

CLAIMS

1. A mobile communication system for carrying out a packet transmission based on the spread ALOHA system, the mobile communication system comprising:

- 5 a base station that measures an uplink interference value of a transmission path when a data error has occurred in reception packets multiplexed by plurality, generates a retransmission request signal of a packet format based on the measured uplink interference value, and then transmits
10 the retransmission request signal to a mobile communication terminal that has transmitted the erroneous packet, and
 a mobile communication terminal that outputs multiplexed transmission data as a transmission packet during a normal transmission, automatically divides the
15 transmission data into parallel signals according to a retransmission multiplex number based on the retransmission request signal when the retransmission request signal has been received, multiplexes the parallel signals to generate a transmission packet for retransmission, and outputs the
20 transmission packet to the base station.

2. The mobile communication system according to claim 1, wherein

 the base station generates a retransmission request
25 signal of a packet data format including the uplink

interference value, and transmits the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and

the mobile communication terminal extracts the uplink
5 interference value from the received retransmission request signal, compares the uplink interference value with a predetermined threshold value having a plurality of stages, and determines a retransmission multiplex number according to the uplink interference value based on a result of this
10 comparison.

3. The mobile communication system according to claim 1, wherein

the base station generates a retransmission request
15 signal of a packet data format including the uplink interference value, and transmits the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and

the mobile communication terminal extracts the uplink
20 interference value from the received retransmission request signal, compares the uplink interference value with a predetermined threshold value, does not multiplex the retransmission data when the uplink interference value is lower than the threshold value, and determines a
25 retransmission multiplex number to be in the same number as

the multiplex number during a normal transmission when the uplink interference value is equal to or higher than the threshold value.

5 4. The mobile communication system according to claim 1,
wherein

the base station generates a retransmission request signal of a packet data format including the uplink interference value, and transmits the retransmission request
10 signal to the mobile communication terminal that has transmitted the erroneous packet, and

the mobile communication terminal extracts the uplink interference value from the received retransmission request signal, obtains a probability for determining a
15 retransmission multiplex number based on the uplink interference value, generates a random number of 0 or 1 based on this probability, does not multiplex the retransmission data when the random number is 0, and determines a retransmission multiplex number to be in the same number as
20 the multiplex number during a normal transmission when the random number is 1.

5. The mobile communication system according to claim 1,
wherein

25 the base station compares the uplink interference value

with a predetermined threshold value having a plurality of stages, determines a retransmission multiplex number according to the uplink interference value based on a result of this comparison, generates a retransmission request signal 5 of a packet data format including the retransmission multiplex number, and transmits the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and

the mobile communication terminal extracts the
10 retransmission multiplex number from the received retransmission request signal, and retransmits the transmission data according to the retransmission multiplex number.

15 6. The mobile communication system according to claim 1,
wherein

the base station compares the uplink interference value with a predetermined threshold value, does not multiplex the retransmission data when the uplink interference value is 20 lower than the threshold value, determines a retransmission multiplex number to be in the same number as the multiplex number during a normal transmission when the uplink interference value is equal to or higher than the threshold value, generates a retransmission request signal of a packet 25 data format including the retransmission multiplex number,

and transmits the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and

the mobile communication terminal extracts the
5 retransmission multiplex number from the received
retransmission request signal, and retransmits the
transmission data according to the retransmission multiplex
number.

10 7. The mobile communication system according to claim 1,
wherein

the base station obtains a probability for determining
a retransmission multiplex number based on the measured uplink
interference value, generates a random number of 0 or 1 based
15 on this probability, does not multiplex the retransmission
data when the random number is 0, determines a retransmission
multiplex number to be in the same number as the multiplex
number during a normal transmission when the random number
is 1, generates a retransmission request signal of a packet
20 data format including the retransmission multiplex number,
and transmits the retransmission request signal to the mobile
communication terminal that has transmitted the erroneous
packet, and

the mobile communication terminal extracts the
25 retransmission multiplex number from the received

retransmission request signal, and retransmits the transmission data according to the retransmission multiplex number.

5 8. The mobile communication system according to claim 1,
wherein

the base station obtains a probability for determining
a retransmission multiplex number based on the measured uplink
interference value, generates a retransmission request
10 signal of a packet data format including the probability,
and transmits the retransmission request signal to the mobile
communication terminal that has transmitted the erroneous
packet, and

15 the mobile communication terminal extracts the
probability from the received retransmission request signal,
generates a random number of 0 or 1 based on this probability,
does not multiplex the retransmission data when the random
number is 0, and determines a retransmission multiplex number
to be in the same number as the multiplex number during a
20 normal transmission when the random number is 1.

9. A base station for carrying out a packet transmission
based on the spread ALOHA system, wherein

25 the base station measures an uplink interference value
of a transmission path when a data error has occurred in

reception packets multiplexed by plurality, generates a retransmission request signal of a packet format based on the measured uplink interference value, and then transmits the retransmission request signal to a mobile communication terminal that has transmitted the erroneous packet.

