End Time

Time Limit: 1000 ms Memory Limit: 512 MB

题目背景

End Time

Every "END" is a new "BEGINNING"

题目描述

你有n 个点排成一个环,第i 个点和第i mod n+1 个点间有一条长度为1 的边。废机油偷偷选了两个点x,y,然后在x,y之间加了一条长度为1 的边。你每次可以选择两个点(u,v),废机油将会从u 开始推箱子到v,并且他会告诉你箱子走的最短路径距离。由于废机油推太多次箱子后会获得72 分,所以他最多只能推40 次箱子。你需要在推40 次箱子之内找到废机油偷偷选的两个点x,y。

交互库为非自适应的,即答案的两个点是初始选好的,而非随着你的询问而更新。

交互格式

你不需要实现,也不应该实现主函数。

你可以调用的交互库函数:

int Query(int x, int y);

当 $1 \le x,y \le n$ 时,会返回 x,y 在图上的最短路。否则会返回 -1 (也会计入调用次数)。

你需要实现的交互库函数:

pair<int, int> push_box(int n);

给定参数 n, 返回你猜的初始两个点,可以以任意顺序返回。保证每组数据只会调用一次。

输入格式

样例交互库输入格式:

一行三个正整数 T, n, seed。表示数据组数 , 最大的 n 和随机种子。

输出格式

样例交互库输出格式:

- Wrong Answer, you got 72 pts. 表示你返回的答案错误。
- Operations Limit Exceeded, you got 8 pts. 表示你调用了超过 40 次 Query。
- Accepted, the boxes can be pushed! 表示你的答案正确,并且调用交互库次数 ≤ 40 。

输入输出样例 #1

输出#1

```
Query(2, 4): 2
Query(1, 3): 1
ok 1 3
```

说明/提示

本题使用子任务捆绑。

对于所有测试数据,保证 $1 \le T \le 10^3, 4 \le n \le 10^9$ 。 **保证** x, y **不是相邻的两点**。

子任务编号	$n \le$	分值	特殊性质
1	9	20	无
2	1000	40	无
3	10^9	10	保证 $x=y+2$
4	10^9	30	无

Oshama Scramble!

Time Limit: 1000 ms Memory Limit: 512 MB

题目背景

牛奶

每天一杯奶,强壮音游人!

题目描述

给定一棵大小为 n 的二叉树,满足小根堆的性质,编号为 $1\sim n$ 。问有多少个长为 n 的排列 p 使得依次 把 p_1,p_2,\ldots,p_n 依次插入斜堆后得到的形态为给定的二叉树。你只需要输出排列个数对 P 取模后的结果。

斜堆的代码如下:

```
void ins(int x, int &u){
    if(!u) return u = x, void();
    if(x < u){
        a[x][0] = u, u = x;
        return;
    }
    swap(a[u][0], a[u][1]);
    ins(x, a[u][0]);
}</pre>
```

即,插入一个数 x 时,若 rt=0 或 x< rt,就把 rt 当成 x 的左子树且把 x 当成新的根。否则交换根的左右子树,然后递归地插到根的新的左子树中。

不保证 P 为质数。

输入格式

第一行两个正整数 n, P。

接下来 n 行,每行两个整数 ls_i, rs_i ,表示 i 的左儿子和右儿子,若为 0 则表示空。保证一定构成一棵二叉树,且满足小根堆的性质。

输出格式

一行一个整数,表示答案对P取模的结果。

输入输出样例#1

输入#1

3 5

2 0

3 0

0 0

输出#1

2

说明/提示

本题使用子任务捆绑。

对于所有的测试数据,保证 $1 \le n \le 10^6, 2 \le P \le 10^9$ 。

子任务编号	$n \le$	分值	特殊性质
1	10	20	无
2	10^6	20	保证所有 $rs_i=0$
3	10^6	20	保证给出的二叉树为完全二叉树
4	10^6	40	无

你绝赞 miss 了。

系ぎて

Time Limit: 1000 ms Memory Limit: 512 MB

题目背景

系ぎて

我治好了抑郁症。

题目描述

你有 n 个箱子排成一行,每个箱子有个权值 a_i 。你要把这行箱子中的若干个推到第二行,推完后定义 s_1,s_2 为这两行的箱子的权值从左到右顺序排列组成的序列。你要使得 $s_1 \leq s_2$ 的情况下最小化 s_2 的字 典序。问最小的 s_2 。

定义两个长为 len_1, len_2 的序列 $p_1 < p_2$, 当且仅当 $(\exists i \leq \min(len_1, len_2), \forall j < i, p_{1,j} = p_{2,j}, p_{1,i} < p_{2,i}) \lor (len_1 < len_2 \land \forall i \leq len_1, p_{1,i} = p_{2,i}) .$

输入格式

第一行一个正整数T,表示测试数据个数。

对于每组测试数据:

- 第一行一个正整数 n。
- 第二行 n 个正整数 a_1, a_2, \ldots, a_n , 表示权值序列。

输出格式

对于每组测试数据:

- 第一行一个整数 m , 表示 $|\min s_2|$ 。
- 第二行 m 个正整数 $s_{2,1}, s_{2,2}, \ldots, s_{2,m}$.

