

Lecture outline

- · Mining various kinds of association rules
- Multi-level association
- Multi-dimensional association
- Quantitative association
- · Interesting correlation patterns
- · Constraints based mining
- Interestingness measure: Correlation (Lift)
 - More interestingness measures
- Visualisation of association rules

Multi-level association mining (2)

- Some rules may be redundant due to ancestor relationships between items
- For example:

buys(X, `milk') \Rightarrow buys(X, `bread') [s=8%, c=70%] buys(X, `skim milk') \Rightarrow buys(X, `bread') [s=2%, c=72%]

- The first rule is said to be an ancestor of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor
- For example, if around 25% of all milk purchased is `skim milk', then the second rule above is redundant, as it has a ¼ of the support of the first, more general rule (and similar confidence)

Multi-dimensional association mining

- Single-dimensional rules: $buys(X, `milk') \Rightarrow buys(X, `bread')$
- Multi-dimensional rules: Two or more dimensions or predicates (or attributes)
 - Inter-dimension association rules (no repeated predicates):
 age(X, `19-25') and occupation(X, `student') ⇒ buys(X, `coke')
 - Hybrid-dimension association rules (repeated predicates):
 age(X, `19-25') and buys(X, `popcorn') ⇒ buys(X, `coke')
- Categorical Attributes: finite number of possible values, no ordering among values (data cube approach)
- Quantitative Attributes: numeric, implicit ordering among values (discretisation, clustering, etc.)

Static discretisation of quantitative attributes

- Discretised prior to mining using concept hierarchy
- Numeric values are replaced by ranges
- In relational database, finding all frequent *k*-item sets will require *k* database scans
- Data cube is well suited for mining
- The cells of an n-dimensional cuboid correspond to the item or predicate sets
- Mining from data cubes can be much faster

Quantitative association mining

- Techniques can be categorised by how numerical attributes, such as *age* or *income*, are treated
- Static discretisation based on predefined concept hierarchies (data cube methods)
- Dynamic discretisation based on data distribution
 - A_{quant1} and $A_{quant2} \Rightarrow A_{cat}$
 - Example: age(X, `19-25') and $income(X, `40K-60K') \Rightarrow buys(X, `HDTV')$
- For quantitative rules, do discretisation such that (for example) the confidence of the rules mined is maximised

Dynamic discretisation of quantitative attributes

- Mapping of pairs of quantitative attributes into a 2-dimensional grid, such that categorical attribute conditions are satisfied
- The grid is then searched for clusters of points from which association rules are generated
- For example: age(X, `34-35') and income(X, '31K-50K') ⇒ buys(X, `HDTV')

Mining interesting correlation patterns

- Flexible support
 - Some items might be very rare but are valuable (like diamonds)
 - Customise support specification and application
- Top-k frequent patterns
 - It can be hard to specify $support_{\min}$, but top-k rules with $length_{\min}$ are more desirable
 - Achievable using special data structures, like Frequent-Pattern (FP) tree
 - Dynamically raise support during FP-tree construction phase, and select most promising to mine
- Many different algorithms and data structures have been developed to allow efficient mining of associations and rules (more in the text book)

Constraints in data mining

- Knowledge type constraint
 - · Correlation, association, etc.
- Data constraint (use SQL like queries)
 - For example: Find product pairs sold frequently in both stores in Sydney and Melbourne
- Dimension / level constraint
 - In relevance to region, price, brand, customer category, etc.
- Rule or pattern constraint
 - Small sales (price < \$10) trigger big sales (sum > \$200)
- Interestingness constraint
 - Strong rules only: support > 3%, confidence > 75%

Constraint based mining

- Finding *all* the frequent rules or patterns in a database autonomously is unrealistic
 - The rules / patterns could be too many and not focussed
- Data mining should be an interactive process
- The user directs what should be mined using a data mining query language or a graphical user interface
- Constraint-based mining
- User flexibility: provides constraints on what to be mined (and what not)
- · System optimisation: explores such constraints for efficient mining

