CS 4342: Class 12

Jacob Whitehill

• Minimize:

$$f(x,y) = x+y$$
 subject to $x^2+y^2=1$

- We can express the equality constraint $(x^2+y^2=1)$ as a constraint function g.
- We define g so that g(x,y) = 0 when the constraint is satisfied:

$$g(x,y) = x^2 + y^2 - 1$$

- We can express the equality constraint $(x^2+y^2=1)$ as a constraint function g.
- We define g so that g(x,y) = 0 when the constraint is satisfied:

$$g(x,y) = \tanh(x^2 + y^2 - 1)$$

Example

$$f(x,y) = x + y \text{ subject to } x^2 + y^2 = 1$$

$$L(x,y,\alpha) = x + y + \alpha(x^2 + y^2 - 1)$$

$$\frac{\partial L}{\partial x} = 1 + 2\alpha x = 0$$

$$\frac{\partial L}{\partial y} = 1 + 2\alpha y = 0$$

$$\frac{\partial L}{\partial \alpha} = x^2 + y^2 - 1 = 0$$

$$2\alpha x = -1$$

$$x = -1/(2\alpha)$$

$$y = -1/(2\alpha) = x$$

$$x^2 + (x)^2 - 1 = 0$$

$$2x^2 = 1$$

$$x^2 = 1/2$$

$$x = y = \frac{\pm 1}{\sqrt{2}}$$

Example

$$f(x,y) = x + y \text{ subject to } x^2 + y^2 = 1$$

$$L(x,y,\alpha) = x + y + \alpha \tanh(x^2 + y^2 - 1)$$

$$\frac{\partial L}{\partial x} = 1 + 2\alpha(1 - \tanh^2(x^2 + y^2 - 1))x = 0$$

$$\frac{\partial L}{\partial y} = 1 + 2\alpha(1 - \tanh^2(x^2 + y^2 - 1))y = 0$$

$$\frac{\partial L}{\partial \alpha} = \tanh(x^2 + y^2 - 1) = 0$$

$$\implies x = y$$

$$x = -1/(2\alpha)$$

$$y = -1/(2\alpha) = x$$

$$\tanh(x^2 + (x)^2 - 1) = 0 \implies x^2 + (x)^2 - 1 = 0$$

$$2x^2 = 1$$

$$x^2 = 1/2 = \pm 1/\sqrt{2}$$

$$y = \pm 1/\sqrt{2}$$

- Both constraint functions g yield the same solution.
- In this example, the constrained optimum can be deduced algebraically.
- However, with machine learning we typically need to solve constrained optimization problems numerically.
- In such cases, using simpler (e.g., linear) constraint functions is both faster and easier.

- Support vector machines (SVMs) are a ML model for binary classification.
- SVMs are optimized using **constrained optimization** rather than unconstrained optimization (e.g., for logistic regression).
- For notational convenience, if example *i* belongs to the positive class, we write $y^{(i)} = +1$; if example *i* belongs to the negative class, we write $y^{(i)} = -1$.

For any hyperplane H that perfectly separates the positive

from the negative examples:

- Find the subset S⁺ of + examples that lie closest to H.
- The points in S+ lie in a hyperplane H+ parallel to H.
- Denote the shortest distance between H+ and H as d+.

 For any hyperplane H that perfectly separates the positive from the negative examples:

- Let d denote the margin the sum of d^+ and d^- .
- The optimization objective of SVMs is to find a separating hyperplane H that maximizes d.

Hyperplanes

- A **hyperplane** is defined by a normal vector \mathbf{w} (\perp to H) and a bias b that is proportional to the distance to the origin.
- The points on hyperplane H are those values of \mathbf{x} that satisfy: $\mathbf{x}^{\top}\mathbf{w} + b = 0$

• The hyperplane separates points \mathbf{x} such that $\mathbf{x}^T\mathbf{w} + b > 0$ from points \mathbf{x} such that $\mathbf{x}^T\mathbf{w} + b < 0$.

• The hyperplane separates points \mathbf{x} such that $\mathbf{x}^T\mathbf{w} + b > 0$ from points \mathbf{x} such that $\mathbf{x}^T\mathbf{w} + b < 0$.

- A **hyperplane** is defined by a normal vector \mathbf{w} (\perp to H) and a bias b that is proportional to the distance to the origin.
- The points on hyperplane H are those values of \mathbf{x} that satisfy: $\mathbf{x}^{\top}\mathbf{w} + b = 0$

Hyperplane examples

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

Hyperplane examples

$$H = \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{x}^\top \mathbf{w} + b = 0 \}$$

• To find the shortest (perpendicular) distance c between the origin O and the hyperplane H:

- To find the shortest (perpendicular) distance c between the origin O and the hyperplane H:
 - Define a *unit* vector **n** with same direction as **w**: $\mathbf{n} = \frac{\mathbf{w}}{|\mathbf{w}|}$

- To find the shortest (perpendicular) distance c between the origin O and the hyperplane H:
 - Define a *unit* vector **n** with same direction as **w**: $\mathbf{n} = \frac{\mathbf{w}}{|\mathbf{w}|}$
 - The shortest line from O to H ends at cn.

