ПРЕДПРИЯТИЕ

УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ КАК ПОДСИСТЕМА УПРАВЛЕНИЯ КАЧЕСТВОМ ПРОДУКЦИИ

ВЯЧЕСЛАВ БЕККЕР кандидат технических наук, профессор кафедры автоматизации технологических процессов Пермский государственный технический университет (Березниковский филиал)

618404, Пермский край, г. Березники, ул. Тельмана, 7 bekker@bf.pstu.ru

ключевые слова: управление, менеджмент качества, системный анализ, «сети Петри»

- В практике организации контроля за качеством продукции часто приходится решать задачи, связанные с управлением непрерывными подсистемами, параметры и структура которых подвержены внезапным скачкообразным изменениям
- Как правило, события, происходящие в дискретно-непрерывных технологических системах, осуществляются параллельно и синхронно во времени. Для отражения таких событий и управления ими представляется целесообразным использовать «сети Петри»
- Оперативность, свойственная представленной взаимосвязанной многоуровневой системе управления, особенно актуальна в динамичных рыночных условиях функционирования производства

Любая система менеджмента качества производимой продукции включает в качестве объекта управления описание технологического процесса производства продукта — «как есть» и моделирование этого процесса — «как должно быть». Степень достижения поставленных целей выступает основным посылом в выстраивании технологического процесса в состояние «как должно быть». Это достигается декомпозицией основных показателей на структуру производственной

сферы с последующей детализацией до уровня технологического процесса и при необходимости до отдельного процесса, протекающего в аппарате.

В практике организации контроля за качеством продукции часто приходится решать задачи, связанные с управлением непрерывными подсистемами, параметры и структура которых подвержены внезапным скачкообразным изменениям, а также системами, цели которых могут изменяться в процессе функционирования. Поэтому в общем

случае необходимо, ориентируясь на задачи управления, рассматривать дискретно-непрерывные процессы, состоящие из подпроцессов, которые функционируют как непрерывным, так и дискретным образом.

Функционирующие в динамичных условиях рыночных отношений дискретно-непрерывные технологические системы в первую очередь должны обладать максимальной гибкостью. Принято выделять следующие уровни и элементы гибкости технологического процесса.

Отдельные технологические и организационные операции. Гибкость на этом уровне характеризуется адаптируемостью к изменению значений режимных параметров. Такие изменения могут быть как непрерывными (описываемыми гладкими функциями), так и дискретными (описание которых содержит разрывные функции). Примером последних может служить прохождение системы через точку бифуркации, отключение отдельных аппаратов с целью проведения ремонтных операций и др.

Аппараты периодического действия. Здесь под гибкостью понимается возможность дискретного перевода аппарата из одного состояния в другое

Многостадийные технологические процессы. Гибкость этого уровня состоит в возможности изменения связей между отдельными стадиями.

Фиксированный набор технологических процессов. В этом случае гибкость заключается в возможностях замены процессов или изменения маршрутов технологических потоков, проходящих через систему.

Из приведенной классификации уровней и элементов гибкости следует, что структура и параметры гибких

технологических систем могут изменяться как непрерывным образом, так и скачкообразно (когда изменяется структура технологического процесса либо происходят резкие изменения в характере его функционирования). Это приводит к необходимости разработки моделей, которые могли бы отражать и дискретный, и непрерывный характер функционирования технологической системы, а также синтеза на их основе управляющих структур, которые позволили бы достигать целей управления оптимальным образом. Возможные подходы к разработке моделей гибких технологических производств представлены в работах [1, 2].

Сложность задач моделирования и управления такими производствами заключается в необходимости одновременного учета и непрерывных, и дискретных составляющих процессов. Поэтому возникает необходимость в такой декомпозиции задач управления по уровням, с использованием которой решение каждой из подзадач можно было бы получить с помощью имеющихся математических и вычислительных средств. В связи с этим рассмотрим следующую трехуровневую иерархию задач управления.

На нижнем уровне осуществляется регулирование непрерывных процессов на основе оптимизации локальных критериев f::

 $f_i(y_i, u_i, T), i = 1,..., P,$

 $\Gamma \Delta e \ V_{:} -$ выходы подсистем;

 u_{i} – управляющее воздействие на подсистему;

T — период оптимизации;

P – количество подсистем.

