

Grundlagenlabor glaL3 Simulationstools

Versuch 1/2

MicrowaveOffice (HF-Simulation)

MICROWAVEOFFICE (HF-SIMULATION)

1 Einleitung

Dem Elektroingenieur stehen viele Simulationswerkzeuge zur Verfügung wie z.B. *Matlab/Simulink*, *Maple*, *MathCad*, *Orcad/PSpice* und andere. Jedes dieser Werkzeuge verfügt über Stärken und Schwächen und hat seine bevorzugten Anwendungsgebiete. Für die Netzwerkanalyse wird oft *PSpice* eingesetzt (mit allen Stärken und vor allem Schwächen).

Ein modernes Simulationswerkzeug für die Analyse und Optimierung von Netzwerken (mit konzentrierte Elementen und Leitungsnetzwerken) ist *MicrowaveOffice*. Dieses äusserst leistungsfähige, und trotzdem mit einfachem Benutzerinterface versehene Simulationstool wird an ausgewählten Beispielen eingeführt und intensiv benutzt.

Bei höheren Frequenzen muss die Modellvorstellung von idealen Bauelementen aufgegeben werden. Widerstände, Spulen, Kondensatoren und viele andere Bauelemente werden dann mit sog. **Ersatzschaltbildern** modelliert, welche sog. **parasitäre Elemente** enthalten. Die Hersteller solcher Komponenten liefern meistens die frequenzabhängigen Ersatzmodelle ihrer Bauteile.

Die Simulation von Netzwerken wird erschwert, da für jedes eingesetzte Bauelement ein geeignetes Ersatzschaltbild mit den "richtigen Werten" verwendet werden muss. Moderne Simulationswerkzeuge enthalten schon solche Ersatzmodelle, bei welchen "nur noch" die richtigen Parameter eingesetzt werden müssen.

Zur Messung von Bauelementen (Impedanz- und Übertragungsverhalten) werden Impedanz- analysatoren und/oder Netzwerkanalysatoren eingesetzt. Einige Geräte können sogar aus den gemessenen Daten ein geeignetes Ersatzschaltbild (mit parasitären Elementen) berechnen und den gemessenen Frequenzgang zusammen mit dem berechneten anzeigen.

2 Ziele

- Modernes Simulationswerkzeug kennenlernen und an praktischen Beispielen einsetzen (MWO)
- Ersatzschaltbild einer Spule simulieren und mit Datenblatt und Messung vergleichen
- Mehrere LC-Tiefpassfilter simulieren und mit Messungen vergleichen (Netzwerkanalysator)

3 Vorbereitung

- 3.1 Installieren Sie *MicrowaveOffice* (MWO) auf Ihrem Rechner und testen Sie die Lauffähigkeit des Programms (Beachte: VPN nötig für Lizenzserver).
- 3.2 Studieren Sie die Datenblätter im Anhang zu den Spulen der Firma Coilcraft und Murata ("Maxi Spring Air Core Inductors" und "LQH3ER Chip Coils"). Bereiten Sie Fragen zu den tabellierten Werten und zu den Graphiken vor.
- 3.3 Studieren Sie auch die beiden Spice-Modelle im Anhang. Verstehen Sie die Modelle und können Sie diese in PSpice einsetzen?
 Vergleichen Sie diese (älteren) Modelle mit den aktuellen auf der Webseite (Coilcraft).
 Was hat sich verändert?

3.4 Das skizzierte LC-Tiefpassfilter ist im Frequenzbereich von 0...300 MHz zu analysieren (Frequenzgang, Eingangsimpedanz, usw.). Verwenden Sie dazu Ihre **bisherigen** Simulationswerkzeuge (**nicht** MWO).

4 Simulationsaufgaben

- 4.1 Simulieren Sie obiges Netzwerk mit MWO. Gehen Sie schrittweise vor und machen Sie sich mit den wichtigsten Grundfunktionen der Software vertraut (Schemaeingabe, S-Parameter, Measurements, Tuning, Yieldanalyse, Optimierung,).
- 4.2 Machen Sie sich mit verschiedenen Spulenmodellen im MWO vertraut. Versuchen Sie typische Q-Verläufe von Coilcraft-Spulen nachzubilden.
- 4.3 Simulieren Sie obiges Netzwerk im Zeitbereich mit einer rechteckförmigen Eingangsspannung. "Tunen" Sie die Elemente so, dass die Schrittantwort kein Überschwingen mehr aufweist. Was passiert mit dem Amplitudengang?
- 4.4 Diskutieren Sie die Messungen von ausgewählten Spulen und Kondensatoren und machen Sie sich Gedanken zu adäquaten Modellierungen der Bauelemente (Impedance Analyzer HP4292A).
- 4.5 Simulieren Sie das skizzierte LC-Tiefpassfilter im Frequenzbereich von 0...2 MHz. Die Spulen sind vom Typ LQH3ER und sollen zusammen mit den Kondensatoren geeignet modelliert werden.

