DG Algebra Associativity

October 12, 2020

1 Setup

Let (R, \mathfrak{m}) be a local Noetherian ring and let \mathfrak{a} be an ideal in R. Fix a minimal free resolution F of R/\mathfrak{a} over R. The differential on F is denoted by $\partial \colon F \to F$ and the augmentation map is denoted by $\tau \colon F \to R/\mathfrak{a}$. We also fix $\{e_1, \ldots, e_n\}$ to be a basis of F as a free graded R-module. Thus

$$F = \bigoplus_{i=1}^{n} Re_{i}.$$

The differential ∂ can be characterized in terms of this basis. Indeed, for each $1 \le i \le n$, we have

$$\partial(e_i) = \sum_{j=1}^n a_i^j e_j$$

where $a_i^j \in R$ for each $1 \le j \le n$. The condition $\partial^2 = 0$ translates to the condition $\sum_{j=1}^n a_i^j a_j^k = 0$ for all $1 \le i, k \le n$. The condition that ∂ is graded of degree -1 translated to the condition $a_i^j = 0$ if $|e_j| \ne |e_i| - 1$ for all $1 \le i, j \le n$ where $|\cdot|$ denotes the homological degree of a homogeneous element in F.

Definition 1.1. With the notation above, a **multiplication** on F is a chain map $\mu \colon F \otimes F \to F$ which lifts the usual multiplication $m \colon R/\mathfrak{a} \otimes R/\mathfrak{a} \to R/\mathfrak{a}$ where $m(\overline{x} \otimes \overline{y}) = \overline{xy}$ for all $x, y \in R$. In other words, μ is a chain map which satisfies $\tau \mu = m(\tau \otimes \tau)$.

Let us fix μ to be a multiplication on F. For convenience, we often denote $\mu(\alpha, \beta) = \alpha \star_{\mu} \beta$ for all $\alpha, \beta \in F$. If the multiplication μ is understood from context, then we will drop the μ from the subscript altogether and just write $\mu(\alpha, \beta) = \alpha \star \beta$ for all $\alpha, \beta \in F$. Just like the differential, the multiplication μ can be characterized in terms of the basis. Indeed, for each $1 \le i, j \le n$, we have

$$e_i \star e_j = \sum_{k=1}^n c_{i,j}^k e_k$$

where $c_{i,j}^k \in R$ for all $1 \le k \le n$. In this case, μ being graded translates to $c_{i,j}^k = 0$ if $|e_i| + |e_j| \ne |e_k|$ for all $1 \le i, j, k \le n$. Also μ satisfying Leibniz law translates to the identity

$$\sum_{1 \le k,l \le n} c_{i,j}^k a_k^l = \sum_{1 \le k,l \le n} c_{k,j}^l a_i^k + (-1)^{|e_i|} c_{i,k}^l a_j^k$$

for all $1 \le i, j \le n$.

1.1 Association

With the notation above, the **associator** with respect to μ is the map $[\cdot, \cdot, \cdot]_{\mu} : F \otimes F \otimes F \to F$ defined by

$$[\alpha, \beta, \gamma]_{\mu} = (\alpha \star_{\mu} \beta) \star_{\mu} \gamma - \alpha \star_{\mu} (\beta \star_{\mu} \gamma)$$

for all $\alpha, \beta, \gamma \in F$. If μ is understood from context, then we suppress μ from the subscript in $[\cdot, \cdot, \cdot]_{\mu}$. It is easy to see that $[\cdot, \cdot, \cdot]$ is a graded trilinear map precisely because μ is a graded bilinear map. Note that since μ satisfies Leibniz law, the associatior satisfies

$$\partial[\alpha,\beta,\gamma] = [\partial\alpha,\beta,\gamma] + (-1)^{|\alpha|}[\alpha,\partial\beta,\gamma] + (-1)^{|\alpha|+|\beta|}[\alpha,\beta,\partial\gamma]. \tag{1}$$

