Handbook of 📈

Formulas and Software for Plant Geneticists and Breeders

Manjit S. Kang • Editor

Manjit S. Kang Editor

Handbook of Formulas and Software for Plant Geneticists and Breeders

Pre-publication REVIEWS, COMMENTARIES, EVALUATIONS...

This is indeed a reference book that can help plant scientists identifying friendly software to analyze their experimental data. This book is a compendium of analytical tools that can save precious time and effort for plant geneticists and breeders, making their data analysis more efficient, accurate, and informative. It describes freely available software that could be time-consuming to develop by individual research programs. I value this book as a good teaching tool where students can become familiar with software and analytical methods and learn how to analyze experimental data."

Javier Betran, PhD

Assistant Professor, Corn Breeding and Genetics, Department of Soil and Crop Sciences, Texas A&M University The title of this book is a very concise and precise description of the contents; it is a great handbook for addressing many of the theoretical and applied aspects of plant genetics and breeding. There is something for everyone involved in these fields.

The general layout is very consistent, which makes it easy to find particular areas of interest. Most chapters contain useful examples and sample data which are quite helpful when working through some of the formulas for the first time, or in loading them into spreadsheets. The contributing authors have been selected for their expertise in their particular fields and for their ability to convey their messages effectively. The final chapter is typical of the clear, practical, and often classical examples in that it gives a single formula to determine the number of plants needed to recover a predetermined number of individuals with a desired trait at a particular probability level when the genetic nature of the trait is known."

Duane E. Falk, PhD

Associate Professor and Cereal Breeder, Plant Agriculture Department, University of Guelph, Ontario

NOTES FOR PROFESSIONAL LIBRARIANS AND LIBRARY USERS

This is an original book title published by Food Products Press[®] and The Haworth Reference Press, imprints of The Haworth Press, Inc. Unless otherwise noted in specific chapters with attribution, materials in this book have not been previously published elsewhere in any format or language.

CONSERVATION AND PRESERVATION NOTES

All books published by The Haworth Press, Inc. and its imprints are printed on certified pH neutral, acid free book grade paper. This paper meets the minimum requirements of American National Standard for Information Sciences-Permanence of Paper for Printed Material, ANSI Z39.48-1984.

Handbook of Formulas and Software for Plant Geneticists and Breeders

FOOD PRODUCTS PRESS®

Crop Science Amarjit S. Basra, PhD Senior Editor

- New, Recent, and Forthcoming Titles of Related Interest:
- Mineral Nutrition of Crops: Fundamental Mechanisms and Implications by Zdenko Rengel
- Conservation Tillage in U.S. Agriculture: Environmental, Economic, and Policy Issues by Noel D. Uri
- Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing edited by Amarjit S. Basra
- Heterosis and Hybrid Seed Production in Agronomic Crops edited by Amarjit S. Basra Intensive Cropping: Efficient Use of Water, Nutrients, and Tillage by S. S. Prihar,
 - P. R. Gajri, D. K. Benbi, and V. K. Arora
- Physiological Bases for Maize Improvement edited by María E. Otegui and Gustavo A. Slafer
- Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses edited by Amarjit S. Basra
- Crop Responses and Adaptations to Temperature Stress edited by Amarjit S. Basra
- Plant Viruses As Molecular Pathogens by Jawaid A. Khan and Jeanne Dijkstra
- In Vitro Plant Breeding by Acram Taji, Prakash P. Kumar, and Prakash Lakshmanan
- Crop Improvement: Challenges in the Twenty-First Century edited by Manjit S. Kang
- Barley Science: Recent Advances from Molecular Biology to Agronomy of Yield and Quality edited by Gustavo A. Slafer, José Luis Molina-Cano, Roxana Savin, José Luis Araus, and Ignacio Romagosa
- Tillage for Sustainable Cropping by P. R. Gajri, V. K. Arora, and S. S. Prihar
- Bacterial Disease Resistance in Plants: Molecular Biology and Biotechnological Applications by P. Vidhyasekaran
- Handbook of Formulas and Software for Plant Geneticists and Breeders edited by Manjit S. Kang
- Postharvest Oxidative Stress in Horticultural Crops edited by D. M. Hodges
- Encyclopedic Dictionary of Plant Breeding and Related Subjects by Rolf H. G. Schlegel
- Handbook of Processes and Modeling in the Soil-Plant System edited by D. K. Benbi and R. Nieder
- The Lowland Maya Area: Three Millennia at the Human-Wildland Interface edited by A. Gómez-Pompa, M. F. Allen, S. Fedick, and J. J. Jiménez-Osornio
- Biodiversity and Pest Management in Agroecosystems, Second Edition by Miguel A. Altieri and Clara I. Nicholls
- Plant-Derived Antimycotics: Current Trends and Future Prospects edited by Mahendra Rai and Donatella Mares
- Concise Encyclopedia of Temperate Tree Fruit edited by Tara Auxt Baugher and Suinan Singha

Handbook of Formulas and Software for Plant Geneticists and Breeders

Manjit S. Kang Editor

Food Products Press®
The Haworth Reference Press
An Imprint of The Haworth Press, Inc.
New York • London • Oxford

Published by

Food Products Press® and The Haworth Reference Press, imprints of The Haworth Press, Inc., 10 Alice Street, Binghamton, NY 13904-1580.

© 2003 by The Haworth Press, Inc. All rights reserved. No part of this work may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, microfilm, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Printed in the United States of America.

Cover design by Marylouise E. Doyle.

Library of Congress Cataloging-in-Publication Data

Handbook of formulas and software for plant geneticists and breeders / Manjit S. Kang, editor.

p. cm

Includes bibliographical references (p.) and index.

ISBN 1-56022-948-9 (hard : alk. paper) — ISBN 1-56022-949-7 (soft)

1. Plant genetics—Statistical methods—Computer programs. 2. Plant breeding—Statistical methods—Computer programs. I. Kang, Manjit S.

QK981.5 .H36 2003 581.35'0285—dc21

CONTENTS

About the Editor	ix
Contributors	xi
Preface	xiii
Chapter 1. DIALLEL-SAS: A Program for Griffing's Diallel Methods Yudong Zhang Manjit S. Kang	1
Chapter 2. Diallel Analysis for a Seed and Endosperm Model with Genotype-by-Environment Interaction Effects Jun Zhu	21
Chapter 3. Diallel Analysis for an Additive-Dominance Model with Genotype-by-Environment Interaction Effects Jun Zhu	39
Chapter 4. Diallel Analysis for an Additive-Dominance-Epistasis Model with Genotype-by-Environment Interaction Effects <i>Jun Zhu</i>	51
Chapter 5. Diallel Analysis for an Animal Model with Sex-Linked and Maternal Effects Along with Genotype-by-Environment Interaction Effects Jun Zhu	67
Chapter 6. Generation Means Analysis Michael M. Kenty David S. Wofford	77
Chapter 7. PATHSAS: Path Coefficient Analysis of Quantitative Traits Christopher S. Cramer Todd C. Wehner Sandra B. Donaghy	89

Chapter 8. Restricted Maximum Likelihood Procedure to Estimate Additive and Dominance Genetic Variance Components <i>Agron Collaku</i>	97
Chapter 9. Calculating Additive Genetic Correlation Using ANOVA and the Sum Method of Estimating Covariance Blair L. Waldron	109
Chapter 10. Developmental Analysis for Quantitative Traits Jun Zhu	115
Chapter 11. Ecovalence and Stability Variance Manjit S. Kang	123
Chapter 12. Genotype-by-Environment Interaction Variance <i>Robert Magari Manjit S. Kang</i>	129
Chapter 13. Code for Simulating Degrees of Freedom for the Items in a Principal Components Analysis of Variance Walter T. Federer Russell D. Wolfinger	137
Chapter 14. Principal Components (PC) and Additive Main Effects and Multiplicative Interaction (AMMI) Trend Analyses for Incomplete Block and Lattice Rectangle-Designed Experiments *Walter T. Federer Russell D. Wolfinger José Crossa*	145
Chapter 15. A Method for Classifying Observations Using Categorical and Continuous Variables Jorge Franco José Crossa	153
Chapter 16. Mixed Linear Model Approaches for Quantitative Genetic Models Jixiang Wu Jun Zhu Johnie N. Jenkins	171

Chapter 17. Best Linear Unbiased Prediction (BLUP) for Genotype Performance <i>Mónica Balzarini Scott Milligan</i>	181
Chapter 18. Graphing GE and GGE Biplots Juan Burgueño José Crossa Mateo Vargas	193
Chapter 19. Analysis for Regional Trials with Unbalanced Data Jun Zhu	205
Chapter 20. Conditional Mapping of QTL with Epistatic Effects and QTL-by-Environment Interaction Effects for Developmental Traits Jun Zhu	213
Chapter 21. Mapping QTL with Epistatic Effects and QTL-by-Environment Interaction Effects Jun Zhu	219
Chapter 22. Gene Segregation and Linkage Analysis Jinsheng Liu Todd C. Wehner Sandra B. Donaghy	231
Chapter 23. Mapping Functions <i>M. Humberto Reyes-Valdés</i>	255
Chapter 24. Bootstrap and Jackknife for Genetic Diversity Parameter Estimates Julio Di Rienzo Mónica Balzarini	261
Chapter 25. Software on Genetic Linkage and Mapping Available Through the Internet <i>Manjit S. Kang</i>	265
Chapter 26. Gregor Todd Krone	279

Chapter 27. Analysis for an Experiment Designed As Augmented Lattice Square Design Walter T. Federer	283
Chapter 28. Augmented Row-Column Design and Trend Analyses Walter T. Federer Russell D. Wolfinger	291
Chapter 29. PROC GLM and PROC MIXED Codes for Trend Analyses for Row-Column-Designed Experiments Walter T. Federer Russell D. Wolfinger	297
Chapter 30. SAS/GLM and SAS/MIXED for Trend Analyses Using Fourier and Polynomial Regression for Centered and Noncentered Variates Walter T. Federer Murari Singh Russell D. Wolfinger	307
Chapter 31. PROC GLM and PROC MIXED for Trend Analysis of Incomplete Block- and Lattice Rectangle-Designed Experiments Walter T. Federer Russell D. Wolfinger	315
Chapter 32. Partitioning Crop Yield into Genetic Components Vasilia A. Fasoula Dionysia A. Fasoula	321
Short Note 1. Inbreeding Coefficient in Mass Selection in Maize Fidel Márquez-Sánchez	329
Short Note 2. Regression of Forage Yield Against a Growth Index As a Tool for Interpretation of Multiple Harvest Data <i>Jeffery F. Pedersen</i>	331
Short Note 3. Tolerance Index Lajos Bona	335
Short Note 4. Computer Program to Calculate Population Size <i>Leví M. Mansur</i>	337
Index	339

ABOUT THE EDITOR

Manjit S. Kang, PhD, is Professor of Quantitative Genetics in the Department of Agronomy at Louisiana State University. He earned his BSc in agriculture and animal husbandry with honors from the Punjab Agricultural University in India, an MS in biological sciences, majoring in plant genetics from Southern Illinois University at Edwardsville, an MA in botany from Southern Illinois University at Carbondale, and a PhD in crop science (genetics and plant breeding) from the University of Missouri at Columbia.

Dr. Kang is the editor, author, or co-author of hundreds of articles, books, and book chapters. He enjoys an international reputation in genetics and plant breeding. He serves on the editorial boards of *Crop Science, Agronomy Journal, Journal of New Seeds*, and the *Indian Journal of Genetics & Plant Breeding*, as well as The Haworth Food Products Press.

Dr. Kang is a member of Gamma Sigma Delta and Sigma Xi. He was elected a Fellow of the American Society of Agronomy and of the Crop Science Society of America. In 1999 he served as a Fulbright Senior Scholar in Malaysia.

Dr. Kang edited *Genotype-By-Environment Interaction and Plant Breeding* (1990), which resulted from an international symposium that he organized at Louisiana State University in February 1990. He is the author/publisher of *Applied Quantitative Genetics* (1994), which resulted from teaching a graduate-level course on Quantitative Genetics in Plant Improvement. Another book, *Genotype-By-Environment Interaction*, edited by Dr. Kang and Hugh Gauch Jr., was published by CRC Press in 1996. He edited *Crop Improvement for the 21st Century* in 1997 (Research Signpost, India). He recently co-authored *GGE Biplot Analysis: A Geographical Tool for Breeders, Geneticists, and Agronomists* (2002, CRC Press), and he edited *Crop Improvement: Challenges in the Twenty-First Century* (2002, The Haworth Press) and *Quantitative Genetics, Genomics, and Plant Breeding* (2002, CABI Publishing, U.K.).

Dr. Kang's research interests are: genetics of resistance to aflatoxin, weevils, and herbicides in maize; genetics of grain dry-down rate and stalk quality in maize; genotype-by-environment interaction and crop adaptation; interorganismal genetics, and conservation and utilization of plant genetic resources.

Dr. Kang taught Plant Breeding and Plant Genetics courses at Southern Illinois University—Carbondale (1972-1974). He has been teaching a graduate-level Applied Quantitative Genetics course at Louisiana State University since 1986. He developed and taught an intermediary plant genetics course in 1996 and team-taught an Advanced Plant Genetics course (1993-1995). He also taught an Advanced Plant Breeding course at LSU in 2000. He has directed six MS theses and six PhD dissertations. He has been a Full Professor in the Department of Agronomy at LSU since 1990. He has received many invitations to speak at international symposium relative to genetics and plant breeding.

Dr. Kang was recognized for his significant contributions to plant breeding and genetics by Punjab Agricultural University at Ludhiana at its 36th Foundation Day in 1997. He served as President (2000-2001) of the LSU Chapter of Sigma Xi—The Scientific Research Society. He was elected President of the Association of Agricultural Scientists of Indian Origin in 2001 for a two-year term. In addition, he serves as the Chairman of the American Society of Agronomy's Member Services and Retention Committee (2001-2004). Dr. Kang's biographical sketches have been included in *Marquis Who's Who in the South and Southwest, Who's Who in America, Who's Who in the World, Who's Who in Science and Engineering,* and *Who's Who in Medicine and Healthcare.*

CONTRIBUTORS

Mónica Balzarini, PhD, Facultad Ciencias Agropecuarias, Estadística y Biometría, Universidad Nacional de Córdoba, C.C. 509-5000 Córdoba, Argentina.

Lajos Bona, PhD, Cereal Research Institute, Szeged, Hungary.

Juan Burgueño, MS, Biometrics and Statistics Unit, International Maize and Wheat Improvement Center/Centro Internacional para Mejoramiento de Maiz y Trigo (CIMMYT), Mexico City, Mexico.

Agron Collaku, PhD, Department of Pharmacogenomics, Johnson & Johnson Research and Development, Raritan, New Jersey.

Christopher S. Cramer, PhD, Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, New Mexico.

José Crossa, PhD, Biometrics and Statistics Unit, International Maize and Wheat Improvement Center/Centro Internacional para Mejoramiento de Maiz y Trigo (CIMMYT), Mexico City, Mexico.

Sandra B. Donaghy, MS, Department of Statistics, North Carolina State University, Raleigh, North Carolina.

Dionysia A. Fasoula, PhD, Agricultural Research Institute, Nicosia, Cyprus.

Vasilia A. Fasoula, PhD, Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia.

Walter T. Federer, PhD, Department of Biometrics, Cornell University, Ithaca, New York.

Jorge Franco, MS, Universidad de la República, Facultad de Agronomía, Montevideo, Uruguay.

Johnie N. Jenkins, PhD, Crop Science Research Laboratory, U.S. Department of Agriculture, Agricultural Research Station (USDA-ARS), Mississippi State, Mississippi.

Michael M. Kenty, PhD, Helena Chemical Company, Collierville, Tennessee.

Todd Krone, PhD, Pioneer Hi-Bred International, Inc., Johnston, Iowa.

Jinsheng Liu, MS, Jiangsu State Farms Agribusiness Corporation, Agricultural Section, Nanjing, China.

Robert Magari, PhD, Beckman Coulter, Inc., Miami, Florida.

Leví M. Mansur, PhD, Facultad de Agronomia, Universidad Catolica de Valpraiso, Chile.

Fidel Márquez-Sánchez, PhD, Manuel M. Dieguez 113, Sector Hidalgo, Guadalajara, Jalisco, Mexico.

Scott Milligan, PhD, U.S. Sugar Corporation, Clewiston, Florida.

Jeffery F. Pedersen, PhD, U.S. Department of Agriculture, Agricultural Research Station (USDA-ARS), University of Nebraska, Lincoln, Nebraska.

M. Humberto Reyes-Valdés, PhD, Universidad Autonóma Agraria Antonio Narro, Departamento de Fitomejoramiento, Saltillo, Mexico.

Julio Di Rienzo, MS, Facultad Ciencias Agropecuarias, Estadística y Biometría, Universidad Nacional de Córdoba, C.C. 509-5000 Córdoba, Argentina.

Murari Singh, PhD, ICARDA, Aleppo, Syria.

Mateo Vargas, PhD, Biometrics and Statistics Unit, International Maize and Wheat Improvement Center/Centro Internacional para Mejoramiento de Maiz y Trigo (CIMMYT), Mexico City, Mexico.

Blair L. Waldron, PhD, U.S. Department of Agriculture, Agricultural Research Station (USDA-ARS), Forage and Range Research Laboratory, Utah State University, Logan, Utah.

Todd C. Wehner, PhD, Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina.

David S. Wofford, PhD, Department of Agronomy, University of Florida, Gainesville, Florida.

Russell D. Wolfinger, PhD, SAS Institute, Inc., Cary, North Carolina.

Jixiang Wu, MS, Crop Science Research Laboratory, U.S. Department of Agriculture, Agricultural Research Station (USDA-ARS), Mississippi State, Mississippi.

Yudong Zhang, PhD, IBM Printing Systems Division, Boulder, Colorado.

Jun Zhu, PhD, Department of Agronomy, Zhejiang University, Hang-zhou, China.

Preface

Statistical techniques and formulas have been part and parcel of genetics and breeding programs. Some techniques and formulas are used routinely while others may be used only occasionally. The ones used frequently have been incorporated into popular statistical packages, such as the Statistical Analysis System (SAS), and are readily available. To meet their needs, researchers began developing specific software not found in statistical packages. For example, in the early 1980s, I began using in my research relative to genotype-by-environment interaction a formula for stability variance that Shukla (1972) developed and a formula for ecovalence that Wricke (1962) developed. Hand calculations for these formulas were tedious and time-consuming. Thus, in my necessitous circumstances I wrote a computer program in the matrix programming language of SAS (Kang, 1985). The Journal of Heredity published a description of the program, and I received several hundred requests for the program code from researchers around the world who were working with plants and animals, and I also received requests from those working with humans, e.g., psychiatrists (Kang, 1986). Having published several other programs since, I have realized that there is a need among researchers for special software programs for use in research. For example, geneticists working with many different crops requested the DIALLEL-SAS program (Zhang and Kang, 1997).

Software programs, or descriptions thereof, are occasionally published in international journals such as *The Journal of Heredity* and *Agronomy Journal*. Full-fledged codes for statistical and genetics-related software programs are rarely published in journals because they are generally not the main domain of these journals. I believe it would better serve the scientific community to have published or unpublished programs made more easily accessible in a handbook.

With the intent of making available to researchers and teachers of genetics and breeding a compendium devoted to such specialized programs as DIALLEL-SAS and those which others have created around the world, I

turned to Food Products Press, an imprint of The Haworth Press, Inc. (www.haworthpressinc.com), to undertake the publication of *Handbook of Formulas and Software for Plant Geneticists and Breeders*. A questionnaire was sent to some 2,300 members of the C1 Division (geneticists and breeders) of the Crop Science Society of America (CSSA) and many contributors were identified. The response was excellent as evidenced by the various contributions in this book.

This first edition of the handbook is an excellent start to meet the needs of the scientific community. I am sure as researchers, teachers, and students begin to realize the usefulness of this effort, additional contributions will follow, which can, hopefully, be included in a subsequent edition. In this handbook, most contributions of a specific software include program codes and practical examples on how to use the software or formula in question; others direct the reader where to get specific software. Due to the enormous effort devoted to linkage and mapping using molecular markers, I have also included a chapter that lists software on genetic linkage and mapping that can be accessed via the Internet (Chapter 26). Obviously, program codes are not printed for the software listed in that group. I trust the handbook will serve as an up-to-date, ready reference on genetic formulas and software for practicing geneticists/breeders, as well as for students. Please send any comments on this handbook or new contributions to this editor and author, via e-mail, at <mKang@agctr.lsu.edu> or <kang_majit@hotmail.com>.

I thank Dr. Amarjit S. Basra, Editor-in-Chief with Food Products Press, for his encouragement. This project could not have been accomplished without the participation and cooperation of the various authors and the publisher.

REFERENCES

Kang, M.S. (1985). SAS program for calculating stability variance parameters. *Journal of Heredity* 76:142-143.

Kang, M.S. (1986). Update on the stability variance program. *Journal of Heredity* 77:480. Shukla, G.K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. *Heredity* 29:237-245.

Wricke, G. (1962). Über eine Methode zur Erfassung der ökologischen Streubreite. *Zeitschrift für Pflanzenzüchtung* 47:92-96.

Zhang, Y. and Kang, M.S. (1997). DIALLEL-SAS: A SAS program for Griffing's diallel analyses. *Agronomy Journal* 89:176-182.

Chapter 1

DIALLEL-SAS: A Program for Griffing's Diallel Methods

Yudong Zhang Manjit S. Kang

Importance

Diallel mating designs are frequently used in plant breeding research to obtain genetic information, such as general combining ability (GCA) and specific combining ability (SCA), and possibly narrow-sense heritability. Griffing (1956) developed four methods to compute GCA and SCA. These methods have provided valuable information on various important traits in crops (Borges, 1987; Moffatt et al., 1990; Pixley and Bjarnason, 1993; Kang et al., 1995). To obtain more reliable genetic information, multi-environment data are generally needed. The following statistical models illustrate Griffing's methods for analyzing multienvironment data:

The general linear model for Methods 1 and 3 (reciprocal crosses) is:

$$\begin{split} Y_{ijklc} &= \mu + \alpha_l + b_{kl} + v_{ij} + (\alpha v)_{ijl} + e_{ijklc,} \\ \text{where } v_{ij} &= g_i + g_j + s_{ij} + r_{ij,} \ (\alpha v)_{ijl} = (\alpha g)_{il} + (\alpha g)_{jl} + (\alpha s)_{ijl} + (\alpha r)_{ijl,} \\ r_{ij} &= m_i + m_j + n_{ij,} \ \text{and} \ (\alpha r)_{ijl} = (\alpha m)_{il} + (\alpha m)_{jl} + (\alpha n)_{ijl.} \end{split}$$

The general linear model for Methods 2 and 4 is:

$$\begin{aligned} Y_{ijklc} &= \mu + \alpha_l + b_{kl} + v_{ij} + (\alpha v)_{ijl} + e_{ijklc,} \\ \text{where } v_{ij} &= g_i + g_j + s_{ij} \text{ and } (\alpha v)_{ijl} = (\alpha g)_{il} + (\alpha g)_{jl} + (\alpha s)_{ijl}. \end{aligned}$$

In these models, Y_{ijklc} = observed value of each experimental unit, μ = population mean, α_l = environment effect, b_{kl} = block or replication effect in each environment, v_{ij} = F_1 hybrid effect, $(\alpha v)_{ijl}$ = interaction between environ-

ments and F_1 hybrids, e_{ijklc} = residual effect, g_i = GCA effect for ith parent, g_j = GCA effect for jth parent, s_{ij} = SCA for ijth F_1 hybrid, r_{ij} = reciprocal effect for ijth or jith F_1 hybrid, $(\alpha g)_{il}$ = interaction between GCA effect for ith parent and environments, $(\alpha g)_{jl}$ = interaction between GCA effect for jth parent and environments, $(\alpha s)_{ijl}$ = interaction between SCA effect for ith parent and environments, $(\alpha r)_{ijl}$ = interaction between reciprocal effect for ith or jth or jth F_1 hybrid and environments, m_i = maternal effect of parental line i, m_j = maternal effect of parental line j, n_{ij} = nonmaternal effect of ith or jth F_1 hybrid, $(\alpha m)_{il}$ = interaction between environments and maternal effect of parental line i, $(\alpha m)_{il}$ = interaction between environments and maternal effect of parental inbred j, and $(\alpha n)_{ijl}$ = interaction between environments and maternal effect of ith or jth F_1 hybrid.

Definitions

Diallel: A mating design in which all possible two-way combinations are produced among a set of genetically different lines. It is used to estimate GCA (average performance of the progeny) of each parental line in crosses with a set of lines and to estimate SCA (progeny performance of a specific cross).

Program Description

DIALLEL-SAS was developed using SAS (SAS Institute, 1995). It provides a partition of F_1 hybrid (or cross) × environment (E) interaction into GCA × E, SCA × E, and reciprocal × E components for Griffing's Methods 1 and 3, and into GCA × E and SCA × E components for Griffing's Methods 2 and 4. DIALLEL-SAS can be run on any microcomputer with SAS as well as on mainframe computers installed with SAS, via UNIX or TSO. The DIALLEL-SAS output for Methods 1 and 3 includes (1) mean squares for environments, F_1 hybrids, F_1 hybrids × E, GCA, SCA, reciprocal, maternal, nonmaternal, GCA × E, SCA × E, reciprocal × E, maternal × E, nonmaternal × E; (2) estimates of GCA and maternal effects for each parental line; and (3) estimates of SCA, nonmaternal, and reciprocal effects for each F_1 hybrid.

Originator

Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. *Australian Journal of Biological Science* 9:463-493.

Software Availability

Zhang, Y. and Kang, M.S. (1997). DIALLEL-SAS: A SAS program for Griffing's diallel analyses. *Agronomy Journal* 89:176-182.

Key References Where Software Has Been Cited

Goffman, F.D. and Becker, H.C. (2001). Diallel analysis for tocopherol contents in seeds of rapeseed. *Crop Science* 41:1072-1079.

Kang, M.S., Din, A.K., Zhang, Y., and Magari, R. (1999). Combining ability for rind puncture resistance in maize. *Crop Science* 39:368-371.

Le Gouis, J., Beghin, D., Heumez, E., and Pluchard, P. (2002). Diallel analysis of winter wheat at two nitrogen levels. *Crop Science* 42:1129-1134.

Contact

Dr. Manjit S. Kang, 105 Sturgis Hall, Louisiana State University, Baton Rouge, LA 70803-2110, USA. <mKang@agcenter.LSU.edu>.

EXAMPLE

A fictitious diallel data set for Griffing's Method 1 with five parental lines, two environments, and two replications per environment is analyzed using DIALLEL-SAS.

DIALLEL-SAS Method 1 Program Listing with Output

```
OPTIONS PS=56 LS=78;
TITLE 'METHOD 1';
DATA METHOD1;
INPUT I J REP HYBRID YIELD ENV;
DROP N NI NJ P;
P=5; *NUMBER OF PARENTAL LINES;
ARRAY GCA(N) G1 G2 G3 G4;
DO N=1 TO (P-1);
GCA=((I=N)-(I=P))+((J=N)-(J=P));
ARRAY SCA(N) S11 S12 S13 S14 S22 S23 S24 S33 S34 S44;
N=0;
DO NI=1 TO (P-1);
DO NJ=NI TO (P-1);
N+1;
IF NI=NJ THEN DO;
SCA=(I=NI)*((J=NJ)-(J=P))+(I=P)*((J=P)-(J=NI));END;
ELSE DO;
```

```
SCA=(I=NI)*(J=NJ)-(J=P)*((I=NI)+(I=NJ)-(I=P)*2)+(I=NJ)*(J=NI)
-(I=P)*((J=NI)+(J=NJ));
END; END; END;
ARRAY REC(N) R12 R13 R14 R15 R23 R24 R25 R34 R35 R45;
N=0;
DO NI=1 TO (P-1);
DO NJ=(NI+1) TO P;
N+1:
REC=(I=NI)*(J=NJ)-(J=NI)*(I=NJ);
END; END;
ARRAY MAT (N) M1 M2 M3 M4;
DO N=1 TO (P-1);
MAT = (I = N) + (J = P) - (J = N) - (I = P);
END;
ARRAY NONM (N) N12 N13 N14 N23 N24 N34;
N=0;
DO NI=1 TO (P-2);
DO NJ=(NI+1) TO (P-1);
N+1;
NONM = ((I = NI) * (J = NJ)) - (I = NJ) * (J = NI) - ((I = NI) * (J = P)) + (I = NJ) * (J = P)
+((I=P)*((J=NI)-(J=NJ)));
END; END;
CARDS;
1 1 1 1 10.5 1
1 1 2 1 10.7 1
1 2 1 2 11.9 1
1 2 2 2 12.0 1
1 3 1 3
        14.5 1
1 3 2 3 14.2 1
1 4 1 4
        9.0 1
1 4 2 4
          8.5 1
1 5 1 5 13.5 1
1 5 2 5 14.2 1
2 1 1 6 12.8 1
2 1 2 6 13.2 1
2 2 1 7
        16.2 1
2 2 2 7
         17.0 1
2 3 1 8 20.5 1
2 3 2 8 18.2 1
2 4 1 9
         9.8 1
2 4 2 9 10.3 1
2 5 1 10 16.5 1
2 5 2 10 18.4 1
3 1 1 11 8.9 1
3 1 2 11 10.2 1
3 2 1 12 15.4 1
3 2 2 12 16.0 1
3 3 1 13 17.8 1
3 3 2 13 18.9 1
3 4 1 14 22.1 1
3 4 2 14 23.0 1
3 5 1 15 18.4 1
3 5 2 15 20.6 1
4 1 1 16 12.0 1
4 1 2 16 12.2 1
4 2 1 17 13.4 1
4 2 2 17 14.2 1
```

```
4 3 1 18 13.5 1
4 3 2 18 13.8 1
4 4 1 19 21.2 1
 4 2 19 20.7
4 5 1 20 17.8
4 5 2 20 19.4
5 1 1 21 20.1
5 1 2 21 21.3 1
5 2 1 22 20.9 1
5 2
   2 22 21.2
5 3
   1 23 19.2
5 3 2 23 20.2 1
5 4 1 24 22.2
5 4 2 24 21.6
5 5
   1 25 20.8
5 5 2 25 21.3
1 1 1 1 11.2 2
1 1 2 1
         11.7
 2 1 2
         11.2
1
 2 2 2
         12.7
1
1 3 1 3
        14.3
              2
1 3 2 3
        15.2 2
   1 4
1 4
          9.2
1 4
   2 4
              2
          9.5
1 5
   1
      5
        13.0 2
1 5 2 5
              2
        14.9
2 1 1 6
        12.2
2
 1
   2 6
         12.8
2 2 1 7
         16.0
2 2 2 7
        17.8 2
2 3 1 8
         19.5
2 3 2 8
         18.8
2 4 1
      9
         10.4
2 4 2 9
        11.3
2 5 1 10 16.9
2 5 2 10 18.0
3
 1
   1 11 10.8
3 1 2 11 11.2
3 2 1 12 15.0
3 2
   2 12 16.6
3 3
   1 13 17.2
3 3 2 13 17.9
3 4 1 14 21.1
3 4 2 14 22.6
3 5
   1 15 19.2
 5
   2 15 21.6
3
4 1 1 16 12.6 2
4 1 2 16 13.2
4 2
   1 17 12.4
 2
   2 17 13.2
4 3 1 18 14.5
4 3 2 18 15.8
4 4 1 19 20.2
 4
   2 19 20.1
4
 5 1
      20 17.0
4 5 2 20 18.4 2
```

5 1 1 21 22.1 2

```
5 1 2 21 21.0 2
5 2 1 22 21.9 2
5 2 2 22 20.2 2
5 3 1 23 20.2 2
5 3 2 23 20.8 2
5 4 1 24 21.2 2
5 4 2 24 20.6 2
5 5 1 25 20.2 2
5 5 2 25 21.0 2
PROC SORT; BY REP ENV I J;
PROC GLM; CLASS REP ENV HYBRID; MODEL YIELD=ENV REP(ENV)
HYBRID HYBRID*ENV; TEST H=HYBRID E=HYBRID*ENV;
LSMEANS HYBRID:
RUN;
TITLE 'DIALLEL-SAS 1'; PROC GLM; CLASS REP ENV HYBRID;
MODEL YIELD=ENV REP(ENV) G1 G2 G3 G4 S11 S12 S13 S14 S22 S23 S24 S33
S34 S44 R12 R13 R14 R15 R23 R24 R25 R34 R35 R45 G1*ENV G2*ENV G3*ENV
G4*ENV S11*ENV S12*ENV S13*ENV S14*ENV S22*ENV S23*ENV S24*ENV S33*ENV
$34*ENV $44*ENV R12*ENV R13*ENV R14*ENV R15*ENV R23*ENV R24*ENV R25*ENV
     R34*ENV R35*ENV R45*ENV;
%MACRO GCASCA;
CONTRAST 'GCA' G1 1,G2 1,G3 1,G4 1;
CONTRAST 'SCA' S11 1,S12 1,S13 1,S14 1,S22 1,S23 1,S24 1,S33 1,S34
     1,S44 1;
ESTIMATE 'G1' G1 1; ESTIMATE 'G2' G2 1; ESTIMATE 'G3' G3 1;
ESTIMATE 'G4' G4 1;
ESTIMATE 'G5' G1 -1 G2 -1 G3 -1 G4 -1;
ESTIMATE 'S11' S11 1; ESTIMATE 'S12' S12 1; ESTIMATE 'S13' S13 1;
ESTIMATE 'S14' S14 1; ESTIMATE 'S22' S22 1; ESTIMATE 'S23' S23 1;
ESTIMATE 'S24' S24 1; ESTIMATE 'S33' S33 1; ESTIMATE 'S34' S34 1;
ESTIMATE 'S44' S44 1;
ESTIMATE 'S15' S11 -1 S12 -1 S13 -1 S14 -1;
ESTIMATE 'S25' S12 -1 S22 -1 S23 -1 S24 -1;
ESTIMATE 'S35' S13 -1 S23 -1 S33 -1 S34 -1;
ESTIMATE 'S45' S14 -1 S24 -1 S34 -1 S44 -1;
ESTIMATE 'S55' S11 1 S12 2 S13 2 S14 2 S22 1 S23 2 S24 2 S33 1 S34 2
     S44 1;
%MEND GCASCA;
%GCASCA
%MACRO INTERACT;
CONTRAST 'GCA*ENV' G1*ENV 1 -1,G2*ENV 1 -1,G3*ENV 1 -1,G4*ENV 1 -1;
CONTRAST 'SCA*ENV' S11*ENV 1 -1,S12*ENV 1 -1,S13*ENV 1 -1,S14*ENV 1 -
     1,S22*ENV 1 -1,S23*ENV 1 -1,S24*ENV 1 -1,S33*ENV 1 -1,S34*ENV 1 -
     1,S44*ENV 1 -1;
%MEND INTERACT:
%INTERACT
CONTRAST 'REC' R12 1, R13 1, R14 1, R15 1, R23 1, R24 1, R25 1, R34 1,
     R35 1, R45 1;
ESTIMATE 'R12' R12 1; ESTIMATE 'R13' R13 1; ESTIMATE 'R14' R14 1;
ESTIMATE 'R15' R15 1; ESTIMATE 'R23' R23 1; ESTIMATE 'R24' R24 1;
ESTIMATE 'R25' R25 1; ESTIMATE 'R34' R34 1; ESTIMATE 'R35' R35 1;
ESTIMATE 'R45' R45 1;
CONTRAST 'REC*ENV' R12*ENV 1 -1,R13*ENV 1 -1,R14*ENV 1 -1,R15*ENV 1 -
     1,R23*ENV 1 -1,R24*ENV 1 -1,R25*ENV 1 -1,R34*ENV 1 -1,R35*ENV 1 -
     1,R45*ENV 1 -1;
```

```
CONTRAST 'MAT SS' R12 1 R13 1 R14 1 R15 1,R12 -1 R23 1 R24 1 R25 1,R13
     -1 R23 -1 R34 1 R35 1,R14 -1 R24 -1 R34 -1 R45 1;
ESTIMATE 'MAT1' R12 1 R13 1 R14 1 R15 1/DIVISOR=4;
ESTIMATE 'MAT2' R12 -1 R23 1 R24 1 R25 1/DIVISOR=4;
ESTIMATE 'MAT3' R13 -1 R23 -1 R34 1 R35 1/DIVISOR=4;
ESTIMATE 'MAT4' R14 -1 R24 -1 R34 -1 R45 1/DIVISOR=4;
ESTIMATE 'MAT5' R15 -1 R25 -1 R35 -1 R45 -1/DIVISOR=4;
RUN;
TITLE 'DIALLEL-SAS 2'; PROC GLM; CLASS REP ENV HYBRID;
MODEL YIELD=ENV REP(ENV) G1 G2 G3 G4 S11 S12 S13 S14 S22 S23 S24 S33
$34 $44 M1 M2 M3 M4 N12 N13 N14 N23 N24 N34 G1*ENV G2*ENV G3*ENV
G4*ENV S11*ENV S12*ENV S13*ENV S14*ENV S22*ENV S23*ENV S24*ENV S33*ENV
$34*ENV $44*ENV M1*ENV M2*ENV M3*ENV M4*ENV N12*ENV N13*ENV N14*ENV
N23*ENV N24*ENV N34*ENV;
%GCASCA
%INTERACT
CONTRAST 'MAT SS' M1 1, M2 1, M3 1, M4 1;
CONTRAST 'NONM SS' N12 1,N13 1,N14 1,N23 1,N24 1,N34 1;
CONTRAST 'MAT*ENV' M1*ENV 1 -1, M2*ENV 1 -1, M3*ENV 1 -1, M4*ENV 1 -1;
CONTRAST 'NONM*ENV' N12*ENV 1 -1,N13*ENV 1 -1,N14*ENV 1 -1,N23*ENV 1 -
     1, N24*ENV 1 -1, N34*ENV 1 -1;
ESTIMATE 'M1' M1 1; ESTIMATE 'M2' M2 1; ESTIMATE 'M3' M3 1;
ESTIMATE 'M4' M4 1; ESTIMATE 'M5' M1 -1 M2 -1 M3 -1 M4 -1;
ESTIMATE 'N12' N12 1; ESTIMATE 'N13' N13 1; ESTIMATE 'N14' N14 1;
ESTIMATE 'N23' N23 1; ESTIMATE 'N24' N24 1; ESTIMATE 'N34' N34 1;
ESTIMATE 'N15' N12 -1 N13 -1 N14 -1;
ESTIMATE 'N25' N12 1 N23 -1 N24 -1;
ESTIMATE 'N35' N13 1 N23 1 N34 -1;
ESTIMATE 'N45' N14 1 N24 1 N34 1;
RUN;
Output
METHOD 1
                                   21:17 Sunday, September 2, 2001
The GLM Procedure
Class Level Information
Class Levels Values
          2 1 2
REP
           2 1 2
ENV
          25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
              22 23 24 25
Number of observations 100
METHOD 1
                                       21:17 Sunday, September 2, 2001
The GLM Procedure
Dependent Variable: YIELD
```

Sum of DF Squares Mean Square F Value Pr > FSource Model 51 1655.034800 32.451663 73.03 <.0001 48 21.329600 0.444367 Corrected Total 99 1676.364400

R-Square Coeff Var Root MSE YIELD Mean 0.987276 4.098170 0.666608 16.26600

```
DF
                            Type I SS
                                                        F Value
                                                                  Pr > F
Source
                                         Mean Square
ENV
                    1
                             0.384400
                                            0.384400
                                                           0.87
                                                                  0.3570
                                                          10.27
                    2
                             9.130400
                                            4.565200
                                                                  0.0002
REP (ENV)
HYBRID
                    24
                          1631.674400
                                            67.986433
                                                         153.00
                                                                  <.0001
ENV*HYBRID
                   24
                            13.845600
                                            0.576900
                                                           1.30
                                                                  0.2171
                   DF
                                                        F Value
                                                                  Pr > F
Source
                         Type III SS
                                        Mean Square
ENV
                   1
                             0.384400
                                            0.384400
                                                          0.87
                                                                 0.3570
                    2
REP (ENV)
                             9.130400
                                            4.565200
                                                          10.27
                                                                 0.0002
HYBRID
                   24
                          1631.674400
                                            67.986433
                                                         153.00
                                                                  <.0001
ENV*HYBRID
                   24
                            13.845600
                                             0.576900
                                                           1.30
                                                                  0.2171
Tests of Hypotheses Using the Type III MS for ENV*HYBRID as an Error
Source
                   DF
                          Type III SS
                                         Mean Square
                                                        F Value
                                                                  Pr > F
HYBRID
                   24
                          1631.674400
                                          67.986433
                                                         117.85
                                                                  <.0001
METHOD 1
                                                                        3
                                        21:17 Sunday, September 2, 2001
The GLM Procedure
Least Squares Means
HYBRID
          YIELD LSMEAN
1
            11.0250000
2
            11.9500000
3
            14.5500000
4
             9.0500000
5
            13.9000000
6
            12.7500000
            16.7500000
7
8
            19.2500000
9
            10.4500000
10
            17.4500000
11
            10.2750000
            15.7500000
12
13
            17.9500000
            22.2000000
14
15
            19.9500000
16
            12.5000000
17
            13.3000000
18
            14.4000000
19
            20.5500000
20
            18.1500000
21
            21.1250000
22
            21.0500000
23
            20.1000000
2.4
            21.4000000
25
            20.8250000
DIALLEL-SAS 1
                                        21:17 Sunday, September 2, 2001
The GLM Procedure
Class Level Information
Class Levels Values
REP
        2 1 2
         2 1 2
       25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
            23 24 25
Number of observations
                          100
DIALLEL-SAS 1
                                        21:17 Sunday, September 2, 2001
```

The GLM Procedure

R12*ENV

Dependent	Variable:	YIELD
-----------	-----------	-------

Dependent Va		/TELD				
Dependenc va	riabic. i	тыны	Sum of			
Source		DF	Squares	Mean Squar	re F Value	Pr > F
Model		51 1655	.034800	32.45166		<.0001
Error			.329600	0.44436		
Corrected To	tal 99 1	676.3644				
R-Square		f Var	Root			
0.987276		98170_	0.666		26600	
Source	DF		e I SS	Mean Square		Pr > F
ENV	1		844000	0.3844000		0.3570
REP (ENV)	2		304000	4.5652000		0.0002
G1	1		781250	887.7781250		<.0001
G2	1		400417	9.6400417		<.0001
G3	1		520833	50.0520833		<.0001
G4	1		060500	0.0060500		0.9076
S11	1		806250	10.0806250		<.0001
S12	1		666667	10.666666		<.0001
S13	1		563021	12.5563021		<.0001
S14	1		195312	27.3195312		<.0001
S22	1		084028	6.2084028		0.0005
S23	1		487674	9.9487674		<.0001
S24	1		200104	52.2200104		<.0001
S33	1		267361	2.1267361		0.0336
S34	1		333333	61.6333333		<.0001
S44	1		852250	115.8852250		<.0001
R12	1		800000	1.2800000		0.0961
R13 R14	1		512500 050000	36.5512500 23.8050000		<.0001 <.0001
R15	1		012500	104.4012500		<.0001
R23	1		000000	24.5000000		<.0001
R24	1		450000	16.245000		<.0001
R25	1		200000	25.920000		<.0001
R34	1		800000	121.6800000		<.0001
R35	1		450000	0.0450000		0.7517
R45	1		250000	21.1250000		<.0001
G1*ENV	1		401250	1.5401250		0.0688
G2*ENV	1		320417	0.5320417		0.2793
G3*ENV	1		700833	0.0700833		0.6930
G4*ENV	1		384500	0.9384500		0.1527
S11*ENV	1		756250	0.0756250		0.6818
S12*ENV	1	0.5	400000	0.5400000	1.22	0.2758
DIALLEL-SAS	1					6
				21:17 Sunda	y, September	2, 2001
The GLM Proc						
Dependent Va						
Source	DF		e I SS	Mean Square		Pr > F
S13*ENV	1		567187	0.0567187		0.7225
S14*ENV	1		987813	1.4987813		0.0725
S22*ENV	1		500694	0.3500694		0.3792
S23*ENV	1		941840	0.5941840		0.2533
S24*ENV	1		575938	0.1575938		0.5543
S33*ENV	1		677778	1.8677778		0.0458
S34*ENV	1		307500	0.3307500		0.3926
S44*ENV	1	0.2	209000	0.2209000	0.50	0.4842

