68HC12 INSTRUCTION LIST (reduced)

Loads, Stores, and Transfers

Function	Mnemonic	IMM	DIR	EXT	IDX	[IDX]	INH	Operation
Clear Memory Byte	CLR			Χ	Χ	Χ		m(ea) <= 0
Clear Accumulator A (B)	CLRA (B)						Χ	A <= 0
Load Accumulator A (B)	LDAA (B)	Χ	Χ	Χ	Χ	Χ		A <= [m(ea)]
Load Double Accumulator D	LDD	Χ	Χ	Χ	Χ	Χ		D <= [m(ea, ea+1)]
Load Effective Address into SP (X or Y)	LEAS (A,B)							SP <= ea
Store Accumulator A (B)	STAA (B)	Χ	Χ	Χ	Χ	Χ		m(ea) <= (A)
Store Double Accumulator D	STD	Χ	Χ	Χ	Χ	Χ		m(ea, ea+1) <= D
Transfer A to B	TAB						Χ	B <= (A)
Transfer A to CCR	TAP						Χ	CCR <= (A)
Transfer B to A	TBA						Χ	A <= B
Transfer CCR to A	TPA						Χ	A <= (CCR)
Exchange D with X (Y)	XGDX						Χ	D <=> (X)
Pull A (B) from Stack	PULA(B)						X	A <= [m(SP)], SP <= (SP)+1
Push A (B) onto Stack	PSHA(B)						Χ	SP <= (SP)-1, m(SP) <= A

Arithmetic Operations

Function	Mnemonic	IMM	DIR	EXT	IDX	[IDX]	INH	Operation
Add Accumulators	ABA						Χ	A <= (A) + (B)
Add with Carry to A (B)	ADCA (B)	Χ	Χ	Χ	Χ	Χ		$A \le (A) + [m(ea)] + (C)$
Add Memory to A (B)	ADDA (B)	Χ	Χ	Χ	Χ	Χ		$A \le (A) + [m(ea)]$
Add Memory to D (16 Bit)	ADDD	Χ	Χ	Χ	Χ	Χ		$D \le (D) + [m(ea,ea+1)]$
Decrement Memory Byte	DEC			Χ	Χ	Χ		$m(ea) \le [m(ea)] - 1$
Decrement Accumulator A (B)	DECA (B)						Χ	A <= (A) – 1
Increment Memory Byte	INC			Χ	Χ	Χ		$m(ea) \le [m(ea)] + 1$
Increment Accumulator A (B)	INCA (B)						Χ	A <= (A) + 1
Subtract with Carry from A (B)	SBCA (B)	Χ	Χ	Χ	Χ	Χ		$A \le (A) - [m(ea)] - C$
Subtract Memory from A (B)	SUBA (B)	Χ	Χ	Χ	Χ	Χ		$A \le (A) - [m(ea)]$
Subtract Memory from D (16 Bit)	SUBD	Χ	Χ	Χ	Χ	Χ		$D \le (D) - [m(ea,ea+1)]$
Multiply (byte, unsigned)	MUL						Χ	D <= (A) x (B)
Multiply word, unsigned (signed)	EMUL(S)						Χ	$Y:D \leq (D) \times (Y)$
Unsigned (signed) 32 by 16 divide	EDIV(S)						Χ	$X \le (Y:D) /.(X), Y \le quotient, D \le remainder$
Fractional Divide (D < X)	FDIV						Χ	X <= (D) /.(X), D <= remainder
Integer Divide (unsigned)	IDIV						Χ	$X \le (D) / (X), D \le remainder$

Logical Operations

Function	Mnemonic	IMM	DIR	EXT	IDX	[IDX]	INH	Operation
AND A (B) with Memory	ANDA (B)	Χ	Χ	Χ	Χ	Χ		A <= A • [m(ea)]
Bit(s) Test A (B) with Memory	BITA (B)	Χ	Χ	Χ	Χ	Χ		A • [m(ea)]
One's Complement Memory Byte	COM			Χ	Χ	Χ		m(ea) <= [/m(ea)]
One's Complement A (B)	COMA (B)						Χ	A <= /A
OR A (B) with Memory (Exclusive)	EORA (B)	Χ	Χ	Χ	Χ	Х		A <= A 🕀 [m(ea)]
OR A (B) with Memory (Inclusive)	ORAA (B)	Χ	Χ	Χ	Χ	Χ		A <= A + [m(ea)]

