Databricks Foundation Model Fine-Tuning Process

Dataset Preparation

- Input: Your training dataset (e.g., text data, CSV files).
- Process:
 - Preprocess the dataset using **Databricks notebooks**.
 - Use libraries like Hugging Face's datasets and PySpark for large-scale preprocessing and tokenization.
- Output: Preprocessed dataset stored in \$3 or Databricks DBFS for easy access.

Model Setup in Databricks

- Input: Pre-trained foundation model (e.g., Phi-2 from Hugging Face).
- Process:
 - Set up a GPU-enabled cluster (using instance types like g4dn.xlarge or p3.2xlarge).
 - Install necessary libraries such as transformers, datasets, accelerate, and boto3 (for S3 integration).
 - Load the pre-trained foundation model (e.g., Phi-2) and tokenizer from Hugging Face Hub.
- Output: The model is ready for fine-tuning on the dataset.

Fine-Tuning in Databricks

- Input: Pre-trained model, tokenized dataset.
- Process:
 - Fine-tune the foundation model using Hugging Face's Trainer API in Databricks notebooks.
 - Leverage GPU resources to speed up training.
 - Store training configurations such as batch size, number of epochs, and learning rate in the Databricks notebook.
 - Monitor training performance and adjust parameters as needed.
- Output: Fine-tuned model.

Model Storage in S3

- **Input**: Fine-tuned model (weights, tokenizer).
- Process:
 - Save the fine-tuned model back to AWS S3 for easy access and deployment.
 - Use the boto3 library to interact with AWS S3 and upload model artifacts.
- Output: Fine-tuned model saved in S3.

Deployment to AWS SageMaker (Optional)

- Input: Fine-tuned model in S3.
- Process:
 - Use AWS SageMaker for model deployment.
 - Deploy the model as a real-time endpoint for inference, enabling users or systems to interact with the fine-tuned model.
- Output: SageMaker Endpoint serving the fine-tuned model.

Monitoring and Optimization

- Input: Logs from Databricks and SageMaker (using AWS CloudWatch).
- Process:
 - Monitor the performance of both the training process and the deployed endpoint.
 - Adjust training parameters, instance types, or resources as required to optimize performance and reduce cost.
- Output: Optimized training and inference workflows.

Finetuning in AWS —HF→S3—>Aws sagemaker

End-to-End Flow

- 1. Raw Dataset → Preprocess & Upload → S3
- 2. S3 Dataset → Fine-Tune with Hugging Face → Fine-Tuned Model
- 3. Fine-Tuned Model → Upload to S3
- 4. S3 Model → Deploy to SageMaker Endpoint
- 5. **Endpoint** → Serve Predictions
- 6. CloudWatch Monitoring → Optimize and Improve