Semaine 2

30 novembre 2021

PIERRE-GABRIEL BERLUREAU ★★★★☆

- 1. Le premier exemple est simple, on se concentre sur le cas $\mathcal{P}(X)$. D'abord, il est évident que $\emptyset \in \mathcal{P}(X)$ et $X \in \mathcal{P}(X)$. L'union d'une familles de parties de X est évidemment aussi une partie de X, de même pour l'intéresection, ainsi $\mathcal{P}(X)$ est une topologie sur X.
- 2. Itérativement.
- 3. \emptyset est évidemment un ouvert de \mathbb{R} , puisque la phrase $\forall x \in \emptyset \dots$ est toujours vraie.
 - \mathbb{R} est un ouvert de \mathbb{R} , on pourra prendre $\epsilon = 1$ pour le montrer.
 - [a,b] n'est pas un ouvert de \mathbb{R} . En effet, $a \in [a,b]$, or, pour tout $\epsilon \in \mathbb{R}_+^*$, $a \epsilon < a$, d'où $a \epsilon < a \frac{\epsilon}{2} < a$, d'où l'existence d'un élément $x \in]a \epsilon$, $a + \epsilon[$ tel que $x \notin [a,b]$.
 -]a, b[, oui. Soit $x \in]a, b[$, on pose $\epsilon_1 = x a$ et $\epsilon_2 = b x$ et $\epsilon = \frac{\min(\epsilon_1, \epsilon_2)}{2}$, ainsi $x \epsilon > a$ et $x + \epsilon < b$ donc] $x \epsilon, x + \epsilon[\subset]a, b[$.
- 4. On pose $\mathcal{O}=\{U\in\mathcal{P}(\mathbb{R})|\forall x\in U,\ \exists \epsilon\in\mathbb{R}_+^*,\]x-\epsilon,x+\epsilon[\subset U\}.$ Ainsi, on a que \mathcal{O} est un sous-ensemble de $\mathcal{P}(\mathbb{R})$, et $\mathcal{O},\mathbb{R}\in\mathcal{O}.$ Soit I un ensemble, $(U_i)_{i\in I}$ une famille d'éléments de $\mathcal{O}.$ Soit $x\in\bigcup_{i\in I}U_i$, alors $\exists i\in I,\ x\in U_i$, il existe donc $\epsilon\in\mathbb{R}_+^*$ tel que $]x-\epsilon,x+\epsilon[\subset U_i$ donc $]x-\epsilon,x+\epsilon[\subset\bigcup_{i\in I}U_i$, ainsi $\bigcup_{i\in I}U_i$ est un ouvert de $\mathbb{R}.$ La preuve pour l'interesction est de même nature, il faudra juste prendre le minimum des deux ϵ que l'on a durant la preuve. Ainsi, on a montré que \mathcal{O} est une topologie sur $\mathbb{R}.$
- 5. Vérifications faciles. L'union ne donne pas toujours des topologies sur X, considérer \mathcal{O} et $\{\mathcal{O}, [a, b], \mathbb{R}.$
- 6. Considérer l'intersection des topologies contenant A.

MATTEO DELFOUR ★★☆☆☆

Analyse Soit $f \in \mathbb{R}^{\mathbb{R}}$ telle que

$$\forall x, y \in \mathbb{R}, \quad f(x - f(y)) = 2 - x - y$$

Soit $x \in \mathbb{R}$, alors on a f(-f(x)) = 2 - x, donc ce résultat est vrai pour tout $x \in \mathbb{R}$. Soit $x \in \mathbb{R}$, on a alors f(x - f(2)) = -x donc -f(x - f(2)) = x donc f(-f(x - f(2))) = f(x) donc -f(x) = x donc -f(x)

$$\exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = 2 - x + \lambda$$

Le reste du raisonnement est simple.

Synthèse Facile.

YANIS GRIGY ★★★☆☆

Supposons que \mathbb{P} est fini, on note p_1, \ldots, p_n les $n \in \mathbb{N}^*$ nombres premiers et on pose $N = p_1 \ldots p_n + 1$. Ainsi, N admet un diviseur premier, que l'on note p_k qui divise donc $N - p_1 \ldots p_n$, donc p_k divise 1, ce qui est absurde.

1

LOUIS MARCHAL ***

On le montre par l'absurde. Soit $n \in \mathbb{N}^*$, on suppose $\left(\frac{3+4i}{5}\right)^n = 1$, donc $(3+4i)^n = 5^n$, donc

$$\sum_{k=0}^{n} \binom{n}{k} 3^{n-k} (4i)^k = 5^n$$

donc

$$\sum_{1 < 2k+1 < n} (-1)^k \binom{n}{2k+1} 3^{n-(2k+1)} 4^{2k+1} = 0$$

donc

$$\sum_{3 < 2k+1 < n} (-1)^k \binom{n}{2k+1} 3^{n-(2k+1)} 4^{2k} + n = 0$$

donc 4 divise n (on vient juste d'éliminer tous les eniters non congrus à $0 \mod 4$, reste à chercher une absurdité avec ceux-là).

Soit à présent $m \in \mathbb{N}^*$, on a

$$(3+4i)^{4m} = \sum_{k=0}^{4} m \binom{4m}{k} 3^{4m-k} (4i)^k$$

=
$$\sum_{k=0}^{2m} (-1)^k \binom{4m}{2k} 3^{4m-2k} 4^{2k} + i \sum_{k=0}^{2m-1} (-1)^k \binom{4m}{2k+1} 3^{4m-(2k+1)} 4^{2k+1}$$

Mais aussi $z := (3+4i)^{4m} = 5^{4m}$.

On a

$$\operatorname{Re}(z) = \sum_{k=0}^{2m} (-1)^k \binom{4m}{2k} 3^{4m-2k} 4^{2k} \equiv \sum_{k=0}^{2m} (-1)^k \binom{4m}{2k} (-1)^{2m-k} \equiv \sum_{k=0}^{2m} \binom{4m}{2k} [5]$$

et

$$\operatorname{Im}(z) = \sum_{k=0}^{2m-1} (-1)^k \binom{4m}{2k+1} 3^{4m-(2k+1)} 4^{2k+1} = \sum_{k=0}^{2m-1} (-1)^k \binom{4m}{2k+1} 3^{4m-(2k)} 4^{2k}$$

$$\equiv \sum_{k=0}^{2m-1} (-1)^k \binom{4m}{2k+1} (-1)^{2m-k}$$

$$\equiv \sum_{k=0}^{2m-1} \binom{4m}{2k+1} [5]$$

Donc $\text{Re}(z) + \text{Im}(z) \equiv \sum_{k=0}^{4m} \binom{4m}{k} [5]$, mais $\text{Re}(z) + \text{Im}(z) = 5^{4m}$, donc $5^{4m} \equiv 2^{4m} [5]$, donc $2^{4m} \equiv 0 [5]$, ce qui est absurde.

Shems ★★☆☆

Soit $m \in \mathbb{N}$,

$$\int_0^{\pi} \sin^{2m} x \cos(2mx) dx = \operatorname{Re} \left(\int_0^{\pi} \sin^{2m} x e^{i2mx} dx \right)$$

$$= \operatorname{Re} \left(\int_0^{\pi} \left(\sin(x) e^{ix} \right)^{2m} dx \right)$$

$$= \frac{(-1)^m}{4^m} \operatorname{Re} \left(\int_0^{\pi} \left(2i \sin(x) e^{ix} \right)^{2m} dx \right)$$

$$= \frac{(-1)^m \pi}{4^m}$$

La relation de récurrence pour la seconde est, pour m > 2:

$$I_m = \frac{m-1}{m-2}I_{m-2}$$