Supplementary Material for Efficient Monte Carlo Counterfactual Regret Minimization in Games with Many Player Actions

Richard Gibson, Neil Burch, Marc Lanctot, and Duane Szafron

Department of Computing Science, University of Alberta Edmonton, Alberta, T6G 2E8, Canada {rggibson | nburch | lanctot | dszafron}@ualberta.ca

1 Introduction

This supplementary material proves Theorems 4, 5, and 6 from the paper *Efficient Monte Carlo Counterfactual Regret Minimization in Games with Many Player Actions* and proves that Average Strategy Sampling (AS) exhibits the same regret bound given by Theorem 6.

2 Preliminaries

We begin by providing additional notation and definitions. For a history $h' \in H$, we say that the history h is a **prefix** of h', written $h \sqsubseteq h'$, if h' begins with the sequence h. For a history $h \in H_i$ and a strategy profile $\sigma \in \Sigma$, let I(h) be the information set containing h and denote $\sigma(h,\cdot) = \sigma(I(h),\cdot)$. Similar to the definition of $\pi^{\sigma}(h,h')$, let $\pi_i^{\sigma}(h,h')$ and $\pi_{-i}^{\sigma}(h,h')$ be the probability contributed from player i and from all players/chance other than i respectively of history h' occurring after history h, given that history h has occurred. Furthermore, for $I \in \mathcal{I}_i$, define $\pi_{-i}^{\sigma}(I) = \sum_{h \in I} \pi_{-i}^{\sigma}(h)$.

Define the **counterfactual value for player** i **at** h **under** σ to be

$$v_i(h,\sigma) = \sum_{\substack{z \in \mathbb{Z} \\ h \vdash z}} \pi_{-i}^{\sigma}(h) \pi^{\sigma}(h,z) u_i(z).$$

Notice that for $I \in \mathcal{I}_i$, perfect recall implies that

$$v_i(I,\sigma) = \sum_{h \in I} v_i(h,\sigma). \tag{1}$$

In addition, for $h \in H_i$ and a strategy $\sigma'_i \in \Sigma_i$, define

$$R_i^T(h, \sigma_i') = \sum_{t=1}^T (v_i(h, \sigma_{(I(h) \to \sigma_i')}^t) - v_i(h, \sigma_i^t))$$

to be the **counterfactual regret at** h **for** σ'_i , where $\sigma_{(I \to \sigma'_i)}$ is the strategy profile σ except at I, we follow σ'_i . Note that by (1),

$$R_i^T(I, \sigma_i') = \sum_{h \in I} R_i^T(h, \sigma_i'). \tag{2}$$

Furthermore, define the **full counterfactual regret at** h **for** σ_i' to be

$$R_{i,\text{full}}^T(h,\sigma_i') = \sum_{t=1}^T (v_i(h,(\sigma_i',\sigma_{-i}^t)) - v_i(h,\sigma^t)).$$

The full counterfactual regret measures how much we wish we had played σ'_i at every history from h on, rather than playing σ^t at every time step. Notice that the regret $R_i^T = \max_{\sigma'_i \in \Sigma_i} R_{i,\text{full}}^T(\emptyset, \sigma'_i)$, where \emptyset is the root of the game.

We now need some notation regarding reachable histories. Firstly, define $H_i = \{h \in H \mid P(h) = i\}$ to be the set of all histories belonging to player i. Next, for $h \in H_i$, define

$$Succ^{1}(h) = \{h' \in H_i \mid h \sqsubset h' \text{ and } \nexists h'' \in H_i \text{ such that } h \sqsubset h'' \sqsubset h'\}$$

to be the set of all possible next histories for player i before taking another action. For an integer $\ell > 1$, we recursively define

$$Succ^{\ell}(h) = \bigcup_{h' \in Succ^{\ell-1}(h)} Succ^{1}(h')$$

to be the set of all possible histories of player i reachable after exactly ℓ more actions by player i. Similarly, let

$$Z^1(h) = \{z \in Z \mid h \sqsubset z \text{ and } \nexists h' \in H_i \text{ such that } h \sqsubset h' \sqsubset z\}$$

be the set of all terminal histories where player i's last action was at h. Finally, define

$$D(h) = \{h\} \cup \bigcup_{\ell \ge 1} Succ^{\ell}(h)$$

to be the set of all nonterminal histories for player i descending from h.

