IV. CIRCUITE LOGICE COMBINAŢIONALE

4.1. Definiţii

- Circuitele logice combinaţionale, CLC, sunt un caz particular al automatelor finite (maşinilor de stare -FSM) - automate de grad 0
- CLC se caracterizează prin faptul că variabilele de ieşire sunt independente de timp şi de starea internă şi sunt determinate doar de variabilele de intrare
- Practic, datorită întârzierilor produse de circuitele logice şi de conexiuni, modificarea variabilelor de ieşire simultan cu cele de intrare nu este realizabilă

4.1. Definiţii

Schema bloc:

- Funcţia de transfer exprimă legătura între starea ieşirii şi starea intrării
- Orice funcție de ieșire y $(y_1, y_2, ..., y_m)$ este funcție de toate variabilele de intrare $(x_1, x_2, ..., x_n)$

$$y_1 = f_1(x_1, x_2, ..., x_n)$$

$$y_2 = f_2(x_1, x_2, ..., x_n)$$

$$y_m = f_m(x_1, x_2, ..., x_n)$$

08.11.2019

4.2. Analiza CLC

- Se cunoaște schema logică a circuitului și se urmărește stabilirea funcționării acestuia
- Expresiile ieşirilor se determină pornind de la intrări și urmărind transformările acestora
- Definiție număr de nivele al unui CLC = numărul maxim de porți dintre intrări și ieșiri
- Numerotarea nivelelor de la ieşire spre intrare

4.2. Analiza CLC

Exemplu 1 - circuit cu 4 nivele

Exemplu 2 - circuit cu legături inverse

4.2. Analiza CLC

- Algoritm de determinare a legăturilor inverse în CLC
 - se numerotează toate porțile logice care au ca intrări un subset din mulțimea variabilelor de intrare ale circuitului logic (de la 1 la k)
 - se numerotează de la k+1 porțile care au ca intrări fie intrări ale circuitului, fie ieșiri ale porților numerotate la punctul anterior
 - CLC dacă am numerotat toate porțile exemplu 1
- CLS (circuit logic secvențial) dacă nu am numerotat toate porțile - exemplu 2

4.3. Sinteza CLC

- Se cunoaște funcția pe care trebuie să o îndeplinească circuitului și se urmărește determinarea structurii (schemei) acestuia
- Etapele sintezei CLC:
 - 1. Enunțul problemei
 - 2. Alcătuirea tabelului de adevăr, definirea funcției sau funcțiilor
 - 3. Minimizarea funcției sau funcțiilor
 - 4. Desenarea schemei circuitului
- Metode de implementare diferenţiate după nivelul de complexitate al integratelor utilizate

- Circuitele integrate de tip SSI (small scale integration) au până la 50 de tranzistoare integrate pe capsulă
- Dintre ele porţile logice fundamentale: ŞI (AND), SAU (OR), NU (NOT), ŞI-NU (NAND), SAU-NU (NOR), SAU-EXCVLUSIV (XOR)
- In general se utilizează pentru adaptarea la aplicație a circuitelor MSI și LSI standardizate, care nu satisfac cu exactitate cerințele de proiectare

- Circuitele integrate de tip MSI (medium scale integration) au până la 500 de tranzistoare integrate pe capsulă
- Oferă structuri mai complexe, disponibile ca şi structuri standard (specializate)
- Forma funcțiilor care trebuie implementate trebuie corelată cu funcțiile circuitelor MSI
- Observaţie: În general nu se mai fac minimizări

- **CLC MSI specializate (uzuale)**
- 1. Convertoare de cod
- **Definiție** sunt CLC care permit trecerea dintr-un cod binar în alt cod binar
- La intrare se aplică cuvintele unui cod, la ieşire se obţin cuvintele celuilalt cod
- Fac compatibilă funcționarea a 2 sisteme în care informația este codificată în mod diferit

