

Software Engineering I CS-382

- Lecture 4
- What we will cover: (Requirements Engineering)
 - Chapter 7, Sections 7.1-7.5 and In Chapter 8, Section 8.5 (Use Cases) in Pressman
 - Goal of the next 2 lectures is to understand the critical tasks associated with deriving the software requirements of a system

Location of Requirements Engineering in the Process

Communication
-Project initiation
-Requirements
gathering

Planning
-Estimating
-Scheduling
-Tracking

Modeling -Analysis -Design

Construction
-Coding
-Testing

Deployment -Delivery -Support

- •Requirements engineering continues to address:
 - •The context of the software within the overall system
 - ■The customer/user needs
 - ■The prioritization of those needs

3

What Types of Requirements Must be Defined in Requirements Engineering

- 1. Functional Requirements
 - These define the things the product must do.
 - These are what people always think of as requirements
- 2. Non-Functional Requirements
 - Define <u>properties</u> or <u>qualities</u> the software must have
- Constraints
 - These define global requirements within which the product must operate

Functional Requirements

- Define what the product must **do**
 - Defines the scope of the product (its boundaries with the external world)
 - Include:
 - Actions the product must take to satisfy its basic need for existence
 - Transforms (functions) required to generate the data the product must produce from the inputs it is given
 - Derived from the fundamental purpose of the product
 - Not a quality of the system

.

Non-functional Requirements

- Define the **qualities** of the product
 - Look and feel requirements
 - Usability requirements (intended types of users)
 - Performance requirements (how fast, etc.)
 - Operational requirements (operating environment)
 - Maintainability requirements
 - Portability requirements
 - Security requirements
 - Cultural and political requirements
 - Legal requirements

Constraint Requirements

- Define restrictions or limitations of the product
 - Purpose of the product
 - The client, customers, stakeholders
 - Users
 - Requirements constraints (project and design constraints)
 - Naming conventions and standards
 - Relevant facts
 - Assumptions

7

Seven Steps of Requirements Engineering

- **1. Inception**—ask a set of questions that establish ...
 - Basic understanding of the problem
 - The people who want a solution
 - The nature of the solution that is desired, and
 - The effectiveness of preliminary communication and collaboration between the customer and the developer

Seven Steps of Requirements Engineering II

- **2. Elicitation**—elicit requirements from all stakeholders
- **3. Elaboration**—create an analysis model that identifies data, function and behavioral requirements
- **4. Negotiation**—agree on a deliverable system that is realistic for developers and customers

9

Seven Steps of Requirements Engineering III

- **5. Specification**—can be any one (or more) of the following:
 - A written document
 - A set of models
 - A formal mathematical description
 - A collection of user scenarios (use-cases)
 - A prototype

Seven Steps of Requirements Engineering IV

- **6. Validation**—a review mechanism that looks for:
 - errors in content or interpretation
 - areas where clarification may be required
 - missing information
 - inconsistencies (a major problem when large products or systems are engineered)
 - conflicting or unrealistic (unachievable) requirements.
- 7. Requirements management

11

1. Inception

- Identify stakeholders
 - "who should we talk to?"
- Recognize multiple points of view
- Work toward collaboration
- Begin the requirements gathering with questions to "break the ice" and get the whole team working together

2. Elicitation

- The goal is
 - to identify the problem
 - propose elements of the solution
 - define different possible approaches, and
 - specify a preliminary set of solution requirements

2. Elicitation II

- Elicitation may be accomplished by:
 - Meetings are conducted and attended by both software engineers and customers
 - A "definition mechanism" is used (can be work sheets, flip charts, or wall stickers or an electronic bulletin board, etc)
 - These are more formal than the inception meetings
 - Use of specific tools/techniques to speed the process

15

Some Potential Tools for Eliciting Requirements

- General Engineering Methods
 - Quality Function Deployment (QFD), TRIZ, etc.
- Structured Analysis-based Techniques
 - Use the **context diagram** for system and the software
 - Defines the boundaries of the system
 - Context helps to define the data and control flow within system

Some Potential Tools for Eliciting Requirements II

- Object Oriented Analysis-based Techniques
 - Scenario-based with use cases to define key actors of system
 - Actors then help to define the classes
 - Things they do specify the functional requirements

17

Context Diagrams for Eliciting Requirements

- Defining the boundaries of the system is critical to beginning the requirements analysis process.
 - In the Context Diagram the system is represented as a circle in the center of the diagram
 - All the external users, systems, sources/sinks of data, etc. are then represented by boxes surrounding the system
 - The Inputs/Outputs are defined at a very abstract level

Context Diagrams for Eliciting Requirements II

- Useful for subsequent requirements analysis and modeling for both OO and Structured methods
 - Actors for OO use cases are more easily defined
 - I/Os for Structured method also more visible

19

Format of the Context Diagram | System | External System | Extern

Another In-class Context Diagram

For Next Class

■ Continue to Study Chapter 7 Sections 7.6-7.9 in Pressman (Requirements Engineering)