MATH 4318: Analysis II

Frank Qiang Instructor: Zhiwu Lin

Georgia Institute of Technology Spring 2024

Contents

1	Jan.	9 — The Derivative	2
	1.1	Defining the Derivative	2
	1.2	Immediate Properties	2
	1.3	Rules for Differentiation	
2	Jan	11 — The Mean Value Theorem	5
	2.1	The Mean Value Theorem	5
	2.2	Applications	
	2.3	Cauchy's Mean Value Theorem	8
3	Jan.	16 — Taylor's Theorem	9
	3.1	Darboux's Lemma	9
	3.2	L'Hôpital's Rule	9
	3.3	Taylor's Theorem	
4		18 — Taylor Polynomials	13
	4.1	Common Taylor Polynomials	13
		Combining Taylor Polynomials	
	4.3	Applications for Taylor Polynomials	
		4.3.1 Finding Limits	
		4 3 2 Estimation	16

Jan. 9 — The Derivative

1.1 Defining the Derivative

Definition 1.1. Let f be a real-valued function on an open interval $U \subseteq \mathbb{R}$. Let $x_0 \in U$, we say f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. If it does, then this limit, denoted by $f'(x_0)$, is called the *derivative* of f at x_0 .

Remark. By definition, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| \le \epsilon$$

if $|x - x_0| < \delta$ and $x \in U$. Multiplying both sides by $|x - x_0|$ yields

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| \le \epsilon |x - x_0|.$$

In other words,

$$|f(x) - \varphi(x)| \le \epsilon |x - x_0|$$

where $\varphi(x) = f(x_0) + f'(x_0)(x - x_0)$. In other words, $\varphi(x)$ is a first-order approximation of f(x) near x_0 . Geometrically, this is approximating the graph of y = f(x) by the tangent line $y = \varphi(x)$.

1.2 Immediate Properties

Proposition 1.1. Let $U \subseteq \mathbb{R}$ be an open set and $f: U \to \mathbb{R}$. If f is differentiable at $x_0 \in U$, then f is continuous at x_0 .

Proof. Pick any $\epsilon_0 > 0$. Then there exists $\delta_0 > 0$ such that whenever $|x - x_0| < \delta_0$ and $x \in U$,

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| \le \epsilon_0 |x - x_0|.$$

By the triangle inequality,

$$|f(x) - f(x_0)| \le \epsilon_0 |x - x_0| + |f'(x_0)||x - x_0| = (\epsilon_0 + |f'(x_0)|)|x - x_0|.$$

Now for any $\epsilon > 0$, choose $\delta = \min\{\delta_0, \epsilon/(\epsilon_0 + |f'(x_0)|)\}$. Then

$$|f(x) - f(x_0)| \le (\epsilon_0 + |f'(x_0)|)|x - x_0| < (\epsilon_0 + |f'(x_0)|)\delta \le \epsilon$$

whenever $|x - x_0| < \delta$ and $x \in U$. Thus f is continuous at x_0 .

Example 1.1.1. Take the function

$$f(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Note that f is continuous on \mathbb{R} . For $x \neq 0$, continuity is clear since both x and $\sin(1/x)$ are continuous. At x = 0, we have

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin(1/x) = 0 = f(0)$$

since $|x\sin(1/x)| \le |x|$ for all $x \in \mathbb{R}$, so f is also continuous at x = 0. However, f is not differentiable at x = 0. Consider the limit

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \sin(1/x),$$

which does not exist since $\sin(1/x)$ oscillates. So f is not differentiable at x=0.

Example 1.1.2. Take the function f(x) = |x|, which is continuous everywhere on \mathbb{R} . However, f is not differentiable at x = 0, since

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}.$$

Note that

$$\frac{|x|}{x} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0, \end{cases}$$

so the limit does not exist as $x \to 0$. Thus f is not differentiable at x = 0.

Remark. For the previous example, we can however define the left (right) derivative by

$$f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 and $f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$.

If f is differentiable, then $f'_{-}(x_0) = f'_{+}(x_0)$. In the previous example, $f'_{-}(0) = -1$ and $f'_{+}(0) = 1$. For the first example however, even $f'_{\pm}(0)$ does not exist.

Remark. In one dimension, the existence of the derivative implies that the function is differentiable (the function is approximated by a linear function). However, in multiple dimensions, the existence of partial derivatives does not imply differentiability.

