

WÖRWAG PHARMA GMBH & CO. KG

milgamma® NA

1. BEZEICHNUNG DES ARZNEIMITTELS

milgamma® NA

Wirkstoffe: Benfotiamin (lipoidlösliches

Vitamin B₁-Derivat) 40 mg

Pyridoxinhydrochlorid

(Vitamin B₆) 90 mg

Weichkapseln

2. QUALITATIVE UND QUANTITATIVE ZUSAMMENSETZUNG

1 Weichkapsel enthält:

Wirkstoffe:

Benfotiamin 40 mg Pyridoxinhydrochlorid 90 mg

Sonstige Bestandteile: Sojalecithin,

Sorbitol (Ph.Eur.)

Die vollständige Auflistung der sonstigen Bestandteile siehe Abschnitt 6.1.

3. DARREICHUNGSFORM

Weichkapseln

4. KLINISCHE ANGABEN

4.1 Anwendungsgebiete

Neurologische Systemerkrankungen durch nachgewiesenen Mangel der Vitamine B_{1} und $B_{\text{R}}.$

4.2 Dosierung, Art und Dauer der Anwendung

Dosierung

Soweit nicht anders verordnet, bis zu 3 \times täglich 1 Weichkapsel milgamma® NA einnehmen.

Art der Anwendung

Die Weichkapseln werden mit ausreichend Flüssigkeit eingenommen.

Dauer der Anwendung

Nach vierwöchiger Therapie sollte der Arzt entscheiden, ob weitere Therapiemaßnahmen erforderlich sind.

4.3 Gegenanzeigen

Darf nicht angewendet werden bei: Überempfindlichkeit gegenüber Benfotiamin und Pyridoxinhydrochlorid, Soja, Erdnuss oder einem der sonstigen Bestandteile.

4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung

milgamma[®] NA kann bei einer Einnahme über einen Zeitraum von 6 Monaten hinaus Neuropathien hervorrufen.

Patienten mit der seltenen hereditären Fructose-Intoleranz sollten milgamma® NA nicht einnehmen.

4.5 Wechselwirkungen mit anderen Arzneimitteln und sonstige Wechselwirkungen

Therapeutische Dosen von Vitamin B₆ können die Wirkung von L-Dopa abschwächen.

Die gleichzeitige Gabe von Pyridoxinantagonisten (z.B. Hydralazin, Isoniazid (INH), D-Penicillamin, Cycloserin), Alkohol sowie die langfristige Anwendung östrogenhaltiger oraler Kontrazeptiva können zu einem Mangel an Vitamin B_6 führen.

Thiamin wird durch 5-Fluoruracil inaktiviert, da 5-Fluoruracil kompetitiv die Phosphorylierung von Thiamin zu Thiaminpyrophosphat hemmt.

4.6 Fertilität, Schwangerschaft und Stillzeit

Systematische Untersuchungen zum Einfluss auf die Fertilität liegen nicht vor. Nach tierexperimentellen Befunden besteht keine Beeinflussung der Fertilität durch Vitamin B₁, wohl aber durch sehr hohe Dosierungen von Vitamin B₆ (Spermatogeneseschäden) In der Schwangerschaft und Stillzeit beträgt die empfohlene tägliche Zufuhr für Vitamin B₁ 1,2 bzw. 1,4 mg und für Vitamin B₆ 1,9 mg. In der Schwangerschaft dürfen diese Dosierungen nur überschritten werden, wenn bei der Patientin ein nachgewiesener Vitamin B₁- und B₆-Mangel besteht, da die Sicherheit einer Anwendung höherer als der täglich empfohlenen Dosen bislang nicht belegt ist.

Vitamin B_1 und B_6 gehen in die Muttermilch über

Hohe Dosen von Vitamin B_6 können die Milchproduktion hemmen.

Eine Anwendung dieses Präparates während der Schwangerschaft und Stillzeit sollte nur nach sorgfältiger Nutzen/Risiko-Abwägung durch den behandelnden Arzt erfolgen.

4.7 Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen

Es wurden keine Studien zu den Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen durchgeführt.

Die vorliegenden Erfahrungswerte lassen jedoch keine Beeinträchtigung erkennen.

