MTM 5245 - Álgebra Linear - Lista de Exercícios 04 Base, dimensão, coordenadas de um vetor com relação a uma base ordenada e matriz mudança de base.

Daqui em diante, sempre que nos referirmos a um espaço vetorial V e não mencionarmos as operações fica subentendido que as operações deste espaço vetorial são as operações usuais.

- 1. Sendo $v_1=(1,2)\in\mathbb{R}^2$, determine $v_2\in\mathbb{R}^2$ tal que $\{v_1,v_2\}$ seja uma base de \mathbb{R}^2 .
- 2. Verifique quais dos seguintes conjuntos de vetores formam uma base de \mathbb{R}^2 :
 - (a) $\{(1,2),(-1,3)\};$
 - (b) $\{(3,-6),(-4,8)\};$
 - (c) $\{(0,0),(2,3)\}.$
- 3. O conjunto $B = \{(2, -1), (-3, 2)\}$ é uma base de \mathbb{R}^2 . Expresse um vetor qualquer de \mathbb{R}^2 como uma combinação linear dos vetores de B.
- 4. Verifique quais dos seguintes conjuntos de vetores formam uma base de $P_2(\mathbb{R})$:
 - (a) $\{2x^2 + x 4, x^2 3x + 1\};$
 - (b) $\{1, x, x^2\};$
 - (c) $\{1+x+x^2, x+x^2, x^2\}.$
- 5. Mostre que o conjunto

$$W = \left\{ \left(\begin{array}{cc} 2 & 3 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & -1 \\ 0 & -2 \end{array} \right), \left(\begin{array}{cc} -3 & -2 \\ 1 & -1 \end{array} \right), \left(\begin{array}{cc} 3 & -7 \\ -2 & 5 \end{array} \right) \right\}$$

é uma base de $M_2(\mathbb{R})$.

- 6. Mostre que os vetores $v_1 = (1, 1, 1), v_2 = (1, 2, 3), v_3 = (3, 0, 2),$ e $v_4 = (2, -1, 1)$ geram o \mathbb{R}^3 e determine uma base de \mathbb{R}^3 a partir dos vetores v_1, v_2, v_3 e v_4 .
- 7. Determine uma base do subespaço vetorial de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, -1, 0, 0), v_2 = (-2, 2, 2, 1), v_3 = (-1, 1, 2, 1)$ e $v_4 = (0, 0, 4, 2)$.
- 8. Determine as coordenadas de v = (6, 2) com relação às seguintes bases de \mathbb{R}^2 :
 - (a) $B_1 = \{(3,0), (0,2)\};$
 - (b) $B_2 = \{(1,2), (2,1)\};$
 - (c) $B_3 = \{(1,0), (0,1)\};$
 - (d) $B_4 = \{(0,1), (1,0)\}.$
- 9. Seja $B = \{3, 2x, -x^2\}$ uma base de $P_2(\mathbb{R})$. Determine as coordenadas de $v = 6 4x + 3x^2$ com relação à base B.
- 10. Determine a dimensão e uma base para cada um dos seguintes espaços vetoriais:

(a)
$$V_1 = \{(x, y, z) \in \mathbb{R}^3 \mid y = 3x\};$$

(b)
$$V_2 = \{(x, y, z) \in \mathbb{R}^3 \mid y = 5x \text{ e } z = 0\};$$

(c)
$$V_3 = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\};$$

(d)
$$V_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 3y \text{ e } z = -y\};$$

(e)
$$V_5 = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}.$$

11. Seja

$$W = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid c = a + b \ \mathbf{e} \ d = a \right\},$$

que é um subespaço vetorial de $M_2(\mathbb{R})$. Qual a dimensão de W?

- 12. Sejam $B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$ e $B_2 = \{(1,1,1), (1,0,1), (1,0,-1)\}$ bases de \mathbb{R}^3 .
 - (a) Determine $[I]_{B_2}^{B_1}$;
 - (b) Sabendo que $[v]_{B_1}=\left[egin{array}{c}2\\1\\4\end{array}\right]$, determine $[v]_{B_2}$;
 - (c) Determine $[I]_{B_1}^{B_2}$.
- 13. Sejam $B_1 = \{1, x, x^2\}$ e $B_2 = \{1, 1 x, 1 x^2\}$ bases de $P_2(\mathbb{R})$.
 - (a) Determine $[I]_{B_2}^{B_1}$;
 - (b) Sabendo que $[v]_{B_1}=\left[egin{array}{c} 3 \\ 1 \\ 2 \end{array}
 ight]$ determine $[v]_{B_2}$;
 - (c) Determine $[I]_{B_1}^{B_2}$.
- 14. A matriz mudança de base de uma base B de \mathbb{R}^2 para a base $\{(1,1),(0,2)\}$ desse mesmo espaço é

$$\left[\begin{array}{cc} 1 & 0 \\ 2 & 3 \end{array}\right].$$

Determine a base B.

15. A matriz mudança de base da base $\{1+x,1-x^2\}$ para uma base C, ambas do mesmo subespaço vetorial W de $P_2(\mathbb{R})$, é

$$\left[\begin{array}{cc} 1 & 2 \\ 1 & -1 \end{array}\right].$$

Determine a base C.