India

Regional Mathematical Olympiad

2001

- 1 Let BE and CF be the altitudes of an acute triangle ABC with E on AC and F on AB. Let O be the point of intersection of BE and CF. Take any line KL through O with K on AB and E on E and E on E and E and E respectively. Such that E is perpendicular to E and E and E and E is perpendicular to E. Prove that E is parallel to E in E and E and E is perpendicular to E in E and E is perpendicular to E in E and E in E in E in E and E in E
- $\boxed{2}$ Find all primes p and q such that $p^2 + 7pq + q^2$ is a perfect square.
- 3 Find the number of positive integers x such that

$$\left[\frac{x}{99}\right] = \left[\frac{x}{101}\right].$$

- 4 Consider an $n \times n$ array of numbers a_{ij} (standard notation). Suppose each row consists of the n numbers $1, 2, \ldots n$ in some order and $a_{ij} = a_{ji}$ for $i, j = 1, 2, \ldots n$. If n is odd, prove that the numbers $a_{11}, a_{22}, \ldots a_{nn}$ are $1, 2, 3, \ldots n$ in some order.
- [5] In a triangle ABC, D is a point on BC such that AD is the internal bisector of $\angle A$. Suppose $\angle B = 2\angle C$ and CD = AB. prove that $\angle A = 72^{\circ}$.
- $\boxed{6}$ If x, y, z are sides of a triangle, prove that

$$|x^{2}(y-z) + y^{2}(z-x) + z^{2}(x-y)| < xyz.$$

7 Prove that the product of the first 1000 positive even integers differs from the product of the first 1000 positive odd integers by a multiple of 2001.