Curbe Bézier

Mihai-Sorin Stupariu

Sem. al II-lea, 2021 - 2022

Curbe Bézier 1/12

Mecanism

Input: O mulțime de puncte (poligon de control)

Output: Curba reprezentată

Resurse online pentru curbele Bézier:

https://javascript.info/bezier-curve;

https://www.jasondavies.com/animated-bezier/

Mecanism

Input: O mulțime de puncte (poligon de control)

Output: Curba reprezentată

Sursa: Duce et al, SVG tutorial

Același principiu funcționează și pentru suprafețe

Sursa: Knowledge Autodesk

Exemple de curbe în planul \mathbb{R}^2

1. Curbe reprezentate folosind ecuații (reprezentări implicite)

(i)
$$x_1^2 + x_2^2 - 1 = 0$$
 (cerc)
(ii) $x_1^2 - x_2 = 0$ (parabola)
(iii) $cos(x_1) e^{siu(x_2)} + lm(e^{cos(x_2)} + 1) = 0$
(o esuative in core apore o 'legateria in the coordinate)

Exemple de curbe în planul \mathbb{R}^2

2. Curbe reprezentate folosind ecuații (reprezentări) parametrice

$$\begin{cases} x_1 = 2t \\ x_2 = 4t + 2 \end{cases}, t \in \mathbb{R} \qquad (t = parametru)$$

$$(\ddot{u}) \begin{cases} x_1 = \cos(t) \\ x_2 = \sin(t) \end{cases}$$

$$t \in \mathbb{R}$$

$$(\ddot{u}) \begin{cases} x_1 = t \\ x_2 = t^2 \end{cases}, t \in \mathbb{R}$$

$$\downarrow x_2 = t^2 \qquad parabola$$

Curbe Bézier

Exemple de curbe în planul \mathbb{R}^2

2. Curbe reprezentate folosind ecuații (reprezentări) parametrice

(iv)
$$c: \mathbb{R} \to \mathbb{R}^2$$
; $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

$$\begin{cases} x_i = t^3 - 5t^2 + 4 \\ 2z_i = t^2 - 4t - 1, t \in \mathbb{R} \end{cases}$$
(v) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t, |t|) = \begin{cases} (t, t), t > 0 \\ (t, -t), t < 0 \end{cases}$
what polynomials per partial carbon spline

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^2 + 1)$ and a rational and carbon spline

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^2 + 1)$ and a rational and carbon spline

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^2 + 1)$ and a rational and carbon spline

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^2 + 1)$ and a rational and carbon spline

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4t - 1)$

(vi) $c: \mathbb{R} \to \mathbb{R}^2$, $c(t) = (t^3 - 5t^2 + 4, t^2 - 4, t^$

4日 → 4周 → 4 差 → 4 差 → 1 型 → 9 Q G

7 / 12

Definiție - curbă parametrizată

Fie $I \subset \mathbb{R}$ un interval. **O** curbă parametrizată de clasă \mathcal{C}^k este dată de o aplicație \mathcal{C}^k -diferențiabilă $c:I \to \mathbb{R}^n$. Aplicația c se numește parametrizare, iar mulțimea $M:=\operatorname{im}(c)$ se numește imagine geometrică a curbei.

Dacă n=2 curba se numește **plană** (**curbă 2D**), iar dacă n=3 curba se numește **strâmbă** (**curbă 3D**).