3 Proof of Theorems 4, 5, and 6

Lemma A. For $h \in H_i$ and $\sigma'_i \in \Sigma_i$,

$$R_{i,\text{full}}^T(h, \sigma_i') = \sum_{h' \in D(h)} \pi_i^{\sigma'}(h, h') R_i^T(h', \sigma_i').$$

Proof. The proof is by strong induction on |D(h)|. Note that the base case $D(h) = \{h\}$ is trivial since $R_{i,\text{full}}^T(h,\sigma_i') = R_i^T(h,\sigma_i')$. For the induction step, assume that the lemma holds for all $h' \in H_i$ with |D(h')| < |D(h)|. To complete the proof, we must show that the lemma holds for h. To start,

$$R_{i,\text{full}}^{T}(h,\sigma_{i}') = \sum_{t=1}^{T} v_{i}(h,(\sigma_{i}',\sigma_{-i}^{t})) - \sum_{t=1}^{T} v_{i}(h,\sigma^{t})$$

$$= \sum_{t=1}^{T} \sum_{a \in A(h)} \sigma_{i}'(h,a) v_{i}(h,(\sigma_{i(I(h)\to a)}',\sigma_{-i}^{t})) - \sum_{t=1}^{T} v_{i}(h,\sigma^{t})$$

$$= \sum_{a \in A(h)} \sigma_{i}'(h,a) \sum_{t=1}^{T} \left(\sum_{\substack{z \in Z^{1}(h) \\ ha \sqsubseteq z}} \pi_{-i}^{\sigma_{i}'}(z) u_{i}(z) \right)$$

$$+ \sum_{h' \in Succ^{1}(h) \atop ha \sqsubseteq h'} v_{i}(h',(\sigma_{i}',\sigma_{-i}^{t})) - \sum_{t=1}^{T} v_{i}(h,\sigma^{t}).$$
(3)

Now, notice that for all $h' \in Succ^1(h)$, $D(h') \subset D(h)$ and $h \notin D(h')$, and so |D(h')| < |D(h)| for all $h' \in Succ^1(h)$. Therefore, we may apply the induction hypothesis to each $h' \in Succ^1(h)$, giving us

$$\sum_{t=1}^T v_i(h',(\sigma_i',\sigma_{-i}^t)) = R_{i,\mathrm{full}}^T(h',\sigma_i') + \sum_{t=1}^T v_i(h',\sigma^t)$$

$$= \sum_{h'' \in D(h')} \pi_i^{\sigma'}(h', h'') R_i^T(h'', \sigma_i') + \sum_{t=1}^T v_i(h', \sigma^t)$$

for all $h' \in Succ^1(h)$. Substituting this into (3), after changing the order of summation, gives

$$\begin{split} R_{i,\text{full}}^{T}(h,\sigma_{i}') &= \sum_{a \in A(h)} \sigma_{i}'(h,a) \left[\sum_{t=1}^{T} \sum_{z \in Z^{1}(h)} \pi_{-i}^{\sigma_{t}'}(z) u_{i}(z) \right. \\ &+ \sum_{h' \in Succ^{1}(h)} \left(\sum_{h'' \in D(h')} \pi_{i}^{\sigma'}(h',h'') R_{i}^{T}(h'',\sigma_{i}') + \sum_{t=1}^{T} v_{i}(h',\sigma^{t}) \right) \\ &- \sum_{t=1}^{T} v_{i}(h,\sigma^{t}) \\ &= \sum_{a \in A(h)} \sigma_{i}'(h,a) \sum_{t=1}^{T} v_{i}(h,\sigma_{(I(h) \to a)}^{t}) - \sum_{t=1}^{T} v_{i}(h,\sigma^{t}) \\ &+ \sum_{a \in A(h)} \sigma_{i}'(h,a) \sum_{h' \in Succ^{1}(h)} \sum_{h'' \in D(h')} \pi_{i}^{\sigma'}(h',h'') R_{i}^{T}(h'',\sigma_{i}') \\ &= \sum_{a \in A(h)} \sigma_{i}'(h,a) R_{i}^{T}(h,a) + \sum_{h' \in D(h)} \pi_{i}^{\sigma'}(h,h') R_{i}^{T}(h',\sigma_{i}') \\ &= \sum_{h' \in D(h)} \pi_{i}^{\sigma'}(h,h') R_{i}^{T}(h',\sigma_{i}'), \end{split}$$

completing the proof.

