

Page 1 of 30

FCC & IC TEST REPORT for GODOX Photo Equipment Co.,Ltd.

Pioneering TTL Li-ion Camera Flash Model No.: V350S, V350F, V350O, V350N, V350C, V350P

Prepared for : GODOX Photo Equipment Co.,Ltd.

Address : 19th Floor, Room 1902, Building Jinshan, 5033 Shennan

East Road, Luohu District, Shenzhen 518001, China

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China.

Tel: +86-755-26503290 Fax: +86-755-26503396

Report No. : ATE20180386

Date of Test : March 13-March 16, 2018

Date of Report : March 20, 2018

Page 2 of 30

TABLE OF CONTENTS

Description						
Test Re	eport					
	ST RESULTS SUMMARY					
	NERAL INFORMATION					
2.1. 2.2.	Description of Device (EUT)					
2.2. 2.3.	Test mode descriptionAccessory and Auxiliary Equipment					
2.3. 2.4.	Description of Test Facility					
2.5.	Measurement Uncertainty					
_	EASURING DEVICE AND TEST EQUIPMENT					
3.1. 3.2.	The Equipment Used to Conducted Disturbance Measurement The Equipment Used to Radiated Emission Measurement					
	WER LINE CONDUCTED MEASUREMENT					
4.1.	Block Diagram of Test Setup					
4.2. 4.3.	Test System Setup Power Line Conducted Emission Measurement Limits					
4.3. 4.4.	Configuration of EUT on Measurement					
4.4. 4.5.	Operating Condition of EUT					
4.5. 4.6.	Measurement Uncertainty					
4.7.	Test Procedure					
4.8.	Data Sample					
4.9.	Power Line Conducted Emission Measurement Results					
5. RA	DIATED EMISSION MEASUREMENT					
5.1.	Block Diagram of Test					
5.1. 5.2.	Radiated Emission Limit (Class B)					
5.3.	Manufacturer					
5.4.	Operating Condition of EUT					
5.5.	Test Procedure					
5.6.	Data Sample					
5.7.	Radiated Emission Noise Measurement Result	18				

Page 3 of 30

Test Report

Applicant : GODOX Photo Equipment Co.,Ltd.

Manufacturer : GODOX Photo Equipment Co.,Ltd.

Product : Pioneering TTL Li-ion Camera Flash

Model No. : V350S, V350F, V350O, V350N, V350C, V350P

Trade name : Godox

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart B Class B ICES-003 Issue 6
ANSI C63.4: 2014

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B Class B limits both radiated and conducted emissions. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	March 13-March 16, 2018
Date of Report :	March 20, 2018
Prepared by :	(Sta Lang Epointer)
Approved & Authorized Signer :	APPROVED
	(Sean Liu, Manager)

Page 4 of 30

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15 Subpart B ICES-003	Pass
Radiated Emission	FCC Part 15 Subpart B ICES-003	Pass

Page 5 of 30

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product : Pioneering TTL Li-ion Camera Flash

Model No. : V350S, V350F, V350O, V350N, V350C, V350P

Rating : DC 7.2V (Powered by Lithium battery)

Trade Name : Godox

Remark(s) : The EUT highest operating frequency provided by

Manufacturer is 2.438GHz, the radiated emission measurement shall be made up to 12.75 GHz.

Applicant : GODOX Photo Equipment Co.,Ltd.

Address : 19th Floor, Room 1902, Building Jinshan, 5033

Shennan East Road, Luohu District, Shenzhen

518001, China

Manufacturer : GODOX Photo Equipment Co.,Ltd.

Address : 19th Floor, Room 1902, Building Jinshan, 5033

Shennan East Road, Luohu District, Shenzhen

518001, China

Date of sample receiver: March 10, 2018

Date of Test : March 13-March 16, 2018

2.2. Test mode description

Test mode: A1. Connect PC, flash work.

A2. Connect flash, flash work.

A3. Transfer data

2.3. Accessory and Auxiliary Equipment

Notebook PC: Manufacturer: Lenovo

M/N: ThinkPad X240

S/N:n.a

Digital Camera: Manufacturer: Sony

M/N: SAL-A58 S/N:3703258

Page 6 of 30

2.4. Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

Site Location : 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

2.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Power Disturbance Expanded Uncertainty = 2.92 dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

