FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze

Úloha #4

Poissonova konstanta a měření dutých objemů

Datum měření: 6.12.2013 Skupina: 7

Jméno: David Roesel Kroužek: ZS 5

Spolupracovala: Tereza Schönfeldová Klasifikace:

1 Pracovní úkoly

1.1 Měření dutých objemů vážením a kompresí plynu

- 1. Jednolitrovou láhev zvažte prázdnou.
- 2. Jednolitrovou láhev zvažte plnou vody.
- 3. Z obou výsledků určete objem lahve.
- 4. Objem prázdné jednolitrové lahve určete kompresí plynu.
- 5. Stejným postupem změřte objem hadičky spojující byretu s měřeným prostorem. Tuto hodnotu odečtěte od výsledku podle bodu 4.

1.2 Měření Poissonovy konstanty vzduchu

- 1. Změřte kompresí plynu objem baňky systému s kmitajícím pístkem.
- 2. Změřte Poissonovu konstantu metodou adiabatické expanze a současně metodou kmitajícího pístku.
- 3. Oba výsledky porovnejte. Výsledek metody kmitajícího pístku považujte za tabulkovou hodnotu Poissonovy konstanty.

2 Vypracování

2.1 Použité přístroje

2.1.1 Měření dutých objemů vážením a kompresí plynu

Měřený objem (láhev s kohoutem), speciální plynová byreta s porovnávacím ramenem, katetometr, váhy, teploměr, voda.

2.1.2 Měření Poissonovy konstanty vzduchu

Teploměr, skleněná báň se dvěma kohouty, otevřený manometr, gumový měch, stopky s optickou branou, systém s pumpou a kmitajícím pístkem.

2.2 Teoretický úvod

2.2.1 Měření objemu vážením

Zajímá nás vnitřní objem nádoby, který zjistíme jeho vyplněním kapalinou o známé hustotě - v našem případě vodou. Nádobu následně zvážíme naplněnou a prázdnou a pro vnitřní objem bude platit následující vztah

$$V = \frac{m_v}{\rho_v} = m_v V_v,\tag{1}$$

kde m_v je hmotnost vody, ρ_v její hustota a V_v objem jednoho gramu vody. Ten získáme pomocí vztahu

$$V_v = 0.9998(1 + 0.00018t) \left[\frac{cm^3}{g}, {}^{\circ}C \right], \tag{2}$$

ve kterém je t teplota vody.

2.2.2 Měření objemu kompresí plynu

V případě, že se nedá měřit objem vážením, můžeme volit metodu využívající plynu. Pomocí speciální aparatury sestavené podle Obr. 1 vyrovnáme hladiny vody v byretě a pomocné trubici (za působení atmosferického tlaku) a následně ramenu, které vede do měřeného objemu (byretou), zavřeme vnější ventil. Tím, že poté natlakujeme spodní nádrž s vodou, zvýšíme tlak na měřený objem a ten se zmenší z původní hodnoty V_0 na novou hodnotu V_1 . Tlaky v kapalině se musí vyrovnávat, takže z rozdílu hladin v obou trubicích Δh můžeme určit změnu tlaku uvnitř měřené nádoby Δp v porovnání s původním (atmosferickým) tlakem p. Z Boyle-Mariottova zákona dostáváme vzorec

$$V = (V_0 - V_1) \frac{p}{\Delta p},\tag{3}$$

kde Δp určíme ze vztahu

$$V = \Delta h \rho_v g. \tag{4}$$

Ještě nedefinovanými veličinami jsou hustota vody ρ_v a gravitační zrychlení g.

2.2.3 Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou

V následujících dvou měřeních je hlavním úkolem změření tzv. Poissonovy konstanty vzduchu, která je definována jako poměr měrných tepel při konstantním tlaku C_p a konstantním objemu C_v , tedy jako

$$\varkappa = \frac{C_p}{C_v}. (5)$$

Jednou z nejjednodušších metod určení této konstanty je metoda Clémentova-Désormesova. V aparatuře k této metodě (viz Obr. 2) je nádoba pod atmosferickým tlakem b a je k ní připojen manometr s vodou. Tím, že balónkem zvýšíme tlak v nádobě z původních b na novou hodnotu p_1 , vytvoříme rozdíl hladin v manometru Δh . Krátkým stisknutím ventilku na nádobě následně umožníme plynu adiabaticky expandovat, čímž se zvýší objem z V_1 na V_2 a sníží se teplota. Tlak se tím zároveň opět vrátí na původní hodnotu b, ale při následném izochorickém oteplování vzroste na p_2 a na manometru bude pozorovatelný jiný rozdíl hladin $\Delta h'$. Během tohoto izotermického děje platí

