Cardiac Stroke Risk Stratification using Classification Model

Taesun Yoo

- June 14, 2018 -

Cardiac Stroke Statistics: US in 2017

1 in 20 deaths

Accounts from cardiac stroke

Rank #5

Among all causes of death in US, killing 133K people a year

795K people

Experience a new or recurrent stroke

\$52 Billion

Estimated indirect and direct costs for stroke

Problem Statement

Why should you care?

- Stroke is a preventative condition
- † in projected % of people having a stroke
- ↑ in cost (\$) for stroke treatment

Stakeholders:

Cardiac care unit managers and clinicians

Goal:

Predict patients with high risks of developing a stroke

Objective:

- Help physicians to take proactive health monitoring
- Target prevention on patients with high risk for developing a stroke

Dataset Overview

Dataset contains 11 input features for predicting an "stroke" label:

- 8 categorical & 3 numerical features
- Lifestyle and health demographic indicators
- Sample size = 43,000 rows

Observations (rows)

56543 Female 8 No No No Private Urban 69 17.6 NULL 46136 Female 70 No No Yes Private Rural 161.3 35.9 Formerly St	L 0	NULL	18	95.1	Rural	Children	No	No	No	3	Male	30669
46136 Female 70 No No Yes Private Rural 161.3 35.9 Formerly St	noked 0	Never Smoked	39.2	110.9	Urban	Private	Yes	No	Yes	58	Male	16523
	L 0	NULL	17.6	69	Urban	Private	No	No	No	8	Female	56543
32257 Male 47 No No Yes Private Rural 210.1 50.1 NULL	Smoked 0	Formerly Smoked	35.9	161.3	Rural	Private	Yes	No	No	70	Female	46136
-02207 Walle 47 140 140 160 1 Walle Kullal 210.1 00.1 NOEL	L 0	NULL	50.1	210.1	Rural	Private	Yes	No	No	47	Male	32257
	\									_		

Challenges:

- Class imbalance (98% healthy vs. 2% stroke)
- Outliers & duplicates
- Missing values

Data Wrangling

Feature Drop

Feature Imputation

Missing Value Replacement

Interquartile Range:

$$LB = Q1 - 1.5*IQR$$

UB = Q3 + 1.5*IQR

Handling Outliers

Down-sampling

Resampling

Feature Encoding

Feature Engineering

Feature Scaling

Feature Transform

Non-stroke (50%)

Stroke (50%)

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Classification Model Workflows

Stage 2: Model Performance Estimate

Distributions: Healthy vs. Stroke Population

Age: majority of senior stroke patients (skewed to left)

BMI: normal distribution (centralized from 25 to 30)

Avg. glucose level: non-normal distribution (bi-modal peaks)

Lifestyle Factors: Healthy vs. Stroke Population

Health Indicators: Healthy vs. Stroke Population

Stroke

Non-stroke

Correlation Matrix

Model Selections

Logistic Regression

Sigmoid logit function: log(p/(1-p))

Transforms: Input values → estimated into prob. range (0, 1)

Works well on linearly separable classes.

Decision Tree

Split data on features.

Repetitive splitting procedure.

Continue splitting until each node left with same class label.

Random Forest

Ensemble learning.

Creates many decision trees.

Average performance of trees.

Gradient Boost

Sequential training.

Learn from residual errors.

Step-wise forward

Majority Vote

Meta-classifier

Combination of four models

Improves accuracy of model performances by majority vote

Feature Selections

Model Comparison

	Logistic Regression	Decision Tree	Random Forest	XGBoost	Majority Vote
Accuracy	77%	75%	77%	77%	80%
Precision	75%	68%	73%	73%	78%
Recall	81%	93%	84%	86%	82%
ROC Score	77%	75%	77%	77%	80%

Overall, in terms of evaluation metrics:

Best performing model was "Majority Vote classifier"

Confusion Matrix

Majority Vote Classifier						
	Predicted Class					
Actual Class	Stroke	Non-stroke				
Stroke	41%	9%				
Non-stroke	11%	39%				

Outcome Interpretation:

- 80% of correct predictions
- 20% of mis-classification errors

Balance between ML model and human intervention is required especially on <u>9% error</u> (*Type II error*).

ROC and Precision-Recall Curves

ROC Curve

Precision-Recall Curve

Summary: Stroke Classification

Goal

Predict cases at high risks of developing a stroke by classification model

Results

- Model was able to predict whether or not patients were at risk of stroke
- 80% of accurate predictions were made on test set of stroke data

Risks & Mitigation

Risks:

Model incorrectly classified with 9% error as likely patients are non-stroke but in fact had stroke

Mitigation:

Review identified cases with a group of clinicians before decision making

Next Steps

- Collection of meaningful features
- Model improvement: algorithms, resampling and designs

Limitations & Future Work

Limitation:

- Absence of useful features/attributes
- Weak feature interaction (i.e., smoking, hypertension)

Future Work:

- Collection of features (i.e., genetic pre-disposition, physical activity, etc.)
- Model improvement: combine multiple classifiers
 - Stacking
 - Other ensemble
- Resampling strategies:
 - SMOTE
 - Oversampling (i.e., minority class: stroke cases)
- Age stratified classifiers:
 - Younger patients cohort (age < 30)
 - Senior patients cohort (age > 50)

Recommendations

Add stroke screening test

At a recommended age (before 65)

Conduct cohort studies

With feature engineering, stratify patient cohorts into diabetic and obese groups

Collect meaningful features

Stress level, physical activity, blood pressure, genetic factors.

Thank You!

Questions?

