Funções (12.º ano)

2.ª derivada (concavidades e pontos de inflexão)

Exercícios de Provas Nacionais e Testes Intermédios

1. Para um certo número real k, seja ga função, de domínio $\mathbb{R},$ definida por

$$g(x) = \begin{cases} \frac{x^2 - x}{k - kx} & \text{se } x < 1\\ x^2 - 10 + 8 \ln x & \text{se } x \ge 1 \end{cases}$$

Estude, sem recorrer à calculadora, a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão no intervalo $]1, +\infty[$

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de g tem concavidade voltada para cima;
- -a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de g, caso este(s) exista(m).

Exame – 2020, Ép. especial

2. Seja f uma função, de domínio $]0,+\infty[$, cuja derivada, f', de domínio $]0,+\infty[$, é dada por $f'(x)=\frac{2+\ln x}{x}$

Resolva este item sem recorrer à calculadora.

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- -o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- -a(s) abcissa(s) do
(s) ponto(s) de inflexão do gráfico de f

Exame -2020, 2.a Fase

3. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = x^3 + 6 \ln x$

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- as coordenadas do(s) ponto(s) de inflexão do gráfico de f

Exame – 2018, Ép. especial

4. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função f, polinomial do terceiro grau.

Tal como a figura sugere, a função f tem um máximo relativo para x=-2 e tem um mínimo relativo para x=2

A origem do referencial é ponto de inflexão do gráfico

Sejam f' e f'' a primeira e a segunda derivadas da função f, respetivamente.

Qual é o conjunto solução da condição $f'(x) \times f''(x) \ge 0$?

(A)
$$[-2,0] \cup [2,+\infty]$$

(B)
$$]-\infty,-2]\cup[0,2]$$

(C)
$$]-\infty,0]\cup[2,+\infty]$$

(A)
$$[-2,0] \cup [2,+\infty[$$
 (B) $]-\infty,-2] \cup [0,2]$ (C) $]-\infty,0] \cup [2,+\infty[$ (D) $]-\infty,-2] \cup [0,+\infty[$

Exame – 2017, Ép. especial

5. Seja f a função, de domínio $]1-\pi, +\infty[$, definida por

$$f(x) = \begin{cases} \frac{2x - 2}{\sin(x - 1)} & \text{se } 1 - \pi < x < 1 \\ \\ 2 & \text{se } x = 1 \\ e^{-2x + 4} + \ln(x - 1) & \text{se } x > 1 \end{cases}$$

O gráfico da função f tem um único ponto de inflexão, cuja abcissa pertence ao intervalo]1,2[Determine, recorrendo à calculadora gráfica, a abcissa desse ponto. Na sua resposta:

- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver o problema;
- apresente a abcissa do ponto de inflexão arredondada às centésimas.

Exame – 2017, Ép. especial

6. Seja fuma função de domínio $\mathbb R$

A tabela de variação de sinal da função f'', segunda derivada de f, é a seguinte.

\boldsymbol{x}		$-\infty$	-10		0		10	+∞
f	"	_	0	+	0	_	0	+

Seja g a função definida por g(x) = -f(x-5)

Em qual dos intervalos seguintes o gráfico de g tem concavidade voltada para baixo?

- **(A)**]-15,-5[
- **(B)**]0,10[
- (C)]-5,5[
- **(D)** [5,15]

Exame - 2017, 2.ª Fase

7. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial f Sabe-se que o único ponto de inflexão do gráfico de f tem abcissa 0

Seja f'' a segunda derivada da função f

Qual das afirmações seguintes é verdadeira?

(A)
$$f''(1) + f''(2) < 0$$

(A)
$$f''(1) + f''(2) < 0$$
 (B) $f''(-2) + f''(-1) > 0$

(C)
$$f''(-1) \times f''(-2) < 0$$
 (D) $f''(1) \times f''(2) > 0$

(D)
$$f''(1) \times f''(2) > 0$$

Exame - 2017, 1.a Fase

8. Seja f uma função, de domínio \mathbb{R} , cuja **derivada**, f', de domínio \mathbb{R} , é dada por

$$f('(x) = e^x (x^2 + x + 1))$$

Resolva o item seguinte recorrendo a métodos analíticos, sem utilizar a calculadora.

Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão. Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f

Exame – 2016, 1.^a Fase

9. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial f

Em qual das opções seguintes pode estar representada parte do gráfico da função f'', segunda derivada da função f ?

(A)

(B)

(C)

(D)

Exame -2015, Ép. especial

- 10. Seja $f:\mathbb{R}\to\mathbb{R}$ uma função tal que:
 - f tem derivada finita em todos os pontos do seu domínio;
 - f'(0) > 0
 - f''(x) < 0, para qualquer $x \in]-\infty,0[$

Nenhum dos gráficos a seguir apresentados é o gráfico da função f

Elabore uma composição na qual apresente, para cada um dos gráficos, uma razão pela qual esse gráfico não pode ser o gráfico da função f

Exame - 2015, 2.a Fase

11. Seja f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{e^x - \sqrt{e}}{2x - 1} & \text{se } x < \frac{1}{2} \\ (x + 1) \ln x & \text{se } x \ge \frac{1}{2} \end{cases}$$

Estude, recorrendo a métodos analíticos, sem utilizar a calculadora, a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão, no intervalo $\left[\frac{1}{2}, +\infty\right[$

Na sua resposta, apresente:

- \bullet o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- \bullet as coordenadas do(s) ponto(s) de inflexão do gráfico de f

Exame – 2015, 1.ª Fase

12. Seja f uma função de domínio] -5,5[

Sabe-se que o gráfico da função f tem exatamente dois pontos de inflexão.

Em qual das opções seguintes pode estar representado o gráfico da função f'', segunda derivada da função f?

(A)

(B)

(C)

(D)

Exame - 2014, Ép. especial

13. Na figura seguinte, está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial f, de grau 3

Sabe-se que:

- -2 e 3 são os únicos zeros da função f
- ullet a função f tem um extremo relativo em x=-2
- h', primeira derivada de uma função h, tem domínio $\mathbb R$ e é definida por $h'(x)=\frac{f(x)}{e^{2x}}$

Considere as afirmações seguintes.

- I) A função h tem dois extremos relativos.
- II) h''(-2) = 0
- III) y+3=0 é uma equação da assíntota do gráfico da função h quando x tende para $+\infty$

Elabore uma composição, na qual indique, justificando, se cada uma das afirmações é verdadeira ou falsa. Na sua resposta, apresente três razões diferentes, uma para cada afirmação.

Exame - 2014, 2.a fase

14. Na figura ao lado, está representada, num referencial ortogonal xOy, parte do gráfico da função g'', segunda derivada de uma função g

 $\begin{array}{c|c}
y \\
\hline
O \\
\end{array}$

Em qual das opções seguintes pode estar representada parte do gráfico da função g?

(B)

(C)

(D)

Exame – 2014, 2.ª fase

15. Seja f uma função, de domínio \mathbb{R}^+ , com derivada finita em todos os pontos do seu domínio. A sua derivada, f', é definida por $f'(x) = \frac{1}{2}x^2 - \ln x$

Quantos pontos de inflexão tem o gráfico da função f?

- (A) Zero
- **(B)** Um
- (C) Dois
- (D) Três

Teste Intermédio 12.º ano – 30.04.2014

- 16. Seja f uma função cuja derivada, f', de domínio \mathbb{R} , é dada por $f'(x) = (4+x)^2$ Qual das afirmações seguintes é verdadeira?
 - (A) O gráfico da função f tem a concavidade voltada para cima em $\mathbb R$
 - (B) A função f tem um máximo relativo em x=-4
 - (C) O gráfico da função f não tem pontos de inflexão.
 - (D) O gráfico da função f tem um ponto de inflexão de coordenadas (-4, f(-4))

Exame – 2013, Ép. especial

- 17. Sejam f' e f'', de domínio \mathbb{R} , a primeira derivada e a segunda derivada de uma função f, respetivamente. Sabe-se que:
 - a é um número real;
 - $\bullet\,\,P$ é o ponto do gráfico de f de abcissa a
 - $\bullet \lim_{x \to a} \frac{f(x) f(a)}{x a} = 0$
 - f''(a) = -2

Qual das afirmações seguintes é necessariamente verdadeira?

