YSU ASDS, Statistics, Fall 2019 Lecture 27

Michael Poghosyan

27 Nov 2019

Contents

- ► Likelihood Ratio Tests
- ► Neyman-Pearson Lemma
- p-Values

Last Lecture ReCap

▶ What are the two Sample *Z*- or *t*-Test about?

Last Lecture ReCap

- ▶ What are the two Sample *Z* or *t*-Test about?
- ▶ Describe the two Sample *t*-test.

Paired *t*-Test for the Difference of two Normals Means Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$,

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2),$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ are unknown.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ **are unknown**. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$;

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation:
$$D_k = X_k - Y_k$$
; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

 $^{^{1}}$ The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

Additional Assumption: We will assume that the Differences D_k are Normally Distributed¹.

 $^{^{1}}$ The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$, $Y_1, Y_2, ..., Y_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$, σ_X, σ_Y are unknown. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

Additional Assumption: We will assume that the Differences D_k are Normally Distributed¹.

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

 $^{^{1}}$ The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), Y_1, Y_2, ..., Y_n \stackrel{IID}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2), \sigma_X, \sigma_Y$ **are unknown**. The Parameter of interest is $\mu_X - \mu_Y$;

Note: Here we have the same number of X_k and Y_k ; also, importantly, X_k and Y_k can be dependent!

Notation: $D_k = X_k - Y_k$; clearly,

$$\mathbb{E}(D_k) = \mu_X - \mu_Y.$$

The Variance of D_k , although the same, $\sigma_D^2 = Var(X_k - Y_k)$, cannot be calculated, since X_k and Y_k can be dependent. But that's OK, we do not need it.

Additional Assumption: We will assume that the Differences D_k are Normally Distributed¹.

Null Hypothesis: \mathcal{H}_0 : $\mu_X - \mu_Y = \mu_0$

Asymptotic Significance Level: $\alpha \in (0,1)$;

 1 The Test will work also in the case when the Differences are nor Normally Distributed, but the Sample Size n is large. We jut need to use the CLT.

Test Statistics: $t = \frac{\overline{D} - \mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Test Statistics: $t = \frac{\overline{D} - \mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

Distrib of the Test-Statistics Under \mathcal{H}_0 :² $t \sim t(n-1)$;

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Test Statistics: $t = \frac{\overline{D} - \mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

Distrib of the Test-Statistics Under \mathcal{H}_0 : $t \sim t(n-1)$;

Rejection Region:

$$\mathcal{H}_1$$
 is RR is
$$\mu_X - \mu_Y \neq \mu_0 \quad |t| > t_{n-1,1-\frac{\alpha}{2}}$$
 $\mu_X - \mu_Y > \mu_0 \quad t > t_{n-1,1-\alpha}$ $\mu_X - \mu_Y < \mu_0 \quad t < t_{n-1,\alpha}$

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Test Statistics: $t=\frac{\overline{D}-\mu_0}{S_D/\sqrt{n}}$, where S_D is the Sample Deviation of D.

Distrib of the Test-Statistics Under \mathcal{H}_0 : 2 $t \sim t(n-1)$;

Rejection Region:

$$\mathcal{H}_1$$
 is RR is
$$\mu_X - \mu_Y \neq \mu_0 \quad |t| > t_{n-1,1-\frac{\alpha}{2}}$$
 $\mu_X - \mu_Y > \mu_0 \quad t > t_{n-1,1-\alpha}$ $\mu_X - \mu_Y < \mu_0 \quad t < t_{n-1,\alpha}$

Note: This Test is called the **Paired** *t*-**Test**

 $^{^2}$ Or, Asymptotically, $t \approx t(n-1)$ or $t \approx \mathcal{N}(0,1)$, if D_k -s are not Normal, but n is large.

Example: Assume we have 2 Classification Algorithms, and we want to see which one is better.

Example: Assume we have 2 Classification Algorithms, and we want to see which one is better. We are running our algorithms over n Test Cases, and mark by 1 if the Algorithm is giving correct answer, and 0 otherwise.

Example: Assume we have 2 Classification Algorithms, and we want to see which one is better. We are running our algorithms over n Test Cases, and mark by 1 if the Algorithm is giving correct answer, and 0 otherwise. So, for each algorithm, we will have size n vector of 0-s and 1-s.

Example: Assume we have 2 Classification Algorithms, and we want to see which one is better. We are running our algorithms over n Test Cases, and mark by 1 if the Algorithm is giving correct answer, and 0 otherwise. So, for each algorithm, we will have size n vector of 0-s and 1-s. So we will have something like:

Example: Assume we have 2 Classification Algorithms, and we want to see which one is better. We are running our algorithms over n Test Cases, and mark by 1 if the Algorithm is giving correct answer, and 0 otherwise. So, for each algorithm, we will have size n vector of 0-s and 1-s. So we will have something like:

Here we have paired results, since, the first elements in each line, 0 and 1, are the results of running Algorithms on the same Test case.

