

Style Transfer by Deep Learning

Julien Guillaumin (ex Télécom Bretagne) julien.guillaumin@imt-atlantique.net

Style Transfer by Deep Learning: Motivations

- Generative task
 - From an image, generate a new one
- Introduction to more complex tasks
 - Super-resolution and colorisation
- CNNs understanding is required
 - Hierarchy of representations
 - Feature spaces

- Machine Learning vs Deep Learning
- CNNs visualizing and understanding
- Content and style representations
- Optimization-based style transfer
- Feed-forward method with learning
- Arbitrary style transfer

Machine Learning vs Deep Learning

Machine Learning pipeline

For images: HOG features, SIFT methods, Histograms, LBP features,

Representation Learning

Representation Learning approach

Deep Representation Learning approach

Deep Neural Networks

Traditional Machine Learning Flow

Deep Learning Flow

CNNs visualizing and understanding

CNNs for Image Classification

- Pooling operations to reduce the dimensions of the feature maps
- 'Flatten' operation, representation as a vector
- Fully-Connected layers (Multilayer Perceptron)
 - Learned: weight matrix and bias vector
- Training (weight-update) on error
 - Classification : cross entropy

Deep Network : VGG-16

- Simple : no inception modules or residual connections
- Trained for **image classification** on ImageNet (1000 classes)
- State of the art in 2014 (92.7% top-5 test accuracy)
- 138,357,544 parameters (10% conv weights, 90% FC layers)
- No residual connections, or inception modules : Deep simple model

CNNs visualizing

Additional visualization methods:

- Deep Dream approach [2]
 - Optimization-based
- Zeiler & Fergus [3]
 - Transposed convolutions and unpooling operations

Content & style representations

Content Representation/Reconstruction

 $\mathcal{X}_{\boldsymbol{C}}$

 $\Phi_j(x)$

Activations of the jth layer

Eg:

conv3_3:56x56x256

Fixed VGG-16

$$\mathcal{X}$$

$$\hat{x} = \underset{x}{\operatorname{argmin}} ||\Phi_j(x) - \Phi_j(x_c)||_2^2$$

- Goal: find an image with the same activations at a given layer (all feature maps)
- Optimization problem, start from a random image

Content Representation/Reconstruction

- gradient descent optimization on input image, network does not change
- loss = MSE on feature maps, 1000 iterations, Adam (Ir=2.0)
- low-level: input image is correctly reconstructed, with pixel-level details
- high-level : only content is preserved

Content Representation/Reconstruction

- From a random image, reconstruct the feature maps obtained with a normal image, on a specific layer
- Gradient descent optimization on image input, network does not change
 - Loss = MSE on feature maps, 1000 iterations, Adam (Ir=2.0)
- Low-level: input image is correctly reconstructed, with pixel-level details
- High-level: only content is preserved

$$L_c(x, x_c) = \frac{1}{C_j H_j W_j} ||\phi_j(x_c) - \phi_j(x)||_2^2$$

Style Representation/Reconstruction

- Needs more complex statistics on feature maps : **Gram matrix**
 - Second-order statistics
 - Can capture texture information, no spatial information
- $\bullet \quad$ For a given layer j with C_j feature maps of size (W_j, H_j)
- ullet The Gram matrix is a (C_j,C_j) matrix :

$$G_j(x)_{c_1,c_2} = \mathbb{E}[\Phi_j(x)[c_1] * \Phi_j(x)[c_2]]$$

- Where * is an element-wise operation between 2 feature maps (Hadamard product)
- Contains the correlation between every pair of feature maps

Style Representation/Reconstruction

 x_s

 $G_j(x)$

Gram matrix of the jth layer (256 x 256)

conv3_3:56x56x256

Fixed VGG-16

$$\overline{x}$$

$$\hat{x} = \underset{x}{\operatorname{argmin}} ||G_j(x) - G_j(x_s)||_2^2$$

- Goal: To find an image with the same Gram matrix for a given layer
- Optimization problem: Start from a random image

