Appunti di Algebra e geometria

Nicola Ferru

Indice

		Premesse	
	0.2	Simboli	8
1	Vet	tori	9
	1.1	Spazio Vettoriale	9
2	Nui	Numeri Complessi	
	2.1	Operazioni con Numeri complessi	11
3	Il determinante		13
	3.1	Richiami sulle permutazioni	13
	3.2	La definizione di determinante	14

4 INDICE

Elenco delle tabelle

Elenco delle figure

0.1 Premesse...

In questo repository sono disponibili pure le dimostrazioni grafiche realizzate con Geogebra consiglio a tutti di dargli un occhiata e di stare attenti perché possono essere presenti delle modifiche per migliorare il contenuto degli stessi appunti, comunque solitamente vengono fatte revisioni tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che questo è un progetto volontario e che per questo motivo ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure potrebbero esserci degli errori, chiedo la cortesia a voi lettori di contattarmi per apportare una modifica. Tengo a precisare che tutto il progetto è puramente open souce e infatti sono disponibili i sorgenti dei file allegati insieme ai PDF.

Cordiali saluti

0.2 Simboli

 $\in \mathsf{Appartiene}$ $\Rightarrow \mathrm{Implica}$ β beta $\not\in$ Non appartiene \iff Se e solo se γ gamma \exists Esiste \neq Diverso Γ Gamma $\exists ! \ Esiste \ unico$ \forall Per ogni δ, Δ delta \subset Contenuto strettamente \ni : Tale che ϵ epsilon $\subseteq Contenuto$ \leq Minore o uguale σ, Σ sigma \supset Contenuto strettamente \geq Maggiore o uguale ρ rho \supseteq Contiene α alfa

Capitolo 1

${f Vettori}$

1.1 Spazio Vettoriale

Spazio Vettoriale 1. Uno spazio vettoriale reale (R-spazio vettoriale) è un insieme V in cui sono definite un'operazione di SOMMA tra elementi di V e un'operazione di Prodotto tra un reale e un elemento di V che soddisfano 8 proprietà:

- 1. La somma è associativa quando $\forall v_1, v_2, v_3 \in V (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3);$
- 2. La somma è commutativa quando $\forall v_1, v_2 \in V$ $v_1 + v_2 = v_2 + v_1$
- 3. Esistenza elemento neutro 0 se e solo se $\forall v \in V \ v + 0 = 0 + v = v$
- 4. Esistenza opposto -v se e solo se $\forall v \in V \ v + (-v) = (-v) + v = 0$
- 5. Il prodotto per uno scalare è assoluto quando $\forall c_1, c_2 \in R, \forall v \in V \ c_1(c_2v) = (c_1c_2)v$
- 6. Il prodotto per uno scalare è distributiva quando $\forall c_1, c_2 \in R, \forall v \in V \ (c_1 + c_2)v = c_1v + c_2v$
- 7. Il prodotto per uno scalare è distributiva quando $\forall c \in R, \forall v_1, v_2 \in V \ c(v_1 + v_2) = cv_1 + cv_2$
- 8. Esistenza elemento neutro 1 quando $\forall v \in V \ 1v = v$

ES:
$$V_0^2 V_0^3$$

ES:
$$f: \mathbb{R} \to \mathbb{R}$$
 x^2 , $g(x) = e^x$, $f(x) + g(x) = x^2 + e^x$ $3f(x) = 3x^2$

ES: \mathbb{R}^n n-uple di numeri reali

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix} \quad C \in \mathbb{R} \ c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}$$

ES: $\mathbb{R}_n[x]$ polinomi di grado $\leq n$ nella variabile x a coefficiente reale

•
$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

•
$$q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

ES: $\mathbb{R}[x]$ polinomio di grado qualsiasi

$$p(x) + q(x) = a_0 + b_0 + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$c \in \mathbb{R}, \ cp(x) = ca_0 + ca_1x + ca_2x^2 + \dots + ca_nx^n$$

