Algorithms: Homework 2

Li-Yuan Wei

May 8, 2023

Problem 1

Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the following list of English words: NOD, HOG, SHY, BAN, BAR, JET, EBB, PAR, ASH, PET, TED, ROT, FIG.

0(initial)	digit 1	digit 2	digit 3
NOD	$\mathrm{EB}\mathbf{B}$	BAN	ASH
HOG	NOD	BAR	\mathbf{B} AN
SHY	$\mathrm{TE}\mathbf{D}$	PAR	\mathbf{B} AR
BAN	$\mathrm{HO}\mathbf{G}$	$\mathbf{E}\mathbf{B}\mathbf{B}$	\mathbf{E} BB
BAR	$\mathrm{FI}\mathbf{G}$	$T\mathbf{E}D$	$\mathbf{F}\mathrm{IG}$
JET	$\mathrm{AS}\mathbf{H}$	$J\mathbf{E}T$	\mathbf{H} OG
EBB	BAN	P E T	$\mathbf{J}\mathrm{ET}$
PAR	$BA\mathbf{R}$	SHY	NOD
ASH	PAR	FIG	$\mathbf{P}AR$
PET	JET	$N\mathbf{O}D$	\mathbf{P} ET
TED	$\operatorname{PE}\mathbf{T}$	$H\mathbf{O}G$	\mathbf{R} OT
ROT	ROT	$R\mathbf{O}T$	\mathbf{S} HY
FIG	SHY	ASH	$\mathbf{T}\mathrm{ED}$

Problem 2

Show how to sort n integers in the range 0 to $n^2 - 1$ in $\mathcal{O}(n)$ time.

Solution. Psuedocode for sorting n integers in $\mathcal{O}(n)$, X is an array storing all n integers:

SORT-N-LINEAR(X, n)

- if n == 11: returnfor i = 1 to n# change X[i] into base n4: TO-BASE-N(X[i]) 5: # each integer will have at most $\log_n n^2 = 2$ digits $/\!\!/$ radix sort uses counting sort to sort n at most 2 digits integers RADIX-SORT(X)8: for i = 1 to n9:
- # convert X[i] back to its original value because we sorted them with base n 10:
- CONVERT-BASE-N(X[i])

TO-BASE-N converts an integer into a base n number. E.g. 100 integers have the largest number of 9999, which can be converted to base 100, $9999 = 99 * 100^1 + 99 * 100^0$. Originally, radix sort will sort 4 digits for 9999. After converting its base to n, radix sort will need to sort **2 digits** 99_{100} and 99_{100} . Another example that the integer 400 will be converted to 4_{100} . The **digit** here is not limit from 0 to 9.

Problem 3

Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array A=<.49, .30, .56, .74, .68, .50, .69, .37, .41, .72>

Figure 1: Insert data

Figure 2: Sort each bucket

Solution. To get sorted data, chain all the nodes in Figure 2 from bucket 0 to bucket 10: < .30, .37, .41, .49, .50, .56, .68, .69, .72, .74 >

Problem 4

Suppose that you have a "black-box" worst-case linear time median subroutine. Give a simple, linear-time algorithm that solves the selection problem for an arbitrary order statistic.

Solution. Psuedocode for finding the k-th smallest element in array X[1..n], and assume n > 0:

```
FIND-K-TH-SMALLEST(X, n, k)
     half = 0
     if n \% 2 == 1 /\!\!/ n is odd
 2:
        half = \lceil n/2 \rceil
 3:
      else // n is even
 4:
        half = n/2
 5:
     m = BLACK-BOX(X)
     if k == half // k-th smallest is median
 8:
      \# splits X into two arrays, Y contains elements less than m and Z contains elements greater than m
 9:
      Y, Z = SPLIT(X, m)
 10:
     if k < half
 11:
        return FIND-K-TH-SMALLEST(Y, half, k)
 12:
      else /\!\!/ k > half
 13:
        # Find k - half-th smallest for Z since it's half the size of X
 14:
        return FIND-K-TH-SMALLEST(Z, half, k - half)
 15:
```

 $T(n) = T(n/2) + \mathcal{O}(n) (\text{SPLIT})$. Apply master method $n^{\log_b a} = n^{\log_2 1} = n^0 = 1 < \mathcal{O}(n)$, may apply case 3. First, we find $\epsilon = 1$ where $f(n) = \Omega(n^{(\log_2 1) + \epsilon})$. Second, we find c = 1/2 where $af(n/b) = n/2 \le 1/2n = cf(n)$ is true. Thus, we can conclude that the running time of this algorithm is $\Theta(f(n)) = \Theta(n)$.

