RUNN 2019

ACCESSPACE: une aide portable pour la navigation autonome des déficients visuels Marc-Aurèle RIVIERE¹, Simon GAY¹, Katerine ROMEO¹, Christèle LECOMTE¹, Edwige PISSALOUX¹, Elise FAUGLOIRE²

¹ LITIS (EA 4108), Université de Rouen-Normandie, France

² CesamS (EA 4260), Université de Rouen-Normandie, France

Contexte

Navigation autonome des DV

Représentation spatiale

Information à fournir ?

Quelle interface? DV: 1 700 000 Quel format / code ? Av.: 207 000

Quels capteurs? Localisation et Quels algorithmes? guidage Comment guider l'utilisateur ? DV: 26 350 000 Av.: 2 550 000

Ceinture

Notre dispositif

Substitution Sensorielle

Code tactile

Psychophysique

Localisation

Déterminer la positon de l'utilisateur

Caractériser la topographie de l'environnement

- 1. Indoor Atlas [3]:
 - IMU, Magnétique, WiFi, Pression
 - Faible précision, rapide
- 2. iLocalize [4]:
 - Vidéo , IMU, Pression
 - Bonne précision, intensif

ORB-SLAM 2:

- Reconstitution 3D
- Très précis et très lourd

Evaluation 9

Motion tracking

Encodage tactile

Raisonnement spatial

11 Références

[1] M.-A. Riviere, S. Gay, and E. Pissaloux, "TactiBelt: Integrating Spatial Cognition and Mobility Theories into the Design of a Novel Orientation and Mobility Assistive Device for the Blind," in Computers Helping People with Special Needs, vol. 10897, K. Miesenberger and G. Kouroupetroglou, Eds. Cham: Springer International Publishing, 2018, pp. 110-113.

[2] E. E. Pissaloux, R. Velazquez, and F. Maingreaud, "A New Framework for Cognitive Mobility of Visually Impaired Users in Using Tactile Device," IEEE Transactions on Human-Machine Systems, vol. 47, no. 6, pp. 1040–1051, Dec. 2017.

[3] Haverinen, J., & Kemppainen, A. (2009). Global indoor self-localization based on the ambient magnetic field. Robotics and Autonomous

Systems, 57(10), 1028–1035.

[4] Fusco, G., & Coughlan, J. M. (2018). Indoor Localization Using Computer Vision and Visual-Inertial Odometry. In K. Miesenberger & G. Kouroupetroglou (Eds.), Computers Helping People with Special Needs (pp. 86-93). Springer International Publishing.

Scannez-moi

Boitier de

Tactibelt

Parallèle Dynamique

Vibreur

Egocentré

Spatialisé

Localisation

10 On en parle

CCAH 2017

Lauréats de la recherche appliquée

<u>Acuité</u>

Guide Néret

Expérimentarium

Site web

Podcast RTL