for all homogeneous α , β , $\gamma \in F$. Indeed, we have

$$\begin{split} \partial[\alpha,\beta,\gamma] &= \partial((\alpha\star\beta)\star\gamma) - \alpha\star(\beta\star\gamma)) \\ &= \partial((\alpha\star\beta)\star\gamma) - \partial(\alpha\star(\beta\star\gamma)) \\ &= \partial(\alpha\star\beta)\star\gamma + (-1)^{|\alpha|+|\beta|}(\alpha\star\beta)\star\partial\gamma - \partial\alpha\star(\beta\star\gamma) - (-1)^{|\alpha|}\alpha\star\partial(\beta\star\gamma) \\ &= (\partial\alpha\star\beta + (-1)^{|\alpha|}\alpha\star\partial\beta)\star\gamma + (-1)^{|\alpha|+|\beta|}(\alpha\star\beta)\star\partial\gamma - \partial\alpha\star(\beta\star\gamma) - (-1)^{|\alpha|}\alpha\star(\partial\beta\star\gamma + (-1)^{|\beta|}\beta\star\partial\gamma) \\ &= (\partial\alpha\star\beta)\star\gamma + (-1)^{|\alpha|}(\alpha\star\partial\beta)\star\gamma + (-1)^{|\alpha|+|\beta|}(\alpha\star\beta)\star\partial\gamma - \partial\alpha\star(\beta\star\gamma) - (-1)^{|\alpha|}\alpha\star(\partial\beta\star\gamma) - (-1)^{|\alpha|+|\beta|}\alpha\star(\beta\star\partial\gamma) \\ &= [\partial\alpha,\beta,\gamma] + (-1)^{|\alpha|}[\alpha,\partial\beta,\gamma] + (-1)^{|\alpha|+|\beta|}[\alpha,\beta,\partial\gamma]. \end{split}$$

The identity (1) is what makes $[\cdot, \cdot, \cdot]$ a chain map and not just a graded trilinear map.

1.2 Homology of [F, F, F]

Let us denote by [F, F, F] to be the image of the trilinear map $[\cdot, \cdot, \cdot]$. Thus [F, F, F] is an R-subcomplex of F. We wish to understand the homology of [F, F, F].

Proposition 1.1. The following conditions are equivalent

- 1. μ is not associative.
- 2. $[F, F, F] \neq 0$.
- 3. $H[F, F, F] \neq 0$.

Proof. That 1 and 2 are equivalent is trivial. That 3 implies 2 is also trivial. Let us show that 2 implies 3. Suppose $[F,F,F] \neq 0$. Choose $m \in \mathbb{N}$ minimal so that $[F,F,F]_m \neq 0$ and $[F,F,F]_{m-1} = 0$. Note that necessarily we have $m \geq 3$. By Nakayama's Lemma, we can find a triple (e_i,e_j,e_k) such that $|e_i|+|e_j|+|e_k|=m$ and such that $[e_i,e_j,e_k] \notin \mathfrak{m}[F,F,F]_m$. By minimality of m, we have $\partial[e_i,e_j,e_k]=0$. Also, since F is minimal, we have $\partial[F,F,F] \subseteq \mathfrak{m}[F,F,F]$. Thus $[e_i,e_j,e_k]$ represents a nontrivial element in homology. □

Proposition (1.1) tells us that we can characterize the failure of μ being associative in terms of the homology of [F, F, F]. With this in mind, we make the following definition:

Definition 1.2. Let (R, \mathfrak{m}) be a local Noetherian ring, let \mathfrak{a} be an ideal in R, and fix a minimal free resolution F of R/\mathfrak{a} over R. We define

$$\operatorname{Assoc}(R/\mathfrak{a}) = \sup_{\mu} \{\inf_{i} \{ \operatorname{H}_{i}[F, F, F]_{\mu} \neq 0 \} \},$$

where the supremum is taken over all multiplications μ on F and the infimum is taken over all $i \in \mathbb{Z}$.

