

Scribe: Vishal Raman

Contents

1	January 20th, 2021 1.1 Intro to Riemann Mapping Theorem 1.2 Cauchy's Integral Formula 1.3 Schwarz Lemma 1.4 Maximum Principles	3 3 3 4
2	January 25th, 2021 2.1 Uniform Convergence	5
3	January 27th, 2021 3.1 Uniform Convergence, continued	7 7 7
4	February 1st, 20214.1 Connectivity4.2 Fractional Linear Transformations4.3 Fractional Linear Transformations, Unit Disk	8 8 8 9
5	February 3rd, 2021 5.1 Remark on the Zeta Function	10 10 10 10 11
6	February 8th, 2021 6.1 Mappings of Circles and Lines 6.2 Revisiting the Schwarz Lemma 6.3 Functions on Simply Connected Regions 6.4 Injective Functions	12 12 12 13 13
7	February 10th, 2021 7.1 Riemann Mapping Theorem	14 14
8	February 17th, 2021 8.1 Caratheodory Extension Theorem	16 16 16
9	February 22nd, 2021 9.1 Schwarz Reflection and Variants	18 18

§1 January 20th, 2021

§1.1 Intro to Riemann Mapping Theorem

Our first goal is to proof a fundamental theorem of Riemann on conformal mappings. We start with several preparations, including some detours. The theorem essentially says that lots of open sets in \mathbb{C} are holomorphically isomorphic, given that they satisfy some simple topological conditions.

§1.2 Cauchy's Integral Formula

Recall Cauchy's formula:

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz$$

where Γ is a simple closed curve, piecewise differentiable, $z_0 \in \operatorname{Int}(\Gamma)$, and $f : \Omega \to \mathbb{C}$ is a holomorphic function, with Ω is open, $\Omega \supset \Gamma \cup \operatorname{Int}(\Gamma)$.

If Γ is the circle $|z - z_0| = R$, we parameterize with $z = Re^{i\theta} + z_0$ with $\theta \in [0, 2\pi)$. This gives

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta,$$

which represents the average of f on the circle.

It follows that

$$|f(z_0)| \le \max_{\partial B_R(z_0)} |f(z)|,$$

with equality if and only if f is constant.

If $f: \Omega \to \mathbb{C}$ is holomorphic for Ω connected, open and $z_0 \in \Omega$, then

$$|f(z_0)| \le \sup_{z \in \Omega} |f(z)|$$

with equality if and only if f is constant.

§1.3 Schwarz Lemma

Theorem 1 (Schwarz Lemma)

For $f: B_1(0) \to \mathbb{C}$ holomorphic with $|f(z)| \leq 1$ for all z and f(0) = 0. Then

$$|f(z)| \le |z|, |f'(0)| \le 1.$$

If for some $z_0 \neq 0$, $|f(z_0)| = |z_0|$ or if |f'(0)| = 1 then f(z) = cz for some |c| = 1.

Proof. Define a function

$$g(z) = \begin{cases} f(z)/z, & \text{if } 0 \le |z| \le 1\\ f'(0), & \text{if } z = 0 \end{cases}.$$

Note that g(z) is continuous since at zero,

$$\lim_{z \to 0} \frac{f(z)}{z} = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = f'(0).$$

Hence, $|g(z)| \le C < \infty$ using the Weierstrass Extreme Value theorem. If $0 < \epsilon < |w| < r < 1$, note that taking a Keyhole Contour, we have

$$g(w) = \frac{1}{2\pi i} \left(\int_{|z|=r} - \int_{|z|=\epsilon} \right) \frac{g(z)}{z - w} dz.$$

Note that

$$\left| \int_{|z|=\epsilon} \frac{g(z)}{z-w} \, dz \right| \leq (2\pi\epsilon) \cdot C \frac{1}{|w|-\epsilon} \xrightarrow{\epsilon \to 0} 0.$$

It follows that

$$g(w) = \frac{1}{2\pi i} \int_{|z|=r} \frac{g(z)}{z-w} \, dz$$

for 0 < |w| < r. The right side is holomorphic in w if |w| < r, so it follows that

$$g(w) = \frac{1}{2\pi i} \int_{|z|=r} \frac{g(z)}{z - w} dz$$

is holomorphic in |z| < 1.

This can also be proved by taking a Taylor series about the origin. Since there is no constant term, we can divide by z to still have a convergent Taylor series.

If r < 1,

$$\sup_{|z| \le r} |g(z)| = \sup_{|z| = r} |g(z)| \le \sup_{|z| = r} \frac{|f(z)|}{|z|} \le \frac{1}{r}.$$

If we let $r \uparrow 1$, then we get $\sup_{|z| < 1} |g(z)| \le 1$. It follows that $|f(z)| \le |z|$, $|f'(0)| \le 1$. If $|f(z_0)| = z_0$ for some $0 < |z_0| < 1$ then $|g(z_0)| = 1$ and g is constant by the maximum principle so g(z) = c, f(z) = cz. If |f'(0)| = 1, then |g(0)| = 1 so g is constant and f = cz.

§1.4 Maximum Principles

In the above proof, we used the maximum principle. Some other versions we will use are the following:

If $K \subset \mathbb{C}$ compact and $f: K \to \mathbb{C}$ continuous, and the restriction of f to the interior of K is holomorphic, then

$$\sup_{z \in K} |f(z)| = \sup_{z \in \partial K} |f(z)|.$$

If Ω is open and connected, $f:\Omega\to\mathbb{C},\ z_0\in\Omega,\ \text{and}\ |f(z_0)|=\sup_{z\in\Omega}|f(z)|,\ \text{then }f$ is constant. Applying this to e^f and using that $|e^f|=e^{\operatorname{Re} f},\ \text{we find that}$

Re
$$f(z_0) = \sup_{z \in \Omega} \operatorname{Re} f(z),$$

implies that f is constant. We have the same result for Im f by replacing f with -if.

§2 January 25th, 2021

§2.1 Uniform Convergence

Remark 2.1. They sometimes call open connected sets "regions".

