

PHYC90045 Introduction to Quantum Com		
	Power series	MELBOURNE
Power series (Taylor/Mac $\exp(x) = 1 + x$	claurin series): $x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	
Power series for trigonom	netric functions:	
	$(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots$ $s(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots$	
	2: 4: 0:	

Matrix Exponentiation $ \text{By analogy we can define the exponential of a matrix to be:} $ $ \exp{(A)} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots $ $ \text{Mat} $	MELIOURNE
$\exp{(A)} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots \qquad \qquad \text{Mat}$	
$\exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$	
$\exp(A) = I + A + \frac{1}{2!} + \frac{1}{3!} + \dots$	trix equation
	•
Compare to the equation for real/complex numbers	
x^2 x^3 x^4 $\sum_{n=1}^{\infty} x^n$	
$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	
n=0	

PHYCS0045 Introduction to Quantum Computing Rotations as a matrix exponential	ALLEN AND
Consider:	
$\exp(i\theta Z) = I + i\theta Z - \frac{\theta^2 Z^2}{2} - i\frac{\theta^3 Z^3}{3!} + \frac{\theta^4 Z^4}{4!} + i\frac{\theta^5 Z^5}{5!}$	
Using the fact that $Z^2=I$	
$\exp(i\theta Z) = I + i\theta Z - \frac{\theta^2}{2}I - i\frac{\theta^3}{3!}Z + \frac{\theta^4}{4!}I + i\frac{\theta^5}{5!}Z - \dots$	
$= (1 - \frac{\theta^2}{2} + \frac{\theta^4}{4!} + \ldots)I + i(\theta - \frac{\theta^3}{3!} + \ldots)Z$	
$= \cos(\theta)I + i\sin(\theta)Z$	
i.e. the rotation matrix around Z-axi	s!

PHYC90045 Introduction to Quantum Computing Rotations around other axes			
The only fact we used the fact that Z squares to the identity. Other axes work in a similar way.			
	$R_x(\theta) = \exp\left(-\frac{i\theta}{2}X\right)$		
	$R_{y}\left(\theta\right) = \exp\left(-\frac{i\theta}{2}Y\right)$		
	$R_{z}\left(\theta\right) = \exp\left(-\frac{i\theta}{2}Z\right)$		

	rbitrary axis rotation as matrix exponential
Cons	ider any unit vector, n:
(n _x)	$\begin{split} X + n_y Y + n_z Z)^2 &= (n_x^2 + n_y^2 + n_z^2)I + \\ & n_x n_z (XZ + ZX) + n_y n_z (YZ + ZY) + n_x n_z (XZ + ZX) \\ &= (n_x^2 + n_y^2 + n_z^2)I \\ &= I \end{split}$
Lik	e Z, this squares to the identity.
An	arbitrary rotation of one qubit can be expressed:
	$R_n(\theta) = \exp\left(-\frac{i\theta}{2}\hat{n}\cdot\sigma\right) = \cos\frac{\theta}{2} - i\sin\frac{\theta}{2}(\hat{n}\cdot\sigma)$

PHYC90045 In	troduction to Quantum Computing Exponentiation of two qubit operators	MELECURAL
Not o	anly do single qubit operators square to the identity, we can consider: $(Z\otimes Z)(Z\otimes Z)=I$	
So	just like for a single qubit rotations, we could use a power series to show:	
Then	$\exp(i\theta Z \otimes Z) = \cos(\theta)I + i\sin(\theta)Z \otimes Z$	

PHYC90045 Introduction to Quantum Computing Eigenvalues and exponentiation	DE CONSTRUCT OF MELEONIENE
Consider an eigenvalue decomposition of a matrix, A $A=VDV^\dagger$	
Here V is unitary, D is diagonal and real. We can find powers:	
$\begin{pmatrix} A = VDV^{\dagger} \\ A^2 = VDV^{\dagger}VDV^{\dagger} = VD^2V^{\dagger} \end{pmatrix}$	
$A^{3} = \dots = VD^{3}V^{\dagger}$ $A^{n} = VD^{n}V^{\dagger}$	
And taking powers of a diagonal matrix is the same as taking the power of each of the diagonal entries.	

