PRÁCTICO 1 LENGUAJES FORMALES: Automatas finitos deterministas (AFDs).

Mauricio Velasco

- 1. Considere los dos diagramas de estados de las máquinas M_1 y M_2 descritas en la figura (1) y responda las siguientes preguntas para cada una de ellas:
 - a) Cuál es el estado inicial?
 - b) Cuál es el conjunto de estados de aceptación?
 - c) Qué sucesión de estados tiene cada una de las máquinas al procesar la cadena aabb?
 - d) La máquina acepta la cadena aabb?
 - e) La máquina acepta la cadena ϵ ?
- 2. La descripción formal de un AFD M esta dada por

$$(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$$

donde

δ	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Dibuje el diagrama de estados de esta máquina.

- 3. Escriba la descripción formal de las dos máquinas del ejercicio (1).
- 4. Demuestre que todo AFD puede convertirse en uno equivalente con un único estado de aceptación (recuerde que dos AFDs son equivalentes si aceptan y rechazan exáctamente las mismas palabras).

Figura 1: Diagramas de estados del problema (1).

- 5. Suponga que $\Sigma = \{a,b\}$. Construya AFDs para los siguientes lenguajes y demuestre la validez del mismo:
 - a) $\{w \in \Sigma^* : w \text{ tiene una o dos } b's\}$
 - b) $\{w \in \Sigma^* : w \text{ tiene un número par de } a's\}$
- 6. Usando los AFD que construyó en el ejercicio anterior, construya un AFD para cada uno de los siguientes lenguajes, describa en palabras el lenguaje resultante y justifique la validez de su AFD:
 - a) La intersección entre los lenguajes de las partes (a) y (b).
 - b) La unión entre los lenguajes de las partes (a) y (b).
 - c) La concatenación de los lenguajes de las partes (a) y (b)
 - d) El complemento del lenguaje de la parte (b)