4.8 Nebenwirkungen

Bei der Bewertung von Nebenwirkungen werden folgende Häufigkeiten zugrunde gelegt:

Sehr häufig	≥ 1/10
Häufig	≥ 1/100 bis < 1/10
Gelegentlich	≥ 1/1.000 bis 1/100
Selten	≥ 1/10.000 bis 1/1.000
Sehr selten	< 1/10.000
Nicht bekannt	Häufigkeit auf Grundlage der verfügbaren Daten nicht abschätzbar

Erkrankungen des Immunsystems:

In Einzelfällen kann es zu Überempfindlichkeitsreaktionen mit Hautreaktionen (Urtikaria, Exanthem) und Schockzuständen kommen.

Sojalecithin kann sehr selten allergische Reaktionen hervorrufen.

Erkrankungen des Nervensystems:

Die langfristige Einnahme über 6 Monate hinaus kann periphere sensorische Neuropathien hervorrufen (siehe 4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung).

Erkrankungen des Gastrointestinaltrakts:

In klinischen Studien wurden Einzelfälle von gastrointestinalen Störungen wie z. B. Übel-

keit oder andere Beschwerden dokumentiert. Ein kausaler Zusammenhang mit den Vitaminen B_1 und/oder B_6 sowie eine mögliche Dosisabhängigkeit sind noch nicht ausreichend geklärt.

Meldung des Verdachts auf Nebenwirkungen

Die Meldung des Verdachts auf Nebenwirkungen nach der Zulassung ist von großer Wichtigkeit. Sie ermöglicht eine kontinuierliche Überwachung des Nutzen-Risiko-Verhältnisses des Arzneimittels. Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung über das nationale Meldesystem anzuzeigen:

ης.

Bundesinstitut für Arzneimittel und Medizinprodukte Abt. Pharmakovigilanz Kurt-Georg-Kiesinger Allee 3 D-53175 Bonn

Website: http://www.bfarm.de

4.9 Überdosierung

a) Symptome einer Überdosierung

Bei oraler Anwendung von Benfotiamin sind infolge der großen therapeutischen Breite keine Überdosierungserscheinungen zu erwarten. Hohe Dosen von Vitamin B6 können bei kurzfristiger Einnahme (Dosen über 1 g/Tag) zu neurotoxischen Wirkungen führen.

Aber auch Dosen von 100 mg pro Tag können bei einer Einnahme über einen Zeitraum von mehr als 6 Monaten hinaus Neuropathien hervorrufen.

Eine Überdosierung zeigt sich im Wesentlichen durch eine sensorische Polyneuropathie, ggf. mit Ataxie. Extrem hohe Dosen können sich in Krämpfen äußern. Bei Neugeborenen und Säuglingen können eine starke Sedierung, Hypotonie und respiratorische Störungen (Dyspnoe, Apnoe) auftreten

b) Therapiemaßnahmen bei Überdosierung Wenn akut Dosen von Pyridoxinhydrochlorid über 150 mg/kg Körpergewicht eingenommen wurden, werden induzierte Emesis und die Gabe von Aktivkohle empfohlen. Eine Emesis ist am effektivsten in den ersten 30 min nach Einnahme, ggf. sind intensivmedizinische Maßnahmen erforderlich.

5. PHARMAKOLOGISCHE EIGEN-SCHAFTEN

5.1 Pharmakodynamische Eigenschaften

Pharmakotherapeutische Gruppe: Neuropathiepräparat, ATC-Code: N07XB56

Vorkommen und Bedarfsdeckung
Vitamin B1 und seine phosphorylierten Derivate sind im Pflanzen- und Tierreich weit verbreitet. Pflanzen und einige Mikroorganismen sind thiaminautotroph. Der Mensch zählt zu den thiaminheterotrophen Organismen, mit einem Körperbestand an Vitamin B1 von ca. 30 mg. Wegen der hohen Turn-over-Rate und begrenzten Speicherung muss Thiamin zur Bedarfsdeckung täglich in ausreichenden Mengen aufgenommen werden. Bei Jugendlichen, älteren Personen, Alkoholikern, längerer Fehl-, Mangel- sowie parenteraler Ernährung ist häufig ein Vitamin-B1-Defizit nachzuweisen.