Example: Assume we have 2 Classification Algorithms, and we want to see which one is better. We are running our algorithms over n Test Cases, and mark by 1 if the Algorithm is giving correct answer, and 0 otherwise. So, for each algorithm, we will have size n vector of 0-s and 1-s. So we will have something like:

Here we have paired results, since, the first elements in each line, 0 and 1, are the results of running Algorithms on the same Test case. Now, we want to do a Test - paired t-Test, to see if the Probability of correct Classification is the same for each Algorithm.

Example, cont'd

Here is the code for some hypothetical results from two hypothetical Algorithms:

```
res.algo1 <- rbinom(300, size = 1, prob = 0.4)
res.algo2 <- rbinom(300, size = 1, prob = 0.45)
t.test(res.algo1,res.algo2,paired = T)</pre>
```

```
##
##
   Paired t-test
##
## data: res.algo1 and res.algo2
## t = -1.0952, df = 299, p-value = 0.2743
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
  -0.1212004 0.0345337
## sample estimates:
## mean of the differences
##
               -0.043333333
```

Likelihood Ratio Test

LRT is one of a general methods to Design a Test.

LRT is one of a general methods to Design a Test.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}, \ \theta \in \Theta$;

LRT is one of a general methods to Design a Test.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}, \ \theta \in \Theta$; We assume the Parametric Family \mathcal{F}_{θ} is given by its PD(M)Fs $f(x|\theta)$.

LRT is one of a general methods to Design a Test.

Model: $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{F}_{\theta}, \ \theta \in \Theta$; We assume the Parametric Family \mathcal{F}_{θ} is given by its PD(M)Fs $f(x|\theta)$.

Hypothesis: $\mathcal{H}_0: \ \theta \in \Theta_0$ vs $\mathcal{H}_1: \ \theta \in \Theta_0^c$

LRT is one of a general methods to Design a Test.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}, \ \theta \in \Theta$; We assume the Parametric Family \mathcal{F}_{θ} is given by its PD(M)Fs $f(x|\theta)$.

Hypothesis: $\mathcal{H}_0: \ \theta \in \Theta_0$ vs $\mathcal{H}_1: \ \theta \in \Theta_0^c$

Significance Level: $\alpha \in (0,1)$;

LRT is one of a general methods to Design a Test.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}, \ \theta \in \Theta$; We assume the Parametric Family \mathcal{F}_{θ} is given by its PD(M)Fs $f(x|\theta)$.

 $\mbox{ Hypothesis: } \mathcal{H}_0: \ \theta \in \Theta_0 \quad \mbox{vs} \quad \mathcal{H}_1: \ \theta \in \Theta_0^c$

Significance Level: $\alpha \in (0,1)$;

Rejection Region: we define the Likelihood Ratio by

$$LR = \frac{\sup_{\theta \in \Theta_0} \mathcal{L}(\theta)}{\sup_{\theta \in \Theta} \mathcal{L}(\theta)}$$

LRT is one of a general methods to Design a Test.

Model: $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{F}_{\theta}, \ \theta \in \Theta$; We assume the Parametric Family \mathcal{F}_{θ} is given by its PD(M)Fs $f(x|\theta)$.

 $\mbox{ Hypothesis: } \mathcal{H}_0: \ \theta \in \Theta_0 \quad \mbox{vs} \quad \mathcal{H}_1: \ \theta \in \Theta_0^c$

Significance Level: $\alpha \in (0,1)$;

Rejection Region: we define the Likelihood Ratio by

$$LR = \frac{\sup_{\theta \in \Theta_0} \mathcal{L}(\theta)}{\sup_{\theta \in \Theta} \mathcal{L}(\theta)}$$

where $\mathcal{L}(\theta)$ is our GOF *Likelihood Function*:

$$\mathcal{L}(\theta) = f(X_1|\theta) \cdot f(X_2|\theta) \cdot \dots \cdot f(X_n|\theta).$$

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \; | \; \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Idea: Clearly, $0 \le LR \le 1$.

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Idea: Clearly, $0 \le LR \le 1$. If $LR \approx 0$, then the Likelihood of our Data for $\theta \in \Theta_0$ is pretty small compared to the one with $\theta \notin \Theta_0$.

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Idea: Clearly, $0 \le LR \le 1$. If $LR \approx 0$, then the Likelihood of our Data for $\theta \in \Theta_0$ is pretty small compared to the one with $\theta \notin \Theta_0$. So we do not believe that $\theta \in \Theta_0$, and we reject the Null.

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Idea: Clearly, $0 \le LR \le 1$. If $LR \approx 0$, then the Likelihood of our Data for $\theta \in \Theta_0$ is pretty small compared to the one with $\theta \notin \Theta_0$. So we do not believe that $\theta \in \Theta_0$, and we reject the Null.

Note: If we have the MLE for θ , $\hat{\theta}^{MLE}$, then, clearly,

$$\sup_{\theta \in \Theta} \mathcal{L}(\theta) =$$

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Idea: Clearly, $0 \le LR \le 1$. If $LR \approx 0$, then the Likelihood of our Data for $\theta \in \Theta_0$ is pretty small compared to the one with $\theta \notin \Theta_0$. So we do not believe that $\theta \in \Theta_0$, and we reject the Null.