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Curbe Bézier 8 / 12

Exemple

(i) Curbele

$$c_1: \mathbb{R} \to \mathbb{R}^2, \quad c_1(t) = (2+4t+1, -2-4t);$$
 $c_2: \mathbb{R} \to \mathbb{R}^2, \quad c_2(t) = (4-3\cos t, 3+2\sin t);$
 $c_2': \mathbb{R} \to \mathbb{R}^2, \quad c_2'(t) = (4-3\cos 3t, 3+2\sin 3t);$
 $c_2'': \mathbb{R} \to \mathbb{R}^2, \quad c_2''(t) = (4-3\cos(1-t), 3+2\sin(1-t));$
 $c_3: \mathbb{R} \to \mathbb{R}^2, \quad c_3(t) = (2-t+t^2-t^3+6t^4, 1+t+2t^2+3t^3);$
 $c_4: \mathbb{R} \to \mathbb{R}^2, \quad c_4(t) = (t^2-2t+2, 2t^2-6t+4) = t^2(1,0)+2t(1-t)(1,1)+(1-t)^2(2,4);$
 $c_5: [0,1] \to \mathbb{R}^2, \quad c_5(t) = (t^3+3t, -3t^2+3t) = t^3(4,0)+3t^2(1-t)(2,1)+3t(1-t)^2(1,1)+(1-t)^3(0,0)$

sunt curbe parametrizate plane de clasă \mathcal{C}^{∞} .

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□P

Exemple

(ii) Curba $c_6:[-1,1]\to\mathbb{R}^2$, $c_6(t)=(t,t|t|)$ este de clasă \mathcal{C}^1 , dar nu este de clasă \mathcal{C}^2 , iar curba $c_6':[-1,1]\to\mathbb{R}^2$, $c_6'(t)=(t,|t|)$ este de clasă \mathcal{C}^0 , dar nu este de clasă \mathcal{C}^1 .

(iii) Curbele
$$c_7: \mathbb{R} \to \mathbb{R}^3$$
, $c_7(t) = (2\cos t, 2\sin t, t)$ și $c_8: [0,1] \to \mathbb{R}^3$, $c_8(t) = (-2t^3 + 3t^2, 4t^3 - 6t^2 + 3t, t^3) =$ $= t^3(1,1,1) + 3t^2(1-t)(1,0,0) + 3t(1-t)^2(0,1,0) + (1-t)^3(0,0,0)$

sunt curbe strâmbe de clasă \mathcal{C}^{∞} .

Curbe Bézier 10 / 12

Definicție - curbe polinomiale / polinomiale pe porțiuni

- 1. O curbă polinomială de grad d este o curbă definită de o parametrizare polinomială, i.e. de o aplicație $c=(c_1,\ldots,c_n):I\to\mathbb{R}^n$ cu proprietatea că c_1,\ldots,c_n sunt funcții polinomiale de grad cel mult d și cel putin una dintre ele are grad exact d.
- **2.** O curbă dată de o aplicație $c:[u_0,u_L]\to\mathbb{R}^n$ se numește **polinomială pe porțiuni** dacă există o diviziune

$$u_0 < u_1 < \ldots < u_i < u_{i+1} < \ldots < u_L$$

a intervalului $[u_0,u_L]$ astfel ca pentru orice $i=0,\ldots,L-1$, restricția $c|_{[u_i,u_{i+1}]}$ a aplicației c la intervalul $[u_i,u_{i+1}]$ să fie polinomială.

Curbe Bézier 11 / 12

Exemple

- (i) Curbele c_1 , c_3 , c_4 și c_5 din exemplul anterior sunt curbe polinomiale de grade 1, 4, 2, respectiv 3.
- (ii) Orice curbă polinomială $c:[a,b]\to\mathbb{R}^n$ este o curbă polinomială pe porțiuni.
- (iii) Curbele c_6 și c_6' sunt curbe polinomiale pe porțiuni care nu sunt curbe polinomiale, deoarece avem

$$c_6(t) = \left\{ egin{array}{ll} (t,-t^2), & ext{dacă} \ t \in [-1,0] \ (t,t^2), & ext{dacă} \ t \in [0,1]. \end{array}
ight.$$

$$c_6'(t) = \left\{ egin{array}{ll} (t,-t), & \mathrm{dacă} \ t \in [-1,0] \ (t,t), & \mathrm{dacă} \ t \in [0,1]. \end{array}
ight.$$

Curbe Bézier 12 / 12