- ©Jan Schmidt 2011
 Katedra číslicového návrhu
 Fakulta informačních technologií
 České vysoké učení technické v Praze
- Zimní semestr 2013/14

MI-PAA

4. Optimalizační problémy

- Třídy optimalizačních problémů
- · Pseudopolynomiální algoritmy
- Aproximativní algoritmy
- Třídy aproximovatelných problémů
- Randomizované algoritmy

Třída NPO

 Definice: optimalizační problém Π patří do třídy NPO, jestliže splňuje následující podmínky:

 velikost výstupu instance je omezena polynomem ve velikosti instance

výstup lze zapsat v polynomiálním čase

 problém, zda daná konfigurace je řešením, patří do P
 omezující podmínky lze vyhodnotit

v polynomiálním čase

 hodnotu optimalizačního kritéria pro každé řešení každé instance lze vypočíst v polynomiálním čase

optimalizační kritérium lze vyhodnotit v polynomiálním čase

Třída PO

- Definice (třída PO):
 - optimalizační problém Π <u>patří do třídy PO</u>, jestliže splňuje následující podmínky:
 - · patří do NPO
 - · existuje program pro Turingův stroj, který každou instanci vyřeší v polynomiálním čase.
- Příklad:
 - problém nejkratší cesty v grafu G=(V, E) patří do PO
 - velikost výstupu O(|E|)
 - ověření omezení O(|E| log |E|)
 - optimalizační kritérium O(|E|)
 - existuje polynomiální algoritmus (Dijkstra)

Příklad NPO problému: optimalizační TSP

Dána množina n měst $C=\{c_1,c_2,...,c_n\}$. Pro každá dvě města c_i,c_j je dána vzdálenost $d(c_i,c_j)$. Nalezněte uzavřenou túru, která prochází každým městem právě jednou a má nejmenší délku.

- Velikost výstupu instance: O(|C|)
- Kontrola túry: O(|C|) viz Hamiltonova kružnice
- Výpočet optimalizačního kritéria: O(|C|)

Pseudopolynomiální algoritmy

Pseudopolynomiální algoritmus pro problém batohu

C[*i*,*j*]: cena optimálního plnění batohu s kapacitou *j* pro prvých *i* věcí

Výsledek: maximální *C*[*n*,*j*]

Dekompozice podle váhy

Složitost

- Pole má n.M prvků
- Každý prvek lze vypočíst v konstantním čase
- · Složitost *O*(*n.M*)

M nesouvisí s velikostí instance (měřené jakýmkoli rozumným způsobem)

Varianta

W[i,j]:
váha optimálního
(nejlehčího) plnění
batohu s cenou j pro
prvých i věcí

Výsledek: $W[n,j] \leq M$ s maximálním j

Dekompozice podle ceny

Složitost

- Velikost pole $n.\sum c_i$
- · Každý prvek lze spočítat v konstantním čase
- Nechť $C_M = \max \{c_1, c_2, ..., c_n\}.$
- Pak $\sum c_i \leq n.C_M$
- · Složitost $O(n^2.C_M)$

C_M nesouvisí s velikostí instance (měřené jakýmkoli rozumným způsobem)

Pseudopolynomiální algoritmus

· Definice:

Algoritmus, jehož počet kroků závisí polynomiálně na velikosti instance, ale závisí dále na parametru, který s velikostí instance <u>nesouvisí</u>, nazýváme <u>pseudopolynomiálním</u>.

Aproximativní algoritmy, aproximovatelné problémy a jejich třídy

Aproximativní algoritmus pro problém batohu

Algoritmus APR-KNAP:

- Věci seřaďte podle klesajícího poměru cena/hmotnost
- V tomto pořadí vkládejte do batohu, pokud není překročena nosnost batohu
- Výsledné řešení porovnejte s řešením, které se skládá pouze z jediné, nejcennější věci

- Polynomiální složitost
- Výsledné řešení má cenu ≥50% optimálního řešení

Měření kvality

C(S) hodnota opt. kritéria řešení S APR(I) aprox. řešení instance I OPT(I) optimální řešení instance I

Definice:

Algoritmus APR má relativní kvalitu R, jestliže

$$R \ge \max_{\forall I} \left\{ \frac{C(APR(I))}{C(OPT(I))}, \frac{C(OPT(I))}{C(APR(I))} \right\}$$

Algoritmus APR má <u>relativní chybu</u> ε , jestliže

$$\varepsilon \ge \max_{\forall I} \left\{ \frac{|C(APR(I)) - C(OPT(I))|}{\max \left\{ C(OPT(I)), C(APR(I)) \right\}} \right\}$$

Vlastnosti

Aproximativní algoritmus, třída APX

Definice:

Algoritmus APR pro problém Π je R-aproximativní $(\varepsilon$ -aproximativní), jestliže každou instanci Π vyřeší v polynomiálním čase s relativní kvalitou R (relativní chybou ε).