Note: If we have the MLE for θ , $\hat{\theta}^{MLE}$, then, clearly,

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}\left(\hat{\boldsymbol{\theta}}^{\textit{MLE}}\right).$$

Now, our RR is of the form:

$$RR = \{LR \le c\}$$

where we choose $c \in (0,1)$ from the requirement to have a Significance Level α :

$$\sup_{\Theta_0} \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \sup_{\theta_0 \in \Theta_0} \mathbb{P}(\mathsf{LR} \leq c \mid \theta = \theta_0) \leq \alpha.$$

Tests, obtained by this method, are called LRTs.

Idea: Clearly, $0 \le LR \le 1$. If $LR \approx 0$, then the Likelihood of our Data for $\theta \in \Theta_0$ is pretty small compared to the one with $\theta \notin \Theta_0$. So we do not believe that $\theta \in \Theta_0$, and we reject the Null.

Note: If we have the MLE for θ , $\hat{\theta}^{MLE}$, then, clearly,

$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}\left(\hat{\boldsymbol{\theta}}^{\textit{MLE}}\right).$$

And similarly, $\sup_{\theta \in \Theta_0} \mathcal{L}(\theta)$ can be thought as a *restricted MLE for* θ *over* Θ_0 .

Assume $X_1,...,X_n\sim \mathcal{F}_{\theta}$, and we want to Test, at α -level, a Simple Hypothesis vs Simple Hypothesis:

$$\mathcal{H}_0: \ \theta = \theta_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \theta = \theta_1.$$

Assume $X_1,...,X_n\sim \mathcal{F}_{\theta}$, and we want to Test, at α -level, a Simple Hypothesis vs Simple Hypothesis:

$$\mathcal{H}_0: \ \theta = \theta_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \theta = \theta_1.$$

Let $\mathcal{L}(\theta)$ be the Likelihood Function for $X_1,...,X_n$, and let

$$LR = \frac{\mathcal{L}(\theta_0)}{\mathcal{L}(\theta_1)}$$

be the Likelihood Ratio for our Test.

Assume $X_1,...,X_n \sim \mathcal{F}_{\theta}$, and we want to Test, at α -level, a Simple Hypothesis vs Simple Hypothesis:

$$\mathcal{H}_0: \ \theta = \theta_0 \qquad \text{vs} \qquad \mathcal{H}_1: \ \theta = \theta_1.$$

Let $\mathcal{L}(\theta)$ be the Likelihood Function for $X_1, ..., X_n$, and let

$$LR = \frac{\mathcal{L}(\theta_0)}{\mathcal{L}(\theta_1)}$$

be the Likelihood Ratio for our Test. Assume there exists a number c such that for the Rejection Region

$$RR = \{LR \leq c\},\$$

the significance level is α :

$$\mathbb{P}(LR \leq c \mid \mathcal{H}_0 \text{ is true }) = \alpha.$$

Assume $X_1,...,X_n\sim \mathcal{F}_{\theta}$, and we want to Test, at α -level, a Simple Hypothesis vs Simple Hypothesis:

$$\mathcal{H}_0: \ \theta = \theta_0 \qquad \text{vs} \qquad \mathcal{H}_1: \ \theta = \theta_1.$$

Let $\mathcal{L}(\theta)$ be the Likelihood Function for $X_1, ..., X_n$, and let

$$LR = \frac{\mathcal{L}(\theta_0)}{\mathcal{L}(\theta_1)}$$

be the Likelihood Ratio for our Test. Assume there exists a number c such that for the Rejection Region

$$RR = \{LR \leq c\},\$$

the significance level is α :

$$\mathbb{P}(LR < c \mid \mathcal{H}_0 \text{ is true }) = \alpha.$$

Then this Test has the highest Power among all other Tests of Significance Level α .

Assume $X_1, X_2, ..., X_n \stackrel{\textit{IID}}{\sim} \mathcal{N}(\mu, \sigma^2)$, and σ^2 is **known**.

Assume $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, and σ^2 is **known**. We want to construct the LRT, for Significance Level α , for

$$\mathcal{H}_0: \mu = \mu_0$$
 vs $\mathcal{H}_1: \mu \neq \mu_0$.

Assume $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, and σ^2 is **known**. We want to construct the LRT, for Significance Level α , for

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$.

Step 1: We calculate the Likelihood:

Assume $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, and σ^2 is **known**. We want to construct the LRT, for Significance Level α , for

$$\mathcal{H}_0: \ \mu = \mu_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \mu \neq \mu_0.$$

Step 1: We calculate the Likelihood: the PDF is

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}},$$

Assume $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, and σ^2 is **known**. We want to construct the LRT, for Significance Level α , for

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$.

