Tarea # 3 (Conjunto Cerrados y Funciones Continuas)

David Cardozo

18 de febrero de 2015

1. Suponga que para cada $n \in \mathbb{N}$ tenemos un espacio topológico (X_n, τ_n) , metrizable. Muestre que $\prod_{n \in \mathbb{N}} X_n$ con la topología producto es metrizable.

Antes de comenzar con una demostración, pongamos en concreto unos lemas importantes.

Lema 1. Suponga d es una métrica en un espacio arbitrario X. Si tenemos una función $f:[0,\infty)\to [0,\infty)$ que cumple con las características: f es estrictamente creciente, f es una función cóncava y f(0)=0, entonces d' definido por $d'=f\circ d$ es también una métrica en X

Demostración Es claro que para dos puntos $x,y \in X$, $d'(x,y) \geq 0$, en particular si dos puntos son iguales, la métrica $d(x,y) = 0 \iff x = y$ y con la hipótesis, f(0) = 0 implica que d' tiene la propiedad de los indiscernibles. También es claro que d' es simétrica, entonces ya tenemos d' es una pseudométrica.

Ahora suponga $x,y,z\in X$ son arbitrarios miembros. Como d es una métrica, tenemos por desigualdad triangular:

$$d(x,z) \le d(x,y) + d(y,z)$$

Usando a propiedad de que f es una función monotonica (i.e. estrictamente creciente), se sigue que:

$$d'(x,z) = f(d(x,z)) \le f(d(x,y) + d(y,z)$$
 (1)

Ahora utilizando la hipótesis que f es una función cóncava, i.e. para $c \in [0,1]$ $f(cx+(1-cy)) \leq cf(x)+(1-c)f(y)$, y utilizando el hecho que f(0)=0, tenemos que para a>0 y t>0

$$\frac{f(a+t) - f(a)}{(a+t) - a} \le \frac{f(t) - f(0)}{t - 0} \implies f(a+t) - f(a \le f(t))$$

De manera sugestiva,

$$f(a+t) \le f(a) + f(t)$$

Sean a = d(x, y) y t = d(y, z) en la desigualdad (1), obtenemos

$$d'(x,z) \le f(d(x,y) + d(y,z)) \le f(d(x,y)) + f(d(y,z)) = d'(x,y) + d'(y,z).$$

Concluimos entonces que como $x,y,z\in X$ eran arbitrarios. Concluimos d' es una métrica en X.

Ahora ya teniendo este soporte, procedemos a probar un teorema:

Teorema 1. Suponga que (X_k, d_k) , $k \in \mathbb{Z}_+$ es una colección contable de espacios métricos, entonces la topologia en $X = \prod_{k \in \mathbb{Z}_+} X_k$ es generada por la métrica definida por:

$$d(x,y) = \sum_{k=1}^{\infty} \frac{2^{-k} d_k(x_k, y_k)}{1 + d_k(x_k, y_k)}$$
(2)

Demostración Aplicando el lema anterior, tomando como f la función $f(x)=\frac{x}{1+x}$, esta nos muestra que para cada $k\in\mathbb{Z}_+$, $2^{-k}(f\circ d_k)$ define una métrica en X_k . Por lo tanto, tenemos que d es una métrica en el producto $X=\prod_{k\in\mathbb{Z}_+}X_k$

Proposición 1. Métrica en el producto $X = \prod_{k \in \mathbb{Z}_+} X_k$ es una métrica.

Demostración

Positiva Observar que todos los términos en la sumatoria son mayores o iguales a cero.

2. Propiedad de los indiscernibles .

Queremos ver si $d(x,y)=0 \iff x=y$, para ello observemos que, sabiendo que ya hemos probado d_k es una métrica:

$$d(x,y) = 0 \iff \sum_{k \in \mathbb{Z}_+} \left(2^{-k} \right) \frac{d_k(x_k, y_k)}{1 + d_k(x_k + y_k)} = 0$$
$$\left(2^{-k} \right) \frac{d_k(x_k, y_k)}{1 + d_k(x_k + y_k)} \quad \text{Para todo } k$$
$$d_k(x_k - y_k) = 0$$
$$x = y$$

Tenemos entonces propiedad de los indiscernibles.

