Bluetooth Antenna Design

MATT SHELLHAMMER | OCTOBER 16TH, 2017 | MATTSHELLHAMMER90@GMAIL.COM

What is a Bluetooth antenna

- Devices that are resonant at 2.45 GHz with a bandwidth of more than 100 MHz and an efficiency greater than 50% can be considered a Bluetooth antenna.
- Due to these broad specifications there is many different forms of antennas for Bluetooth.
 - Wire Monopole This is a wire that is soldered at one end and fed along a plane and is trimmed to resonate at 2.45 GHz. This type of antenna has high efficiency however protrudes from the PCB.
 - Ceramic Smallest antennas available. Printed on a ceramic slab.

Other Various Antenna Types

- Wire Antennas
 - Loop antenna
 - Dipole antenna (Special case: Half-wave dipole antenna)
- Travelling Wave Antennas
- Reflector Antennas
- Microstrip Antennas
 - Rectangular Microstrip (Patch) Antenna

- Log-Periodic Antennas
- Aperture Antennas
 - Slot antenna
- Other
 - Wearable antenna

Ceramic antennas

- The big advantage of ceramic antennas are that they are small.
- There small size is attributed to their high dielectric constant (high-κ) which concentrates its electric field and therefore maintain a high resonant frequency.
- Size of ceramic antenna: $\frac{\lambda_0}{\sqrt{\epsilon_r}}$
 - λ_0 : free-space wavelength
 - ϵ_r : Dielectric constant

Additional benefits of Dielectric resonator (ceramic) antennas

- Dielectric resonator (ceramic) antennas (DRA) lack metal parts. Because of this, they can have higher efficiency than metal antennas at higher frequencies.
- The Bandwidth of a DRA can be easily varied from a fraction of a percent to approximately 20%.

PCB (Microstrip) Antennas

- PCB antennas are traced into the PCB which can reduce the manufacturing costs since it's included in the PCB assembly process.
- PCB antennas are thin, simple and generally have fairly large bandwidth.
- Small changes or tolerance variations within PCB manufacturing process can result in an offset center frequency which can cause

frequency shifting.

Ceramic vs PCB

- Ceramic antennas have less significant detuning issues when placed in close proximity to other component.
- Ceramic antennas are effected less by environmental factors (obstructions) than PCB antennas.
- PCB antennas are limited on tuning options, ceramic antennas can simply use a matching circuit.
- PCB antennas take up space on the PCB that could be used for other components.

Antenna Radiation

- Free space path loss, $FSPL = \left(\frac{4\pi d}{\lambda}\right)^2$, will be consistent for all Bluetooth antennas since they're all operating at the same frequency.
- · However, each antenna will have its own radiation pattern.
 - What is most desired for our applications is an omnidirectional antenna radiation pattern.
- Radiation pattern should be taken into account when thinking about what applications the antenna will be used for.

Beamforming

- Directional beamforming is the process of focusing a signal in a specific direction to improve the signal strength in the path of the beam.
 - Applications: wireless communications, radar, sonar, etc.
 - This technique can all be used to implement spatial filtering
- For our applications beamforming is not desired.

References

- www.ti.com/lit/an/snoa519b/snoa519b.pdf
- http://www.antenna-theory.com/antennas/main.php
- https://en.wikipedia.org/wiki/Dielectric_resonator_antenna
- https://www.researchgate.net/figure/237054209_fig1_Figure-1-A-rectangular-Dielectric-resonator-antenna-geometry
- https://www.digikey.jp/Web%20Export/Supplier%20Content/Pulse_553/PDF/pulse_cer amic-chip-antennas-vs-pcb-trace-antennas.pdf

Bluetooth Loss-of-Signal (LoS) Experiment

Experiment Layout

- Captured Bluetooth signal power levels using the "BLE Scanner" app from the google play store.
- Rotated around the board at various radii and recorded the power level at each point in space.
- Set "BLE Scanner" app to scan for 8 seconds.

