

Linear Regression

- Young Jo Choi
- Department of Digital Analytics

Simple regression problem

- $E(Y|x) = \mu(x)$ is a linear function of x.
- The data points are $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- We have linear model, $Y_i = \alpha_1 + \beta x_i + \varepsilon_i$
- (it could be assumed to be equal to forms of $\alpha + \beta x$, $\alpha + \beta x + \gamma x^2$, $\alpha e^{\beta x}$,...)


```
import pandas as pd
    import statsmodels.api as sm
    iris_df = pd.DataFrame(iris.data, columns=['y','b','c','x'])
    iris_df = iris_df.iloc[:30]
    model = sm.OLS.from_formula('y~x', iris_df)
    result = model.fit()
    print(result.summary())
C→
                             OLS Regression Results
    _____
    Dep. Variable:
                                        R-squared:
                                                                       0.181
                                   OLS Adj. R-squared:
                                                                       0.152
    Model:
                         Least Squares F-statistic:
                                                                       6.178
    Method:
    Date:
                       Wed, 07 Jun 2023 Prob (F-statistic):
                                                                      0.0192
    Time:
                              01:35:32 Log-Likelihood:
                                                                     -9.4236
    No. Observations:
                                    30 AIC:
                                                                       22.85
    Df Residuals:
                                        BIC:
                                                                       25.65
    Df Model:
    Covariance Type:
                             nonrobust
                           std err
                                                 P>|t|
                                                            [0.025]
                                                                      0.975
                                                            4.295
                  4.6394
                             0.168
                                      27.628
                                                                       4.983
    Intercept
                  1.5701
                             0.632
                                       2.486
                                                 0.019
                                                            0.276
                                                                       2.864
    Omnibus:
                                 1.473 Durbin-Watson:
                                                                       2.015
    Prob(Omnibus):
                                 0.479 Jarque-Bera (JB):
                                                                       1.068
                                 0.458 Prob(JB):
                                                                       0.586
    Skew:
                                 2.872
                                        Cond. No.
                                                                        10.7
    Kurtosis:
```

•
$$Y_i = \alpha_1 + \beta x_i + \varepsilon_i$$
, $\varepsilon \sim N(0, \sigma^2)$

• Let $\alpha_1 = \alpha - \beta \bar{x}$

• In order to find proper α, β, σ^2 , since $Y_i \sim N(\alpha + \beta(x_i - \overline{x}), \sigma^2)$

$$L(\alpha, \beta, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{[y_{i} - \alpha - \beta(x_{i} - \bar{x})]^{2}}{2\sigma^{2}}\right)$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n/2} \exp\left\{-\frac{\sum_{i=1}^{n} [y_{i} - \alpha - \beta(x_{i} - \bar{x})]^{2}}{2\sigma^{2}}\right\}$$

• maximize $L(\alpha, \beta, \sigma^2)$

= minimize
$$-\ln L(\alpha, \beta, \sigma^2) = \frac{n}{2}\ln(2\pi\sigma^2) + \frac{\sum_{i=1}^{n}[y_i - \alpha - \beta(x_i - \bar{x})]^2}{2\sigma^2}$$

- Select α and β to minimize, so we find the two first-order partial derivatives
- $H(\alpha, \beta) = \sum_{i=1}^{n} [y_i \alpha \beta(x_i \bar{x})]^2$

•
$$\frac{\partial H(\alpha,\beta)}{\partial \alpha} = 2\sum_{i=1}^{n} [y_i - \alpha - \beta(x_i - \bar{x})](-1) = 0 \rightarrow \hat{\alpha} = \overline{Y}$$

$$\bullet \frac{\partial H(\alpha,\beta)}{\partial \beta} = 2\sum_{i=1}^{n} [y_i - \alpha - \beta(x_i - \bar{x})][-(x_i - \bar{x})] = 0 \rightarrow \widehat{\beta} = \frac{\sum_{i=1}^{n} Y_i(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

