Computability and Complexity

Lecture 8, Thursday August 24, 2023 Ari Feiglin

8.1 Nonuniform Computation

Definition 8.1:

We say that a decision problem S is decided by a sequence of boolean circuits $\{C_n\}_{n=0}^{\infty}$ where for every $x \in \{0,1\}^*$,

$$x \in S \iff C_{|x|}(x) = 1$$

So C_n is the boolean circuit which decides if an input of size n is in S.

The complexity of a boolean circuit is defined to be the number of edges in it. The complexity of a boolean circuit C is denoted by |C|.

We say that a decision problem S is decidable by a sequence of polynomial circuits if there exists a sequence of boolean circuits $\{C_n\}_{n=0}^{\infty}$ which decides S, and a polynomial p such that for every n,

$$|C_n| \le p(n)$$

Definition 8.2:

Given a function $\ell \colon \mathbb{N} \longrightarrow \mathbb{N}$, we define the class of decision problems P/ℓ . A decision problem S is in P/ℓ if and only if there exists a polynomial-time algorithm A and a sequence of commands $\{a_n\}_{n=0}^{\infty}$ where

- (1) For every $n, |a_n| \leq \ell(n)$
- (2) For every x, x is in S if and only if $A(a_{|x|}, x) = 1$.

We define the class

$$\mathbf{P}_{\text{poly}} = \bigcup_{\substack{\ell \text{ is a} \\ \text{polynomial}}} \mathbf{P}_{\ell} = \bigcup_{k=0}^{\infty} \mathbf{P}_{n^k}$$

Proposition 8.3:

A decision problem S is in P/poly if and only if S can be decided by a sequence of polynomial circuits.

Proof

Suppose S can be decided by a sequence of polynomial circuits $\{C_n\}_{n=0}^{\infty}$ whose complexity is bound by a polynomial p. We define the algorithm A(C,x) which takes as input a boolean circuit C and runs it with the input x. Then since $|C_n| \leq p(n)$ and for every $x, x \in S$ if and only if $C_{|x|}(x) = 1$ which is if and only if $A(C_{|x|}, x) = 1$. So

$$S \in \mathbf{P}/_p \subseteq \mathbf{P}/_{\mathsf{poly}}$$

Now suppose that S is in P_{poly} , so there exists a polynomial p and a sequence of commands $\{a_n\}_{n=0}^{\infty}$ such that $|a_n| \leq p(n)$ and $x \in S$ if and only if $A(a_{|x|}, x) = 1$. We showed in our proof that CSAT is **NP**-complete, that for every polynomial algorithm there exists a polynomial circuit which computes the algorithm. So there exists a boolean circuit C_n which is equivalent to computing A which has $n + |a_n|$ input nodes, and whose size is polynomial in $n + |a_n|$. Let us plug in a_n to the input nodes corresponding to it (the first input nodes) in C_n and this gives us a boolean circuit C'_n where $C'_n(x) = A(a_n, x)$. And the complexity of C_n is polynomial in n, so $\{C_n\}_{n=0}^{\infty}$ is a sequence of polynomial circuits which decides S.

Notice that $P/_0$ is equal to P, since for $S \in P/_0$, the size of each command a_n is zero, so they are all empty. Thus we can define a polynomial-time algorithm $B(x) = A(\varepsilon, x)$ and so $x \in S$ if and only if $A(a_{|x|}, x) = A(\varepsilon, x) = B(x) = 1$. So B solves S, meaning $S \in P$. And if $S \in P$, it is solved by B(x), so define A(a, x) = B(x) and $a_n = \varepsilon$. So

$${\bf P}/_0 = {\bf P}$$

Proposition 8.4:

 $P/_1$ contains undecidable problems.

Proof:

Let S be an undecidable problem which is encoded in unary, ie. $S \subseteq \{1\}^*$ is undecidable. Let us define $S' = \{x \mid 1^{|x|} \in S\}$, then S' is also undecidable as otherwise S would be (define an algorithm where given a unary encoding 1^n , it checks for some x whose length is n if $x \in S'$). Now we will prove $S' \in {}^{\mathbf{P}}\!/_1$. Let us define

$$a_n = \begin{cases} 1 & 1^n \in S \\ 0 & \text{else} \end{cases}$$

And we define $A(a_{|x|}, x) = a_{|x|}$ (ie. A(a, x) = a). Then A is polynomial-time and solves S', as $A(a_{|x|}, x) = 1$ if and only if $|x| \in S$, which is if and only if $x \in S'$. So $S' \in {}^{\mathbf{P}}/_1$ despite S' being undecidable.

So $P_{1} \subseteq P_{poly}$ contains undecidable problems, and therefore

Proposition 8.5:

$$^{\mathbf{P}\!}/_{\mathsf{poly}}\nsubseteq\mathbf{NP}$$

Proposition 8.6:

For every decision problem $S \in \{0,1\}^*$, $S \in \mathbb{P}/_{2^n}$. In other words $\mathbb{P}/_{2^n} = \mathbb{P}$.