Step 1: We calculate the Likelihood: the PDF is

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}},$$

and the Likelihood Function is:

$$\mathcal{L}(\mu) = f(X_1|\mu,\sigma^2) \cdot f(X_2|\mu,\sigma^2) \cdot \dots \cdot f(X_n|\mu,\sigma^2)$$

Assume $X_1, X_2, ..., X_n \stackrel{IID}{\sim} \mathcal{N}(\mu, \sigma^2)$, and σ^2 is **known**. We want to construct the LRT, for Significance Level α , for

$$\mathcal{H}_0: \ \mu = \mu_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \mu \neq \mu_0.$$

Step 1: We calculate the Likelihood: the PDF is

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}},$$

and the Likelihood Function is:

$$\mathcal{L}(\mu) = f(X_1|\mu,\sigma^2) \cdot f(X_2|\mu,\sigma^2) \cdot \dots \cdot f(X_n|\mu,\sigma^2)$$

i.e.

$$\mathcal{L}(\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \cdot e^{-\frac{1}{2\sigma^2} \cdot \sum_{k=1}^n (X_k - \mu)^2}$$

Step 2: Now, we calculate the LR:

$$\mathit{LR} = rac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} =$$

Step 2: Now, we calculate the LR:

$$\mathit{LR} = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

Step 2: Now, we calculate the LR:

$$LR = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

We can write

$$\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu) = \mathcal{L}\Big(\hat{\mu}^{\textit{MLE}}\Big),$$

since, by the very definition, $\hat{\mu}^{MLE}$ is the global max point of $\mathcal{L}(\mu)$.

Step 2: Now, we calculate the LR:

$$LR = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

We can write

$$\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu) = \mathcal{L}\Big(\hat{\mu}^{\textit{MLE}}\Big),$$

since, by the very definition, $\hat{\mu}^{MLE}$ is the global max point of $\mathcal{L}(\mu)$. And, of course, we know that in this model

$$\hat{\mu}^{MLE} =$$

Step 2: Now, we calculate the LR:

$$LR = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

We can write

$$\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu) = \mathcal{L}\Big(\hat{\mu}^{\textit{MLE}}\Big),$$

since, by the very definition, $\hat{\mu}^{MLE}$ is the global max point of $\mathcal{L}(\mu)$. And, of course, we know that in this model

$$\hat{\mu}^{MLE} = \overline{X}.$$

Step 2: Now, we calculate the LR:

$$LR = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

We can write

$$\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu) = \mathcal{L}\Big(\hat{\mu}^{\textit{MLE}}\Big),$$

since, by the very definition, $\hat{\mu}^{MLE}$ is the global max point of $\mathcal{L}(\mu)$. And, of course, we know that in this model

$$\hat{\mu}^{MLE} = \overline{X}.$$

Plugging the obtained into the LR formula, we will obtain:

$$LR = \frac{\mathcal{L}(\mu_0)}{\mathcal{L}(\overline{X})} =$$

Step 2: Now, we calculate the LR:

$$LR = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

We can write

$$\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu) = \mathcal{L}(\hat{\mu}^{\textit{MLE}}),$$

since, by the very definition, $\hat{\mu}^{MLE}$ is the global max point of $\mathcal{L}(\mu)$. And, of course, we know that in this model

$$\hat{\mu}^{MLE} = \overline{X}.$$

Plugging the obtained into the LR formula, we will obtain:

$$LR = rac{\mathcal{L}(\mu_0)}{\mathcal{L}(\overline{X})} = rac{e^{-rac{1}{2\sigma^2}\cdot\sum_{k=1}^n(X_k-\mu_0)^2}}{e^{-rac{1}{2\sigma^2}\cdot\sum_{k=1}^n(X_k-\overline{X})^2}} =$$

Step 2: Now, we calculate the LR:

$$LR = \frac{\sup_{\mu = \mu_0} \mathcal{L}(\mu)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)} = \frac{\mathcal{L}(\mu_0)}{\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu)}$$

We can write

$$\sup_{\mu \in \mathbb{R}} \mathcal{L}(\mu) = \mathcal{L}(\hat{\mu}^{\textit{MLE}}),$$

since, by the very definition, $\hat{\mu}^{MLE}$ is the global max point of $\mathcal{L}(\mu)$. And, of course, we know that in this model

$$\hat{\mu}^{MLE} = \overline{X}.$$

Plugging the obtained into the LR formula, we will obtain:

$$LR = \frac{\mathcal{L}(\mu_0)}{\mathcal{L}(\overline{X})} = \frac{e^{-\frac{1}{2\sigma^2} \cdot \sum_{k=1}^{n} (X_k - \mu_0)^2}}{e^{-\frac{1}{2\sigma^2} \cdot \sum_{k=1}^{n} (X_k - \overline{X})^2}} = e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2}$$

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} =$$

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} = \{e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2} \le c\}$$

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} = \{e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2} \le c\}$$

which is equivalent to

$$-\frac{n}{2\sigma^2}\cdot(\overline{X}-\mu_0)^2\leq \ln c$$

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} = \{e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2} \le c\}$$

which is equivalent to

$$-\frac{n}{2\sigma^2}\cdot(\overline{X}-\mu_0)^2\leq \ln c$$

This is equivalent to

$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge \sqrt{-2 \ln c} =: C$$

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} = \{e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2} \le c\}$$

which is equivalent to

$$-\frac{n}{2\sigma^2}\cdot(\overline{X}-\mu_0)^2\leq \ln c$$

This is equivalent to

$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge \sqrt{-2 \ln c} =: C$$

But this is exactly

where Z is our Z-Test Statistics. So we have arrived at our GOF Z-Test!

