Álgebra de Conjuntos

Lista 1

1.

$$A = \{1, 2, 3, \dots 8, 9\}, B = \{2, 4, 6, 8\}, C = \{1, 3, 5, 7, 9\}, D = \{3, 4, 5\}$$

a) X e B são disjuntos

Se X e B são disjuntos, não possuem nenhum elemento em comum.

Algumas possibilidades são X = C ou $X = \{1, 3, 5\}$.

X pode ser qualquer conjunto tal que $X \cap B = \emptyset$.

b) $X \subseteq D$ e $X \nsubseteq B$

Se $X \subseteq D$, todos os seus elementos estão em D. E se $X \nsubseteq B$, deve conter ao menos um elemento que não esteja em B.

As possibilidades são $X=\left\{3\right\}, X=\left\{5\right\}, X=\left\{3,4\right\}, X=\left\{3,5\right\}, X=\left\{4,5\right\}, X=D.$

c) $X \subseteq A$ e $X \nsubseteq C$

Se $X \subseteq A$, todos os seus elementos estão em A. E se $X \nsubseteq C$, deve conter ao menos um elemento que não esteja em C.

Algumas possibilidades são $X=B, X=D, X=\{1,3,4\}.$

c) $X \subseteq C$ e $X \nsubseteq A$

Se $X\subseteq C$, todos os seus elementos estão em C. E se $X\nsubseteq A$, deve conter ao menos um elemento que não esteja em A.

Porém, $C \subseteq A$, logo, todos os elementos de C estão em A. Portanto, X não existe.

(Não confundir com $X=\varnothing$. Nesse caso, X não \acute{e} vazio. X não existe.)

2.

a)
$$A \subseteq B \Leftrightarrow A \cap \overline{B} = \emptyset$$

(1)
$$A \subseteq B \to A \cap \overline{B} = \emptyset$$

Supondo $A \subseteq B$ a $A \cap \overline{B} \neq \emptyset$, ou seja, existe $x \in A \cap \overline{B}$:

Seja $x \in A \cap \overline{B}$, então $x \in A \land x \in \overline{B}$, logo, pela definição de complemento, $x \in A \land x \notin B$.

Se $A\subseteq B$, temos $a\in A\to a\in B$. Como $x\in A$, temos, por essa definição, que $x\in B$.

Mas já temos que $x \notin B$. Chegamos em um absurdo, portanto, não existe $x \in A \cap \overline{B}$, ou seja, $A \cap \overline{B} = \emptyset$.

Provado que $A \subseteq B \to A \cap \overline{B} = \emptyset$

(2)
$$A \cap \overline{B} = \emptyset \rightarrow A \subseteq B$$

Supondo $A \cap \overline{B} = \emptyset$:

Seja $x \in A$. Como nada pertence ao vazio, temos que $x \notin \emptyset$, ou seja, $x \notin A \cap \overline{B}$. Reescrevendo essa expressão:

$$\neg(x \in A \cap \overline{B})$$

Pela definição de interseção:

$$\neg(x \in A \land x \in \overline{B})$$

Por De Morgan:

$$\neg(x \in A) \vee \neg(x \in \overline{B})$$

Reescrevendo:

$$x\notin A\vee x\notin \overline{B}$$

Ao menos uma das condições acima deve ser verdadeira. Como já temos que $x \in A$, então

$$x \notin \overline{B}$$

Reescrevendo:

$$\neg(x \in \overline{B})$$

Pela definição de complemento:

$$\neg(x \notin B)$$

Reescrevendo:

$$x \in B$$

Logo, $x \in A \to x \in B$, ou seja, $A \subseteq B$.

Provado que $A \cap \overline{B} = \varnothing \to A \subseteq B$

b)
$$A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$$

(1)
$$A \subseteq B \to \overline{B} \subseteq \overline{A}$$

Supondo $A \subseteq B$:

Seja $x \in \overline{B}$, ou seja, $x \notin B$.

Se $A \subseteq B$, temos que $a \in A \to a \in B$. Como $x \notin B$, temos, por essa definição, que $x \notin A$, ou seja, $x \in \overline{A}$.

Temos então $x \in \overline{B} \to x \in \overline{A}$, ou seja, $\overline{B} \subseteq \overline{A}$.

Provado que $A \subseteq B \to \overline{B} \subseteq \overline{A}$

(2)
$$\overline{B} \subseteq \overline{A} \to A \subseteq B$$
.

