Physique 18-10

Schobert Néo

$10~{\rm janvier}~2022$

Table des matières

1	Ensemble des chapitres :	3
2	18 octobre 2.1 Question: 2.2 Remarques	3 4
3	19 octobre 3.1 Question: 3.2 Remarques	5 5
4	8 Novembre 4.1 Questions 4.2 Remarques	8 8
5	9 Novembre 5.1 Questions 5.2 Remarques	8 8 9
6	15 Novembre 6.1 Questions 6.2 Remarques	9 10
7	16 Novembre 7.1 Questions 7.2 Remarques	10 10 10
8	19 Novembre 8.1 Questions 8.2 Remarques	11 11 11
9	22 Novembre 9.1 Questions 9.2 Remarques	11 11 11
10	23 Novembre 10.1 Questions 10.2 Remarques	12 12 12
11	29 Novembre 11.1 Questions 11.2 Remarques	12 12 12
12	30 Novembre 12.1 Questions	13 13 13

13 2 Décembre	13
13.1 Questions	. 13
13.2 Remarques	. 13
14 6 Décembre	13
14.1 Questions	. 13
14.2 Remarques	
14.3 Questions	
14.4 Remarques	
15 13 Décembre	14
15.1 Questions	. 14
15.2 Remarques	
16 15 Décembre	15
16.1 Questions	. 15
16.2 Remarques	
17 3 Janvier	15
17.1 Questions	. 15
17.2 Remarques	
18 4 Janvier	16
18.1 Questions	. 16
18.2 Remarques	
18.3 Questions	
18.4 Remarques	
19 10 Janvier	17
19.1 Questions	. 17
19.2 Remarques	

1 Ensemble des chapitres:

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]

2 18 octobre

- Qu'est-ce que le blanc d'ordre supérieur? [8]
- Qu'est-ce que la frange achromatique? [8]
- Qu'est-ce que les teintes de Newton? [8]
- Qu'est qu'un objet de phase? [8]
- Qu'est-ce qu'un réseau? [6]
- Qu'est-ce que le pas du réseau [6]
- Relation nombre de trait par unité de longueur / pas [6]
- Comment sont caractérisés chaque trait d'un réseau? et vers où emettent ces traits? [6]
- Qu'observe-t-on après l'éclairage d'un réseau par un laser Hélium-Néon? [6]

FIGURE 1 – Réseau en transmission

- Différence de marche entre deux ondes consécutives. [6]
- Rappeler la relation fondamentale des réseaux en transmission. [6]
- Qu'est-ce que l'ordre d'interférence du réseau? [6]
- Pour quel ordre obtient-on les conditions de l'optique géométrique? [6]

FIGURE 2 – Réseau en réflexion

- Rappeler la relation fondamentale des réseaux en reflexion. [6]
- Quelle expérience met en évidence la présence d'un minimum de déviation? [6]
- Comment s'écrit la déviation? Comment l'exploiter. [6]
- Cas intéressant de θ_K en fonction de θ_0 . [6]
- Relation du minimum de déviation. [6]
- Reprendre ici
- Qu'est-ce que le pouvoir dispersif d'un réseau? Donner la formule [6]
- Pour un réseau éclairé en incidence normale $\theta_0 = 0$ par deux radiations $\lambda_1 < \lambda_2$, que dire; selon K, de la déviation? [6]
- A quel cas peut-on opposer cela? (Cas du prisme) [6]
- Valeur de $\Delta \varphi$ [6]
- Méthode pour calculer la fonction de réseau. [6]
- Formule fonction de réseau et intensité. [6]
- Périodicité de $R(\Delta\varphi)$ [6]
- Cas d'annulation de $R(\Delta \varphi)$ [6]
- Cas des maximas primaires : Conditions et conséquences pour $R(\Delta\varphi)$. [6]
- Que réprésente N? [6]
- $R(\Delta\varphi)$ dans le cas des maximas primaires et largeur du pic central. [6]
- Valeur de $\Delta(\Delta\varphi)$ largeur du pic central. [6]

- Pourquoi θ_0 dépend de θ_K ? [6]
- Pourquoi $R(\Delta\varphi)$ est 2π -périodique et pas $\frac{2\pi}{N}$ -périodique? [6]

3 19 octobre

- Par rapport à quelle variable peut-on écrire R la fonction de réseau? [6]
- Valeur de la largeur du pic central par rapport à $\Delta(sin(\theta))$ [6]

FIGURE 3 – Résolution totale de deux radiations λ_1 et λ_2

- Cas du pouvoir séparateur d'un réseau. Valeurs des pics des doublets de sodium, largeur du pic et distance entre les deux pics. [6]
- Qu'est-ce que le critère de Rayleigh? [6]
- Que vaut les paramètres dans le cas limite d'après le critère de Rayleigh? [6]
- Définir le pouvoir de résolution. [6]
- Expression de la loi de Coulomb [9]

FIGURE IX.1 – Définition de la loi de Coulomb (ici dans le cas $q_1q_2 > 0$)

FIGURE 4 – Schéma de la loi de Coulomb (cas $q_1q_2 > 0$)

