Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Οι

Analog Ou

A

Stophon

Mohroro I ED

LED Streifer

Stromversor-

Sensoren

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

20. März 2017

Startpunkt digitaler Output

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

Digital Out

Analog Out

Digital In

Stephan

LED Samelfan

a.

gung

Sensore

```
Blink Beispiel: File \rightarrow Examples \rightarrow Basics \rightarrow Blink
void setup() {
  pinMode(13, OUTPUT);
void loop() {
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
```

Setup

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Out

Analog Ou

Digital In

A -- - 1

Stophor

Mahaaa LED

LED Streife

Stromversor-

Sensorer

pinMode(pin, modus) wählt für den Pin mit Nummer pin eine von drei Betriebsarten:

- OUTPUT: wird für Ausgabe verwendet, z.B. um LEDs zu schalten oder mit anderen Microcontrollern zu sprechen.
- INPUT: Die Spannung am Pin kann gelesen werden.
- INPUT_PULLUP: Wie INPUT, aber der Pin wird intern auf die Versorgunsspannung gezogen.

digitalWrite und delay

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

.

. . .

Stephan

1 ED C: 16

_

Stromversorgung

Sensoren

digitalWrite(pin, zustand) setzt bei einem auf Output gestellten Pin die Ausgangsspannung:

- 0 Volt für LOW
- 5 Volt für HIGH (oder was auch immer die aktuelle Versorgungsspannung ist)

delay(ms) tut ms Millisekunden lang nichts.

Andere Blink Muster

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Ŭ

. . .

, ...a.og .

I ED Straifa

Stromversor-

Sensoren

Zwei Sekunden lang an, eine halbe aus.

Andere Blink Muster

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

A .. . I . . . I .

Stephan

I ED Straifer

Stromversor-

Sensoren

Zwei Sekunden lang an, eine halbe aus.

```
digitalWrite(13, HIGH);
delay(2000);
digitalWrite(13, LOW);
delay(500);
```

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

a.

. . .

C. 1

Mohroro I ED

LED Streifer

Stromversor-

Sensoren

Was passiert, wenn man die Zeiten ganz niedrig setzt?

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Ou

District In

. . .

. .

I ED Straife

Stromversor-

Sensoren

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

Digital In

Analog II

Stephar

Mehrere LED

LED Streifer

Stromversor-

Sensorer

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Was passiert, wenn die Zeitverhältnisse geändert werden?

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

. . .

Allalog

Stephan

Menrere LED

LED Streife

Stromversor

Sensorer

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Was passiert, wenn die Zeitverhältnisse geändert werden?

 \rightarrow Dimmen

analogWrite

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Allulog Ot

A .. . I . . . I

C+----

Mehrere LEC

LED Streifer

Stromversorgung

Sensoren

analogWrite(pin, wert) schaltet den Pin
automatisch an und aus, mit variablen An-/Aus-Zeiten

- \rightarrow Pulsweitenmodulation
 - Frequenz: Etwa 490 Hz
 - Wertebereich: 0 bis 255
 - Nur auf Pins 3, 5, 6, 9, 10, und 11.
 - Die PWM Pins sind auf dem Arduino mit ~ markiert.

PWM Funktionsweise: Zähler + Vergleich

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Ŭ

Analog I

Stephar

Mehrere LED

LED Streife

Stromversor-

Sensore

PWM, Schwellwert 128

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

.

Cr. ...l. ...

Mahrara I FD

LED Streife

Stromversor-

c _ _ _

PWM, Schwellwert 16

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Crank an

Mehrere I FD

LED Streife

Stromversor

C - - - - - - -

Einfacher PWM Code

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

Digital Out

Analog Out

Digital In

Analog I

Stephan

Mehrere LED

LED Streifer

Stromversorgung

Sensore

```
int const led_pin = 11;
void setup() {
  pinMode(led_pin, OUTPUT);
void loop() {
  // Zeit seit Beginn des Programms
  unsigned long time = millis();
  // Berechne eine Sägezahn mit 0.1 Hz
  int value = 255 * time / 4000;
  // Verwende den Wert als Schwellwert
  analogWrite(led_pin, value);
```

Datentypen (1)

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital O

Analog Out

Digital In

Analog I

Stephon

Mehrere I FC

LED Streife

Stromversor

Sensorei

- unsigned long time und int value definieren Variablen.
- unsigned long und int sind die Typen, time und value die Namen, bzw. Identifier.
- Normal sind Typen vorzeichenbehaftet, durch unsigned haben sie einen nicht-negativen
 Wertebereich
- Kleinere Datentypen sind schneller

```
Typ Wertebereich unsigned Wertebereich char -2^7 bis 2^7 - 1 0 bis 2^8 - 1 int -2^{15} bis 2^{15} - 1 0 bis 2^{16} - 1 long -2^{31} bis 2^{31} - 1 0 bis 2^{32} - 1
```

