

AD-A161 005 CONVERGENT LIGHT SCHEME FOR LIGHT SCATTERING FROM AN 171
ARBITRARY DEEP METAL (U) STATE UNIV OF NEW YORK AT
BUFFALO DEPT OF CHEMISTRY D AGASSI ET AL NOV 85

UNCLASSIFIED

UBUFFALO/DC/85/TR-70 N00014-80-C-0472

F/G 20/6

NL

END
FINISHED
DTK

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(12)

AD-A161 005

OFFICE OF NAVAL RESEARCH

Contract N00014-80-C-0472

Task No. NR 056-749

TECHNICAL REPORT No. 70

Convergent Light Scheme for Light Scattering from an Arbitrary Deep
Metallic Grating

by

Dan Agassi and Thomas F. George

Prepared for Publication

in

Physical Review B

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

November 1985

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.

FILE COPY
FILE COPY
FILE COPY

35 11 06 015

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AD-A161005

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) UBUFFALO/DC/85/TR-70		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Depts. Chemistry & Physics State University of New York	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION	
6c. ADDRESS (City, State and ZIP Code) Fronczak Hall, Amherst Campus Buffalo, New York 14260		7b. ADDRESS (City, State and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Office of Naval Research	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Contract N00014-80-C-0472	
8c. ADDRESS (City, State and ZIP Code) Chemistry Program 800 N. Quincy Street Arlington, Virginia 22217		10. SOURCE OF FUNDING NOS.	
		PROGRAM ELEMENT NO.	PROJECT NO.
		TASK NO.	WORK UNIT NO.
11. TITLE Convergent Light Scheme for Light Scattering from an Arbitrary Deep Metallic Grating			
12. PERSONAL AUTHORISI Michael Hutchinson and Thomas F. George			
13a. TYPE OF REPORT Interim Technical	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Yr., Mo., Day) November 1985 .	15. PAGE COUNT 29
16. SUPPLEMENTARY NOTATION Prepared for publication in Physical Review B			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) LIGHT SCATTERING LASER DEEP METALLIC GRATING RAYLEIGH HYPOTHESIS CONVERGENT SCHEME SINUSOIDAL GRATING	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The justification of continuing the Rayleigh expansion to the grating's surface surface (the Rayleigh hypothesis) and its convergence properties are considered. A class of gratings for which the Rayleigh hypothesis is exact is identified, a prime example of which is the sinusoidal grating (SG). Based on an identification of the origin of the limited stability of the Rayleigh expansion, a modified expansion is introduced, dubbed as the dressed Rayleigh expansion. This new expansion presumably has excellent convergence properties as explicitly demonstrated for the sinusoidal grating. The dimensionality N of the matrix which must be inverted for a SG of arbitrary depth g and periodicity d is found to be $N \approx 8 g/d$.)			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input checked="" type="checkbox"/> DTIC USERS <input type="checkbox"/>		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. David L. Nelson		22b. TELEPHONE NUMBER (Include Area Code) (202) 696-4410	22c. OFFICE SYMBOL

CONVERGENT SCHEME FOR LIGHT SCATTERING FROM AN ARBITRARY DEEP METALLIC GRATING

Dan Agassi

Naval Surface Weapons Center

White Oak

Silver Spring, Maryland 20910

Thomas F. George

Departments of Chemistry and Physics

State University of New York at Buffalo

Buffalo, New York 14260

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
_____ and/or _____	
Dist.	Final

A-1

Abstract

The justification of continuing the Rayleigh expansion to the grating's surface (the Rayleigh hypothesis) and its convergence properties are considered. A class of gratings for which the Rayleigh hypothesis is exact is identified, a prime example of which is the sinusoidal grating (SG). Based on an identification of the origin of the limited stability of the Rayleigh expansion, a modified expansion is introduced, dubbed as the dressed Rayleigh expansion. This new expansion presumably has excellent convergence properties as explicitly demonstrated for the sinusoidal grating. The dimensionality N of the matrix which must be inverted for a SG of arbitrary depth g and periodicity d is found to be $N = 8\pi g/d$.

1. Introduction

Light scattering from a grating is hardly a new phenomenon, and consequently the literature on the subject is enormous.^{1,2} It is important however to realize that, barring few recent exceptions, the majority of the literature deals with very shallow gratings, i.e., where the ratio between the height g and periodicity d is $g/d \ll 1$. Shallow gratings are realized in many important physical situations, such as optical refraction gratings, holograms, gratings induced by surface phonons,³ and a large class of volume-gratings.⁴

Studies of light scattering from deep gratings, i.e., when $g/d = 1$ or larger, are relatively recent.⁵⁻¹¹ The motivation to consider this regime stems in part from the advent of new fabrication capabilities. By using holographic techniques,¹² or laser-induced deposition from a volatile organo-metallic gas,¹³ it is possible to form gratings with $g/d \leq 1$. Another reason for the interest in deep gratings is the expected new qualitative features. When $\beta \ll 1$, where hereafter we use $\beta = 2\pi g/d$ as the natural parameter, the surface can only to a limited degree exchange surface-parallel momentum quanta $k_G = 2\pi/d$ with the incident light. Consequently, for shallow gratings it is sufficient to consider one or two Bragg reflections in addition to the dominating specularly reflected and transmitted waves. For deep gratings ($\beta \gg 1$), the situation is quite different. Here the grating can efficiently exchange with the incident light a large number of quanta k_G . Therefore, the reflected wave, for example, is made up of many Bragg reflections, strongly interfering with each other and with the specularly reflected wave. Thus, unlike the $\beta \ll 1$ regime which can be described in terms of few weak Bragg reflections superimposed on a strong specularly reflected wave, when $\beta \gg 1$ the identity of these components is blurred and the reflected light acquires a new character.

