PREDICTING H1N1 VACCINE UPTAKE

Presentation by: Group 10 DSF-FT13-Hybrid

The Bigger Picture

- Why does vaccine uptake matter so much?
- What have we learned from the "swine flu" pandemic in 2009 that led to over 150,000 deaths?
- Do opinions, behaviors, demographics and health concerns, affect vaccine uptake?
- How can healthcare professionals design more effective campaigns towards vaccine acceptance?

- Predict Vaccine Uptake → Build a machine learning model that can classify who is likely to receive the H1N1 vaccine.
- Identify At-Risk Groups → Detect populations with a high probability of remaining unvaccinated.
- **Uncover Key Drivers** → Highlight the main factors influencing vaccine acceptance and hesitancy.

- **Source:** 2009 H1N1 Flu Survey (CDC) 26,707 U.S. respondents
- **Content:** Survey on attitudes, beliefs, and behaviors toward H1N1 & seasonal flu vaccines
- Target: Predict whether a person received the HINI vaccine

- Opinions & Knowledge → Concern, knowledge
- Behaviors → Mask use, handwashing
- Demographics → Age, income, race
- External Influence → Doctor recommendations, healthcare employment

How We Cleaned The Mess

Dive Into The Dashboard

Link to Tableau

Trials & Triumphs

Random Forest

Seemed powerful but underperformed, catching only 1 of 3 vaccinated people due to overfitting.

Logistic Regression

This model was straightforward and easy to understand. It correctly identified 2 out of 3 people who were vaccinated, giving us a solid baseline

Logistic Regression 2.0

After tweaking the model to be more sensitive, it now correctly identifies 3 out of 4 vaccinated people, showing a clear improvement and hitting a 77% success rate.

What We Learned

What Drives Vaccinations?

Doctor's advice matters, people believe vaccines work, healthcare workers are more likely to vaccinate, and feeling at risk motivates action.

Public Health Impact

Better models lead to wider coverage and help target outreach to build trust, fight fear, and close access gaps.

Why Do Some Say No?

Fear of side effects, lack of health insurance, and lower income or education prevent some people from vaccinating.

Big Takeaway

Models reveal human behavior, not just numbers.

6. Key Limitation

The model may not generalize to other contexts, relies on specific features, and should support but not replace human judgment.

5. Predictive Intervention

Prioritize outreach for individuals unlikely to vaccinate and address misinformation strategically.

3. Efficient Resource

Use

Deploy resources like mobile vaccination units to areas predicted to have lower uptake.

1. Focused Outreach

Target the top 77% most likely to vaccinate with personalized messaging for better impact.

Tailored Campaign

Design campaigns by age, health condition, or education instead of one-size-fits-all approaches.

Explore & Enhance Models

Use advanced models like XGBoost and create new features for better predictions.

Target Key
Individuals with high opinion scores and strong doctor recommendations.

Pilot Before Scaling

Test the model in a small region to validate its effectiveness.

Improve Data Collection

Collect real-time vaccine attitude data to enhance model accuracy.

The Conclusion

- Machine learning can predict vaccine uptake using health and behavioral data.
- Key drivers include doctor recommendations, risk perception, and knowledge.
- Insights guide targeted campaigns and better resource use. Models must be applied carefully and support, not replace, human judgment.

"An ounce of prevention is worth a pound of cure"

-Benjamin Franklin

Q&A Session

Thank You!

GitHub:

