Esercizi di Informatica Teorica Automi a stati finiti

1

Automa a stati finiti (ASF)

richiami

automa a stati finiti ASF = $\langle \Sigma, K, \delta, q_0, F \rangle$ dove

- $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_n}$ è un *alfabeto* (finito) di input
- $K = \{q_0, q_1, ..., q_m\}$ è un insieme (finito e non vuoto) di *stati*
- q_0 è lo stato iniziale
- F ⊆ K è l'insieme degli *stati finali*
- δ : K × Σ → K è la funzione (totale) di transizione si può rappresentare graficamente tramite una tabella di transizione o un diagramma di stato

Linguaggio riconosciuto da un ASF

richiami

• $\underline{\delta}$ (q, ε) = q

si definisce ricorsivamente la *funzione di transizione estesa alle* stringhe $\delta: K \times \Sigma^* \to K$ nel seguente modo:

```
• se a \in \Sigma e w \in \Sigma^*

\underline{\delta}(q, aw) = \underline{\delta}(\delta(q, a), w)
```

linguaggio riconosciuto da A : L = $\{w \in \Sigma^* : \underline{\delta}(q_0, w) \in F\}$

3

Configurazioni e computazioni

<u>rıchıamı</u>

```
configurazione (istantanea) di un ASF: <q, w> dove
```

- q è lo stato corrente dell'ASF
- w è la porzione di stringa che l'ASF deve ancora leggere

```
transizione tra configurazioni: <q, w> |— <q', w'> ⇔
```

- w = aw' $a \in \Sigma$
- $\delta(q, a) = q'$

```
una configurazione <q, w> è
```

 $\begin{array}{ll} \mbox{\it iniziale} & se \ q = q_0 \\ \mbox{\it finale} & se \ w = \epsilon \\ \mbox{\it accettante} & se \ w = \epsilon \ e \ q \in F \\ \end{array}$

computazione: \vdash è la chiusura transitiva e riflessiva di \vdash *computazione accettante*: $c_0 \vdash$ c_n dove c_0 è iniziale e c_n è accettante

ŀ

Automi a stati finiti deterministici

esercizio 1

descrivere il linguaggio riconosciuto dal seguente ASF e trovare la corrispondente espressione regolare

5

Automi a stati finiti deterministici

esercizio 2

si consideri il seguente AFS:

- mostrare le computazioni sulle stringhe "aaab" e "abaabb" <u>2.a</u>
- <u>2.b</u> dire qual'è il linguaggio riconosciuto dall'automa
- descrivere il linguaggio attraverso una espressione regolare

Automi a stati finiti deterministici

costruire un AFS che riconosce il linguaggio dei numeri naturali pari in base 3, compresa la stringa vuota; si modifichi poi l'automa in modo che non accetti la stringa vuota.

esercizio 4

scrivere la tabella di transizione per l'automa dell'esercizio 3

Automi a stati finiti deterministici

costruire gli AFS che riconoscono i seguenti linguaggi

- $L_1 = \{w \in \{a,b\}^* : w \text{ non contiene mai tre 'b' consecutive}\}\$ <u>5.a</u>
- $L_2 = \{w \in \{a,b\}^* : w \text{ contiene tre 'b' consecutive}\}\$ 5.b
- $L_3 = \{w \in \{a,b\}^* : w \text{ contiene almeno tre 'b'}\}$ 5.c

Automi non deterministici

richiami

automa a stati finiti non deterministico ASFND= $<\Sigma$, K, δ_N , q_0 , F> dove:

- $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_n}$ è un *alfabeto* (finito) di input
- $K = \{q_0, q_1, ..., q_m\}$ è un insieme (finito e non vuoto) di *stati*
- q₀ è lo stato iniziale
- $F \subseteq K$ è l'insieme degli *stati finali*
- $\delta_N : K \times \Sigma \to P(K)$ è la funzione (totale) di transizione

9

Linguaggio riconosciuto da un ASFND

richiami

si definisce ricorsivamente la funzione di transizione estesa alle stringhe $\underline{\delta}_N : K \times \Sigma^* \to P(K)$ nel seguente modo:

```
• \underline{\delta}_{N}(q, \varepsilon) = \{q\}
```

• se $a \in \Sigma$ e $w \in \Sigma^*$

$$\underline{\delta}_N(q, aw) = \bigcup_{p \in \delta_N(q, a)} \underline{\delta}_N(p, w)$$

 $\textit{linguaggio riconosciuto } da \; A : L \equiv \{w \in \Sigma^* : \underline{\delta}_N \left(q_0, w\right) \cap F \neq \varnothing\}$

