Global Thesis Notes

Meeting 11/6/19

Optimisation

- Target dataset could be m_{α}
- Or could be rho optimisation
- 1 = integral, steady state life histories evened out
 - solve for r growth fitness
- Implicitly needs redefining what LH need to be optimised
- $l_x m_x = \text{mortality*fecundity} \text{resource supply not}$
- add in bucket shaped Z use exponential decay with time
- Assume that very young and old ages have another mortality rate so different trade-off scaling.
- Can do a sensitivity analysis
- Can use delta as a step function i.e. hybrid function
- Once solved can we potentially get data on age at maturation?
- It's easier to optimise exponent on cm term keep energy intake fixed
 - optimise repro output
- scaling of Lt at any given age?
- At any given mass can numerically integrate reproductive output cumulative integral from alpha to infinity
- Size-dependent fecundity equation
- scaling beyond age won't hold
- scaling equation fecundity as function of mass write-out optimisation parts

Method

- We can use a piece-wise approach
- Development rate equation
- a priori alpha size integrating twice
- Juveniles/adults have different foraging strategies
- This offers rationale (?) for two-piece (but West argues α is relatively so low that you can just use the second equation)
- alpha at different times (intake rate as alpha at this point)
- juvenile scaling != adult scaling
- optimise scaling given supply?
- go as far as we can analytically

Meeting 23/7/19

- table for parameter values
- could use diego's data could actually show hypo lxmx curve. scaling of peak * fecundity?
- decline in fecundity after that is scaling of fecundity relate to LH curve which * part of their LH are we looking at here? Model output
- peak fecundity curve is a function
- emerges as consequence of survivorship
- master equation
- optimisation equation
- relate two together
- solved it by simultqueously doing numerical integration, and plugging back in
- check carefully for mistake by including mx in such a way mx should be a curve which * peaks then declines
- fecundity curves with l_x curve
- dont worry about Van's solution on the board
- how is optimisation going to be done
- survivorship curve dominates -
- bounds on parameters in table
- conceptualise what we do/dont have data for we know this doesn't do anything
- prioritise writing mathematical forumlation and dimensions

- master -> parameters -> dimensions
- scaling equations no params needed

Van's Visit - 8/7/19

Day 1

- 1. Can keep $b = q \cdot c$
- 2. Hou et al. model E_c assumed constant
- assume $B_0 m^{3/4}$ scaling
- portion of metabolism going to our process B_{rest} $A(m) = B_{tot} + E_c \frac{dm}{dt} = fB_r + E_c \frac{B_r}{E_m} \left(1 \left(\frac{m}{M}\right)^{1-\alpha}\right)$ where f is your "metabolic scope" i.e. active metabolism as a proportion of resting, f = 1 when you are resting $\therefore \frac{dm}{dt} = \frac{B_r}{E_m} \left(1 \left(\frac{m}{M}\right)^{1-\alpha}\right)$
- am? during growth
- $\frac{dm}{dt}$ is combination of storage and biosynthesis term
- $\frac{dt}{dt} = \frac{A(m) B_{tot}}{E_c}$ where $\frac{A(m)}{E_c} = B_0 m^{3/4}$ across species 1 < f < 10 through growth within species does slope change?
- If active + restime have different mass scalings then as you grow, f must change
- No evidence for steeper scaling within organism
- Across species confound evolutionary effects (species + strategies)
- Hou et al. have $f + \gamma$
- f partially scales with mass
- Hou et al.: "equation 3 is general, indication of ow B_{rest}, B_{maint} and f scale with mass
- $B_{tot} = B_{maint} + B_{growth} + B_{rep}$
- $A(m) = B_{maint} + B_{act}(m) + B_{syn}(m) + S(m)$
- $A(m) = (f + \gamma)B_{rest}(m) \gamma B_{maint}(m)$
- γ is amount going to storage (storage coefficient)

$$-fB_r + \gamma B_r \left(1 - \frac{m}{M}\right)^{1-\alpha}$$

$$-(f+\gamma)B_r - \gamma B_r \left(1 - \frac{m}{M}\right)^{1-\alpha}$$

- (1α) generates quarter power scaling
- If we assume $B_{rest} = B_0 m^{\alpha}$:

we assume
$$B_{rest} = B_0 m^{-1}$$
.

