

Ayudantía 2 - Lógica Proposicional

23 de agosto de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

• ¿Qué es la lógica proposicional?:

Es un sistema que busca obtener conclusiones a partir de premisas. Los elementos más simples (letras 'p', 'q' u otras) representan proposiciones o enunciados. Los conectivas lógicas $(\neg, \land, \lor y \rightarrow)$, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.

• Semántica:

Una valuación o asignación de verdad para las variables proposicionales en un conjunto P es una función $\sigma: P \to \{0,1\}$, donde '0' equivale a 'falso' y '1' a verdadero.

■ Tablas de verdad:

Las fórmulas se pueden representar y analizar en una tabla de verdad.

		1	q	$p \to q$	p	q	$p \wedge q$
p	$\neg p$	() (1	0	0	0
0	1			1			0
1	0]	1 0	0	1	0	0
]	l 1	1	1	1	1

p	q	$p \lor q$	p	q	$p \leftrightarrow q$
0	0	0	0	0	1
0	1	1	1	1	0
1	0	1	1	0	0
1	1	1	1	1	1

ullet Equivalencia lógica \equiv

Dos fórmulas son lógicamente equivalentes (denotado como $\alpha \equiv \beta$) si para toda valuación σ se tiene que $\sigma(\alpha) = \sigma(\beta)$

• Leyes de equivalencia

1. Doble negación:
$$\neg(\neg \alpha) \equiv \alpha$$

2. De Morgan:
$$\neg(\alpha \land \beta) \equiv (\neg \alpha) \lor (\neg \beta)$$
$$\neg(\alpha \lor \beta) \equiv (\neg \alpha) \land (\neg \beta)$$

3. Conmutatividad:
$$\alpha \wedge \beta \equiv \beta \wedge \alpha$$
$$\alpha \vee \beta \equiv \beta \vee \alpha$$

4. Associatividad:

$$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$$

$$\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$$

5. Distributividad:
$$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$$
$$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

6. Idempotencia:
$$\alpha \wedge \alpha \equiv \alpha$$
$$\alpha \vee \alpha \equiv \alpha$$

7. Absorción:
$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$$
$$\alpha \vee (\alpha \wedge \beta) \equiv \alpha$$

8. Implicancia:
$$\alpha \to \beta \equiv (\neg \alpha) \lor \beta$$

9. Doble implicancia:
$$\alpha \leftrightarrow \beta \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$$

Conectivos funcionalmente completos

Un conjunto de conectivos lógicos se dice funcionalmente completo si toda fórmula en L(P) es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

 ${\bf Ejemplos:}$

1. Memes del día

Shakespeare:

– To be or not to be

Logicians:

if you are able to do the time.

2. Inducción Estructural

A. Lógica

Sea $\varphi \in \mathcal{L}(P)$ una fórmula construida usando los conectivos del conjunto $C = \{\neg, \land, \lor\}$. Llamamos φ' a la fórmula obtenida desde φ reemplazando todas las ocurrencias de \land por \lor , las de \lor por \land , y todas las variables proposicionales por sus negaciones.

Demuestre que φ' es lógicamente equivalente a $\neg \varphi$.

B. Funcionalidad completa

Demuestre que el conectivo ↑ (también conocido como NAND) es funcionalmente completo. Su tabla de verdad es la siguiente:

p	q	$p \uparrow q$
0	0	1
0	1	1
1	0	1
1	1	0

3. Modelamiento

Considere el funcionamiento de un semáforo en instantes discretos de tiempo que llamaremos estados, tal que la cantidad de estados totales es finita.

1. Defina un conjunto P de variables proposicionales adecuadas que permitan definir un lenguaje $\mathcal{L}(P)$ de fórmulas proposicionalnes para modelar este escenario. Explique brevemente el significado de cada variable definida. Sugerencia: examine los incisos (2), (3) y (4) para determinar qué necesita incluir en su diseño.

Con el lenguaje definido en (1), proponga una fórmula proposicional φ para cada uno de los siguientes incisos. Su fórmula debe ser satisfacible si y solo si la propiedad descrita se cumple para un semáforo dado. Explique brevemente el significado de las partes de su fórmula. No necesida demostrar la correctitud de su fórmula.

