SNGULAR

A financial fraud predictive AI model integrated with Spring Boot.

Predictive Model for Financial Industry

Contents:

- What is Machine Learning
- Key Concepts
- Supervised Learning Process
- Anomaly Detection
- Example:
 - Data Analysis
 - Logistic Regression
 - Support Vector Machine
 - Decision Tree Classifier

Fraud in Bank Industry in 2024

More than half banks reported an increase in business fraud.

50%

Increase of frauds

Check fraud losses in the Americas reached nearly \$21 billion, and 70% of U.S. financial institutions reported check fraud.

Check Fraud

Over half report increasing investment in third-party fraud prevention.

Increase of Investment

- Thompson Reuters, Deloitte, and the Federal Trade Commission (FTC) https://www.alloy.com/state-of-fraud-benchmark-report-2024#component-marketo-embed
- SEC. (n.d.). https://www.sec.gov/files/fy24-oiad-sar-objectives-report.pdf

Bank Industry AI Adoption/Maturity in 2024

COMPANY	SCORE ▼
JPMorganChase	1
Capital One	2
Royal Bank of Canada	3
Wells Fargo	4
CommBank	5
UBS	6
HSBC	7
Citigroup	8
TD Bank	9

The **banking sector** emerged as a leader in Al adoption, with **35% of banks classified as Al leaders**.

Banks Al Leader

Evident AI (EAI) https://evidentinsights.com/

Preview Results

The predictive model obtained 99% of precision, detecting more than 13,500 frauds within one month transaction dataset.

Detection of Frauds

What is the best approach?

# step =	∆ type =	# amount =	# isFraud =
430	TRANSFER	2828068.73	1
430	CASH_OUT	2828068.73	1
431	PAYMENT	4506.4	0
431	PAYMENT	20711.86	0
431	PAYMENT	14014.89	0
431	PAYMENT	3501.32	0
431	PAYMENT	13936.67	0
431	PAYMENT	1366.84	0
431	PAYMENT	5959.65	0

What is the best approach?

Uses **quantitative information** to
represent **uncertainty**in a system

Deterministic v/s Probabilistic

Produces the **same output** for a given input, and is **predictable**

What is the best approach?

Machine learning

What Machine Learning(ML) is

It's a sub-topic of Artificial Intelligence field, which is focused on predicting data, through information patterns.

It learns from data to enhance automation of decision making.

ML doesn't implement hard-coded rules. Instead, it predicts data from unseen information.

Data

O1 The more data, the better.

O2 Data format can be numbers, text, images, sounds.

O3 It is divided into training (used to teach the model) and test (used to evaluate the model).

Train Test

Model

Mathematical representation that learns from data.

Models capture data patterns and relationships to make predictions and decisions.

03 Typical models are:

- Logistic Regression
- Support Vector Machine
- Neural Networks, etc.

Training & Prediction

Training is teaching mathematical model to recognize patterns in data.

O2 Data can be labeled(supervised learning) or unlabeled(unsupervised learning).

Supervised Learning Process

Anomaly Detection

Machine learning model used to detect outliers in extreme unbalanced datasets, usually big enough to consider high-demand computational processing.

Unbalanced dataset over 24 million

Anomaly Detection Use Cases

01 Financial Fraud:

Identifying unusual spending patterns on credit cards to detect fraudulent transactions.

Q2 Healthcare Monitoring:

Identifying unusual vital signs in patient data that could indicate a medical emergency.

03

Retail Sales Analysis:

Identifying sudden spikes or drops in sales for specific products that could indicate issues with pricing or demand.

Theoretical Explanation of Data Preprocessing

Descriptive and Inferential analysis

Need to know what the behind data.

Occam's Razor

Problem-solving principle that states the simplest explanation is usually the best.

Dimensional Reduction

Reduce feature or variables of the dataset. Retaining its most important properties.

Data Description

"PaySim is a financial simulator that simulates mobile money transactions based on an original dataset."

The dataset has 24 million financial records.

E. A. Lopez-Rojas, A. Elmir, and S. Axelsson. "PaySim: A financial mobile money simulator for fraud detection". In: The 28th European Modeling and Simulation Symposium-EMSS, Larnaca, Cyprus. 2016

SNGULAR

Dataset Fields

- **step:** Represents a unit of time in the real world, with 1 step equating to 1 hour.
- type: Transaction types include CASH-IN, CASH-OUT, DEBIT, PAYMENT, and TRANSFER.
- **amount:** The transaction amount in the local currency.
- **nameOrig:** The customer initiating the transaction.
- **oldbalanceOrg:** The initial balance before the transaction.
- **newbalanceOrig:** The new balance after the transaction.
- **nameDest:** Transaction's recipient customer.
- **oldbalanceDest:** The initial recipient's balance before the transaction.
- **newbalanceDest:** The new recipient's balance after the transaction.
- **isFraud:** Identifies transactions conducted by fraudulent agents aiming to deplete customer accounts through transfers and cash-outs.

Feature Selection:

Shapiro-Wilk test to determine null hypothesis - > not normal distribution. > 0.05 confidence level:

$$W = rac{\left(\sum_{i=1}^{n} a_i x_{(i)}
ight)^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2},$$

$$oxed{(a_1,\ldots,a_n) = rac{m^{\mathsf{T}}V^{-1}}{\|V^{-1}m\|} = (m^{\mathsf{T}}V^{-1}V^{-1}m)^{1/2}}$$

V: Variance Covariance Matrix m: x

Feature Selection:

Pearson Correlation: Correlation between two normal distributed variables.

