What is claimed is:

1	1. An optical spectrometer component comprising:
2	a fiber optic input;
3	collimating optics disposed between the fiber optic input and
4	a linear variable filter having
5	an etalon structure with
6	a tapered spacer region being tapered along a taper direction,
7	the linear variable filter being affixed to
8	a linear optical detector array disposed along the taper direction.
1	2. The optical spectrometer of claim 1 wherein the collimating optics
2	comprise a magnifying lens and a collimating lens.
1	3. The optical spectrometer of claim 1 wherein the linear variable filter
2	has
3	a first reflector comprising a first plurality of high-index layers and a first
4	plurality of SiO ₂ layers, the first plurality of high-index layers alternating with the first
5	plurality of SiO ₂ layers; and
6	a second reflector comprising a second plurality of high-index layers and a
7	second plurality of SiO ₂ layers, the second plurality of high-index layers alternating with
8	the second plurality of SiO ₂ layers wherein the tapered spacer region comprises SiO ₂ .
1	4. The optical spectrometer of claim 3 wherein at least some layers of
2	the first plurality of high-index layers comprise Ta ₂ O ₅ .
1	5. The optical spectrometer of claim 3 wherein at least some layers of
2	the first plurality of high-index layers comprise Nb ₂ O ₅ .
1	6. The optical spectrometer of claim 1 wherein the linear variable filter
2	has a thermal stability of less than 50 parts per million per degree Centigrade of ambient
3	temperature change.
1	7. The optical spectrometer of claim 1 wherein the linear variable filter
2	has a thermal stability of less than 25 parts per million per degree Centigrade of ambient
3	temperature change.

1	8. The optical spectrometer of claim 1 wherein the linear variable filter
2	has a thermal stability of less than 10 parts per million per degree Centigrade of ambient
3	temperature change.
1	9. The optical spectrometer of claim 1 wherein the linear variable filter
1	
2	is a bandpass filter.
1	10. The optical spectrometer of claim 1 wherein the linear variable filter
2	is a band-edge filter.
1	11. An optical spectrometer component comprising:
2	a fiber optic input:
	a magnifying lens disposed to expand an optical signal from the fiber optic
3	
4	input to a collimating lens, the collimating lens disposed to provide a light beam to
5	
6	a linear variable bandpass filter having
7	an etalon structure with
8	a tapered spacer region being tapered along a taper direction.
9	the linear variable filter having a thermal stability of less than or equal to 50 parts per
10	million per degree Centigrade of ambient temperature change; and
11	a linear optical detector array disposed along the taper direction.
1	12. The optical spectrometer of claim 11 wherein the optical detector
2	array has a length along the taper direction of less than or equal to 12 mm.
1	13. The optical spectrometer of claim 11 wherein the linear variable
2	bandpass filter has a 50% bandwidth of less than or equal to about 0.6 nm at a center
3	wavelength, the center wavelength being between about 1530-1600 nm.
1	14. An optical spectrometer component comprising:
2	a fiber optic input;
3	a magnifying lens disposed to expand an optical signal from the fiber optic
4	input to
5	a collimating lens, the collimating lens disposed to provide a light beam to
6	a linear variable bandpass filter having
7	an etalon structure with

