4EK211 Základy ekonometrie

Zobecněná metoda nejmenších čtverců (ZMNČ)

Cvičení 8

Gaussovy-Markovovy předpoklady

Náhodná složka: G.M. předpoklady

- 1. E(u) = 0
- 2. $E(\boldsymbol{u} \boldsymbol{u}^{\mathsf{T}}) = \boldsymbol{\sigma}^2 \boldsymbol{I}_{\mathsf{n}}$
 - konečný a konstantní rozptyl = homoskedasticita
 - → porušení: heteroskedasticita
 - náhodné složky jsou sériově nezávislé
 → porušení: autokorelace
- 3. X je nestochastická matice $E(X^Tu) = 0$
 - veškerá náhodnost je obsažena v náhodné složce
- **4. X** má plnou hodnost *k*
 - matice X neobsahuje žádné perfektně lineárně závislé sloupce pozorování vysvětlujících proměnných
 - → porušení: multikolinearita

Zobecněná metoda nejmenších čtverců – ZMNČ

- Při heteroskedastické náhodné složce platí:
 - E(u) = 0,
 - $E(\mathbf{u} \ \mathbf{u}^{\mathsf{T}}) = \sigma^2 \mathbf{V}$ (tj. ne $\sigma^2 \mathbf{I_n}$)
 - tzv. zobecněný lineární regresní model
- Podstatou MZNČ je transformace LRM tak, aby bylo splněno:

$$E(\boldsymbol{u} \ \boldsymbol{u}^{\mathsf{T}}) = \sigma^2 \mathbf{I}_{\mathsf{n}}$$

- odhad modifikovaného modelu MNČ
- pomocí transformační matice T
- pomocí matice **T** "posouváme" regresní nadrovinu s cílem zachovat stabilitu regresních koeficientů
- matice **T** (postup ZMNČ) se liší u heteroskedasticity a autokorelace

KLRM:
$$y = X\beta + u$$
 odhadová funkce: $b = (X^TX)^{-1}X^Ty$

ZLRM:
$$\mathbf{T}y = \mathbf{T}X\boldsymbol{\beta} + \mathbf{T}u$$
 odhadová funkce: $\boldsymbol{b}^* = (X^T \mathbf{V}^{-1}X)^{-1}X^T\mathbf{V}^{-1}y$,

Zobecněná metoda nejmenších čtverců – ZMNČ

Postup ZMNČ:

- Model odhadneme MNČ.
- 2. Vyhodnotíme, zda se v modelu vyskytuje heteroskedasticita.
- 3. Nalezneme/určíme vhodnou transformační matici *T*.
- 4. Maticí **T** pronásobíme proměnné modelu získáme upravené proměnné.
- 5. Odhadneme model složený z upravených proměnných pomocí MNČ.
- 6. Podle potřeby provedeme zpětnou transformaci modelu, abychom získali odhady regresních parametrů, odpovídajících původní specifikaci LRM.

ZMNČ – heteroskedasticita – pro známé rozptyly σ_i^2

- známe rozptyl jednotlivých náhodných složek VAR $(u_i) = \sigma_i^2$
- transformační matice T:

$$\begin{bmatrix} \frac{1}{\sigma_1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \frac{1}{\sigma_n} \end{bmatrix}$$

• tj. vydělíme původní model σ_i :

$$\frac{y_i}{\sigma_i} = \beta_0 \left(\frac{1}{\sigma_i}\right) + \beta_1 \left(\frac{x_i}{\sigma_i}\right) + \frac{u_i}{\sigma_i} = \beta_0 x_{0i}^* + \beta_1 x_{1i}^* + u_i^*$$

$$\downarrow \downarrow$$

$$E\left(\left(u_i^*\right)^2\right) = 1$$

• spíše teoretická varianta, σ_i^2 v praktických úlohách většinou neznáme

ZMNČ – heteroskedasticita – kvadratická závislost

- kvadratická závislost: $\sigma^2 = k^2 x_i^2$
- transformační matice T:

$$\begin{bmatrix} \frac{1}{\mathbf{x}_1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \frac{1}{\mathbf{x}_n} \end{bmatrix}$$

• tj. vydělíme původní model x_i :

$$\frac{\mathbf{y}_{i}}{\mathbf{x}_{i}} = \frac{\boldsymbol{\beta}_{0}}{\mathbf{x}_{i}} + \boldsymbol{\beta}_{1} + \frac{\boldsymbol{u}_{i}}{\mathbf{x}_{i}} = \boldsymbol{\beta}_{0} \frac{1}{\mathbf{x}_{i}} + \boldsymbol{\beta}_{1} + \boldsymbol{v}_{i}$$

$$\downarrow \downarrow$$

$$\boldsymbol{E}(\mathbf{v}_{i}^{2}) = \boldsymbol{\sigma}^{2}$$

- praktický dopad do odhadu pomocí PcGive/GRETLu:
 - upravím proměnné y a x v Algebra editoru
 - konstanta je nyní β₁