4.6 Die beiden Tiefpassfilter sind mit dem NWA zu messen und die Daten in MWO zu importieren. Die gemessenen Daten sind mit den Simulationsdaten zu vergleichen. Diskutieren Sie die Abweichungen.

4.7 Obige Tiefpassfilter werden paarweise eingesetzt (I/Q-System). Simulieren Sie Differenz im Amplituden- und Phasengang bis $0.9f_{\rm c}$. Verwenden Sie eine Toleranz von 2% für die Spulen und 1% für die Kondensatoren (Yieldanalyse). Kommentar?

Verwendete Messgeräte

Precision Impedance Analyzer HP4294A (40 Hz ... 110 MHz) Network Analyzer E5071B (300 kHz ... 8.5 GHz)

Maxi Spring[™] Air Core Inductors

Designed for higher current applications (up to 3.5 Amps), these surface mount Maxi Spring $^{\text{TM}}$ air wound coils provide inductance values up to 538 nH and exceptionally high Q factors, even at low frequencies.

They're packaged in a rigid, flat top package that makes them compatible with pick and place equipment. The leads are tinned for reliable soldering. And because the coil is locked in position, precise terminal spacing is guaranteed.

Coilcraft **Designer's Kit C119** contains samples of all 5% inductance tolerance parts. Kits with 2% tolerance are also available. To order, contact Coilcraft or visit **http://order.coilcraft.com**.

						Test	SRF⁴	DCR⁵	Irms ⁶
Part		Inductance ²	Percent	\mathbf{Q}^2	Q^2	freq.	min	max	max
number ¹	Turns	(nH)	tolerance ³	typ	min	(MHz)	(GHz)	(mOhm)	(A)
132-09SM_	9	90	5,2	114	95	50	1.140	15	3.5
132-10SM_	10	111	5,2	104	87	50	1.020	15	3.5
132-11SM_	11	130	5,2	104	87	50	0.900	20	3.0
132-12SM_	12	169	5,2	114	95	50	0.875	25	3.0
132-13SM_	13	206	5,2	114	95	50	0.800	30	3.0
132-14SM_	14	222	5,2	110	92	50	0.730	35	3.0
132-15SM_	15	246	5,2	114	95	50	0.685	35	3.0
132-16SM_	16	307	5,2	114	95	50	0.660	35	3.0
132-17SM_	17	380	5,2	114	95	50	0.590	50	2.5
132-18SM_	18	422	5,2	114	95	50	0.540	60	2.5
132-19SM_	19	491	5,2	114	95	50	0.535	65	2.0
132-20SM	20	538	5.2	104	87	50	0.490	90	2.0

- When ordering, please add letter to specify inductance tolerance: J=5%, G=2%.
- Inductance and Q tested on the Agilent/ HP 4291A with the 16193 fixture and correlation.
- 3. Tolerances in bold are stocked for immediate shipment.
- 4. SRF tested on the Agilent/HP 8753D and the SMD-D test fixture.
- 5. DCR tested on the Cambridge Technology Model 510 Micro Ohmmeter.
- 6. Average current for a 15°C rise above 25°C ambient.
- 7. Operating temperature range -40°C to +125°C.
- 8. Electrical specifications at 25°C.

Recommended

See Qualification Standards section for environmental and test data.

Parts/reel: 13" 800 Tape width: 16 mm
For packaging data see Tape and Reel Specifications section.

Strip Length

135° max

0.095 2,42 0.185 4,70 0.234 5,95 0.394 10.00

Specifications subject to change without notice. Document 185-1 Revised 9/19/02

Maxi Spring[™] **Air Core Inductors**

Typical L vs Frequency

Typical Q vs Frequency

Coilcraft

Specifications subject to change without notice. Document 185-2 Revised 9/13/02

Chip Coils

for General Use Magnetic Shielded Type LQH3ER Series

■ Features

The LQH3ER series consists of magnetically shielded chip inductors. Its tight inductance tolerance of +-2% enables no adjustment of circuit. The shielding structure eliminates external interference and facilitates high mounting density.

