CS5401 FS2018 Assignment 1d

William Lorey wwlytc@mst.edu

Contents

Introduction	1
MOEA Overview	2
Impact of Initialization on MOEA Performance	2
Comparison of Parent Selection, Survival Strategy, and Survival Selection Strategies	3
BONUS #1: Impact of Increasing Number of Objectives on Number of Non- Domination and MOEA Performance	4
Appendix: Figures and Tables	4

Introduction

Assignment 1d involved implementing a Multi-Objective Evolutionary Algorithm (MOEA) to more effectively solve Light Up puzzles by balancing the fulfillment of three objectives:

- 1. maximize the number of cells lit up (represented in this implementation as a ratio of lit cells to the total number of white cells)
- 2. minimize the number of bulbs shining on each other
- 3. minimize the number of black cell adjacency constraint violations

For BONUS #1, a fourth objective was added, namely minimizing the number of bulbs placed on the board.

This report outlines this solution's particular implementation of a MOEA, the impact of initialization strategies on the MOEA's performance, a comparison between parent selection, survival strategy, and survival selection strategies on MOEA performance, as well as the impact of increasing the number of objectives on non-domination and MOEA performance (BONUS #1).

MOEA Overview

The MOEA implemented in this assignment is based on the NSGA-II algorithm. It begins, similar to a standard evolutionary algorithm, by creating an initial population using either uniform random or validity enforced plus uniform random initialization, the settings for which are specified in the algorithm configuration file. That population is evaluated and the subfitnesses are determined and assigned to each individual in the population.

The population is then evaluated on the basis of non-domination. A list of Pareto fronts is created from the initial population where all genotypes in a given front are not dominated by any other genotypes in that front while genotypes in higher level fronts are dominated by genotypes in lower level fronts. The 'best' genotypes, those in the best level of non-domination, are assigned to level number one. Subsequent levels increase in increments of one for other levels of non-domination.

The fitness of each genotype is then set to its level in the list of Pareto fronts, with individuals exhibiting a smaller fitness (level number) are more fit. A binary tournament selection is performed to choose breeding parents. Then offspring are created using an n-point crossover recombination (with n determined in the configuration file). Following that, mutation is performed, completing the child population.

For the standard NSGA-II configuration (exhibited in the deliverables configuration folder), the plus survival strategy is exhibited, combining the children and parent populations into one large population from which to choose the new population. Individuals are then selected for survival using a binary tournament selection and the process is repeated using the new population until the end of the experiment.

Impact of Initialization on MOEA Performance

The effect of Validity Enforced plus Uniform Random versus Uniform Random initialization was examined in this experiment for both the provided puzzle and randomly generated puzzles. One would assume that an initialization method utilizing Validity Enforced initialization would outperform a solely Uniform Random initialization. After performing statistical analysis on the experiment data, it was concluded that there is in fact no tangible difference between the initialization methods for the tested puzzles. Table 1 and Table 2 each display statistical analysis supporting this finding.

This statistical analysis for this section was performed on the average of all last best subfitnesses, giving thirty data points to compare. The analysis consisted of performing an f-test, which determined if variances could be treated as equal. In both cases, the f-test yielded that unequal variances should be assumed. Following the f-test, the two-tailed t-test was performed assuming unequal variances. This test yielded (in both cases) that neither initialization method was statistically better for the set of Light Up puzzles tested.

To visually interpret the data, plots of evaluations versus average local subfitness and evaluations versus local best subfitness were graphed for each of the subfitnesses collected in this experiment (not including the bonus): ratio of lit cells to total number of white cells, number of bulbs shining on each other, and number of black cell constraints not met. For concision, figures pertaining to only the provided puzzle are discussed in this section as the randomly generated puzzle results are quite similar. Figures 1, 2, 3, 7, 8, and 9 depict experiment plots for the provided puzzle while figures 4, 5, 6, 10, 11, and 12 depict experiment plots for the randomly generated puzzle.

Figure 1 and Figure 7 depict the lit cell ratio subfitness plots for the Validity Enforced plus Uniform Random and Uniform Random initialized experiments, respectively. In the uniform random case (Figure 7), both the average local list cell ratio and the local best lit cell ratio started lower than those of the validity enforced experiment. However, as the experiments progressed, both the average and best subfitnesses of each experiment reached appreciatively the same point without the best subfitness plateauing. This implies that letting the experiment run for longer would produce a more fit solution, with respect to the lit cell ratio. Note that the lit cell ratio subfitness, the metric was maximized.

Figure 2 and Figure 8 depict the evaluations versus subfitness plots for the bulb shine constraint violations. These plots behaved quite similarly to the lit cell ratio plots in that the Validity Enforced plus Uniform Random plot started with a higher average number of bulb shine constraints violated while the plain Uniform Random plot had a lower number of initial constraint violations. This is logical as enforcing validity has the potential to place more bulbs, which creates opportunity for more bulbs to shine on each other, further adding to the number of bulb shine violations. The local best for both plots stayed right at zero bulb constraint violations, implying that most, if not all, experiments always had at least one member of the population with no bulb shine constraints. Because this subfitness is to be minimized as part of the MOEA, it is peculiar that the average number of bulb constraints increases as the experiments continue. This implies that as more bulbs are placed on the board, the multi-objective nature of the algorithm allows for more and more bulbs to shine on each other, keeping those individuals with more bulb-shine in the population so long as the levels of non-domination dictate it.

