



# Universidad Nacional de Córdoba

Facultad de Ciencias Exactas, Físicas y Naturales

 $\begin{array}{cc} {\rm Nombre} & {\rm DNI} \\ {\rm Corval\acute{a}n,\ Abel\ Nicol\acute{a}s} & 41.220.050 \end{array}$ 

Docentes Ing. Rodrigo Bruni

Ing. José Amado Ing. Federico Dadam

# ${\rm \acute{I}ndice}$

| 1. | Introducción                                         | 4                               |  |
|----|------------------------------------------------------|---------------------------------|--|
| 2. | Marco Teórico                                        | 4                               |  |
| 3. | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6<br>6<br>6<br>7<br>7<br>7<br>8 |  |
| 4. | Montaje                                              | 9                               |  |
| 5. |                                                      | 12<br>13                        |  |
| 6. | Instrumentos                                         | 14                              |  |
| 7. | Conclusión                                           | 15                              |  |
| 8. | Link de Repositorio                                  | 15                              |  |

# Índice de figuras

| 1.  | Circuito tanque LC                               |
|-----|--------------------------------------------------|
| 2.  | Circuito LC resonante con carga                  |
| 3.  | Circuito LC resonante con carga                  |
| 4.  | Circuito LC resonante con carga                  |
| 5.  | Simulación del circuito tanque ideal             |
| 6.  | Gráfico de bode circuito ideal                   |
| 7.  | Circuito con reflexión de impedancias            |
| 8.  | Circuito para medición de resistencia $R_p$      |
| 9.  | Circuito para medición de $L$ , $f_o$ y $Q_d$    |
| 10. | Circuito para medición de impedancia $Z_{in}$    |
| 11. | Medición para $Z_{in}$ con circuito desconectado |
| 12. | Medición para $Z_{in}$ con circuito conectado    |
| 13. | Circuito para medición de $Z_{out}$              |
| 14. | Medición para $Z_{out}$ sin carga                |
| 15. | Medición para $Z_{out}$ con carga                |
| 16. | Circuito para medición de BW                     |

| •    |    |     |      |     |      |
|------|----|-----|------|-----|------|
| T.   | 1  | •   | .1 . | tab | 1    |
| - 11 | กด | 100 | വല   | тar | บเลด |
|      |    |     |      |     |      |

# 1. Introducción

En el siguiente informe se detalla el desarrollo de un circuito sintonizado para una frecuencia de 20MHz. Las especificaciones del circuito a desarrollar son las siguientes:

- $f_o = 20MHz$
- $Z_g = 20\Omega$
- $Z_L = 1k\Omega$
- $Q_C = 10\Omega$

# 2. Marco Teórico

Un circuito sintonizado LC o circuito tanque, es un circuito eléctrico resonante que consiste en un inductor L y un capacitor C. El circuito se muestra en la siguiente figura 1.



Figura 1: Circuito tanque LC

Este circuito almacena energía en forma de campo electromagnético a una frecuencia de resonancia. El oscilador tanque LC es usado para producir señales a cierta frecuencia o seleccionar una señal a una frecuencia particular proveniente de otra señal más compleja (con mayor cantidad de componentes de frecuencias). La frecuencia de resonancia del circuito se determina por fórmula (1):

$$f_o = \frac{1}{2\pi\sqrt{LC}}\tag{1}$$

Es una etapa importante en varios dispositivos electrónicos, particularmente en equipos de radio, circuitos osciladores, filtros, sintonizadores y mezcladores de frecuencia.

El inductor, al no ser un elemnto ideal, tiene una componente de pérdidas la cual se modela con una resistencia en paralelo, la cual denominaremos  $R_p$ .

Se realiza un estudio del circuito excitado con una señal y con una carga. Se muestra en la figura 2:



Figura 2: Circuito LC resonante con carga

Este circuito puede conectarse de otra forma la cual mantiene la frecuencia de trabajo  $f_o$ . Este circuito se muestra en la figura 4.



Figura 3: Circuito LC resonante con carga

Para realizar esta topología en base al circuito tanque anterior (figura 2) , se desarrollan etapas de reflexión de impedancia.



