(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-124677

(43)公開日 平成8年(1996)5月17日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 5 B 33/04

審査請求 未請求 請求項の数7 OL (全 13 頁)

(21)出願番号

特顏平6-257114

(22)出願日

平成6年(1994)10月21日

(71)出顧人 000183646

出光興産株式会社

東京都千代田区丸の内3丁目1番1号

(72)発明者 福岡 賢一

千葉県袖ケ浦市上泉1280番地 出光興産株

式会社内

(72)発明者 藤田 正登

千葉県袖ケ浦市上泉1280番地 出光興産株

式会社内

(74)代理人 弁理士 中村 静男 (外2名)

(54)【発明の名称】 有機ELデパイス

(57)【要約】

【目的】 密着タイプの封止法により封止された有機E L索子を発光源として備えた有機ELデバイスであっ て、有機EL索子の発光機能が喪失しにくい有機ELデ バイスを提供する。

【構成】 本発明の有機ELデバイスは、基板上に設けられた有機EL索子と、この有機EL索子の発光面を覆うようにして前記基板上に形成された接着剤層と、この接着剤層によって前記基板上に固着された封止材とを備えた有機ELデバイスであって、前記有機EL索子と前記接着剤層との間に前記有機EL索子の発光面を覆う応力緩和層を有することを特徴とするものである。

2

【特許請求の範囲】

【請求項1】 基板上に設けられた有機EL素子と、この有機EL素子を覆うようにして前記基板上に形成された接着剤層と、この接着剤層によって前記基板上に固着された封止材とを備えた有機ELデバイスにおいて、前記有機EL素子と前記接着剤層との間に前記有機EL素子を覆う応力緩和層を有することを特徴とする有機ELデバイス。

【請求項2】 応力緩和層がずれ応力の発生が小さい物質からなる層を含み、この層が有機EL素子の外周に形 10成されている、請求項1に記載の有機ELデバイス。

【請求項3】 ずれ応力の発生が小さい物質が、フッ素系、シリコーン系または炭化水素系の液体、グリースまたはゲルからなる、請求項2に記載の有機ELデバイス。

【請求項4】 応力緩和層が、有機EL素子の外周に形成された液体層と、この液体層の外周に形成された固体層とを有し、かつ、前記固体層が前記液体層を形成している液と同一組成の液の固化物からなる、請求項1~請求項3のいずれか1項に記載の有機ELデバイス。

【請求項5】 応力緩和層と接着剤層との間に、背面から平面視したときに有機EL素子を覆う補助板が基板と 実質的に対向する向きに設けられている、請求項1~請 求項4のいずれか1項に記載の有機ELデバイス。

【請求項6】 応力緩和層が、有機EL素子の発光面の 外周に形成された液体層と、この液体層において基板表面と平行な方向の外周に形成された固体層とを有し、かつ、前記固体層が前記液体層を形成している液と同一組成の液の固化物からなる、請求項5に記載の有機ELデバイス。

【請求項7】 基板上に設けられた有機EL素子の背面にこの有機EL素子を覆うようにして接着剤層を設け、この接着剤層によって前記基板上に封止材を固着することにより前記有機EL素子を封止するにあたり、前記有機EL素子と前記接着剤層との間に前記有機EL素子を覆う応力緩和層を設けることを特徴とする有機EL素子の封止方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機EL素子を発光源 40 として備えた有機ELデバイスおよび有機EL素子の封止方法に係り、特に、密着タイプの封止方法で封止された有機ELを発光源として備えた有機ELデバイスおよび有機EL素子を封止するための密着タイプの封止方法に関する。

[0002]

【従来の技術】EL案子には無機EL案子と有機EL案子とがあり、いずれのEL案子も自己発光性であるために視認性が高く、また完全固体案子であるために耐衝撃性に優れるとともに取扱が容易である。このため、グラ 50

フィックディスプレイの画素やテレビ画像表示装置の画素、あるいは面光源等としての研究開発および実用化が進められている。有機EL素子は、陽極と陰極とをこれらの間に有機発光材料を含有する発光層を少なくとも介在させて積層したものであり、現在までに種々の層構成のものが開発されている。層構成の具体例としては、陽極/発光層/陰極、陽極/正孔注入層/陰極、陽極/正孔注入層/陰極、陽極/正孔注入層/発光層/電子注入層/陰極、等が挙げられる。発光層は通常1種または複数種の有機発光材料により形成されるが、有機発光材料と正孔注入材料および/または電子注入材料との混合物により形成される場合もある。

【0003】このような層構成を有する有機EL素子は、多くの場合、基板上に形成される。そして、発光層からのEL光を前記の基板側から取り出す場合には基板の直上に陽極が形成され、発光層からのEL光を有機EL素子を設けた側から取り出す場合には基板の直上に陰極が形成される。陽極は、Au, Ni, ITO(インジウム錫酸化物)等の仕事関数の大きな物質からなる透明ないし半透明の薄膜により形成される。一方陰極は、Yb, Mg, Al, In等の仕事関数の小さな物質からなる薄膜により形成される。

【0004】有機EL素子は電流駆動型の発光素子であり、発光層(有機発光材料)に注入された電子と正孔とが再結合するときに生じる発光を利用するものである。このため、有機EL素子は発光層の厚さを薄くすることにより例えば4.5Vという低電圧での駆動が可能で応答も速いといった利点や、輝度が注入電流に比例するために高輝度の発光が可能といった利点を有している。また、発光材料を変えることによってり青、緑、黄、赤等、いろいろな色の発光が得られている。これらの利点により、現在、実用化のための研究が続けられている。

【0005】ところで、有機EL素子に用いられる有機 発光材料等の有機物は水分や酸素等に弱い。また電極 も、酸化により大気中では特性が急激に劣化する。した がって、実用的な有機EL素子や有機ELデバイスを得 るためには、封止を施す必要がある。有機EL素子の封 止方法としては、封止対象の素子表面に封止層としての ポリパラキシレン膜を気相重合法により形成する方法

(特開平4-137483号公報参照) や、封止対象の 素子表面に SiO_2 の保護膜を形成する方法(特開平4-73886号公報参照) もあるが、より封止効果の高 い方法が既に開発されている。その方法は次の2つの形 態に大別される。

【0006】一つはケーシングタイプの封止方法で、有機EL案子をケース内に入れて外界と遮断し、前記のケース内に有機EL案子と共に所定の封止用流体を充填しておくことにより封止する方法である。もう一つは密着タイプの封止方法で、基板上に形成されている有機EL案子の背面(基板側からみて案子の後ろ)にガラス板等

の封止材を接着剤で面接着することにより封止する方法である。

【0007】ケーシングタイプの封止方法によれば、ケース内に入れる封止用流体として適当なものを選ぶことにより有機EL素子を破壊することなくその劣化を防止することができるが、その一方で下記(1)~(3)のような難点を生じる。

- (1) 有機EL索子をケースに入れることを必須とする ので、有機EL索子の利点の1つである薄型という特徴 が損なわれる。
- (2) ケースを工作する工程およびケース内に封止用流体を注入する工程等が必要であるため、大量生産には不向きである。
- (3) 基板上に形成されている多数の有機EL案子を1つのケースを用いて封止しようとする場合等のように、大きなケースに大量の封止用液体を入れた場合には、外界の温度上昇に伴う熱膨張によってケース内の封止用流体の体積が増したときにケースを破壊してしまうおそれがある。

【0008】一方、密着タイプの封止方法によれば、封止後においてもその厚さが薄く、かつ大量生産が比較的容易な有機ELデバイス(封止された有機EL素子を発光源として備えているもの)を容易に得ることができ、また、高い封止効果を容易に得ることができる。密着タイプの封止方法としては、GeO等の無機化合物からなる保護膜を封止対象の有機EL素子の外周に設けた後にこの上にガラス基板を固着する方法(特開平4-212284号公報参照)や、封止対象の有機EL素子の外周に直接またはSiOz膜を介して光硬化性樹脂層を設け、この光硬化性樹脂層を介してガラス基板を固着する方法(特開平5-182759号公報参照)が知られている。

[0009]

【発明が解決しようとする課題】しかしながら、従来の密着タイプの封止方法によって有機EL素子を封止して得た有機ELデバイスには、1000時間程度連続駆動させると有機EL素子の発光機能が失われるという難点があった。

【0010】本発明の第1の目的は、密着タイプの封止 法により封止された有機EL素子を発光源として備えた 有機ELデバイスであって、有機EL素子の発光機能が 喪失しにくい有機ELデバイスを提供することにある。

【0011】また、本発明の第2の目的は、封止後に有機EL索子の発光機能が喪失しにくい有機EL索子の封止方法を提供することにある。

[0012]

【課題を解決するための手段】本発明者らは上述した発 光機能の喪失の原因について鋭意検討を加えた結果、こ の発光機能の喪失は封止効果の低減に起因するものでは なく、有機EL案子の接着剤層側の電極端部においてシ 50 ョートが発生することに起因していることを見いだし た。この点をさらに詳しく説明する。

【0013】接着剤や光硬化性樹脂では硬化時に体積が収縮することから残留応力が発生し、この残留応力は、封止対象の有機EL素子と前記の接着剤や光硬化性樹脂との間にGeOやSiO2等の膜があったとしてもその膜厚がμmオーダーと薄いと有機ELに伝わってしまう。そして、残留応力は曲率半径の小さな部分で特に強くなるので、有機EL素子に伝播した残留応力は当該素子の端部等に集中する。この結果、素子の電極端部等が押潰され、陽極と陰極とが接触してショートが発生する。本発明者らは上記の知見に基づきさらに検討を加えた結果、本発明に到達した。

【0014】上記第1の目的を達成する本発明の有機E Lデバイスは、基板上に設けられた有機EL素子と、こ の有機EL素子を覆うようにして前記基板上に形成され た接着剤層と、この接着剤層によって前記基板上に固着 された封止材とを備えた有機ELデバイスであって、前 記有機EL素子と前記接着剤層との間に前記有機EL素 子を覆う応力緩和層を有することを特徴とするものであ る。

【0015】また、上記第2の目的を達成する本発明の有機EL索子の封止方法は、基板上に設けられた有機EL索子の背面にこの有機EL索子を覆うようにして接着剤層を設け、この接着剤層によって前記基板上に封止材を固着することにより前記有機EL索子を封止するにあたり、前記有機EL索子と前記接着剤層との間に前記有機EL索子を覆う応力緩和層を設けることを特徴とするものである。

【0016】以下、本発明を詳細に説明する。先ず本発明の有機ELデバイスについて説明すると、この有機ELデバイスは上述したように特定の箇所に応力緩和層を有することを特徴とするものである。そこで、この応力緩和層について先ず説明する。

【0017】上記の応力緩和層は、接着剤層の残留応力が有機EL素子に伝播するのを抑制するためのものである。したがって、この応力緩和層は水分や酸素が外部から有機EL素子に侵入するのを防止する効果(以下、封止効果という)を有していてもよいし有していなくてもよいが、封止効果を有して方がより好ましい。また、応力緩和層はずれ応力の発生が小さい物質からなる層を含む複数層構造の層であることが好ましい。応力緩和層を複数層構造とする場合には、ずれ応力の発生が小さい物質からなる層を有機EL素子の外周に形成する。

【0018】ここで、上記の「ずれ応力の発生が小さい物質」とは、接着剤層が硬化等の要因により有機EL素子の電極と平行な方向にずれたときに、そのずれを実質的に伝えない性質を有する流体(気体,液体)、グリー

6

ス、ゲル等を意味する。

【0019】上記のずれ応力の発生が小さい物質のう ち、流体としてはヘリウムガス, 窒素ガス, アルゴンガ ス等の気体や、クロロフルオロカーボン、パーフルオロ ポリエーテル、パーフルオロアミン, パーフルオロアル カン等のフッ素系液体、メチルハイドロジエンシリコー ン、メチルクロロフェニルシリコーン、トリフルオロプ ロピルメチルシリコーン等のシリコーン系液体、αーオ レフィン (C_5 $\sim C_{17}$ のポリ α - オレフィン) , ポリブ テン、アルキルベンゼン、ポリアルキレングリコール等 の炭化水素系液体等を挙げることができる。しかしなが ら、これらの流体からなる応力緩和層を接着剤層形成用 の接着剤が当該応力緩和層内あるいは当該応力緩和層と 基板(有機EL素子を設けるための基板)との界面に進 入するのを防止しながら形成するには煩雑な工程を必要 とする。したがって、上記の「ずれ応力の発生が小さい 物質」として流体を使用する場合、この流体としては溶 剤に樹脂やゴム等を溶解させてなり、大気中10~30 ℃程度の温度条件下で溶剤の蒸発により造膜するコーテ ィング液を用いることが好ましい。

【0020】上記のコーティング液を用いた場合には、 当該コーティング液からなる層中の溶剤を若干蒸発させ ることにより層表面に固体層(被膜)を形成させること ができ、かつ、前記の固体層よりも内側の部分について は液体状態を維持させることが可能である。したがっ て、例えば液体状態が維持される範囲内に有機EL素子 が位置するようにして上記のコーティング液からなる層 を形成した後、固体層の形成および接着剤層の形成を順 次行うことにより、目的とする応力緩和層を容易に形成 することができる。

【0021】なお、コーティング液は前記ずれ応力の発生が小さい液体のなかでも室温下で容易に蒸発するものを溶剤としていることが好ましい。また、前記の固体層は特に硬くなる必要は無いが、接着剤が浸透してしまうものは用をなさないので、コーティング液に溶けている固体成分は固体層となったときに接着剤を実質的に通さないものであることが好ましい。

【0022】上述したコーティング液の具体例としては 下記(1)~(3)のものが挙げられる。

- (1) サイトップCTX-105A(商品名;旭硝子(株)製)、フロロバリヤー(商品名; (株)泰成商会製)、フロリナートFC72(商品名;住友3M(株)製)にテフロンAF(商品名;デュポン社製)を溶かしたもの、前記のフッ素系液体を溶剤としこの液体のより重合度が進んだものを溶質とするもの等のフッ素系コーティング液。
- (2) 前記のシリコーン系液体を溶剤としこの液体のより重合度が進んだものを溶質とするもの等のシリコーン 系コーティング液。
- (3) 前記の炭化水素系液体を溶剤としこの液体のより

重合度が進んだものを溶質とするもの等の炭化水素系コ ーティング液。

【0023】また、前述した「ずれ応力の発生が小さい物質」としてはグリースやゲルも好適である。グリースは基油、増ちょう剤、添加剤からなるが、基油に前記ずれ応力の発生が小さい液体を用いているものが特に好ましい。増ちょう剤、添加剤としては、それが固体粒子である場合はその粒径が小さい方が好ましい。前記の粒径が大きすぎると有機EL素子を傷つけ、そこがショーをが大きすぎると有機EL素子を傷つけ、そこがショーをの原因になる。また、前記の粒径は少なくとも応力緩和層の目的とする厚さよりも小さい必要がある。しかし、前記の粒径があまりに小さいとちょう度がなくなり、グリースを用いる利点がなくなる。前記の粒径は100 オングストローム~10 μ mが好ましい。増ちょう剤、添加剤として固体粒子でないものを用いたグリースは、当該グリースにより有機EL素子を傷つける心配がないので、一層好ましい。

【0024】上記のグリースの具体例としては、下記(1)~(3)のものが挙げられる。

- (1) PTFEグリース(商品名;ニチアス(株)製)等のフッ素系グリース。
- (2) FS高真空用グリース (商品名; ダウコーニング 社製) 等のシリコーン系グリース。
- (3) アピエゾングリースN(商品名; アピエゾン社製) 等の炭化水素系グリース。

【0025】そして、前記のゲルの具体例としてはグリセリン、ゼラチン、ポリアクリルアミドゲル、アガロースゲル、メチルセルロースゲル等が挙げられる。本発明で使用するゲルは流動性を有している必要がある。

【0026】応力緩和層を形成するにあたって前述した コーティング液を使用する場合、応力緩和層の形成は前 述した方法により行ってもよいが、補助板を用いて次の ように行ってもよい。まず、有機EL素子上にこの有機 EL素子を覆うに十分な量のコーティング液を滴下ない し塗布してコーティング液の層を一旦形成する。次に、 前記の層の上に補助板を配置し、この補助板の重みによ り、またはこの補助板に荷重をかけることにより前記の 層を一様に拡がらせる。前記の補助板としては平面視し たときに有機EL案子を覆うに十分な大きさを有するも 40 のを使用し、この補助板は有機EL索子が形成されてい る基板と実質的に対向する向きに設ける。また、コーテ ィング液の量と補助板の重量ないし補助板に加える荷重 とは、有機EL素子と補助板との間にコーティング液の 層が形成されるように適宜調節する。次いで、適当時間 放置することによりコーティング液の層の外表面(外気 と接している面)、すなわち前記の層において基板表面 と平行な方向の表面に固体層(被膜)を形成させる。こ のとき、有機EL案子の外周についてはコーティング液 が固化しないよう、放置時間を適宜調節する。これによ り応力緩和層が一応得られるが、このままでは有機EL

8

素子の外周のコーティング液が短時間の内に固化してしまうので、前記の補助板を覆うようにして接着剤層を形成する。接着剤層を形成した後にはコーティング液中の溶剤の揮散が抑止されるのでコーティング液の固化が抑止され、その結果として有機EL素子の外周に存在するコーティング液は液体状態を維持し続ける。これにより目的とする応力緩和層が得られる。

【0027】また、前述したグリースを使用しての応力 緩和層の形成は、有機EL素子を覆うに十分な量のグリースを有機EL素子上に滴下ないし塗布してグリース層 を形成することにより行うことができる。あるいは、前 述のようにしてグリース層を形成した後、このグリース 層の上に補助板を配置し、この補助板の重みにより、またはこの補助板に荷重をかけることにより行うことができる。また、補助板を用いずに、グリースを μ mオーダーで塗り付けることにより応力緩和層を形成することは、有機EL素子を傷つける可能性もあり、難しいといえる。そして、前述したグルを使用しての応力緩和層の形成は、グリースを用いて応力緩和層を形成する場合と同様にして行うことができる。

【0028】上述のようにして形成することができる応力緩和層の厚さ(有機EL素子上での厚さ)は、概ね $0.1\mu m \sim 1cm$ の範囲内で適宜選択可能である。厚さが $0.1\mu m \leftrightarrow 1cm$ を超えると、薄型という有機 ELデバイスの利点が損なわれるばかりでなく、応力緩和層の体積の増大によって熱膨張による体積増も大きくなるので、使用時の温度変化等により破壊するおそれが強くなる。応力緩和層の好ましい厚さは、 $0.01 \sim 1mm$ である。なお、ここでいう厚さは、 $0.01 \sim 1mm$ である。なお、ここでいう厚さは、応力緩和層が前述したコーティング液を使用して形成したものである場合には有機EL素子の外周に液体状態を維持したま存在しているコーティング液の層の厚さを意味する。

【0029】また、応力緩和層を形成するにあたって補助板を用いる場合、この補助板は封止効果を有していてもよいが、封止効果を有している方がより好ましい。補助板としてはガラス,セラミックス,金属等の無機物や、フッ素系樹脂,アクリル系樹脂,ポリカーボネート,ポリエステル,ポリアミド,ポリスチレン,ポリプロピレン,ポリオレフィン系樹脂等の樹脂等でできた板状のものを用いることが好ましい。補助板の大きさは、前述したように平面視したときに有機EL来子を覆うに十分な大きさであることが好ましい。また、補助板の厚さは概ね0.1 μ m~3 μ mとすることが好ましい。厚さが0.1 μ m未満のものはその生産コストが高く、また取り扱いにくいことから、望ましくない。一方、厚さが3 μ mを超えると薄型という有機ELデバイスの利点が損なわれる。補助板の好ましい50

厚さは0.01~1mmである。

【0030】本発明の有機ELデバイスでは、基板上に 設けられた有機EL素子を覆うようにして上述した応力 緩和層が設けられており、この応力緩和層によって覆わ れた有機EL素子を覆うようにして前記の基板上に接着 剤層が形成されている。この接着剤層は後述する封止材 を固着させるためのものであると同時に、前述した応力 緩和層が外気と触れるのを防止するためのものであり、 その側面は特別の部材を設けるか後述する封止材の形状 を特別なものとしない限りは外気と接する。したがっ て、接着剤層は封止効果を有しているもの、すなわち透 水性や酸素透過性が低いものであることが特に好まし い。このような接着剤層としては光硬化性接着剤、熱硬 化性接着剤、嫌気性接着剤等からなるものが好ましく、 具体例としてはベネフィックスVL((株)アーデル製 の光硬化性接着剤の商品名)、アクリルワン#4111 ((株)マルトー製の光硬化性接着剤の商品名)、アロ ンタイトUL(東亜合成化学工業(株)製の嫌気性接着 剤の商品名)、アレムコボンド570((株)オーデッ ク製の熱硬化性接着剤の商品名)等が挙げられる。

【0031】接着剤層は、前述した応力緩和層の上(応力緩和層を形成するにあたって補助板を用いた場合にはこの補助板の上)およびこの応力緩和層を設けた側の基板表面において前記の応力緩和層が設けられていない部分の所望箇所に接着剤を滴下し、この上に後述する封止材を配置し、封止材の重みにより、または封止材に荷重をかけることにより前記の接着剤を一様に拡がらせた後に当該接着剤を硬化させることにより形成することができる。また、塗布法、スピンコート法、ディップ法等の方法により未硬化の接着剤層を形成した後、この接着剤を硬化させることによっても形成することができる。