Since cn is within H, we have:

$$c\mathbf{n}^{\mathsf{T}}\mathbf{w} + z = 0$$

- Since *c***n** is within *H*, we have:
- $c\mathbf{n}^{\mathsf{T}}\mathbf{w} + z = 0$

 We can then solve for c (distance from O to H):

- Since cn is within H, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + z = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -z$$

- Since *c***n** is within *H*, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + z = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -z$$

$$\frac{c}{|\mathbf{w}|}\mathbf{w}^{\top}\mathbf{w} = -z$$

- Since cn is within H, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + z = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -z$$

$$\frac{c}{|\mathbf{w}|}\mathbf{w}^{\top}\mathbf{w} = -z$$

$$\frac{c}{|\mathbf{w}|}|\mathbf{w}|^{2} = -z$$

- Since *c***n** is within *H*, we have:
- We can then solve for c (distance from O to H):

$$c\mathbf{n}^{\top}\mathbf{w} + z = 0$$

$$c\left(\frac{\mathbf{w}}{|\mathbf{w}|}\right)^{\top}\mathbf{w} = -z$$

$$\frac{c}{|\mathbf{w}|}\mathbf{w}^{\top}\mathbf{w} = -z$$

$$\frac{c}{|\mathbf{w}|}|\mathbf{w}|^{2} = -z$$

$$c|\mathbf{w}| = -z$$

$$c = \frac{-z}{|\mathbf{w}|}$$

• Therefore, the shortest distance between the origin O and the hyperplane H is: $\frac{-z}{|xxz|}$

• Recall that $H \parallel H^+ \parallel H^-$. Then they can share the same **w**.

We can scale w and b such that:

$$H^-: \mathbf{x}^\top \mathbf{w} + b = -1$$

$$H: \quad \mathbf{x}^{\top}\mathbf{w} + b = 0$$

$$H^+: \quad \mathbf{x}^\top \mathbf{w} + b = +1$$

 H- and H+ intersect the negatively and positively labeled data points closest to H, respectively.

 Since all data points not in H+ or H- must lie even farther from H, we require that:

$$y^{(i)} = +1 \implies \mathbf{x}^{(i)} \mathbf{w} + b \ge +1$$

 $y^{(i)} = -1 \implies \mathbf{x}^{(i)} \mathbf{w} + b \le -1$

 H- and H+ intersect the negatively and positively labeled data points closest to H, respectively.

These two sets of constraints can be unified:

$$y^{(i)}(\mathbf{x}^{(i)}^{\top}\mathbf{w} + b) \ge 1 \quad \forall i$$

Inequality constraints

How do we maximize the margin d?

• Distance from origin for a hyperplane $H(\mathbf{x}^{\mathsf{T}}\mathbf{w}+z=0)$:

$$c = \frac{-z}{|\mathbf{w}|}$$

How do we maximize the margin d?

• How far is H- from H+?

How do we maximize the margin d?

• H^- is $(-1-b)/|\mathbf{w}|$ from the origin.

$$\frac{-1-b}{|\mathbf{w}|}$$

How do we maximize the margin d?

• H^+ is $(1-b)/|\mathbf{w}|$ from the origin.

$$\frac{1-b}{|\mathbf{w}|}$$

How do we maximize the margin d?

 Therefore, the margin (distance between the hyperplanes) must be:

$$d = \frac{1-b}{|\mathbf{w}|} - \frac{-1-b}{|\mathbf{w}|} = \frac{2}{|\mathbf{w}|}$$

How do we maximize the margin d?

• To maximize $d=2/|\mathbf{w}|$, we can thus minimize $|\mathbf{w}|/2$ or (equivalently) minimize:

$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

Optimization objective (cost function)

SVM optimization problem

Putting the parts together, we wish to:

• Minimize:
$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$$

• Subject to: $y^{(i)}(\mathbf{x}^{(i)}^{\top}\mathbf{w} + b) \ge 1 \quad \forall i$

SVM optimization problem

- Putting the parts together, we wish to:
 - Minimize: $\frac{1}{2}\mathbf{w}^{\top}\mathbf{w}$
 - Subject to: $y^{(i)}(\mathbf{x}^{(i)}^{\top}\mathbf{w} + b) \ge 1 \quad \forall i$
- This is a quadratic programming problem: quadratic objective with linear inequality (and/or equality) constraints. There are many efficient solvers for quadratic programs.
- The optimization variables are both w and b.

SVM: classification

SVM: classification

Here's how an SVM classifies a new example:

Exercise

- Suppose $\mathbf{w} = [1, 3, -2]^T$ and b = -2.
- What is the class (+ or -) of the following x?
 - $\mathbf{x} = [-2, 4, 2]^T$
 - $\mathbf{x} = [1, 3, -2]^T$
 - $\mathbf{x} = [6, 0.5, 5]^T$

$$\hat{y} = \begin{cases} 1 & \text{if } \mathbf{x}^{\top} \mathbf{w} + b > 0 \\ 0 & \text{if } \mathbf{x}^{\top} \mathbf{w} + b < 0 \end{cases}$$

Exercise

- Suppose $\mathbf{w} = [1, 3, -2]^T$ and b = -2.
- What is the class (+ or -) of the following x?

•
$$\mathbf{x} = [-2, 4, 2]^T => \mathbf{x}^T \mathbf{w} + b = -2 + 12 - 4 - 2 = 4 => +$$

•
$$\mathbf{x} = [1, 3, -2]^T => \mathbf{x}^T \mathbf{w} + b = 1 + 9 + 4 - 2 = 12 => +$$

•
$$\mathbf{x} = [6, 0.5, 5]^T => \mathbf{x}^T \mathbf{w} + b = 6 + 1.5 - 10 - 2 = -4.5 => -$$

$$\hat{y} = \begin{cases} 1 & \text{if } \mathbf{x}^{\top} \mathbf{w} + b > 0 \\ 0 & \text{if } \mathbf{x}^{\top} \mathbf{w} + b < 0 \end{cases}$$