8	a tapered spacer region being tapered along a taper direction,
9	the linear variable filter having a thermal stability of less than or equal to 50 parts per
10	million per degree Centigrade of ambient temperature change and a 50% bandwidth of less
11	than or equal to about 0.6 nm at a center wavelength, the center wavelength being between
12	about 1530-1600 nm; and
13	a linear optical detector array disposed along the taper direction, the linear
14	optical detector array having a length of less than or equal to 12 mm along the taper
15	direction.
1	15. The optical spectrometer component of claim 14 wherein the linear
2	optical detector array has at least 256 pixels.
1	16. The optical spectrometer component of claim 14 wherein the linear
	optical detector array has at least about 512 pixels so as to provide a nominal resolution of
2	the optical spectrometer component of about 3 Angstroms or less.
3	the optical spectrometer component of about 3 Angstroms of less.
1	17. A method of measuring an optical signal with an optical
2	spectrometer, the method comprising:
3	calibrating an optical spectrometer component having a linear variable filter
4	with an etalon structure including at least one tapered spacer region and a detector array
5	having at least n detectors by
6	providing at least $3n$ calibration signals at $3n$ calibration
7	wavelengths to the optical spectrometer component;
8	measuring an output from each of the n detectors in response to each of the
9	calibration signals with an analyzer;
10	storing the output from each of the n detectors at each of the calibration
11	signals to create a calibration array;
12	providing an optical input signal to the optical spectrometer component;
13	measuring a second output from each of the n detectors; and
14	reconstructing the optical input signal using the calibration array in an
15	inverse transfer process to produce a reconstructed input signal.
1	18. The method of claim 17 wherein the optical spectrometer
2	component has a nominal resolution of X nm and the reconstructed input signal has an
3	equivalent resolution of better than $X/5$ nm.

1	19. The method of claim 17 wherein the optical spectrometer
2	component has a nominal resolution of less than or equal to 8 Angstroms, and the
3	calibration wavelengths are at intervals of about 0.5 Angstroms or less.
	and the state of the second structed output signal has
1	20. The method of claim 19 wherein the reconstructed output signal has
2	an effective resolution of less than about 1.6 Angstroms.
1	21. The method of claim 17 wherein the optical spectrometer
2	component comprises a detector array having at least 512 pixels and has a nominal
3	resolution of less than or equal to 3 Angstroms over an operating band of between about
4	1530-1600 nm.
	22. A method of measuring an optical signal with an optical
1	
2	spectrometer, the method comprising:
3	calibrating an optical spectrometer component having a linear variable filter
4	with an etalon structure including at least one tapered spacer region and a detector array
5	having at least n detectors to provide a nominal resolution of less than or equal to 8
6	Angstroms across an operating band of the optical spectrometer component, the operating
7	band lying within about 1530-1600 nm, by
8	providing a plurality of calibration signals to the optical
9	spectrometer component throughout the operating band at intervals of about 0.5
10	Angstroms;
11	measuring an output from each of the n detectors in response to each of the
12	calibration signals with an analyzer;
13	storing the output from each of the n detectors at each of the calibration
14	signals to create a calibration array;
15	providing an optical input signal to the optical spectrometer component;
16	measuring a second output from each of the n detectors; and
17	reconstructing the optical input signal using the calibration array in an
18	inverse transfer process to produce a reconstructed input signal having an effective
19	resolution of less than 1.6 Angstroms.
1	23. A method of monitoring an optical network, the method
2	comprising:

3	calibrating an optical spectrometer having an optical detector with n
4	detectors and a nominal resolution of X nm at at least $3n$ calibration wavelengths;
5	providing a plurality of optical signals on an optical transmission line;
6	coupling at least a portion of at least some of the plurality of optical signals
7	to the optical spectrometer;
8	measuring the at least some of the plurality of optical signals with the
9	optical spectrometer;
10	reconstructing the at least some of the plurality of optical signals using a
11	transfer function to provide reconstructed signals having an effective resolution of at least
12	X/5 nm.
1	24. The method of claim 23 wherein the monitoring of the optical
2	network is a continuous monitoring of the optical network.
1	25. The method of claim 23 wherein the plurality of optical signals
2	carried on the optical network are wavelength-division-multiplexed optical signals having
3	a nominal channel spacing of less than or equal to about 200 GHz.
	26. A optical transmission network comprising:
5	an input optical fiber configured to carry a plurality of wavelength-
	division-multiplexed optical signals having nominal channel spacing of about 200 GHz or
	less;
	an output optical fiber;
	an optical tap disposed between the input optical fiber and the output
10	optical fiber and configured to couple a portion of at least some of the plurality of
	wavelength-division-multiplexed optical signals to
	an optical spectrometer component having
	a linear variable filter including an etalon structure with at least one
	tapered spacer region being tapered along a taper direction, and
15	a detector array affixed to the linear variable filter; and
	an analyzer coupled to the optical spectrometer component so as to monitor each of the
	some of the plurality of optical signals.