## Datos de Dinámica (Segunda Ley de Newton)

Caso Fuerza constante (F = constante)

$$F = M * a$$

## FUERZA CONSTANTE



Esquema de montaje para la práctica de dinámica

$$m_1 = m_{movil} = 91,53[g]$$
  
 $m_2 = 12,12[g]$ 

$$m_1 = m_{movil} + 20 = 111,53[g]$$
  
 $m_2 = 12,12[g]$ 

| i  | t [s] | x [cm] |
|----|-------|--------|
| 1  | 0     | 0      |
| 2  | 0,1   | 0,45   |
| 3  | 0,2   | 2,0    |
| 4  | 0,3   | 4,7    |
| 5  | 0,4   | 8,6    |
| 6  | 0,5   | 13,7   |
| 7  | 0,6   | 19,9   |
| 8  | 0,7   | 27,3   |
| 9  | 0,8   | 35,8   |
| 10 | 0,9   | 45,6   |

| i  | t [s] | x [cm] |
|----|-------|--------|
| 1  | 0     | 0      |
| 2  | 0,1   | 0,4    |
| 3  | 0,2   | 1,8    |
| 4  | 0,3   | 4,1    |
| 5  | 0,4   | 7,4    |
| 6  | 0,5   | 11,7   |
| 7  | 0,6   | 16,9   |
| 8  | 0,7   | 23,1   |
| 9  | 0,8   | 30,4   |
| 10 | 0,9   | 38,6   |
| 11 | 1     | 47,7   |

$$m_1 = m_{movil} + 40 = 131,53[g]$$
  
 $m_2 = 12,12[g]$ 

| i  | t [s] | x [cm] |  |
|----|-------|--------|--|
| 1  | 0     | 0      |  |
| 2  | 0,1   | 0,35   |  |
| 3  | 0,2   | 1,5    |  |
| 4  | 0,3   | 3,5    |  |
| 5  | 0,4   | 6,3    |  |
| 6  | 0,5   | 9,9    |  |
| 7  | 0,6   | 14,4   |  |
| 8  | 0,7   | 19,8   |  |
| 9  | 0,8   | 25,9   |  |
| 10 | 0,9   | 32,9   |  |
| 11 | 1     | 40,6   |  |

$$m_1 = m_{movil} + 60 = 151,53[g]$$
  
 $m_2 = 12,12[g]$ 

| i  | t [s] | x [cm] |
|----|-------|--------|
| 1  | 0     | 0      |
| 2  | 0,1   | 0,2    |
| 3  | 0,2   | 1,2    |
| 4  | 0,3   | 3,0    |
| 5  | 0,4   | 5,4    |
| 6  | 0,5   | 8,6    |
| 7  | 0,6   | 12,6   |
| 8  | 0,7   | 17,2   |
| 9  | 0,8   | 22,6   |
| 10 | 0,9   | 28,7   |
| 11 | 1     | 35,6   |

$$m_1 = m_{movil} + 80 = 171,53[g]$$
  
 $m_2 = 12,12[g]$ 

| i  | t [s]   | x [cm]                          |  |
|----|---------|---------------------------------|--|
| 1  | 0       | 0                               |  |
| 2  | 0,1     | 0,2                             |  |
| 3  | 0,2     | 1,1                             |  |
| 4  | 0,3     | 2,6                             |  |
| 5  | 0,4     | 4,9                             |  |
| 6  | 0,5 7,8 |                                 |  |
| 7  | 0,6     | 0,6     11,3       0,7     15,4 |  |
| 8  | 0,7     |                                 |  |
| 9  | 0,8     | 20,2                            |  |
| 10 | 0,9     | 25,7                            |  |
| 11 | 1       | 31,8                            |  |

$$m_1 = m_{movil} + 100 = 191,53[g]$$
  
 $m_2 = 12,12[g]$ 

| i  | t [s] | x [cm] |
|----|-------|--------|
| 1  | 0     | 0      |
| 2  | 0,1   | 0,2    |
| 3  | 0,2   | 1,0    |
| 4  | 0,3   | 2,4    |
| 5  | 0,4   | 4,4    |
| 6  | 0,5   | 7,0    |
| 7  | 0,6   | 10,2   |
| 8  | 0,7   | 13,9   |
| 9  | 0,8   | 18,4   |
| 10 | 0,9   | 23,2   |
| 11 | 1     | 28,8   |

Ojo la masa  $m_2=12,12[g]$  es constante para todas las tablas, primero encuentre las aceleraciones de cada una de las tablas y la masa total es  $M=m_1+m_2$  y construya la siguiente tabla:

| i | M[g] | $a \left[ \frac{cm}{s^2} \right]$ | M * a[din] |
|---|------|-----------------------------------|------------|
| 1 |      |                                   |            |
| 2 |      |                                   |            |
| 3 |      |                                   |            |