1. (a)

keystream: 10010100 plaintext: 01100001 stream cipher: 11110101

(b)

keystream: 10010100plaintext: 01110000stream cipher: 11100100

(c)

keystream: 10010100plaintext: 01110011stream cipher: 11100111

(d)

keystream: 10010100plaintext: 01110101stream cipher: 11100001

2. (a)

$$S_1(x_1 = 000000) \oplus S_1(x_2 = 000001) \neq S_1(x_1 = 000000 \oplus x_2 = 000001)$$

 $14_{(10)} \oplus 00_{(10)} \neq S_1(000001)$
 $1110_{(2)} \oplus 0000_{(2)} \neq 00_{(10)}$
 $1110_{(2)} \neq 0000_{(2)}$

(b)

$$S_1(x_1 = 111111) \oplus S_1(x_2 = 100000) \neq S_1(x_1 = 1111111 \oplus x_2 = 100000)$$

 $13_{(10)} \oplus 04_{(10)} \neq S_1(011111)$
 $1101_{(2)} \oplus 0100_{(2)} \neq 08_{(10)}$
 $1001_{(2)} \neq 1000_{(2)}$

(c)

$$S_1(x_1 = 101010) \oplus S_1(x_2 = 010101) \neq S_1(x_1 = 101010 \oplus x_2 = 010101)$$

 $06_{(10)} \oplus 12_{(10)} \neq S_1(111111)$
 $0110_{(2)} \oplus 1100_{(2)} \neq 13_{(10)}$
 $1010_{(2)} \neq 1101_{(2)}$

3. (a) Showing my steps:

i.

	pla	aint	ext	(6	4-b	it)				key	(6	4-b	it)		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ii.

iii.

Key after PC - 1 (56-bit)

		C_0	(2)	8-b	it)					D_0	(2)	8-b	it)		
0	0	0	0	0	0	0	0					0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0					0	0	0	0	0	0	0	0

iv.

Since this is round 1, rotate both halves LEFT one bit

		C_0	(2)	8-b	it)					D_0	(2)	8-b	it)		
0	0	0	0	0	0	0	0					0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0					0	0	0	0	0	0	0	0

v.

Stack the halves such that C_0 is on top of D_0 . Permute PC-2

vi.

Creating the f-Function.

A. Take R_0 (32-bit) and expansion permute E

B. Compute $E_1(R_0) \oplus k_1$ to obtain another 48-bit

C. Process each row r_i of matrix in previous step in S_i for another 32-bit

$$S_1 = 1110$$

 $S_2 = 1111$
 $S_3 = 1010$
 $S_4 = 0111$
 $S_5 = 0010$
 $S_6 = 1100$
 $S_7 = 0100$
 $S_8 = 1101$

D. Send previous step's 32-bit to permutation P for f-Function (32-bit)

S box results (32-bit)

			\	,										
1	1	1	0											
1	1	1	1						f	(32)	2-bi	t)		
1	0	1	0				1	1	0	1	1	1	0	0
0	1	1	1		P		1	1	0	1	1	0	0	0
0	0	1	0			>	1	1	0	1	1	0	1	1
1	1	0	0				1	0	1	1	1	1	0	0
0	1	0	0											
1	1	0	1											

vii.

The resulting operation is R_1

viii.

Thus, our output after the first round is

		L_1	(3)	2-b	it)					R_1	(3)	2-b	it)		
0	0	0	0	0	0	0	0	1	1	0	1	1	1	0	0
0	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0
0	0	0	0	0	0	0	0	1	1	0	1	1	0	1	1
0	0	0	0	0	0	0	0	1	0	1	1	1	1	0	0

(b) Showing my steps:

i.

	pla	aint	ext	(6	4-b	it)					key	7 (6	64-b	oit)		
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	()	0	0	0	0	0	0	0

ii.

iii.

Key after PC - 1 (56-bit)

iv.

Since this is round 1, rotate both halves LEFT one bit

		C_0	(2	8-b	it)					D_0	(2)	8-b	it)		
0	0	0	0	0	0	0	0					0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0					0	0	0	0	0	0	0	0

v.

Stack the halves such that C_0 is on top of D_0 . Permute PC-2

C_0, D_0 (56-1	hit)		k_1	(48)	8-bi	it)	
	<i>'</i>	0	0	0	0	0	0
0 0 0 0 0	0 0 0	0	0	0	0	0	0
$0 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0$	0	0	0	0	_	0
$0 \ 0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0$	_	_	_			_
0 0 0 0 0	$0 0 0 \stackrel{PC-2}{\Longrightarrow}$	0	0	0		•	0
		0	0	0	0	0	0
0 0 0 0		0	0	0	0	0	0
0 0 0 0 0	0 0 0	0	0	0	0	0	0
$0 \ 0 \ 0 \ 0$	$0 \ 0 \ 0$	0	_	_	_	_	_
		U	U	U	U	U	0

vi.

