BÀI 6: THIẾT KẾ MẠCH ĐẾM (TT)

1. Mục tiêu bài thực hành

Bài thực hành này giúp sinh viên biết vận dụng những kiến thức về vi mạch tuần tự đã thực hiện ở những bài thực hành trước để thiết kế các mạch đếm, chữ chạy trên led 7 đoạn sử dụng bộ dao động 50MHZ tạo trì hoãn.

2. Yêu cầu của bài thực hành

Câu 1. Thược hiện lại các câu 2, 4, 5, 6 của Bài 5 sử dụng bộ dao động 50MHZ (CLOCK_50) tạo trì hoãn 1 giây thay cho KEY[0].

Câu 2. Viết code Verilog mô tả mạch đếm lên số thập phân từ 0 – 9 hiển thị trên led 7 đoạn HEX0 khi có tín hiệu Enable được đặt lên 1. Mỗi 1 giây tăng lên 1 đơn vị (sử dụng bộ dao động 50MHZ tạo trì hoãn 1 giây). Sử dụng KEY[0] để làm reset và SW[0] làm Enable.

Câu 3. Viết code verilog mô tả mạch dịch chuyển ký tự FPGA trên 4 led 7 đoạn từ HEX0 – HEX3. Dịch chuyển ký tư từ phải sang trái với thời gian trì hoãn là 1 giây (sử dung bô dao đông 50MHZ).

Câu 4. Viết code verilog mô tả mạch dịch chuyển ký tự FPGA trên 4 led 7 đoạn từ HEX0 – HEX3. Khi nhấn Reset thì tắt các led. Ngược lại, khi tín hiệu Enable được đặt lên 1, nếu Select = 1 thì dịch ký tự từ phải sang trái, ngược lại Select = 0 dịch ký tự từ trái sang phải. Với thời gian trì hoãn là 1 giây (sử dụng bộ dao động 50MHZ).

Sử dụng các tin hiệu trên board DE1:

- Enable = SW[0]
- Select = SW[1]
- Clock = CLOCK 50
- Reset = KEY[0]

Câu 5. Viết code verilog mô tả mạch đếm lên số thập phân 2 chữ số từ 00 --> 99 (sử dụng biểu thức toán học) hiển thị lên 2 led 7 đoạn: HEX0, HEX1. Khi Enable (SW[0]) được đặt lên 1 thì cứ mỗi giây tăng giá trị đếm lên 1 giá trị (sử dụng bộ dao động 50MHZ để tạo trì hoãn 1 giây). Khi nhấn Reset (KEY[0]) thì đưa bộ đếm về 00.

Câu 6: Viết code verilog mô tả mạch đếm xuống số thập phân 2 chữ số từ 99 --> 00 (sử dụng biểu thức toán học) hiển thị lên 2 led 7 đoạn: HEX0, HEX1. Khi Enable (SW[0]) được về mức 0 thì cứ mỗi giây giảm giá trị đếm đi 1 giá trị (sử dụng bộ dao động 50MHZ để tạo trì hoãn 1 giây). Khi nhấn Reset (KEY[0]) thì đưa bô đếm về 00.

Câu 7. Kết hợp câu 5 và 6, viết code verilog mô tả mạch đếm lên và đếm xuống số thập phân từ 00 <--> 99.

- Nếu SW[0]=1 chọn mạch đếm lên, ngược lại SW[0]=0 mạch đếm xuống.
- Mỗi 1 giây tăng/giảm giá trị đếm lên/xuống 1 giá trị (sử dụng bộ dao động 50MHZ để tạo trì hoãn 1 giây).
- Hiển thị trên 2 led 7 đoạn HEX0 và HEX1.

Câu 8.Viết code verilog mô tả mạch đếm lên số thập phân 3 chữ số từ 000 --> 999 (sử dụng biểu thức toán học) hiển thị lên 3 led 7 đoạn: HEX0, HEX1, HEX2. Mỗi giây tăng giá trị đếm lên 1 giá trị (sử dụng bộ dao động 50MHZ để tạo trì hoãn 1 giây). Khi nhấn Reset (KEY[0]) thì đưa bộ đếm về 000.