При этом структура системы постоянна и ее свойства не претерпевают внезапных скачкообразных изменений [3].

На среднем уровне обеспечивается управление процессом в условиях, когда его необходимо оптимизировать в стационарном режиме (по какому-либо экономическому критерию). При этом допускается, что изменение структуры системы описывается с помощью переключательной модели.

На верхнем уровне системы управления вырабатываются решения в условиях неопределенности или изменения целей функционирования технологических систем. Решения задач управления на этом уровне предлагается осуществлять на основе сетевой модели типа сети Петри.

Рассмотрим дискретно-непрерывный технологический процесс Π , содержащий в качестве непрерывных элементов взаимосвязанные процессы диффузионного и тепломассообменного типа Π_i (i = 1,...,L), описываемые обобщенной системой нелинейных дифференциальных уравнений в частных производных относительно непрерывных функций состояния $x_i(t, z)$, зависящих от временной $t \in [0, t_{i}]$, пространственных $z = (z_{1}, z_{2}, z_{3})$..., z_{r}) координат, а также функций распределенного управления $U_{i}(t, z)$ *i* = 1, ..., k.

Переменные состояния $x_i(t, z)$ и управления $U_i(t, z)$ (i = 1, ..., k) могут обозначать различные физические величины, например концентрацию химического компонента, энтальпию, температуру, давление, энергию турбулентности, расход вещества и др., или отклонения этих величин от соответствующих стационарных значений. Обобщенная модель может быть представлена в стандартной векторноматричной форме пространства состояний с помощью конечно-разностной аппроксимации по пространственным координатам:

$$\frac{d}{dt}x_i(t) = A \cdot x_i(t) + B \cdot U_i(t) + B \cdot W_i(t); (1)$$

$$Y_i(t) = D \cdot x_i(t) + G \cdot V_i(t)$$

где $x_i(t)$, $Y_i(t)$ и $V_i(t)$ – векторы состояния управляющих воздействий, выходных величин, возмущений и шумов измерений i-й подсистемы соответственно:

 $U_{i}(t)$ — независимые входы i-й подсистемы:

 $W_i(t)$ – входы i-й подсистемы, которые являются выходами других подсистем, связанных с данной подсистемой (координационные переменные);

A, B — матрицы коэффициентов модели подсистемы;

D, G – матрицы коэффициентов измерительной системы.

При этом: $x_i(0) = x_0;$ $t \in [0, t_k];$ i = 1, ..., L.

Для отражения связей в системе, а также с целью представления структурных изменений в дискретно-непрерывных технологических системах, не связанных с изменением целевой функции, введем переключательную модель, имеющую вид задачи смешанноцелочисленного программирования:

$$\frac{d}{dt}W(t) = A_{n}W(t) + B_{n}H(t);$$

$$W(0) = W_{0},$$
(2)

где $W(t) = \left[W_1^{\mathsf{T}}(t), W_2^{\mathsf{T}}(t), ... W_L^{\mathsf{T}}(t)\right]$ – расширенный (на подключаемые подсистемы) вектор координационных переменных;

H(t) – вектор управления структурой дискретно-непрерывной технологической системы, его компоненты могут принимать значение 0 или 1;

 $A_{n'}$ B_{n} – матрицы коэффициентов переключательной модели.

Модель (1)-(2) необходимо дополнить ограничениями, накладываемы-

ми на параметры технологического процесса:

$$E_{H}x_{i}(t)+F_{H}U_{i}(t)+E_{n}W_{i}(t)+F_{n}H_{i}(t)\leq d_{i},$$
 $i=1,...,L,$ (3) где $x(t)=\left[x_{1}^{T}(t),x_{2}^{T}(t),...,x_{L}^{T}(t)\right],U(t)=$ $=\left[U_{1}^{T}(t),U_{2}^{T}(t),...,U_{L}^{T}(t)\right]$ – расширенные векторы состояния и управления дискретно-непрерывной технологической системы;

 $W_i(t)$, $H_i(t)$ соответствуют (2); $E_{H'}$, $F_{H'}$, $E_{H'}$, $F_{H'}$, F_{H'

Соотношения (1)-(3) можно интерпретировать как общую математическую модель дискретно-непрерывной технологической системы. При этом (1) описывает поведение непрерывных ее подсистем, (2) отражает дискретный характер изменения структуры и дискретно-непрерывный характер изменения координационных переменных технологической системы, а (3) определяет ограничения типа неравенств, накладываемых на фазовые координаты и переменные управления технологической системой.

