# 



Gerard Torrent Gironella

1 de septiembre de  $2005\,$ 

Copyright © 2004-2005 Gerard Torrent Gironella.

The image found in cover have been taken from Mark L. Winston. 1987. *The Biology of the Honey Bee* (ISBN: 0-671-07109-2). Harvard University Press. Cambridge, MA. These redrawn figures appear here without permission of Harvard University Press [Ref: 973029].

This file is part of the CreditCruncher software package. For license information, see the COPYING file in the top level directory of the CreditCruncher source distribution.

# Índice general

| 1. | $\mathbf{Intr}$ | oducción 4                                              |
|----|-----------------|---------------------------------------------------------|
|    | 1.1.            | Acerca de CreditCruncher                                |
|    | 1.2.            | Organización del contenido                              |
|    | 1.3.            | Consideraciones                                         |
| 2. | For             | mulación del problema 6                                 |
|    | 2.1.            | Cartera de créditos                                     |
|    |                 | 2.1.1. Ratings                                          |
|    |                 | 2.1.2. Sectores                                         |
|    |                 | 2.1.3. Activos                                          |
|    | 2.2.            | Tipos de interés                                        |
|    |                 | 2.2.1. Función de transporte                            |
|    |                 | 2.2.2. Curva spot o cupón cero                          |
|    | 2.3.            | Matriz de transición                                    |
|    |                 | 2.3.1. Propiedades                                      |
|    |                 | 2.3.2. Cambio de periodo                                |
|    |                 | 2.3.3. Función de supervivencia                         |
|    | 2.4.            | Matriz de correlación                                   |
|    | 2.5.            | Value At Risk (VAR)                                     |
| 3. | Res             | olución del problema 21                                 |
|    | 3.1.            | Hipótesis                                               |
|    |                 | 3.1.1. Hipótesis duras                                  |
|    |                 | 3.1.2. Hipótesis blandas                                |
|    | 3.2.            | •                                                       |
|    |                 | 3.2.1. Variables aleatorias correlacionadas. Cópulas 22 |
|    |                 | 3.2.2. El método de Monte Carlo                         |
|    | 3.3.            | Notación                                                |
|    | 3.4.            | Valor de un activo                                      |
|    | 3.5.            | Valor de la cartera                                     |
|    | 3.6.            | Método Time-To-Default                                  |
|    | 3.7.            | Método Rating-Path                                      |
|    | J.,,            | 3.7.1 Valoración de la cartera                          |

|          |                | 3.7.2. Distribución del valor de la cartera         | 26        |
|----------|----------------|-----------------------------------------------------|-----------|
|          | 3.8.           | Cálculo de los valores                              | 27        |
|          | т              | 1 , , , 1 1 1                                       | •         |
| 4.       | $\mathbf{Imp}$ | lementación de la solución                          | <b>28</b> |
|          | 4.1.           | Validaciones                                        | 28        |
|          | 4.2.           | Proceso de agregación                               | 29        |
|          | 4.3.           | Dimensiones del problema                            | 29        |
|          | 4.4.           | Convergencia de la solución                         | 29        |
| Δ.       | Ané            | ndices                                              | 30        |
| <b>.</b> | _              |                                                     |           |
|          | A.1.           | Conceptos básicos de estadística                    | 30        |
|          |                | La variable aleatoria de Bernoulli                  | 31        |
|          | A.3.           | La variable aleatoria Binomial                      | 32        |
|          | A.4.           | La variable aleatoria Normal                        | 32        |
|          | A.5.           | Estimadores estadísticos                            | 33        |
|          | A.6.           | Error estándar de un quantil                        | 34        |
|          | A.7.           | Cálculo de la raiz de una matriz                    | 34        |
|          | A.8.           | Algoritmo de la cópula gaussiana                    | 35        |
|          | A.9.           | Descomposición de Cholesky de una matriz en bloques | 36        |

# Capítulo 1

# Introducción

Este documento contiene la descripción del método de valoración del riesgo de crédito implementado por el proyecto CreditCruncher. Para su lectura no se presuponen conocimientos avanzados de matemáticas o finanzas. En caso de encontrar un error, sugerir mejoras o no entender algún punto, no dude en ponerse en contacto con el equipo de desarrollo de CreditCruncher<sup>1</sup> que tendrá en cuenta sus aportaciones para futuras versiones de este documento.

## 1.1. Acerca de CreditCruncher

La valoración del riesgo de crédito no es un tema cerrado, muestra de ello es la multitud de métodos que existen para su valoración. Se recomienda la lectura del artículo *Different strokes* [7] donde se exponen los principales modelos de valoración del riesgo de crédito y sus características.

CreditCruncher valora el riesgo de impago de una cartera de créditos usando la técnica de simulación Monte Carlo. Pretende ofrecer un método de valoración del riesgo de crédito totalmente documentado y soportado por una implementación libre y gratuita. Pertenece a la família de métodos tipo CreditMetrics<sup>2</sup>.

La mayoría de conceptos y explicaciones que pueden encontrarse en este documento han sido extraidas o inspiradas en el documento *CreditMetrics - Technical Document* [2]. Puede usarse el artículo *Probability models of credit risk* [1] como una introducción corta y clara.

<sup>&</sup>lt;sup>1</sup>http://www.generacio.com/ccruncher/

<sup>&</sup>lt;sup>2</sup>http://www.riskmetrics.com/

# 1.2. Organización del contenido

Se ha organizado el contenido en cuatro secciones principales y un conjunto de anexos.

Formulación del problema. Contiene la descripción del problema que se pretende resolver y se introducen los elementos y propiedades considerados claves para la posterior resolución. La lectura de este apartado es necesaria para entender los elementos del fichero de entrada de datos del programa.

Resolución del problema. Se exponen los elementos usados para resolver el problema y se detalla la estructura del método de resolución. La lectura de este apartado es necesaria para la interpretación de los resultados proporcionados por el programa.

Implementación de la solución. Se explican los detalles de la implementación. La lectura de este apartado es necesaria para entender alguno de los apartados del fichero de entrada de datos del programa así como para la interpretación de los resultados proporcionados por este.

**Apéndices.** Contienen elementos necesarios para la comprensión del contenido de las secciones principales, pero que su inclusión en estas oscurecería la explicación.

#### 1.3. Consideraciones

No se demuestran los enunciados que puedan ser encontrados en los libros de matemáticas de grado medio o superior.

Recomendamos la lectura de las referencias bibliográficas que se incluien, pueden ayudarle en la comprensión de lo expuesto en este documento.

Los textos contenidos en los gráficos están en inglés debido a que son compartidos por todas las posibles traducciones de este documento.

Para obtener una presentación óptima de este documento, imprímalo. Si utiliza un visualizador tipo *Adobe* o *gsview* puede que algunos gráficos se muestren en un trazo inadecuado.

# Capítulo 2

# Formulación del problema

Dada una cartera de créditos a empresas de tamaño mediano, deseamos valorar las posibles pérdidas debido a los impagos al cabo de un tiempo T.

A continuación se introduce los elementos y propiedades básicas que constituyen el marco de trabajo.

## 2.1. Cartera de créditos

La estructura de la cartera de créditos consiste en un conjunto de clientes agrupados por sectores de actividad. Cada cliente tiene contratado un conjunto de productos de crédito. Cada contrato puede estar cubierto por un número variable de garantías o acuerdos. Puede verse un esquema de la estructura en la figura 2.1.



Figura 2.1: Estructura de la cartera de créditos

#### **2.1.1.** Ratings

Un sistema de ratings es una medida de calidad crediticia usada para valorar creditores. A cada creditor se le asigna una nota discreta (pe. AAA, AA, A, BBB, BB, B, CCC, Default) en función de su calidad crediticia. Los únicos ratings contemplados en este documento son los que tienen una relación estadística directa y cuantificable con la probabilidad de impago del creditor. Ejemplos de este tipo de ratings son los publicados por Moody's Investor Service<sup>1</sup> o Standard & Poors<sup>2</sup>.

La metodología para la generación de un sistema de ratings queda fuera del ámbito de este documento. CreditCruncher presupone que cada empresa de la cartera tiene un rating inicial asignado.

El rating de cada empresa puede variar a lo largo del tiempo (véase figura 2.2). La evolución temporal del rating de una empresa se contempla a través de la matriz de transición o la función de supervivencia (véase la sección 2.3).



