EJERCICIOS 7

- (1) (a) Si U y V son matrices unitarias en $M_n(\mathbb{C})$, demostrar que el producto UV es también unitaria.
- (b) Si $U \in M_N(\mathbb{C})$ es una matriz unitaria, demostrar que U es inversible y que U^{-1} es también unitaria.
- (2) (a) Calcular los autovalores de la matriz

$$A := \begin{bmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{bmatrix}.$$

Encontrar una matriz *ortogonal P* cuyas columnas sean autovectores de A, de modo que $P^tAP = P^{-1}AP$ sea diagonal.

- (b) Calcular A^5 , usando esta forma diagonal $D = P^t A P$.
- (3) Sean V un espacio producto interno finitodimensional, \mathcal{B} una base ortonormal de V, $T:V\to V$ un operador lineal, $A=[T]_{\mathcal{B}}$. Entonces $A=A^*$ implica que $T=T^*$.
- (4) Sean $\mathbb{F} = \mathbb{R}$ o \mathbb{C} . Demostrar que el conjunto de matrices hermitianas / simétricas es una union de clases de σ -congruencia.
 - (5) Supóngase que $A, B \in M(n, \mathbb{C})$ son matrices hermitianas.
 - Probar que A es σ -congruente a A si y solo si A y B tienen las mismas inercias.
 - Sea Ω el conjunto de matrices $n \times n$ hermitianas / simétricas. Contar el numero de clases de σ -congruencia en lo que Ω descompone.
 - (6) Sean $\mathbb{F} = \mathbb{R}$ o \mathbb{C} ; $A, P \in M(n, \mathbb{F})$ con P unitaria. Demostrar que $(P^*AP)^*$ diagonal implica que A es normal.
 - (7) Determinar la inercia de la matrices

$$A := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \qquad B := \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}, \qquad C := \begin{bmatrix} 9 & -6 & 2 \\ -6 & 8 & -4 \\ 2 & -4 & 4 \end{bmatrix}$$

- (8) Sea V un espacio producto interno finitodimensional. Un **operador positivo** es un operador autoadjunto tal que $\langle x, T(x) \rangle \ge 0$ para todo $x \in V$. Una **matriz positiva** es una matriz hermitiana tal que todas sus valores propios son no-negativos.
- (a) Demostrar que $T \in \mathcal{L}(V)$ es un operador positivo si y solo si $[T]_{\mathcal{B}}$ es una matriz positiva para toda base ortonormal \mathcal{B} .
- (b) Si $T \in \mathcal{L}(V)$ es un operador positivo, demostrar que hay un polinomio $g(t) \in \mathbb{R}[t]$ tal que g(T) es positivo y $g(T) \circ g(T) = T$.

Indicación: Buscar un polinomio que cumple $g(\mu_j) = \sqrt{\mu_j}$ para cada autovalor μ_j de T.

- (c) Si $S \in \mathcal{L}(V)$ es otro operador positivo tal que ST = TS, demostrar que los operadores S + T y ST son también positivos.
- (d) Si $P, Q \in \mathcal{L}(V)$ son operadores positivos que no conmutan, demostrar que P + Q es positivo pero que PQ no es necesariamente positivo.

Indicación: Dar un contraejemplo de dos matrices positivas cuyo producto no es una matriz positiva.

(9) Sea V un espacio producto interno finitodimensional.

Sea $A \in M_n(\mathbb{C})$ y sean $\lambda_1, \ldots, \lambda_n$ los autovalores de A, repetidos según su multiplicidad. Demostrar la desigualdad:

$$\operatorname{tr}(A^*A) \ge |\lambda_1|^2 + \dots + |\lambda_n|^2,$$

¹Las partes (a) y (b) dicen que la totalidad de matrices unitarias $n \times n$ es un grupo, llamado U(n).

2 EJERCICIOS 7

con igualdad si y sólo si A es una matriz normal.