• To find the maximum likelihood estimator of σ^2 ,

$$\frac{\partial \left[-\ln L(\alpha,\beta,\sigma^2)\right]}{\partial (\sigma^2)} = \frac{n}{2\sigma^2} - \frac{\sum_{i=1}^n \left[y_i - \alpha - \beta(x_i - \bar{x})\right]^2}{2(\sigma^2)^2} = 0 \rightarrow \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n \left[y_i - \widehat{\alpha} - \widehat{\beta}(x_i - \bar{x})\right]^2$$

- $\Leftrightarrow \mu_{Y|X} = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (X \mu_X)$
- $\hat{\alpha}$, $\hat{\beta}$, $\widehat{\sigma^2}$ are mutually independent.
- Maximum likelihood estimates of α , β are also called **least squares** estimates.

- $\frac{\partial H(\alpha,\beta)}{\partial \alpha} = 0 \rightarrow \sum_{i=1}^{n} y_i n\alpha \beta \sum_{i=1}^{n} (x_i \bar{x}) = 0$ since $\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \rightarrow \sum_{i=1}^{n} y_i - n\alpha = 0$, thus $\hat{\alpha} = \bar{Y}$
- $\frac{\partial H(\alpha,\beta)}{\partial \beta} = 0$ (With α replaced by \bar{y}) $\rightarrow \sum_{i=1}^{n} (y_i \hat{y}) (x_i \bar{x}) \beta \sum_{i=1}^{n} (x_i \bar{x})^2 = 0$ $\hat{\beta} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} y_i(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} (\leftarrow \sum_{i=1}^{n} \bar{y}(x_i - \bar{x}) = 0)$

Calculation

OLS Regression Results

Dep. Variable:	у			R-squ	ared:	0.181		
Model:	0LS			Adj.	R-squared:	0.152		
Method:		Least Squa	res	F-sta	tistic:	6.178		
Date:	₩e	d, 07 Jun 2	023	Prob	0.0192			
Time:		01:30	1:51	Log-L	ikelihood:		-9.4236	
No. Observation	ns:		30	AIC:			22.85	
Df Residuals:			28	BIC:			25.65	
Df Model:			1					
Covariance Type	e:	nonrob	ust					
	coef	std err		t	P> t	[0.025	0.975]	
Intercept	4.6394	0.168	27	'. 628	0.000	4.295	4.983	
Х	1.5701	0.632	2	. 486	0.019	0.276	2.864	
Omnibus:			473		n-Watson:		2.015	
Prob(Omnibus):			479		ie-Bera (JB):		1.068	
Skew:			458				0.586	
Kurtosis:		2.	872	Cond.	No.		10.7	
		=======				======	=======	

```
n = 30
p = 1
df = n-p-1

# beta
upper = 0
lower = 0
for i in range(n):
    iris_df_i = iris_df.iloc[i,:]
    upper += (iris_df_i['x']-iris_df['x'].mean())*iris_df_i['y']
    lower += (iris_df_i['x']-iris_df['x'].mean())**2
beta = upper/lower
print('beta : ',beta)

alpha = iris_df['y'].mean()
alpha_1 = alpha-beta*iris_df['x'].mean()
print('intercept : ',alpha_1)
```

beta: 1.570135746606322

intercept : 4.639366515837106

sigma_square : 0.10974057315233794

std_beta : 0.6316837699752129

Details

OLS Regression Results								
Dep. Variable: y			/ R-squ	uar	ed:			0.181
Model:		OLS	Adj.	R-	squared:			0.152
Method:		Least Squares	F-sta	at i	stic:			6.178
Date:	₩e	d, 07 Jun 2023	B Prob	(F	-statist	ic):		0.0192
Time:		01:30:51	Log-l	ik	-9.4236			
No. Observation	ns:	30	AIC:					22.85
Df Residuals:		28	BIC:					25.65
Df Model:		1						
Covariance Type	e:	nonrobust						
				==		_===		
	coef	std err	t		P> t		[0.025	0.975]
Intercept	4.6394	0.168	27.628		0.000		4.295	4.983
Х	1.5701	0.632	2.486		0.019		0.276	2.864
==========					======			
Omnibus:		1.473			Watson:			2.015 1.068
Prob(Omnibus):		0.479			Jarque-Bera (JB):			
Skew:		0.458			Prob(JB):			
Kurtosis:		2.872	? Cond	. N	ο.			10.7