- **CLC MSI specializate (uzuale)**
- 1. Convertoare de cod
- **Exemplu:** Conversiile din Gray în binar zecimal şi invers
- \blacksquare 1) Cod Gray \rightarrow Cod BCD (8421)
- Cuvintele de cod se notează:
 - Gray: $g_n, g_{n-1}, ..., g_0$
 - BCD: $b_n, b_{n-1}, ..., b_0$
- Reguli: $b_n = g_n$

Exemplu: 1) Cod Gray \rightarrow Cod BCD (8421)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. ´		•			,	
0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1	\mathbf{g}_3	\mathbf{g}_2	\mathbf{g}_1	\mathbf{g}_0	$\mathbf{b_3}$	\mathbf{b}_2	$\mathbf{b_1}$	$\mathbf{b_0}$
0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1	0	0	0	0	0	0	0	0
0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0	0	0	0	1	0	0	0	1
0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1	0	0	1	1	0	0	1	0
0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1	0	0	1	0	0	0	1	1
0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1	0	1	1	0	0	1	0	0
0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0	0	1	1	1	0	1	0	1
1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1	0	1	0	1	0	1	1	0
1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0	0	1	0	0	0	1	1	1
1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0	1	1	0	0	1	0	0	0
1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0	1	1	0	1	1	0	0	1
1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0	1	1	1	1	1	0	1	0
1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0	1	1	1	0	1	0	1	1
1 0 0 1 1 1 1 0	1	0	1	0	1	1	0	0
	1	0	1	1	1	1	0	1
1 0 0 0 1 1 1 1	1	0	0	1	1	1	1	0
	1	0	0	0	1	1	1	1

- **Exemplu:** 1) Cod Gray \rightarrow Cod BCD (8421)
- Am completat combinația din tabel pentru valorile intrărilor pentru care funcțiile nu sunt definite
- Construim DK pentru a minimiza funcțiile b₃, b₂, b₁
 si b₀

$\S1 b_0$	g_3g_2 g_1g_0	00	01	11	10
	00				
	01				
	11	1	1	1	1
	10	1	1	1	1

• Obţinem: $b_3 = g_3$

Exemplu: 1) Cod Gray \rightarrow Cod BCD (8421)

g_3g_2	g ₁ g ₀	00	01	11	10
	00			1	1
	01	1	1		
	11			1	1
	10	1	1		

• Obţinem: $b_2 = g_2 + g_3$

$$b_1 = g_1 + g_2 + g_3$$

$$b_0 = g_1 + g_{2urs} + g_{3iectar} + g_{4gica}$$

- Exemplu: 1) Cod Gray → Cod BCD (8421)
- Deci, în general la trecerea din Gray în binar:
 - $\mathbf{b}_{n} = \mathbf{g}_{n}$

- $lue{}$ 2) Cod BCD \rightarrow Cod Gray
- Obţinem asemănător: $g_n = b_n$ şi $g_i = b_i \oplus b_{i+1}$

- **CLC MSI specializate (uzuale)**
- 2. Codificatoare
- **Definiție** sunt CLC la care activarea unei intrări conduce la apariția unui cuvânt de cod la ieșiri
- Intrările codificatoarelor sunt active pe 0 logic!
- Codificatoare prioritare
 - mai multe intrări sunt active simultan
 - la ieşire se obţine cuvântul de cod pentru intrarea cu prioritate maximă
- 08.11.20 prioritatea crește de la O înspre ulțima cifră

Exemplu: Codificator din zecimal în BCD

	Zecimal										В	CD	
0	1	2	3	4	5	6	7	8	9	2^3	2^2	2^1	2^0
0	1	1	1	1	1	1	1	1	1	0	0	0	0
1	0	1	1	1	1	1	1	1	1	0	0	0	1
1	1	0	1	1	1	1	1	1	1	0	0	1	0
1	1	1	0	1	1	1	1	1	1	0	0	1	1
1	1	1	1	0	1	1	1	1	1	0	1	0	0
1	1	1	1	1	0	1	1	1	1	0	1	0	1
1	1	1	1	1	1	0	1	1	1	0	1	1	0
1	1	1	1	1	1	1	0	1	1	0	1	1	1
1	1	1	1	1	1	1	1	0	1	1	0	0	0
1	1	1	1	1	1	1	1	1	0	1	0	0	1