Figura 4: Circuito LC resonante con carga

Se realiza el cálculo de la impedancia  $Z_{eq}$ .

$$Z_{eq} = X_{C_A} + \left(X_{C_B}//R\right) = X_{C_A} + \frac{X_{C_B}R}{X_{C_B} + R} =$$

$$Z_{eq} = \frac{X_{C_A}X_{C_B} + X_{C_A}R + X_{C_B}R}{X_{C_B} + R}$$

$$Z_{eq} = \frac{R\left(1 + \frac{X_{C_B}}{X_{C_A}} - j\frac{1}{\omega C_A}\right)}{1 + j\omega RC_B} = \frac{R\left(1 + \frac{C_B}{C_A} - j\frac{1}{\omega C_A}\right)}{1 + j\omega RC_B}$$

Por lo que la impedancia equivalente  $\mathbb{Z}_{eq}$  que da determinada por la ecuación 2

$$Z_{eq} = \frac{R\left(1 + \frac{C_B}{C_A} - j\frac{1}{\omega C_A}\right)}{1 + j\omega RC_B}$$
 (2)

Para simplificar los cálculos, se plantea la  $\mathbb{Z}_{eq}$  en términos de admitancias.

$$Y_{eq} = \frac{1 + j\omega RC_B}{R\left(1 + \frac{C_B}{C_A}\right) - j\frac{1}{\omega C_A}}$$

Luego se obtiene

$$R_{eq} = R^2 \left( 1 + \frac{C_A}{C_B} \right)^2 \tag{3}$$

Por otro lado se presenta el concepto de factor de calidad (Q) del inductor. Las fórmulas para este factor son los siguientes:

$$Q_d = \frac{R_p}{X_L}$$

$$Q_c = \frac{f_o}{BW} = \frac{R_T}{X_L}$$

Donde se tiene que  $Q_d$  es el estudio del inductor en condición en la que este no se ecnuentra conectado a ninguna carga mas que su propia resistencia interna. Este factor  $Q_d$  se determina por las características intrínsecas del componente (inductancia y resistencia interna).

El factor de calidad  $Q_c$  (cargado) es cuando se tiene la condición de carga externa conectada. Se tiene una resistencia total la cual se compone de la resistencia interna del inductor y la resistencia de la carga externa.

# 3. Diseño del circuito

# 3.1. Producto LC

En primer instancia se define el producto LC a partir del valor de frecuencia que se tiene por requerimiento.

$$f_o = \frac{1}{2\pi\sqrt{LC}}$$

$$LC = \frac{1}{(2\pi f_o)^2}$$
(4)

$$LC = \frac{1}{(2\pi \, 20MHz)^2} = 63,32 \, 10^{-18}$$

$$LC = 63,32 \, 10^{-18}$$
(5)

### 3.2. Diseño del inductor

Se realiza el diseño del inductor en base a la ecuación 6.

$$L = \frac{N^2 \,\mu A}{l} \tag{6}$$

Donde:

- L: inductancia medida en henrios (Hy).
- $\blacksquare$  N: cantidad de espiras del inductor.
- $\mu$ : permeabilidad del núcleo, en este caso aire en  $(\frac{Hy}{m})$ .
- A: área de la sección transversal del inductor en metros cuadrados  $(m^2)$ .
- l: longitud en metros (m).

Se tabula en una tabla de LibreOffice Calc los distintos valores de inductancias que se pueden obtener en función de parámetros contructivos disponibles, tales como el diámetro del núcleo d, el largo del inductor l, el diámetro del conductor  $d_0$ .

A partir del valor del producto LC de la expresión 5, se establece un valor de inductancia con magnitudes constructivas realizables. Luego se obtiene el valor total del capacitor del circuito.

Se tiene que el valor de la inductancia es L = 918nHy.

$$C = \frac{LC}{L} = \frac{63,32 \, 10^{-18}}{918nHy} = 68,9pF \approx 69pF$$

$$\boxed{C = 69pF}$$

# 3.3. Cálculo de resistencia de pérdidas $R_p$

Para el cálculo de la resistencia de pérdidas  $R_p$  primero se calcula  $Q_d$  (descargado). Esto se hace con la siguiente fórmula:

$$Q_d = 8550 \frac{Dl}{102l + 45D} \sqrt{f}$$

Donde se tiene que:

- Frecuencia en f[Mhz].
- lacksquare Diámetro del inductor D[cm].
- Largo del inductor l[cm]

$$Q_d = 8550 \frac{3,08cm \, 5cm}{102 \, 5cm + 45 \, 3,08cm} = 907,87$$

$$Q_d = 907,87$$

Ahora se procede a calcular el valor de la resistencia de pérdidas de nuestro inductor  $R_p$ . Se parte de la siguiente ecuación.

$$Q_d = \frac{R_p}{\omega L}$$

$$R_p = \omega L Q_d = 2\pi 20 MHz \, 918nHy \, 907,87$$

$$R_p = 104679K\Omega$$

### 3.4. Cálculo de resistencia total $R_t$

Para el cálculo de la resistencia total del sistema se parte de la siguiente ecuación.

$$Q_c = \frac{R_t}{X_L}$$

$$R_t = \omega L Q_c = 2\pi L \, 10 = 1153\Omega$$

$$R_t = 1153\Omega$$

# 3.5. Cálculo de capacitores de red de acoplamiento

Se calculó anteriormente la capacidad total  $C_T$  del circuito. Ahora debemos adoptar valores de capcitores para la red de acoplamiento en la entrada y salida de nuestro circuito.

El oscilador debe adaptarse a la impedancia del generador  $R_g=50\Omega,$  mientras que en la salida debe hacerlo a una resistencia de carga  $R_L=1k\Omega.$ 

El circuito debe conservar su resistencia total  $R_t$ . Por lo que se plantea las siguientes condiciones para mantener el valor y lograr la adaptación de impedancias.

$$R'_q = 2R_t$$

$$(R_p//R_L') = 2R_t$$

Se resuelve el sistema de ecuaciones desarrollado anteriomente.

$$\begin{cases} R'_g = \left(1 + \left(\frac{C_2}{C_1}\right)\right)^2 R_g \\ R'_L = \left(1 + \left(\frac{C_3}{C_4}\right)\right)^2 R_L \\ \frac{C_T}{2} = \frac{C_1 \cdot C_2}{C_1 + C_2} \end{cases}$$

Para la resolución del sistema de ecuaciones se implementó un script de Python. Se despeja el valor de  $R'_L$ .

$$R'_{L} = \frac{2R_{T}R_{p}}{R_{p} - 2R_{T}}$$

$$R'_{L} = 2358\Omega$$

Se obtiene los siguientes valores de los capacitores:

 $C_1 = 40,47pF$ , valor comercial  $C_1 = 43pF$ 

 $C_1 = 33,77F$ , valor comercial  $C_1 = 43pF$   $C_2 = 234,35pF$ , valor comercial  $C_2 = 230pF$   $C_3 = 52,98pF$ , valor comercial  $C_3 = 53pF$   $C_4 = 98,94pF$ , valor comercial  $C_4 = 100pF$ 

#### 3.6. **Simulaciones**

Se realiza la simulación del circuito tanque ideal. Se muestra el mismo en la figura 5.



Figura 5: Simulación del circuito tanque ideal

Se obtiene la respuesta en frecuencia del mismo en la figura 6.



Figura 6: Gráfico de bode circuito ideal

Se muestra en la figura 7 el circuito en topología de divisor de tensión con capacitores.



Figura 7: Circuito con reflexión de impedancias

# 4. Montaje

Los componentes que se utilizan para el montaje del circuito son los siguientes:

- Cable de cobre de  $d_0 = 1.8mm$ .
- Capacitores de 43pF, 230pF, 53pF, 100pF.
- Conectores BNC.
- Placa de PCB de (5x5)cm.

# 5. Mediciones

Se realizan las mediciones del cicuito las siguientes mediciones del circuito:

- Medición de resistencia de pérdidas.
- Medición de la inductancia L, frecuencia de resonancia  $f_o$  y factor de calidad  $Q_d$ .
- Medición de impedancia de entrada  $Z_{in}$  y  $Z_{out}$ .
- Medición de ancho de banda.

