Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 2. Транспортная задача как частный случай ЗЛП

Лекция 6

Транспортная задача

имеет целью *минимизацию транспортных* издержек при перевозках однотипных грузов от нескольких поставщиков (с различных складов), расположенных в разных местах, к разным потребителям.

Теорема (Критерий разрешимости Т3)

Для того, чтобы ТЗ имела оптимальное решение, необходимо и достаточно, чтобы она была сбалансирована, т.е.

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

Когда Т3 **необходимо** балансировать?

- В случае, если в задаче присутствуют штрафные затраты, связанные с «невывозом» или «недопоставками»;
- В случае, когда имеются дополнительные ограничения, связанные с «неравноправностью» потребителей (или поставщиков) и т.п.

Преимущество сбалансированной модели

«Поиск решения» автоматически выбирает специальные эффективные методы решения ТЗ и обеспечивает целочисленность решения (без специального требования целочисленности!) при условии, что заказы и запасы — целые.

Если Т3 *не* балансировать

- 1. Меняется вид математической модели (часть равенств становится неравенствами).
- 2. Т3 задача *целочисленного программирования*. Необходимо добавлять условие целочисленности на переменные.
- 3. Для целочисленного программирования характерна <u>проблема</u> выбора **начального допустимого решения.**

Эвристические методы поиска допустимого решения Т3

Понятие *транспортной таблицы*.

	<i>c</i> ₁₁		c_{12}		<i>c</i> ₁₃		c_{14}	a_1
	<i>c</i> ₂₁		c_{22}		<i>c</i> ₂₃		$c_{24}^{}$	a_2
	<i>c</i> ₃₁		c_{32}		c_{33}		<i>c</i> ₃₄	a_3
b_1		b_2		b_3		b_{i}	4	

Эвристические методы поиска решения T3

- Метод северо-западного элемента.
- Метод минимального элемента.
- Приближенный метод Фогеля.

Идея. В транспортной таблице всегда заполняется свободный северо-западный элемент.

7	8	5	3	11
2	4	5	9	11
6	3	1	2	8
5	9	9	7	

7	8	5	3	11
2	4	5	9	11
6	3	1	2	8
5	9	9	7	30=30

5	7		8		5	3	11 6
	2		4		5	9	1.1
		,					11
	6		3		1	2	0
		,					8
5	0	Ç)	()	7	30=30

5	7		8		5	3	6
0	2		4		5	9	11
0	6		3		1	2	8
5	0	Ç)	Ç)	7	30=30

5	7	6	8		5	3	11' 6' 0
0	2		4		5	9	11
0	6		3		1	2	8
5	0	9	3	Ç)	 7	30=30

5	7	6	8	0	5	0	3	11' 6' 0
0	2		4		5		9	11
0	6		3		1		2	8
5	0	9	3	(9	,	7	30=30

5	7	6	8	0	5	0	3	11 6 0
0	2	3	4		5		9	8
0	6		3		1		2	8
5	0	9/	3 0	(9	,	7	30=30

5	7	6	8	0	5	0	3	11' 6' 0
0	2	3	4		5		9	8
0	6	0	3		1		2	8
5	0	9/	3 0	(9	,	7	30=30

5	7	6	8	0	5	0	3	11 6 0
0	2	3	4	8	5	0	9	#1 8 0
0	6	0	3		1		2	8
5	0	9/	3 0	9	1	,	7	30=30

5	7	6	8	0	5	0	3	11' 6' 0
0	2	3	4	8	5	0	9	11 8 0
0	6	0	3	1	1	7	2	8 7 0
5	0	9/	3 0	97	V 0	X	0	30=30

$$C = 5 \cdot 7 + 6 \cdot 8 + 0 \cdot 5 + 0 \cdot 3 + 0 \cdot 2 + 3 \cdot 4 + 8 \cdot 5 + 0 \cdot 9 + 0 \cdot 6 + 0 \cdot 3 + 1 \cdot 1 + 7 \cdot 2 = 150$$

• Используется: <u>только</u> для нахождения начального допустимого решения.

• Идея. В транспортной таблице всегда заполняется свободная клетка с минимальными затратами.

