Spring 2012 Jim Fowler

First, something that came up during office hours.

Problem 1. Let M^n be a closed manifold with a fixed triangulation; let M' be its barycentric subdivision, and let w_1 be the $\mathbb{Z}/2$ -chain given by adding up all the edges in M'. Is w_1 a cocycle? When is w_1 a coboundary?

Next, we'll talk about submanifolds, intersections, and linking. At this point, the "special topics" start, so if there are particular things you're eager to learn about, we should talk about those things.

Remark 2. For an oriented manifold M^m with submanifolds A^a and B^b intersecting transversely, then

$$[A \cap B] = ([A]^* \smile [B]^*)^*$$

where * denotes Poincaré duality, and the inclusion maps are not mentioned.

One proof of this goes via the **Thom isomorphism theorem** which is the purview of a future course—we haven't defined what "transversely" means, even.

Problem 3. When a+b=m, we can regard $[A\cap B]$ as a number. Is this number the same as the cardinality of the set $A\cap B$? If we count with orientation? Can we isotope A and B to make $|A\cap B|=[A\cap B]$?

Problem 4. Compute π_1 of the complement of the "unlink" and the "Hopf link." Why might this fact might put a mountain climber in danger?

Problem 5. Use Alexander duality to compute $H_1(S^3 - A)$ for a curve A. Can you describe a generator?

Definition 6. For two curves A and B in S^3 , their **linking number** link(A, B) is defined to be

$$[A] = link(A, B)[m] \in H_1(S^3 - B)$$

where m is the **meridian** of the curve B.

Problem 7. Let N(B) be a thickened, closed neighborhood of the curve B, and let Σ be an oriented connected surface with $\partial \Sigma = B$. Show that $\text{link}(A, B) = [A \cap \Sigma]$ by using a certain geometric fact about the meridian.

Problem 8. How does link(A, B) relate to link(B, A)?

Problem 9. Compute linking number of the Hopf link.

Problem 10. Compute linking number of the Whitehead link.

Problem 11. Suppose B is a curve, and that there is a surface Σ in $S^3 - B$ with boundary $A_1 \sqcup A_2$ with A_1 and A_2 connected curves; how does link (A_1, B) relate to link (A_2, B) ?