(19) 日本国特許庁 (JP)

(II)公開特許公報 (A)

(11)特許出曆公開番号

特開平9-8206

(43)公開日 平成9年(1997) 1月10日

(\$1) int. C1. * HOIL 23/50	微別記号	庁內整理番号	F 1 HOIL 23/50		技術表示箇所 R
23/12			23/12		L
		·	套查請求	未請求 請求項の数7	FD (全15頁)
(21)出額番号	特願平7-1739	5 5	(71) 出願人	000002897 大日本印刷株式会社	
(22) 出順日	平成7年(1995) 6月19日	(72) 発明客	東京都新宿区市谷加拿 山田	设町一丁目1番1号
			(72) 発明者	佐々木 賢 東京都新宿区市谷加到 大日本印刷株式会社P	
			(74) 代理人	弁理士 小西 淳美	·

(54) 【発明の名称】リードフレームおよびBGAタイプの樹脂封止型半導体装置

(57) 【要約】 (修正有)

[目的] 多端子化に対応でき、且つ、一層の薄型化に対応できるリードフレームを用いたBGAタイプの樹脂 対止型半導体装置を提供する。

【構成】 インナーリード形成面に沿い二次元的に配列された外部回路と電気的接続を行うための外部端子110 20とを備えており、該インナーリードの先端部1110 Aは、断面形状が晒方形で第1面、第2面、第3面にいり 4面の4面を有しており、かつ第1面は薄肉部でないリードフレームの厚さと同じ厚さの他の部分の一方の面と同一平面上にあって第2面に対向しており、第3面に形状で4位ではインナーリードの内側に向かい凹んだ形状で4位ではれており、外部端子部は、断面形状が略方形で4位であり、1組の向かい合った2面はリードフレーム 素材面上にあり、他の1組の2面はそれぞれ外部端子部の内側から外側に向かい凸状である。

【特許請求の範囲】

【請求項1】 2段エッチング加工によりインナーリー ドの先端部の厚さがリードフレーム素材の厚さよりも薄 肉に外形加工された、BGAタイプの半導体装置用のリ ードフレームであって、少なくとも、インナーリード と、該インナーリードと一体的に連結し、且つインナー リード形成面に沿い二次元的に配列された外部回路と電 気的接続を行うための外部端子部とを備えており、該イ ンナーリードの先端部は、断面形状が略方形で第1面、 第2面、第3面、第4面の4面を有しており、かつ第1 面はリードフレーム素材と同じ厚さの他の部分の一方の 面と同一平面上にあって第2面に向かい合っており、第 3面、第4面はインナーリードの内側に向かい凹んだ形 状に形成されており、外部端子部は、断面形状が略方形 で4面を有しており、1組の向かい合った2面はリード フレーム素材面上にあり、他の1組の2面はそれぞれ外 部端子部の内側から外側に向かい凸状であることを特徴 とするリードフレーム。

【請求項2】 請求項1において、インナーリード部全 体がリードフレーム素材の厚さよりも薄肉に外形加工さ 20 れていることを特徴とするリードフレーム。

【請求項3】 請求項1ないし2記載のリードフレーム を用いたBGAタイプの樹脂封止型半導体装置であっ て、リードフレームの外部端子部の表面に半田等からな る外部回路と接続するための端子部を設けており、半導 体素子は、電極部側の面において、インナーリード間に 電極部が収まるようにして、インナーリードの第1面側 に絶縁性接着材を介して固定されており、電極部はワイ ヤにてインナーリードの第2面側と電気的に接続されて

【請求項4】 請求項1ないし2記載のリードフレーム を用いたBGAタイプの樹脂封止型半導体装置であっ て、リードフレームの外部端子部の表面に半田等からな る外部回路と接続するための端子部を設けており、半導 体素子は、半導体素子のバンプを介してインナーリード の該第2面と電気的に接続していることを特徴とするB GAタイプの樹脂封止型半導体装置。

【請求項5】 請求項4記載におけるリードフレームの インナーリード先端の第2面がインナーリード側に凹ん 40 だ形状であることを特徴とする樹脂封止型半導体装置。 【請求項6】 請求項1ないし2記載のリードフレーム を用いたBGAタイプの樹脂封止型半導体装置であっ て、リードフレームの外部端子部の表面に半田等からな る外部回路と接続するための端子部を設けており、前記 リードフレームは、ダイバッド部を有するもので、且 つ、該ダイパッド部は、半導体素子の電極部側の電極部 間に収まる大きさで、インナーリード先端部と同じ厚さ を持つもので、半導体素子は、半導体素子の電極部側の 面とインナーリード先端の第2面とが同じ方向を向くよ

うにして、ダイバッド上に、電極部側の面を接着材によ り固定され、電極部はワイヤにてインナーリードの第2 面側と電気的に接続されていることを特徴とするBGA タイプの樹脂封止型半導体装置。

【請求項7】 請求項1ないし2記載のリードフレーム を用いたBGAタイプの樹脂封止型半導体装置であっ て、リードフレームの外部端子部の表面に半田等からな る外部回路と接続するための端子部を設けており、前記 リードフレームは、ダイバッド部を有するもので、且 つ、半導体素子は、半導体素子の電極部とインナーリー ド先端の第2面とが同じ方向を向くようにして、 ダイパ ッド上に、電極部側とは反対側の面を接着材より固定さ れ、電極部はワイヤにてインナーリード先端の第2面側 と電気的に接続されていることを特徴とするBGAタイ プの樹脂封止型半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、リードフレームをコア 材として回路を形成した面実装型の樹脂封止型半導体装 置用のリードフレーム部材に関し、特に、BGA(Ba 11 Grid Array)タイプの半導体装置用の リードフレーム部材の製造方法に関する。

[0002]

【従来の技術】近年、半導体装置は、電子機器の高性能 化と軽薄短小化の傾向(時流)からLSIのASICに 代表されるように、ますます高集積化、高機能化になっ ている。高集積化、高機能化された半導体装置において は、信号の高速処理のためには、バッケージ内のインダ クタンスが無視できない状況になってきて、バッケージ いることを特徴とするBGAタイプの樹脂封止型半導体 30 内のインダクタンスを低減するために、電源、グランド の接続端子数を多くし、実質的なインダクタンスを下げ るようにして、対応してきた。この為、半導体装置の高 集積化、高機能化は外部端子(ピン)の総数の増加とな り、ますます多端子(ピン)化が求められるようになっ てきた。多端子(ピン) IC、特にゲートアレイやスタ ンダードセルに代表されるASICあるいは、マイコ ン、DSP (Digital Signal Proc essor)等の半導体装置化には、リードフレームを 用いたものとしては、QFP(Quad Flat P ackage)等の表面実装型パッケージが用いられて おり、QFPでは300ピンクラスのものまでが実用化 に至ってきている。QFPは、図14(b)に示す単層 リードフレーム1410を用いたもので、図14(a) にその断面図を示すように、ダイパッド1411上に半 導体素子1420を搭載し、金めっき等の処理がされた インナーリード先端部1412Aと半導体素子1420 の端子(電極バッド)1421とをワイヤ1430にて 結線した後に、樹脂1440で封止し、ダムバー部をカ ットし、アウターリード1413部をガルウイング状に 50 折り曲げて作製されている。このようなQFPは、バッ

ケージの 4 方向へ外部回路と電気的に接続するためのア ウターリードを設けた構造となり、多端子(ピン)化に 対応できるものとして開発されてきた。ここで用いられ る単層リードフレーム 1410は、通常、コパール、4 2 合金 (42% Ni-鉄), 顕系合金等の導電性に扱 れ、且つ強度が大きい金属板をフオトリソグラフィー技 術を用いたエッチング加工方法やスタンピング法等によ ・り、図14(b)に示すような形状に加工して作製され いた。 (b) (a) は単層リードフレ OF THE CHEW TO THE TOP THE る断面図である。

【0003】しかしながら、近年の半導体素子でで見処。 理の高速化及び高性能(機能)化は、更に多くの端子を 必要としている。これに対し、QFPでは、外部端子ピ ツブチを挟めることにより、東方る多端子化に対応できる が、外部端子を狭ヒッチ化した場合、外部端子自体の幅 も狭める必要があり、外部端子強度を低下させることと なる。その結果、端子成形(ガルウイング化)の位置精 ~-度あるいは平坦精度等において問題を生じてしまう。ま m、0.3mmと更にピッチが抉くなるにつれ、これら 狭ピッチの実装工程が難しくなってきて、高度なポード 実装技術を実現せねばならない等の障害(問題)をかか えている。

[0004] これら従来のQFPパッケージがかかえる 実装勿率、実装性の問題を回避するために、半田ポール をパッケージの外部端子に置き換えた面実装型パッケー シであるBGA(Ball Grid Array)と 呼ばれるプラスチックパッケージ半導体装置が開発され てきた。BGAは、外部端子を裏面にマトリクス状(ア レイ状)に配置した半田ボールとした表面式芸製業等体 装置(ブラスチックバッケージ)の総称である。通常、 このBGAは、入出力端子を増やすために、両面配線基 板の片面に半導体素子を搭載し、もう一方の面に球状の 半田を取付けた外部端子用電極を設け、スルーホールを 通じて半導体素子と外部端子用電極との導通をとってい た。球状の半田をアレイ状に並べることにより、端子ピ ッチの間隔を従来のリードフレームを用いた半導体装置 より広くすることができ、この結果、半導体装置の実装 工程を難しくせず、入出力端子の増加に対応できた。B GAは、一般に図11に示すような構造である。図11 (b) は図li(a) の裏面(基板)側からみた図で図 1 1 (c) はスルーホール 1 1 5 0 部を示したものであ る。このBGAはBTレジン(ビスマレイミド系樹脂) を代表とする耐熱性を有する平板(樹脂板)の基材11 02の片面に半導体素子1101を搭載するダイパッド 1105と半導体票子1101からポンディングワイヤ 1108により発気的に接続されるポンディングパッド

に配置された半田ポールにより形成した外部接続端子 1 106をもち、外部接統端子1106とポンディングバ ッド1110の間を配線1104とスルーホール115 0、配線1104Aにより電気的に接続している構造で ある。しかしながら、このBGAは搭載する半導体柔子 とりイヤの結線を行う回路と、半導体装置化した後にブ リント基板に実装するための外部端子用電極とを、基材 1102の両面に設け、これらをスルーホール1150 を介して電気的に接続した複雑な構成であり、樹脂の熱 でまのまでによらえた。まったしようQに断限を主じ こともあり、作製上、信頼性の点で問題が多かった。 、[0005] この為、作製プロセスの簡略化、信頼性の 一低下を回避するため、上記図1.1に示す構造のものの他 に、リードフレームをコア材として回路を形成したもの も、近年、種々提案されてきた。これらのリードフレー ムを使用するBGAパッケージは、一般には、リードフ レーム1210の外部端子部1214に対応する箇所に 所定の孔をあけた、絶縁フィルム1260上にリードフ レーム1210を固定して、樹脂封止した図12 (a) た、QFPでは、アウターリードのピッチが、0.4m 20 に示すような構造、ないし図12(b)に示すような構 造をとっていた。上記リードフレームを用いるBGAパ ッケージに使われるリードフレームは、従来、図13に 示すようなエッチング加工方法により作製されており、 外部場子部1214とインナーリード1212ともリー ドフレーム素材の厚さに作製されていた。 ここで、図1 3に示すエッチング加工方法を簡単に説明しておく。 先 ず、鋼合金もしくは42%ニッケルー鉄合金からなる厚 さ0.25mm程度の薄板(リードフレーム素材131 0)を十分洗浄(図13(a))した後、重クロム酸カ リウムを感光剤とした水溶性カゼインレジスト等のフォ トレジスト1320を該薄板の両表面に均一に塗布す る。 ((図13(b))