milgamma® NA

Der minimale Thiaminbedarf beim Menschen beträgt 0.2-0.3~mg/1000~kcal. Zur Vermeidung eines Defizits wird eine tägliche Vitamine- B_1 -Zufuhr für Männer zwischen 1.3~und~1.5~und~für Frauen zwischen 1.1~und~1.3~mg/Tag~empfohlen. In der Schwangerschaft ist eine Zulage von 0.3~mg~und in der Stillzeit von 0.5~mg/Tag~erforderlich.

Pyridoxin, Pyridoxal und Pyridoxamin kommen reichlich in Pflanzen- und Tierprodukten vor. Der Körperbestand des Menschen an Vitamin B6 beträgt 40–150 mg, die tägliche renale Ausscheidung 1,7–2,6 mg und die Turn-over-Rate 2,2–2,4%. Der Bedarf hängt vom Proteinumsatz ab und steigt mit der Eiweißzufuhr. Zur Vermeidung eines Defizits ist eine tägliche Vitamin-B₆-Zufuhr für Männer von 2,3 mg/Tag und für Frauen von 2,0 mg/Tag erforderlich. In der Schwangerschaft sind Zulagen von 1,0 mg/Tag und in der Stillzeit von 0,6 mg/Tag notwendig.

Klinische Angaben

Nach den Ernährungsberichten zählen neben anderen vor allem Vitamin $\rm B_1$ und $\rm B_6$ zu den kritischen Vitaminen des B-Komplexes. Eine Unterversorgung kann häufig mit biochemischen Methoden bei Jugendlichen, älteren Personen, chronischen Alkoholismus, nach längerer Fehl- und Mangelernährung, nach Reduktionsdiäten oder längerer parenteraler Ernährung nachgewiesen werden.

Anhaltspunkte für einen Vitamin-B₁-Mangel sind u.a. erniedrigte Thiaminkonzentrationen im Vollblut und Plasma, (Normalwert: zwischen 2 und 4 µg/100 ml) verminderte Thiaminausscheidung im Urin, Abfall der Transketolase und Anstieg des Transketolase-Aktivierungskoeffizienten der Erythrozyten. Anhaltspunkte für einen Vitamin-Be-Mangel sind u.a. erhöhte Xanthurenausscheidung nach Tryptophanbelastung, verminderte Ausscheidung von 4-Pyridoxinsäure, erniedrigte Serumwerte für Pyridoxin und Pyridoxinsäure-5'-phosphat, (Normalwert: im Mittel 1,2 $\mu g/100$ ml) erhöhter erythrozytärer Glutamat-Oxalacetat-Transaminase-Aktivierungskoeffizient.

Vitamin B_1 ist ein essentieller Wirkstoff. Benfotiamin, als lipoidlösliches Vitamin B_1 (Thiamin)-Derivat, wird im Organismus zum biologisch wirksamen Thiaminpyrophosphat (TPP) und Thiamintriphosphat (TTP) phosphoryliert.

TPP greift als Coenzym in wichtige Funktionen des Kohlenhydratstoffwechsels ein. Es ist das Coenzym der Pyruvat-Decarboxylase, der 2-Oxoglutarat-Dehydrogenase und der Transketolase. Im Pentosephosphatzyklus ist TPP an der Übertragung von Aldehydgruppen beteiligt.

Vitamin B_6 ist in seiner phosphorylierten Form (Pyridoxal-5'-phosphat, PALP) das Coenzym einer Vielzahl von Enzymen, die in den gesamten nichtoxidativen Stoffwechsel der Aminosäuren eingreifen. Sie sind durch Decarboxylierung an der Bildung physiologisch aktiver Amine (z. B. Adrenalin, Histamin, Serotonin, Dopamin, Tyramin), durch Transaminierung an anabolen und katabolen Stoffwechselvorgängen (z. B Glutamat-Oxalacetat-Transaminase, Glutamat-

Pyruvat-Transaminase, γ -Aminobuttersäure-, α -Ketoglutarat-Transaminase) sowie an verschiedenen Spaltungen und Synthesen der Aminosäuren beteiligt. Vitamin B $_6$ greift an vier verschiedenen Stellen in den Tryptophanstoffwechsel ein. Im Rahmen der Synthese des Blutfarbstoffes katalysiert Vitamin B $_6$ die α -Amino- β -Ketoadininsäurebildung.

