Introduction to DSGE Models

Luca Brugnolini

January 2015

Overview Motivation DSGE Neoclassical Synthesis RBC Model

Introduction to DSGE Models

Program

- DSGE Introductory course (6h)
 - Object: deriving DSGE models
- Computational Macroeconomics (10h) (Prof. L. Corrado)
 - Object: techniques to solve rational expectations linear models like DSGE (requires MATLAB)
- Topics:
 - DSGE History (Galì (2008) ch.1)
 - Real business cycle models (Galì (2008) ch.2)
 - New-Keynesian models (Galì (2008) ch.3)

Motivation

Motivation Why DSGE?

- Historical reason: Neo-Classical Synthesis
 - Real Business Cycle (RBC, "fresh water") and New Keynesian (NK, "salt water") literature (Blachard, 2000 and 2008)
- Theoretical reason: Robust to Lucas (1976), Lucas and Sargent (1978) Critique
 - Microfoundation of macroeconomic models
- Practical reason: CBs macroeconomic models
 - Bank of Canada (ToTEM), Bank of England (BEQM), European Central Bank (NAWM), US Federal Reserve (SIGMA), IMF (GEM), European Commission (QUEST III)

rview Motivation DSGE Neoclassical Synthesis RBC Model

DSGE Model What is a DSGE

- *Dynamic* means there are intertemporal problems and agents rationally form expectations;
- Stochastic means exogenous stochastic process may shift aggregates
- General Equilibrium means that all markets are always in equilibrium
 - Exogenous/unpredictable shocks may temporally deviate the economy from the equilibrium

view Motivation DSGE Neoclassical Synthesis RBC Model

RBC Revolution

Main Points

- Seminal papers Kydland and Prescott (1982) and Prescott (1986)
- Efficiency of the business cycle (BC)
 - BC is the outcome of the real forces in an environment with perfect competition
- Technology is the main driver of the BC
 - Technology (Total factor productivity/Solow residual) is something exogenous
- No monetary policy references
 - Including money leads to "monetary neutrality". Money has no effects on real variables, thus CBs have no power

view Motivation DSGE Neoclassical Synthesis RBC Model

NK Features Main Points

- Monopolistic Competition
 - Each firm have monopolistic power in the market she operates
- Nominal rigidities
 - Sticky price/wage
- Money is not neutral
 - Consequences of rigidities
 - However, money is neutral in the long-run

rview Motivation DSGE **Neoclassical Synthesis** RBC Model

Neo-classical Synthesis Main Points

- Use of the RBC way of modelling
 - Infinitely living agents maximize utility given by consumption and leisure
 - Firms have access to the same technology and are subjected to a random shift
- Implementation of NK Features
 - Stiky price/wage
 - Monopolistic Competition
 - Money is not neutral -> CBs have room for adjusting rigidities

RBC Model Households

Assumptions:

- Perfect competition, homogeneous goods, zero profits
- Flexible price and wage
- No capital, no investments and no government
- Discrete time
- Rationally infinity-lived price taker agents
- Complete market and perfect information
- Money is unit of account (no medium of exchange or reserve of value)
- Regularity conditions on the utility function hold
- Additively separable consumption and leisure (CRRA functional form)
 - U differentiable and has continuous I. II derivatives
 - $\partial U/\partial C_t > 0$, $\partial U/\partial N_t < 0$, $\partial U/\partial C_t^2 < 0$ and $\partial U/\partial N_t^2 < 0$

$$\max_{C_t, N_t} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right) \tag{1}$$

s.t.

$$P_t C_t + Q_t B_t \le B_{t-1} + W_t N_t + T_t \tag{2}$$

$$\lim_{T \to \infty} \mathbb{E}_t \left\{ B_T \right\} \ge 0, \quad \forall t \tag{3}$$

Variables: C_t : consumption; N_t : labor; B_t : bond; P_t : price; Q_t : bond price; W_t : wage; T_t : lump-sum transfer/tax.