$$-A(m) = (f + \gamma)B_0 m^{\alpha} - \gamma B_0 m^{\alpha} \left(1 - \frac{m}{M}\right)^{1-\alpha}$$

$$-A(m) = (f + \gamma)B_0 m^{\alpha} - \gamma B_0 \frac{m^1}{M^{1-\alpha}}$$

$$-fB_r + \frac{E_c}{E_m} B_r \left(1 - \frac{m}{M}\right)^{1-\alpha}$$

$$-\text{when } m = 1, \text{ term } = 0, \text{ as } m \to 0, \text{ term } = 1$$

- Diego and Andrew:
 - Let $\gamma = \frac{E_c}{E_m}$
 - * $E_m \stackrel{\sim}{=}$ energy required to synthesise unit of biomass (energetic cost)
 - * $E_c = \text{structural cost}$
 - * ATP vs actual use of molecules
- Tom: "framework doesn't simplift ATR problem"
- Samraat: "energy expended during growth is partitioned between energy content stored in newly synthesised biomass + energy expended in synthesising this biomass"
- Question is what are we trying to do here? Diego did this from perspective of understanding how much energy available in fish community after growth
- A(m) has relationship with all pieces f, γ, B_0 end up with A(m) curve normalised
- Point of Hou et al. is that there exists a universal optima; assimilation rate (see figure) we are not necessarily going for assimilation - we actually want to understand what would happen to dm/dt if we change A(m) itself
- We wouldn't replace dm/dt wouldn't express in terms of asymptotic mass we want to establish asymptotic mass by
- We wouldn't set $B_r = B_0 m^{3/4}$ (about creating mass)
- Van: In this model (Hou et al.) if you're fimishing growing and you reproduce, it would be outside scope of model b/c m=M

- Only makes indeterminate fish, in which case think of growth term being either growth or growth of eggs, but once stored them, not part of equation anymore
- Point of paper is discussing assimilation itself not previously done assumed to be 3/4
- Tom: "in terms of ATR there would be a way to include it at a cellular level and build up from that"
- Simplest function for growth to no growth
- Effective storage changing throughout lifetime since $\frac{m}{M}$ is proportion (Hou et al.)

Two-piece model

- $dm/dt = am^{3/4} bm cm^{\rho}$ $m > m_{\alpha}$
- $\rho = 1$ in Charnov model
- Maximise $\int_{\alpha}^{\infty} L_t b_t dt$ where b_t is fecundity output at time t NOT a rate.
- Fecundity at time t is subject to fecundity curve AND survivorship curve
- Diego's new frequency data is still within interval (e.g. a few bouts) not lifetime growth
- Difficult to measure over time
- Diego accounts for egg size by taking energy content
- Luke: also if you are measuring across sizes which correlates with age, surely you are measuring across this fecundity curve
- Samraat: we won't worry about cm^{ρ} as parameter but optimise ρ given an intake rate
- Breeding is phenologically synced with food availability
- 20kg cod still reproducing so is $\alpha < 20kg$ or has α shifted?
- Multiple things to optimise, even c (GSI)
- We stick with 3/4 for assimilation you could optimise it, but for basal MR data we quite reliably get 3/4 power scaling assuming intake is fine
- Only limited by fractal architecture of capillaries
- Van: $am^{3/4}$ is assimilation but not just for basal.
- Maximal rate scales more steeply you could be assimilating to be at maximal. Fractal limits basal (since it is an assumption of the West *et al.* model) not necessarily active.

