Definition and examples

Example 5 (Norm). Let $\|\cdot\|$ be a norm on \mathbb{R}^n , with dual norm $\|\cdot\|_*$. The conjugate of $f(\mathbf{x}) = \|\mathbf{x}\|$ is

$$f^*(\mathbf{y}) = I_{\mathcal{B}}(\mathbf{y}),$$

where $\mathcal{B} = \{\mathbf{y} | \|\mathbf{y}\|_* \leq 1\}$ is the unit ball of the dual norm.

Example 6 (Norm squared). Now consider the function $f(\mathbf{x}) = (1/2) \|\mathbf{x}\|^2$, where $\|\cdot\|$ is a norm, with dual norm $\|\cdot\|_*$. Its conjugate is $f^*(\mathbf{y}) = (1/2) \|\mathbf{y}\|_*^2$.

Example 7 (Support function). $f(\mathbf{x}) = S_{\mathcal{C}}(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{y} \rangle$, where \mathcal{C} is a close convex set. Then its conjugate is the indicator function of \mathcal{C} : $f^*(\mathbf{y}) = I_{\mathcal{C}}(\mathbf{y})$.

Basic properties

Fenchel's inequality:

$$f(\mathbf{x}) + f^*(\mathbf{y}) \ge \langle \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x}, \mathbf{y}.$$
 For example, if $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$ then $f^*(\mathbf{y}) = \frac{1}{2} ||\mathbf{y}||_*^2$ and thus
$$\frac{1}{2} ||\mathbf{x}||^2 + \frac{1}{2} ||\mathbf{y}||_*^2 \ge \langle \mathbf{x}, \mathbf{y} \rangle,$$

which is generalization of $\frac{1}{2} \|\mathbf{x}\|_2^2 + \frac{1}{2} \|\mathbf{y}\|_2^2 \ge \langle \mathbf{x}, \mathbf{y} \rangle$.

When $f(\mathbf{x}) = (1/2)\mathbf{x}^T \mathbf{\tilde{Q}}\mathbf{x}$, where $\mathbf{Q} \in \mathbb{S}_{++}^n$, we obtain the inequality

$$\langle \mathbf{x}, \mathbf{y} \rangle \le (1/2)\mathbf{x}^T \mathbf{Q} \mathbf{x} + (1/2)\mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y}.$$

• Basic properties

Conjugate of the conjugate

Theorem: If f is proper, convex and closed, then $f^{**} = f$.

Proof. It is easy to prove that $f^{**} \leq f$, i.e. $\operatorname{epi} f^{**} \subseteq \operatorname{epi} f$. Suppose $\exists (\mathbf{x}_0^T, \gamma)^T \notin \operatorname{epi} f$, where $\gamma \geq f^{**}(\mathbf{x}_0)$. Since f is proper, convex and closed, its epigraph is closed and does not include a vertical line. Thus there exists a hyperplane parameterized as $(\mathbf{w}^T, \zeta)^T$ ($\zeta \neq 0$) and μ such that it strictly separates $\operatorname{epi} f$ and the point $(\mathbf{x}_0^T, \gamma)^T$:

$$(\mathbf{w}^T, \zeta)(\mathbf{x}^T, t)^T < \mu < (\mathbf{w}^T, \zeta)(\mathbf{x}_0^T, \gamma)^T, \quad \forall \mathbf{x} \in \text{dom } f, t \ge f(\mathbf{x}).$$

Since t can be arbitrarily large, ζ must be negative. W.l.o.g, we assume $\zeta = -1$. Then taking $t = f(\mathbf{x})$,

$$\mathbf{w}^T \mathbf{x} - f(\mathbf{x}) < \mu < \mathbf{w}^T \mathbf{x}_0 - \gamma \le \mathbf{w}^T \mathbf{x}_0 - f^{**}(\mathbf{x}_0), \quad \forall \mathbf{x} \in \text{dom } f.$$

Thus $f^*(\mathbf{w}) < \mathbf{w}^T \mathbf{x}_0 - f^{**}(\mathbf{x}_0)$, contradicting Fenchel's inequality.

• Basic properties

Useful for finding a convex surrogate of a nonconvex function!

Conjugate of the conjugate

Theorem: For any f, f^{**} is the largest convex function not exceeding f, i.e., $convex\ envelop\ of\ f$.

