Applied Text Analytics & Natural Language Processing

Dr. Mahdi Roozbahani (GT Faculty and founder of Filio)
Wafa Louhichi (GT Alumna and quantitative analytics specialist)

Learning Objectives

- Why Applied Natural Language Processing (NLP)?
- What you will learn in the class?
- What deliverables do we expect from you?

Why Applied NLP?

- Text and documents are everywhere!
- There are hundreds of languages in the world
- They are primary information artifacts in our lives
- There are large volumes of textual data
- Big and small companies are looking for this skill

There are a lot of Texts and Written Information

- Thanks to the internet!
- WWW: webpages, Twitter, Facebook, Wikipedia, Blogs,...
- Digital libraries: Google books, ACM, IEEE,...
- Lyrics, closed caption,... (YouTube)
- Police case reports
- Legislation (law)
- Reviews (products, rotten tomatoes)
- Medical reports (EHR electronic health records)
- Job descriptions

Examples of Applications of NLP?

- · Establish authorship, authenticity; plagiarism detection
- Classification of genres for narratives (e.g., books, articles)
- Tone classification; sentiment analysis (online reviews, twitter, social media)
- Code: syntax analysis (e.g., find common bugs from students' answers)
- Machine translation (e.g., Google Translate)

What Makes NLP Challenging?

- Interdisciplinary field that lies at the intersection of linguistics and machine learning
- Ambiguity at multiple levels in the human language:
 - Lexical (word level) ambiguity different meanings of words
 - Syntactic ambiguity different ways to parse the sentence
 - Interpreting partial information how to interpret pronouns
 - Contextual information context of the sentence may affect the meaning of that sentence

- Pre-processing:
 - How to clean texts and documents
 - Tokenization
 - Reducing the inflectional forms of a word
 - Stemming
 - Lemmatization
 - Normalization
 - •

- Text Representation:
 - One hot encoding
 - BoW (frequency counting)
 - TF-IDF
 - Embeddings

- Overview of classification methods:
 - Naïve Bayes
 - Logistic Regression
 - SVM
 - Perceptron
 - Neural Network

- Overview of Deep learning
 - Convolutional neural network
 - Recurrent neural network
 - Long short-term memory

- Overview of topic modeling
 - Principal Component Analysis
 - Singular Value Decomposition
 - Latent Dirichlet Allocation

- Overview of Transformer models
 - Bidirectional Encoder Representations from Transformers
 - Generative Pre-trained Transformer

What Deliverables Do We Expect from You?

- There are four homeworks
 - HW1: Text pre-processing, Classification introduction
 - HW2: Classification methods, dimensionality reduction, SVD
 - HW3: Deep learning
 - HW4: Transformers and unsupervised models

What Deliverables Do We Expect from You?

- There are 10 quizzes [%15]
 - Solidify your learning.
 - Quizzes measure your understanding of the topics and they will be mostly conceptual questions.
 - Each quiz will have multiple choice questions.
 - They will be available for a specific duration within a week
 - You will have a limited time to finish each quiz.
 - All quizzes are mandatory to be taken.

Course Goals and Summary

- Demonstrate how to pre-process textual data
- Differentiate different text representation methods and techniques
- Explain different NLP tasks
- Develop and assess the performance of different NLP models using a variety of techniques

