Proximal Iteratively Reweighted Algorithm with Multiple Splitting for Nonconvex Sparsity Optimization

Canyi Lu¹, Yunchao Wei², Zhouchen Lin³, Shuicheng Yan¹

¹National University of Singapore, ²Beijing Jiaotong University, ³Peking University

Problem

This paper aims to solve the following general problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) = \lambda f(\mathbf{g}(\mathbf{x})) + h(\mathbf{x}), \tag{1}$$

where $\lambda > 0$, and f, g and h satisfy the following conditions:

11 f(y) is nonnegative, concave and increasing.

Examples: nonconvex surrogates of ℓ_0 -norm, e.g., ℓ_p -norm, logarithm function.

 $\mathbb{C}2g(\mathbf{x}):\mathbb{R}^n \to \mathbb{R}^d$ is a nonnegative multi-dimensional function, such that

$$\min_{\mathbf{x} \in \mathbb{D}^n} \lambda \langle \mathbf{w}, \mathbf{g}(\mathbf{x}) \rangle + \frac{1}{2} ||\mathbf{x} - \mathbf{b}||_2^2,$$

is convex and can be cheaply solved for any given nonnegative $\mathbf{w} \in \mathbb{R}^d$.

Examples: |x| (absolute value of x element-wise).

 $\mathbf{C3}h(\mathbf{x})$ is continuously differentiable with Lipschitz continuous gradient

$$||\nabla h(\mathbf{x}) - \nabla h(\mathbf{y})|| \le L(h)||\mathbf{x} - \mathbf{y}||$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

L(h) > 0 is called the Lipschitz constant of ∇h .

Examples: squared loss and logistic loss.

 $\mathbf{C4} \lambda f(\mathbf{g}(\mathbf{x})) + h(\mathbf{x}) \to \infty \text{ iff } ||\mathbf{x}||_2 \to \infty;$

Proximal Iteratively REweighted (PIRE) Algorithm

Method: when updating x^{k+1} , linearize f at $g(x^k)$ and h at x^k , simultaneously. Motivation: two key inequalities: (2) and (4).

Since f is concave, -f is convex. Linearize -f at $\mathbf{g}(\mathbf{x}^k)$, we have

$$f(\mathbf{g}(\mathbf{x})) \le f(\mathbf{g}(\mathbf{x}^k)) + \langle \mathbf{w}^k, \mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x}^k) \rangle,$$
 (2)

where $-\mathbf{w}^k$ is the subgradient of -f at $\mathbf{g}(\mathbf{x}^k)$, i.e.,

$$\mathbf{w}^k \in -\partial \left(-f(\mathbf{g}(\mathbf{x}^k)) \right). \tag{3}$$

Since $\nabla h(\mathbf{x})$ is Lipschitz continuous, we have

$$h(\mathbf{x}) \le h(\mathbf{x}^k) + \langle \nabla h(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{\mu}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2, \quad \forall \mu \ge L(h). \tag{4}$$

The right hand side of (2) and (4) are used as surrogate functions of $f(\mathbf{g}(\mathbf{x}))$ and $h(\mathbf{x})$, respectively. Combining (2) and (4), we update \mathbf{x} by

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \left[\lambda \langle \mathbf{w}^k, \mathbf{g}(\mathbf{x}) \rangle + \langle \nabla h(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{\mu}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2 \right]$$

$$= \arg\min_{\mathbf{x}} \lambda \langle \mathbf{w}^k, \mathbf{g}(\mathbf{x}) \rangle + \frac{\mu}{2} \left\| \mathbf{x} - \left(\mathbf{x}^k - \frac{1}{\mu} \nabla h(\mathbf{x}^k) \right) \right\|_2^2,$$
(5)

Proximal Iteratively REweighted (PIRE) algorithm: Alternately updating w by (3) and **x** by (5) to solve (1).

Convergence Analysis of PIRE

Theorem The sequence $\{\mathbf{x}^k\}$ generated by PIRE satisfies the following properties:

▶ The objective function value $F(\mathbf{x}^k)$ is monotonically decreasing. Indeed,

$$F(\mathbf{x}^k) - F(\mathbf{x}^{k+1}) \ge \left(\mu - \frac{L(h)}{2}\right) ||\mathbf{x}^k - \mathbf{x}^{k+1}||^2 \ge 0$$
, when $\mu > \frac{L(h)}{2}$;

- $-\lim_{k \to \infty} (\mathbf{x}^k \mathbf{x}^{k+1}) = \mathbf{0};$
- ► The sequence {**x**^k} is bounded;
- ▶ Any accumulation point \mathbf{x}^* of $\{\mathbf{x}^k\}$ is a stationary point to problem (1);

