Serial No. 10/731,927 July 27, 2005 Reply to the Office Action dated April 21, 2005 Page 2 of 8

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 (canceled).

Claim 2 (currently amended): The device according to claim 1, wherein A surface acoustic wave device using second leaky surface acoustic waves having a dominant component which is a longitudinal wave component, the device comprising:

a LiTaO3 substrate; and

a conductive film disposed on the LiTaO₃ substrate; wherein the density ρ of the conductive film is in the range of about 2,699 kg/m³ to about 19,300 kg/m³; and

the normalized thickness H/ λ of the conductive film is within the range of about 5.3023 ×p^{-0.4172} to about 80161×p^{-1.781} wherein λ represents the wavelength of the second leaky surface acoustic waves and H represents the thickness of the conductive film.

Claim 3 (currently amended): The device according to claim 42, wherein the Euler angle of the LiTaO3 substrate is in regions B1 to B4 shown in Figs. 8 to 11.

Claim 4 (currently amended): The device according to claim 42, wherein the conductive film comprises at least one of copper and silver.

Serial No. 10/731,927 July 27, 2005 Reply to the Office Action dated April 21, 2005 Page 3 of 8

Claim 5 (original): A surface acoustic wave device using second leaky surface acoustic waves the dominant component of which is a longitudinal wave component, the device comprising:

a LiTaO₃ substrate having an Euler angle within regions A1 to A10 defined by connecting the coordinates shown in Tables 1 and 2; and a conductive film disposed on the LiTaO₃ substrate,

wherein the density ρ of the conductive film is greater than about 2,699 kg/m³ and the normalized thickness H/ λ of the conductive film is within the range of about 5.3023 × $\rho^{-0.4172}$ to about 80161 × $\rho^{-1.781}$ wherein λ represents the wavelength of the second leaky surface acoustic waves and H represents the thickness of the conductive film:

Serial No. 10/731,927 July 27, 2005 Reply to the Office Action dated April 21, 2005 Page 4 of 8

Region	Coordinates	θ	ψ
A1	P1	16.2	63.7
	P2	69.9	63.7
	P3	69.9	116.3
	P4	16.2	116.3
	P5	16.2	63.7
A2	P1	106.2	118.7
	P2	143.6	118.7
	P3	143.6	151.4
	P4	106.2	. 151.4
	P5	106.2	118.7
	P1	106.2	28.6
А3	P2	143.6	28.6
	P3	143.6	61.3
	P4	106.2	61.3
	P5	106.2	28.6
A4	P1	16.5	55.9
	P2	72.3	55.9
	P3	72.3	108.0
	P4	16.5	108.0
	P5	16.5	55.9
A 5	P1	106.2	131.3
	P2	124.0	131.3
	P3	124.0	148.0
	P4	106.2	148.0
	P5	106.2	131.3

Table 1

Serial No. 10/731,927 July 27, 2005 Reply to the Office Action dated April 21, 2005 Page 5 of 8

Region	Coordinates	θ	ψ
A6	P1	106.3	30.8
	P2	153.1	30.8
	P3	153.1	71.7
	P4	106.3	71.7
	P5	106.3	30.8
А7	P1	17.4	48.5
	P2	76.8	48.5
	P3	76.8	99.4
	P4	17.4	99.4
	P5	17.4	48.5
	P1	104.6	35.6
A8	P2	158.0	35.6
	P3	158.0	81.3
	P4	104.6	81.3
	P5	104.6	35.6
A 9	P1	19.1	41.7
	P2	78.3	41.7
	P3	78.3	90.4
	P4	19.1	90.4
	P5	19.1	41.7
A10	P1	101.7	41.7
	P2	161.0	41.7
	P3	161.0	90.4
	P4	101.7	90.4
	P5	101.7	41.7

Table 2.

Serial No. 10/731,927 July 27, 2005 Reply to the Office Action dated April 21, 2005 Page 6 of 8

Claim 6 (original): The device according to claim 5, wherein the conductive film comprises at least one of copper, silver, and gold.

Claim 7 (currently amended): A surface acoustic wave device according to claim 42, wherein the conductive film defines at least one of an interdigital transducer and a grating reflector.