Vorlesung Baumautomaten (Mitschrift)

Benedikt Elßmann (3720358) be57xocu@studserv.uni-leipzig.de

Universität Leipzig

19. April 2019

Inhaltsverzeichnis

0	Einleitung	2
1	Bäume und Baumautomaten	2
	1.1 Definition Rangalphabet	3
	1.2 Definition Term, Tree	3
	1.3 Definition Höhe	4
	1.4 Definition Position	4
	1.5 Definition der Label an den Positionen	4
	1.6 Definition Sub-Baum	4
	1.7 Definition Baumautomat	5
	1.8 Definition Lauf/Run	5
	1.9 Lemma	6
	1.10 Determinismus	8
	1.11 Satz	8
2	Definition vollständing und reduziert	10
3	Satz	10
4	Definition Kontext	10
5	Pumping-Lemma	11
6	Korollar	12

0 Einleitung

Automaten lesen Wörter $w = a_1 \dots a_n$ und geben "accept" aus oder nicht. Dafür gibt es Erweiterungen, wie etwa:

- gewichtete Automaten, das heißt der Output ist ein Semiringelement
- Automaten mit Gedächtnis (Stack)
- Automaten über anderen Strukturen
 - $-\omega$ -Wörter $w = a_1 \dots a_n$
 - Graphen
 - Bäume
 - Kombinationen dieser

Typische Fragestellungen:

- Ausdrucksstärke
- Darstellung als rationale Ausdrücke (Kleene)
- Darstellung als Grammatik
- Darstellung als Logik

1 Bäume und Baumautomaten

Wir betrachten über $A = \{a, b\}$ den Automaten \mathcal{A} :

mit $L(A) = b^*aba^*$.

Betrachtung des Wortes $w = baba \in L(A)$:

Der eindeutige erfolgreiche Lauf für w lässt sich darstellen als:

$$q_0baba \rightarrow bq_0aba \rightarrow baq_1ba \rightarrow babq_2a \rightarrow babaq_2 \in F$$
 (Finalzustand)

Baumautomaten funktionieren analog. Unser erstes Beispiel wird

Akzeptiert mit dem Lauf:

mit $q_f \in F$

1.1 Definition Rangalphabet

Ein paar (Σ, rk) , wobei Σ eine endliche Menge von Symbolen und $rk : \Sigma \to \mathbb{N}$ eine Abbildung ist, heißt Rangalphabet.

Für $f \in \Sigma$ heißt rk(f) der Rang (oder die Stelligkeit) von f.

Intuitiv: rk(f) ist die Anzhal der Kinder von f in einem Baum. Insbesondere ist die Anzhal der Kinder für jedes Symbol fest.

Gilt rk(f) = n, schreiben wir auch $f^{(n)}$ statt f. wir schreiben:

- 0-stellige Symbole (Konstanten) a, b, \dots
- unär, binär, ... f, g, ...

Wir setzen $\Sigma^{(n)} = \{ f \in \Sigma | rk(f) = n \}$

In

f ist also
$$rk(f) = 2, rk(b) = 0$$
f b

1.2 Definition Term, Tree

Sei (Σ, rk) ein Rangalphabet. Die Menge T_{Σ} der Bäume üeber Σ ist induktiv definiert durch:

- $\Sigma^0 \subseteq T_{\Sigma}$
- $f^{(n)} \in \Sigma$. $t_1, \ldots, t_n \in T_{\Sigma}$, dann ist $f(t_1, \ldots, t_n) \in T_{\Sigma}$

Intuitiv sind t_1, \ldots, t_n die Kinder von f.

