

Environmental Effects

- Natural fuzzy participating media or effects (smoke, fire, rain, cloud, explosion, ...)
- Particle systems is the most widely used visual effects technique in game

Digital ART Lab, 877 is

Particles

- A set of particles to model, animate and render fuzzy effects (smoke, fire, cloud, rain, and etc.)
- **B.g.: camera-aligned quadrilaterals (billboards)**

Particle systems

- In today's game:
 - —commonly used for smoke, explosions
 - -particles (~10,000)
 - point sprites with painted or prerendered textures
 - —simple lighting: normal mapping
 - —few interaction

- In tomorrow's game:
 - —similar to particle effects used in film
 - -particles (millions)
 - —physics simulation with artist control
 - —high quality shading and shadowing
 - interaction with scene and characters

Digital ART Lab, 87

Evolution of particles

- Hard particle
- Soft particle
- Volumetric particle
- Interactive dynamic particles

Digital ART Lab, 871

Hard particle vs. Soft particle

- Hard particle: regular flat billboards
 - -seam between particle and other objects
- Soft particle: fragment shader
 - -sample from the depth buffer (GPU support)
 - -fading the particle if get closer to other geometry
 - -but add expenses (may down-sampling the depth buffer)

Digital ART Lab, 877 to

Self-shadowing of particles

- maybe most important aspect of shading dense particles
- Important cues to density/shape of a cloud of particles
- Alternative Approaches (volume rendering)
 - View ray matching → sample → matching to light (large number of samples: very expensive)
 - —Shadow volume + look up amount of light

Above methods: voxelization is slow; need a lot of storage; particles confined to a fixed volume (often freely move in game)
One solution: use a view-aligned 3D texture (video memory costs)
Opacity shadow maps:

- -replace shadow volume with a set of 2D textures
- -relatively large amount of storage, banding artifacts visible

Direct Volume Rendering

- ® Ray casting vs. Texture-based methods
- Volume data is stored as
 - -A stack of 2D texture slices or
 - -A single 3D texture object
- Voxel: volume element, similar to pixel, texel
- Reconstruction
 - —Each voxel corresponds to a location in data space and has one or more data values associated with it.
 - Values at intermediate locations are obtained by interpolating data at neighboring volume elements.

Digital ART Lab, 877 k

Optical model

Direct Volume Rendering

- Optical model: describe how particles in the volume interact with light.
 - —the most commonly used model assumes that the volume consists of particles that simultaneously emit and absorb light.
 - More complex models incorporate local illumination and volumetric shadows, and they account for light scattering effects.
- Optical parameters are
 - specified by the data values directly
 - —or they are computed from applying one or more transfer functions to the data.

Digital ART Lab, 8774

Transfer function

- The goal of the transfer function in visualization applications is to emphasize or *classify* features of interest in the data.
- Typically, transfer functions are implemented by texture lookup tables, though simple functions can also be computed in the fragment shader.

Digital ART Lab, 877

Texture-based volume rendering

- Texture-based volume rendering techniques perform the sampling and compositing steps by rendering a set of 2D geometric primitives inside the volume
- Each primitive is assigned texture coordinates for sampling the volume texture.
- The proxy geometry is rasterized and blended into the frame buffer in back-to-front or front-to-back order.
- In the fragment shading stage, the interpolated texture coordinates are used for a data texture lookup.
- Next, the interpolated data values act as texture coordinates for a dependent lookup into the transfer function textures. Illumination techniques may modify the resulting color before it is sent to the compositing stage of the pipeline.

Over and Under Operators

Back-to-Front Compositing (the Over Operator)

$$\hat{C}_i = C_i + (1 - A_i)\hat{C}_{i+1},$$

$$\hat{A}_{i} \, = \, A_{i} \, + \left(1 - A_{i} \, \right) \hat{A}_{i+1},$$

⊕ Front-to-Back Compositing (the Under Operator)

$$\hat{C}_i = (1 - \hat{A}_{i-1})C_i + \hat{C}_{i-1},$$

$$\hat{A}_{i} = (1 - \hat{A}_{i-1}) A_{i} + \hat{A}_{i-1},$$

Sensor Effects

- Pinhole camera model: sharp, perfect images
- Real camera and our eyes: optical and mechanical limitations
- **Simulate cameras and human visual system**
- Often implemented as screen-space postprocessing
- Many postprocessing sensor effects:
 - —Lens distortion, vignetting, chromatic abbreviation, afterimaging, film grain, tone adjustment, night and thermal vision ...

Bloom

- HDR enables effects such as bloom (glow around a bright light: e.g. snow in sun) or glare effects
 - first extract the bright pixels
 - then overlay a blurring filter

Digital ART Lab, 877

Vignetting

- Edges of an image darker than the center
- © Causes: mechanical, optical, pixel, natural

in CV: image vignetting correction In CG: image vignetting synthesizing

Digital ART Lab, 877

Vignetting

- **Vignette** effect darkens the edges of an image, leaving the center of the image brighter.
- In photography, this effect is caused by thick or stacked filters, secondary lenses, and improper lens hoods.
- For artistic effect: draw focus to the center of an image

Chromatic aberration

- Simulate low quality/old cameras
- Multi-colored blurring around the edges of objects, marked by a red/green/blue separation
- Artistic effects: camera impact, or intoxication effects

Smart Particle System

Series of Particle Engines made up of two parts

- Fire Particles
 - Visible, what we think of as particles
- Heat Emitter Particles
 - Invisible, physical in nature

Further VFXs: new GPU support

- DirectX 11 hardware opens the door to many new visual efffects
- —E.g. per pixel linked lists allow for: Order-independent Transparency, Indirect Shadows, Ray Tracing of dynamic scenes, custom blending, Advanced Depth of Field, etc.
- —E.g. Hardware tesselletion allow for cinema quality models with less space
- —E.g. Direct Compute allow for more advanced post-processing functions

Digital ART Lab. 827

- Very hard to implement efficiently with previous real-time graphics APIs
- DX11 allows efficient creation and parsing of linked lists
- Per-pixel linked lists
 - A collection of linked lists enumerating all pixels belonging to the same screen position

Digital ART Lab, 877

OIT result

Enable order independent transparency (OIT)
 Using DirectX 11 atomic operation and append buffers

Depth of Field

Using novel techniques with DirectCompute 11: more accurate and more efficient post processing

DirectX 11 Depth of Field Comparison

Wrap Up

- Movie VFXs vs. Game VFXs
- **B** People: designer, programmer and artists
- **Tech horsepower: GPU**
- ® Techniques: pre-compute, object-space, screenspace
- Phenomena (examples):
 - -GI effects (light map, SSAO)
 - -Env effects (particles, volumetric light)
 - -Sensor effects (depth of field, motion blur, HDR)
- Trends:
 - -Physically based rendering
 - -visual + physics interaction
 - -more powerful GPU functions enable better effects