

	<
	♂
	>
Pop Quiz #	2
Pop Quiz # 7	2
/5 points (ungrad	ed)
	is the problem of using Lagrange form?
Q#1: What	
Nodes are	is the problem of using Lagrange form?
Q#1: What Nodes are Dynamic in	is the problem of using Lagrange form? function of x
Q#1: What Nodes are Dynamic in	is the problem of using Lagrange form? function of x terms of node selection ic in terms of node selection

Q#2: According to the Existence and Uniqueness Theorem, suppose there are two polynomials $a_n(x)$ and $b_n(x)$ of degree $\leq n$ and c(x) = a(x) - b(x). What can be the degree of c(x)?

Q#3: $l_i(x_j) = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$. What is the name of this

relation?

- Supplementary relation
- Binary relation
- None of the above

Q#4: The following nodes ($x_0 = 1$, $x_1 = 1$, $x_2 = 2$) are given. If we try to find the coefficients using the Vandermonde matrix

No, the	inverse of \emph{V} doesn't exist because the nodes are not distinct .
Yes, we	will be able to invert the matrix V because it is invertible.
Depend	ds on the size of the matrix V.
~	
スッ ン・II VV	\prime e are given 4 nodes, what should be the degree of the
=	ial that is used to find the value of the coefficients e Vandermond matrix?
-	
using the	

© All Rights Reserved

About Us

BracU Home

USIS

Course Catalog

Copyright - 2020