Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	Akkalareddy Anirudhreddy
Student Roll Number	211419104008
Maximum Marks	2 Marks

Question-1:

Download the dataset Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)

2)Image Augmentation	
[] from tensorflow.keras.preprocessing.image import ImageDataGenerator	
[] train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)	
[] test_datagen=ImageDataGenerator(rescale=1./255) Load Data	
[] x_train=train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training", target_size=(64,64),class_mode='categorical',batch_size=24)	
Found 3293 images belonging to 5 classes.	
[] x_test=test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64,64),class_mode='categorical',batch_size=24)	
Found 1317 images belonging to 5 classes.	
[] x_train.class_indices	
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	
[] x_test.class_indices	
{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}	

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

:	3)Create Model
	[] from tensorflow.keras.models import Sequential
	[] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten
	[] model=Sequential()
Que	estion-4:
So	
mo	del.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1 input_shape=(64,64,3)))
b)N	MaxPooling Layer model.add(MaxPooling2D(pool_size=(2,2)))
	del.add(Flatten())
	del.add(Dense(300,activation="relu")) model.add(Dense(300,activation="relu"))
e)O	utput layer model.add(Dense(5,activation="softmax"))
4)Add Layers
а)Convolution Layer
	model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3)))
b)MaxPooling Layer
[<pre>] model.add(MaxPooling2D(pool_size=(2,2)))</pre>
С)Flatten
[<pre>] model.add(Flatten())</pre>
d)Dense(Hidden layer)
1] model.add(Dense(300,activation="relu"))
[] model.add(Dense(300,activation="relu"))
e)	Output layer
Γ	<pre>1 model.add(Dense(5.activation="softmax"))</pre>

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

5)Compile the model

```
[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))

6)Fit the model

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

7)Save the model

```
[ ] model.save("Flowers.h5")
```

Question-8:

Test The Model

Solution import

numpy as np

from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image model=load_model("Flowers.h5") img=image.load_img(r"/content/drive/MyDrive/Assignment 3/FlowersDataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_siz e=(64,64)) x=image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x) pred index=['daisy','dandelion','rose','sunflower','tulip'] index[np.argmax(pred)]

8)	8)Test the model	
1] import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image	
1] model=load_model("Flowers.h5")	
[] img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))	
]] img	
[] x=image.img_to_array(img)	
[] x=np.expand_dims(x,axis=0)	
[] pred=model.predict(x)	
[] pred	
	array([[1., 0., 0., 0.]], dtype=float32)	