1.3 DG-Algebra Associated to F and μ

We now wish to associate to F and μ a DG-algebra. Let $S_{\mu} = R[e_1, \dots, e_n]$ be the free differential graded R-algebra generated by variables e_1, \dots, e_n . In particular, in S_{μ} we have

$$e_i e_j = (-1)^{|i||j|} e_j e_i$$

for all $1 \le i, j \le n$. We view F as a subcomplex of S_{μ} . The differential on S_{μ} is denoted d_{μ} and is defined by

$$d_{\mu} = \sum_{i=1}^{n} \partial(e_i) \partial_{e_i}.$$

The differential d_{μ} extends the differential ∂ in the sense that $d_{\mu}|_F = \partial$. For instance, we have

$$\begin{aligned} d_{\mu}(e_{i}e_{j}) &= d_{\mu}(e_{i})e_{j} + (-1)^{|e_{i}|}e_{i}d_{\mu}(e_{j}) \\ &= \partial(e_{i})e_{j} + (-1)^{|e_{i}|}e_{i}\partial(e_{j}) \\ &= \sum_{k=1}^{n} a_{i}^{k}e_{k}e_{j} + (-1)^{|e_{i}|}a_{j}^{k}e_{i}e_{k}. \end{aligned}$$

Finally let I_u be the ideal in S_u given by

$$I_u = \langle \{e_i e_j - e_i \star e_i \mid 1 \leq i, j \leq n\} \rangle.$$

As usual, we supress μ from the subscript in S_{μ} , d_{μ} , and I_{μ} whenever μ is understood from context. Note that I is d-stable. Thus $(S/I, \overline{d})$ is differential graded R-algebra where \overline{d} is the differential on S/I induced by d.

1.4 Homology of S/I

We now wish to study the homology of S/I. First we need a lemma.

Lemma 1.1. *We have* $[F, F, F] = I \cap F$.

Proof. For each $1 \le i, j \le n$, write $f_{i,j} = e_i e_j - e_i \star e_j$. Thus $I = \langle \{f_{i,j}\} \rangle$. We wish to cancel the lead terms in each $f_{i,j}$. To this end, let $S_{i,j,k} = e_i f_{j,k} - f_{i,j} e_k$ for each $1 \le i,j,k \le n$. Observe that

$$S_{i,j,k} = e_i f_{j,k} - f_{i,j} e_k$$

$$= e_i (e_j e_k - e_j \star e_k) - (e_i e_j - e_i \star e_j) e_k$$

$$= e_i (e_j e_k) - (e_i e_j) e_k + (e_i \star e_j) e_k - e_i (e_j \star e_k)$$

$$= (e_i \star e_j) e_k - e_i (e_j \star e_k)$$

$$= \sum_l c_{i,j}^l e_l e_k - \sum_l c_{j,k}^l e_i e_l$$

In particular, we see that

$$\begin{split} S_{i,j,k} - \sum_{l} c_{i,j}^{l} f_{l,k} + \sum_{l} c_{j,k}^{l} f_{i,l} &= \sum_{l} c_{i,j}^{l} e_{l} e_{k} - \sum_{l} c_{j,k} e_{i} e_{l} - \sum_{l} c_{i,j} f_{l,k} + \sum_{l} c_{j,k} f_{i,l} \\ &= \sum_{l} c_{i,j}^{l} (e_{l} e_{k} - f_{l,k}) - \sum_{l} c_{j,k} (f_{i,l} - e_{i} e_{l}) \\ &= \sum_{l} c_{i,j}^{l} e_{l} \star e_{k} - \sum_{l} c_{j,k}^{l} e_{i} \star e_{l} \\ &= (e_{i} \star e_{j}) \star e_{k} - e_{i} \star (e_{j} \star e_{k}) \\ &= [e_{i}, e_{j}, e_{k}]. \end{split}$$

Therefore $[e_i, e_j, e_k] \in I$ for all $1 \le i, j, k \le n$ and hence $[F, F, F] \subseteq I \cap F$.