次いで、所定のバターンが形成されたマスクを介して高 圧水紐灯でレジスト部を露光した後、所定の現像液で核 感光性レジストを現像して(図13 (c)) 、 レジスト バターン1330を形成し、硬膜処理、洗浄処理等を必 要に応じて行い、塩化第二鉄水溶液を主たる成分とする エッチング液にて、スプレイにて該薄板 (リードフレー ム素材1310)に吹き付け所定の寸法形状にエッチン グし、貧通させる。 (図13 (d))

次いで、レジスト膜を剥膜処理し(図13(e))、洗 净後、所望のリードフレームを得て、エッチング加工工 程を終了する。このように、エッチング加工等によって 作製されたリードフレームは、更に、所定のエリアに避 メッキ等が施される。次いで、洗浄、乾燥等の処理を経 で、インナーリード部を固定用の接着剤付きポリイミド テープにてテービング処理したり、必要に応じて所定の 量タプ吊りパーを曲げ加工し、ダイパッド部をダウンセ エッチング彼による腐蝕 め、図13に示すようなエッチング加工方法において は、微細化加工に関しては、加工される素材の板厚から くる限界があった。

[0006]

(発明が解决しようとする課題)上記のように、リードフレームをコア材として用いたBGAタイプの樹脂封止型半導体装置においては、図14(b)に示す単層リードフレームを用いた半導体装置に比べ、同じ成子改革の外部回路と接続するための外部端子ピッチを広くでき、選ば装置の実装工程を配して上がいて、大出力端子が強った。本発明は、これに対応するためのもので、一層の多端子化に対応できる。リードフレームを一つで材として、場合である。同時に、このような半導体装置を作製するためのリードフレームを提供しようとするものである。

[0007]

【課題を解決するための手段】本発明のリードフレーム 20 は、2段エッチング加工によりインナーリードの先端部 の厚さがリードフレーム素材の厚さよりも薄肉に外形加 工された、BGAタイプの半導体装置用のリードフレー ムであって、少なくとも、インナーリードと、該インナ ーリードと一体的に連結し、且つインナーリード形成面 に沿い二次元的に配列された外部回路と電気的接続を行。 うための外部端子部とを備えており、該インナーリード の先端部は、断面形状が略方形で第1面、第2面、第3 面、第4面の4面を有しており、かつ第1面はリードフ レーム条材と同じ厚さの他の部分の一方の面と同一平面 10 上にあって第2面に向かい合っており、第3元、元之面 はインナーリードの内側に向かい凹んだ形状に形成され ており、外部端子部は、断面形状が48方形で4面を有し ており、1組の向かい合った2面はリードフレーム業材 面上にあり、他の1組の2面はそれぞれ外部端子部の内 側から外側に向かい凸状であることを特徴とするもので ある。そして、上記において、インナーリード部全体が リードフレーム素材の厚さよりも幕肉に外形加工されて いることを特徴とするものである。また、本発明のBG Aタイプの半導体装置は、上記本発明のリードフレーム を用いたBGAタイプの樹脂封止型半導体装置であっ て、リードフレームの外部端子部の表面に半田等からな る外部回路と接続するための端子部を設けており、半導 体素子は、竜極部(バッド)側の面において、インナー リード間に電極部が収まるようにして、インナーリード の第1面側に絶縁性接着材を介して固定されており、電 極部 (バッド) はワイヤにてインナーリードの第2面側 と電気的に接続されていることを特徴とするものであ る。また、本発明のBGAタイプの半導体装置は、上記

止型半導体装置であって、リードフレームの外部端子部 の表面に半田等からなる外部回路と接続するための端子 部を設けており、幸運体素子は、半導体素子のパンプを 介してインナーリードの該第2面と竜気的に接続してい ることを特徴とするものであり、該リードフレームのイ ンナーリード先端の第2面がインナーリード側に凹んだ 形状であることを特徴とするものである。また、本発明 のBGAタイプの半導体装置は、上記本発明のリードフ レームを用いたB C-Aタイプの樹脂封止型半導体装置で あって、リートプレームの外部業子部の接面に半田等か らなる外部四百と、大統領のための第十部を設けており、 前記リードフレームは、ダイバッド部を有するもので、 且つ、彼ダイベンド部は、半導体素子の電極部でパット ド) 側の電極部間に収まる大きさで、インナーリード先 運部と同じ厚さを持つもので、半導体系子は、半導体系 子の電極部側の面でインナーリードの第2面とが同じ方 向を向くようにして、ダイバッド上に、電極部(バッ ド)側の面を接着材により固定され、電極部(バッド) はワイヤにてインナーリード先端の第2面側と電気的に 接続されていることを特徴とするものである。また、本 発明のBGAタイプの半導体装置は、上記本発明のリー ドフレームを用いたBGAタイプの樹脂封止型半導体装 置であって、リードフレームの外部端子部の表面に半田 等からなる外部回路と接続するための端子部を設けてお り、前記リードフレームは、ダイパッド部を有するもの で、且つ、半導体素子は、半導体素子の電極部(パッ ド)とインナーリード先端の第2面とが同じ方向を向く ようにして、ダイバッド上に、竜極部(バッド)例とは 反対側の面を接着材より固定され、電極部(パッド)は ワイヤにてインナーリード先端の第2面側と電気的に接 続されていることを特徴とするものである。

[0008]

【作用】本発明のリードフレームは、上記のような構成 にすることにより、本発明の、一層の多端子化に対応で きるBGAタイプの樹脂封止型半導体装置の作製を可能 とするものである。詳しくは、本発明のリードフレーム は、2段エッチング加工によりインナーリードの先端部 の厚さがリードフレーム素材の厚さよりも薄肉に外形加 工されたものであることより、即ち、図8、図9に示す ようなエッチング加工方法により、インナーリードの先 端部の厚さが素材の厚さよりも薄肉に外形加工すること ができ、インナーリードの狭ヒッテ化に対応できるもの としている。そして、リードフレームが、インナーリー ドと一体的に結合した外部回路と接続するための外部端 子部を、リードフレーム面に沿い二次元的に配列して設 けていることより、BGAタイプの半導体装置に対応で きるものとしている。そして、インナーリード全体をリ ードフレーム素材よりも薄肉にしていることにより、イ ンナーリード先端部の狭いピッチ化のみならず、インナ

さらに、リードフレームの、インナーリード先端部は、 断面形状が略方形で第1面、第2面、第3面、第4面の 4面を有しており、かつ第1面は薄肉部でない紫材の厚 さと同じ厚さの他の部分の一方の面と同一平面上にあっ て第2面に向かい合っており、第3面、第4面はインナ ーリードの内側に向かい凹んだ形状に形成されているこ とより、インナーリード先端部のワイヤボンデイング幅 に対し、強度的にも強いものとしている。またリードフ レームの外部端子部は、断面形状が略方形で4面を有し ており、1組の向かい合うた2面はリードフレーム素材。10 面上にあり、他の1組の2面はそれぞれ外部幾子邨の内 倒から外側に向かい凸状であることより、強度的にも充 分確保できるものとしている。又、本発明のBGAタイ プの樹脂封止型半導体装置は、上記本発明のリードスレ 一厶を用いたもので、上記のような構成により、一層の 多端子化に対応できるものとしている。

[0009]

[実施例] 本発明のリードフレームの実施例を挙げ図に 基づいて説明する。先ず、本発明のリードフレームの実 施例1を説明する。図1 (a) は本実施例1のリードフ 20 レームを示した概略平面図であり、図1 (b) は、図1 (a) の約1/4部分の拡大図で、図1 (c) はインナ - ーリード先端の断面図で、図 1 (d)は図1 (a)のA 1-A2における断面の一部を示した断面図である。 尚、図1(a)は概略図で、全体を分かり易くするため に図1 (b) に比べ、インナーリードの数、外部端子部 の数は少なくしてある。図中、100はリードフレー ム、110はインナーリード、110Aはインナーリー ド先端部、120は外部端子部、140はダムパー、1 5 0 は吊りパー、16 0 はフレーム (枠部) . 17 0 は 30 冶具孔である。本実施例1のリードフレームは、42% ニッケルー鉄合金を素材とし、図8に示すエッチング加 工方法により作製されたBGAタイプの半導体装置用の リードフレームであり、図1 (a) に示すように、イン ナーリード110に一体的に連結した外部翼子部120 をインナーリード形成菌 (リードフレーム面) に沿い二 次元的に配列しており、且つ、インナーリード先端部 1 10A部だけでなくインナーリード全体がリードフレー ム素材の厚さよりも薄肉に形成されている。外部端子部 120はリードフレーム素材の厚さに形成されている。 インナーリード110の厚さしは40μm、インナーリ ード部110以外の厚さし、は0.15mmでリードフ レーム素材の板厚のままである。また、インナーリード 先端部110Aのピッチは0.12mmと狭いピッチ で、半導体装置の多端子化に対応できるものとしてい る。インナーリードの先端部 l 10 A は、図 l (c)に 示すように、断面形状が略方形で4面を有しており、第 1面110Aaはリードフレーム素材面で、薄肉部でな

が、軽平坦状でワイヤボンデイィングし易い形状となっており、第3面110Ac、第4面110Adはインナーリードの内側へ向かい凹んだ形状をしており、第2面110Ab(ワイヤボンディング面)を狭くしても強度的に強いものとしている。外部端子部120は、図1

(d) に示すように、断面形状が略方形で4面を有して

おり、1組みの向かい合った2面120a、120bは 外部端子の内側から外側に向かい凸状である。また、図 1 (d) に示すように、インナーリード部110の断面 形状は、図1 (c) に示すインナーリード先端部110 Aの断面形状と同じ形状である。尚、本実施例リードフ レーム100においては、外部端子部120はダムパー 140と一体的に連結している。

(0010) 次いで、本発明のリードフレームの実施例2を説明する。図-2(a) は本実施例2のリードフレーム100A示した概略平面図であり、図2(b) は、図2(a) のの約1/4部分の拡大図で、図2(c)

(イ) はインナーリード先端の断面図で、図2 (c)

(ロ) は図1 (a) のC1-C2におけるインナーリー ド110の断面を示した断面図である。図2 (c)

(ハ) は図1 (a) のC1-C2における外部箱子部1 2.0 の新聞を示した断面図である。尚、図2 (a) は概 略図で、全体を分かり易くするために図2(b)に比 べ、インナーリードの数、外部端子部の数は少なくして ある。本実施例2のリードフレームも、42%ニッケル 一鉄合金を素材とし、図8に示すエッチング加工方法に より作製されたBGAタイプの半導体装置用のリードフ レームであり、図 2 (a) に示すように、インナーリー ド110に一体的に連結した外部端子部120をリード フレーム面に沿い二次元的配列してきるが、 実施例 1 の リードフレームとは異なり、インナーリード先端部11 0 A 部だけをリードフレーム 素材の厚さよりも薄肉に形 成されている。図2(c)(イ)に示すように、インナ ーリード先端部110Aの断面は、実施例1の場合とほ ぼ同じである。図2(c)(ロ)に示すように、実施例 Iのリードフレームとは異なり、半導体素子と電極部 (パッド) とワイヤポンディングにて接続するためポン ディングエリアを含むインナーリード先端部110A以 外は外部端子部120と同じくリードフレーム素材の原 さに形成されている。この為、インナーリード先端部1 110Aに比べ狭ピッチを得ることができない。 図 2 (c) (ハ) に示すように、外部端子部120の断面 は、実施例1のリードフレームと同様に、リードフレー ム素材の厚さに形成されている。尚、本実施例リードフ レーム100Aにおいても、外部端子部120はダムバ -140と一体的に連結している。