$$\frac{p_1}{p_2} = \frac{V_2}{V_1} \tag{6}$$

a (za předpokladu, že je vzduch ideálním plynem) pro adiabatický děj také

$$\frac{p_1}{b} = \left(\frac{V_1}{V_2}\right)^{\varkappa}.\tag{7}$$

Za předpokladu, že je h mnohem menší než b, můžeme po dosazení těchto rovnic do sebe použít rozvoj pro logaritmus a odvodit finální vzorec

$$\varkappa = \frac{\Delta h}{\Delta h - \Delta h'}.\tag{8}$$

Tento výpočet by byl přesný v případě okamžité změny objemu při zmáčknutí pístu. Toho ale reálně nejde dosáhnout, a tak pro získání hodnoty v nule musíme lineárně extrapolovat do nuly závislost změřené Poissonovy konstanty \varkappa na době t, po jakou byl píst otevřen.

2.2.4 Měření Poissonovy konstanty vzduchu metodou kmitajícího pístku

Poissonovu konstantu můžeme ještě přesněji změřit pomocí metody kmitajícího pístku. Máme-li nádobu, do které přivádíme plyn a na kterou je ze shora namontována trubice s pístkem a bočním otvorem (tak jako na Obr. 3), můžeme zvýšením tlaku v nádobě donutit pístek ke stoupání. Jakmile se dostane nad otvor, bude otvorem plyn unikat a tlak v soustavě opět klesne, čímž bude pístku umožněno klesnout zpět pod otvor. Vhodným nastavením aparatury můžeme donutit pístek ke kmitání kolem otvoru a pomocí senzoru měřit periodu jeho kmitů. Pro Poissonovu konstantu potom bude platit

$$\varkappa = \frac{4mV}{T^2pr^4}, \qquad p = b + \frac{mg}{\pi r^2},\tag{9}$$

kde m je hmotnost pístku, V objem nádoby, T perioda kmitů, p tlak v nádobě, b je atmosferický tlak, r poloměr pístku a g tíhové zrychlení.

2.3 Postup měření

2.3.1 Měření objemu vážením

Před začátkem celého měření jsme z teploměru odečetli teplotu v praktiku. Z měřené láhve jsme nejdříve vylili vodu, která v ní byla, a pokusili se ji osušit. Následně jsme ji třikrát zvážili (i s víčkem) a zaznamenali hodnoty. Po měření objemu kompresí plynu (viz další měření) jsme pak lahev naplnili vodou z kohoutku a to až po vrchní okraj víčka. Lahev jsme následně znovu třikrát zvážili.

2.3.2 Měření objemu kompresí plynu

Aparatura k tomuto pokusu již byla sestavena (viz Obr. 1). K byretě jsme pomocí hadice připojili lahev z minulého měření a měřili podle následujícího postupu:

- Se zavřeným ventilem 5 na tlakovači a otevřeným horním ventilem 6 vyrovnáme pomocí balónku hladiny v tubici a byretě.
- 2. Zaznamenáme si objem V_0 a nastavíme katetometr na předpokládanou výšku hladiny v trubici.
- 3. Uzavřeme ventil 6 a zvyšujeme pomocí balónku tlak v soustavě tak, aby se objem změnil z V_0 na V_1 .
- 4. Katetometrem odečteme co nejrychleji po sobě hodnoty výšky hladiny h_1 a h_2 v trubici a byretě.
- 5. Z byrety odečteme nový objem V_1 a otevřením ventilu 5 snížíme tlak i hladiny v obou trubicích.
- 6. Předchozí kroky opakujeme desetkrát pro láhev a desetkrát pro lahvičku s uzavřeným hrdlem.

2.3.3 Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou

Aparatura již byla sestavena v podobě nádoby se dvěma ventily a připojeným manometrem (viz Obr. 2). Při vlastním měření jsme postupovali následovně:

- 1. Se zavřeným ventilem K a s otevřeným K' zvýšíme pomocí balónku tlak v nádobě.
- 2. Uzavřeme první ventil, necháme chvíli ustálit hladiny v manometru a odečteme jejich hodnoty.
- 3. Krátce otevřeme ventil K a necháme plyn adiabaticky expandovat.

