End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

발표자 : 이기창

https://ratsgo.github.io

Introduction

- HMM, CRF 등 기존 모델들은 수작업 피처(hand-crafted features)에 의존
- Character-level CNN으로 뽑은 피처와 Word embedding을 결합
- 이들 임베딩을 Bi-directional LSTM 레이어에 넣고 여기에 Conditional Random Fields 적용
- 피처 엔지니어링 없이 end-to-end 모델을 구축했다는 점 어필

overall

Convolutional Neural Networks (character encoding)

 an effective approach to extract morphological information.
 dropout is applied before character embeddings are input to CNN

BLSTM

the LSTM's hidden state h_t takes information only from past, knowing nothing about the future \cdots

Then the (forwards and backwards) two hidden states are concatenated to form the final output.

Conditional Random Fields + Viterbi Decoding

For sequence labeling tasks, it is beneficial to consider the correlations between labels in neighborhoods and jointly decode the best chain of labels for a given input sentence.

Conditional Probability

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

• Inference (discriminative)

$$\hat{y} = \operatorname*{argmax}_{y} p(y|x)$$

Conditional Probability

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Inference (generative)

$$\hat{y} = \operatorname*{argmax} p(y|x)$$

$$= \operatorname*{argmax} \frac{p(x|y) \cdot p(y)}{p(x)}$$

$$= \operatorname*{argmax} \frac{p(x|y) \cdot p(y)}{p(x)}$$

$$= \operatorname*{argmax} p(x|y) \cdot p(y)$$

$$y$$

Discriminative vs Generative models

Hidden Markov Models

$$\hat{Y} = \underset{Y}{\operatorname{argmax}} p(Y|X)
= \underset{Y}{\operatorname{argmax}} p(X|Y) \cdot p(Y)
= \underset{Y}{\operatorname{argmax}} \prod_{i} p(X_{i}|Y_{i}) \prod_{i} p(Y_{i}|Y_{i-1})$$

현재 hidden state는 직전 상태에만 의존 현재 관측치는 현재 hidden state에만의존 Generative model

Maximum Entropy Markov Models

$$\hat{Y} = \underset{Y}{\operatorname{argmax}} p(Y|X)$$
 현재 state는 직전 상태에만 의존
 시퀀스 추정에 다양한 자질 활용 (수작업 구축)
 시퀀스 추정에 다항로지스틱 회귀 적용
 Discriminative model
$$= \underset{Y}{\operatorname{argmax}} \prod_{i} \underbrace{ \frac{\exp(\overrightarrow{w_y}^T f(X_i, Y_{i-1}))}{\sum_{y' \in Label} \exp(\overrightarrow{w_{y'}}^T f(X_i, Y_{i-1}))} }$$

Feature?

• 수작업 구축…노가다!

• CRF: MEMM + Label Bias 해결을 위한 Global normalize

Label Bias

preference of states with lower number of transition over others

관찰 State1에선 State2로 가려는 경향 State2에선 State2에 남으려는 경향

Label Bias

preference of states with lower number of transition over others

Most likely path

1 > 1 > 1 > 1 = 0.4 * 0.45 * 0.5 = 0.09

Other paths

1 > 1 > 2 > 2 = 0.4 * 0.55 * 0.3 = 0.066

 $1 \ge 2 \ge 1 \ge 2 = 0.6 \times 0.2 \times 0.5 = 0.06$

 $2 \ge 2 \ge 2 = 0.2 \times 0.3 \times 0.3 = 0.018$

Label Bias

transition 가짓 수가 적은 State1으로 label inference를 하려는 현상

• Solution : 전체 관측치/state에 대한 Global normalize states with lower number transitions do not have an unfair advantage

Local normalize

- (1) 분자: Observation1이 State1일 때 각 state로 전이할 스코어(2) 분모: Observation1이 각 State로 전이할 경우의 수는 state 종류 수,즉 레이블 가짓수이며, 이들 모든 스코어의 합
- (3) MEMM은 $P(Y_i|X_i,Y_{i-1})$ 계산 (time step i별로 확률 assign)