Day 2

Right now, α will keep reducing and ρ will keep increasing in optimisation

- Need a constraint
- Need to make declining suvivorship relative to α thus t becomes $t-\alpha$
- Now survivorship starts at 1 for any α value
- don't optimise on α , optimise on c and ρ , using the αZ invariant
- α and β , could use male m to find b
- Then simulate fish with reproduction, growth trajectory would be different, and see what optimal c and ρ converge

Tom suggests using:

```
if m + dmdt < 0:

dmdt = -m
```

Miscellaneous

Approach:

- 1. Gap in the literature rationale
- 2. Our model using intake
- 3. Results figures (Hou et al figure)
- $4 cm^{\rho}$
- Why superlinear fecundity emerges
- Resource supply AND questionable
- Sufficient resources not to shrink
- New way to quantify intake rate
- Life history traits at different timescales: α, ρ
- Could we fix α and optimise c and ρ ?

• Figure I vs c, ρ

Diego's Visit

- $A(m) = B_{tot} + E_c \frac{dm}{dt}$
- $B_{tot} = B_{maint} + B_{growth}$ where B_{maint} is in W (J/S) and is part of B_{tot} $B_0 m^{3/4} = bm + E_c \frac{dm}{dt}$ where b_m is in $\frac{J}{s \cdot kg}$ b is $N_c B_{maint,c} = \frac{m}{m_c} B_{maint,c}$

- $dm/dt = am^{3/4} bm$ where $a = \frac{B_0}{m_c}$ and if you take b/E_c units are 1/skg• Does your scope increase as you get bigger? within species $A(m) = fB_r + E_c \frac{B_r}{E_m} \left(1 \left(\frac{m}{M}\right)^{1-\alpha}\right)$ where $f = \alpha m$?
- Diego's rate data is within a few bouts
- **NB:** Trade-off between ψ and I_0
- $t_f \to 0$ get back to basal
- if timescales align then $\psi + \gamma \frac{1}{4} = \frac{3}{4} + \frac{1}{4} \frac{1}{4} = \frac{3}{4}$ which is back to basal MR
- Reproduction intervals/frequency
- do Δt_R scale same as Δt_f ? Do the two time scales come closer as $m\downarrow$, stretching long am timescale across cm^{ρ} timescale - right way round
- Mortality rate could change so that α changes
- endothermy evolved because of times of no supply
- Determinate growth is result of high maintenance? What is the mechanism here?
- Synchrony between reproductive timescale versus intake i.e. phytoplankton glut
- We need data supporting foraging timescales of $t = t_0 m^{3/4}$ and parameter values for every piece
- Models assume 100% ε and all Carbon is assimulated
- meaning egestion is purely N and P
- Carbon-loss not important at individual level
- Eating extra carbon to reach nitrogen target

•
$$I_{tot}\varepsilon = B_0 m^{\alpha} \left[f + \frac{E_c}{E_m} \left(1 - \left(\frac{m}{M} \right)^{1-\alpha} \right) \right]$$
• $I_{tot}\varepsilon = B_0 m^{\alpha} f + E_c \frac{dm}{dt}$
• $\frac{dm}{dt} = \frac{I_{tot}\varepsilon - B_0 m^{\alpha} f}{E_c}$
• $\frac{dm}{dt} = \frac{a_0 m^{\gamma + \psi} - B_0 m^{\alpha} f}{E_c}$
• Expand notebook to include both derivations

- - come up with end result dm/dt
- $B_{tot} = fB_{rest}$ then follows Hou et al. approach. fB_{rest} then becomes cm term for reproduction
- For publication needs to be validated with data
- Outputs signature of intake rate on fecundity scaling
- Trade-off across species in egg size
- No trade-off within species for all 3 (Diego paper)
- Essentially we want a cohort + repeated measures foraging timescale and growth timescale
- Maybe hyperallometry drops after fecundity peak
- Mortality: $e^{-\mu t}$ and $\mu(m)$ weak scaling with mass

Our Intake Rate Model

- Intake rate = $I_0 m^{\gamma}$
- Total intake = $I_0 m^{\gamma} * t$
- Total intake = $I_0 m^{\gamma} t_0 m^{\psi}$
- Total intake, $I_{tot} = I_0 t_0 m^{\gamma + \psi}$

Which in effect is "mass-specific intrinsic distribution of resources"

