Singular Value Decomposition (SVD) and Principle Component Analysis (PCA)

So far...

- We have been talking about planning motion
- But your planner is only as good as your perception

- Perception requires processing sensor data; i.e. finding structure in the data
- Today we'll cover some of the most basic processing you can do:
 - De-noising
 - Dimensionality reduction

Example: Dimensionality Reduction

Find a line in a 2D point cloud

 The space is 2-dimensional, but the data is 1-dimensional (a line)

How do we transform the data to get rid "unimportant" dimensions/rotations?

- We will see how to do this with a linear transform
- The technique is called Principle Component Analysis (PCA)
- A fundamental method in
 - Machine learning
 - Robotics
 - Computer vision
- Very important for dealing with high-dimensional data

The main idea of PCA

- We care about the variance of the data
- High-variance implies high importance
 - Why does this make sense?

Data does not vary much along this axis

Data varies a lot along this axis

But how do we compute the high-variance axes?

Outline

- Preliminaries
 - Variance and Co-variance
 - Eigenvalues and eigenvectors
 - Singular Value Decomposition (SVD)
- Principle Component Analysis (PCA)
- Applications of PCA

Covariance

Variance

- Variance is a measure of the spread of n datapoints in some dataset X
- Let \bar{x} be the mean of the datapoints
- The variance of the data is:

$$Var(x) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})}{(n-1)}$$

Note: this is for 1-dimensional data

Covariance

- Variance is a measure of the deviation from the mean for points in one dimension
- Covariance is a measure of how much each of the dimensions vary from the mean with respect to each other
- Covariance is measured between every pair of dimensions to see the correlation between those dimensions
 - Example: time spent on homework vs. grade on homework
- The covariance between one dimension and itself is the variance

Covariance

$$Var(X) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})}{(n-1)}$$

Cov(X, Y) =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{(n-1)}$$

- So, if you had a 3-dimensional data set (x,y,z), then you could measure the covariance between the x and y dimensions, the y and z dimensions, and the x and z dimensions
- Measuring the covariance between x and x, or y and y, or z and z would give you the variance of the x, y and z dimensions, respectively

Covariance example

- Let's say we have a dataset consisting of two variables:
 - x₁: Number of hours spent on homework
 - x₂: Grade on the homework
- You find that $Cov(x_1, x_2) = 150.6$
- What does this mean?

Covariance

- Magnitude of covariance is not as important as its sign
- A <u>positive value</u> of covariance indicates both dimensions increase or decrease together
 - Example: as the number of hours spent on homework increases, the grade on that homework increases
- A <u>negative value</u> indicates while one increases the other decreases
 - Example: time spent playing video games vs time spent on homework
- If <u>covariance</u> is <u>zero</u>: the two dimensions are independent of each other
 - Example: eye color vs. grade on homework

Covariance Matrix

 Represent Covariance between dimensions as a matrix, e.g. for 3 dimensions:

$$Q = \begin{bmatrix} Cov(x,x) & Cov(x,y) & Cov(x,z) \\ Cov(y,x) & Cov(y,y) & Cov(y,z) \\ Cov(z,x) & Cov(z,y) & Cov(z,z) \end{bmatrix}$$

- The diagonal is the variances of x, y and z
- cov(x,y) = cov(y,x), hence matrix is symmetric about the diagonal
- n-dimensional data will result in n x n covariance matrix

Estimating the Covariance Matrix

First, form a dataset matrix X, with m rows (for m-dimensional data) and n columns (for the n data points)

n datapoints
$$X = \begin{bmatrix} x_{1,1} & x_{2,1} & \dots \\ x_{1,2} & x_{2,2} & \dots \\ \vdots & \vdots & \vdots \end{bmatrix} \text{ m dimensions}$$

- Then, estimate Q by
 - 1. Subtract the mean of the datapoints from every column of *X*

$$Q = \frac{XX^T}{(n-1)}$$

- This is the estimator to use when you don't know what kind of distribution the data came from
- If you know the distribution, you can use distribution-specific estimators (not covered here)

Eigenvalues and eigenvectors

The eigenvalue problem

The eigenvalue problem is any problem having the following form:

$$\mathbf{A}v = \lambda v$$

A: n x n matrix

 ν : n x 1 non-zero vector

λ: scalar

- A value of λ for which this equation has a solution is called a eigenvalue of A
- A v which corresponds to this value of λ is called an eigenvector of A.

