Convolutional Neural Network

Which is the dog?

Classification

 Given a feature representation for images, how do we learn a model for distinguishing features from different classes?

Classification

- Assign input vector to one of two or more classes
- Input space divided into decision regions separated by decision boundaries

The machine learning framework

 Apply a prediction function to a feature representation of the image to get the desired output:

The machine learning framework

- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

The old-school way

Testing

Neural Networks

- Basic building block for composition is a *perceptron* (Rosenblatt c.1960)
- Linear classifier vector of weights w and a 'bias' b

activation functions

$$ext{output} = egin{cases} 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{cases} \qquad \qquad w \cdot x \equiv \sum_{m{j}} w_{m{j}} x_{m{j}},$$

Binary classifying an image

- Each pixel of the image would be an input.
- So, for a 28 x 28 image, we vectorize.
- $x = 1 \times 784$

- w is a vector of weights for each pixel, 784 x 1
- b is a scalar bias per perceptron

• result = xw + b -> (1x784) x (784x1) + b = <math>(1x1)+b

Neural Networks - multiclass

Add more perceptrons

Multi-class classifying an image

- Each pixel of the image would be an input.
- So, for a 28 x 28 image, we vectorize.
- $x = 1 \times 784$
- W is a matrix of weights for each pixel/each perceptron
 - **W** = 784 x 10 (10-class classification)
- **b** is a bias *per perceptron* (vector of biases); (1 x 10)
- result = xW + b -> (1x784) x (784 x 10) + b -> (1 x 10) + (1 x 10) = output vector

Composition

Attempt to represent complex functions as compositions of smaller functions.

Outputs from one perceptron are fed into inputs of another perceptron.

Composition

Sets of layers and the connections (weights) between them define the *network architecture*.

Composition

Layers that are in between the input and the output are called *hidden layers*, because we are going to *learn* their weights via an optimization process.

Linear functions

- We have formed chains of linear functions.
- We know that linear functions can be combined

•
$$g = f(h(x))$$

Our composition of functions is really just a single function

$$ext{output} = egin{cases} 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{cases}$$
 nonlinear

Rectified Linear Unit

• ReLU $f(x) = \max(0, x)$

Images as input to neural networks

Convolutional Layer

Convolutional Layer

32x32x3 image

32x32x3 image

5x5x3 filter

Convolution Layer

activation map

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Pooling Layer: Receptive Field Size

Pooling Layer: Examples

Max-pooling:

$$h_{j}^{n}(x, y) = max_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

Average-pooling:

$$h_{j}^{n}(x, y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

Filter 1

Filter 2