【0032】接着剤層の最終的な厚さ(応力緩和層上で の厚さ。応力緩和層を形成するにあたって補助板を用い た場合にはこの補助板上での厚さ)は概ね0.1μm~ 1 c mとすることが好ましい。厚さが 0. 1 μ m未満で は、封止材を載せたときに当該封止材が未硬化状態の接 着剤の表面張力により浮き上がろうとする結果、未硬化 状態の接着剤の中やこの接着剤と封止材との界面に気泡 が入り易い。一方、厚さが1cmを超えると、薄型とい う有機ELデバイスの利点が損なわれる。接着剤層の好 ましい厚さは0.001~1mmである。接着剤層の形 成時においては、有機EL素子が応力緩和層によって被 覆されていることから、接着剤の硬化時の硬度や収縮率 に注意を払う必要が実質的にない。その結果として、応 力緩和層が無い場合よりも接着剤の選択の幅が広がる。 【0033】上述した接着剤層によって基板(有機EL 索子が設けられているもの)上に固着される封止材は、 外部から有機EL索子に水分や酸素が侵入を防止するた めのものであるので、封止効果の高いもの、すなわち透 水性や酸素透過性の小さいものを用いることが好ましい。封止材として用いることができる物質の具体例としてはガラス, セラミックス, 金属等の無機物や、フッ素系樹脂, アクリル系樹脂, ポリカーボネート, ポリエステル, ポリアミド, ポリスチレン, ポリプロピレン, ポリオレフィン系樹脂等の樹脂が挙げられる。

【0034】封止材の形状は、加工の手間が少なく経済的であることから、板状であることが好ましい。また、封止材の厚さは薄型の有機ELデバイスを得るうえからは薄い方が望ましいが、あまりに薄いと外力等の衝撃に 10対して弱くなるので、封止材の材質に応じて概ね0.1 μ m~1cmの範囲内で適宜選択することが好ましい。厚さが0.1 μ m未満では外力等の衝撃に対して実用上十分な耐性を有するものを得ることが困難である。一方、厚さが1cmを超えると薄型の有機ELデバイスを得ることが困難になる。封止材のより好ましい厚さは0.01~1mmである。

【0035】本発明の有機ELデバイスは、上述した応力緩和層、接着剤層および封止材の他に、前記の応力緩和層によって覆われた有機EL素子を必須構成要件とす 20 るものである。有機EL素子は基板上に設けられたものであればよく、その層構成は有機EL素子として機能するものであれば特に限定されるものではない。

【0036】基板側を光の取り出し面とするタイプの有機EL素子の層構成の具体例としては、基板表面上の積層順が下記(1)~(4)のものが挙げられる。

- (1)陽極/発光層/陰極
- (2)陽極/発光層/電子注入層/陰極
- (3) 陽極/正孔注入層/発光層/陰極
- (4) 陽極/正孔注入層/発光層/電子注入層/陰極 【0037】ここで、発光層は通常1種または複数種の 有機発光材料により形成されるが、有機発光材料と正孔 注入材料および/または電子注入材料との混合物により 形成される場合もある。また、前述した層構成の素子の 外周に当該素子を覆うようにして素子への水分の侵入を 防止するための保護層が設けられる場合もある。

【0038】基板側を光の取り出し面とする場合、前記の基板は少なくとも有機EL案子からの発光(EL光)に対して高い透過性(概ね80%以上)を与える物質からなり、具体的には透明ガラス、透明プラスチック、石英等からなる板状物やシート状物、あるいはフィルム状物が利用される。なお、本発明の有機ELデバイスでは前述した封止材側を光の取り出し面とすることも可能である。この場合には基板上の積層順を上述の順番と逆にして有機EL案子を形成し、基板材料については有機EL素子からの発光(EL光)の透過性を考慮する必要はない。代わりに、応力緩和層の材料、接着剤層の材料および封止材の材料について有機EL素子からの発光(EL光)に対して高い透過性(概ね80%以上)を与える物質を使用する。

【0039】陽極、陰極、発光層、正孔注入層、電子注入層、保護層の材料としては、それぞれ従来公知の材料を用いることができる。例えば、陽極材料としては仕事関数が大きい(例えば4eV以上)金属、合金、電気伝導性化合物、またはこれらの混合物が好ましく用いられる。具体例としては金、ニッケル等の金属や、CuI,ITO,SnO2,ZnO等の誘電性透明材料等が挙げられる。特に、生産性や制御性の点からITOが好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μmの範囲内で適宜選択可能である。

【0040】また、陰極材料としては仕事関数の小さい(例えば4eV以下)金属、合金、電気伝導性化合物、またはこれらの混合物等が好ましく用いられる。具体例としてはナトリウム、ナトリウムーカリウム合金、マグネシウム、リチウム、マグネシウムと銀との合金または混合金属、アルミニウム、A1/A102、インジウム、イッテルビウム等の希土類金属等が挙げられる。陽極の膜厚は材料にもよるが、通常 $10nm\sim1\mu$ mの範囲内で適宜選択可能である。陽極および陰極のいずれにおいても、そのシート抵抗は数百 Ω /口以下が好ましい。なお、陽極材料および陰極材料を選択する際に基準とする仕事関数の大きさは4eVに限定されるものではない。

【0041】発光層の材料(有機発光材料)は、有機E L素子用の発光層、すなわち電界印加時に陽極または正 孔注入層から正孔を注入することができると共に陰極ま たは電子注入層から電子を注入することができる注入機 能や、注入された電荷(電子と正孔の少なくとも一方) を電界の力で移動させる輸送機能、電子と正孔の再結合 の場を提供してこれを発光につなげる発光機能等を有す る層を形成することができるものであればよい。その具 体例としては、ベンゾチアゾール系、ベンゾイミダゾー ル系、ベンゾオキサゾール系等の系の蛍光増白剤や、金 属キレート化オキシノイド化合物、スチリルベンゼン系 化合物、ジスチリルピラジン誘導体、ポリフェニル系化 合物、12-フタロペリノン、1, 4-ジフェニルー 1, 3-ブタジエン、1, 1, 4, 4-テトラフェニル - 1, 3-ブタジエン、ナフタルイミド誘導体、ペリレ ン誘導体、オキサジアゾール誘導体、アルダジン誘導 体、ピラジリン誘導体、シクロペンタジエン誘導体、ピ ロロピロール誘導体、スチリルアミン誘導体、クマリン 系化合物、芳香族ジメチリディン化合物、8-キノリノ -ル誘導体の金属錯体等が挙げられる。発光層の厚さは 特に限定されるものではないが、通常は5 n m ~ 5 μ m の範囲内で適宜選択される。

【0042】正孔注入層の材料(正孔注入材料)は正孔 の注入性と電子の障壁性のいづれかを有しているもので あればよい。その具体例としては、トリアゾール誘導 体、オキサジアゾール誘導体、イミダゾール誘導体、ポ リアリールアルカン誘導体、ピラゾリン誘導体、ピラゾ ロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系化合物、アニリン系共重合体、チオフェンオリゴマー等の導電性高分子オリゴマー、ポルフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物等が挙げられる。正孔注入層の厚さも特に限定されるものではないが、通常は $5\,n\,m\sim5\,\mu\,m$ の範囲内で適宜選択される。正孔注入層は上述した材料の $1\,m$ で適宜選択される。正孔注入層は上述した材料の $1\,m$ では $2\,m$ 以上からなる一層構造であってもよいし、同一組成または異種組成の複数層からなる複数層構造であってもよい。

【0043】電子注入層は陰極から注入された電子を発 光層に伝達する機能を有していればよく、その材料(電 子注入材料)の具体例としては、ニトロ置換フルオレノ ン誘導体、アントラキノジメタン誘導体、ジフェニルキ ノン誘導体、チオピランジオキシド誘導体、ナフタレン ペリレン等の複素環テトラカルボン酸無水物、カルボジ イミド、フレオレニリデンメタン誘導体、アントラキノ ジメタン誘導体、アントロン誘導体、オキサジアゾール 誘導体、8-キノリノール誘導体の金属錯体、メタルフ リーフタロシアニンやメタルフタロシアニンあるいはこ れらの末端がアルキル基やスルホン基等で置換されてい るもの、ジスチリルピラジン誘導体等が挙げられる。電 子注入層の厚さも特に限定されるものではないが、通常 は5nm~5μmの範囲内で適宜選択される。電子注入 層は上述した材料の1種または2種以上からなる一層構 造であってもよいし、同一組成または異種組成の複数層 からなる複数層構造であってもよい。

【0044】そして、保護層の材料の具体例としては、 テトラフルオロエチレンと少なくとも1種のコモノマー とを含むモノマー混合物を共重合させて得られる共重合 体、共重合主鎖に環状構造を有する含フッ素共重合体、 ポリエチレン、ポリプロピレン、ポリメチルメタクリレ ート、ポリイミド、ポリユリア、ポリテトラフルオロエ チレン、ポリクロロトリフルオロエチレン、ポリジクロ ロジフルオロエチレン、クロロトリフルオロエチレンと ジクロロジフルオロエチレンとの共重合体、吸水率1% 以上の吸水性物質および吸水率 0.1%以下の防湿性物 40 質、In, Sn, Pb, Au, Cu, Ag, Al, T i, Ni等の金属、MgO, SiO, SiO2, Al2 O3, GeO, NiO, CaO, BaO, Fe2 O3, Y2 O3, TiO2 等の金属酸化物、MgF2, Li F, AlF₃, CaF₂ 等の金属フッ化物等が挙げられ る。

【0045】また、有機EL案子を構成する各層(陽極 および陰極を含む)の形成方法についても特に限定され るものではない。陽極、陰極、発光層、正孔注入層、電 子注入層の形成方法としては、例えば真空蒸奢法、スピ 50 ンコート法、キャスト法、スパッタリング法、LB法等を適用することができるが、発光層についてはスパッタリング法以外の方法(真空蒸着法、スピンコート法、キャスト法、LB法等)を適用することが好ましい。 発光層は、特に分子堆積膜であることが好ましい。 ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物から固化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。スピンコート法等により発光層を形成する場合には、樹脂等の結着剤と材料化合物とを溶剤に溶かすことによりコーティング溶液を調製する。

【0046】また、保護層については真空蒸着法、スピンコート法、スパッタリング法、キャスト法、MBE (分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法 (高周波励起イオンプレーティング法)、反応性スパッタリング法、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法等を適用することができる。

【0047】各層の形成方法は、使用する材料に応じて 適宜変更可能である。有機EL素子を構成する各層の形 成にあたって真空蒸着法を用いれば、この真空蒸着法だ けによって有機EL素子を形成することができるため、 設備の簡略化や生産時間の短縮を図るうえで有利であ る。

【0048】なお、有機EL素子を構成する各層(保護 層を含む)の形状および大きさは必ずしも同一ではな い。また、素子を平面視したときに、基板の直上に形成 された電極の上に他の全ての層が必ず納まっているとい うわけでもない。一方、本発明でいう応力緩和層は接着 剤層の残留応力が有機EL索子に伝播して当該有機EL 素子にショートが生じるのを抑制するためのものであ る。したがって、本発明でいう「有機EL索子を覆う応 力緩和層」とは、有機EL索子を平面視したときに陰極 と陽極とが重なる領域を少なくとも覆っている応力緩和 層を意味する。また、本明細鸖でいう「有機EL索子を 覆うに十分な量のコーティング液 (グリース, ゲル)」 とは、「有機EL素子を平面視したときに陰極と陽極と が重なる領域を少なくとも覆うに十分な量のコーティン グ液(グリース、ゲル)」を意味する。そして、「平面 視したときに有機EL索子を覆うに十分な大きさを有す る補助板」とは「平面視したときに、有機EL素子を平 面視したときに陰極と陽極とが重なる領域を少なくとも 覆うに十分な大きさを有する補助板」を意味する。

【0049】また、本発明の有機ELデバイスを構成する有機EL索子の数は1個であってもよいし複数個であってもよい。複数個とする場合、各案子は層構成や発光色から見た種類が同一であってもよいし異なっていても

14

よい。有機EL索子の数をいくつにするかは、目的とす る有機ELデバイスの用途等に応じて適宜選択可能であ る。基板上に複数個の有機EL索子が形成されている場 合、応力緩和層は有機EL索子毎に設けてもよいし、全 ての有機EL素子に共通するものを1つのみ設けてもよ いし、全ての有機EL素子のうちの複数個に共通するも のを複数設けてもよい。基板上に形成された複数個の有 機EL素子を覆うために複数の応力緩和層を設けるにあ たって補助板を使用する場合についても同様であり、設 けようとする応力緩和層毎に補助板を使用してもよい し、全ての応力緩和層に共通するものを1枚のみ設けて もよいし、全ての応力緩和層のうちの複数個に共通する ものを複数枚設けてもよい。接着剤層および封止材につ いては、基板上に複数個の有機EL素子が形成されてい る場合でも全ての有機EL素子に共通するものをそれぞ れ1つのみ設けることが実用上好ましい。

【0050】本発明の有機ELデバイスは、上述した有機EL素子と、この有機EL素子を覆うようにして基板(有機EL素子が設けられているもの)上に形成された前述の応力緩和層と、この応力緩和層を覆うようにして前記の基板上に形成された前述の接着剤層と、この接着剤層によって前記の基板上に固着された前述の封止材とを備えたものである。この有機ELデバイスでは、有機EL素子が応力緩和層によって覆われていることから、接着剤層の残留応力が有機EL素子に伝播することが抑制される。その結果として、接着剤層から伝播した残留応力によって有機EL素子の端部等が押潰されてショートするということが防止されるので、有機EL素子の発光機能が長期間に亘って喪失しにくい。

【0051】また、本発明の有機ELデバイスでは、従来と同様に接着剤層の形成時に有機EL素子が応力緩和層によって覆われていることから、前配の力が有機EL素子に伝播することが抑制される。その結果として、前記の力によって有機EL素子に電極剥離が発生するということが防止されるので、有機ELデバイスの製造過程や製造後に有機EL素子の発光機能が喪失するということが起きにくい。さらに、本発明の有機ELデバイスは有機EL素子を密着タイプの封止方法により封止したものであるので、有機EL素子の封止効果が高く、デバイス自体の厚さが薄く、かつ大量生産が比較的容易である。

【0052】このような特徴を有する本発明の有機ELデバイスは、面光源、キャラクター表示装置、電飾用装置、車載用インジケーター、複写機の除電用光源、プリンタ用光源、光変調装置等として利用することができる。

【0053】次に、本発明の有機EL素子の封止方法について説明する。この方法は、前述したように、基板上に設けられた有機EL素子の背面にこの有機EL素子を覆うようにして接着剤層を設け、この接着剤層によって50

前記基板上に封止材を固着することにより前記有機EL 素子を封止するにあたり、前記有機EL素子と前記接着 剤層との間に前記有機EL素子を覆う応力緩和層を設け ることを特徴とするものである。

【0054】前記の応力緩和層は、接着剤層の残留応力が有機EL案子に伝播するのを抑制するために設けるものであり、その材料および形成方法は前述した本発明の有機ELデバイスの中で説明した通りである。また、この応力緩和層によって覆われる有機EL案子、前記の応力緩和層によって覆われた有機EL案子を覆うようにして設けられる接着剤層、および前記の接着剤層によって基板(有機EL案子が設けられているもの)上に固着される封止の詳細についても、それぞれ前述した本発明の有機ELデバイスの中で説明した通りである。

【0055】この方法により封止した有機EL素子では、当該有機EL素子が応力緩和層によって覆われていることから、接着剤層の残留応力が有機EL素子に伝播することが抑制される。その結果として、接着剤層から伝播した残留応力によって有機EL素子の端部等が押費されてショートするということが防止されるので、発光機能が長期間に亘って喪失しにくい有機EL素子(封止されたもの(=有機ELデバイス))が得られる。

【0056】また、接着剤層の形成時には有機EL素子の表面と平行な方向に力が働くが、有機EL素子が応力緩和層によって覆われていることから、前記の力が有機EL素子に伝播することが抑制される。その結果として、前記の力によって有機EL素子に電極剥離が発生するということが防止されるので、封止の過程や封止後に有機EL素子の発光機能が喪失するということが起きにくい。さらに、本発明の方法は密着タイプの封止方法の1つであるので、封止効果が高く、かつ厚さが薄い有機EL素子(封止されたもの(=有機ELデバイス))を大量生産することが比較的容易である。

[0057]

【実施例】以下、本発明の実施例について説明する。 実施例1

(1) 有機EL素子の作製

先ず、25mm×75mm×1.1mmの大きさのガラス基板上に当該ガラス基板の長手方向に帯状に膜厚100nmのITO膜を成膜したもの(以下、これを透明支持基板をイソプロピルアルコールで30分間超音波洗浄した後、純水で30分間発音波洗浄した後、純水で30分間発音波洗浄した。洗浄後の透明支持基板を市販の真空蒸着装置(日本真空技術(株)製)の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにN,N'ージフェニルーN,N'ービスー(3ーメチルフェニル)ー[1,1'ービフェニル]ー4,4'ージアミン(以下、TPDという)を200mg入れ、別のモリブデン製抵抗加熱ボートにトリス(8ーキノリノール)アルミ

ニウム (以下、Alq3 という) を200mg入れて、 真空チャンパー内を1×10⁴Paまで減圧した。

【0058】次に、TPDを入れた前記の抵抗加熱ボー トを215~220℃まで加熱し、TPDを蒸着速度 0. 1~0. 3 n m/秒で I T O 膜上に堆積させて、膜 厚60mmの正孔注入層を成膜した。このときの基板温 度は室温であった。次いで、正孔注入層が成膜された透 明支持基板を真空チャンパーから取出すことなく、正孔 注入層の成膜に引続いて発光層の成膜を行った。発光層 の成膜は、Alq3 を入れた前記の抵抗加熱ボートを2 75℃まで加熱し、Alq3 を蒸着速度0.1~0.2 nm/秒で正孔注入層上に堆積させて、膜厚60nmの Alq3 層を成膜することにより行った。このときの基 板温度も室温であった。次に、モリブデン製抵抗加熱ボ ートにマグネシウム1gを入れ、別のモリブデン製抵抗 加熱ボートに銀500mgを入れて、真空チャンパー内 を2×10-4 Paまで減圧した。そして、マグネシウム を入れた前記の抵抗加熱ボートを500℃程度に加熱し てマグネシウムを約1. 7~2. 8nm/秒の蒸着速度 で蒸発させると共に、銀を入れた前記の抵抗加熱ボート を800℃程度に加熱して銀を0.03~0.08nm /秒の蒸着速度で蒸発させて、マグネシウムと銀との混 合金属からなる膜厚150nmの陰極を発光層上に計3 個設けた。各陰極は平面視上の大きさが3mm×15m mのものであり、これらは一定間隔でITO膜と直交す る向きに設けられている。

【0059】この後、前記の陰極まで設けたガラス基板を3つに切り、ガラス基板上の層構成が陽極(ITO膜)/正孔注入層/発光層/陰極(Mg・Ag層)である有機EL素子を計3つ得た。これらの有機EL素子の発光面(平面視したときに陰極と陽極が重なり、これらの電極の間に正孔注入層および発光層が存在している領域)の大きさは3mm×5mmである。また、これらの有機EL素子の初期輝度は電圧6.5V、電流密度3mA/cm²の条件下で100cd/m²に達し、このときの電力変換効率は1.61m/Wであった。

【0060】(2)応力緩和層および接着剤層の形成並びに封止材の配設

先ず、応力緩和層の材料としてフッ素樹脂コーティング液(旭硝子(株)製のサイトップCTX-105A)を 40 用意し、また、補助板として約10mm×10mm×0.15mmの大きさのカバーガラス(以下、カバーガラスIという)を用意した。次に、前記のフッ素樹脂コーティング液5 μ Iを上記(1)で作製した有機EL素子上に滴下し、この上に前記のカバーガラスIを載せた。フッ素樹脂コーティング液の粘性の低さとカバーガラスIの重みにより前記コーティング液には前記コーティング液の薄い膜(厚さ0.05mm)ができた。このとき、コーティング液の一部はカバーガラスIによっ 50

て覆われる領域の外側に若干はみ出した。この状態で10分程放置することにより、フッ素樹脂コーティング液からなる上記の薄い膜の外表面、すなわちガラス基板の表面と平行な方向の表面に固体層(被膜)を形成させて、目的とする応力緩和層を一応得た。このとき、有機EL素子に接している部分のフッ素樹脂コーティング液は固化せずに液体状態を保っていた。

【0061】次に、接着剤として光硬化性接着剤 ((株)アーデル製のベネフィックスVL)0.1ml を上記のカバーガラスI上に滴下し、その上に封止材と してのカバーガラス(大きさは約20mm×20mm× 0.15mm;以下、カバーガラスIIという)を載せ た。光硬化性接着剤の粘性の低さとカバーガラスIIの重 みにより前記光硬化性接着剤は一様に広がり、上記の応

カ緩和層およびカバーガラスIを完全に覆った。カバーガラスIIの載置に引き続き、ハロゲンランプの光を前記のカバーガラスII上から光硬化性接着剤に照射して、当該光硬化性接着剤を硬化させた。

