CISS362: Introduction to Automata Theory, Languages, and Computation Test 1 Part A

The following instructions on defining a DFA or an NFA must be followed.

Here's an example on how to define an NFA:

```
automata:nfa
sigma:a,b
states:q0,q1,q2,q3,q4
start:q0
accept:q0,q1
transitions:
q0,a,q0
q0,b,q1
q1,e,q3
```

The letter e is used for ϵ . (None of the Σ in this test will use e.)

Here's an example on how to define a DFA:

```
automata:dfa
sigma:a,b
states:q0,q1
start:q0
accept:q1
transitions:
q0,a,q0
q0,b,q1
q1,a,q1
q1,b,q0
```

- Q1. Our alphabet is $\Sigma = \{a, b, c\}$.
 - 1. T or F or M: 1 + 1 = 2
 - 2. T or F or M: a is a regular expression
 - 3. T or F or M: $a \cup b$ is a regular expression
 - 4. T or F or M: $a \cdot \cup c$ is a regular expression
 - 5. T or F or M: $a \cup^* b$ is a regular expression
 - 6. T or F or M: $\{c\}$ is a regular expression
 - 7. T or F or M: $c \cdot \emptyset$ is a regular expression
 - 8. T or F or M: $\epsilon \cdot \epsilon \cdot \epsilon$ is a regular expression
 - 9. T or F or M: \emptyset^* is a regular expression
 - 10. T or F or M: a^*) is a regular expression
 - 11. T or F or M: $a \cdot b \cup c$ is a regular expression
 - 12. T or F or M: a^b is a regular expression
 - 13. T or F or M: $a \in L(a \cup b)$
 - 14. T or F or M: $ab \in L(a^* \cup b^*)$
 - 15. T or F or M: $ab \in L((a \cup b)^*)$
 - 16. T or F or M: $a \in L(a \cdot \emptyset)$
 - 17. T or F or M: $ab \in L(a \cdot (a \cup b) \cdot c^*)$
 - 18. T or F or M: $ab \in L((a \cup b) \cdot (b \cup c))$
 - 19. T or F or M: $ab \in L((a \cup \overline{b}))$
 - 20. T or F or M: $a^4b^2 \in L(a^* \cup b)L(a \cup b^*)$

SOLUTION ON NEXT PAGE ...

SOLUTION.

Modify the file q01.tex. Use the letter t or f or m. I have already completed the first question for you.

1:t	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	
11:	
12:	
13:	
14:	
15:	
16:	
17:	
18:	
19:	
20:	

Q2. For the NFA N given below, using the subset construction, construct a DFA M that accepts the same language accepted by N. Do not include states which are not reachable from the initial state of your DFA.

SOLUTION.

Modify the file q02.tex.

automata:	

Q3. Design an NFA that accepts $\{a,ab,bab\}^*$.

SOLUTION.

Modify the file q03.tex.

automata:

Q4. Recall that the "complement construction" works for a DFA, i.e., if you exchange

 $accept \leftrightarrow non-accept states$

the resulting DFA will accept the complement of the language accepting by the original DFA.

Does it work with NFAs? In other words, if you exchange

 $accept \leftrightarrow non-accept states$

for an NFA, will the resulting NFA accept the complement of the language accepting by the original NFA? If it works, prove it. If it does not, provide a minimal counterexample. (Minimal in this case means the one with least number of states.)

SOLUTION.

Modify q04.tex.