	_	8		5	3	11
		4		5	9	11
		3		1	2	8
5		9	()	7	30=30

7	8	5	3	11
2	4	5	9	11
6	3	1	2	8
5	9	9 1	7	30=30

	7		8		5		3	11
	2		4		5		9	11
0	6	0	3	8	1	0	2	8 0
-	5	()	9	1	,	7	30=30

	7		8		5		3	11
5	2		4		5		9	11 6
0	6	0	3	8	1	0	2	8 0
55	0	Ģ)	9	1	,	7	30=30

0	7		8		5		3	11
5	2		4		5		9	11 6
0	6	0	3	8	1	0	2	8 0
5	0	()	9	1	,	7	30=30

0	7		8		5	7	3	11 4
5	2		4		5		9	11 6
0	6	0	3	8	1	0	2	8 0
5	0	Ç)	9	1	X	0	30=30

0	7		8		5	7	3	11 4
5	2	6	4		5	0	9)\(\frac{1}{6}\) 0
0	6	0	3	8	1	0	2	8 0
5	0	9	3	9	1	X	0	30=30

0	7		8	1	5	7	3	11' 4' 3
5	2	6	4	0	5	0	9)\(\frac{1}{6}\) 0
0	6	0	3	8	1	0	2	8 0
5	0	/9	3	9/	1 ′ 0	X	0	30=30

0	7	3	8	1	5	7	3	11 4 3 0
5	2	6	4	0	5	0	9)\(\frac{1}{6} \) \(\text{0} \)
0	6	0	3	8	1	0	2	8 0
5	0	9/	3 0	9 /	¥ 0	X	0	30=30

$$C = 0 \cdot 7 + 3 \cdot 8 + 1 \cdot 5 + 7 \cdot 3 + 5 \cdot 2 + 6 \cdot 4 + 0 \cdot 5 + 6 \cdot 9 + 0 \cdot 6 + 0 \cdot 3 + 8 \cdot 1 + 0 \cdot 2 = 92$$

• Используется: для нахождения начального допустимого решения и для оценки затрат.

Приближенный метод Фогеля

• Идея. В строке (столбце) с максимальным штрафом заполняется клетка с минимальными затратами.

Метод Фогеля

7	8	5	3	11	
2	4	5	9	11	
6	3	1	2	8	
5	9	9	7	30=30	

Метод Фогеля

7	8	5	3	
				11
2	4	5	9	1.1
				11
6	3	1	2	0
				8
5	9	9	7	30=30

5-3=2
4-2=2
2-1=1

Метод Фогеля

7	8	5	3	
				11
2	4	5	9	
				11
6	3	1	2	0
				8
5	9	9	7	30=30

5-3=2 4-2=2 2-1=1

6-2=4

4-3=1

5-1=4

3-2=1

7	8	5	3	1.1
				11
	4	5	9	
				11
6	3	1	2	
				8
5	9	9	7	30=30

6-2=4

4-3=1

5-1=4

7	8	5	3	
				11
2	4	5	9	
				11
6	3	1	2	
				8
5	9	9	7	30=30

5-3=2
4-2=2
2-1=1

6-2=4

4-3=1

5-1=4

7	8	5	3	
				11
2	4	5	9	
				11
6	3	1	2	
		8		8
5	9	9	7	30=30

5-3=2 4-2=2 2-1=1

6-2=4

4-3=1

5-1=4

7	8	5	3	
				11
2	4	5	9	
				11
6	3	1	2	8
		8		0
5	9	9/1	7	30=30

5-3=2
4-2=2
2-1=1

6-2=4

4-3=1

5-1=4

7	8	5	3	
				11
2	4	5	9	
				. 11
0 6	0 3	8 1	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	8
5	9	9 1	7	30=30

6-2=4

4-3=1

5-1=4

7	8	5	3	
				11
2	4	5	9	
				11
6	3	1	2	8
0	0	8	0	0
5	9	9/1	7	30=30

7	8	5	3		5-3
	_			11	
2	4	5	9		4-2
				11	
6	3	1	2	8	2-1
0	0	8	0	0	
5	9	9 1	7	30=30	

