Dimension Reduction

Ling Xue

Dimension

- Dimension of a dataset refers to the number of variables in the dataset.
- Dimensionality of a model is the number of predictors (independent or input variables) used by the model
- Dimension reduction
 - Also known as factor selection, feature extraction.
 - Reduce the dimension of a dataset so that data mining algorithms can operate efficiently.

Dimension reduction approaches

- Incorporating domain knowledge to remove or combine categories.
- 2. Using data summaries to detect information overlap between variables (and remove or combine redundant variables or categories).
- 3. Use data conversion techniques such as converting categorical variables into numerical variables
- 4. Employing automated reduction techniques such as principal component analysis (PCA).
- 5. Using regression models, regression and classification trees to remove redundant variables or combine similar categories of categorical variables.

Principal Component Analysis

Principal Components Analysis

- Goal is to reduce a set of numerical variables
- The idea: remove the overlap of information between these variable.
 - "Information" is variability, measured by the sum of the variances of the variables.
- Final product: A smaller number of numerical variables (linear combination) that contain most of the information.

Principal Components Analysis

How does PCA do this?

- Create new variables that are linear combinations of original variables
 - They are weighted averages of the original variables
- These linear combinations are uncorrelated (no information overlap), and only a few of them contain most of the original information.
- The new variables are called principal components

Example - Breakfast Cereals

name	mfr	type	calories	protein	rating
100%_Bran	N	С	70	4	68
100%_Natural_Bran	Q	С	120	3	34
All-Bran	K	С	70	4	59
All-Bran_with_Extra_Fiber	K	С	50	4	94
Almond_Delight	R	С	110	2	34
Apple_Cinnamon_Cheerios	G	С	110	2	30
Apple_Jacks	K	С	110	2	33
Basic_4	G	С	130	3	37
Bran_Chex	R	С	90	2	49
Bran_Flakes	Р	С	90	3	53
Cap'n'Crunch	Q	С	120	1	18
Cheerios	G	С	110	6	51
Cinnamon_Toast_Crunch	G	С	120	1	20

Description of Variables

- Name: name of cereal
- mfr: manufacturer
- type: cold or hot
- calories: calories per serving
- protein: grams
- fat: grams
- sodium: mg.
- **fiber**: grams

- carbo: grams complex carbohydrates
- sugars: grams
- potass: mg.
- vitamins: % FDA rec
- shelf: display shelf
- weight: oz. 1 serving
- cups: in one serving
- rating: consumer reports

Consider Calories & Ratings

```
calories ratings
calories 379.63 -189.68
ratings -189.68 197.32
```

 Total variance (="information") is sum of individual variances: 379.63 + 197.32=577

Calories accounts for 379.63/577= 66%

Correlation between Calories and Rating

	Calories	Ratings
Calories	379.63	-188.68
Ratings	-188.68	197.32

$$-0.69 = \frac{-188.68}{\sqrt{(379.63)(197.32)}}$$

 69% of the total variation in both variables is actually covariation.

First & Second Principal Components

- Z_1 and Z_2 are two linear combinations.
 - Z₁ has the highest variation (spread of values)
 - Z₂ has the lowest variation

calories

PCA output for these 2 variables

Top: weights to project original data onto $z_1 \& z_2$

e.g. (-0.847, 0.532) are weights for z_1

	Components					
Variable	1	2				
calories	-0.84705347	0.53150767				
rating	0.53150767	0.84705347				

Bottom: reallocated variance for new variables

z₁: 86% of total variance

 $Z_2: 14\%$

Variance	498.0244751	78.932724
Variance%	_ 86.31913757	13.68086338
Cum%	86.31913757	100
P-value	0	1

Principal Component Scores

Row Id.	1	2
100%_Bran	44.92	2.20
100%_Natural_Bran	-15.73	-0.38
All-Bran	40.15	-5.41
All-Bran_with_Extra_Fiber	75.31	13.00
Almond_Delight	-7.04	-5.36
Apple_Cinnamon_Cheerios	-9.63	-9.49
Apple_Jacks	-7.69	-6.38
Basic_4	-22.57	7.52
Bran_Chex	17.73	-3.51

Weights are used to compute the above scores

• e.g., col. 1 scores are computed z_1 scores using weights (-0.847, 0.532)

Properties of the resulting variables

New distribution of information:

- New variances = 498 (for z_1) and 79 (for z_2)
- <u>Sum</u> of variances = sum of variances for original variables *calories* and *ratings*
- New variable z₁ has most of the total variance, might be used as proxy for both calories and ratings
- z_1 and z_2 have correlation of zero (no information overlap)

Generalization

 $X_1, X_2, X_3, ... X_p$, original p variables

 Z_1 , Z_2 , Z_3 , ... Z_p , weighted averages of original variables

All pairs of Z variables have 0 correlation

Order Z's by variance (z₁ largest, z_p smallest)

Usually the first few Z variables contain most of the information, and so the rest can be dropped.

