Final Exam : Topics in Cosmology

Dongkok Kim

June 15, 2022

1. I obtained matter power spectrum from CAMB library as I did in the mid exam, but with different values of Ω_m in the range (0 - 1). I also investigated σ_8 in the range (0.6 - 1). Then, I divided each parameter (Ω_m, σ_8) space into 10^5 pixels and calculated χ^2 in the mass range $M \geq 10^{14} h^{-1} M_{\odot}$ with Poisson errors. I obtained $\Omega_m = 0.31$ and $\sigma_8 = 0.79$ as best fitting value. Then I gathered all the points in the 1σ area and fitted to $\sigma_8 \approx A \cdot \Omega_m^{\beta}$.

Figure 1: Problem 1. Colors in the background shows $\log(\chi^2)$, brighter color means lower χ^2 value. Red marker indicates χ^2_{min} and blue contour line shows 1σ confidence level.($\chi^2_{min} + 2.3$) Fitted red dashed line shows $\sigma_8 \approx 0.37 \cdot \Omega_m^{-0.64}$ relation.

2. I divided z=2 Rockstar halo catalog into 5 bins and calculated cumulative mass function in the range $M \geq 10^{14} h^{-1} M_{\odot}$. I had to use only 5 bins because there were only 44 haloes in the catalog. I obtained matter power spectrum at z=2 from CAMB just like problem 1. I used $\sigma_8 \approx 0.5 \cdot \Omega_m^{-0.5}$ relation to remove redundant parameter σ_8 and investigated χ^2 in the range $(\Omega_m: 0-1)$.

$$\frac{dN(z=2)}{d\ln M} = \sqrt{\frac{2}{\pi}} \cdot \frac{\overline{\rho}}{M} \cdot \left| \frac{d\ln \sigma}{d\ln M} \right| \cdot f_{ST}(\nu_c)$$

$$= \sqrt{\frac{2}{\pi}} \cdot \frac{1}{M} \cdot \left| \frac{d\ln \sigma(z=2)}{d\ln M} \right| \cdot f_{ST}\left(\frac{\delta_c}{\sigma(z=2)}\right) \cdot \Omega_m(z=2) \frac{3H^2(z=2)}{8\pi G}$$

I got $\Omega_m = 0.06$, which is wrong value. I am not sure why, but because the fitting looks okay, I think I made some mistakes with normalizing the power spectrum.

Figure 2: Problem 2

3. (a)
$$f \equiv \frac{d \ln D}{d \ln a} = \Omega_m(a)^{\alpha(w)}$$
, $\alpha(w) \equiv \frac{3}{5 - \frac{w}{1 - w}}$
 $D(a) = a \cdot \exp\left[\int_a^1 1 - \Omega_m^{\alpha(w)}(a') \frac{da'}{a'}\right]$
 $P(k, a) = P(k; \Omega_m, \sigma_8) \cdot D^2(a)$

Using CAMB library and (Ω_m, σ_8) relation we have P(k, z = 0) and we can calculate P(k, z = 0.5) using D(a).

$$P(k, z = 0.5) \to \sigma(M, z = 0.5) \to \frac{dN(z = 0.5)}{dM}$$

 Ω_0 : (0 - 1) , w : (-2 - 0)

I got $\Omega_m = 0.24$ and w = -0.28 as best fitting value, which is also wrong.

(b)
$$\chi_{1\sigma}^2 = \chi_{min}^2 + 2.3$$
, $\chi_{2\sigma}^2 = \chi_{min}^2 + 6.17$, $\chi_{3\sigma}^2 = \chi_{min}^2 + 11.8$

Figure 3: Problem 3

(c) Same with (a) but
$$w = w_0 + w_a \cdot (1 - a)$$
 and fixing $\Omega_m = 0.31$ and $\sigma_8 = 0.8228$. $w_0: (-2 - 0)$, $w_a: (-2 - 2)$

I wasn't able to find fitting value even if I make parameter space much wider.