The Fine-Structure Constant: Various Representations and Relationships

Johann Pascher

03-21-2025

1 Introduction to the Fine-Structure Constant

The fine-structure constant (α) is a dimensionless physical constant that plays a fundamental role in quantum electrodynamics. It describes the strength of the electromagnetic interaction between elementary particles. In its most well-known form, the formula is:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137.035999}$$

Contents

1	Introduction to the Fine-Structure Constant	1		
2	Explanation of Symbols and Units Used			
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		
4	Derivation of Planck's Constant Through Fundamental Electromagnetic Constants 4.1 Dimensional Interchangeability: A New Perspective			
5	Redefinition of the Fine-Structure Constant 5.1 What Does the Elementary Charge e Mean?			
6	Consequences of a Redefinition of Coulomb 6.1 Is Coulomb Incorrectly Defined if $\alpha = 1$ is Assumed?	(

7	Eff€	\mathbf{ects} on	Other SI Units
	7.1	What	Effects Would a Coulomb Adjustment Have on Other Units?
		7.1.1	New Charge Unit
		7.1.2	Change in Electric Current (Ampere)
		7.1.3	Changes in Electromagnetic Constants
		7.1.4	Effects on Capacitance (Farad)
		7.1.5	Changes in Voltage Unit (Volt)
		7.1.6	Indirect Effects on Mass
		7.1.7	Consistency Check of the Fine-Structure Constant with SI Units

2 Explanation of Symbols and Units Used

- α : Fine-structure constant (dimensionless) - e: Elementary charge (unit: Coulomb, C) - ε_0 : Electric field constant (unit: Farad per meter, F/m) - μ_0 : Magnetic field constant (unit: Newton per Ampere squared, N/A²) - \hbar : Reduced Planck's constant (unit: Joule-second, Js) - c: Speed of light (unit: Meter per second, m/s) (unit: m s $^{-1}$) - h: Planck's constant (unit: Joule-second, Js) - m_e : Electron mass (unit: Kilogram, kg) - λ_C : Compton wavelength (unit: Meter, m) - Q: Electric charge (unit: Coulomb, C) - C: Capacitance (unit: Farad, F) - V: Voltage (unit: Volt, V) - E: Energy (unit: Joule, J)

3 Alternative Formulations of the Fine-Structure Constant

3.1 Representation with Permeability

Starting from the standard form, we can replace the electric field constant ε_0 with the magnetic field constant μ_0 by using the relationship $c^2 = \frac{1}{\varepsilon_0 \mu_0}$:

$$\varepsilon_0 = \frac{1}{\mu_0 c^2}$$

$$\alpha = \frac{e^2}{4\pi \left(\frac{1}{\mu_0 c^2}\right) \hbar c}$$

$$= \frac{e^2 \mu_0 c^2}{4\pi \hbar c}$$

$$= \frac{e^2 \mu_0 c}{4\pi \hbar}$$

Using the relationship $\hbar = \frac{h}{2\pi}$, we obtain an alternative form:

$$\alpha = \frac{\mu_0 e^2}{2h}$$

3.2 Formulation with Electron Mass and Compton Wavelength

Planck's constant h can be expressed through other physical quantities:

$$h = \frac{m_e c \lambda_C}{2\pi}$$

where λ_C is the Compton wavelength of the electron:

$$\lambda_C = \frac{h}{m_e c}$$

Substituting this into the fine-structure constant:

$$\alpha = \frac{\mu_0 e^2}{2h}$$

$$= \frac{\mu_0 e^2}{2\frac{m_e c \lambda_C}{2\pi}}$$

$$= \frac{\mu_0 e^2 \cdot 2\pi}{2m_e c \lambda_C}$$

$$= \frac{\mu_0 e^2 \pi}{m_e c \lambda_C}$$

3.3 Expression with Classical Electron Radius

The classical electron radius is defined as:

