CSC 391/691 – Spring 2014 Test 1 – Take Home Due – 4pm, Friday, 3/7/14

Name	Shuowen Wei
------	-------------

1

THIS WORK MUST BE DONE BY YOU AND YOU ALONE!

No Exceptions.

If you use printed or Internet resources, other than the text, you must indicate the source appropriately.

I will try to clarify any question that you don't understand, but otherwise do your own work. I will be out of the office beginning 3/5/14 but you can send your questions via e-mail. Submit your responses on paper or electronically through the Sakai Assignment link. Paper submissions should be given to Dr. Turkett.

I. (10 pts) Let's think about using a MapReduce (MR) environment to compute TF-IDF for terms in a very large collection of documents (corpus). We'll do this through a cascaded sequence of MR steps. Your job is to fill in the blanks. NOTE: In practice, some of these steps would be combined.

[Reminder: Here are the values we need to compute the TF-IDF for each word w_i in document d_j which is in a corpus of D documents.

D – the number of documents in the corpus. For the sake of simplicity, we'll just assume that this value is known globally.

 $f_{i,j}$ – the number of times that word w_i appears in document d_j max k_j – the maximum number of times any individual word appears in document d_j n_i – the number of documents in which word w_i appears

Step 1: Determine word count in individual documents.

Input: collection of (docID, contents of document) pairs distributed across mappers

What should a mapper emit? ((word, docID), 1)

What does the Reducer do? for every key-value pair ((word, docID), 1), sum up all 1s of the mapper output, set it to be f, and output ((word, docID), f).

Reducer Output: list of key-value pairs ((word, docID), f) where f is the number of times *word* appears in *docID*.

Step 2: Determine the count of the most frequent word in each document Input: list of key-value pairs ((word, docID), f)

What should a mapper emit? (docID, (word, f))

What does the Reducer do? for every docID, find the maximum value of f, set it to maxk and associate it with each input key-value pairs, output ((word, docID), (f, maxk)).

Reducer Output: list of key-value pairs ((word, docID), (f, maxk)) where *maxk* is the largest f in *docID*

Step 3: Determine the number of documents in which word appears

Input: list of key-value pairs ((word, docID), (f, maxk))

What should a mapper emit?

(word, (docID, f, *max*k, 1))

What does the Reducer do?

for every key-value pair (word, (docID, f, maxk,1)), sum up all 1s

of the mapper output, set it to be n, and associate it every input key-value pairs, output ((word, docID), (f, maxk, n).

Reducer Output: list of key-value pairs ((word, docID), (f, maxk, n) where n is the number of documents in which word appears

Step 4: Calculate TF-IDF for each word relative to each document. Assume that D, the number of documents in the corpus, is known.

Input: list of key-value pairs ((word, docID), (f, maxk, n))

What should a mapper emit? ((word, docID), (f, maxk, n)), the identical function for each key-value pairs input, since D is known, compute

 $\frac{f}{\max k} \log_2 \frac{D}{n}$ and set it TF-IDF, then associate it with each (word, docID), output ((word, docID), TF-IDF)

Reducer Output: list of key-value pairs ((word, docID), TF-IDF)

II. (10 pts) Suppose the input to a MR operation consists of integer keys (the values are not important, we indicate them with an underscore). The Map function takes an integer i and produces the list of pairs (p,i) such that p is a prime divisor of i. For example, map((12,_)) emits [(2,12), (3,12)]. Note that (2, 12) is not repeated even though the factorization of 12 is 2 * 2 * 3.

The Reduce function is addition. That is, Reduce $(p, [i_1, i_2, ..., i_k])$ is $(p, i_1 + i_2 + ... + i_k)$.

What is the output, if the input is the set $\{(15, _), (21, _), (24, _), (30, _), (49, _)\}$.

