16-08-15_Sr. IPLCO_JEE-ADV_(2012_P2)_RPTA-3_Key &Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 16-08-15

 Time: 3 Hours
 2012-P2-Model
 Max Marks: 198

KEY & SOLUTIONS

PHYSICS

1	A	2	D	3	D	4	С	5	A	6	D
7	D	8	С	9	A	10	С	11	A	12	A
13	В	14	С	15	AC	16	ACD	17	ВС	18	AB
19	CD	20	CD								

CHEMISTRY

											
21	В	22	A	23	С	24	A	25	A	26	В
27	D	28	В	29	В	30	С	31	A	32	С
33	В	34	С	35	CD	36	ACD	37	ABCD	38	ABC
39	ВС	40	AC	6 9					W	D_{ij}	

MATHS

41	D	42	D	43	C	44	В	45	A	46	A
47	C	48	D	49	D	50	C	51	A	52	D
53	A	54	C	55	BCD	56	AC	57	ABC	58	BD
59	ВС	60	ABD								

PHYSICS

1.
$$\omega = \frac{V_{\perp}}{r} = \frac{V \sin \theta}{r} = \frac{\left| \vec{r} \times \vec{v} \right|}{r^2}$$

Or,
$$\vec{\omega} = \frac{\vec{r} \times \vec{v}}{r^2}$$
; $\vec{r} = (\hat{j} + \hat{k})$

2. Differentiating \hat{r} or $\hat{\theta}$ once by ' θ ' turns the vector by 90° in anti-clockwise direction.

3.
$$F = -\frac{\partial u}{\partial x} = -48$$

The block must reach at least up to x=3 towards origin. For x<3m, the force field is sufficient to overcome friction.

6. $T\cos\theta = mg$

 $T \sin \theta = m\omega^2 \ell \sin \theta \Rightarrow T = m\omega^2 \ell$

and
$$w = \sqrt{\frac{g}{\ell \cos \theta}} \ge \sqrt{\frac{g}{\ell}}$$

9-10. In case 1, $f_{limit} = \mu m \sqrt{g^2 + (r\alpha)^2}$

In case 2,
$$f_{limit} = \mu [mg + mr\alpha]$$

15.

 \vec{a}_A is perpendicular to 'OA' or along 'AB'.

$$a_{B_{11}} = \frac{mg\cos 37 - T_2}{m}$$

$$a_{A_{11}} = \frac{mg\cos 37 + T_2}{m}$$

$$a_{B_{11}} = a_{A_{11}} \implies T_2 = 0$$

$$\therefore \vec{a}_B = g \Downarrow \& a_A = g \sin 53^\circ$$

Sri Chaitanya IIT Academy

16-08-15_Sr. IPLCO_JEE-ADV_(2012_P2)_RPTA-3_Key &Sol's

16. $Y = Ax + Bx^2, y = 0$ at x = 10m & y = 2.5m at x = 5m

$$\therefore y = x - \frac{x^2}{10}$$

Radius of curvature of a given trajectory is independent of velocity of the object moving on the trajectory.

Consider a projectile with the same equation of trajectory.

$$Y = x \tan \theta_p - \frac{gx^2}{2u_p^2 \cos^2 \theta_p} \Rightarrow \theta_p = 45^\circ \& u_p = 10 \text{m/s}.$$

$$\therefore R = \frac{\left(u_p \cos 45\right)^2}{a_p, n} = 5m$$

To find N,
$$Mg - N = \frac{MV^2}{R} \Rightarrow N = M(g - \frac{v^2}{R}) = zero$$

17. $f = 2 \times (10 - 5)$

=10 N

$$P_1 = -10 \times 10 = -100 W$$

$$P_2 = +10 \times 5 = 50 \text{W}$$

$$P_1 + P_2 = -50W$$

w.r.t lower block,

$$p_1^{-1} = -50$$

$$p_2^1 = zero$$

18. If a particle has a constant acceleration, it may trace a parabolic path. But parabolic path does not guarantee constant acceleration.