Aula 4 – Relações algébricas: proporção

Na aula de hoje, revisaremos proporcionalidade (regra de três). Nosso objetivo é propiciar maior entendimento e exploração de conceitos matemáticos fundamentais à dedução de relações algébricas (fórmulas) úteis aos cálculos de Matemática na obtenção de leis gerais.

Sempre que utilizarmos a regra de três no intuito de determinar porcentagens, devemos relacionar a parte do todo com o valor de 100%. Alguns exemplos demonstrarão como devemos proceder com a regra de três envolvendo cálculos percentuais.

Obs.: Nas situações envolvendo porcentagens realizamos a propriedade "produtos dos meios é igual ao produto dos extremos", por ser grandeza diretamente proporcional.

Exemplo:

Determine o valor de 95% de R\$105,00

%	R\$
100	105
95	Х

100.x = 95.105

 $100 \cdot x = 9.975$

$$x = \frac{9.975}{100}$$

x = 99,75 reais

Portanto, 95% de R\$105,00 é igual a R\$99,75.

4.1 Regra de três direta ou Regra de Três Simples

"Regra de três simples" é um processo prático para resolver problemas que envolvem quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos.

Passos didáticos utilizados para resolver problemas com a regra de três simples

1º Passo: Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência.

2º Passo: Identificar se as grandezas são direta ou inversamente proporcionais.

3º Passo: Montar a proporção e resolver a equação.

Exemplo:

Em uma sala de 40 alunos realizou-se uma pesquisa, a qual apontou que 30 alunos gostam de pescaria. Qual é a porcentagem de alunos que gostam de pescaria?

%	Alunos
100	40
Х	30

$$40.x = 100.30$$

$$40. x = 3.000$$

$$x = \frac{3.000}{40}$$

$$x = 75\%$$

Temos que 75% dos alunos dessa classe gostam de pescaria.

4.2 Regra de três inversa

Ao resolver problemas que envolvam grandezas (entendemos por grandeza tudo aquilo que pode ser medido, contado) devemos tomar alguns cuidados em relação à proporcionalidade ser direta ou inversa.

Por exemplo, em uma corrida quanto **maior** for a velocidade, **menor** será o tempo gasto nessa prova. Aqui as grandezas são a velocidade e o tempo e trata-se de grandezas **inversamente proporcionais**.

e-Tec Brasil 34 Matemática II

Importante

Duas grandezas são inversamente proporcionais quando, dobrando uma delas, a outra se reduz para a metade; triplicando uma delas, a outra se reduz para a terça parte. E assim por diante.

Exemplo prático:

Um trem, deslocando-se a uma velocidade média de 400km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h?

Solução: montando a tabela:

Velocidade (Km/h)	Tempo (h)
400	3
480	Х

Identificação do tipo de relação:

Velocidade (Km/h)	Tempo
400	3
480	x 🔻

Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).

Observe que **Aumentando** a velocidade, o tempo do percurso **diminui**. Como as palavras são contrárias (aumentando - diminui), podemos afirmar que as grandezas são **inversamente proporcionais**. Assim sendo, colocamos outra seta no sentido contrário (para cima) na 1ª coluna. *Montando a proporção e resolvendo a equação temos*:

Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos.

Exemplo:

Certo barco percorre uma via de determinada distância com velocidade constante. Sabendo-se que com a velocidade de 25km/h, ele demora 02 horas, quanto tempo este barco gastará para percorrer esta mesma distância com uma velocidade 30km/h.

Maior velocidade menor tempo de percurso, ou seja, grandezas inversamente proporcionais.

Km/h	Tempo
25	Χ
30	2

$$30.x = 25.2$$

$$30. x = 50$$

$$x = \frac{50}{30}$$

x = 1,67 horas (valor aproximado para duas casas decimais)

Assim: O tempo gasto é de 1,67 horas.

Para saber quantos minutos e segundos precisamos de mais uma "regra de três":

horas	minutos
1	60
1,67	Χ

$$\begin{array}{cccc}
1 & \rightarrow & 60 \\
1.67 & \rightarrow & x
\end{array}$$

X = 100,2 minutos

Como cada 1 hora tem 60 minutos, 100 minutos terá 1 hora e 40 minutos.

Mas, são 100,2 minutos!

Os demais 0,2 minutos equivalem a $\frac{2}{10}$ de um minuto:

Simplificando a fração $\frac{2}{10}$, fica $\frac{1}{5}$ de 60 segundos (um quinto de um minuto ou um quinto de sessenta segundos).

$$\frac{1}{5}$$
 . 60 = $\frac{60}{5}$ = 12 segundos

Assim: O tempo gasto em horas, minutos e segundos é: 1 hora, 40 minutos e 12 segundos.

Você Sabia?

Tipos de mapas e escalas - orientação espacial

Retirado de: http://educacao.uol.com.br/geografia/ult1701u49.jhtm Autor: Cláudio Mendonça

O mapa é uma imagem reduzida de uma determinada superfície. Essa redução – feita com o uso da escala – torna possível a manutenção da proporção do espaço representado. É fácil reconhecer um mapa do Brasil, por exemplo, independente do tamanho em que é apresentado, pois obedece à determinada escala, que mantém a sua forma. A escala cartográfica estabelece, portanto, uma relação de proporcionalidade entre as distâncias lineares num desenho (mapa) e as distâncias correspondentes na realidade.

As escalas podem ser indicadas de duas maneiras, através de uma representação gráfica ou de uma representação numérica.

Escala gráfica

A escala gráfica é representada por um pequeno segmento de reta graduado, sobre o qual está estabelecida diretamente a relação entre as distâncias no mapa, indicadas a cada trecho do segmento, e a distância real de um território. Observe:

De acordo com este exemplo cada segmento de 1cm é equivalente a 3km no terreno, 2cm a 6km, e assim sucessivamente. Caso a distância no mapa, entre duas localidades seja de 3,5cm, a distância real entre elas será de 3,5 x 3, ou 10,5km (dez quilômetros e meio). A escala gráfica apresenta a vantagem de estabelecer direta e visualmente a relação de proporção existente entre as distâncias do mapa e do território.