ÇEV 806 Hava Kirliliği ve İklim Değişimi

2 - Yanma

Doç. Dr. Özgür ZEYDAN

https://ozgurzeydan.com.tr/

Yanma Reaksiyonları

$$\triangleright$$
 C + O₂ \rightarrow CO₂

$$\rightarrow 2H_2 + O_2 \rightarrow 2H_2O_{(g)}$$

$$>$$
 S + O₂ \rightarrow SO₂

$$\rightarrow$$
 H₂O _(s) \rightarrow H₂O _(g)

$$> N_2 \rightarrow N_2$$

 $> N_2 + O_2 \rightarrow 2NO \text{ (termal şartlara bağlı)}$

CxHy hidrokarbonu için ideal yanma denklemi

- Tam yanma için sisteme fazla hava verilir.
- \triangleright Hava fazlası (%) = $\frac{Fazla\ hava}{Teorik\ hava} \cdot 100$

Yanma Odası

Yakıt (CxHy)

Hava

$$n_{kuru} = n_{sto} \cdot \frac{(1+E)}{0.21}$$

$$n_{toplam} = n_{kuru} (1+X)$$

X: nem orani

E: fazla hava

$$C + O_2 \rightarrow CO_2$$

$$H_2 + O_2 \rightarrow \frac{1}{2}H_2O$$

$$n_{\text{sto.o}} = x + \frac{y}{4}$$

Yanma ürünleri

X mol CO₂ y/2 mol H₂O yanmadan X.n_{kuru} mol H₂O havadan 0.79 .n_{kuru} mol N₂ havadan E. n_{kuru} mol O₂

Toplam mol =
$$x + \frac{y}{2} + n_{kuru} \cdot \left[\left(\frac{1+E}{0.21} \right) (1+X) - 1 \right]$$

Yanma Odası

- > Stokiyometrik oksijen ihtiyacı: $n_{sto.o} = x + \frac{y}{4}$
- ightharpoonup Kuru hava: $n_{kuru} = n_{sto.o} \left(\frac{1+E}{0.21} \right)$
- \triangleright Nem oranı: $X = \left(\frac{mol \ H_2 O}{mol \ kuru \ hava}\right)$
- Toplam hava: $n_{toplamhava} = n_{kuru}(1+X) = n_{sto.o} \left(\frac{1+E}{0.21}\right)(1+X)$
- > Toplam yanma ürünleri: $n_{toplam \ddot{\mathbf{u}}r\ddot{\mathbf{u}}n} = \mathbf{x} + \frac{\mathbf{y}}{2} + n_{sto.o}$. $\left[\left(\frac{1+E}{0.21} \right) (1+X) 1 \right]$

- ➤ 1 mol metan (CH₄) %20 fazla hava ile yanmaktadır. Havanın nem oranı 0.0116 mol/hava ise yanma ürünlerini hesaplayınız.
- $> n_{CO2} = x = 1 mol$
- $> n_{H2O\ yanma} = \frac{y}{2} = 2mol$
- $> n_{sto.o} = x + \frac{y}{4} = 1 + \frac{4}{4} = 2mol$
- $> n_{kuru} = n_{sto.o} \left(\frac{1+E}{0.21} \right) = 2 \cdot \left(\frac{1+1.2}{0.21} \right) = 11.43 mol$
- $> n_{toplamhava} = n_{kuru}(1+X) = 11.43 \cdot (1+0.0116) = 11.56 \, mol$

- $> n_{N2} = 0.79. n_{kuru} = 0.79. 11.43 = 9.03 mol$
- $> n_{O2} = E.n_{sto.o} = 0.2.2 = 0.4 mol$
- $> n_{H2Otoplam} = n_{H2Otoplam} + X. n_{kuru} = 2 + 0.0116.11.43 = 2.13mol$

- ➤ 400 MW kapasiteli bir termik santral yakıt olarak pulvarize linyit kömürü kullanmaktadır. Yanma sisteminin termal verimi %60 olup, %30 fazla hava kullanılmaktadır. Kömürün kalorifik değeri 8500 kcal/kg olup elementel analizi sonraki slaytta verilmiştir.
- Buna göre oluşan baca gazı debisini ve kirletici emisyonlarını hesaplayınız.

Element	Ağırlık Yüzdesi
Karbon (C)	42.0
Hidrojen (H)	2.8
Kükürt (S)	0.7
Oksijen (O)	12.4
Azot (N)	0.7
Kül (-)	6.9
Su (H ₂ O)	34.8

- Bu tip sorularda yakıt <u>100 birim</u> kabul edilerek çözüm yapılır.
- ➤ Sıvı katı yakıtlar: 100 kg
- Gaz yakıtlar: 100 mol veya 100 L (100 m³)

100 kg kömür için

Element	Ağırlık Yüzdesi	MA (kg/kmol)	Mol Miktarı (kmol)
Karbon (C)	42.0	12	3.53 C olarak
Hidrojen (H)	2.8	2	1.40 H ₂ olarak
Kükürt (S)	0.7	32	0.022 S olarak
Oksijen (O)	12.4	32	0.39 O ₂ olarak
Azot (N)	0.7	28	0.025 N ₂ olarak
Su (H ₂ O)	34.8	18	1.93 H ₂ O olarak
Kül (-)	6.9	_	_

