HomeSense: Συλλογή και Οπτικοποίηση Περιβαλλοντικών Δεδομένων με Raspberry Pi

Ιορδάνης Κωστελίδης

Πρόγραμμα Μεταπτυχιακών Σπουδών στη Ρομποτική Τμήμα Μηχανικών Πληροφορικής, Υπολογιστών και Τηλεπικοινωνιών Σχολή Μηχανικών Διεθνές Πανεπιστήμιο της Ελλάδος

03/02/2025

Εισαγωγή

Το HomeSense είναι ένα ολοκληρωμένο σύστημα συλλογής και οπτικοποίησης περιβαλλοντικών δεδομένων, το οποίο βασίζεται στο Raspberry Pi 3B+ και σε τρεις ειδικά σχεδιασμένες συσκευές (GasSense, LightSense, TempSense).

Αρχική Σελίδα

Διαχείριση Αισθητήρων

Γραφήματα

Αρχιτεκτονική Συστήματος

- ► Raspberry Pi 3B+: Κεντρικός κόμβος του συστήματος, για συλλογή και αποθήκευση δεδομένων.
- NodeMCU ESP8266-based Devices: Τρεις συσκευές που συνδέουν τους αισθητήρες στο δίκτυο Wi-Fi και κάνουν τα δεδομένα διαθέσιμα μέσω HTTP APIs. Οι συσκευές ειναι:
 - ► GasSense: Με MQ-6 (αναλογικός) για την μέτρηση αερίων.
 - LightSense: Με LDR (αναλογικός) για τη μέτρηση φωτεινότητας.
 - TempSense: Με DS18B20 (ψηφιακός) για την μέτρηση θερμοκρασίας.

Σκοπός του Έργου

Ο σκοπός του HomeSense είναι:

Η ασύρματη διασύνδεση μικροελεγκτών με ένα Raspberry Pi
3B+ για την καταγραφή και παρουσίαση δεδομένων από τρεις αισθητήρες

Raspberry Pi 3B+

To Raspberry Pi 3B+ είναι ο κεντρικός κόμβος του συστήματος, υπεύθυνος για:

- Διαχείριση της βάσης δεδομένων.
- Εκτέλεση εφαρμογών για την καταγραφή των δεδομένων στην βάση.
- Διάθεση διαδικτυακής διεπαφής προς τον χρήστη.

NodeSense

Το NodeSense ειναι ένα template λογισμικό το οποίο είναι συμβατό με τον μικροελεγκτή NodeMCU (ESP8266):

- Ορίζει την διαδικασία σύνδεσης με το WiFi
- ▶ Ορίζει τα Method/Path των HTTP API End-Points
- ▶ Ορίζει το Response Type των HTTP API End-Points

NodeMCU ESP8266-based Devices

Οι συσκευές (GasSense, LightSense, TempSense) είναι βασισμένες στο λογισμικό NodeSense το οποίο είναι συμβατό με τον μικροελεγκτή NodeMCU (ESP8266):

- Το NodeMCU είναι μικρό σε μέγεθος και έχει χαμηλή κατανάλωση ενέργειας.
- Έχει εύκολη ενσωμάτωση με το Raspberry Pi (μέσω HTTP API).
- Προγραμματίζετε εύκολα με το Arduino IDE, αλλά και με άλλες πλατφόρμες (π.χ. CLion with PlatformIO)

GasSense Schematic

GasSense PCB

LightSense Schematic

LightSense PCB

TempSense Schematic

TempSense PCB

Διαδικασία Συλλογής Δεδομένων

- Ο χρήστης μέσω του UI κάνει pair τις συσκευές με το API.
- Το API, κάθε 5 δευτερόλεπτα, κάνει HTTP Call προς τη συσκευή για να λάβει τα δεδομένα του αισθητήρα.
- Το API, αποθηκεύει τα δεδομένα σε βάση δεδομένων.

Διεπαφή Χρήστη

- Προσθαφαίρεση των συσκευών
- Γραφήματα σε πραγματικό χρόνο.

