Proyecto Final:
SIR generalizado para modelo epidemiológico

Leila Reyes G. - Cristóbal Ramos S.

MA 4402 - Simulación Estocástica

Profesor: Joaquín Fontbona

Auxiliar Tutor: Pablo Zúñiga

Contexto: Modelo SIR

Modelo SIR clásico.

$$s' = -\beta si$$

 $i' = \beta si - \gamma i$
 $r' = \gamma i$

Contexto: Modelo SIR

2. Modelo SIR generalizado (with "social gatherings").

$$s' = -\mu \theta s \left(1 - (1 - pi)^{\theta - 1} \right)$$
$$i' = \mu \theta s \left(1 - (1 - pi)^{\theta - 1} \right) - \gamma i$$
$$r' = \gamma i$$

3. Modelo SIR generalizado con tamaño de reunión aleatorio.

$$s' = -\mu s B(i)$$

$$i' = \mu s B(i) - \gamma i$$

$$r' = \gamma i$$

Contexto: Dinámica Estocástica de Población Finita (and "Mean-Field Limit")

- Interpretación probabilística exacta mediante simulación con cadenas de Markov.
- Tamaños aleatorios en las reuniones (Variables aleatorias con distribución Binomial y Poisson).
- Población finita de tamaño N.

■ **Objetivo:** "Demostrar numéricamente que para una población considerablemente grande, dicha simulación converge a la solución del sistema de EDO's asociado".

Planteamiento

- Simulamos el modelo con cadenas de Markov a tiempo continuo.
- $oxed{\Box}$ Cadena de Markov: $X_t^N = (S_t^N, I_t^N, R_t^N)$
- ☐ Discretizamos el tiempo considerando ciertos delta_t.
- \Box A tasa γ * I : Se recupera un individuo, o sea (S,I,R) \longrightarrow (S, I 1, R).

Planteamiento

- □ A tasa μ*N :
 - Si Θ > N no ocurre nada.
 - Hacer muestreo de (S,I,R)
 - Cada S seleccionado tiene I^N posibilidades de contagiarse con probabilidad p. Sea J_k v.a. que es 1 si algún S se contagia y 0 si no, o sea $1 J_k \sim Ber((1 p)^{I \cap N})$.
 - Si $J = \sum_{k=1}^{S} J_k$ es el nuevo número de infecciones, entonces $(S, I, R) \longrightarrow (S J, I + J, R)$

Planteamiento

☐ El modelo tiene como fundamento teórico el siguiente teorema:

Theorem 13. Let X_t^N be the Markov process on $\{0, \ldots, N\}^3$ described in Section 1.5, and also in Example 9. Denote $Z_t^N = \frac{1}{N}X_t^N$, and let $z_t = (s_t, i_t, r_t)$ be the solution to (3). Assume that $\lim_N Z_0^N = z_0$. Then, for all $T \geq 0$,

$$\lim_{N \to \infty} \sup_{t \le T} |Z_t^N - z_t| = 0 \quad a.s.$$

- ☐ En lo que sigue se considerarán los siguiente parámetros:
 - $\mu = 0.5$
 - p = 0.2
 - \square $\gamma = 0.1$
 - \Box i₀ = 0.01 * N

SIR generalizado con $\Theta \sim \text{Bin}(K,k)$

K = 20 k = 0.1 $E(\Theta) = 2$

K = 20 k = 0.2 $E(\Theta) = 4$

K = 20 k = 0.3 $E(\Theta) = 6$

Modelo SIR con CM. Tamaño de reunión con distribución Binomial Con K = 20, k = 0.3, N = 10000 y delta = 0.0001

Comparación curva 'Infectados'

Modelo SIR con CM. Tamaño de reunion con distribución Binomial para distintos parámetros

SIR generalizado con Θ ~ Poiss(λ)

 $\lambda = 4$ $E(\Theta)=4$

Con
$$\lambda = 4$$
, N = 10000 y deltat = 0.0001

Modelo SIR con CM. Tamaño de reunión con distribución Poisson. Con $\lambda = 6$, N = 10000 y deltat = 0.0001

Comparación curva 'Infectados'

Modelo SIR con CM. Tamaño de reunion con distribución Poisson para distintos parámetros.

Modelo SIR con CM. Tamaño de reunión con distribución Binomial.

Con K = 20, k = 0.2, N = 100 y delta = 0.01 Infectada MC 0.7 Infectados EDOs 0.6 0.5 Población 0.4 0.3 0.2 0.1 0.0 20 60 40 80 100 Tiempo

N fijo y variación de delta_t

- Consideramos los siguiente parámetros:
 - \square N = 4000
 - delta_t = [0.01,0.05,0.003,0.007,0.0001]
 - $\lambda = 4$

Modelo SIR con CM. Tamaño de reunión con distribución Poisson Con N = 4000 fijo y distintos valores deltat

Convergencia modelo CM en N y sol. sistema de EDO's para Θ ~ Bin(20, 0.2), con valores de delta t constantes.

delta t en {0.1, 0.01, 0.001}

Conclusiones

Proyecto Final:
SIR generalizado para modelo epidemiológico

Leila Reyes G. - Cristóbal Ramos S.

MA4402 - Simulación Estocástica

Profesor: Joaquín Fontbona

Tutor: Pablo Zúñiga

