GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
	Física Estadística	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo Semestre	170802	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno comprenda los distintos métodos estadísticos clásicos y cuánticos: Maxwell-Boltzmann, Fermi-Dirac y Bose-Einstein y los aplique para determinar el comportamiento agregado termodinámico de sistemas microscópicos a partir de consideraciones microscópicas utilizando herramientas estadísticas conjuntamente a leves mecánicas.

TEMAS Y SUBTEMAS

1. Introducción a los métodos estadísticos

- 1.1 El problema del camino aleatorio en una dimensión: conceptos estadísticos elementales y ejemplos.
- 1.2 Estudio general de los valores medios: cálculo de los valores medios en el problema del camino aleatorio; distribución de probabilidad para valores de N grandes; distribución de probabilidad de Gauss.
- 1.3 Estudio general del problema del camino aleatorio: Distribución de probabilidad en las que intervienen varias variables; distribuciones continuas de probabilidad; cálculo general de los valores medios; cálculo de la distribución de probabilidad; distribución de probabilidad para N grandes.
- 1.4 Aplicaciones: difusión y distribución de velocidades de Maxwell.

2. Mecánica estadística cuántica

- 2.1 Determinación de estados cuánticos; sistemas de muchas partículas, partículas indistinguibles de Fermi-Dirac y Bose-Einstein.
- 2.2 Conjunto gran canónico; límite clásico no degenerado; casos degenerados de Fermi y Bose.
- 2.3 Fermiones: número de población; nivel de Fermi; capacidades térmicas, aplicaciones.
- 2.4 Bosones: condensación de Bose, temperatura crítica en el gas de Bose ideal, capacidades térmicas.
- 2.5 Una aplicación básica: Radiación de cuerpo negro; termodinámica de la radiación de cuerpo negro; estadística de la radiación de cuerpo negro.

3. Sistemas de partículas interactuantes, transiciones de fase y puntos críticos

- 3.1 Sólidos: Vibraciones de la red y modos normales; aproximación de Debye.
- 3.2 Gases clásicos no ideales: función de partición configuracional; aproximación a bajas densidades; ecuación de estado y coeficientes del Virial; deducciones de la ecuación de Van Der Waals.
- 3.3 Ferromagnetismo; interacción entre espines, introducción al modelo de Ising.
- 3.4 Sistemas dieléctricos.
- 3.5 Magnetismo y bajas temperaturas: trabajo magnético; refrigeración magnética; medición de temperaturas muy bajas y superconductividad.

4. Fluctuaciones

- 4.1 Fluctuaciones: tendencia al equilibrio.
- 4.2 Solución de problemas con ruido; teorema de Nyquist; solution autocorrelación.
- 4.3 Difusión y la ecuación de Fokker-Planck.
- 4.4 Procesos irreversibles: relaciones recíprocas de Onsager

de funciones de correlación y

COORDINACIÓN GENERAL DE EDUCA

GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

5. Fundamentos de la teoría cinética

- 5.1 Ecuación de Boltzmann.
- 5.2 Teoría del transporte, ecuaciones de la hidrodinámica.

6. Algunas aplicaciones de Física Estadística

- 6.1 Ecuaciones de estado.
- 6.2 Dispersión de luz.
- 6.3 Fenómenos críticos.
- 6.4 Modelos de Ising, etc.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores, el cañón, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

Bibliografía

Libros Básicos:

- Fundamentos de Física Estadística y Térmica. Reif, F. Ediciones del Castillo, 1968 Madrid, España.
- 2. Termodynamics; Callen, H. B. John Wiley & Sons, 1960. Nueva York.
- 3. Termodinámica Estadística. García-Colín, L. UAM-Iztapalapa, 1995. México D.F.
- 4. Física estadística. Terlietski. Y. P. Instituto Cubano del Libro, 1971. Habana, Cuba.

Libros de consulta:

- 1. Statistical Mechanics; Haung, K. John Wiley & Sons. 1987. Nueva York,
- 2. Física estadística; Mandl, F. Ed. LIMUSA. 1979. México.
- Stastistical Physics; Landau, L. D., y Lifshitz, E. M. Addison Wesley Publishing Company, Reading. 959. Mass.

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física, con Doctorado en Física.