• P-value

 $H_0: \beta_j = 0$ vs $H_1: \beta_j \neq 0$

(귀무가설 : Y에 끼치는 변수 X_i 의 영향이 없다. (↔ 대립가설 : 영향이 있다.))

• 95% confidence interval 확인

$$\widehat{\alpha} = \overline{Y}, \ \widehat{\beta} = \frac{\sum_{i=1}^{n} Y_i(x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- $\hat{\alpha}, \hat{\beta}$: normal distribution (linear function of independent and normally distributed random variables $Y_1, Y_2, ..., Y_n$)
- $E(\widehat{\alpha}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}\sum_{i=1}^{n}[\alpha + \beta(x_i \bar{x})] = \alpha$
- $Var(\widehat{\alpha}) = (\frac{1}{n})^2 \sum_{i=1}^n Var(Y_i) = \frac{\sigma^2}{n}$
- $E(\widehat{\beta}) = \frac{\sum_{i=1}^{n} (x_i \bar{x}) E(Y_i)}{\sum_{i=1}^{n} (x_i \bar{x})^2} = \frac{\sum_{i=1}^{n} (x_i \bar{x}) [\alpha + \beta (x_i \bar{x})]}{\sum_{i=1}^{n} (x_i \bar{x})^2} = \frac{\alpha \sum_{i=1}^{n} (x_i \bar{x}) + \beta \sum_{i=1}^{n} (x_i \bar{x})^2}{\sum_{i=1}^{n} (x_i \bar{x})^2} = \beta$

•
$$Var(\widehat{\beta}) = \sum_{i=1}^{n} \left[\frac{x_i - \bar{x}}{\sum_{j=1}^{n} (x_j - \bar{x})} \right]^2 Var(Y_i) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{[\sum_{i=1}^{n} (x_i - \bar{x})^2]^2} \sigma^2 = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

 $\hat{\alpha}, \hat{\beta} \vdash \alpha, \beta \supseteq$ unbiased estimators (maximum likelihood estimator)

• Let
$$\hat{Y}_i = \hat{\alpha} + \hat{\beta}(x_i - \bar{x})$$

$$\rightarrow Y_i - \hat{Y}_i = Y_i - \hat{\alpha} - \hat{\beta}(x_i - \bar{x})$$
: i-th residual $(=\varepsilon_i)$

• Square of normal distribution = chi-square with degree of freedom 1

Since
$$\frac{n(\widehat{\alpha}-\alpha)^2}{\sigma^2}$$
 and $\frac{(\widehat{\beta}-\beta)^2\sum_{i=1}^n(x_i-\bar{x})^2}{\sigma^2}$ have $\chi^2(1)$ (표준정규분포의 제곱)

$$\rightarrow \sum_{i=1}^{n} \frac{\{Y_i - \widehat{\alpha} - \widehat{\beta}(x_i - \bar{x})\}^2}{\sigma^2} = \frac{n\widehat{\sigma^2}}{\sigma^2} \sim \chi^2(n-2)$$
 Variance 의 정의

•
$$E(\hat{\beta}) = \beta$$
 • $Var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$