Parameters: β : discount factor; σ : coef. of relative risk aversion/reciprocal of intertemporal elasticity of substitution; ϕ : inverse of the elasticity of work w.r.t. wage (inverse of Frish elasticity).

January 2015

Households (cont'd)

F.O.C.

$$\frac{W_t}{P_t} = N_t^{\phi} C_t^{\sigma} \tag{4}$$

$$\mathbb{E}_{t} \left[\beta \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{1}{\pi_{t+1}} \right] = Q_{t}$$
 (5)

$$\max P_t Y_t - W_t N_t \tag{6}$$

s.t.

$$Y_t = A_t N_t^{1-\alpha} \tag{7}$$

$$a_t = \rho_a a_{t-1} + \epsilon_{a,t}, \quad |\rho_a| < 1, \quad \epsilon_{a,t} \sim \mathcal{N}(0, \sigma_a)$$
 (8)

Variables: Y_t : output; A_t : technology; N_t : labor; P_t : price; W_t : wage; $a_t \equiv log(A_t)$;

Parameters: α output elasticity w.r.t. labor (return to scale determinant).

11 / 41

Luca Brugnolini Introduction to DSGE Models January 2015

RBC Model Firms (cont'd)

F.O.C.

$$\frac{W_t}{P_t} = (1 - \alpha)A_t N_t^{-\alpha} \tag{9}$$

RBC Model Equilibrium

- Agents maximize utility subject to the budget constraint;
- Firms maximize profits subject to the production function;
- Goods and labor markets clear.

The last point in this setting without capital and government means

$$Y_t = C_t \tag{10}$$

Problem: systems of non-linear rational expectation difference equations are hard to solve.

A possible solution: take the log and linearize around the non-stochastic steady state using the F.O. Taylor expansion.

$$f(x) \approx f(x_{ss}) + \frac{\partial f(x)}{\partial x}|_{x_{ss}}(x - x_{ss})$$
 (11)

Log-Linearization (cont'd)

An easy way to log-linearize (up to a constant) following Uhlig (1999):

- Set $X_t = Xe^{\hat{x}_t}$ (if $X_t^{\alpha} = X^{\alpha}e^{\alpha\hat{x}_t}$)
- Approximate $e^{\hat{x}_t} \approx (1 + \hat{x}_t)$ (if $e^{\alpha \hat{x}_t} \approx (1 + \alpha \hat{x}_t)$)
- $\hat{x}_t \hat{y}_t \approx 0$
- Use the Steady State relationships to remove the remaining constants

Non-Stochastic Steady State (NSSS)

$$Q = \beta$$

$$\frac{W}{P} = N^{\phi} C^{\sigma}$$

$$\frac{W}{P} = (1 - \alpha)N^{-\alpha}$$

$$Y = N^{(1-lpha)}$$

$$C = Y$$

(12)

(13)

(14)

(15)

16 / 41

イロト イ部ト イミト イミト Luca Brugnolini Introduction to DSGE Models January 2015

(17)

(18)

(19)

(20)

(21)

RBC Model

 $\hat{c}_t = \mathbb{E}_t \hat{c}_{t+1} - \sigma^{-1} \hat{r}_t$

 $\hat{\omega} = \phi \hat{\mathbf{n}}_t + \sigma \hat{\mathbf{c}}_t$

 $\hat{\omega} = -\alpha \hat{\mathbf{n}}_t + \mathbf{a}_t$

 $\hat{\mathbf{y}}_t = (1 - \alpha)\hat{\mathbf{n}}_t + \mathbf{a}_t$

 $\hat{y}_t = \hat{c}_t$

イロト イ部ト イミト イミト

Log-Linear Model (cont'd)

$$\hat{r}_t = \hat{i}_t - \mathbb{E}_t \pi_{t+1} \tag{22}$$

$$\hat{\omega}_t = \hat{w}_t - \hat{\rho}_t \tag{23}$$

Results:

- Real variables are determined independently of monetary policy
- Not clear how conduct monetary policy (indeterminacy)
- Nominal variables may be pinned-down setting an interest rate rule

$$\hat{i}_t = \phi_\pi \pi_t$$

(24)

Motivation DSGE Neoclassical Synthesis RBC Model

RBC Model

Linear Rational Expectation Model

$$A(\Theta)\mathbb{E}_t x_{t+1} = B(\Theta)x_t + C(\Theta)\epsilon_t \tag{25}$$

- The endogenous variables are $x_t \equiv \{\hat{c}_t, \hat{n}_t, \hat{w}_t, \hat{y}_t, \hat{r}_t, a_t\}$.
- The exogenous variable is $\epsilon_t \equiv \{\epsilon_{a,t}\}.$
- $A(\Theta)$, $B(\Theta)$ and $C(\Theta)$ are matrices containing time invariant structural parameters.
- The parameter space is $\Theta \equiv [\alpha, \beta, \phi, \sigma, \rho_{\it a}, \sigma_{\it a}]$

Neoclassical Synthesis RBC Model

RBC Model

Linear Rational Expectation Model (cont'd)

There are many linear rational expectation solution methods:

- Balchard and Khan (1980)
- King and Watson (1998)
- Sims (2001)
- Uhlig (1999)

Returning (up to measurement errors)

$$x_{t+1} = D(\Theta)x_t + E(\Theta)\epsilon_t \tag{26}$$

Where $D(\Theta)$ and $E(\Theta)$ are matrices depending on parameters Θ

Parameters

Two approaches to deal with the parameters $\Theta = [\alpha, \beta, \phi, \sigma, \rho_a, \sigma_a]$

- Calibration
 - Calibration IS NOT estimation!
 - Long-run relationship (Hours worked per Household)
 - Results obtained in microeconomic studies (risk aversion, discount factor)
- Estimation
 - Matching Moments (GMM, Simulated GMM, Indirect Inference)
 - Maximum Likelihood
 - Bayesian Estimation

rview Motivation DSGE Neoclassical Synthesis RBC Model

RBC Model Standard Calibration

Parameter	Description	Value
σ	Intertemporal elasticity of substitution	1.0
β	Discount factor	0.99
ϕ	Frisch elasticity of labor supply	1.0
α	Labor elasticity in the production function	0.36
ϕ_π	Reaction coefficient on inflation	1.50
$ ho_{a}$	Persistence of TFP shock	0.95
σ_{a}	Volatility of TFP shock	0.0072

Neoclassical Synthesis RBC Model

RBC Model

TFP shock Impulse Response Functions

Overview Neoclassical Synthesis RBC Model

RBC Model Simulated data

rview Motivation DSGE Neoclassical Synthesis RBC Model

New-Keynesian Model Motivation

RBC model limitations

- Price adjust slowly (Christiano, Eichenbaum and Evans, 1999)
- Liquidity effect (negative comovements between money and interest rate, Galì, 2008 pag. 9)
- Monetary policy short-run effects

25 / 41

New-Keynesian Model Setting

We use the RBC setting (and assumptions), introducing two frictions:

- Monopolistic competitive firms (no longer Perfect competition)
 - Implying no longer homogeneous good
- Price rigidity (no longer flexible)
 - Firms randomly adjust prices following Calvo (1983)

New-Keynesian Model Households

$$\max_{C_t, N_t} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right) \tag{27}$$

s.t.

$$\int_{0}^{1} P_{t}(i)C_{t}(i)di + Q_{t}B_{t} \leq B_{t-1} + W_{t}N_{t} + T_{t}$$
 (28)

$$\lim_{T \to \infty} \mathbb{E}_t \left\{ B_T \right\} \ge 0, \quad \forall t \tag{29}$$

Variables: $C_t(i)$: consumption of good i; N_t : labor; B_t : bond; $P_t(i)$: price of good i; Q_t : bond price; W_t : wage; T_t : lump-sum transfer/tax.

