AMENDMENTS TO THE CLAIMS

1. (previously presented) A process for producing a polymer of ethylene containing from 0.1 to 99 % by mol of at least one derived unit of alpha-olefins of formula CH₂=CHZ, wherein Z is a C₂-C₂₀ alkyl radical, and optionally from 0 to 5% by mol polyene, comprising contacting, under polymerization conditions, ethylene, at least one alph-olefin and optionally said polyene, in the presence of a catalyst system obtained by contacting:

a) a metallocene compound of formula (I):

$$R^{3}$$
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{2}
 R^{5}
 R^{5}
 R^{6}
 X
 X
 X
 X
 X

wherein

M is zirconium, hafnium or titanium;

X, equal to or different from each other, is a hydrogen atom, a halogen atom, an R, OR, OR'O, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ group, wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and the R' substituent is a divalent group selected from C_1 - C_{40} -alkylidene, C_6 - C_{40} -arylidene, C_7 - C_{40} -alkylarylidene or C_7 - C_{40} -arylalkylidene radicals; two X can join to form a C_4 - C_{40} dienyl ligand; R^1 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_2 0-cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^2 , R^3 , R^4 and R^5 , equal to or different from each other, are hydrogen atoms, halogen atoms or linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^6 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or a silylidene radical containing up to 5 silicon atoms;

T is a divalent radical of formula (II) or (III):

wherein

the atom marked with the symbol * is linked to the atom marked with the same symbol in the compound of formula (I);

 R^8 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements;

 R^9 , equal to or different from each other, is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing at least one heteroatom belonging to groups 13-17 of the Periodic Table of the Elements; and

- b) an alumoxane or a compound that forms an alkyl metallocene cation.
- 2. (original) The process according to claim 1 wherein the catalyst system further comprises an organo aluminum compound.
- 3. (previously presented) The process according to claim 1 wherein in the compound of formula (I),

X is a halogen atom, an R, OR'O or OR group; R^1 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical; R^2 is a hydrogen atom; R^3 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical optionally containing at least one halogen atom; R^4 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical; R^6 is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl radical; C_1 - C_2 - C_2 -alkyl radical; C_1 - C_2 - C_2 -alkyl radical; C_1 - C_2 - C_2 -alkyl radical; and C_1 - C_2 -alkyl radical; and C_1 - C_2 -alkyl radical; and C_2 - C_2 -alkyl radical.

4. (previously presented) The process according to claim 1 wherein the metallocene compound has formula (IV) or (V):

$$R^{3}$$
 R^{3}
 R^{5}
 R^{6}
 R^{6}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}

$$R^4$$
 R^3
 R^3
 R^5
 R^5
 R^6
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4

wherein

- R^3 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical, optionally containing at least one halogen atom; R^4 is a hydrogen atom or a linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radical.
- 5. (original) The process according to claim 4 wherein, in the compounds of formula (IV) and (V), R³ is a hydrogen atom or a group -C(R⁷)₃, wherein R⁷, equal to or different from each other, is a linear or branched, saturated or unsaturated C₁-C₈-alkyl radical; and R⁴ is hydrogen or a group -C(R⁷)₃.
- 6. (previously presented) The process according to claim 1 wherein, in the compounds of formula (I), R^3 and R^4 are hydrogen atoms.
- 7. (previously presented) The process according to claim 1 wherein, in the compounds of formula (I), when R³ is an hydrogen atom, R⁴ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical, optionally containing at least one halogen atom; or when R³ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical optionally containing at least one halogen atom, R⁴ is an hydrogen atom.
- 8. (previously presented) The process according to claim 1 wherein the catalyst system is supported on an inert carrier.
- 9. (previously presented) The process according to claim 8 wherein the inert carrier is a polyolefin.
- 10. (previously presented) The process according to claim 1 wherein the process is carried out in gas phase.
- 11. (previously presented) The process according to claim 1 wherein the alpha-olefin is 1-pentene, 1-hexene or 1-octene.
- 12. (previously presented) The process according to claim 4 wherein, in the compounds of formulas (IV) and (V), R³ and R⁴ are hydrogen atoms.
- 13. (previously presented) The process according to claim 4 wherein, in the compounds of formulas (IV) and (V), when R³ is an hydrogen atom, R⁴ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical, optionally containing at least one halogen atom; or when R³ is a linear or branched, saturated or unsaturated C₁-C₁₀-alkyl radical optionally containing at least one halogen atom, R⁴ is an hydrogen atom.