Creating the f-Function.

A. Take R_0 (32-bit) and expansion permute E

B. Compute $E_1(R_0) \oplus k_1$ to obtain another 48-bit

E	$C_1(I$	R_0	(48)	-bi	t)			k_1	(48)	8-b	it)	
0	1	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0	_	0	0	0	0	0	0
0	0	0	0	0	0	\oplus	0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	1		0	0	0	0	0	0

The resulting 48-bits are

C. Process each row r_i of matrix in previous step in S_i for another 32-bit

$$S_1 = 0011$$

 $S_2 = 1111$
 $S_3 = 1010$
 $S_4 = 0111$
 $S_5 = 0010$
 $S_6 = 1100$
 $S_7 = 0100$
 $S_8 = 0001$

D. Send previous step's 32-bit to permutation P for f-Function (32-bit)

S box results (32-bit)

vii.

		L_0	(3)	2-b	it)						f	(32)	2-bi	$\mathbf{t})$		
0	0	0	0	0	0	0	0		1	1	0	1	0	1	0	0
0	0	0	0	0	0	0	0	\bigcirc	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	0	\oplus	0	1	0	1	1	0	1	1
0	0	0	0	0	0	0	0		1	0	0	1	1	1	1	0

The resulting operation is R_1

		R_1	(3	2-b	it)		
1	1	0	1	0	1	0	0
0	1	0	1	1	0	0	0
0	1	0	1	1	0	1	1
1	0	0	1	1	1	1	0

viii.

Thus, our output after the first round is

		L_1	(3	2-b	it)					R_1	(3)	2-b	it)		
1	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	0	0	1	0	1	1	0	1	1
0	0	0	0	0	0	0	0	1	0	0	1	1	1	1	0

There are 6 different bits compared to part (a). The bits are different at positions $L_1 = 1$ and $R_1 = 5, 9, 17, 27, 31$.

4. (a)

After PC - 1,

Split into halves (28-bit)

		C_0	(2)	8-b	it)				$D_0 \ (28-bit)$								
0	0	0	0	0	0	0	1						0	0	0	0	
0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0	
0	0	0	0						0	0	0	0	0	0	0	0	

Execute LS_1 ; 1 bit

		C_1	(2)	8-b	it)			$D_1 \ (28-bit)$								
0	0	0	0	0	0	1	0					0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0					0	0	0	0	0	0	0	0	

Execute LS_2 ; 1 bit

		C_2	(2)	8-b	it)			$D_2 (28-bit)$								
0	0	0	0	0	1	0	0					0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0					0	0	0	0	0	0	0	0	

Execute LS_3 ; 2 bit

		C_3	(2)	8-b	it)			$D_3 \ (28-bit)$								
0	0	0	1	0	0	0	0					0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0					0	0	0	0	0	0	0	0	

Execute $LS_{4,5,\dots,16}$ such that rounds i=1,2,9,16 shift left 1 bit, else shift 2 bits. The following bits are 1 for each k_i :

$k_1 = 7$	$k_9 = 21$
$k_2 = 6$	$k_{10} = 19$
$k_3 = 4$	$k_{11} = 17$
$k_4 = 2$	$k_{12} = 15$
$k_5 = 28$	$k_{13} = 13$
$k_6 = 26$	$k_{14} = 11$
$k_7 = 24$	$k_{15} = 9$
$k_8 = 22$	$k_{16} = 8$

(b) Observing Table for PC - 2, we have

										PC	-2	(48-	bit)	
		PC	-2	(48-	14	17	11	24	1	5				
14	17	11	24	1	5	3	28		3	28	15	6	21	10
15	6	21	10	23	19	12	4		23	19	12	4	26	8
26	8	16	7	27	20	13	2	_	16	7	27	20	13	2
41	52	31	37	47	55	30	40	\Rightarrow	41	52	31	37	47	55
51	45	33	48	44	49	39	56		30	40	51	45	33	48
34	53	46	42	50	36	29	32		44	49	39	56	34	53
									46	42	50	36	29	32

With the table rearranged, it is a bit easier to see which S_i Box is affected each k_i ,

$k_1 = S_4$	$k_9 = S_2$
$k_2 = S_2$	$k_{10} = S_3$
$k_3 = S_3$	$k_{11} = S_1$
$k_4 = S_4$	$k_{12} = S_2$
$k_5 = S_2$	$k_{13} = S_4$
$k_6 = S_3$	$k_{14} = S_1$
$k_7 = S_1$	$k_{15} = \text{bit-9 does not carry over}$
$k_8 = \text{bit-}22 \text{ does not carry ov}$	er $k_{16} = S_3$

Observation: Since the keys only changed in C_i , only the first four S Boxes are affected. For bits that a lost during PC-2, I assume this does not have an effect on the Boxes.