Proves d'accés a la Universitat. Curs 2008-2009

Electrotècnia

Sèrie 4

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna, i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada, 0,5 punts; qüestió mal contestada, -0,16 punts; qüestió no contestada, 0 punts.]

Qüestió 1

La tensió nominal de la placa de característiques d'un motor d'inducció trifàsic és U = 400/230 V. Si es pretén arrencar el motor amb un arrencador estrella-triangle, quina de les afirmacions següents és certa?

- a) Cal que la xarxa sigui de 400 V.
- **b**) Amb qualsevol tensió de xarxa es pot fer.
- c) En cap cas no es pot fer.
- d) Cal que la xarxa sigui de 230 V.

Qüestió 2

La capacitat equivalent de dos condensadors de valor $C=100~\mu F$ connectats en sèrie és:

- a) 50 μ F
- **b**) 100 μF
- c) 141 μF
- **d**) 200 μF

Qüestió 3

Una resistència de valor $R = 10 \Omega$ és alimentada a una tensió de 24 V mitjançant un transformador ideal. El transformador s'alimenta des d'una xarxa de 230 V. Quina potència es consumeix de la xarxa?

- a) 2,41 W
- **b**) 23,0 W
- *c*) 57,6 W
- **d**) 529 W

Qüestió 4

La funció lògica de la figura següent és:

- a) $O = (\bar{a} + \bar{b}) \cdot c$
- **b**) $O = (a + \overline{b}) \cdot c$
- c) $O = (a + b) \cdot c$
- $d) O = \left(a + \overline{b}\right) \cdot \overline{c}$

Qüestió 5

La impedància equivalent d'una resistència de valor $R=10~\Omega$ i una inductància de reactància $X_{\rm L}=10~\Omega$ connectades en sèrie és:

- a) 10Ω
- **b**) 14,1 Ω
- c) 20Ω
- d) $28,2 \Omega$

Exercici 2

[2,5 punts]

Per al circuit de la figura, determineu:

Amb l'interruptor obert:

a) Els corrents de les resistències R_1 , R_2 i R_3 .

[1,5 punts]

b) Les potències subministrades per les fonts U_1 i U_2 .

[0,5 punts]

Amb l'interruptor tancat:

c) Els nous corrents de les resistències.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

En el circuit de la figura, alimentat amb una tensió composta *U*, determineu:

a) Els corrents de línia I_{I} . [1 punt]

b) La potència activa *P* consumida. [0,5 punts]

c) La potència reactiva Q consumida. [0,5 punts]

d) El factor de potència *fdp*. [0,5 punts]

Exercici 4

[2,5 punts]

Una màquina té una resistència calefactora de potència nominal P=1.8 kW i tensió U=230 V. La resistència s'alimenta des del centre de comandament mitjançant un cable bipolar, de secció S=4 mm² i material de resistivitat $\rho=0.01786$ $\mu\Omega\cdot$ m. La distància entre el centre de comandament i la resistència és L=50 m.

- *a*) Determineu el corrent nominal *I* de la resistència.
- [0,5 punts]
- **b**) Determineu la caiguda de tensió percentual $\Delta U(\%)$ del cable.
- [1,5 punts]
- c) Escolliu el calibre més adient per al petit interruptor automàtic que protegeix la línia d'entre els següents: 6, 10, 16, 20, 25, 32, 40, 50 A. [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

En el circuit de la figura, el valor de la tensió U fa que la potència activa consumida sigui P=100 W. Determineu:

a) El corrent per la resistència.

[0,5 punts]

b) La tensió *U*.

[1 punt]

c) La mesura del voltímetre V_2 .

[0,5 punts]

d) La potència reactiva Q consumida.

[0,5 punts]

Exercici 4

[2,5 punts]

En el circuit de la figura, els díodes es poden considerar ideals.

Dibuixeu de manera aproximada, indicant les escales, les formes d'ona del corrent $i_R(t)$ i de la tensió $v_R(t)$ en els casos següents:

a) Amb l'interruptor obert.

[1 punt]

b) Amb l'interruptor tancat.

[1 punt]

En els dos casos anteriors:

c) Determineu la potència del circuit.

[0,5 punts]

Proves d'accés a la Universitat. Curs 2008-2009

Electrotècnia

Sèrie 3

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna, i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada, 0,5 punts; qüestió mal contestada, -0,16 punts; qüestió no contestada, 0 punts.]