Proof. We first have $f^{***}(\mathbf{y}) = f^*(\mathbf{y})$ because $f^*(\mathbf{y})$ is a propoer, convex and closed function. And it is easy to prove that if $f_1(\mathbf{x}) \leq f_2(\mathbf{x})$, then $f_1^*(\mathbf{y}) \geq f_2^*(\mathbf{y})$.

Suppose g is proper, convex and closed, and $f^{**}(\mathbf{x}) \leq g(\mathbf{x}) \leq f(\mathbf{x})$. Then by the above results,

$$f^*(\mathbf{y}) \le g^*(\mathbf{y}) \le f^{***}(\mathbf{y}) = f^*(\mathbf{y}).$$

Thus $f^*(y) = g^*(y)$ and hence $f^{**} = g^{**} = g$.

Basic properties

Conjugate of the conjugate

Examples. 1. The convex envelope of ℓ_0 -pseudo-norm on unit ℓ_1 ball is the ℓ_1 -norm.

Proof. We first compute $f^*(\mathbf{y}) = \sup_{\|\mathbf{x}\| < 1} (\langle \mathbf{y}, \mathbf{x} \rangle - \|\mathbf{x}\|_0)$. When $\|\mathbf{x}\| \le 1$,

$$f^*(\mathbf{y}) \le \|\mathbf{y}\|_{\infty} \|\mathbf{x}\|_1 - \|\mathbf{x}\|_0 \le \|\mathbf{y}\|_{\infty} - \|\mathbf{x}\|_0.$$

$$f^*(\mathbf{y}) = \begin{cases} \|\mathbf{y}\|_{\infty} - 1, & \text{if } \|\mathbf{y}\|_{\infty} \ge 1, \\ 0, & \text{if } \|\mathbf{y}\|_{\infty} < 1 \end{cases} = \max(\|\mathbf{y}\|_{\infty} - 1, 0).$$

Next, we compute $f^{**}(\mathbf{x}) = \sup_{\mathbf{y}} (\langle \mathbf{y}, \mathbf{x} \rangle - f^*(\mathbf{y}))$:

$$f^{**}(\mathbf{x}) \le \|\mathbf{y}\|_{\infty} \|\mathbf{x}\|_{1} - \max(\|\mathbf{y}\|_{\infty} - 1, 0).$$

$$f^{**}(\mathbf{x}) = \begin{cases} \|\mathbf{x}\|_1, & \text{if } \|\mathbf{x}\|_1 \le 1, \\ +\infty, & \text{if } \|\mathbf{x}\|_1 > 1. \end{cases}$$

Basic properties

Conjugate of the conjugate

Examples. 2. The convex envelope of rank on unit 2-norm ball is the nuclear-norm.

Proof. 1) Compute rank*. Let $q = \min(m, n)$. By von Neumann's trace thm,

$$\operatorname{rank}^*(\mathbf{Y}) = \sup_{\|\mathbf{X}\|_2 \le 1} \{ \langle \mathbf{X}, \mathbf{Y} \rangle - \operatorname{rank}(\mathbf{X}) \} \le \sup_{\|\mathbf{X}\|_2 \le 1} \left\{ \sum_{i=1}^q \sigma_i(\mathbf{X}) \sigma_i(\mathbf{Y}) - \operatorname{rank}(\mathbf{X}) \right\}.$$

The equality can hold when **X** and **Y** have the same singular subspaces. Suppose $\operatorname{rank}(\mathbf{X}) = r, \ 0 \le r \le q$. Then

$$\operatorname{rank}^*(\mathbf{Y}) = \sup_{\|\mathbf{X}\|_2 \le 1} \left\{ \sum_{i=1}^r \sigma_i(\mathbf{Y}) - r \right\} = \sup_{\|\mathbf{X}\|_2 \le 1} \left\{ \sum_{i=1}^r (\sigma_i(\mathbf{Y}) - 1) \right\}.$$