- (A) a é um zero da função f
- (B) f(a) é um máximo relativo da função f
- (C) f(a) é um mínimo relativo da função f
- (D) P é ponto de inflexão do gráfico da função f

Exame - 2013, 2.a fase

18. Seja g uma função, de domínio \mathbb{R}^+ , cuja derivada, g', de domínio \mathbb{R}^+ , é dada por

$$g'(x) = \ln(e^x + 6e^{-x} + 4x)$$

Estude a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão, recorrendo a métodos analíticos, sem utilizar a calculadora.

Exame – 2013, 2.^a fase

- 19. Seja f uma função de domínio $\mathbb R$ e seja f'' a segunda derivada da função f Sabe-se que f'' tem domínio $\mathbb R$ e é definida por $f''(x) = e^{-x}x^2(x-1)$ Qual das afirmações seguintes é verdadeira?
 - (A) O gráfico da função f tem exatamente quatro pontos de inflexão.
 - (B) O gráfico da função f tem exatamente três pontos de inflexão.
 - (C) O gráfico da função f tem exatamente dois pontos de inflexão.
 - (D) O gráfico da função f tem exatamente um ponto de inflexão.

Teste Intermédio 12.º ano – 24.05.2013

20. Na figura ao lado, está representada, num referencial o. n. xOy, parte do gráfico de h'', segunda derivada de uma função h, de domínio $\mathbb R$

Em qual das opções seguintes pode estar representada parte do gráfico da função h?

Exame – 2012, Ép. especial

- 21. Considere, num referencial o. n. xOy, o gráfico de uma função h, de domínio $\mathbb R$ Sabe-se que:
 - $a, b \in c$ são números reais positivos e a < b < c
 - h tem um mínimo relativo em a,c
 - h é crescente em $]-\infty,0[$
 - $\lim_{x \to -\infty} (h(x) 1) = 0$
 - $\bullet\,$ a segunda derivada, $h^{\prime\prime},$ da função h é tal que $h^{\prime\prime}(x)>0$ para x>b

Apenas uma das opções seguintes pode representar uma parte do gráfico da função h

(I)

(II)

(IV)

Elabore uma composição na qual:

- \bullet indique a opção que pode representar h
- apresente três razões para rejeitar as restantes opções, uma por cada opção rejeitada.

Exame - 2012, Ép. especial

22. Considere a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{\sin x}{1 - \sqrt{1 - x^3}} & \text{se } x < 0\\ 1 - e^{k+1} & \text{se } x = 0 \text{ com } k \in \mathbb{R} \\ \frac{1 - e^{4x}}{x} & \text{se } x > 0 \end{cases}$$

Seja g uma função, de domínio \mathbb{R}^+ , cuja derivada, g', de domínio \mathbb{R}^+ , é dada por $g'(x) = f(x) - \frac{1}{x}$ Estude, recorrendo a métodos exclusivamente analíticos, a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Exame - 2012, 2.ª Fase

23. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função f, de domínio $\mathbb R$

Sejam f' e f'', de domínio \mathbb{R} , a primeira derivada e a segunda derivada de f, respetivamente.

Qual dos valores seguintes pode ser positivo?

(B)
$$f'(-3)$$

(C)
$$f''(-3)$$

(D)
$$f''(1)$$

Exame – 2012, 1.^a Fase

- 24. De uma certa função f sabe-se que:
 - o seu domínio é $]1, +\infty[$
 - a sua **derivada** é dada por $f'(x) = x^2 4x + \frac{9}{2} 4\ln(x-1)$

Na figura ao lado, está representada parte do gráfico da função f. Tal como a figura sugere, o gráfico da função f tem um ponto de inflexão.

Determine a abcissa desse ponto, recorrendo a métodos exclusivamente analíticos.

Teste Intermédio 12.º ano – 24.05.2012

25. Para um certo número real a, seja a função f, de domínio \mathbb{R} , definida por $f(x) = ax^2 - 1$

Na figura ao lado, está representada, num referencial o. n. xOy, parte do gráfico da função f'', segunda derivada da função f

Qual dos valores seguintes pode ser o valor de a?