Datentypen (2)

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Analog I

Stephan

Mehrere LED

LED Streifer

Stromversorgung

Sensoren

- float für Gleitkommazahlen (sehr langsam!)
- double für genauere Gleitkommazahlen (unglaublich langsam)
- const Suffix (z.B. int const) für Werte, die sich nach ihrer Definition nicht ändern. Vorteile:
 - Etwas lesbarer
 - Kann zu schnelleren Programmen führen
- Zu große (oder kleine) Werte führen zu Überlauf:
 - Bei char: 127+1 → -128
 - Bei unsigned char: $0 1 \rightarrow 255$

PWM Frequenz

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

District Inc

Analog I

Stephan

Mehrere LEDs

LED Streifer

Stromversor-

Sensoren

490 Hz sind bei schnellen Bewegungen sichtbar. Bestimmung der Frequenz: Taktfrequenz / Vorteiler / Zählergröße

- Taktfrequenz: 16 MHz
- Zählergröße:
 - 256 für Pins 5 und 6
 - 510 für 3, 9, 10, 11

PWM Vorteiler: Timer 0, Pins 5 und 6

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Analog Ir

Stephar

Mehrere LED

LED Streife

Stromversor-

Sensoren

Einstellung	Teiler	Frequenz
0×01	1	62500
0×02	8	7813
0×03	64	977
0×04	256	244
0×05	1024	61

Einstellen durch

TCCROB = (TCCROB & Ob11111000) | Einstellung

PWM Vorteiler: Timer 1, Pins 9 und 10

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Analog II

Stephan

Mehrere LED

LED Streife

Stromversorgung

Sensoren

Einstellung	Teiler	Frequenz
0×01	1	31373
0×02	8	3921
0×03	64	490
0×04	256	123
0×05	1024	31

Einstellen durch

TCCR1B = (TCCR0B & Ob11111000) | Einstellung

PWM Vorteiler: Timer 2, Pins 11 und 3

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Distract Is

A -- - 1.

Stephan

Mehrere LED

LED Streife

Stromversor-

Sensore

Einstellung	Teiler	Frequenz
0×01	1	31373
0×02	8	3921
0×03	32	980
0×04	64	490
0×05	128	245
0×06	256	123
0×07	1024	31

Einstellen durch

TCCR2B = (TCCR2B & Ob111111000) | Einstellung

Vorsicht

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

Analog I

Stephan

Mehrere LEDs

LED Streife

Stromversor-

Sensoren

Frequenzänderung beeinflusst nicht nur LEDs, sondern alles, was an dem Timer hängt! Servos, Tonerzeugung, etc.

Besonders wichtig: Timer 0 für millis() und delay(). Standardvorteiler: 64. Bei Änderungen Zeiten entsprechend anpassen (Vervierfachen bei 256...)

Startpunkt digitaler Input

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

Digital In

Analog I

Stephan

Mehrere LED

LED Streife

Stromversor

Sensoren

Button Beispiel: File \rightarrow Examples \rightarrow Digital \rightarrow Button Geht nicht nur mit einfachen Schaltern und Tastern, sondern auch z.B. einer Lichtschranke oder Reed-Schaltern.

digitalRead

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Ou

Analog Ou

Digital In

Analog I

Stephan

Mehrere LED

LED Streife

Stromversorgung

Sensoren

digitalRead(pin):

- HIGH falls Spannung an pin etwa 2.6 V oder höher
- LOW falls Spannung an pin 2.1 V oder tiefer
- Nur bei 5 V Versorgungsspannung, sonst andere Werte

Schaltplanvarianten

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog I

Stephan

Mehrere LED

LED Streife

Stromversor

c

Unterbrechbare Abläufe starten (1)

```
Blinkenlights
 Workshop
```

Messlinger.

