Stable mixing estimates in the infinite Péclet number limit

Michele Coti Zelati[‡]

ABSTRACT. We consider a passive scalar f advected by a strictly monotone shear flow and with a diffusivity parameter $\nu \ll 1$. We prove an estimate on the homogeneous \dot{H}^{-1} norm of f that combines both the L^2 enhanced diffusion effect at a sharp rate proportional to $\nu^{1/3}$, and the sharp mixing decay proportional to t^{-1} of the \dot{H}^{-1} norm of f when $\nu=0$. In particular, the estimate is stable in the infinite Péclet number limit, as $\nu\to 0$. To the best of our knowledge, this is the first result of this kind since the work of Kelvin in 1887 on the Couette flow.

The two key ingredients in the proof are an adaptation of the hypocoercivity method and the use of a vector field J that commutes with the transport part of the equation. The L^2 norm of Jf together with the L^2 norm of f produces a suitable upper bound for the \dot{H}^{-1} norm of the solution that gives the extra decay factor of t^{-1} .

1. Introduction

Questions related to the understanding of the interaction between mixing and diffusion in fluid mechanics date back to the fundamental works of Kelvin [27] and Reynolds [34]. When considering a passive scalar $f:[0,\infty)\times\mathbb{T}\times\mathbb{R}\to\mathbb{R}$, advected by a shear $u:\mathbb{R}\to\mathbb{R}$ and diffused, one would like to study in a quantitative way the long-time behavior of solutions to the drift-diffusion equation

$$\begin{cases} \partial_t f + u \partial_x f = \nu \Delta f, & \text{in } (0, \infty) \times \mathbb{T} \times \mathbb{R}, \\ f(0, x, y) = f^{in}(x, y), & \text{in } \mathbb{T} \times \mathbb{R}. \end{cases}$$
(1.1)

Here, $\nu>0$ is the diffusivity coefficient, proportional to the inverse Péclet number, and f^{in} is a given mean-free initial datum. The case of the Couette flow u(y)=y is an enlightening example: the equation can be solved explicitly using the Fourier transform, giving

$$\widehat{f}(t,\ell,\eta) = \widehat{f^{in}}(\ell,\eta + \ell t) \exp\left\{-\nu \int_0^t \left[\ell^2 + |\eta + \ell t - \ell \tau|^2\right] d\tau\right\}, \qquad (\ell,\eta) \in \mathbb{Z} \times \mathbb{R}. \quad (1.2)$$

The term $\widehat{f^{in}}(\ell, \eta + \ell t)$ is due to *inviscid mixing*. For $\ell \neq 0$, it implies a transfer of information to high frequencies, producing, even when $\nu = 0$, a decay of solutions proportional to 1/t in the negative H_y^{-1} Sobolev norm, namely

$$\|\widehat{f}(t,\ell)\|_{H_y^{-1}} := \int_{\mathbb{R}} \frac{|\widehat{f}(t,\ell,\eta)|^2}{\ell^2 + \eta^2} d\eta \le \frac{2}{\sqrt{1 + (\ell t)^2}} \|\widehat{f^{in}}(\ell)\|_{H_y^1}, \qquad \forall t \ge 0.$$
 (1.3)

Consequently, we find

$$||f_{\neq}(t)||_{\dot{H}^{-1}} \le \frac{2}{\sqrt{1+t^2}} ||f_{\neq}^{in}||_{\dot{H}^1}, \quad \forall t \ge 0,$$
 (1.4)

where f_{\neq} denotes the projection of f onto non-zero modes in x, i.e. f minus its x-average. Note that the x-average of the equation is a conserved quantity for (1.1) when $\nu = 0$, so there is no hope of decay

²⁰⁰⁰ Mathematics Subject Classification. 35K15, 35Q35, 76F25, 76R50.

Key words and phrases. Mixing, enhanced diffusion, hypocoercivity, vector field, shear flows, drift-diffusion equation.

[#]m.coti-zelati@imperial.ac.uk, Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.

for the $\ell=0$ mode. On the other hand, for $\nu>0$, the (super) exponential factor in (1.2) causes a decay in L^2 of the type

$$\|\widehat{f}(t,\ell)\|_{L_n^2} \le e^{-\frac{1}{12}\nu\ell^2t^3} \|\widehat{f^{in}}(\ell)\|_{L_n^2}, \quad \forall t \ge 0.$$
 (1.5)

In particular, summing over all $\ell \neq 0$, we obtain

$$||f_{\neq}(t)||_{L^{2}} \le e^{-\frac{1}{12}\nu t^{3}} ||f_{\neq}^{in}||_{L^{2}}, \quad \forall t \ge 0.$$
 (1.6)

We refer to this estimate as *enhanced diffusion*, as it implies homogenization at a time-scale $O(\nu^{-\frac{1}{3}})$, hence much shorter than the diffusive time-scale $O(\nu^{-1})$. Again, the $\ell=0$ mode satisfies the one-dimensional heat equation, so the restrictions to all nonzero modes in x is necessary. The intriguing fact about the Couette flow is that the two estimates (1.4) and (1.6) can be combined in a single one, in the sense that one can prove that

$$||f_{\neq}(t)||_{\dot{H}^{-1}} \le \frac{2e^{-\frac{1}{12}\nu t^3}}{\sqrt{1+t^2}} ||f_{\neq}^{in}||_{\dot{H}^1}, \qquad \forall t \ge 0.$$
(1.7)

The above (1.7) is what we refer to as a *stable mixing estimate* in the infinite Péclet number limit, since there is no harm in setting $\nu=0$ and still obtaining non-trivial information about f, unlike in (1.6). Needless to say, having the explicit solution (1.2) at our disposal is crucial in deducing such estimate, and in fact this is essentially what Kelvin did in [27] back in 1887. To this date, (1.7) remains the only stable mixing estimate available in the literature.

1.1. The main results. The goal of this paper is to prove stable mixing estimates for (1.1) for a large class of strictly monotone shear flows. Assume that $u \in C^3$ and that there exists $\mathfrak{U} \geq 1$ such that

$$\frac{1}{\mathfrak{U}} \le u'(y), \qquad \frac{|u''(y)|}{u'(y)} \le \mathfrak{U}, \qquad \frac{|u'''(y)|}{u'(y)} \le \mathfrak{U}, \qquad \forall y \in \mathbb{R}. \tag{H}$$

Let f be the solution to (1.1) or to the hypoelliptic drift-diffusion equation

$$\begin{cases} \partial_t f + u \partial_x f = \nu \partial_{yy} f, & \text{in } (0, \infty) \times \mathbb{T} \times \mathbb{R}, \\ f(0, x, y) = f^{in}(x, y), & \text{in } \mathbb{T} \times \mathbb{R}. \end{cases}$$
(1.8)

Consider the L^2 -weighted norm defined by

$$||f||_{u'}^2 := ||f||_{L^2}^2 + ||u'f||_{L^2}^2.$$
(1.9)

Throughout the article, the initial datum f^{in} is required to satisfy $||f_{\neq}^{in}||_{u'} < \infty$. Our main result is a detailed study of the longtime dynamics of (1.8), including a stable mixing estimate resembling (1.7).

THEOREM 1.1. There exist $C_0 \ge 1$ and $\varepsilon_0, \nu_0 \in (0,1)$ only depending on $\mathfrak U$ such that if $\nu \in [0,\nu_0]$ we have the enhanced diffusion estimate

$$||f_{\neq}(t)||_{u'} \le C_0 e^{-\varepsilon_0 \nu^{1/3} t} ||f_{\neq}^{in}||_{u'}, \quad \forall t \ge 0,$$
 (1.10)

and the stable mixing estimate

$$||f_{\neq}(t)||_{\dot{H}^{-1}} \le C_0 \frac{e^{-\varepsilon_0 \nu^{1/3} t}}{\sqrt{1+t^2}} \left[||f_{\neq}^{in}||_{u'} + ||\partial_y f_{\neq}^{in}||_{u'} \right], \qquad \forall t \ge 0.$$
 (1.11)

In particular, if $\nu = 0$ we obtain the inviscid mixing estimate

$$||f_{\neq}(t)||_{\dot{H}^{-1}} \le \frac{C_0}{\sqrt{1+t^2}} \left[||f_{\neq}^{in}||_{u'} + ||\partial_y f_{\neq}^{in}||_{u'} \right], \qquad \forall t \ge 0.$$
 (1.12)

All the constants can be computed explicitly.

Before we proceed to explain the main ideas of the proofs and expand on the concepts of mixing and enhanced diffusion, a few remarks are in order.

REMARK 1.2 (On the class of shear flows). In addition to strict monotonicity, assumption (H) essentially imposes a growth condition at $|y| \to \infty$ on u and its derivatives. Besides small perturbations of the Couette flow, such as

$$u(y) = y + \frac{1}{2}\sin y,$$

it allows up to exponential growth at infinity, including

$$u(y) = y + e^y$$
, and $u(y) = y(1 + |y|^{n-1})$,

for $n \ge 3$ (for n = 2, one has to smooth out at y = 0, but of course quadratic grow at infinity is allowed). What is not included is highly oscillatory shear flows, such as

$$u(y) = y + \frac{1}{2} \int_0^y \sin(z^2) dz,$$

for which $\frac{1}{2} \le u' \le \frac{3}{2}$, but such that $u''(y) = y \cos(y^2)$, violating (H).

