E

Esercizi

E.1 Esercizi sui linguaggi regolari

E.1.1 Costruire un automa da un linguaggio

1. Dato un linguaggio $L(D) = \{x \in \{0,1\}^* | w_H(x) \ge 3\}$, per cui $w_H(x) = \{\text{numero di 1 in } x\}$, costruire un DFA che accetta questo linguaggio:

2. Dato un linguaggio $L(D) = \{x \in \{0,1\}^* | x = 1y \land y \in 0,1^*\}$, costruire un DFA che accetta questo linguaggio:

3. Dato un linguaggio $L(D)=\{x\in\{0,1\}^*|x=0^n1\}$, costruire un DFA che accetta questo linguaggio:

4. Dato un linguaggio $L=\{w\in\{0,1\}^*|w=x00\ x\in\{0,1\}^*\}$, costruire un NFA che accetta questo linguaggio:

Dimostrazione per induzione:

- Caso base: $w = 00 \implies w \in L$
- Passo induttivo: $w = w'00 \ w = \{0, 1\}^*$ $w \in L$ perchè $\forall w'$ c'è sempre un ramo di computazione che si trova nello stato q_0 . Quindi leggendo 00 alla fine arriva nello stato q_2 , quindi $w \in L$.
- 5. Dato un linguaggio $L=\{w\in\{0,1\}^*|w\notin(01^+)^*\}$, costruire un DFA che accetta questo linguaggio:

Posso creare un DFA che accetta il linguaggio complementare $\neg L = \{w \in (01^+)^*\}$:

Quindi il DFA che accetta il linguaggio iniziale è quello con gli stati accettanti invertiti rispetto a quello sopra:

E.1.2 Costruire un automa da un'espressione regolare

1. Data l'espressione regolare $r = 1^*(001^+)^*$ costruire il DFA equivalente a r:

E.1.3 Dimostrare che un linguaggio non è regolare

1. Dimostrare che il linguaggio

$$L = \{ww^R | w \in \{0, 1\}^*\}$$

dove w^R è w rovesciata ($w=100 \implies w^R=001$) non è regolare: Presa la stringa $w=0^p110^p \in L$ con $|w| \ge p$ e |xy| < p allora y contiene solo 0. Scrivo $w=0^k0^l0^m110^p$ con:

- $x = 0^k \ k \ge 0$
- $y = 0^l \ l > 0$
- $z = 0^m 110^p$
- k + l + m = p

Con i=2 la stringa $xy^2z=0^k0^{2l}0^m110^p\implies k+2l+m>p\implies xy^2z\notin L\implies L$ non è regolare.

2. Dimostrare che il linguaggio

$$L = \{1^{n^2} | n \ge 0\}$$

non è regolare:

Presa la stringa $w = 1^{p^2}$ con |w| > p e |xy| < p. Scrivo $w = 1^k 1^l 1^{p^2 - k - l}$ con:

- $x = 1^k k > 0$
- $y = 1^l \ l > 0$
- $z = 1^{p^2 l k}$
- $k+l \leq p$

Con i=2 la stringa $xy^2z=1^k1^{2l}1^{p^2-l-k}=1^{p^2+l}\implies p^2<|xy^2z|<(p+1)^2\implies xy^2z\notin L\implies L$ non è regolare.