EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

03118517

PUBLICATION DATE

21-05-91

APPLICATION DATE
APPLICATION NUMBER

: 29-09-89

: 01256568

APPLICANT:

SHARP CORP;

INVENTOR:

FUJII TOSHIO;

INT.CL.

G02F 1/1339

TITLE

LIQUID CRYSTAL DISPLAY DEVICE

ABSTRACT

PURPOSE: To prevent the orientation of liquid crystal molecules in a liquid crystal cell for compensation from being disordered by giving conductivity to spacers for setting the gap of the liquid crystal cell for compensation.

CONSTITUTION: A liquid crystal material used for the liquid crystal cell 2 for compensation is PCH mixed liquid crystal similar to that of a liquid crystal cell 1 for display. Further, a clockwise chiral material is added to the liquid crystal layer 26 of the liquid crystal cell 2 for compensation. The conductive spacers 34 are dispersed between the substrates 22a and 22b of the liquid crystal cell 2 for compensation. The spacers 34 set the cell gap of the liquid crystal cell 2 for compensation to about 5µm. The spacers 34 are made of metal such as Al, Ni, Fe, and Cu. Thus, the spacers 34 used for the liquid crystal cell 2 for compensation are made conductive to prevent the screen of the liquid crystal cell from being charged electrostatically and the excellent display screen is stably obtained.

COPYRIGHT: (C)1991, JPO& Japio

⑩日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報(A) 平3-118517

fint. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)5月21日

G 02 F 1/1339

500

9018-2H

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称 液晶表示装置

②特 願 平1-256568

夫

願 平1(1989)9月29日 ❷出

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社

繁 光 ⑫発 明

大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社

@発 明 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社

シャープ株式会社 ⑪出 願 人

大阪府大阪市阿倍野区長池町22番22号

弁理士 山本 秀策 個代 理 人

1. 発明の名称

液晶表示装置

2: 特許請求の範囲

1. それぞれ一対の透明性装板を有する第1の 液晶セル及び第2の液晶セルと、該第1の液晶セ ルの内面に設けられた電極と、該第1の液晶セル 及び該第2の液晶セルにそれぞれ挿入されたスペ ーサと、を備えた液晶表示装置であって、

該第2の液晶セルのスペーサが導電性を有して いる液晶表示装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、帯電を防止した2層型の液晶表示装 置に関する。

(従来の技術)

液晶表示装置は、コンピュータの端末、ワード プロセッサのディスプレイ、テレビジョン等の広 い分野で使用されている。 これらの分野で用いら れている液晶表示装置には、電圧無印加時に光を

遮断するノーマリーブラックタイプで、 しかも2 つの液晶セルを有する2層型のものがある(特公 昭63-53528号、特公昭63-53529 号、特開昭63-234225号等)。 2 層型の ノーマリーブラックタイプ液晶表示装置は、 電圧 無印加時の光を遮断する効果が光の波長に依存し ないという特徴を有している。

第5 図に従来の2 層型液晶表示装置の1 例を示 す。 この表示装置は液晶分子をツイストネマティ ック配向させた2つの液晶セルを有している。 2 つの液晶セルの一方は表示動作を行うために設け られた表示用液晶セル1であり、アクティブマト リクス駆動方式が用いられている。もう一方は、 表示用液晶セル1での旋光分散によって楕円偏光 となった光を、直線偏光に戻すための補債用液晶 セル2である。

表示用液晶セル1は一対の透明性基板23 a及 び23bを有し、一方の益板23bの内面には多 数の絵素電極50がマトリクス状に配されている。 それぞれの絵楽電極50にはTFT40が接続さ

れ、アクティブマトリクス基板30を構成している。第5図では簡単のため、それぞれ1個のみの 絵葉電極50及びTFT40を模式的に示してあ る。基板23aには対向電極51が全面に形成されている。TFT40、絵葉電極50及び対向電 極51の上には配向膜24及び24が設けられている。

同様に、補償用液晶セル2は一対の透明性基板22a及び22bを有している。補償用液晶セル2には電極は設けられていない。それぞれの基板22a及び22bの内面には配向膜24及び24が設けられている。

表示用液晶セル 1 及び補償用液晶セル 2 はそれぞれ基板 2 3 a 及び 2 2 b によって接している。 基板 2 2 a 及び 2 3 b の外側には、偏光板 2 1 a 及び 2 1 b が設けられている。これらの偏光板 2 1 a 及び 2 1 b は直交ニコルとなるように配されている。

