Introduction to Machine Learning

Lasso vs. ridge Regression

Learning goals

- Know the geometry of ridge vs. lasso regularization
- Understand the effects of the methods on model coefficients
- Understand that lasso creates sparse solutions

LASSO VS. RIDGE GEOMETRY

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2} \quad \text{s.t. } \|\boldsymbol{\theta}\|_{\boldsymbol{\rho}}^{\boldsymbol{\rho}} \leq t$$

- In both cases, the solution which minimizes $\mathcal{R}_{reg}(\theta)$ is always a point on the boundary of the feasible region (for sufficiently large λ).
- As expected, $\hat{\theta}_{lasso}$ and $\hat{\theta}_{ridge}$ have smaller parameter norms than $\hat{\theta}$.
- For lasso, the solution likely touches vertices of the constraint region. This induces sparsity and is a form of variable selection.
- In the p > n case, lasso selects at most n features Zou and Hastie, 2005

COEFFICIENT PATHS AND 0-SHRINKAGE

Example 1: Motor Trend Car Roads Test (mtcars)

We see how only lasso shrinks to exactly 0.

Coef paths and cross-val. MSE for λ values for ridge and lasso.

COEFFICIENT PATHS AND 0-SHRINKAGE

Example 2: High-dimensional simulated data

We simulate a continuous, correlated dataset with 50 features, 100 observations $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(100)} \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(\mathbf{0}, \Sigma\right)$ and

$$y = 10 \cdot (x_1 + x_2) + 5 \cdot (x_3 + x_4) + 1 \cdot \sum_{j=5}^{14} x_j + \epsilon$$

where $\epsilon \sim \mathcal{N}(0,1)$ and $\forall k,l \in \{1,...,50\}$:

$$Cov(x_k, x_l) = egin{cases} 0.7^{|k-l|} & ext{for } k
eq l \ 1 & ext{else} \end{cases}.$$

Note that 36 of the 50 features are noise variables.

COEFFICIENT PATHS AND 0-SHRINKAGE

Coefficient histograms for different λ values for ridge and lasso for simulated data along with the cross-validated MSE.

REGULARIZATION AND FEATURE SCALING

- Typically we omit θ_0 in the penalty term $J(\theta)$ so that the "infinitely" regularized model is the constant model (but this can be implementation-dependent).
- Note that unregularized LM has inductive bias of rescaling equivariance, i.e., if you scale some features, we can simply "anti-scale" the coefs and the risk does not change.
- Penalty methods typically not equivariant under rescaling of the inputs, so one usually standardizes the features beforehand.
- While regularized LMs exhibit low-complexity inductive bias, they lose equivariance property: if you down-scale features, coefficients have to become larger to counteract. Then they are penalized stronger in $J(\theta)$, making some features less attractive without relevant changes in data.

REGULARIZATION AND FEATURE SCALING

- ullet Let the DGP be $y=\sum_{j=1}^5 heta_j x_j + arepsilon$ for $oldsymbol{ heta}=(1,2,3,4,5)^{ op}, \ensuremath{arepsilon}\sim \mathcal{N}(0,1)$
- Suppose x_5 was measured in m but we change the unit to cm ($\tilde{x}_5 = 100 \cdot x_5$):

Method	$\hat{ heta}_1$	$\hat{ heta}_{ t 2}$	$\hat{ heta}_3$	$\hat{ heta}_{ extsf{4}}$	$\hat{ heta}_{ extsf{5}}$	MSE
OLS	0.9835872	2.147303	3.005854	3.917807	5.20491245	0.8124301
OLS Rescaled	0.9835872	2.147303	3.005854	3.917807	0.05204912	0.8124301
	•					

- Estimate $\hat{\theta}_5$ gets scaled by 1/100 while other estimates and MSE are invariant
- Running ridge regression with $\lambda=10$ on same data shows that rescaling of of x_5 does not result in inverse rescaling of $\hat{\theta}_5$ (everything changes!)
- This is because $\hat{\theta}_5$ now lives on small scale while L2 constraint stays the same. Hence remaining estimates can "afford" larger magnitudes.

Method	$\hat{ heta}_1$	$\hat{ heta}_{ extsf{2}}$	$\hat{ heta}_3$	$\hat{ heta}_{4}$	$\hat{ heta}_{ extsf{5}}$	MSE
ridge	0.7093407	1.873643	2.661345	3.557891	4.63642392	1.3664731
ridge Rescaled	0.8021802	1.942568	2.675207	3.569190	0.05134698	1.0796400

 This also implies that for very correlated features in lasso through a unit change we could arbitrarily force a feature out of he model

CORRELATED FEATURES

Consider n = 100 simulated observations using

$$y = 0.2X_1 + 0.2X_2 + 0.2X_3 + 0.2X_4 + 0.2X_5 + \epsilon.$$

 X_1 - X_4 are independent, but X_4 and X_5 are strongly correlated.

We see that lasso shrinks the coefficient for X_5 to zero early on, while ridge assigns similar coefficients to X_4 , X_5 for larger λ .

SYNOPSIS

- Neither one can be classified as overall better
- lasso can set some coefficients to zero, thus performing variable selection, while ridge regression usually leads to smaller estimated coefficients, but still dense parameter vectors θ.
- Lasso is likely better if true underlying structure is sparse, so if only few features influence y. Ridge works well if there are many (weakly) influential features.
- Lasso has difficulties handling correlated predictors. For high correlation ridge dominates lasso in performance.
- For lasso one of the correlated predictors will have a larger coefficient, while the rest are (nearly) zeroed. The respective feature is, however, selected randomly.
- For ridge the coefficients of correlated features are similar.
- For references, see → Tibshirani, 1996 and → Zou and Hastie, 2005