Problem 5

Let X[1..n] and Y[1..n] be two arrays, each containing n numbers already in sorted order. Give an $\mathcal{O}(\lg n)$ -time algorithm to find the median of all 2n elements in arrays X and Y.

Solution. Psuedocode for finding the median of arrays X[1..n] and Y[1..n], xi is X array's starting index and xj is X array's last index; yi is Y array's starting index and yj is Y array's last index:

```
\overline{\text{FIND-MEDIAN}(X,Y,xi,xj,yi,yj,n)}
  1:
      if n == 1
  2:
         // Both arrays have only one element, pick the smaller one as median
  3:
         return MIN(X[1], Y[1])
      xmid = X[(xi + xj)/2] // X's median
  4:
      ymid = Y[(yi + yj)/2] // Y's median
      if xmid < ymid
  6:
  7:
         // median must be greater than xmid and less than ymid
         return FIND-MEDIAN(X, Y, xmid + 1, xj, yi, ymid, n/2)
  8:
  9:
       else
         // median must be less than xmid and greater than ymid
 10:
         return FIND-MEDIAN(X, Y, xi, xmid, ymid + 1, yj, n/2)
 11:
T(n) = T(n/2) + \mathcal{O}(1)
Apply master method case 2 because n^{\log_b a} = n^{\log_2 1} = n^0 = 1 = f(n).
T(n) = \Theta(n^{\log_2 1} \lg n) = \Theta(\lg n).
```

Problem 6

Demonstrate the insertion of the keys 23, 38, 19, 40, 29, 43, 12, 27, 11 into a hash tale with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \pmod{9}$.

```
(1) insert 23 \to 23 \pmod{9} = 5

(2) insert 38 \to 38 \pmod{9} = 2

(3) insert 19 \to 19 \pmod{9} = 1

(4) insert 40 \to 40 \pmod{9} = 4

(5) insert 29 \to 29 \pmod{9} = 2, insert head

(6) insert 43 \to 43 \pmod{9} = 7

(7) insert 12 \to 12 \pmod{9} = 3

(8) insert 27 \to 27 \pmod{9} = 0

(9) insert 11 \to 11 \pmod{9} = 2, insert head
```


Figure 3: Hash table with chaining

Problem 7

Consider inserting the keys 10, 23, 31, 4, 12, 28, 17, 87, 58 into a hash table of length m=11 using open addressing with the auxiliary hash function $h'(k) = k \pmod{m}$. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$, and $c_2 = 3$, and using double hashing with $h_2(k) = 1 + (k \pmod{(m-1)}).$

	0	87
(1) insert $10 \to 10 \pmod{11} = 10$	1	23
(2) insert $23 \rightarrow 23 \pmod{11} = 1$	2	12
(3) insert $31 \to 31 \pmod{11} = 9$	3	58
$(4) insert 4 \rightarrow 4 \pmod{11} = 4$		- 00
(5) insert $12 \rightarrow 12 \pmod{11} = 1 \times \text{collision}$	4	4
insert 12 to slot 2 because slot 1 is occupied	5	x
(6) insert $28 \to 28 \pmod{11} = 6$	c	00
(7) insert $17 \rightarrow 17 \pmod{11} = 6 \times$	6	28
insert 17 to index 7 because slot 6 is occupied	7	17
(8) insert $87 \rightarrow 87 \pmod{11} = 10 \times$	8	x
insert 87 to index 0 because slot 10 is occupied		
(9) insert $58 \rightarrow 58 \pmod{11} = 3$	9	31
	10	10

Figure 4: linear probing

0 Х

1

2 87

3 17

4 4

6 28

9 31

23

12 5

10

```
resolve collision: h(k) + 1 * i + 3 * i^2 \pmod{11}
(1) insert 10 \to 10 \pmod{11} = 10
(2) insert 23 \to 23 \pmod{11} = 1
(3) insert 31 \to 31 \pmod{11} = 9
(4) insert 4 \rightarrow 4 \pmod{11} = 4
(5) insert 12 \rightarrow 12 \pmod{11} = 1 \times \text{collision}
(1+1+3*1*1) \pmod{11} = (1+1+3) \pmod{11} = 5
insert 12 to slot 5
______
(6) insert 28 \to 28 \pmod{11} = 6
(7) insert 17 \rightarrow 17 \pmod{11} = 6 \times
(6+1+3*1*1) \pmod{11} = (6+1+3) \pmod{11} = 10 \times 10
(6+2+3*2*2) \pmod{11} = (6+2+12) \pmod{11} = 9 \times 10^{-1}
(6+3+3*3*3) \pmod{11} = (6+3+27) \pmod{11} = 3
insert 17 to slot 3
(8) insert 87 \rightarrow 87 \pmod{11} = 10 \times
(10+1+3*1*1) \mod 11 = (-1+1+3) \mod 11 = 3 \times 1
(10+2+3*2*2) \mod 11 = (-1+2+12) \mod 11 = 2
                                                                              10
```