Definition 2.2 (Uniform Convergence). Let $\Omega \subset \mathbb{C}$ be open. Let $f_n : \Omega \to \mathbb{C}$ be holomorphic and $f : \Omega \to \mathbb{C}$ a function so that $\lim_{n\to\infty} \sup_{z\in K} |f(z) - f_n(z)| = 0$ for all $K \subset \Omega$ compact(also denoted $K \subset \Omega$).

Remark 2.3. Recall from real analysis that f is a continuous function.

Some further remarks:

- It suffices to check the result for a sequence of compact subsets K_m so that $\bigcup_m K_m^{\circ} = \Omega$, the it suffices to check those. If $K \subset\subset \Omega$, then K is compact and covered by the union of the subsets so there exists a finite subcovering, and uniform convergence on the subcovering implies uniform convergence on K.
- It is often convenient to introduce $||g||_K = \sup_{z \in K} |g(z)|$. Uniform convergence can be restated as $||f_n f||_K \to 0$ for all $K \subset\subset \Omega$.
- If $||f_n f||_K \to 0$ for all $K \subset\subset \Omega$, then f is also holomorphic. It follows by passing to the limit in the Cauchy Integral formula. Namely, take $\{z : |z z_0| \leq R\} \subset \Omega$ and consider the points in $|z_0 \zeta| < R$.

$$\left| f_n(\zeta) - \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f(z)}{z-\zeta} dz \right| = \left| \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f_n(z)}{z-\zeta} dz - \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f(z)}{z-\zeta} dz \right|$$

$$\leq \frac{1}{2\pi} \frac{1}{R - |z_0 - \zeta|} \cdot (2\pi R) ||f_n - f||_{|z-z_0|=R} \to 0.$$

So it follows that

$$f(\zeta) = \lim_{n \to \infty} f_n(\zeta) = \frac{1}{2\pi i} \int_{|z-z_0|} \frac{f(z)}{z-\zeta} dz.$$

It follows that f continuous on $|z - z_0| = R$ is holomorphic in $\zeta \in \{|z - z_0| < R\}$, so it follows that f is holomorphic.

• We can similarly show that

$$f_n^(j)(\zeta) = \frac{n!}{2\pi i} \int_{|z-z_0|=R} \frac{f_n(z)}{(z-\zeta)^{n+1}} dz$$

and
$$||f_n^{(j)} - f(j)||_K \to 0$$
.

From the last item, we have the following theorem.

Theorem 2

If $f_n \to f$ on compact subsets of Ω , the if f_n is holomorphic we find that f is holomorphic and $f_n^(j) \to f^{(j)}$ uniformly on compact subsets of Ω .

Theorem 3 (Hurwitz)

Let Ω be a region, $f: \Omega \to \mathbb{C}$ and $f_n: \Omega \to \mathbb{C}$ holomorphic with $f_n(\Omega) \subset \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$ and $||f_n - f||_K \to 0$ for all compact subsets. Then either $f \equiv 0$ or $f(\Omega) \subset \mathbb{C} \setminus \{0\}$.

Proof. If f is not identically zero on ω , then since f is holomorphic, its zeros are isolated. If $z_0 \in \Omega$, $f(z_0) = 0$, then there is $\epsilon > 0$ so that when $0 < |z - z_0| < \epsilon$, $f(z) \neq 0$.

Since $f(z) \neq 0$ for $|z - z_0| = \epsilon/2$, by the Weierstrass theorem applied to |f| on $|z - z_0| = \epsilon$, we have $|f(z)| \geq m > 0$ on $\{|z - z_0| = \epsilon/2\} = \Gamma$. If $||f_n - f||_{\Gamma} \leq m/2$ for n > N, then

$$|f_n(z)| \ge |f(z)| - m/2 \ge m - m/2 = m/2$$

for $z \in \Gamma$. Hence, it follows that $||1/f_n - 1/f||_{\Gamma} \to 0$ (we leave this as an exercise). Since $||f'_n - f'||_{\Gamma} \to 0$, we find that $||f'_n/f_n - f'/f|| \to 0$ (another exercise) and hence

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f_n'}{f_n} dz \to \frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz.$$

The integrand of the left hand side is $(\log f_n)'$, whose integral is 0, and the right side is the order of the zero of f at z_0 by the argument principle. It follows that the order of z_0 as a possible zero is 0, so $f(z_0) \neq 0$.

Theorem 4

For $\Omega \subset \mathbb{C}$ open, \mathcal{F} a set of holomorphic functions, the following are equivalent:

- for every $K \subset\subset \Omega \sup_{f\in\mathcal{F}} \|f\|_K < \infty$
- for every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathcal{F}$, there is a subsequence $(f_{n_j})_{j\in\mathbb{N}}$ with $n_1< n_2<\ldots$ so that $(f_{n_j})_{j\in\mathbb{N}}$ is uniformly convergent on compact subsets of Ω .

Proof. We first show 2 implies 1. If $\sup_{f \in \mathcal{F}} \|f\|_K = \infty$, then we can find for each $n \in \mathbb{N}$ $f_n \in \mathcal{F}$ so that $\|f_n\|_K \geq n$. If we abstract a convergence subsequence, then $\|f_{n_j} - f\|_K \leq C < \infty$ and $\|f_{n_j}\|_K \leq \|f\|_K + C$, while $\|f_{n_j}\|_K \to \infty$, a contradiction. \square

§3 January 27th, 2021

§3.1 Uniform Convergence, continued

Theorem 5

For $\Omega \subset \mathbb{C}$ open, \mathcal{F} a set of holomorphic functions, the following are equivalent:

- for every $K \subset\subset \Omega \sup_{f\in\mathcal{F}} \|f\|_K < \infty$
- for every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathcal{F}$, there is a subsequence $(f_{n_j})_{j\in\mathbb{N}}$ with $n_1< n_2<\ldots$ so that $(f_{n_j})_{j\in\mathbb{N}}$ is uniformly convergent on compact subsets of Ω .

I missed the beginning of the class, but I will add the proof of the theorem once notes are posted.

