Zaawansowane algorytmy wizyjne AGH, Katedra Automatyki i Robotyki

Rozpoznawanie kształtów

Transformata Hough'a, uogólniona transformata Hough'a, metody metryczne dopasowania kształtów, rozpoznawanie obiektów złożonych

Konspekt stanow uzupełnienie wykładu, nie pokrywa całości materiału przedstawionego na wykładzie i obowiązującego do zaliczenia

Transformata Hougha Wersja dla parametrów prostej: współczynnik kierunkowy + wyraz wolny W tej wersji transformaty nie można uzyskać współczynników dla prostych pionowych Input Image

Rozpoznawanie kształtów przez dopasowanie

Definicja metryki

Funkcja d: $X \times X \to R^+$ jest metryką, jeżeli spełnia warunki:

- $d(x, y) = 0 \iff x = y$
- d(x, y) = d(y, x) warunek symetrii
- $\bullet \quad d(x,\,y)+d(y,\,z) \geq d(x,\,z)-warunek \ tr\'ojkata$

Przykłady metryki:

- Euklidesowa
- Uliczna (taksówkowa, Manhattan)
- Metryka maksimum (Czebyszewa)

Odległość Frecheta – minimum po wszystkich monotonicznie rosnących parametryzacjach z maksymalnej odległości między $P(\alpha(t))$ i $Q(\beta(t))$ $\delta_{\ell}(P,Q) = \min_{\substack{\alpha[0,1] \to [0,N] \\ \beta[0,1] \to [0,M]}} \{\max_{t \in [0,1]} d(P(\alpha(t)), Q(\beta(t)))\}$

Własności metryki Hausdorffa istotne z punktu widzenia rozpoznawania obiektów

Jednoznaczność: $d_H(A, B) = 0 \Leftrightarrow A=B$

Informacja o parametrach transformacji (rozpoznawanie obiektów złożonych)

Możliwość uwzględnienia dowolnych transformacji obiektu

Przewidywalność – interpretacja intuicyjna

Możliwość wykorzystania d_{H^+} i d_{H^-} w rozpoznawaniu obiektów częściowo przesłoniętych lub nieprawidłowo wyodrębnionych

Metody przyspieszenia obliczeń metryki Hausdorffa poziom 4: Eliminacja części biblioteki obiektów szukiwanie obiektu wzorcowych + optymalna kolejność przeszukiwania wysoki poziom (końcowa faza obliczeń) poszukiwanie Optymalizacja odl. Hausdorffa po poziom 3: Eliminacja części poszukiwanie przestrzeni parametrach transformacji transformacji obiektu transformacji Metoda eliminacji podzbiorów konturu poziom 2: poszukiwanie maksimum Eliminacja wnętrza obiektu niski poziom poziom 1: Metoda triangulacji poszukiwanie (początkowa Delaunay'a faza obliczeń) minimum

Poziom 1: Poszukiwanie minimum

Poziom 2: Poszukiwanie maksimum a) eliminacja wnętrza obiektu b) eliminacja podzbiorów konturu

Poziom 3: Transformacja obiektu wzorcowego

Optymalizowane parametry

Dla obiektów 2D o unikalnym kształcie można przyjąć 4 parametry transformacji:

- Translacja x
- Translacja y
- Skalowanie (jednokładność)
- Obrót

Podejście A: dokładny przegląd całej przestrzeni z algorytmami obcinania (Rucklidge)

Podejście B: użycie metod optymalizacji

Problemy optymalizacyjne w przestrzeni transformacji 1. Odległość Hausdorffa ma nieciągłą pochodną względem parametrów tranformacji => użycie metod gradientowych jest niewskazane 2. Występuje wiele ekstremów lokalnych, zwłaszcza przy zmianie kąta obrotu Przykładowa krzywa sparametryzowana kątem obrotu (na osiach prawo- i lewostronna odległość Hausdorffa)

Poziom 4: Algorytmy nawigacji w bazie danych

Nawigacja w bazie danych - eliminacja wzorców

Wykorzystanie cech: współczynników kształtu i niezmienników momentowych.

