

 $D. e_{ss} = \lim sE(s)$  $C.e_{ss} = \lim E(s)$ 17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是() C.滞后校正 D.滞后-超前 A.减小增益 B.超前校正 18.相位超前校正装置的奈氏曲线为() B.上半圆 C.下半圆 D.45° 弧线 A.圆 19.开环传递函数为  $G(s)H(s)=\frac{K}{s^3(s+3)}$ , 则实轴上的根轨迹为 ( ) A. $(-3, \infty)$  B. $(0, \infty)$  C. $(-\infty, -3)$  D.(-3, 0)20.在直流电动机调速系统中,霍尔传感器是用作()反馈的传感器。 C.位移 B.电流 D.速度 填空题(每小题1分,共10分) 21.闭环控制系统又称为 系统。 22.一线性系统, 当输入是单位脉冲函数时, 其输出象函数与相同。 23.一阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为 24.控制系统线性化过程中,线性化的精度和系统变量的 有关。 26.一般讲系统的位置误差指输入是 所引起的输出位置上的误差。 27.超前校正是由于正相移的作用,使截止频率附近的 明显上升,从而具有较大 的稳定裕度。 28.二阶系统当共轭复数极点位于\_\_\_\_\_\_\_线上时,对应的阻尼比为 0.707。 29.PID 调节中的"P"指的是 控制器。 30.若要求系统的快速性好,则闭环极点应距虚轴越 越好。

- 31.稳定性
- 32.理想微分环节
- 33.调整时间
- 34.正穿越
- 35.根轨迹

### 简答题(每小题5分,共25分)

名词解释(每小题3分,共15分)

- 36.为什么说物理性质不同的系统,其传递函数可能相同?举例说明。
- 37.一阶惯性系统当输入为单位阶跃函数时,如何用实验方法确定时间常数 T ? 其调整时间  $t_s$  和时间常数 T 有何关系,为什么?
- 38.什么是主导极点? 主导极点起什么作用,请举例说明。
- 39.什么是偏差信号?什么是误差信号?它们之间有什么关系?
- 40.根轨迹的分支数如何判断?举例说明。

### 计算题(第41、42题每小题5分,第43、44题每小题10分,共30分)

41.求图示方块图的传递函数,以 $X_i(s)$ 为输入, $X_0(s)$ 为输出。





43.欲使图所示系统的单位阶跃响应的最大超调量为 20%,峰值时间为 2 秒,试确定 K 和 K1值。



44.系统开环频率特性由实验求得,并已用渐近线表示出。试求该系统的开环传递函数。(设系统是最小相位系统)。



# 单项选择题(每小题1分,共20分)

- 1. 系统已给出,确定输入,使输出尽可能符合给定的最佳要求,称为()
  - A.最优控制
- B.系统辨识
- C.系统分析
- D.最优设计
- 2. 与开环控制系统相比较,闭环控制系统通常对()进行直接或间接地测量,通过反馈环节去影响控制信号。
  - A.输出量
- B.输入量
- C.扰动量
- D.设定量
- 3. 在系统对输入信号的时域响应中, 其调整时间的长短是与() 指标密切相关。
  - A.允许的峰值时间

B.允许的超调量

C.允许的上升时间

- D.允许的稳态误差
- 4. 主要用于产生输入信号的元件称为( )
  - A.比较元件
- B.给定元件
- C.反馈元件 D.放大元件
- 5. 某典型环节的传递函数是  $G(s) = \frac{1}{5s+1}$  ,则该环节是( )
  - A.比例环节
- B.积分环节
- C.惯性环节 D.微分环节
- 6. 已知系统的微分方程为 $3\ddot{x}_0(t) + 6\dot{x}_0(t) + 2x_0(t) = 2x_i(t)$ ,则系统的传递函数是( )

A. 
$$\frac{2}{3s^2 + 6s + 2}$$

B. 
$$\frac{1}{3s^2 + 6s + 2}$$

|              |             | $C.\frac{2}{2s^2+6s+3}$ |                                   | D. $\frac{1}{2s^2 + 6s + 3}$                              |                        |
|--------------|-------------|-------------------------|-----------------------------------|-----------------------------------------------------------|------------------------|
|              |             | A.并联越过的方<br>C.串联越过的方    | ,块图单元<br>,块图单元                    | ,应在引出线支路上<br>B.并联越过的方均<br>D.串联越过的方均                       | 央图单元的倒数<br>央图单元的倒数     |
|              | 8.          | 设一阶系统的传                 | 達遊 $G(s) = \frac{7}{s+2}$ ,       | 其阶跃响应曲线在 t                                                | =0 处的切线斜率为( )          |
|              | Α.          | 7                       | B.2                               | $C.\frac{7}{2}$                                           | $D.\frac{1}{2}$        |
| 10.          |             | A.上升时间<br>二阶振荡环节乃       | B.峰值时间<br>奎斯特图中与虚轴?               | 之<br>反映相对稳定性的(<br>C.调整时间<br>交点的频率为( )<br>C.最大相位频率         | D.最大超调量                |
| 11.          |             | 设系统的特征方                 | $ \bar{i}$ 程为 $D(s) = s^4 + 2s^3$ | $s^3 + s^2 + 2s + 1 = 0$ , $M$                            | 此系统中包含正实部特征的个数为( )     |
| 12.          |             | A.0~15°                 | 「较好的稳定性, 希望<br>B.15°∼30°          | 型相位裕量γ为( )<br>C.30°∼60°                                   |                        |
| 13.          |             | 设一阶系统的传                 | 递函数是 $G(s) = -\frac{1}{s}$        | $\frac{2}{+1}$ ,且容许误差为                                    | 5%,则其调整时间为( )          |
| 14.          |             | A.1                     | B.2                               |                                                           | D.4                    |
|              |             | A. $\frac{K}{Ts+1}$     | B. $\frac{s+d}{s(s+a)(s+b)}$      | $\frac{K}{s(s+a)}$ C. $\frac{K}{s(s+a)}$                  | $D.\frac{K}{s^2(s+a)}$ |
| 15. <u>i</u> | 单位          | 立反馈系统开环传                | $=$ 透函数为 $G(s) = -\frac{1}{s}$    | $\frac{4}{(s^2+3s+2)}$ , $\stackrel{\underline{\vee}}{=}$ | 输入为单位斜坡时,其加速度误差为( )    |
| A            | <b>A</b> .0 |                         | .0.25                             |                                                           | D.∞                    |
| 16.          | į           | 若已知某串联校                 | 正装置的传递函数为                         | $ \forall G_c(s) = \frac{s+1}{0.1s+1}, $                  | 则它是一种( )               |
| 17.          |             | 确定根轨迹大致<br>A.特征方程       | 走向,一般需要用<br>B.幅角条件                | ( )条件就够了。<br>C.幅值条件                                       | D.幅值条件+幅角条件            |
| 18.          |             | 某校正环节传递                 | E函数 $G_c(s) = \frac{100s}{10s}$   | $\frac{1+1}{1+1}$ ,则其频率特性                                 | 的奈氏图终点坐标为( )           |
|              |             |                         |                                   | C.(1, $j1$ )                                              |                        |
| 19.          |             | 系统的开环传递                 | E函数为 $\frac{K}{s(s+1)(s+1)}$      | ——, 则实轴上的根<br>+ 2)                                        | 轨迹为( )                 |