Supondo $\overline{B} \subseteq \overline{A}$:

Seja $x \in A$, ou seja, $x \notin \overline{A}$.

Se $\overline{B} \subseteq \overline{A}$, temos que $b \in \overline{B} \to b \in \overline{A}$. Como $x \notin \overline{A}$, temos, por essa definição, que $x \notin \overline{B}$, ou seja, $x \in B$.

Temos então $x \in A \to x \in B$, ou seja, $A \subseteq B$.

Provado que $\overline{B} \subseteq \overline{A} \to A \subseteq B$.

c)
$$A \subseteq B \Leftrightarrow A - B = \emptyset$$

Pela definição de diferença de conjuntos, $A-B=A\cap \overline{B}$. Assim, a prova é exatamente a mesma do item a).

$\mathbf{d)} \ A \cup (A \cap B) = A$

Para provar que $A \cup (A \cap B) = A$, devemos provar separadamente que $A \cup (A \cap B) \subseteq A$ e $A \subseteq A \cup (A \cap B)$.

(1)
$$A \cup (A \cap B) \subseteq A$$

Seja $x \in A \cup (A \cap B)$.

Pela definição de união:

$$x \in A \lor x \in A \cap B$$

Pela definição de interseção:

$$\underbrace{x \in A}_{\text{(I)}} \vee \underbrace{\left(x \in A \land x \in B\right)}_{\text{(II)}}$$

Ao menos uma das condições acima deve ser verdadeira.

Se (I) for verdadeira: $x \in A$.

Se (II) for verdadeira, $x \in A \land x \in B$, ou seja, $x \in A$.

De qualquer jeito,

$$x \in A$$

Logo, $x \in A \cup (A \cap B) \to x \in A$, ou seja, $A \cup (A \cap B) \subseteq A$.

Provado que $A \cup (A \cap B) \subseteq A$.

(2)
$$A \subseteq A \cup (A \cap B)$$

Seja $x \in A$.

Se isso é verdadeiro, então, por definição lógica de adição (se $p=V,\ p\vee q=V)$, também é verdadeiro que

$$x \in A \lor x \in A \cap B$$

Então, por definição de união,

$$x \in A \cup (A \cap B)$$

Logo, $x \in A \to x \in A \cup (A \cap B)$, ou seja, $A \subseteq A \cup (A \cap B)$.

Provado que $A \subseteq A \cup (A \cap B)$.

e) $A \cap (A \cup B) = A$

Para provar que $A \cap (A \cup B) = A$, devemos provar separadamente que $A \cap (A \cup B) \subseteq A$ e $A \subseteq A \cap (A \cup B)$.

(1)
$$A \cap (A \cup B) \subseteq A$$

Seja $x \in A \cap (A \cup B)$.

Pela definição de interseção:

$$x \in A \land x \in A \cup B$$

Ambas as condições acima devem ser verdadeiras, ou seja,

$$x \in A$$

Logo, $x \in A \cap (A \cup B) \to x \in A$, ou seja, $A \cap (A \cup B) \subseteq A$.

Provado que $A \cap (A \cup B) \subseteq A$.

(2)
$$A \subseteq A \cap (A \cup B)$$

Seja $x \in A$.

Por definição lógica de adição:

$$x \in A \lor x \in B$$

Por definição de união:

$$x \in A \cup B$$

Já temos que $x \in A$, então:

$$x \in A \land x \in A \cup B$$

Por definição de interseção:

$$x \in A \cap (A \cup B)$$

Logo, $x \in A \to x \in A \cap (A \cup B)$, ou seja, $A \subseteq A \cap (A \cup B)$.

Provado que $A \subseteq A \cap (A \cup B)$.

3.

O complemento de $A \cup B$ é dado por $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$.

Pela proriedade de reversibilidade do complemento, em que $\overline{\overline{A}} = A$, temos que $\overline{\overline{(A \cup B)}} = A \cup B$, ou seja, $\overline{(\overline{A} \cap \overline{B})} = A \cup B$.

A fórmula, então, é $A \cup B = \overline{(\overline{A} \cap \overline{B})}$.

