Задание на лабораторную работу №4 "Прогнозирование количества подвижных единиц грузового поезда в сходе с рельсов на основе пуассоновской регрессии" по курсу "Управление рисками на железнодорожном транспорте"

1. Ознакомиться со структурой датасета, в котором хранятся сведения о результатах сходов/крушений подвижного состава вне стрелочных переводов по причине неисправности подвижного состава.

length	commonlength	maxder	dcar	speed	weight	load	curve	profile
81	84	82	26	54	2080	0,038826	0,002463	-0,008
	•••							

length – количество вагонов в поезде;

commonlength – количество вагонов и секций локомотива в поезде;

maxder – количество вагонов и секций локомотива в поезде минус номер первой сошедшей с рельсов подвижной единицы (от головы поезда) + 1;

dcar – количество вагонов и секций локомотива в сходе;

speed – скорость поезда в месте схода, км/ч;

weight – вес поезда, т.;

load – показатель, характеризующий степень загруженности поезда полезной нагрузкой, чем меньше порожних вагонов, тем больше этот показатель;

curve – кривизна пути в месте схода;

profile – величина профиля пути в месте схода в тысячных.

- 2. Загрузить указанный датасет в любой математический пакет по выбору студента.
- 3. Используя пуассоновскую регрессию, построить не менее 12 зависимостей среднего количества подвижных единиц в сходе с рельсов от различных факторов движения. Для каждой построенной зависимости привести значения скорректированного коэффициента детерминации, средней абсолютной погрешности, средней относительной погрешности, используя два прогноза (в виде среднего и в виде значения с максимальной вероятностью). Привести значение AIC, отношения правдоподобия (при сравнении с тривиальной моделью, содержащей только константу). Результаты привести в таблице вида

Зависимость	Прогноз	R_{adj}^2	Δ (средняя	δ (средняя	AIC	Отношение
			абсолютная	относительная		правдоподо
			погрешность)	погрешность)		бия
1+exp(1.014+0.17speed)	Среднее	0.95	1.17	0.01	-53	6.14
	Макс.	0.94	0.57	0.12		
	вероятно					
	сть					
	Среднее		•••	•••		
	Макс.		•••	•••		
	вероятно					

сть			

4. Определить наилучшую из построенных зависимостей и объяснить, почему она, на взгляд студента, является наилучшей.

Литература

- 1. https://online.stat.psu.edu/stat462/node/209/
- 2. https://www.dependability.ru/jour/article/view/255/438
- 3. https://lms.mai.ru/mod/resource/view.php?id=265109 (датасет)