REMARK 1.3 (On the weighted norm). The choice of the norm (1.9) appears naturally in the proof, and precisely accounts for the possible growth at infinity of u'. In the particular case $u(y) = y^2$, this choice has been made in [16] for proving an enhanced dissipation estimate of the type (1.10) for the vorticity in the Navier-Stokes equations near the Poiseuille flow. Usually, this choice implies a logarithmic loss in the decay rate (1.10), while in our case, due to strict monotonicity, this loss can be avoided. Notice that if u' is assumed to be bounded, the norm simply reduces to the standard L^2 norm.

REMARK 1.4 (On the super exponential decay). The enhanced diffusion estimate (1.10) is a semi-group estimate for the linear operator appearing in (1.8). Whether a super-exponential decay of the type present in (1.6) or (1.7) holds for flows different than the Couette flow is an open question, and it is related to the spectral properties of the linear operator $L = iku(y) - \nu \partial_{yy}$. In particular, when u(y) = y, the operator L has empty spectrum, which is a necessary condition for a semigroup to decay faster than exponentially.

REMARK 1.5 (Hypoellipticity). All the estimates of Theorem 1.1 can be made more precise by stating them for each x-Fourier mode, similarly to (1.3) and (1.5). In particular, it can be proven that for each $\ell \neq 0$ there holds

$$\|\widehat{f}(t,\ell)\|_{u'} \le C_0 e^{-\varepsilon_0 \nu^{1/3} |\ell|^{2/3} t} \|\widehat{f^{in}}(\ell)\|_{u'},$$

for every $t \ge 0$. As noted in [6], this estimate is particularly relevant for the hypoelliptic equation (1.8), since it provides a quantification of the instantaneous regularization from L^2 to Gevrey- $\frac{3}{2}$ even if no diffusion in x is present in the equation. For a precise statement, see Theorem 4.1 below.

REMARK 1.6 (The Batchelor scale). The characteristic filamentation length scale of f can be defined in terms of the ratio

$$\lambda(t) = \frac{\|f(t)\|_{\dot{H}^{-1}}}{\|f(t)\|_{L^2}}.$$

In many situations it is expected (see [33] and references therein) that $\lambda(t) \to c_{\nu} > 0$, as $t \to \infty$ (possibly in a time-averaged sense) and whenever $\nu > 0$. Our result is not in contrast with this prediction, as it is conceivable to think that the constant ε_0 appearing in (1.10) is in fact bigger than that appearing in (1.11). Moreover, we only provide upper bounds, which do not say much about the behavior of $\lambda(t)$. However, it is worth keeping in mind that the exponent 1/3 is optimal, and that when $\nu=0$ the result implies that $\lambda(t) \to 0$ as $t \to \infty$ whenever $f_{\neq}^{in} \neq 0$.

1.2. Mixing and enhanced diffusion. One of the main effects of transport is the generation of an averaging effect that creates smaller and smaller spatial scales as time increases. Thinking on the Fourier side, this is equivalent to the accumulation of energy in higher and higher Fourier modes, as precisely described by the term $\widehat{f^{in}}(\ell, \eta + \ell t)$ in (1.2) in the specific example of the Couette flow. It is therefore not surprising that a way to quantify this is through the decay of a negative Sobolev norm, as in (1.12). In the context of passive scalars, this point of view was introduced in [31], and it is deeply connected with the regularity of transport equations [12, 18, 26, 45], the quantification and lower bounds on mixing

rates [1,6,19,25,32,36,46], and the inviscid damping in the two-dimensional Euler equations linearized around shear flows [8,17,23,40,42,43,47–49].

On the other hand, once a passive scalar is well concentrated at high frequencies, diffusion becomes the dominant effect. Understanding at which ν -dependent time-scale this happens is fundamental in order to capture correctly the dynamics. An enhanced diffusion estimate of the type (1.10) precisely tells us that on a short time-scale $O(\nu^{-1/3})$, the solution becomes x-independent, while its x-average remains order 1 until the diffusive time-scale $O(\nu^{-1})$. This separation of time-scales has been the object of study in a vast part of the fluid mechanics literature [2,21,28,35]. The rigorous mathematical study has been initiated in [13], and has become of great interest in the last years [3–7,9–11,13,14,20,22,24,29,30,39,40].

1.3. Main ideas. The proof of the enhanced diffusion estimate (1.10) is based on a modification of the so-called hypocoercivity method [38]. In the context of fluid mechanics, it was successfully used for the first time in [3] to study the Kolmogorov flow $u(y) = \sin y$, and then for general shear flows in [6] on a periodic domain or a bounded periodic channel. Other examples include circular flows [15], the 2D Navier-Stokes equations [16, 41] and the Boussinesq equations [37]. Although the proof is very simple due to strict monotonicity, a proof in the spatial domain $\mathbb{T} \times \mathbb{R}$ is not present in the literature, and we decided to include it here to make the paper self-contained.

Estimate (1.11) is the real novelty of this article. It relies on the observation that the vector field

$$J = \partial_y + tu'\partial_x \tag{1.13}$$

commutes with the transport part of (1.8). Hence, the idea is to apply the hypocoercivity method not only to f, but also to Jf. In view of the fact that the commutator $[J, \partial_{yy}] \neq 0$, the scheme is much more involved and has to be carried out simultaneously for f and Jf. Once a proper enhanced diffusion estimate of the type (1.10) is proven for both f and Jf, one simply uses the fact that (see Lemma 3.2)

$$t||f||_{\dot{H}^{-1}} \lesssim ||f||_{L^2} + ||Jf||_{L^2}.$$

The above inequality holds thanks to the monotonicity assumption in (H). The vector field (1.13) was used in the context of inviscid damping for the for the 2D β -plane equation [44].

1.4. Notation and conventions. All the proofs are carried out for the harder case of the hypoelliptic equation (1.8). Throughout the paper, $\|\cdot\|$ and $\langle\cdot,\cdot\rangle$ denote the standard L^2 norm and scalar product respectively. Via an expansion of f as a Fourier series in the x variable, namely

$$f(t,x,y) = \sum_{\ell \in \mathbb{Z}} \widehat{f}(t,\ell,y) e^{i\ell x}, \qquad \widehat{f}(t,\ell,y) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t,x,y) e^{-ikx} dx,$$

for $k \in \mathbb{N}_0$ we set

4

$$f_k(t, x, y) := \sum_{|\ell| = k} \widehat{f}(t, \ell, y) e^{i\ell x}.$$
(1.14)

This way we may express

$$f(t, x, y) = \sum_{k \in \mathbb{N}_0} f_k(t, x, y)$$

as a sum of *real-valued* functions f_k that are localized in x-frequency on a single band $\pm k$, $k \in \mathbb{N}_0$. We thus see that (1.8) decouples in k and becomes an infinite system of one-dimensional equations.

Given two operators A, B, the symbol [A, B] = AB - BA denotes the commutator between the two. Unless otherwise stated, all the constants will be *independent* of ν and k, but may depend on \mathfrak{U} .

2. Hypocoercivity for the passive scalar

In this section, we tackle the question of enhanced diffusion for f. This is carried out by the so-called hypocoercivity method and the construction of a suitable energy functional. Let

$$\alpha = \alpha_0 \frac{\nu^{2/3}}{k^{2/3}}, \qquad \beta = \beta_0 \frac{\nu^{1/3}}{k^{4/3}}, \qquad \gamma = \gamma_0 \frac{1}{k^2}.$$
 (2.1)

where

$$\alpha_0 = \frac{1}{4 \times 350406}, \quad \beta_0 = 4\alpha_0^2, \quad \gamma_0 = 128\alpha_0^3.$$
 (2.2)

For each $k \in \mathbb{N}$, define the functional

$$\Phi_k = \frac{1}{2} \left[\|f_k\|^2 + \alpha \|\partial_y f_k\|^2 + 2\beta \langle u' \partial_x f_k, \partial_y f_k \rangle + \gamma \|u' \partial_x f_k\|^2 \right], \tag{2.3}$$

where f_k is given by (1.14). It is important to notice that the choice (2.1) and (2.2) implies that Φ_k is coercive. Indeed, since

$$2\beta |\langle u'\partial_x f_k, \partial_y f_k \rangle| \le 2\beta ||u'\partial_x f_k|| ||\partial_y f_k|| \le \frac{\alpha}{2} ||\partial_y f_k||^2 + \frac{2\beta^2}{\alpha} ||u'\partial_x f_k||^2,$$

and, in particular,

$$\frac{\beta^2}{\alpha\gamma} \le \frac{1}{4},$$

we find that

$$\frac{1}{4} \left[2\|f\|^2 + \alpha \|\partial_y f\|^2 + \gamma \|u'\partial_x f\|^2 \right] \le \Phi_k \le \frac{1}{4} \left[2\|f\|^2 + 3\alpha \|\partial_y f\|^2 + 3\gamma \|u'\partial_x f\|^2 \right]. \tag{2.4}$$

Then main result of this section is the derivation of a suitable differential inequality for Φ_k , contained in the proposition below.