- $\frac{dm}{dt} = I_{tot}\epsilon \left(am^{-\frac{1}{4}}\right) bm cm^{\rho}$ $\frac{dm}{dt} = I_{0}t_{0}m^{\gamma+\psi}\epsilon \left(am^{-\frac{1}{4}}\right) bm cm^{\rho}$ $\frac{dm}{dt} = I_{0}t_{0}\epsilon am^{\gamma+\psi} \left(m^{-\frac{1}{4}}\right) bm cm^{\rho}$ let $a_{0} = I_{0}t_{0}\epsilon a$

- let $a_0 = I_0 t_0 \epsilon a$ $\frac{dm}{dt} = a_0 m^{\gamma + \psi \frac{1}{4}} bm cm^{\rho}$

- 2D Saturated \rightarrow Intake = $a\varepsilon I_0 t_0 m^{\frac{3}{4} + \beta \frac{1}{4}}$
- 3D depleted \rightarrow Intake = $a\varepsilon I_0 t_0 m^{1.06+\beta-\frac{1}{4}}$
- If the foraging time scales as 3/4 then 3/4 + 3/4 1/4 = 5/4 = 1.25
- Cod total length max 80 cm : weight = $0.00624(80)^{3.126} = 5549.372$
- a and b are calculated from fundamental cellular properties
- Energy content of mammalian tissue $\approx 7e6Jkq^{-1}$
- $m_c \approx 3e 9g$
- \therefore energy to create cell $E_c \approx 2.1e 5J$ (in vivo)
- $B_0 \approx 1.9e 2W$

- : $a \equiv B_0 m_c / E_c \approx 0.25 g^{1/4} day^{-1}$ $E_g = \int E_c \frac{dN_c}{dt} dt = \frac{E_c}{m_c} \int \frac{dm}{dt} dt = \frac{E_c}{m_c} (m_M m_0)$ West et~al. say add egg term but this increases maintenace only
- also t estimated to be so small that only 1 equation matters skip optimisation o α since time period prior to α is negligible
- $B = \sum_{c} \left[N_{c} B_{c} + E_{c} \frac{dN_{c}}{dt} + E_{e} \frac{dN_{e}}{dt} \right]$ During spawn, mass of clutch, $m_{K} = m_{e} \Delta N_{e} = \text{constant fraction of mass i.e.} = \lambda m$ $\therefore E_{e} \frac{dN_{e}}{dt} \approx E_{e} \frac{\Delta N_{e}}{\Delta t} \approx \frac{\lambda E_{e} m}{m_{e} t_{s}}$ energy density is similar s.t. $\frac{E_{e}}{m_{e}} \approx \frac{E_{c}}{m_{c}}$

- $\therefore \frac{E_e dN_e}{dt} \approx \lambda(\frac{E_c}{t_s})N_c$
- so B_c becomes $\left(B_c + \lambda \frac{E_c}{t_s}\right)$ and maintenance goes up i.e. same as Charnov's trade-off but with first principles logic
- Charnov says $G\dot{S}I = c$ and GSI/Z invariant ≈ 0.6 tie this to West et al.'s comment on short immaturity period

Our model's Life History

Survivorship

- $R_0 = \int_{\alpha}^{\infty} l_x b_x dx$ let $l_x = l_{\alpha} e^{-Z(x-\alpha)}$
- and $l_{\alpha} = \int_{0}^{\alpha} e^{-Z_{J}\alpha} dx = e^{-Z_{J}\alpha}$ $\therefore R_{0} = \int_{\alpha}^{\infty} e^{-Z_{J}\alpha} e^{-Z(x-\alpha)} bx dx$ $R_{0} = e^{-Z_{J}\alpha} \int_{\alpha}^{\infty} e^{-Z(x-\alpha)} bx dx$
- l_{α} effectively becomes a scaling term how many juveniles make it to the α timepoint height of fecundity*survivorship
- We explore b_x using a decay rate parameter κ
- $b_x = b_{pk}e^{-\kappa(x-\alpha)}$

Recent notes - Objectives

- Discuss resource supply problem right from outset context of master equation
- Problem with resource supply
- might explain recent finding...
- Write units in-line
- Z(x) is a constant factor
- Easiest option: assume within survivorship, fecundity is constant (not decaying) increasing output with no trade-off
- fix $\kappa = 0$ and output optimisation surfaces for c and ρ

