模拟试题(一)

一.单项选择题(每/	小题 2 分,共 16 分)				
1. 设 A, B 为两个随机事件, 若 $P(AB) = 0$, 则下列命题中正确的是()					
(A) A 与 B 互不相					
(C) $P(A) = 0$ $\mathbb{E}P(A)$	(B) = 0 (D)	AB 未必是不可能			
2. 设每次试验失败的	概率为 p ,则在 3	欠独立重复试验中至	巨少成功一次		
的概率为()					
(A) $3(1-p)$ (1)	B) $(1-p)^3$ (C)	$1 - p^3$ (D) C	$C_3^1(1-p)p^2$		
3. 若函数 $y = f(x)$ 为	是一随机变量 X 的机	既率密度,则下面说	总法中一定成		
立的是()					
(A) $f(x)$ 非负	(B)	f(x)的值域为[0),1]		
(C) $f(x)$ 单调非降	(D)	$f(x)$ \pm ($-∞$,+ $∞$) 内连续		
4. 若随机变量 X 的	概率密度为 $f(x)$ =	$\frac{1}{2\sqrt{\pi}}e^{-\frac{(x+3)^2}{4}}$ ($-\infty$	$< x < +\infty$),		
则 $Y = () \sim N(0,1)$					
$(A) \frac{X+3}{\sqrt{2}}$	$(B) \frac{X+3}{2} \qquad (C)$	$\frac{X-3}{\sqrt{2}} \qquad (D)$	$\frac{X-3}{2}$		
5. 若随机变量 X, Y フ	不相关,则下列等式中	中不成立的是()		
(A) $\operatorname{cov}(X,Y) = 0$		D(X+Y)=DX			
(C) $DXY = DX \cdot I$	DY (D)	$EXY = EX \cdot EY$			
6. 设样本 X_1, X_2, \cdots ,均值及样本标准差,则(布总体 X ,又 \overline{X} , S	5分别为样本		
(A) $\overline{X} \sim N(0,1)$	(B)	$n\overline{X} \sim N(0,1)$			
(C) $\sum_{i=1}^{n} X_{i}^{2} \sim \chi^{2}(n)$	<i>i</i>) (D)	$\frac{\overline{X}}{S} \sim t(n-1)$			

7. 样本 X_1, X_2, \cdots, X_n $(n \ge 3)$ 取自总体 X,则下列估计量中,()不是总体期望 μ 的无偏估计量

	n		
(A)	$\sum X_i$	(B)	\overline{X}

(C) $0.1(6X_1 + 4X_2)$ (D) $X_1 + X_2 - X_3$

- 8. 在假设检验中, 记 H_0 为待检假设, 则犯第一类错误指的是()

 - (A) H_0 成立, 经检验接受 H_0 (B) H_0 成立, 经检验拒绝 H_0

 - (C) H_0 不成立, 经检验接受 H_0 (D) H_0 不成立, 经检验拒绝 H_0

二.填空题(每空2分,共14分)

- 1. 同时掷三个均匀的硬币, 出现三个正面的概率是, 恰好出现一 个正面的概率是 .
- 2. 设随机变量 X 服从一区间上的均匀分布,且 EX = 3, $DX = \frac{1}{3}$,则 X的概率密度为 .
- 3. 设随机变量 X 服从参数为 2 的指数分布, Y 服从参数为 4 的指数分布, $\mathbb{Q}[E(2X^2+3Y)=$.
- 4. 设随机变量 X 和 Y 的数学期望分别为 -2 和 2, 方差分别为 1 和 4, 而 相关系数为-0.5,则根据切比雪夫不等式,有 $P\{|X+Y| \ge 6\} \le$.
- 5. 假设随机变量 X 服从分布 t(n) , 则 $\frac{1}{\mathbf{v}^2}$ 服从分布_____(并写出其 参数).
- 6. 设 X_1, X_2, \dots, X_n (n > 1) 为来自总体X的一个样本,对总体方差 DX 进行估计时, 常用的无偏估计量是 .

