Hash tables: Introduction

IP Access List

Analyze the access log and quickly answer queries: did anybody access the service from this IP during the last hour? How many times? How many IPs were used to access the service during the last hour?

```
UpdateAccessList(log, i, j, C):
while log[i].time <= Now(): # Unprocessed log line
    C[log[i].IP] <- C[log[i].IP] + 1 # C[log[i].IP] is initialized with

0, now it becomes 1
    i <- i + 1
while log[j].time <= Now() - 3600: # 1 hour ago
    C[log[j].IP] <- C[log[j].IP] - 1 # C[log[j].IP] now becomes 0
    j <- j + 1</pre>
```

```
AccessedLastHour(IP, C):
return C[IP] > 0
```

Direct addressing

- Convert IP to 32-bit integer
- Create an integer array A of size 2^{32}
- Use A[int(IP)] as C[IP]

```
int(IP): # Need 2^{32} memory even for few IP. It cannot be applied to
   IPv6: 2^{128} which exceeds memory limit. In general, O(N) memeory, N =
   |S|
   return IP[1]*2^{24} + IP[2]*2^{16} + IP[3]*2^{8} + IP[4]
```

```
UpdateAccessList(log, i, j, A): # O(1) per log line
while log[i].time <= Now():
    A[int(log[i].IP)] <- A[int(log[i].IP)] + 1
    i <- i + 1
while log[j].time <= Now() - 3600:
    A[int(log[j].IP)] <- A[int(log[j].IP)] - 1
    j <- j + 1</pre>
```

```
AccessedLastHour(IP): # O(1)
return A[int(IP)] > 0
```

Asymptotic analysis of direct addressing

- For IPv4, it requires 2^{32} memory even for few IP. It has a huge memory requirement!
- UpdateAccessList process each log line at O(1) cost
- AccessedLastHour return an element from an array which also takes O(1)

List-based Mapping

- Store only active IPs in a list
- Store only last occurrence of each IP
- Keep the order of occurrence

```
UpdateAccessList(log, i, L):
    while log[i].time <= Now():
        log_line <- L.FindByIP(log[i].IP)
        if log_line != NULL:
            L.Erase(log_line) # Erase old record of log[i].IP
        L.Append(log[i]) # Update new record of log[i].IP
        i <- i + 1
    while L.Top().time <= Now() - 3600:
        L.Pop()</pre>
```

```
AccessedLastHour(IP, L):
return L.FindByIP(IP) != NULL
```

Asymptotic analysis of list-based mapping

- Memory usage is $\Theta(n)$
- L.Append, L.Top, L.Pop are $\Theta(1)$
- ullet L.FindByIP, L.Erase are $\Theta(n)$
- ullet UpdateAccessList is $\Theta(n)$ per \log line
- ullet AccessLastHour is $\Theta(n)$

Hash function

For any set of objects S and any integer m>0, a function $h:S\to\{0,1,\ldots,m-1\}$ is called a hash function.

Cardinality

m is called the cardinality of hash function h

Collisions

When $h(o_1) = h(o_2)$ and $o_1 \neq o_2$, this is a collision.

Map

Map from S to V is a data structure with methods HashKey(O), Get(O), Set(O, v), where $O \in S, v \in V$.

```
HasKey(0):
L <- A[h(0)]
for (0', v') in L:
   if 0' == 0:
      return true
return false</pre>
```

```
Get(0):
L <- A[h(0)]
for (0', v') in L:
   if 0' == 0:
      return v'
return n/a</pre>
```

```
Set(0, v):
L <- A[h(0)]
for p in L:
    if p.0 == 0:
       p.v <- v
       return
L.Append(0, v)</pre>
```

Lemma

Let c be the length of the longest chain in A. Then, the running time of Haskey, Get, Set is $\Theta(c+1)$.

Proof:

```
If L = A[h(O)], len(L) = c, O \notin L, need to scan all c items.
```

If c = 0, we still need O(1) time

Lemma

Let n be the number of different keys O currently in the map and m be the cardinality of the hash function. Then, the memory consumption for chaining is $\Theta(n+m)$.

