Quiz 2	● Graded
Student	
HARRIS DOAN	
Total Points	
14 / 14 pts	
Question 1	
Overfitting	2 / 2 pts
→ + 2 pts Correct	
Question 2	
Cross Validation	2 / 2 pts
→ + 2 pts Correct	
Question 3	
Decision Tree	7 / 7 pts
3.1 Entropy	2 / 2 pts
→ + 2 pts Correct	
3.2 Conditional entropy	2 / 2 pts
→ + 2 pts Correct	
3.3 ID3 Algorithm	3 / 3 pts
→ + 3 pts Correct	
Question 4	
K-nearest neighbors	3 / 3 pts
4.1 Concept	2 / 2 pts
→ + 2 pts Correct	
4.2 KNN practice	1 / 1 pt
→ + 1 pt Correct	

Q1 Overfitting

2 Points

Which of the following actions is the least likely to address overfitting problems

- Remove irrelevant features.
- Increasing the complexity of the model to better capture the nuances in the noisy data.
- Reduce the complexity of the model.
- Split the training data into the training and validation set and select the model via cross-validation.

Q2 Cross Validation

2 Points

You perform 2-fold cross-validation to tune the MaxDepth hyperparameter of a decision tree classifier. The MaxDepth hyperparameter can take one of 3 possibles values: $\{1,2,3\}$. These are the accuracies you obtain for each MaxDepth on each fold:

Fold	MaxDepth			
	1	2	3	
1	0.9	0.8	0.5	
2	0.5	0.8	0.6	

What is the MaxDepth hyperparameter chosen by this procedure?

- \bigcirc 1
- 2
- O 3

Q3 Decision Tree

7 Points

Consider the data points below. The Weather, Wind, and Temperature are features and we want to use a decision tree to decide whether it is ok to play outside.

Weather	Wind	Temperature	Play?
Sunny	Weak	Hot	+
Sunny	Strong	Hot	-
Rain	Weak	Cold	-
Rain	Weak	Hot	+
Cloudy	Strong	Cold	-
Cloudy	Weak	Cold	+
Rain	Strong	Cold	-

Q3.1 Entropy 2 Points

What is the entropy of the label over these seven examples ("Play?" is the label)

$$\bigcirc log \frac{3}{7} + log \frac{4}{7}$$

$$\bigcirc -log \frac{3}{7} -log \frac{4}{7}$$

$$\bigcirc -\frac{4}{7}log\frac{3}{7} - \frac{3}{7}log\frac{4}{7}$$

Q3.2 Conditional entropy

2 Points

What is the conditional entropy of the label ("Play?" is the label) given the feature "Wind" is Strong?

- 0
- $\bigcirc -\tfrac{3}{7}(\tfrac{3}{7}log(\tfrac{3}{7}) + \tfrac{4}{7}log(\tfrac{4}{7})$
- $\bigcirc -\frac{4}{7} \left(\frac{3}{7} log\left(\frac{3}{7}\right) + \frac{4}{7} log\left(\frac{4}{7}\right)\right)$
- $\bigcirc -\frac{4}{7}log(\frac{1}{2})$

Q3.3 ID3 Algorithm

3 Points

What would you pick as the first node using the ID3 decision tree learning algorithm?

- Weather
- Wind
- Temperature

Q4 K-nearest neighbors 3 Points

Q4.1 Concept 2 Points

Which of the following statements about KNN is *not* true?

- For the large values of k, the classifier is less likely to overfit than underfit.
- Both the training and testing time complexity are constant.
- The larger value of K results in a smoother decision boundary.
- The hyperparameter k is typically set to an odd number.

Q4.2 KNN practice 1 Point

Consider the following data where x and y are two input features. Suppose you want to predict the label of a new data point x=-1, y=0.5 using Manhattan distance in 1-Nearest Neighbour (1-NN). What would be the predicted label for this data point? (Note: In the plot, \circ represents label "-"; + represents label "+")

X	У	label
-1	1	-
0	1	+
0	2	-
1	-1	-
1	0	+
1	2	+
2	2	-
2	3	+

- O Using 1-NN, the label will be +
- Using 1-NN, the label will be -