Shift and Rotate

Function	Mnemonic	IMM	DIR	XT	IDX	[IDX]	INH	Operation
Arithmetic/Logical Shift Left Memory	ASL/LSL			Χ	Χ	Χ		□4 -□□□□□
Arithmetic/Logical Shift Left A (B)	ASLA(B)						Χ	C 67 60
Arithmetic/Logical Shift Left Double	ASLD/LSLD						Χ	C b7 A b0 b7 B b0
Arithmetic Shift Right Memory	ASR			Χ	Χ	Χ		Z
Arithmetic Shift Right A (B)	ASRA(B)						Χ	b7 b0 C
Logical Shift Right A (B)	LSRA(B)						Χ	0
Logical Shift Right Memory	LSR			Χ	Χ	Χ		b7 b0 C
Logical Shift Right D	LSRD						Х	0
Rotate Left Memory	ROL			Χ	Χ	Χ		
Rotate Left A (B)	ROLA(B)						Χ	C 67 60
Rotate Right A (B)	RORA(B)						Χ	
Rotate Right Memory	ROR			Χ	Χ	Χ		b7 b0 C

Compare & Test

Function	Mnemonic	IMM	DIR	EXT	IDX	[IDX]	INH	Operation
Compare A to B	CBA						Χ	(A)-(B)
Compare A (B) to Memory	CMPA (B)	Χ	Χ	Χ	Χ	Χ		(A) - [m(ea)]
Compare D to Memory (16 Bit)	CPD	Χ	Χ	Χ	Χ	Χ		(D) - [m(ea,ea+1)]
Compare SP to Memory (16 Bit)	CPS	Χ	Χ	Χ	Χ	Χ		(SP) - [m(ea,ea+1)]
Compare X (Y) to Memory (16 Bit)	CPX	Χ	Χ	Χ	Χ	Χ		(X) - [m(ea,ea+1)]
Test memory for 0 or minus	TST			Χ	Χ	Χ		m(ea) - 0
Test A (B) for 0 or minus	TSTA (B)						Χ	(A)-0

Short Branches

Function	Mnemonic	REL	DIR	IDX	[IDX]	PC <= ea if
Branch ALWAYS	BRA	Χ				
Branch if Carry Clear	BCC	Χ				C = 0 ?
Branch if Carry Set	BCS	Χ				C = 1 ?
Branch if Equal Zero	BEQ	Χ				Z = 1?
Branch if Not Equal	BNE	Χ				Z = 0 ?
Branch if Minus	BMI	Χ				N = 1 ?
Branch if Plus	BPL	Χ				N = 0 ?
Branch if Bit(s) Clear in Memory Byte	BRCLR		Χ	Χ		[m(ea)]•mask=0
Branch if Bit(s) Set in Memory Byte	BRSET		Χ	Χ		[/m(ea)]•mask=0
Branch if Overflow Clear	BVC	Χ				V = 0 ?
Branch if Overflow Set	BVS	Χ				V = 1 ?
Branch if Greater Than	BGT	Χ				Signed >
Branch if Greater Than or Equal	BGE	Χ				$\text{Signed} \geq$
Branch if Less Than or Equal	BLE	Χ				Signed ≤
Branch if Less Than	BLT	Χ				Signed <
Branch if Higher	BHI	Χ				Unsigned >
Branch if Higher or Same (same as BCC)	BHS	Χ				Unsigned ≥
Branch if Lower or Same	BLS	Χ				Unsigned ≤
Branch if Lower (same as BCS)	BLO	Χ				Unsigned <
Branch Never	BRN	Χ				3-cycle NOP

Long branch mnemonic = L + Short branch mnemonic, e.g.: BRA \rightarrow LBRA

Loop Primitive Instructions (counter ctr = A, B, or D)

Function	Mnemonic	REL	DIR	EXT	IDX	[IDX]	INH	Operation
Decrement counter & branch if =0	DBEQ	Χ						ctr <= (ctr)-1, if (ctr)=0 => PC <= ea
Decrement counter & branch if $\neq 0$	DBNE	Χ						ctr <= (ctr)-1, if (ctr) ≠0 => PC <= ea
Increment counter & branch if =0	IBEQ	Χ						ctr <= (ctr)+1, if (ctr)=0 => PC <= ea
Increment counter & branch if ≠0	IBNE	Χ						ctr <= (ctr)+1, if (ctr) ≠0 => PC <= ea
Test counter & branch if =0	DBEQ	Х						if (ctr)=0 => PC <= ea

Subroutine Calls and Returns

Function	Mnemonic	REL	DIR	EXT	IDX	[IDX]	INH	Operation
Branch to Subroutine	BSR	Χ						SP <= (SP)-2, m(SP) <= (PC), PC <= ea
Jump to Subroutine	JSR		Χ	Χ	Χ	Χ		SP <= (SP)-2, m(SP) <= (PC), PC <= ea
CALL a Subroutine (expanded memory)	CALL		Х	Х	Х	Х		SP <= (SP)-2, m(SP) <= (PC), PC <= ea SP <= (SP)-1, m(SP) <= (PPG), PC <= pg
Return from Subroutine	RTS						Χ	PC <= [m(SP)], SP <= (SP)+2
Return from call	RTC						X	PPG <= [m(SP)], SP <= (SP)+1, PC <= [m(SP)], SP <= (SP)+2

Function	Mnemonic	DIR	EXT	IDX	[IDX]	INH	Operation
Jump	JMP	Χ	Х	Χ	Χ		PC <= ea

The **jump** instruction allows control to be passed to any address in the 64-Kbyte memory map.