Conversely, suppose $\sum_{r=1}^{s} g_r f_{i_r,j_r} \in I \cap F$ where $g_r \in S$ for all $1 \leq r \leq s$. We may assume that $i_r < j_r$ for each $1 \leq r \leq s$ and that $(i_r,j_r) \neq (i_{r'},j_{r'})$ whenever $r \neq r'$. Then since $\sum_{r=1}^{s} g_r f_{i_r,j_r} \in F$, we have

$$\sum_{r=1}^{s} g_r f_{i_r, j_r} = \sum_{k=1}^{n} b_k e_k$$

where $b_k \in R$ for all $1 \le k \le n$. Thus

$$\sum_{k=1}^{n} b_{k}e_{k} = \sum_{r=1}^{s} g_{r}f_{i_{r},j_{r}}$$

$$= \sum_{r=1}^{s} g_{r}(e_{i_{r}}e_{j_{r}} - e_{i_{r}} \star e_{j_{r}})$$

$$= \sum_{r=1}^{s} g_{r}e_{i_{r}}e_{j_{r}} - \sum_{r=1}^{s} g_{r}(e_{i_{r}} \star e_{j_{r}})$$

$$= \sum_{r=1}^{s} g_{r}e_{i_{r}}e_{j_{r}} - \sum_{\substack{1 \le r \le s \\ 1 \le k \le n}} c_{i_{r},j_{r}}^{k}g_{r}e_{k}.$$

Now for each $1 \le r \le s$, we express g_r as $g_r = g_{r,0} + g_{r,1} + \cdots + g_{r,d_r}$ where d_r is the degree of g_r and $g_{r,k} = \sum a_{i_1,\dots,i_k} e_{i_1} \cdots e_{i_k}$ is its degree k part for each $1 \le k \le d_r$. It follows that

$$b_k = \sum_{r=1}^{s} c_{i_r,j_r}^k g_{r,0}$$

$$0 = \sum_{r=1}^{s} g_{r,0} e_{i_r} e_{j_r} - \sum_{r=1}^{s} c_{i_r,j_r}^k g_{r,1} e_k$$

for each k. Thus

$$b_k = \sum_{r=1}^s c_{i_r,j_r}^k g_{r,0}$$

$$0 = \sum_{r=1}^{s} a_{r} [e_{i_{r}}, e_{j_{r}}, e_{k_{r}}]$$

$$= \sum_{r=1}^{s} a_{r} ((e_{i_{r}} \star e_{j_{r}}) \star e_{k_{r}} - e_{i_{r}} \star (e_{j_{r}} \star e_{k_{r}}))$$

$$= \sum_{\substack{1 \leq r \leq s \\ 1 \leq l \leq n}} a_{r} (c_{i_{r},j_{r}}^{l} e_{l} \star e_{k_{r}} - c_{j_{r},k_{r}}^{l} e_{i_{r}} \star e_{l})$$

$$= \sum_{\substack{1 \leq r \leq s \\ 1 \leq l,m \leq n}} (a_{r} c_{i_{r},j_{r}}^{l} c_{l,k_{r}}^{m} - a_{r} c_{j_{r},k_{r}}^{l} c_{i_{r},l}^{m}) e_{m}.$$

Theorem 1.2. We have

$$H_i(S/I) \cong H_{i-1}([F, F, F])$$

for all $i \in \mathbb{Z}$.

Proof. First note that every element in S/I can be represented by an element in F, that is, every element in S/I has the form $\overline{\alpha}$ where $\alpha \in F$. In particular, the chain map $\pi \colon F \to S/I$ given by $\pi(\alpha) = \overline{\alpha}$ for all $\alpha \in F$ is surjective. The kernel of π is $I \cap F = [F, F, F]$. Thus π induces an isomorphism of R-complexes

$$\overline{\pi}$$
: $F/[F,F,F] \to S/I$.

Thus to understand H(S/I), we just need to study H(F/[F,F,F]). Using the fact that $H(F) \cong 0$, observe that short exact sequence of R-complexes

$$0 \longrightarrow [F,F,F] \longrightarrow F \longrightarrow F/[F,F,F] \longrightarrow 0$$

induces isomorphisms

$$H_{i-1}([F,F,F]) \cong H_i(F/[F,F,F]) \cong H_i(S/I)$$

for all $i \in \mathbb{Z}$.

Lemma 1.3. Let (A, d_A) be a differential graded R-algebra such that im $(d_A)_1 = \mathfrak{a}$ and let $x \in \mathfrak{a}$. Then the multiplication map $m_x \colon A \to A$ is null-homotopic. In particular, $\mathfrak{a}H(A) \cong 0$.