PROPOSITION 2.1. Assume that $\nu k^{-1} \leq 1$. For every $t \geq 0$, there holds

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi_k + 2\varepsilon_0 \nu^{1/3} k^{2/3} \Phi_k + \frac{\nu}{4} \|\partial_y f_k\|^2 + \frac{\nu \alpha}{2} \|\partial_{yy} f_k\|^2 + \frac{\nu \gamma}{2} \|u' \partial_{xy} f_k\|^2 \le 0, \tag{2.5}$$

where

$$\varepsilon_0 := \frac{\beta_0}{32\mathfrak{U}^2} \tag{2.6}$$

and β_0 is given in (2.2).

As we shall see in a moment, the choice of the coefficients (2.2) and (2.6) is an overkill in the proof of Proposition 2.1, but will be necessary for Proposition 3.1. Since we do not want to make two different choices in the parameters, we opted for a unified selection.

2.1. Energy balances. We begin by computing the time derivative of Φ_k . At this stage, we omit the subscript in all the functions, keeping in mind the useful relation $\|\partial_x f\| = k\|f\|$ in the estimates. Relying on the antisymmetry of the transport term, we test (1.8) by f and derive the energy balance

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|f\|^2 + \nu\|\partial_y f\|^2 = 0. \tag{2.7}$$

Regarding the L^2 balance for $\partial_u f$, we obtain

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\partial_y f\|^2 + \nu\|\partial_{yy} f\|^2 = -\langle u'\partial_x f, \partial_y f\rangle,\tag{2.8}$$

where the right-hand side above appears because of the commutator relation $[\partial_y, u\partial_x] = u'\partial_x$. Turning to the β -term in (2.3), we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle u'\partial_x f, \partial_y f \rangle = \nu \left[\langle u'\partial_{xyy} f, \partial_y f \rangle + \langle u'\partial_x f, \partial_{yyy} f \rangle \right] - \langle u'\partial_x (u\partial_x f), \partial_y f \rangle - \langle u'\partial_x f, \partial_y (u\partial_x f) \rangle$$

$$= -2\nu \langle u'\partial_{xy} f, \partial_{yy} f \rangle - \nu \langle u''\partial_x f, \partial_{yy} f \rangle - \|u'\partial_x f\|^2, \tag{2.9}$$

where we integrated by parts, used the antisymmetry of $u''\partial_x$ and the crucial relation $[u\partial_x, u'\partial_x] = 0$. Finally, the time derivative of the γ -term in (2.3) can be computed as

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u'\partial_x f\|^2 = \nu \langle u'\partial_x, u'\partial_{xyy} f \rangle - \langle u'\partial_x, u'\partial_x (u\partial_x f) \rangle
= -\nu \|u'\partial_{xy} f\|^2 - 2\nu \langle u'u''\partial_x f, \partial_{xy} f \rangle
= -\nu \|u'\partial_{xy} f\|^2 + \nu \langle (u'u'')'\partial_x f, \partial_x f \rangle.$$

Therefore,

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u'\partial_x f\|^2 + \nu\|u'\partial_{xy} f\|^2 = \nu\langle (u'u'')'\partial_x f, \partial_x f\rangle. \tag{2.10}$$

Collecting (2.7), (2.8), (2.9) and (2.10) we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \nu \|\partial_y f\|^2 + \nu \alpha \|\partial_{yy} f\|^2 + \beta \|u'\partial_x f\|^2 + \nu \gamma \|u'\partial_{xy} f\|^2 = -\alpha \langle u'\partial_x f, \partial_y f\rangle
- 2\nu \beta \langle u'\partial_{xy} f, \partial_{yy} f\rangle - \nu \beta \langle u''\partial_x f, \partial_{yy} f\rangle + \nu \gamma \langle (u'u'')'\partial_x f, \partial_x f\rangle.$$
(2.11)

We now proceed in estimating the error terms above, one by one.

2.2. Error estimates and proof of Proposition 2.1. In what follows, we will repeatedly use the Cauchy-Schwarz and Young inequalities without mention. We begin from the α -term in the right-hand side of (2.11). We have

$$\alpha |\langle u'\partial_x f, \partial_y f\rangle| \le \alpha ||u'\partial_x f|| ||\partial_y f|| \le \frac{\nu}{2} ||\partial_y f||^2 + \frac{\alpha^2}{2\nu} ||u'\partial_x f||^2.$$

Since by (2.1)-(2.2) we have

$$\frac{\alpha^2}{\beta\nu} \le \frac{1}{2},$$

we find

$$\alpha |\langle u'\partial_x f, \partial_y f \rangle| \le \frac{\nu}{2} ||\partial_y f||^2 + \frac{\beta}{4} ||u'\partial_x f||^2. \tag{2.12}$$

For the first of the β -terms in (2.11), we have

$$2\nu\beta|\langle u'\partial_{xy}f,\partial_{yy}f\rangle| \leq 2\nu\beta||u'\partial_{xy}f|||\partial_{yy}f|| \leq \frac{\nu\alpha}{4}||\partial_{yy}f||^2 + \frac{4\nu\beta^2}{\alpha}||u'\partial_{xy}f||^2,$$

so that since (2.2) implies that

$$\frac{\beta^2}{\alpha\gamma} = \frac{1}{8},\tag{2.13}$$

we obtain

$$2\nu\beta|\langle u'\partial_{xy}f,\partial_{yy}f\rangle| \le \frac{\nu\alpha}{4} \|\partial_{yy}f\|^2 + \frac{\gamma\nu}{2} \|u'\partial_{xy}f\|^2. \tag{2.14}$$

The second β -term can be instead estimated as

$$\nu\beta|\langle u''\partial_x f, \partial_{yy} f\rangle| \le \nu\beta||u''\partial_x f|||\partial_{yy} f|| \le \frac{\nu\alpha}{4}||\partial_{yy} f||^2 + \frac{\nu\beta^2}{\alpha}||u''\partial_x f||^2,$$

so that using (2.13) and (H) we have

$$\nu\beta|\langle u''\partial_x f, \partial_{yy} f\rangle| \le \frac{\nu\alpha}{4} \|\partial_{yy} f\|^2 + \mathfrak{U}^2 \frac{\nu\gamma}{8} \|u'\partial_x f\|^2. \tag{2.15}$$

Lastly, we have

$$\nu\gamma|\langle (u'u'')'\partial_x f, \partial_x f\rangle| \le 2\nu\mathfrak{U}^2\gamma \|u'\partial_x f\|^2. \tag{2.16}$$

Collecting (2.12), (2.14), (2.15), (2.16) and using (2.11) we arrive at

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \frac{\nu}{2}\|\partial_y f\|^2 + \frac{\nu\alpha}{2}\|\partial_{yy} f\|^2 + \frac{3\beta}{4}\|u'\partial_x f\|^2 + \frac{\nu\gamma}{2}\|u'\partial_{xy} f\|^2 \le 3\mathfrak{U}^2 \nu\gamma \|u'\partial_x f\|^2. \tag{2.17}$$

Looking at the right-hand side of (2.17), recalling that $\nu k^{-1} \leq 1$ and using (2.1), we have

$$3\mathfrak{U}^2 \nu \gamma \|u'\partial_x f\|^2 = 3\mathfrak{U}^2 \frac{\gamma_0}{\beta_0} \left(\frac{\nu}{k}\right)^{2/3} \beta \|u'\partial_x f\|^2 \le \frac{\beta}{4} \|u'\partial_x f\|^2,$$

where we used that from (2.2) we have

$$\frac{\gamma_0}{\beta_0} = 32\alpha_0 \le \frac{1}{12\mathfrak{U}^2}.$$

Thus, (2.17) becomes

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \frac{\nu}{2}\|\partial_y f\|^2 + \frac{\nu\alpha}{2}\|\partial_{yy} f\|^2 + \frac{\beta}{2}\|u'\partial_x f\|^2 + \frac{\nu\gamma}{2}\|u'\partial_{xy} f\|^2 \le 0. \tag{2.18}$$

In view of (2.1) and (H), this implies

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \frac{\beta k^2}{4\mathfrak{U}^2} \|f\|^2 + \frac{\nu}{2} \|\partial_y f\|^2 + \frac{\beta}{4} \|u'\partial_x f\|^2 + \frac{\nu\alpha}{2} \|\partial_{yy} f\|^2 + \frac{\nu\gamma}{2} \|u'\partial_{xy} f\|^2 \le 0,$$

or, equivalently,

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \frac{\beta_0}{8\mathfrak{U}^2}\nu^{1/3}k^{2/3} \left[2\|f\|^2 + \frac{2\mathfrak{U}^2}{\alpha_0\beta_0}\alpha\|\partial_y f\|^2 + \frac{2\mathfrak{U}^2}{\gamma_0}\gamma\|u'\partial_x f\|^2 \right]
+ \frac{\nu}{4}\|\partial_y f\|^2 + \frac{\nu\alpha}{2}\|\partial_{yy} f\|^2 + \frac{\nu\gamma}{2}\|u'\partial_{xy} f\|^2 \le 0.$$

In light of (2.2), we have

$$\frac{2\mathfrak{U}^2}{\alpha_0\beta_0} \ge 3, \qquad \frac{2\mathfrak{U}^2}{\gamma_0} \ge 3.$$

Using (2.4) we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi + \frac{\beta_0}{4\mathfrak{U}^2}\nu^{1/3}k^{2/3}\Phi + \frac{\nu}{4}\|\partial_y f\|^2 + \frac{\nu\alpha}{2}\|\partial_{yy} f\|^2 + \frac{\nu\gamma}{2}\|u'\partial_{xy} f\|^2 \le 0.$$

In particular, this implies (2.5), and the proof of Proposition 2.1 is concluded.

