REMARKS

Allowable claims 12 and 13 are hereby amended to overcome the 35 USC 112, second paragraph, rejection. Claim 28 depends from claim 12 and remains pending. All other claims have been canceled without prejudice or disclaimer with respect to the filing of divisional applications.

A Supplemental Reissue Declaration will be filed as soon as possible. If none is needed pursuant to MPEP 1414.01 due to the editorial nature of the present amendments, the Examiner is requested to telephone the undersigned.

The Original Letters Patent No. 5,745,182 is surrendered herewith.

In light of the foregoing, a Notice of Allowance is respectfully solicited.

If any issues remain which may best be resolved through a telephone communication, the Examiner is requested to telephone the undersigned at the local Washington, D.C. telephone number listed below, in order to expedite consideration and allowance of this application.

Respectfully submitted,

Date: April 6, 2001

James E. Ledbetter Registration No. 28,732

JEL/ldh

Attorney Docket No. <u>JEL 29186C-RE</u>

STEVENS DAVIS MILLER & MOSHER, L.L.P.

1615 L STREET, NW, Suite 850

P.O. Box 34387

WASHINGTON, DC 20043-4387

Telephone: (202) 408-5100 Facsimile: (202) 408-5200

Exhibit I- marked up version of the amended claims

- 12. (Amended) A method of obtaining a motion-compensated image, said method comprising the steps of:
- (a) obtaining a first motion vector MV1 between the motion-compensated-image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the motion-compensated-image and said one reference image R1;
- (b) calculating a second motion vector MV2 between the motion-compensated image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the motion-compensated image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);
- (c) calculating pixel values of said one reference image R1 from pixels at positions corresponding to said first motion vector MV1 and calculating pixel values of said second reference image R2 from pixels at positions corresponding to said [another] second motion vector MV2, wherein said reference images R1 and R2 are such that a motion vector MV3 between said reference images R1 and R2 has a mathematical relationship with said first and second motion vectors MV1 and MV2 in which said motion vector MV3

is parallel to and different in value from each of said first and second motion vectors MV1 and MV2; and

- (d) calculating motion-compensated pixel values of said motion-compensated image from said pixel values calculated in step (c) to obtain said motion-compensated image.
- 13. (Amended) A method of obtaining a motion-compensated image, said method comprising the steps of:
- (a) obtaining a first motion vector MV1 between the motion-compensated-image and one reference image R1 of a plurality of reference images at a second set time interval T2 between the motion-compensated image and said one reference image R1;
- (b) calculating a second motion vector MV2 between the motion-compensated image and another reference image R2 of said plurality of reference images at a first set time interval T1 between the motion-compensated image and said another reference image R2, said second motion vector MV2 being parallel to said first motion vector MV1 and having a magnitude satisfying the relation MV2=MV1·(T1/T2);
- (c) calculating pixel values of said one reference image R1 from pixels at positions corresponding to said first motion vector MV1 and calculating pixel values of said second reference image R2 from pixels at positions corresponding to said [another] second motion vector MV2, wherein said reference images R1 and R2

are previous to said motion-compensated image in a time sequence; and

(d) calculating motion-compensated pixel values of said motion-compensated image from said pixel values calculated in step (c) to obtain said motion-compensated image.