$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_e c^2}$$

Using $\varepsilon_0 = \frac{1}{\mu_0 c^2}$, it follows:

$$r_e = \frac{e^2 \mu_0}{4\pi m_e c^2}$$

The fine-structure constant can be written as the ratio of the classical electron radius to the Compton wavelength:

$$\alpha = \frac{r_e}{\lambda_C}$$

This leads to another form:

$$\alpha = \frac{e^2 \mu_0}{4\pi m_e c^2} \cdot \frac{2\pi m_e c}{h}$$
$$= \frac{e^2 \mu_0}{2hc}$$

3.4 Formulation with μ_0 and ε_0 as Fundamental Constants

Using the relationship $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, the fine-structure constant can be expressed as:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \cdot \sqrt{\mu_0\varepsilon_0}$$
$$= \frac{e^2}{4\pi\varepsilon_0\hbar} \cdot \sqrt{\mu_0\varepsilon_0}$$

These different representations allow for various physical interpretations and demonstrate the connections between fundamental natural constants.

4 Derivation of Planck's Constant Through Fundamental Electromagnetic Constants

4.1 Dimensional Interchangeability: A New Perspective

Before beginning the derivation, it is important to explain the fundamental assumption of this work: In a fundamental theory, the dimensions of quantum quantities (such as Planck's constant) and electromagnetic quantities (such as permittivity and permeability) might be interchangeable or reducible to a common basis.

This assumption is based on the observation that nature, at its most fundamental level, might require a unified description in which the seemingly different dimensions of quantum mechanics and electrodynamics appear as different manifestations of the same underlying structure. In such a theory, the established dimensional barriers would not be absolute but rather artifacts of our macroscopic perspective.

This interchangeability of dimensions allows us to establish a direct connection between h and the electromagnetic constants, going beyond conventional physics and possibly hinting at a deeper structure of the universe.

4.2 Relationship Between h, μ_0 , and ε_0

First, we consider the fundamental relationship between the speed of light c, permeability μ_0 , and permittivity ε_0 : (unit: m s⁻¹)

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

We also use the fundamental relationship between Planck's constant h and the Compton wavelength λ_C of the electron:

$$h = \frac{m_e c \lambda_C}{2\pi}$$

The Compton wavelength is defined as:

$$\lambda_C = \frac{h}{m_e c}$$

By substituting the speed of light $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, we obtain: (unit: m s⁻¹)

$$h = \frac{m_e}{2\pi} \cdot \frac{\lambda_C}{\sqrt{\mu_0 \varepsilon_0}}$$

Now we replace λ_C with its definition:

$$h = \frac{m_e}{2\pi} \cdot \frac{h}{m_e c \sqrt{\mu_0 \varepsilon_0}}$$

This leads to:

$$h^2 = \frac{1}{\mu_0 \varepsilon_0} \cdot \frac{m_e^2 \lambda_C^2}{4\pi^2}$$

Using $\lambda_C = \frac{h}{m_c c}$, it follows:

$$h^2 = \frac{1}{\mu_0 \varepsilon_0} \cdot \frac{m_e^2}{4\pi^2} \cdot \frac{h^2}{m_e^2 c^2}$$

After canceling m_e^2 and substituting $c^2 = \frac{1}{\mu_0 \varepsilon_0}$, we finally obtain:

$$h = \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}}$$

This equation shows that, under the assumption of dimensional interchangeability, Planck's constant h can indeed be expressed through the electromagnetic vacuum constants μ_0 and ε_0 . This relationship suggests a deeper connection between quantum mechanics and electrodynamics.

For the reduced Planck's constant $\hbar = \frac{h}{2\pi}$, it follows accordingly:

$$\hbar = \frac{h}{2\pi} = \frac{1}{2\pi} \cdot \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}} = \frac{1}{4\pi^2\sqrt{\mu_0\varepsilon_0}}$$

5 Redefinition of the Fine-Structure Constant

5.1 What Does the Elementary Charge e Mean?

The elementary charge e represents the electric charge of an electron or proton and is approximately $e \approx 1.602 \times 10^{-19}$ C (Coulomb).

