Obliczenia naukowe

Sprawozdanie z listy nr 2 na laboratoria

Oskar Makowski

Grupa wtorek parzysty 18.55-20.35

1. Zadanie 1

1.1 Opis problemu

Celem zadania jest zbadanie uwarunkowania obliczania iloczynu skalarnego dwóch wektorów, czyli wpływu zmiany danych wejściowych na zmianę wyniku. Nowe dane to usunięcie najmniej znaczącej liczby w czwartej i piątej współrzędnej poprzedniego zestawu.

1.2 Rozwiązanie

1.2.1

Algorytm oblicza sumę "w przód", tj. mnoży i-te współrzędne wektorów w kolejności od 1 do n, a następnie dodaje do już obliczonej sumy.

1.2.2

Algorytm oblicza sumę "w tył", tj. mnoży i-te współrzędne wektorów w kolejności od n do 1, a następnie dodaje do już obliczonej sumy.

1.2.3

Algorytm oblicza sumę od największego do najmniejszego, tj. wyznacza iloczyn współrzędnych, otrzymaną tablicę sortuje malejąco, a następnie dodaje kolejne współrzędne do już obliczonej sumy.

1.2.4

Algorytm oblicza sumę od najmniejszego do największego, tj. wyznacza iloczyn współrzędnych, otrzymaną tablicę sortuje rosnąco, a następnie dodaje kolejne współrzędne do już obliczonej sumy.

1.3 Wyniki

	Float32	różnica	Float32(nowe dane)	różnica
algorytm A	-0.4999443	0.4999433	-0.4999443	0.4999433
algorytm B	-0.4543457	0.4543457	-0.4543457	0.4543457
algorytm C	-0.5	0.5	-0.5	0.5
algorytm D	-0.5	0.5	-0.5	0.5

	Float64	różnica	Float64(nowe dane)	różnica
algorytm A	-1.9851118202040587e-10	9.785407502	-0.004296343040921581	0.004296342
		040587e-11		940264474
algorytm B	-1.5643308870494366e-10	5.577598170	-0.004296342998713953	0.004296342
		494366e-11		898056847
algorytm C	-0.09720572363585234	0.097205723	-0.09720572363585234	0.097205723
		53519523		53519523
algorytm D	-4.65661287307739e-10	3.650041803	-0.004296343307942152	0.004296343
		0773925e-10		207285045

1.4 Wnioski

Dla typu Float32 nie zaobserwowano zmian wyników dla nowych danych. Dzieje się tak, ponieważ różnica jest mniejsza od precyzji arytmetyki typu Float32. W arytmetyce Float64 taka zmiana jest już zauważalna. Wynika to ze złego uwarunkowania zadania obliczania iloczynu skalarnego, dla którego wskaźnik uwarunkowania wynosi $cond(a,b) = \frac{\sum_{i=1}^{n} |a_ib_i|}{|\sum_{i=1}^{n} a_ib_i|}$. Gdy liczby a_i , b_i są różnych znaków, wskaźnik uwarunkowania rośnie, sprawiając że zmiana danych wejściowych powoduje znaczącą zmianę wyniku.

2. Zadanie 2

2.1 Opis problemu

Zbadana zostanie poprawność rysowania wykresu funkcji $f(x) = e^x \ln(1 + e^{-x})$ za pomocą analizy porównawczej ze znanymi wartościami granic.

2.2 Rozwiązanie

Zadana funkcja zostaje narysowana za pomocą pakietu Plots i backendu GR oraz backendu PyPlot, granica $\lim_{x\to\infty} f(x)$ jest obliczana za pomocą reguły de l'Hospitala.

2.3 Wyniki

Backend GR

Backend PyPlot

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = \lim_{x \to \infty} \frac{\ln(1 + e^{-x})}{\frac{1}{e^x}} = \lim_{x \to \infty} \frac{-\frac{e^{-x}}{1 + e^{-x}}}{-e^{-x}} = \lim_{x \to \infty} \frac{1}{1 + e^{-x}} = 1$$

2.4 Wnioski

Chaotyczne wahania funkcji wynikają z numerycznej niestabilności wyznaczania wartości funkcji. Niewielki błąd, popełniony już na samym początku przy wprowadzaniu wartości niewymiernej liczby e, kumuluje się wraz z podnoszeniem jej do kolejnych potęg. Dodatkowo wartości e^{-x} wkrótce zostają pochłonięte przez sumę z 1. Skutkiem tego jest wyzerowanie drugiego składnika iloczynu, przez co funkcja od pewnego momentu zaczyna przyjmować wartość 0, zamiast dążyć do 1, jak zostało to pokazane.