【0011】尚、実施例1及び実施例2のリードフレームは、直接図1 (a) や図2 (a) に示す形状にエッチ

ード先端部を連結部110Bにて固定した状態にエッチング加工した後、インナーリード110部を補強テーブ190で固定した(図3(b))後に、プレス等にて、半導体装置作製の際には不要の連結部110Bを除去して(図2(a))、形成した。尚、実施例2のリードフレームの場合には、インナーリード先端部をダイバッドに直接連結した状態にエッチング加工した後、不要部をカットしても良い。

【0012】実施例1のリードフレームのエッチング加 工方法を図8に基づして説明する。図8は、石上に示す。10 実施例1のリードフレームのエッチング加工方法を説明 するための各工程断面図であり、図1 (b).のAI-A 2部の断面部における製造工程図である。図8中、81 0はリードフレーム素材、820A、820Bはレジス トパターン、8-3 もは第一の開口部、840は第二の開 口部、850は第一の凹部、860は第二の凹部、87 0は平坦状面、880はエッチング抵抗層を示す。ま た. . 110はインナーリード、120は外部端子部で ある。先ず、42%ニッケルー鉄合金からなり、厚みが 0. 15 mmのリードフレーム素材 8 1 0 の両面に、 意 20 クロム酸カリウムを感光剤とした水溶性カゼインレジス トを塗布した後、所定のパターン版を用いて、所定形状 の第一の開口部830、第二の開口部840をもつレジ ストパターン8,20A、820Bを形成した。(図8) (a))

第一の開口部830は、後のエッチング加工において外部端子部の形状を形成するとともに、インナーリード形成領域におけるリードフレーム素材810をこの開口部からベタ状にリードフレーム素材よりも薄点にニニンでためのもので、レジストの第二の関口部840は、インナーリード部および外部端子部の形状を形成するためのものである。次いで、液温57°C、濃度48Be゚の塩化第二鉄溶液を用いて、スプレー圧2.5kg/cm′にて、レジストパターンが形成されたリードフレーム素材810の両面をエッチングし、ベタ状(平坦伏)に腐蝕された第一の凹部850の深さトがリードフレーム部材の1/3に選した時点でエッチングを止めた。(図8(b))

上記第1回目のエッチングにおいては、リードフレーム素材810の両面から同時にエッチングを行ったが、必ずしも両面から同時にエッチングする必要はない。少なくとも、インナーリード部形状を形成するための、所定形状の開口部をもつレジストバターン8208が形成された面側から腐蝕液によるエッチング加工を行い、腐蝕されたインナーリード部形成領域において、所定量エッチング加工し止めることができれば良い。本実施例のように、第1回目のエッチングにおいてリードフレーム素材810の両面から同時にエッチングする当中で一両面からエッチングすることにより、後述する第2回目のエ

エッチング抵抗層880を、レジストバターン820A 上全面に塗布する必要はないが、第一の凹部850を含 む一部にのみ盛布することは難しい為に、図8(c)に ボすように<u>、</u>第一の凹部850とともに、第一の開口部 830側全面にエッチンク抵抗層880を繁布した。本 実施例で使用したエッチング抵抗層 8 8 0 は、アルカリ 溶解型のワックスであるが、基本的にエッチング液に耐 性があり、エッチング時にある程度の柔軟性のあるもの が、好ましく、特に、上記ワックスに限定されず、UV 硬化型のものでも良い。このようにエッチング抵抗層 8 80をインナーリード先端部の形状を形成するためのバ ターンが形成された面側の腐蝕された第一の凹部850 に埋め込むことにより、後工程でのエッチング時に第一 の凹部850が腐蝕されて大きくならないようにしてい るとともに、高精細なエッチング加工に対しての機械的 な強度補強をしており、スプレー圧を高く(2.5 kg /c m'以上)とすることができ、これによりエッチン グが深さ方向に進行し易くなる。この後、第2回目のエ ッチングを行い、 凹状に腐蝕された第二の凹部860形 成面側からリードフレーム素材810をエッチングし、 貧通させ、インナーリード110および外部端子部12 0を形成した。(図8 (d))

第1回目のエッチング加工にて作製された、エッチング 形成面 870 は平坦であるが、この面を挟む 2 面はイン ナーリード側にへこんだ凹状である。次いで、洗浄、エ ッチング抵抗層 880 の除去、レジスト膜(レジストパ ターン 820 A、820 B)の除去を行い、インナーリ ード 110 および外部端子部 120 が加工された図 1 (a)に示すリードフレームを得た。エッチング抵抗層

(a) に示すリードフレームを得た。エッチング抵抗届 880とレジスト膜(レジストバターン820A、82 0B) の除去は水酸化ナトリウム水溶液により溶解除去 した。

【0013】上記図8に示すリードフレームのエッチング加工方法は図1(b)のA1-A2部の断面部における製造工程図を示したものであるが、図1(a)に示すインナーリード先端部110Aの形成も、図8に示したインナーリード110部の形成と同じようにして形成される。図8に示すエッチング加工方法によりインナーリード全体をリードフレーム素材よりも薄肉に外形加工す

化を可能とし、インナーリード先端以外の箇所においてもインナーリード間の狭間隔化を可能としている。特に、図1(c)に示すように、インナーリード先端の第1面110Aaを蔣内部以外のリードフレーム素材の厚さと同じ厚さの他の部分と同一面に、第2面110Abと対向させて形成し、且つ、第3面110Ac、第4面110Adをインナーリード側に凹伏にすることができる。

【0014】図2に示す、実施例2のリードフレームは、図8に示すエッチング加工方法において、一部を変 10 えることによっで作製することができる。即ち、インナーリード先端部110Aは図8に示すインナーリード部 110作成と同じく、リードフレーム素材810の厚さより罹肉化して形成し、インナーリード110の先端部以外は、図8に示す外部端子部120の作成と同じく、リードフレーム素材810と同じ厚さに形成することにより、インナーリード先端部のみをリードフレーム素材より罹肉に形成した実施例2のリードフレームをエッチング加工にて作製できる。

【0015】後述する実施例2の半導体装置のようにパ 20 ンプを用いて半導体素子をインナーリードの第2面11 0 b に搭載し、インナーリードと電気的に接続する場合には、第2面110bをインナーリード側に凹んだ形状に形成した方がパンプ接線の際の許容度が大きくなる為、図9に示すエッチング加工方法は、第1回目のエッチング工程までは、図8に示す方法と同じであるが、エッチング抵抗層880を第二の凹部860側に埋め込んだ後、第一の凹部850側から第2回目のエッチングを行い、質通させる点で異なっている。図9に示すエッチング加工方法によって得られたリードフレームのインナーリード先端を含めインナーリードの断面形状は、図5(b)に示すように、第2面110bがインナーリード側にへこんだ凹状になる。

 mまで微細加工可能となる。板厚 t を 3 0 μ m程度まで 前くし、平坦幅W 1 を 7 0 μ m程度とすると、インナー リード先端部ピッチ p が0 、1 2 mm程度まで 機細加工 ができるが、板厚 t 、平坦幅W 1 のとり方次第ではイン ナーリード先端部ピッチ p は更に狭いピッチまで作製が 可能となる。

【0017】次いで、本発明のBGAタイプの樹脂封止 型半導体装置の実施例を挙げ、図を用いて説明する。先 ず、本発明のBGAタイプの樹脂封止型半導体装置の実 施例1を挙げる。図4 (a) は、実施例1の樹脂封止型 半導体装置の断面図で、図4 (b)、図4 (c)は、そ れぞれ、インナーリード先端部および外部端子部の半導 体装置の厚み方向の断面図である: 図4中、200は半 導体装置、210は半導体素子、211は電極部(パッ ド)、220はワイヤ、240は封止用樹脂、250は 補強用テープ、26.0は絶縁性接着材、270は端子部 である。本実施例1の半導体装置は、上記実施例1のリ ードフレームを用いたBGAタイプの樹脂封止型半導体 装置であって、リードフレームの外部端子部120の表 面に半田からなる外部回路と接続するための端子部27 0を半導体装置の一面に二次元的に配列して設けてい る。本実施例1においては、半導体素子210は、電極 部 (パッド) 211例の面にて、インナーリード110 間に電極部211が収まるようにして、インナーリード 110の第1面110a側に絶縁性接着材260を介し て固定されており、電極部(パッド) 211はワイヤ2 20にてインナーリード110の第2面側1106と結 線されて電気的に接続されている。 本実施例1の半導体 装置は、半導体素子のサイズとほぼ同じ大きさに封止用 樹脂240にて樹脂封止されており、CSP (Chip Size Package)とも言える。また、ワイ ヤ220にて結線するインナーリード110の先端部が リードフレーム素材より薄肉に形成されていることよ り、半導体装置の薄型化にも対応できるものである。 【0018】本実施例1の半導体装置に用いられたリー ドフレームのインナーリード部110の断面形状は、図

【0018】本実施例1の半導体装置に用いられたリードフレームのインナーリード部110の断面形状は、シグマリ面(第2面)110Ab側の幅W1はほぼ平坦を対側の面110Aa(第1面)の幅W2より若干大で反対側の面110Aa(第1面)の幅W2より若干大でのなっており、W1、W2(約100μm)ともいっており、W1、W2(約100μm)としいっており、W1、W2(約100μm)としいっており、W1、W2(約100μm)としいっており、W1、W2(約100μm)となっており、第1面10Ac、第4面110Amがインナーリード側に凹んだ形伏であり、直つ、第110Amがインナーリード側に凹んだ形状であり、面がインナーリード側に凹んだ形状であり、第110Amがインナーリード側に凹んだ形状であり、面が出れているが、数2面110Abのどちらの形式による結束(ボンディング)が安定し、ボンディングし場すいものとなっているが、本実施例1のピームのように対し、本実施例1のピームのように対し、エスに関いているが、本実施例1のピームのように対し、本実施例1のドラーによる結束に対し、本実施例1の半導体素子(図示すいものとなっているが、本実施例1のように対し、アファールによる結束に対しているが、本実施例1のでは、アファールに対しているが、本実施例1のでは、アファールに対しているが、対しているが、表示に対しているが、表示に対しているが、対しているが、表示に対しいが、表示に対しているが、表示に対しまれば、表示に対しまれば、表示に対しているが、表示に対しまれば、表示に対しているが、表示に対しまれば、表示に対しまれば、表示に対しているが、表示に対しているが、表示に対しまれば、表示に対しないが、表示に対しているが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないるが、表示に対しないのはないるののではないるが、表示に対しないるののではないるののではないるののではないるのではないるのではないるのではないのではないるのではないのではないるのではないのではないるのではないのではないのではないのではないのではないるのではないのではないのではないのではないのではないるのではないのではないのではないのではないの

النسال كالمستان المستحداث

(8)

20

特開平9-8206

1.3

bはエッチング加工による平坦面(第2面)、110A aはリードフレーム素材面(第1面)、1020Aはワ イヤ、1021Aはめっき部である。尚、エッチング平 坦状面110Ab(第2面)がアラビの無い面であるた め、図10(ロ)の(a)の場合は、特に結線(ポンデ イング)適性が優れる。図10(ハ)は図13に示す加 工方法にて作製されたリードフレームのインナーリード 先端部1010Bと半導体素子(図示せず)との結果 (ポンディング)を示すものであるが、この場合もイン ナーリード先端部1010Bの両面は平坦ではあるが、 この部分の板厚方向の幅に比べ大きくとれない。また両 面ともリードフレーム素材面である為、結線(ボンディ ング) 適性は本実施例のエッチング平坦面より劣る。図 10 (二) はプレス (コイニング) によりインナーリー ド先端部を薄肉化した後にエッチング加工によりインナ ーリード先端部1010C、1010Dを加工したもの の、半導体条子(図示せず)との結線(ポンディング) を示したものであるが、この場合はプレス面側が図に示 すように平坦になっていないため、どちらの面を用いて 結線 (ボンデイング) しても、図10 (二) の (a)、 (b) に示すように結線 (ポンデイング) の際に安定性 が悪く品質的にも問題となる場合が多い。尚、1010 Abはコイニング面、1010Aaはリードフレーム素 材面である