- Valeur de la permittivité dans un milieu autre que le vide. [9] diélectrique du vide [9]
- Analogie Loi de Coulomb / Gravitation [9]
- Qu'est-ce que le rayon de Bohr? [9]
- Valeur du rayon de Bohr [9]
- Lien champ électrostatique / force électrostatique.(charge ponctuelle q) [9]
- Lien champ électrostatique / force électrostatique. (n charges ponctuelles q_i) [9]
- Exemple du champ produit par un triangle équilatéral dont les sommets sont de charges (2q, q, q) [9]
- Que vaut la charge portée à la surface d'une sphère métallique en cuivre de rayon R portée à un potentiel V_1 . [9]
- Comment calculer le nombre de charges négatives en défaut et le nombre total de charges mobiles? [9]
- Comment caractériser la charge dans la matière électrisée. Quel lien avec la continuité? [9]

- Définir densité liné
ïque de charge / densité surfacique de charge / densité volumique de charge.
 [9]
- Lien entre les trois modèles (cas du fil rectiligne de rayon r chargé) [9]
- Expression élémentaire des champs (en fonction des densités linéiques / surfaciques / volumiques de charge) [9]

FIGURE IX.11 – Plan de symétrie d'une distribution de charge

FIGURE 5 – Plan de symétrie d'une distribution de charge

- Qu'est-ce qu'un plan de symétrie pour une distribution de charge. (Et sa notation) [9]
- Comment calculer $d\vec{E}(M)$? [9]
- Conséquences d'un plan de symétrie sur le champ en deux points symétriques M et M'. [9]

Figure IX.12 – Plan d'antisymétrie d'une distribution de charge

FIGURE 6 – Plan d'antisymétrie d'une distribution de charge

- Qu'est-ce qu'un plan d'antisymétrie pour une distribution de charge. (Et sa notation) [9]
- Comment calculer $d\vec{E}(M)$? [9]
- Conséquences d'un plan d'antisymétrie sur le champ en deux points symétriques M et M'. [9]
- Qu'est-ce qu'une transformation isométrique du champ? [9]
- Comment se transforme le champ lors d'une transformation isométrique? [9]
- Que peut-on dire de l'invariance par translation? [9]
- Que peut-on dire du champ lors d'une translation selon un axe? [9]
- Que signifie l'invariance par rotation? [9]
- Que peut-on dire du champ lors d'une rotation selon un axe? [9]
- Pourquoi il ne faut pas établir un lien entre la dépendance du champ et sa direction? [9]
- Rappeler le principe général de Curie. [9]
- Qu'est-ce que la circulation du champ électrique? [9]
- Donner la formule de la circulation du champ \vec{E} entre le point A et B. [9]
- Que dire de la circulation du champ? [9]
- Qu'est-ce que le potentiel électrostatique? [9]
- Valeur du potentiel électrostatique (charge ponctuelle) [9]
- Lien potentiel électrostatique / circulation du champ [9]
- Valeur du potentiel électrostatique (distribution de n charges q_i) [9]
- Lien circulation du champ / Différence de potentiel entre deux points. [9]

- Peut-on avoir une distribution de charge non homogène.
- Existe-il une sorte d'aimant à charge?
- Si oui, on peut imaginer un recouvrement systématique par translation vraie en pratique.

4 8 Novembre

4.1 Questions

- Superposition du potentiel électrostatique [9]
- Lien entre champ et potentiel. [9]
- Définir le gradient. [9]
- Lien entre dV et $\overrightarrow{grad}V$ [9]
- Définir le signe Nabla ∇ [9]
- Définir gradient en coordonnées cartésiennes / cylindriques / sphériques. [9]
- Sens physique du gradient. [32]
- Travail en fonction du potentiel électrostatique. [9]
- Définir l'énergie potentielle électrostatique [9]
- Cas d'une distribution de charges [9]
- Notion de surface orientée. [9]
- Définir flux élémentaire en surface ouverte. [9]
- Définir flux en surface fermée. [9]
- Cas du flux élémentaires créé par une charge ponctuelle. (surface ouverte)[9]
- Définir l'angle solide élémentaire. [9]
- Valeur de l'angle solide total. [9]
- Cas du flux élémentaire créé par une charge ponctuelle. (surface fermée) [9]
- Enoncer le théorème de Gauss. [9]
- Rappeler les stratégies de mise en oeuvre. [9]
- Rappeler toutes les putains de conditions sur le théorème de Gauss. [9]
- Lien entre norme du champ par rapport à Q_{int} et S_i . [9]
- Comment choisir S la surface? [9]
- Se remémorer les exos d'applications (a,b,c) (sphère / cylindre / **plan** 1 φ **ni chargé en** z=0) [9]

4.2 Remarques

 $-f(x) = -\frac{dE_p(x)}{dx} \overrightarrow{u}_x$ dans le cas de forces conservatives. Condition nécessaire d'ailleurs pour qu'une force soit conservative. Cette relation peut-elle être assimilée dans le cas de plusieurs variables à : $f(x, y, z) = -\overrightarrow{grad}E_p$

