

Agent-based model of foraging beehaviour

UvA CLS ABM 2024 - **Group 5** *P. Alves, J. Schäfer, B. Golik, K. Ullah & D. Leunk*

Lay eggs, mostly

- 1 queen bee 10%-15% of population
 - that's it)

Drone

- Pass their genes (and

Eusociality: division of labour into reproductive and non-reproductive groups

Polyethism: functional specialization of non-reproductive individuals

Worker

- 80%-90% of population
- Can't mate, but do everything else
- Care about brood
- Guard the nest
- Forage for resources

Goal & motivation

Polyethism

- correlated with age (young bees stay in nest, old bees forage)
- adaptive based on colonies needs
- in this work: changing weather conditions and varying resource sparsity

Interactions:

- bees are attracted to flowers from which they gather nectar
- pheromonal exchange, antennae touching
- waggle dance

Why ABM?

- applied to other eusocial species (ants, meerkats)
- bees don't have global information
- emergence of complex behaviour (colony task adaptation) arises from local interactions

Key factors in our work: weather and resource density

Literature review

Theory

- 1. **Beck et. Al**: The effect of forager loss on honeybee workers temporal polyethism and social network structure (2023)
- 2. **J. Devillers**: In silico bees (CRC press, 2014)
- 3. **B. Johnson**: Division of labor in honeybees: form, function, and proximate mechanisms (2010)
- T. Seele: The Wisdom of the Hive: the social physiology of honey bee colonies (Harvard University Press, (2009)
- 5. **N. Calderone**: Proximate mechanisms of age polyethism in the honey bee, Apis mellifera L (1998)

Drawbacks

- complexity
- focus
- implementation

Models

- . **BeeKeeper**: PhD model (2021)
- Toward a Complete Agent-Based Model of a Honeybee Colony (2018)
- 3. **Bee++**: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies (2017)
- 4. **BEEHAVE**: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure (2014)
- 5. **HoPoMo**: A model of honeybee intracolonial population dynamics and resource management (2007)

Own model

Forager Bees

- Sensitive to weather events
- Field of vision,
- Current task
- Speed

Beehive

- Position
- Radius
- Nectar
- No. of young bees

Key aspects

- Continuous space
- Metropolis algorithm (novel)
- Weather events

Resources

- Position
- Quantity
- Radius
- Persistence

Bee state evolution and weather impact

3. Experiments

Experiments

Baseline Assessment

1. Weather conditions Storm rate impact on bees & bee task distribution.

2. Resource density
Resource density impact on bee task distribution.

Weather conditions

Storm rate impact on bees & bee task distribution.

Storms

- Storm probability
- Storm duration

Hypothesis

As weather event kills off bees that are outside the hive, we expect the states of bees to change in order to adapt to the storm.

ि Resource density

Description

Resource density impact on task distribution.

Resources

- Spread
- Quantity

Hypothesis

Bees will dynamically shift their roles in order to optimize resource collection and hive maintenance

4. Results

1. Baseline & Parameter validation

Bee State proportions through time during simulation

1. Baseline & Parameter validation

Bee State proportions through time during simulation (extended)

2. Introduction of storm events

Bee population and state proportions through time

2. Introduction of storm events

Bee population and state proportions through time

5. Conclusions

& Future Works

Bee parameters

```
FIELD OF VIEW = 20 # 20 (in m) TODO: calibrate further using real data
STARVATION SPEED = 1/(60*60*24) # within 1 day (in rate/s)
MAX AGE = (60*60*24*7*6) # within 6 weeks (in s)
P DEATH BY STORM = 1/(60*60) # on average within 1 hour (probability) TODO: calibrate further
SPEED = 5
                            #5 (in m/s)
PERCEIVE AS LOW FOOD = 2 # 2 (in kg) TODO: calibrate further
DANCING TIME = 60
                # 1 minute (in s) TODO: calibrate further
P FOLLOW WIGGLE DANCE = 1 # 100% (probability) TODO: calibrate further
P ABORT EXPLORING = 1/(60*60)
                            # on average within 1 hour (probability) TODO: calibrate further
P ABORT FOLLOWING = 1/(60*60)
                            # on average within 1 hour (probability) TODO: calibrate further
STORM ABORT FACTOR = 10 # 10 times more likely to abort during storm TODO: calibrate further
CARRYING CAPACITY = 0.001  # 1g (in kg) TODO: calibrate further
GATHERING RATE = 0.0001 # 0.1q/s (kg/s) TODO: calibrate further
```