【0019】次に、本発明のBGAタイプの樹脂封止型 半導体装置の実施例2を挙げる。図5 (a) は、実施例 2の樹脂封止型半導体装置の断面図で、図5 (b)、図 5 (c) は、それぞれインナーリード先端部および外部 端子部の、半導体装置の厚み方向の断面図である。図5 中、200は半導体装置、210は半導体素子、212 はバンプ:240は封止用樹脂、250は精強用テー プ、270は端子部である。本実施例2の半導体装置 は、42合金(42%ニッケルー鉄合金)からなるり、 15mm厚のリードフレーム素材を図9に示すエッチン グ加工方法により、図1 (a)、図1 (b) に示す上記 実施例1と同じ外観で、インナーリード全体をリードフ レームの素材より薄肉に形成したリードフレームを用い たBGAタイプの樹脂封止型半導体装置であって、リー ドフレームの外部端子部120の表面に半田からなる外 部回路と接続するための端子部270を半導体装置の一 面に二次元的に配列して設けている。 本実施例 2 におい ては、半導体素子210は、バンブ212を介してイン ナーリード110の先端で第2面110bと電気的に接 統している。尚、補強用テープ250はインナーリード 110の先端に近い一に設けられているが、リードフレ 一ムが薄く十分に強度が確保されない場合には、リード フレームの全面にわたり貼っても良い。

【0020】 本実施例2の半導体装置に用いられたリー ドフレームのインナーリード部110の断面形状は、図

平坦面110Ab側の幅W1Aはほぼ平坦で反対側の面 の幅W2Aより若干大きくなっており、W1A、W2A (約100μm) ともこの部分の板厚さ方向中部の嬉W Aよりも大きくなっている。 図10(イ) (b)に示す ようにインリーリード先端部の両面は広くなった断面形 状であり、第1面110Aaが平垣状で、第2面110 Abがインナーリード側に凹んだ形状をしており、且つ 第3面110Ac、110Adもインナーリード側に凹 んだ形状をしている為、第2面110Abにて安定して 10 パンブによる接続をし易いものとしている。

【00211尚、本実施例2の半導体装置においては、 図9に示すエッチング加工方法により作製されたリード フレームで、インナーリード全体がリードフレーム素材 よりも薄肉に形成されたものを用いており、図5(6) に示すように、インナーリード先端部を含めインナーリ ード110の第2面110 bがインナーリード先端側に 凹んだ形状で、パンプ接続の許容を大きくしている。

[0022]次に、本発明のBGAタイプの樹脂封止型 半導体装置の実施例3を挙げる。図6(a)は、実施例 3の樹脂封止型半導体装置の断面図で、図6(b). 図 6 (c) h、それぞれインナーリード先端部および外部 端子部の、半導体装置の厚み方向の断面図である。図6 中、200は半導体装置、210は半導体素子、211 はワイヤ、220はワイヤ、240は封止用樹脂、25 0は補強用テープ、260は導電性接着材、270は端 子部、280は保護枠部、290は接着材である。本実 施例3の半導体装置は、上記実施例1のリードフレーム にダイバッドを有するリードフレームを使用したBGA タイプの樹脂封止型半導体装置であって、リードフレー 30 ムの外部端子部120の表面に半田からなる外部回路と 接続するための端子部270を半導体装置の一面に二次 元的に配列して投けている。使用したリードフレーム は、実施例1の図8に示すエッチング加工方法により、 インナーリード全体およびダイパッド130をリードフ レーム業材よりも薄肉に形成したもので、ダイバッド 1 30とこれに関連する部分を除き、材質、外観等は実施 例1のリードフレームと同じである。本実施例3の半導 体装置においては、ダイバッド部130は、半導体素子 の電極部(パッド)211間に収まる大きさで、半導体 業子210は、半導体素子の電極部211側の面とイン ナーリード110の第2面110bとが同じ方向を向く ようにして、ダイバッド130上に、電極部(パンプ) 211側の面を導電性接着材260により固定され、電 極部 (パンプ) 211はワイヤにてインナーリード11 0の第2面110b倒と竜気的に接続されている。この ように構成することで実施例1あるいは後述する実施例 4より、半導体装置を薄型にすることができる。また、 ここで、導電性接着材を用いているのは、半導体素子が 発する熱をダイバッドを通じて放敗させるためである。

ドライン等を接続すれば、熱を効果的に放散できる。保護枠280は半導体装置の外周を頂うように接着材290を介して設けられているが、半導体装置が特に薄型となって強度が不十分である場合に役に立つもので、必ずしも必要ではない。このように、ダイバッドと半導体禁子とを導電接着材を介して接続することで、ダイバッドをグランドラインと接続した場合に放熱効果だけでなくノイズ対策にもなる。

【0023】次に、本発明のBGAタイプの側軸封止型 半導体装置の実施例4を挙げる。図7 (a)は、実施例 10 4の樹脂封止型半導体装置の断面図で、図7(b)、図 7 (c) は、それぞれインナーリード先端部および外部 端子部の、半導体装置のと厚み方向の断面図である。図 7中、200は半導体装置、210は半導体装置、21 1はワイヤ、220はワイヤ、240は封止用樹脂、2 50は補強用テープ、260は導電性接着材、270は 端子部である。本実施例4の半導体装置は、実施例3の 半導体装置と同じく、42%合金(42%ニッケルー鉄 合金)にて、図8に示すエッチング加工方法により、イ ンナーリード110全体およびダイパッド130を一ド 20 フレーム素材の厚さより薄肉状に作製したリードフレー ムを用いたBGAタイプの樹脂封止型半導体装置であ り、リードフレームの外部端子部120の表面に半田等 からなる外部回路と接続するための端子部270を設け ている。尚、ダイパッド130は実施例3に比べ大きく 半導体素子210と略同じ大きさである。半導体素子2 10は、半導体素子の電極部 (バッド) 211とインナ ーリード110の第2面110bとが同じ方向でmへよ うにして、ダイバッド130上に、電極部 (バッド) 2 11側とは反対側の面を導電接着材260により固定さ 30 れ、電極部(パッド)211はワイヤ220にてインナ ーリード110のの第2面110も側と電気的に接続さ れている。

【0024】上記、実施例1~実施例4の半導体装置は、いずれも、図8、図9に示されるような、2段エッチング加工方法を用い、少なくともインナーリード先端部をリードフレーム素材よりも薄肉に形成しており、従来の図12に示す、リードフレームをコア材として用いたBGAタイプの樹脂封止型半導体装置よりも、一層の多端子化に対応できるもので、同時に、インナーリード 40 先端部をリードフレーム素材よりも薄肉に形成していることにより、半導体装置の薄型化にも対応できるものである。

[0025]

【発明の効果】本発明のリードフレームは、上記のように、少なくともインナーリード先端部をリードフレーム素材の板厚より薄肉に2段エッチング加工によった設されたもので、外部端子部をリードフレーム面に沿い二次

厚さのままに外形加工したリードフレームを用いたBGAイブの半導体装置に比べ、一層の多端子化が可能なBGAタイプの樹脂封止型半導体装置の提供を可能とするものである。また、本発明のBGAタイプの樹脂封止型半導体装置は、上記のように、本発明のリードフレームを用いたもので、一層の多端子化と薄型化ができる、リードフレームを用いたBGAイブの半導体装置の提供を可能とするものである。

【図面の簡単な説明】

- 【図1】本発明リードフレームの実施例1の概略図
- 【図2】本発明リードフレームの実施例2の概略図
- 【図3】本発明リードフレームを説明するための図
- 【図4】 本発明のBGAタイプ半導体装置の実施例1の 断面図
- 【図 5】 本発明の B G A タイプ半導体装置の実施例 2 の 断面図
- 【図 6】 本発明の B G A タイプ半導体装置の実施例 3 の 断面図
- 【図7】本発明のBGAタイプ半導体装置の実施例4の 20 断面図
 - 【図8】 本発明のリードフレームの製造方法を説明する ための工程図
 - 【図 9】 本発明のリードフレームの製造方法を説明する ための工程図
 - 【図10】本発明のリードフレームの半導体素子との接続性を説明するための図
 - 【図11】従来のBGA半導体装置を説明するための図 【図12】従来のリードフレームを用いたBGAタイプ 半導体装置の概略図
- (6 【図13】従来のリードフレームの製造方法を説明する ための工程図
 - 【図14】 単層リードフレームとそれを用いた半導体装置の図

【符号の説明】

	100.100A	リードフレーム
	1 1 0	インナーリード
	1 1 0 A	インナーリード先端部
	1 2 0	外部端子部
	1 4 0	ダムバー
0	1 5 0	吊りバー
	1 6 0	フレーム (枠部)、
	1 7 0	治具孔
	2 0 0	半導体装置
	2 1 0	半導体素子
	2 1 1	電極部 (バッド)
	2 2 0	ワイヤ
	2 4 0	封止用樹脂
	2 5 0	補強用テーブ

```
( 10 )
                                                        特開平9-8206
                 17
                                                       18
8 1 0
                     リードフレーム素材
                                      1210
                                                          リードフレーム
820A, 820B
                     レジストパターン
                                      1211
                                                          ダイバッド
8 3 0
                     第一の開口部
                                      1212
                                                          インナーリード
8 4 0
                     第二の開口部
                                      1214
                                                          外部端子部
8 5 0
                     第一の凹部
                                      1 2 2 0
                                                          半導体素子
8 6 0
                     第二の凹部
                                      1221
                                                          竜極部 (パッド)
8 7 0
                     平坦状面
                                      1230
                                                          ワイヤ
880
                    エッチング抵抗層
                                      1240
                                                          封止樹脂
1010B. 1010C. 1010D
                          インナニリー
                                      1 2 6 0
                                                          絶縁フィルム
ド先端部
                                   10
                                      1310
                                                          リードフレーム素材
1020A. 1020B. 1020C
                                      1320
                                                          フオトレジスト
1021A. 1021B. 1021C
                         めっき部
                                      1 3 3 0
                                                         レジストバターン
1010Aa
                    リードフレーム素材面
                                      1 3 4 0
                                                          インナーリード
1010Ab
                    コイニング面
                                      1 4 0 0
                                                         半導体装置
1101
                    半導体素子
                                      1410 .
                                                         (単層) ードフレーム
1 1 0 2
                    基材
                                     1411
                                                         ダイバッド
1 1 0 .3
                    モールドレジン
                                      1412
                                                         インナーリード
1104.1104A
                    配線
                                      1412A
                                                         インナーリード先端部
1 1 0 5
                    ダイバッド
                                      1413
                                                         アウターリード
1 1 0 8
                    ボンデイングワイヤ
                                     1414
                                                         ダムバー
1106A
                    外部接統端子
                                      1 4 1 5
                                                         フレーム(枠)部
1118
                    めっき部
                                      1420
                                                         半導体素子
1 1 5 0
                    スルーホール
                                     1 4 2 1
                                                         電極部 (パッド)
1 1 5 1
                    熱電対ピア
                                     1430
                                                         ワイヤ
1200.1200A
                    半導体装置
                                     1 4 4 0
                                                         封止樹脂
              [図3]
                                                 (図4)
 (a)
             1104
                                   (a)
                                                      200
                                              210
  1 1 0
  110B
                                                211 220
   1.10
                                    (b)
 (b)
                                         1106
  1 3 0
                                    (c)
```


[図13]

[210]

Japanese Patent Laid-Open Publication No. Heisei 9-8206

[TITLE OF THE INVENTION]

LEAD FRAME AND BGA TYPE

RESIN ENCAPSULATED SEMICONDUCTOR DEVICE

[CLAIMS]

5

10

15

20

25

1. A lead frame for a BGA type semiconductor device shaped to have a thickness smaller than that of a lead frame blank at tips of inner leads thereof in accordance with a two-step etching process, comprising:

the inner leads;

outer terminal portions each integrally connected to an associated one of the inner leads, the outer terminal portions being adapted to be electrically connected to an external circuit and arranged in a two-dimensional fashion on a surface of the lead frame blank where the inner leads are formed;

the tips of the inner leads each having a polygonal cross-sectional shape including four faces respectively provided with a first surface, a second surface, a third surface, and a fourth surface, the first surface being opposite to the second surface and flush with one surface of the remaining portion of the inner lead having the same thickness as that of the lead frame blank, and the third

20

25

and fourth surfaces each having a concave shape depressed toward the inside of the inner lead; and

the outer terminal portions each having a polygonal cross-sectional shape including four faces respectively provided with a pair of opposite surfaces being flush with respective surfaces of the lead frame blank and another pair of opposite surfaces having a convex shape protruded toward the outside of the outer terminal portion.