The qualitative distinction between the $\beta \ll 1$ and $\beta \gg 1$ regimes is reminiscent of the situation with regard to band structure in Condensed Matter Physics.¹⁴ The umklapp scatterings play the role of Bragg reflections, and the regimes of weak and strong periodic ionic potentials are the counterparts of the shallow and deep grating regimes, respectively. In keeping with this analogy, the grating's surface modes (surface plasmons) correspond to the band (bound) states. By the same token, we can draw an analogy between light scattering from a deep grating vs. from a rough surface to the electronic states in ordered and disordered systems, respectively. In both cases, the difference is the underlying symmetry of the system: a discrete translational symmetry in gratings (crystals) and none at all in rough surfaces (disordered systems). As a result, the character of the ensuing interference among the many reflected components is fundamentally different in both cases.

Attempts to study theoretically the deep grating regime have encountered numerical convergence problems^{1,15} when $g/d \geq 0.1$. The associated literature^{1,2,16,17} often makes reference to two related issues which are at the focus of this work: the validity of the Rayleigh hypothesis and the convergence of the Rayleigh expansion. The Rayleigh expansion¹⁸ of the electromagnetic fields above the selvedge domain (region (a) in Fig. 1.a) embodies the underlying symmetry of the grating as expressed by the Floquet-Bloch theorem,¹⁴ and the boundary conditions for $z \rightarrow \infty$ (in the notation of Fig. 1.a). Thus the Rayleigh expansion results from a general principle. The first issue is whether, or when, it can be continued into the selvedge domain all the way to the grating's surface (domain (b) in Fig. 1.a). The assumption that this is possible is referred to as the Rayleigh hypothesis. The second issue is what are the convergence properties of the Rayleigh expansion, in light of the numerical difficulties encountered in applying it.

Notwithstanding the many attempts to settle these issues for a general grating,^{1,2,16,17,19} there is no clear answer yet. This state of affairs is particularly puzzling in view of the generality of the Rayleigh expansion (which is actually a Fourier series over a unit cell of length d). In an effort to understand these issues, we focus on the analysis of light scattering from a class of simple gratings, with the sinusoidal grating (SG) serving as a prototype.

The two results of this work are the following:

(i) We identify a class of gratings for which the Rayleigh hypothesis is exact. Gratings in this class, such as the SG, have the property that the domain above the selvedge and the adjacent domain in the selvedge (e.g., domains "a" and "b" in Fig. 1.a), share the whole x -axis except for a set of isolated nonsingular points.

(ii) With regard to the convergence properties of the Rayleigh expansion convergence, we identify the cause for divergence when $\beta \gg 1$. This analysis, in turn, leads naturally to a simple alternative expansion -- the dressed Rayleigh expansion of Eqs. (3.5)-(3.6) -- which has presumably excellent convergence properties. This proposition is explicitly checked for the SG. We find in this case that the dressed expansion converges for an arbitrary β , and the estimated order of the matrix needed to be inverted is 4β . Hence, for example, for a SG with $g/d = 1$, inverting a matrix of the order ≤ 50 should be adequate.

The paper is organized as follows: In Section 2 we introduce the Rayleigh expansion and discuss the class of gratings for which the Rayleigh hypothesis is exact. Section 3 is devoted to examining the convergence properties of the Rayleigh expansion and the introduction of the dressed expansion. In Section 4

the latter is analyzed for the SG. Discussion and concluding remarks are given in Section 5.

2. Rayleigh Expansion and Hypothesis

To introduce the Rayleigh expansion, we start by considering the symmetry of the system: Since the grating is invariant under translations of the type $x \rightarrow x + Ld$, where L is any integer and d is the periodicity (all notations are defined in Fig. 1.a), so are the solution of Maxwell's equations. Consequently, according to the Floquet-Bloch theorem,^{6,8,14,17} the field eigenmodes (electric/magnetic fields) $\Psi(x,z)$ satisfy

$$\Psi(x+d,z) = e^{ik_{||}d} \Psi(x,z) , \quad (2.1)$$

where $k_{||}$ is a surface parallel (in the x -direction) momentum label. For a scattering wave mode, $k_{||}$ is the x -component of the incident wave. For a surface wave mode (surface plasmons in the case of metallic gratings), $k_{||}$ is a continuous label restricted to the first Brillouin zone $-k_G/2 \leq k_{||} \leq k_G/2$. To simplify the subsequent analysis, we consider only the configuration of a p -polarized plane wave incident perpendicular to the grating's grooves direction (the y -axis). In this case, a diagram in the xz -plane is sufficient.

The general symmetry property (2.1) determines the functional form of the fields up to constants, to be determined by matching the proper boundary conditions. Assuming an $e^{-i\omega_0 t}$ time dependence of the electromagnetic fields, where ω_0 is the field frequency, we can always expand the solutions of Maxwell's equations (at least when they are not singular) in terms of the following complete set of functions in the $0 < x < d$ interval:^{8,16,18}

$$\hat{E}_a(x,z) = \sum_{l=-\infty}^{\infty} \left\{ C_a(l) \hat{p}_{a,-}(l) e^{i[k_l x - W_a(l) z]} + A_a(l) \hat{p}_{a,+}(l) e^{i[k_l x + W_a(l) z]} \right\} \quad (2.2.a)$$

and

$$\vec{B}_\alpha(x, z) = \frac{k(\alpha)}{k} \hat{s} \sum_{l=-\infty}^{\infty} \{C_\alpha(l)e^{i[k_l x - W_\alpha(l)z]} + A_\alpha(l)e^{i[k_l x + W_\alpha(l)z]}\}, \quad (2.2.b)$$

where²⁰

$$k(\alpha) = \sqrt{\epsilon_\alpha} k, \quad k = \omega_0/c, \quad k_G = 2\pi/d$$

$$W_\alpha(l) = [k^2(\alpha) - k_l^2]^{1/2}, \quad k_l = k_{||} + lk_G$$

$$\hat{p}_{\alpha, \pm} = \frac{1}{k(\alpha)} [k_l \hat{z} \mp W_\alpha(l) \hat{x}], \quad \hat{s} = \hat{x} \times \hat{z}. \quad (2.2.c)$$

In (2.2) we choose always $\text{Im}[W_\alpha(l)]$ or $\text{Re}[W_\alpha(l)]$ as positive, \hat{x} , \hat{z} and \hat{s} are unit vectors in the x -, z - and y -directions (Fig. 1.a), and α denotes a domain in the xz -plane with a constant dielectric function ϵ_α . (ϵ_α can depend on ω_0 in the following analysis since ω_0 is kept fixed throughout.) Once a convenient partition of the xz -plane into domains has been chosen, the coefficients C_α, A_α are determined by matching the boundary conditions across the boundaries of the domains.

