Versuch 101

Das Trägheitsmoment

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 16.11.2021 Abgabe: 23.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	orie		3	
2 Durchführung					
3	Aus	wertung	g	3	
	3.1	Winke	elrichtgröße	. 3	
	3.2	Eigent	trägheitsmoment	. 4	
	3.3	Trägh	eitsmoment des Zylinders	. 4	
		3.3.1	Theoretische Werte	. 4	
		3.3.2	Experimentelle Werte	. 4	
	3.4	Trägh	eitsmoment der Kugel	. 4	
		3.4.1	Theoretische Werte	. 4	
		3.4.2	Experimentelle Werte	. 4	
4	Disk	kussion		5	
Lit	teratı	ır		5	

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Winkelrichtgröße

Die Winkelrichtgröße wird durch die Formel

$$D = \frac{F \cdot r}{\phi} \tag{1}$$

bestimmt. Die verwendeten Werte sind in Tabelle?? angegeben.

Tabelle 1: Messdaten zur Bestimmung der Winkelrichtgröße D

F/N	ϕ	r/m	D/Nm
0,1	30	0,1	0,000333
$0,\!26$	60	0,1	0,000433
$0,\!41$	90	0,1	0,000456
$0,\!56$	120	0,1	0,000467
0,72	150	0,1	0,000480
0,85	180	0,1	0,000472
$0,\!48$	180	0,2	0,000533
$0,\!55$	240	0,2	0,000458
0,63	270	0,2	0,000467
0,69	300	0,2	0,000460

Sowohl der Mittelwert, als auch die Standardabweichung wurden mit Python bestimmt. Daraus ergibt sich der gemittelte Wert

$$D = (0.000456 \pm 0{,}000048) \,\mathrm{Nm}.$$

Abbildung 1: Plot.

- 3.2 Eigenträgheitsmoment
- 3.3 Trägheitsmoment des Zylinders
- 3.3.1 Theoretische Werte
- 3.3.2 Experimentelle Werte
- 3.4 Trägheitsmoment der Kugel
- 3.4.1 Theoretische Werte
- 3.4.2 Experimentelle Werte

Siehe Abbildung 1!

4 Diskussion

Literatur

 $[1] \quad \textit{Versuch zum Literaturverzeichnis}. \ \text{TU Dortmund}, \ \text{Fakult\"{a}t Physik}. \ 2014.$