Figura 2.2: Evolución del rating a lo largo del tiempo

**Notación.**  $P(r_i \to r_j; t_0; t_1) = \text{probabilidad de pasar de un rating inicial } r_i \text{ en tiempo } t_0 \text{ a un rating } r_j \text{ en tiempo } t_1.$ 

<sup>&</sup>lt;sup>1</sup>http://www.moodys.com

<sup>&</sup>lt;sup>2</sup>http://www.standardandpoors.com

#### 2.1.2. Sectores

La correlación de fallidos entre clientes es uno de los conceptos que añaden complejidad de la valoración del riesgo de crédito. No es lo mismo tener una cartera de créditos donde los clientes hacen fallido de forma independiente que una cartera donde los fallidos se encuentran correlacionados. En el primer caso, al cabo de un año tendremos un conjunto limitado de fallidos. En el segundo caso, al cabo de un año la mayoria de clientes habrán hecho fallido o casi ningún cliente habrá hecho fallido.



Figura 2.3: Impacto de la correlación intrasectorial

Al no poder asignar una correlación de fallido cliente a cliente, se recurre a la agrupación de estos en *sectores*. Se considera que la cartera de créditos dispone de un conjunto de sectores donde los componentes de cada sector muestran una evolución crediticia similar. O sea, que la mejora o empeoramiento de la calidad crediticia (rating) afecta de forma común a los componentes del sector. En general se identifican estos sectores con los sectores industriales.

Se considera que cada cliente pertenece a un único sector y permanece en el a lo largo del tiempo. La relación entre sectores se contempla a través de la matriz de correlación sectorial (véase la sección 2.4).

#### 2.1.3. Activos

Cada cliente tiene contratado un conjunto de activos con riesgo de crédito. Caracterizamos un activos por los siguientes elementos (importes positivos significan que el cliente paga, importes negativos significan que el cliente cobra):

Cashflow. Entregas y devoluciones de dinero a lo largo del tiempo. Incluye las posibles amortizaciones, primas, cupones, comisiones, costes, etc. Usaremos el cashflow para calcular el valor, o precio, de un activo en el instante t.

**Netting.** Importe correpondiente a la liquidación de deudas mutuas en caso de fallido. Incluye la posible recuperación, pago de obligaciones contraidas (pe. en el caso de avales, etc.).

**Ejemplo.** Caracterizamos un bono (bond) de  $100 \in de$  valor nominal, con fecha emisión 31/12/2006, tipo de interés anual del 4%, pago anual de cupones y amortización al cabo de 5 años. En caso de fallido se estima que se recupera un 80% del importe pendiente de abonar.

| Date       | Cashflow | Netting |
|------------|----------|---------|
| 31/12/2006 | -100.00  | 0.00    |
| 31/12/2007 | 4.00     | 96.00   |
| 31/12/2008 | 4.00     | 92.00   |
| 31/12/2009 | 4.00     | 89.60   |
| 31/12/2010 | 4.00     | 86.40   |
| 31/12/2011 | 104.00   | 83.20   |

**Ejemplo.** Caracterizamos un préstamo hipotecario (mortgage) de  $100 \in$ , con fecha de contratación 15/01/2006, tipo de interés anual del 6,5% y cuota (instalment) mensual y un plazo de 25 años. La vivienda hipotecada está valorada en  $80 \in$ . Determinamos la cuota mensual usando la siguiente fórmula (canon vencido o método francés):

$$I = \frac{A \cdot r \cdot (1+r)^t}{(1+r)^t - 1} = \frac{100 \cdot (6.5\%/12) \cdot (1+6.5\%/12)^{25 \cdot 12}}{(1+6.5\%/12)^{25 \cdot 12} - 1} = 0.67521$$

| Date       | Cashflow | Netting |
|------------|----------|---------|
| 15/01/2006 | -100.00  | 0.00    |
| 15/02/2006 | 0.68     | 80.00   |
| 15/03/2006 | 0.68     | 80.00   |
| 15/04/2006 | 0.68     | 80.00   |
|            | • • •    |         |
| 15/11/2030 | 0.68     | 80.00   |
| 15/12/2030 | 0.68     | 80.00   |
| 15/01/2031 | 0.68     | 80.00   |

**Ejemplo.** Caracterizamos un aval (endorsement) por un importe avalado de 100  $\in$ con fecha de contratación 15/01/2006, durante un periodo de 2 años y una cuota semestral anticipada de  $4,5 \in$ .

| Date       | Cashflow | Netting |
|------------|----------|---------|
| 15/01/2006 | 4.50     | 0.00    |
| 15/07/2006 | 4.50     | -100.00 |
| 15/01/2007 | 4.50     | -100.00 |
| 15/07/2007 | 4.50     | -100.00 |
| 15/01/2008 | 0.00     | -100.00 |

# 2.2. Tipos de interés

**Definición.** Sea  $C_{t_0}$  el importe inicial de una operación y  $C_{t_1}$  el importe final. Definimos el tipo de interés efectivo,r, como:

$$C_{t_1} = C_{t_0} \cdot (1+r) \tag{2.1}$$

$$r = \frac{C_{t_1} - C_{t_0}}{C_{t_0}} \tag{2.2}$$

**Definición.** El tipo de interés simple,  $r_s$ , es un tipo de interés donde para cada periodo de tiempo se incrementa el importe inicial,  $C_{t_0}$  por un factor de  $r_s$ .

$$C_{t_1} = C_{t_0} \cdot (1 + r_s \cdot (t_1 - t_0)) \tag{2.3}$$

$$r_s = \frac{r}{t_1 - t_0} \tag{2.4}$$

**Defición.** El tipo de interés compuesto,  $r_c$ , es un tipo de interés donde en cada periodo de tiempo se incrementa por un factor de  $r_c$  el importe acumulado del periodo anterior.

$$C_{t_1} = C_{t_0} \cdot (1 + r_c)^{(t_1 - t_0)} \tag{2.5}$$

$$r_c = (1+r)^{\frac{1}{t_1-t_0}} - 1 \tag{2.6}$$

**Defición.** El tipo de interés continuo,  $r_e$ , es el caso límite del interés compuesto.

$$C_{t_1} = C_{t_0} \cdot e^{r_e \cdot (t_1 - t_0)} \tag{2.7}$$

$$r_e = \ln(1 + r_c) \tag{2.8}$$

La fórmula exponencial, no el coeficiente, se obteniene considerando el límite del tipo de interés compuesto.

$$\lim_{t_1 \to t_0} 1 + r_c = \lim_{t_1 \to t_0} (1+r)^{\frac{1}{t_1 - t_0}} = \lim_{t_1 \to t_0} (1+r_s \cdot (t_1 - t_0))^{\frac{1}{t_1 - t_0}} = \lim_{n \to \infty} (1+\frac{r_s}{n})^n = e^{r_s}$$
(2.9)

**Ejemplo.** Consideremos una operación que supone una inversión inicial de 100 MM. y que al cabo de 5 años proporciona unos ingresos de 120 MM.

