

Towards a Low-Cost, Non-Invasive System for Occupancy Detection using a Thermal Detector Array Ash Tyndall

Supervisors:
Rachel Cardell-Oliver
Adrian Keating

Program:
Bachelor of Computer
Science (Honours)

Program Dates: Semester 2, 2014 – Semester 1, 2015

Introduction

Background

- Aging population [ABS2012, CCE09]
 - Need to lower human burden
- Rising energy prices [Swo15]
 - Affects both businesses and the elderly
- Internet of Things
 - Cheaper embedded systems
 - Better sensors
 - Occupancy detection

Occupancy Detection

- Detecting people
- Good for home/office automation
- Occupancy detection can save up to 25% on these costs [BEC13]
- Climate control accounts for
 - up to 40% of household energy usage [ABS11]
 - 43% of office building usage [CAG12]

An ideal system would be...

- Low-Cost
 - Prototype stage < \$300</p>
- Non-Invasive
 - Minimal information gathered by system
- Reliable
 - ->75% occupancy detection accuracy
- Energy Efficient
 - Prototype can last at least a week

Can we create this system?

Necessary steps

- 1. Design Choices
- 2. Prototype Design
 - a) Hardware
 - b) Software
- 3. Criteria Evaluation
- 4. Did we meet our goals?

Design Choices

How do we evaluate sensors?

- We want to
 - See individual people
- We don't want to
 - Know who they are
 - Know what they're doing

Thermal Sensors

- Cost is coming down fast
- Exciting new area for research
- Interesting applications
- "ThermoSense" [BEC13]
 - Can see human "blobs" in thermal data
 - Very low resolution (8x8 pixels)
 - 0.346 Root Mean Squared Error

Research Gap

- Sensor space is changing fast
- Contribution of system elements
- Does their approach translate
- ThermoSense sensor not in Australia

Prototype Design

 Direct data collection Raw data to processed data Processed data to insights

Sensing

Pre-Processing

Melexis MLX90620

- Collects thermal data
- Narrower FOV (16°x60° vs 60°x60°)
- Rectangular (16x4 vs 8x8)
- Communicates bi-directionally

Sensing

Pre-Processing

Passive Infrared Sensor (PIR)

- Collections motion data
- Provides rising signal on motion

Sensing

Pre-Processing

Arduino Uno R3

 Embedded controller with broad library support

 Converts raw sensing data into degrees Celsius / motion each frame

Sensing

Pre-Processing

Raspberry Pi B+

- Cheap and powerful Linux platform
- Performs advanced analysis on processed data
- Generates occupancy predictions

Sensing

Pre-Processing

RPi Camera

- 1080p resolution
- Ground truth collection in prototype stage

Sensing

Pre-Processing

HW Architecture - Ideal M:1

Physical Prototype

Software

- 1,600 SLOC
 - Approx. 500 lines on Arduino (C++)
 - Remaining 1,000 on Raspberry Pi (Python)
- Code allows capture, visualization and analysis of thermal images

Overview

- Motion detection
- 2. Image subtraction
- Machine learning
 - Distilling good examples (feature extraction)
 - Providing examples with correct answer (training)
 - Get out a model that can predict attributes

1. Capture thermal image sequence

2. Generate graph from "active" pixels, which deviate significantly from mean

3. Extract features from graph for classification purposes

Number of connected components = 2

4. Perform machine learning

- Train on examples with true value (features and ground truth)
- Make predictions with your generated model

Video Demonstration

Evaluation

Non-Invasiveness

- Fulfilled through sensor choice
- Low resolution masks person and action identification

Cost

- Prototype < \$300 target
- On par with ThermoSense cost

Part	Cost
MLX90620	\$80
Raspberry Pi B+	\$50
Arduino Uno R3	\$40
Passive Infrared Sensor	\$10
I ² C level shifter	\$5
TOTAL	\$185

(a) Our project

Part	Cost
TMote Sky	\$110
Grid-EYE	\$50
Passive Infrared Sensor	\$10
TOTAL	\$170

(b) ThermoSense (estimated)

Cost comparison

Experimental Setup

Testing reliability and energy efficiency

Reliability - Aim

- Replicating
 ThermoSense's
 classification
 algorithms:
 - K Nearest Neighbours (numeric / nominal)
 - Linear Regression (numeric)
 - Multi-Layer Perceptron (numeric)

- Trying our own
 - Multi-LayerPerceptron (nominal)
 - K*
 - C4.5
 - Support Vector Machine
 - Naïve Bayes
 - -0-R

Reliability - Processing Pipeline

Reliability – Summary

- Best results
 - K*, C4.5 (both ~82%)
 - MLP also passable (~77%)
- ThermoSense paper's choices not sufficiently reliable with our dataset
 - Why?
 - So many unknowns
- Why are K* and C4.5 so much better?
 - Entropy?