0.1250000

0.1250000

0.28 0.5983

R13*ENV R14*ENV R15*ENV R23*ENV R24*ENV R25*ENV R34*ENV R35*ENV R45*ENV	1 1 1 1 1 1 1	0.5512500 0.0200000 0.2812500 0.0450000 1.6200000 0.0000000 2.4200000 0.0050000	0.5512500 0.0200000 0.2812500 0.0450000 1.6200000 0.0000000 2.4200000 0.0050000	1.24 0.05 0.63 0.10 3.65 0.00 5.45 0.01	0.2709 0.8329 0.4302 0.7517 0.0622 1.0000 0.0238 0.9160 0.9160
Source ENV REP(ENV) G1 G2 G3 G4 S11 S12 S13 S14 S22 S23 S24 S33 S34 S44 R12 R13 R14 R15 R23 R24 R25 R24 R35	DF 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type III SS 0.3844000 9.1304000 595.4700500 25.9920500 47.1906125 0.0060500 17.2432562 0.7710118 22.2103059 48.4334235 23.1842250 11.3796735 157.5091882 0.4192563 13.5576735 115.8852250 1.2800000 36.5512500 23.8050000 104.4012500 24.5000000 16.24500000 16.24500000 121.6800000 0.04500000 0.04500000	Mean Square 0.3844000 4.5652000 595.4700500 25.9920500 47.1906125 0.0060500 17.2432562 0.7710118 22.2103059 48.4334235 23.1842250 11.3796735 157.5091882 0.4192563 13.5576735 115.8852250 1.2800000 36.5512500 23.8050000 104.4012500 24.5000000 16.2450000 25.9200000 121.6800000 0.0450000	F Value 0.87 10.27 1340.04 58.49 106.20 0.01 38.80 1.74 49.98 108.99 52.17 25.61 354.46 0.94 30.51 260.79 2.88 82.25 53.57 234.94 55.13 36.56 58.33 273.83 0.10	Pr > F 0.3570 0.0002 <.0001 <.0001 <.0001 0.1940 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0001<br 0001<br </td
DIALLEL-SAS 1			21:17 Sunday,	September	7 2, 2001
The GLM Procedon Dependent Variations ource R45 G1*ENV G2*ENV G3*ENV S11*ENV S12*ENV S12*ENV S14*ENV S22*ENV S23*ENV S24*ENV S33*ENV S34*ENV S34*ENV S44*ENV		Type III SS 21.1250000 2.1632000 0.2592000 0.2485125 0.9384500 0.0175563 1.2274000 0.1751059 0.5539882 0.3364000 0.0860029 0.1106941 2.2725563 0.4920029 0.2209000	Mean Square 21.1250000 2.1632000 0.2592000 0.2485125 0.9384500 0.0175563 1.2274000 0.1751059 0.5539882 0.3364000 0.0860029 0.1106941 2.2725563 0.4920029 0.2209000	F Value 47.54 4.87 0.58 0.56 2.11 0.04 2.76 0.39 1.25 0.76 0.19 0.25 5.11 1.11 0.50	Pr > F < .0001 0.0322 0.4488 0.4582 0.1527 0.8433 0.1030 0.5331 0.2697 0.3886 0.6620 0.0283 0.2980 0.4842

R12*ENV R13*ENV R14*ENV R15*ENV R23*ENV R24*ENV R25*ENV R34*ENV R35*ENV R45*ENV	1 1 1 1 1 1 1 1	0.55 0.02 0.28 0.04 1.62 0.00 2.42	250000 512500 200000 812500 150000 200000 200000 200000 250000	0.281 0.045 1.620 0.000 2.420	12500 00000 12500 50000	0.28 1.24 0.05 0.63 0.10 3.65 0.00 5.45 0.01	0.5983 0.2709 0.8329 0.4302 0.7517 0.0622 1.0000 0.0238 0.9160 0.9160
Contrast GCA SCA GCA*ENV SCA*ENV REC REC*ENV MAT SS	DF 4 10 4 10 10 10	5.69 375.55	763000 156000 807000 924000 525000 725000 665000	Mean Sc 236.869 30.864 0.770 0.569 37.559 0.500 28.139 andard	90750 45600 91750 92400 52500 72500	F Value 533.05 69.46 1.73 1.28 84.51 1.14 63.32	Pr > F <.0001 <.0001 0.1581 0.2678 <.0001 0.3527 <.0001
Parameter G1 G2 G3 G4 G5 S11 DIALLEL-SAS 1	Est: -3.4510 -0.7210 0.9715 -0.0110 3.2115 1.6610	00000 50000 00000 50000	0.09 0.09 0.09 0.09	Error 427265 427265 427265 427265 427265 664333	t Val -36. -7. 10. -0. 34. 6.	61	> t .0001 .0001 .0001 .9076 .0001 .0001

The GLM Procedure
Dependent Variable: YIELD

21:17 Sunday, September 2, 2001

Parameter Estimate Error t Value Pr > t S12	Dependent	Variable: YIELD			
\$12 0.25600000 0.19434806 1.32 0.1940 \$13 -1.37400000 0.19434806 -7.07 <.0001			Standard		
\$13\$ -1.37400000 0.19434806 -7.07 <.0001	Parameter	Estimate	Error	t Value	Pr > t
\$14 -2.02900000 0.19434806 -10.44 <.0001	S12	0.25600000	0.19434806	1.32	0.1940
\$22 1.92600000 0.26664333 7.22 <.0001	S13	-1.37400000	0.19434806	-7.07	<.0001
\$23\$ 0.98350000 0.19434806 5.06 <.0001	S14	-2.02900000	0.19434806	-10.44	<.0001
S24 -3.65900000 0.19434806 -18.83 <.0001	S22	1.92600000	0.26664333	7.22	<.0001
\$33\$ -0.25900000 0.26664333 -0.97 0.3363 \$34\$ 1.07350000 0.19434806 5.52 <.0001	S23	0.98350000	0.19434806	5.06	<.0001
S34 1.07350000 0.19434806 5.52 <.0001	S24	-3.65900000	0.19434806	-18.83	<.0001
\$44 4.30600000 0.26664333 16.15 <.0001	S33	-0.25900000	0.26664333	-0.97	0.3363
\$15\$ 1.48600000 0.19434806 7.65 <.0001	S34	1.07350000	0.19434806	5.52	<.0001
S25 0.49350000 0.19434806 2.54 0.0144 S35 -0.42400000 0.19434806 -2.18 0.0341 S45 0.30850000 0.19434806 1.59 0.1190 S55 -1.86400000 0.26664333 -6.99 <.0001	S44	4.30600000	0.26664333	16.15	<.0001
S35 -0.42400000 0.19434806 -2.18 0.0341 S45 0.30850000 0.19434806 1.59 0.1190 S55 -1.86400000 0.26664333 -6.99 <.0001	S15	1.48600000	0.19434806	7.65	<.0001
S45 0.30850000 0.19434806 1.59 0.1190 S55 -1.86400000 0.26664333 -6.99 <.0001	S25	0.49350000	0.19434806	2.54	0.0144
S55 -1.86400000 0.26664333 -6.99 <.0001	S35	-0.42400000	0.19434806	-2.18	0.0341
R12 -0.40000000 0.23568164 -1.70 0.0961 R13 2.13750000 0.23568164 9.07 <.0001	S45	0.30850000	0.19434806	1.59	0.1190
R13	S55	-1.86400000	0.26664333	-6.99	<.0001
R14 -1.72500000 0.23568164 -7.32 <.0001	R12	-0.4000000	0.23568164	-1.70	0.0961
R15	R13	2.13750000	0.23568164	9.07	<.0001
R23 1.75000000 0.23568164 7.43 <.0001	R14	-1.72500000	0.23568164	-7.32	<.0001
R24 -1.42500000 0.23568164 -6.05 <.0001	R15	-3.61250000	0.23568164	-15.33	<.0001
R25	R23	1.75000000	0.23568164	7.43	<.0001
R34 3.9000000 0.23568164 16.55 <.0001 R35 -0.07500000 0.23568164 -0.32 0.7517	R24	-1.42500000	0.23568164	-6.05	<.0001
R35 -0.07500000 0.23568164 -0.32 0.7517	R25	-1.8000000	0.23568164	-7.64	<.0001
	R34	3.9000000	0.23568164	16.55	<.0001
	R35	-0.07500000	0.23568164	-0.32	0.7517
R45 -1.62500000 0.23568164 -6.89 <.0001	R45	-1.62500000	0.23568164	-6.89	<.0001

MAT1	-0.9	0000000	0.	117840)82	-7.64	<.0001
MAT2		6875000		117840		-2.28	0.0271
MAT3		1562500		117840		-0.13	0.8951
MAT4		9375000		117840		-5.04	<.0001
MAT5	1.7	7812500	0.	117840	182	15.09	<.0001
DIALLEL-SAS 2							9
				21:17	Sunday	, September	2, 2001
The GLM Procedure							
Class Level Informa	ation	Į.					
Class Levels Val	ues						
REP 2 1 2							
ENV 2 1 2							
	3 4	5 6 7 8 9 10	11	12 13	14 15	16 17 18 19	20 21
	23 24			12 10	7 14 15	10 17 10 17	20 21
		100					
Number of observat:	TOUS	100					1.0
DIALLEL-SAS 2							10
				21:17	Sunday	, September	2, 2001
The GLM Procedure							
Dependent Variable	: YIE	LD					
		Sum of					
Source	DF	Squares		Mean	Square	F Value	Pr > F
Model	51	1655.034800			451663	73.03	<.0001
Error	48	21.329600			444367	, 0 • 00	
Corrected Total 99		6.364400		•	111007		
R-Square Coeff		Root MSI	7	VTET	D Mean		
1					5.26600		
		0.666608	5				
	DF	Type I SS			Square	F Value	Pr > F
ENV	1	0.3844000			3844000	0.87	0.3570
REP (ENV)	2	9.1304000			652000	10.27	0.0002
G1	1	887.7781250			7781250	1997.85	<.0001
G2	1	9.6400417			5400417	21.69	<.0001
G3	1	50.0520833		50.0	520833	112.64	<.0001
G4	1	0.0060500		0.0	060500	0.01	0.9076
S11	1	10.0806250		10.0	806250	22.69	<.0001
S12	1	10.6666667		10.6	6666667	24.00	<.0001
S13	1	12.5563021		12.5	563021	28.26	<.0001
S14	1	27.3195312			3195312	61.48	<.0001
S22	1	6.2084028			2084028	13.97	0.0005
\$23	1	9.9487674			9487674	22.39	<.0001
S24	1	52.2200104			2200104	117.52	<.0001
S33	1	2.1267361			267361	4.79	0.0336
	_						
S34	1	61.6333333			3333333	138.70	<.0001
S44	1	115.8852250			8852250	260.79	<.0001
M1	1	91.8061250			3061250	206.60	<.0001
M2	1	8.5503750			5503750	19.24	<.0001
М3	1	0.9187500			9187500	2.07	0.1570
M4	1	11.2812500		11.2	2812500	25.39	<.0001
N12	1	5.3204167		5.3	3204167	11.97	0.0011
N13	1	81.2500521		81.2	2500521	182.84	<.0001
N14	1	7.2902812		7.2	2902812	16.41	0.0002
N23	1	7.2226563			2226563	16.25	0.0002
N24	1	4.3605104			8605104	9.81	0.0030
N34	1	157.5520833			520833	354.55	<.0001
G1*ENV	1	1.5401250			401250	3.47	0.0688
G2*ENV	1	0.5320417			320417	1.20	0.2793
G3*ENV	1					0.16	
GO., EMA	1	0.0700833		0.0	700833	0.10	0.6930

0.9384500 0.9384500 2.11 0.1527

1

G4*ENV

S11*ENV S12*ENV	1 1	0.0756250 0.5400000	0.0756250 0.5400000	0.17 1.22	0.6818 0.2758
DIALLEL-SAS 2			21:17 Sunday,	September	2, 2001
The GLM Procedur Dependent Variab		T.D			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
S13*ENV S14*ENV	1 1	0.0567187 1.4987813	0.0567187 1.4987813	0.13 3.37	0.7225 0.0725
S22*ENV	1	0.3500694	0.3500694	0.79	0.3792
S23*ENV S24*ENV	1 1	0.5941840 0.1575938	0.5941840 0.1575938	1.34 0.35	0.2533
S33*ENV	1	1.8677778	1.8677778	4.20	0.0458
S34*ENV	1	0.3307500	0.3307500	0.74	0.3926
S44*ENV M1*ENV	1 1	0.2209000 0.2101250	0.2209000 0.2101250	0.50 0.47	0.4842
M2*ENV	1	0.1450417	0.1450417	0.33	0.5705
M3*ENV M4*ENV	1 1	0.0440833 0.0612500	0.0440833 0.0612500	0.10	0.7542 0.7121
N12*ENV	1	0.2604167	0.2604167	0.59	0.4477
N13*ENV	1	0.0713021	0.0713021	0.16	0.6905
N14*ENV N23*ENV	1 1	0.0300313 0.0689062	0.0300313 0.0689062	0.07 0.16	0.7960 0.6955
N24*ENV	1	1.1412604	1.1412604	2.57	0.1156
N34*ENV	1	3.0400833	3.0400833	6.84	0.0119
Source	DF	Type III SS	Mean Square	F Value	Pr > F
ENV REP (ENV)	1 2	0.3844000 9.1304000	0.3844000 4.5652000	0.87 10.27	0.3570
G1	1	595.4700500	595.4700500	1340.04	<.0001
G2	1	25.9920500	25.9920500	58.49	<.0001
G3 G4	1 1	47.1906125 0.0060500	47.1906125 0.0060500	106.20 0.01	<.0001 0.9076
S11	1	17.2432562	17.2432562	38.80	<.0001
S12 S13	1 1	0.7710118 22.2103059	0.7710118 22.2103059	1.74 49.98	0.1940
S14	1	48.4334235	48.4334235	108.99	<.0001
S22	1	23.1842250	23.1842250	52.17	<.0001
S23 S24	1 1	11.3796735 157.5091882	11.3796735 157.5091882	25.61 354.46	<.0001 <.0001
S33	1	0.4192563	0.4192563	0.94	0.3363
S34 S44	1 1	13.5576735 115.8852250	13.5576735 115.8852250	30.51 260.79	<.0001
M1	1	25.9200000	25.9200000	58.33	<.0001 <.0001
M2	1	2.3112500	2.3112500	5.20	0.0271
M3 M4	1 1	0.0078125 11.2812500	0.0078125 11.2812500	0.02 25.39	0.8951 <.0001
N12	1	0.1470000	0.1470000	0.33	0.5679
N13	1	107.9203333	107.9203333	242.86	<.0001
N14 N23	1 1	29.2053333 50.8300833	29.2053333 50.8300833	65.72 114.39	<.0001 <.0001
N24	1	37.8563333	37.8563333	85.19	<.0001
DIALLEL-SAS 2			21:17 Sunday,	Sentember	2. 2001
The GLM Procedur			zi.i/ Dunday,	pebramer	2, 2001
Dependent Variab Source	ole: YIE DF	LD Type III SS	Mean Square	F Value	Pr > F
		-150 111 00	can square		

N34 G1*ENV G2*ENV G3*ENV G3*ENV S11*ENV S11*ENV S13*ENV S14*ENV S24*ENV S23*ENV S24*ENV S33*ENV S34*ENV S34*ENV M1*ENV M1*ENV M2*ENV M3*ENV M1*ENV		157.5520833 2.1632000 0.2592000 0.2485125 0.9384500 0.0175563 1.2274000 0.1751059 0.5539882 0.3364000 0.0860029 0.1106941 2.2725563 0.4920029 0.2209000 0.2812500 0.1250000 0.0703125 0.0612500 0.83333333	157.552083 2.163200 0.259200 0.248512 0.938450 0.017556 1.227400 0.175105 0.553988 0.336400 0.086002 0.110694 2.272556 0.492002 0.220900 0.281250 0.125000 0.070312 0.061250	10 4.87 10 0.58 15 0.56 10 2.11 13 0.04 10 2.76 19 0.39 12 1.25 10 0.76 10 0.25 11 0.25 13 0.04 10 0.39 11 0.25 13 0.04 10 0.39 11 0.25 13 0.04 10 0.39 11 0.25 11 0.25 12 0.39 13 0.39 14 0.35 15 0.35 16 0.35 17 0.35 18	0.1527 0.8433 0.1030 0.5331 0.2697 0.3886 0.6620 0.6200 0.0283 0.2980 0.4842 0.4302 0.5983
N13*ENV	1	0.6750000	0.675000		0.2238
N14*ENV	1	0.0480000	0.048000		0.7438
N23*ENV	1	0.3520833	0.352083		
N24*ENV	1	2.5230000	2.523000		0.0212
N34*ENV	1	3.0400833	3.040083	6.84	0.0119
Contrast	DF	Contrast SS	Mean Squar	e F Value	Pr > F
GCA	4	947.4763000	236.869075	533.05	<.0001
SCA	10	308.6456000	30.864560	0 69.46	<.0001
GCA*ENV	4	3.0807000	0.770175	1.73	0.1581
SCA*ENV	10	5.6924000	0.569240	1.28	0.2678
MAT SS	4	112.5565000	28.139125		<.0001
NONM SS	6	262.9960000	43.832666		<.0001
MAT*ENV	4	0.4605000	0.115125		
NONM*ENV	6	4.6120000	0.768666	1.73	0.1344
			Standard		
Parameter		Stimate	Error	t Value	Pr > t
G1		15100000	0.09427265	-36.61	<.0001
G2		2100000	0.09427265	-7.65	<.0001
G3		7150000	0.09427265	10.31	<.0001
G4		1100000	0.09427265	-0.12	0.9076
G5	3.2	21150000	0.09427265	34.07	<.0001
DIALLEL-SAS 2			21.17 Sund	ay, Septembe	13 er 2, 2001
The GLM Procedur	re		ZI.I/ Suna	ay, septembe	er 2, 2001
Dependent Variab		LD			
			Standard		
Parameter		Stimate	Error	t Value	Pr > t
S11		6100000	0.26664333	6.23	<.0001
S12		25600000	0.19434806	1.32	0.1940
S13 S14		37400000 32900000	0.19434806	-7.07 -10.44	<.0001
S14 S22		2600000	0.19434806 0.26664333	7.22	<.0001 <.0001
\$23		98350000	0.19434806	5.06	<.0001
S24		55900000	0.19434806	-18.83	<.0001
S33		25900000	0.26664333	-0.97	0.3363
	0.2		0.20001000	0.57	0.0000

1.07350000	0.19434806	5.52	<.0001
4.30600000	0.26664333	16.15	<.0001
1.48600000	0.19434806	7.65	<.0001
0.49350000	0.19434806	2.54	0.0144
-0.42400000	0.19434806	-2.18	0.0341
			0.1190
			<.0001
			<.0001
-0.21500000	0.09427265	-2.28	0.0271
-0.01250000	0.09427265	-0.13	0.8951
-0.47500000	0.09427265	-5.04	<.0001
1.42250000	0.09427265	15.09	<.0001
0.10500000	0.18255821	0.58	0.5679
2.84500000	0.18255821	15.58	<.0001
-1.48000000	0.18255821	-8.11	<.0001
1.95250000	0.18255821	10.70	<.0001
-1.68500000	0.18255821	-9.23	<.0001
3.43750000	0.18255821	18.83	<.0001
-1.47000000	0.18255821	-8.05	<.0001
-0.16250000	0.18255821	-0.89	0.3778
1.36000000	0.18255821	7.45	<.0001
0.27250000	0.18255821	1.49	0.1421
	1.48600000 0.49350000 -0.42400000 0.30850000 -1.86400000 -0.21500000 -0.21500000 -0.01250000 1.42250000 0.10500000 2.84500000 -1.48000000 1.95250000 -1.68500000 -1.477000000 -1.477000000 -1.47000000 -1.4250000 -1.436000000	4.30600000 0.26664333 1.48600000 0.19434806 0.49350000 0.19434806 -0.42400000 0.19434806 0.30850000 0.19434806 -1.86400000 0.26664333 -0.72000000 0.09427265 -0.21500000 0.09427265 -0.01250000 0.09427265 -0.47500000 0.09427265 1.42250000 0.09427265 0.10500000 0.18255821 2.84500000 0.18255821 1.95250000 0.18255821 1.68500000 0.18255821 -1.47000000 0.18255821 -1.47000000 0.18255821 -0.16250000 0.18255821 1.36000000 0.18255821	4.30600000 0.26664333 16.15 1.48600000 0.19434806 7.65 0.49350000 0.19434806 2.54 -0.42400000 0.19434806 -2.18 0.30850000 0.19434806 1.59 -1.86400000 0.26664333 -6.99 -0.72000000 0.09427265 -7.64 -0.21500000 0.09427265 -2.28 -0.01250000 0.09427265 -5.04 1.42250000 0.09427265 -5.04 1.42250000 0.09427265 15.09 0.10500000 0.18255821 0.58 2.84500000 0.18255821 -8.11 1.95250000 0.18255821 -8.11 1.95250000 0.18255821 -9.23 3.43750000 0.18255821 -8.05 -0.16250000 0.18255821 -8.05 -0.16250000 0.18255821 -0.89 1.36000000 0.18255821 -0.89

DIALLEL-SAS Method 2 Program Listing

```
DATA METHOD2; TITLE 'METHOD 2';
INPUT I J REP HYBRID YIELD ENV;
DROP N NI NJ P;
P=5; *NUMBER OF PARENTAL LINES;
ARRAY GCA(N) G1 G2 G3 G4;
DO N=1 TO (P-1);
GCA=((I=N)-(I=P))+((J=N)-(J=P));
END;
ARRAY SCA(N) S11 S12 S13 S14 S22 S23 S24 S33 S34 S44;
N=0;
DO NI=1 TO (P-1);
DO NJ=NI TO (P-1);
N+1:
IF NI=NJ THEN DO;
SCA=(I=NI)*((J=NJ)-(J=P)*2)+(I=P)*(J=P);END;
ELSE DO:
SCA=(I=NI)*(J=NJ)-(J=P)*((I=NI)+(I=NJ)-(I=P));
END; END; END;
CARDS:
```

[Your data here]

```
;
PROC SORT;BY REP ENV I J;
PROC GLM;CLASS REP ENV HYBRID;MODEL YIELD=ENV REP(ENV)
HYBRID HYBRID*ENV;TEST H=HYBRID E=HYBRID*ENV;
LSMEANS HYBRID;
PROC GLM;CLASS REP ENV HYBRID;
MODEL YIELD=ENV REP(ENV) G1 G2 G3 G4 S11 S12 S13 S14 S22 S23 S24 S33
```

```
$34 $44 $1*ENV $2*ENV $3*ENV $4*ENV $11*ENV $12*ENV $13*ENV $14*ENV
S22*ENV S23*ENV S24*ENV S33*ENV S34*ENV S44*ENV;
CONTRAST 'GCA' G1 1,G2 1,G3 1,G4 1;
CONTRAST 'SCA' S11 1,S12 1,S13 1,S14 1,S22 1,S23 1,S24 1,S33 1,S34 1,
     S44 1;
ESTIMATE 'G1' G1 1; ESTIMATE 'G2' G2 1; ESTIMATE 'G3' G3 1;
ESTIMATE 'G4' G4 1;
ESTIMATE 'G5' G1 -1 G2 -1 G3 -1 G4 -1;
ESTIMATE 'S11' S11 1; ESTIMATE 'S12' S12 1; ESTIMATE 'S13' S13 1;
ESTIMATE 'S14' S14 1; ESTIMATE 'S22' S22 1; ESTIMATE 'S23' S23 1;
ESTIMATE 'S24' S24 1; ESTIMATE 'S33' S33 1; ESTIMATE 'S34' S34 1;
ESTIMATE 'S44' S44 1;
ESTIMATE 'S15' S11 -1 S12 -1 S13 -1 S14 -1;
ESTIMATE 'S25' S12 -1 S22 -1 S23 -1 S24 -1;
ESTIMATE 'S35' S13 -1 S23 -1 S33 -1 S34 -1;
ESTIMATE 'S45' S14 -1 S24 -1 S34 -1 S44 -1;
ESTIMATE 'S55' S11 1 S12 2 S13 2 S14 2 S22 1 S23 2 S24 2 S33 1 S34 2
     S44 1;
CONTRAST 'GCA*ENV' G1*ENV 1 -1,G2*ENV 1 -1,G3*ENV 1 -1,G4*ENV 1 -1;
CONTRAST 'SCA*ENV' S11*ENV 1 -1,S12*ENV 1 -1,S13*ENV 1 -1,S14*ENV 1 -
     1, S22*ENV 1 -1, S23*ENV 1 -1, S24*ENV 1 -1, S33*ENV 1 -1, S34*ENV 1
     -1,S44*ENV 1 -1;
RUN:
```

DIALLEL Method 3 Program Listing

```
TITLE 'METHOD 3';
DATA METHOD3;
INPUT I J REP HYBRID YIELD ENV;
DROP N NI NJ P;
P=5; *NUMBER OF PARENTAL LINES;
ARRAY GCA(N) G1 G2 G3 G4;
DO N=1 TO (P-1);
GCA=((I=N)-(I=P))+((J=N)-(J=P));
ARRAY SCA(N) S12 S13 S14 S23 S24;
N=0;
DO NI=1 TO (P-3);
DO NJ=NI+1 TO (P-1);
N+1;
SCA=(I=NI)*(J=NJ)-((I=NI)+(I=NJ))*(J=P)+(J=NI)*(I=NJ)
-(I=P)*((J=NI)+(J=NJ));
IF ((I >= (P-2)) & (J >= (P-1))) | ((I >= (P-1)) & (J >= (P-2))) THEN DO;
SCA=-(I=(P-2))*(J=(P-1))+(I>=(P-2))*(J=P)*(I NE NJ)-(J=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I=(P-2))*(I
                    1)) + (J \ge (P-2)) * (I=P) * (J NE NJ);
END; END; END;
ARRAY REC(N) R12 R13 R14 R15 R23 R24 R25 R34 R35 R45;
N=0;
DO NI=1 TO (P-1);
DO NJ=(NI+1) TO P;
REC=(I=NI)*(J=NJ)-(J=NI)*(I=NJ);
END; END;
ARRAY MAT(N) M1 M2 M3 M4;
DO N=1 TO (P-1);
```

```
MAT=(I=N)+(J=P)-(J=N)-(I=P);

END;

ARRAY NONM(N) N12 N13 N14 N23 N24 N34;

N=0;

DO NI=1 TO (P-2);

DO NJ=(NI+1) TO (P-1);

N+1;

NONM=((I=NI)*(J=NJ))-(I=NJ)*(J=NI)+(((I=NJ)-(I=NI))*(J=P))

+((I=P)*((J=NI)-(J=NJ)));

END; END;

CARDS;
```

[Your data here]

```
PROC SORT; BY ENV REP I J;
PROC GLM; CLASS REP ENV HYBRID; MODEL YIELD=ENV REP(ENV) HYBRID
     ENV*HYBRID; TEST H=HYBRID E=ENV*HYBRID; TEST H=ENV E=REP(ENV);
     LSMEANS HYBRID; RUN;
TITLE 'DIALLEL-SAS 1';
PROC GLM; CLASS REP HYBRID ENV;
MODEL YIELD=ENV REP(ENV) G1 G2 G3 G4 S12 S13 S14 S23 S24 R12
R13 R14 R15 R23 R24 R25 R34 R35 R45 G1*ENV G2*ENV G3*ENV G4*ENV
$12*ENV $13*ENV $14*ENV $23*ENV $24*ENV R12*ENV R13*ENV R14*ENV
R15*ENV R23*ENV R24*ENV R25*ENV R34*ENV R35*ENV R45*ENV;
%MACRO GCASCA;
CONTRAST 'GCA' G1 1,G2 1,G3 1,G4 1;
CONTRAST 'SCA' S12 1,S13 1,S14 1,S23 1,S24 1;
ESTIMATE 'G1' G1 1; ESTIMATE 'G2' G2 1; ESTIMATE 'G3' G3 1;
ESTIMATE 'G4' G4 1;
ESTIMATE 'G5' G1 -1 G2 -1 G3 -1 G4 -1;
ESTIMATE 'S12' S12 1; ESTIMATE 'S13' S13 1; ESTIMATE 'S14' S14 1;
ESTIMATE 'S23' S23 1; ESTIMATE 'S24' S24 1;
ESTIMATE 'S15' S12 -1 S13 -1 S14 -1; ESTIMATE 'S25' S12 -1 S23 -1 S24 -
ESTIMATE 'S34' S12 -1 S13 -1 S14 -1 S23 -1 S24 -1;
ESTIMATE 'S35' S12 1 S14 1 S24 1; ESTIMATE 'S45' S12 1 S13 1 S23 1;
%MEND GCASCA;
%GCASCA
CONTRAST 'REC' R12 1,R13 1,R14 1,R15 1,R23 1,R24 1,R25 1,R34 1,R35 1,
     R45 1;
ESTIMATE 'R12' R12 1; ESTIMATE 'R13' R13 1; ESTIMATE 'R14' R14 1;
ESTIMATE 'R15' R15 1; ESTIMATE 'R23' R23 1; ESTIMATE 'R24' R24 1;
ESTIMATE 'R25' R25 1; ESTIMATE 'R34' R34 1; ESTIMATE 'R35' R35 1;
ESTIMATE 'R45' R45 1;
CONTRAST 'MAT SS' R12 1 R13 1 R14 1 R15 1,R12 -1 R23 1 R24 1 R25 1,
     R13 -1 R23 -1 R34 1 R35 1.R14 -1 R24 -1 R34 -1 R45 1;
ESTIMATE 'MAT1' R12 1 R13 1 R14 1 R15 1/DIVISOR=4;
ESTIMATE 'MAT2' R12 -1 R23 1 R24 1 R25 1/DIVISOR=4;
ESTIMATE 'MAT3' R13 -1 R23 -1 R34 1 R35 1/DIVISOR=4;
ESTIMATE 'MAT4' R14 -1 R24 -1 R34 -1 R45 1/DIVISOR=4;
ESTIMATE 'MAT5' R15 -1 R25 -1 R35 -1 R45 -1/DIVISOR=4;
%MACRO INTERACT;
CONTRAST 'GCA*ENV' G1*ENV 1 -1,G2*ENV 1 -1,G3*ENV 1 -1,G4*ENV 1 -1;
CONTRAST 'SCA*ENV' S12*ENV 1 -1,S13*ENV 1 -1,S14*ENV 1 -1, S23*ENV 1 -
     1,S24*ENV 1 -1;
```

```
%MEND INTERACT;
%INTERACT
CONTRAST 'REC*ENV' R12*ENV 1 -1,R13*ENV 1 -1,R14*ENV 1 -1, R15*ENV 1
     -1,R23*ENV 1 -1,R24*ENV 1 -1, R25*ENV 1 -1,R34*ENV 1 -1,R35*ENV 1
     -1, R35*ENV 1 -1, R45*ENV 1 -1;
RUN:
TITLE 'DIALLEL-SAS 2';
PROC GLM; CLASS REP HYBRID ENV;
MODEL YIELD=ENV REP(ENV) G1 G2 G3 G4 S12 S13 S14 S23 S24 M1 M2 M3
M4 N12 N13 N14 N23 N24 N34 G1*ENV G2*ENV G3*ENV G4*ENV
S12*ENV S13*ENV S14*ENV S23*ENV S24*ENV M1*ENV M2*ENV M3*ENV
M4*ENV N12*ENV N13*ENV N14*ENV N23*ENV N24*ENV N34*ENV;
%GCASCA
%INTERACT
CONTRAST 'MAT' M1 1, M2 1, M3 1, M4 1;
CONTRAST 'NONM' N12 1,N13 1,N14 1,N23 1,N24 1,N34 1;
ESTIMATE 'M1' M1 1; ESTIMATE 'M2' M2 1; ESTIMATE 'M3' M3 1;
ESTIMATE 'M4' M4 1; ESTIMATE 'M5' M1 -1 M2 -1 M3 -1 M4 -1;
ESTIMATE 'N12' N12 1:ESTIMATE 'N13' N13 1:ESTIMATE 'N14' N14 1:
ESTIMATE 'N23' N23 1; ESTIMATE 'N24' N24 1; ESTIMATE 'N34' N34 1;
ESTIMATE 'N15' N12 -1 N13 -1 N14 -1;
ESTIMATE 'N25' N12 1 N23 -1 N24 -1;
ESTIMATE 'N35' N13 1 N23 1 N34 -1;
ESTIMATE 'N45' N14 1 N24 1 N34 1;
CONTRAST 'MAT*ENV' M1*ENV 1 -1, M2*ENV 1 -1, M3*ENV 1 -1, M4*ENV 1 -1;
CONTRAST 'NONM*ENV' N12*ENV 1 -1, N13*ENV 1 -1, N14*ENV 1 -1, N23*ENV 1
     -1, N24*ENV 1 -1, N34*ENV 1 -1;
RUN:
```

DIALLEL Method 4 Program Listing

```
DATA METHOD4; TITLE 'METHOD 4';
INPUT I J REP HYBRID YIELD ENV;
DROP N NI NJ P;
P=5; *NUMBER OF PARENTAL LINES;
ARRAY GCA(N) G1 G2 G3 G4;
DO N=1 TO (P-1);
GCA=((I=N)-(I=P))+((J=N)-(J=P));
END:
ARRAY SCA(N) S12 S13 S14 S23 S24;
N=0;
DO NI=1 TO (P-3);
DO NJ=NI+1 TO (P-1);
N+1:
SCA=(I=NI)*(J=NJ)-((I=NI)+(I=NJ))*(J=P);
IF ((1>=(P-2)) \& (J>=(P-1))) | ((1>=(P-1)) \& (J>=(P-2))) THEN DO;
SCA=-(I=(P-2))*(J=(P-1))+(I>=(P-2))*(J=P)*(I NE NJ);
END; END; END;
CARDS:
```

[Your data here]

```
;
PROC SORT; BY REP ENV I J;
```

```
PROC GLM; CLASS REP ENV HYBRID; MODEL YIELD=ENV REP(ENV) HYBRID
     HYBRID*ENV; TEST H=HYBRID E=HYBRID*ENV; LSMEANS HYBRID;
PROC GLM; CLASS REP ENV HYBRID;
MODEL YIELD=ENV REP(ENV) G1 G2 G3 G4 S12 S13 S14 S23 S24
G1*ENV G2*ENV G3*ENV G4*ENV S12*ENV S13*ENV S14*ENV S23*ENV S24*ENV;
CONTRAST 'GCA' G1 1,G2 1,G3 1,G4 1;
CONTRAST 'SCA' S12 1, S13 1, S14 1, S23 1, S24 1;
CONTRAST 'GCA*ENV' G1*ENV 1 -1,G2*ENV 1 -1,G3*ENV 1 -1,G4*ENV 1 -1;
CONTRAST 'SCA*ENV' S12*ENV 1 -1,S13*ENV 1 -1,S14*ENV 1 -1,S23*ENV 1 -
     1,S24*ENV 1 -1;
ESTIMATE 'G1' G1 1; ESTIMATE 'G2' G2 1; ESTIMATE 'G3' G3 1;
ESTIMATE 'G4' G4 1;
ESTIMATE 'G5' G1 -1 G2 -1 G3 -1 G4 -1;
ESTIMATE 'S12' S12 1; ESTIMATE 'S13' S13 1; ESTIMATE 'S14' S14 1;
ESTIMATE 'S23' S23 1; ESTIMATE 'S24' S24 1;
ESTIMATE 'S15' S12 -1 S13 -1 S14 -1;
ESTIMATE 'S25' S12 -1 S23 -1 S24 -1;
ESTIMATE 'S34' S12 -1 S13 -1 S14 -1 S23 -1 S24 -1;
ESTIMATE 'S35' S12 1 S14 1 S24 1;
ESTIMATE 'S45' S12 1 S13 1 S23 1;
RUN:
```

REFERENCES

- Borges, O.L.F. (1987). Diallel analysis of maize resistance to sorghum downy mildew. *Crop Science* 27:178-180.
- Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. *Australian Journal of Biological Science* 9:463-493.
- Kang, M.S., Zhang, Y., and Magari, R. (1995). Combining ability for maize weevil preference of maize grain. *Crop Science* 35:1556-1559.
- Moffatt, J.M., Sears, R.G., Cox, T.S., and Paulsen, G.M. (1990). Wheat high temperature tolerance during reproductive growth. II. Genetic analysis of chlorophyll fluorescence. *Crop Science* 30:886-889.
- Pixley, K.V. and Bjarnason, M.S. (1993). Combining ability for yield and protein quality among modified-endosperm *opaque-2* tropical maize inbreds. *Crop Science* 33:1229-1234.
- SAS Institute Inc. (1995). *SAS Language and Procedure: Usage*, Version 6, First Edition. SAS Institute, Cary, NC.

Chapter 2

Diallel Analysis for a Seed and Endosperm Model with Genotype-by-Environment Interaction Effects

Jun Zhu

Purpose

To analyze balanced or unbalanced data of diploid seed and triploid endosperm models for estimating components of variance, covariance, heritability, and selection response.

Definitions

Mating Design

A set of inbred lines are sampled from a reference population. These parents are used to produce F_1 and F_2 seeds. Experiments with parents, F_1 s, and F_2 s are conducted in multiple environments using a randomized complete-block design.

Genetic Model

The genetic model for genetic entry of the kth type of generation derived from parents i and j in the lth block within the hth environment is

$$y_{hijkl}$$
 μ E_h G_{ijk} GE_{hijk} B_{hl} e_{hijkl}

where μ = population mean, E_h = environment effect, G_{ijk} = total genotypic effect, GE_{hijk} = genotype × environment interaction effect, B_{hl} = block effect, and e_{hijkl} = residual effect.

Genetic partitioning for the diploid seed model (Zhu and Weir, 1994a; Zhu, 1996):

For parent $(P_i, k = 0)$:

$$G_{ii0}$$
 GE_{hii0} $2A_i$ D_{ii} C_i $2Am_i$ Dm_{ii} $2AE_{hi}$ DE_{hiii} CE_{hi} $2AmE_{hi}$ DmE_{hii}

For F_1 ($P_i \times P_i$, k = 1):

$$G_{ij}$$
1 GE_{hij} 2 A_i A_j D_{ij} C_i $2Am_i$ Dm_{ii} AE_{hi} AE_{hj} DE_{hij} CE_{hi} $2AmE_{hi}$ DmB_{hii}

For F_2 ($F_1 \otimes$, k = 2):

Genetic partitioning for triploid endosperm model (Zhu and Weir, 1994b; Zhu, 1996):

For parent $(P_i, k = 0)$:

$$G_{ii0}$$
 GE_{hii0} $3A_i$ $3D_{ii}$ C_i $2Am_i$ Dm_{ii} $3AE_{hi}$ $3DE_{hii}$ CE_{hi} $2AmE_{hi}$ DmE_{hii}

For $F_1 (P_i \times P_j, k = 1)$:

$$G_{ij1}$$
 GE_{hij1} $2A_i$ A_j D_{ii} $2D_{ij}$ C_i $2Am_i$ Dm_{ii} $2AE_{hi}$ AE_{hi} DE_{hii} $2DE_{hii}$ CE_{hi} $2AmE_{hi}$ DmE_{hii}

For
$$F_2$$
 ($F_1 \otimes_{\cdot} k = 2$):

where A = direct additive effect, D = direct dominance effect, C = cytoplasm effect, Am = maternal additive effect, Dm = maternal dominance effect, AE = direct additive by environment interaction effect, DE = direct dominance by environment interaction effect, CE = cytoplasm by environment interaction effect, AmE = maternal additive by environment interaction effect, DmE = maternal dominance by environment interaction effect.

Other generations, such as BC₁s and BC₂s and their reciprocals (RBC₁s and RBC₂s) can also be used for analyzing seed traits (Zhu and Weir, 1994a; Zhu, 1996).

Analysis Methodology

Mixed Linear Model

The phenotypic mean of the seed genetic model can be expressed by a mixed linear model as

with variance-covariance matrix

where
$$V_u U_u U_u^T (u = 1, 2, ..., 11), V_{12} U_1 U_4^T U_4 U_1^T, V_{13} U_2 U_5^T U_5 U_2^T,$$

 $V_{14} U_6 U_9^T U_9 U_6^T, V_{15} U_7 U_{10}^T U_{10} U_7^T, V_{16} I.$

Variance Components

Unbiased estimation of variances and covariances of the same trait can be obtained by the following MINQUE(0/1) equations (Zhu, 1992; Zhu and Weir, 1994a):

where

$$Q_{0/1} = V_{0/1}^{-1} - V_{0/1}^{-1} X X^T V_{0/1}^{-1} X X^T V_{0/1}^{-1}$$
 $V_{0/1} = U_u U_u^T I$

For diploid seed of F_2 , genetic variance and covariance components can be obtained by V_A $2\sigma_A^2$, V_D $\frac{3}{8}\sigma_D^2$, V_C σ_C^2 , V_{Am} $2\sigma_{Am}^2$, V_{Dm} σ_D^2 , V_{AE} $2\sigma_{AE}^2$, V_{DE} $\frac{3}{8}\sigma_{DE}^2$, V_{CE} σ_{CE}^2 , V_{AmE} $2\sigma_{AE}^2$, V_{DmE} σ_{DE}^2 , V_e σ_e^2 , C_{AAm} $2\sigma_{AAm}$, $C_{D.Dm}$ $\frac{1}{2}\sigma_{D.Dm}$, $C_{AE.AmE}$ $2\sigma_{AE.AmE}$, $C_{DE.DmE}$ $\frac{1}{2}\sigma_{DE.DmE}$.

For triploid endosperm of F₂, genetic variance and covariance components can be obtained by V_A $4\frac{1}{2}\sigma^2$, V_D $3\sigma_D^2$, V_C σ_C^2 , V_{AM} $2\sigma_{Am}^2$, V_{Dm} σ_D^2 , V_{AE} $4\frac{1}{2}\sigma_{AE}^2$, V_{DE} $3\sigma_D^2$, V_{CE} σ_{CE}^2 , V_{AmE} $2\sigma_{AmE}^2$, V_{DmE} σ_{DE}^2 , V_{e} σ_e^2 , C_{AAm} $3\sigma_{AAm}$, $C_{D.Dm}$ $\sigma_{D.Dm}$, $C_{AE.AmE}$ $3\sigma_{AE.AmE}$, $C_{DE.DmE}$ $\sigma_{DE.DmE}$.

The total phenotypic variance is V_P V_A V_D V_C V_{Am} V_{Dm} V_{AE} V_{DE} V_{CE} V_{AmE} V_{DmE} $2C_{AAm}$ $2C_{D,Dm}$ $2C_{AE,AmE}$ $2C_{DE,DmE}$ V_e , where C_{AAm} and $C_{D,Dm}$ are the covariances between direct effects (A and D) and maternal effects (Am and Dm) of the same trait, $C_{AE,AmE}$ and $C_{DE,DmE}$ are the covariances between direct by environment interaction effect (AE and DE) and maternal by environment interaction effect (AmE and DmE) of the same trait.

Covariance Components and Correlation

Unbiased estimation of covariances between two traits $(y_1 \text{ and } y_2)$ can be obtained by MINQUE(0/1) approaches (Zhu, 1992; Zhu and Weir, 1994a).

$$tr \ Q_{0/1} \ V_u Q_{0/1} \ V_v \qquad \hat{}_{u/u} = y_1^T Q_{0/1} \ V_u Q_{0/1} \ y_2$$

For diploid seed of F_2 , genetic covariance components can be obtained by C_A $2\sigma_{A/A}$, C_D $\frac{3}{8}\sigma_{D/D}$, C_C $\sigma_{C/C}$, C_{Am} $2\sigma_{Am/Am}$, C_{Dm} $\sigma_{D/D}$, C_{AE} $2\sigma_{AE/AE}$, C_{DE} $\frac{3}{8}\sigma_{DE/DE}$, C_{CE} $\sigma_{CE/CE}$, C_{AmE} $2\sigma_{AmE/AmE}$, C_{DmE} $\sigma_{DE/DE}$, C_e $\sigma_{e/e}$, $C_{A/Am}$ $2\sigma_{A/Am}$, $C_{D/Dm}$ $\frac{1}{2}\sigma_{D/Dm}$, $C_{AE/AmE}$ $2\sigma_{AE/AmE}$, $C_{DE/DmE}$ $\frac{1}{2}\sigma_{DE/DmE}$.

For triploid endosperm of F_2 , genetic covariance components can be obtained by C_A $4\frac{1}{2}\sigma_{A/A}$, C_D $3\sigma_{D/D}$, C_C $\sigma_{C/C}$, C_{Am} $2\sigma_{Am/Am}$, C_{Dm} $\sigma_{D/D}$, C_{AE} $4\frac{1}{2}\sigma_{AE/AE}$, C_{DE} $3\sigma_{DE/DE}$, C_{CE} $\sigma_{CE/CE}$, C_{AmE} $2\sigma_{AmE/AmE}$, C_{DmE} $\sigma_{DE/DE}$, C_{e} $\sigma_{e/e}$, $C_{A/Am}$ $3\sigma_{A/Am}$, $C_{D/Dm}$ $\sigma_{D/Dm}$, $C_{AE/AmE}$ $3\sigma_{AE/AmE}$, $C_{DE/DmE}$ $\sigma_{DE/DmE}$.

The total phenotypic covariance is $C_P = C_A + C_D + C_C + C_{Am} + C_{Dm} + C_{CM} + C_{CM$

 $\begin{array}{l} C_{AE} + C_{DE} + C_{CE} + C_{AmE} + C_{DmE} + 2C_{A/Am} + 2C_{D/DM} + 2C_{AE/AmE} + \\ 2C_{DE/DmE} + C_e. \text{ For trait 1 and trait 2, correlation coefficients of genetic components can be estimated by } \\ r_A - C_A / \sqrt{V_{A(1)}V_{A(2)}}, \quad r_D - C_D / \sqrt{V_{D(1)}V_{D(2)}}, \\ r_C - C_C / \sqrt{V_{C(1)}V_{C(2)}}, \quad r_{Am} - C_{Am} / \sqrt{V_{Am(1)}V_{Am(2)}}, \quad r_{Dm} - C_{Dm} / \sqrt{V_{Dm(1)}V_{Dm(2)}}, \\ r_{AE} - C_{AE} / \sqrt{V_{AE(1)}V_{AE(2)}}, \quad r_{DE} - C_{DE} / \sqrt{V_{DE(1)}V_{DE(2)}}, \quad r_{CE} - C_{CE} / \sqrt{V_{CE(1)}V_{CE(2)}}, \\ r_{AmE} - C_{AmE} / \sqrt{V_{AmE(1)}V_{AmE(2)}}, \quad r_{DmE} - C_{DmE} / \sqrt{V_{DmE(1)}V_{DmE(2)}}, \quad r_{e} - C_{e} / \sqrt{V_{e(1)}V_{e(2)}}. \end{array}$

Heritability Components

The total heritability (h^2) can be partitioned into general heritability (h_G^2) and interaction heritability (h_{GE}^2) with their components (Zhu, 1997),

where h_O^2 V_A C_{AAm} / V_P is direct general heritability, h_C^2 V_C / V_P is cytoplasm general heritability, and h_M^2 V_{Am} C_{AAm} / V_P is maternal general heritability; h_{OE}^2 V_{AE} $C_{AE.AmE}$ / V_P is direct interaction heritability, h_{CE}^2 V_{CE} / V_P is cytoplasm interaction heritability, and h_{ME}^2 V_{AmE} $C_{AE.AmE}$)/ V_D is maternal interaction heritability.