三.(本题 6 分)

设
$$P(A) = 0.1$$
, $P(B \mid A) = 0.9$, $P(B \mid \overline{A}) = 0.2$, 求 $P(A \mid B)$.

四.(本题 8 分)

两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废 品的概率为 0.02.加工出来的零件放在一起,又知第一台加工的零件数是第 二台加工的零件数的 2 倍. 求:

- (1) 仟取一个零件是合格品的概率,
- (2) 若任取一个零件是废品,它为第二台车床加工的概率.

五.(本题 14 分)

袋中有 4 个球分别标有数字 1.2.2.3. 从袋中仟取一球后, 不放回再取一 球, 分别以X.Y 记第一次, 第二次取得球上标有的数字, 求:

- (1) (X,Y) 的联合分布; (2) X,Y 的边缘分布;
- (3) *X*, *Y* 是否独立;
- (4) E(XY).

六.(本题 12 分)

设随机变量 X 的密度函数为

$$f(x) = Ax^2 e^{-|x|} \qquad (-\infty < x < +\infty),$$

试求:

(1) A 的值; (2) $P(-1 < X \le 2)$; (3) $Y = X^2$ 的密度函数.

七.(本题 6 分)

某商店负责供应某地区 1000 人商品,某种产品在一段时间内每人需用一 件的概率为 0.6. 假定在这段时间,各人购买与否彼此无关,问商店应预备多 少件这种商品,才能以99.7%的概率保证不会脱销? (假定该商品在某一段 时间内每人最多买一件).

八.(本题 10 分)

- 一个罐内装有黑球和白球,黑球数与白球数之比为R.
- (1) 从罐内任取一球,取得黑球的个数 X 为总体,即 $X = \begin{cases} 1, & \text{黑球,} \\ 0, & \text{白球,} \end{cases}$ 求总体 X 的分布;
- (2) 从罐内有放回的抽取一个容量为n的样本 X_1, X_2, \dots, X_n , 其中有 m个白球, 求比数 R 的最大似然估计值.

九.(本题 14 分)

对两批同类电子元件的电阻进行测试, 各抽 6 件, 测得结果如下(单位: Ω):

A 批:0.140, 0.138, 0.143, 0.141, 0.144, 0.137;

B 批:0. 135, 0. 140, 0. 142, 0. 136, 0. 138, 0. 141.

已知元件电阻服从正态分布, 设 $\alpha = 0.05$, 问:

- (1) 两批电子元件的电阻的方差是否相等?
- (2) 两批电子元件的平均电阳是否有显著差异?

$$(t_{0.025}(10) = 2.2281, F_{0.025}(5,5) = 7.15)$$

模拟试题(二)

一.单项选择题(每小题 2 分,共	16分)
1. 设 A, B, C 表示 3 个事件, 则 A	\overline{BC} 表示()
, ,	(B) A , B , C 中不多于一个发生 (D) A , B , C 中恰有两个发生
2. 己知 $P(A) = P(B) = \frac{1}{3}, P(A \mid$	$(B) = \frac{1}{6}$,则 $P(\overline{A}\overline{B}) = ($).
(A) $\frac{7}{18}$ (B) $\frac{11}{18}$	(C) $\frac{1}{3}$ (D) $\frac{1}{4}$
3. 设两个相互独立的随机变量	X 与 Y 分别服从正态分布 $N(0,1)$ 和
N(1,1),则()	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(A) $P{X + Y \le 0} = \frac{1}{2}$	<i>L</i>
(C) $P\{X - Y \le 0\} = \frac{1}{2}$	(D) $P\{X - Y \le 1\} = \frac{1}{2}$
4. 设 <i>X</i> 与 <i>Y</i> 为 两 随 机 变 量	量,且 $DX = 4$, $DY = 1$, $ ho_{XY} = 0.6$,则
D(3X - 2Y) = ()	, , , , , , , , , , , , , , , , , , ,
(A) 40 (B) 34	(C) 25.6 (D) 17.6
	的泊松分布,则 X^2 的数学期望是()
(A) λ (B) $\frac{1}{\lambda}$	(C) λ^2 (D) $\lambda^2 + \lambda$
6. 设 X_1, X_2, \cdots, X_n 是来自于正为样本方差, 记	态总体 $N(\mu, \sigma^2)$ 的简单随机样本, \overline{X}
$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$	$S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$
$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2$	$S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$