Fecundity function

- $R_0 = \int_{\alpha}^{\infty} cm^{\rho} e^{-\kappa(x-\alpha)} \cdot L_t dt$
- $b_x = cm^{\rho}h(t)$ where h(t) is like an efficiency term
- $b_x = cm^{\rho} e^{-\kappa(t-\alpha)}$
- $\alpha \cdot Z$ invariant
- $0 < \kappa < 0.1$
- $dm/dt = am^x bm (cm^\rho)h(t)$ **BUT** is this correct? Mathematically you are still losing **less** energy as you get older, allowing more for growth
- $R_0 = \int cm^{\rho}h(t) \cdot L_t dt$

- $R_0 = \int cm^{\rho}(t)^{\rho}e^{-\kappa(t-\alpha)} \cdot l_{\alpha}e^{-Z(t-\alpha)}dt$ $R_0 = c \cdot l_{\alpha} \int m(t)^{\rho}e^{-\kappa(t-\alpha)} \cdot -Z(t-\alpha)dt$ $R_0 = c \cdot l_{\alpha} \int m(t)^{\rho}e^{-(\kappa+Z)(t-\alpha)}dt$ $R_0 = c \cdot \int_0^{\alpha}e^{-Z(t)}dt \int_{\alpha}^{\infty}m(t)^{\rho}e^{-(\kappa+Z)(t-\alpha)}dt$
- Define two new constants

 - $-q_2 = \frac{\int_{\alpha}^{\infty} b(t)dt}{L}$ "lifetime fecundity output as a proportion of lifespan"

Alex's help with rearranging West et al. sum

- $\begin{aligned} \bullet & B = \sum_{c} \left[N_{c} B_{c} + E_{c} \frac{dN_{c}}{dt} \right] \\ \bullet & B = \sum_{c} \left[N_{c} B_{c} \right] + \sum_{c} \left[E_{c} \frac{dN_{c}}{dt} \right] \\ \bullet & B \sum_{c} \left[N_{c} B_{c} \right] = \sum_{c} E_{c} * \sum_{c} \frac{dN_{c}}{dt} \end{aligned}$
- $\sum_{c} \frac{dN_c}{dt} \ge \frac{B \sum_{c} \left[N_c B_c \right]}{\sum_{c} E_c}$

Presentation feedback

- Superlinear scaling possible
- Growth dependent on component
- LH in methods not intro means to an end
- Intro: people have ignored resource supply
- Not too much emphasis
- Diego's result is a two-line mention at most... "which means that if we ignore.... we get shrinking fish" consequence vs rationale
- Less focus on the specific results of Pawar et al. focus is on energy supply and Pawar et al. is a good example
- Results: Max fitness \rightarrow Measure $R_0 \rightarrow$ equations

Lyon poster notes

- $M = \left(\frac{a}{b+c}\right)^4$
- Equation is always finite, m won't go $\to \infty$ in finite time
- Gonzalez-Forereo PLoS comp. He says do a phase portrait since high ρ value may cause bifurcation
- Fisher (1950) size of offspring/size of population rule

Charnov (2001)

- Develops new evolutionary model for life histories by combining new production-growth model with some general constraints on reproductive allocation
- invariance across fish species of dimensionless numbers made up from reproductive & timing variables: age at maturity/average lifespan and proportion of mass to repro X E
- these invariants apply within closely related taxons
- i.e. after removing absolute scale (age) then life histories of elephants and squirrels look much more alike than elephants versus fish
- Disagreement over how well E correlates with α such that claiming $\frac{E}{\alpha}$ is invariant is true, but $R^2 > 0.8$ usually.
- Evolutionary LHT can be used to predict when such dimensionless invariance is expected
- Model allows natural selection to adjust age of first breeding and metabolic production growth capacity of cells
- Optimal LHT correctly predicts numeric value of dimensionless numbers which combine maturation age (size), mortality & reproductive allocation
- LH prediction yields new model & predicts fastest growth rate to be near the size of first reproduction
- Charnov says West et al. equation excludes reproduction which changes the asymptotic size to $\left(\frac{a}{b+c}\right)$
- Notes that gonad mass in fish is commonly proportional to body mass, thus after age α , growth = $dm/dt = am^{.75} (b+c)m$