3. Zadanie 3

3.1 Opis problemu

Rozważany będzie problem rozwiązywania układu równań liniowych Ax = b, gdzie $A \in R^{n \times n}$ i $b \in R^n$. Macierz A zostanie wygenerowana w dwóch postaciach. Najpierw będzie macierzą Hilberta stopnia n, następnie losową macierzą stopnia n z zadanym wskaźnikiem uwarunkowania. Wektor b zadany jest równaniem b = Ax dla $x = (1,1,...,1)^T$. Układ równań Ax = b zostanie rozwiązany za pomocą metody eliminacji Gaussa $(x = A \setminus b)$ oraz odwracana macierzy $(x = A^{-1}b)$. Zbadany zostanie błąd względny wyznaczonego rozwiązania z dokładnym za pomocą p-normy $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$, stanowiącej uogólnienie na n-wymiarowe wektory, przyjmując p = 2.

3.2 Rozwiązanie

3.2.1

W pętli generowana jest macierz A będąca macierzą Hilberta o n-tym stopniu. Tworzony jest wektor (1,1,...,1) służący do wyznaczenia wektora b. Następnie za pomocą metody eliminacji Gaussa oraz metody odwracania macierzy obliczany jest wektor \tilde{x} . Na koniec wyznaczane są współczynnik uwarunkowania macierzy oraz błąd względny rozwiązania.

3.2.2

W pętli generowana jest macierz A będąca losową macierzą stopnia n z zadanym współczynnikiem uwarunkowania. Tworzony jest wektor (1,1,...,1) służący do wyznaczenia wektora b. Następnie za pomocą metody eliminacji Gaussa oraz metody odwracania macierzy obliczany jest wektor \tilde{x} . Na koniec wyznaczane są współczynnik uwarunkowania macierzy oraz błąd względny rozwiązania.

3.3 Wyniki

n	$cond(A); A = H_n$	błąd względny $x = A \setminus b$	błąd względny $x = A^{-1}b$
1	1.0	0.0	0.0
2	19.28147006790397	8.005932084973442e-16	1.9860273225978185e-15
3	524.0567775860644	1.389554002205336e-14	0.0
4	15513.738738928929	9.274555424070588e-13	1.5084941093977703e-12
5	476607.25024224253	3.957182178603947e-13	1.667218541122391e-11
6	1.495105864125091e7	8.564619985894328e-10	8.654419164740217e-10
7	4.7536735637688667e8	3.485790545326914e-8	1.637943468258588e-8
8	1.5257575516147259e10	7.035524286242745e-7	1.0678091579551563e-6
9	4.9315408927806335e11	2.8930876307316945e-5	3.497845813240024e-5
10	1.6024859712306152e13	0.0006968170127969627	0.0010616268359552596

$cond(A); A = R_5$	błąd względny $x = A \setminus b$	błąd względny $x = A^{-1}b$
1.00000000000000009	6.080941944488118e-16	3.8459253727671276e-16
10.000000000000004	6.377745716588144e-16	5.20740757162067e-16
1000.0000000000749	7.687843529453204e-15	1.1234667099445444e-14
1.000000001639243e7	2.5436009881576845e-10	3.729948546381288e-10
9.999603324175591e11	3.3209968193508696e-5	3.145679951185349e-5
3.3092516252240776e16	2.535443348418495	2.991198025039466

$\operatorname{cond}(A); A = R_{10}$	błąd względny $x = A \setminus b$	błąd względny $x = A^{-1}b$
1.00000000000000009	8.08254562088053e-16	8.3820000221454525e-16
10.000000000000012	9.61481343191782e-16	8.741904837807691e-16
999.99999999999	1.0617639241959023e-13	5.990946966409056e-14
1.000000013807377e7	1.1582118652991027e-9	7.455149762021753e-10
9.999506501783389e11	7.56484217688632e-5	7.684774864813585e-5
5.284933719382386e15	0.33000151691871604	0.3871722404176208

