ADC register map

The following table summarizes the ADC registers.

Table 49. ADC global register map

Offset	Register
0x000 - 0x058	ADC
0x05C - 0x2FC	Reserved
0x300 - 0x304	Common registers

Table 50. ADC register map and reset values

Register	31	59	28	27	ПП	25	24 dp	23	22	21	20	106	\neg	17	16	15	14	13	12	1	10	6	œ	7	9	2	4	က	7	_	0
ADC_SR	()	1,1	1.4			.,		.,	-				1	,-		, ·	1	,	,	,	,		1	pə	-			1		ပ္	\vdash
										Kes	erve	a										JCNR	RCNR	Reserved	OADONS		STRT	JSTRT	1	EOC	AWD
Reset value									_	1						_			Г		ı	0	0	ž	0	0	0	0	0	0	0
ADC_CR1	Res	erved	d		OVRIE	RES[1:0]		AWDEN	JAWDEN	R	eser	ved		PDI	PDD	[2:0	DISC 0]	NUM	JDISCEN	DISCEN	JAUTO	AWD SGL	SCAN	JEOCIE	AWDIE	EOCIE	А	WD0	CH[4:0	0]	
Reset value					0	0	0	0	0					0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0
ADC_CR2	Reserved SWSTART	EXTEN[1:0]		EXT	SEL	[3:0]		Reserved	JSWSTART	JEXTEN[1:0]			JEXT	SEL [3:0]	F	Reser	ved		ALIGN	EOCS	SQQ	DMA	Reserved	DEL	_S[2:0	0]	Reserved	⋖	CONT	ADON
Reset value	0	0	0	0	0	0	0		0	0	0	0	0	0	0					0	0		0		0	0	0		0	0	0
ADC_SMPR1													S	ample	e time	e bits	s SMI	Px_x													
Reset value	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADC_SMPR2													S	ample	e time	e bits	s SMI	Px_x													
Reset value	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADC_SMPR3													S	ample	e time	e bits	s SMI	Px_x													
Reset value	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ADC_JOFR1									Rese	ervec	d												JOFF	SET	1[11	:0]					
Reset value																				0	0	0	0	0	0	0	0	0	0	0	0
ADC_JOFR2									Rese	ervec	d												JOFF	SET	2[11	:0]					
Reset value																				0	0	0	0	0	0	0	0	0	0	0	0
ADC_JOFR3									Rese	ervec	d												JOFF	SET	3[11	:0]					
Reset value																				0	0	0	0	0	0	0	0	0	0	0	0
ADC_JOFR4									Rese	ervec	ł												JOFF	SET	4[11	:0]					
Reset value																				0	0	0	0	0	0	0	0	0	0	0	0
ADC_HTR									Rese	ervec	d										•				HT[11:0]				•	
Reset value																				1	1	1	1	1	1	1	1	1	1	1	1
ADC_LTR									Rese	erved	d .														LT[11:0]					
Reset value																				0	0	0	0	0	0	0	0	0	0	0	0