The third subfitness, black cell constraint violations, was examined for both initialization schemes in Figure 3 and Figure 9. Before examining these plots, it was hypothesized that the Validity Enforced plus Uniform Random initialization method would be superior with respect to minimizing the black cell constraint violations when compared to the Uniform Random only initialization. While the statistical analysis was not granular enough to definitively prove this, the graphs provide anecdotal evidence that the Validity Enforced plus Uniform Random initialization method is in fact superior when it comes to the black cell constraint violations. This conclusion was drawn because the Validity Enforced plus Uniform Random method had lower average and local best black cell constraints violated at each point on the graph, across all experiments.

Comparison of Parent Selection, Survival Strategy, and Survival Selection Strategies

All combinations of the following MOEA configurations were compared, for both randomly generated puzzles and the provided puzzle, to determine which configuration combination was optimal.

- Parent Selection
 - Fitness Proportional
 - Binary Tournament
- Survival Selection
 - Fitness Proportional

Figure 1: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Lit Cell Ratio Subfitness, Validity Enforced plus Uniform Random Initialized, Provided Puzzle, Averaged Over All Runs

- Binary Tournament
- Survival Strategy
 - Plus
 - Comma

BONUS #1: Impact of Increasing Number of Objectives on Number of Non-Domination and MOEA Performance

Appendix: Figures and Tables

Figure 2: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Bulb Shine Constraint Subfitness, Validity Enforced plus Uniform Random Initialized, Provided Puzzle, Averaged Over All Runs

Figure 3: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Black Cell Constraint Subfitness, Validity Enforced plus Uniform Random Initialized, Provided Puzzle, Averaged Over All Runs

Figure 4: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Lit Cell Ratio Subfitness, Validity Enforced plus Uniform Random Initialized, Randomly Generated Puzzle, Averaged Over All Runs

Figure 5: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Bulb Shine Constraint Subfitness, Validity Enforced plus Uniform Random Initialized, Randomly Generated Puzzle, Averaged Over All Runs

Figure 6: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Black Cell Constraint Subfitness, Validity Enforced plus Uniform Random Initialized, Randomly Generated Puzzle, Averaged Over All Runs

Figure 7: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Lit Cell Ratio Subfitness, Uniform Random Initialized, Provided Puzzle, Averaged Over All Runs

Figure 8: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Bulb Shine Constraint Subfitness, Uniform Random Initialized, Provided Puzzle, Averaged Over All Runs

Figure 9: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Black Cell Constraint Subfitness, Uniform Random Initialized, Provided Puzzle, Averaged Over All Runs

Figure 10: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Lit Cell Ratio Subfitness, Uniform Random Initialized, Randomly Generated Puzzle, Averaged Over All Runs

Figure 11: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Bulb Shine Constraint Subfitness, Uniform Random Initialized, Randomly Generated Puzzle, Averaged Over All Runs

Figure 12: Evaluations versus Average Local Subfitness and Evaluations versus Local Best Subfitness for the Black Cell Constraint Subfitness, Uniform Random Initialized, Randomly Generated Puzzle, Averaged Over All Runs

Table 1: Statistical Analysis performed on the Uniform Random and Validity Enforced Uniform Random Initialized, Randomly Generated Puzzle, EA configurations

iorini realitaonii illiteranizea, realitaonii, aci	cracca r azzro, zrr co	511118 d1 d1 0115
	random_gen	random_gen_uniform_random_init
mean	1.10325284795678	1.0764116503308314
variance	0.04970344216568983	0.04355857958196582
standard deviation	0.22294268807406498	0.20870692269775296
observations	30	30
df	29	29
F	1.141071234248146	
F critical	0.5373999648406917	
Unequal variances assumed		
observations	30	
df	31	
t Stat	0.47331304656977363	
P two-tail	0.6377741699825987	
t Critical two-tail	2.0395	
Nether random_gen_uniform_random_init nor		
random_gen is statistically better		
	,	

Table 2: Statistical Analysis performed on the Uniform Random and Validity Enforced Uniform Random Initialized, Provided Puzzle, EA configurations

,	/	
	website_puzzle	website_puzzle_uniform_random_init
mean	0.8031737242867948	0.7959489651519909
variance	0.000603666878279215	0.00058947613524421
standard deviation	0.024569633254878164	0.02427912962287178
observations	30	30
df	29	29
F	1.02407348183676	
F critical	0.5373999648406917	
Unequal variances assumed		
observations	30	
df	31	
t Stat	1.1263571505364551	
P two-tail	0.26465388827990055	
t Critical two-tail	2.0395	
Nether website_puzzle_uniform_random_init nor		
website_puzzle is statistically better		