Physics 415 - Lecture 35: Black-Body Radiation

April 18, 2025

Summary: Photon Statistics

- Applies to bosonic particles whose total particle number is not conserved (e.g., photons, phonons).
- Equivalent to BE statistics with chemical potential $\mu = 0$.
- Mean occupation number: $\overline{n}_r = \frac{1}{e^{\beta \epsilon_r} 1}$ (Planck distribution).
- Canonical partition function (unrestricted sum): $Z = \prod_r \frac{1}{1 e^{-\beta \epsilon_r}}$.
- Helmholtz free energy: $F = -T \ln Z = T \sum_r \ln(1 e^{-\beta \epsilon_r})$.

Black-Body Radiation

"Black-body radiation" = electromagnetic (EM) radiation in thermal equilibrium within a cavity (volume V) whose walls are maintained at temperature T.

The walls continually absorb & emit radiation. In equilibrium, the properties of the EM radiation depend only on T.

Wave-particle duality of QM \implies EM radiation can be described as waves (classical EM) or particles ("photons").

- Photons are bosons.
- Photon number is not conserved (can be absorbed/emitted by walls).
- Interactions between photons are negligible (because Maxwell's equations are linear).

Therefore, we may treat the equilibrium EM radiation as an ideal gas of photons obeying photon statistics ($\mu = 0$).

Single-Particle States for Photons

Need to specify the states r and energies ϵ_r . From Maxwell's equations in vacuum, the electric field \vec{E} satisfies the wave equation:

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial [}{\partial 2}] \vec{E} t^2$$

Plane wave solutions $\vec{E} = \text{Re}\{\vec{E}_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)}\}$ require the dispersion relation $\omega = c|\vec{k}| = ck$. Also, $\nabla \cdot \vec{E} = 0 \implies \vec{k} \cdot \vec{E}_0 = 0$, so \vec{E} is transverse to \vec{k} . For each \vec{k} , there are two linearly independent modes of oscillation (polarization states) perpendicular to \vec{k} .

In the particle description (QM):

- Photon energy: $\epsilon = \hbar \omega = \hbar ck$.
- Photon momentum: $\vec{p} = \hbar \vec{k}$.
- Energy-momentum relation: $\epsilon = c|\vec{p}| = cp$. (Massless particle).

A single-photon state r is specified by its wave-vector \vec{k} (or momentum \vec{p}) and its polarization state s (two possibilities, s = 1, 2). The energy $\epsilon_k = \hbar c k$ is independent of polarization.

Photon Gas Thermodynamics

The mean number of photons in a state (\vec{k}, s) is given by the Planck distribution $(\mu = 0)$:

$$\overline{n}_{\vec{k},s} = \frac{1}{e^{\beta \epsilon_k} - 1} = \frac{1}{e^{\beta \hbar ck} - 1}$$

Counting States: Use Periodic Boundary Conditions (PBC) on a large box $V = L_x L_y L_z$. Allowed wave-vectors: $k_i = 2\pi n_i/L_i$. Sum over states \sum_r becomes sum over (\vec{k}, s) . Spin degeneracy g = 2 for polarization.

$$\sum_{r} \to \sum_{\vec{k} = 1, 2} \to gV \int \frac{d^3k}{(2\pi)^3} = 2V \int \frac{d^3k}{(2\pi)^3}$$

Convert integral to frequency $\omega = ck$. Use spherical coordinates in k-space $(d^3k = 4\pi k^2 dk)$.

$$\sum_{r} \to 2V \int_{0}^{\infty} \frac{4\pi k^{2} dk}{(2\pi)^{3}} = \frac{V}{\pi^{2}} \int_{0}^{\infty} k^{2} dk$$

Since $k = \omega/c$, $dk = d\omega/c$:

$$\sum_{r} \to \frac{V}{\pi^2} \int_0^\infty \left(\frac{\omega}{c}\right)^2 \left(\frac{d\omega}{c}\right) = \int_0^\infty d\omega \left(\frac{V\omega^2}{\pi^2 c^3}\right)$$

We define the density of modes (states) per unit frequency range $g(\omega)$:

$$g(\omega)d\omega = \frac{V\omega^2}{\pi^2c^3}d\omega$$

$$g(\omega) = \frac{V\omega^2}{\pi^2 c^3}$$

Planck's Formula

Use this result to investigate the mean energy of the photon gas.

$$E = \sum_{r} \overline{n}_{r} \epsilon_{r} = \int_{0}^{\infty} d\omega \, g(\omega) \overline{n}(\omega) \epsilon(\omega)$$

where $\overline{n}(\omega) = 1/(e^{\beta\hbar\omega} - 1)$ and $\epsilon(\omega) = \hbar\omega$.

