

Petroleum Refining Overview

Topics

Energy consumption & petroleum's place

- Size of U.S. industry
- Major refiners

Petroleum products

Basic petroleum economics

- Trends for crude oil & gasoline prices
- When do refiners make money?

Generalized Petroleum Refinery

Energy consumption in the U.S. & petroleum's contribution

Energy Markets Are Interconnected

Source: LLML March, 2017. Data is based on DOE/ELA MER (2016). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. The chart was revised in 2017 to reflect changes made in mid-2016 to the Energy Information Administration's analysis methodology and reporting. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector, and 45% for the industrial sector which was updated in 2017 to reflect DOE's analysis of manufacturing. Totals may not equal sums of components due to independent rounding. LLML-MI-410527

https://flowcharts.llnl.gov/commodities/energy

Energy Markets Are Interconnected

https://flowcharts.llnl.gov/commodities/energy

World & U.S. Refining Capacity

Corporations with U.S. Capacities Exceeding 1 Million bbl per stream day

De	ank		Table Crude
an. 1, 2015	Jan. 1, 2014	Company	capacity, b/cd1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1 2 3 4 5 6 7 8 10 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24	ExxonMobil Corp. Royal Dutch Shell PLC Sinopec BP PLC Saudi Aramco Valero Energy Corp. Petroleos de Venezuela SA China National Petroleum Corp. Phillips 66 Chevron Corp. ² Total SA Petroleo Brasileiro SA Marathon Petroleum Co. LP Petroleos Mexicanos National Iranian Oil Co. JX Nippon Oil & Energy Corp. Rosneft OAO Lukoil SK Innovation Repsol YPF SA Kuwait National Petroleum Co. Pertamina Agip Petroli SPA Flint Hills Resources Formosa Petrochemical Co.	5,465,500 4,184,600 3,971,000 2,858,964 2,835,500 2,769,500 2,675,000 2,523,200 2,463,600 2,304,326 1,997,000 1,703,000 1,703,000 1,423,200 1,223,000 1,217,000 1,105,500 1,085,000 988,250 904,000 582,350

[&]quot;Asia-Pacific refining primed for capacity growth", Oil & Gas Journal, pp 34-45, Dec. 1, 2014

	Capacity			
	Capacity Barrels	Barrels per		
Corporation	per Stream Day	Calendar Day	Availability	
VALERO ENERGY CORP	2,307,500	2,180,300	94%	
PHILLIPS 66 COMPANY	1,967,944	1,856,200	94%	
MARATHON PETROLEUM CORP	1,931,500	1,817,000	94%	
EXXON MOBIL CORP	1,807,500	1,725,400	95%	
ROYAL DUTCH/SHELL GROUP	1,191,000	1,129,018	95%	
ANDEAVOR	1,171,300	1,109,615	95%	
Total	19,506,319	18,345,727	94%	

Capacities for LLC refineries split among the partner companies

EIA, Jan. 1, 2017 database, published June 2017 http://www.eia.gov/petroleum/refinerycapacity/

Number & Capacity of World & U.S. Refineries

WORLDWIDE REFINING*

*As of Jan. 1 of each year.

"Asia-Pacific refining primed for capacity growth", Oil & Gas Journal, pp 34-45, Dec. 1, 2014

Source: EIA, Jan. 1, 2016 database, published June 2016 http://tonto.eia.doe.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm

Locations of U.S. Refineries

http://www.eia.gov/todayinenergy/detail.cfm?id=7170

Individual U.S. Refinery Sizes – 10 Largest & 10 Smallest

EIA, Jan. 1, 2017 database, published June 2017 http://www.eia.gov/petroleum/refinerycapacity/