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} = \{e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2} \le c\}$$

which is equivalent to

$$-\frac{n}{2\sigma^2}\cdot(\overline{X}-\mu_0)^2\leq \ln c$$

This is equivalent to

$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge \sqrt{-2 \ln c} =: C$$

But this is exactly

where Z is our Z-Test Statistics. So we have arrived at our GOF Z-Test! And, in particular, we know that value of C: C =

Step 3: Our *RR* is (*c* will be calculated later)

$$RR = \{LR \le c\} = \{e^{-\frac{n}{2\sigma^2} \cdot (\overline{X} - \mu_0)^2} \le c\}$$

which is equivalent to

$$-\frac{n}{2\sigma^2}\cdot(\overline{X}-\mu_0)^2\leq \ln c$$

This is equivalent to

$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge \sqrt{-2 \ln c} =: C$$

But this is exactly

where Z is our Z-Test Statistics. So we have arrived at our GOF Z-Test! And, in particular, we know that value of C: $C = z_{1-\alpha/2}$.

Log-Likelihood Ratio, its Distribution

Sometimes Statisticians use the Log-Laikelihood Ratio to obtain the LRT: the quantity

$$-2 \cdot \ln LR = -2 \cdot \Big(\ln \big(\sup_{\theta \in \Theta_0} \mathcal{L}(\theta) \big) - \ln \big(\sup_{\theta \in \Theta} \mathcal{L}(\theta) \big) \Big).$$

Log-Likelihood Ratio, its Distribution

Sometimes Statisticians use the Log-Laikelihood Ratio to obtain the LRT: the quantity

$$-2 \cdot \ln LR = -2 \cdot \Big(\ln \big(\sup_{\theta \in \Theta_0} \mathcal{L}(\theta) \big) - \ln \big(\sup_{\theta \in \Theta} \mathcal{L}(\theta) \big) \Big).$$

The first reason is that it is easy to "translate" the Rejection Region into the one using the Log-Likelihood Ratio:

$$LR \le c$$
 is equivalent to $-2 \cdot \ln LR \ge -2 \ln c = c'$.

$$-2 \cdot \ln LR = -2 \cdot \Big(\ln \big(\sup_{\theta \in \Theta_0} \mathcal{L}(\theta) \big) - \ln \big(\sup_{\theta \in \Theta} \mathcal{L}(\theta) \big) \Big).$$

The first reason is that it is easy to "translate" the Rejection Region into the one using the Log-Likelihood Ratio:

$$LR \le c$$
 is equivalent to $-2 \cdot \ln LR \ge -2 \ln c = c'$.

And, it is much easier to deal with $\ln LR$, since LR is, in some sense, a product of n terms, so the logarithm will have a form of a sum.

$$-2 \cdot \ln LR = -2 \cdot \Big(\ln \big(\sup_{\theta \in \Theta_0} \mathcal{L}(\theta) \big) - \ln \big(\sup_{\theta \in \Theta} \mathcal{L}(\theta) \big) \Big).$$

The first reason is that it is easy to "translate" the Rejection Region into the one using the Log-Likelihood Ratio:

$$LR \le c$$
 is equivalent to $-2 \cdot \ln LR \ge -2 \ln c = c'$.

And, it is much easier to deal with $\ln LR$, since LR is, in some sense, a product of n terms, so the logarithm will have a form of a sum.

The other important reason (and the reason to have -2 in front) is that, under some conditions on the PD(M)F, the Asymptotic Distribution of $-2 \cdot \ln LR$ under the Null Hypothesis is

$$-2 \cdot \ln LR = -2 \cdot \Big(\ln \big(\sup_{\theta \in \Theta_0} \mathcal{L}(\theta) \big) - \ln \big(\sup_{\theta \in \Theta} \mathcal{L}(\theta) \big) \Big).$$

The first reason is that it is easy to "translate" the Rejection Region into the one using the Log-Likelihood Ratio:

$$LR \le c$$
 is equivalent to $-2 \cdot \ln LR \ge -2 \ln c = c'$.

And, it is much easier to deal with $\ln LR$, since LR is, in some sense, a product of n terms, so the logarithm will have a form of a sum.

The other important reason (and the reason to have -2 in front) is that, under some conditions on the PD(M)F, the Asymptotic Distribution of $-2 \cdot \ln LR$ under the Null Hypothesis is $\chi^2(\nu)$, where

Sometimes Statisticians use the Log-Laikelihood Ratio to obtain the LRT: the quantity

$$-2 \cdot \ln LR = -2 \cdot \Big(\ln \big(\sup_{\theta \in \Theta_0} \mathcal{L}(\theta) \big) - \ln \big(\sup_{\theta \in \Theta} \mathcal{L}(\theta) \big) \Big).$$

The first reason is that it is easy to "translate" the Rejection Region into the one using the Log-Likelihood Ratio:

$$LR \le c$$
 is equivalent to $-2 \cdot \ln LR \ge -2 \ln c = c'$.

And, it is much easier to deal with $\ln LR$, since LR is, in some sense, a product of n terms, so the logarithm will have a form of a sum.

The other important reason (and the reason to have -2 in front) is that, under some conditions on the PD(M)F, the Asymptotic Distribution of $-2 \cdot \ln LR$ under the Null Hypothesis is $\chi^2(\nu)$, where

$$\nu = \dim \Theta - \dim \Theta_0,$$

and dim Θ and dim Θ_0 are the numbers of Free Parameters under Θ and Θ_0 , respectively.

