Maths Formulae

ALGEBRA

$$y = log_b x \Leftrightarrow x = b^y$$

$$log_b(xy) = \log_b x + \log_b y$$

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$log_b(x^n) = nlog_b x$$

MEASUREMENT

Rectangle:

Area: $l \times w$

Perimeter: 2l + 2w

Parallelogram:

Area: $l \times h$

Perimeter: 2l + 2w

Triangle:

Area: $\frac{1}{2}bh$ or $\frac{1}{2}bcSinA$

Perimeter: a + b + c

Circle:

Area:

Circumference: πr^2

 $2\pi r$

Cylinder:

Volume: $\pi r^2 l$

Surface Area: $2\pi rl + 2\pi r^2$

Sphere:

Volume: $\frac{4}{3}\pi r^3$ Surface Area: $4\pi r^2$

Cone:

Volume: $\frac{1}{3}\pi r^2 h$ Surface Area: $\pi r^2 + \pi r l$ (l slant ht.)

Rectangular Prism:

Volume: $l \times w \times h$

Surface Area: sum of all surfaces

Triangular Prism:

Volume: $\frac{1}{2}bh \times l$ Surface Area: $sum\ of\ all\ surfaces$

Pyramid

(regular square)

Volume: $\frac{1}{3} \times base area \times vertical height$

Surface Area: sum of all surfaces

QUADRATIC FORMULA

(For equation
$$ax^2 + bx + c = 0$$
)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

TRIGONOMETRY

Sine Rule:

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine Rule:

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

OTHER USEFUL FORMULAE

 $Density \ x \ Volume = Mass$

 $distance = speed \times time$

 $nautical\ miles = knots \times hours$

1 nautical mile = 1852 metres

 $360^{\circ} = 2\pi \ radians$

Gravity acceleration = $9.81 \, \text{m/s}^2$

CALCULUS

Differentiation:

у	dy/dx
A x ⁿ	nAx^{n-1}
e ×	e ×
Cos x`	- Sin x
Sin x	Cos x
Tan x	Sec ² x
In x	1/x

Integration:

$$\int dx (y = Ax^n) = \frac{A}{n+1} x^{n+1} + c$$

Simpson's Rule:

$$\int_{a}^{b} f(x)dx = \frac{1}{3}h[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1} + 2(y_2 + y_4 + \dots + y_{n-2})]$$

where $h = \frac{b-a}{n}$ and $y_r = f(x_r)$ and n is eve