Calculemos los diferentes tipos de interés:

$$\begin{split} r &= \frac{120 - 100}{100} = 20 \,\% \\ r_s &= \frac{r}{5} = \frac{20 \,\%}{5} = 4 \,\% \\ r_c &= (1 + r)^{1/5} - 1 = 1, 2^{0,2} - 1 = 1, 0371 - 1 = 3,71 \,\% \\ r_e &= \ln(1 + r_c) = \ln(1, 0371) = 3,65 \,\% \end{split}$$

Recuperemos el importe final de la operación a partir del importe inicial, el intervalo de tiempo y el tipo de interés:

tipo efectivo 
$$\to C_{t_1} = 100 \cdot (1 + 20\%) = 120$$
  
interés simple  $\to C_{t_1} = 100 \cdot (1 + 4\% \cdot 5) = 120$   
interés compuesto  $\to C_{t_1} = 100 \cdot (1 + 3,71\%)^5 = 120$   
interés continuo  $\to C_{t_1} = 100 \cdot e^{3,65\% \cdot 5} = 120$ 

#### 2.2.1. Función de transporte

**Definición.** Fijado un tipo de interés, r, y un intervalo de tiempo,  $\Delta t = t_k - t_0$ , la función de transporte,  $\Upsilon$ , proporciona el factor que debe aplicarse a un importe en  $t_0$  para obtener el importe equivalente en  $t_k$ .

```
\begin{array}{lll} \text{Caso } C_0 \longrightarrow C_k & t_0 < t_k : \\ & \text{inter\'es simple} & \to & C_0 \cdot \Upsilon(t_0, t_k, r) = C_0 \cdot (1 + r \cdot (t_k - t_0)) = C_k \\ & \text{inter\'es compuesto} & \to & C_0 \cdot \Upsilon(t_0, t_k, r) = C_0 \cdot (1 + r)^{(t_k - t_0)} = C_k \\ & \text{inter\'es continuo} & \to & C_0 \cdot \Upsilon(t_0, t_k, r) = C_0 \cdot e^{r \cdot (t_k - t_0)} = C_k \\ & \text{Caso } C_k \longleftarrow C_0 & t_k < t_0 : \\ & \text{inter\'es simple} & \to & C_0 \cdot \Upsilon(t_0, t_k, r) = C_0 \cdot (1 + r \cdot (t_0 - t_k))^{-1} = C_k \\ & \text{inter\'es compuesto} & \to & C_0 \cdot \Upsilon(t_0, t_k, r) = C_0 \cdot (1 + r)^{-(t_0 - t_k)} = C_k \\ & \text{inter\'es continuo} & \to & C_0 \cdot \Upsilon(t_0, t_k, r) = C_0 \cdot e^{-r \cdot (t_0 - t_k)} = C_k \end{array}
```

**Notación.** En este documento se considera que el tipo de interés aplicado es el tipo de interés compuesto. En este caso, la función de transporte tiene una expresión única, sea cual sea el sentido en el que se aplica:

$$\Upsilon(t_0, t_k, r) = (1+r)^{(t_k-t_0)}$$

## 2.2.2. Curva spot o cupón cero

**Definición.** La curva spot o curva cupón cero es la función S que indica el tipo de interés a aplicar en la función de transporte desde el tiempo  $t_0$ . En el mercado existen productos simples a distintos plazos para los cuales se puede calcular el tipo de interés que proporcionan. Estos tipos de interés solamente se pueden usar en la función de transporte cuando uno de los tiempos sea  $t_0$  y el otro sea superior a  $t_0$ .



Figura 2.4: Curva Spot

**Proposición.** Dada una curva spot  $S_{t_0}$  en  $t_0$ , podemos calcular el coeficiente de transporte para todo  $t_i, t_i \geq t_0$ :

$$\Upsilon(t_i, t_j, r) = \Upsilon(t_i, t_0, S_{t_o}(t_i)) \cdot \Upsilon(t_0, t_j, S_{t_0}(t_j))$$

## 2.3. Matriz de transición

**Definición.** La matriz de transición en el periodo T es una matriz cuadrada que proporciona la probabilidad que un cliente con rating inicial  $r_i$  pase a tener, al cabo de un tiempo T, rating  $r_j$ . La denotamos de la forma siguiente:

$$M_T = \begin{pmatrix} m_{1,1} & \dots & m_{1,n} \\ \vdots & \ddots & \vdots \\ m_{n,1} & \dots & m_{n,n} \end{pmatrix} \qquad m_{i,j} = P(r_i \to r_j; 0; T)$$

donde n es el número de ratings y  $m_{i,j}$  corresponde a la probabilidad de que un cliente con rating  $r_i$  pase a tener, al cabo de T tiempo, rating  $r_j$ .

| Ejemplo.    | Matriz   | de tr | ansición   | anual | (T | = | 1 | año). | Las | probabilidades |
|-------------|----------|-------|------------|-------|----|---|---|-------|-----|----------------|
| están expre | sadas en | tanto | o por ciei | nto.  |    |   |   |       |     |                |

|         | AAA   | AA       | A        | BBB      | BB    | В         | CCC       | Default |
|---------|-------|----------|----------|----------|-------|-----------|-----------|---------|
| AAA     | 90,81 | 8,33     | 0,68     | 0,06     | 0,12  | 0,00      | 0,00      | 0,00    |
| AA      | 0,70  | 90,65    | 7,79     | 0,64     | 0,06  | $0,\!14$  | 0,02      | 0,00    |
| A       | 0,09  | $2,\!27$ | 91,05    | $5,\!52$ | 0,74  | 0,26      | 0,01      | 0,06    |
| BBB     | 0,02  | 0,33     | 5,95     | 86,93    | 5,30  | 1,17      | $0,\!12$  | 0,18    |
| BB      | 0,03  | 0,14     | 0,67     | 7,73     | 80,53 | 8,84      | 1,00      | 1,06    |
| В       | 0,00  | 0,11     | $0,\!24$ | 0,43     | 6,48  | 83,46     | 4,07      | 5,21    |
| CCC     | 0,22  | 0,00     | $0,\!22$ | 1,30     | 2,38  | $11,\!24$ | $64,\!86$ | 19,78   |
| Default | 0,00  | 0,00     | 0,00     | 0,00     | 0,00  | 0,00      | 0,00      | 100,00  |

En particular, la probabilidad que un cliente con rating AA pase a tener rating B al cabo de 1 año es del 0,14 %.

## 2.3.1. Propiedades

**Propiedad 1.** El valor de los elementos de la matriz de transición se encuentran entre 0 y 1 debido a que los elementos de la matriz son probabilidades.

$$0 \le m_{i,j} \le 1 \quad \forall i, j$$

**Propiedad 2.** La suma de los elementos de cualquier fila de la matriz de transición suman 1. De esta forma se está imponiendo que el conjunto de ratings finales solo puede ser el de los ratings contemplados en la matriz.

$$\sum_{i=1}^{n} m_{i,j} = 1 \quad \forall i$$

**Propiedad 3.** Los elementos de la fila correspondiente al rating Default  $(r_n)$ , son todos 0, excepto el elemento de la columna que corresponde al rating Default,  $m_{n,n}$ , que vale 1. Esta condición indica que cuando se llega al estado de fallido no es posible salir de este estado.

$$m_{n,j} = 0 \qquad \forall j \neq n$$
  
$$m_{n,n} = 1$$

**Propiedad 4.** Sea cual sea el rating inicial, existe la posibilidad que realize fallido.

$$\forall i \quad \exists j \quad \text{tq.} \quad m_{i,j} > 0 \quad \text{and} \quad m_{j,n} > 0$$

#### 2.3.2. Cambio de periodo

Deseamos obtener la matriz de transición para periodos distintos (múltiplos o fraccionarios) del periodo proporcionado, T. Esto nos permitirá determinar la probabilidad que un cliente con rating inicial  $r_i$  tenga rating  $r_j$  al cabo de  $k \cdot T$  tiempo o al cabo de T/k tiempo.

**Ejemplo.** Calculemos la probabilidad de pasar de rating AA a rating B en un plazo de dos años disponiendo de la matriz de transición anual.

$$\begin{array}{lll} P(AA \to B; 0; 2) = & P(AA \to AAA; 0; 1) & \cdot P(AAA \to B; 1; 2) & + \\ & P(AA \to AA; 0; 1) & \cdot P(AA \to B; 1; 2) & + \\ & P(AA \to A; 0; 1) & \cdot P(A \to B; 1; 2) & + \\ & P(AA \to BBB; 0; 1) & \cdot P(BBB \to B; 1; 2) & + \\ & P(AA \to BB; 0; 1) & \cdot P(BB \to B; 1; 2) & + \\ & P(AA \to B; 0; 1) & \cdot P(B \to B; 1; 2) & + \\ & P(AA \to CCC; 0; 1) & \cdot P(CCC \to B; 1; 2) & + \\ & P(AA \to Default; 0; 1) & \cdot P(Default \to B; 1; 2) \end{array}$$

Notamos que se trata del producto de la fila correspondiente al rating AA (rating de salida) por la columna correspondiente al rating B (rating de llegada).

