Virtual Private Network

VPN

O que é uma VPN?

- Uma VPN é um conjunto de sites que comunicam entre eles
- A VPN é definida por uma série de políticas
 - Políticas de conectividade e de QoS entre os sites
 - Políticas definidas pelos clientes
 - As políticas podem ser implementadas pelo VPN service provider.
 - Através de mecanismos BGP/MPLS VPN

O que é uma VPN? (Cont.)

- Permite uma comunicação flexível inter-sites
- Os sites podem estar na mesmo ou em diferentes organizações
- Um site pode estar em mais do que uma VPN
 - VPNs overlap
- Os sites de uma VPN podem estar em múltiplos ISPs

IP VPN Taxonomia

- Provider Network (P-Network)
 - A rede do ISP
- Customer Network (C-Network)
 - A rede do cliente
- CE router Customer Edge router
 - . Router que está ligado ao router PE do ISP

- Site
 - Conjunto de redes do cliente
 - Um site está ligado ao backbone VPN através de um ou mais links PE/CE
- PE router Provider Edge router
 - Router do ISP que liga ao router CE do cliente
- P router Provider (core) router
 - Router do ISP que desconhece a existência da VPN

- Route-Target
 - 64 bits identifying routers that should receive the route
- Route Distinguisher
 - Attributes of each route used to uniquely identify prefixes among VPNs (64 bits)
 - VRF based
- VPN-IPv4 addresses
 - Address including the 64 bits Route Distinguisher and the 32 bits IP address

VRF

- VPN Routing and Forwarding Instance
- Tabela de encaminhamento da VPN
- Distribuída entre os routers através de um protocolo de encaminhamento

VPN-Aware network

 Rede do operador onde onde está a funcionar o serviço MPLS-VPN

- Uma VPN é um conjunto de sites que partilham a mesma informação de encaminhamento (routing table)
- Um site pode fazer parte de várias VPNs

- Um site que pertença a várias VPNs pode ou não ser usado como site de trânsito
- Se duas ou mais VPNs partilham o mesmo site, o endereçamento deve ser único entre esses sites

- A rede VPN de backbone é formada por routers MPLS LSRs
 PE routers (edge LSRs)
 - P routers (core LSRs)
- Os PE routers estão ligados aos CE routers e distribuem a informação da VPN para os outros PE routers
- Os P routers não têm conhecimento da existência da VPN

- P routers (LSRs) estão no backbone da rede MPLS
- PE routers estão ligados aos CE routers
- P and PE routers usam um protocolo IGP (ex. OSPF)
- Os PE routers usam um protocolo iBGP para trocarem informações das VPNs

 Os PE e CE routers trocam informação de encaminhamento através dos protocolos:

eBGP, OSPF, RIPv2, Static routing

- Os PE routers mantêm tabelas de encaminhamento separadas
 A tabela de encaminhamento global
 - com os PE e P routers
 - Usam um protocolo IGP (ISIS or OSPF)

VRF (VPN Routing and Forwarding)

- Tabela de encaminhamento das VPNs

- Os routers CE enviam as suas rotas para os routers PE e aí são instaladas na tabela de encaminhamento da VPN (VRF)
- Os routers PE dos routers P, por meio de um protocolo IGP, as rotas da rede de backbone e instalam esses rotas na tabela de encaminhamento global
- Pelo facto de cada VPN ter a sua tabela VRFs, os endereços usados pelos sites não precisam de ser únicos

- PE e P routers partilham o mesmo protocolo IGP (ISIS or OSPF)
- PEs estabelecem sessões MP-iBGP entre eles
- PEs trocam informações entre eles de routing ,sites e VPNs

PE routers recebem os IPv4 updates (EBGP, RIPv2, Static...)