To demonstrate the choice of domains α , we consider in particular the SG-type example (Fig. 1.a). It is obvious that in this case there are four relevant domains and hence four expansions of the type (2.2) to determine. In these terms, the issue of whether the Rayleigh expansion can, or cannot, be continued to the grating's surface is tantamount to whether the expansions in domains "a" and "b" (and similarly "c" and "d") are identical. This issue must be decided by matching the boundary conditions between domains "a" and "b" along the separating plane $z=g$.

Consider for example the tangential components of \vec{E} and \vec{B} along the \hat{x} and \hat{s} directions [Eq.(2.2)]. By comparing coefficients of the

complete set $\{e^{ik_\ell x}\}$ we obtain

$$C_a(\ell)e^{-R} - A_a(\ell)e^{+R} = C_b(\ell)e^{-R} - A_b(\ell)e^{+R}$$

$$C_a(\ell)e^{-R} + A_a(\ell)e^{+R} = C_b(\ell)e^{-R} + A_b(\ell)e^{+R} \quad (2.3)$$

where

$$R = iW_a(\ell)g = iW_b(\ell)g . \quad (2.4)$$

Equations (2.3) yield $C_a(\ell) = C_b(\ell)$ and $A_a(\ell) = A_b(\ell)$, and hence the Rayleigh hypothesis is exact. In establishing (2.3) we used the fact that domains "a" and "b" share the entire x-axis (or unit cell). Thus it is possible to equate coefficients of each member of the complete set $\{e^{ik_\ell x}\}$. It has been tacitly assumed at this junction that the set of isolated nonsingular points ($x = nd$, $z = g$), jointly shared by domains "a", "b" and "c", do not break the orthogonality of the set $\{e^{ik_\ell x}\}$ over a unit cell. The above reasoning remains valid for any grating such that the selvedge domain and the domain above it (e.g., domains "a" and "b" in Fig. 1.a) share the entire x-axis except for a set of isolated nonsingular points. Figure 1.b depicts a slightly more complicated example where the Rayleigh expansions in domains "a" and "b" are identical.

An example for which the above argument fails is the square-well grating, Fig. 1.c. Here again we start by dividing the xz-plane into four domains and try to match domains "a" and "b". It is obvious that since the boundary between domains "a" and "b" is not the entire x-axis, Eq. (2.3) is not valid; hence the Rayleigh hypothesis is not exact. For a shallow square-well grating, however, the Rayleigh hypothesis may provide a good approximation.

The foregoing discussion is in keeping with the accepted point of view that in general the Rayleigh expansion above the grating cannot be continued to the grating's surface. We have demonstrated, nevertheless, that for a certain

class of gratings, and the SG in particular, the Rayleigh hypothesis is exact. Note also that we restricted ourselves to nonsingular fields (and first derivatives) only. When singularities are present, the implication is of surface charges, an infinite amount of charge at particular points, surface currents, etc. Consequently, the above conclusions, which are based on the "no-surface-charges/currents" boundary conditions, are expected to be modified.

3. Dressed Rayleigh Expansion

Even when the Rayleigh hypothesis is exact, the usefulness of the Rayleigh expansion must be substantiated by verifying good convergence properties. As difficulties in applying the expansion to deep gratings indicate,¹⁵ this is probably not the case. It is for this reason that alternative schemes have been suggested^{1,2,6-8,16} with a presumably wider range of convergence. Our strategy, on the other hand, is first to expose the deficiency of the Rayleigh expansion rather than to abandon it. Once this is achieved, we are naturally led to a modified expansion which we believe (and demonstrate for the SG in the next section) to have excellent convergence properties for deep gratings.

When the Rayleigh hypothesis is exact, it is sufficient to consider only two domains in the xz-plane (see Fig. 2). Consequently there are only two expansions to deal with [Eq. (2.2)], indexed as "0" and "1". The electric field expansions are therefore

$$\begin{aligned}\hat{E}_0(x, z) &= \sum_{\ell=-\infty}^{\infty} \{ C_0(\ell) \hat{p}_{0,-}(\ell) e^{i[k_\ell x - w_0(\ell)z]} \\ &\quad + A_0(\ell) \hat{p}_{0,+}(\ell) e^{i[k_\ell x + w_0(\ell)z]} \} \\ \hat{E}_1(x, z) &= \sum_{\ell=-\infty}^{\infty} C_1(\ell) \hat{p}_{1,-}(\ell) e^{i[k_\ell x - w_1(\ell)z]} \quad (3.1.a)\end{aligned}$$

and the magnetic field expansions are

$$\begin{aligned}\vec{B}_0(x, z) &= \frac{k(0)}{k} \hat{s} \sum_{\ell=-\infty}^{\infty} \left\{ C_0(\ell) e^{i[k_\ell x - w_0(\ell)z]} + A_0(\ell) e^{i[k_\ell x + w_0(\ell)z]} \right\} \\ \vec{B}_1(x, z) &= \frac{k(1)}{k} \hat{s} \sum_{\ell=-\infty}^{\infty} C_1(\ell) e^{i[k_\ell x - w_1(\ell)z]}. \end{aligned}\quad (3.1.b)$$

In Eq. (3.1)

$$C_0(\ell) = \delta_{\ell,0} E_{0p}^- , \quad (3.2)$$

where E_{0p}^- is the arbitrary amplitude of the incident p-polarized light.