Theorem 4.

$$R_i^T = \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) R_i^T(I, \sigma_i^*).$$

Proof. We may assume that player i acts at the root of the game, \emptyset ; otherwise, we may append a new root to the game that belongs to player i, is contained in a new, singleton information set, and has one action leading to the old root. Then,

$$\begin{split} R_i^T &= \max_{\sigma_i' \in \Sigma_i} \sum_{t=1}^T (u_i(\sigma_i', \sigma_{-i}^t) - u_i(\sigma_i^t, \sigma_{-i}^t)) \\ &= R_{i,\text{full}}^T(\emptyset, \sigma_i^*) \\ &= \sum_{h \in H_i \backslash Z} \pi_i^{\sigma^*}(h) R_i^T(h, \sigma_i^*) \text{ by Lemma A} \\ &= \sum_{I \in \mathcal{I}_i} \sum_{h \in I} \pi_i^{\sigma^*}(h) R_i^T(h, \sigma_i^*) \\ &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \sum_{h \in I} R_i^T(h, \sigma_i^*) \text{ due to perfect recall} \\ &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) R_i^T(I, \sigma_i^*), \end{split}$$

where the last line follows by equation (2).

Theorem 5. When using vanilla CFR, average regret is bounded by

$$\frac{R_i^T}{T} \le \frac{\Delta_i M_i(\sigma_i^*) \sqrt{|A_i|}}{\sqrt{T}}.$$

Proof. Following the proof of Theorem 2 [10],

$$\begin{split} R_i^T &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) R_i^T(I, \sigma_i^*) \text{ by Theorem 4} \\ &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \sum_{a \in A(I)} \sigma_i^*(I, a) R_i^T(I, a) \\ &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \max_{a \in A(I)} R_i^T(I, a) \\ &\leq \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \sqrt{\sum_{a \in A(I)} T^2(R_i^{T,+}(I, a)/T)^2} \\ &\leq \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \Delta_i \sqrt{|A(I)|} \sqrt{\sum_{t=1}^T (\pi_{-i}^{\sigma^t}(I))^2} \\ &\text{by Theorem 6 of [10] with } \Delta_t = \Delta_i \pi_{-i}^{\sigma^t}(I) \\ &\leq \Delta_i \sqrt{|A_i|} \sum_{B \in \mathcal{B}_i} \pi_i^{\sigma^*}(B) \sum_{I \in B} \sqrt{\sum_{t=1}^T (\pi_{-i}^{\sigma^t}(I))^2} \\ &\leq \Delta_i \sqrt{|A_i|} \sum_{B \in \mathcal{B}_i} \pi_i^{\sigma^*}(B) \sqrt{|B|} \sum_{t=1}^T \sum_{I \in B} \pi_{-i}^{\sigma^t}(I) \\ &\text{by Lemma 6 of [10]} \\ &\leq \Delta_i \sqrt{|A_i|} \sum_{B \in \mathcal{B}_i} \pi_i^{\sigma^*}(B) \sqrt{|B|T} \text{ by Lemma 16 of [10]} \\ &= \Delta_i \sqrt{|A_i|} T M_i(\sigma_i^*). \end{split}$$

Dividing both sides by T gives the result.

We now prove a general, probabilistic bound that can be applied to any MCCFR sampling algorithm. We then use this bound to prove Theorem 6 and a similar bound for AS.

