Babeş-Bolyai University, Faculty of Mathematics and Computer Science Mathematical Analysis - Lecture Notes Computer Science, Academic Year: 2020/2021

Lecture 1

The real numbers: some basic concepts

We use the following notation for numerical sets:

$$\begin{split} \mathbb{N} &= \{1,2,\dots\} - \text{the set of natural numbers;} \\ \mathbb{N}_0 &= \{0,1,2,\dots\} = \mathbb{N} \cup \{0\} - \text{the set of natural numbers including 0;} \\ \mathbb{Z} &= \{\dots,-2,-1,0,1,2,\dots\} - \text{the set of integers;} \\ \mathbb{Q} &= \left\{\frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N}\right\} - \text{the set of rational numbers;} \end{split}$$

 \mathbb{R} – the set of real numbers; $\mathbb{R} \setminus \mathbb{Q}$ – the set of irrational numbers.

In the sequel we consider the usual ordering on \mathbb{R} .

Definition 1. Let $A \subseteq \mathbb{R}$. We consider the following possibly empty sets:

$$ub(A) = \{x \in \mathbb{R} : x \ge a, \forall a \in A\}$$
 – the set of upper bounds of A;
 $lb(A) = \{x \in \mathbb{R} : x \le a, \forall a \in A\}$ – the set of lower bounds of A.

A number $x \in \mathbb{R}$ is said to be

- an upper (lower) bound of A if $x \in ub(A)$ ($x \in lb(A)$).
- a maximum (or greatest element) of A if $x \in A \cap ub(A)$.
- a minimum (or least element) of A if $x \in A \cap lb(A)$.

Remark 1. (i) Any $A \subseteq \mathbb{R}$ has at most one maximum (minimum) and, if it exists, we denote it by max A (min A).

- (ii) If a set has one upper (lower) bound, then it has infinitely many upper (lower) bounds.
- (iii) $ub(\emptyset) = lb(\emptyset) = \mathbb{R}$.

Definition 2. A subset A of \mathbb{R} is said to be

- bounded above (below) if $ub(A) \neq \emptyset$ ($lb(A) \neq \emptyset$).
- bounded if it is both bounded above and below.
- unbounded if it is not bounded.

Example 1. (i) $A = \{a \in \mathbb{R} \mid a \geq 2\}$:

(ii)
$$A = \{a \in \mathbb{R} \mid 0 < a < 1\}$$
:

(iii)
$$A = \left\{ \frac{1}{n+1} \mid n \in \mathbb{N} \right\}$$
:

(iv) Every nonempty finite set has a minimum and a maximum.

Definition 3. Let $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

- If $ub(A) \neq \emptyset$, x is called a supremum (or least upper bound) of A if $x = \min(ub(A))$.
- If $lb(A) \neq \emptyset$, x is called an *infimum* (or *greatest lower bound*) of A if x = max(lb(A)).

Remark 2. Let $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

(i)
$$x = \sup A \iff \begin{cases} x \in \text{ub}(A); \\ x \le x' \text{ for all } x' \in \text{ub}(A). \end{cases}$$

$$x = \inf A \iff \begin{cases} x \in \text{lb}(A); \\ x \ge x' \text{ for all } x' \in \text{lb}(A). \end{cases}$$

- (ii) The set A has at most one supremum (infimum) and, if it exists, we denote it by $\sup A$ (inf A).
- (iii) If the maximum (minimum) of A exists, then it is also the supremum (infimum). Conversely, if the supremum (infimum) of A exists and is contained in A, then it is also the maximum (minimum) of A.

Example 2. (i)
$$A = \{a \in \mathbb{Z} \mid -1/2 \le a \le \sqrt{2}\}:$$

(ii)
$$A = \{a \in \mathbb{R} \mid 0 < a \le 1\}$$
:

Supremum Property (SP): Every nonempty subset of \mathbb{R} which is bounded above has a supremum in \mathbb{R} .