Yanma reaksiyonları (girenler ve ürünler)

Yanma Reaksiyonu	Girenler	Ürünler
$C + O_2 \rightarrow CO_2$	3.53 kmol C 3.53 kmol O ₂	3.53 kmol CO ₂
$2H_2 + O_2 \rightarrow H_2O$	1.40 kmol H ₂ 0.70 kmol O ₂	1.40 kmol H ₂ O
$S + O_2 \rightarrow SO_2$	0.022 kmol S 0.022 kmol O ₂	0.022 kmol SO ₂
$N_2 \rightarrow N_2$	0.025 kmol N ₂	0.025 kmol N ₂ *
$H_2O_{(s)} \rightarrow H_2O_{(g)}$	1.93 kmol H ₂ O	1.93 kmol H ₂ O **

^{*:} sadece yakıttaki azot, **: havadan gelen nem hariç

Hesaplar

- > Yanma için gerekli stokiyometrik oksijen = 3.53 + 0.70 + 0.22 = 4.25 kmol
- Yakıt bileşimindeki mevcut oksijen = 0.39 kmol
- > 100 kg kömürü yakmak için gerekli oksijen = 4.25 0.39 = 3.86 kmol
- \triangleright Yakmada %30 fazla hava kullanılıyorsa: 3.86 \times 1.3 = 5.02 kmol O₂
- \triangleright Oksijenle beraber gelen azot miktarı = 3.86 \times (79/21) = 18.88 kmol
- > Sisteme verilen toplam hava miktarı = 18.88 + 5.02 = 23.90 kmol
- > Yanmadan çıkan fazla oksijen = 5.02 3.86 = 1.16 kmol
- > Havanın nem içeriği (mol H_2O / mol kuru hava) %1.1 kabul edildiğinde: $23.9 \times (1.1/100) = 0.26$ kmol H_2O

100 kg yakıt için

Baca Gazı Bileşeni	Miktarı (kmol)	Kaynağı
CO ₂	3.53	Yanma reaksiyonu
SO ₂	0.022	Yanma reaksiyonu
N_2	0.025	Yakıttan
N_2	18.88	Havadan
H ₂ O	1.4	Yanma reaksiyonu
H ₂ O	1.93	Yakıttan
H ₂ O	0.26	Havadan
O2	1.16	Havadan (fazla oksijen)
Kuru bazda toplam:	23.62 kmol baca gazı	
Yaş bazda toplam:	27.21 kmol baca gazı	

Baca Gazındaki SO₂ konsantrasyonu

- Standart Şartlarda (@ 0°C ve 1 atm): 1 mol gaz = 22.4 Litre 1 kmol gaz = 22.4 N.m³
- > Standart şartlarda baca gazı hacmi:
- ightharpoonup Kuru bazda = 23.62 kmol × (22.4 N.m³/1 kmol) = 529.1 N.m³ / 100 kg yakıt
- ightharpoonup Yaş bazda = 27.21 kmol × (22.4 N.m³/1 kmol) = 609.5 N.m³ / 100 kg yakıt
- Baca gazındaki SO₂ konsantrasyonu:
- ightharpoonup Hacimsel % olarak $SO_2 = 0.022$ kmol $SO_2 / 23.62$ kmol kuru baca gazı $\times 100 = \%0.0931$ SO_2

Baca Gazındaki SO₂ konsantrasyonu

- \triangleright ppm olarak SO₂ konsantrasyonu = % SO₂ × 10000 = 0.0931 × 10000 = 931 ppm SO₂
- \rightarrow mg/N.m³ olarak SO₂ konsantrasyonu: (ppm \times P \times Ma) / (R \times T)
- ightharpoonup (931 ppm imes 1 atm imes 64 kg/mol) / (0.082 m³.atm/kmol.K imes 273 K) = 2660 mg/N.m³
- ightharpoonup Isil Güç = 400 MW × 238.8 (kcal/s)/(MW) = 95520 kcal/s
- ➤ Teorik yakıt tüketimi = 95520 kcal/s / 8500 kcal/kg = 11.24 kg/s kömür = 67.43 ton/saat kömür

Baca Gazı Kütlesel SO₂ Debisi

- Baca gazı hacimsel debisi:
- (67.43 ton/saat kömür × 529.1 N.m³/100 kg kömür) / 1000 (kg/ton) = 356750 N.m³/saat
- Baca Gazı Kütlesel SO₂ Debisi:
- \geq 2660 mg/N.m³ × 356750 N.m³/saat × (1kg/1000000mg) = 948.96 kg/saat SO₂

Diğer Kirletici Emisyonları

> Diğer kirleticilerin emisyonlarını benzer şekilde hesaplayınız.

Kaynaklar

Noel de Nevers, Air Pollution Control Engineering, McGraw-Hill, New York - London, 1995.