Proof:

For every n, there are 2^n binary strings of length n, and let us enumerate the binary strings of length n lexicographically by π_n (ie. $\pi_n(i)$ gives the binary string ω which is the ith smallest in the order). Notice that all π_n does is convert i to binary. π_n and its inverse π_n^{-1} can be computed in polynomial time. Then let us define a_n to be a string of length 2^n where $[a_n]_i$ is one if and only if $\pi_n(i)$ is in S. Then let $A(a_{|x|}, x)$ look at $a_{|x|}$ at index $\pi_{|x|}^{-1}(x)$ (meaning at index x, when we view x as binary) and return the value found.

Then $A(a_{|x|}, x)$ is one if and only if $\pi_{|x|}(\pi_{|x|}^{-1}(x)) = x \in S$. So A decides S, meaning $S \in \mathbb{P}_{2^n}$.

Definition 8.7:

A set S is called sparse if there exists a polynomial p such that for every n, the number of binary strings in S of length n is bound by p(n). In other words, for every n

$$|S \cap \{0,1\}^n| \le p(n)$$

We will denote $S \cap \{0,1\}^n$ by $S^{=n}$. We define

$$\mathsf{Sparse} = \{ S \mid S \text{ is a sparse set} \}$$

Notice that Sparse $\subseteq P_{\text{poly}}$. If $S \in \text{Sparse}$ then let p be a polynomial bound of $S^{=n}$. Then for every n, we define a_n to be the list of all binary strings of length n which are in S. Since there are $\leq p(n)$ such strings, and each has a length of n, $|a_n| \leq n \cdot p(n)$ so a_n 's length is bound by a polynomial. And we can define $A(a_{|x|}, x)$ to just look at the list $a_{|x|}$ and check if x is in it. This solves S, and so $S \in P_{\text{poly}}$.

Proposition 8.8:

A decision problem S is in P_{poly} if and only if there exists a Cook reduction from S to a sparse set. In other words,

$$P_{poly} = P^{Sparse}$$

Proof:

Suppose S has a Cook reduction to some $S' \in \mathsf{Sparse}$, let $A^{S'}$ be this Cook reduction. Suppose that $S'^{=n}$'s size is bound by p(n). Let t(n) be the polynomial time bound on the runtime of $A^{S'}$. Notice then that for inputs of length n, the length of $A^{S'}$'s longest possible query is bound by t(n).

So for every n, we define the command a_n to be the list of all the strings in S' whose length is bound by t(n). Notice then that

$$|a_n| = \sum_{i=0}^{t(n)} |S'^{i=i}| \cdot i \le \sum_{i=0}^{t(n)} i \cdot p(i)$$

We can assume that p is increasing (we can take $p = n^k$ for example), and so

$$|a_n| \le t(n) \cdot p(t(n))$$

so a_n 's length is bound by a polynomial. Now we define $A(a_{|x|}, x)$ which runs $A^{S'}(x)$ but instead of querying S''s oracle, it instead checks the list $a_{|x|}$ to see if the query is in there. This solves S in polynomial time, since $A^{S'}$ does, and since the commands are polynomially bound, we have that $S \in {}^{\mathbf{P}}/_{\mathsf{poly}}$.

For the converse, suppose $S \in {}^{\mathbf{P}}\!/_{poly}$ so there exists a polynomial-time algorithm A and a polynomial p which bounds the length of the commands $\{a_n\}_{n=0}^{\infty}$. We can assume without loss of generality that $|a_n| = p(n)$, and that p(n) is increasing.

For every n and for every $1 \le i \le p(n)$, we define a_n^i to be the word of length p(n) where the *i*th index is 1, and all other indexes are zero. Let

$$S' = \{a_n^i \mid n \in \mathbb{N}, a_n[i] = 1\}$$

Notice that for every n, $|S'^{=n}| \le n$ since there are only n choices for where to put the bit which is equal to one in a string of zeroes. So $S' \in \mathsf{Sparse}$.

Now we define $B^{S'}$:

 $\begin{array}{lll} \text{1.} & \textbf{function} \ B^{S'}(x) \\ \text{2.} & \textbf{for} \ (1 \leq i \leq p(|x|)) \\ \text{3.} & \textbf{if} \ (a^i_{|x|} \in S') \quad \sigma_i \leftarrow 1 \\ \text{4.} & \textbf{else} \ \sigma_i \leftarrow 0 \\ \text{5.} & \textbf{end for} \\ \text{6.} & a \leftarrow \sigma_1 \sigma_2 \cdots \sigma_{p(|x|)} \\ \text{7.} & \textbf{return} \ A(a,x) \\ \text{8.} & \textbf{end function} \end{array}$

Notice that at line 6, $a=a_{|x|}$ as a[i] is one if and only if $a^i_{|x|} \in S$ which is if and only if $a_{|x|}[i]$ is one, so $a=a_{|x|}$. So $B^{S'}$ is an oracle machine which solves S in polynomial time, and thus a Cook reduction from S to S'. And since $S' \in \mathsf{Sparse}$, we have that $S \in \mathbf{P}^{\mathsf{Sparse}}$.

