❖ La qualité de la rédaction, la clarté des raisonnements interviendront pour une

Part importante dans l'appréciation des copies

- Le sujet comporte trois exercices et un problème
 - Un exercice sur les structures algébriques
 - Un exercice sur les complexes
 - > Un exercice d'arithmétique
 - > Et un problème d'analyse

Exercice n°1 (3.5 points)

On pose
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $J = \begin{pmatrix} 1 & 4 \\ -1 & -1 \end{pmatrix}$

Et Soit $E = \{xI + yJ / (x, y) \in \mathbb{R}^2\}$ On pose M(x, y) = xI + yJ

 φ l'application de \mathbb{C} vers E tel que $\varphi(x+iy\sqrt{3})=xI+yJ$

- 0.25
- 1) Montrer que (E,+,.) est un espace vectoriel réel
- 0.5
 - 2) Montrer que $\left(I,J\right)$ est une base de E et en déduire la dimension de E
- 0.5
- 3) Montrer que $J^2=-3I$,en déduire que E est stable dans $\left(M_2\left(\mathbb{R}\right),\times\right)$
- 0.75
- 4) a- Montrer que φ est un isomorphisme de (\mathbb{C},\times) vers $(E,\!\times)$
- 0.5
- b- Déterminer l'inverse de la matrice $\begin{pmatrix} a+b & 4b \\ -b & a-b \end{pmatrix}$ en donnant la condition de son existence.
- 0.5
- 5) Montrer que $(E,+,\times)$ est un corps commutatif
- 0.5
- 6) Résoudre dans E l'équation $X^3 = I$

Exercice n°2 (3.5points)

I)On considère dans $\mathbb C$ l'équation (E): $z^2-2mz+m^2+4=0$ avec $m\in\mathbb C^*$

- 1) Résoudre dans \mathbb{C} l'équation (E)
- 0.5 0.75 2) On suppose que $m = 2e^{i\theta}$ et $\theta \in \left[0, \frac{\pi}{2}\right]$ Donner les solutions (E) de sous forme trigonométrique
- 3) Soient A et B respectivement les image de m+2i et m-2i a- Déterminer chacun des ensembles suivants $(D) = \{M(m) \in P / OA = OB\} \text{ et } (C) = \{M(m) \in P / \overrightarrow{OA} \perp \overrightarrow{OB}\}$
- 0.25 b- Quelles sont les valeurs possibles de m pour que le triangle OAB soit rectangle et isocèle en O
 - II) On considère les points $I(1.0), \Omega(1.1)$ et C(2,0)

Soient $M_1ig(z_1ig)$ l'image de Mig(zig) par la symétrie centrale de centre I

et $M_2(z_2)$ l'image de M(z) par la rotation de centre Ω et d'angle $\frac{\pi}{2}$

- 1) Montrer que $z_1 = -z + 2$ et $z_2 = iz + 2$
- 2) Déterminer l'ensemble des points M pour que les points C, Ω, M_1 et M_2 soient cocycliques

Exercice n°3 (3 points)

0.5

1

0.25

0.25

0.5

0.25

Dans \mathbb{Z} On considère le système (S): $\begin{cases} n = 3[5] \\ n = 9[17] \end{cases}$ et Dans \mathbb{Z}^2 l'équation (E): 5x - 17y = 6

- 1) a- Déterminer une solution particulière de (E)
 - b- résoudre l'équation (E)
 - 2) a- Montrer que $(n \text{ solution de } (S) \Leftrightarrow n \equiv 43[85])$
 - b- Résoudre le système (S)
- 0.25 3) Soit n une solution de (S)
- 0.5 a- Montrer que $n \wedge 17 = 1$ et $n \wedge 5 = 1$
- 0.5 b- Montrer que $n^{16} \equiv 1[85]$
 - c- En déduire que $n^{2019} n^3$ est un multiple de 85
- 0.5 4) Existe-t-il un entier naturel m solution de (S) et vérifiant : $m = \overline{1aba}^{(5)}$

Problème (10points)

Partie I Soit $x \in]-1, +\infty[-\{0\}]$

0.75

- 1) a-Montrer que : $\frac{x}{3(x+1)} \le \frac{1}{x^2} \int_0^x \frac{t^2}{t+1} dt \le \frac{x}{3}$
- 0.25
- b- Montrer que : $\int_0^x \frac{t^2}{t+1} dt = \ln(x+1) x + \frac{x^2}{2}$
- 0.25
- 2) En déduire que $\lim_{x\to 0} \frac{\ln(x+1)-x}{x^2} = \frac{-1}{2}$
- 0.5
- 3) Montrer que : $(\forall x \in]0, +\infty[-\{1\}); x \ln x > x 1$

Partie II Soit f la fonction définie sur $]0,+\infty[$ par $\begin{cases} f(x) = \frac{\ln x}{x-1}; x \in]0,+\infty[-\{1\}] \\ f(1) = 1 \end{cases}$

- 0.5
- 1) Montrer f que est continue et dérivable en 1
- 0.5
- 2) Montrer que f est strictement décroissante sur $]0,+\infty[$
- 0.75
- 3) Tracer f et sa tangente au point 1 dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$
- 0.5
- 4) Montrer que $\forall n \in \mathbb{N}^*$ l'équation nf(x) = n+1 admet une solution unique u_n dans $]0,+\infty[$ et que $0 < u_n < 1$
- 0.5
- 5) a- Etudier la monotonie de la suite $(u_n)_{n>0}$
- 0.5
- b- En déduire que $(u_n)_{n>0}$ est convergente et calculer sa limite
- 0.75
- c- Montrer que $\lim_{n\to +\infty} n (1-u_n) = 2$ puis en déduire que $\lim_{n\to +\infty} (u_n)^n = e^{-2}$

Soit F la fonction définie $\sup \left[0, +\infty\right[\text{ par } \left\{ F\left(x\right) = \int_{x}^{x^{2}} f\left(t\right) dt; x \in \left]0, +\infty\right[F\left(0\right) = 0 \right] \right]$

- 0.5
- 0.25
- 0.25
- 1) a- Montrer que $(\forall x \in]0,1[); \frac{2x \ln x}{x+1} \le F(x) \le x \ln x$
 - b- Montrer que F est continue à droite en 0
 - c-Montrer que $C_{\scriptscriptstyle F}$ admet une demie tangente verticale à droite en 0
- 0.5
- 2) a- Montrer que $(\forall x \in]1, +\infty[)$; $\ln x \cdot \ln(x+1) \le F(x) \le 2 \ln x \cdot \ln(x+1)$
- 0.25
- b- Etudier la branche infinie de $C_{\scriptscriptstyle F}$ au voisinage de $+\infty$
- 0.5
- 3) a- Montrer que F est dérivable au point 1
- 0.5
- b- Montrer que F est dérivable sur $[0,+\infty[$
- 0.5
- c-Montrer que $(\forall]0,1[\cup]1,+\infty[),F'(x)=\frac{(3x-1)\ln x}{x^2-1}$
- 0.25
- 4) a- Montrer que F'(x) est du signe de (3x-1)(x+1)
- 0.25
- b- dresser le tableau de variations de F
- 0.5
- c-tracer C_F dans un repère orthonormé autre que (O, \vec{i}, \vec{j}) on prendra $F(\frac{1}{3}) \approx \frac{-1}{2}$