Proof. Choose $\alpha \in A_1$ such that $d_A(\alpha) = x$ and let h: $A \to A$ be the unique graded homomorphism of degree 1 given by $h(\beta) = \alpha\beta$ for all $\beta \in A$. Then observe that for all $\beta \in A$, we have

$$(d_A h + h d_A)(\beta) = (d_A h + h d_A)(\beta)$$

$$= d_A h(\beta) + h d_A(\beta)$$

$$= d_A(\alpha \beta) + h d_A(\beta)$$

$$= d_A(\alpha)\beta - \alpha d_A(\beta) + h d_A(\beta)$$

$$= x\beta - \alpha d_A(\beta) + \alpha d_A(\beta)$$

$$= x\beta$$

$$= m_x(\beta).$$

It follows that $m_x = d_A h + h d_A$. Thus m_x is null-homotopic. In particular, this means $xH(A) \cong 0$, and since $x \in \mathfrak{a}$ was arbitrary, we have $\mathfrak{a}H(A) \cong 0$.

Corollary. We have $\mathfrak{a}H([F,F,F]) \cong 0$.

1.5 Example

In this subsection, we apply our theory to a specific example. Let K be a field. For simplicity, we assume char K = 2. Suppose R = K[x, y, z, w] and $\mathfrak{a} = \langle x^2, w^2, zw, xy, y^2z^2 \rangle$. Then the minimal free resolution F of R/\mathfrak{a} over R is supported on a simplicial complex.

2 Extra

Suppose $\sum_{r=1}^{s} a_r[e_{i_r}, e_{j_r}, e_{k_r}] = 0$. Then

$$\begin{split} 0 &= \sum_{r=1}^{s} a_{r} [e_{i_{r}}, e_{j_{r}}, e_{k_{r}}] \\ &= \sum_{r=1}^{s} a_{r} ((e_{i_{r}} \star e_{j_{r}}) \star e_{k_{r}} - e_{i_{r}} \star (e_{j_{r}} \star e_{k_{r}})) \\ &= \sum_{\substack{1 \leq r \leq s \\ 1 \leq l \leq n}} a_{r} (c_{i_{r},j_{r}}^{l} e_{l} \star e_{k_{r}} - c_{j_{r},k_{r}}^{l} e_{i_{r}} \star e_{l}) \\ &= \sum_{\substack{1 \leq r \leq s \\ 1 \leq l,m \leq n}} (a_{r} c_{i_{r},j_{r}}^{l} c_{l,k_{r}}^{m} - a_{r} c_{j_{r},k_{r}}^{l} c_{i_{r},l}^{m}) e_{m}. \end{split}$$

It follows that

$$\sum_{\substack{1 \le r \le s \\ 1 \le l, m \le n}} a_r (c_{i_r, j_r}^l c_{l, k_r}^m - c_{j_r, k_r}^l c_{i_r, l}^m) = 0.$$

Conversely, suppose $\sum_{1 \le i < j \le n} g_{i,j} f_{i,j} \in I \cap F$ where $g_{i,j} \in S$ for all $1 \le i < j \le n$. Then since $\sum_{1 \le i < j \le n} g_{i,j} f_{i,j} \in F$, we have

$$\sum_{1 \le i < j \le n} g_{i,j} f_{i,j} = \sum_{k=1}^{n} a_k e_k \tag{2}$$

where $a_k \in R$ for all $1 \le k \le n$. Now for each $1 \le i < j \le n$, we express $g_{i,j}$ as $g_{i,j} = g_{i,j,0} + g_{i,j,1} + \cdots + g_{i,j,s_{i,j}}$ where $s_{i,j}$ is the degree of $g_{i,j}$ and is the degree r part of $g_{i,j}$ for each $1 \le r \le s_{i,j}$. The degree 1 part of (2) gives us

$$-\sum_{k} a_k e_k = \sum_{i,j} g_{i,j,0} e_i \star e_j$$
$$= \sum_{i,j} g_{i,j,0} c_{i,j}^k e_k.$$