PE routers traduzem as rotas IPv4 para rotas VPN-IPv4 O PE envia através de MP-iBGP os update para todos os PEs da VPN

Os PEs que recebem as VPN-IPv4 identificam as redes IPv4 e Inserem as redes IPv4 na tabela VRF

MP-BGP Update

VPN-IPV4 address

Route Distinguisher

64 bits

Makes the IPv4 route globally unique

RD is configured in the PE for each VRF

IPv4 address (32bits)

Extended Community attribute (64 bits)

Site of Origin (SOO): identifica o site de origem

Route-target (RT): identifica os sites que deverão receber os updates

MPLS VPN mecanismos

- A tabela de routing VRF contém as rotas que são necessárias aos sites que fazem parte da VPN
- A tabela VRF é semelhante às tabelas de encaminhamento produzidas pelos protocolos OSPF ou RIP
- As interfaces que ligam aos sites da VPN são associadas à tabela VRF da VPN

MPLS VPN mecanismos

Configuração MPLS VPN

L3VPN

MPLS VPN - Configuração

- A informação das VPN está nos PE routers
- Nos PE router é necessário configurar

A tabela VRF para cada site e o RD - Route Distinguisher

As políticas VRF import/export (para que outros routers PE deverão ser enviadas e recebidas as rotas da VRF)

O protocolo de Routing enter o PE e o CE

MP-BGP entre PE routers

MPLS VPN - Configuração

- RD é configurado nos PE routers (para cada VRF)
- VRFs are associated to RDs in each PE
- VRF criação

```
ip vrf <vrf-symbolic-name>
  rd <route-distinguisher-value>
  route-target import <community>
  route-target export <community>
```

CLI - VRF configuration

MPLS VPN - Configuration PE/CE routing protocols

- PE/CE may use BGP, RIPv2 or Static routes
- A routing context is used for each VRF
- Routing contexts are defined within the routing protocol instance

```
Address-family router sub-command
```

```
Router rip version 2 address-family ipv4 vrf <vrf-symbolic-name> ...
```

any common router sub-command ...

MPLS VPN - Configuration PE/CE routing protocols

. . .

Static routes are configured per VRF
 ip route vrf <vrf-symbolic-name> ...

MPLS VPN - Configuration PE router commands

All show commands are VRF based
 Show ip route vrf <vrf-symbolic-name> ...
 Show ip protocol vrf <vrf-symbolic-name>
 Show ip cef <vrf-symbolic-name> ...
 ...

 PING and Telnet commands are VRF based telnet /vrf <vrf-symbolic-name>
 ping vrf <vrf-symbolic-name>

MPLS VPN - Configuration PE/CE routing protocols

```
ip vrf site1
  rd 100:1
  route-target export 100:12
  route-target import 100:12
ip vrf site2
  rd 100:2
  route-target export 100:12
  route-target import 100:12
  route-target import 100:23
  route-target export 100:23
interface Serial3/6
ip vrf forwarding site1
ip address 192.168.61.6
255.255.255.0
encapsulation ppp
interface Serial3/7
ip vrf forwarding site2
ip address 192.168.62.6
255.255.255.0
encapsulation ppp
```



```
ip vrf site3
  rd 100:3
  route-target export 100:23
  route-target import 100:23
  route-target import 100:34
  route-target export 100:34
ip vrf site-4
  rd 100:4
  route-target export 100:34
  route-target import 100:34
interface Serial4/6
ip vrf forwarding site3
ip address 192.168.73.7
255,255,255,0
encapsulation ppp
interface Serial4/7
ip vrf forwarding site4
ip address 192.168.74.7
255.255.255.0
encapsulation ppp
```

MPLS VPN - Configuration PE/CE routing protocols

```
router bgp 100
no bgp default ipv4-unicast
neighbor 7.7.7.7 remote-as 100
neighbor 7.7.7.7 update-source Loop0
address-family ipv4 vrf site2
 neighbor 192.168.62.2 remote-as 65502
neighbor 192.168.62.2 activate
exit-address-family
address-family ipv4 vrf site1
 neighbor 192.168.61.1 remote-as 65501
neighbor 192.168.61.1 activate
exit-address-family
address-family vpnv4
neighbor 7.7.7.7 activate
neighbor 7.7.7.7 next-hop-self
exit-address-family
```


router bgp 100