Enter your name

Your_Name: "Insert text here

Show code

Hertzsprung-Russell Diagram

In this portfolio, you will create your own HR Diagram, similar to the one below.

To do this you will need to download data from the <u>Geneva Stellar Evolutionary code</u>. This database provides a model grid of stellar parameters in different stages of a stars evolution.

The different models contain information for

- isochrones (same age, different masses) and
- evolutionary tracks (one mass over time).

Import relevant libraries

Here we provide some of the libraries that need to be read in to be able to execute our code. Remember that:

- 1- **NumPy** is a fundamental package of Python. It allows for a wide range of data types and data manipulation capapbilities. To use it you will call it simply as **np**.
- 2- Matplolib is a Python 2D plotting library. We are only loading the Pyplot capabilities, which provide a collection of command that make matplotlib work like MATLAB.
- $\ensuremath{\mbox{3-}}\xspace$ %matplotlib notebook allows for interactive plotting.

Include any other libraries that you may find useful.

- 1 %matplotlib notebook
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt

Getting the Data

For this assignment, we will use Grids of Stellar Models with Rotation, primarily using solar abundance models (Z = 0.014).

Download the tracks and isochrone grid on $\underline{\sf VizieR}$.

To limit the output, you will need to specify:

- Z = 0.014
- · Specify models with rotation