COVID-19 Misinformation Detection

Caitlin Moroney

Figure 1: Twitter adds warning labels to tweets.

Dataset

- ▶ 560 tweets, perfectly balanced classes
- ▶ sample of 282,201 users in Canada
- tweets posted between January 1 March 13, 2020
- manually labeled as "reliable" or "unreliable"

Table 1: Misinformation rules from Boukouvalas et al. (2020)

Linguistic Feature	Example from Dataset
Hyperbolic, intensified,	e.g., 'blame', 'accuse', 'refuse', 'catas-
superlative, or emphatic	trophe', 'chaos', 'evil'
language	
Greater use of punctua-	e.g., e.g., 'YA THINK!!?!!?!', 'Can we
tion and/or special char-	PLEASE stop spreading the lie that
acters	Coronavirus is super super super con-
	tagious? It's not. It has a contagious
	rating of TWO'
Strongly emotional or	e.g., 'fight', 'danger', 'hysteria',
subjective language	'panic', 'paranoia', 'laugh', 'stupidity'
	or other words indicating fear, surprise,
	alarm, anger, and so forth
Greater use of verbs of	e.g., 'hear', 'see', 'feel', 'suppose', 'per-
perception and/or opin-	ceive', 'look', 'appear', 'suggest', 'be-
ion	lieve', 'pretend'

Methodology

- raw text
- word embeddings
 - word-word co-occurrence matrix
 - ▶ latent variable methods
- tweet embeddings
- classification
- evaluation

Word-Word Co-Occurrence Matrix

- text cleaning: remove stop words, lemmatize text, convert to lowercase, remove special characters, remove punctuation
- context window size: 1, 2, 4, 6, 10, 15, 20
- weighting: raw frequencies, PMI, PPMI
- ► Laplace smoothing: add-1, add-2
- ▶ shifted or unshifted: k = 5, k = 1
- start/end tokens

Latent Variable Methods

Figure 2: Truncated Singular Value Decomposition followed by Independent Component Analysis.

Tweet Embeddings

$$\mathbf{v}_i = \frac{1}{T_i} \sum_{j=1}^{T_i} \mathbf{e}_j$$

Classification

- One-class classification: one-class support vector machines (OCSVM), isolation forest, & local outlier factor (LOF)
- ▶ Binary classification: SVM
- ► Evaluation: performance & explainability

LIME: Local Explainability

ICA: Global Explainability

We define the importance of the i^{th} target word as follows:

$$g_i = \frac{1}{k} \sum_{j=1}^k |a_{ij}|$$

where k is the number of SVD features (and therefore the number of ICA features), and $|a_{ij}|$ is the magnitude of the i^{th} word's importance in topic j.

Example

Tweet 170: CNBC ADVICE NOW: Coronavirus is the flu. Wash your hands. Book a vacation. We'll look back on this and laugh.

Figure 3: Comparing LIME and ICA explainability.

Explainability metric

Goal: value that captures how "explainable" a classifier's predictions are (with respect to human classification)

With penalty:

$$\frac{1}{N} \sum_{i=1}^{N} \frac{1}{T_i} \sum_{j=1}^{T_i} \mathbb{1}_{A}(w_j) - \mathbb{1}_{B}(w_j)$$

No penalty:

$$\frac{1}{N} \sum_{i=1}^{N} \frac{1}{T_i} \sum_{i=1}^{T_i} \mathbb{1}_A(w_i)$$

where A is the set of words that the classifier associated with the correct class (e.g., tweet i is labeled as "reliable," and the classifier classified the tweet as "reliable") according to the LIME output for tweet i, B is the set of words that the classifier associated with the wrong class according to the LIME output for tweet i, there are T_i words in tweet i, and there are N tweets.

Results

Table 2: One-class classification

Model	AUC	Accuracy	F1	Precision	Recall
OCSVM	0.750	0.671	0.629	0.709	0.671
Isolation Forest	0.643	0.552	0.616	0.673	0.552
LOF	0.658	0.539	0.552	0.598	0.539

OCSVM used word embeddings of length 100; isolation forest and LOF used embeddings of length 50.

Results (continued)

Table 3: Binary SVM performance

Dimensions	AUC	Accuracy	F1	Precision	Recall
50	0.903	0.804	0.801	0.818	0.804
100	0.911	0.796	0.793	0.817	0.796
150	0.906	0.795	0.792	0.810	0.795
200	0.901	0.800	0.798	0.815	0.800
250	0.904	0.807	0.804	0.827	0.807
500	0.908	0.789	0.785	0.814	0.789

Results (continued)

Table 4: Binary SVM explainability

Experiment	Penalty	No Penalty
1: Correctly predicted	0.331	0.534
1: Wrongly predicted	0.222	0.278
1: Aggregated	0.326	0.521
2: Correctly predicted	0.356	0.593
2: Wrongly predicted	0.074	0.315
2: Aggregated	0.342	0.579
3a: Correctly predicted	0.396	0.593
3a: Wrongly predicted	0.444	0.500
3a: Aggregated	0.399	0.588
3b: Correctly predicted	0.378	0.619
3b: Wrongly predicted	0.148	0.407
3b: Aggregated	0.367	0.608

Conclusion

Future work:

- local ICA explainability
- different word embeddings (e.g., BERT)
- different classifiers (e.g., neural net)