【0062】これにより、上記の応力緩和層を覆うようにして光硬化性接着剤からなる厚さ0.1mm (カバーガラスI上での厚さ)の接着剤層が形成され、同時に前記の接着剤層によって封止材としてのカバーガラスIIがガラス基板 (有機EL素子が設けられているもの)上に固着された。さらに、接着剤層を形成した後には上記の応力緩和層中のフッ案樹脂コーティング液の溶剤の揮散が抑止されるので、有機EL素子の外周に存在するフッ素樹脂コーティング液は液体状態を維持し続け、その結果として目的とする応力緩和層が最終的に形成された。【0063】上述のようにして接着剤層の形成および封止材の配設まで行ったことにより、目的とする有機ELデバイスが得られた。以下、同様にして有機ELデバイスを作製し、計45個の有機ELデバイスの断面の概略図を図

1に、また上面図を図2に示す。

【0064】図1に示したように、この有機ELデバイ ス1はガラス基板2の片面に形成された有機EL案子3 と、この有機EL索子3を覆うようにしてガラス基板2 上に形成された応力緩和層4と、この応力緩和層4を形 成するために用いたカバーガラス I からなる補助板 5 と、この補助板5および前記応力緩和層4を覆うように してガラス基板2上に形成された光硬化性接着剤からな る接着剤層6と、この接着剤層6によってガラス基板2 上に固着されたカバーガラスIIからなる封止材7とを備 えたものである。応力緩和層4はフッ素樹脂コーティン グ液を材料とするものであり、この応力緩和層4におい てガラス基板2の表面と平行な方向の表面はその形成時 に溶剤が蒸発したことにより固化して固体層4 a を形成 しており、有機EL案子3に接している部分のフッ素樹 脂コーティング液4bは固化せずに液体状態を保ってい る。

【0065】また、有機EL素子3は、ガラス基板2上に陽極としてのITO膜、正孔注入層としてのTPD層、発光層としてのAlq3層、および陰極としてのMg・Ag混合層を順次積層したものである。これらのうちITO膜を符号3aで、またMg・Ag混合層を符号3bで図1中および図2中にそれぞれ示す。図1および図2に示したように、ITO膜3aはガラス基板2表面に帯状に形成されており、Mg・Ag混合層3bはITO膜3aと直交する向きに設けられている。そして、ITO膜3aとMg・In混合層3bとが平面視上重なっ10でいる部分が、有機EL素子3の発光面に相当する。

【0066】実施例2 先ず、実施例1と同条

先ず、実施例1と同条件でガラス基板上に有機EL素子 を作製した。次に、応力緩和層の材料としてフッ素系グ リース (ニチアス (株) 製のPTFEグリース) を用 い、このフッ素系グリース約0.01mlを上記の有機 EL素子上に塗布した後、この上に補助板として約10 mm×10mm×0. 15mmの大きさのカバーガラス I を載せた。次いで、前記のカバーガラスを上から軽く 押圧することにより前記のフッ素系グリースを一様に広 20 がらせて、有機EL素子とカバーガラスIとの間にフッ 素系グリースの薄い膜(厚さ0.1mm)を形成した。 これにより応力緩和層が得られた。この後、実施例1と 同条件で光硬化性接着剤からなる接着剤層(厚さ0.0 6 mm) の形成とこの接着剤層による封止材 (カバーガ ラスII)の固着とを行って、目的とする有機ELデバイ スを得た。以下、同様にして有機ELデバイスを作製 し、計55個の有機ELデバイスを得た。

【0067】実施例3

先ず、実施例1と同条件でガラス基板上に有機EL素子 30を作製した。次に、前記の有機EL素子を構成する陰極 (Mg・Ag層)上に、保護層として膜厚0.2μmのアルミニウム層を真空蒸着法により形成した。この後、実施例1と同条件で、補助板(カバーガラスI)を用いての応力緩和層(厚さ0.05mm)の形成と、光硬化性接着剤からなる接着剤層(厚さ0.1mm)の形成と、この接着剤層による封止材(カバーガラスII)の固着とを行って、目的とする有機ELデバイスを得た。以下、同様にして有機ELデバイスを作製し、計45個の有機ELデバイスを得た。

【0068】比較例1

応力緩和層を形成しなかった以外は実施例1と同様にして、計45個の有機ELデバイスを作製した。このとき、補助板も使用しなかった。

【0069】比較例2

接着剤層の形成および接着剤層による封止材の固着を共 に行わなかった以外は実施例1と同様にして、計45個 の有機ELデバイスを作製した。

【0070】比較例3

先ず、25mm×75mm×1.1mmの大きさのガラ 50

ス基板の片面の短手方向の両方の端部にそれぞれ10mm×75mm×100nmのITO膜が成膜されたものを透明支持基板として用い、この透明支持基板を実施例1と同条件で洗浄した後にマスク自動交換機構を備えた真空蒸着装置の基板ホルダーに装着した。次に、上記のITO膜の一方にマスクをかけ、この状態で実施例1と同条件で正孔注入層および発光層をそれぞれ成膜した。次いで、蒸着装置に付いているマスク自動交換機構を用いて上記のマスクを外した後、前記機構でもって一方のITO膜(前記のマスクをかけていた方のITO膜)の長手方向の両方の外側縁部にそれぞれ幅5mmに亘ってマスクをかけた。

【0071】次に、マグネシウム1gを予め入れておいたモリブデン製抵抗加熱ボートと銀500mgを予め入れておいたモリブデン製抵抗加熱ボートとをそれぞれ加熱し、マグネシウムを約1.5nm/秒の蒸着速度で蒸着させ、同時に銀を約0.1nm/秒の蒸着速度で蒸着させ、マグネシウムと銀との混合金属からなる膜厚150nmの陰極を発光層上に成膜した。陰極まで成膜したことにより、上記のガラス基板上には有機EL素子が形成された。

【0072】この後、上記の真空蒸着装置をそのまま用いて、正孔注入層、発光層および陰極の成膜から続く一連の真空環境下で以下の要領で保護層を成膜した。先ず、蒸発源としてテトラフルオロエチレンとパーフルオロー2,2ージメチルー1,3ージオキソールとの無定形共重合体粉末(デュポン社製のテフロンAF)1.5 gを収容したアルミナ製坩堝をタングステン製バスケットに予め入れておき、このタングステン製バスケットに予め入れておき、このタングステン製バスケットの上方(アルミナ製坩堝の上)に12μmφのステンレス製メッシュをかぶせた。次いで、真空チャンバー内を1×10-4 Paまで減圧した後、前記のタングステン製バスケットに通電加熱して前記の蒸発源を455℃に加熱して、有機EL素子を構成する上記の陰極上に蒸着速度0.5 nm/秒で膜厚800 nmの保護層(テフロンAF薄膜)を成膜した。

【0073】この後、保護層まで成膜した有機EL案子を真空チャンバーから取り出し、この有機EL案子について以下の要領でケーシングタイプの封止を行って、有機ELデバイスを得た。まず、正孔注入層の成膜にあたってマスクをかけなかった方のITO膜の長手方向の両方の外側縁部について、それぞれ幅5mmに亘ってこのITO膜上に設けられている正孔注入層、発光層、陰極および保護層を切除した。またガラス基板の短手方向の両方の縁部についても、その厚さが実質的にガラス基板の厚さとITO膜の厚さとの和になるように、それぞれ幅5mmに亘って正孔注入層、発光層、陰極および保護層を切除した。

【0074】次いで、18mm×73mm×2mmの凹部と、この凹部の底に設けられた直径2mmの貫通孔

(以下、注入口という)とを有するガラス板(外寸:20mm×75mm×3mm、以下シールドガラスという)を用意し、このシールドガラスと保護層まで成膜した有機EL素子とをエポキシ系接着剤(セメダイン社製のセメダインスーパー5)により貼り合わせた。エポキシ系接着剤は、主剤と硬化剤とを混ぜ合わせてヘラで20回かき混ぜてから、上記保護層まで成膜した有機EL素子の縁部に幅1mmでほぼ20×75mmの長方形に塗布した。またシールドガラスと上記保護層まで成膜した有機EL素子とは、陰極および保護層がシールドガラスの凹部内に収まるようにして貼り合わせた。貼り合わせ後、大気中に10時間放置してエポキシ系接着剤を硬化させた。

【0075】次いで、シールドガラスに設けられている 注入口から、吸湿用のシリカゲル(粒径 50μ m)を8 体積%分散させたシリコーンオイル((株)東芝製のT SK451、以下封止用液体という)を注入して、シールドガラスの凹部と上記保護層まで成膜した有機EL素 子とにより形成された空間内を封止用液体で満たした。 この後、注入口をガラス製の蓋で封鎖して、ケーシングタイプの封止が施された有機ELデバイスを得た。なお、ガラス製の蓋は、上述したエポキシ系接着剤によりシールドガラスに接着させた。以下、同様にして有機ELデバイスを得た。

【0076】歩留りの評価

実施例1~実施例3および比較例1~比較例3でそれぞれ作製した有機ELデバイスについて、デバイス作製直後から初期輝度が100cd/m²となる直流定電流で有機EL素子を連続駆動し、連続駆動開始直後、1週間後、1箇月(31日間)後および1000時間後のそれぞれの時点で、ショートにより発光機能を喪失した有機EL素子の数を数えた。なお、輝度の測定は輝度計(ミノルタ社製のCS-100)を用いて大気中で行った。この結果を表1に示す。

[0077]

【表1】

表 1

	評価に付した	発 光 枝	機能を喪失	した家子	の数
	デバイスの数	駆動開始直後	1 週間後	1 箇月後	1000時間後
実施例1	4 5	1	1	1	1
実施例 2	4 5	3	3	3	3
実施例3	45.	4	4	4	4
比較例1	4 5	4 3	4 5	4 5	4 5
比較例2	4 5	2	8	3 1	4 5
比較例3	4 5	1	2	2	3

【0078】表1に示したように、実施例1~実施例3でそれぞれ作製した有機ELデバイスではショートにより発光機能を喪失した有機EL素子の数が少ない。このことから、信頼性の高い有機ELデバイスが高い歩留まりの下に作製されたことがわかる。これに対し、応力緩和層を設けなかった比較例1では連続駆動開始直後の時点で殆どの有機EL素子がショートにより発光機能を喪失しており、1週間後には全ての有機EL素子がショートにより発光機能を喪失していた。このことから、応力緩和層は有機EL素子がショートによってその発光機能を喪失するのを防止するうえで有用であることがわかる。

【0079】また、比較例2で作製した有機ELデバイスでは、連続駆動開始直後の時点ではショートによって発光機能を喪失した有機EL素子の数が少ないが、1000時間後には全ての素子がショートにより発光機能を

要失していた。そして、比較例3で作製した有機ELデバイスでは、全ての調査時点で、ショートによって発光機能を要失した有機EL素子の数が実施例1~実施例3と同等かそれ以下である。したがって、比較例3では有機EL素子がショートによってその発光機能を喪失するか否かという観点からみた信頼性が高い有機ELデバイスが高い歩留まりの下に作製されたということができ、この点で比較例3の有機ELデバイスは優れたものである。しかしながら、後述する封止効果や製造の難易、有機ELデバイスの厚さ等をも考慮すると、実施例1~実施例3の有機ELデバイスの方が優れているといえる。

【0080】封止効果の評価

有機EL索子に見られるダークスポットと呼ばれる丸い 形の無発光領域は、有機EL索子に水分や酸素が侵入す ることにより拡大していく。したがって、任意のダーク スポットについてその大きさの経時変化を調べること

トにより発光機能を喪失していたので、1日後の時点で 発光機能を喪失していなかった有機ELデバイスの中か ら任意に1つのデバイスを選択した。また、比較例2で 作製した有機ELデバイスについては1000時間後の 時点で全ての有機EL素子がショートにより発光機能を 喪失していたので、1箇月後の時点で発光機能を喪失し ていなかった有機ELデバイスの中から任意に1つのデ

[0081]

バイスを選択した。

【表2】

は、封止効果を評価するための指標として好適である。 このような観点から、上述した歩留りの評価のための連 続駆動開始直後、1日後、1週間後、1箇月(31日 間)後および1000時間後の各時点で各有機ELデバ イスを写真撮影し、1000時間後の時点で発光機能を 喪失していなかった有機ELデバイスの中から任意に1 つのデバイスを選択し、その有機ELデバイスを構成す る有機EL索子中の任意のダークスポットに着目して各 時点での直径を前記の写真から求めた。この結果を表2 に示す。なお、比較例1で作製した有機ELデバイスに 10 ついては1週間後の時点で全ての有機EL素子がショー

表 2					
	駆動開始直後	1 日後	1週間後	1 箇月後	1000時間後
実施例 1	1 4	17 (21%)	18 (29%)	21 (50%)	23 (64%)
実施例 2	1 1	15 (36%)	19 (73%)	2 3 (109%)	2 5 (127%)
実施例3	6	8 (33%)	9 (50%)	1 2 (100%)	1 3 (117%)
比較例1	1 3	16 (23%)			
比較例2	17	32 (88%)	8 0 (371%)	450 (2550%)	
比較例3	1 2	15 (25%)	2 5 (108%)	3 0 (150%)	3 3 (175%)
TT EXAM	1 2	1 0 (- 0,0)		<u> </u>	

- *表内の数字の単位はµm
- *括弧内の数値は駆動開始直後のダークスポットの直径に対する直径の増大分を百分率で表したもの
- *実線を付した空欄は、全ての素子が発光機能を喪失したために測定できなかったことを示す。

【0082】表2に示したように、実施例1~実施例3 でそれぞれ作製した有機ELデバイスでは1000時間 連続駆動した後でもダークスポットはそれ程拡大してい ない。このことから、実施例1~実施例3の各有機EL デバイスでは有機EL素子に対して高い封止効果が得ら れていることがわかる。◎一方、比較例1の有機ELデ バイスではショートにより発光機能を喪失する有機EL 素子が相次いだため、封止効果を評価するに十分なデー タを得ることができなかった。また、比較例2の有機E Lデバイスではダークスポットの成長が極めて速く、有 機EL素子に対する封止が不十分であることがわかる。 そして、比較例3の有機ELデバイスではダークスポッ トの成長がやや速く、有機EL索子に対する封止効果は 実施例1~実施例3のもよりも低いことがわかる。

[0083]

【発明の効果】以上説明したように、本発明の有機EL デバイスは有機EL素子を密着タイプの封止法により封 止したものでありながら有機EL素子の発光機能が喪失 しにくい有機ELデバイスである。また、本発明の方法 により封止した有機EL素子では封止後に有機EL素子 の発光機能が喪失することが起きにくい。 したがって、

本発明によれば比較的簡単な製造工程で、薄型で長期間 に亘って安定な有機ELデバイスを高い歩留まりの下に 提供することが可能になる。

[0084]

【図面の簡単な説明】

[0085]

【図1】実施例1で作製した有機ELデバイスの断面を 示す概略図である。

[0086]

【図2】実施例1で作製した有機ELデバイスの上面を 40 示す概略図である。

[0087]

【符号の説明】

- 1 有機ELデバイス
- 2 ガラス基板
- 3 有機EL素子
- 4 応力緩和層
- 5 補助板
- 6 接着剤層
- 7 封止材

(11)Publication number:

08-124677

(43)Date of publication of application: 17.05.1996

(51)Int.CI.

H05B 33/04

(21)Application number: 06-257114

(71)Applicant: IDEMITSU KOSAN CO LTD

(72)Inventor: FUKUOKA KENICHI

FUJITA MASATO

(54) ORGANIC EL DEVICE

(57)Abstract:

(22)Date of filing:

PURPOSE: To provide a thin organic EL device stable over a long period in a high yield with a relatively easy manufacturing process by providing a stress moderating layer for covering the emitting surface of an organic EL element between an adhesive layer and the organic EL element.

21.10.1994

CONSTITUTION: An adhesive layer 6, for example, 0.1mm in thickness consisting of an optical hardening adhesive is formed so as to cover a stress relaxation layer 4, and a cover glass I as a sealing material is fixed onto a glass substrate 2 by the adhesive layer 6. Further, since the evaporation of a solvent of fluorine resin coating solution in the stress moderating layer 4 is suppressed after 40 the adhesive layer 6 is formed, the fluorine resin coating solution present on the outer circumference of an organic EL element 3 continues to keep the liquid state, and as the result, the intended stress relaxation layer 4 is finally formed. The stress relaxation layer 4 for covering the adhesive layer 6 and the emitting surface of the organic EL element 3 is provided, whereby a thin organic EL device 1 stable over a long period can be provided with a relatively easy manufacturing process in a high yield.

LEGAL STATUS

[Date of request for examination]

15.08.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3578417

[Date of registration]

23.07.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTG)

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The organic electroluminescence device characterized by having a wrap stress relaxation layer for said organic EL device between said organic EL devices and said adhesives layers in the organic electroluminescence device equipped with the sealing agent which fixed on said substrate by the organic EL device formed on the substrate, the adhesives layer formed on said substrate as covered this organic EL device, and this adhesives layer. [Claim 2] The organic electroluminescence device according to claim 1 with which this layer is formed in the periphery of an organic EL device including the layer which generating of shear stress becomes from the matter with a small stress relaxation layer.

[Claim 3] The organic electroluminescence device according to claim 2 with which the matter with small generating of shear stress consists of the liquid of a fluorine system, a silicone system, or a hydrocarbon system, grease, or gel.

[Claim 4] An organic electroluminescence device given in any 1 term of claim 1 - claim 3 which a stress relaxation layer becomes from the solidification object of the liquid of the same presentation as the liquid with which it has the liquid layer formed in the periphery of an organic EL device, and the solid-state layer formed in the periphery of this liquid layer, and said solid-state layer forms said liquid layer.

[Claim 5] An organic electroluminescence device given in any 1 term of claim 1 - claim 4 prepared in the sense to which an organic EL device is countered as substantially [a wrap accessory plate] as a substrate when plane view is carried out from a tooth back between a stress relaxation layer and an adhesives layer.

[Claim 6] The organic electroluminescence device according to claim 5 with which a stress relaxation layer consists of a solidification object of the liquid of the same presentation as the liquid with which it has the liquid layer formed in the periphery of the luminescence side of an organic EL device, and the solid-state layer formed in the periphery of a direction parallel to a substrate front face in this liquid layer, and said solid-state layer forms said liquid layer. [Claim 7] The closure approach of the organic EL device characterized by preparing an adhesives layer in it as this organic EL device is covered at the tooth back of an organic EL device prepared on the substrate, and forming said organic EL device for a wrap stress relaxation layer between said organic EL devices and said adhesives layers in closing said organic EL device by fixing a sealing agent on said substrate by this adhesives layer.

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] This invention relates to the closure approach of the organic electroluminescence device equipped with the organic EL device as a source of luminescence, and an organic EL device, and relates to the adhesion type closure approach for closing the organic electroluminescence device and organic EL device which were equipped with the organic electroluminescence by which the closure was especially carried out by the adhesion type closure approach as a source of luminescence.

[0002]

[Description of the Prior Art] There are an inorganic EL element and an organic EL device in an EL element, since any EL element is self-luminous, visibility is high, and handling is easy while excelling in shock resistance, since it is a perfect solid-state component. For this reason, the researches and developments and utilization as the pixel of graphic display, the pixel of a television image display device, or the surface light source are advanced. An organic EL device makes the luminous layer which contains an organic luminescent material for an anode plate and cathode among these intervene at least, and carries out a laminating, and the thing of various lamination is developed by current. As an example of lamination, an anode plate / luminous layer / cathode, an anode plate / luminous layer / electron injection layer / cathode, an anode plate / hole-injection layer / luminous layer / cathode, an anode plate / hole-injection layer / luminous layer / electron injection layer / cathode, etc. are mentioned. Although a luminous layer is usually formed of one sort or two or more sorts of organic luminescent material, it may be formed with mixture with an organic luminescent material, a hole-injection ingredient, and/or an electron injection ingredient. [0003] In many cases, the organic EL device which has such lamination is formed on a substrate. And when taking out EL light from a luminous layer from the aforementioned substrate side, an anode plate is formed in right above of a substrate], and cathode is formed in right above [of a substrate] when taking out EL light from a luminous layer from the side which formed the organic EL device. An anode plate is formed with the transparence thru/or the translucent thin film which consists of big matter of work functions, such as Au, nickel, and ITO (indium stannic acid ghost). On the other hand, cathode is formed with the thin film which consists of small matter of work functions, such as Yb, Mg, aluminum, and In.

[0004] An organic EL device is a light emitting device of a current drive mold, and uses luminescence produced when the electron and electron hole which were poured into the luminous layer (organic luminescent material) recombine. For this reason, the organic EL device has the advantage that a drive by low battery called 4.5V is possible by making thickness of a luminous layer thin, and a response is also quick, and the advantage that luminescence of high brightness is possible since brightness is proportional to an inrush current. moreover, luminescence of various colors, such as 4 gloss blue, green, yellow, and red, is obtained by changing luminescent material. The research for current and utilization is continued by these advantages.

[0005] By the way, the organic substance, such as an organic luminescent material used for an organic EL device, is weak into moisture, oxygen, etc. Moreover, also in an electrode, in atmospheric air, a property deteriorates rapidly by oxidation. Therefore, in order to obtain a practical organic EL device and an organic electroluminescence device, it is necessary to give the closure. As the closure approach of an organic EL device, it is SiO2 to the approach (refer to JP,4-137483,A) of forming the poly paraxylene film as a closure layer in the component front face for the closure by the vapor-phase-polymerization method, and the component front face for the closure. Although there is also the approach (refer to JP,4-73886,A) of forming a protective coat, the approach that the closure effectiveness is more high is already developed. The approach is divided roughly into the following two gestalten.

