Economics 703: Anwer Key to the Mid-Term Exam

Raymond Deneckere

Fall 2006

1. Let $\{K_n\}$ be a collection of non-empty closed subsets of \mathbb{R}^N such that $K_{n+1} \subset K_n$ for all n = 0, 1,, and such that diameter $(K_n) \to 0$ as $n \to \infty$. Give a complete characterization of the set $\bigcap_{n=0}^{\infty} K_n$.

For any set $E \subset \mathbb{R}^N$ we have diameter $(E) = \sup\{d(p,q) : p \in E \text{ and } q \in E\}$. Setting $\delta_n = \text{diameter}(K_n)$, we are given that $\delta_n \to 0$ as $n \to \infty$. Now let $K = \bigcap_{n=0}^{\infty} K_n$, and select $x \in K$ and $y \in K$. Note that since x and y belong to K_n for every n, we have $d(x,y) \leq \delta_n$ for every n. Upon taking limits in this inequality as $n \to \infty$ we see that d(x,y) = 0. Therefore K contains at most one point.

To establish that K is non-empty, for each n select $x_n \in K_n$. Note that for each n the sequence $\{x_n\}_{n=0}^{\infty} \subset K_0$, and that since the set K_0 is compact, it is also sequentially compact. Therefore $\{x_n\}$ has a subsequence that converges to some point $x_{\infty} \in K_0$. Without loss of generality we may assume that this subsequence is the original sequence, so that here exists a subsequence $x_n \to x_{\infty}$. We now claim that $x_{\infty} \in K$.

2. Find two subsets C and D of \mathbb{R}^N and a point $x_0 \in \mathbb{R}^N$ such that $C \cup D$ is not connected but $C \cup D \cup \{x_0\}$ is connected.

Let C = B(0,r) and x_0 be such that ||x|| = r. Select y = 2x and let D = B(y,r). Then since $d(0,x_0) = r$ and $d(y,x_0) = r$ we have $x_0 \notin C$ and $x_0 \notin D$. Furthermore, C and D form a separation of $C \cup D$, as neither set contains a limit point of the other set. However, $C \cup D \cup \{x_0\}$ is connected, as x_0 is a limit point of both C and D. Thus $C \cup D \cup \{x_0\}$ cannot be separated.

3. Let $f: K \subset \mathbb{R}^N \to \mathbb{R}$ be continuous and K compact. Define

$$M = \{ x \in K : f(x) \ge f(y) \ \forall \ y \in K \}.$$

Is M compact? Defend your answer.

Yes, M is compact. Indeed, let $m = \max_{x \in K} f(x)$, so that $M = \{y \in K : f(y) = m\} = f^{-1}(\{m\})$. Then since $\{m\}$ is a closed subset of \mathbb{R} , and since f is continuous, the set $f^{-1}(\{m\})$ is a closed subset of K. But since K is compact, and since closed subsets of compact sets are compact, it follows that M is compact.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be given by the rule

$$f(x) = \begin{cases} x^2, & \text{if } x \text{ is irrational} \\ 0, & \text{if } x \text{ is rational} \end{cases}.$$

Is $f(\cdot)$ continuous at 0? Is $f(\cdot)$ differentiable at 0? Defend your answer.

Let $\{x_n\}$ be a sequence such that $x_n \to 0$. Then $f(x_n) \leq x_n^2$ for every n, so $\limsup_{n\to\infty} f(x_n) \leq 0$. Furthermore, $f(x_n) \geq 0$ for every n, so $\liminf_{n\to\infty} f(x_n) \geq 0$. We conclude that $\limsup_{n\to\infty} f(x_n) = \liminf_{n\to\infty} f(x_n) = 0$. Thus $\lim_{n\to\infty} f(x_n) = 0$, i.e. $f(\cdot)$ is continuous at 0.

It is also differentiable at 0, for

$$0 \le \frac{f(t) - f(0)}{t} \le \frac{t^2}{t},$$

so using a similar argument as above we obtain

$$\lim_{n \to \infty} \frac{f(t) - f(0)}{t} = 0$$

i.e. $f(\cdot)$ is differentiable at 0 and f'(0) = 0.

5. Consider the equations

$$u(x,y) = \frac{x^4 + y^4}{x}, \text{ if } x \neq 0$$
$$= 0, \text{ if } x = 0$$

and

$$v(x,y) = \sin x + \cos x.$$

Near which points $(x,y) \in \mathbb{R}^2$ can we solve for x,y in terms of u,v? Defend your answer.

Let $E = \{(x, y) \in \mathbb{R}^2 : x \neq 0\}$ and f = (u, v). Then we may restrict the domain if f to the open set E, for f is clearly not invertible at any point (x, y) such that x = 0. Note that f is continuously differentiable on E,

$$(x,y)$$
 such that $x=0$. Note that f is continuously differentiable on E , for
$$\frac{\frac{\partial u}{\partial x}}{\frac{\partial v}{\partial x}} = \frac{\frac{\partial u}{\partial y}}{\frac{\partial v}{\partial y}} = \frac{\frac{3x^4 - y^4}{x^2}}{\cos x} - \frac{4y^3}{x} ,$$

is continuous in (x, y) on the domain E. Furthermore whenever $\left|\frac{\partial(u, v)}{\partial(x, y)}\right| = \frac{y^4 - 3x^4}{x^2} \sin y - \frac{4y^3}{x} \cos x$ does not vanish, we can solve for x, y in terms u, v.

Since $x \neq 0$ this condition can be rewritten as $(y^4 - 3x^4) \sin y - 4xy^3 \cos x \neq 0$. Solving the equation

$$(y^4 - 3x^4)\sin y - 4xy^3\cos x = 0$$

analytically is not feasible. However, we can exhibit some points where $\left|\frac{\partial(u,v)}{\partial(x,y)}\right| \neq 0$. For example, if $x_0 = \frac{\pi}{2}$ and $y_0 = \frac{\pi}{2}$ then $\sin y = 1$ and $\cos x = 0$, and so $(y^4 - 3x^4)\sin y - 4xy^3\cos x = -2(\frac{\pi}{2})^4 \neq 0$.