Register	31	59	28	27	56	25	23	22	21	20	19	0,	17	16	15	4	13	12	11	10	6	000)	,	9	2	4	က	7	_	0
ADC_SQR1	F	Reser	rved					L[4	:0]						Regul	ar c	hann	nel s	eque	nce	SQx	_x bi	its								
Reset value	-					0	С	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_SQR2	Reserved								Reg	ular	chanr	nel	seque	ence S	SQx_x	bits	;														
Reset value	Res	0	0	0	0	0 0	C	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_SQR3	Reserved								Reg	ular	chanr	nel	seque	ence S	SQx_x	bits	;														
Reset value	R.	0	0	0	0	0 0	C	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_SQR4	Reserved								Reg	ular	chanr	nel	seque	ence S	SQx_x	bits	;														
Reset value	Re	0	0	0	0	0 0	C	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_SQR5	Reserved								Reg	ular	chanr	nel	seque	ence S	SQx_x	bits	;														
Reset value	Re	0	0	0	0	0 0	C	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_JSQR				Rese	erved				JL[1:0]					Injecte	d c	hann	el se	equer	nce	JSQ:	x_x b	oits								
Reset value									0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_JDR1						Re	serv	/ed														JDA	ATA[15:0]						
Reset value															0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_JDR2						Re	serv	/ed														JDA	ATA[15:0]						
Reset value															0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_JDR3						Re	serv	/ed														JDA	ATA[15:0)]						
Reset value															0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_JDR4						Re	serv	/ed														JDA	ATA[15:0)]						
Reset value															0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_DR						Re	serv	/ed													Re	gula	r DA	TA[1	15:0]					
Reset value															0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
ADC_SMPR0												,	Samp	le tim	e bits S	SMF	x_x														
Reset value	0 0	0	0	0	0	0 0	C	0	0	0	0	(0	0	0	0	0	0	0	0	0	0	(0	0	0	0	0	0	0	0
Table 51. AD	C regi	ster	m	ар	and	rese	t v	alue	es (e	con	ımc	on	reg	iste	rs)																
Register	31	29	28	27	56	25		23	21	20	19	2 9	7 2	16	15	14	13	12	1 1	. 6	2 0	ח מ	×	7	9	2	4	က	7	7	0
ADC_CSR																									ONS	OVR	STRT	JSTRT	JEOC	EOC	AWD
Reset value											Rese	erve	d												OADONS	0	o ST	S O AD	0	О	
																													٠.		

ADCPRE

OTSVREFE

Reserved

Reserved

ADC_CCR

Reset value

Reserved

ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
							Rese	rved								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			Re	eserved			JCNR	RCNR	Reserv ed	ADONS	OVR	STRT	JSTRT	JEOC	EOC	AWD
							r	r	eu	r	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bits 31:10 Reserved, must be kept at reset value

Bit 9 JCNR: Injected channel not ready

This bit is set and cleared by hardware after the JSQR register is written. It indicates if a new injected conversion can be launched (by setting the JSWSTART bit).

0: Injected channel ready

1: Injected channel not ready, JSWSTART must not be set

Bit 8 RCNR: Regular channel not ready

This bit is set and cleared by hardware after one of the SQRx register is written or after the OVR bit is cleared. It indicates if a new regular conversion can be launched (by setting the SWSTART bit).

0: Regular channel ready

1: Regular channel not ready, SWSTART must not be set

Bit 7 Reserved, must be kept at reset value

Bit 6 ADONS: ADC ON status

This bit is set and cleared by hardware to indicate if the ADC is ready to convert.

0: The ADC is not ready

1: The ADC is ready to convert. External triggers can be enabled, the SWSTART and JSWSTART bits can be set

Bit 5 OVR: Overrun

This bit is set by hardware when regular conversion data are lost. It is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1.

- 0: No overrun occurredF
- 1: Overrun has occurred

Bit 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.

- 0: No regular channel conversion started
- 1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel start flag

This bit is set by hardware when injected group conversion starts. It is cleared by software.

- 0: No injected group conversion started
- 1: Injected group conversion has started

Bit 2 **JEOC:** Injected channel end of conversion

This bit is set by hardware at the end of the conversion of all injected channels in the group. It is cleared by software.

- 0: Conversion is not complete
- 1: Conversion complete

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register.

- 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
- 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software.

- 0: No analog watchdog event occurred
- 1: Analog watchdog event occurred

11.15.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserv	ed		OVRIE	RES	[1:0]	AWDEN	JAWDEN		Rese	rved		PDI	PDD
				rw rw rw rw										rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIS	SCNUM[2	2:0]	JDISCE N	DISC EN	JAUTO	AWDSG L	NDSG SCAN JEOCIE AWDIE EOCIE					А	WDCH[4	:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:27 Reserved, must be kept at reset value

Bit 26 **OVRIE:** Overrun interrupt enable

This bit is set and cleared by software to enable/disable the Overrun interrupt.

