Clusters jerárquicos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2

Idea general

El algoritmo básico para clustering aglomerativo es sencillo

- 1. Deje que cada punto de datos sea un clúster
- 2. Calcular la matriz de proximidad (matriz de distancia entre cada clúster)
- 3. Repetir hasta que sólo quede un solo clúster
 - 1. Fusionar los dos clústeres más cercanos
 - 2. Actualizar la matriz de proximidad

El paso clave es el cálculo de la proximidad de dos clústeres

Diferentes enfoques para definir la distancia entre clústeres distinguen los diferentes algoritmos

Cluster Dendrogram

Resumen

Dendrogramas

Un dendrograma es una estructura de tipo árbol que muestra el proceso generativo de agrupación en clústeres.

El eje X muestra los puntos de datos originales, mientras que el eje Y podría mostrar la distancia entre clústeres.

Dirección

Los métodos jerárquicos pueden ser aglomerantes o divisivos, en ambos casos se genera un dendrograma que muestra las secuencias de combinaciones o divisiones.

Divisivo

Average linkage

La distancia entre clústeres se basa en la distancia media entre todos los puntos de los diferentes clústeres

$$D(C_i, C_j) = \mathbf{avg}\{d(x, y) | \mathbf{x} \in C_i, \mathbf{y} \in C_j\}$$

- Fortalezas: Menos susceptibles a los valores atípicos
- Limitaciones: Sesgado hacia los clusters globulares

Single linkage

La distancia entre clústeres se basa en los dos puntos (más cercanos) más similares de los diferentes clústeres

$$D(C_i, C_j) = \min\{d(x, y) | \mathbf{x} \in C_i, \mathbf{y} \in C_j\}$$

- Fortalezas:
 Produce clusters largos y delgados
- Limitaciones:
 Sensible a los valores atípicos

Complete linkage

La distancia entre clústeres se basa en los dos puntos más diferentes (más distantes) de los diferentes clústeres

$$D(C_i, C_j) = \max\{d(x, y) | \mathbf{x} \in C_i, \mathbf{y} \in C_j\}$$

- Fortalezas:
 Menos susceptibles a los valores atípicos
- Limitaciones:
 Tiende a romper grandes clusters
 Sesgado hacia los clusters globulares

Métodos de aglomeración

Original data

Single linkage

Average linkage

Nivel de análisis

Este proceso es subjetivo

Aunque el dendrograma nos muestra toda la información, hay n clústeres posibles, donde n es el número de puntos de datos.

Se recomienda contar con un experto para analizar el dendrograma.

Hay métodos matemáticos, pero son heurísticos.

Ejemplo

Complete Linkage

Average Linkage

Desventajas

- El algoritmo es demasiado caro O(n3): Hay n pasos, para unir clústeres, y en cada paso calculamos la matriz de proximidad O(n2).
- Una vez que se toma la decisión de combinar dos grupos, no se puede revertir
- Ninguna función objetivo se minimiza directamente

Documentos y datos categóricos

Los métodos jerárquicos se utilizan frecuentemente para describir vectores de documentos y datos categóricos

Para vectores de documentos:

- Distancia de correlación
- Distancia del coseno

Para datos categóricos:

- Disimilaridad de Gower
- Coeficiente de Jaccard
- IoF
- Goodall

Ejemplo vector de documentos

Se pidió a los alumnos que describieran los siguientes conceptos:

brazo, tocino, castaño, águila, pelo, labios, langosta, kétchup, sándwich, escorpión, pulgar, pavo

- Se mencionaron 2625 palabras.
- 317 atributos diferentes.
- Máximo de atributos diferentes para una palabra 46.
- Atributos mínimas diferentes para una palabra 32.
- Atributos más mencionada para una sola palabra => 30

¿Qué clústeres esperas? ¿Qué decisiones debo tomar?

Ejemplo vector de documentos

$$d(p,q) = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

Ejemplo vector de documentos

$$Cor_D(x, y) = \frac{Cov_D(x, y)}{\sigma_D(x)\sigma_d(y)}$$

$$Cov_D^2(x, y) = \frac{1}{N^2} \sum_{i}^{N} \sum_{j}^{N} \hat{X}_{ij} \hat{Y}_{ij}$$
 $Var_D^2(x) = Cov_D^2(x, x)$

Aplicación centroides iniciales Kmedias

Regionalización jerárquica

- Algoritmo jerárquico con restricción de vecindad
- Utilizado para combinar zonas geográficas
- En cada iteración, cada entidad se auto-organiza espacialmente según las reglas:
 - Identifica y evalúa vecinos.
 - Selecciona el vecino más parecido
 - Se fusiona

	AREA	POPULATION
Mean	4 989649	18 6994
Mín	26 9533 9	1 58829
Max	3638092	20000
Var Coeff.	0,29	0,38

Clusters jerárquicos

Dr. Raimundo Sánchez raimundo.sanchez@uai.cl @raimun2