Feature Plot - No Clear Cut

Energy Efficiency (log scales)

Energy Efficiency (log scales)

Conclusions

Conclusions

- Low Cost
 - \$185, and will only get cheaper
- Non-Invasive
 - Thermal sensing is a good technique
- Reliable
 - 82% classification accuracy
- Energy Efficient
 - Prototype: 8 days. Minor changes: years

Recommended Future Work

- IoT integration
 - How would this talk to other systems?
- Field-of-View modifications
 - Undistorting captured images
- New Sensors
 - MLX90621 (wider FOV)
 - FliR Lepton (80x60 pixel)

References & Questions?

- [ABS12] Australian Bureau of Statistics. Disability, ageing and carers, Australia: Summary of findings: Carers key findings. Tech. Rep. 4430.0, 2012. Retrieved April 10, 2015 from http://abs.gov.au/ausstats/abs@.nsf/Lookup/D9BD84DBA2528FC9CA257C21000E4FC5.
- [ABS11] Australian Bureau of Statistics. Household water and energy use, Victoria: Heating and cooling. Tech. Rep. 4602.2, 2011. Retrieved October 6, 2014 from http://abs.gov.au/ausstats/abs@.nsf/0/85424ADCCF6E5AE9CA257A670013AF89.
- [BEC13] Beltran, A., Erickson, V. L., and Cerpa, A. E. ThermoSense: Occupancy thermal based sensing for HVAC control. In *Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings* (2013), ACM, pp. 1–8.
- [CCE09] Chan, M., Campo, E., Esteve, D., and Fourniols, J.-Y. Smart homes current features and future perspectives. *Maturitas* 64, 2 (2009), 90–97.
- [CAG12] Council of Australian Governments. Baseline Energy Consumption and Greenhouse Gas Emissions: In Commercial Buildings in Australia: Part 1 Report. 2012. Retrieved April 10, 2015 from http://industry.gov.au/Energy/Ener
- [Swo15] Swoboda, K. Energy prices–the story behind rising costs. In Parliamentary Library Briefing Book 44th Parliament. Australian Parliament House Parliamentary Library, 2013. Retrieved February 3, 2015 from

http://aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/BriefingBook44p/EnergyPrices.

Questions?

Additional Content

Sensor Properties

Sensor Properties - Bias

Average mean values over capture window

Sensor Properties – Noise

Graphs of noise of human pixel and background pixel

Sensor Properties – Sensitivity

Hot object moving across pixels at approx. constant velocity

Hot object moving across row of five pixels

Evaluating Sensors

1. Presence

– Is there any occupant present in the sensed area?

2. Count

– How many occupants are there in the sensed area?

3. Location

– Where are the occupants in the sensed area?

4. Track

 Where do the occupants move in the sensed area? (local identification)

5. Identity

Who are the occupants in the sensed area?
 (global identification)

	Requires		Excludes	Irrelevant		
	Presence	Count	Identity	Location	Track	
Intrinsic						
Static						
Thermal	✓	\checkmark	√	√		
CO_2	✓	\checkmark	√			
Video	✓	\checkmark	×	√	\checkmark	
Dynamic						
Ultrasonic	✓	\checkmark	×		\checkmark	
PIR	✓	X	√			
Extrinsic						
$\frac{1}{Instrumented}$						
RFID	\checkmark^1	\checkmark	 	 		
WiFi assoc. ²	\checkmark^1	\checkmark	×	 		
WiFi triang. ²	\checkmark^1	\checkmark	×			
GPS^2	\checkmark^1	X	✓	 		
Correlative						
Electricity	\checkmark^1	X	√			

Evaluating sensors against our criteria

¹Doesn't provide data at required level of accuracy for residential use.

²Uses smartphone as detector.