1.3 Rules for Differentiation

Proposition 1.2. Let $U \subseteq \mathbb{R}$ be open and $f, g: U \to \mathbb{R}$ be differentiable. Then

- 1. $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
- 2. $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 3. if $g(x_0) \neq 0$, then $(f/g)'(x_0) = (f'(x_0)g(x_0) f(x_0)g'(x_0))/(g(x_0)^2)$.

Proof. Find in textbook (Rosenlicht).

Proposition 1.3. We have $\frac{d}{dx}(c) = 0$, $\frac{d}{dx}(x) = 1$, and $\frac{d}{dx}(x^n) = nx^{n-1}$ for all $n \in \mathbb{N}$.

Proof. We prove the last claim (the power rule) for $n \ge 1$ by induction. The base case n = 1 is the first claim which is true. Now suppose that the result holds for any $n \le k \in \mathbb{N}$, and we show that it remains true for n = k + 1. By the product rule, we have

$$\frac{d}{dx}(x^{k+1}) = \frac{d}{dx}(x \cdot x^k) = \frac{d}{dx}(x) \cdot x^k + x \cdot \frac{d}{dx}(x^k) = x^k + xkx^{k-1} = (k+1)x^k.$$

Thus by induction this holds for all $n \geq 1$. We can do negative integers by the quotient rule. \Box

Remark. The power rule actually holds for any $n \in \mathbb{R}$.

Proposition 1.4 (Chain rule). Let U and V be open sets of \mathbb{R} and let $f: U \to V, g: V \to \mathbb{R}$ be differentiable. Let $x_0 \in U$ be such that $f'(x_0)$ and $g'(f(x_0))$ exist. Then $(g \circ f)'(x_0)$ exists and

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Proof. For any fixed y_0 for which $g'(y_0)$ exists, set

$$A(y, y_0) = \begin{cases} (g(y) - g(y_0))/(y - y_0) & \text{if } y \in V \text{ and } y \neq y_0 \\ g'(y_0) & \text{if } y = y_0. \end{cases}$$

Then A is continuous at y_0 . To find $(g \circ f)'(x_0)$, observe that

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{A(f(x), f(x_0))(f(x) - f(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} A(f(x), f(x_0)) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g'(f(x_0))f'(x_0),$$

by the continuity of A at $f(x_0)$ and the differentiability of f at x_0 .

Remark. The rough idea of what we did here is

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g'(f(x_0))f'(x_0).$$

But does not quite work as stated since it might be that $f(x) = f(x_0)$ even if $x \neq x_0$. We can fix this by introducing the function A as we did in the proof, though the overall idea is the same.

Remark. If f is monotone near x_0 , then we can define the *inverse function* f^{-1} so that $(f^{-1} \circ f)(x) = x$ near x_0 . If $f'(x_0)$ exists, then by the chain rule applied to $x = (f^{-1} \circ f)(x)$ at $x = x_0$ we have

$$1 = \frac{d}{dx}(f^{-1} \circ f)(x_0) = \frac{d}{dx}f^{-1}(f(x_0)) \cdot f'(x_0) \implies \frac{d}{dx}f^{-1}(f(x_0)) = \frac{1}{f'(x_0)}.$$

Example 1.1.3. Let $f(x) = e^x$ with $f^{-1}(x) = \ln(x)$. Since $f'(x) = f(x) = e^x$, we have

$$\frac{d}{dx}f^{-1}(f(x_0)) = \frac{1}{f'(x_0)} \implies \frac{d}{dx}\ln(e^{x_0}) = \frac{1}{e^{x_0}}.$$

Letting $e^{x_0} = h$, we have $\frac{d}{dx} \ln(x)|_{x=h} = 1/h$, which recovers the familiar formula.

Jan. 11 — The Mean Value Theorem

2.1 The Mean Value Theorem

Lemma 2.1. Let $I \subseteq \mathbb{R}$ be open, $f: I \to \mathbb{R}$ is differentiable at $x_0 \in I$ and $f'(x_0) \neq 0$. Suppose $f'(x_0) > 0$, then there exists $\delta > 0$ such that for any $x \in (x_0 - \delta, x_0 + \delta)$,

- 1. if $x > x_0$, then $f(x) > f(x_0)$,
- 2. if $x < x_0$, then $f(x) < f(x_0)$.

