HOMEWORK 2 MATH 270B, WINTER 2020, PROF. ROMAN VERSHYNIN

Problem 1 (Scheffé's Theorem)

- (a) (For continuous distributions) Prove that if probability density functions of X_n converge to probability density function of X pointwise, then X_n converges to X weakly.
- (b) (For discrete distributions) Prove that if probability mass functions of X_n converge to probability mass function of X pointwise, then X_n converges to X weakly.
- (c) (No converse) In general, weak convergence does not imply pointwise convergence of probability density functions. Show this by example.

PROBLEM 2 (WEAK LIMIT OF NORMAL RANDOM VARIABLES)

Consider normal random variables $X_n \sim N(\mu_n, \sigma_n^2)$. Assume X_n converge weakly to some random variable X. Prove that $X \sim N(\mu, \sigma^2)$ where $\mu = \lim \mu_n$ and $\sigma^2 = \lim s_n^2$ (and both limits exist).

Problem 3 (No convergence in probability in CLT)

Let X_1, X_2, \ldots be independent Rademacher random variables¹ Let $S_n = X_1 + \cdots + X_n$.

- (a) Prove that the sequence (S_n/\sqrt{n}) is unbounded almost surely.
- (b) Prove that (S_n/\sqrt{n}) does not converge in probability.

PROBLEM 4 (NON-SUMMABLE VARIANCES YIELD CLT)

Let $X_1, X_2, ...$ be independent random variables such that there exists M > 0 so that $|X_i| \leq M$ almost surely for all i. Show that if $\sum_i \operatorname{Var}(X_i) = \infty$ then the sum $S_n = X_1 + \cdots + X_n$ satisfies

$$\frac{S_n - \mathbb{E} S_n}{\sqrt{\operatorname{Var}(S_n)}} \to N(0, 1) \quad \text{weakly.}$$

 $^{^{1}}$ A Rademacher random variable takes values -1,1 with probability 1/2 each.

PROBLEM 5 (LYAPUNOV'S CLT)

Let $X_1, X_2, ...$ be independent random variables with zero means and unit variances. (Do not assume that X_i have the same distribution though.) Assume that

$$\sup_{i} \mathbb{E} |X_{i}|^{2+\delta} < \infty$$

for some $\delta > 0$. Prove that

$$\frac{X_1 + \dots + X_n}{\sqrt{n}} \to N(0, 1)$$
 weakly.

PROBLEM 6 (BAYES FORMULA)

Let (Ω, Σ, P) be a probability space and $\mathcal{F} \subset \Sigma$ be a sub- σ -algebra. Consider two events $E \in \Sigma$ and $F \in \mathcal{F}$.

(a) Check that

$$P(F|E) = \frac{\mathbb{E}\left[P(E|\mathcal{F})\mathbf{1}_F\right]}{\mathbb{E}P(E|\mathcal{F})}.$$

(b) Specialize this equation to the case where \mathcal{F} is generated by a partition $\Omega = F_1 \sqcup \cdots \sqcup F_n$, i.e. $\mathcal{F} = \sigma(F_1, \ldots, F_n)$. Deduce Bayes formula in its familiar form:

$$P(F_i|E) = \frac{P(E|F_i) P(F_i)}{\sum_i P(E|F_i) P(F_i)}.$$

PROBLEM 7 (CONDITIONAL CAUCHY-SCHWARZ INEQUALITY)

Show that

$$(\mathbb{E}[XY|\mathcal{F}])^2 \leq \mathbb{E}[X^2|\mathcal{F}] \cdot \mathbb{E}[Y^2|\mathcal{F}]$$

almost surely.

PROBLEM 8 (LAW OF TOTAL VARIANCE)

Define conditional variance of X by

$$\operatorname{Var}(X|\mathcal{F}) := \mathbb{E}[X^2|\mathcal{F}] - (\mathbb{E}[X|\mathcal{F}])^2.$$

Show that

$$Var(X) = \mathbb{E}(Var(X|\mathcal{F})) + Var(\mathbb{E}[X|\mathcal{F}]).$$

Problem 9 (Conditioning always reduces second moment)

Let $Y := \mathbb{E}[X|\mathcal{F}]$. Show that if $\mathbb{E}(Y^2) = \mathbb{E}(X^2)$ then X = Y a.s.