20.  $A \times B$  是高阶系统的二个极点,一般当极点 A 距离虚轴比极点 B 距离虚轴大于 ( ) 时,分析系统时可忽略极 点A。 A.5 倍 B.4 倍 C.3 倍 D.2 倍

A.(-2, -1)和  $(0, \infty)$ B.(- $\infty$ , -2)和(-1, 0)C.(0, 1)和(2,  $\infty)$ D.(- $\infty$ , 0)和(1, 2)

12.

13.

14.

16.

17.

18.

19.

### 填空题(每小题1分,共10分)

- 21. "经典控制理论"的内容是以 为基础的。
- 22.控制系统线性化过程中,变量的偏移越小,则线性化的精度
- 23.某典型环节的传递函数是  $G(s) = \frac{1}{s+2}$  ,则系统的时间常数是\_\_\_\_\_\_
- 24.延迟环节不改变系统的幅频特性,仅使 发生变化。
- 25.若要全面地评价系统的相对稳定性,需要同时根据相位裕量和\_\_\_\_\_来做出判断。
- 27.输入相同时,系统型次越高,稳态误差越。
- 28.系统主反馈回路中最常见的校正形式是 和反馈校正
- 29.已知超前校正装置的传递函数为 $G_c(s)=rac{2s+1}{0.32s+1}$ ,其最大超前角所对应的频率 $\omega_m=$ \_\_\_\_\_\_\_。
- 30.若系统的传递函数在右半S平面上没有\_\_\_\_\_\_,则该系统称作最小相位系统。

### 名词解释(每小题3分,共15分)

- 31.数学模型
- 32.反馈元件
- 33.最大超调量
- 34.频率响应
- 35.幅值裕量

### 简答题(每小题5分,共25分)

- 36.开环控制系统和闭环控制系统的主要特点是什么?
- 37.如何用实验方法求取系统的频率特性函数?
- 38.伯德图中幅频特性曲线的首段和传递函数的型次有何关系?
- 39.根轨迹与虚轴的交点有什么作用?举例说明。
- 40.系统闭环零点、极点和性能指标的关系。

### 计算题(第41、42题每小题5分,第43、44题每小题10分,共30分)

41.根据图示系统结构图,求系统传递函数 C(s)/R(s)。



42.建立图示系统的数学模型,并以传递函数形式表示。



43.已知系统的传递函数  $G(s) = \frac{10}{s(0.1s+1)}$ , 试分析系统由哪些环节组成并画出系统的 Bode 图。

44.电子心率起搏器心率控制系统结构如图所示,其中模仿心脏的传递函数相当于一个纯积分环节,要求: (1)若 $\zeta = 0.5$ ,对应最佳响应,问起搏器增益 K 应取多大。

(2)若期望心速为 60 次/min,并突然接通起搏器,问 1s 后实际心速为多少?瞬时的最大心速多大。



3

#### 选择题

| 1. | 如果被调量随着给定量的变化而变化, | 这种控制系统叫 | ( | ) |
|----|-------------------|---------|---|---|
|----|-------------------|---------|---|---|

A.恒值调节系统

- B.随动系统
- C.连续控制系统
- D.数字控制系统

2. 与开环控制系统相比较,闭环控制系统通常对( )进行直接或间接地测量,通过反馈环节去影响控制信号。

- A.输出量
- B.输入量
- C.扰动量
- D.设定量

3. 直接对控制对象进行操作的元件称为( )

A.给定元件

- B.放大元件
- C.比较元件
- D.执行元件

4. 某典型环节的传递函数是 $G(s) = \frac{1}{Ts}$ ,则该环节是( )

- A.比例环节
- B.惯性环节 C.积分环节
- D.微分环节

5. 已知系统的单位脉冲响应函数是  $y(t) = 0.1t^2$ ,则系统的传递函数是( )

- $B.\frac{0.1}{s}$
- C.  $\frac{0.1}{s^2}$  D.  $\frac{0.2}{s^2}$

6. 梅逊公式主要用来( )

A.判断稳定性

B.计算输入误差

C.求系统的传递函数

- D.求系统的根轨迹
- 7. 已知二阶系统单位阶跃响应曲线呈现出等幅振荡,则其阻尼比可能为( )

- B.0.707
- C.0

8. 在系统对输入信号的时域响应中, 其调整时间的长短是与() 指标密切相关。

A.允许的稳态误差

B.允许的超调量

C.允许的上升时间

D.允许的峰值时间

9. 设一阶系统的传递  $G(s) = \frac{7}{s+2}$  ,其阶跃响应曲线在 t=0 处的切线斜率为( )

A.7

10.若系统的传递函数在右半 S 平面上没有零点和极点,则该系统称作( )

- A.非最小相位系统 B.最小相位系统 C.不稳定系统
- D.振荡系统

11.一般为使系统有较好的稳定性,希望相位裕量γ为( )

