# CS 140 Lecture 11 Sequential Networks: Timing and Retiming Professor CK Cheng CSE Dept.

UC San Diego

## Sequential Networks

Timing: Setup Time and Hold Time Constraints



## Sequential Networks



A typical sequential network has both a combinational circuit and flip-flips.



$$tcq + tcomb + tsetup < T$$

$$thold < tcq + tcomb$$

$$Shortest path$$

## Input Timing Constraints

- Setup time:  $t_{\text{setup}}$  = time *before* the clock edge that data must be stable (i.e. not changing)
- Hold time:  $t_{\text{hold}}$  = time *after* the clock edge that data must be stable
- Aperture time:  $t_a$  = time around clock edge that data must be stable ( $t_a$  =  $t_{setup}$  +  $t_{hold}$ )



# Output Timing Constraints

- Propagation delay:  $t_{pcq}$  = time after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay:  $t_{ccq}$  = time after clock edge that Q might be unstable (i.e., start changing)



## Dynamic Discipline

• The delay between registers has a **minimum** and **maximum** delay, dependent on the delays of the circuit elements



## Setup Time Constraint

- The setup time constraint depends on the **maximum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable at least  $t_{\text{setup}}$  before the clock edge.



$$T_c \ge t_{pcq} + t_{pd} + t_{pd} + t_{setup}$$

$$t_{pd} \le T_c - (t_{pcq} + t_{setup})$$

## Hold Time Constraint

- The hold time constraint depends on the **minimum** delay from register R1 through the combinational logic.
- The input to register R2 must be stable for at least  $t_{hold}$  after the clock edge.



$$t_{\text{hold}} < t_{ccq} + t_{cd}$$
  
 $t_{cd} > t_{\text{hold}} - t_{ccq}$ 

# Timing Analysis

#### **Timing Characteristics**



$$t_{ccq}$$
 = 30 ps  
 $t_{pcq}$  = 50 ps  
 $t_{setup}$  = 60 ps  
 $t_{hold}$  = 70 ps

$$t_{pd}$$
 = 35 ps  
 $t_{cd}$  = 25 ps

Setup time constraint:

$$T_C \ge$$
 $f_C = 1/T_C =$ 

 $t_{cd} =$ 

$$t_{\text{ccq}} + t_{pd} > t_{\text{hold}}$$
?

# Timing Analysis

#### **Timing Characteristics**



$$t_{ccq}$$
 = 30 ps  
 $t_{pcq}$  = 50 ps  
 $t_{setup}$  = 60 ps  
 $t_{hold}$  = 70 ps

$$t_{pd}$$
 = 35 ps  
 $t_{cd}$  = 25 ps

#### Setup time constraint:

 $t_{cd}$  = 25 ps

$$T_C \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$
  
 $f_C = 1/T_C = 4.65 \text{ GHz}$ 

$$t_{\text{ccq}} + t_{pd} > t_{\text{hold}}$$
?  
(30 + 25) ps > 70 ps ? No!

# Fixing Hold Time Violation

#### Add buffers to the short paths:



#### Setup time constraint:

$$T_C \ge f_C = f_C$$

#### **Timing Characteristics**

$$t_{ccq}$$
 = 30 ps  
 $t_{pcq}$  = 50 ps  
 $t_{setup}$  = 60 ps  
 $t_{hold}$  = 70 ps

$$t_{pd}$$
 = 35 ps  
 $t_{cd}$  = 25 ps

$$t_{\text{ccq}} + t_{pd} > t_{\text{hold}}$$
?

## Fixing Hold Time Violation

#### Add buffers to the short paths:



#### Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$
  
 $f_c = 1/T_c = 4.65 \text{ GHz}$ 

#### **Timing Characteristics**

$$t_{ccq}$$
 = 30 ps  
 $t_{pcq}$  = 50 ps  
 $t_{setup}$  = 60 ps  
 $t_{hold}$  = 70 ps

$$t_{pd}$$
 = 35 ps  
 $t_{cd}$  = 25 ps

$$t_{\text{ccq}} + t_{pd} > t_{\text{hold}}$$
?  
(30 + 50) ps > 70 ps ? Yes!

### Clock Skew

- The clock doesn't arrive at all registers at the same time
- Skew is the difference between two clock edges
- Examine the worst case to guarantee that the dynamic discipline is not violated for any register many registers in a system!



## Setup Time Constraint with Clock Skew

• In the worst case, the CLK2 is earlier than CLK1



## Hold Time Constraint with Clock Skew

• In the worst case, CLK2 is later than CLK1



# Timing and Retiming

- Retiming: Adjust the clock skew so that the clock period can be reduced.
- Add a few more examples on timing and retiming.