群體智慧期中報告

PARTICLE SWARM OPTIMIZATION PSO

B093040068 黃梓濤 授課老師 蔡崇煒老師

PSO 算法簡介

來自於觀察鳥群找食物的行為,鳥群可以知道自己和食物的距離,但不 知道食物在哪,因此鳥群會同時向不同方向搜尋食物,並在休息時共享 請報

鳥兒會根據上次的飛行方向(Velocity V(t))、自己曾到過最接近食物的位置(Personal Best pBest)和鳥群到過最接近食物的位置(Global Best gBest)來決定下次飛行要飛到哪個位置,到下個位置時會共享情報

演算法

初始化粒子位置和速度

直到迭代結束

歷遍每個粒子

更新粒子速度

$$v_i = Wv_i + c_1r_1\left(PBest_i - x_i
ight) + c_2r_2\left(GBest - x_i
ight)$$

更新粒子位置

$$x_i = x_i + v_i$$

更新個體最優解

更新全局最優解

實驗環境

g++ 編譯器版本 Apple clang version 15.0.0

g++ flags -Wall -Wextra -std=c++11

CPU Apple silicon M2

OS macOS 14.4.1

執行指令

./run.sh <function_type> <run> <dimension> <k> <c1> <c2> <numParticle>

實驗參數

評估次數 維度*10000

維度 2,10,30

個體數量 50,100,200

收歛表現

實驗結果

個體數量: 50

	AVG	Worst	Best		AVG	Worst	Best		AVG	Worst	Best
Ackley_2D	5.30E-03	1.75E-02	3.21E-04	Ackley_10D	3.20E+00	6.92E+00	2.96E-02	Ackley_30D	5.78E+00	7.94E+00	3.71E+00
HappyCat_2D	1.80E-01	4.34E-01	6.13E-02	HappyCat_10D	3.92E-01	9.73E-01	1.96E-01	HappyCat_30D	6.90E-01	2.21E+00	4.10E-01
Michalewicz_2D	-1.19E+00	-9.14E-01	-1.73E+00	Michalewicz_10D	-3.11E+00	-2.57E+00	-3.84E+00	Michalewicz_30D	-7.97E+00	-6.90E+00	-8.78E+00
Rastrigin_2D	4.75E-04	3.00E-03	7.30E-08	Rastrigin_10D	5.01E+00	9.10E+00	2.01E+00	Rastrigin_30D	3.59E+01	1.31E+02	7.18E+00
Rosenbrock_2D	8.41E-02	6.55E-01	2.20E-07	Rosenbrock_10D	3.08E+01	2.45E+02	8.00E-01	Rosenbrock_30D	1.11E+02	1.13E+03	2.77E+01
Zakharov_2D	3.35E-07	3.83E-06	1.68E-11	Zakharov_10D	6.86E+00	1.93E+01	2.64E-01	Zakharov_30D	4.93E+01	8.37E+01	1.70E+01

比較不同個體數的表現

比較不同個體數的表現

個體數量: 50

個體數量: 100

個體數量: 200

	Best	
Ackley_2D	3.21E-04	0%
Ackley_10D	2.96E-02	0%
Ackley_30D	3.71E+00	0%

	Best	
Ackley_2D	1.23E-04	-61.7%
Ackley_10D	9.56E-03	-67.7%
Ackley_30D	2.89E+00	-22.9%

	Best	
Ackley_2D	1.52E-04	-52.6%
Ackley_10D	4.12E-03	-86.1%
Ackley_30D	1.90E+00	-48.8%

比較不同測試函數的表現

Happycat

Rosenbrock

結果分析

在收斂的表現能看出,雖然越高維度的測試函數有著再多的最大迭代次數,但是每個維度都在相似的次數中完成收斂,可見在高維度測試函數中容易陷入局部最佳解,提高迭代次數無助得到更佳的結果,應調整其他參數增加算法的探索能力。

個體數量對算法性能的影響:

- 在2維Ackley函數的情況下,增加個體數量似乎對最佳適應度的改善影響不大,但在高維度的情況下,增加個體數量對算法性能的改善效果更加顯著。
- 對於10維和30維Ackley函數,隨著個體數量的增加,最佳適應度呈現明顯的下降趨勢,這可能是因為高維度空間中搜索更加困難,需要更多的個體數量才能獲得更好的結果。

測試函數的挑戰性:

● 隨著維度的增加,測試函數的挑戰性也增加,這在10維和30維Ackley函數的實驗結果中得到了體現。在高維度下,算法更難找到全局最優解,需要更多的個體數量和更長的搜索時間。

增加個體數量對於高維度函數的優化效果更加顯著,但在低維度下的影響相對較小。

