ANALIZA MATEMATYCZNA

LISTA ZADAŃ 9

2.12.19

(1) Niech

$$f(x) = \begin{cases} \frac{e^{7x} - 1}{x} & : & x \neq 0, \\ 7 & : & x = 0. \end{cases}$$

Oblicz f'(0).

(2) Niech

$$f(x) = \begin{cases} \frac{e^{x^2} - 1}{\cos(x) - 1} & : & x \neq 2k\pi, \ k \in \mathbf{Z}, \\ A & : & x = 0. \end{cases}$$

Dla jakiego A istnieje f'(0) i ile wynosi?

(3) Niech

$$f(x) = \begin{cases} \frac{e^{3x} - 3e^x + 2}{x^2} & : & x \neq 0, \\ A & : & x = 0. \end{cases}$$

Dla jakiego A istnieje f'(0) i ile wynosi?

(4) Oblicz pochodną rzędu 3 funkcji f danej wzorem:

(a)
$$(x+1)^6$$
, (b) $x^6 - 4x^3 + 4$, (c) $\frac{1}{1-x}$, (d) $x^3 \log x$, (e) e^{2x-1} ; (f) $(x^2+1)^3$, (g) e^{x^2} , (h) $\log(x^2)$, (i) $(x-7)^{50}$.

(c)
$$\frac{1}{1-x}$$
,

(d)
$$x^3 \log x$$

(e)
$$e^{2x-1}$$
;

(f)
$$(x^2+1)^3$$

(g)
$$e^{x^2}$$

(h)
$$\log(x^2)$$

(i)
$$(x-7)^{50}$$
.

(5) Wyprowadź wzór na pochodną rzędu n funkcji f danej wzorem: (a) $\log(x^{10})$, (b) $x \log(x)$, (c) \sqrt{x} , (d) $\sin^2(x)$, (e) $\frac{1-x}{1+x}$, (f) xe^x , (g) $\sin(5x)$, (h) x^7 , (i) e^{4x} , (j) $x + \frac{1}{x}$, (k) x^2e^{-x} .

(a)
$$\log(x^{10})$$

(b)
$$x \log(x)$$
,

(c)
$$\sqrt{x}$$

(d)
$$\sin^2(x)$$

(e)
$$\frac{1-x}{1+x}$$

(f)
$$xe^x$$

(g)
$$\sin(5x)$$

(h)
$$x^7$$
.

(i)
$$e^{4x}$$
,

$$(j) \quad x + \frac{1}{x},$$

$$(k) \quad x^2 e^{-x}$$

(6) Udowodnij, że

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x).$$

(7) Oblicz przybliżone wartości następujących liczb korzystając trzech początkowych wyrazów (zerowego, pierwszego i drugiego) odpowiednio dobranego szeregu Taylora. Oszacuj błąd przybliżenia na podstawie wzoru Taylora:

(a)
$$\sqrt{24}$$
,

(b)
$$\sqrt[3]{126}$$
,

(c)
$$\sqrt[7]{126}$$
,

(d)
$$\sin(\frac{1}{10})$$
,

(e)
$$\arctan(\frac{1}{10})$$
,

(f)
$$\sqrt{50}$$
.