Aufgrund enger Verknüpfungen im Stoffwechsel bestehen Wechselwirkungen zwischen Vitamin B_1 und Vitamin B_6 sowie mit den übrigen Vitaminen des B-Komplexes. Eine analgetische (antineuralgische) Wirkung wurde für beide Vitamine in tierexperimentellen Modellen nachgewiesen.

5.2 Pharmakokinetische Eigenschaften

Für oral zugeführtes Vitamin B, wird ein dosisabhängiger dualer Transportmechanismus angenommen, eine aktive Resorption bis zu Konzentrationen ≤ 2 µmol und eine passive Diffusion bei Konzentrationen ≥ 2 µmol. Für die Passage durch die Darmmukosa wird ein Carrier-Mechanismus vermutet, während der Übergang von der Serosaseite in das Blut ATPase-abhängig ist. Zur Resorption müssen von den phosphorylierten Thiamin-Derivaten durch Phosphatasen die Phosphatreste abgespalten werden. Die Resorption ist in der Duodenalschleife am größten, geringer im oberen und mittleren Dünndarm. Hauptauscheidungsprodukte sind Thiamincarbonsäure, Pyramin. Thiamin und eine Reihe bisher nicht identifizierter Metaboliten.

Nach oraler Gabe von Benfotiamin erfolgt im Darm durch Phosphatasen eine Dephosphorylierung zu S-Benzoylthiamin (SBT). Dieses ist lipoidlöslich und besitzt deshalb eine große Permeabilität. SBT wird ohne wesentliche Umwandlung in Thiamin resorbiert. Erst später erfolgt die enzymatische Debenzoylierung zu Thiamin und den biologisch aktiven Coenzymen.

Aufgrund von Vergleichsuntersuchungen ist belegt, dass Benfotiamin schneller und besser und in höherem Ausmaß resorbiert wird als das wasserlösliche Thiaminhydrochlorid. Nach oraler Verabreichung von Benfotiamin werden im Plasma und in den abzentrifugierten Blutzellen höhere und länger anhaltende Konzentrationen an Thiamin und den biologisch aktiven Coenzymen nachgewiesen als nach äquivalenten Mengen von Thiaminhydrochlorid. Von Benfotiamin konnte nachgewiesen werden, dass aus den beiden Substanzen im Organismus die biologisch aktiven Coenzyme Thiaminpyrophosphat und -triphosphat entstehen. Anhand von Ganztierautoradiographien konnten mit markiertem Benfotiamin besonders hohe Radioaktivitäten im Gehirn, Herzmuskel und Zwerchfell nachgewiesen werden.

Vitamin B₆ und seine Derivate werden hauptsächlich im oberen Magen-Darm-Trakt rasch über eine passive Diffusion resorbiert und innerhalb von 2 bis 5 Stunden ausgeschieden. Im Blutplasma sind Pyridoxal-5-phosphat und Pyridoxal an Albumin gebunden. Die Transportform ist Pyridoxal. Zur Passage der Zellmembran wird an Albumin gebundenes Pyridoxal-5-phosphat durch eine alkalische Phosphatase zu Pyridoxal hydrolysiert.

Aufgrund tierexperimenteller Ergebnisse kann bei Vitamin B_1 (bzw. Benfotiamin) eine antinozizeptive Wirkung erwartet werden. Aus der Behandlung von Alkoholikern ist ein positiver Einfluss auf Transketolasen als Aktivierungsfaktoren bekannt.

Die Wirksamkeit hochdosierter Gaben von Vitamin B_1 bei der Wernicke-Enzephalopathie wird hervorgehoben und als Hinweis auf eine Wirkung des Vitamins im ZNS gewertet. Andererseits wird festgestellt, dass bei fortbestehender Einwirkung der Noxe die Gabe von Vitamin B_1 keinen Einfluss hat. Vitamin B_6 beeinflusst die Kalt-Warm-Perzeption und hat einen positiven Einfluss bei Ausfällen motorischer, sensibler und vegetativer Nervenfasern.