It's Demo Time

DEMO TIME

Εργαλεία και Τεχνολογίες που Χρησιμοποιούνται

- Docker: Πλατφόρμα που επιτρέπει την ανάπτυξη, διανομή και εκτέλεση εφαρμογών μέσα σε απομονωμένα περιβάλλοντα.
- PostgreSQL: Βάση δεδομένων για την αποθήκευση δεδομένων.
- Spring Boot: Χρησιμοποιείται για την ανάπτυξη του API.
- ► HTML/CSS/JavaScript: Χρησιμοποιείται για την ανάπτυξη του UI.
- KiCad: Για τη σχεδίαση των συσκευών (Schematic και PCB).
- ► CLion με PlatformIO: Για την ανάπτυξη του λογισμικού των συσκευών.
- TeXShop: Για τη συγγραφή του κειμένου και της παρουσίασης.

Μελλοντική Ανάπτυξη

- Επέκταση του συστήματος για την υποστήριξη περισσότερων αισθητήρων.
- ▶ Επικοινωνία με SSL (HTTPS) για ασφάλεια των δεδομένων.
- Αιτήματα μόνο από εξουσιοδοτημένους clients μέσω client-side certificates
- Ταυτοποίηση και Εξουσιοδότηση
- Ειδοποιήσεις

Talk is cheap. Show me the code.

- Linus Torvalds

Πόσα repository?

Πόσα repository?

1?

Πόσα repository?

▶ 1? OXI

Πόσα repository?

5?

Πόσα repository?

▶ **5**? OXI

I don't have a 'mono-repo' project. I have an 'ten-repo' project.

- ??? ???

I don't have a 'mono-repo' project. I have an 'ten-repo' project.

- Iordanis Kostelidis

- NodeSense: Το αποθετήριο το οποίο περιέχει τον template κώδικα των συσκευών το οποίο βρίσκεται στο github.com/KostelidisDev/NodeSense
- KiCadGrobotronics: Το αποθετήριο το οποίο περιέχει, custom library για τα components που αγοράστηκαν, από το κατάστημα GRobotronics, το οποίο βρίσκεται στο github.com/KostelidisDev/KiCadGrobotronics

- TempSense: Το αποθετήριο το οποίο περιέχει τον κώδικα, το σχηματικό και το PCB της συσκευής με τον αισθητήρα θερμοκρασίας το οποίο βρίσκεται στο github.com/KostelidisDev/TempSense
- LightSense: Το αποθετήριο το οποίο περιέχει τον κώδικα, το σχηματικό και το PCB της συσκευής με τον αισθητήρα φωτός το οποίο βρίσκεται στο github.com/KostelidisDev/LightSense
- GasSense: Το αποθετήριο το οποίο περιέχει τον κώδικα, το σχηματικό και το PCB της συσκευής με τον αισθητήρα αερίου το οποίο βρίσκεται στο github.com/KostelidisDev/GasSense

- HomeSense: Το αποθετήριο το οποίο περιέχει τον κώδικα του API και του UI το οποίο βρίσκετε στο github.com/KostelidisDev/HomeSense
- HomeSense Deployer: Το αποθετήριο το οποίο περιέχει τον deployer για το API και το UI μέσω Docker Compose το οποίο βρίσκεται στο github.com/KostelidisDev/HomeSense-Deployer
- HomeSense-Document: Το αποθετήριο το οποίο περιέχει τον LaTeX κώδικα της εργασίας το οποίο βρίσκεται στο github.com/KostelidisDev/HomeSense-Document
- HomeSense-Presentation: Το αποθετήριο το οποίο περιέχει τον LaTeX κώδικα της παρουσίασης το οποίο βρίσκεται στο github.com/KostelidisDev/HomeSense-Presentation

HomeSense-Platform: Το κεντρικό αποθετήριο το οποίο έχει ως sub-modules όλα τα σχετικά έργα του HomeSense το οποίο βρίσκεται στο github.com/KostelidisDev/HomeSense-Platform

Συμπεράσματα

Το HomeSense αποτελεί μια ολοκληρωμένη λύση για τη συλλογή και οπτικοποίηση περιβαλλοντικών δεδομένων. Με τη χρήση του Raspberry Pi, του NodeMCU και του Docker, προσφέρει ευελιξία, επεκτασιμότητα και αξιοπιστία.

Q&A

Ερωτήσεις

Ευχαριστώ για την προσοχή σας