5 9 Novembre

- On a continuité de la composante tangentielle et discontinuité de la composante normale. [9]
- Comment obtenir le potentiel à partir du champ? [9]
- Pourqoi le potentiel doit être continue? [9]
- Intérêt de la continuité du potentiel. [9]
- Se remémorer les trois exemples. [9]
- Définir un condensateur. [9]
- Définir une armature. [9]
- A quoi ressemble un condensateur en influence totale. [9]
- Les charges doivent être au repos; qu'est-ce que ça implique sur le champ. [9]
- Utiliser Gauss pour avoir la répartition des charges dans un condensateur. [9]
- Définir la capacité d'un condensateur. [9]
- Définir en pratique un condensateur plan. [9]

- Conditions pratiques d'un condensateur plan. [9]
- Calculer le champ produit par un condensateur plan. [9]
- Determiner la capacité d'un condensateur plan. [9]
- Valeur de la capacité d'un condensateur plan. [9]
- Valeur de la permittivité dans un milieu autre que le vide. [9]
- Lois d'association des condensateurs / mnémotechnique. [9]
- Calculer l'énergie électrique emmagasinée dans un condensateur. [9]
- Comment obtenir les équations des lignes de champ. [9]
- Deux possibilités lorsque deux lignes de champ se coupent. Citer un exemple pour chacun. [9]
- Définir un tube de champ. [9]
- Qu'est-ce qu'une zone isopotentielle? [9]
- Propriété du champ par rapport aux zones isopotentielles. [9]
- Comment est orienté le champ électrostatique? [9]
- Qu'est-ce que le resserrement ou l'évasement? [9]
- Que ce passe-t-il pour l'intensité du champ électrostatique lors d'un évasement / resserement?
- Exemple de cartes de champs. Trouver les symétries et les zones équipotentielles. [9]
- Calculer le flux élémentaire du champ électrique à travers la surface fermée du méso-cube. [10]
- Définir la divergence. $(div(\acute{E}))$ [10]
- Qu'est ce que l'équation de Maxwell-Gauss. [10]
- Citer le théorème de Green-Ostrogradski. [10]
- Utilité de ce théorème. [10]
- Comment passer de la forme intégrale à la forme locale du théorème de Gauss? [10]
- Donner la signification de la divergence. [10]
- Calculer la circulation élémentaire du champ électrostatique sur le contour fermé. [10]
- Définir la rotationnelle. $(\overrightarrow{rot}\vec{E})$ [10]
- Equation de Maxwell-Faraday de la statique. [10]
- Autre expression de $rot \acute{E}$. [10]
- Que remarque-t-on pour mémoriser plus facilement l'expression de \overrightarrow{rotE} . [10]
- Citer le théorème de Stokes-Ampère. [10]
- Utilité de ce théorème. [10]
- Donner la signification de la rotationnelle. [10]

- $V(B) V(A) = dV_{\overrightarrow{dr}} = \overrightarrow{grad}V.\overrightarrow{dr}$
- La divergence au final, c'est la dérivée directionnelle donnée par le vecteur (1,1,1)

15 Novembre 6

- Qu'est-ce que le Laplacien? Définition avec les dérivées et avec le div. [10]
- Définir le Laplacien vectoriel [10]
- Equation de Poisson. Expression et preuve. [10]
- Résumé du problème de Dériclé. [10]
- Que peut-on dire quand une dimension est très grande devant une autre? [10]
- Analogie gravitation / Electrostatique. [10]
- Définition du vecteur densité volumique de courant. [11]
- Donner l'expression du courant. [11]
- Valeur du vecteur densité de courant dans le cas de plusieurs types de porteurs de charge. [11]
- Définition véritable du vecteur densité de courant. [11]
- $-\vec{J}(M)$ en fonction de I(M) [11]

- $-\vec{J}(M)$ en fonction de $\vec{v}(M)$ [11]
- Equivalence 1D-3D. Ecrire $\overrightarrow{J}(M)d\tau$ [11]
- Cas de la distribution surfacique. Et définition du vecteur densité surfacique de courant. [11]
- Rappeler le principe de Curie. [11]
- Donner la loi de Biot et Savart. $d\overrightarrow{B}_P(M) = \frac{\mu_0}{4\pi} \frac{\overrightarrow{J}(P) \wedge \overrightarrow{PM}}{PM^3} d\tau$ [11]

