Special Topics in Financial Engineering <u>Statistical Arbitrage</u>

MGMT MFE 431 - Section 3

Professor Olivier Ledoit

University of California Los Angeles Anderson School of Management Master of Financial Engineering Fall 2019

Contact Details

- Office: Entrepreneurs Hall, C5.20
- Office Phone: ext. 5-2873 = (310) 825-2873
- Mobile: (424) 431-5931 ...Don't call me!
- E-mail: olivier.ledoit@anderson.ucla.edu
- More solid: olivier.ledoit@econ.uzh.edu
- Office Hours:
 - Tue 11:20am-11:50pm
 - Thu 11:20am-11:50am

General Information

- Worth 4 units
- 10 lectures of 2h50 each
- 3-hour in-class final exam
- 3 problem sets in groups
- Grade:
 - 10% participation
 - 40% final exam
 - 50% problem sets (16.67% each)

Current Positions

- Visiting Professor of Finance, UCLA Anderson School of Management
- Senior Research Associate, Department of Economics, University of Zurich, Switzerland
- Partner, AlphaCrest Capital Management, New York

Past Experience

- 1999-2008: Managing Director, Global Statistical Arbitrage Group, Equity Proprietary Trading Division, Credit Suisse, London
- 1995-1998: Assistant Professor of Finance (tenure-track), UCLA Anderson School of Management
- Published 20+ articles in top-ranked peerreviewed academic research journals

Areas of Interest

- Probability theory
- Statistics
- Econometrics
- Finance
- Asset pricing theory
- Monetary Economics

One of my Latest Papers

Moving on to (A.12), let $\Delta \equiv \max_{m \in S} |m|$ and note that $|z_j| \leq 2$. Therefore, for any $\tau_1, \tau_2 \in [0, +\infty)$,

$$\begin{aligned} |h_{m,z_{j}}(\tau_{1}) - h_{m,z_{j}}(\tau_{2})| &= |\tau_{1} - \tau_{2}| \left| \frac{1 - d - dz_{j} m}{(\tau_{1} [1 - d - dz_{j} m] - z_{j}) (\tau_{2} [1 - d - dz_{j} m] - z_{j})} \right| \\ &= |\tau_{1} - \tau_{2}| \frac{|1 - d - dz_{j} m|}{|\tau_{1} [1 - d - dz_{j} m] - z_{j}| |\tau_{2} [1 - d - dz_{j} m] - z_{j}|} \\ &= |\tau_{1} - \tau_{2}| \frac{|1 - d - dz_{j} m|}{|\tau_{1} [1 - d - dz_{j} m] - z_{j}| |\tau_{2} [1 - d - dz_{j} m] - z_{j}|} \\ &\leq |\tau_{1} - \tau_{2}| (1 + d + 2 d\Delta) , \end{aligned}$$

implying that we may choose $d_1 \equiv (1 + d + 2 d \Delta)$.

Recall that convergence in distribution of \widehat{G}_n to G is equivalent to convergence to zero of the bounded-Lipschitz metric between \widehat{G}_n and G; for example, see Pollard (1984, Chapter IV, Example 22). Furthermore, since \widehat{G}_n and G put all their mass on $[0, \infty)$, it is sufficient to start all integrals at $\tau = 0$ rather than at $\tau = -\infty$. Therefore,

$$\begin{split} \int_{-\infty}^{+\infty} \frac{d\widehat{G}_n(\tau)}{\tau \left[1 - d - d\,z_j\,m\right] - z_j} &= \int_0^{+\infty} \frac{1}{\tau \left[1 - d - d\,z_j\,m\right] - z_j} \, d\widehat{G}_n(\tau) \\ &= \int_0^{\infty} h_{m,z_j}(\tau) \, d\widehat{G}_n(\tau) \\ &\to \int_0^{\infty} h_{m,z_j}(\tau) \, dG(\tau) \\ &= \int_0^{+\infty} \frac{1}{\tau \left[1 - d - d\,z_j\,m\right] - z_j} \, dG(\tau) \\ &= \int_{-\infty}^{+\infty} \frac{1}{\tau \left[1 - d - d\,z_j\,m\right] - z_j} \, dG(\tau) \quad \text{uniformly in } m \in S \;, \end{split}$$

Education

- 1995: Finance PhD, MIT Sloan School of Management, Advisor: Andrew Lo
- 1992: MSc in Statistics & Economics, ENSAE, Paris, France
- 1990: BSc in Applied Mathematics, Ecole Polytechnique, Paris, France

Journal Officiel de la République

Arrêté du 20 août 1987 portant nomination des élèves admis en 1987 à l'Ecole polytechnique

NOR: DEFA8701646A

Par arrêté du ministre de la défense en date du 20 août 1987

I. - Sont nommés élèves français de l'Ecole polytechnique à la suite du concours d'admission organisé conformément au décret no 71-708 du 25 août 1971 modifié (titre Ier) et à l'arrêté du 25 juillet 1973 modifié:

Option M'

l Laruelle (Claude).	45 Blary (Benoît).
2 de Vigouroux d'Arvieu	46 Macchi (Denis).
(Alexis).	47 Arlès (Olivier).
3 Ledoit (Olivier).	48 Mehadhebi (Karim).
4 Schmitt (Alain).	49 Kammerer (Clotilde).
5 Huve (Pierre).	50 Leroy (Xavier).
6 Roussel (Jean-François).	51 Daulmerie (Christophe).
7 Chassagne (Olivier).	52 Fabiani (Patrick).