PHYCS0045 Introduction to Quantum Computing Applied to exponentiation
U is unitary, D is diagonal with the entries on the diagonal equal to the eigenvalues.
$\exp(A) = I + A + \frac{A}{2} + \frac{A^3}{3!} + \frac{A^4}{4!} + \dots$
So, using the powers of A from the previous slide:
$\exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \frac{A^4}{4!} + \dots$ $= V \left(I + D + \frac{D^2}{2} + \frac{D^3}{3!} + \frac{D^4}{4!} + \dots \right) V^{\dagger}$ $= V \exp(D) V^{\dagger}$
Simply exponentiate the eigenvalues/diagonal of D matrix.

PHYC90045 Introduction to Quantum Computer Matrix as linear combination of Pauli operators		
Always possible decompose a matrix as a sum of Pauli products. If you have a matrix only: $E_i = \frac{\text{Tr}\left[\sigma_i H\right]}{d} \qquad \qquad \sigma_i = XI, IX,XZ,ZZ$		
Where d is the dimension of the system (d=4 for 2 qubits), H is the Hamiltonian and σ_i is the Pauli. If the matrix is Hermitian, the co-efficients you find, E_i , should be real.		
Express the Hamiltonian as linear combination of Pauli matrix products:		
	$H=\sum_i E_i \sigma_i$	
For example:	$H = B_1 X_1 + B_2 X_2 + J_{12} Z_1 Z_2$	

PHYC90045 Introduction to Quantum Computing Example: CNOT gate in exponent form	II.
$CZ = \exp\left(i\frac{\pi}{4}II\right)\exp\left(-i\frac{\pi}{4}ZI\right)\exp\left(-i\frac{\pi}{4}IZ\right)\exp\left(+i\frac{\pi}{4}ZZ\right)$ Global phase Single qubit rotations Interaction	?)
We can work out how CNOT can be expressed as an exponent: $CNOT = I \otimes H CZ I \otimes H$	
$= I \otimes H \exp\left(i\pi \frac{II - ZI - IZ + ZZ}{4}\right) I \otimes$ $= \exp\left(i\pi \frac{II - ZI - IX + ZX}{4}\right)$	H

PHYC90045 Introduction to Quantum Computing Baker-Campbell-Hausdorff formula
First few terms of the BCH formula:
$\exp(A)\exp(B) = \exp\left(A + B + \frac{1}{2}[A, B] + \frac{1}{12}([A, [A, B]] + [B, [B, A]] + \dots\right)$
Higher order terms involve commutators
Where the commutator is given by
[A,B] = AB - BA

PHYC90045 Introduction to Quantum Co	omputing ommutators of Pau	llis PROPERTY MELONIAN
	[X,Y] = 2iZ $[Y,Z] = 2iX$ $[Z,X] = 2iY$	
·		

PHYC90045 Introduction to Quantum Computing Baker-Campbell-Hausdorff formula
First few terms of the BCH formula:
$\exp(A)\exp(B) = \exp\left(A + B + \frac{1}{2}[A, B] + \frac{1}{12}([A, [A, B]] + [B, [B, A]] + \dots\right)$
Higher order terms involve commutators
Where the commutator is given by
[A,B] = AB - BA

PHYC90045 Introduction to Quantum Computing Week 10	X.
Lecture 19	
Quantum Approximate Optimization Algorithm (QAOA),	
Variational Quantum Eigensolver (VQE), classical feedback	
Lecture 20	
Exponentials, and Quantum Optimization	
Lab 10	
Optimization problems	
Lecture 20 Exponentials, and Quantum Optimization Lab 10	