<u>Capítulo 8:</u> <u>Segurança em rede</u>

Uma Abordagem Top-Down

Objetivos do capítulo:

- entender os princípios de segurança em rede:
 - o criptografia
 - confidencialidade
 - o autenticação
 - o integridade de mensagem
- segurança na prática:
 - o firewalls e sistemas de detecção de invasão
 - O segurança na camada de transporte

Capítulo 8: Esboço

REDES DE COMPUTADORES E A INTERNET 54 edição

- 8.1 O que é segurança na rede?
- 8.2 Princípios de criptografia
- 8.3 Integridade de mensagem
- 8.5 Protegendo conexões TCP: SSL
- 8.8 Segurança operacional: firewalls e IDS

O que é segurança na rede?

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Confidencialidade: apenas remetente e destinatário pretendido devem "entender" conteúdo da mensagem

- o remetente criptografa mensagem
- destinatário decripta mensagem

Autenticação: remetente e destinatário querem confirmar a identidade um do outro

Integridade da mensagem: remetente e destinatário querem garantir mensagem não alterada (em trânsito ou depois) sem detecção

Acesso e disponibilidade: serviços precisam ser acessíveis e disponíveis aos usuários

Amigos e inimigos: Alice, Bob, Trudy

REDES DE COMPUTADORES E A INTERNET 5º edição

- Bob, Alice (amigos!) querem se comunicar "com segurança"
- Trudy (intrusa) pode interceptar, excluir, acrescentar mensagens

Quem poderiam ser Bob e Alice?

REDES DE COMPUTADORES E A INTERNET 5' edição

- ... bem, Bobs e Alices da vida real!
- navegador Web/servidor de transações eletrônicas (p. e., compras on-line)
- cliente/servidor de "Internet banking"
- servidores DNS
- roteadores trocando atualizações da tabela de roteamento

Existem perversos (e perversas) lá fora!

REDES DE COMPUTADORES E A INTERNET 5' edição

- P: O que um "perverso" pode fazer?
- R: Muita coisa!
 - bisbilhotar: interceptar mensagens
 - o inserir ativamente mensagens na conexão
 - personificação: pode forjar (falsificar) endereço IP no pacote (ou qualquer campo no pacote)
 - sequestrar: "apoderar-se" da conexão em andamento removendo remetente ou destinatário, inserindo-se no local
 - o negação de serviço: impedir que serviço seja usado por outros (p. e., sobrecarregando recursos)

Capítulo 8: Esboço

REDES DE COMPUTADORES E A INTERNET 54 edição

- 8.1 O que é segurança na rede?
- 8.2 Princípios de criptografia
- 8.3 Integridade de mensagem
- 8.5 Protegendo conexões TCP: SSL
- 8.8 Segurança operacional: firewalls e IDS

A linguagem da criptografia

REDES DE COMPUTADORES E A INTERNET 5ª edição

Uma Abordagem Top-Down

m mensagem em texto aberto K_A(m) texto cifrado, criptografado com chave K_A $m = K_R(K_A(m))$

Esquema de criptografia simples

Uma Abordagem Top-Down

cifra de substituição: substituir uma coisa por outra

o cifra monoalfabética: substituir uma letra por outra

texto aberto: |abcdefghijklmnopqrstuvwxyz

texto cifrado: mnbvcxzasdfghjklpoiuytrewq

<u>p. e.:</u> texto aberto: bob. i love you. alice

texto cifrado: nkn. s gktc wky. mgsbc

Segredo: o mapeamento do conjunto de 26 a outro conjunto de 26 letras

Criptografia polialfabética

REDES DE COMPUTADORES E A INTERNET 5' edição

- □ n cifras monoalfabéticas, M₁,M₂,...,M_n
- Padrão cíclico:
 - o p. e., n = 4, M_1, M_3, M_4, M_3, M_2 ; M_1, M_3, M_4, M_3, M_2 ;
- Para cada novo símbolo de texto aberto, use padrão monoalfabético subsequente no padrão cíclico
 - o dog: d de M₁, o de M₃, g de M₄
- Segredo: as n cifras e o padrão cíclico