- 4. Zaznamenáme dobu otevření ventilu z optického senzoru.
- 5. Se zavřenými ventily opět necháme ustálit hladiny v manometru a odečteme jejich hodnoty.
- 6. Předchozí kroky opakujeme, dokud nezískáme deset měření.

2.3.4 Měření Poissonovy konstanty vzduchu metodou kmitajícího pístku

Aparatura již byla sestavena (viz Obr. 3), zbývalo jen zapnout čítač kmitů a pumpu, která zvyšovala tlak v nádobě. Zvyšování tlaku jsme upravili tak, aby pístek kmital kolem otvoru v trubici a více než desetkrát jsme změřili, kolikrát kmitne za dobu pěti minut. Z dokumentů na místě jsme zjistili konstanty potřebné k výpočtu, včetně objemu nádoby z tohoto úkolu, který jsme tím pádem neměřili. Toto měření jsme prováděli během všech ostatních, jelikož nevyžadovalo stálou pozornost. Dávali jsme si také pozor, aby amplituda pístku neklesla pod senzor a nepřišli jsme tak o nějaké kmity.

Obr. 1: Schéma aparatury pro měření objemů kompresí plynů (1-byreta, 2-trubice, 3-balónek, 5-ventil na tlakovači a 6-ventil na byretě). [6]

Obr. 2: Schéma Clémentova-Désormesova přístroje pro určení \varkappa .[2]

Obr. 3: Schéma aparatury pro měření \varkappa metodou kmitajícího pístku (1-nádoba, 3-otvor, 4-pístek, 8-pumpa). [3]

2.4 Naměřené hodnoty

2.4.1 Měření objemu vážením

Naměřené hodnoty hmotností jsou v Tab. 1. Hmotnost prázdné lahve (s našroubovaným víčkem) jsme určili jako $m_1 = (573,24 \pm 0,01)$ g, hmotnost plné lahve pak jako $m_2 = (1564 \pm 1)$ g. Z teploměru v praktiku jsme během měření odečetli hodnotu $t = (23,0 \pm 0,5)$ °C s chybou poloviny nejmenšího dílku. Z teploty jsme určili pomocí (2)

i s chybou (5.4) objem jednoho gramu vody jako $V_v = (1,0039 \pm 0,0001) \text{ cm}^3$ a z toho pak pomocí (1) i s chybou (5.4) celkový objem lahve jako

$$V_{vazeni} = (995 \pm 1) \text{ cm}^3.$$
 (10)

	m_1 [g]	σ_{m_1} [g]	m_2 [g]	σ_{m_2} [g]
	573,26	0,02	1564	1
	573,24	0,02	1564	1
	573,24	0,02	1564	1
$\overline{m} \pm \sigma_m$	573,25	0,01	1564	1

Tab. 1: Naměřené hodnoty pro měření objemu vážením: m_1 , σ_{m_1} je hmotnost prázdné láhve s chybou (5.2), m_2 , σ_{m_2} pak analogicky pro láhev naplněnou vodou.

2.4.2 Měření objemu kompresí plynu

Naměřené hodnoty pro měření objemu láhve s hadičkou a samotné hadičky jsou vyneseny v Tab. 3 a Tab. 4. Z dokumentů u úlohy jsme si opsali hodnotu odpovídající jednomu dílku byrety jako $\Delta V = 0,656$ cm³. Vzhledem k tomu, že byl barometr v praktiku rozbitý, jsme uvažovali atmosferický tlak (pro tuto i všechny další úlohy) jako $p_A = 1010$ hPa [5]. Hustotu vody jsme určili jako převrácenou hodnotu V_v z předchozí úlohy se stejným způsobem odvozenou chybou $\rho = (0,99608 \pm 0,00009)$ g·cm³. Ze změřených hodnot Δh jsme určili podle (4) s chybou (5.4) změnu tlaku Δp při každém měření a z ní poté vždy ze vztahu (3) objem. Váženým průměrem (5.7) potom dostáváme finální hodnotu objemu láhve s hadičkou V_{l+h} a objemu samotné hadičky V_h jako

$$V_{l+h} = (960.1 \pm 0.7) \text{ cm}^3, \qquad V_h = (26.3 \pm 0.3) \text{ cm}^3.$$
 (11)

Z toho poté odečtením dostáváme i s chybou (5.4) finální hodnotu objemu měřené láhve jako

$$V_{komprese} = (933.8 \pm 0.7) \text{ cm}^3.$$
 (12)

