車両制御特論レポート2

九州工業大学大学院 工学府 機械知能工学専攻 知能制御工学コース

所属: 西田研究室

学籍番号: 16344217

提出者氏名: 津上 祐典

平成28年8月10日

1 与えられたシステム

学籍番号によって決まった制御対象は,

$$\dot{x}(t) = ax^{3}(t) + b\cos 2t + c(x^{2}(t) + 1)u(t)$$
(1)

$$a = 3, b = -6, c = 2$$
 (2)

である. また, 理想モデルは,

$$\dot{x}_d(t) = -4x_d(t) + r_d(t) \tag{3}$$

である. ここで,

$$\tilde{x}(t) = x(t) - x_d(t) \tag{4}$$

とおくと追従誤差方程式は,

$$\dot{\tilde{x}}(t) = \dot{x}(t) - \dot{x}_d(t) \tag{5}$$

$$= ax^{3}(t) + b\cos 2t + c(x^{2}(t) + 1)u(t) - \dot{x}_{d}(t)$$
(6)

となる.

2 適応追従コントローラの設計

2.1 *a*, *b*, *c* が既知のとき

エネルギー関数を $V(t)=\tilde{x}^2(t)$ とおく、エネルギー関数の時間微分を解析すると、

$$\dot{V}(t) = 2\tilde{x}(t)\dot{\tilde{x}}(t) \tag{7}$$

$$= 2\tilde{x}(t) \left[ax^{3}(t) + b\cos 2t + c \left\{ x^{2}(t) + 1 \right\} u(t) - \dot{x}_{d}(t) \right]$$
 (8)

となる. ここで入力 u(t) を

$$u(t) = -\frac{ax^{3}(t)}{c(x^{2}(t)+1)} - \frac{b\cos 2t}{c(x^{2}(t)+1)} + \frac{\dot{x}_{d}(t)}{c(x^{2}(t)+1)} - \delta\tilde{x}(t) \quad (\delta > 0)$$
(9)

とすれば,

$$\dot{V}(t) = -2\delta c(x^2(t) + 1)\tilde{x}^2(t) < 0 \qquad \text{for any } \tilde{x}(t) \neq 0$$
 (10)

となり、システムを漸近安定化することが出来る.

2.2 a, b, c が未知のとき

次に, a,b,c が未知な場合を考える. 入力 u(t) を

$$u(t) = -\frac{\hat{a}}{\hat{c}} \frac{x^3(t)}{x^2(t)+1} - \frac{\hat{b}}{\hat{c}} \frac{\cos 2t}{x^2(t)+1} + \frac{1}{\hat{c}} \frac{\dot{x}_d(t)}{x^2(t)+1} - \delta \tilde{x}(t)$$
(11)

$$= -\hat{\alpha} \frac{x^3(t)}{x^2(t)+1} + \hat{\beta} \frac{\cos 2t}{x^2(t)+1} + \hat{\gamma} \frac{\dot{x}_d(t)}{x^2(t)+1} - \delta \tilde{x}(t)$$
 (12)

とすると, 誤差追従方程式は,

$$\dot{\tilde{x}}(t) = ax^{3}(t) + b\cos 2t - \dot{x}_{d}(t) - c\hat{\alpha}x^{3}(t) - c\hat{\beta}\cos 2t + c\hat{\gamma}\dot{x}_{d}(t) - c\delta\{x^{2}(t) + 1\}\tilde{x}(t) \quad (13)$$

$$= c\tilde{\alpha}x^{3}(t) + c\tilde{\beta}\cos 2t - c\tilde{\gamma}\dot{x}_{d}(t) - c\delta\{x^{2}(t) + 1\}\tilde{x}(t) \quad (14)$$

となる. ただし、 $\tilde{\alpha} = \alpha - \hat{\alpha}$, $\tilde{\beta} = \beta - \hat{\beta}$, $\tilde{\gamma} = \gamma - \hat{\gamma}$ である. エネルギー関数を

$$V(t) = \tilde{x}^2(t) + \eta_{\alpha}^{-1}c\tilde{\alpha}^2 + \eta_{\beta}^{-1}c\tilde{\beta}^2 + \eta_{\gamma}^{-1}c\tilde{\gamma}^2$$

$$\tag{15}$$

とおく. ただし、 $\eta_{\alpha}, \eta_{\beta}, \eta_{\gamma}$ は推定ゲインである. 次に、エネルギー関数の時間微分を解析すると、

$$\dot{V}(t) = 2\tilde{x}(t)\dot{\tilde{x}}(t) + 2\eta_{\alpha}^{-1}c\tilde{\alpha}\dot{\tilde{\alpha}} + 2\eta_{\beta}^{-1}c\tilde{\beta}\dot{\tilde{\beta}} + 2\eta_{\gamma}^{-1}c\tilde{\gamma}\dot{\tilde{\gamma}}$$
(16)