The eigenvalue problem

$$\begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} \quad \mathbf{x} \quad \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 8 \end{bmatrix} = 4 \quad \mathbf{x} \quad \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\mathbf{A} \quad * \quad \mathbf{v} \quad = \lambda * \mathbf{v}$$

Therefore, v = (3,2) is an eigenvector of the matrix **A** and $\lambda = 4$ is an eigenvalue of **A**

We will see how to calculate eigenvalues/eigenvectors later

Properties of eigenvectors and eigenvalues

 Note that irrespective of how much we scale (3,2), the solution is always a multiple of 4.

 Eigenvectors can only be found for square matrices and not every square matrix has eigenvectors.

• Given an n x n matrix, we can find n eigenvectors

Properties of eigenvectors and eigenvalues

All eigenvectors of a matrix are orthogonal to each other

- In practice eigenvectors are normalized to have unit length
 - Since the length of the eigenvectors do not affect our calculations we prefer to keep them standard by scaling them to have a length of 1

Eigenvectors of covariance matrix

- Eigenvectors of *Q* with the largest eigenvalues correspond to the dimensions that have the strongest correlation in the dataset
- Eigenvectors of the covariance matrix are called principle components

- But how do we compute eigenvalues and eigenvectors?
 - There are many ways
 - We will see how to do it using SVD

Singular Value Decomposition (SVD)

SVD decomposes any matrix M into the following form:

 σ s are $\sqrt{eigenvalues}$ of M^TM and MM^T in decreasing order of magnitude

- Columns of U and V are orthonormal:
 - Each column vector has unit magnitude
 - Each column vector is orthogonal to the others

- Computing [U, Σ , V^T] = SVD(M) is complicated
 - Many tools available, e.g. in Eigen library (C++) or Matlab or numpy
 - Complexity is O(4m²n + 8mn² + 9n³)

Back to Eigenvalues and Eigenvectors

- Remember, we want to compute eigenvectors and eigenvalues of Q (the covarance matrix)
- $[U, \Sigma, V^T] = SVD(Q)$
- Σ contains $\sqrt{\text{eigenvalues}}$ of Q
- V contains eigenvectors of Q

Principle Component Analysis (PCA)

PCA Motivation

- Principal Components Analysis (PCA) is a technique that can be used to
 - Remove rotation in a dataset
 - Reduce the dimensionality of a dataset
- PCA computes a linear transformation that chooses a new coordinate system for the data set such that
 - The greatest variance by any projection of the data set comes to lie on the first axis (called the first principal component)
 - the second greatest variance on the second axis (2nd principle component)
 - and so on...

PCA algorithm to remove rotation (preserves dimension)

- Given a dataset X
- 2. Compute the mean of X, μ
- 3. $X = X \mu$ (subtract μ from every point in X)
- 4. Compute the covariance of X, $Q = \frac{XX^T}{(n-1)}$
- $\overline{$ 5. $SVD(Q) = U\Sigma V^T$
 - Each column of V is a principle component
- 6. Compute $X_{new} = V^T X$

(Note: this may cause reflection)

PCA Intuition for Rotation

- PCA rotates (and maybe reflects) X about the mean to align with the principal components
- PCA moves as much of the variance as possible (using an orthogonal transformation) into the first few dimensions

Why subtract the mean?

If we don't subtract the mean, we get undesirable results:

• A mean of 0 is needed for finding a basis that minimizes the mean square error of the approximation of the data. [Miranda et al., Neural Processing Letters, 2008]

PCA algorithm to remove rotation and reduce dimension

- Given a dataset X
- 2. Compute the mean of X, μ
- 3. $X = X \mu$ (subtract μ from every point in X)
- 4. Compute the covariance of X, $Q = \frac{XX^T}{(n-1)}$
- 5. $SVD(Q) = U\Sigma V^T$
 - Each column of *V* is a principle component
- 6. Compute the variance of each principle component: $s = diag(\Sigma)^2$
- 7. Remove all columns of V whose corresponding entry in s is less than some small threshold, call this new matrix V_s
- 8. Compute $X_{new} = V_S^T X^T$

(Note: this may cause reflection)

PCA Intuition for Dimensionality Reduction

- After rotation to align with principle components, variance in the remaining dimensions tend to be small and can be dropped with minimal loss of information
- PCA computes the optimal orthogonal transformation for keeping the subspace that has largest variance

PCA reducing dimension from 2 to 1

Do we need the covariance?

- Computing covariance can be expensive for huge datasets
- It turns out the principle components of the following matrices are the same:

$$Q = \frac{XX^{T}}{(n-1)}$$
$$Y = \frac{X^{T}}{\sqrt{(n-1)}}$$

So, you don't need to compute the covariance!