50,000

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

World's Largest Refineries

WORLD'S LARGEST REFINERIES					
	Company	Location	Crude capa- city, b/cd		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Paraguana Refining Center SK Innovation GS Caltex Corp. S-Oil Corp. Reliance Petroleum Ltd. ExxonMobil Refining & Supply Co. Reliance Industries Ltd. ExxonMobil Refining & Supply Co. Saudi Arabian Oil Co. (Saudi Aramco) Formosa Petrochemical Co. Marathon Petroleum Co. LLC ExxonMobil Refining & Supply Co. Kuwait National Petroleum Co. Shell Eastern Petroleum (Pte.) Ltd. Marathon Petroleum Corp. Shell Nederland Raffinaderij BV Sinopec Saudi Arabian Oil Co. (Saudi Aramco) Saudi Aramco-Mobil Saudi Aramco Total Refinery & Petrochemicals Co.	Cardon/Judibana, Falcon, Venezuela Ulsan, South Korea Yeosu, South Korea Onsan, South Korea Jamnagar, India Jurong/Pulau Ayer Chawan, Singapore Jamnagar, India Baytown, Tex. Ras Tanura, Saudi Arabia Mailiao, Taiwan Garyville, La. Baton Rouge, La. Mina Al-Ahmadi, Kuwait Pulau Bukom, Singapore Galveston Bay, Tex. Lake Charles, La. Pernis, Netherlands Zhenhai, China Rabigh, Saudi Arabia Yanbu, Saudi Arabia	940,000 840,000 785,000 669,000 592,500 580,000 560,500 550,000 540,000 522,000 466,000 462,000 451,000 404,000 403,000 400,000		

[&]quot;Asia-Pacific refining primed for capacity growth", Oil & Gas Journal, pp 34-45, Dec. 1, 2014

Recent changes to the slate of US refineries

Motiva completed \$10 billion JV expansion in 2013

- Increased to 600,000 bpd capacity, now largest in US
 - Operating problems caused near immediate shut down of new crude distillation train
- Plan to export refined products

Changes in operations

 Tesoro to shut down Carson, CA's FCCU in 2017 & integrate into adjacent Wilmington refinery

Changes in ownership

- PBF Energy purchased two ExxonMobil refineries
 - Chalmette, LA, 189,00 bpd refinery (from ExxonMobil / PdVSA, November 2015)
 - Torrance, CA, 155,00 bpd refinery (June 2016)
- Tesoro buying Dakota Prairie Refining (June 2016)
- Par Pacific Holdings purchased
 Wyoming Refining Co (July 2016)
- Tesoro bought Western Refining (June 2017) & will be known as Andeavor (August 2017)

New Grass-Roots Refineries in U.S.?

Year Built	First Operated	Location	Original Owner	Original Capacity Bbl/cd	Current Owner	2014 Capacity Bbl/cd	Туре
2014	2015	Dickinson, ND	Dakota Prairie	19,000	Dakota Prairie Refining	19,000	Simple
2014	2015	Galena Park, TX	Kinder Morgan	43,000	Kinder Morgan	43,000	Simple
2008	2008	Douglas, WY	Interline Resources	3,000	Antelope Refining	3,800	Simple
1998	1998	Atmore, AL	Goodway	4,100	Goodway	4,100	Simple
1993	1993	Valdez, AK	Petro Star	26,300	Petro Star	55,000	Simple
1991	1992	Ely, NV	Petro Source	7,000	Foreland	2,000	Simple
1986	1987	North Pole, AK	Petro Star	6,700	Petro Star	19,700	Simple
1985	1986	Prudhoe Bay, AK	ARCO	12,000	ConocoPhillips	15,000	Simple
1981	1982	Thomas, OK	OK Refining	10,700	Ventura	12,000	Simple
1979	1980	Wilmington, CA	Huntway	5,400	Valero	6,300	Simple
1978	1979	Vicksburg, MS	Ergon	10,000	Ergon	23,000	Simple
1978	1979	North Slope, AK	ARCO	13,000	BP Exp AK	10,500	Simple
1978	1978	North Pole, AK	Earth Resources	22,600	Flint Hills	126,535	Simple
1977	1978	Lake Charles, LA	Calcasieu	6,500	Calcasieu	78,000	Simple
1976	1977	Garyville, LA	Marathon	200,000	Marathon	522,000	Complex
1976	1977	Krotz Springs, LA	Gold King	5,000	Alon	80,000	Complex
1975	1975	Corpus Christi, TX	Saber	15,000	Valero	200,000	Complex

http://www.eia.gov/tools/faqs/faq.cfm?id=29&t=6, updated January 26, 2016

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

New Grass-Roots Refineries in U.S.?