9

Capitolo 2

Numeri Complessi

Numeri reali 1. Un numero complesso è definito come un numero della forma x+iy, con x e y numeri reali e i una soluzione dell'equazione $x^2 = -1$ detta unità immaginaria. i numeri reali sono

2.1 Operazioni con Numeri complessi

1. Modulo e distanza

$$|z| = \sqrt{x^2 + y^2} \tag{2.1}$$

Il valore assoluto (modulo) ha proprietà queste proprietà:

$$|z+w| \ge |z| + |w|, \ |zw| = |z||w|, \ \left|\frac{z}{w}\right| = \frac{|z|}{|w|}$$

Valide per tutti i numeri complessi z e w. La prima proprietà è una versione della disuguaglianza triangolare.

Capitolo 3

Il determinante

In questo capitolo introdurremo uno strumento alternativo alla riduzione a gradini per determinare se le righe (*o le colonne*) di una matrice siano dipendenti. Per poterne dare la definizione rigorosa, dobbiamo prima fare alcuni richiami sulle permutazioni.

3.1 Richiami sulle permutazioni

Dato l'insieme $\{1, 2, ..., n\}$ dei numeri naturali compresi tra 1 e n, per un certo n, una funzaione da $\{1, 2, ..., n\}$ in se stesso associa a ogni elemento di $\{1, 2, ..., n\}$ un'immagine, scelta sempre all'interno di $\{1, 2, ..., n\}$. Se facciamo in modo che le immagini siano tutte diverse senza ripetizioni¹, queste ci daranno ancora tutti gli elementi 1, 2, ..., n semplicemente disposti in un altro ordine, ovvero permutati. Si parla di permutazione di n elementi. Ad esempio, le seguenti rappresentano permutazioni di n elementi:

$$\begin{array}{ccc} 1 \rightarrow 1 & 1 \rightarrow 3 \\ 2 \rightarrow 3 & 2 \rightarrow 4 \\ 3 \rightarrow 2 & 3 \rightarrow 2 \\ 4 \rightarrow 4 & 4 \rightarrow 1 \end{array}$$

L'insieme delle permutazioni di n elementi si denota S_n . Per ogni n, tale insieme contiene esattamente $n! := n(n-1)(n-2) \dots 2*1$ (cioè n fattoriale) permutazioni: ad esempio, per n=2 abbiamo 2!=2*1=2 permutazione possibili, ovvero

$$\begin{array}{ccc} 1 \rightarrow 1 & 1 \rightarrow 2 \\ 2 \rightarrow 2 & 2 \rightarrow 1 \end{array}$$

(tra le permutazioni vi è sempre anche anche quella che associa a ogni elemento se stesso, detta permutazione identica²).

Per n=3 abbiamo invece 3!=3*2*1=6 permutazioni possibili, ovvero

Si noti che p_2 , p_3 e p_4 scambiano trra loro due elementi lasciando fisso il terzo (p_2 scambia tra loro 1 e 2, p_3 scambia 2 e 3): in generale, una permutazione di questo tipo, che scambia tra loro è una trasposizione anche la prima permutazione di 4 elementi presentata all'inizio del paragrafo (scambia tra loro 2 e 3 lasciando fissi 1 e 4), mentre la seconda non lo è.

Benché non tutte le permutazioni siano trasposizioni, si può dimostrare che qualunque permutazione può

 $^{^1}$ Si dice la funzione è iniettiva: una funzione iniettiva da un insieme finito in se stesso è automaticamente anche suriettiva, e quindi biiettiva. Richiameremo queste nozioni nel prossimo capitolo.

²Come funzione, si tratta della cosiddetta identità o funzione identica

essere realizzata eseguendo una sequenza di trasposizioni. Ad esempio, la permutazione p_5 di sopra, che non è una trasposizione, può tuttavia essere ottenuta scambiando prima 1 e 2, e poi 1 e 3:

$$\begin{aligned} 1 &\rightarrow 2 \rightarrow 2 \\ 2 &\rightarrow 1 \rightarrow 3 \\ 3 &\rightarrow 3 \rightarrow 1 \end{aligned}$$

ovvero può essere ottenuta componendo 2 trasposizioni.