则服从自由度为n-1的t分布的随机变量是()

(A)
$$t = \frac{\overline{X} - \mu}{S_1/\sqrt{n-1}}$$
 (B) $t = \frac{\overline{X} - \mu}{S_2/\sqrt{n-1}}$ (C) $t = \frac{\overline{X} - \mu}{S_3/\sqrt{n-1}}$ (D) $t = \frac{\overline{X} - \mu}{S_4/\sqrt{n-1}}$ 7. 设总体 X 均值 μ 与方差 σ^2 都存在,且均为未知参数,而 X_1, X_2, \cdots , X_n 是该总体的一个样本, \overline{X} 为样本方差,则总体方差 σ^2 的矩估计量是 () (A) \overline{X} (B) $\frac{1}{n}\sum_{i=1}^n(X_i - \mu)^2$ (C) $\frac{1}{n-1}\sum_{i=1}^n(X_i - \overline{X})^2$ (D) $\frac{1}{n}\sum_{i=1}^n(X_i - \overline{X})^2$ 8. 在假设检验时,若增大样本容量,则犯两类错误的概率() (A) 都增大 (B) 都减小 (C) 都不变 (D) 一个增大一个减小 二.填空题(每空 2 分.共 14 分) 1. 设 10 件产品中有 4 件不合格品,从中任取 2 件,已知所取 2 件中有 1 件是不合格品,则另外 1 件也是不合格品的概率为_______. 2. 设随机变量 X 服从 $B(1,0.8)$ 分布,则 X 的分布函数为______. 3. 若 随 机 变量 X 服从 均值 为 2, 方差 为 σ^2 的 正态分布,且 $P\{0 < X < 4\} = 0.6$,则 $P\{X < 0\} = ______.$ 4. 设总体 X 服从参数为 p 的 0 - 1 分布,其中 $p(0 未知. 现得一样本容量为 8 的样本值:0, 1, 0, 1, 1, 0, 1, 1, 则样本均值是_______, 样本方差是______. 5. 设总体 X 服从参数为 X 的指数分布,现从 X 中随机抽取 10 个样本,根据测得的结果计算知 $\sum_{i=1}^{10} x_i = 27$,那么 X 的矩估计值为______. 6. 设总体 $X \sim N(\mu, \sigma^2)$,且 σ^2 未知,用样本检验假设 $H_0: \mu = \mu_0$ 时,采用的统计量是_______.$

设有三只外形完全相同的盒子, I 号盒中装有 14 个黑球, 6 个白球; II 号盒中装有 5 个黑球, 25 个白球; III 号盒中装有 8 个黑球, 42 个白球. 现在从三个盒子中任取一盒, 再从中任取一球, 求:

- (1) 取到的球是黑球的概率;
- (2) 若取到的是黑球, 它是取自 [号盒中的概率.

四.(本题 6 分)

设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{2} \cos \frac{x}{2}, & 0 \le x \le \pi, \\ 0, & 其他, \end{cases}$$

对 X 独立地重复观察 4 次,用 Y 表示观察值大于 $\frac{\pi}{3}$ 地次数,求 Y^2 的数学期望.

