Algoritmos e Estruturas de Dados

Licenciatura em Engenharia Informática e Computação 2021/2022

AP Rocha, P Ribeiro, R Rossetti, F Ramos, L Grácio, A Costa, S Martins

Information

- Course moodle page
- Slack: https://aed2122.slack.com
 used for communication/discussion (registration link available on moodle)
- Theoretical classes:

Ana Paula Rocha

Pedro Ribeiro

Practical classes:

Ana Paula Rocha Pedro Ribeiro

António Costa Rosaldo Rossetti

Filipa Ramos Sofia Martins

Luciano Grácio

Methodology

- Theoretical classes
 - online using zoom
 - formal exposition of the subjects, presentation of examples, analysis and discussion.

- Practical classes
 - programming exercises in C++ using unit tests: CLion, Google Tests
 - optional code submission to an automatic judging platform (Mooshak)
 - group project, but most will be outside of classes

Evaluation

Final Mark = 0.3*CIP + 0.3*CIT + 0.4*CG

 A minimum mark of 40% is required in every assessment component (CIP, CIT, CG1, CG2)

Individual Component – 60%

- Practical Component (CIP) 30%
 - practical on computer evaluation, programming assignments using unit tests:
 CLion, Google Tests
- Theoretical Component (CIT) 30%
 - multiple-choice questions
- Group Component (CG) 40%
 - two small projects (CG1 and CG2) to be implemented in group (3 students)

Evaluation

- There will be a <u>recovery test</u>
 - for students that did not obtain the minimum required in the component CIP or CIT.
 - The grade of this test is limited to 50%.
- Students registered under any special status:
 - group assessment may be performed individually
 - student must talk to the lecturer to make all the arrangements and fix a reasonable schedule.
 - should attend and perform the individual assessment components, as normally scheduled
- Student may not exceed the limit of absences (25% of classes)

Pre-requirements

Basic knowledge of programming and C++

Objectives

- Analyze the correctness of simple algorithms (and test experimentally)
- Analyze the temporal and spatial complexity of algorithms (and measure experimentally)
- Understand the concept of abstract data type and know how to organize programs around this concept
- Know the fundamental data structures and associated algorithms and respective complexity
- Choose appropriate collections, data structures and algorithms to solve practical problems

Program

- Analysis of algorithm correctness
- Algorithmic efficiency
 - temporal and space complexity

- Searching and sorting algorithms
 - Sequential search, binary search
 - InsertionSort, BubbleSort, ShellSort, MergeSort, QuickSort, CountingSort.

- Linear data structures
 - Lists
 Array-based and linked list. Doubly linked lists. Circular list.
 - Stacks
 - Queues

Program

- Hierarchical data structures
 - Binary Trees, Binary Search Trees, Balanced binary trees and variants
- Other data structures
 - Hash Tables
 - Priority Queues
 - Disjoint-sets

- Graph algorithms
 - Representation
 - DFS, BFS and applications
 - Minimum Spanning Trees
 - Prim, Kruskal
 - Shortest Paths
 - Dijkstra and variants, Bellman-Ford, Floyd-Warshall

Bibliography

Data Structures & Algorithm Analysis in C++ Mark Allen Weiss, 4th Edition, Pearson Education, 2014

additional:

Algorithms in C++
 Robert Sedgewick, 3rd Edition, Princeton University, 2002