Tema 1. Lógica Proposicional: Formas normales

Lógica-GIA

Curso 2024-2025

Estandarización de fórmulas

Toda fórmula admite una estructura "estándar"

- Forma Normal Disyuntiva (FND)¹
- Forma Normal Conjuntiva (FNC)²

¹En inglés, disjunctive normal form (DNF)

²En inglés, conjuctive normal form (CNF)

Formas normales

Definición

Un literal es p (literal positivo) o ¬p (literal negativo)

Dado un literal ℓ , su literal complementario ℓ^c se define como:

$$\ell^{c} = \begin{cases} p & \text{si } \ell = \neg p \\ \neg p & \text{si } \ell = p \end{cases}$$

Formas normales

Definición

Una fórmula está en forma normal disyuntiva (FND) cuando es una disyunción de conjunciones de literales.

Ejemplo:

$$(q \wedge \neg r) \bigvee (p \wedge r) \bigvee (p \wedge s \wedge \neg q)$$

Definición

Una fórmula está en forma normal conjuntiva (FNC) cuando es una conjunción de disyunciones de literales.

Ejemplo:

$$(p \lor \neg q) \land (\neg p \lor r) \land (\neg q \lor \neg p \lor \neg r)$$

Formas normales

Teorema

Toda fórmula proposicional es equivalente a una fórmula en forma normal conjuntiva y a una fórmula en forma normal disyuntiva.

Pasos utilizando equivalencias:

 $\bullet \ \, \mathsf{Traducir} \to \mathsf{y} \leftrightarrow :$

$$p o q \equiv \neg p \lor q$$
 $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
 $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$

- Trasladar las negaciones hasta que aparezcan asociadas a literales (usando las leyes de De Morgan)
- 3 Eliminar dobles negaciones (usando $\neg \neg p \equiv p$)
- Aplicar la distributividad de ∨ respecto de ∧ (o viceversa) hasta obtener una fórmula en forma normal

Formas normales: cálculo mediante equivalencias

Ejemplo

$$\begin{array}{cccc} (p \leftrightarrow q) \rightarrow r & \equiv & \neg (p \leftrightarrow q) \lor r & Implicación \\ & \equiv & \neg \left[(p \rightarrow q) \land (q \rightarrow p) \right] \lor r & Equivalencia \\ & \equiv & \left[\neg \left(\neg p \lor q \right) \lor \neg \left(\neg q \lor p \right) \right] \lor r & Morgan, Implic. \\ & \equiv & \left(\neg \neg p \land \neg q \right) \lor \left(\neg \neg q \land \neg p \right) \lor r & Morgan \\ & \equiv & \left(p \land \neg q \right) \lor \left(q \land \neg p \right) \lor r & Doble negación \end{array}$$

Forma normal disyuntiva

Ejemplo

$$(p \leftrightarrow q) \rightarrow r \quad \equiv \quad [(p \land q) \lor (\neg p \land \neg q)] \rightarrow r \qquad \qquad Equivalencia \\ \equiv \quad \neg [(p \land q) \lor (\neg p \land \neg q)] \lor r \qquad \qquad Implicación \\ \equiv \quad [\neg (p \land q) \land \neg (\neg p \land \neg q)] \lor r \qquad \qquad Morgan \\ \equiv \quad [(\neg p \lor \neg q) \land (\neg \neg p \lor \neg \neg q)] \lor r \qquad \qquad Morgan \\ \equiv \quad [(\neg p \lor \neg q) \land (p \lor q)] \lor r \qquad \qquad Doble \ negación \\ \equiv \quad (\neg p \lor \neg q \lor r) \land (p \lor q \lor r) \qquad Distributiva$$

Formas normales: cálculo mediante tablas semánticas

• Si $\{\ell_{1,1},\ldots,\ell_{1,n_1}\},\ldots,\{\ell_{m,1},\ldots,\ell_{m,n_m}\}$ son las ramas abiertas en una tabla semántica de una fórmula α , entonces:

$$(\ell_{1,1} \wedge \cdots \wedge \ell_{1,n_1}) \vee \cdots \vee (\ell_{m,1} \wedge \cdots \wedge \ell_{m,n_m})$$

es una forma normal disyuntiva de α .

• Si $\{\ell_{1,1},\ldots,\ell_{1,n_1}\},\ldots,\{\ell_{m,1},\ldots,\ell_{m,n_m}\}$ son las ramas abiertas en una tabla semántica de $\neg \alpha$, entonces:

$$\left(\ell^{c}_{1,1} \vee \dots \vee \ell^{c}_{1,n_{1}}\right) \ \wedge \ \cdots \ \wedge \ \left(\ell^{c}_{m,1} \vee \dots \vee \ell^{c}_{m,n_{m}}\right)$$

es una forma normal conjuntiva de α .