五. (本题 12 分)

设(X,Y)的联合分布律为

ξ^{η}	0	1	2	
1 2	0. 1 0. 3	0. 05 0. 1	0. 35 0. 1	

间:

- (1) X,Y是否独立;
- (2) 计算P(X = Y)的值;
- (3) 在Y = 2的条件下X的条件分布律.

六. (本题 12 分)

设二维随机变量(X,Y)的概率密度为

求:(1) X 的边缘密度函数 $f_X(x)$;

- (2) E(XY);
- (3) P(X + Y > 1).

七. (本题 6 分)

一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总长度为(20±0.1)mm时产品合格,试求产品合格的概率.

八. (本题 7 分)

设总体 X 具有概率密度为

$$f(x) = \begin{cases} \frac{\theta^k}{(k-1)!} x^{k-1} e^{-\theta x}, & x > 0, \\ 0, & \text{ #.d.}, \end{cases}$$

其中k为已知正整数, 求 θ 的极大似然估计.

九.. (本题 14 分)

从某锌矿的东、西两支矿脉中,各抽取样本容量分别为 9 与 8 的样本进行测试,得样本含锌平均数及样本方差如下:

东支:
$$\overline{x}_1 = 0.230$$
, $s_{n_1}^2 = 0.1337$, $(n_1 = 9)$
西支: $\overline{x}_2 = 0.269$, $s_n^2 = 0.1736$, $(n_2 = 8)$

若东、西两支矿脉的含锌量都服从正态分布, 问东、西两支矿脉含锌量的平均值是否可以看作一样? ($\alpha = 0.05$)

$$(F_{0.025}(8,7) = 4.53, F_{0.025}(7,8) = 4.90, t_{0.0025}(15) = 2.1315)$$

十. (本题 5 分)

设总体 X 的密度函数为

$$f(x) = \begin{cases} \frac{3}{\theta^3} x^2, & 0 \le x \le \theta, \\ 0, & 其他, \end{cases}$$

其中 θ 为未知参数, X_1, X_2, \cdots, X_n 为来自总体X的样本,证明: $\frac{4}{3}\overline{X}$ 是 θ 的无偏估计量.

模拟试题(三)

一.填空题(每小题2分,共14分)

- 1. 一射手对同一目标独立地进行四次射击, 若至少命中一次的概率为 80 81, 则该射手的命中率为______.
 - 2. 若事件 A , B 独立, 且 P(A) = p , $P(B) = q 则 P(\overline{A} + B) = _____.$
- 3. 设离散型随机变量 X 服从参数为 λ ($\lambda > 0$)的泊松分布,已知 $P(\xi = 1) = P(\xi = 2)$,则 $\lambda =$ ______.
- 4. 设相互独立的两个随机变量 X , Y 具有同一分布律, 且 X 的分布律为:

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & \frac{1}{2} & \frac{1}{2} \end{array}$$

则随机变量 $Z = \max\{X,Y\}$ 的分布律为

- 5. 设随机变量 X , Y 的方差分别为 DX = 25 , DY = 36 , 相关系数 $\rho_{XY} = 0.4$, 则 cov(X,Y) = ______.
- 6. 设总体 X 的期望值 μ 和方差 σ^2 都存在, 总体方差 σ^2 的无偏估计量是 $\frac{k}{n}\sum_{i=1}^n(X_i-\overline{X})^2$, 则 k=______.
- 7. 设总体 $X\sim N(\mu,\sigma^2)$, μ 未知, 检验 \mathbf{H}_0 : $\sigma^2=\sigma_0^2$, 应选用的统计量是 ______.
 - 二 .单项选择题 (每小题 2 分,共 16 分)
- 1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为()
 - (A) $\frac{4!6!}{10!}$ (B) $\frac{7}{10}$ (C) $\frac{4!7!}{10!}$ (D) $\frac{4}{10}$
 - 2. 若事件 A, B 相互独立, 则下列正确的是 ()