$cond(A); A = R_{20}$	błąd względny $x = A \setminus b$	błąd względny $x = A^{-1}b$
1.0000000000000013	3.1985215122904828e-15	2.1585202619993173e-15
10.0000000000000002	2.928969502107952e-15	3.3509613468011447e-15
1000.0000000000557	3.908237361949993e-14	3.5282042294044665e-14
9.999999990584705e6	3.065957786516701e-10	5.817439800935161e-10
9.99995179807094e11	1.586456764603428e-5	3.322326756114109e-5
9.56482511592819e15	0.9269973677438774	0.9768124680081893

3.4.1

Macierz Hilberta jest przykładem macierzy bardzo źle uwarunkowanej. Błąd względny obu metod rozwiązywania układu równań liniowych bardzo szybko rośnie. Wykorzystywanie macierzy Hilberta w praktyce traci sens już dla niewielkich n. W przypadku konieczności posłużenia się nią, metoda eliminacji Gaussa daje lepsze rezultaty.

3.4.2

Dla macierzy losowych nie można jednoznacznie wskazać lepszej metody rozwiązywania układu. Wraz ze wzrostem wskaźnika uwarunkowania, błędy drastycznie rosną. Stopień macierzy nie zwiększa drastycznie błędu względnego.

4. Zadanie 4

4.1 Opis problemu

Obliczone zostaną miejsca zerowe wielomianu Wilkinsona w postaci naturalnej. Wielomian jest postaci $\prod_{i=1}^{20} (x-i)$, jego zera są znane. Problemem jest wyznaczanie miejsc zerowych mając dane współczynniki wielomianu.

4.2 Rozwiązanie

4.2.1

Wielomian jest przedstawiony w formie naturalnej. Wyznaczane są jego zera za pomocą funkcji *roots*(). W pętli, dla każdej wartości zwróconej przez *roots*(), obliczana jest wartość wielomianu w punkcie dla postaci naturalnej oraz iloczynowej, a także różnica z wartością prawidłową.

4.2.2

Eksperyment zostaje powtórzony z zaburzonym współczynnikiem przy x^{19} , który wyniesie $-210-2^{-23}$.

4.3 Wyniki Dla współczynnika x^{19} : -210

z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
0.999999999996989	36352.0	5.517824e6	3.0109248427834245e-13
2.0000000000283182	181760.0	7.378697629901744e19	2.8318236644508943e-11
2.9999999995920965	209408.0	3.320413931687578e20	4.0790348876384996e-10
3.9999999837375317	3.106816e6	8.854437035384718e20	1.626246826091915e-8
5.000000665769791	2.4114688e7	1.8446752056545675e21	6.657697912970661e-7
5.999989245824773	1.20152064e8	3.320394888870126e21	1.0754175226779239e-5
7.000102002793008	4.80398336e8	5.423593016891272e21	0.00010200279300764947
7.999355829607762	1.682691072e9	8.26205014011023e21	0.0006441703922384079
9.002915294362053	4.465326592e9	1.196559421646318e22	0.002915294362052734
9.990413042481725	1.2707126784e10	1.6552601335207813e22	0.009586957518274986
11.025022932909318	3.5759895552e10	2.2478332979247994e22	0.025022932909317674
11.953283253846857	7.216771584e10	2.8869446884129956e22	0.04671674615314281
13.07431403244734	2.15723629056e11	3.807325552825022e22	0.07431403244734014
13.914755591802127	3.65383250944e11	4.612719853149547e22	0.08524440819787316
15.075493799699476	6.13987753472e11	5.901011420239329e22	0.07549379969947623
15.946286716607972	1.555027751936e12	7.01087410689741e22	0.05371328339202819
17.025427146237412	3.777623778304e12	8.568905825727875e22	0.025427146237412046
17.99092135271648	7.199554861056e12	1.0144799361089491e23	0.009078647283519814
19.00190981829944	1.0278376162816e13	1.1990376202486947e23	0.0019098182994383706
19.999809291236637	2.7462952745472e13	1.4019117414364248e23	0.00019070876336257925

