2020-09-16/MS

Signal Processing, #3

Topics:

• Frequency transformations: LP \rightarrow HP, LP \rightarrow BP and LP \rightarrow BS

Sensitivity analysis

Literature:

Kendal Su: "Analog Filters", Kluwer Academic Publishers, 2nd ed. 2002, ISBN 1-4020-7033-0

The book is available in electronic form at http://www.en.aub.aau.dk.

Topic	Pages
	({*} ⇔ supplementary lit.)
Inverse Chebyshev characteristic	37-38
Bessel/Thomson characteristic	{66-71}
Frequency transformations	77-88
Sensitivity analysis	171-184

Supplementary: Lecture presentation "slides"

Exercises:

3.1

A Chebyshev filter must pass frequencies above 1 kHz (not rad/s) with max. 0.5 dB attenuation and must attenuate frequencies below 100 Hz with at least 60 dB.

- a. Make a rough sketch of the filter requirements.
- b. Find the necessary filter order, n, using the HP<->LP frequency mapping, and the "n = " equation from the slides from lecture 2
- c. Find (analytically) the actual attenuation at 100 Hz.
- d. Check the result in c. by making a plot in Matlab.

e. A normalized 3rd order Chebyshev LP-filter with 0.5 dB ripple can be made using the circuit shown with:

 $L_1 = 1.3465 H$

 $C_2 = 1.3001 F$

 $L_3 = 0.7981 H$

Find the component values in a 1 kHz HP-filter.

3.2

A BP-filter made from a 4th order LP-prototype has:

- Butterworth characteristic
- Lower passband edge (-3 dB) = 10 kHz
- Upper passband edge (-3 dB) = 15 kHz
- a. Find (analytically) the attenuation at 1 kHz and 20 kHz using the frequency transformation and $|H(j\omega)|^2$ for the low-pass prototype.
- b. Check the result in a. by making a plot in Matlab.

3.3

Use Matlab to plot the step response of 5th order low-pass filters:

- Butterworth ($\omega_{-3dB} = 1 \text{ rad/s}$)
- Elliptic with 1 dB passband ripple and 40 dB stopband attenuation. It must be re-normalized to have a 3 dB cut-off radian frequency of 1 rad/s to make a fair comparison.
- a. Make a Bode-plot to check the re-normalization.
- b. Plot step-responses

3.4

A high-pass filter section has the transfer function:

•
$$C_1 = 10 \text{ nF}$$
, $C_2 = 15 \text{ nF}$ and $C_3 = 15 \text{ nF}$

$$H(s) = -\frac{\frac{C_1}{C_2}s^2}{s^2 + \frac{C_1 + C_2 + C_3}{R_2C_2C_3}s + \frac{1}{R_1R_2C_2C_3}}$$

- a. Find an expression for Q as a function of the component values.
- b. Find the sensitivity of Q with respect to C_1 , $S_{C_1}^{\mathcal{Q}}$

Results:

3.1

a.

b. *3*

c. *62.8 dB*

d.

e. $118 \mu F$, $122 \mu H$, $199 \mu F$

3.2

a. *118 dB, 31.8 dB*

b.

3.3

a.

b.

3.4

c.

d. -0.25