[0006] One is the casing type closure approach and it is the approach of closing by putting in an organic EL device in a case, intercepting with the external world, and being filled up with the predetermined fluid for the closures with the organic EL device in the aforementioned case. Another is the adhesion type closure approach and is the approach of closing by carrying out face bonding of the sealing agents, such as a glass plate, to the tooth back (in view of a substrate side back of a component) of the organic EL device currently formed on the substrate with adhesives.

[0007] According to the casing type closure approach, the degradation can be prevented, without destroying an organic EL device by choosing a thing suitable as a fluid for the closures put in in a case, but on the other hand, a difficulty like following the (1) – (3) is produced.

(1) Since it makes it indispensable to put an organic EL device into a case, the description of the thin shape which is one of the advantages of an organic EL device is spoiled.

(2) Since the process which pours in the fluid for the closures is required in the process which machines a case, and a case, it is unsuitable for mass production method.

(3) Like [when it is going to close the organic EL device of a large number currently formed on the substrate using one case], when a lot of liquids for the closures are put into a big case, and the volume of the fluid for the closures within a case increases by the thermal expansion accompanying the temperature rise of the external world, there is a possibility of destroying a case.

[0008] On the other hand, according to the adhesion type closure approach, an organic electroluminescence device (what is equipped with the organic EL device by which the closure was carried out as a source of luminescence) with comparatively easy mass production method can be easily obtained thinly [the thickness] after the closure, and the high closure effectiveness can be acquired easily. They are direct or SiO2 to the periphery of the approach (refer to JP,4–212284,A) of fixing a glass substrate on this, after preparing the protective coat which consists of inorganic compounds, such as GeO, in the periphery of the organic EL device for the closure as the adhesion type closure approach, and the organic EL device for the closure. A photo-setting resin layer is prepared through the film, and the approach (refer to JP,5–182759,A) of fixing a glass substrate through this photo-setting resin layer is learned.

[0009]

[Problem(s) to be Solved by the Invention] However, when the organic electroluminescence device which closed and obtained the organic EL device by the closure approach of adhesion type [conventional] was made to carry out a continuation drive for about 1000 hours, there was a difficulty that the luminescence function of an organic EL device is lost in it.

[0010] The 1st purpose of this invention is the organic electroluminescence device equipped with the organic EL device by which the closure was carried out by the adhesion type closure method as a source of luminescence, and is to offer the organic electroluminescence device which the luminescence function of an organic EL device cannot lose easily.

[0011] Moreover, the 2nd purpose of this invention is to offer the closure approach of the organic EL device which the luminescence function of an organic EL device cannot lose easily after the closure.

[Means for Solving the Problem] As a result of this invention persons' adding examination wholeheartedly about the cause of loss of the luminescence function mentioned above, it found out loss of this luminescence function not originating in reduction of the closure effectiveness, and originating in short-circuit occurring in the electrode edge by the side of the adhesives layer of an organic EL device. This point is explained in more detail.

[0013] between the adhesives of the organic EL device and the above for the closure, or photo-setting resins — GeO and SiO2 etc. — even if there is film, if that thickness is thin, it will get across to organic electroluminescence with mum order. [since the volume contracts in adhesives or a photo-setting resin at the time of hardening residual stress occurs, and] [this residual stress] And since residual stress becomes strong especially in a part with small radius of curvature, the residual stress spread to the organic EL device is concentrated on the edge of the component concerned etc. Consequently, the crush of the electrode edge of a component etc. is carried out, an anode plate and cathode contact, and short-circuit occurs, this invention persons reached this invention, as a result of adding examination further based on the above-mentioned knowledge.

[0014] The organic electroluminescence device of this invention which attains the 1st purpose of the above is an organic electroluminescence device equipped with the organic EL device formed on the substrate, the adhesives layer formed on said substrate as covered this organic EL device, and the sealing agent which fixed on said substrate by this adhesives layer, and is characterized by having a wrap stress relaxation layer for said organic EL device between said organic EL devices and said adhesives layers.

[0015] Moreover, the closure approach of the organic EL device of this invention of attaining the 2nd purpose of the above is characterized by preparing an adhesives layer in it, as this organic EL device is covered at the tooth back of an organic EL device prepared on the substrate, and forming said organic EL device for a wrap stress relaxation layer between said organic EL devices and said adhesives layers in closing said organic EL device by fixing a sealing agent on said substrate by this adhesives layer.

[0016] Hereafter, this invention is explained to a detail. If the organic electroluminescence device of this invention is explained first, this organic electroluminescence device will be characterized by having a stress relaxation layer in a specific part, as mentioned above. Then, this stress relaxation layer is explained first.

[0017] The above-mentioned stress relaxation layer is for controlling that the residual stress of an adhesives layer spreads to an organic EL device. Therefore, although this stress relaxation layer may have the effectiveness (henceforth the closure effectiveness) of preventing moisture and oxygen invading into an organic EL device from the exterior and does not need to have it, it has the closure effectiveness and the direction is more desirable. Moreover, as for a stress relaxation layer, it is desirable that they are the layer of the monolayer structure which consists only of a layer which generating of shear stress becomes from the small matter, and the layer of two or more layer structure containing the layer which generating of blank stress becomes from the small matter. In making a stress relaxation layer into two or more layer structure, it forms in the periphery of an organic EL device the layer which generating of shear stress becomes from the small matter.

[0018] Here, the above-mentioned "matter with small generating of shear stress" means the fluid (a gas, liquid) which has the property in which the gap is not told substantially, grease, gel, etc., when an adhesives layer shifts in the direction parallel to the electrode of an organic EL device according to factors, such as hardening.

[0073] Then, the organic EL device which formed membranes to the protective layer was taken out from the vacuum chamber, the casing type closure was performed in the following ways about this organic EL device, and the organic electroluminescence device was obtained. First, the hole-injection layer which covers width of face of 5mm, respectively, and is prepared on this ITO film about the radial-border section of both longitudinal directions of the ITO film of the direction over which a mask was not covered in membrane formation of a hole-injection layer, a luminous layer, cathode, and a protective layer were excised. Moreover, also about the edge of both directions of a short hand of a glass substrate, width of face of 5mm was covered, respectively, and a hole-injection layer, a luminous layer, cathode, and a protective layer were excised so that the thickness might become the sum of the thickness of a glass substrate, and the thickness of the ITO film substantially.

[0074] Subsequently, the glass plate (outside **: call it 20mmx75mmx3mm and following shield glass) which has a 18mmx73mmx2mm crevice and a through tube (henceforth an inlet) with a diameter of 2mm prepared in the bottom of this crevice is prepared, and this shield glass and the organic EL device which formed membranes to the protective layer were stuck with epoxy system adhesives (Cemedine super by Cemedine Co., Ltd. 5). After epoxy system adhesives mixed base resin and a curing agent and stirred them 20 times by the spatula, they were applied to the rectangle of about 20x75mm by width of face of 1mm at the edge of the organic EL device which formed membranes to the above-mentioned protective layer. Moreover, into the crevice of shield glass, cathode and a protective layer stuck it, as shield glass and the organic EL device which formed membranes to the above-mentioned protective layer were settled. After lamination and in atmospheric air, it was left for 10 hours and epoxy system adhesives were stiffened.

[0075] Subsequently, the silicone oil (it is called TSK451 by Toshiba Corp. and the liquid for the following closures) which did 8 volume % distribution of the silica gel for moisture absorption (particle size of 50 micrometers) was poured in from the inlet established in shield glass, and the inside of the space formed by the crevice of shield glass and the organic EL device which formed membranes to the above-mentioned protective layer was filled with the liquid for the closures. Then, the glass lid blocked the inlet and the organic electroluminescence device with which the casing type closure was given was obtained. In addition, the glass lid was pasted up on shield glass with the epoxy system adhesives mentioned above. Hereafter, the organic electroluminescence device was produced similarly and a total of 45 organic electroluminescence devices were obtained.

[0076] About the organic electroluminescence device produced, respectively in the evaluation example 1 of the yield – the example 3 and the example 1 of a comparison – the example 3 of a comparison, immediately after device production to initial brightness is 100 cd/m2. The continuation drive of the organic EL device was carried out by the becoming direct-current constant current, and the number of the organic EL devices which lost the luminescence function more short at each time one week, one month (for 31 days), and 1000 hours after [immediately after continuation drive initiation and] was counted. In addition, measurement of brightness was performed in atmospheric air using the luminance meter (CS-100 by Minolta Co., Ltd.). This result is shown in Table 1.

[Table 1]

	評価に付した	発 光 も	雑能を喪失	した素子	の数
	デバイスの数	駆動開始直後	1 週間後	1 箇月後	1000時間後
実施例 1	4 5	1	1	1	1
実施例 2	4 5	3	3	3	3
実施例3	45.	4	4	4	4
比較例1	4 5	4 3	4 5	4 5	4 5
比較例 2	4 5	2	8	3 1	4 5
比較例3	4 5	1	2	2	3

[0078] As shown in Table 1, there are few organic EL devices which lost the luminescence function more short in the organic electroluminescence device produced in the example 1 - the example 3, respectively. This shows that the reliable organic electroluminescence device was produced under the high yield. On the other hand, in the example 1 of a comparison which did not prepare a stress relaxation layer, almost all organic EL devices had lost the luminescence function more short at the time immediately after continuation drive initiation, and all the organic EL devices had lost the luminescence function more short after one week. This shows that a stress relaxation layer is useful, when an organic EL device prevents losing the luminescence function therefore short. [0079] Moreover, in the organic electroluminescence device produced in the example 2 of a comparison, although there were few organic EL devices which therefore lost the luminescence function short at the time immediately after continuation drive initiation, 1000 hours after, all the components had lost the luminescence function more short. And in the organic electroluminescence device produced in the example 3 of a comparison, it is at all the investigation time and is [whether the number of the organic EL devices which therefore lost the luminescence function short is equivalent to an example 1 - an example 3, and] less than [it]. Therefore, it can say that the organic electroluminescence device with the high dependability seen from a viewpoint whether an organic EL device therefore loses that luminescence function short was produced under the high yield, and the organic electroluminescence device of the example 3 of a comparison is excellent in the example 3 of a comparison with this point. However, if the closure effectiveness mentioned later, the difficulty of manufacture, the thickness of an organic electroluminescence device, etc. are taken into consideration, it can be said that the direction of the organic electroluminescence device of an example 1 - an example 3 is excellent.

[0080] The round formal field called the dark spot looked at by the evaluation organic EL device of the closure effectiveness non-emitted light is expanded to the organic EL device, when moisture and oxygen invade. Therefore, it is suitable as an index for evaluating the closure effectiveness to investigate aging of the magnitude about the dark spot of arbitration. Immediately after the continuation drive initiation for the evaluation of the yield mentioned above from such a viewpoint, A photograph of each organic electroluminescence device is taken at each [of one day, one week, one month (for 31 days), and 1000 hours after] time. One device was chosen as arbitration from the organic electroluminescence devices which had not lost the luminescence function at the time 1000 hours after, and it asked for each diameter in a time from the aforementioned photograph paying attention to the dark spot of the arbitration in the organic EL device which constitutes the organic electroluminescence device. This result is shown in Table 2. In addition, since all the organic EL devices had lost the luminescence function more short about the organic electroluminescence device produced in the example 1 of a comparison at the time one week after, one device was chosen as arbitration from the organic electroluminescence devices which had not lost the luminescence function at the time one day after. Moreover, since all the organic EL devices had lost the luminescence function more short about the organic electroluminescence device produced in the example 2 of a comparison at the time 1000 hours after, one device was chosen as arbitration from the organic electroluminescence devices which had not lost the luminescence function at the time one month after. [0081]

[Table 2]

	駆動開始直後	1 日後	1週間後	1 箇月後	1000時間後
実施例 1	1 4	17 (21%)	18 (29%)	21 (50%)	23 (64%)
実施例2	1 1	15 (36%)	19 (73%)	23 (109%)	2 5 (127%)
実施例3	6	8 (33%)	9 (50%)	1 2 (100%)	1 3 (117%)
比較例1	1 3	16 (23%)			
比較例2	1 7	32 (88%)	8 0 (371%)	450 (2550%)	
比較例3	1 2	15 (25%)	25 (108%)	3 0 (150%)	3 3 (175%)

^{*}表内の数字の単位はµm

[0082] As shown in Table 2, also after carrying out a continuation drive for 1000 hours, with the organic electroluminescence device produced in the example 1 – the example 3, respectively, the dark spot is not expanded so much. This shows that the high closure effectiveness is acquired to an organic EL device in each organic electroluminescence device of an example 1 – an example 3. O Sufficient data for the organic electroluminescence device of the example 1 of a comparison to estimate the closure effectiveness on the other hand, since the organic EL device which loses a luminescence function more short succeeded one another were not able to be obtained. Moreover, it turns out that growth of a dark spot is very quick and the organic electroluminescence device of the example 2 of a comparison of the closure to an organic EL device is inadequate. And in the organic electroluminescence device of the example 3 of a comparison, growth of a dark spot is a little quick, and the closure effectiveness over an organic EL device understands that nearby [of an example 1 – an example 3] is low.

^{*}括弧内の数値は駆動開始直後のダークスポットの直径に対する直径の増大分を百分率で表したものである。

^{*}実線を付した空欄は、全ての索子が発光機能を喪失したために測定できなかったことを示す。

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[0085]

[Drawing 1] It is the schematic diagram showing the cross section of the organic electroluminescence device produced in the example 1.

[0086]

[Drawing 2] It is the schematic diagram showing the top face of the organic electroluminescence device produced in the example 1.

[0087]

[Description of Notations]

- 1 Organic Electroluminescence Device
- 2 Glass Substrate
- 3 Organic EL Device
- 4 Stress Relaxation Layer
- 5 Accessory Plate
- 6 Adhesives Layer
- 7 Sealing Agent

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

【図1】

【図2】

[0019] Generating of the above-mentioned shear stress can mention hydrocarbon system liquids, such as silicone system liquids, such as fluorine system liquids, such as gases, such as gaseous helium, nitrogen gas, and argon gas, and chlorofluorocarbon, a perfluoro polyether, a perfluoro amine, a perfluoro alkane, methyl hydrogen silicone, methyl chlorophenyl silicone, and trifluoro propylmethyl silicone, an alpha olefin (Pori alpha olefin of C5 - C17), polybutene, alkylbenzene, and a polyalkylene glycol, etc. as a fluid among small matter. However, a complicated process is needed for forming, preventing that the adhesives for adhesives stratification advance the stress relaxation layer which consists of these fluids into the inside of the stress relaxation layer concerned, or the interface of the stress relaxation layer and a substrate (substrate for forming an organic EL device) concerned. Therefore, when using a fluid as the above-mentioned "matter with small generating of shear stress", it is desirable to use the coating liquid which is made to come to dissolve resin, rubber, etc. in a solvent as this fluid, and carries out film formation by evaporation of a solvent under about 10–30–degree C temperature conditions among atmospheric air. [0020] When the above-mentioned coating liquid is used, it is possible to be able to make a solid-state layer (coat) form in a layer front face, and to maintain a liquid condition about the part inside the aforementioned solid-state layer by evaporating a little the solvent in the layer which consists of the coating liquid concerned. After forming the layer which consists of the above-mentioned coating liquid within limits which follow for example, by which a liquid condition is maintained as an organic EL device is located, the stress relaxation layer made into the purpose can be easily formed by performing formation of a solid-state layer, and formation of an adhesives layer one by one. [0021] In addition, as for coating liquid, it is desirable also in a liquid with small generating of said shear stress to use as a solvent what evaporates easily under a room temperature. Moreover, since what adhesives permeate does not make business, when it becomes a solid-state layer, it is desirable [the solid-state component which has melted into coating liquid], although there is no need that the aforementioned solid-state layer becomes hard especially that it is what does not let adhesives pass substantially.

[0022] As an example of the coating liquid mentioned above, the thing of following the (1) – (3) is mentioned. (1) Fluorine system coating liquid, such as what makes a solute what melted Teflon AF (trade name; Du Pont make) to SAITOPPU CTX-105A (trade name; Asahi Glass Co., Ltd. make), a FURORO barrier (trade name; made in the Yasunari company), and FURORINATO FC72 (trade name; product made from Sumitomo 3M), and the thing to which the aforementioned fluorine system liquid was used as the solvent, and the degree of polymerization progressed from that of this liquid.

(2) Silicone system coating liquid, such as what makes a solute that to which the aforementioned silicone system liquid was used as the solvent, and the degree of polymerization progressed from that of this liquid.

(3) Hydrocarbon system coating liquid, such as what makes a solute that to which the aforementioned hydrocarbon system liquid was used as the solvent, and the degree of polymerization progressed from that of this liquid. [0023] Moreover, as "matter with small generating of shear stress" mentioned above, grease and gel are also suitable. Although grease consists of base oil, a thickening agent, and an additive, especially the thing that uses the liquid with small generating of said shear stress for base oil is desirable. As a thickening agent and an additive, when it is a solid particulate, the one where the particle size is smaller is desirable. If the aforementioned particle size is too large, an organic EL device will be damaged and that will become a short cause. Moreover, the aforementioned particle size needs to be smaller than the thickness made into the purpose of a stress relaxation layer at least. However, if the aforementioned particle size is too small, whenever [butterfly] will be lost, and the advantage using grease is lost. The aforementioned particle size has 100A – desirable 10 micrometers. Since the grease using what is not a solid particulate as a thickening agent and an additive does not have a fear of damaging an organic EL device with the grease concerned, it is much more desirable.

[0024] As an example of the above-mentioned grease, the thing of following the (1) - (3) is mentioned.

- (1) Fluorine system grease, such as PTFE grease (trade name; NICHIAS CORP. make).
- (2) Silicone system grease, such as grease for FS high vacuums (trade name; Dow Corning make).
- (3) Hydrocarbon system grease, such as Apiezon grease N (trade name; the Apiezon company make).

[0025] And as an example of the aforementioned gel, a glycerol, gelatin, polyacrylamide gel, agarose gel, methyl cellulose gel, etc. are mentioned. The gel used by this invention needs to have the fluidity.

[0026] Although formation of a stress relaxation layer may be performed by the approach mentioned above when using the coating liquid which was mentioned above in forming a stress relaxation layer, you may carry out as follows using an accessory plate. First, on an organic EL device, the coating liquid of sufficient amount for a wrap is dropped thru/or applied for this organic EL device, and the layer of coating liquid is once formed. Next, an accessory plate is arranged on the aforementioned layer and the aforementioned layer is uniformly spread the weight of this accessory plate, or by applying a load to this accessory plate. When plane view is carried out as the aforementioned accessory plate, what has sufficient magnitude for a wrap for an organic EL device is used, and this accessory plate is formed in the substrate with which the organic EL device is formed, and the sense which counters substantially. Moreover, the load added to the amount of coating liquid, the weight of an accessory plate, or an accessory plate is suitably adjusted so that the layer of coating liquid may be formed between an organic EL device and an accessory plate. Subsequently, a solid-state layer (coat) is made to form in the front face of a direction parallel to a substrate front face in the outside surface of the layer of coating liquid (field which is in contact with the open air), i.e., the aforementioned layer, by carrying out suitable time amount neglect. At this time, neglect time amount is suitably adjusted so that coating liquid may not solidify about the periphery of an organic EL device. Although a stress relaxation layer is obtained once by this, since the coating liquid of the periphery of an organic EL device solidifies to the inside of a short time the way things stand, an adhesives layer is formed as the aforementioned accessory

THIS PAGE BLANK DISTO

plate is covered. Since the vaporization of the solvent in coating liquid is inhibited after forming an adhesives layer, solidification of coating liquid is inhibited, and the coating liquid which exists in the periphery of an organic EL device as the result continues maintaining a liquid condition. The stress relaxation layer made into the purpose by this is obtained.

[0027] Moreover, formation of the stress relaxation layer which uses the grease mentioned above can be performed by dropping thru/or applying the grease of sufficient amount for a wrap for an organic EL device on an organic EL device, and forming a grease layer. Or after forming a grease layer as mentioned above, an accessory plate can be arranged on this grease layer, and it can carry out by spreading the aforementioned grease layer uniformly the weight of this accessory plate, or by applying a load to this accessory plate. Moreover, although it is also possible to form a stress relaxation layer by applying grease to mum order, without using an accessory plate, plastering thinly to mum order may damage an organic EL device, and it can be said to be difficult. And formation of the stress relaxation layer which uses the gel mentioned above can be performed like the case where a stress relaxation layer is formed using grease.

[0028] The thickness (thickness on an organic EL device) of the stress relaxation layer which can be formed as mentioned above is selectable suitably within the limits of 0.1 micrometers – 1cm in general. It is difficult for thickness to acquire desired effectiveness in less than 0.1 micrometers. On the other hand, if thickness exceeds 1cm, since the advantage of an organic electroluminescence device called a thin shape is not only spoiled, but the increase of the volume by thermal expansion will become large according to increase of the volume of a stress relaxation layer, a possibility of destroying by the temperature change at the time of use etc. becomes strong. The thickness with a desirable stress relaxation layer is 0.01–1mm. In addition, thickness here means the thickness of the layer of the coating liquid which exists maintaining a liquid condition on the periphery of an organic EL device when forming using the coating liquid which the stress relaxation layer mentioned above.

