21-301A Combinatorics, 2013 Fall Homework 1

- The due is on Friday, Sep 6, at beginning of the class.
- Collaboration is permitted, however all the writing must be done individually.

1. How many distinct words (including nonsense ones) produced by the letters in MISSIS-SIPPI have the property that there is no consecutive I's.

Solution. There are 1 M, 2 P's, 4 S's and 4 I's, where all letters of the same kind are identical. We devide into two steps: first, arrange 1 M, 2 P's and 4 S's in an queue; second, insert 4 I's into queues of the 1st step in such way that no two I's are consecutive. For the 1st step, we have $\frac{7!}{1!2!4!}$ ways to arrange them.

For any fixed queue of the 1st step, we label the 7 letters as 1st object, 2nd,..., 7th object,

For any fixed queue of the 1st step, we label the 7 letters as 1st object, 2nd,..., 7th object, from left to right; now we want to put 4 I's in 8 slots: the slot before the 1st object, the slot between *i*th object and (i + 1)th object for i = 1, 2..., 6 and the slot after the 7th object, in such way that each slot only can have at most one I; so we have $\binom{8}{4}$ ways to insert 4 I's. Thus, the number of distinct words is $\frac{7!}{1!2!4!}\binom{8}{4}$.

2. (a) Let n, r be positive integers and $n \ge r$. Give a combinatorial proof of

$$\binom{r}{r} + \binom{r+1}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}.$$

(b) Use (a) to compute $\sum_{i=1}^{n} i^2$.

Proof. We proved (a) in class. We show (b) here. By choosing r = 2, we get the following from (a):

$$\binom{n+1}{3} = \sum_{i=2}^{n} \binom{i}{2} = \sum_{i=2}^{n} \frac{i^2 - i}{2} = \sum_{i=1}^{n} \frac{i^2 - i}{2}.$$

Therefore

$$\sum_{i=1}^{n} i^2 = 2\binom{n+1}{3} + \sum_{i=1}^{n} i = \frac{(n+1)n(n-1)}{3} + \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{6}.$$

3. Let n, r be be positive integers and $n \ge r$. Give a combinatorial proof of

$$\binom{2n}{2r} \equiv \binom{n}{r} \pmod{2}.$$

Proof. Notice that it suffices to show $\binom{2n}{2r} - \binom{n}{r}$ is an even number!

Consider n couples and label them as couple 1, couple 2,..., couple n. Now, we consider the number of ways to select 2r person from the n couples, which equals $\binom{2n}{2r}$. There are two kinds of selections: the selected 2r person come from r couples or not.

There are $\binom{n}{r}$ selections satisfying the property that the selected 2r person come from r couples. Thus, if we define \mathscr{A} to be the set of selections which are not formed by r couples, then we see

$$|\mathscr{A}| = \binom{2n}{2r} - \binom{n}{r}.$$

All we need now is to show: $|\mathcal{A}|$ is even. We prove this by pairing selections of \mathcal{A} .

For any selection, say S, of \mathscr{A} , there must be a couple such that one person of the couple is in S and his/her spouse is not. Let couple i be such couple with i minimum and let S^* be obtained from S by exchanging wife and husband of the couple i. Then, we see $S^* \in \mathscr{A}$ and moreover $(S^*)^* = S$. Thus, all selections in \mathscr{A} can be paired as $\{S, S^*\}$. This shows that $|\mathscr{A}|$ is even.

4. How many integer solutions of the inequality

$$x_1 + x_2 + x_3 \le 25$$

satisfy that $2 \le x_1 \le 7, x_2 \ge 0, x_3 \ge 0$?

Solution. The answer is equal to the number (say A) of integer solutions (x_1, x_2, x_3, x_4) to

$$x_1 + x_2 + x_3 + x_4 = 25$$

with $2 \le x_1 \le 7$ and $x_2, x_3, x_4 \ge 0$.