Dla współczynnika x^{19} : $-210 - 2^{-23}$

Z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
0.999999999998357 +	20992.0	3.012096e6	1.6431300764452317e-13
0.0im			
2.0000000000550373 +	349184.0	7.37869763029606e19	5.503730804434781e-11
0.0im			
2.9999999660342 +	2.221568e6	3.3204139201100146e20	3.3965799062229962e-9
0.0im			
4.000000089724362 +	1.046784e7	8.854437817429645e20	8.972436216225788e-8
0.0im			
4.99999857388791 +	3.9463936e7	1.8446726974084148e21	1.4261120897529622e-6
0.0im			
6.000020476673031 +	1.29148416e8	3.320450195282314e21	2.0476673030955794e-5
0.0im			
6.99960207042242 +	3.88123136e8	5.422366528916045e21	0.00039792957757978087
0.0im			
8.007772029099446 +	1.072547328e9	8.289399860984229e21	0.007772029099445632
0.0im			
8.915816367932559 +	3.065575424e9	1.1607472501770085e22	0.0841836320674414
0.0im			
10.095455630535774 -	7.143113638035824e9	1.7212892853671066e22	0.6519586830380406
0.6449328236240688im			
10.095455630535774 +	7.143113638035824e9	1.7212892853671066e22	1.1109180272716561
0.6449328236240688im			
11.793890586174369 -	3.357756113171857e10	2.8568401004080516e22	1.665281290598479
1.6524771364075785im			

11.793890586174369 +	3.357756113171857e10	2.8568401004080516e22	2.045820276678428
1.6524771364075785im			
13.992406684487216 -	1.0612064533081976e11	4.934647147685479e22	2.5188358711909045
2.5188244257108443im			
13.992406684487216 +	1.0612064533081976e11	4.934647147685479e22	2.7128805312847097
2.5188244257108443im			
16.73074487979267 -	3.315103475981763e11	8.484694713574187e22	2.9060018735375106
2.812624896721978im			
16.73074487979267 +	3.315103475981763e11	8.484694713574187e22	2.825483521349608
2.812624896721978im			
19.5024423688181 -	9.539424609817828e12	1.318194782057474e23	2.454021446312976
1.940331978642903im			
19.5024423688181 +	9.539424609817828e12	1.318194782057474e23	2.004329444309949
1.940331978642903im			
20.84691021519479 +	1.114453504512e13	1.591108408283123e23	0.8469102151947894
0.0im			

W arytmetyce Float64 jest od 15 do 17 cyfr znaczących w systemie dziesiętnym. Współczynniki w wielomianie Wilkinsona potrzebują więcej cyfr znaczących, co wprowadza niedokładność. Niewielkie zaburzenie jednego ze współczynników prowadzi do sytuacji, w której wielomian posiada zera zespolone. Wynika to z tego, jak Wilkinson pokazał w analizie stabilności, że dla niektórych pierwiastków α istnieją takie pierwiastki β , że $|\alpha - \beta| < \alpha$. Prowadzi to do wniosku, że zadanie obliczania pierwiastków wielomianu jest źle uwarunkowane ze względu na zaburzenia współczynników.

5. Zadanie 5

5.1 Opis problemu

Rozważany będzie model wzrostu populacji dany równaniem rekurencyjnym $p_{n+1} = p_n + rp_n(1+p_n)$, gdzie r jest daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, p_0 jest wielkością populacji stanowiącą procent maksymalnej wielkości dla danego stanu środowiska. Zostanie przeprowadzonych 40 iteracji wyrażenia w arytmetyce Float32, Float32 z obcięciem wyniku po 10 iteracji oraz Float64. Przyjęte zostanie $p_0 = 0.01, r = 3$.

5.2 Rozwiązanie

Inicjalizując pierwszy element tablicy wyników jako p_0 dynamicznie wyznaczane są kolejne p_n dla $n \in \{2,3,...,41\}$ według danego wzoru.

