Caracterización:

Se hace modificando el ancho de pulso y se modela el ancho de banda:

Ancho de banda =
$$\frac{1}{Ancho de pulso \%}$$
 * Frecuencia de pulso

PUNTO 1:

Señal Coseno:

Frecuencia de pulso = 1000 Ancho de pulso = 5 Amplitud del mensaje = 1

Frecuencia de pulso = 1000 Ancho de pulso = 20 Amplitud del mensaje = 1

Señal Triangular:

Frecuencia de pulso = 1000 Ancho de pulso = 5 Amplitud del mensaje = 1

Frecuencia de pulso = 1000 Ancho de pulso = 25 Amplitud del mensaje = 1 **Señal Diente de sierra:**

Frecuencia de pulso = 1000 Ancho de pulso = 5 Amplitud del mensaje = 1

Frecuencia de pulso = 1000 Ancho de pulso = 10 Amplitud del mensaje = 1

PUNTO 2:

D1 = 25

D2 = 50

D3 = 75

Señal sumada.

Señales individuales evidenciadas.

D1 = 20

D2 = 40

D3 = 60

D4 = 80

Señal sumada.

PUNTO 3:

1. Determine las condiciones para recuperar cada canal (variable D4) (adjunte evidencia)

D1 = 20

D2 = 40

D3 = 60

2. Conecte el USRP al computador y mida las señales en el osciloscopio (recuerde que para generar desde el USRP debe hacer un montaje adicional) (adjunte evidencia) Señal cuadrada

Señal diente de sierra

3. Conecte el USRP al computador y mida las señales en el analizador de espectro (adjunte evidencia)

Señal diente de sierra