Configurazioni e computazioni di un ASFND

<u>richiami</u>

configurazione (istantanea) di un ASFND: <Q, w> dove

- Q ⊆ K è l'insieme degli *stati correnti* dell'ASFND
- w è la porzione di stringa che l'ASFND deve ancora leggere

```
transizione tra configurazioni: <Q, w> |— <Q', w'> ⇔
```

- $w = a w' \quad a \in \Sigma$
- Q' = $\bigcup_{q \in Q} \delta_N(q, a)$

una configurazione <Q, w> è

```
iniziale se Q = \{q_0\}
```

finale se $w = \varepsilon$

accettante se w = ϵ e Q \cap F $\neq \emptyset$

computazione: —* è la chiusura transitiva e riflessiva di computazione accettante: $c_0 \vdash - * c_n$ dove c_0 è iniziale e c_n è accettante

Automi non deterministici

esercizio 6

costruire un ASFND che riconosce il linguaggio descritto dall'espressione regolare (ab+aba)*

costruire un ASF che riconosce lo stesso linguaggio dell'esercizio 6

Automi non deterministici

esercizio 8

costruire un ASFND che riconosce il linguaggio L = (ab)*a(ab)*

esercizio 9

mostrare la computazione sulla stringa "ababaab" dell'automa soluzione dell'esercizio 8

13

Automi non deterministici

esercizio 10 📡

quali stringhe tra "aabb", "ab", "abbaa" ed "aabbaa" sono riconosciute dal seguente ASFND? quale linguaggio riconosce?

Automi non deterministici

esercizio 11

costruire un ASFND che riconosce il linguaggio delle stringhe su {a,b} con un numero dispari di 'a' e un numero pari di 'b'

esercizio 12

modificare l'automa in modo che riconosca le stringhe con un numero dispari di 'a' o un numero pari di 'b'

15

Esercizi sugli automi

esercizio 13

costruire degli automi a stati finiti (deterministici o non deterministici) che riconoscono i seguenti linguaggi:

- 13.a L = (ab*a)*
- 13.b L = (ab*a*b)*
- 13.c L = a*b*(aa + bb)
- 13.d L = a (bc)*a
- 13.e stringhe su {a,b} terminanti con "baa" o con "abb"
- 13.f stringhe su {a,b} terminanti con un numero dispari di "a"

Algoritmo: ASFND → ASF

<u>richiami</u>

input: un ASFND $<\Sigma$, K, δ_N , q_0 , F> ouput: un ASF $<\Sigma'$, K', δ' , q'_0 , F'>

costruzione:

- $\Sigma' = \Sigma$
- K' = contiene un <u>superstato</u> $[q_i...q_i]$ per ciascun elemento $\{q_i,...,q_i\}$ di P(K)
- $\bullet q'_0 = [q_0]$
- $F' \subseteq K'$ è l'insieme dei superstati che contengono almeno uno stato di F
- $\delta'([q_i...q_i], a) = [q_h...q_k]$ dove $\{q_h...q_k\} = \delta_N(q_i, a) \cup ... \cup \delta_N(q_i, a)$

<u>semplificazione</u>: per costruire K' si considerano solo superstati raggiungibili a partire dal superstato $[q_0]$

17

ASFND → ASF

esercizio 14

costruire un ASF che riconosce lo stesso linguaggio del seguente ASFND:

$\boldsymbol{\delta}_N$	a	b
q_0	$\{q_0,q_2\}$	{q ₁ }
q_1	Ø	Ø
q_2	$\{q_3\}$	$\{q_{2}\}$
q_3	$\{q_1\}$	Ø

Esercizi su ASFND → ASF

utilizzando l'algoritmo ASFND → ASF, costruire gli ASF che riconoscono gli stessi linguaggi dei seguenti automi:

- AFSND dell'esercizio 6 15.a
- 15.b AFSND dell'esercizio 8

19

Algoritmo: ASFND → grammatica regolare richiami

<u>input</u>: un ASFND $\langle \Sigma, K, \delta_N, q_0, F \rangle$ (o un ASF $\langle \Sigma, K, \delta, q_0, F \rangle$) <u>ouput</u>: una grammatica regolare $\langle V_T, V_N, P, S \rangle$

costruzione:

- $V_T = \Sigma$
- V_N contiene un non terminale A_i per ogni stato $q_i \in K$; se q_0 è uno stato finale, si aggiunge un ulteriore non terminale A'₀
- $S = A_0$ se q_0 non è uno stato finale, altrimenti $S = A'_0$
- P contiene le seguenti produzioni $\forall q_k \in \delta_N(q_i, a)$ (o se $\delta(q_i, a) = q_k$):
 - $A_i \rightarrow aA_k$

se q_k è uno stato finale

inoltre, se q_0 è uno stato finale, P contiene le seguenti produzioni:

- A'₀ $\rightarrow \epsilon$
- $\bullet \ A'_0 \rightarrow aA_k \ \forall A_0 \rightarrow aA_k \qquad \qquad A'_0 \rightarrow a \ \forall A_0 \rightarrow a$

ASFND → grammatica regolare

esercizio 16

determinare una grammatica regolare equivalente al seguente ASFND

21

ASFND → grammatica regolare

esercizio 17

determinare una grammatica regolare equivalente al seguente ASFND

Algoritmo: grammatica regolare → ASFND

<u>richiami</u>

<u>input</u>: una grammatica regolare $\langle V_T, V_N, P, S \rangle$ ouput: un ASFND $\leq \sum$, K, δ_N , q_0 , F \geq

costruzione:

- $\sum = V_T$
- K contiene uno stato q_A per ogni $A \in V_N$, più uno stato finale q_F
- F contiene $q_{\scriptscriptstyle F}$, più uno stato $q_{\scriptscriptstyle B}$ per ogni $\epsilon\text{-produzione }\, B \to \epsilon$
- $\delta_N(q_B,a)$ contiene:
 - $-q_C \text{ se B} \rightarrow aC$
 - $-q_F \text{ se B} \rightarrow a$

23

Grammatica regolare → ASFND

esercizio 18

dimostrare che per ogni linguaggio regolare L che non contiene la stringa vuota ε esiste un ASFND con un solo stato finale che riconosce L

Grammatica regolare → ASFND

esercizio 19

<u>19.a</u> determinare un ASFND equivalente alla seguente grammatica regolare:

$$V_{T} = \{a, b, c\}$$

$$V_{N} = \{S, A, C\}, \text{ dove } S \text{ è l'assioma}$$

$$\text{produzioni} \quad (1) S \rightarrow \text{aA} \qquad (2) S \rightarrow \text{bC}$$

$$(3) A \rightarrow \text{aA} \qquad (4) A \rightarrow \text{bC}$$

$$(5) C \rightarrow \text{cC} \qquad (6) C \rightarrow \text{c}$$

19.b descrivere il linguaggio riconosciuto dall'ASFND

25

Soluzioni

soluzione esercizio 1

 $L=\{ab^na: n \geq 0\}$

l'espressione regolare corrispondente è ab*a

Soluzioni

soluzione esercizio 2

2.a computazioni sulle stringhe "aaab" e "abaabb"

```
 <\mathbf{q}_{0}, aaab> | - <\mathbf{q}_{1}, aab> | - <\mathbf{q}_{2}, ab> | - <\mathbf{q}_{3}, b> | - <\mathbf{q}_{3}, \epsilon> (\underline{non\ accettante}) \\ <\mathbf{q}_{0}, abaabb> | - <\mathbf{q}_{1}, baabb> | - <\mathbf{q}_{0}, aabb> | - <\mathbf{q}_{1}, abb> | - <\mathbf{q}_{2}, bb> | - <\mathbf{q}_{1}, b> | - <\mathbf{q}_{0}, \epsilon> (\underline{accettante})
```

- 2.b linguaggio riconosciuto dall'automa: stringhe su {a,b} tali che:
 - numero di 'a' = numero di 'b'
 - sottosequenze massimali di sole 'a' o di sole 'b' di lunghezza al più 2
 - iniziano per 'a' e finiscono per 'b'
 - in ogni punto, la sequenza è sbilanciata di al più due 'a'

più la stringa vuota

2.c espressione regolare: (a(ab)*b)*

27

Soluzioni

soluzione esercizio 3

• AFS che riconosce il linguaggio dei numeri naturali in base 3, compresa la stringa vuota

$$\Sigma = \{0, 1, 2\}$$

$$K = \{q_p, q_p\}$$

$$F = \{q_p\}$$

 $q_0 = q_p$

• AFS che riconosce il linguaggio dei numeri naturali pari in base 3, esclusa la stringa vuota

Soluzioni

esempio di computazione sulla stringa "ababa"

albero delle transizioni per la stringa "ababa"

31

Soluzioni

soluzione esercizio 8

δ_{N}	a	b	
q_0	$\{q_1,q_2\}$	Ø	
q_1	{q ₃ }	Ø	
q_2	Ø	$\{q_0\}$	
q_3	Ø	$\{q_1\}$	

soluzione esercizio 10

$$L = (a^*b+a^*ab^*aa) = a^*(b+ab^*aa)$$

Soluzioni

soluzione esercizio 11

logica costruttiva:

- si usano quattro stati con i seguenti significati q_0 = pari 'a' e pari 'b', $q_1 = \text{dispari 'a' e pari 'b'}, q_2 = \text{dispari 'a' e dispari 'b'}, q_3 =$ pari 'a' e dispari 'b';
- si costruisce la funzione di transizione, osservando che da ciascuno stato si può passare direttamente solo a stati adiacenti;
- si decidono gli stati accettanti sulla base della classificazione fatta e delle stringhe che si vogliono riconoscere

33

Soluzioni

soluzione esercizio 14

• costruzione incrementale della funzione di transizione δ dell'ASF

ı			
	$\boldsymbol{\delta}_N$	a	b
	q_0	$\{q_0,q_2\}$	$\{q_1\}$
	q_1	Ø	Ø
	q_2	$\{q_{3}\}$	{q ₂ }
	q_3	$\{q_1\}$	Ø
П			

- $\delta([q_0], a) = [q_0 q_2]$
- $\delta([q_0],b) = [q_1]$
- $\delta([q_0q_2],a) = [q_0q_2q_3]$ $\delta([q_0q_2],b) = [q_1q_2]$
- $\delta([q_1],a) = []$
- $\delta([q_1],b) = []$
- $\delta([q_0q_2q_3],a) = [q_0q_1q_2q_3]$ $\delta([q_0q_2q_3],b) = [q_1q_2]$
- $\delta([q_1q_2],a) = [q_3]$
- $\delta([q_1q_2],b) = [q_2]$

- $\delta([q_0q_1q_2q_3],a) = [q_0q_1q_2q_3]$
- $\delta([q_0q_1q_2q_3],b) = [q_1q_2]$
- $\delta([q_3],a) = [q_1]$
- $\delta([q_3],b) = []$
- $\delta([q_2],a) = [q_3]$
- $\delta([q_2],b) = [q_2]$

Soluzioni

• grafo dell'ASF con funzione di transizione δ (per semplicità si scrive $[q_{i...}q_{j}] = [q_{i...j}]$

Soluzioni

$$\frac{\text{soluzione esercizio 16}}{V_T = \{a,b\} \ V_N = \{A_0, A_1, A_2, A_3\} \ S = A_0}$$

insieme P delle produzioni

- produzioni per A_0 : $A_0 \rightarrow aA_0$ $A_0 \rightarrow aA_2$ $A_0 \rightarrow bA_1$ $A_0 \rightarrow b$
- produzioni per A₁: nessuna
- produzioni per A_2 : $A_2 \rightarrow aA_3$ $A_2 \rightarrow bA_2$
- produzioni per A_3 : $A_3 \rightarrow aA_1$ $A_3 \rightarrow a$

osservazione: poiché A_1 non ha produzioni, le produzioni $A_0 \rightarrow bA_1$ e $A_3 \rightarrow aA_1$ diventano inutili per la grammatica, e possono quindi essere tolte

Soluzioni

soluzione esercizio 17

$$V_T = \{0,1,2\}$$
 $V_N = \{A_p, A_d, A'\}$ $S = A'$

insieme P delle produzioni

- produzioni per A_p : $A_p \rightarrow 0A_p$ $A_p \rightarrow 2A_p$ $A_p \rightarrow 1A_d$ $A_p \rightarrow 0$ $A_p \rightarrow 2$
- produzioni per A_d : $A_d \rightarrow 0A_d$ $A_d \rightarrow 2A_d$ $A_d \rightarrow 1A_p$ $A_d \rightarrow 1$ produzioni per A': $A' \rightarrow 0A_p$ $A' \rightarrow 2A_p$ $A' \rightarrow 1A_d$ $A' \rightarrow 0$ $A' \rightarrow 2$ $A' \rightarrow \varepsilon$

soluzione esercizio 18

- se L non contiene ε allora esiste per L una grammatica regolare G senza ε-produzioni
- applicando l'algoritmo che da G calcola un AFSND, ricaviamo un automa con un solo stato finale
- tale automa, essendo equivalente a G, riconosce L

37

Soluzioni

soluzione esercizio 19

19.a l'ASFND è definito come segue

$$\begin{array}{l} \Sigma = \{a,b,c\} \\ K = \{q_S\,,\,q_A,\,q_C\,,\,q_F\},\,q_S\,\text{iniziale} \\ F = \{q_F\} \\ \delta_N(q_S,\,a) = \{q_A\} \\ \delta_N(q_S,\,b) = \{q_C\} \\ \delta_N(q_A,\,a) = \{q_A\} \\ \delta_N(q_A,\,b) = \{q_C\} \\ \delta_N(q_C,\,c) = \{q_C,\,q_F\} \end{array}$$

19.b il linguaggio riconosciuto è $L = a^*bc^*c$