DQ - Probability

jaemin.oh

2020년 12월 9일

Problem (2012.3).

- (a) $(\tau = n) = \{S_n > 0, S_k \le 0 \ \forall k < n\} \in \mathcal{B}$. And $\tau < \infty$. Thus the result follows.
- (b) Note that $S_{\tau} > 0$ and $\tau < \infty$ for all $\omega \in \Omega$. Thus, to S_{τ} be random variable, it is enough to check that $(S_{\tau} < a)$ is measurable for a > 0.

$$(S_{\tau} < a) = \bigcup_{n=1}^{\infty} \{ \tau = n \} \cap \{ S_n < a \}$$

Therefore S_{τ} is a random variable.

Problem (2012.9).

Since $P(N < \infty) = 1$, $X_{n \wedge N} \to X_N$ almost surely. Since $X_{n \wedge N}$ is uniformly bounded, bounded convergence theorem implies $X_{n \wedge N} \to X_N$ in L_1 . Thus

$$EX_{n\wedge N}\to EX_N.$$

But $EX_0 = EX_{n \wedge N}$ since $X_{n \wedge N}$ is a martingale. Therefore the result follows.