

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 1: EINLEITUNG

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 16. Oktober 2021

WER BIN ICH?

- ► Eric Kunze
- ▶ eric.kunze@tu-dresden.de
- ► Fragen, Wünsche, Vorschläge, ...
- ► Telegram:

@oakoneric bzw. t.me/oakoneric

CORONA & CO

Hybridlehre

- ► Vorlesung als Video *freitags* im OPAL-Kurs
- ▶ Übungsblatt freitags im OPAL-Kurs (und zeitnah auf meiner Website)
- ▶ digitale Übungsbesprechung: Freitag, 2.DS

Corona-Regelungen ohne Garantie – Eigenverantwortlichkeit

- ► Präsenzübung einschreibungspflichtig
- ► Nicht-Erscheinen ohne Ankündigung = Austragung
- ► Wartelisteplätze rutschen nach
- ► **Abmeldung** bei Verhinderung
- ► Teilnahmeliste
- ► Maskenpflicht bis zum Platz, Lüften, ...

Umfrage: https://tudvote.tu-dresden.de/92480

INFOS & CO

OPAL-Kurs: https://tud.link/573c

- ► alle Informationen zur Lehrveranstaltung
- Vorlesungsvideos
- Übungsblätter
- ▶ Forum

Materialien:

- Slides der Vorlesung (ersetzen ehemaliges Skript)
- ► Aufgabensammlung

Verlegung am Buß- und Bettag:

```
https://dudle.inf.tu-dresden.de/aud-eric/
```

MEINE MATERIALIEN

Meine Materialien sind auf meiner Website https://oakoneric.github.io/aud21 zu finden.

- ► Slides (mit Lösungen)
- evtl. zusätzliche Materialien (nach Bedarf)
- ► kein Anspruch auf Vollständigkeit & Korrektheit

Source Code auf Github https://github.com/oakoneric-tutorials/algorithmen-datenstrukturen-ws21

► Fehler gern selbst beheben oder mir Bescheid geben

WAS WIRD IN DER ÜBUNG ERWARTET?

Ziel: viel Interaktivität

Mein Input

- ► Zusammenfassung einiger Vorlesungsinhalte
- ▶ beispielhafte Lösungsansätze und Lösungen
- ► Fragen, Fragen, Fragen

Euer Input

- Grundverständnis aus der Vorlesung
- ▶ Vorbereitung der Übungsaufgaben
- ► aktive Mitarbeit und Fragen

Übungsblatt 1

AUFGABE 1

Begriff	Erklärung
Syntax	Struktur (einer Sprache), erlaubte Zei- chenketten
Semantik	Bedeutung der Zeichenketten
Objektsprache	(syntaktisch) zu beschreibende Sprache
Metasprache	Hilfssprache zur Beschreibung der Objektsprache
Alphabet Σ	nichtleere, endliche Menge von Termi- nalsymbolen, Zeichenvorrat
Wort	endliche Folge von Symbolen
Konkatenation	Verkettung von Wörtern

AUFGABE 1 (FORTSETZUNG)

Begriff	Erklärung
Σ^*	Menge aller Wörter über Σ
formale Sprache <i>L</i>	Menge von Wörtern über Σ $L \in \mathcal{P}(\Sigma^*)$
Potenzmenge ${\cal P}$	Menge aller Teilmengen
$\mathcal{P}(\Sigma^*)$	Menge aller Sprachen über Σ
Komplexprodukt "."	Verknüpfung von Sprachen $L_1 \cdot L_2 = \{uv \mid u \in L_1, v \in L_2\}$
L*	Menge aller Konkatenationen von Wörtern aus L $L^* = \bigcup_{n \geq 0} L^n$ mit $L^0 = \{\varepsilon\}$ und $L^{n+1} = L^n \cdot L$

AUFGABE 2

Sei
$$\Sigma = \{1, 2, a, b\}$$
.