# 5.1. Medición de resistencia de pérdidas

Para la medición de la resistencia de pérdidas de realiza el siguiente circuito:



Figura 8: Circuito para medición de resistencia  $R_p$ 

Se implementa una resistencia  $R_{test} = 100 K\Omega$ . De esta forma se tiene un divisor de tensión conformado por la resistencia  $R_p$  y el circuito tanque el cual se encuentra afectado por la capacidad parásita del osciloscopio. Se realiza un barrido en frecuencia y se obtiene la resonancia del circuito. Se obtienen las siguientes mediciones:

$$R_p = V_{out} \frac{(R_g + R_{test})}{V_{in} - V_{out}}$$
 
$$R_p = 3.88V \frac{50\Omega + 100K\Omega}{3.88V - 1.02V} = 135K\Omega$$

# 5.2. Medición de la inductancia L, frecuencia de resonancia $f_o$ y factor de calidad descargado $Q_d$

Se realiza la siguiente conexión para el circuito a medir.



Figura 9: Circuito para medición de  $L, f_o$  y  $Q_d$ 

Se realiza la medición con el divisor de tensión conformado por la resistencia  $R_p$  y el circuito tanque el cual se encuentra afectado por la capacidad parásita del osciloscopio.

Se realiza un barrido de frecuencia y se tiene la siguiente frecuencia  $f_o'$ 

$$f_o' = 10.8MHz$$

- Medición 2.

Se coloca un capacitor  $C_x = 22pF$  y se mide la frecuencia  $f_o''$ 

$$f_{o}'' = 10.2MHz$$

Se tiene un sistema de dos ecuaciones con lo que se obtienen los valores de L y  $C_o$  (capacidad parásita del oscilador)

$$\begin{cases} f'_o = \frac{1}{2\pi\sqrt{L(C+C_o)}} \\ f''_o = \frac{1}{2\pi\sqrt{L(C+C_o+C_x)}} \end{cases}$$

Se obtienen los siguientes valores:

$$\boxed{L = 1195nHy}$$
 
$$C_o = 112,64pF$$

Donde el valor de  $C_o$  representa la capacidad parásita del oscilador.

Se calcula la frecuencia de resonancia real  $f_o$  del circuito tanque reemplazando el valor de L=1195nHy obtenido anteriormente.

$$f_o = \frac{1}{2\pi\sqrt{LC}}$$

$$f_o = \frac{1}{2\pi\sqrt{1195nHy69pF}} = 17,52MHz$$

$$f_o = 17,52MHz$$

# 5.3. Medición de impedancia de entrada $Z_{in}$

Se conecta el generador a la entrada del circuito (nodo A).



Figura 10: Circuito para medición de impedancia  $Z_{in}$ 

El circuito medido debe presentar una impedancia  $Z_{in} = 50\Omega$ , por lo que en el osciloscopio debemos obtener una tensión pico máxima de  $V_{qpp}/2$ .

$$V_{pp\,teorica} = \frac{V_{g\,pp}}{2} = \frac{2V}{2} = 1V$$

A continuación se muestra la medición realizada con el osciloscopio.



Figura 11: Medición para  $\mathbb{Z}_{in}$  con circuito desconectado

En la medición se tiene:



Figura 12: Medición para  $Z_{in}$  con circuito conectado

$$V_{sincarga\ pp} = 3,88V$$
  
 $V_{concarga\ pp} = 1,02V$ 

La frecuencia a la que ocurre la resonancia es  $f_o=17,8MHz$ . La impedancia de entrada  $Z_{in}$  se calcula de la siguiente forma:

$$Z_{in} = \frac{R_g}{\frac{V_d}{V_c} - 1}$$

$$Z_{in} = \frac{50\Omega}{(\frac{3.88V}{1.02V} - 1)} = 17.83\Omega$$

$$Z_{in} = 17.83\Omega$$

# 5.4. Impedancia de salida $Z_{out}$

Para la medición de la impedancia de salida  $Z_{out}$  se realiza la siguiente conexión.



Figura 13: Circuito para medición de  $Z_{out}$ 

En primera instancia se establece la resonancia del circuito y se mide la salida sin carga. Luego al conectar la carga se mide la tensión con el osciloscopio para calcular la impedancia  $Z_o$ .

A continuación se muestra la medición realizada con el osciloscopio.

