FONDAMENTI DI ELETTRONICA – Corso di laurea in Ingegneria Biomedica a.a. 2021/22 – Appello del 15/06/2022 – TEMA A

COGNOME E NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE L'ESAME

- 1) Il tempo a disposizione è 2.5 ore
- 2) Scrivere cognome, nome e numero di matricola su questo foglio e su tutti i fogli consegnati
- 3) Bisogna consegnare il testo del compito anche in caso di ritiro
- 4) Fornire risposte chiare e adeguatamente giustificate
- 5) Nei conti e nei risultati, i valori numerici DEVONO essere accompagnati dalla relativa unità di misura.
- 6) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore della resistenza R_3 in modo che la corrente di drain di M_1 valga $I_{D1} = 5$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 ,
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_{out}/v_{sig}$;
- 4) Il guadagno di corrente $A_i=i_L/i_{sig}$;
- 5) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} .

Dati:

 V_{DD} =12 V V_{SS} =12 V R_{I} =200 k Ω , R_{2} =200 k Ω , R_{4} =2 k Ω , R_{5} =1.0 k Ω , R_{L} =1.0 k Ω , R_{Sig} =1.0 k Ω ,

 M_{I} : k_{pI} =10 mA/V², V_{TPI} = -1 V, λ_{pI} =0 V⁻¹;

M₂: k_{p2} =5 mA/V², V_{TP2} = -2 V, λ_{p2} =0 V⁻¹;

PROBLEMA P2

Sia dato il circuito in figura che usa un amplificatore operazionale ideale. Le resistenze hanno valore $R_1 = 9 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$, $R_3 = 990 \Omega$, $R_4 = 10 \Omega$. Le capacità valgono: $C_1 = 10 \mu\text{F}$, $C_3 = 101 \text{n}\text{F}$. $V_{DC} = 1 \text{ V}$.

- 1) ricavare l'espressione della funzione di trasferimento $W(s)=v_o(s)/v_{in}(s)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W, (per la fase non usare l'approssimazione a gradino).
- 3) Calcolare $v_0(t)$ sapendo che $v_s = 2V + 5V*\sin(\omega_0 t)$ con $\omega_0 = 10$ rad/s.

(prosegue sul retro \rightarrow)

PROBLEMA Q1

L'amplificatore in figura è realizzato con un amplificatore operazionale ideale e un diodo Zener ideale.

- 1) Determinare i valori della tensione di ingresso per la quale il diodo è ON, OFF e in Breakdown.
- 2) Determinare v_0 quando $v_s = -5 \text{ V}$.
- 3) (facoltativo) tracciare la transcaratteristica del circuito.

Dati: $R_1 = 1 \text{ k}\Omega$, $V_{ON} = 0$, $V_Z = 5V$

PROBLEMA Q2

Il circuito di figura impiega un AO quasi ideale con correnti di polarizzazione pari a $I_{\rm B1}$ =120nA (morsetto non invertente), $I_{\rm B2}$ =80nA (morsetto invertente).

- 1) Calcolare v_o considerando l'effetto delle sole correnti di polarizzazione (v_s=0). Trovare il valore di R₂ che annulla l'effetto delle correnti di BIAS.
- 2) Calcolare il valore di v_0 considerando la sola tensione $v_s = +2 \text{ V}$ sapendo che l'AO è alimentato con +/- Vcc e determinare il valore della tensione del morsetto invertente, v_- .

Dati: $R_1 = 1 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$ $v_s = +2 \text{ V}$, Vcc = 10 V.

PROBLEMA Q3

Data la seguente mappa di Karnaugh

- 1) Trovare una F minimizzata
- 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

CD AB	00	01	11	10
00	1	0	0	X
01	1	1	0	X
11	X	0	1	1
10	X	0	0	1