So r should be chosen such that $\sigma_r(\mathbf{Y}) > 1$ and $\sigma_{r+1}(\mathbf{Y}) \leq 1$, and

$$\operatorname{rank}^*(\mathbf{Y}) = \sum_{i=1}^r (\sigma_i(\mathbf{Y}) - 1).$$

Basic properties

2) Compute rank**. By von Neumann's trace thm. again,

$$\operatorname{rank}^{**}(\mathbf{X}) = \sup_{\mathbf{Y}} \{ \langle \mathbf{X}, \mathbf{Y} \rangle - \operatorname{rank}^{*}(\mathbf{Y}) \} \leq \sup_{\mathbf{Y}} \left\{ \sum_{i=1}^{q} \sigma_{i}(\mathbf{X}) \sigma_{i}(\mathbf{Y}) - \sum_{i=1}^{r} (\sigma_{i}(\mathbf{Y}) - 1) \right\},$$

where r is such that $\sigma_r(\mathbf{Y}) > 1$ and $\sigma_{r+1}(\mathbf{Y}) \leq 1$. The equality can also hold. If $\|\mathbf{X}\|_2 > 1$, we can choose $\sigma_1(\mathbf{Y})$ large enough so that $\operatorname{rank}^{**}(\mathbf{X}) \to +\infty$, because the coefficient of $\sigma_1(\mathbf{Y})$ is a positive value $\sigma_1(\mathbf{X}) - 1$. If $\|\mathbf{X}\|_2 \leq 1$,

$$\sum_{i=1}^{q} \sigma_{i}(\mathbf{X})\sigma_{i}(\mathbf{Y}) - \sum_{i=1}^{r} (\sigma_{i}(\mathbf{Y}) - 1)$$

$$= \sum_{i=1}^{q} \sigma_{i}(\mathbf{X})\sigma_{i}(\mathbf{Y}) - \sum_{i=1}^{r} (\sigma_{i}(\mathbf{Y}) - 1) - \sum_{i=1}^{q} \sigma_{i}(\mathbf{X}) + \sum_{i=1}^{q} \sigma_{i}(\mathbf{X})$$

$$= \sum_{i=1}^{r} (\sigma_{i}(\mathbf{X}) - 1)(\sigma_{i}(\mathbf{Y}) - 1) + \sum_{i=r+1}^{q} \sigma_{i}(\mathbf{X})(\sigma_{i}(\mathbf{Y}) - 1) + \sum_{i=1}^{q} \sigma_{i}(\mathbf{X})$$

$$\leq \sum_{i=1}^{q} \sigma_{i}(\mathbf{X}) = \|\mathbf{X}\|_{*}.$$

The equality can hold. Thus $\operatorname{rank}^{**}(\mathbf{X}) = \|\mathbf{X}\|_*$ over the set $\{\mathbf{X} | \|\mathbf{X}\|_2 \le 1\}$.

• Basic properties

Differentiable functions

Useful for finding the gradient for the dual problem!

The conjugate of a differentiable function f is also called the $Legendre\ transform$ of f.

Suppose f is convex and differentiable, with $\operatorname{dom} f = \mathbb{R}^n$. Any maximizer \mathbf{x}^* of $\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})$ satisfies $\mathbf{y} = \nabla f(\mathbf{x}^*)$, and conversely, if \mathbf{x}^* satisfies $\mathbf{y} = \nabla f(\mathbf{x}^*)$, then \mathbf{x}^* maximizes $\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})$. Therefore, if $\mathbf{y} = \nabla f(\mathbf{x}^*)$, we have

$$f^*(\mathbf{y}) = \mathbf{x}^{*T} \nabla f(\mathbf{x}^*) - f(\mathbf{x}^*).$$

This allows us to determine $f^*(\mathbf{y})$ for any \mathbf{y} for which we can solve the gradient equation $\mathbf{y} = \nabla f(\mathbf{z})$ for \mathbf{z} .

We can express this another way. Let $\mathbf{z} \in \mathbb{R}^n$ be arbitrary and define $\mathbf{y} = \nabla f(\mathbf{z})$. Then we have

$$f^*(\mathbf{y}) = \mathbf{z}^T \nabla f(\mathbf{z}) - f(\mathbf{z}).$$

If f is convex and closed, then

$$\mathbf{y} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^*(\mathbf{y}) \Leftrightarrow f(\mathbf{x}) + f^*(\mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle.$$

Basic properties

Scaling and composition with affine transformation

For a > 0 and $b \in \mathbb{R}$, the conjugate of g(x) = af(x) + b is $g^*(y) = af^*(y/a) - b$. Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular and $\mathbf{b} \in \mathbb{R}^n$. Then the conjugate of $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ is

$$g^*(\mathbf{y}) = f^*(\mathbf{A}^{-T}\mathbf{y}) - \mathbf{b}^T \mathbf{A}^{-T}\mathbf{y},$$

with dom $g^* = \mathbf{A}^T \text{dom } f^*$.