Proximal Iteratively Reweighted Algorithm with Multiple Splitting

We further consider problem (1) with multi-variables

$$\min_{\mathbf{x}_1,\cdots,\mathbf{x}_S} F(\mathbf{x}) = \lambda \sum_{s=1}^S f_s(\mathbf{g}_s(\mathbf{x}_s)) + h(\mathbf{x}_1,\cdots,\mathbf{x}_S), \tag{6}$$

where f_s and g_s holds the same assumptions as f and g in problem (1), respectively. Based on different assumptions of $h(\mathbf{x}_1, \cdots, \mathbf{x}_S)$, we have two splitting versions of the PIRE algorithm.

Proximal Iteratively Reweighted Algorithm with Parallel Splitting

Assume that $\nabla h(\mathbf{x}_1, \cdots, \mathbf{x}_S)$ is Lipschitz continuous (condition (C3) holds).

PIRE is naturally parallelizable. Both \mathbf{x}_s and \mathbf{w}_s are updated in parallel by

$$\mathbf{x}_{s}^{k+1} = \arg\min_{\mathbf{x}_{s}} \lambda \langle \mathbf{w}_{s}^{k}, \mathbf{g}_{s}(\mathbf{x}_{s}) \rangle + \frac{\mu}{2} \left\| \mathbf{x}_{s} - \left(\mathbf{x}_{s}^{k} - \frac{1}{\mu} \nabla_{s} h\left(\mathbf{x}_{1}^{k}, \cdots, \mathbf{x}_{S}^{k} \right) \right) \right\|^{2},$$
(7)

where $\mu > L(h)/2$, and

$$\mathbf{w}_s^k \in -\partial \left(-f_s(\mathbf{g}_s(\mathbf{x}_s^k))\right), \ s = 1, \cdots, S.$$
 (8)

If $h(\mathbf{x}_1, \dots, \mathbf{x}_S) = \frac{1}{2} \left\| \sum_{s=1}^S \mathbf{A}_s \mathbf{x}_s - \mathbf{b} \right\|_2^2$, we can update \mathbf{x}_s^{k+1} by

$$\mathbf{x}_{s}^{k+1} = \arg\min_{\mathbf{x}_{s}} \lambda \langle \mathbf{w}_{s}^{k}, \mathbf{g}_{s}(\mathbf{x}_{s}) \rangle + \frac{\mu_{s}}{2} \left\| \mathbf{x}_{s} - \left(\mathbf{x}_{s}^{k} - \frac{1}{\mu_{s}} \mathbf{A}_{s}^{T} (\mathbf{A} \mathbf{x}^{k} - \mathbf{b}) \right) \right\|_{2}^{2},$$
(9)

where $\mu_s > L_s(h)/2$ and $L_s(h) = ||\mathbf{A}_s||_2^2$ is the Lipschitz constant of $\nabla_s h(\mathbf{x}_1, \dots, \mathbf{x}_s)$. Updating \mathbf{x}_s^{k+1} by (9) is faster than (7) since the required μ_s is usually much smaller than μ . Proximal Iteratively REweighted algorithm with Parallel Splitting (PIRE-PS): updating \mathbf{w}_s by (8) and \mathbf{x}_s by (7) or (9) in parallel to solve (6).

Proximal Iteratively Reweighted Algorithm with Alternative Updating

Assume that $\nabla_s h(\mathbf{x}_1, \cdots, \mathbf{x}_S)$, $s = 1, \cdots, S$, are Lipschitz continuous.

Then \mathbf{x}_s , $s=1,\cdots,S$, are updated in the alternative way

$$\mathbf{x}_{s}^{k+1} = \arg\min_{\mathbf{x}_{s}} \lambda \langle \mathbf{w}_{s}^{k}, \mathbf{g}_{s}(\mathbf{x}_{s}) \rangle + \frac{\mu_{s}}{2} \left\| \mathbf{x}_{s} - \left(\mathbf{x}_{s}^{k} - \frac{1}{\mu_{s}} \nabla_{s} h(\mathbf{x}_{1}^{k+1}, \cdots, \mathbf{x}_{s-1}^{k+1}, \mathbf{x}_{s}^{k}, \cdots, \mathbf{x}_{s}^{k}) \right) \right\|^{2}, \quad (10)$$

where $\mu_s > L_s(h)/2$ and \mathbf{w}_s^k is defined in (8).

Proximal Iteratively REweighted algorithm with Alternative Updating (PIRE-AU): updating \mathbf{w}_s by (8) and \mathbf{x}_s by (10) in the alternative way to solve (6).

