Консультация к экзамену 2.

1. Рассмотрим модель для панельных данных:

$$y_{it} = \beta_0 + \beta_1 x_{it} + \alpha_i + u_{it}, i = 1, ..., n, t = 1, ..., T.$$

Обозначим $\bar{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}$, $\varepsilon_{it} = \alpha_i + u_{it}$. Рассмотрим преобразованную модель:

$$y_{it} - \lambda \bar{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \bar{x}_i) + (\varepsilon_{it} - \lambda \bar{\varepsilon}_i)$$

- (a) Какие модели получаются при $\lambda = 0$ и при $\lambda = 1$?
- (b) Пусть $\alpha_i \sim \text{i.i.d.} (0, \sigma_\alpha^2)$; $u_{it} \sim \text{i.i.d.} (0, \sigma_u^2)$; $\text{Cov} (\alpha_i, u_{it}) = 0$ для всех i и j. Определим

$$\lambda = 1 - \left[\frac{\sigma_u^2}{\sigma_u^2 + T \sigma_\alpha^2} \right]^{1/2}.$$

Покажите, что $\varepsilon_{it} - \lambda \bar{\varepsilon}_i$ имеет нулевое матетматическое ожидание, постоянную дисперсию и серийная корреляция отсутствует.

2. Рассмотрим модель с фиксированными эффектами:

$$y_{it} = \alpha_i + \varepsilon_{it}, i = 1, ..., n, t = 1, ..., T.$$

Случайные ошибки предполагаются независимыми и гетероскедастичными, то есть $V(\varepsilon_{it}) = \sigma_i^2$. Панель является несбалансированной, то есть каждому *i*-му субъекту в выборке соответствуют T_i наблюдений.

- (a) Покажите, что OLS и GLS оценки α_i совпадают.
- (b) Пусть $\sigma^2 = \sum_{i=1}^N T_i \frac{\sigma_i^2}{n}, n = \sum_{i=1}^N T_i$ дисперсия взвешенной случайной ошибки. Покажите, чо OLS оценка для σ^2 является смещенной. Также покажите, что смещение исчезает, если панель сбалансированная или случайные ошибки гомоскедастичны.
- 3. Рассмотрим следующее уравнение:

$$(1 - 0.2L)u_t = (1 + \varepsilon_t).$$

где $\varepsilon_t \sim WN(0,1)$.

- (a) Найдите (y_t) , $Var(y_t)$.
- (b) Рассчитайте два первых значения ACF для заданного процесса y_t .
- (c) Рассчитайте два первых значения PACF для заданного процесса y_t .

- (d) Найдите $(y_t(t+2)|y_t, y_t(t-1))$.
- (е) Приведите пример нестационарного процесса, также являющегося решением упомянутого уравнения.