Basic properties

Separable functions

If $f(\mathbf{u}, \mathbf{v}) = f_1(\mathbf{u}) + f_2(\mathbf{v})$, where f_1 and f_2 are convex functions with conjugates f_1^* and f_2^* , respectively, then

$$f^*(\mathbf{w}, \mathbf{z}) = f_1^*(\mathbf{w}) + f_2^*(\mathbf{z}).$$

In other words, the conjugate of a *separable* convex function is the sum of the conjugates.

Let $f: \mathbb{R}^n \to (-\infty, +\infty]$ be a closed proper function. For a scalar c > 0, define the corresponding envelope function $\operatorname{Env}_c f$ and the proximal mapping $\operatorname{Prox}_c f$ by $\operatorname{Involution:} (f \boxtimes g)(\mathbf{x}) = \inf_{\mathbf{y} + \mathbf{z} = \mathbf{x}} f(\mathbf{y}) + g(\mathbf{z}).$

$$\operatorname{Env}_{c} f(\mathbf{x}) = \inf_{\mathbf{w}} \left\{ f(\mathbf{w}) + \frac{1}{2c} \|\mathbf{w} - \mathbf{x}\|^{2} \right\},$$

$$\operatorname{Prox}_{c} f(\mathbf{x}) = \operatorname{argmin}_{\mathbf{w}} \left\{ f(\mathbf{w}) + \frac{1}{2c} \|\mathbf{w} - \mathbf{x}\|^{2} \right\}.$$
(1)

Extremely useful for updating iterates!

Remark:

- 1. The envelope function $\operatorname{Env}_c f$ is an underestimate of the function f, i.e., $\operatorname{Env}_c f(\mathbf{x}) \leq f(\mathbf{x}), \, \forall \mathbf{x} \in \mathbb{R}^n$. Furthermore, $\operatorname{Env}_c f$ is a real-valued continuous function, whereas f itself may only be extended real-valued and lower semi-continuous.
- 2. It is obvious that $\mathbf{u} = \operatorname{Prox}_c f(\mathbf{x}) \Leftrightarrow \mathbf{x} \mathbf{u} \in \partial f(\mathbf{u})$.

Examples: $f(\mathbf{x}) = \chi_C(\mathbf{x})$

Projection onto halfspace: $C = \{\mathbf{x} | \mathbf{a}^T \mathbf{x} \leq b\} \ (\mathbf{a} \neq \mathbf{0})$:

$$P_{\mathcal{C}}(\mathbf{x}) = \begin{cases} \mathbf{x} + \frac{b - \mathbf{a}^T \mathbf{x}}{\|\mathbf{a}\|^2} \mathbf{a}, & \text{if } \mathbf{a}^T \mathbf{x} > b, \\ \mathbf{x}, & \text{if } \mathbf{a}^T \mathbf{x} \le b. \end{cases}$$

Projection onto hyperbox $C = \{x | l \le x \le u\}$:

$$(P_{\mathcal{C}}(\mathbf{x}))_i = \begin{cases} l_i, & \text{if } x_i \leq l_i, \\ x_i, & \text{if } l_i \leq \mathbf{x}_i \leq u_i, \\ u_i, & \text{if } x_i \geq u_i. \end{cases}$$

Projection onto nonnegative orthant: $C = \mathbb{R}^n_+$:

$$P_{\mathcal{C}}(\mathbf{x}) = \max(\mathbf{x}, \mathbf{0}).$$

Projection onto positive semi-definite cone: $\mathcal{C} = \mathbb{S}^n_+$:

$$P_{\mathcal{C}}(\mathbf{X}) = \sum_{i=1}^{n} \max(\lambda_i, 0) \mathbf{q}_i \mathbf{q}_i^T,$$

where $\sum_{i=1}^{n} \lambda_i \mathbf{q}_i \mathbf{q}_i^T$ is the eigenvalue decomposition of \mathbf{X} . Projection onto unit Euclidean ball: $\mathcal{C} = \{\mathbf{x} | ||\mathbf{x}|| \leq 1\}$:

$$P_{\mathcal{C}}(\mathbf{x}) = \begin{cases} \frac{1}{\|\mathbf{x}\|} \mathbf{x}, & \text{if } \|\mathbf{x}\| > 1, \\ \mathbf{x}, & \text{if } \|\mathbf{x}\| \le 1. \end{cases}$$