Remark 3. Using the SP, one can prove that every nonempty subset of \mathbb{R} which is bounded below has an infimum in \mathbb{R} .

Some additional conventions

We attach to the set \mathbb{R} two new elements $-\infty$ and $\infty (=+\infty)$ such that $\forall x \in \mathbb{R}, -\infty < x$ and $x < \infty$ (of course $-\infty < \infty$). By $\overline{\mathbb{R}}$ or $[-\infty, \infty]$ we denote the set $\mathbb{R} \cup \{-\infty, \infty\}$ called the *extended* set of real numbers.

If $A \subseteq \mathbb{R}$ is not bounded above (below), then we set $\sup A = \infty$ (inf $A = -\infty$). Moreover, we set $\sup \emptyset = -\infty$ and inf $\emptyset = \infty$ (any real number is both an upper and a lower bound of \emptyset).

Interval notation

Let $a, b \in \mathbb{R}$.

If
$$a \le b$$
, $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ – the closed interval (with endpoints a and b);

If
$$a < b$$
, $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ – the open interval;

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$
 \((a,b) = \{x \in \mathbb{R} : a < x \le b\} \) \tag{ - the half-open (and half-closed) intervals;}

Unbounded intervals: $[a, \infty), (-\infty, a]$ – infinite closed;

$$(a, \infty), (-\infty, a)$$
 – infinite open;

$$(-\infty, \infty) = \mathbb{R}.$$

Consequences of the Supremum Property

Nested Interval Property (NIP): For $n \in \mathbb{N}$, consider the closed intervals $I_n = [a_n, b_n]$, where $a_n \leq b_n$. If $I_{n+1} \subseteq I_n$ for all $n \in \mathbb{N}$, i.e.,

$$I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$$

is a nested sequence of closed intervals, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$ (i.e., there exists $x \in \mathbb{R}$ such that for all $n \in \mathbb{N}, x \in I_n$).

Archimedean Property (AP): Let $x \in \mathbb{R}$. Then there exists $n \in \mathbb{N}$ such that n > x.

Example 1.(iii) (revisited)
$$A = \left\{ \frac{1}{n+1} \mid n \in \mathbb{N} \right\}$$
:

Consequence of the Archimedean Property

Density Property of \mathbb{Q} **in** \mathbb{R} : Let $x, y \in \mathbb{R}$ with x < y. Then there exists $q \in \mathbb{Q}$ such that x < q < y.

Definition 4. A subset V of \mathbb{R} is said to be

- a neighborhood of $x \in \mathbb{R}$ if there exists a real number $\varepsilon > 0$ such that $(x \varepsilon, x + \varepsilon) \subseteq V$.
- a neighborhood of ∞ if there exists $a \in \mathbb{R}$ such that $(a, \infty) \subseteq V$.
- a neighborhood of $-\infty$ if there exists $a \in \mathbb{R}$ such that $(-\infty, a) \subseteq V$.

For $x \in \overline{\mathbb{R}}$, we denote by $\mathcal{V}(x)$ the family of all neighborhoods of x.

Example 3. (i) $(0,1) \in V(x)$ for all $x \in (0,1)$.

- (ii) $[0,1) \notin \mathcal{V}(0)$.
- (iii) $[1/2,3) \cup \{7\} \in \mathcal{V}(x)$ for all $x \in (1/2,3)$.

Proposition 1. Let $x \in \overline{\mathbb{R}}$. Then:

- (i) if $x \in \mathbb{R}$ and $V \in \mathcal{V}(x)$, then $x \in V$;
- (ii) if $V \in \mathcal{V}(x)$ and $U \subseteq \mathbb{R}$ such that $V \subseteq U$, then $U \in \mathcal{V}(x)$;
- (iii) if $U, V \in \mathcal{V}(x)$, then $U \cap V \in \mathcal{V}(x)$.