All-Pairs Shortest Paths

Heejin Park

Division of Computer Science and Engineering
Hanyang University

Contents

- Using SSSP (single source shortest path) algorithms
- Floyd-Warshall algorithm
- Transitive closure of a directed graph

Using SSSP algorithms

• We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm |V| times, once for each vertex as the source.

- Nonnegative-weight edges
 - Dijkstra's algorithm
 - The linear-array implementation
 - $O(V \cdot V^2) = O(V^3).$
 - The binary min-heap implementation
 - $O(V \cdot (V \lg V + E \lg V)) = O(V^2 \lg V + V \underline{E} \lg V)$

Using SSSP algorithms

Negative-weight edges

- Bellman-Ford algorithm
 - $O(V \cdot VE) = O(V^2E)$
 - $O(V^4)$ on a dense graph

Contents

- Using SSSP (single source shortest path) algorithms
- Floyd-Warshall algorithm
 - $\Theta(V^3)$ -time
- Transitive closure of a directed graph

- Adjacency Matrix W
 - $w_{ij} = w(i,j)$

1	0	3	8	∞	-4)
	∞	0	∞	1	7
	∞	4	0	∞	∞
	2	∞	-5	0	∞
1	∞	∞	∞	6	0)

• Shortest Distance Matrix D

•
$$d_{ij} = \delta(i,j)$$

0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2		-5	0	-2
8	5	1	6	0

- Predecessor Matrix Π
 - π_{ij} = NIL if either i = j or there is not path from i to j.
 - π_{ij} is the predecessor of j on some shortest path from i to j.

NIL	3	4	5	1	١
4	NIL	4	2	1	
4	3	NIL	2	1	
4	3	4	NIL	1	
4	3	4	5	NIL)	

• The following procedure prints a shortest path from *i* to *j* due to the optimal substructure of the shortest-paths problem.

```
PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, j)
```

```
1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, \pi_{ij})

6 print j
```

Intermediate Vertex

• An intermediate vertex of a simple path $p = \langle v_1, v_2, \dots, v_l \rangle$ is any vertex of p between v_1 and v_l .

• The structure of a shortest path

- Floyd-Warshall algorithm is based on the observation of the intermediate vertices, which costs $\Theta(V^3)$ time.
- Let $V = \{1, 2, \dots, n\}$.
- For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1, 2, \dots, k\}$, and let p be a minimum weight path from among them.

- If k is not an intermediate vertex of path p, then all intermediate vertices of p are in $\{1, 2, \dots, k-1\}$.
- If k is an intermediate vertex of path p, then we break p down into $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$.

- A recursive solution to the all-pairs shortest-paths problem
 - Let $d_{ij}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1, 2, \dots, k\}$.
 - We have the following recurrence:

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1. \end{cases}$$
 (25.5)

• Because for any path, all intermediate vertices are in the set $\{1, 2, \dots, n\}$, the matrix $D^{(n)} = d_{ij}^{(n)}$ gives the final answer: $d_{ij}^{(n)} = \partial(i, j)$ for all $i, j \in V$.

```
FLOYD-WARSHALL(W)
    n = W.rows
2 D^{(0)} = W
     for k = 1 to n
3
        let D^{(k)} = (d_{ii}^{(k)}) be a new n \times n matrix
        for i = 1 to n
              for j = 1 to n
                  d_{ij}^{(k)} = \min \left( d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)
     return D^{(n)}
```

 \circ costs $\Theta(n^3)$ time.

0	3	8	∞	-4)
∞	0	∞	1	7
∞	4	0	∞	∞
2	∞	-5	0	∞
$\int \infty$	∞	∞	6	0)

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\mathbf{D}^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & 1 & \text{NIL} & 1 \end{pmatrix} \\ \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & 1 & 1 \\ \text{NIL} & 1 & 1 \\ \text{NIL} & 1 & 1 & 1 \\ \text{NIL} &$$

$$\Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$\mathbf{D}^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \mathbf{D}^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\mathbf{D}^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix} \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$\Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$\mathbf{D}^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \mathbf{D}^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\mathbf{D}^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix} \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$\Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

- Constructing A Shortest Path
 - Let Π_{ij}^k be the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in $\{1, 2, \dots, k\}$.

$$\Pi_{ij}^{(0)} = \begin{cases} \text{NIL if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

$$\Pi_{ij}^{(k)} = \begin{cases} \Pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \Pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

- Transitive Closure of Graph
 - Given a directed graph G = (V, E) with vertex set $V = \{1, 2, \dots, n\}$.
 - The transitive closure of G is defined as the graph G* = (V,E*), where $E* = \{(i,j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}$.