<u>Quebrando um</u> <u>esquema de criptografia</u>

REDES DE COMPUTADORES E A INTERNET 5º edição

- Ataque apenas a texto cifrado: Trudy tem o texto cifrado que ela pode analisar
- Duas técnicas:
 - Procura por todas as chaves: deve ser capaz de diferenciar texto aberto resultante do texto sem sentido
 - Análise estatística

- Ataque de texto aberto conhecido: Trudy tem algum texto aberto correspondente a algum texto cifrado
 - p. e., na cifra monoalfabética, Trudy determina pares para a,l,i,c,e,b,o,
- Ataque de texto aberto escolhido: Trudy pode conseguir o texto cifrado para algum texto aberto escolhido

Tipos de criptografia

- criptografia normalmente usa chaves:
 - o algoritmo é conhecido de todos
 - o somente "chaves" s\u00e3o secretas
- criptografia de chave pública
 - o envolve o uso de duas chaves
- criptografia de chave simétrica
 - o envolve o uso de uma chave
- funções de hash
 - o não envolve o uso de chaves
 - o nada secreto: Como isso pode ser útil?

Criptografia de chave simétrica

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

criptografia de chave simétrica: Bob e Alice compartilham alguma chave (simétrica) : K_s

- p. e., segredo é saber padrão de substituição na cifra de substituição monoalfabética
- P: Como Bob e Alice combinam um valor de segredo?

<u>Dois tipos de</u> <u>cifras simétricas</u>

REDES DE COMPUTADORES E A INTERNET 51 edição

- Cifras de fluxo
 - o criptografam um bit por vez
- Cifras de bloco
 - Quebram a mensagem de texto aberto em blocos de mesmo tamanho
 - Criptografam cada bloco como uma unidade

Cifras de fluxo

- Combinam cada bit da sequência de chaves com bit de texto aberto para obter bit de texto cifrado
- □ m(i) = iº bit da mensagem
- □ ks(i) = iº bit da sequência de chaves
- \Box c(i) = iº bit do texto cifrado
- \Box c(i) = ks(i) \oplus m(i) (\oplus = OR exclusivo, ou XOR)
- \square m(i) = ks(i) \oplus c(i)

Cifra de fluxo RC4

- □ RC4 é uma cifra de fluxo popular
 - bastante analisada
 - chave pode ter de 1 a 256 bytes
 - usada por WEP para 802.11
 - o pode ser usada em SSL

Cifras de bloco

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- Mensagem a ser criptografada é processada em blocos de k bits (p. e., blocos de 64 bits).
- Mapeamento 1-para-1 é usado para mapear bloco de k bits de texto aberto para bloco de k bits de texto cifrado

Exemplo com k = 3:

<u>entrada</u>	<u>saída</u>	<u>entrada</u>	saída
000	110	100	011
001	111	101	010
010	101	110	000
011	100	111	001

Qual é o texto cifrado para 010110001111?

REDES DE COMPUTADORES E A INTERNET 5' edição

- Quantos mapeamentos existem para k = 3?
 - Quantas entradas de 3 bits?
 - Quantas permutações das entradas de 3 bits?
 - O Resposta: 40.320; não muitas!
- Em geral, 2^k! mapeamentos; imenso para k = 64
- Problema:
 - O Técnica de tabela requer tabela com 264 entradas, cada entrada com 64 bits
- Tabela muito grande: em vez disso, use função que simula tabela permutada aleatoriamente

Função de protótipo

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

Fonte: Kaufman, 1995

slide 19

O que acontece no protótipo?