[0029] Moreover, although this accessory plate may have the closure effectiveness and does not need to have it when using an accessory plate in forming a stress relaxation layer, it is more more desirable to have the closure effectiveness. It is desirable to use the tabular thing made as an accessory plate by resin, such as inorganic substances, such as glass, ceramics, and a metal, and fluororesin, acrylic resin, a polycarbonate, polyester, a polyamide, polystyrene, polypropylene, polyolefine system resin, etc. As mentioned above, when plane view of the magnitude of an accessory plate is carried out, it is desirable that it is sufficient magnitude for a wrap about an organic EL device. Moreover, as for the thickness of an accessory plate, it is desirable to be referred to in general as 0.1 micrometers – 3mm. The production cost of thickness is high, and a less than 0.1-micrometer thing does not have it from being hard to deal with it. [desirable] On the other hand, if thickness exceeds 3mm, the advantage of an organic electroluminescence device called a thin shape will be spoiled. The desirable thickness of an accessory plate is 0.01-1mm.

[0030] In the organic electroluminescence device of this invention, the stress relaxation layer which mentioned it above as covered the organic EL device formed on the substrate is prepared, and as the organic EL device covered with this stress relaxation layer is covered, the adhesives layer is formed on the aforementioned substrate. While it is for making the sealing agent mentioned later fix, this adhesives layer is for preventing that the stress relaxation layer mentioned above touches with the open air, and unless the configuration of the sealing agent which mentions later whether that side face prepares a special member is made special, it meets with the open air. Therefore, an adhesives layer has especially the desirable thing what has the closure effectiveness, i.e., water permeability, and oxygen permeability are [a thing] low. What consists of photoresist adhesives, thermosetting adhesive, anaerobic adhesive, etc. as such an adhesives layer is desirable, and BENEFIKKUSU VL (trade name of the photoresist adhesives Made from ADERU), acrylic one #4111 (trade name of the photoresist adhesives by Maruto Co., Ltd.), the ARON tightness UL (trade name of the anaerobic adhesive made from Toagosei Chemical industry), the AREMUKO bond 570 (trade name of the thermosetting adhesive Made from ODEKKU), etc. are mentioned as an example. [0031] An adhesives layer trickles adhesives into the request part of a part in which the aforementioned stress relaxation layer is not prepared in the substrate front face of the side which prepared the stress relaxation layer top (on [when an accessory plate is used in forming a stress relaxation layer] this accessory plate) mentioned above, and this stress relaxation layer. The sealing agent besides mentioned later is arranged, and after spreading the aforementioned adhesives uniformly the weight of a sealing agent, or by applying a load to a sealing agent, it can form by stiffening the adhesives concerned. Moreover, after forming a non-hardened adhesives layer by approaches, such as the applying method, a spin coat method, and a dip method, and arranging the sealing agent later mentioned on this adhesives layer, it can form also by stiffening the adhesives concerned.

[0032] Final thickness of an adhesives layer (thickness on a stress relaxation layer.) When an accessory plate is used in forming a stress relaxation layer, as for the thickness on this accessory plate, it is desirable to be referred to in general as 0.1 micrometers – 1cm. When thickness carries a sealing agent in less than 0.1 micrometers, as a result of the sealing agent concerned coming floating with the surface tension of the adhesives in the condition of not hardening, air bubbles tend to go into the inside of the adhesives in the condition of not hardening, or the interface of this adhesives and sealing agent. On the other hand, if thickness exceeds 1cm, the advantage of an organic electroluminescence device called a thin shape will be spoiled. The thickness with a desirable adhesives layer is 0.001–1mm. Since the organic EL device is covered with the stress relaxation layer at the time of formation of an adhesives layer, there is no need of paying attention in the degree of hardness and contraction at the time of hardening of adhesives substantially. As the result, the width of face of the selection of adhesives from the case where there is no stress relaxation layer spreads.

desirable thickness of a sealing agent is 0.01-1mm.

small thing. As an example of the matter which can be used as a sealing agent, resin, such as inorganic substances, such as glass, ceramics, and a metal, and fluororesin, acrylic resin, a polycarbonate, polyester, a polyamide, polystyrene, polypropylene, polyolefine system resin, is mentioned.

[0034] Since the time and effort of processing is economical few, as for the configuration of a sealing agent, it is desirable that it is tabular. Moreover, although the thinner one of the thickness of a sealing agent is [from / in obtaining a thin organic electroluminescence device] desirable, since it will become weak to impacts, such as external force, if too thin, it is desirable to choose suitably within the limits of 0.1 micrometers – 1cm in general according to the quality of the material of a sealing agent. It is difficult to obtain that in which thickness has practically sufficient resistance to impacts, such as external force, in less than 0.1 micrometers. On the other hand, if thickness exceeds 1cm, it will become difficult to obtain a thin organic electroluminescence device. The more

[0035] The organic electroluminescence device of this invention makes the organic EL device covered with the stress relaxation layer mentioned above, the adhesives layer, and the aforementioned stress relaxation layer other than a sealing agent the requirements for an indispensable configuration. That an organic EL device should just be formed on a substrate, the lamination will not be limited, especially if it functions as an organic EL device.
[0036] As an example of the lamination of the organic EL device of the type which makes a substrate side the ejection side of light, the thing of following the (1) – (4) is mentioned for the order of a laminating on a substrate front face.

(1) An anode plate / luminous layer / cathode (2) anode plate / luminous layer / electron injection layer / cathode (3) anode plate / hole-injection layer / luminous layer / cathode (4) anode plate / hole-injection layer / luminous layer / electron injection layer / cathode [0037] Here, although a luminous layer is usually formed of one sort or two or more sorts of organic luminescent material, it may be formed with mixture with an organic luminescent material, a hole-injection ingredient, and/or an electron injection ingredient. Moreover, the protective layer for preventing invasion of the moisture to a component, as the component concerned is covered on the periphery of the component of lamination mentioned above may be prepared.

[0038] When making a substrate side into the ejection side of light, the tabular object which the aforementioned substrate consists of matter which gives high permeability (in general 80% or more) to luminescence (EL light) from an organic EL device at least, and specifically consists of clear glass, a transparent plastic, a quartz, etc., a sheet–like object, or a film–like object is used. In addition, it is also possible to make into the ejection side of light the sealing agent side mentioned above in the organic electroluminescence device of this invention. In this case, it is not necessary to make the order of a laminating on a substrate into above–mentioned sequence and above–mentioned reverse, to form an organic EL device, and to take into consideration the permeability of luminescence (EL light) from an organic EL device about a substrate ingredient. Instead, the matter which gives high permeability (in general 80% or more) to luminescence (EL light) from an organic EL device about the ingredient of a stress relaxation layer, the ingredient of an adhesives layer, and the ingredient of a sealing agent is used.

[0039] As an ingredient of an anode plate, cathode, a luminous layer, a hole-injection layer, an electron injection layer, and a protective layer, a well-known ingredient can be used conventionally, respectively. For example, the metal with a large (for example, 4eV or more) work function as an anode material, an alloy, electrical conductivity compounds, or such mixture are used preferably. As an example, metals, such as gold and nickel, dielectric transparent materials, such as Cul, ITO, SnO2, and ZnO, etc. are mentioned. Especially, the point of productivity or a controllability to ITO is desirable. Although the thickness of an anode plate is based also on an ingredient, it is usually selectable suitably within the limits of 10nm – 1 micrometer.

[0040] Moreover, as a cathode material, a small (for example, 4eV or less) metal, an alloy, electrical conductivity compounds, or such mixture of a work function etc. are used preferably. As an example, rare earth metals, such as the alloy of a sodium and sodium-potassium alloy, magnesium, a lithium, magnesium, and silver or a mixed metal, aluminum, aluminum/AlO2, an indium, and an ytterbium, etc. are mentioned. Although the thickness of an anode plate is based also on an ingredient, it is usually selectable suitably within the limits of 10nm - 1 micrometer. Also in any of an anode plate and cathode, below hundreds of ohms / ** of the sheet resistance are desirable. In addition, in case an anode material and a cathode material are chosen, the magnitude of the work function made into criteria is not limited to 4eV.

[0041] The impregnation function in which an electron can be poured in from cathode or an electron injection layer while the ingredient (organic luminescent material) of a luminous layer can pour in an electron hole from an anode plate or a hole-injection layer at the time of the luminous layer for organic EL devices, i.e., electric-field impression, What is necessary is just to be able to form the layer which has the transportation function to which the poured-in charge (an electron and an electron hole at least on the other hand) is moved by the force of electric field, the luminescence function to offer the place of the recombination of an electron and an electron hole and to tie this to luminescence, etc. As the example, the fluorescent brightener of systems, such as a benzothiazole system, a benzimidazole system, and a benzooxazole system, A metal chelation oxy-NOIDO compound, a styryl benzenoid compound, a JISUCHIRIRU pyrazine derivative, Polyphenyl system compound and 12-phtalo peri non, 1, 4-diphenyl-1,3-butadiene, 1, 1, 4, and 4-tetra-phenyl-1,3-butadiene, the North America Free Trade Agreement RUIMIDO derivative, The metal complex of a perylene derivative, an OKISA diazole derivative, an aldazine derivative, a

PIRAJIRIN derivative, a cyclopentadiene derivative, a pyrrolo pyrrole derivative, a styryl amine derivative, a coumarin system compound, an aromatic dimethylidyne compound, and an eight-quinolinol derivative etc. is mentioned. Although especially the thickness of a luminous layer is not limited, it is usually suitably chosen within the limits of 5nm - 5 micrometers.

[0042] The ingredient (hole-injection ingredient) of a hole-injection layer should just have any of the impregnation nature of an electron hole, and electronic obstruction nature they are. As the example, a triazole derivative, an OKISA diazole derivative, An imidazole derivative, the poly aryl alkane derivative, a pyrazoline derivative, A pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, An amino permutation chalcone derivative, an oxazole derivative, a styryl anthracene derivative, full — me — non — a derivative, a hydrazone derivative, a stilbene derivative, and a silazane derivative — Conductive polymer oligomer, such as a polysilane system compound, an aniline system copolymer, and thiophene oligomer, a porphyrin compound, an aromatic series tertiary—amine compound, a styryl amine compound, an aromatic series JIMECHIRI DIN system compound, etc. are mentioned. Although especially the thickness of a hole-injection layer is not limited, either, it is usually suitably chosen within the limits of 5nm — 5 micrometers. A hole-injection layer may be 1 layer structure which consists of one sort of the ingredient mentioned above, or two sorts or more, and may be two or more layer structure which consists of two or more layers of the same presentation or a different—species presentation.

[0043] An electron injection layer that what is necessary is just to have the function to transmit the electron required in from cethods to a luminous layer as an example of the ingredient (electron injection ingredient) nitration

poured in from cathode to a luminous layer as an example of the ingredient (electron injection ingredient) nitration full — me — non — a derivative, an anthra quinodimethan derivative, and a diphenyl quinone derivative — Heterocycle tetracarboxylic acid anhydrides, such as a thiopyran dioxide derivative and naphthalene perylene, A carbodiimide, a deflection ORENIRIDEN methane derivative, an anthra quinodimethan derivative, A thing, a JISUCHIRIRU pyrazine derivative, etc. with which the metal complex of an anthrone derivative, an OKISA diazole derivative, and an eight—quinolinol derivative, a metal free phthalocyanine, metal phthalocyanines, or these ends are permuted by the alkyl group, the sulfone radical, etc. are mentioned. Although especially the thickness of an electron injection layer is not limited, either, it is usually suitably chosen within the limits of 5nm – 5 micrometers. An electron injection layer may be 1 layer structure which consists of one sort of the ingredient mentioned above, or two sorts or more, and may be two or more layer structure which consists of two or more layers of the same presentation or a different—species presentation.

[0044] And the copolymer which is made to carry out copolymerization of the monomer mixture containing tetrafluoroethylene and at least one sort of comonomers as an example of the ingredient of a protective layer, and is obtained, The fluorine-containing copolymer which has cyclic structure in a copolymerization principal chain, polyethylene, polypropylene, Polymethylmethacrylate, polyimide, polyurea, polytetrafluoroethylene, Polychlorotrifluoroethylene resin, poly dichlorodifluoroethene, The copolymer of chlorotrifluoroethylene and dichlorodifluoroethene, The absorptivity matter of 1% or more of water absorption, and the dampproof matter of 0.1% or less of water absorption, Metals, such as In, Sn, Pb, Au, Cu, Ag, aluminum, Ti, and nickel, MgO, SiO, SiO2, aluminum 203, GeO, NiO, CaO, BaO and Fe 203, Y2 O3, and TiO2 etc. — a metallic oxide, MgF2, LiF, AlF3, and CaF2 etc. — a metal fluoride etc. is mentioned.

[0045] Moreover, it is not limited especially about the formation approach of each class (an anode plate and cathode are included) which constitutes an organic EL device, either, as the formation approach of an anode plate, cathode, a luminous layer, a hole-injection layer, and an electron injection layer — a vacuum deposition method, a spin coat method, the cast method, the sputtering method, and LB — although law etc. is applicable, about a luminous layer, it is desirable to apply approaches other than the sputtering method (LB a vacuum deposition method, a spin coat method, the cast method, law, etc.). As for especially a luminous layer, it is desirable that it is the molecule deposition film, the thing of the thin film which deposition was carried out to the molecule deposition film from the ingredient compound of a gaseous-phase condition here, and was formed, and the film solidified and formed from the ingredient compound of a solution condition or a liquid phase condition — it is — usually — this molecule deposition film — LB — with the thin film (molecule built up film) formed of law, it is classifiable with the difference of condensation structure and higher order structure, and the functional difference resulting from it. In forming a luminous layer with a spin coat method etc., it prepares a coating solution by melting a binder and ingredient compounds, such as resin, to a solvent.

[0046] moreover — a protective layer — a vacuum deposition method, a spin coat method, the sputtering method, the cast method, and MBE (molecular beam epitaxy) — law, the ionized cluster beam method, the ion plating method, a plasma polymerization method (the high-frequency excitation ion plating method), a reactive-sputtering method, a plasma-CVD method, a laser CVD method, a heat CVD method, a gas source CVD method, etc. are applicable.

[0047] The formation approach of each class can be suitably changed according to the ingredient to be used. If a vacuum deposition method is used in formation of each class which constitutes an organic EL device, since an organic EL device can be formed only with this vacuum deposition method, it is advantageous when aiming at simplification of a facility, and compaction of the production time.

[0048] In addition, the configuration and magnitude of each class (a protective layer is included) which constitute an organic EL device are not necessarily the same. Moreover, when plane view of the component is carried out, all other layers are not surely settled on the electrode formed in right above [of a substrate]. On the other hand, the stress relaxation layer as used in the field of this invention is for controlling that the residual stress of an adhesives layer spreads to an organic EL device, and short-circuit arises in the organic EL device concerned. Therefore, "it is

a wrap stress relaxation layer about an organic EL device" as used in the field of this invention means the stress relaxation layer which has covered at least the field with which cathode and an anode plate lap, when plane view of the organic EL device is carried out. Moreover, "it is the coating liquid (grease, gel) of sufficient amount for a wrap about an organic EL device" as used in this specification means "it is the coating liquid (grease, gel) of amount sufficient at least for a wrap about the field with which cathode and an anode plate lap when plane view of the organic EL device is carried out." And "the accessory plate which has sufficient magnitude for a wrap for an organic EL device when plane view is carried out" means "the accessory plate which has magnitude sufficient at least for a wrap for the field with which cathode and an anode plate lap when plane view is carried out, and plane view of the organic EL device is carried out."

[0049] Moreover, the number of the organic EL devices which constitute the organic electroluminescence device of this invention may be one, and may be plurality. When two or more, each component may have the same class seen from lamination or the luminescent color, and may differ. It is selectable suitably into how many the number of organic EL devices is made according to the application of the organic electroluminescence device made into the purpose etc. When two or more organic EL devices are formed on the substrate, a stress relaxation layer may be prepared for every organic EL device, one thing common to all organic EL devices may be prepared, and two or more things common to the plurality of all the organic EL devices may be prepared. In forming two or more organic EL devices formed on the substrate in a wrap sake for two or more stress relaxation layers, the same is said of the case where an accessory plate is used, and one thing common to [may use an accessory plate for every stress relaxation layer, and] all stress relaxation layers which it is going to prepare may be prepared, and two or more things common to the plurality of all the stress relaxation layers may be prepared. About an adhesives layer and a sealing agent, even when two or more organic EL devices are formed on the substrate, it is desirable practically to prepare one thing common to all organic EL devices, respectively.

[0050] the organic EL device which mentioned above the organic electroluminescence device of this invention, and this organic EL device — a wrap — the above-mentioned stress relaxation layer which made it like and was formed on the substrate (that in which the organic EL device is formed), and this stress relaxation layer — a wrap — it has the above-mentioned adhesives layer which made it like and was formed on the aforementioned substrate, and the above-mentioned sealing agent which fixed on the aforementioned substrate by this adhesives layer. In this organic electroluminescence device, since the organic EL device is covered with the stress relaxation layer, it is controlled that the residual stress of an adhesives layer spreads to an organic EL device. Since it is prevented that the crush of the edge of an organic EL device etc. is carried out by the residual stress spread from the adhesives layer, and it short-circuits with it as the result, the luminescence function of an organic EL device continues at a long period of time, and it is hard to lose it.

[0051] Moreover, although the force works in the parallel direction with the front face of an organic EL device as usual in the organic electroluminescence device of this invention at the time of formation of an adhesives layer, it is controlled from the organic EL device being covered with the stress relaxation layer that the aforementioned force spreads to an organic EL device. Since it is prevented by the organic EL device according to the aforementioned force as the result that electrode exfoliation occurs, it cannot break out easily that the luminescence function of an organic EL device loses after the manufacture process of an organic electroluminescence device or manufacture. Furthermore, since the organic electroluminescence device of this invention closes an organic EL device by the adhesion type closure approach, its closure effectiveness of an organic EL device is high, and its thickness of the device itself is thin, and it is comparatively easy to mass—produce.
 [0052] The organic electroluminescence device of this invention which has such a description can be used as the surface light source, a character indicating equipment, the equipment for electric spectaculars, the indicator for mount, the light source for electric discharge of a copying machine, the light source for printers, light modulation equipment, etc.

[0053] Next, the closure approach of the organic EL device of this invention is explained. This approach is characterized by preparing an adhesives layer in it, as this organic EL device is covered at the tooth back of an organic EL device prepared on the substrate, and forming said organic EL device for a wrap stress relaxation layer between said organic EL devices and said adhesives layers in closing said organic EL device by fixing a sealing agent on said substrate by this adhesives layer, as mentioned above.

[0054] Preparing in order to control that the residual stress of an adhesives layer spreads the aforementioned stress relaxation layer to an organic EL device, the ingredient and the formation approach are as having explained in the organic electroluminescence device of this invention mentioned above. Moreover, it is as having also explained the detail of the closure which fixes the organic EL device covered with this stress relaxation layer, and the organic EL device covered with the aforementioned stress relaxation layer by the adhesives layer prepared as covers, and the aforementioned adhesives layer on a substrate (that in which the organic EL device is formed) in the organic electroluminescence device of this invention mentioned above, respectively.

[0055] In the organic EL device closed by this approach, since the organic EL device concerned is covered with the stress relaxation layer, it is controlled that the residual stress of an adhesives layer spreads to an organic EL device. Since it is prevented that the crush of the edge of an organic EL device etc. is carried out by the residual stress spread from the adhesives layer, and it short-circuits with it as the result, the organic EL device (that by which the closure was carried out (= organic electroluminescence device)) which a luminescence function continues at a long period of time, and cannot lose easily is obtained.

[0056] Moreover, although the force works in the direction parallel to the front face of an organic EL device at the time of formation of an adhesives layer, it is controlled from the organic EL device being covered with the stress

relaxation layer that the aforementioned force spreads to an organic EL device. Since it is prevented by the organic EL device according to the aforementioned force as the result that electrode exfoliation occurs, it cannot break out easily that the luminescence function of an organic EL device loses after the process of the closure or the closure. Furthermore, since the approach of this invention is one of the adhesion type closure approaches, it is comparatively easy for the closure effectiveness to be high and to mass-produce an organic EL device (that by which the closure was carried out (= organic electroluminescence device)) with thin thickness.

[Example] Hereafter, the example of this invention is explained.