Definice:

Optimalizační problém Π je R-aproximativní (ε -aproximativní), jestliže pro něj existuje R-aproximativní (ε -aproximativní) polynomiální algoritmus. Číslo R (ε) nazveme aproximačním prahem problému Π .

Definice:

Optimalizační problém 17 <u>patří do třídy APX</u>, jestliže je *R*-aproximativní pro konečné *R*.

Příklad: algoritmus A+

- Problém uzlového pokrytí: dán graf G=(V,E); sestrojit $V'\subseteq V$ takovou, že $|V'|=\min a \ \forall (u,v)\in E$, $u\in V'$ nebo $v\in V'$.
- Algoritmus:
 - 1. $V' = \emptyset$
 - 2. dokud $E \neq \emptyset$
 - a. zvol hranu $(u,v) \in E$
 - b. $V' = V' \cup \{u, v\}$
 - c. odstraň z *E* hrany incidentní s *u* nebo *v*
- Vlastnost:

$$R = 2$$

Důkaz

· Algoritmus:

$$1.V' = \emptyset$$

2.dokud $E \neq \emptyset$

- a. zvol hranu $(u,v) \in E$
- b. $V' = V' \cup \{u, v\}$
- c. odstraň z *E* hrany incidentní s *u* nebo *v*
- podle konstrukce: V' reprezentuje |V'|/2 hran, které neincidují
- $\cdot \Rightarrow V'_{\text{OPT}}$ musí mít nejméně |V'|/2 uzlů

$$ightharpoonup arphi_{A+} \leq \frac{|V'| - |V'_{OPT}|}{|V'|} \leq 1/2.$$

· na grafu o 1 hraně se toho dosáhne

$$\cdot \Rightarrow \mathcal{E}_{A+} = \frac{1}{2}, R_{A+} = 2$$

$$V'=\{A,B\}$$

$$V'_{OPT} = \{A\}$$

Příklad: A++

Algoritmus:

- $1.V' = \emptyset$
- 2.dokud $E \neq \emptyset$
 - a. zvol hranu $(u,v) \in E tak$, že deg(u) + deg(v) = max.
 - b. $V' = V' \cup \{u, v\}$
 - c. odstraň z E hrany incidentní s u nebo V

Analýza nejhoršího případu je stejná, ale průměrná kvalita (na náhodných instancích) je lepší.

$$V'=\{A,B\}$$

$$V'=\{A,B\}$$

$$V'_{OPT}=\{A\}$$

Příklad: B+

Algoritmus:

$$1.V' = \emptyset$$

2.dokud $E \neq \emptyset$

- a. zvol uzel $v \in V V'$, tak, že deg $(v) = \max$.
- b. $V' = V' \cup \{v\}$
- c. odstraň z *E* hrany incidentní s *v*

Jaká je relativní kvalita?

Protipříklad

předpokládáme horší případ

$$V'_{OPT} = \{b_i\}$$

 $V' = \{a_i, c_i\}$

$$|V'_{OPT}|=n$$
 $|V'|=\sum_{j=1}^{n}\left\lfloor\frac{n}{j}\right\rfloor\geq 1+n.\ln n$

špatná zpráva:
$$R_{B+} > 1/n + \ln n$$

neni aproximativní

Zhodnocení B+

špatná zpráva:
$$R_{B+} > 1/n + \ln n$$

S rostoucím *n* roste chyba na předloženém protipříkladu nade všechny meze

- ⇒ nelze dát žádnou záruku
- ⇒ B+ není aproximativní

dobrá zpráva (odjinud): $R_{B+} < 1 + \ln n$

Aproximační prahy

uzlové pokrytí	ε _{νC} ≤1/2		
batoh	$\varepsilon_{\rm K}$ >0	libovolně malé číslo	
TSO	$\varepsilon_{\text{TSO}}=1$	pokud P≠NP	
ΔTSO (metrický)	$\varepsilon_{\Delta TSO} \leq 1/3$		
TSO geometrický	ε_{gTSO} > 0	libovolně malé číslo	

PTAS (Polynomial Time Approximation Scheme)

Definice:

Algoritmus APR, který pro každé $1 > \varepsilon > 0$ vyřeší každou instanci problému Π s relativní chybou nejvýše ε v čase polynomiálním v |I| nazýváme polynomiální aproximační schéma problému Π .