Selection Response

The total selection response $(R \ ih^2 \sqrt{V_P})$ can be partitioned into several components (Zhu, 1997):

where R_G $ih_G^2\sqrt{V_P}$ is general response, which consists of direct general response $(R_O$ $ih_O^2\sqrt{V_P})$, cytoplasm general response $(R_C$ $ih_C^2\sqrt{V_P})$, and maternal general response $(R_M$ $ih_M^2\sqrt{V_P})$; R_{GE} $ih_{GE}^2\sqrt{V_P}$ is interaction response, which consists of direct interaction response $(R_{OE}$ $ih_{OE}^2\sqrt{V_P})$, cytoplasm interaction response $(R_{CE}$ $ih_{CE}^2\sqrt{V_P})$, and maternal interaction response $(R_{ME}$ $ih_{ME}^2\sqrt{V_P})$.

Heterosis Components

Prediction of genetic merits can be obtained using the linear unbiased prediction (LUP) method (Zhu, 1992; Zhu and Weir, 1996) or the adjusted unbiased prediction (AUP) method (Zhu, 1993a; Zhu and Weir, 1996). Predicted genotypic effects and GE interaction effects can be further used in analyzing heterosis of different generations (Zhu, 1997). Heterosis in specific environments consists of two components. General heterosis is due to genotypic effects and can be expected in overall environments, and interaction heterosis is a deviant of GE interaction relative to specific environments. The two components of heterosis relative to midparent or female parent can be calculated as (x = 1 for diploid seed and x = 2 for triploid endosperm):

General heterosis of F_n relative to midparent:

Interaction heterosis of F_n relative to midparent:

$$H_{\mathit{ME}}$$
 F_{n} H_{MOE} H_{MCE} H_{MME}
$$\frac{1}{2}^{n-x} \quad {}_{\mathit{OE}} \quad \frac{1}{2} \quad {}_{\mathit{CE}} \quad \frac{1}{2}^{n-2} \quad {}_{\mathit{ME}}$$

General heterosis of F_n relative to female parent (P_i) :

$$H_{F} F_{n} = H_{FO} H_{FM}$$

$$\frac{1}{2} {\stackrel{n-x}{\circ}} {_{O}} - \frac{1}{2} {\stackrel{o}{\circ}} {_{O}} = \frac{1}{2} {\stackrel{n-2}{\circ}} {_{M}} - \frac{1}{2} {\stackrel{M}{\circ}} {_{M}}$$

Interaction heterosis of F_n relative to female parent (P_i) :

$$H_{_{FE}}{}^{_{F_n}}{}^{_{H_{FOE}}}{}^{_{H_{FME}}}$$
 $\frac{1}{2}{}^{_{n}}{}^{_{n}}{}^{_{x}}{}^{_{oE}} - \frac{1}{2}{}^{_{oE}}{}^{_{oE}} = \frac{1}{2}{}^{_{n-2}}{}^{_{mE}} - \frac{1}{2}{}^{_{mE}}$

Heterosis based on population mean $(H_{PM} \ \frac{1}{\mu} H_M, \ H_{PME} \ \frac{1}{\mu} H_{ME}, H_{PF} \ \frac{1}{\mu} H_F$, or $H_{PFE} \ \frac{1}{\mu} H_{FE})$ can be used to compare proportion of heterosis among different traits.

Covariances Between Seed Quality Trait and Plant Agronomic Trait

In plant breeding, breeders usually want to improve seed quality traits while keeping the genetic merit of yield traits. Therefore, understanding the genetic relationship between seed quality traits and plant yield traits is of importance. Seed models and plant models have unequal design matrices. Zhu (1993b) developed a new method for estimating genetic covariance components between seed traits (\mathbf{y}_s) and plant traits (\mathbf{y}_p) . For seed model:

The corresponding plants bearing the seeds will have the following mixed linear model:

$$y_{p}$$
 $Xb_{(P)}$ $U_{C}e_{C(P)}$ $U_{Am}e_{Am(P)}$ $U_{Dm}e_{Dm(P)}$
 $U_{CE}e_{CE(P)}$ $U_{AmE}e_{AmE(P)}$ $U_{DmE}e_{DmE(P)}$
 $U_{B}e_{B(P)}$ $e_{e(P)}$
 $Xb_{(P)}$ $u_{u}e_{u(P)}$

There are covariances between random factors of seed traits and those of plant traits: $\sigma_{A/Am} = \text{covariance}$ between seed direct additive effects and plant additive effects, $\sigma_{D/Dm} = \text{covariance}$ between seed direct dominance effects and plant dominance effects, $\sigma_{C/C} = \text{covariance}$ between seed cytoplasm effects and plant cytoplasm effects, $\sigma_{Am/Am} = \text{covariance}$ between seed maternal additive effects and plant additive effects, $\sigma_{Dm/Dm} = \text{covariance}$ between seed maternal dominance effects and plant dominance effects, $\sigma_{AE/AmE} = \text{covariance}$ between seed AE effects and plant AmE effects, $\sigma_{DE/DmE} = \text{covariance}$ between seed E effects and plant E effects, E evariance between seed E effects and plant E effects, E evariance between seed E effects and plant E effects, E evariance between seed E effects and plant E effects, E evariance between seed E effects and plant E effects, E evariance between seed E effects and plant E effects, E evariance between seed E effects and plant E effects, E evariance between seed E effects and plant E effects.

If we define F_1 ($U_A U_{Am}^T$ $U_{Am} U_A^T$), F_s ($U_D U_{Dm}^T$ $U_{Dm} U_D^T$), F_3 ($2U_C U_C^T$), F_4 ($2U_{Am} U_{Am}^T$), F_5 ($2U_{Dm} U_{Dm}^T$), F_6 ($U_{AE} U_{AmE}^T$ $U_{AmE} U_{AE}^T$), F_7 ($U_{DE} U_{DmE}^T$), $U_{DmE} U_{Dm}^T$ 0, $U_{DmE} U_{Dm}^T$ 1, $U_{DmE} U_{Dm}^T$ 2, $U_{DmE} U_{Dm}^T$ 3, and $U_{Dm} U_{Dm}^T$ 3, and $U_{Dm} U_{Dm}^T$ 4, and $U_{Dm} U_{Dm}^T$ 5, $U_{Dm} U$

$$tr(Q_{(0/1)}F_uQ_{(0/1)}F_v)$$
 $\hat{\sigma}_{u/u}$ $2y_s^TQ_{(0/1)}F_uQ_{(0/1)}y_p$

where

Originators

- Zhu, J. (1992). Mixed model approaches for estimating genetic variances and covariances. *Journal of Biomathematics* 7(1):1-11.
- Zhu, J. (1993a). Methods of predicting genotype value and heterosis for offspring of hybrids (Chinese). *Journal of Biomathematics* 8(1):32-44.
- Zhu, J. (1993b). Mixed model approaches for estimating covariances between two traits with unequal design matrices (Chinese). *Journal of Biomathematics* 8(3):24-30.
- Zhu, J. (1996). Analysis methods for seed models with genotype × environment interactions (Chinese). *Acta Genetica Sinica* 23(1):56-68.
- Zhu, J. (1997). *Analysis Methods for Genetic Models*. Agricultural Publication House of China, Beijing.
- Zhu, J. and Weir, B.S. (1994a). Analysis of cytoplasmic and maternal effects. I. A genetic model for diploid plant seeds and animals. *Theoretical and Applied Genetics* 89:153-159.
- Zhu, J. and Weir, B.S. (1994b). Analysis of cytoplasmic and maternal effects. II. Genetic models for triploid endosperm. *Theoretical and Applied Genetics* 89:160-166.
- Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. *Theoretical and Applied Genetics* 92(1):1-9.

Software Available

Zhu, J. (1997). GENDIPLD.EXE for constructing seed model, GENVAR0.EXE for estimating components of variance and heritability, GENCOV0.EXE for estimating components of covariance and correlation, GENHET0.EXE for predicting genetic effects and components of heterosis. *Analysis Methods for Genetic Models* (pp. 256-278), Agricultural Publication House of China, Beijing (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Unbalanced data (COTSEEDM.TXT) to be analyzed (Parent = 5, Year = 2, Generation = P, F_1 , F_2 , Blk = 1):

Year 1	Fema 1	Male 1	Gene 0	Blk 1	Pro% 37.6	Oil% 37.4
1	1	3	1	1	37.5	36.5
1	1	3	2	1	38.3	36.1
1	1	4	1	1	38.4	34.6
1	1	4	2	1	37.8	35.3
1	2	2	0	1	42.9	32.5
1	2	3	1	1	39.8	33.1

-	0	2	0	-1	20.0	25 5
1	2	3	2	1	39.2	35.5
1	3	1 2	2 2 2	1	37.2	35.9
1	3	2		1	37.1	37.1
1	3	3	0	1	38	34.8
1	3	3 5 5	1	1	40.6	35.4
1	2 3 3 3 3 4		2	1	39.8	36.1
1		1	2 1 2 1	1	37.2	36.8
1	4	1 2	2	1 1	37	36.1
1	4		1	1	39.2	38.1
1	4	2	2	1	38.1	36.1 38.1 35.3
1	4	4	0	1	38.9	35.5
1	4	5	1	1	41	35.5 38.1
1	4	5	2	1	40.1	35.6
		5	0	1 1	45.8	34.5 36.5
2	1	1	0	1	37.7	36.5
2	1	1 3	1	1	37.2	36.5
2	1	3			37.2	35.6
2	1	4	2 1	1 1	36	36.5
2	1	4	2	1	35.9	36.2 34.8
2	2		0	1	40.5	34.8
2	2	2	1	1	37.4	36.9
1 2 2 2 2 2 2 2 2 2 2	2	3	2	1	37	36.8
2	2	4	1	1	38.3	36.3
2	2	4	1 2	1	37.2	36.9
2	5 1 1 1 1 2 2 2 2 2 2 3 3 3 4	3	0	1	38.6	35.4
2	3		1	1	38.3	35.7
2	3	5 5	2	1	37.8	35.8
2	4	4	0	1	39.7	35.1
2 2 2 2 2 2		5	1	1	38.9	35.6
2	4	5	2	1	38.6	34.6
2	5	5	0	1	44	31.2

1. Use one of the following two programs for generating a mating design matrix and data:

GENDIPLD.EXE for traits of diploid seeds or animals.

GENTRIPL.EXE for traits of triploid endosperm.

Before running these programs, create a data file (COTSEEDM. TXT) for your analysis with five design columns followed by trait columns. The five design columns should be labeled (1) environment, (2) maternal, (3) paternal, (4) generation, and (5) replication. There is a limitation (<100 traits) for the number of trait columns.

- 2. Run programs for variance and covariance analyses. Standard errors of estimates are calculated by jackknifing over cell means.
- 3. You should always run GENVAROC.EXE for estimating variance components and predicting genetic effects before estimating covariance and correlation. This program will allow you to choose the prediction methods (LUP or AUP). You also need to input coefficients (1, 0, or -1) for conducting linear contrasts for genetic effects.

- 4. After finishing variance analysis, run GENCOV0C.EXE for estimating covariance components and coefficients of correlation among all the traits analyzed.
- 5. If you want to predict heterosis and genotypic value for F₂ seed, you can run GENHETOC.EXE.
- 6. All results will be automatically stored in text files for later use or printing. Examples of result files are provided with the names COTSEEDM.VAR for analysis of variance and genetic effects, COTSEEDM.PRE for predicting genotype values and heterosis, and COTSEEDM.COR for analysis of covariances and correlation.

Output 1 for Single Trait Test

```
Traits =, 2
Variance components = , 15
Degree of freedom = , 37
 File name is cotseedm.VAR
Date and Time for Analysis: Fri Jun 23 21:06:32 2000
Variance Components Estimated by MINQUE (0/1) with GENHETOC.EXE.
Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP)
      Method.
Jackknifing Over Block Conducted for Estimating S.E.
NS = Not significant; S+ = Significant at 0.10 level.
S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
Linear Contrasting Test:
 + <1> + <2> + <3> - <4> - <5>

        Heritability
        Estimate
        S. E.
        P-value

        General Heritability N(A)
        0.271263
        0.0372287
        5.88087e-009
        S**
```

S**

NS

S**

S**

S**

NS

S+

S*

S**

Dm3*5

Dm4*5

```
General Heritability B(A+D)
                                  0.357699
                                            0.0380067 -1.37905e-011 S**
General Heritability N(C)
                                 0.0628948 0.0226378 0.00426618
General Heritability N (Am)
                                 0
                                            0
                                                       0.5
General Heritability B(Am+Dm)
                                 0.181395
                                            0.0240944
                                                       2.80833e-009
General Heritability B(Am+Dm) 0.181395
Interaction Heritability N(AE) 0.108222
                                           0.0325895 0.00101347
Interaction Heritability B(AE+DE) 0.28038
                                            0.0788095
                                                      0.000523146
Interaction Heritability N(CE) 0.197762 0.0388026
Interaction Heritability N(AME) -0.0227996 0.0252744
                                            0.0388026 5.23056e-006 S**
                                                       0.186424
                                                       0.00766977
Interaction Heritability B(AmE+DmE) 0.134804 0.0530296
Genetic Predictor, S. E. , P-value of Two Tail t-test
<1>: Random Effect is Direct Additive
                   -1.024558 0.602650 0.0975
Α1
                                                     S+
Α2
                    0.849192
                             0.492454 0.093
                                                     S+
A3
                   -0.959033
                               0.579315 0.106
                                                     NS
Α4
                    0.023544
                             0.447671 0.958
                                                    NS
Α5
                               0.833896 0.191
                    1.110611
                                                    NS
Linear Contrast
                   -1.74484
                               1.15265 0.138582
                                                    NS
<2>: Random Effect is Direct Dominance
D1*1
                   0.430174 0.474310 0.37
                                                     NS
D2*2
                    2.060002
                             1.236368 0.104
                                                     NS
D3*3
                    0.896631
                             0.591905 0.138
0.873815 0.0689
                                                     NS
D4*4
                                                     S±
                    1.637057
                                                    S*
D5*5
                    1.830764
                             0.882766 0.0451
D1*3
                   -0.478229
                             0.456267
                                         0.301
                                                    NS
D1*4
                   -2.177030
                             1.321475 0.108
                                                    NS
D2*3
                   -2.215217 1.325812 0.103
                                                    NS
D2*4
                   -0.755464 0.577872 0.199
                                                    NS
D3*5
                   -0.781604
                             0.580198 0.186
                                                    NS
D4*5
                   -0.447118
                               0.831929 0.594
                                                    NS
Heterosis <Delta> -2.30767
                               1.86916
                                          0.225
                                                    NS
<3>: Random Effect is Cytoplasm
C1
                   -0.278965
                             0.268528 0.306
                                                     NS
C2
                    0.125445
                             0.666036 0.852
                                                    NS
C3
                             1.217060 0.723
                   -0.434191
                                                    NS
                             0.667609 0.973
C4
                    0.022447
                                                    NS
C5
                    0.565182
                               1.479941 0.705
                                                    NS
                               4.23754
                                         0.755827
Linear Contrast
                   -1.32754
                                                    NS
<4>: Random Effect is Maternal Additive
No Significant Effects.
<5>: Random Effect is Maternal Dominance
Dm1*1
                    0.328107
                             0.347168 0.351
                                                     NS
Dm2*2
                    1.334076
                               0.415525 0.00274
                                                     S**
Dm3*3
                    1.422192
                               0.519389 0.00944
                                                     S**
Dm4 * 4
                    1.798117
                               0.562728 0.00285
                                                     S**
                             0.707409 0.0131
Dm5*5
                    1.842966
                                                     S*
Dm1*3
                   0.355737
                             0.403627 0.384
                                                    NS
Dm1 * 4
                  -0.581557
                             0.660676 0.384
                                                    NS
Dm2*3
                   -1.434893
                             0.704201 0.0488
                                                    S*
                             0.780548 0.0177
Dm2*4
                                                    S*
                   -1.937210
```

-1.322985 0.768254 0.0934

-1.804685 0.762519 0.0233

```
<6>: Random Effect is D Add. × Env.
AE1 in E1 -2.254065 0.889523 0.0156
Linear Contrast -5.3845 1.32097 0.000233 S**
<7>: Random Effect is D Dom. × Env.
DE1*1 in E1 -0.159850 0.800087 0.843
                               NS
Heterosis <Delta> 1.00932 2.70601 0.711
                               NS
<8>: Random Effect is Cyto × Env.
S+
                               S+
                               NS
                               NS
                               NS
                               S*
                               S+
                               NS
                               NS
                               S*
Linear Contrast 2.09064 1.35549 0.131499 NS
<9> : Random Effect is M Add. × Env.
AmE1 in E1 0.164594 0.421542 0.698
                               NS
AmE2 in E1 -0.132997 0.439265 0.764
                               NS
```

<10>: Random Effect is M Dom. \times Env. No Significant Effects.

Results of Oil% are not presented.

Time Used (Hour) = 0.001389

Output 2 for Covariance Analysis

```
Traits =, 2
Variance components = , 15
Degree of freedom = , 37
File name is cotseedm.COV
Date and Time for Analysis: Fri Jun 23 21:06:49 2000
```

Variance Components Estimated by MINQUE(0/1) with GENHETOC.EXE. Jackknifing Over Block Conducted for Estimating S.E. For statistical methods, see the following references:

```
NS = Not significant; S+ = Significant at 0.10 level. S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
```

Covariances and Correlati	ons Between,	Pro% &, Oil%	for, Public	Users.:
	Estimates		P-value	
Direct Additive Cov	-0.12332	0.785577	0.876	NS
Direct Dominance Cov	-0.18046	0.223768	0.425	NS
Cytoplasm Cov	-0.0560615	0.946456	0.953	NS
Maternal Additive Cov	-0.247106	0.497206	0.622	NS
Maternal Dominance Cov	-0.76196	0.363677	0.0431	S*
D Add. × Env. Cov	0.238753	1.25031	0.85	NS
D Dom. × Env. Cov	0.0696955	0.201047	0.731	NS
Cyto × Env. Cov	-0.748348	0.966985	0.444	NS
M Add. × Env. Cov	-0.567987	0.712327	0.43	NS
	0.139297		0.73	NS
A.Am Cov	0.0209709	0.592716	0.972	NS
D.Dm Cov	-0.317895	0.181318	0.0878	S+
AE.AmE Cov	0.538553	0.864524	0.537	NS
DE.DmE Cov	-0.104535	0.150625	0.492	NS
Residual Cov	-0.125117	0.335582	0.711	NS
Cov <1=Genotypic>				
Cov <2=Phenotypic>		S.E.		
Cov 2		1.00453		S*
Cov 1	-1.96331	1.0037	0.058	S+

Correlation Direct Additive Cor Direct Dominance Cor Cytoplasm Cor Maternal Additive Cor Maternal Dominance Cor D Add. × Env. Cor D Dom. × Env. Cor Cyto × Env. Cor M Add. × Env. Cor M Dom. × Env. Cor Residual Cor	Estimates 0.000000 -0.313393 0.000000 0.000000 -0.527223 0.064792 0.225062 -0.302136 -0.271364 0.000000 -0.379882	S.E. 0 0.0713042 0 0 0.0751039 0.0855313 0.0669711 0.0755769 0.0710278 0 0.0634317	P-value 1 8.97e-005 1 1 2.66e-008 0.454 0.00182 0.000294 0.000493 1 6.5e-007	NS S** NS NS S** NS S** S** S**
Cor <1=Genotypic> <2=Phenotypic> Cor 2 Cor 1	Estimates -0.157513 -0.154315	S.E. 0.0580681 0.0587436	P-value 0.0101 0.0125	S* S*

Time Used (Hour) = 0.000556

Output 3 for Heterosis Analysis

```
Traits =, 2
Variance components = , 15
Degree of freedom = , 37
File name is cotseedm.PRE
Date and Time for Analysis: Fri Jun 23 21:07:07 2000
```

Variance Components Estimated by MINQUE(0/1) with GENHETOC.EXE. Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP) Method.

Jackknifing Over Block Conducted for Estimating S.E.

```
NS = Not significant; S+ = Significant at 0.10 level. 
 S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
```

Genetic Analysis of 1 Trait, Pro%, for Public Users.

Var Comp Direct Additive	Estimate 4.22543	S. E. 0.971079	P-value 5.12e-005	S**
Direct Dominance	0.661737	0.187698	0.000573	S**
Cytoplasm	0.979678	0.316932	0.00189	S**
Maternal Additive	0	0	0.5	NS
Maternal Dominance	2.141	0.491782	5.08e-005	S**
D Add. × Env.	4.14101	1.08162	0.000241	S**
D Dom. × Env.	0.226713	0.042754	2.76e-006	S**
Cyto × Env.	3.08084	0.725821	7.05e-005	S**
M Add. × Env.	2.10002	0.520781	0.000132	S**
M Dom. × Env.	0	0	0.5	NS
A.Am	0	0	1	NS
D.Dm	0.684787	0.400178	0.0954	S+
AE.AmE	-2.45513	1.3901	0.0856	S+
DE.DmE	0	0	1	NS

```
Residual
                                                1.5621
                                                                         0.341269
                                                                                                 2.58e-005
Var(Phenotype)
                                                                         2.49795 1.5e-007 S**
                                             15.5779
                                                   Estimate S. E. P-value 5.69401 0.844563 3.13324e-008 S**
Genetic Advance (for 0.05)
General Genetic Advance(A)
General Genetic Advance (A) 5.69401 0.844503 3.13324e-006 5.76
General Genetic Advance (C) 1.32017 0.382756 0.000709897 S**
General Genetic Advance (Am) 0 0.576013 0.00017183 S**
Interaction Genetic Advance(CE) 4.15161 0.768543 2.0263e-006 S**
Interaction Genetic Advance (AmE) 0.478526 0.466339 0.155745
                                                                                                                          NS
Heterosis Analysis of Trait, Pro%, for F2 Seeds with total mean =,
38.731644
No.
          Cro
                   G(T) S.E. Pv Sig G(O) S.E. Pv Sig G(C) S.E. Pv Sig G(M) S.E. Pv Sig
Cro<1> <1 * 3> -1.810.71 0.01 S * -1.89 0.69 0.01 S ** -0.28 0.19 0.15 NŠ 0.36 0.34 0.30 NŠ
Cro<2> <1 * 4> -2.430.67 0.00 S ** -1.57 0.59 0.01 S * -0.28 0.19 0.15 NS -0.58 0.40 0.16 NS
Cro<4> <2 * 4> -0.390.99  0.69  NS  1.42  0.57  0.02  S * 0.13  0.40  0.76  NS  -1.94  0.76  0.02  S *
Cro<5> <3 * 5> -1.311.39  0.35  NS  0.44  0.32  0.18  NS  -0.43  0.89  0.63  NS  -1.32  0.76  0.09  S +
Cro<6> <4 * 5> 0.001.04 1.00 NS 1.78 0.58 0.00 S **0.02 0.40 0.96 NS -1.80 0.74 0.02 S *
          Cro Hm(T)S.E. Pv Sig Hm(O)S.E. Pv Sig Hm(C)S.E. Pv Sig Hm(M)S.E. Pv Sig
Cro<1> <1 * 3>-0.03 0.02 0.22 NŠ -0.01 0.01 0.07 S + 0.00 0.01 0.83 NŠ -0.01 0.01 0.33 NŠ
Cro<2> <1 * 4>-0.09 0.02 0.00 S ** -0.04 0.02 0.04 S * 0.00 0.00 0.24 NS -0.04 0.02 0.02 S *
Cro<3> <2 * 3>-0.11 0.04 0.01 S * -0.05 0.02 0.06 S + 0.01 0.02 0.66 NS -0.07 0.02 0.00 S **
Cro<4> <2 * 4>-0.12 0.04 0.00 S ** -0.03 0.02 0.05 S * 0.00 0.01 0.89 NS -0.09 0.03 0.00 S **
Cro<5> <3 * 5>-0.12  0.05  0.04  S * -0.03  0.01  0.03  S * -0.01  0.03  0.62  NS -0.08  0.03  0.02  S *
Cro<6> <4 * 5>-0.13 0.05 0.01 S ** -0.03 0.01 0.00 S **-0.01 0.02 0.73 NS -0.09 0.03 0.00 S **
No. Cro Hf(T) S.E. Pv Sig Hf(O) S.E. Pv Sig Hf(M) S.E. Pv Sig Gen. S.E. Pv Sig Cro<1> <1 \times 3>-0.01 \ 0.02 \ 0.75 \ NS \ -0.01 \ 0.01 \ 0.60 \ NS \ 0.00 \ 0.01 \ 0.96 \ NS \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \ 0.
Cro<2> <1 * 4>-0.02 0.02 0.33 NS 0.00 0.02 0.95 NS -0.02 0.02 0.15 NS 0.00 0.00 2.00 NS
Cro<3> <2 * 3>-0.18 0.06 0.01 S ** -0.11 0.05 0.03 S * -0.07 0.02 0.00 S ** 0.00 0.00 2.00 NS
Cro<4> <2 * 4>-0.14  0.05  0.01  S* -0.06  0.04  0.11  NS -0.08  0.03  0.00  S**  0.00  0.00  2.00  NS
Cro<5> <3 * 5>-0.03 0.03 0.33 NS 0.04 0.03 0.15 NS -0.07 0.03 0.02 S * 0.00 0.00 2.00 NS
Cro<6> <4 * 5>-0.09 0.03 0.00 S ** 0.00 0.02 0.90 NS -0.09 0.03 0.00 S ** 0.00 0.00 2.00 NS
Interaction Heterosis Analysis of Trait, Pro%, for F2 Seeds with total
mean = , 38.731644
          Cro GE(T) S.E. Pv Sig GE(O) S.E. Pv Sig GE(C) S.E. Pv Sig GE(M) S.E. Pv Sig
Env.<1> <1 * 3>-2.04 ´ 1.06   0.06   S +   -4.20 ´ 1.25   0.00   S ** 0.78 ´ 0.32   0.02   S *   1.38 ´ 0.50   0.01   S **
Env. <1> <1 * 4>-3.66 1.30 0.01 S ** -2.12 0.77 0.01 S ** 0.78 0.43 0.08 S + -2.31 1.12 0.05 S *
Env. <1> <3 * 5>2.45   1.57   0.13   NS   1.30   0.95   0.18   NS   -1.30   1.23   0.30   NS   2.45   0.91   0.01   S *
Env. <1> <4 * 5>1.14    1.06    0.29    NS    3.88    1.45    0.01    S * -1.49    0.69    0.04    S * -1.24    0.99    0.22    NS
Env. <2> <1 * 3>-2.12 1.11 0.06 S + 0.86 1.17 0.47 NS -1.44 0.65 0.03 S * -1.54 0.85 0.08 S +
Env. <2> <1 * 4> -2.63 1.41 0.07 S + 0.05 0.83 0.96 NS -1.44 0.65 0.03 S * -1.23 0.61 0.05 S +
Env. <2> <2 * 3> -2.47 1.47 0.10 NS 1.00 0.70 0.16 NS -1.57 1.03 0.14 NS -1.90 0.84 0.03 S *
Env. <2> <2 * 4>-2.88 1.55 0.07 S + 0.28 0.73 0.70 NS -1.57 1.03 0.14 NS -1.59 0.84 0.07 S +
Cro HmE(T) S.E. Pv Sig HmE(O) S.E. Pv Sig HmE(C) S.E. Pv Sig HmE S.E. Pv Sig
No.
                                                                                                      (M)
Env.<1> <1 * 3>0.03 0.01 0.02 S * 0.00 0.00 0.37 NS 0.03 0.01 0.01 S * 0.00 0.00 2.00 NS
```

```
Env. <1> <1 * 4>0.02  0.04  0.59  NS  -0.01  0.03  0.81  NS  0.03  0.01  0.02  S *
                                                                        0.00 0.00 2.00 NS
Env. <1> <2 * 3>0.04 0.05 0.49 NS
                                -0.01 0.01 0.53 NS 0.04 0.04 0.28
                                                                   NS
                                                                        0.00
                                                                             0.00 2.00 NS
Env. <1> <2 * 4>0.05 0.03 0.18 NS
                                 0.00 0.02 0.94 NS 0.05 0.03 0.13
                                                                   NS
                                                                        0.00 0.00 2.00 NS
                                                                        0.00 0.00 2.00 NS
Env. <1> <3 * 5>-0.01 0.02 0.54 NS
                                 0.00 0.01 0.85 NS -0.01 0.02 0.38
                                                                  NS
Env. <1> <4 * 5>-0.01 0.03 0.79 NS 0.01 0.02 0.62 NS -0.02 0.01 0.11
                                                                        0.00 0.00 2.00 NS
                                                                   NS
Env. <2> <1 * 3>-0.02 0.01 0.10 S +
                                 -0.01 0.01 0.06 S + -0.01 0.01 0.28
                                                                   NS
                                                                        0.00 0.00 2.00 NS
Env. <2> <1 * 4>-0.04 0.05 0.48 NS
                                 -0.01 0.04 0.78 NS -0.03 0.02 0.14
                                                                   NS
                                                                        0.00 0.00 2.00 NS
Env. <2> < * 3> -0.03 0.05 0.53 NS
                                -0.02 0.04 0.71 NS -0.01 0.02 0.41
                                                                   NS 0.00 0.00 2.00 NS
Env. <2> <2 * 4>-0.04 0.05 0.47 NS
                                -0.01 0.03 0.71 NS -0.03 0.02 0.24
                                                                   NS 0.00 0.00 2.00 NS
Env. <2> <3 * 5>-0.06 0.06 0.29 NS -0.02 0.04 0.67 NS -0.05 0.01 0.00
                                                                   S ** 0.00 0.00 2.00 NS
Env. <2> <4 * 5>-0.04 0.05 0.45 NS -0.01 0.03 0.84 NS -0.03 0.01 0.00 S ** 0.00
                                                                             0.00 2.00 NS
No.
       Cro HfE(T) S.E. Pv
                             Sig HfE(O) S.E. Pv Sig HfE(C) S.E. Pv
                                                                    Sig HfE
                                                                             S.E. Pv Sia
                                                                        (M)
Env. <1> <1 * 3>0.04 0.02 0.07 S + 0.01 0.02 0.47 NS 0.03 0.01 0.05
                                                                   S+
                                                                        0.00
                                                                             0.00 2.00 NS
Env. <1> <1 * 4>0.00 0.08 0.97 NS 0.07 0.09 0.47 NS -0.07 0.04 0.09
                                                                   S + 0.00 0.00 2.00 NS
Env. <1> <2 * 3>-0.04 0.07 0.58 NS
                                 -0.07 0.04 0.06 S + 0.03 0.05 0.50 NS 0.00 0.00 2.00 NS
Env. <1> <2 * 4>-0.07 0.05 0.21 NS
                                -0.01 0.04 0.79 NS -0.06 0.05 0.23
                                                                   NS 0.00 0.00 2.00 NS
Env. <1> <3 * 5>0.13  0.04  0.00  S **  0.13  0.04  0.00  S **  0.00  0.02  0.98
                                                                   NS -4.88 0.27 0.00 S **
Env. <1> <4 * 5>0.17 0.04 0.00 S **
                                      0.03 0.01 S ** 0.10 0.05 0.09
                                 0.08
                                                                   S + -2.54 0.25 0.00 S **
Env. <2> <1 * 3>0.00 0.04 1.00 NS
                                -0.02 0.03 0.42 NS 0.02 0.02 0.23
                                                                   NS
                                                                        0.00 0.00 2.00 NS
Env. <2> <1 * 4>-0.01 0.04 0.77 NS
                                 -0.04 0.05 0.41 NS 0.03 0.03 0.24
                                                                   NS
                                                                        0.00 0.00 2.00 NS
Env. <2> <2 * 3>0.00 0.05 0.97 NS
                                 -0.04 0.06 0.55 NS 0.03 0.02 0.14
                                                                   NS
                                                                        0.00 0.00 2.00 NS
Env. <2> <2 * 4>-0.01 0.05 0.80 NS
                                 -0.05 0.06 0.36 NS 0.04 0.02 0.11
                                                                   NS
                                                                        0.00 0.00 2.00 NS
Env. <2> <3 * 5>0.04 0.05 0.44 NS
                                -0.05 0.04 0.24 NS 0.09 0.04 0.04 S*
                                                                        0.00 0.00 2.00 NS
0.00 0.00 2.00 NS
```

Results of Oil% are not presented.

Time Used (Hour) = 0.000278

Chapter 3

Diallel Analysis for an Additive-Dominance Model with Genotype-by-Environment Interaction Effects

Jun Zhu

Purpose

To analyze balanced or unbalanced data of an additive x dominance (AD) genetic model for estimating components of variance, covariance, heritability, and selection response.

Definitions

Mating Design

A set of inbred lines are sampled from a reference population. These parents are used to produce F_1 crosses. If it is difficult to use F_1 crosses for some crops, F_2 crosses can be used as an alternative. Experiments with parents and F_1 s (or F_2 s) are conducted in multiple environments using a randomized complete block design.

Genetic Model

The genetic model for a genetic entry derived from parents *i* and *j* in the *k*th block within the *h*th environment is

$$y_{hiik}$$
 μ E_h G_{ii} GE_{hii} B_{hk} e_{hiik}

where μ = population mean, E_h = environment effect, G_{ij} = total genotypic effect, GE_{hij} = genotype × environment interaction effect, B_{hk} = block effect, and e_{hijk} = residual effect.

For parent (P_i) :

$$G_{ii}$$
 GE_{hii} $2A_i$ D_{ii} $2AE_{hi}$ DE_{hii}

For F_1 ($P_i \times P_i$):

$$G_{ij}$$
 GE_{hij} A_i A_j D_{ij} AE_{hi} AE_{hj} DE_{hij}

For $F_2(F_1 \otimes)$:

where A = additive effect, D = dominance effect, AE = additive by environment interaction effect, DE = dominance by environment interaction effect.

Analysis Methodology

Mixed Linear Model

The phenotypic mean of the genetic model can be expressed by a mixed linear model as

$$y$$
 Xb $U_A e_A$ $U_D e_D$ $U_{AE} e_{AE}$ $U_{DE} e_{DE}$ $U_B e_B$ e_e Xb $U_u e_u$

with variance-covariance matrix

$$\begin{aligned} \operatorname{var}(\mathbf{y}) & & \sigma_{A}^{2} U_{A} U_{A}^{T} & \sigma_{D}^{2} U_{D} U_{D}^{T} & \sigma_{AE}^{2} U_{AE} U_{AE}^{T} & \sigma_{DE}^{2} U_{DE} U_{DE}^{T} \\ & & & \sigma_{B}^{2} U_{B} U_{B}^{T} & \sigma_{e}^{2} I \\ & & & & \sigma_{u}^{2} U_{u} U_{u}^{T} & \sigma_{u}^{2} V_{u}. \end{aligned}$$

Variance Components

Unbiased estimation of variances can be obtained by the following MINQUE(1) equations (Zhu, 1992; Zhu and Weir, 1996):

$$tr \ Q_{(1)}V_uQ_{(1)}V_v \quad \hat{\sigma}_u^2 \quad y^TQ_{(1)}V_uQ_{(1)}y$$

where

$$\begin{array}{cccc} Q_{(1)} & V_{(1)}^{-1} - V_{(1)}^{-1} X (X^T V_{(1)}^{-1} X) & X^T V_{(1)}^{-1} \\ V_{(1)} & V_u & U_u U_u^T \end{array}$$

When experimental variances (σ_u^2) are estimated, genetic variance components can be obtained by V_A $2\sigma_A^2$, V_D σ_D^2 , V_{AE} $2\sigma_{AE}^2$, V_{DE} σ_{DE}^2 , and V_e σ_e^2 . The total phenotypic variance is V_P V_A V_D V_{AE} V_{DE} V_e .

Covariance Components and Correlation

Unbiased estimation of covariances $\sigma_{u/u}$ between two traits $(y_1 \text{ and } y_2)$ can be obtained by MINQUE(1) approaches (Zhu, 1992; Zhu and Weir, 1996):

$$tr \ Q_{(1)}V_{\mu}Q_{(1)}V_{\nu} \quad \hat{\sigma}_{\mu/\mu} \quad y_1^T Q_{(1)}V_{\mu}Q_{(1)}y_2$$

When experimental covariances $(\sigma_{u/u})$ are estimated, genetic covariance components can be obtained by C_A $2\sigma_{A/A}$, C_D $\sigma_{D/D}$, C_{AE} $2\sigma_{AE/AE}$, C_{DE} $\sigma_{DE/DE}$, and C_e $\sigma_{e/e}$. The total phenotypic covariance is C_P C_A C_D C_{AE} C_{DE} C_e . For trait 1 and trait 2, correlation coefficient of genetic components can be estimated by r_A r_A

Heritability Components

For the genetic model with GE interaction effects, the total heritability (h^2) can be partitioned into two components $(h^2 \ h_G^2 \ h_{GE}^2)$, where $h_G^2 \ V_A / V_P$ is general heritability and $h_{GE}^2 \ V_{AE} V_P$ is interaction heritability

(Zhu, 1997). General heritability is applicable to multiple environments whereas interaction heritability is applicable only to specific environments.

Selection Response

The total selection response $(R \ ih^2 \sqrt{V_P})$ can be partitioned into two components (Zhu, 1997):

$$R$$
 R_G R_{GE}

where $R_G = ih_G^2 \sqrt{V_P}$ is general response and $R_{GE} = ih_{GE}^2 \sqrt{V_P}$ is interaction response.

Heterosis Components

Prediction of genetic merits can be obtained by using the linear unbiased prediction (LUP) method (Zhu, 1992; Zhu and Weir, 1996) or adjusted unbiased prediction (AUP) method (Zhu, 1993; Zhu and Weir, 1996). Predicted genotypic effects and *GE* interaction effects can be further used in analyzing heterosis of different generations (Zhu, 1997). Heterosis in specific environments consists of two components. General heterosis is due to genotypic effects and can be expected in overall environments, and interaction heterosis is a deviant of *GE* interaction relative to specific environments. The two components of heterosis based on midparent or better parent can be calculated as

General heterosis of F_n relative to midparent: $H_M(F_n) \left(\frac{1}{2}\right)^{n-1}$ Interaction heterosis of F_n relative to midparent: $H_{ME}(F_n) \left(\frac{1}{2}\right)^{n-1}$ DE General heterosis of F_n relative to better parent (P_i) :

$$H_B(F_n) = (\frac{1}{2})^{n-1} = \frac{1}{2} = G$$

Interaction heterosis of F_n relative to better parent (P_i) :

$$H_{BE}(F_n)$$
 $(\frac{1}{2})^{n-1}$ $_{DE}$ $-\frac{1}{2}$ $_{GE}$

where $_{D}$ D_{ij} $-\frac{1}{2}(D_{ii}$ $D_{jj})$ is dominance heterosis, $_{DE}$ DE_{hij} $-\frac{1}{2}(DE_{hii}$ $DE_{hjj})$ is DE interaction heterosis, $_{G}$ $|G(P_i) - G(P_j)|$ is parental genotypic difference, and $_{GE}$ $|GE(P_i) - GE(P_j)|$ is parental interaction difference.

Heterosis based on population mean $(H_{PM} \ \frac{1}{\mu}H_M, \ H_{PME} \ \frac{1}{\mu}H_{ME}, H_{PB} \ \frac{1}{\mu}H_{BE})$ can be used to compare proportion of heterosis among different traits.

Originators

- Zhu, J. (1992). Mixed model approaches for estimating genetic variances and covariances. *Journal of Biomathematics* 7(1):1-11.
- Zhu, J. (1993). Methods of predicting genotype value and heterosis for offspring of hybrids (Chinese). *Journal of Biomathematics* 8(1):32-44.
- Zhu, J. (1997). *Analysis Methods for Genetic Models*. Agricultural Publication House of China, Beijing.
- Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. *Theoretical and Applied Genetics* 92(1):1-9.

Software Available

Zhu, J. (1997). GENAD.EXE for constructing AD model, GENVAR1.EXE for estimating components of variance and heritability, GENCOV1.EXE for estimating components of covariance and correlation, GENHET1.EXE for predicting genetic effects and components of heterosis. *Analysis Methods for Genetic Models* (pp. 278-285), Agricultural Publication House of China, Beijing (program free of charge). Contact: Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Unbalanced data (COTDATA.TXT) to be analyzed (Parent = 4, Year = 2, Blk = 2):

Env	Fem	Male	Cross	Blk	Bolls	Fiber Yield
1	1	1	0	1	14.5	54.4
1	1	1	0	2	11.2	29.7
1	1	2	1	1	10.9	54.3
1	1	2	1	2	12.4	55.1
1	1	3	1	1	12.7	43.7
1	1	3	1	2	10.4	51.2
1	1	4	1	1	15.5	58.3
1	1	4	1	2	14.3	38.5
1	2	1	1	1	15.9	62.5
1	2	1	1	2	14.0	56.8
1	2	2	0	1	14.0	34.8
1	2	2	0	2	14.9	35.0
1	2	3	1	1	12.7	34.3

	4		a	•	
/	1	1	1	١.	

1	2	3	1	2	10.0	24.1
1	2	4	1		14.7	34.9
1	2	4	1	1 2	18.2	34.1
1	3	1	1		10.0	26.9
1	3	1	1	1 2	11.4	28.1
	2		1	1	13.9	23.9
1	ے د	2	1	1 2		23.9
1	3	2 2 3			11.1	33.5
1	3	3	0	1	6.3	12.5
1	3	3	0	1 2 1 2	9.1	22.3
1	3	4	1	1	11.4	19.8
1	2 2 3 3 3 3 3 3 3 3 3	4	1		11.0 13.3	22.3 19.8 21.4 43.8
1	4	1	1	1 2	13.3	43.8
1	4	1	1	2	12.0 15.9	42.0
1	4	2	1	1	15.9	42.0 31.5
1	4	2	1	2	16.7	40.2
1	4	3	1	1 2 1 2	13.6	39.9
1	4	3	1		14.9	39.9 19.6
1	4	4	0	1 2	10.0	28.5
1 2	4	4	0	2	15.0	28.1 55.1
2	1	1	0	1 2	19.4	55.1
2	1	1	0	2	24.1	56.3
2	1	2	1	1	21.7	69.2 79.5
2	1	2	1	2	25.1	79.5
2	1	2 3 3	1	1 2 1 2 1 2 1 2	15.1	76.8
2	1	3	1	2	16.6	42 7
2	1	4	1	1	22.9	72.7
2	1	4	1	2	19.2	62.7
2	2	2	0	1	17.2	72.7 62.7 60.6
2	2	2 2 3	0	2	17.2 19.6	71.6 36.8
2	2	3	1	1	18.9	36.8
2 2 2 2 2 2 2 2 2 2	2	3	1	1 2	17.2	47.8
2	2	4	1		32.8	61.9
2	2	4	1	1 2	30.7	61.9 78.3
2	3	3	0	1	13.6	27.8
2 2 2	3	3	0	1 2	8.4	19.1
	1 1 2 2 2 2 2 2 2 2 3 3 3 3 4	4	1		16.8	37.9
2 2 2	3	4	1	1 2		34.2
2	4	4	0	1	17.0 21.5	49.5
2	4	4	0	2	19.9	57.1

- 1. Run GENAD.EXE to create mating design matrix files and data files for additive-dominance (AD) model. Before running this program, you should create a file for your analysis with five design columns followed by trait columns. The first five columns are: (1) environment, (2) maternal, (3) paternal, (4) generation, and (5) replication. There is a limitation (<100 traits) for the number of trait columns. An example of a data file is provided with the name COTDATA.TXT.
- 2. Run programs for variance and covariance analyses. Standard errors of estimates are calculated using jackknife procedures. If you have multiple blocks for your experiments, you can use GENVAR1R.EXE or GENCOV1R.EXE for jackknifing over blocks. Otherwise you can use

- GENVAR1C.EXE or GENCOV1C.EXE for jackknifing over cell means.
- 3. Run GENVAR1R.EXE or GENVAR1C.EXE for estimating variance components and predicting genetic effects before estimating covariance and correlation. These two programs will allow you to choose the parental type (inbred or outbred) and the prediction methods (LUP or AUP). You also need to input coefficients (1, 0, or -1)for conducting linear contrasts for genetic effects of parents.
- 4. After you finish variance analysis, you can run GENCOV1R.EXE or GENCOV1C.EXE for estimating covariance components and coefficients of correlation among all the traits analyzed.
- 5. If you want to predict heterosis and genotypic value for each F₁ or F₂ cross by an AD model, you can run GENHET1R.EXE or GENHET1C.EXE.
- 6. The results from the analyses will be automatically stored in text files for later use or printing. Examples of result files are provided with the names COTDATA. VAR for analysis of variance and genetic effects, COTDATA.PRE for heterosis, and COTDATA.COR for analysis of covariances and correlation.