After preparing what formed the ITO film of 100nm of thickness to band-like at the longitudinal direction of the glass substrate concerned (this is hereafter called transparence support substrate) on production place ** of an example 1 (1) organic EL device, and the glass substrate of 25mmx75mmx1.1mm magnitude and cleaning this transparence support substrate ultrasonically for 30 minutes by isopropyl alcohol, pure water washed for 30 minutes and, finally it cleaned ultrasonically for 30 minutes by isopropyl alcohol again. The transparence support substrate after washing is fixed to the substrate electrode holder of a commercial vacuum evaporation system (product made from Japanese Vacuum technology). On the resistance heating boat made from molybdenum, N, N'-diphenyl-N, N'-screw-(3methylphenyl)-[1 and 1'-biphenyl]-4, and 4'-diamine It put in (it having been hereafter called TPD), 200mg (henceforth Alq3) of tris (eight quinolinol) aluminum was put into another resistance heating boat made from molybdenum, and the inside of a vacuum chamber was decompressed up to 1x10 to 4 Pa. [200mg] [0058] Next, heated the aforementioned resistance heating boat into which TPD was put to 215-220 degrees C, TPD was made to deposit on the ITO film in the evaporation rate of 0.1-0.3nm/second, and the hole-injection layer of 60nm of thickness was formed. The substrate temperature at this time was a room temperature. Subsequently, the luminous layer was succeedingly formed to membrane formation of a hole-injection layer, without taking out the transparence support substrate with which the hole-injection layer was formed from a vacuum chamber. Membrane formation of a luminous layer is Alg3. The put-in aforementioned resistance heating boat is heated to 275 degrees C, and it is Alg3. It is made to deposit on a hole-injection layer in the evaporation rate of 0.1-0.2nm/second, and is Alg3 of 60nm of thickness. It carried out by forming a layer. The substrate temperature at this time was also a room temperature. Next, magnesium 1g was put into the resistance heating boat made from molybdenum, 500mg of silver was put into another resistance heating boat made from molybdenum, and the inside of a vacuum chamber was decompressed up to 2x10 to 4 Pa. And while heating the aforementioned resistance heating boat into which magnesium was put at about 500 degrees C and evaporating magnesium in the evaporation rate of about 1.7-2.8nm/second, the aforementioned resistance heating boat into which silver was put was heated at about 800 degrees C, silver was evaporated in the evaporation rate of 0.03-0.08nm/second, and the cathode of 150nm of thickness which consists of a mixed metal of magnesium and silver was established in a total of on [three] a luminous layer. The magnitude on plane view of each cathode is 3mmx15mm, and these are prepared in the sense which intersects perpendicularly with the ITO film at fixed spacing.

[0059] Then, the glass substrate prepared to the aforementioned cathode was cut to three, and a total of three organic EL devices whose lamination on a glass substrate is an anode plate (ITO film) / hole-injection layer / luminous layer / cathode (Mg-Ag layer) were obtained. The magnitude of the luminescence side (field where cathode and an anode plate lap in when plane view is carried out, and the hole-injection layer and the luminous layer exist among these electrodes) of these organic EL devices is 3mmx5mm. Moreover, the initial brightness of these organic EL devices is electrical-potential-difference 6.5V and current density 3 mA/cm2. They are 100 cd/m2 under conditions. Reaching, the power conversion effectiveness at this time was 1.6 lm/W.

[0060] (2) the formation list of a stress relaxation layer and an adhesives layer — as the ingredient of arrangement place ** of a sealing agent, and a stress relaxation layer -- fluororesin coating liquid (SAITOPPU CTX-105A by Asahi Glass Co., Ltd.) -- preparing -- moreover -- as an accessory plate -- about 10 -- the cover glass (henceforth cover glass I) of mmx10mmx0.15mm magnitude was prepared. Next, it was dropped on the organic EL device which produced the 5micro of the aforementioned fluororesin coating liquid I above (1), and the aforementioned cover glass I was carried on this. The thin film (0.05mm in thickness) of said coating liquid was uniformly made by said coating liquid with the viscous lowness of fluororesin coating liquid, and the weight of cover glass I between breadth, an organic EL device, and cover glass I. At this time, some coating liquid was protruded into the outside of the field covered by cover glass I a little. By leaving it about 10 minutes in this condition, the solidstate layer (coat) was made to form in the outside surface of the above-mentioned thin film which consists of fluororesin coating liquid, i.e., the front face of a glass substrate and the front face of an parallel direction, and the stress relaxation layer made into the purpose was obtained once. At this time, the fluororesin coating liquid of the part which is in contact with the organic EL device was maintaining the liquid condition, without solidifying. [0061] Next, 0.1ml (BENEFIKKUSU VL Made from ADERU) of photoresist adhesives was dropped on the abovementioned cover glass I as adhesives, and the cover glass (magnitude is called cover glass II below about 20mmx20mmx0.15mm;) as a sealing agent was carried on it. Said photoresist adhesives covered completely breadth, the above-mentioned stress relaxation layer, and cover glass I uniformly with the viscous lowness of photoresist adhesives, and the weight of cover glass II. Following on installation of cover glass II, the light of a halogen lamp was irradiated from on the aforementioned cover glass II at photoresist adhesives, and the photoresist adhesives concerned were stiffened.

[0062] The adhesives layer with a thickness of 0.1mm (thickness on cover glass I) which consists of photoresist adhesives by this as covers the above-mentioned stress relaxation layer was formed, and the cover glass II as a

sealing agent fixed by the aforementioned adhesives layer to coincidence on the glass substrate (that in which the organic EL device is formed). Furthermore, since the vaporization of the solvent of the fluororesin coating liquid in the above-mentioned stress relaxation layer was inhibited after forming an adhesives layer, finally the stress relaxation layer to which it continues maintaining the fluororesin coating liquid which exists in the periphery of an organic EL device, and it targets a liquid condition as the result was formed.

[0063] By having carried out to formation of an adhesives layer, and arrangement of a sealing agent as mentioned above, the organic electroluminescence device made into the purpose was obtained. Hereafter, the organic electroluminescence device was produced similarly and a total of 45 organic electroluminescence devices were obtained. The schematic diagram of the cross section of the organic electroluminescence device produced by this example 1 is shown in drawing 1 R> 1, and a plan is shown in drawing 2.

[0064] The organic EL device 3 with which this organic electroluminescence device 1 was formed in one side of a glass substrate 2 as shown in drawing 1, The stress relaxation layer 4 formed on the glass substrate 2 as covered this organic EL device 3. The accessory plate 5 which consists of cover glass I used in order to form this stress relaxation layer 4, It has the adhesives layer 6 which consists of photoresist adhesives formed on the glass substrate 2 as covered this accessory plate 5 and said stress relaxation layer 4, and the sealing agent 7 which consists of cover glass II which fixed on the glass substrate 2 by this adhesives layer 6. The stress relaxation layer 4 is made from fluororesin coating liquid, in this stress relaxation layer 4, the front face of a glass substrate 2 and the front face of an parallel direction are solidified, when the solvent evaporated at the time of that formation, solid-state layer 4a is formed, and fluororesin coating liquid 4b of the part which is in contact with the organic EL device 3 is maintaining the liquid condition, without solidifying.

[0065] Moreover, an organic EL device 3 is Alq3 as the ITO film as an anode plate, the TPD layer as a hole-injection layer, and a luminous layer on a glass substrate 2. The laminating of a layer and the Mg-Ag mixolimnion as cathode is carried out one by one. It is sign 3a about the ITO film among these, and sign 3b shows a Mg-Ag mixolimnion in drawing 1 and drawing 2, respectively. As shown in drawing 1 and drawing 2, ITO film 3a is formed in glass substrate 2 front face band-like, and Mg-Ag mixolimnion 3b is prepared in the sense which intersects perpendicularly with ITO film 3a. And the part with which ITO film 3a and Mg-In mixolimnion 3b have lapped on plane view is equivalent to the luminescence side of an organic EL device 3.

[0066] an example 2 — the organic EL device was first produced on the glass substrate on an example 1 and these conditions, next, the this top after applying these fluorine system grease about 0.01ml on the above-mentioned organic EL device, using fluorine system grease (PTFE grease by NICHIAS CORP.) as an ingredient of a stress relaxation layer — as an accessory plate — about 10 — the cover glass I of mmx10mmx0.15mm magnitude was carried. Subsequently, by pressing the aforementioned cover glass lightly from a top, the aforementioned fluorine system grease was spread uniformly and the thin film (0.1mm in thickness) of fluorine system grease was formed between an organic EL device and cover glass I. Thereby, the stress relaxation layer was obtained. Then, formation of the adhesives layer (0.06mm in thickness) which consists of photoresist adhesives on an example 1 and these conditions, and fixing of the sealing agent (cover glass II) by this adhesives layer were performed, and the organic electroluminescence device was produced similarly and a total of 55 organic electroluminescence devices were obtained.

[0067] an example 3 — the organic EL device was first produced on the glass substrate on an example 1 and these conditions. Next, the aluminum layer of 0.2 micrometers of thickness was formed with the vacuum deposition method as a protective layer on the cathode (Mg-Ag layer) which constitutes the aforementioned organic EL device. Then, formation of the stress relaxation layer (0.05mm in thickness) using an accessory plate (cover glass I), formation of the adhesives layer (0.1mm in thickness) which consists of photoresist adhesives, and fixing of the sealing agent (cover glass II) by this adhesives layer were performed on an example 1 and these conditions, and the organic electroluminescence device made into the purpose was obtained. Hereafter, the organic electroluminescence devices were obtained.

[0068] A total of 45 organic electroluminescence devices were produced like the example 1 except having not formed an example of comparison 1 stress-relaxation layer. An accessory plate was not used at this time, either. [0069] A total of 45 organic electroluminescence devices were produced like the example 1 except both having not fixed the sealing agent by formation of an example of comparison 2 adhesives layer, and the adhesives layer. [0070] the example 3 of a comparison — after washing this transparence support substrate on an example 1 and these conditions first, using that by which the 10mmx75mmx100nm ITO film was formed by the edge of both directions of a short hand of one side of the glass substrate of 25mmx75mmx1.1mm magnitude, respectively as a transparence support substrate, the substrate electrode holder of the vacuum evaporation system equipped with the mask automatic switchboard style was equipped. Next, the mask was covered over one side of the abovementioned ITO film, and the hole-injection layer and the luminous layer were formed on an example 1 and these conditions by this condition, respectively. Subsequently, after removing the above-mentioned mask using the mask automatic switchboard style attached to vacuum evaporationo equipment, width of face of 5mm was covered at the radial-border section of both longitudinal directions of one ITO film (ITO film of the direction over which the aforementioned mask was covered), respectively as it is also at said device, and the mask was covered. [0071] Next, heat the resistance heating boat made from molybdenum into which magnesium 1g was put beforehand, and the resistance heating boat made from molybdenum into which 500mg of silver was put beforehand, respectively, made magnesium vapor-deposit with the evaporation rate of about 1.5nm/second, coincidence was

made to vapor-deposit silver with the evaporation rate of about 0.1nm/second, and the cathode of 150nm of thickness which consists of a mixed metal of magnesium and silver was formed on the luminous layer. By having formed membranes to cathode, the organic EL device was formed on the above-mentioned glass substrate. [0072] Then, the protective layer was formed in the way of the following [the bottom of a series of vacuum environments which continue from membrane formation of a hole-injection layer, a luminous layer, and cathode], using the above-mentioned vacuum evaporation system as it is. First, the crucible made from an alumina which held 1.5g (Du Pont Teflon AF) of amorphism copolymer powder of tetrafluoroethylene, and perfluoro -2, the 2-dimethyl - 1 and 3-JIOKI SOL as an evaporation source is beforehand put into the basket made from a tungsten, and the mesh made from stainless steel of 12 micrometerphi was put above this basket made from a tungsten (on the crucible made from an alumina). Subsequently, after decompressing the inside of a vacuum chamber up to 1x10 to 4 Pa, energization heating was carried out at the aforementioned basket made from a tungsten, the aforementioned evaporation source was heated at 455 degrees C, and the protective layer (Teflon AF thin film) of 800nm of thickness was formed with the evaporation rate of 0.5nm/second on the above-mentioned cathode which constitutes an organic EL device.

[0073] Then, the organic EL device which formed membranes to the protective layer was taken out from the vacuum chamber, the casing type closure was performed in the following ways about this organic EL device, and the organic electroluminescence device was obtained. First, the hole-injection layer which covers width of face of 5mm, respectively, and is prepared on this ITO film about the radial-border section of both longitudinal directions of the ITO film of the direction over which a mask was not covered in membrane formation of a hole-injection layer, a luminous layer, cathode, and a protective layer were excised. Moreover, also about the edge of both directions of a short hand of a glass substrate, width of face of 5mm was covered, respectively, and a hole-injection layer, a luminous layer, cathode, and a protective layer were excised so that the thickness might become the sum of the thickness of a glass substrate, and the thickness of the ITO film substantially.

[0074] Subsequently, the glass plate (outside **: call it 20mmx75mmx3mm and following shield glass) which has a 18mmx73mmx2mm crevice and a through tube (henceforth an inlet) with a diameter of 2mm prepared in the bottom of this crevice is prepared, and this shield glass and the organic EL device which formed membranes to the protective layer were stuck with epoxy system adhesives (Cemedine super by Cemedine Co., Ltd. 5). After epoxy system adhesives mixed base resin and a curing agent and stirred them 20 times by the spatula, they were applied to the rectangle of about 20x75mm by width of face of 1mm at the edge of the organic EL device which formed membranes to the above-mentioned protective layer. Moreover, into the crevice of shield glass, cathode and a protective layer stuck it, as shield glass and the organic EL device which formed membranes to the above-mentioned protective layer were settled. After lamination and in atmospheric air, it was left for 10 hours and epoxy system adhesives were stiffened.

[0075] Subsequently, the silicone oil (it is called TSK451 by Toshiba Corp. and the liquid for the following closures) which did 8 volume % distribution of the silica gel for moisture absorption (particle size of 50 micrometers) was poured in from the inlet established in shield glass, and the inside of the space formed by the crevice of shield glass and the organic EL device which formed membranes to the above-mentioned protective layer was filled with the liquid for the closures. Then, the glass lid blocked the inlet and the organic electroluminescence device with which the casing type closure was given was obtained. In addition, the glass lid was pasted up on shield glass with the epoxy system adhesives mentioned above. Hereafter, the organic electroluminescence device was produced similarly and a total of 45 organic electroluminescence devices were obtained.

[0076] About the organic electroluminescence device produced, respectively in the evaluation example 1 of the yield – the example 3 and the example 1 of a comparison – the example 3 of a comparison, immediately after device production to initial brightness is 100 cd/m2. The continuation drive of the organic EL device was carried out by the becoming direct-current constant current, and the number of the organic EL devices which lost the luminescence function more short at each time one week, one month (for 31 days), and 1000 hours after [immediately after continuation drive initiation and] was counted. In addition, measurement of brightness was performed in atmospheric air using the luminance meter (CS-100 by Minolta Co., Ltd.). This result is shown in Table 1. [0077]

[Table 1]

事	- 1

	評価に付した	発 光 枝	雑能を喪失	した累子	の数
	デバイスの数	駆動開始直後	1週間後	1 箇月後	1000時間後
実施例 1	4 5	1	1	_ 1	1
実施例 2	4 5	3	3	3	3
実施例3	45.	4	4	4	4
比較例1	4 5	4 3	4 5	4 5	4 5
比較例 2	4 5	2	. 8	3 1	4 5
比較例3	4 5	11	2	2	3

[0078] As shown in Table 1, there are few organic EL devices which lost the luminescence function more short in the organic electroluminescence device produced in the example 1 - the example 3, respectively. This shows that the reliable organic electroluminescence device was produced under the high yield. On the other hand, in the example 1 of a comparison which did not prepare a stress relaxation layer, almost all organic EL devices had lost the luminescence function more short at the time immediately after continuation drive initiation, and all the organic EL devices had lost the luminescence function more short after one week. This shows that a stress relaxation layer is useful, when an organic EL device prevents losing the luminescence function therefore short. [0079] Moreover, in the organic electroluminescence device produced in the example 2 of a comparison, although there were few organic EL devices which therefore lost the luminescence function short at the time immediately after continuation drive initiation, 1000 hours after, all the components had lost the luminescence function more short. And in the organic electroluminescence device produced in the example 3 of a comparison, it is at all the investigation time and is [whether the number of the organic EL devices which therefore lost the luminescence function short is equivalent to an example 1 - an example 3, and] less than [it]. Therefore, it can say that the organic electroluminescence device with the high dependability seen from a viewpoint whether an organic EL device therefore loses that luminescence function short was produced under the high yield, and the organic electroluminescence device of the example 3 of a comparison is excellent in the example 3 of a comparison with this point. However, if the closure effectiveness mentioned later, the difficulty of manufacture, the thickness of an organic electroluminescence device, etc. are taken into consideration, it can be said that the direction of the organic

[0080] The round formal field called the dark spot looked at by the evaluation organic EL device of the closure effectiveness non-emitted light is expanded to the organic EL device, when moisture and oxygen invade. Therefore, it is suitable as an index for evaluating the closure effectiveness to investigate aging of the magnitude about the dark spot of arbitration. Immediately after the continuation drive initiation for the evaluation of the yield mentioned above from such a viewpoint, A photograph of each organic electroluminescence device is taken at each [of one day, one week, one month (for 31 days), and 1000 hours after] time. One device was chosen as arbitration from the organic electroluminescence devices which had not lost the luminescence function at the time 1000 hours after, and it asked for each diameter in a time from the aforementioned photograph paying attention to the dark spot of the arbitration in the organic EL device which constitutes the organic electroluminescence device. This result is shown in Table 2. In addition, since all the organic EL devices had lost the luminescence function more short about the organic electroluminescence device produced in the example 1 of a comparison at the time one week after, one device was chosen as arbitration from the organic electroluminescence devices which had not lost the luminescence function at the time one day after. Moreover, since all the organic EL devices had lost the luminescence function more short about the organic electroluminescence device produced in the example 2 of a comparison at the time 1000 hours after, one device was chosen as arbitration from the organic electroluminescence devices which had not lost the luminescence function at the time one month after.

[0081]

[Table 2]

electroluminescence device of an example 1 - an example 3 is excellent.

	駆動開始直後	1 日後	1週間後	1 箇月後	1000時間後
実施例 1	1 4	17 (21%)	18 (29%)	21 (50%)	23 (64%)
実施例 2	1 1	15 (36%)	19 (73%)	23 (109%)	2 5 (127%)
実施例3	6	8 (33%)	9 (50%)	1 2 (100%)	1 3 (117%)
比較例1	1 3	16 (23%)			
比較例2	1 7	32 (88%)	8 0 (371%)	450 (2550%)	
比較例3	1 2	15 (25%)	25 (108%)	3 0 (150%)	3 3 (175%)

^{*}表内の数字の単位はµm

[0082] As shown in Table 2, also after carrying out a continuation drive for 1000 hours, with the organic electroluminescence device produced in the example 1 – the example 3, respectively, the dark spot is not expanded so much. This shows that the high closure effectiveness is acquired to an organic EL device in each organic electroluminescence device of an example 1 – an example 3. O Sufficient data for the organic electroluminescence device of the example 1 of a comparison to estimate the closure effectiveness on the other hand, since the organic EL device which loses a luminescence function more short succeeded one another were not able to be obtained. Moreover, it turns out that growth of a dark spot is very quick and the organic electroluminescence device of the example 2 of a comparison of the closure to an organic EL device is inadequate. And in the organic electroluminescence device of the example 3 of a comparison, growth of a dark spot is a little quick, and the closure effectiveness over an organic EL device understands that nearby [of an example 1 – an example 3] is low. [0083]

[Effect of the Invention] As explained above, the organic electroluminescence device of this invention is an organic electroluminescence device which the luminescence function of an organic EL device cannot lose easily, closing an organic EL device by the adhesion type closure method. Moreover, in the organic EL device closed by the approach of this invention, it cannot break out easily that the luminescence function of an organic EL device loses after the closure. Therefore, according to this invention, it becomes possible to continue with a thin shape at a long period of time, and to provide the bottom of the high yield with a stable organic electroluminescence device by the comparatively easy production process.

[0084]

[Translation done.]

^{*}括弧内の数値は駆動開始直後のダークスポットの直径に対する直径の増大分を百分率で表したものである。

^{*}実線を付した空欄は、全ての索子が発光機能を喪失したために測定できなかったことを示す。

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Industrial Application] This invention relates to the closure approach of the organic electroluminescence device equipped with the organic EL device as a source of luminescence, and an organic EL device, and relates to the adhesion type closure approach for closing the organic electroluminescence device and organic EL device which were equipped with the organic electroluminescence by which the closure was especially carried out by the adhesion type closure approach as a source of luminescence.

[Translation done.]

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] There are an inorganic EL element and an organic EL device in an EL element, since any EL element is self-luminous, visibility is high, and handling is easy while excelling in shock resistance, since it is a perfect solid-state component. For this reason, the researches and developments and utilization as the pixel of graphic display, the pixel of a television image display device, or the surface light source are advanced. An organic EL device makes the luminous layer which contains an organic luminescent material for an anode plate and cathode among these intervene at least, and carries out a laminating, and the thing of various lamination is developed by current. As an example of lamination, an anode plate / luminous layer / cathode, an anode plate / luminous layer / electron injection layer / cathode, an anode plate / hole-injection layer / luminous layer / cathode, an anode plate / hole-injection layer / luminous layer / electron injection layer / cathode, etc. are mentioned. Although a luminous layer is usually formed of one sort or two or more sorts of organic luminescent material, it may be formed with mixture with an organic luminescent material, a hole-injection ingredient, and/or an electron injection ingredient. [0003] In many cases, the organic EL device which has such lamination is formed on a substrate. And when taking out EL light from a luminous layer from the aforementioned substrate side, an anode plate is formed in right above of a substrate], and cathode is formed in right above [of a substrate] when taking out EL light from a luminous layer from the side which formed the organic EL device. An anode plate is formed with the transparence thru/or the translucent thin film which consists of big matter of work functions, such as Au, nickel, and ITO (indium stannic acid ghost). On the other hand, cathode is formed with the thin film which consists of small matter of work functions, such as Yb, Mg, aluminum, and In.

[0004] An organic EL device is a light emitting device of a current drive mold, and uses luminescence produced when the electron and electron hole which were poured into the luminous layer (organic luminescent material) recombine. For this reason, the organic EL device has the advantage that a drive by low battery called 4.5V is possible by making thickness of a luminous layer thin, and a response is also quick, and the advantage that luminescence of high brightness is possible since brightness is proportional to an inrush current. moreover, luminescence of various colors, such as 4 gloss blue, green, yellow, and red, is obtained by changing luminescent material. The research for current and utilization is continued by these advantages.