Output of Mapper:

$$\text{Map}(\{(15,_),(21,_),(24,_),(30,_),(49,_)\}) = \{ \\ [(3,15),(5,15)], \\ [(3,21),(7,21)], \\ [(2,24),(3,24)], \\ [(2,30),(3,30),(5,30)], \\ [(7,49)], \\ \}$$

Output of Reducer:

Reduce($\{(2, [24, 30]), (3, [15, 21, 24, 30]), (5, [15, 30]), (7, [21, 49])\}$) = $\{(2, 54), (3, 90), (5, 45), (7, 70)\}$

III. (10 pts) Apply the matrix-vector multiplication approach described in Section 2.3.1 to the matrix and vector:

1	2	3	4	1
5	6	7	8	2
9	10	11	12	3
13	14	15	16	4

Show the output of the Map function? You don't need to complete the multiplication.

```
(1, 1) (1, 4) (1, 9) (1, 16)
(2, 5) (2, 12) (2, 21) (2, 32)
(3, 9) (3, 20) (3, 33) (3, 48)
(4, 13) (4, 28) (4, 45) (4, 64)
```

- IV. (12 pts) Suppose we use the two-stage algorithm of Section 2.3.9 to compute the product of matrices M and N. Let M have x rows and y columns, while N has y rows and z columns. As a function of x, y, and z, express the answers to the following questions:
 - 1. The output of the first Map function has how many different keys? How many key-value pairs are there with each key? How many key-value pairs are there in all?
 - 2. The output of the first Reduce function has how many keys? What is the length of the value (a list) associated with each key?
 - 3. The output of the second Map function has how many different keys? How many key-value pairs are there with each key? How many key-value pairs are there in all?
 - 1. The first Map function has y different keys. There are (x+z) key-value pairs with each key. And there are (xy+yz) key-value pairs in total.
 - 2. The output of the first Reduce function has xz keys, and there are y values associated with each key.
 - 3. The output of the second Map function has xz different keys, and there are y key-value pairs with each key, and there are xyz key-value pair in all.
- V. (15 pts) Here are five bit vectors in a 10-dimensional space:

V1: 1111000000 V2: 0100100101 V3: 0000011110 V4: 0111111111 V5: 1011111111

- a. Suppose cos(x,y) denotes the similarity of vectors x and y under the cosine similarity measure. Compute all the pairwise similarities among t, u,v, and w. Which two vectors are the most similar under this measure?
- b. Compute the Jaccard distance (not Jaccard "measure") between each pair of vectors. Which two vectors are the most similar under this measure?
- c. Compute the Manhattan distance (L_1 norm) between each pair of vectors. Which two vectors are the most similar under this measure?

a.
$$\cos(V1, V2) = \frac{1}{4}$$
 $\cos(V1, V3) = \frac{0}{4}$ $\cos(V1, V4) = \frac{3}{6}$ $\cos(V1, V5) = \frac{3}{6}$ $\cos(V2, V3) = \frac{1}{4}$ $\cos(V2, V4) = \frac{4}{6}$ $\cos(V2, V5) = \frac{3}{6}$ $\cos(V3, V4) = \frac{4}{6}$ $\cos(V3, V5) = \frac{4}{6}$ $\cos(V4, V5) = \frac{8}{9}$

Thus, V4 and V5 are most similar under this measure.

b.
$$d(V1, V2) = 1 - \frac{1}{7}$$
 $d(V1, V3) = 1 - 0$ $d(V1, V4) = 1 - \frac{3}{10}$ $d(V1, V5) = 1 - \frac{3}{10}$ $d(V2, V3) = 1 - \frac{1}{7}$ $d(V2, V4) = 1 - \frac{4}{9}$ $d(V2, V5) = 1 - \frac{3}{10}$ $d(V3, V4) = 1 - \frac{4}{9}$ $d(V3, V5) = 1 - \frac{4}{9}$ $d(V4, V5) = 1 - \frac{8}{10}$

Thus, V4 and V5 are most similar under Jaccard distance since their distance is the smallest.

c.
$$d_1(V1, V2) = 6$$
 $d_1(V1, V3) = 8$ $d_1(V1, V4) = 7$ $d_1(V1, V5) = 7$ $d_1(V2, V3) = 6$ $d_1(V2, V4) = 5$ $d_1(V3, V4) = 5$ $d_1(V3, V5) = 5$ $d_1(V4, V5) = 2$

Thus, V4 and V5 are most similar under Manhattan distance since their distance is the smallest.