• Solution : 전체 관측치/state에 대한 Global normalize states with lower number transitions do not have an unfair advantage

Global normalize

- (1) 분자: Observation1~4의 State sequence가 1>2>2>3일 스코어 (2) 분모: Observation1~4가 가질 수 있는 state sequence 경우의 수는 5⁴가지이며 각각의 스코어의 합
- (3) CRF는 $P(Y_{1:n}|X_{1:n})$ 계산 (시퀀스 전체에 확률 assign)

세 기법 비교

HMM

현재 state는 직전 상태에 의존 현재 관측치는 현재 state에 의존 Generative model

$$\widehat{Y} = \underset{Y}{\operatorname{arg max}} P(Y|X)$$

$$= \underset{Y}{\operatorname{arg max}} \prod_{i} P(X_{i}|Y_{i}) \prod_{i} P(Y_{i}|Y_{i-1})$$

MEMM

현재 state는 직전 상태에 의존 피처 구축시 다양한 자질 활용 (수작업) state 예측에 다항 로지스틱 적용 Discriminative model

$$\begin{split} \widehat{Y} &= \underset{Y}{\text{arg max}} \ P(Y|X) \\ &= \underset{Y}{\text{arg max}} \ \prod_{i} P(Y_{i}|X_{i},Y_{i-1}) \\ &= \underset{Y}{\text{arg max}} \ \prod_{i} \frac{S(Y_{i}|X_{i},Y_{i-1})}{\sum_{Y' \in \mathcal{L}} S(Y_{i}'|X_{i},Y_{i-1}')} \end{split}$$

$$\text{Time step별로 확률 assign}$$

분자 직전 레이블이 Y_{i-1} 일 때 X_i 의 레이블이 Y_i 일 스코어 분모 Y_{i-1} 에서 Y_i 으로 전이할 수 있는 모든 경우 $(\mathcal{L}$ =레이블 종류)의 수에 해당하는 스코어 합

CRF

현재 state는 직전 상태에 의존 피처 구축시 다양한 자질 활용 (수작업) state 예측에 다항 로지스틱 적용 state sequence 확률을 global normalize Discriminative model

$$\widehat{Y} = \underset{Y}{\operatorname{arg max}} P(Y|X)$$

$$= \underset{Y}{\operatorname{arg max}} \frac{\prod_{i} s(Y_{i}|X_{i}, Y_{i-1})}{\sum_{Y' \in \psi} \prod_{i} s(Y'_{i}|X_{i}, Y'_{i-1})}$$

시퀀스 전체에 확률 assign

분자 X_{i-1}, X_i, X_{i+1} 의 시퀀스 레이블이 Y_{i-1}, Y_i, Y_{i+1} 일 스코어 분모 X_{i-1}, X_i, X_{i+1} 가 가질 수 있는 모든 경우의 시퀀스(ψ) 에 해당하는 스코어의 합

• CRF with deep learning (논문에 나온 수식)

• Tensorflow 구현

$$p(y|X) = \frac{e^{s(X,y)}}{\sum_{\tilde{y} \in Y_X} e^{s(X,\tilde{y})}}$$

$$\log p(y|X) = s(X,y) - \log \sum_{\tilde{y} \in Y_X} s(X,\tilde{y})$$

Global normalize = 분모에 가능한 모든 경우의 시퀀스 고려

• Tensorflow 구현

$$s(X,y) = \sum_{i=0}^{n} A_{y_i,y_{i+1}} + \sum_{i=1}^{n} P_{i,y_i}$$

Binary scores Unary scores $= y_i$ 에서 y_{i+1} 로 전이할 점수 = i번째 레이블이 y_i 일 점수

• s(X, y)

