Introduction to Machine Learning Basic concepts, regression

ml@cezeaux - 18/05/2021

Outline of the ML course

Lectures

I: Introduction to Machine Learning (18/05)

Hands-on: linear regression, regularization

II: Introduction to Neural Networks (June)

Hands-on: anomaly detection (fraud detection)

Practice sessions

Code on Git:

https://github.com/judonini/MLcourses

Hands-on: MLcourses/exercices/2020

Outline

Machine learning:

Basic concepts: regression and classification

Linear regression

Non linear data and basis functions

Model optimization

How to control and optimize your model

Model minimization

Gradient descent

Basic concepts

Machine Learning

Based on mathematics, statistics and algorithmics + computer power

- Determine complex models from data
- Used for classification, inference, generation, ...

Machine Learning is not recent

- Artificial Neural Network (theory 40's, first functional networks 60's)
- Decision Trees (~80's)

Renaissance of the field since ~10 years

- Deep Learning
- Graphics Processing Units for fast and scalable calculations
- New recent algorithms: GAN (2014), Adam minimization (2014), ...

Output
$$y(x,w) = t$$
 Target

Examples

- **X** = {age, year, education, ...} → **t**: income
- **X** = {image pixel values} → **t**: face recognition
- **X** = {list of words} → **t**: spam detection
- $X = \{E, p, ...\} \rightarrow t$: particle detection

...

Classification

Dog

```
[[[ 7.4280e-02, 1.4022e-01, -2.2258e-02, ..., -2.0172e-01, 1.6240e-01, 5.5748e-02], [-1.1771e-02, -1.1327e-01, 3.0360e-01, ..., 4.6299e-01, 3.4765e-02, 2.2633e-02], [ 2.2252e-02, 2.1568e-01, -3.5726e-01, ..., -7.4589e-02, 7.0776e-02, 1.3573e-01], ..., [ 1.1035e-01, -2.4609e-01, 1.9962e-01, ..., 2.4133e-01, -2.1069e-01, 1.9942e-01], [ 2.9337e-02, 2.4997e-01, 1.0341e-02, ..., -3.1368e-01, -1.6878e-01, -1.4741e-02], [ 4.4006e-02, 5.1292e-02, 5.0462e-02, ..., -8.1194e-02, 1.6043e-01, -5.7106e-03]]],
```


Common type of learning

Supervised (labels are known)

Unsupervised (no labels)

Semi-supervised (few labels)

- labels of class 1
- labels of class 2
- unknown class
- decision boundary

Unsupervised learning

Unsupervised learning = no labels

Semi-supervised learning

Semi-supervised learning = unlabelled data + few labels

Example of the influence of unlabelled data in semisupervised learning.

The unlabelled data (grey dots) influence the separation of the two classes (decision surface)

Linear regression

TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Simple case: 1 dimensional data

Training dataset

- N observations of **feature** $x = \{x_1, ..., x_N\}$
- N Target values $t = \{t_1, ..., t_N\}$

Prediction model: straight line

$$y(x, \mathbf{w}) = y(x; w_0, w_1) = w_0 + w_1 x$$

Weights determined by minimizing an Error function E

also called Cost function or Loss function

Common choice: sum of square distance between function and target:

$$E(w_0, w_1) = \sum_{i=1}^{N} \{y(x_i; w_0, w_1) - t_i\}^2$$

Simple case: 1 dimensional data

Training dataset

- N observations of **feature** $x = \{x_1, ..., x_N\}$
- N Target values $t = \{t_1, ..., t_N\}$

Prediction model: straight line

$$y(x, \mathbf{w}) = y(x; w_0, w_1) = w_0 + w_1 x$$

Here **optimal weights** can be calculated **analytically** (not always possible!)

$$E(w_0, w_1) = \sum_{i=1}^{N} \{y(x_i; w_0, w_1) - t_i\}^2$$

$$\begin{cases} \frac{\partial E(w_0, w_1)}{\partial w_0} = 0 \\ \frac{\partial E(w_0, w_1)}{\partial w_1} = 0 \end{cases} \Leftrightarrow \begin{cases} w_1 = \frac{\operatorname{cov}(x, t)}{\operatorname{var}(x)} = r \frac{\sigma(t)}{\sigma(x)} \\ w_0 = \overline{t} - r \frac{\sigma(t)}{\sigma(x)} \overline{x} \end{cases}$$