§3.2 Metric Convergence

One can put a metric on holomorphic functions so that convergence in the metric is uniform convergence on compact sets. For $f:\Omega\to\mathbb{C}$, but $K_n\in\Omega$ so that $\bigcup_n K_n^\circ=\Omega$ and take

$$d(f,g) = \sum_{n=1}^{\infty} \frac{\|f - g\|_{K_n}}{1 + \|f - g\|_{K_n}} 2^{-n}.$$

§3.3 Riemann Sphere

On the set $\mathbb{C} \cup \{\infty\}$, we consider the topology which makes it the Alexandroff(one-point) compactification of \mathbb{C} . If $z \in \mathbb{C}$, a neighborhood is one that contains a neighborhood in \mathbb{C} and a neighborhood of ∞ is of the form $\{\infty\} \cup (\mathbb{C} \setminus K)$ for $K \in \mathbb{C}$.

Let $U_+ = \mathbb{C} \subset \mathbb{C} \cup \{\infty\}$ and $U_- = (C \setminus \{0\}) \cup \{\infty\}$. Note that the union of the two sets covers the Riemann Sphere. Define $\psi_+ : U_+ \to \mathbb{C}$ by $\psi_+(z) = z$ and $\psi_i : U_- \to \mathbb{C}$ is given by $\psi_-(w) = 1/w$ if $w \in \mathbb{C} \setminus \{\infty\}$ and 0 if $w = \infty$. Notice that these two functions are bijections.

If $V \subset \mathbb{C} \cup \{\infty\}$ is open, a function $f: V \to \mathbb{C}$ is holomorphic if

$$f|_{V \cup U_{+}} \circ (\psi_{\pm}|_{V \cup U_{+}})^{-1} : \psi_{\pm}(V \cup U_{\pm}) \to \mathbb{C}$$

is holomorphic. In this way, we know what holomorphic functions are on open sets of $\mathbb{C} \cup \{\infty\}$.

More generally, we can describe a Riemann surface in the following way - Let X be a topological space. Take $\{(U_{\alpha}, z_{\alpha})\}_{\alpha \in I}$ where $U_{\alpha} \subset X$ is open, and $\bigcup_{\alpha \in I} U_{\alpha} = X$ and $z_{\alpha} : U_{\alpha} \to \mathbb{C}$ is continuous, $z_{\alpha}(U_{\alpha})$ is open and z_{α} is a homeomorphism. The key requirement is that the maps $z_{\alpha} \circ z_{\beta}^{-1} : z_{\beta}(U_{\alpha} \cup U_{\beta}) \to z_{\alpha}(U_{\alpha} \cup U_{\beta})$ are holomorphic.

Then, if $U \subset X$ is open, $f: U \to \mathbb{C}$ is holomorphic if for all $\alpha \in I$,

$$f|_{U\cup U_{\alpha}}\circ (z_{\alpha}|_{u\cup U_{\alpha}})^{-1}$$

is holomorphic. Two such atlases give the same Riemann surface if put together, we get an atlas.

§4 February 1st, 2021

§4.1 Connectivity

Definition 4.1. $\Omega \subset \mathbb{C}$ open is connected if $\Omega = \Omega_1 \cup \Omega_2$ open with $\Omega_1 \cap \Omega_2 = \emptyset$ implies that one of the two is empty. For open sets, this is equivalent to arcwise connected.

Definition 4.2. An set is arcwise connected if for every $z_1, z_2 \in \Omega$, there is a path $\varphi : [0,1] \to \Omega$ which is continuous and $\varphi(0) = z_1, \varphi(1) = z_2$.

Definition 4.3. Ω is simply connected if for $z_0 \in \Omega$, $\Gamma : [0,1] \to \Omega$ continuous and $\Gamma(0) = \Gamma(1) = z_0$, then there is $G : [0,1] \times [0,1] \to \Omega$ continuous with $G(t,0) = \Gamma(t)$ for $t \in [0,1]$ and $G(t,1) = z_0$, for $t \in [0,1]$.

Simply connected corresponds to the idea of being able to continuously deform the set to a point for each point.

In $\mathbb{R}^2 \cong \mathbb{C}$, Ω -open simply connected is equivalent to $(C \cup \{\infty\}) \setminus \Omega$ is connected in $\mathbb{C} \cup \{\infty\}$. That is, if $F = \mathbb{C} \cup \{\infty\} \setminus \Omega$, which is closed in $\mathbb{C} \cup \{\infty\}$, with $F \cap V_1 \cap V_2 = \emptyset$, then at least one of the $F \cap V_k = \emptyset$. If $0 \in \Omega$, then Ω is simply connected if and only if $\{0\} \cup \{1/z : z \in \mathbb{C} \setminus \Omega\}$ is connected (this is a local representation).

- Take $\Omega = \mathbb{C} \setminus \bigcup_{j=1}^m \{tz_j : t \in [1, \infty)\}$ for $z_1, \ldots, z_n \in \mathbb{C} \setminus \{0\}$.
- $\mathbb{C} \setminus \text{spirals}$.

Theorem 6 (Riemann Mapping Theorem)

If $\Omega \subset \mathbb{C}$ open, connected, simply connected, $\emptyset \neq \Omega \neq \mathbb{C}$, then Ω and $\mathbb{D} = \{|z| < 1\}$ are holomorphic isomorphisms.

§4.2 Fractional Linear Transformations

Recall that if $f \in \operatorname{Aut}(\mathbb{D})$ then $f(z) = \frac{az+b}{xz+d}$, which was proved using the Schwarz lemma. We view the fractional linear maps from a different context.

We define a map $p: \mathbb{C}^2 \setminus \{\binom{0}{0}\} \to \mathbb{C} \cup \{\infty\}$ given by

$$p\left(\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}\right) = \begin{cases} z_1/z_2 & \text{if } z_2 \neq 0 \\ \infty & \text{if } z_2 = 0 \end{cases}$$

Then $p(\xi) = p(\eta)$ if and only if $\xi = \lambda \eta$ for $\lambda \in C^{\times} = C \setminus \{0\}$.

There is a larger group acting on $C^2 \setminus \{\binom{0}{0}\}$ given by $GL(2,\mathbb{C})$ the invertible 2×2 matrices in the natural way so that

$$A \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \mapsto \frac{A_{11}p(\xi) + A_{12}}{A_{21}p(\xi) + A_{22}}.$$

Define $T_g: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ given by

$$T_g z = \frac{az+b}{cz+d},$$

with $T_g(\infty) = \frac{a}{c}$. We have the action $T_g p(\xi) = p(g\xi)$ for $g \in GL(2,\mathbb{C})$.

