6. Existence Problems

存在性 有可沒有

counting Argument

1. <u>Gircuit Complexity</u>

 \Rightarrow # of $f: |\{0,1\}\} = 2 \cdot 2 \cdot \dots 2 = 2$

Boolean circuit. $f: \{0,1\}^n \rightarrow \{0,1\}$

DAG (dirouted auxclic grouph) Nodes < inputs: X1,....Xn.

gates: 1. V. 7.

Complexity: # of gates

-, P: polynomial.

Thm) (Shannon, 1949)

NP: non-deterministic polynomial 是否存在避影 \exists) boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Almost all which cannot be computed by any circuit with $\frac{2^n}{30}$ gates,

中沙林道理: one circuits computer one function

Given t goder: Wlog A or V

Inputs: X, --, Xn. -X, --, -Xn. O. 1

of circuits with t gates:

$$\leq \left(2^{t}(2N+2+t-1)^{2}\right)^{t}$$

$$= 2^{t}(2N+t+1)^{2t}$$

=) #of functions by t gates

$$\leq$$
 # of circuits with t gates \leq 2^t·(2N+t+1)^{2t}. \leq 2ⁿ = #f

- => 草技丽鬼童《问题丽鬼童
- = 鹤商的解来的问题只见是沧海一来。

for $t \leq \frac{2^n}{3n}$

2. Handshaking Lemma: the number of people who shake an odd number of other

people's hardy is even.

$$\sum_{v \in V} d(v) = 2 \cdot |E|$$

double counting

N people ⇔n vortile,

handshakilig 😂 edge

of hundshaking \Leftrightarrow degree

Count the # of edge orientations

- Count by vertex: YVEV. d(v) directed edges.

Country edge: YeEE. (u.v) or (v.u) 2 orientations.

of odd-degree vertices is even.

Sperner's Lemma

线段 <u>ab</u> → divided into small segments. $\Rightarrow \exists a \text{ Small segment} (\#; \text{odd})$ each endpoint: red / blue. 三角形 abc > triangulation proper colonity: $\begin{cases} \frac{a \cdot b \cdot C}{a \cdot b \cdot c} \cdot \text{tricolors}, \\ \text{lines ab.bc. ca are } \partial - \text{colors}, \end{cases}$ \boldsymbol{a} Y property colored triangulation of a triangle. I a property colored small triangle dual graph of \$3 => partial dual graph add an edge if 2Δ share a - edge degree 1. → odd other cases: degree 0, 1 onterventens by handshaking lemma. Other ouses: de # of odd-degrare vertises is even ouser verten (1)

Browner's fixed point theorem: \forall continuous function $f : B \rightarrow B$. of an n-dimensional ball B, \exists fixed point x = f(x)

Averaging Primiple_

- <u>N+1 pige ons</u> cannot sit in <u>n holes</u> so that every pigeon is alone on its own.
- If > mn objects are partitioned into n classes, then some class receives > m objects,

 \bigcirc Approximate any irrational x by a rational with bounded denominator.

Thm) (Dirichlet, 1879)
$$\forall$$
 irrational x , $n \in \mathbb{N}$, \exists rational $\frac{P}{9}$.

s.t.
$$1 \le q \le n$$
 and $|\chi - \frac{p}{q}| < \frac{1}{nq}$

 $\Rightarrow |qx-p| < |n|$

integer part:
$$[X]$$

$$fractional part: \{x\} = X - [x].$$

$$(o,1) \rightarrow (o,\frac{1}{n}), (\frac{1}{n},\frac{2}{n}), ..., (\frac{n-1}{n},1)$$

$$\{kX\} \text{ for } k = 1,2,...,n+|$$

$$\Rightarrow ky \text{ pigeon hole principle, } \exists |\leq b < \alpha \leq n+| \text{ s.t. } \{ax\}, \{bx\} \text{ in same hole.}$$

$$\Rightarrow |\{ax\} - \{bx\}| < \frac{1}{n}$$

$$\Rightarrow |(a-b)X - (Lax1 - Lbx], |< \frac{1}{n} \Rightarrow |(2X-P)| < \frac{1}{n} \text{ 1}$$

$$2 \in [n] \text{ 2.}$$

$$2 \text{ Paul. } \text{ Frdős}$$

$$Claim: \forall S \subseteq \{1,2,...,2n\}, \text{ that } |S| > n \}$$

Proof:
$$\forall \alpha \in \{1, 2, \dots, 2n\}$$
, $\alpha = \# \% \& \pi$

$$0 = 2^k \cdot M \quad \text{for an odd } M.$$

$$\Rightarrow \text{ m is the quarient of } 2^k \cdot K + 16 + 8 = 88$$

$$\underline{C_{m}} = \underbrace{2^{k}m}_{k \geq 0}, 2^{k}m \leq 2n^{2}$$

$$\underline{C_{1}}_{2} C_{3}, \underline{C_{5}}_{3}, \underline{$$

>n pigeons: S.

6(j

$\Rightarrow \exists a < b. (a.b \in C_m) \Rightarrow a \mid b \qquad \Box$
3 Nonotonic Subsequences
Segnonie (ai,, an): n different numbers
$1 \leq i_1 < i_2 < \dots < i_K \leq n \Rightarrow \text{Subsequence} \left(a_{i_1}, a_{i_2}, \dots, a_{i_K}\right)$
$ \left\langle \begin{array}{l} \text{increasing: } a_{i1} < a_{i2} < \cdots < a_{iK} \\ \text{decreasing: } a_{i1} > a_{i2} > \cdots > a_{iK} \end{array} \right\rangle $
Thm) (Endis-Szekeves, 1935) A sequence of >mn different numbers
must-contain an 3 subsequence of length m+1 ai fag-
an & subsequence of longth n+1
Proof; (a_1, \dots, a_N) . $N > mn$.
$0: \Rightarrow (x_i, y_i)$ \ \(\frac{\partial}{\partial} \) \(
$\forall \underbrace{(x_i,y_i) + (x_j,y_j)}_{\text{(assume isi)}} \neq \underbrace{a_i < a_j; x_i < \chi_j}_{a_i > a_i}, y_i > y_j$
Min holes One pigeon parone holes! N a= (xe. ye)
\Rightarrow No way to put N pigeons into mn holes. M $(x_k,y_k): \underline{x_k>m} \text{ or } y_k>n$, $\underline{\square}$