Coefficient correlation: -1 to 1

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Theta: Standard Deviation

Cov: Variance Covariance Matrix

Feature Selection:

Spearman Correlation: Correlation between two non-normal distributed variables.

Coefficient correlation: -1 to 1

$$egin{aligned} r_s =
ho \left[egin{array}{c} \mathrm{R}[X], \mathrm{R}[Y] \end{array}
ight] = rac{\mathsf{cov} \left[egin{array}{c} \mathrm{R}[X], \mathrm{R}[Y] \end{array}
ight]}{\sigma_{\mathrm{R}[X]} \; \sigma_{\mathrm{R}[Y]}}, \end{aligned}$$

 $\operatorname{\mathsf{cov}} \left[\begin{array}{c} \operatorname{R}[X], \operatorname{R}[Y] \end{array} \right]$: Covariance of ranked variables

 $\sigma_{ ext{R}[X]} \,\,\, \sigma_{ ext{R}[Y]}$: Standard Deviation

Pearson Correlation Matrix

Spearman Correlation Matrix

1.00

- 0.75

0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

-1.00

Test Hypothesis

Logistic Regression: Relationship between two variables. Only applicable when dependent variable (y) is categorical, and independent variable (x) is continuous.

p-Value: 0 - 0.05 (confidence threshold)

$$p(x)=rac{1}{1+e^{-(eta_0-eta_1x)}}$$

Beta: Weight optimization parameter

Test Hypothesis

Chi-Square: Relationship between two variables. Only applicable when dependent variable (y) is categorical, and independent variable (x) is also categorical.

p-Value: 0 - 0.05 (confidence threshold)

$$\chi^2 = \sum_{i=1}^n rac{O_i^2}{E_i} - N.$$

 O_i : Number of observations of variable i

 $\overline{\mathbf{V}}$: Total number of observations

 $\overline{E_i}$: Expected number of type i

Theoretical Explanation of Predictive Models

Logistic Regression

Support Vector Machine

Decision Tree Classifier

Logistic Regression

Logistic Regression

Cost Optimization Function

$$Cost(h_{\theta}(x), y) = -y \log \frac{1}{1 + e^{-\theta^T x}} - (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

28

Logistic Regression

Cost Optimization Function

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

Classification Function Hyperplane Clasificator

Optimization Function

$$d_{\mathcal{H}}(\phi(x_0)) = \frac{|w^T \phi(x_0) + b|}{\|w\|_2}$$

Distance of points from hyperplane

$$w^* = \arg\max_{w} \left[\min_{n} d_{\mathcal{H}} (\phi(x_n)) \right]$$

Optimization function: Max distance of the hyperplane of the nearest point from the hyperplane

Kernel

-1.0

-0.5

Copyright © SNGULAR. All rights reserved.

0.5

1.0

0.0

33

Support Vector Machine

Kernel

Lagrange Multipliers

$$egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} \cdot egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix} = x_1y_1 + x_2y_2 + x_3y_3 \,.$$

Decision Tree Classifier - Tree Creation

Leaves and nodes randomly generated through seeds mechanism:

$$R_{i+1} = (a \cdot R_i + c) \mod m,$$

Where

Ri is current state

 ${\it a, c, m}$ are random numbers generated

Decision Tree Classifier - Evaluation Per Node

Gini Index

$$I(D_{ ext{node}}) = 1 - \sum_{c=1}^C p_c^2,$$

Entropy

$$I(D_{ ext{node}}) = -\sum_{c=1}^C p_c \log(p_c),$$

Where

Pc is the proportion of samples c, which belongs to Dnode

Decision Tree Classifier - Evaluation Horizontally

Gini Index

$$egin{aligned} ext{Information Gain} = I(D_{ ext{node}}) - \left(rac{|D_{ ext{left}}|}{|D_{ ext{node}}|}I(D_{ ext{left}}) + rac{|D_{ ext{right}}|}{|D_{ ext{node}}|}I(D_{ ext{right}})
ight), \end{aligned}$$

Where

Dleft and Dright are the data subsets resulting from the split. |**D**| denotes the number of samples in DDD

Implementation

- Inferential Analysis.
- Data Preparation.
- Implementation of Logistic Regression.
- Implementation of Support Vector Machine.
- Decision Tree Classifier
- Spring Boot Integration.

Bonus

Modelo Neuronal - Santiago Ramon y Cajal (1906)

Bonus

Logistic Regression Function

Neuron Model

Bonus

Mindset of innovation

"Machine learning is not just a tool. It is a mindset shift that enables us to transform data into actionable insights, driving smarter decisions and paving the way for innovation across every corner of the industry"

Bibliography

- Lopez-Rojas, E., Elmir, A., & Axelsson, S. (2016). PaySim: A financial mobile money simulator for fraud detection. In 28th European Modeling and Simulation Symposium, EMSS, Larnaca (pp. 249-255). Dime University of Genoa.
- Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381-386.
- Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272. doi:10.1038/s41592-019-0686-2
- Kramer, O., & Kramer, O. (2016). Scikit-learn. Machine learning for evolution strategies, 45-53.
- Komer, B., Bergstra, J., & Eliasmith, C. (2019). Hyperopt-sklearn. Automated Machine Learning: Methods, Systems, Challenges, 97-111.
- Sarkar, T. (2022). GPU-Based Data Science for High Productivity. In Productive and Efficient Data Science with Python: With Modularizing, Memory profiles, and Parallel/GPU Processing (pp. 299-326). Berkeley, CA: Apress
- SEC. (n.d.). https://www.sec.gov/files/fy24-oiad-sar-objectives-report.pdf

Questions

Thanks for your attention!!!