- A.0∼15°
- B.15°∼30°
- C.30°∼60°
- D.60°∼90°

12.某系统的闭环传递函数为:  $G_B(s) = \frac{s+2k}{s^3+3s^2+4s+2k}$ , 当 k=( )时,闭环系统临界稳定。

13.开环传递函数为 $G(s)H(s) = \frac{K}{S^3(S+4)}$ ,则实轴上的根轨迹为( )

| $A.(-4, \infty)$          | B. $(-4, 0)$                   | $C.(-\infty, -4)$                        | D.( $0, \infty$ )                 |                                   |       |
|---------------------------|--------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|-------|
| 14.单位反馈系统开                | 环传递函数为 $G(s)$                  | $=\frac{4}{s^2(s^2+3s+2)},$              | 当输入为单位斜                           | 坡时,其加速度误差为                        | J ( ) |
| A.0                       | B.0.25                         | C.4                                      | D.∞                               |                                   |       |
| 15.系统的传递函数                | $G(s) = \frac{5}{s^2(s+1)(s)}$ | ,其系统的增益<br>+4)                           | 益和型次为 ( )                         |                                   |       |
|                           |                                | C.5, 4                                   |                                   |                                   |       |
| 16.若己知某串联校                | 正装置的传递函数                       |                                          | <i>2s</i> + 1<br>2s + 1<br>2s + 1 | 一种 ( )                            |       |
|                           |                                | C.相位滞后—超南                                |                                   |                                   |       |
| 17.进行串联超前校                | 正前的穿越频率 $\omega_c$             | 与校正后的穿越频率                                | $oxed{\omega_c'}$ 的关系,通常          | 注是( )                             |       |
| A. $\omega_c = \omega_c'$ | $B.\omega_c > \omega_c'$       | $C. \omega_c < \omega_c'$                | $D.\omega_c \ni \omega_c$         | 无关                                |       |
| 18.已知系统开环传                | 递函数 $G(s) = \frac{1}{s(s)}$    | $\frac{K^*}{+1)(s+2)}$ ,则与虚              | 轴交点处的 <i>K*</i> =                 | ( )                               |       |
| A.0                       | B.2                            | C.4                                      | D.6                               |                                   |       |
| 19.某校正环节传递                | 函数 $G_c(s) = \frac{100s}{10s}$ | C.4<br>+1<br>+1, 则其频率特性                  | 的奈氏图终点坐标                          | 京为( )                             |       |
| A. $(0, j0)$              | B.(1, <i>j</i> 0)              | C. $(1, j1)$                             | D.(10, j0)                        | 3大于( )时,分析系                       |       |
|                           | B.4 倍                          | C.3 倍                                    | D.2 倍                             |                                   |       |
| 21.对控制系统的首22.在驱动力矩一定      |                                | 。<br>统的转动惯量越小,                           | 其                                 | 越好。                               |       |
|                           |                                | $\frac{1}{+2}$ ,则系统的时间                   |                                   |                                   |       |
|                           |                                | · · · · · · · · · · · · · · · · · · ·    |                                   |                                   |       |
|                           |                                | 其响应的稳态误差                                 | 恒为                                | 0                                 |       |
| 26.反馈控制原理是                |                                |                                          |                                   |                                   |       |
| 27.已知超前校正装                | 置的传递函数为 $G_c$                  | $\mu(s) = \frac{23+1}{0.32s+1},  \sharp$ | 最大超前角所对原                          | 应的频率 $o_{\scriptscriptstyle m}$ = | o     |
| 28.在扰动作用点与                | 偏差信号之间加上_                      |                                          |                                   |                                   |       |
| 29.超前校正主要是                |                                | 。<br>                                    | 的绘山位置上的装                          | 早                                 |       |
| 31.自动控制                   | 述及庆左1g相八定 <sub>_</sub>         |                                          | 四州 山江 旦 工 口7 6                    | 大左。                               |       |
| 32.传递函数                   |                                |                                          |                                   |                                   |       |
| 33.瞬态响应                   |                                |                                          |                                   |                                   |       |
| 34.最小相位传递函                | 数                              |                                          |                                   |                                   |       |
| 35.复现频率 36. 方块图变换要键       | 尊守什么原则。 举例                     | 说明。                                      |                                   |                                   |       |
|                           | ェュロ ムかかり 干り                    | 1 60 71 0                                |                                   |                                   |       |

37.试说明延迟环节 $G(s) = e^{-rs}$ 的频率特性,并画出其频率特性极坐标图。

- 38.如何减少系统的误差?
- 39.开环不稳定的系统,其闭环是否稳定?举例说明。
- 40. 高阶系统简化为低阶系统的合理方法是什么?
- 41.求如下方块图的传递函数。



43.设单位反馈开环传递函数为 $G(s) = \frac{K}{s(5s+50)}$ ,求出闭环阻尼比为0.5时所对应的 K 值,并计算此 K 值下的

$$t_s, t_p, t_r, Mp$$

44.单位反馈开环传递函数为
$$G(s) = \frac{10(s+a)}{s(s+2)(s+10)}$$

- (1)试确定使系统稳定的 a 值;
- (2)使系统特征值均落在S平面中Re = -1这条线左边的a值。

# 选择题

- 1. 系统和输入已知, 求输出并对动态特性进行研究, 称为( )
  - A.系统综合
- B.系统辨识
- C.系统分析
- D.系统设计
- 2. 开环控制系统的的特征是没有()
  - A.执行环节

