Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a 10-a

Problema 1. Fie $a \in (0,1)$. Să se rezolve în \mathbb{R} ecuația

$$a^{[x]} + \log_a \{x\} = x.$$

Problema 2. Spunem că o funcție $f: \mathbb{Q}_+^* \to \mathbb{Q}$ are proprietatea P dacă

$$f(xy) = f(x) + f(y), \ \forall x, y \in \mathbb{Q}_+^*.$$

- a) Demonstrați că nu există funcții injective cu proprietatea P.
- b) Există funcții surjective cu proprietatea P?

Atunci

$$f(p)f(q) = f(p) \cdot \frac{b}{c} = \frac{f(p^b)}{c} = \frac{a}{c} \cdot f(q) = \frac{f(q^a)}{c}.$$

b) Dacă x>0 e număr rațional, există unic numerele prime distincte p_1,p_2,\ldots,p_n și numerele întregi a_1,a_2,\ldots,a_n , astfel ca $x=p_1^{a_1}p_2^{a_2}\ldots p_n^{a_n}$. Se verifică ușor că

$$f(x) = a_1 f(p_1) + a_2 f(p_2) + \ldots + a_n f(p_n),$$

 Problema 3. Demonstrați inegalitatea

$$\sin\frac{\pi}{4n} \ge \frac{\sqrt{2}}{2n},$$

unde n este un număr natural nenul.

Soluție. Dacă $a = \cos \frac{\pi}{2n} + i \sin \frac{\pi}{2n}$, atunci |a| = 1 și $a^n = i$. Deducem

$$i-1 = a^n - 1 = (a-1)(a^{n-1} + a^{n-2} + \dots + 1),$$

Problema 4. Fie A şi B două mulțimi finite. Să se determine numărul de funcții $f:A\to A$ cu proprietatea că există două funcții $g:A\to B$ şi $h:B\to A$ astfel încât $g(h(x))=x,\ \forall x\in B$ şi $h(g(x))=f(x),\ \forall x\in A.$

Soluție. Fie f, g, h funcții cu proprietățile din enunț. Din condiția $g \circ h = 1_B$, deducem că g e surjectivă și h e injectivă. Cum și $f = h \circ g$, rezultă că $|B| = |\text{Im} f| \le |A| \dots 2p$

Observăm că f(f(x)) = h(g(h(g))) = h(g(x)) = f(x), deci, pentru $y \in \text{Im} f$, f(y) = y. Astfel, orice funcție cu proprietatea din enunț are forma

$$f(x) = \begin{cases} x, & \text{dacă } x \in \text{Im} f \\ \phi(x), & \text{dacă } x \in A \setminus \text{Im} f \end{cases}$$

unde $\phi: A \setminus \operatorname{Im} f \to \operatorname{Im} f$ e o funcție arbitrară.

Fie $A' \subseteq A$, astfel ca |A'| = |B| (în ipoteza $|B| \le |A|$). Definim

$$f(x) = \begin{cases} x, & \text{dacă } x \in A' \\ \phi(x), & \text{dacă } x \in A \setminus A' \end{cases}$$

Observăm că ${\rm Im} f=A'$ și arătăm că f are proprietatea din enunț. Fie $h:B\to A'\subseteq A$ o bijecție arbitrară și $g:A\to B$ definită prin

$$g(x) = \begin{cases} h^{-1}(x), & \operatorname{dacă} x \in A' \\ h^{-1}(\phi(x)), & \operatorname{dacă} x \in A \setminus A'. \end{cases}$$