Single stake mass balance

Credit: Notation is from Cogley et al., 2011

Supplemental info on board:

Diagram of stakes A (left) and stake B (right) Annual mass balance positive Annual mass balance negative winter summer winter summer _ d_w d₁ d_0 d_0 d_0 $\mathbf{f} d_0$ d_0 d_0 ıd₁

Add these length details:

Both stakes were installed at (t_0) with 2.5m sticking out of the ice. At the end of the following winter (t_w) , both stakes were sticking out of the snow by 0.5m. At the end of subsequent summer (t_1) the exposed length of stake A was 2.0m, and stake B was 3.0m.

 $h_{\rm w}=d_{\rm 0}-d_{\rm w}$

 $b_w = \rho_w h_w$

 $h_1 = d_0 - d_1$

 $b_s = b_a - b_w$

 $b_a = \rho_1 h_1$

 $h_1 = d_0 - d_1$

 $b_s = b_a - b_w$

 $b_a = \rho_1 h_1$

Add these definitions:

 t_0 = end of the summer (ablation season)

 t_w = end of the winter (accumulation season)

 t_1 = end of the mass-balance year

 $b_{\rm w}$ = winter balance (change of mass between t_0 and $t_{\rm w}$)

 $h_{\rm w}$ = $d_0 - d_{\rm w}$

 b_s = summer balance (change of mass between t_w and t_1)

End of winter snow density (ρ_w) = 400 kg m⁻³

End of summer snow density (ρ_s) = 500 kg m⁻³

Density of ice (ρ_i) = 900 kg m⁻³

Density of water (ρ_{water}) = 1000 kg m⁻³

Tell students that:

- to convert a snow or ice depth into water equivalent units the depth must be multiplied by the ratio of the snow or ice density to the density of water
- ullet the vertical coordinate is positive downwards, measured from the origin z=0 at the top of the stake
- light shading represents snow; dark shading represents firn or glacier ice

Questions:

- 1. Which of stake A or B is in the accumulation or ablation area?
- 2. Using the definitions from the figure above, and the densities given, compute the
 - a. winter,
 - b. summer and
 - c. annual mass balance (b_a) balances at each stake in water equivalent units.

HINT: First compute the winter balance then the annual and then the summer balance as described in the equations given on the board.