Algunos polígonos delimitados por cevianas

Sea un triángulo T cualquiera, de vértices A, B y C, y lados opuestos a, b y c. Una ceviana es un segmento que une un vértice con un punto del lado opuesto. Vamos a comparar el área de algunos polígonos determinados por cevianas con el área del triángulo T. Empecemos considerando el caso de un triángulo delimitado por tres cevianas.

Triángulo delimitado por tres cevianas cualesquiera

Consideremos los puntos D situado en el lado a, de manera que BD/BC = p, E situado en el lado b, de manera que CE/CA = q, y F situado en el lado c, de manera que AF/AB = r, con 0 < p, q, r < 1.

Los puntos en que se cortan estas cevianas son G, H e I. Estamos pues interesados en comparar el área del triángulo T' = GHI, con la de T. En adelante, para designar el área de un polígono se encerrará entre paréntesis.

Para determinar (T') podríamos restar a (T) las áreas (ABD), (BCE) y (CAF). Pero así restamos dos veces las áreas (AFH), (BDI) y (CEG), por lo que tendremos que volver a sumarlas una vez. En definitiva:

$$(T') = (T) - (ABD) - (BCE) - (CAF) + (AFH) + (BDI) + (CEG)$$

Tenemos que (ABD) = $p^*(T)$, puesto que ambos triángulos comparten la misma altura y sus bases BD y BC están en la proporción p. otro tanto ocurre con los otros dos: (BCE) = $q^*(T)$ y (CAF) = $r^*(T)$.

Calculemos (BDI). Para (CEG) y (AFH) bastará permutar los segmentos p, q y r. El triángulo BDI comparte base con el ABD, mientras que sus alturas son proporcionales a los lados DA y DI.

Para hallar el cociente DI/DA vamos a situar pesas de magnitud conveniente en A, B y C para que el centro de gravedad se encuentre en I, intersección de los segmentos AD y BE. Para ello el centro de gravedad de B y C debe encontrarse en D, por lo que la relación de masas en B y C deberá ser inversamente proporcional a p y (1 - p). Igualmente, el centro de gravedad de A y C debe encontrarse en E, por lo que la relación de masas en A y E debe ser inversamente proporcional a (1 - q) y q. Podemos poner entonces en C una masa de p(1 - q), en A de qp y en B de (1 - p)(1 - q).

La masa conjunta de B y C, que puede considerare situada en D, es entonces:

$$p(1-q)+(1-p)(1-q)=1-q$$

El centro I de masas de D y A es tal que:

$$DI*(1-q)=AI*qp \Rightarrow \frac{DI}{DI+AI} = \frac{1}{1+\frac{AI}{DI}} = \frac{1}{1+\frac{1-q}{qp}} = \frac{pq}{1-q(1-p)}$$

Por tanto,

$$(BDI) = \frac{pq}{1 - q(1 - p)}(ABD) = \frac{p^2q}{1 - q(1 - p)}(T)$$

Para el triángulo CEG debemos cambiar p con q y q con r, y para el triángulo AFH, p con r y q con p. Nos queda entonces:

$$S(p,q,r) = \frac{(T')}{(T)} = 1 - p - q - r + \frac{p^2 q}{1 - q(1-p)} + \frac{q^2 r}{1 - r(1-q)} + \frac{r^2 p}{1 - p(1-r)}$$

Simplificando y factorizando, se llega a la expresión:

$$S(p,q,r) = \frac{((1-p)(1-q)(1-r)-pqr)^2}{(1-q(1-p))(1-r(1-q))(1-p(1-r))}$$
 (#1)

más sencilla de calcular. Está fórmula no es totalmente simétrica en las variables p, q y r. Si que es invariante bajo una permutación circular de las variables. También si se cambia p por p' = 1 - p, q por q' = 1 - q y r por r' = 1 - r.

En ella vemos que (T') = 0 si y solo si (1-p)(1-q)(1-r) = pqr, o

$$\frac{p}{1-p}\frac{q}{1-q}\frac{r}{1-r} = 1$$

con lo que hemos obtenido, de una forma indirecta y algo más complicada, el teorema de Ceva y su recíproco, que nos dicen que las cevianas de tres puntos situados en los lados son concurrentes si y solo si el producto de los cocientes de los segmentos que determinan los puntos en cada lado es igual a 1.

Cevianas a una fracción unitaria del vértice

Si se toman p, q y r iguales a inversos de enteros, k, m y n, queda:

$$F(k, m, n) = \frac{(ABC)}{(GHI)} = \frac{1}{S(\frac{1}{k}, \frac{1}{m}, \frac{1}{n})} = \frac{\left(1 - \frac{1}{m}\left(1 - \frac{1}{k}\right)\right)\left(1 - \frac{1}{n}\left(1 - \frac{1}{m}\right)\right)\left(1 - \frac{1}{k}\left(1 - \frac{1}{n}\right)\right)}{\left(\left(1 - \frac{1}{k}\right)\left(1 - \frac{1}{m}\right)\left(1 - \frac{1}{n}\right) - \frac{1}{k}\frac{1}{m}\frac{1}{n}\right)^{2}}$$

$$= \frac{\left(k(m-1) + 1\right)\left(m(n-1) + 1\right)\left(n(k-1) + 1\right)}{\left((k-1)(m-1)(n-1) - 1\right)^{2}}$$
(#2)

Solo hay seis casos en los que (T) es un múltiplo de (GHI). Para hacer una búsqueda exhaustiva podemos tomar $2 \le k \le m \le n$ y $n \ge 3$, y tener en cuenta que el límite cuando k, m o n tienden a infinito es 1, que en ese rango de valores la función es decreciente y que estamos interesados en valores enteros de F(k, m, n) mayores que 1. Los seis casos son:

