Project Name

 DDoSNetGuard: A Machine Learning Approach to Identifying DDoS Attacks

Brief Description/Title

 Implementing an ML System for DDoS Attack Detection using CICIDS2017 Dataset

Team Members

Sean Sica (just me!)

Problem Statement

Despite advancements in network security,
Distributed Denial of Service (DDoS) attacks remain
a critical threat to internet infrastructure, causing
significant service disruption. Traditional detection
systems struggle to adapt to evolving DDoS tactics,
necessitating more dynamic and intelligent
solutions.

Objective

 To develop a machine learning-based system capable of accurately identifying DDoS attacks in network traffic, with potential scalability towards distinguishing various DDoS sub-types.

Approach/Methodology

1. **Data Preparation**: Utilize the CICIDS2017 dataset for training and testing, focusing on labeled network flows that include benign and attack vectors.

2. **Initial Model Development**: Start with an LSTM network to capture temporal dependencies in network flow data indicative of DDoS patterns.

3. Iterative Enhancement:

- Upon successful LSTM implementation, incorporate a CNN layer to extract spatial features from the data, improving detection accuracy.
- Integrate an attention mechanism to prioritize features most indicative of DDoS attacks, enhancing the model's focus and efficiency.
- 4. **Evaluation and Optimization**: Continuously evaluate the model's performance using the CICIDS2017 dataset and refine the architecture and hyperparameters for optimal detection accuracy.

Block Diagram

Datasets (Potential)

- CICIDS2017 dataset, which includes detailed network flows labeled as benign or various attack types, including DDoS.
 - The dataset features labeled network flows, including benign and various DDoS attack vectors, captured from July 3 to July 7, 2017.
 - It encompasses over 80 network flow features derived from full packet payloads in pcap format and CSV files, designed to simulate real-world data including HTTP, HTTPS, FTP, SSH, and email protocols.
 - The dataset includes a range of attack types such as Brute Force FTP/SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, and DDoS, alongside naturalistic benign traffic.

What is Considered Success/Failure?

- Success: Achieving a high accuracy rate in identifying DDoS attacks, with low false positives and negatives, and potential scalability towards classifying DDoS sub-types.
- Failure: Inability to significantly outperform traditional detection methods or to adapt to new DDoS patterns not covered in the training dataset.

Evaluation Parameters (Potential)

- Accuracy: Percentage of total predictions that were correct.
- Precision: Of the identified DDoS attacks, how many were actually DDoS attacks.
- Recall: Of all actual DDoS attacks, how many were identified by the model.
- F1 Score: Harmonic mean of precision and recall, providing a balance between the two in cases of class imbalance.