5-3=2
4-2=2
2-1=1

7	8	5	3	
			7	11
2	4	5	9	
			<u> </u>	11
6	3	1	2	8
0	0	8	0	0
5	9	9 1	7	30=30

7	8	5	7 3	<i>H</i> 4	
2	4	5	9	4.4	
			0	. 11	
0 6	0 3	8	0 2	0	
5	9	9 1	70	30=30	

7	8	5	7) 1 1 4
2	4	5	0 9	11
0 6	0 3	8 1	0 2	8 0
5	9	9 1	\mathcal{F} 0	30=30

7	8	5	7	11 4
2	4	5	0 9	11
0 6	0 3	8 1	0 2	8 0
5	9	9 1	70	30=30

-	5-3=2 7-5=2
	4-2=2
	2-1=1

7	8	5	3	H
			7	4
2	4	5	9	
5			0	11
6	3	1		8
0	0	8 📖	0	0
5	9	9 1	\mathcal{X} 0	30=30

	5-3=2 7-5=2
	4-2=2
_	2-1=1

0	7		8		5	7	3	11 4
	2		4		5	0	9	H
5					1	0		6
0	6	0	3	8		0	2	0
5 0		9		9 1	1	70		30=30

0 7	8	5	7	<i>H</i> 4
5 2	4	5	0 9	11 6
0 6	0 3	8	0 2	8 0
<i>5</i> 0	9	9 1	\mathcal{X} 0	30=30

-5-3=2 -7-5=2 8-5=3
4-2=2 5-4=1
2-1=1

0 7	8	5	7	<i>H</i> 4
5 2	6	5	0	H 6
0	0 3	8 1	0 2	8 0
5 0	9	9 1	\mathcal{X} 0	30=30

-	5-3=2 7-5=2 8-5=3
-	4-2=2 5-4=1
	2-1=1

	7		8		5		3	H
0						7		4
	2		4		5		9	M
5		6		0		0		6
								0
	6		3		1		2	8
0		0		8		0		0
5 0		9 3		/9	1	1	0	30=30
73 0		/9 3		/9	l	//	U	30=30

-5-3=2 -7-5=2 8-5=3
4-2=2 5-4=1
2-1=1

$$C = 0.7 + 3.8 + 1.5 + 7.3 + 5.2 + 6.4 + 0.5 + + 0.9 + 0.6 + 0.3 + 8.1 + 0.2 = 92$$

0 7	3	1 5	7 3	H 4
5 2	6	0 5	0 9	H 6
0 6 5 0	0 3	8 1	0 2	8 0 30=30

	5-3=2 7-5=2 8-5=3
-	4-2=2 5-4=1
	2-1=1

Приближенный метод Фогеля

• Используется: <u>только</u> как оценочный метод.

Сравнение значений транспортных издержек

Nº	Метод поиска решения	Значение транспортной задачи
1	Северо-западного элемента	150
2	Минимального элемента	92
3	Фогеля	92
4	Оптимальное значение	89

Домашнее задание 3

- Нарисуйте сеть Т3.
- Составьте математическую модель.
- Найдите начальное решение тремя способами.

На листочке! Срок – 1 неделя.

Тема 2. Транспортная задача.Задача о назначениях

Пример 1

Мастер должен назначить 7 слесарей (*A*, *B*, ..., *H*) для ремонта сельскохозяйственной техники (К-701, Т-150М и т.д.), имеющий разного рода неисправности после окончания уборочной.

Время (ч), которое каждый слесарь тратит на выполнение определенного вида ремонта, приведено в таблице:

	К-701	T-150M	T-155M	MT3-80	MT3-40	T-100	Дон-1500
A	12	14	14	10	9	15	21
В	15	13	12	10	8	21	23
C	-	16	11	10	11	21	-
D	16	-	-	8	9	-	21
E	13	11	13	9	8	15	21
F	13	13	11	11	9	22	28
Н	12	13	13	9	10	22	27

Пример 1

Необходимо определить оптимальную расстановку слесарей по участкам работы, при которой суммарное время на выполнение работ будет минимальным.