Output 1 for Variance Analysis

(6): Residual Var

```
Traits =, 2
 Variance components = , 6
 Degree of freedom = , 3
 File name is cotdata.VAR
 Date and Time for Analysis: Thu Jun 22 21:43:19 2000
 Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE.
 Jackknifing Over Block Conducted for Estimating S.E.
 Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP)
        Method.
NS = Not significant; S+ = Significant at 0.10 level.
 S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
 Linear Contrasts:
 + <1> + <2> - <3> + <4>
Diallel Analysis of Trait 'Bolls' for Public Users

        Var Comp
        Estimate
        S. E.
        P-value

        (1): Additive Var
        7.30438
        1.4425
        0.00743

        (2): Dominance Var
        3.29038
        0.935764
        0.0195

        (3): Add. * Env. Var
        0.866547
        0.683906
        0.147

        (4): Dom. * Env. Var
        4.82384
        1.71492
        0.0336

        (6): Pasidual Var
        4.82372
        0.00362

                                                                                                            S**
                                                                                                             S*
                                                                                                              NS
                                                                                                            S*
```

4.18772

0.555651

0.00242

S**

(7):	Var(Pheno.)	20.4729	2.79941	0.00264	S**
(1): (2): (3): (4):	ortion of Var(G)/Var Additive Var/Vp Dominance Var/Vp Add. * Env. Var/Vp Dom. * Env. Var/Vp Residual Var/Vp	0.356783 0.160719	S. E. 0.0888328 0.0275068 0.0244 0.0667933 0.0209314	P-value 0.0139 0.005 0.0906 0.0194 0.00114	S* S** S+ S*
(7): (8): (9):	tability Heritability(N) Heritability(B) Heritability(NE) : Heritability(BE)	Estimate 0.356783 0.517502 0.0423266 0.277948	S. E. 0.0888328 0.0661515 0.0244 0.0575567	P-value 0.0139 0.00217 0.0906 0.00846	S* S** S+ S**
	tic Predictor, S. E. Random Effect is Ado		r Two-tail t-	test	
A1 A2 A3 A4	ar Contrast	0.392019 1.326158 -2.917664 1.199422 3.05342	0.632218 0.211643 0.353084 0.548514 0.470211	0.579 0.0082 0.00371 0.117 0.00741	NS S** S** NS S**
D1*1 D2*2 D3*3 D4*4 D1*2 D1*3 D1*4 D2*3 D2*4 D3*4	Random Effect is Don	ninance Effect 0.263665 -2.176718 -1.244060 -1.836773 0.388935 -0.349309 -0.273600 0.210065 4.888072 0.129694 1.37653	0.437706 0.509854 0.786988 0.495630 0.399988 0.311425 0.915662 0.829160 0.707825 0.666849 0.337286	0.589 0.0236 0.212 0.0341 0.403 0.344 0.785 0.816 0.00622 0.858 0.0266	NS S* NS S* NS NS NS NS S**
AE1 AE2 AE3 AE4 AE1 AE2 AE3 AE4	Random Effect is Add in E1 in E1 in E1 in E1 in E2 in E2 in E2 in E2 in E2 ar Contrast	1. * Env. Effect 0.089686 0.242420 -0.079016 -0.253113 -0.136729 0.342004 -1.257717 1.052433 -1.76747e-005	0.496245 0.070750 0.182773 0.407134 0.705758 0.648600 1.654640 0.508793	0.868 0.0416 0.695 0.578 0.859 0.634 0.502 0.13	NS S* NS NS NS NS NS
DE11 DE22 DE33 DE44 DE12 DE13 DE14 DE23	Random Effect is Dom in E1	n. * Env. Effect -0.349740 2.063640 -0.889553 -0.318622 -1.294414 0.562069 1.114442 -0.217579 -2.368299	0.559982 0.515148 1.186821 1.006553 0.520453 0.405746 1.050572 1.660683 0.651167	0.577 0.0279 0.508 0.772 0.0887 0.26 0.367 0.904 0.0358	NS S* NS NS S+ NS NS S*

DE34 in E1	1.698030	0.881687	0.15	NS
DE11 in E2	0.751202	0.780806	0.407	NS
DE22 in E2	-4.653504	1.121175	0.0254	S*
DE33 in E2	-0.744776	1.086469	0.542	NS
DE44 in E2	-1.890872	0.707435	0.0755	S+
DE12 in E2	1.815819	0.552480	0.0462	S*
DE13 in E2	-0.926615	0.698261	0.276	NS
DE14 in E2	-1.611676	1.678116	0.408	NS
DE23 in E2	0.437429	0.800245	0.623	NS
DE24 in E2	8.238749	1.841553	0.0208	S*
DE34 in E2	-1.415766	1.261023	0.343	NS
Heterosis <delta></delta>	0.971038	0.40929	0.0983	S+

Fixed Effect , 12.8719 Fixed Effect , 19.885

Results of Fiber Yield are not presented.

Time Used (Hour) = 0.001389

Output 2 for Covariance Analysis

Traits =, 2 Variance components = , 6 Degree of freedom = , 3 File name is cotdata.COV Date and Time for Analysis: Thu Jun 22 22:00:24 2000

Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE. Jackknifing Over Block Conducted for Estimating S.E.

NS = Not significant; S+ = Significant at 0.10 level. $S^* = Significant$ at 0.05 level; $S^{**} = Significant$ at 0.01 level.

Covariances and Correlations Between Bolls & FibYield, for Public Users:

Covariances Additive Cov Dominance Cov Add. * Env. Cov Dom. * Env. Cov Residual Cov	Estimates 26.4031 3.68996 5.2684 0.725936 5.74197	S.E. 15.0422 4.09328 5.4782 6.15727 4.7088	P-value 0.177 0.434 0.407 0.914 0.31	NS NS NS NS
Cov 1=Genotypic Cov2=Phenotypic Cov 2 Cov 1	Estimates 41.8294 36.0874	S.E. 20.9549 21.3383	P-value 0.14 0.189	NS NS
Correlation Additive Cor Dominance Cor Add. * Env. Cor Dom. * Env. Cor	Estimates 0.905414 0.275228 1.000000 0.000000	S.E. 0.326942 0.243147 0.288675	P-value 0.0696 0.34 0.0405	S+ NS S* NS

Residual Cor	0.318575	0.229826	0.26	NS
Cor 1=Genotypic				
Cor2=Phenotypic	Estimates	S.E.	P-value	
Cor 2	0.556778	0.215421	0.0815	S+
Cor 1	0.635333	0.26869	0.099	S+

Time Used (Hour) = 0.000000

Output 3 for Heterosis Analysis

```
Traits =, 2
Variance components = , 6
Degree of freedom = , 3
File name is cot8185.
Date and Time for Analysis: Thu Jun 22 22:15:40 2000
```

Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE. Jackknifing Over Block Conducted for Estimating S.E. Genetic Effects by Adjusted Unbiased Prediction (AUP) Method.

```
NS = Not significant; S+ = Significant at 0.10 level. 
 S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
```

Diallel Analysis of Trait, Bolls, for Public Users.

Var Comp	Estimate	S. E.	P-value	
Additive Var	7.30429	1.4425	0.00743	S**
Dominance Var	3.29035	0.935764	0.0195	S*
Add. * Env. Var	0.866537	0.683909	0.147	NS
Dom. * Env. Var	4.82386	1.71492	0.0336	S*
Residual Var	4.18772	0.555651	0.00242	S**

Heterosis Analysis of Trait, Bolls, for F2 Seeds with total mean =, 15.312341

		P-	Sig-	(F ₂)	P-	Sig-
No. Cro	(F_1) (GE) S.E.	value	nif.	(GE) S.E.	value	nif.
Cro 1 <e1> <1 * 2></e1>	-0.962 0.471	0.134	NS	0.113 0.578	0.857	NS
Cro 2 <e1> <1 * 3></e1>	0.573 0.406	0.253	NS	-0.018 0.213	0.938	NS
Cro 3 <e1> <1 * 4></e1>	0.951 1.020	0.420	NS	0.227 0.366	0.579	NS
Cro 4 <e1> <2 * 3></e1>	-0.054 1.673	0.976	NS	0.348 0.530	0.558	NS
Cro 5 <e1> <2 * 4></e1>	-2.379 0.984	0.094	S+	-0.759 0.930	0.474	NS
Cro 6 <e1> <3 * 4></e1>	1.366 0.489	0.068	S+	0.215 0.630	0.756	NS
Cro 7 <e2> <1 * 2></e2>	2.021 1.222	0.197	NS	0.138 1.488	0.932	NS
Cro 8 <e2> <1 * 3></e2>	-2.321 0.646	0.037	S*	-1.856 0.366	0.015	S*
Cro 9 <e2> <1 * 4></e2>	-0.696 1.562	0.686	NS	-0.175 0.708	0.821	NS
Cro 10 <e2> <2 * 3></e2>	-0.478 1.110	0.696	NS	-2.047 0.629	0.047	S*
Cro 11 <e2> <2 * 4></e2>	9.633 1.556	0.008	S**	3.878 0.469	0.004	S**
Cro 12 <e2> <3 * 4></e2>	-1.621 0.806	0.138	NS	-1.572 0.610	0.082	S+

Significance of F1 or F2 is over Population Mean 15.312341

				P-	Sig-	(F ₂)		P-	Sig-
No.	Cro	(F ₁) (G)	S.E.	value	nif.	(G)	S.E.	value	nif.
Cro 1	<1 * 2>	17.420	1.118	0.156	NS	16.747	1.233	0.329	NS
Cro 2	<1 * 3>	12.437	0.868	0.045	S*	12.367	0.732	0.028	S*

```
Cro 3
             <1 * 4>
                          16.630 1.075 0.308
                                                    NS
                                                           16.374 0.748 0.251 NS
             <2 * 3>
                          13.931 1.064 0.285 NS
Cro 4
                                                           12.971 0.832
                                                                          0.067
                          22.726 0.625 0.001
                                                    S** 19.279 0.832 0.018 S*
Cro 5
             <2 * 4>
             <3 * 4>
Cro 6
                          13.724 0.814 0.146
                                                    NS
                                                           12.889 1.033 0.101 NS
                                           P-
                                                    Sig-
                                                                           P-
                                                                                   Sia-
No.
             Cro
                          H_{pm}(F_1) S.E. value
                                                    nif. H_{pm}(F_2) S.E. value nif.
Cro 1 <E1>
              <1 * 2> -0.140 0.034 0.027
                                                   S* -0.070 0.017 0.027
              <1 * 3>
                          0.077 0.030 0.079
                                                   S+ 0.039 0.015 0.079
Cro 2 <E1>
                                                                                     S+
             <1 * 4>
Cro 3 <E1>
                          0.095 0.087 0.355 NS 0.047 0.043 0.355
                                                                                    NS
NS
                                                                                    S*
                                                                                    NS
Mean for
                          -0.014 0.059 0.830 NS -0.007 0.029 0.830
                                                                                    NS
Env. Cro No. = 6
Cro 7 <E2>
             <1 * 2>
                          0.246 0.052 0.018
                                                     S* 0.123 0.026 0.018

      1
      2
      0.04
      0.056
      0.361
      NS
      -0.030
      0.028
      0.361

      1
      4
      0.068
      0.153
      0.686
      NS
      -0.034
      0.076
      0.686

      2
      4
      0.205
      0.074
      0.071
      S+
      0.102
      0.037
      0.071

      2
      4
      0.752
      0.200
      0.033
      S*
      0.376
      0.100
      0.033

      3
      4
      -0.006
      0.113
      0.958
      NS
      -0.003
      0.057
      0.958

             <1 * 3> -0.061 0.056 0.361
Cro 8 <E2>
                                                                                    NS
Cro 9 <E2> <1 * 4>
                                                                                    NS
Cro 10 <E2> <2 * 3>
                                                                                    S+
Cro 11 <E2>
                                                                                   S*
Cro 12 <E2>
                                                                                    NS
Significance of F1 or F2 is over Population Mean 15.312341
                          H_{pm}(F_1)
                                          P-
                                                    Sig- H_{pm}(F_2) P-
                                                                          Sia-
No.
                          (G)
                                    S.E.
                                           value
                                                    nif. (G) S.E.
                                                                          value nif.
             Cro
Cro 1
              <1 * 2> 0.088 0.031 0.067
                                                    S+ 0.044 0.016 0.067
                                                                                   S+
               <1 * 3> 0.009
                                                   NS 0.005 0.013 0.754
Cro 2
                                  0.027 0.754
                                                                                    NS
              <1 * 4> 0.033  0.078 0.696  NS  0.017 0.039 0.696  NS
<2 * 3> 0.125  0.072 0.181  NS  0.063 0.036 0.181  NS
<2 * 4> 0.450  0.083 0.012  S*  0.225 0.042 0.012  S*
Cro 3
Cro 4
Cro 5
               Cro 6
                                           P-
                                                    Sig-
                                                                                   Sia-
             Cro
                                          value nif. H_{pb}(F_2) S.E.
No.
                          H_{pb}(F_1)
                                   S.E.
                                                                           value nif.
Cro 1 <E1> <1 * 2>
                          -0.229 0.003 0.000 S** -0.159 0.019 0.004
                                                                                  S**
                          0.049 0.012 0.025 S*
Cro 2 <E1> <1 * 3>
                                                           0.010 0.017 0.595 NS
                        0.073 0.107 0.542 NS 0.026 0.069 0.732 NS -0.170 0.128 0.277 NS -0.144 0.068 0.123 NS -0.322 0.077 0.025 S* -0.216 0.054 0.029 S*
Cro 3 <E1> <1 * 4>
Cro 4 <E1> <2 * 3>
Cro 5 <E1> <2 * 4>
Cro 6 <E1> <3 * 4>
                          0.143 0.114 0.297 NS
                                                           0.068 0.056 0.315 NS
Cro 7 <E2> <1 * 2>
                                                           -0.022 0.034 0.563 NS
                          0.101 0.048 0.128
                                                    NS
Cro 8 <E2> <1 * 3>
                          -0.183 0.118 0.219
                                                    NS
                                                           -0.152 0.095 0.206 NS
Cro 9 <E2> <1 * 4> -0.077 0.163 0.670
                                                           -0.043 0.087 0.657
                                                    NS
                        0.182 0.116 0.215 NS
0.615 0.151 0.027 S*
Cro 10 <E2> <2 * 3>
                                                          0.079 0.126 0.573 NS
0.239 0.055 0.023 S*
Cro 11 <E2> <2 * 4>
Cro 12 <E2> <3 * 4> -0.120 0.165 0.520
                                                   NS
                                                         -0.117 0.111 0.369 NS
Significance of F1 or F2 is over Population Mean 15.312341
                          H_{pb}(F_1)
                                          P-
                                                    Sig- H_{pb}(F_2)
                                                                                   Sig-
No.
             Cro
                          (G)
                                    S.E. value nif. (G) S.E.
                                                                          value nif.
Cro 1
             <1 * 2>
                          0.069 0.040 0.183 NS
                                                           0.025 0.029 0.445 NS
                          -0.256 0.081 0.050 S+
0.018 0.088 0.854 NS
             <1 * 3>
Cro 2
                                                           -0.261 0.091 0.064 S+
             <1 * 4>
Cro 3
                                                          0.001 0.049 0.987 NS
                          -0.121 0.092 0.278 NS -0.184 0.071 0.081 S+ 0.447 0.076 0.010 S** 0.222 0.036 0.008 S**
             <2 * 3>
Cro 4
             <2 * 4>
Cro 5
             <3 * 4>
Cro 6
                          -0.140 0.082 0.184 NS
                                                          -0.195 0.050 0.030 S*
```

Significance of Heterosis is over Population Mean 15.312341

$Pre(F_1)$	16.4871	0.580926	0.136	NS
$Pre(F_2)$	15.4467	0.665146	0.853	NS
$Hpm(F_1)$	0.135267	0.030647	0.0216	S*
Hpm(F ₂)	0.067634	0.015324	0.0216	S*
$Hpb(F_1)$	-0.04533	0.042593	0.365	NS
Hpb (F2)	-0.11297	0.035282	0.0493	S*

Results of Fiber yield are not presented.

Time Used (Hour) = 0.000278

Chapter 4

Diallel Analysis for an Additive-Dominance-Epistasis Model with Genotype-by-Environment Interaction Effects

Jun Zhu

Purpose

To analyze balanced or unbalanced data of an additive x dominance (AD) + additive x additive (AA) genetic model for estimating components of variance, covariance, heritability, and selection response.

Definitions

Mating Design

A set of inbred lines is sampled from a reference population. Parents are used to produce F_1 crosses and their F_2 . Experiments with parents, F_1 s, and F_2 s are conducted in multiple environments using a randomized complete block design.

Genetic Model

The genetic model for genetic entry of the kth type of generation derived from parents i and j in the lth block within the hth environment is

$$y_{\mathit{hijkl}}$$
 μ E_{h} G_{ijk} GE_{hijk} B_{hl} e_{hijkl}

where μ = population mean, E_h = environment effect, G_{ijk} = total genotypic effect, GE_{hijk} = genotype × environment interaction effect, B_{hl} = block effect, and e_{hijkl} = residual effect.

For parent $(P_i, k = 0)$:

$$G_{ii0}$$
 GE_{hii0} $2A_{i}$ D_{ii} $4AA_{ii}$ $2AE_{hi}$ DE_{hii} $4AAE_{hii}$

For F_1 ($P_i \times P_j$, k = 1):

$$G_{ij1} \quad GE_{hij1} \quad A_i \quad A_j \quad D_{ij} \quad AA_{ii} \quad AA_{jj} \quad 2AA_{ij} \quad AE_{hi} \\ \quad AE_{hj} \quad DE_{hij} \quad AAE_{hii} \quad AAE_{hjj} \quad 2AAE_{hij}$$

For F_2 ($F_1 \otimes$, k = 2):

where A = additive effect, D = dominance effect, AA = additive by additive epistatic effect, AE = additive by environment interaction effect, DE = dominance by environment interaction effect, and AAE = epistasis by environment interaction effect.

Analysis Methodology

Mixed Linear Model

The phenotypic mean of the genetic model can be expressed by a mixed linear model as

with variance-covariance matrix

Variance Components

Unbiased estimation of variances can be obtained by restricted maximum likelihood (REML) or MINQUE(1) approaches. When experimental variances (σ_u^2) are estimated, genetic variance components can be obtained by $V_A = 2\sigma_A^2, V_D = \sigma_D^2, V_{AA} = 4\sigma_{AA}^2, V_{AE} = 2\sigma_{AE}^2, V_{DE} = \sigma_{DE}^2, V_{AAE} = 4\sigma_{AAE}^2, V_e = \sigma_e^2$. The total phenotypic variance is $V_P = V_A =$

Covariance Components and Correlation

Unbiased estimation of covariances can be obtained by MINQUE(1) approaches (Zhu, 1992; Zhu and Weir, 1996). When experimental covariances ($\sigma_{u/u}$) are estimated, genetic covariance components can be obtained by C_A $2\sigma_{A/A}$, C_D $\sigma_{D/D}$, C_{AA} $4\sigma_{AA/AA}$, C_{AE} $2\sigma_{AE/AE}$, C_{DE} $\sigma_{DE/DE}$, C_{AAE} $4\sigma_{AAE/AAE}$, C_e $\sigma_{e/e}$. The total phenotypic covariance is C_P C_A C_D C_{AA} C_{AE} C_{DE} C_{AAE} C_e . For trait 1 and trait 2, correlation coefficients of genetic components can be estimated by r_A C_A / $\sqrt{V_{A(1)}V_{A(2)}}$, r_D C_D / $\sqrt{V_{D(1)}V_{D(2)}}$, r_{AA} C_{AAE} / $\sqrt{V_{AA(1)}V_{AA(2)}}$, r_{AE} C_{AE} / $\sqrt{V_{AE(1)}V_{AE(2)}}$, r_{DE} C_D / $\sqrt{V_{D(1)}V_{D(2)}}$, r_{AAE} C_{AAE} / $\sqrt{V_{AAE(1)}V_{AAE(2)}}$, and r_e C_e / $\sqrt{V_{e(1)}V_{e(2)}}$.

Heritability Components

The total heritability (h^2) can be partitioned into two components $(h^2 \ h_G^2 \ h_{GE}^2)$, where $h_G^2 \ (V_A \ V_{AA})/V_P$ is general heritability and $h_{GE}^2 \ (V_{AE} \ V_{AAE})/V_P$ is interaction heritability (Zhu, 1997).

Selection Response

The total selection response $(R \ ih^2 \sqrt{V_P})$ can be partitioned into two components (Zhu, 1997):

$$R$$
 R_G R_{GE}

where $R_G = ih_G^2 \sqrt{V_P}$ is general response and $R_{GE} = ih_{GE}^2 \sqrt{V_P}$ is interaction response.

Heterosis Components

Prediction of genetic merits can be obtained by use of the linear unbiased prediction (LUP) method (Zhu, 1992; Zhu and Weir, 1996) or the adjusted unbiased prediction (AUP) method (Zhu, 1993; Zhu and Weir, 1996). Predicted genotypic effects and GE interaction effects can be further used in analyzing heterosis of different generations (Zhu, 1997). Heterosis in specific environments consists of two components. General heterosis is due to genotypic effects and can be expected in overall environments, and interaction heterosis is a deviant of GE interaction relative to specific environments. The two components of heterosis relative to midparent or relative to better parent can be calculated as follows:

General heterosis of F_n relative to midparent: $H_M(F_n) \left(\frac{1}{2}\right)^{n-1} \quad D \quad 2$

$$H_M(F_n) = (\frac{1}{2})^{n-1} = \frac{1}{2}$$

$$H_{ME}(F_n) = (\frac{1}{2})^{n-1} = DE = 2 = AAE$$

Interaction heterosis of F_n relative to midparent: $H_{ME}(F_n)$ $(\frac{1}{2})^{n-1}$ DE 2 AAE General heterosis of F_n relative to better parent (P_i) :

$$H_B(F_n)$$
 $H_M(F_n) - \frac{1}{2}$ G

Interaction heterosis of F_n relative to better parent (P_i) :

$$H_{BE}(F_n)$$
 $H_{ME}(F_n) - \frac{1}{2}$ $_{GE}$

where $D_{ij} = \frac{1}{2}(D_{ii} - D_{jj})$ is dominance heterosis, $D_{E} = DE_{hij} - \frac{1}{2}(DE_{hii})$ DE_{hjj}) is DE interaction heterosis, $G_{ij} = \left| G(P_i) - G(P_j) \right|$ is parental genotypic difference, and $G_{ij} = \left| GE(P_i) - GE(P_j) \right|$ is parental interaction difference.

Heterosis based on population mean $(H_{PM} = \frac{1}{\mu}H_{M}, H_{PME} = \frac{1}{\mu}H_{ME},$ $H_{PB} = \frac{1}{\mu} H_B$, or $H_{PBE} = \frac{1}{\mu} H_{BE}$) can be used to compare proportion of heterosis among different traits.

Originators

- Zhu, J. (1992). Mixed model approaches for estimating genetic variances and covariances. *Journal of Biomathematics* 7(1):1-11.
- Zhu, J. (1993). Methods of predicting genotype value and heterosis for offspring of hybrids (Chinese). Journal of Biomathematics 8(1):32-44.
- Zhu, J. (1997). Analysis Methods for Genetic Models. Agricultural Publication House of China, Beijing.
- Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics 92(1):1-9.

Software Available

Zhu, J. (1997). GENAD.EXE for constructing AD model, GENVAR1.EXE for estimating components of variance and heritability, GENCOV1.EXE for estimating components of covariance and correlation, GENHET1.EXE for predicting genetic effects and components of heterosis. *Analysis Methods for Genetic Models* (pp. 278-285). Agricultural Publication House of China, Beijing (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Unbalanced data (COTADAA.TXT) to be analyzed (Parent = 10, Year = 2, Generation = P, F₁, F₂, Blk = 1):

Year 1	Male 1	Fem 1 6	Gen 0	Blk 1	Bolls 10.39	Lint% 37.16
1	1		1 2	_	16.69	39.29
1	1	6 7	1	1	15.05 18.27	37.68 40.92
1	1	7	2	1	14.44	38.35
1	1	9	1	1	13.36	36.43
1	1	9	2	1	12.37	36.1
1	1	10	1	1	14.57	33.45
1	1	10	2	1	11.52	34.81
1	2	2	0	1	18.06	34.95
1	2	6	1	1	16.65	38.28
1	2	6	2	1	15.43	39.5
1	2	7	1	1	17.67	39.27
1	2	7	2	1	18.82	38.43
1	2	8	1	1	19.89	38.22
1	2	8	2	1	12.65	35.44
1	2	9	1	1	18.03	34.57
1	2	9	2	1	15.45	35.51
1	2	10	1	1	17.08	33.69
1	2	10	2	1	16.1	29.89
1	3	3	0	1	11.03	39.53
1	3	7	1	1	17.52	42.46
1	3	7	2	1	13.99	39.38
1	2 3 3 3 3 3 3 3	9	1	1	14.56	37.04
1	3	9	2	1	12.28	38.27
1	3	10	1	1	13.27	37.83
1		10	2	1	16.42	39.14
1	4	4	0	1	16.54	40.8
1	4	6	1	1	17.11	40.34
1	4	6	2	1	14.58	40.77
1	4	8	1	1	16.7	40.92
1	4	8	2	1	14.7	39.72
1	4	9	1	1	17.1	38.7
1	4	9	2	1	17.34	38.41

_			_	_		
1	4	10	1	1	14.14	36.54
1	4	10	2	1	13.86	36.99
1	5	5	0	1	13.89	40.49
1	5	7	1	1	18.57	41.6
1	5	7	2	1	14.53	41.53
1	5	8	1	1	17.27	40.33
1	5	8	2	1	16.1	39.9
1	5	9	1	1	16.31	39.16
	5	9	2			
1	5			1	14.82	39.92
1	5	10	1	1	16.98	37.65
1	5	10	2	1	12.22	37.3
1	6	6	0	1	16.66	39.1
1	7	7	0	1	18.35	42.04
1	8	8	0	1	13.49	38.81
1	9	9	0	1	12.91	35.98
1	10	10	0	1	11.52	30.89
2	1	1	0	1	10.09	37.69
2	1	6	1	1	10.82	41.92
2	1	6	2	1	11.13	38.06
2	1	7	1	1	7.97	40.53
2	1	7	2	1	11.08	41.2
2	1	9	1	1	8.22	37.49
2	1	9	2	1	9.85	37.45
2						
2	1	10	1	1	7.26	33.81
2	1	10	2	1	8.52	33.53
2	2	2	0	1	9.87	39.3
2	2	6	1	1	12.31	40.64
2	2	6	2	1	11.95	41.35
2	2	7	1	1	11.3	42.04
2	2	7	2	1	9.98	40.17
2	2	8	1	1	13.5	39.85
2	2	8	2	1	11.47	37.64
2	2	9	1	1	11.93	37.71
2	2	9	2	1	10.83	37.45
2	2	10	1	1	8.23	34.59
2	2	10	2	1	11.1	34.01
	3	3	0	1	6.4	39.44
2	3	7	1	1	8	42.68
	2	7	2	1		43.29
2 2	3	9	1	1	9.09	
2	3 3 3 3 3	9	2	1	11.49	37.92 38.9
	3				10.78	
2	3	10	1	1	7.32	34.76
2	3	10	2	1	10.9	38.42
2	4	4	0	1	8.83	42.65
	4	6	1	1	11.37	42.67
2	4	6	2	1	11.77	41.45
2	4	8	1	1	13.07	41.84
2	4	8	2	1	11.18	42.27
2	4	9	1	1	10.63	38.12
2	4	9	2	1	11.47	41.08
2	4	10	1	1	10.43	39.06
2	4	10	2	1	11.84	37.58
2	5	5	0	1	11.37	42.86
2	5	7	1	1	12.03	42.65
2	5 5	7	2	1	10.69	44.69
2	5	8	1	1	10.09	40.36
2	5	8	2			
۷	J	0	∠	1	10.09	39.53

2	5	9	1	1	10.47	40.31
2	5	9	2	1	10.89	40.03
2	5	10	1	1	10.33	38.78
2	5	10	2	1	8.95	39.09
2	6	6	0	1	11.24	38.6
2	7	7	0	1	10.67	43.22
2	8	8	0	1	10.77	40.74
2	9	9	0	1	6.87	37.43
2	10	10	0	1	11.69	35.05

- 1. Run GENADE.EXE to create mating design matrix files and data for additive-dominance-epistasis (AD+AA) models. The data files (COTADAA.TXT) should have five columns: (1) environment, (2) maternal, (3) paternal, (4) generation, and (5) replication. There is a limitation (<100 traits) for the number of trait columns. An example of a data file is provided under the name COTADAA.TXT.
- 2. Run programs for variance and covariance analyses. Standard errors of estimates are calculated using jackknife procedures. If you have multiple blocks for your experiments, you can use GENVAR1R.EXE or GENCOV1R.EXE for jackknifing over blocks. Otherwise you can use GENVAR1C.EXE or GENCOV1C.EXE for jackknifing over cell means.
- 3. Run GENVAR1R.EXE or GENVAR1C.EXE for estimating variance components and predicting genetic effects before estimating covariance and correlation. The two programs in Step 2 will allow you to choose the parental type (inbred or outbred) and the prediction methods (LUP or AUP). You also need to input coefficients (1, 0, or –1) for conducting linear contrasts for genetic effects of parents.
- 4. After you finish variance analysis, you can run GENCOV1R.EXE or GENCOV1C.EXE for estimating covariance components and coefficients of correlation among all the traits analyzed.
- 5. If you want to predict heterosis and genotypic value for each F₁ or F₂ cross by an AD model, you can run GENHET1R.EXE or GENHET1C.EXE.
- 6. All results are automatically stored in text files for later use or printing. Examples of output files are provided with the names COTADAA.VAR for analysis of variance and genetic effects, COTADAA.PRE for heterosis, and COTADAA.COR for analysis of covariances and correlation.

Output 1 for Variance Analysis

```
Traits =, 2
Variance components = , 7
Degree of freedom = , 99
File name is COTADAA.VAR
Date and Time for Analysis: Fri Jun 23 08:33:02 2000
Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE.
Jackknifing Over Block Conducted for Estimating S.E.
Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP)
      Method.
NS = Not significant; S+ = Significant at 0.10 level.
S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
Linear Contrast Test:
+<1> +<2> +<3> +<4> +<5> -<6> -<7> -<8> -<9> -<10>
Diallel Analysis of Trait, Bolls, for Public Users.
Var Comp
                          Estimate
                                              S. E.
                                                            P-value
(1): Additive Var 2.36714 0.474734 1.31e-006

(2): Dominance Var 12.4508 2.25708 1.39e-007

(3): Add.*Add. Var 3.48369 0.502654 1.9e-010

(4): Add. * Env. Var 3.59761 0.745664 2.55e-006

(5): Dom. * Env. Var 16.8931 2.83894 2.03e-008
                                                                                  S**
                                                                                  S**
                                                                                 S**
(6): (AA) * Env. Var 0
                                              0
                                                             1
                                                                                  NS
(7): Residual Var 3.12779 0.712819 1.43e-005
                                                                               S**
(8): Var(Pheno.) 41.9202 4.31614 2.55e-011
                                                                                S**
Proportion of Var(G)/Var(T)Estimate S. E. P-value
(1): Additive Var/Vp 0.0564678 0.0211358 0.00441 S**
(2): Dominance Var/Vp 0.297013 0.0369701 2.44e-011 S**
(3): Add.*Add. Var/Vp 0.0831029 0.0214262 9.46e-005 S**
(4): Add. * Env. Var/Vp 0.0858205 0.0120405 5.86e-011 S**
(5): Dom. * Env. Var/Vp 0.402983 0.0341788 2.55e-011 S**
(6): (AA) * Env. Var/Vp 0
                                                     0
                                                                                      NS
(7): Residual Var/Vp 0.0746131 0.0151876 1.78e-006
Heritability
                                                     S. E.
                                   Estimate
                                                                      P-value
Genetic Predictor, S.E., P-value for Two-tail t-test
(1): Random Effect is Additive Effects
Α1
                             0.020391 1.046932 0.984
                                                                               NS

    -0.172118
    0.865219
    0.843

    0.243015
    0.933404
    0.795

    0.024512
    0.610581
    0.968

    -0.198413
    0.284266
    0.487

    -0.045113
    0.559257
    0.936

A2
                                                                               NS
A3
                                                                               NS
Α4
                                                                               NS
Α5
                                                                               NS
                                                                               NS
Α6
Α7
                            -0.006029 0.525715 0.991
                                                                               NS
```

A8	-0.242755	0.336519	0.472	NS
A9	0.177528	0.247130	0.474	NS
A10	0.197105	0.780527	0.801	NS
Linear Contrast	-0.237404	11.14	0.983	NS
(2): Random Effect	is Dominance	Effects		
D1*1	-1.985631	1.605723	0.219	NS
D2*2	-4.853828	3.095245	0.12	NS
D3*3	-0.293169	0.924650	0.752	NS
D4 * 4	-1.707263	1.061605	0.111	NS
D5*5	-7.790652	3.617237	0.0337	S*
D6*6	-2.681446	1.218021	0.03	S*
D7*7	-4.154995	2.393013	0.0856	S+
D8*8	-7.236830	3.889634	0.0658	S+
D9*9	-3.026015	1.713898	0.0806	S+
D10*10	1.364409	1.417177	0.338	NS
D1*6	1.844893	1.020188	0.0736	S+
D1*7	0.088293	2.692258	0.974	NS
D1*7	-2.270995	1.155729	0.0522	S+
D1*10	2.668295	1.548696	0.088	S+
D2*6	1.351880	0.655828	0.0419	S*
D2*7	-1.297874	1.003310	0.199	NS
D2*8	9.815433	5.523754	0.0786	S+
D2*9	5.188726	2.350358	0.0296	S*
D2*10	-4.090970	1.895508	0.0333	S*
D3*7	3.495850	2.000000	0.0836	S+
D3*9	4.970930	2.262232	0.0303	S*
D3*10	-9.112045	4.458072	0.0436	S*
D4*6	2.946256	1.541041	0.0588	S+
D4*8	5.140935	2.364873	0.0321	S*
D4*9	-1.798652	0.660681	0.00766	S**
D4*10	-1.958099	0.910923	0.034	S*
D5*7	6.710816	3.253640	0.0418	S*
D5*8	-0.368711	0.290930	0.208	NS
D5*9	0.235750	0.576913	0.684	NS
D5*10	8.804042	3.903617	0.0263	S*
Heterosis <delta></delta>	2.90056	12.8407	0.822	NS
(3): Random Effect	ic 7dd *7dd	Efforts		
AA1*1	-1.827866	0.885620	0.0416	S*
AA2*2	1.857440	0.692252	0.00855	S**
AA3*3	-3.923112	1.819274	0.0335	S*
AA4*4	-0.427958	0.372799	0.254	NS
AA5*5	1.095843	0.431401	0.0126	S*
AA6*6	1.074095	0.485307	0.0292	S*
AA7*7	2.010456	0.866196	0.0232	S*
AA8*8	0.866474	0.254778	0.00097	S**
AA9*9	-2.618613	1.297275	0.0462	S*
AA10*10	-1.434506	0.678498	0.0462	S*
AA1*6	1.127468	0.554236	0.0446	S*
AA1 * 7	0.260405	0.334236	0.0446	S^ S+
AA1*9	-0.626353	0.142121	0.0699	S+
AA1*10	-2.892538	1.389233	0.0796	S+ S*
AA1^10 AA2*6	-0.039485	0.150785	0.0399	NS
AA2*7	0.997226	0.150785	0.794	NS S*
AA2 * 8	-2.373975	1.062655	0.0414	5^ S*
AA2*8 AA2*9	0.916657	0.551207	0.0277	S^ S+
AAZ " 3	0.91003/	0.551207	0.0993	5+

AA2*10 AA3*7 AA3*9 AA3*10 AA4*6 AA4*8 AA4*9 AA4*10 AA5*7 AA5*8 AA5*9 AA5*10 Heterosis <delta></delta>	0.966337 -1.240906 0.736135 3.882660 -0.333696 0.232070 3.758026 0.453800 -1.360470 0.698657 1.219364 -3.054544 1.12761	0.475264 0.602029 0.560053 1.687257 0.292460 0.281352 1.714850 0.251847 0.556477 0.311950 0.571954 1.399209 5.66678	0.0447 0.0419 0.192 0.0235 0.257 0.411 0.0308 0.0746 0.0163 0.0274 0.0355 0.0314	S* S* NS S* NS S* S* S* S* S* S* S*
(4): Random Effect AE1 in E1 AE2 in E1 AE3 in E1 AE4 in E1 AE5 in E1 AE6 in E1 AE7 in E1 AE8 in E1 AE8 in E1 AE9 in E1 AE10 in E1 AE10 in E2 AE2 in E2 AE4 in E2 AE5 in E2 AE6 in E2 AE6 in E2 AE7 in E2 AE7 in E2 AE8 in E2 AE8 in E2 AE8 in E2 AE8 in E2 AE9 in E2 AE8 in E2 AE9 in E2 AE9 in E2 AE8 in E2 AE9 in E2 AE10 in E2 Linear Contrast	is Add. * Env1.871303 1.679535 -0.899398 0.355846 0.613201 -0.319194 3.154071 -1.709535 -1.004626 0.000037 -0.687704 0.130732 -1.165105 1.212089 -0.818562 1.647312 -2.111514 1.666313 1.460007 -1.334250 -0.000322198	Effects 1.336265 1.500118 0.974282 0.398988 0.505110 0.433700 2.503520 0.955588 0.705371 0.749113 0.654509 0.339243 0.703354 0.914817 0.501433 1.146417 1.652810 1.018155 0.882265 0.692084 0.00010415	0.165 0.266 0.358 0.375 0.228 0.463 0.211 0.0767 0.158 1 0.296 0.701 0.101 0.188 0.106 0.154 0.204 0.105 0.101 0.0567 0.00257	NS NS NS NS NS NS NS NS NS NS NS NS NS N
(5): Random Effect DE11 in E1 DE22 in E1 DE33 in E1 DE44 in E1 DE55 in E1 DE66 in E1 DE77 in E1 DE99 in E1 DE1010 in E1 DE17 in E1 DE17 in E1 DE19 in E1 DE10 in E1 DE100 in E1 DE200 in E1	is Dom. * Env7.339941 -5.544965 -1.685938 -1.592941 -6.919656 -2.769618 -5.708889 -6.906281 -3.155495 -4.448080 1.945276 6.019940 0.953192 5.306395 0.018365 -4.879109 11.874683 2.481694 1.704185	Effects 3.362180 3.293144 2.763209 1.468080 3.156330 1.534016 3.470978 3.149161 1.695257 3.583114 1.444322 4.117258 0.789965 3.178059 0.840712 2.046507 6.855778 2.213078 1.338270	0.0314 0.0954 0.543 0.281 0.0307 0.074 0.103 0.0306 0.0657 0.217 0.181 0.147 0.23 0.0981 0.983 0.019 0.0864 0.265 0.206	* + S * S * S * S * S * S * S * S * S *

DE37 in E1	5.935123	3.679177	0.11	NS
DE37 IN E1 DE39 in E1	2.916905	2.004578	0.149	NS
DE37 IN EI DE310 in E1	-5.481360	3.413565	0.112	NS
DE310 IN E1	3.541911	2.501341	0.16	NS
DE48 in E1	1.163906	1.499863	0.44	NS
DE40 IN E1	-1.462106	0.664229	0.03	S*
DE45 IN E1 DE410 in E1	0.093319	0.547534	0.865	NS
DE57 in E1	5.091230	3.513362	0.15	NS
DE57 IN E1 DE58 in E1	0.249648	0.907277	0.784	NS
DE50 in E1	1.192191	1.072943	0.269	NS
DE59 IN E1	7.405446	4.610249	0.209	NS
DE310 IN E1 DE11 in E2	6.233934	2.649984	0.0206	S*
DE11 IN E2 DE22 in E2	0.070564	1.631085	0.966	NS
DE33 in E2	2.860760	1.834532	0.122	NS
DE33 IN E2 DE44 in E2	0.496960	1.260403	0.122	NS
DE55 in E2	0.762586	0.976264	0.437	NS
DE35 in E2 DE66 in E2	0.750042	0.589078	0.206	NS
DE77 in E2	2.513161	1.959827	0.208	NS
DE77 IN E2 DE88 in E2	-0.681558	1.133328	0.549	NS
DE99 in E2	1.396232	1.222769	0.256	NS
DE1010 in E2	6.754486	3.043240	0.236	S*
DE1010 IN E2	-0.782136	0.571314	0.0287	NS
DE10 IN E2 DE17 in E2	-6.286620	3.932846	0.174	NS
DE17 IN E2 DE19 in E2	-2.727444	1.812851	0.113	NS
DE19 IN E2 DE110 in E2	-2.626815	1.660283	0.136	NS
DE110 IN E2 DE26 in E2	0.500294	0.497259	0.117	NS
DE20 111 E2 DE27 in E2	2.695619	1.378225	0.0533	S+
DE27 IN E2 DE28 in E2	0.710618	1.939384	0.0533	NS
DE20 IN E2 DE29 in E2	1.408633	0.928007	0.132	NS
DE29 IN E2 DE210 in E2	-5.416844	3.370826	0.132	NS
DE37 in E2	-2.775914	1.748225	0.111	NS
DE37 IN E2 DE39 in E2	1.697015	1.049894	0.116	NS
DE39 IN E2	-4.892908	3.552561	0.109	NS
DE310 IN E2 DE46 in E2	-0.956358	0.906075	0.172	NS
DE48 in E2	2.794023	1.735292	0.294	
DE40 IN E2 DE49 in E2	-1.011061	1.141284	0.378	NS NS
DE49 IN E2 DE410 in E2	-1.635955	1.322434	0.376	NS
DE410 IN E2 DE57 in E2	0.749728	1.094644	0.219	NS
DE57 IN E2 DE58 in E2	-1.851171	0.743874	0.495	NS S*
DE58 in E2	-1.851171	0.743874	0.0145	
DE59 in E2 DE510 in E2		1.377869	0.082	S+
DESIO IU EZ	0.922233	1.3//869	0.505	NS

(6): Random Effect is (AA) * Env. Effects No Significant Effects.

Fixed Effect <1>, 15.345 Fixed Effect <2>, 10.3648

Results of Lint% are not presented.

Time Used (Hour) = 0.004722

Output 2 for Covariance Analysis

Traits =, 2

```
Covariance components = , 7
Degree of freedom = , 99
File name is COTADAA.COV
Date and Time for Analysis: Fri Jun 23 08:33:35 2000
```

Covariance Components Estimated by MINQUE(1) with GENCOV1C.EXE. Jackknifing Over Cell Mean Conducted for Estimating S.E.

```
NS = Not significant; S+ = Significant at 0.10 level. S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
```

Covariances and Correlations Between, Bolls, , &, Lint%, for Public Users.:

Covariances Additive Cov Dominance Cov Add.*Add. Cov Add. * Env. Cov Dom. * Env. Cov (AA) * Env. Cov Residual Cov	Estimates -0.165704 0.802175 0.52236 -0.585695 1.44656 -0.116658 0.192467	S.E. 0.968417 2.31849 0.79344 0.668664 2.09928 1.07689 0.376523	P-value 0.864 0.73 0.512 0.383 0.492 0.914 0.61	NS NS NS NS NS
Cov<1=Genotypic> Cov <2=Phenotypic> Cov 2 Cov 1	Estimates 2.09551 1.90304	S.E. 1.35407 1.35435	P-value 0.125 0.163	NS NS
Correlation Additive Cor Dominance Cor Add.*Add. Cor Add. * Env. Cor Dom. * Env. Cor (AA) * Env. Cor Residual Cor	Estimates -0.043057 0.100186 0.174520 -0.207088 0.000000 0.0000000 0.079717	S.E. 0.0498808 0.0495757 0.0516629 0.0362769 0 0.0377952	P-value 0.39 0.046 0.00104 1.19e-007 1 0.0375	NS S * S ** S ** NS NS S *
Cor <1=Genotypic> Cor <2=Phenotypic> Cor 2 Cor 1	Estimates 0.073183 0.072636	S.E. 0.0448333 0.0500355	P-value 0.106 0.15	NS NS

Time Used (Hour) = 0.003056

Output 3 for Heterosis Analysis

```
Traits =, 2
Variance components = , 7
Degree of freedom = , 99
File name is COTADJM.PRE
Date and Time for Analysis: Fri Jun 23 08:34:07 2000
```

Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE. Jackknifing Over Block Conducted for Estimating S.E.

Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP) Method.

```
NS = Not significant; S + = Significant at 0.10 level.
```

 $S^* = Significant$ at 0.05 level; $S^{**} = Significant$ at 0.01 level.

Var Comp, Estimate, S. E., P-value of One Tail t-test of, Bolls, for Public Users.