Results at radius: 1 foot

Results at radius: 4 feet

Results at radius: 8 feet

Results at radius: 12 feet

Full 3D space of experiment

Experiment Data

yz - Plane Angle: 0° (MATLB var: a)						
xy - Plane Angle:	0°/360°	60°	120°	180°	240°	300°
Radius (feet):						
1	-55 dB	-56 dB	-48 dB	-58 dB	-54 dB	-65 dB
4	-63 dB	-67 dB	-62 dB	-62 dB	-62 dB	-67 dB
8	-63 dB	-66 dB	-66 dB	-68 dB	-73 dB	-70 dB
12	-66 dB	-73 dB	-67 dB	-62 dB	-67 dB	-71 dB
yz - Plane Angle: 30° (MATLB var: b)						
xy - Plane Angle:	0°/360°	60°	120°	180°	240°	300°
Radius (feet):						
1	-58 dB	-46 dB	-52 dB	-52 dB	-66 dB	-55 dB
4	-64 dB	-63 dB	-59 dB	-62 dB	-70 dB	-69 dB
8	-73 dB	-69 dB	-69 dB	-67 dB	-79 dB	-81 dB
12	-77 dB	-76 dB	-69 dB	-90 dB	-88 dB	-46 dB
yz - Plane Angle: 60° (MATLB var: c)						
xy - Plane Angle:	0°/360°	60°	120°	180°	240°	300°
Radius (feet):						
1	-53 dB	-49 dB	-50 dB	-55 dB	-58 dB	-52 dB
4	-68 dB	-69 dB	-65 dB	-71 dB	-66 dB	-67 dB
8						
12						

THANKS FOR LISTENING

Questions

Questions 1-6

- 1) What is the resonant frequency of a Bluetooth antenna?
 - a. 5 GHz
 - b. 2.45 GHz
 - c. 3.45 GHz
 - d. 950 MHz
- 2) What is the minimum bandwidth for a device to be considered a Bluetooth device?
 - a. 100 kHz
 - b. 500 kHz
 - c. 150 MHz
 - d. 100 MHz
- 3) Which type of the following antennas is the smallest antenna available?
 - a. Loop antenna
 - b. Microstrip (patch) antenna
 - c. Dipole antenna
 - d. Dielectric resonator (ceramic) antenna

- 4) What is a benefit of a PCB antenna?
 - a. Reduced manufacturing costs
 - b. Objects don't interfere with signal
 - c. Easy tuning process to improve antenna performance.
 - d. They have an efficiency of 95%
- 5) Which antenna allows for more components to be used on the PCB?
 - Ceramic antenna
 - b. PCB antenna
- 6) Which frequency will have the greatest Free Space Path Loss (FSPL)?
 - a. 1 GHz
 - o. 2.45 GHz
 - c. 10 GHz
 - d. 200 MHz

Questions 1-6 Answers

- 1) What is the resonant frequency of a Bluetooth antenna?
 - a. 5 GHz
 - b. 2.45 GHz
 - c. 3.45 GHz
 - d. 950 MHz
- 2) What is the minimum bandwidth for a device to be considered a Bluetooth device?
 - a. 100 kHz
 - b. 500 kHz
 - c. 150 MHz
 - d. 100 MHz
- 3) Which type of the following antennas is the smallest antenna available?
 - a. Loop antenna
 - b. Microstrip (patch) antenna
 - c. Dipole antenna
 - d. Dielectric resonator (ceramic) antenna

- 4) What is a benefit of a PCB antenna?
 - a. Reduced manufacturing costs
 - b. Objects don't interfere with signal
 - c. Easy tuning process to improve antenna performance.
 - d. They have an efficiency of 95%
- 5) Which antenna allows for more components to be used on the PCB?
 - Ceramic antenna
 - b. PCB antenna
- 6) Which frequency will have the greatest Free Space Path Loss (FSPL)?
 - a. 1 GHz
 - o. 2.45 GHz
 - c. 10 GHz
 - d. 200 MHz

Questions 7-10

- 7) All antennas have the same radiation pattern.
 - a. True
 - b. False
- Omnidirectional antennas are useful for spatial filtering.
 - a. True
 - b. False

- 9) Which is not an application of beamforming?
 - a. Wireless communications
 - b. Radar
 - c. Microcontroller robots
 - d. Sonar
- 10) Generally what is the length of a dipole antenna?
 - a. 4λ
 - b. 2λ
 - c. $\lambda/2$
 - d. λ

Questions 7-10 Answers

- 7) All antennas have the same radiation pattern.
 - a. True
 - b. False
- Omnidirectional antennas are useful for spatial filtering.
 - a. True
 - b. False

- 9) Which is not an application of beamforming?
 - a. Wireless communications
 - b. Radar
 - c. Microcontroller robots
 - d. Sonar
- 10) Generally what is the length of a dipole antenna?
 - a. 4λ
 - b. 2λ
 - c. $\lambda/2$
 - d. 7