(r: correlation factor between x and t)

Simple case: 1 dimensional data

Training and testing

- Training: use dataset to determine weights w₀ and w₁
- **Testing**: check compatibility of $y(x, \mathbf{w})$ on a new dataset

Measure of **compatibility**: root mean squared error (RMS)

$$E_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \{y(x_i, \mathbf{w}) - t_i\}^2} = \sqrt{\frac{E(\mathbf{w})}{N}}$$

Generalization: multidimensional data

Dataset (p x 1 data)

• N observations of p-dimensions features

$$\{\mathbf{x_i}\}_{i=1..N} = \{\mathbb{R}^p\} = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \right\}$$

• N target values $t = \{t_1, ..., t_N\}$

$y(\mathbf{x}, \mathbf{w})$ \mathbf{x}_1 \mathbf{z}_2 \mathbf{z}_1 \mathbf{z}_2

Fit function: multidimensional plane

Linear function with p+1 weights: w

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + w_2 x_2 + \dots w_p x_p.$$
bias term

Generalization: multidimensional data

Dataset (p x q data)

• N observations of p-dimensions features

$$\{\mathbf{x_i}\}_{i=1..N} = \{\mathbb{R}^p\} = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \right\}$$

N target values of q-dimensions

$$\{\mathbf{t_i}\}_{i=1..N} = \{\mathbb{R}^q\} = \left\{ \left(\begin{array}{c} t_1 \\ \vdots \\ t_q \end{array}\right) \right\}$$

Fit functions:

$$\begin{pmatrix} y_1(\mathbf{x}, \mathbf{w}) \\ \vdots \\ y_q(\mathbf{x}, \mathbf{w}) \end{pmatrix} = \begin{pmatrix} w_{01} \\ \vdots \\ w_{0q} \end{pmatrix} + \begin{pmatrix} w_{11} & \cdots & w_{1p} \\ \vdots & \ddots & \vdots \\ w_{q1} & \cdots & w_{qp} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

bias terms

What if your data is not linear?

→ use basis functions

Apply M non-linear basis functions ϕ to input feature x:

$$\mathbf{x} \longrightarrow \left(egin{array}{c} \phi_1(\mathbf{x}) \ dots \ \phi_M(\mathbf{x}) \end{array}
ight) \qquad \phi_j(\mathbf{x}) : ext{ basis function}$$

The regression function y(x, w) then become non-linear function of x:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{M} w_i \phi_i(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + \dots + w_M \phi_M(\mathbf{x})$$

These functions are called **linear models** because they are linear in w.

For high number of dimensions linear models suffer from **limitations**, and other approaches (as Neural Networks) are more suited.

Polynomial basis functions (1D)

$$\phi_j(x) = x^j$$

$$y(x, \mathbf{w}) = \sum_{j=0}^{M-1} w_j x^j$$

Global functions of input variable

→ a small change in x affects all
basis functions

Gaussian basis functions (1D)

$$\phi_j(x) = e^{-\frac{(x-\mu_j)^2}{2\sigma^2}}$$
$$y(x, \mathbf{w}) = \sum_{j=0}^{M-1} w_j e^{-\frac{(x-\mu_j)^2}{2\sigma^2}}$$

Parameters:

 μ_{j} (location) and σ (width) Normalization is not relevant.

local functions of input variable → a small change in x mostly affects nearby basis functions

Sigmoidal basis functions (1D)

$$\phi_j(x) = \sigma\left(\frac{(x-\mu_j)}{s}\right)$$

with

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Parameters:

 μ_i (location) and s (slope)

local functions of input variable

→ a small change in x mostly
affects nearby basis functions

Example: polynomial curve fitting

Training dataset

- N observations of $x = \{x_1, ..., x_N\}$: uniformly spaced in [0,1]
- Target values $t = \{t_1, ..., t_N\}$: $sin(2\pi x) + Gaussian noise$

Dummy example but could be e.g. temperature (t) evolution over 1 day (x)

