AI VIETNAM All-in-One Course

Tricks to Improve Performance

Traditional vs Transfer Learning

Traditional Machine Learning

Transfer Learning

Transfer Learning Types

Types	Description Examples		
Inductive	Adapt existing supervised training model on new labeled dataset Classification, Regression		
Transductive	Adapt existing supervised training model on new unlabeled dataset	del Classification, Regression	
Unsupervised	Adapt existing unsupervised training model on new unlabeled dataset	Clustering	

Neural Network Layers: General to specific

- 1. Bottom/first/earlier layers: general learners
 - Low-level: edges, visual shapes
- 2. Top/last/later layers: specific learners
 - High-level features: eyes, feathers

Earlier layers

Neural Network Layers: General to specific

- 1. Bottom/first/earlier layers: general learners
 - Low-level: edges, visual shapes
- 2. Top/last/later layers: specific learners
 - High-level features: eyes, feathers

Neural Network Layers: General to specific

ImageNet

Pill data

Neural Network Layers: General to specific

- 1. Bottom/first/earlier layers: general learners
 - Low-level: edges, visual shapes
- 2. Top/last/later layers: specific learners
 - High-level features: eyes, feathers

Later layers

Transfer Learning: Overview

Transfer Learning: Process

- Start with pre-trained network
- 2. Partition network into
 - Featurizers: Identify which layer to keep
 - Classifiers: Identify which layer to replace
- 3. Re-train classifier layers with new data
- 4. Unfreeze weights and fine-tun whole network with smaller learning rate

Which layers to re-train?

- Depends on the domain
- Start by re-training the last layers
- Work backwards if performance is not satisfactory

When and how to fine-tune?

Dataset size	Dataset similarity	Recommendation
Large	Very different	Train model B from scratch Initalize weights from model A
Large	Similar	OK to fine-tune (less likely to overfit)
Small	Very different	Train classifier using the earlier layers
Small	Similar	Don't fine-tune (overfitting). Train a linear classifier

2 - Normalize

$$\alpha_{low} = \log \frac{p(C-2)}{1-p}$$

Thêm normalize layer để chuẩn hóa feature

p: xác suất của lần train trước đó C: số lượng Class

2 - Normalize

With Normalize

Without Normalize

3 - Prevents CUDA Error: Out of Memory

- Koila: a light-weight wrapper over native PyTorch.
- Automatically computes the amount of remaining GPU memory and uses the right batch size, saving everyone from having to manually fine-tune the batch size whenever a model is used.

4 - Iterate over rows in dataframe

```
def iterrows(df):
    list_id = []
    for index, row in df.iterrows():
        list_id.append(row["id"])
    return list_id

time: 1.04 ms (started: 2023-07-19 07:52:15 +00:00)

list_id = iterrows(df)

time: 17.1 s (started: 2023-07-19 07:53:47 +00:00)

def np_vectorization(df):
    np_arr = df.to_numpy()
    return np_arr[:,0]

time: 738 μs (started: 2023-07-19 07:54:53 +00:00)

list_id = np_vectorization(df)

time: 939 μs (started: 2023-07-19 07:54:58 +00:00)
```

Pandas vectorization far outperforms Pandas iterrows for computing stuff with dataframes.

5 - Xavier Init

- Weight initialization is an important consideration in the design of a neural network model.
- The nodes in neural networks are composed of parameters referred to as weights used to calculate a weighted sum of the inputs.
- The xavier initialization method is calculated as a random number with a uniform probability distribution (U) between the range [-(1/sqrt(n)), 1/sqrt(n)], where n is the number of inputs to the node.

5 - Xavier Init

Acc over epochs loss over epochs Train_acc - Train_loss Validation_acc 0.9 Validation_loss 90 0.8 0.7 80 У 70 ssol 0.5 0.4 60 0.3 0.2 50 20 80 100 0 20 100 Epoch Epoch

Baseline

Baseline + Xavier

6 - No bias decay

```
def split_weights(net):
   """split network weights into to categlories, one are weights in conv layer and linear layer,
   others are other learnable paramters(conv bias, bn weights, bn bias, linear bias)
   Args:
       net: network architecture
    Returns:
       a dictionary of params splite into to categlories
   decay = []
   no_decay = []
   for m in net.modules():
       if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
            decay.append(m.weight)
            if m.bias is not None:
               no_decay.append(m.bias)
        else:
            if hasattr(m, 'weight'):
               no_decay.append(m.weight)
            if hasattr(m, 'bias'):
               no_decay.append(m.bias)
   assert len(list(net.parameters())) == len(decay) + len(no_decay)
   return [dict(params=decay), dict(params=no_decay, weight_decay=0)]
```

AI VIETNAM All-in-One Course

6 - No bias decay

Baseline

Baseline + Xavier + No bias decay