Note that $2 \le x_1 \le 7$ is the same as x_1 satisfies $x_1 \ge 2$ but does not satisfy $x_1 \ge 8$. If we consider the same equation and change the restriction of $2 \le x_1 \le 7$ into $x_1 \ge 2$, after substituting $x'_1 = x_1 - 2$, we get $x'_1 + x_2 + x_3 + x_4 = 23$ with $x'_1, x_2, x_3, x_4 \ge 0$, which gives us $\binom{23+4-1}{4-1} = \binom{26}{3}$ solutions. If we change the restriction of x_1 to $x_1 \ge 8$, by the same argument, we get $x''_1 + x_2 + x_3 + x_4 = 17$ with $x''_1 = x_1 - 8, x_2, x_3, x_4 \ge 0$, which gives $\binom{17+4-1}{4-1} = \binom{20}{3}$ solutions. Now, the answer is given by $A = \binom{26}{3} - \binom{20}{3}$.

5. Let n be a positive integer. Prove that

$$x^n = \sum_{k=1}^n S(n,k)(x)_k,$$

where S(n,k) is the Strirling number of the second kind and $(x)_k = x(x-1)...(x-k+1)$.

Proof. First we assume that x is an postive integer. We consider the set $[x]^{[n]}$, i.e., the set of all functions $f:[n] \to [x]$. For each function $f \in [x]^{[n]}$, let Im(f) be the set of images f(i), i.e.,

 $Im(f) = \{k : \text{there exists some } i \in [n] \text{ such that } f(i) = k\}.$

For fixed subset A of size k, the set $\{f : Im(f) = A\}$ contains all surjective functions $f : [n] \to A$, so by the Theorem we proved in Lec 2

$$|\{f: Im(f) = A\}| = S(n, k)k!.$$

Notice that Im(f) can be any non-empty subset of [x]. Therefore, we can write $[x]^{[n]}$ as a disjoint union

$$[x]^{[n]} = \cup_{k=1}^n \cup_{A \in \binom{[x]}{k}} \{f : Im(f) = A\},\$$

which implies that

$$x^{n} = |[x]^{[n]}| = \sum_{k=1}^{n} \sum_{A \in {\binom{[x]}{k}}} |\{f : Im(f) = A\}| = \sum_{k=1}^{n} {x \choose k} S(n,k)k! = \sum_{k=1}^{n} S(n,k)(x)_{k}$$

holds for all positive integers x.

Let $f(x) = x^n - \sum_{k=1}^n S(n,k)(x)_k$ be a polynomial of variable x. Then we see that all positive integers are the roots of f(x), so f has infinity many roots! The fundamental theorem of algebra says that if a polynomial with degree k has more than k+1 roots, then it must be a zero function. But f(x) is a polynomial with degree at most n and with infinity many roots, so f(x) must be a zero function, which implies that

$$x^n = \sum_{k=1}^n S(n,k)(x)_k$$

holds for all reals x.

6. Let p be a prime and n be a positive integer. Find the largest integer k such that $p^k|n!$. Express such k as a function of p and n. (The notation a|b means that a divides b.)

Solution. For any integer m between 1 and n, write m as the unique expression of $m = p^i m'$, where p does not divide m'. For any integer $i \ge 0$, let the set $A_i = \{m : m = p^i m', 1 \le m \le n\}$, then any member of A_i will provide exactly i p's to the largest exponent k. Using double counting,

$$k = \sum_{i \ge 1} i|A_i| = \sum_{j \ge 1} (|A_j| + |A_{j+1}| + |A_{j+2}| + \dots) = \sum_{j \ge 1} \lfloor \frac{n}{p^j} \rfloor.$$

7. How many ways are there to distribute 30 identical balls among 3 boys and 3 girls if each boy should get an odd number of balls and each girl should get at least 2 balls? Express the answer as a coefficient of a suitable power of x in a suitable product of polynomials.

Solution. Let $B(x) = x + x^3 + x^5 + ... + x^{29}$ and $G(x) = x^2 + x^3 + x^4 + ... + x^{30}$. Also let $f(x) = B^3(x)G^3(x)$. The answer is $[x^{30}]f$.