ZMNČ – heteroskedasticita – lineární závislost

- lineární závislost: $\sigma^2 = k^2 x_i$
- transformační matice *T*:

$$\begin{bmatrix} \frac{1}{\sqrt{\boldsymbol{x}_1}} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \frac{1}{\sqrt{\boldsymbol{x}_n}} \end{bmatrix}$$

• vydělíme původní model $\sqrt{x_i}$:

$$\frac{\mathbf{y}_{i}}{\sqrt{\mathbf{x}_{i}}} = \frac{\boldsymbol{\beta}_{0}}{\sqrt{\mathbf{x}_{i}}} + \boldsymbol{\beta}_{1}\sqrt{\mathbf{x}_{i}} + \frac{\boldsymbol{u}_{i}}{\sqrt{\mathbf{x}_{i}}} = \boldsymbol{\beta}_{0}\frac{1}{\sqrt{\mathbf{x}_{i}}} + \boldsymbol{\beta}_{1}\sqrt{\mathbf{x}_{i}} + \boldsymbol{v}_{i}$$

$$\downarrow \downarrow$$

$$E(\mathbf{v}_i^2) = \boldsymbol{\sigma}^2$$

- praktický dopad do odhadu pomocí PcGive/GRETLu:
 - upravím proměnné y a x v Algebra editoru
 - musím nadefinovat konstantu taky v Algebra editoru!!!

ZMNČ – heteroskedasticita – příklad 1

Soubor: CV8_PR1.xls

Data: y = výdaje obyvatelstva na zboží v běžných cenách (mld. Kč)

x = disponibilní příjmy obyvatelstva (mld. Kč)

p = index cen zboží

Zadání: Odhadněte závislost výdajů (*y*) na příjmech (*x*) a indexu cen zboží (*p*).

Vyhodnoť te autokorelaci v modelu pro $\alpha = 0.05$.

Vyhodnoť te heteroskedasticitu Whiteovým testem $\alpha = 0.05$.

Vytvořte transformační matici pro ZMNČ.

Transformujte data maticí T a odhadněte model MNČ na transformovaných datech.

Vypište regresní nadrovinu na datech

- transformovaných
- původních.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 p_i + u_i, \quad i = 1, 2, ..., 15$$

ZMNČ – heteroskedasticita – příklad 2

Soubor: CV8_PR2.xls

Data: RD = výdavky na výskum a rozvoj (mil. USD)

SALES = predaj (mil. USD)
PROFITS = zisk (mil. USD)

Zadání: Odhadněte závislost RD na SALES.

Vyhodnoť te heteroskedasticitu Whiteovým testem (pozor na α = 0,10).

Vytvořte transformační matici pro ZMNČ.

Transformujte data maticí T a odhadněte model MNČ na transformovaných datech.

Vypište regresní nadrovinu na datech

- transformovaných
- původních.

$$RD_i = \beta_0 + \beta_1 SALES_i + u_i, \quad i = 1, 2, ..., 18$$

White's HCE: základní informace

- Při heteroskedasticitě běžný odhad MNČ zůstává nestranný a konzistentní (není vydatný).
- ALE: odhad rozptylu náhodné složky s^2 , odhad $VAR(\mathbf{b})$, resp. standardní chyby bodových odhadů \mathbf{S}_{b_i} jsou vychýlené.
- White's HCE: metoda konzistentního odhadu VAR(b) při heteroskedasticitě náhodné složky:
 - způsob "ošetření" heteroskedasticity při odhadu VAR(b):
 - získáme "konzistentní" odhady VAR(b)
 - t-poměry lze interpretovat "obvyklým způsobem" (i při heteroskedasticitě)
 - lze konstruovat intervaly spolehlivosti bodových odhadů (i při heteroskedasticitě).

White's HCE: odvození

Pro homoskedastickou náhodnou složku platí:

odh.
$$VAR(\mathbf{b}) = \mathbf{S}(\mathbf{b}) = \mathbf{S}^2(\mathbf{X}^T\mathbf{X})^{-1}$$
 (1)

tento vztah je odvozen z:

$$VAR(\mathbf{b}) = VAR\left[\mathbf{\beta} + (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{u}\right]$$
 (2)

kde jedním z mezikroků odvození je:

$$VAR(\mathbf{b}) = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \sigma^2 \mathbf{I}_n \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$
(3)

a další "zjednodušování" výrazu (3) je podmíněno homoskedasticitiou náhodné složky, tj. $VAR(\mathbf{u}) = \sigma^2 \mathbf{I}_n$.