- 2. La luz del semáforo en todo estado es, o verde, o roja, o amarilla.
- 3. Los únicos cambios de color de luz del semáforo ocurren entre estados sucesivos y pueden ocurrir de verde a amarilla, de amarilla a roja y de roja a verde.
- 4. La luz puede tener el mismo color en, a lo más, 3 estados sucesivos.

4. Tabla de verdad

El conectivo ternario EQ se define como:

$$\sigma(EQ(\varphi, \psi, \theta)) = \begin{cases} 1 & \text{si } 3 \cdot (\sigma(\psi) + \sigma(\theta)) - 5 \cdot \sigma(\varphi) \ge 0 \\ 0 & \text{en otro caso} \end{cases}$$

Determine la tabla de verdad de EQ.

5. Equivalencia Lógica

Demuestre que

$$(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$$

A. Lógica

Sea $\varphi \in \mathcal{L}(P)$ una fórmula construida usando los conectivos del conjunto $C = \{\neg, \land, \lor\}$. Llamamos φ' a la fórmula obtenida desde φ reemplazando todas las ocurrencias de \land por \lor , las de \lor por \land , y todas las variables proposicionales por sus negaciones.

Demuestre que φ' es lógicamente equivalente a $\neg \varphi$.

BI:
$$Y \equiv p$$
: un reste caso, $Y' \equiv \neg p$ $\varphi \neg Y \equiv \neg p$
Par le tombo $Y' \equiv \neg Y$ φ se complu la propiedond.

HI: Supongames que la propisedad se comple ponc 4,4 EL(P) tal que 4 y 4 sole usan conscrives de C.

TI: PD: 3 cosas: se comple para 74, 4,4,4,4

1.
$$\theta = \neg \Psi : \theta' \not\equiv (\neg \Psi)' \equiv \neg \Psi' \equiv \neg \Psi' \not\equiv \neg (\neg \Psi) \equiv \Psi$$

$$\neg \theta = \neg (\neg \Psi) \equiv \Psi$$

$$\neg \theta = \theta' \downarrow$$

2.
$$\theta = \Psi \wedge \Psi$$
: $\dot{\theta} = (\Psi \wedge \Psi)' = \Psi \vee \Psi' \stackrel{H^{\perp}}{=} \neg \Psi \vee \neg \Psi$

$$\neg \theta = \neg (\Psi \wedge \Psi) = \neg \Psi \vee \neg \Psi$$
De Morgan

3.
$$\theta = \Psi \vee \Psi$$
: $\theta' = (\Psi \vee \Psi)' = \Psi'_{\Lambda} \Psi' \stackrel{HI}{=} \neg \Psi \wedge \neg \Psi$

$$\neg \theta = \neg (\Psi \vee \Psi) = \neg \Psi \wedge \neg \Psi$$

Por inducción estructural, que da dunestrade que $4' \equiv -4$ pou a toda fórmula $4 \in L(A)$ que usa convectivos de C.

B. Funcionalidad completa

Demuestre que el conectivo \uparrow (también conocido como NAND) es funcionalmente completo. Su tabla de verdad es la siguiente: \uparrow (\uparrow 1 4) \equiv (\uparrow ($\rho \land \varphi \land$) $= \rho \land \varphi$

oa taola ac	veraua	00 10	,
57,18			
٤-, ٥ \$			
87,0,13	, دع	ع رب	

1	P 1	4]=(7(622)	1 = Prq		
	p	q	$p \uparrow q$	קד	_ p1 p	P19	
	0	0	1	1	1	0	_
	0	1	1	1	1	0	
	1	0	1	0	0	G	
	1	1	0	10	\ 0	١	
						ł	

Demostraremes que teda formula construida con conectivos de (= {7,1} puede ser expresada conectivos de (= {1}.

