Exercise sheet 1

Curves and Surfaces, MTH201

- 1. Find a parametrization $\gamma(t)$ for a line segment joining two given points $(x_1.y_1)$ and $(x_2.y_2)$. Find $\dot{\gamma}(t)$.
- 2. What does the parametrization trace out $\gamma(t) = (\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2})$?
- 3. Show that the parametrization $\gamma(t) := (t^2 1, t(t^2 1))$ is not injective, i.e. there are two *distinct* real numbers t_1 and t_2 so that $\gamma(t_1) = \gamma(t_2)$. Can you deduce the shape¹ of this curve? Can you express the set of points defined by this curve as the zero set² of some function f(x, y)?
- 4. For $\mathbf{v}: (\alpha, \beta) \to \mathbf{R}^2$ and $\mathbf{w}: (\alpha, \beta) \to \mathbf{R}^2$, show that $(\mathbf{v}(t).\mathbf{w}(t))' = \mathbf{v}'(t).\mathbf{w}(t) + \mathbf{v}(t).\mathbf{w}'(t)$.
- 5. If $\mathbf{n}: (\alpha, \beta) \to \mathbf{R}^2$ is such that $||\mathbf{n}(t)||$ is constant, then prove that $\dot{\mathbf{n}}(t)$ is either 0 or perpendicular to $\mathbf{n}(t)$.
- 6. if we denote,

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

prove that $s_{\beta}(t) - s_{\alpha}(t)$ is a constant (assume that $t_{\alpha} < t_{\beta}$).

- 7. If $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth **and regular** parametrization, then show that $||\dot{\gamma}(t)||: (\alpha, \beta) \to \mathbb{R}$ is smooth.
- 8. For the parametrization $\gamma: (-\pi/2, \pi/2) \to \mathbb{R}^2$ given by $\gamma(t) = (5\cos(t), 5\sin(t))$,
 - (a) Find the arc-length function s(t) (starting at, say, 0)
 - (b) Find a reparametrization map ϕ so that $\gamma(\phi(t))$ is a unit-speed parametrization.

¹Just a rough drawing showing where the curve intersects the axes and where it self-intersects etc

²The zero set of a function $f: \mathbb{R}^2 \to \mathbb{R}$ is $\{(x,y) \mid f(x,y) = 0\}$, i.e. the set of points (x,y) in the plane for which f(x,y) = 0