Object Tracking with Kernelized Correlation Filters (KCF)

Group Members: Nan Zhou Lingzhuo Zhao Yanjie Chen

Outline

The Problem

Method

Results

Future work

The Problem

-Given a series of video frames, it is required to track at least one object in the video. We are required to develop one algorithm and test it in different datasets.

Method

- Kernelized Correlation Filters (KCF)

KCF

Kernelized Correlation Filter (KCF):

- Traditional correlational filter
- Kernel trick
- Circulant matrices
- HOG

Comparison with TLD & Struck

Kernelized Correlation Filter (proposed)

TLD

Struck

Equations

- 1. Ridge Regression: $\min_{\mathbf{w}} \sum_{i} (f(\mathbf{x}_i) y_i)^2 + \lambda \|\mathbf{w}\|^2$
- 2. Analytical solution: $\mathbf{w} = (X^T X + \lambda I)^{-1} X^T \mathbf{y}$
- 3. Circulant Matrix: $X = F \operatorname{diag}(\hat{\mathbf{x}}) F^H$
- 4. Solution in Frequency Domain: $\hat{\mathbf{w}} = \frac{\hat{\mathbf{x}}^* \odot \hat{\mathbf{y}}}{\hat{\mathbf{x}}^* \odot \hat{\mathbf{x}} + \lambda}$

Circulant Matrix

Performance

Algorithm	Feature	Mean precision (20 px)	Mean FPS
KCF	Raw pixels	56.0%	154
KCF	HOG	73.2%	172

Results

- -The initial size of bounding box affects results significantly
- -Different dataset behaves differently
- -Some parameter need to be adjusted for each dataset

Fail to Track

Future Work

- Certain parameters need to be improved
- Test in more datasets
- Develop automatic tracking program without initial bounding box
- Multi-object Tracking

Thank you!

References

- 1. Henriques, J., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV. pp. 702–715 (2012)
- 2. J. F. Henriques, R. Caseiro, P. Martins and J. Batista, "High-Speed Tracking with Kernelized Correlation Filters," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583-596, 1 March 2015, doi: 10.1109/TPAMI.2014.2345390.
- 3. K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast visual tracking via dense spatio-temporal context learning. In Proceedings of the European Conference on Computer Vision, 2014.

Github Repository

https://github.com/zlz1996/CS585FinalProject