Page 7 of 30

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. The Equipment Used to Conducted Disturbance Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan.06, 2018	1 Year
2.	Test Receiver	Rohde & Schwarz		100396/003	Jan.06, 2018	1 Year
3.	Test Receiver	Rohde & Schwarz	ESPI3	101526/003	Jan.06, 2018	1 Year
4.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan.06, 2018	1 Year
5.	L.I.S.N.	Rohde & Schwarz	ESH3-Z5	100305	Jan.06, 2018	1 Year
6.	L.I.S.N.	Rohde & Schwarz	ESH3-Z5	100310	Jan.06, 2018	1 Year
7.	L.I.S.N.	Rohde & Schwarz	ESH3-Z6	100132	Jan.06, 2018	1 Year
8.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100305	Jan.06, 2018	1 Year
9.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100312	Jan.06, 2018	1 Year
10.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	Jan.06, 2018	1 Year
11.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283936	Jan.06, 2018	1 Year
12.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283933	Jan.06, 2018	1 Year
13.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.06, 2018	1 Year
14.	VOLTAGE PROBE	Schwarzbeck	TK9416	N/A	Jan.06, 2018	1 Year
15.	RF CURRENT PROBE	Rohde & Schwarz	EZ-17	100048	Jan.06, 2018	1 Year
16.	8-Wire Impedance Stabilisation Network	Schwarzbeck	CAT5 8158	8158-0035	Jan.06, 2018	1 Year
17.	RF Coaxial Cable	SUHNER	N-2m	No.2	Jan.06, 2018	1 Year
18.	RF Coaxial Cable	SUHNER	N-2m	No.3	Jan.06, 2018	1 Year
19.	RF Coaxial Cable	SUHNER	N-2m	No.14	Jan.06, 2018	1 Year

Page 8 of 30

3.2. The Equipment Used to Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
	O	A -: 1 4	E7405A	NAVAEAAEEAA	In 00 0040	Interval
1.	Spectrum Analyzer	Y	E7405A	MY45115511	•	1 Year
2.	Spectrum Analyzer		FSV40	101495	Jan.06, 2018	1 Year
3.	Test Receiver		ESCS30	100307	Jan.06, 2018	1 Year
4.	Test Receiver	Rohde& Schwarz		100396/003	Jan.06, 2018	1 Year
5.	Test Receiver	Rohde& Schwarz		101526/003	Jan.06, 2018	1 Year
6.	Test Receiver	Rohde& Schwarz		101817	Jan.06, 2018	1 Year
7.	Bilog Antenna	Schwarzbeck	VULB9163	9163-194	Jan.06, 2018	1 Year
8.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan.06, 2018	1 Year
9.	LogPer.Antenna	Schwarzbeck	VUSLP 9111B	9111B-074	Jan.06, 2018	1 Year
10.	Biconical Broad Band Antenna	Schwarzbeck	VHBB 9124+BBA 9106	9124-617	Jan.06, 2018	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan.06, 2018	1 Year
12.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan.06, 2018	1 Year
13.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan.06, 2018	1 Year
14.	Vertical Active Monopole Antenna	Schwarzbeck	VAMP 9243	9243-370	Jan.06, 2018	1 Year
15.	RF Switching Unit+PreAMP	Compliance Direction	RSU-M2	38322	Jan.06, 2018	1 Year
16.	Pre-Amplifier	Agilent	8447D	294A10619	Jan.06, 2018	1 Year
17.	Pre-Amplifier	Rohde&Schwarz	CBLU11835 40-01	3791	Jan.06, 2018	1 Year
18.	50 Coaxial Switch	Anritsu Corp	MP59B	6200237248	Jan.06, 2018	1 Year
19.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.06, 2018	1 Year
20.	RF Coaxial Cable	Schwarzbeck	N-5m	No.1	Jan.06, 2018	1 Year
21.	RF Coaxial Cable	Schwarzbeck	N-1m	No.6	Jan.06, 2018	1 Year
22.	RF Coaxial Cable	Schwarzbeck	N-1m	No.7	Jan.06, 2018	1 Year
23.	RF Coaxial Cable	SUHNER	N-3m	No.8	Jan.06, 2018	1 Year
24.	RF Coaxial Cable	RESENBERGER		No.9	Jan.06, 2018	1 Year
25.	RF Coaxial Cable	SUHNER	N-6m	No.10	Jan.06, 2018	1 Year
26.	RF Coaxial Cable	RESENBERGER	N-12m	No.11	Jan.06, 2018	1 Year
27.	RF Coaxial Cable	RESENBERGER		No.12	Jan.06, 2018	1 Year
28.	RF Coaxial Cable	SUHNER	N-2m	No.13	Jan.06, 2018	1 Year
29.	RF Coaxial Cable	SUHNER	N-0.5m	No.15	Jan.06, 2018	1 Year
30.	RF Coaxial Cable	SUHNER	N-2m	No.16	Jan.06, 2018	1 Year
31.	RF Coaxial Cable	RESENBERGER	N-6m	No.17	Jan.06, 2018	1 Year

Page 9 of 30

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

(EUT: Pioneering TTL Li-ion Camera Flash)

4.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 10 of 30

4.3. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	B(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

4.4. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

4.5. Operating Condition of EUT

- 4.5.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.5.2. Turn on the power of all equipment.
- 4.5.3.Let the EUT work in test mode and measure it.

