1 Static Test Cell

Figure 1: Example

Transducer Techniques Load Cell 500 lbs
What else should be in RTC mech specs??? r2c2 r2c3

Table 1: Static Test Cell Specifications

1.1 Design

- 1. Brief overview of old system
 - (a) General idea of how system works: how engine is mounted, where thrust is being measured, data available to be collected
 - i. Engine is mounted at combustion chamber flange to rig.
 - ii. Rig is essentially a cage that is constrained by rollers within I-beams. Plate at top of rig has a rigid connection to load cell, and thrust is measured from the top of the set-up.
 - (b) Problems with system that drove redesign
 - i. LOAD CELL: Load cell data not depicting accurate thrust or thrust calculated from pressure transducers and thermocouples. Friction in the system; loss of peak thrust due to wood between load cell and rig (to protect against initial spike when engine ignites); potential off axis loads that would not register at load cell **OLD LOAD CELL DATA**
 - ii. RIG: Alignment issues with rig pieces
 - iii. ROLLERS: Tedious and difficult to align; caused friction along I-beams

2. Redesign

- (a) Ball joint assembly to make set-up more robust and less susceptible to data loss
 - i. Ball joint accounts for any off axis forces due to it's ability to deflect by small angles
 - ii. Replaced wood piece with steel; less likely to dampen initial peak thrust at beginning of ignition
 - iii. **NEW LOAD CELL DATA**
- (b) Rig redesign to make system set-up quicker, safer, simpler, and more robust
 - i. Switch angle iron configuration to provide easier access to plumbing and connections
 - ii. Redesign top plate due to difficulty bolting angle irons while holding engine in place
 - iii. New attachment points at combustion chamber flange pieces to prevent future alignment issues
 - iv. Replace rollers with simple pieces of conduit that will guide the rig (keep away from I-beams) but will not be a sources of friction due to constraints within I-beam **this probably needs a picture of where the friction is thought to occur side of I beams and how new roller will eliminate that**

 ${\bf v}.$ modes of failure; analysis for each mode. Angle iron attachments, engine attachments, ball joint, etc.

3. Final specifications

- (a) FEA on ball joint assembly (one with force normal to ball joint face, one with force at small angle)
- (b) CAD of ball joint assembly (ref engr drawing)
- (c) CAD of over all rig with engine
- (d) CAD of close up on change of rollers (old and new)

1.2 Manufacturing

Here is where you will describe the manufacturing process of actually fabricating the part.

- Ball Joint assembly pictures
- rig pics
- $\bullet \;$ test cell pics

1.3 Testing

Load cell data

- $\bullet\,$ old calibration curves
- $\bullet\,$ new calibration curves
- compare thrust curves; peak thrust, fill weight, etc.

References

[1] your mom