Instrukcja do laboratorium sieci komputerowych

Monitorowanie i analiza ruchu w sieci

dr inż. Piotr Arabas

mgr inż. Jerzy Sobczyk dr inż. Edward Śliwa

1 Ćwiczenie 1 Monitorowanie i analiza ruchu w sieci

1.1 Przygotowanie do zajęć

- 1. W czasie wykonywania ćwiczenia niezbędna będzie wiedza z zakresu następujących tematów:
 - budowa ramki EthernetII
 - podstawowe protokoły rodziny TCP/IP: ARP, IP, UDP, TCP
 - nagłówki wymienionych wyżej protokołów, znaczenie podstawowych pól
 - nawiązywanie i zamykanie połączeń TCP
- 2. Przed przystąpieniem do ćwiczenia należy zapoznać się z opisem (np. instrukcje dostępne w sieci www) programów wykorzystywanych w ćwiczeniu, w szczególności:
 - Wireshark w zakresie umiejętności rozpoczęcia/zakończenia przechwytywania ramek na wybranym interfejsie sieciowym, sposobów elementarnej filtracji przechwytywanych pakietów, przeglądania plików z wcześniej przechwyconymi pakietami oraz interpretacji wyników
 - netcat (komenda nc) w zakresie wysyłania/odbioru prostych pakietów w protokołach UDP i TCP
 - komenda ip z pakietu **iproute2** w zakresie sprawdzania parametrów konfiguracyjnych interfejsu sieciowego

1.2 Logowanie do stanowiska roboczego

- Zalogować się na stanowisku roboczym. W ćwiczeniu pracujemy jako użytkownik student. Jeśli zajdzie konieczność użycia komend wymagających większych uprawnień, to (za zgodą prowadzącego) należy skorzystać z konta ppkroot. Hasła do obu kont zostaną podane w czasie zajęć.
- Po zalogowaniu na stanowisko robocze sprawdzić parametry interfejsu sieciowego (nazwę interfejsu, adres MAC, nr IP, maskę sieci, nr sieci, adres rozgłoszeniowy skierowany, nr IP bramy domyślnej). Parametry te należy zamieścić w sprawozdaniu z wykonania ćwiczenia.
- Program Wireshark można znaleźć w zakładce Applications—Internet. Pozostałe programy (np. nc, ip) są uruchamiane z linii komendy zatem aby z nich skorzystać należy otworzyć okno terminala (Applications—Terminal emulator).

1.3 Protokół ARP

- 1. Usunąć ewentualne wpisy z tablicy ARP
- 2. Uruchomić program przechwytujący pakiety na interfejsie sieciowym komputera. W ćwiczeniu do przechwytywania pakietów wykorzystywany jest interfejs eni.
- 3. Wysłać (za pomocą programu ping) pojedynczy pakiet ICMP do sąsiedniego komputera.
- 4. Zakończyć przechwytywanie pakietów i przeanalizować uzyskane wyniki, zwracając uwagę tylko na pakiety przechwycone przed wysłaniem komunikatu ICMP (sugerujemy zapisanie wyników analizy do pliku w celu wykorzystania w następnym punkcie ćwiczenia). Odpowiedzieć na następujące pytania:
 - w jaki sposób nasz host znajdzie adres MAC odbiorcy pakietu wysyłanego komendą ping?
 - jakie adresy MAC nadawcy/odbiorcy znajdują się w nagłówku warstwy łącza danych zapytania i odpowiedzi ARP?
 - jakie adresy MAC i numery IP nadawcy/odbiorcy znajdują się w zapytaniu, a jakie w odpowiedzi ARP?

- 5. Powtórzyć punkty 2 do 4 (bez usuwania istniejących wpisów w tablicy ARP). Czy można zaobserwować jakieś różnice?
- 6. Powtórzyć punkty 1 do 4, wysyłając pakiet ICMP do komputera poza siecią laboratorium. Jak w tym przypadku wyglądają odpowiedzi na pytania z punktu 4?
- 7. Wysłać pakiet ICMP na adresy IP, pod którymi nie działają żadne hosty. Czy wystąpi różnica, a jeśli tak to jaka, między przypadkami adresu z zakresu sieci laboratorium i sieci poza laboratorium?

1.4 Protokoły IP i ICMP

- Wykorzystując zbiór przechwyconych w poprzednim punkcie ramek prześledzić wymianę datagramów IP związanych z wysłaniem pakietu ICMP (komenda ping). Zwrócić uwagę w szczególności na najbardziej istotne pola nagłówka:
 - Version, Header length, TTL, Source/destination address, Protocol
 - pola związane z fragmentacją: Identification, Total length, Flags, Fragment offset
- 2. Wyjaśnić znaczenie pól nagłówka ICMP w zapytaniu i odpowiedzi.
- 3. Przechwycić wymianę datagramów IP wysyłając za pomocą komendy ping datagram o długości 3000 oktetów. Zwrócić uwagę na wartości pól nagłówka związanych z fragmentacją datagramu.

1.5 Protokół UDP

- 1. Upewnić się, że na sasiednim stanowisku działa usługa DAYTIME
- 2. Rozpocząć przechwytywanie pakietów na interfejsie sieciowym komputera.
- 3. Wysłać do sąsiedniego komputera na adres usługi DAYTIME (za pomocą programu nc) pojedynczy pakiet UDP (zawartość obszaru danych pakietu może być dowolna, w szczególności pusta).
- 4. Zakończyć przechwytywanie pakietów i przeanalizować uzyskane wyniki, zwracając uwagę na wartości pól nagłówka UDP w zapytaniu i odpowiedzi.

