Stone-Weierstross: X cpt Hausdorff, so C(X) a Banach alg.
Let A = C(X) be a subalg sit. A

- · separates pts: \text{\chi} \text{\chi} \frac{1}{2} \alpha \text{\chi} \frac{1}{2} \alpha \text{\chi} \frac{1}{2} \alpha \text{\chi} \frac{1}{2} \alpha \text{\chi} \text{\chi
- · is dosed under conjugation.

① If A contains a non-vanishing for, $\overline{A}^{II_{\infty}} = C(X)$.

② If every $a \in A$ vanishes at $x_o \in X$, $\overline{A} = \{f \in C(X) \mid f(x_o) = 0\}$.

Stepl: the for X+ 1XI on IR can be uniformly approximated by a polynomial which vanishes at 0 on any opt K = R.

If: Well show for R>O, $\exists seq$ (Pn) of poly's s.t. $p_n \rightarrow |1|$ unif on [-R,R] & $p_n(o) = 0$ $\forall n$. Wlog, R=1.

Define q(t) = |-|t| on [-1,1]. It suffices to find $q_n \rightarrow q$ unif s.t. $q_n(o) = 1$. Observe:

(*) 9 takes values in [0,1] and $(1-g(t))^2=t^2$ $\forall t \in [-1,1]$.

For given $t \in [-1, 1]$, consider $(1-s)^2 = t^2$.

It has two solutions: $S=|\pm|\pm|$. exactly one solution, $|-|\pm|$, like in [0,1]. Hence q(t) is the unique on on [-1,1] satisfying (x). Rewrite (x) as

(XX) q takes values in (0,1] and $q(t) = \frac{1}{2}(1-t^2+q(t)^2)$.

Page 1

$$\cdot q_o(t) = | \forall t | \leq 1$$

•
$$q_{n+1}(t) = \frac{1}{2} (1 - t^2 + q_n(t)^2)$$

$$\begin{cases} q_1(t) = \left| -\frac{1}{2}t^2 \right| \\ q_0 - q_1 = \frac{1}{2}t^2 \ge 0 \end{cases}$$

By induction, ∀n≥0,

· 9n takes values in [0,1]

 $q_{n}(0) = 1$

 $\cdot q_{n} - q_{n+1} = \frac{1}{2} \left(q_{n-1}^{2} - q_{n}^{2} \right) = \frac{1}{2} \left(q_{n-1} - q_{n} \right) \left(q_{n-1} + q_{n} \right) > 0$

So (qn) is monotone decreasing by construction

Let q be the proise limit, which exists.

Observe \tilde{q} takes values in [0,1] and by construction \tilde{q} satisfies (XX). So $\tilde{q}=q$ by uniqueness.

As 9, 9 on [-1, 1], 9, -> 9 uniformly by Dini.

Step 2: If $A \subset C(X,R)$ is a closed (in ∞ -norm) subalgebra, then A is a lattice: i.e. $\forall a,b \in A$, $\max\{a,b\}$ and $\min\{a,b\} \in A$.

If: Suppose $a \in A$ and $a \neq 0$. Then $\frac{a}{\|a\|_{\infty}} : X \longrightarrow [-1,1]$. Let E > 0. by Step 1, \exists polynomial P on [-1,1] s.t. p(o) = 0 and

| Itl - P(+) | < & \def + \in [-1,1]. Hence

$$\left| \frac{|a(x)|}{\|a\|_{\infty}} - P\left(\frac{a(x)}{\|a\|_{\infty}}\right) \right| < \varepsilon \quad \forall x \in X.$$

$$\Rightarrow \left\| \frac{|a|}{\|a\|_{\infty}} - P\left(\frac{a}{\|a\|_{\infty}}\right) \right\|_{\infty} < \varepsilon.$$

Since
$$P(6) = 0$$
, $P\left(\frac{\alpha}{\|\alpha\|_{\infty}}\right) \in Span \left\{ \alpha^n \mid n \in \mathbb{N} \right\} \subset A$.