7 16 Novembre

7.1 Questions

- Quelle est la conséquence? [11]
- Dans un plan de symétrie Π^+ , comment se comporte le vecteur force, le vecteur vitesse, et le vecteur champ magnétique. [11]
- Faire un léger rapprochement (largement faux) entre le champ magnétique et le champ électrostatique. L'un dans le cas d'un Π^+ , l'autre dans le cas d'un Π^- . [11]
- Dans un plan d'antisymétrie Π^- , comment se comporte le vecteur force, le vecteur vitesse, et le vecteur champ magnétique. [11]
- Faire un léger rapprochement (largement faux) entre le champ magnétique et le champ électrostatique. L'un dans le cas d'un Π^- , l'autre dans le cas d'un Π^+ . [11]
- Quelle rapprochement peut-on faire entre les invariances dans le champ magnétiques et celles dans le champ électrostatique. [11]
- Sur quoi exactement se base le principe de Curie dans ce cours? [11]
- Que ce passe-il pour le champs magnétique lors d'une translation; d'une rotation? [11]
- Définir le flux magnétostatique [11]
- Que peut-on dire du flux magnétostatique. [11]
- Quel est le lien avec la divergence de \hat{B} [11]
- Equation de Maxwell-Thomson. [11]
- Valeur de \vec{B} grâce à la loi de Biot Savart. [11]
- Définition de la circulation du champ magnétique. [11]
- Discussion en fonction de Γ [11]
- Citer le théorème d'Ampère. [11]
- Valeur de la perméabilité magnétique du vide. [11]
- Que vaut I_{enlace} dans le cas d'une distribution filiforme / volumique / surfacique. [11]
- Donner la stratégie de mise en œuvre. [11]
- Rappeler les conditions pour appliquer le théorème d'Ampère "idéal". [11]
- Que peut-on dire du champ magnétique? [11]
- Comment faire pour utiliser Ampère dans le cas du solénoide infini / de la nappe de courant ? [11]
- Rappeler l'équation de Maxwell-Ampère et sa "preuve". [11]
- Autour de quoi tourne le courant magnétostatique? [11]
- Que se passe-t-il pour le champ magnétostatique lors d'un évasement / resserrement. [11]

7.2 Remarques

- Si un fil est enlacé 2 fois? (c'est bon en fait)
- Continuité du champ magnétique completement pété dans le cas du solénoide infini.

_

8 19 Novembre

8.1 Questions

- Définir un dipole [12]
- Définir le moment dipolaire [12]
- Moment dipolaire dans le cas de n charges. (Voir chapitre 12 Fiches)
- Définir le Debye. [12]
- Définition du barycentre. [12]
- Calcul du potentiel électrostatique en approximation dipolaire. [12]
- Valeur du potentiel électrostatique en approximation dipolaire. [12]
- Valeur du champ électrostatique dipolaire. [12]
- Calculer le champ électrostatique dipolaire. [12]
- Définir les positions de Gauss. [12]
- Trouver l'équation des lignes de champs. [12]
- Trouver l'équation des isopotentielles. [12]
- Calculer le moment et la résultante des actions subies par un dipole plongé dans un champ électrostatique uniforme. [12]
- Calculer le moment et la résultante des actions subies par un dipole plongé dans un champ électrostatique non uniforme. [12]

8.2 Remarques

— Existe-t-il une formule reliant χ et p?

9 22 Novembre

9.1 Questions

- Lien entre la force et l'énergie potentielle. [12]
- Inexistence du monopole magnétique. [12]
- On a que des dipoles. [12]
- Comment le montrer? [12]
- Définition du moment magnétique. [12]
- unité du moment magnétique. [12]
- Moment cinétique électronique. [12]
- Moment dipolaire électronique. [12]
- Rapport gyromagnétique de l'électron. [12]
- Idée de moment de spin. [12]
- Définition du magnéton de Bohr. [12]
- Ordre de grandeurs de moments magnétiques. [12]
- Analogie entre électrique et magnétique. [12]
- Retrouver l'équation des lignes de champs. [12]
- Retrouver la valeur des actions mécaniques subiées par un dipôle magnétique plongé dans un champ magnétique extérieur uniforme. [12]
- Valeur des actions mécaniques subiées par un dipôle magnétique plongé dans un champ magnétique extérieur non uniforme [12]
- Notion du flux coupé. [12]
- Travail des forces de Laplace sur un circuit lors du déplacement \overrightarrow{dr} [12]
- Théorème de Maxwell [12]
- Règle du flux maximal. [12]
- Equation de la conservation de la charge en 1D. [13]
- Equation de la conservation de la charge en 3D. [13]

9.2 Remarques

— Dans le cadre non statique, le monopole magnétique peut-il exister?

10 23 Novembre

10.1 Questions

- Retrouver la loi des noeuds en ARQS. [13]
- Retrouver l'équation de Maxwell-Ampère. [13]
- Que peut-on dire de l'intensité dans le condensateur. [13]
- Visualiser les effets du champ électrostatique sur le champ magnétique. (transport d'électricité) [13]
- Rappeler le phénomène d'induction. [13]
- Différence entre induction de Newmann et induction de Lorentz. [13]
- Retrouver la force électromotrice. [13]
- Rappeler la loi de Lenz-Faraday. [13]
- Retrouver l'équation de Maxwell-Faraday. [13]
- Donner les 4 équations de Maxwell en local et en global. [13]
- Valeur de la perméabilité du vide. [13]
- Valeur de la permittivité diélectrique du vide. [13]
- Lien entre μ_0 et ϵ_0 [13]
- Définition de l'ARQS. Ses critères de validité à redémontrer. [13]
- Bilan des équation de Maxwell en ARQS magnétique. [13]
- Définition de l'ARQS électrique. Ses caractères de validité à redémontrer. [13]
- Bilan des équations de Maxwell en ARQS électrique. [13]

10.2 Remarques

- Pour démontrer Maxwell-Faraday, on a utilisé le flux. Mais il est nul d'après Maxwell-Thompson.
- Qu'est-ce qui nous prouve que les champs engendrés convergent.
- $B_1 < B_0$ quoi qu'il arrive.