This gives

$$T_{g_1} \circ T_{g_2} = T_{g_1 g_2},$$

 $(T_g)^{-1} = T_{g^{-1}}.$

We can also ask about the fixed point:

$$T_q p(\xi) = p(\xi) \leftrightarrow p(\xi) = p(g\xi) \Leftrightarrow g\xi = \lambda \xi , \lambda \in C^{\times}$$

It follows that the fixed points of T_q correspond to the eigenvectors of $GL(2,\mathbb{C})$.

§4.3 Fractional Linear Transformations, Unit Disk

If we have $\xi = {z_1 \choose z_2}$, then $p(\xi) \in \mathbb{D}$ if and only if $|z_1| < |z_2|$ if and only if $z_1\overline{z_1} - z_2\overline{z_2} < 0$. If we let

$$J = \begin{pmatrix} 1, 0 \\ 0, -1 \end{pmatrix},$$

we consider the sesquilinear form $\langle J(\xi_1), (\eta_1) \rangle$, where it is linear in the first coordinate and conjugate linear in the second coordinate. Note that

$$\langle J\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}, \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \rangle = \xi_1 \overline{\eta_1} - \xi_2 \overline{\eta_2}.$$

When does $g \in GL(2,\mathbb{C})$ preserve $\langle J\xi,\xi\rangle$?

This means that

$$\langle Jg\xi, g\xi \rangle = \langle J\xi, \xi \rangle$$

for all $\xi \in C^2 \setminus \{0\}$. Then,

$$\langle g^* J g \xi, \xi \rangle = \langle J \xi, \xi \rangle$$

so it follows that $g^*Jg = J$. (We prove this by transforming ξ in polar coordinates, $\xi = x + i^k y$, and considering k = 0, 1, 2, 3. These four equations allow us to determine the equality). Note that $U(1,1) = \{g : g^*Jg = J\}$ forms a group structure where J has eigenvalues ± 1 for this reason, we denote $U(1,1) \subset GL_2(\mathbb{C})$.

We claim the following: $T_g \in \operatorname{Aut}(\mathbb{D}) \Leftrightarrow g \in C^{\times} \cdot U(1,1)$.

§5 February 3rd, 2021

§5.1 Remark on the Zeta Function

Theorem 5.1 (S.M. Voronin 1975)

For $D = \{\frac{1}{2} < \text{Re}(z) < 1\}$, $f : D \to \mathbb{C} \setminus \{0\}$. If $K \subset\subset D$ and $\epsilon > 0$, then there exists $t \in \mathbb{R}$ such that

$$||f(\cdot) - \zeta(\cdot + it)||_K < \epsilon.$$

This theorem essentially says that if I slide around the zeta function in the strip D, I can uniformly approximate pretty much any function I want.

§5.2 Fractional Linear Transformations, continued

Note that $\operatorname{Ker}(g \mapsto T_g) = C^{\times}I_2$. We define $SL(2; C) = \{g \in GL(2; \mathbb{C}) : \det g = 1\}$, the special linear group.

Theorem 5.2

For $g \in SL(2; C)$, $T_g \in Aut(\mathbb{D})$ if and only if $g \in U(1, 1)$.

Proof. We start with the forward direction. From the first homework, we showed that $f \in \operatorname{Aut}(\mathbb{D})$ implies that $f(z) = T_g z$ where g is the composition of a rotation g_1 and $g_2 = \begin{pmatrix} 1 & z_0 \\ \overline{z_0} & 1 \end{pmatrix}$ for $z_0 \in \mathbb{D}$. It suffices to check that $g_1, g_2 \in U(1, 1) \times \mathbb{C}^{\times} I_2$. This is easy to check.

Now, we show the converse. If $g \in U(1,1)$, then $g^{-1} \in U(1,1)$. If $z \in \mathbb{D}$, then $z = p(\xi), \langle J\xi, \xi \rangle < 0$. We have $T_g z = p(g \ xi)$ and $\langle J\xi, \xi \rangle < 0$ implies that $\langle g^* jg\xi, \xi \rangle < 0$, which implies that $\langle Jg\xi, g\xi \rangle < 0$, which shows that $T_g z = p(g\xi) \in \mathbb{D}$. Hence $T_g \mathbb{D} \subset \mathbb{D}$. The same argument holds for $T_g^{-1} \mathbb{D} \subset \mathbb{D}$ so we have $T_g \mathbb{D} = \mathbb{D}$ exactly, so $T_g = \operatorname{Aut}(\mathbb{D})$. \square

§5.3 Automorphisms of the Half Plane

There is a conformal map from $\mathbb{H}_+ \to \mathbb{D}$ given by $f: z \mapsto \frac{z-i}{z+i}$. This corresponds to

$$f = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}.$$

Note that

$$f^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}.$$

Now, $\operatorname{Aut}(\mathbb{H}_+) = \{(T_f)^{-1}T_gT_f|T_g \in \operatorname{Aut}(\mathbb{D})\} = \{T_{f^{-1}gf}|g \in SU(1,1)\}.$ it follows that $\operatorname{Aut}(\mathbb{H}_+) = \{T_h|fhf^{-1} \in SU(1,1)\}$ (assuming $h \in SL(2,\mathbb{C}), fhf^{-1} \in SL(2,\mathbb{C})$). It follows that $(fhf^{-1})^*J(fhf^{-1}) = J$, so $h^*(f^*Jf)h = f^*Jf$. We can compute

$$f^*Jf = \begin{pmatrix} 0 & -2i \\ 2i & 0 \end{pmatrix}.$$

It follows that

$$h^* \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} h = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

If we let $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} h^* \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} h = I_2.$$

If we check the computation, we find that $a, b, c, d \in \mathbb{R}$, so it follows that $h \in SL(2, \mathbb{R})$.