Thus for each k we have $-\sum_{i,j} g_{i,j,0} c_{i,j}^k = a_k$. Thus

$$\sum_{k} a_k e_k = -\sum_{k} \sum_{i,j} g_{i,j,0} c_{i,j}^k e_k$$

$$= -\sum_{i,j} g_{i,j,0} \sum_{k} c_{i,j}^k e_k$$

$$= -\sum_{i,j} g_{i,j,0} (e_i \star e_j)$$

The degree 2 part of (2) gives us

$$0 = \sum_{i,j} g_{i,j,0} e_i e_j - g_{i,j,1} (e_i \star e_j)$$

=
$$\sum_{i,j} g_{i,j,0} e_i e_j - g_{i,j,1} \sum_k c_{i,j}^k e_k$$

$$\sum_{i,j} -\sum_{i,j} g_{i,j,0} e_i \star e_j = \sum_k a_k e_k$$

$$\begin{split} \sum_{k=1}^{n} b_{k}e_{k} &= \sum_{r=1}^{s} g_{r}f_{i_{r},j_{r}} \\ &= \sum_{r=1}^{s} g_{r}(e_{i_{r}}e_{j_{r}} - e_{i_{r}} \star e_{j_{r}}) \\ &= \sum_{r=1}^{s} g_{r}e_{i_{r}}e_{j_{r}} - \sum_{r=1}^{s} g_{r}(e_{i_{r}} \star e_{j_{r}}) \\ &= \sum_{r=1}^{s} g_{r}e_{i_{r}}e_{j_{r}} - \sum_{\substack{1 \leq r \leq s \\ 1 \leq k \leq n}} c_{i_{r},j_{r}}^{k}g_{r}e_{k}. \end{split}$$

Now for each $1 \le r \le s$, we express g_r as $g_r = g_{r,0} + g_{r,1} + \cdots + g_{r,d_r}$ where d_r is the degree of g_r and $g_{r,k} = \sum a_{i_1,\dots,i_k} e_{i_1} \cdots e_{i_k}$ is its degree k part for each $1 \le k \le d_r$. It follows that

$$b_k = \sum_{r=1}^{s} c_{i_r, j_r}^k g_{r,0}$$

$$0 = \sum_{r=1}^{s} g_{r,0} e_{i_r} e_{j_r} - \sum_{r=1}^{s} c_{i_r, j_r}^k g_{r,1} e_k$$

for each k. Thus

$$b_k = \sum_{r=1}^{s} c_{i_r,j_r}^k g_{r,0}$$

$$0 = \sum_{r=1}^{s} a_{r}[e_{i_{r}}, e_{j_{r}}, e_{k_{r}}]$$

$$= \sum_{r=1}^{s} a_{r}((e_{i_{r}} \star e_{j_{r}}) \star e_{k_{r}} - e_{i_{r}} \star (e_{j_{r}} \star e_{k_{r}}))$$

$$= \sum_{\substack{1 \leq r \leq s \\ 1 \leq l \leq n}} a_{r}(c_{i_{r},j_{r}}^{l} e_{l} \star e_{k_{r}} - c_{j_{r},k_{r}}^{l} e_{i_{r}} \star e_{l})$$

$$= \sum_{\substack{1 \leq r \leq s \\ 1 \leq l,m \leq n}} (a_{r}c_{i_{r},j_{r}}^{l}c_{l,k_{r}}^{m} - a_{r}c_{j_{r},k_{r}}^{l}c_{i_{r},l}^{m})e_{m}.$$