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0: \ \mu = \mu_0 \quad vs \quad \mathcal{H}_1: \ \mu \neq \mu_0$$

and σ is given,

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

and σ is given, then under \mathcal{H}_0 we do not have any Free Parameters (the only Parameter is μ , but under \mathcal{H}_0 the value of μ is fixed, $\mu = \mu_0$).

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

and σ is given, then under \mathcal{H}_0 we do not have any Free Parameters (the only Parameter is μ , but under \mathcal{H}_0 the value of μ is fixed, $\mu = \mu_0$). So dim $\Theta_0 = 0$.

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

and σ is given, then under \mathcal{H}_0 we do not have any Free Parameters (the only Parameter is μ , but under \mathcal{H}_0 the value of μ is fixed, $\mu=\mu_0$). So dim $\Theta_0=0$. Under \mathcal{H}_1 , μ is our only Free Parameter, so dim $\Theta=1$.

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

and σ is given, then under \mathcal{H}_0 we do not have any Free Parameters (the only Parameter is μ , but under \mathcal{H}_0 the value of μ is fixed, $\mu=\mu_0$). So dim $\Theta_0=0$. Under \mathcal{H}_1 , μ is our only Free Parameter, so dim $\Theta=1$. Thus,

$$df = \nu = \dim \Theta - \dim \Theta_0 = 1,$$

and

$$-2 \cdot \ln LR \approx \chi^2(1)$$
.

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

and σ is given, then under \mathcal{H}_0 we do not have any Free Parameters (the only Parameter is μ , but under \mathcal{H}_0 the value of μ is fixed, $\mu=\mu_0$). So dim $\Theta_0=0$. Under \mathcal{H}_1 , μ is our only Free Parameter, so dim $\Theta=1$. Thus,

$$df = \nu = \dim \Theta - \dim \Theta_0 = 1,$$

and

$$-2 \cdot \ln LR \approx \chi^2(1)$$
.

In fact, it is easy to calculate in this case, for the Normal Model with given σ , that exactly

$$-2 \cdot \ln LR \sim \chi^2(1)$$
.

For example, if we are Testing for the $\mathcal{N}(\mu, \sigma^2)$ Model

$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

and σ is given, then under \mathcal{H}_0 we do not have any Free Parameters (the only Parameter is μ , but under \mathcal{H}_0 the value of μ is fixed, $\mu=\mu_0$). So dim $\Theta_0=0$. Under \mathcal{H}_1 , μ is our only Free Parameter, so dim $\Theta=1$. Thus,

$$df = \nu = \dim \Theta - \dim \Theta_0 = 1,$$

and

$$-2 \cdot \ln LR \approx \chi^2(1)$$
.

In fact, it is easy to calculate in this case, for the Normal Model with given σ , that exactly

$$-2 \cdot \ln LR \sim \chi^2(1)$$
.

And having this Distribution, we can find the Rejection Region using

$$\mathbb{P}(\text{Reject }\mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}) = \mathbb{P}(-2 \ln LR \geq c') = \alpha.$$

When Testing a Hypothesis, at a Significance Level α , we can make the Decision in 3 ways:

When Testing a Hypothesis, at a Significance Level α , we can make the Decision in 3 ways:

▶ Based on the Test Statistics TS and the Rejection Region RR: if TS ∈ RR, then we Reject Null Hypothesis, othewise, we Fail to Reject Null;

When Testing a Hypothesis, at a Significance Level α , we can make the Decision in 3 ways:

- ▶ Based on the Test Statistics TS and the Rejection Region RR: if TS ∈ RR, then we Reject Null Hypothesis, othewise, we Fail to Reject Null;
- ▶ Based on the Confidence Interval *CI* for the Parameter: if θ is our Parameter, (L, U) is a CI of (1α) -level for θ , and our Null is \mathcal{H}_0 : $\theta = \theta_0$, then we Reject Null if and only if $\theta_0 \notin (L, U)$;

When Testing a Hypothesis, at a Significance Level α , we can make the Decision in 3 ways:

- ▶ Based on the Test Statistics TS and the Rejection Region RR: if TS ∈ RR, then we Reject Null Hypothesis, othewise, we Fail to Reject Null;
- ▶ Based on the Confidence Interval *CI* for the Parameter: if θ is our Parameter, (L, U) is a CI of (1α) -level for θ , and our Null is \mathcal{H}_0 : $\theta = \theta_0$, then we Reject Null if and only if $\theta_0 \notin (L, U)$;
- ▶ Based on the *p*-Value: if $p < \alpha$, Reject Null, otherwise, Fail to Reject.

When Testing a Hypothesis, at a Significance Level α , we can make the Decision in 3 ways:

- ▶ Based on the Test Statistics TS and the Rejection Region RR: if TS ∈ RR, then we Reject Null Hypothesis, othewise, we Fail to Reject Null;
- ▶ Based on the Confidence Interval *CI* for the Parameter: if θ is our Parameter, (L, U) is a CI of (1α) -level for θ , and our Null is \mathcal{H}_0 : $\theta = \theta_0$, then we Reject Null if and only if $\theta_0 \notin (L, U)$;
- ▶ Based on the *p*-Value: if $p < \alpha$, Reject Null, otherwise, Fail to Reject.

