- Ridge Regression is a regularization technique that works by helping reduce the potential for overfitting to the training data.
- It does this by adding in a penalty term to the error that is based on the squared value of the coefficients.

- Ridge Regression is a regularization method for Linear Regression.
- Relevant Reading in ISLP:
 - Section 6.2.1
- Let's explore the main concepts behind how Ridge Regression works...

Recall the general formula for the regression line:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

 These Beta coefficients were solved by minimizing the residual sum of squares (RSS).

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

 These Beta coefficients were solved by minimizing the residual sum of squares (RSS).

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 We could substitute our regression equation for ŷ:

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 We could substitute our regression equation for ŷ:

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
=
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$$

We can then summarize RSS as:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

 The goal of Ridge Regression is to help prevent overfitting by adding an additional penalty term.

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

 Ridge Regression adds a shrinkage penalty:

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

 Shrinkage penalty based off the squared coefficient:

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

 Shrinkage penalty has a tunable lambda parameter!

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

We shall talk about Lambda parameter sen

 Lambda determines how severe the penalty is.

Error
$$= \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

 In theory it can be any value from 0 to positive infinity.

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

• If it is zero, then it is simply back to RSS.

Error
$$= \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

 Let's explore a simple thought experiment to get an intuition behind Ridge Regression...

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Imagine the following data set.

 We can split it into a training set and test set:

 Now we can fit on the training data to produce the line: $\hat{y} = \beta_1 x + \beta_0$

• Regardless of RSS or Ridge error, we're still trying to create a line: $\hat{y} = \beta_1 x + \beta_0$

 The only difference would be the coefficients found.

First let's fit using only RSS...

• Our fitted $\hat{y} = \beta_1 x + \beta_0$

Appears to have over fit to training data.

Jan-2024 Intro to ML 25

• This means we have high variance.

 We know there is a bias-variance trade-off.

 But could we introduce a little more bias to significantly reduce variance?

 Would adding the penalty term help generalize with more bias?

• Adding bias can help generalize $\hat{y} = \beta_1 x + \beta_0$

Intro to ML

Let's imagine trying to reduce the Ridge

Regression error term:

 There is λ and the squared slope coefficient.

• Let's assume $\lambda = 1$

• This punishes a large slope for $\hat{y} = \beta_1 x + \beta_0$

For single feature this lowers slope

35

At the cost of some additional bias (error in

training set)

We generalize better to unseen data

Consider overfitting to training set:

Jan-2024

Intro to ML

 An increase in X results in a greater y response:

 An increase in X results in a greater y response:

Compare to a more generalized model that

used Ridge Regression:

• Same feature change does not produce as much y response:

Y

 Trying to minimize a squared Beta term leads us to punish larger coefficients.

$$\lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge Regression – How about Lambda?

 What about the lambda term? How much should we punish these larger coefficients?

$$\lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge Regression – How about Lambda?

 We simply use cross-validation to explore multiple lambda options and then choose the best one!

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Best LAMBDA: This what the Algorithm find to us, once giving a range of lambda values.

Ridge Regression - in Python - SKLEARN

- Important Note!
 - Sklearn refers to lambda as alpha within the class call!

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge Regression - in Python - SKLEARN

- Important Note!
 - For cross validation metrics, sklearn uses a "scorer object".
 - All scorer objects follow the convention that higher return values are better than lower return values.

Ridge Regression - in Python - SKLEARN

- Important Note!
 - For cross validation metrics, sklearn uses a "scorer object".
 - All scorer objects follow the convention that higher return values are better than lower return values.