Style Representation/Reconstruction

- Gradient descent optimization on image input, network is freezed
- Loss = MSE on feature maps, 1000 iterations, Adam (Ir=2.0)
- Low-level : Small and simple patterns
 - High-level : More complex patterns $L_{\mathcal{S}}(x,x_{\mathcal{S}}) = \sum_{j} \frac{\lambda_{j}}{C_{j}^{2}} ||G_{j}(x_{\mathcal{S}}) G_{j}(x)||_{2}^{2}$

 \mathcal{X}_{S}

Content & Style Representations

- Content is preserved in high level features
- Style is present in second-order statistics in low and medium levels
- Content and Style are separable
- content_loss and a style_loss are defined
- Combine style and loss from different images is possible, via feature extraction learned within a VGG network, trained for image classification

Optimization-based approach for style transfer

Approach proposed by

- Gatys et al [4, 10]
- Ruder et al [5]

Mix content & style via specific losses

Optimization process

- Compute content_target (feature maps) with content_image
- Compute style_target (Gram matrices) with style_image
- Start from a random image (input_image)
- Optimization process :
 - Compute content_loss and style_loss with targets + input_image
 - Minimize this loss by modifying input_image
 - Possible thanks to gradient-descent method (like Adam)

TensorFlow Implementation

- TensorFlow implementation (version 1.1.0, Python 3.5)
- With TensorBoard annotations (Graph and metrics visualization)
- Jupyter notebooks and Conda/Docker envs
- **GitHub**: JGuillaumin/style-transfer-workshop

TensorFlow implementation

Results

- Produce high-quality images
- Easy to tune effects (more content? more style?)
- Any input/output size
- Running time (1000 #iter)
 - GPU (GTX 1070): ~ 5 min (1920 CUDA cores)
 - CPU (i7-7700K): ~ 150 min (4 cores x 2 threads)
- Avoid any real-time applications
- But perceptual loss (content+style) is defined

Improvements

- Time dependency for video transformation (see [5])
- Change optimizer: L-BFGS!
- Tune weights between style and content loss
- Start from : content image, style image, noisy image, or a mix.
- Color constraint : preserve color from content image ! (see [10])

from : github.com/tensorflow/magenta

Feed-forward method with learning

Approach proposed by

- Ulyanov et al [6, 7]
- Johnson et al [8]

Feed-forward method

- Train a network to obtain a stylized image in one pass as an output
- Used for one specific style (fixed)

What type of structures for the generator?

Batch Normalization vs. Instance Normalization

$$BN_f(x) = \gamma \frac{x - \mu_f(x)}{\sigma_f(x)} + \beta$$

channel-wise

$$IN_{n,f}(x) = \gamma \frac{x - \mu_{n,f}(x)}{\sigma_{n,f}(x)} + \beta$$

(sample,channel)-wise

How to train a generator?

Need a dataset of content images

- COCO dataset, about 80k images
- Only 1 style image

Training process (loop):

- Take a batch of samples from COCO
- Pass this batch through the generator to get generated images
- Compute style_loss between the generated images and the style image
- Compute content_loss between the generated images and the original ones
- Minimize the total_loss by updating the weights from the generator

Training information:

- Adam optimizer (*Ir=0.05*)
- Only 20k iterations (with batch_size=4)
- For 512x512x3:
 - Training time (on GTX 1070): 10 hours
 - Inference time: 330 ms (GTX 1070)

Results and improvements

it = 20000

With a new content image:

it = 500

it = 1

- Learn to apply only one style!
- In [9] (ICLR 2017):
 - Add 'Conditional Instance Normalization'
 - Learn to apply a fixed set of styles (until 64)
 - Can learn quickly a new style (incremental learning)

Add **variational loss** to encourage spatial smoothness

Arbitrary style transfer

Approach proposed by:

- X. Huang, S. Belongie [11] (ICLR 2017)

Mix content & style images within the generator

- Goal: train a generator to produce stylized images from any style with any content
- **Previous approach**: style is learned in the generator via the *style_loss*
- New approach : mix content and style images in feature space !
 - Use encoder-decoder structure
 - Mix encoded content and style images
 - Use the same perceptual loss (content_loss + style_loss)
 - Trained on a content dataset (COCO) and a painting dataset (WikiArt)

Mines-Télécom

Encoder/Decoder + Adaptive IN

- the decoder mirrors the encoder
- to train!