装板 2 2 a と 2 2 b との間、及び基板 2 3 a と 2 3 b との間には、 それぞれ被晶層 2 6 及び 2 8

がシール材25によって封入されている。液品層26及び28の何れに於いても、液晶分子の緑品分子の緑品分子の振品分子の振品 26の液晶分子は左旋性に配向し、液晶層26の液晶分子は左旋性に配向している。即ち、2つの液晶セル1及び2で螺旋方向が互いに逆になるように設立たの配向方向と、液晶局26の延振225の近路は、100元の近路の近路の近路の近路のでするように配されている。

表示用液晶セル1及び補信用液晶セル2のセルギャップは、基板23 a及び23 bの間、並びに基板22 a及び22 bの間に挿入されたプラスチックスペーサ32及び33によって、それぞれ設定されている。第5 図ではプラスチックスペーサ32及び33を、それぞれ2つのみを模式的に示してあるが、実際の液晶セルでは多数のプラスチックスペーサが散在している。

上述のように互いに逆の螺旋方向を有する2 層の液晶セルを用いれば、表示用液晶セル1 での旋

光分散によって楕円偏光となった光は、補低用液晶セル2での旋光分散によって直線偏光に戻される。このように2層型液晶表示装置では、生じた楕円偏光が直線偏光に戻されるので、光を遮断する効果が光の波長に依存しない。

(発明が解決しようとする課題)

ところが、このような2層型液晶表示装置では、 補償用液晶セル2に電気的な信号を与える必要が ないので、補償用液晶セル2を構成する基板22 a及び22bには電極は設けられていない。その ため、補償用液晶セル2では基板22aの表面の 導電性が低く、容易に帯電する。この帯電現象は 液晶層26の比抵抗値が大きい場合に顕著に現れる。

被品表示装置に用いられる液晶材料には、信観性等の性能を確保するために高純度のものが用いられているので、液晶材料の比抵抗は一般に大きい。特に、第5図のようにTFT等を用いたアクティブマトリクス方式の表示装置では、液晶層 28の比抵抗は10¹¹Ωcm以上という非常に高い値

となっている。 光学特性の等価性を保つため、及び生産プロセス上の問題から、 補償用液晶セル1に用いられる液晶には、通常、 表示用液晶セル1に用いられる液晶と殆ど同じものが用いられる。 僅かに螺旋方向を規定するために添加される光学活性物質が異なるのみである。 従って、 通常の2 層型液晶表示装置では補償用液晶・セル2に用いられる液晶層26 も比抵抗が大きい。

補償用液晶セル2上の偏光板218の表面が帯電すると、第5図に示すように補償用液晶セル2内の液晶分子の配向が変化し、表示ムラが画面は人の現れることになる。液晶分子の配向の乱れは人間の手で触れることによって生じる電荷量で容易に起こり、画像品位の著しい低圧を218の表示ムラは偏光板218の表示なって変化するので、画面上の表示が不安定となる。

本発明はこのような問題点を解決するものであ り、本発明の目的は、帯電による液晶分子の配向 の乱れを防止し、良好で安定な画像品位を有する 液晶表示装置を提供することである。

(課題を解決するための手段)

本発明の液晶表示装置は、それぞれ一対の透明性基板を有する第1の液晶セル及び第2の液晶セルと、 該第1の液晶セルの内面に設けられた電極と、 該第1の液晶セル及び 該第2の液晶セルにそれぞれ 挿入されたスペーサと、 を 備えた液晶表示 装置で あって、 該第2の液晶セルのスペーサが 導置性を 有して むり、 そのことによって上記目的が 達成される。

(作用)

本発明の液晶表示装置では、第2の液晶セル、即ち、 補償用液晶セルのギャップを設定するためのスペーサが導電性を有している。 この導電性のスペーサにより、 液晶表示装置の画面上に生じた電荷は導電性スペーサを介して速やかに除去され、補償用液晶セル内の液晶分子の配向の乱れが防止される。

(実施例)

本発明を実施例について以下に説明する。

2 には電極は設けられていない。 それぞれの基板 2 2 a 及び 2 2 b の内面には配向膜 2 4 及び 2 4 が設けられている。 表示用液晶セル 1 及び補償用液晶セル 2 に形成されている 4 つの配向膜 2 4 は、ポリイミド樹脂をオフセット印刷することにより形成され、 その後、 ナイロン系数布でラビング処理されている。

表示用液晶セル 1 及び補償用液晶セル 2 はそれぞれ 基板 2 3 a 及び 2 2 b によって接している。 基板 2 2 a と 2 3 b との外側には、それぞれ偏光板 2 1 a 及び 2 1 b が設けられている。 これらの 偏光板 2 1 a 及び 2 1 b は直交ニコルとなるように配されている。

