### What Does It Mean to Understand?

Improving the Performance of Unitary Recurrent Neural Networks and Applying Them to the Automatic Text Understanding Problem

#### Ivan Ivanov

Research Science Institute

Under the Direction of Li Jing Massachusetts Institute of Technology

## The Purpose Behind Artificial Intelligence



(MIT News) and (Prof. Soljacic's group)



#### The Artificial **Neural** Network

► An Analogy



Biological Neural Network



Artificial Neural Network

(Dasan)

Introduction

#### The Artificial **Recurrent** Neural Network

Concept of Recurrence



General Model



Long Short-Term Memory (LSTM) Model

(Olah)



#### The Artificial **Recurrent** Neural Network

Concept of Recurrence



## The Artificial **Unitary** Recurrent Neural Network

► The Unitary Matrix



(Jing et. al)

### The Artificial **Unitary** Recurrent Neural Network



► Dr. Sillman: Where is Daniel?

## Optimizations of the model



## Optimizations of the model



- Parallelization
- ► TensorFlow Adaptation



## Optimizations of the model



- Parallelization
- ► TensorFlow Adaptation
- Hyperparameter Expansion

#### Benchmark: Memorization Task



## Benchmark: Handwritten Digit Recognition Task





► Dr. Sillman: Where is Daniel?







Daniel and Ann are leaving Maseeh

Daniel and Ann go into the Infinite



Daniel and Ann go into Barker

Ann went to Hayden yesterday



Daniel went to Strata yesterday

Ann is leaving Barker

Where is Daniel'

| Daniel | and | <br>is | Where |
|--------|-----|--------|-------|
| 0      | 1   | <br>16 | 17    |



Daniel and Ann are leaving Maseeh

Daniel and Ann go into the Infinite



Daniel and Ann go into Barker

Ann went to Hayden yesterday



Daniel went to Strata yesterday

Ann is leaving Barker

Where is Daniel'

| Daniel | and | <br>is | Where |
|--------|-----|--------|-------|
| 0      | 1   | <br>16 | 17    |

Where is Daniel?  $\longrightarrow$  (17, 16, 0)



Daniel and Ann are leaving Maseeh

Daniel and Ann go into the Infinite



Daniel and Ann go into Barker

Ann went to Hayden yesterday



Daniel went to Strata vesterday

Ann is leaving Barker

Where is Daniel?

| Daniel | and | <br>is | Where |
|--------|-----|--------|-------|
| 0      | 1   | 16     | 17    |

```
Where is Daniel? \longrightarrow (17, 16, 0) \downarrow ([0,0,...,0,1], [0,0,...,1,0], [1,0,...,0,0])
```

 $0 \rightarrow$ 

 $1 \rightarrow$ 

 $0 \rightarrow$ 

:

 $0 \rightarrow$ 

 $0\,\rightarrow\,$ 

 $0 \, \rightarrow \,$ 







```
\begin{array}{l} \rightarrow 0.12 \; (12\%) \\ \rightarrow 0.01 \; (1\%) \\ \rightarrow 0.07 \; (7\%) \\ \vdots \\ \rightarrow 0.24 \; (24\%) \\ \rightarrow 0.56 \; (56\%) \\ \rightarrow 0.00 \; (0\%) \end{array}
```



| • |
|---|
|   |

Daniel and Ann : Strata Barker Where

#### **Task 1: Single Supporting Fact**

Mary went to the bathroom. John moved to the hallway. Mary travelled to the office. Where is Mary? A:office

(Facebook)

| Task                       | Our model | LSTM  | Task                      | Our model | LSTM  |
|----------------------------|-----------|-------|---------------------------|-----------|-------|
| 1 - Single Supporting Fact | 50.5%     | 52.0% | 11 - Basic Coreference    | 72.3%     | 74.1% |
| 2 - Two Supporting Facts   | 31.8%     | 15.1% | 12 - Conjunction          | 73.4%     | 76.1% |
| 3 - Three Supporting Facts | 25.4%     | 19.1% | 13 - Compound Coreference | 94.0%     | 83.0% |
| 4 - Two Arg. Relations     | 71.2%     | 73.5% | 14 - Time Reasoning       | 36.4%     | 18.6% |
| 5 - Three Arg. Relations   | 67.1%     | 34.4% | 15 - Basic Deduction      | 55.0%     | 21.2% |
| 6 - Yes/No Questions       | 52.9%     | 50.5% | 16 - Basic Induction      | 48.8%     | 32.2% |
| 7 - Counting               | 71.3%     | 56.5% | 17 - Positional Reasoning | 48.4%     | 50.6% |
| 8 - Lists/Sets             | 68.2%     | 38.8% | 18 - Size Reasoning       | 89.5%     | 89.2% |
| 9 - Simple Negation        | 61.8%     | 63.8% | 19 - Path Finding         | 7.9%      | 6.6%  |
| 10 - Indefinite Knowledge  | 46.0%     | 45.1% | 20 - Agents Motivations   | 95.5%     | 90.6% |
|                            |           |       | Mean Performance          | 58.4%     | 49.6% |



