زنجیرهسازی کارکردهای مجازی سرویس شبکه با در نظر گرفتن محدودیت منابع مدیریتی

پرهام الوانی شهریور ۱۳۹۸

دانشکده مهندسی کامپیوتر دکتر بهادر بخشی

فهرست

- 🕦 مقدمه
- 🕜 سابقەي كارھا
- 👕 تعریف مساله
- ۴ فرمولبندی و مدلسازی ریاضی مساله
 - ۵ راهحل پیشنهادی
 - 🛭 ارزیابی

سابقەي كارھا

مقدمه

فرمولبندی و مدلسازی ریاضی مساله

ارزيابي

راهحل پیشنهادی

شبکەھای سنتی

- ◄ یک سرویس شبکه به صورت تعدادی کارکرد مشخص که ترافیک با ترتیب مشخصی از آن
 ها عبور می کند، تعریف می شود.
- ▶ کارکردهای شبکه به صورت سختافزار و نرم|فزار اختصاصی تهیه شده از سازندگان مختلف استفاده می شوند.
- ▶ کارکردها باید در مکان مناسب در شبکه قرار گیرند و ترافیک به سمت آنها هدایت شود.

شبکه های سنتی

- ◄ افزایش نیازمندی به سرویسهای متنوع با عمرکوتاه و نرخ بالای ترافیک
 - خریداری، انبارداری و استقرار سختافزارهای اختصاصی
 افزایش هزینههای خرید، آموزش و انبارداری
 - اعرایس فریدهای حرید؛ المورس و اعباردار
 - کاهش فضای فیزیکی
 - سربار آموزش کارکنان
 - محدودیت نوآوری در سختافزار و سرویس

Network Functions Virtualization محازی سازی کارکردهای شبکه

شبکه های سنتی

- ▶ ترافیک کاربر باید از تعدادی کارکرد شبکه به ترتیب معینی عبور کند.
- ▶ کارکردها به صورت سختافزاری به یکدیگر متصلند و ترافیک با استفاده از جداول مسیریابی به سمت آنها هدایت می شود.
 - ◄ نیاز به تغییر همبندی سریح و یا مکان کارکردها برای سرویسدهی بهتر
 - استقرار و تغییر ترتیب کارکردها دشوار است
 - امکان رخدادن خطاهای متعدد

Service Function Chaining زنجیرهسازی کارکرد سرویس

معماری پیشنهادی

◄ مجازىسازى كاركردهاى شبكه

- اواخر سال ۲۰۱۲، ETSI NFV ISG توسط هفت اپراتور جهانی شبکه تأسیس شد.
 - اکنون بیش از ۲۵۰ سازمان با آن همکاری میکنند.
 - اجرای کارکردها بر روی سرورهای استاندارد با توان بالا به وسیله مجازیسازی کارکردها
 - کاهش نیاز به تجهیزات سختافزاری خاص منظوره
 - اشتراک گذاری منابع بین کارکردها
 - کاهش هزینههای تجهیزات و مصرف انرژی از طریق تجمیع کارکردها

◄ زنجيرهسازي كاركرد سرويس

- امکان تعریف زنجیره کارکردها به صورت پویا و بدون تغییر در زیرساخت فیزیکی
 - RFC 7665 •

ارزیابی

معماري پيشنهادي

شکل ۱: معماری سطح بالای مجازی سازی کارکردهای شبکه

معماری پیشنهادی

- lacktriangleright وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد. ightharpoons
- مسئول چرخهی زندگی کارکردهای مجازی شبکه میباشد. m VNFM
- ► چرخهی زندگی هر کارکرد مجازی شامل عملیاتهایی همچون نمونهسازی، مقیاسکردن، بهروزرسانی و پایان دادن میباشد.
- ▶ هر نمونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFMهای موجود در شبکه باشد.

چالشھا

- ◄ مدیریت و هماهنگی
- ◄ مصرف بهينهي انرژي
- ▼ تخصیص منابع به کارکردهای مجازی
 - ◄ مسیریابی زنجیرههای کارکر سرویس
- ◄ پذيرش زنجيرههای کارکرد سرویس
- ◄ به روزرسانی و مقیاس کردنکارکردهای مجازی سرویس

- نمونهسازی
- خاتمەدادن
 - نگهداری
- ٠
- مقياس كردن
 - نظارت
 - عيبيابي
 - و...