Note: When doing Tests, say, with t.test, \mathbf{R} is calculating the p-Value, and sometimes also the CI. So, to decide whether to Reject Null or Not, using \mathbf{R} , you can use the 2nd and 3rd Methods.

Now, about the p-Value.

Now, about the p-Value. Assume we are Testing a Hypothesis

$$\mathcal{H}_0$$
 vs \mathcal{H}_1

based on the Test Statistics TS.

Now, about the p-Value. Assume we are Testing a Hypothesis

$$\mathcal{H}_0$$
 vs \mathcal{H}_1

based on the Test Statistics TS. Assume we already have Observations, and we calculate the value of TS, let us denote that by TS_{obs} (this is just a number).

Now, about the p-Value. Assume we are Testing a Hypothesis

$$\mathcal{H}_0$$
 vs \mathcal{H}_1

based on the Test Statistics TS. Assume we already have Observations, and we calculate the value of TS, let us denote that by TS_{obs} (this is just a number). We know that, for a given Significance Level α , we will Reject \mathcal{H}_0 , iff TS_{obs} will be in the RR.

Now, assume the Distribution of TS, our Test Statistics, **under** \mathcal{H}_0 , is given like this (I am drawing for Z- or t-Statistics, for Two Tailed Test, the other cases can be considered in a similar way):

Let us take a Significance Level $a \in (0,1)$:

Let us take a Significance Level $a \in (0,1)$:

Let us take a Significance Level $a \in (0,1)$:

We Reject \mathcal{H}_0 at the level a

Now, let us change our Significance Level to b < a:

Now, let us change our Significance Level to b < a:

Now, let us change our Significance Level to b < a:

We Do Not Reject \mathcal{H}_0 at the level b

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$.

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$. And, similarly, if we Fail to Reject at the level β , then we also will Fail to Reject at any level $\beta' \leq \beta$.

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$. And, similarly, if we Fail to Reject at the level β , then we also will Fail to Reject at any level $\beta' \leq \beta$.

Then we will have a point $\alpha^* \in (0,1)$ such that

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$. And, similarly, if we Fail to Reject at the level β , then we also will Fail to Reject at any level $\beta' \leq \beta$.

Then we will have a point $\alpha^* \in (0,1)$ such that

▶ We Reject \mathcal{H}_0 for any $\alpha > \alpha^*$

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$. And, similarly, if we Fail to Reject at the level β , then we also will Fail to Reject at any level $\beta' \leq \beta$.

Then we will have a point $\alpha^* \in (0,1)$ such that

- We Reject \mathcal{H}_0 for any $\alpha > \alpha^*$
- ▶ We Fail to Reject \mathcal{H}_0 for any $\alpha < \alpha^*$

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$. And, similarly, if we Fail to Reject at the level β , then we also will Fail to Reject at any level $\beta' \leq \beta$.

Then we will have a point $lpha^* \in (0,1)$ such that

- ▶ We Reject \mathcal{H}_0 for any $\alpha > \alpha^*$
- ▶ We Fail to Reject \mathcal{H}_0 for any $\alpha < \alpha^*$

Note: Give here the real line with picture, MP!

Now, it is clear that, having our Observed Test Statistics TS_{obs} , we will Reject our Null for some large values of α , but Fail to Reject for very small values of α .

Also, clearly, if we are Rejecting Null at the level α , then we will Reject also at any level $\alpha' \geq \alpha$. And, similarly, if we Fail to Reject at the level β , then we also will Fail to Reject at any level $\beta' \leq \beta$.

Then we will have a point $lpha^* \in (0,1)$ such that

- ▶ We Reject \mathcal{H}_0 for any $\alpha > \alpha^*$
- ▶ We Fail to Reject \mathcal{H}_0 for any $\alpha < \alpha^*$

Note: Give here the real line with picture, MP!

Now, we denote $p = \alpha^*$ and call it the p-Value of the Test:

p-Value = p = inf{ α : we Reject \mathcal{H}_0 at level α }.

 $\emph{p}\text{-Value},$ the inf value of α at which we Reject \mathcal{H}_0

It is clear from the Figure above that

$$p$$
-Value = $p = \mathbb{P}(|TS| > TS_{obs} | \mathcal{H}_0 \text{ is True}).$

It is clear from the Figure above that

$$p$$
-Value = $p = \mathbb{P}(|TS| > TS_{obs} \mid \mathcal{H}_0 \text{ is True}).$

In words, p-Value is the Probability, under the Null Hypothesis, that we will have a value of Test Statistics TS as extreme as the Observed one.

It is clear from the Figure above that

$$p$$
-Value = $p = \mathbb{P}(|TS| > TS_{obs} \mid \mathcal{H}_0 \text{ is True}).$

In words, p-Value is the Probability, under the Null Hypothesis, that we will have a value of Test Statistics TS as extreme as the Observed one. I.e., p-Value is measuring somehow how extreme is our Observed Test Statistics TS_{obs} under \mathcal{H}_0 .

