閉作用素

1

1.1 閉作用素

X, Y でバナッハ空間を表すことにする.

注意 1.1. バナッハ空間に話を限定しないとすると、必ずしも"グラフが閉集合であるならばグラフノルムに関して完備である"という命題はなりたたないが、始域と終域がともにバナッハ空間であるときには、これらは同値になるので、どちらで定義してもよい.

命題 1.2. T が X から Y への有界作用素ならば, T は閉作用素である.

証明・ $\|x\|_X \leq \|x\|_X + \|Tx\|_Y \leq (1+\|T\|) \|x\|_X$ が成り立つので、 $\|\cdot\|_X$ が完備なノルムならば Dom(T) は T のグラフノルムに関しても完備である.

命題 1.3. バナッハ空間上の有界作用素 T が $\overline{Dom(T)} = X$ を満たすならば, Dom(T) = X である.

証明. $u \in X$ に収束する点列 $\{u_n\} \subset Dom(T)$ をとると, Y の点列 $\{Tu_n\}$ は T が有界作用素なので収束部分列をもつ. 従って, 閉作用素の定義から $u \in Dom(T)$ が成り立つ.

注意 1.4. つまり, バナッハ空間上の有界作用素は、稠密な定義域をもつならば、全域写像である.

命題 1.5. 閉作用素 T が単射であるならば、その逆作用素 T^{-1} も閉作用素である.

証明**・** $\tau: X \times Y \to Y \times X; (x,y) \mapsto (y,x)$ という写像は同相写像であるので, $\Gamma(T)$ が $X \times Y$ の閉集合であれば, $\Gamma(T^{-1}) = \tau\Gamma(T)$ は $Y \times X$ の閉集合である.

1.2 閉拡大

定義 1.6. ある作用素は、閉作用素の拡張をもつとき、前閉作用素、あるいは可閉であるという。そして、この拡張のことをその作用素の閉拡大という。

命題 1.7. (閉拡大をもつことの必要十分条件). $T: X \to Y$ が可閉であることの必要十分条件は $x_n \in \text{dom}(T), x_n \to 0, Tx_n \to y \Rightarrow y = 0$ が成り立つことである.

証明・ (\Rightarrow) T の閉拡大を S とすると, S が閉作用素であることから, $0 \in \text{dom}(S)$ であり, S(0) = y が成り立つので, y = 0 である。 (\Leftarrow) 作用素 S を $\text{dom}(S) := \overline{\text{dom}(T)}$ とし, Sx を, $x_n \to x$ となる点列 $x_n \in \text{dom}(T)$ を好きにひとつとって, $Sx := \lim Tx_n$ により定める。

 $\underline{\text{claim:}} Sx$ の値は点列 $x_n \in \text{dom}(T)$ のとり方によらない.

(::) $x_n \to 0, x_n' \to 0, Tx_n \to y, Tx_n' \to y'$ とすると, $x_n - x_n' \to 0, T(x_n - x_n') = T(x_n) - T(x_n') \to y - y'$ であるので y - y' = 0

claim: S は閉作用素である.

$$(::)$$
 $x_n \to x, Sx_n \to y$ とすると, $x \in \text{dom}(S), Sx = y$ となる.

命題 1.8. (線形部分空間のグラフ化の必要十分条件). $X\times Y$ の部分空間 Γ がある線形作用素 $T:X\to Y$ のグラフになるための必要十分条件は, $\{0,y\}\in\Gamma\Rightarrow y=0$ が成り立つことである.

証明・ (\Rightarrow) y=T(0)=0・T(1)=0 より従う・ (\Leftarrow) 任意の $X_0\in X$ に対して $\{(x_0,y)\in X\times Y\mid y\in Y\}$ と Y の共通部分は 1 点である (2 点あるとしたら $(x_0,y_1),(x_0,y_2)\in \Gamma$ であるので, Γ が部分空間であることより $(0,y_1-y_2)\in \Gamma$ なので $y_1=y_2$ となる)・ x_0 をこの 1 点 (x_0,y) の y を対応させる写像を T とする. Γ が部分空間であることから $(x_1+x_2,Tx_1+Tx_2)\in \Gamma$ であるが, Γ が T のグラフであることから $Tx_1+Tx_2=T(x_1+x_2)$ となるので,T は線形作用素である.

命題 **1.9.** $T_1 \subset T_2 \Leftrightarrow \Gamma(T_1) \subset \Gamma(T_2)$

命題 1.10. (前閉作用素の最小の閉拡大の存在). T を前閉作用素とする. $\overline{\Gamma(T)}$ をグラフとする線形作用素は、T の最小の閉拡大である.