基板 2 2 a と 2 2 b との間、及び基板 2 3 a と 2 3 b との間には、それぞれ液晶層 2 6 及び 2 8 がシール材 2 5 によって封入されている。シール材 2 5 はエポキシ 樹脂から成る。液晶層 2 6 及び 2 8 の何れに於いても、液晶分子の質れ角は 9 0 ° である。しかし、液晶層 2 8 の液晶分子は左旋性に配向し、液晶層 2 6 の液晶分子は右旋性に配

第1 図に本発明の1 実施例の斯面模式図を示す。 本実施例では2 つのツイストネマティックモード の波晶セル、即ち、表示用液晶セル1 及び補償用 液晶セル2 が設けられている。この表示装置には アクティブマトリクス駆動方式が用いられている。

同様に、 補償用液晶セル2は一対の透明性基板 22a及び22bを有している。 補償用液晶セル.

向している。即ち、2つの液晶セル1及び2で螺旋方向が互いに逆になるように設定されている。 そして、液晶層26の越板22bの近傍における 液晶分子の配向方向と、液晶層28の越板23a の近傍における液晶分子の配向方向とは、互いに 直交するように配されている。4つの配向膜24 のラピング処理の方向により、液晶層26及び液 品層28内の液晶分子のこのような配向が可能と なる。

第2図に第1図の液晶表示装置を構成するアクティブマトリクス基板30の平面図を示す。 透明性基板230上に絵葉電篷50がマトリクス状に配列され、絵葉電篷50が間には一方向に平行するゲートバス配線41が形成されている。ゲートバス配線41に直交して、ソースバス配線47が設けられている。ゲートバス配線41とソースバス配線47との交点近傍には、スイッチング素子としてTFT40が設けられている。TFT40によって絵葉電篷50が駆動される。

第2図の四~四線に沿ったTFT40の断面構

成を第3図に示す。透明性基板23b上にゲート パス配線41が形成され、ゲートパス配線41の 一部がTFT40のゲート電極として機能してい る。ゲートバス配線41上には陽極酸化膜42が 形成され、陽極酸化膜42上の全面に、ゲート絶 緑膜43が堆積されている。 ゲートパス配線41 のゲート電極として機能する部分の上には、上述 の陽極酸化膜42及びゲート絶縁膜43を介して 半導体履44が形成されている。半導体層44上 には半導体層44を保護するための半導体層保護 膜45が形成されている。また、半導体層44上 には2つのコンタクト暦46及び46が設けられ、 それぞれのコンタクト層46及び46上にソース 電極52及びドレイン電極48が形成されている。 ソース選極52はソースパス配線47に接続され、 ドレイン電極48は絵素電極50に接続されてい る。このように形成されたTFT40上に保護膜 49が形成され、保護膜49上の全面に配向隙2 4が形成されている。

表示用液晶セル1に用いた液晶材料は、 P C H

(フェニルシクロヘキサン) 系混合液晶である。 この液晶材料の屈折率異方性は、 0. 0 g である。 表示用液晶セル1 の液晶層 2 8 には左旋性を付与 するためにコレステリックノナネートを添加した。 第1 図に模式的に示すように、表示用液晶セル1 の基板 2 3 a 及び 2 3 b の間のセルギャップは、 ブラスチックスペーサ 3 5 の散布により、約 5 μ mに設定されている。

る。

このように補償用液晶セル2に用いられるスペーサ34を導機性にすることにより、 表示装置の 画面の帯電が防止され、良好な表示画面が安定し て得られた。

(発明の効果)

本発明の液晶表示装置では、このように補償用

被品セルのギャップを設定するために挟み込まれたスペーサが導電性を有しているので、液晶表示 装置の帯電が防止され、液晶分子の配向が乱れる ことがない。従って、本発明によれば良好で安定 な画像品位を有する2層型の液晶表示装置が提供 される。

4. 図面の簡単な説明

第1 図は本発明の1 実施例の断面模式図、 第2 図は第1 図の表示装置に用いられるアクティブマトリクス 延板の平面図、 第3 図は第2 図の皿ー皿線に沿った断面図、 第4 図は本発明の他の実施例の断面模式図、第5 図は従来の2 層型液晶表示装置の断面模式図である。

1 … 表示用液晶セル、 2 … 補信用液晶セル、 2 1 a, 2 1 b … 偏光板、 2 2 a, 2 2 b, 2 3 a, 2 3 b … 透明性基板、 2 4 … 配向 胸、 2 5 … シール材、 2 6, 2 8 … 液晶層、 3 0 … アクティブマトリクス 基板、 3 4 … 導電性スペーサ、 3 5 … ブラスチックスペーサ、 3 6 a, 3 6 b … 透明 浮電 膜、 4 0 … TFT、 4 1 … ゲートバス 配線、 4 3

特開平3-118517(5)

第3図

第 4 図

第 5 図

