Interpolation

Piecewise Polynomial Interpolation

Sachin Shanbhag

Department of Scientific Computing Florida State University, Tallahassee, FL 32306.

References

- S. Chapra and R. Canale, Numerical Methods for Engineers
- A. Greenbaum and T. Chartier, Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms
- Carnahan and Wilkes, Applied Numerical Methods, University of Michigan, Class Notes, 1996.
- ▶ Burden and Faires, Numerical Analysis, 1993
- ► Pal, Numerical Analysis for Scientists and Engineers, 2007.
- ► M. Heath, Scientific Computing: An Introductory Survey
- wikipedia.org

Runge's Phenomenon

Consider "Runge's function" over the domain $x \in (-1, 1)$,

$$f(x) = \frac{1}{1 + 25x^2}$$

- ▶ Let us divide the domain into n intervals (n+1 points for interpolation)
- ► Compute the interpolating polynomial $p_n(x)$, for n = 5.

Runge's Phenomenon

► For *n*=10

► As the number of points increase, high order polynomials cause oscillations.

Piecewise Polynomials

- Divide domain into subintervals
- ► Fit a lower-order polynomial (3rd or 4th) through each interval
- Intervals may share end-points through which information about continuity and smoothness is communicated

► Simplest local interpolation is linear

Piecewise Linear

► Avoids Runge's phenomenon

- ► Each interval contains the domain between two points
- ► The piecewise curve is continuous, but not differentiable

Piecewise Linear

▶ In each interval $I_j = [x_j, x_{j+1}]$, a linear polynomial passing through (x_j, f_j) and (x_{j+1}, f_{j+1}) is constructed.

$$p_1^j(x) = f(x_j) + f[x_j, x_{j+1}](x - x_j)$$
$$= f_j + \frac{f_{j+1} - f_j}{x_{j+1} - x_j}(x - x_j)$$

Postmortem

- For n intervals $(n+1 \text{ points: } x_0, ..., x_n)$ we define f(x) as a collection of n piecewise order 1 (linear) polynomials $p_1^0(x), ..., p_1^{n-1}(x)$.
- ▶ Since $p_1^j(x) = a_0 + a_1 x$, we need to determine a_0 and a_1 (2 unknowns)
- Since we assert,

$$p_1^j(x_j) = f_j$$

 $p_1^j(x_{j+1}) = f_{j+1}$

we have 2 equations for each I_j .

Number of unknowns = Number of equations (2 per interval, or 2n in all)

Piecewise Cubic

- ► Suppose, you prefer something smoother than piecewise linear (you don't like the sharp edges)
- Piecewise cubic is a popular choice

$$p_3^j = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

- 4 unknowns per interval
- ▶ If we assert,

$$p_3^j(x_j) = f_j$$

 $p_3^j(x_{j+1}) = f_{j+1}$

we have 2 equations for each I_i . We need two more.

Several different possibilities

▶ If we know the derivatives $f'(x_j) = f'_j$ at all the interpolation points then we can additionally assert:

$$\frac{dp_3^j(x_j)}{dx} = f_j'$$

$$\frac{dp_3^j(x_{j+1})}{dx} = f_{j+1}'$$

which gives us the required 4 equations for each I_i .

- This is called piecewise cubic Hermite interpolation
- Now that we have figured out that we have a solvable problem, let us proceed to evaluate $p_3^j(x)$
- For notational simplicity, let me drop the subscript 3, and redefine $C_j(x) = p_3^j(x)$.

► Consider the following picture with

In principle, we can write down

$$C_j(x) = a + bx + cx^2 + dx^3,$$

and impose the four conditions:

$$C_{j}(x_{j}) = f_{j}$$

$$C_{j}(x_{j+1}) = f_{j+1}$$

$$C'_{j}(x_{j}) = f'_{j}$$

$$C'_{j}(x_{j+1}) = f'_{j+1},$$

to solve for a, b, c, and d.

A less messy method is appended at the end of the lecture notes.

▶ The complete expression is:

$$C_j(x) = -\frac{f_j'}{2h_j} \left((x - x_{j+1})^2 - h_j^2 \right) + \frac{f_{j+1}'}{2h_j} (x - x_j)^2 + \alpha (x - x_j)^2 \left(\frac{x - x_j}{3} - \frac{h_j}{2} \right) + f_j$$

with $h_j = x_{j+1} - x_j$ the size of the interval, and

$$\alpha = \frac{3}{h_j^2} \left(f_j' + f_{j+1}' \right) + \frac{6}{h_j^3} \left(f_j - f_{j+1} \right).$$

Note that I only need information at the end points of interval I_j to determine C_j(x)

Matlab's pchip

- ▶ Matlab's intrinsic pchip routine does not require derivatives, f_i', to be specified.
- ▶ They instead computed from the $\{x_i, f_i\}$ with the idea of mimicking the shape of the data
- Hence, a better label is perhaps shape-preserving piecewise cubic Hermite interpolating polynomial
- An intuitive way of understanding what it does is to consider the underlying piecewise linear interpolation
- ▶ If the slopes over the interval I_j and I_{j+1} , which share the point x_{j+1} have different signs then f'_{j+1} is set to zero.
- ightharpoonup When the slopes are of the same sign, then f_{j+1}' is set as the weighted harmonic mean.