3. Hypocoercivity and the vector field method

Let us define the vector field

$$J = \partial_y + tu'\partial_x,\tag{3.1}$$

and, for each $k \in \mathbb{N}$, the corresponding energy functional

$$\mathcal{J}_k = \frac{1}{2} \left[\|Jf_k\|^2 + \alpha \|\partial_y Jf_k\|^2 + 2\beta \langle u'\partial_x Jf_k, \partial_y Jf_k \rangle + \gamma \|u'\partial_x Jf_k\|^2 \right], \tag{3.2}$$

where the various coefficients are exactly the same as in (2.1)-(2.2). Thus, in particular, there holds

$$\frac{1}{4} \left[2\|Jf_k\|^2 + \alpha \|\partial_y Jf_k\|^2 + \gamma \|u'\partial_x Jf_k\|^2 \right] \le \mathcal{J}_k \le \frac{1}{4} \left[2\|Jf_k\|^2 + 3\alpha \|\partial_y Jf_k\|^2 + 3\gamma \|u'\partial_x Jf_k\|^2 \right]. \tag{3.3}$$

The goal here is to prove a result analogous to Proposition 2.1, but with a slightly more complicated form.

PROPOSITION 3.1. Assume that $\nu k^{-1} \leq \nu_0$, where

$$\nu_0 := \left(\frac{\beta_0}{4 \times 7008 \mathfrak{U}^8}\right)^{3/2}.\tag{3.4}$$

For every $t \geq 0$, there holds

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{J}_k + 2\varepsilon_0 \nu^{1/3} k^{2/3} \mathcal{J}_k \le 3504 \nu \mathfrak{U}^6 \left[\|\partial_y f_k\|^2 + \alpha \|\partial_{yy} f_k\|^2 + \gamma \|u' \partial_{xy} f_k\|^2 \right], \tag{3.5}$$

where ε_0 is the same as in (2.6) and β_0 is given in (2.2).

The proof of the above result is vaguely reminiscent of that of Proposition 2.1, and it will be carried out in the next sections.

3.1. The vector field and inviscid mixing estimates. Before going to the proof, let us clarify the reason of the choice of the vector field in (3.1). We apply J to the advection diffusion equation (1.8). Since

$$[J, \partial_t + u\partial_x] = 0$$

and

$$[J, \partial_{yy}] = -tu'''\partial_x - 2tu''\partial_{xy} = -\frac{u'''}{u'}(J - \partial_y) - 2u''\partial_y \left(\frac{1}{u'}(J - \partial_y)\right)$$
$$= \frac{u'''}{u'}(J - \partial_y) - 2\partial_y \left(\frac{u''}{u'}(J - \partial_y)\right),$$

we have that

$$\partial_t J f + u \partial_x J f = \nu \partial_{yy} J f + \nu \frac{u'''}{u'} (J f - \partial_y f) - 2\nu \partial_y \left(\frac{u''}{u'} (J f - \partial_y f) \right). \tag{3.6}$$

It is clear from the above computation why the strict monotonicity requirement on u is important. The crucial property of J is that, combined with the L^2 norm of f_k , it provides a bound on the \dot{H}^{-1} norm of f_k itself, with an extra factor of t. This is essentially contained in [44].

LEMMA 3.2. Let $k \in \mathbb{N}$. There there holds

$$kt \|f_k(t)\|_{\dot{H}^{-1}} \le 2\mathfrak{U}^2 \left[\|f_k(t)\| + \|Jf_k(t)\| \right],$$
 (3.7)

for every t > 0.

PROOF OF LEMMA 3.2. For each $k \in \mathbb{N}$, let us define the "stream-function" ψ_k as the solution to the elliptic problem

$$\Delta \psi_k = f_k$$

with appropriate periodic boundary conditions in x, decay in y, and mean zero condition. Then, a series of integration by parts entails

$$t\|\nabla\partial_{x}\psi_{k}\|^{2} = -t\langle\partial_{x}\psi_{k},\partial_{x}f_{k}\rangle = -\langle\partial_{x}\psi_{k},\frac{1}{u'}tu'\partial_{x}f_{k}\rangle = -\langle\partial_{x}\psi_{k},\frac{1}{u'}(Jf_{k}-\partial_{y}f_{k})\rangle$$

$$= -\langle\partial_{x}\psi_{k},\frac{1}{u'}Jf_{k}\rangle + \langle\frac{1}{u'}\partial_{x}\psi_{k},\partial_{y}f_{k}\rangle = -\langle\partial_{x}\psi_{k},\frac{1}{u'}Jf_{k}\rangle - \langle\partial_{y}(\frac{1}{u'}\partial_{x}\psi_{k}),f_{k}\rangle\rangle$$

$$\leq \mathfrak{U}\|\partial_{x}\psi_{k}\|\|Jf_{k}\| + \mathfrak{U}[\|\partial_{xy}\psi_{k}\| + \mathfrak{U}\|\partial_{x}\psi_{k}\|]\|f_{k}\|.$$

Thus

$$t\|\nabla \partial_x \psi_k\| \le 2\mathfrak{U}^2 \left[\|f_k\| + \|Jf_k\| \right],$$

which readily implies (3.7) and concludes the proof.

The power of this technique can be understood by looking at (3.6) for $\nu = 0$. In that case, we find

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\|f_k\|^2 + \|Jf_k\|^2 \right] = 0,$$

and since $Jf_k(0) = \partial_y f_k^{in}$, we find from (3.7) that

$$(kt)^2 ||f_k(t)||_{\dot{H}^{-1}}^2 \le 4\mathfrak{U}^4 \left[||f_k^{in}||^2 + ||\partial_y f_k^{in}||^2 \right].$$

This implies (1.12), and in fact it does not even require the weighted L^2 norm. However, the proof of (1.11) is much more involved.

3.2. Energy balances. As in Section 2.1, we omit the dependence on k of the various functions. We begin by testing (3.6) with Jf. We have

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|Jf\|^2 + \nu\|\partial_y Jf\|^2 = \nu\left[\left\langle\frac{u'''}{u'}(Jf - \partial_y f), Jf\right\rangle - 2\left\langle\partial_y\left(\frac{u''}{u'}(Jf - \partial_y f)\right), Jf\right\rangle\right]$$

Thus, integrating by parts the last term entails

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|Jf\|^2 + \nu\|\partial_y Jf\|^2 = \nu E_0 \tag{3.8}$$

where

$$E_0 = \langle \frac{u'''}{u'} (Jf - \partial_y f), Jf \rangle + 2 \langle \frac{u''}{u'} (Jf - \partial_y f), \partial_y Jf \rangle.$$
 (3.9)

Taking ∂_y of (3.6), we have

$$\partial_t \partial_y Jf + u \partial_{xy} Jf = \nu \partial_{yyy} Jf + \nu \partial_y \left(\frac{u'''}{u'} (Jf - \partial_y f) \right) - 2\nu \partial_{yy} \left(\frac{u''}{u'} (Jf - \partial_y f) \right) - u' \partial_x Jf.$$

Thus, multiplying by $\partial_u Jf$ in L^2 , we have

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\partial_y Jf\|^2 + \nu \|\partial_{yy} Jf\|^2 = \nu \left[\langle \partial_y \left(\frac{u'''}{u'} (Jf - \partial_y f) \right), \partial_y Jf \rangle - 2 \langle \partial_{yy} \left(\frac{u''}{u'} (Jf - \partial_y f) \right), \partial_y Jf \rangle \right] \\
- \langle u' \partial_x Jf, \partial_y Jf \rangle \\
= - \nu \left[\langle \frac{u'''}{u'} (Jf - \partial_y f), \partial_{yy} Jf \rangle - 2 \langle \partial_y \left(\frac{u''}{u'} (Jf - \partial_y f) \right), \partial_{yy} Jf \rangle \right] \\
- \langle u' \partial_x Jf, \partial_y Jf \rangle$$

As a consequence,

$$\frac{1}{2}\frac{d}{dt}\|\partial_y Jf\|^2 + \nu\|\partial_{yy} Jf\|^2 = E_1,$$
(3.10)

having defined

$$E_{1} = \nu \left[\langle \frac{u'u''' + 2(u'')^{2}}{(u')^{2}} (Jf - \partial_{y}f), \partial_{yy}Jf \rangle - 2\langle \frac{u''}{u'} (\partial_{y}Jf - \partial_{yy}f), \partial_{yy}Jf \rangle \right] - \langle u'\partial_{x}Jf, \partial_{y}Jf \rangle.$$
(3.11)

Turning to the β -term in (3.2), using (3.6) and several integration by parts we have

