Projekt nr 018 Przebiegi Czasowe

Autorzy:

Błażej Czaicki:

- Napisanie programu tworzącego dane "generator.exe"
- Wczytywanie danych z pliku

Bartosz Gawron:

- Pisanie dokumentacji
- Konwersja wczytanych danych

Jakub Smuga:

- Stworzenie GUI
- Implementacja metod rysujących wykresy

Opis projektu

W wielu dziedzinach nauki i techniki występuje potrzeba obserwacji przebiegów czasowych. Najprostszym, powszechnie znanym przykładem jest oscyloskop. Czasami zdarza się, że aparatura pomiarowa zapisuje w regularnych odstępach czasu interesujące nas dane do pliku. Celem projektu będzie napisanie programu do wizualizacji przebiegu zmienności pojedynczego parametru w czasie.

Założenia wstępne przyjęte w realizacji projektu

- Został stworzony program tworzący kolejne dane w odstępach 5 sekundowych i zapisujący je do pliku. Zostaje on automatycznie uruchomiony razem z programem głównym.
- Program na bieżąco wczytuje dane z pliku, a następnie je wyświetla w odpowiedni sposób.
- Program posiada przyciski ustalające sposób wyświetlania wykresu.
- Program rysuje osie oraz ma możliwość wyświetlanie na nich osi.

Analiza projektu

1. Specyfikacja danych wejściowych

Dane wczytywane z pliku mają formę:

- Każdy wiersz składa się z dwóch kolumn
- Kolumny oddzielone są spacjami
- Pierwsza kolumna zawiera czas wyrażony w sekundach
- Druga kolumna wartość parametru w danej chwili

2. Opis oczekiwanych danych wyjściowych

Dane powinny być móc wyświetlane w następujące sposoby:

- Wykres liniowy ostatnio wczytanych danych
- Wykres liniowy ostatnio wczytanych danych oraz przedostatnio wczytanych danych
- Wykres słupkowy ostatnio wczytanych danych
- Wykres słupkowy ostatnio wczytanych danych oraz przedostatnio wczytanych danych
- Istnieje możliwość wyświetlenia podziałki na tle wykresu

3. Zdefiniowanie struktur danych

Dane wczytane w pliku przechowywane są w std::vector

4. Specyfikacja interfejsu użytkownika

Okno podzielone jest na dwa obszary. Na jednym wyświetlany jest wykres, na drugim znajdują się przyciski którymi użytkownik ma możliwość zmiany wyświetlanego wykresu. Kolejne przyciski zapewniaja funkcjonalności:

5. Wyodrębnienie i zdefiniowanie zadań

- Napisanie programu generującego dane
- Wczytywanie danych z pliku
- Stworzenie struktury przechowującej wczytane dane
- Konwersja danych do wyświetlenia
- Wyświetlanie Osi
- Wyświetlanie podziałki na osiach
- Obsługa przycisków
- Implementacja funkcji rysującej
- Implementacja funkcji tworzących odpowiednie wykresy

6. Decyzja o wyborze narzędzi programistycznych

Do projektu użyliśmy biblioteki wxWidgets. Zdecydowaliśmy się na tą bibliotekę, ponieważ przy pomocy aplikacji wxFormBuilder w bardzo wygodny sposób mogliśmy zaprojektować interfejs. W zadaniu używaliśmy standardu C++14. Projekt został przygotowany w programie Visual Studio 2022.

Podział pracy i analiza czasowa

Większość projektu zrobiliśmy wspólnie. Na początku stworzyliśmy projekt w wxFormBuilder. Dodaliśmy wszystkie potrzebne przyciski i suwaki. Następnie zajęliśmy się stworzeniem programu generującego dane. Posiadając już taki program zajęliśmy się

wczytaniem danych z pliku oraz ich analizą. Kolejnym krokiem było stworzenie funkcji rysujących wykres na podstawie przygotowanych danych oraz obsługa przycisków.

Opracowanie i opis niezbędnych algorytmów

Algorytm wczytywania danych opierał się o wczytywanie danych z pliku "dane.dat" w interwale czasu równym 1 sekundzie. Sprawdzamy, czy wczytane dane różnią się od przechowywanych obecnie w pamięci, jeśli tak to wywołujemy metodę Repaint odpowiedzialną za przerysowanie wykresu.

Algorytm wyliczania pixeli, odpowiadających następnemu punktowi na wykresie. Opiera się o maksymalną liczbę danych oraz obecną szerokość i wysokość okna.

Kodowanie

Opis Klas:

- MyApp niezbędna klasa do uruchomienia programu
- RenderTimer klasa odpowiadająca za wczytywanie danych w odpowiednim odstępie czasu
- DataAnalyzer klasa wczytująca dane z pliku
- Data klasa przechowująca dane
- GUI klasa generowana przez program wxFormBuilder, odpowiada za interfejs użytkownika
- MyProject1MyFrame1 klasa odpowiadająca za rysowanie wykresów

Opis Zmiennych:

- DataAnalyzer::newData przetrzymuje ostatnio wczytane dane
- DataAnalyzer::oldData przetrzymuje przedostatnio wczytane dane
- DataAnalyzer::DATA_SIZE zmienna ustalająca ilość wczytywanych danych
- Data::dataX wektor przechowujący czas pomiaru
- Data::dataY wektor przechowujący wartość pomiaru

Opis funkcji:

- DataAnalyzer::ReadData metoda wczytująca dane z pliku
- Data::getMin zwraca minimalną wartość dataY
- Data::getMax zwraca maksymalną wartość dataY
- Data::getPixelY zwraca wartość na osi Y, na której powinien być narysowany punkt
- MyProject1MyFrame1::DrawScale rysuje podziałkę na osiach
- MyProject1MyFrame1::DrawAxes rysuje osie
- MyProject1MyFrame1::DrawChart rysuje wykres liniowy
- MyProject1MyFrame1::BarGraphDrawChart rysuje wykres słupkowy
- MyProject1MyFrame1::Repaint() wywołuje inne funkcje rysujące, wywoływana za każdym razem gdy zaistnieje konieczność przerysowania
- RenderTimer::Notify wywołuje metodę Repaint
- RenderTimer::start włącza odliczanie czasu do kolejnego wywołania Notify

Testowanie

Działanie naszego programu testowaliśmy manualnie, testując różne możliwe scenariusze, w postaci m. in. kombinacji ustawień przycisków.

Wdrożenie, raport i wnioski

W programie udało nam się wykonać wszystkie wymagania podstawowe zatem dane są wczytywane z pliku w regularnych odstępach czasu (1s), a generowane co (5s). Dostępne są dwa tryby pracy wyświetlające ostatni przebieg danych lub ostatni i przedostatni. Jest również możliwość wyświetlenia skali na osiach.

Z wymagań rozszerzonych dodaliśmy możliwość wyświetlania wykresu słupkowego, wyświetlenie całej historii przebiegu nie zostało przez nas zrealizowane ze względu na niejasność w sposobie przedstawienia całego przebiegu na wykresie, w jednym momencie.