Course: Applied Mathematics Midterm Exam 1 - Linear Algebra: 1h SOLUTION (SKETCHES FOR SOLUTION)

■ PROBLEM 1 (35 Points)

$$Let A = \left[\begin{array}{ccccc} 1 & 1 & 0 & 1 & 4 \\ 1 & 2 & 1 & 1 & 6 \\ 0 & 1 & 1 & 1 & 3 \\ 2 & 2 & 0 & 1 & 7 \end{array} \right]$$

- 1. What is the rank of A?
- 2. Find a basis for the column space of A.
- 3. Find a basis for the nullspace of A.
- 4. Find the set of solutions to $Ax = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$.

SOLUTION

The first thing to do is to find the rref of A by Gauss elimination. This gives

$$R = \begin{bmatrix} \boxed{1} & 0 & -1 & 0 & 1 \\ 0 & \boxed{1} & 1 & 0 & 2 \\ 0 & 0 & 0 & \boxed{1} & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. Whe have three pivots, so the rank of A is rank(A) = 3.
- 2. We know that a basis for the column space is given by the pivots columns of A. So, column 1, 2 and 4 of A form a basis of C(A):

$$\left\{ \begin{pmatrix} 1\\1\\0\\2 \end{pmatrix} \; ; \; \begin{pmatrix} 1\\2\\1\\2 \end{pmatrix} \; ; \; \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}$$

3. The dimension of the nullspace N(A) is equal to 5 - rank(A) = 2. So we have to find two independent vectors to form a basis for N(A).

We have to solve AX = 0, which is equivalent to solving RX = 0. If $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$, then from the

rref of A, we know that there are two free variables x_3 and x_5 (the column without pivot).

• Taking $x_3 = 1$ and $x_5 = 0$, and solving RX = 0 gives the first basis vector $X_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

• Taking $x_3 = 0$ and $x_5 = 1$, and solving RX = 0 gives the first basis vector $X_2 = \begin{pmatrix} -1 \\ -2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$.

So a basis for N(A) is

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} ; \begin{pmatrix} -1 \\ -2 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$

4. We know that the set of solutions to Ax = b, is given by $x = x_p + x_N$, where x_p is a particular solution to Ax = b and x_N is any vector in N(A).

Here, we see that the vector $b = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ is the first column of A. So, a solution to Ax = b is

$$x_p = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
. And the set of all solutions is

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ -2 \\ 0 \\ -1 \\ 1 \end{pmatrix} \; ; \; \alpha, \beta \in \mathbb{R} \right\}.$$

■ PROBLEM 2 (20 Points)

The coordinates of the three points P, Q and R are respectively (1, 1, 1), (2, 1, 0) and (3, 2, 3).

- 1. Show that the vectors \vec{PQ} and \vec{PR} are orthogonal.
- 2. Find a vector \vec{x} such that the three vectors $\{\vec{PQ}, \vec{PR}, \vec{x}\}\$ form an orthogonal basis of \mathbb{R}^3 .

SOLUTION

1.
$$\overrightarrow{PQ}.\overrightarrow{PR} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}. \begin{pmatrix} 2\\1\\2 \end{pmatrix} = 0.$$

So \overrightarrow{PQ} and \overrightarrow{PR} are orthogonal vectors.

2. We want to find \vec{x} such that $\vec{x}.\overrightarrow{PQ}=0$ and $\vec{x}.\overrightarrow{PR}=0$.

If $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, then we have to solve a system of two equations

$$\begin{cases} x & -z = 0\\ 2x + y + 2z = 0 \end{cases}$$

which gives $\left\{ \begin{array}{l} x=z \\ y=-4x \end{array} \right.$. So we can take $\vec{x}=\begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$

■ PROBLEM 3 (15 Points)

Use the Cauchy-Schwarz inequality

$$\langle \vec{u}, \vec{v} \rangle \le ||\vec{u}|| \, ||\vec{v}||$$

to prove the Triangle inequality

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

SOLUTION

$$\begin{aligned} \left\|u+v\right\|^2 &= \left\langle u+v,u+v\right\rangle \\ &= \left\langle u,u\right\rangle + 2\left\langle u,v\right\rangle + \left\langle v,v\right\rangle \\ &= \left\|u\right\|^2 + 2\left\langle u,v\right\rangle + \left\|v\right\|^2 \\ &\leq \left\|u\right\|^2 + 2\left\|u\right\| \left\|v\right\| + \left\|v\right\|^2 \text{ (by Cauchy-Schwarz inequality)} \\ &\leq \left(\left\|u\right\| + \left\|v\right\|\right)^2 \end{aligned}$$

By taking the square roots of this inequality, we get the Triangle-inequality:

$$||u+v|| \le ||u|| + ||v||$$

■ PROBLEM 4 (30 Points)

- 1. Let A be a 4×4 matrix whose eigenvalues are λ_1 , λ_2 , λ_3 and λ_4 .
 - a) Give a condition on the λ 's so that A is a non-singular matrix.
 - b) In the case where A is invertible, what is the determinant of A^{-1} ?
 - c) Whate is the trace of A + 2I?
- 2. Let P be a 3×3 projection matrix.
 - a) What are the eigenvalues of P?
 - b) Consider the sequence of vectors $U_{k+1} = PU_k$, with $U_0 = \begin{bmatrix} 9 \\ 9 \\ 0 \end{bmatrix}$. Given that $U_1 = \begin{bmatrix} 6 \\ 3 \\ 6 \end{bmatrix}$, what is U_{100} ?

SOLUTION

- 1. Properties of eigenvalues
 - A matrix A is nonsingular if and only if it has no zero eigenvalue. Otherwise, if λ = 0 is an eigenvalue, then Ax = 0 has some nonzero solutions and A is singular.
 So the condition is λ₁ ≠ 0,..., λ₄ ≠ 0.

• We know that the determinant is the product of the eigenvalues. We also know that the eigenvalues are A^{-1} are the inverse of the eigenvalues of A. Therefore,

$$det(A^{-1}) = \frac{1}{\lambda_1} \cdot \frac{1}{\lambda_2} \cdot \frac{1}{\lambda_3} \cdot \frac{1}{\lambda_4}$$

• The trace of a matrix is the sum of its eigenvalues. And the eigenvalues of A+2I are λ_1+2 , λ_2+2 , λ_3+2 and λ_4+2 . So, trace(A+2I)=trace(A)+8.

$$trace(A+2I) = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + 8$$

- 2. Properties of projection matrices
 - If P is a projection matrix, then P takes any vector of \mathbb{R}^3 to a subspace $S \subset \mathbb{R}^3$ (that is P is the projection onto S). Moreover, \mathbb{R}^3 can be decomposed as an orthogonal sum:

$$\mathbb{R}^3 = S \oplus S^{\perp}$$

Let $x \in \mathbb{R}^3$. x can be decomposed as $x = x_1 + x_2$, where $x_1 \in S$ and $x_2 \in S^{\perp}$.

So
$$Px = Px_1 + Px_2 = x_1$$
.

If $x \in S$, then Px = x. So $\lambda = 1$ is an eigenvalue of P.

If $x \in S^{\perp}$, then Px = 0. $\lambda = 0$ is an eigenvalue of P.

A projection matrix has only two eigenvalues: 0 and 1.

• We know that P is a projection matrix. So $P^2 = P$.

Therefore, $\forall k > 1, P^k = P$.

Since $U_{k+1} = PU_k$, we have $\forall k > 1, U_k = P^kU_0 = PU_0 = U_1$.

$$U_{100} = U_1 = \begin{pmatrix} 6 \\ 3 \\ 6 \end{pmatrix}$$