1.6 Protokół TCP

- 1. Rozpocząć przechwytywanie pakietów na interfejsie sieciowym komputera.
- 2. Wysłać do sąsiedniego komputera na adres usługi DAYTIME (za pomocą programu telnet lub nc) pojedynczy pakiet TCP (zawartość obszaru danych pakietu może być dowolna, w szczególności pusta).
- Zakończyć przechwytywanie pakietów i przeanalizować uzyskane wyniki. Zwrócić szczególną uwagę na:
 - etap nawiązania połączenia TCP (potrójne uzgodnienie) które pola nagłówka TCP grają tu istotną rolę?
 - etap wymiany danych,
 - zakończenie połączenia TCP które pola nagłówka TCP są tu istotne?
- 4. Jakie opcjonalne pola pojawiają się w nagłówkach IP i TCP w pakietach obserwowanych w czasie ćwiczenia? Wyjaśnić ich znaczenie.

1.7 Sprawozdanie z wykonania ćwiczenia

- Z wykonania ćwiczenia należy przygotować sprawozdanie w postaci pliku .pdf.
- W sprawozdaniu dla kolejnych punktów ćwiczenia należy zamieścić istotne informacje i dane, w szczególności komendę, która spowodowała wygenerowanie ruchu sieciowego, zdekodowane ramki (można ograniczyć się do istotnych w danym punkcie pól), i ewentualne komentarze lub wnioski.
- Sprawozdanie należy zamieścić na serwerze studia.

1.8 Uwagi

- Ćwiczenia wykonywane są jednoosobowo. Potrzebne w ćwiczeniu numery IP sąsiednich stanowisk pochodzą z zakresu 192.168.96.201 ÷ 192.168.96.216.
- Przy określaniu adresów warstwy sieciowej można używać zarówno numerów IP (w notacji kropkowodziesiętnej) jak i nazw symbolicznych prostych (jednoczłonowych) i domenowych (wieloczłonowych). Sugeruje się jednak użycie numerów IP nie będzie wówczas generowany ruch DNS, który może nieco zaciemniać uzyskane wyniki.
- Przy korzystaniu z programu **Wireshark** pożyteczne może okazać się włączenie filtrów uniknie się w ten sposób rejestracji nadmiernej liczby nieistotnych z punktu widzenia ćwiczenia pakietów.
- Zalecamy zapis przechwyconych (niezdekodowanych) pakietów sieciowych do pliku, następnie zapisanie tak uzyskanych plików na własny nośnik lub własne konto na serwerze sieciowym. Pozwoli to w przypadku braku czasu na dokończenie sprawozdania w domu.
- Przenoszenie uzyskanych wyników do sprawozdania może być wykonane w jeden z poniższych sposobów:
 - metodą "copy-paste" z okna terminala (nie zalecamy tej metody jest żmudna, podatna na błędy i zwykle nie pozwala na usunięcie nieistotnych informacji),
 - przez przekierowanie uzyskanych wyników do pliku/plików tekstowych.
- Niektóre z programów (np. ifconfig, arp) oraz niektóre opcje programu ip wymagają uprawnień administratora zalecamy w takim przypadku zalogowanie się jako użytkownik ppkroot.

1.9 Pożyteczne komendy i ich opcje

	Polecenia systemu Linux
arp	Komenda służąca do wyświetlenia i manipulacji wpisami w tablicy ARP. Bez dodatkowych opcji wyświetlana jest zawartość tablicy ARP.
arp -n	Opcja –n powoduje, że adresy warstwy sieciowej wyświetlane są jako numery IP a nie nazwy symboliczne (zalecamy korzystanie z tej opcji)
${ t arp -d} \; ip$	Opcja – d umozliwia usunięcie wpisu odnoszącego się do podanego numer u $\it ip$
ip	Podstawowa komenda systemowa pozwalająca m.in. wyświetlić i ustawić parametry interfejsów sieciowych. W tym ćwiczeniu potrzebna jest tylko do uzyskania informacji o parametrach interfejsów sieciowych.
ip address show	Wyświetlenie informacji o parametrach interfejsów sieciowych
ip neighbour	Wyświetlenie informacji zawartości tablicy ARP
ip neighbour flush dev dev	Usunięcie wpisów z tablicy arp związanych z interfejsem dev
ifconfig -a	Starsza komenda o funkcjonalnosci zbiiżonej do ip address show (zalecamy jednak użycie komendy ip – w nowszych wersjach systemu Linux komenda ifconfig nie zawsze jest dostępna).
nc	Uniwersalne narzędzie diagnostyki sieci, w niniejszym ćwiczeniu służy do wysyłania/odbioru prostych pakietów w protokołach UDP i TCP.
nc ip port	Nawiązanie połączenia TCP z hostem o numerze <i>ip</i> na porcie <i>port</i> (ew. dane są przekazywane przez standardowe wejście)
nc -u $ip\ port$	Wysłanie datagramu UDP do hosta o numerze <i>ip</i> na port <i>port</i> (ew. dane są przekazywane przez standardowe wejście)
telnet ip port	Systemowa komenda przydatna do testowania połączenia TCP.
ping	Systemowa komenda wysyłająca komunikaty ICMP ECHO RE- QUEST i oczekująca na odpowiedzi.
ping -c n	Argument opcji \neg c n jest liczbą wysyłanych żądań ICMP ECHO REQUEST (bez podania tej opcji żądania będą wysyłane aż do chwili przerwania przez użytkownika przez Ctrl-C)
ping -s rozm	Argument rozm jest rozmiarem pakietu (domyślnie 56 oktetów)