UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa Cálculo III

12 de Agosto de 201

1	
2	
3	
4	
5	
6	
Total	

Aluno(a):....

- (1) Determine o maior domínio da função $r(t) = \left(\sqrt{2-t}, \frac{e^t-1}{t}, \ln(t+1)\right)$.
- (2) Calcule o limite $\lim_{(x,y)\to(0,0)} f(x,y)$, onde

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0) \end{cases}$$

- (3) Mostre que o elipsóide $2x^2 + 3y^2 + z^2 = 9$ e a esfera $x^2 + y^2 + z^2 6x 8y 8z + 24 = 0$ possuem o mesmo plano tangente no ponto (1, 1, 2).
- (4) Utilizando o método dos multiplicadores de Lagrange, encontre as dimensões da caixa retangular com volume máximo cuja área total da superfície é $64cm^2$.
- (5) Encontre os pontos de máximo, mínimo e sela, se existirem, da função

$$f(x,y) = xy - 2x - 2y - x^2 - y^2$$

(6) Dada f(x,y), com $x = r\cos(\theta)$ e $y = r\sin(\theta)$, mostre que

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \left(\frac{\partial f}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial f}{\partial \theta}\right)^2$$

[Lembre que: $sen^2(x) + cos^2(x) = 1$.]

Boa Prova!