10. The base station according to claim 9 comprising:
a data detecting unit that despreads and demodulates
the received packet, extracts user data from a demodulated
10 data signal thereby to always monitor a data error in the
reception packets, and measures an uplink interference value
when there has been a data error;

a retransmission request generating unit that
generates a retransmission request signal based on the
15 measured uplink interference value; and

a transmitting unit that converts the retransmission
request signal in a packet format.

11. The base station according to claim 9, wherein
20 the base station generates a retransmission request
signal of a packet data format including the uplink
interference value, and transmits the retransmission request
signal to the mobile communication terminal that has
transmitted the erroneous packet.

12. The base station according to claim 9, wherein
the base station compares the uplink interference value
with a predetermined threshold value having a plurality of
stages, determines a retransmission multiplex number
5 according to the uplink interference value based on a result
of this comparison, generates a retransmission request signal
of a packet data format including the retransmission multiplex
number, and transmits the retransmission request signal to
the mobile communication terminal that has transmitted the
10 erroneous packet.

13. The base station according to claim 9, wherein
the base station compares the uplink interference value
with a predetermined threshold value, does not multiplex the
15 retransmission data when the uplink interference value is
lower than the threshold value, determines a retransmission
multiplex number to be in the same number as the multiplex
number during a normal transmission when the uplink
interference value is equal to or higher than the threshold
20 value, generates a retransmission request signal of a packet
data format including the retransmission multiplex number,
and transmits the retransmission request signal to the mobile
communication terminal that has transmitted the erroneous
packet.

14. The base station according to claim 9, wherein
the base station obtains a probability for determining
a retransmission multiplex number based on the measured uplink
interference value, generates a random number of 0 or 1 based
5 on this probability, does not multiplex the retransmission
data when the random number is 0, determines a retransmission
multiplex number to be in the same number as the multiplex
number during a normal transmission when the random number
is 1, generates a retransmission request signal of a packet
10 data format including the retransmission multiplex number,
and transmits the retransmission request signal to the mobile
communication terminal that has transmitted the erroneous
packet.
- 15 15. The base station according to claim 9, wherein
the base station obtains a probability for determining
a retransmission multiplex number based on the measured uplink
interference value, generates a retransmission request
signal of a packet data format including the probability,
20 and transmits the retransmission request signal to the mobile
communication terminal that has transmitted the erroneous
packet.

16. A mobile communication terminal for carrying out a packet transmission based on the spread ALOHA system, wherein
the mobile communication terminal outputs multiplexed transmission data as a transmission packet during a normal
5 transmission, automatically divides the transmission data into parallel signals according to a retransmission multiplex number determined based on the retransmission request signal when the retransmission request signal has been received, further multiplexes the parallel signals to generate a
10 transmission packet for retransmission, and outputs the transmission packet to the base station.

17. The mobile communication terminal according to claim
16 comprising:

15 a series-parallel converting unit that converts the internally generated transmission data into parallel signals according to a predetermined multiplex number;

20 a transmitting unit that spreading modulates the plurality of parallel signals, multiplexes the modulation signals by a predetermined method, and outputs the multiplexed modulation signals as a transmission packet;

25 a retransmission request detecting unit that receives a retransmission request signal in the packet format, and despreads and demodulates this signal thereby to detect the retransmission request signal; and

a control unit that decides a multiplex number of the parallel signals used by the series-parallel converting unit, based on the retransmission request signal.

5 18. The mobile communication terminal according to claim
16, wherein

the mobile communication terminal extracts an uplink interference value from the received retransmission request signal, compares this uplink interference value with a
10 predetermined threshold value having a plurality of stages, and determines the retransmission multiplex number according to the uplink interference value based on a result of this comparison.

15 19. The mobile communication terminal according to claim
16, wherein

the mobile communication terminal extracts the uplink interference value from the received retransmission request signal, compares the uplink interference value with a
20 predetermined threshold value, does not multiplex the retransmission data when the uplink interference value is lower than the threshold value, and determines a retransmission multiplex number to be in the same number as the multiplex number during a normal transmission when the
25 uplink interference value is equal to or higher than the

threshold value.

20. The mobile communication terminal according to claim
16, wherein

5 the mobile communication terminal extracts the uplink
interference value from the received retransmission request
signal, obtains a probability for determining a
retransmission multiplex number based on the uplink
interference value, generates a random number of 0 or 1 based
10 on this probability, does not multiplex the retransmission
data when the random number is 0, and determines a
retransmission multiplex number to be in the same number as
the multiplex number during a normal transmission when the
random number is 1.

15
21. The mobile communication terminal according to claim
16, wherein

the mobile communication terminal extracts the
retransmission multiplex number from the received
20 retransmission request signal, and retransmits the
transmission data according to the retransmission multiplex
number.

22. The mobile communication terminal according to claim
16, wherein

the mobile communication terminal extracts the probability from the received retransmission request signal,
5 generates a random number of 0 or 1 based on this probability,
does not multiplex the retransmission data when the random number is 0, and determines a retransmission multiplex number to be in the same number as the multiplex number during a normal transmission when the random number is 1.