PCA on full data set

Feature\Co	1	2	3	4	5	6
calories	-0.077984	0.0093116	0.6292058	0.6010215	0.4549585	0.1188478
protein	0.0007568	-0.008801	0.0010261	-0.0032	0.056176	0.112745
fat	0.0001018	-0.002699	0.0161958	0.0252622	-0.016098	-0.131816
sodium	-0.980215	-0.140896	-0.135902	0.0009681	0.0139481	0.022793
fiber	0.0054128	-0.030681	-0.018191	-0.020472	0.013605	0.2628413
carbo	-0.017246	0.0167833	0.01737	-0.025948	0.349267	-0.537837
sugars	-0.002989	0.0002535	0.097705	0.1154809	-0.299066	0.6479234
potass	0.1349	-0.986562	0.0367825	0.0421757	-0.047151	-0.049999
vitamins	-0.094293	-0.016729	0.6919778	-0.714118	-0.037009	0.0157572
shelf	0.0015414	-0.00436	0.0124888	-0.005647	-0.007876	-0.059901
weight	-0.000512	-0.000999	0.003806	0.0025464	0.0030221	0.0090516
cups	-0.00051	0.001591	0.0006943	-0.000985	0.0021485	-0.010305
rating	0.0752963	-0.071742	-0.307947	-0.334534	0.757708	0.4130206

Variances										
	1	2	3	4	5	6				
Variance	7016.4202	5028.8316	512.73921	367.92924	70.950765	4.3750841				
Variance Po	53.950258	38.667405	3.942525	2.8290605	0.5455506	0.0336406				
Cumulative	53.950258	92.617663	96.560188	99.389248	99.934799	99.968439				

- First 6 components shown
- First 2 capture 93% of the total variation

Normalizing data

- In these results, sodium dominates first PC
- Just because of the way it is measured (mg), its scale is greater than almost all other variables
- Hence its variance will be a dominant component of the total variance
- Normalize each variable to remove scale effect
 Divide by std. deviation (may subtract mean first)
- Normalization (= standardization) is usually performed in PCA; otherwise measurement units affect results
- Use correlation matrix option to use normalized variables

PCA using standardized variables

	-							
Feature\Co	1	2	3	4	5	6	7	8
calories	-0.299542	0.3931479	0.1148575	-0.204359	0.2038989	-0.255906	0.0255955	0.0024775
protein	0.3073563	0.1653233	0.277282	-0.300743	0.319749	0.1207519	-0.282705	0.4266319
fat	-0.039915	0.3457243	-0.20489	-0.186833	0.5868933	0.3479673	0.0511547	-0.06305
sodium	-0.183397	0.1372205	0.389431	-0.120337	-0.338364	0.6643722	0.2837032	-0.17672
fiber	0.4534904	0.1798119	0.0697661	-0.039174	-0.255119	0.0642436	-0.112325	-0.216216
carbo	-0.192449	-0.149448	0.5624525	-0.087835	0.1827425	-0.326393	0.260468	-0.167436
sugars	-0.228068	0.3514345	-0.355405	0.0227072	-0.314872	-0.152082	-0.227985	0.0630881
potass	0.4019643	0.3005442	0.0676202	-0.090878	-0.14836	0.0251538	-0.148808	-0.262222
vitamins	-0.11598	0.1729092	0.3878587	0.6041106	-0.049287	0.1294858	-0.294276	0.4570409
shelf	0.1712634	0.2650503	-0.001531	0.6388786	0.3291013	-0.052044	0.1748344	-0.414146
weight	-0.050299	0.4503085	0.2471383	-0.153429	-0.221283	-0.398774	-0.013921	-0.075248
cups	-0.294636	-0.212248	0.1399997	-0.047489	0.1208164	0.0994609	-0.748567	-0.498959
rating	0.4383784	-0.251539	0.1818424	-0.038316	0.0575842	-0.186145	-0.063445	-0.014945

Variances									
	1	2	3	4	5	6	7	8	
Variance	3.6336058	3.1480547	1.9093495	1.0194762	0.9893597	0.7220618	0.6715164	0.4162229	
Variance Po	27.950814	24.215805	14.687304	7.8421244	7.6104593	5.5543213	5.1655109	3.2017146	
Cumulative	27.950814	52.166619	66.853923	74.696047	82.306507	87.860828	93.026339	96.228053	

- First component accounts for smaller part of variance
- Need to use more components to capture same amount of information

When Should We Normalize Data?

- When units of measurement are different so it is unclear how to compare the variability of different variables
 - Yes
- When units of measurement are different so scale does not reflect importance
 - Yes
- When units of measurement are common
 - No
- Scale reflects importance
 - No

PCA in Classification/Prediction

- Apply PCA to training data
- Decide how many PC's to use
- Use variable weights in those PC's with validation/new data
- This creates a new reduced set of predictors in validation/new data

Regression-Based Dimension Reduction

- Multiple Linear Regression or Logistic Regression
 - Use subset selection procedures to choose a subset of variables
- Combine similar categories
 - Having coefficients that are not statistically significant
 - Having similar coefficient values and same sign
- Classification and regression trees
 - Determine the important predictors

Summary

- **Dimension reduction** is useful for compressing the information in the data into a smaller subset.
 - Categorical variables can be reduced by combining similar categories.
 - Principal components analysis transforms an original set of numerical data into a smaller set of weighted averages of the original data that contain most of the original information in less variables.