Additive Var	2.36728	0.474749	1.31e-006	S **
Dominance Var	12.4508	2.25708	1.39e-007	S **
Add.*Add. Var	3.48381	0.502665	1.9e-010	S **
Add. * Env. Var	3.59769	0.745673	2.54e-006	S **
Dom. * Env. Var	16.893	2.83894	2.03e-008	S **
(AA) * Env. Var	0	0	0.5	NS
Residual Var	3.12783	0.712823	1.43e-005	S **

Heterosis Analysis of Trait, Bolls, for F_2 Seeds with total mean =, 12.854884

```
No.
            Cross
                     F1 (GE) S.E. P-value Sig. F2 (GE) S.E. P-value
                                                                   Sig.
Cro 1 <E1>
            <1 * 6>
                     -0.25
                             1.85 0.90
                                          NS -3.75 1.57
                                                           0.02
                                                                   S *
             <1 * 7>
                     7.30
                             4.14 0.08
                                           S + 1.03
Cro 2 <E1>
                                                     1.39
                                                           0.46
                                                                   NS
                                                                   S **
             <1 * 9> -1.92
                            1.60 0.23
Cro 3 <E1>
                                           NS -5.02
                                                     1.88
                                                           0.01
                                                     2.05
Cro 4 <E1>
           <1 * 10> 3.44
                             3.50 0.33
                                          NS -2.17
                                                           0.29
                                                                   NS
           <2 * 6>
                     1.38
                             1.17 0.24
                                           NS -0.71
                                                     1.26
                                                           0.57
Cro 5 <E1>
                                                                   NS
            <2 * 7> -0.04
                             3.21 0.99
                                           NS -0.42
                                                     2.55
Cro 6 <E1>
                                                           0.87
                                                                   NS
            <2 * 8> 11.84
                                           S + 2.79
Cro 7 <E1>
                             6.84 0.09
                                                     2.30
                                                           0.23
                                                                   NS
                                           NS -0.26
Cro 8 <E1>
            <2 * 9>
                      3.16
                             2.41 0.19
                                                     1.40 0.85
                                                                   NS
Cro 9 <E1>
            <2 * 10> 3.38
                            1.63 0.04
                                           s * 0.03
                                                     1.43 0.98
                                                                   NS
            <3 * 7>
                            4.09 0.05
                                           s * 3.37
Cro 10 <E1>
                      8.19
                                                     1.89 0.08
                                                                   S +
            <3 * 9>
                            2.25 0.65
                                           NS -1.66
Cro 11 <E1>
                     1.01
                                                     1.67
                                                           0.32
                                                                   NS
Cro 12 <E1>
            <3 * 10> -6.38
                            3.52 0.07
                                           S + -5.17
                                                     2.04
                                                           0.01
                                                                   S *
Cro 13 <E1>
            <4 * 6>
                     3.58
                            2.53 0.16
                                           NS 0.72
                                                     0.98
                                                           0.47
                                                                   NS
            <4 * 8> -0.19
Cro 14 <E1>
                            1.73 0.91
                                           NS -2.90
                                                     1.47
                                                           0.05
                                                                   S +
Cro 15 <E1>
            <4 * 9> -2.11
                                           s * -2.57
                             0.82 0.01
                                                     0.89
                                                           0.00
                                                                   S **
Cro 16 <E1>
            <4 * 10> 0.45
                             0.81 0.58
                                           NS -1.11
                                                     1.39
                                                           0.43
                                                                   NS
                                           s * 3.16
Cro 17 <E1>
            <5 * 7>
                      8.86
                             4.38 0.05
                                                     2.50
                                                           0.21
                                                                   NS
            <5 * 8> -0.85
                             1.20 0.48
                                          NS -4.43
                                                                   S **
Cro 18 <E1>
                                                     1.51
                                                           0.00
            <5 * 9>
                           1.22 0.51
Cro 19 <E1>
                      0.80
                                          NS -2.31
                                                     1.20
                                                           0.06
                                                                   S +
            <5 * 10> 8.02
Cro 20 <E1>
                           4.80 0.10
                                           S + 1.47
                                                     1.73
                                                           0.40
                                                                   NS
                            0.77 0.82
                                                                   S *
Cro 21 <E2>
             <1 * 6>
                      0.18
                                           NS
                                               2.31
                                                     0.92
                                                           0.01
                                                                   S *
Cro 22 <E2>
             <1 * 7>
                     -9.09
                             4.23 0.03
                                           s * -3.76
                                                     1.82
                                                           0.04
Cro 23 <E2>
             <1 * 9> -1.95
                             1.88 0.30
                                           NS
                                               1.32
                                                     0.89
                                                           0.14
                                                                   NS
Cro 24 <E2>
             <1 * 10> -4.65
                            1.97 0.02
                                           s * -0.09
                                                     1.17
                                                           0.94
                                                                   NS
Cro 25 <E2>
            <2 * 6>
                      2.28
                             0.97 0.02
                                           s * 2.23
                                                     1.05
                                                                   S *
                                                           0.04
            <2 * 7>
Cro 26 <E2>
                      0.72
                             1.80 0.69
                                           NS
                                               0.01
                                                     1.27
                                                           0.99
                                                                   NS
Cro 27 <E2>
            <2 * 8>
                      2.51
                            1.99 0.21
                                           NS
                                               2.00
                                                     1.12
                                                           0.08
                                                                   S +
                                           s * 2.66
                                                                   S **
Cro 28 <E2>
            <2 * 9>
                            1.18 0.01
                      3.00
                                                     1.00
                                                           0.01
Cro 29 <E2>
            <2 * 10> -6.62
                             3.59 0.07
                                           S + -2.21
                                                     1.30
                                                           0.09
                                                                   S +
                             2.55 0.02
                                                     1.71
Cro 30 <E2>
            <3 * 7> -6.05
                                           s * -3.32
                                                           0.05
                                                                   S +
Cro 31 <E2>
            <3 * 9>
                     1.99
                            1.19 0.10
                                           S + 2.21
                                                     0.94
                                                           0.02
                                                                   S *
Cro 32 <E2>
            <3 * 10> -7.39
                             3.97 0.07
                                           S + -2.54
                                                     1.53
                                                           0.10
                                                                   NS
            <4 * 6>
Cro 33 <E2>
                      1.90
                                                2.69
                             1.64 0.25
                                           NS
                                                     1.44
                                                           0.06
                                                                   S +
            <4 * 8>
Cro 34 <E2>
                      5.67
                             2.21 0.01
                                           S *
                                               4.23
                                                     1.49
                                                           0.01
                                                                   S **
Cro 35 <E2>
            <4 * 9>
                     1.66
                             1.61 0.31
                                          NS
                                               2.64
                                                     1.29
                                                           0.04
                                                                   S *
            <4 * 10> -1.76
Cro 36 <E2>
                            1.31 0.18
                                          NS 0.87
                                                     0.94
                                                           0.35
                                                                   NS
                                                     1.67
Cro 37 <E2>
            <5 * 7> -2.18
                           2.04 0.29
                                          NS -1.74
                                                           0.30
                                                                   NS
Cro 38 <E2>
            <5 * 8> -1.00
                           0.91 0.27
                                          NS -0.06
                                                     0.76
                                                           0.94
                                                                   NS
Cro 39 <E2>
            <5 * 9> -1.03 1.05 0.33
                                          NS
                                               0.35
                                                     0.65
                                                           0.60
                                                                   NS
```

 $H_{pm}(F_1)$ S.E. P- Sig. $H_{pm}(F_2)$ S.E. P-No. Cross

 Cro 11 < E1 > < 3 * 9 >
 0.42
 0.26 0.12
 NS
 0.21 0.13 0.12

 Cro 12 < E1 > < 3 * 10 >
 -0.19 0.43 0.67 NS -0.09 0.22 0.67

 Cro 13 < E1 > < 4 * 6 >
 0.45 0.29 0.13 NS 0.22 0.15 0.13

 Cro 14 < E1 > < 4 * 8 >
 0.42 0.20 0.03 S * 0.21 0.10 0.03

 Cro 15 < E1 > < 4 * 9 >
 0.07 0.12 0.55 NS 0.04 0.06 0.55

 Cro 16 < E1 > < 4 * 10 >
 0.24 0.15 0.10 S + 0.12 0.07 0.10

 Cro 17 < E1 > < 5 * 7 >
 0.89 0.46 0.06 S + 0.44 0.23 0.06

 Cro 18 < E1 > < 5 * 8 >
 0.56 0.19 0.00 S * 0.28 0.10 0.00

 Cro 19 < E1 > < 5 * 9 >
 0.48 0.20 0.02 S * 0.24 0.10 0.02

 Cro 20 < E1 > < 5 * 10 >
 1.02 0.57 0.08 S + 0.51 0.29 0.08

 NS S * NS S + S + S ** S * S + Cro 21 <E2> <1 * 6> -0.33 0.13 0.01 S * -0.17 0.06 0.01 Cro 22 <E2> <1 * 7> -0.83 0.46 0.08 S + -0.41 0.23 0.08 S + Cro 23 <E2> <1 * 9> -0.51 0.24 0.04 S * -0.25 0.12 0.04 0.02 S * -0.35 0.15 0.00 0.04 0.93 0.05 0.08 0.51 NS 0.04 0.11 0.03 0.06 0.72 0.66 NS Cro 29 <E2> <2 * 10> -0.69 0.39 0.08 S + -0.34 0.19 0.08 S + Cro 30 <E2> <3 * 7> -0.42 0.23 0.06 S + -0.21 0.11 0.06

```
Cro 31 <E2> <3 * 9>
                                  -0.03 0.12 0.77 NS
                                                                         -0.02 0.06 0.77 NS
S +
-0.06 0.06 0.29
                                                                                                         NS
                                                                         0.11 0.10 0.26
                                                                                                         NS
                                                                         -0.08 0.07
                                                                                               0.29
                                                                                                         NS
Cro 36 <E2> <4 * 10> -0.41 0.20 0.04 S *
                                                                        -0.20 0.10
                                                                                                         S *
                                                                                               0.04
Cro 37 <E2> <5 * 7> -0.07 0.13 0.59 NS
                                                                         -0.03 0.06
                                                                                               0.59
                                                                                                        NS
Cro 38 <E2> <5 * 8> -0.15 0.09 0.09 S + -0.07 0.04
                                                                                               0.09
Cro 39 <E2> <5 * 9> -0.21 0.12 0.08 S + -0.11 0.06 0.08
                                                                                                         S +
Cro 40 <E2> <5 * 10> -0.22 0.20 0.26 NS
                                                                         -0.11 0.10 0.26
                                                                                                        NS
Significance of F1 or F2 is over Population Mean 12.854884
                                H_{pm}(F_1) S.E. P- Sig. H_{pm}(F_2) S.E. P-
No. Cro
                                                                                                         Sia.
                                                                         (G)
                                  (G) value
                                                                                             value
Cro 1
                <1 * 6>
                                  0.56  0.12  0.00  S **  0.40  0.08  0.00  S **
                               <1 * 7>
Cro 2
                <1 * 9>
Cro 3
                                                                                                       S **
                                0.04 0.19 0.85 NS -0.08 0.12 0.50 NS
                <1 * 10>
Cro 4
                                <2 * 6>
Cro 5
                                                                                                        NS
                 <2 * 7>
Cro 6
                                                                                                        NS
                 <2 * 8>
Cro 7
Cro 8

      <2 * 9>
      0.91
      0.26
      0.00
      S **
      0.56
      0.13
      0.00
      S *

      <2 * 10>
      -0.07
      0.17
      0.70
      NS
      0.03
      0.10
      0.80
      NS

      <3 * 7>
      0.40
      0.21
      0.06
      S +
      0.18
      0.11
      0.09
      S *

      <3 * 9>
      1.14
      0.21
      0.00
      S **
      0.88
      0.19
      0.00
      S *

      <3 * 10>
      0.27
      0.52
      0.61
      NS
      0.65
      0.40
      0.11
      NS

      <4 * 6>
      0.30
      0.18
      0.10
      NS
      0.10
      0.11
      0.36
      NS

      <4 * 8>
      0.75
      0.28
      0.01
      S **
      0.38
      0.14
      0.01
      S *

      <4 * 9>
      0.87
      0.24
      0.00
      S **
      0.84
      0.25
      0.00
      S *

      <4 * 10>
      0.08
      0.12
      0.53
      NS
      0.15
      0.10
      0.14
      NS

      <5 * 7>
      0.53
      0.43
      0.22
      NS
      0.04
      0.26
      0.88
      NS

      <5 * 8>

                <2 * 9>
                                                                                                         S **
Cro 9
Cro 10
                                                                                                        S +
Cro 11
                                                                                                         S **
Cro 12
Cro 13
Cro 14
                                                                                                         S *
                                                                                                         S **
Cro 15
Cro 16
Cro 17
                                                                                                         S *
Cro 18
                                                                                                         S **
Cro 19
Cro 20
                                H_{pb}(F_1) S.E. P- Sig. H_{pb}(F_2) S.E. P-
No.
                  Cross
                                                                                                         Sig.
                                (GE) value (GE) value
0.25 0.23 0.28 NS -0.03 0.13 0.85
0.52 0.56 0.35 NS 0.03 0.31 0.91
0.25 0.16 0.13 NS 0.01 0.10 0.92
                                                                        (GE)
                                                                                               value
Cro 1 <E1> <1 * 6>
                                                                        -0.03 0.13 0.85 NS
Cro 2 <E1> <1 * 7>
                                                                                                        NS
Cro 3 <E1> <1 * 9>
                                                                                                        NS
Cro 4 <E1> <1 * 10> 0.61 0.45 0.17 NS 0.18 0.23 0.45 Cro 5 <E1> <2 * 6> 0.28 0.18 0.13 NS 0.11 0.15 0.44
                                                                                                        NS
Cro 13 <E1> <4 * 6> 0.35 0.31 0.27 NS 0.12 0.17 0.46 Cro 14 <E1> <4 * 8> 0.05 0.22 0.81 NS -0.16 0.17 0.36
Cro 15 <E1> <4 * 9> -0.10
                                            0.13 0.46
                                                                NS
                                                                        -0.13 0.09 0.16
                                                                                                        NS
Cro 16 <E1> <4 * 10> 0.10 0.20 0.60 Cro 17 <E1> <5 * 7> 0.64 0.44 0.15
                                                                         -0.02 0.15
                                                                 NS
                                                                                               0.91
                                                                                                         NS
                                                                         0.20 0.22
                                                                NS
                                                                                               0.38
                                                                                                        NS

      Cro 18 <E1> <5 * 8>
      0.38
      0.23
      0.11
      NS
      0.10
      0.19
      0.61

      Cro 19 <E1> <5 * 9>
      0.46
      0.20
      0.02
      S *
      0.22
      0.13
      0.08

      Cro 20 <E1> <5 * 10>
      0.97
      0.59
      0.11
      NS
      0.46
      0.32
      0.15

                                                                                                         NS
                                                                                                         S +
                                                                                                         NS
Cro 21 <E2> <1 * 6> -0.36 0.19 0.06 S + -0.20 0.14 0.16
                                                                                                        NS
```

```
Cro 22 <E2> <1 * 7>
                     -1.08
                             0.48 0.03
                                         S *
                                               -0.67
                                                      0.25
                                                            0.01
                                                                  S **
Cro 23 <E2> <1 * 9>
                     -0.53
                            0.27 0.05
                                         S +
                                               -0.28
                                                      0.17
                                                            0.10
                                                                  S +
                                        s *
Cro 24 <E2> <1 * 10>
                     -0.74
                            0.34 0.03
                                               -0.38
                                                      0.21
                                                            0.07
                                                                  S +
Cro 25 <E2> <2 * 6>
                     -0.14
                            0.11 0.21
                                               -0.14
                                                                  S +
                                         NS
                                                      0.08
                                                            0.08
                     0.03
Cro 26 <E2> <2 * 7>
                             0.23 0.90
                                         NS
                                               -0.02
                                                      0.16
                                                            0.88
Cro 27 <E2> <2 * 8>
                                               -0.05
                     -0.01 0.24 0.96
                                        NS
                                                      0.14
                                                            0.71
                                                                  NS
Cro 28 <E2> <2 * 9>
                     -0.10
                            0.14 0.48
                                         NS
                                               -0.13
                                                      0.10
                                                            0.19
                                                                  NS
Cro 29 <E2> <2 * 10>
                    -0.83 0.40 0.04 S *
                                                      0.22
                                               -0.49
                                                            0.03
                                                                  S *
Cro 30 <E2> <3 * 7>
                     -0.51 0.26 0.05
                                         S +
                                               -0.30
                                                      0.16
                                                            0.06
                                                                  S +
Cro 31 <E2> <3 * 9>
                    -0.18 0.14 0.21
                                         NS
                                               -0.16
                                                      0.10
                                                            0.11
                                                                  NS
Cro 32 <E2> <3 * 10> -0.89 0.44 0.05
                                         S *
                                               -0.52
                                                      0.23
                                                            0.03
                                                                  S *
Cro 33 <E2> <4 * 6> -0.17
                            0.11 0.13
                                         NS
                                               -0.11
                                                      0.07
                                                            0.13
                                                                  NS
Cro 34 <E2> <4 * 8>
                     0.21
                            0.22 0.33
                                               0.10
                                                      0.13
                                                            0.43
                                         NS
                                                                  NS
Cro 35 <E2> <4 * 9>
                     -0.21
                             0.14 0.15
                                               -0.13
                                                            0.14
                                         NS
                                                      0.09
                                                                  NS
Cro 36 <E2> <4 * 10> -0.45
                            0.22 0.04
                                         S *
                                               -0.25
                                                      0.14
                                                            0.07
Cro 37 <E2> <5 * 7>
                     -0.10
                            0.18 0.57
                                         NS
                                               -0.07
                                                      0.13
                                                            0.60
                                                                  NS
                            0.12 0.02
                                               -0.21
                                                                  S *
Cro 38 <E2> <5 * 8>
                     -0.28
                                         S *
                                                      0.09
                                                            0.03
                            0.13 0.00
                                         S **
Cro 39 <E2> <5 * 9>
                     -0.42
                                              -0.31
                                                      0.09
                                                            0.00
                                                                  S **
Cro 40 <E2> <5 * 10> -0.41
                            0.24 0.09
                                         S +
                                               -0.30
                                                     0.15
                                                            0.05
                                                                  S +
Significance of F1 or F2 is over Population Mean 12.854884
                     H_{pb}(F_1) S.E. P- Sig. H_{pb}(F_2) S.E.
                                                            P-
No.
           Cro
                                                                  Sig.
                      (G)
                                  value
                                               (G)
                                                            value
                             0.17 0.43
Cro 1
           <1 * 6>
                      0.14
                                         NS
                                               -0.02
                                                     0.15
                                                            0.88
           <1 * 7>
Cro 2
                     -0.24
                            0.31 0.44
                                              -0.36
                                                     0.18
                                                            0.05
                                        NS
                                                                  S *
           <1 * 9>
                                                      0.13
Cro 3
                     0.12
                             0.14 0.42
                                               0.11
                                                            0.42
                                         NS
                                                                  NS
           <1 * 10>
Cro 4
                     -0.17
                             0.21 0.42
                                         NS
                                               -0.29
                                                      0.15
                                                            0.05
                                                                  S +
          <2 * 6>
                    0.14
                                               -0.06
Cro 5
                             0.20 0.49
                                        NS
                                                     0.13
                                                            0.63
                                                                  NS
Cro 6
          <2 * 7>
                      0.04 0.20 0.85
                                        NS
                                               -0.08
                                                     0.13
                                                            0.53
                                                                  NS
          <2 * 8>
                     0.40 0.64 0.53 NS
                                               -0.22
                                                     0.39
                                                            0.58
                                                                  NS
Cro 7
          <2 * 9>
                                               -0.04
                     0.31 0.24 0.19 NS
                                                     0.16
Cro 8
                                                            0.80
                                                                  NS
          <2 * 10> -0.31 0.25 0.22
Cro 9
                                         NS
                                               -0.22
                                                      0.20
                                                            0.28
                                                                  NS
          <3 * 7>
Cro 10
                   -0.35 0.23 0.14
                                         NS
                                               -0.58
                                                      0.20
                                                            0.00
                                                                  S **
Cro 11
          <3 * 9>
                     1.05
                            0.21 0.00
                                         S **
                                              0.79
                                                      0.21
                                                            0.00
                                                                  S **
                            0.53 0.74
Cro 12
          <3 * 10>
                    -0.18
                                         NS
                                               0.20
                                                      0.40
                                                            0.63
                                                                  NS
          <4 * 6>
                    0.11
                             0.18 0.55
                                               -0.09
                                                      0.11
Cro 13
                                         NS
                                                            0.41
                                                                  NS
                                         S **
          <4 * 8>
                                                                  S *
Cro 14
                             0.27 0.01
                                               0.34
                                                      0.15
                                                            0.03
          <4 * 9>
                                         S +
Cro 15
                      0.49
                             0.25 0.05
                                                0.46
                                                      0.26
                                                            0.08
                                                                  S +
Cro 16
           <4 * 10>
                      0.05
                             0.17 0.76
                                         NS
                                                0.12
                                                      0.16
                                                            0.44
                                                                  NS
          <5 * 7>
                      0.23
                            0.44 0.60
                                               -0.26
                                                      0.27
                                                            0.34
Cro 17
                                         NS
                                                                  NS
Cro 18
          <5 * 8>
                      0.49
                            0.23 0.04
                                         S *
                                                0.22
                                                      0.13
                                                            0.10
                                                                  S +
          <5 * 9>
                      0.38
                            0.19 0.05
                                         S *
Cro 19
                                                0.16
                                                      0.18
                                                            0.36
                                                                  NS
          <5 * 10>
                             0.39 0.23
Cro 20
                      0.48
                                        NS
                                                0.01
                                                      0.25
                                                            0.96
                                                                  NS
Significance of Heterosis is over Population Mean 12.854884
Pre(F1)
                     13.987
                                    0.730276
                                                 0.124
                                                               NS
Pre(F2)
                     12.6895
                                    0.306025
                                                 0.59
                                                               NS
                     0.147004
                                    0.136824
                                                0.285
Hpm (F1)
                                                               NS
                      0.0457101
                                    0.0706352
                                               0.519
Hpm(F2)
Hpb (F1)
                     -0.837894
                                   0.143119
                                                6.23e-008
                                                               S **
                     -0.939187
                                    0.0983169 -5.09e-011
                                                               S **
Hpb (F2)
                                0.0983169 -5.09e-011
0.0534007 -5.09e-011
0.0727739 -5.09e-011
0.0447671 0.217
                                                               S **
                     0.569721
Generation n
                                                               S **
0.5 Omiga(AA)
                     0.673029
2Delta(AA)
                     -0.0555835
                                                               NS
```

Results of Lint% are not presented. Time Used (Hour) = 0.003056

Chapter 5

Diallel Analysis for an Animal Model with Sex-Linked and Maternal Effects Along with Genotype-by-Environment Interaction Effects

Jun Zhu

Purpose

To analyze balanced or unbalanced data of an animal genetic model for estimating components of variance, covariance, heritability, and selection response.

Definitions

Mating Design

A set of inbred lines is sampled from a reference population. Parents are used to produce F_1 crosses. Experiments with parents and their F_1 s are conducted in multiple environments.

Genetic Model

The genetic model for the phenotypic mean (y_{ijsk}) of sex s in block k within environment h from the cross between maternal line i and paternal line j is

$$y_{hijsk} = \mu + E_h + G_{ijs} + GE_{hijs} + e_{hijsk}$$

where μ = population mean, E_h = environment effect, G_{ijs} = genotype effect, GE_{hijs} = genotype-environment effect, and e_{hijsk} = residual effect.

The total genotype effect G_{ijs} and genotype × environment interaction effect GE_{hijs} can be further partitioned into different components for heterogametic progeny (XY or ZW, s = 1) and for homogametic progeny (XX or ZZ, s = 2):

where A_i (or A_j) ~ $(0, \sigma_A^2)$ is the additive effect of autosomal genes; D_{ij} ~ $(0, \sigma_D^2)$ is the dominance effect of autosomal genes; L_i1 (or L_j1) and L_i2 (or L_j2) ~ $(0, \sigma_L^2)$ is the additive effect of sex-linked genes; M_i ~ $(0, \sigma_M^2)$ is the maternal effect of dam i; AE_{hi} (or AE_{hj}) ~ $(0, \sigma_{AE}^2)$ is the additive × environment interaction effect of autosomal genes; DE_{hij} ~ $(0, \sigma_{DE}^2)$ is the dominance × environment interaction effect of autosomal genes; L_{i1} (or L_{j1}), L_{i2} (or L_{j2}) ~ $(0, \sigma_{LE}^2)$ is the sex-linked additive × environment interaction effect; and ME_{hi} ~ $(0, \sigma_M^2)$ is the maternal × environment interaction effect of dam i.

Analysis

Mixed Linear Model

The phenotypic mean of the genetic model can be expressed by a mixed linear model as

with variance-covariance matrix

$$\begin{aligned} \operatorname{var}(y) & & \sigma_{A}^{2}U_{A}U_{A}^{T} & & \sigma_{D}^{2}U_{D}U_{D}^{T} & & \sigma_{L}^{2}U_{L}U_{L}^{T} & & \sigma_{M}^{2}U_{M}U_{M}^{T} & & \sigma_{AE}^{2}U_{AE}U_{AE}^{T} \\ & & & & \sigma_{DE}^{2}U_{DE}U_{DE}^{T} & & \sigma_{LE}^{2}U_{LE}U_{LE}^{T} & & \sigma_{ME}^{2}U_{ME}U_{ME}^{T} & & \sigma_{e}^{2}I \end{aligned}$$

Variance Components

Unbiased estimation of variances can be obtained by REML or MINQUE(1) approaches. When experimental variances are estimated, genetic variance components can be obtained by V_A $2\sigma_A^2$, V_D σ_D^2 , V_L σ_L^2 , V_M σ_M^2 , V_{AE} $2\sigma_{AE}^2$, V_{DE} σ_{DE}^2 , V_{LE} σ_{LE}^2 , V_M σ_M^2 , V_e σ_e^2 . The total phenotypic variance is V_P V_A V_D V_L V_M V_{AE} V_{DE} V_{LE} V_{ME} V_e .

Covariance Components and Correlation

Unbiased estimation of covariances can be obtained by MINQUE(1) approaches (Zhu, 1997; Zhu and Weir, 1996). When experimental covariances are estimated, genetic covariance components can be obtained by C_A 2σ , C_D $\sigma_{D/D}$, C_L $\sigma_{L/L}$, C_M $\sigma_{M/M}$, C_{AE} $\sigma_{AE/AE}$, C_{DE} $\sigma_{DE/DE}$, C_{LE} $\sigma_{LE/LE}$, C_{ME} $\sigma_{ME/ME}$, C_e $\sigma_{e/e}$. The total phenotypic covariance is C_P C_A C_D C_L C_M C_{AE} C_{DE} C_{LE} C_{ME} C_e . For trait 1 and trait 2, correlation coefficients of genetic components can be estimated by

$$\begin{array}{lll} r_{A} & C_{A} / \sqrt{V_{A(1)} V_{A(2)}}, \\ r_{D} & C_{D} / \sqrt{V D_{(1)} V_{D(2)}}, \\ r_{L} & C_{L} / \sqrt{V_{L(1)} V_{L(2)}}, \\ r_{M} & C_{M} / \sqrt{V_{M(1)} V_{M(2)}}, \\ r_{AE} & C_{AE} / \sqrt{V_{AE(1)} V_{AE(2)}}, \\ r_{LE} & r_{LE} & C_{LE} / \sqrt{V_{LE(1)} V_{LE(2)}}, \\ r_{ME} & r_{ME} & C_{ME} / \sqrt{V_{ME(1)} V_{ME(2)}}, \\ \text{and} \\ r_{eE} & r_{e} & C_{e} / \sqrt{V_{e(1)} V_{e(2)}}. \end{array}$$

Heritability Components

The total heritability (h^2) can be partitioned into two components $(h^2 \ h_G^2 \ h_{GE}^2)$, where $h_G^2 \ V_A / V_P$ is general heritability and $h_{GE}^2 \ V_{AE} / V_P$ is interaction heritability (Zhu, 1997).

Selection Response

The total selection response $(R \ ih^2 \sqrt{V_P})$ can be partitioned into two components (Zhu, 1997):

$$R$$
 R_G R_{GE}

where $R_G = ih_G^2 \sqrt{V_P}$ is general response and $R_{GE} = ih_{GE}^2 \sqrt{V_P}$ is interaction response.

Originators

Zhu, J. (1997). *Analysis Methods for Genetic Models*. Agricultural Publication House of China, Beijing.

Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. *Theoretical and Applied Genetics*, 92(1):1-9.

Software Available

Zhu, J. (1997). GENSEX.EXE for constructing animal models, GENVAR1R.EXE or GENVAR1C.EXE for estimating components of variance and heritability, GENCOV1R.EXE or GENCOV1C.EXE for estimating components of covariance and correlation, GENHET1R.EXE or GENHET1C.EXE for predicting genetic effects and components of heterosis. *Analysis Methods for Genetic Models* (pp. 278-285), Agricultural Publication House of China, Beijing (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Balanced mice data (provided by William R. Atchley, Department of Genetics, North Carolina State University, Raleigh, NC) to be analyzed (Parent = 1, Year = 1, Sex = 1 & 2, Blk = 1):

(Parem	=1,	1ear = 1,	Sex = 1	$\propto 2$,	DIK = 1).		
Year	Fem	Male	Cross	Rep	Sex	35BW	35TL
1	1	1	0	1	1	20.23	79.78
1	1	1	0	1	2	17.71	78.93
1	1	2	1	1	1	22.01	84.79
					2		
1	1	2	1	1		19.44	82.87
1	1	3	1	1	1	22.48	93.66
1	1	3	1	1	2	18.34	88.74
1	1	4	1	1	1	22.80	85.48
1	1	4	1	1	2	20.41	85.09
1	1	5	1	1	1	22.57	82.83
						10.05	
1	1	5	1	1	2	19.25	81.83
1	1	6	1	1	1	25.11	86.36
1	1	6	1	1	2	21.79	84.54
1	1	7	1	1	1	22.67	89.44
1	1	7	1	1	2	19.80	87.06
1	2	1	1	1	1	22.91	88.60
1	2	1	1	1	2	19.14	86.39
1	2	2	0	1	1	20.94	83.13
1	2	2	0	1	2	18.50	82.40
	_						
1	2	3	1	1	1	22.09	91.83
1	2	3	1	1	2	18.28	88.57
1	2	4	1	1	1	22.37	81.91
	_						
1	2	4	1	1	2	20.30	82.42
1	2	5	1	1	1	23.61	86.13
1	2	5	1	1	2	20.16	83.73
	_						05.75
1	2	6	1	1	1	26.45	88.73
1	2	6	1	1	2	22.01	86.77
1	2	7	1	1	1	22.86	87.86
	_						
1	2	7	1	1	2	19.85	86.45
1	3	1	1	1	1	23.73	85.75
1	3	1	1	1	2	19.86	84.80
1	3	2	1	1	1	24.18	84.48
1	3	2	1	1	2	19.75	82.55
1	3	3	0	1	1	23.72	87.41
	2						
1	3	3	0	1	2	19.09	84.93
1	3	4	1	1	1	25.36	87.27
1	3	4	1	1	2	20.00	85.20
	2						
1	3	5	1	1	1	21.98	79.03
1	3	5	1	1	2	18.77	77.21
1	3	6	1	1	1	26.48	85.66
	5						
1	3	6	1	1	2	21.85	83.52
1	3	7	1	1	1	24.99	86.89
1	3	7	1	1	2	20.41	85.06
1	4	1	1	1	1	23.33	84.48
1	4	1	1	1	2	20.77	83.14
1	4	2	1	1	1	23.18	81.61
1	4	2	1	1	2	19.47	79.41
1	4	3	1	1	1	22.50	88.10
1	4	3	1	1	2	18.90	84.24
_	4	2	1	1	∠	10.0U	04.24

-	4		0	1	1	0.4.0.4	05 07
1	4	4	0	1	1	24.24	85.97
1	4	4	0	1	2	20.91	84.16
1	4	5	1	1	1	23.22	83.22
1	4	5	1	1	2	19.33	82.19
1	4	6	1	1	1	24.01	83.07
		6		1		20.62	
1	4		1		2		81.25
1	4	7	1	1	1	24.86	86.73
1	4	7	1	1	2	20.70	85.19
1	5	1	1	1	1	22.07	87.14
	5 5				_		
1	5	1	1	1	2	19.37	87.90
1	5	2	1	1	1	21.05	82.04
	_	_					
1	5	2	1	1	2	18.78	82.88
1	5	3	1	1	1	21.32	84.22
	_						
1	5	3	1	1	2	18.19	82.25
1	5	4	1	1	1	23.31	90.07
	J						
1	5	4	1	1	2	20.18	89.91
1	5	5	0	1	1	23.79	84.50
1	5	5	0	1	2	20.48	84.69
1	5	6	1	1	1	24.48	87.04
	J						
1	5	6	1	1	2	21.15	87.06
1	5	7	1	1	1	21.41	81.79
	J						
1	5	7	1	1	2	19.18	82.03
1	6	1	1	1	1	22.28	87.39
1	6	1	1	1	2	18.81	85.55
1	6	2	1	1	1	18.86	75.66
1	6	2 3	1	1	2	15.75	74.44
1	6	3	1	1	1	21.68	87.52
1	6	3	1	1	2	16.24	83.10
1	6	4	1	1	1	23.01	85.38
1	6	4	1	1	2	18.64	85.04
1	6	5	1	1	1	22.97	84.62
1	6	5	1	1	2	18.69	82.70
1	6	6	0	1	1	25.60	84.43
1	6	6	0	1	2	20.88	83.36
1	6	7	1	1	1	22.91	84.57
					_		
1	6	7	1	1	2	18.81	82.43
1	7	1	1	1	1	22.59	91.29
							21.22
1	7	1	1	1	2	17.91	88.00
1	7	2	1	1	1	22.48	86.97
1	7	2 3	1	1	2	17.50	83.04
1	7	3	1	1	1	21.71	86.41
1	7	3	1	1	2	17.54	83.27
1	7	4	1	1	1	24.23	92.60
1	7	4	1	1	2	19.88	89.00
1	7	5	1	1	1	23.79	86.83
		<i>-</i>					
1	7	5	1	1	2	18.93	84.83
1	7	6	1	1	1	25.07	89.44
1	7	6	1	1	2	20.21	87.38
1	7	7	0	1	1	24.31	90.48
1	7	7	0	1	2	19.81	86.65

1. Run GENSEX.EXE to create mating design matrix files and AD+L+M model data. Before running this program, create a data file (MICEDATA.TXT) for your analysis with six design columns fol-

- lowed by trait columns. The six design columns are (1) environment, (2) maternal, (3) paternal, (4) generation, (5) replication, and (6) sex. There is a limitation (<100 traits) for the number of trait columns. An example of the data file is provided with the name MICEDATA.TXT.
- 2. Run programs for variance and covariance analyses. Standard errors of estimates are calculated by the jackknife procedures. If you have multiple blocks for your experiments, you can use GENVAR1R.EXE or GENCOV1R.EXE for jackknifing over blocks. Otherwise you can use GENVAR1C.EXE or GENCOV1C.EXE for jackknifing over cell means.
- 3. Run GENVAR1R.EXE or GENVAR1C.EXE for estimating variance components and predicting genetic effects before estimating covariance and correlation. These two programs will allow you to choose the parental type (inbred or outbred) and the prediction methods (LUP or AUP). You also need to input coefficients (1, 0, or -1) for conducting linear contrasts for genetic effects of parents.
- 4. After finishing variance analysis, run GENCOV1R.EXE or GENCOV1C.EXE to estimate covariance components and coefficients of correlation among all analyzed traits.
- 5. Results will automatically be stored in text files for later use or printing.

Output 1 for Variance Analysis

```
Traits =, 2
Variance components = , 5
Degree of freedom = , 48
File name is micedata.VAR
Date and Time for Analysis: Sat Jun 24 20:03:15 2000
Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE.
Jackknifing Over Block Conducted for Estimating S.E.
Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP) Method.
NS = Not significant; S+ = Significant at 0.10 level.
S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
Linear Contrasts:
+<1> +<2> +<3> +<4> -<5> -<6> -<7>
Diallel Analysis of Trait, 35BW, for Public Users.
                                      S. E. P-value
0.914491 2.67e-005
0.114861 0.00015
Var Comp
                          Estimate
(1): Additive Var
(2): Dominance Var
                          4.05678
0.447741
                                                                  S**
                                                                  S**
(3): Sex-linked Var
                          4.82177
                                         0.332787
                                                     2.87e-017 S**
```

(4): Maternal Var	3.16826	0.912454	0.000551	S**
(5): Residual Var	0.979275	0.309302	0.00134	S**
(6): Var(Pheno.)	13.4738	1.91195	3.11e-009	S**
(0): (41 (1110110))	10.1700	1.71170	0.110 000	~
Proportion of Var(G)/Var(T)Estimate	S. E.	P-value	
(1): Additive Var/Vp	0.301086	0.0251507	2.53e-016	S**
(2): Dominance Var/Vp	0.0332304	0.011576	0.00304	S**
(3): Sex-linked Var/Vp	0.357862	0.032024	2.98e-015	S**
- · ·				S**
(4): Maternal Var/Vp	0.235142	0.0202444	7.84e-016	
(5): Residual Var/Vp	0.0726798	0.0271762	0.0051	S**
Heritability	Estimate	S. E.	P-value	
(6): Heritability(N)	0.301086	0.0251507	2.53e-016	S**
(7): Heritability(B)	0.334316	0.0236245	3.21e-017	S**
(/): Helicability(b)	0.334310	0.0230243	3.216 017	J
Genetic Predictor, S. E.	, P-value			
(1): Random Effect is Add				
A1	-1.163629	0.383414	0.00388	S**
A2	-1.622929	0.534681	0.00387	S**
A3	-1.099644	0.273847	0.000208	S**
A4	0.535614	0.274989	0.0573	S+
A5	0.188242	0.412984	0.651	NS
A6	2.638442	0.623674	0.000104	S**
A7	0.517437	0.316664	0.109	NS
Linear Contrast	-6.21749	1.79317	0.00112	S**
Hinear concrase	0.21745	1.75517	0.00112	D
(2): Random Effect is Dom	ninance Effects			
D1*1	-1.575254	1.171944	0.185	NS
D2*2	-0.823010	0.741883	0.273	NS
D3*3	0.161857	0.293363	0.584	NS
D4 * 4	0.306696	0.310885	0.329	NS
D5*5	1.089396	0.790779	0.175	NS
D6*6	1.449270	1.100055	0.194	NS
D7*7	0.697693	0.513080	0.18	NS
D1*2	0.719177	0.566455	0.21	NS
D1*3	0.433285	0.376514	0.256	NS
D1 3 D1*4	0.532937	0.514004	0.305	NS
D1*5	0.105613	0.398419	0.792	NS
D1 * 6	0.617389	0.608657	0.732	NS
D1 *7	-0.008952	0.420072	0.983	NS
D2*3	0.292272	0.710588	0.683	NS
D2*4	0.292272	0.659437	0.943	NS
D2*5	0.062535	0.567660	0.943	NS
D2*5		2.358942	0.913	
D2*7	-0.378167	0.355381	0.873	NS
	-0.164429			NS
D3*4	-0.129561	0.270304	0.634	NS
D3*5 D3*6	-1.016032	0.950404	0.29	NS
	-0.268319	0.703458	0.705	NS
D3*7	-0.256718	0.609336	0.675	NS
D4*5	-0.370931	0.502767	0.464	NS
D4*6	-0.697666	0.733653	0.346	NS
D4*7	0.261144	0.349548	0.459	NS
D5*6	-0.182574	0.462678	0.695	NS
D5*7	-0.609768	0.793060	0.446	NS
D6*7	-0.298528	0.437983	0.499	NS
Heterosis <delta></delta>	-0.738068	1.8011	0.684	NS

(3): Random Effect is	Sex-linked Effect	S		
L1 for Sex1	1.619670	0.268733	2.28e-007	S**
L2 for Sex1	1.950941	0.409804	1.81e-005	S**
L3 for Sex1	2.545023	0.396915	5.87e-008	S**
L4 for Sex1	1.998426	0.326978	1.69e-007	S**
L5 for Sex1	1.194290	0.283566	0.000111	S**
L6 for Sex1	2.173739	0.465039	2.42e-005	S**
L7 for Sex1	3.040606	0.367137	8.28e-011	S**
L1 for Sex2	-1.468479	0.283005	4.22e-006	S**
L2 for Sex2	-1.416539	0.315276	4.42e-005	S**
L3 for Sex2	-2.789509	0.420796	2.73e-008	S**
L4 for Sex2	-1.799656	0.408109	5.82e-005	S**
L5 for Sex2	-2.015034	0.390778	4.72e-006	S**
L6 for Sex2	-2.912965	0.350283	7.36e-011	S**
L7 for Sex2	-2.124706	0.288782	2.09e-009	S**
Linear Contrast	4.99948	0.147414	5.87e-017	S**
(4): Random Effect is	Maternal Effects			
M1	0.532529	0.235722	0.0285	S*
M2	1.445810	0.744384	0.058	S+
М3	1.947175	0.459670	0.000102	S**
M4	0.036886	0.341978	0.915	NS
M5	0.198565	0.396981	0.619	NS
M6	-3.214121	0.790225	0.000176	S**
M7	-0.950092	0.338411	0.0072	S**
Linear Contrast	5.89251	1.83518	0.00236	S**

Fixed Effect <1>, 21.2871

Results of Tail Length are not presented.

Time Used (Hour) = 0.001389

Output 2 for Covariance Analysis

```
Traits =, 2
Covariance components = , 5
Degree of freedom = , 48
File name is micedata.COV
Date and Time for Analysis: Sat Jun 24 20:03:33 2000
```

Covariance Components Estimated by MINQUE(1) with GENCOV1C.EXE. Jackknifing Over Cell Mean Conducted for Estimating S.E.

```
NS = Not significant; S+ = Significant at 0.10 level. 
 S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
```

Covariances and Correlations Between, 35BW, , &, 35TL, for Public Users.:

Covariances	Estimates	S.E.	P-value	
Additive Cov	1.2739	1.40446	0.369	NS
Dominance Cov	-0.279037	0.886415	0.754	NS
Sex-linked Cov	2.07233	0.465324	5.04e-005	S**
Maternal Cov	0.848917	1.69412	0.619	NS

76 Handbook of Formulas and Software for Plant Geneticists and Breeders

Residual Cov	1.76704	0.698536	0.0148	S*
Cov <1=Genotypic> Cov <2=Phenotypic> Cov 2 Cov 1	Estimates 5.68315 3.91611	S.E. 2.84705 2.85586	P-value 0.0516 0.177	S+ NS
Correlation Additive Cor Dominance Cor Sex-linked Cor Maternal Cor Residual Cor	Estimates 0.190211 -0.169791 0.589663 0.138456 0.664416	S.E. 0.07873 0.0696301 0.0588193 0.0704558 0.0763856	P-value 0.0195 0.0185 2.33e-013 0.0552 1.98e-011	S* S* S** S+ S**
Cor <1=Genotypic> Cor <2=Phenotypic> Cor 2 Cor 1	Estimates 0.248755 0.197347	S.E. 0.0830793 0.0879154	P-value 0.00434 0.0294	S** S*

Results of Tail Length are not presented.

Time Used (Hour) = 0.000556

Chapter 6

Generation Means Analysis

Michael M. Kenty David S. Wofford

Importance

Development of elite varieties or germplasm often involves quantitatively inherited traits, such as insect resistance in soybeans. In these instances, it is advantageous for the breeder/geneticist to utilize methodology that allows not only the selection of desirable genotypes but also a determination of the underlying genetic effects contributing to the expression of the desired trait

Definitions

Using Hayman's (1958) methodology and Gamble's (1962) notation, the models for the generation means analysis are as follows:

where m = overall mean, a = additive genetic effects, d = dominance genetic effects, aa = additive × additive genetic effects, ad = additive × dominance genetic effects, dd = dominance × dominance genetic effects.

Originators

Gamble, E.E. (1962). Gene effects in corn (Zea mays L.) I. Separation and relative importance of gene effects for yield. Canadian Journal of Plant Science 42:339-348.

Hayman, B.I. (1958). The separation of epistatic from additive and dominance variation in generation means. *Heredity* 12:371-390.

Software Available

Kenty, M.M. (1994). Inheritance of resistance to the soybean looper in soybean. Doctoral dissertation. University of Florida, Gainesville.

Key References

Kenty, M.M., Hinson, K., Quesenberry, K.H., and Wofford, D.S. (1996). Inheritance of resistance to the soybean looper in soybean. *Crop Science* 36:1532-1537.

Meredith, W.R., Jr. and Bridge, R.R. (1972). Heterosis and gene action in cotton, *Gossypium hirsutum* L. *Crop Science* 12:304-310.

Scott, G.E., Hallauer, A.R., and Dicke, F.F. (1964). Types of gene action conditioning resistance to European corn borer leaf feeding. *Crop Science* 4:603-605.

Contacts

Michael M. Kenty, 424 Quail Crest Drive, Collierville, TN 38017-1750, USA. E-mail: kmmkenty@aol.com.

David S. Wofford, 2183 McCarty Hall, P.O. Box 110300, University of Florida, Gainesville, FL 32611-0300, USA. E-mail:dsw@gnv.ifas.ufl.edu>.

