Teorija grafov - Zapiski predavanj

Jakob Drusany

October 7, 2024

Contents

1	Introduction	1
2	Independence, matching, covers	1
3	Matchings	4

1 Introduction

A graph is defined as G = (V, E). n = |V| is the number of vertices, m = |E| is the number of edges. We also denote them as V(G), n(G), E(G), m(G). $\delta(G)$ is the minimum degree of a vertex in G, $\Delta(G)$ is the maximum degree. G[C] represents the induced subgraph of G on the vertex set C.

2 Independence, matching, covers

Definition. The set of vertices $S \subseteq V$ is an **independent set** if G(S) contains no edges. (No two vertices in the independent set are adjacent)

The independence number $\alpha(G)$ is the size of the maximum independent set.

Definition. The set of vertices $T \subseteq V$ is a **vertex cover** if $\forall e \in E \ T \cap e \neq \emptyset$. (All edges have at least one endpoint in the vertex cover)

The vertex cover number $\beta(G)$ is the size of the minimum vertex cover.

Definition. A matching is a set of edges $M \subseteq E$ such that $\forall e, f \in M \ e \neq f \ e \cap f \neq \emptyset$. (No two edges share a vertex)

The matching number $\alpha'(G)$ is the size of the maximum matching.

Definition. An edge cover is a set of edges $C \subseteq E$ such that $\forall v \in V \exists e \in C \ v \in e$. (All vertices are covered by at least one edge from C)

The edge cover number $\beta'(G)$ is the size of the minimum edge cover. Some graphs have no edge covers, for example graphs with isolated vertices.

Figure 1: G from example

```
Example. \alpha(G) = 8

h(G) = 20

\beta(G) = 12 \rightarrow complement of vertex set

\alpha'(G) = 10 \quad maximum \text{ for } \alpha' \text{ is } \frac{h(G)}{2}

\beta'(G) = 10
```

Observations

• $\alpha(G) + \beta(G) = |V|$ (the size of the maximum independent set plus the size of the minimum vertex cover is equal to the number of vertices)

Proof. For every independent set S, the complement \overline{S} is a vertex cover and vice versa.

 $\alpha'(G) \leq \beta(G)$ (the size of the maximum matching is less than or equal to the size of the minimum vertex cover)

Proof. Every edge in a maximum matching must be covered by different vertices in the vertex cover. \Box

• $\alpha(G) \leq \beta'(G)$ (the size of the maximum independent set is less than or equal to the size of the minimum edge cover)

Proof. Every vertex in a maximum independent set must be covered by different edges in the edge cover. $\hfill\Box$

• if G has no isolated vertices: $\alpha'(G) \leq \frac{n}{2} \leq \beta(G)$

Theorem (Galloi's theorem). If G has no isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$.

Proof. (1)
$$\beta'(G) + \alpha'(G) \le |V(G)|$$

Take a maximum matching M; $M = \alpha'(G)$. For every vertex not covered in

$$V(M)$$
 $V(M)$ $V(M)$ $V(M)$

M ($\overline{V(M)}$), we can take an incident edge and add them to M. We get a set of edges R, which covers every vertex in G.

$$|R| = |M| + |\overline{V(M)}| = |M| + (|V(G)| - 2|M|)$$

$$= |V(G)| - |M|$$

$$\beta'(G) \le |R| = |V(G)| - \alpha'(G)$$

$$\beta'(G) + \alpha'(G) \le |V(G)|$$

(2)
$$\beta'(G) + \alpha'(G) \ge |V(G)|$$

Lemma. Let C be a minimum edge cover. For every edge in C, at least one of its endpoints is covered only once by C.

Proof. Suppose $uv \in G$ and u and v are covered by other edges in C. C' = C $\{uv\}$ is also an edge cover and |C'| < |C| which is a contradiction.

Because of this, we can see that G[C] is a star forest (for all minimal edge covers). G[C] consists of k components: |C| = |V(G)| - k. A matching is obtained by chosing

one edge from every star component of G[C], the resulting matching has k edges (|M| = k)

$$\alpha'(G) \ge |M| = k \ge |V(G)| - |C| = |V(G)| - \beta'(G)$$
$$\alpha'(G) + \beta'(G) \ge |V(G)|$$

3 Matchings

Structure of the maximum matching M. For each $uv \in M$ one of these holds:

(1)
$$N(u) \cap \overline{V(M)} = \emptyset$$

$$N(v) \cap \overline{V(M)} = \emptyset$$

$$V(M)$$

$$\vdots$$

$$V(M)$$

$$\overline{V(M)}$$

(2)
$$N(u) \cap \overline{V(M)} \neq \emptyset$$

$$N(v) \cap \overline{V(M)} \neq \emptyset$$

$$V(M)$$

$$V(M)$$

$$V(M)$$

$$V(M)$$

(3)
$$N(u) \cap \overline{V(M)} \neq \emptyset$$
 or $N(u) \cap \overline{V(M)} = \emptyset$
$$N(v) \cap \overline{V(M)} = \emptyset \qquad N(v) \cap \overline{V(M)} \neq \emptyset \qquad \overline{V(M)}$$

Definition. Let M be a matching. A path $v_1u_1v_2u_2...v_ku_k(v_{k+1})$ is an **m-altering path** if the edges along the path alternate between M and $\overline{M} = E$ M

Definition. An m-alternating path is m-augmenting if both ends of the path are uncovered by M

For example $x_1x_2x_3x_4$ in the above figure. This is important because $M' = M \setminus \{x_2x_3\} \cup \{x_1x_2\}$ is a larger matching.