REDES DE COMPUTADORES E A INTERNET 5' edição

- se um único ciclo, então um bit de entrada afeta no máximo 8 bits de saída.
- no 2º ciclo, os 8 bits afetados são espalhados e inseridos em múltiplas caixas de substituição.
- quantos ciclos?
 - o quantas vezes você precisa misturar cartas?
 - O torna-se menos eficiente quando n aumenta

<u>Criptografando uma</u> <u>mensagem grande</u>

REDES DE COMPUTADORES E A INTERNET 5º edição

- Por que não apenas quebra a mensagem em blocos de 64 bits e criptografar cada bloco separadamente?
 - se mesmo bloco de texto aberto aparecer duas vezes, gerará o mesmo texto cifrado.
- Que tal:
 - gerar número aleatório de 64 bits r(i) para cada bloco de texto aberto m(i)
 - \circ calcular $c(i) = K_s(m(i) \oplus r(i))$
 - \circ transmitir c(i), r(i), i = 1,2,...
 - o no destinatário: $m(i) = K_s(c(i)) \oplus r(i)$
 - o problema: ineficaz, precisa enviar c(i) e r(i)

Cipher Block Chaining (CBC)

REDES DE COMPUTADORES E A INTERNET 5' edição

- CBC gera seus próprios números aleatórios
 - o faça a criptografia do bloco atual depender do resultado do bloco anterior
 - \circ c(i) = K_s(m(i) \oplus c(i-1))
 - $om(i) = K_s(c(i)) \oplus c(i-1)$
- Como criptografamos o primeiro bloco?
 - vetor de inicialização (IV): bloco aleatório = c(0)
 - IV n\u00e3o precisa ser secreto
- mude IV para cada mensagem (ou sessão)
 - o garante que, ainda que a mesma mensagem seja enviada repetidamente, o texto cifrado será completamente diferente a cada vez

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

 bloco de cifra: se bloco de entrada repetido, produzirá o mesmo texto cifrado:

- ☐ Cipher Block Chaining: XOR do iº bloco de entrada, m(i), com bloco anterior do texto cifrado, c(i-1)
 - c(0) transmitido ao destinatário abertamente
 - o que acontece no cenário "HTTP/1.1" anterior?

Criptografia de chave pública

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

chave simétrica

- requer que remetente e destinatário conheçam chave secreta
- P: Como combinar sobre a chave em primeiro lugar (principalmente se nunca se "encontraram")?

chave pública

- técnica radicalmente diferente [Diffie-Hellman76, RSA78]
- remetente e destinatário não compartilham chave secreta
- chave criptográfica pública conhecida por todos
- chave de decriptação privada conhecida apenas pelo receptor

REDES DE COMPUTADORES E A INTERNET 5' edição

Algoritmo de criptografia de chave pública

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Requisitos:

precisa de K_{β}^+ (•) e K_{β}^- (•) tais que

$$K_B^-(K_B^+(m)) = m$$

dada a chave pública K_B⁺, deverá ser impossível calcular chave privada K_B⁻

RSA: Algoritmo de Rivest, Shamir, Adelson

<u>Pré-requisito:</u> <u>aritmética modular</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

- x mod n = resto de x quando divide por n
- Fatos:

```
[(a mod n) + (b mod n)] mod n = (a+b) mod n

[(a mod n) - (b mod n)] mod n = (a-b) mod n

[(a mod n) * (b mod n)] mod n = (a*b) mod n
```

- Assim,
 - $(a \mod n)^d \mod n = a^d \mod n$
- Exemplo: x = 14, n = 10, d = 2: $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$ $x^d = 14^2 = 196$ $x^d \mod 10 = 6$

RSA

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- Uma mensagem é um padrão de bits.
- Um padrão de bits pode ser representado exclusivamente por um número inteiro.
- Assim, criptografar uma mensagem é equivalente a criptografar um número.

Exemplo

- m = 10010001. Essa mensagem é representada exclusivamente pelo número decimal 145.
- Para criptografar m, criptografamos o número correspondente, que gera um novo número (o texto cifrado).