- 2. The lead frame according to claim 1, wherein each of the inner leads is shaped to have a thickness smaller than that of the lead frame blank at the entire portion thereof.
- 3. A BGA type resin encapsulated semiconductor device fabricated using a lead frame according to claim 1 or 2, comprising:

terminal portions made of solder and arranged on a surface of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit;

a semiconductor chip fixedly attached, at a surface thereof formed with electrode portions, to the first surfaces of the inner leads by an insulating adhesive interposed therebetween in such a fashion that the

electrode portions are received between facing ones of the inner leads;

the electrode portions each being electrically connected to the second surface of an associated one of the inner leads by a wire.

- 4. A BGA type resin encapsulated semiconductor device fabricated using a lead frame according to claim 1 or 2, comprising:
- terminal portions made of solder and arranged on a surface of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit; and
- a semiconductor chip electrically connected to the second surfaces of the inner leads by bumps, respectively.
- 5. The BGA type resin encapsulated semiconductor device according to claim 4, wherein the second surface of the tip of each inner lead has a concave shape depressed toward the inside of the inner lead.
 - 6. A BGA type resin encapsulated semiconductor device fabricated using a lead frame according to claim 1 or 2, comprising:
- 25 terminal portions made of solder and arranged on a

10

15

surface of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit;

the lead frame including a die pad having the same thickness as that of the inner lead tip and a size allowing the die pad to be received between facing ones of electrode portions of a semiconductor chip;

the semiconductor chip fixedly attached, at a surface thereof formed with the electrode portions, to the die pad by an adhesive in such a fashion that the surface formed with the electrode portions directs in the same direction as the second surfaces of the inner lead tips; and

the electrode portions each being electrically connected to the second surface of an associated one of the inner leads by a wire.

- 7. A BGA type resin encapsulated semiconductor device fabricated using a lead frame according to claim 1 or 2, comprising:
- terminal portions made of solder and arranged on a surface of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit;

the lead frame including a die pad having the same 25 thickness as that of the inner lead tip and a size allowing

M-5599 US591549 v1 9-8206

the die pad to be received between facing ones of electrode portions of a semiconductor chip;

the semiconductor chip fixedly attached, at a surface thereof opposite to a surface formed with the electrode portions, to the die pad by an adhesive in such a fashion that the electrode portions direct in the same direction as the second surfaces of the inner lead tips; and

the electrode portions each being electrically connected to the second surface of an associated one of the inner leads by a wire.

[DETAILED DESCRIPTION OF THE INVENTION] [FIELD OF THE INVENTION]

The present invention relates to a lead frame member for a surface-mounting type resin encapsulated semiconductor device in which a lead frame is used as a core to form a circuit, and more particularly to a method for fabricating a lead frame member for BGA type semiconductor devices.

20

25

10

[DESCRIPTION OF THE PRIOR ART]

Recently, semiconductor devices have been developed to have a higher integration degree and a higher performance in pace with the tendency of electronic appliances to have a high performance and a light, thin,

10

15

20

25

simple, and miniature structure. A representative example of such semiconductor devices is an ASIC of LSI. In such a highly integrated semiconductor device having a higher performance, a rapid signal processing is conducted. Due to such a rapid signal processing, the inductance generated in the package may exceed a negligible level. In order to reduce the inductance in the package, proposals of increasing the number of power source terminals and ground terminals or reducing a substantial inductance have been In accordance with such proposals, an increase in the integration degree and performance of a semiconductor device results in an increase in the total number of outer terminals (pins). For this reason, semiconductor devices should have a multipinned structure using a increased number of pins. Among semiconductor devices such as ASICs, representative examples of which are multipinned in particular, gate arrays or ICs, standard cells, microcomputers, or DSPs (Digital Signal Processors), those using lead frames include surface-mounting packages such as QFPs (Quad Flat Packages). Currently, QFPs up to a 300-pin class are practically being used. Such a QFP uses a single-layered lead frame 1410 shown in Fig. 14b. cross-sectional structure of this QFP is shown in Fig. 14a. As shown in Fig. 14a, a semiconductor chip 1420 is mounted on a die pad 1411. Terminals (electrode pads) 1421 of the

10

15

20

25

semiconductor chip 1420 are connected with tips 1412A of inner leads 1412 plated with, for example, gold, by means 1430, respectively. wires Thereafter, а encapsulating process is conducted, thereby forming a resin encapsulate 1440. Dam bars are then partially cut. Finally, outer leads 1413 are bent to have a gull-wing Thus, the fabrication of the QFP is completed. shape. This QFP has a structure in which the outer leads adapted to be connected to an external circuit are simultaneously arranged at the four sides of the package. That is, such a QFP is one developed to cope with a requirement for an increase in the number of terminals (pins). In the above case, the single-layered lead frame 1410 used is typically fabricated by processing a metal plate, made of cobalt, 42 ALLOY (42% Ni/Fe alloy), or a copper-based alloy exhibiting a high conductivity and a high strength, in accordance with an etching process or a stamping process to have a shape shown in Fig. 14b. In Fig. 14b, the portion (1) is a plan view of the single-layered lead frame, and the portion (\Box) is a cross sectional view taken along the line F1 - F2 of the portion (1).

However, semiconductor devices recently developed to have a higher signal processing speed and a higher performance (function) have inevitably involved use of an increased number of terminals. In the case of QFPs, use of

10

15

20

25

an increased number of terminals may be achieved by reducing the pitch of outer terminals. However, where the pitch of outer terminals is reduced, the outer terminals should have a correspondingly reduced width. This results in a degradation in the strength of the outer terminals. As a result, there may be problems in regard to the positional accuracy or the accuracy of flatness in the terminal shaping process for processing the outer terminals to have a gull-wing shape. In QFPs, the pitch of the outer leads is further reduced from 0.4 mm to 0.3 mm. Due to such a reduced outer lead pitch, it is difficult to achieve the mounting process. This causes a problem in that a sophisticated board mounting technique should be realized.

In order to avoid problems involved in conventional QFPs in regard to the mounting efficiency and mounting possibility, a plastic package semiconductor device called a "BGA (Ball Grid Array) semiconductor package" has been developed which is a surface-mounting package having solder balls as outer terminals thereof. The BGA semiconductor package is a surface-mounting semiconductor device (plastic package) in which outer terminals thereof are comprised of solder balls arranged in a matrix array on a package. In order to increase the number of input/output surface. terminals in such a BGA semiconductor package, semiconductor chip is mounted on one surface of a double-

10

15

20

25

sided circuit board. To the other surface of the circuit board, spherical solder balls are attached as electrodes for outer terminals. The electrodes for outer terminals are electrically conducted with the semiconductor chip via through holes, respectively. Since the spherical solder balls are arranged in the form of an array, it is possible to increase the terminal pitch, as compared semiconductor devices using a lead frame. Accordingly, it is possible to achieve an increase in the number of input/output terminals without any difficulty in mounting semiconductor devices. The above mentioned BGA semiconductor package typically has a structure as shown in Fig. 11a. Fig. 11b is a view taken toward the lower surface of a blank shown in Fig. 11a. Fig. 11c shows through holes 1150. This BGA semiconductor package includes a die pad 1105 and bonding pads 1110 provided at one surface of a flat blank (resin plate) 1102 made of, for example, BT resin (bismalleid-based resin) to exhibit an anti-heat dissipation property. The die pad 1105 is adapted to mount a semiconductor chip 1101 thereon. bonding pads 1110 are electrically connected with semiconductor chip 1101 by means of bonding wires 1108, respectively. The BGA semiconductor package also includes outer connecting terminals 1106 provided at the other surface of the blank 1102. The outer connecting terminals

M-5599 US591549 v1 9-8206

5

10

15

1106 are comprised of solder balls arranged in the form of a lattice or in a zig-zag fashion to electrically and physically connect the resulting semiconductor device to an external circuit. The bonding pads 1110 are electrically connected to the outer connecting terminals 1106 by means of wires 1104, through holes 1150, and wires 1104A, respectively. However, such a BGA semiconductor package has a complex configuration in that the blank 1102 is formed at both surfaces thereof with the circuits adapted to connect the semiconductor chip mounted on the BGA semiconductor package with the wires and electrodes, as outer terminals, adapted to allow the semiconductor package to be mounted on a printed circuit board after being configured into a semiconductor device. Furthermore, a short circuit may occur in the through holes 1150 due to a thermal expansion of the resin. Thus, the above mentioned BGA semiconductor package involves various problems in regard to manufacture and reliance.

In order to simplify the fabrication process of semiconductor packages while avoiding a degradation in reliability, various proposals have recently been made in which a circuit having a lead frame as a core thereof is formed, as different from the structure shown in Figs. 11a to 11c. In BGA semiconductor packages using such a lead frame, holes are perforated at areas respectively

10

15

corresponding to the outer terminal portions 1214 of the lead frame 1210. The lead frame 1210 is fixedly attached insulating film 1260. Such a structure illustrated in Fig. 12a. A similar structure is shown in Conventionally, the lead frame used in BGA Fig. 12b. semiconductor packages adapted to use such a lead frame is fabricated using an etching process as shown in Figs. 13a Inner and outer terminal portions 1212 and 1214 to 13e. are formed to have the same thickness as that of a lead frame blank used. The etching process illustrated in Figs. 13a to 13e will now be described in brief. First, a thin plate (a lead frame blank 1310) made of a copper alloy or a nickel-copper alloy containing 42% Ni to have a thickness of about 0.25 mm is sufficiently cleaned. Thereafter, a photoresist 1320 such as a water-soluble casein resist using potassium dichromate as a sensitive agent uniformly coated over both surfaces of the thin plate (Fig. 13b).

Subsequently, the resist films are exposed to highly20 pressurized murcury while using a mask formed with a desired pattern, and then developed using a desired developing solution, thereby forming resist patterns 1330 (Fig. 13c). If necessary, an additional process such as a film hardening process or a cleaning process is then conducted. An etching solution containing a ferric

M-5599 US591549 v1 9-8206

chloride solution as a principal component thereof is sprayed onto the thin plate (lead frame blank 1310), thereby causing the thin plate to be etched to have through holes having a desired shape and size (Fig. 13d).