**Proposición.** Sean  $M_{T_1}$  y  $M_{T_2}$  las matrices de transición para los periodos  $T_1$  y  $T_2$ . Entonces, la matriz de transición para el periodo  $T_1 + T_2$  es:

$$M_{T_1+T_2} = M_{T_1} \cdot M_{T_2}$$

Corolario. Sean  $M_T$  la matriz de transición para el periodo T y  $k \in \mathbb{N}$ . Entonces<sup>3</sup>:

$$M_{k \cdot T} = M_T^k$$
$$M_{\frac{T}{k}} = \sqrt[k]{M_T}$$

#### 2.3.3. Función de supervivencia

**Definición.** La Tasa de Morosidad Anticipada (TMA) del rating  $r_i$  en el año k es la probabilidad que una empresa con rating inicial  $r_i$  haga fallido a lo largo del año k.

**Definición.** La Tasa de Morosidad Anticipada Acumulada (TMAA) del rating  $r_i$  en el tiempo t es la probabilidad que una empresa con rating inicial  $r_i$  haga fallido en el intervalo de tiempo (0,t).

$$TMAA(r_i, t) = P(r_i \rightarrow Default; 0; t)$$

 $<sup>^3 {\</sup>rm v\'ease}$  el apéndice A.7 para ver como se calcula la raíz de una matriz

**Definición.** La Supervivencia en el tiempo t del rating  $r_i$  es la probabilidad que una empresa con rating inicial  $r_i$  no haya hecho fallido en el intervalo de tiempo (0,t).



Figura 2.5: Tasa de Morosidad Anticipada



Figura 2.6: Tasa de Morosidad Anticipada Acumulada

**Proposición.** La Tasa de Morosidad Anticipada Acumulada se puede expresar en función de la matriz de transición a través de la relación siguiente:

$$TMAA(r_i, k \cdot T) = (M_{k \cdot T})_{i,n} = (M_T^k)_{i,n}$$

donde n es el índice del rating Default y T es el periodo de la matriz de transición.

**Proposición.** La Tasa de Morosidad Anticipada se puede expresar en función de la Tasa de Morosidad Anticipada Acumulada a través de la relación siguiente:

$$TMA(r_i, t) = TMAA(r_i, t) - TMAA(r_i, t - 1)$$

**Proposición.** La Supervivencia puede expresarse en función de la Tasa de Morosidad Anticipada Acumulada a través de la relación siguiente:

$$Survival(r_i, t) = 1 - TMAA(r_i, t)$$

**Proposición.** Si la matriz de transición es válida, cualquier rating inicial acaba haciendo fallido casi seguramente.

$$lim_{t\to\infty}TMAA(r_i,t)=1 \quad \forall i$$

**Proposición.** Fijado un rating,  $r_i$ , la función de supervivencia es monótona decreciente.

$$Survival(r_i, t_i) \ge Survival(r_i, t_i) \quad \forall t_i < t_i$$



Figura 2.7: Función de Supervivencia

**Ejemplo.** En las figuras 2.6, 2.5 y 2.7 se puede observar la Tasa de Morosidad anticipada, Tasa de Morosidad Anticipada Acumulada y la Función de Supervivencia de la matriz de transición usada en este documento.

## 2.4. Matriz de correlación

**Definición.** La matriz de correlación sectorial proporciona la correlación de los fallidos entre los sectores. La denotamos de la forma siguiente:

$$\Gamma = \begin{pmatrix} \gamma_{1,1} & \dots & \gamma_{1,m} \\ \vdots & \ddots & \vdots \\ \gamma_{1,m} & \dots & \gamma_{m,m} \end{pmatrix}$$

donde m es el número de sectores,  $\gamma_{i,j}$  es la correlación entre los fallidos de los sectores  $s_i$  y  $s_j$  y  $\gamma_{i,i}$  es la correlación del fallido entre las empresas del sector  $s_i$ . Por construcción, la matriz de correlación sectorial es simétrica debido a que la correlación entre  $s_i$  y  $s_j$  es la misma que entre  $s_j$  y  $s_i$ .

**Definición.** La matriz de correlación entre clientes proporciona la correlación de los fallidos entre clientes. La construimos a partir de la matriz de correlación sectorial de la forma siguiente:

$$\Theta = \begin{pmatrix} 1 & \theta_{1,2} & \dots & \theta_{1,p-1} & \theta_{1,p} \\ \theta_{1,2} & 1 & \dots & \theta_{2,p-1} & \theta_{2,p} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \theta_{1,p-1} & \theta_{2,p-1} & \dots & 1 & \theta_{p-1,p} \\ \theta_{1,p} & \theta_{2,p} & \dots & \theta_{p-1,p} & 1 \end{pmatrix}$$

donde p es el número de clientes y  $\theta_{i,j}$  es la correlación entre los sectores del cliente i y del cliente j.

**Observación.** Los clientes se acostumbran a ordenar por sectores. En este caso la matriz de correlación entre clientes queda de la forma siguiente:

$$\Theta = \begin{pmatrix} 1 & \dots & \gamma_{p_1,p_1} & & \gamma_{1,p_i} & \dots & \gamma_{1,p_i} & & \gamma_{1,p_m} & \dots & \gamma_{1,p_m} \\ \vdots & \ddots & \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ \gamma_{p_1,p_1} & \dots & 1 & & \gamma_{1,p_i} & \dots & \gamma_{1,p_i} & & \gamma_{1,p_m} & \dots & \gamma_{1,p_m} \\ & & & \ddots & & & & & & & & & & & & & \\ \gamma_{1,p_i} & \dots & \gamma_{1,p_i} & & 1 & \dots & \gamma_{p_i,p_i} & & \gamma_{p_i,p_m} & \dots & \gamma_{p_i,p_m} \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots & & \vdots & & \vdots \\ \gamma_{1,p_i} & \dots & \gamma_{1,p_i} & & \gamma_{p_i,p_i} & \dots & 1 & & \gamma_{p_i,p_m} & \dots & \gamma_{p_i,p_m} \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ \gamma_{1,p_m} & \dots & \gamma_{1,p_m} & & \gamma_{p_i,p_m} & \dots & \gamma_{p_i,p_m} & & 1 & \dots & \gamma_{p_m,p_m} \\ \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots & & \vdots & \ddots & \vdots \\ \gamma_{1,p_m} & \dots & \gamma_{1,p_m} & & \gamma_{p_i,p_m} & \dots & \gamma_{p_i,p_m} & & \gamma_{p_m,p_m} & \dots & 1 \end{pmatrix}$$

donde  $p_1, \ldots, p_m$  corresponde al número de clientes que pertenecen a los sectores  $s_1, \ldots, s_m$ . Con esta ordenación de los clientes la matriz de correlación entre clientes es una matriz con bloques con 1's en la diagonal.

**Ejemplo.** Supongamos que tenemos dos sectores, siendo la matriz sectorial:

$$\Gamma = \left(\begin{array}{cc} 0 & 0.1\\ 0.1 & -0.2 \end{array}\right)$$

Supongamos que el sector A tiene 3 clientes y el sector B tiene 2 clientes. La matriz de correlación entre clientes es:

$$\Theta = \begin{pmatrix} 1 & 0 & 0 & 0,1 & 0,1 \\ 0 & 1 & 0 & 0,1 & 0,1 \\ 0 & 0 & 1 & 0,1 & 0,1 \\ 0,1 & 0,1 & 0,1 & 1 & -0,2 \\ 0,1 & 0,1 & 0,1 & -0,2 & 1 \end{pmatrix}$$

**Observación.** En general se impone que la matriz de correlación entre clientes sea definida positiva debido a que es una propiedad necesaria para la generación de cópulas gaussianas. El hecho que la matriz de correlación entre clientes deba ser definida positiva no significa que la matriz de correlación sectorial deba ser definida positiva.

# 2.5. Value At Risk (VAR)

Value-At-Risk es una medida del riesgo que describe en forma de probabilidades el riesgo de una cartera de productos financieros. Se recomienda la

lectura del libro Value at Risk [4].

**Definición.** El *Valor en riesgo* o *VAR* es la pérdida máxima esperada a lo largo de un horizonte de tiempo objetivo dentro de un intervalo de confianza dado.

**Definición.** El valor esperado es blablabla

**Definición.** La *pérdida esperada* es blablabla

**Definición.** Definimos el capital económico como blablabla

El concepto clave es suponer que el valor de la cartera a tiempo T es una variable aleatoria. En la figura 2.9 se ilustra el concepta de VAR aplicado al riesgo de crédito.

