

Wykrywanie oszustw na kartach płatniczych z wykorzystaniem metod wrażliwych na koszt

Promotor: dr inż. Andrzej Giniewicz

Wydział Matematyki Politechniki Wrocławskiej

Patryk Wielopolski

Problem detekcji oszustw

Możliwości popełnienia przestępstwa:

- przekazanie numeru karty nieznajomemu,
- 🕨 utrata lub kradzież karty,
- skopiowanie danych karty,
- kradzież przesyłki z kartą.

Schemat pracy systemu

Bla, bla, bla ...

Miary skuteczności modeli

	Stan sprzyjający	Stan niesprzyjający
	$y_i = 1$	$y_i = 0$
Predykcja pozytywna	TP	FP
$c_i = 1$	IF	I F
Predykcja negatywna	FN	TN
$c_i = 0$	ΓIN	IIN

Macierz pomyłek.

$$\begin{aligned} \text{Precyzja} &= \frac{\textit{TP}}{\textit{TP} + \textit{FP}} \\ \text{Czułość} &= \frac{\textit{TP}}{\textit{TP} + \textit{FN}} \\ F_1 &= \left(\frac{2}{\text{Precyzja}^{-1} + \text{Czułość}^{-1}}\right) \end{aligned}$$

Miary skuteczności modeli wrażliwych na koszt

	Stan pozytywny	Stan negatywny
	$y_i = 1$	$y_i = 0$
Predykcja pozytywna $c_i = 1$	$C_{1,1}^{(i)}$	$C_{1,0}^{(i)}$
Predykcja negatywna $c_i = 0$	$C_{0,1}^{(i)}$	$C_{0,0}^{(i)}$

Macierz kosztu dla i-tej obserwacji.

Oznaczenia:

- $\mathbf{y} = (y_1, y_2, \dots, y_N)$ wektor prawdziwych stanów klasyfikacji,
- $\mathbf{c} = (c_1, c_2, \dots, c_N)$ wektor przewidywanych klas,
- **c** = $(C_1, C_2, ..., C_N)$ wektor macierzy kosztu,

Miary skuteczności modeli wrażliwych na koszt

$$\mathsf{Oszczędności}(\textbf{\textit{y}},\textbf{\textit{c}},\textbf{\textit{C}}) = \frac{\mathsf{Koszt\ bazowy}(\textbf{\textit{y}},\textbf{\textit{C}}) - \mathsf{TC}(\textbf{\textit{y}},\textbf{\textit{c}},\textbf{\textit{C}})}{\mathsf{Koszt\ bazowy}(\textbf{\textit{y}},\textbf{\textit{C}})}$$

Oznaczenia:

- Koszt całkowity($\boldsymbol{y}, \boldsymbol{c}, \boldsymbol{C}$) lub TC($\boldsymbol{y}, \boldsymbol{c}, \boldsymbol{C}$) = $\sum_{i=1}^{N} C_{c_i, y_i}^{(i)}$
- ► Koszt bazowy($m{y}$, $m{C}$) = min{TC($m{y}$, $m{c}_0$, $m{C}$), TC($m{y}$, $m{c}_1$, $m{C}$)} $\neq 0$
- $c_0 = (0, 0, ..., 0)$ *N*-elementowy wektor predykcji równych 0,
- $c_1 = (1, 1, ..., 1)$ *N*-elementowy wektor predykcji równych 1.

Modele predykcyjne

- Standardowe modele predykcyjne:
 - Regresja logistyczna
 - Drzewo decyzyjne
 - Las losowy
 - XGBoost
- Klasyfikacja wrażliwa na koszt:
 - Minimalizacja ryzyka bayesowskiego
 - Optymalizacja progu
- Trening wrażliwy na koszt:
 - Regresja logistyczna wrażliwa na koszt
 - Drzewo decyzyjne wrażliwe na koszt

Zbiór danych

Wykorzystano zbiór danych Credit Card Fraud Detection.

- Zawiera transakcje zawarte europejskimi kartami kredytowymi w ciągu dwóch dni we wrześniu 2013 roku.
- Składa się z 284,807 transakcji, w tym z 492 oszustw.
- Obserwacje są opisane 30 atrybutami, w tym 28 z nich to zanonimizowane zmienne numeryczne, które były wcześniej poddane transformacji PCA (ang. Principal Component Analysis).

Metodologia eksperymentu

- 50 powtórzeń symulacji Monte Carlo
- Podział zbioru danych:
 - 50% zbiór treningowy
 - 17% zbiór walidacyjny
 - 33% zbiór testowy
- Wykorzystane modele:
 - Modele standardowe: regresja logistyczna, drzewo decyzyjne, las losowy, XGBoost
 - Drzewo decyzyjne wrażliwe na koszt
 - Optymalizacja progu oraz minimalizacja ryzyka bayesowskiego zastosowana dla modeli standardowych

Wyniki dla oszczędności

Źródło: Opracowanie własne.

Wyniki dla F1 Score

Źródło: Opracowanie własne.