B.给定环节

C.反馈环节

- D.放大环节
- 3. 主要用来产生偏差的元件称为( )
  - A.比较元件
- B.给定元件
- C.反馈元件 D.放大元件
- 4. 某系统的传递函数是 $G(s) = \frac{1}{2s+1}e^{-rs}$ ,则该可看成由(一)环节串联而成。
  - A.比例、延时 B.惯性、导前
- C.惯性、延时 D.惯性、比例
- 5. 已知  $F(s) = \frac{s^2 + 2s + 3}{s(s^2 + 5s + 4)}$  , 其原函数的终值 f(t) = ( )
  - A.0
- B.∞
- C.0.75
- 6. 在信号流图中,在支路上标明的是()
  - A.输入
- B.引出点
- C.比较点 D.传递函数

| 7.设一阶系统的传递函                                                            | 数是 $G(s) = \frac{3}{s+2}$ ,                                                    | 且容许误差为2%                                                                     | ,则其调整时间为( )                                 |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------|
| 8. 惯性环节和积分环节<br>A.幅频特性的斜率<br>9. 若保持二阶系统的 ζ<br>A.提高上升时间和岭<br>C.提高上升时间和调 | B.最小幅值<br>不变,提高 ω <sub>n</sub> ,则可<br>峰值时间<br>引整时间<br>可阻尼固有频率 ω <sub>d</sub> 、 | 上相等。<br>C.相位变化率<br>可以( )<br>B.减少上升时间<br>D.减少上升时间<br>无阻尼固有频率 ω <sub>n</sub>   | 和峰值时间<br>和超调量<br>和谐振频率 ω <sub>r</sub> 比较( ) |
| 11.设系统的特征方程为                                                           | $JD(s) = 3s^4 + 10s^3 + 5s$                                                    | $s^2 + s + 2 = 0$ ,则此                                                        | 系统中包含正实部特征的个数有())                           |
| A.0                                                                    | B.1                                                                            | C.2                                                                          | D.3                                         |
| 12.根据系统的特征方程                                                           | $ \stackrel{\exists}{=} D(s) = 3s^3 + s^2 - 3s +$                              | 5=0,可以判断系                                                                    | 统为( )                                       |
| A.稳定                                                                   | B.不稳定                                                                          | C.临界稳定                                                                       | D.稳定性不确定                                    |
| 13.某反馈系统的开环传                                                           | 遠遜函数为: $G(s)$ =                                                                | $\frac{(\tau_2 s + 1)}{s^2 (T_1 s + 1)},  \stackrel{}{\rightrightarrows}  ($ | )时,闭环系统稳定。                                  |
| $A.T_1 > \tau_2$                                                       | _                                                                              | _                                                                            |                                             |
| 14.单位反馈系统开环传                                                           | 長递函数为 $G(s) = \frac{1}{s^2}$                                                   | $\frac{4}{s+3s+2}$ , 当输入                                                     | 、为单位阶跃时,其位置误差为()                            |
| A.2                                                                    | B.0.2                                                                          |                                                                              |                                             |
| 15.当输入为单位斜坡上<br>A.0                                                    | 1系统为单位反馈时,<br>B.0.1/k                                                          |                                                                              | 总态误差为( )<br>D.∞                             |
| 16.若已知某串联校正装                                                           |                                                                                |                                                                              |                                             |
| A.相位滞后校正<br>17.相位超前校正装置的                                               |                                                                                | C.微分调节器                                                                      | D.积分调节器                                     |
| <b>A</b> .圆                                                            | B.上半圆                                                                          |                                                                              | D.45° 弧线                                    |
| 18.在系统中串联 PD 调                                                         |                                                                                |                                                                              | ᅶᄮᄮᄼ                                        |
| A.是一种相位超前校<br>C.使系统的稳定性能                                               |                                                                                |                                                                              |                                             |
| 19.根轨迹渐近线与实轴                                                           |                                                                                |                                                                              |                                             |
| $A.\frac{\sum_{j=1}^{n} P_j + \sum_{i=1}^{m} Z_i}{n+m}$                | $\frac{\sum_{i=1}^{m}}{B}$ .                                                   | $\frac{\sum_{j=1}^{n} Z_{i} - \sum_{j=1}^{n} P_{j}}{n - m}$                  |                                             |
| C. $\frac{\sum_{i=1}^{m} Z_i - \sum_{j=1}^{n} P_j}{n+m}$               | $D. \frac{\sum_{j=1}^{n}}{}$                                                   | $\frac{\sum_{i=1}^{n} P_{j} - \sum_{i=1}^{m} Z_{i}}{n - m}$                  |                                             |
|                                                                        |                                                                                |                                                                              | 实际的机电时间常数为( )                               |
| A.8.4 ms B. 21.根据采用的信号处理                                               | .9.4 ms C.11.4<br>理技术的不同                                                       |                                                                              |                                             |
| 22. 闭环控制系统中,真                                                          |                                                                                |                                                                              |                                             |

- 24.描述系统的微分方程为 $\frac{d^2x_0(t)}{dt^2} + 3\frac{dx_0(t)}{dt} + 2x(t) = x_i(t)$ ,则频率特性

$$G(j\omega) =$$
\_\_\_\_\_\_\_

- 25.一般开环频率特性的低频段表征了闭环系统的 性能。
- 26.二阶系统的传递函数  $G(s)=4/(s^2+2s+4)$  , 其固有频率 $\omega_n=$ 。
- 27.对单位反馈系统来讲,偏差信号和误差信号\_\_\_\_\_
- 28.PID 调节中的 "P" 指的是\_\_\_\_\_\_控制器。
- 29.二阶系统当共轭复数极点位于±45°线上时,对应的阻尼比为。
- 30.误差平方积分性能指标的特点是:
- 31.最优滤波
- 32.积分环节
- 33.极坐标图
- 34.相位裕量
- 35.根轨迹的起始角
- 36. 简要论述自动控制理论的分类及其研究基础、研究的方法。
- 37.二阶系统的性能指标中,如要减小最大超调量,对其它性能有何影响?
- 38. 用文字表述系统稳定的充要条件。并举例说明。
- 39.在保证系统稳定的前提下,如何来减小由输入和干扰引起的误差?
- 40.根轨迹的渐近线如何确定?
- 41.建立图示系统的数学模型,并以传递函数形式表示。