2.4.3 Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou

Naměřené hodnoty jsou uvedeny v Tab. 5. Pro každé měření jsme počítali Poissonovu konstantu \varkappa dle vzorce (8) s chybou (5.4). Následně jsme tyto hodnoty vynesli do grafu na Obr. 4 a lineárním proložením extrapolovali do nuly. Výslednou hodnotu a chybu Poissonovy konstanty jsme tím pádem určili z parametrů fitu jako

$$\varkappa = (1.37 \pm 0.01). \tag{13}$$

2.4.4 Měření Poissonovy konstanty vzduchu metodou kmitajícího pístku

Naměřené hodnoty počtu kmitů a z nich vypočítaných period jsou vyneseny v Tab. 6. Z aritmetického průměru period a z hodnot konstant uvedených v dokumentu u úlohy (Tab. 2) jsme následně podle (9) spočítali i s chybou (5.4) Poissonovu konstantu jako

$$\varkappa = (1,387 \pm 0,001). \tag{14}$$

2.5 Diskuse

2.5.1 Měření objemu vážením

Tato metoda určení objemu byla z námi vyzkoušených dvou přesnější s hodnotou $V_{vazeni} = (995 \pm 1) \text{ cm}^3$. Chyby při měření mohly ale nastat tím, že láhev nebyla před vážením naprázdno zcela suchá, jelikož jsme z ní museli vylévat vodu. Při druhém vážení (když byla láhev plná) se nám zase nepodařilo dostat z objemu všechny bublinky vzduchu a láhev nebyla zcela suchá na povrchu. Žádný z těchto jevů by však neměl hodnotu ovlivnit příliš.

b [hPa]	m [kg]	r [m]	$g [m/s^2]$	V [1]	p [hPa]
1010	0,00459	0,00595	9,81	0,00113	1014,05

Tab. 2: Konstanty nejen z dokumentů u úlohy: m je hmotnost pístku, V objem nádoby, r poloměr pístku, g tíhové zrychlení, b námi používaný atmosferický tlak a p z toho spočítaný tlak v nádobě.

2.5.2 Měření objemu kompresí plynu

Tato metoda nám sice dala hodnotu s menší statistickou chybou $V_{komprese} = (933.8 \pm 0.7) \ \mathrm{cm}^3$ než metoda předchozí, není ale pochyb, že byla značně ovlivněna systematickými chybami. Při odečítání výšky hladin jsme si sice velmi dobře procvičili používání katetometru, ale vzhledem k tomu, jak dlouho trvá přesun pohledu z hladiny v trubici na hladinu v byretě, se dá říci, že téměř nemá smysl určovat jejich výšky s takovou přesností. Měření by se dalo zlepšit použitím dvou katetometrů a sledováním obou hladin najednou, lepším utěsněním systému, aby hladiny neklesaly tak rychle, a nakonec měřením objemu na přesnějším měřítku. Řádově ale hodnota odpovídá odhadu a měření můžeme prohlásit za úspěšné.

2.5.3 Měření Poissonovy konstanty vzduchu Clémentovou-Désormesovou metodou

Touto metodou jsme se dobrali k výsledku $\varkappa=(1,37\pm0,01)$, který jsme finálně získali lineární extrapolací naměřené závislosti a jeho hodnota je velmi podobná té z následujícího měření, kterou bereme jako tabulkovou. K největším nepřesnostem došlo u této metody při měření času, po který byl otevřen horní ventil. Opakovaně se nám totiž stalo, že jsme ho zmáčkli (aniž bychom zakrývali senzor) a i přesto, že bylo slyšet unikající vzduch a že se změnily hladiny v manometru, senzor ukazoval nulový čas. Měření by šlo zpřesnit použitím lepšího senzoru otevření ventilu. Netěsnost aparatury byla, například v porovnání s první úlohou, zanedbatelná.

2.5.4 Měření Poissonovy konstanty vzduchu metodou kmitajícího pístku

Toto měření bylo z našich dvou metod přesnější a dalo nám hodnotu $\varkappa = (1,387 \pm 0,001)$. Po počátečních problémech s nestálostí amplitudy pístku se velikost jeho kyvů ustálila a měření probíhalo bez problémů. Patrný nebyl ani zdroj výrazných systematických chyb, k některým mohlo dojít velikostí použitých konstant.

