MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 19th January, 2015 D1 - Lecture 7

Recall: We have seen how to find all solutions of Ax = b.

$$x_{\mathsf{Complete}} = x_{\mathsf{Particular}} + x_{\mathsf{NullSpace}}$$

We defined Column space C(A) of A.

 $b \in C(A)$ if and only if Ax = b is consistent.

If $b \in C(A)$, then to write b as a linear combination of columns of A, we need to solve Ax = b.

We defined Vector space (V, +, .)

It is closed under linear combinations with following properties + is commutative, associative, additive identity 0, additive inverse

scalar multiplication . is associative, 1.v = v, distributive.

Examples of Vector spaces

- $M = \{2 \times 2 \text{ matrices with real entries} \}$ is a vector space.
- ② $V=C([0,1],\mathbb{R})$ is a vector space. In V, vectors are continuous functions $f:[0,1]\to\mathbb{R}.$ The zero vector is the zero function.
- **③** $P = \{ \text{polynomial functions} : \mathbb{R} \to \mathbb{R} \} \text{ is a vector space.}$ A typical element of P: $a_0 + a_1x + \ldots + a_nx^n : \mathbb{R} \to \mathbb{R}$ with $a_i \in \mathbb{R}$. The zero vector is the zero polynomial.
- ① Let M, V and P be vector spaces considered above. Let $W = \{(m,v,p) : m \in M, v \in V, p \in P\}$. Define addition and scalar multiplication componentwise. Then W is a vector space. What is the zero vector in W?
- $T = \{2 \times 2 \text{ matrices with entries in } W\}$ is a vector space with componentwise addition and scalar multiplication.

Subspaces

A subspace of a vector space is a non-empty subset which itself satisfies the requirements of a vector space:

Linear combinations stay in the subspace.

Thus, if V is a vector space, and W is a non-empty subset, then W is a subspace of V if:

$$\overline{x}$$
, \overline{y} in W , u , v in \mathbb{R} , $\Rightarrow u \cdot \overline{x} + v \cdot \overline{y}$ are in W .

- **1** $\{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$ is not a subspace of \mathbb{R}^2 . Why?
- ② The set of 2×2 symmetric matrices is a subspace of M. So is the set of 2×2 lower triangular matrices.
- **3** The set of invertible 2×2 matrices is not a subspace of M. Why?

Examples: Subspaces of \mathbb{R}^n

- $\{0\}$: The zero subspace.
- \bullet \mathbb{R}^n itself.
- A line not passing through the origin is not a subspace of \mathbb{R}^2 . Why? e.g., x-y=1.
- A line L passing through the origin is a subspace of \mathbb{R}^2 . Why? e.g., x-y=0.
- Let A be an $m \times n$ matrix. The null space of A, N(A), is a subspace of \mathbb{R}^n . The column space of A, C(A), is a subspace of \mathbb{R}^m . Recall: They are both closed under linear combinations.

Note: A subspace must contain the 0 vector!

Examples: Subspaces of \mathbb{R}^2

What are the subspaces of \mathbb{R}^2 ?

- $V = \{ \begin{pmatrix} 0 & 0 \end{pmatrix}^T \}.$
- $V = \mathbb{R}^2$.

Suppose V conatins a non-zero vector, say $a = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$.

Hence V must contain the entire line $L:\ x+y=0$, i.e., all multiples of $\overline{a}.$

• Thus if V is non-zero and not \mathbb{R}^2 , then it is a line passing through the origin. Why?

Examples: Subspaces of \mathbb{R}^2

Let V be a subspace of \mathbb{R}^2 containing $v_1 = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$. Then V must contain the entire line L: x+y=0.

If $V \neq L$, it contains a vector v_2 , which is not a multiple of v_1 , say $v_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$.

Observe:
$$A = \begin{pmatrix} v_1 & v_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$$
 has two pivots,

- $\Rightarrow A$ is invertible.
- \Rightarrow for any v in \mathbb{R}^2 , Ax = v is solvable,
- $\Rightarrow v \text{ is in } C(A),$
- $\Rightarrow v$ can be written as a linear combination of v_1 and v_2 .
- $\Rightarrow v$ is in V, i.e., $V = \mathbb{R}^2$

To summarise: A subspace of \mathbb{R}^2 , which is non-zero, and not a line passing through the origin, is \mathbb{R}^2 .

Linear Span: Definition

Given a collection S of vectors v_1, v_2, \ldots, v_n in a vector space V, the *linear span* of S, denoted $\operatorname{Span}(S)$ or $\operatorname{Span}\{v_1, \ldots, v_n\}$, is the set of all linear combinations of v_1, v_2, \ldots, v_n , i.e.,

$$\mathsf{Span}(S) = \{v = a_1 \cdot v_1 + \dots + a_n \cdot v_n, \text{ for scalars } a_1, \dots, a_n\}.$$

Remark: Span(S) is a subspace of V. Why?