42.求如下方块图的传递函数。



43.已知给定系统的传递函数  $G(s) = \frac{10}{s(s+1)}$ ,分析系统由哪些环节组成,并画出系统的 Bode 图。



|                               | 充分必要条件是其特征方                                         |                                 |                                       |                   |
|-------------------------------|-----------------------------------------------------|---------------------------------|---------------------------------------|-------------------|
|                               | B.左半部分                                              |                                 |                                       |                   |
| 15.一闭环系统的                     | 的开环传递函数为 $G(s)$ :                                   | $= \frac{4(s+3)}{s(2s+3)(s+4)}$ | - ,则该系统为( )<br>)                      |                   |
|                               | 开环放大系数 $K$ 为 $2$ 开环放大系数 $K$ 为 $1$                   |                                 |                                       |                   |
| 16.进行串联滞历                     | <b>后校正后,校正前的穿</b> 起                                 | ${f i}$ 频率 $m \omega_c$ 与校正后    | 的穿越频率 $\omega_c'$ 之间                  | 的关系,通常是( )        |
| A. $\omega_c = \omega_c'$     | $B.\omega_c > \omega_c'$                            | $C.\omega_c < \omega_c'$        | D.与 $\omega_c$ 、 $\omega_c'$ 为        | 无关                |
| A.是一种相<br>C.使系统的<br>18.滞后校正装置 | 镁 PD 调节器,以下那一<br>位超前校正装置<br>稳定性能得到改善<br>置的最大滞后相位趋近( | B.能影响系统<br>D.使系统的稳              | 开环幅频特性的高频<br>态精度得到改善                  | i段                |
|                               | B.45°                                               |                                 | D.90°                                 |                   |
|                               | 点的分离角恒为( )<br>B.±60°                                |                                 | D +120°                               |                   |
|                               |                                                     |                                 |                                       | 系统,可以消除常值干扰力矩带来的静 |
| A.比例微分                        |                                                     | B.比例积分                          |                                       |                   |
|                               |                                                     |                                 |                                       |                   |
|                               | 统中,真正对输出信号起<br>3.84.44                              |                                 |                                       |                   |
|                               | 函数的                                                 |                                 |                                       |                   |
|                               | 传递函数 <b>G</b> (s)=4/(s²+2s+4<br>究控制系统时,采用的图         |                                 | · · · · · · · · · · · · · · · · · · · | 图二社               |
|                               | 常分方程为 $\frac{d^2x_0(t)}{dt^2} + 3\frac{dt}{dt^2}$   |                                 |                                       | _图小伝。             |
| $G(j\omega) = $               |                                                     |                                 |                                       |                   |
| 26.乃氏图中当。                     | <b>ω</b> 等于剪切频率时,相频                                 | 顶特性距-π线的框                       | 目位差叫 。                                |                   |
|                               | 系统的稳态误差和                                            |                                 | ·                                     |                   |
|                               | 利用校正后的                                              |                                 | 统稳定的。                                 |                   |
| 29.二阶系统当                      | 共轭复数极点位于±45°线                                       | 上时,对应的阻力                        | 尼比为                                   | •                 |
| 30.远离虚轴的隐                     | 闭环极点对                                               | 的影响很小                           | <b>`</b> o                            |                   |
| 31.延迟时间                       |                                                     |                                 |                                       |                   |
| 32.比例环节                       |                                                     |                                 |                                       |                   |
| 33.稳态响应                       | <del>)</del>                                        |                                 |                                       |                   |
| 34.闭环截止频率<br>35.位置误差          | <b></b>                                             |                                 |                                       |                   |
|                               | 戒对象,为得到良好的闭                                         | T环机由性能                          | 该注音때此方面?                              |                   |
|                               | 流的优劣的时域性能指标                                         |                                 |                                       | 用是什么?             |
| 38.写出画伯德图                     |                                                     | ····/ M E4 14 /M                | 4 1 4H 14 H 4 H 7 4 11.               | ,, <u>_ , </u>    |
|                               | 大小和系统中的积分环节                                         | ī多少有何关系?                        | 举例说明。                                 |                   |
| 40.为什么串联》                     | 带后校正可以适当提高开                                         | 环增益,而串联                         | 超前校正则不能?                              |                   |
| 41.一反馈控制                      | 系统如图所示,求: 当冬                                        | =0.7 时, <i>a</i> =?             |                                       |                   |





- 43.某单位反馈开环系统的传递函数为 $G(s) = \frac{2000}{s(s+2)(s+20)}$ ,
  - (1)画出系统开环幅频 Bode 图。
  - (2)计算相位裕量。
- 44.求出下列系统的跟随稳态误差  $\mathbf{e}_{\mathrm{ssr}}$  和扰动稳态误差  $\mathbf{e}_{\mathrm{ssd}}$  。



6

## 选择题

- 1.系统已给出,确定输入,使输出尽可能符合给定的最佳要求,称为()
  - A.系统辨识
- B.系统分析 C.最优设计
- D.最优控制
- 2.系统的数学模型是指()的数学表达式。
  - A.输入信号
    - B.输出信号
- C.系统的动态特性 D.系统的特征方程
- 3.主要用于产生输入信号的元件称为()
  - A.比较元件

- B.给定元件 C.反馈元件 D.放大元件
- 4.某典型环节的传递函数是  $G(s) = \frac{1}{5s+1}$  ,则该环节是( )
  - A.比例环节
- B.积分环节
- C.惯性环节
  - D.微分环节
- 5.已知系统的微分方程为 $3\ddot{x}_0(t) + 6\dot{x}_0(t) + 2x_0(t) = 2x_i(t)$ ,则系统的传递函数是( )

A. 
$$\frac{2}{3s^2 + 6s + 2}$$
 B.  $\frac{1}{3s^2 + 6s + 2}$  C.  $\frac{2}{2s^2 + 6s + 3}$  D.  $\frac{1}{2s^2 + 6s + 3}$ 