Digital In

```
unsigned long button_time = 0;
bool running = false;
void loop() {
  if(digitalRead(button_pin) == HIGH) {
    running = true;
    button_time = millis();
  if(running) {
    running = do_stuff(millis() - start_time);
```

Unterbrechbare Abläufe starten (2)

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

Digital Out

Analog Ou

Digital In

Analog II

Stephan

Menrere LED

LED Streifei

Stromversorgung

Sensore

```
bool do_stuff(unsigned long time_point)
  if(time_point < 100) {
    digitalWrite(led_pin, HIGH);
 } else if(time_point < 200) {</pre>
    digitalWrite(led_pin, LOW);
 } else if(time_point < 1000) {</pre>
    digitalWrite(led_pin, HIGH);
  } else {
    return false;
  return true;
```

Prellen

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital O

Analog Ou

Digital In

Analog In

Stephan

Mehrere LED

LED Streife

Stromversorgung

Sensore

Entprellen

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

. . .

Stephan

. __ . ..

Stromversor

gung

Sensoren

Auch: Debouncing

- Hardware Lösung: Tiefpassfilter mit Kondensator
- Software Lösung: Mehrmals Wert auslesen und warten, bis er sich nicht mehr ändert
- Hier ohne weitere Vertiefung, aber ihr wisst jetzt, wonach man suchen muss :)

Startpunkt analoger Input

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital O

Analog Ou

Analog In

, ...a.og ..

Madama LEE

LED Streifer

Stromversor-

Sensoren

AnalogInput Beispiel: File \rightarrow Examples \rightarrow Analog \rightarrow AnalogInput

analogRead

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Οι

Analog Ou

Ŭ

Analog In

....

I ED Straifer

Stromversor-

Sensorer

 ${\tt analogRead(pin): 0-1023\;f\"{u}r\;0-5\;Volt\;an\;Pin\;pin}.$

Kombination mit analogWrite

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

_...

Analog In

C. . . . l.

Mehrere I ED

LED Streifer

Stromversor-

Sensoren

```
void loop() {
  int value = analogRead(A0) / 4;
  analogWrite(3, value);
}
```

An den PC senden

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Analog In

Stenhan

stepnan

LED Streifer

Stromversorgung

Sensore

```
void setup() {
   Serial.begin(115200);
}
void loop() {
   Serial.print("Aktueller Wert: ");
   Serial.println(analogRead(AO));
}
```

Auch zur Fehlersuche nützlich! Die Arduino IDE hat einen Plotter, mit dem man den zeitlichen Verlauf von Zahlen beobachten kann.

Spannungsbereich

Blinkenlights Workshop

Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Analog In

Stephan

Mehrere LED

LED Streifer

Stromversor-

Sensoren

Maximale Spannung: Versorgungsspannung

Spannungsbereich

Blinkenlights Workshop

Messlinger, Valentin Ochs

Digital O

Analog Ou

Ŭ

Analog In

.....

I ED Straifer

Stromversor-

Sensoren

Maximale Spannung: Versorgungsspannung

Darüber: Spannungsteiler

Stephan

Blinkenlights Workshop

Stepnan Messlinger, Valentin Ochs

Digital Οι

Analog Ou

Distract Is

Analog Ir

Stephan

Mahrara I FDa

LED Streifer

Stromverso

Sancaran

Valentin darf sich ausruhen. Ihr nicht.

Diskret

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital O

Analog Ou

Analog I

Stephar

Mehrere LEDs

LED Streife

Stromversor-

Sensoren

Vorteile:

- Einfach
- PWM (bei bis zu 6) möglich

Nachteile:

- 1 Pin pro LED
- Ab 7 LEDs kein PWM mehr (oder nur in Gruppen)
- 1 RGB LED braucht 3 Pins

Matrix

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Ou

Analog Ou

- .6.---

Analog I

 ${\sf Stephar}$

Mehrere LEDs

LED Streifer

Stromversorgung

Sensore

Vorteile:

■ Kann je nach Methode mit n Pins bis zu $n^2 - n$ LEDs ansteuern

Nachteile:

- Kompliziert
- Niedrige Wiederholrate
- Reduzierte Helligkeit
- Bei größeren Spitzenströmen werden externe Treiber benötigt
- Kein (hardware-beschleunigtes) Dimmen

Schieberegister

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Ou

Analog Ou

. . .

Allalog I

этернан

Mehrere LEDs

LED Streife

gung

Sensore

- Englisch: Shift register
- Mehrere Ausgänge, z.B. 8
- Digitale Steuerung, z.B. SPI oder I2C
- $lue{}$ Zu viele Werte ightarrow alte Werte werden weitergeschoben

Vorteile:

- Einfach
- Benötigt wenige (i.d.R. < 4) Pins</p>
- Leicht erweiterbar

Nachteile:

- Kein (hardware-beschleunigtes) Dimmen
- Wiederholrate sinkt mit 1/n

WS2812, APA102...

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

Allalog Ot

Analog I

. .