- We want
 - Presence
 - Count
- We don't want
 - Identity
- We don't care about
 - Location
 - Track

References

[TDS14] Teixeira, T., Dublon, G., and Savvides, A. A survey of human-sensing: Methods for detecting presence, count, location, track, and identity. Tech. rep., Embedded Networks and Applications Lab (ENALAB), Yale University, 2010. Retrieved October 6, 2014 from

http://www.eng.yale.edu/enalab/publications/human_sensing_enalabWIP.pdf.

Thermosense Technique

Panasonic Grid-EYE 8x8 Thermal Array

Passive Infrared Sensor (PIR)

T-Mote Sky

PC?

Pre-Processing

Analysis

Overview

- Motion detection
- 2. Image subtraction
- Machine learning
 - Distilling good examples (feature extraction)
 - Providing examples with correct answer (training)
 - Get out a model that can predict attributes

1. Capture thermal image sequence

2. When no motion (use PIR), update a background map (b), standard deviation (σ) and means using an Exponential Weighted Moving Average

3. When motion, consider pixels $> 3\sigma$ to be "active"

4. Generate graph from active pixels

5. Extract features from graph for classification purposes

Number of connected components = 2

6. Perform machine learning

- Train on examples with true value (features and ground truth)
- Make predictions with your generated model

Worst - Best

Thermosense

- RMSE: 0.409 - 0.346

– Correlation: 0.926 – 0.946

K* Numeric

- RMSE: 0.423 (-0.077)

– Correlation: 0.760 (-0.166)

Classifier	RMSE	Precision (%)	Correlation (r)				
ThermoSense Actual							
KNN ¹	0.346						
Lin Reg ²	0.385		0.926				
MLP	0.409		0.945				
ThermoSense Replication							
KNN (Nom) ¹	0.364	65.65					
MLP	0.592		0.687				
Lin Reg ²	0.525		0.589				
KNN (Num) ¹	1.123		0.377				
Numeric							
K*	0.423		0.760				
0-R	0.651		-0.118				
Nominal							
K*	0.304	82.56					
C4.5	0.314	82.39					
MLP	0.362	77.14					
SVM	0.398	67.18					
N. Bayes	0.405	63.59					
0-R	0.442	49.74					

- ¹: Includes zero occupant cases in training data
- ²: Excludes number of connected components feature
- %: Precision, measuring a nominal test result
- r: Correlation coefficient, measuring a numeric test result

Results

Worst - Best

Thermosense

- RMSE: 0.409 - 0.346

– Correlation: 0.926 – 0.946

- Three Test Suites
 - Replication of their algorithms
 - Our numeric algorithm, K^* (measured with r)
 - Our nominal algorithms (measured with %)

Worst - Best

Thermosense

- RMSE: 0.409 - 0.346

Correlation: 0.926 – 0.946

Our Replication

- RMSE: 1.123 - 0.364 (-0.018)

- Correlation: 0.377 - 0.687 (-0.239)

Insufficient accuracy

Worst - Best

Thermosense

- RMSE:

0.409 - 0.346

Nominal Suite

- RMSE: 0.304 - 0.405 (+0.042)

Accuracy: 63.59 – 82.56

Higher end does have sufficient accuracy

SVM Predictions

67% accuracy

Energy Efficiency

Different Prototype Designs

	Radio	Sleep	Wake	Volts	Wake	Sample	Avg	Life
Model		(mA)	(mA)	(V)	(ms)	(Hz)	(mW)	(days)
Existing	Х	34	52	4.9	∞	0.20	255.84	8
Sleep	Х	34	52	4.9	100	0.20	169.05	12
ThermoS.	✓	?	?	3.3	?	0.20	15.91	131
LowPwr A	✓	0.065	23	3.3	300	0.20	4.76	438
LowPwr B	✓	0.065	23	3.3	300	0.01	0.44	4718

Radio: Does the model use radio transmission?

Sleep (mA): Milliamp current consumption in sleep state

Wake (mA): Milliamp current consumption in wake state

Volts (V): Voltage requirement of model

Wake (ms): Min. millisecond time model must be awake to sample & transmit once

 $(\infty = \text{never sleeps})$

Sample (Hz): Freq. that model wakes and performs sample & transmit

Avg (mW): Avg. milliwatt power given sleep/wake current, voltage, sample and wake time

Life (days): Est. life of model assuming a perfect 50 watt-hour (Wh) battery