

Programación de un drone para seguimiento autónomo de trayectorias en 3D

Jesús Saiz Colomina j.saizc@alumnos.urjc.es

- Introducción
- Objetivos
- Infraestructura
- Navegación autónoma
- Experimentos
- Conclusiones

Introducción

Introducción

Robótica actual

■ Robótica aérea

■ Robótica aérea con JdeRobot

Objetivos

Creación de un sistema que permita el funcionamiento de un dron completamente autónomo con esto queremos decir que despegue de forma controlada, siga una ruta previamente establecida y aterrice también de forma controlada. El drone debe conocer su posición en el entorno, para lo que se usará una técnica de visión artificial basada en marcadores.

Subobjetivos

- Adaptación e integración de componentes y herramientas
- Desarrollo del algoritmo de navegación
- Validación experimental en entorno simulado

Infraestructura

- Gazebo
- Balizas visuales
- Bibliotecas OpenCV y NumPy
- Entorno JdeRobot
- Visual States
- Slam-VisualMarkers

Navegación autónoma Universidad Rey Juan Carlos

Diseño representativo de la aplicación

Navegación autónoma (I) u Universidad Rey Juan Carlos

- Componente de Autolocalización
- Componente de Control basado en estados
- Estados de despegue y aterrizaje
- Estado de seguimiento de ruta

Experimentos

Entorno de simulación

Experimentos (I)

Pruebas unitarias Autolocalización

Experimentos (II)

Pruebas unitarias Pilotaje

Recorrido puntos separados

Recorrido en trayectoria continua

Experimentos (II)

Pruebas unitarias Pilotaje

Pruebas unitarias Pilotaje

Experimentos (II)

Pruebas unitarias Pilotaje

Experimentos (III)

Pruebas integrales del sistema

Experimentos (III)

Pruebas integrales del sistema

Conclusiones

Se ha conseguido un algoritmo que permita al drone despegar, realizar una ruta y aterrizar, todo ello de manera completamente autónoma, como un sistema estable y aunque el ruido de las medidas y el comportamiento de los soportes físicos pueden afectar el comportamiento del sistema, este ha probado ser lo suficientemente robusto para satisfacer las metas propuestas dentro de entornos reales.

Subobjetivos

- Adaptación e integración de componentes y herramientas
- Desarrollo del algoritmo de navegación
- Validación experimental en entorno simulado

Trabajos futuros

- Comprobación del algoritmo en situaciones reales
- Nuevo sistema de autolocalización: edometría visual
- Adaptación del algoritmo a necesidades actuales