Při heteroskedasticitě platí: $VAR(u) = V_n$ a vztah (3) přepíšeme jako:

$$VAR(\mathbf{b}) = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{V}_{n}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}$$
(4)

kde V_n má plnou hodnost (a při neexistenci autokorelace je diagonální)

White's HCE: HCE₀

Pokud platí:

$$VAR(\mathbf{b}) = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{V}_{n}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}$$
(4)

lze rozptyl vektoru **b** odhadnout pomocí

$$VAR(\mathbf{b}) = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\hat{\Sigma}_{n} \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}$$
(5)

kde $\hat{\Sigma}_n$ je odhadem \mathbf{V}_n , je $n_{\times}n$ diagonální matice, na diagonále \mathbf{V}_n rozptyly σ_i^2 nepozorovatelné náhodné složky u_i na diagonále $\hat{\Sigma}_n$ jejich odhady: $\hat{\sigma}_i^2$

Odhady $\hat{\sigma}_{i}^{2}$ jsou vypočteny takto:

$$\hat{\sigma}_i^2 = e_i^2 \tag{6}$$

Vztah (6) znamená, že jako odhad rozptylu u v i-tém pozorování slouží čtverec rezidua e_i , získaného odhadem LRM pomocí MNČ pro dané pozorování.

White's HCE: HCE₀

Například, pro n = 20 (20 pozorování) má matice $\hat{\Sigma}_n$ tvar:

Výsledkem výpočtu podle (5) je matice konzistentních odhadů rozptylu vektoru \boldsymbol{b} (bodových odhadů) při heteroskedasticitě náhodné složky, značíme $\boldsymbol{S}_{HCE}(\boldsymbol{b})$. Z diagonálních prvků $\boldsymbol{S}_{HCE}(\boldsymbol{b})$ odečteme odhadnuté rozptyly parametrů b_j . Na základě $\boldsymbol{S}_{HCE}(\boldsymbol{b})$ lze konstruovat konzistentní t-poměry a intervalové odhady ("platí" i při heteroskedasticitě).

White's HCE: HCE₁

Jeden z řady alternativních postupů odhadu $\mathbf{S}_{HCE}(\mathbf{b})$, kdy do výpočtu $\hat{\mathbf{\Sigma}}_n$ zahrneme stupně volnosti:

$$\hat{\Sigma}_n = \frac{n}{n - k - 1} \begin{bmatrix} e_1^2 & \dots & \dots & 0 \\ \vdots & e_2^2 & & \ddots & \vdots \\ \vdots & & \dots & \ddots & \vdots \\ \vdots & & & \dots & \ddots \\ \vdots & & & \dots & \ddots \\ 0 & \dots & \dots & \dots & e_n^2 \end{bmatrix}$$

neboli:
$$\hat{\sigma}_i^2 = \frac{n}{n-k-1} e_i^2$$

 HCE_0 , HCE_1 a další HCE odhady S_{b_j} jsou implementovány v GRETLu.

ZMNČ – autokorelace

- závislost: $u_t = \rho^* u_{t-1} + \varepsilon_t$; ρ je koeficient autokorelace $\rho = (-1; 1)$
- Praisova-Winstenova metoda (transformace)
- transformační matice T, transformovaný vektor y a matice X:

$$T = \frac{1}{\sqrt{1-\rho^2}} \begin{bmatrix} \sqrt{1-\rho^2} & 0 & 0 & 0 \\ -\rho & 1 & 0 & 0 \\ 0 & -\rho & 1 & 0 \\ 0 & 0 & -\rho & 1 \end{bmatrix} \qquad y^* = \begin{bmatrix} y_1\sqrt{1-\rho^2} \\ y_2-\rho y_1 \\ y_3-\rho y_2 \end{bmatrix}$$

$$X^* = \begin{bmatrix} \sqrt{1 - \rho^2} & x_{11}\sqrt{1 - \rho^2} & x_{21}\sqrt{1 - \rho^2} \\ 1 - \rho & x_{12} - \rho x_{11} & x_{22} - \rho x_{21} \\ 1 - \rho & x_{13} - \rho x_{12} & x_{23} - \rho x_{22} \end{bmatrix}$$

- P-W transformace založena na částečných (zobecněných)
 diferencích všech proměnných LRM + aproximace pro první období.
- Při transformaci vynecháváme zlomek před maticí jde o konstantu, takže výsledek regrese není ovlivněn

ZMNČ – autokorelace

Transformace Cochrane-Orcutt

- Založena na zobecněných diferencích (opakovaně postup P-W, bez aproximace prvního pozorování)
- Iteracemi zpřesňujeme odhad autokorelačního koeficientu i odhad regresních parametrů modelu.
- Metoda zabudována do PcGive, GRETLu i Eviews
- Postup: viz samostatný soubor .pdf (detaily této metody přesahují rámec kurzu Základy ekonometrie)

ZMNČ – autokorelace – příklad

Soubor: CV8_PR3.xls

Data: CONS = spotřební výdaje

INC = disponibilní příjmy

Zadání: Odhadněte závislost výdajů (CONS) na příjmech (INC).

Vyhodnoť te autokorelaci v modelu pro $\alpha = 0.05$.

Vytvořte transformační matici pro ZMNČ.

Transformujte data maticí T a odhadněte model MNČ na transformovaných datech.

Vypište regresní nadrovinu na datech

- transformovaných
- původních.

$$CONS_i = \beta_0 + \beta_1 INC_i + u_i, \quad i = 1, 2, ..., 159$$