Z.B. ist

1.3 Definition Höhe

Sei (Σ, rk) ein Rangalphabet. Die Höhe ht ist gegeben durch:

- für $a^{(0)} \in \Sigma : ht(a) = 1$.
- für $f(t_1, ..., t_n) \in T_{\Sigma} : ht(f) = 1 + max\{ht(t_i)|i \in \{i, ..., n\}\}$

Ziel: Zugriff auf einen Knoten innterhalb eines Baumes und deren Label. Dafür ordenen wir den Knoten Positionen zu. Das geht induktiv wie foelgt:

1.4 Definition Position

Sei (Σ, rk) ein Rangalphabet. Die Positionenmenge ist definiert durch:

- für $a^{(0)} \in T_{\Sigma}$ ist $Pos(a) = \{\varepsilon\}$
- für $f(t_1, \ldots, t_n) \in T_{\Sigma}$ ist $Pos(f(t_1, \ldots, t_n)) = \{\varepsilon\} 1 \cdot Pos(t_1) \cup \cdots \cup n \cdot Pos(t_n)$

Beispiel:

Betrachtung von f(f(a,b),b) bzw.

$$Pos(f) = \{\varepsilon, 1, 2, 1.1, 1.2\}$$

1.5 Definition der Label an den Positionen

Für einen Term der Form $t = f(t_1, ..., t_n)$ ist das Symbol t(p) in t an p-ter Position induktiv definert durch:

- $t(\varepsilon) = f$
- $t(ip) = t_i(p), i \in \{1, ..., n\}$

Beispiel: Betrachtung von f(f(a,b),b)

Dann ist

$$t(\varepsilon) = f$$

$$t(1) = t(1 \cdot \varepsilon) = t_1(\varepsilon) = f$$

$$t(2) = t(2 \cdot \varepsilon) = t_2(\varepsilon) = b$$

$$t(1.1) = t_1(1) = a$$

$$t(1.2) = t_2(1) = b$$

1.6 Definition Sub-Baum

Für T_{Σ} ist ein Sub-Baum $t_{|p}$ an p-ter Position wie folgt definiert:

•
$$Pos(t_{|p}) = \{i|pi \in Pos(t)\}$$

• $\forall q \in Pos(t_{|p} \text{ ist } t_{|p}(q) = t(pq)$

Wir schreiben $t[u]_p$ für den Baum, der entsteht, wenn man in t den sub-Baum $t_{|p}$ durch n ersetzt.

1.7 Definition Baumautomat

Ein Buamautomat \mathcal{A} ist ein 4-Tupel (Q, Σ, F, Δ) , wobei:

 $Q\dots$ endliche Menge an Zusänden

 $\Sigma \dots$ Rangalphabet, wobei $\Sigma \cup Q \neq \emptyset$

 $F \cdots \subseteq Q$ Finalzustände

 $\Delta \dots$ Menge von Regeln

$$r: f(q_1 \dots q_n) \to q$$
 für $q, q_1, \dots, q_n \in Q$, für $a^{(0)} \in T_\Sigma : a \to q$

Beispiel:

$$\mathcal{A} = \{\{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(2)}\}, \{q_f\}, \Delta\}
\text{mit } \Delta = \{a \to q_a, b \to q_b, f(q_a, q_b) \to q_a, f(q_a, q_b), f(q_a, q_b) \to q_f\}$$

1.8 Definition Lauf/Run

Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ein Baumautomat und $t \in T_{\Sigma}$. Ein Lauf r für t von \mathcal{A} ist ein Term mit

- Pos(r) = Pos(t)
- Ist t(p) = a ein Blatt, dann ist $r(p) = q_a$, nur wenn $(a \to q_a) \in \Delta$
- Ist $t(p) = f^{(m)}$, dann ist r(p) = q, wenn $(f(q_1, \dots, q_n) \to q) \in \Delta$ und $r(p_i) = q_i, i \in \{1, \dots, n\}$

Ein Lauf ist erfolgreich, wenn $r(\varepsilon) \in F$. Der Automat \mathcal{A} akzeptiert t, falls es einen erfolgreichen Lauf für t von \mathcal{A} gibt.

Wir bezeichnen mit $L(A) = \{t \in T_{\Sigma} | A \text{ akzeptiert } t\}$ die von A erkannte Baumsprache. Eine Sprache $L \subseteq T_{\Sigma}$ heißt erkennbar, falls ein Baumautomat A existiert mit L = L(A).