3. Desigualdad triangular

Recordemos que por las propiedades de la función $f(x) = \frac{x}{1+x}$, y que la kesíma métrica cumple con las siguientes propiedades: para $k \in \mathbb{Z}_+$ $\frac{d_k(x_k, z_k)}{1+d_k(x_k-z_k)} \ge$

$$\frac{d_k(z_k, y_k)}{1 + d_k(x_k - y_k)} \text{ y similarmente } \frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)} \le \frac{d_k(x_k, z_k)}{1 + d_k(x_k, z_k)} + \frac{d(z_k, y_k)}{1 + d(z_k, y_k)}.$$

Por lo tanto vemos que:

$$\sum_{k \in \mathbb{Z}_{+}} \frac{2^{-k} d_{k}(x_{k} - y_{k})}{1 + d_{k}(x_{k} - y_{k})} \leq \sum_{k \in \mathbb{Z}} \left(2^{-k}\right) \left(\frac{d_{k}(x_{k}, z_{k})}{1 + d_{k}(x_{k} - z_{k})} + \frac{d_{k}(y_{k}, z_{k})}{1 + d_{k}(y_{k}, z_{k})}\right)$$
$$\leq \sum_{k \in \mathbb{Z}_{+}} \left(\frac{2^{-k} d_{k}(x_{k}, z_{k})}{1 + d_{k}(x_{k} - z_{k})}\right) + \left(\frac{2^{-k} d_{k}(y_{k}, z_{k})}{1 + d_{k}(y_{k} - z_{k})}\right)$$
$$\implies d(x, y) \leq d(x, z) + d(y, z)$$

Concluimos entonces que es una métrica.

Ahora denote por τ la topología producto en X, y denote por τ_d la topología en X generada por la métrica d. Queremos ver $\tau_d \supseteq \tau$ y $\tau \supseteq \tau_d$

Suponga que $U = \prod_{k \in \mathbb{Z}_+} U_k$ es un básico en la topología τ del producto, considere $z \in U$, obsérvese, que existe un conjunto finito I, tal que $I \subseteq \mathbb{Z}_+$ para el cual $\forall k \in \mathbb{Z}_+ - I$, $U_k = X_k$. Observar, que para cada $k \in I$ existe un $\epsilon_k > 0$ tal que (las bolas abiertas) $B_{\epsilon}(k) = \{y \in X_k | d_k(y, z_k) < \epsilon_k\} \subseteq U_k$. I es finito, podemos definir (y es mayor que cero) $\epsilon = \min \{2^{-k} f(\epsilon_k) | k \in I\}$. Ahora, verifiquemos que la bola abierta $B_{\epsilon}(z) = \{y \in X | d(z, y) < \epsilon\}$ esta contenida en U; para ello, suponga $y \in X$ tal que $d(z, y) < \epsilon$, entonces $\forall k \in \mathbb{Z}_+$ y para cualquier $k \in I$, tenemos que $2^{-k}(f \circ d_k)(y_k, z_k) < \epsilon$, en otras palabras, $d_k(y_k, z_k) < f^{-1}(2^k 2^{-k} f(\epsilon_k)) = \epsilon_k$. Por lo tanto concluimos que para $k \in \mathbb{Z}_+, y_k \in B_k$ esta contenido en U_k y por lo tanto $B \subseteq U$ y como fueron arbitrarias, $\tau_d \supseteq \tau$.

Por el otro lado, suponga que $z \in X$, $\epsilon > 0$ y $B_{\epsilon}(z) = \{y \in X | d(z,y) < \epsilon\}$ es un básico abierto, ahora por propiedad arquimediana escoja un $Z \in \mathbb{Z}_+$ tal que $2^{-Z} < \frac{\epsilon}{3}$ y defina $U_k = \{y \in X_k | d_k(y,z) < \frac{\epsilon}{2Z}\}$. Para k > Z defina $U_k = X_k$, entonces observamos que $U = \prod_{k \in \mathbb{Z}_+} U_k$ es un básico en la topología τ en X (la producto).

Por ultimo, queremos ver $U \subseteq B$, suponga $y \in U$ vemos que:

$$d(z,y) = \sum_{k=1}^{Z} 2^{-k} \frac{d_k(z_k, y_k)}{1 + d_k(z_k, y_k)} + \sum_{k=Z+1}^{\infty} \frac{2^{-k} d_k(z_k, y_k)}{1 + d_k(z_k, y_k)}$$

$$\leq \sum_{k=1}^{Z} d_k(z_k, y_k) + \sum_{k=Z+1}^{\infty} 2^{-k} \leq \sum_{k=1}^{Z} \frac{\epsilon}{2N} + 2^{-N} = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

 ${\bf 2.}$ Sea (X,d) un espacio métrico separable. Muestre que X es homeomorfo a un subespacio de R^ω

Soluci'on

Para esto demostraremos el siguiente teorema:

Teorema 2. Sea (X,d) un espacio métrico separable, i.e existe $A \subseteq X$ enumerable tal que $\bar{A} = X$. Entonces muestre que X es homeomorfo a un espacio de $\mathbb{R}[\omega]$

Demostración Usando la ayuda proporcionada, A enumerable, considere $\{a_n \in A | n \in \omega\}$, y la función $f: X \to \mathbb{R}^{\omega}$ caracterizada por $f(x \in X) = d(x_n)_{n \in \omega}$, queremos ver que f es un homomorfismo.