証明・ $y \neq 0$ かつ $(0,y) \in \overline{\Gamma(T)}$ をみたす y が存在すると仮定すると、その十分近くに $y' \neq 0$ かつ $(0,y') \in \Gamma(T)$ をみたす y' がとれてしまうので矛盾する.従って、 $\overline{\Gamma(T)}$ をグラフとする線形作用素がとれるので、これを \overline{T} とする.すると、 \overline{T} は最小の閉拡大であることが、適当に他の閉拡大 T_1 をとると、 $\Gamma \overline{T} \subset \Gamma T_1$ から従う.

定義 1.11. (閉包). T が可閉であるとき, 最小の閉拡大を 閉包.

1.3 ヒルベルト空間の対称作用素と閉性

作用素のなかでも,変換(つまり始域と終域が同じであるもの)を扱う.

命題 **1.12.** $y \in X$ に対して $j_y \in X$ で

$$\langle x, j_y \rangle = \langle Tx, y \rangle \quad (\forall x \in \text{dom} T)$$

を満たすものが存在するとする. T が稠密に定義されているならば, このような j_y は一意である.

証明. j_y の他に、同様の条件を満たす j_y' が存在したとする.

$$\langle x, j_y \rangle = \langle x, j_y' \rangle \quad (\forall x \in \text{dom} T)$$

が成り立つので,

$$\langle x, j_y - j_y' \rangle = 0 \quad (\forall x \in \text{dom}T)$$

が成り立ち, T が稠密に定義されているので, $x_n \to j_y - j_y'$ なる点列をとれば

$$\langle j_y - j_y', j_y - j_y' \rangle = \lim \langle x_n, j_y - j_y' \rangle = 0$$

となるので, $j_y = j'_y$ が成り立つ.

注意 1.13. T が稠密に定義されていなければ, j_y は一意に定まるとは限らないので, 共役作用素をきちんと定義することができない.

T の共役作用素を T^* で表す.

命題 1.14. T を共役作用素 T^* は閉作用素である.

証明. $x_n \to x, T^*x_n \to y$ とする.

 $\underline{\text{claim:}}\ x \in \text{dom}T$ であり、 $T^*x = y$ が成り立つ.

(::) 任意の $z \in dom(T)$ に対して

$$\langle Tz, x_n \rangle = \langle z, T^*x_n \rangle$$

が成り立つので、極限をとることで

$$\langle Tz, x \rangle = \langle z, y \rangle$$

が成り立つ. 従って, $x \in \text{dom}(T)$ であり, $T^*x = y$

命題 $1.15. \ T$ が定義域、 値域ともに稠密で、 かつ単射であるならば

$$(T^*)^{-1} = (T^{-1})^*$$

証明. T, T^{-1} ともに稠密定義されているので、共役作用素が存在する.

$$\langle x, y \rangle = \langle T^{-1}Tx, y \rangle = \langle Tx, (T^{-1})^*y \rangle \quad (x \in \text{dom}T, y \in \text{dom}(T^{-1})^*)$$

であるので、 $(T^{-1})^*y\in\mathrm{dom}T^*$ であり、 $T^*(T^{-1})^*y=y$ が成り立つ。 $x\in\mathrm{dom}T^{-1},y\in\mathrm{dom}T^*$ に対しては

$$\langle x, y \rangle = \langle TT^{-1}x, y \rangle = \langle T^{-1}x, T^*y \rangle$$

であるので, $T^*y \in \text{dom}(T^{-1})^*$ であり, $(T^{-1})^*T^*y = y$ が成り立つ. つまり,

$$T^*(T^{-1})^*y = (T^{-1})^*T^*y = y$$

が成り立つ.

命題 1.16. $H' \subset H$ を部分空間とする. H' が稠密であることの必要十分条件は, $(H')^{\perp} = \{0\}$ である.

証明. $(\Rightarrow)x\in (H')^{\perp}$ をとる. $x_n\in H'$ で $x_n\to x$ となるものをとる.

$$\langle x, x \rangle = \lim \langle x_n, x \rangle = 0$$

であるので, x=0 が成り立つ. (\Leftarrow) $H=(H')^{\perp\perp}=\overline{H'}$ より従う.

命題 1.17. (逆写像の自己共役性の判定条件). 自己共役作用素 A が単射であるならば, A^{-1} は自己共役作用素である.

証明. claim: A の値域は稠密である.

(::) A の値域を RA で表すと、前述の命題より、 $RA^{\perp}=0$ を示せば良い. $y\in RA^{\perp}$ を任意にとる.

$$\langle Ax, y \rangle = 0 \quad (x \in H)$$

が成り立つので, $y \in \text{dom} A^*$ であり, $A^*y = 0$ である. つまり, Ay = 0 であるので, y = 0 なので, 主張が従う.

 A^{-1} は定義域、値域ともに稠密な単射なので前述の命題より

$$A^{-1*} = A^{*-1} = A^{-1}$$

が成り立ち、自己共役であることがいえた.