- **Exemplu:** Codificator din zecimal în BCD
- Funcțiile pentru cele 4 ieșiri sunt:

$$2^3 = 8 + 9 = 8 \cdot 9$$

$$2^2 = 4 \cdot 5 \cdot 6 \cdot 7$$

$$2^1 = 2 \cdot 3 \cdot 6 \cdot 7$$

$$2^0 = \overline{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}$$

- **CLC MSI specializate (uzuale)**
- 3. Decodificatoare
- **Definiție** sunt CLC la care se activează doar una din ieșiri, pentru codul corespunzător de pe intrări
- Ieşirile decodificatoarelor sunt active pe 0 logic

Numărul ieșirilor distincte ale decodificatoarelor este: m ≤ 2ⁿ

Exemplu: Decodificator pentru 3 cifre binare

I_2	I_1	I_0	O_7	O_6	O_5	O_4	O_3	O_2	O_1	O_0
0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0	1
0	1	0	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	1	1	0	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1
1	1	0	1	0	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1	1

• Funcțiile ieșirilor sunt: $O_7 = I_2 \cdot I_1 \cdot I_0$; $O_6 = I_2 \cdot I_1 \cdot I_0$;

$$O_5 = I_2 \bullet \overline{I}_1 \bullet I_0$$
; $O_4 = I_2 \bullet \overline{I}_1 \bullet \overline{I}_0$; $O_3 = \overline{I}_2 \bullet I_1 \bullet I_0$; $O_2 = \overline{I}_2 \bullet \overline{I}_1 \bullet \overline{I}_0$; $O_3 = \overline{I}_2 \bullet \overline{I}_1 \bullet \overline{I}_0$; $O_4 = \overline{I}_2 \bullet \overline{I}_1 \bullet \overline{I}_0$; $O_5 = \overline{I}_2 \bullet \overline{I}_1 \bullet \overline{I}_0$; $O_7 = \overline{I}_1 \bullet \overline{I}_1 \bullet \overline{I}_0$; $O_7 = \overline{I}_1 \bullet \overline{I}_1 \bullet$

- CLC MSI specializate (uzuale)
- 4. Multiplexoare MUX
- Definiție sunt CLC care permit trecerea datelor de pe una din intrări la o ieșire unică. Selecția (comanda) intrării se face printr-un cuvânt de cod de selecție numit și adresă

- CLC MSI specializate (uzuale)
- 4. Multiplexoare
- Cu "m" linii de selecție se pot selecta 2^m intrări
- Funcția de ieșire este:

unde i este numărul de combinații

$$i = s_{m-1} \cdot 2^{m-1} + \dots + s_1 \cdot 2^1 + s_0 \cdot 2^0$$

 Aplicații: selecția secvențială a datelor, conversia paralel-serie a datelor, sisteme de transmisie a datelor pe un singur canal, implementarea CLC cu o

Exemplu: Multiplexor 2:1

- Are 2 intrări de date, I_0 și I_1 , o intrare de selecție s și o ieșire y
- Avem ecuația ieșirii: $y = I_0 \cdot s + I_1 \cdot s$
 - Dacă $s = 0 \Rightarrow y = I_0$
 - Dacă $s = 1 \Rightarrow y = I_1$
- Multiplexorul trimite la ieşire data de intrare care ₀, corespunde selecţiei din acel moment

- Există multiplexoare de tip: 2:1, 4:1, 8:1, 16:1, 32:1, 64: 1 etc.
- Multiplexoarele integrate:
 - au disponibile atât ieşirea adevărată cât și ieşirea negată
 - au o intrare de validare (Enable) care permite o funcție ŞI suplimentară - dacă această intrare nu este activă, se oprește funcționarea circuitului
- Multiplexoarele cu număr mare de intrări de date se pot obţine prin cascadarea multiplexoarelor cu număr mai mic de intrări de date