3 Závěr

Láhev jsme úspěšně zvážili prázdnou a plnou a určili jsme z toho objem lahve na $V_{vazeni} = (995 \pm 1) \text{ cm}^3$. Ten samý objem jsme změřili také kompresí plynu jako $V_{komprese} = (933.8 \pm 0.7) \text{ cm}^3$ a uvedli, proč se hodnoty liší. Objem baňky systému s kmitajícím pístkem jsme neměřili, jelikož byl uveden v dokumentech u úlohy. Poissonovu konstantu jsme následně změřili přesně metodou kmitajícího pístku jako $\varkappa = (1.387 \pm 0.001)$ a s menší přesností pak z oddiskutovaných důvodů Clémentovou-Désormesovou metodou a lineární extrapolací jako $\varkappa = (1.37 \pm 0.01)$.

4 Použitá literatura

- [1] Kolektiv KF, Návod k úloze: Měření dutých objemů vážením a kompresí plynu [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/pluginfile.php/105/mod_resource/content/3/4_Dute_objemy.pdf
- [2] Kolektiv KF, Návod k úloze: Určení Poissonoyy konstanty vzduchu [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/pluginfile.php/106/mod_resource/content/2/4_Poissonova_konstanta.pdf
- [3] Kolektiv KF, Návod k úloze: Měření Poissonovy konstanty kmitajícím pístkem [Online], [cit. 9. února 2014] http://bit.ly/PRAuloha4pistek

- [4] Kolektiv KF, *Chyby měření* [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/documents/chybynav/chyby-o.pdf
- [5] Český hydrometeorologický ústav, *Meteogramy Aladin* [Online], [cit. 9. února 2014] http://bit.ly/AladinMeteogramy
- [6] Kolektiv autorů, *Repozitář zdrojů k praktiku* [Online], [cit. 9. února 2014] http://github.com/roesel/praktika

Část I

Přílohy

5 Domácí příprava

Domácí příprava je přiložena k protokolu.

5.1 Statistické zpracování dat

Pro statistické zpracování využíváme aritmetického průměru:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,\tag{5.1}$$

jehož chybu spočítáme jako

$$\sigma_0 = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2},$$
(5.2)

kde x_i jsou jednotlivé naměřené hodnoty, n je počet měření, \overline{x} aritmetický průměr a σ_0 jeho chyba [4]. Při nepřímém měření počítáme hodnotu s chybou dle následujících vztahů:

$$u = f(x, y, z, \dots), \tag{5.3}$$

$$x = (\overline{x} \pm \sigma_x), \qquad y = (\overline{y} \pm \sigma_y), \qquad z = (\overline{z} \pm \sigma_z), \qquad \dots$$

kde uje veličina, kterou určujeme nepřímo z měřených veličin x,y,z,\dots Pak

$$\overline{u} = f(\overline{x}, \overline{y}, \overline{z}, \ldots),$$

$$\sigma_{u} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2} + \left(\frac{\partial f}{\partial z}\right)^{2} \sigma_{z}^{2} + \dots},$$

$$u = (\overline{u} \pm \sigma_{u}).$$
(5.4)

V případě, že máme několik různě přesných měření stejné veličiny, používáme vztah pro vážený průměr:

$$\bar{x} = \frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i},\tag{5.5}$$

kde \bar{x} je vážený průměr, x_i jsou jednotlivá měření a pro p_i platí

$$p_i = \frac{1}{\sigma_i^2},\tag{5.6}$$

kde σ_i jsou jednotlivé chyby daných měření. Celkovou chybu tedy vypočítáme ze vztahu

$$\sigma_0 = \sqrt{\frac{1}{\sum_{i=1}^{n} p_i}}.$$
(5.7)

5.2 Tabulky a grafy

$h_1 \text{ [mm]}$	$h_2 \text{ [mm]}$	Δp [Pa]	$\sigma_{\Delta p}$ [Pa]	$V_{l+h} [\mathrm{cm}^3]$	$\sigma_{V_{l+h}} [\text{cm}^3]$
175,71	143,77	312,1	0,1	1002	2
176,19	143,47	319,7	0,1	977	2
175,73	144,51	305,1	0,1	1027	2
174,96	141,03	331,5	0,1	940	2
175,58	140,25	345,2	0,1	901	2
175,14	142,47	319,2	0,1	979	2
174,95	141,02	331,5	0,1	940	2
175,65	143,41	315,0	0,1	993	2
175,67	142,28	326,3	0,1	956	2
175,62	140,76	340,6	0,1	913	2

Tab. 3: Naměřené a vypočítané hodnoty při měření objemu láhve s hadičkou kompresí plynu: h_1 a h_2 jsou výšky hladin v trubici a byretě určené s přesností 0,01 mm, Δp , $\sigma_{\Delta p}$ rozdíl tlaků v trubici a byretě se svou chybou (5.4), V_{l+h} a $\sigma_{V_{l+h}}$ finální objem a jeho chyba (5.4). Rozdíl objemů byl pro všechna měření $V_1 - V_0 = (3,3 \pm 0,5)$ cm³ a objem $V_1 = (59,0 \pm 0,3)$ cm³.