Parameters: β : discount factor; σ : coef. of relative risk aversion/reciprocal of intertemporal elasticity of substitution; ϕ : inverse of the elasticity of work w.r.t. wage (inverse of Frish elasticity).

rview Motivation DSGE Neoclassical Synthesis RBC Model

New-Keynesian Model Households (cont'd)

Monopolistic competition assumption consequences:

- We have ruled-out the homogeneous goods assumption
- ullet We have a continuum of goods $\in [0,1]$
 - Households deal with a dualistic problem
 - ullet Minimize the cost of achieving a certain amount of composite good \mathcal{C}_t
 - Given the above choice, maximizing utility

28 / 41

New-Keynesian Model Households-Cost Minimization

$$\min_{C_t(i)} \quad \int_0^1 P_t(i)C_t(i)di \tag{30}$$

s.t.

$$\left[\int_{0}^{1} C_{t}(i)^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}} \ge C_{t} \tag{31}$$

New-Keynesian Model

Households-Cost Minimization (cont'd)

$$C_t(i) = C_t \left(\frac{P_t(i)}{\psi_t}\right)^{-\epsilon} \tag{32}$$

Where ψ_t is the Lagrangian multiplier.

Plugging into the definition of composite good and solving for ψ_t get the aggregate price index

$$\psi_t = \left[\int_0^1 P_t(i)^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}} \equiv P_t \tag{33}$$

Than the demand for good i is

$$C_t(i) = C_t \left(\frac{P_t(i)}{P_t}\right)^{-\epsilon}$$

NK

30 / 41

New-Keynesian Model

Households-Utility Maximization (cont'd)

$$\max_{C_t, N_t} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right) \tag{35}$$

s.t.

$$P_t C_t + Q_t B_t \le B_{t-1} + W_t N_t + T_t \tag{36}$$

NK

(37)

(38)

(39)

Households-Utility Maximization (cont'd)

F.O.C.

$$rac{W_t}{P_t} = N_t^\phi C_t^\sigma$$

$$\hat{\omega} = \phi \hat{n}_t + \sigma \hat{c}_t$$

$$\mathbb{E}_{t} \left[\beta \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{1}{\pi_{t+1}} \right] = Q_{t}$$

$$\hat{c}_t = \mathbb{E}_t \hat{c}_{t+1} - \sigma^{-1} (\hat{i}_t - \mathbb{E}_t \pi_{t+1} - \rho)$$

Luca Brugnolini

Introduction to DSGE Models

January 2015

rview Motivation DSGE Neoclassical Synthesis RBC Model

New-Keynesian Model

- Operate in monopolistic competition
- Produce different goods with the same technology
- Solve a dualistic problem
 - Minimize their cost
 - Choose the optimal price following Calvo (1983)

33 / 41

New-Keynesian Model Firms Price Dynamics

There are a continuum of firms $i \in [0,1]$ with identical technology

$$Y_t(i) = A_t N_t(i)^{1-\alpha} \tag{41}$$

$$a_t = \rho_a a_{t-1} + \epsilon_{a,t}, \quad |\rho_a| < 1, \quad \epsilon_{a,t} \sim \mathcal{N}(0, \sigma_a)$$
 (42)

- According to Calvo (1983) $1-\theta$ firms reset the price and θ do not
- θ is the probability of resetting price (index of price stickiness)
- It also gives the frequency of adjustment

New-Keynesian Model Firms Price Dynamics

$$P_{t} = \left(\int_{S(t)} P_{t-1}(i)^{1-\epsilon} di + (1-\theta) P_{t}^{*1-\epsilon} \right)^{\frac{1}{1-\epsilon}}$$
(43)

Plugging the aggregate price index and dividing by P_{t-1} get

$$\Pi_t^{1-\epsilon} = \theta + (1-\theta) \left(\frac{P_t^*}{P_{t-1}}\right)^{1-\epsilon} \tag{44}$$

$$\hat{\pi} = (1 - \theta)(\hat{\rho}_t^* - \hat{\rho}_{t-1}) \tag{45}$$

Where S(t) is the set of non resetting firms, P_t^* is the reset price and Π_t is inflation.