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle u' \partial_x Jf, \partial_y Jf \rangle + \|u' \partial_x Jf\|^2 \\ &= \nu \left[\langle u' \partial_{xyy} Jf, \partial_y Jf \rangle + \langle u' \partial_x Jf, \partial_{yyy} Jf \rangle \right. \\ &+ \langle u' \partial_x \left(\frac{u'''}{u'} (Jf - \partial_y f) \right), \partial_y Jf \rangle + \langle u' \partial_x Jf, \partial_y \left(\frac{u'''}{u'} (Jf - \partial_y f) \right) \rangle \\ &- 2 \langle u' \partial_{xy} \left(\frac{u''}{u'} (Jf - \partial_y f) \right), \partial_y Jf \rangle - 2 \langle u' \partial_x Jf, \partial_{yy} \left(\frac{u''}{u'} (Jf - \partial_y f) \right) \rangle \right] \\ &= \nu \left[-2 \langle u' \partial_{xy} Jf, \partial_{yy} Jf \rangle - \langle u'' \partial_x Jf, \partial_{yy} Jf \rangle - 2 \langle u''' \partial_x Jf, \partial_y Jf \rangle \right. \\ &- 4 \langle u'' \partial_y f, \partial_{xy} Jf \rangle - 4 \langle \frac{u' u''' - (u'')^2}{u'} \partial_x Jf, \partial_y Jf \rangle - \langle \frac{6 u' u''' - 4 (u'')^2}{u'} \partial_y f, \partial_{xy} Jf \rangle \\ &+ 2 \langle u'' \partial_x Jf, \frac{u''}{u'} (\partial_y Jf - \partial_y yf) \rangle - \langle u'' \partial_x Jf, \frac{u' u''' - 2 (u'')^2}{(u')^2} \partial_y f \rangle \right], \end{split}$$

implying

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle u'\partial_x Jf, \partial_y Jf \rangle + \|u'\partial_x Jf\|^2 = \nu E_2, \tag{3.12}$$

for E_2 defined as

$$E_{2} = \left[-2\langle u'\partial_{xy}Jf, \partial_{yy}Jf \rangle - \langle u''\partial_{x}Jf, \partial_{yy}Jf \rangle - 2\langle u'''\partial_{x}Jf, \partial_{y}Jf \rangle - 4\langle u''\partial_{xy}Jf, \partial_{xy}Jf \rangle - 4\langle u'''\partial_{xy}Jf, \partial_{xy}Jf \rangle - \langle \frac{6u'u''' - 4(u'')^{2}}{u'}\partial_{x}Jf, \partial_{y}Jf \rangle - \langle \frac{6u'u''' - 4(u'')^{2}}{u'}\partial_{y}f, \partial_{xy}Jf \rangle + 2\langle u''\partial_{x}Jf, \frac{u''}{u'}(\partial_{y}Jf - \partial_{yy}f) \rangle - \langle u''\partial_{x}Jf, \frac{u'u''' - 2(u'')^{2}}{(u')^{2}}\partial_{y}f \rangle \right].$$
(3.13)

Lastly, for the γ -term we argue as in (2.10) and obtain

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u'\partial_x Jf\|^2 + \nu \|u'\partial_{xy} Jf\|^2
= \nu \left[\langle (u'u'')'\partial_x Jf, \partial_x Jf \rangle + \langle u'''\partial_x (Jf - \partial_y f), u'\partial_x Jf \rangle \right]
- 2\langle u'\partial_{xy} \left(\frac{u''}{u'} (Jf - \partial_y f) \right), u'\partial_x Jf \rangle \right]
= \nu \left[\langle (4(u'')^2 + u'u''')\partial_x Jf, \partial_x Jf \rangle - \langle (4(u'')^2 + u'u''')\partial_{xy} f, \partial_x Jf \rangle \right]
- 2\langle u''\partial_{xy} f, u'\partial_{xy} Jf \rangle \right].$$

Therefore,

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u'\partial_x Jf\|^2 + \nu\|u'\partial_{xy} Jf\|^2 = \nu E_3,\tag{3.14}$$

where

$$E_3 = \langle (4(u'')^2 + u'u''')\partial_x Jf, \partial_x Jf \rangle - \langle (4(u'')^2 + u'u''')\partial_{xy}f, \partial_x Jf \rangle - 2\langle u''\partial_{xy}f, u'\partial_{xy}Jf \rangle.$$
(3.15)

Collecting (3.8), (3.10), (3.12) and (3.14) we end up with

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{J} + \nu \|\partial_y Jf\|^2 + \nu \alpha \|\partial_{yy} Jf\|^2 + \beta \|u'\partial_x Jf\|^2 + \gamma \nu \|u'\partial_{xy} Jf\|^2$$

$$= \nu E_0 + \alpha E_1 + \nu \beta E_2 + \nu \gamma E_3. \tag{3.16}$$

To reach (3.5), we now have to estimate all the error terms in a suitable way.

3.3. Error estimates. In what follows, we will make heavy use of the assumption (H), keeping track of the dependence on $\mathfrak U$ of all the constants. The error term E_0 in (3.9) is easily estimated as

$$|E_0| \le \frac{1}{4} \|\partial_y Jf\|^2 + 10\mathfrak{U}^2 \|Jf\|^2 + 9\mathfrak{U}^2 \|\partial_y f\|^2.$$
(3.17)

Turning to E_1 in (3.11), we notice that the last term is essentially estimated as in (2.12), exploiting the fact that

$$\frac{\alpha^2}{\beta\nu} = \frac{1}{4},$$

and obtaining

$$\alpha \left| \langle u' \partial_x Jf, \partial_y Jf \rangle \right| \le \frac{\nu}{4} \|\partial_y Jf\|^2 + \frac{\beta}{4} \|u' \partial_x Jf\|^2$$

As for the other terms.

$$\left| \langle \frac{u'u''' + 2(u'')^{2}}{(u')^{2}} (Jf - \partial_{y}f), \partial_{yy}Jf \rangle - 2 \langle \frac{u''}{u'} (\partial_{y}Jf - \partial_{yy}f), \partial_{yy}Jf \rangle \right|$$

$$\leq \mathfrak{U} \left[3\mathfrak{U} \|Jf\| \|\partial_{yy}Jf\| + 3\mathfrak{U} \|\partial_{y}f\| \|\partial_{yy}Jf\| + 2\|\partial_{y}Jf\| \|\partial_{yy}Jf\| + 2\|\partial_{yy}f\| \|\partial_{yy}Jf\| \right]$$

$$\leq \frac{1}{4} \|\partial_{yy}Jf\|^{2} + 36\mathfrak{U}^{4} \|Jf\|^{2} + 36\mathfrak{U}^{4} \|\partial_{y}f\|^{2} + 16\mathfrak{U}^{2} \|\partial_{y}Jf\|^{2} + 16\mathfrak{U}^{2} \|\partial_{yy}f\|^{2}.$$

Thus,

$$\alpha |E_1| \leq \frac{\nu}{4} ||\partial_y Jf||^2 + \frac{\beta}{4} ||u'\partial_x Jf||^2 + \frac{\alpha \nu}{4} ||\partial_{yy} Jf||^2 + 36\alpha \nu \mathfrak{U}^4 ||Jf||^2 + 36\alpha \nu \mathfrak{U}^4 ||\partial_y f||^2 + 16\alpha \nu \mathfrak{U}^2 ||\partial_y Jf||^2 + 16\alpha \nu \mathfrak{U}^2 ||\partial_{yy} f||^2.$$
 (3.18)

We now deal with E_2 in (3.13). Like in (2.14) and (2.15), recalling that

$$\frac{\beta^2}{\alpha\gamma} = \frac{1}{8},\tag{3.19}$$

we have

$$2\nu\beta|\langle u'\partial_{xy}Jf,\partial_{yy}Jf\rangle| \le \frac{\nu\alpha}{4}\|\partial_{yy}Jf\|^2 + \frac{\nu\gamma}{2}\|u'\partial_{xy}Jf\|^2,\tag{3.20}$$

and

$$\nu\beta|\langle u''\partial_x Jf, \partial_{yy} Jf\rangle| \le \frac{\nu\alpha}{4} \|\partial_{yy} Jf\|^2 + \frac{\nu\gamma}{8} \|u''\partial_x Jf\|^2. \tag{3.21}$$

The other terms are estimated as

$$\begin{split} \nu\beta & \left| -2\langle u'''\partial_x Jf, \partial_y Jf \rangle - 4\langle u''\partial_{yy}f, \partial_{xy}Jf \rangle - 4\langle \frac{u'u''' - (u'')^2}{u'}\partial_x Jf, \partial_y Jf \rangle \right. \\ & - \langle \frac{6u'u''' - 4(u'')^2}{u'}\partial_y f, \partial_{xy}Jf \rangle + 2\langle u''\partial_x Jf, \frac{u''}{u'}(\partial_y Jf - \partial_{yy}f) \rangle \\ & - \langle u''\partial_x Jf, \frac{u'u''' - 2(u'')^2}{(u')^2}\partial_y f \rangle \right| \\ & \leq \beta\nu \left[12\mathfrak{U}^2 \|u'\partial_x Jf\| \|\partial_y Jf\| + 4\mathfrak{U}\|u'\partial_{xy}Jf\| \|\partial_y yf\| + 10\mathfrak{U}^2 \|u'\partial_{xy}Jf\| \|\partial_y f\| \right. \\ & + 2\mathfrak{U}^2 \|u'\partial_x Jf\| \|\partial_y yf\| + 3\mathfrak{U}^3 \|u'\partial_x Jf\| \|\partial_y f\| \right] \\ & \leq \frac{\beta}{4} \|u'\partial_x Jf\|^2 + \frac{\gamma\nu}{8} \|u'\partial_{xy}Jf\|^2 + 1152\beta\nu^2\mathfrak{U}^4 \|\partial_y Jf\|^2 + \frac{400\beta^2\nu\mathfrak{U}^4}{\gamma} \|\partial_y f\|^2 \\ & + \frac{64\beta^2\nu\mathfrak{U}^2}{\gamma} \|\partial_y yf\|^2 + 27\beta\nu^2\mathfrak{U}^6 \|\partial_y f\|^2 + 12\beta\nu^2\mathfrak{U}^4 \|\partial_y yf\|^2. \end{split}$$