§5.4 The Cross Ratio

Note that T_g is completely determined by $T_g0, T_g1, T_g\infty$. Suppose $T_g0 = T_h0, T_g1 = T_h1, T_g\infty = T_h\infty$. If we let $r = g^{-1}h$, we have $T_r0 = 0, T_r1 = 1, T_r\infty = \infty$, so it follows that $r \in C^{\times}I_2$ (carry out the matrix multiplication for an arbitrary matrix).

if we look at g^{-1} instead of g, we find that T_g is completely determined by $a, b, c \in C \cup \infty$ so that $Ta = 1, Tb = 0, Tc = \infty$. Given, a, b, c, such a T_g is the map

$$z \mapsto \frac{z-b}{z-c} : \frac{a-b}{a-c}.$$

We denote the RHS by (z, a, b, c), which is a fractional linear map taking a, b, c to $1, 0, \infty$. This is called the cross ratio of z, a, b, c.

Theorem 5.3

If T_g is a fractional linear transformation and z_1, z_2, z_3, z_4 are distinct points in $\mathbb{C} \cup \infty$, then

$$(z_1, z_2, z_3, z_4) = (T_g z_1, T_g z_2, T_g z_3, T_g z_4).$$

Remark 5.4. The above theorem shows that cross ratios are invariant under fractional linear transformations.

§6 February 8th, 2021

§6.1 Mappings of Circles and Lines

Lemma 6.1

For $g \in GL_2(\mathbb{C})$, $\{w \in \mathbb{C} \cup \{\infty\} : T_gw \in \mathbb{R} \cup \{\infty\}\}\$ is a circle or a straight line with a point at infinity.

Proof.

$$\frac{aw+b}{cw+d} = \frac{\overline{aw+b}}{\overline{cw+d}},$$

Then $(a\overline{c} - c\overline{a})|w|^2 + (a\overline{d} - c\overline{b})w + (b\overline{c} - d\overline{a})\overline{w} + b\overline{d} - d\overline{b} = 0$. If $a\overline{c} - c\overline{a} = 0$, then we have a straight line. If $a\overline{c} - c\overline{a} \neq 0$, we have

$$\left| w + \frac{\overline{a}d - \overline{c}b}{\overline{a}c - \overline{c}a} \right| = \left| \frac{ad - bc}{\overline{a}c - \overline{c}a} \right|,$$

a circle.

§6.2 Revisiting the Schwarz Lemma

Recall we have $f \in \text{Aut}(\mathbb{D})$, with f(0) = 0. We will use the fractional linear transformations so that $0 \in \mathbb{D}$ no longer has a special role.

Given $f: \mathbb{D} \to \mathbb{D}$ holomorphic with $z_0 \in \mathbb{D}$. Take an automorphism mapping $0 \to z_0$ given by $\frac{\cdot + z_0}{1 + \overline{z_0}(\cdot)}$. Then, applying f and applying $(\frac{\cdot + f(z_0)}{1 + \overline{f}(z_0)(\cdot)})^{-1}$, which sends $f(z_0) \to 0$. These are all holomorphic, so it follows that the composition is a holomorphism from $\mathbb{D} \to \mathbb{D}$ mapping $0 \to 0$. Now, we can apply the Schwarz Lemma as usual: For the derivatives, we use the chain rule:

$$\left(\frac{\cdot + z_0}{1 + \overline{z}_0(\cdot)}\right)'|_{z=0} = 1 - |a|^2.$$

Composing the derivatives along the composition, we find the derivative evaluated at 0 which we require to be ≤ 1 .

It follows that

$$\frac{|f'(z_0)|}{1 - |f(z_0)|^2} \le \frac{1}{1 - |z_0|^2}.$$

Moreover, by the Schwarz Lemma, we have equality if and only if $f \in \text{Aut}(\mathbb{D})$. if we put w = f(z), then dw = f'dz and the inequality is

$$\frac{|dw|}{1 - |w|^2} \le \frac{dz}{1 - |z|^2}.$$

This can be interpreted as having on \mathbb{D} the Riemannian metric

$$\frac{dx^2 + dy^2}{(1 - (x^2 + y^2))^2}$$

and $f: \mathbb{D} \to \mathbb{D}$, contracting the metric.

§6.3 Functions on Simply Connected Regions

Recall the following properties of holomorphic functions in simply connected regions:

- For $f: \Omega \to \mathbb{C}$ holomorphic, then there is $F: \Omega \to \mathbb{C}$ holomorphic so that F' = f.
- $f: \Omega \to \mathbb{C} \setminus \{0\}$, then there exists $g: \Omega \to \mathbb{C}$ holomorphic so that $e^g = f$.
- $f: \Omega \to \mathbb{C} \setminus \{0\}$ holomorphic, then there exists $g: \Omega \to \mathbb{C}$ so that $h^n = f$.
- $f: \Omega \to \mathbb{C}$ holomorphic and non-constant, Ω a region, then f(V) is open if $V \subset \Omega$, V is open.

§6.4 Injective Functions

Let $f: \Omega \to G$ be a holomorphic function with Ω open and connected. If f is injective, then $f'(z) \neq 0$. If so, then $f(z) - f(z_0) = u(z)^n$ if $0 = f'(z_0) = \dots, f^{n-1}(z_0)$ and $f^{(n)}(z_0) \neq 0$, with $u(z_0) = 0$. Then $u(\{|z - z_0| < \epsilon\})$ is open for some $\epsilon > 0$ so it contains $\{|\zeta| < \delta\}$ for some $\delta > 0$. It follows that $U(z_k) = \frac{\delta}{z} e^{2\pi i k/n}$ for $1 \leq k \leq n$ and $f(z_1) = \dots = f(z_n)$. We could also use the argument principle to show that $f'(z) \neq 0$.

Then, $f(\Omega)$ is open and f has local inverses: for each $z \in \Omega$, there is a neighborhood V_z , where f is a holomorphic isomorphism in the region. It follows that $f: \Omega \to G$ is holomorphic, injective, then $f|f(\Omega): \Omega \to f(\Omega)$ is a holomorphic isomorphism.

If Ω is an open region so that $f:\Omega\to\mathbb{D}$ is a holomorphic isomorphism, then if fix $z_0\in\Omega$, we have $g\in\mathrm{Iso}(\Omega,\mathbb{D})\to(g(z_0),\frac{g'(z_0)}{|g'(z_0)|})\in\mathbb{D}\times\{|z|=1\}$ is a bijection.

