

In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning

Venue: Accepted as a workshop contribution at ICLR 2015

Authors: Behnam Neyshabur¹, Ryota Tomioka¹, Nathan Srebro¹

¹Toyota Technological Institute at Chicago

Seminar in Advanced Topics in Machine Learning and Data Science

Presented by: Steve Rhyner

March 20, 2024

Executive Summary

Problem:

Deep Learning is a blackbox

Goal:

- Shed light on deep learning by suggesting existence of implicit form of capacity control
- Understand why optimization directs us to a "simple" minimum

Key Idea:

- First paper to explain double-descent phenomenon
- Implicit regularization of optimization as an explanation for phenomenon that increase in network size decreases approximation and estimation error
- Learning and selecting is equivalent if we have sufficiently many hidden units

Mechanism:

- Compare generalization capabilities for increasing number of hidden units
- Draw a matrix factorization analogy to feed-forward networks

Capacity control: Bias-Variance Tradeoff

Objective: Find best balance between the two Split error into Bias and Variance

Capacity control: Bias-Variance Tradeoff

Capacity control: ℓ_1 - regularization

$$||v||_1 = \sum_{h=1}^H |v_h|$$

 Added as a penalty term to the objective function

Induces sparsity

Capacity control: ℓ_2 - regularization

 $ullet \ell_2$ -norm

$$||v||_2 = \sqrt{\sum_{h=1}^H v_h^2}$$

 Added as a penalty term to the objective function

 Encourages "simpler" solutions with smaller Euclidean norm

Capacity Control: Dropout [Srivastava et al., 2014]

(a) Without dropout

(b) Dropout with p = 0.5.

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified linear units.

Capacity Control: Dropout [Srivastava et al., 2014]

Figure 9: Effect of changing dropout rates on MNIST.

Motivation

 Why is it that we succeed in learning using multilayer feedforward networks?

Can we identify a property that makes them possible to learn?

Is there some alternative inductive bias?

Network Size and Generalization: Methodology

Feed-forward network for **classification** task:

$$y[j] = \sum_{h=1}^{H} v_{hj} [\langle oldsymbol{u}_h, oldsymbol{x}
angle]_+$$

- d real-valued inputs $\mathbf{x} = (x[1], \dots, x[d])$
- k outputs $y[1], \ldots, y[k]$
- \bullet a single hidden layer with H rectified linear units
 - $-[z]_{+} := \max(z,0)$ as activation function
 - $-\mathbf{u}_h \in \mathbb{R}^d, \mathbf{v}_{hj} \in \mathbb{R}$, weights learned by minimizing soft-max cross entropy loss
 - #weights given by H(d+k)

Network Size and Generalization: Methodology

- Train networks for classification task
- Datasets

MNIST

CIFAR-10

Network Size and Generalization: Methodology

- Train and test error based on two stopping criteria
 - Test set at convergence
 - Test set early stopping based on the error on validation set
- Optimization with stochastic gradient descent with momentum
- Standard learning schedule
- No explicit regularization
- Initialization from Gaussian distribution

Network Size and Generalization: Results

- Both training and test error initially decrease
- Without any regularization, even with zero training error, increasing the number of hidden units reduces estimation error

Network Size and Generalization: Results

A Matrix Factorization Analogy

Same feed-forward network, but now with linear activation function:

$$y[j] = \sum_{h=1}^{H} v_{hj} \langle \boldsymbol{u}_h, \boldsymbol{x} \rangle$$

Matrix-factorization model:

$$oldsymbol{y} = oldsymbol{W} oldsymbol{x} \quad ext{ and } \quad oldsymbol{W} = oldsymbol{V} oldsymbol{U}^{ op}$$

Capacity control correspondence given by:

$$r \text{ hidden units} \Leftrightarrow rank(\mathbf{W}) \leq r$$

A Matrix Factorization Analogy

$$||U||_F \coloneqq \sqrt{\sum_{i=1}^m \sum_{j=1}^n |u_{ij}|^2}$$

- Much success for learning with low norm factorizations
- Instead of constraining dimensionality H of $m{U}, m{V},$ we only regularize, their norm
- Trace-norm as inductive bias [Srebro et. al., 2004]:

$$\|\boldsymbol{W}\|_{tr} = \min_{\boldsymbol{W} = \boldsymbol{V} \boldsymbol{U}^{\top}} \frac{1}{2} (\|\boldsymbol{U}\|_F^2 + \|\boldsymbol{V}\|_F^2)$$

A Matrix Factorization Analogy

- Other norms of the factorization lead to different regularizers
- Unlike the rank, the trace-norm is convex, and leads tractable learning problems

• In summary:

Matrix Factorization	Low r:	intractable	Trace-norm	Higher rank ⇒ lower trace-norm⇒better generalization
Feed-forward Networks	Low r:	intractable	Some norm?	More hidden units⇒ lower norm⇒better generalization?

Related Works: Benign overfitting in linear regression, Bartlett et. al., 2020

• Benign overfitting: Phenomena where models almost interpolate the train data but still generalize well

Still an active area of research

Related Works: Deep double descent: where bigger models and more data hurt, Nakkiran, et al., 2021

 Empirical evaluation of deep learning tasks exhibiting the doubledescent phenomenon

 Double-descent not only as a function of model size and number of training epochs

Related Works: Deep double descent: where bigger models and more data hurt, Nakkiran, et al., 2021

Related Works: Multiple Descent: Design Your Own Generalization Curve, Chen et al., 2021

Generalization curve can have an arbitrary number of peaks

- Peaks can be explicitly controlled
- Traditional bias-variance generalization curve and the double-descent phenomenon are not intrinsic properties of the model family

Related Works: Implicit Regularization in Deep Learning May Not Be Explainable by Norms, Razin et al., 2020

 Rather than perceiving the implicit regularization via norms, a potentially more useful interpretation is minimization of rank

 They hypothesize that it may be key to explaining generalization in deep learning

Related Works: Sensitivity and Generalization in Neural Networks: An Empirical Study, Novak et al., 2018

Builds on top of the paper discussed today

Similar study, but for Deep Neural Networks

Strengths

- To my knowledge, the first paper to introduce a notion of inductive bias, i.e. implicit regularization in the context of Machine Learning
- Optimization as inductive bias
- It tackles an important problem

- Corroborate their intuition with experiments
- Draw a matrix-factorization analogy which is much better understood

Weaknesses

- Some assumptions are unjustified
 - Do different optimization algorithms have a different inductive bias?
 - Might momentum be introducing some kind of bias?
 - Could subsampling of the dataset be a source of some implicit bias?
- Their methodology is not clearly communicated
- No explanation why we can draw a matrix factorization methodology by dropping non-linearities

Thank you for your attention.

Discussion/Questions?

References

- Nati Srebro, Algorithmic Bias in Underdetermined Optimization and Deep Learning, https://www.youtube.com/watch?v=7uRVR9hsF0g
- Poster of the presented paper: https://www.neyshabur.net/papers/inductive-bias-poster.pdf
- Image I1-regularization & I2-regularization: <u>https://www.researchgate.net/figure/Parameter-norm-penalties-L2-norm-regularization-left-and-L1-norm-regularization_fig2_355020694</u>
- Bias-Variance Tradeoff: IML 2022 & AML 2022 lecture slides
- Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.