- 0: Overrun interrupt disabled
- 1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.

00: 12-bit (T_{CONV} = 12 ADCCLK cycles)

01: 10-bit (T_{CONV} = 11 ADCCLK cycles)

10: 8-bit (T_{CONV} = 9 ADCCLK cycles)

11: 6-bit (T_{CONV} = 7 ADCCLK cycles)

This bit must be written only when ADON=0.

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set and cleared by software.

- 0: Analog watchdog disabled on regular channels
- 1: Analog watchdog enabled on regular channels

Bit 22 **JAWDEN:** Analog watchdog enable on injected channels

This bit is set and cleared by software.

- 0: Analog watchdog disabled on injected channels
- 1: Analog watchdog enabled on injected channels

Bits 21:18 Reserved, must be kept at reset value

Bit 17 PDI: Power down during the idle phase

This bit is written and cleared by software. When ADON=1, it determines whether the ADC is powered up or down when not converting (waiting for a hardware or software trigger event).

- 0: The ADC is powered up when waiting for a start event
- 1: The ADC is powered down when waiting for a start event

Note: This bit must be written only when ADON=0.

Bit 16 PDD: Power down during the delay phase

This bit is written and cleared by software. When ADON=1, it determines whether the ADC is powered up or down between 2 conversions (or sequences of conversions) when a delay is inserted (DELS bits).

- 0: The ADC is powered up during the delay
- 1: The ADC is powered down during the delay

Note: This bit must be written only when ADON=0.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of channels to be converted in discontinuous mode, after receiving an external trigger.

000: 1 channel

001: 2 channels

...

111: 8 channels

Note: This bit must be written only when ADON=0.

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit is set and cleared by software to enable/disable discontinuous mode on the injected channels of a group.

- 0: Discontinuous mode on injected channels disabled
- 1: Discontinuous mode on injected channels enabled

Note: This bit must be written only when ADON=0.

Bit 11 DISCEN: Discontinuous mode on regular channels

This bit is set and cleared by software to enable/disable Discontinuous mode on regular channels.

- 0: Discontinuous mode on regular channels disabled
- 1: Discontinuous mode on regular channels enabled

Note: This bit must be written only when ADON=0.

Bit 10 **JAUTO:** Automatic injected group conversion

This bit is set and cleared by software to enable/disable automatic injected group conversion after regular group conversion.

- 0: Automatic injected group conversion disabled
- 1: Automatic injected group conversion enabled

Note: This bit must be written only when ADON=0.

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit is set and cleared by software to enable/disable the analog watchdog on the channel identified by the AWDCH[4:0] bits.

- 0: Analog watchdog enabled on all channels
- 1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable the Scan mode. In the Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.

- 0: Scan mode disabled
- 1: Scan mode enabled

Note: This bit must be written only when ADON=0.

Bit 7 **JEOCIE:** Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for injected channels.

- 0: JEOC interrupt disabled
- 1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt. In Scan mode if the watchdog thresholds are crossed, scan is aborted only if this bit is enabled.

- 0: Analog watchdog interrupt disabled
- 1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the end of conversion interrupt.

- 0: EOC interrupt disabled
- 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog.

00000: ADC analog input Channel0 00001: ADC analog input Channel1

...

11000: ADC analog input Channel24 11001: ADC analog input Channel25 11010: ADC analog input Channel26

Other values reserved.

Note: ADC1 analog inputs Channel16, Channel 17 and Channel26 are internally connected to the temperature sensor, to V_{REFINT} and to V_{COMP} respectively.

11.15.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserv	SWST ART	EXT	ΓΕΝ		EXTS	EL[3:0]		Reserv	JSWST ART	JEXT	EN		JEXTS	EL[3:0]	
eu	rw	rw	rw	rw	rw	rw	rw	eu	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		ALIGN	EOCS	DDS	DMA	Res.		DELS		Res.	ADC_C FG	CONT	ADON
				rw	rw	rw	rw		rw	rw	rw		rw	rw	rw

Bit 31 Reserved, must be kept at reset value

Bit 30 SWSTART: Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as the conversion starts.