Polynomial curve fitting

Fit function

• Polynomial function of degree **M**, with coefficients $\mathbf{w} = (\mathbf{w}_1, ..., \mathbf{w}_M)^T$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

- Non-linear function of x, but linear function of $\mathbf{w} \rightarrow \mathbf{linear} \ \mathbf{model}$
- Values of coefficient obtained by minimizing an error function
- Sum of the square of the errors E(w)

$$E(\mathbf{w}) = \sum_{i=1}^{N} \left\{ y(x_i, \mathbf{w}) - t_i \right\}^2$$

$$\downarrow$$
Minimization
$$\downarrow$$
Fitted weights \mathbf{w}^*

$$\vdash$$

$$\vdash$$

$$\mathbf{E}(\mathbf{w}^*)$$

It is instructive to look at the **fitted weights** for various cases: when M increases the coefficient become **fine tuned** to data by developing large positive and negative values.

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Root mean squared error (RMS)

$$E_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \{y(x_i, \mathbf{w}) - t_i\}^2} = \sqrt{\frac{E(\mathbf{w})}{N}}$$

What is a good model?

[figure: kdnuggets.com]

The Bias-Variance decomposition

Training dataset

- N observations of **feature** $x = \{x_1, ..., x_N\}$
- N Target values $t = \{t_1, ..., t_N\}$

We assume that **t** are distributed following a function: $t_i = f(x_i) + \boxed{\epsilon}$

(Mean 0, variance σ^2)

Noise

 \rightarrow We want to find y(x) that approximates true function f(x)

The Bias-Variance decomposition (*)

As before we determine y(x) by **minimizing**: $\sum \{y(x_i, \mathbf{w}) - t_i\}^2$ over the **training** dataset

$$\sum_{i=1}^{N} \left\{ y(x_i, \mathbf{w}) - t_i \right\}^2$$

The **expected error** for a **new test sample x** can be decomposed as:

- Data noise: minimal error of the model
- Bias in the model: error caused by model assumptions
- Variance of model: how much y(x) depends on **structure** of data

squared error on y(x) =
$$\sigma^2 + (\bar{y}(x) - f(x))^2 + E[(y(x) - \bar{y}(x))^2]$$

The Bias-Variance decomposition

Simple models **under-fit**: deviate from data (high bias) but not influenced by structure of data (low variance)

Complex models **over-fit**: small deviation from data (low bias) but very sensitive to data fluctuations (high variance)

What if your model completely fails?

→ try to regularize your model

Overfitting really depends on **N** data and **M** parameters.

How can we constrain the fitted parameter into reasonable values?

→ **Regularization** techniques can be a solution.

Add **penalization term** to error function in order to **constrain** parameters **w**.

→ Simple penalization: ridge regression (L2 norm) Constrains weight to be not too large.

$$\tilde{E}(\mathbf{w}) = \sum_{i=1}^{N} \left\{ y(x_i, \mathbf{w}) - t_i \right\}^2 + \lambda ||\mathbf{w}||^2$$
where $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + \dots + w_M^2$

where
$$||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + \dots + w_M^2$$

and λ : parameter that governs the importance of regularization

Other choices

- Lasso regression (L1 norm): $||\mathbf{w}|| = |w_0| + ... + |w_M|$ Reduce number of weights (set some of them to 0)
- Elastic net: L1 + L2 norm

General regularization term is of the form:

$$\tilde{E}(\mathbf{w}) = \sum_{i=1}^{N} \{y(x_i, \mathbf{w}) - t_i\}^2 + \lambda \sum_{j=1}^{M} |w_j|^q$$

Minimizing this error function is equivalent to minimizing the unregularized sum-of-square error with the constraint

q=1

Lasso

(L1 norm)

(L2 norm)

Julien Donini

q = 0.5

The optimum value for the parameter vector w is denoted by w*. The lasso gives a sparse solution in which $w_1^* = 0$.