Proof. Take $\epsilon = f'(x_0)/2$. By the definition of the derivative, there exists $\delta > 0$ such that for ay $|x - x_0| < \delta$, we have

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \epsilon = \frac{1}{2} f'(x_0).$$

By the triangle inequality,

$$\frac{f(x) - f(x_0)}{x - x_0} > \frac{1}{2}f'(x_0) > 0.$$

This quotient being positive immediately implies the desired results.

Theorem 2.1. If f(x) is differentiable in an open interval I and f obtains its local maximum (or minimum) at $x_0 \in I$, then $f'(x_0) = 0$.

Proof. Suppose otherwise that $f'(x_0) \neq 0$. Assume without loss of generality that $f'(x_0) > 0$. Then by the previous lemma, there exists $\delta > 0$ such that for $x \in (x_0 - \delta, x_0 + \delta)$, if $x > x_0$ then $f(x) > f(x_0)$ and if $x < x_0$ then $f(x) < f(x_0)$. So x_0 cannot be a local maximum or minimum, which is a contradiction. \square

Theorem 2.2 (Rolle's middle value theorem). Let f(x) be continuous on [a,b] and differentiable in (a,b). Suppose f(a) = f(b), then there exists $x_0 \in (a,b)$ such that $f'(x_0) = 0$.

Proof. Since f is continuous on a compact set, it obtains both a maximum and minimum on [a,b]. Let M be the maximum and m be the minimum. If M=m, then $f(x)\equiv M$ and f'(x)=0 everywhere. If M>m, then at least one of the maximum or minimum must be obtained at an interior point $x_0\in(a,b)$ since f(a)=f(b). By the previous theorem, $f'(x_0)=0$ at this point and we are done.

Example 2.0.1. Show that the equation $4ax^3 + 3bx^2 + 2cx = a + b + c$ has at least one root in (0,1).

Proof. Consider the equation

$$4ax^3 + 3bx^2 + 2cx - (a+b+c) = 0.$$

Notice that the left hand side is the derivative of the function

$$f(x) = ax^4 + bx^3 + cx^2 - (a+b+c)x.$$

So we just need to show that f'(x) = 0 for some x. For this, we can check that f(0) = f(1) = 0, and thus by Rolle's theorem there exists $x_0 \in (0,1)$ such that $f'(x_0) = 0$. So x_0 is a root.

Theorem 2.3 (Lagrange's middle value theorem). Let f_9x) be continuous on [a,b] and differentiable in (a,b). Then there exists $x_0 \in (a,b)$ such that

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}.$$

Proof. Subtract the secant line through (a, f(a)) and (b, f(b)) from f(x) to get

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Note that g(a) = g(b) = f(a). So by Rolle's theorem, there exists $x_0 \in (a, b)$ such that $g'(x_0) = 0$. But

$$0 = g'(x_0) = f'(x_0) - \frac{f(b) - f(a)}{b - a},$$

which is the desired result.

Corollary 2.3.1. Suppose $f \in C([a,b])$, i.e. f is continuous on [a,b], and that f is differentiable in (a,b). Then the following statements are equivalent:

- 1. $f'(x) \ge 0$ in (a, b),
- 2. f(x) is increasing, i.e. if $x_1 > x_2$, then $f(x_1) \ge f(x_2)$.

In particular, if f'(x) > 0 in (a,b), then f(x) is strictly increasing, i.e. if $x_1 > x_2$, then $f(x_1) > f(x_2)$.

Proof. $(2 \Rightarrow 1)$ For any $x_0 \in (a, b)$,

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

since $f(x_0 + h) - f(x_0) \ge 0$ for h > 0 as f is increasing.

 $(1 \Rightarrow 2)$ Take $x_1 > x_2$, then by Lagrange's theorem there exists $\xi \in (x_2, x_1)$ such that

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \ge 0.$$

So $f(x_1) \ge f(x_2)$. The strict version follows from changing the above inequality to a strict one.

2.2 Applications

Example 2.0.2. Show that

$$\frac{2}{2x+1} < \ln(1+1/x)$$

for any x > 0.

Proof. Let $f(x) = 2/(2x+1) - \ln(1+1/x)$. Taking the derivative yields

$$f'(x) = \frac{1}{(2x+1)^2 x(x+1)} > 0,$$

so f is strictly increasing in $(0, \infty)$. Note that $f \to 0$ as $x \to \infty$, so f(x) < 0 for all x > 0.

