# ITIS 6260/8260 Quantum Computing

Lecture 0: Introduction to Hilbert space

Yongge Wang

UNC Charlotte, USA

January 5, 2019



#### Outline

- Complex Numbers
  - Complex numbers
- Hilbert Space
  - Hilbert space

#### Outline

- Complex Numbers
  - Complex numbers
- 2 Hilbert Space
  - Hilbert space

# Complex numbers

- What is the solution for  $x^2 + 1 = 0$ ?
- Assume a number *i* with  $i^2 = -1$ .
- A complex number is a + bi where a and b are real numbers.



# Complex numbers

- What is the solution for  $x^2 + 1 = 0$ ?
- Assume a number *i* with  $i^2 = -1$ .
- A complex number is a + bi where a and b are real numbers.



# Complex numbers

- What is the solution for  $x^2 + 1 = 0$ ?
- Assume a number *i* with  $i^2 = -1$ .
- A complex number is a + bi where a and b are real numbers.



# Argument and Absolute Value

 For a complex number z = a+bi, the absolute value or modulus is

$$|z| = \sqrt{a^2 + b^2}$$

where |z| is the distance from (0,0) to the point z in the complex plane

- The angle  $\theta$  is called the argument of the complex number z. Written as arg  $z = \theta$ .
- From trigonometry, a complex number z = a + bi has the property

$$a = |z| \cos \theta$$
 and  $b = |z| \sin \theta$ 

That is,

$$z = |z|(\cos\theta + i\sin\theta)$$



# Argument and Absolute Value

 For a complex number z = a+bi, the absolute value or modulus is

$$|z| = \sqrt{a^2 + b^2}$$

where |z| is the distance from (0,0) to the point z in the complex plane

- The angle  $\theta$  is called the argument of the complex number z. Written as arg  $z = \theta$ .
- From trigonometry, a complex number z = a + bi has the property

$$a = |z| \cos \theta$$
 and  $b = |z| \sin \theta$ 

That is

$$z = |z|(\cos\theta + i\sin\theta)$$



# Argument and Absolute Value

 For a complex number z = a+bi, the absolute value or modulus is

$$|z| = \sqrt{a^2 + b^2}$$

where |z| is the distance from (0,0) to the point z in the complex plane

- The angle  $\theta$  is called the argument of the complex number z. Written as arg  $z = \theta$ .
- From trigonometry, a complex number z = a + bi has the property

$$a = |z| \cos \theta$$
 and  $b = |z| \sin \theta$ 

That is,

$$z = |z|(\cos\theta + i\sin\theta)$$

#### Geometry of Arithmetic





Addition of z = a + bi and w = c + di and Multiplication of a + bi by i.

# The Complex Exponential Function: $e^{a+bi}$

Consider Euler's definition of  $e^{i\theta}=\cos\theta+i\sin\theta$ . It is easy to verify Euler's famous formula

$$e^{\pi i}+1=0$$



# The Complex Exponential Function: why $e^{i\theta} = \cos \theta + i \sin \theta$ ?

- Reason 1: We haven't defined  $e^{i\theta}$  before and we can do anything we like.
- Reason 2 (not a proof): Substitute  $i\theta$  in Taylor series for  $e^x$ :

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \cdots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

$$= 1 - \theta^2/2! + \theta^4/4! - \cdots + i(\theta - \theta^3/3! + \theta^5/5! - \cdots)$$

$$= \cos\theta + i\sin\theta$$

# The Complex Exponential Function: why $e^{i\theta} = \cos \theta + i \sin \theta$ ?

- Reason 1: We haven't defined  $e^{i\theta}$  before and we can do anything we like.
- Reason 2 (not a proof): Substitute  $i\theta$  in Taylor series for  $e^x$ :

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \cdots$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots$$

$$= 1 - \theta^2/2! + \theta^4/4! - \cdots + i(\theta - \theta^3/3! + \theta^5/5! - \cdots)$$

$$= \cos\theta + i\sin\theta$$

#### Definition

 A Hilbert space H is a complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product.

- closure under addition: v + w is a vector
- has a zero: v + 0 = v
- closure under scalar multiplication: cv is a vector
- inverse: for each  $\mathbf{v}$ , these exists  $-\mathbf{v}$  such that  $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- associative:  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

- closure under addition: v + w is a vector
- has a zero:  $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- closure under scalar multiplication: cv is a vector
- inverse: for each  $\mathbf{v}$ , these exists  $-\mathbf{v}$  such that  $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- associative:  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

- closure under addition: v + w is a vector
- has a zero: v + 0 = v
- closure under scalar multiplication: cv is a vector
- inverse: for each  $\mathbf{v}$ , these exists  $-\mathbf{v}$  such that  $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- associative:  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

- closure under addition: v + w is a vector
- has a zero: v + 0 = v
- closure under scalar multiplication: cv is a vector
- inverse: for each  $\mathbf{v}$ , these exists  $-\mathbf{v}$  such that  $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- associative:  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

