HLS-Assignment 3

March 21, 2023

ramesh randhi FWC22076

1 Problem Statement

Repeat the experiment in Assignment 2.3 but by configuring the module as pipelined.

Record your observations wrt timing and resource consumption. Explain why you think pipeline affected those numbers.

Include all code, entire synthesis report, simulation output, and $\mathrm{C/RTL}$ co simulation output and report.

```
#include "ap_cint.h"
#include<hls_stream.h>
#include<stdio.h>
typedef int in;
typedef long long out;

void multi(hls::stream<in> &A,hls::stream<in> &B,hls::stream<out> &C){
#pragma HLS PIPELINE
    in in1,in2;
    in1=A.read();
    in2=B.read();
    C.write(in1*in2);
}
```

Figure 1: cpp file 3.1.1

```
2 #include "ap_int.h"
3 using namespace std;
4 #include<hls_stream.h>
5 #include <iostream>
typedef int in;
typedef long long out;
void multi(hls::stream<in> &A,hls::stream<in> &B,hls::stream<out> &C);
9⊖ int main(){
          hls::stream<in> in1,in2;
Θ
          hls::stream<out> c;
         in p;
int i;
for (i=0;i<10;i++){
4
               p=i+2;
in1.write(p);
in2.write(p+5);
5
6
               multi(in1,in2,c);
std::cout<<p<"x"<<p+5<<"="<<c.read()<<std::endl;</pre>
8
0 1 }
          }
```

Figure 2: testbench file 3.1.2

Figure 3: csim file 3.1.3

Figure 4: stimulation file 3.1.4.1

Figure 5: synthesis file 3.1.4.2

Summary						
RTL Ports	Dir	Bits	P٢	otocol	Source Object	C Type
ap_clk	in	1	ар.	_ctrl_hs	multi	return value
ap_rst	in	1	ар.	_ctrl_hs	multi	return value
ap_start	in	1	ар.	_ctrl_hs	multi	return value
ap_done	out	1	ар.	ctrl_hs	multi	return value
ap_idle	out	1	ар.	_ctrl_hs	multi	return value
ap_ready	out	1	ар.	_ctrl_hs	multi	return value
A_V_dout	in	32		ap_fifo	A_V	pointe
A_V_empty_n	in	1		ap_fifo	A_V	pointe
A_V_read	out	1		ap_fifo		pointe
B_V_dout	in	32		ap_fifo	B_V	pointe
B_V_empty_n	in	1		ap_fifo		pointe
B_V_read	out	1		ap_fifo	B_V	pointe
C_V_din	out	64		ap_fifo	C_V	pointe
C_V_full_n	in	1		ap_fifo	C_V	pointe
C V write	out	1		ap fifo	C V	pointer

Export the report (.html) using the Export Wizard

Open Analysis Perspective Analysis Perspective

Figure 6: synthesis file 3.1.4.3

Cosimulation Report for 'multi'

Export the report (.html) using the Export Wizard

Figure 7: co simulation 3.1.5

```
#include <ap_fixed.h>
#include<hls_stream.h>
#includestdio.h>

typedef ap_ufixed<28,4> in;

typedef ap_ufixed<28,4> in;

typedef ap_ufixed<56,8> out;

void multi(hls::stream<in> &A,hls::stream<in> &B,hls::stream<out> &C){

#pragma HLS PIPELINE
    in inl,in2;
    in1=A.read();
    in2=B.read();
    C.write(in1*in2);
}
```

Figure 8: cpp file 3.2.1

```
#include<stdio.h>
#include "ap_fixed.h"
using namespace std;
#include<nls stream.h>
#include ap_fixed.h"
using namespace std;
#include <iostream>

typedef ap_ufixed<28,4>in;
typedef ap_ufixed<28,4>in;
typedef ap_ufixed<56,8>out;
void multi(hls::stream<in> &in1,hls::stream<in> &in2,hls::stream<out> &c);
int main(){
    hls::stream<in> in1,in2;
    hls::stream<out> c;
    in p;
    int i;
    for (i=0;i<10;i++){
        p=i+0.5;
        in1.write(p);
        in2.write(p+5);
        multi(in1,in2,c);
        std::cout<<p<<"x"<<p+5<<"="<<c.read()<<sstd::endl;
}
}</pre>
```

Figure 9: testbech file 3.2.2

```
2 INFO: [SIM 4] CSIM will launch GCC as the compiler.
    Compiling ../../../assign2/mul3_tb.cpp in debug mode Compiling ../../../assign2/mul3_cpp in debug mode
    Generating csim.exe
6 0.5x5.5=2.75
71.5x6.5=9.75
8 2.5x7.5=18.75
93.5x8.5=29.75
10 4.5x9.5=42.75
115.5x10.5=57.75
12 6.5x11.5=74.75
13 7.5x12.5=93.75
148.5x13.5=114.75
15 9.5x14.5=137.75
18
```

Figure 10: csim 3.2.3

Figure 11: synthesis file 3.2.4.1

Figure 12: synthesis file 3.2.4.2

Figure 13: synthesis file 3.2.4.3

Result							
		Lä	ten	су	In	terv	/al
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	4	4	5	1	1	2

Figure 14: co simulation 3.2.5

Vivado HLS Report Comparison

All Compared Solutions

solution1: xc7z020clg484-1
solution2: xc7z020clg484-1

Performance Estimates

☐ Timing (ns)

Clock		solution1	solution2
ap_clkT	arget	10.00	10.00
E	stimated	8.510	8.510

□ Latency (clock cycles)

		solution1	solution2
Latency	min	2	2
	max	2	2
Interval	min	2	1
	max	2	1

Utilization Estimates

	solution1	solution2
BRAM_18K	0	0
DSP48E	3	3
FF	99	99
LUT	70	53

Figure 15: comparasion results 3.1

Figure 16: comparasion results 3.2