Equation (3.2) embodies the boundary condition of the downward-propagating incident wave in region "0" (Fig. 2), and (3.1) incorporates the outgoing-wave boundary conditions at $|z| \rightarrow \infty$.

The deficiency of (3.1) becomes apparent by considering, for example, the $A_0(\ell)$ -term in (3.1.b). For $|\ell| \rightarrow \infty$, the x-independent factor tends to

$$\frac{A_0(\ell) e^{i w_0(\ell) z}}{|\ell| \rightarrow \infty} \xrightarrow{|\ell| \rightarrow \infty} A_0(\ell) e^{-k_G |\ell| z} \quad (3.3)$$

where (2.2.c) was used. For the $z > 0$ portion of domain "0", the z-dependent factor in (3.3) converges exponentially with $|\ell|$. However, (3.1) is valid throughout region "0". In particular, at the bottom of the troughs where $-g \leq z \leq 0$, the z-dependent factor in (3.3) diverges exponentially with $|\ell|$. Consequently, in order to keep the total field $\vec{B}_0(x, z)$ finite for $z \leq 0$, it follows that the exact $A_0(\ell)$ must converge for $|\ell| \rightarrow \infty$ at least exponentially. [This argument fails for gratings which give rise to singularities in the fields or in their derivatives.] Therefore, for $z < 0$ the Rayleigh expansion of \vec{E}_0 and \vec{B}_0 is a sum of many terms, most of which (large $|\ell|$) are products of exponentially large numbers (the z-dependent factors) times exponentially small numbers (the $A_0(\ell)$'s). However, in an actual calculation there are always

errors in the calculated $A_0(\ell)$'s. These, in turn, will lead to large variations in the total fields, since the $A_0(\ell)$'s are multiplied in (3.1) by very large exponents. This type of numerical instability, demonstrated here for the $z \leq 0$ portion of the "0" domain, has an adverse effect on other portions of the xz -plane by virtue of the extinction theorem.^{1,2,16,21} Therefore, for cases where many Bragg reflections ($|\ell|$'s) contribute to (3.1), i.e., for deep gratings, the Rayleigh expansion is intrinsically unsuitable. For shallow gratings, where only a few Bragg reflections contribute, the instability just described does not arise.

The above deficiency of (3.1) can be easily remedied in the following manner. Consider again, for example, the $A_0(\ell)$ -term in (3.1.b). It can be rewritten as

$$A_0(\ell)e^{iW_0(\ell)z} = \alpha_0(\ell)e^{iW_0(\ell)(z+g)}, \quad (3.4)$$

where g is the (positive) minimum of the grating in region "0" (see Fig. 2) and $\alpha_0(\ell) = A_0(\ell)\exp[-iW_0(\ell)g]$. Since by construction $z + g \geq 0$ throughout region "0", the exponential factor on the RHS of (3.4) never diverges; in fact, it always converges exponentially (and is unity at the grating's profile). Furthermore, since (3.1) is valid throughout region "0", including at the grating surface, the exact $\alpha_0(\ell)$'s must diminish with very high ℓ to render a finite total field at all points. Consequently, the relevant exact $\alpha_0(\ell)$'s are not necessarily exponentially small, and hence small errors in the calculated $\alpha_0(\ell)$'s will not lead to instabilities in the total field. These considerations suggest that we transcribe the Rayleigh expansion (3.1) into a "dressed Rayleigh expansion" by writing

$$\begin{aligned} A_0(\ell) e^{iW_0(\ell)z} &= \alpha_0(\ell) e^{iW_1(\ell)(z+g)} \\ C_1(\ell) e^{-iW_1(\ell)z} &= \gamma_1(\ell) e^{-iW_1(\ell)(z-g)}, \end{aligned} \quad (3.5)$$

where the dressed expansion coefficients are given by

$$\begin{aligned} \alpha_0(\ell) &= A_0(\ell) e^{-iW_0(\ell)g} \\ \gamma_1(\ell) &= C_1(\ell) e^{-iW_1(\ell)g}. \end{aligned} \quad (3.6)$$

The central assertion of this work is that the dressed Rayleigh expansion, defined in (3.5) and (3.6), has excellent convergence properties for a wide range of values of β and is a suitable framework for deep grating calculations. This proposition is explicitly demonstrated for the SG in the next section. Furthermore, the procedure used in Section 4 for the SG can be generalized to other gratings (see Section 5), indicating the wide applicability of the dressed Rayleigh expansion.

4. Sinusoidal Grating (SG)

The proposition stated as a conjecture in Section 3 with regard to the dressed Rayleigh expansion, (3.5) and (3.6), is now explicitly checked for the SG. Our starting point is the exact infinite set of coupled linear equations¹⁶ satisfied by the expansion coefficients of (3.1) (see Appendix A for the derivation),

$$\begin{aligned} \sum_{\ell=-\infty}^{\infty} M_{m,\ell}^B A_0(\ell) &= \mu^B(m) \\ \sum_{\ell=-\infty}^{\infty} N_{m,\ell}^B C_1(\ell) &= v^B(m), \end{aligned} \quad (4.1)$$

where the superscript B is a reminder that (4.1) pertains to the expansion coefficients in (3.1). These coefficients are hereafter referred to as "bare", in distinction from the "dressed" expansion coefficients defined in (3.6). The entries to (4.1) are explicitly given by (see Appendix A):

$$\begin{aligned} M_{m,\ell}^B &= \frac{W_0(\ell)W_1(m) + k_\ell k_m}{W_0(\ell) - W_1(m)} i^{m-\ell} J_{m-\ell}[g(W_0(\ell) - W_1(m))] \\ N_{m,\ell}^B &= \frac{W_1(\ell)W_0(m) + k_\ell k_m}{W_1(\ell) - W_0(m)} i^{m-\ell} J_{m-\ell}[g(-W_1(\ell) + W_0(m))] \\ \mu^B(m) &= \frac{-W_0(0)W_1(m) + k_0 k_m}{W_0(0) + W_1(m)} i^m J_m[-g(W_0(0) + W_1(m))] E_{0p}^- \\ v^B(m) &= \frac{2\epsilon_0\epsilon_1}{\epsilon_1 - \epsilon_0} W_0(m) \delta_{m,0} E_{0p}^- , \end{aligned} \quad (4.2)$$

where the symbol J_m denotes the Bessel function of order m , and all other symbols have been defined in (2.2). The Bessel function factor in M^B and N^B determines the mixing between the Bragg reflections of order m and ℓ , and hence involves the g -parameter. Thus, for instance, when $g = 0$ (flat surface), it follows that $m = \ell$, i.e., no mixing. The role of the other factors in (4.2) is elaborated elsewhere.²²

