Enova Technical Assessment Solution

Data Loading & Evaluation

Use Python pandas and numpy packages to load data and do some basic manipulation.

Check the dataset statistics summary and find out anything interesting.

- There are some missing values(NaN)
- Feature 'symptoms' is a tricky feature, as each one has multiple values
- Sanity check, is the data balanced? Eg: if survival_1_years = 0, then survival_7_years must be 0
- How are the features distributed?
- Are the features highly correlated?
- Which features are important?

EDA (Exploratory Data Analysis)

This section I solved the questions from last section.

- For missing values I set it into 0 or mean value depends on the feature itself
- For 'symptoms', I split the nultiple values first, then do one hot encoding
- The labels(survival_7_years) is almost balanced with ratio 0.43. And the survival_1_years, survival_7_years don't conflict with each other
- The training data and score data's features followed the same distribution. So the training data should reflect the score data set condition
- There are some features correlated with each other, but not a very big problem here
- After running machine learning model, I gave the feature importance plot as well which showed the symptoms features are the most important ones

Model Selection

There are many classification models to choose, we need to know that the dataset has a lot of categorical features. So we don't consider logistics regression which is not good dealing with too many categorical data.

Instead, I picked random forest(ensemble method), xgboost(ensemble method), svm, svm-smote to train the model respectively.

Random forest is an ensemble method which can reduce the model bias and unlikely to overfit. Xgboost is a boosting model which are quite fast and robust. Svm is good for model which has a lot of features. As the data is not super balanced, I tried svm-smote to automatically fixed the imbalance data issue.

Finally I picked Xgboost as final model which has relatively highest performance which has test set accuracy 68.35%.

Some Data Visualizations

