

Лекция 2. Зарождение квантовой физики: тепловое излучение, фотоэффект.

https://ahaslides.com/JCBK5

Кто изобрел транзистор?

https://ahaslides.com/JCBK5

За исследования в какой области Эйнштейн получил Нобелевскую премию?

Сегодня в этот день

1910 - Родился Уильям Брэдфорд Шокли (13.02.1910 - 12.08.1989),

- американский физик, Нобелевская премия 1956 года за изобретение транзистора (совместно с Дж. Бардином и У. Браттейном).

https://dzen.ru/a/YnOcltX5fBlYLwEw

"Требуется большое количество талантливых людей из разных областей науки, которые только объединившись, могут выполнить все исследования, необходимые для появления одного нового устройства" Уильям Шокли

Содержание лекции

Зарождение квантовой физики

Тепловое излучение. Понятие абсолютно черного тела. Закон Кирхгофа, закон Стефана-Больцмана, закон смещения Вина, формула Рэлея-Джинса. Ультрафиолетовая катастрофа.

Фотоэффект. Закономерности фотоэффекта. ВАХ фотоэффекта. Уравнение Эйнштейна. Применение фотоэффекта.

Классическая физика?

Механика – законы Ньютона, СТО.

Электродинамика – уравнения Максвелла.

Теория излучения атома, распространение электромагнитных волн.

Проблемы: строение вещества, физика конденсированных сред, взаимодействие электромагнитных волн с веществом.

Волновая теория?

Успехи волновой теории:

Законы геометрической оптики

Интерференция

Дифракция

Поляризация

Определение скорости света, длины световой волны, давление света

«Неудачи» волновой теории:

Тепловое излучение Фотоэффект

Нужна новая теория!

***** ITMO UNIVERSITY

Предпосылки квантовой теории

Томсон, лорд Кельвин, 1900:

«в физике больше нет ничего нового, все, что можно было открыть, уже открыто. То, что остается — это все более и более точное измерение старого»

Максу Планку не рекомендовали заниматься теоретической физикой, так как в ней не осталось нерешенных задач кроме теплового излучения АЧТ и фотоэффекта.

I think I can safely say that nobody understands quantum mechanics.

https://www.edx.org/course/quantum-mechanics-for-everyone

— Фейнман Р., лекции «Характер физических законов» (1964), гл. 6

Тепловое излучение

Тепловое излучение — электромагнитное излучение, возникающее за счет внутренней энергии тела

Все нагретые тела (Т>0 К) являются источниками эм излучения:

низкие температуры — ИК область спектра (0,7 мкм- 1 мм) высокие температуры — свечение (λ ↓)

Тепловое излучение

Тепловое излучение — равновесно. Находится в равновесии с излучающими телами, т.е. распределение энергии между телом и излучением неизменно для каждой длины волны. Интенсивность теплового излучения возрастает с ростом температуры.

К равновесным процессам применимы законы термодинамики.

Характеристики теплового излучения

Энергетическая светимость - поток энергии, испускаемый единицей поверхности по всем направлениям

$$[R] = Bm/M^2$$

Для интервала частот dω:

$$dR_{\omega} = r_{\omega} d\omega$$

 r_{o} - испускательная (излучательная) способность.

Зависит от частоты и от температуры!

Тогда энергетическая светимость:

$$R = \int_{0}^{\infty} r_{\omega} d\omega$$

Можно выразить для интервала dλ...

Поглощательная способность для определенной частоты (длины волны):

$$\alpha_{\lambda} = \frac{dW_{norn}}{dW}$$

Абсолютно черное тело (АЧТ)

Абсолютно черное тело — тело, способное поглощать всю падающую энергию любого спектрального состава

Абсолютно черных тел в природе не существует. Но у некоторых тел коэффициент поглощения близок к 1 в определенном диапазоне λ.

Модель АЧТ

Закон Кирхгофа

1859 г., Кирхгоф

Закон Кирхгофа: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является универсальной функцией частоты и температуры.

$$\frac{r_{\omega,T}}{\alpha_{\omega,T}} = f(\omega,T)$$

Универсальная функция для АЧТ – испускательная способность АЧТ!

Закон Стефана-Больцмана и закон Вина

Стефан (1879), Больцман (1884)

Энергетическая светимость абсолютно черного тела:

$$R = \int_{0}^{\infty} f(\omega, T) d\omega = \sigma T^{4}$$

Постоянная Стефана-Больцмана:

$$\sigma = 5.7 \cdot 10^{-8} Bm / M^2 K^4$$

Вин (1893)

Установил взаимосвязь длины волны, на которую приходится максимум функции и температуры:

$$T\lambda_m = b$$

Постоянная Вина

$$b = 2.9 \cdot 10^{-3} \ M \cdot K$$

С ростом температуры возрастает энергетическая светимость АЧТ, а максимум сдвигается в область более коротких волн.

Рэлей, Джинс

Излучательная способность АЧТ, спектральная плотность объемной плотности энергии излучения:

$$f(\lambda, T) = r_{\lambda} = \frac{8\pi}{\lambda^4} kT$$

$$f(\omega, T) = r_{\omega} = \frac{\omega^2}{4\pi^2 c^2} kT$$

Согласуется с законом Вина, но не с законом Стефана-Больцмана.