◄ ڃالشها

- تاخیر در جمعاوری دادههای نظارت
- نگاشت VNFMها به نمونهها با توجه به تعداد بالای آنها
 - تشخیص و بازگشت از خطا

ارزيابي

فرمولبندی و مدلسازی ریاضی مساله

۲. سابقهی کارها

تعريف مساله

سابقهی کارها

مقدمه

ارزيابي

راهحل پیشنهادی

سابقەي كارھا

جدول ۱: معیارهای مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

تخصیص VNFM			اشتراک نمونه		انتساب کارکرد		نگاشت کارکرد		برخط یا		محدودیت ظرفیت			منبح	
							و لينک		برون خط		پردازش <i>ی</i> نمونه			يافته	
ندارد	دارد	ندارد	دارد	چند نمونه	یک نمونه	لینک	كاركرد	برون خط	برخط	ندارد	دارد	CPU	BW MEM	other	#

سابقهی کارها

جدول ۲: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

_	تخصیم NFM		اشتراک نمونه		انتساب کارکرد		نگاشت کارکرد و لینک		برخط یا برون خط		محدودی ظرفیت پردازشی نمونه				منابع تخصیص یافته	منبع
ندارد	دارد	ندارد	دارد	چند نمونه	یک نمونه	لینک	کارکرد	برون خط	برخط	ندارد	دارد	CPU	BW	MEM	other	#
✓	_	✓	_	_	✓	✓	✓	✓	_	✓	_	✓	✓	_	_	[٣]
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[4]
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[۵]
_	✓	_	_	_	_	✓	_	_	✓	✓	_	_	_		/NFM pacity	[1]
_	✓	✓		_	✓	✓	✓	✓	_		✓	✓	✓	✓	_	پژوهش حاضر

سابقهی کارها

- ◄ این مقاله مسالهی جایگذاری VNFMها را مطرح میکند.
- ▶ این مقاله فرض می کند زنجیرههای جایگذاری شدهاند و هر در بازهی زمانی می توانند بازنگاشت شوند.
- ◄ این مساله قصد دارد با در نظر گرفتن هزینههای عملیاتی مسالهی بازنگاشت VNFMها در بازههای زمانی را حل کند.

Mohammad Abu-Lebdeh et al. "On the Placement of VNF Managers in Large-Scale and Distributed NFV Systems". In: *IEEE Transactions on Network and Service Management* 14.4 (Dec. 2017), pp. 875–889. DOI: 10.1109/tnsm.2017.2730199. URL: https://doi.org/10.1109/tnsm.2017.2730199

پژوهش حاضر

- ◄ در نظر گرفتن جایگذاری زنجیرهها به صورت توامان با جایگذاری منابع مدیریتی
 - ◄ در نظر گرفتن منابع پردازشی
 - ◄ در نظر گرفتن هزینهی گواهی VNFMها
- ► تصمیمگیری برای پذیرش یا عدم پذیرش یک زنجیره با توجه به منابع مدیریتی در کنار منابع یردازشی

سابقەي كارھا

مقدمه

فرمولبندی و مدلسازی ریاضی مساله

٣. تعريف مساله

ارزيابي

راهحل پیشنهادی

- lacktriangle توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت $\mathrm{NFVI ext{-}PoP}$ ها، موجود است.
 - . تقاضای زنجیره کارکرد سرویس به صورت کامل و از پیش مشخص شده داریم ${\bf n}$
- ◄ هر تقاضا شامل نوع و تعداد نمونههای مجازی، پهنای باند لینکهای مجازی و توپولوژی نمونههای مجازی میباشد.

- ▶ نمونهها بین زنجیرهها به اشتراک گذاشته نمیشوند.
 - ◄ محدوديت ظرفيت لينكها
- ◄ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد پردازندهها
 - ▶ برخی از سرورهای فیزیکی نمیتوانند سرورهای فیزیکی مشخصی را مدیریت کنند.
 - ▶ برخی از سرورهای فیزیکی توانایی پشتیبانی از کارکردهای مجازی را ندارد.
- ◄ برخی از نمونههای کارکرد مجازی تنها میتوانند روی سرورهایی خاص نگاشته شوند.

