Chapitre 3 : Probabilités conditionnelles

1 Quelques rappels

1.1 Qu'est ce qu'une probabilité? Approche fréquentielle

Exemple du lancer de punaise :

	position 1	position 2
100000 lancers	31826	68174
Fréquence	0.31826	0.68174

probabilité position 1	0.32 env
probabilité position 2	0.68 env

La loi des grands nombres :

1.2 Généralités

1.2.1 Vocabulaire de base

- On lance un dé équilibré à six faces. On ne peut pas prévoir le résultat, on parle alors d'**expérience aléatoire**.
- Les différentes « possibilités » sont : 1, 2,3,4,5 ou 6.
 Ce sont les issues de l'expérience aléatoire
 L'ensemble de toutes les issues d'une expérience aléatoire s'appelle l'univers. On le note Ω.
- Un événement est une partie de l'univers.

 $[&]quot;Quand\ n\ est\ tr\`es\ grand,\ il\ y\ a\ de\ grandes\ chances\ que\ la\ fr\'equence\ soit\ proche\ de\ la\ probabilit\'e..."$

- Un événement élémentaire est un événement contenant une seule issue.
- Soit B un événement. L'événement contraire de B est l'événement noté B et constitué de tous les issues de Ω qui ne sont pas dans B.

1.2.2Loi de probabilité

Soit une expérience aléatoire comportant n issues : $w_1, w_2, ..., w_n$.

Définition 3.1

On définit une loi de probabilité sur une expérience aléatoire lorsque pour toute issue w_i ,

- $0 \le p\{w_i\} \le 1$ $p\{w_1\} + p\{w_2\} + \ldots + p\{w_n\} = 1$

Exemple 3.1

On considère un dé truqué.

Compléter le tableau sachant que le probabilité d'obtenir le "6" est 0.5, et que les probabilités des autres faces sont égales.

issue w_i	1	2	3	4	5	6
$p\{w_i\}$						

Propriété 3.1

Lorsqu'une loi de probabilité est définie pour une expérience aléatoire, la probabilité d'un événement est la somme des probabilités des événements élémentaires qui le compose.

Si
$$A = \{w_1, w_1, w_p\}$$

Alors $p(A) = p\{w_1\} + p\{w_2\} + \dots + p\{w_p\}$

Exemple 3.2

On considère le dé truqué précédent.

On considère l'événement A: "Le nombre est un entier pair"

Calculer ma probabilité de A.

Équiprobabilité 1.2.3

Définition 3.2

On parle de situation d'équiprobabilité lorsque toutes les issues ont la même probabilité

Propriété 3.2

On a alors $p\{w_1\} = p\{w_2\} = \dots = p\{w_n\} = \frac{1}{n}$, où n est le nombre d'issues dans l'univers

Exemple 3.3

• On considère un dé non truqué. Compléter le tableau.

issue w_i	1	2	3	4	5	6
$p\{w_i\}$						

Propriété 3.3

Soit A un événement de l'expérience aléatoire. Lorsque l'on a une situation d'équiprobabilité, $P(A) = \frac{nb}{nb} \frac{de}{d'issues} \frac{favorables}{dans} \frac{\grave{a}}{l'univers}$

Exemple 3.4

On considère un dé non truqué.

Soit A l'événement : "Le nombre est pair"

Soit B l'événement : "Le nombre strictement supérieur à 4"

Calculer p(A) et p(B)

Retour sur l'événement contraire :

Propriété 3.4

Si \bar{B} est l'événement contraire à B, alors : $p(B) + p(\bar{B}) = 1$.

-\(\frac{1}{2}\)-Approche

On considère une urne opaque dans laquelle il y a 16 boules indiscernables au toucher. 8 sont bleues et 8 sont rouges.

Akim tire une première boule au hasard et note sa couleur.

Il réalise ainsi un tirage de deux boules sans remise.

- 1. Représenter la situation par un arbre pondéré.
- 2. Quelle est la probabilité que la première boule soit bleue?
- 3. En considérant que la première boule est bleue, quelle est la probabilité que la seconde le soit également ?

2 Les probabilités conditionnelles

-\ Approche

Dans une classe, 55% sont des filles, et 40% sont des filles demi-pensionnaires. Quelle est la probabilité qu'un élève soit demi-pensionnaire sachant que c'est une fille?

On suppose que A et B sont deux événements d'un univers Ω et que $p(A) \neq 0$.

Définition 3.3

La probabilité conditionnelle de l'événement B sachant que A est réalisé se note $p_A(B)$. Elle est définie par $p_A(B) = \frac{p(A \cap B)}{p(A)}$.

Propriété 3.5

La probabilité $p_A(B)$ vérifie :

- $0 \le p_A(B) \le 1$
- $p_A(B) + p_A(\bar{B}) = 1$

Propriété 3.6

Si A et B sont deux événements de probabilité non nulle, alors $p(A \cap B) = p(A) \times p_A(B) = p(B) \times p_B(A)$.