1.4 対称作用素の半群

定義 1.18. (対称作用素の半群). H 上の対称作用素の族 $\{T_t\}_{t>0}$ で

- (1)(全域性). T_t (t>0) は全域写像.
- (2)(半群性). $T_t T_s = T_{t+s}$ (t, s > 0)
- $(3)(縮小性). ||T_t x|| \le ||x|| \quad (t > 0, x \in H)$
- (4)(強連続性). $||T_t x x|| \to 0$ (as $t \downarrow 0, x \in H$)

を満たすものを,全域縮小強連続対称半群,あるいは単に省略して半群という.

定義 1.19. (半群の生成作用素). $\langle T_t \rangle$ を半群とする.

$$Ax := \lim_{t \downarrow 0} \frac{T_t x - x}{t}$$

により定まる A をこの半群の生成作用素という. 定義域は, 極限が存在するような x 全体である.

定義 **1.20.** (レゾルベント). H 上の対称作用素の族 $\{G_{\alpha}\}_{\alpha>0}$ で

- (1)(全域性). G_{α} $(\alpha > 0)$ は全域写像.
- $(2)(\nu)$ ルベント方程式). $G_{\alpha} G_{\beta} + (\alpha \beta)G_{\alpha}G_{\beta} = 0$ $(\alpha, \beta > 0)$
- (3)(縮小性). $\|\alpha G_{\alpha} x\| \le \|x\|$ $(\alpha > 0, x \in H)$
- (4)(強連続). $\|\alpha G_{\alpha}x x\| \to 0 \quad (\alpha \to \infty, x \in H)$

を満たすものを、(対称全域縮小)強連続レゾルベント、あるいは単に省略してレゾルベントという.

命題 1.21. $\langle G_{\alpha} \rangle$ を強連続レゾルベントとする. 任意の $\alpha>0$ に対して G_{α} は単射である.

証明. 任意の $\beta > 0$ に対して

$$G_{\alpha}x = 0 \Rightarrow G_{\alpha}x - G_{\beta}x + (\alpha - \beta)G_{\alpha}G_{\beta}x = G_{\beta}x = 0 \quad (\beta > 0)$$

が成り立つので、強連続性から

$$0 = \lim \|\beta G_{\beta} x - x\| = \|x\|$$

であるので、
$$x=0$$

定義 1.22. (レゾルベントの生成作用素). $\{G_{\alpha}\}$ をレゾルベントとする.

$$Ax := \alpha x - G_{\alpha}^{-1}x$$

により定まる A をレゾルベントの生成作用素という. 定義域は $G_{\alpha}(H)$ である. (前述の命題より適切に定義される.)

定義 1.23. (半正定値対称作用素). 対称作用素 T は $\langle Tx,x\rangle \geq 0$ $(x\in \mathrm{dom}T)$ を満たす時に、半正定値であるという. \geq を \leq におきかえて半負定値も同様に定義される.

命題 **1.24.** (逆写像の半定値性). 単射な対称作用素 T を半正 (resp. 負) 定値であるとする. このとき, T の値域上を定義域にもつ T^{-1} は半正 (resp. 負) 定値である.

証明. 任意に $x \in \text{dom} T^{-1}$ をとると, $T^{-1}x \in \text{dom } T$ であるので, T の半正定値性により

$$\left\langle T^{-1}x,x\right\rangle =\left\langle T^{-1}x,TT^{-1}x\right\rangle \leq$$

が成り立つ.

命題 1.25. 強連続レゾルベント $\{G_{\alpha}\}$ の生成作用素 A は半負定値の自己共役作用素である.

証明. G_{α} は単射な自己共役作用素であるので, G_{α}^{-1} は自己共役作用素である. 故に, $A=\alpha-G_{\alpha}^{-1}$ により定義される A も自己共役作用素である.

claim:

$$\langle x, G_{\alpha} x \rangle \ge 0 \quad (x \in H)$$

(::) 任意の $x \in H$ に対して

$$\frac{d}{d\alpha}\langle x, G_{\alpha}x\rangle = -\langle G_{\alpha}x, G_{\alpha}x\rangle$$

となることがレゾルベント方程式を愚直に計算することでわかる. また, 縮小性から

$$\langle x,G_{\alpha}x\rangle = \frac{1}{\alpha}\langle x,\alpha G_{\alpha}x\rangle \leq = \frac{1}{\alpha}\left\|x\right\|\left\|\alpha G_{\alpha}x\right\| \leq \frac{1}{\alpha}\left\|x\right\|\left\|x\right\|$$

となるので、 $\lim\langle x,G_{\alpha}x\rangle=0$ である。従って、 $\langle x,G_{\alpha}x\rangle$ は α に関して広義単調減少で 0 に収束するので、負の値をとることがない.

故に, G_{α} は半正定値であるので,

$$\langle Ax,x\rangle = \lim_{\alpha\downarrow 0} \bigl\langle \alpha x - G_{\alpha}^{-1}x,x\bigr\rangle = -\lim_{\alpha\downarrow 0} \bigl\langle G_{\alpha}^{-1}x,x\bigr\rangle \leq 0$$