Mohroro I ED

LED Streifen

Stromversor-

- Mehrere LEDs auf Streifen
- Ähnlich zu Schieberegistern
- Eingebaute Logik zum Dimmen
- Ansteuerung durch fertige Libraries

Libraries

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital O

Analog Ou

District Inc.

Analog I

Stephan

Mehrere LEDs

LED Streifen

Stromversor

Sensorer

- $lue{}$ Sketch ightarrow Include Library ightarrow Manage Libraries
- Modularer Code, bei Arduino häufig zum Ansteuern von externer Hardware
- Für WS2812: Adafruit NeoPixel
- Für APA102: APA102

Beispielcode

```
Blinkenlights
            #include <Adafruit_NeoPixel.h>
 Workshop
           Adafruit_NeoPixel strip(144, 13, NEO_GRB + NEO_K
            int i = 0;
           void setup() {
              strip.begin();
           void loop() {
              strip.setPixelColor(i, 255, 0, 0);
              strip.show();
LED Streifen
              delay(10);
              strip.setPixelColor(i, 0, 0, 0);
              i++:
              if(i == 144) i = 0;
```

4□ → 4周 → 4 = → 4 = → 9 Q P

Arrays

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog I

Allalog

Mehrere I EC

LED Streifen

Stromversorgung

ensoren

... speichern viele Werte gleichen Typs unter einem Namen. Das erste Element hat Index 0.
Beispiel:

```
int many_values[20];
for(int i = 0; i < 20; i++)
  many_values[i] = i;
Serial.print(many_values[0]+many_values[19]);</pre>
```

Laufender Regenbogen (1)

```
Blinkenlights
 Workshop
```

LED Streifen

```
#include <Adafruit_NeoPixel.h>
Adafruit_NeoPixel strip(144, 13, NEO_GRB + NEO_KHZ800);
uint32 t colors[144]:
int i = 0;
void setup() {
  strip.begin();
 for(i = 0; i < 48; i++) {
    unsigned char v = i*255/48:
    colors[i] = strip.Color(255-v, v, 0);
    colors[i+48] = strip.Color(0, 255-v, v);
    colors[i+96] = strip.Color(v, 0, 255-v);
void loop() {
 for(int j = i; j < 144-i; j++)
    strip.setPixelColor(i+j, colors[j]);
  for(int j = 144-i; j < 144; j++)
    strip.setPixelColor(i+j-144, colors[j]);
  strip.show();
  i++;
  if(i == 144) i = 0:
                                      4 D > 4 B > 4 B > B 9 Q C
```

Macht Stephan

Blinkenlights Workshop

Stepnan Messlinger, Valentin Ochs

Digital Oi

Analog Ou

Analog Ir

, ...a.og ..

I ED Straifon

Stromversorgung

Sancaran

Däumchen dreh

Anschluss von Sensoren

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Analog Out

Analog I

Stephan

Mehrere LEDs

LED Streifer

Stromversorgung

- Analog: Sensor giebt eine Spannung aus, die gemessen wird
 - Unkompliziert, aber durch den Arduino eingeschränkte Genauigkeit, Präzision, Geschwindigkeit, Anzahl von Sensoren
- Digital: Sensor wird durch ein serielles Interface (häufig SPI oder I2C) an den Arduino angeschlossen.
 - Erlaubt manchmal auch Einstellungen (Messfrequenz, -bereich)
 - Etwas komplizierter zu programmieren
 - Viele Sensoren an wenigen Pins möglich

Sensorbeispiele

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Analog I

Stephan

Mehrere LEDs

LED Streifer

Stromversorgung

- Beschleunigung
- Drehrate
- Magnetfeld
- Spannung
- Luftfeuchtigkeit, Temperatur, Druck
- Licht
- Position (GPS)

Sensoren im Arduino

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

A ...l. .. O...

Analog Ou

Analog Ir

Stephan

Mehrere LEDs

Stromversor-

```
Spannung (analoger Input) und Temperatur (interne Temperatur, wird über den Analog-Digital-Wandler gemessen).
```

```
void setup() {
  Serial.begin(115200);
  // Temperaturmessung einrichten:
  ADMUX = (_BV(REFS1) | _BV(REFS0) | _BV(MUX3));
  ADCSRA \mid = \_BV(ADEN);
void loop() {
  ADCSRA |= _BV(ADSC); // Messung starten
  while(ADCSRA & _BV(ADSC)) { } // Warte
  Serial.println(ADCW); // Wert ausgeben
                            4□ > 4同 > 4 = > 4 = > ■ 900
```