Taking into account (3.19) and collecting (3.20), (3.21) and the estimates above, we have

$$\nu\beta|E_{2}| \leq \frac{\nu\alpha}{2} \|\partial_{yy}Jf\|^{2} + \frac{5\nu\gamma}{8} \|u'\partial_{xy}Jf\|^{2} + \frac{\beta}{4} \|u'\partial_{x}Jf\|^{2} + \mathfrak{U}^{2} \frac{\nu\gamma}{8} \|u'\partial_{x}Jf\|^{2} + 1152\beta\nu^{2}\mathfrak{U}^{4} \|\partial_{y}Jf\|^{2} + 50\alpha\nu\mathfrak{U}^{4} \|\partial_{y}f\|^{2} + 8\alpha\nu\mathfrak{U}^{2} \|\partial_{yy}f\|^{2} + 27\beta\nu^{2}\mathfrak{U}^{6} \|\partial_{y}f\|^{2} + 12\beta\nu^{2}\mathfrak{U}^{4} \|\partial_{yy}f\|^{2}.$$
(3.22)

Lastly, looking at (3.15), we have

$$|E_{3}| = \langle (4(u'')^{2} + u'u''')\partial_{x}Jf, \partial_{x}Jf \rangle - \langle (4(u'')^{2} + u'u''')\partial_{xy}f, \partial_{x}Jf \rangle - 2\langle u''\partial_{xy}f, u'\partial_{xy}Jf \rangle$$

$$\leq 5\mathfrak{U}^{2} \|u'\partial_{x}Jf\|^{2} + 5\mathfrak{U}^{2} \|u'\partial_{x}Jf\| \|u'\partial_{xy}f\| + \mathfrak{U}\|u'\partial_{xy}Jf\| \|u'\partial_{xy}f\|$$

$$\leq \frac{1}{8} \|u'\partial_{xy}Jf\|^{2} + 7\mathfrak{U}^{2} \|u'\partial_{x}Jf\|^{2} + 8\mathfrak{U}^{2} \|u'\partial_{xy}f\|^{2}.$$

$$(3.23)$$

Now that all the errors have been properly controlled, we are ready to prove Proposition 3.1.

3.4. Proof of Proposition 3.1. Collecting (3.17), (3.18), (3.22) and (3.23) into (3.16) we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{J} + \frac{\nu}{2}\|\partial_{y}Jf\|^{2} + \frac{\nu\alpha}{4}\|\partial_{yy}Jf\|^{2} + \frac{\beta}{2}\|u'\partial_{x}Jf\|^{2} + \frac{\gamma\nu}{4}\|u'\partial_{xy}Jf\|^{2}
\leq 1168\mathfrak{U}^{6}\nu\left[(1+\alpha)\|Jf\|^{2} + (\alpha+\beta\nu)\|\partial_{y}Jf\|^{2} + \gamma\|u'\partial_{x}Jf\|^{2}
+ (1+\alpha+\beta\nu)\|\partial_{y}f\|^{2} + (\alpha+\beta\nu)\|\partial_{yy}f\|^{2} + \gamma\|u'\partial_{xy}f\|^{2}\right].$$
(3.24)

Recall that $\nu k^{-1} \leq 1$ and that (2.1)-(2.2) in particular implies that

$$\beta_0 \le \alpha_0 \le 1$$
.

Computing all the coefficients of the above errors, we have

$$1 + \alpha \le 2$$
, $\alpha + \beta \nu \le 2\alpha \le 2\alpha_0$, $1 + \alpha + \beta \nu \le 3$,

so that

12

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{J} + \frac{\nu}{2}\|\partial_{y}Jf\|^{2} + \frac{\nu\alpha}{4}\|\partial_{yy}Jf\|^{2} + \frac{\beta}{2}\|u'\partial_{x}Jf\|^{2} + \frac{\gamma\nu}{4}\|u'\partial_{xy}Jf\|^{2}
\leq 3504\mathfrak{U}^{6}\nu[\|Jf\|^{2} + \alpha_{0}\|\partial_{y}Jf\|^{2} + \gamma\|u'\partial_{x}Jf\|^{2} + \|\partial_{y}f\|^{2} + \alpha\|\partial_{yy}f\|^{2} + \gamma\|u'\partial_{xy}f\|^{2}].$$

In light of the restriction $\nu k^{-1} \le \nu_0$ given by (3.4), we have

$$3504\nu\mathfrak{U}^{6}\left[\|Jf\|^{2} + \gamma\|u'\partial_{x}Jf\|^{2}\right] \leq \frac{7008\mathfrak{U}^{8}}{\beta_{0}} \frac{\nu^{2/3}}{k^{2/3}}\beta\|u'\partial_{x}Jf\|^{2} \leq \frac{\beta}{4}\|u'\partial_{x}Jf\|^{2},$$

Using once more the expression of α_0 in (2.2), (3.24) becomes

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{J} + \frac{\nu}{4} \|\partial_y Jf\|^2 + \frac{\nu \alpha}{4} \|\partial_{yy} Jf\|^2 + \frac{\beta}{4} \|u'\partial_x Jf\|^2 + \frac{\gamma \nu}{4} \|u'\partial_{xy} Jf\|^2
\leq 3504 \mathfrak{U}^6 \nu [\|\partial_y f\|^2 + \alpha \|\partial_{yy} f\|^2 + \gamma \|u'\partial_{xy} f\|^2].$$

We now proceed as we did after (2.18), arriving after a few easy computations at

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{J} + \frac{\beta_0}{16\mathfrak{U}^2} \nu^{1/3} k^{2/3} \mathcal{J} + \frac{\nu \alpha}{4} \|\partial_{yy} Jf\|^2 + \frac{\gamma \nu}{4} \|u' \partial_{xy} Jf\|^2
\leq 3504 \mathfrak{U}^6 \nu [\|\partial_y f\|^2 + \alpha \|\partial_{yy} f\|^2 + \gamma \|u' \partial_{xy} f\|^2].$$

This is equivalent to (3.5), and therefore the proof is over.

4. Weighted estimates in the energy norm

The Fourier-localized version of Theorem 1.1 is the following result.

THEOREM 4.1. There exist $C_0 \ge 1$ and $\varepsilon_0, \nu_0 \in (0,1)$ only depending on $\mathfrak U$ such that if $\nu k^{-1} \in [0,\nu_0]$ we have the enhanced diffusion estimate

$$||f_k(t)||_{u'} \le C_0 e^{-\varepsilon_0 \nu^{1/3} k^{2/3} t} ||f_k^{in}||_{u'}, \quad \forall t \ge 0,$$
 (4.1)

and the stable mixing estimate

$$||f_k(t)||_{\dot{H}^{-1}} \le C_0 \frac{e^{-\varepsilon_0 \nu^{1/3} k^{2/3} t}}{\sqrt{1 + (kt)^2}} \left[||f_k^{in}||_{u'} + ||\partial_y f_k^{in}||_{u'} \right], \quad \forall t \ge 0.$$
(4.2)

In particular, if $\nu=0$ we obtain the inviscid mixing estimate

$$||f_k(t)||_{\dot{H}^{-1}} \le \frac{C_0}{\sqrt{1+(kt)^2}} \left[||f_k^{in}||_{u'} + ||\partial_y f_k^{in}||_{u'} \right], \quad \forall t \ge 0.$$

All the constants can be computed explicitly.