Part Number	Inductance (μΗ)	Test Frequency (MHz)	Rated Current (mA)	DC Resistance (ohm)	Q (min.)	Test Frequency (MHz)	Self Resonance Frequency (MHz)	EIA
LQH3ERN1R0G01	1 ±2%	7.96	70	0.19 ±30%	60	7.96	120 min.	1214
LQH3ERN1R0J01	1 ±5%	7.96	70	0.19 ±30%	60	7.96	120 min.	1214
LQH3ERN1R2G01	1.2 ±2%	7.96	70	0.22 ±30%	60	7.96	100 min.	1214
LQH3ERN1R2J01	1.2 ±5%	7.96	70	0.22 ±30%	60	7.96	100 min.	1214
LQH3ERN1R5G01	1.5 ±2%	7.96	70	0.26 ±30%	60	7.96	80 min.	1214
LQH3ERN1R5J01	1.5 ±5%	7.96	70	0.26 ±30%	60	7.96	80 min.	1214
LQH3ERN1R8G01	1.8 ±2%	7.96	70	0.28 ±30%	60	7.96	70 min.	1214
LQH3ERN1R8J01	1.8 ±5%	7.96	70	0.28 ±30%	60	7.96	70 min.	1214
LQH3ERN2R2G01	2.2 ±2%	7.96	50	0.33 ±30%	60	7.96	60 min.	1214
LQH3ERN2R2J01	2.2 ±5%	7.96	50	0.33 ±30%	60	7.96	60 min.	1214
LQH3ERN2R7G01	2.7 ±2%	7.96	50	0.39 ±30%	60	7.96	55 min.	1214
LQH3ERN2R7J01	2.7 ±5%	7.96	50	0.39 ±30%	60	7.96	55 min.	1214
LQH3ERN3R3G01	3.3 ±2%	7.96	50	0.43 ±30%	60	7.96	50 min.	1214
LQH3ERN3R3J01	3.3 ±5%	7.96	50	0.43 ±30%	60	7.96	50 min.	1214
LQH3ERN3R9G01	3.9 ±2%	7.96	50	0.45 ±30%	60	7.96	45 min.	1214
LQH3ERN3R9J01	3.9 ±5%	7.96	50	0.45 ±30%	60	7.96	45 min.	1214
LQH3ERN4R7G01	4.7 ±2%	7.96	30	0.52 ±30%	60	7.96	40 min.	1214
LQH3ERN4R7J01	4.7 ±5%	7.96	30	0.52 ±30%	60	7.96	40 min.	1214
LQH3ERN5R6G01	5.6 ±2%	7.96	30	0.56 ±30%	60	7.96	37 min.	1214
LQH3ERN5R6J01	5.6 ±5%	7.96	30	0.56 ±30%	60	7.96	37 min.	1214
LQH3ERN6R8G01	6.8 ±2%	7.96	30	0.62 ±30%	60	7.96	35 min.	1214
LQH3ERN6R8J01	6.8 ±5%	7.96	30	0.62 ±30%	60	7.96	35 min.	1214
LQH3ERN8R2G01	8.2 ±2%	7.96	30	0.69 ±30%	60	7.96	32 min.	1214
LQH3ERN8R2J01	8.2 ±5%	7.96	30	0.69 ±30%	60	7.96	32 min.	1214
LQH3ERN100G01	10 ±2%	2.52	15	0.94 ±30%	70	2.52	30 min.	1214
LQH3ERN100J01	10 ±5%	2.52	15	0.94 ±30%	70	2.52	30 min.	1214
LQH3ERN120G01	12 ±2%	2.52	15	1.1 ±30%	70	2.52	27 min.	1214
LQH3ERN120J01	12 ±5%	2.52	15	1.1 ±30%	70	2.52	27 min.	1214
LQH3ERN150G01	15 ±2%	2.52	15	1.2 ±30%	70	2.52	25 min.	1214
LQH3ERN150J01	15 ±5%	2.52	15	1.2 ±30%	70	2.52	25 min.	1214
LQH3ERN180G01	18 ±2%	2.52	15	1.3 ±30%	70	2.52	23 min.	1214
LQH3ERN180J01	18 ±5%	2.52	15	1.3 ±30%	70	2.52	23 min.	1214
LQH3ERN220G01	22 ±2%	2.52	10	1.5 ±30%	70	2.52	20 min.	1214
LQH3ERN220J01	22 ±5%	2.52	10	1.5 ±30%	70	2.52	20 min.	1214
LQH3ERN270G01	27 ±2%	2.52	10	1.7 ±30%	70	2.52	18 min.	1214
LQH3ERN270J01	27 ±5%	2.52	10	1.7 ±30%	70	2.52	18 min.	1214
LQH3ERN330G01	33 ±2%	2.52	10	2.4 ±30%	80	2.52	16 min.	1214
LQH3ERN330J01	33 ±5%	2.52	10	2.4 ±30%	80	2.52	16 min.	1214

Continued from the preceding page.