Figure 5: quadratic probing

insert 87 to slot 2

```
resolve collision: h_2(k) = 1 + k \pmod{10}
new_k = (h_1(k) + i * h_2(k)) \pmod{11}
(1) insert 10 \to 10 \pmod{11} = 10
(2) insert 23 \to 23 \pmod{11} = 1
(3) insert 31 \to 31 \pmod{11} = 9
(4) insert 4 \to 4 \pmod{11} = 4
                                                                           0
                                                                               \mathbf{X}
(5) insert 12 \rightarrow 12 \pmod{11} = 1 \times \text{collision}
                                                                              23
                                                                           1
h_2(12) = 1 + 12 \pmod{10} = 3
                                                                           2
                                                                              87
1 + 1 * 3 \pmod{11} = 4 \times
1 + 2 * 3 \pmod{11} = 7
                                                                              58
                                                                           3
insert 12 to slot 7
                                                                               4
                                                                           4
                                                                              17
                                                                           5
(6) insert 28 \to 28 \pmod{11} = 6
(7) insert 17 \rightarrow 17 \pmod{11} = 6 \times
                                                                           6
                                                                              28
h_2(17) = 1 + 17 \pmod{10} = 8
                                                                           7
                                                                              12
8 + 1 * 8 \pmod{11} = 5
                                                                           8
                                                                               Х
insert 17 to slot 5
______
                                                                              31
                                                                           9
(8) insert 87 \rightarrow 87 \pmod{11} = 10 \times
                                                                              10
                                                                          10
h_2(87) = 1 + 87 \pmod{10} = 8
8 + 1 * 8 \pmod{11} = 5 \times
```

Figure 6: double hashing

Problem 8

 $8 + 2 * 8 \pmod{11} = 2$ insert 87 to slot 2

Solve the following assembly-line problem:

(9) insert $58 \rightarrow 58 \pmod{11} = 3$

$$\begin{split} e_1&=1,e_2=1,x_1=7,x_2=3\\ a_{1,1}&=3,a_{1,2}=2,a_{1,3}=5,a_{1,4}=4,a_{1,5}=2\\ a_{2,1}&=4,a_{2,2}=2,a_{2,3}=4,a_{2,4}=6,a_{2,5}=4\\ t_{1,1}&=1,t_{1,2}=2,t_{1,3}=3,t_{1,4}=1\\ t_{2,1}&=2,t_{2,2}=3,t_{2,3}=1,t_{2,4}=2. \end{split}$$

1	2	3	4	Э	
5	7	11	17	20	23
					1 2 3 4 5 4 6 11 15 17 5 7 11 17 20

Figure 7: f table

Figure 8: 1 table

Solution. $f^* = 23, l^* = 2$. The best solution for this assembly line is to start from $a_{1,1}$, and goes through $a_{1,2}, a_{1,3}, a_{1,4}, t_{1,4}, a_{2,5}, x_2.$

Problem 9

Find an optimal parenthesization of a matrix-chain product whose sequence of dimension is <5, 7, 3, 2, 4, 5>. $A_1 = A_{5\times7}, A_2 = A_{7\times3}, A_3 = A_{3\times2}, A_4 = A_{2\times4}, A_5 = A_{4\times5}, p_0 = 5, p_1 = 7, p_2 = 3, p_3 = 2, p_4 = 4, p_5 = 5, p_6 = 7, p_7 = 7, p_8 = 7$

$$m[1,2] = 5 \cdot 7 \cdot 3 = 105 \ (k=1)$$

$$m[2,3] = 7 \cdot 3 \cdot 2 = 42 \ (k=2)$$

$$m[3,4] = 3 \cdot 2 \cdot 4 = 24 \ (k=3)$$

$$m[4,5] = 2 \cdot 4 \cdot 5 = 40 \ (k=4)$$

$$m[1,3] = \begin{cases} m[1,1] + m[2,3] + p_0 \cdot p_1 \cdot p_3 &= 0 + 42 + 5 \cdot 7 \cdot 2 = 112 \ (k = 1) \ \checkmark \\ m[1,2] + m[3,3] + p_0 \cdot p_2 \cdot p_3 &= 105 + 0 + 5 \cdot 3 \cdot 2 = 135 \end{cases}$$

