Identifying sample mix-ups in eQTL data

Karl Broman

Biostatistics & Medical Informatics, Univ. Wisconsin-Madison

kbroman.org github.com/kbroman @kwbroman

Slides: kbroman.org/Talk_OSGA2021

Associations in systems genetics

Sample mix-ups

More sample mix-ups

Westra et al. (2011)

Table 2. Cis-eQTL mapping and sample mix-up identification results

Stud	Population	Sample-size	Initial <i>cis-</i> eQTLs	Mix-ups detected ^a n (%)	Sample-size after correction n (%)	cis-eQTLs after correction n (%)
Choy et al. (2008)	CHB+JP	87	138	20 (23)	79 (90)	418 (+203)
	CE	84	558		NA	NA
	YR	85	274	2 (2)	83 (97)	287 (+5)
Stranger et al. (2007)	CHB+JP	90	1511		NA	NA
	CE	90	903		NA	NA
	YR	90	663	1(1)	89 (99)	667 (+1)
Zhang <i>et al.</i> (2009)	CE	87	2581		NA	NA
	YR	89	1454	2 (2)	89 (100)	1635 (+12)
Webster et al. (2009)	Brai	36	1284	16 (4)	356 (98)	1367 (+6)
Heinzen et al. (2008)	Brai	93	349		NA	NA
	PBMC	80	297		NA	NA

Outline

- ► Sample duplicates
- ► Sex verification
- ► Sample mix-ups:
 - mRNA \leftrightarrow protein
 - $\ mRNA \leftrightarrow DNA$
 - $\ \, \text{protein} \leftrightarrow \text{DNA}$

But first

Missing Data

Percent missing genotypes

Heterogeneous Stock/Diversity Outbreds

Sample duplicates

Percent matching genotypes

Correlation between mRNA samples

Correlation between protein samples

Sex verification

X and Y genotype dosage

Sex and gene expression

Sex and gene expression

Sex and proteins

Sex and proteins

Sample mix-ups $mRNA \leftrightarrow protein$

$mRNA \leftrightarrow protein \ method$

$mRNA \leftrightarrow protein\ method$

$mRNA \leftrightarrow protein\ method$

$mRNA \leftrightarrow protein\ method$

$mRNA \leftrightarrow protein correlations$

$mRNA \leftrightarrow protein similarity matrix$

$mRNA \leftrightarrow protein similarities$

Self-nonself

$mRNA \leftrightarrow protein: closest vs self$

mRNA ↔ protein: selected samples

Sample mix-ups

 $\mathsf{DNA} \leftrightarrow \mathsf{mRNA}$

DNA \leftrightarrow mRNA method

DNA ↔ mRNA method

DNA \leftrightarrow mRNA method

DNA \leftrightarrow mRNA method

DNA ↔ mRNA LOD scores

DNA ↔ mRNA distance matrix

DNA ↔ mRNA distances

DNA ↔ mRNA: closest vs self

DNA \leftrightarrow mRNA: selected samples

Sample mix-ups

DNA ↔ protein

$\mathsf{DNA} \leftrightarrow \mathsf{protein} \ \mathsf{method}$

$DNA \leftrightarrow protein correlations$

DNA ↔ protein distance matrix

$DNA \leftrightarrow protein distances$

DNA ↔ protein: closest vs self

DNA ↔ protein: selected samples

Summary

- ► This shouldn't happen.
- ► But if it does, you should find it.
- ► If two data sets have rows that correspond, you should check that they do correspond.

1631

References

- ► Westra et al. (2011) MixupMapper: correcting sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics 15:2104–2111 doi:10.1093/bioinformatics/btr323
- ► Lynch et al (2012) Calling sample mix-ups in cancer population studies. PLOS One 7:e41815 doi:10.1371/journal.pone.0041815
- ▶ Broman et al. (2015) Identification and correction of sample mix-ups in expression genetic data: A case study. G3 (Bethesda) 5:2177–2186 doi:10.1534/g3.115.019778
- ▶ Broman et al. (2019) Cleaning genotype data from Diversity Outbred mice. G3 (Bethesda) 9:1571–1579 doi:10.1534/g3.119.400165

Slides: kbroman.org/Talk_OSGA2021

kbroman.org

github.com/kbroman

@kwbroman