5.2 The Fine-Structure Constant Through Electromagnetic Vacuum Constants

The fine-structure constant α is traditionally defined as:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c}$$

By substituting the derivation for $\hbar = \frac{1}{4\pi^2\sqrt{\mu_0\varepsilon_0}}$, we get:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 \cdot \frac{1}{4\pi^2\sqrt{\mu_0\varepsilon_0}} \cdot c}$$

$$= \frac{e^2}{4\pi\varepsilon_0} \cdot 4\pi^2\sqrt{\mu_0\varepsilon_0} \cdot \frac{1}{c}$$

$$= \frac{e^2 \cdot 4\pi^2 \cdot \sqrt{\mu_0\varepsilon_0}}{4\pi\varepsilon_0 \cdot c}$$

$$= \frac{\pi e^2 \cdot \sqrt{\mu_0\varepsilon_0}}{\varepsilon_0 \cdot c}$$

Using $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, it follows:

$$\alpha = \frac{\pi e^2 \cdot \sqrt{\mu_0 \varepsilon_0}}{\varepsilon_0} \cdot \sqrt{\mu_0 \varepsilon_0}$$
$$= \frac{\pi e^2 \cdot \mu_0 \varepsilon_0}{\varepsilon_0}$$
$$= \pi e^2 \cdot \mu_0$$

Alternatively, with the other derivation for $h = \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}}$:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c}$$

$$= \frac{e^2}{4\pi\varepsilon_0 \cdot \frac{h}{2\pi} \cdot c}$$

$$= \frac{e^2 \cdot 2\pi}{4\pi\varepsilon_0 \cdot h \cdot c}$$

$$= \frac{e^2}{2\varepsilon_0 \cdot h \cdot c}$$

Substituting $h = \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}}$ here:

$$\alpha = \frac{e^2}{2\varepsilon_0 \cdot \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}} \cdot c}$$

$$= \frac{e^2 \cdot 2\pi\sqrt{\mu_0\varepsilon_0}}{2\varepsilon_0 \cdot c}$$

$$= \frac{\pi e^2 \cdot \sqrt{\mu_0\varepsilon_0}}{\varepsilon_0 \cdot c}$$

Using $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ again:

$$\alpha = \pi e^2 \cdot \mu_0$$

This representation shows that the fine-structure constant can be directly derived from the electromagnetic structure of the vacuum without explicitly involving h or \hbar .

6 Consequences of a Redefinition of Coulomb

6.1 Is Coulomb Incorrectly Defined if $\alpha = 1$ is Assumed?

The hypothesis is that if the fine-structure constant $\alpha = 1$ were set, the definition of the Coulomb, and thus the elementary charge e, would need to be adjusted.

6.2 New Definition of the Elementary Charge

If we set $\alpha = 1$ and use the original formula $\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c}$, then for the elementary charge e:

$$e^2 = 4\pi\varepsilon_0\hbar c$$

$$e = \sqrt{4\pi\varepsilon_0\hbar c}$$

Alternatively, with the newly derived form $\alpha = \pi e^2 \cdot \mu_0$:

$$1 = \pi e^2 \cdot \mu_0$$

$$e = \sqrt{\frac{1}{\pi \mu_0}}$$

This would mean that the numerical value of e would change because it would then depend directly on \hbar , c, and ε_0 , or on μ_0 .

6.3 Physical Significance

The unit Coulomb (C) is an arbitrary convention in the SI system. If $\alpha = 1$ were chosen instead, the definition of e would change. In natural unit systems (common in high-energy physics), $\alpha = 1$ is often set, meaning that charge is measured in a unit other than Coulomb.