[0005] By the way, the organic substance, such as an organic luminescent material used for an organic EL device, is weak into moisture, oxygen, etc. Moreover, also in an electrode, in atmospheric air, a property deteriorates rapidly by oxidation. Therefore, in order to obtain a practical organic EL device and an organic electroluminescence device, it is necessary to give the closure. As the closure approach of an organic EL device, it is SiO2 to the approach (refer to JP,4–137483,A) of forming the poly paraxylene film as a closure layer in the component front face for the closure by the vapor–phase–polymerization method, and the component front face for the closure. Although there is also the approach (refer to JP,4–73886,A) of forming a protective coat, the approach that the closure effectiveness is more high is already developed. The approach is divided roughly into the following two gestalten.

[0006] One is the casing type closure approach and it is the approach of closing by putting in an organic EL device in a case, intercepting with the external world, and being filled up with the predetermined fluid for the closures with the organic EL device in the aforementioned case. Another is the adhesion type closure approach and is the approach of closing by carrying out face bonding of the sealing agents, such as a glass plate, to the tooth back (in view of a substrate side back of a component) of the organic EL device currently formed on the substrate with adhesives.

[0007] According to the casing type closure approach, the degradation can be prevented, without destroying an organic EL device by choosing a thing suitable as a fluid for the closures put in in a case, but on the other hand, a difficulty like following the (1) – (3) is produced.

- (1) Since it makes it indispensable to put an organic EL device into a case, the description of the thin shape which is one of the advantages of an organic EL device is spoiled.
- (2) Since the process which pours in the fluid for the closures is required in the process which machines a case, and a case, it is unsuitable for mass production method.
- (3) Like [when it is going to close the organic EL device of a large number currently formed on the substrate using one case], when a lot of liquids for the closures are put into a big case, and the volume of the fluid for the closures within a case increases by the thermal expansion accompanying the temperature rise of the external world, there is a possibility of destroying a case.

[0008] On the other hand, according to the adhesion type closure approach, an organic electroluminescence device (what is equipped with the organic EL device by which the closure was carried out as a source of luminescence)

with comparatively easy mass production method can be easily obtained thinly [the thickness] after the closure, and the high closure effectiveness can be acquired easily. They are direct or SiO2 to the periphery of the approach (refer to JP,4-212284,A) of fixing a glass substrate on this, after preparing the protective coat which consists of inorganic compounds, such as GeO, in the periphery of the organic EL device for the closure as the adhesion type closure approach, and the organic EL device for the closure. A photo-setting resin layer is prepared through the film, and the approach (refer to JP,5-182759,A) of fixing a glass substrate through this photo-setting resin layer is learned.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] As explained above, the organic electroluminescence device of this invention is an organic electroluminescence device which the luminescence function of an organic EL device cannot lose easily, closing an organic EL device by the adhesion type closure method. Moreover, in the organic EL device closed by the approach of this invention, it cannot break out easily that the luminescence function of an organic EL device loses after the closure. Therefore, according to this invention, it becomes possible to continue with a thin shape at a long period of time, and to provide the bottom of the high yield with a stable organic electroluminescence device by the comparatively easy production process.

[Translation done.]

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] However, when the organic electroluminescence device which closed and obtained the organic EL device by the closure approach of adhesion type [conventional] was made to carry out a continuation drive for about 1000 hours, there was a difficulty that the luminescence function of an organic EL device is lost in it.

[0010] The 1st purpose of this invention is the organic electroluminescence device equipped with the organic EL device by which the closure was carried out by the adhesion type closure method as a source of luminescence, and is to offer the organic electroluminescence device which the luminescence function of an organic EL device cannot lose easily.

[0011] Moreover, the 2nd purpose of this invention is to offer the closure approach of the organic EL device which the luminescence function of an organic EL device cannot lose easily after the closure.

[Translation done.]

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

MEANS

[Means for Solving the Problem] As a result of this invention persons' adding examination wholeheartedly about the cause of loss of the luminescence function mentioned above, it found out loss of this luminescence function not originating in reduction of the closure effectiveness, and originating in short-circuit occurring in the electrode edge by the side of the adhesives layer of an organic EL device. This point is explained in more detail.

[0013] between the adhesives of the organic EL device and the above for the closure, or photo-setting resins — GeO and SiO2 etc. — even if there is film, if that thickness is thin, it will get across to organic electroluminescence with mum order. [since the volume contracts in adhesives or a photo-setting resin at the time of hardening residual stress occurs, and] [this residual stress] And since residual stress becomes strong especially in a part with small radius of curvature, the residual stress spread to the organic EL device is concentrated on the edge of the component concerned etc. Consequently, the crush of the electrode edge of a component etc. is carried out, an anode plate and cathode contact, and short-circuit occurs, this invention persons reached this invention, as a result of adding examination further based on the above-mentioned knowledge.

[0014] The organic electroluminescence device of this invention which attains the 1st purpose of the above is an organic electroluminescence device equipped with the organic EL device formed on the substrate, the adhesives layer formed on said substrate as covered this organic EL device, and the sealing agent which fixed on said substrate by this adhesives layer, and is characterized by having a wrap stress relaxation layer for said organic EL device between said organic EL devices and said adhesives layers.

[0015] Moreover, the closure approach of the organic EL device of this invention of attaining the 2nd purpose of the above is characterized by preparing an adhesives layer in it, as this organic EL device is covered at the tooth back of an organic EL device prepared on the substrate, and forming said organic EL device for a wrap stress relaxation layer between said organic EL devices and said adhesives layers in closing said organic EL device by fixing a sealing agent on said substrate by this adhesives layer.

[0016] Hereafter, this invention is explained to a detail. If the organic electroluminescence device of this invention is explained first, this organic electroluminescence device will be characterized by having a stress relaxation layer in a specific part, as mentioned above. Then, this stress relaxation layer is explained first.

[0017] The above-mentioned stress relaxation layer is for controlling that the residual stress of an adhesives layer spreads to an organic EL device. Therefore, although this stress relaxation layer may have the effectiveness (henceforth the closure effectiveness) of preventing moisture and oxygen invading into an organic EL device from the exterior and does not need to have it, it has the closure effectiveness and the direction is more desirable. Moreover, as for a stress relaxation layer, it is desirable that they are the layer of the monolayer structure which consists only of a layer which generating of shear stress becomes from the small matter, and the layer of two or more layer structure containing the layer which generating of blank stress becomes from the small matter. In making a stress relaxation layer into two or more layer structure, it forms in the periphery of an organic EL device the layer which generating of shear stress becomes from the small matter.

[0018] Here, the above-mentioned "matter with small generating of shear stress" means the fluid (a gas, liquid) which has the property in which the gap is not told substantially, grease, gel, etc., when an adhesives layer shifts in the direction parallel to the electrode of an organic EL device according to factors, such as hardening.
[0019] Generating of the above-mentioned shear stress can mention hydrocarbon system liquids, such as silicone system liquids, such as fluorine system liquids, such as gaseous helium, nitrogen gas, and argon gas, and chlorofluorocarbon, a perfluoro polyether, a perfluoro amine, a perfluoro alkane, methyl hydrogen silicone, methyl

and chlorofluorocarbon, a perfluoro polyether, a perfluoro amine, a perfluoro alkane, methyl hydrogen silicone, methyl chlorophenyl silicone, and trifluoro propylmethyl silicone, an alpha olefin (Pori alpha olefin of C5 – C17), polybutene, alkylbenzene, and a polyalkylene glycol, etc. as a fluid among small matter. However, a complicated process is needed for forming, preventing that the adhesives for adhesives stratification advance the stress relaxation layer which consists of these fluids into the inside of the stress relaxation layer concerned, or the interface of the stress relaxation layer and a substrate (substrate for forming an organic EL device) concerned. Therefore, when using a fluid as the above-mentioned "matter with small generating of shear stress", it is desirable to use the coating liquid which is made to come to dissolve resin, rubber, etc. in a solvent as this fluid, and carries out film formation by evaporation of a solvent under about 10-30-degree C temperature conditions among atmospheric air.

[0020] When the above-mentioned coating liquid is used, it is possible to be able to make a solid-state layer (coat) form in a layer front face, and to maintain a liquid condition about the part inside the aforementioned solid-state layer by evaporating a little the solvent in the layer which consists of the coating liquid concerned. After forming the layer which consists of the above-mentioned coating liquid within limits which follow for example, by which a liquid

condition is maintained as an organic EL device is located, the stress relaxation layer made into the purpose can be easily formed by performing formation of a solid-state layer, and formation of an adhesives layer one by one.

[0021] In addition, as for coating liquid, it is desirable also in a liquid with small generating of said shear stress to use as a solvent what evaporates easily under a room temperature. Moreover, since what adhesives permeate does not make business, when it becomes a solid-state layer, it is desirable [the solid-state component which has melted into coating liquid], although there is no need that the aforementioned solid-state layer becomes hard especially that it is what does not let adhesives pass substantially.

[0022] As an example of the coating liquid mentioned above, the thing of following the (1) – (3) is mentioned. (1) Fluorine system coating liquid, such as what makes a solute what melted Teflon AF (trade name; Du Pont make) to SAITOPPU CTX-105A (trade name; Asahi Glass Co., Ltd. make), a FURORO barrier (trade name; made in the Yasunari company), and FURORINATO FC72 (trade name; product made from Sumitomo 3M), and the thing to which the aforementioned fluorine system liquid was used as the solvent, and the degree of polymerization progressed from that of this liquid.

(2) Silicone system coating liquid, such as what makes a solute that to which the aforementioned silicone system liquid was used as the solvent, and the degree of polymerization progressed from that of this liquid.
(3) Hydrocarbon system coating liquid, such as what makes a solute that to which the aforementioned hydrocarbon system liquid was used as the solvent, and the degree of polymerization progressed from that of this liquid.
[0023] Moreover, as "matter with small generating of shear stress" mentioned above, grease and gel are also suitable. Although grease consists of base oil, a thickening agent, and an additive, especially the thing that uses the liquid with small generating of said shear stress for base oil is desirable. As a thickening agent and an additive, when it is a solid particulate, the one where the particle size is smaller is desirable. If the aforementioned particle size is too large, an organic EL device will be damaged and that will become a short cause. Moreover, the aforementioned particle size needs to be smaller than the thickness made into the purpose of a stress relaxation layer at least. However, if the aforementioned particle size is too small, whenever [butterfly] will be lost, and the advantage using grease is lost. The aforementioned particle size has 100A – desirable 10 micrometers. Since the grease using what is not a solid particulate as a thickening agent and an additive does not have a fear of damaging an organic EL device with the grease concerned, it is much more desirable.

[0024] As an example of the above-mentioned grease, the thing of following the (1) - (3) is mentioned.

- (1) Fluorine system grease, such as PTFE grease (trade name; NICHIAS CORP. make).
- (2) Silicone system grease, such as grease for FS high vacuums (trade name; Dow Corning make).
- (3) Hydrocarbon system grease, such as Apiezon grease N (trade name; the Apiezon company make). [0025] And as an example of the aforementioned gel, a glycerol, gelatin, polyacrylamide gel, agarose gel, methyl cellulose gel, etc. are mentioned. The gel used by this invention needs to have the fluidity.

[0026] Although formation of a stress relaxation layer may be performed by the approach mentioned above when using the coating liquid which was mentioned above in forming a stress relaxation layer, you may carry out as follows using an accessory plate. First, on an organic EL device, the coating liquid of sufficient amount for a wrap is dropped thru/or applied for this organic EL device, and the layer of coating liquid is once formed. Next, an accessory plate is arranged on the aforementioned layer and the aforementioned layer is uniformly spread the weight of this accessory plate, or by applying a load to this accessory plate. When plane view is carried out as the aforementioned accessory plate, what has sufficient magnitude for a wrap for an organic EL device is used, and this accessory plate is formed in the substrate with which the organic EL device is formed, and the sense which counters substantially. Moreover, the load added to the amount of coating liquid, the weight of an accessory plate, or an accessory plate is suitably adjusted so that the layer of coating liquid may be formed between an organic EL device and an accessory plate. Subsequently, a solid-state layer (coat) is made to form in the front face of a direction parallel to a substrate front face in the outside surface of the layer of coating liquid (field which is in contact with the open air), i.e., the aforementioned layer, by carrying out suitable time amount neglect. At this time, neglect time amount is suitably adjusted so that coating liquid may not solidify about the periphery of an organic EL device. Although a stress relaxation layer is obtained once by this, since the coating liquid of the periphery of an organic EL device solidifies to the inside of a short time the way things stand, an adhesives layer is formed as the aforementioned accessory plate is covered. Since the vaporization of the solvent in coating liquid is inhibited after forming an adhesives layer, solidification of coating liquid is inhibited, and the coating liquid which exists in the periphery of an organic EL device as the result continues maintaining a liquid condition. The stress relaxation layer made into the purpose by this is obtained.

[0027] Moreover, formation of the stress relaxation layer which uses the grease mentioned above can be performed by dropping thru/or applying the grease of sufficient amount for a wrap for an organic EL device on an organic EL device, and forming a grease layer. Or after forming a grease layer as mentioned above, an accessory plate can be arranged on this grease layer, and it can carry out by spreading the aforementioned grease layer uniformly the weight of this accessory plate, or by applying a load to this accessory plate. Moreover, although it is also possible to form a stress relaxation layer by applying grease to mum order, without using an accessory plate, plastering thinly to mum order may damage an organic EL device, and it can be said to be difficult. And formation of the stress relaxation layer which uses the gel mentioned above can be performed like the case where a stress relaxation layer is formed using grease.

[0028] The thickness (thickness on an organic EL device) of the stress relaxation layer which can be formed as mentioned above is selectable suitably within the limits of 0.1 micrometers – 1cm in general. It is difficult for

[0029] Moreover, although this accessory plate may have the closure effectiveness and does not need to have it when using an accessory plate in forming a stress relaxation layer, it is more more desirable to have the closure effectiveness. It is desirable to use the tabular thing made as an accessory plate by resin, such as inorganic substances, such as glass, ceramics, and a metal, and fluororesin, acrylic resin, a polycarbonate, polyester, a polyamide, polystyrene, polypropylene, polyolefine system resin, etc. As mentioned above, when plane view of the magnitude of an accessory plate is carried out, it is desirable that it is sufficient magnitude for a wrap about an organic EL device. Moreover, as for the thickness of an accessory plate, it is desirable to be referred to in general as 0.1 micrometers – 3mm. The production cost of thickness is high, and a less than 0.1-micrometer thing does not have it from being hard to deal with it. [desirable] On the other hand, if thickness exceeds 3mm, the advantage of an organic electroluminescence device called a thin shape will be spoiled. The desirable thickness of an accessory plate is 0.01-1mm.

[0030] In the organic electroluminescence device of this invention, the stress relaxation layer which mentioned it above as covered the organic EL device formed on the substrate is prepared, and as the organic EL device covered with this stress relaxation layer is covered, the adhesives layer is formed on the aforementioned substrate. While it is for making the sealing agent mentioned later fix, this adhesives layer is for preventing that the stress relaxation layer mentioned above touches with the open air, and unless the configuration of the sealing agent which mentions later whether that side face prepares a special member is made special, it meets with the open air. Therefore, an adhesives layer has especially the desirable thing what has the closure effectiveness, i.e., water permeability, and oxygen permeability are [a thing] low. What consists of photoresist adhesives, thermosetting adhesive, anaerobic adhesive, etc. as such an adhesives layer is desirable, and BENEFIKKUSU VL (trade name of the photoresist adhesives Made from ADERU), acrylic one #4111 (trade name of the photoresist adhesives by Maruto Co., Ltd.), the ARON tightness UL (trade name of the anaerobic adhesive made from Toagosei Chemical industry), the AREMUKO bond 570 (trade name of the thermosetting adhesive Made from ODEKKU), etc. are mentioned as an example. [0031] An adhesives layer trickles adhesives into the request part of a part in which the aforementioned stress relaxation layer is not prepared in the substrate front face of the side which prepared the stress relaxation layer top (on [when an accessory plate is used in forming a stress relaxation layer] this accessory plate) mentioned above, and this stress relaxation layer. The sealing agent besides mentioned later is arranged, and after spreading the aforementioned adhesives uniformly the weight of a sealing agent, or by applying a load to a sealing agent, it can form by stiffening the adhesives concerned. Moreover, after forming a non-hardened adhesives layer by approaches, such as the applying method, a spin coat method, and a dip method, and arranging the sealing agent later mentioned on this adhesives layer, it can form also by stiffening the adhesives concerned.

[0032] Final thickness of an adhesives layer (thickness on a stress relaxation layer.) When an accessory plate is used in forming a stress relaxation layer, as for the thickness on this accessory plate, it is desirable to be referred to in general as 0.1 micrometers – 1cm. When thickness carries a sealing agent in less than 0.1 micrometers, as a result of the sealing agent concerned coming floating with the surface tension of the adhesives in the condition of not hardening, air bubbles tend to go into the inside of the adhesives in the condition of not hardening, or the interface of this adhesives and sealing agent. On the other hand, if thickness exceeds 1cm, the advantage of an organic electroluminescence device called a thin shape will be spoiled. The thickness with a desirable adhesives layer is 0.001–1mm. Since the organic EL device is covered with the stress relaxation layer at the time of formation of an adhesives layer, there is no need of paying attention in the degree of hardness and contraction at the time of hardening of adhesives substantially. As the result, the width of face of the selection of adhesives from the case where there is no stress relaxation layer spreads.

[0033] Since the sealing agent which fixes by the adhesives layer mentioned above on a substrate (that in which the organic EL device is formed) is for moisture and oxygen to prevent invasion from the exterior to an organic EL device, it is desirable to use the high thing of the closure effectiveness, i.e., a permeable and oxygen penetrable small thing. As an example of the matter which can be used as a sealing agent, resin, such as inorganic substances, such as glass, ceramics, and a metal, and fluororesin, acrylic resin, a polycarbonate, polyester, a polyamide, polystyrene, polypropylene, polyolefine system resin, is mentioned.

[0034] Since the time and effort of processing is economical few, as for the configuration of a sealing agent, it is desirable that it is tabular. Moreover, although the thinner one of the thickness of a sealing agent is [from / in obtaining a thin organic electroluminescence device] desirable, since it will become weak to impacts, such as external force, if too thin, it is desirable to choose suitably within the limits of 0.1 micrometers – 1cm in general according to the quality of the material of a sealing agent. It is difficult to obtain that in which thickness has practically sufficient resistance to impacts, such as external force, in less than 0.1 micrometers. On the other hand, if thickness exceeds 1cm, it will become difficult to obtain a thin organic electroluminescence device. The more desirable thickness of a sealing agent is 0.01–1mm.

[0035] The organic electroluminescence device of this invention makes the organic EL device covered with the

front face.

(1) An anode plate / luminous layer / cathode (2) anode plate / luminous layer / electron injection layer / cathode (3) anode plate / hole-injection layer / luminous layer / cathode (4) anode plate / hole-injection layer / luminous layer / electron injection layer / cathode [0037] Here, although a luminous layer is usually formed of one sort or two or more sorts of organic luminescent material, it may be formed with mixture with an organic luminescent material, a hole-injection ingredient, and/or an electron injection ingredient. Moreover, the protective layer for preventing invasion of the moisture to a component, as the component concerned is covered on the periphery of the component of lamination mentioned above may be prepared.

[0038] When making a substrate side into the ejection side of light, the tabular object which the aforementioned substrate consists of matter which gives high permeability (in general 80% or more) to luminescence (EL light) from an organic EL device at least, and specifically consists of clear glass, a transparent plastic, a quartz, etc., a sheet-like object, or a film-like object is used. In addition, it is also possible to make into the ejection side of light the sealing agent side mentioned above in the organic electroluminescence device of this invention. In this case, it is not necessary to make the order of a laminating on a substrate into above-mentioned sequence and above-mentioned reverse, to form an organic EL device, and to take into consideration the permeability of luminescence (EL light) from an organic EL device about a substrate ingredient. Instead, the matter which gives high permeability (in general 80% or more) to luminescence (EL light) from an organic EL device about the ingredient of a stress relaxation layer, the ingredient of an adhesives layer, and the ingredient of a sealing agent is used.

[0039] As an ingredient of an anode plate, cathode, a luminous layer, a hole-injection layer, an electron injection layer, and a protective layer, a well-known ingredient can be used conventionally, respectively. For example, the metal with a large (for example, 4eV or more) work function as an anode material, an alloy, electrical conductivity compounds, or such mixture are used preferably. As an example, metals, such as gold and nickel, dielectric transparent materials, such as Cul, ITO, SnO2, and ZnO, etc. are mentioned. Especially, the point of productivity or a controllability to ITO is desirable. Although the thickness of an anode plate is based also on an ingredient, it is usually selectable suitably within the limits of 10nm – 1 micrometer.

[0040] Moreover, as a cathode material, a small (for example, 4eV or less) metal, an alloy, electrical conductivity compounds, or such mixture of a work function etc. are used preferably. As an example, rare earth metals, such as the alloy of a sodium and sodium—potassium alloy, magnesium, a lithium, magnesium, and silver or a mixed metal, aluminum, aluminum/AlO2, an indium, and an ytterbium, etc. are mentioned. Although the thickness of an anode plate is based also on an ingredient, it is usually selectable suitably within the limits of 10nm - 1 micrometer. Also in any of an anode plate and cathode, below hundreds of ohms / ** of the sheet resistance are desirable. In addition, in case an anode material and a cathode material are chosen, the magnitude of the work function made into criteria is not limited to 4eV.