Portfolio Distribution Value



Figura 2.8: Distribución del valor de la cartera a lo largo del tiempo

**Ejemplo.** Intentemos calcular el VAR de una cartera de créditos sencilla, de la que se puede calcular la distribución de forma explícita. Sea una cartera de 1 solo sector con 100 clientes sin correlación alguna entre ellos. Cada cliente tiene un activo que consiste en devolver  $1 \in \mathbb{R}$  cabo de T tiempo. Supongamos que el sistema de ratings solamente contempla 2 categorías crediticias, no-Default y Default. La probabilidad de hacer fallido al cabo de T tiempo es 0,1.

En este caso, se puede modelar el importe devuelto por el cliente i al cabo de T tiempo como una variable aleatoria Bernouilli,  $X_i \sim Ber(0,9)$ . El valor de la cartera al cabo de T tiempo es la suma de los importes devueltos por los clientes,  $Y = \sum_{i=1}^{100} x_i$ , que por definición es una variable aleatoria Binomial,  $Y \sim B(100,0,9)$ . El Teorema Central del Límite nos permite aproximar  $Y \sim B(100,0,9) \approx N(90,9)$ .

El valor esperado al cabo de T tiempo es  $E(Y) \approx 90$ . Calculemos el VAR al nivel de confianza 99 %:

$$P(Y \le \text{VAR}_{99\%}) = 0.01 = 1\%$$

$$P(90 + 3 \cdot X \le \text{VAR}_{99\%}) = 0.01$$

$$P(X \le \frac{\text{VAR}_{99\%} - 90}{3}) = 0.01 \longrightarrow \frac{\text{VAR}_{99\%} - 90}{3} = -2.33$$

$$\text{VAR}_{99\%} = -2.33 \cdot 3 + 90 = 83.01$$

Este ejemplo no es significativo debido a que se han realizado dos supuestos que en el mundo real no se cumplen: todos los creditores se modelan de la misma forma y los fallidos son independientes. Se obtiene que la distribución del valor de la cartera a tiempo T se aproxima a una variable aleatoria Normal, cosa que no concuerda con las observaciones reales, que muestran que la distribución del valor de las carteras es fuertemente asimétrica respecto el valor esperado.



Figura 2.9: Cálculo del VAR

# Capítulo 3

# Resolución del problema

En este capítulo se establecen las hipótesis de trabajo, se introducen los elementos usados para la resolución y se describen dos métodos de resolución basados en simulación: Time-To-Default y Rating-Path.

# 3.1. Hipótesis

## 3.1.1. Hipótesis duras

- 1. Los fallidos no se recuperan.
- 2. La única fuente de riesgo considerada es el riesgo de impago. No se contemplan otros tipos de riesgos como la variación de tipos de interés, de mercado, operacional, reputacional, etc.
- 3. La descripción de cada activo (cashflow y netting) se conoce de antemano y no varía a lo largo de la simulación. En particular, el valor del activo solo depende de si el cliente hace fallido, no del rating que pueda tener el cliente. Por otra parte, la recuperación no puede variar en función de la evolución del rating de otro cliente.
- 4. El rating de un cliente no depende del rating de otro cliente de otra forma que no sea la correlación entre sectores. Esta restricción no permite tratar el rating de las empresas subsidiarias en función del rating de la empresa matriz.

#### 3.1.2. Hipótesis blandas

- 1. Los intervalos de tiempo considerado se encuentran equiespaciados. Esto permite simplificar los datos de entrada y el número de matrices de transición a considerar.
- 2. La matriz de transición no varía a lo largo del tiempo. Se aplica la misma matriz de transición anual para pasar de  $t_0$  a  $t_1$  que para pasar

de  $t_{19}$  a  $t_{20}$ . Esto permite simplificar los datos de entrada y el número de matrices de transición a considerar.

## 3.2. Elementos que intervienen en la resolución

#### 3.2.1. Variables aleatorias correlacionadas. Cópulas.

Se recomienda la lectura de las referencias [9] y [6]. Se trata de artículos donde se explica que es una cópula, sus propiedades, como simularlas, creencias erroneas, etc.

**Definición.** Llamamos *cópula* a la función de distribución de una variable aleatoria n-dimensional tal que sus distribuciones marginales son variables aleatorias U[0,1].

$$C(u_1, \dots, u_n) = P(U_1 \le u_1, \dots, U_n \le u_n)$$
  $U_k \sim U[0, 1]$ 



Figura 3.1: Bivariate distribution plot with correlated and uncorrelated variables

**Teorema.** Toda variable aleatoria n-dimensional puede separarse en las distribuciones seguidas por sus componentes (las distribuciones marginales) y una cópula. Sea F una función de distribución n-dimensional y  $f_1, \dots, f_n$  sus marginales. El teorema de Sklar asegura que existe una cópula C tq.

$$F(x_1, \dots, x_n) = C(f_1(x_1), \dots, f_n(x_n))$$

**Observación.** Una variable aleatoria *n*-dimensional no está determinada por sus marginales y correlaciones entre estas. Dicho de otra forma, existen infinitas formas de combinar las distribuciones marginales a través de cópulas de forma que cumplan las correlaciones. Las distribuciones elípticas (que incluyen la distribución multinomial) son una excepción.

#### 3.2.2. El método de Monte Carlo

Se recomienda la lectura de la referencia [5]. Se trata de los apuntes para una clase del profesor Mervyn Marasinghe. Se expone el método de Monte Carlo y las técnicas de reducción de la varianza.

**Definición.** Dado un conjunto de observaciones,  $x^1, \dots, x^n$ , de la variable aleatoria X, definimos la función de distribución empírica como:

$$\widetilde{F_X(k)} = \frac{1}{n} \sum_{i=1}^n I_{(-\infty,k]}(x^i) \qquad I_{[-\infty,k]}(x) = \begin{cases} 1 & \text{if } x \in (-\infty,k] \\ 0 & \text{otherwise} \end{cases}$$

**Proposición.** La función de distribución empírica tiende a la función de distribución al incrementar el número de observaciones.

$$\lim_{n\to\infty}\widetilde{F_X}=F_X$$

**Definición.** Sea X una variable aleatoria con función de distribución conocida, F. El m'etodo de Monte Carlo consiste en obtener la función de distribución empirica de la variable aleatoria H(X) usando el siguiente método:

$$F_{X} \qquad F_{H(X)}$$

$$\downarrow \qquad \qquad \uparrow$$
simulation empirical  $cdf$ 

$$\downarrow \qquad \qquad \uparrow$$

$$x^{1}, \cdots, x^{n} \longrightarrow H(x^{1}), \cdots, H(x^{n})$$

**Observación.** Problemas aparentemente no relacionados con las variables aleatorias pueden reformularse como un problema donde intervenga una variable aleatoria y ser resueltos por el método de Monte Carlo. El ejemplo clásico es obtener el valor de la integral de la función W entre 0 y 1. Lo reformulamos de la siguiente forma:

$$\int_{0}^{1} W(u)du = \int_{0}^{1} W(u)\phi(u)du = E[W(U)]$$

donde  $U \sim U[0,1]$  y  $\phi(u) = pdf(U) = 1$ . La última igualdad se establece usando la preposición enunciada en el apéndice A.1. Finalmente la integral se aproxima calculando la media de un conjunto de puntos con distribución W(U).

