"P" = & E X FXEALL, IX & REG. Yd∈DFA, L(d) +x "P"z = |x| ∈ W in Gni Le ordinal ich R; for some; lemma: JP. HXEREG, P(X) burden: FXEALL, 7.P(x) => X & REG JP. YCEDFA. P(L(d)) P: LANG > PAP Fr. YEARDFA. P'(d) P' : DFA > Prop Suppose d'accepts string w (i.e. we L(d)) How many states could I visit during its run? [1, 141+1] Sprove & had 4 states and w = 01200 [1, min(101,1w1+1)] = [1,4] >> (A) → (B) / → (B) / → (B) X, y, Z € E* if ve L(d) | x| could be 0 =xyz | < |Q| (3) |y| > 0 | = p' A=B B=C Dw=xyz IF w EL(d) exist, @ [xy] < 101 and 1~17/91 => (9) xzel(1), xyyzel(1) MIEN, XYIZ EL(d) P= FRN, P' (replace |Q| with p)

1-2/	Regular Pumping Property (RPP)
	: (A: Aangrage over E) -> Prop :=
	tpeN.
	V(weA. / In/ 7, p)
	$\exists (x,y,z \in z^* \mid w=xyz \land xy \leq p \land y >0).$
	∀; eN.
	xy' ≥ ∈ A,
	(VAEREG. RPP(A)) = previous page (p=101, xyz were based on DFA
	(VHEREG. MPP(H)) - Previous page (P-121, xyz were rase and A
	TRPP(A) :=
	YPEN,
	7 (w e A Iw1 7-P)
	$\forall (xyz \in z^y \mid v=xyz $
	$\exists i \in V$
	xyiz & A,
V	$A = 10^{\circ} 01$ - given: p choose: $w = 10^{\circ} 01$
	given: x,y, Z W=xyZ xy \{p y >0
	$xy = 10^{\circ}$ $z = 0^{\circ}01$ $a+b=p$
	1+ a ≤ p x= 10° y=0d a= c+d
	270
	xy'z=10000001 c+di+b EN

7-3/

 $((())) \subseteq RACKET$ $(())(())) \subseteq RACKET$ = more complicated (())) = TRASH = more (oimplicated) $(()) = CRASH = (())^n$ $(()) = CRASH = (())^n$

int sum=0

while ((char c = getc()) \(\pm \) EOF) = TRASH

if (c) \(\left(\sum + t) \) else \(\left(\sum - t) \) ?

return \(\left(\sum = 0) \);

TRASHA G-MAX) AAX)

ASM & REG.

Given: P Choose: $w = 0^{p}1^{p}$ |w| = 7pGiven: xyz, w = xyz, $|xy| \le p$ |y| > 0 $x = 0^{a}$ $y = 0^{b}$ $z = 0^{c}1^{p}$ $a+b \le p$ a+b+c = p b > 0 $xyiz = 0^{a}0^{bi}0^{a}1^{p} = 0^{a+bi+c}1^{p}$ A+b A+

choose: 1 +1

=> ASM & REG = ALL