|                                                      |                                |                               | 前人信号的( )米环得输出信          | 号的幅值。   |
|------------------------------------------------------|--------------------------------|-------------------------------|-------------------------|---------|
| A.相位 B.频                                             | 负率 C.私                         | 急定裕量                          | D.时间常数                  |         |
| 7.设一阶系统的传递函                                          | 数是 $G(s) = \frac{2}{s+1}$      | ,且容许误差为                       | 牙5%,则其调整时间为( )          |         |
| A.1 B.2                                              | C.3                            |                               | D.4                     |         |
| 8 .若二阶系统的调整时<br>A.系统响应快 B<br>9 .以下说法正确的是(            | 3.系统响应慢                        |                               | 差 D.系统的精度差              |         |
| A.时间响应只能分析<br>B.频率特性只能分析<br>C.时间响应和频率特<br>D.频率特性没有量纲 | 系统的瞬态响应<br>系统的稳态响应<br>性都能揭示系统的 |                               |                         |         |
| 10.二阶振荡环节乃奎斯                                         |                                |                               |                         |         |
| A.最大相位频率                                             |                                |                               | D.截止频率                  |         |
| 11.II 型系统对数幅频特                                       |                                |                               | D 0 (1D/1 )             |         |
| A60 (dB/dec) B                                       |                                | _                             |                         |         |
|                                                      |                                | 25                            | ,当 <i>k</i> =( )时,闭环系统□ | <b></b> |
| A.0.5 B.                                             |                                | C.1.5                         |                         |         |
| 13.系统特征方程式的所                                         |                                |                               |                         |         |
| A.充分条件 B.                                            |                                |                               |                         |         |
| 14.某一系统的速度误差                                         | 为零,则该系统                        | 的开环传递函数                       | 可能是( )                  |         |
| A. $\frac{K}{Ts+1}$ B.                               | $\frac{s+d}{s(s+a)(s+b)}$      | $C.\frac{K}{s(s+a)}$          | $D.\frac{K}{s^2(s+a)}$  |         |
| 15.当输入为单位斜坡目                                         | 系统为单位反馈                        | 时,对于【型系统                      |                         |         |
| A.0.1/k B.                                           |                                | C.0                           | D.∞                     |         |
| 16.若已知某串联校正装                                         | 置的传递函数为                        | $G_c(s) = \frac{s+1}{0.1s+1}$ | - ,则它是一种( )<br>l        |         |
| A.相位超前校正                                             |                                | B.相位滞后校正                      |                         |         |
| C.相位滞后—超前校                                           | 正                              | D.反馈校正                        |                         |         |
| 17.常用的比例、积分与                                         | i微分控制规律的                       | 另一种表示方法                       | 是 ( )                   |         |
| A.PDI B.                                             | PDI                            | C.IPD                         | D.PID                   |         |
| 18.主导极点的特点是(                                         |                                |                               |                         |         |
| A 距离虚轴很近                                             |                                | B.距离实轴很远                      | Í                       |         |
| C.距离虚轴很远                                             |                                | D.距离实轴很远                      | 立                       |         |
| 19.系统的开环传递函数                                         | 以为 $\frac{K}{s(s+1)(s+2)}$     | - , 则实轴上的<br>)                | 根轨迹为( )                 |         |
| A. (-2, -1) 和 (0,                                    | ∞)                             | B. $(-\infty, -2)$            | 和 (-1, 0)               |         |
| C. (0, 1) 和 (2, ∞                                    | o)                             | D. $(-\infty, 0)$             | 和 (1, 2)                |         |
| 20.确定根轨迹大致走向                                         |                                |                               |                         |         |
| A.特征方程 B.                                            | 幅角条件                           | C.幅值条件                        | D.幅值条件+幅角条件             |         |
| 21.自动控制系统最基本                                         |                                |                               |                         |         |
|                                                      |                                |                               | 的精度。                    |         |
| 23.传递函数反映了系统                                         |                                |                               |                         |         |

- 24.实用系统的开环频率特性具有\_\_\_\_\_\_的性质。
- 25.描述系统的微分方程为 $\frac{d^2x_0(t)}{dt^2} + 3\frac{dx_0(t)}{dt} + 2x(t) = x_i(t)$ ,则其频率特性

$$G(j\omega) =$$
\_\_\_\_\_\_\_

- 26.输入相同时,系统型次越高,稳态误差越。
- 27.系统闭环极点之和为。
- 28.根轨迹在平面上的分支数等于\_\_\_\_\_\_
- 29.为满足机电系统的高动态特性,机械传动的各个分系统的 应远高于机电系统的设计截止频率。
- 30.若系统的传递函数在右半 S 平面上没有\_\_\_\_\_,则该系统称作最小相位系统。
- 31.随动系统
- 32.死区
- 33.振荡次数
- 34.快速性
- 35.根轨迹的分离点
- 36. 如何求取系统的频率特性函数? 举例说明。
- 37.为什么二阶振荡环节的阻尼比取 ξ=0.707 较好,请说明理由。
- 38.设开环传递函数  $G(s) = \frac{10}{(s+1)(s+10)}$ , 试说明开环系统频率特性极坐标图的起点和终点。
- 39.串联校正中,超前、滞后校正各采用什么方法改善了系统的稳定性?
- 40.绘制根轨迹的基本法则有哪些?
- 41.求如下方块图的传递函数。





43.已知某单位负反馈控制系统的开环传递函数为  $G(s)=\frac{1+as}{s^2}$ ,绘制奈奎斯特曲线,判别系统的稳定性;并用劳斯判据验证其正确性。

44.设控制系统的开环传递函数为  $G(s) = \frac{K}{s(s+2)(s+4)}$  试绘制该系统的根轨迹,并求出使系统稳定的 K 值范围。 7 选择题 1. 输入已知,确定系统,使输出尽可能符合给定的最佳要求,称为( ) A.滤波与预测 B.最优控制 C.最优设计 D.系统分析 2. 开环控制的特征是() A.系统无执行环节 B.系统无给定环节 C.系统无反馈环节 D.系统无放大环节 3. ω从0变化到+∞时,延迟环节频率特性极坐标图为( ) C.椭圆 A.圆 B.半圆 D.双曲线 4. 若系统的开环传递函数为 $\frac{10}{s(5s+2)}$ ,则它的开环增益为( ) A.10 C.1 D.5 B.2 5. 在信号流图中,只有()不用节点表示。 B.输出 C.比较点 A.输入 D.方块图单元 6. 二阶系统的传递函数  $G(s) = \frac{1}{4s^2 + 2s + 1}$ , 其阻尼比  $\zeta$  是( ) A.0.5D.4 7. 若二阶系统的调整时间长,则说明() A.系统响应快 B.系统响应慢 C.系统的稳定性差 D.系统的精度差 8. 比例环节的频率特性相位移  $\varphi(\omega)$  = ( ) B.-90°  $\mathrm{C.90}^{\circ}$ D.-180° 9. 己知系统为最小相位系统,则一阶惯性环节的幅频变化范围为( )  $A.0\rightarrow45^{\circ}$   $B.0\rightarrow-45^{\circ}$   $C.0\rightarrow90^{\circ}$   $D.0\rightarrow-90^{\circ}$ 10.为了保证系统稳定,则闭环极点都必须在()上。 A.s 左半平面 B.s 右半平面 C.s 上半平面 D.s 下半平面 11.系统的特征方程 $D(s)=5s^4+3s^2+3=0$ ,可以判断系统为( ) A.稳定 B.不稳定 D.稳定性不确定 C.临界稳定 12.下列判别系统稳定性的方法中,哪一个是在频域里判别系统稳定性的判据()) A.劳斯判据 B.赫尔维茨判据 C.奈奎斯特判据 D.根轨迹法 13.对于一阶、二阶系统来说,系统特征方程的系数都是正数是系统稳定的() A.充分条件 B.必要条件 C.充分必要条件 D.以上都不是 14.系统型次越高,稳态误差越()