EXAMPLE

The data are presented in this order: generation, plant no., rating 1(top 1/3 plant), rating 2 (middle 1/3 plant), and rating 3 (bottom 1/3 plant). Data to be analyzed (insect defoliation, 1 = 0.10%, 10 = 91.100%):

P1 1121	P2 4778	F2 2678	F3 5224
P1 2131	P2 5788	F2 3455	BC1 1112
P1 3222	F1 1233	F2 4223	BC1 2223
P1 4121	F1 2333	F2 5566	BC1 3121
P1 5121	F1 3234	F3 1112	BC1 4112
P2 1788	F1 4244	F3 2334	BC1 5233
P2 2789	F1 5334	F3 3556	BC2 1111
P2 3889	F2 1121	F3 4233	BC2 2122

P1 8133 F1 15233 BC212223 F3 193 P1 9123 F2 11121 BC213121 F3 200 P1 10112 F2 12678 BC214112 BC216 BC215 BC217 BC217 BC217 BC217 BC218 BC217 BC218 BC217 BC218 BC218 BC218 BC218 BC218 BC218 BC219 BC219 BC219 BC219 BC219 BC219 BC219 BC210 BC2
F2 10 1 1 2 F3 12 3 3 4 P1 19 1 2 2 BS2 16

Program

```
in this example, refer to Gamble's paper (Canadian Journal of
     Plant Science 42:339-348) to obtain the proper coefficients. An-
     other source of information is Jennings et al. (Iowa State Jour-
     nal of Research 48:267-280) */
DATA COEFCNTS;
INPUT GEN $ X1 X2 X3 X4 X5;
CARDS:
BC1 0.5 0.0 0.25 0.0
BC2 -0.5 0.0 0.25 0.0
BS1 0.5 -0.25 0.25 -0.125 0.0625
BS2 -0.5 -0.25 0.25 0.125 0.0625
    0.0 0.5 0.0 0.0
                         0.25
F2
   0.0 0.0 0.0 0.0
                         0.0
   0.0 -0.25 0.0
F3
                   0.0
                         0.0625
P1
    1.0 -0.5 1.0 -0.5
                         0.25
P2 -1.0 -0.5 1.0 0.5
                         0.25
DATA FINAL; MERGE NEW COEFCNTS;
PROC PRINT;
/* This model tests the significance of the additive (X1) and the dom-
     inance (X2) effects */
TITLE 'PROC REG WEIGHTED';
PROC REG:
MODEL Y = X1 X2;
WEIGHT RS;
/* The model must be weighted to account for the unequal population
     sizes among the generations. See Rowe and Alexander (Crop Science
     20:109-110) for further details. The next model tests for the
     epistatic effects, additive-additive (X3), additive-dominance
     (X4), and dominance-dominance (X5), as well as the additive (X1)
     and dominance (X2) effects. */
PRO REG:
MODEL Y = X1 X2 X3 X4 X5;
WEIGHT RS:
RUN;
/* This next set of models are tested with PROC GLM instead of PROC
     REG */
TITLE 'PROC GLM WEIGHTED';
PROC GLM;
MODEL Y = X1 X2;
WEIGHT RS:
PROC GLM;
MODEL Y = X1 X2 X3 X4 X5;
WEIGHT RS:
RUN;
/* The next series of models are the same as the previous models, ex-
     cept that they assume equal population size among the genera-
     tions, and are, therefore, not weighted. */
TITLE 'PROC REG NOWEIGHT';
PROC REG;
MODEL Y = X1 X2;
PROC REG;
MODEL Y = X1 X2 X3 X4 X5;
RUN;
```

TITLE 'PROC GLM NOWEIGHT';
MODEL Y = X1 X2;
PROC GLM; MODEL Y = X1 X2 X3 X4 X5;
RUN:

/* Depending on whether or not the population sizes among the generations are equal, report the model that has the most significant effects from either PROC GLM or PROC REG. */

SAS Output File

The SAS System 15:21 Thursday, March 16, 2000 1

The MEANS Procedure

gen=BC1

Analysis Variable : MEANRATE

N	Mean	Std Dev	Minimum	Maximum
20	1.9166667	0.5606492	1.0000000	2.6666667
gen=BC2 Analysis	Variable :	MEANRATE		

N Mean Std Dev Minimum Maximum 20 1.9166667 0.6386664 1.0000000 3.0000000

gen=BS1

Analysis Variable : MEANRATE

N Mean Std Dev Minimum Maximum 20 7.3166667 0.7683429 6.3333333 8.3333333

gen=BS2

Analysis Variable : MEANRATE

N Mean Std Dev Minimum Maximum 20 7.4833333 0.7606937 6.3333333 8.6666667

gen=F1

Analysis Variable : MEANRATE

N Mean Std Dev Minimum Maximum 20 2.9000000 0.5629912 1.6666667 4.3333333

gen=F2

Analysis Variable : MEANRATE

N Mean Std Dev Minimum Maximum 20 4.0166667 2.2412272 1.3333333 7.3333333 gen=F3

Analysis Variable : MEANRATE

N	Mean	Std Dev	Minimum	Maximum
20	3.7166667	2.0008039	1.3333333	7.3333333

gen=P1

Analysis Variable : MEANRATE

N	Mean	Std Dev	Minimum	Maximum
20	1.6333333	0.4445906	1.0000000	2.3333333

gen=P2

The MEANS Procedure

Analysis Variable : MEANRATE

N	Mean Std Dev		Std Dev	Min	imum	Maximum
20	7.7166667	0.	5543554	6.666	66667	8.6666667
Obs gen 1 BC1 2 BC2 3 BS1 4 BS2 5 F1 6 F2 7 F3 8 P1 9 P2 PROC REG W	TYPE 0 0 0 0 0 0 0 0 0 0 0 vetghted	FREQ 20 20 20 20 20 20 20 20 20 20 20 20 20	Y 1.91667 1.91667 7.31667 7.48333 2.90000 4.01667 3.71667 1.63333 7.71667	V 0.31433 0.40789 0.59035 0.57865 0.31696 5.02310 4.00322 0.19766 0.30731	S 0.12536 0.14281 0.17181 0.17010 0.12589 0.50115 0.44739 0.09941 0.12396	RS 7.9767 7.0023 5.8205 5.8790 7.9435 1.9954 2.2352 10.0590 8.0673

Obs	gen	TYF	PE FRE	QY	V	S	RS	X1	X2	Х3	X4	X5
1	BC1	0	20	1.91667	0.31433	0.12536	7.9767	0.5	0.00	0.25	0.00	0.0000
2	BC2	0	20	1.91667	0.40789	0.14281	7.0023	-0.5	0.00	0.25	0.00	0.0000
3	BS1	0	20	7.31667	0.59035	0.17181	5.8205	0.5	-0.25	0.25	-0.25	0.0625
4	BS2	0	20	7.48333	0.57865	0.17010	5.8790	-0.5	-0.25	0.25	0.25	0.0625
5	F1	0	20	2.90000	0.31696	0.12589	7.9435	0.0	0.50	0.00	0.00	0.2500
6	F2	0	20	4.01667	5.02310	0.50115	1.9954	0.0	0.00	0.00	0.00	0.0000
7	F3	0	20	3.71667	4.00322	0.44739	2.2352	0.0	-0.25	0.00	0.00	0.0625
8	P1	0	20	1.63333	0.19766	0.09941	10.0590	1.0	-0.50	1.00	-1.00	0.2500
9	P2	0	20	7.71667	0.30731	0.12396	8.0673	-1.0	-0.50	1.00	1.00	0.2500

PROC REG WEIGHTED

The REG Procedure Model: MODEL1 Dependent Variable: Y

Weight: RS

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	177.56093	88.78047	2.67	0.1485

Error 6 199.86954 33.31159

Corrected Total 8 377.43047

Root MSE 5.77162 R-Square 0.4704
Dependent Mean 4.09505 Adj R-Sq 0.2939
Coeff Var 140.94121

Parameter Estimates

Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 3.75399 0.84226 4.46 0.0043 1 -2.32644 -2.93086 1.16302 -2.00 0.0924 2.34026 -1.25 0.2570 X1 Х2 1

PROC REG WEIGHTED

The REG Procedure Model: MODEL1 Dependent Variable: Y

Weight: RS

Analysis of Variance

Sum of Mean DF Squares Square F Value Pr > F Source Model 5 301.20716 60.24143 2.37 0.2542 3 Error 76.22331 25.40777 Corrected Total 8 377.43047

Root MSE 5.04061 R-Square 0.7980
Dependent Mean 4.09505 Adj R-Sq 0.4615
Coeff Var 123.09023

Parameter Estimates

Parameter Standard Estimate Variable DF Error t Value Pr > |t| 1 4.42225 1.11945 3.95 0.0289 Intercept 0.38757 X1 1 2.39420 0.16 0.8817 4.64427 -2.30 0.1048 4.64304 -1.86 0.1604 2.74842 1.22 0.3091 9.56113 1.54 0.2202 X2 1 -10.68980 1 Х3 -8.61894 X4 1 3.35783 X5 1 14.76576

PROC GLM WEIGHTED

Number of observations 9
The GLM Procedure
Dependent Variable: Y

Weight: RS

Sum of Squares Mean Square F Value Pr > F Model 2 177.5609302 88.7804651 2.67 0.1485

84 Handbook of Formulas and Software for Plant Geneticists and Breeders

Error	6		199.869	95384	33.	3115897		
Corrected Total	8		377.430	14686				
R-Square		Coeff V	/ar	Root M	SE	Y Mean		
0.470447		140.94	12	5.7716	19	4.095055		
Source	DF		Type I	SS	Mea	n Square	F Value	Pr > F
X1 X2	1		125.314 52.246			.3143256 .2466046	3.76 1.57	0.1005 0.2570
Source	DF		Type II	I SS	Mea	n Square	F Value	Pr > F
X1 X2	1		133.292 52.246			.2929249 .2466046	4.00 1.57	0.0924 0.2570
Parameter	Est	imate		Standa Error	ard		t Value	Pr > t
Intercept X1 X2	-2.	7539942 3264448 9308596	74	0.8422 1.1630 2.3402	1923	3	4.46 -2.00 1.25	0.0043 0.0924 0.2570
PROC GLM WE	IGH.	red						
The GLM Pro Number of o Dependent V	bsei	rvations	s 9					
Weight: RS			Sum of	:				
Source	DF		Squares		Mea	n Square	F Value	Pr > F
Model Error Corrected	5 3		301.20 76.2233			2414313 4077706	2.37	0.2542
Total	8		377.430	14686				
R-Square		Coeff 7	/ar	Root M	SE	Y Mean		
0.798047		123.090	02	5.0406	12	4.095055		
Source	DF		Type I	SS	Mea	n Square	F Value	Pr > F
X1 X2 X3 X4 X5	1 1 1 1		125.314 52.246 29.673 33.374 60.598	66046 82521 18169	52 29 33	.2466046	4.93 2.06 1.17 1.31 2.39	0.1130 0.2470 0.3590 0.3349 0.2202
Source	DF		Type II	II SS	Mea	n Square	F Value	Pr > F
X1 X2 X3 X4 X5	1 1 1 1		0.665 134.607 87.552 37.924 60.598	78535 25268 13276	134 87 37	.6657960 .6078535 .5525268 .9243276 .5981574	0.03 5.30 3.45 1.49 2.39	0.8817 0.1048 0.1604 0.3091 0.2202

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	4.42225240	1.11945357	3.95	0.0289
X1	0.38756832	2.39420301	0.16	0.8817
X2	-10.68980183	4.64427294	-2.30	0.1048
Х3	-8.61894129	4.64304465	-1.86	0.1604
X4	3.35782810	2.74841807	1.22	0.3091
X5	14.76576243	9.56113494	1.54	0.2202

PROC REG NOWEIGHT

The REG Procedure Model: MODEL1 Dependent Variable: Y

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Tota	al	2 6 8	20.79725 30.96170 51.75895	10.39863 5.16028	2.02	0.2141
Root MSE Dependent Mean Coeff Var Parameter Estimates		2.271 4.290 52.942	74	R-Square Adj R-Sq		
Variable	DF	Parame Estima		Standard Error	t Value	Pr > t
Intercept X1 X2	1 1 1	3.837 -2.055 -3.260	56	0.83885 1.31152 2.59909	-1.57	0.0038 0.1681 0.2563
DDOC DEC NOWE	CUT					

PROC REG NOWEIGHT

The REG Procedure Model: MODEL1 Dependent Variable: Y

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	5 3 8	32.17318 19.58577 51.75895	6.43464 6.52859	0.99	0.5404
Root MSE Dependent Mean Coeff Var	2.555 4.290 59.549	74	R-Square Adj R-Sq		

Parameter Estimates

Variable Intercept X1 X2 X3 X4 X5	DF 1 1 1 1 1	Parameter Estimate 3.91960 0.51587 -7.22098 -4.82188 3.42857 9.36501	Standard Error 1.23483 3.25117 5.05505 4.94994 3.86296 12.09879	t Value 3.17 0.16 -1.43 -0.97 0.89 0.77	Pr > t 0.0503 0.8840 0.2485 0.4018 0.4402 0.4953	
PROC GLM NOWEIGHT						

The REG Procedure Model: MODEL2 Dependent Variable: Y

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	2 6 8	20.79725 30.96170 51.75895	10.39863 5.16028	2.02	0.2141
Root MSE 2.271 Dependent Mean 4.290			R-Square Adj R-Sq		

Parameter Estimates

Coeff Var 52.94251

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	3.83788	0.83885	4.58	0.0038
X1	1	-2.05556	1.31152	-1.57	0.1681
X2	1	-3.26061	2.59909	-1.25	0.2563

PROC GLM NOWEIGHT

The GLM Procedure
Number of observations 9
Dependent Variable: Y

Source	DF	Sum of Square		Mean Square	F Value	Pr > F
Model Error	5 3	32.173 19.585		6.43463615 6.52858996	0.9	0.5404
Corrected Total	8	51.758	95062			
R-Square		Coeff Var	Root N	MSE Y Mean		
0.621596		59.54940	2.5551	4.290741		
Source X1	DF 1	Type I 12.675		Mean Square 12.67592593	F Value	Pr > F 0.2578

X2 X3 X4 X5	1 1 1	2.321 5.142	32435 49174 85714 58158	8.12132435 2.32149174 5.14285714 3.91158158	0.36 0.79	0.3460 0.5930 0.4402 0.4953
Source	DF		II SS			Pr > F
X1 X2 X3 X4 X5	1 1 1 1	5.142		0.16437130 13.32175859 6.19514901 5.14285714 3.91158158	2.04 0.95 0.79	0.8840 0.2485 0.4018 0.4402 0.4953
Parameter		Estimate	Stand Error		t Value	Pr > t
Intercept X1 X2 X3 X4 X5		3.919597315 0.515873016 -7.220984340 -4.821879195 3.428571429 9.365011186	3.25 5.05 4.94 3.86	482719 116872 504842 994238 296406 878615	3.17 0.16 -1.43 -0.97 0.89 0.77	0.4018
Type-3 test	is of	f estimates of	fixed	effects		
Genetic eff	ect	Numerator df	Denor	minator df	F value	Pr > F
Additive (a		1		175 175	4.08	0.0450

Genetic effect	Numerator df	Denominator df	F value	Pr > F
Additive (a) Dominance (d)	1 1	175 175	4.08 7.49	0.0450 0.0068
Epistatic effectaa dd ad	ts 1 1 1	175 175 175	0.33 18.34 18.19	0.5693 <.0001 <.0001

Additive, dominance, additive \boldsymbol{x} dominance, and dominance \boldsymbol{x} dominance effects are significant.

Chapter 7

PATHSAS: Path Coefficient Analysis of Quantitative Traits

Christopher S. Cramer Todd C. Wehner Sandra B. Donaghy

Purpose

To calculate path coefficients (direct effects) and indirect effects between independent (x) and dependent (y) variables.

Definitions

Path coefficient analysis: the correlation between two traits is a function of the direct relationship between two traits and the indirect relationships of related traits (Wright, 1934).

$$\mathbf{r}_{10} = \rho_{01} + \rho_{02}\mathbf{r}_{12} + \rho_{03}\mathbf{r}_{13} + \rho_{04}\mathbf{r}_{14}$$

where r_{10} = the correlation between X_1 and Y; ρ_{01} = the path coefficient between X_1 and Y; ρ_{02} = the path coefficient between X_2 and Y; r_{12} = the correlation between X_1 and X_2 ; $\rho_{02}r_{12}$ = the indirect effect of X_2 on the correlation between X_1 and Y; ρ_{03} = the path coefficient between X_3 and Y; r_{13} = the correlation between X_1 and X_3 ; $\rho_{03}r_{13}$ = the indirect effect of X_3 on the correlation between X_1 and Y; ρ_{04} = the path coefficient between X_4 and Y; r_{14} = the correlation between X_1 and X_4 ; $\rho_{04}r_{14}$ = the indirect effect of X_4 on the correlation between X_1 and Y.

Originator

Wright, S. (1934). The method of path coefficients. *Annals of Mathematical Statistics* 5:161-215.

Software Available

Cramer, C.S., Wehner, T.C., and Donaghy, S.B. (1999). PATHSAS: A SAS computer program for path coefficient analysis of quantitative data. *Journal of Heredity* 90:260-262 (free of charge).

Some References Where the Software Has Been Used

- Cramer, C.S. and Wehner, T.C. (1998). Fruit yield and yield component means and correlations of four slicing cucumber populations improved through six to ten cycles of recurrent selection. *Journal of American Society of Horticulture Science* 123:388-395.
- Cramer, C.S. and Wehner, T.C. (1999). Little heterosis for yield and yield components in hybrids of six cucumber inbreds. *Euphytica* 110:101-110.
- Cramer, C.S. and Wehner, T.C. (2000). Path analysis of the correlation between fruit number and plant traits of cucumber populations. *HortScience* 35(4):708-711.

Contact

Dr. Todd Wehner, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA. E-mail: <todd_wehner@ncsu.edu>.

EXAMPLE

Data to be analyzed:

Plot	Repli- cation	Cycle	Plant number	Pistillate flowers	Branch number		Total fruit number	Culled fruit number	Early fruit number
001	01	1	29	022	040	0240	01	00	00
002	02	1	21	017	034	0120	17	02	01
003	03	1	31	052	032	0440	29	15	03
004	04	1	30	049	077	0550	25	09	05
005	04	3	30	058	071	0810	30	10	05

006	03	3	23	039	040	0460	32	03	13
007	02	3	26	044	047	0460	27	07	80
800	01	3	22	023	027	0330	12	04	00
009	01	2	19	025	054	0510	27	05	04
010	02	2	27	035	038	0510	34	03	05
011	03	2	23	050	027	0290	01	00	00
012	04	2	32	035	055	0560	47	10	80
013	05	1	28	088	140	1315	58	13	27
014	06	1	28	162	105	0986	39	09	14
015	07	1	25	026	070	0741	36	05	10
016	80	1	31	074	125	0803	55	08	35
017	80	2	33	048	127	0870	57	11	13
018	07	2	25	069	038	0639	26	04	09
019	06	2	32	041	105	0878	31	04	13
020	05	2	30	021	098	0982	53	02	06
021	05	3	26	012	064	0622	31	03	09
022	06	3	31	024	111	1133	26	01	07
023	07	3	24	046	082	0879	33	04	04
024	80	3	28	048	161	1122	63	05	07

SAS Program

007 02 3 26 044 047 0460 27 07 08

```
DATA DST1;
INPUT PLOT REP CYC PLANTNO PISTFLOW BRANCHNO LEAFNO TOTALNO CULLNO
     EARLYNO;
MARK=TOTALNO-CULLNO;
BRANPLAN=BRANCHNO/PLANTNO;
NODEBRAN=LEAFNO/(BRANCHNO+PLANTNO);
TOTFEMND=PISTFLOW+TOTALNO;
PERFENOD= (TOTFEMND/LEAFNO);
FRTSET=TOTALNO/PISTFLOW;
FRTPLANT=TOTALNO/PLANTNO;
MARKPLAN=MARK/PLANTNO;
EARPLAN=EARLYNO/PLANTNO;
CARDS;
001 01 1 29 022 040 0240 01 00 00
002 02 1 21 017 034 0120 17 02 01
003 03 1 31 052 032 0440 29 15 03
004 04 1 30 049 077 0550 25 09 05
005 04 3 30 058 071 0810 30 10 05
006 03 3 23 039 040 0460 32 03 13
```

```
008 01 3 22 023 027 0330 12 04 00
009 01 2 19 025 054 0510 27 05 04
010 02 2 27 035 038 0510 34 03 05
011 03 2 23 050 027 0290 01 00 00
012 04 2 32 035 055 0560 47 10 08
013 05 1 28 088 140 1315 58 13 27
014 06 1 28 162 105 0986 39 09 14
015 07 1 25 026 070 0741 36 05 10
016 08 1 31 074 125 0803 55 08 35
017 08 2 33 048 127 0870 57 11 13
018 07 2 25 069 038 0639 26 04 09
019 06 2 32 041 105 0878 31 04 13
020 05 2 30 021 098 0982 53 02 06
021 05 3 26 012 064 0622 31 03 09
022 06 3 31 024 111 1133 26 01 07
023 07 3 24 046 082 0879 33 04 04
024 08 3 28 048 161 1122 63 05 07
%macro path(data,indep,dep0,dep,bylist,printreg,printout);
   /*
     Parameters to macro are:
      data =name of dataset to analyze
      indep=list of independent variables
      dep0=primary dependent variable
      dep=other dependent variables
      bylist=by variable list
      printreg=print regression? ( value is either yes or no)
      printout=print results(direct,indirect effects)?
               (value is either yes or no)
%local noind word nodep noby bylast printr;
  /* create noind macro variable
  /* noind is the number of independent variables in &indep
                                                                * /
  %let noind=0:
  %if &indep ne %then %do;
      %let word=%scan(&indep,1);
      %do %while (&word ne );
          %let noind=%eval(&noind+1);
          %let word=%scan(&indep,&noind+1);
          %end;
      %end;
  /* create nodep macro variable
  /* nodep is the number of dependent variables in &dep
  %let nodep=0;
  %if &dep ne %then %do;
      %let word=%scan(&dep,1);
      %do %while (&word ne );
          %let nodep=%eval(&nodep+1);
          %let word=%scan(&dep,&nodep+1);
          %end;
      %end;
  /* create noby macro variable
                                                              * /
```

```
/* noby is the number of by variables in &bylist
                                                           */
  %let noby=0;
  %if &bylist ne %then %do;
     %let word=%scan(&bylist,1);
     %do %while (&word ne );
         %let noby=%eval(&noby+1);
         %let word=%scan(&bylist,&noby+1);
         %end;
     %end;
   %let bylast=%scan(&bylist,&noby);
     create printr macro variable
                                                           */
  /* printr has a blank value or the value NOPRINT
                                                           * /
  /* specifies whether to print regression output or not */
  %if %upcase(&printreg)=YES %then %let printr=;
     %else %let printr=noprint;
data data1; set &data;
  keep &bylist &dep0 &dep &indep;
  run;
proc sort data=data1;
  by &bylist;
proc standard data=data1 mean=0 std=1 out=sdata2;
     by &bylist;
     var &indep &dep0 &dep;
  run;
proc reg data=sdata2 &printr
     outsscp=sscp(keep=&bylist intercep type )
     by &bylist;
     model &dep0=&indep;
  run;
  /*
   type ='N' is the number of obs in the dataset;
  nobs, number of obs., is created
  needed for checking that there are enough obs.
   if not, the reg. coefficients are biased, and need to set to miss-
    ing
data sscp; set sscp;
  if type ='N';
  rename intercep=nobs;
  drop type;
/* if no. of obs. is <= the no. of indep. variables, then
    set the regression coefficients to missing
data estdep; merge sscp estdep;
  by &bylist;
  array v &indep;
  look='no ';
   if nobs<=&noind then do;
     look='yes';
     do over v;
        v=.;
```

```
end;
      end;
   run;
proc print data=estdep;
   where look='yes';
   var &bylist nobs;
title3
'The following identification levels do not have enough obs. for anal-
     ysis';
title4 ' and the regression coefficients were set to missing
   run;
title3 ' ';
proc reg data=sdata2 &printr
  outest=estindep(drop=_model_ _type_ _rmse_ intercep);
  by &bylist;
  model &dep=&dep0;
  run;
data estind2; set estindep;
   by &bylist;
   array r regc1-regc&nodep;
  retain regcl-regc@nodep;
  if first. & bylast then i =0;
   \underline{i}_{r=\&dep0}^{+1};
   if last. & bylast then do;
      output;
      do over r;
         r=.;
         end:
      end;
   drop &dep0 &dep depvar;
   run;
proc corr data=data1 outp=corr noprint;
  by &bylist;
  var &indep;
  run;
data corr; set corr;
  if type = 'CORR';
  drop _type_;
  run;
data estdep; set estdep;
   array reg &indep;
   array r2 reg1-reg&noind;
   do over reg;
    r2=req;
    end;
   drop &indep;
   run;
data tog;
  merge corr estdep;
```

```
by &bylist;
   array dir &indep;
   array corr &indep;
   array r2 reg1-reg&noind;
   if first. & bylast then do;
      totc=0;
     n=0;
      end:
   n+1;
   &dep0=.;
   do over dir;
     if n= i then dir= r2;
        else dir=r2*corr;
       &dep0 + dir;
       end;
   drop n;
   keep &bylist--_name_ &indep &dep0 _depvar_ nobs;
   format &indep &dep0 5.2;
   run;
data tog2; merge tog estind2; by &bylist;
   array r regc1-regc&nodep;
   array t &dep;
   do over r;
     t=&dep0 * r;
      end;
   format &dep &dep0 5.2;
  format regc1-regc&nodep 5.2;
  * drop regc1-regc&nodep;
   drop depvar;
   run;
%if %upcase(&printout)=YES %then
   %str(proc print data=tog2(drop=regc1-regc&nodep); run;);
%mend path;
%path(data=dst1,
      indep=branplan nodebran perfenod frtset,
      dep0=frtplant,
      dep=markplan earplan,
      bylist=cyc,
      printreg=no,
      printout=yes
      );
RUN;
```

SAS Output

	В	N	P		F	M	
	R	0	E		R	A	Ε
	A	D	R	F	T	R	Α
N	N	E	F	R	P	K	R
A	P	В	E	T N	L	P	P

0	С	M	L	R	N	S	0	A	L	L
В	Υ	E	A	A	0	E	В	N	A	A
S	С		N	N	D	T	S	T	N	N
001	1	BRANPLAN	0.72	0.18	-0.06	0.03	8	0.87	0.80	0.78
002	1	NODEBRAN	0.37	0.34	-0.10	0.04	8	0.65	0.61	0.59
003	1	PERFENOD	-0.17	-0.15	0.23	0.01	8	-0.08	-0.07	-0.07
004	1	FRTSET	0.07	0.05	0.01	0.30	8	0.42	0.39	0.38
005	2	BRANPLAN	0.72	-0.13	-0.41	0.42	8	0.61	0.54	0.31
006	2	NODEBRAN	-0.26	0.34	0.01	-0.01	8	0.08	0.07	0.04
007	2	PERFENOD	-0.58	0.01	0.50	-0.53	8	-0.60	-0.53	-0.30
008	2	FRTSET	0.40	-0.01	-0.34	0.77	8	0.82	0.72	0.41
009	3	BRANPLAN	1.06	-0.03	-0.37	0.12	8	0.78	0.75	0.28
010	3	NODEBRAN	-0.15	0.20	-0.31	-0.10	8	-0.36	-0.35	-0.13
011	3	PERFENOD	-0.46	-0.07	0.86	-0.22	8	0.10	0.09	0.04
012	3	FRTSET	0.28	-0.04	-0.42	0.46	8	0.28	0.26	0.10

Chapter 8

Restricted Maximum Likelihood Procedure to Estimate Additive and Dominance Genetic Variance Components

Agron Collaku

Purpose

To estimate narrow-sense heritability without any restriction in mating design.

Definitions

Estimation of genetic variance components for additive and dominance effects is important in plant breeding for estimating narrow-sense heritability and predicting the results of selection. Quantitative genetic methods used to estimate genetic variance components are based on strict mating designs with a number of restrictions for the way genotypes are produced. Many of the restrictions are untenable in common breeding programs. The restricted maximum likelihood (REML) method is advantageous because it provides genetic variance estimates without any restriction in mating design not only for balanced data but also for unbalanced data. REML estimates of additive and dominance variance components using a mixed-model approach are obtained based on the following formulas.

Additive Variance

The additive genetic variance component measures the expected mean genotypic effect in the selected material and can be estimated from the equation

$$COV_{HS} = 2r_{xy}\sigma^2$$

where COV_{HS} is the covariance among half-sib families, r_{xy} is the coancestry coefficient that measures the relationship among parents of half-sib families, and σ^2_A is additive genetic variance component.

Dominance Variance

The dominance genetic variance component measures deviations of genotypic values from their additive effects due to interaction between alleles at the same locus. It can be estimated from the equation

$$COV_{FS}$$
 $2r_{xy}\sigma^2_A$ $u_{xy}\sigma^2_D$

where COV_{FS} is the covariance among full-sib families, u_{xy} is the double coancestry coefficient that measures the relationship among parents of full-sib families, and σ^2_D is dominance genetic variance component.

The preceding equations assume no epistatic interaction of any kind.

The mixed model fitted to obtain additive and dominance genetic variances is

$$y X\beta Z_1\alpha Z_2 Z_3\delta$$

where y is a vector of $n \times 1$ observations; n is the number of observations for each entry in each year and each environment; X is the design matrix of fixed effects, and $\boldsymbol{\beta}$ is a $b \times 1$ vector of fixed effects, \mathbf{Z}_1 is the design matrix of additive effects, and $\boldsymbol{\alpha}$ is a $a \times 1$ vector; a is the number of populations or crosses in the genetic design; \mathbf{Z}_2 is the design matrix of dominance effects, and $\boldsymbol{\gamma}$ is a $d \times 1$ vector, and d is the number of populations; \mathbf{Z}_3 is the design matrix of entry-by-environment interaction (GE) effects, and $\boldsymbol{\delta}$ is a $g \times 1$ vector; g is the cross combination of entries with environments; and $\boldsymbol{\varepsilon}$ is the vector of experimental error effects.

Random effects (additive, dominance, GE, and error) have the following variance-covariance matrix:

$$Var \begin{pmatrix} \alpha & A\sigma_{A}^{2} & 0 & 0 & 0 \\ & 0 & D\sigma_{D}^{2} & 0 & 0 \\ \delta & 0 & 0 & I\sigma_{GE}^{2} & 0 \\ & 0 & 0 & 0 & I\sigma^{2} \end{pmatrix}$$

where A is a matrix of $n \times n$. The diagonal elements of A are equal to 1 and the off-diagonal elements are equal to the coancestry coefficient times two $(2r_{xy})$ between n entries in the study. The matrix of coancestry coefficients can be obtained by using PROC INBREED of SAS (see example). D is a matrix of $n \times n$ with diagonal elements equal to 1/4, i.e., double coancestry coefficients within full-sib entries and off-diagonal elements are double coancestry coefficients among full-sib entries. I is an identity matrix.

Mixed model equations are used to obtain estimates of α , β , γ , and δ . REML estimates for genetic variance components (additive and dominance) as well as for other components are obtained by running PROC MIXED in SAS, in which A and D matrices are appended (see example).

References

These key references used maximum likelihood estimators to estimate additive and dominance genetic variance components:

Bernardo, R. (1994). Prediction of maize single-cross performance using RFLPs and information from related hybrids. *Crop Science* 34(1):20-25.

Collaku, A. (2000). Heritability of waterlogging tolerance in wheat (pp. 53-78). Doctoral dissertation, Louisiana State University, Baton Rouge, Louisiana.

Contact

A. Collaku, Department of Pharmacogenomics, Johnson & Johnson Research and Development, Raritan, New Jersey 08869.

EXAMPLE

Four F₂ populations (crosses) of soft red winter wheat were studied:

Cross No. 1 - Tchere/savannah//GA 85240

Cross No. 2 - Tchere/savannah//PION 2643

Cross No. 3 - Tchere/DS 2368//GA 85240

Cross No. 4 - Tchere/DS 2368//PION 2691

Five random full-sib families from each cross totaling twenty entries were studied in a randomized complete block design with three replications. The experiment was conducted for two years. Double coancestry co-

efficients between entries 6-15=0.0625. Diagonal elements of D matrix = 0.25 which represented double coancestry coefficients of within full-sib families. All other elements of D matrix were zero. Based on these elements, a matrix was constructed and appended to the data analyzed using PROC MIXED.

Data to be analyzed (Yield):

LINE	YEAR	REP	CROSS	YIELD
1	1	1	1	150.0
1	1	2	1	130.0
1	1	3	1	141.3
2	1	1	1	178.0
2	1	2	1	172.6
2	1	3	1	167.0
3	1	1	1	148.0
3	1	2	1	120.0
3	1	3	1	
4	1	1	1	108.5
4	1	2	1	113.0
4	1	3	1	123.0
5	1	1	1	89.0
5	1	2	1	90.0
5	1	3	1	92.0
6	1	1	2	93.8
6	1	2	2	121.5
6	1	3	2	86.0
7	1	1	2	113.0
7	1	2	2	107.0
7	1	3	2	
8	1	1	2	113.0
8	1	2	2	111.4
8	1	3	2	109.8
9	1	1	2	68.0

9	1	2	2	47.0
9	1	3	2	56.0
10	1	1	2	100.0
10	1	2	2	68.0
10	1	3	2	94.0
11	1	1	3	159.0
11	1	2	3	151.3
11	1	3	3	
12	1	1	3	172.0
12	1	2	3	139.0
12	1	3	3	
13	1	1	3	127.0
13	1	2	3	
13	1	3	3	92.0
14	1	1	3	109.0
14	1	2	3	138.0
14	1	3	3	119.2
15	1	1	3	159.0
15	1	2	3	152.0
15	1	3	3	137.0
16	1	1	4	152.6
16	1	2	4	147.0
16	1	3	4	
17	1	1	4	134.0
17	1	2	4	184.3
17	1	3	4	125.0
18	1	1	4	134.0
18	1	2	4	146.3
18	1	3	4	186.4
19	1	1	4	107.0
19	1	2	4	90.0
19	1	3	4	124.0
20	1	1	4	77.0

Handbook of Formulas and Software for P	Plant Geneticists and Breeders
---	--------------------------------

20	1	2	4	113.0
20	1	3	4	96.7

LINE	YEAR	REP	CROSS	YIELD
1	2	1	1	118.6
1	2	2	1	98.2
1	2	3	1	108.9
2	2	1	1	80.9
2	2	2	1	119.5
2	2	3	1	76.0
3	2	1	1	112.6
3	2	2	1	96.5
3	2	3	1	99.3
4	2	1	1	80.3
4	2	2	1	73.2
4	2	3	1	72.2
5	2	1	1	65.3
5	2	2	1	54.3
5	2	3	1	58.4
6	2	1	2	61.7
6	2	2	2	81.3
6	2	3	2	66.0
7	2	1	2	65.5
7	2	2	2	95.8
7	2	3	2	88.2
8	2	1	2	
8	2	2	2	103.0
8	2	3	2	103.9
9	2	1	2	60.3
9	2	2	2	79.8
9	2	3	2	70.2
10	2	1	2	137.8

10	2	2	2	128.4
10	2	3	2	
11	2	1	3	82.5
11	2	2	3	74.3
11	2	3	3	78.5
12	2	1	3	132.4
12	2	2	3	128.7
12	2	3	3	116.1
13	2	1	3	87.0
13	2	2	3	88.9
13	2	3	3	61.8
14	2	1	3	121.9
14	2	2	3	98.4
14	2	3	3	112.3
15	2	1	3	84.7
15	2	2	3	105.0
15	2	3	3	98.2
16	2	1	4	113.4
16	2	2	4	105.7
16	2	3	4	101.3
17	2	1	4	114.8
17	2	2	4	131.2
17	2	3	4	117.7
18	2	1	4	71.3
18	2	2	4	41.8
18	2	3	4	45.2
19	2	1	4	
19	2	2	4	100.6
19	2	3	4	115.0
20	2	1	4	129.1
20	2	2	4	113.6
20	2	3	4	139.7

data c;

input F \$ M \$ Cross \$ Line \$ Gene; datalines;

TCH.	SAV	P1	P1	1
P1	GA	1	1	2
P1	GA	1	2	2
P1	GA	1	3	2
P1	GA	1	4	2
P1	GA	1	5	2
P1	P.2643	2	6	2
P1	P.2643	2	7	2
P1	P.2643	2	8	2
P1	P.2643	2	9	2
P1	P.2643	2	10	2
TCH.	DS	P2	P2	1
TCH.	DS	P2	P2	1
TCH. P2	DS GA	P2 3	P2 11	1 2
TCH. P2 P2	DS GA GA	P2 3 3	P2 11 12	1 2 2
TCH. P2 P2 P2	DS GA GA GA	P2 3 3 3	P2 11 12 13	1 2 2 2
TCH. P2 P2 P2 P2	DS GA GA GA	P2 3 3 3 3	P2 11 12 13 14	1 2 2 2 2
TCH. P2 P2 P2 P2 P2 P2	DS GA GA GA GA	P2 3 3 3 3 3	P2 11 12 13 14	1 2 2 2 2 2
TCH. P2 P2 P2 P2 P2 P2 P2	DS GA GA GA GA P.2691	P2 3 3 3 3 3 4	P2 11 12 13 14 15	1 2 2 2 2 2 2
TCH. P2 P2 P2 P2 P2 P2 P2 P2	DS GA GA GA GA P.2691	P2 3 3 3 3 4 4	P2 11 12 13 14 15 16 17	1 2 2 2 2 2 2 2

```
proc inbreed data=c covar outcov=matrix; var line f m; data matrix; set matrix; if substr(line,1,1)>0; drop OBS _TYPE_ _PANEL_ LINE F M; proc print data=matrix; run; data two;
```

```
retain row (0);
parm=1;
set matrix(drop=_col_ col1-col4 col10 col16 col17 col23);
if substr(line, 1, 1) > 0;
drop _type_ _panel_ line f m;
array old col5--col28;
array new ncol1-ncol20;
do over old:
 new=old:
end;
drop col5--col28;
row+1;
run;
data two;
set two:
array old ncol1-ncol20;
array new col1-col20;
do over old:
 new=old:
end;
drop ncol1-ncol20;
run;
data three:
row=1;
parm=2;
array dmat{20} col1-col20;
do j=1 to 20;
 dmat{j}=0;
end;
do i=1 to 5;
 do j=1 to 5;
  dmat{j}=0.25;
 end;
 parm=2;
 row=i;
 output;
end;
do j=1 to 20;
 dmat{j}=0;
end;
do i=6 to 10;
```

```
do j=6 to 10;
  dmat{j}=0.25;
  dmat{j+5}=0.0625;
 end;
 parm=2;
 row=i;
 output;
end;
do j=1 to 20;
 dmat{j}=0;
end;
do i=11 to 15;
 do j=11 to 15;
  dmat{j}=0.0625;
  dmat{j+5}=0.25;
 end;
 parm=2;
 row=i;
 output;
end;
do j=1 to 20;
 dmat{j}=0;
end;
do i=16 to 20;
 do j=16 to 20;
  dmat{j}=0.25;
 end;
 parm=2;
 row=i;
 output;
end;
drop i j;
run;
data mat20;
set two three;
run;
data varcomp;
input line year rep cross yield;
cards;
  1
              1
                        1
                                  1
                                           150.0
 1
                        2
              1
                                  1
                                           130.0
```

1	1	3	1	141.3	
2	1	1	1	178.0	
2	1	2	1	172.6	
18	2	1	4	71.3	
18	2	2	4	41.8	
18	2	3	4	45.2	
19	2	1	4		
19	2	2	4	100.6	
19	2	3	4	115.0	
20	2	1	4	129.1	
20	2	2	4	113.6	
20	2	3	4	139.7	
;					
Proc Mixed covtest; class I yr rep cr; model yield = yr rep(yr); random I/type=Lin(2) Idata=mat80; random yr*I(cr); parms (110) (100) (700) (200);					

SAS Output

run;

Covariance Parameter Estimates (REML)

Cov Parm	Estimate	Std Error	Z	Pr> Z
LIN (1)	111.66689661	19.28580197	5.79	0.0001
LIN(2)	386.10778285	592.07749876	0.65	0.5143
ENTRY*YEAR(CROSS)	577.41756955	156.55363443	3.69	0.0002
Residual	203.03072111	35.06509448	5.79	0.0001

Tests of Fixed Effects

Source	NDF	DDF	Type III	F Pr>F
YEAR	1	19	11.91	0.0027
REP(YEAR)	4	67	0.31	0.8707

In the previous output,

Lin(1) is $\hat{\sigma}_A^2$ – the estimate of additive variance component, and Lin(2) is $\hat{\sigma}_D^2$ – the estimate of dominance variance component.

Changes needed in this program:

- Calculate double coancestry coefficients among a group of full-sib families and then construct matrix D as shown in the program.
- When appending matrices A and D, use the number of columns corresponding to each set of full-sib families included in the study.

Chapter 9

Calculating Additive Genetic Correlation Using ANOVA and the Sum Method of Estimating Covariance

Blair L. Waldron

Importance

Genetic correlations allow breeders to predict the correlated response due to pleiotropy and/or linkage in unselected traits. For this reason, they are often required in many selection indices.

Definitions

Additive Genetic Correlations

Estimated as

$$r_{A(xy)} = \sigma_{A(xy)} / \sqrt{(\sigma^2_{A(x)}\sigma^2_{A(y)})}$$

where $\sigma_{A(xy)}$ is the additive genetic covariance of means for traits x and y, and $\sigma_{A(x)}$ and $\sigma_{A(y)}$ are the additive genetic standard deviations for traits x and y, respectively. Approximate standard errors for genetic correlations can be calculated as described by Falconer (1989). This assumes an appropriate family structure exists within the population of interest such that additive genetic variance (σ_A^2) can be derived. Most often, half-sib families (HSFs) are used where it is assumed that the variance among HSFs = $1/4\sigma_A^2$.

Sum Method of Estimating Covariance

The sum method is based on the statistical property of the sum of two random variables, which states:

$$Var(X \mid Y) \mid Var(X) \mid Var(Y) \mid 2Cov(X,Y)$$

This can be rearranged and written as

$$Cov(X,Y) \quad Var(X \quad Y) - Var(X) - Var(Y) / 2.$$

In this case, *X* and *Y* refer to two different traits evaluated within the same population.

Using ANOVA we get an estimate (mean square) for Var(X), Var(Y), and Var(X+Y) (most often referred to as the mean cross product, or MCP). The Var(X+Y) (e.g., MCP) is obtained by running ANOVA on a new variable created by summing the plot mean values for trait X and trait Y for each level of observation within each HSF $(X_{ij}+Y_{ij})$.

Additive Genetic Variance and Covariance

Standard procedures for isolating appropriate variance components, based on expected mean squares, are used to estimate additive genetic variances and covariances where, as previously stated, it is assumed that

$$\sigma^2_{\mathit{HSF}(x)} = \frac{1}{4}\sigma^2_{\mathit{A}(x)}$$
; $\sigma^2_{\mathit{HSF}(y)} = \frac{1}{4}\sigma^2_{\mathit{A}(y)}$; and

 $\sigma_{HSF(xy)}$ (e.g., covariance among HSFs for x and y) = $\frac{1}{4}\sigma_{A/(xy)}$ (e.g., additive genetic covariance between traits x and y).

The appropriate linear combination of mean squares or mean cross products is used to solve for $\sigma^2_{HSF(x)}$, $\sigma^2_{HSF(y)}$, and $\sigma^2_{HSF(xy)}$, respectively (see the following example).

Important Considerations

a. Because the additive genetic correlation is a function of two mathematical equations (i.e., the linear combination of mean squares or mean cross products to solve for variance components, and the statistical prop-

erty that Cov(X, Y) = [Var(X + Y) - Var(X) - Var(Y)]/2, all components will contribute to the standard error of the correlation. In some cases, this can lead to large standard errors for the correlation estimate, resulting in correlations greater than 1.

- b. As is the case with the estimation of all genetic parameters, consideration should be given as to how many HSFs are needed to obtain reliable estimates. In general, the more heritable a character, the fewer HSFs needed to obtain good genetic correlation estimates. Fifteen to twenty HSFs is the minimal acceptable range that can be used.
- c. Traits X and Y may differ widely in overall scale due to differences in concentration and/or units of measurement. For example, for a particular forage quality study, mean neutral detergent fiber (NDF) may equal 508 g·kg⁻¹ (range: 478 to 539), whereas mean magnesium concentration may equal 2.18 g·kg⁻¹ (range: 1.56 to 2.69). The sum of the average NDF and magnesium concentrations would equal 510.18 and is heavily weighted toward NDF. In such a case, the sum method could produce misleading results. When these types of data are used, they should first be standardized, such that traits X and Y are both on the same scale. One standardization method that effectively cancels scaling differences is to divide each trait's raw data by its mean standard deviation prior to creating the X + Y variable (Frey and Horner, 1957).

Originator

The sum method of estimating additive genetic covariances originated at North Carolina State University during the theoretical development and application of mating designs I and II. This method was taught by Dr. Robert E. Stucker (a North Carolina State University graduate) at the University of Minnesota in the Statistical Topics in Plant Sciences course.

Key References Using the Formula

Waldron, B.L., Ehlke, N.J., Wyse, D.L., and Vellekson, D.J. (1998). Genetic variation and predicted gain from selection for winterhardiness and turf quality in a perennial ryegrass topcross population. Crop Science 38:817-822.

Contact

Dr. Blair L. Waldron, USDA-ARS Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA. E-mail: <blue @cc.usu.edu>.

