《数值分析》3

主要内容: 不动点迭代法

不动点迭代的收敛性

迭代序列的收敛速度

电子科技大学 邓良剑

迭代:将一个计算过程反复进行

迭代法:一类常见常用的计算技术

举例

方程:
$$x = \cos(x)$$

- ■构造有效的迭代格式
- ■选取合适的迭代初值
- ■对迭代格式进行收敛性分析

一简单迭代:
$$x_{n+1} = \cos(x_n)$$
 (n=1,2,3,·····)

初值: $x_0=0.5$

举例1: 方程 $x^3 + 4x^2 - 10 = 0$ 在 [1, 2] 上有一个根, 将方程变换成另一形式

(1)
$$x = \sqrt{10 - x^3} / 2$$
 $\varphi(x) = \sqrt{10 - x^3} / 2$
 $x_{n+1} = \varphi(x_n)$ $(n = 0, 1, 2, \dots)$
 $x_0 = 1.5$

(2)
$$x = \sqrt{10/(x+4)}$$
 $\varphi(x) = \sqrt{10/(x+4)}$ $x_{n+1} = \varphi(x_n)$ $(n = 0, 1, 2, \dots)$ $x_0 = 1.5$

一性: 构造规律: 构造有效?

$$x_{n+1} = \frac{1}{2} \sqrt{10 - x_n^3}$$

n	X _n	$ x_{n+1} - x_n $
0	1.5000	
1	1.2870	2.1e-1
2	1.4025	1.1e-1
3	1.3455	5.7e-2
4	1.3752	2.9e - 2
5	1.3601	1.5e-2
6	1.3678	7.7e-3
7	1.3639	3.9e-3
8	1.3659	2.0e-3
9	1.3649	1.0e-3
10	1.3654	5.3e-4

$$x_{n+1} = \sqrt{\frac{10}{x_n + 4}}$$

n	X _n	$ x_{n+1} - x_n $
0	1.5000	
1	1.3484	1.5e-1
2	1.3674	1.8e-2
3	1.3650	2.4e-3
4	1.3653	3.0e-4
5	1.3652	3.9e-5
6	1.3652	4.9e-6

$$f(x) = 0 \implies x = \varphi(x)$$

若存在 x^* , 使得 $x^* = \varphi(x^*)$,则称 x^* 为 $\varphi(x)$ 的不动点

$$\varphi(x)$$
 — 迭代函数
$$x_{n+1} = \varphi(x_n)$$

$$\Rightarrow \begin{cases} y_n = \varphi(x_n) \\ x_{n+1} = y_n \end{cases}$$

$$(x_n, y_n) \Rightarrow (x_{n+1}, y_n)$$

$$\Rightarrow (x_{n+1}, y_{n+1})$$

引理2.1 如果 $\varphi(x) \in C^1[a, b]$,满足条件:

(1) $a \le \varphi(x) \le b$; (2) $|\varphi'(x)| \le L < 1$

则 $\varphi(x)$ 在 [a, b] 有唯一的不动点 x^*

证: 1)若 $\varphi(a) = a$ 或 $\varphi(b) = b$,显然 $\varphi(x)$ 有不动点

设 $\varphi(a) \neq a$, $\varphi(b) \neq b$ 则有 $\varphi(a) > a$, $\varphi(b) < b$

所以, 存在 x^* , 使得 $\psi(x^*) = 0$

即 $x^* = \varphi(x^*)$,故 x^* 是 $\varphi(x)$ 的不动点.

(2) 如果 $\varphi(x)$ 有两个不同的不动点 $x_1^* \neq x_2^*$ 则有

两式相减得
$$x_1^* = \varphi(x_1^*)$$
 $x_2^* = \varphi(x_2^*)$ $x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*)$

由拉格朗日中值定理知, 存在 ξ 介于 x_1^* x_2^* 之间, 使

$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*) = \varphi'(\xi)(x_1^* - x_2^*)$$

- $|x_1^* x_2^*| = |\varphi'(\xi)| \cdot |x_1^* x_2^*|$
- $|x_1^* x_2^*| \le L \cdot |x_1^* x_2^*|$
- \rightarrow $1 \le L$ (与 L<1 条件矛盾) 故不动点唯一。

不动点迭代的收敛性

定理2.4 如果 $|\varphi'(x)| \leq L < 1$,满足条件:

(1)
$$a \le \varphi(x) \le b$$
; (2) $\varphi(x) \in C^1[a, b]$

则对任意的 $x_0 \in [a, b]$, 迭代格式 $x_{n+1} = \varphi(x_n)$

产生的序列 $\{x_n\}$ 收敛到不动点 x^* ,且有

$$|x^* - x_n| \le \frac{1}{1 - L} |x_{n+1} - x_n|$$

$$\begin{cases} x_n = \varphi(x_{n-1}) \\ x^* = \varphi(x^*) \end{cases} \Rightarrow \begin{aligned} |x_n - x^*| &= |\varphi(x_{n-1}) - \varphi(x^*)| \\ &= |\varphi'(\xi)| \cdot |x_{n-1} - x^*| \end{aligned}$$

$$\rightarrow |x_n - x^*| \le L |x_{n-1} - x^*|$$

不动点迭代的收敛性

$$|x_{n}-x^{*}| \leq L^{n} |x_{0}-x^{*}|$$

$$\lim_{n\to\infty} |x_{n}-x^{*}| \leq \lim_{n\to\infty} L^{n} |x_{0}-x^{*}| = 0 \quad (0 < L < 1)$$
所以,
$$\lim_{n\to\infty} x_{n} = x^{*} \quad \text{ 故迭代格式收敛}$$

$$|x_{n}-x^{*}| = |x_{n}-x_{n+1}+x_{n+1}-x^{*}|$$

$$\leq |x_{n}-x_{n+1}| + |x_{n+1}-x^{*}| \leq |x_{n}-x_{n+1}| + L |x_{n}-x^{*}|$$

$$\Rightarrow \quad (1-L)|x_{n}-x^{*}| \leq |x_{n}-x_{n+1}|$$

$$\Rightarrow \quad |x^{*}-x_{n}| \leq \frac{1}{1-L} |x_{n+1}-x_{n}|$$

不动点迭代序列的收敛速度

数列的 r 阶收敛(概念):

设
$$\lim_{n\to\infty} x_n = x^*$$
,若存在 $a>0$, $r>0$ 使得

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = a \quad 则称数列\{x_n\} \; r \; 阶收敛.$$

特别: (1) 收敛阶r=1时,称为线性收敛

- (2) 收敛阶~1时,称为超收敛;
- (3) 收敛阶/=2时,称为平方收敛

序列的收敛阶数越高, 收敛速度越快

举例2: 方程 $x^3+10x-20=0$,取 $x_0=1.5$,证明迭代法在[1, 2]上 $x_{n+1}=20/(x_n^2+10)$

,是线性收敛

显然,在x*附近 $|\varphi'(x)| < 1$ $\varphi'(x) \neq 0$

利用Lagrange中值定理,有

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = |\varphi'(\xi_n)| |x_n - x^*|$$

其中, ξ_n 介于 x_n 和 x^* 之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} |\varphi'(\xi_n)| = |\varphi'(x^*)|$$

由此可知,这一序列的收敛阶数为1,即迭代法是线性收敛.

n	X _n	$ x_{n+1}-x_n $	$ x_{n+2}-x_{n+1} $
0	1.5000000		$ x_{n+1}-x_n $
1	1.6326530	1.3265e-001	
2	1.5790858	5.3567e-002	4.0381e-001
3	1.6008308	2.1745e-002	4.0594e-001
4	1.5920195	8.8113e-003	4.0521e-001
5	1.5955927	3.5732e-003	4.0553e-001
6	1.5941442	1.4486e-003	4.0540e-001
7	1.5947315	5.8733e-004	4.0545e-001
8	1.5944934	2.3812e-004	4.0543e-001
9	1.5945899	9.6545e-005	4.0544e-001
10	1.5945508	3.9143e-005	4.0544e-001
11	1.5945666	1.5870e-005	4.0544e-001
12	1.5945602	6.4343e-006	4.0544e-001

序列收敛的加速方法

定理2.6 设 x^* 是 $\varphi(x)$ 的不动点,且

$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$$

而
$$\varphi^{(p)}(x^*) \neq 0$$
 则 $x_{n+1} = \varphi(x_n)$ p阶收敛

由Taylor公式

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = \frac{|x_n - x^*|^p}{p!} |\varphi^{(p)}(\xi_n)|$$

其中, ξ_n 介于 x_n 和 x^* 之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = \frac{1}{p!} \lim_{n\to\infty} |\varphi^{(p)}(\xi_n)| = \frac{1}{p!} |\varphi^{(p)}(x^*)|$$

故迭代法p阶收敛.

序列收敛的加速方法

理一下思路

计算基本常识:误差、有效数字、计算中 数的规则

算法的稳定概 ② 念: 引迭代格

式重要性

迭代法的引入:二 分法 (区间迭代、 误差定理)

这章迭代法的对象 (干什么)?

经典迭代法:牛顿 迭代(推导、几何 、优缺点....)

迭代法深入:不动点迭代(初值点迭代)收敛性条件、收敛性条件、收敛速差、收敛速度,定理2.4)

学到了什么?

不动点迭代法

不动点迭代的收敛性

迭代序列的收敛速度