RSA: Criando par de chave pública/privada

- 1. Escolha dois números primos grandes *p*, *q*. (p. e., 1024 bits cada)
- 2. Calcule n = pq, z = (p-1)(q-1)
- 3. Escolha e (com e<n) que não tenha fatores comuns com z. (e, z são "relativamente primos").
 - 4. Escolha d tal que ed-1 seja divisível exatamente por z. (em outras palavras: ed mod z=1).
- 5. Chave pública é (n,e). Chave privada é (n,d).

RSA: criptografia, decriptação

- 0. Dados (n,e) e (n,d) conforme calculamos
- 1. Para criptografar a mensagem m (< n), calcule $c = m^e \mod n$
 - 2. Para decriptar padrão de bits recebido, c, calcule $m = c^d \mod n$

A mágica
$$m = (m^e \mod n)^d \mod n$$

Exemplo de RSA:

Uma Abordagem Top-Down

Bob escolhe
$$p = 5$$
, $q = 7$. Depois, $n = 35$, $z = 24$.
 $e = 5$ (assim, e , z relativamente primos).
 $d = 29$ (assim, $ed-1$ divisível exatamente por z).

Criptografando mensagens de 8 bits.

criptografia:
$$\frac{\text{padrão de bits}}{\text{00001100}} \quad \frac{\text{m}}{\text{12}} \quad \frac{\text{m}^{\text{e}}}{\text{24832}} \quad \frac{\text{c} = \text{m}^{\text{e}} \text{mod n}}{\text{17}}$$

Por que RSA funciona?

REDES DE COMPUTADORES E A INTERNET 5' edição

- □ Deve mostrar que c^d mod n = m onde c = m^e mod n
- □ Fato: para qualquer x e y: x^y mod n = $x^{(y \mod z)}$ mod n
 - onde n = pq and z = (p-1)(q-1)
- Assim,
 c mod n = (m mod n) mod n
 - = med mod n
 - $= m^{(ed \, mod \, z)} \, mod \, n$
 - $= m^1 \mod n$
 - = m

RSA: outra propriedade importante

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

A propriedade a seguir será muito útil adiante:

$$K_{B}^{-}(K_{B}^{+}(m)) = m = K_{B}^{+}(K_{B}^{-}(m))$$

use chave pública primeiro, seguida por chave privada use chave privada primeiro, seguida por chave pública

O resultado é o mesmo!

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Por que
$$K_B^{-}(K_B^{+}(m)) = m = K_B^{+}(K_B^{-}(m))$$
 ?

Segue diretamente da aritmética modular:

```
(m^e \mod n)^d \mod n = m^{ed} \mod n
= m^{de} \mod n
= (m^d \mod n)^e \mod n
```

Por que RSA é seguro?

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

- Suponha que você conheça a chave pública de Bob (n,e). Qual é a dificuldade de determinar d?
- Basicamente, é preciso encontrar fatores de n sem conhecer os dois fatores p e q.
- Fato: fatorar um número muito grande é difícil.

Gerando chaves RSA

É preciso achar números primos p e q grandes!

Chaves de sessão

Uma Abordagem Top-Down

- Exponenciação é computacionalmente intensa
- □ CBC é pelo menos 100 vezes mais rápido que RSA

Chave de sessão, K_s

- Bob e Alice usam RSA para trocar uma chave simétrica K_s
- Quando ambos tiverem K_s, eles usam a criptografia de chave simétrica

Capítulo 8: Esboço

REDES DE COMPUTADORES E A INTERNET 54 edição

- 8.1 O que é segurança na rede?
- 8.2 Princípios de criptografia
- 8.3 Integridade de mensagem
- 8.5 Protegendo conexões TCP: SSL
- 8.8 Segurança operacional: firewalls e IDS

<u>Integridade de mensagem</u>

REDES DE COMPUTADORES E A INTERNET 5º edição

- permite a comunicação das partes para verificar que as mensagens recebidas são autênticas.
 - o conteúdo da mensagem não foi alterado
 - origem da mensagem é quem/o que você pensa ser
 - mensagem n\u00e3o foi reproduzida (replay)
 - O sequência de mensagens é mantida
- primeiro, vamos falar sobre resumos de mensagem

