Cours N°C4 : Etat d'équilibre d'un système chimique

Introduction: Lors d'efforts intenses, la régulation du pH du sang met en jeu divers équilibres chimiques.

- Quelle grandeur caractérise un équilibre chimique ?

I – Quotient de réaction Qr;

1- Définition :

Le quotient de réaction associé à cette équation est donné par la relation :

- Q_r: grandeur sans dimension
- [A], [B], [C], [D]: sont des concentrations effectives en mol.L⁻¹
- $[X_i] = 1$ si X_i est un solide non dissous;
- $[H_2O] = 1$ dans le cas d'une solution aqueuse $(H_2O \text{ solvant})$.

Exemples

$$CH_{3}COOH_{(aq)} + H_{2}O_{(f)} = CH_{3}COO^{*}_{(aq)} + H_{3}O^{*}_{(aq)}$$

$$Cu_{(s)} + 2.Ag^{+}_{(aq)} = Cu^{2+}_{(aq)} + 2.Ag_{(s)}$$

$$3HO^{-}_{(aq)} + Fe^{3+}_{(aq)} \rightleftharpoons Fe(OH)_{3(s)}$$

$$HCOO^{-}_{(aq)} + CH_{3}COOH_{(aq)} \rightleftharpoons HCOOH_{(aq)} + CH_{3}COO^{-}_{(aq)}$$

Remarque: On remarque que, donc l'expression de \boldsymbol{Qr} dépend du sens d'écriture de l'équation de la réaction.

II- Quotient de réaction à l'équilibre Q_{r,éq}

1-Définition

On appelle quotient de réaction à l'équilibre $\mathbf{Q}_{\mathbf{r},\acute{\mathbf{e}}\mathbf{q}}$ la valeur que prend le quotient de réaction lorsque l'état d'équilibre du système chimique considéré est atteint. Son expression est :

......

Afin de déterminer $Qr_{,\acute{e}q}$, on utilise différentes techniques expérimentales pour mesurer les concentrations à l'équilibre : - la conductimétrie pour les systèmes faisant intervenir des ions.

- le pH-mètre pour les systèmes faisant intervenir des réactions acido-basiques.

2- Détermination de Qr, éq par conductimétrie :

1-Activité 1

On prépare trois solutions aqueuses, d'acide éthanoïque CH_3COOH , de volume V et de différentes concentrations molaires en soluté apporté C_i On mesure la conductivité des solutions d'éthanoïque précédentes à température 25° C. On note les résultats obtenus dans le tableau suivant

1,0.10-3	5,0.10-3	5,0.10-2	$\mathrm{C}_i \; (\mathit{mol.L}^{\text{-}1})$
5,2	11,4	37,2	$\sigma_{eq}~(mS.m^{-1})$

Données

$$\lambda_{CH,COO^{-}} = 4,09\,mS.m^{2}.mol^{-1} \quad ; \quad \lambda_{H,O^{-}} = 35\,mS.m^{2}.mol^{-1}$$

2. Compléter le tal	bleau d'avancemen	t de la réaction.			
Equation de l	a réaction				
Etat du système	Avancement	Quantité de matière (mol)			
Etat initial	x = 0				
Etat intermédiaire	х				
Etat final	Xf				
					• • • • • • • • • • • • • • • • • • • •
_	sion du quotient de l	réaction à l'équil	_	tion de la concentr	ation molaire en
_	sion du quotient de l	réaction à l'équil	_	tion de la concentr	ation molaire en
_	sion du quotient de l	réaction à l'équil	_	tion de la concentr	ation molaire en
_	sion du quotient de l	réaction à l'équil	_	tion de la concentr	ation molaire en
_	sion du quotient de l	réaction à l'équil	_	tion de la concentr	ation molaire en
_	sion du quotient de l	réaction à l'équil	_	tion de la concentr	ation molaire en
ons oxonium [<i>H</i> ₃ <i>O</i> +] _{éq}	ion du quotient de le et de la concentral	réaction à l'équil tion molaire C_i en té de la solution,	a soluté apporté.	tration molaire en	
ons oxonium [<i>H</i> ₃ <i>O</i> +] _{éq}	ion du quotient de le et de la concentral	réaction à l'équil tion molaire C_i en té de la solution,	a soluté apporté.	tration molaire en	
ons oxonium [H ₃ O+] _{éq}	ion du quotient de le et de la concentration de la conductivita et le quotient de 15, 0.	réaction à l'équilition molaire C_i ention molaire de la solution, réaction à l'équili	a soluté apporté. $oxed{c}$ calculer la concent $oxed{c}$ dans cha	tration molaire en	ions oxonium
	ion du quotient de le et de la concentration de la conductivita et le quotient de 15, 0.	réaction à l'équilition molaire C_i ention molaire C_i enties de la solution, réaction à l'équili	a soluté apporté. ${}^{\circ}$ calculer la concent ${}^{\circ}$ dans cha ${}^{\circ}$ 5, 0. ${}^{\circ}$ 10 $^{-3}$	tration molaire en	ions oxonium 1, 0. 10 ⁻³

III- Constante d'équilibre K;

1-Définition

On associe à chaque réaction d'équation : $a A_{(aq)} + b B_{(aq)} + c C_{(aq)} + d D_{(aq)}$, une constante K appelée constante d'équilibre telle que : $Q_{r,éq} = K$.

- La valeur de K ne dépend pas de l'état initial du système, elle dépend uniquement de la température.
- A chaque équation de réaction on associe une constante d'équilibre ${\bf K}$.

Exemple: Chaque acide est caractérisé par sa constante d'équilibre.

Solutions	Acide méthanoïque	Acide éthanoïque	Acide benzoïque
La constante d'équilibre K à 25°C	1,8 .10 ⁻⁴	1,8 .10 ⁻⁵	6,4 .10 ⁻⁵

IV- Facteurs agissants sur le taux d'avancement final

1- Influence de l'état initial du système sur le taux d'avancement final.

Le tableau ci-dessous représente les valeurs du **taux d'avancement final** τ des trois solutions d'acide méthanoïque de concentrations différentes.

Acide méthanoïque	$C_1 = 5.10^{-2} \ mol/l$	$C_1 = 5.10^{-3} \ mol/l$	$C_1 = 5.10^{-4} \ mol/l$	
Le taux d'avancement τ	2%	6%	17%	
- Que concluez-vous ?				

2- Influence de la constante d'équilibre sur τ .

Le tableau ci-dessous représente les valeurs du taux d'avancement final τ des trois solutions d'acide différentes mais elles ont mêmes concentration initiale 5,00. 10^{-2} mol. L^{-1} .

Solutions de concentrations	Acide méthanoïque	Acide éthanoïque	Acide benzoïque
$C = 5.10^{-2} mol/L$			
La constante d'équilibre K à 25°C	1,8 .10 ⁻⁴	$1,8.10^{-5}$	$6,4.10^{-5}$
Le taux d'avancement τ	6%	3%	2%
Que concluez-vous?			

Remarque :

Une réaction peut être considérée comme quasi-totale si son taux d'avancement final est supérieur à 99 %. Comme τ dépend de K mais aussi des conditions initiales, il n'est pas possible de donner un critère universel portant seulement sur K et prédisant qu'une réaction sera totale. Toutefois, dans la plupart des cas abordés dans notre étude, une réaction dont la constante d'équilibre est supérieure à 10^4 peut être considérée comme totale.