§7 February 10th, 2021

Lemma 7.1

If Ω is an open region so that $f:\Omega\to\mathbb{D}$ is a holomorphic isomorphism, then if fix $z_0\in\Omega$, we have $g\in\mathrm{Iso}(\Omega,\mathbb{D})\to(g(z_0),\frac{g'(z_0)}{|g'(z_0)|})\in\mathbb{D}\times\{|z|=1\}$ is a bijection.

Proof. We provide a sketch of the proof. Replace f with

$$\left(\frac{\cdot - f(z_0)}{1 - \overline{f(z_0)}}\right) \circ f$$

so that $f(z_0) = 0$. Then, $Iso(\Omega, \mathbb{D}) \ni g \to g \circ f^{-1} \in Aut(\mathbb{D})$ is a bijection and

$$\left(g(z_0), \frac{g'(z_0)}{|g'(z_0)|}\right) = \left((g \circ f^{-1})(0), \frac{(g \circ f^{-1})'(0)}{|(g \circ f^{-1})'(0)|} \frac{f'(z_0)}{|f'(z_0)|}\right)$$

so the proof reduces to the case where $\Omega = \mathbb{D}$ and $z_0 = 0$. It is easy to show that the map is onto and 1-1.

§7.1 Riemann Mapping Theorem

Theorem 7 (Riemann Mapping Theorem)

Suppose Ω is simply connected and $\Omega \neq \mathbb{C}$. Then, there exists $f: \Omega \to \mathbb{D}$ a holomorphic isomorphism.

Remark 7.2. There is no holomorphic isomorphism from $\mathbb{D} \to \mathbb{C}$ because of Liouville's Theorem.

Proof. (Kobe) Let $z_0 \in \Omega$ and $\mathcal{F} = \{f : \Omega \to \mathbb{D} : f \text{ injective}, f(z_0) = 0, f'(z_0) > 0\}$. The steps are as follows:

• $\mathcal{F} \neq \emptyset$.

Proof. If $\Omega \neq \mathbb{C}$, there is a point $a \in \mathbb{C} \setminus \Omega$. If Ω is simply connected, there exists $h: \Omega \to \mathbb{C}$ holomorphic with $h^2(z) = z - a$. Then $h(\Omega)$ is open and there exists r such that $B_r(h(z_0)) \subset h(\Omega)$. Then $h^2(\cdot) = \cdot - a$ is injective, so h is injective. Then $-B(h(z_0), r) \cap h(\omega) = \emptyset$. Otherwise, there are z_1, z_2 with $h(z_1) = -h(z_2) \neq 0$. Then, we have $z_1 \neq z_2$ and $h(z_1) = -h(z_2)$ which implies that $h^2(z_1) = h^2(z_2)$.

Hence, $|h(z) - h(z_0)| \ge r$ for all $z \in \Omega$. It we take p = r/2 > 0, then we have $|h(z) + h(z_0)| \ge p$. Then, we find $c \in \mathbb{C}^{\times}$ so that

$$c\frac{h(z) - h(z_0)}{h(z) + h(z_0)} \in \mathbb{D}.$$

Rotating by a sufficient $\theta \in \mathbb{R}$, we have

$$z \mapsto ce^{i\theta} \frac{h(z) - h(z_0)}{h(z) + h(z_0)} \in \mathcal{F}$$

• Show there is f which maximizes $f'(z_0)$ in \mathcal{F} .

Proof. Let $g_n \in \mathcal{F}$ so that $\lim_{n\to\infty} g'_n(z_0) = \sup_{f\in\mathcal{F}} f'(z_0)$. Since $\|g_n\|_{\Omega} \leq 1$, $n \in \mathbb{N}$, we can pass to a subsequence so that $g_n \to g$ uniformly on compact subsets of Ω for some holomorphic $g: \Omega \to \mathbb{C}$ and $g'_n \to g'$ uniformly on compact sets in Ω . Hence $\lim_{n\to\infty} g'_n(z_0) = g'(z_0)$ and $\sup_{f\in\mathcal{F}} f'(z_0) = g'(z_0) < \infty$ and $g'(z_0) > 0$.

We still need to show g is injective. Let $z_1 \neq z_2$, $z_1, z_2 \in \Omega$, $g(z_1) = g(z_2)$. Then in $\Omega \setminus \{z_1\}$, $g_n(\cdot) - g_n(z_1) \neq 0$ for all points in $\Omega \setminus \{z_1\}$. By the Hurwitz theorem, $g(\cdot) - g(z_1)$ is either 0 or never vanishes. But $g(\cdot)$ is not a constant function since $g'(z_0) > 0$, so we have $g(\cdot) - g(z_1)$ never vanishes on $\Omega \setminus \{z_1\}$, so $g(z_2) \neq g(z_1)$, a contradiction.

Moreoever, $||g||_{\Omega} \leq 1$ gives that $g(\Omega) \subset \overline{\mathbb{D}}$, but by the maximum principle, we have $g(\Omega) \subset \mathbb{D}$.

• If $f'(z_0)$ maximal, then f is an isomorphism.

Proof. It suffices to show that $g(\Omega) = \mathbb{D}$. Suppose there is $w_0 \in \mathbb{D} \setminus g(\Omega)$. We perform several modifications of g.

First, let $F(z) = \sqrt{\frac{g(z)-w_0}{1-\overline{w_0}g(z)}}$. This is well-defined since Ω is simply connected. Note that $F(\Omega) \subset \mathbb{D}$ and F is injective with $0 \notin F(\Omega)$.

Second, we make z_0 go to 0. Define $G(z) = \frac{F(z) - F(z_0)}{1 - \overline{F}(z_0)F(z)}$. Then, G is injective from $\Omega \to \mathbb{D}$ and $G(z_0) = 0$.

We now show that $G'(z_0) > g'(z_0)$, a contradiction. We will show that $g = k \circ G$, where $k : \mathbb{D} \to \mathbb{D}$, holomorphic. The inverse of G is a fractional linear transformation given by $\begin{pmatrix} 1 & F(z_0) \\ \overline{F}(z_0) & 1 \end{pmatrix}$.

