Michel GALLIEN mars 2021 1/2

10 - Le convertisseur ADC ~ Lecture de valeurs analogiques

1. Généralités:

Un microcontrôleur est spécialisé pour le traitement de valeur numérique. Lorsque l'on doit prendre en compte une mesure évoluant dans le temps en amplitude il est nécessaire de quantifier cette valeur à un instant donné. Le convertisseur Analogique-Digital (CAN ou ADC) permet de réaliser cette acquisition et cette transformation.

2. Les différentes méthodes de conversion :

a. Le convertisseur à simple rampe.

On envoie des impulsions à un compteur qui alimente un convertisseur Numérique-Analogique. Lorsque la sortie de ce convertisseur atteint la valeur mesurée on arrête le compteur et sa valeur correspond à la valeur numérique du signal mesuré.

→ Inconvénients :

- La mesure dépend de la stabilité de l'horloge du compteur.
- Il faut avoir un comparateur précis et sans dérive en température.
- Le temps de conversion est variable et dépend de la valeur à mesurer.

→ Avantage :

- Cette méthode est simple et nécessite peu de composants.

b. Le convertisseur à double rampe :

La mesure se fait en 2 phases ; on compte le temps de chacune des phases :

On charge un condensateur par un courant constant proportionnel à la tension à mesurer ;

On décharge le condensateur par un courant de référence.

Le rapport des temps de ces 2 phases correspond au rapport entre la mesure et la référence.

→ Inconvénient :

- Cette méthode est lente (qq 10ms), donc peu employée.
- Il faut avoir une capacité de bonne stabilité.

→ Avantage:

- On s'affranchie de la dérive des composants. (rapport de 2 mesures)
- La précision des résultats est importante (jusqu'à 16bits)

c. Le convertisseur à approximations successives (SAR) :

Un séquenceur utilise le processus de dichotomie (partage en 2, successivement).

Comme le convertisseur à simple rampe un compteur est couplé à un CNA.

La première étape sera de comparer la mesure avec la valeur du CNA à $\frac{1}{2}$ de la valeur du compteur ce qui correspondra au bit MSB du résultat ;

Puis ensuite ajuster successivement les comparaisons vers le LSB en tenant compte du résultat de la comparaison ; si > le bit =1 ou < le bit =0.

Le nombre de comparaison sera égal à la précision recherchée, donc un temps de conversion fixe.

→ Inconvénient :

- On est limité à une résolution de 12bits (plus possible mais couteux).

→ Avantage

- Temps de conversion identique quelque soit la mesure de l'ordre 10μs.

d. Le convertisseur Sigma-Delta.

Un comparateur est utilisé pour convertir sur 1 bits (0 ou 1) la différence (**Delta**) entre la mesure et le résultat de la conversion donnera 0=plus petit et 1=plus grand.

Le résultat de la comparaison entre dans un filtre appelé Décimateur qui somme (**Sigma**) les échantillons du signal d'entrée. Ceci crée un système asservi qui fait osciller la valeur intégrale du signal de sortie autour de la mesure.

→ Avantage:

- Grande précision (16-32bits) pour une bande passante modérée.

e. Le convertisseur Flash.

D'autres méthodes encore plus rapides et spécialement adaptées au traitement vidéo et des images ne seront pas vues dans ce chapitre.

Michel GALLIEN Fiche de cours mars 2021 2/2

10 – Le convertisseur ADC ~ Lecture de valeurs analogiques

3. Mots Clés:

- Différent systèmes de conversion
- Fonctionnement Simple / double rampe
- Convertisseur SAR
- Échantillonnage
- Quantification
- Moyenne glissante