	К-701	T-150M	T-155M	MT3-80	MT3-40	T-100	Дон-1500
A	12	14	14	10	9	15	21
В	15	13	12	10	8	21	23
C	-	16	11	10	11	21	-
D	16	-	-	8	9	-	21
E	13	11	13	9	8	15	21
F	13	13	11	11	9	22	28
Н	12	13	13	9	10	22	27

Решение примера 1

	К-701	T-150M	T-155M	MT3-80	MT3-40	T-100	Дон-1500
A	12	14	14	10	9	15	21
В	15	13	12	10	8	21	23
C	99	16	11	10	11	21	99
D	16	99	99	8	9	99	21
E	13	11	13	9	8	15	21
F	13	13	11	11	9	22	28
Н	12	13	13	9	10	22	27

Математическая модель

- Переменные: x_{ij} количество слесарей «i», назначенных на ремонт техники j, $i=1,\ldots,7,\ j=1,\ldots,7$ (принимает значения 0 или 1).
- Цель: минимизация суммарного времени выполнения ремонтных работ

$$C = \sum_{i=1}^{7} \sum_{j=1}^{7} c_{ij} x_{ij} = 12x_{11} + 14x_{12} + \dots + 27x_{77} \to min$$

где c_{ij} – время выполнения работы по ремонту техники j слесарем i, i = 1, ..., 7, j = 1, ..., 7.

Математическая модель

- Ограничения.
- 1. Каждый слесарь может быть назначен на ремонт только одной единицы техники:

$$x_{11} + x_{12} + \dots + x_{17} = 1$$

 $x_{21} + x_{22} + \dots + x_{27} = 1$
 \dots
 $x_{71} + x_{72} + \dots + x_{77} = 1$

2. Каждую единицу техники должен ремонтировать только 1 слесарь:

$$x_{11} + x_{21} + \dots + x_{71} = 1$$
 $x_{12} + x_{22} + \dots + x_{72} = 1$
 \dots
 $x_{17} + x_{27} + \dots + x_{77} = 1$

3. Условия неотрицательности: $x_{ij} \ge 0, i = 1, ..., 7, j = 1, ..., 7$.

Пример 1. Математическая модель

$$C = \sum_{i=1}^{7} \sum_{j=1}^{7} c_{ij} x_{ij} = 12x_{11} + 14x_{12} + \dots + 27x_{77} \to min$$

$$\sum_{i=1}^{7} x_{ij} = 1, i = 1, ..., 7,$$

$$\sum_{i=1}^{7} x_{ij} = 1, j = 1, \dots, 7,$$

$$x_{ij}, \ge 0, i = 1, ..., 7, j = 1, ..., 7.$$

Пример 1 (оптимальное решение)

Время	ремонта											
	К-701	T-150M	T-155M	MT3-80	MT3-40	T-100	Дон-1500					
\boldsymbol{A}	12	14	14	10	9	15	21					
В	15	13	12	10	8	21	23					
C	99	16	11	10	11	21	99	Суммар	ное врел	1Я		
D	16	99	99	8	9	99	21	88	3			
E	13	11	13	9	8	15	21					
F	13	13	11	11	9	22	28					
Н	12	13	13	9	10	22	27					
_												
Pacnp		есарей по уч										
	K-701	T-150M	T-155M	MT3-80	MT3-40	T-100	Дон-1500	Всего уч	астков,	на котор	ъте назначен	слесарь
A	0	0	0	0	0	1	0	1	=	1		
В	0	0	0	0	1	0	0	1	=	1		
C				_	0	0						
C	0	0	1	0	U	U	0	1	=	1		
D	0	0	0	0	0	0	1	1	=	1		
D	0	0	0	0	0	0	1	1	=	1		
D E	0	0 1	0 0	0 0	0	0	1 0	1	=	1		
D E F H	0 0 1 0	0 1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	1 1 1	= =	1 1 1		
D E F H	0 0 1	0 1 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	1 1 1	= =	1 1 1		
D E F H	0 0 1 0	0 1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	1 1 1	= =	1 1 1		

Задача о назначениях – частный случай транспортной задачи.

- Число поставщиков (рабочих, поставщиков рабочей силы) п совпадает с числом потребителей (работ, различных технологических операций) п.
- Все запасы и заказы равны 1.
- Так же как и в Т3 **не требуется** условие *целочисленности* (при соблюдении структуры Т3).