So we have shown inclusion in both direction, meaning ${
m P}\!/_{\sf poly} = {
m P}^{\sf Sparse}$

Theorem 8.9:

If
$$\mathbf{NP} \subseteq \mathbf{P}/_{poly}$$
 then $\mathbf{PH} = \Sigma_2$.

Proof:

We will show that $\Pi_2 \subseteq \Sigma_2$, and this would mean $\Sigma_2 = \Sigma_3$ which would mean $\mathbf{PH} = \Sigma_2$. So let $S \in \Pi_2$, and so there exists a polynomial time verifier V and a polynomial p such that

$$x \in S \iff \forall y \exists z (V(x, y, z) = 1)$$

where $|y|, |z| \le p(|x|)$. Let us define

$$S' = \{(x,y) \mid |y| \le p(|x|), \exists z, |z| \le p(|x|) (V(x,y,z) = 1) \}$$

So

$$x \in S \iff \forall y, |y| \le p(|x|)((x, y) \in S')$$

And S' is in **NP** as we can define a verifier V'((x,y),z) = V(x,y,z), and this is a polynomial proof system (as there exists a witness $|z| \le p(|x|)$). Since SAT is **NP**-complete, there exists a Karp reduction f from S' to SAT. And so

$$x \in S \iff \forall y (f(x, y) \in \mathsf{SAT})$$

with the usual condition that $|y| \leq p(|x|)$. Since $\mathsf{SAT} \in \mathbf{NP} \subseteq \mathbf{P}/\mathsf{poly}$, and so there exists a polynomial-time algorithm A, a polynomial q, and a sequence of commands $\{a_n\}_{n=0}^{\infty}$ whose lengths are bound by q which satisfy the condition for SAT to be in \mathbf{P}/poly .

Let p_f be the time complexity for computing the Karp reduction f. So $|f(x,y)| \leq p_f(|x|+|y|)$. Since the Karp reduction f runs in $p_f(|x|+|y|)$ time and $|y| \leq p(|x|)$, we have that f runs in $p_f(n+p(n))$ time. So if $\varphi = f(x,y)$ then $|\varphi| \leq p_f(n+p(n))$, thus let us define

$$b_n = a_1 a_2 \cdots a_{p_f(n+p(n))}$$

And this means that b_n will contain $a_{|\varphi|}$. And notice that

$$|b_n| = \sum_{i=1}^{p_f(n+p(n))} q(i)i \le p_f(n+p(n))^2 q(p_f(n+p(n)))$$

So the length of b_n is polynomial in n.

Let us define $V'(x, b_{|x|}, y)$ which functions as follows:

- (1) First we compute the image of x, y in the Karp reduction, ie. let $\varphi = f(x, y)$.
- (2) Since $b_{|x|}$ contains $a_{|\varphi|}$, let us run $A(a_{|\varphi|}, \varphi)$. If this returns zero, return zero since then $\varphi \notin \mathsf{SAT}$ so $(x, y) \notin S'$.
- (3) Now, using A and $a_1, \ldots, a_{|\varphi|}$, we can compute a boolean vector τ which satisfies φ . This can be done by setting x_1 to true, and checking if the new boolean formula φ' , whose length is less than φ , is in SAT. This can be done recursively, and so we construct τ .

Since $b_{|x|}$ isn't necessarily actually the list of commands a_1, \ldots , we must verify that τ actually satisfies φ . So return if $\varphi(\tau) = 1$.

V' runs in polynomial time, since every step runs in polynomial time. And if $x \in S$ then for every $|y| \le p(|x|)$, $f(x,y) \in \mathsf{SAT}$. And so for $b_{|x|}$ defined as the concatenation of $a_1,\ldots,a_{p_f(n+p(n))},\,V'(x,b_{|x|},y)=1$. Since $b_{|x|}$'s length is polynomial in |x|, this means that if $x \in S$ then there exists a $b_{|x|}$ such that for all $y,\,V'(x,b,y)=1$ (with the strings being polynomial in length).

If $x \notin S$ then there exists a $|y| \le p(|x|)$ such that $f(x,y) \notin \mathsf{SAT}$ and so for this y, V' will always return zero (since the constructed τ will not satisfy φ). So if $x \notin S$, for every b there exists a y (which is this y, it is not dependent on b), such that V'(x,b,y)=0. So

$$x \in S \iff \exists b \forall y (V(x, b, y) = 1)$$

And this means that $S \in \Sigma_2$, so $\Pi_2 \subseteq \Sigma_2$ as required.

Thus many researchers hypothesize that $\mathbf{NP} \nsubseteq \mathbf{P}_{poly}$, as otherwise the polynomial hierarchy would collapse to Σ_2 , and many researchers do not believe this is true.