ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton NIPS (2012)

Presenter: Ogenna Esimai

CSE 6369 - Special Topics in Advanced Intelligent Systems, Human Computer Interactions
October 21, 2021

Outline

- Introduction to the Problem
- Background
- Novelty and Innovation
- Methodology and Relation to HCI
- Applications
- Conclusion and Critical Thoughts

Introduction to the Problem

- Competing in contest ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC-2012)
- Speed and lower error rates
- Won
- Published a variant of their strategy

Background

- Object recognition contest
 - ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC-2012)
 - annual
 - started in 2010
- ImageNet dataset
 - over 15 million labeled high-resolution images
 - ~ 22,000 categories

Novelty and Innovation

- A much better way of object recognition
- Deep Convolutional Neural Network constructed in novel way
- Trained one of the largest networks to date
 - subsets of ImageNet in ILSVRC-2010 and ILSVRC-2012
- Implemented 2D convolution, highly-optimized, GPU
 - Publicly available
- Novel or unusual features of architecture
 - ReLU nonlinearity
 - training on multiple GPUs
 - local response normalization
 - overlapping pooling

Methodology and Relation to HCI

- Convolutional Neural Network
- Special features of architecture
 - ReLU nonlinearity: f(x) = max(0, x)
 - training on multiple GPUs
 - local response normalization
 - overlapping pooling
- Reducing overfitting
 - data augmentation
 - image translations and horizontal reflections
 - altering the intensities of channels training images
 - dropout

© 2021 Ogenna Esimai

6

Methodology and Relation to HCI (2)

Architecture

- eight layers with weights
- first five are convolutional
- then three are fully connected
- output of last fully-connected layer feeds to a 1000-way softmax
- produces a distribution over the 1000 class labels

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

(Accessibility) Figure – A schematic in black and white of the architecture of the Convolutional Neural Network implemented in the paper. From left to right, after a common input of images, the network runs along a top and a bottom pipeline. These 2 pipelines are run by two different Graphical Processing Units (GPUs), are mostly independent, and communicate only at certain points in the architecture. **Figure on next slide** – right hand side of picture shows a color rendering of the different layers and architecture of the same Convolutional Neural Network. Gray – input layer, Blue – convolutional layer, Pink – pooling layer, Yellow – dense, fully connected layer.

More details

@ CC BY-SA 4.0

Courtesy of CMG Lee.

Cmglee - Own work

© 2021 Ogenna

Esimai

https://en.wikipedia.org/wiki/Convolutional neural network#/media/File:Comparison image neural networks.svg 8

Methodology and Relation to HCI (3)

- Reduced error rates
- Relation to HCI
 - far-reaching
 - object recognition in AR/VR

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]	_	_	26.2%
1 CNN	40.7%	18.2%	_
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

Applications

- Application area
 - Object recognition in CV and related, broad

<u>Proceeding of Fifth International Conference on Microelectronics, Computing and Communication Systems</u> pp 77-89

AlexNet-CNN Based Feature Extraction and Classification of Multiclass ASL Hand Gestures

Authors Authors and affiliations

Abul Abbas Barbhuiya, Ram Kumar Karsh, Samiran Dutta

Conference paper
First Online: 10 September 2021

Downloads

Conclusion and Critical Thoughts

- Conclusion
 - Improvement over state-of-the-art at the time
- Future Works
 - Highly impactful
 - AlexNet
- Critical Thoughts
 - Solid contributions to HCI through object recognition and CV
 - Extensive use of jargon likely from intended audience
 - Provides example of how existing techniques + innovation -> groundbreaking results