

Network Layer: IP Addressing

Lecture 6 | CSE421 – Computer Networks

Department of Computer Science and Engineering School of Data & Science

Objectives

- Anatomy of IPv4 Address
 - Subnet/Prefix Mask
- Types of Address
 - Network
 - Host
 - Broadcast
- Specific Address
 - Unicast
 - Multicast
 - Broadcast
- Classful IP Addressing

Anatomy of IPv4

Anatomy of an IPv4 Address

- Each device on a network must be uniquely identified at the Network layer.
- For IPv4, a 32 bit source and destination address is contained in each packet.

eneral		I see you have assigned me
ou can get IP settings assigned.	automatically if your network supports	an IP address
nis capability. Otherwise, you nee	d to ask your network administrator for	11000000.1010
ne appropriate IP settings.		1000.00000001.
Obtain an IP address autom	atically	00000101
 Use the following IP address 	Ε	Now other
IP address:	192 . 168 . 1 . 5	hosts can find
Subnet mask:		me!
Default gateway:		
C Obtain DNS server address	automatically	
 Use the following DNS serve 	er addresses:	
Preferred DNS server:		
Alternate DNS server:		
	Advanced	-
	OK Cancel	-

Anatomy of an IPv4 Address

The computer using this IP address is on network 192.168.10.0.

Networks and Hosts

- To identify a path or "route" through a network, the address must be composed of two parts:
 - Network portion

Host portio

ı			1.2
ı	Network	Host	
1	1	1	1.1 2.1
1		2	1.1 / 2.1
ı	2	3	
1		2	1.3
ı	3	1	3.1
ı		2	3.2
ı	ni:		

Network Portion

- Network Portion:
 - Some portion of the high-order bits

 A network can be defined as a group of hosts that have identical bit patterns in the network address portion of their addresses

IP Address	192.	168.	1.	2
Binary IP Address	11000000	10101000	00000001	00000010

192.168.1.2	11000000	10101000	0000001	00000010
192.168.1.67	11000000	10101000	0000001	01000011
192.168.1.204	11000000	10101000	0000001	11001100

Network Portion

- Host Portion:
 - A variable number of least significant bits that are called the **host portion** of the address.
 - The number of bits used in this host portion determines the number of hosts that we

can	IP Address	192.	168.	1.	2
	Binary IP Address	11000000	10101000	00000001	00000010

192.168.1.2	11000000	10101000	0000001	00000010
192.168.1.67	11000000	10101000	0000001	01000011
192.168.1.204	11000000	10101000	0000001	11001100

Prefix Mask

- How do we or devices identify the network part or the host part?
- Answer: Using the "Prefix Mask".
- **192.168.10.2**/24
 - Means that the first 24 bits are the network portion.
 - The last 8 bits are the host portion.

Subnet Mask

- The Prefix Mask and the Subnet Mask are different ways of representing the same information.
- Examples:
 - Prefix Mask of /24 or a subnet mask of 255.255.25.0
 - Prefix Mask of /16 or a subnet mask of 255.255.0.0
 - Prefix Mask of /8 or a subnet mask of 255.0.0.0
- Conversion:
 - Subnet mask has the same format as an IP address. Hence, it has 32 bits divided into 8 bits (octets)
 - Prefix mask of /24 means, the first (MSB) 24 bits of subnet mask would be 1
 - Binary: 1111111111111111111111100000000

Decimal: 255 . 255 . 0

Exercise

- What's the subnet mask of the following?
 - IP Address: 10.24.36.2/4
 - **IP Address:** 10.24.36.2 / 12
 - IP Address: 10.24.36.2 / 16
 - IP Address: 10.24.36.2 / 23
- What's the prefix mask of the following?
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.224.0
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.255.192
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.255.252
 - IP Address: 10.24.36.2; Subnet Mask: 255.254.0.0
 - IP Address: 10.24.36.2; Subnet Mask: 255.255.240.0

ANDing the Binaries

- Inside data network devices, digital logic is applied for their interpretation of the addresses.
- AND is used in determining the network address.
 - o AND o = o
 - 1 AND 0 = 0
 - 1 AND 1 = 1

	Decimal	Binary
IP Address	135.15.2.1	10000111 00001111 00000010 00000001
Subnet Mask	255.255.0.0	1111111 1111111 00000000 00000000
Network Address	135.15.0.0	

But Why AND?

- Routers use the ANDing process to determine the route a packet will take.
- The network number of the destination address is used to find the network in the routing table.
- The router then determines the best path for the frame.