(A)	$P(B \mid A) = P(A \mid B)$	(B)	$P(B \mid A) = P(A)$
(C)	$P(A \mid B) = P(B)$	(D)	$P(A \mid B) = 1 - P(\overline{A})$
3. 设	随机变量 X 服从参数为	n, p	的二项分布,且 E2

3. 设随机变量 X 服从参数为 n , p 的二项分布, 且 EX = 1.6 , DX = 1.28 , 则 n , p 的值为 ()

(A) n=8, p=0.2

(B) n=4, p=0.4

(C) n=5, p=0.32

(D) n=6, p=0.3

4. 设随机变量 X 服从正态分布 N(2,1), 其概率密度函数为 f(x), 分布函数为 F(x), 则有(

- (A) $P(X \ge 0) = P(X \le 0) = 0.5$
- (B) $P(X \ge 2) = P(X \le 2) = 0.5$
- (C) $f(x) = f(-x), x \in (-\infty, +\infty)$
- (D) $F(-x) = 1 F(x), x \in (-\infty, +\infty)$

5. 如果随机变量 X 与 Y 满足: D(X + Y) = D(X - Y), 则下列式子正确的是()

(A) X与Y相互独立

(B) X 与 Y 不相关

(C) DY = 0

(D) $DX \cdot DY = 0$

6. 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \overline{X} 为样本均值,

$$rightarrow Y = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2}$$
,则 $Y \sim ($)

(A)
$$\chi^{2}(n-1)$$
 (B) $\chi^{2}(n)$ (C) $N(\mu, \sigma^{2})$ (D) $N(\mu, \frac{\sigma^{2}}{n})$

7. 设 X_1, X_2, \dots, X_n 是取自总体 $N(0, \sigma^2)$ 的样本, 可以作为 σ^2 的无偏估计量的统计量是(

(A)
$$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$$
 (B) $\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}$ (C) $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ (D) $\frac{1}{n-1} \sum_{i=1}^{n} X_{i}$

8. 样本 X_1, X_2, \dots, X_n 来自正态总体 $N(\mu, \sigma^2)$, 若进行假设检验, 当

() 时,一般采用统计量
$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$

- (A) μ 未知, 检验 $\sigma^2 = \sigma_0^2$ (B) μ 已知, 检验 $\sigma^2 = \sigma_0^2$
- (C) σ^2 未知, 检验 $\mu = \mu_0$ (D) σ^2 已知, 检验 $\mu = \mu_0$

三. (本题 8 分)

有两台车床生产同一型号螺杆, 甲车床的产量是乙车床的1.5倍. 甲车床 的废品率为2%,乙车床的废品率为1%,现随机抽取一根螺杆检查,发现是 废品,问该废品是由甲车床生产的概率是多少?

四. (本题 8 分)

假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停 止工作, 若一周五个工作日里无故障, 可获利润10万元, 发生一次故障获利润 5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万 元, 问一周内期望利润是多少?

五. (本题 12 分)

1. 设随机向量 X.Y 的联合分布为:

X Y	1	2	3
1	0	$\frac{1}{6}$	$\frac{1}{12}$
2	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
3	$\frac{6}{1}$	$\frac{6}{6}$	6

- (1) 求X,Y的边际分布; (2) 判断X,Y是否独立.
- 2. 设随机变量 X,Y 的联合密度函数为:

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & 其他, \end{cases}$$

求概率 $P(X + Y \leq 1)$.

六. (本题 8 分)

设连续型随机变量 X 的分布函数为:

$$F(x) = \begin{cases} A + Be^{-\frac{x^2}{2}}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

求: (1) 系数A及B;

- (2) 随机变量 X 的概率密度;
- (3) $P(\sqrt{\ln 4} \le X \le \sqrt{\ln 9})$.

七. (本题 8 分)

设 X_1, X_2, \dots, X_n 为总体X的一个样本,X的概率密度为:

$$f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta} - 1}, & 0 \le x \le 1, \\ 0, & 其他, \end{cases}$$

其中 $\theta > 0$, 求未知参数 θ 的矩估计量与极大似然估计量.