- 0: Reset state
- 1: Starts conversion of regular channels

Note: This bit must be set only when ADONS=1 and RCNR=0.

Bits 29:28 **EXTEN:** External trigger enable for regular channels

These bits are set and cleared by software to select the external trigger polarity and enable the trigger of a regular group.

- 00: Trigger detection disabled
- 01: Trigger detection on the rising edge
- 10: Trigger detection on the falling edge
- 11: Trigger detection on both the rising and falling edges

Note: The external trigger must be enabled only when ADONS=1.

Bits 27:24 EXTSEL[3:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:

0000: TIM9 CC2 event

0001: TIM9_TRGO event

0010: TIM2_CC3 event

0011: TIM2_CC2 event

0100: TIM3_TRGO event

0101: TIM4_CC4 event

0110: TIM2_TRGO event

0111: TIM3_CC1 event

1000: TIM3_CC3 event

1001: TIM4 TRGO event

1010: TIM6_TRGO event

1011: Reserved

1100: Reserved

1101: Reserved

1110: Reserved

1111: EXTI line11

Bit 23 Reserved, must be kept at reset value

Bit 22 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by hardware as soon as the conversion starts.

- 0: Reset state
- 1: Starts conversion of injected channels

Note: This bit must be set only when ADONS=1 and JCNR=0.

Bits 21:20 **JEXTEN:** External trigger enable for injected channels

These bits are set and cleared by software to select the external trigger polarity and enable the trigger of an injected group.

- 00: Trigger detection disabled
- 01: Trigger detection on the rising edge
- 10: Trigger detection on the falling edge
- 11: Trigger detection on both the rising and falling edges

Note: The external trigger must be enabled only when ADONS=1.

Bits 19:16 JEXTSEL[3:0]: External event select for injected group

These bits select the external event used to trigger the start of conversion of an injected group.

0000: TIM9_CC1 event

0001: TIM9_TRGO event

0010: TIM2_TRGO event

0011: TIM2_CC1 event

0100: TIM3_CC4 event

0101: TIM4_TRGO event

0110: TIM4_CC1 event

0111: TIM4_CC2 event 1000: TIM4_CC3 event

1001: TIM10 CC1 event

1010: TIM7_TRGO event

1011: Reserved

1100: Reserved

1101: Reserved

1110: Reserved

1111: EXTI line15

Bits 15:12 Reserved, must be kept at reset value

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 42 and Figure 43.

0: Right alignment

1: Left alignment

Bit 10 EOCS: End of conversion selection

This bit is set and cleared by software.

0: The EOC bit is set at the end of each sequence of regular conversions

1: The EOC bit is set at the end of each regular conversion

Bit 9 DDS: DMA disable selection

This bit is set and cleared by software.

0: No new DMA request is issued after the last transfer (as configured in the DMA controller)

1: DMA requests are issued as long as data are converted and DMA=1

Bit 8 DMA: Direct memory access mode

This bit is set and cleared by software. Refer to the DMA controller chapter for more details.

0: DMA mode disabled

1: DMA mode enabled

Bit 7 Reserved, must be kept at reset value

Bit 6:4 **DELS:** Delay selection

These bits are set and cleared by software. They define the length of the delay which is applied after a conversion or a sequence of conversions.

000: No delay

001: Until the converted data have been read (DR read or EOC=0 for regular conversions, JEOC=0 for injected conversions)

010: 7 APB clock cycles after the end of conversion

011: 15 APB clock cycles after the end of conversion

100: 31 APB clock cycles after the end of conversion

101: 63 APB clock cycles after the end of conversion

110: 127 APB clock cycles after the end of conversion

111: 255 APB clock cycles after the end of conversion

Note: 1- This bit must be written only when ADON=0.