Simple refineries near oil production

- Kinder Morgan, Galena Park, TX 50,000 bpd (condensate splitter)
- Dakota Prairie Refinery 20,000 bpd
 Bakken crude topping unit with diesel hydrotreating
- MHA Clean Fuels Refinery, 15,000 bpd refinery on the Fort Berthold Indian Reservation near Makoti, ND
 - Ground broken May 2013. Phase I construction underway as of May 2015.
- Plans near Bakken production
 - Quantum Energy & Native Son Holdings planning 40,000 bpd refinery near Berthold, ND
 - Meridian Energy Group planning 55,000 bpd refinery near Belfield, ND – expected 2018 startup – may operate on midstream tolling concept

Complex refineries – 2 planned in mid 2000s no longer active projects

- Hyperion Energy Center, \$10 billion, 400,000 bpd refinery near Union County, SD
 - Would have included Petcoke IGCC for power & hydrogen
 - Air permit applications expired March 2013
 & released options on land May 2013
- Arizona Clean Fuels Yuma, LLC, 150,000
 bpd refinery near Yuma, AZ
 - No press releases since March 2009

Nelson's Complexity Factor

EDC: Equivalent Distillation Capacity

- Measure of downstream conversion capacity to the initial distillation
- Developed by Nelson (1960) to quantify relative costs of refining processes
 - Reflects complexity of ISBL, no OSBL considerations

Refineries to process heavy sour crudes typically have higher complexity factors

Unit	Index	Unit	Index
Distillation Capacity	1.0	Lubes	60.0
Vacuum Distillation	2.0	Asphalt	1.5
Thermal Processes	5.0	Hydrogen (Mcfd)	1.0
Catalytic Cracking	6.0	Oxygenates (MTBE / TAME)	10.0
Catalytic Reforming	5.0	Thermal Cracking	3.0
Catalytic Hydrocracking	6.0	Visbreaking	2.5
Catalytic Hydrorefining	3.0	Fluid Coking	6.0
Alkylation / Polymerization	10.0	Delayed Coking	6.0
Aromatics / Isomerisation	15.0	Others	6.0

Ref: http://www.ril.com/downloads/pdf/business_petroleum_refiningmktg_lc_ncf.pdf

Petroleum products

Petroleum Products

- There are specifications for over 2,000 individual refinery products
- Intermediate feedstocks can be routed to various units to produce different blend stocks
 - Highly dependent on economics specific to that refinery & contractual limitations

Ref: Unknown origin. Possibly Socony-Vacuum Oil Company, Inc. (1943)

U.S. Refinery & Blender Net Production

EIA, refinery yield – updated April 7, 2017 http://tonto.eia.doe.gov/dnav/pet/pet pnp pct dc nus pct m.htm

Basic petroleum economics

Refinery Economics

When do refiners make money?

- High crude oil prices?
- Low crude oil prices?

It depends!

- Difference between the sale price of the products & purchase price of the crude oil
- Operating costs cut into this spread

Typical prices

- What is the price of crude oil?
 - Depends on location, quality, ...
- What are the product prices?

Product Economics — Crack Spread

Estimates the value added by refining as an industry

4 standard spreads

- **5-3-2**
 - 5 bbl crude → 3 bbls gasoline + 2 bbls heating oil/diesel
- **3-2-1**
 - 3 bbl crude → 2 bbls gasoline + 1 bbls heating oil/diesel
- **2-1-1**
 - 2 bbl crude → 1 bbls gasoline + 1 bbls heating oil/diesel
- **6**-3-2-1
 - 6 bbl crude \rightarrow 3 bbls gasoline + 2 bbls heating oil/diesel + 1 bbl residual fuel oil

Rule of thumb for profitable operating environment

- Long held view greater than \$4 per bbl as strongly profitable
- Current view should be greater than \$9 per bbl to be profitable

Crack Spread Calculation

Example — Bloomberg, 7/5/2017

- Prices
 - WTI Cushing Spot \$45.39 per bbl
 - Brent \$48.08 per bbl
 - RBOB Gasoline \$1.5121 per gal
 - Heating Oil \$1.4851 per gal
- 5-3-2 Spreads
 - WTI:

$$\frac{42 \times (3 \times 1.5121 + 2 \times 1.4851)}{5} - 45.39 = $17.66 \text{ per bbl}$$

• Brent:

$$\frac{42 \times (3 \times 1.5121 + 2 \times 1.4851)}{5} - 48.08 = $14.97 \text{ per bbl}$$

Crude Oil & Natural Gas

UNITS	PRICE
USD/bbl.	45.39
USD/bbl.	48.08
JPY/kl	33,840.00
USD/MMBtu	2.84
	USD/bbl. USD/bbl. JPY/kl