11 29 Novembre

11.1 Questions

- Quelles équations permettent de déduire que \overrightarrow{E} et \overrightarrow{B} sont couplés. [13]
- Quelles équations sont constitutives des champs \vec{E} et \vec{B} [13]
- Retrouver l'équation de d'Alembert pour le champ \vec{E} et pour le champ \vec{B} [13]
- Retrouver la loi D'Ohm locale. [14]
- Ordre de grandeurs de γ [14]
- Retrouver la valeur de la résistance cas général et dans le cas d'un conducteur ohmique cylindrique de sections S droite et de longueur L. [14]
- Retrouver la puissance cédée aux porteurs de charge. [14]
- Retrouver les 2 causes de variation de l'energie du champ électromagnétique. [14]
- Retrouver l'identité de Poynting. [14]
- Valeur du vecteur de Poynting. [14]
- Qu'est-ce que la densité volumique d'énergie électromagnétique / électrique / magnétique. [14]
- Théorème de Poynting. [14]
- Ordre de grandeur de flux surfaciques. [14]
- Ordre de grandeur $\frac{\epsilon_m}{\epsilon_e}$ [14]

11.2 Remarques

— La puissance rayonnée est relative au volume ou au champ électromagnétique?

12

12 30 Novembre

12.1 Questions

- Retrouver l'EDA 1D (corde) [15]
- Retrouver l'EDA 1D (Câble coaxial) [15]
- Quelles sont les variables "bonnes sa mère". Et pourquoi elles sont trop bonnes. [15]
- Retrouver l'EDA 1D avec les bonnes variables. [15]

12.2 Remarques

— Notation complexe dérivée partielle.

13 2 Décembre

13.1 Questions

13.2 Remarques

14 6 Décembre

14.1 Questions

- Définir une onde plane. [15]
- Qu'est-ce que le plan d'onde. [15]
- Comment passer de l'EDA 3D à l'EDA 1D? [15]
- Définition de l'OPPH. [15]
- Problème de l'OPPH. [15]
- Utilité de la synthèse de Fourrier sur l'OPPH. [15]
- Ecrire la synthèse de Fourrier sur l'OPPH. [15]
- Ordre de grandeur Spectre électromagnétique. [15]
- Définit la vitesse de phase. [15]
- Qu'est-ce qu'un milieu non dispersif. [15]
- Transformation des opérateurs. [15]
- Equation de Maxwell avec les opérateurs en complexe. [15]
- Qu'est-ce que la relation de structure de l'onde plane. [15]
- Qu'est-ce que l'étude de la polarisation d'une OPPH. [15]
- Mener l'étude sur le champ électrique. [15]
- Définir polarisation rectiligne et circulaire. [15]
- Faire l'énergétique d'une OPPH. [15]
- Retrouver la vitesse de transport de l'énergie d'un OEM. [15]
- Comment calculer l'énergie d'un un volume élémentaire. (2 façons.) [15]
- Valeur moyenne en complexe. [15]

14.2 Remarques

— Pour déterminer le sens de parcourt de l'onde dans le cas $\varphi = \frac{\pi}{2}$, pouvait-on utiliser le rotationnel.

- Polarisation par dichroïsme. [15]
- Retrouver la loi de Malus. [15]

- Que peut-on dire sur le plasma (fréquence) [16]
- Définir un plasma [16]
- Quelles sont les hypothèses retenues ici? [16]
- Calculer le rapport entre \vec{f}_{magn} et \vec{f}_{el} [16]
- Quelles autres forces considérer? [16]
- Pourquoi c'est le même τ ? [16]
- Appliquer le RFD et retrouver \vec{J} , puis par loi d'Ohm locale, retrouver $\underline{\gamma}$ la conductivité complexe du plasma. [16]
- Que dire dans le cas où le gaz est plusieurs fois ionisé? [16]
- Quelles sont les hypothèses pour un plasma dilué? [16]
- Pourquoi ces hypothèses? [16]
- En déduire la conductivité complexe simplifiée et le formalisme réel de \vec{J} [16]
- Ecrire la conservation de la charge puis en déduire une pulsation de plasma. Que peut-on en déduire selon les cas $\omega = \omega_p$ et $\omega \neq \omega_p$. [16]
- Comment découpler les équations de Maxwell? [16]
- Retrouver les équations de Maxwell complexe. [16]
- Quelle équation est modifié par rapport à l'OPPH classique? [16]
- Comment faire l'analogie avec le cas du vide? [16]
- Qu'est-ce que la relation de dispersion. [16]
- Comment l'établir dans le cas du plasma? 2 façons. [16]
- Qu'est-ce que la relation de Klein-Gordon. (relation de dispersion du plasma) [16]
- Que peut-on dire de la relation de dispersion du plasma? [16]
- Retrouver v_{φ} dans le cas $\omega > \omega_p$. [16]
- Pourquoi $v_{\varphi} > c$ ne pose pas de problème? [16]
- Qu'est-ce que le domaine fréquentiel de transparence du plasma? [16]
- Pourquoi le milieu du plasma est dispersif? [16]
- Définir l'indice optique. [16]
- Qu'est-ce que le terme d'atténuation, comment le retrouver? [16]
- Qu'est-ce que le domaine fréquentiel d'opacité? [16]
- Définir la profondeur caractéristique de pénétration de l'onde dans le plasma. [16]
- Définir la notion d'onde Eva naissante. [16]
- Définir l'indice d'extinction. [16]
- Que peut-on dire du plasma? [16]
- Donner la structure de l'OEM dans les cas $\omega > \omega_p$ et $\omega = \omega_p$. [16]

