## AAPL Stock Price Prediction

Capstone Project #1
Springboard Data Science Career Bootcamp

## **Outline**

- Introduction/Objective
- Data Wrangling
- Exploratory Data Analysis
- Building/Testing Prediction Models
- Final Results

## Introduction

Stock Prices are **unpredictable**:

- Efficient Market Hypothesis:
  - Weak form
  - Semi-strong form
  - Strong form
- Random Walk Theory

Stock Prices may be **somewhat predictable**:

Behavioral Finance

## Objective

Using a 10 day prediction window on AAPL closing stock price:

- Compare the prediction accuracy of different models
  - Simple moving average, Auto ARIMA, FB Prophet, XGBoost
- Determine which features are most important in the prediction

## Data

- Sample Period: Jan 2013 Dec 2018
- Stock market data from CRSP database
  - AAPL: (daily) Open, Close, Bid, Ask, Vol.
  - AAPL: (once per quarter) dividend announcement/payout
  - S&P500: (daily) Return
- Earning's announcement surprise data from StreetInsider.com (once per quarter)
- Google trend data from PyTrends (monthly)

## **Data Wrangling**

Data Wrangling Steps:

### 1. Data Type

Date as DateTime, other variables as int64 or float64

### 2. Missing Variables

- DCLRDT: dummy variable where =1 on the declaration date and =0 otherwise
- DIVAMT: null values are set to 0

### 3. Variable Adjustments

 All relevant variables adjusted for the 7-1 stock split on June 9, 2014

#### 4. Feature Creation

## Feature Creation (for EDA)

#### Stock Data

- Day, month and year for each date
- Bid ask spreads
- Difference between the opening and closing price

### Google Trend Data

 Previous month's 'TREND' is merged to current month in the stock data (e.g. 02/05/2011 trading day has 'TREND' value from 01/2011)

### Earning Announcement Data

- 'Announcement' variable: where announcement day = 30,
   and decays by 1 until Announcement = 0
- 'Surprise' variable: percentage earnings surprise, forwardfilled

## **EDA**

## How does the stock price change over time?



What does the distribution of historical returns look like?









Does the stock return differ based on the **day of the week** or the **month of the year**?





How does the daily stock volume change over time?



Is there any **relationship** between the **change in volume** and **returns**?

Relationship between Change in Volume and AAPL returns





What effect does the **earnings announcement** have on **stock** returns?



## Is there post earnings announcement drift (PEAD)?



## **Prediction Models**

- Historical Price based models:
  - Simple moving average, Auto ARIMA, FB Prophet, XGBoost
- Multiple variable based models:
  - XGBoost
- Evaluate prediction accuracy using RMSE

## Train, Validation, Test Split

- **Test Set:** last 10 trading days in sample
- Training Set: sample not including test data
- Validation Set:
  - split training data into 10 evenly spaced folds
  - set aside the last 10 trading period of each fold as the validation sets
  - Not applicable to Auto ARIMA, FB Prophet models

# Train, Validation, Test Split (cont.)



# Model 1: Simple Moving Average

- Predicted Price<sub>t</sub> = Avg( Price<sub>(t-10, t-1)</sub>)
- Rolling window of 12 has the lowest validation RMSE



# Simple Moving Average (cont.)

Using rolling window=12, RMSE of the test set is 15.26



## Model 2: Auto ARIMA

- Using auto\_arima model from the pmdarima package
- Use ndiffs, nsdiffs to first approximate the d and D parameters in the model (1, 0 respectively)



## Auto ARIMA (cont.)

- Auto ARIMA model uses only historical closing price from the training data to make predictions
- Searches over possible models and returns the best ARIMA model based on AIC/BIC

## Auto ARIMA (cont.)

RMSE of the test set is 10.86



## Model 3: FB Prophet

- fbprophet model from Prophet package
- Additive regression model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects
- fbprophet model uses only historical closing price from the training data to make predictions

# FB Prophet (cont.)

RMSE of the test set is 51.94



## Model 4: XGBoost w/ Price Features

- Extreme Gradient Boosted Decision Tree Algorithm
- XGBRegressor model from xgboost package
- Steps:
  - 1. Create features
  - 2. Tune parameters using training/validation set
  - 3. Fit model and predict test values
  - 4. Plot feature importance

## XGBoost w/ Price Features (cont.)

1. Create features using the date and closing price

#### Date features

 month, 'qtr', year', 'day of the week', day of the month, day of the year, day number, start/end of the week

### Lag features

- Moving mean, median, min, max
  - Short term lags: 5,10,15
  - Long term lag: 50 (only for max and min)
- Apart from mean, features flatly extended to test data

#### Price encodes

- Mean of week, month, year

## XGBoost w/ Price Features (cont.)

- Sequentially tune parameters to find the best model based on validation error
- 3. RMSE of the test set is 10.74



## XGBoost w/ Price Features (cont.)

### 4. Top 5 most important features:

- 1. Day number
- 2. Day of the year
- 3. Day of the month
- 4. Short term moving min
- 5. Short term moving mean



## **Model 5: XGBoost extended**

- Same steps as previous XGBoost model, adding additional lag features
- In addition to lag variables on closing price, create lag features for:
  - Volume, number of trades, S&P500 daily return, bid-ask spreads, difference between open and close prices

## XGBoost extended (cont.)

RMSE of the test set is 10.07



## XGBoost extended (cont.)

### Top 5 most important features:

- 1. Short term mean difference between open and close prices
- 2. Short term mean (5 day) S&P500 daily return
- 3. Day number
- 4. Short term mean (10 day) S&P500 daily return
- 5. Short term max S&P500 daily return



## **Final Results**

## Comparison of different models:

|   | Model                          | RMSE  |
|---|--------------------------------|-------|
| 1 | Simple Moving Avg              | 15.26 |
| 2 | AutoARIMA                      | 10.86 |
| 3 | FB Prophet                     | 52.03 |
| 4 | XGBoost (price<br>based)       | 10.74 |
| 5 | XGBoost (multiple<br>features) | 10.07 |