- ◄ برای مدیریت یکدست و آسانتر زنجیرهها و در عین حال جمع آوری راحتر خطاها، برای هر
 زنجیره یک VNFM تخصیص می دهیم.
 - ▼ VNFMها میتوانند بین زنجیره به اشتراک گذاشته شوند.
- ◄ هر نمونه از VNFMها می تواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
- lacktriangle برای ارتباط میان هر نمونه از VNFMها و VNFها پهنای باند مشخصی رزرو میگردد.
- ▶ در صورتی که NFVI-PoP بتواند از VNFM پشتیبانی نماید، میتوان به هر تعداد که ظرفیت آن اجازه می دهد بر روی آن VNFM نصب نمود.

چالشها و نوآوریهای مساله

- VNFM در نظر گرفتن نیازمندی نمونههای کارکرد مجازی به یک VNFM ◄
 - ◄ در نظر گرفتن نیازمندی تاخیر برای لینکهای مدیریتی
- ▼ تخصیص منابع مدیریتی به زنجیرهها و مسیریابی ارتباط مدیریتی
 - ◄ جایگذاری و مسیریابی توامان زنجیرههای کارکرد سرویس
 - ▶ طراحی مسالهی نزدیک به واقعیت

بیشینهسازی سود حاصل از پذیرش زنجیرههای کارکرد سرویس با در نظر گرفتن کارکرد سرویس با در نظر گرفتن نیاز نمونههای کارکرد مجازی شبکه به VNFM .

روند حل مساله

- ◄ مدلسازي مساله
- ◄ حل مسالهی بهینه در ابعاد کوچک
 - ▶ پیادهسازی راهحل مکاشفهای
- ◄ معیار مقایسه این راه حل سود حاصل از پذیرش تقاضاهای زنجیرههای کارکرد سرویس میباشد.
 - ◄ مقایسهی نتایج راهحل مکاشفهای با جواب بهینه

۴. فرمول بندی و مدل سازی ریاضی مساله

99/44

هدف اصلی مساله پذیریش بیشترین تعداد تقاضا میباشد. در اینجا فرض میکنیم پذیرش هر تقاضا سودی منحصر به فرد و هزینهای برای تهیه گواهی m VNFM در بر خواهد داشت. بنابراین تابع هدف به شکل زیر میباشد:

$$\max \sum_{h=1}^{I} c_h x_h - \sum_{w \in \mathcal{V}_s^{PN}} license Fee. \bar{y}_w$$
 (1)

فرمولبندي

محدوديت حافظه نودها

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (2)

محدوديت تعداد پردازندههای نودها

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y_w} c\bar{o}re \le N_{core}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (3)

اگر تقاضای hام پذیرفته شده باشد میبایست تمام $VNF\ node$ های آن سرویس شده باشند. یک $VNF\ volume$ حداکثر یکبار سرویس داده شود.

$$x_h = \sum_{k=1}^{F} \sum_{w \in V_e^{PN}} z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$
 (4)

اگر تقاضای hام پذیرفته شده باشد میبایست توسط یک VNFM سرویس شده باشد. توجه شود که این محدودیت اجازهی تخصیص بیش از یک VNFM به زنجیره نمی دهد.

$$x_h = \sum_{w \in V_p^{PN}} \bar{z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (5)

ارزیابی

محدودیت ظرفیت سرویس دهی VNFM این محدودیت براساس تعداد ماشینهای مجازی که هر VNFM سرویس می دهد تعیین شده است.

$$\sum_{i=1}^{l} \bar{z}_{iw}.(len(i) - \sum_{v \in V_{i,F}^{SFC}} \sum_{k \in [1,...,F]} type(v,k).isManageable(k)) \leq capacity.\bar{y}_{w} \quad \forall w \in V_{s}^{PN} \quad (6)$$

VNF از نوع v ، VNF اوی سرویس v ، VNF اوی سرویس می شود میبایست این v ، v اور اگر v ، v ام باشد.

$$z_{vw}^k \le type(v, k) \quad \forall w \in V_s^{PN}, \forall k \in [1, \dots, F], \forall v \in \cup_{i=1}^T V_{i,F}^{SFC}$$
 (7)

در صورتی که سرور w توانایی اجرای نمونههای VNF را نداشته باشد نباید نمونهای روی آن قرار گیرد.

$$\sum_{k \in [1, \dots, F]} y_{wk} \le M.vnfSupport(w) \quad w \in V_s^{PN}$$
(8)