15 13 Décembre

- Dans le cas $\omega > \omega_p$. Que vaut la valeur moyenne du vecteur de Poynting. Que conclure? [16]
- Dans le cas $\omega < \omega_p$. Faire la même étude. [16]
- Que dire de k dans le cas du MLHI. [16]
- Qu'est-ce que n' et n" [16]
- Rappeler le caractère non réaliste de l'OPPH. [16]
- Cas d'une superposition de 2 ondes. Redonner toutes les notations. [16]
- Cas d'une superposition de 2 ondes. Retrouver vitesse de phase et vitesse de groupe. [16]
- Faire de même dans le cas de N ondes. [16]
- Retrouver période enveloppe et période apparente. [16]
- Faire le calcul pour $\omega_m >> \Delta \omega$. [16]
- Vitesse de groupe pour un paquet d'onde étroit. [16]
- Qu'est-ce que le temps de relaxation? [17]

- Que vaut la conductivité du conducteur pour $\omega \tau \ll 1$? [17]
- Que dire du comportement du métal vis à vis du champ électromagnétique? [17]

16 15 Décembre

16.1 Questions

- Cadre de l'effet Kelvin. [17]
- En déduire les équations de diffusion. [17]
- Qu'est-ce que le coefficient de diffusion? [17]
- Refaire l'exo du cours. [17]
- Retrouver alors la valeur du champ magnétique puis du champ électrique puis la valeur de l'épaisseur de peau. [17]
- Ordre de grandeur épaisseur de peau. [17]
- Qu'est-ce qu'un conducteur parfait? [17]
- Donner les relations de passage vide / conducteur. [17]
- Que dire des champs électriques et magnétiques à proximité de la surface d'un concucteur parfait ? [17]
- Retrouver la loi de Descartes de la réflexion sous forme vectorielle et angulaire. [17]

16.2 Remarques

17 3 Janvier

- Qu'est-ce que l'expérience de Joule. Que donne-t-elle? [19]
- Que dire dans le cas d'un système subissant une transformation cyclique immobile? [19]
- Calorie en Joule. [19]
- Il en ressort une fonction d'état. Quelle est-elle? Cas immobile [19]
- Valeur de $W_{pression}$. [19]
- Pression en fonction de la force. [19]
- Enoncer la première loi de Joule. [19]
- Valeur de c_v . [19]
- Retrouver la première loi de Joule. [19]
- Définir l'entalpie. [19]
- Valeur de ΔH en transformation isobare. [19]
- Enoncer la seconde loi de Joule. [19]
- valeur de c_p . [19]
- Enoncer le premier principe cas non immobile. [19]
- Rappeler la loi de Laplace. [19]
- Rappeler les relations de Mayer. [19]
- Définition de l'entropie. (fonction d'état!!!!!!!) [19]
- Definir l'entropie crée et l'entropie échangée. (pas fonction d'état!!!!!!!) Valuer de l'échangée. [19]
- Que dire de la transformation par rapport à la valeur de l'entropie crée. [19]
- Voir le cours qu'un BG qui s'appelle Néo a écrit.

- Rappeler la première identité thermodynamique. La retrouver. (Attention aux hypothèses) ¹ [19]
- Définir température thermodynamique / pression thermodynamique / rapport pression thermodynamique / rapport température thermodynamique [19]
- Reprendre les notations pour les systèmes ouverts. [19]
- Rappeler les trois étapes que l'on va mener. ²