Proof:

 $\Theta(n)$ to store *n* pairs (O, v) and $\Theta(m)$ to store array *A* of size *m*

Set

Set is a data structure with methods Add(O), Remove(O), Find(O).

```
Find(0):
L <- A[h(0)]
for 0' in L:
   if 0' == 0:
      return true
return false</pre>
```

```
Add(0):

L <- A[h(0)]

for O' in L:

   if O' == O:

      return

L.Append(0)
```

```
Remove(0):
   if not Find(0):
      return
   L <- A[h(0)]
   L.Erase(0)</pre>
```

Hash tables: Hash functions

Good hash functions

- Deterministic (not random value)
- Fast to compute
- Distributes keys well into different cells
- Few collisions (Worse case will be O(n))

Lemma

If number of possible keys is big ($|U| \gg m$), for any hash function h, there is a bad input resulting in many collisions

Universal family

Let ${\it U}$ be the universe – the set of all possible keys. A set of hash functions

$$\mathcal{H} = \{h: U o \{0, 1, 2..., m-1\}\}$$

is called a universal family if for any two keys $x,y\in U$, $x\neq y$ the probability of collision

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

Lemma

If h is chosen randomly from a universal family, the average length of the longest chain c is $O(1+\alpha)$ where $\alpha=\frac{n}{m}$ is the load factor of the hash table.

Corollary

If h is from universal family, operations with hash table run on average in time $O(1+\alpha)$.

How randomization works?

- Select a random function h from \mathcal{H}
- Fixed *h* is used throughout the algorithm

Choosing hash table size

- Control amount of memory used with *m*
- Ideally, load factor $0.5 < \alpha < 1$
- Use $O(m) = O(\frac{n}{\alpha}) = O(n)$ memory to store n keys
- Operations run in time $O(1 + \alpha) = O(1)$ on average

Dynamic hash tables

- If the number of keys n is unknown in advance, starting with a big hash table would cost a lot of memory
- Resize the hash table when α becomes too large (keep load factor below 0.9)
- Choose new hash function and rehash all the objects

```
Rehash(T):
loadFactor <- T.numberOfKeys / T.size
if loadFactor > 0.9:
    Create T_new of size 2 * T.size
    Choose h_new with cardinality T_new.size
    For each object 0 in T:
        Insert 0 in T_new using h_new
    T <- T_new
    h <- h_new</pre>
```

Hashing integers

Lemma

```
\mathcal{H}_p=\{h_p^{a,b}(x)=((ax+b)\mod p)\mod m\} for all a,b:1\leq a\leq p-1,0\leq b\leq p-1 is a universal family.
```

Example with hashing phone number

Select a=34, b=2, so $h=h_p^{34,2}$ and consider x=1482567 corresponding to phone number 148–25–67. p=10000019.

$$(34 imes 1482567 + 2) \mod 10000019 = 407185$$
 $407185 \mod 1000 = 185$
 $h(x) = 185$

General case

- Define maximum length L of a phone number
- Convert phone numbers to integers from 0 to 10^L-1
- Choose prime number $p > 10^L$
- Choose hash table size *m*
- Choose random hash function from universal family \mathcal{H}_p (choose random $a \in [1,p-1]$ and $b \in [0,p-1]$)

Hashing strings

String length

Denote by |S| the length of string S.

Polynomial hashing

Family of hash functions

$$\mathcal{P}_p = \{h_p^X(S) = \sum_{i=0}^{|S|-1} S[i]x^i \mod p\}$$

with a fixed prime p and all $1 \le x \le p-1$ is called polynomial.

```
PolyHash(S, p, x): # O(|S|)
hash <- 0
for i from |S| - 1 down to 0:
    hash <- (hash * x + S[i]) mod p
return hash</pre>
```

Cardinality Fix

- For use in a hash table of size m, we need a hash function of cardinality m.
- First apply random h from \mathcal{P}_p , and then hash the resulting value again using integer hashing. Denote the resulting function by h_m .

Lemma

For any two different strings s_1 and s_2 of length at most L+1, if you choose h from \mathcal{P}_p at random (by selecting a random $x \in [1, p-1]$), the probability of collision $\Pr(h(s_1) = h(s_2))$ is at most $\frac{L}{p}$.

Proof idea

This follows from the fact that the equation $a_0 + a_1 x + a_2 x^2 + \ldots + a_L x^L = 0 \mod p$ for prime p has at most L different solutions x.

Lemma

For any two different strings s_1 and s_2 of length at most L+1 and cardinality m, the probability of collision $\Pr(h_m(s_1) = h_m(s_2))$ is at most $\frac{1}{m} + \frac{L}{p}$.

Corollary

If p > mL, for any two different strings s_1 and s_2 of length at most L+1, the probability of collision $\Pr(h_m(s_1) = h_m(s_2))$ is $O(\frac{1}{m})$.

Proof:

$$rac{1}{m} + rac{L}{p} < rac{1}{m} + rac{L}{mL} = rac{1}{m} + rac{1}{m} = rac{2}{m} = O(rac{1}{m})$$

The second inequality comes from p > mL.

Hash tables: String search

Searching for Patterns

Given a text T (book, website, facebook profile) and a pattern P (word, phrase, sentence), find all occurrences of P in T.

Substring

Denote by $S[i \dots j]$ the substring of string S starting in position i and ending in position j.

