Práctica Final. Diseño de Controladores Borrosos y Neuroborrosos para un Robot Móvil

> Ana Cortés Cercadillo Carlos Javier Hellín Asensio

sensor3

sensor1 sensor4

V

Parte 2. Controlador Neuroborroso. Entorno sin obstáculos.

```
Train_lineal.m > +

1 - train_lineal = training(:,[4,13])
2 - indices = round(linspace(1,size(training,1),1500))
3 - train_lineal = train_lineal(indices,:)
4 - train_lineal(isinf(train_lineal)) = 5.0
5 - train_lineal = double(train_lineal)
```

Parte 2. Controlador Neuroborroso. Entorno sin obstáculos.

W

Parte 2. Controlador Neuroborroso. Entorno sin obstáculos.

Parte 2. Controlador Neuroborroso. Entorno sin obstáculos.

Parte 2. Controlador Neuroborroso. Entorno con obstáculos.

```
Train_angular.m × +

1 - train_angular = training(:,[3,4,12])
2 - indices = round(linspace(l,size(training,l),1500))
3 - train_angular = train_angular(indices,:)
4 - train_angular(isinf(train_angular)) = 5.0
5 - train_angular = double(train_angular)
```

```
Train_lineal.m * +

1 - train_lineal = training(:,[3,4,13])
2 - indices = round(linspace(l,size(training,1),1500))
3 - train_lineal = train_lineal(indices,:)
4 - train_lineal(isinf(train_lineal)) = 5.0
5 - train_lineal = double(train_lineal)
```

Parte 2. Controlador Neuroborroso. Entorno con obstáculos.

W

Parte 2. Controlador Neuroborroso. Entorno con obstáculos.

Parte 2. Controlador Neuroborroso. Entorno con obstáculos.

¡¡Gracias por todo!!