Ranking based Techniques for Disambiguating Büchi Automata

Hrishikesh Karmarkar Supratik Chakraborty

January 29, 2011

Non-deterministic Büchi automata over words (NBW)

A 5-tuple $(\Sigma, Q, Q_0, \delta, F)$, where

- Σ : Input alphabet
- Q : Finite set of states
- $Q_0 \subseteq Q$: Initial states
- $\delta \subseteq Q \times \Sigma \times Q$: State transition relation
- F : Set of final/accepting states

Runs and acceptance

- A run of $\mathcal A$ on $\alpha \in \Sigma^\omega$ is a sequence $\rho: \mathbb N \to Q$ such that
 - $\rho(0) \in Q_0$
 - $\rho(i+1) \in \delta(\rho(i), \alpha(i))$
- An automaton may have several runs on α .
- ρ is accepting iff $\inf(\rho) \cap F \neq \emptyset$
- α is accepted by \mathcal{A} ($\alpha \in L(\mathcal{A})$) iff there is an accepting run of \mathcal{A} on α .

- $\alpha = abbbbb \cdots$, $\rho_1 = q_1q_2q_2q_2q_2q_2\cdots$

Ambiguous automata

 \mathcal{A} is ambiguous if there exists $\alpha \in L(\mathcal{A})$ such that there are ≥ 2 accepting runs of \mathcal{A} on α Otherwise, \mathcal{A} is unambiguous.

An ambiguous NBW

- $\alpha = ab^{\omega}$
- $\rho_1 = q_1 q_2^{\omega}$
- $\rho_2 = q_1 q_1 q_2^{\omega}$

Strongly Unambiguous automata

- Final run of \mathcal{A} on α : A run ρ starting from any state in Q such that $\inf(\rho) \cap F \neq \emptyset$.
 - A word $\notin L(A)$ may have 0 or more final runs
 - A word $\in L(A)$ has ≥ 1 final runs
- NBW \mathcal{A} is strongly unambiguous if for every $\alpha \in \Sigma^{\omega}$, there is exactly one final run.
- Not all unambiguous automata are strongly unambiguous.

Deterministic (hence unambiguous) but not strongly unambiguous

Strongly unambiguous

Containment relations

UNBW: Unambiguous NBW, SUNBW: Strongly unambiguous

NBW, DBW: Deterministic Büchi automata over words

Expressive power-wise

 $DBW \subseteq NBW \equiv UNBW \equiv SUNBW$

Automata structure-wise

What this talk is about

Given an NBW, construct UNBW accepting the same language and using as few states as possible.

Relevant earlier work:

- Arnold 1983: UNBW expressively equivalent to NBW
- Carton & Michel 2003: Effective construction of SUNBW, size bound $O((12n)^n)$
- Kähler and Wilke 2008: Effective construction of UNBW, size bound $O((3n)^n)$.
- Bousquet and Löding 2010: Equivalence and inclusion problems for SUNBW are poly-time

Our contribution

- Effective construction of UNBW, size bound $O(n^2.(0.76n)^n)$
 - Same as best known bound for NBW complementation!

Why care about disambiguation?

- Of course, a theoretically interesting problem
- Can it lead to a better understanding of what kinds of NBW admit easy determinization?
- Practical application? Seek inputs from the audience.

Run DAG for a^{ω}

Ranking run DAGs

- Intuitively, assign a metric to each vertex in run DAG such that the metric changes in a desirable way only along "good" runs.
- Early work by Michel (1984?), Klarlund (1991): Ranking functions/progress measures for Büchi complementation
- Recent spurt of work triggered by similar metrics defined by Kupferman & Vardi (2001 onwards)
 - Schewe (2009) used this approach to match upper bound of NBW complementation within $O(n^2)$ of lower bound
 - We use Kupferman-Vardi style rankings

Kupferman-Vardi style ranking

n: Number of states in NBW

V: Set of run DAG vertices

 $r: V \rightarrow \{1, 2, \dots 2n + 1\}$: Ranking function

Constraints on ranks

- Vertices corresponding to final states must not get odd ranks
- Ranking cannot increase along any path in run DAG
- Odd ranking: Every path eventually trapped in an odd rank
- Even ranking otherwise

