Лабораторная работа № 1

Операционные системы

Иванов Сергей Владимирович, НПИбд-01-23 17 февраля 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Создать виртуальную машину
- 2. Установить ОС на виртуальную машину
- 3. Настроить систему

Выполнение работы

Скачиваем дистрибутив

Heoбходимо скачать дистрибутив Fedora Sway 39 https://fedoraproject.org/spins/sway/download/index.html

For Intel and AMD x86_64	system	s	
Fedora Sway Spin 39 L	ive ISO	iso	

Рис. 1: Скачивание дистрибутива

Создание виртуальной машины

Укажем имя машины и подключим наш скачанный образ Linux Sway.

Рис. 2: Создание виртуальной машины

Создание виртуальной машины

Укажем объём памяти и количество виртуальных процессоров. Я указал 4096 мб оперативной памяти и 2 ЦП. Далее укажем объем диска 80гб.

Рис. 3: Указываем характеристики

Рис. 4: Виртуальный жесткий диск

Запуск виртуальной машины

Запускаем виртуальную машину.

Рис. 5: Запуск виртуальной машины

Установка ОС

Выбираем диск для установки операционной системы, создаем учетную запись и начинаем установку.

Рис. 6: Установка ОС

Обновление пакетов

Обновим все пакеты командой - 'dnf -y update'

Рис. 7: Обновление пакетов

Установка tmux и mc

Установим программы для удобства работы в консоли командой - 'dnf install tmux mc'

Пакет		Архитектура	Версия	Репозиторий	Разме
′становка:					
		x86_64	1:4.8.30-1.fc39	fedora	1.9
/становка зависимостей:					
gpm-libs		x86_64	1.20.7-44.fc39	fedora	20
		noarch	5.74-502.fc39	updates	
		x86_64	1.88-502.fc39	updates	
		noarch	1.54-500.fc39	fedora	29
		noarch	0.68-502.fc39	updates	
		x86_64	2.188-501.fc39	fedora	56
		noarch	1.20-500.fc39	fedora	
perl-Digest-MD5		x86_64	2.58-500.fc39	fedora	
		x86_64	1.54-502.fc39	updates	26
		x86_64	4:3.19-500.fc39	fedora	
perl-Errno	***	x86_64	1.37-502.fc39	updates	
	${\mathbb I}$	noarch	5.77-500.fc39	fedora	
		x86_64	1.15-502.fc39	updates	
		noarch	2.86-502.fc39	updates	
perl-File-Path		noarch	2.18-500.fc39	fedora	35

Рис. 8: Установка tmux

Автоматическое обновление

Установим программное обеспечение воспользовавшись командой - 'dnf install dnf-automatic'

Рис. 9: Установка ПО для автоматического обновления

Автоматическое обновление

Запустим таймер командой - 'systemctl enable -now dnf-automatic.timer'

```
[root@svivanov1 ~]# dnf install dnf-automatic
Последняя проверка окончания срока действия метаданных: 1:56:01 назад, Вт 13 фев 2024 11:57:40.
Пакет dnf-automatic-4.18.2-1.fc39.noarch уже установлен.
Зависимости разрешены.
Нет действий для выполнения.
Выполнено!
[root@svivanov1 ~]# systemctl enable --now dnf-automatic.timer
[root@svivanov1 ~]#
```

Рис. 10: Запуск таймера

Отключение SELinux

Heoбходимо отключить SELinux. - В файле /etc/selinux/config заменим значение SELINUX=enforcing на значение SELINUX=permissive.

```
# To revert back to SELINUX enabled:

# grubby --update-kernel ALL --remove-args selinux
#

SELINUX=permissive
# SELINUXTYPE= can take one of these three values:
# targeted - Targeted processes are protected,
# minimum - Modification of targeted policy. Only selected processes are protected.
# mls - Multi Level Security protection.

SELINUXTYPE=targeted

**

1]ONOMIN 2_COXPANHITE 35DOX 4]SAMENA 5_XONHR 6]Repe=THITE 7]ONCK 3_VARNITE 5_NEMBER 10_DAXOA

[O] 0.TMC* "OC 22 11-Qen-24"
```

Рис. 11: Отключение SELinux

- Войдём в ОС под заданной нами при установке учётной записи.
- Нажмем комбинацию Win+Enter для запуска терминала.
- Запустим tmux, переключимся на роль супер-пользователя.
- Установим средства разработки 'dnf -y group install "Development Tools" '