输入输出样例#1

输入#1

```
5
5
3 1 2 3 2
3
1 1 2
3
3 3 3 3
5
1 3 1 3 1
5
2 2 1 3 3
```

输出#1

```
1
3
3
1 1 2
2
2
3 3
1 3 1
4
2 1 3 3
```

说明/提示

本题使用子任务捆绑。

对于所有的测试数据,保证 $1 \le a_i \le n \le 2 \times 10^4$, $1 \le \sum n \le 2 \times 10^4$ 。

子任务编号	$n \leq$	分值	特殊性质
1	20	15	无
2	$2 imes10^4$	10	保证所有 a_i 相等
3	100	25	无
4	500	25	无
5	$2 imes 10^4$	25	无

welcome to maimaiDX!

树上内邻域跳跃

Time Limit: 4000 ms Memory Limit: 512 MB

题目描述

给定一棵大小为n的有根树,点的编号1到n,根节点为1号节点。

点 i 有一个二元组 (dep_i, str_i) ,其中 dep_i 表示 i 到根的距离 , str_i 表示从根节点到 i 的简单路径上的所有节点的编号顺次连接组成的一个**字符集为点的编号**的字符串。

定义 f(x,k) 的计算方式如下:

- 1. 求出 (x,k) 内邻域内的点的编号集合 S。
- 2. 将 S 中的点按照其二元组升序排序(即以 dep 为第一关键字,以 str 的字典序为第二关键字从小 到大排序),排序后的点记为 $c_1,c_2,\ldots,c_{|S|}$ 。
- 3. f(x,k) 的值即为 $\sum_{i=1}^{|S|-1} \mathrm{Dis}(c_i,c_{i+1})$ 。

求 $\oplus_{i=1}^n ((\sum_{j=0}^{n-1} f(i,j)) \mod 2^{32})$ 的值。

定义 u 到 v 的距离 ,即 $\mathrm{Dis}(u,v)$,为从 u 到 v 的树上唯一简单路径上的边数。

定义 (u,d) 内邻域表示树上 u 子树内 (包括 u) 与 u 的距离 $\leq d$ 的点集。

输入格式

第一行输入两个整数 id,n , 其中 id 为子任务编号 , 和四个非负 int 范围内的整数 seed,A,B,C。 选手需要用如下代码生成 fa 数组 , 表示每个点的父亲。

```
mt19937 g(seed);
fa[1] = 0;
for(int i = 2; i <= n; ++i) {
   int l = max(1, (i - A) / C), r = max(1, (i - B) / C);
   fa[i] = g() % (r - l + 1) + l;
}</pre>
```

输出格式

一行一个整数表示答案。

输入#1

```
0 7 3 10 1 1
```

输出#1

48

说明/提示

【样例解释#1】

每个点的二元组如下所示(其中|仅作为字符串中字符的分隔方式):

节点编号	二元组
1	(0,1)
2	(1,1 2)
3	(2,1 3)
4	$(2,1 \mid 2 \mid 4)$
5	$(3,1 \mid 2 \mid 4 \mid 5)$
6	(3,1 6)
7	(4,1 7)

以 f(1,3) 为例,其 c 序列为 1,2,3,6,7,4,5,故 $f(1,3)=\mathrm{Dis}(1,2)+\mathrm{Dis}(2,3)+\mathrm{Dis}(3,6)+\mathrm{Dis}(6,7)+\mathrm{Dis}(7,4)+\mathrm{Dis}(4,5)=11.$

【数据范围】

本题使用子任务捆绑。

对于所有的测试数据,满足 $1 \leq n \leq 6 \times 10^6$, $fa_i < i$ 。

子任务编号	分值	$n \leq$	树的形态
1	5	1000	А
2	5	1000	В
3	5	1000	С
4	5	$3 imes10^4$	А
5	5	$3 imes 10^4$	В
6	5	$3 imes 10^4$	С
7	10	$3 imes 10^4$	D
8	20	$4 imes10^5$	D
9	10	$6 imes 10^6$	А
10	10	$6 imes 10^6$	В
11	5	$6 imes 10^6$	С
12	15	$6 imes 10^6$	D

上表"树的形态"一栏中:

• A: $A=10^9, B=1, C=1$.

ullet B: $A=0, B=0, 2 \leq C_{ullet}$

 $\bullet \ \mathsf{C} : A = \lfloor \sqrt{n} \rfloor, B = \lfloor \sqrt{n} \rfloor, C = 1.$

• D:代表树的形态无特殊限制。