta^4}{32\pi})}}) \\ &\leq \Delta(\frac{2}{\Delta^2}W(\frac{T^2\Delta^4}{32\pi}) + 1 + \frac{4}{\Delta^2}) \\ &\leq \Delta(\frac{2}{\Delta^2}(\log\frac{T^2\Delta^4}{32\pi} - \log\log\frac{T^2\Delta^4}{32\pi} + \log(1 + \frac{1}{e})) + 1 + \frac{4}{\Delta^2}), \end{split}$$

which achieves the desired order of bound.

The choice of k is determined by minimizing $(k + T\mathbb{P}(N(0,1) \leq -\Delta\sqrt{\frac{k}{2}})$. Taking derivative with respect to k, we have

$$T\Delta \frac{1}{\sqrt{8k}} \frac{1}{\sqrt{2\pi}} \exp(-\Delta^2 \frac{k}{4}) = 1$$

or equivalently $k\frac{\Delta^2}{2}\exp(k\frac{\Delta^2}{2}) = \frac{T^2\Delta^4}{32\pi}$, which hints us about the optimum $k_* = \frac{2}{\Delta^2}W(\frac{T^2\Delta^4}{32\pi})$ up to its rounding.

Acknowledgement

This lecture notes partially use material from Reinforcement learning: An introduction, and Bandit algorithms. For the proofs, we also referred to On explore-then-commit strategies by Garivier, Kaufmann, and Lattimore and Finite-time analysis of the multiarmed bandit problem by Auer, Cesa-bianchi, and Fischer.