[0041] The impregnation function in which an electron can be poured in from cathode or an electron injection layer while the ingredient (organic luminescent material) of a luminous layer can pour in an electron hole from an anode plate or a hole-injection layer at the time of the luminous layer for organic EL devices, i.e., electric-field impression, What is necessary is just to be able to form the layer which has the transportation function to which the poured-in charge (an electron and an electron hole at least on the other hand) is moved by the force of electric field, the luminescence function to offer the place of the recombination of an electron and an electron hole and to tie this to luminescence, etc. As the example, the fluorescent brightener of systems, such as a benzothiazole system, a benzimidazole system, and a benzooxazole system, A metal chelation oxy-NOIDO compound, a styryl benzenoid compound, a JISUCHIRIRU pyrazine derivative, Polyphenyl system compound and 12-phtalo peri non, 1, 4-diphenyl-1,3-butadiene, 1, 1, 4, and 4-tetra-phenyl-1,3-butadiene, the North America Free Trade Agreement RUIMIDO derivative, The metal complex of a perylene derivative, an OKISA diazole derivative, an aldazine derivative, a PIRAJIRIN derivative, a cyclopentadiene derivative, a pyrrolo pyrrole derivative, a styryl amine derivative, a coumarin system compound, an aromatic dimethylidyne compound, and an eight-quinolinol derivative etc. is mentioned. Although especially the thickness of a luminous layer is not limited, it is usually suitably chosen within the limits of 5nm - 5 micrometers.

[0042] The ingredient (hole-injection ingredient) of a hole-injection layer should just have any of the impregnation nature of an electron hole, and electronic obstruction nature they are. As the example, a triazole derivative, an OKISA diazole derivative, An imidazole derivative, the poly aryl alkane derivative, a pyrazoline derivative, A pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, An amino permutation chalcone derivative, an oxazole derivative, a styryl anthracene derivative, full — me — non — a derivative, a hydrazone derivative, a stilbene derivative, and a silazane derivative — Conductive polymer oligomer, such as a polysilane system compound, an aniline system copolymer, and thiophene oligomer, a porphyrin compound, an aromatic series tertiary-amine compound, a styryl amine compound, an aromatic series JIMECHIRI DIN system compound, etc. are mentioned. Although especially the thickness of a hole-injection layer is not limited, either, it is usually suitably chosen within the limits of 5nm – 5 micrometers. A hole-injection layer may be 1 layer structure which consists of one sort of the ingredient mentioned above, or two sorts or more, and may be two or more layer structure which

[0044] And the copolymer which is made to carry out copolymerization of the monomer mixture containing tetrafluoroethylene and at least one sort of comonomers as an example of the ingredient of a protective layer, and is obtained. The fluorine-containing copolymer which has cyclic structure in a copolymerization principal chain, polyethylene, polypropylene, Polymethylmethacrylate, polyimide, polyurea, polytetrafluoroethylene, Polychlorotrifluoroethylene resin, poly dichlorodifluoroethene, The copolymer of chlorotrifluoroethylene and dichlorodifluoroethene, The absorptivity matter of 1% or more of water absorption, and the dampproof matter of 0.1% or less of water absorption, Metals, such as In, Sn, Pb, Au, Cu, Ag, aluminum, Ti, and nickel, MgO, SiO, SiO2, aluminum 203, GeO, NiO, CaO, BaO and Fe 203, Y2 O3, and TiO2 etc. — a metallic oxide, MgF2, LiF, AlF3, and CaF2 etc. — a metal fluoride etc. is mentioned.

[0045] Moreover, it is not limited especially about the formation approach of each class (an anode plate and cathode are included) which constitutes an organic EL device, either, as the formation approach of an anode plate, cathode, a luminous layer, a hole-injection layer, and an electron injection layer — a vacuum deposition method, a spin coat method, the cast method, the sputtering method, and LB — although law etc. is applicable, about a luminous layer, it is desirable to apply approaches other than the sputtering method (LB a vacuum deposition method, a spin coat method, the cast method, law, etc.). As for especially a luminous layer, it is desirable that it is the molecule deposition film, the thing of the thin film which deposition was carried out to the molecule deposition film from the ingredient compound of a gaseous-phase condition here, and was formed, and the film solidified and formed from the ingredient compound of a solution condition or a liquid phase condition — it is — usually — this molecule deposition film — LB — with the thin film (molecule built up film) formed of law, it is classifiable with the difference of condensation structure and higher order structure, and the functional difference resulting from it. In forming a luminous layer with a spin coat method etc., it prepares a coating solution by melting a binder and ingredient compounds, such as resin, to a solvent.

[0046] moreover — a protective layer — a vacuum deposition method, a spin coat method, the sputtering method, the cast method, and MBE (molecular beam epitaxy) — law, the ionized cluster beam method, the ion plating method, a plasma polymerization method (the high-frequency excitation ion plating method), a reactive-sputtering method, a plasma—CVD method, a laser CVD method, a heat CVD method, a gas source CVD method, etc. are applicable.

[0047] The formation approach of each class can be suitably changed according to the ingredient to be used. If a vacuum deposition method is used in formation of each class which constitutes an organic EL device, since an organic EL device can be formed only with this vacuum deposition method, it is advantageous when aiming at simplification of a facility, and compaction of the production time.

[0048] In addition, the configuration and magnitude of each class (a protective layer is included) which constitute an organic EL device are not necessarily the same. Moreover, when plane view of the component is carried out, all other layers are not surely settled on the electrode formed in right above [of a substrate]. On the other hand, the stress relaxation layer as used in the field of this invention is for controlling that the residual stress of an adhesives layer spreads to an organic EL device, and short-circuit arises in the organic EL device concerned. Therefore, "it is a wrap stress relaxation layer about an organic EL device" as used in the field of this invention means the stress relaxation layer which has covered at least the field with which cathode and an anode plate lap, when plane view of the organic EL device is carried out. Moreover, "it is the coating liquid (grease, gel) of sufficient amount for a wrap about an organic EL device" as used in this specification means "it is the coating liquid (grease, gel) of amount sufficient at least for a wrap about the field with which cathode and an anode plate lap when plane view of the organic EL device is carried out." And "the accessory plate which has sufficient magnitude for a wrap for an organic EL device when plane view is carried out" means "the accessory plate which has magnitude sufficient at least for a wrap for the field with which cathode and an anode plate lap when plane view of the organic EL device is carried out."

[0049] Moreover, the number of the organic EL devices which constitute the organic electroluminescence device of this invention may be one, and may be plurality. When two or more, each component may have the same class seen from lamination or the luminescent color, and may differ. It is selectable suitably into how many the number of organic EL devices is made according to the application of the organic electroluminescence device made into the purpose etc. When two or more organic EL devices are formed on the substrate, a stress relaxation layer may be prepared for every organic EL device, one thing common to all organic EL devices may be prepared, and two or

[0050] the organic EL device which mentioned above the organic electroluminescence device of this invention, and this organic EL device — a wrap — the above—mentioned stress relaxation layer which made it like and was formed on the substrate (that in which the organic EL device is formed), and this stress relaxation layer — a wrap — it has the above—mentioned adhesives layer which made it like and was formed on the aforementioned substrate, and the above—mentioned sealing agent which fixed on the aforementioned substrate by this adhesives layer. In this organic electroluminescence device, since the organic EL device is covered with the stress relaxation layer, it is controlled that the residual stress of an adhesives layer spreads to an organic EL device. Since it is prevented that the crush of the edge of an organic EL device etc. is carried out by the residual stress spread from the adhesives layer, and it short—circuits with it as the result, the luminescence function of an organic EL device continues at a long period of time, and it is hard to lose it.

[0051] Moreover, although the force works in the parallel direction with the front face of an organic EL device as usual in the organic electroluminescence device of this invention at the time of formation of an adhesives layer, it is controlled from the organic EL device being covered with the stress relaxation layer that the aforementioned force spreads to an organic EL device. Since it is prevented by the organic EL device according to the aforementioned force as the result that electrode exfoliation occurs, it cannot break out easily that the luminescence function of an organic EL device loses after the manufacture process of an organic electroluminescence device or manufacture. Furthermore, since the organic electroluminescence device of this invention closes an organic EL device by the adhesion type closure approach, its closure effectiveness of an organic EL device is high, and its thickness of the device itself is thin, and it is comparatively easy to mass-produce.

[0052] The organic electroluminescence device of this invention which has such a description can be used as the surface light source, a character indicating equipment, the equipment for electric spectaculars, the indicator for mount, the light source for electric discharge of a copying machine, the light source for printers, light modulation equipment, etc.

[0053] Next, the closure approach of the organic EL device of this invention is explained. This approach is characterized by preparing an adhesives layer in it, as this organic EL device is covered at the tooth back of an organic EL device prepared on the substrate, and forming said organic EL device for a wrap stress relaxation layer between said organic EL devices and said adhesives layers in closing said organic EL device by fixing a sealing agent on said substrate by this adhesives layer, as mentioned above.

[0054] Preparing in order to control that the residual stress of an adhesives layer spreads the aforementioned stress relaxation layer to an organic EL device, the ingredient and the formation approach are as having explained in the organic electroluminescence device of this invention mentioned above. Moreover, it is as having also explained the detail of the closure which fixes the organic EL device covered with this stress relaxation layer, and the organic EL device covered with the aforementioned stress relaxation layer by the adhesives layer prepared as covers, and the aforementioned adhesives layer on a substrate (that in which the organic EL device is formed) in the organic electroluminescence device of this invention mentioned above, respectively.

[0055] In the organic EL device closed by this approach, since the organic EL device concerned is covered with the stress relaxation layer, it is controlled that the residual stress of an adhesives layer spreads to an organic EL device. Since it is prevented that the crush of the edge of an organic EL device etc. is carried out by the residual stress spread from the adhesives layer, and it short-circuits with it as the result, the organic EL device (that by which the closure was carried out (= organic electroluminescence device)) which a luminescence function continues at a long period of time, and cannot lose easily is obtained.

[0056] Moreover, although the force works in the direction parallel to the front face of an organic EL device at the time of formation of an adhesives layer, it is controlled from the organic EL device being covered with the stress relaxation layer that the aforementioned force spreads to an organic EL device. Since it is prevented by the organic EL device according to the aforementioned force as the result that electrode exfoliation occurs, it cannot break out easily that the luminescence function of an organic EL device loses after the process of the closure or the closure. Furthermore, since the approach of this invention is one of the adhesion type closure approaches, it is comparatively easy for the closure effectiveness to be high and to mass-produce an organic EL device (that by which the closure was carried out (= organic electroluminescence device)) with thin thickness.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

EXAMPLE

[Example] Hereafter, the example of this invention is explained.

After preparing what formed the ITO film of 100nm of thickness to band-like at the longitudinal direction of the glass substrate concerned (this is hereafter called transparence support substrate) on production place ** of an example 1 (1) organic EL device, and the glass substrate of 25mmx75mmx1.1mm magnitude and cleaning this transparence support substrate ultrasonically for 30 minutes by isopropyl alcohol, pure water washed for 30 minutes and, finally it cleaned ultrasonically for 30 minutes by isopropyl alcohol again. The transparence support substrate after washing is fixed to the substrate electrode holder of a commercial vacuum evaporation system (product made from Japanese Vacuum technology). On the resistance heating boat made from molybdenum, N, N'-diphenyl-N, N'-screw-(3methylphenyl)-[1 and 1'-biphenyl]-4, and 4'-diamine It put in (it having been hereafter called TPD), 200mg (henceforth Alq3) of tris (eight quinolinol) aluminum was put into another resistance heating boat made from molybdenum, and the inside of a vacuum chamber was decompressed up to 1x10 to 4 Pa. [200mg] [0058] Next, heated the aforementioned resistance heating boat into which TPD was put to 215-220 degrees C, TPD was made to deposit on the ITO film in the evaporation rate of 0.1-0.3nm/second, and the hole-injection layer of 60nm of thickness was formed. The substrate temperature at this time was a room temperature. Subsequently, the luminous layer was succeedingly formed to membrane formation of a hole-injection layer, without taking out the transparence support substrate with which the hole-injection layer was formed from a vacuum chamber. Membrane formation of a luminous layer is Alq3. The put-in aforementioned resistance heating boat is heated to 275 degrees C, and it is Alg3. It is made to deposit on a hole-injection layer in the evaporation rate of 0.1-0.2nm/second, and is Alq3 of 60nm of thickness. It carried out by forming a layer. The substrate temperature at this time was also a room temperature. Next, magnesium 1g was put into the resistance heating boat made from molybdenum, 500mg of silver was put into another resistance heating boat made from molybdenum, and the inside of a vacuum chamber was decompressed up to 2x10 to 4 Pa. And while heating the aforementioned resistance heating boat into which magnesium was put at about 500 degrees C and evaporating magnesium in the evaporation rate of about 1.7-2.8nm/second, the aforementioned resistance heating boat into which silver was put was heated at about 800 degrees C, silver was evaporated in the evaporation rate of 0.03-0.08nm/second, and the cathode of 150nm of thickness which consists of a mixed metal of magnesium and silver was established in a total of on [three] a luminous layer. The magnitude on plane view of each cathode is 3mmx15mm, and these are prepared in the sense which intersects perpendicularly with the ITO film at fixed spacing.

[0059] Then, the glass substrate prepared to the aforementioned cathode was cut to three, and a total of three organic EL devices whose lamination on a glass substrate is an anode plate (ITO film) / hole-injection layer / luminous layer / cathode (Mg-Ag layer) were obtained. The magnitude of the luminescence side (field where cathode and an anode plate lap in when plane view is carried out, and the hole-injection layer and the luminous layer exist among these electrodes) of these organic EL devices is 3mmx5mm. Moreover, the initial brightness of these organic EL devices is electrical-potential-difference 6.5V and current density 3 mA/cm2. They are 100 cd/m2 under conditions. Reaching, the power conversion effectiveness at this time was 1.6 lm/W.

[0060] (2) the formation list of a stress relaxation layer and an adhesives layer — as the ingredient of arrangement place ** of a sealing agent, and a stress relaxation layer -- fluororesin coating liquid (SAITOPPU CTX-105A by Asahi Glass Co., Ltd.) — preparing — moreover — as an accessory plate — about 10 — the cover glass (henceforth cover glass I) of mmx10mmx0.15mm magnitude was prepared. Next, it was dropped on the organic EL device which produced the 5micro of the aforementioned fluororesin coating liquid I above (1), and the aforementioned cover glass I was carried on this. The thin film (0.05mm in thickness) of said coating liquid was uniformly made by said coating liquid with the viscous lowness of fluororesin coating liquid, and the weight of cover glass I between breadth, an organic EL device, and cover glass I. At this time, some coating liquid was protruded into the outside of the field covered by cover glass I a little. By leaving it about 10 minutes in this condition, the solidstate layer (coat) was made to form in the outside surface of the above-mentioned thin film which consists of fluororesin coating liquid, i.e., the front face of a glass substrate and the front face of an parallel direction, and the stress relaxation layer made into the purpose was obtained once. At this time, the fluororesin coating liquid of the part which is in contact with the organic EL device was maintaining the liquid condition, without solidifying. [0061] Next, 0.1ml (BENEFIKKUSU VL Made from ADERU) of photoresist adhesives was dropped on the abovementioned cover glass I as adhesives, and the cover glass (magnitude is called cover glass II below about 20mmx20mmx0.15mm;) as a sealing agent was carried on it. Said photoresist adhesives covered completely breadth, the above-mentioned stress relaxation layer, and cover glass I uniformly with the viscous lowness of photoresist

adhesives, and the weight of cover glass II. Following on installation of cover glass II, the light of a halogen lamp was irradiated from on the aforementioned cover glass II at photoresist adhesives, and the photoresist adhesives concerned were stiffened.

[0062] The adhesives layer with a thickness of 0.1mm (thickness on cover glass I) which consists of photoresist adhesives by this as covers the above-mentioned stress relaxation layer was formed, and the cover glass II as a sealing agent fixed by the aforementioned adhesives layer to coincidence on the glass substrate (that in which the organic EL device is formed). Furthermore, since the vaporization of the solvent of the fluororesin coating liquid in the above-mentioned stress relaxation layer was inhibited after forming an adhesives layer, finally the stress relaxation layer to which it continues maintaining the fluororesin coating liquid which exists in the periphery of an organic EL device, and it targets a liquid condition as the result was formed.

[0063] By having carried out to formation of an adhesives layer, and arrangement of a sealing agent as mentioned above, the organic electroluminescence device made into the purpose was obtained. Hereafter, the organic electroluminescence device was produced similarly and a total of 45 organic electroluminescence devices were obtained. The schematic diagram of the cross section of the organic electroluminescence device produced by this example 1 is shown in drawing 1/2, and a plan is shown in drawing 2.

[0064] The organic EL device 3 with which this organic electroluminescence device 1 was formed in one side of a glass substrate 2 as shown in drawing 1. The stress relaxation layer 4 formed on the glass substrate 2 as covered this organic EL device 3. The accessory plate 5 which consists of cover glass I used in order to form this stress relaxation layer 4, It has the adhesives layer 6 which consists of photoresist adhesives formed on the glass substrate 2 as covered this accessory plate 5 and said stress relaxation layer 4, and the sealing agent 7 which consists of cover glass II which fixed on the glass substrate 2 by this adhesives layer 6. The stress relaxation layer 4 is made from fluororesin coating liquid, in this stress relaxation layer 4, the front face of a glass substrate 2 and the front face of an parallel direction are solidified, when the solvent evaporated at the time of that formation, solid-state layer 4a is formed, and fluororesin coating liquid 4b of the part which is in contact with the organic EL device 3 is maintaining the liquid condition, without solidifying.

[0065] Moreover, an organic EL device 3 is Alq3 as the ITO film as an anode plate, the TPD layer as a hole-injection layer, and a luminous layer on a glass substrate 2. The laminating of a layer and the Mg-Ag mixolimnion as cathode is carried out one by one. It is sign 3a about the ITO film among these, and sign 3b shows a Mg-Ag mixolimnion in drawing 1 and drawing 2, respectively. As shown in drawing 1 and drawing 2, ITO film 3a is formed in glass substrate 2 front face band-like, and Mg-Ag mixolimnion 3b is prepared in the sense which intersects perpendicularly with ITO film 3a. And the part with which ITO film 3a and Mg-In mixolimnion 3b have lapped on plane view is equivalent to the luminescence side of an organic EL device 3.

[0066] an example 2 — the organic EL device was first produced on the glass substrate on an example 1 and these conditions. next, the this top after applying these fluorine system grease about 0.01ml on the above—mentioned organic EL device, using fluorine system grease (PTFE grease by NICHIAS CORP.) as an ingredient of a stress relaxation layer — as an accessory plate — about 10 — the cover glass I of mmx10mmx0.15mm magnitude was carried. Subsequently, by pressing the aforementioned cover glass lightly from a top, the aforementioned fluorine system grease was spread uniformly and the thin film (0.1mm in thickness) of fluorine system grease was formed between an organic EL device and cover glass I. Thereby, the stress relaxation layer was obtained. Then, formation of the adhesives layer (0.06mm in thickness) which consists of photoresist adhesives on an example 1 and these conditions, and fixing of the sealing agent (cover glass II) by this adhesives layer were performed, and the organic electroluminescence device made into the purpose was obtained. Hereafter, the organic electroluminescence device was produced similarly and a total of 55 organic electroluminescence devices were obtained.

[0067] an example 3 — the organic EL device was first produced on the glass substrate on an example 1 and these conditions. Next, the aluminum layer of 0.2 micrometers of thickness was formed with the vacuum deposition method as a protective layer on the cathode (Mg-Ag layer) which constitutes the aforementioned organic EL device. Then, formation of the stress relaxation layer (0.05mm in thickness) using an accessory plate (cover glass I), formation of the adhesives layer (0.1mm in thickness) which consists of photoresist adhesives, and fixing of the sealing agent (cover glass II) by this adhesives layer were performed on an example 1 and these conditions, and the organic electroluminescence device made into the purpose was obtained. Hereafter, the organic electroluminescence devices were obtained.

[0068] A total of 45 organic electroluminescence devices were produced like the example 1 except having not formed an example of comparison 1 stress-relaxation layer. An accessory plate was not used at this time, either. [0069] A total of 45 organic electroluminescence devices were produced like the example 1 except both having not fixed the sealing agent by formation of an example of comparison 2 adhesives layer, and the adhesives layer. [0070] the example 3 of a comparison — after washing this transparence support substrate on an example 1 and these conditions first, using that by which the 10mmx75mmx100nm ITO film was formed by the edge of both directions of a short hand of one side of the glass substrate of 25mmx75mmx1.1mm magnitude, respectively as a transparence support substrate, the substrate electrode holder of the vacuum evaporation system equipped with the mask automatic switchboard style was equipped. Next, the mask was covered over one side of the above—mentioned ITO film, and the hole-injection layer and the luminous layer were formed on an example 1 and these conditions by this condition, respectively. Subsequently, after removing the above—mentioned mask using the mask automatic switchboard style attached to vacuum evaporation equipment, width of face of 5mm was covered at the