PLEASE NOTE THAT THIS APPLICATION IS ASSOCIATED WITH A CUSTOMER NUMBER. PLEASE INPUT THE CUSTOMER NUMBER LOCATED BENEATH THE SIGNATURE LINE OF THE ATTORNEY.

THANK YOU

£-

TITLE

DEVICE AND METHOD FOR DETECTING ALIGNMENT OF DEEP TRENCH CAPACITORS AND WORD LINES IN DRAM DEVICES

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

15

20

25

The present invention relates to test devices, and more particularly, to a test device for detecting alignment of deep trench capacitors and word lines in DRAM devices with vertical transistors, as well as a test method thereof.

Description of the Related Art

With the wide application of integrated circuits (ICs), several kinds of semiconductor devices with higher efficiency and lower cost are presently produced based on different objectives, making DRAM an important semiconductor device in the information and electronics industry.

Most DRAM carries one transistor and one capacitor in a single DRAM cell. The memory capacity of the DRAM can reach 256 megabits. Therefore, with increased integration it is necessary to reduce the size of memory cells and transistors to accommodate DRAM with higher memory capacity and processing speed. A 3-D capacitor structure can itself reduce occupation area in the semiconductor substrate, such as with a deep trench capacitor, and is applied to the fabrication of the DRAM of 64 megabits and above.

5

10

15

20

25

As compared with a traditional plane transistor, however, this structure covers many areas of the semiconductor substrate and cannot satisfy the demands of high integration. Therefore, a vertical transistor which can save space is important in structuring memory unit.

Fig. 1 is a cross section of a conventional memory device with vertical transistors, and Fig. 2 is a layout of the conventional memory device as shown in Fig. 1. The adjacent memory cells may experience current leakage and cell failure, reducing process yield, if word line masks and deep trench capacitors are not aligned accurately. Therefore, process yield and reliability of the memory cells can be improved if alignment accuracy between the masks of word lines and the deep trench capacitors is controlled within an acceptable range.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to detect alignment of word lines and deep trench capacitors in DRAM devices.

According to the above mentioned object, the present invention provides a test device and method for detecting alignment of word lines and deep trench capacitors in DRAM devices with vertical transistors.

In the test device of the present invention, an active area is disposed in the scribe line region. An H-type deep trench capacitor is disposed in the active area, and has parallel first and second portions and a third portion. Each first and second portion has a center and two ends. The third portion is disposed

5

10

15

20

25

between the centers of the first and second portions. First to fourth conductive pads are disposed on the two ends of the first and second portions respectively. A bar-type conductive pad is disposed between the first and second portions, having a center aligned with a center of the third portion.

According to the present invention, a method for detecting alignment of deep trench capacitors and word lines in DRAM devices with vertical transistors includes the following steps. First, a wafer with at least one scribe line region and at least one memory region is Then, a plurality of memory cells in the provided. memory region and at least one test device in the scribe line region are formed simultaneously, wherein the memory cells have word lines and deep trench capacitors. first resistance between the first conductive disposed on the first portion and the bar-type conductive pad is detected. A second resistance between the second conductive pad disposed on the second portion and the bar-type conductive pad is detected. Next, alignment of H-type deep trench capacitor and the bar-type conductive pad is determined according to the first resistance and the second resistance. Finally, alignment of the deep trench capacitors and word lines in the memory regions is determined according to alignment of H-type deep trench capacitor and the the bar-type conductive pad of the test device.

5

10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be more fully understood by the subsequent detailed description and examples with reference made to the accompanying drawings, wherein:

Fig. 1 is a cross section of a conventional memory device with vertical transistors;

Fig. 2 is a layout of the conventional memory device as shown in Fig. 1;

Fig. 3a is a layout of the test device according to the present invention; and

Fig. 3b is an equivalent diagram of the test device according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In the present invention, at least one test device 200 is formed in the scribe line region, while a plurality of memory cells with vertical transistors is formed in the memory regions on a wafer simultaneously. The test device 200 is shown in Fig. 3a, and a plurality of memory cells formed in the memory region is shown in Fig. 1 and Fig. 2.