Example 2.0.3. Show that $b/a > b^a/a^b$ when b > a > 1.

Proof. Take log on both sides to get $\ln b - \ln a > a \ln b - b \ln a$. This gives

$$(b-1)\ln a > (a-1)\ln b \iff \frac{\ln a}{a-1} > \frac{\ln b}{b-1}.$$

Note that this is a monotonicity property. So let $f(x) = (\ln x)/(x-1)$ for x > 1. Then

$$f'(x) = \frac{x - 1 - x \ln x}{x(x - 1)^2} < 0$$

when x > 1 because $x - 1 - x \ln x < 0$. To see the last claim, define $g(x) = x - 1 - x \ln x$ and note that $g'(x) = -\ln x < 0$ for x > 1. But g(0) = 0, so g(x) < 0 for x > 1. So f is strictly decreasing. \Box

Example 2.0.4. Show that

$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x} = 1.$$

Proof. Let $f(x) = e^x$. Then there exists ξ between x and $\sin x$ such that

$$e^x - e^{\sin x} = (x - \sin x)e^{\xi(x)},$$

where the choice of ξ may vary for different x. Then

$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x} = \lim_{x \to 0} e^{\xi(x)}.$$

Now note that $\xi(x)$ is always between x and $\sin x$, which both tend to 0 as $x \to 0$. So by the squeeze theorem we have $\xi(x) \to 0$ as $x \to 0$ and thus $e^{\xi(x)} \to 1$ as $x \to 0$.

2.3 Cauchy's Mean Value Theorem

Theorem 2.4 (Cauchy's middle value theorem). Let $f, g \in C([a, b])$ and f, g be differentiable in (a, b). Suppose $g'(x) \neq 0$ for any $x \in (a, b)$. Then there exists $x_0 \in (a, b)$ such that

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Proof. Use a similar construction as before and let

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$$

Note that F(b) = F(a) = 0, so by Rolle's theorem there exists $x_0 \in (a, b)$ such that $F'(x_0) = 0$. Then

$$0 = F'(x_0) = f'(x_0) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x_0),$$

which implies the desired result.

Remark. The $g'(x) \neq 0$ condition guarantees that g is monotone, even if g' may fail to be continuous.

Remark. If g is a monotonically increasing function, we can view g as a mapping $g : [a, b] \to [g(a), g(b)]$, which we can view as a change of variables $x \mapsto u$. Since g is monotone, we have an inverse $x = g^{-1}(u)$. Then

$$f(x) = f(g^{-1}(u)) = (f \circ g^{-1})(u) = \widetilde{f}(u).$$

By Lagrange's theorem,

$$\frac{\widetilde{f}(g(b)) - \widetilde{f}(g(a))}{g(b) - g(a)} = \widetilde{f}'(u_0)$$

for some $u_0 \in (g(a, g(b)))$. Now note that

$$\widetilde{f}(g(b)) = (f \circ g^{-1})(g(b)) = f(b), \quad \widetilde{f}(g(a)) = f(a).$$

So the left-hand side is precisely

LHS =
$$\frac{f(b) - f(a)}{g(b) - g(a)}.$$

By the chain rule, we have

RHS =
$$\widetilde{f}'(u_0) = (f \circ g^{-1})'(u_0) = f'(g^{-1}(u_0))(g^{-1})'(u_0) = f'(x_0)\frac{1}{g'(x_0)}$$
.

This recovers Cauchy's mean value theorem. So they are equivalent even if Cauchy's seems stronger.

Jan. 16 — Taylor's Theorem

3.1 Darboux's Lemma

Lemma 3.1 (Darboux's lemma). If f is differentiable in (a,b), continuous on [a,b] and f'(a) < f'(b), then for any $c \in (f'(a), f'(b))$, there exists $x_0 \in (a,b)$ such that $f'(x_0) = c$.

Proof. See homework. \Box

Remark. There exists an example of a differentiable function f(x) but f'(x) is not continuous, e.g.

$$f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

We can compute that

$$f'(x) = \begin{cases} 2x \sin(1/x) - \cos(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0, \end{cases}$$

and we can verify as an exercise that f'(x) is not continuous at x = 0.

Remark. Darboux's lemma guarantees that $g'(x) \neq 0$ implies either g'(x) > 0 or g'(x) < 0 everywhere in the conditions for Cauchy's mean value theorem.