Projection onto unit matrix 2-norm ball: $C = \{\mathbf{X} | ||\mathbf{X}||_2 \le 1\}$:

$$P_{\mathcal{C}}(\mathbf{X}) = \begin{cases} \mathbf{U} \operatorname{Diag}(\min(\boldsymbol{\sigma}, 1)) \mathbf{V}^{T}, & \text{if } ||\mathbf{X}||_{2} > 1, \\ \mathbf{X}, & \text{if } ||\mathbf{X}||_{2} \leq 1. \end{cases}$$

where $\mathbf{U} \operatorname{Diag}(\boldsymbol{\sigma}) \mathbf{V}^T$ is the SVD of \mathbf{X} .

Examples:
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^t \mathbf{x} + \mathbf{c}$$
, $\|\mathbf{x}\|_1$, $\sum_{i=1}^n \log x_i$, $f(\mathbf{X}) = \|\mathbf{X}\|_*$

Theorem 1. For each $\tau > 0$ and $\mathbf{Y} \in \mathbb{R}^{n_1 \times n_2}$,

$$\mathcal{D}_{\tau}(\mathbf{Y}) = \underset{\mathbf{X}}{\operatorname{argmin}} \left\{ \tau \|\mathbf{X}\|_* + \frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_F^2 \right\}, \tag{1}$$

where $\mathcal{D}_{\tau}(\mathbf{Y})$ is the singular value thresholding operator defined as

$$\mathcal{D}_{\tau}(\mathbf{Y}) = \mathbf{U}\operatorname{diag}(\{(\sigma_i - \tau)_+\})\mathbf{V}^T, \tag{2}$$

in which $\mathbf{U} \operatorname{diag}(\{\sigma_i\})\mathbf{V}^T$ is the SVD of \mathbf{Y} .

Separable functions

If $f(\mathbf{u}, \mathbf{v}) = f_1(\mathbf{u}) + f_2(\mathbf{v})$, where f_1 and f_2 are closed proper functions, then

$$\operatorname{Prox}_c f(\mathbf{u}, \mathbf{v}) = \operatorname{Prox}_c f_1(\mathbf{u}) + \operatorname{Prox}_c f_2(\mathbf{v}).$$

Scaling and composition with orthogonal transformation

For a > 0 and $b \in \mathbb{R}$, the conjugate of g(x) = f(ax + b) is

$$\operatorname{Prox}_{c} g(x) = a^{-1} (\operatorname{Prox}_{ca^{2}} f(ax + b) - b).$$

Suppose $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$, where $\mathbf{A} \in \mathbb{R}^{n \times m}$ satisfies $\mathbf{A}\mathbf{A}^T = \lambda^{-1}\mathbf{I}$ ($\lambda > 0$) and $\mathbf{b} \in \mathbb{R}^n$. Then

$$\operatorname{Prox}_{c} g(\mathbf{x}) = (\mathbf{I} - \lambda \mathbf{A}^{T} \mathbf{A}) \mathbf{x} + \lambda \mathbf{A}^{T} (\operatorname{Prox}_{c\lambda^{-1}} f(\mathbf{A} \mathbf{x} + \mathbf{b}) - \mathbf{b}).$$

Proof. $\mathbf{w} = \operatorname{Prox}_c g(\mathbf{x})$ is the solution of the optimization problem:

$$\min_{\mathbf{w}, \mathbf{z}} f(\mathbf{z}) + \frac{1}{2c} \|\mathbf{w} - \mathbf{x}\|^2, \quad s.t. \quad \mathbf{A}\mathbf{w} + \mathbf{b} = \mathbf{z}.$$