Рис. 12: Установка средств разработки

Установим пакет DKMS используя команду

- 'dnf -y install dkms'

```
Подготовка
  Установка
                   : kernel-devel-matched-6.7.4-200.fc39.x86 64
  Установка
                   : openssl-1:3.1.1-4.fc39.x86_64
                   : dkms-3.0.12-1.fc39.noarch
  Установка
  Запуск скриптлета: dkms-3.0.12-1.fc39.noarch
Created symlink /etc/systemd/system/multi-user.target.wants/dkms.service → /usr/lib/systemd/system/dkm
s.service.
                   : openssl-1:3.1.1-4.fc39.x86 64
  Проверка
  Проверка
                   : dkms-3.0.12-1.fc39.noarch
  Проверка
                   : kernel-devel-matched-6.7.4-200.fc39.x86_64
Установлен:
  dkms-3.0.12-1.fc39.noarch kernel-devel-matched-6.7.4-200.fc39.x86 64 openssl-1:3.1.1-4.fc39.x86 64
Выполнено!
 coot@svivanov1:~#
   0:sudo*
                                                                 'mc [root@svivanov1]:~" 19:50 15-фев-2
```

Рис. 13: Установка DKMS

- В меню виртуальной машины подключим образ диска дополнений гостевой ОС.
- Подмонтируем диск командой 'mount /dev/sr0 /media'

Рис. 14: Подключение Диска дополнений гостевой ОС.

```
root@svivanov1:~# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
root@svivanov1:~#
```

Рис. 15: Подмонтируем диск

После чего установим драйвера - '/media/VBoxLinuxAdditions.run'

```
oot@svivanov1:~# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.14 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.0.14 of VirtualBox Guest Additions...
Copying additional installer modules ...
Installing additional modules ...
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd guicksetup <version>
VirtualRox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
6.7.4-200.fc39.x86_64.
grep: warning: stray \ before /
grep: warning: stray \ before /
grep: warning: stray \ before /
ValueError: File context for /opt/VBoxGuestAdditions-7.0.14/other/mount.vboxsf already defined
 oot@svivanov1:~#
```

Рис. 16: Установка драйвера

Настройка раскладки клавиатуры

- Запустим tmux
- Переключимся на роль супер-пользователя.
- Создадим конфигурационный файл ~/.config/sway/config.d/95-system-keyboard-config.conf.
- Отредактируем его.

Рис. 17: Редактирование конфиг. файла

Настройка раскладки клавиатуры

Отредактируем конфигурационный файл /etc/X11/xorg.conf.d/00-keyboard.conf

Рис. 18: Редактируем файл

Установка имени хоста

Необходимо установить имя хоста - 'hostnamectl set-hostname username'. - Проверим что имя хоста установлено верно, после чего перезагрузим систему.

```
root@svivanov1:~# hostnamectl set-hostname svivanov1
root@svivanov1:~# hostnamectl
Static hostname: svivanov1
Icon name: computer-vm
```

Рис. 19: Изменение имени хоста.

Подключение общей папки

Подключим общую папку.

C:\Users\lserg>"C:\Program Files\Oracle\VirtualBox\VBoxManage.exe" sharedfolder add "sv ivanov1" --name=work --hostpath="C:\work" --automount

Рис. 20: Общая папка

Установка pandoc

- Запустим терминальный мультиплексор tmux
- Установим pandoc с помощью менеджера пакетов 'dnf -y install pandoc'

```
Загрузка пакетов:
(1/2): pandoc-common-3.1.3-25.fc39.noarch.rpm
                                                                     3.1 MB/s | 527 kB
                                                                                           00:00
(2/2): pandoc-3.1.3-25.fc39.x86 64.rpm
                                                                                           00:06
Обший размер
                                                                     3.6 MB/s | 26 MB
                                                                                           00:07
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
 Подготовка
  Установка
                : pandoc-common-3.1.3-25.fc39.noarch
  Установка
             : pandoc-3.1.3-25.fc39.x86 64
  Запуск скриптлета: pandoc-3.1.3-25.fc39.x86_64
                  : pandoc-3.1.3-25.fc39.x86 64
  Проверка
  Проверка
                  : pandoc-common-3.1.3-25.fc39.noarch
Установлен:
  pandoc-3.1.3-25.fc39.x86 64
                                                pandoc-common-3.1.3-25.fc39.noarch
Выполнено!
 coot@svivanov1:~#
```