Refined Products

INDEX	UNITS	PRICE	(
XB1:COM RBOB Gasoline (Nymex)	USd/gal.	151.21	
HO1:COM Heating Oil (Nymex)	USd/gal.	148.51	
QS1:COM Gasoil (Nymex)	USD/MT	440.75	
JX1:COM Kerosene (Tokyo)	JPY/kl	49,060.00	

http://www.bloomberg.com/energy/

Prices Are Crude Specific

US CRUDE PRICES

	3-31-17 \$/bbl*
Alaska-North Slope 27°	46.15
Light Louisiana Sweet	45.97
Călifornia-Midway Sunset 13°	44.35
California Buena Vista Hills 26°	52.06
Wyoming Sweet	46.85
East Texas Sweet	44.50
West Texas Sour 34°	42.00
West Texas Intermediate	47.00
Oklahoma Sweet	47.00
Texas Upper Gulf Coast	40.75
Michigan Sour	39.00
Kansas Common	46.00
North Dakota Sweet	39.00

^{*}Current major refiner's posted prices except N. Slope lags 2 months. 40° gravity crude unless differing gravity is shown. Source: Oil & Gas Journal. Data available at PennEnergy Research Center.

Ref: Statistics, Oil & Gas Journal, April 10, 2017

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

WORLD CRUDE PRICES

OPEC reference basket	Wkly. avg.	3-31-17	\$/bbl 49.45
Of LO TOTOTOTION BASKOT	While avg.	Mo. avg	
		Jan17	Feb17
OPEC reference basket		52.40	53.37
Arab light-Saudi Arabia		52.29	53.63
Basrah light-Iraq		51.66	52.66
Bonny light 37°-Nigeria		54.98	55.24
Es Sider-Libya		53.08	53.46
Girassol-Angola		54.41	55.21
Iran heavy-Iran		51.90	53.16
Kuwait export-Kuwait		51.48	52.85
Marine-Qatar		53.44	54.14
Merey-Venezuela		46.81	47.03
Minas 34°-Indonesia		50.63	51.19
Murban-UAE		55.97	56.31
Oriente-Ecuador		48.64	50.08
Saharan blend 44°-Algeria		54.84	55.06
Other crudes			
Fateh 32°-Dubai		53.71	54.41
Isthmus 33°-Mexico		54.98	56.09
Brent 38°-UK		54.58	55.06
Urals-Russia		53.42	53.67
Differentials			
WTI/Brent		(2.08)	(1.66)
Brent/Dubai		0.87	0.65
Source: OPEC Monthly Oil Mark	et Report.		

Source: OPEC Monthly Oil Market Report.
Data available at PennEnergy Research Center.

Prices Are Crude Specific

EIA published monthly production data – updated July 5, 2017

http://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm http://tonto.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=IMX2810004&f=M

Historical Crude Prices & Crack Spreads

Spot Price Crack Spreads

Updated April 7, 2017

Source: http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_d.htm

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Historical Crude Prices & Crack Spreads

Spot Price Crack Spreads

Updated April 7, 2017

Source: http://tonto.eia.doe.gov/dnav/pet/pet pri spt s1 d.htm

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Gasoline & Diesel Retail vs. Wholesale Prices

Regular Gasoline (May 2017) Retail Price: \$2.39/gallon

Diesel (May 2017) Retail Price: \$2.56/gallon

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Gasoline Retail Cost Contributions

Retail Price		Per Gallon \$2.39	Per Barrel \$100.38
Taxes	19%	\$0.45	\$19.07
Distribution & Marketing	17%	\$0.41	\$17.06
Refining	16%	\$0.38	\$16.06
Crude Oil	48%	\$1.15	\$48.18
Refinery Costs / Wholesale	Price	\$1.53	\$64.24

Diesel Retail Cost Contributions

Diesei Netai	. cost co.	iciibacions	
		Per Gallon	Per Barrel
Retail Price		\$2.56	\$107.52
Taxes	20%	\$0.51	\$21.50
Distribution & Marketing	21%	\$0.54	\$22.58
Refining	14%	\$0.36	\$15.05
Crude Oil	45%	\$1.15	\$48.38
Refinery Costs / Wholesale	Price	\$1.51	\$63.44

Source: http://www.eia.gov/petroleum/gasdiesel/ Updated July 5, 2017

How do energy prices compare?