Рассмотрим управление трехуровневой дискретно-непрерывной технологической системой. Нижним уровнем управления является уровень дискретного регулирования, на котором выполняются функции стабилизации и/или изменения режимов работы отдельных аппаратов при помощи микропроцессорных контроллеров на основе локальных критериев управления каждым из подпроцессов $\Pi_i j = 1, ..., L$ с учетом заданных ограничений. В качестве локальных критериев управления могут выступать быстродействие агрегатов, энергетические затраты, величина перерегулирования и др. В общем случае указанный класс критериев управления можно представить в виде

$$G_{j}(m) = \operatorname{Ext} f_{j} \left(Y_{j}(m), U_{j}(m), m \right),$$

$$i = 1, \dots, L,$$
(4)

где $Y_{j}(m)$ – выходные переменные; $U_{j}(m)$ – переменные управления; m – дискретное время.

Методы синтеза дискретных регуляторов нижнего уровня, реализующих замкнутое управление вида:

$$U_i(m) = -K_i Y_i(m), i = 1, ..., L$$
 (5)

достаточно полно представлены в литературе [1].

Проанализируем более подробно средний и верхний уровни системы управления. На среднем уровне осуществляется координация работы систем локального управления нижнего уровня с целью оптимизации общего критерия качества (как правило, экономического характера) для всего технологического процесса $\Pi = (\Pi_1, \Pi_2, ..., \Pi)$, i = 1, ..., L.

Задача координации процессов, протекающих во взаимосвязанных подсистемах, описываемых уравнениями (1)-(5), заключается в определении набора переменных управления U_{ij} с помощью которых оптимизируется работа всего процесса, и координирующих переменных $W_{i'}$ согласовывающих локальные подсистемы нижнего уровня с целью получения наилучшего (в определенном смысле) показателя функционирования процесса П. Для дискретно-непрерывных технологических систем уровня цеха основным критерием оптимизации является себестоимость выпускаемой продукции, а задачей оптимизации - ее минимизация. При расчете этой величины используются внутренние цены и расходные коэффициенты на сырье и энергию. Внутренние цены определяются из уравнения:

$$\sum_{l} g_{l} \mathcal{L}_{l} + \sum_{m} g_{m} C \delta_{m} - \sum_{k} g_{k} C \delta_{k} = g \cdot C \delta_{r}$$
 (6)

где $g_{l'}$ $g_{m'}$ $g_{k'}$ g — расходы l-го потока сырья, m-го потока энергии, k-го рециклового потока и расход продукта соответственно;

 U_{I} – цена I-го сырьевого потока;

 CG_{m} , CG_{k} , CG – себестоимости m-го потока энергии, k-го рециклового потока и себестоимость продукта.

Целевая функция этого уровня имеет, как правило, линейный характер. В общем случае ее можно представить следующим образом:

$$G = Ext F_{AVH}(Y, U, U, C6), \tag{7}$$

где $F_{_{\Lambda UH}}$ – линейная функция своих аргументов;

Y – вектор выходных переменных подсистем;

U – вектор переменных управления; U – вектор цен на сырье и энергию;

 $H_{i}(t)Cб$ – себестоимость продукта.

Ограничения, накладываемые на технологические параметры и показатели качества, описываются неравенствами вида (3). При решении задач управления дискретно-непрерывными технологическими системами на уровне цеха оказывается, что структурные изменения, происходящие в дискретно-непрерывных технологических системах, могут быть двух типов.

К первому типу можно отнести задачи управления структурой, которые описываются уравнениями изменения переключательной функции H(t) (2); при этом вид и параметры целевой функции (7) не изменяются. Такие переключения вызываются включением или отключением резервных агрегатов и не связаны с изменением характера технологического процесса.

Ко второму типу относятся структурные изменения, которые влияют на

форму или параметры целевой функции и моделей подсистем дискретнонепрерывных технологических систем. Примерами подобных изменений структуры являются переключения режимов работы агрегатов (например, переключение реактора с режима загрузки на режим промывки), действия в аварийных ситуациях, пуск, останов дискретно-непрерывных технологических систем и т.д.