PROOF OF THEOREM 4.1. We will restrict ourselves to the proof of (4.2). The proof of (4.1) is analogous, and we will only highlight the differences whenever they arise. Again, dependences on k of various functions are forgotten during the proof. Set

$$\delta_0 := \frac{1}{4 \times 3504 \mathfrak{U}^6}.\tag{4.3}$$

From (2.5) and the above (3.5) we deduce in particular that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\Phi + \delta_0 \mathcal{J} \right] + 2\varepsilon_0 \nu^{1/3} k^{2/3} \left[\Phi + \delta_0 \mathcal{J} \right] \le 0. \tag{4.4}$$

By combining (2.7), (3.8), (3.17) and (4.3), we find that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\|f\|^2 + \delta_0 \|Jf\|^2 \right] + \nu \left[2\|\partial_y f\|^2 + \delta_0 \|\nabla Jf\|^2 \right] \le \frac{\nu}{6\mathfrak{U}^2} \|Jf\|^2.$$

Since

$$||Jf||^2 \le 2||\partial_y f||^2 + 2k^2t^2\mathfrak{U}^2||f||^2,$$

we find that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\|f\|^2 + \delta_0 \|Jf\|^2 \right] + \nu \left[\|\partial_y f\|^2 + \delta_0 \|\partial_y Jf\|^2 \right] \le \frac{1}{3} \nu k^2 t^2 \|f\|^2. \tag{4.5}$$

In a similar manner, (2.10), (3.14), (3.23) and (4.3) imply that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\|u'\partial_x f\|^2 + \delta_0 \|u'\partial_x J f\|^2 \right] \le 7\mathfrak{U}^2 \nu \left[\|u'\partial_x f\|^2 + \delta_0 \|u'\partial_x J f\|^2 \right].$$

In particular, dividing everything by k^2 , an application of the Gronwall lemma gives

$$||u'f(t)||^2 + \delta_0 ||u'Jf(t)||^2 \le e^{7\mathfrak{U}^2\nu t} \left[||u'f^{in}||^2 + \delta_0 ||u'\partial_y f^{in}||^2 \right], \qquad \forall t \ge 0.$$
 (4.6)

Define

$$T_{\nu,k} = \frac{1}{\nu^{1/3}k^{2/3}}.$$

We divide the proof in two cases.

Case $t \ge T_{\nu,k}$. We integrate (4.5) on $(0,T_{\nu,k})$ and use that $Jf(0) = \partial_y f^{in}$ and that $||f(t)|| \le ||f^{in}||$ to arrive at

$$\nu \int_{0}^{T_{\nu,k}} \left[\|\partial_{y} f(t)\|^{2} + \delta_{0} \|\partial_{y} J f(t)\|^{2} \right] dt \leq \frac{1}{3} \nu k^{2} \int_{0}^{T_{\nu,k}} t^{2} \|f(t)\|^{2} dt + \|f^{in}\|^{2} + \delta_{0} \|\partial_{y} f^{in}\|^{2} \\
\leq \nu k^{2} T_{\nu,k}^{3} \|f^{in}\|^{2} + \|f^{in}\|^{2} + \delta_{0} \|\partial_{y} f^{in}\|^{2} \\
\leq 2 \left[\|f^{in}\|^{2} + \delta_{0} \|\partial_{y} f^{in}\|^{2} \right].$$

Thus, by the mean value theorem there exists $t_{\star} \in (0, T_{\nu,k})$ such that

$$\nu T_{\nu,k} \left[\|\partial_{u} f(t_{\star})\|^{2} + \delta_{0} \|\partial_{u} J f(t_{\star})\|^{2} \right] \leq 2 \left[\|f^{in}\|^{2} + \delta_{0} \|\partial_{u} f^{in}\|^{2} \right].$$

Rewriting and keeping in mind (2.1) and that $\alpha_0 \leq 1$, it follows that

$$\alpha \left[\|\nabla f(t_{\star})\|^{2} + \delta_{0} \|\nabla J f(t_{\star})\|^{2} \right] \leq 2 \left[\|f^{in}\|^{2} + \delta_{0} \|\partial_{y} f^{in}\|^{2} \right]. \tag{4.7}$$

On the other hand, by integrating (4.5) on $(0, t_{\star})$ we have

$$||f(t_{\star})||^{2} + \delta_{0}||Jf(t_{\star})||^{2} \leq \frac{1}{3}\nu k^{2} \int_{0}^{t_{\star}} t^{2}||f(t)||^{2} dt + ||f^{in}||^{2} + \delta_{0}||\partial_{y}f^{in}||^{2}$$

$$\leq \nu k^{2}T_{\nu,k}^{3}||f^{in}||^{2} + ||f^{in}||^{2} + \delta_{0}||\partial_{y}f^{in}||^{2}$$

$$\leq 2 \left[||f^{in}||^{2} + \delta_{0}||\partial_{y}f^{in}||^{2}\right]. \tag{4.8}$$

Moreover, by (4.6) and the restriction (3.4), we also deduce that

$$||u'f(t_{\star})||^{2} + \delta_{0}||u'Jf(t_{\star})||^{2} \leq e^{7\mathfrak{U}^{2}\nu T_{\nu,k}} \left[||u'f^{in}||^{2} + \delta_{0}||u'\partial_{y}f^{in}||^{2} \right] \leq 2 \left[||u'f^{in}||^{2} + \delta_{0}||u'\partial_{y}f^{in}||^{2} \right]. \tag{4.9}$$

Now, using that from (4.4) we know that $\Phi + \delta_0 \mathcal{J}$ is decreasing, we have from (2.4), (3.3) and (4.7) and (4.8) and (4.9) (and the fact that $\gamma_0 \leq 1$) that

$$\Phi(T_{\nu,k}) + \delta_0 \mathcal{J}(T_{\nu,k}) \leq \Phi(t_{\star}) + \delta_0 \mathcal{J}(t_{\star})
\leq \frac{1}{4} \Big[2(\|f(t_{\star})\|^2 + \delta_0 \|Jf(t_{\star})\|^2) + 3\alpha(\|\partial_y f(t_{\star})\|^2 + \delta_0 \|\partial_y Jf(t_{\star})\|^2)
+ 3\gamma(\|u'\partial_x f(t_{\star})\|^2 + \delta_0 \|u'\partial_x Jf(t_{\star})\|^2) \Big]
\leq \frac{1}{4} \Big[2(\|f(t_{\star})\|^2 + \delta_0 \|Jf(t_{\star})\|^2) + 3\alpha(\|\partial_y f(t_{\star})\|^2 + \delta_0 \|\partial_y Jf(t_{\star})\|^2)
+ 3\gamma_0 (\|u'f(t_{\star})\|^2 + \delta_0 \|u'Jf(t_{\star})\|^2) \Big]
\leq 2 \Big[\|f^{in}\|^2 + \delta_0 \|\partial_y f^{in}\|^2 + \|u'f^{in}\|^2 + \delta_0 \|u'\partial_y f^{in}\|^2 \Big]
\leq 2 \Big[\|f^{in}\|^2_{u'} + \delta_0 \|\partial_y f^{in}\|^2_{u'} \Big],$$
(4.10)

where the norm $\|\cdot\|_{u'}$ is defined in (1.9). Thus, for $t \geq T_{\nu,k}$ we have from (2.4), (3.3), (4.4) and (4.10) that

$$\frac{\delta_{0}\gamma_{0}}{4} \left[\|f(t)\|_{u'}^{2} + \|Jf(t)\|_{u'}^{2} \right] \leq \Phi(t) + \delta_{0}\mathcal{J}(t)
\leq e^{-2\varepsilon_{0}\nu^{1/3}k^{2/3}(t-T_{\nu,k})} \left[\Phi(T_{\nu,k}) + \delta_{0}\mathcal{J}(T_{\nu,k}) \right]
\leq 2e^{2\varepsilon_{0}} e^{-2\varepsilon_{0}\nu^{1/3}k^{2/3}t} \left[\|f^{in}\|_{u'}^{2} + \delta_{0}\|\partial_{y}f^{in}\|_{u'}^{2} \right].$$
(4.11)

Thus since $\delta_0 \leq 1$ and $\varepsilon_0 \ll 1$,

$$||f(t)||_{u'}^2 + ||Jf(t)||_{u'}^2 \le \frac{20}{\delta_0 \gamma_0} e^{-2\varepsilon_0 \nu^{1/3} k^{2/3} t} \left[||f^{in}||_{u'}^2 + ||\partial_y f^{in}||_{u'}^2 \right], \qquad \forall t \ge \frac{1}{\nu^{1/3} k^{2/3}},$$

as we wanted.

14

Case $t \in [0, T_{\nu,k})$. Notice that we are done if we can prove that

$$||f(t)||_{u'}^2 + ||Jf(t)||_{u'}^2 \le C \left[||f^{in}||_{u'}^2 + ||\partial_y f^{in}||_{u'}^2 \right], \qquad \forall t \le \frac{1}{\nu^{1/3} k^{2/3}}.$$

for some C > 0. From (4.5) and the Gronwall lemma, it follows that

$$||f(t)||^2 + \delta_0 ||Jf(t)||^2 \le e^{\nu k^2 t^3} \left[||f^{in}||^2 + \delta_0 ||\partial_y f^{in}||^2 \right] \le e \left[||f^{in}||^2 + \delta_0 ||\partial_y f^{in}||^2 \right].$$

Analogously, using (4.6) (this is essentially (4.9)), we also have

$$||u'f(t)||^2 + \delta_0 ||u'Jf(t)||^2 \le e[||u'f^{in}||^2 + \delta_0 ||u'\partial_y f^{in}||^2].$$

Hence,

$$||f(t)||_{u'}^2 + ||Jf(t)||_{u'}^2 \le \frac{e}{\delta_0} \left[||f^{in}||_{u'}^2 + ||\partial_y f^{in}||_{u'}^2 \right], \qquad \forall t \le \frac{1}{\nu^{1/3} k^{2/3}}, \tag{4.12}$$

as we were trying to prove. Putting together (4.11) and (4.12) we have

$$||f(t)||_{u'}^2 + ||Jf(t)||_{u'}^2 \le \frac{20}{\delta_0 \gamma_0} e^{-2\varepsilon_0 \nu^{1/3} k^{2/3} t} \left[||f^{in}||_{u'}^2 + ||\partial_y f^{in}||_{u'}^2 \right], \qquad \forall t \ge 0.$$
 (4.13)

Having (4.13) at our disposal, we only need to invoke Lemma 3.2, so that (4.2) follows immediately. The proof of (4.1) is exactly the same, just not considering the parts involving the functional \mathcal{J} in the above argument. The proof is therefore concluded.