						Price	Price	Relative to
	Giv	en Price	Не	ating Value		[\$/MWh]	[\$/MMBtu]	Natural Gas
RBOB Gasoline - wholesale	1.7462	\$ per gallon	115,000	Btu/gal	LHV	51.81	15.18	4.7
Heating Oil - wholesale	1.6284	\$ per gallon	130,500	Btu/gal	LHV	42.58	12.48	3.8
WTI Crude Oil	52.24	\$ per bbl	5.8	MMBtu/bbl	HHV	30.73	9.01	2.8
Brent Crude Oil	55.24	\$ per bbl	5.8	MMBtu/bbl	HHV	32.50	9.52	2.9
Ethanol - Chicago	1.594	\$ per gallon	75,700	Btu/gal	LHV	71.85	21.06	6.5
Natural Gas - Henry Hub	3.26	\$ per MMBtu			HHV	11.12	3.26	1.0
Propane - Mt.Belvieu	0.64	\$ per gallon	90,905	Btu/gal	HHV	24.02	7.04	2.2
Powder River Basin Coal (low sulfur)	11.50	\$ per ton	8,800	Btu/lb	HHV	2.23	0.65	0.2
Illinois Basin (high sulfur)	31.65	\$ per ton	11,800	Btu/lb	HHV	4.58	1.34	0.4
Electricity (Residential, winter season)	4.604	¢ per kWh				46.04	13.49	4.1
Electricity (Residential, summer, over 500 kWh)	9.000	¢ per kWh				90.00	26.38	8.1
Electricity (Small Commercial, winter season)	3.920	¢ per kWh				39.20	11.49	3.5
Electricity (Small Commercial, summer season)	6.450	¢ per kWh				64.50	18.90	5.8
Hydrogen dispensed cost	4.03	\$ per kg	324.2	Btu/scf	HHV	102.20	29.95	9.2

References:

Gasoline, Heating Oil, & Crude Oil from Blomberg (4/9/2017, May delivery)

http://www.bloomberg.com/energy/

Propane & Ethanol prices from NYMEX (4/9/2017, May delivery)

http://quotes.ino.com/exchanges/category.html?c=energy

Coal from US EIA Coal News & Markets (week ending 3/31/17).

http://www.eia.gov/coal/news_markets/

Xcel Energy electric tariff book (as of 8/5/2016)

http://www.xcelenergy.com/staticfiles/xe/PDF/Regulatory/CO-Rates-&-Regulations-Entire-Electric-Book.pdf

Hydrogen cost from DOE report, DOE Hydrogen & Fuel Cells Program Record, Sept. 24, 2012

http://www.hydrogen.energy.gov/pdfs/12024 h2 production cost natural gas.pdf

Generalized Petroleum Refinery

Early History

Commerical oil well of "Colonel" Edwin L. Drake

- August 1859, Oil Creek in northwestern Pennsylvania
- First refineries built up around Pennsylvania oil wells. Batch distillation to recover kerosene.
 - First U.S. refinery in Pittsburgh, PA, in 1853
 - Kerosene viewed as a superior replacement to whale oil for lamp oil.

Standard Oil Trust

- John D. Rockefeller acquired petroleum interests during the late 1800s. Organized as the Standard Oil Trust in 1882.
- U.S. Supreme Court dissolved in 1911.
 34 companies spun off.

Change in product demand

 In 1911, nation's kerosene output eclipsed for the 1st time by a discarded byproduct - gasoline