- CLC MSI specializate (uzuale)
- 5. Demultiplexoare DEMUX
- Definiție sunt CLC care permit transmiterea datelor de pe o intrare de date pe una din ieşirile selectate. Selecția (comanda) ieşirii se face printr-un cuvânt de cod de selecție numit și adresă

- CLC MSI specializate (uzuale)
- 5. Demultiplexoare
- Cu "m" linii de selecție se pot selecta 2^m ieșiri
- Funcțiile de ieșire sunt:

$$y_0 = \overline{s_{m-1}} \cdot \dots \cdot \overline{s_1} \cdot \overline{s_0} \cdot I$$

$$y_1 = \overline{s_{m-1}} \cdot \dots \cdot \overline{s_1} \cdot \overline{s_0} \cdot I$$

$$y_2^{m-1} = \overline{s_{m-1}} \cdot \dots \cdot \overline{s_1} \cdot \overline{s_0} \cdot I$$

- CLC MSI specializate (uzuale)
- 5. Demultiplexoare
- Există demultiplexoare de tip: 1:2, 1:4, 1:8, 1:16 etc.
- Demultiplexoarele cu număr mai mare de ieşiri se obţin prin cascadare
- Se pot folosi la conversia din serie în paralel a informației

- CLC MSI specializate (uzuale)
- **6. Comparatoare numerice**
- **Definiție** sunt CLC care permit determinarea valorii relative a două numere binare
- Comparatoare:
 - pe 1 bit
 - pe mai mulţi biţi
- În general comparatorul pe 1 bit reprezintă celula de bază pentru compararea numerelor pe mai mulți biți

Exemplu: Comparator pe 1 bit

Avem funcțiile de ieșire:

$$y_{<} = \overline{A}_{i} \cdot B_{i}$$
 pentru $A_{i} < B_{i}$
 $y_{=} = \overline{A}_{i} + \overline{B}_{i} = A_{i} \cdot \overline{B}_{i}$ pentru $A_{i} = B_{i}$
 $y_{>} = A_{i} \cdot \overline{B}_{i}$ pentru $A_{i} > B_{i}$

- CLC MSI specializate (uzuale)
- 7. Generatoare / detectoare de paritate
- **Definiție** sunt CLC cu rol de a determina și genera paritatea sau imparitatea numărului de variabile de intrare egale cu 1
- Bitul de paritate se utilizează ca metodă de verificare a transferului de date
 - număr biţi de 1 + bit de paritate = număr par (paritate pară)
- număr biţi de 1 + bit de paritate = număr impar (paritate 08.11.2019 (mpară) Curs 5 Proiectare Logica

- CLC MSI specializate (uzuale)
- 7. Generatoare / detectoare de paritate
- Realizarea detectoarelor de paritate se bazează pe funcția SAU-EXCLUSIV:
 - valoare 0 pentru număr par
 - valoare 1 pentru număr impar

- CLC MSI specializate (uzuale)
- 8. Sumatoare / scăzătoare
- Definiție sunt CLC care realizează adunarea, respectiv scăderea cifrelor binare
- Semisumator CLC care face suma a 2 numere binare de 1 bit, fără să ţină cont de transportul de la bitul de semnificaţie imediat inferioară

- CLC MSI specializate (uzuale)
- 8. Sumatoare / scăzătoare
- Tabelul de adevăr pentru semisumator:

A_0	B_0	C_0	S_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

■ Ecuațiile pentru suma S_0 și transportul spre rangul superior C_0

$$S_0 = \overline{A}_0 \cdot B_0 + A_0 \cdot \overline{B}_0 = A_0 + B_0$$

$$_{08.11.2019}$$
C₀ = A₀•B₀

- CLC MSI specializate (uzuale)
- 8. Sumatoare / scăzătoare
- Sumatorul pentru bitul de rang "n" ține cont și de transportul de la rangul imediat inferior este un sumator complet pe 1 bit

- CLC MSI specializate (uzuale)
- 8. Sumatoare / scăzătoare
- Tabelul de adevăr pentru sumatorul complet pe 1 bit este:

C_{n-1}	A_n	B _n	C_n	S _n
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- **CLC MSI specializate (uzuale)**
- 8. Sumatoare / scăzătoare
- Ecuaţiile pentru sumă şi transport pentru rangul superior

$$\begin{split} S_n &= A_n \bullet B_n \bullet C_{n-1} + A_n \bullet B_n \end{split}$$

 Sumatoarele pentru cuvinte binare cu mai mulţi biţi se pot realiza prin interconectarea celor pe 1 bit adunarea se efectuează în paralel, transportul în serie

4.3.2. Sinteza CLC cu MSI

- CLC MSI specializate (uzuale)
- 8. Sumatoare / scăzătoare
- Semiscăzător CLC care realizează scăderea a 2 numere binare de 1 bit, fără să ţină cont de împrumutul de la rangul inferior
- Ecuațiile pentru semiscăzător:

$$D_0 = \overline{A_0} \cdot B_0 + A_0 \cdot \overline{B_0} = A_0 + B_0$$

$$I_0 = \overline{A_0} \cdot B_0$$

4.3.2. Sinteza CLC cu MSI

- **CLC MSI specializate (uzuale)**
- 8. Sumatoare / scăzătoare
- Scăzătorul complet pe 1 bit ține cont și de împrumutul de la rangul inferior
- Ecuaţiile pentru diferenţă şi împrumut către rangul superior

$$\begin{split} & D_n = \overline{A}_n \bullet \overline{B}_n \bullet I_{n-1} + \overline{A}_n \bullet \overline{B}_n \bullet \overline{I}_{n-1} + A_n \bullet \overline{B}_n \bullet \overline{I}_{n-1} + \\ & + A_n \bullet \overline{B}_n \bullet I_{n-1} = A_n + \overline{B}_n + \overline{I}_{n-1} \\ & I_n = \overline{A}_n \bullet I_{n-1} + \overline{B}_n \bullet \overline{I}_{n-1} + \overline{A}_n \bullet \overline{B}_n \end{split}$$

 Scăzătoarele pentru cuvinte binare cu mai mulţi biţi se pot realiza prin interconectarea celor pe 1 bit

4.3.2. Sinteza CLC cu MSI

- CLC MSI specializate (uzuale)
- 9. Unități aritmetico-logice (ALU)
- Definiție sunt CLC care realizează operații de tip aritmetic și de tip logic
- Operaţii aritmetice: adunare, scădere, incrementare, decrementare, comparare de egalitate
- Operaţii logice: ŞI, SAU, NU, ŞI-NU, SAU-NU, SAU-EXCLUSIV, COINCIDENŢĂ

- Decodificatorul, Demultiplexorul şi Multiplexorul generează în interiorul lor toţi termenii canonici → sunt circuite universale
- Implementarea cu Decodificator a unei funcții booleene:
 - nu necesită minimizare
 - la ieșirea decodificatorului avem toți termenii canonici negați ai formei canonice disjunctive (FCD) a funcției
 - realizarea funcției se face prin adăugarea unei porți logice de tip ŞI-NU care are numărul de intrări egal cu numărul de termeni ai funcției

Exemplu: Să se implementeze cu un decodificator funcția booleană de 4 variabile:

$$f(x_4, x_3, x_2, x_1) = \Sigma(0, 1, 4, 6, 7, 9)$$

- Implementarea cu Multiplexor a unei funcții booleene se bazează pe ecuația care definește funcționarea multiplexorului
- La o funcție booleană cu "n" variabile de intrare, dacă dăm factor comun 2 variabile de intrare, se obțin 4 funcții de "n-2" variabile de intrare
- La o funcție booleană cu "n" variabile de intrare, dacă dăm factor comun 3 variabile de intrare, se obțin 8 funcții de "n-3" variabile de intrare
- Ş.a.m.d.