- Thus, lifetime growth reflects production & timing (α) & magnitude $(c \cdot m)$ of reproduction
- If population size is fixed (i.e. not growing) then can calculate $c \cdot m$
- Evolutionary optimisation argument: α and c chosen to maximise a quantity proportional to lifetime production of offspring in the face of a mortality rate Z which is externally imposed
- "Under the same growth rate, a larger size requires longer development time, which comes at a cost: delayed reproduction" (p238)

Optimising

- Proportion of energy to growth determines body size, determinant of production rate
- Proportion of energy to repro allocation throughout life defines fitness
- age at maturity α
- size at maturity m_{α}
- $R_0 \propto \int_{\alpha}^{\infty} L(x) m(x) dx$
- Optimising Life history sets ^{∂R₀}/_{∂α} = 0 and ^{∂R₀}/_{∂c} = 0
 cm can be optimised wrt Z but no trade-off between the two i.e. high cm ≠ high Z
- it's actually the reverse causality, shorter lifespan (high Z) selects for greater per unit time ATR (high c)
- $c \cdot E$ is average proportion of body mass ATR over average adult lifetime
- GSI/Z ratio is invariant $\approx 60\%$ on average
- Almost always optimal to give 100% growth to repro at age α i.e. $c = a \cdot m_{\alpha}^{-0.25} b$ (determinate growth schedule)
- Because c/b is a fixed value, assumption leads to lower value for c (than 100) meaning there could be surplus for growth after α (i.e. indeterminate) hence why Charnov believes determinate is unlikely?

Misc

- Production rate is mediated by mortality + size dependence
- Implied that size shapes allometries through design constraints
- It was realised that interspecific allometries can be phylogeny-dependent
- cost of being big delayed reproduction (under same growth rate) and increased risk of dying having not reproduced
- Conversely, larger organisms usually benefit from better reproductive capacity (more energy channeled)
- Growth considered an investment in future reproductive success
- Strictly dominating strategy extra calorie dedicated to growth yields >1 calorie of reproductive allocation
- Expected future reproduction weighted by probability of surviving to a given age, which is set by mortality rate
- Heavy mortality = investment in future repro is lost
- Production rate also comes into play since growing faster means you can be large quicker
- Energy may be limited by **resource supply** or t_h
- Optimal proportions of surplus energy going to different sinks can chance throughout life
- Reproductive allocation throughout life defines fitness
- Growth changes size which is determinant of production rate

Charnov (2004)

- $R_0 = \int_{\alpha}^{\infty} L_t b_t dt$ $R_0 = \int_{\alpha}^{\infty} L_t cm_t dt$ $R_t = \text{net reproductive rate (mean offspring over lifespan)}$
- L_t = chance of being alive at age/time t
- f_t = offspring produced at age t
- Fixed offspring (egg) size (I)
- $f_t = \frac{cm_t}{I}$ or $f_t \propto cm_t$: egg size is fixed so number produced must be proportional to mass allocated
- b = maintenance MR per cell/Cost of building new cell
- $\frac{c}{b} = q$ high c requires high b multiplier
- c = bq and $\frac{c}{Z}$ quantity
- Optimising Life history sets ^{∂R₀}/_{∂α} = 0 and ^{∂R₀}/_{∂c} = 0
 Instantanteous mortality rate Z high at low t (i.e. high when young) but drops to a constant Z as t → α

Kozlowski (1987)

- Assume a 2-year lifespan
- Fitness measured as lifetime energy allocation to reproduction (or no. offspring produced) for species living at most 2 years and reproducing in both years:
- $L(x) = \mathbb{P}(\text{surviving to age } x)$
- m(x) = rate of energy allocation to reproduction (or rate of offspring production)
- Measure of fitness is equivalent to the volume of two solids, $V_1 + V_2$