Ультрафиолетовая катастрофа

Спектральная плотность излучения неограниченно растет по мере уменьшения длины волны!

Классическая теория не работает.

Формула Планка

Планк (1900)

Получил правильную формулу, исходя из предположений, что эм излучение испускается не непрерывно а порциями – квантами.

$$\varepsilon = h \nu = \hbar \omega$$

Формула Планка – работает на всем диапазоне λ

$$f(\lambda, T) = r_{\lambda} = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/kT\lambda} - 1}$$

Постоянная Планка – квант действия

$$h = 6,64 \cdot 10^{-34} \, Дж \cdot c$$

Спектральный анализ

Спектры поглощения: 4 - натрия; 5 - водорода; 6 - гелия.

Герц (1897) - открытие, Столетов, Томсон, Ленард

Внешний фотоэффект – явление выбивания электронов с поверхности вещества под действием падающего света

Как изучить фотоэффект?

Снять ВАХ вакуумной лампы при облучении холодного катода светом фиксированной частоты.

1. Существует задерживающее (запирающее) напряжение:

При U=0 фототок не исчезает

$$eU_3 = \frac{mv_m^2}{2}$$

- 1.2 Величина задерживающего напряжения (максимальная кинетическая энергия) не зависит от интенсивности падающего излучения
- 1.3 Величина задерживающего напряжения (максимальная кинетическая энергия) линейно зависит от частоты падающего излучения

Свойства фотоэффекта

2. Существует красная граница фотоэффекта.

Экспериментально установлено (Милликен, 1916):

$$U_3 = \alpha \omega - \varphi$$

α, φ - постоянные

$$\frac{m\upsilon_m^2}{2} = e\alpha\omega - e\varphi$$

$$\omega > \omega_0 = \frac{\varphi}{\alpha}$$
 или $\lambda < \lambda_0 = \frac{2\pi c\,\alpha}{\varphi}$

Красная граница фотоэффекта – длина волны (частота), при которой еще возможен фотоэффект.

(683 нм – опыт Милликена)

3. Закон Столетова

Число фотоэлектронов в единицу времени (ток насыщения) строго пропорционально интенсивности света (световому потоку) при неизменном спектральном составе

$$J \approx \Phi$$

Свойства фотоэффекта

4. Фотоэффект практически безынерционен.

Фототок возникает мгновенно после освещения катода (при условии λ< λкр)

Задача. По классическим представлениям электрон должен накопить энергию для вылета с катода.

Лампой мощностью 100 Вт освещается алюминиевый катод (работа выхода 4,2 эВ). Лампа находится на расстоянии 1 м от катода.

Оцените время необходимое для накопления энергии, большей чем работа выхода.

https://ahaslides.com/JCBK5

Что не может объяснить волновая теория:

- 1. Независимость энергии фотоэлектронов от интенсивности падающего излучения и пропорциональность частоте излучения
- 2. Наличие красной границы фотоэффекта
- 3. Безынерционность фотоэффекта

Теория Эйнштейна (1915):

- 1. Электромагнитное поле дискретно
- 2. Элементарная частица электромагнитного поля фотон
- 3. Фотоны могут поглощаться и излучаться веществом
- 4. Энергия фотона равна произведению постоянной Планка на частоту излучения

Уравнение Эйнштейна - закон сохранения энергии для системы фотон-электрон:

$$h\,\nu = A_{\scriptscriptstyle \! e \omega x} + \frac{m \upsilon_m^2}{2}$$

https://www.nanonewsnet.ru/news/2009/obnaruzhenyogranicheniya-klassicheskogo-fotoeffekta-dlyarentgenovskogo-izlucheniya

Применение фотоэффекта

- 1. Фотоэлементы (вакуумные, полупроводниковые),
- 2. Фотовольтаический эффект: фотодиоды (CCD, CMOC...), солнечные батареи

3. Фоторезисторы

Задание к лекции:

- 1. Проанализировать формулы Рэлея-Джинса, Вина и Планка. Построить график зависимости испускательной способности от длины волны (от 20 до 2000 нм, шаг 20 нм) для двух лампочек с температурами 2700 К и 3300 К. Определить для одной из лампочек относительное количество энергии, приходящейся на видимый спектр.
- 2. По классическим представлениям электрон должен накопить энергию для вылета с катода. Лампой мощностью 100 Вт освещается алюминиевый катод (работа выхода 4,2 эВ). Лампа находится на расстоянии 1 м от катода. Оцените время необходимое для накопления энергии, большей чем работа выхода.
 - (III) Potassium has one of the lowest work functions of all metals and so is useful in photoelectric devices using visible light. Light from a source is incident on a potassium surface. Data for the stopping voltage V_0 as a function of wavelength λ is shown below. (a) Explain why a graph of V_0 vs. $1/\lambda$ is expected to yield a straight line. What are the theoretical expectations for the slope and the y-intercept of this line? (b) Using the data below, graph V_0 vs. $1/\lambda$ and show that a straight-line plot does indeed result. Determine the slope a and y-intercept b of this line. Using your values for a and b, determine (c) potassium's work function (eV) and (d) Planck's constant h (J·s).

λ (μm)	0.400	0.430	0.460	0.490	0.520
$V_0(V)$	0.803	0.578	0.402	0.229	0.083