| Task                       | Our model | LSTM  | Task                      | Our model | LSTM  |
|----------------------------|-----------|-------|---------------------------|-----------|-------|
| 1 - Single Supporting Fact | 50.5%     | 52.0% | 11 - Basic Coreference    | 72.3%     | 74.1% |
| 2 - Two Supporting Facts   | 31.8%     | 15.1% | 12 - Conjunction          | 73.4%     | 76.1% |
| 3 - Three Supporting Facts | 25.4%     | 19.1% | 13 - Compound Coreference | 94.0%     | 83.0% |
| 4 - Two Arg. Relations     | 71.2%     | 73.5% | 14 - Time Reasoning       | 36.4%     | 18.6% |
| 5 - Three Arg. Relations   | 67.1%     | 34.4% | 15 - Basic Deduction      | 55.0%     | 21.2% |
| 6 - Yes/No Questions       | 52.9%     | 50.5% | 16 - Basic Induction      | 48.8%     | 32.2% |
| 7 - Counting               | 71.3%     | 56.5% | 17 - Positional Reasoning | 48.4%     | 50.6% |
| 8 - Lists/Sets             | 68.2%     | 38.8% | 18 - Size Reasoning       | 89.5%     | 89.2% |
| 9 - Simple Negation        | 61.8%     | 63.8% | 19 - Path Finding         | 7.9%      | 6.6%  |
| 10 - Indefinite Knowledge  | 46.0%     | 45.1% | 20 - Agents Motivations   | 95.5%     | 90.6% |
|                            |           |       | Mean Performance          | 58.4%     | 49.6% |



| Task                       | Our model | LSTM  | Task                      | Our model | LSTM  |
|----------------------------|-----------|-------|---------------------------|-----------|-------|
| 1 - Single Supporting Fact | 50.5%     | 52.0% | 11 - Basic Coreference    | 72.3%     | 74.1% |
| 2 - Two Supporting Facts   | 31.8%     | 15.1% | 12 - Conjunction          | 73.4%     | 76.1% |
| 3 - Three Supporting Facts | 25.4%     | 19.1% | 13 - Compound Coreference | 94.0%     | 83.0% |
| 4 - Two Arg. Relations     | 71.2%     | 73.5% | 14 - Time Reasoning       | 36.4%     | 18.6% |
| 5 - Three Arg. Relations   | 67.1%     | 34.4% | 15 - Basic Deduction      | 55.0%     | 21.2% |
| 6 - Yes/No Questions       | 52.9%     | 50.5% | 16 - Basic Induction      | 48.8%     | 32.2% |
| 7 - Counting               | 71.3%     | 56.5% | 17 - Positional Reasoning | 48.4%     | 50.6% |
| 8 - Lists/Sets             | 68.2%     | 38.8% | 18 - Size Reasoning       | 89.5%     | 89.2% |
| 9 - Simple Negation        | 61.8%     | 63.8% | 19 - Path Finding         | 7.9%      | 6.6%  |
| 10 - Indefinite Knowledge  | 46.0%     | 45.1% | 20 - Agents Motivations   | 95.5%     | 90.6% |
|                            |           |       | Mean Performance          | 58.4%     | 49.6% |



#### Conclusion

- ▶ Five times the efficiency of the original implementation
- Greater accuracy than state-of-the-art model on bAbl tasks dataset
- ▶ Introduction of the theoretical model to a real-life task



### Future work

- Decomposition model improvements
- ► Low-level operations optimization
- Application for speech recognition