Part Number	Inductance (μΗ)	Test Frequency (MHz)	Rated Current (mA)	DC Resistance (ohm)	Q (min.)	Test Frequency (MHz)	Self Resonance Frequency (MHz)	EIA
LQH3ERN390G01	39 ±2%	2.52	10	2.6 ±30%	80	2.52	15 min.	1214
LQH3ERN390J01	39 ±5%	2.52	10	2.6 ±30%	80	2.52	15 min.	1214
LQH3ERN470G01	47 ±2%	2.52	10	3.0 ±30%	80	2.52	14 min.	1214
LQH3ERN470J01	47 ±5%	2.52	10	3 ±30%	80	2.52	14 min.	1214
LQH3ERN560G01	56 ±2%	2.52	10	3.3 ±30%	80	2.52	13 min.	1214
LQH3ERN560J01	56 ±5%	2.52	10	3.3 ±30%	80	2.52	13 min.	1214
LQH3ERN680G01	68 ±2%	2.52	10	5.3 ±30%	80	2.52	12 min.	1214
LQH3ERN680J01	68 ±5%	2.52	10	5.3 ±30%	80	2.52	12 min.	1214
LQH3ERN820G01	82 ±2%	2.52	10	5.8 ±30%	80	2.52	11 min.	1214
LQH3ERN820J01	82 ±5%	2.52	10	5.8 ±30%	80	2.52	11 min.	1214
LQH3ERN101G01	100 ±2%	2.52	10	6.6 ±30%	80	2.52	10 min.	1214
LQH3ERN101J01	100 ±5%	2.52	10	6.6 ±30%	80	2.52	10 min.	1214

Operating Temp. Range : -25°C to 85°C

■ Q-Frequency Characteristics

■ Inductance-Current Characteristics

■ Coupling Coefficient

PSpice® Model – "Spring" Inductors

This data allows you to create a model that adequately simulates the behavior of Coilcraft "Spring" inductors from 1 MHz to 1.8 GHz.

PSpice® Equivalent of Circuit

An equivalent PSpice® model of a practical inductor is illustrated in schematic form below.

The component values R1, R2, C, and L can be taken from the accompanying tables.

 GLaplace is a model for the ac inductor resistance. The GLaplace statement defines a frequency dependent current which simulates the frequency dependent resistance. GLaplace consists of the two equations:

$$XFORM = \frac{1}{\sqrt{1 + S/2\pi}}$$

Micro Springs™

Part number	R1	R2	C (pF)	L (nH)	Н
0906-2	14	0.003	0.22	1.65	700000
0906-3	18	0.003	0.12	2.55	260000
0906-4	22	0.003	0.1	3.8	158000
0906-5	35	0.003	0.085	5.3	109000
1606-6	45	0.001	0.06	5.35	98000
1606-7	55	0.001	0.055	7	71000
1606-8	68	0.001	0.042	8	60500
1606-9	70	0.001	0.045	9.2	46500
1606-10	70	0.001	0.056	11.7	40000

Mini Springs™

Part number	R1	R2	C (pF)	L (nH)	Н
A01T	8	0.001	0.23	2.6	704000
A02T	8	0.001	0.17	4.5	353000
A03T	8	0.001	0.14	7.6	128000
A04T	8	0.001	0.15	11.4	74000
A05T	14	0.001	0.2	18.4	53000
B06T	14	0.001	0.15	16	55000
B07T	14	0.001	0.16	21	52000
B08T	23	0.001	0.14	28	41500
B09T	23	0.001	0.14	35.5	27000
B10T	12	0.001	0.235	43	26000

Midi Springs®

Part number	R1	R2	C (pF)	L (nH)	Н
1812SMS-22	12	0.001	0.2	22	53000
1812SMS-27	18	0.001	0.185	26.5	42000
1812SMS-33	25	0.001	0.155	33	32000
1812SMS-39	24	0.001	0.217	39	28000
1812SMS-47	24	0.001	0.184	47	32000
1812SMS-56	15	0.001	0.29	56	20300
1812SMS-68	15	0.001	0.22	68	19600
1812SMS-82	15	0.001	0.34	82	14100
1812SMS-R10	20	0.001	0.26	100	11000
1812SMS-R12	16	0.001	0.205	1200	10800