BI: P = p: see comple trivialmente

HI: Supongames que la propiedad se comple para Ψ', Ψ' . Esto quiure ducir que, con Ψ', Ψ' formulas construidas construidas con conectivos de C', existe Ψ', Ψ' construidas con conectivos de C', tal que $\Psi' = \Psi$ $\psi' = \Psi$

TI: PD: 2 casos

2.
$$\theta = \Psi_{\Lambda} \Psi \stackrel{\text{H}}{=} \Psi'_{\Lambda} \Psi' = (\Psi' \Lambda \Psi') \Lambda (\Psi' \Lambda \Psi') J$$

Queda demos trada por inducción estructural que C'

3. Modelamiento

Considere el funcionamiento de un semáforo en instantes discretos de tiempo que llamaremos estados, tal que la cantidad de estados totales es finita.

1. Defina un conjunto P de variables proposicionales adecuadas que permitan definir un lenguaje $\mathcal{L}(P)$ de fórmulas proposicionalnes para modelar este escenario. Explique brevemente el significado de cada variable definida. Sugerencia: examine los incisos (2), (3) y (4) para determinar qué necesita incluir en su diseño.

Con el lenguaje definido en (1), proponga una fórmula proposicional φ para cada uno de los siguientes incisos. Su fórmula debe ser satisfacible si y solo si la propiedad descrita se cumple para un semáforo dado. Explique brevemente el significado de las partes de su fórmula. No necesida demostrar la correctitud de su fórmula.

- 2. La luz del semáforo en todo estado es, o verde, o roja, o amarilla.
- 3. Los únicos cambios de color de luz del semáforo ocurren entre estados sucesivos y pueden ocurrir de verde a amarilla, de amarilla a roja y de roja a verde.
- 4. La luz puede tener el mismo color en, a lo más, 3 estados sucesivos.

$$P = \begin{cases} v_{t} & | t \in \mathbb{N} \end{cases} \cup \begin{cases} v_{t} & | t \in \mathbb{N} \end{cases} \cup \begin{cases} a_{t} & | t \in \mathbb{N} \end{cases}$$

$$Q: \quad \varphi_{t} = \bigwedge^{n} \left(v_{t} v_{t} v_{a_{t}} \right)$$

$$\varphi_{2} = \bigwedge_{t=0}^{n} \left(v_{\xi} \rightarrow (\neg \alpha_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi} \rightarrow (\neg v_{\xi} \wedge \neg r_{\xi}) \right) \wedge \left(\alpha_{\xi}$$

$$\varphi = \varphi_1 \wedge \varphi_2$$

4. Tabla de verdad

El conectivo ternario EQ se define como:

$$\sigma(EQ(\varphi, \psi, \theta)) = \begin{cases} 1 & \text{si } 3 \cdot (\sigma(\psi) + \sigma(\theta)) - 5 \cdot \sigma(\varphi) \ge 0 \\ 0 & \text{en otro caso} \end{cases}$$

Determine la tabla de verdad de EQ.

φ	Ψ	θ	EB(4, +, D)	
٥	0	٥	1	3(0+0)-5.0=0701
0	0	l	1	3(6+1)-5.0=3701
0	١	σ	1	3 7/0 V
0	1	1	1	
1	0	0	٥	3(0+0)-5·1=-5 70×
l	۵	′	0	
1	ı	C	0	
l	ι	l	1	3(1+1)-5 = 1 70

5. Equivalencia Lógica

Demuestre que

$$(p \lor (p \to q)) \land \neg (r \land \neg p) \land (p \land (r \lor q)) \land (r \to q) \equiv p \land q$$

$$= (pv(\neg p vq)) \wedge (\neg r v p) \wedge (p \wedge (r vq)) \wedge (\neg r vq)$$

$$= (pv \neg p vq) \qquad (1)$$

$$= (\neg r v p) \wedge ((p \wedge r) v (p \wedge q)) \wedge (\neg r vq)$$

$$= (\neg r v p) \wedge (\neg r vq) \wedge ((p \wedge r) v (p \wedge q))$$

$$= ((\neg r v p) \wedge ((\neg r vq)) \wedge ((p \wedge r) v (p \wedge q))$$

$$= ((\neg r v (p \wedge q)) \wedge ((p \wedge r) v (p \wedge q))$$

$$= ((\neg r v (p \wedge q)) \wedge ((p \wedge r) v (p \wedge q))$$