Oil Fields and Shipping Barges Along Oil Creek Pennsylvania, circa 1865

Implementation of Technologies

Year	Process name	Purpose	By-products, etc.
1862	Atmospheric distillation	Produce kerosene	Naphtha, tar, etc.
1870	Vacuum distillation	Lubricants (original)	Asphalt, residual
		Cracking feedstocks (1930's)	coker feedstocks
1913	Thermal cracking	Increase gasoline	Residual, bunker fuel
1916	Sweetening	Reduce sulfur & odor	Sulfur
1930	Thermal reforming	Improve octane number	Residual
1932	Hydrogenation	Remove sulfur	Sulfur
1932	Coking	Produce gasoline basestocks	Coke
1933	Solvent extraction	Improve lubricant viscosity index	Aromatics
1935	Solvent dewaxing	Improve pour point	Waxes
1935	Cat. polymerization	Improve gasoline yield & octane number	Petrochemical feedstocks
1937	Catalytic cracking	Higher octane gasoline	Petrochemical feedstocks
1939	Visbreaking	Reduce viscosity	Increased distillate, tar
1940	Alkylation	Increase gasoline octane & yield	High-octane aviation gasoline
1940	Isomerization	Produce alkylation feedstock	Naphtha
1942	Fluid catalytic cracking	Increase gasoline yield & octane	Petrochemical feedstocks
1950	Deasphalting	Increase cracking feedstock	Asphalt
1952	Catalytic reforming	Convert low-quality naphtha	Aromatics
1954	Hydrodesulfurization	Remove sulfur	Sulfur
1956	Inhibitor sweetening	Remove mercaptan	Disulfides
1957	Catalytic isomerization	Convert to molecules with high octane number	Alkylation feedstocks
1960	Hydrocracking	Improve quality and reduce sulfur	Alkylation feedstocks
1974	Catalytic dewaxing	Improve pour point	Wax
1975	Residual hydrocracking	Increase gasoline yield from residual	Heavy residuals

Ref: http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2.html

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Description of Petroleum Refinery

Manages hydrocarbon molecules

Organized & coordinated arrangement of manufacturing processes

- Provide physical & chemical change of crude oil
- Salable products with specifications & volumes as demanded by the marketplace

Complete refinery will include:

- Conversion units
- Tankage for storage
 - Typically 28 to 32 days of storage
- Dependable source for electric power
- Waste disposal & treatment facilities
- Product blending facilities
- Around the clock operations

Petroleum Refinery Block Flow Diagram

Petroleum Refinery Block Flow Diagram

Summary

Summary

Energy consumption in the U.S. & petroleum's contribution

- In the U.S. petroleum accounts for 36% of the nation's energy source
- Over 70% of petroleum is directed toward the transportation sector & accounts for 90% of the energy used in this sector
- Currently about 150 refineries in the U.S. & ownership changes to meet strategic needs of the companies' portfolios
- About 50% of the output of U.S. refineries is gasoline

Basic refining economics

 Refinery profits are based on the spread between product prices & crude oil costs

Generalized Petroleum Refinery

 Refineries may be simple or complex depending on the strategy of product production from particular crude oils

Supplemental Slides

Refiner's Realignment

"US refiners continue consolidation, restructuring efforts", Leffler, Oil & Gas Journal, Aug. 3, 2015

Recent Refinery Closures

		CDU Capacity	V			CDU Capacity	V
Location	Owner	Closed (MBPD)	Year Closed	Location	Owner	Closed (MBPD)	Year Closed
Perth Amboy, NJ	Chevron	80	2008	Keihin Ohgimachi, Japan	Showa Shell	120	2011
Bakersfield,CA	Big West	65	2008	Clyde, Australia	Shell	75	2011
Westville, NJ	Sunoco	145	2009	Porto Marghera, Italy	ENI	70	2011
Bloomfield, NM	Western	17	2009	Marcus Hook, PA	Sunoco	175	2011
Teesside, UK	Petroplus	117	2009	Harburg, Germany	Shell	107	2012
Gonfreville, France*	Total	100	2009	Berre, France	LyondellBassel	105	2012
Dunkirk, France	Total	140	2009	Coryton, U.K.	Petroplus	220	2012
Japan*	Nippon Oil	205	2009	Petit Couronne, France ¹	Petroplus	160	2012
Toyama, Japan	Nihonkai Oil	57	2009	St. Croix, U.S.V.I	Hovensa	350	2012
Arpechim, Romania *	Petrom	70	2009	Aruba	Valero	235	2012
Cartagena*	REPSOL	100	2009	Rome, Italy	TotalErg	82	2012
Bilboa*	REPSOL	100	2009	Fawley, U.K.*	ExxonMobil	80	2012
Arpechim, Romania	OMV	70	2010	Trecate, Italy*	ExxonMobil	70	2012
Japan*	Cosmo	94	2010	Paramo, Czech Republic	Unipetrol	20	2012
Nadvornaja, Ukraine	Privat Group	50	2010	Lisichansk, Ukraine	TNK-BP	175	2012
Montreal, Canada¹	Shell	130	2010	Bakersfield/Paramount, CA	Alon	90	2012
Yorktown, Virginia	Western	65	2010	Ewa Beach, Hawaii	Tesoro	94	2013
Reichstett, France	Petroplus	85	2010	Port Reading, NJ	Hess	N/A	2013
Wilhemshaven, Germany	Phillips 66	260	2010	Venice, Italy	ENI	80	2013
Ingolstadt, Germany	Bayernoil	90	2010	Sakaide, Japan	Cosmo Oil	140	2013
Cremona, Italy	Tamoil	94	2011	Japan	Indemitsu Kosan	100	2014
St. Croix, U.S.V.I,*	Hovensa	150	2011	Japan	Nippon	200	2014
Funshun, China	PetroChina	70	2011	Kurnell, Australia	Caltex	135	2014
				Kawasaki, Japan	Tonen- General	105	2014