- closure under addition: v + w is a vector
- has a zero:  $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- closure under scalar multiplication: cv is a vector
- inverse: for each  $\mathbf{v}$ , these exists  $-\mathbf{v}$  such that  $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- associative:  $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

# The $C^{2^n}$ vector space

- For a discrete quantum system with 2<sup>n</sup> possible states (of n qubits), we will be interested in the space C<sup>2<sup>n</sup></sup> of 2<sup>n</sup>-tuples of complex numbers
- It is easy to verify that C<sup>2<sup>n</sup></sup> is a vector space

# The $C^{2^n}$ vector space

- For a discrete quantum system with 2<sup>n</sup> possible states (of n qubits), we will be interested in the space C<sup>2<sup>n</sup></sup> of 2<sup>n</sup>-tuples of complex numbers
- It is easy to verify that  $C^{2^n}$  is a vector space

#### Inner product

- A method to combine two vectors to get a complex number
- Let  $\mathbf{u} = (u_1, \dots, u_n), \mathbf{v} = (v_1, \dots, v_n) \in C^n$
- The inner product  $\mathbf{u} \cdot \mathbf{v} = u_1^* v_1 + \dots + u_n^* v_n$  where  $z^* = a bi$  is the complex conjugate of z = a + bi

#### Inner product

- A method to combine two vectors to get a complex number
- Let  $\mathbf{u} = (u_1, \dots, u_n), \mathbf{v} = (v_1, \dots, v_n) \in C^n$
- The inner product  $\mathbf{u} \cdot \mathbf{v} = u_1^* v_1 + \dots + u_n^* v_n$  where  $z^* = a bi$  is the complex conjugate of z = a + bi

#### Inner product

- A method to combine two vectors to get a complex number
- Let  $\mathbf{u} = (u_1, \dots, u_n), \mathbf{v} = (v_1, \dots, v_n) \in C^n$
- The inner product  $\mathbf{u} \cdot \mathbf{v} = u_1^* v_1 + \cdots + u_n^* v_n$  where  $z^* = a bi$  is the complex conjugate of z = a + bi

- |ψ⟩ ∈ C<sup>2<sup>n</sup></sup>: a vector (a ket) represents a possible state of the discrete quantum system (of n qubits)
- $\langle \psi |$ : dual vector (bra) of  $| \psi \rangle$  (that is, a row vector)
- $\langle \psi | \phi \rangle = | \psi \rangle \cdot | \phi \rangle$ : inner product of two vectors
- $|\psi\rangle \otimes |\phi\rangle$ : tensor product (a  $2^n \times 2^n$  vector)
- $\langle \psi | A | \phi \rangle$ : inner product of  $| \psi \rangle$  and  $A | \phi \rangle$

- $|\psi\rangle \in C^{2^n}$ : a vector (a ket) represents a possible state of the discrete quantum system (of n qubits)
- $\langle \psi |$ : dual vector (bra) of  $| \psi \rangle$  (that is, a row vector)
- $\langle \psi | \phi \rangle = | \psi \rangle \cdot | \phi \rangle$ : inner product of two vectors
- $|\psi\rangle \otimes |\phi\rangle$ : tensor product (a  $2^n \times 2^n$  vector)
- $\langle \psi | A | \phi \rangle$ : inner product of  $| \psi \rangle$  and  $A | \phi \rangle$

- |ψ⟩ ∈ C<sup>2<sup>n</sup></sup>: a vector (a ket) represents a possible state of the discrete quantum system (of n qubits)
- $\langle \psi |$ : dual vector (bra) of  $| \psi \rangle$  (that is, a row vector)
- $\langle \psi | \phi \rangle = | \psi \rangle \cdot | \phi \rangle$ : inner product of two vectors
- $|\psi\rangle \otimes |\phi\rangle$ : tensor product (a  $2^n \times 2^n$  vector)
- $\langle \psi | A | \phi \rangle$ : inner product of  $| \psi \rangle$  and  $A | \phi \rangle$

- |ψ⟩ ∈ C<sup>2<sup>n</sup></sup>: a vector (a ket) represents a possible state of the discrete quantum system (of n qubits)
- $\langle \psi |$ : dual vector (bra) of  $| \psi \rangle$  (that is, a row vector)
- $\langle \psi | \phi \rangle = | \psi \rangle \cdot | \phi \rangle$ : inner product of two vectors
- $|\psi\rangle \otimes |\phi\rangle$ : tensor product (a  $2^n \times 2^n$  vector)
- $\langle \psi | A | \phi \rangle$ : inner product of  $| \psi \rangle$  and  $A | \phi \rangle$

- |ψ⟩ ∈ C<sup>2<sup>n</sup></sup>: a vector (a ket) represents a possible state of the discrete quantum system (of n qubits)
- $\langle \psi |$ : dual vector (bra) of  $| \psi \rangle$  (that is, a row vector)
- $\langle \psi | \phi \rangle = | \psi \rangle \cdot | \phi \rangle$ : inner product of two vectors
- $|\psi\rangle \otimes |\phi\rangle$ : tensor product (a  $2^n \times 2^n$  vector)
- $\langle \psi | A | \phi \rangle$ : inner product of  $| \psi \rangle$  and  $A | \phi \rangle$