Рис. 21: Установка pandoc

Установка pandoc-crossref

Скачаем необходимую версию pandoc-crossref (https://github.com/lierdakil/pandoc-crossref/releases). Распакуем архив и поместим их в каталог /usr/local/bin.

```
svivanoviesvivanovi:-$ is

Видео Документы Загрузки Изображения Музыка Общедоступные 'Рабочий стол' Шаблоны

svivanoviesvivanovi:-> ed Загрузки>
svivanoviesvivanovi:-> da Загрузки>
svivanoviesvivanovi:-> da загрузки>
svivanoviesvivanovi:-> da zaгрузки>
svivanoviesvivanovi:-> da zaгрузки>
svivanoviesvivanovi:-> da zaгрузки>
svivanoviesvivanovi:-> da zarpysku>
star -xvf pandoc-crossref-Linux.tar.xz

pandoc-crossref
pandoc-crossref
pandoc-crossref pandoc-crossref-Linux.tar.xz
svivanoviesvivanovi:-> da zarpysku>
svivanoviesvivanovi:-> da zarpysku>
sudo mv pandoc-crossref': Oтказано в доступе
svivanoviesvivanovi:-> da zarpysku>
sudo mv pandoc-crossref /usr/local/bin
[sudo] паром для svivanovi:-> svivanovi:-> svivanoviesvivanovi:-> svivanovi:-> svivanovi!-> svivanovi
```

Рис. 22: Установка pandoc-crossref

Установка TeXLive

'dnf -y install texlive-scheme-full'

```
texlive-zhspacing-11:svn41145-69.fc39.noarch
texlive-zxjafbfont-11:svn28539.0.2-69.fc39.noarch
texlive-zxjafont-11:svn62864-69.fc39.noarch
texlive-zxjatype-11:svn53500-69.fc39.noarch

Выполнено!
root@svivanov1:~#
[0] 0:sudo*
```

Рис. 23: Установка TeXlive

Домашнее задание

Версия ядра Linux (Linux version).

Чтобы посмотреть версию ядра, можно воспользоваться командой dmesg grep -i 'linux version'. Версия ядра: 6.7.4-200.

Рис. 24: Версия ядра

Частота процессора (Detected Mhz processor).

Частоту процессора можно узнать командой dmesg | grep -I "MHz". Частота процессора: 2688.004 MHz.

```
root@svivanov1:-# dmesg | grep -I "MHz"
[ 0.000005] tsc: Detected 2688.004 MHz processor
[ 2.222950] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:ad:11:9d
root@svivanov1:-#
```

Рис. 25: Частота процессора

Модель процессора (CPU0).

Модель процессора можно посмотреть командой cat /proc/cpuinfo | grep "model name".

```
root@svivanov1:-# cat /proc/cpuinfo | grep "model name"

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

model name : 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

root@svivanov1:-#
```

Рис. 26: Модель процессора

Объем доступной оперативной памяти (Memory available).

Объём доступной оперативной памяти можно посмотреть командой free -m. В моём случае: Всего – 3894 Мб. Используется – 779 Мб. Свободно – 3115 Мб.

```
root@svivanov1:~# free -m
total used free shared buff/cache available
Mem: 3894 779 730 27 2692 3115
Swap: 3893 0 3893
root@svivanov1:~#
```

Рис. 27: Объем оперативной памяти

Тип обнаруженного гипервизора (Hypervisor detected).

Тип обнаруженного гипервизора можно посмотреть командой dmesg | grep -I "hypervisor detected". В моём случае: KVM.

```
root@svivanov1:~# dmesg | grep -I "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
root@svivanov1:~#
```

Рис. 28: Тип гипервизора

Тип файловой системы корневого раздела.