Stack and Index Register Instructions

Function	Mnemonic	IMM	DIR	EXT	IDX	[IDX]	INH	Operation
Decrement Index Register X (Y)	DEX (Y)						Χ	X <= (X) - 1
Increment Index Register X (Y)	INX (Y)						Χ	X <= (X) + 1
Load Index Register X (Y)	LDX(Y)	Χ	Χ	Χ	Χ	Χ		$X \leq [m(ea,ea+1)]$
Pull X (Y) from Stack	PULX						Х	X <= [m(SP,SP+1)] SP <= (SP) + 2
Push X (Y) onto Stack	PSHX (Y)						Х	m(SP,SP+1) <= (X) SP <= (SP) - 2
Store Index Register X (Y)	STX (X)	Χ	Χ	Χ	Χ	Χ		m(ea,ea+1) <= X
Add Accumulator B to X (Y)	ABX (Y)						Χ	$X \le (X) + (B)$
Decrement Stack Pointer	DES						Χ	SP <= (SP) - 1
Increment Stack Pointer	INS						Χ	SP <= (SP) + 1
Load Stack Pointer	LDS	Χ	Χ	Χ	Χ	Χ		SP <= [m(ea,ea+1)]
Store Stack Pointer	STS	Χ	Χ	Χ	Χ	Χ		m(ea,ea+1) <= (SP)
Transfer SP to X (Y)	TSX (Y)						Χ	X <= (SP)
Transfer X (Y) to SP	TXS (Y)						Χ	SP <= (X)
Exchange D with X (Y)	XGDX (Y)						Χ	(D) <=> (X)

Function	Mnemonic	INH	Operation
Return from Interrupt	RTI	X	$ \begin{split} (M_{(SP)}) &\Rightarrow CCR; (SP) + \$0001 \Rightarrow SP \\ (M_{(SP)} \colon M_{(SP+1)}) &\Rightarrow B : A; (SP) + \$0002 \Rightarrow S \\ (M_{(SP)} \colon M_{(SP+1)}) &\Rightarrow X_H : X_L : (SP) + \$0004 \Rightarrow S \\ (M_{(SP)} \colon M_{(SP+1)}) &\Rightarrow PC_H : PC_L; (SP) + \$0002 \Rightarrow S \\ (M_{(SP)} \colon M_{(SP+1)}) &\Rightarrow Y_H : Y_L : (SP) + \$0004 \Rightarrow S \end{split} $
Software Interrupt	SWI	X	
Wait for Interrupt	WAI	X	

Interrupt Handling

The software interrupt (SWI) instruction is similar to a JSR instruction, except the contents of all working CPU registers are saved on the stack rather than just the return address. SWI is unusual in that it is requested by the software program as opposed to other interrupts that are requested asynchronously to the executing program.

ed Addressing Mode Postbyte Encoding (xb)

Reference Guide for TST Instruction

TST opr16a	(M) - 0	EXT	F7 hh 11	rPO rOI		ΔΔ00
TST oprx0_xysp	Test Memory for Zero or Minus	IDX	E7 xb	rPf rfl)	
TST oprx9,xysp		IDX1	E7 xb ff	rPO rPO)	
TST oprx16,xysp		IDX2	E7 xb ee ff	frPP frPP)	
TST [D,xysp]		[D,IDX]	E7 xb	fIfrPf fIfrfl)	
TST [oprx16,xysp]		[IDX2]	E7 xb ee ff	fIPrPf fIPrfI)	
TSTÁ	(A) – 0 Test A for Zero or Minus	INH	97	0 ()	
TSTB	(B) – 0 Test B for Zero or Minus	INH	D7	0 ()	

Reference Guide for JSR Instruction

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC		
00410010111	operation.	Mode	Coding (hex)	HCS12	HC12	C X III		
	$(SP) - 2 \Rightarrow SP$;	DIR	17 dd	SPPP	PPPS			
JSR opr16a	$RTN_{H}:RTN_{L} \Rightarrow M_{(SP)}:M_{(SP+1)}$	EXT	16 hh 11	SPPP	PPPS			
JSR oprx0_xysp	Subroutine address ⇒ PC	IDX	15 xb	PPPS	PPPS			
JSR oprx9,xysp		IDX1	15 xb ff	PPPS	PPPS			
JSR oprx16,xysp	Jump to Subroutine	IDX2	15 xb ee ff	fPPPS	fPPPS			
JSR [D,xysp]		[D,IDX]	15 xb	fIfPPPS	fIfPPPS			
JSR [oprx16,xysp]		[IDX2]	15 xb ee ff	fIfPPPS	fIfPPPS			