より

$$\dot{V}(t) = 2\tilde{x}(t) \left[c\tilde{\alpha}x^{3}(t) + c\tilde{\beta}\cos 2t - c\tilde{\gamma}\dot{x}_{d}(t) - c\delta\left\{x^{2}(t) + 1\right\}\tilde{x}(t) \right]$$

$$+ 2\eta_{\alpha}^{-1}c\tilde{\alpha}\dot{\tilde{\alpha}} + 2\eta_{\beta}^{-1}c\tilde{\beta}\dot{\tilde{\beta}} + 2\eta_{\gamma}^{-1}c\tilde{\gamma}\dot{\tilde{\gamma}} \quad (17)$$

となる. ここで,

$$\dot{\tilde{\alpha}} = -\dot{\hat{\alpha}} = -\eta_{\alpha}\tilde{x}(t)x^{3}(t) \tag{18}$$

$$\dot{\tilde{\beta}} = -\dot{\hat{\beta}} = -\eta_{\beta}\tilde{x}(t)\cos 2t \tag{19}$$

$$\dot{\tilde{\gamma}} = -\dot{\hat{\gamma}} = \eta_{\gamma} \tilde{x}(t) \dot{x}_d(t) \tag{20}$$

とすれば,

$$\dot{V}(t) = -2\delta c(x^{2}(t) + 1)\tilde{x}^{2}(t) \leq 0 \qquad for \ any \qquad \begin{pmatrix} \tilde{x}(t) \\ \tilde{\alpha} \\ \tilde{\beta} \\ \tilde{\gamma} \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 (21)

となり、システムを安定化出来る.

以上より,以下の適応追従コントローラを得る.

$$u(t) = -\hat{\alpha} \frac{x^3(t)}{x^2(t)+1} + \hat{\beta} \frac{\cos 2t}{x^2(t)+1} + \hat{\gamma} \frac{\dot{x}_d(t)}{x^2(t)+1} - \delta \tilde{x}(t)$$
 (22)

$$\dot{\hat{\theta}}(t) = \begin{pmatrix} \dot{\hat{\alpha}} \\ \dot{\hat{\beta}} \\ \dot{\dot{\gamma}} \end{pmatrix} = \begin{pmatrix} \eta_{\alpha} \tilde{x}(t) x^{3}(t) \\ \eta_{\beta} \tilde{x}(t) \cos 2t \\ -\eta_{\gamma} \tilde{x}(t) \dot{x}_{d}(t) \end{pmatrix}$$
(23)

3 シミュレーション

Simulink で構成したモデルを以下にそれぞれ示す。システムの全体を図1に、理想モデルを図2に、制御対象を図3に、制御入力を図4に示す。また、図5-7に α 、 β 、 γ の推定器を示し、図8に δ に関するサブシステムを示す。

図 1. 構成したモデルの全体図

図 2. 理想モデル

図 3. 制御対象

図 4. 入力 u(t)

図 5. â の推定器

図 $6.~\hat{\beta}$ の推定器

図 7. $\hat{\gamma}$ の推定器

図 8. δ に関するサブシステム

3.1 $r_d(t) = 4$ の場合

(3) 式にて $r_d(t)=4$ とした場合,シミュレーションした結果を図 9 示す.また,図 10 に追従誤差 $\tilde{x}(t)$,図 11 に入力 u(t) を,図 12 - 14 に $\hat{\alpha}$, $\hat{\beta}$, $\hat{\gamma}$ を示す.ただし, $\eta_{\alpha}=\eta_{\beta}=\eta_{\gamma}=1$ とした.

図 9. $r_d(t)=4$ のときの理想軌道と x $(\delta=1,10,100)$ の比較

図 10. $r_d(t) = 4$ のときの \tilde{x} ($\delta = 1, 10, 100$) の様子

図 11. $r_d(t)=4$ のときの u(t) $(\delta=1,10,100)$ の様子

図 12. $r_d(t)=4$ のときの $\hat{\alpha}$ $(\delta=1,10,100)$ の様子

図 13. $r_d(t)=4$ のときの $\hat{\beta}$ $(\delta=1,10,100)$ の様子

図 14. $r_d(t)=4$ のときの $\hat{\gamma}$ $(\delta=1,10,100)$ の様子

3.2 $r_d(t) = 4 + 0.5 \sin 0.5t + \cos 3t - 2 \sin 5t$ の場合

 $r_d(t) = 4$ の場合と同様にシミュレーションした結果を図 15 - 20 にそれぞれ示す.