Some Remarks

- Similar convergence results of PIRE hold for PIRE-PS and PIRE-AU, i.e., the objectionve function value is monotonically decreasing, and any accumulation point is a stationary point.
- ▶ PIRE-PS can be implemented in parallel, while PIRE-AU cannot.
- ▶ PIRE-AU may converge faster than PIRE-PS due to smaller Lipschitz constants.
- ▶ If the squared loss function is used, PIRE-PS uses the same small Lipschitz constants as PIRE-AU.

Experiment: ℓ_p -Minimization

Test on the ℓ_p -minimization problem

$$\min_{\mathbf{X}\in\mathbb{R}^{n\times t}}\lambda||\mathbf{X}||_p^p+\frac{1}{2}||\mathbf{AX}-\mathbf{B}||_F^2,$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{m \times t}$, and $||\mathbf{X}||_p^p = \sum_{ij} |X_{ij}|^p$.

Compared methods: Iteratively Reweighted L1 (IRL1) and Iteratively Reweighted Least Squares (IRLS).

(a) m = 200 (b) m = 300 (c) m = 400Figure: Recovery error v.s. different p values with different size of $\mathbf{A} \in \mathbb{R}^{m \times 1000}$.

Figure: Running time v.s. objective function value on three synthesis data sets with different sizes of **A** and **B**: (m, n, t).

minimization.

	Size (<i>m</i> , <i>n</i> , <i>t</i>)	Methods	Iter.	111116	Obj.	Trecovery erro
	O(2G(III,II,I))	Methods	itei.	(second).	$(\times 10^{-2})$	$(\times 10^{-3})$
	(100,500,50)	PIRE	116	0.70	5.238	2.529
		PIRE-PS	58	0.48	5.239	2.632
		PIRE-AU	56	0.63	5.239	2.632
		IRLS	168	81.82	5.506	2.393
		IRL1	56	3.43	5.239	2.546
	(200,800,100)	PIRE	119	1.48	16.923	2.246
		PIRE-PS	37	0.82	16.919	2.192
		PIRE-AU	36	0.88	16.919	2.192
		IRLS	169	474.19	17.784	2.142
		IRL1	81	13.53	16.924	2.248
	(300,1000,200)	PIRE	151	4.63	42.840	2.118
		PIRE-PS	29	1.38	42.815	1.978
		PIRE-AU	28	1.34	42.815	1.977
		IRLS	171	1298.70	44.937	2.015
		IRL1	79	35.59	42.844	2.124
-	(500,1500,200)	PIRE	159	8.88	64.769	2.010
		PIRE-PS	26	2.27	64.718	1.814
		PIRE-AU	25	2.20	64.718	1.814
		IRLS	171	3451.79	67.996	1.923
		IRL1	89	80.89	64.772	2.013
	(800,2000,200)	PIRE	140	14.99	87.616	1.894
		PIRE-PS	33	5.15	87.533	1.648
		PIRE-AU	32	4.97	87.533	1.648
		IRLS	177	7211.2	91.251	1.851
		IRL1	112	173.26	87.617	1.895

Experiment: Multi-Task Feature Learning

Given m learning tasks $\{(\mathbf{X}_1,\mathbf{y}_1),\cdots,(\mathbf{X}_m,\mathbf{y}_m)\}$, where $\mathbf{X}_i\in\mathbb{R}^{n_i\times d}$ is the data matrix of the *i*-th task with each row a sample, $\mathbf{y}_i \in \mathbb{R}^{n_i}$ is the label of the *i*-th task, n_i is the number of samples for the *i*-th task, and *d* is the dimension. Our goal is to find a matrix $\mathbf{Z} = [\mathbf{z}_1, \cdots, \mathbf{z}_m] \in \mathbb{R}^{d \times m}$ such that $\mathbf{y}_i \approx \mathbf{X}_i \mathbf{z}_i$. Test on the capped- ℓ_1 norm minimization

$$\min_{\mathbf{Z}} \lambda \sum_{j=1}^{d} \min(||\mathbf{z}^{j}||_{1}, \theta) + h(\mathbf{Z}),$$

where $h(\mathbf{Z}) = \sum_{i=1}^{m} ||\mathbf{X}_{i}\mathbf{z}_{i} - \mathbf{y}_{i}||_{2}^{2}/mn_{i}$, $\theta > 0$, and \mathbf{z}^{j} is the j-th row of \mathbf{Z} . Compared method: Multi-stage algorithm.

Figure: Comparison of (a) mean squared error (MSE) and (b) running time on the Isolet data set for multi-task feature learning.