Resumos de mensagem

REDES DE COMPUTADORES E A INTERNET 5' edição

- função H() que toma como entrada uma mensagem de tamanho qualquer e gera uma sequência de tamanho fixo: "assinatura da mensagem"
- note que H() é uma função muitos-para-um
- H() normalmente é chamada "função de hash"

- propriedades desejáveis:
 - o fácil de calcular
 - irreversibilidade: não é possível saber m por H(m)
 - resistência a colisão:
 computacionalmente difícil
 de produzir m e m' tal que
 H(m) = H(m')
 - saída aparentemente aleatória

Soma de verificação da Internet: resumo de mensagem fraco

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

soma de verificação da internet tem propriedades da função de hash:

- produz resumo de tamanho fixo (soma de 16 bits) de entrada
- 🟲 é muitos-para-um
 - mas, dada mensagem com dado valor de hash, é fácil achar outra mensagem com o mesmo valor de hash.
 - exemplo: soma de verificação simplificada: soma porções de 4 bytes de cada vez:

<u>mensagem</u>	formato ASCII	<u>mensagem</u>	formato ASCII	
IOU1	49 4F 55 31	I O U <u>9</u>	49 4F 55 <u>39</u>	
0 0 . 9	30 30 2E 39	00.1	30 30 2E <u>31</u>	
9 B O B	39 42 D2 42	9 B O B	39 42 D2 42	

B2 C1 D2 AC mensagens diferentes B2 C1 D2 AC

mas somas de verificação idênticas!

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

Algoritmos de função de hash

REDES DE COMPUTADORES E A INTERNET 5º edição

- função de hash MD5 bastante usada (RFC 1321)
 - o calcula resumo de mensagem de 128 bits em processo de 4 etapas.
- □ SHA-1 também é usado.
 - o resumo de mensagem de 160 bit

Message Authentication Code (MAC)

REDES DE COMPUTADORES E A INTERNET 5' edição

Autenticação do ponto final

- deseja ter certeza do remetente da mensagem - autenticação do ponto final
- supondo que Alice e Bob tenham um segredo compartilhado, MAC oferecerá autenticação do ponto final
 - sabemos que Alice criou a mensagem
 - o mas ela a enviou?

Ataque de reprodução

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

MAC = f(msg,s)Transferir US\$1M MAC de Bill para Trudy Transferir US\$1M MAC de Bill para Trudy

<u>Defendendo contra ataque</u> <u>de reprodução: nonce</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Assinaturas digitais

Uma Abordagem Top-Down

Técnica criptográfica semelhante a assinaturas escritas a mão.

- remetente (Bob) assina documento digitalmente, estabelecendo que é o dono/criador do documento.
- objetivo semelhante a um MAC, exceto que agora usamos criptografia de chave pública.
- verificável, não falsificável: destinatário (Alice) pode provar a alguém que Bob, e ninguém mais (incluindo Alice), deverá ter assinado o documento.

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Uma Abordagem Top-Down

assinatura digital simples para mensagem m:

□ Bob assina m criptografando com sua chave privada K_B⁻, criando mensagem "assinada", K_B⁻(m)

<u>Assinatura digital = resumo</u> <u>de mensagem assinada</u>

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

Bob envia mensagem assinada em forma digital:

Alice verifica assinatura e integridade da mensagem assinada em forma digital:

Assinaturas digitais (mais)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- Suponha que Alice receba msg m, assinatura digital K_B-(m)
- □ Alice verifica m assinada por Bob aplicando chave pública de Bob K_B^+ a K_B^- (m), depois verifica K_B^+ (K_B^- (m)) = m.
- \Box se $K_B^+(K_B^-(m)) = m$, quem assinou m deve ter usado a chave privada de Bob.

Assim, Alice verifica se:

- Bob assinou m.
- Ninguém mais assinou m.
- Bob assinou m e não m'.