Obr. 4: Graf závislosti Poissonovy konstanty \varkappa na době otevření ventilu t a lineární extrapolace do nuly.

h_1' [mm]	h_2' [mm]	$\Delta p'$ [Pa]	$\sigma_{\Delta p'}$ [Pa]	$V_h [{\rm cm}^3]$	$\sigma_{V_h} \ [{\rm cm}^3]$
196,02	124,01	703,6	0,2	32	1
197,06	123,42	719,6	0,2	30	1
196,28	117,95	765,4	0,2	25	1
195,85	113,42	805,5	0,2	21	1
195,95	118,84	753,5	0,2	26	1
195,58	118,72	751,0	0,2	27	1
194,55	117,04	757,4	0,2	26	1
196,16	119,88	745,4	0,2	27	1
196,65	118,68	761,9	0,2	25	1
196,27	118,12	763,6	0,2	25	1

Tab. 4: Naměřené a vypočítané hodnoty při měření objemu hadičky kompresí plynu: h_1' a h_2' jsou výšky hladin v trubici a byretě určené s přesností 0,01 mm, $\Delta p'$, $\sigma_{\Delta p'}$ rozdíl tlaků v trubici a byretě se svou chybou (5.4), V_h a σ_{V_h} finální objem a jeho chyba (5.4). Rozdíl objemů byl pro všechna měření $V_1 - V_0 = (0.7 \pm 0.5)$ cm³ a objem $V_1 = (61.7 \pm 0.3)$ cm³.

h_1 [cm]	h_2 [cm]	h_1' [cm]	h_2' [cm]	$\Delta h \text{ [cm]}$	$\Delta h'$ [cm]	t [s]	ж [-]	σ_{\varkappa} [-]
13,2	32,2	20,3	24,9	19,0	4,6	0,269	1,3	0,2
12,4	32,8	20,1	25,1	20,4	5,0	0,235	1,3	0,2
13,1	32,3	20,2	25,0	19,2	4,8	0,154	1,3	0,2
12,3	33,0	20,3	25,9	20,7	5,6	0,209	1,4	0,2
12,6	32,8	20,1	25,2	20,2	5,1	0,146	1,3	0,2
14,2	31,1	20,5	24,7	16,9	4,2	0,201	1,3	0,2
11,4	33,9	19,8	25,4	22,5	5,6	0,234	1,3	0,2
9,9	35,5	19,2	26,0	25,6	6,8	0,159	1,4	0,2
13,8	31,5	20,3	24,9	17,7	4,6	0,122	1,4	0,2

Tab. 5: Naměřené a vypočítané hodnoty při měření Poissonovy konstanty Clémentovou-Désormesovou metodou: h_1 a h_2 jsou výšky hladin v manometru před otevřením ventilu, h_1' a h_2' pak výšky po něm (všechny 4 jsme určili s přesností na 0,1 cm). Δh , σ_{Δ_h} , $\Delta h'$, $\sigma_{\Delta_h'}$ jsou z nich spočítané rozdíly hladin, \varkappa a σ_\varkappa spočítané hodnoty Poissonovy konstanty (8) s chybou (5.4).

n [-]	T [s]
866	0,346
871	0,344
871	0,344
881	0,341
883	0,340
885	0,339
860	0,349
868	0,346
871	0,344
871	0,344
873	0,344
874	0,343
871	0,344
877	0,342
878	0,342
\overline{T} [s]	0,3435
$\sigma_{\overline{T}}$ [s]	0,0007

Tab. 6: Naměřené a vypočítané hodnoty při měření Poissonovy konstanty metodou kmitajícího pístku: n je počet kmitů pístku za pět minut, T z toho spočítané periody kmitů. \overline{T} je pak jejich aritmetický průměr se svojí chybou $\sigma_{\overline{T}}$ (5.2).