(B)
$$\pi$$

(D)
$$-3$$

Exame – 2011, Ép. especial

26. De uma função g sabe-se que tem domínio $\left]-\frac{2\pi}{3}, -\frac{\pi}{3}\right[$, e g', primeira derivada de g, tem domínio, $\left]-\frac{2\pi}{3}, -\frac{\pi}{3}\right[$; e é definida por $g'(x)=\log_2\left(-\frac{\pi}{6}-x\right)$

Estude a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão no intervalo $\left]-\frac{2\pi}{3},-\frac{\pi}{3}\right[$

Exame – 2011, Ép. especial

27. Na figura ao lado, está representada, num referencial ortogonal xOy, parte do gráfico de uma função polinomial f, de grau 4

Qual das expressões seguintes pode definir a função f'', segunda derivada de f?

- **(A)** $(x-3)^2$ **(B)** $(x+3)^2$
- (C) $9 x^2$ (D) $x^2 9$

Exame - 2011, 2.a fase

- 28. Na figura ao lado, está representada, num referencial ortogonal xOy, parte do gráfico da função gSabe-se que:
 - $\bullet \;\; g$ é uma função contínua em $\mathbb R$
 - \bullet g não tem zeros
 - \bullet a segunda derivada $f^{\prime\prime}$ de uma certa função ftem domínio $\mathbb R$ e é definida por $f''(x) = g(x) \times (x^2 - 5x + 4)$
 - $f(1) \times f(4) > 0$

Apenas uma das opções seguintes pode representar a função f

(I)

(II)

(III)

(IV)

Elabore uma composição na qual

- \bullet indique a opção que pode representar f
- indique as razões que o levam a rejeitar as restantes opções Apresente três razões, uma por cada gráfico rejeitado.

Exame - 2011, 1.^a fase

29. Na figura ao lado, está o gráfico de uma função f cujo domínio é o intervalo [1,3]

A função f tem primeira derivada e segunda derivada finitas em todos os pontos do seu domínio.

Seja $x \in]1,3[$

Qual das afirmações seguintes é verdadeira?

(B)
$$f'(x) < 0 \land f''(x) > 0$$

(C)
$$f'(x) > 0 \land f''(x) < 0$$

(C)
$$f'(x) > 0 \land f''(x) < 0$$
 (D) $f'(x) < 0 \land f''(x) < 0$

Teste Intermédio $12.^{\circ}$ ano -26.05.2011

30. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico da função f', primeira derivada de fSeja $a \in \mathbb{R}^+$ um ponto do domínio de f, tal que f'(a) = 0Qual das afirmações seguintes é verdadeira?

- (B) A função f tem um ponto de inflexão para x = a
- (C) A função f é crescente em]0, a[
- (**D**) A função f é decrescente em \mathbb{R}

Exame -2010, 2.a fase

31. Na figura ao lado, está representada, num referencial o.n. xOy, parte do gráfico de uma função afim f, de domínio \mathbb{R}

Seja h a função definida por $h(x) = f(x) + e^x$

Em qual das opções seguintes pode estar representada parte do gráfico da função h'', segunda derivada de h?

Exame - 2010, 1.ª Fase

32. Na figura ao lado, está parte da representação gráfica de uma função polinomial f

O ponto de abcissa 2 é o único ponto de inflexão do gráfico da função f

Qual das expressões seguintes pode definir f'', segunda derivada da função f?

(A)
$$(x-2)^2$$
 (B) $(2+x)^2$ **(C)** $2-x$

(B)
$$(2+x)^2$$

(C)
$$2 - a$$

(D)
$$x-2$$

Teste Intermédio $12.^{\circ}$ ano -19.05.2010

33. De uma função f, de domínio \mathbb{R} , sabe-se que a sua **derivada**, f', é definida por

$$f'(x) = (2x+4)e^x$$

Sem recorrer à calculadora, estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Teste Intermédio $12.^{\circ}$ ano -27.05.2009

34. Na figura ao lado está representada parte do gráfico de uma função h, de domínio \mathbb{R}_0^+ .

Em cada uma das figuras abaixo está representada parte do gráfico de uma função de domínio \mathbb{R}_0^+ .