35 / 41

NK

New-Keynesian Model Optimal Price Setting

$$\max_{P_{t}^{*}} \sum_{k=0}^{3} \theta^{k} \mathbb{E}_{t} \left\{ Q_{t,t+k} \left(P_{t}^{*} Y_{t+k|t} - \Psi_{t+k} \left(Y_{t+k|t} \right) \right) \right\}$$
(46)

s.t.
$$Y_{t+k|t} = \left(\frac{P_t^*}{P_{t+k}}\right)^{-\epsilon} Y_{t+k}$$
 (47)

Where $Q_{t,t+k} = \beta^k \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+k}}$, $\Psi_{t+k}()$ is the cost function and $Y_{t+k|t}$ is output in period t + k for firm reset price in t

NK

New-Keynesian Model Optimal Price Setting (cont'd)

F.O.C.

$$\sum_{t=1}^{\infty} \theta^{k} \mathbb{E}_{t} \left[Q_{t,t+k} Y_{t+k|t} \left(\frac{P_{t}^{*}}{P_{t-1}} - \mathcal{M}MC_{t+k} \frac{P_{t+k}}{P_{t-1}} \right) \right] = 0$$
 (48)

$$\hat{\rho}_{t}^{*} - \hat{\rho}_{t-1} = (1 - \beta \theta) \sum_{t=0}^{\infty} \theta^{k} \beta^{k} \mathbb{E}_{t} \left[\left(\hat{mc}_{t+k|t} + (\hat{\rho}_{t+k} - \hat{\rho}_{t-1}) \right) \right]$$
(49)

Where $\mathcal{M} = \frac{\epsilon}{\epsilon - 1}$ is the mark-up, $MC_{t+k} = \frac{\psi'_{t+k}}{P_{t+k}}$ is the real marginal cost and $\Pi_{t+k|t} \equiv \frac{P_{t+k}}{P_{t-1}}$ is the inflation between t and t+k obtained dividing by P_{t-1}

NK

37 / 41

New-Keynesian Model Equilibrium

- Agents maximize utility subject to the budget constraint;
- Firms maximize profits subject to the production function;
- Goods and labor markets clear.

38 / 41

New-Keynesian Model Market Clearing

Goods market clearing

$$Y_t = C_t \tag{50}$$

Labor market clearing

$$N_t = \int_0^1 N_t(i)di \tag{51}$$

Solving the production function for $N_t(i)$ and using aggregate good definition and good market clearing get

$$N_t = \left(\frac{Y_t}{A_t}\right)^{\frac{1}{1-\alpha}} \int_0^1 \left(\frac{P_t(i)}{P_t}\right)^{\frac{\epsilon}{1-\alpha}} di$$

(52)

New-Keynesian Model Market Clearing

$$\hat{y}_t = \hat{c}_t \tag{53}$$

$$(1-\alpha)\hat{n}_t = y_t - a_t \tag{54}$$

rview Motivation DSGE Neoclassical Synthesis RBC Model **NK**

New-Keynesian Model Market Clearing

$$mc_t = w_t - p_t + mpn_t (55)$$

¹here $mpn_t = log(1 - \alpha) + a_t - \alpha n_t$ which is the log of the derivative of Y_t w.r.t. N_t . Plugging mpn_t into Equation (55) we get

$$mc_t = w_t - p_t + \log(1 - \alpha) + a_t - \alpha n_t$$
 (56)

²nd by the fact that $n_t = \frac{1}{1-lpha}(a_t - lpha y_t)$

$$mc_t = w_t - p_t - \frac{1}{1 - \alpha} (a_t - \alpha y_t) - \log(1 - \alpha)$$
 (57)

41 / 41

Luca Brugnolini

 1 W

rugnolini Introduction to DSGE Models