EXAMPLE

Traits *X* and *Y* are visual scores where the range is 1-9; HSFs were evaluated in multiple locations for one year using a randomized complete block (RCB) design. All variables are assumed to be random.

Step 1. Creating X + Y Variable

HSF	Trait X	Trait Y	Trait $X + Y$
1	9	8	17
2	8	3	11
3	5	4	9
			•
n	X_{a}	Y_n	$X_n + Y_n$

Step 2. ANOVA for Traits X and Y

Source	DF	Mean Square	Expected Mean Square
Location	1–1	$MS_{L(x \text{ or } y)}$	$ \begin{array}{l} \sigma^2_{E(x \text{ or } y)} + r \sigma^2_{HL(x \text{ or } y)} + h \sigma^2_{R/L(x \text{ or } y)} \\ + r h \sigma^2_{L(x \text{ or } y)} \end{array} $
Rep in Loc	l(<i>r</i> –1)	$MS_{R/L(x \text{ or } y)}$	$\sigma^2_{E(x \text{ or } y)} + h \sigma^2_{R/L(x \text{ or } y)}$
HSF	h–1	$MS_{H(x \text{ or } y)}$	$\sigma^2_{E(x \text{ or } y)} + r \sigma^2_{HL(x \text{ or } y)} + rl \sigma^2_{H(x \text{ or } y)}$
$HSF \times Loc$	(h-1)(1-1)	$MS_{HL(x \text{ or } y)}$	$\sigma^2_{E(x \text{ or } y)} + r \sigma^2_{HL(x \text{ or } y)}$
Error	l(<i>r</i> –1)(<i>h</i> –1)	$MS_{E(x \text{ or } y)}$	$S^2_{E(x \text{ or } y)}$

Step 3. ANOVA for Traits X + Y

Source	DF	MCP	Expected Mean Cross Product
Location	1–1	$MCP_{L(x+y)}$	$\sigma_{E(x+y)} + r \sigma_{HL(x+y)} + h \sigma_{R/L(x+y)} + rh \sigma_{L(x+y)}$
Rep in Loc	l(<i>r</i> –1)	$MCP_{R/L(x+y)}$	$\sigma_{E(x+y)} + h \sigma_{R/L(x+y)}$
HSF	<i>h</i> –1	$MCP_{H(x+y)}$	$\sigma_{(x+y)} + r \sigma_{HL(x+y)} + rl \sigma_{H(x+y)}$

$$\begin{aligned} & \text{HSF} \times \text{Loc} \quad (h-1)(l-1) & \quad & \text{MCP}_{HL(x+y)} \quad \sigma_{E(x+y)} + \text{r} \ \sigma_{HL(x+y)} \\ & \text{Error} & \quad & l(r-1)(h-1) & \quad & \text{MCP}_{E(x+y)} & \quad & \\ & \quad & \quad & E(x+y) & \quad & \end{aligned}$$

MCP is the the mean square value resulting from ANOVA on the new variable X+Y.

Step 4. Solving for Appropriate Variance Components

$$\begin{split} \sigma^{2}_{A(x)} &= \left(\left(MS_{H(x)} - MS_{H L(x)} \right) / rl \right) \\ \sigma^{2}_{A(y)} &= \left(\left(MS_{H(y)} - MS_{H L(y)} \right) / rl \right) \\ \sigma^{2}_{A(x+y)} &= \left(\left(MCP_{H(x+y)} - MCP_{H L(x+y)} \right) / rl \right) \end{split}$$

Step 5. Solving for Additive Genetic Covariance Between Traits X and Y

$$\sigma_{A(xy)} = (\sigma^2_{A(x-y)} - \sigma^2_{A(x)} - \sigma^2_{A(y)})/2$$

Step 6. Calculating Additive Genetic Correlation Between Traits X and Y

$$r_{A(xy)} = \sigma_{A(xy)} / \sqrt{(\sigma^2_{A(x)}\sigma^2_{A(y)})}$$

REFERENCES

Falconer, D.S. (1989). Introduction to quantitative genetics, Third edition. John Wiley & Sons, Inc., New York, p. 317.

Frey, K.J. and Horner, T. (1957). Heritability in standard units. Agronomy Journal 49: 59-62.

Chapter 10

Developmental Analysis for Quantitative Traits

Jun Zhu

Purpose

To analyze developmental quantitative traits.

Definitions

Genetic Model

For time-dependent traits, the phenotypic data observed at time t (t = 1, 2, ...) have the following mixed linear model:

$$y_{(t)} \quad Xb_{(t)} = \int_{u=1}^{m} U_{u} e_{u(t)}$$

$$\sim N(Xb_{(t)}, V_{(t)}) = \int_{u=1}^{m} \sigma_{u(t)}^{2} U_{u} U_{u}^{T}$$

Variance at time t, $\sigma_{u(t)}^2$, can measure genetic variation accumulated from the initial time to time t. Given the observed phenotype vector $y_{(t-1)}$ measured at time (t-1), the conditional random variables of $y_{(t)} \mid y_{(t-1)}$ at time t have conditional distribution:

$$y_{(t)}|y_{(t-1)} \quad Xb_{(t|t-1)} \quad \bigcup_{u=1}^{m} U_{u}e_{u(t|t-1)}$$

$$\sim N(Xb_{(t|t-1)}, V_{(t|t-1)} \quad \bigcup_{u=1}^{m} \sigma_{u(t|t-1)}^{2} U_{u}U_{u}^{T})$$

Since conditional $y_{(t)} | y_{(t-1)}$ is independent of $y_{(t-1)}$, conditional random effects, $e_{(t|t-1)}$, and conditional variance components, $\sigma_{u(t|t-1)}^2$ contain extra variation from time t-1 to time t, which is not explainable by the accumulated effects of the initial time to time t-1.

Analysis

With observed phenotypic data at time t-1 ($y_{(t-1)}$) and time $t(y_{(t)})$, a new random vector $y_{(*)}$ can be obtained using mixed model approaches (Zhu, 1995):

$$y_{(*)}$$
 $y_{(t)} - C_{(t-1,t)} V_{(t-1)}^{-1} (y_{(t-1)} - Xb_{(t-1)})$

The new random vector has variance,

$$\mathrm{var}(\boldsymbol{y}_{(*)}) \quad \boldsymbol{V}_{(t)} - \boldsymbol{C}_{(t-1,t)} \boldsymbol{V}_{(t-1)}^{-1} \boldsymbol{C}_{(t,t-1)},$$

which is identical to the conditional variance-covariance matrix of $V_{(t|t-1)}$. It can be proved that $y_{(*)}$ is independent of $y_{(t-1)}$.

When the new data $(y_{(*)})$ are used to fit the genetic model,

$$y_{(*)} \quad Xb_{(*)} \quad \sum_{u=1}^{m} \sigma_{u(*)}^{2} U_{u} U_{u}^{T}$$

$$\sim N(Xb_{(*)}, V_{(*)} \quad \prod_{u=1}^{m} \sigma_{u(*)}^{2} U_{u} U_{u}^{T})$$

unbiased estimation of variances, $\sigma_{u(*)}^2$, can be obtained by REML or MINQUE(1) approaches (Zhu, 1995). Prediction of random effects, $e_{u(*)}$, can be obtained by the linear unbiased prediction (LUP) method (Zhu, 1992; Zhu and Weir, 1996) or the adjusted unbiased prediction (AUP) method (Zhu, 1993; Zhu and Weir, 1996). Since $\sigma_{u(*)}^2$ is equivalent to the conditional variance $\sigma_{u(t|t-1)}^2$, genetic effects $e_{u(*)}$ also have an equivalency to the conditional genetic effects $e_{u(t|t-1)}$.

Originator

Zhu, J. (1992). Mixed model approaches for estimating genetic variances and covariances. *Journal of Biomathematics* 7(1):1-11.

- Zhu, J. (1993). Methods of predicting genotype value and heterosis for offspring of hybrids. *Journal of Biomathematics* 8(1):32-44.
- Zhu, J. (1995). Analysis of conditional effects and variance components in developmental genetics *Genetics* 141(4):1633-1639.
- Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. *Theoretical and Applied Genetics* 92(1):1-9.

Software Available

Zhu, J. (1997). GENCOND1.EXE a computer software for calculating conditional phenotypic data. *Analysis Methods for Genetic Models* (pp. 278-285), Agricultural Publication House of China, Beijing (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Unconditional data (BOL8/4 and BOL8/9) to be analyzed (file: COTBOLM.TXT) (Parent = 4, Year = 2, Blk = 1):

Env	Fem	Male	Cross	BLK	BOL8/4	BOL8/9
1	1	1	0	1	6.46	8.14
1	1	2	1	1	5.77	7.85
1	1	3	1	1	8.64	9.01
1	1	4	1	1	8.33	10.30
1	2	1	1	1	6.70	8.74
1	2	2	0	1	5.65	7.90
1	2	3	1	1	7.94	9.13
1	2	4	1	1	8.47	11.24
1	3	1	1	1	8.72	9.29
1	3	2	1	1	9.32	10.36
1	3	3	0	1	4.98	5.35
1	3	4	1	1	8.90	10.14
1	4	1	1	1	7.58	9.74
1	4	2	1	1	8.74	11.08
1	4	3	1	1	9.34	11.49
1	4	4	0	1	7.02	8.90
2	1	1	0	1	8.06	11.63
2	1	2	1	1	11.36	15.18
2	1	3	1	1	9.31	10.58
2	1	4	1	1	13.30	15.76
2	2	2	0	1	8.09	12.39

7	7	0
/	1	ĸ

2	2	3	1	1	10.87	13.50
2	2	4	1	1	15.60	20.45
2	3	3	0	1	5.05	5.78
2	3	4	1	1	12.76	14.26
2	4	4	0	1	12.29	15.86

Conditional data (BOL8/9|BOL8/4) produced and to be analyzed (Parent = 4, Year = 2, Blk = 1):

Year	Fem	Male	Cross	Blk	BOL8/9 BOL8/4
1	1	1	0	1	9.75974
1	1	2	1	1	10.0186
1	1	3	1	1	8.54954
1	1	4	1	1	9.42577
1	2	1	1	1	9.98357
1	2	2	0	1	10.3079
1	2	3	1	1	9.30607
1		4	1	1	10.1621
1	2 3	1	1	1	8.74997
1	3		1	1	9.16348
1	3	2 3	0	1	8.62587
1	3	4	1	1	8.8201
1	4	1	1	1	9.61174
1	4	2	1	1	9.73354
1	4	3	1	1	9.73246
1	4	4	0	1	8.86123
2	1	1	0	1	14.6502
2	1	2	1	1	14.8385
2	1	3	1	1	12.6994
2	1	4	1	1	12.6991
2	2	2	0	1	14.9987
2	2	3	1	1	13.9182
2	2	4	1	1	14.949
2	2 3	3	0	1	12.5327
2 2 2 2 2 2 2 2 2 2 2	3	4	1	1	12.0607
2	4	4	0	1	12.8132

1. Run GENAD.EXE to create mating design matrix files and unconditional data for the additive-dominance (AD) model. Before running these programs, create a data file (e.g., COTBOLM.TXT) for your analysis of unconditional data with five design columns followed by trait columns, which are (1) environment, (2) maternal, (3) paternal, (4) generation, and (5) replication. There is a limitation (<100 traits)

- for the number of trait columns. The data file COTBOLM.TXT contains phenotypic data of two traits (BOL8/4 and BOL8/9).
- 2. Run the program GENCOND1.EXE for constructing conditional data. The conditional data will have five design columns and will be stored in a file with the name COTBOLM.CON. Afterward, run GENAD.EXE again using the conditional data file COTBOLM. CON to create files for mating design matrix and conditional data by the AD model.
- 3. Conditional variances and conditional genetic effects can be obtained by running programs for variance analyses. Standard errors of estimates are calculated by jackknife procedures. If you have multiple blocks for your experiments, you can use GENVAR1R.EXE for jackknifing over blocks. Otherwise, you can use GENVAR1C.EXE or GENCOV1C.EXE for jackknifing over cell means. These two programs will allow you to choose the parental type (inbred or outbred) and the prediction methods (LUP or AUP). You also need to input coefficients (1, 0, or -1) for conducting linear contrasts for genetic effects of parents.
- 4. The results will be automatically stored in text files for later use or printing. An example of results is provided in a file named COTBOLM.VAR (output 1) for analysis of conditional variance and conditional genetic effects.
- 5. Developmental genetic analysis can also be conducted for other genetic models, such as GENADM.EXE for additive, dominance, and maternal models with G = A + D + M; GENADE.EXE for additive, dominance, and epistatic models with G = A + D + AA; GENSEX. EXE for additive, dominance, sex-linked, and maternal models with G = A + D + L + M; GENDIPLD.EXE for traits of diploid seeds or animals; GENTRIPL.EXE for traits of triploid endosperm.

Output 1 for Conditional Variance Analysis

```
Traits =, 1
Variance components = , 5
Degree of freedom = , 25
File name is cotbolm.VAR
Date and Time for Analysis: Sat Jun 24 19:07:06 2000

Variance Components Estimated by MINQUE(1) with GENVAR1R.EXE.
Jackknifing Over Block Conducted for Estimating S.E.
Predicting Genetic Effects by Adjusted Unbiased Prediction (AUP) Method.
```

```
NS = Not significant; S+ = Significant at 0.10 level.
S^* = Significant at 0.05 level; S^{**} = Significant at 0.01 level.
Linear Contrast Test:
+<1> +<2> -<3> +<4>
```

Diallel Analysis of Trait, BOL8/9|BOL8/4, for Public Users.

AE3 in E2	-0.305599			S+
	-0.210610			NS
Linear Contrast	1.58114e-005	1.77345e-005	0.381	NS
(4): Random Effect is	Dom. * Env. Effec	ts		
DE1 in E1	-0.320161			NS
DE2 in E1	0.368241	0.179784	0.0512	S+
DE3 in E1	-0.184366	0.161795	0.265	NS
DE4 in E1	-0.541939	0.380790	0.167	NS
DE1 in E2	-0.053143	0.150489	0.727	NS
DE2 in E2	-0.057755	0.290609	0.844	NS
DE3 in E2	0.687891	0.349814	0.0604	S+
DE4 in E2	-0.303718	0.189203	0.121	NS
DE1 in E3	-0.340375	0.372988	0.37	NS
DE2 in E3	0.745340	0.610413	0.233	NS
DE3 in E3	0.927552	0.534879	0.0952	S+
DE4 in E3	-0.569171	0.246751	0.0296	S*
DE1 in E4	0.343324	0.197179	0.0939	S+
DE2 in E4	0.301441	0.324563	0.362	NS
DE3 in E4	0.139931	0.334570	0.679	NS
DE4 in E4	-0.560693	0.344209	0.116	NS
DE1 in E5	-1.175256	0.700765	0.106	NS
	0.311932		0.205	NS
DE3 in E5	1.167883	0.778234	0.146	NS
DE4 in E5	-0.887039	0.664529	0.194	NS
Heterosis <delta></delta>	0	0	1	NS

Fixed Effect <1>, 9.42573 Fixed Effect <2>, 13.616

Time Used (Hour) = 0.000556

Chapter 11

Ecovalence and Stability Variance

Manjit S. Kang

Purpose

To identify and select genotypes with consistent (stable) performance across diverse environments (broad adaptation).

Definitions

Ecovalence

Ecovalence is the sum of squares contributed by a genotype to a genotype-by-environment interaction:

$$W_i = (u_{ij} - \overline{u}_i.)^2$$

where $W_i = ecovalence$ for *i*th genotype, $u_{ij} = x_{ij} - \bar{x}_{.j}$, $x_{ij} =$ observed trait value for the *i*th genotype in *j*th environment, $\bar{x}_{.j} =$ mean of all genotypes in *j*th environment; \bar{u}_i . u_{ij} / s , s = number of environments.

Originator

Wricke, G. (1962). Über eine Methode zur Erfassung der ökologischen Streubreite. *Zeitschrift für Pflanzenzüchtung* 47:92-96.

Stability Variance

Stability variance measures the consistency of performance of a genotype across a set of diverse environments. The smaller the value, the greater the stability:

$$\sigma_i = 1/(s-1)(t-1)(t-2) \times t(t-1) = {}_i(u_{ij} - \overline{u}_i.)^2 - {}_i = {}_i(u_{ij} - \overline{u}_i.)^2$$

where, σ_i^2 = stability variance for the *i*th genotype, and t = total number of genotypes evaluated.

When genotype-by-environment interaction is significant, it is desirable to know the factor(s) responsible for the interaction. Technically, factors are used as covariates and their linear effects, which represent heterogeneity or nonadditivity, are removed. Following the removal of heterogeneity, the remainder of the genotype-by-environment interaction is examined for significance. If heterogeneity is significant, the contribution of each genotype (s_i^2) to the residual genotype-by-environment interaction can be determined using the following formula provided by Shukla (1972):

$$s_i^2$$
 $t/(t-2)(s-2)(s-2) \times S_i - S_i/t(t-1)$,

where $S_i = {}_j(u_{ij} - \overline{u}_i.-b_iZ_j)^2$, and $b_i = {}_i u_{ij} - \overline{u}_i. Z_j / {}_jZ_j$, and $Z_j = \overline{x}..$

Originator

Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. *Heredity* 29:237-245.

Software Available

Kang, M.S. (1989). A new SAS program for calculating stability-variance parameters. *Journal of Heredity* 80:415. (software is free of charge).

Key Reference(s) Using the Concept/Software/Formula

Kang, M.S. (1993). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal 85:754-757.

Pazdernick, D.L., Hardman, L.L., and Orf, J.H. (1997). Agronomic performance and stability of soybean varieties grown in three maturity zones of Minnesota. *Journal of Production Agriculture* 10:425-430.

Contact

Dr. M.S. Kang, 105 Sturgis Hall, Louisiana State University, Baton Rouge, LA 70803-2110, USA. E-mail: mKang@agctr.lsu.edu.

EXAMPLE

Data to be analyzed (Yield):

2 000 00 00 000000000000000000000000000	(-,•				
Environments	Env1	Env2	Env3	Env4	Env5	Env6
Genotypes						
Genotype1	161.7	247.0	185.4	218.7	165.3	154.6
Genotype2	187.7	257.5	182.4	183.3	138.9	143.8
Genotype3	200.1	262.9	194.9	220.2	165.8	146.3
Genotype4	196.9	339.2	271.2	266.3	151.2	193.6
Genotype5	182.5	253.8	219.2	200.5	184.4	190.1
Zj	-16.41	69.93	8.43	15.63	-41.07	-36.51

[†]Each cell represents summation of six observations (six replications).

Case 1: Using Totals Across Replications

Since each cell in the above data represents a "total" of six observations, the value for N in the computer program provided in this chapter will be 6, and that for REP will be 1 (N = 6; REP = 1); For the given data set, $\bar{x}_{..} = 202.18$ (grand mean), and

$$Z_i = \bar{x}_{i,j} - \bar{x}_{i,j} - 16.41 69.93 8.43 15.63 - 41.07 - 36.51$$

Note: Z_i represents a covariate.

Program Listing for Case 1

```
DATA GENETIC;
INPUT X1 - X6;
CARDS;
161.7 247.0 185.4 218.7 165.3
                                 154.6
187.7 257.5 182.4 183.3
                          138.9 143.8
200.1 262.9 194.9 220.2
                           165.8 146.3
196.9 339.2 271.2 266.3
                           151.2
                                  193.6
182.5 253.8 219.2 200.5
                           184.4
                                 190.1
PROC IML; USE GENETIC;
READ ALL VAR ALL INTO X;
N=6; REP=1;
ZJ = \{-16.41 69.93 8.43 15.63 -41.07 -36.51\};
P=NROW(X); Q=NCOL(X);
```

```
CMEAN=X(|+,|)/P;
GENO=J(P,Q); START;
DO I=1 TO P; GENO(|I,|)=CMEAN(|1,1:Q|); END;
FINISH; RUN;
U=X - GENO; UM=U/Q;
ENV=J(P,Q); START;
DO K=1 TO Q;
ENV(|,K|) = UM(|,+|); END;
FINISH; RUN;
DIFF=U-ENV; SSDIFF=(DIFF#DIFF)(|,+|);
SUMSS=SUM(SSDIFF); ECOV=SSDIFF/N;
L=P*(P-1); E=(O-1)*(P-1)*(P-2);
LSSDIFF=(SSDIFF*L)/N;
D=J(P,1,(SUMSS/N));
SIG=LSSDIFF-D; SIGMA=SIG/E;
SUMSQZJ=SUM(ZJ\#ZJ); HAT=J(P,Q);
START; DO R=1 TO P;
HAT(|R,|)=ZJ(|1,1:0|); END;
FINISH; RUN;
NEW=DIFF#HAT; BETA=(NEW/SUMSQZJ)(|,+|);
GP=J(P,Q); START;
DO C=1 TO Q; GP(|,C|)=BETA(|1:P,1|); END;
FINISH; RUN;
BIZJ=HAT#GP; NEWDIFF=(DIFF-BIZJ);
SI=(NEWDIFF\#NEWDIFF)(|,+|); TS=P/((P-2)*(Q-2));
TOTSI=SUM(SI)/L; SP=((SI-TOTSI)*TS)/N;
F=D(|1,1|); START;
IF N=1 THEN DO; ECOV=ECOV*REP;
F=F*REP; SIGMA=SIGMA*REP; SP=SP*REP; END;
FINISH; RUN;
TITLE 'STABILITY-VARIANCE';
TITLE2 'X MATRIX REPRESENTS INPUT DATA';
TITLE3 'ECOV MATRIX REPRESENTS GXE SS FOR EACH GENOTYPE';
TITLE4 'F MATRIX REPRESENTS TOTAL GXE SS';
TITLE5 'SIGMA MATRIX REPRESENTS STABILITY VARIANCE FOR EACH GENOTYPE';
TITLE6 'SP MATRIX REPRESENTS SMALL S-SQUARE SUB-I';
PRINT X, ECOV, F, SIGMA, SP; RUN;
```

Case 1 Output

```
X MATRIX REPRESENTS INPUT DATA
ECOV MATRIX REPRESENTS GXE SS FOR EACH GENOTYPE
TITLE4 'F MATRIX REPRESENTS TOTAL GXE SS';
SIGMA MATRIX REPRESENTS STABILITY VARIANCE FOR EACH GENOTYPE
SP MATRIX REPRESENTS SMALL S-SQUARE SUB-I
```

X	COL1	COL2	COL3	COL4	COL5	COL6
ROW1	161.7	247.0	185.4	218.7	165.3	154.6
ROW2	187.7	257.5	182.4	183.3	138.9	143.8
ROW3	200.1	262.9	194.9	220.2	165.8	146.3
ROW4	196.9	339.2	271.2	266.3	151.2	193.6
ROW5	182.5	253.8	219.2	200.5	184.4	190.1

ECOV COL1 ROW1 151.5

ROW2 19.599 ROW3 22.730 ROW4 225.5 ROW5 75.680 SP COL1 ROW1 34.1069 ROW2 40.4848	W2 W3 W4 W5	132.7 142.1 750.5 300.9
ROW1 25.87 ROW2 19.59 ROW3 22.73 ROW4 225.5 ROW5 75.68 SP COL1 ROW1 34.106 ROW2 40.484	W1	
ROW1 34.1065 ROW2 40.4848	W1 W2 W3 W4	25.8793 19.5998 22.730
ROW4 79.6618	W1 W2 W3 W4	COL1 34.1065 40.4848 42.8052 79.6618 23.2671

NOTE: EXIT FROM IML

Case 2: Using Means Across Replications

Differences when running the program using means across replications:

- After the *CARDS* statement, enter the means instead of totals across replications.
- Calculate ZJ using means instead of totals.
- N = 1; REP = 6.

Genotype-by-Environment Interaction Variance

Robert Magari Manjit S. Kang

Purpose

To estimate genotype-by-environment interaction and evaluate performance across a range of environments.

Definitions

Genotype-by-environment variance (GE variance) program is a restricted maximum likelihood estimator of Shukla's (1972) stability variance.

Originator

Shukla, G.K. (1972). Some statistical aspects of partitioning genotype-environment components of variability. *Heredity* 29:237-245.

Software Available

Magari, R. and Kang, M.S. (1997). SAS_STABLE: Analysis of balanced and unbalanced data. *Agronomy Journal* 89:929-932. The software is provided free of charge.

Key References

Kang, M.S. and Magari, R. (1996). New developments in selecting for phenotypic stability in crop breeding. In Kang, M.S. and Gauch, H.G. (Eds.), *Genotype by Environment Interaction* (pp. 1-14). CRC Press, Boca Raton, FL.

Magari, R., Kang, M.S., and Zhang, Y. (1997). Genotype by environment interaction for ear moisture loss in corn. *Crop Science* 37:774-779.

Contact

Dr. M.S. Kang, 105 Sturgis Hall, Louisiana State University, Baton Rouge, LA 70803-2110, USA. E-mail: <mKang@agctr.lsu.edu>.

EXAMPLE

Replicated data of several genotypes in different environments are entered in SAS format. The solutions to the parameters are obtained as follows:

where \mathbf{y} is vector of observations, $\hat{\boldsymbol{\beta}}$, $\hat{\boldsymbol{\alpha}}$, $\hat{\boldsymbol{\alpha}}$, and $\hat{\boldsymbol{\delta}}_k$ are the vector of estimates for genotypes, environments, replicates within environments, and each GEI, respectively. \mathbf{X} is the design matrix of the fixed effects (genotypes), \mathbf{Z}_1 is the design matrix for environments, \mathbf{Z}_2 is the design matrix for replications-within-environments, and \mathbf{Z}_{3k} is the design matrix for GEI of the kth genotype.

Variance components are defined and calculated as follows:

Environmental variance

$$\hat{\sigma}^2_E = \frac{\hat{a} \, I \hat{a} \quad tr \, C_{22} \, \hat{\sigma}^2}{a}$$

Replications-within-environment variance

$$\hat{\sigma}^2_{R/E} = \frac{\hat{I} \cdot tr C_{33} \hat{\sigma}^2}{b}$$

Genotype-by-environment interaction variance

$$\hat{\sigma}^{2}_{GE(k)} = \frac{\hat{\delta}_{k} I \hat{\delta}_{k} \quad tr \; \mathbf{C}_{(3 k)(3 k)} \; \hat{\sigma}^{2}}{\text{no. columns of } \mathbf{Z}_{3k}}$$

Experimental error variance

$$\hat{\sigma}^2 \qquad \frac{y \, y - \hat{\beta} \, X \, y - \hat{u} \, Z \, y}{n - c}$$

where I represents identity matrix, C represents corresponding blocks of inverse of the aforementioned (large) matrix, where solutions of parameters are obtained, a is the number of environments, b is the number of replicates, c is the number of genotypes, and n is the dimension of the y vector.

Program Listing

```
proc iml;
use early;
/* Read data into vectors*/;
read all var{earwt} into y;
read all var{hybrid} into X;
read all var{date} into ZE;
read all var{rep} into r;
/* Set up design matrices */;
R=design(r);
X=design(X);
ZE=design(ZE);
U=hdir(X,ZE);
RE=hdir(R, ZE);
nr=ncol(RE);
W=X | | ZE | | U | | RE;
dim=ncol(W);
t=nrow(y);
a=ncol(X);
b=ncol(ZE);
yy=y`*y;
wy=W`*y;
ww=W`*W;
bb=ncol(U);
```

```
/* Starting values for iterations */;
lambda=0.4;
lambda1=0.4;
lambda2=0.4;
/* Set up matrices and start iterations */;
block1=j(a,a,0);
do iter=1 to 1000;
block2=I(b) *lambda;
block3=I(bb)*lambda1;
block4=I(nr)*lambda2;
addon=block(block1,block2,block3,block4);
M=ww+addon;
invM=inv(M);
/* Solutions for vector of effects (BLUE and BLUP) */;
solution=invM*wy;
/* Variance components */;
sigmae=(yy-solution`*wy)/(t-a);
ue=solution[a+1:a+b];
uel=solution[a+1+b:a+2*b];
ue2=solution[a+1+2*b:a+3*b];
ue3=solution[a+1+3*b:a+4*b];
ue4=solution[a+1+4*b:a+5*b];
ue5=solution[a+1+5*b:a+6*b];
ue6=solution[a+1+6*b:a+7*b];
ue7=solution[a+1+7*b:a+8*b];
ue8=solution[a+1+8*b:a+9*b];
ur=solution[a+1+9*b:a+9*b+nr];
true=trace(invM[a+1:a+b,a+1:a+b]);
sigmaue=(ue`*ue+true*sigmae)/b;
true1=trace(invM[a+1+b:a+2*b,a+1+b:a+2*b]);
s1=(ue1`*ue1+true1*sigmae)/b;
true2=trace(invM[a+1+\overline{2}*b:a+3*b,a+1+2*b:a+3*b]);
s2=(ue2`*ue2+true2*sigmae)/b;
true3=trace(invM[a+1+3*b:a+4*b, a+1+3*b:a+4*b]);
s3=(ue3`*ue3+true3*sigmae)/b;
true4=trace(invM[a+1+4*b:a+5*b,a+1+4*b:a+5*b]);
s4=(ue4`*ue4+true4*sigmae)/b;
true5=trace(invM[a+1+5*b:a+6*b, a+1+5*b:a+6*b]);
s5=(ue5`*ue5+true5*sigmae)/b;
true6=trace(invM[a+1+6*b:a+7*b, a+1+6*b:a+7*b]);
s6=(ue6`*ue6+true6*sigmae)/b;
true7=trace(invM[a+1+7*b:a+8*b, a+1+7*b:a+8*b]);
s7=(ue7`*ue7+true7*sigmae)/b;
true8=trace(invM[a+1+8*b:a+9*b, a+1+8*b:a+9*b]);
s8=(ue8`*ue8+true8*sigmae)/b;
truer=trace(invM[a+b+bb+1:a+b+bb+nr, a+b+bb+1:a+b+bb+nr]);
sigmar=(ur`*ur+truer*sigmae)/nr;
if (mod (iter, 10) = 0) then print iter sigmae sigmaue sigmar;
if (mod(iter, 10) = 0) then print iter s1 s2 s3 s4 s5 s6 s7 s8;
sig=(s1+s2+s3+s4+s5+s6+s7+s8)/a;
lambda=sigmae/sigmaue;
lambda1=sigmae/sig;
```

```
lambda2=sigmae/sigmar;
if (mod(iter, 10) = 0) then print iter sig;
end:
/* Set up of Fisher's information matrix */;
e1=\{1,0,0,0,0,0,0,0,0,0\};
e2={0,1,0,0,0,0,0,0,0};
e3={0,0,1,0,0,0,0,0};
e4={0,0,0,1,0,0,0,0};
e5={0,0,0,0,1,0,0,0};
e6={1,0,0,0,0,1,0,0};
e7=\{1,0,0,0,0,0,1,0\};
e8=\{1,0,0,0,0,0,0,1\};
a=ncol(X);
k=I(b);
ee1=e1@k;
ee2=e2@k;
ee3=e3@k;
ee4=e4@k;
ee5=e5@k;
ee6=e6@k;
ee7=e7@k;
ee8=e8@k;
Z1=U*ee1;
Z2=U*ee2;
Z3=U*ee3;
Z4=U*ee4;
75=U*ee5:
Z6=U*ee6;
Z7=U*ee7;
Z8=U*ee8;
fi=j(11,11,0);
V=ZE*ZE`*sigmaue+RE*RE`*sigmar+U*U`*sig+I(t)*sigmae;
vi=inv(V);
p=vi-vi*X*inv(X`*vi*X)*X`*vi;
fi[1,1]=0.5*trace(p*ZE*ZE`*p*ZE*ZE`);
fi[1,2]=0.5*trace(p*ZE*ZE`*p*RE*RE`);
fi[1,3]=0.5*trace(p*ZE*ZE`*p*Z1*Z1`);
fi[1,4]=0.5*trace(p*ZE*ZE`*p*Z2*Z2`);
fi[1,5]=0.5*trace(p*ZE*ZE`*p*Z3*Z3`);
fi[1,6]=0.5*trace(p*ZE*ZE`*p*Z4*Z4`);
fi[1,7]=0.5*trace(p*ZE*ZE`*p*Z5*Z5`);
fi[1,8]=0.5*trace(p*ZE*ZE`*p*Z6*Z6`);
fi[1,9]=0.5*trace(p*ZE*ZE`*p*Z7*Z7`);
fi[1,10]=0.5*trace(p*ZE*ZE`*p*Z8*Z8`);
fi[1,11]=0.5*trace(p*ZE*ZE`*p);
fi[2,1]=fi[1,2]; fi[2,2]=0.5*trace(p*RE*RE`*p*RE*RE`);
fi[2,3]=0.5*trace(p*RE*RE`*p*Z1*Z1`);
fi[2,4]=0.5*trace(p*RE*RE`*p*Z2*Z2`);
fi[2,5]=0.5*trace(p*RE*RE`*p*Z3*Z3`);
fi[2,6]=0.5*trace(p*RE*RE`*p*Z4*Z4`);
fi[2,7]=0.5*trace(p*RE*RE`*p*Z5*Z5`);
fi[2,8]=0.5*trace(p*RE*RE`*p*Z6*Z6`);
fi[2,9]=0.5*trace(p*RE*RE`*p*Z7*Z7`);
fi[2,10]=0.5*trace(p*RE*RE`*p*Z8*Z8`);
```

```
fi[2,11]=0.5*trace(p*RE*RE`*p);
fi[3,1]=fi[1,3]; fi[3,2]=fi[2,3];
fi[3,3]=0.5*trace(p*Z1*Z1`*p*Z1*Z1`);
fi[3,4]=0.5*trace(p*Z1*Z1`*p*Z2*Z2`);
fi[3,5]=0.5*trace(p*Z1*Z1`*p*Z3*Z3`);
fi[3,6]=0.5*trace(p*Z1*Z1`*p*Z4*Z4`);
fi[3,7]=0.5*trace(p*Z1*Z1`*p*Z5*Z5`);
fi[3,8]=0.5*trace(p*Z1*Z1`*p*Z6*Z6`);
fi[3,9]=0.5*trace(p*Z1*Z1`*p*Z7*Z7`);
fi[3,10]=0.5*trace(p*Z1*Z1`*p*Z8*Z8`);
fi[3,11]=0.5*trace(p*Z1*Z1`*p);
fi[4,1]=fi[1,4]; fi[4,2]=fi[2,4];
fi[4,3]=fi[3,4]; fi[4,4]=0.5*trace(p*Z2*Z2`*p*Z2*Z2`);
fi[4,5]=0.5*trace(p*Z2*Z2`*p*Z3*Z3`);
fi[4,6]=0.5*trace(p*Z2*Z2`*p*Z4*Z4`);
fi[4,7]=0.5*trace(p*Z2*Z2`*p*Z5*Z5`);
fi[4,8]=0.5*trace(p*Z2*Z2`*p*Z6*Z6`);
fi[4,9]=0.5*trace(p*Z2*Z2`*p*Z7*Z7`);
fi[4,10]=0.5*trace(p*Z2*Z2`*p*Z8*Z8`);
fi[4,11]=0.5*trace(p*Z2*Z2`*p);
fi[5,1]=fi[1,5]; fi[5,2]=fi[2,5];
fi[5,3]=fi[3,5]; fi[5,4]=fi[4,5];
fi[5,5]=0.5*trace(p*Z3*Z3`*p*Z3*Z3`);
fi[5,6]=0.5*trace(p*Z3*Z3`*p*Z4*Z4`);
fi[5,7]=0.5*trace(p*Z3*Z3`*p*Z5*Z5`);
fi[5,8]=0.5*trace(p*Z3*Z3`*p*Z6*Z6`);
fi[5,9]=0.5*trace(p*Z3*Z3`*p*Z7*Z7`);
fi[5,10]=0.5*trace(p*Z3*Z3`*p*Z8*Z8`);
fi[5,11]=0.5*trace(p*Z3*Z3`*p);
fi[6,1]=fi[1,6]; fi[6,2]=fi[2,6];
fi[6,3]=fi[3,6]; fi[6,4]=fi[4,6];
fi[6,5]=fi[5,6]; fi[6,6]=0.5*trace(p*Z4*Z4`*p*Z4*Z4`);
fi[6,7]=0.5*trace(p*Z4*Z4`*p*Z5*Z5`);
fi[6,8]=0.5*trace(p*Z4*Z4`*p*Z6*Z6`);
fi[6,9]=0.5*trace(p*Z4*Z4`*p*Z7*Z7`);
fi[6,10]=0.5*trace(p*Z4*Z4`*p*Z8*Z8`);
fi[6,11]=0.5*trace(p*Z4*Z4`*p);
fi[7,1]=fi[1,7]; fi[7,2]=fi[2,7];
fi[7,3]=fi[3,7]; fi[7,4]=fi[4,7];
fi[7,5]=fi[5,7]; fi[7,6]=fi[6,7];
fi[7,7]=0.5*trace(p*Z5*Z5`*p*Z5*Z5`);
fi[7,8]=0.5*trace(p*Z5*Z5`*p*Z6*Z6`);
fi[7,9]=0.5*trace(p*Z5*Z5`*p*Z7*Z7`);
fi[7,10]=0.5*trace(p*Z5*Z5`*p*Z8*Z8`);
fi[7,11]=0.5*trace(p*Z5*Z5`*p);
fi[8,1]=fi[1,8]; fi[8,2]=fi[2,8];
fi[8,3]=fi[3,8]; fi[8,4]=fi[4,8];
fi[8,5]=fi[5,8]; fi[8,6]=fi[6,8];
fi[8,7]=fi[7,8]; fi[8,8]=0.5*trace(p*Z6*Z6`*p*Z6*Z6`);
fi[8,9]=0.5*trace(p*Z6*Z6`*p*Z7*Z7`);
fi[8,10]=0.5*trace(p*Z6*Z6`*p*Z8*Z8`);
fi[8,11]=0.5*trace(p*Z6*Z6`*p);
```

```
fi[9,1]=fi[1,9]; fi[9,2]=fi[2,9];
fi[9,3]=fi[3,9]; fi[9,4]=fi[4,9];
fi[9,5]=fi[5,9]; fi[9,6]=fi[6,9];
fi[9,7]=fi[7,9]; fi[9,8]=fi[8,9];
fi[9,9]=0.5*trace(p*Z7*Z7`*p*Z7*Z7`);
fi[9,10]=0.5*trace(p*Z7*Z7`*p*Z8*Z8`);
fi[9,11]=0.5*trace(p*Z7*Z7`*p);
fi[10,1]=fi[1,10]; fi[10,2]=fi[2,10];
fi[10,3]=fi[3,10]; fi[10,4]=fi[4,10];
fi[10,5]=fi[5,10]; fi[10,6]=fi[6,10];
fi[10,7]=fi[7,10]; fi[10,8]=fi[8,10];
fi[10,9]=fi[9,10]; fi[10,10]=0.5*trace(p*Z8*Z8`*p*Z8*Z8`);
fi[10,11]=0.5*trace(p*Z8*Z8`*p);
fi[11,1]=fi[1,11]; fi[11,2]=fi[2,11];
fi[11,3]=fi[3,11]; fi[11,4]=fi[4,11];
fi[11,5]=fi[5,11]; fi[11,6]=fi[6,11];
fi[11,7]=fi[7,11]; fi[11,8]=fi[8,11];
fi[11,9]=fi[9,11]; fi[11,10]=fi[10,11];
fi[11,11]=0.5*trace(p*p);
/* Inverse of Fisher's information matrix */;
asvc=inv(fi);
/* Standard errors */;
errue1=j(a,1,0);
errue=sqrt(asvc[1,1]);
errar=sqrt(asvc[2,2]);
errue1[1]=sqrt(asvc[3,3]);
errue1[2]=sqrt(asvc[4,4]);
errue1[3]=sqrt(asvc[5,5]);
errue1[4]=sqrt(asvc[6,6]);
errue1[5]=sqrt(asvc[7,7]);
errue1[6]=sqrt(asvc[8,8]);
errue1[7]=sqrt(asvc[9,9]);
errue1[8]=sqrt(asvc[10,10]);
errae=sqrt(asvc[11,11]);
/* Testing */;
zerror=sigmae/errae;
zenv=sigmaue/errue;
zrepenv=sigmar/errar;
perror=(1-probnorm(zerror))*2;
penv=(1-probnorm(zenv))*2;
prepenv=(1-probnorm(zrepenv))*2;
s=j(a,1,0);
z=j(a,1,0);
pqe=j(a,1,0);
s[1]=s1;
s[2]=s2;
s[3]=s3;
s[4]=s4;
s[5]=s5;
s[6]=s6;
```

```
s[7]=s7;
s[8]=s8;
ii=j(a,1,1);
z=s/errue1;
pge=(ii-probnorm(z))*2;
gen=j(a,1,0);
do i=1 to a;
gen[i]=i;
end;
print'Fisher's information matrix';
print fi;
print' Inverse of Fisher's information matrix';
print asvc;
print'Individual GxE variance components';
print gen s erruel
                                   pge;
print'Error';
print sigmae errae perror;
print'Environment';
print sigmaue errue penv;
print'Replications within environment';
print sigmar errar prepenv;
```

Output

ITERATION HISTORY OF STABILITY VARIANCES

```
ITER S
10 0.0034962
0.0030041
0.003348
0.0044955

ITER S
20 0.0027947
0.0024548
0.0026893
0.0035634

ITER S
100 0.002327
0.0022955
0.0022605
0.0029363
```

SOURCE	GENOTYPE	MEAN	VARIANCE	ERROR	Z	PROB
ENV	•	4.15499	0.025184	0.021807	1.15486	0.24815
GXE GXE	2	4.15499	0.002327	0.001933	1.20366 1.08388	0.22872
GXE	3	4.14078	0.002261	0.001880	1.20265	0.22911
GXE	4	4.18702	0.002936	0.001880	1.56219	0.11824
REP/ENV ERROR		:	0.000643 0.008739	0.001527 0.002464	0.42118 3.54657	0.67363 0.00039

Code for Simulating Degrees of Freedom for the Items in a Principal Components Analysis of Variance

Walter T. Federer Russell D. Wolfinger

Purpose

To provide simulations required to approximate degrees of freedom for such items as principal components, autoregressions, smoothing, kriging, and the like.

Data

The experiment design is a balanced lattice square in which v = 16 insecticide treatments and r = 5 replicates (complete blocks). The measurement y is the mean of three counts of plants infected with boll weevil. The variable grad in the input statement of the following program listing is the linear polynomial regression coefficients of count on column order in each row of a replicate.

For each simulation using random unit normal deviates, the randomization plan of the experiment for which degrees of freedom are being estimated, is utilized. Then, the sum of squares for a line in the analysis of variance is an estimate of the degrees of freedom since the expected value of each mean square is one.

Originator

Cochran, W.G. and Cox, G.M. (1957). *Experimental Designs*, John Wiley & Sons, New York.