Uma das funções representadas é h', primeira derivada de h, e a outra é h'', segunda derivada de h.

Numa pequena composição, explique em qual das figuras está representado o gráfico da primeira derivada e em qual está representado o gráfico da segunda derivada. Na sua composição, deve referir-se à variação de sinal das funções h' e h'', relacionando-a com características da funções h (monotonia e sentido das concavidades do seu gráfico).

Exame -2007, 2.^a fase

35. De uma certa função f, de domínio \mathbb{R} , sabe-se que a sua segunda derivada é dada por $f''(x) = (x^2 - 1)(x^2 + 5)(x + 6)^2$

Quantos pontos de inflexão tem o gráfico de f?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

Exame – 2006, Ép. especial

36. Na figura ao lado está parte do gráfico de uma função h, de domínio \mathbb{R} .

Sejam h' e h'' a primeira e a segunda derivadas de h, respetivamente.

Admita que estas duas funções também têm domínio \mathbb{R} .

Qual das expressões seguintes designa um número positivo?

(B)
$$h(0) - h'(0)$$

(C)
$$h'(0) - h''(0)$$

(C)
$$h'(0) - h''(0)$$
 (D) $h'(0) \times h''(0)$

Exame – 2006, 2.ª Fase

37. Na figura ao lado está representada parte do gráfico de uma função polinomial f.

Tal como a figura sugere, o gráfico de tem a concavidade voltada para cima em $]-\infty,0]$ e voltada para baixo em $[0,+\infty[$.

A reta r, tangente ao gráfico de f no ponto de abcissa 0, é paralela à bissetriz dos quadrantes ímpares e interseta o eixo Ox no ponto de abcissa -2.

Sabendo que f' e f'' designam, respetivamente, a primeira e a segunda derivadas de f, indique o valor de f(0) + f'(0) + f''(0)?

Exame - 2006, 1.ª Fase

38. De uma certa função f, de domínio \mathbb{R} , sabe-se que a sua **derivada** é dada por

$$f'(x) = x^3 - 3x + 1$$

Em qual dos conjunto seguintes, o **gráfico de** f tem a concavidade voltada para baixo?

(A)
$$]-1,1[$$

(B)
$$]-\infty,-1[$$

(D)
$$]0, +\infty[$$

Exame – 2005, Ép. especial (cód. 435)

39. Seja f uma função, de domínio \mathbb{R}^+ , tal que a sua **derivada** é dada por

$$f'(x) = 2 + x \ln x, \ \forall x \in \mathbb{R}^+$$

Sem recorrer à calculadora, estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Exame – 2005, 1.^a Fase (cód. 435)

40. Na figura ao lado está parte da representação gráfica de uma função f, polinomial do terceiro grau.

Seja f'' a **segunda** derivada de f

Qual dos valores seguintes pode ser solução da equação f''(x) = 0?

(B) 1

(C) 2

(D) 3

Exame - 2004, Ép. especial (cód. 435)

41. Considere, para cada $\alpha \in]0,1[$, a função, de **domínio** \mathbb{R}^+ , definida por $f(x)=x^{\alpha}$ Prove que, qualquer que seja o valor de $\alpha \in]0,1[$, o gráfico da função f tem a concavidade voltada para baixo.

Exame - 2004, 2.ª Fase (cód. 435)

42. Na figura ao lado está parte da representação gráfica de uma função polinomial h.

O ponto de abcissa 1 é o único ponto de inflexão do gráfico de h.

Qual das expressões seguintes pode definir h'', segunda **derivada**, da função h?

(B)
$$(1+x)^2$$

(C)
$$x - 1$$

Exame - 2004, 1.ª Fase (cód. 435)

- 43. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = (x-5)^3$. Qual das afirmações seguintes é verdadeira?
 - (A) A função f tem um extremo relativo para x = 5
 - (B) A função f tem um extremo relativo para x = -5
 - (C) O gráfico da função f tem um ponto de inflexão para x=5
 - (D) O gráfico da função f tem um ponto de inflexão para x = -5

Exame - 2003, Prova para militares (cód. 435)

44. De uma função f, de domínio \mathbb{R} , sabe-se que a sua derivada é dada por

$$f'(x) = (x+1)e^x - 10x$$

Seja A o único ponto de inflexão do gráfico de f.