In generale, se il numero di trasposizioni che servono per ottenere una permutazione data p è pari, si dice che p è una permutazione pari; se invece il numero di trasposizioni che servono per ottenere p è dispari, si dice che p è una permutazione dispari. Ad esempio, p_5 è una permutazione pari, in quanto l'abbiamo ottenuta componendo 2 trasposizioni; è facile vedere che anche p_6 è una permutazione pari, in quanto può essere ottenuta componendo due trasposizioni:

$$\begin{aligned} 1 &\rightarrow 3 \rightarrow 3 \\ 2 &\rightarrow 3 \rightarrow 1 \\ 3 &\rightarrow 1 \rightarrow 2 \end{aligned}$$

Chiaramente, se una permutazione è già essa una trasposizione, allora essa è dispori (1 è un numero dispari).

Si noti che possono esserci più modi diversi di decomporre una permutazione come composizione di trasposizioni, ad esempio, la permutazione identica può essere vista o come risultato di 0 trasposizioni, oppure come risultato di 2 trasposizioni, ad esempio

$$\begin{aligned} 1 &\rightarrow 2 \rightarrow 1 \\ 2 &\rightarrow 1 \rightarrow 2 \\ 3 &\rightarrow 3 \rightarrow 3 \end{aligned}$$

Tuttavia, si pu'o dimostrare che il numero di trasposizioni che servono per ottenere una permutazione data 'e o sempre pari o sempre dispari (nell'esempio, 0 o 2, comunque pari).

Si può allora definire il segno s(p) di una permutazione p come s(p) = +1 se p è una permutazione dispari. Siamo ora pronti a definire il determinante.

3.2 La definizione di determinante

Sia A una matrice che ha n righe e n colonne, per qualche n > 0: tali matrici si dicono quadrate e il numero n comune a roghe e colonne si dice l'ordine della matrice. Il determinante associa a ogni matrice A quadrata di ordine n a entrate in un campo \mathbb{K} un elemento $\det(A) \in \mathbb{K}$, funzione delle sue entrate, per il quale vedremo che vale l'importante proprietà che $\det(A) = 0$ se e solo se la matrice ha rango minore di n, ovvero se e solo se le righe (n le n le n della matrice sono dipendenti.

Definizione 1. Sia A una matrice quadrata di ordine n con entrate a_{ij} . Allora

$$\det(A) = \sum_{p \in S_n} s(p) a_{1p(1)} a_{2p(n)}$$
(3.1)

In altrea parole, il determinante di una matrice quadrata di ordine n è dato da una sommatoria che ha addendo per ogni permutazione $p \in S_n$: ognuno di questi addendi è un prodotto di entrata di A del tipo $a_{1p(1)}$ $a_{2p(2)}$... $a_{np(n)}$, con davanti un segno + o - a seconda che la permutazione p sia pari o dispari. Si noti che l'espressione $a_{1p(1)}$, $a_{2p(2)}$, ..., $a_{np(n)}$ è il prodotto di n entrate scelte nella matrice, una per ogni riga, con gli indici di colonna dati da p(1), p(2), ..., p(n): poiché una permutazione scambia gli indici $1, 2, \ldots, n$ senza ripetizioni, stiamo praticamente scegliendo un'entrata da ogni riga in modo però che le entrate scelte stiano anche su colonne diverse.

Per chiarire e illustrare la definizione precedente, consideriamo in particolare i casi n=2 e n=3.