3.3 Notación 24

# 3.3. Notación

| Concepto                      | Descripción                                                             |
|-------------------------------|-------------------------------------------------------------------------|
| $x_i$                         | Componente $i$ -esimo de $x$                                            |
| $x^i$                         | Realización $i$ -esima de la variable aleatoria $X$                     |
| ns                            | Número de sectores de la cartera                                        |
| nr                            | Número de ratings del sistema de calificación                           |
| nc                            | Número de clientes de la cartera                                        |
| $na_i$                        | Número de activos del cliente $i. i \in \{1, \dots, nc\}$               |
| $s_i$                         | Sector <i>i</i> -esimo. $i \in \{1, \dots, ns\}$                        |
| $r_i$                         | Rating <i>i</i> -esimo. $i \in \{1, \dots, nr\}$ . $r_{nr} = Default$ . |
| $c_i$                         | Cliente <i>i</i> -esimo. $i \in \{1, \dots, nc\}$                       |
| $S_{t_0}$                     | Curva spot de tipos de interés en $t_0$ . $S_{t_0}(t_k)$ es el tipo     |
|                               | de interés de la curva en tiempo $t_k$ siendo $t_0 \leq t_k$            |
| $\Upsilon(t_0, t_k, S_{t_0})$ | Función de transporte de $t_0$ a $t_k$ usando la curva spot             |
|                               | $S_{t_0}$                                                               |
| $Survival(r_i, t)$            | Función de supervivencia. Probabilidad que un cliente                   |
|                               | con rating inicial $r_i$ no haya hecho fallido en tiempo $t$            |
| $M_T$                         | Matriz de transición a $T$ tiempo. Tiene dimensión $nr \times$          |
|                               | nr                                                                      |
| Γ                             | Matriz de correlación entre sectores. Dimensión $ns \times ns$          |
| Θ                             | Matriz de correlación entre clientes. Dimensión $nc \times nc$          |
| $X_{i,j}(t)$                  | Valor del j-esimo activo del cliente $i$ en tiempo $t.$ $i \in$         |
|                               | $\{1,\cdots,nc\}, j\in\{0,\cdots,na_i\}$                                |
| $Y_i(t)$                      | Valor de los activos del cliente $i$ en tiempo $t$ . $i \in$            |
|                               | $\{1,\cdots,nc\}$                                                       |
| Z(t)                          | Valor de la cartera en tiempo $t$                                       |

# 3.4. Valor de un activo

**Definición.** Definimos la función *indicador del momento de fallido* de la forma siguiente:

$$I(t) = \begin{cases} 1 & \text{if client has defaulted at time } t \\ 0 & \text{otherwise} \end{cases}$$

**Definición.** Definimos la función *indicador de actividad* de la forma siguiente:

$$J(t) = \begin{cases} 0 & \text{if client is defaulted at time } t \\ 1 & \text{otherwise} \end{cases}$$

**Proposición.** Podemos expresar J(t) en función de I(t) de la forma siguiente:

$$J(t) = \prod_{t_k = t_0}^{t} (1 - I(t_k))$$

**Definición.** Definimos el valor del activo j del cliente i en tiempo t como:

$$X_{i,j}(t) = \sum_{t_k=t_0}^{t} \operatorname{cashflow}(t_k) \cdot \Upsilon(t_k, t_0, S_{t_0}) \cdot J(t_k) + \operatorname{netting}(t_k) \cdot \Upsilon(t_k, t_0, S_{t_0}) \cdot I(t_k)$$

**Observación.** Conocidas las características de un activo y la curba spot, el valor de un activo en tiempo  $t_k$  solamente depende de la función I(t). Equivalentemente, solo depende del momento en que el cliente hace fallido.

#### 3.5. Valor de la cartera

**Definición.** Definimos el valor de la cartera en tiempo t como:

$$Z(t) = \sum_{i=0}^{nc} Y_i(t) = \sum_{i=0}^{nc} \sum_{j=0}^{na_i} X_{i,j}(t)$$

**Observación.** El valor de la cartera solamente depende de  $I_1(t), \dots, I_{nc}(t)$ , donde  $I_i(t)$  es el indicador del momento de fallido en tiempo t del cliente i. Equivalentemente, solo depende de los instantes en los que los clientes de la cartera hacen fallido.



Figura 3.2: Functions I(t) and J(t)

**Proposición.** Construimos la función H del método de Monte Carlo de la forma siguiente:

$$H(I_1(t_0), \dots, I_1(t_k), \dots, I_{nc}(t_0), \dots, I_{nc}(t_k)) = Z(T)$$

# 3.6. Método Time-To-Default

El método Time-To-Default consiste en simular el valor de la cartera a partir del la simulación del tiempo de fallido de cada uno de los clientes. cópula -¿función supervivencia -¿valoración cartera



Figura 3.3: Simulación del tiempo hasta el fallido del rating BBB

# 3.7. Método Rating-Path

cópula -¿matriz transición -¿valoración cartera

#### 3.7.1. Valoración de la cartera

valoración activo -¿valoración cliente -¿valoración cartera

## 3.7.2. Distribución del valor de la cartera

calculo del valor esperado, calculo del VAR, etc.

## 3.8. Cálculo de los valores

El método de Monte Carlo genera N realizaciones,  $\{z_1, z_2, z_3, \cdots, z_N\}$ , de la variable aleatoria Z (valor de la cartera) que permiten obtener la función de distribución empírica. A continuación se exponen los estimadores usados y el  $\alpha$ -intervalo de confianza:

**Expected value.** Fórmula extraida de [8] basada en el teorema del límite central.

$$\mu_Z = \widehat{\mu_Z} \pm \phi^{-1} \left( \frac{1 - \alpha}{2} \right) \cdot \frac{\widehat{\sigma_Z}}{\sqrt{N}}$$

**Desviación estándar.** Fórmula extraida de [8] basada en el teorema del límite central.

$$\sigma_Z = \widehat{\sigma_Z} \pm \phi^{-1} \left( \frac{1 - \alpha}{2} \right) \cdot \frac{\widehat{\sigma_Z}}{\sqrt{2N}}$$

**VAR-Quantile.** Fijado un nivel de VAR = 1 - x

$$q_{Z,x} = \widehat{q_{Z,x}} \pm \operatorname{stderr}(q_{Z,x})$$

Donde el error estándar del quantil,  $stderr(q_{Z,x})$ , lo calculamos usando el método de Maritz-Jarrett (basado en el estadístico de orden). Fórmula extraida de [3].



Figura 3.4: Simulación de la evolución del rating BBB a T tiempo

# Capítulo 4

# Implementación de la solución

# 4.1. Validaciones

TODO: describir las validaciones realizadas



Figura 4.1: Decisión en función del método

precalculo de los valores en los nodos

# 4.2. Proceso de agregación

TODO: descripcion de los agregadores y metodo usado para evitar recalculo de los activos en cada simulacion + Agregación de productos

# 4.3. Dimensiones del problema

TODO: Estimaciones de uso de memoria, estimación del numero de operaciones, estimacion del tiempo de computo

# 4.4. Convergencia de la solución

TODO: Número de iteraciones necesarias, aceleración de la convergencia usando metodología antithetic convergencia media, varianza, var (estimadores, graficos, etc.)

# Apéndice A

# **Apéndices**

# A.1. Conceptos básicos de estadística

**Definición.** Llamamos función de distribución o cdf de la variable aleatoria X a la función F que cumple:

$$F(x) = P(X \le x)$$

**Definición.** Llamamos función de probabilidad o densidad o pdf de la variable aleatoria X a la función f que cumple:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

**Proposición.** Sea X una variable aleatoria continua con función de densidad  $f_X(x)$ . La función de densidad de Y = H(X) siendo H(.) monótona (estrictamente creciente o estrictamente decreciente) es:

$$f_Y(y) = f_X(H^{-1}(y)) \cdot \left| \frac{d(H^{-1}(y))}{dy} \right|$$

**Esperanza.** Definimos la *esperanza* de una variable aleatoria discreta de la forma siguiente:

$$E(X) = \sum_{i} i \cdot P(X = i)$$

En el caso de una variable aleatoria continua con función de distribución f(x) la esperanza se expresa como:

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

**Varianza.** Definimos la *varianza* de una variable aleatoria discreta de la forma siguiente:

$$Var(X) = \sum_{i} (i - E(X))^{2} \cdot P(X = i)$$

En el caso de una variable aleatoria continua con función de distribución f(x) la varianza se expresa como:

$$Var(X) = \int_{-\infty}^{\infty} (x - E(X))^{2} \cdot f(x) dx$$

Covarianza. Definimos la covarianza entre dos variables aleatorias X e Y de la forma siguiente:

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

Correlación. Definimos la correlación,  $\rho$ , entre dos variables aleatorias X e Y de la forma siguiente:

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(x) \cdot Var(Y)}}$$

**Proposición.** Sea X una variable aleatoria continua con función de densidad f(x) y H(x) una función diferenciable. Entonces:

$$E(H(X)) = \int_{-\infty}^{\infty} H(x) \cdot f(x) dx$$

## A.2. La variable aleatoria de Bernoulli

**Definición.** La variable aleatoria discreta Bernouilli, X, se utiliza para modelar fenómenos que solamente pueden tomar dos estados, 0 y 1, con probabilidades p y (1-p) respectivamente. La notaremos como  $X \sim Ber(p)$ :

$$P(X = 0) = (1 - p)$$
  $P(X = 1) = p$   $p \in [0, 1]$ 

**Esperanza.** La esperanza de una variable aleatoria Bernouilli  $X \sim Ber(p)$  es p. Este resultado es la aplicación directa de la definición de esperanza para una variable aleatoria discreta:

$$E(X) = \sum_{i} i \cdot P(X = i) = 1 \cdot p + 0 \cdot (1 - p) = p$$

**Varianza.** La varianza de una variable aleatoria Bernouilli  $X \sim Ber(p)$  es  $p \cdot (1-p)$ . Este resultado es la aplicación directa de la definición de varianza para una variable aleatoria discreta:

$$Var(X) = \sum_{i} (i - E(X))^{2} \cdot P(X = i) = (1 - p)^{2} \cdot p + (-p)^{2} \cdot (1 - p) = p \cdot (1 - p)$$

**Simulación.** La simulación de una variable Bernouilli  $X \sim Ber(p)$  la realizamos de la siguiente forma:

$$x = \begin{cases} 0 & u \in [0, 1 - p) \\ 1 & u \in [1 - p, 1] \end{cases} \qquad u \sim U[0, 1]$$

## A.3. La variable aleatoria Binomial

**Definición.** La suma de n variables aleatorias Bernoulli, Ber(p), independientes e idénticamente distribuidas es una variable aleatoria discreta, X que llamamos Binomial,  $X \sim B(n, p)$ .

$$P(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \qquad \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \qquad k \in \{0, \dots, n\}$$

**Esperanza.** La esperanza de una variable aleatoria Binomial  $X \sim B(n, p)$  es:

$$E(X) = n \cdot p$$

**Varianza.** La varianza de una variable aleatoria Binomial  $X \sim B(n, p)$  es:

$$Var(X) = n \cdot p \cdot (1 - p)$$

**Proposición.** El Teorema Central del Límite nos permite, en el caso de n grandes, aproximar la distribución discreta Binomial por una distribución continua Normal:

$$B(n,p) \approx N(np, np(1-p))$$

## A.4. La variable aleatoria Normal

**Definición.** Decimos que una variable aleatoria continua Z es una Normal con media  $\mu$  y desviación estándar  $\sigma$ ,  $Z \sim N(\mu, \sigma^2)$  si tiene la siguiente función de densidad:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

**Esperanza.** La esperanza de una variable aleatoria Normal  $X \sim N(\mu, \sigma^2)$  es:

$$E(X) = \mu$$

**Varianza.** La varianza de una variable aleatoria Normal  $X \sim N(\mu, \sigma^2)$  es:

$$Var(X) = \sigma^2$$

**Simulación.** Para la generación de una realización, z, de una variable aleatoria normal  $Z \sim N(\mu, \sigma^2)$  utilizamos el siguiente algoritmo:

$$z = \mu + \sigma \cdot \sqrt{-2ln(u_1)} \cdot cos(2\pi \cdot u_2) \qquad u_1, u_2 \sim U[0, 1]$$

**Definición.** Decimos que una variable aleatoria continua n-dimensional, Z, es una Normal con media  $\vec{\mu}$  y matriz de covarianza  $\Sigma$ ,  $Z \sim N(\vec{\mu}, \Sigma)$ , si tiene la siguiente función de densidad:

$$f(\vec{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} exp\left\{-\frac{1}{2} \left(\vec{x} - \vec{\mu}\right)^\top \Sigma^{-1} (\vec{x} - \vec{\mu})\right\}$$

donde  $|\Sigma|$  es el determinante de la matriz de covarianzas  $\Sigma$ , y  $\Sigma^{-1}$  es la inversa de la matriz  $\Sigma$ .

**Simulación.** Para la generación de una realización,  $\vec{z}$ , de una variable aleatoria normal  $Z \sim N(\vec{\mu}, \Sigma)$  utilizamos el siguiente algoritmo:

$$\vec{z} = \vec{\mu} + \Sigma^{1/2} \vec{x}$$
  $x_i \sim N[0, 1]$ 

La matriz  $\Sigma^{1/2}$  la calculamos usando el algoritmo de Cholesky. Sabemos que existe solución debido a que  $\Sigma$  es definida positiva por tratarse de una matriz de covarianzas.

## A.5. Estimadores estadísticos

Sea  $\{x_1, x_2, x_3, \dots, x_n\}$  n realizaciones de la variable aleatoria X.

**Definición.** Estimamos la media de X usando el siguiente estimador no sesgado:

$$E(X) \approx \widehat{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

**Definición.** Estimamos la varianza de X usando el siguiente estimador no sesgado:

$$Var(X) = \sigma_X^2 \approx \widehat{\sigma_X^2} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \widehat{X})^2 = \frac{1}{n-1} \left( \sum_{i=1}^n x_i^2 - \frac{(\sum_{i=1}^n x_i)^2}{n} \right)$$

**Definición.** Estimamos el VAR de X al nivel de confianza  $\alpha$  usando el siguiente estimador no sesgado:

$$VAR_{\alpha}(X) = \inf\{x|F(X) \ge 1 - \alpha\} \approx VA\widehat{R_{\alpha}}(X) = x_{k:n}$$

donde,

- F es la función de distribución de X
- k cumple  $\frac{k}{n} \le 1 \alpha < \frac{k+1}{n}$
- $x_{k:n}$  es el k-ésimo elemento de la serie ordenada de forma creciente

# A.6. Error estándar de un quantil

A continuación se describe el método de Maritz-Jarrett basado en el estadístico de orden. Sea N el tamano muestral y x la probabilidad del quantil.

$$M = [Nx + 0.5]$$

$$a = M - 1$$

$$b = N - M$$

$$W_{i} = B(a, b, y_{i+1}) - B(a, b, y_{i})$$

$$C_{k} = \sum_{i=1}^{N} W_{i} E_{i}^{k}$$

donde [y] es la parte entera de  $y, y_i = i/N$  y B(a, b, y) es la función beta incompleta:

$$B(a, b, y) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{0}^{y} t^{a-1} (1-t)^{b-1} dt$$

entonces,

$$stderr(q_x) = \sqrt{C_2 - C_1^2}$$

## A.7. Cálculo de la raiz de una matriz

**Definición.** Diremos que 2 matrices A y B de orden n son semejantes si existe una matriz, P, de orden n con  $det(P) \neq 0$  tal que  $B = P^{-1} \cdot A \cdot P$ .

**Proposición.** Si dos matrices A y B son semejantes  $(B = P^{-1} \cdot A \cdot P)$  entonces:

$$det(A) = det(B)$$
$$B^{n} = P^{-1} \cdot A^{n} \cdot P$$

**Definición.** Diremos que una matriz A de orden n es diagonalizable si es semejante a una matriz diagonal D, o sea,  $A = P^{-1} \cdot D \cdot P$  siendo  $det(D) \neq 0$ .

**Proposición.** Para que una matriz A sea diagonalizable es necesario y suficiente que:

- ullet Los valores propios de A sean todos reales
- lacktriangle Los n vectores propios de A sean independientes

**Proposición.** Si una matriz A es diagonalizable  $(A = P^{-1} \cdot D \cdot P)$  entonces:

- D es una matriz diagonal compuesta por los valores propios de la matriz A
- lacktriangleq P es la matriz formada por los vectores propios de la matriz A

**Resultado.** Sea A la raíz n-esima de una matriz diagonalizable B. Entonces:

$$A^n = B = P^{-1} \cdot D \cdot P \Longrightarrow A = \sqrt[n]{B} = P^{-1} \cdot \sqrt[n]{D} \cdot P$$

# A.8. Algoritmo de la cópula gaussiana

Sea  $\Sigma_1$  la matriz de correlación a cumplir por la cópula. Observemos que se trata también de la matriz de covarianzas al valer 1 los elementos de la diagonal.

$$\Sigma_{1} = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix}$$

**Paso 1.** Creamos la matrix de covarianzas  $\Sigma_2$  transformando la matriz  $\Sigma_1$  componente a componente:

$$\Sigma_{2} = \begin{pmatrix} 2sin(\frac{\pi}{6}) & 2sin(\rho_{12}\frac{\pi}{6}) & \dots & 2sin(\rho_{1n}\frac{\pi}{6}) \\ 2sin(\rho_{21}\frac{\pi}{6}) & 2sin(\frac{\pi}{6}) & \dots & 2sin(\rho_{2n}\frac{\pi}{6}) \\ \vdots & \vdots & \ddots & \vdots \\ 2sin(\rho_{n1}\frac{\pi}{6}) & 2sin(\rho_{n2}\frac{\pi}{6}) & \dots & 2sin(\frac{\pi}{6}) \end{pmatrix}$$

Observamos que la matriz  $\Sigma_2$  vuelve a tener los elementos de la diagonal iguales a 1 debido a que  $2sin(\frac{\pi}{6}) = 1$ .

