

Elektronika

Auditorne vježbe 10

Pojačala s bipolarnim tranzistorom

Ulazni signal:

- Izmjenični signal
 Mala amplituda
 Srednja frekvencija (~ 1 kHz)
 Ulaz: 2 elektrode
 => 1 elektroda je zajednička!
- Spojevi pojačala:

Izlaz: 2 elektrode

- Pojačalo u spoju zajedničkog emitera (ZE)
- Pojačalo u spoju zajedničke baze (ZB)
- Pojačalo u spoju zajedničkog kolektora (ZC)

Nadomjesni model BJT u dinamičkim uvjetima

- Uvjet: mali signal i srednje frekvencije
- Nadomjesni model: hibridni (h) model

- Hibridni parametri:
 - h_i ulazni otpor uz kratko spojeni izlaz
 - h_r faktor **naponskog povratnog djelovanja** uz otvoreni ulaz
 - h_f faktor strujnog pojačanja uz kratko spojeni izlaz
 - h_o izlazna vodljivost uz otvoreni ulaz

Pojačalo u spoju ZE

• Ulaz: baza

Izlaz: kolektor

Zadatak 41.

• Odrediti strujno i naponsko pojačanje te ulazne i izlazne otpore tranzistora i sklopa za pojačalo prikazano na slici. Poznato je: $h_{ie}=1$ $k\Omega$, $h_{fe}=100$, $h_{oe}=25\cdot10^{-6}$ S, $h_{re}=2\cdot10^{-4}$.

Pitanja:

- Koliko u mreži ima izvora? Koji su to izvori?
- Čemu služi U_{CC}?
- Kolika je impedancija kondenzatora?
- Kako se ponašaju kondenzatori u DC, a kako u AC uvjetima?

- Još malo pitanja:
 - Koja je uloga kondenzatora C_{s1} i C_{s2} ?
 - − Koja je uloga kondenzatora C_F?
 - ... i konačno...
 - Kojom metodom riješiti mrežu?

• Metoda superpozicije:

- 1. Isključiti U_s i riješiti mrežu za statičke uvjete (U_{CC})
- 2. Isključiti U_{CC} i riješiti mrežu za dinamičke uvjete (U_s)

U DC uvjetima otpor kondenzatora →∞

=> Zadatak 36

U AC uvjetima otpor kondenzatora →0

U AC uvjetima otpor kondenzatora →0

Primjenom hibridnog nadomjesnog modela BJT:

- Potrebno je izračunati:
 - Strujno pojačanje A_I
 - Naponsko pojačanje A_V
 - Ulazni otpor R_{III}
 - Izlazni otpor R_{iz}

Strujno pojačanje

 R_s $I_{ul} = I_{b}$ \sim) $h_{re} \cdot U_{ce}$ (\downarrow) h_{fe}· I_b $R_C || R_p$ $R_1||R_2$ h_{oe}

Zadatak 41.

☑ Rješenje:

- $R_B=16 \text{ k}\Omega; R_p'=2 \text{ k}\Omega; R_s'=R_s | |R_B=941 \Omega|$
- $A_1 = -95,2$
- $R_{ul} = 962 \Omega$; $R_{ul}' = 907 \Omega$;
- $A_{V} = -198$
- $R_{iz}=68,04 \text{ k}\Omega; R_{iz}'=3,78 \text{ k}\Omega.$

Osnovna svojstva pojačala u spoju ZE

- Strujno pojačanje je negativno i reda veličine 10²
- Naponsko pojačanje je negativno i reda veličine 10²
- Ulazni otpor tranzistora je malo manji od h_{ie}
- Izlazni otpor tranzistora je relativno velik

Idealizirani hibridni model tranzistora

Ako je:

- $-h_{oe}R_{p}<0,1 \Rightarrow h_{oe}$ se može zanemariti
- $-h_{re}U_{ce} << U_{be} \Rightarrow h_{re}U_{ce}$ se može zanemariti

Idealizirani hibridni model tranzistora

Zadatak 42.

• Odrediti strujno i naponsko pojačanje te ulazne i izlazne otpore tranzistora i sklopa za pojačalo prikazano na slici. Poznato je: $h_{ie}=1$ k Ω , $h_{fe}=100$, $h_{oe}=25\cdot10^{-6}$ S, $h_{re}=2\cdot10^{-4}$. Zadatak riješiti i za slučaj bez priključenog kondenzatora C_E . Primijeniti idealizirani hibridni model.

Zadatak 42.

☑ Rješenje:

$$R_B=16 \text{ k}\Omega; R_D'=2 \text{ k}\Omega$$

- a) Kondenzator C_F je priključen:
 - A_I=-100
 - $R_{ul} = 1 k\Omega$; $R_{ul}' = 941 \Omega$;
 - A_v=-200
 - $R_{iz} \rightarrow \infty$; $R_{iz}' = R_c = 4 k\Omega$
- b) Kondenzator C_E je isključen:
 - A_I=-100
 - R_{ul} =102 $k\Omega$; R_{ul} '=13,8 $k\Omega$;
 - A_V=-1,96
 - $R_{iz} \rightarrow \infty$; $R_{iz}' = R_c = 4 k\Omega$