^{*}Partial closure of refinery captured in capacity Note: This data represents refineries currently closed, ownership may choose to restart or sell listed refinery Sources: Industry and Consultant reports and Valero estimates

Ref: Valero, UBS Global Oil and Gas Conference, May 21-22, 2013

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

¹The Petit Couronne refinery has shut completely when processing deal with Shell ended in December 2012

²Alon announced the closure of these refineries for economic reasons, may restart

U.S. Refinery & Blender Net Production

Includes production to January 2017 – updated April 7, 2017

Source: http://tonto.eia.doe.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm

U.S. Oil from Imports

EIA published data used for charts – updated April 7, 2017 http://www.eia.gov/dnav/pet/pet move wkly dc nus-z00 mbblpd w.htm http://www.eia.gov/dnav/pet/pet pnp wiup dcu nus w.htm

Import/Export Refined Products – Valero Example

Ref: Valero, UBS Global Oil and Gas Conference, May 21-22, 2013

Prices Are Crude Specific – Historical Example

US CRUDE PRICES

	1-17-14 \$/bbl*
Alaska-North Slope 27°	93.40
Light Louisiana Śweet	89.74
California-Midway Sunset 13°	93.85
California Buena Vista Hills 26°	101.63
Wyoming Sweet	85.87
East Texas Sweet	88.00
West Texas Sour 34°	85.75
West Texas Intermediate	90.75
Oklahoma Sweet	90.75
Texas Upper Gulf Coast Michigan Sour	84.50
Michigan Sour	82.75
Kansas Common	89.75
North Dakota Sweet	74.94

^{*}Current major refiner's posted prices except N. Slope lags 2 months. 40° gravity crude unless differing gravity is shown. Source: Oil & Gas Journal. Data available at PennEnergy Research Center.

Ref: Statistics, Oil & Gas Journal, January 27, 2014

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

WORLD CRUDE PRICES

OPEC reference basket Wkly. avg.	1-17-14 — Mo. avg Oct13	\$/bbl 104.17 g., \$/bbl Nov13
OPEC reference basket	106.69	104.97
Arab light-Saudi Arabia	107.14	104.84
Basrah light-Iraq	103.69	101.63
Bonny light 37°-Nigeria	112.44	111.47
Es Sider-Libya	108.74	107.57
Girassol-Angola	110.20	108.83
Iran heavy-Iran Kuwait export-Kuwait	107.69	106.87
Kuwait export-Kuwait	106.13	104.73
Marine-Qatar	106.61	105.83
Merey-Venezuela	96.80	94.83
Murban-UAE	110.13	109.36
Oriente-Ecuador	95.16	89.72
Saharan blend 44°-Algeria	111.04	109.27
Other crudes		
Minas 34°-Indonesia	106.98	104.28
Fateh 32°-Dubai	106.70	105.95
Isthmus 33°-Mexico	99.84	93.83
Tia Juana light 31°-Venezuela	NA	NA
Brent 38°-UK	109.04	107.97
Urals-Russia Differentials	108.28	107.73
WTI/Brent	(8.63)	(14.21)
Brent/Dubai	2.34	2.02

Source: OPEC Monthly Oil Market Report. Data available at PennEnergy Research Center.

Pump prices are not the same across U.S.

Regular grade gasoline prices at retail outlets by region for June 9, 2014 (dollars per gallon, including taxes)

Source: U.S. Energy Information Administration, EIA-878, Motor Gasoline Price Survey.

Source: http://www.eia.gov/petroleum/images/gasoline_prices_map_375.png Downloaded August 4, 2016

Gasoline & Diesel Taxes not the same across U.S.

