TD 2 chimie

Cinétique chimique

^l Pour s'échauffer

- A Energie d'activation et constante de vitesse
- 1 Calculer l'énergie d'activation de la conversion du cyclopropane en propène à partir des données suivantes :

T(K)	750	800	850	900
$k (s^{-1})$	$1,8 \cdot 10^{-4}$	$2,7\cdot 10^{-3}$	$3,0\cdot 10^{-2}$	0,26

- 2 Quelle est la valeur de la constante de vitesse à 500°C ?
 - B Utilisation du temps de demi-réaction

Soit la réaction $A \rightarrow B + C$. Déterminer son ordre sachant que lorsqu'on multiplie par 10 la concentration initiale de A, on divise par dix le temps de demi-réaction.

Utilisation de la méthode intégrale

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation :

$$2 C_4 H_6(g) = C_8 H_{12}(g)$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume V constant, maintenu à température constante T=326 K. On mesure alors la pression partielle en butadiène p_B dans le récipient en fonction du temps.

t(min)	0	3,25	8,02	12,18	17,3	24,55	33,0	43,0	55,08	68,05	90,1	119
p_B (bar)	0,843	0,807	0,756	0,715	0,670	0,615	0,565	0,520	0,465	0,423	0,366	0,311

- 1. Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale p_B et de la température T suffit pour calculer la concentration initiale C_B en buta-1,3-diène.
- 2. Montrer que les résultats sont compatibles avec une cinétique d'ordre 2.
- 3. Déterminer la valeur de la constante de vitesse à cette température.
- Déterminer le temps de demi-réaction du système précédent.
- 5. On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent; exprimer cette durée en fonction du temps de demi-réaction.

III Utilisation de la méthode différentielle

La réaction étudiée est l'oxydation des ions iodure par les ions ferriques Fe(III). Les couples d'oxydoréduction mis en jeu sont les couples I_2/I^- et Fe³⁺/Fe²⁺, toutes les espèces étant dissoutes dans l'eau.

- 1. Écrire l'équation-bilan de l'oxydation des ions iodure par les ions fer(III), en affectant les espèces du fer du nombre stœchiométrique 1. Si la concentration d'ions iodure passe de c_o à $c_o x$ entre 0 et t, comment définit-on par rapport à x la vitesse volumique de la réaction?
- **2.** On suppose une cinétique avec ordre, de constante de vitesse k; on note a l'ordre partiel par rapport aux ions fer(III) et b l'ordre partiel par rapport aux ions iodure. Comment s'écrit la vitesse v? Quelle est alors l'unité usuelle de k (au besoin en fonction de a et de b)?
- **3.** À la date *t* après le mélange d'une solution d'iodure de potassium avec une solution ferrique, on prélève à la pipette 5 mL de solution et on dilue 10 fois avant de procéder à un dosage de la quantité d'iode formée. Justifier l'intérêt cinétique de cette dilution.
- **4.** Les résultats d'une série de mesures sont présentés ci-dessous, *x* se rapportant à la quantité d'ions iodure qui ont été oxydés dans le milieu réactionnel à la date du prélèvement.

t / s	60	120	180	240	300
$x / \mu \text{mol} \cdot L^{-1}$	13	25	36	46	55

Que représente la grandeur x(t)/t? Pourquoi diminue-t-elle en cours de réaction? Représenter graphiquement cette grandeur en fonction de t à partir du tableau ci-dessus, avec en abscisse $t \in [0,300s]$; en déduire une estimation de la valeur initiale $(dx/dt)_0$.

5. Grâce à la méthode précédente, on détermine les valeurs initiales de (dx/dt) pour différentes concentrations initiales des deux réactifs. Quelques résultats sont présentés ci-dessous :

$c_0 = [\mathrm{I}^-]_0$ / $\mu \mathrm{mol} \cdot \mathrm{L}^{-1}$	2	2	2	6	6	8
$[\mathrm{Fe^{3+}}]_0$ / $\mu\mathrm{mol}\cdot\mathrm{L}^{-1}$	2	4	8	2	4	8
$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)_0 / \mu \mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{s}^{-1}$	5,7	11,1	22,5	52	99	354

En déduire les valeurs de a et b, supposées entières.