八. (本题10分)

设某次考试的考生成绩服从正态分布,从中随机地抽取 36 位考生的成绩,算得平均成绩为 66.5 分,标准差为15 分,问在显著水平 0.05 下,是否可认为全体考生的平均成绩为 70 分?

九. (本题12分)

两家银行分别对 21 个储户和16 个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为 \bar{x} = 2600元和 \bar{y} = 2700元,样本标准差相应地为 S_1 =81元和 S_2 =105元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(α =0.10)

十. (本题 4 分)

设总体 X 服从参数为 λ 的泊松分布, λ 为未知参数,

$$T(X) = \begin{cases} -1, & X 为 奇数, \\ 1, & X 为 偶数, \end{cases}$$

证明: T(X) 是 $e^{-2\lambda}$ 的一个无偏估计量.

模拟试题 (四)

一.填空题(每小题 2 分,共 20 分)

1. 设
$$P(A)=0.4$$
, $P(B)=0.5$. 若 $P(A|B)=0.7$, 则 $P(A+B)=$ ______.

- 2. 若随机变量 X 服从二项分布, 即 $X \sim B(5,0.1)$, 则 $D(1-2X) = ___.$
- 3. 三次独立重复射击中,若至少有一次击中的概率为 $\frac{37}{64}$,则每次击中的概率为______.
- 4. 设随机变量 X 的概率密度是: $f(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & 其他, \end{cases}$ 且 $P(X \ge a) = 0.784$,则 a =______.
 - 5. 利用正态分布的结论, 有: $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} (x^2 4x + 4) e^{-\frac{(x-2)^2}{2}} dx = \underline{\qquad}$
 - 6. 设总体 X 的密度函数为:

$$f(x) = \begin{cases} \alpha x^{\alpha - 1}, & 0 < x < 1, \\ 0, & \not\equiv \&, \end{cases}$$

(其中 α 为参数 $\alpha > 0$), x_1, x_2, \dots, x_n 是来自总体 X 的样本观测值,则样本的似然函数 $L(x_1, x_2, \dots, x_n; \alpha) =$

- 9. 设 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X 与 Y 相互独立. 从 X, Y 中分别抽取容量为 n_1 , n_2 的样本, 样本均值分别为 \overline{X} , \overline{Y} , 则 \overline{X} \overline{Y} 服从分布______.
 - 10. 设随机变量 X 和 Y 的相关系数为 0. 9, 若 Z = X 0.4, 则 Y 与 Z 的

相关系数为_____.

二.单项选择题(每小题 2 分,共 12 分)

1. 设随机变量 X 的数学期望 EX 与 $DX = \sigma^2$ 均存在, 由切比雪夫不等式估计概率 $P\{|X-EX|<4\sigma\}$ 为()

(A)
$$\geq \frac{1}{16}$$
 (B) $\leq \frac{1}{16}$ (C) $\geq \frac{15}{16}$ (D) $\leq \frac{15}{16}$

2. A, B 为随机随机事件, 且 $B \subset A$, 则下列式子正确的是()

(A)
$$P(A+B) = P(A)$$
 (B) $P(B-A) = P(B) - P(A)$

(C)
$$P(AB) = P(A)$$
 (D) $P(B|A) = P(B)$

3. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} Ax + B, & 0 \le x \le 1, \\ 0, & 其他, \end{cases}$

$$EX = \frac{7}{12}, \, \mathbb{M} \, ().$$

(A)
$$A = 1, B = -0.5$$

(B)
$$A = -0.5, B = 1$$

(C)
$$A = 0.5, B = 1$$

(D)
$$A = 1, B = 0.5$$

4. 若随机变量 X 与 Y 不相关,则有().