5 The remaining resist films are then removed (Fig. 13e). After the removal of the resist films, the resulting structure is cleaned to obtain a desired lead frame. the etching process is completed. The lead frame obtained after the etching process is then subjected to a silver plating process at desired regions thereof. 10 Following processes such as a cleaning process and a drying process, the inner lead portions of the lead frame are subjected to a tapping process using a polyimide-based adhesive tape for their fixing. If necessary, a bending process for tab bars 15 and a down-setting process for the die pad are conducted. In the etching process shown in Fig. 13a to 13e, however, the thin plate is etched in both the direction of the thickness and directions perpendicular to the direction of the thickness. For this reason, there is a limitation in the miniaturization of inner lead pitches of lead frames. 20

[SUBJECT MATTERS TO BE SOLVED BY THE INVENTION]

As described above, BGA type resin encapsulated semiconductor devices using a lead frame as a core thereof can have an increased pitch of outer terminals adapted to

25

M-5599 US591549 v1 9-8206

be connected to an external circuit while achieving an easy mounting for semiconductor devices, thereby allowing an increase in the number of input and output terminals, as compared to semiconductor packages using a single-layered lead frame shown in Fig. 14b while having outer terminals having the same structure as those of the BGA type semiconductor packages. However, there has also growing demand for an increase in the number of terminals semiconductor packages. To this end, a reduced pitch of inner leads has been essentially required. Consequently, it is necessary to provide schemes capable of solving such a requirement. The present invention is adapted to solve the above mentioned requirement. In accordance with the present invention, it is possible to use an increased number of terminals. The present invention is adapted to provide a BGA type semiconductor device in which a circuit using a lead frame as its core is formed. present invention is adapted to provide a lead frame used to fabricate the above mentioned semiconductor device.

20

25

5

10

15

[MEANS FOR SOLVING THE SUBJECT MATTERS]

The lead frame of the present invention is shaped to have a thickness smaller than that of a lead frame blank at tips of inner leads thereof in accordance with a two-step etching process. This lead frame is characterized in that

10

15

20

25

it comprises: inner leads; outer terminal portions each integrally connected to an associated one of the inner leads, the outer terminal portions being adapted to be electrically connected to an external circuit and arranged in a two-dimensional fashion on a surface of the lead frame blank where the inner leads are formed; the tips of the inner leads each having a polygonal cross-sectional shape including four faces respectively provided with a first surface, a second surface, a third surface, and a fourth surface, the first surface being opposite to the second surface and flush with one surface of the remaining portion of the inner lead having the same thickness as that of the lead frame blank, and the third and fourth surfaces each having a concave shape depressed toward the inside of the inner lead; and the outer terminal portions each having a polygonal cross-sectional shape including four respectively provided with a pair of opposite surfaces being flush with respective surfaces of the lead frame blank and another pair of opposite surfaces having a convex shape protruded toward the outside of the outer terminal The present invention is also characterized by a BGA type resin encapsulated semiconductor device fabricated using the lead frame of the present invention comprising: terminal portions made of solder and arranged on a surface of the lead frame where the outer terminal

10

15

20

25

portions are formed, the terminal portions serving to be connected to an external circuit; a semiconductor chip fixedly attached, at · a surface thereof formed with electrode portions, to the first surfaces of the inner leads by an insulating adhesive interposed therebetween in such a fashion that the electrode portions are received between facing ones of the inner leads; the electrode portions each being electrically connected to the second surface of an associated one of the inner leads by a wire. Also, the present invention is characterized by a BGA type resin encapsulated semiconductor device fabricated using lead frame of the present invention comprising: terminal portions made of solder and arranged on a surface of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit; and a semiconductor chip electrically connected to the second surfaces of the inner leads by bumps, respectively. This BGA type resin encapsulated semiconductor device is also characterized in that the second surface of the tip of each inner lead has a concave shape depressed toward the inside of the inner lead. The present invention is further characterized by a BGA type. resin encapsulated semiconductor device fabricated using the lead of the present invention comprising: frame terminal portions made of solder and arranged on a surface

10

15

20

25

of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit; the lead frame including a die pad having the same thickness as that of the inner lead tip and a size allowing the die pad to be received between facing ones of electrode portions of a semiconductor chip; semiconductor chip fixedly attached, at a surface thereof formed with the electrode portions, to the die pad by an adhesive in such a fashion that the surface formed with the electrode portions directs in the same direction as the second surfaces of the inner lead tips; and the electrode portions each being electrically connected to the second surface of an associated one of the inner leads by a wire. The present invention is also characterized by a BGA type resin encapsulated semiconductor device fabricated using the lead frame of the present invention comprising: terminal portions made of solder and arranged on a surface of the lead frame where the outer terminal portions are formed, the terminal portions serving to be connected to an external circuit; the lead frame including a die pad having the same thickness as that of the inner lead tip and a size allowing the die pad to be received between facing ones of electrode portions of а semiconductor chip; semiconductor chip fixedly attached, at a surface thereof opposite to a surface formed with the electrode portions,

M-5599 US591549 v1 9-8206

to the die pad by an adhesive in such a fashion that the electrode portions direct in the same direction as the second surfaces of the inner lead tips; and the electrode portions each being electrically connected to the second surface of an associated one of the inner leads by a wire.

[FUNCTIONS]

The lead frame of the present invention is fabricated using a two-step etching process in such a fashion that it has a thickness smaller than that of a lead frame blank 10 used at its inner lead tips. In particular, the present invention makes it possible to fabricate a lead frame having a thickness smaller than that of a lead frame blank at tips of inner leads thereof in accordance with a two-15 step etching process. That is, it is possible, in accordance with the present invention, to fabricate a lead frame having a thickness smaller than that of a lead frame blank at tips of inner leads thereof in accordance with an etching process shown in Figs. 8 or 9, thereby being 20 capable of achieving a reduction in the pitch of inner In accordance with the present invention, it is also possible to provide a BGA type resin encapsulated semiconductor device capable of achieving use increased number of terminals by arranging outer terminal 25 portions in a two-dimensional fashion on a lead frame

10

15

20

25

The present invention also achieves a reduction in the pitch of the inner leads as well as a reduction in the tip width of the inner leads by allowing the inner leads to have a thickness smaller than that of the lead frame blank. The tip of each inner lead has a polygonal cross-sectional shape including four faces respectively provided with a first surface, a second surface, a third surface, and a fourth surface. The first surface is opposite to the second surface and flush with one surface of the remaining portion of the inner lead having the same thickness as that of the lead frame blank. The third and fourth surfaces have a concave shape depressed toward the inside of the inner lead. Accordingly, an increase in strength is obtained with respect to the wire bonding width of the inner lead tips. Each outer terminal portion has a polygonal cross-sectional shape including four respectively provided with a pair of opposite surfaces being flush with respective surfaces of the lead frame blank and another pair of opposite surfaces having a convex shape protruded toward the outside of the outer terminal Accordingly, the outer terminal portions have a portion. sufficient strength. By virtue of the lead frame of the present invention having the above mentioned structure, the BGA type resin encapsulated semiconductor device of the present invention can have an increased number

M-5599 US591549 v1 9-8206

terminals.

[EMBODIMENTS]

Hereinafter, embodiments of the present invention

will be described in conjunction with the annexed drawings.

First, a lead frame according to a first embodiment of the present invention will be described. Fig. la is a plan view schematically illustrating the lead frame according to the first embodiment of the present invention. Fig. 1b is an enlarged view corresponding to about 1/4 portion of Fig. la. Fig. 1c is a cross-sectional view illustrating tips of inner leads. Fig. 1d is a cross-sectional view partially taken along the line A1 - A2 of Fig. 1a.

the easy understanding of the illustrated structure, Fig. 1a, which is a schematic view, illustrates 15 a reduced number of inner leads and a reduced number of outer terminal portions, as compared to Fig. 1b. figures, the reference numeral 100 denotes a lead frame, 110 inner leads, 110A tips of the inner leads, 120 outer 20 terminal portions, 140 dam bars, 150 tab bars, 160 a frame portion, and 170 die holes. The lead frame according to the first embodiment is made of a nickel-copper alloy containing 42% Ni. This lead frame is fabricated in accordance with an etching process shown in Fig. 8 so that 25 it is used for BGA type semiconductor devices. As shown in

10

15

20

25

Fig. 1a, outer terminal portions 120, each of which integrally connected to an associated one of inner leads 110, are arranged in a two-dimensional fashion on a surface where the inner leads are formed, that is, a lead frame The inner leads 110 has a thickness smaller than surface. that of a blank for the lead frame at its entire portion including tips 110A. The outer terminal portions 120 have the same thickness as that of the lead frame blank. The inner leads 110 have a thickness of 40 μm whereas the portions of the lead frame other than the inner leads 110 have a thickness of 0.15 mm corresponding to the thickness of the lead frame blank. The tips 110A of the inner leads have a small pitch of 0.12 mm so as to achieve an increase in the number of terminals for semiconductor devices. shown in Fig. 1c, the tip 110A of each inner lead has a substantially polygonal cross-sectional shape having four faces. The first face denoted by the reference numeral 110Aa corresponds to a surface of the lead frame blank. That is, the first face 110Aa is flush with one surface of an associated one of the outer terminal portions 120 involving no reduction in thickness. The second face denoted by the reference numeral 110Ab is a surface etched, but having a substantially flat profile, so as to allow an easy wire boding thereon. The third and fourth faces 110Ac and 110Ad have a concave shape depressed toward the inside

10

of the associated inner lead, respectively. This structure exhibits a high strength even though the second face (wire bonding surface) 110Ab is narrow. Each outer terminal portion 120 has a substantially polygonal cross-sectional shape having four faces, as shown in Fig. 1d. A pair of opposite faces 120a and 120b have a convex shape protruded toward the outside of the associated outer terminal portion, respectively. As shown in Fig. 1d, each inner lead 110 has a cross-sectional shape corresponding to that of its tip 110A shown in Fig. 1c. In the case of the lead frame 100 according to this embodiment, the outer terminal portions 120 are integrally connected to dam bars 140.

Now, a lead frame according to a second embodiment of the present invention will be described. Fig. 2a is a plan 15 view schematically illustrating the lead frame, denoted by reference numeral 100a, according to the embodiment of the present invention. Fig. 2b is enlarged view corresponding to about 1/4 portion of Fig. 1a. Fig. 2c(1) is a cross-sectional view illustrating tips 20 of inner leads. Fig. 2c(2) is a cross-sectional view partially taken along the line C1 - C2 of Fig. 2b, illustrating the cross sections of the inner leads. Fig. 2c(3) is a cross-sectional view partially taken along the line C1 - C2 of Fig. 2b, illustrating the cross sections of 25 the outer terminal portions 120. For the

10

15

20

25

understanding of the illustrated structure, Fig. 2a, which is a schematic view, illustrates a reduced number of inner leads and a reduced number of outer terminal portions, as compared to Fig. 2b. Similarly to the first embodiment, the lead frame according to the second embodiment is made of a nickel-copper alloy containing 42% Ni. frame is fabricated in accordance with an etching process in Fig. 8 so that it is used for BGA type shown semiconductor devices. As shown in Fig. 2a, outer terminal portions 120, each of which is integrally connected to an associated one of inner leads 110, are arranged in a twodimensional fashion on a lead frame surface. As different from the first embodiment, the inner leads 110 of the second embodiment has a thickness smaller than that of a blank for the lead frame only at its tips 110A. As shown in Fig. 2c(1), the tip 110A of each inner lead has a cross-sectional shape substantially same as that of the first embodiment. The entire portion of each inner lead, except for a portion corresponding to a bonding region where an electrode portion (pad) is wire-bonded to a semiconductor chip for the connection therebetween, has the same thickness as that of the lead frame blank, similarly to the outer terminal portions 120, as shown in Fig. $2c(\square)$. For this reason, the above mentioned portion of each inner lead cannot have a small pitch as in the tip.