Figure 1: Kozlowski's Volume Representation

- V_1 = reproductive success in first season

- $R_0 \propto \int_{\alpha}^{\infty} L(x)m(x)dx$ V takes maximum for times t_1, t_2 $\frac{dV_1}{dt_1} + \frac{\partial V_2}{\partial t_1} = 0$ and simultaneously $\frac{\partial V_2}{\partial t_2} = 0$
- 1. m(x) = 0 when immature
- 2. onset of reproduction at age t, size w, to the end of the first reproduction with reproductive rate $H(w_1)$ (assume size-dependency of reproduction not age)
- 3. then again m(x) = 0 throughout winter and part of growing season 2 prior to switch back to reproduction at age t_2 , size
- 4. t_2 to end of 2nd season, $H(w_2)$
- $V(t_1, t_2) = v_1(t_1) + v_2(t_1, t_2)$
- Volume of first solid depends only on t_1 , age at maturity second solid depends on age at maturity, t_1 and time of switch from growth to reproduction in second year, t_2 : body size in year 2 depends on sum of growth periods in both years

Kozlowski Notes

- Does Kozlowksi assume that growth and repro cannot occur simultaneously?
- Charnov: he suggests that because Z is different for different species, times for switch from growth to repro should also change. Heavy mortality makes lower α more optimal
- Charnov's crucial assumption is that animals share the same productivity
 - differences scatter the point around allometry lines but don't change the slope
 - Kozlowski & Wiener show otherwise changing parameters of productivity changes allometry slope
 - -: optimal size depends not only on Z but on p(m) function describing dependence of productivity rate on body
- Tus, species with higher production have larger optimal size even if no difference in productivity
- Charnov is heuristically optimistic: everything depends on distribution of Z alone \therefore interspecific allometries he describes have some explanatory meaning
- $P(w) = aw^b$ where a, b are species-specific. Function describes a size-dependent production rate

- Optimal to stop growing + start allocating to reproduction when $\frac{dP(w)}{dw} = m$, m = constant mortality rate
- Optimal size, $w = \left(\frac{m}{ab}\right)^{\frac{1}{b-1}}$
- Optimal age at maturity, $\alpha = \frac{1}{a(1-b)}(w^{1-b} w_0^{1-b})$
- $\frac{dP(w)}{dw} = baw^{b-1}$
- $baw^{b-1} = m$
- $w^{b-1} = \frac{m}{ab}$
- $w = \sqrt[b-1]{\frac{m}{ab}}$

Misc Notes

- How do we find how many eggs produced in a lifetime?
- We know age (x), and energy allocation as function of age m(x)
- If stop growing at α , then would assume that you're just allocating to repro?
- But this assumes that you are always surviving (no Z) so α always low
- But Z exists, which introduces $\mathbb{P}(\text{survival to age } x)$ as a third dimension
- Allocation is now height of volume (see Kozlowski figure) fraction ATR after α is constant
- Given the likelihood you'll survive to age x and that at that age you'll have ATR of η , the volume is how much you'll reproduce - now what α maximises this volume?
- If $\mathbb{P}(\text{survival})$ was 100% then you would omit the L(x) axis
- If energetic cost of producing offspring is constant, then m(x) expressed as rate of production or rate of ATR
- Fecundity gain hypothesis larger size at maturity (delaying repro) = more offspring so constant fraction once you have reached terminal size
- $V = H \cdot D \cot W = \alpha \cdot L(x) \cdot age$ $\frac{dV}{d\alpha} = \frac{dH}{d\alpha}S + H\frac{dS}{d\alpha} \text{ (product rule } u'v + v'u)$

Figure 2: Survivorship curve

Samraat Dimensionality Paper

Stages:

- Detection
- Capture
- Subjugation

Paper models the biomechanics of searching and attacking

•
$$v_R, v_C \propto m_C^{P_V}$$

Figure 3: ATR lifetime curve

- P_V = scaling exponent for consumer or resource velocity
- $d \propto (m_R m_c)^{P_d}$
- P_d = scaling exponent for consumer-resource reaction distance
- $t_h \propto m_C^{-\beta}$ exponent for handling time $K_{RC} = \frac{m_R}{m_C} = \text{Body mass ratio}$ $\alpha = s_D v_R d^{D-1}$

