Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 9

Matr.nr.:				
Nachname:				
Vorname:				
Tutorium:	Nr.		Name des Tutors:	
Ausgabe:	18. Dezem	ber 2013	}	
Abgabe: 10. Januar 2014, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengetackert abgegeben werden.				
Vom Tutor au	ıszufüllen:			
erreichte Pu	nkte 			
Blatt 9:		/ 19		
Blätter 1 – 9:		/ 167		

Aufgabe 9.1 (3 Punkte)

Gegeben sei der folgende Algorithmus:

```
x \leftarrow 0

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to i-1 do

for k \leftarrow j to n-1 do

x \leftarrow x+1

od

od
```

Es bezeichne f(n) den Wert der Variablen x nach Beendigung der Schleife in Abhängigkeit von n.

- a) Beweisen Sie, dass $f(n) \in O(n^3)$ ist.
- b) Beweisen Sie, dass $f(n) \in \Omega(n^3)$ ist.

Lösung 9.1

a) Man betrachte den folgenden Algorithmus:

```
x \leftarrow 0

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

for k \leftarrow 0 to n-1 do

x \leftarrow x+1

od

od
```

Jede Schleife wird im Vergleich zum Original mindestens genauso oft durchlaufen. Und jede Schleife wird, wenn sie betreten wird, jeweils genau n mal durchlaufen. Also hat x am Ende den Wert n^3 , also ist $f(n) \in O(n^3)$.

b) Betrachte den folgenden Algorithmus:

```
x \leftarrow 0

for i \leftarrow \lfloor n/2 \rfloor to n-1 do

for j \leftarrow 0 to \lceil n/2 \rceil do

for k \leftarrow \lfloor n/2 \rfloor to n-1 do

x \leftarrow x+1

od

od
```

Jede Schleife wird im Vergleich zum Original höchstens genauso oft durchlaufen. Und jede Schleife wird, wenn sie betreten wird, jeweils mindestens n/2 mal durchlaufen. Also hat x am Ende einen Wert größer oder gleich $\lfloor n/2 \rfloor^3$, also ist $f(n) \in \Omega(n^3)$.

Aufgabe 9.2 (4 Punkte)

Betrachten Sie folgende kleine Variante des Algorithmus von Warshall, der eine Folge von Matrizen W_0 , W_1 , usw. bis W_n berechnet:

```
\begin{array}{l} \text{for } i \leftarrow 0 \ \ \text{to} \ \ n-1 \ \ \text{do} \\ \text{for } j \leftarrow 0 \ \ \text{to} \ \ n-1 \ \ \text{do} \\ W_0[i,j] \leftarrow \begin{cases} 1 & \text{falls } i=j \\ A[i,j] & \text{falls } i \neq j \end{cases} \\ \text{od} \\ \text{od} \\ \text{od} \\ \end{array}
```

Der Algorithmus soll angewendet werden auf den Graphen $G = (\mathbb{G}_6, E)$ mit Kantenmenge $E = \{(0,1), (0,3), (1,2), (1,4), (2,0), (2,5)\}$

- a) Geben Sie W₀ nach Ausführung des Algorithmus an.
- b) Geben Sie W₁ nach Ausführung des Algorithmus an.
- c) Für welchen Wert m der Laufvariable k ergibt sich im Algorithmus für den Beispielgraphen G zum letzten Mal eine Matrix W_m , die sich von der "vorhergehenden" Matrix M_{m-1} unterscheidet?
- d) Geben Sie alle weiteren Matrizen W_2 bis W_m an (für den Wert m aus der vorangegangenen Teilaufgabe).

Lösung 9.2

a)
$$W_0 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 & 1 \\ 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

b) Änderung gegenüber W₀ grau hinterlegt

$$W_1 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 1 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- c) m = 3
- d) Änderungen grau hinterlegt:

Aufgabe 9.3 (5 Punkte)

Geben Sie für jede der nachfolgend definierten Funktionen $f_i \colon \mathbb{N}_0 \to \mathbb{N}_0$ jeweils explizit eine Funktion $g_i \colon \mathbb{N}_0 \to \mathbb{N}_0$ an, so dass $f_i(n) \in \Theta(g_i(n))$ ist. Die Funktionen g_i müssen explizit angegeben werden und dürfen nicht rekursiv definiert sein. Antworten der Form " $g_1 = f_1$ " sind also unzulässig.

a)
$$f_1(0) = 1$$
 und für alle $n \in \mathbb{N}_0$ sei $f_1(n+1) = \frac{(n+2)^{n+2}}{(n+1)^{n+1}} f_1(n)$.

b)
$$f_2(0) = 2$$
 und für alle $n \in \mathbb{N}_0$ sei $f_2(n+1) = 1 + (-1)^{f_2(n)/2}$.

c)
$$f_3(0) = 4711$$
 und für alle $n \in \mathbb{N}_0$ sei $f_3(n+1) = \lceil \log_2(1 + f_3(n)) \rceil$.

d)
$$f_4(0) = 0$$
 und für alle $n \in \mathbb{N}_0$ sei $f_4(n+1) = f_4(n) + 2n + 1$.

e)
$$f_5(0) = 1$$
 und für alle $n \in \mathbb{N}_0$ sei $f_5(n+1) = f_5(n) + \lceil \log_2(n+1) \rceil$.