$$s(X,y) = \sum_{i=0}^{n} A_{y_i,y_{i+1}} + \sum_{i=1}^{n} P_{i,y_i}$$

Binary scores Unary Scores

$$1 + 10 + 4 + 3 + 2 + 11 + 0 = 31$$

• P = Unary scores

예시를 위한 가정

NER 문제, 태그 종류는 3가지 Max_sequence_length(배치 데이터의 최대 토큰 길이) = 4 Seqeunce_length(현재 데이터의 토큰 길이)=3

of tags
$$P = W^{T}Z + b = \max_{\substack{\text{Seq len} \\ \text{통과한 벡터}}} | 5 \quad 1 \quad -1 \\ | 1 \quad 3 \quad 1 \\ | -1 \quad 4 \quad -1 \\ | 0 \quad 0 \quad 0 \\ | \text{padding}$$

 5
 1
 -1
 문장의 1번째 단어에 대한 각 태그별 Unary score

 1
 3
 1

 -1
 4
 -1

 0
 0
 0

$$Y = [1,2,2,0]$$
 정답 품사 시퀀스
$$\sum_{i=1}^{n} P_{i,y_i} = P_{1,y_1=1} + P_{2,y_2=2} + P_{3,y_3=2} + P_{4,y_4=0}$$
$$= 5 + 3 + 4 + 0 = 12$$

• A = Binary scores

예시를 위한 가정

NER 문제, 태그 종류는 3가지 Max_sequence_length(배치 데이터의 최대 토큰 길이) = 4 Seqeunce_length(현재 데이터의 토큰 길이)=3

prev tag

$$A = \begin{array}{c} curr \\ tag \end{array} \begin{bmatrix} -3 & 5 & -2 \\ 3 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

 $A = \begin{bmatrix} -3 & 5 & -2 \\ 3 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ # of tags 크기의 정방행렬을 랜덤 초기화 후 학습 직전 단어가 태그 ID=2이고 현재 단어가 태그 ID=3일 때 Bianry score

$$Y = [1,2,2,0]$$
 정답 품사 시퀀스

$$\sum_{i=0}^{n} A_{y_i,y_{i+1}} = A_{y_0,y_1=1} + A_{y_1=1,y_2=2} + A_{y_2=2,y_3=2} + A_{y_3=2,y_4}$$

$$= 3 + 4 = 7$$

- Global Normalize
 - → 모든 경우의 수(27가지)에 대해 sequence score s(X,y)를 구한다

Global Normalize


```
f crf log norm(inputs, sequence lengths, transition params);
first_input = array_ops.slice(inputs, [0, 0, 0], [-1, 1, -1])
first input = array ops.squeeze(first input, [1])
def _single_seq_fn():
 return math_ops.reduce_logsumexp(first_input, [1])
def _multi_seq_fn():
  rest_of_input = array_ops.slice(inputs, [0, 1, 0], [-1, -1, -1])
  forward_cell = CrfForwardRnnCell(transition_params)
  _, alphas = rnn.dynamic_rnn(
      cell=forward cell,
             rest_of_input,
               tengin=sequence_lengths - 1,
      initial state=first input,
      dtvpe=dtvpes.float32)
  log_norm = math_ops.reduce_logsumexp(alphas, [1])
  return log_norm
max_seq_len = array_ops.shape(inputs)[1]
return control_flow_ops.cond(pred=math_ops.equal(max_seq_len, 1),
                             true_fn=_single_seq_fn,
                             false_fn=_multi_seq_fn)
```

```
class CrfForwardRnnCell(rnn_cell.RNNCell):

def __init__(self, transition_params):
    self._transition_params = array_ops.expand_dims(transition_params, 0)
    self._num_tags = transition_params.get_shape()[0].value

@property
def state_size(self):
    return self._num_tags

@property
def output_size(self):
    return self._num_tags

def __call__(self, inputs, state, scope=None):
    state = array_ops.expand dims(state, 2)
    transition_scores = state + self._transition_params
    inew_alphas = inputs + math_ops.reduce_logsumexp(transition_scores, [1])
    return new_alphas, new_alphas
```