The current value of the fine-structure constant $\alpha \approx \frac{1}{137}$ is not "wrong" but a consequence of our historical definitions of units. The electromagnetic unit system could originally have been defined such that $\alpha = 1$.

7 Effects on Other SI Units

7.1 What Effects Would a Coulomb Adjustment Have on Other Units?

Adjusting the charge unit so that $\alpha = 1$ would have consequences for numerous other physical units:

7.1.1 New Charge Unit

The new elementary charge would be:

$$e = \sqrt{4\pi\varepsilon_0 \hbar c} = \sqrt{\frac{1}{\pi\mu_0}}$$

7.1.2 Change in Electric Current (Ampere)

Since 1 A = 1 C/s, the unit of Ampere would also change accordingly.

7.1.3 Changes in Electromagnetic Constants

Since ε_0 and μ_0 are linked to the speed of light: (unit: m s⁻¹)

$$c^2 = \frac{1}{\mu_0 \varepsilon_0}$$

perhaps either μ_0 or ε_0 would need to be adjusted.

7.1.4 Effects on Capacitance (Farad)

Capacitance is defined as $C = \frac{Q}{V}$. Since Q (charge) changes, the unit of Farad would also change.

7.1.5 Changes in Voltage Unit (Volt)

Electric voltage is defined as 1 V = 1 J/C. Since Coulomb would have a different magnitude, the size of the Volt would also shift.

7.1.6 Indirect Effects on Mass

In quantum field theory, the fine-structure constant is linked to the rest mass energy of electrons, which could have indirect effects on the definition of mass.

7.1.7 Consistency Check of the Fine-Structure Constant with SI Units

To check whether an adjustment of μ_0 or ε_0 would be necessary, we consider the relationship:

$$c^2 = \frac{1}{\mu_0 \varepsilon_0}$$

with the known values: - Speed of light: c=299792458 m/s - Magnetic field constant: $\mu_0=4\pi\times 10^{-7}$ H/m - Electric field constant: $\varepsilon_0=\frac{1}{\mu_0c^2}$ F/m

The fine-structure constant is defined as:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c}$$

with: - Planck constant: $\hbar=1.054571817\times 10^{-34}$ J·s - Elementary charge: $e=1.602176634\times 10^{-19}$ C

Substituting the values yields:

$$\alpha_{\text{calculated}} = 0.007297352569776441$$

The official value is:

$$\alpha_{\text{official}} = 0.0072973525692838015$$

The difference is 4.93×10^{-13} , which is extremely small. Thus, α remains consistent within the expected precision, and an adjustment of μ_0 or ε_0 is not necessary.

The gravitational constant can be expressed through Planck units as:

$$G = \frac{\hbar c}{m_P^2}$$

with: - $\hbar = 1.054571817 \times 10^{-34}$ J·s - c = 299792458 m/s - $m_P = 2.176434 \times 10^{-8}$ kg (Planck mass) Substituting the values:

$$G_{\rm calculated} = \frac{(1.054571817 \times 10^{-34}) \times (299792458)}{(2.176434 \times 10^{-8})^2}$$

Result:

$$G_{\text{calculated}} = 6.6743021 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$$

The official value:

$$G_{\text{official}} = 6.67430 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$$

The deviation is only 2.1×10^{-17} , which is within measurement accuracy. This means G is correctly defined in the SI system and remains consistent with Planck units.

In an alternative unit system, we set certain constants to 1: - c=1 (speed of light) - $\hbar=1$ (reduced Planck constant) - e=1 (elementary charge) - $\alpha=1$ (fine-structure constant)

From this, the electric field constant follows as:

$$\varepsilon_0 = \frac{1}{4\pi}$$

and with the relationship $c^2 = 1/(\mu_0 \varepsilon_0)$, we obtain the magnetic field constant:

$$\mu_0 = 4\pi$$

In this system, units change: - Charge unit: e=1 fixes the unit of charge. - Energy unit: Since $\hbar=1$, energy is measured directly in frequency units. - Time unit: With c=1, length units are directly linked to time units.