As shown in Fig. 1, deep trench capacitors 102 are formed into a matrix and disposed in the substrate 100. Each deep trench capacitor 102 includes a top electrode 102a, an isolation layer 102b, and a storage electrode 102c, and has a vertical transistor 104 disposed thereon. Each vertical transistor 104 includes a gate 104a, a gate oxide layer 104b, a source 104c and a common drain 104d. The gate oxide layer 104b is the sidewall at the bottom

5

10

15

20

25

30

of the gate 104a, and the vertical region between the source 104c and the common drain 104d in the substrate 100 is the channel of the transistor 104. In addition, an isolation layer 108 and an ion diffusion layer 106 are disposed between the gate 104a and the top electrode 102a of the deep trench capacitor 102. The sidewall of the isolation layer 106 is the source 104c, and the isolation layer 108 is disposed between the gate 104a and the ion diffusion layer 106 for electrical insulation.

As shown in Fig. 2, word lines 118a, 118b, 118c and 118d are disposed above the active area 112 as the gate 104a of the transistor 104. Command drains 104d are disposed above the active areas 112 between adjacent word lines 118a and 118b or 118c and 118d. Bit lines 116a and 116b are perpendicular to word lines 118a~118d, and are electrically coupled to the command drains through bit line contacts 114.

Fig. 3a is a layout of the test device of the present invention. The test device 200 detects the alignment of word lines and deep trench capacitors in DRAM devices with vertical transistors, wherein the test device 200 is disposed in a scribe line region of a wafer (not shown).

In test device 200 shown in Fig. 3, an active area A_1 is disposed in the scribe line region (not shown) and an H-type deep trench capacitor (D_{11} , D_{12} and D_{21}) is disposed in the active area. The H-type has parallel first and second portions (D_{11} and D_{12}) and a third portion (D_{21}), wherein each of the first and second portions (D_{11} and D_{12}) has a center and two ends, and the third portion D_{21} is

5

10

15

20

25

30

disposed between the centers of the first and second portions $(D_{11} \text{ and } D_{12})$. First to fourth conductive pads $(P_1 \sim P_4)$ are disposed on the two ends of the first and second portions $(D_{11} \text{ and } D_{12})$ respectively. A bar-type conductive pad P_{51} is disposed between the first and second portions $(D_{11} \text{ and } D_{12})$, and has a center aligned with a center of the third portion D21.

In the present invention, active areas 112 in the memory region and an active area A_1 in the scribe line region are formed simultaneously with the same process and conditions.

The deep trench capacitors 102 of the memory cells in the memory region and an H-type deep trench capacitor $(D_{11}, D_{12} \text{ and } D_{21})$ in the active area A_1 are formed simultaneously with the same masks, process and conditions. The H-type deep trench capacitor has a first portion D_{11} , a second portion D_{12} and a third portion D_{21} . The first and second portions D_{11} and D_{12} are parallel, and the third portion D_{21} is disposed between the centers of the first and second portions D_{11} and D_{12} . The first, second and third portions D_{11} , D_{12} and D_{21} all have the same width W.

The word lines 118a~118b (as the gates of the vertical transistors 104) of the memory cells in the memory regions and the first to fourth conductive pads $P_1 \sim P_4$ and the bar-type conductive pad P_{51} are formed simultaneously with the same masks, process and conditions. The first and third conductive pads P_1 and P_3 are disposed on the two ends of the first portions D_{11} respectively. The second and fourth conductive pads P_2

5

10

15

20

25

and P_4 are disposed on the two ends of the second portions D_{12} respectively. The bar-type conductive pad P_{51} is disposed between the first and second portions (D_{11} and D_{12}), and has a center aligned with a center of the third portion D_{21} . The bar-type conductive pad P_{51} is parallel to the first and second potions D_{11} and D_{12} , and perpendicular to the third portion D_{21} . The bar-type conductive pad P_{51} is the distances $L-\Delta L$ and $L+\Delta L$ from the first portion D_{11} and the second portion D_{12} respectively. The first to fourth conductive pads and the bar-type conductive pad are made of the same material, such as polysilicon.

Fig. 3b is an equivalent diagram of the test device according to the present invention. Normally, a first resistance R_1 between the first conductive pad P_1 and the bar-type conductive pad P_{51} can be detected. A second resistance between the first conductive pad P_2 and the bar-type conductive pad P_{51} can be detected. The first resistance R_1 and the second resistance R_2 can be obtained according to equations 1 and 2.

$$R_1 = R_{DT} \times \frac{L - \Delta L}{W} \; ; \tag{1}$$

$$R_2 = R_{DT} \times \frac{L + \Delta L}{W} ; \qquad (2)$$

Wherein R_{DT} is the resistance per surface area of the H-type deep trench capacitor $(D_{11},\ D_{12}\ and\ D_{21})$, W is the width of the first portion D_{11} , the second portion D_{12} and the third portion D_{21} , L- ΔL is the distance between the bar-type conductive pad P_{51} and the first portion D_{11} , and L+ ΔL is the distance between the bar-type conductive pad

