人工智能在Web安全中的应用

从ModSecurity开始说起

SecRule REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/|REQUEST_COOKIES_NAMES|ARGS_NAMES|ARG "(?i:(?:(union(.*?)select(.*?)from)))"

规范化

多阶段

多字段

规则集

转换函数

多动作

绕过仍然无法避免

request

REVERSE (noinu) +REVERSE (tceles)

un?+un/**/ion+se/**/lect+

SQL Tokenizer Parser Analyzer

语法解析

- 关键词解析
- 语法规则
- 基本函数

语义分析

- SQL补全
- 环境感知
- 注入检测
- 语义行为

兼容性

除了MySQL,其他SQL

libinjection

误报

本质上,系统将尽量补全SQL, 而SQL一旦通过语法分析,只 要存在Token,误报就容易出现

机器学习初探

典型的机器学习场景

输入

模式识别

输出

有监督学习

VS

无监督学习

图像识别

关联新闻

NLP

机器学习初探

特征选取

基于Payload的特征选择, 需要结合安全特性,比如关 键字、字符特征、甚至请求 长度,同时避免过拟合

特征选取

01

算法选择

02

样本训练

03

日志审计

04

算法选择

有监督学习有诸多常用算法、 SVM、HMM、贝叶斯等等

选取大量黑白标注样本,同时要控制样本类型的分布

日志审计与回归

当前有监督学习主要应用在 离线日志分析中,快速发现 未知攻击样本

支持向量机-XSS检测应用

SVM的典型问题

结构风险最小, 而非经验风险最小 田村 田村 第三方域名个数 敏感字符 JS关键字

93%

90%

支持向量机-不足

不适合大规模数据集训练

广泛采用的LibSVM,在最坏情况下复杂度为O(n^2)(训练样本数平方)

本质上与规则无异

可以对抗基本变形,只是对原有规则系统提供一定的宽容度

准确度无法满足需呀

对原有系统提供一个离线检查 机制 是否能够结 合更多的识 别方法

隐马尔可夫

最大熵模型

<script>alert(0)</script>

S1:符号

S2:字符

S3:数字

S4:分割符号

观察序列

加入词法之后

200维特征

召回率 80% 准确率 90%

从浅层学习走向深度神经网络

从浅层学习走向深度神经网络

见证奇迹的时刻

一些奇怪的发现

P O S T /index/index.php?_c=zip://d://KAS/WebSource/ueditor/php/upload/file/20170531/14962160878 03962.zip#xxx&_m=captcha cmd=echo "\n\n\n", system("dir C:");exit;

%2527!=(hex(user())>0x23)%2523

通过不断调整特征,对于变形与绕过有了神奇的抵抗能力,但是准确率却无法提升

如果我们在结合Response呢?

威力不止如此

如果机器学习只做文本特征检测, 不能称之为人工智能

威胁特征全貌

访问行为特征の 用 户 身份特 文本特征 人机识别 征

业务行为特征

威力不止如此

如果机器学习只做文本特征检测, 不能称之为人工智能

威胁特征全貌

文本特征

用户身份特征

访问行为特征の 人机识别

业务行为特征

威力不止如此

如果机器学习只做文本特征检测, 不能称之为人工智能

威胁特征全貌

文本特征

用 户 身份特征

访问行为特征の 人机识别

业务行 为 特 征

用户行为分析-电商案例

用户行为分析-难点

业务抽象

通过n-gram算法,产生业务 pattern,分析URL,将请求归 类,实现业务抽象 不判别好坏,只寻找少数派,相信大多数用户都是正常业务

去噪

去除网络、浏览器等干扰,将 Session中所有业务向量化 因为无法识别异常类型,还需要人工介入和辅助模型识别

关系向量化

每Session的API集合,交集

异常识别的准确率高达95%

算法

如何选择K值,还要考虑到的 向量集合的方差

总结

有监督学习,有效降低规则维护工作量,但对于准召相比语法引擎没有突破

在样本空间扩大之后,DNN相比 SVM能有效提高召回率,但更多 的应用在离线场景

UBA可以解决当前技术在高维空间 上的不足,是安全的对抗的下一个 风口

无监督学习是未来,能突破样本空 间限制

