

**Professor: Vinicius Martins** 

Aula 5 e 6

Assunto: Diodos e Circuitos Retificadores

Agradecimentos: Carlos Frederico e Eduardo Luz



## 1. Objetivos

Aprender sobre diodos e circuitos retificadores simples

## 2. Equipamento necessário

Software Qucs

# 3. Introdução

O fornecimento de energia elétrica é feito por meio de uma rede de distribuição em corrente alternada. Mas em muitas aplicações, como na eletrônica digital, os componentes utilizados exigem uma tensão contínua. A conversão CA-CC é feita por conversores chamados **retificadores**. O processo de retificação de um sinal elétrico de corrente alternada consiste em fazer com que um sinal CA (corrente alternada) seja transformado em um sinal CC (corrente contínua). A realização desse processo exige um dispositivo que permita a passagem da corrente elétrica em um sentido (corrente direta) e não permita a passagem da corrente elétrica no sentido contrário (corrente reversa). O dispositivo que apresenta este comportamento é o diodo.

#### 4. Parte experimental

#### 4.1 Diodo

Analise o circuito abaixo e faça um esboço da tensão no resistor. Discuta a forma de onda com os componentes do seu grupo.



Figura 01



**Professor: Vinicius Martins** 

Aula 5 e 6

Assunto: Diodos e Circuitos Retificadores

Agradecimentos: Carlos Frederico e Eduardo Luz



Simule circuito acima no **Qucs** e verifique a forma de onda da tensão no resistor com o osciloscópio. Considere que a fonte de tensão alternada deve ser de 5V (senoidal) e deve oscilar a uma frequência de 60Hz.

Veja se existem diferenças entre a forma de onda que você esperava (do esboço acima) e a visualizada no osciloscópio. Discuta as possíveis razões da diferença com seu grupo e registre para colocar no relatório. Considere que o diodo é o 1n4148. Procure o "data sheet" do diodo na Internet. Se não encontrar, acesse:

http://www.nxp.com/documents/data\_sheet/1N4148\_1N4448.pdf

a) Considere uma queda de tensão de 0,6V do D1. Qual é a corrente do circuito da Figura 01?

b) Veja agora o data sheet do diodo 1N41418. O que Vf varia?

c) Qual a forma de onda em R? O que R significa na prática?

## 4.2 Filtragem

Para obtermos uma tensão mais próxima de uma tensão contínua precisamos filtrar as oscilações. Para isto, podemos utilizar um capacitor, que vai funcionar como uma espécie de reservatório de energia. Nos semiciclos em que o diodo conduz o capacitor vai se carregar com a tensão da fonte. Nos intervalos entre os semiciclos o capacitor se encarrega de fornecer tensão à carga, no nosso caso o resistor, não deixando a tensão cair, ou deixando cair muito pouco. Adicione um capacitor em paralelo com o resistor, como a figura 2.



**Professor: Vinicius Martins** 

Aula 5 e 6

Assunto: Diodos e Circuitos Retificadores

Agradecimentos: Carlos Frederico e Eduardo Luz





Figura 2

Tente colocar alguns valores de capacitor, como 100nF e 220uF.

Observe as formas de onda dos sinais V1 e Vr1 no osciloscópio. Descreva o que aconteceu com o sinal Vr1, para os diversos valores de capacitor.

A reatância é capacitiva (XC) e o seu valor em ohms é dado por:

$$X_C = \frac{1}{2\pi f C}$$

Onde C é a capacitância dada em Farads, f é a frequência dada em Hertz,  $\pi$  é aproximadamente 3,14159

- a) Calcule a reatância capacitiva dos dois valores de capacitores para a frequência de 60Hz e de 2000Hz ou (2KHz).
- b) Observe as formas de onda dos sinais V1 e Vr1 no osciloscópio. Descreva o que aconteceu com o sinal Vr1, para os diversos valores de capacitor.
- c) Calcule a capacitância total colocando um capacitor de 220uF em paralelo com um de 100nF.
- d) Normalmente, em fontes, coloca-se dois capacitores, como esse em paralelo. Qual a função de ter um capacitor de 220uF em paralelo com um de 100nF?

# 4.3 Retificador de onda completa



Professor: Vinicius Martins

Aula 5 e 6

Assunto: Diodos e Circuitos Retificadores

Agradecimentos: Carlos Frederico e Eduardo Luz



O retificador de onda completa utiliza os dois ciclos da fonte de tensão. Monte primeiro no software Ques e depois Monte <u>no protoboard</u> o circuito retificador em ponte, como o da figura abaixo.



Figura 3

No semiciclo positivo, os diodos D2 e D3 estão polarizados no sentido direto e, portanto, conduzindo corrente. Já no semiciclo negativo, os diodos D1 e D4 estão polarizados no sentido direto. Analise e descreva as diferenças entre a tensão da fonte e a medida por Vr1.

- a) O que mudou?
- b) Quais as vantagens e desvantagens de se utilizar um retificador de onda completa?



Professor: Vinicius Martins

Aula 5 e 6

Assunto: Diodos e Circuitos Retificadores

Agradecimentos: Carlos Frederico e Eduardo Luz





Figura 4

- c) Tomando como base a figura 4. O que é ripple?
- d) Qual é o valor do ripple do circuito da figura 4?
- e) Colocando o capacitor de 220uf em paralelo com R1, qual é o ripple deste circuito?