Analyse des données transcriptômes

Anne Siegel

Le problème

On dispose de...

- Un réseau biologique qualitatif: sommets \mathcal{X} , arêtes f(X,Y)=+(-) ssi une augmentation de X provoque une augmentation (diminution) de Y.
- Des données expérimentales sur un ensemble de sommets S:xp(Si) = +, -.

But: repérer ce qui est contradictoire entre le réseau qualitatif et les données expérimentales.

Le problème

$$\begin{array}{ccccc} - & + \\ AA & \longrightarrow & LXR & \longrightarrow & FAS \\ + & + & + & + \end{array}$$

Une erreur de *A* vers *LXR* Une erreur de *A* vers *FAS*

Si la première erreur est résolue, la second erreur aussi $\begin{array}{ccccc}
 & - & + \\
AA & \longrightarrow & LXR & \longrightarrow & FAS \\
 & + & + & \end{array}$

Une erreur de A vers LXR Une erreur de LXR vers FAS

Les deux erreurs sont indépendantes

Séparer les contradictions véritablement indépendantes de cette qui sont déduites des autres.

Démarche

- Construire un graphe d'influence sur les cibles de l'expérimentation.
 - Sommets: différentes formes des cibles S de l'expérimentation (exemple: LXR-ARN et LXR-actif).
 - infl₊(S, T): nombre de chemins dont le produit des signes est positif qui vont de S vers T dans le réseaux qualitatif et qui ne passent par aucun sommet de S.
 - infl_(S, T) = nombre de chemins de signe qui vont de S vers T...
- Contradiction entre A et B:
 - xp(A) * signe d'un chemin de A vers $B \neq xp(B)$

Dénombrer les contradictions

- contr(B) nombre de chemins contradictoires arrivant en A.
- Contradictions transmises d'un sommet A à un de ses successeurs B :

$$contr(A) * infl_{xp(A)*xp(B)}(A, B)$$

B est un sommet porteur d'une contradiction ssi

$$contr(B) \neq \sum_{A \to B} contr(A) * infl_{xp(A)*xp(B)}(A, B)$$

Exemple

$$\begin{array}{ccccc}
 & - & + \\
AA & \longrightarrow & LXR & \longrightarrow & FAS \\
 & + & + & + \\
 & 0 & & 1 & & 1
\end{array}$$

$$infl_{xp(LXR)*xp(FAS)}(LXR,FAS) = 1$$

LXR est seul porteur d'une contradiction

$$\begin{array}{ccccc}
 & - & + \\
AA & \longrightarrow & LXR & \longrightarrow & FAS \\
 & + & + & - \\
 & 0 & & 1 & & 1
\end{array}$$

$$infl_{xp(LXR)*xp(FAS)}(LXR,FAS) = 0$$

LXR et FAS portent deux contradictions.

Application: lipogénèse

Application: lipogénèse

Ce qu'on obtient

Les sommets pour lesquels une contradiction existe entre les données expérimentales et la bibliographie.

- Données fausses (ex: ACL)
- arêtes manquantes (ex: $LXR \rightarrow LXR actif$)
- lieux de balances: toujours repérés.

Restrictions

- Il faut connaître le signe des régulations
 (à calculer automatiquement en fonction des équations ?)
- Que se passe-t-il en cas de boucles ?
- Il faut suffisamment de données mais pas trop dans le réseau.
 (Identifier les variables à déterminer absolument, plan d'expérience ?)

A éclaircir...

Utiliser les données pour retrouver l'état du réseau le plus probable: retrouver le signe des variables XP et éventuellement de leurs voisins en utilisant les connaissances sur la dynamique et sur l'état du réseau ?