Matlab's pchip

- ► As a result the interpolant never "overshoots" the data.
- ▶ The end points are treated in a slightly special way.
- Check out an interesting comparison between pchip and splines in the following blog post http://blogs.mathworks.com/cleve/2012/07/16/ splines-and-pchips/

- Local Piecewise Cubic Hermite
 - builds local interpolating function
 - piecewise cubic
 - $ightharpoonup C^1$ smoothness, across adjacent intervels
 - first derivatives are specified or inferred
- Cubic Splines
 - builds global interpolating function
 - piecewise cubic
 - globally C^2
 - derivatives are computed, not specified (may not match)

► Consider the following picture with

▶ For each of the *n* intervals define $0 \le j \le n-1$

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

- $ightharpoonup C^0$ continuity
 - ▶ Match the values: n+1 conditions

$$S_j(x_j) = f_j, \qquad 0 \le j \le n - 1$$

$$S_{n-1}(x_n) = f_n$$

► Adjacent cubics match values at shared points: n − 1 conditions

$$S_{j+1}(x_{j+1}) = S_j(x_{j+1}), \qquad 0 \le j \le n-2$$

▶ Total number of conditions from C^0 continuity is 2n

- $ightharpoonup C^1$ continuity
 - Adjacent cubics match derivatives at shared points: n-1 conditions

$$S'_{j+1}(x_{j+1}) = S'_j(x_{j+1}) \qquad 0 \le j \le n-2$$

- $ightharpoonup C^2$ continuity
 - lacktriangle Adjacent cubics match derivatives at shared points: n-1 conditions

$$S''_{j+1}(x_{j+1}) = S''_j(x_{j+1}) \qquad 0 \le j \le n-2$$

- ▶ Number of unknowns, four for each of S_0 to $S_{n-1} = 4n$
- Number of equations

$$2n + 2(n-1) = 4n - 2$$

- That is we have two unknowns more than we have equations
- Need two more boundary conditions at extremities
- a popular choice: "natural" boundary conditions

$$S_1''(x_1) = S_{n-1}''(x_n) = 0$$

Cubic Splines: Coefficients

Interpolant

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

Solution

$$a_j = f_j$$

ightharpoonup Triadiagonal system of equations in c_j

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} =$$

$$\frac{3}{h_i}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})$$

Cubic Splines: Coefficients

 \triangleright Can then get the d_i

$$d_j = \frac{c_{j+1} - c_j}{3h_i}$$

 \blacktriangleright and the b_i

$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1})$$

Consider an example with the follwing data

X	1	2	3	4	5	6	7	8	9	10
У	12	9	21	17	15	12	14	18	20	14

Let us look at the following interpolants to this data

- polynomial
- piecewise linear
- pchip (matlab)
- spline

Cubic Hermite versus Cubic Splines

- ▶ The local error over the interval $I_j = [x_j, x_{j+1}]$ can be shown to be
 - Cubic Hermite

$$\frac{1}{384}||f^{(4)}(\xi)||_{\infty}(x_{j+1}-x_j)^4, \qquad \xi \in I_j$$

Splines

$$\frac{5}{384}||f^{(4)}(\xi)||_{\infty}(x_{j+1}-x_j)^4, \qquad \xi \in I_j$$

- ► Cubic Hermite are "very local". Changing a single (x_i, f_i) causes change only in the two adjacent sub-intervals.
- ▶ Cubic Splines are "global". Changing a single (x_i, f_i) changes the tridiagonal system of equations. All the piecewise curves have to be recomputed.

Appendix: Piecewise Cubic Hermite Derivation

- ▶ Since $C_j(x)$ is order 3, its derivative $C'_j(x)$ is a quadratic (order 2) polynomial.
- ▶ Let us write $C'_i(x)$ as

$$C'_{j}(x) = f'_{j} \frac{x - x_{j+1}}{x_{j} - x_{j+1}} + f'_{j+1} \frac{x - x_{j}}{x_{j+1} - x_{j}} + \alpha(x - x_{j})(x - x_{j+1})$$

- Note that $C'_j(x)$ passes through (x_j, f'_j) , and (x_{j+1}, f'_{j+1})
- ▶ The additional parameter α will allow us to match function values. Note that this last piece is zero at both the end points of I_j
- ▶ Let us integrate the equation above

$$C_j(x) = \int C'_j(x)dx + \text{constant}$$

Appendix: Piecewise Cubic Hermite Derivation

▶ If $h_i = x_{i+1} - x_i$, this yields

$$\begin{split} C_{j}(x) &= -\frac{f_{j}'}{h_{j}} \int_{x_{j}}^{x} (t - x_{j+1}) dt + \frac{f_{j+1}'}{h_{j}} \int_{x_{j}}^{x} (t - x_{j}) dt \\ &+ \alpha \int_{x_{j}}^{x} (t - x_{j}) (t - x_{j+1}) dt + \text{constant} \end{split}$$

- Requiring $C_j(x_j) = f_j \implies \text{constant} = f_j$
- ▶ If we perform the integration, and assert the final condition $C_j(x_{j+1}) = f_{j+1}$ we can determine α

$$\alpha = \frac{3}{h_j^2} \left(f_j' + f_{j+1}' \right) + \frac{6}{h_j^3} \left(f_j - f_{j+1} \right)$$