Readme

- 1. All the scripts including the HTML file can be (once downloaded) accessed via Jupyter Lab
- 2. Brief testing of Github Codespace for instant reproducible runs
 - Very low memory on a basic account
 - New not sure if a long term project / plan
 - Handy tool to avoid downloads and dependencies etc
 - Not sure how long data sits in memory yet have not been through the documentation
 - i. i.e seems sometimes packages have to be reinstalled with each run after a certain period of time
 - Linux Based

3. Engine

• Contains the scripts used to power the GBM model and general code

4. Project

- Contains the script to build
 - i. EDA
 - ii. Feature engineering & Data Cleaning
 - iii. Data Modelling
- 5. EDA Profile needs to be downloaded to view the HTML file for viewing should open on any browser or as stated above in Jupyter Lab

Data Used

- 1. Completely generated by samples so will differ on each iteration
 - a. Locations are completley random so on any given run their may be no way to get a post code the latitudes & longitudes are random so it could be a desert, lake, ocean, etc which don't possess a postcode just a demo
 - b. Could alternatively opt for the package in Python pip install random-address
 - **c.** Could alternatively create random addresses from a given shapefile plenty of approaches this is simply a demo

Process & Findings

- 1. Code written in Jupyter Lab
 - a. Script provides documentation for the process step by step
 - b. A regression model was used

- c. Currently working on a classification model
- 2. All the data are Numeric or Date objects
- 3. No Missing data to either exclude or impute
- 4. Data Cleaning
 - a. The file **Profile** contains the initial EDA stages to view the data
 - b. Cleaned Age to a more sensible bracket between 18 & 80 for this exercise
 - c. Date formatting to make consistent
- Modelling

- 6. Futher investigation
 - a. The extreme tails on factors such as
 - i. Claims Amount Where are these occurring & why.
 - 1. Is there a specific time, date, region, etc. associated with these?
 - b. Correlation between Claims Amount & Purchase Price?

Future Upgrades to the current modelling process

- 1. Better understanding of the variables which are unclear to me
- 2. Feature enrichment
 - a. More factors
 - i. Geographic data
 - ii. Credit scores
 - iii. Occupation
 - iv. Policy data (for example is it a New Line of Business or a Renewal? MTA?)
- 3. More data for a more accurate model
- 4. AvE charts
- 5. SHAP vs PDP
- 6. Maps how granular by Area, Region, Postcode(may be too granular unless the first segment of the postcode I.e NW1 rather than NW1 E193 so split after the space 0
- 7. Parameter Tuning for the model

- 8. Compare results with current models
- 9. Best strategy
 - a. Which type of model to build
 - b. Which platform
 - c. How to present the end results

Notes

- RMSE Metric is arbitrary can easily be changed
- In past experiences I used Classification modeling for Elasticity
 - o Attempt here was to try a regression model
 - o Can easily adapt and fit instead a classification model
 - 0 & 1 scale
- At the moment the model show's likely hood of conversion
 - Dummy data so this is a just an exercise