Hinweis: $\lceil x \rceil$ bedeute "aufrunden" von x auf die nächstgrößere ganze Zahl; für $x \in \mathbb{N}_0$ sei $\lceil x \rceil = x$.

Lösung 9.3

Zum Beispiel:

a)
$$g_1(n) = (n+1)^{n+1}$$

b) Achtung: $\Theta(1)$ ist falsch. Es tut

$$g_2(n) = \begin{cases} 0 & \text{falls } n \text{ gerade} \\ 2 & \text{falls } n \text{ ungerade} \end{cases}$$

- c) $g_3(n) = 1$
- d) $g_4(n) = n^2$
- e) $g_5(n) = n \log n$ (die Basis des Logarithmus ist wegen asymptotischer Betrachtung gleichgültig)

Aufgabe 9.4 (3 Punkte)

Alle nachfolgend benutzten Funktionen seien von der Form $\mathbb{N}_0 \to \mathbb{N}_0$. Beweisen Sie: Wenn $g_1 \leq f_1$ ist, und wenn $g_1 \approx g_2$ und $f_1 \approx f_2$, dann gilt auch $g_2 \leq f_2$.

Lösung 9.4

Die Voraussetzungen bedeuten:

$$\exists c \in \mathbb{R}_{+} : \exists n_{0} \in \mathbb{N}_{0} : \forall n \geq n_{0} : g_{1}(n) \leq cf_{1}(n) .$$

$$\exists c_{f}, c_{f}' \in \mathbb{R}_{+} : \exists n_{f} \in \mathbb{N}_{0} : \forall n \geq n_{f} : c_{f}f_{1}(n) \leq f_{2}(n) \leq c_{f}'f_{1}(n) .$$

$$\exists c_{g}, c_{g}' \in \mathbb{R}_{+} : \exists n_{g} \in \mathbb{N}_{0} : \forall n \geq n_{g} : c_{g}g_{1}(n) \leq g_{2}(n) \leq c_{g}'g_{1}(n) .$$

Dann gilt für alle $n \ge \max(n_0, n_f, n_g)$

$$g_2(n) \le c'_g g_1(n) \le c'_g c f_1(n) \le \frac{c'_g c}{c_f} f_2(n)$$
.

Aufgabe 9.5 (4 Punkte)

Die Funktion log $_2^* \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$ ist wie folgt definiert:

$$\log_2^* n = \begin{cases} 0 & \text{falls } n \le 1 \\ 1 + \log_2^* (\log_2 n) & \text{sonst} \end{cases}$$

- a) Berechnen Sie $\log_2^*(65536)$ und geben Sie $\log_2^*(65537)$ an.
- b) Wieviele Ziffern hat die Dezimaldarstellung der kleinsten Zahl $m \in \mathbb{N}_0$ mit $\log_2^*(m) = 6$?
- c) Definieren Sie eine Funktion $\exp_2^* \colon \mathbb{N}_0 \to \mathbb{N}_0$, so dass für alle $n \in \mathbb{N}_0$ gilt: $\log_2^*(\exp_2^*(n)) = n$.
- d) Beweisen Sie, dass $\log_2^* n \notin O(1)$ ist.

a)
$$\log_2^*(65536) = 1 + \log_2^*(16) = 2 + \log_2^*(4) = 3 + \log_2^*(2) = 4 + \log_2^*(1) = 4 + \log_2^*(65537) = 5$$

b) Die hat Zahl 19729 Dezimalstellen. Nicht geforderte Erklärung: Die gesuchte Zahl ist $m=1+2^{65536}$ und $\log_{10}(2^{65536})\approx 19728.30179583\dots$

c) Definiere

$$\exp_2^*(0) = 1$$

 $\forall n \in \mathbb{N}_0 \colon \exp_2^*(n+1) = 2^{\exp_2^*(n)}$

d) In Teilaufgabe c) hat man gesehen, dass es für jedes n eine Zahl $\exp_2^*(n)$ gibt mit $\log_2^*(\exp_2^*(n)) = n$. Also nimmt $\log^* n$ unbeschränkt große Funktionswerte an.

Wäre $\log_2^* n \in O(1)$, dann gäbe es eine Konstante c > 0, so dass ab einem n_0 für alle $n \ge n_0$ gelten würde: $\log^* n \le c$. Damit wären aber alle Funktionswerte beschränkt durch $c + \max\{\log^* n \mid n < n_0\}$.