C.不变 D.无法确定

15.若已知某串联校正装置的传递函数为 $G_c(s) = \frac{s+1}{10s+1}$ ,则它是一种( )

B.相位超前校正

A.越小

A.反馈校正

B.越大

16

C.相位滞后—超前校正

D.相位滞后校正

16.进行串联滞后校正后,校正前的穿越频率 $\omega_c$ 与校正后的穿越频率 $\omega_c'$ 的关系相比,通常是( )

A.  $\omega_c = \omega_c'$  B.  $\omega_c > \omega_c'$  C.  $\omega_c < \omega_c'$  D.与 $\omega_c \setminus \omega_c'$  无关

17.超前校正装置的频率特性为 $\frac{1+eta T_2\omega j}{1+T_2\omega i}(eta>1)$ ,其最大超前相位角 $\varphi_m$ 为( )

A.  $\arcsin \frac{\beta - 1}{\beta + 1}$ 

$$B. \arcsin \frac{T_2 - 1}{T_2 + 1}$$

C.  $\arcsin \frac{\beta T_2 - 1}{\beta T_2 + 1}$ 

D. 
$$\arcsin \frac{\beta T_2 \omega - 1}{\beta T_2 \omega + 1}$$

18.开环传递函数为 $G(s)H(s) = \frac{K}{(s+2)(s+5)}$ ,则实轴上的根轨迹为( )

A.  $(-2, \infty)$ 

- B. (-5, 2)
- C.  $(-\infty, -5)$
- D.  $(2, \infty)$

19.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是()

A.减小增益

- B.超前校正
- C.滞后校正
- D.滞后-超前

20.PWM 功率放大器在直流电动机调速系统中的作用是( )

A.脉冲宽度调制

- B.幅度调制
- C.脉冲频率调制
- D.直流调制

21.一线性系统, 当输入是单位脉冲函数时, 其输出象函数与相同。

22.输入信号和反馈信号之间的比较结果称为。

23.对于最小相位系统一般只要知道系统的

就可以判断其稳定性。

24.设一阶系统的传递 G(s)=7/(s+2), 其阶跃响应曲线在 t=0 处的切线斜率为。

25.当输入为正弦函数时, 频率特性 G(jω)与传递函数 G(s)的关系为

26.机械结构动柔度的倒数称为

27. 当乃氏图逆时针从第二象限越过负实轴到第三象限去时称为\_\_\_\_\_

28.二阶系统对加速度信号响应的稳态误差为。即不能跟踪加速度信号。

直接寻找闭环根轨迹。 29.根轨迹法是通过

30.若要求系统的快速性好,则闭环极点应距虚轴越 越好。

31. 奇点

32.比较元件

33.上升时间

34.负反馈

35.加速度误差

36.时域分析的性能指标,哪些反映快速性,哪些反映相对稳定性?

37.作乃氏图时,考虑传递函数的型次对作图有何帮助?

38.试证明 I 型系统在稳定条件下不能跟踪加速度输入信号。

39.什么是校正?根据校正环节在系统中的联结方式,校正可分为几类?

40.计算机控制系统按功能和控制方式可以分为哪几类?

41.求如下方块图的传递函数。





- 43.已知具有局部反馈回路的控制系统方块图如图所示,求:
  - (1)系统稳定时  $K_f$  的取值范围;
  - (2)求输入为 $x(t) = \frac{1}{2}t^2$ 时,系统的静态加速度误差系数  $K_a$ ;
  - (3)说明系统的局部反馈  $K_f s$  对系统的稳态误差  $e_{ss}$  的影响。



44.伺服系统的方块图如图所示,试应用根轨迹法分析系统的稳定性。



8

#### 选择题

- 1. 输入与输出均已给出,确定系统的结构和参数,称为()
  - A.最优设计
- B.系统辨识
- C.系统分析
- D.最优控制
- 2. 对于代表两个或两个以上输入信号进行()的元件又称比较器。
  - A.微分
- B.相乘
- C.加减
- D.相除
- 3. 直接对控制对象进行操作的元件称为()
  - A.比较元件
- B.给定元件
- C.执行元件
- D.放大元件

