

Optimization of Capacitated Vehicle Routing Problem using Artificial **Bee Colony Algorithm**

Rochester Institute of Technology

Nikhil Haresh Keswaney | Advisor: Dr. Zack Butler

Introduction

Capacitated vehicle routing problem(CVRP) is a combinatorial optimization problem which states as follows:

"Find the optimal delivery routes for a set of vehicles to supply a set of customers with given demands minimizing the total cost of all the routes."

Number of vehicles: 4 Vehicle Capacity: 45

Exact Algorithm

Subset finder:

- Given a set of customers find all the ways in which the customers can be served given a set of vehicles.
- Pruning of the sets is done by maintaining the capacity constraint of the truck.

$$U(n,k) = k \times U(n-1,k) + U(n-1,k-1)$$

2. Traveling salesman:

Out of all the ways found find the best route amongst them.

$$C(S, i) = \forall i \in S \min\{C(S - \{i\}, j) + c_{ij}\}\$$

The traveling salesman algorithm will be applied on each path J of a candidate subset C of all possible subsets of U(n, k). For all J in C we apply the TSP.

Approximate Algorithm (Bee Colony Algorithm)

"Artificial bee colony algorithm is based on the foraging behavior of honey bees"

1. Scout bee phase:

Go out and find FEASIBLE food sources (Initial solution) for next phase.

2. Employed bee phase:

Go out and explore the food source's (found by scout bee's) neighborhood and try and find better solutions.

	Truck1				Truck2				Truck3				
Solution	0											9	
shuffled	0	5	2	3	0	1	4	9	0	6	8	7	0
вмх	0	2	3	1	0	4	5	6	0	9	8	7	0

	Truck1			Truck2				Truck3					
Before Swap	0	1	2	3	0	4	5	6	0	7	8	9	0
After Swap	0	1	7	3	0	4	5	6	0	2	8	9	0

3. Onlooker bee phase:

Selects an employed bee using roulette wheel selection. Explores the neighborhood of that employed bee for better solution.

- Allows infeasible solutions in the beginning
- Penalizes infeasible solutions in the end to prevent it from getting stuck at local minima

Parallel Algorithm

Results

Solution and performance comparison

No	des	Exact algorithm	(Time Taken)	Approximate Algorithm (Swarm Size = 70) Iterations = 1500				
Number of Nodes	Optimal Answer	Brute Force	Optimized	Approximate Answer	Avg. ans	Time Taken		
P-n16-k8.vrp	450	3 ms	5 s	455	463	1000ms		
P-n22-k2.vrp	216	~77 Years	~4 Days	224	231	1062 ms		
E-n23-k3.vrp	569	~490 Million Years	~122 Days	654	671	1048 ms		
E-n30-k3.vrp	534	~8.4xE15 Years	~2 Years	575	603	1125 ms		
B-n50-k7.vrp	741	~9.7xE47 Years	~136 Years	884	925	1551 ms		

Strong Scaling

Weak Scaling

Future Work

feasible one

There are multiple ways in which the project can be improved, some are stated as follows:

- Certain parts of the Bee colony algorithm have the potential to be further parallelized.
- In this project CPU cores are used for the parallel algorithm which can be replaced by GPU cores.

References

- [1] S. Z. . C. Lee, "An improved artificial bee colony algorithm for the capacitated vehicle routing problem,"2015 IEEE International Conference on Systems, Man, and Cybernetics, vol. 53, pp. 512–522,
- [2] geeksforgeeks, "Count number of ways to partition a set into k subsets." [Online]. Available: https://www.geeksforgeeks.org/countnumber-of-ways-to-partition-a-set-into-k-subsets/
- [3] A. Kaminsky, BIG CPU, BIG DATA Solving the World's Toughest Computational Problems with Parallel Computing Second Edition,