The exact equations (4.1) and (4.2) expose from yet another vantage point the deficiencies of the Rayleigh expansion (3.1). Consider for example M^B and the corresponding equations in (4.1). When m is fixed and $|\ell| \rightarrow \infty$, the fastest changing factor in (4.2) is the Bessel function. For $|\ell| \rightarrow \infty$ it follows that $W_1(m) \ll W_0(\ell) \sim ik_G|\ell|$, and therefore, up to uninteresting factors (phases and powers of $|\ell|$), the matrix elements of M^B behave as²³

$$\lim_{\substack{|\ell| \rightarrow \infty \\ m \text{ fixed}}} M_{m,\ell}^B \sim \lim_{|\ell| \rightarrow \infty} J_\ell(i\beta|\ell|) \sim e^{|\ell|\beta}\eta(\beta) , \quad (4.3)$$

where again $\beta = k_G g$ and

$$\eta(\beta) = \sqrt{1 + \beta^2} + \ln[\beta/(1 + \sqrt{1 + \beta^2})] . \quad (4.4)$$

Hence, for $\beta \gg 1$ the matrix elements of \underline{M}^B diverge exponentially with $|\ell|$. On the other hand, for fixed m the RHS of (4.1) is a constant. Consequently, the exact $A_0(\ell)$ must converge at least as $e^{-|\ell|n(\beta)}$, which is in keeping with the analysis of Section 3. Furthermore, since \underline{M}^B diverges with $|\ell|$ as indicated in (4.3), there is no natural point at which to truncate (in $|\ell|$) the matrix and control the corrections in an actual calculation.

The situation is dramatically changed once (4.1) are transcribed to equations for the dressed coefficients, Eq. (3.6). These are

$$\sum_{\ell=-\infty}^{\infty} M_{m,\ell}^D \alpha_0(\ell) = \mu^B(m)$$

$$\sum_{\ell=-\infty}^{\infty} N_{m,\ell}^D \gamma_1(\ell) = v^B(m) , \quad (4.5)$$

where the ℓ -dressed matrices \underline{M}^D and \underline{N}^D are

$$M_{m,\ell}^D = M_{m,\ell}^B e^{iW_0(\ell)g}$$

$$N_{m,\ell}^D = M_{m,\ell}^B e^{iW_1(\ell)g} . \quad (4.6)$$

By the same procedure which led to (4.3) and (4.4), we obtain

$$\lim_{\substack{|\ell| \rightarrow \infty \\ m \text{ fixed}}} M_{m,\ell}^D \sim \lim_{|\ell| \rightarrow \infty} J_\ell [i\beta|\ell|] e^{-\beta|\ell|} \sim e^{|\ell|\phi(\beta)} , \quad (4.7)$$

where

$$\phi(\beta) = n(\beta) - \beta , \quad (4.8)$$

and we have ignored in (4.7) uninteresting factors (phases and powers of $(|\ell|)$). The central point of this section is to recognize that $\phi(\beta)$ is negative for all values of β (see Fig. 3). Moreover, since

$$\begin{aligned}\phi(\beta) &\sim 1 + \ln\beta \quad \text{for } \beta \ll 1 \\ &\sim \frac{1}{2\beta} \quad \text{for } \beta \gg 1 ,\end{aligned}\tag{4.9}$$

we have an estimate for the dimension N of the effective \underline{M}^D matrix (comprised of the significant matrix elements in \underline{M}^D). For $\beta \gg 1$ Eq. (4.9) yields

$$N \approx 2 * 2\beta = 8\pi g/d ,\tag{4.10}$$

where the extra factor of 2 in (4.10) is added to account for positive as well as negative ℓ -values. The estimated N in (4.10) is roughly the number of significant terms in the dressed Rayleigh expansion. Phrased differently, N provides the natural truncation point of \underline{M}^D in an actual calculation. Thus, for instance, when $g/d = 1$ the inversion of a 50×50 matrix should be quite adequate.

To complete the analysis, we now consider how the convergence of (4.5) for the case $|m| \rightarrow \infty$ and ℓ is determined. Obviously, the m -convergence factor to be used is arbitrary. A convenient choice, symmetric to (4.6), is

$$\begin{aligned}M_{m,\ell} &= e^{i[W_1(m) + W_0(\ell)]g} M_{m,\ell}^B , \quad \mu(m) = e^{iW_1(m)g} \mu^B(m) \\ N_{m,\ell} &= e^{i[W_0(m) + W_1(\ell)]g} N_{m,\ell}^B , \quad v(m) = e^{iW_0(m)g} v^B(m) ,\end{aligned}\tag{4.12}$$

and the fully dressed equations are

$$\begin{aligned}\sum_{\ell=-\infty}^{\infty} M_{m,\ell} \alpha_0(\ell) &= \mu(m) \\ \sum_{\ell=-\infty}^{\infty} N_{m,\ell} \gamma_1(\ell) &= v(n) .\end{aligned}\tag{4.13}$$

The set (4.13) is exponentially convergent in both the m - and ℓ -“directions” for an arbitrary β . It is therefore a perfectly stable framework for calculations of deep SG. The size of the matrix needed to be inverted is of the

order given by (4.10), which is well within the limits of a reasonable effort. The dressed coefficients $\alpha_0(\ell)$ and $\gamma_1(\ell)$ are then to be used in the dressed Rayleigh expansion (3.5) to obtain the total fields.