5

10

15

20

25

 P_{51} and the second portion D_{12} . Use of the same process, material and conditions, equations 3 and 4 can be achieved according to the equations 1 and 2.

$$\frac{R_1}{R_2} = \frac{L - \Delta L}{L + \Delta L} \,; \tag{3}$$

$$\Delta L = L \times \frac{R_2 - R_1}{R_2 + R_1} \; ; \tag{4}$$

Thus, the alignment shift ΔL between the bar-type conductive pad P_{51} and the first and second portions (D_{11} and D_{12}) can be obtained if the first resistance R_1 and the second resistance R_2 are measured. That is to say, alignment shift ΔL between the bar-type conductive P_{51} and the first and second portions (D_{11} and D_{12}) of the H-type deep trench capacitor is zero when the first resistance R_1 equals the second resistance R_2 .

With reference to Fig. 3, the bar-type conductive pad P_{51} is shifted by a distance ΔL along the direction DIR1 if the masks of the H-type deep trench capacitor $(D_{11},\ D_{12}$ and $D_{21})$ and the bar-type conductive pad P_{51} have an alignment shift ΔL in the direction DIR1. If this condition is met, the first resistance R_1 is smaller than the second resistance R_2 according to the equations 1 and 2. Moreover, the alignment shift ΔL can be obtained according to the equation 4.

On the contrary, the bar-type conductive pad P_{51} is shifted by a distance ΔL along the direction DIR2 if the masks of the H-type deep trench capacitor (D_{11}, D_{12}) and D_{21} and the bar-type conductive pad P_{51} have an alignment shift ΔL in the direction DIR2. If this condition is met, the first resistance R_1 is larger than the second

5

10

15

20

25

30

resistance R_2 according to the equations 1 and 2. Moreover, the alignment shift can be obtained according to the equation 4.

the present invention, the test device disposed in the scribe line region and a plurality of memory cells with vertical transistors in the memory region are formed simultaneously. For example, the deep trench capacitors 102 of the memory cells in the memory region and the H-type deep trench capacitor (D_{11} , D_{12} and D_{21}) in the active area A_1 are formed simultaneously with the same masks, process and conditions. The word lines 118a~118b of the memory cells in the memory region and the first to fourth conductive pads P₁~P₄ and the bar-type conductive pad P_{51} are formed simultaneously with the same masks, process and conditions. Therefore, the memory region and the test device may have the same alignment shift between deep trench capacitors (102, D_{11} and D_{12}) and word lines (118a~118d, $P_1 \sim P_5$ and P_{51}) use of the same masks and the same process. Thus, alignment of deep trench capacitors and word lines in memory region can obtained according to whether the first resistance R_1 equals the second resistance R2.

The present invention also provides a method for detecting alignment of deep trench capacitors and word lines in memory devices with vertical transistors. In the method of the present invention, a wafer with at least one scribe line region and at least one memory region is provided.

A plurality of memory cells with vertical transistors in the memory region and at least one test

5

10

15

20

25

device in the scribe line region are formed simultaneously, wherein the memory regions have deep trench capacitors and word lines as shown in Fig. 1 and The structure of the test device 200 is shown in Fig. 2. The deep trench capacitors 102 in the memory 3. regions and the H-type deep trench capacitor (D11, D12 and D_{21}) in the test device are formed by the same mask and the same process. The word line 118a~118d in the memory regions and the first to fourth conductive pads $(P_1 \sim P_4)$ and the bar-type conductive pad P_{51} are formed by the same mask and the same process.

Next, a first resistance R_1 between the first conductive pad P_1 and the bar-type conductive pad P_{51} is determined. A second resistance R_2 between the second conductive pad P_2 and the bar-type conductive pad P_{51} is determined. Then, alignment of the H-type deep trench capacitor and the bar-type conductive pad P_{51} of the test device 200 is determined according to whether the first resistance R_1 is equal to the second resistance R_2 .

The memory region and the test device may have the same alignment shift between deep trench capacitors (102, D_{11} and D_{12}) and word lines (118a~118d, P_1 ~ P_5 and P_{51}) use of the same masks and the same process. Thus, alignment of deep trench capacitors and word lines in memory region can be obtained according to whether the first resistance R_1 equals the second resistance R_2 . The alignment shift between deep trench capacitors and word lines in the memory regions can also be obtained according to the equation 4.

5

10

Further, in the present invention the test device is disposed in the scribe line region to avoid occupying layout space.

While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.