M-5599 US591549 v1 9-8206

5

10

15

20

25

As shown in Fig. 2c(/\), each outer terminal portion 120 has a cross section with the same thickness as that of the lead frame blank, as in the lead frame of the first embodiment. Also, in the case of the lead frame 100A according to this embodiment, the outer terminal portions 120 are integrally connected to dam bars 140.

Where either the lead frame of the first embodiment or the lead frame of the second embodiment may be easily twisted at its inner leads 110 when it is formed into the shape of Fig. 1 or 2 in accordance with an etching process. To this end, the lead frame is subjected to an etching process in a state in which the tips of the inner leads are fixed together by means of connecting portions 110B. After completion of the etching process, the inner leads 110 are fixedly held by reinforcing tapes 190 (Fig. 3b). semiconductor device is fabricated using the lead frame, those fixing members are removed using a press or the like (Fig. 2a). In the case of the lead frame according to the second embodiment, it can be subjected to the etching process under the condition in which the tip of each inner lead is directly connected to the die pad. In this case, unnecessary portions of the lead frame are cut off after the etching process.

A method for etching the lead frame of the first embodiment will now be described in conjunction with Figs.

10

15

20

25

8a to 8e. Figs. 8a to 8e are cross-sectional views respectively illustrating sequential steps of the etching process for the lead frame of the first embodiment shown in In particular, the cross-sectional views of Figs. 8a to 8e correspond to a cross section taken along the line Al - A2 of Fig. 1b, respectively. In Figs. 8a to 8e, the reference numeral 810 denotes a lead frame blank, 820A and 820B resist patterns, 830 first openings, 840 second openings, 850 first concave portions, 870 flat surfaces, and 880 an etch-resistant layer, respectively. Also, the reference numeral 110 denotes inner leads. and the reference numeral 120 denotes outer terminal portions. First, an water-soluble casein resist using potassium dichromate as a sensitive agent is coated over both surfaces of a lead frame blank 810 made of a nickel-copper alloy containing 42% Ni to have a thickness of about 0.15 Using desired pattern plates, the resist films are patterned to form resist patterns 820A and 820B having first openings 830 and second openings 840, respectively (Fig. 8a).

The first openings 830 are adapted to not only form a desired shape for outer terminal portions in a subsequent process, but also to allow the lead frame blank 810 to be etched in accordance with the pattern shape of the first openings to have a reduced thickness at inner lead forming

M-5599 US591549 v1

regions. The second openings 840 are adapted to form desired shapes of inner leads and outer terminal portions. Thereafter, both surfaces of the lead frame blank 810 formed with the resist patterns are etched using a 48 Be ferric chloride solution of 57©C at a spray pressure of 2.5 kg/cm². The etching process is terminated at the point of time when first recesses 850 etched to have a flat etched bottom surface have a depth h corresponding to 1/3 of the thickness of the lead frame blank (Fig. 8b).

Although both surfaces of the lead frame blank 810 are simultaneously etched in the primary etching process, it is unnecessary to simultaneously both surface of the lead frame blank 810. For instance, an etching process may be conducted at the surface of the lead frame blank formed with the resist pattern 820B having openings of a desired shape to form at least a desired shape of the inner leads using an etchant solution. In this case, the etching process is terminated after obtaining a desired etching depth at the etched inner lead forming regions. The reason why both surfaces of the lead frame blank 810 simultaneously etched, as in this embodiment, is to reduce the etching time taken in a secondary etching process as described hereinafter. The total time taken for the primary and secondary etching processes is less than that taken in the case of etching only one surface of the lead

10

15

20

25

M-5599 US591549 v3

5

frame blank on which the resist pattern 820B is formed. Subsequently, the surface provided with the first recesses 850 respectively etched at the first openings 830 is entirely coated with an etch-resistant hot-melt wax (acidic wax type MR-WB6, The Inctec Inc.) by a die coater to form an etch-resistant layer 880 so as to fill up the first recesses 850 and to cover the resist pattern 820A (Fig. 8c).

It is unnecessary to coat the etch-resistant layer 880 over the entire portion of the surface provided with 10 the resist pattern 820A. However, it is preferred that the etch-resistant layer 880 be coated over the entire portion of the surface formed with the first recesses 850 and first openings 830, as shown in Fig. 8c, because it is difficult 15 to coat the etch-resistant layer 880 only on the surface portion including the first recesses 850. Although the hot-melt wax employed in this embodiment an alkali-soluble wax, any suitable wax resistant to the etching action of the etchant solution and remaining 20 somewhat soft during etching may be used. A wax for forming the etch-resistant layer 880 is not limited to the aforementioned wax, but may be a wax of a UV-setting type. Since each first recess 850 etched by the primary etching process at the surface formed with the pattern adapted to 25 form a desired shape of the inner lead tip is filled up

10

1.5

with the etch-resistant layer 880, it is not further etched the following secondary etching process. etch-resistant layer 880 also enhances the mechanical strength of the lead frame blank for the second etching process, thereby enabling the second etching process to be conducted while keeping a high accuracy. It is also possible to enable a second etchant solution to be sprayed at an increased spraying pressure, for example, 2.5 kg/cm or above, in the secondary etching process. The increased spraying pressure promotes the progress of etching in the direction of the thickness of the lead frame blank in the secondary etching process. Then, the lead frame blank is subjected to a secondary etching process. Ιn this secondary etching process, the lead frame blank 810 is etched at its surface formed with second recesses 860 to completely perforate the second recesses 860, thereby forming inner leads 110 and outer terminal portions 120 (Fig. 8d).

primary etching process is flat. However, both side surfaces of each recess positioned at opposite sides of the bottom surface 870 have a concave shape depressed toward the inside of the inner lead. Then, the lead frame blank is cleaned. After completion of the cleaning process, the etch-resistant layer 880, resist films (resist patterns)

10

15

20

25

820A and 820B) are sequentially removed. Thus, a lead frame having a structure of Fig. 1a formed with the inner leads 110 and outer terminal portions 120 is obtained. The removal of the etch-resistant layer 880 and resist films (resist patterns 820A and 820B) is achieved using a sodium hydroxide solution serving to dissolve them.

Although the lead frame etching method of Figs. 8a to 8e correspond to a cross section taken along the line A1 -A2 of Fig. 1b, respectively, the inner lead tips 110A of Fig. 1a may be formed to have the same shape as that of the inner leads 110 shown in Fig. 8. Since the entire portion of each inner lead is formed to have a thickness smaller than that of the lead frame blank in accordance with the etching process shown in Fig. 8, it is possible to obtain a reduced pitch of the inner lead tips. It is also possible to allow the inner leads to have a reduced pitch at their portions other than their tips. In particular, it is possible to provide a structure in which the first surface 110Aa of the inner lead tip can be flush with the lead frame blank portions having the same thickness as that of the lead frame blank, except for the lead frame blank portions having a reduced thickness, while being opposite to the second surface 110Ab, as shown in Fig. 1c. In this case, the third and fourth surfaces 110Ac and 110Ad may have a concave shape depressed toward the inside of the

M-5599 US591549 vl 9-8206

inner lead.

5

10

15

20

25

The lead frame of the second embodiment shown in Figs. 2a to 2e can be fabricated using an eaching method partially modified from that of Figs. 8a to 8e. That is, the tip 110A of each inner lead is formed to have a thickness smaller than that of the lead frame blank 810 using the same method as that shown in Figs. 8a to 8e and used for the fabrication of the inner leads 110. remaining portions of the lead frame except for the inner lead tips are formed to have the same thickness as that of the lead frame blank 810 using the same process as used in the formation of the outer terminal portions 120 shown in Figs. 8a to 8e. Thus, the lead frame of the second embodiment, in which only the inner lead tips have a thickness smaller than that of the lead frame blank, can be fabricated using an etching process.

Where a semiconductor chip is mounted on the second surfaces 110b of the inner leads by means of bumps for an electrical connection therebetween, as in a semiconductor device according to a second embodiment as described hereinafter, an increased tolerance for the connection by bumps is obtained when the second surface 110b has a concave shape depressed toward the inside of the inner lead. To this end, an etching method shown in Figs. 9a to 9e is used in this case. The etching method shown in Figs.

M-5599 US591549 v1 9-8206

5

10

15

20

25

9a to 9e is the same as that of Figs. 8a to 8e in association with its primary etching process. After completion of the primary etching process, the etcning method is conducted in a manner different from that of the etching method of Figs. 8a to 8e in that the second etching process is conduced at the side of the first recesses 850 after filling up the second recesses 860 by the etch-resist layer 880, thereby completely perforating the second recesses 860. The cross section of each inner lead, including its tip, formed in accordance with the etching method of Figs. 9a to 9e, has a concave shape depressed toward the inside of the inner lead at the second surface 110b, as shown in Fig. 5.

The etching method in which the etching process is conducted at two separate steps, respectively, as in that of Figs. 8a to 8e or 9a to 9e, is generally called a "two-step etching method". This etching method is advantageous in that a desired fineness can be obtained. The etching method used to fabricate the lead frame 110 of the first embodiment shown in Figs. 1a to 1d or the lead frame of the second embodiment shown in Figs. 2a to 2c involves the two-step etching method and the method for forming a desired shape of each lead frame portion while reducing the thickness of each pattern formed. In particular, the etching method makes it possible to achieve a desired

In accordance with the method illustrated in fineness. Figs. 8a to 8e or Figs. 9a to 9e, the fineness of the tip of each inner lead formed by this method is dependent on the thickness of the inner lead tip. For example, where the blank has a thickness t reduced to 50 \odot m, the inner leads can have a fineness corresponding to a lead width Wl of 100 \odot m and a tip pitch p of 0.15 mm, as shown in Fig. In the case of using a small blank thickness t of about 30 \odot m and a lead width W1 of 70 \odot m, it is possible to form inner leads having a fineness corresponding to an inner lead pitch p of 0.12 mm. Of course, it may be possible to form inner leads having a further reduced tip pitch by adjusting the blank thickness t and the lead width Wl.

15 Now, preferred embodiments of the present invention associated with a BGA type resin encapsulated semiconductor device will be described in conjunction with the annexed drawings. First, a first embodiment of a BGA type resin encapsulated semiconductor device will be described. 20 4a is a cross-sectional view illustrating the BGA type resin encapsulated semiconductor device according to the first embodiment. Figs. 4b and 4c are cross-sectional views taken in the direction of the thickness of the semiconductor device to illustrate one inner lead tip and 25 one outer lead portion, respectively. In Figs. 4a to 4c, the reference numeral 200 denotes the semiconductor device, 211 electrode portions (pads), 220 wires, 240 a resin encapsulate, 250 reinforcing tapes, 260 an insulating adhesive, and 270 terminal portions, respectively. The BGA type resin encapsulated semiconductor device is fabricated 30 using the lead frame according to the first embodiment. this BGA type resin encapsulated semiconductor device, terminal portions 270, which are made of solder and adapted to connected to an external circuit, are arranged in a twodimensional fashion on respective surfaces of outer 35

10

10

15

terminal portions 120 included in the lead frame. In this first embodiment, a semiconductor chip 210 is fixedly attached to the first surfaces 110a of inner leads 110 by means of an insulating adhesive 260 at its surface formed with electrode portions (pads) 211 in such a fashion that the electrode portions (pads) 211 are interposed between facing ones of the inner leads 110. Each electrode portion (pad) 211 is electrically connected to the second surface 110b of an associated one of the inner leads 110 by means of a wire 220. The semiconductor device of this first embodiment is encapsulated by a resin encapsulate 240 having a size substantially same as that of the semiconductor chip. This semiconductor device is also called a "CSP (Chip Size Package)". Since the tip of each inner lead 110 connected with the semiconductor chip by the associated wire 220 has a thickness smaller than that of the lead frame blank, the semiconductor device can have a thin structure.