Тип файловой системы корневого раздела можно посмотреть командой findmnt. Тип файловой системы корневого раздела: ext4.

```
svs/firmware/efi/efivars/
                    efivarfs
                               efivarfs rw.nosuid.nodev.noexec.relatime
 -/svs/fs/bpf
                    hnf
                               bpf
                                        rw.nosuid.nodev.noexec.relatime.mode=700
 -/svs/kernel/config
                    confiafs
                               configfs rw.nosuid.nodev.noexec.relatime
/proc
                    proc
                               proc
                                        rw,nosuid,nodev,noexec,relatime
└/proc/sys/fs/binfmt misc
                                        rw,relatime,fd=34,pgrp=1,timeout=0,minproto=5,maxproto=5,dir
                    systemd-1
                               autofs
                    tmpfs
                               tmpfs
                                        rw.nosuid.nodev.seclabel.size=797632k.nr inodes=819200.mode=
└/run/user/1000
                    tmpfs
                               tmpfs
                                        rw,nosuid,nodev,relatime,seclabel,size=398812k,nr_inodes=997
  └/run/user/1000/doc
                   portal
                               fuse.por rw,nosuid,nodev,relatime,user_id=1000,group_id=1000
                    tmpfs
                                        rw.nosuid.nodev.seclabel.size=1994080k.nr inodes=1048576.ino
/tmp
                               tmpfs
/home
                   /dev/sda3[/home]
                                        rw,relatime,seclabel,compress=zstd:1,space_cache=v2,subvolid
                               btrfs
                                        rw.relatime.seclabel
/boot
                    /dev/sda2 ext4
└/hoot/efi
                                        rw.relatime.fmask=0077.dmask=0077.codepage=437.iocharset=asc
                    /dev/sda1
/var/lib/nfs/rpc pipefs
                               rpc_pipe rw.relatime
                    sunrpc
ot@svivanov1:~#
```

Рис. 29: Тип файловой системы

Последовательность монтирования файловых систем.

Последовательность монтирования файловых систем можно посмотреть командой dmesg | grep -i "mount"

```
svivanov1:~# dmesq | grep -i "mount'
    0.0846561 Mount-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
    0.084660] Mountpoint-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
    1.9724201 BTRFS: device label fedora devid 1 transid 356 /dev/sda3 scanned by mount (487)
    1.9757201 BTRFS info (device sda3): first mount of filesystem 2668caca-cdf2-4e9d-8638-58b43c87f3
    5.439113] systemd[1]: Set up automount proc-sys-fs-binfmt_misc.automount - Arbitrary Executable
ile Formats File System Automount Point.
    5.467821] systemd[1]: Mounting dev-hugepages.mount - Huge Pages File System...
    5.469738] systemd[1]: Mounting dev-mqueue.mount - POSIX Message Queue File System...
    5.470872] systemd[1]: Mounting sys-kernel-debug.mount - Kernel Debug File System...
    5.472043] systemd[1]: Mounting sys-kernel-tracing.mount - Kernel Trace File System...
    5.496940] systemd[1]: Starting systemd-remount-fs.service - Remount Root and Kernel File Systems
    5.502520] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
    5.502684] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File System.
    5.5027921 systemd[1]: Mounted sys-kernel-debug mount - Kernel Debug File System.
    5.5028941 systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
    6.335755] EXT4-fs (sda2): mounted filesystem 9c5a38a4-96ec-4be3-a5ff-223160ff9ab6 r/w with ordere
 data mode. Quota mode: none.
```

Рис. 30: Последовательность монтирования файловых систем

Вывод

Вывод

В ходе работы были приобретены практические навыки установки виртуальной машины и операционной системы на виртуальную машину, а также настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

- 1. Dash, P. Getting Started with Oracle VM VirtualBox / P. Dash. Packt Publishing Ltd, 2013. 86 cc.
- 2. Colvin, H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. VirtualBox / H. Colvin. CreateSpace Independent Publishing Platform, 2015. 70 cc.
- 3. Vugt, S. van. Red Hat RHCSA/RHCE 7 cert guide : Red Hat Enterprise Linux 7 (EX200 and EX300) : Certification Guide. Red Hat RHCSA/RHCE 7 cert guide / S. van Vugt. Pearson IT Certification, 2016. 1008 cc.
- 4. Робачевский, А. Операционная система UNIX / А. Робачевский, С. Немнюгин, О. Стесик. 2-е изд. Санкт-Петербург : БХВ-Петербург, 2010. 656 сс.
- 5. Немет, Э. Unix и Linux: руководство системного администратора. Unix и Linux / Э. Немет, Г. Снайдер, Т.Р. Хейн, Б. Уэйли. 4-е изд. Вильямс, 2014. 1312 сс.

(Variation III Constitution and I investigated and