Não repudiação:

✓ Alice pode levar m e assinatura K_B-(m) ao tribunal e provar que Bob assinou m.

Autoridades de certificação

REDES DE COMPUTADORES E A INTERNET 5' edição

- autoridade de certificação (CA): vincula chave pública à entidade particular, E.
- □ E (pessoa, roteador) registra sua chave pública com CA.
 - E fornece "prova de identidade" à CA.
 - CA cria certificado vinculando E à sua chave pública.
 - certificado contendo chave pública de E assinada digitalmente pela CA - CA diz "esta é a chave pública de E"

REDES DE COMPUTADORES E A INTERNET 5' edição

- quando Alice quer a chave pública de Bob:
 - o recebe certificado de Bob (Bob ou outro).
 - aplica chave pública da CA ao certificado de Bob, recebe chave pública de Bob

Capítulo 8: Esboço

REDES DE COMPUTADORES E A INTERNET 54 edição

- 8.1 O que é segurança na rede?
- 8.2 Princípios de criptografia
- 8.3 Integridade de mensagem
- 8.5 Protegendo conexões TCP: SSL
- 8.8 Segurança operacional: firewalls e IDS

SSL: Secure Sockets Layer

REDES DE COMPUTADORES E A INTERNET 5' edição

- protocolo de segurança bastante implantado
 - aceito por quase todos os navegadores e servidores Web
 - https
 - dezenas de bilhões de US\$ gastos por ano sobre SSL
- originalmente projetado pela Netscape em 1993
- variações:
 - TLS: Transport Layer Security, RFC 2246
- oferece
 - Confidencialidade
 - Integridade
 - Autenticação

- objetivos originais:
 - teve em mente transações de comércio eletrônico na Web
 - criptografia (especialmente números de cartão de crédito)
 - autenticação de servidor Web
 - autenticação de cliente opcional
 - mínimo de incômodo ao fazer negócios com novos comerciantes
- disponível a todas as aplicações TCP
 - Interface Secure Socket

SSL e TCP/IP

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Aplicação

TCP

IP

aplicação normal

Aplicação

SSL

TCP

IP

aplicação com SSL

- SSL oferece interface de programação de aplicação (API) às aplicações
- •bibliotecas/classes SSL em C e Java prontamente disponíveis

SSL: um canal seguro simples

REDES DE COMPUTADORES E A INTERNET 5' edição

- apresentação: Alice e Bob usam seus certificados e chaves privadas para autenticar um ao outro e trocar segredo compartilhado
- derivação de chave: Alice e Bob usam segredo compartilhado para derivar conjunto de chaves
- transferência de dados: dados a serem transferidos são desmembrados em uma série de registros
- encerramento de conexão: mensagens especiais para encerrar conexão com segurança

Derivação de chave

- considerado ruim usar a mesma chave para mais de uma operação criptográfica
 - use chaves diferentes para código de autenticação de mensagem (MAC) e criptografia
- quatro chaves:
 - \circ K_c = chave de criptografia para dados enviados do cliente ao servidor
 - M_c = chave MAC para dados enviados do cliente ao servidor
 - K_s = chave de criptografia para dados enviados do servidor ao cliente
 - M_s = chave MAC para dados enviados do servidor ao cliente

Registros de dados

- Por que não criptografar dados em fluxo constante enquanto o escrevemos no TCP?
 - Onde colocaríamos o MAC? Se no final, nenhuma integridade de mensagem até todos os dados processados.
 - O Por exemplo, com mensagens instantâneas, como podemos fazer verificação de integridade por todos os bytes enviados antes da exibição?
- Em vez disso, quebre fluxo em série de registros
 - o cada registro transporta um mac
 - o receptor pode atuar em cada registro quando ele chega
- Problema: no registro, receptor precisa distinguir MAC dos dados
 - o quer usar registros de tamanho variável

tamanho	dados	MAC

Números de sequência

- invasor pode capturar e reproduzir registro ou reordenar registros
- solução: colocar número de sequência em MAC:
 - \bigcirc MAC = MAC(M_x, sequência||dados)
- invasor ainda poderia reproduzir todos os registros
 - o use nonce aleatório

