Expansion of the Universe from the Big Bang: Simulation and Analysis

Malladi Aditya Naga Srinadh

July 30, 2025

Objective

The objective of this simulation is to model the evolution of the **cosmic scale factor** a(t) from just after the Big Bang up to far into the future. This is done by numerically solving the **Friedmann equation** for a flat Λ CDM universe. The result is a plot that reflects how the universe has expanded over time since t=0.

Theoretical Background

The first Friedmann equation for a spatially flat universe is:

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left(\Omega_r a^{-4} + \Omega_m a^{-3} + \Omega_\Lambda\right)$$

where:

• a(t): Scale factor

• H_0 : Hubble constant today ($\sim 70 \text{ km/s/Mpc}$)

• Ω_r : Radiation density ($\sim 8.24 \times 10^{-5}$)

• Ω_m : Matter density (~ 0.3)

• Ω_{Λ} : Dark energy density (~ 0.7)

Numerical Setup

• Hubble constant converted to Gyr⁻¹: $H_0 \approx 0.070 \, \text{Gyr}^{-1}$

• Time range: $t = 10^{-4}$ Gyr to 30 Gyr

• Initial scale factor: $a(t = 10^{-4}) = 10^{-8}$

 \bullet Solver: solve_ivp from scipy.integrate

Simulation Results

Figure 1: Evolution of the cosmic scale factor a(t) over time.

Key Features

- Early time (t < 1 Gyr): Slow expansion due to radiation domination.
- Middle era (1–9 Gyr): Matter dominates, slowing the expansion further.
- Late time (t > 9 Gyr): Accelerated expansion due to dark energy.
- Today: Scale factor a = 1 at $t \approx 13.8$ Gyr, matching the observed age of the universe.

Comparison with Standard Cosmology

Feature	Simulation Result	$\Lambda { m CDM}$ Prediction
Radiation era	$a(t) \propto t^{1/2}$	Matches early slope
Matter era	$a(t) \propto t^{2/3}$	Matches mid-range slope
Dark energy era	$a(t) \propto e^{Ht}$	Matches exponential rise
Age at $a = 1$	$\sim 13.8 \text{ Gyr}$	Consistent with observations
Future $a(t) > 1$	Continues to rise	Expected from theory

Table 1: Comparison of simulation with standard cosmological predictions

Interpretation by Era

1. Radiation Era (t < 0.05 Gyr)

High radiation energy density ($\rho \propto a^{-4}$) causes strong deceleration. Scale factor grows slowly as $a(t) \propto t^{1/2}$.

2. Matter Era $(0.05 \lesssim t \lesssim 9 \text{ Gyr})$

Dominated by dust-like matter; expansion slows due to gravity but not as strongly. Follows $a(t) \propto t^{2/3}$.

3. Dark Energy Era $(t \gtrsim 9 \text{ Gyr})$

Dark energy causes acceleration. The universe enters a de Sitter-like expansion $a(t) \propto e^{Ht}$.

Conclusion

This simulation accurately models the evolution of the scale factor across all major cosmological epochs. It reproduces expected behaviors:

- Slow growth during radiation domination
- Transition through matter domination
- Accelerated expansion due to dark energy

The plot and simulation are consistent with the Λ CDM model and support current understanding of cosmic history and future evolution.