برخی از سرورهای نمیتوانند توسط سرورهای مشخصی مدیریت شوند. این ویژگی به ادمین شبکه امکان مدیریت بیشتری میدهد و او میتواند با دست باز تمامی سیاستهای مورد نظرش را اعمال نماید.

$$\begin{aligned} 1 - z_{vw_1}^k + \bar{z}_{hw_2} &= 0 \quad \forall w_1 \in V_s^{PN} \forall w_2 \in V_s^{PN} \\ &\quad notManagableBy(w_1, w_2) = 1 \\ &\quad \forall h \in [1, \dots, T], \forall v \in V_{h,F}^{SFC}, \forall k \in [1, \dots, T] \end{aligned} \tag{9}$$

ارزيابي

ارزيابي

فرمول بندى و مدل سازى رياضي مساله

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1,\dots,T]$$
(10)

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{v} = \sum_{k=1}^{F} z_{vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, \dots, T]$$
(11)

محدوديت ظرفيت لينكها

$$\sum_{v \in \cup_{i=1}^T V_{i,F}^{SFC}} \bar{\tau}_{ij}^v * bandwidth + \sum_{(u,v) \in \cup_{i=1}^T E_i^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \leq C_{ij}$$

$$\forall (i,j) \in E^{PN}$$

$$(12)$$

شعاع همسایگی تضمین میکند که زمان سرویسدهی توسط VNFMها در یک بازه مشخص (از نظر تعداد گام) خواهد بود.

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} \le radius \quad \forall v \in \cup_{i=1}^{T} V_{i,F}^{SFC}$$
 (13)

زنجیرههای زیر را به عنوان تقاضاها در نظر میگیریم.

فرض میکنیم مرکز دادهای دارای توپولوژی زیر میباشد.

جدول ۳: نیازمندی نمونههای مسالهی نمونه

Spec/VNF	vFW	vNAT	vIDS
CPU (vCore)	2	2	2
Memory (GB)	2	4	2

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله رامحل پیشنهادی ارزیابی

مسالهي نمونه

شكل ۲: مشخصات سرورهای زيرساخت مسالهی نمونه

	Server 1,2,7,8	Servers 3,4,5,6
Installed vCPU	144	72
Installed Memory (GB)	1408	288
Link (Gbps)	40	40

- ◄ نمونهها تنها میتوانند روی سرورهای ۱، ۳، ۵ و ۷ قرار گیرند.
- ▶ مدیریت سرورهای ۱ و ۳ تنها میتواند روی سرورهای ۲ و ۴ صورت گیرد،
 - ▼ مدیریت سرور ۵ تنها میتواند روی سرورهای ۴ و ۶ صورت گیرد.
 - ▶ مدیریت سرور ۷ تنها میتواند روی سرورهای ۶ و ۸ صورت گیرد.
 - ◄ هر VNFM تنها میتواند ۵ نمونه را پشتیبانی کند.
 - ◄ هر VNFM نیاز به ۴ گیگابایت حافظه و ۲ هستهی پردازشی دارد.

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله راهحل پیشنهادی ارزیابی

مسالهي نمونه

جدول ۴: نتایج مسالهی نمونه

	Src	Node-0	Node-1	Dst	VNFM
Chain 0	Switch-9	Server-7	Server-5	Switch-9	Server-6
Chain 1	Switch-9	Server-3	Server-3	Switch-9	Server-4

ارزيابي

راهحل پیشنهادی

فرمول بندی و مدل سازی ریاضی مساله

۵. راهحل پیشنهادی

تعريف مساله

سابقهی کارها

مقدمه

99	/	۴m	

راهحل پیشنهادی

- ◄ مسالهي اصلي يک مسالهي NP-Hard ميباشد.
- ◄ برای حل مساله در زمان معقول برای ابعاد بزرگ نیاز به یک الگوریتم مکاشفهای میباشد.
 - ▶ از ایدهی الگوریتم [2] برای جایگذاری زنجیرهها شروع میکنیم.

ایدهی اصلی

- ◄ الگوريتم براي جايگذاري زنجيره از يک گراف چند مرحلهاي استفاده ميكند.
- ◄ در هر مرحله جایگذاری مرحلهی قبلی نهایی میشود و بر اساس آن یک مجموعهی امکانپذیر شکل میگیرد.

