Gang Chen chengang@genomics.cn

November 7, 2015

4□ > 4個 > 4 = > 4 = > = 900

Outline

- Object-Oriented Programming
- 2 Data Visualization
- R Package
- Bioconductor
- Seproducible Research in R

Next

- Object-Oriented Programming
 - History
 - S3
 - S4
- Data Visualization
- R Package
- Bioconductor
- Reproducible Research in R

S4 Classes and methods

History

- 1976, Rick Becker and John Chambers, S on Honeywell OS
- Ported to UNIX, S2
- Around 1986, functional programming and object self-description, S3
- 1992, concept of classes and methods, S4
- 2010, Reference Classes (RC), R 2.12

appendix in Software for Data Analysis by Chambers

S4 Classes and methods

OO Systems in R

- S3
- S4
- RC
- Base Types

Best Reference: http://adv-r.had.co.nz/OO-essentials.html

S3

R

S4 Classes and methods

S4 in R

ftype(nobs)

```
library(stats4)
library(pryr)
y \leftarrow c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
nLL <- function(lambda) -sum(dpois(y, lambda, log = TRUE))</pre>
fit <- mle(nLL, start = list(lambda = 5), nobs = length(y))
isS4(fit)
## [1] TRUE
 otype(fit)
## [1] "S4"
 isS4(nobs)
## [1] TRUE
```

Hong Kong

S4 Classes and methods

Defining classes and creating objects

```
setClass("Person",
 slots = list(name = "character", age = "numeric"))
setClass("Employee",
 slots = list(boss = "Person"),
 contains = "Person")
alice <- new("Person", name = "Alice", age = 40)
john <- new("Employee", name = "John", age = 20, boss = alice)</pre>
```

S4 Classes and methods

access slots of an S4 object

```
alice@age
slot(john, "boss")
```

History

R

Creating new methods and generics

```
setGeneric("union")
setMethod("union",
    c(x = "data.frame", y = "data.frame"),
    function(x, y) {
        unique(rbind(x, y))
    }
)
setGeneric("myGeneric", function(x) {
    standardGeneric("myGeneric")
})
```

Next

- Object-Oriented Programming
- Data Visualization
 - Scatter Plot
 - 时间序列
 - 柱状图
 - 併图
 - 分类数据绘图
 - 绘制分布
 - 箱线图
- R Package
- Bioconductor

plot

plot

```
x = rnorm(100)
y = rnorm(100)
plot(x, y)
```


dotchart

```
x = rnorm(30)
dotchart(x, groups = rep(1:3,10))
```


barplot

barplot(x[1:20])

柱状图

R

barplot

barplot(x[1:20], width=2, horiz=T, col=rainbow(10))

pie

```
pie(c(10,10,10,20,30,20), c("Nature", "Science", "Cell", "NG",
Cancer", "Other"), col=2:7)
```


pie

```
library(plotrix)
pie3D(c(10,10,10,20,30,20), labels=c("Nature", "Science", "Ce
Cancer", "Other"), col=2:7)
```


cdplot

cdplot(temperature, fail)

cdplot(temperature, fail, col=c("green", "red"))

mosaicplot

```
require(stats)
mosaicplot(Titanic, main = "Survival on the Titanic",
color = TRUE)
```



```
hist(rnorm(10000), col="lightblue")
```


hist

hist(rnorm(10000), breaks=100)


```
x = rnorm(1000)
plot(density(x))
rug(x)
```


Q-Q plot

qqnorm(rnorm(10000))

boxplot

boxplot(rnorm(1000))

boxplot

boxplot(cbind(rnorm(1000),rnorm(1000)+rnorm(1000)), col=c('

Next

- Object-Oriented Programming
- 2 Data Visualization
- R Package
 - R Package Development
 - devtools
- Bioconductor
- Reproducible Research in R

R Package

- Hadley: In R, the fundamental unit of shareable code is the package.
- Hilary Parker: Seriously, it doesn' t have to be about sharing your code (although that is an added benefit!).
 It is about saving yourself time.

References

- Writing R Extensions: http://cran.r-project.org/manuals.html
- R Packages from Hadley: http://r-pkgs.had.co.nz/
- Writing an R package from scratch: http://hilaryparker.com/2014/04/29/ writing-an-r-package-from-scratch/
- 开发R程序包之忍者篇: http://cos.name/2011/05/ write-r-packages-like-a-ninja/

R Package from Scratch

see cgr directory

Why devtools?

- This book espouses my philosophy of package development:
- anything that can be automated, should be automated.
- Do as little as possible by hand.
- Do as much as possible with functions.

Next

- **Bioconductor**
 - Overview
 - ggbio

Overview

Bioconductor

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. Bioconductor uses the R statistical programming language, and is open source and open development. It has two releases each year, 934 software packages, and an active user community.

Goals

- To provide widespread access to a broad range of powerful statistical and graphical methods for the analysis of genomic data.
- To facilitate the inclusion of biological metadata in the analysis of genomic data, e.g. literature data from PubMed, annotation data from Entrez genes.
- To provide a common software platform that enables the rapid development and deployment of extensible, scalable, and interoperable software.
- To further scientific understanding by producing high-quality documentation and reproducible research.
- To train researchers on computational and statistical methods for the analysis of genomic data: tech

see GNBF5010-2013/4. Biological Data Analysis and Visualization in R/slides.pdf

4□ → 4個 → 4 = → 4 = → 9 < 0</p>

ggplot2

```
qplot(mpg, data=mtcars, geom="density", fill=gear, alpha=I(.
5), main="Distribution of Gas Milage", xlab="Miles Per
Gallon", ylab="Density")
```


ggplot2

qplot(hp, mpg, data=mtcars, shape=am, color=am, facets=gear of size=I(3), xlab="Horsepower", ylab="Miles per Gallon")

ggplot2

```
qplot(wt, mpg, data=mtcars, geom=c("point", "smooth"),
method="lm", formula=y x, color=cyl, main="Regression
of MPG on Weight", xlab="Weight", ylab="Miles per Gallon")
```


ggplot2

```
qplot(gear, mpg, data=mtcars, geom=c("boxplot", "jitter"),
fill=gear, main="Mileage by Gear Number", xlab="", ylab="Mile
per Gallon")
```


ggbio

- ggplot2 + bioconductor = ggbio
- Website: http://www.tengfei.name/ggbio/
- Author: Tengfei Yin at Seven Bridges Genomics

ggbio Examples

```
source("http://bioconductor.org/biocLite.R")
biocLite("ggbio")
library(ggbio)
example(autoplot)
```

Next

- Object-Oriented Programming
- Data Visualization
- R Package
- Bioconductor
- Reproducible Research in R
 - knitr
 - Interactive Report and Shiny

Overview

- Official website: http://yihui.name/knitr/
- Reference: Dynamic Documents with R and knitr
- Author: Yihui Xie

Examples

- the slides of the R lectures are generated by knitr
 - Knitr
 - XeLaTeX
- see knitr directory for the Knitr example in Markdown

Interactive Report

- Google Analytics
- 百度统计 from Baidu.com
- 数据魔方 from Taobao.com

Shiny Overview

- A web application framework for R
- Turn your analyses into interactive web applications
- No HTML, CSS, or JavaScript knowledge required
- http://shiny.rstudio.com/

Example

see shinyApp directory