<u>Cifras simétricas mais</u> <u>comuns em SSL</u>

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Uma Abordagem Top-Down

- DES Data Encryption Standard: bloco
- 3DES Força tripla: bloco
- RC2 Rivest Cipher 2: bloco
- RC4 Rivest Cipher 4: fluxo

Criptografia de chave pública

RSA

SSL: Apresentação

Uma Abordagem Top-Down

Propósito

- Autenticação do servidor
- Negociação: concordar sobre algoritmos de criptografia
- 3. Estabelecer chaves
- 4. Autenticação do cliente (opcional)

Capítulo 8: Esboço

REDES DE COMPUTADORES E A INTERNET 5' edição

- 8.1 O que é segurança na rede?
- 8.2 Princípios de criptografia
- 8.3 Integridade de mensagem
- 8.5 Protegendo conexões TCP: SSL
- 8.8 Segurança operacional: firewalls e IDS

Firewalls

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

firewall

isola rede interna da organização da Internet maior, permitindo que alguns pacotes passem e bloqueando outros.

Firewalls: Por que

Uma Abordagem Top-Down

impedir ataques de negação de serviço:

 inundação de SYN: atacante estabelece muitas conexões TCP falsas, sem recursos deixados para conexões "reais"

impedir modificação/acesso ilegal de dados internos

 p. e., atacante substitui página inicial da companhia por algo diferente

permite apenas acesso autorizado à rede interna (conjunto de usuários/hospedeiros autenticados)

três tipos de firewalls:

- o filtros de pacotes sem estado
- filtros de pacotes com estado
- gateways de aplicação

Filtragem de pacotes sem estado

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

O pacote que chega deve ter permissão para entrar? Pacote de saída deve sair?

- rede interna conectada à Internet via firewall do roteador
- roteador filtra pacote-por-pacote, decisão de repassar/descartar pacote com base em:
 - o endereço IP de origem, endereço IP de destino
 - o números de porta de origem e destino do TCP/UDP
 - O tipo de mensagem ICMP
 - bits SYN e ACK do TCP

Filtragem de pacotes sem estado: exemplo

REDES DE COMPUTADORES E A INTERNET 5' edição

- exemplo 1: bloco entrando e saindo datagramas com campo de protocolo IP = 17 e com porta de origem ou destino = 23
 - todo UDP entrando e saindo fluxos e conexões telnet são bloqueados
- exemplo 2: bloco entrando segmentos TCP com ACK = 0
 - impede que clientes externos façam conexões
 TCP com clientes internos, mas permite que clientes internos se conectem ao exterior

Filtragem de pacotes sem estado: mais exemplos

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

	1/.	
\mathbf{D}	lit.	
\mathbf{r}	ш	ιι а
<u>. </u>	<u> </u>	<u>. С </u>

sem acesso externo à Web

sem conexões TCP entrando, exceto aquelas apenas para o servidor Web público da instituição

impedir que Web-radios devorem a largura de banda disponível

impedir que sua rede seja usada para um ataque DoS smurf

impedir que sua rede interaja com o programa Traceroute

configuração de firewall

descarta todos os pacotes que saem para qualquer endereço IP, porta 80

descarta todos pacotes TCP SYN que chegam a qualquer IP, exceto 130.207.244.203, porta 80

descarta todos os pacotes UDP que chegam - exceto DNS e broadcasts do roteador

descarta todos os pacotes ICMP indo para um endereço de "broadcast" (p. e., 130.207.255.255)

descarta todo tráfego expirado ICMP TTL de saída

Listas de controle de acesso

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

ACL: tabela de regras, aplicadas de cima para baixo aos pacotes que chegam: pares (ação, condição)