5. Discussion and Summary

The dressed Rayleigh expansion, i.e., (3.1) with the substitution (3.5), takes the form (e.g., for the electrical fields with the notation defined in Fig. 2)

$$\begin{aligned}\hat{E}_0(x, z) &= \sum_{\ell=-\infty}^{\infty} \left\{ \gamma_0(\ell) \hat{p}_{0,-}(\ell) e^{i[k_\ell x - W_0(\ell)(z - g)]} \right. \\ &\quad \left. + \alpha_0(\ell) \hat{p}_{0,+}(\ell) e^{i[k_\ell x + W_0(\ell)(z + g)]} \right\} \\ \hat{E}_1(x, z) &= \sum_{\ell=-\infty}^{\infty} \gamma_1(\ell) \hat{p}_{1,-}(\ell) e^{i[k_\ell x - W_1(\ell)(z - g)]},\end{aligned}\quad (5.1)$$

where $\gamma_0(\ell) = \delta_{\ell,0} e^{iW_0(\ell)g} E_{0p}^-$, and the coefficients $\alpha_0(\ell)$ and $\gamma_1(\ell)$ satisfy (4.13). The convergence properties of (5.1) can be analyzed for a general grating shape along the lines applied for the SG in Section 4. All that is necessary are the exact expression of the corresponding $M_{m,\ell}^B$ and an examination of its asymptotic behavior. The explicit expression for $M_{m,\ell}^B$ pertaining to a grating of a general shape is known¹⁶ (see also Appendix A).

The comparison between the convergence properties of the dressed and bare Rayleigh expansion can be explicitly discussed in the context of the SG. These are determined by the asymptotic behavior of $M_{m,\ell}^B$ and $M_{m,\ell}^D$, respectively. With regard to the bare Rayleigh expansion (3.1), the asymptotic behavior is given by (4.3) and (4.4). Since $n(\beta)$ is monotonically increasing and negative for $\beta \ll 1$ (see Fig. 3), it follows that the maximum value of β for which $M_{m,\ell}^B$ is ℓ -convergent

(exponentially) satisfies

$$\eta(\beta) = \sqrt{1 + \beta^2} + \ln[\beta/(1 + \sqrt{1 + \beta^2})] = 0 , \quad (5.2)$$

or equivalently, using the notation of Petit and Cadilhac,²⁴

$$\frac{\eta + 1}{\eta - 1} = \exp\left[\frac{\eta^2 + 1}{2\eta}\right] , \quad \beta = \frac{\eta^2 - 1}{2\eta} . \quad (5.3)$$

The solution to (5.2) or (5.3) is $\beta \approx 0.66$ or $\eta \approx 1.86$ or $g/d \approx 0.1$. This value is in agreement with the reported¹⁵ maximum g/d ratio for which the bare Rayleigh expansion is found applicable. By contrast, the asymptotic behavior of $M_{m,\ell}^D$, Eqs. (4.7), yields convergence for all β ! Note also that alternative schemes for solving the light-grating scattering problem^{1,2,7} involve the bare coefficients $A_0(\ell)$ and $C_1(\ell)$. By "dressing" the coefficients, as articulated in (3.6), the convergence properties of these schemes are expected to improve. In this regard, the dressed Rayleigh expansion provides the simplest possible convergent scheme.

The value $\eta \approx 1.86$ deduced from (5.2) for a SG is somewhat larger than $\eta \approx 1.54$,^{21,24} which is the rigorously proven threshold for a perfect metallic SG ($\epsilon_1 = -\infty$). This difference highlights the distinction between singular and non-singular gratings (i.e., smooth shapes, finite ϵ_1). In the former case there are surface charges which surely modify the boundary conditions on which our discussion is based. We can expect on physical grounds that when there is an infinite amount of charge at the surface (with a δ -function distribution), the point $(x = d, z = g)$ separating the two adjacent selvedge domains $0 \leq x \leq d$ and $d \leq x \leq 2d$ is singular (Fig. 2). Therefore, two such adjacent selvedge domains become "disconnected". Consequently, the Rayleigh hypothesis is no longer exact, the matrix \underline{M}^B is modified, and so is the convergence criterion. We do not consider the issue of singular fields any further.

We comment now on a related related convergence criterion²¹ for the bare Rayleigh expansion, which is presumably valid for any dielectric constant ϵ_1 . This criterion is based on the application of the steepest descent method²⁵ to an exact expression of $A_0(\ell)$ or $C_1(\ell)$. When applied to a SG, the maximum value of β for which there is convergence satisfies²⁴

$$\frac{n+1}{n-1} = e^n , \quad (5.4)$$

where n is defined in (5.3). We understand the difference between our result (5.3) and (5.4) in terms of the limited applicability of the steepest-descent method²⁵ for the SG case. Phrased differently, the corrections to the steepest-descent result for the SG case are not negligible, and hence it is not clear how stringent condition (5.4) really is. [The solution to (5.4) is $n \approx 1.54$. Numerically,¹⁵ however, convergent results are obtained for higher values of n up to about our result of $n \approx 1.86$.] This statement can be simply verified by examining the stationary-phase function $\psi(x)$ derivatives around the stationary points of z_s . We find that although $\psi''(z_s) < 0$, the fourth derivative is positive and has a larger contribution than $\psi''(z_s)$.