Acknowledgements. The author is indebted with T.M. Elgindi and K. Widmayer for endless and inspiring discussions, especially concerning the use of the vector field method in these problems, and with G. Iyer, A. Mazzuccato and C. Nobili for clarifications regarding the Batchelor scale.

References

- [1] G. Alberti, G. Crippa, and A. L. Mazzucato, *Exponential self-similar mixing by incompressible flows*, J. Amer. Math. Soc. **32** (2019), no. 2, 445–490.
- [2] K. Bajer, A. P Bassom, and A. D Gilbert, Accelerated diffusion in the centre of a vortex, Journal of Fluid Mechanics 437 (2001), 395–411.
- [3] M. Beck and C. E. Wayne, Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 5, 905–927.
- [4] J. Bedrossian, P. Germain, and N. Masmoudi, *Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold case*, ArXiv e-prints (June 2015), available at 1506.03720.
- [5] J. Bedrossian, P. Germain, and N. Masmoudi, *Dynamics near the subcritical transition of the 3D Couette flow II: Above threshold case*, ArXiv e-prints (June 2015), available at 1506.03721.
- [6] J. Bedrossian and M. Coti Zelati, Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows, Arch. Ration. Mech. Anal. 224 (2017), no. 3, 1161–1204.
- [7] J. Bedrossian, M. Coti Zelati, and N. Glatt-Holtz, *Invariant Measures for Passive Scalars in the Small Noise Inviscid Limit*, Comm. Math. Phys. **348** (2016), no. 1, 101–127.
- [8] J. Bedrossian, M. Coti Zelati, and V. Vicol, *Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations*, Ann. PDE **5** (2019), no. 1, Art. 4, 192.
- [9] J. Bedrossian, P. Germain, and N. Masmoudi, *On the stability threshold for the 3D Couette flow in Sobolev regularity*, Ann. of Math. (2) **185** (2017), no. 2, 541–608.
- [10] J. Bedrossian, N. Masmoudi, and V. Vicol, *Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the two dimensional Couette flow*, Arch. Ration. Mech. Anal. **219** (2016), no. 3, 1087–1159.

- [11] J. Bedrossian, V. Vicol, and F. Wang, *The Sobolev stability threshold for 2D shear flows near Couette*, J. Nonlinear Sci. **28** (2018), no. 6, 2051–2075.
- [12] A. Bressan, A lemma and a conjecture on the cost of rearrangements, Rend. Sem. Mat. Univ. Padova 110 (2003), 97–102.
- [13] P. Constantin, A. Kiselev, L. Ryzhik, and A. Zlatos, *Diffusion and mixing in fluid flow*, Ann. of Math. (2) **168** (2008), no. 2, 643–674.
- [14] M. Coti Zelati, M. G. Delgadino, and T. M. Elgindi, *On the relation between enhanced dissipation time-scales and mixing rates*, to appear in Comm. Pure Appl. Math., ArXiv e-prints (June 2018), available at 1806.03258.
- [15] M. Coti Zelati and M. Dolce, Separation of time-scales in drift-diffusion equations on ℝ², arXiv e-prints (July 2019), available at 1907.04012.
- [16] M. Coti Zelati, T. M. Elgindi, and K. Widmayer, *Enhanced dissipation in the Navier-Stokes equations near the Poiseuille flow*, arXiv e-prints (Jan. 2019), available at 1901.01571.
- [17] M. Coti Zelati and C. Zillinger, On degenerate circular and shear flows: the point vortex and power law circular flows, Comm. Partial Differential Equations 44 (2019), no. 2, 110–155.
- [18] G. Crippa and C. De Lellis, *Estimates and regularity results for the DiPerna-Lions flow*, J. Reine Angew. Math. **616** (2008), 15–46.
- [19] G. Crippa, R. Lucà, and C. Schulze, Polynomial mixing under a certain stationary Euler flow, Phys. D 394 (2019), 44–55.
- [20] W. Deng, Resolvent estimates for a two-dimensional non-self-adjoint operator, Commun. Pure Appl. Anal. 12 (2013), no. 1, 547–596.
- [21] B Dubrulle and S Nazarenko, On scaling laws for the transition to turbulence in uniform-shear flows, Euro. Phys. Lett. 27 (1994), no. 2, 129.
- [22] T. Gallay, Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices, Arch. Ration. Mech. Anal. 230 (2018), no. 3, 939–975.
- [23] E. Grenier, T. T. Nguyen, F. Rousset, and A. Soffer, *Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method*, ArXiv e-prints (Apr. 2018), available at 1804.08291.
- [24] S. Ibrahim, Y. Maekawa, and N. Masmoudi, On pseudospectral bound for non-selfadjoint operators and its application to stability of Kolmogorov flows, ArXiv e-prints (Oct. 2017), available at 1710.05132.
- [25] G. Iyer, A. Kiselev, and X. Xu, Lower bounds on the mix norm of passive scalars advected by incompressible enstrophyconstrained flows, Nonlinearity 27 (2014), no. 5, 973–985.
- [26] P.-E. Jabin, *Critical non-Sobolev regularity for continuity equations with rough velocity fields*, J. Differential Equations **260** (2016), no. 5, 4739–4757.
- [27] L. Kelvin, Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates, Phil. Mag. 24 (1887), no. 5, 188–196.
- [28] M. Latini and A. J. Bernoff, *Transient anomalous diffusion in Poiseuille flow*, Journal of Fluid Mechanics **441** (2001), 399–411.
- [29] T. Li, D. Wei, and Z. Zhang, *Pseudospectral and spectral bounds for the Oseen vortices operator*, ArXiv e-prints (Jan. 2017), available at 1701.06269.
- [30] T. Li, D. Wei, and Z. Zhang, *Pseudospectral bound and transition threshold for the 3D Kolmogorov flow*, arXiv e-prints (Jan. 2018), available at 1801.05645.
- [31] Z. Lin, J.-L. Thiffeault, and C. R. Doering, *Optimal stirring strategies for passive scalar mixing*, J. Fluid Mech. **675** (2011), 465–476.
- [32] E. Lunasin, Z. Lin, A. Novikov, A. Mazzucato, and C. R. Doering, *Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows*, J. Math. Phys. **53** (2012), no. 11, 115611, 15.
- [33] C. J. Miles and C. R. Doering, *Diffusion-limited mixing by incompressible flows*, Nonlinearity **31** (2018), no. 5, 2346–2350.
- [34] O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Proc. R. Soc. Lond. 174 (1883), 935–982.
- [35] P. B. Rhines and W. R. Young, *How rapidly is a passive scalar mixed within closed streamlines?*, Journal of Fluid Mechanics **133** (1983), 133–145.
- [36] C. Seis, Maximal mixing by incompressible fluid flows, Nonlinearity 26 (2013), no. 12, 3279–3289.
- [37] L. Tao and J. Wu, *The 2D Boussinesq equations with vertical dissipation and linear stability of shear flows*, J. Differential Equations **267** (2019), no. 3, 1731–1747.
- [38] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009), no. 950, iv+141.
- [39] D. Wei and Z. Zhang, Transition threshold for the 3D Couette flow in Sobolev space, ArXiv e-prints (Mar. 2018), available at 1803.01359.
- [40] D. Wei, Z. Zhang, and W. Zhao, *Linear inviscid damping and enhanced dissipation for the Kolmogorov flow*, ArXiv e-prints (Nov. 2017), available at 1711.01822.
- [41] D. Wei and Z. Zhang, Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method, Sci. China Math. 62 (2019), no. 6, 1219–1232.
- [42] D. Wei, Z. Zhang, and W. Zhao, *Linear inviscid damping for a class of monotone shear flow in Sobolev spaces*, Comm. Pure Appl. Math. **71** (2018), no. 4, 617–687.
- [43] D. Wei, Z. Zhang, and W. Zhao, Linear inviscid damping and vorticity depletion for shear flows, Ann. PDE 5 (2019), no. 1, Art. 3, 101.

- [44] D. Wei, Z. Zhang, and H. Zhu, *Linear inviscid damping for the* β -plane equation, arXiv e-prints (Sep. 2018), available at 1809.03065.
- [45] Y. Yao and A. Zlatos, Mixing and un-mixing by incompressible flows, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 7, 1911–1948.
- [46] C. Zillinger, On geometric and analytic mixing scales: comparability and convergence rates for transport problems, ArXiv e-prints (Apr. 2018), available at 1804.11299.
- [47] C. Zillinger, Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity, Arch. Ration. Mech. Anal. **221** (2016), no. 3, 1449–1509.
- [48] C. Zillinger, Linear inviscid damping for monotone shear flows, Trans. Amer. Math. Soc. **369** (2017), no. 12, 8799–8855.
- [49] C. Zillinger, On circular flows: linear stability and damping, J. Differential Equations 263 (2017), no. 11, 7856–7899.