PCA algorithm without covariance

- Given a dataset X
- 2. Compute the mean of X, μ
- 3. $X = X \mu$ (subtract μ from every point in X)
- 4. Compute $Y = \frac{X^T}{\sqrt{(n-1)}}$ Before: Compute the covariance of X, Q = X* X^T / (N-1)
- 5. $SVD(Y) = U\Sigma V^T$
 - Each column of *V* is a principle component
- 6. Compute the variance of each principle component: $s = diag(\Sigma)^2$
- 7. Remove all columns of V whose corresponding entry in s is less than some small threshold, call this new matrix V_s
- 8. Compute $X_{new} = V_s^T X$

(Note: this may cause reflection)

How many dimension do we want?

- No general answer
 - Depends on application
- Often, high-dimensional data can be described with much fewer variables
- Diagonal of Σ tells us which eigenvectors are important

- Eigenvalues of 1200 dimensional video data
- Not much variance after component 30, so we can throw out the remaining 1170 components!

PCA relation to least-squares regression

- The first principal component corresponds to a line that passes through mean and minimizes the sum of squares of the distances of the points from the line
- The second principal component corresponds to the same concept after all correlation with the first principal component has been subtracted from the points.
- Each eigenvalue is proportional to the portion of the sum of the squared distances of the points from their mean that is correlated with each eigenvector
- The sum of all the eigenvalues is equal to the sum of the squared distances of the points from their mean

Limitations of PCA: Variable scaling

- PCA is sensitive to the scaling of the variables
- Example:
 - Say x_1 and x_2 have the same variance and positive correlation
 - PCA will produce a rotation of 45° so that the two variables will be equally distributed around the 1st principle component
 - But, if we scale all the values of x₁ by 1000, what will the 1st
 P.C. produced by PCA be?
 - 1st P.C. will be almost exactly equal to x₁
 - 2nd P.C will be aligned with x₂
- WARNING: When the variables have different units (e.g. height and temperature), PCA doesn't make much sense
 - E.g. Would get different results for Fahrenheit vs. Celsius

Limitations of PCA: Non-linear manifolds

- PCA can only produce linear transforms
- What if the manifold of data is not linear?

- PCA performs poorly
- Nonlinear dimensionality reduction techniques exist
 - They are much more computationally-expensive

Limitations of PCA: Sensitivity to Noise

PCA used to align the axes of two datasets:

Example from Tao Ju

Break

Applications of PCA

Application: PCA on Image data

- Eigenfaces: Analysis of a database of face images
 - Question: What are good features to represent faces?
- Each image is grayscale, has 780 pixels
 - A sample is just these pixel values lined up in a vector

Eigenfaces

The top principle components:

Principle components

How well does this work?

- Advantage: Instead of using 780 pixel values, can represent a face as a weighted combination of eigenfaces
- Test:

Input face

Approximation of input face with weighted combination of eigenfaces

PCA for video data

- Problem: Sometimes the data is too high-dimensional
 - Example: videos 1280x720xT = 921,600D x T frames
- SVD will take a LONG time to run!
- There are many variant and extensions of PCA
- Useful approach for video is the Expectation Maximization PCA (EM-PCA)
 - Main idea: Alternate between successive approximations
 - Start with random matrix C and loop over:
 - $Z = C^{+}X$
 - C = XZ⁺
 - After convergence C spans the PCA space
 - If we choose a low rank C then computations are significantly more efficient than the SVD

PCA for online data

- Problem: Sometimes we have too many data samples
 - Irrespective of the dimensionality
 - Example: long video recordings
- Incremental SVD algorithms
 - Update the U,Σ,V matrices with only a small subset or a single sample point
 - Very efficient updates

Example: PCA for video

- A movie is a series of frames
 - Each frame is a data point
 - 126 frames, 80x60 pixels per frame
 - Data will be 4800x126

PCA for video results

- Just like with eigenfaces, each image can be represented as a weighted combination of principle components
- Advantage: only need to store the principle components and weights for each frame
- We just learned a method for video compression!

Summary

- The main assumption: variance of the data correlates with what matters
 - The higher the variance, the more important
- PCA aligns the dataset so that most variance is captured by first few components
- PCA can be used for
 - Rotating data to more reasonable axes
 - Reducing the dimension of the data
- PCA uses SVD to find the eigenvalues of the covariance matrix (or the Y matrix)
- Many high-dimensional datasets have hidden low-dimensional structure
 - Can often represent high-dimensional with very few variables
 - E.g. eigenfaces, video
- Limitations of PCA: Can only do linear transforms, all the data should be in the same units

Homework

Read Point set registration (up to and including ICP)