4.6.Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at ATC is +2.23dB.

4.7.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 11 of 30

4.8.Data Sample

Frequ	Quasi	Avera	Trans	QuasiP	Avera	Quasi	Avera	QuasiP	Averag	Remark
ency	Peak	ge	ducer	eak	ge	Peak	ge	eak	е	(Pass/Fail)
(MHz)	Level	Level	value	Result	Result	Limit	Limit	Margin	Margin	
	(dBµv)	(dBμv)	(dB)	(dBµv)	(dBμv)	(dBμv)	(dBμv)	(dB)	(dB)	
X.XX	29.4	18.3	11.1	40.5	29.4	56.0	56.0	15.5	16.6	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit – Reading level value – Transducer value

4.9. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode: Trail Test Voltage: 12							
MEASUREMENT	RESULT	"TUV-	0316-0	3_fin"			
3/16/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV		Detector	Line	PE
0.150000 2.760000 19.780000	54.20 29.80 24.70	10.5 11.0 11.4	56		~	N N N	GND GND GND
MEASUREMENT	RESULT	: "TUV-	0316-0	3_fin2	,		
3/16/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.155000 0.485000 2.210000	38.60 35.80 25.90	10.5 10.7 11.0		10.5	AV	N N N	GND GND GND
MEASUREMENT	RESULT	: "TUV-	0316-0	04_fin"			
3/16/2018 Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE
0.155000 1.590000 16.510000	53.00 29.50 25.30	10.5 10.9 11.4			QP QP QP	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "TUV-	0316-0	04_fin2	,,		
3/16/2018 Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE
0.160000 0.490000 23.995000	38.00 36.00 24.30	10.5 10.7 11.5	56 46 50	17.5 10.2 25.7	AV AV AV	L1 L1 L1	GND GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

Page 13 of 30

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Pioneering TTL Li-ion Camera Flash M/N:V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Operating Condition: Transfer data
Test Site: 1#Shielding Room

Operator: WADE

Test Specification: N 120V/60Hz Comment: Mains Port Start of Test: 3/16/2018 /

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description: Step IF Start Stop Detector Meas. Transducer Frequency Frequency Width Time Bandw. 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "TUV-0316-03 fin"

3/16/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	54.20	10.5	66	11.8	QP	N	GND
2.760000	29.80	11.0	56	26.2	QP	N	GND
19.780000	24.70	11.4	60	35.3	QP	N	GND

MEASUREMENT RESULT: "TUV-0316-03_fin2"

3/16/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.155000	38.60	10.5	56	17.1	AV	N	GND
0.485000	35.80	10.7	46	10.5	AV	N	GND
2.210000	25.90	11.0	46	20.1	AV	N	GND

Page 14 of 30

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

Pioneering TTL Li-ion Camera Flash M/N:V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Operating Condition: Transfer data Test Site: 1#Shielding Room

WADE Operator:

Test Specification: L 120V/60Hz Comment: Mains Port Start of Test: 3/16/2018 /

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description: IF Start Stop Step Detector Meas.

Transducer

Frequency Frequency Width Time Bandw. 9.0 kHz QuasiPeak 1.0 s 150.0 kHz 100.0 Hz 200 Hz NSLK8126 2008

Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "TUV-0316-04 fin"

3/16/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.155000	53.00	10.5	66		~	L1	GND
1.590000 16.510000	29.50 25.30	10.9	56 60	26.5 34.7	QP QP	L1 L1	GND GND

MEASUREMENT RESULT: "TUV-0316-04 fin2"

3/16/2018 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.160000	38.00	10.5	56	17.5	AV	L1	GND
0.490000	36.00	10.7	46	10.2	AV	L1	GND
23.995000	24.30	11.5	50	25.7	AV	L1	GND

Page 15 of 30

5. RADIATED EMISSION MEASUREMENT

5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators

(EUT: Pioneering TTL Li-ion Camera Flash)

5.1.2.Block diagram of test setup (In chamber)

Below 1GHz:

Page 16 of 30

Above 1GHz:

5.2. Radiated Emission Limit (Class B)

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Frequency	Distance	Field Strengths Limit				
MHz	Meters	μV/m	dB(μV/m)			
30-88	3	100	40.0			
88-216	3	150	43.5			
216-960	3	200	46.0			
Above 960	3	500	54.0			

Remark:

- (1) Emission level dB(μ V) = 20 log Emission level μ V/m.
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument antenna and the closest point of any part of the device or system.