3.2 L'Hôpital's Rule

Theorem 3.1 (L'Hôpital's rule, 0/0). Let f, g be differentiable in (a, b), $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$, and $g'(x) \neq 0$ for any $x \in (a, b)$. Then if $\lim_{x\to a^+} f'(x)/g'(x)$ exists, we have

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

Proof. By Cauchy's theorem, for any $x \in (a, b)$, there exists $\xi(x) \in (a, x)$ such that

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi(x))}{g'(\xi(x))}.$$

If $x \to a^+$, then $\xi(x) \to a^+$, so

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},$$

as desired. \Box

Corollary 3.1.1. Let f, g be differentiable in (a, ∞) , $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$, and $g'(x) \neq 0$ for any $x \in (a, \infty)$. Then if $\lim_{x\to\infty} f'(x)/g'(x)$ exists, we have

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Proof. Assume a > 0. Define $\widetilde{f}(y) = f(1/y)$ and $\widetilde{g}(y) = g(1/y)$ with $y \in (0, 1/a)$. By L'Hôpital's rule,

$$\lim_{y\to 0^+}\frac{\widetilde{f}(y)}{\widetilde{g}(y)}=\lim_{y\to 0^+}\frac{\widetilde{f}'(y)}{\widetilde{g}'(y)}=\lim_{y\to \infty}\frac{f'(1/y)\cdot (-1/y^2)}{g'(1/y)\cdot (-1/y^2)}=\lim_{x\to \infty}\frac{f'(x)}{g'(x)},$$

as desired. \Box

Theorem 3.2 (L'Hôpital, ∞/∞). Let f, g be differentiable in (a, b), $\lim_{x\to a^+} |f(x)| = \lim_{x\to a^+} |g(x)| = \infty$, and $g'(x) \neq 0$ for any $x \in (a, b)$. Then if $\lim_{x\to a^+} f'(x)/g'(x)$ exists, we have

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}.$$

Proof. Left as an exercise.

Remark. Saying that the absolute values of f and g go to infinity works, since the existence of the limit rules out oscillatory behavior.

Remark. These cases of ∞/∞ and 0/0 are are called *indefinite types*. Other indefinite types include $0 \cdot \infty$, 0^0 , ∞^0 1^∞ , $\infty - \infty$, etc. But we can try to reduce them to the cases we know. For example, if $f(x) \to 0^+$ and $g(x) \to 0^+$ when $x \to x_0$, then $\lim_{x \to x_0} f(x)^{g(x)}$ is 0^0 . Letting $y(x) = f(x)^{g(x)}$, we can take the log to get

$$\ln y(x) = g(x) \ln f(x) = \frac{\ln f(x)}{1/g(x)} = \frac{\infty}{\infty}.$$

Example 3.0.1. We can see that (this is a $\infty - \infty$ case)

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{\cot x}{x} = \lim_{x \to 0^+} \frac{1 + x \cot x}{x^2} = \lim_{x \to 0^+} \frac{-(\cot x - x \csc^2 x)}{2x \sin^2 x}.$$

Note that $x \cot x = x \cos x / \sin x \to 1$ as $x \to 0$. Now note that $\sin x / x \to 1$ as $x \to 0$, so we continue with

$$\lim_{x \to 0^+} \frac{-(\cot x - x \csc^2 x)}{2x \sin^2 x} = \lim_{x \to 0^+} \frac{x - \sin x \cos x}{2x^3} \frac{x^2}{\sin^2 x}$$

Since $x^2/\sin^2 x \to 1$ as $x \to 0$, we can look at the remaining part to get

$$\lim_{x \to 0^+} \frac{x - \sin x \cos x}{2x^3} = \lim_{x \to 0^+} \frac{1 - \cos 2x}{6x^2} = \lim_{x \to 0^+} \frac{2\sin 2x}{12x} = \frac{1}{3}.$$

So $\lim_{x\to 0^+} (1/x^2 - \cot x/x) = 1/3$.

3.3 Taylor's Theorem

Theorem 3.3 (Peano remainder term). Let $f:[a,b] \to \mathbb{R}$ be differentiable at x=a up to nth order of derivatives, i.e. $f'(a), f''(a), \ldots, f^{(n)}(a)$ exist. Then as $x \to a^+$, we have

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$$

Call the polynomial part of the above $P_n(x)$, which is also known as the Taylor polynomial of order n.

