Notes on atomic physics

Anton Ljungdahl, anton.ljungdahl@fysik.su.se

August 21, 2019

Contents

1	Angular momentum		1
	1.1	Commutation relations	1

1 Angular momentum

1.1 Commutation relations

We consider a point particle (say an electron) whose motion can be described by some coordinate system. For simplicity let's say cartesian coordinates, so we can describe the particle as having position $\mathbf{r}=(x_1,x_2,x_3)$ and linear momentum $\mathbf{p}=(p_1,p_2,p_3)$ at any given time. We define orbital angular momentum in quantum mechanics in the same way we do in classical physics. The orbital angular momentum I about the origin of the chosen coordinate system is given by the cross-product

$$1 = \mathbf{r} \times \mathbf{p}. \tag{1.1}$$

Looking at this definition component-wise we would write

$$l_i = x_i p_k - x_k p_i, (1.2)$$

where i, j, k are cyclic permutations of 1, 2, 3. We will now quickly see the big difference from classical physics, since in quantum mechanics we have the canonical commutation relation (ref maybe?)

$$\left[x_{i}, p_{j}\right] = i\hbar \delta_{ij},\tag{1.3}$$

between the position and momentum operators. While x_j and p_k certainly commute for $j \neq k$ we will see how the *different components of* 1 do not! Let us calculate the commutator between components l_i and l_k :

$$[l_i, l_k] = l_i l_k - l_k l_i = (x_j p_k - x_k p_j) (x_i p_j - x_j p_i).$$
 (1.4)