Suppose

Attempt

Suppose

$$\begin{split} b_1e_1 + b_2e_2 + b_3e_3 &= g_{1,2}f_{1,2} + g_{1,3}f_{1,3} \\ &= g_{1,2}(e_1e_2 + \sum_k c_{1,2}^k e_k) + g_{1,3}(e_1e_3 + \sum_k c_{1,3}^k e_k) \\ &= \left(a_{1,2}^{(1,0,0)}e_1 + a_{1,2}^{(0,1,0)}e_2 + a_{1,2}^{(0,0,1)}e_3 + a_{1,2}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,1,0)}e_2 + a_{1,3}^{(0,0,1)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,1,0)}e_2 + a_{1,3}^{(0,0,1)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,1,0)}e_2 + a_{1,3}^{(0,0,0)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,0,0)}e_2 + a_{1,3}^{(0,0,0)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,0,0)}e_2 + a_{1,3}^{(0,0,0)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,0,0)}e_2 + a_{1,3}^{(0,0,0)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(1,0,0)}e_1 + a_{1,3}^{(0,0,0)}e_2 + a_{1,3}^{(0,0,0)}e_3 + a_{1,3}^{(0,0,0)}\right) \left(e_1e_2 + c_{1,2}^1 e_1 + c_{1,2}^2 e_2 + c_{1,2}^3 e_3\right) + \left(a_{1,3}^{(0,0,0)}e_1 + a_{1,3}^{(0,0,0)}e_1 + a_{1,3}^{(0,0$$

This implies

$$g_{1,2} = a_{1,2}^{(0,0,1)} e_3 + a_{1,2}^{(0,0,0)}$$
 and $g_{1,3} = a_{1,3}^{(1,0,0)} e_1 + a_{1,3}^{(0,0,0)}$

and
$$a_{1,2}^{(0,0,1)} = a_{1,3}^{(1,0,0)}$$
 also

$$a_{1,3}^{(1,0,0)}c_{1,3}^2 + a_{1,2}^{(0,0,0)} = 0$$

In other words

$$a_{1,2}^{(0,0,0)} = a_{1,2}^{(1,0,0)} c_{1,3}^2$$

Thus

$$g_{1,2} = a_{1,2}^{(0,0,1)} e_3 + a_{1,2}^{(1,0,0)} c_{1,3}^2$$
 and $g_{1,3} = a_{1,3}^{(1,0,0)} e_1 + a_{1,3}^{(0,0,0)} c_{1,2}^1$

,

Table

We write $g_{i,j} = \sum_{\alpha} a_{i,j}^{\alpha} e_{\alpha}$ for each $1 \le i < j \le n$. For instance, if n = 3, then $g_{1,2}$ is expressed as

$$g_{1,2} = a_{1,2}^{(0,0,0)} + a_{1,2}^{(1,0,0)}e_1 + a_{1,2}^{(0,1,0)}e_2 + a_{1,2}^{(0,0,1)}e_3 + a_{1,2}^{(2,0,0)}e_1^2 + a_{1,2}^{(1,1,0)}e_1e_2 + a_{1,2}^{(1,0,1)}e_1e_3 + a_{1,2}^{(0,1,1)}e_2e_3 + \cdots$$

Now suppose n = 3 and $\deg g_{i,j} \le 2$ for each $1 \le i < j \le 3$. Then since $\sum g_{i,j} f_{i,j}$ lands in [F,F,F], the coefficients for the monomials of degree ≥ 2 in $\sum g_{i,j} f_{i,j}$ must all be equal to 0. The table below summarizes these relations obtained from the monomials in degree 4:

Monomial in degree 4	Relation given by equating coefficients
$e_1^2 e_2 e_3$	$a_{1,2}^{(1,0,1)} + a_{1,3}^{(1,1,0)} + a_{2,3}^{(2,0,0)} = 0$
$e_1^2 e_2 e_3 \\ e_1 e_2^2 e_3$	$a_{1,2}^{(0,1,1)} + a_{1,3}^{(0,2,0)} + a_{2,3}^{(1,1,0)} = 0$
$e_1e_2e_3^2$	$a_{1,2}^{(0,0,2)} + a_{1,3}^{(0,1,1)} + a_{2,3}^{(1,0,1)} = 0$
$e_1^2 e_2^2$	$a_{1,2}^{(1,1,0)} = 0$
$e_1^2 e_3^2$	$a_{1,3}^{(1,0,1)} = 0$
$e_{2}^{2}e_{3}^{2}$ $e_{1}^{3}e_{2}$ $e_{1}^{3}e_{3}$	$a_{2,3}^{(0,1,1)} = 0$
$e_1^3 e_2$	$a_{1,2}^{(2,0,0)} = 0$
$e_{1}^{3}e_{3}$	$a_{1,3}^{(2,0,0)} = 0$
$e_{1}e_{2}^{3}$	$a_{1,2}^{(0,2,0)} = 0$
$e_{2}^{3}e_{3}$	$a_{2,3}^{(0,2,0)} = 0$
$e_{1}e_{3}^{3}$	$a_{1,3}^{(0,0,2)} = 0$
$e_2e_3^3$	$a_{2,3}^{(0,0,2)} = 0$