- $\alpha = \text{search rate}$
- s_D is 2 in 2D and π in 3D
- v_R = relative velocity rate at which c-r pairs converge $v_R = \sqrt{v_R^2 + v_C^2}$
- d = radius of search space
- Power for movement is product of body velocity v and force f applied by locomotory appendages onto medium. Assume MR devoted to locomotion is constant proportion of B:
- $v \propto \frac{B_0 m^{\beta}}{F}$
- Force proportional to cross-sectional area of muscle scales with mass
- $v = v_0 m^{\beta \beta_F}$
- ullet v_0 is a constant which depends on locomotory mode and metabolic scaling exponent
- $f(x_R) = \frac{\alpha(m_R x_R)^{q+1}}{1 + t_L \alpha(m_R x_R)^{q+1}}$
- Pursue, subdue, ingest 1 resource unit
- Delay between encounter + completion of ingestion prevents consumers exploiting resource in direct proportion to availability
- Type II functional response
- as $x_R \to 0$ consumption $\to \alpha m_R x_R$ because the 1 in denominator dominates, since second term is multiplied by 0 as $x_R \to \infty$, consumption $\to \frac{1}{t_h}$ because 1 becomes negligible so can remove, then the $\alpha m_R x_R$ terms cancel out, leaving
- where $\frac{1}{t_h}$ = per-capita handling time/resource mass

Dimensionality and Growth

- B assumes constant rate of energy flow
- If define B as f(energy supply in env) (type II functional response)

- Suspicion that West et al. cherry picked their growth data from lab with idealised conditions
- If energy flow is consumption then $B = C = am_R x_R f(\cdot)$
- a = search
- $m_R = \text{mass of resource}$
- x_R = abundance of resource Damuth's law
- $f(\cdot) = \frac{1}{1 + at_h x_R}$ note there is no mass term here only in terms of individuals second term units: Individual $\cdot \frac{\text{Area}}{\text{Time}} \cdot \frac{\text{Individual}}{\text{Area}}$ so dimensionless
 But consumption also a function of time which can vary because organisms move between resource depleted and
- saturated environments and 2D and 3D
- Thus is type 2 but abundance of resource can actually fluctute through time (abundance of resource is a function of time)

Figure 4: Risk vs resource abundance

Numpy meshgrid

• Creates a matrix of repeated x values in y plane and repeated y values in x plane

Thesis notes: meeting with Dr Samraat Pawar - 2/4/2019 14:00 - 15:00

Modelling Fish Growth

- Thus far, energy supply is treated as an implicit assumption in growth/fecundity models. Incorporate as an explicit assumption.
- What do we need to change in the West & Brown model?
- Check forward citations of Chernov paper to see other models people have come up with.
- Problem of resource supply:
 - governing equations
 - master equation energy balance
- Useful to specify master equation in more meaningful way.
- Diego's results suggest lifehistory must be getting enough resource supply

Thesis notes: meeting with Dr Samraat Pawar

Option 1: Carbon Flux

- Stability or volume of carbon eflux from ecosystem
- Relation to species interactions/does it matter?
- More focus on microbial networks
- Talk to Tom Clegg, it involves modelling dynamical systems interactions effecting dynamics ODEs
- individual \rightarrow multiple pops competing with each other for same resource

Option 2: Modelling Fish Growth

- Find the growth model which is worth pursuing
- Reproduction in fish \rightarrow understanding growth in fish.
- Use symbolic regression to identify what combo works best/explains best
- Population growth mass conservation equation
- Brown equist model universal model which predicts ecto/endotherm growth rates.
- Diego's post-doc advisor carbon economy of the individual
- Optimisation write equation for carbon economy to maximise fitness (growth strategy or size)
- Equation which maximises reproductive output of an individual, energy-balance maximise remaining energy in organism, left over for reproduction
- Richer dataset more ready things, provide empirical data