Gauss's Law and its comprehension

Gauss's Law

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{in}}{\varepsilon_{0}}$$

Q1: When can we calculate \vec{E} ?

In some special cases.

Because $\oint_S \vec{E} \cdot d\vec{S}$ is a summation, we can not get \vec{E} from the summation. Just like we know a+b=8, but we can not know the value of a and b. You need additional properties of a and b.

Q2: In which cases we can use Gauss's Law to calculate \vec{E} ?

- Highly symmetric charge distribution
 - Centro-symmetric
 - Axially symmetric
 - Plane symmetric
- Other special charge distribution
 - Conduction materials, e.g. metal plate, metal sphere, ...

Q3: What is centro-symmetric charge distribution? What are its electric field properties?

Centro-symmetric charge distribution

r is the distance from the center!

Q3: What is centro-symmetric charge distribution? What are its electric field properties?

- Magnitude and direction of electric field?
 - Direction?
 - Using the conclude of uniformly charged thin ring
 - Sphere \Rightarrow thin rings \Rightarrow $d\vec{E}$ in radial direction \Rightarrow \vec{E} is vector sum of $d\vec{E}$, also radial
 - Magnitude?
 - Method 1: integration in *xyz* corordinate

$$d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{\rho dx dy dz}{{r'}^2} \vec{r'} \qquad \vec{E} = \int_{Sphere} d\vec{E}$$

The calculation involving 3-fold integrations in x, y and z direction.

It is extremely complex!

Not suggested.

Between $x \sim x + \mathrm{d}x$, $r_1 \sim r_1 + \mathrm{d}r_1$, take a thin ring.

$$dE = dE_x = \frac{1}{4\pi\varepsilon_0} \frac{(\rho \cdot 2\pi r_1 dr_1 dx) \cdot (x' - x)}{[(x' - x)^2 + r_1^2]^{\frac{3}{2}}}, \quad E = \int_{-R}^{+R} \left(\int_{0}^{\sqrt{R^2 - x^2}} \frac{1}{4\pi\varepsilon_0} \frac{(\rho \cdot 2\pi r_1 dr_1 dx) \cdot (x' - x)}{[(x' - x)^2 + r_1^2]^{\frac{3}{2}}} dr_1 \right) dx$$

 $dV = \rho \cdot 2\pi r_1 dr_1 dx$ is the volume of thin ring On the spherical surface with radius r', E is uniform everywhere!

Q4: What is axially symmetric charge distribution? What are its electric field properties?

Axially symmetric charge distribution

$$\rho = \rho(r)$$

r is the distance from the axis!

Q4: What is axially symmetric charge distribution? What are its electric field properties?

- Magnitude and direction of electric field?
 - Direction?
 - Using the conclude of uniformly charged infinitely long thin line
 - Cylinder \Rightarrow thin lines \Rightarrow $d\vec{E}$ in radial direction \Rightarrow \vec{E} is vector sum of $d\vec{E}$, also radial
 - ⇒ perpendicular to the axis
 - Magnitude?
 - Using the conclude of uniformly charged infinitely long thin line

In cross-sectional plane, at polar coordinates (r, φ) , take an An infinitesimal area $dS = r \mathrm{d} r \mathrm{d} \varphi$, which is the cross-sectional area of long thin line.

$$dE_x = \frac{\lambda}{2\pi\varepsilon_0}\cos\theta$$
, $E = E_x = \int_0^R \left(\int_0^{2\pi} \frac{\lambda}{2\pi\varepsilon_0}\cos\theta \,d\varphi\right) dr$

 $\lambda = \rho \cdot (1 \cdot r dr d\varphi)$ is the charge on thin line of length 1.

On the cylindrical surface with radius r', E is uniform everywhere!

Q5: What is plane-symmetric charge distribution? What are its electric field properties?

Plane-symmetric charge distribution

$$\rho = \rho(|x|) = \rho(x) = \rho(-x)$$

|x| is the distance from the yz plane!

Q5: What is plane-symmetric charge distribution? What are its electric field properties?

- Magnitude and direction of electric field?
 - Direction?
 - Using the conclude of uniformly charged infinite plane
 - Thick plate \Rightarrow thin plate \Rightarrow infinite plane \Rightarrow uniform $d\vec{E}$ in normal direction $\Rightarrow \vec{E}$ is uniform and in perpendicular to the plate
 - Magnitude?
 - Using the conclude of uniformly charged infinite plane

Between planes perpendicular to x axis at x and x + dx,

$$dE_x = \frac{\sigma}{2\varepsilon_0}, \quad E = E_x = \int_{-x_0}^{x_0} \frac{\sigma}{2\varepsilon_0} dx$$

 $\sigma = \rho \cdot (1 \cdot 1 \cdot dx)$ is the charge on unit area. x_0 is half-thickness.

On the plane surface perpendicular to x axis, E is uniform everywhere!

Q6: How to choose Gaussian surface? Why?

Centro-symmetry

$$\Phi_E = \oint_S \vec{E} \cdot d\vec{S} = \oint_S E \cdot dS$$

$$= E \cdot \oint_S dS = E \cdot 4\pi r^2$$

Spherical Gaussian surface

$$\Phi_{E} = \oint_{S} \vec{E} \cdot d\vec{S} = \oint_{S} E \cdot dS$$

$$\Phi_{E} = \oint_{S} \vec{E} \cdot d\vec{S} = \oint_{flats} \vec{E} \cdot d\vec{S} + \oint_{side} \vec{E} \cdot d\vec{S} + \oint_{side} \vec{E} \cdot d\vec{S} = \oint_{flats} \vec{E} \cdot d\vec{S} + \oint_{side} \vec{E} \cdot d\vec{S}$$

Cylindrical Gaussian surface

Cylindrical Gaussian surface

In these special cases, it's convenient to calculate electric flux!