Um einzelne Schritte von Baumautomaten zu formalisieren, betrachten wir die move relation $\to_{\mathcal{A}}$, definiert wie folgt:

Gegeben sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$, dann ist $t \to_{\mathcal{A}} t'$ mit $t, t' \in T_{\Sigma \cup Q}$, falls

- $t(p) = f^{(n)}$
- $t(pi) = q_i$ für $i \in \{1, \dots, n\}$ und p_i sind Blätter
- $(f(q_1,\ldots,q_n)\to q)\in\Delta$
- und $t' = t[q]_p$

Mit $\to_{\mathcal{A}}^*$ bezeichnen wir die transitive Hülle von $\to_{\mathcal{A}}$.

1.9 Lemma

Sei $\mathcal{A}=(Q,\Sigma,F,\Delta)$ ein Baumautomat. Dann ist $L(\mathcal{A})=\{t\in T_{\Sigma}|t\to_{\mathcal{A}}^*q \text{ mit } q\in F\}(=Z)$

Beweis: $L(A) \subseteq Z$:

Wir zeigen: Es existiert ein Run r für t von \mathcal{A} mit $r(\varepsilon) = q$, dann ist $t \to_{\mathcal{A}}^* q$

Inuktionsannahme:

 $t = a^{(0)} \in T_{\Sigma}$. Dann gilt $a \in L(\mathcal{A})$, falls ein Lauf r existiert mit $r(a) = q_a$ und $(a \to q_a) \in \Delta$. Dann folgt $a \to_{\mathcal{A}}^* q_a$. Sei nun $t = f(t_1, \ldots, t_n)$

Induktionsvoraussetzung:

Falls für t_1, \ldots, t_n Läufe r_i existieren mit $r_i(\varepsilon) = q_i$, dann gilt auch $t_i \to_{\mathcal{A}}^* q_i$ mit $i \in \{1, \ldots, n\}$

Induktionsschritt:

zu zeigen: Es existiert ein Lauf r für t mit $r(\varepsilon) = q$, dann $t \to_{\mathcal{A}}^* q$. Sei also r ein Lauf mit $r(\varepsilon) = q$. Dann ist $r(i) = q_i, i \in \{1, \dots, n\}$, mit $(f(q_1, \dots, q_n) \to q) \in \Delta$. Laut Induktionsvoraussetzung gilt nun, $t_i \to_{\mathcal{A}}^* q_i, i \in \{1, \dots, n\}$. Damit $t = f(t_1, \dots, t_n) \to_{\mathcal{A}}^* f(q_1, t_2, \dots, t_n) \to_{\mathcal{A}}^* \dots \to_{\mathcal{A}}^* f(q_1, \dots, q_n)$ Des weiteren haben wir die regel $f(q_1, \dots, q_n) \to q$, das heißt $f(q_1, \dots, q_n) \to_{\mathcal{A}}^* q$.

Insgesamt also $t \to_{\mathcal{A}}^* q$

Beweis: $L(Z \subseteq A)$ ": analog

Einige Beispiele für Baumautomaten:

1. Sei
$$B = (\{q_0, q_1\}, \{0^{(0)}, 1^{(0)}, \neg^{(1)}, \wedge^{(2)}, \vee^{(2)} \{q_1\}, \Delta\})$$
 mit $\Delta = \{0 \to q_0, 1 \to q_1, \neg(q_0) \to q_1, \neg(q_1) \to q_0, \land (q_0, q_0) \to q_0, \land (q_0, q_1) \to q_0, \land (q_1, q_0) \to q_0, \land (q_1, q_1) \to q_1 \lor (q_0, q_0) \to q_0, \lor (q_0, q_1) \to q_1, \lor (q_1, q_0) \to q_1, \lor (q_1, q_1) \to q_1\}$

Beispiellauf:

2. (a^nb^nlight)

Betrachten
$$\mathcal{A} = (\{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(3)}, g^{(2)}\}, \{q_f\}, \Delta)$$
 mit $\Delta = \{a \to q_a, b \to q_b, g(q_a, q_b) \to q_f, f(q_a, q_f, q_b) \to q_f\}$

Beispiellauf:

 \mathcal{A} akzeptiert also alle Bäume der Form:

3. Simulation eines Wortautomaten: (siehe Übung)

Betrachtet man $\Sigma = \{a^{(0)}, f^{(2)}, g^{(1)}\}$. Dann ist $L = \{f(g^i(a), g^i(a)) | i \geq 0\}$ nicht erkennbar.