It is clear from the Figure above that

$$p$$
-Value = $p = \mathbb{P}(|TS| > TS_{obs} \mid \mathcal{H}_0 \text{ is True}).$

In words, p-Value is the Probability, under the Null Hypothesis, that we will have a value of Test Statistics TS as extreme as the Observed one. I.e., p-Value is measuring somehow how extreme is our Observed Test Statistics TS_{obs} under \mathcal{H}_0 .

And, if p-Value is small, then TS_{obs} is very unprobable, very unbelievable, under \mathcal{H}_0 , so we safely Reject \mathcal{H}_0 .

It is clear from the Figure above that

$$p$$
-Value = $p = \mathbb{P}(|TS| > TS_{obs} \mid \mathcal{H}_0 \text{ is True}).$

In words, p-Value is the Probability, under the Null Hypothesis, that we will have a value of Test Statistics TS as extreme as the Observed one. I.e., p-Value is measuring somehow how extreme is our Observed Test Statistics TS_{obs} under \mathcal{H}_0 .

And, if p-Value is small, then TS_{obs} is very unprobable, very unbelievable, under \mathcal{H}_0 , so we safely Reject \mathcal{H}_0 .

To Remember:

- ▶ If p-Value< α , then we Reject \mathcal{H}_0
- ▶ If p-Value $\geq \alpha$, then we Fail to Reject \mathcal{H}_0

```
R Code for the Graphics
   df <- 8;
   x \leftarrow seq(-4,4,0.1); y \leftarrow dt(x, df = df)
   plot.new()
   plot.window(xlim = c(-4, 4), ylim = c(-0.05, 0.4))
   plot(x,y, type="l",col="blue",lwd=2,xaxt="n",yaxt="n",
         bty="n",xlab="",ylab="")
   abline(h=0)
   title("Distribution of TS, with RR, siglev=a ")
   gpoint <- 1.5; tspoint <- 1.7</pre>
    cord.x \leftarrow c(qpoint, seq(qpoint, 4, 0.01), 4)
    cord.y \leftarrow c(0,dt(seq(qpoint,4,0.01), df=df),0)
   polygon(cord.x,cord.y,col='skyblue')
   points(c(qpoint), c(0), pch=20, cex=1.4)
    text(c(qpoint-0.38), c(0.01), labels=expression("q"[1-a/2]))
   cord.x1 \leftarrow c(-4, seq(-4, -qpoint, 0.01), -qpoint)
    cord.y1 \leftarrow c(0,dt(seq(-4,-qpoint,0.01), df=df),0)
   polygon(cord.x1,cord.y1,col='skyblue')
   points(c(-qpoint), c(0), pch=20, cex=1.4)
   text(c(-qpoint+0.4), c(0.01), labels=expression("-q"[1-a/2]))
   points(c(tspoint), c(0), col="red", pch=19, cex=1.4)
```

text(c(tspoint), c(0.02), labels = expression("TS"[obs]))

Example: Assume we have an observation from $\mathcal{N}(\mu, 3^2)$, and we want to Test

$$\mathcal{H}_0: \ \mu = 1.2 \quad \textit{vs} \quad \mathcal{H}_1: \ \mu \neq 1.2.$$

Example: Assume we have an observation from $\mathcal{N}(\mu, 3^2)$, and we want to Test

$$\mathcal{H}_0: \ \mu = 1.2$$
 vs $\mathcal{H}_1: \ \mu \neq 1.2.$

So we will do a Z-Test.

Example: Assume we have an observation from $\mathcal{N}(\mu, 3^2)$, and we want to Test

$$\mathcal{H}_0: \ \mu = 1.2$$
 vs $\mathcal{H}_1: \ \mu \neq 1.2$.

So we will do a Z-Test. Assume that after plugging our observations into the Z-Statistics, we get

$$Z_{obs} = 1.72.$$

Example: Assume we have an observation from $\mathcal{N}(\mu, 3^2)$, and we want to Test

$$\mathcal{H}_0: \ \mu = 1.2 \quad \textit{vs} \quad \mathcal{H}_1: \ \mu \neq 1.2.$$

So we will do a Z-Test. Assume that after plugging our observations into the Z-Statistics, we get

$$Z_{obs} = 1.72.$$

Then, the p-Value of the Test is

$$p ext{-Value} = \mathbb{P}(|Z| > Z_{obs} \mid ext{Null is True}) = \mathbb{P}ig(|Z| > 1.72 \mid Z \sim \mathcal{N}(0,1)ig)$$

Example: Assume we have an observation from $\mathcal{N}(\mu, 3^2)$, and we want to Test

$$\mathcal{H}_0: \ \mu = 1.2 \quad \textit{vs} \quad \mathcal{H}_1: \ \mu \neq 1.2.$$

So we will do a Z-Test. Assume that after plugging our observations into the Z-Statistics, we get

$$Z_{obs} = 1.72.$$

Then, the p-Value of the Test is

$$\textit{p\text{-Value}} \!=\! \mathbb{P}(|Z| \!>\! Z_{obs} \mid \mathsf{Null is True}) = \mathbb{P}\!\left(|Z| \!>\! 1.72 \mid Z \!\sim\! \mathcal{N}(0,1)\right)$$

and the value of $p ext{-Value}$ is $\ddot{-}$

[1] 0.08543244