JSD-MP

- Joint Service Deployment Manager Placement ◀
 - ◄ زنجيرهها را با استفاده از الگوريتم [2] جايگذاري ميكنيم.
- ▼ در زمان انتخاب مجموعهی امکانپذیر محدودیتهای مساله را اعمال میکنیم.
 - ◄ بعد از جایگذاری هر زنجیره VNFM آن را انتخاب میکنیم.
- ightharpoonup برای انتخاب VNFM اولویت با نمونههایی است که ظرفیت آنها کامل استفاده نشده است.
- در بین VNFMهایی که ظرفیت خالی دارند اولویت با نمونههایی است که منابع پردازشی بیشتری دارند.

eJSD-MP

- الگوریتم پیشنهادی JSD-MP زمان اجرای زیادی دارد که میتوان آن را کاهش داد.
 - ▼ الگوريتم پيشنهادي JSD-MP از برونخط بودن مساله استفاده نميكند.
- ◄ براي استفاده از ويژگي برون خط بودن مساله زنجيرهها را بر اساس قيمتشان مرتب مي كنيم.
- ▼ برای کاهش زمان اجرای الگوریتم نسب مشخصی از زنجیرهها را با الگوریتم التجابت first-fit جایگذاری میکنیم.
 - enhanced JSD-MP ◀

ارزيابي

راهحل پیشنهادی

فرمولبندی و مدلسازی ریاضی مساله

۶. ارزیابی

تعريف مساله

سابقەي كارھا

مقدمه

c	c	,	sc.	į.
7	7	/	1-	Λ

پیادهسازی بهینه

فرمولبندی ارائه شده بر روی نرمافزار CPLEX که محصول شرکت IBM بوده و برای حل مسائل برنامهریزی خطی و ... استفاده می شود، به زبان جاوا پیاده سازی شده است.

توپولوژی FatTree

توپولوژی USnet

محيط ارزيابي

- ◄ برای ارزیابی از زنجیرههای تصادفی استفاده میشود و هر نمونه از ارزیابی میانگین
 ۱۰ اجرا میباشد.
 - ▼ زنجیرههای تولید شده دارای گرهی آغازی و پایانی میباشند و ترافیک عبوری از
 آنها ۲۵۰ واحد است.

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله راهحل پیشنهادی ارزیابی

شكاف بهينه الگوريتم بهينه

مقدمه سابقهی کارها تحریف مساله فرمول بندی و مدل سازی ریاضی مساله رادحل پیشنهادی ارزیابی

نسبت سود به هزینه

مقدمه سابقهی کارها تحریف مساله فرمول بندی و مدل سازی ریاضی مساله رامحل پیشنهادی ارزیابی

سود نهایی در توپولوژی FatTree

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله رامحل پیشنهادی ارزیابی

سود نهایی در توپولوژی USnet

زمان اجرا

جمعبندى

- ◄ هر دو الگوریتم ارائه شده سود نهایی نزدیکی به الگوریتم بهینه ارائه میکنند.
- JSD-MP در زمان كمتر نتايجى بهتر يا برابر با الگوريتم eJSD-MP الگوريتم ارائه مى كند.

https://doi.org/10.1109/tnsm.2017.2730199.

- Mohammad Abu-Lebdeh et al. "On the Placement of VNF Managers in Large-Scale and Distributed NFV Systems". In: *IEEE Transactions on Network and Service Management* 14.4 (Dec. 2017), pp. 875–889. DOI: 10.1109/tnsm.2017.2730199. URL:
- Md. Faizul Bari et al. "On orchestrating virtual network functions". In: 2015

 11th International Conference on Network and Service Management (CNSM).

 IEEE, Nov. 2015. DOI: 10.1109/cnsm.2015.7367338. URL:

 https://doi.org/10.1109/cnsm.2015.7367338.
- V. Eramo, A. Tosti, and E. Miucci. "Server Resource Dimensioning and Routing of Service Function Chain in NFV Network Architectures". In: Journal of Electrical and Computer Engineering 2016 (2016), pp. 1–12. DOI: 10.1155/2016/7139852. URL: https://doi.org/10.1155/2016/7139852.
- Milad Ghaznavi et al. "Distributed Service Function Chaining". In: IEEE

 Journal on Selected Areas in Communications 35.11 (Nov. 2017), pp. 2479–2489.