- Span $\{v_1, \ldots, v_n\} = C(A)$ for $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$. Thus $v \in \text{Span}\{v_1, \ldots, v_n\} \Leftrightarrow Ax = v$ is consistent.
- Let $v_1, \ldots, v_n \in \mathbb{R}^n$ and $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$. Then A is invertible $\Leftrightarrow A$ has n pivots
 - $\Leftrightarrow Ax = v$ is consistent for every v in \mathbb{R}^n $\Leftrightarrow \operatorname{Span}\{v_1, \dots, v_n\} = \mathbb{R}^n$.

Linear Span: Examples

Examples:

- **1** Span $\{0\} = \{0\}$.
- ② If $v \neq 0$ is a vector, $\mathrm{Span}\{v\} = \{a \cdot v, \text{ for scalars } a\}$. Goemetrically: $\mathrm{Span}\{v\} = \text{the line in the direction of } v$ passing through the origin.
- $\mathbf{Span} \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} = \mathbb{R}^2.$
- **1** The columns e_1, \ldots, e_n of the $n \times n$ identity matrix I span \mathbb{R}^n .
- $If A is m \times n, then Span \{A_1, \dots, A_n\} = C(A).$
- If v_1, \ldots, v_k are all the special solutions of A, then Span $\{v_1, \ldots, v_k\} = N(A)$.

Remark: All of the above are subspaces.

- 1. 140020001 SHANTANU PATEL
- 2. 140020010 AVINASH CHATTANATHAN IYER
- 3. 140020020 VIDWANS NIRAJ ASHUTOSH
- 4. 140020028 ANKIT KUMAR GAUTAM
- 5. 140020039 GOUTHAM RAMAKRISHNAN
- 6. 140020091 KANCHAN KHETAN
- 7. 140020104 GAURAV JAIN
- 8. 140020120 NIPUN GUPTA
- 9. 140050012 AAKASH PRALIYA
- 10. 140050027 RAJAT CHATURVEDI
- 11. 140050074 KOPPISETTI NIKHILESWAR
- 12. 140050006 VAIDYA KAPIL EKNATH
- 13. 140020014 OMKAR RAVINDRA KAJROLKAR
- 14. 140020036 DRAVID ASHWIN NATRAJ
- 15. 140050062 POOSA NIHAL
- 16. 140050079 VUPPULA MANITEJA REDDY

Linear Span: Examples

Example: Is v in Span $\{v_1, v_2, v_3, v_4\}$, where:

$$v = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ v_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, \ v_3 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}, \ v_4 = \begin{pmatrix} 5 \\ 12 \\ 13 \end{pmatrix}?$$
 Let $A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$. Then
$$(A \mid b) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 5 & | & b_1 \\ 0 & 0 & 2 & 2 & | & b_2 - 2b_1 \\ 0 & 0 & 0 & | & b_3 + b_2 - 5b_1 \end{pmatrix}.$$

Linear Span: Examples

Recall
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{pmatrix}$$

Ax = b is solvable $\Leftrightarrow 5b_1 - b_2 - b_3 = 0$.

 $\Rightarrow v = (1,0,4)^T$ is not in $Span\{v_1,v_2,v_3,v_4\}$, and

$$w = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T = 4v_1 + (-1)v_3$$
 is in it.

Observe: $v_2 = 2v_1$ and $v_4 = 2v_1 + v_3$.

Hence v_2 , v_4 are in Span $\{v_1, v_3\}$.

Therefore, $\text{Span}\{v_1,v_3\} = \text{Span}\{v_1,v_2,v_3,v_4\} = C(A) = \text{the plane } P: (5x-y-z=0).$

Q: Is the span of two vectors always a plane?

Linear Independence: Definition

Q: Is the span of two vectors always a plane? **A:** Not always. If v is a multiple of $w \neq 0$, then $\operatorname{Span}\{v,w\} = \operatorname{Span}\{w\}$, which is a line through the origin.

Q: If v and w are not on the same line through the origin? **A:** Yes. v, w are examples of the following:

The vectors v_1 , v_2 ,..., v_n in a vector space V, are *linearly independent* if

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0 \Rightarrow a_1 = 0, a_2 = 0, \dots, a_n = 0$$

Observe: If $A = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}$, then v_1, v_2, \dots, v_n are linearly independent $\Leftrightarrow Ax = x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$ has only the trivial solution $\Leftrightarrow N(A) = 0$.

added for clarification

The line in \mathbb{R}^2 not passing through origin is not a vector space. e.g. If L is the line x-y=1. Then $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ are on L, but their sum $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ is not on L. Hence L is not closed under linear combination. So L is not a vector space.