Ação	Endereço de origem	Endereço de destino	Protocolo	Porta de origem	Porta de destino	Flag bit
Permitir	222.22/16	Fora de 222.22/16	TCP	>1023	80	Qualquer um
Permitir	Fora de 222.22/16	222.22/16	TCP	80	>1023	ACK
Permitir	222.22/16	Fora de 222.22/16	UDP	>1023	53	_
Permitir	Fora de 222.22/16	222.22/16	UDP	53	>1023	_
Negar	Todos	Todos	Todos	Todos	Todos	Todos

Filtragem de pacotes com estado

REDES DE COMPUTADORES E A INTERNET 5' edição

- filtro de pacotes sem estado
 - admite pacotes que "não fazem sentido", p. e., porta destino
 = 80, bit ACK marcado, mesmo sem conexão TCP
 estabelecida:

ação	endereço de origem	endereço de destino	protocolo	porta de origem	porta de destino	bit de flag
permitir	fora de 222.22/16	222.22/16	ТСР	80	> 1023	ACK

- filtro de pacotes com estado: rastreia status de cada conexão TCP
 - rastrear configuração de conexão (SYN), encerramento (FIN):
 pode determinar se pacotes de entrada e saída "fazem sentido"
 - timeout de conexões inativas no firewall: não admite mais pacotes

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

 ACL aumentada para indicar necessidade de verificar tabela de estado da conexão antes de admitir pacote

Ação	Endereço de origem	Endereço de destino	Protocolo	Porta de origem	Porta de destino	Flag bit	Conexão de checagem
Permitir	222.22/16	Fora de 222.22/16	TCP	>1023	80	Qualquer um	
Permitir	Fora de 222.22/16	222.22/16	TCP	80	>1023	ACK	Х
Permitir	222.22/16	Fora de 222.22/16	UDP	>1023	53	_	
Permitir	Fora de 222.22/16	222.22/16	UDP	53	>1023	-	χ
Negar	Todos	Todos	Todos	Todos	Todos	Todos	

Gateways de aplicação

REDES DE COMPUTADORES E A INTERNET 5' edição

- filtra pacotes nos dados da aplicação, além de campos IP/TCP/UDP.
- exemplo: permitir seleção de usuários internos ao telnet externo.

- 1. requer que todos os usuários telnet passem pelo gateway.
- para usuários autorizados, gateway estabelece conexão telnet ao hospedeiro de destino. Gateway repassa dados entre 2 conexões
- 3. filtro do roteador bloqueia todas as conexões telnet não originando do gateway.

<u>Limitações de firewalls</u> <u>e gateways</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

- falsificação de IP: roteador não sabe se os dados "realmente" vêm de fonte alegada
- se múltiplas aplicações precisam de tratamento especial, cada uma tem gateway próprio.
- software cliente deve saber como contatar gateway.
 - p. e., deve definir endereço IP do proxy no servidor Web

- filtros normalmente usam toda ou nenhuma política para UDP.
- dilema: grau de comunicação com mundo exterior, nível de segurança
- muitos sites altamente protegidos ainda sofrem de ataques.

Sistemas de detecção de invasão

REDES DE COMPUTADORES E A INTERNET 5' edição

- filtragem de pacotes:
 - O opera apenas sobre cabeçalhos TCP/IP
 - o sem verificação de correlação entre sessões
- IDS: Intrusion Detection System
 - o profunda inspeção de pacotes: examina conteúdo do pacote (p. e., verifica strings de caracteres no pacote contra banco de dados de vírus conhecidos e sequências de ataque)
 - o examine correlação entre múltiplos pacotes
 - escaneamento de portas
 - mapeamento de rede
 - ataque de DoS

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

 múltiplos IDSs: diferentes tipos de verificação em diferentes locais

Segurança de rede (resumo)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

técnicas básicas......

- criptografia (simétrica e pública)
- integridade da mensagem
- autenticação do ponto final

.... usado em muitos cenários de segurança diferentes

- e-mail seguro
- transporte seguro (SSL)
- IPsec
- **9** 802.11

Segurança Operacional: firewalls e IDS