#### Independence

- $V = \{|v_1\rangle, \dots, |v_n\rangle\}$  is a spanning set if each vector  $|v\rangle$  can be written as a linear combination of V:  $v = \sum_{i=1}^{n} a_i |v_i\rangle$ .
- Linear independence: a set of vectors  $V = \{|v_1\rangle, \cdots, |v_n\rangle\}$  is linear independent if there does not exist non-zero  $a_j$  such that  $0 = \sum_{i=1}^n a_i |v_i\rangle$
- a linearly independent spanning set is a basis

#### Independence

- $V = \{|v_1\rangle, \dots, |v_n\rangle\}$  is a spanning set if each vector  $|v\rangle$  can be written as a linear combination of  $V: v = \sum_{i=1}^{n} a_i |v_i\rangle$ .
- Linear independence: a set of vectors  $V = \{|v_1\rangle, \cdots, |v_n\rangle\}$  is linear independent if there does not exist non-zero  $a_j$  such that  $0 = \sum_{i=1}^n a_i |v_j\rangle$
- a linearly independent spanning set is a basis

#### Independence

- $V = \{|v_1\rangle, \dots, |v_n\rangle\}$  is a spanning set if each vector  $|v\rangle$  can be written as a linear combination of  $V: v = \sum_{i=1}^{n} a_i |v_i\rangle$ .
- Linear independence: a set of vectors  $V = \{|v_1\rangle, \cdots, |v_n\rangle\}$  is linear independent if there does not exist non-zero  $a_j$  such that  $0 = \sum_{i=1}^n a_i |v_i\rangle$
- a linearly independent spanning set is a basis

# More on inner product

- Orthonogality:  $|u\rangle$  and  $|v\rangle$  are orthogonal if  $\langle u|v\rangle=0$
- Norm:  $||v\rangle|| = \sqrt{\langle v|v\rangle}$
- Orthonormal basis: a basis  $\{|v_1\rangle, \cdots, |v_n\rangle\}$  such that  $\langle v_i|v_j\rangle = \delta_{ij}$  where  $\delta_{ij} = 0$  if  $i \neq j$  and 1 otherwise.

# More on inner product

- Orthonogality:  $|u\rangle$  and  $|v\rangle$  are orthogonal if  $\langle u|v\rangle=0$
- Norm:  $||v\rangle|| = \sqrt{\langle v|v\rangle}$
- Orthonormal basis: a basis  $\{|v_1\rangle, \cdots, |v_n\rangle\}$  such that  $\langle v_i|v_j\rangle = \delta_{ij}$  where  $\delta_{ij} = 0$  if  $i \neq j$  and 1 otherwise.

# More on inner product

- Orthonogality:  $|u\rangle$  and  $|v\rangle$  are orthogonal if  $\langle u|v\rangle=0$
- Norm:  $||v\rangle|| = \sqrt{\langle v|v\rangle}$
- Orthonormal basis: a basis  $\{|v_1\rangle, \cdots, |v_n\rangle\}$  such that  $\langle v_i|v_j\rangle = \delta_{ij}$  where  $\delta_{ij} = 0$  if  $i \neq j$  and 1 otherwise.

#### Linear operator

- A linear operator is a matrix A that maps a vector space to another vector space
- The new vector space is spanned by:  $A|v_1\rangle$ , ...,  $A|v_n\rangle$  (this is not necessarily a basis)

#### Linear operator

- A linear operator is a matrix A that maps a vector space to another vector space
- The new vector space is spanned by:  $A|v_1\rangle$ , ...,  $A|v_n\rangle$  (this is not necessarily a basis)

- Postulate 1: A phyiscal system is equivalent to the Hilbert space
- Postulate 2: evolution of a closed physical system is equivalent to a unitry transformation
- Postulate 3: measurements of a physical system is equivalent to measurement operators
- Postulate 4: composite physical systems is equivalent of tensor product of component systems

- Postulate 1: A phyiscal system is equivalent to the Hilbert space
- Postulate 2: evolution of a closed physical system is equivalent to a unitry transformation
- Postulate 3: measurements of a physical system is equivalent to measurement operators
- Postulate 4: composite physical systems is equivalent of tensor product of component systems

- Postulate 1: A phyiscal system is equivalent to the Hilbert space
- Postulate 2: evolution of a closed physical system is equivalent to a unitry transformation
- Postulate 3: measurements of a physical system is equivalent to measurement operators
- Postulate 4: composite physical systems is equivalent of tensor product of component systems

- Postulate 1: A phyiscal system is equivalent to the Hilbert space
- Postulate 2: evolution of a closed physical system is equivalent to a unitry transformation
- Postulate 3: measurements of a physical system is equivalent to measurement operators
- Postulate 4: composite physical systems is equivalent of tensor product of component systems

# Q&A?