**Paso 2.** A la matriz  $\Sigma_2$  le aplicamos el algoritmo de Cholesky para obtener la matrix triangular inferior B cumpliendo  $\Sigma_2 = B \cdot B^{\top}$ :

$$B = \begin{pmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

**Paso 3.** Simulamos n variables aleatorias N(0,1) independientes:

$$\vec{Y}^{\top} = (Y_1, \cdots, Y_n)^{\top}$$
  $Y_k \sim N(0, 1)$  independientes

**Paso 4.** Simulamos una variable n-dimensional  $Z \sim N(\vec{0}, \Sigma_2)$  haciendo:

$$\vec{Z}^{\top} = \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix} = \begin{pmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix} \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = B \cdot \vec{Y}^{\top}$$

**Paso 5.** Finalmente obtenemos la simulación de la cópula,  $\vec{X}$ .

$$\vec{X}^{\top} = (X_1, \cdots, X_n)^{\top} = (\Phi(Z_1), \cdots, \Phi(Z_n))^{\top}$$

donde  $\Phi(x)$  es la función de distribución de la Normal estándar

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

# A.9. Descomposición de Cholesky de una matriz en bloques

Dada una matriz cuadrada, simétrica y definida positiva, A, el algoritmo de Cholesky realiza la siguiente descomposición:

$$U^{\top} \cdot U = A$$

donde U es una matriz triangular superior (por tanto,  $U^{\top}$  es una matriz triangular inferior). Una descripción e implementación del algoritmo puede encontrarse en *Numerical Recipes in*  $C^1$ .

Si intentamos realizar la descomposición de Cholesky de una matriz de correlación entre clientes de una cartera de 50,000 clientes nos encontraremos con problemas de tamaño (la matriz ocupará 19 Gb. de memoria) y

<sup>&</sup>lt;sup>1</sup>http://www.nr.com

número de operaciones al multiplicar la matriz por un vector (2,500,000,000) multiplicaciones).

Modificaremos el algoritmo de Cholesky para aprovechar el hecho que la matriz de correlación entre clientes es una matriz en bloques con unos en la diagonal. Veamos un ejemplo de una cartera de 7 clientes con dos sectores:

$$A = \begin{pmatrix} 1 & 0.5 & 0.5 & 0.5 & 0.1 & 0.1 & 0.1 \\ 0.5 & 1 & 0.5 & 0.5 & 0.1 & 0.1 & 0.1 \\ 0.5 & 0.5 & 1 & 0.5 & 0.1 & 0.1 & 0.1 \\ 0.5 & 0.5 & 0.5 & 1 & 0.1 & 0.1 & 0.1 \\ \hline 0.1 & 0.1 & 0.1 & 0.1 & 1 & 0.3 & 0.3 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.3 & 1 & 0.3 \\ 0.1 & 0.1 & 0.1 & 0.1 & 0.3 & 0.3 & 1 \end{pmatrix}$$

Realizamos la descomposición de Cholesky:

$$U = \begin{pmatrix} 1,00000 & 0,50000 & 0,50000 & 0,50000 & 0,10000 & 0,10000 & 0,10000 \\ 0 & 0,86603 & 0,28868 & 0,28868 & 0,05774 & 0,05774 & 0,05774 \\ 0 & 0 & 0,81650 & 0,20412 & 0,04082 & 0,04082 & 0,04082 \\ 0 & 0 & 0 & 0,79057 & 0,03162 & 0,03162 & 0,03162 \\ \hline 0 & 0 & 0 & 0 & 0,99197 & 0,28630 & 0,28630 \\ 0 & 0 & 0 & 0 & 0 & 0,94975 & 0,21272 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0,92563 \end{pmatrix}$$

Observamos que U contiene elementos repetidos. Guardaremos la matriz U en memoria de la forma siguiente:

$$U = \begin{vmatrix} 1,00000 & 0,50000 & 0,10000 \\ 0,86603 & 0,28868 & 0,05774 \\ 0,81650 & 0,20412 & 0,04082 \\ 0,79057 & 0 & 0,03162 \\ 0,99197 & 0 & 0,28630 \\ 0,94975 & 0 & 0,21272 \\ 0,92563 & 0 & 0 \end{vmatrix}$$

o sea, para cada fila guardamos el valor de la diagonal y el valor de cada sector. El tamaño en memoria ahora pasa a ser  $N \times (M+1)$  donde N es el número de clientes y M el número de sectores.

Para reducir el número de operaciones realizadas al multiplicar la matriz por un vector aprovechamos que la matriz U tiene elementos repetidos. Veamos un ejemplo:

```
(U \cdot x)_2 = 0.86603 \cdot x_2 + 0.28868 \cdot x_3 + 0.28868 \cdot x_4 + 0.05774 \cdot x_5 + 0.05774 \cdot x_6 + 0.05774 \cdot x_7 = 0.86603 \cdot x_2 + 2 \cdot 0.28868 \cdot (x_3 + x_4) + 3 \cdot 0.05774 \cdot (x_5 + x_6 + x_7)
```

Con estas dos consideraciones se obtiene una algoritmo de Cholesky para matrices en bloques con uso de memoria y número de operaciones (al multiplicar por un vector) del orden  $N \times (M+1)$  en vez de orden  $N^2$ .

# Bibliografía

- [1] Paul Glasserman. Probability models of credit risk. *Columbia Business School*, 2000.
- [2] Greg M. Gupton, Christopher C. Finger, and Mickey Bhatia. *CreditMetrics Technical Document*. J.P. Morgan & Co. Incorporated, 1997.
- [3] Jonathan E. Grindlay Jaesub Hong, Eric M. Schlegel. New spectral classification technique for x-ray sources: quantile analysis. 2004.
- [4] Philippe Jorion. Value at Risk. McGraw-Hill, 1997.
- [5] Mervyn Marasinghe. Monte carlo methods. Class notes for Iowa State University, Dept. of Statistics.
- [6] Alexander McNeil Paul Embrechts and Daniel Straumann. Correlation and dependence in risk management: properties and pitfalls. *RiskLab*, 1999.
- [7] Ken Phelan and Colin Alexander. Different strokes. Risk, 1999.
- [8] Murray R. Spiegel. Estadstica. Schaum, 1997.
- [9] Shaun S. Wang. Aggregation of correlated risk portfolios: Models & algorithms. CAS Committee on Theory of Risk.

# Índice alfabético

Algoritmo de Cholesky, 36

Bernouilli, 31 Binomial, 32

Cópula, 22
Cópula gaussiana, 18, 35
Capital económico, 19
Cashflow, 9
Correlación, 31
Covarianza, 31
Curva cupón cero, 12
Curva spot, 12

Densidad, 30 Distribuciones marginales, 22

Esperanza, 30

Función de distribución, 30 Función de distribución empírica, 23 Función de probabilidad, 30 Función de transporte, 11

Indicador de actividad, 24 Indicador del momento de fallido, 24

Método de Monte Carlo, 23 Matrices semejantes, 34 Matriz de correlación entre clientes, 17 Matriz de correlación sectorial, 17

Netting, 9 Normal, 32, 33

Matriz de transición, 12 Matriz diagonalizable, 35 Pérdida esperada, 19

Sectores, 8 Sistema de ratings, 7 Supervivencia, 15

Tasa de Morosidad Anticipada, 14
Tasa de Morosidad Anticipada Acumulada, 14
Teorema de Sklar, 22
Tipo de interés compuesto, 10
Tipo de interés continuo, 10
Tipo de interés efectivo, 10
Tipo de interés simple, 10

Valor en riesgo, 19 Valor esperado, 19 VAR, 19 Varianza, 31