

Description

Image

Caption

Glass ceramic can tolerate extreme thermal shock. © Kuppersbusch USA Inc.

The material

Glass ceramics are glasses that, to a greater or lesser extent, have crystallized. They are shaped while in the glassy state, using ordinary molding methods and then cooled in such a way that the additives they contain nucleate small crystals. It is sold for cooking as pyroceram and is used for high performance heat resisting applications.

Compositional summary

SiO2/AI2O3/B2O3

General properties

Density	2.4e3	-	2.9e3	kg/m^3
Price	* 2.07	-	12.4	USD/kg
Date first used	1957			

Mechanical properties

Young's modulus	75	-	95	GPa
Shear modulus	* 30.2	-	48.9	GPa
Bulk modulus	* 50	-	60	GPa
Poisson's ratio	0.24	-	0.29	
Yield strength (elastic limit)	62.5	-	177	MPa
Tensile strength	62.5	-	177	MPa
Compressive strength	340	-	1.2e3	MPa
Elongation	0			% strain
Hardness - Vickers	230	-	720	HV
Fatigue strength at 10^7 cycles	60	-	169	MPa
Fracture toughness	1.5	-	1.7	MPa.m^0.5

Mechanical loss coefficient (tan delta)	5e-5 - 2e-4
Thermal properties	
Glass temperature	563 - 1.65e3 °C
Maximum service temperature	800 - 1.17e3 °C
Minimum service temperature	-273 °C
Thermal conductor or insulator?	Poor insulator
Thermal conductivity	1.33 - 2.51 W/m.°C
Specific heat capacity	600 - 900 J/kg.°C
Thermal expansion coefficient	3 - 7.4 μstrain/°C
Electrical properties	
Electrical conductor or insulator?	Good insulator
Electrical resistivity	2e19 - 1e21 µohm.cm
Dielectric constant (relative permittivity)	5.3 - 6.2
Dissipation factor (dielectric loss tangent)	0.0035 - 0.0047
Dielectric strength (dielectric breakdown)	38 - 40 1000000 V/m
Optical properties Transparency	Translucent
Refractive index	1.5 - 1.55
Tondon's mach	1.00
Processability	
Castability	1
Moldability	3 - 4
Machinability	1 - 3
Weldability	1
Durability: water and aqueous solutions	
Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent
Dunah ilitur asida	
Durability: acids Acetic acid (10%)	Excellent

Hydrochloric acid (36%) Hydrofluoric acid (40%)

Hydrochloric acid (10%)

Acetic acid (glacial)

Citric acid (10%)

Excellent

Excellent

Excellent

Excellent

Nitric acid (10%) Ex Nitric acid (70%) Ex	nacceptable
Nitric acid (70%)	nacceptable
	xcellent
Phosphoric acid (10%)	xcellent
Theophene dela (1976)	xcellent
Phosphoric acid (85%)	xcellent
Sulfuric acid (10%)	xcellent
Sulfuric acid (70%)	xcellent

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Excellent

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Limited use
O2 (oxygen gas)	Excellent

SEDUPIACK	
Sulfur dioxide (gas)	Excellent
Durability: built environments	
Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent
Durability: flammability	
Flammability	Non-flammable
Durability: thermal environments	
Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Excellent
Tolerance up to 850 C (1562 F)	Excellent
Tolerance above 850 C (1562 F)	Unacceptable
,	
Primary material production: energy, CO	02 and water
Embodied energy, primary production	* 37.5 - 41.5 MJ/kg
CO2 footprint, primary production	* 2.2 - 2.43 kg/kg
Water usage	* 23.1 - 25.5 l/kg
Material processing: energy	
Glass molding energy	* 12.1 - 14.7 MJ/kg
Grinding energy (per unit wt removed)	* 84.6 - 93.5 MJ/kg
Material processing: CO2 footprint	t 0.000
Glass molding CO2	* 0.969 - 1.17 kg/kg
Grinding CO2 (per unit wt removed)	* 6.34 - 7.01 kg/kg
Material recycling: energy, CO2 and recy	cle fraction
Recycle	×
Recycle fraction in current supply	0.1 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×
Environmental notes	

Silica, the prime ingredient of glass, is the commonest compound in the earths crust, though it is harder to find it in a form sufficiently pure to make glass. Nonetheless, the ingredients of glass are ubiquitous, and the material is readily recycled at the end of its life.

Supporting information

Design guidelines

Glass ceramic is shaped in a two-stage process. The molding is done while the material is still a true glass, using standard glass-forming methods. The shaped product is then heat treated, causing "phase-separation": the formation of crystalline phases. These have a very low thermal expansion coefficient, with the result that the material can withstand very sudden changes of temperature without cracking. Some grades of glass ceramic are machinable.

Typical uses

Photosensitive applications, Cookware, Lasers, Stove window glass, Telescope mirror banks, Exterior and interior cladding, Laboratory bench tops, Missile Radomes

Tradenames

Pyroceram, Macor, Shapal M-soft.

Links

Reference

ProcessUniverse

Producers