Proposición 2. f es sobre, sobre su imagen "juego de palabras intencionado"

Proposición 3. f es inyectiva

Demostración Dados $x, y \in X$, suponga $x \neq y$, suponga el caso en que $x \in A$, es decir $x = a_n$, tenemos que f(x) es cero, mientras que $f(y) \neq 0$, es claro que $f(x) \neq f(y)$, para el caso en que $y \in A$, es similar. Para el ultimo caso, es decir, ambos elementos no pertenecen a A, es decir x, y son puntos limites. Ahora, observe que A es de Hausdorff, esto debido a que X es métrico, por lo tanto existe un $\epsilon > 0$ tal que las bolas centradas en $x \neq y$, i.e $B_{\epsilon}(X), B_{\epsilon}(y)$ son tales que su intersección es vacía, luego existe succesion $a_n \in A, a_n \in B_{\epsilon}(x) \implies d(y, a_n) \geq \epsilon$, luego $f(x) \neq f(y)$.

Continuamos con la siguiente proposición.

Proposición 4. $f': X \to \text{Img}(F)$ es continua

Demostración Para esto probaremos que $f'_n: X \to \mathbb{R}$ es continua. Sea un abierto en la imagen de la forma $f_n(x) - \epsilon, f_n(x) + \epsilon$, y sea $y \in f_n^{'-1}(f_n(x) - \epsilon, f_n(x) + \epsilon)$, vamos a ver que y es un punto interior. Defina $\delta = \epsilon - d(x, y)$, Obsérvese que:

$$\begin{aligned} \epsilon &> d(a_n,x) + d(a_n,y) \\ &> d(a_n,x) + d(a_n,y) > d(x,y)\epsilon > d(x,y) \\ \epsilon &- d(x,y) > 0 \end{aligned}$$

Entonces queremos ver que el abierto contenido en la base de la topologia de X de la forma $B_{\delta} \subseteq f_n^{'-1}(f_n(x) - \epsilon, f_n(x) + \epsilon)$. Para ello tome $u \in B_{\delta}(y)$, o en otras palabras $d(z,y) < \epsilon - d(x,y)$, o equivalente $d(z,y) + d(x,y) < \epsilon$ y por desigualdad triangular $d(z,x) < \epsilon$ y tambien observar que $z \in f_n^{'-1}(f_n(x) - \epsilon, f_n(x) + \epsilon)$ ya que $d(a_n, z) < f(x) + \epsilon$.

Concluimos entonces $\forall y \in f_n^{'-1}(f_n(x) - \epsilon, f_n(x) + \epsilon) \exists B_{\delta}(y) \subseteq f_n^{'-1}(f_n(x) - \epsilon, f_n(x) + \epsilon)$, y este es un abierto en X, por lo tanto $\operatorname{Img}(f)$ es continua. Nos queda por ultimo entonces revisar que la imagen inversa es continua:

Proposición 5. $f^{'-1}: \text{Img}(f) \to X$ es continua.

Demostración Como es normal, tome un basico, i.e una bola de X, de la forma $B_{\epsilon}(x)$, para mostrar que esta funcion es continua, basta con solo mirar que $f'(B_{\epsilon}(x))$, es un abierto en la imagen. Sea $\delta = \epsilon - |f_1(x) - f_1(y)|$. Conside U vecindad de f(y) de la forma:

$$U = (f_1(y) - \delta, f_1(y) + \delta) \times \prod_{i \in \omega} \mathbb{R}_i$$

Sea $f(z) \in U$, implica que $|f_1(y) - f_1(z)| < \delta$, o en otras palabras, $|f_1(x) - f_1(y)| < \epsilon$ por desiguldad triangular. Ahora, observe que si $|f_1(x) - f_1(y)| < \epsilon$, tenemos que $d(z, a_1) + d(z, a_1)$, lo cual es mas grande que $d(z, x) < \epsilon$ y por ende mas pequeño que ϵ concluimos que $\epsilon \in B_{\epsilon}(x)$

Concluimos entonces que dado cualquier punto en $f'(B_{\epsilon}(x))$, es un punto interior, entonces concluimos que la funcion es continua

Concluimos fes un homomorfismo en su imagen, y Xes homeomorfo a un subespacio de R^ω

 ${\bf 3.}$ El problema 3es un caso particular de la solución al problema 3