Checkpoint 2: Data Collection, Feature Selection, and Model Plan

Group 7: Ayala Wang, Shashank Bhagwani, Shiyuan Wang, Nandhan Natarajan

Link to GitHub Repo: GitHub Repository

1. Update on Data Collection

- Status:
 - We collected **120 packet traces** using the NetUnicorn platform.
 - Each trace includes:
 - * Download/upload speed
 - * Latency
 - * Jitter
 - * Packet loss
 - Data was collected from three key campus locations: library, lecture halls, and outdoor plazas.
 - Traces were gathered during **peak** and **off-peak** hours for variability.
- Challenges:
 - Minor disruptions occurred during outdoor data collection due to power and Wi-Fi instability but were quickly resolved.
 - Sequential data collection extended the process slightly due to limited device availability.
- Scaling Plan:
 - No further scaling is planned as the current dataset is sufficient for our proof-of-concept model.

2. Planned Features

- Extracted Metrics:
 - Download/upload speed
 - Latency
 - Jitter
 - Packet loss
- Justification:
 - These metrics are directly tied to evaluating network performance and align with the project goal of assessing UCSB Wi-Fi quality.

3. Model Plan

• Model Type:

 A Random Forest Classifier will categorize network performance into three levels: Good, Moderate, and Poor.

• High-Level Explanation:

- Random Forest is ideal for handling small datasets and mixed feature types (e.g., continuous and categorical).
- It is robust, interpretable, and provides feature importance metrics to prioritize key network issues.

• Scikit-learn Implementation:

- Random Forest Classifier Documentation

4. Next Steps

• Feature Engineering:

- Extract the listed metrics from the packet traces.
- Preprocess the data for model input (e.g., normalize values as needed).

• Model Training:

- Train the Random Forest Classifier on the labeled dataset.
- Evaluate the model using metrics such as **accuracy** and **F1-score**.

• Proof of Concept:

 Validate the approach by categorizing network quality across sampled locations.