Find Pattern in Text

Input: Strings T and P

Output: All such positions i in T, $0 \le i \le |T| - |P|$ that $T[i \dots i + |P| - 1] = P$.

Naive algorithm

```
AreEqual(S_1, S_2):
    if |S_1| != |S_2|:
        return False

for i from 0 to |S_1| - 1:
        if S_1[i] != S_2[i]:
            return False

return True
```

```
FindPatternNaive(T, P):
    result <- empty list
    for i from 0 to |T| - |P|:
        if AreEqual(T[i...i + |P| - 1], P):
            result.Append(i)
    return result</pre>
```

Lemma

Running time of FindPatternNaive (T, P) is O(|T||P|).

Proof:

- Each AreEqual call is O(|P|)
- |T|-|P|+1 calls of AreEqual total to O((|T|-|P|+1)|P|)=O(|T||P|)

Rabin-Karp algorithm

- If $h(P) \neq h(S)$, then definitely $P \neq S$
- If h(P) = h(S), call AreEqual (P, S)
- Use polynomial hash family \mathcal{P}_p with prime p
- If $P \neq S$, the probability $\Pr(h(P) = h(S))$ is at most $\frac{|P|}{p}$ for polynomial hashing

```
RabinKarp(T, P):
p <- big prime
x <- random(1, p - 1)
result <- empty list
pHash <- PolyHash(P, p, x)
for i from 0 to |T| - |P|:
    tHash <- PolyHash(T[i...i+|P|-1], p, x)
    if pHash != tHash:
        continue
    if AreEqual(T[i...i+|P|-1], P):
        result.Append(i)
return result</pre>
```

False Alarms

- It is the event when P is compared with $T[i\ldots i+|P|-1]$, but $P\neq T[i\ldots i+|P|-1]$.
- The probability of false alarm is at most $\frac{|P|}{p}$
- On average, the total number of false alarms will be $(|T|-|P|+1)\frac{|P|}{p}$, which can be made small by selecting $p\gg |T||P|$

Running time without AreEqual

• h(P) is computed in O(|P|)

- h(T[i...i+|P|-1]) is computed in O(|P|), |T|-|P|+1 times
- O(|P|) + O((|T| |P| + 1)|P|) = O(|T||P|)

AreEqual running time

- AreEqual is computed in O(|P|)
- AreEqual is called only when h(P) = h(T[i...i + |P| 1]), meaning either an occurrence of P is found or a false alarm happened
- By selecting $p \gg |T||P|$, we make the number of false alarms negligible

Total running time

- If P is found q times in T, then total time spent in AreEqual is $O((q+rac{(|T|-|P|+1)|P|}{n})|P|)=O(q|P|)$ for $p\gg |T||P|$
- Total running time is O(|T||P|) + O(q|P|) = O(|T||P|) as $q \leq |T|$
- It has the same running time as naive algorithm, but it can be improved

Recurrence of hashes

$$egin{aligned} H[i+1] &= \sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} \mod p \ &H[i] &= \sum_{j=i}^{i+|P|-1} T[j] x^{j-i} \mod p \ &= \sum_{j=i+1}^{j+|P|} T[j] x^{j-i} + T[i] - T[i+|P|] x^{|P|} \mod p \ &= x \sum_{j=i+1}^{i+|P|} T[j] x^{j-i-1} + (T[i] - T[i+|P|] x^{|P|}) \mod p \ &H[i] &= x H[i+1] + (T[i] - T[i+|P|] x^{|P|}) \mod p \end{aligned}$$

```
PrecomputeHashes(T, |P|, p, x):
H <- array of length |T| - |P| + 1
S <- T[|T|-|P|...|T|-1]
H[|T|-|P|] <- PolyHash(S, p, x)
y <- 1
for i from 1 to |P|:
    y <- (y * x) mod p
for i from |T|-|P|-1 down to 0:
    H[i] <- (x * H[i + 1] + T[i] - y * T[i + |P|]) mod p
return H</pre>
```

PrecomputeHashes running time

- PolyHash is called once, O(|P|)
- First for loop runs in O(|P|)
- Second for loop runs in O(|T| |P|)

• Total precomputation time O(|T| + |P|)

```
RabinKarp(T, P):
p <- big prime
x <- random(1, p - 1)
result <- empty list
pHash <- PolyHash(P, p, x)
H <- PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T|-|P|:
   if pHash != H[i]:
      continue
   if AreEqual(T[i...i+|P|-1], P):
      result.Append(i)
return result</pre>
```

- h(P) is computed in O(|P|)
- PrecomputeHashes runs in O(|T|+|P|)
- Total time spent in AreEqual is O(q|P|) on average where q is the number of occurrences of P in T
- Average running time O(|T| + (q+1)|P|)