Eliminating w gives: $\mathbf{w} = \mathbf{x} + \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{z} - \mathbf{b} - \mathbf{A} \mathbf{x}) = (\mathbf{I} - \lambda \mathbf{A}^T \mathbf{A}) \mathbf{x} + \lambda \mathbf{A}^T (\mathbf{z} - \mathbf{b})$. The optimal \mathbf{z} is the minimizer of

$$f(\mathbf{z}) + \frac{\lambda^2}{2c} \|\mathbf{A}^T(\mathbf{z} - \mathbf{b} - \mathbf{A}\mathbf{x})\|^2 = f(\mathbf{z}) + \frac{\lambda}{2c} \|\mathbf{z} - \mathbf{b} - \mathbf{A}\mathbf{x}\|^2,$$

which is $\mathbf{z} = \operatorname{Prox}_{c\lambda^{-1}} f(\mathbf{A}\mathbf{x} + \mathbf{b}).$

Theorem 2. For any function f, $\operatorname{Prox}_c f(\mathbf{x})$ is a monotonic function of \mathbf{x} in the sense that:

$$\langle \mathbf{x}_1 - \mathbf{x}_2, \mathbf{y}_1 - \mathbf{y}_2 \rangle \ge 0, \quad \forall \mathbf{y}_i \in Prox_c f(\mathbf{x}_i), i = 1, 2.$$
 (1)

Proposition 1. Let $f: \mathbb{R}^n \to (-\infty, +\infty]$ be a closed proper convex function and c > 0. The envelope function $Env_c f$ is convex and smooth and its gradient is given by

$$\nabla Env_c f(\mathbf{x}) = \frac{1}{c} (\mathbf{x} - Prox_c f(\mathbf{x})). \tag{2}$$

The envelope function $\text{Env}_c f$ is smooth, regardless of whether f is smooth.

Proposition 2. Let $f: \mathbb{R}^n \to (-\infty, +\infty]$ be a closed proper convex function and c > 0. The proximal mapping $\operatorname{Prox}_c f$ is single-valued and is continuous: $\operatorname{Prox}_c f(x) \to \operatorname{Prox}_{c^*} f(\mathbf{x}^*)$ whenever $(\mathbf{x}, c) \to (\mathbf{x}^*, c^*)$, with $c^* > 0$.

Theorem 3 (Moreau Decomposition). $\mathbf{x} = \operatorname{Prox}_c f(\mathbf{x}) + c \operatorname{Prox}_{c^{-1}} f^*(c^{-1}\mathbf{x})$.

Proof. Let $\mathbf{u} = \operatorname{Prox}_c f(\mathbf{x})$. Then

$$\mathbf{u} = \operatorname{Prox}_{c} f(\mathbf{x}) \Longleftrightarrow -c^{-1}(\mathbf{u} - \mathbf{x}) \in \partial f(\mathbf{u})$$
$$\iff \mathbf{u} \in \partial f^{*}(-c^{-1}(\mathbf{u} - \mathbf{x}))$$

Let $\mathbf{z} = -c^{-1}(\mathbf{u} - \mathbf{x})$. Then $\mathbf{u} = \mathbf{x} - c\mathbf{z}$ and thus

$$\iff \mathbf{x} - c\mathbf{z} \in \partial f^*(\mathbf{z})$$

$$\iff \mathbf{0} \in \partial f^*(\mathbf{z}) + c(\mathbf{z} - c^{-1}\mathbf{x})$$

$$\iff \mathbf{z} = \operatorname{Prox}_{c^{-1}} f^*(c^{-1}\mathbf{x}).$$

So
$$\mathbf{x} = \mathbf{u} + c\mathbf{z} = \operatorname{Prox}_c f(\mathbf{x}) + c \operatorname{Prox}_{c^{-1}} f^*(c^{-1}\mathbf{x}).$$

Example: proximal mapping of a norm.

We know that if $f(\mathbf{x}) = ||\mathbf{x}||$, then $f^*(\mathbf{y}) = I_{\mathcal{B}}(\mathbf{y})$, where \mathcal{B} is the unit ball of the dual norm $||\cdot||_*$. Then by Moreay decomposition:

$$Prox_c f(\mathbf{x}) = \mathbf{x} - c Prox_{c^{-1}} f^*(\mathbf{x}/c)$$
$$= \mathbf{x} - c P_{\mathcal{B}}(\mathbf{x}/c)$$
$$= \mathbf{x} - P_{c\mathcal{B}}(\mathbf{x}).$$

Examples: $f(\mathbf{x}) = \|\mathbf{x}\|_1, \|\mathbf{x}\|_2, f(\mathbf{X}) = \|\mathbf{X}\|_2, \|\mathbf{X}\|_*.$