Lemma B. Let $p, \delta \in (0, 1]$. When using any MCCFR algorithm, if

$$\sum_{I \in B} \left(\sum_{z \in Q \cap Z_I} \frac{\pi^{\sigma^t}(z[I], z) \pi_{-i}^{\sigma^t}(z[I])}{q(z)} \right)^2 \leq \frac{1}{\delta^2}$$

for all $Q \in \mathcal{Q}$, $B \in \mathcal{B}_i$, and $t \leq T$, then with probability at least 1 - p, average regret is bounded by

$$\frac{R_i^T}{T} \le \left(M_i(\sigma_i^*) + \frac{\sqrt{2|\mathcal{I}_i||\mathcal{B}_i|}}{\sqrt{p}} \right) \left(\frac{1}{\delta} \right) \frac{\Delta_i \sqrt{|A_i|}}{\sqrt{T}}.$$

Proof. Our proof follows that of Theorem 7 in [10]. To start, define

$$\Delta_i^t(I) = \Delta_i \sum_{z \in Q \cap Z_I} \frac{\pi^{\sigma^t}(z[I], z) \pi_{-i}^{\sigma^t}(z[I])}{q(z)}$$

so that the difference between two sampled counterfactual values at information set I is bounded by

$$\tilde{v}_i(I, \sigma^t_{(I \to a)}) - \tilde{v}_i(I, \sigma^t_{(I \to b)}) \le \Delta^t_i(I)$$

for all $a, b \in A(I)$. By our assumption, we then have

$$\sum_{I \in B} (\Delta_i^t(I))^2 \le \frac{(\Delta_i)^2}{\delta^2} \tag{4}$$

for all $B \in \mathcal{B}_i$.

Define $R_i^T(I) = \max_{a \in A(I)} R_i^T(I,a)$ and $\tilde{R}_i^T(I) = \max_{a \in A(I)} \tilde{R}_i^T(I,a)$. The proof will proceed as follows. First, we prove a bound on the weighted sum of the cumulative sampled counterfactual regrets $\sum_{I \in \mathcal{I}} \pi_i^{\sigma^*}(I) \tilde{R}_i^T(I)$. Secondly, we prove a probabilistic bound on the expected squared difference between $\sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) R_i^T(I)$ and $\sum_{I \in \mathcal{I}} \pi_i^{\sigma^*}(I) \tilde{R}_i^T(I)$, showing that the true counterfactual regrets are not too far from the sampled counterfactual regrets. Finally, we apply Theorem 4 to obtain the bound on the average regret.

For the first step,

$$\sum_{I \in \mathcal{I}_{i}} \pi_{i}^{\sigma^{*}}(I) \tilde{R}_{i}^{T}(I) \leq \sum_{I \in \mathcal{I}_{i}} \pi_{i}^{\sigma^{*}}(I) \sqrt{T^{2} \sum_{a \in A(I)} \left(\frac{\tilde{R}_{i}^{T,+}(I,a)}{T}\right)^{2}}$$

$$\leq \sum_{I \in \mathcal{I}_{i}} \pi_{i}^{\sigma^{*}}(I) \sqrt{|A(I)| \sum_{t=1}^{T} (\Delta_{i}^{t}(I))^{2}}$$
by Theorem 6 of [10]
$$\leq \sqrt{|A_{i}|} \sum_{B \in \mathcal{B}_{i}} \pi_{i}^{\sigma^{*}}(B) \sum_{I \in B} \sqrt{\sum_{t=1}^{T} (\Delta_{i}^{t}(I))^{2}}$$

$$\leq \sqrt{|A_{i}|} \sum_{B \in \mathcal{B}_{i}} \pi_{i}^{\sigma^{*}}(B) \sqrt{|B| \sum_{t=1}^{T} \sum_{I \in B} (\Delta_{i}^{t}(I))^{2}}$$
by Lemma 5 of [10]
$$\leq \sqrt{|A_{i}|} \sum_{B \in \mathcal{B}_{i}} \pi_{i}^{\sigma^{*}}(B) \sqrt{|B| T \frac{(\Delta_{i})^{2}}{\delta^{2}}} \text{ by equation (4)}$$

$$= \frac{\Delta_{i} M_{i}(\sigma_{i}^{*}) \sqrt{|A_{i}| T}}{\delta}.$$
(5)

