Lecture-1

- Lecture-1
 - 1-Intro
 - 2-Sinusoids
 - Definition
 - Phase
 - Combining Sinusoids
 - 3-Phasors
 - Definition
 - Calculation
 - Phasors and Circuit Elements
 - Inductor
 - Conductor

1-Intro

A **sinusoid** is a signal that has the form of the sine or cosine function

2-Sinusoids

Definition

$$v(t) = V_m \sin \omega t$$
 $v(t)$
 V_m
 $v(t)$
 $v($

•
$$\omega = \frac{2\pi}{T}$$

•
$$T=rac{2\pi}{\omega}$$
• $f=rac{1}{T}$
• $\omega=2\pi f$

•
$$f=\frac{1}{T}$$

•
$$\omega = 2\pi f$$

sinusoids are periodic, which implies v(t+T)=v(t)

Phase

$$v_1(t) = V_m \sin \omega t v_2(t) = V_m \sin \left(\omega t + \phi
ight)$$

where ϕ is the **phase**

Combining Sinusoids

$$A\cos\omega t + B\sin\omega t = \sqrt{A^2 + B^2}\cos(\omega t - \theta)$$

where $\theta = \arctan \frac{B}{A}$

3-Phasors

Definition

A phasor is a complex number that represents the amplitude and phase of a sinusoid

$$z=x+jy=r \angle \phi=re^{j\phi}=r(\cos\phi+j\sin\phi)$$
 $e^{\pm j\phi}=\cos\phi\pm j\sin\phi$

Calculation

$$\frac{\mathrm{d}v}{\mathrm{d}t} \longleftrightarrow j\omega V$$

$$\int v \mathrm{d}t \longleftrightarrow \frac{V}{j\omega}$$

Phasors and Circuit Elements

Inductor

if the current in the inductor is $i(t) = I_m \cos(\omega t + \phi)$ then the voltage across it will be

$$egin{aligned} v &= Lrac{\mathrm{d}i}{\mathrm{d}t} = -\omega LI_m\sin(\omega t + \phi) \ &= \omega LI_m\cos(\omega t + \phi + 90^\circ) \end{aligned}$$

transforming as a phasor and take $I_m e^{j\phi}$ as I

$$V = \omega L I_m e^{j(\phi + 90^\circ)} = j\omega L I$$

Conductor

similarly since the current on the conductor is $C rac{\mathrm{d} v}{\mathrm{d} t}$

$$V = \frac{I}{j\omega C}$$