From F to g, we take the $T_w \circ (z \mapsto z^2)$, where w is the corresponding matrix from the initial FLT. So we have $k = T_w \circ (z \mapsto z^2) \circ T_h$. Note that $k(\mathbb{D}) \subset \mathbb{D}$ and $k(0) = \frac{F(z_0)^2 + w_0}{1 + \overline{w_0} F(z_0)^2}$, so since we have $F(z_0)^2 = -w_0$, we get k(0) = 0.

Since $k \notin \operatorname{Aut}(\mathbb{D})$, so we must have |k'(0)| < 1 by the Schwarz Lemma. It follows that

$$|G'(z_0)| > |k'(0)||G'(z_0)| = |(k \circ G)'(z_0)| = |g'(z_0)|,$$

a contradiction. \Box

§8 February 17th, 2021

§8.1 Caratheodory Extension Theorem

Definition 8.1. A Jordan curve is given by a map $[0,1] \ni t \to C(t) \in \mathbb{C}$ which is continuous, 1-1 on [0,1] and C(0) = C(1).

Theorem 8 (Jordan Curve Theorem)

If $C:[0,1]\to\mathbb{C}$ is a Jordan curve, then $\mathbb{C}\setminus C([0,1])$ has 2 connected components, one if which is bounded and the other is unbounded.

We refer to the bounded component as the interior region, or the Jordan region. We denote C([0,1]) as |C| when $C:[0,1] \to \mathbb{C}$.

Theorem 9 (Caratheodory)

Let Γ be a Jordan curve and Ω the bounded region determined by Γ (then $\partial \Omega = |\Gamma|$). if $f: \mathbb{D} \to \Omega$ is a holomorphic isomorphism, then f extends to a homeomorphism $\overline{\mathbb{D}} \to \overline{\Omega}$ where $\partial \mathbb{D}$ is mapped to $\partial \Omega = |\Gamma|$.

Some remarks:

- Note that the winding of the boundary around interior points is preserved so correspondence $\partial \mathbb{D} \to \partial \Omega$ preserves clockwise orientation(see Ahlfors for more detail).
- It is easy to derive a more general statement for Ω_1, Ω_2 of Jordan curves Γ_1, Γ_2 . So we have homeomorphisms giving $\Omega_1 \cup |\Gamma_1| = \overline{\Omega_1}$ and $\Omega_2 \cup |\Gamma_2| = \overline{\Omega_2}$.
- It also tells us things about regions with slits. For instance, take $\mathbb{D} \to \mathbb{D} \setminus [0,1)$. By the Riemann Mapping Theorem, we have a holomorphic isomorphism between this set and the unit disk. The boundary behaves as if [0,1) would infinitesimally be a double line, but we can still factor a map $g : \mapsto \mathbb{D} \cap \{Im(z) > 0\}$. Then the map $z \mapsto z^2$ sends this set to $\mathbb{D} \setminus [0,1)$. Then, the homeomorphism $\partial \mathbb{D} \to \partial(\mathbb{D} \cap \{Im(z) > 0\})$ is given by Caratheodory.

§8.2 Rectifiable Arcs

Definition 8.2. An arc $\varphi : [a, b] \to \mathbb{C}$ is a 1-1, continuous map is rectifiable if it has "length" (bounded variation) that is finite:

$$\sup_{a=t_0 < t_1 < \dots < t_k = b} \sum_{j=0}^{k-1} |\varphi(t_{j-1}) - \varphi(t_j)| < \infty.$$

If this definition is bothersome, we can make stronger assumptions about the arc being piecewise differentiable.

First, we present an analytic continuation theorem. Here the rectificable arc will be without endpoints $\varphi:(a,b)\to\mathbb{C}$.

Theorem 10

If Ω, ω are disjoint regions and Γ a rectifiable arc, so that $|\Gamma| = \partial\Omega \cap \partial\omega$ and $|\Gamma| \cap \Omega \cap \omega$ is open. Assume $f: |\Gamma| \cup \Omega \to \mathbb{C}$, $g; |\Omega| \cup \omega \to \mathbb{C}$ is continuous and $f|_{\Omega}$, $g|_{\omega}$ holomorphic and $f|_{|\Gamma|} = g|_{|\Gamma|}$. Then $F: \Omega \cup |\Gamma| \cup \omega \to \mathbb{C}$ defined by $F|_{\Omega \ cup|\Gamma|} = f$, $F|_{|\Gamma| \cup \omega} = g$ is holomorphic.

Proof. We sketch the proof. Analyticity is a local property, so we only need to show that for a point on $|\Gamma|$, there is a neighborhood where F is holomorphic. While F had no endpoints, we take γ , a small portion of the arc. Then, for an open ball containing the arc, we split into regions C_1, C_2 . On this, we define

$$f^*(z) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in \Omega_1 \cup \omega_1,$$

going counterclockwise. Similarly, we define $g^*(z)$ over the lower part. Intersection over γ is a Stieltjes integral.

When we add the two, we get $F(z) = \frac{1}{2\pi i} \oint \frac{F(\zeta)}{\zeta - z} d\zeta$. This shows that F is holomorphic.

§9 February 22nd, 2021

§9.1 Schwarz Reflection and Variants

Let $\Omega = \Omega^* = \{\overline{z}|z \in \Omega\}$ an open region. Suppose that $\Omega \cap \mathbb{R} \subset (a,b)$. Then, $\Omega_{\pm} = \omega \cap \{\pm Im(z) > 0\}$. If $f : \Omega_+ \cup (a,b) \to \mathbb{C}$ continuous and $f|_{(a,b)} \subset \mathbb{R}$, $f|_{\Omega_+}$ holomorphic, then

$$F(z) = \begin{cases} f(z), & z \in \Omega_+ \cup (a, b) \\ \overline{f(\overline{z})}, & z \in \Omega_- \end{cases}$$

is holomorphic in $\Omega_+ \cup (a,b) \cup \Omega_-$.

Proof. Use the previous result with $\Omega = \Omega_+$, $\omega = \Omega_-$, $|\Gamma| = (a, b)$ with f = f, $\overline{f(\bar{\cdot})} = g(\cdot)$.