In summary, we have analyzed the two questions pertaining to the Rayleigh expansion: the ability to continue it to the grating's surface (the Rayleigh hypothesis) and its convergence properties. We have identified a class of gratings, the SG being one example, for which the Rayleigh hypothesis is exact. We have also identified the cause for the instability of the Rayleigh expansion in an actual calculation for gratings where the Rayleigh hypothesis is exact. To remedy this instability, we propose a modified expansion, Eqs. (3.5)-(3.6) and (5.1), dubbed as the dressed Rayleigh expansion. The dressed expansion has presumably excellent convergence properties for deep gratings. For the case of the SG, it is explicitly shown that the dressed expansion converges for an

arbitrarily large value of β (or g/d ratio), and the associated matrix to be inverted is of the order $8\pi g/d$ [Eq. (4.10)]. Our analysis is valid for a frequency-dependent dielectric function since the whole discussion pertains to a fixed incoming-wave frequency (all Bragg scatterings are elastic). The dressed Rayleigh expansion is applied elsewhere²² to study the very deep ($\beta \rightarrow \infty$) SG grating limit.

Acknowledgments

We would like to thank M. Hutchinson and W.C. Murphy for stimulating discussions and criticisms. We are grateful to A.C. Beri for his assistance in preparing the figures and to R. Ferron, J. Rouse and L.W. Edwards for typing the manuscript. This research was supported by the Office of Naval Research and the U.S. Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-009. The U. S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

Appendix A: Exact Equations¹⁶ for the (Reflectivity) $A_0(\ell)$ and (Transmittivity)

$C_1(\ell)$ Coefficients

The exact infinite set of coupled linear equations for the coefficients of expansion (3.1) have been derived by Toigo, Marvin, Celli and Hill for a grating of arbitrary shape. We recap here their derivation for the SG for the sake of completeness and to unify notations.

We choose to match the tangential components of \vec{B} and \vec{E} . For this purpose we introduce the following triad of unit vectors which are normal and tangential to the SG grating profile given by $z = g \cos k_G x$ (the notation of Fig. 2 is used throughout):

$$\begin{aligned}\hat{n} &= -\hat{x} \beta \sin k_G x - \hat{z} \\ \hat{t} &= -\hat{x} + \hat{z} \beta \sin k_G x \\ \hat{b} &= \hat{s},\end{aligned}\tag{A.1}$$

where $\beta = k_G g$, and the hats denote the unit vectors. The normal vector \hat{n} and the tangential vector \hat{t} need not be normalized for our purposes. By projecting the field (3.1) along \hat{t} and \hat{b} , the following exact equations are obtained:

$$\sum_{\ell=-\infty}^{\infty} e^{ik_\ell x} \{ A_0(\ell) \exp[iW_0(\ell)g \cos k_G x] - \frac{k(1)}{k(0)} C_1(\ell) \exp[-iW_1(\ell)g \cos k_G x] \} = Q_b \tag{A.2.a}$$

$$\begin{aligned}\sum_{\ell=-\infty}^{\infty} e^{ik_\ell x} \{ A_0(\ell) [W_0(\ell) + \beta k_\ell \sin k_G x] \exp[iW_0(\ell)g \cos k_G x] \\ - \frac{k(0)}{k(1)} C_1(\ell) [-W_1(\ell) + \beta k_\ell \sin k_G x] \exp[-iW_1(\ell)g \cos k_G x] \} = Q_t,\end{aligned}\tag{A.2.b}$$

where

$$\begin{aligned} Q_b &= - \sum_{\ell=-\infty}^{\infty} C_1(\ell) e^{ik_\ell x} \exp[-iW_0(\ell)g \cos k_G x] \\ Q_t &= - \sum_{\ell=-\infty}^{\infty} C_1(\ell) [-W_0(\ell) + \beta k_\ell \sin k_G x] e^{ik_\ell x} \exp[-iW_0(\ell)g \cos k_G x] . \end{aligned} \quad (A.3)$$

Equations (A.2) can be cast into a set of coupled linear equations for $A_0(\ell)$ and $C_1(\ell)$ by expanding all terms in the complete set $\{e^{ik_\ell x}\}$. It is remarkable that it is in fact possible to further eliminate exactly $A_0(\ell)$ or $C_1(\ell)$, thus breaking (A.2) into two (infinite) sets of equations. This is achieved by first multiplying (A.2.a) by

$$M_b = [-W_0(m) + \beta k_m \sin k_G x] e^{-ik_m x + iW_0(m)g \cos k_G x} \quad (A.4.a)$$

and multiplying (A.2.b) by

$$M_t = e^{-ik_m x + iW_0(m)g \cos k_G x} , \quad (A.4.b)$$

adding the two equations and integrating over the interval $0 \leq x \leq d$. This manipulation yields the equations for $C_1(\ell)$. By repeating the same procedure with

$$M_b = \frac{k(0)}{k(1)} [-W_1(m) - \beta k_m \sin k_G x] e^{-ik_m x - iW_1(m)g \cos k_G x} \quad (A.5.a)$$

and

$$M_t = - \frac{k(1)}{k(0)} e^{-ik_m x - iW_1(m)g \cos k_G x} , \quad (A.5.b)$$

an equation for the $A_0(\ell)$ is obtained. In these manipulations we have used²⁶

$$\begin{aligned} &\int_0^d dx [a + b \sin k_G x] e^{i(k_\ell - k_m)x + iq \cos k_G x} \\ &= [a + \frac{b(k_\ell - k_m)}{q k_G}] d i^{m-\ell} J_{m-\ell}(q) , \end{aligned} \quad (A.6)$$

where J_n denotes the Bessel function of order n .

