CS4054 Bioinformatics

Spring 2025 Rushda Muneer

Euler's Theorem

- In order for a graph to be Eulerian, the number of incoming edges at any node must be equal to the number of outgoing edges at that node.
- We define the **indegree** and **outdegree** of a node *v*
 - (denoted in(v) and out(v), respectively)
 - as the number of edges leading into and out of v.
- A node v is **balanced** if in(v) = out(v), and a graph is **balanced** if all its nodes are balanced.

Which one is balanced?

Balanced (left) and unbalanced (right) directed graphs.

For the (unbalanced) blue node v, in(v) = 1 and out(v) = 2, whereas for the (unbalanced) red node w, in(w) = 2 and out(w) = 1.

Euler's Theorem

- The graph in the figure is balanced but not Eulerian
- Because it is **disconnected**, meaning that some nodes cannot be reached from other nodes.
- In contrast, we say that a directed graph is **strongly connected** if it is possible to reach any node from every other node via a sequence of edges (called a **path**).
- An Eulerian graph must be both balanced and strongly connected.
- Euler's Theorem states that these two conditions are sufficient to guarantee that an arbitrary graph is Eulerian.
- Euler's Theorem: Every balanced, strongly connected directed graph is Eulerian.

Is it balanced?
Is it an Eulerian Graph?

• Take an arbitrary balanced, strongly connected network, place an ant on any starting node v_0 , and let it walk randomly.

- What must eventually happen when the ant "gets stuck"?
- Because the graph is balanced, the ant must eventually get stuck at v₀

Proof of Euler's Theorem via Eulerian Cycles

• If this cycle, which we call Cycle₀, is Eulerian, then we stop.

• Otherwise, move the ant to a node on Cycle₀ that still has unused

edges, called v_1 .

• Make the ant traverse all of Cycle₀ first, then explore unused edges.

• The same reasoning implies that the ant will eventually get stuck at v_1 , creating Cycle₁.

• We simply iterate this procedure until we are out of unused edges, when we have an Eulerian cycle!

• Traversing an Eulerian Cycle can guarantee the construction of a string path -> Genome