•
$$\frac{n\widehat{\sigma^2}}{\sigma^2} \sim \chi^2(n-2)$$

$$\rightarrow \frac{(\widehat{\beta} - \mathrm{E}(\widehat{\beta}))/\mathrm{s.e}(\widehat{\beta})}{\sqrt{\frac{n\widehat{\sigma^2}}{\sigma^2} \times \frac{1}{(n-2)}}} = \frac{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} (\frac{\widehat{\beta} - \beta}{\sigma})}{\sqrt{\frac{n\widehat{\sigma^2}}{\sigma^2} (n-2)}} \sim T \text{ with n-2 degrees of freedom}$$

→ p-value 계산하고 각 변수에 대한 귀무가설 검증 가능

(Z: 표준정규분포, V: 자유도가 ν 인 chi-square 분포 $\rightarrow \frac{Z}{\sqrt{V/\nu}}$ ~자유도가 ν 인 T 분포)

: $100(1-\gamma)\%$ confidence interval for β .

•
$$E(\hat{\alpha}) = \alpha$$
 • $Var(\hat{\alpha}) = \frac{\sigma^2}{n}$

•
$$\frac{(\widehat{\alpha} - E(\widehat{\alpha}))/s.e(\widehat{\alpha})}{\sqrt{\frac{n\widehat{\sigma^2}}{\sigma^2} \times \frac{1}{(n-2)}}} = \frac{\frac{\sqrt{n}(\widehat{\alpha} - \alpha)}{\sigma}}{\sqrt{\frac{n\widehat{\sigma^2}}{\sigma^2}(n-2)}} = \frac{\widehat{\alpha} - \alpha}{\sqrt{\frac{\widehat{\sigma^2}}{(n-2)}}} \sim T \text{ with n-2 degrees of freedom}$$

$$\rightarrow [\hat{\alpha} - t_{\frac{\theta}{2}}\sqrt{\frac{\hat{\sigma^2}}{(n-2)}}, \hat{\alpha} + t_{\frac{\theta}{2}}\sqrt{\frac{\hat{\sigma^2}}{(n-2)}}]$$
 $(\hat{\alpha} \pm t_{\gamma/2} \, s. \, e(\hat{\alpha})\sqrt{\frac{n}{(n-2)}}$ 로 대체 가능)

: $100(1-\theta)\%$ confidence interval for α

•
$$\frac{n\widehat{\sigma^2}}{\sigma^2} \sim \chi^2(n-2) \to \left[\frac{n\widehat{\sigma^2}}{\chi_{\frac{\theta}{2}}^2(n-2)}, \frac{n\widehat{\sigma^2}}{\chi_{1-\frac{\theta}{2}}^2(n-2)}\right]$$
: 100(1- θ)% confidence interval for σ^2

- 단순회귀이기 때문에 자유도가 n-2이지만 변수가 p개인 다항회귀라면 각 계수들은 자유도가 n-p-1인 T 분포를 따르게 됨
- T값에 각 $\hat{\alpha}$ 와 $\hat{\beta}$ 의 표준편차(* $\sqrt{n/(n-p-1)}$)를 곱하여 confidence interval 계산

Calculation

OLS Regression Results 0.181 Dep. Variable: R-squared: Model: OLS Adj. R-squared: 0.152 Method: Least Squares F-statistic: 6.178 Wed, 07 Jun 2023 Prob (F-statistic): Date: 0.0192 Time: 01:30:51 Log-Likelihood: -9.4236No. Observations: 30 AIC: 22.85 Df Residuals: BIC: 25.65 Df Model: Covariance Type: nonrobust [0.025 P>|t| 0.975] coef std err 0.168 4.295 4.983 4.6394 27.628 0.000 Intercept 1.5701 0.632 2.486 0.019 0.276 2.864 ______ Omnibus: 1.473 Durbin-Watson: 2.015 Prob(Omnibus): 0.479 Jarque-Bera (JB): 1.068 Skew: 0.458 Prob(JB): 0.586 2.872 Cond. No. 10.7 Kurtosis: ______

```
from scipy.stats import t

n = 30

p = 1

df = n-p-1

mean = beta

rv = t(df)

t_val = (beta / std_beta) / (n/df)**(1/2)

print('t&t:',t_val)

p_value = (1-rv.cdf(t_val))*2

print('p-value: ',p_value)

interval_length = rv.ppf(0.975) * (std_beta * (n/df)**(1/2))

print(f'confidence interval : [{mean-interval_length},{mean+interval_length}]')
```

t값: 2.4856357266673696 p-value: 0.01917203697222236 confidence interval: [0.27619020083295154.2.8640812923796926]