Post Byte Encoding, xb, for Indexed Addressing

							ī					T					П		Л.						_											
	F0 n,SP	_	F1	9b const	F2	n,SP	F3	[n,SP]	16b in dr	F4	A,SP	15	2 8 8 8	B offset	F6	D offset	F7	[D,SP]	E 2	n,PC	9b const	F9	9b const	FA	n,PC 16b const	92	[n,PC] 16b indr	5	A,PC	A offset	J. B.P.	B offset	E	D offset	FF TO PC1	
	E0 n,X	0	E1 -n X	9b const	E2	n,X 16b const	E3	X.E	16b indr	E4	A,X ∆ffeet	12 E	Z X	Boffset	E6	Doffset	E7	\(\frac{1}{2}\)	20 E). - -	9b const	E9	9b const	EA	n, Y 16b const	EB	[n,Y] 16b indr	EC	, A,	A offset	ED B,≺	B offset	EE	D offset	EF D Y1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	D0 -16,PC	Sb const	D1 _15.P.C	5b const	D2	5b const	D3	-13.PC	5b const	D4	-12,PC	25 00 50	-11 PC	5b const	D6	5b const	D7	-9,PC	D8	-8,PC	5b const	5G 2 BC	5b const	DA	56 const	DB	-5,PC 5b const	20	-4, PC	sp const	-3,PC	5b const	DE	5b const	DF -1 PC) ·
	00 0,PC		C1 2 PC	5b const	C2	2,PC 5h const	C3	3.PC	5b const	C4	5h const	C5 50 50	5 PC	5b const	Ce 90	5b const	C7	7,PC	CS COLLSE	8,PC	5b const	60	5b const	CA	10,PC 5b const	CB	11,PC 5b const	00	12,PC	5b const	13,PC	5b const	CE	5b const	CF 15 P.C.) ·
,	B0 1,SP+		B1	post-inc	B2	3,SP+	B3	4.SP+	post-inc	B4	5,SP+	Best and	50 tds	post-inc	Be	t'Sht post-inc	B7	8,SP+	B8 B8	8,SP-	post-dec	B9 7 SB	post-dec	BA	6,SP- post-dec	88	5,SP-	BC	4,SP-	post-dec	3,SP-	post-dec	BE	post-dec	BF 1SP-	ا ا
	A0 1,+SP	pre-inc	A1 2 +SP	pre-inc	A2	3,+SP	A3	4.+SP	pre-inc	A4	5,+SP	75-10-10-10-10-10-10-10-10-10-10-10-10-10-	4.5. 4.5. 6.4.5. 6.4.5.	pre-inc	A6	pre-inc	A7	8,+SP	A8	8,-SP	pre-dec	A9 7 CD	pre-dec	AA	6,-SP pre-dec	AB	5,-SP pre-dec	AC	4,-SP	pre-dec	3,-SP	pre-dec	AE SB	pre-dec	AF 1_SP	5
•	90 -16,SP	Sb const	91 _15.5P	5b const	92	-14,SP	93	-13.SP	5b const	94	-12,SP	20 20	-11 SP	5b const	96	5b const	26	95,6P	86	-8,SP	5b const	99	5b const	9A	5b const	9B	5b const	90	4,SP	5b const	-3,SP	5b const	9E	5b const	9F -1.SP	5
	80 0,SP	~	81 1 SD	5b const	82	2,SP	83	3.SP		84	4,SP	35 00 00	S S S D	5b const	86	5b const	87	7,SP	38	8,SP	5b const	68	5b const	8A	10,SP 5b const	8B	11,SP 5b const	80	12,SP	5b const	13,SP	5b const	8E	5b const	8F 15.SP	5
1	70 1,Y+	post-inc	71	post-inc	72	3,Y+	73	4.Y+	post-inc	74	5,Y+	75	, ,	post-inc	76	+ ', ' bost-inc	77	8,7+	78	8, 4-	post-dec	79	bost-dec	7A	6, Y- post-dec	78	5,Y- post-dec	20	4, 4	post-dec	3, 4-	post-dec	7E , ,	post-dec	7F 1 Y-	1
	60 1,+Y	pre-inc	61	z,r l pre-inc	62	3,+Y	63	4.+7	pre-inc	64	5,+Y	85	>+ 9	pre-inc	99	/,+ Y pre-inc	67	×+,8 201-010		}-'8	pre-dec	69	pre-dec	6A	6,-Y pre-dec	. B9	5,-Y pre-dec	90	۲-,−	pre-dec	3,-<	pre-dec	е Э	z,=1 pre-dec	6F 7-1	Ī.