Cechy dwóch obiektów istotnie się różnią => kształt obiektów jest różny Cechy dwóch obiektów są zbliżone lub identyczne => nic nie wiadomo

Zatem:

Cechy nie nadają się dobrze do rozpoznawania kształtów jako samoistne kryterium (chyba że mamy do czynienia z niewielkim zbiorem klas)

Cechy nadają się do wyeliminowania części wzorców z obliczeń

Wykorzystanie cech do eliminacji wzorców

Przykładowe cechy:

$$M_1 = (M_{20} + M_{02}) / m_{00}^2,$$

$$M_2 = (\; (M_{20} {+} M_{02})^2 + 4\; M_{II}{}^2 \,) \, / \; m_{00}{}^4,$$

$$W_{BB} = \frac{S}{\sqrt{2\pi \iint r^2 ds}}$$

 m_{00} – moment zwykły rzędu (0,0), czyli suma jasności wszystkich pikseli obrazu, M_{ii} – moment centralny, wyrażony wzorem:

 $= \sum_{i=1}^{I} \sum_{j=1}^{J} (i - i_0)^p (j - j_0)^q f_{ij}$

 i_{0,j_0} – współrzędne środka ciężkości f_{ij} – jasność piksela (i,j),

Nawigacja w bazie danych – efektywna kolejność

Obliczyliśmy odległości rozpoznawanego obiektu od w, i w2. Pytamy czy w_3 jest dobrym kandydatem

Rozpoznawanie obiektów złożonych przez dopasowanie

Modelowanie obiektów złożonych

Pojecie grafu i drzewa graf G = {V, E},

krawędź – nieuporządkowana para wierzchołków

Drzewo – graf spójny acykliczny Graf o n wierzchołkach jest drzewem ⇔ • jest spójny i nie zawiera cykli

- jest spójny i ma n-1 krawędzi
 każde 2 wierzchołki są połączone dokładnie 1 drogą
 usunięcie dowolnej krawędzi spowoduje utratę spójności grafu

Modelowanie obiektów złożonych

Wierzchołki grafu – podobiekty Krawędzie grafu – relacje między obiektami

Typy relacji:

- rypy retacji.
 relację geometryczne (na lewo, powyżej, itp.)
 relację topologiczne określają wzajemne przyleganie
 obiektów i zwieranie się jednych obiektów w innych
 przynależności do obiektu nadrzędnego (mereologiczne)

Hipergrafy i modelowanie obiektów 3D

Przykładowe podejścia do modelowania obiektów 3D:

	krawędzie grafu	hiperkrawędzie	wielopoziomowość
, , , ,	krawędzie figury	wierzchołki figury	zagregowanie elementów figury

wierzchołki grafu	krawędzie grafu	hiperkrawędzie	wielopoziomowość
ściany figury	krawędzie	zagregowanie	brak
	figury	elementów figury	

	krawędzie grafu	hiperkrawędzie	wielopoziomowość
wierzchołki figury	krawędzie figury	brak	brak

Modelowanie relacji rozmytych

Nośnik (support) zbioru rozmytego - zbiór elementów x, dla których $\mu_{\rm A}(x)>0$ ${f Rdze\'n}$ (core) zbioru - zbiór elementów x, dla których $\mu_A(x)=1$ Wysokość zbioru - największa wartość funkcji przynależności

wysokość=1 => zbiór znormalizowany

Modelowanie relacji rozmytych

 $A=B \leftrightarrow orall_{u \in U} \mu_A(u) = \mu_B(u)$ Równość zbiorów rozmytych:

Zawieranie zbiorów rozmytych: $A\subset B \leftrightarrow orall_{u\in U}\mu_A(u)\leq \mu_B(u)$

Zbiory α-poziomicowe

Zbiory o poziomie α (α-poziomicowe)

A – zbiór rozmyty A_{α} – zbiór o poziomie α : $\mathsf{A}_{\alpha}(x) := \{ x \colon A(x) \geq \alpha \}$

Zbiory o poziomie α umożliwiają reprezentowanie zbioru rozmytego przez zbiory nierozmyte:

 $A = \bigcup \alpha A_{\alpha}$

Grafy rozmyte

Grafy rozmyte

W grafie rozmytym wierzchołkom i krawędziom przypisane są wartości funkcji przynależności. Funkcja przynależności dla wierzchołka nie może być mniejsza niż dla

dochodzącej do niego krawędzi.

Graf α-poziomicowy

Graf α -poziomicowy to zbiór tych wierzchołków i krawędzi grafu G, dla których wartość funkcji przynależności jest większa lub równa α

W przypadku modelowania obiektów złożonych rozmycie modeluje niejednoznaczność cech podobiektów i relacji między nimi