Prediction interval

- $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n) \rightarrow \text{estimate } \alpha, \beta / Y_{n+1} = \alpha + \beta(x_{n+1} \bar{x}) + \varepsilon_{n+1}$
- Let $W = Y_{n+1} \hat{\alpha} \hat{\beta}(x_{n+1} \bar{x}) \rightarrow E[W] = E[Y_{n+1}] \alpha \beta(x_{n+1} \bar{x}) = 0$
- $Var(W) = \sigma^2 + \frac{\sigma^2}{n} + \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2} (x_{n+1} \bar{x})^2 = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_{n+1} \bar{x})^2}{\sum_{i=1}^n (x_i \bar{x})^2}\right]$ ($Y_{n+1}, \hat{\alpha}, \hat{\beta}$ are independent)

•
$$T=\frac{Y_{n+1}-\widehat{\alpha}-\widehat{\beta}(x_{n+1}-\bar{x})\Big/\sigma\sqrt{[1+\frac{1}{n}+\frac{(x_{n+1}-\bar{x})^2}{\sum_{i=1}^n(x_i-\bar{x})^2}]}}{\sqrt{\frac{n\widehat{\sigma^2}}{(n-2)\sigma^2}}}$$
 with n-2 degrees of freedom,

$$(d = \sqrt{\frac{n\widehat{\sigma^2}}{(n-2)}} \sqrt{\left[1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right]})$$

•
$$P[\hat{\alpha} + \hat{\beta}(x_{n+1} - \bar{x}) - dt_{\gamma/2} \le Y_{n+1} \le \hat{\alpha} + \hat{\beta}(x_{n+1} - \bar{x}) + dt_{\gamma/2}] = 1 - \gamma$$

: prediction interval for Y_{n+1}

Polynomial regression problem

Boston 집값 예측 문제

of observations: 506

of variables: 13

INDUS 변수

 $E(\hat{\beta})$: 0.0206, S. $E(\hat{\beta})$: 0.061

```
from scipy.stats import t
n = 506
p = 13
df = n-p-1
mean = 0.0206
std = 0.061
t_val = 0.334

rv = t(df)
interval_length = rv.ppf(0.975) * std # * (n/df)**(1/2)

print('p-value :',(1-rv.cdf(t_val))*2)
print(f'confidence interval :[{mean-interval_length},{mean+interval_length}]')
```

p-value : 0.7385218727795606

confidence interval : [-0.09925263869488882,0.1404526386948888]

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	T tions: s:	N Least Squa Tue, O6 Jun 2 O8:48 nonrob	OLS A ares F 2023 F 3:57 L 506 A 492 E	-stat Prob (1	-squared:):	0.741 0.734 108.1 6.72e-135 -1498.8 3026. 3085.
	coef	std err		t	P> t	[0.025	0.975]
Intercept CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT	36.4595 -0.1080 0.0464 0.0206 2.6867 -17.7666 3.8099 0.0007 -1.4756 0.3060 -0.0123 -0.9527 0.0093 -0.5248	5.103 0.033 0.014 0.061 0.862 3.820 0.418 0.013 0.199 0.066 0.004 0.131 0.003 0.051	7.1 -3.2 3.3 0.3 3.1 -4.6 9.1 0.0 -7.3 4.6 -3.2 -7.2 3.4	287 382 334 118 351 116 052 398 313 280 283	0.000 0.001 0.001 0.738 0.002 0.000 0.000 0.958 0.000 0.000 0.001 0.000	26.432 -0.173 0.019 -0.100 0.994 -25.272 2.989 -0.025 -1.867 0.176 -0.020 -1.210 0.004 -0.624	46.487 -0.043 0.073 0.141 4.380 -10.262 4.631 0.027 -1.084 0.436 -0.005 -0.696 0.015 -0.425
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	1.	000 J 521 F				1.078 783.126 8.84e-171 1.51e+04