4.

a)
$$A = (\overline{B} \cap A) \cup (A \cap B)$$

Manipulando a expressão $(\overline{B} \cap A) \cup (A \cap B)$:

Pelo processo inverso da distributiva:

$$A \cap (\overline{B} \cup B)$$

Por propriedade do complemento:

$$A \cap \mathcal{U}$$

 \mathcal{U} = elemento neutro da interseção:

A

Demonstrado que $(\overline{B} \cap A) \cup (A \cap B) = A$.

b)
$$(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}) = \mathcal{U}$$

Manipulando a expressão $(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$:

Pelo processo inverso da distributiva:

$$(B \cap (A \cup \overline{A})) \cup (\overline{B} \cap (A \cup \overline{A}))$$

Por propriedade do complemento:

$$(B \cap \mathcal{U}) \cup (\overline{B} \cap \mathcal{U})$$

 \mathcal{U} = elemento neutro da interseção:

$$B \cup \overline{B}$$

Por propriedade do complemento:

 \mathcal{U}

Demonstrado que $(A \cap B) \cup (\overline{A} \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}) = \mathcal{U}$.

c)
$$(A \cap B) - B = \emptyset$$

Manipulando a expressão $(A \cap B) - B$:

Pela definição de diferença:

$$(A \cap B) \cap \overline{B}$$

Pela propriedade associativa da interseção:

$$A \cap (B \cap \overline{B})$$

Por propriedade do complemento:

$$A \cap \varnothing$$

 \emptyset = elemento absorvente da interseção:

Ø

Demonstrado que $(A \cap B) - B = \emptyset$.

d)
$$(A \cup B) - B = A - B$$

Manipulando a expressão $(A \cup B) - B$:

Pela definição de diferença:

$$(A \cup B) \cap \overline{B}$$

Pela propriedade distributiva:

$$(A \cap \overline{B}) \cup (B \cap \overline{B})$$

Por propriedade do complemento:

$$(A \cap \overline{B}) \cup \emptyset$$

 \emptyset = elemento neutro da união:

$$A \cap \overline{B}$$

Pela definição de diferença:

$$A - B$$

Demonstrado que $(A \cup B) - B = A - B$.

5.

$$A \subseteq B \to 2^A \subseteq 2^B$$

Se
$$X \in 2^A$$
, então $X \subseteq A$.

Se
$$X \subseteq A$$
, como $A \subseteq B$, $X \subseteq B$.

Se
$$X \subseteq B$$
, então $X \in 2^B$.

Logo, temos
$$X \in 2^A \to X \in 2^B$$
, ou seja, $2^A \subseteq 2^B$.

Provado que
$$A \subseteq B \to 2^A \subseteq 2^B$$
.

a)
$$A = (A - B) \uplus (A \cap B)$$

Manipulando a expressão $(A - B) \uplus (A \cap B)$:

Pela definição de diferença:

$$(A \cap \overline{B}) \uplus (A \cap B)$$

Pelo processo inverso da distributiva:

$$A \cap (\overline{B} \uplus B)$$

Por propriedade do complemento:

$$A \cap \mathcal{U}$$

 $\mathcal{U}=$ elemento neutro da interseção:

A

Demonstrado que $A = (A - B) \uplus (A \cap B)$.

b)
$$A \cup B = (A - B) \uplus (A \cap B) \uplus (B - A)$$

Analisando a expressão $(A-B) \uplus (A\cap B) \uplus (B-A)$: Pela definição de diferença:

$$(A \cap \overline{B}) \uplus (A \cap B) \uplus (B \cap \overline{A})$$

Pelo processo inverso da distributiva:

$$(A \cap (\overline{B} \uplus B)) \uplus (B \cap \overline{A})$$

Por propriedade do complemento:

$$(A\cap \mathcal{U})\uplus (B\cap \overline{A})$$

 $\mathcal{U} =$ elemento neutro da interseção:

$$A \uplus (B \cap \overline{A})$$

Pela propriedade distributiva:

$$(A \uplus B) \cap (A \uplus \overline{A})$$

Por propriedade do complemento:

$$(A \uplus B) \cap \mathcal{U}$$

 \mathcal{U} = elemento neutro da interseção:

$$A \uplus B$$

Considerando A e B disjuntos:

$$A \cup B$$

Demonstrado que $A \cup B = (A - B) \uplus (A \cap B) \uplus (B - A)$.

$$A = \{1, 2, 3\}, B = \{2, 4, 5\}, C = \{2, 7\}$$

Temos $A \cap B = \{2\}$ e $A \cap C = \{2\}$, enquanto $B \neq C$.

