AV2020QUNICA:

Construir um código iterativo que calcule o n-éssimo número fibonacci.

fib(n)

Requisitos:

- Código montável, ligável e executável
- O cálculo do n-éssimo número fibonacci deve ser iterativo
 - não usar recursividade, pois não estudamos funções até o momento
- Sintaxe Intel x64 86

Funcionamento:

- Deve ser solicitado ao usuário a entrada do n-éssimo número fibonacci buscado
 - A entrada é pelo teclado
 - uma string de caracteres ASCII que representa o número
 - máximo com 2 dígitos
 - usuário entrará sempre com 0, 1, 2 ou +3 dígitos e enter para finalizar
 - nunca caracteres alfabéticos ou especiais.
- Verificação de entrada
 - 1 ou 2 dígitos
 - verificação de limites de representação
 - Quanto é fib(99)?
 - Qual é o tamanho do registrador x64_86?
 - n=0 ou +3 dígitos
 - mensagem de falha genérica, limpeza de buffer e encerramento
- Conversão dos dígitos ASCII para número equivalente
 - dicas:
 - ASCII para todos os números são:

ASCII:	0011 0000	0011 0001	0011 0010	0011 0011	0011 0100	0011 0101	0011 0110	0011 0111	0011 0100	0011 0101
HEX:	0x30	0x31	0x32	0x33	0x34	0x35	0x36	0x37	0x38	0x39
Dígito:	"0"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"
Num:	0	1	2	3	4	5	6	7	8	9

- Após, usar a notação posicional
 - Exemplo1: 5_d é escrito como (0) + 5
 - Exemplo2: 34_d é escrito como (10*3) + 4
 - Exemplo3: 57_d é escrito como (10*5) + 7
- Cuidado: verifique no gdb a ordem dos dígitos na memória!
- Caso a conversão tenha sucesso e o limite não tenha sido excedido
 - Calcular, de forma iterativa, fibonacci

fib(0) = 0

fib(1) = 1

fib(2) = fib(1) + fib(0)

fib(i) = fib(i-1) + fib(i-2)

- Utilize os links para verificar sua solução.
 - WolframAlpha ou Ke!sanOC
- Para finalizar, grave um arquivo binário
 - Nome do arquivo: fib(n).bin, onde n é a entrada do usuário
 - Conteúdo: resultado em "formato" binário
 - isto é, não é necessário converter inteiro para caracteres ASCII.