The inner leads 110 of the lead frame used in the semiconductor device of this first embodiment has a cross-20 sectional shape as shown in Fig. 10(1)a. The inner lead 110 has an etched flat surface (second surface) 110Ab which has a width W1 slightly more than the width W2 of an opposite surface 110Aa (first surface). The widths W1 and 25 $\ensuremath{\mathtt{W2}}$ are more than the width $\ensuremath{\mathtt{W}}$ at the central portion of the inner lead when viewed in the direction of the inner lead thickness. Thus, the tip of the inner lead has a crosssectional shape having opposite wide surfaces while having a third surface 110Ac and a fourth surface 110Ad with a concave shape depressed toward the inside of the inner 30 lead. By virtue of such a structure, a stable connection and an easy bonding are achieved in either case in which the inner lead tip 110A is wire-bonded to the semiconductor chip (not shown) at its first surface 110Aa or its second surface 110Ab. In the illustrated case, however, the 35 etched surface (Fig. 10(1)a) is used as a bonding surface. In the figure, the reference numeral 110Ab denotes the flat surface (second surface) formed by an etching process, 110Aa the surface of the lead frame blank (first surface), 1020A wires, and 1021a plated portions, respectively. 40 Since the etched flat surface 110aB (second surface) is not rough, it exhibits a superior aptitude for connection (bonding) in the case of Fig. $10(\Box)a$. Fig. 10(ハ) illustrates the connection (bonding) of the inner lead tip 45 1010B of the lead frame fabricated in accordance with an etching method shown in Fig. 13 to a semiconductor chip (not shown). In this case, the inner lead tip 1010B is

10

15

20

25

30

35

40

45

flat at both surfaces thereof. However, the surfaces of the inner lead tip 1010B have a width not more than the width defined between them in the thickness direction. Since both the surfaces are portions of the unprocessed surfaces of the blank for forming this lead frame, the aptitude thereof for connection (bonding) is inferior to that of the etched flat surface of the inner lead tip in accordance with this embodiment. Fig. 10(-) illustrates the tips 1010C and 1010D of inner leads formed in accordance with an etching process after being processed to have a reduced thickness and then subjected to an etching process and then connected to a semiconductor chip (not shown). Since the surface of each inner lead tip, at which a pressing process is conducted, is not flat, as shown in the figure, the tip is unstable during a connection (bonding) process, which may cause a problem in the reliability of the semiconductor package, as shown in Figs. 10(-1) a and 10(-1) b. In the figures, the reference numeral 1010Ab denotes a coining surface, and the reference numeral 1010Aa denotes a lead frame blank surface.

A second embodiment of the present invention associated with a BGA type resin encapsulated semiconductor device will now be described. Fig. 5a is a cross-sectional view illustrating the BGA type resin encapsulated semiconductor device according to the second embodiment. Figs. 5b and 5c are cross-sectional views taken in the direction of the thickness of the semiconductor device to illustrate one inner lead tip and one outer lead portion, respectively. In Figs. 5a to 5c, the reference numeral 200 denotes the semiconductor device, 210 a semiconductor chip, 212 bumps, 240 a resin encapsulate, 250 reinforcing tapes, and 270 terminal portions, respectively. The BGA type resin encapsulated semiconductor device is fabricated using a lead frame made of a nickel-copper alloy containing 42% Ni to have a thickness of about 0.15 mm and processed to have the same shape as that in the first embodiment of Figs. la and 1b in accordance with an etching process of Figs. 9a to 9e while having, at the entire portion of each inner lead, a thickness smaller than that of a blank for the lead frame. In this BGA type resin encapsulated semiconductor device, terminal portions 270, which are made of solder and adapted to connected to an external circuit, are arranged in a two-dimensional fashion on one surface of the semiconductor device. In this second embodiment, a semiconductor chip 210 is mounted near the tips of the inner leads 110 by means of bumps 212. Where the strength of the inner leads is insufficient due to a thin structure of the lead frame, the semiconductor chip 210 may be

10

15

20

25

30

35

attached to the lead frame over the entire portion of the lead frame.

The inner leads 110 of the lead frame used in the semiconductor device of this second embodiment has a crosssectional shape as shown in Fig. 10(1)b. The inner lead 110 has an etched flat surface (second surface) 110Ab which has a width W1A slightly more than the width W2A of an opposite surface. The widths W1A and W2A (about 100 Om) are more than the width WA at the central portion of the inner lead when viewed in the direction of the inner lead Thus, the tip of the inner lead has a crossthickness. sectional shape having opposite wide surfaces. The first surface 110Aa is flat whereas the second surface 110Ab has a concave shape depressed toward the inside of the inner lead. The third and fourth surfaces 110Ac and 110Ad also have a concave shape depressed toward the inside of the inner lead. By virtue of such a structure, a stable and easy connection at the second surface 110Ab is achieved. The semiconductor device according to this second embodiment uses the lead frame fabricated in accordance

embodiment uses the lead frame fabricated in accordance with the etching method of Figs. 9a to 9e while having a thickness smaller than that of the lead frame blank at the entire portion of the inner lead thereof. The lead frame also has a concave shape depressed toward the inside of the inner lead tip at the second surface 110b of the inner lead 110 including the tip. By virtue of such a lead frame structure, an increased tolerance for the connection by bumps is obtained.

third embodiment of the present invention associated with a BGA type resin encapsulated semiconductor device will now be described. Fig. 6a is a cross-sectional illustrating the BGA type resin encapsulated semiconductor device according to the third embodiment. Figs. 6b and 6c are cross-sectional views taken in the direction of the thickness of the semiconductor device to illustrate one inner lead tip and one outer lead portion, respectively. In Figs. 6a to 6c, the reference numeral 200 denotes the semiconductor device, 210 a semiconductor chip,

10

15

20

25

wires, 220 a conductive adhesive, 270 terminal portions, 280 a protective frame portion, and 290 an adhesive, respectively. The BGA type resin encapsulated semiconductor device is fabricated using a lead frame having a die pad along with the lead frame structure of he first embodiment. In this BGA type resin encapsulated semiconductor device, terminal portions 270, which are made of solder and adapted to connected to an external circuit, are arranged in a two-dimensional fashion on one surface of the semiconductor device. The lead frame used in this second embodiment is fabricated using the etching method of Figs. 8a to 8e according to the first embodiment to have a thickness smaller than that of the lead frame blank at the entire portion of the inner lead and the die pad 130. This lead frame is the same as that of the first embodiment in terms of the used blank and shape, except for the die pad 130 and portions associated with the die pad 130. In the semiconductor device of this third embodiment, the die pad 130 has a size allowing it to be received between facing electrode portions (pads) 211 of the semiconductor chip The semiconductor chip 210 is mounted on the die pad 130 in such a fashion that its surface provided with the electrode portions (bumps) 211 directs in the direction as the second surface 110b of each inner lead 110 under the condition in which the surface provided with the

10

15

20

25

electrode portions 211 is attached to the die pad 130 by means of a conductive adhesive 260. The electrode portions 211 are electrically connected to the second surfaces 110b of the inner leads 110 by means of wires, respectively. By virtue of such a structure, the semiconductor device of this embodiment can have a further thinned structure, as compared to that of the first embodiment or fourth embodiment. The reason why the conductive adhesive is used in this embodiment is to dissipate heat generated in the semiconductor device through the die pad. Where terminal portions are provided at the lower surface of the die pad for a connection to a ground line, it is possible to more effectively dissipate heat. A protective frame portion 280 is mounted by means of an adhesive 290 to cover the peripheral portion of the semiconductor device. This protective frame portion 280 is used where the semiconductor device has an insufficient strength due to its thinned structure. Accordingly, the protective frame portion 280 is not an essential element. In this embodiment, the die pad and semiconductor chip are connected together by means of the conductive adhesive, as mentioned above. Accordingly, where the die pad is connected to a ground line, it is possible to not only obtain a heat dissipation effect, but also to solve a problem associated with noise.

10

15

20

25

fourth embodiment of the present invention associated with a BGA type resin encapsulated semiconductor device will now be described. Fig. la is a cross-sectional illustrating the BGA type resin encapsulated semiconductor device according to the fourth embodiment. Figs. 7b and 7c are cross-sectional views taken in the direction of the thickness of the semiconductor device to illustrate one inner lead tip and one outer lead portion, respectively. In Figs. 7a to 7c, the reference numeral 200 denotes the semiconductor device, 210 a semiconductor chip, 220 wieres, 240 a resin encapsulate, pads, reinforcing tapes, 260 a conductive adhesive, and 270 terminal portions, respectively. The semiconductor device of the fourth embodiment is a BGA type resin encapsulated semiconductor device fabricated using a lead frame made of a nickel-copper alloy containing 42% Ni and processed to have the same shape as that in the third embodiment in accordance with an etching process of Figs. 8a to 8e while having, at the entire portion of each inner lead and its die pad 130, a thickness smaller than that of a blank for the lead frame. In this BGA type resin encapsulated semiconductor device, terminal portions 270, which are made of solder and adapted to connected to an external circuit, are arranged in a two-dimensional fashion on one surface of the semiconductor device. The die pad 130 has a size

larger than that of the third embodiment, but substantially equal to that of the semiconductor chip 210. The semiconductor chip 210 is mounted on the die pad 130 in such a fashion that its surface provided with the electrode portions (bumps) 211 directs in the same direction as the second surface 110b of each inner lead 110 under the condition in which a surface opposite to the surface provided with the electrode portions 211 is attached to the die pad 130 by means of a conductive adhesive 260. The electrode portions (bumps) 211 are electrically connected to the second surfaces 110b of the inner leads 110 by means of wires, respectively.

All the semiconductor devices of the first through fourth embodiments use a two-step etching method shown in Figs. 8 or 9 and have a thickness smaller than that of a lead frame blank used at at least its inner lead tip. Accordingly, these semiconductor devices achieves a further increase in the number of terminals, as compared to conventional BGA type resin encapsulated semiconductor devices using a lead frame as a core, as in Fig. 12. Since the tips of the inner leads have a thickness smaller than that of the lead frame blank, it is possible to fabricate a semiconductor device having a thinned structure.

25 [EFFECTS OF THE INVENTION]

10

M-5599 US591549 v1

5

10

15

20

As apparent from the above description, the lead frame of the present invention is fabricated using a twostep etching process in such a fashion that it has a thickness smaller than that of a lead frame blank used at its inner lead tips. The present invention makes it possible to provide a BGA type resin encapsulated semiconductor device capable of achieving use of increased number of terminals by arranging outer terminal portions in a two-dimensional fashion on a lead frame surface, as compared to conventional BGA semiconductor devices using a lead frame processed in such a fashion that it has the same thickness as that of the lead frame blank at the tips of inner leads thereof, as shown in Fig. 12. The BGA type resin encapsulated semiconductor device of the present invention is fabricated using the above mentioned lead frame of the present invention. Accordingly, the BGA type resin encapsulated semiconductor device can have a thinned structure while having an increased number of terminals. Thus, the present invention provides a BGA type semiconductor device using a lead frame.