MIT Graduation Day

Academic Research

Olivier Ledoit

Senior Research Associate, Department of Economics, <u>University of Zurich</u> Verified email at econ.uzh.ch - <u>Homepage</u>

Finance Economics Statistics Probability Financial Econometrics

TITLE	CITED BY	YEAR
A well-conditioned estimator for large-dimensional covariance matrices O Ledoit, M Wolf Journal of multivariate analysis 88 (2), 365-411	1742	2004
Improved estimation of the covariance matrix of stock returns with an application to portfolio selection O Ledoit, M Wolf Journal of empirical finance 10 (5), 603-621	1333	2003
Honey, I shrunk the sample covariance matrix O Ledoit, M Wolf The Journal of Portfolio Management 30 (4), 110-119	914	2004
Robust performance hypothesis testing with the Sharpe ratio O Ledoit, M Wolf Journal of Empirical Finance 15 (5), 850-859	597	2008
Gain, loss, and asset pricing AE Bernardo, O Ledoit Journal of political economy 108 (1), 144-172	481	2000

Used Everywhere

- Radar detection
- Speech recognition
- Brain/Computer Interface
- Improving mobile phone reception
- Decoding the human genome
- Finding a cure for cancer
- Saving the planet from Global Warming

Why I Retired Early

Holy Grail For Anyone Who Wants A Quant Job At Goldman Sachs

Statistical Arbitrage

- Equity Long-Short Market Neutral
- Systematic: No Human Overlay
- Medium Frequency: Turn portfolio around in 1 week to 1 month

High Frequency

- Orders must travel to the Stock Exchange in less than 10 milliseconds
- Flat position overnight
- Make money every day
- Technological horse race
- Low capacity

Low Frequency

- Quantitative Asset Management (Jason Hsu)
- Sharpe Ratio < 0.7
- More emphasis on asset gathering, distribution, marketing
- Lower fees

Medium Frequency

Golden outlet: work in a hedge fund

- Other possibilities:
 - Work for Investment Bank outside the US (Volcker rule)
 - Work inside traditional asset management company
 - Work from home

Stat Arb

- Realized (not backtested) Sharpe Ratio > 2
- Make profit over any 6-months period
- Leverage: for \$1M capital, go \$2M long and \$2M short
- Scalable up to \$250M capacity
- Globally (developed equity markets only)
- Long-term sustainable through research

What does it take to succeed?

- Managing complexity
- 10,000+ lines of code, 100's of databases

- Must retain intellectual control at all times
- Need to "feel" the model and the markets
- Box is black to others, transparent to you

Like piloting an airplane

Managing Complexity

Qualities

- High IQ
- Work > 60 hours/week

Passionate about beating the market

DISCIPLINED EMPIRICAL PARANOID

Market Efficiency

- Need to reinvent 30% of your business every year just to stand still
- One new market anomaly published every day on Financial Economics Network
- In 10 years @ CS, I released one new version every 2 weeks
- Like fixing an airplane as you're flying it
- I won't give you a fish, I'll teach you how to fish

What this Class Is About

- Teaching you simple Stat Arb model
- Building Blocks
- Design Principles
- Homework:
 - You'll walk away with code you can improve
 - Europe (hardest but juiciest)
 - Jan 1998 Dec2002 (save recent past as out-of-sample period)

Basic Structure

- One program to load data into memory
- Create the alphas
- Rebalance the portfolio
- Run historical backtest simulation
- Generate current trade

- Processes to update databases
- Auditing programs

Categories of Alpha

- Short-term momentum
- Short-term reversion
- Long-term momentum
- Long-term reversion

Main Components

- Alphas
- Risk model (covariance matrix)
- T-cost model
- Optimizer

What is an Alpha?

- α is a matrix of dimension $T \times n$
 - -T = number of days in the backtest
 - -n = number of stocks in your universe

• $\alpha_{t,i}$ = alpha of stock i on day t

Example: Momentum Alpha

• $p_{t,i}$ = price of stock i on day tAdjusted for stock splits, dividends, etc

•
$$m_{t,i} = (p_{t-21,i} / p_{t-252,i}) - 1$$

In Stat Arb we do not sort into quintiles!