(A)
$$D(X - 3Y) = D(X) - 9D(Y)$$

(B)
$$D(XY) = D(X) \times D(Y)$$

(C)
$$E\{[X - E(X)][Y - E(Y)]\} = 0$$

(D)
$$P(Y = aX + b) = 1$$

5. 已知随机变量 $F\sim F(n_1,n_2)$,且 $P\{F>F_\alpha(n_1,n_2)\}=\alpha$,则 $F_{1-\alpha}(n_1,n_2)=($).

(A)
$$\frac{1}{F_{\alpha}(n_{1}, n_{2})}$$
 (B) $\frac{1}{F_{1-\alpha}(n_{2}, n_{1})}$ (C) $\frac{1}{F_{\alpha}(n_{2}, n_{1})}$ (D) $\frac{1}{F_{1-\alpha}(n_{1}, n_{2})}$

6. 将一枚硬币独立地掷两次,记事件: $A_1 = {掷第一次出现正面}, A_2 = {掷第二次出现正面}, A_3 = {正、反面各出现一次}, A_4 = {正面出现两次},则事件().$

(A)
$$A_1, A_2, A_3$$
相互独立 (B) A_2, A_3, A_4 相互独立

(C) A_1, A_2, A_3 两两独立

(D) A_2, A_3, A_4 两两独立

三.计算题(每小题 8 分,共 48 分)

- 1. 某厂由甲, 乙, 丙三个车间生产同一种产品, 它们的产量之比为 3:2:1, 各车间产品的不合格率依次为 8%, 9%, 12%. 现从该厂产品中任意抽取一件, 求:(1) 取到不合格产品的概率; (2) 若取到的是不合格品, 求它是由甲厂生产的概率.
- 2. 一实习生用一台机器接连独立地制造三个同样的零件, 第i个零件是不合格品的概率为 $p_i = \frac{1}{1+i}$ (i=1,2,3), 以 X 表示三个零件中合格品的个数, 求: (1) X 的概率分布; (2) X 的方差 DX.
- 3. 设总体 $X \sim N(0, \sigma^2)$, σ^2 为未知参数, x_1, x_2, \dots, x_n 是来自总体 X 的一组样本值, 求 σ^2 的最大似然估计.
 - 4. 二维随机变量(X,Y)的联合概率密度:

求:(1) X 与Y之间是否相互独立,判断X 与Y 是否线性相关;

- (2) $P(Y + X \le 1)$.
- 5. 某人乘车或步行上班, 他等车的时间 X (单位:分钟) 服从参数为 $\frac{1}{5}$ 的指数分布, 如果等车时间超过 10 分钟他就步行上班. 若此人一周上班 5 次, 以 Y 表示他一周步行上班的次数. 求 Y 的概率分布; 并求他一周内至少有一次步行上班的概率.
 - 6. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3 \cdot \sqrt[3]{x^2}}, & x \in [1, 8], \\ 0, & \text{ } \sharp \text{ } \end{split},$$

F(x) 是 X 的分布函数. 求随机变量 Y = F(X) 的概率分布.

四.应用题(第1题7分、第2题8分,共15分)

1. 假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,

用中心极限定理计算命中60发到100发之间的概率.

2. 某厂生产铜丝, 生产一向稳定. 现从该厂产品中随机抽出 10 段检查其折断力, 测后经计算: $\bar{x}=287.5$, $\sum_{i=1}^n(x_i-\bar{x})^2=160.5$. 假定铜丝折断力服从正态分布, 问是否可以相信该厂生产的铜丝的折断力方差为 16? $(\alpha=0.1)$

五.证明题(5分)

若 随 机 变 量 X 的 密 度 函 数 f(x) , 对 任 意 的 $x \in R$, 满 足: f(x) = f(-x) , F(x) 是其分布函数. 证明: 对任意实数 a , 有

$$F(-a) = \frac{1}{2} - \int_0^a f(x) dx.$$