Since A is closed &
$$\varepsilon>0$$
 was arbitrary,
$$\frac{|a|}{\|a\|_{\infty}} \in A \quad \text{and} \quad |a| \in A.$$

Now if
$$a_1b \in A$$
, $\max\{a_1b\} = \frac{1}{2} \left(a+b + |a-b| \right)$
 $\min\{a_1b\} = \frac{1}{2} \left(a+b - |a-b| \right)$

Step3: Suppose $A \subset C(X, |R)$ is a real vector space R a lattice. if $f \in C(X, |R)$ can be agreex, mated at every $x \neq y \in X$ by some $a_{xy} \in A$, then $f \in \overline{A}^{\|\cdot\|_{\infty}}$.

Pf: Let
$$\varepsilon > 0$$
. For $x \neq y \in A$, fice $a_{xy} \in A$ sit.
$$|f(x) - a_{xy}(x)| < \varepsilon$$
,
$$|f(y) - a_{xy}(y)| < \varepsilon$$
.

Then xiy are both in

$$\mathcal{U}_{xy} := \{ \geq \epsilon x \mid f(z) < \alpha_{xy}(z) + \epsilon \}$$

Page 3

Fix $x \in X$. The sets $(\mathcal{U}_{xy})_{y \in X}$ cover X.

Since X opt, $X \subset \mathcal{U}_{xy}$. Set $a_X := \bigvee_{i=1}^{\infty} a_{xy_i} \in A$.

By construction, $f(z) < a_x(z) + \varepsilon$ for all $z \in X$.

Also, $a_X(z) < f(z) + \varepsilon$ $\forall z \in \bigcap_{i=1}^{\infty} V_{xy_i} \leftarrow \text{all this } W_X$.

Varying $x \in X$, $(W_X)_{X \in X}$ is an open cover. So $X \subset \bigcap_{j=1}^{\infty} W_{X_j}$.

Now $a := \bigcap_{i=1}^{\infty} a_{x_i}$ satisfies $\|f - a\|_{\infty} < \varepsilon$.

Step 4: Suppose A = C(XIR) is a subally which separates points.

O if A contains a nonvanishing f_n , $\overline{A} = C(X, IR)$

2 if wery at A has a zero, $\exists x \in X$ s.t. $\overline{A} = \{f \mid f(x_0) = 0\}$.

Pf Suppose $x \neq y$ in X. Since pt eval is an R-alg hom $A \rightarrow R$, $A_{xy} = \{(a(x), a(y)) \mid a \in A \} \subset \mathbb{R}^2 \text{ is a sub-algebra}.$

The only Subalgebras of 12 are:

 \mathbb{R}^2 , (0,0), $\mathbb{R} \times \{0\}$, $\{0\} \times \mathbb{R}$, $\Delta = \{(x,x) \mid x \in \mathbb{R}\}$.

Since A separates pts, $A_{xy} \neq (0,0)$ or Δ .

Claim: $A = \mathbb{R}^2 \ \forall \ x \neq y$ except for at most one possible $x_0 \in X$.

Case 1: $A_{XY} = \mathbb{R}^2$ $\forall x \neq u$. [This is the case for \mathbb{O}].

Page 4

Case 1: $A_{Xy} = \mathbb{R}^2$ $\forall \chi_{\neq y}$. [This is the case for \mathbb{O}]. $\forall f \in C(X,\mathbb{R}), \ \exists \alpha_{Xy} \in A \quad \text{sd.} \ f(\chi) = \alpha_{Xy}(x) \quad \text{and} \ f(y) = \alpha_{Xy}(y).$ by Step 2, \overline{A} is a lattice, and by Step 3, f can be unif approx by \overline{A} , so $f \in \overline{A}$.

Case 2: $\exists x \in X$ s.t. $A_{x,y} = \{0\} \times \mathbb{R}$. Then the argument in a se 1 apprices $\forall f \in C(X, \mathbb{R})$ s.t. $f(X_0) = 0$.

Step 5: $A \subset C(X,C)$ Sep pts & closed under complex onj.

Ef Apply Step 4 to $A_{sa} = \{a \in A \mid a = \bar{a}\}.$ Since A closed under complex conj, Rea, Ima $\in A$. So $A = A_{sa} \oplus iA_{sa}$ and $C(X,C) = C(X,R) \oplus iC(X,R)$.