2. test iz Uvoda v geometrijsko topologijo

29. 5. 2018

Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna ${f P}$ oziroma napačna ${f N}$.

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

- Naj bosta X in Y metrična prostora, $A\subset X$ zaprta množica in $f\colon A\to Y$ zvezna. Tedaj je zlepek $X\coprod_f Y$ normalen prostor. Vsako zvezno $f\colon (0,1]\to \mathbb{R}$ lahko razširimo do zvezne preslikave $\widetilde{f}\colon (0,\infty)\to \mathbb{R}$.
- Obstaja zvezna surjekcija $f: [0,1] \to (0,1)^2$. Če je X retrakt prostora Y in Y je retrakt prostora Z, je X retrakt prostora Z.
- Naj bosta $A, B \subset X$ retrakta prostora X in $A \cap B$ neprazna množica. Potem je $A \cup B$ retrakt prostora X.
- Naj bo $A=(-1,1)\subset X=\mathbb{R},\ Y=\mathbb{R}$ in $f\colon A\hookrightarrow Y$ inkluzija. Tedaj je kvocientna preslikava $q\colon X\coprod Y\to X\coprod_f Y$ odprta.
- Naj bo $f: \mathbb{B}^2 \to \mathbb{R}^3$ vložitev. Tedaj ima $\mathbb{R}^3 \setminus f(\mathbb{B}^2)$ natanko dve komponenti za povezanost.
- Prostor $\mathbb{R}^3 \setminus \mathring{\mathbb{B}}^3$ je absolutni ekstenzor za razred normalnih prostorov.
- Prostor $\{(x,y) \in [-1,1]^2 \mid xy=0\}$ ima lastnost negibne točke.
- Vsaka zvezna preslikava $f \colon [-1,1] \to (-1,1)$ ima negibno točko.

2. naloga (5 točk)

Naj bosta $X = Y = \mathbb{R}$.

- 1. Naj bo $A=[-1,1]\subset X$ in $c\colon A\to Y$ podana s predpisom c(x)=0. Poišči podprostor evklidskega prostora, ki je homeomorfen zlepku $X\coprod_c Y$.
- 2. Naj bo $A=\mathbb{Z}\subset X$ in $i\colon A\hookrightarrow Y$. Poišči podprostor evklidskega prostora, ki je homeomorfen zlepku $X\coprod_i Y$.
- 3. Naj bo $A=(-\infty,-1]\cup[1,\infty)\subset X$ in $f\colon A\to Y$ podana s predpisom f(x)=|x|. Poišči podprostor evklidskega prostora, ki je homeomorfen zlepku $X\coprod_f Y$.

3. naloga (5 točk + 2 bonus točki)

Naj bo $X = ([-1,1] \times \{-1,1\}) \cup (\{0\} \times [-1,1])$ in $Y = ((-\infty,1] \times \{1\}) \cup ([-1,\infty) \times \{-1\}) \cup (\{0\} \times [-1,1])$.

- 1. Ali ima kateri od prostorov X in Y lastnost negibne točke?
- 2. Poišči potreben in zadosten pogoj na $a \in \mathbb{R}$, da je $Y_a = Y \cup (\{a\} \times \mathbb{R})$ retrakt ravnine \mathbb{R}^2 ,
- 3. (bonus) Poišči potreben in zadosten pogoj na strogo naraščajoče zaporedje $\underline{a}=(a_n)_{n\in\mathbb{N}}$ realnih števil, da je $Z_{\underline{a}}=Y\cup(\cup_{n=1}^{\infty}\{a_n\}\times[-1,1])$ retrakt ravnine \mathbb{R}^2 .