Proof. To show that the error term is $o((x-a)^n)$, we have

$$\lim_{x \to a^{+}} \frac{f(x) - P_{n}(x)}{(x - a)^{n}} = \lim_{x \to a^{+}} \frac{f'(x) - P'_{n}(x)}{n(x - a)^{n-1}} = \frac{1}{n!} \lim_{x \to a^{+}} \left[\frac{f^{n-1}(x) - f^{n-1}(a)}{x - a} - f^{(n)}(a) \right] = 0$$

by L'Hôpital's rule, where we used the observation that $f^{(k)}(a) = P_n^{(k)}(a)$ for $1 \le k \le n$. The final step is a result of the existence of $f^{(n)}(a)$.

Lemma 3.2 (Rolle's theorem for higher order derivatives). Let $f \in C^n([a,b])$ and differentiable to (n+1) order. If $f'(a) = \cdots = f^{(n)}(a) = 0$ and f(a) = f(b), then there exists $x_0 \in (a,b)$ such that $f^{(n+1)}(x_0) = 0$.

Proof. Since f(a) = f(b), by the usual Rolle's theorem there exists $x_1 \in (a,b)$ such that $f'(x_1) = 0$. Then since $f'(a) = f'(x_1) = 0$, by Rolle's theorem again, there exists $x_2 \in (a,x_1)$ such that $f''(x_2) = 0$. Repeat this to get $x_{n+1} \in (a,x_n) \subseteq (a,b)$ such that $f^{(n+1)}(x_{n+1}) = 0$. Take $x_0 = x_{n+1}$ to finish. \square

Theorem 3.4 (Lagrange remainder term). Let $f \in C^n([a,b])$, in particular, $f'(a), \ldots, f^{(n)}(a)$ exist. Additionally, assume f is (n+1)-th differentiable in (a,b). Then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x) \quad \text{where} \quad R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

for some $\xi \in [a, x]$.

Proof. Define $P(x) = P_n(x) + \lambda(x-a)^{n+1}$, where we choose $\lambda \in \mathbb{R}$ such that P(b) = f(b), i.e.

$$\lambda = \frac{f(b) - P_n(b)}{(b-a)^{n+1}}.$$

Consider g(x) = f(x) - P(x), which satisfies g(a) = g(b) = 0 and $g'(a) = \cdots = g^{(n)}(a) = 0$. Then by Rolle's theorem (higher order), there exists $\xi \in (a,b)$ such that $g^{(n+1)}(\xi) = 0$. In other words,

$$f^{(n+1)}(\xi) - P^{(n+1)}(\xi) = 0 \implies f^{(n+1)}(\xi) - (n+1)! \underbrace{\frac{f(b) - P_n(b)}{(b-a)^{n+1}}}_{} = 0.$$

This implies that

$$f(b) = P_n(b) + \frac{1}{(n+1)!} f^{(n+1)}(\xi) (b-a)^{n+1},$$

and since we picked b arbitrarily (kind of), we can take b = x and we are done since $\xi \in [a, b]$.

¹Note that the (n + 1)-th derivative need not be continuous here.

Remark. The choice of ξ in Lagrange's remainder term may (and likely does) vary for different x.

Remark. The Taylor polynomial is unique in the sense that if $f:[a,b]\to\mathbb{R}$ and $f'(a),\ldots,f^{(n)}(a)$ exist, then if

$$f(x) = p(x) + o((x - a)^n)$$

as $x \to a^+$ for some polynomial p(x) with deg $p \le n$, then $p(x) = P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$. This is because if $Q(x) = p(x) - P_n(x)$, then by Taylor's formula (Peano form), we get

$$\lim_{x \to a^+} \frac{Q(x)}{(x-a)^n} = \lim_{x \to a^+} \frac{p(x) - \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k}{(x-a)^n} = 0.$$

From here this implies that Q(x) = 0 since $\deg Q \le n$. Another way to see this is to plug in x = a, which deletes everything except the constant, and then ignore the constant and divide by (x - a) to repeat.

