SMIII lectures

Week 2

Estimable functions and best linear unbiased estimates

Consider the linear model formulation

$$\mathbf{Y} = X\beta + \mathbf{E}$$

- ► Theorems 1.2 and 1.3 (last lecture) describe the sampling distribution of the least squares estimates.
- ▶ The least squares estimate $\hat{\eta} = X\hat{\beta}$ is also the best linear unbiased estimate (BLUE) of $\eta = E[Y]$.

Definition 1.4

A quantity of the form $\lambda^T \eta$ where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)^T$ is a fixed vector is said to be an **estimable function**.

Examples

Consider the multiple regression model $\mathbf{Y} = X\beta + \mathbf{\mathcal{E}}$ where the columns of X are assumed to be linearly independent.

▶ Each individual regression coefficient β_j is an estimable function. To see this, take

$$\lambda^{T} = (0, \dots, 0, 1, 0, \dots, 0)(X^{T}X)^{-1}X^{T}.$$

▶ The point prediction, $\beta_0 + \beta_1 x_1 + ... + \beta_r x_r$ is an estimable function for any fixed values $x_1, x_2, ..., x_r$. To see this, take

$$\lambda^{T} = (1, x_1, x_2, \dots, x_r)(X^{T}X)^{-1}X^{T}.$$

The Gauss-Markov Theorem

Theorem 1.4

Suppose
$$E(\mathbf{Y}) = \boldsymbol{\eta} = X\boldsymbol{\beta}$$
 and $Var(\mathbf{Y}) = \sigma^2 I$.

If $\boldsymbol{a}^T \boldsymbol{Y}$ is an unbiased linear estimator for $\boldsymbol{\lambda}^T \boldsymbol{\eta}$, then

$$\operatorname{var}(\boldsymbol{a}^{T}\boldsymbol{Y}) \geq \operatorname{var}(\boldsymbol{\lambda}^{T}\hat{\boldsymbol{\eta}})$$

with equality if and only if

$$\mathbf{a} = X(X^T X)^{-1} X^T \lambda.$$

Inference for multiple regression: regression coefficients

- ► Theorem 1.3 (last lecture) allows for inference concerning individual regression coefficients.
- Suppose the multiple regression model

$$M: \mathbf{Y} = X\beta + \mathbf{\mathcal{E}}$$

with

$$\mathcal{E} \sim N_n(\mathbf{0}, \sigma^2 I)$$

holds.

Pivotal quantity

A **pivotal quantity** for β_j is given by

$$rac{\hat{eta}_j - eta_j}{s_e \sqrt{c_{jj}}} \sim t_{n-p}$$

where c_{jj} is the jth diagonal element of $(X^TX)^{-1}$.

Confidence interval for β_j

The random interval

$$\hat{\beta}_j \pm t_{n-p}(\alpha/2) s_e \sqrt{c_{jj}}$$

is a $100(1-\alpha)\%$ confidence interval for β_j .

Hypothesis testing of β_j

To test $H_0: \beta_j = 0$ we use the test statistic

$$t = \frac{\hat{\beta}_j - 0}{s_e \sqrt{c_{jj}}}$$

and the rule,

Reject
$$H_0$$
 for $|t| \geq t_{n-p}(\alpha/2)$,

to define a two-sided test with significance level $\alpha.$

The P-value can be calculated in the usual way.

Testing multiple coefficients

Hypotheses of the form

$$H_0: \beta_p = \beta_{p-1} = \ldots = \beta_{p_0+1} = 0$$

may be tested using an F-test. The ANOVA table is

Source	SS	DF	MS	F
H_0 vs M	$Q(\hat{eta}_0) - Q(\hat{eta})$	$p-p_0$	$MS_{H} = \frac{Q(\hat{\beta}_{0}) - Q(\hat{\beta})}{p - p_{0}}$	$F = \frac{MS_H}{MS_E}$
Error	$Q(\hat{eta})$	n-p	$MS_E = \frac{Q(\hat{\beta})}{n-p}$	
Total	$Q(\hat{m{eta}}_0)$	$n-p_0$	<i>11</i> - <i>ρ</i>	

▶ If H_0 is true then F has the F-distribution, $F \sim F_{p-p_0,n-p}$ so we reject H_0 , with significance level α , if $F \geq F_{p-p_0,n-p}(\alpha)$.

Prediction in multiple regression

Consider the multiple regression model

$$\mathbf{Y} = X\beta + \mathbf{\mathcal{E}}$$
 with $\mathbf{\mathcal{E}} \sim N_n(\mathbf{0}, \sigma^2 I)$.

- ▶ Suppose we have a new observation (Y_0, x_0)
- with $Y_0 \sim N(\mathbf{x}_0^T \boldsymbol{\beta}, \sigma^2)$ (independently from \boldsymbol{Y}).

A $100(1-\alpha)\%$ confidence interval for $\eta_0 = \mathbf{x}_0^T \boldsymbol{\beta}$

The $100(1-\alpha)\%$ confidence interval for η_0 is therefore

$$\hat{\eta}_0 \pm t_{n-p}(\alpha/2) s_e \sqrt{\boldsymbol{x}_0^T (X^T X)^{-1} \boldsymbol{x}_0}$$

A $100(1-\alpha)\%$ prediction interval for Y_0

The $100(1-\alpha)\%$ prediction interval for Y_0 is therefore

$$\hat{\eta}_0 \pm t_{n-p}(\alpha/2) s_e \sqrt{1 + \boldsymbol{x}_0^T (X^T X)^{-1} \boldsymbol{x}_0}$$

Case study

Rubber example