10

23. A retransmission control method for controlling a retransmission between a mobile communication terminal and a base station in a mobile communication system for carrying out a packet transmission based on the spread ALOHA system,
15 the retransmission control method comprising:

a retransmission request signal transmission step of measuring an uplink interference value of a transmission path when a data error has occurred in reception packets multiplexed by plurality, generating a retransmission request signal of a packet format based on the measured uplink interference value, and then transmitting the retransmission request signal to a mobile communication terminal that has transmitted the erroneous packet; and

25 a retransmission step of automatically dividing the transmission data into parallel signals according to a

retransmission multiplex number based on the retransmission request signal when the retransmission request signal has been received, further multiplexing the parallel signals to generate a transmission packet for retransmission, and
5 outputting the transmission packet to the base station.

24. The retransmission control method according to claim
23, wherein

the retransmission request signal transmission step
10 is for generating a retransmission request signal of a packet data format including the uplink interference value, and transmitting the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and
15 the retransmission step is for extracting the uplink interference value from the received retransmission request signal, comparing the uplink interference value with a predetermined threshold value having a plurality of stages, and determining a retransmission multiplex number according
20 to the uplink interference value based on a result of this comparison.

25. The retransmission control method according to claim
23, wherein
25 the retransmission request signal transmission step

is for generating a retransmission request signal of a packet data format including the uplink interference value, and transmitting the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and

the retransmission step is for extracting the uplink interference value from the received retransmission request signal, comparing the uplink interference value with a predetermined threshold value, not multiplexing the retransmission data when the uplink interference value is lower than the threshold value, and determining a retransmission multiplex number to be in the same number as the multiplex number during a normal transmission when the uplink interference value is equal to or higher than the threshold value.

26. The retransmission control method according to claim 23, wherein

the retransmission request signal transmission step 20 is for generating a retransmission request signal of a packet data format including the uplink interference value, and transmitting the retransmission request signal to the mobile communication terminal that has transmitted the erroneous packet, and

25 the retransmission step is for extracting the uplink

interference value from the received retransmission request signal, obtaining a probability for determining a retransmission multiplex number based on the uplink interference value, generating a random number of 0 or 1 based
5 on this probability, not multiplexing the retransmission data when the random number is 0, and determining a retransmission multiplex number to be in the same number as the multiplex number during a normal transmission when the random number is 1.

10

27. The retransmission control method according to claim
23, wherein

the retransmission request signal transmission step
is for comparing the uplink interference value with a
15 predetermined threshold value having a plurality of stages,
determining a retransmission multiplex number according to
the uplink interference value based on a result of this
comparison, generating a retransmission request signal of
a packet data format including the retransmission multiplex
20 number, and transmitting the retransmission request signal
to the mobile communication terminal that has transmitted
the erroneous packet, and

the retransmission step is for extracting the
retransmission multiplex number from the received
25 retransmission request signal, and retransferring the

transmission data according to the retransmission multiplex number.

28. The retransmission control method according to claim
5 23, wherein

the retransmission request signal transmission step
is for comparing the uplink interference value with a
predetermined threshold value, not multiplexing the
retransmission data when the uplink interference value is
10 lower than the threshold value, determining a retransmission
multiplex number to be in the same number as the multiplex
number during a normal transmission when the uplink
interference value is equal to or higher than the threshold
value, generating a retransmission request signal of a packet
15 data format including the retransmission multiplex number,
and transmitting the retransmission request signal to the
mobile communication terminal that has transmitted the
erroneous packet, and

the retransmission step is for extracting the
20 retransmission multiplex number from the received
retransmission request signal, and retransferring the
transmission data according to the retransmission multiplex
number.

29. The retransmission control method according to claim
23, wherein

the retransmission request signal transmission step
is for obtaining a probability for determining a
5 retransmission multiplex number based on the measured uplink
interference value, generating a random number of 0 or 1 based
on this probability, not multiplexing the retransmission data
when the random number is 0, determining a retransmission
multiplex number to be in the same number as the multiplex
10 number during a normal transmission when the random number
is 1, generating a retransmission request signal of a packet
data format including the retransmission multiplex number,
and transmitting the retransmission request signal to the
mobile communication terminal that has transmitted the
15 erroneous packet, and

the retransmission step is for extracting the
retransmission multiplex number from the received
retransmission request signal, and retransferring the
transmission data according to the retransmission multiplex
20 number.

30. The retransmission control method according to claim
23, wherein

the retransmission request signal transmission step
25 is for obtaining a probability for determining a

retransmission multiplex number based on the measured uplink interference value, generating a retransmission request signal of a packet data format including the probability, and transmitting the retransmission request signal to the
5 mobile communication terminal that has transmitted the erroneous packet, and

- the retransmission step is for extracting the probability from the received retransmission request signal, generating a random number of 0 or 1 based on this probability,
10 not multiplexing the retransmission data when the random number is 0, and determining a retransmission multiplex number to be in the same number as the multiplex number during a normal transmission when the random number is 1.
- . . .