Jan. 18 — Taylor Polynomials

4.1 Common Taylor Polynomials

We have

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}),$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + o(x^{2n}),$$

$$\cos = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + o(x^{2n+1}),$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^{n} + o(x^{n}),$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n-1}\frac{x^{n}}{n} + o(x^{n}).$$

4.2 Combining Taylor Polynomials

Remark. If a = 0 and f(x) is even in (-b, b), then

$$f(x) = \sum_{k=0}^{n/2} a_k x^{2k} + o(x^n).$$

Similarly if f(x) is odd in (-b, b), then

$$f(x) = \sum_{k=0}^{n/2} a_k x^{2k+1} + o(x^{n+1}).$$

Remark. To create new Taylor polynomials from known ones, we can observe that if $f(x) = P_n(x) + o((x-a)^n)$ and $g(x) = Q_n(x) + o((x-a)^n)$, then

$$f(x) + g(x) = (P_n(x) + Q_n(x)) + o((x - a)^n) \quad \text{and} \quad f(x)g(x) = \underbrace{(P_n(x)Q_n(x))}_{\text{take first } n \text{ terms}} + o((x - a)^n).$$

If $P_n(x) = \sum_{k=0}^n a_k(x-a)^k$ and $Q_n(x) = \sum_{k=0}^n b_k(x-a)^k$, then f(x)g(x) has Taylor polynomial $\sum_{k=0}^n c_k(x-a)^k$ where

$$c_k = \sum_{i=0}^k a_i b_{k-i}.$$

If h(x) = f(x)/g(x) and $g(x) \neq 0$ near x = a, then f(x) = h(x)g(x). Let $h(x) = \sum_{k=0}^{n} c_k(x-a)^k + o((x-a)^n)$, then

$$a_k = \sum_{i=0}^k c_i b_{k-i}$$

for $0 \le k \le n$, after which we can solve for the c_k .

Example 4.0.1. Find the Taylor polynomial for $\tan x$ up to n = 5.

Proof. Note that $\tan x$ is odd, so we can write

$$\tan x = x + a_3 x^3 + a_5 x^5 + o(x^5).$$

Now since $\tan x = \sin x / \cos x$, we have $\sin x = \tan x \cos x$, so

$$x - \frac{x^3}{6} + \frac{x^5}{5!} + o(x^5) = (x + a_3x^3 + a_5x^5)(1 - \frac{x^2}{2!} + \frac{x^4}{4!})$$

We can solve to get

$$\begin{cases} -\frac{1}{6} = -\frac{1}{2} + a_3 \\ \frac{1}{5!} = \frac{1}{4!} - \frac{a_3}{2!} + a_5 \end{cases} \implies a_3 = -\frac{1}{3}, \quad a_5 = \frac{2}{15}$$

as the coefficients for the Taylor polynomial.

Remark. If

$$f'(x) = \sum_{k=0}^{n} b_k(x-a)^k + o((x-a)^n),$$

then the anti-derivative of f(x) has

$$f(x) = f(x_0) + \sum_{k=0}^{n} a_{k+1}(x-a)k + 1 + o((x-a)^{n+1}),$$

where $a_{k+1} = b_k/(k+1)$ for $0 \le k \le n$. This is because

$$b_k = \frac{(f')^{(k)}(a)}{k!} = \frac{f^{(k+1)}(a)}{k!}$$
 and $a_{k+1} = \frac{f^{(k+1)}(a)}{k+1} = \frac{1}{k+1} \frac{f^{(k+1)}(a)}{k!} = \frac{b_k}{k+1}$.

Example 4.0.2. Find the Taylor polynomial for $f(x) = \arctan x$.

Proof. Recall that

$$f'(x) = \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k}.$$

Using the above we get

$$f(x) = \arctan x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$$

as the Taylor polynomial.

4.3 Applications for Taylor Polynomials

4.3.1 Finding Limits

Remark. Let $f(x) = ax^n + o(x^n)$ as $x \to 0$ and $g(x) = bx^n + o(x^n)$ where $b \neq 0$. Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{a}{b}.$$

Remark. For the polynomial of f(g(x)), we can do

$$f(u) = \sum_{k=0}^{n} a_k (u - g(a))^k + o((u - g(a))^n), \text{ where } u = g(x) = \sum_{k=0}^{n} b_k (x - a)^k + o((x - a)^n).$$

Then we can substitute in u = g(x) to find the overall polynomial.

Example 4.0.3. Find

$$\lim_{x \to 0} \frac{\sqrt{1 + 2\tan x} - e^x + x^2}{\arcsin x - \sin x}.$$

Proof. Note that

$$\sqrt{1+2\tan x} - e^x + x^2 = \frac{2x^3}{3} + o(x^3),$$
$$\arcsin x - \sin x = \frac{x^3}{3} + o(x^3).$$

So the desired limit is 2.

