Étude de couvertures de réseaux de métros, application de l'homologie persistante et optimisation.

Elowan ; 10381

May 12, 2025

La méthode

Trouver les zones les moins biens desservies par un réseau de métros.

Les principales étapes :

- Convertir les données géographique en espace métrique
- Trouver les trous dans cet espace
- Afficher ces zones

Plus en détail, reconnaitre un trou : l'homologie persistante

Chercher à faire des chemins, puis reduire ces chemins sans jamais le rompre

Figure 1: Un tore contenant deux trous et un cercle contenant 0 trou

Définitions

Simplexe

Un simplexe σ de dimension k (ou k-simplexe) correspond à l'enveloppe convexe de k+1 points de X non inclus dans un sous-espace affine de dimension k-1.

Face

On dit que σ_i est une face de σ_j si et seulement si $\sigma_i \subset \sigma_j$ et la dimension de σ_i dim (σ_i) est égale à dim $(\sigma_j) - 1$.

Complexe simplicial

Un ensemble de simplexes.

Figure 2: Exemple de complexe simplicial

Définitions

Filtration

Suite croissante pour l'inclusion de complexes simpliciaux

Figure 3: Exemple de filtration

Définitions

Classe d'homologie

Intuitivement, elle représente un trou en dimension n

Figure 4: Exemple de classes d'homologies

Plan d'attaque

- Construire une filtration à partir d'un ensemble discret de points
- Application de l'algorithme standard
- Récupération des classes d'homologies

Définition de la distance

Distance

On définit la distance d entre deux stations de metro x et y:

$$d(x,y) = \frac{1}{2}(\min(t_{pied}(x,y),t_{voit}(x,y)) + \min(t_{pied}(y,x),t_{voit}(y,x)))$$

Définition des complexes pondérés de Vietoris-Rips

Complexe Simplicial pondéré de Vietoris-Rips On le définit au rang r, comme l'ensemble des simplexes $(x_{i_0},...,x_{i_k})$ tels que :

$$\begin{cases} \forall j \in [|0, k|], poids_{i_j} < r \\ \forall (j, l) \in [|0, k|]^2, d(x_{i_j}, x_{i_l}) + poids_{i_j} + poids_{i_l} < 2r \end{cases}$$

Figure 5: Image repr les vietoris rips, tiré de *Persitent homology for resource coverage: A case study of access to polling sites*

Préparatif de l'algorithme : Ordre total sur les simplexes

Soient une filtration $K_0 \subset K_1 \subset ... \subset K_p$ et l'ensemble S de tous les simplexes apparaissant dans la filtration. On indice S de sorte que pour tout σ_i et σ_j de S:

$$\left. \begin{array}{l} \text{Si } \sigma_i \in K_{k_i} \text{ et } \sigma_j \in K_{k_j} \text{ avec } k_i < k_j \\ \text{Sinon si } \sigma_i \text{ est une face de } \sigma_j \end{array} \right\} \Rightarrow i < j$$

L'ordre total est déduit de cet indiçage.

Préparatif de l'algorithme : Matrice de brodure

	4	5	6	7	8	9	10
0	1			1	1		
1	1	1					
2		1	1		1		
3			1	1			
4						1	
5						1	
6							1
7							1
8						1	1
low	1	2	3	3	2	8	8

Figure 6: Exemple de matrice de bordure associé à un ordre total

Application de l'algorithme

Algorithme Standard

```
for j allant de 0 a n-1:
    while (il existe i < j avec low[i] = low[j]):
        ajouter colonne i de B a colonne j modulo 2</pre>
```

Compréhension du résultat en sortie

	4	5	6	7	8	9	10		4	5	6	7	8	9	10
0	1			1	1			0	1						
1	1	1						1	1	1					
2		1	1		1			2		1	1				
3			1	1				3			1				
4						1		4						1	1
5						1		5						1	1
6							1	6							1
7							1	7							1
8						1	1	8						1	
low	1	2	3	3	2	8	8	low	1	2	3	-1	-1	8	7

Figure 7: Matrice initiale et reduite

Optimisation

Remarques à l'initiative de la recherche d'optimisation :

- La matrice est creuse ;
- L'opération de somme de colonnes laisse invariante tous les simplexes de dimension différente.

Modifications apportées :

- Représentation de la matrice en liste d'adjacence
- Application de l'algorithme sur des matrices extraites et non la totale : Programmation dynamique

Algorithme optimisé

Algorithme Standard optimisé

```
dims <- Tableau des simplexes ou dims[i] contient la
    liste des simplexes de dimension i
for toute dimension d a considerer:
    for chaque simplexe j de dims[d]
        while (il existe i tel que low[j] = low[i]):
            ajouter colonne i de B a colonne j modulo</pre>
```

Résultats

Figure 8: Ordonnée linéaire

Résultats

Figure 9: Ordonnée logarithmique

Résultats

Figure 10: Marseille

Figure 11: Toulouse

Annexe: Définition

Définition d'une variété

Définition d'un cycle Un cycle est une sous-variété fermée.

Définition d'une limite Une limite est un cycle qui est également la limite d'une sous-variété

Définition d'une classe d'homologieUne classe d'homologie est une classe d'équivalence de cycles modulo une limite : elle est donc représentée par un cycle qui n'est la limite d'aucune sous-variété, il représente donc un trou, une variété dont la limite serait ce cycle, mais qui n'est pas là

Annexe : Diagrammes de persistance

Figure 12: Diagramme de persistance de Marseille

Figure 13: Diagramme de persistance de Toulouse

Annexe : Récupération des données

Pour le calcul des temps de trajet : apidocs.geoapify.com

Pour la récupération des stations et des temps d'attentes moyens : transport.data.gouv.fr