$$E = \int_0^\infty d\omega \left(\frac{V\omega^2}{\pi^2 c^3}\right) \left(\frac{1}{e^{\beta\hbar\omega} - 1}\right) (\hbar\omega)$$

$$E = \frac{V\hbar}{\pi^2 c^3} \int_0^\infty d\omega \frac{\omega^3}{e^{\beta\hbar\omega} - 1}$$

Write this as $E = \int_0^\infty d\omega (\frac{dE}{d\omega})$. The spectral energy density (mean energy per unit volume per unit frequency range) is $u(\omega) = \frac{1}{V} \frac{dE}{d\omega}$.

$$u(\omega) = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\beta \hbar \omega} - 1}$$

This is Planck's formula for black-body radiation.

Plot $u(\omega)$ vs ω . It is useful to use a dimensionless variable $x = \beta \hbar \omega = \hbar \omega / T$. $\omega = Tx/\hbar$, $d\omega = Tdx/\hbar$.

$$u(\omega)d\omega = \frac{\hbar}{\pi^2 c^3} \frac{(Tx/\hbar)^3}{e^x - 1} \left(\frac{T}{\hbar} dx\right) = \frac{T^4}{\pi^2 (\hbar c)^3} \frac{x^3}{e^x - 1} dx$$

Let $f(x) = \frac{x^3}{e^x - 1}$.

The function f(x) peaks at $x_{max} \approx 2.821$. This means the peak frequency ω_{max} in the spectrum satisfies $\hbar \omega_{max}/T \approx 2.821$.

$$\hbar\omega_{max} \approx 2.821T$$
 or $\omega_{max} \approx \frac{2.821T}{\hbar}$

As T increases, the maximum of the spectral distribution shifts to higher frequencies, proportional to T. This is **Wien's displacement law**.

Low Frequency Limit ($\hbar\omega \ll T$, or $x \ll 1$): $e^x \approx 1 + x$. $u(\omega) \approx \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{(1+x)-1} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{x} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{\beta \hbar \omega} = \frac{T}{\pi^2 c^3} \omega^2$.

$$u(\omega) \approx \frac{T\omega^2}{\pi^2 c^3}$$
 (Rayleigh-Jeans formula)

This classical result follows from equipartition: each EM mode (oscillator) has average energy T. $T \times (\text{number of modes per frequency per volume})$ gives $T \times (\omega^2/(\pi^2 c^3))$. Note: The temperature

T drops out of the average energy per mode $\bar{\epsilon} = \hbar \omega \bar{n}(\omega) \approx \hbar \omega/(\beta \hbar \omega) = T$, consistent with equipartition.

The RJ formula predicts $u(\omega) \propto \omega^2$, which diverges at high frequencies $(\omega \to \infty)$. If integrated, it gives infinite total energy density. This is the "ultraviolet catastrophe" of classical physics. Planck's resolution was to introduce quantized energies $E = n\hbar\omega$, leading to the $e^{\beta\hbar\omega}-1$ denominator which suppresses high frequencies. This was a first success of quantum theory.

Total Energy Density (Stefan-Boltzmann Law)

Compute the total energy density u = E/V.

$$u = \int_0^\infty u(\omega)d\omega = \frac{T^4}{\pi^2(\hbar c)^3} \int_0^\infty dx \frac{x^3}{e^x - 1}$$

The definite integral is $\int_0^\infty \frac{x^3}{e^x - 1} dx = \Gamma(4)\zeta(4) = 3!(\pi^4/90) = 6\pi^4/90 = \pi^4/15$.

$$u = \frac{T^4}{\pi^2 (\hbar c)^3} \frac{\pi^4}{15} = \frac{\pi^2}{15(\hbar c)^3} T^4$$

Energy density $u \propto T^4$. This is the **Stefan-Boltzmann Law**. $u = \sigma_E T^4$, where $\sigma_E = \frac{\pi^2}{15(\hbar c)^3}$. (If using T in Kelvin, $\sigma_E = \frac{\pi^2 k_B^4}{15\hbar^3 c^3}$). Qualitatively: Each thermally relevant photon mode has energy $\sim T$. The relevant modes

Qualitatively: Each thermally relevant photon mode has energy $\sim T$. The relevant modes are those with $\hbar\omega \sim T$, or $\hbar ck \sim T$, so $k \lesssim k_{max} \sim T/(\hbar c)$. The number of modes per volume up to k_{max} is $\sim k_{max}^3 \sim (T/(\hbar c))^3 \propto T^3$. Total energy density $u \sim (\# \text{ modes } / \text{ vol}) \times (\text{avg energy per mode}) \propto T^3 \times T = T^4$.