18 4 Janvier

18.1 Questions

- Mener les trois étapes sur le système ouvert. (Bilan de masse / Bilan d'énergie / Application du premier principe) [19]
- Donner alors les 3 versions du bilan enthalpique. [19]
- Formuler de même le second principe sur le système ouvert. [19]
- Qu'est-ce que le taux de création d'entropie? [19]
- Rappeler l'exemple de la détente de Joule-Kelvin
- Rappeler l'exemple de la Tuyère. [19]
- Rappeler l'exemple de l'échangeur thermique. [19]
- Que représente-t-on dans un diagramme (P, H) monophasé. [19]
- Représenter chacune des courbes dans un diagramme (P, H) monophasé. [19]
- Utiliser le diagramme (P, H) monophasé pour l'exemple du détendeur et du compresseur. [19]
- Que représente-t-on dans un diagramme (P, H) diphasé. [19]
- Représenter chacune des courbes dans un diagramme (P, H) diphasé. [19]
- Rappeler le théorème du moment. Le retrouver. ³ [19]
- Utiliser le diagramme (P, H) diphasé dans le cas du réfrigérateur à tétrafluoroéthane R134a [19]
- Définir le COP. [19]
- Définir l'équilibre physicochimique. [22]
- Condition de l'équilibre mécanique. [22]
- Condition de l'équilibre thermique. [22]
- Définir l'équilibre osmotique. [22]
- Donner les trois paramètres intensifs possibles en fonction de l'équilibre considéré. [22]
- Quel est le jeu naturel des variables extensives de U cas des systèmes physiques? et pourquoi [22]
- Quel est le jeu naturel des variables extensives de U cas des systèmes physicochimiques? et pourquoi [22]
- Calculer la différentielle de U dans le cas des systèmes physicochimiques. [22]
- Définir alors le potentiel chimique puis la pression thermodynamique et la température thermodynamique [22]
- Cas du système physique non fermé (petite appartée) [22]
- Faire de même avec l'entropie. Définir de même chaque truc. [22]
- Que dire du sens d'évolution (vers quel équilibre) quand l'une des variables varie. [22]

18.2 Remarques

 $^{1. \} http://www.mmelzani.fr/documents/2018-2019/part2_thermodynamique/subtilites_1er_identite.pdf$

^{2.} Bilan de matière / Bilan d'énergie / Application du premier principe

^{3.} $H_X = H_\ell + H_g$ puis $mh_X = m_\ell h_\ell + m_g h_g$ donc $h_X = (1 - x_g)h_\ell + x_g h_g$ Finalement, $x_g = \frac{h_X - h_\ell}{h_g - h_\ell}$

18.3 Questions

- Qu'est-ce que l'expérience de Hertz? [18]
- Définir un dipôle oscillant. [18]
- D'où vient la variation du moment dipolaire? [18]
- Moment dipolaire oscillant d'un nuage électronique. Le retrouver [18]
- Moment dipolaire oscillant d'une antenne. [18]
- Rappeler les conditions de rayonnement. [18]
- Définir les trois échelles de longueur pertinentes. [18]
- Définir l'approximation dipolaire. [18]
- Définir l'approximation non relativiste. [18]
- Définir l'hypothèse de la zone de rayonnement. [18]
- Dans le cas du dipole oscillant, dans quelles approximations est-on? [18]
- Expression du temps de retard. [18]
- Ecriture du temps de retard dans le cas d'une distribution plus étendue. [18]
- Définition de anistropie, cas de \vec{B} . [18]
- Que peut-on dire du dipole oscillant concernant l'énergie sur son axe. [18]
- Expression du champ électrique et du champ magnétique dans le cas du dipole oscillant en tout point. [18]
- Donner les trois cas auquel on peut être confronté dans le cas d'un dipole oscillant. [18]
- Valeur du champ magnétique et du champ électrique rayonné à grande distance par un dipôle oscillant. [18]
- Rappeler ici la structure d'onde plane de l'onde rayonnée. [18]
- Qu'est-ce que l'indicatrice de rayonnement? [18]
- Comment calculer la puissance totale. [18]
- Donner la formule de Larmor, la retrouver. [18]
- Réutiliser le modèle de l'électron élastiquement lié pour retrouver le moment dipolaire. [18]
- Mener ensuite l'étude de la puissance rayonnée. [18]
- Qu'est-ce que la diffusion de Rayleigh, de Thompson? [18]
- Comment en déduire que le ciel est bleu? [18]

18.4 Remarques

_

19 10 Janvier

- Rôle de l'énergie potentielle. (en mécanique) [22]
- Lien entre énergie potentielle et entropie. Quand est-ce utile? ⁴ [22]
- Jeu de variable naturel de S. [22]
- Que dire de l'entropie d'un système isole? de son maximum? [22]
- Qu'est-ce que la détente de Joule-Gay-Lussac? [22]
- Comment calculer une variation d'entropie sans utiliser la première identité thermodynamique? Le faire dans le cas de la détente de Joule-Gay-Lussac. [22]
- Comment retrouver l'équilibre d'un système? [22]
- Retrouver l'équilibre thermique et l'équilibre mécanique et l'équilibre osmotique à l'aide de l'entropie d'un système isolé $\Sigma_1 + \Sigma_2$. [22]
- Donner la valeur des composantes différentielles de U et de S en fonction du potentiel chimique thermodynamique / de la température thermodynamique / de la pression thermodynamique. [22]
- Problème de l'entropie comme fonction d'état caractérisant le potentiel. [22]
- Introduire l'entalpie libre. Quel est son rôle et quand l'utiliser ⁵ [22]