Secondly, for $I \in \mathcal{I}_i$,

$$\left(R_{i}^{T}(I) - \tilde{R}_{i}^{T}(I)\right)^{2} = \left(\max_{a \in A(I)} \sum_{t=1}^{T} r_{i}^{t}(I, a) - \max_{a \in A(I)} \sum_{t=1}^{T} \tilde{r}_{i}^{t}(I, a)\right)^{2} \\
\leq \left(\max_{a \in A(I)} \sum_{t=1}^{T} \left(r_{i}^{t}(I, a) - \tilde{r}_{i}^{t}(I, a)\right)\right)^{2} \\
\leq \max_{a \in A(I)} \left(\sum_{t=1}^{T} \left(r_{i}^{t}(I, a) - \tilde{r}_{i}^{t}(I, a)\right)\right)^{2} \\
\leq \sum_{a \in A(I)} \left[\sum_{t=1}^{T} \left(r_{i}^{t}(I, a) - \tilde{r}_{i}^{t}(I, a)\right)^{2} \\
+2\sum_{t=1}^{T} \sum_{t'=t+1}^{T} \left(r_{i}^{t}(I, a) - \tilde{r}_{i}^{t}(I, a)\right) \left(r_{i}^{t'}(I, a) - \tilde{r}_{i}^{t'}(I, a)\right)\right]. \tag{6}$$

We now multiply both sides by $(\pi_i^{\sigma^*}(I))^2$ and take the expectation of both sides. Note that

$$\begin{split} &\mathbf{E}\left[\left(r_i^t(I,a) - \tilde{r}_i^t(I,a)\right)\left(r_i^{t'}(I,a) - \tilde{r}_i^{t'}(I,a)\right)\right] \\ &= \mathbf{E}\left[\mathbf{E}\left[\left(r_i^{t'}(I,a) - \tilde{r}_i^{t'}(I,a)\right) \mid r_i^t(I,a), \tilde{r}_i^t(I,a)\right]\left(r_i^t(I,a) - \tilde{r}_i^t(I,a)\right)\right] \end{split}$$

and that $\mathbf{E}\left[\left(r_i^{t'}(I,a) - \tilde{r}_i^{t'}(I,a)\right) \mid r_i^t(I,a), \tilde{r}_i^t(I,a)\right] = 0$ since for t' > t, $\tilde{r}_i^{t'}$ is an unbiased estimate of $r_i^{t'}$ given $\sigma^{t'}$. Thus from equation (6), we have

$$\mathbf{E}\left[\left(\pi_{i}^{\sigma^{*}}(I)\right)^{2}\left(R_{i}^{T}(I) - \tilde{R}_{i}^{T}(I)\right)^{2}\right] \leq \sum_{a \in A(I)} \sum_{t=1}^{T} \mathbf{E}\left[\left(\pi_{i}^{\sigma^{*}}(I)\right)^{2}\left(r_{i}^{t}(I, a) - \tilde{r}_{i}^{t}(I, a)\right)^{2}\right]$$

$$\leq \sum_{a \in A(I)} \sum_{t=1}^{T} \mathbf{E}\left[\left(r_{i}^{t}(I, a)\right)^{2} + \left(\tilde{r}_{i}^{t}(I, a)\right)^{2}\right]$$

$$\leq \sum_{a \in A(I)} \sum_{t=1}^{T} \left[\left(\pi_{-i}^{\sigma^{t}}(I)\right)^{2} \Delta_{i}^{2} + \left(\Delta_{i}^{t}(I)\right)^{2}\right]. \tag{7}$$

We can now bound the expected squared difference between $\sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) R_i^T(I)$ and $\sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \tilde{R}_i^T(I)$ by