В соответствии с этим выделим два уровня (средний и верхний) для решения задачи управления структурой.

Задачу оптимизации и координации, решаемую на среднем уровне системы управления, сформулируем следующим образом: для многосвязного дискретно-непрерывного технологического процесса, описываемого уравнениями (1)-(2), необходимо найти такие управляющие $U_i(t)$, координационные $W_i(t)$ и переключательную $H_i(t)$ функции, которые минимизировали бы критерий качества (7) с учетом ограничений (3).

Представим сформулированную задачу на период времени *М* (1≤*m*≤*M*) в виде задачи линейного программирования смешанно-целочисленного типа: целевая функция и задача оптимизации:

$$\min G_{M} = \sum_{m=1}^{M} \left[a_{H}^{T} x (m+1) + a_{\Pi}^{T} W (m) + b_{H}^{T} U (m) + b_{\Pi}^{T} H (m) \right]$$
(8)

с ограничениями

$$x(m+1) = A_{H}x(m) + B_{H}U(m) + B_{\Pi}W(m);$$
 (9)
 $W(m+1) = A_{\Pi}W(m) + B_{\Pi}H(m);$
 $E_{H}x(m) + F_{H}U(m) + E_{\Pi}W(m) + F_{\Pi}H(m) \le d;$
 $x(0) = x_{o}; U(0) = U_{o}; W(0) = W_{o}; H(0) = H_{o};$
 $x_{i}(m+1) > 0, i = 1, ..., h; U_{j}(m) \ge 0, j = 1,$
..., $m;$
 $0 \le W_{i}(m) \le 1, i = 1, ..., v; H_{i}(m) = 0v1;$
 $i = 1, ..., \mu,$

где
$$x(m) = [x_1^T(m), x_2^T(m), ..., x_L^T(m)];$$

$$W(m) = [W_1^T(m), W_2^T(m), ..., W_L^T(m)];$$

$$U(m) = [U_1^T(m), U_2^T(m), ..., U_m^T(m)];$$

$$H(m) = [H_1^T(m), H_2^T(m), ..., H_{\mu}^T(m)].$$

С целью упрощения задачи (8), (3) перепишем ее с учетом того, что W(m)являются линейными комбинациями выходов соответствующих подсистем. Затем, решая полученную задачу линейного программирования, определим оптимальный план относительно величин $U_i(m)$, $W_i(m)$, $H_i(m)$. Однако при решении задач управления дискретно-непрерывными технологическими системами на уровне цеха (нижний уровень) возникают задачи управления структурой, при которых происходит изменение целевой функции всей системы и/или целевых функций и моделей отдельных подсистем. Отразить эти ситуации на среднем уровне управления затруднительно. Задачи управления в этом случае носят дискретный причинно-следственный характер [4].

Как правило, события, происходящие в дискретно-непрерывных техно-логических системах, осуществляются параллельно и асинхронно во времени, поэтому для их отражения на концептуальном уровне дискретно-непрерывных технологических систем представляется наиболее целесообразным использование «сетей Петри» [5].

Координирующими воздействиями верхнего уровня являются изменения целевых функций среднего уровня. В режиме пуска, остановки или при наступлении аварийных ситуаций в работу должны включаться сети Петри, моделирующие работу этих режимов, оказывая непосредственное воздействие на нижний уровень управления.

Приведем математическую формулировку задачи управления дискретно-непрерывными технологическими системами, решаемую на верхнем уровне системы, в терминах теории сетей Петри. Введем содержательную интерпретацию формализма сетей Петри для рассматриваемых дискретно-непрерывных технологических систем. Под сетью Петри будем понимать систему:

 $S = (P, T, E, \mu_0),$ (10) где $P = \{P_1, P_2, \dots P_n\}$ – конечное множество позиций;

 $T = \{t_1, t_2, ... t_m\}$ – конечное множество переходов;

 $E \subset P \times T \cup T \times P$ — отношение инцидентности на множестве переходов;

 μ_0 : $P \to N$ – начальная маркировка; $N = \{0, 1, 2, ...\}$ – множество натуральных чисел.