Adaptive Instance Normalization

[N, 224, 224, 3] [N, 28, 28, 512] [N, 28, 28, 512] $x_{c} + e_{c} + e_{s} + e_{s} + t$ $x_{s} + e_{s} + e_{s} + e_{s} + t$

$$AdaIN_{n,f}(e_c, e_s) = \sigma_{n,f}(e_s) \frac{e_c - \mu_{n,f}(e_c)}{\sigma_{n,f}(e_c)} + \mu_{n,f}(e_s)$$

- per sample (n) and per channel (f) statistics alignment
- producing the target feature maps

How to train the decoder?

- trained with batches of content-styles image pairs
- different contents and styles within the same batch!
- 80k content images (MS COCO) + 80k paintings (WikiArt.org)

Results

- Training time: about 24 hours (GTX 1070, 200k iterations)
- Decoder-AdalN-decoder can apply any new style!
- High-quality images (similar to optimization-based approach)
- Inference time : ~ 450ms (256x256)

from github.com/xunhuang1995/AdaIN-style

Conclusion - Style Transfer

	Content	Style	Production	Training
Gatys et al (2015)	1	1	~ 5 min	X
Johnson Ulyanov (2016)	infinite	fixed number, until 64	~ 300ms	~ 4 hours
X Huang (2017)	infinite	infinite	~ 450 ms	~ days

Conclusion

- Resolve complex task by working on feature spaces
- Introduction to more complex tasks
 - Colorisation
 - Super-resolution
 - Inverse style transfer
 - Season transfer
 - Color transfer

from github.com/junyanz/CycleGAN

Online resources

github.com/JGuillaumin/style-transfer-workshop

- Several Jupyter notebooks
- All methods presented here and more
- Implementation with TensorFlow 1.1, Python 3.5
- With TensorBoard annotations
- Conda env and Dockerfiles (CPU and GPU)

Online in few days

Thank you

Resources

- [1] : K. Simonyan, A. Zisserman : "Very Deep Convolutional Networks for Large-Scale Image Recognition", 2014, arXiv:1409.1556
- [2] : About Deep Dream visualization technique : "Inceptionism: Going Deeper into Neural Networks"
- [3] : M. Zeiler, R. Fergus: Visualizing and Understanding Convolutional Networks, 2013 arXiv:1311.2901
- [4]: L. Gatys, A. Ecker, M. Bethge: A neural algorithm of artistic style, 2015, arXiv:1508.06576
- [5]: M. Ruder, A. Dosovitskiy, T. Brox: Artistic style transfer for video, 2016, arXiv:1604.08610
- [6]: D. Ulyanov et al: Texture Networks: Feed-forward Synthesis of Textures and Stylized Images, 2016, arXiv:1603.03417
- [7] : D. Ulyanov et al : Instance Normalization: The Missing Ingredient for Fast Stylization, 2016, arXiv:1607.08022
- [8] : J. Johnson et al : Perceptual losses for real-time style transfer and super-resolution, 2016, arXiv:1603.08155
- [9]: V. Dumoulin et al: A learned representation for artistic style, 2017, arXiv:1610.07629
- [10] : Gatys et al : Preserving color in Neural Artistic Style Transfer, 2016, arXiv:1606.05897
- [11] X. Huang and S. Belongie: Arbitrary Style Transfer in real-time with AdalN, 2017, arXiv:1703.06868