1.10 Determinismus

Ein Automat $\mathcal{A}(Q, \Sigma, F, \Delta)$ heißt deterministisch, falls: aus $f(q_1, \dots, q_n) \to q$ und $f(q_1, \dots, q_n) \to q'$ folgt q = q'

1.11 Satz

Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ein Baumautomat, dann existiert ein deterministischer Baumautomat \mathcal{A}_d , so dass $L(\mathcal{A}) = L(\mathcal{A}_d)$.

Beweis: Setze
$$\mathcal{A}_d = (Q_d, \Sigma, F_d, \Delta_d)$$

mit $Q_d = 2^Q$ (*)
und $f(s_1, \dots, s_n) \to s \in \Delta_d$
 $\Leftrightarrow s = \{q \in Q | \exists q_1 \in s_1 \dots q_n \in s_n : (f(q_1, \dots, q_n) \to q) \in \Delta\}$
und $F_d = \{s \in Q_d | s \cap F \neq \emptyset\}.$

Wir zeigen:

- 1. \mathcal{A} ist deterministisch
- 2. $L(A) \subset L(A_d)$
- 3. $L(\mathcal{A}_d) \subset L(\mathcal{A})$

1. ist klar, denn (*) ist mit einer Äquivalenz definiert.

2. $L(A) \subseteq L(A_d)$::

Wir zeigen hierzu: Ist $Z=\{q|t\to_{\mathcal{A}}^*q\},$ dann $t\to_{\mathcal{A}_d}^*z.$

Induktionsannahme:

Angenommen $a \to_{\mathcal{A}} q_a$, dann ist $q_a \in \{q \in Q | q \to_{\mathcal{A}}^* q\}$, das heißt

$$\begin{split} a & \to_{\mathcal{A}}^* q_a \Leftrightarrow q_a \in \{q \in Q | a \to_{\mathcal{A}}^* q \} \\ \Leftrightarrow q_a \in \{q \in Q | (a \to q) \in \Delta \} \\ \text{also } a & \to_{\mathcal{A}}^* q_a \Leftrightarrow q_a \in \{q \in Q | (a \to q) \in \Delta \}, \text{ das heißt} \\ z &:= \{q_a \in Q | a \to_{\mathcal{A}}^* q_a \} = \{q \in Q | (a \to q) \in \Delta \} =: s \end{split}$$

Nun ist $(a \to s) \in \Delta_d$ per Definition, also auch $(a \to z) \in \Delta_d$, damit: $a \to_{\mathcal{A}_d}^* z$.

Betrachten wir nun $t = \sigma(t_1, \ldots, t_n)$

Induktionsvoraussetzung:

$$t_i \to_{\mathcal{A}_d}^* z_i \text{ mit } Z_i = \{ q \in Q | t_i \to_{\mathcal{A}}^* q \}$$

Das heißt, es existieren Läufe r_i für t_i von \mathcal{A}_d mit $r_i(\varepsilon) = z_i$

Induktionsschritt:

zu zeigen:
$$t \to_{\mathcal{A}}^* z$$
 mit $Z = \{q \in Q | t \to_{\mathcal{A}}^* q\}$

Das heißt, es existiert ein Lauf r für t von \mathcal{A}_d mit $r(\varepsilon) = z$

Das heißt, $\exists r$:

- $r(\varepsilon) = z$
- $r(i) = z_i$
- $\sigma(z_1,\ldots,z_n) \to z \in \Delta_d$

Setze nun $r_{|i} = r_i$, damit ist insbesondere $r(i) = r_i(\varepsilon) = z := \{q | t_i \to_{\mathcal{A}_d}^* q\}$

Es bleibt also zu zeigen: \exists Regel $\sigma(z_i, \ldots, z_m) \to z \in \Delta_d$.