- ▶ **Wörter** ... entstehen durch Konkatentation von Symbolen z.B. ε , 1, 2, a, b, 12, 1a, 1b, 21, 22, 2a, 2b, ab, abba, ...
- ► Symbole $\stackrel{\text{"."}}{\longrightarrow}$ Wörter $\stackrel{\in}{\longrightarrow}$ $\underbrace{\Sigma^*}_{\text{Menge 1. Ordnung}} \stackrel{\in}{\longrightarrow}$ $\underbrace{\mathcal{P}(\Sigma^*)}_{\text{Menge 2. Ordnung}}$
- ▶ **Sprache** L ... Menge von Wörtern, d.h. $L \subseteq \Sigma^*$ bzw. $L \in \mathcal{P}(\Sigma^*)$, z.B.

$$L = \{1, 1a, 1b, 1aa, 1bb, 1ab, 1aab, \dots\} = \{1a^n b^m : n, m \ge 0\}$$
$$= \{1\} \cdot \{a\}^* \cdot \{b\}^*$$

Beachte: $\emptyset \in \mathcal{P}(\Sigma^*)$ und $\varepsilon \in \Sigma^*$

AUFGABE 3

Seien
$$L_1 = \{a\}, L_2 = \{b\}, L_3 = \{a, ba\}.$$

- $\blacktriangleright L_1 \cdot L_2 \cdot L_3 = \{aba, abba\}$
- ► $L_1^* = \{a\}^* = \{\varepsilon, a, aa, aaa, ...\} = \{a^n : n \ge 0\}$
- ▶ $L_3^* = \{\varepsilon, a, ba, aa, aba, baa, baba, \dots\} = \{a^{m_1}(ba)^{n_1} \cdots a^{m_k}(ba)^{n_k} : m_i, n_i \in \mathbb{N}, k \in \mathbb{N}^+, 1 \le i \le k\}$
- ► $L_2^* \cdot L_1 = \{a, ba, bba, bbba, ...\} = \{b^n a : n \ge 0\}$
- $\mathcal{P} \left(L_{1}^{*} \right) = \\ \left\{ \emptyset, \left\{ \varepsilon \right\}, \left\{ a \right\}, \left\{ aaa \right\}, \left\{ aaa \right\}, \ldots, \left\{ \varepsilon, a \right\}, \left\{ \varepsilon, aaa \right\}, \left\{ \varepsilon, aaa \right\} \right\} = \\ \left\{ \left\{ a^{n} : n \in I \right\} : I \subseteq \mathbb{N} \right\}$

Keine Angst vor Mathe!

KEINE ANGST VOR MATHE!

Euklid: Satz 4 in Buch II der "Elemente"

Wird eine Strecke in zwei geteilt, dann ist das Quadrat über der ganzen Strecke gleich den Quadraten über den Teilen und dem doppelten Rechteck, das die Teile ergeben, zusammen.

siehe http://www.opera-platonis.de/euklid/Buch2.pdf

KEINE ANGST VOR MATHE!

al-Khwarizmi in Al-jabr wa'l muqabalah'

What must be the amount of a square, which, when twenty-one dirhems are added to it, becomes equal to the equivalent of ten roots of that square?

Solution: Halve the number of the roots; the moiety is five. Multiply this by itself; the product is twenty-five. Subtract from this the twenty-one which are connected with the square; the remainder is four. Extract its root; it is two. Subtract this from the moiety of the root, which is five; the remainder is three. This is the root of the square which you required, and the square is nine. Or you may add the root of the moiety of the roots; the sum is seven; this is the root of the square which you sought for, and the square itself is forty nine.

DER KLEENE-STERN

Definition (Kleene-Stern)

Für eine formale Sprache L definieren wir

$$L^* = \bigcup_{n \ge 0} L^n = \bigcup_{n = 0}^{\infty} L^n$$

wobei $L^0 = \{\varepsilon\}$ und $L^{n+1} = L^n \cdot L$.

Beachte: $\{\varepsilon\}^* = \emptyset^* = \{\varepsilon\}$