

Map/Reduce Uncollapsed Gibbs Sampling for Bayesian Non Parametric Models

MELANIE F. PRADIER¹, PABLO G. MORENO¹, FRANCISCO J. R. RUIZ¹, ISABEL VALERA¹, HAROLD MOLINA-BULLA¹ AND FERNANDO PEREZ-CRUZ^{1,2}

1. University Carlos III in Madrid, Spain and 2. Bell Labs, Alcatel-Lucent, New Jersey, USA {melanie, pgmoreno, franrruiz, ivalera, hmolina, fernando}@tsc.uc3m.es

INTRODUCTION

Bayesian non-parametric (BNP) models are desirable tools for *big data* analysis, not only because of accuracy and flexibility, but because they can provide *interpretable* explanations of the data. Yet, inference is typically hard to scale.

Observations

- Two general trends: Variational Inference or MCMC Sampling
- Either exact or approximate approaches
- State-of-the-art methods = quite similar, often task-specific

This paper presents:

- A general framework for parallel MCMC inference in BNP models.
- Modular code in Spark/Scala, easily extensible to other likelihood functions.
- Particular implementations for the Dirichlet and Beta Processes.

GENERAL APPROACH

The joint distribution of the observations and latent variables is given by

$$p(\beta, \mathbf{x}, \mathbf{z} | \alpha) = p(\beta | \alpha) \prod_{n=1}^{N} p(x_n, z_n | \beta),$$
(1)

where $\mathbf{x} = \{x_1, \dots, x_N\}$ and $\mathbf{z} = \{z_1, \dots, z_N\}$.

According to De Finetti's theorem, if observations x_1, \ldots, x_N are exchangeable, there exists a **latent measure** that makes such observations conditionally independent.

- 1. Sample β from $p(\beta|\mathbf{z}, \mathbf{x}, \alpha)$.
- 2. Sample z_n from $p(z_n|x_n,\beta)$ for $n=1,\ldots,N$.

• At each iteration, propose T new clusters wassigned to each cluster are given by

- Samplers for both DP and BP process based on stick-breaking representation.
- At each iteration, propose T new clusters with parameters drawn from the prior. The weights assigned to each cluster are given by

$$\pi \sim \text{Dirichlet}\left(N_1, \dots, N_{K_+}, \underbrace{\frac{\gamma}{T}, \dots, \frac{\gamma}{T}}_{T \text{ times}}\right),$$
 (2)

INFERENCE FOR BETA PROCESS

INFERENCE FOR DIRICHLET PROCESS

1. Sample total mass for all the sticks

$$S = \sum_{k=1}^{\infty} \pi_k. \tag{3}$$

- 2. Distribute remaining probability mass among new sticks. We follow an approximate random procedure fulfilling two constraints:
 - sum of all sticks can never surpass S
 - new sticks must be smaller than "already active" sticks

ALGORITHM

Algorithm 1 Distributed parallel sampling.

- 1: Split the data into chunks.
- 2: Store the pieces in HDFS.
- 3: Initialize the task scheduler.
- 4: while it<maxIter do
- 5: Sample the shared variable β .
- Distribute to each node: chunk reference and β .
- 7: Sample the per-datum variables in each node and return sum of local sufficient statistics.
- 8: Apply reduce operator to join all the subresults.
- 9: Clean empty clusters/features.
- 10: end while

ARCHITECTURE Mesos Task Scheduler Zookeeper Node 0 Reduction Sample Z Mesos Slaves Node 1 Reduction Centralized Global Spark ___ Sample Z Global Data Variables Central Reduction Preprocess **Process** Spark Distributed RDD: FileNames Sufficient **Process Statistics** Node M-1 Reduction Sample Z **HDFS**

RESULTS FOR DIRICHLET PROCESS 1M dataset Synthetic data: Sequential Parallel Distributed (100K) -500 Hours 100K dataset Sequential Real data (tinyImages): Parallel Distributed (100K) Distributed (25K) 10 Hours

Algorithm	100K	1M	5M	50M
Sequential	0.1349	1.3963	3 -	_
Parallel	0.0123	0.139	7 0.8736	_
Distributed (100K)	0.1795	0.1512	2 0.2143	1.3429
Al	gorithm	N	100K	1M
	Sequentia	1	9.9169	-
	Parallel		0.6791	26.4195
D	istributed (10	00K)	10.7375	32.8588

CONCLUSIONS AND FUTURE WORKS

Contributions

- Powerful software to parallelize inference in BNP models.
- General framework and flexibility code.
- Parallel and distributed implementations for DP and BP.

Future Work

• Extensive empirical analysis of sampler properties

Distributed (25K)

3.1215

9.6388

- More efficient data-driven proposals
- Parallelization for collapsed Gibbs Sampling

FUNDING

• This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 316861