References

1. "Electromagnetic Theory of Diffraction Gratings", edited by R. Petit (Springer, New York, 1980).
2. "Surface Polaritons", edited by V.M. Agranovich and D.L. Mills (North-Holland, New York, 1982).
3. D.L. Mills, Phys. Rev. B 15, 3097 (1977).
4. P. St. J. Russell, Phys. Rep. 71, 209 (1980).
5. B. Laks, D.L. Mills and A.A. Maradudin, Phys. Rev. B 23, 4965 (1981).
6. N.E. Glass and A.A. Maradudin, Phys. Rev. B 24, 595 (1981).
7. P. Sheng, R.S. Stepleman and P.N. Sanda, Phys. Rev. B 26, 2907 (1982); K.T. Lee and T.F. George, Phys. Rev. B 31, 5106 (1985).
8. M. Weber and D.L. Mills, Phys. Rev. B 27, 2698 (1983).
9. R. Reinisch and M. Neviere, Phys. Rev. B 28, 1870 (1983).
10. A. Wirgin and T. Lopez-Rios, Opt. Commun. 48, 416 (1984); T. Lopez-Rios and A. Wirgin, Solid State Commun. 52, 197 (1984).
11. N. Garcia, G. Diaz, J.J. Saenz and C. Ocal, Surf. Sci. 143, 338 (1984).
12. See, for example, J.K. Powers and D.A. Bryan, Opt. Lett. 5, 513 (1980).
13. S.R.J. Brueck and D.J. Ehrlich, Phys. Rev. Lett. 48, 1678 (1982).
14. N.W. Ashcroft and N.D. Mermin, "Solid State Physics" (Holt, Rinehart and Winston, New York, 1976), Chaps. 8-10.
15. N. Garcia, V. Celli, N.R. Hill and N. Cabrera, Phys. Rev. B 18, 5184 (1978).
16. F. Toigo, A. Marvin, V. Celli and N.R. Hill, Phys. Rev. B 15, 5618 (1977).
17. J.L. Uretsky, Ann. Phys. (N.Y.) 33, 400 (1965).
18. Lord Rayleigh, "Theory of Sound", 2nd Ed. (Dover, New York, 1945), Vol. II, p. 89.
19. W.C. Meecham, J. Appl. Phys. 27, 361 (1956).
20. J.E. Sipe, Surf. Sci. 105, 489 (1981).

21. N.R. Hill and V. Celli, Phys. Rev. B 17, 2478 (1978).
22. D. Agassi and T.F. George, Surf. Sci., submitted.
23. "Handbook of Mathematical Functions", edited by M. Abramovitz and I.E. Stegun (National Bureau of Standards, Washington, D.C., 1964), p. 366.
24. R. Petit and M. Cadilhac, C.R. Acad. Sci. B 262, 468 (1966).
25. M. Born and E. Wolf, "Principles of Optics", 6th Ed. (Pergamon Press, Oxford, 1984), p. 747.
26. I.S. Gradshteyn and I.M. Ryzhik, "Tables of Integrals, Series and Products", (Academic Press, New York, 1965), p. 973.

Figure Captions

1. (a) Schematic display of a grating for which there are four obvious domains with constant dielectric constant. The domains are denoted by "a", "b", "c" and "d". The hatched and plain regimes indicate the dielectric and "air", respectively. The maximum $|z|$ -extention and periodicity of the grating are denoted by g and d , respectively. The Rayleigh hypothesis is exact for a smooth grating of the type depicted here (see Section 2).
(b) A more complex grating for which the Rayleigh hypothesis is exact, i.e., field expansions in domains "a" and "b" are identical (see Section 2).
(c) The square-well grating for which the Rayleigh expansion is not exact, namely the field expansions in domains "a" and "b" are different.
2. The sinusoidal grating (SG), defining the notation used in the text.
3. The exponential convergence function $\phi(\beta)$, Eq. (4.8), pertaining to an SG.
Note that it is negative for all β -values.

Fig. (1a)

FIG 1.6

X

Z

a

X

Z

Fig 1.c

Fig 2

100

X

Z

O

O

Fig. 3

TECHNICAL REPORT DISTRIBUTION LIST, GEN

	<u>No. Copies</u>		<u>No. Copies</u>
Office of Naval Research Attn: Code 413 800 N. Quincy Street Arlington, Virginia 22217	2	Dr. David Young Code 334 NORDA NSTL, Mississippi 39529	1
Dr. Bernard Douda Naval Weapons Support Center Code 5042 Crane, Indiana 47522	1	Naval Weapons Center Attn: Dr. Ron Atkins Chemistry Division China Lake, California 93555	1
Commander, Naval Air Systems Command Attn: Code 310C (H. Rosenwasser) Washington, D.C. 20360	1	Scientific Advisor Commandant of the Marine Corps Code RD-1 Washington, D.C. 20380	1
Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401	1	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 12211 Research Triangle Park, NC 27709	1
Defense Technical Information Center Building 5, Cameron Station Alexandria, Virginia 22314	12	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112	1
DTNSRDC Attn: Dr. G. Bosmajian Applied Chemistry Division Annapolis, Maryland 21401	1	Naval Ocean Systems Center Attn: Dr. S. Yamamoto Marine Sciences Division San Diego, California 91232	1
Dr. William Tolles Superintendent Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375	1	Dr. David L. Nelson Chemistry Division Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217	1

DL/413/83/01
056/413-2

ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Surface Chemistry Division (6170)
455 Overlook Avenue, S.W.
Washington, D.C. 20375

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. P. Lund
Department of Chemistry
Howard University
Washington, D.C. 20059

DL/413/83/01
056/413-2

ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6132
Naval Research Laboratory
Washington, D.C. 20375

Dr. Richard Colton
Code 6112
Naval Research Laboratory
Washington, D.C. 20375

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 5570
Naval Research Laboratory
Washington, D.C. 20375

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
California Institute of Technology
Division of Chemistry and Chemical
Engineering
Pasadena, California 91125

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
Southampton University
Southampton SO9 5NH
Hampshire, England

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853

Dr. Richard Smardzewski
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

DL/413/83/01
056/413-2

ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
~~Chemistry Department~~
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Division of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. P. Hansma
Physics Department
University of California
Santa Barbara, California 93106

Dr. J. Baldeschiwiler
California Institute of Technology
Division of Chemistry
Pasadena, California 91125

DL /413/83/01
056/413-2

ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. W. Goddard
Division of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina
27709

Dr. M. Grunze
Laboratory for Surface Science and
Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookeville, Tennessee 38501

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

END

FILMED

12-85

DTIC