- 2- Due to clock domain crossing, a latency of 2 or 3 ADC clock cycles is added to the delay before a new conversion can start.
- 3- The delay required for a given frequency ratio between the APB clock and the ADC clock depends on the activity on the AHB and APB busses. If the ADC is the only peripheral that needs to transfer data, then a minimum delay should be configured: 15 APB clock cycles if $f_{APB} < f_{ADCCLK}/2$ or else 7 APB clock cycles if $f_{APB} < f_{ADCCLK}$, otherwise no delay is needed.

Bit 3 Reserved, must be kept at reset value

Bit 2 ADC_CFG: ADC configuration

This bit is set and cleared by software. It selects the bank of channels to be converted.

0: Bank A selected

1: Bank B selected

Note: This bit must be modified only when no conversion is on going.

This bit is available in high and medium+ density devices only

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared.

- 0: Single conversion mode
- 1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF

This bit is set and cleared by software.

- 0: Disable ADC conversion and go to power down mode
- 1: Enable ADC: conversions can start as soon as a start event (hardware or software) is received. When not converting, the ADC goes to the power up or power down mode depending on the PDI and PDD bits.

Note: This bit must be set only when ADONS=0 and cleared only when ADONS=1.

11.15.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Dooor	und	S	MP29[2:	0]	5	MP28[2:0	0]	S	MP27[2:0)]	S	MP26[2:0	0]	SMP2	25[2:1]
Kesei	Reserved rw rw r				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP25[0]	S	MP24[2:	0]	S	MP23[2:	0]	S	MP22[2:0	0]	S	MP21[2:0	0]	S	MP20[2:0	0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31: 30 Reserved, must be kept at reset value

Bits 29:0 **SMPx[2:0]:** Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel. During sampling cycles, the channel selection bits must remain unchanged.

000: 4 cycles 001: 9 cycles 010: 16 cycles 011: 24 cycles 100: 48 cycles 101: 96 cycles 110: 192 cycles 111: 384 cycles

Note: These bits must be written only when ADON=0.

11.15.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Posor	wod	S	MP19[2:0	0]	5	SMP18[2:0	0]	S	MP17[2:0)]	S	MP16[2:0	0]	SMP1	5[2:1]
Kesei	Reserved rw rw r				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP15[0]	S	SMP14[2:0	0]	S	MP13[2:	0]	S	MP12[2:0	0]	S	SMP11[2:0	0]	5	SMP10[2:0)]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel. During sample cycles, the channel selection bits must remain unchanged.

000: 4 cycles

001: 9 cycles

010: 16 cycles

011: 24 cycles

100: 48 cycles

101: 96 cycles

110: 192 cycles

111: 384 cycles Note: These bits must be written only when ADON=0.

11.15.6 ADC sample time register 3 (ADC_SMPR3)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Pagar	nvod		SMP9[2:0)]		SMP8[2:0)]	;	SMP7[2:0]	,	SMP6[2:0]	SMP	5[2:1]
Kesei	Reserved rw r			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP5[0]	(SMP4[2:0)]	;	SMP3[2:0)]	,	SMP2[2:0]	(SMP1[2:0]	,	SMP0[2:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sampling time individually for each channel. During the sampling cycles, the channel selection bits must remain unchanged.

000: 4 cycles

001: 9 cycles

010: 16 cycles

011: 24 cycles

100: 48 cycles

101: 96 cycles

110: 192 cycles

111: 384 cycles

Note: These bits must be written only when ADON=0.

11.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)

Address offset: 0x18-0x24 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	rund							JOFFSI	ETx[11:0]					
	Rese	iveu		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:12 Reserved, must be kept at reset value

Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw converted data when converting injected channels. The conversion result can be read from in the ADC_JDRx registers.

11.15.8 ADC watchdog higher threshold register (ADC_HTR)

Address offset: 0x28

Reset value: 0x0000 0FFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	rved							HT[11:0]					
	Nese	i veu		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:12 Reserved, must be kept at reset value

Bits 11:0 HT[11:0]: Analog watchdog higher threshold

These bits are written by software to define the higher threshold for the analog watchdog.