The fine-structure constant remains 1 by definition, but physical quantities are scaled differently in this system.

In our new unit system, the following constants were set to 1: - Speed of light c=1 - Reduced Planck constant $\hbar=1$ - Elementary charge e=1 - Fine-structure constant $\alpha=1$

Not set to 1: - Planck energy E_P , which serves as a measure for the energy unit. - Gravitational constant G, as it relates to Planck units.

This means all other physical constants can be derived from these values.

The Planck energy is defined as:

$$E_P = \sqrt{\frac{\hbar c^5}{G}}$$

Substituting the known values:

$$E_P = \sqrt{\frac{(1.054571817 \times 10^{-34})(299792458)^5}{6.67430 \times 10^{-11}}}$$

This yields:

$$E_P \approx 1.956 \times 10^9 \text{ J}$$

Since $E_P = 1$ in our new unit system, it follows:

1 energy unit =
$$1.956 \times 10^9 \text{ J}$$

Thus, any energy in our system can be converted to Joules by multiplying by this factor.

Choice of the Fine-Structure Constant in a Natural Unit System

In a natural unit system, fundamental natural constants can be set to 1 to simplify equations. A key question is whether the fine-structure constant α should also be set to 1 or if its measured value $\alpha \approx \frac{1}{137}$ must be retained.

Setting $\alpha = 1$

If $\alpha = 1$ is set, several simplifications arise:

- The electric permittivity becomes $\varepsilon_0 = \frac{1}{4\pi}$, and the magnetic constant $\mu_0 = 4\pi$.
- The Maxwell equations take a particularly simple form.
- The elementary charge e is directly linked to energy units.
- All fundamental constants become dimensionless.
- Simplified quantum electrodynamics (QED), as the coupling strength no longer appears as a perturbation parameter.
- Potential for a direct relationship between gravitation and electrodynamics if G is chosen accordingly.

However, there are also challenges:

• SI values for charge, energy, and electrical constants would need to be rescaled.

Retaining $\alpha \approx 1/137$

Alternatively, α can be left at its measured value. Then, the known conversion factors remain:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$$

This maintains physical consistency with experimental values, but some equations become slightly more complex.

Possible Alternative Formulations

This natural form allows various alternative formulations:

- Directly derivable relationships between electromagnetic and gravitational forces.
- Maxwell equations in a particularly simple form.
- Simplified quantum electrodynamics, as the coupling strength no longer acts as a perturbation parameter.
- Improved comparability of gravitation and electrodynamics through scaled constants.
- Simplification of Planck units and their connection to electromagnetic quantities.

Conclusion

There is no definitive answer as to which choice is better:

- If simplifying equations is the main goal, $\alpha = 1$ makes sense.
- If maintaining physical consistency with measured values is desired, $\alpha \approx 1/137$ is preferable.

Since c = 1, $\hbar = 1$, and e = 1 have already been set in this unit system, it would be consistent to also choose $\alpha = 1$ to further simplify the equations.

Sources

- 1. Fine-Structure Constant Wikipedia
- 2. Fine-Structure Constant Physics School
- 3. Fine-Structure Constant Physics Lexicon
- 4. Fine-Structure Constant René Nyffenegger
- 5. Fine-Structure Constant Alpha Human-Earth-Universe
- 6. Electroweak Interaction Wikipedia
- 7. Electroweak Interaction Physics School
- 8. Electroweak Interaction Physics Lexicon
- 9. Natural Units Wikipedia
- 10. Introduction to Particle Physics LMU
- 11. SNO Heidelberg University
- 12. Decoding the Fine-Structure Constant
- 13. Electroweak Interaction, Particle Transformations, and Inner Spin
- 14. Fine-Structure Constant (Approximately 1/137) Rhetos