- **6.** Déterminer la constante de vitesse k définie à la question **2.**; on précisera la méthode suivie pour utiliser au mieux les données.
- 7. Dans l'hypothèse d'un état initial ne contenant que les deux réactifs à la même concentration c_0 , établir la relation littérale donnant x(t), sous la forme :

« expression en
$$(x, c_0)$$
 = expression en (k, t) ».

En déduire la dépendance entre le temps de demi-réaction τ et la concentration c_0 .

Etude d'un mélange stœchiométrique

On étudie, à 25°C, l'action d'une solution de soude diluée sur le bronoéthane; la réaction totale a pour équation :

$$CH_3CH_2Br + OH^- \rightleftharpoons CH_3CH_2OH + Br^-$$

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit C_0 la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de C_0 .

$C_0 (\mathrm{mmol} \mathrm{L}^{-1})$	10	25	50	75	100
$ au_{1/2}$ (min)	1100	445	220	150	110

- 1. Démontrer que ces données sont compatibles avec une réaction d'ordre partiel 1 par rapport à chacun des réactifs.
- 2. Déterminer la constante de vitesse de la réaction.

Méthode des vitesses initiales

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction : $C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$ schématisée par : $A+B \longrightarrow C$. On réalise une série d'expériences à 25°C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales $[A]_0$ en cyclohexène et $[B]_0$ en chlorure d'hydrogène dans le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci dessous :

Expérience	1	2	3	4
$[A]_0 \text{ (mol L}^{-1})$	0,470	0,470	0,470	0,313
$[B]_0 (\text{mol } L^{-1})$	0,235	0,328	0,448	0,448
$v_0 (10^{-9} \text{mol s}^{-1})$	15,7	30,6	57,1	38,0

- 1. On désigne par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexane (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.
- 2. Déterminer p.
- 3. Déterminer q, en déduire l'ordre global de la réaction.
- 4. Calculer la constante cinétique de la réaction.
- 5. Dans le cas d'un mélange stœchiométrique en A et B, déterminer la loi de vitesse de la réaction en fonction de [A]. En déduire l'équation différentielle satisfaite par [A](t).

VI

Intérêt de la dégénerescence de l'ordre

On considère la réaction suivante : 2 Hg^2+ + 2 Fe^2+ \longrightarrow Hg_2^2+ + 2 Fe^3+

On suit deux expériences, à 80°C par spectrophotométrie, qui donnent, avec $\alpha = \frac{[Hg^{2+}]}{[Hg^{2+}]_0}$

Expérience 1 : $[Fe^{2+}]_0 = 0,100 \, \text{mol} \, L^{-1}$ et $[Hg^{2+}]_0 = 0,100 \, \text{mol} \, L^{-1}$

t (10 ⁵ s)	0,0	1,0	2,0	3,0	∞
$\alpha(t)$	1,000	0,500	0,333	0,250	0,000

Expérience $2: [Fe^{2+}]_0 = 0,100 \, \text{mol} \, L^{-1}$ et $[Hg^{2+}]_0 = 0,001 \, \text{mol} \, L^{-1}$

t (10 ⁵ s)	0.0	0.5	1.0	1.5	2.0	∞
$\overline{\alpha(t)}$	1,000	0,585	0,348	0,205	0,122	0,000

- 1. On considère que la réaction est d'ordre partiel p par rapport à Fe²⁺ et q par rapport à Hg²⁺. Écrire l'expression de la vitesse de la réaction
- 2. Déterminer l'ordre global de la réaction à l'aide de l'expérience 1.
- 3. Déterminer q à l'aide de l'expérience 2. En déduire p.
- 4. Déterminer la constante de vitesse de la réaction.