Definice:

Problém Π patří do <u>třídy PTAS</u>, jestliže pro Π existuje polynomiální aproximační schéma.

Polynomiální aproximační schéma pro problém batohu

- Dáno: 0<ε≤1
- Algoritmus PTAS-KNAP:
 - nechť S je množina konfigurací batohu, které obsahují $\lceil 1/\varepsilon \rceil$ věcí nebo méně
 - každou konfiguraci z S doplnit algoritmem APR-KNAP
- · Složitost:
 - O(|/| log |/|) ve velikosti instance
 - $O(2^{1/\epsilon})$ v převrácené hodnotě relativní chyby

půjde to lépe?

FPTAS

(Fully Polynomial Time Approximation Scheme)

· Definice:

Polynomiální aproximační schéma APR, jeho čas výpočtu závisí polynomiálně na $1/\varepsilon$, nazýváme plně polynomiální aproximační schéma.

Definice:

Problém Π patří do <u>třídy FPTAS</u>, jestliže pro Π existuje plně polynomiální aproximační schéma.

Struktura NPO

NPH NPO APX PTAS PO PTAS

Plně polynomiální aproximační schéma pro problém batohu

- Instance: n, M, c_1 , c_2 , ..., c_n , w_1 , w_2 , ..., w_n .
- Nechť $C_M = \max\{c_1, c_2, ..., c_n\}$.
- · Existuje pseudopolynomiální algoritmus se složitostí $O(n^2C_M)$.

hlavní fígl

$$C_{M}$$

$$b = \log \frac{\varepsilon C_{M}}{n}$$

- · Složitost $O(\frac{n^3}{\mathcal{E}}) \Rightarrow \text{plně polynomiální}$ aproximační schéma.
- · Aproximativní algoritmus = přesný algoritmus nad zjednodušeným modelem

FPTAS algoritmus pro batoh

- · Instance: *n*, *M*, *c*₁, *c*₂, ..., *c*_n, *w*₁, *w*₂, ..., *w*_n.
- Dána požadovaná relativní chyba ε.

Algoritmus:

- Nechť $C_M = \max\{c_1, c_2, ..., c_n\}$.
- Nechť $K = \frac{\varepsilon C_M}{n}$
- Pro i = 1...n, nechť $c_i' = \left\lfloor \frac{c_i}{K} \right\rfloor$
- Řešení je výstup instance
 n, M, c₁', c₂', ..., c_n', w₁, w₂, ..., w_n
 získaný pomocí dynamického programování s dekompozicí podle váhy

Aproximačně nejtěžší problémy

Úplnost

- Problém Π je X-těžký, jestliže se <u>efektivní řešení</u>
 všech problémů z třídy X dá <u>zredukovat</u> na efektivní
 řešení problému Π.
- · Problém Π je X-úplný, jestliže je X-těžký a sám patří do třídy X.
- · Efektivní řešení: zde: aproximovatelné řešení
- Redukce: zachovává efektivitu, zde: zachovává aproximaci

APX redukce

$$\Pi_1 \stackrel{\text{APX}}{\propto} \Pi_2$$

Nechť Π_1 , $\Pi_2 \in NPO$.

Vlastnosti

- $\Pi_1 \propto \Pi_2$, $\Pi_2 \in APX \Rightarrow \Pi_1 \in APX$
- $\Pi_1 \propto \Pi_2$, $\Pi_2 \in \mathsf{PTAS} \Rightarrow \Pi_1 \in \mathsf{PTAS}$

Pozor: ^{APX} nikoliv ∞ (podle obtížnosti aproximace)

NPO-úplný, -těžký

- · Problém Π je NPO-těžký, jestliže $\forall \Pi' \in \mathsf{NPO}, \ \Pi' \stackrel{\mathsf{APX}}{\varpropto} \Pi.$
- · Problém Π je NPO-úplný, jestliže je NPO-těžký a $\Pi \in NPO$.

APX-úplný, -těžký

- Problém Π je APX-těžký, jestliže $\forall \Pi' \in APX, \Pi' \stackrel{APX}{\sim} \Pi$.
- Problém ∏ je APX-úplný, jestliže je APX-těžký a ∏ ∈ APX.