 DOI: 10.1109/jsac.2017.2760178. URL:
 https://doi.org/10.1109/jsac.2017.2760178.
- Huawei Huang et al. "Near-Optimal Deployment of Service Chains by Exploiting Correlations between Network Functions". In: IEEE Transactions on Cloud Computing (2017), pp. 1–1. DOI: 10.1109/tcc.2017.2780165. URL: https://doi.org/10.1109/tcc.2017.2780165.

فرمولبندي

پارامترهای مساله

memory(k)	required RAM of VNF in-			
_ , ,	stance with type k in GB			
core(k)	required CPU cores of VNF			
	instance with type k			
memory	required RAM of VNFM in			
	GB			
côre	required CPU cores of VNFM			
capacity	maximum number of VNF in-			
	stances that VNFM can han-			
	dle			
len(h)	number of VNF instances in			
	hth SFC request			

فرمولبندي

پارامترهای مساله

type(v, k)	assuming the value 1 if the		
	VNF instance v has type k		
bandwidth(u, v)	required bandwidth in link		
	from VNF instance u to v		
bandwidth	required bandwidth in manag-		
	meent link		
radius	maximum neighborhood dis-		
	tance for instance manage-		
	ment		

فرمولبندي

پارامترهای مساله

licenseFee	VNFM license fee that must
	pay for each VNFM
vnfSupport(w)	assuming the value 1 if the
	physical server w can support
	VNF instances
isManageable(k)	assuming the value 1 if the
	type k needs a manager
notManagableBy(w1, w2)	assuming the value 1 if the
	physical server w1 cannot
	manage by physical server $w2$

فرمولبند*ی*

متغیرهای تصمیمگیری

- x_h binary variable assuming the value 1 if the hth SFC request is accepted; otherwise its value is zero
- y_{wk} the number of VNF instances of type k that are used in server $w \in V_s^{PN}$
- z_{vw}^{k} binary variable assuming the value 1 if the VNF node $v \in \bigcup_{i=1}^{T} V_{i,F}^{SFC}$ is served by the VNF instance of type k in the server $w \in V_{s}^{PN}$

ىرمولبندى -

متغیرهای تصمیمگیری

 \bar{y}_w the number of VNFMs that are used in server $w \in V_s^{PN}$ \bar{z}_{hw} binary variable assuming the value 1 if hth SFC is assigned to VNFM on server $w \in V_s^{PN}$

ىرمولبندى

متغیرهای تصمیمگیری f tho virual lipk (۷۷۷)

 $\tau_{ij}^{(u,v)}$ binary variable assuming the value 1 if the virual link (u,v) is routed on the physical network link (i,j)

 $\bar{\tau}_{ij}^{\nu}$ binary variable assuming the value 1 if the management traffic of VNF node ν is routed on the physical network link (i, j)

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله رادحل پیشنهادی ارزیابی

ارزيابي

Fat Tree و JSD-MP برای توپولوژی ویولوژی Fat Tree و برای توپولوژی بهینه،

JSD-N	MР	eJSD-	eJSD-MP		تعداد زنجيرهها
نسبت به بهینه	سود نهایی	نسبت به بهینه	سود نهایی	سود نهایی	#
94.18%	50200	98.69%	52600	53300	130
87.58%	39500	92.24%	41600	45100	100
89.26%	32400	94.21%	34200	36300	80
90.58%	25000	93.48%	25800	27600	60
92.24%	21400	91.81%	21300	23200	50
95.19%	17800	94.65%	17700	18700	40
99 / 99					

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدلسازی ریاضی مساله راهحل پیشنهادی ارزیایی

ارزیابی

جدول ۶: سود نهایی الگوریتمهای بهینه، eJSD-MP و JSD-MP برای تویولوژی USnet

JSD-N	MP	eJSD-MP		الگوريتم بهنيه	تعداد زنجيرهها	
ود نهایی نسبت به بهینه		سود نهایی نسبت به بهینه		سود نهایی	#	
95.64%	37300	96.41%	37600	39000	150	
94.09%	36600	94.6%	36800	38900	130	
96.88%	37300	96.36%	37100	38500	100	
96.73%	35500	99.73%	36600	36700	80	
96.75%	26800	96.39%	26700	27700	60	
97.86%	18300	96.79%	18100	18700	40	
99 / 9V						