Step 1: Demean

$$x_{t,i} = m_{t,i} - (m_{t,1} + ... + m_{t,n}) / n$$

Step 2: Standardize

$$y_{t,i} = \frac{x_{t,i}}{\sqrt{\sum_{j=1}^{n} x_{t,j}^2 / (n-1)}}$$

Step 3: Windsorize

•
$$\alpha_{t,i} = y_{t,i}$$
 if $|y_{t,i}| \le 3$

•
$$\alpha_{t,i} = 3$$
 if $y_{t,i} > 3$

•
$$\alpha_{t,i} = -3$$
 if $y_{t,i} < -3$

How to Use Alphas

- Expected return on stock i on day t is linear function of $\alpha_{t,i}$ with positive slope
- On day t you maximize exposure to the vector $(\alpha_{t,1},...,\alpha_{t,n})$
- If today is day T (last day of your historical database) then you trade to maximize exposure to $(\alpha_{T,1},...,\alpha_{T,n})$
- Matrix α could be composite of many signals

Wright Brothers

Boeing 747

HSBC Hedge Fund Report

Equity Market Neutral Funds

TWO SIGMA ABSOLUTE RETURN CAYMAN FUND LTD Two Sigma Advisers, LP	31 Oct 11	М	\$1'066M Apr 16	1,472.64	30 Jun 16	(4.45%)	(0.70%)	14.99%	10.09%	11.25%	4.03%	1.23%	8.64%	5.43%	(4.45%) May 16 - Jun 16
Multi-Strategy															
Ytd Avg. 2016 0.60%															
Multi-Strategy/Asia						Υ	'td Avg. 2016 (0.10%)								
LIM ASIA MULTI-STRATEGY FUND CLASS A George W. Long	31 Dec 95	Q	\$975M May 16	39.53	24 Jun 16	(1.10%)	(0.10%)	1.77%	4.12%	5.63%	3.57%	-0.23%	6.94%	5.59%	(15.79%) Feb 08 - Nov 08
Multi-Strategy/Global						Y	'td Avg. 2016 1.30%								
HUDSON BAY INTERNATIONAL FUND LTD Hudson Bay Capital Management LP	31 May 06	Q	\$2'222M May 16	230.12	31 May 16	0.50%	1.30%	-1.91%	-2.08%	7.9%	11.37%	4.31%	8.68%	4.92%	(6.11%) Feb 14 - Nov 15
Statistical Arbitrage															
Ytd Avg. 2016 (2.74%)															
Statistical Arbitrage/Global						Υ	td Avg. 2016/ (2.74%)								
A.R.T. INTERNATIONAL INVESTOR (BVI) Ltd Aaron Sosnick	28 Feb 07	Q	\$849M May 16	242.31	30 Jun 16	(2.29%)	(1.27%)	3.11%	9.83%	4.91%	5.67%	7.88%	9.94%	7.19%	(10.48%) Jul 07 - Aug 07
GSA INTERNATIONAL FUND - CLASS A David Khabie-Zeitoune	28 Feb 05	Q	\$803M May 16	282.21	30 Jun 16	(0.97%)	(4.22%)	11.41%	12.14%	13.28%	3.64%	15.2%	9.58%	4.41%	(11.91%) Jun 08 - Sep 08

GSA Capital International Fund

- Manager: Jonathan Hiscock
- Inception Date: February 28, 2005
- Assets under Management: \$803M
- Return in 2015: +11.41%; 2013: +12.14%
- Annual Return since Inception: +9.58%
- Annual Volatility: +4.41%
- Max Drawdown: -11.91% (Jun-Sep 2008)

10,000-Hour Rule

The No. 1 International Bestseller

OUTLIERS

The STORY of SUCCESS

MALCOLM GLADWELL

Author of The Tipping Point and Blink

Toolkit

- Linear Algebra
- Statistics
- Economics
- Finance
- Optimization
- Programming

Required Readings for Next Week

- Quantitative Trading (2009), by Ernest P. Chan:
 - How Will Transaction Costs Affect the Strategy?
 pp.22-23
 - Minimizing Transaction Costs, pp.87-88
- VWAP Strategies (2002), by Ananth Madhavan Only 7 pages!
- Execution Costs (2008), by Robert Almgren in the Encyclopedia of Quantitative Finance Only 5 pages!

Additional Readings

- Transactions costs and investment style, Keim and Madhavan (1997)
- Direct Estimation of Equity Market Impact,
 Almgren et al. (2005)
- Quantitative Trading, Ernest P. Chan (2009)
 "Transaction Costs", pp. 60-65

Other Applications

- Volatility Harvesting
- Systematic Merger Arbitrage
- Index Rebalancing

CTA:

Let's Have Fun!