Struktura NPO

NPO--úplný **NPH** APX--úplný **NPO APX** PTAS **FPTAS** APX redukce PO je Turingova redukce

Problém pokrytí

- Dáno: kolekce C podmnožin konečné množiny S.
- · Zkonstruovat:
 - podmnožinu C'⊆ C takovou, že každý prvek S patří do <u>alespoň</u> jedné podmnožiny z C', a dále |C'| = min. (unátní pokrytí)
 - podmnožinu C'⊆ C takovou, že každý prvek S patří do <u>právě</u> jedné podmnožiny z C', a dále |C'| = min. (binátní pokrytí)

Optimalizační SAT-folklór

		MAX WEIGHTED SAT	MAX SAT	MAX WEIGHTED SAT(!)
vstup	<i>F, X</i>	F, X,W	<i>F, X</i>	F, X,W
konfigurace	Y	Y	Y	Y
výstup	Y	Y	Y	Y
omezení	F(Y) = 1	F(Y) = 1		
opt. kritérium	max. počet jedniček	max. vážený počet jedniček	max. počet splněných termů	max. vážený počet splněných termů

Dobré a špatné zprávy

Problém	Dobré (R)		Špatné	
Min. uzlové pokrytí	2-log log	V /	APX-úplný	
	2log V	1985		1991
Min. (unátní) pokrytí	1+ln S		Není v APX	
množiny S		1974		1993
MAX SAT	1.2987		APX-úplný	
(počet klauzulí)		1997		1991
MAX WEIGHTED SAT			NPO-úplný	
(váha proměnných v 1)				
Batoh	FPTAS	1975		

Dobré a špatné zprávy

Problém	Dobré		Špatné	
TSO			NPO-úplný	1987
ΔTSO (metrický TSO)	<i>R</i> =1.5 Christofides	1976	APX-úplný	1993
Geom. TSO souřadnice ∈ Z	PTAS	1996		
Geom. TSO souřadnice ∈ Q			APX-úplný	1997

Randomizované algoritmy

Algoritmus pro MAX k SAT

- Booleovská formule F v konjunktivní formě proměnných X, k literálů v každé klauzuli, nalézt ohodnocení Y proměnných X tak, aby bylo splněno co nejvíce klauzulí.
- Algoritmus: každou proměnnou ohodnotíme 0 nebo 1 se stejnou pravděpodobností.
- Vlastnosti:
 pro <u>splnitelné</u> formule o c klauzulích, kde má každá klauzule alespoň k literálů, je očekávaná hodnota optimalizačního kritéria

$$\left(1-\frac{1}{2^k}\right).c$$

maximum je c

Důkaz

$$\left(1-\frac{1}{2^k}\right).c$$

Miller-Rabinův test prvočíselnosti

- Dáno číslo n, zjistit, zda je prvočíslem.
- Malá věta Fermatova: Jestliže n je prvočíslo a k přirozené číslo, $1 \le k < n$, pak $k^{n-1} \equiv 1 \pmod{n}$.
- Jestliže pro čísla n, k tvrzení malé věty Fermatovy neplatí, k nazveme <u>svědkem</u> složenosti čísla n.
- Jestliže n je složené číslo, pak ¾ přirozených čísel menších než n jsou svědky složenosti n.
- Otestujeme-li 100 <u>náhodných</u> potenciálních svědků, pak pravděpodobnost, že o n neprávem tvrdíme, že je prvočíslem, je $\frac{100}{4}$.
- Tuto pravděpodobnost můžeme tedy libovolně snižovat.

Minimalizace booleovských výrazů

Randomizovaný algoritmus

- Založen na náhodné volbě
- Jeho vlastnosti jsou vyjádřeny statisticky
 - dosažený výsledek (optimalizační kritérium) je náhodná proměnná, čas běhu pevný pro danou instanci → Monte Carlo algoritmy
 - čas běhu je náhodná proměnná, výsledek vždy správný → Las Vegas algoritmy

Monte Carlo: z herny se vypotácíte ráno, ale nevíte, kolik peněz vám zůstane

Las Vegas: vždycky vás oberou na kost, otázka je do kdy

Quicksort

- Výsledek vždy správně (seřazený)
- · Čas běhu záleží na volbě pivotu
- · Pivot musí být alespoň přibližně správně zvolen
- Typický Las Vegas algoritmus

Hra "Quicksort je k ničemu"

Hráč č. 1 předloží implementaci quicksortu. Hráč č. 2 se snaží strefit do instance, pro kterou implementace volí pivoty špatně a čas je $O(n^2)$.