Пусть множество P является объединением множеств:

$$P \in P^{\kappa} \cup P^{\kappa} \cup P^{A} \cup P^{\mu}$$

где P^{κ} – множество позиций-концептуализаций;

 P^{n} – множество позиций-переключателей структуры;

 P^{A} — множество позиций-алгорит-мов;

 P^{u} – множество позиций информационной системы.

Причем пересечение $P^u \cap P^k \cap P^n \cap P^A$ не обязательно равно пустому множеству. Множество переходов Т служит для координации управлений в автоматной модели. Сеть Петри считается безопасной, если в каждой позиции возможно нахождение не более, чем одной фишки, т.е. $\mu: P \to \{0,1\}$. Для безопасности сети Петри необходимо и достаточно, чтобы в каждую позицию входило не больше одной дуги инцидентности. Этот тип сетей Петри будем использовать для построения алгоритмической модели дис-

кретно-непрерывных технологических систем, что не будет существенно ограничивать общность получаемых результатов.

Представим отношение инцидентности *E* в виде двух матриц:

$$D^{-}[\bar{j},i] = \begin{cases} 1, \text{ если из позиции } P_{j}$$
 дуга инцидентности ведет к переходу t_{j} 0, в противном случае

 $D^+igl[\overline{j}$, $iigr] = egin{cases} 1$, если из перехода t_i дуга инцидентности ведет в позицию P_i 0, в противном случае

Пусть e[j] – m-мерный вектор, содержащий нули везде, кроме j-й компоненты. Тогда переход при маркировке μ , разрешен, если $\mu \ge e[j] \cdot D^-$.

Обозначим через $\delta \ge e \left[\mu, \, t_j \right]$ результат запуска t_j при маркировке μ .

$$e[\mu, t_j] = \mu - e[j]D^- + e[f]D^+ = \mu - e[f](D^+ - D^-) = \mu - e[j]D,$$
(11)

где $D = -D^- + D^+$ для последовательности запусков переходов

$$\sigma = \{t_{j_1}, t_{j_2}, \dots t_{j_k}\};$$
 $\delta(\mu, \sigma) = \delta(\mu, t_{j_1}, t_{j_2}, \dots, t_{j_k}) = \mu + (e[j_1] + e[j_2] + \dots + e[j_k]) \cdot D = \mu + f(\sigma) \cdot D,$ (12) ГДЕ $f(\sigma) = e[j_1] + e[j_2] + \dots + e[j_k] - вектор запуска последовательности переходов. Задача управления для сети Петри заключается в нахождении последовательности запусков $f(\sigma)$ таких, что$

$$\mu_{2} = \mu_{1} + f(\sigma) \cdot D.$$
 (13)

При этом $f(\sigma)$ должно существовать. Достаточные условия существования $f(\sigma)$ можно найти исходя из конкретной сети Петри.

Таким образом, представленная иерархическая структура задач управления представляет собой конкретиза-

цию общего подхода для класса дискретно-непрерывных технологических систем.

Особенность данной системы введение переключательной модели системы (2) в состав задачи оптимизации среднего уровня, а также постановка задачи управления для верхнего уровня иерархии в терминах сетей Петри с выделением координирующих воздействий для каждого из уровней. Данный подход может применяться для декомпозиции задач управления широким классом дискретно-непрерывных объектов, распространенных в химической, металлургической и других отраслях Оперативность, промышленности. свойственная такой взаимосвязанной многоуровневой системе управления, особенно актуальна в динамичных рыночных условиях функционирования производства.

ЛИТЕРАТУРА

- 1. Дворецкий С.И., Егоров А.Ф., Дворецкий Д.С. Компьютерное моделирование и оптимизация технологических процессов и оборудования: Учеб. пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2003.
- 2. Кафаров В.В., Макаров В.В. Гибкие автоматизированные производственные системы в химической промышленности. М.: Химия. 1990.
- 3. Дорф Р., Бишоп Р. Современные системы управления. М.: Лаборатория базовых знаний, 2004.
- 4. Кирин Ю.П., Беккер В.Ф., Затонский А.В. Совместное проектирование технологии и системы управления вакуумной сепарацией губчатого титана. Пермь: Березниковский филиал ПГТУ, 2008.
- 5. *Smith E.* Principles of High-Level Net Theory. Lectures on Petri Nets: Advances in Petri Nets Lecture Notes in Computer Science. Vol. 1491. Springer-Verlag, 1998.