M = 9	
	$\ln \lambda = 0$
	0
0 - 7	
-1 -	
0	x 1

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

Effect of L2 norm regularization

• In λ = -inf : no regularization

• In $\lambda = -18$: suppressed overfitting

• In λ = 0: fit too constrained

L2 norm: $\lambda ||\mathbf{w}||^2$

Affects value of coefficients (shrinkage)

L1 norm: λ ||w||

Affects number of coefficients (sparsity)

Model selection

Model selection

K-fold cross-validation

Divide data in K groups, use K-1 for training and test on left-over group Rinse and repeat K times

Cross-validation error: $CV = \frac{1}{K} \sum E_i$

Choose the set of hyper-parameters (ex λ) that give the smallest CV.

Drawback: can be very time consuming ...

Model selection

K-fold cross-validation

Divide data in K groups, use K-1 for training and test on left-over group Rinse and repeat K times

Cross-validation curve

How can we **minimize** the error function for complex cases (ex: when there is no analytic solution)?

→ Solution: Gradient descent

Iteratively move in the direction of steepest descent as defined by the negative of the gradient of the error function

Descend along the error function to find a (local) minimum:

Direction of descent:

 \rightarrow (negative of the **gradient** of the error function) \times (**learning rate**)

Example: fit N data points with linear function: $y(x, \mathbf{w}) = w_0 + w_1 x$

Error function and its derivatives

$$E(w_0, w_1) = \sum_{i=1}^{N} \{y(x_i, \mathbf{w}) - t_i\}^2 = \sum_{i=1}^{N} \{(w_0 + w_1 x_i) - t_i\}^2$$

$$\longrightarrow \begin{cases} \frac{\partial E(w_0, w_1)}{\partial w_0} = \sum_{i=1}^{N} 2\{(w_0 + w_1 x_i) - t_i\} \\ \frac{\partial E(w_0, w_1)}{\partial w_1} = \sum_{i=1}^{N} 2x_i \{(w_0 + w_1 x_i) - t_i\} \end{cases}$$

Iterative update **rule**:

$$\begin{array}{c} \mathbf{w}_0^{(k)} \to w_0^{(k+1)} = w_0^{(k)} - \frac{\partial E(w_0,w_1)}{\partial w_0} \times \eta \\ \mathbf{w}_1^{(k)} \to w_1^{(k+1)} = w_1^{(k)} - \frac{\partial E(w_0,w_1)}{\partial w_1} \times \eta \end{array} \qquad \begin{array}{c} \text{k: iteration num} \\ \mathbf{\eta: learning rate} \end{array}$$

k: iteration number

Repeat until convergence

Input data: $\{x_i, t_i\}$

Error function

$$E(w_0, w_1) = \sum_{i=1}^{N} \{(w_0 + w_1 x_i) - t_i\}^2$$

Input data: $\{x_i, t_i\}$

Gradient descent

$$\mathbf{w}_0^{(k)} \to \mathbf{w}_0^{(k+1)} = \mathbf{w}_0^{(k)} - \frac{\partial E(\mathbf{w}_0, \mathbf{w}_1)}{\partial \mathbf{w}_0} \times \eta$$

$$\mathbf{w}_{1}^{(k)} \to \mathbf{w}_{1}^{(k+1)} = \mathbf{w}_{1}^{(k)} - \frac{\partial E(\mathbf{w}_{0}, \mathbf{w}_{1})}{\partial \mathbf{w}_{1}} \times \eta$$

1000 iterations learning rate $\eta = 0.05$

Stochastic gradient descent

Gradient descent can be **computationally costly** for large N since the gradient is calculated over full training set.

→ Solution: Stochastic gradient descent

Compute gradient on a small **batch** of events (can be 1 event):

$$\begin{cases} \frac{\partial E(w_0, w_1)}{\partial w_0} = \sum_{i \subset N} 2\{(w_0 + w_1 x_i) - t_i\} \\ \frac{\partial E(w_0, w_1)}{\partial w_1} = \sum_{i \subset N} 2x_i \{(w_0 + w_1 x_i) - t_i\} \end{cases}$$

Stochastic gradient descent

Gradient calculated on 1 (random) event at each step

Gradient calculated on 10 (random) events at each step

Practise sessions

Git repository: https://github.com/judonini/MLcourses

Go to the Exercices/2020 folder

- 1) regression-boston-housing.ipynb
- 2) Gradient-descent.ipynb