Qüestió 1

Una capacitat, de valor $C=100~\mu\text{F}$, i una inductància, de valor L=0.5~H, connectades en sèrie, tenen una frequència de ressonància de:

- a) 20,01 kHz
- **b**) 3,183 kHz
- *c*) 141,4 Hz
- d) 22,51 Hz

Qüestió 2

Un motor de corrent continu d'imants permanents, que treballa en condicions nominals, gira a 2000 min⁻¹. Si la tensió d'alimentació es redueix a la meitat, la nova velocitat serà:

- a) inferior a 2 000 min⁻¹.
- **b**) igual a 2 000 min⁻¹.
- c) superior a 2 000 min⁻¹.
- d) nul·la.

Qüestió 3

La funció lògica de la figura següent és:

$$a) O = \left(\bar{a} + \bar{b}\right) \cdot c$$

$$\boldsymbol{b}) O = \left(a + \overline{b}\right) \cdot c$$

$$c) O = \left(\bar{a} + b\right) \cdot c$$

$$d) O = \left(a + \overline{b}\right) \cdot \overline{c}$$

Qüestió 4

En un circuit de corrent altern, en règim estacionari, en el qual es valoren la tensió i el corrent d'una inductància en el mateix sentit:

- a) el corrent va avançat 90° (¼ de període) respecte de la tensió.
- b) el corrent va retardat 90° (¼ de període) respecte de la tensió.
- c) el corrent i la tensió estan en fase.
- d) el corrent i la tensió no tenen cap relació de fase.

Qüestió 5

En una xarxa de corrent altern de valor eficaç 25 A, el valor de pic de la tensió és:

- *a*) 17,7 A
- **b**) 25 A
- c) 35,4 A
- **d**) 50 A

Exercici 2

[2,5 punts]

En el circuit de la figura, alimentat amb una tensió composta U, determineu:

a) Els corrents de branca $I_{\rm B}$.	[0,5 punts]
b) Els corrents de línia $I_{\rm L}$.	[0,5 punts]
c) La potència activa P consumida.	[0,5 punts]
d) La potència reactiva Q consumida.	[0,5 punts]
<i>e</i>) El factor de potència <i>fdp</i> .	[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

Una resistència de potència nominal $P = 2\,000\,\mathrm{W}$ i tensió $U = 230\,\mathrm{V}$ s'alimenta mitjançant un cable bipolar de longitud L, secció $S = 1,5\,\mathrm{mm}^2$ i fet amb un material de resistivitat $\rho = 0,01786\,\mu\Omega\cdot\mathrm{m}$. Determineu:

a) El corrent nominal *I* de la resistència.

[0,5 punts

- **b**) La longitud màxima $L_{\text{màx}}$ que pot tenir el cable per tal que la caiguda de tensió no superi el 3 %. [1,5 punts]
- c) El corrent que circularia pel cable de longitud $L_{\rm max}$ en cas de curtcircuit en els borns de connexió de la resistència. Considereu que la tensió a l'inici de la instal·lació es manté constant durant el curtcircuit. [0,5 punts]

Exercici 4

[2,5 punts]

Un motor d'inducció té la placa de característiques següent:

P = 132 kW	<i>U</i> = 400/690 V	<i>I</i> = 241/139 A
n = 985 min ⁻¹	$\cos \varphi = 0.85$	f = 50 Hz

Amb el motor treballant en condicions nominals, determineu:

a) El rendiment η .

[1 punt]

b) El nombre *p* de parells de pols.

[0,5 punts]

c) El parell Γ desenvolupat.

[0,5 punts]

d) La potència reactiva Q consumida.

[0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

Per al circuit de la figura, determineu:

- a) Els corrents en les resistències R_1 . [0,5 punts]
- **b**) Els corrents en les resistències R_2 . [1 punt]
- c) La mesura del voltímetre V_2 . [0,5 punts]
- d) Les potències subministrades per cada font U_1 . [0,5 punts]

Exercici 4

[2,5 punts]

En el circuit de la figura, els díodes es poden considerar ideals.

Determineu la tensió del terminal O (V_{0}) quan les tensions dels terminals I_{1} i I_{2} (V_{1}) i V_2) són, respectivament:

a)
$$V_1 = 10 \text{ V i } V_2 = 0 \text{ V}$$
 [0,5 punts]

b)
$$V_1 = 0 \text{ V i } V_2 = 10 \text{ V}$$
 [0,5 punts]

c)
$$V_1 = 0 \text{ V i } V_2 = 0 \text{ V}$$
 [0,5 punts]

(a)
$$V_1 = 10 \text{ V i } V_2 = 0 \text{ V}$$
[0,5 punts]

(b) $V_1 = 0 \text{ V i } V_2 = 10 \text{ V}$
[0,5 punts]

(c) $V_1 = 0 \text{ V i } V_2 = 0 \text{ V}$
[0,5 punts]

(d) $V_1 = 10 \text{ V i } V_2 = 10 \text{ V}$
[0,5 punts]

e) Quina és la potència dissipada pel circuit en la situació de l'apartat d? [0,5 punts]

