Devoir nº 2*

Jeanne LAFLAMME

Alexandre PACHOT

12 février 2020

Table des matières

- 1 Question 1
 1

 2 Question 2
 1

 3 Question 3
 1

 4 Question 4
 1

 5 Ouestion 5
 1
- 1 Question 1
- 2 Question 2
- 3 Question 3
- 4 Question 4
- 5 Question 5

La ligne ① du résultat de l'algorithme de branch-and-bound que nous allons représenter graphiquement est la solution optimale : $x_1 = 0.2$, $x_2 = 1$ et $x_3 = 0$ et la variable à minimiser est z = -82.80. Le but de l'algorithme est de trouver des valeurs entières pour x_1 , x_2 et x_3 afin que z soit le plus proche possible du minimum de la solution non entière.

Appliquons une contrainte sur x_3 . Avec les lignes ② et ③ du résultat, cela nous permet de tracer le graphe de la figure 1, ce qui est un développement selon la branche x_3 .

FIGURE 1 – Branche x_3

Pour les lignes 4 à 9, il y a d'abord une contrainte sur x_2 , puis sur x_3 . Ce développement est représenté à la figure 2.

Les lignes (10) à (12) et (19) à (21) sont le résultat d'une contrainte sur x_1 puis sur x_3 . Ce qui correspond à la figure 3.

^{*}IFT 1575 - Modèles de recherche opérationnelle - Université de Montréal - Jean-Yves POTVIN

FIGURE 2 – Branche x_2 puis x_3

FIGURE 3 – Branche x_1 puis x_3

Finalement, les lignes restantes sont le résultat d'une contrainte sur x_1 , puis sur x_2 et x_3 . Le graphe de cet arbre est représenté à la figure 4.

FIGURE 4 – Branche x_1 puis x_2 et x_3