Polynomial regression problem

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model:	tions:	Least Squa Tue, O6 Jun : O8:4	2023	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic Likelihood:):	0.741 0.734 108.1 6.72e-135 -1498.8 3026. 3085.
Covariance	Туре:	nonro	bust				
	coef	std err		===== t	P> t	[0.025	0.975]
Intercept CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT	36.4595 -0.1080 0.0464 0.0206 2.6867 -17.7666 3.8099 0.0007 -1.4756 0.3060 -0.0123 -0.9527 0.0093 -0.5248	5.103 0.033 0.014 0.061 0.862 3.820 0.418 0.013 0.199 0.066 0.004 0.131 0.003 0.051	-3 3 0 3 -4 9 0 -7 4 -3 -7 3	.144 .287 .382 .334 .118 .651 .116 .052 .398 .613 .280 .283 .467 .347	0.000 0.001 0.001 0.738 0.002 0.000 0.000 0.958 0.000 0.000 0.001 0.000	26.432 -0.173 0.019 -0.100 0.994 -25.272 2.989 -0.025 -1.867 0.176 -0.020 -1.210 0.004 -0.624	46 . 487 -0 . 043 0 . 073 0 . 141 4 . 380 -10 . 262 4 . 631 0 . 027 -1 . 084 0 . 436 -0 . 005 -0 . 696 0 . 015 -0 . 425
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0 1	.041 .000 .521 .281				1.078 783.126 8.84e-171 1.51e+04

SST(Y의 전체 변동) $: \sum (y_i - \overline{y})^2$ SSR(모형에 의해 설명되는 변동) $: \sum (\widehat{y_i} - \overline{y})^2$ SSE(모형에 의해 설명이 되지 않는 변동) $: \sum (y_i - \widehat{y_i})^2$

•
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

• $R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$

• F-statistics : 모델 유의성 검정

Polynomial regression problem

• F-statistics : 모델 유의성 검정 H_0 : $\beta_1 = \cdots = \beta_p = 0 \ (\Leftrightarrow Y = \alpha + \varepsilon)$ vs H_1 : $not \ H_0$ 귀무가설 : 독립변수들이 종속변수를 설명하는데 효과가 없다. 대립가설 : 독립변수들 중 적어도 하나 이상은 종속변수를 설명하는데 효과가 있다.

```
• F = \frac{SSR/p}{SSE/(n-p-1)} = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2/\sigma^2 p}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2/\sigma^2 (n-p-1)} with degree of freedom (p, n-p-1) \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{\sigma^2} \sim \chi^2 (n-p-1) \text{ (앞에서 이미 보임)} \frac{SST}{\sigma^2} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{\sigma^2} \text{ is the form of } \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1) (S는 표본표준편차) \rightarrow \frac{SSR}{\sigma^2} \sim \chi^2 (p)
```

```
from scipy.stats import f
n,p = df.drop('MEDV',axis=1).shape

y_pred = result.predict(df.iloc[:,:-1]).values
y_real = df['MEDV'].values
y_mean = df['MEDV'].mean()

upper = np.sum([(y_pred[i]-y_mean)**2 for i in range(n)])
lower = np.sum([(y_real[i]-y_pred[i])**2 for i in range(n)])

F = (upper/p)/(lower/(n-p-1))
print('F\textcolor : ',F)
```

F값: 108.0766661743256