Humphreys Chapter III Exercises 問題(2024/1/15 実施分)

高間俊至

2024年1月15日

[1, p.63, Exercise1, 3] の解答例です。 何の断りもない場合,体 \mathbb{K} は代数閉体でかつ $\operatorname{char} \mathbb{K} = 0$ であるとする。 Euclid 空間(\mathbb{E} , $(\ ,\)_{\mathbb{E}}$)の任意の元 $\alpha \in \mathbb{E}$ に対して,

• 鏡映面 (reflecting hyperplane)*1

$$P_{\alpha} := \{ \beta \in \mathbb{E} \mid (\beta, \alpha)_{\mathbb{E}} = 0 \} = (\mathbb{R}\alpha)^{\perp}$$

• 鏡映面 P_{α} に関する**鏡映** (reflecting)

$$\sigma_{\alpha} \colon \mathbb{E} \longrightarrow \mathbb{E}, \ \beta \longmapsto \beta - 2 \frac{(\beta, \alpha)_{\mathbb{E}}}{(\alpha, \alpha)_{\mathbb{E}}} \alpha$$

を考える.

 $2\frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{R}$ が頻繁に登場するので,

$$[\![\beta,\alpha]\!] \coloneqq 2 \frac{(\beta,\alpha)_{\mathbb{E}}}{(\alpha,\alpha)_{\mathbb{E}}}$$

と略記することにする.写像 $[\![\ ,\]\!]:\mathbb{E}\times\mathbb{E}\longrightarrow\mathbb{R}$ は記号的には内積のように見えるかもしれないが,あくまで第一引数についてのみ線型なのであって,対称でも双線型でもないことに注意.

公理 6.1: ルート系

- 有限次元 Euclid 空間 (E, (,)_E)
- \mathbb{E} の部分集合 $\Phi \subset \mathbb{E}$

の組 (\mathbb{E}, Φ) がルート系 (root system) であるとは、以下の条件を充たすことを言う:

(Root-1) Φ は 0 を含まない有限集合で、かつ $\mathbb{E} = \operatorname{Span}_{\mathbb{R}} \Phi$ を充たす.

(Root-2) $\lambda \alpha \in \Phi \implies \lambda = \pm 1$

(Root-3) $\alpha, \beta \in \Phi \implies \sigma_{\alpha}(\beta) \in \Phi$

(Root-4) $\alpha, \beta \in \Phi \implies [\![\beta, \alpha]\!] \in \mathbb{Z}$

 $^{^{*1}}$ 余次元 1 の部分 \mathbb{R} -ベクトル空間.最右辺は対称かつ非退化な双線型形式 $(\;,\;)_{\mathbb{E}}$ による直交補空間の意味である.

Φ の元のことを**ルート** (root) と呼ぶ.

定義 6.1: Weyl 群

 (\mathbb{E}, Φ) をルート系とする. $GL(\mathbb{E})$ の部分集合 $\{\sigma_{\alpha} \in GL(\mathbb{E}) \mid \alpha \in \Phi\}$ が生成する $GL(\mathbb{E})$ の部分群 のことをルート系 (\mathbb{E}, Φ) の **Weyl 群** (Weyl group) と呼び, $\mathscr{W}_{\mathbb{E}}(\Phi)$ と書く.

定義 6.2: 双対ルート系

ルート系 (\mathbb{E}, Φ) に対して

$$\mathbf{\Phi}^{\vee} := \left\{ \left. \frac{2}{(\alpha, \, \alpha)} \alpha \in \mathbb{E} \, \right| \, \alpha \in \Phi \, \right\}$$

とおき、組 $(\mathbb{E}, \Phi^{\vee})$ のことを (\mathbb{E}, Φ) の双対ルート系 (dual root system) と呼ぶ.

 $\alpha \in \Phi$ に対して

$$\boldsymbol{\alpha}^{\vee} \coloneqq \frac{2}{(\alpha, \, \alpha)} \alpha \in \Phi^{\vee}$$

と書く.

【問題 6.1】p.46 の Exercise 2

- (1) ルート系 Φ を与えたとき、 Φ の双対ルート系 Φ^{\vee} もまたルート系であることを示せ.
- (2) Φ^{\vee} の Weyl 群は Φ の Weyl 群と同型であることを示せ.
- (3) $[\alpha^{\lor}, \beta^{\lor}] = [\beta, \alpha]$ を示せ.

【問題 6.2】

ノートでは分類定理の A_l , B_l , C_l , D_l 型の l に条件をつけたが,これは l が小さいところでは同型があるからである.この同型をできるだけ多く見つけてみよう.

【問題 6.3】p.63 の Exercise 1

Dynkin 図形から Cartan 行列を復元せよ.

【問題 6.4】p.63 の Exercise 3

 G_2 の Cartan 行列から G_2 のルート系を復元し, [1, p.44] の図と整合しているかどうか確認せよ.

【問題 6.5】p.63 の Exercise 5

- (1) B_l , C_l 以外の既約なルート系はその双対ルート系とルート系として同型であることを示せ.
- (2) B_l , C_l は互いに双対ルート系であることを示せ.

位数 2n の **2 面体群** (dihedral group) とは*2,

$$D_n := \langle s, t | s^2 = t^2 = 1_{D_n}, (st)^n = 1_{D_n} \rangle$$

の生成元と関係式によって定義される有限群のことである.

【問題 6.6】p.63 の Exercise 4

- (1) $A_1 \oplus A_1$, A_2 , B_2 , G_2 のルート系を図示せよ.
- (2) 2 次元 Euclid 空間 \mathbb{E}^2 および Weyl 群について,

$$\begin{split} \mathscr{W}_{\mathbb{E}^2}(A_1 \oplus A_1) &\cong \mathrm{D}_2, \\ \mathscr{W}_{\mathbb{E}^2}(A_2) &\cong \mathrm{D}_3, \\ \mathscr{W}_{\mathbb{E}^2}(B_2) &\cong \mathrm{D}_4, \\ \mathscr{W}_{\mathbb{E}^2}(G_2) &\cong \mathrm{D}_6 \end{split}$$

を示せ.

参考文献

[1] J. E. Humphreys, Introduction to Lie algebras and representation theory (Springer, 1972).

 $^{^{*2}}$ 抽象代数の分野だと D_{2n} と書く場合があるので注意.