^{4.} cas Σ isolé

^{5.} Cas monotherme, monobare

- Décrire le phénomène de convection naturelle. [20]
- Décrire le phénomène de convection forcée. [20]
- Décrire le phénomène de rayonnement. [20]
- Que dire du rayonnement de tout corps de $T > 0^6$ [20]
- Comment que ca marche le corps noir déjà. [20]
- Que retenir du transfert d'énergie par rayonnement? ⁷ [20]
- Décrire l'expérience d'Ingen Ousz. Quel résultat implique-t-elle? [20]
- Définir le flux thermique. (courant thermique) Et donner son unité. [20]
- Définir la densité de flux thermique surfacique. [20]
- Lien entre flux thermique et flux thermique surfacique. [20]
- Quelle propriété possède la densité de flux thermique surfacique? [20]
- Définir le vecteur densité volumique de flux thermique. [20]
- Quelle propriété se propage au vecteur densité volumique de flux thermique? [20]
- Quelle condition doit-on avoir pour définir la température habituellement. Comment la définir ? [20]
- Quelle problème cette définition pose-t-elle? [20]
- Définir alors la température dans le cas de la conduciton thermique. [20]
- Définir les conditions de validité. [20]
- Donner la loi de Fourrier. Sur quoi s'appuie-t-elle? Donner ses conditions d'application [20]
- Définir la conductivité thermique et donner son unité. [20]
- Ordre de grandeur de quelques matériaux. [20]
- Loi de Fourrier cas unidimensionnel. [20]
- Définir la capacité thermique élémentaire d'un système. [20]
- Quelle remarque peut-on faire dans le cas d'un milieu condensé. [20]
- Donner l'expression du premier principe dans le cas général. La retrouver. [20]
- Trouver une expression de \mathcal{P}_{autre} [20]
- Trouver une expression de dI_Q dans le cas 1D. [20]
- Donner l'équation de la diffusion de la chaleur 1D (à l'aide du premier principe et de la loi de Fourrier) [20]
- Définir le coefficient de diffusion thermique. [20]
- Rappeler l'effet de peau. [20]

Références

- [1] Graye. Chapitre 1. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours_Physique/Electrocinetique/Signaux_periodiques.pdf.
- [2] Graye. Chapitre 2. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours_Physique/Electrocinetique/Traitementnum.pdf.
- [3] Graye. Chapitre 3. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours_Physique/Mecanique/Referentiels_non_galileens.pdf.
- [4] Graye. Chapitre 4. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours_Cours_physique/Mecanique/Lois_frottement_solide_final.pdf.
- [5] Graye. Chapitre 5. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Optique/Modele_scalaire_onde_lumineuse.pdf.
- [6] Graye. Chapitre 6. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Optique/Superposition_ondes_lumineuses.pdf.

6.
$$u_{em} = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_b T}} - 1}$$

^{7.} Sans contact, sans matière, par OEM

- [7] Graye. Chapitre 7. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours_Physique/Optique/DFO_Trous_Young.pdf.
- [8] Graye. Chapitre 8. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Optique/DA_Interferometre_Michelson.pdf.
- [9] Graye. Chapitre 9. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_ personnels/Cours/Cours_physique/Electromagnetisme/Electrostatique/Champ_E_ Coulomb_symetrie.pdf.
- [10] Graye. Chapitre 10. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/Electrostatique/Formulation_locale_ES_analog_Gravitation.pdf.
- [11] Graye. Chapitre 11. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/Magnetostatique/Champ_B_Theoreme_Ampere.pdf.
- [12] Graye. Chapitre 12. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/Dipoles/Dipoles.pdf.
- [13] Graye. Chapitre 13. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/Equations_Maxwell/Equations_Maxwell.pdf.
- [14] Graye. Chapitre 14. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/Energie_electromagnetique/Energie_electromagnetique.pdf.
- [15] Graye. Chapitre 15. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/OEM_vide/OEM_vide.pdf.
- [16] Graye. Chapitre 16. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/OEM_plasmas/OEM_plasmas.pdf.
- [17] Graye. Chapitre 17. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/OEM_reflexion/OEM_reflexion.pdf.
- [18] Graye. Chapitre 19. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Electromagnetisme/OEM_rayonnement/OEM_rayonnement.pdf.
- [19] Graye. Chapitre 19. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Thermodynamique/Premier_second_principe_syst_ouverts.pdf.
- [20] Graye. Chapitre 20. https://mp3montaignebdx.legtux.org/wp-content/Dossiers_personnels/Cours/Cours_physique/Thermodynamique/Conduction_convection.pdf.
- [21] Graye. Chapitre 21. https://www.google.com/.
- [22] Graye. Chapitre 1 chimie. https://google.com.
- [23] Graye. Chapitre 2 chimie. https://www.google.com/.
- [24] Graye. Chapitre 3 chimie. https://www.google.com/.
- [25] Graye. Chapitre 4 chimie. https://www.google.com/.
- [26] Graye. Chapitre 5 chimie. https://www.google.com/.
- [27] Graye. Chapitre 6 chimie. https://www.google.com/.
- [28] Graye. Chapitre 7 chimie. https://www.google.com/.
- [29] Graye. Chapitre 8 chimie. https://www.google.com/.
- [30] Graye. Chapitre 9 chimie. https://www.google.com/.
- [31] Graye. Chapitre 10 chimie. https://www.google.com/.
- [32] 4blue1brown. Divergence and curl: The language of maxwell's equations, fluid flow, and more. https://www.youtube.com/watch?v=rB83DpBJQsE.