Finally, with probability 1 - p, we can bound the regret by

$$\begin{split} R_i^T &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) R_i^T(I) \text{ by Theorem 4} \\ &= \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \left(R_i^T(I) - \tilde{R}_i^T(I) + \tilde{R}_i^T(I) \right) \\ &\leq \left| \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \left(R_i^T(I) - \tilde{R}_i^T(I) \right) \right| + \sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \tilde{R}_i^T(I) \end{split}$$

$$\leq \frac{1}{\sqrt{p}} \sqrt{\mathbf{E}\left[\left(\sum_{I \in \mathcal{I}_i} \pi_i^{\sigma^*}(I) \left(R_i^T(I) - \tilde{R}_i^T(I)\right)\right)^2\right]} + \frac{\Delta_i M_i(\sigma_i^*) \sqrt{|A_i|T}}{\delta}$$

by Lemma 2 of [10] and equation (5)

$$\leq \left(\frac{\sqrt{2|\mathcal{I}_i||\mathcal{B}_i|}}{\sqrt{p}} + M_i(\sigma_i^*)\right) \left(\frac{1}{\delta}\right) \Delta_i \sqrt{|A_i|T}$$

by equation (8). Dividing both sides by T gives the result.

Theorem 6'. Let X be one of CS, ES, OS (assuming OS samples opponent actions according to σ_{-i}), or AS, let $p \in (0,1]$, and let $\delta = \min_{z \in Z} q_i(z) > 0$ over all $1 \le t \le T$. When using X, with probability 1-p, average regret is bounded by

$$\frac{R_i^T}{T} \le \left(M_i(\sigma_i^*) + \frac{\sqrt{2|\mathcal{I}_i||\mathcal{B}_i|}}{\sqrt{p}} \right) \left(\frac{1}{\delta} \right) \frac{\Delta_i \sqrt{|A_i|}}{\sqrt{T}}.$$

Proof. By Lemma B, it suffices to show that

$$Y = \sum_{I \in B} \left(\sum_{z \in Q \cap Z_I} \frac{\pi^{\sigma^t}(z[I], z) \pi_{-i}^{\sigma^t}(z[I])}{q(z)} \right)^2 \le \frac{1}{\delta^2}$$

for all $B \in \mathcal{B}_i$, $Q \in \mathcal{Q}$, and $t \leq T$. To that end, fix $B \in \mathcal{B}_i$, $Q \in \mathcal{Q}$, and $t \leq T$. Since X samples a single action at each $h \in H_c$ according to σ_c , there exists a unique $a_h^* \in A(h)$ such that if $z \in Q$ and $h \sqsubseteq z$, then $ha_h^* \sqsubseteq z$. Consider the new chance probability distribution $\hat{\sigma}_c$ defined according to

$$\hat{\sigma}_c(h, a) = \begin{cases} 1 & \text{if } a = a_h^* \\ 0 & \text{if } a \neq a_h^* \end{cases}$$

for all $h \in H_c$, $a \in A(h)$. When $X \neq CS$, we also have a unique such action a_I^* for each $I \in \mathcal{I}_{-i}$ sampled according to σ_{-i}^t , so we can similarly define the new opponent profile $\hat{\sigma}_{-i}$ according to

$$\hat{\sigma}_{-i}(I,a) = \left\{ \begin{array}{ll} \sigma_{-i}^t(I,a) & \text{if } X = \text{ CS} \\ 1 & \text{if } X \neq \text{ CS and } a = a_I^* \\ 0 & \text{if } X \neq \text{ CS and } a \neq a_I^* \end{array} \right.$$

for all $I \in \mathcal{I}_{-i}$, $a \in A(I)$. Then

$$\begin{split} Y &= \sum_{I \in B} \left(\sum_{z \in Q \cap Z_I} \frac{\pi_i^{\sigma^t}(z[I], z) \pi_{-i}^{\sigma^t}(z)}{q(z)} \right)^2 \\ &= \sum_{I \in B} \left(\sum_{z \in Z_I} \frac{\pi_i^{\sigma^t}(z[I], z) \pi_{-i}^{\hat{\sigma}}(z)}{q_i(z)} \right)^2 \\ &\leq \frac{1}{\delta^2} \sum_{I \in B} \left(\sum_{z \in Z_I} \pi_{-i}^{\hat{\sigma}}(z) \right)^2 \\ &= \frac{1}{\delta^2} \sum_{I \in B} \left(\pi_{-i}^{\hat{\sigma}}(I) \right)^2 \\ &\leq \frac{1}{\delta^2}, \end{split}$$

where the last line follows by Lemma 16 of [10]. \blacksquare