Es ist nun
$$z \in Z \Leftrightarrow t \to_{\mathcal{A}}^* z$$

$$\Leftrightarrow \exists q_i \in Q : t_i \to_{\mathcal{A}}^* q_i, \sigma(q_1, \dots, q_m) \to z \in \Delta$$

$$\Leftrightarrow \exists z_i \in Z_i \text{ und } \sigma/z_1, \dots, z_m) \to z \in \Delta$$

$$\Leftrightarrow \exists z_i \in Z_i \text{ und } \sigma/z_1, \ldots, z_m) \to z \in \Delta$$

Also $Z = \{z \in Q | \exists z_i \in Z_i : (\sigma/z_1, \dots, z_m) \to z\} \in \Delta$ also per Definition $\sigma/z_1, \dots, z_m \to z \in \Delta_d$

2.
$$L(A_d) \subseteq L(A)$$
::

Sei
$$t \in T_{\Sigma}$$
 mit $t \notin L(\mathcal{A})$, dann ist $Z \cap F = \{q \in Q | t \to_{\mathcal{A}}^* q\} \cap F = \emptyset$
Laut 2. ist $t \to_{\mathcal{A}_d}^* z$ (und \mathcal{A} ist deterministisch) Wegen $Z \cap F = \emptyset$ ist $Z \notin F_d$, also $t \notin L(\mathcal{A}_d)$

Wir vereinbaren Abkürzungen: NBA/NTA nichtdeterministischer Baumautomat und DBA/DTA deterministischer Baumautomat.

Wie im Wortfall ist die Konstruktion exponentiell, das heißt wir benötigen expontntiell viele Zustände $(Q_d = 2^{|Q|})$. Und wie im Wortfall lässt sich das im Allgemeinen nicht vermeiden.

Beispiel: Betrachtet man
$$\Sigma = \{f^{(1)}, g^{(1)}, a^{(0)}\}$$
 und sei $L_n = \{f \in T_{\Sigma} | t(\underbrace{1 \dots 1}_{\text{n-mal}}) = f\}$

Ein NTA benötigt n + 2 Zustände:

$$\mathcal{A}=(Q,\Sigma,F,\Delta)$$
 mit $Q=\{q,q_1,\ldots,q_{n+1}\},\ F=\{q_{n+1}\}$ mit Übergängen $\Delta=\{a\rightarrow q,f(q)\rightarrow q,g(q)\rightarrow q,f(q)\rightarrow q_1,\ f(q_i)\rightarrow q_{i+1},g(q_i)\rightarrow q_{i+1}$ für $i\in\{1,\ldots,n\}$

Man kann zeigen: Ein DTA \mathcal{A}' mit $L(\mathcal{A}') = L_n$ hat mindestens 2^{n+1} Zustände.

2 Definition vollständing und reduziert

Ein Automat $\mathcal{A} = Q, \Sigma, F, \Delta$) heißt:

- vollständig, falls für jedes $f^{(n)} \in \Sigma$ und alle $q_1, \ldots, q_n \in Q$ eine Regel $f(q_1, \ldots, q_n) \to q \in \Delta$ existiert.
- reduziert, falls für jeden Zustand $q \in Q$ ein Term $t \in T_{\Sigma}$ exisitert mit $f \to_{\mathcal{A}}^* q$

3 Satz

Sei \mathcal{A} ein Baumautomat. Dann existiert ein vollständiger, reduzierter Baumautomat \mathcal{A}' mit $L(\mathcal{A} = L(\mathcal{A}'.$

Für Wortautomaten gibt es das Pumping-Lemma, das die Gedächtnislosigkeit der Automaten formalisiert. Formal besagt es: Ist L eine reguläre Wortsprache, dann existiert ein $n \in \mathbb{N}$, so dass sich $w \in L$ mit |w| > n zerlegen lässt in w = xyz, $y \neq \varepsilon$ und $\forall i \geq 0$ ist $xy^iz \in L$.

