- 1. A jar contains four coins: a nickel (5ϕ) , a dime (10ϕ) , a quarter (25ϕ) , and a half-dollar (50ϕ) . Three coins are randomly selected without replacement from the jar.
 - (a) List all the possible outcomes in sample space S.
 - (b) What is the probability that the total amount drawn will equal 60¢ or more?

Outrones §N,D,Q} §N,D,H}	Ant 404 654	Prob (Ant z 604) = 3
{N, Q, H}	804 854	

2. A mother prepares nine popsicles of different flavours: three of orange, three of cherry and three of grape, for a party of four children. If every child is allowed to choose a popsicle of his/her favourite flavour, what is the probability that all of them will get their choices?

Total # & ways for 4 children to choose the 3 & burours

= 3 × 3 × 3 × 3 = 81

of ways for anyone of them not gettry his/her Sharen

= # of ways for all of them to choose the same flavour

= 3

P (anyone of them not getting his/her Flavour) = \frac{3}{81} = \frac{1}{27}

: P(all of them getting their flavours) = 1 - \frac{1}{27}

3. When two events are mutually exclusive, they cannot both happen when the experiment is performed. Once event B has occurred, event A cannot occur, i.e. P(A|B) = 0 or P(A∩B) = 0, and vice versa. The occurrence of event B certainly affects the probability of occurrence of event A. Therefore, mutually exclusive events must be dependent.

When two events are independent, the occurrence of event B does not affect the probability of occurrence of event A, i.e. P(A|B) = P(A) or $P(A \cap B) = P(A)P(B)$, and vice versa. Event A may still occur even if event B has occurred. Therefore, independent events cannot be mutually exclusive.

Use the relationships above to fill in the table below:

P(A)+P(B))-PLANB)
4	

P(A)	P(B)	Conditions	P(A B)	P(A∩B)	P(AUB)
0.3	0.4	mutually exclusive	0	0	,
0.3	0.4	independent \	<i>δ</i> .3	0-12	0-5-8
0.1	0.5	4	0	0	0.6
0.2	0.5	V	0.2	0.1	0.6

- 4. A blood disease is found in 2% of the persons in a certain population. A new blood test will correctly identify 96% of the persons with the disease and 94% of the persons without the disease.
 - (a) What is the probability that a person who is called positive by the blood test actually has the disease?
 - (b) What is the probability that a person who is called negative by the blood test actually does not have the disease?
 - (c) Comment on the results obtained in part (a) & (b).

- C) Getting a tre result is a weak suggestion that one has the disease.

 Whereas a we result almost quarantee that one does not have the disease.
- 5. (a) A magician has in his pocket a fair coin and a doctored coin where both sides are heads. If he randomly picks a coin to flip, and obtains a head, what is the probability that he picks the fair coin?
 - (b) If he flips the same coin the second time and obtains a head again, what is the probability that it is a fair coin?

 $F = \frac{1}{2} \text{ Fancoin} \qquad H = \frac{1}{2} \text{ Read}$ $P(F|H) = \frac{1}{2} P(H|F) P(F) + P(H|F) P(F) = \frac{1}{3}$ $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $P(H|F) P(F) + P(H|F) P(F) = \frac{1}{3}$ $P(H|F) P(F) + P(H|F) P(F) = \frac{1}{3}$ $P(H|F) P(F) + P(H|F) P(F) = \frac{1}{3}$