5.3.Manufacturer

The following equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.Pioneering TTL Li-ion Camera Flash (EUT)

Model Number: V350S

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Shenzhen Accurate Technology Co., Ltd.

Page 17 of 30

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2014 on radiated emission measurement.

The bandwidth of the EMI test receiver (R&S ESCS30) is set at 120kHz.

The frequency range from 9kHz to 12750MHz is checked.

Note: The EUT highest operating frequency provided by Manufacturer is 2438MHz, the radiated emission measurement shall be made up to 12.75GHz.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measure- ment range (MHz)
Below 1.705 1.705–108 108–500 500–1000 Above 1000	30. 1000. 2000. 5000. 5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Page 18 of 30

5.6.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBμv)	(dB/m)	(dBμv/m)	(dBμv/m)	(dB)	
X.XX	49.83	-22.03	27.80	43.50	-15.70	QP

Frequency(MHz) = Emission frequency in MHz Reading(dB μ v) = Uncorrected Analyzer/Receiver reading Factor (dB/m)= Antenna factor + Cable Loss – Amplifier gain Result(dB μ v/m) = Reading + Factor Limit (dB μ v/m)= Limit stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

Calculation Formula:

Margin(dB) = Result (dB μ v/m)–Limit(dB μ v/m) Result(dB μ v/m)= Reading(dB μ v)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

5.7. Radiated Emission Noise Measurement Result

PASS.

The frequency range from 9kHz to 12750MHz is investigated.

The radiation emissions from 9kHz-30MHz is not reported, because the test values lower than the limits of 20dB.

The spectral diagrams are attached as below.

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 19 of 30

Test mode: A1 (Below 1GHz)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Horizontal Power Source: DC 7.2V

Date: 18/03/15/

Time:

Engineer Signature: WADE

Distance: 3m

Job No.: LGW2018 #619

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.1 Model: V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	283.9791	43.89	-9.45	34.44	46.00	-11.56	QP			
2	314.3765	43.82	-8.60	35.22	46.00	-10.78	QP			
3	968.9338	31.01	3.40	34.41	54.00	-19.59	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 20 of 30

Job No.: LGW2018 #620

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

A.1 Mode:

Manufacturer: GODOX Photo Equipment Co., Ltd.

Model: V350S

30.000

Note:

Engineer Signature: WADE Distance: 3m

Time:

Date: 18/03/15/

Polarization: Vertical

Power Source: DC 7.2V

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	283.9791	43.22	-9.45	33.77	46.00	-12.23	QP			
2	348.0274	41.15	-7.47	33.68	46.00	-12.32	QP			
3	909.6666	30.78	2.25	33.03	46.00	-12.97	QP			

300

400

600 700

1000.0 MHz

Test mode: A2 (Below 1GHz)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 21 of 30

Job No.: LGW2018 #622

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.2 Model: V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Time:

Polarization:

Engineer Signature: WADE

Power Source: DC 7.2V

Horizontal

Distance: 3m

Date: 18/03/15/

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	267.5455	41.66	-10.06	31.60	46.00	-14.40	QP			
2	449.5557	39.84	-5.35	34.49	46.00	-11.51	QP			
3	881.4067	30.75	2.04	32.79	46.00	-13.21	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 22 of 30

Job No.: LGW2018 #621

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.2 Model: V350S

Note:

Manufacturer: GODOX Photo Equipment Co., Ltd.

Polarization: Vertical Power Source: DC 7.2V

Date: 18/03/15/

Time:

Engineer Signature: WADE

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	43.0504	38.94	-12.20	26.74	40.00	-13.26	QP			
2	63.5356	41.03	-15.18	25.85	40.00	-14.15	QP			
3	807.4290	33.39	0.95	34.34	46.00	-11.66	QP			

Test mode: A3 (Below 1GHz)

Report No.: ATE20180386 Page 23 of 30

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #623

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.3 Model: V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Note:

Polarization: Horizontal Power Source: DC 5V

Date: 18/03/15/

Time:

Engineer Signature: WADE

										limit1	: -
60											
50											
40					1 q			2	3		
30								Thun profits	VM II	pandanghahili	whitenday
	1 :		1		LIMITU	ICAN I DONA MA		141			
20	phaline property with the spinary	ally sought will			~*************************************	V	A/NY' 1				
20 10	destroyen de propens	mll stryet may	M	he have and prosent to		<u> </u>	4,114, 1				
10 0.0	0.000 40	50	60 70) 80		1 - 1 - 1 - 1 - 1 - 1 - 1	30	0 400) 500	600 70	00 1000.0 MHz
10 0.0				_	rapraevant D. Hall					600 70	00 1000.0 MHz
10 0.0	0.000 40 Freq. (MHz)	Rea		Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	30 Margin (dB)		D 500 Height (cm)	Degree (deg.)	00 1000.0 MHz

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical

Power Source: DC 5V

Engineer Signature: WADE

Date: 18/03/15/

Distance: 3m

Time:

Report No.: ATE20180386

Page 24 of 30

Job No.: LGW2018 #624

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT:

Mode: A.3 Model: V350S

Note:

Manufacturer: GODOX Photo Equipment Co., Ltd.

Pioneering TTL Li-ion Camera Flash

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	167.8242	42.81	-13.88	28.93	43.50	-14.57	QP			
2	403.2500	37.79	-6.38	31.41	46.00	-14.59	QP			
3	827.4933	37.86	1.30	39.16	46.00	-6.84	QP			

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 25 of 30

Test mode: A1 (Above 1GHz)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

> Polarization: Horizontal Power Source: DC 7.2V

> > Date: 18/03/15/

Time:

Engineer Signature: WADE

Distance: 3m

Job No.: LGW2018 #631 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

- (0)/// (0)//

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.1 Model: V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Note:

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 26 of 30

Job No.: LGW2018 #632

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

V350S

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Manufacturer: GODOX Photo Equipment Co., Ltd.

Mode: A.1

Note:

Model:

Polarization: Vertical Power Source: DC 7.2V

Date: 18/03/15/

Time:

Engineer Signature: WADE

Test mode: A2 (Above 1GHz)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 27 of 30

Job No.: LGW2018 #634

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.2

Manufacturer: GODOX Photo Equipment Co., Ltd.

V350S Model:

Note:

Polarization: Horizontal Power Source: DC 7.2V

Date: 18/03/15/

Time:

Engineer Signature: WADE

									limit1	
80								1	limit2	<u>: —</u>
70										
60			-							
50			-							1
40	maganda kan sayahada da da da da da da			a man de marchante de la company	Maryananandaha	government work stands	North Market	where we will	March mary marked mark	2
30	namenton epingada de distri	hane alkalara aleesalee Astalah	phylosoph							
20										
10										
0.0										
1	000.000		2000	3000	'	5000	6000	7000 80	000 9000 1	1000012750.0 MHz
	Freq.	Reading	Factor	Result	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(ubuv/m)	(ub)	I	(/	(409./	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 28 of 30

Job No.: LGW2018 #633

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.2 Model: V350S

Manufacturer: GODOX Photo Equipment Co., Ltd.

Note:

Polarization: Vertical
Power Source: DC 7.2V

Date: 18/03/15/

Time:

Engineer Signature: WADE

	D dBuV/m		1	1			-	1 1	limit1	
									limit2	81
80										
70										*****
60										
50										
40						de sent le constitue de la con	brendundsku	Jampan	Annah bankaria	- Francisco
30	manda para de para de la constitución de la constit	han bakara b	the special state of the state	HAR ALANAMAN AND THE PARTY						
20								 -		
10								ļļ.		
0.0										
4	1000.000		2000	3000	12	5000	6000	7000 80	00 90001	000012750.0 MHz
3	Freq.	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	(MHz)	(ubuv/III)					Seattle Court & Don		Ž.	
		27.81	16.30	44.11	74.00	-29.89	peak			

Page 29 of 30

Test mode: A3 (Above 1GHz)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2018 #635

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.3 Model: V350S

Note:

Manufacturer: GODOX Photo Equipment Co., Ltd.

Date: 18/03/15/ Time:

Polarization:

Engineer Signature: WADE

Power Source: DC 5V

Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	9393.966	27.18	16.94	44.12	74.00	-29.88	peak			
2	9393.966	18.31	16.94	35.25	54.00	-18.75	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20180386

Page 30 of 30

Job No.: LGW2018 #636

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Pioneering TTL Li-ion Camera Flash

Mode: A.3

Manufacturer: GODOX Photo Equipment Co., Ltd.

Model: V350S

Note:

Polarization: Vertical Power Source: DC 5V

Date: 18/03/15/

Time:

Engineer Signature: WADE

Distance: 3m

***** End of Test Report *****