VI. (8 pts) Consider the following matrix:

	C1	C2	C3	C4
R1	_	1	1	0
R2	1	0	1	1
R3	0	1	0	1
R4	0	0	1	0
R5	1	0	1	0
R6	0	1	0	0

Compute the Jaccard similarity between each pair of columns.

$$sim(C1, C2) = \frac{0}{5} \qquad sim(C1, C3) = \frac{2}{4} \qquad sim(C1, C4) = \frac{1}{3}
sim(C2, C3) = \frac{1}{6} \qquad sim(C2, C4) = \frac{1}{4}
sim(C3, C4) = \frac{1}{5}$$

VII. (10 pts) Using the same matrix as in the previous question, perform a minhashing of the data, with the order of rows: R4, R6, R1, R3, R5, R2.

	C1	C2	C3	C4
R4	0	0	1	0
R6	0	1	0	0
R1	0	1	1	0
R3	0	1	0	1
R5	1	0	1	0
R2	1	0	1	1

Thus, we have

Then the Jaccard_similarity between each pair of columns

$$sim(C1, C2) = \frac{0}{2} \qquad sim(C1, C3) = \frac{0}{2} \qquad sim(C1, C4) = \frac{1}{2}
sim(C2, C3) = \frac{1}{2} \qquad sim(C2, C4) = \frac{0}{2}
sim(C3, C4) = \frac{0}{2}$$

VIII. (15 pts) Find the set of 2-shingles for the "document": ABRACADABRA and also for the "document": BRICABRAC

Answer the following questions:

- a. How many 2-shingles does ABRACADABRA have?
- b. How many 2-shingles does BRICABRAC have?
- c. How many 2-shingles do they have in common?
- d. What is the Jaccard similarity between the two documents"?
- a. {AB, BR, RA, AC, CA, AD, DA}, there are 7 2-shingles.
- b. {BR, RI, IC, CA, AB, RA, AC}, there are 7 2-shingles.
- c. There are 5 in common
- d The Jaccard similarity is $\frac{5}{9}$.
- IX. (UNDERGRADS ONLY, 10 pts) Here are four "documents," each consisting of a single sentence (ignore caps and punctuation):

Pussycat, pussycat, where have you been?

I've been to London to visit the Queen.

Pussycat, pussycat, what did you there?

I frightened a little mouse under her chair.

Compute the term frequency (TF) for each of the following words: "pussycat", "chair", "queen", and "mouse" in each of the four "documents". Also, compute the inverse document frequency (IDF) for each of these words. Generate a table to display the TF-IDF measure of each word within each "document".

(GRAD STUDENTS ONLY, 10 pts)

We wish to take the join R(A,B) > < |S(B,C)| > < |T(A,C)| as a single map-reduce process, in a way that minimizes the communication cost. We shall use 512 Reduce tasks, and the sizes of relations R, S, and T are $2^2 = 1,048,576$, $2^1 = 131,072$, and $2^1 = 16,384$, respectively. Using the technique of Section 2.5.3, compute the number of buckets into which each of the attributes A, B, and C are to be hashed. Then, determine the number of times each tuple of R, S, and T is replicated by the Map function.

By the conclusion of section 2.5.3, to minimum communication cost is $(r + s + t + 2\sqrt{ktr})$, here we have $k = 2^9$, $s, r, t \in \{2^{20}, 2^{17}, 2^{14}\}$. Thus, it's clear that we should let $s = 2^{20}$ and $r, t \in \{2^{17}, 2^{14}\}$. Thus, (1)

the number of buckets into which attribute A is to be hashed is $\sqrt{2^9 \frac{2^{14}}{2^{17}}} = 2^3$

the number of buckets into which attribute B is to be hashed is $\sqrt{2^9 \frac{2^{17}}{2^{14}}} = 2^6$

the number of buckets into which attribute C is to be hashed is 29

So, (2)

each tuple of R is replicated 1 times by the Map function

each tuple of S is replicated 2³ times by the Map function each tuple of T is replicated 2⁶ times by the Map function