

Sample Size Considerations for Raman Spectroscopic Cell Identification

Claudia Beleites¹ (Claudia.Beleites@ipht-jena.de), Ute Neugebauer^{1,2}, Thomas Bocklitz³, Christoph Krafft¹, and Jürgen Popp^{1,3}

¹Institute of Photonic Technology, Jena/Germany
²Center for Sepsis Control and Care, University Hospital Jena, Jena/Germany
³Institute of Physical Chemistry and Abbe Center of Photonics,
Friedrich-Schiller-University Jena/Germany

Chemometrics in Analytical Chemistry 2012

Raman Spectra of Single Cells

rbc	normal red blood cells	5 donors	372 spectra
leu	normal leukocytes	5 donors	569 spectra
oci	acute myelotic leukemia cell line OCI-AML	5 batches	518 spectra
mcf	breast cancer cell line MCF-7	5 batches	558 spectra
bt	breast cancer cell line BT-20	5 batches	532 spectra
total			2549 spectra

Samples are ever too few...

- Samples are ever too few...
- But: how many samples (per class) do we really need?

- Samples are ever too few...
- But: how many samples (per class) do we really need?
- ...to train a good classifier:
 - \Rightarrow **learning curve** model performance $p = f(n_{train})$

- Samples are ever too few...
- But: how many samples (per class) do we really need?
- ...to train a good classifier:
 - \Rightarrow **learning curve** model performance $p = f(n_{train})$
- ...to precisely measure the classifier's performance:
 - \Rightarrow confidence interval for test results: $\sigma^2(\hat{p}) = \frac{p(1-p)}{n_{test}}$

Take home message I

Training a good classifier is not enough: performance must be **demonstrated**, too.

Data Analysis Set Up

- PLS-LDA, 25 latent variables (for n_{train} / class < 10: $\frac{1}{2}$ n_{train})
- 50× iterated 5-fold cross validation
- 100 growing "small" data sets
- "large" test with 320 520 spectra / class

 - pprox 1 : 9 split for "small" : "large" sets

Measuring a Learning Curve

- Learning curve:
- true performance p of model trained with n_{train} samples:

$$error^2 = \underbrace{Bayes\text{-}error^2 + bias^2(n_{train})}_{\text{learning curve}} + \underbrace{var(n_{train})}_{\text{model instability}}$$

• observed performance $\hat{p} = \text{true performace p}$ + systematic test error(n, method) + random test error(n_{test})

Learning Curve

- Confidence band: 5th 95th percentile of observations
- 100 repetitions
- tested with large test set

Learning Curve

- Confidence band: 5th 95th percentile of observations
- 100 repetitions
- tested with large test set

Learning Curve

- Confidence band: 5th 95th percentile of observations
- 100 repetitions
- tested with large test set

Take home message II

The learning curve of **particular** small data set can differ substantially from average performance for data set of given size.

Learning Curve: small set

- Confidence band: 5th 95th percentile of observations
- single, growing data set: iteration no. 17
- blue: tested with large test set
- red: 50× 5-fold cross validation

Take home message III

For estimating the learning curve of **particular** small data set, performance estimation uncertainty is **huge**.

Confidence Intervals for Proportion

- Classifier performance: proportions
- Statistical description: Bernoulli trial
- Uncertainty on proportion: $var(\hat{p}) = \frac{p(1-p)}{n_{test}}$
- \sim Estimate necessary n_{test}

Confidence Interval Width

Observing at least \hat{p}

Proving Advantage over Other Model

$$\alpha = \mathbf{5}\,\%, \beta = \mathbf{20}\,\%$$

from: Fleiss "Statistical Methods for Rates and Proportions"

More powerful tests available for paired test

Summary

- Learning curve: check variance as well as expected performance
- Performance of data set of size n vs. particular data set
- Learning curve is difficult to measure from small sample set:
 Uncertainty dominated by testing.
- Calculating necessary test sample size
 - Confidence interval width $\mathbf{p} \leq \Delta \mathbf{p}$
 - Observe $\hat{p} \ge x$
 - Show advantage over model with \hat{p}_{A}
- Necessary n_{test} often \gg necessary n_{train}