Maxi Springs[™]

Part number	R1	R2	C (pF)	L (nH)	Н
132-09SM	2	0.001	0.393	90	21300
132-10SM	2	0.001	0.38	110	22100
132-11SM	2	0.001	0.385	130	16800
132-12SM	2	0.001	0.39	169	10300
132-13SM	3	0.001	0.34	200	11800
132-14SM	3	0.001	0.33	222	7400
132-15SM	4	0.001	0.38	246	7850
132-16SM	4	0.001	0.355	307	5900
132-17SM	4	0.001	0.375	380	4700
132-18SM	4	0.001	0.4	422	4050
132-19SM	4	0.001	0.31	491	3800
132-20SM	5	0.001	0.34	538	3550

Specifications subject to change without notice. Document 294 Revised 11/18/02

SPICE Model – "Spring" Inductors

This data allows you to create a model that adequately simulates the behavior of Coilcraft "Spring" inductors from 1 MHz to 1.8 GHz.

SPICE Equivalent of Circuit

An equivalent SPICE model of a practical inductor is illustrated in schematic form below.

- $R_{VAR} = k * \sqrt{f}$ (k can be taken from the accompanying tables, and f is expressed in Hz).
- All required values can be taken from the accompanying tables.

Micro Springs™

Part number	R1	R2	C (pF)	L (nH)	k
0906-2	14	0.003	0.22	1.65	1.00E-06
0906-3	18	0.003	0.12	2.55	2.70E-06
0906-4	22	0.003	0.1	3.8	4.50E-06
0906-5	35	0.003	0.085	5.3	6.50E-06
1606-6	45	0.001	0.06	5.35	7.20E-06
1606-7	55	0.001	0.055	7	1.00E-05
1606-8	68	0.001	0.042	8	1.17E-05
1606-9	70	0.001	0.045	9.2	1.51E-05
1606-10	70	0.001	0.056	11.7	1.78E-05

Mini Springs[™]

Part number	R1	R2	C (pF)	L (nH)	k
A01T	8	0.001	0.23	2.6	1.00E-06
A02T	8	0.001	0.17	4.5	2.00E-06
A03T	8	0.001	0.14	7.6	5.50E-06
A04T	8	0.001	0.15	11.4	9.50E-06
A05T	14	0.001	0.2	18.4	1.33E-05
B06T	14	0.001	0.15	16	1.28E-05
B07T	14	0.001	0.16	21	1.35E-05
B08T	23	0.001	0.14	28	1.70E-05
B09T	23	0.001	0.14	35.5	2.60E-05
B10T	12	0.001	0.235	43	2.70E-05

Midi Springs®

Part number	R1	R2	C (pF)	L (nH)	k
1812SMS-22	12	0.001	0.2	22	1.33E-05
1812SMS-27	18	0.001	0.185	26.5	1.70E-05
1812SMS-33	25	0.001	0.155	33	2.20E-05
1812SMS-39	24	0.001	0.217	39	2.50E-05
1812SMS-47	24	0.001	0.184	47	2.20E-05
1812SMS-56	15	0.001	0.29	56	3.50E-05
1812SMS-68	15	0.001	0.22	68	3.60E-05
1812SMS-82	15	0.001	0.34	82	5.00E-05
1812SMS-R10	20	0.001	0.26	100	6.40E-05
1812SMS-R12	16	0.001	0.205	1200	6.60E-05

Maxi Springs™

Part number	R1	R2	C (pF)	L (nH)	k
132-09SM	2	0.001	0.393	90	3.30E-05
132-10SM	2	0.001	0.38	110	3.20E-05
132-11SM	2	0.001	0.385	130	4.20E-05
132-12SM	2	0.001	0.39	169	7.00E-05
132-13SM	3	0.001	0.34	200	6.00E-05
132-14SM	3	0.001	0.33	222	9.50E-05
132-15SM	4	0.001	0.38	246	9.00E-05
132-16SM	4	0.001	0.355	307	1.20E-04
132-17SM	4	0.001	0.375	380	1.50E-04
132-18SM	4	0.001	0.4	422	1.75E-04
132-19SM	4	0.001	0.31	491	1.85E-04
132-20SM	5	0.001	0.34	538	2.00E-04

Specifications subject to change without notice. Document 315 Revised 11/19/02