# Acknowledgements

- ▶ Li Jing
- Rumen Dangovski
- Dr. Jenny Sendova
- Andrew Jin, Charles Tam, Stanislav Atanasov, William McInroy, Hristo Stoyanov, Milen Ferev
- RSI, CEE, MIT
- America for Bulgaria Foundation, International Foundation "Sts. Cyril & Methodius"

#### The Recurrent Neural Network



$$m^{(t)} = \sigma(U * x^{(t)} + W * m^{(t-1)})$$

$$h^{(t)} = W * m^{(t)} + b$$

## **Exploding and Vanishing Gradients Problems**

Training rule: 
$$W_{i,j} - \lambda * \frac{\partial C}{\partial W_{i,j}}$$

$$\frac{\partial C}{\partial h^{(t)}} = \frac{\partial C}{\partial h^{(T)}} \frac{\partial h^{(T)}}{\partial h^{(t)}} = \frac{\partial C}{\partial h^{(T)}} \prod_{k=t}^{T-1} \frac{\partial h^{(k+1)}}{\partial h^{(k)}} = \frac{\partial C}{\partial h^{(T)}} \prod_{k=t}^{T-1} D^{(t)} W$$

## Jing et al.'s Approach

► General representation

$$W_n = DR_{2,1}^{-1}R_{3,1}^{-1}\dots R_{N,N-2}^{-1}R_{N,N-1}^{-1}$$
$$= DR_{2,1}^{'}R_{3,1}^{'}\dots R_{N,N-2}^{'}R_{N,N-1}^{'}$$

## Jing et al.'s Approach

Simple Net Decomposition Model

$$W = D(R_{1,2}^{(1)}R_{3,4}^{(1)}\dots R_{N/2-1,N/2}^{(1)}) \times$$

$$\times (R_{2,3}^{(2)}R_{4,5}^{(2)}\dots R_{N/2-1,N/2-1}^{(2)}) \times \dots$$

$$= DF_{a}^{(1)}F_{b}^{(2)}\dots F_{b}^{(L)}$$

$$F_{a}^{(l)} = R_{1,2}^{(l)}R_{3,4}^{(l)}\dots R_{N/2-1,N/2}^{(l)}$$

$$F_{b}^{(l)} = R_{2,3}^{(l)}R_{4,5}^{(l)}\dots R_{N/2-1,N/2-1}^{(l)}$$

## Jing et al.'s Approach

► Lightweight Decomposition Model

$$W = DF_1F_2 \dots F_{log(N)}$$

$$F_i$$
 - rotation matrices for  $(2kp+j,(2k+1)p+j)$ ,  $p=N/2t,\ k\in 0,\ldots,2^{i-1},\ {\rm and}\ j\in 1,\ldots,p$ 

troduction Methods Discussion and Results Conclusion Appendix

## Jing et al.'s Approach

$$\mathbf{F}x = v_1 * x + v_2 * permute(x)$$

Simple Net Decomposition Model

$$v_{1} = (e^{i\phi_{1}^{(l)}}\cos\theta_{1}^{(l)}, \cos\theta_{1}^{(l)}, e^{i\phi_{2}^{(l)}}\cos\theta_{2}^{(l)}, \cos\theta_{2}^{(l)}, \ldots)$$

$$v_{2} = (-e^{i\phi_{1}^{(l)}}\sin\theta_{1}^{(l)}, \sin\theta_{1}^{(l)}, -e^{i\phi_{2}^{(l)}}\sin\theta_{2}^{(l)}, \sin\theta_{2}^{(l)}, \ldots)$$

$$permute(x) = (x_{2}, x_{1}, x_{4}, x_{3}, x_{6}, x_{5}, \ldots)$$

Lightweight Decomposition Model

$$\begin{aligned} v_1 &= (e^{i\phi_1^{(l)}}\cos\theta_1^{(l)}, \ e^{i\phi_2^{(l)}}\cos\theta_2^{(l)}, \dots, \ \cos\theta_1^{(l)}, \ \cos\theta_2^{(l)}, \dots) \\ v_2 &= (-e^{i\phi_1^{(l)}}\sin\theta_1^{(l)}, \ -e^{i\phi_2^{(l)}}\sin\theta_2^{(l)}, \dots, \ \sin\theta_1^{(l)}, \ \sin\theta_2^{(l)}, \dots) \\ permute(x) &= (x_{N/2} + 1, x_{N/2} + 2, \dots, x_N, x_1, x_2, \dots) \end{aligned}$$