Baumautomaten haben auch kein Gedächtnis, also erwarten wir ein analoges Resultat. Dazu müssen wir formalisierten, was "aufgepumpt "werden soll.

4 Definition Kontext

Es sei Σ ein Fangalphabet und $x^{(0)} \notin \Sigma$. Es sei $C \in T_{\Sigma \cup \{x\}}$. Falls es genau eine Position $p \in Pos(C)$ gibt mit C(p) = x, dann heißt C ein Kontext.

Beispiel:

Wir schreiben $T_{\Sigma}(x)$ für die Menge aller solcher Kontexte.

Ist $C \in T_{\Sigma}(x)$ mit C(p) = x, dann schreiben wir C[u] statt $C[u]_p$ für den Baum, der entsteht, wenn wir x durch u ersetzen.

Wir schreiben $C^0 = x$, $C^1 = C$, $C^n = C^{n-1}[C]$

Beispiel: Betrachtet t =

Setze u = f(a, b) und C = f(x, b). Dann ist t = C[u] und $C^2[u] =$

5 Pumping-Lemma

Sei $L \subseteq t_{\Sigma}$ erkennbar, dann existiert ein $k \in \mathbb{N}$, so dass:

Für alle $t \in L$ mit ht(t) > k gibt es einen Kontext $C \in T_{\Sigma}(x)$, einen nicht-trivialen Kontext $C' \in T_{\Sigma}(x)$ und einen Term $u \in T_{\Sigma}$ mit t = C[C'[u]] und $C[(C')^n[u]] \in L$ für alle $n \geq 0$.

Beweis: Sei L erkennbar, das heißt $\exists \text{Baumautomat} \mathcal{A} = (Q, \Sigma, F, \Delta)$ mit $L = L(\mathcal{A})$. Setze |Q| = k und betrachte $t \in L$ mit ht(t) > k. Betrachte nun einen Lauf r und einen Pfad in t, der länger als k ist. Nun gibt es $p_1, p_2 \in Pos(r)$ mit $r(p_1) = r(p_2) = q \in Q$. Sei nun $u = t_{|p_2}$ der Sub-Baum von t bei p_2 und $u' = t_{|p_1}$. Dann existiert C' mit C'[u] = u' und es existiert C mit t = C[C'[u]]. Es ist wegen $t \in L$

 $C[C'[u]] \to_{\mathcal{A}}^* C[C'[q]] \to_{\mathcal{A}}^* C[q] \to_{\mathcal{A}}^* q_f \in F$, also auch $C[(C')^n[u]] \to_{\mathcal{A}}^* C[(C')^n[q]] \to_{\mathcal{A}}^* CC[(C')^{(n-1)}[q]]$ $rightarrow_{\mathcal{A}}^* \dots rightarrow_{\mathcal{A}}^* C[q] \to_{\mathcal{A}}^* q_f \in F$. q.e.d.

Beispiel: Betrachte den Baumautomaten $\mathcal{A} = (\{q_a, q_b, q_g, q_f\}, \{a^{(0)}, b^{(0)}, g^{(1)}, f^{(2)}\}, \{q_f\}, \Delta)$ mit $\Delta = \{a \to q_a, b \to q_b, f(q_a, q_b) \to q_g, g(q_g) \to q_f\}$

u = f(a, b), u' = C'[u] = f(f(a, b), b)C = g(f(x, b)), C' = f(x, b)

$$C[(C^\prime)^n[u]] =$$

Die Sprache $L=\{f(g^i(a),g^i(a)|i\geq 0\}$ kann nicht erkennbar sein, denn für große i würde man ein k finden, so dass ein gegebener Baumautomat auch $f(g^{i+lk}(a),g^i(a))$ für alle $l\geq 0$ akzeptiert.

6 Korollar

Für $\mathcal{A}=(Q,\Sigma,F,\Delta)$ ist $L(\mathcal{A}\neq\emptyset\Leftrightarrow\exists t\in L \text{ mit } ht(t)\leq|Q|$:

• $L(\mathcal{A}|$ nicht endlich $\Leftrightarrow \exists t \in L$ mit $|Q| < ht(t) \le 2|Q|$