- Implementarea cu Multiplexor
- Dacă variabilele scoase în factor comun se pun pe selecțiile multiplexorului, funcțiile rămase se pot conecta la intrările de date ale multiplexorului
- Exemplu: pentru o funcție de 4 variabile, dacă folosim un MUX 8:1, punem 3 variabile pe selecțiile MUX și rămâne ca pe intrările de date să punem cele 8 funcții de o variabilă rămase

Singurele funcții posibile de o variabilă sunt: $x, \overline{x}, 0$ și 1

- Implementarea cu Multiplexor
- **Exemplu:** Implementarea cu MUX 8:1 a funcției

$$f(x_3,x_2,x_1,x_0) = \sum (0, 1, 3, 5, 9, 10, 13, 15) =$$

$$= \overline{x_3} \overline{x_2} \overline{x_1} \overline{x_0} + \overline{x_3} \overline{x_2} \overline{x_1} \underline{x_0} + \overline{x_3} \overline{x_2} \overline{x_1} x_0 + \overline{x_3} \overline{x$$

- Pe intrările de selecție se aplică variabilele x₂, x₁, x₀
- Pentru determinarea celor 8 funcții care urmează să fie puse pe intrările de date ale MUX, I₀ I₇, se construiește un tabel

Implementarea cu Multiplexor - exemplu

Intrare	Valoare	Termeni funcție -		
MUX	funcție de	Variabile pe		
	o variabilă	selecţie		
$\overline{I_0}$	$\overline{\mathbf{X}}_{3}$	$\overline{x_3}$ $\overline{x_2}\overline{x_1}\overline{x_0}$		
I_1	1	$(\overline{\mathbf{x}}_3 + \mathbf{x}_3) \ \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_1 \mathbf{x}_0$		
I_2	\mathbf{x}_3	$x_3 \overline{x}_2 x_1 \overline{x}_0$		
I_3	$\overline{\mathbf{x}}_{3}$	$\overline{x_3}$ $\overline{x_2}x_1x_0$		
I_4	0	$0 x_2 \overline{x}_1 \overline{x}_0$		
I_5	1	$(\overline{x}_3 + x_3) x_2 \overline{x}_1 x_0$		
I_6	0	$0 x_2 x_1 \overline{x_0}$		
I_7	\mathbf{x}_3	$\mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$		

Implementarea cu Multiplexor - exemplu

Observaţie: în funcţie de variabilele alese pe selecţii, implementarea funcţiei diferă 08.11.2019

- Implementarea cu Multiplexor exemplu
- La funcţia reprezentată prin DK implementarea cu MUX se bazează pe o altă DK, care defineşte domeniul intrărilor de date I
- Domeniul intrărilor pentru funcția de 4 variabile, dacă selecțiile sunt x₂, x₁, x₀

X_3X_2 X_1X_0	00	01	11	10
00	I_0	I_1	I_3	I_2
01	I_4	I_5	I_7	I_6
11	I_4	I_5	I_7	I_6
10	\overline{I}_0	\overline{I}_1	I_3	$\overline{\mathbf{I}}_{2}$

- Implementarea cu Multiplexor exemplu
- DK pentru funcția f este:

X_3X_2 X_1X_0	00	01	11	10
00	1	1	1	
01		1		
11		1	1	
10		1		1

Prin comparare cu DK pentru intrări obținem pentru I_0 - I_7 valorile: $I_0 = \overline{x_3}$; $I_1 = 1$; $I_2 = x_3$; $I_3 = \overline{x_3}$; $I_4 = 0$; $I_5 = 1$; $I_6 = 0$; $I_7 = x_3$, identice cu cele obținute anterior

- Implementarea cu Multiplexor
- Avantajele implementării cu MUX
 - se poate utiliza un sigur circuit
 - doar o singură variabilă trebuie să fie disponibilă şi adevărată şi negată
 - MUX are intrarea de Enable care poate fi folosită ca un ȘI final cu întreaga funcție
- Dezavantajele implementării cu MUX
 - nu se pot implementa sisteme de funcții
 - nu se pot implementa funcții cu numărul de termeni mai mare decât numărul intrărilor