Vom Nichtmetall zur sauren Lösung – Übersicht über wichtige Säuren und deren Säurerest-Ionen

1. Halogenwasserstoffsäuren Halogene reagieren mit Wasserstoff zu Halogenwasserstoff -aas. In Wasser gelöst ergibt der Halogenwasserstoff eine saure Lösung Säurerestione ... und bilden folgende Säurerestione

Ø	<u> </u>		0	
Halogenwasserstoff	Saure Lösung O		Säurerestion	
Reaktion	Name	Formel	Name	Formel
$F_2(g) + H_2(g) \rightarrow 2 HF(g)$	Fluorwasserstoff- säure (Flusssäure)	HF	Fluorid-lon	F-
$Cl_2\left(g\right) \; + \; H_2(g) \; o \; 2 \; HCl\left(g\right)$	Chlorwasserstoff- säure (Salzsäure)	HCI	Chlorid-Ion	Cl-

Nichtmetalloxid		Säure 🗸		Säurerestion	
Name	Formel	Name	Formel	Name	Formel
Stickstoffoxid	NO ₂	Salpetersäure	HNO ₃	Nitrat-Ion	NO ₃ -
Kohlenstoffdioxid	CO ₂	Kohlensäure	H₂CO ₃	Carbonat-Ion	CO ₃ 2-
Schwefeltrioxid	SO ₃	Schwefelsäure	H ₂ SO ₄	Sulfat-Ion	SO ₄ ² -
Phosphoroxid	P ₄ O ₁₀	Phosphorsäure	H ₃ PO ₄	Phosphat-Ion	PO ₄ ³⁻

<u>Beachte</u>: Reagieren **2- oder 3-Protonige Säuren** mit Wasser, so muss pro abgespaltenem Proton ein Wassermolekül hinzugefügt werden. Die Ladung der Säurerestionen und die Anzahl der Oxoniumionen ändert sich dann ebenfalls entsprechend!

z.B.
$$H_2SO_4 + 2 H_2O \rightarrow SO_4^{2-} + 2 H_3O^+$$