FND: cálculo mediante tablas semánticas

Ejemplo inicial. $\alpha = (p \leftrightarrow q) \rightarrow r$

FND de α : $(p \land \neg q) \lor (q \land \neg p) \lor r$

FNC: cálculo mediante tablas semánticas

Ejemplo inicial:
$$\alpha = (p \leftrightarrow q) \rightarrow r$$

FND de
$$\neg \alpha$$
: $\neg \alpha \equiv (p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$

FNC de α : $\alpha \equiv \neg \neg \alpha \equiv (\neg p \lor \neg q \lor r) \land (p \lor q \lor r)$

FND: cálculo mediante tablas semánticas

Ejemplo.
$$\alpha = p \lor q \leftrightarrow \neg r$$

FND de
$$\alpha$$
: $(p \wedge \neg r) \vee (q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r)$

Modelos:
$$\{p, q, \neg r\}, \{p, \neg q, \neg r\}, \{p, q, \neg r\}, \{\neg p, q, \neg r\}, \{\neg p, \neg q, r\}$$

$$M(\alpha) = \{ \{p\}, \{p,q\}, \{q\}, \{r\} \} \}$$

FNC: cálculo mediante tablas semánticas

Ejemplo.
$$\alpha = p \lor q \leftrightarrow \neg r$$

FND de
$$\neg \alpha$$
: $\neg \alpha \equiv (p \land r) \lor (q \land r) \lor (\neg p \land \neg q \land \neg r)$

FNC de
$$\alpha$$
: $\alpha \equiv (\neg p \lor \neg r) \land (\neg q \lor \neg r) \land (p \lor q \lor r)$

FNC: cálculo mediante tablas semánticas

Ejemplo:
$$\alpha = p \lor q \rightarrow p \land q$$

FND de
$$\neg \alpha$$
: $\neg \alpha \equiv (p \land \neg q) \lor (\neg p \land q)$

FNC de
$$\alpha$$
: $\alpha \equiv \neg \neg \alpha \equiv (\neg p \lor q) \land (p \lor \neg q)$

$$M(\neg \alpha) = \{ \{p\}, \{q\} \}, M(\alpha) = \{ \{ \}, \{p,q\} \}$$

Decisión de satisfacibilidad mediante FND: un ejemplo

Una FND de
$$\alpha$$
: $(p \land \neg q \land \neg r) \lor (\neg p \land q) \lor (\neg p \land r) \lor (q \land r) \lor r$
 α es satisfacible: $M(\alpha) = \{\{p\}, \{q\}, \{q,r\}, \{p,q,r\}, \{p,r\}, \{r\}\}\}$

Decisión de satisfacibilidad mediante FND: un ejemplo

Observación: Podría haberse simplificado si se tiene en cuenta que

$$(p \to r) \land (\neg q \to r) \equiv (\neg p \lor r) \land (q \lor r) \equiv (\neg p \land q) \lor r$$

La segunda rama quedaría

$$[(p \to r) \land (\neg q \to r)]$$

$$\neg p$$

$$\mid$$

$$q$$

Otra FND de α : $(p \land \neg q \land \neg r) \lor (\neg p \land q) \lor r$

Decisión de satisfacibilidad mediante FND

Sea α una fórmula:

- Calculamos una FND de α : $\alpha \equiv F_1 \vee F_2 \vee \cdots \vee F_n$
- α es satisfacible si, y sólo si, alguna F_i lo es
- Cada F_i es una conjunción de literales, $F_i \equiv \ell_1 \wedge \ell_2 \wedge \ldots \wedge \ell_m$
- $\ell_1 \wedge \ell_2 \wedge \cdots \wedge \ell_m$ es satisfacible si, y solo si, $\{\ell_1, \ell_2, \dots, \ell_m\}$ no contiene ningún par de literales complementarios

Ejemplo

$$\alpha = \neg ((p \lor \neg q) \to p) \equiv (p \land \neg p) \lor (\neg p \land \neg q)$$

$$F_1 = p \land \neg p$$
 es insatisfacible, pero $F_2 = \neg p \land \neg q$ es satisfacible $(I(p) = I(q) = 0$ es un modelo de $\alpha)$

Si, al construir la tabla semántica de α , todas las ramas se cierran, entonces α es insatisfacible o una contradicción.

Decisión de tautología mediante FNC

Sea α una fórmula:

- Calculamos una FNC de α : $\alpha \equiv F_1 \wedge F_2 \wedge \cdots \wedge F_n$
- ullet lpha es una tautología si, y sólo si, cada F_i es una tautología
- Cada F_i es una disyunción de literales, $F_i \equiv \ell_1 \lor \ell_2 \lor \ldots \lor \ell_m$
- $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_m$ es una tautología si, y solo si, $\{\ell_1,\ell_2,\ldots,\ell_m\}$ contiene algún par de literales complementarios (es decir, existen i,j tales que $\ell_i^c = \ell_j$)

Ejemplo

$$\alpha = (p \to q) \land (p \to \neg r \lor p) \equiv (\neg p \lor q) \land (\neg p \lor \neg r \lor p)$$

 $F_1 = \neg p \lor \neg r \lor p$ es una tautología, pero

 $F_2 = \neg p \lor q$ no (I(p) = 1, I(q) = 0 es un contraejemplo de $\alpha)$

Ejercicio

Halla una FNC de lpha y utilízala para demostrar que es una tautología

$$\alpha = [(p \to q) \land (q \to r)] \to (p \to r)$$

$$\neg \alpha \equiv [(p \to q) \land (q \to r)] \land \neg (p \to r)$$

$$\downarrow p$$

$$\downarrow r$$

$$\uparrow q$$

$$\uparrow r$$

$$\downarrow r$$

$$\alpha \equiv (\neg p \lor r \lor p \lor q) \land (\neg p \lor r \lor p \lor \neg r) \land (\neg p \lor r \lor \neg q \lor q) \land (\neg p \lor r \lor \neg q \lor \neg r)$$

$$\equiv \top$$

NOTA: Todas las ramas de $\neg \alpha$ se cierran, entonces $\neg \alpha \equiv \bot$ y $\alpha \equiv \top$