Remark. If $f(x) = ax^n + o(x^n)$ and $g(x) = bx^m + o(x^m)$ for $a, b \neq 0$, then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \begin{cases} a/b & \text{if } m = n, \\ 0 & \text{if } m < n, \\ \infty & \text{if } m > n. \end{cases}$$

Example 4.0.4. Assume $f(x) = 1 + ax^n + o(x^n)$ where $a \neq 0$ and

$$g(x) = \frac{1}{bx^n + o(x^n)}$$
, i.e. $\frac{1}{g(x)} = bx^n + o(x^n)$.

for $b \neq 0$. Then

$$\lim_{x \to 0} f(x)^{g(x)} = e^{a/b}.$$

Let $y(x) = f(x)^{g(x)}$, then $\ln y(x) = g(x) \ln f(x)$. Note that

$$\ln f(x) = \ln(1 + ax^n + o(x^n)) = ax^n + o(x^n),$$

so that

$$\frac{\ln f(x)}{1/g(x)} = \frac{ax^n + o(x^n)}{bx^n + o(x^n)} \to \frac{a}{b}$$

as $x \to 0$. Thus $\ln y(x) \to a/b$ and $y(x) \to e^{a/b}$ as $x \to 0$.

Example 4.0.5. Find

$$\lim_{x \to 0} \left[\cos(xe^x) - \ln(1-x) - x \right]^{\cot x^3}.$$

Proof. Here we have

$$f(x) = \cos(xe^x) - \ln(1-x) - x = 1 - \frac{2}{3}x^3 + o(x^3)$$
 and $\frac{1}{g(x)} = \tan x^3 = x^3 + o(x^3)$.

Thus the limit is $e^{-2/3}$.

4.3.2 Estimation

Example 4.0.6. Let f(x) be twice differentiable in [0,1] and f(0)=f(1). Further assume $|f''(x)| \leq M$ for $0 \leq x \leq 1$. Prove that $|f'(x)| \leq M/2$ for $0 \leq x \leq 1$.

Proof. Recall that Lagrange's form of Taylor's theorem says

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(\xi)}{2!}(x - a)^2$$

for some ξ between a and x. Thus for any $x \in (0,1)$, we have

$$f(1) = f(x) + f'(x)(1-x) + \frac{f''(\xi_1)}{2}(1-x)^2.$$

Similarly, we have

$$f(0) = f(x) + f'(x)(-x) + \frac{f''(\xi_2)}{2}x^2.$$

Here $x \leq \xi_1 \leq 1$ and $0 \leq \xi_2 \leq x$. Since f(1) = f(2), we can solve for f'(x) to get

$$f'(x) = \frac{f''(\xi_2)x^2 - f''(\xi_1)(1-x)^2}{2}.$$

Then taking absolute values yields

$$|f'(x)| \le M\left(\frac{x^2 + (1-x)^2}{2}\right) \le \frac{M}{2} \max_{0 \le x \le 1} \left[x^2 + (1-x)^2\right] = \frac{M}{2},$$

as desired.

Example 4.0.7. Let f(x) be twice differentiable in [0,1] and f'(a)=f'(b)=0. Then there exists $\xi\in(a,b)$ such that

$$|f''(\xi)| \ge 4 \frac{|f(a) - f(b)|}{(b-a)^2}.$$

Proof. Note that this is equivalent to

$$|f(b) - f(a)| \le f''(\xi) \left(\frac{b-a}{2}\right)^2.$$

Then we have

$$f\left(\frac{b+a}{2}\right) = f(a) + \frac{f''(\xi_1)}{2} \left(\frac{b-a}{2}\right)^2 = f(b) - \frac{f''(\xi_2)}{2} \left(\frac{b-a}{2}\right)^2,$$

so that

$$f(b) - f(a) = \frac{f''(\xi_2) + f''(\xi_1)}{2} \left(\frac{b-a}{2}\right)^2.$$

From here we have

$$|f(b) - f(a)| \le \underbrace{\frac{|f''(\xi_1)| + |f''(\xi_2)|}{2}}_{=|f''(\xi)|} \left(\frac{b-a}{2}\right)^2$$

for some $\xi \in (a,b)$ by Darboux's lemma, as desired.