Exercices

Page 288 numéros 28, 29, 31

Savoir-Faire 3.1

SAVOIR CALCULER UNE PROBABILITÉ CONDITIONNELLE EN UTILISANT UN TABLEAU À DOUBLE ENTRÉE

Un club de sport rassemble 180 membres répartis en juniors et en séniors.

On compte 135 séniors dont 81 hommes.

Il y a 27 garçons parmi les juniors.

Déterminer la probabilité que la personne soit de catégorie junior sachant que le personne est une femme.

On considère les événements :

S: Le sportif est de catégorie sénior

H: Le sportif est un homme

Exercices

Page 289 numéros 40, 41

Savoir-Faire 3.2

SAVOIR CONSTRUIRE UN ARBRE PONDÉRÉ EN LIEN AVEC LA SITUATION

A l'issue d'une compétition, des cyclistes passent un contrôle anti-dopage.

On estime que 25% des cyclistes sont dopés. On sait aussi, avec le test utilisé, qu'un cycliste dopé est contrôlé positif dans 90% des cas, alors qu'un cycliste non dopé est contrôlé positif dans 8% des cas.

On choisit un cycliste au hasard, et on le soumet au test anti-dopage. On considère les événements :

D : Le sportif est dopé

T: Le sportif est testé positif

Exercices

Page 290 numéros 47, 50

3 Formules des probabilités totales

3.1 Cas avec deux événements A et B

3.1.1 Principe avec un arbre pondéré

Sur chaque branche, on peut noter la probabilité correspondante.

Définition 3.4

Un chemin est une suite de branche.

Propriété 3.7 (admise)

La probabilité d'un chemin est le produit des probabilités rencontrées le long de ce chemin.

Exemples 3.5

- Exemple 1
- Exemple 2
- Exemple 3
- Exemple 4

Propriété 3.8 (admise)

La probabilité d'un événement est la somme des probabilités de tous les chemins menant à l'événement.

Exemples 3.6

- Exemple 1
- Exemple 2

3.1.2 Formules des probabilités totales (cas particuliers)

Ainsi, •
$$p(A) = • p(B) =$$

Exercices

 $19~{\rm et}~20~{\rm page}~287$

3.2 Cas général

Définition 3.5

Une partition de l'univers Ω est un ensemble d'événement deux à deux incompatibles, et dont la réunion est Ω .

Propriété 3.9 (admise)

On considère $A_1, A_2, ..., A_n$, n événéments de probabilités non nulles et formant une partition de l'univers Ω . Pour tout événement B, on a :

$$p(B) = p(A_1 \cap B) + p(A_2 \cap B) + \dots + p(A_n \cap B).$$

Savoir-Faire 3.3

CALCULER UNE PROBABILITÉ À L'AIDE DE LA FORMULE DES PROBABILITÉS TOTALES Une centrale d'achat se procure des 40% des vêtements chez un fournisseur A et le reste chez un fournisseur B.

20% des vêtements du fournisseur A présentent un défaut, et 25% des vêtements du fournisseurs B présentent un défaut.

Certains vêtements présentent des défauts, et sont vendus à prix réduit. On considère que :

- A : "Le vêtement provient du fournisseur A"
- B : "Le vêtement provient du fournisseur B"
- N: "Le vêtement est vendu a prix normal"

On choisit au hasard un vêtement de la centrale d'achat.

- 1. Modéliser la situation avec un arbre pondéré.
- 2. Calculer la probabilité de choisir un vêtement provenant du fournisseur A et vendu à prix normal.
- 3. Calculer la probabilité d'avoir un vêtement à prix normal.
- 4. En déduire la probabilité d'avoir un vêtement à prix réduit.
- 5. Calculer la probabilité que le vêtement provienne du fournisseur A sachant qu'il est vendu à prix normal.

Exercices53, 55 et 56 page 291

4 Probabilités et indépendance

4.1 Indépendance de deux événements

Dans l'ensemble Ω , on considère deux événements A et B de probabilité non nulle. $p_A(B) = p_(B)$ signifie que la réalisation ou non de l'événement A ne modifie pas la probabilité de B. Dans ce cas, on dit que l'événement B est indépendant à A.

Exercices

Démontrer que si B est indépendant à A, alors A est indépendant de B.

Propriété 3.10 (admise)

Soient A et B deux événements de probabilité non nulle. Alors les propriétés suivantes sont équivalentes :

- $p_A(B) = p(B)$
- $p_B(A) = p(A)$
- $p(A \cap B) = p(A) \times p(B)$

Propriété 3.11 (admise)

Soient A et B deux événements de probabilité non nulle. Deux événements sont indépendants si et seulement si $p(A \cap B) = p(A) \times p(B)$

Savoir-Faire 3.4

SAVOIR MONTRER QUE DEUX ÉVÉNEMENTS SONT INDÉPENDANTS On tire au hasard une carte dans un jeu de 32 cartes. On considère les événements suivants :

- C : "La carte tirée est un carreau"
- R : "La carte tirée est une carte rouge"
- V: "La carte tirée est un valet"
- 1. Les événements C et B sont-ils indépendants?
- 2. Les événements C et V sont-ils indépendants?

4.2 Succession de deux épreuves indépendantes