Když se to podaří do *k* pokusů, vyhrává č. 2

Pokud implementace má randomizovanou volbu pivotu, č. 2 může vyhrát jen s velmi malou pravděpodobností

Analýza randomizovaných algoritmů

- · Poskytuje <u>očekávanou (střední) hodnotu</u> charakteristické veličiny (kvality, času)
- Platí pro jakýkoli vstup
- Pravděpodobnostní analýza poskytuje průměrné hodnoty při předpokládaném rozložení charakteristik vstupních instancí
- Když se ví jakých

Randomizovaný alg. 3 SAT

Booleovská formule *F* v konjunktivní formě, vektor *n* proměnných *X*, 3 literály v každé klauzuli, nalézt ohodnocení *Y* proměnných *X* tak, aby *F*(*Y*)=1.

Algoritmus:

- 1. Počáteční ohodnocení Y: každou proměnnou ohodnoť 0 nebo 1 se stejnou pravděpodobností.
- 2. Pokud existuje ohodnocení Y', které se liší od Y v právě jedné proměnné <u>a má více splněných</u> <u>klauzulí</u>, pak Y←Y' a opakuj 2
- Vlastnosti: pro každé $0 < \varepsilon < \frac{1}{2}$ se dá vyjádřit pravděpodobnost, že algoritmus nalezne řešení, jako funkce n a ε . Výrok pak platí pro všechny splnitelné formule až na jistou část, jejíž velikost je opět funkcí n a ε .

Randomizovaný 3 SAT

- Kombinace randomizované a deterministické fáze
- · Z hlediska heuristických algoritmů, kombinace
 - náhodné konstruktivní fáze
 - deterministické iterativní fáze
- · Praktičtější podoba, obecný SAT:
 - algoritmus GSAT
 - zaujatá náhodná procházka

GSAT (Selman, Levesque, and Mitchell 1992)

- Algoritmus:
 - 1. Počáteční ohodnocení Y: každou proměnnou ohodnoť 0 nebo 1 se stejnou pravděpodobností.
 - 2. Najdi ohodnocení Y', které se liší od Y v právě jedné proměnné <u>a poskytne nejvíce splněných klauzulí</u>
 - 3. *Y*←*Y*′. Pokud nejsou všechny klauzule splněny nebo vyčerpán stanovaný počet kroků, opakuj 2.
 - 4.Pokud stále nejsou všechny klauzule splněny, opakuj s jiným náhodným počátečním ohodnocením.

Náhodná procházka

(Random Walk)

- Algoritmus:
 - 1.Počáteční ohodnocení Y: každou proměnnou ohodnoť 0 nebo 1 se stejnou pravděpodobností.
 - 2. Najdi ohodnocení Y', které se liší od Y v právě jedné proměnné <u>některé nesplněné klauzule</u>
 - Y←Y'. Pokud nejsou všechny klauzule splněny nebo vyčerpán stanovaný počet kroků, opakuj 2.
- Řeší instance 2 SAT V čase O(n²)
 (Papadimitriou 1992)
- Nepracuje dobře na 3 SAT

Zaujatá náhodná procházka (Biased Random Walk)

- Algoritmus:
 - 1. Počáteční ohodnocení Y: každou proměnnou ohodnoť 0 nebo 1 se stejnou pravděpodobností.
 - 2. S pravděpodobností 0<*q*<1 proveď 3 jinak proveď 4.
 - 3. Najdi ohodnocení *Y*′, které se liší od *Y* v právě jedné proměnné <u>některé nesplněné klauzule</u>
 - 4. Najdi ohodnocení Y', které se liší od Y v právě jedné proměnné <u>a poskytne nejvíce splněných klauzulí</u>
 - 5. Y←Y'. Pokud nejsou všechny klauzule splněny nebo vyčerpán stanovaný počet kroků, opakuj 2.

Výhody randomizovaných algoritmů

- strukturní jednoduchost
- očekávaná kvalita výsledku může být lepší než zaručená kvalita aproximativních algoritmů
- · nezávislým opakováním se dá zlepšit kvalita

Kombinace s deterministickými prvky: poskytuje nestrannost při vzorkování libovolného souboru prvků:

- · každý náhodný start je stejně pravděpodobný
- každý náhodně vybraný sousední stav je stejně pravděpodobný
- každý náhodně vybraný krok z množiny, pro které dává heuristická funkce stejnou hodnotu atd.

Meze randomizace

- Nechť je čas výpočtu randomizovaným algoritmem T(n).
- Je možno (deterministicky) zkonstruovat posloupnost čísel takovou, že ji žádný algoritmus v čase T(n) nerozezná od náhodné posloupnosti.
- Tudíž, původní randomizovaný algoritmus bude fungovat stejně.
 - ⇒ randomizované paradigma výpočtu není silnější než deterministické
 - ⇒ derandomizace algoritmů

Třídy optimalizačních problémů

Aproximativní algoritmus

Třídy aproximovatelnosti