- Global Normalize
 - → 텐서플로우 구현? RNN!

$$\begin{bmatrix} 1 & 3 & 2 \\ 1 & 3 & 2 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 7 & 6 \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{bmatrix} = \begin{bmatrix} 6 & 10 & 8 \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{bmatrix} \rightarrow \begin{bmatrix} 24 & \circ & \circ \end{bmatrix}$$

Previous alphas=state =Binary Scores

Expand_dim된 Transition Params


```
class CrfForwardRnnCell(rnn_cell.RNNCell):
 def init (self, transition params):
   self._transition_params = array_ops.expand_dims(transition_params, 0)
   self._num_tags = transition_params.get_shape()[0].value
 @property
 def state_size(self):
   return self._num_tags
 @property
 def output_size(self):
   return self._num_tags
 def call (self, inputs, state, scope=None):
  state = array ops.expand dims(state, 2)
   transition_scores = state + self._transition_params
   new_alphas = inputs + math_ops.reduce_logsumexp(transition_scores, [1])
   return new_alphas, new_alphas
```

• 학습 : 아래 log likelihood 최대화

$$\log p(y|X) = s(X,y) - \log \sum_{\tilde{y} \in Y_X} s(X,\tilde{y})$$

→ 정답 시퀀스 y의 sequence score s(X, y)를 높이고 나머지 경우에 해당하는 sequence score를 낮춘다

• 텐서플로우 구현

scores : Bi-LSTM forward/backward output를 concat한뒤 affine transformation log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(scores, labels, sequence_lengths) loss = tf.reduce_mean(-log_likelihood)

- 디코딩 전략 (inference에서만 적용)
- Forward computation

각 time step, state별로 최대 소코어를 내는 path를 모두 찿아놓는다

Backtrace

미리 구해놓은 path들 가운데 가장 높은 시퀀스를 택한다

Backtrace

• Tensorflow (inference용 numpy)

```
def viterbi_decode(score, transition_params):
    trellis = np.zeros_like(score)
    backpointers = np.zeros_like(score, dtype=np.int32)
    trellis[0] = score[0]

for t in range(1, score.shape[0]):
    v = np.expand_dims(trellis[t - 1], 1) + transition_params
    trellis[t] = score[t] + np.max(v, 0)
    backpointers[t] = np.argmax(v, 0)

viterbi = [np.argmax(trellis[-1])]
    for bp in reversed(backpointers[1:]):
        viterbi.append(bp[viterbi[-1]])
        viterbi.reverse()

viterbi_score = np.max(trellis[-1])
    return viterbi, viterbi_score
```

Word Embedding

- (1) GloVe: 위키피디아, 100차원
- (2) Senna: 위키피디아 + 로이터 말뭉치, 50차원
- (3) Word2Vec: 구글 뉴스, 300차원
- (4) Random : uniformly random $\left[-\sqrt{3/dim},\sqrt{3/dim}\right]$ 100차원

Character Embedding

uniformly random $\left[-\sqrt{3/dim},\sqrt{3/dim}\right]$, 30차원

Hyper-parameters

Layer	Hyper-parameter	POS	NER
CNN	window size	3	3
CIVIN	number of filters	30	30
	state size	200	200
LSTM	initial state	0.0	0.0
	peepholes	no	no
Dropout	dropout rate	0.5	0.5
	batch size	10	10
	initial learning rate	0.01	0.015
	decay rate	0.05	0.05
	gradient clipping	5.0	5.0

Table 1: Hyper-parameters for all experiments.

Early Stopping

50에폭 언저리에서 valid 셋 점수가 베스트일 경우

Data Sets (POS / NER)

Dataset		WSJ	CoNLL2003
Train	SENT	38,219	14,987
Train	TOKEN	912,344	204,567
Dev	SENT	5,527	3,466
	TOKEN	131,768	51,578
Test	SENT	5,462	3,684
	TOKEN	129,654	46,666

Table 2: Corpora statistics. SENT and TOKEN refer to the number of sentences and tokens in each data set.