図 15. $r_d(t)=4+0.5\sin 0.5t+\cos 3t-2\sin 5t$ のときの理想軌道と x ($\delta=1,10,100$) の比較

図 16. $r_d(t)=4+0.5\sin 0.5t+\cos 3t-2\sin 5t$ のときの \tilde{x} ($\delta=1,10,100$) の様子

図 17. $r_d(t)=4+0.5\sin 0.5t+\cos 3t-2\sin 5t$ のときの u(t) $(\delta=1,10,100)$ の様子

図 18. $r_d(t)=4+0.5\sin 0.5t+\cos 3t-2\sin 5t$ のときの $\hat{\alpha}$ ($\delta=1,10,100$) の様子

図 19. $r_d(t)=4+0.5\sin 0.5t+\cos 3t-2\sin 5t$ のときの $\hat{\beta}$ ($\delta=1,10,100$) の様子

図 20. $r_d(t)=4+0.5\sin 0.5t+\cos 3t-2\sin 5t$ のときの $\hat{\gamma}$ ($\delta=1,10,100$) の様子

4 考察

図 9,15 を見ると設計パラメータ δ を大きくすればするほど、理想軌道に対する追従性能が向上していることがわかる。しかし、大きくし過ぎると追従性能は向上しているが、小さく振動していることが確認できた。次に、 $\delta=10$ とし、 $\eta_{\alpha},\eta_{\beta},\eta_{\gamma}$ のうちひとつだけ値を変化させたときの応答を図 21 - 27 示す。ただし、 $r_d(t)=4$ とした。図 21 より η_{α} を増加させると追従性能が向上することがわかる。また、図 23 より、 η_{β} を増加させると,応答が発散することがわかった。最後に、図 25,27 より、 η_{γ} を増加させると定常状態においての追従性能は変わらなかったが、過渡状態(特に時間 $t=0\sim1[\mathbf{s}]$)において、 η_{γ} が増加すると追従性能が上がることがわかった。最後に、 $\eta_{\alpha}=1000,\eta_{\beta}=\eta_{\alpha}=1000,\eta_{\gamma}=\eta_{\alpha}^{\frac{3}{2}}=31622$ とした場合と、 $\eta_{\alpha}=1,\eta_{\beta}=1,\eta_{\gamma}=1$ としたときの比較をしたものを図 28 に示す。ただし、 $\delta=10$ とした。図 28 を見ると、推定ゲイン η を調整することでより良い制御性能が得られることがわかった。また、 η を変化させたときの u(t) を比較したものを図 30,31 に示す。 η を大きくすると良い制御性能を得られることがわかったが図 30,31 を見ると、 η を大きくすると u(t) が時間 $0\sim0.3[\mathbf{s}]$ において振動することがわかった。

図 21. η_{α} を変化させたとき x(t) の様子 $(r_d(t)=4$ のとき)

図 22. η_{α} を変化させたときの $\tilde{x}(t)$ の様子 $(r_d(t)=4$ のとき)

図 23. η_{β} を変化させたときの x(t) の様子 $(r_d(t) = 4$ のとき)

図 24. η_{β} を変化させたときの $\tilde{x}(t)$ の様子 $(r_d(t) = 4$ のとき)

図 25. η_{γ} を変化させたときの x(t) の様子 $r_d(t)=4$ のとき)

図 26. η_{γ} を変化させたときの $\tilde{x}(t)$ の様子 $(r_d(t)=4$ のとき)

図 27. 図 25 の拡大図(時間 t=0~1[s] について)

図 28. $\eta_{\alpha}, \eta_{\beta}, \eta_{\gamma}$ を変化させたときの x(t) の様子

図 29. $\eta_{\alpha}, \eta_{\beta}, \eta_{\gamma}$ を変化させたときの $\tilde{x}(t)$ の様子

図 30. $\eta_{\alpha}, \eta_{\beta}, \eta_{\gamma}$ を変化させたときの u(t) の様子

図 31. 図 30 の拡大図

参考文献

[1] 大屋勝敬:"車両制御特論 MATLAB+Simulink の利用法"