Source: http://www.api.org/oil-and-natural-gas-overview/industry-economics/fuel-taxes
Downloaded July 5, 2017

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Differential Between Regular & Premium Gasolines

Regular vs. Premium Price Differential -- Monthly Averages

Updated Jul 5, 2017

Source: http://www.eia.gov/dnav/pet/pet pri refmg dcu nus m.htm

Comparison Wholesale Regular Gasoline & ULSD

Wholesale Regular Gasoline & ULSD Prices

Updated August 4, 2016

Source: http://www.eia.gov/dnav/pet/pet pri refmg dcu nus m.htm

Process Cost Estimates

Accounts for size impact on installed cost

Developed from reported final costs & supplemented with engineering estimates

Meant to represent "typical" values – no better than ±25%

Not included:

- Working capital
- Inventories
- Start-up expenses
- Cost of land
- Site preparation
- Taxes
- Licenses
- Permits
- Duties

Kaiser & Gary, "Study updates refinery investment cost curves", Oil & Gas Journal, Apr. 23, 2007, pp 84-94.

(Delayed coking curves may have been switched)

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

	C C '	nt		
	Cost, \$ million			
Process Unit	= a. • capa a.	β	Units of Capacity	
Desalter Desalter	0.44	0.555	1,000 b/sd	
Atmospheric distillation	8.20	0.555	1,000 b/sd	
Vacuum distillation	8.34	0.493	1,000 b/sd	
Delayed coking	0.54	0.455	1,000 0/30	
30 bbl feed/ton coke	17.56	0.657	1,000 b/sd	
10 bbl feed/ton coke	24.42	0.644	1,000 b/sd	
Visbreaking	5.80	0.741	1,000 b/sd	
Fluid catalytic cracking	3.33	0.7.12	2,000 5,20	
Distillate feed	24.67	0.461	1,000 b/sd	
Resid feed	32.98	0.510	1,000 b/sd	
Catalytic hydrocracking			-,,	
1,000 scf/bbl H ₂	15.65	0.719	1,000 b/sd	
3,000 scf/bbl H ₂	26.18	0.714	1,000 b/sd	
Catalytic hydrotreating	20.10	0.724	2,000 0/30	
Naphtha desulfurization	4.96	0.524	1,000 b/sd	
Distillate desulfurization	8.62	0.576	1,000 b/sd	
Resid desulfurization	8.61	0.834	1,000 b/sd	
Catalytic reforming		0.00	2,000 2, 20	
Semiregenerative	7.96	0.572	1,000 b/sd	
Continuous	12.19	0.547	1,000 b/sd	
Isomerization			-,,	
Butane	9.57	0.514	1,000 b/sd	
Pentane/hexane; once through	3.11	0.565	1,000 b/sd	
Pentane/hexane; recycle	6.17	0.599	1,000 b/sd	
Alkylation	12.19	0.606	1,000 b/sd	
Hydrogen production				
Steam methane reforming	3.35	0.599	MMscfd	
Partial oxidation	5.44	0.601	MMscfd	
Gas processing				
1 gal/Mscf	1.91	0.627	MMscfd	
10 gal/Mscf	4.38	0.593	MMscfd	
20 gal/Mscf	5.83	0.610	MMscfd	
Amine gas treating	0.064	0.746	gpm	
Sulfur recovery	2.64	0.412	long ton/day	
Sulfur removal				
S-zorb, gasoline	4.77	0.602	1,000 b/sd	
S-zorb, diesel	4.62	0.553	1,000 b/sd	
Dewaxing	5.82	0.598	1,000 b/sd	
Ether production	8.96	0.472	1,000 b/sd	
2005 U.S. Gulf Coast Cost Yeat Basis				

Satellite View of Selected U.S. Refineries

Motiva Enterprises LLC, Port Arthur, TX 603,000 bbl per calendar day

Dakota Prairie Refinery, Dickinson, ND 19,000 bbl per calendar day

Satellite View of Selected U.S. Refineries

Marathon Garyville Refinery, Garyville, LA 451,000 bbl per calendar day

Wood River Refinery, Roxanna, IL 336,000 bbl per calendar day

Satellite View of Selected U.S. Refineries

Phillips 66 Alliance Refinery, Belle Chasse, LA 247,000 bbl per calendar day

Suncor Refinery, Commerce City, CO 103,000 bbl per calendar day