Recorrendo às capacidades gráficas da sua calculadora, determine a abcissa do ponto A, arredondada às décimas.

Explique como procedeu. Inclua, na sua explicação, o(s) gráfico(s) que obteve na calculadora.

Exame – 2003, 1.ª fase - 2.ª chamada (cód. 435)

45. Seja f uma função de domínio \mathbb{R} .

Sabe-se que a primeira e a segunda derivadas de f são negativas em \mathbb{R} . Em qual das figuras seguintes pode estar representada parte do gráfico da função f?

(A)

(B)

(C)

(D)

Exame – 2003, $1.^a$ fase - $1.^a$ chamada (cód. 435)

- 46. Seja f uma função de domínio \mathbb{R} e a um ponto do domínio de tal f que f'(a) = 0 Qual das afirmações seguintes é **necessariamente** verdadeira?
 - (A) a é zero de f

- **(B)** f(a) é extremo relativo de f
- (C) (a, f(a)) é ponto de inflexão do gráfico de f
- (D) A reta de equação y = f(a) é tangente ao gráfico de f

Exame – 2002, Prova para militares (cód. 435)

47. Seja f uma função de domínio $\mathbb R$

Na figura ao lado está representada parte do gráfico de f'', segunda derivada da função f.

Relativamente ao gráfico da **função** f, qual das afirmações seguintes é verdadeira?

- (A) O ponto de abcissa a é um ponto de inflexão.
- (B) O ponto de abcissa c é um ponto de inflexão.
- (C) A concavidade está virada para baixo no intervalo [0,b]
- (D) A concavidade está sempre virada para cima

Exame – 2002, 2.ª fase (cód. 435)

48. Na figura ao lado está representada parte do gráfico de uma função f, de domínio $\mathbb R.$

Numa das alternativas seguintes estão os quadros de sinais de f' e de f'', respetivamente primeira e segunda derivadas de f.

Em qual delas?

Exame – 2002, $1.^a$ fase - $1.^a$ chamada (cód. 435)

49. Seja f uma função de domínio $[0, +\infty[$

Na figura ao lado, à esquerda, está parte da representação gráfica da função f' e, à direita, parte da representação gráfica da função f'', respetivamente **primeira** e **segunda** derivadas de f.

Em qual das figuras seguintes pode estar parte da representação gráfica da função f?

Exame – 2001, Prova para militares (cód. 435)

mat.absolutamente.net

50. Seja g uma função, de domínio \mathbb{R} , tal que a sua **segunda derivada** é definida por

$$g''(x) = 1 - x^2$$

Em qual das figuras seguintes pode estar parte da representação gráfica da função g?

(A)

(B)

(C)

(D)

Exame – 2001, $1.^a$ fase - $1.^a$ chamada (cód. 435)

51. Seja g uma função cujo gráfico tem um ponto de inflexão de abcissa 1. Qual dos seguintes gráficos poderá ser o da **segunda derivada** da função g?

(A)

(B)

(C)

Exame – 2000, 1.ª fase - 2.ª chamada (cód. 435)

52. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = e^x(x^2 + x)$ Sabendo que $f'(x) = e^x(x^2 + 3x + 1)$ e recorrendo exclusivamente a processos analíticos, estude f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Exame – 2000, 1.ª fase - 1.ª chamada (cód. 435)

53. Na figura ao lado está parte da representação gráfica de $g^{\prime\prime},$ segunda derivada de uma certa função g

Qual dos gráficos seguintes pode ser o da função g?

(A)

(B)

(C)

(D)

Exame – 2000, Prova modelo (cód. 435)

54. De uma certa função f, de domínio \mathbb{R}^+ , sabe-se que a sua derivada, f', é definida por $f'(x) = \frac{1 + \ln x}{x}$ Mostre que $f''(x) = \frac{-\ln x}{x^2}$ e estude f quanto ao sentido das concavidades do seu gráfico e à existência de pontos de inflexão.

Exame – 1998, $1.^{\rm a}$ fase - $2.^{\rm a}$ chamada (cód. 135)