Variants:

• Suppose we set $\Omega_+ \subset \mathbb{D}$, γ , an arc in $\{|z|=1\} \cap \partial \Omega_+$. We have $|\gamma| \cup \Omega_+$ open, and $f: |\gamma| \cup \Omega_+ \to \mathbb{C}$ continuous, $f|_{\Omega_+}$ holomorphic and $f|_{|\gamma|} \subset \mathbb{R}$.

We set

$$F(z) = \begin{cases} f(z), & z \in \Omega_+ \cup |\gamma| \\ \overline{f(1/\overline{z})}, & z \in \{1/\overline{w} : w \in \Omega_+ \setminus \{0\}\} \end{cases}$$

If we work on the Riemann sphere, we don't need to remove 0, as it gets mapped to ∞ . For circles, we have $OA \cdot OB = R^2$.

• Let $\varphi:(a,b)\to\mathbb{C}$ be an Analytic arc - that there is $f:\omega\to\mathbb{C}$ univalent so that $\omega\supset(a,b),\ f|_{(a,b)}=\varphi$, a holomorphic extension. (this definition avoids the discussion of real analytic functions).

Let Ω be a region, γ an analytic arc, $|\gamma| \supset \partial \Omega$ from univalent $f : \omega \to \mathbb{C}$ and we assume ω is chosen so that

$$f(\omega \cap \{Im(z) > 0\}) \subset \Omega, \quad f(\omega \cap \{Im(z) < 0\}) \cap \Omega = \emptyset.$$

Let $F; \Omega \cup |\gamma| \to \mathbb{C}$ continuous. $F|_{\Omega}$ holomorphic, where $F(|\gamma|) \subset |\Gamma|$, where Γ is another analytic arc. Then, there is Ω_1 open with $\Omega_1 \supset \Omega \cup |\gamma|$ so that it has Γ has a holomorphic extension to Ω_1 with $|\gamma|$ mapping to another analytic arc.

First, after a suitable restriction, we take $g^{-1} \circ F \circ f$, reducing the result where we have a segment on the real axis mapped to \mathbb{R} . We then apply Schwarz reflection to the segment.

• Let Ω be an inner region of a polygon(not necessarily convex). Suppose z_1, \ldots, z_n appear counterclockwise and $\alpha_k \pi$, $1 \leq k \leq n$ inner angles $0 < \alpha_k < z$ and $\beta_k \pi$ the outer angles, $\pi - \alpha_k \pi = \beta_k \pi$ or $1 - \alpha_k = \beta_k$. Then $\sum_k \beta_2 = 2$ (the sum of exterior angles is 2π). A function $f: \Omega \to \mathbb{D}$ a holomorphic isomorphism has continuous extension to $\widetilde{f}: \overline{\Omega} \to \overline{\mathbb{D}}$ by Caratheodory with $\widetilde{f}(\partial \Omega) = \partial \mathbb{D}$. We let $F: \mathbb{D} \to \Omega$ be the inverse map. We choose f so that $f(z_j) = w_j$, preserving the counterclockwise orientation.

By the Schwarz Reflection, since $f((z_k, z_{k+1})) = (w_k, w_{k+1})$, f has an analytic extension across (z_k, z_{k+1}) and some neighborhood of (z_k, z_{k+1}) is mapped injectively into a neighborhood of (w_k, w_{k+1}) . Note that F has holomorphic extension into a neighborhood of (w_k, w_{k+1}) and etc.

§9.2 Schwarz-Christoffel Formula

 $F: \overline{\mathbb{D}} \to \overline{\Omega}$ is a homeomorphism which extends the inverse map ad $F(w_k) = z_k$. $\overline{\Omega}$ iis a polygon with angles $\alpha_k \pi, \beta_k = 1 - \alpha_k$. Then

$$F(w) = C \int_0^w \prod_{i=1}^k (w - w_k)^{-\beta_k} dw + C'.$$

Remark 9.1. This is not an explicit formula. The constants C, C' need to be found and w_1, \ldots, w_n are not known. We can fix w_1, w_2, w_3 , but not more.

Proof. Consider a map $\varphi(\zeta) = \zeta^{\alpha_k} e^{i\omega_k} + z_k$, which maps a semicircle to the angle $\alpha_k \pi$. Note that φ extends to $\{|\zeta| < \epsilon : Im(\zeta) \ge 0\}$ and maps $(-\epsilon, \epsilon)$ to the corner at z_k . Then $\widetilde{f} \circ \varphi$ maps $(-\epsilon, \epsilon)$ to an arc of the circle containing w_k .

Applying the reflection principle to the segment, $f \circ \varphi$ has an analytic extension to the open disc of radius ϵ . Moreover, this extension has nonzero derivative at 0, so it has a local inverse at w_k .

So, take $(\widetilde{f} \circ \varphi)^{-1}(w) = (w - w_k)K(w)$ with $K(w_k) \neq 0$ in a neighborhood of w_k . But then, in a neighborhood of w_k , if $w \in \overline{\mathbb{D}}$, we have

$$F(w) = \varphi \circ (\widetilde{f} \circ \varphi)^{-1}(w) = (w - w_k)^{\alpha_k} \cdot e^{i\omega_k} K(w)^{\alpha_k} + z_k.$$

But $K(w)^{\alpha_k}$ is holomorphic near w_k since $K(w_k) \neq 0$ so we can define (the branch of) this power in a small disc around w_k . Thus, locally near $w_k \in \overline{\mathbb{D}}$, we have

$$F(w) - z_k = (w - w_k)^{alpha_k} \cdot G_k(w)$$

where $G_k(w_k) \neq 0$ and holomorphic in a neighborhood of w_k . Computing the derivative, we have

$$F'(w) = (w - w_k)^{-\beta_k} (\alpha_k G_k(w) + (w - w_k) G'_k(w))$$

or $(w-w_k)^{\beta_k}F'(w)$ is holomorphic and nonzero near w_k so $F'(w)\prod_{k=1}^n(w-w_k)^{\beta_k}$ is are holomorphic near $\overline{\mathbb{D}}$.

§10 February 24th, 2021

§10.1