Se obtienen los siguientes resultados:

$$V_{\sin \operatorname{carga} pp} = 6V$$
$$V_{\cos \operatorname{carga} pp} = 2,92V$$

Se procede a calcular la impedancia de salida  $Z_o$ :

$$Z_o = R_L \left(\frac{V_d}{V_c} - 1\right)$$

$$Z_o = 1k\Omega \left(\frac{6V}{2,92V} - 1\right) = 1054\Omega$$

$$Z_o = 1054\Omega$$



Figura 14: Medición para  $Z_{out}$  sin carga



Figura 15: Medición para  $Z_{out}$  con carga

# 5.5. Ancho de banda

Para medir el ancho de banda se realiza la siguiente conexión para el circuito.



Figura 16: Circuito para medición de BW

La conexión del osciloscopio se realiza en el nodo A. Se mide el ancho de banda del circuito en base a la amplitud de la frecuencia de resonancia del mismo ( $f_o = 17,8MHz$ ). Se obtiene las siguientes mediciones:

En  $f_o = 17.8MHz$  se tiene  $V_{max} = 2.72V$ .

Se calcula el valor de tensión que presenta una caída de -3dB. Esto es:

$$V_{-3dB} = \frac{V_{max}}{\sqrt{2}} = \frac{2,72V}{\sqrt{2}} = 1,923V$$

$$V_{-3dB} = 1,923V$$

Se realiza un barrido de frecuencias y se obtiene que la amplitud de la salida cae -3dB en los siguientes valores de refrecuencia:

 $f_{high} = 18,21MHz \ f_{low} = 17,48MHz$ 

Se procede a calcular el ancho de banda:

$$BW = f_{high} - f_{low} = 18,21MHz - 17,48MHz = 730KHz$$

$$BW = 730KHz$$

Calculando el  $Q_{cargado}$ , se tiene lo siguiente:

$$Q_c = \frac{f_o}{BW} = \frac{17,8MHz}{730KHz} = 24,38$$

$$Q_c = 24,38$$

Se tiene una variación del 143 % respecto del valor de diseño  $Q_c=10.$ 

#### 5.6. Resultados finales

A continuación se detallan los valores de las mediciones en una tabla.

|                 | L       | $R_p$                   | $f_o$   | $Z_{in}$      | $Z_{out}$    | BW     | $Q_c$ | $Q_d$     |
|-----------------|---------|-------------------------|---------|---------------|--------------|--------|-------|-----------|
| Valor calculado | 918nHy  | $104\mathrm{K}\Omega$   | 20MHz   | $50 \Omega$   | 1Κ Ω         | 2MHz   | 10    | 907.87nHy |
| Valor medido    | 1192nHy | $135 \mathrm{K} \Omega$ | 17.8MHz | $17.83\Omega$ | $1054\Omega$ | 730KHz | 24.38 | 1192nHy   |
| Variación       | 29%     | 29.8%                   | 11 %    | 64.34%        | 1 %          | 63%    | 144%  | 31 %      |

Tabla 1: Valores obtenidos

### 6. Instrumentos

Los instrumentos implementados para la medición son:

- Generador de funciones GW Instek AFG-2125.
- Osciloscopio digital GW Instek GDS-1102A-U.

# 7. Conclusión

Se realizó el circuito propuesto, con el diseño del inductor en base a parámetros de construcción disponibles tales como el diámetro del conductor, diámetro del nucleo. Se obtuvo un valor considerablemente alto en la inductancia con respecto al calculado ( $L_{obtenido}=1192nHy$  mientras que el valor de inductancia de diseño era  $L_{calculado}=918nHy$ ). Esto se debe a que en la construcción del inductor no se obtiene precisición tal en la magnitud del diámetro del núcleo del componente, además de la dispersión en los valores de los capacitores implementados. Al realizar la mediciones no se puede medir en forma directa la inductancia L y la frecuencia de resonancia del circuito  $f_o$  ya que el osciloscopio tiene una capacitancia parásita  $C_{parasita}=20pF$  (se detalla en el conector del dispositivo). Se tiene que el valor de  $Q_c$  es el factor que tiene mayor variación esto se debe a que hay un aumento en la  $R_t$  del sistema. Por otro lado, para reducir el valor de  $L_{obtenido}=1192nHy$  se debe alargar el inductor o disminuir el valor de la capacitancia total  $C_T$ .

# 8. Link de Repositorio

Se adjunta un link del repositorio de trabajo el cual contiene hojas de cálculos y scripts de python implementados para la elaboración del trabajo.

Repositorio Github