8.

$$(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$$

Para provar que $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$, devemos provar separadamente que $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$ e $(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$.

(1)
$$(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$$

Seja $x \in (A \cup B) - (A \cap B)$.

Pela definição de diferença:

$$x \in (A \cup B) \cap (\overline{A \cap B})$$

Pela definição de interseção:

$$x \in (A \cup B) \land x \in (\overline{A \cap B})$$

Por De Morgan:

$$x \in (A \cup B) \land x \in (\overline{A} \cup \overline{B})$$

Pela definição de união:

$$(x \in A \lor x \in B) \land (x \in \overline{A} \lor x \in \overline{B})$$

Pela propriedade distributiva:

$$((x \in A \lor x \in B) \land x \in \overline{A}) \lor ((x \in A \lor x \in B) \land x \in \overline{B})$$

Pela propriedade distributiva:

$$((x \in A \land x \in \overline{A}) \lor (x \in B \land x \in \overline{A})) \lor ((x \in A \land x \in \overline{B}) \lor (x \in B \land x \in \overline{B}))$$

 $(x \in A \land x \in \overline{A})$ e $(x \in B \land x \in \overline{B})$ são contradições:

$$(\Box \lor (x \in B \land x \in \overline{A})) \lor ((x \in A \land x \in \overline{B}) \lor \Box)$$

Pela propriedade de identidade da disjunção ($p \vee \square = p$):

$$(x \in B \land x \in \overline{A}) \lor (x \in A \land x \in \overline{B})$$

Pela definição de interseção:

$$x \in (B \cap \overline{A}) \lor x \in (A \cap \overline{B})$$

Pela definição de diferença:

$$x \in (B - A) \lor x \in (A - B)$$

Pela definição de união:

$$x \in (B - A) \cup (A - B)$$

Por comutatividade da união:

$$x \in (A - B) \cup (B - A)$$

Logo, $x \in (A \cup B) - (A \cap B) \to x \in (A - B) \cup (B - A)$, ou seja, $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$.

Provado que $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$.

(2)
$$(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$$

Seja $x \in (A - B) \cup (B - A)$.

Pela definição de união:

$$x \in (A - B) \lor x \in (B - A)$$

Pela definição de diferença:

$$x \in (A \cap \overline{B}) \lor x \in (B \cap \overline{A})$$

Pela definição de interseção:

$$(x \in A \land x \in \overline{B}) \lor (x \in B \land x \in \overline{A})$$

Pela propriedade distributiva:

$$((x \in A \land x \in \overline{B}) \lor x \in B) \land ((x \in A \land x \in \overline{B}) \lor x \in \overline{A})$$

Pela propriedade distributiva:

$$((x \in A \lor x \in B) \land (x \in \overline{B} \lor x \in B)) \land ((x \in A \lor x \in \overline{A}) \land (x \in \overline{B} \lor x \in \overline{A}))$$

 $(x \in \overline{B} \lor x \in B)$ e $(x \in A \lor x \in \overline{A})$ são tautologias:

$$((x \in A \lor x \in B) \land \blacksquare) \land (\blacksquare \land (x \in \overline{B} \lor x \in \overline{A}))$$

Pela propriedade de identidade da conjunção $(p \land \blacksquare = p)$:

$$(x \in A \lor x \in B) \land (x \in \overline{B} \lor x \in \overline{A})$$

Pela definição de união:

$$x \in (A \cup B) \land x \in (\overline{B} \cup \overline{A})$$

Pela definição de interseção:

$$x \in (A \cup B) \cap (\overline{B} \cup \overline{A})$$

Por comutatividade da união:

$$x \in (A \cup B) \cap (\overline{A} \cup \overline{B})$$

Pela propriedade do duplo complemento $(\overline{\overline{A}} = A)$:

$$x \in (A \cup B) \cap \overline{(\overline{\overline{A} \cup \overline{B}})}$$

Por De Morgan:

$$x \in (A \cup B) \cap (\overline{A \cap B})$$

Pela definição de diferença:

$$x \in (A \cup B) - (A \cap B)$$

 $\operatorname{Logo}, \, x \in (A-B) \cup (B-A) \to x \in (A \cup B) - (A \cap B), \, \operatorname{ou \, seja}, \, (A-B) \cup (B-A) \subseteq (A \cup B) - (A \cap B).$

Provado que $(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$.