Docket No.: 1568.1095

CLAIMS

What is claimed is:

1. A separator of a fuel cell, the separator comprising a solid-state, amorphous alloy.

- 2. The separator of claim 1, which has a corrosion rate approximately less than or equal to 20 μ A/cm² in a hydrogen-saturated solution having a temperature of 130°C and a pH of 3.
- 3. The separator of claim 1, wherein the solid-state, amorphous alloy has a fracture toughness of greater than or equal to $5 \text{ (ksi)-(in}^{1/2})$.
- 4. The separator of claim 1, wherein the solid-state, amorphous alloy has an elastic limit greater than or equal to 1%.
- 5. The separator of claim 1, wherein the solid-state, amorphous alloy has a composition represented by the formula, $(Zr, Ga)_a(Ti, P, W)_b(V, Nb, Cr, Hf, Mo, C)_c(Ni)_d(Cu)_e(Fe, Co, Mn, Ru, Ag, Pd)_f(Be, Si, B)_g(Al)_h, where a+b+c is 15 to 75 atomic%, d+e+f is 5 to 75 atomic%, and g+h is 0 to 50 atomic%, provided that a+b+c+d+e+f+g+h is 100 atomic%.$
- 6. The separator of claim 5, wherein the solid-state, amorphous alloy has a composition of $Zr_{41}Ti_{14}Ni_{10}Cu_{12.5}Be_{22.5}$.
- 7. The separator of claim 5, wherein the solid-state, amorphous alloy has a composition of one of: $Fe_{72}AI_5Ga_2P_{11}C_6B_4$ and $Fe_{72}AI_7Zr_{10}Mo_5W_2B_{15}$.
 - 8. A fuel cell, comprising:

an anode;

a cathode;

an electrolyte membrane disposed between the anode and the cathode, being on a first side of the anode and the cathode; and

Docket No.: 1568.1095

at least one separator proximate to one of: the anode and the cathode, the separator being disposed on a side of the anode/cathode opposite to the electrolyte membrane, and comprising a solid-state, amorphous alloy.

- 9. The fuel cell of claim 8, wherein the at least one separator has a corrosion rate less than or equal to $20 \,\mu\text{A/cm}^2$ in a hydrogen-saturated solution having a temperature of 130°C and a pH of 3.
- 10. The fuel cell of claim 8, wherein the solid-state amorphous alloy has a fracture toughness of greater than or equal to 5 (ksi)-(in^{1/2}).
- 11. The fuel cell of claim 8, wherein the solid-state, amorphous alloy has an elastic limit greater than or equal to 1%.
- 12. The fuel cell of claim 8, wherein the solid-state, amorphous alloy has a composition represented by the formula, $(Zr, Ga)_a(Ti, P, W)_b(V, Nb, Cr, Hf, Mo, C)_c(Ni)_d(Cu)_e(Fe, Co, Mn, Ru, Ag, Pd)_f(Be, Si, B)_g(Al)_h, where a+b+c is 15 to 75 atomic%, d+e+f is 5 to 75 atomic%, and g+h is 0 to 50 atomic%, provided that a+b+c+d+e+f+g+h is 100 atomic%.$
- 13. The fuel cell of claim 12, wherein the solid-state, amorphous alloy has a composition of $Zr_{41}Ti_{14}Ni_{10}Cu_{12.5}Be_{22.5}$.
- 14. The fuel cell of claim 12, wherein the amorphous alloy has a composition of one of: Fe₇₂AI₅Ga₂P₁₁C₆B₄ and Fe₇₂AI₇Zr₁₀Mo₅W₂B₁₅.
- 15. A method of manufacturing a separator of a fuel cell, the separator comprising a solid-state, amorphous alloy, the method comprising:

preparing a melt to transform the solid-state, amorphous alloy;

feeding the melt into a mold provided with a mold cavity having a shape corresponding to the separator; and

cooling the melt In the mold cavity at a cooling rate higher than a critical cooling rate to transform the melt into an amorphous phase.

Docket No.: 1568.1095

16. The method of claim 15, wherein the solid-state, amorphous alloy has a corrosion rate less than or equal to $20~\mu\text{A/cm}^2$ in a hydrogen-saturated solution having a temperature of 130°C and a pH of 3.

- 17. The method of claim 15, wherein the solid-state, amorphous alloy has a fracture toughness greater than or equal to 5 (ksi)-(in^{1/2}).
- 18. The method of claim 15, wherein the solid-state, amorphous alloy has an elastic limit greater than or equal to 1%.
- 19. The method of claim 15, wherein the solid-state, amorphous alloy has a composition represented by the formula, $(Zr, Ga)_a(Ti, P, W)_b(V, Nb, Cr, Hf, Mo, C)_c(Ni)_d(Cu)_e(Fe, Co, Mn, Ru, Ag, Pd)_f(Be, Si, B)_g(Al)_h, where a+b+c is 15 to 75 atomic%, d+e+f is 5 to 75 atomic%, and g+h is 0 to 50 atomic%, provided that a+b+c+d+e+f+g+h is 100 atomic%.$
- 20. The method of claim 19, wherein the solid-state, amorphous alloy has a composition of one of: $Zr_{41}Ti_{14}Ni_{10}Cu_{12.5}Be_{22.5}$, $Fe_{72}AI_5Ga_2P_{11}C_6B_4$ and $Fe_{72}AI_7Zr_{10}Mo_5W_2B_{15}$.