11.15.9 ADC watchdog lower threshold register (ADC_LTR)

Address offset: 0x2C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	ruod							LT[11:0]					
	Nese	i veu		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:12 Reserved, must be kept at reset value

Bits 11:0 LT[11:0]: Analog watchdog lower threshold

These bits are written by software to define the lower threshold for the analog watchdog.

11.15.10 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x30

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserved	1					L[4:0]				SQ2	8[4:1]	
			Reserved	1			rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ28[0]			SQ27[4:0)]				SQ26[4:0]				SQ25[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

Bits 31:25 Reserved, must be kept at reset value

Bits 24:20 L[4:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular channel conversion sequence.

00000: 1 conversion 00001: 2 conversions

• • •

11010: 27 conversions

11011: 28 conversions (applicable in high and medium+ density devices only)

Bits 19:15 **SQ28[4:0]:** 28th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 28th in the conversion sequence. The channel is selected in bank A or bank B depending on the ADC_CFG bit in the ADC_CR2 register.

Note: These bits are available in high and medium+ density devices only

Bits 14:10 SQ27[4:0]: 27th conversion in regular sequence

Medium density devices: These bits are written by software with the channel number (0..26) assigned as the 27th in the conversion sequence.

High and medium+ density devices: 27th conversion in regular sequence

Bits 9:5 **SQ26[4:0]:** 26th conversion in regular sequence

Bits 4:0 **SQ25[4:0]:** 25th conversion in regular sequence

11.15.11 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rvod			SQ24[4:0)]			:	SQ23[4:0	l			SQ2	2[4:1]	
Nese	iveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ22[0]		;	SQ21[4:0]				SQ20[4:0]]				SQ19[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:26 SQ24[4:0]: 24th conversion in regular sequence

These bits are written by software with the channel number (0.31) assigned as the 24th in the sequence to be converted.

Bits 24:20 SQ23[4:0]: 23rd conversion in regular sequence

Bits 19:15 SQ22[4:0]: 22nd conversion in regular sequence

Bits 14:10 SQ21[4:0]: 21st conversion in regular sequence

Bits 9:5 **SQ20[4:0]:** 20th conversion in regular sequence

Bits 4:0 SQ19[4:0]: 19th conversion in regular sequence

11.15.12 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x38

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved			SQ18[4:0)]				SQ17[4:0]			SQ1	6[4:1]	
Kese	iveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16[0		;	SQ15[4:0)]				SQ14[4:0]					SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:25 SQ18[4:0]: 18th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 18th in the sequence to be converted.

Bits 24:20 SQ17[4:0]: 17th conversion in regular sequence

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 **SQ13[4:0]:** 13th conversion in regular sequence

11.15.13 ADC regular sequence register 4 (ADC_SQR4)

Address offset: 0x3C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved			SQ12[4:0)]				SQ11[4:0]			SQ1	0[4:1]	
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ10[0]			SQ9[4:0]					SQ8[4:0]					SQ7[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 12th in the sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 **SQ8[4:0]**: 8th conversion in regular sequence

Bits 4:0 **SQ7[4:0]**: 7th conversion in regular sequence

11.15.14 ADC regular sequence register 5 (ADC_SQR5)

Address offset: 0x40

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	arved			SQ6[4:0]]				SQ5[4:0]				SQ4	I[4:1]	
Kese	erveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ4_0			SQ3[4:0]]				SQ2[4:0]					SQ1[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:25 **SQ6[4:0]**: 6th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 6th in the sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 **SQ4[4:0]**: 4th conversion in regular sequence

Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence

Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence

Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

11.15.15 ADC injected sequence register (ADC JSQR)

Address offset: 0x44

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Poo	erved					JL[1:0]		JSQ4	4[4:1]	
				Kes	erveu					rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
JSQ4[0]		,	JSQ3[4:0]				JSQ2[4:0]				JSQ1[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:22 Reserved, must be kept at reset value

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected channel conversion sequence.