The table below summarizes these relations obtained from the monomials in degree 3:

Monomial in degree 4	Relation given by equating coefficients
$e_{1}e_{2}e_{3}$	$ a_{1,2}^{(0,0,1)} + a_{1,3}^{(0,1,0)} + a_{2,3}^{(1,0,0)} + a_{1,2}^{(1,0,1)} c_{1,2}^{(0,1,0)} + a_{1,2}^{(0,1,1)} c_{1,2}^{(1,0,0)} + a_{1,3}^{(1,1,0)} c_{1,3}^{(0,0,1)} + \cdots + a_{2,3}^{(1,1,0)} c_{2,3}^{(0,0,1)} = 0 $
$e_1^2 e_2$	$a_{1,2}^{(1,0,0)} + a_{1,3}^{(1,1,0)}c_{1,3}^{(1,0,0)} + a_{2,3}^{(1,1,0)}c_{2,3}^{(1,0,0)} + a_{2,3}^{(2,0,0)}c_{2,3}^{(0,1,0)} = 0$
$e_1^2 e_3$	$a_{1,3}^{(1,0,0)} + a_{1,2}^{(1,0,1)}c_{1,2}^{(1,0,0)} + a_{2,3}^{(1,0,1)}c_{2,3}^{(1,0,0)} + a_{2,3}^{(2,0,0)}c_{2,3}^{(0,0,1)} = 0$
$e_{1}e_{2}^{2}$:
$e_1e_3^2$:
$e_{2}^{2}e_{3}$	<u>:</u>
$e_2e_3^2$:

The table below summarizes these relations obtained from the monomials in degree 2:

Monomial in degree 4	Relation given by equating coefficients	
e_1e_2	$a_{1,2}^{(0,0,0)} + a_{1,2}^{(1,0,0)}c_{1,2}^{(0,1,0)} + a_{1,2}^{(0,1,0)}c_{1,2}^{(1,0,0)} + a_{1,3}^{(1,0,0)}c_{1,3}^{(0,1,0)} + a_{1,3}^{(0,1,0)}c_{1,3}^{(1,0,0)} + a_{2,3}^{(1,0,0)}c_{2,3}^{(0,1,0)} + a_{2,3}^{(0,1,0)}c_{2,3}^{(0,1,0)} = 0$	
i i	:	

The table below summarizes these relations obtained from the monomials in degree 1:

Monomial in degree 4	Relation given by equating coefficients
e_1	$\left[a_{1,2}^{(0,0,0)} c_{1,2}^{(1,0,0)} + a_{1,3}^{(0,0,0)} c_{1,3}^{(1,0,0)} + a_{2,3}^{(0,0,0)} c_{2,3}^{(1,0,0)} = b_1 \right]$
e_2	$a_{1,2}^{(0,0,0)}c_{1,2}^{(0,1,0)} + a_{1,3}^{(0,0,0)}c_{1,3}^{(0,1,0)} + a_{2,3}^{(0,0,0)}c_{2,3}^{(0,1,0)} = b_2$
<i>e</i> ₃	$a_{1,2}^{(0,0,0)}c_{1,2}^{(0,0,1)} + a_{1,3}^{(0,0,0)}c_{1,3}^{(0,0,1)} + a_{2,3}^{(0,0,0)}c_{2,3}^{(0,0,1)} = b_3$

Another Calculation

We calculate

$$[e_i, e_j, e_k] = (e_i \star e_j) \star e_k - e_i \star (e_j \star e_k)$$

$$= \sum_{l} c_{i,j}^l e_l \star e_k - \sum_{l} c_{j,k}^l e_i \star e_l$$

$$= \sum_{m} \left(\sum_{l} (c_{i,j}^l c_{l,k}^m - c_{i,l}^m c_{j,k}^l) \right) e_m$$