Instituto Tecnológico de Costa Rica

Área Académica de Ingeniería en Computadores

(Computer Engineering Academic Area)

Programa de Licenciatura en Ingeniería en Computadores

(Licentiate Degree Program in Computer Engineering)

Desarrollo de un sistema UAV para estimación de estructura a partir de movimiento para un objetivo aleatorio

(Development of a UAV system for estimation of structure from movement for a random target)

Algoritmo de trayectoria del dispositivo DJI Tello

(DJI Tello Device Path Algorithm)

Realizado por:

Made by:

Roberto Pereira Santos

Fecha: Cartago, octubre, 2021 (Date: Cartago, october, 2021)

Descripción

El funcionamiento del algoritmo de trayectoria se muestra en un diagrama de estado (Figura 1). Primero calcula el ángulo entre el punto inicial y el objetivo mediante la ley de la tangente, por la fórmula $\alpha = \arctan(\frac{a}{b})$, donde a y b son los catetos. Calcula el camino más corto (hipotenusa) hacia el objetivo con el teorema de Pitágoras $h = \sqrt{a^2 + b^2}$, donde a y b son las coordenadas (x, y) del objeto.

Posteriormente, el dispositivo UAV despega y vuela hacia el objetivo estático, verifica la altura entre el objetivo y la del dispositivo (se obtiene por el valor captado del sensor infrarrojo), calcula el desplazamiento vertical y de ser necesario se desplaza en dicha dirección para estar a la misma altura que el objetivo.

Si no necesita desplazarse, entonces calcula el ángulo central $\alpha=\frac{360}{n}$, donde n es la cantidad de lados del polígono regular que va a formar alrededor del objeto, cada lado representa una toma de fotografía. Después se obtiene el lado de dicha figura trigonométrica $L=2*r*\pi*\frac{\alpha}{2}$, donde r es el radio del objetivo, o sea, del polígono y α es el ángulo central.

Inmediatamente se calcula si se debe realizar desplazamientos verticales para abarcar todo el área del objeto, pero antes, debe ejecutar tres vueltas donde toma fotografía, rota y se desplaza horizontalmente, así sucesivamente, hasta formar el polígono regular y al terminar, de ser necesario, eleva su altura para repetir el proceso de fotografía.

Finalmente, cuando termina de fotografiar el objetivo, rota 180 grados porque se debe devolver al punto inicial y aterrizar.

Figura 1. Diagrama de estado del algoritmo de trayectoria.

En la Figura 2 se puede abstraer un ejemplo general del algoritmo de trayectoria realizado por el dispositivo DJI Tello.

Primero inicia el vuelo en el punto verde, realiza los cálculos de ángulo y distancia para rotar, seguidamente de un desplazamiento hacia el primer punto del polígono regular, en este caso es de 8 lados. Después de calcular el ángulo central y la distancia de cada lado, empieza a desplazarse hacia la derecha entre los puntos intermedios y en cada uno de ellos siempre apunta hacia el centro donde está el objetivo, así, toma la fotografía, la cantidad de vueltas y puntos intermedios son determinados por el usuario.

Al terminar la rotación alrededor del objetivo, se regresa por la flecha roja al punto inicial donde va a aterrizar para dar por finalizado el plan de vuelo.

Figura 2. Ejemplo representativo de la ruta del dispositivo UAV.