| 4. 某环节的传递函             | 数是 $G(s) = 5s + 3$                            | $+\frac{2}{\varsigma}$ ,则该环节可                                            | 看成由( )环节串联而组成。<br>微分                            |
|------------------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|
| A.比例、积分、               | 滞后                                            | B.比例、惯性、 <b></b>                                                         | <b></b>                                         |
| C.比例、微分、               | 滞后                                            | D.比例、积分、                                                                 | <b></b>                                         |
| 5. 已知系统的微分             | 方程为 $6\dot{x}_0(t)+2x_0$                      | $y_i(t) = 2x_i(t)$ ,则系                                                   | 统的传递函数是 ( )                                     |
| A. $\frac{1}{3s+1}$    | $B.\frac{2}{3s+1}$                            | $C.\frac{1}{6s+2}$                                                       | D. $\frac{2}{3s+2}$                             |
| 6. 梅逊公式主要用             |                                               | 05 1 2                                                                   | 38 1 2                                          |
| A.判断稳定性                |                                               | B.计算输入误差                                                                 |                                                 |
| C.求系统的传递i              | 函数                                            |                                                                          | 亦                                               |
| 7. 一阶系统 <i>G</i> (s)=- | $\frac{K}{Ts+1}$ 的放大系数 $K$                    | <i>K</i> 愈小,则系统的轴                                                        | <b>俞出响应的稳态值</b> ( )                             |
| A.不变                   | B.不定                                          | C.愈小                                                                     | D.愈大                                            |
| 8. 二阶欠阻尼系统             | 的性能指标中只与图                                     | 且尼比有关的是 (                                                                | )                                               |
| A.上升时间                 |                                               | B.峰值时间                                                                   |                                                 |
| C.调整时间                 |                                               | D.最大超调量                                                                  |                                                 |
| 9. 在用实验法求取             | 系统的幅频特性时,                                     | 一般是通过改变转                                                                 | 俞入信号的( )来求得输出信号的幅值。                             |
| A.相位                   | B.频率                                          | C.稳定裕量                                                                   | D.时间常数                                          |
| 10.设开环系统频率             | 特性 $G(j \omega) = \frac{4}{(1+j\alpha)}$      | $\overline{(w)^3}$ , $\stackrel{\text{def}}{=} \omega = 1 \text{ rad/s}$ | 时,其频率特性幅值 <b>A</b> (1)=( )                      |
| $A.\frac{\sqrt{2}}{4}$ | $B.4\sqrt{2}$                                 | $C.\sqrt{2}$                                                             | $D.2\sqrt{2}$                                   |
| 11.一阶惯性系统 $G$          | $f(s) = \frac{1}{s+2} \text{ in it is } f(s)$ | 频率指 $\omega$ =())                                                        |                                                 |
| A.2                    | B.1                                           | C.0.5                                                                    | D.0                                             |
| 12.设单位负反馈控             | 制系统的开环传递的                                     | 函数 $G(s) = \frac{K}{s(s+a)}$                                             | $\frac{1}{a}$ ,其中 $K>0$ , $a>0$ ,则闭环控制系统的稳定性与() |
| A.K 值的大小有              | 关                                             | B.a 值的大小有关                                                               |                                                 |
| C.a 和 $K$ 值的大/         | 小无关                                           | D.a 和 $K$ 值的大                                                            | 小有关                                             |
| 13.己知二阶系统单             | 位阶跃响应曲线呈现                                     | 见出等幅振荡,则却                                                                | 其阻尼比可能为 ( )                                     |
| A.0.707                | B.0.6                                         | C.1                                                                      | D.0                                             |
|                        | 的所有根均在根平向                                     | 面的左半部分是系统                                                                | 充稳定的( )                                         |
| A.充分条件                 |                                               | B.必要条件                                                                   |                                                 |
|                        |                                               | D.以上都不是                                                                  |                                                 |
|                        | 态误差的概念正确的                                     |                                                                          | \                                               |
|                        |                                               |                                                                          | 定于系统的输入和干扰                                      |
|                        | ]和参数、输入和干                                     |                                                                          |                                                 |
|                        |                                               |                                                                          | 系统其稳态误差为 ( )                                    |
| A.0                    | B.0.1/k                                       | C.1/k                                                                    | D.∞                                             |
|                        | 正装置的传递函数为                                     | -                                                                        | 它是一种( )                                         |
| A.相位滞后校正               |                                               | B.相位超前校正                                                                 |                                                 |
| C.微分调节器                |                                               | D.积分调节器                                                                  | -                                               |
|                        | 为降低其稳态误差值                                     |                                                                          |                                                 |
| A.滞后                   | B.超前                                          | C 滞 层 招前                                                                 | D 洞 小地 芍                                        |

19.根轨迹上的点应满足的幅角条件为 $\angle G(s)H(s)=($ 

A.-1 B.1

C.  $\pm (2k+1) \pi / 2$  ( $k=0,1,2,\cdots$ ) D.  $\pm (2k+1) \pi (k=0,1,2,\cdots)$ 

20.主导极点的特点是()

 A.距离虚轴很近
 B.距离实轴很近

 C.距离虚轴很远
 D.距离实轴很远

- 21.对控制系统的首要要求是系统具有
- 22.利用终值定理可在复频域中得到系统在时间域中的
- 23.传递函数反映了系统内在的固有特性,与\_\_\_\_\_无关。
- 24.若减少二阶欠阻尼系统超调量,可采取的措施是
- 25.已知超前校正装置的传递函数为 $G_c(s) = \frac{2s+1}{0.32s+1}$ ,其最大超前角所对应的频率 $\omega_m = _____$ 。
- 26.延迟环节不改变系统的幅频特性,仅使\_\_\_\_\_发生变化
- 27.某典型环节的传递函数是 $G(s) = \frac{1}{s+2}$ ,则系统的时间常数是\_\_\_\_\_。
- 29.微分控制器是针对被调量的 来进行调节。
- 30.超前校正主要是用于改善稳定性和。
- 31.准确性
- 32.速度误差
- 33.峰值时间
- 34.负穿越
- 35.根轨迹的终止角
- 36.非线性特性函数线性化的本质和方法是什么?
- 37.分析误差平方积分性能指标的特点及其原因。
- 38.乃氏图作图的一般方法是什么?
- 39.如何用试探法来确定 PID 参数?
- 40.什么是偶极子? 偶极子起什么作用,请举例说明。
- 41.系统方框图如下,求其传递函数 $\frac{C(s)}{R(s)}$ 。





- 43.已知系统的传递函数  $G(S) = \frac{10(10S+1)}{S+1}$ , 试分析系统由哪些环节组成并画出系统的 Bode 图。
- 44.单位反馈系统的开环传递函数为 $G_k(s) = \frac{1}{s+1}$ , 求:
  - 1) 系统在单位阶跃信号输入下的稳态偏差是多少;
  - 2) 当系统的输入信号为 $x_i(t) = \sin(t + 30^\circ)$ ,系统的稳态输出?