00: 1 conversion

01: 2 conversions

10: 3 conversions

11: 4 conversions

Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below)

These bits are written by software with the channel number (0..31) assigned as the 4th in the sequence to be converted. The channel is selected in bank A or bank B depending on the ADC_CFG bit in the ADC_CR2 register.

Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below)

Note:

When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in starting from JSQ3[4:0], and then JSQ4[4:0].

When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel.

11.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x48 - 0x54 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							JDA	TA[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 JDATA[15:0]: Injected data

These bits are read-only. They contain the conversion result from injected channel x. The data are left -or right-aligned as shown in *Figure 42* and *Figure 43*.

11.15.17 ADC regular data register (ADC_DR)

Address offset: 0x58

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DAT	A[15:0]							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved.

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in *Figure 42* and *Figure 43*.

11.15.18 ADC sample time register 0 (ADC_SMPR0)

Address offset: 0x5C

Reset value: 0x0000 0000

Note: This register is available in high and medium+ density devices only.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Pos	erved					S	MP31[2:0)]	S	SMP30[2:0	0]
				Nes	erveu					rw	rw	rw	rw	rw	rw

Bits 31:6 Reserved, must be kept at reset value

Bits 5:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sampling time individually for each channel. During the sampling cycles, the channel selection bits must remain unchanged.

000: 4 cycles

001: 9 cycles

010: 16 cycles

011: 24 cycles

100: 48 cycles

101: 96 cycles

110: 192 cycles

111: 384 cycles

Note: These bits must be written only when ADON=0.

11.15.19 ADC common status register (ADC_CSR)

Address offset: 0x00 (this offset address is relative to the base address of ADC common registers, i.e. 0x300)

Reset value: 0x0000 0000

This register provides an image of the status bits of the different ADCs. Nevertheless it is read-only and does not allow to clear the different status bits. Instead each status bit must be cleared by writing it to 0 in the corresponding ADC_SR register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Re	eserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserve	d				ADONS1	OVR1	STRT1	JSTRT1	JEOC 1	EOC1	AWD1
									r	r	r	r	r	r	r

Bits 31:7 Reserved, must be kept at reset value

Bit 6 ADONS1: ADON Status of ADC1

This bit is a copy of the ADONS bit in the ADC_SR register.

Bit 5 **OVR1:** Overrun flag of the ADC

This bit is a copy of the OVR bit in the ADC_SR register.

Bit 4 STRT1: Regular channel Start flag of the ADC

This bit is a copy of the STRT bit in the ADC_SR register.

Bit 3 JSTRT1: Injected channel Start flag of the ADC

This bit is a copy of the JSTRT bit in the ADC_SR register.

Bit 2 **JEOC1:** Injected channel end of conversion of the ADC

This bit is a copy of the JEOC bit in the ADC_SR register.

Bit 1 EOC1: End of conversion of the ADC

This bit is a copy of the EOC bit in the ADC_SR register.

Bit 0 AWD1: Analog watchdog flag of the ADC

This bit is a copy of the AWD bit in the ADC_SR register.

11.15.20 ADC common control register (ADC_CCR)

Address offset: 0x04 (this offset address is relative to the base address of ADC common registers, i.e. 0x300)

9 , ,

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Res	erved				TSVREFE			Reserved	l		ADCP	RE[1:0]
								rw						rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								Reserved							

Bits 31:24 Reserved, must be kept at reset value

Bit 23 $\,$ TSVREFE: Temperature sensor and $\rm V_{REFINT}$ enable

This bit is set and cleared by software to enable/disable the temperature sensor and the V_{REFINT} channel.

0: Temperature sensor and V_{REFINT} channel disabled 1: Temperature sensor and V_{REFINT} channel enabled

Bits 22:18 Reserved, must be kept at reset value

Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC.

00: HSI divided by 1

01: HSI divided by 2

10: HSI divided by 4

11: Reserved

Bits 15:0 Reserved, must be kept at reset value