5.3 Wyniki

n	Float32	Float32(obcięcie)	Float64
1	0.01	0.01	0.01
2	0.0397	0.0397	0.0397
3	0.15407173	0.15407173	0.15407173000000002
4	0.5450726	0.5450726	0.5450726260444213
5	1.2889781	1.2889781	1.2889780011888006
6	0.1715188	0.1715188	0.17151914210917552
7	0.5978191	0.5978191	0.5978201201070994

8	1.3191134	1.3191134	1.3191137924137974
9	0.056273222	0.056273222	0.056271577646256565
10	0.21559286	0.21559286	0.21558683923263022
11	0.7229306	0.722	0.722914301179573
12	1.3238364	1.3241479	1.3238419441684408
13	0.037716985	0.036488414	0.03769529725473175
14	0.14660022	0.14195944	0.14651838271355924
15	0.521926	0.50738037	0.521670621435246
16	1.2704837	1.2572169	1.2702617739350768
17	0.2395482	0.28708452	0.24035217277824272
18	0.7860428	0.28708452	0.24035217277824272
19	1.2905813	1.1684768	1.2890943027903075
20	0.16552472	0.577893	0.17108484670194324
21	0.5799036	1.3096911	0.5965293124946907
22	1.3107498	0.09289217	1.3185755879825978
23	0.088804245	0.34568182	0.058377608259430724
24	0.3315584	1.0242395	0.22328659759944824
25	0.9964407	0.94975823	0.7435756763951792
26	1.0070806	1.0929108	1.315588346001072
27	0.9856885	0.7882812	0.07003529560277899
28	1.0280086	1.2889631	0.26542635452061003
29	0.9416294	0.17157483	0.8503519690601384
30	1.1065198	0.59798557	1.2321124623871897
31	0.7529209	1.3191822	0.37414648963928676
32	1.3110139	0.05600393	1.0766291714289444
33	0.0877831	0.21460639	0.8291255674004515
34	0.3280148	0.7202578	1.2541546500504441
35	0.9892781	1.3247173	0.29790694147232066
36	1.021099	0.034241438	0.9253821285571046
37	0.95646656	0.13344833	1.1325322626697856
38	1.0813814	0.48036796	0.6822410727153098
39	0.81736827	1.2292118	1.3326056469620293
40	1.2652004	0.3839622	0.0029091569028512065
41	0.25860548	1.093568	0.011611238029748606

Przedstawiony eksperyment na bazie modelu logistycznego pokazuje jak precyzja odwzorowania danych wpływa na przebieg kolejnych iteracji. Niewielkie odchylenia prowadzą do uzyskania różnych wyników. System, który jest bardzo wrażliwy na warunki początkowe, nazywany jest systemem chaotycznym. Przykładami takich systemów są problem przewidywania pogody oraz przewidzenie trajektorii ruchu wahadła o dwóch prętach. Głównym problemem jest skończona dokładność arytmetyk zmiennopozycyjnych. Jednakże, nawet dla hipotetycznie idealnego odwzorowania danych, układ nadal może być niezwykle czuły na wybranie warunków początkowych. Wtedy przewidzenie jego rozwoju może stać się niemożliwe.

6. Zadanie 6

6.1 Opis problemu

Przedstawiony zostanie przebieg 40 iteracji równania rekurencyjnego $x_{n+1} = x_n^2 + c$ dla różnych zestawów danych początkowych w arytmetyk Float64.

6.2 Rozwiązanie

Przygotowano 7 par (c, x_0) , które będą używane do wyznaczania kolejnych wyrazów równania. Dla każdej pary tworzona jest tablica, w której dynamicznie wyznaczane są kolejne x_n według danego wzoru. Następnie rysowane są wykresy dla przebiegu algorytmu dla każdej pary wejściowej.

6.3 Wyniki

Zadanie jest równoważne do poprzedniego. Ponownie system okazał się być chaotyczny. Przewidzenie jego rozwoju w kolejnych iteracjach w zależności od danych wejściowych jest bardzo trudne. W przypadku pierwszym i drugim system jest stabilny. W przypadku trzecim niewielkie względne zaburzenie danych prowadzi do otrzymania nieprzewidywalnych wyników. W przypadku czwartym i piątym funkcja oscyluje między dwiema wartościami. Na wykresach szóstym i siódmym, widać, że po kilku iteracjach wykres staje się przewidywalny, gdyż funkcja się ustabilizowała.