Example of KV-ranking

Example KV-ranking of run DAG for a^{ω}

Ranking based complementation

Theorem (Kupferman-Vardi 2001)

An ω -word $\alpha \in \overline{L(A)}$ iff there is an odd ranking of the run DAG of A on α

Example ranking for ba^{ω}

Applications of Kupferman-Vardi's theorem

- Series of followup work on NBW complementation using KV-ranking
- Schewe (2009) finally gave a construction yielding a complement NBW of size $O(n^2.(0.76n)^n)$
 - Lower bound $\Omega((0.76n)^n)$.
- Several optimizations possible on basic construction
- One such set of optimizations leads to an unambiguous complementation construction, and a disambiguation construction too!
 - Achieves same bound of $O(n^2, (0.76n)^n)$.

Extending KV-ranks

Recall KV-ranking

n: Number of states in NBW

V: Set of run DAG vertices

 $r: V \to \{1, 2, \dots 2n + 1\} \mid \bigcup \{\infty\} \mid$: Ranking function

Constraints on ranks

- Vertices corresponding to final states must not get odd ranks
- Ranking cannot increase along any path in run DAG
- ullet Every path eventually trapped in odd rank or in ∞

We call this a full ranking of the run DAG.

Example of full ranking

Example full ranking for a^{ω}

Minimal full rankings

Given run DAG G, full ranking r^* of G is **minimal** iff for all full rankings r of G, $r^*(v) \le r(v)$ for all vertices v in G.

Non-minimal full ranking

shown for clarity

Minimal full ranking

Properties of minimal full rankings

Theorem

For every run DAG, there exists a unique minimal full ranking. A word α is accepted by $\mathcal A$ iff the minimal full ranking of the run DAG assigns ∞ as the rank of the root vertex.

F-vertex: Vertex in run DAG for which the state is final.

Local properties (successors)

- Every vertex that is not a F-vertex has a successor with the same rank
- Every even ranked vertex either has a successor with the same rank or one with the next lower odd rank

Properties of minimal full rankings

Global properties (descendants)

- Every even ranked vertex has at least one descendant with the next lower odd rank
- Every odd ranked (> 1) vertex has at least one F-vertex descendant with the next lower even rank
- Every path from every even ranked vertex eventually encounters a vertex with a lower rank
- Every ∞ ranked vertex has at least one ∞ ranked F-vertex descendant
- ullet Every ∞ ranked vertex has at least one descendant with the largest non-infinity rank in range of the ranking function.

Intuition of disambiguation construction

Disambiguation construction

- Construct an automaton whose states are full-ranked levels of run DAG
 - Goal: Only minimally full-ranked levels must be accepted
- Local properties of minimal full-ranking easy to enforce in transition relation
- Enforcing global properties requires maintaining additional book-keeping information
 - Global properties checked one vertex (and also one rank) at a time
 - Decompose every global property of an infinite run into properties of finite segments of the run, which can then be concatenated.
 - Ensure that each finite segment satisfies relevant property checkable over finite steps
- Acceptance condition simply ensures that every finite segment of an infinite run satisfies relevant properties and root vertex is ranked ∞

State representation

State of resulting automaton:

$$(S, O, X, f, i)$$
, where

- S: subset of states of NBW in current level
- f : ranking function at current level
- *i* : rank of vertices for which (decomposed) global properties are currently being checked
- $O \subseteq S$: subset of states with rank i for which global properties yet to be checked
- $X \subseteq S$: subset of states being used to check global property of one state with rank i

Total count of states is $O(n^2.(0.76n)^n)$

 Uses a modification of a counting argument used by Schewe (2009) for NBW complementation

Why is it unambiguous?

- Recall minimal full-ranking for every run DAG is unique.
- Our construction accepts only those runs that enforce both local and global properties of minimal full-ranking
 - Accepted full-ranking is minimal
- Any two accepting runs must differ in the ranking of at least one level
- Since minimal ranking is unique, only one accepting run possible

Conclusion

- Using a variant of KV-ranking (similar to that used by Carton and Michel), we obtain a UNBW (not SUNBW) with better bound than reported in the literature
- We conjecture that this matches the lower bound for disambiguation
- Shows potential close connection between disambiguation and complementation