Types of Addresses

Types of address

BRAC UNIVERSITY

Inspiring Excellence

- Every network has
 - Network Address The first IP in the range
 - Broadcast Address The last IP in the range

Host Address

The Addresses

Network Address

- All hosts in the network will have the same network bits.
- Cannot be assigned to a device.
- Each host bit in this address will be o.

Broadcast Address

- Cannot be assigned to a device.
- Each host bit in this address will be 1.

Host Address

- The unique address assigned to each device on the network.
- For a network of 192.168.10.0/24
 - Addresses 192.168.10.1 through 192.168.10.254 are all host addresses

The Addresses at a Glance

• Say, you have a random IP address 192.168.10.193/24

Network Prefix

• The network prefix is not always /24.

letwork address	Host range	Broadcast address
172.16.4.0	172.16.4.1 - 172.16.4.254	172.16.4.255
172.16.4.0	172.16.4.1 - 172.16.4.126	172.16.4.127
172.16.4.0	172.16.4.1 - 172.16.4.62	172.16.4.63
172.16.4.0	172.16.4.1 - 172.16.4.30	172.16.4.31
	172.16.4.0 172.16.4.0 172.16.4.0	172.16.4.0

Special Addresses

Special Addresses

Unicast

A message addressed to one host

Broadcast

- A message addressed to all hosts on a network.
- Uses network's broadcast address or 255.255.255 locally

• Multicast

- A message addressed to a group of hosts.
- Uses an IP address starting with 224 239

Unicast

Broadcast Address

Limited Broadcast

- Directed Broadcast
 - For a host outside of the network to communicate with the hosts within the 172.16.4.0 /24 network, the destination address of the packet would be 172.16.4.255.

Multicast

BRAC UNIVERSITY

Inspiring Excellence

- Examples of Multicast Application
 - Video and audio broadcasts
 - Routing information exchange
 - Distribution of software
 - News feeds

Anatomy of IPv6

IPv6

- Initial motivation:
 - 32-bit address space soon to be completely allocated.

- Additional motivation:
 - Simpler header format helps speed processing/forwarding
 - header changes to facilitate QoS

Reasons for using IPv6

- Address Availability:
 - IPv4: 4 octets 32 bits
 - 2^32 or 4,294,467,295 IP Addresses.
 - IPv6: 16 octets 128 bits
 - 3.4 x 10^38 or

340,282,366,920,938,463,463,374,607,431,768,211,456 (340 undecillion) IP Addresses.

• Every atom of every person on Earth could be assigned 7 unique addresses with some to spare (assuming 7×10^{27} atoms per human $\times 6.5$ Billion).

IPv6 Address

- 128 bits
- given below is a 128 bit IPv6 address represented in binary format and divided into eight 16-bits blocks

• Each block is then converted into Hexadecimal and separated by ':' symbol

2001:0000:3238:DFE1:0063:0000:0000:FEFB

Called string notation

IPv6 Addressing

- IPv6 Representation Rule 1:
 - The leading zeros in any 16-bit segment do not have to be written. If any 16-bit segment has fewer than four hexadecimal digits, it is assumed that the missing digits are leading zeros.

```
      2031 : 0000 : 130F : 0000 : 0000 : 09C0 : 876A : 130B

      2031 : 0 : 130F : 0 : 0 : 0 : 9C0 : 876A : 130B

      8105 : 0000 : 0000 : 4B10 : 1000 : 0000 : 0000 : 0005

      8105 : 0 : 0 : 4B10 : 1000 : 0 : 0 : 0 : 0 : 5

      0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
```

IPv6 Addressing

- IPv6 Representation Rule 2:
 - Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented once with a double colon.

```
1080:0:0:0:8:800:200C:417A =

FF01:0:0:0:0:0:0:0:101 =

0:0:0:0:0:0:0:0:0:1 =
```

IPv6 Addressing

- IPv6 Representation Rule 2:
 - Any single, contiguous string of one or more 16-bit segments consisting of all zeroes can be represented once with a double colon.

Example: 1843:f01::22::fa

• Illegal because the length of the two all-zero strings is ambiguous.

1843:00f0:0000:0000:0022:0000:0000:00fa

1843:00f0:0000:0000:0000:0022:0000:00fa

1843:00f0:0000:0022:0000:0000:0000:00fa

Representing IPv6 addresses

- No more net masks
 - Represented by a "/prefixlen" appended to the end of an address where prefixlen indicates the number of bits in the address that make up the network address
 - Similar to classless address representation in IPv4
 - For example:

2001:db8:abcd:0012::0/64 specifies a subnet with a range of IP addresses from:

2001:db8:abcd:0012:0000:0000:0000:0000 to

2001:db8:abcd:0012:ffff:ffff:ffff.

Network part: 2001:db8:abcd:0012

Host part: ::0