Name:	

Problem 1: Describe the following. Give examples where necessary:

- 1. Degrees of Freedom
- 2. Kinematics
- 3. Kinetics
- 4. Newton's Laws
 - a. First Law
 - b. 2nd Law
 - c. 3rd Law
- 5. Linear Momentum
- 6. Angular Momentum
- 7. Impulse
- 8. Kinetic Energy
- 9. Potential Energy
- 10. Conservation of energy
- 11. Non-Linear System
- 12. Linear System
- 13. Operating Point
- 14. Resonance
- 15. Stability
- 16. Transfer Function
- 17. Frequency Response Function
- 18. Eigenvalues
- 19. Eigenvectors
- 20. Newton Euler Equations
- 21. Lagrange's Equations

Problem 2. Given the Differential Equation:

$$\ddot{y} + 2 \dot{y} + 5y = 3 \sin 5t$$

- a. Write the equation in State-Space Form
- b. Find it's complete solution

Problem 3. Given the equation

$$\ddot{y} + 2 \dot{y} + 5 \dot{y}^2 = 2 + 3 \sin 5t$$

- a. Find the operating points
- b. Linearize the equation about one of the operating points.

Problem 4: Find the analytical solutions to the following differential equations and analytically prove that your answers are correct (don't forget about initial conditions):

a)
$$\ddot{x} + 3\dot{x} + 2x = 0$$
, $x(0) = 0$, $\dot{x}(0) = 1$

b)
$$\ddot{x} + 3\dot{x} + 2x = 1$$
, $x(0) = 0$, $\dot{x}(0) = 0$

c)
$$\ddot{x} + 3\dot{x} + 2x = 1$$
, $x(0) = 0$, $\dot{x}(0) = 1$

Problem 5: Write the equations of motion of the system shown below:

Please note that the center of mass of the lever is located at (a+b)/2. It has a moment of inertia of I_L and mass M_L

Cast the equations in State-Space form