5.3 Präklinische Daten zur Sicherheit

Beim Tier bewirken sehr hohe Dosen von Vitamin B_1 Bradykardien. Daneben treten Symptome einer Blockade der vegetativen Ganglien und Muskelendplatten auf.

Die orale Verabreichung von 150–200 mg Vitamin B₆ (Pyridoxinhydrochlorid)/kg KG/ Tag über einen Zeitraum von 100–107 Tagen verursachte bei Hunden Ataxien, Muskelschwäche, Gleichgewichtsstörungen sowie degenerative Veränderungen der Axone und Myelinscheiden. Ferner sind im Tierversuch nach hohen Vitamin B₆-Dosen Konvulsionen und Koordinationsstörungen aufgetreten.

Unter den Bedingungen der klinischen Anwendung sind mutagene Wirkungen von Vitamin B_1 und B_6 nicht zu erwarten.

Langzeitstudien am Tier zum tumorerzeugenden Potential von Vitamin B_1 und B_6 liegen nicht vor.

Vitamin B_1 wird aktiv in den Fetus transportiert. Die Konzentrationen im Feten und Neugeborenen liegen über den maternalen Vitamin B_1 -Konzentrationen.

Hohe Dosen von Vitamin B₁ wurden im Tierversuch unzureichend untersucht.

Vitamin ${\sf B}_6$ ist plazentagängig und die fetalen Konzentrationen sind höher als die maternalen.

Vitamin B_6 ist im Tierversuch unzureichend genrüft

In der Embryotoxizitätsstudie an der Ratte ergaben sich Hinweise auf ein teratogenes Potential.

Bei männlichen Ratten führte die Gabe von sehr hohen Dosen von Vitamin B_6 zu Spermatogeneseschäden.

6. PHARMAZEUTISCHE ANGABEN

6.1 Liste der sonstigen Bestandteile

Hartfett, raffiniertes Rapsöl, entölte Phospholipide aus Sojabohnen (Sojalecithin), 3-Ethoxy-4-hydroxybenzaldehyd (Ethylvanillin), Sorbitol (Ph.Eur.), Glycerol 85 % [pflanzlich], Gelatine, Eisen (III)-oxid (E 172), Titandioxid (E 171)

6.2 Inkompatibilitäten

Keine

6.3 Dauer der Haltbarkeit

milgamma® NA Weichkapseln sind 4 Jahre haltbar.

WÖRWAG PHARMA GMBH & CO. KG

milgamma® NA

6.4 Besondere Vorsichtsmaßnahmen für die Aufbewahrung

Vor Licht geschützt in der Originalverpackung und nicht über 25 °C lagern/aufbewahren.

6.5 Art und Inhalt des Behältnisses

Packungen mit 30, 60 und 100 Weichkapseln.

Anstaltspackungen mit 500 (5 \times 100), 1000 (10 \times 100) und 5000 (5 \times 10 \times 100) Weichkapseln.

Es werden möglicherweise nicht alle Packungsgrößen in den Verkehr gebracht.

6.6 Besondere Vorsichtsmaßnahmen für die Beseitigung

Keine besonderen Anforderungen.

7. INHABER DER ZULASSUNG

Wörwag Pharma GmbH & Co. KG Calwer Str. 7 71034 Böblingen Tel.: 07031/6204-0 Fax: 07031/6204-31 e-mail: info@woerwagpharma.com

8. ZULASSUNGSNUMMER

Zul.-Nr.: 6246936.00.00

9. DATUM DER ERTEILUNG DER ZU-LASSUNG/VERLÄNGERUNG DER ZULASSUNG

07.05.2013

10. STAND DER INFORMATION

01/2014

11. VERKAUFSABGRENZUNG

Apothekenpflichtig

Zentrale Anforderung an:

Rote Liste Service GmbH

Fachinfo-Service

Mainzer Landstraße 55 60329 Frankfurt