• Main Results : 당시 SOTA

Model	Acc.
Giménez and Màrquez (2004)	97.16
Toutanova et al. (2003)	97.27
Manning (2011)	97.28
Collobert et al. (2011) [‡]	97.29
Santos and Zadrozny (2014) [‡]	97.32
Shen et al. (2007)	97.33
Sun (2014)	97.36
Søgaard (2011)	97.50
This paper	97.55

Table 4: POS tagging accuracy of our model on test data from WSJ proportion of PTB, together with top-performance systems. The neural network based models are marked with ‡.

Model	F1
Chieu and Ng (2002)	88.31
Florian et al. (2003)	88.76
Ando and Zhang (2005)	89.31
Collobert et al. (2011) [‡]	89.59
Huang et al. (2015) [‡]	90.10
Chiu and Nichols (2015) [‡]	90.77
Ratinov and Roth (2009)	90.80
Lin and Wu (2009)	90.90
Passos et al. (2014)	90.90
Lample et al. (2016) [‡]	90.94
Luo et al. (2015)	91.20
This paper	91.21

Table 5: NER F1 score of our model on test data set from CoNLL-2003. For the purpose of comparison, we also list F1 scores of previous top-performance systems. ‡ marks the neural models.

• CRF 효과 : 안 쓴거보다는 약간 향상

	POS		NER							
	Dev	Test	Dev			Test				
Model	Acc.	Acc.	Prec.	Recall	F1	Prec.	Recall	F1		
BRNN	96.56	96.76	92.04	89.13	90.56	87.05	83.88	85.44		
BLSTM	96.88	96.93	92.31	90.85	91.57	87.77	86.23	87.00		
BLSTM-CNN	97.34	97.33	92.52	93.64	93.07	88.53	90.21	89.36		
BRNN-CNN-CRF	97.46	97.55	94.85	94.63	94.74	91.35	91.06	91.21		

Table 3: Performance of our model on both the development and test sets of the two tasks, together with three baseline systems.

• CRF 효과 : UNK 토큰에 강건

	POS							
	Dev				Test			
	IV	OOTV	OOEV	OOBV	IV	OOTV	OOEV	OOBV
LSTM-CNN	97.57	93.75	90.29	80.27	97.55	93.45	90.14	80.07
LSTM-CNN-CRF	97.68	93.65	91.05	82.71	97.77	93.16	90.65	82.49
				N	ER			
		Г	Dev			Т	est	
	IV	OOTV	OOEV	OOBV	IV	OOTV	OOEV	OOBV
LSTM-CNN	94.83	87.28	96.55	82.90	90.07	89.45	100.00	78.44
LSTM-CNN-CRF	96.49	88.63	97.67	86.91	92.14	90.73	100.00	80.60

임베딩 또는 학습말뭉치에 없는 단어

Table 9: Comparison of performance on different subsets of words (accuracy for POS and F1 for NER).

• OOV에 대한 POS, ENTITY 예측 정확도가 CRF를 썼을 때 약간 상승

• 워드 임베딩 효과: GloVe가 좋음, POS에서는 pretrain 안해도 굿

Embedding	Dimension	POS	NER	
Random	100	97.13	80.76	
Senna	50	97.44	90.28	
Word2Vec	300	97.40	84.91	
GloVe	100	97.55	91.21	

Table 6: Results with different choices of word embeddings on the two tasks (accuracy for POS tagging and F1 for NER).

• Dropout 효과: significant improvements

	POS				NER	
	Train	Dev	Test	Train	Dev	Test
No			97.11	99.97	93.51	89.25
Yes	97.86	97.46	97.55	99.63	94.74	91.21

Table 7: Results with and without dropout on two tasks (accuracy for POS tagging and F1 for NER).