Sia $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ una matrice quadrata di ordine n = 2. Come abbiamo visto sopra ci sono solo due permutazioni dell'insieme $\{1,2\}$ (l'identità e la trasposizione che scambia 1 con 2) quindi nella sommatoria avremo solo due addendi, del tipo $s(p)a_{1p(1)}a_{2p(2)}$: se p è l'identità, che come abbiamo osservato sopra è un permutazione pari e quindi s(p) = +1 e l'addendo corrispondente sarà $+a_{11}a_{22}$: se p è la trasposizione che scambia 1 con 2, che è una permutazione dispari, si ha s(p) = -1 e l'addendo corrispondente sarà $-a_{12}a_{21}$. Il determinante di una matrice quadrata A di ordine 2 risulta quindi essere

$$\det(A) = a_{11}a_{22} - a_{12}a_{21} \tag{3.2}$$

Nel caso di una matrice $A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ quadrata di ordine n=3, la sommatoria avrà 6 addendi,

tanti quante sono le permutazioni dell'insieme $\{1,2,3\}$, e per ognuna di queste permutazioni p l'addendo corrispondente sarà del tipo $s(p)a_{1p(1)}a_{2p(2)}a_{3p(3)}$. Più precisamente, avremo

- l'addendo $+a_{11}a_{12}a_{33}$ corrispondente alla permutazione p(1)=1, p(2)=2, p(3)=3 (cioè la permutazione identica, che è una permutazione pari)
- l'addendo $-a_{11}a_{23}a_{32}$ corrispondente alla permutazione p(1) = 1, p(2) = 3, p(3) = 2 (che è una trasposizione e quindi una permutazione dispari)
- l'addendo $+a_{12}a_{23}a_{31}$ corrispondente alla permutazione p(1)=2, p(2)=3, p(3)=1 (che è una trasposizione dispari)
- l'addendo $-a_{12}a_{21}a_{33}$ corrispondente alla permutazione p(1)=2, p(2)=1, p(3)=3 (che è una teasposizione e quindi una permutazione dispari)
- l'addento $+a_{13}a_{21}a_{32}$ corrispondente alla permutazione p(1)=3, p(2)=1, p(3)=2 (che si può scrivere come composizione di due trasposizioni ed è quindi una permutazione pari)
- l'addendo $-a_{13}a_{22}a_{31}$ corrispondente alla permutazione $p(1)=3,\ p(2)=2,\ p(3)=1$ (che è una trasposizione e quindi una permutazione dispari)

e quindi si avrà, per una matrice A di ordine 3:

$$\det(A) = a_{11}a_{12}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

$$(3.3)$$

Ora, vedremo nel Paragrafo la dimostrazione del fatto che il determinante di una matrice quadratea di ordine n si annulla se e solo se la matrice ha n = 2 e n = 3, usando le farmule esplicite (3.2) e (3.3).

Nel caso di una matrice $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ di ordine 2, essendoci solo proporzionali, ovvero diciamo che esiste un $c \in \mathbb{K}$ tale che $(a_{11}, a_{12}) = c(a_{21}a_{22})$, cioè

$$a_{11} = ca_{21}, \ a_{12} = ca_{22} \tag{3.4}$$

Ma allora, moltiplicando (a entrambi i membri) la prima uguaglianza per a_{22} e la seconda per 21 si ha $a_{11}a_{22}=ca_{21}a_{22}$ e $a_{12}a_{21}=ca_{21}a_{21}$, da cui vediamo che $a_{11}a_{22}=ca_{21}a_{22}$: quindi $a_{11}a_{22}-a_{12}a_{21}=0$, ovvero $\det(A)=0$. Quindi se una matrice di ordine 2 ha le righe proporzionali, il suo determinante è zero.

Viceversa, supponiamo che il determinante $a_{11}a_{22} - a_{12}a_{21}$ sia zero, ovvero

$$a_{11}a_{22} = a_{12}a_{21} \tag{3.5}$$

Supponendo per il momento che le entrate a_{21},a_{22} della seconda riga non siano nulle, dividendo entrambi i membri della (3.5) per a_{21} e a_{22} otteniamo

$$\frac{a_{11}}{a_{21}} = \frac{a_{12}}{a_{22}} \tag{3.6}$$