#	k	m	n	F(k,m,n)
1	2	2	3	60
2	2	2	5	18
3	2	3	4	10
4	2	5	8	4
5	3	3	3	7
6	4	7	8	2

(Problem 2401, Journal of Recreational Mathematics)

Lados divididos en 2n+1 partes iguales y cevianas próximas a la mediana

Dividamos ahora los tres lados en 2n+1 partes iguales mediante 2n puntos y tracemos las cevianas de los puntos que ocupan el lugar n desde el vértice, siempre en el mismo sentido, para determinar un triángulo Tg. Hacemos por tanto p = q = r = n/(2n + 1) en #1, y tras simplificar, queda:

$$\frac{(Tg)}{(T)} = \frac{1}{3n^2 + 3n + 1}$$

Por tanto, para todo n (T) es múltiplo de (Tg): 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, ... para n = 1..10. Se trata de los <u>números hexágonales centrados</u>. Para el caso n = 1 hay una sencilla demostración visual.

Hexágono y estrella limitados por los pares de cevianas más próximas a la mediana

Se trazan ahora las medianas correspondientes a los puntos n y n +1 de cada lado:

Los triángulos *JLN* y *KMO* tienen la misma área, pues ambos corresponden a p = q = r = n/(2n+1), medidos en un sentido u otro. Los seis triángulos pequeños (Tp), como el *FLG*, que constituyen las puntas de la estrella tienen todos la misma área:

$$\frac{(Tp)}{(T)} = S\left(\frac{n}{2n+1}, \frac{n}{2n+1}, \frac{n+1}{2n+1}\right) = \frac{n(n+1)}{((3n+1)(3n+2)(3n^2+3n+1))}$$

Para n = 1..10, ... esta fracción es:

$$\frac{1}{70}$$
, $\frac{3}{532}$, $\frac{6}{2035}$, $\frac{10}{5551}$, $\frac{15}{12376}$, $\frac{21}{24130}$, $\frac{28}{42757}$, $\frac{36}{70525}$, $\frac{45}{110026}$, $\frac{55}{164176}$, ...

Para $\mathbf{n} = \mathbf{1}$, como en la figura superior, se tiene (T) = 70 (Tp). Para ningún otro valor de n el área de T es múltiplo de la de Tp, como puede verse separando la parte entera de la fracción inversa:

$$\frac{(T)}{(Tp)} = \frac{((3n+1)(3n+2)(3n^2+3n+1))}{n(n+1)} = 27n^2 + 27n + 15 + \frac{2}{n(n+1)}$$

Aunque para valores grandes de n se diferencia muy poco de un entero.

El área del hexágono (*Hex*) y de la estrella (*Estr*) será igual entonces a la de uno de los triángulos grandes (*Tg*) menos o más, respectivamente, la de tres pequeños. Se tiene entonces:

(Hex) = (Tg) - 3*(Tp)

$$\frac{(Hex)}{(T)} = \frac{1}{3n^2 + 3n + 1} - \frac{3n(n+1)}{(3n+1)(3n+2)(3n^2 + 3n + 1)} = \frac{2}{(3n+1)(3n+2)}$$

Como siempre es par uno de los dos factores del denominador, esta es siempre una fracción unitaria. El área de T es un múltiplo de la del hexágono: **10, 28, 55, 91, 136, 190, 253, 325, 406, 496, ...** para n = 1..10, ... Se trata de los <u>números eneagonales centrados</u>.

(Estr) = (Tg) + 3*(Tp)

$$\frac{(Estr)}{(T)} = \frac{1}{3n^2 + 3n + 1} + \frac{3n(n+1)}{((3n+1)(3n+2)(3n^2 + 3n + 1))} = \frac{2(6n^2 + 6n + 1)}{(3n+1)(3n+2)(3n^2 + 3n + 1)}$$

Para n = 1..10, ... esta fracción es:

$$\frac{13}{70}$$
, $\frac{37}{532}$, $\frac{73}{2035}$, $\frac{121}{5551}$, $\frac{181}{12376}$, $\frac{253}{24130}$, $\frac{337}{42757}$, $\frac{433}{70525}$, $\frac{541}{110026}$, $\frac{661}{164176}$, ...

Si se observan los valores numéricos de los inversos de estas fracciones, destaca inmediatamente una pauta: dos valores consecutivos tienen como parte decimal 0.375... y los dos siguientes 0.875..., cada vez con mayor aproximación. No es difícil justificar este hecho, tomando la fracción inversa y descomponiéndola:

$$\frac{(T)}{(Estr)} = \frac{(3n+1)(3n+2)(3n^2+3n+1)}{2(6n^2+6n+1)} = \frac{1}{8(6n^2+6n+1)} + \frac{9(n^2+n)}{4} + \frac{7}{8}$$

La primera fracción siempre es menor que 1 y tiende rápidamente a cero. La segunda es entera para n = 3 y 4 (mod 4) y semientera para n = 1 y 2 (mod 4), mientras que la última toma el valor numérico 0.875. Se ve así, por otra parte, que este cociente nunca es entero.

Nota: Al tratarse de números enteros, es sencillo hallar experimentalmente con ayuda de <u>GeoGebra</u> los primeros valores de los cocientes (T)/(Tg) y (T)/(Hex), y encontrar la expresión para cualquier n por un ajuste polinómico. A partir de ellos se pueden obtener las fórmulas, utilizando por ejemplo la vista **CAS** de GeoGebra, para la estrella central y sus puntas, teniendo en cuenta que:

(Estr) = 2*(Tg) - (Hex) (el área de la unión es la suma de las áreas menos la de la intersección)

$$(Tp) = \frac{1}{3}((Tg) - (Hex))$$