Задача о назначении. Сетевая постановка

 c_{ij} — КПД, эффективность или время выполнения работником i работы j, i = 1, ..., n; j = 1, ..., n.

Задача о назначении. Сетевая постановка

Математическая модель задачи о назначениях

$$\min L = \min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$
 или $\max L = \max \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$

Ограничения по работникам:

$$\sum_{i=1}^{n} x_{ij} = 1, i = 1, ..., n$$

Ограничения по работам:

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 1, \dots, n$$

$$x_{ij} \ge 0, i = 1,..., n, j = 1,..., n.$$

Пример 2. Построение команд.

Необходимо составить пары (техник –программист – менеджер по маркетингу) – команды по продаже оборудования, соответствующего нуждам конкретного клиента. Менеджер по работе с персоналом провел среди программистов и маркетологов тест Майер -Бриггс и определил индекс взаимной несовместимости между i-ым техником и j-ым маркетологом. Индекс варьируется от 20 (выраженная враждебность) до 1 (дружеские отношения).

Пары должны быть составлены таким образом, чтобы минимизировать суммарный индекс враждебности пар.

Пример 2. Построение команд. Данные теста

			Te	ехники.	-програ	аммисть	Ы		
Менеджеры по маркетингу	Ваня	Петя	Миша	Коля	Вася	Рома	Майя	Витя	Инна
Аня	11	8	4	3	9	17	14	6	12
Зоя	7	4	7	11	19	2	10	5	18
Маша	13	20	1	12	14	11	16	9	15
Виталий	5	8	12	6	1	3	4	7	10
Люба	16	7	18	9	13	1	2	17	12
Даша	12	3	9	17	5	6	18	2	1
Руслан	9	1	13	4	7	20	19	1	19
Валя	8	6	17	8	11	4	3	4	13
Юля	17	2	19	13	14	19	11	3	17
Галя	12	1	7	1	2	5	6	4	1

Математическая модель. Пример 2

• Цель: минимизация суммарного индекса враждебности

$$C = \sum_{i=1}^{10} \sum_{j=1}^{10} c_{ij} x_{ij} = 11x_{11} + 8x_{12} + \dots + 0 \cdot x_{10,10} \to min$$

где c_{ij} – индекс враждебности пары (i, j) согласно данным опроса, i = 1, ..., 7, j = 1, ..., 7.

• Ограничения:

По менеджерам: $\sum_{j=1}^{10} x_{ij} = 1, i = 1, ..., 10,$

По техникам: $\sum_{i=1}^{10} x_{ij} = 1, j = 1, ..., 10,$

Условия неотрицательности: $x_{ij} \ge 0$, i = 1, ..., 7, j = 1, ..., 7.

Пример 2. Построение команд.

5	U		_					,	IX.	_	141	14			ч.	11
Юля	17	2	19	13	14	19	11	3	17	0		Сумма	рный ин	ндекс		
Галя	12	1	7	1	2	5	6	4	1	0		18	3			
Менеджеры по				Tex	ники-пр	ограмми	істы									
маркетингу	Ваня	Петя	Миша	Коля	Вася	Рома	Майя	Витя	Инна	Fict		Всего	техник	06 каж	дому ме	неджеру
Аня	0	0	0	0	0	0	0	0	0	1		1	=	1		
Зоя	1	0	0	0	0	0	0	0	0	0		1	=	1		
Mawa	0	0	1	0	0	0	0	0	0	0		1	=	1		
Виталий	0	0	0	0	1	0	0	0	0	0		1	=	1		
Люба	0	0	0	0	0	1	0	0	0	0		1	=	1		
Даша	0	0	0	0	0	0	0	0	1	0		1	=	1		
Руслан	0	0	0	0	0	0	0	1	0	0		1	=	1		
Валя	0	0	0	0	0	0	1	0	0	0		1	=	1		
Юля	0	1	0	0	0	0	0	0	0	0		1	=	1		
Галя	0	0	0	1	0	0	0	0	0	0	1	1	=	1		
Всего менеджерс	ов каждо	ому техн	шку													
	1	1	1	1	1	1	1	1	1	1						
	=	=	=	=	=	=	=	=	=	=						
	1	1	1	1	1	1	1	1	1	1						