Interestingness measure: Correlation (lift)

- Example: Play basketball ⇒ Eat cereal [40%, 66.67%] is misleading
 - If overall 75 % of all students eat cereal
 - Play basketball ⇒ Not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent / correlated events: Lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \quad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

lore				
lore	I			
	INT	erestina	ness	S measures (Tan et al. 2002)
	1110		<i>3</i> 11000	Tiloabarob (Tarret al. 2002)
	symbol	measure	range	formula
	φ	ϕ -coefficient	-11	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
	0	Yule's Q	-1 1	$\frac{\stackrel{\bullet}{P}(A,B)P(\overline{A},\overline{B})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)}$
	· V	Yule's Y	-1 1	$\sqrt{P(A,B)P(\overline{A},B)} = \sqrt{P(A,B)P(\overline{A},B)}$ $\sqrt{P(A,B)P(\overline{A},\overline{B})} = \sqrt{P(A,\overline{B})P(\overline{A},B)}$
	Y	rule's r	-1 1	$\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}$
	k	Cohen's	-1 1	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
	PS	Piatetsky-Shapiro's	-0.250.25	P(A, B) - P(A)P(B)
	F	Certainty factor	-1 1	$\max(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)})$
	AV	added value	-0.51	$\max(P(B A) - P(B), P(A B) - P(A))$
	K	Klosgen's Q	-0.33 0.38	$\sqrt{P(A, B) \max(P(B A) - P(B), P(A B) - P(A))}$
	g	Goodman-kruskal's	0 1	$\sqrt{P(A, B)} \max(P(B A) - P(B), P(A B) - P(A))$ $\sum_{j} \max_{k} P(A_{j}, B_{k}) + \Sigma_{k} \max_{j} P(A_{j}, B_{k}) - \max_{k} P(A_{j}) - \max_{k} P(B_{k})$ $= \sum_{j} \max_{k} P(A_{j}) - \max_{k} P(B_{k})$
	M	Mutual Information	01	$\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}$
	J	J-Measure	01	$\overline{\min(-\Sigma_1 P(A_1) \log P(A_1) \log P(A_1), -\Sigma_1 P(B_1) \log P(B_1) \log P(B_1))}$ $\max(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(B A)}{P(B)}))$
	,	J-Measure	01	$\max(P(A, B) \log(\frac{-P(B)}{P(B)}) + P(AB) \log(\frac{-P(B)}{P(B)}))$ $= P(AB) = P(AB)$
				$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$
	G	Gini index	01	$\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$ $P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B}[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2] - P(A)^2 - P(\overline{A})^2,$
	s	support	0 1	P(A,B)
	c	confidence	0 1	max(P(B A), P(A B))
	L	Laplace	01	$\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$
	IS	Cosine	0 1	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	γ	coherence(Jaccard)	01	P(A,B)
	ά	all_confidence	01	$\frac{P(A)+P(B)-P(A,B)}{P(A,B)}$
		odds ratio	0∞	$\frac{\max(P(A), P(B))}{P(A,B)P(\overline{A}, \overline{B})}$
				$P(\overline{A}, B)P(A, \overline{B})$ $P(A)P(\overline{A})$ $P(B)P(\overline{A})$
	V	Conviction	0.5 ∞	$\max(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})})$
	λ	lift	0 ∞	$\frac{P(A,B)}{P(A)P(B)}$
	S	Collective strength	0 ∞	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$

Review question

• Association rule mining allows us to predict what items customers will buy frequently together in a supermarket.

Yes or No?

• The rule: {'beer','chips'} → {'sausages'} [s=20%,c=40%] tells us that 40% of customers bought beer, chips and sausages.

Yes or No?

What now.. things to do

- Read Chapter 6 and Sections 7.1-7.3 in text book
- Lab 2 next week: Read before you go into lab!
 Topic: Association mining theoretical and in Rattle