Linear Algebra II - Homework 9

- **1.** Let $X = \{(2,2), (-1,2), (1,1), (-2,3)\}$ and A be the matrix which rows are elements of X.
 - (1) Find the SVD and the compact SVD of A.
 - (2) Draw the image of the projection of X onto the best-fit 1-subspace on \mathbb{R}^2 .
 - (3) Find the first principal component of X.
 - (4) Draw the image of the projection of X onto the best-fit affine 1-subspace on \mathbb{R}^2 .
- **2.** Let $X = \{(0, -1), (4, -2), (3, -2), (1, 0), (2, 0)\}$ and A be the matrix which rows are elements of X.
 - (1) Find the compact SVD of A.
 - (2) Draw the image of the projection of X onto the best-fit 1-subspace on \mathbb{R}^2 .
 - (3) Find the first principal component of X.
 - (4) Draw the image of the projection of X onto the best-fit affine 1-subspace on \mathbb{R}^2 .
- **3.** Given a real quadratic form $Q(\vec{x}^t) = \vec{x}^t A \vec{x}$ on \mathbb{R}^n where A is a real symmetric matrix. For a two dimensional subspace W of \mathbb{R}^n , define

$$Q(W) := Q(\vec{w}_1) + Q(\vec{w}_2).$$

where $\{\vec{w}_1, \vec{w}_2\}$ is an orthonormal basis of W.

- (1) Show that Q(W) is well-defined. In other words, if $\{\vec{v}_1, \vec{v}_2\}$ is another orthonormal basis of W, then $Q(\vec{w}_1) + Q(\vec{w}_2) = Q(\vec{v}_1) + Q(\vec{v}_2)$.
- (2) Let λ_1 and λ_2 be the largest two eigenvalues of A and \vec{v}_1 and \vec{v}_2 be corresponding unit eigenvectors. Let V be the subspace spanned by \vec{v}_1 and \vec{v}_2 . Show that Q(V) is maximal among all two dimensional subspaces.
- **4.** Apply SVD to the image of Lenna. Print your code and the resulted image using the first 50 singular values. Remark: Click the red words to link to the image or you can also find the image on Google by the key words "lenna wiki".

1