$$m[2,4] = \begin{cases} m[2,2] + m[3,4] + p_1 \cdot p_2 \cdot p_4 &= 0 + 24 + 7 \cdot 3 \cdot 4 = 108 \\ m[2,3] + m[4,4] + p_1 \cdot p_3 \cdot p_4 &= 42 + 0 + 7 \cdot 2 \cdot 4 = 98 \ (k = 3) \ \checkmark \end{cases}$$

$$m[3,5] = \begin{cases} m[3,3] + m[4,5] + p_2 \cdot p_3 \cdot p_5 &= 0 + 40 + 3 \cdot 2 \cdot 5 = 70 \ (k = 3) \ \checkmark \end{cases}$$

$$m[3,4] + m[5,5] + p_2 \cdot p_4 \cdot p_5 &= 24 + 0 + 3 \cdot 4 \cdot 5 = 84 \end{cases}$$

$$m[1,4] = \begin{cases} m[1,1] + m[2,4] + p_0 \cdot p_1 \cdot p_4 &= 0 + 98 + 5 \cdot 7 \cdot 4 = 238 \\ m[1,2] + m[3,4] + p_0 \cdot p_2 \cdot p_4 &= 105 + 24 + 5 \cdot 3 \cdot 4 = 189 \\ m[1,3] + m[4,4] + p_0 \cdot p_3 \cdot p_4 &= 112 + 0 + 5 \cdot 2 \cdot 4 = 152 \ (k = 3) \checkmark \end{cases}$$

$$m[2,5] = \begin{cases} m[2,2] + m[3,5] + p_1 \cdot p_2 \cdot p_5 &= 0 + 70 + 7 \cdot 3 \cdot 5 = 175 \\ m[2,3] + m[4,5] + p_1 \cdot p_3 \cdot p_5 &= 42 + 40 + 7 \cdot 2 \cdot 5 = 152 \ (k = 3) \checkmark \end{cases}$$

$$m[1,5] = \begin{cases} m[1,1] + m[2,5] + p_0 \cdot p_1 \cdot p_5 &= 98 + 0 + 7 \cdot 4 \cdot 5 = 238 \end{cases}$$

$$m[1,3] + m[4,5] + p_0 \cdot p_2 \cdot p_5 &= 105 + 70 + 5 \cdot 3 \cdot 5 = 250 \\ m[1,3] + m[4,5] + p_0 \cdot p_3 \cdot p_5 &= 112 + 40 + 5 \cdot 2 \cdot 5 = 202 \ (k = 3) \checkmark \end{cases}$$

$$m[1,4] + m[5,5] + p_0 \cdot p_4 \cdot p_5 &= 152 + 0 + 5 \cdot 4 \cdot 5 = 252 \end{cases}$$

j\i	1	2	3	4	5
5	202	152	70	40	0
4	152	98	24	0	
3	112	42	0		
2	105	0		•	
1	0		•		

j\i	1	2	3	4
5	3	3	3	4
4	3	3	3	
3	1	2		-
2	1			

Figure 9: m table

Figure 10: s table

Solution. Positions of parenthesis: $((A_1(A_2A_3))(A_4A_5))$ or $(((5\times7)((7\times3)(3\times2)))((2\times4)(4\times5)))$

Problem 10

Determine an LCS of <1, 1, 0, 1, 0, 1> and <0, 0, 1, 1, 0, 1, 1>.

	i	0	1	2	3	4	5	6	7
j		y_j	0	0	1	1	0	1	1
0	x_i	0	0	0	0	0	0	0	0
1	1	0	↑ 0	\uparrow		1	\leftarrow 1	1	1
2	1	0	† 0	↑ 0	1		$\leftarrow 2$	2	2
3	0	0	1	1	← 1	\uparrow	3	← 3	← 3
4	1	0	† 1	\uparrow 1	2	× 2	\uparrow 3	4	4
5	0	0	1	2	\uparrow 2	\uparrow	3	$\left(\begin{array}{c} +4 \end{array} \right)$	$\stackrel{\uparrow}{4}$
6	1	0	† 1	\uparrow 2	3	3	† 3	4	5

Figure 11: c table for LCS

Solution. Thus, the longest common sequence is < 1, 1, 0, 1, 1>.