R Markdown

Amalia S. Haye

27 de abril de 2019

R Markdown

R Markdown es un paquete que combina el lenguaje R con Markdown, permitiendo ejecutar el código R simultáneamente con texto, convirtiéndolo en posibles formatos tales como HTML; MS Word; PDF y Beamer.

Requiere de la instalación del paquete rmarkdown.

Componentes

- YAML
- Cuerpo del texto
- Código Chunk

Ejemplos:

Utilizaremos el paquete datasets, que contiene archivos con datos para trabajar en R. Por ejemplo la tabla de datos de estatura y peso de mujeres entre 30 y 39 años de edad que es un *data.frame*. Para conocer las variables que contiene el archivo utilizamos el comando names().

```
mujeres<-women
names(mujeres)</pre>
```

```
## [1] "height" "weight"
```

Cambio de unidades

Las unidades son: para peso: libras; y para estatura: pulgadas. Vamos a convertirlas a kilogramos y a centímetros:

```
peso<-mujeres$weight*0.4536
estatura<-mujeres$height*2.54
names(mujeres)<-c("peso","estatura")
head(mujeres,2)</pre>
```

```
## peso estatura
## 1 58 115
## 2 59 117
```

Gráficos

Escribir con código en línea:

El peso promedio de las mujeres es 65; mientras que la estatura promedio es 136.73. Podríamos pedir un resumen de los datos:

Table 1: Datos de mujeres

peso	estatura
58	115
59	117
60	120
61	123
62	126
63	129
64	132
65	135
66	139
67	142
68	146

Cinco números

Con el comando *fivenum()* obtenemos los cinco números de Tukey: mínimo; cuartiles, máximo

```
fivenum(mujeres$peso)
```

```
## [1] 58.0 61.5 65.0 68.5 72.0
```

Boxplot del peso de las mujeres:

```
boxplot(mujeres$peso,col="orange")
```


Test de Kruskal-Wallis

##

```
## Kruskal-Wallis rank sum test
##
## data: Ozone by Month
## Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6
```

Nos muestra que el parámetro de ubicación de la distribución del Ozono varía significativamente de mes a mes. Finalmente incluimos un boxplot de los datos:

Boxplots de Ozono

Código R-Matrices

t(A)

```
# Creación de matrices y operaciones con ellas:
A=matrix(c(1,2,3,4,5,6), byrow=TRUE, nrow=2) # La matriz
Α
                                        # Mostramos
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
B=matrix(c(1,3,5,7,9,11), nrow=2)
                                        # La matriz
В
                                        # Mostramos
## [,1] [,2] [,3]
## [1,] 1 5 9
## [2,] 3 7 11
```

Matriz tra