Contact

Dr. Walter T. Federer, Department of Biometrics, Cornell University, Ithaca, New York. E-mail: <wtf1@Cornell.edu>.

```
/* Here the data are included, but an infile statement may be used to
    input the plan of the experiment to be simulated. */
data original;
input y rep row col grad treat;
  label row='incomplete block';
  datalines;
 9.0 1 1 1 -3 10
20.3 1 1 2 -1 12
17.7 1 1 3 1 9
26.3 1 1 4 3 11
 4.7 1 2 1 -3 2
 9.0 1 2 2 -1 4
 7.3 1 2 3 1 1
 8.3 1 2 4 3 3
 9.0 1 3 1 -3 14
 6.7 1 3 2 -1 16
11.7 1 3 3 1 13
 4.3 1 3 4 3 15
 4.0 1 4 1 -3 6
 5.0 1 4 2 -1 8
5.7 1 4 3 1 5
14.3 1 4 4 3 7
19.0 2 1 1 -3 5
8.7 2 1 2 -1 12
13.0 2 1 3 1 15
15.7 2 1 4 3 2
12.0 2 2 1 -3 10
6.0 2 2 2 -1 7
15.3 2 2 3 1 4
12.0 2 2 4 3 13
12.7 2 3 1 -3 16
 6.3 2 3 2 -1 1
1.7 2 3 3 1 6
13.0 2 3 4 3 11
 3.7 2 4 1 -3 3
 3.7 2 4 2 -1 14
8.0 2 4 3 1 9
13.3 2 4 4 3 8
17.0 3 1 1 -3 10
7.0 3 1 2 -1 15
10.3 3 1 3 1 8
1.3 3 1 4 3 1
11.3 3 2 1 -3 9
12.3 3 2 2 -1 16
3.0 3 2 3 1 7
5.3 3 2 4 3 2
12.3 3 3 1 -3 12
 8.7 3 3 2 -1 13
 8.0 3 3 3 1 6
 9.3 3 3 4 3 3
```

```
30.3 3 4 1 -3 11
22.3 3 4 2 -1 14
11.0 3 4 3 1 5
12.7 3 4 4 3 4
5.0 4 1 1 -3 16
10.3 4 1 2 -1 12
5.7 4 1 3 1 8
12.7 4 1 4 3 4
2.7 4 2 1 -3 11
6.7 4 2 2 -1 15
10.3 4 2 3
           1
5.7 4 2 4 3
1.0 4 3 1 -3 1
10.3 4 3 2 -1 5
           1 9
11.3 4 3 3
11.7 4 3 4 3 13
11.0 4 4 1 -3 6
19.0 4 4 2 -1 2
20.7 4 4 3 1 14
29.7
    4 4 4 3 10
2.0 5 1 1 -3 3
5.0 5 1 2 -1 16
4.0 5 1 3 1 5
13.7 5 1 4 3 10
9.3 5 2 1 -3 6
1.7 5 2 2 -1 9
6.3 5 2 3 1 4
12.3 5 2 4 3 15
16.7 5 3 1 -3 12
4.3 5 3 2 -1 7
18.7 5 3 3 1 14
8.7 5 3 4 3 1
16.7 5 4 1 -3 13
30.0 5 4 2 -1 2
25.7 5 4 3 1 11
14.0 5 4 4 3 8
run;
/* data sets for the pc analysis */
proc sort data=original;
  by rep row col;
run;
%let nsim=2; /* nsim=2 is for 2 simulations. Usually nsim will be
    large. */
%let seed=2834701; /* Any random seed may be specified. */
data sim;
  set original;
  do k=1 to ≁
     y = rannor(&seed); /* This statement says that unit normal ran-
    dom deviates are to be used in the simulation. */
     output;
  end;
/* principal component analysis, by k, i. e. for each simulated analy-
    sis, and rep */
proc sort data=sim;
  by k rep col row;
proc transpose data=sim prefix=row out=simr(drop= name );
```

```
by k rep col;
   var y;
proc princomp data=simr prefix=rpc n=2 out=rowvar noprint;
   by k rep;
   var row1-row4; /* Four rows in the design. */
proc sort data=sim;
   by k rep row col;
proc transpose data=sim prefix=col out=simc(drop= name );
  by k rep row;
   var y;
proc princomp data=simc prefix=cpc n=2 out=colvar noprint;
   by k rep;
  var col1-col4; /* Four columns in the design. */
/* expand data sets and merge */
data cc;
  set colvar;
   array colv{4} col1-col4;
   do col = 1 to 4;
     y = colv{col};
     output;
   end:
   drop col1-col4;
data rr;
   set rowvar:
   array rowv{4} row1-row4;
   do row = 1 to 4;
     y = rowv\{row\};
     output;
   end;
   drop row1-row4;
proc sort data=rr;
  by k rep row col;
data ana;
  merge sim cc rr;
   by k rep row col;
/* analysis of variance using the principal components, non-nested */
proc glm data=ana outstat=o1 noprint;
   by k;
   class rep treat;
   model y=rep treat cpc1 cpc2 rpc1 rpc2 cpc1*rpc1 cpc1*rpc2
      cpc2*rpc1 cpc2*rpc2;
proc print data=o1;
/* using the principal components, nested */
proc glm data=ana outstat=o2 noprint;
   by k;
  class rep treat;
  model y=rep treat cpc1(rep) cpc2(rep) rpc1(rep) rpc2(rep)
      cpc1*rpc1(rep) cpc1*rpc2(rep) cpc2*rpc1(rep) cpc2*rpc2(rep) ;
proc print data=02;
run;
/* using the textbook analysis of the design as in Cochran and Cox
     (1957), page 493, and as given above. This provides a check on
     the simulations as the sums of squares are the degrees of free-
     dom. */
proc glm data=ana outstat=o3 noprint;
   by k;
```

```
class rep row col treat;
model y=rep treat row(rep) col(rep);
lsmean treat;
proc print data=o3;
run;
```

Output from this program follows. SS1 is type I sum of squares; SS3 is type III sum of squares; and the sum of squares is the degrees of freedom as the expected value of each mean square in the table is one.

Unn	ested	РСТА	ANOVA - run 1					
OBS		NAME	SOURCE	TYPE	DF	SS	F	PROB
1	1		ERROR	ERROR	52	41.0582	_	
2	1	Y	REP	SS1	4	10.6315	3.3662	0.01594
3	1	Y	TREAT	SS1	15	16.8648	1.4239	0.17144
4	1	Y	CPC1	SS1	1	9.5108	12.0454	0.00105
5	1	Y	CPC2	SS1	1	0.0890	0.1127	0.73848
6	1	Y	RPC1	SS1	1	5.9200	7.4976	0.00844
7	1	Y	RPC2	SS1	1	1.1131	1.4097	0.24049
8	1	Y	CPC1*RPC1	SS1	1	0.4601	0.5828	0.44869
9	1	Y	CPC1*RPC2	SS1	1	2.9147	3.6915	0.06018
10	1	Y	CPC2*RPC1	SS1	1	0.0440	0.0558	0.81427
11	1	Y	CPC2*RPC2	SS1	1	0.0642	0.0813	0.77664
12	1	Y	REP	SS3	4	10.6315	3.3662	0.01594
13	1	Y	TREAT	SS3	15	5.6731	0.4790	0.94084
14	1	Y	CPC1	SS3	1	9.0891	11.5113	0.00133
15	1	Y	CPC2	SS3	1	0.3867	0.4898	0.48715
16	1	Y	RPC1	SS3	1	6.1529	7.79260	0.00732
17	1	Y	RPC2	SS3	1	0.9345	1.18358	0.28165
18	1	Y	CPC1*RPC1	SS3	1	0.6489	0.82188	0.36881
19	1	Y	CPC1*RPC2	SS3	1	2.9887	3.78517	0.05712
20	1	Y	CPC2*RPC1	SS3	1	0.0470	0.05948	0.80827
21	1	Y	CPC2*RPC2	SS3	1	0.0642	0.08133	0.77664
Unn	ested	РСТА	ANOVA - run 2					
22	2	Y	ERROR	ERROR	52	38.1947		
23	2	Y	REP	SS1	4	1.9787	0.67346	0.61338
24	2	Y	TREAT	SS1	15	19.1134	1.73479	0.07252
25	2	Y	CPC1	SS1	1	1.7968	2.44618	0.12388
26	2	Y	CPC2	SS1	1	1.8594	2.53141	0.11766
27	2	Y	RPC1	SS1	1	6.0489	8.23524	0.00593
28	2	Y	RPC2	SS1	1	1.1192	1.52375	0.22260
29	2	Y	CPC1*RPC1	SS1	1	5.9688	8.12616	0.00624
30	2	Y	CPC1*RPC2	SS1	1	0.0026	0.00354	0.95277
31	2	Y	CPC2*RPC1	SS1	1	0.09327	0.12699	0.72302
32	2	Y	CPC2*RPC2	SS1	1	0.74168	1.00975	0.31962
33	2	Y	REP	SS3	4	1.97867	0.67346	0.61338
34	2	Y	TREAT	SS3	15	4.41711	0.40091	0.97267
35	2	Y	CPC1	SS3	1	3.54125	4.82123	0.03260
36	2	Y	CPC2	SS3	1	1.62114	2.20710	0.14341
37	2	Y	RPC1	SS3	1	6.56799	8.94197	0.00425
38	2	Y	RPC2	SS3	1	1.24960	1.70127	0.19787
39	2	Y	CPC1*RPC1	SS3	1	5.87599	7.99984	0.00663
40	2	Y	CPC1*RPC2	SS3	1	0.01225	0.01668	0.89773

7	1	1	ç)
1	4	4	2	5

41 42	2	Y Y		CPC2*RPC		SS3 SS3	1 1		0.06838		0.09310 1.00975		0.76149 0.31962
Ness 0BS 1 2 3 4 5 6 77 8 9 10 11 12 13 14 15 16 17 18 19 20 21	ted K	PCTA _NAMI Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	E	SOURCE ERROR REP IREAT CPC1 (REP) CPC2 (REP) RPC2 (REP) CPC1*RPC1 CPC2*RPC1 CPC2*RPC1 CPC2*RPC1 CPC2(REP) FREAT CPC1 (REP) FREAT CPC1 (REP) CPC1 (REP) CPC2 (REP) CPC2 (REP) CPC2 (REP) CPC3 (REP) CPC4 (REP) CPC6 (REP) CPC7 (REP)	(REP) (REP) (REP) (REP) (REP) (REP) (REP)	_TYPE_ERROF	20 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		SS 4.7282 10.6315 16.8648 15.5141 2.7152 10.0044 4.7658 7.5124 4.6495 8.2553 3.0294 10.6315 3.1950 13.1371 2.6241 8.5463 4.3279 3.5137 3.0198 5.8240		F .11.2427 4.7558 13.1248 2.2970 8.4637 4.0318 6.3554 3.9335 6.9839 2.5628 11.2427 0.9010 11.1139 2.2201 3.6614 2.9726 2.5547 4.9271 2.55628		PROB
Nes 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	ted 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ANOVA	A - run 2 ERROR REP IREAT CPC1 (REP) RPC2 (REP) RPC1 (REP) CPC1*RPC1 CPC2*RPC1 CPC2*RPC1 CPC2 (REP) IREAT CPC1 (REP) CPC2 (REP) CPC2 (REP) CPC2 (REP) CPC1 (REP) CPC2 (REP) CPC2 (REP) CPC2 (REP) CPC2 (REP) CPC2 (REP) CPC2 (REP) CPC1 (REP) CPC2 (REP)	(REP) (REP) (REP) (REP) (REP) (REP) (REP)	ERF SS1 SS1 SS1 SS1 SS1 SS1 SS1 SS1 SS1 SS	ROR 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3.0294 4.3221 1.9787 19.1134 9.1962 3.9972 8.7444 0.8850 15.2570 6.2267 3.8187 3.3778 1.9786 1.7983 6.6821 3.5204 8.1545 1.9251 4.6585 3.3778	5 7 3 1 7 6 2 5	2.3026 	0 1 1 7 2 0 3 5 1 5 7	0.06004 0.09551 0.00018 0.00019 0.01562 0.00026 0.55043 0.00001 0.00188 0.01883 0.03029 0.09551 0.00128 0.02592 0.00040 0.16248 0.00082 0.00799 0.03029
Tex OBS 1 2 3 4 5	I		AME_YE	run 1 SOURCE_ ERROR REP FREAT ROW(REP) COL(REP)	_TYF ERRO SS1 SS1 SS1 SS1		DF 30 4 15 15	10 16 19	SS .6177 .6315 .8648 .6950 .8615	1. 1.	F 11254 31665 53760 23832	0	PROB .02958 .25255 .15374 .29886

6 7 8 9	1 1 1	Y Y Y Y	REP TREAT ROW(REP) COL(REP)	SS3 SS3 SS3 SS3	4 15 15 15	10.6315 9.8877 15.7929 15.8615	3.11254 0.77194 1.23297 1.23832	0.02958 0.69613 0.30227 0.29886
Text	oook	ANOVA	- run 2					
10	2	Y	ERROR	ERROR	30	29.5471		
11	2	Y	REP	SS1	4	1.9787	0.50225	0.73428
12	2	Y	TREAT	SS1	15	19.1134	1.29376	0.26542
13	2	Y	ROW (REP)	SS1	15	16.4413	1.11289	0.38676
14	2	Y	COL(REP)	SS1	15	9.8368	0.66584	0.79576
15	2	Y	REP	SS3	4	1.9787	0.50225	0.73428
16	2	Y	TREAT	SS3	15	9.3513	0.63298	0.82440
17	2	Y	ROW (REP)	SS3	15	13.8467	0.93726	0.53691
18	2	Y	COL(REP)	SS3	15	9.8368	0.66584	0.79576

Principal Components (PC) and Additive Main Effects and Multiplicative Interaction (AMMI) Trend Analyses for Incomplete Block and Lattice Rectangle-Designed Experiments

Walter T. Federer Russell D. Wolfinger José Crossa

Importance

A principal component (PC) is a linear combination of data that has a maximum sum of squares. No other linear combination can be associated with a larger sum of squares. Therefore, the analyses outlined in this chapter could prove useful when describing spatial variation found in field experiments. PC and additive main effects and multiplicative interaction (AMMI) analyses have been used in genotype-by-environment studies. The problem is that the degrees of freedom for these linear combinations need to be obtained via simulations. A program for doing this is given in Chapter 13 of this book. The SAS code allocates a single degree of freedom for each PC, but this is not correct. In such a case, if the F-value associated with a PC is less than the F-value at the 25 percent level, the PC sum of squares is pooled with the residual sum of squares. Rather than applying this rule, one may use a SAS/MIXED procedure to eliminate all effects from the model that has variance components estimated as zero; however, the two procedures do not give the same result in general. Since the properties of this procedure have not been established, it is not recommended.

References

- Federer, W.T., Crossa, J., and Franco, J. (1998). Forms of spatial analyses with mixed model effects and exploratory model selection. BU-1406-M, Technical Report, Department of Biometrics, Cornell University, Ithaca, NY.
- Gauch, H.G. (1988). Model selection and validation for yield trials with interaction. *Biometrics* 44:705-715.
- Moreno-Gonzales, J. and Crossa, J. (1998). Combining environments, genotypes, and attribute variables in regression models for predicting the cell-means of multi-environment trials. *Theoretical and Applied Genetics* 96:803-811.
- Zobel, R.W. (1990). A powerful statistical tool for understanding genotype-by-environment interaction. In Kang, M.S. (Ed.), *Genotype-by-Environment Interaction and Plant Breeding* (pp. 126-140). Louisiana State University, Baton Rouge, Louisiana.

Contact

Dr. Walter T. Federer, Department of Biometrics, Cornell University, Ithaca, New York. E-mail: <wtfl@Cornell.edu>.

Data

The example used to illustrate the SAS code is a balanced lattice square-designed experiment. By altering the program appropriately, the code can also be used for incomplete block and row-column-designed experiments. Also, PCs can be computed using the correlation matrix or the variance-covariance matrix. The SAS default uses the correlation matrix.

Originator

Cochran, W.G. and Cox, G.M. (1957). *Experimental Designs*, John Wiley & Sons, New York

```
/* Here the data are included, but an infile statement may be used to
    input data. */
data original;
    input y rep row col grad treat; /* grad is the linear regression
        coefficient on column order. */
    label row='incomplete block';
    datalines;
9.0 1 1 1 -3 10
20.3 1 1 2 -1 12
17.7 1 1 3 1 9
26.3 1 1 4 3 11
4.7 1 2 1 -3 2
9.0 1 2 2 -1 4
```

```
1 2 3
 7.3
             1
      1 2 4
             3
 8.3
                 3
 9.0
      1 3 1 -3 14
      1 3 2 -1 16
 6.7
      1 3 3
11.7
             1 13
 4.3
      1 3 4
             3 15
 4.0
      1 4 1 -3
                 6
      1 4 2 -1
                 8
 5.0
 5.7
      1 4 3
             1
                 5
14.3
      1 4 4
              3
                 7
19.0
      2 1 1 -3
                 5
      2 1 2 -1 12
 8.7
13.0
      2 1 3
             1 15
             3
15.7
      2 1 4
                 2
12.0
      2 2 1 -3 10
 6.0
      2 2 2 -1
                 7
15.3
      2 2 3
             1
                 4
      2 2 4
             3 13
12.0
      2 3 1 -3 16
12.7
 6.3
      2 3 2 -1
                 1
      2 3 3
 1.7
             1
                 6
             3 11
13.0
      2 3 4
 3.7
      2 4 1 -3
                 3
 3.7
      2 4 2 -1 14
 8.0
      2 4 3
             1
                 9
13.3
      2 4 4
             3
                 8
      3 1 1 -3 10
17.0
 7.0
      3 1
          2 -1 15
10.3
      3 1 3
             1
1.3
      3 1 4
              3
                 1
11.3
      3 2 1 -3
                 9
12.3
      3 2
          2 -1 16
 3.0
      3 2 3
             1
                 7
 5.3
      3 2 4
             3
                 2
12.3
      3 3 1 -3 12
 8.7
      3 3 2 -1 13
 8.0
      3 3 3
             1
                 6
 9.3
      3 3 4
             3
                 3
30.3
      3 4 1 -3 11
22.3
      3 4 2 -1 14
11.0
      3 4
          3
             1
                 5
12.7
             3
      3 4 4
                 4
 5.0
      4 1 1 -3 16
10.3
      4 1 2 -1 12
 5.7
      4 1 3
              1
      4 1 4
             3
12.7
                 4
      4 2 1 -3 11
 2.7
      4 2 2 -1 15
 6.7
10.3
      4 2 3
             1
                 3
 5.7
      4 2 4
             3
                 7
 1.0
      4 3 1 -3
                 1
      4 3 2 -1
                 5
10.3
11.3
      4 3 3
             1
                 9
11.7
      4 3 4
             3 13
11.0
      4 4
          1 -3
                 6
19.0
      4 4 2 -1
                 2
20.7
      4 4 3
              1 14
```

```
29.7 4 4 4 3 10
 2.0 5 1 1 -3 3
 5.0 5 1 2 -1 16
4.0 5 1 3 1 5
13.7 5 1 4 3 10
 9.3 5 2 1 -3 6
 1.7 5 2 2 -1 9
6.3 5 2 3 1 4
12.3 5 2 4 3 15
16.7 5 3 1 -3 12
4.3 5 3 2 -1 7
18.7 5 3 3 1 14
8.7 5 3 4 3 1
16.7 5 4 1 -3 13
30.0 5 4 2 -1 2
25.7 5 4 3 1 11
14.0 5 4 4 3 8
run:
/* principal component analysis. */
proc sort data=original;
  by rep col row;
proc transpose data=original prefix=row out=origr(drop= name );
  by rep col;
  var y;
/* The SAS default option is the correlation matrix. If it is desired
    to use the variance-covariance matrix, simply add COV at the end
     of the following statement and also in the next PROC PRINCOMP
    statement.*/
proc princomp data=origr prefix=rpc out=rowvar noprint;
  by rep;
  var row1-row4; /* Four rows in the design. */
proc sort data=original;
  by rep row col;
proc transpose data=original prefix=col out=origc(drop= name );
  by rep row;
  var y;
proc princomp data=origc prefix=cpc out=colvar noprint;
  by rep;
  var col1-col4; /* Four columns in the design. */
/* expand data sets and merge */
data cc;
  set colvar;
  array colv{4} col1-col4;
  do col = 1 to 4;
     y = colv{col};
     output;
  end;
  drop col1-col4;
data rr;
  set rowvar;
  array rowv{4} row1-row4;
   do row = 1 to 4;
     y = rowv\{row\};
     output;
   end;
```

```
drop row1-row4;
proc sort data=rr;
  by rep row col;
data ana;
   merge original cc rr;
   by rep row col;
/* analysis of variance, fixed principal component effects, non-nested
proc glm data=ana;
  class rep treat;
   model y=rep treat cpc1 cpc2 rpc1 rpc2 cpc1*rpc1 cpc1*rpc2
      cpc2*rpc1 cpc2*rpc2;
run;
/* fixed principal component effects, nested */
proc glm data=ana;
   class rep treat;
  model y=rep treat cpc1(rep) cpc2(rep) rpc1(rep) cpc1*rpc1(rep)
     cpc1*rpc2(rep)
  cpc2*rpc1(rep) cpc2*rpc2(rep);
run;
/* random principal component effects, nested */
proc mixed data = ana;
   class rep treat row col;
  model y = treat;
  random rep cpc1(rep) cpc2(rep) rpc1(rep) cpc1*rpc1(rep)
    cpc1*rpc2(rep)
   cpc2*rpc1(rep) cpc2*rpc2(rep);
   1smeans treat;
/* fixed effects textbook analysis of the design as in Cochran and Cox
    (1957), page 493. */
proc glm data=ana;
  class rep row col treat;
  model y=rep treat row(rep) col(rep);
/* fixed AMMI trend analysis, PC within row within replicate */
proc glm data = ana;
   class rep treat row col;
  model y = rep treat row(rep) rpc1*row(rep);
/* random AMMI effect within row and random row and rep effects */
proc mixed data = ana;
   class rep treat row col;
   model y = treat;
  random rep row(rep) rpc1*row(rep);
   1smeans treat;
run;
```

An abbreviated form of the output from this program is given here.

```
/*fixed effect un-nested PC analysis */
```

Dependent	Variable: Y	Sum of	Mean		
Source Model Error Corrected	DF 27 52 Total 79	Squares 2723.926541 884.611459 3608.538000	Square 100.886168 17.011759	F Value 5.93	Pr > F 0.0001
	R-Square 0.754856	C.V. 37.82239	Root MSE 4.124531		Mean .90500
Dependent	Variable: Y				
Source REP TREAT CPC1 CPC2 RPC1 RPC2 CPC1*RPC1 CPC1*RPC2 CPC2*RPC1 CPC2*RPC2	DF 4 15 1 1 1 1 1 1	Type I SS 31.563000 1244.202000 937.165951 28.780965 465.277940 7.694324 1.186538 7.642424 0.325597 0.087801	Mean Square 7.890750 82.946800 937.165951 28.780965 465.277940 7.694324 1.186538 7.642424 0.325597 0.087801	F Value 0.46 4.88 55.09 1.69 27.35 0.45 0.07 0.45 0.02 0.01	Pr > F 0.7619 0.0001 0.0001 0.1991 0.0001 0.5042 0.7927 0.5057 0.8905 0.9430
Source REP TREAT CPC1 CPC2 RPC1 RPC2 CPC1*RPC1 CPC1*RPC2 CPC2*RPC1 CPC2*RPC2	DF 4 15 1 1 1 1 1 1	Type III SS 31.5630000 371.7330707 913.7729632 75.9641822 466.8813930 8.7776829 1.8655460 7.7122489 0.3476938 0.0878007	Mean Square 7.8907500 24.7822047 913.7729632 75.9641822 466.8813930 8.7776829 1.8655460 7.7122489 0.3476938 0.0878007	F Value 0.46 1.46 53.71 4.47 27.44 0.52 0.11 0.45 0.02 0.01	Pr > F 0.7619 0.1571 0.0001 0.0394 0.0001 0.4758 0.7419 0.5037 0.8869 0.9430
	PC effects, Variable: Y	nested analys: Sum of Squares	Mean	F Value	Pr > F
Model Error Corrected	54 25	3503.080701 105.457299 3608.538000	Square 64.871865 4.218292	15.38	0.0001
	R-Square 0.970776	C.V. 18.83400	Root MSE 2.053848		Y Mean 10.90500
		General Linea	ar Models Proce	dure	
Dependent	Variable: Y				
Source REP TREAT CPC1 (REP) CPC2 (REP) RPC1 (REP)	DF 4 15 5 5 5	Type I SS 31.563000 1244.202000 1034.531257 46.108785 480.204652	Mean Square 7.890750 82.946800 206.906251 9.221757 96.040930	F Value 1.87 19.66 49.05 2.19 22.77	Pr > F 0.1470 0.0001 0.0001 0.0879 0.0001

CPC1*RPC1(REP)	262.322233	52.464447	12.44	0.0001
CPC1*RPC2 (REP) CPC2*RPC1 (REP)	71.654226 117.938209 214.556340	14.330845 23.587642 42.911268	3.40 5.59 10.17	0.0177 0.0014 0.0001
TREAT 1 DPC1 (REP) DPC2 (REP) RPC1 (REP) CPC1*RPC1 (REP) DPC1*RPC2 (REP) CPC2*RPC1 (REP)	31.563000	Mean Square 7.890750 5.600408 229.039607 11.231202 80.278197 39.428786 13.592073 27.703704 42.911268	F Value 1.87 1.33 54.30 2.66 19.03 9.35 3.22 6.57 10.17	Pr > F 0.1470 0.2576 0.0001 0.0462 0.0001 0.0001 0.0222 0.0005 0.0001
The MIXED Procedu	e			
	Least	Squares Means		
Effect TREA' TREAT 1 TREAT 2 TREAT 3 TREAT 4 TREAT 5 TREAT 6 TREAT 7 TREAT 8 TREAT 9 TREAT 10 TREAT 11 TREAT 12 TREAT 12 TREAT 13 TREAT 14 TREAT 15 TREAT 16	LSMEAN 7.54548158 10.37683195 9.37048456 12.34206915 11.45961200 9.11047013 7.86631476 11.11913803 12.18761611 14.08160555 13.13295404 11.40375822 10.59779026 12.13599166 9.18610407 12.56377795	Std Error 1.72555784 1.75725118 1.56493910 1.57505850 1.61696971 1.69326123 1.75974765 1.67931870 1.64388978 1.92299755 1.92869896 1.67381535 1.54426804 1.70542148 1.62649961 1.63547347	DF t 29 4.37 29 5.91 29 7.84 29 7.09 29 5.38 29 4.47 29 6.62 29 7.41 29 7.32 29 6.81 29 6.86 29 7.12 29 5.65 29 7.68	Pr > t 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
/* textbook analy Dependent Variable				
Source D Model 4 Error 3 Corrected Total 7	2928.370083 680.167917	Mean Square 59.762655 22.672264	F Value 2.64	Pr > F 0.0029
R-Squa 0.8115		Root MSE 4.761540		lean 90500
Dependent Variable Gource D REP FREAT 1 ROW (REP) 1 COL (REP) 1	Type I SS 31.563000 1244.202000 1093.015500	Mean Square 7.890750 82.946800 72.867700 37.305972	F Value 0.35 3.66 3.21 1.65	Pr > F 0.8433 0.0012 0.0032 0.1197

Source

DF

Type III SS Mean Square F Value Pr > F

Handbook of Formulas and Software for Plant Geneticists and Breeders 152

REP TREAT ROW (REP) COL (REP)	4 15 15 15	31.563000 319.452083 1026.755833 559.589583	7.890750 21.296806 68.450389 37.305972		0.35 0.94 3.02 1.65	0.8433 0.5350 0.0049 0.1197
/ de					4. /	
/* treatment		from random effe				
Effect	TREAT	LSMEAN	Std Error	DF	t	Pr > t
TREAT	1	6.37311825	2.38292075	25	2.67	0.0130
TREAT	2	10.61497350	2.15761108	25	4.92	0.0001
TREAT	3	7.93436160	2.06059560	25	3.85	0.0007
TREAT	4	12.28827249	1.99475730	25	6.16	0.0001
TREAT	5	10.76991952	1.97476997	25	5.45	0.0001
TREAT	6	8.24325882	2.17029859	25	3.80	0.0008
TREAT	7	5.71709277	2.38681041	25	2.40	0.0244
TREAT	8	10.24396596	2.09650099	25	4.89	0.0001
TREAT	9	12.25845651	2.11969951	25	5.78	0.0001
TREAT	10	14.74535577	2.35708086	25	6.26	0.0001
TREAT	11	15.30490826	2.42463576	25	6.31	0.0001
TREAT	12	13.57092699	2.14533617	25	6.33	0.0001
TREAT	13	11.45714987	2.01082282	25	5.70	0.0001
TREAT	14	13.94971794	2.10372824	25	6.63	0.0001
IKLAI	14	13.949/1/94	2.103/2824	25	0.03	0.0001

2.09619203

2.14469670

25

25

4.11 5.78

0.0004

0.0001

12.38585010

8.62267164

TREAT TREAT 15

16

A Method for Classifying Observations Using Categorical and Continuous Variables

Jorge Franco José Crossa

Purpose

Classifying observations into homogeneous subpopulations or groups using categorical and continuous variables is important in various fields of research, such as genetic resource conservation, genetics, plant breeding, biotechnology, agronomy, and ecology.

The program outlined in this chapter uses a statistical method for classifying observations into homogeneous groups.

Definitions

The objective is to classify *n* observations using the statistical technique known as the mixture of a finite number of distributions. The model assumes a statistical distribution for variables. The probability of membership of each observation in each subpopulation or group is computed. The program allows use of continuous variables (Gaussian Model, GM) (McLachlan and Basford, 1988) or of continuous and categorical variables (Modified Location Model, MLM) (Franco et al., 1998). Homogeneity of variance-covariance matrices within subpopulations is also assumed.

The GM model assumes that each vector \mathbf{y}_j (j = 1,...,n), formed with p continuous variables is distributed as a mixture of g multivariate, a multivariate normal with p variables, each corresponding to a subpopulation. Thus, assuming homogeneity of variance-covariance matrices within subpopulations, its probability density function (PDF) is

$$f(y_j;\Theta) = \int_{i=1}^{g} \alpha_i(2)^{-p/2} | e^{-1/2} \exp(-(1/2)(y_j - \mu_i))^{-1} (y_j - \mu_i)$$

where the vector Θ contains the parameters of the model; α_i (i = 1,2,...,g) is the proportion of observations in each subpopulation (cluster) of the mixture; is the common variance-covariance matrix within a subpopulation; and μ_i represents vectors of means of the ith subpopulation.

The MLM model transforms the vector formed with p continuous and q categorical variables into a p+1 vector in which all the categorical values are transformed into a unique multinomial variable W that takes values s=1,2,...,m, where m is the number of combinations observed or multinomial cells. The vector of p+1 variables (x_{sj}) is assumed to be distributed as a mixture of the product of the multinomial and multinormal variables. The model assumes that the dispersion matrices and mean vectors are equal for all of the multinomial cells within each subpopulation; thus, its probability density function is

$$f(x_{sj};\Theta)$$
 $\stackrel{g}{=} \alpha_i p_{is} (2)^{-p/2} | |^{-1/2} \exp -(1/2)(y_{sj} - \mu_i)^{-1} (y_{sj} - \mu_i)$

where the vector Θ contains the parameters of the model; α_i (i = 1,2,...,g) is the proportion of observations in each subpopulation (cluster) of the mixture; p_{is} is the proportion of observations in the sth multinomial cell of the ith subpopulation; is the common variance-covariance matrix within a subpopulation; and μ_i are the vectors of means of the ith subpopulation.

The program uses the expectation maximization (EM) algorithm (Dempster et al., 1977) to estimate parameters (maximization) and to calculate the probability of membership for each observation (expectation).

The likelihood function corresponding to the matrix of the whole sample data, *X*, is the objective function for the maximization. For the MLM model, this function is

$$L(\Theta;X) = \begin{bmatrix} m & n_s & n_s & f(x_{sj};\Theta) \\ s & 1 & j & 1 & k & 1 \\ s & 1 & j & 1 & k & 1 \end{bmatrix} f(x_{sj};\Theta)$$

Originator

Franco, J., Crossa, J., Villaseñor, J., Taba, S., and Eberhart, S.A. (1998). Classifying genetic resources by categorical and continuous variables. *Crop Science* 38(6):1688-1696.

Software Available

Franco, J. and Crossa, J. (2001). SAS program for classifying observations using categorical and continuous attributes. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT, INT), access online: http://www.cimmyt.org/biometrics.

Key References

- Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of Royal Society*, Series B, 39:1-38.
- Franco, J., Crossa, J., Ribaut, J.M., Betran, J., Warbuton, M.L., and Khairallah, M. (2001). A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. *Theoretical and Applied Genetics* 103(6/7):944-952.
- Franco, J., Crossa, J., Villaseñor, J., Taba, S., and Eberhart, S.A. (1998). Classifying genetic resources by categorical and continuous variables. *Crop Science* 38(6):1688-1696.
- McLachlan, G.J. and Basford, K.E. (1988). *Mixture models: Inference and applications to clustering*. Marcel Dekker, New York.

Contacts

- José Crossa, Biometrics and Statistics Unit, Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Apdo. Postal 6-641, 0600, Mexico DF, Mexico. E-mail: <j.crossa@cgiar.org>.
- Jorge Franco, Departamento de Biometría, Estadística y Computación, Facultad de Agronomía, Universidad de la República, Ave. Garzón 780, 12900, Montevideo, Uruguay. E-mail: <jfranco@fagro.edu.uy>.

Modifications to the Program

Lines that can be modified begin with /*, end with */, and are in bold. The program starts with a data file called DATA0 (this name can be changed) with the following characteristics:

- 1. Observations are rows; variables are columns.
- 2. The variable showing initial subpopulations must be called CLASSO (CLASS zero); the discrete variables must be called Q1, Q2,..., Qq. If the GM model (only continuous variables) is required, use a unique discrete variable (Q1) with all values equal to 1.
- 3. Names for continuous variables can be any valid SAS name no longer than eight characters and should not begin with a number.

4. Any other variable (not included in the analysis) must be dropped from line L2.

The next lines that can be modified are:

- 1. L3: The TABLES statement must be followed by a list of discrete variables Q1*Q2*...*Qq joined by an asterisk (*).
- 2. L4, L5, L6: The statements must be Q1-Qq, where q is the subindex for the last discrete variable.
- 3. L8, L9: These lines can be modified to allow more than fifty iterations or a lesser value of convergence.
- 4. L10, L11, L12: In these lines you must write the names of continuous variables.

The program produces a file (SAS file) called FINAL that contains the following information:

- 1. All the initial information plus the number of group to which each observation was assigned (named FINGROUP)
- 2. Membership probabilities for each observation in each group (named GROUP1,...,GROUPg)
- 3. Starting group (called INIGROUP)
- 4. Results from the canonical analysis

The program performs a canonical analysis on the continuous variables to observe the separation of the groups on the first two canonical variables and to allow characterization of the groups relative to the continuous variables.

EXAMPLE

The example comes from Franco et al. (2001). Fifteen maize genotypes are classified using five continuous variables (days to anthesis and silking, plant and ear height, and grain weight) and fifteen discrete variables (restriction fragment length polymorphism [RFLP] markers). There are five initial subpopulations (or groups). Note that categorical variables can be binary, ordinal, or multistate. The data T0 is created from the original and

five initial groups are defined to form data set DATA0. Lines for forming the data set DATA0 are shown in bold.

SAS Program

```
OPTIONS LS=132 PS=9000 NODATE NOCENTER;
TITLE Modified Location Model, Franco et al. 1998;
TITLE2 Example, Table 6, Franco et al. 2001;
DATA TO; INPUT NOBS ad sd ph eh grw Q1-Q15;
LABEL NOBS='ENTRY';
CARDS:
     87.61 91.37 97.00 36.36 286.07 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1
  1
      89.96 96.20 110.00 38.42 292.08 0 0 1 0 0 0 0 1 0 1
     87.49 94.91 119.33 56.36 169.67 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0
     92.97 96.77 100.33 35.77 290.78 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0
  5
     90.73 91.36 120.33 50.48 702.64 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1
     90.85 94.33 117.33 50.16 427.10 1 0 1 1 1 1 1 0 0 1 0 1 0 0
  7
     83.85 88.02 101.67 41.91 263.24 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1
     84.93 87.09 113.67 41.53 498.19 0 0 0 1 0 0 0 1 0 1 0 0 0 1
     91.30 92.32 119.33 37.26 522.76 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0
  9
 10
     87.95 88.04 115.00 53.76 505.95 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
 11
     91.51 92.37 106.67 36.64 451.09 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1
     83.33 84.72 103.67 31.66 316.84 1 1 0 1 0 0 0 0 0 1 0 0 1 0 1
     89.43 91.59 113.67 42.55 572.25 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1
 13
     86.19 87.82 97.33 40.15 581.17 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1
     86.88 87.75 126.67 47.99 518.48 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0
DATA T6; INPUT G6 @@; CARDS;
 1 2 1 3 4 4 5 3 4
                          5 5 6 2 2
DATA T5; INPUT G5 @@; CARDS;
 1 2 1 3 4 4 5 3 4
                           5 5 2 2 2
DATA T4; INPUT G4 @@; CARDS;
 1 2 1 3 4 4
                           3
                              3 2 2
                  3 3 4
DATA T3: INPUT G3 @@:CARDS:
                           2
                              2 1
 1 1 1 2 3 3 2 2 3
DATA T2; INPUT G2 @@; CARDS;
1 1 1 1 2 2 1 1 2
/*L1*/ DATA DATAO; MERGE TO T2 T3 T4 T5 T6;
/*L2*/ DATA DATA1; SET DATA0; CLAS0 = G5; DROP G2-G6;
/*L3*/ PROC FREQ; TABLES
     Q1*Q2*Q3*Q4*Q5*Q6*Q7*Q8*Q9*Q10*Q11*Q12*Q13*Q14*Q15 / LIST;
/*L4*/ PROC SORT DATA=DATA1; BY Q1-Q15 NOBS;
/*L5*/ DATA T1; SET DATA1; DROP Q1-Q15;
/*L6*/ DATA T2; SET DATA1; KEEP Q1-Q15;
PROC IML;
                                          /* GENERATING VARIABLE W */
REMOVE _ALL_;
USE T1;
NAM1=CONTENTS (T1);
READ ALL INTO A;
```

```
READ ALL VAR{CLASO} INTO CLASO;
G=CLAS0[];
VARCUA=CONTENTS (T2);
USE DATA1;
READ ALL VAR VARCUA INTO Q;
N=NROW(O);
NQ=NCOL(Q);
P=NCOL(A)-2;
W=J(N, 1, 1);
DO I=2 TO N;
  IF Q[I,] = Q[I-1,] THEN W[I]=W[I-1];
  ELSE W[I] = W[I-1] + 1;
END:
M=W[];
D1=A||W;
NAM2=NAM1 \ | { W };
CREATE D1 FROM D1 [COLNAME=NAM2];
APPEND FROM D1;
STORE N NO P G M;
QUIT;
PROC SORT DATA=D1; BY W CLASO NOBS;
PROC IML;
                                                  /* I-MATRIX CREATION */
LOAD N P G M;
NAM1=CONTENTS (D1);
USE D1;
READ ALL INTO D1;
READ ALL VAR {W CLASO} INTO MO;
MI=J(M,G,0); M1=J(1,2,0);
DO S=1 TO M;
  DO I=1 TO G;
   M1[1,1]=S; M1[1,2]=I;
    DO J=1 TO N;
      IF MO[J,] = M1 THEN MI[S,I] = 1;
    END;
  END;
END;
STORE MI;
QUIT;
DATA T1; SET D1; DROP NOBS W CLASO;
DATA T2; SET D1; KEEP NOBS W CLASO;
PROC IML;
LOAD N P G M MI;
START CERO;
                                               /* NAMES AND DIMENSIONS */
VARCLAS=CONTENTS (T2);
VARCONT=CONTENTS (T1);
T = \{GROUP\};
IG=INT(G/10);
VARTAO=CHAR(J(G,1,0));
DO X=0 TO IG;
  DO Y=0 TO 9;
     IF (0 < (10*X+Y) & (10*X+Y) \le G) THEN DO;
         VARTAO[XX] = CONCAT(T, CHAR(X, 1), CHAR(Y, 1));
         XX=XX+1;
```

```
END;
  END;
END;
ENE=J(M,G,0);
USE D1;
CONT=0;
DO S=1 TO M;
 DO I=1 TO G;
    IF MI[S,I] = 1 THEN DO;
      READ ALL WHERE (W=S & CLASO=I) VAR VARCONT INTO B;
      ENE[S,I]=NROW(B);
    END;
 END;
END;
ENEI=ENE[+,]`; ENES=ENE[,+]; N=SUM(ENE);
PRINT VARCLAS VARCONT M G P VARTAO;
PRINT ENE N ENEI ENES [FORMAT=5.0];
FINISH CERO;
START UNO:
                                              /* INITIAL ESTIMATIONS */
                                /* MEANS AND SUM OF SOUARES BY GROUP */
USE D1;
MEDI=J(G,P,0); SC=J(P,P,0);
DO I=1 TO G:
 READ ALL WHERE (CLASO=I) VAR VARCONT INTO B;
 MEDI[I,]=J(1,NROW(B),1/NROW(B))*B;
  SC=SC+B`*(I(NROW(B))-J(NROW(B),NROW(B),1/NROW(B)))*B;
END;
V=SC/N;
SINV=INV(V);
DETS=DET(V);
/* ALPHA AND P ESTIMATION */
ALFA=ENEI/N:
PE=J(M,G,0);
DO S=1 TO M;
  DO I=1 TO G;
    IF MI[S,I] = 1 THEN PE[S,I] = ENE[S,I] / ENEI[I];
    ELSE PE[S,I] = 1E-04;
 END;
END;
DO I=1 TO G;
 NCERO=0:
  DO S=1 TO M;
   IF PE[S,I] <= 1E-04 THEN NCERO=NCERO+1;
 END;
  DO S=1 TO M;
    IF PE[S,I] > 1E-04 THEN PE[S,I] =
       PE[S,I] - NCERO*1E-04 / (M - NCERO);
 END;
END:
PRINT V [FORMAT=9.4];
PRINT DETS;
PRINT MEDI [FORMAT=9.4];
PRINT ALFA [FORMAT=7.5];
PRINT PE [FORMAT=7.5];
PRINT "LOG LIKELIHOOD :";
FINISH UNO;
```

```
START DOS;
                  /* LIKELIHOOD AND POSTERIOR PROBABILITY ESTIMATION*/
CONT3=0; TAO=J(N,G,0); L=J(N,G+1,0); ID=J(N,3,0); B1=J(N,P,0);
DO S=1 TO M;
  DO I=1 TO G;
    IF MI[S,I] = 1 THEN DO;
      READ ALL WHERE (W=S & CLAS0=I) VAR (NOBS CLASO W) INTO IDO;
      READ ALL WHERE (W=S & CLASO=I) VAR VARCONT INTO B;
      L0=J(ENE[S,I],G,0);
      DO K=1 TO G;
        IF PE[S,K] \le 1E-04 THEN PE[S,K] = 1E-04;
        L0[,K]=LOG(ALFA[K])+LOG(PE[S,K])-0.5*
               VECDIAG((B-REPEAT(MEDI[K,], ENE[S,I],1))*SINV*
                (B-REPEAT (MEDI[K,], ENE[S,I],1)) `);
      END;
      L1=-(P/2)*1.83788-0.5*LOG(DETS)+L0;
      L2=EXP(L1);
      L3 = LOG(L2[,+]);
      L[(CONT3+1:CONT3+ENE[S,I]), (1:G+1)] = L1||L3;
      TAO1=EXP(L1-(REPEAT(L3,1,G)));
      ID[(CONT3+1:CONT3+ENE[S,I]),(1:3)] = ID0;
      TAO[(CONT3+1:CONT3+ENE[S,I]),(1:G)] = TAO1;
      B1[(CONT3+1:CONT3+ENE[S,I]),(1:P)] = B;
      CONT3=CONT3+ENE[S,I];
    END;
  END;
END;
GROUP=TAO[,<:>]; MAXP=TAO[,];
C=ID||B1||TAO||GROUP||MAXP;
C1=J(N, P+G+5, 0);
DO I=1 TO N;
  T1=TAO[I,];
  IF (T1[,] < 0.75) THEN C1[I,] = C[I,];
END;
LOGLTOT=SUM(L[,G+1]);
RESET NONAME;
PRINT LOGLTOT [FORMAT=20.5];
RESET NAME:
FINISH DOS;
START TRES;
                    /* MAXIMUM LIKELIHOOD ESTIMATORS (MAXIMIZATION) */
DO I=1 TO G;
 ALFA[I] = SUM(TAO[,I])/N;
END;
MED=J(M*G,P,0); TOT=J(G,P,0); MEDI=J(G,P,0); DIV=J(G,1,0);
CONT=0; CONT3=0;
DO S=1 TO M;
  DO T=1 TO G:
    TT=TAO[(CONT3+1:CONT3+ENES[S]),I];
    BB= B1 [ (CONT3+1:CONT3+ENES[S]), ];
    PE[S,I]=SUM(TT)/(N*ALFA[I]);
    IF PE[S,I] > 0 THEN DO;
      CONT=CONT+1;
      MED[CONT,]=TT`*BB/(N*PE[S,I]*ALFA[I]);
    END:
  END;
  CONT3=CONT3+ENES[S];
```

```
END;
CONT=0;
DO S=1 TO M;
  DO I=1 TO G;
    IF PE[S,I] > 0 THEN DO;
      CONT=CONT+1;
      TOT[I,]=TOT[I,] + MED[CONT,] * N * PE[S,I] * ALFA[I];
      DIV[I]=DIV[I] + N * PE[S,I] * ALFA[I];
    END;
  END;
END;
DO I=1 TO G;
MEDI[I,] = TOT[I,] * (1/DIV[I]);
END;
SC=J(P,P,0); CONT3=0;
DO S=1 TO M;
  DO I=1 TO G;
    TT=TAO[(CONT3+1:CONT3+ENES[S]),I];
    BB= B1 [ (CONT3+1:CONT3+ENES[S]), ];
    IF PE[S,I] > 0 THEN DO;
      SC=SC+(TT#(BB-REPEAT(MEDI[I,],NROW(BB),1))) `*
                (BB-REPEAT (MEDI[I,], NROW (BB), 1));
   END;
  END;
  CONT3=CONT3+ENES[S];
END;
V=SC/N;
SINV=INV(V);
DETS=DET(V);
FINISH TRES:
START EM;
                               /* LOOP UNTIL LOG-LIKELIHOOD CONVERGE */
DO WHILE ((ABS(LOGLTOT-LOGLTOTO)/ABS(LOGLTOTO)) > CRIT);
 ITERA=ITERA+1;
  LOGLTOT0=LOGLTOT;
/*L8*/ IF ITERA = 50 THEN CRIT=10;
/*L9*/ ELSE CRIT = 1E-8;
  RUN TRES:
  RUN DOS;
END:
FINISH EM;
                                                      *****
*****
                      RUNNING
RUN CERO;
RUN UNO;
RUN DOS;
LOGLTOTO = LOGLTOT - 1;
CRIT=0;
ITERA=1;
RUN EM;
TAOM=TAO[,]; CALI=TAOM[:];
FINGROUP={FINGROUP}; MAXPN={MAXPROB};
NAMES=VARCLAS`||VARCONT`||VARTAO`||FINGROUP||MAXPN;
CREATE FINAL FROM C [COLNAME=NAMES];
APPEND FROM C;
CREATE BAJAS FROM C1 [COLNAME=NAMES];
```

```
APPEND FROM C1;
PRINT "FINAL RESULTS:" ;
RESET NONAME;
                  FINAL LOG-LIKELIHOOD";
PRINT LOGLTOT "
RESET NAME;
PRINT PE [FORMAT=7.5];
PRINT V [FORMAT=9.4];
PRINT DETS;
PRINT MEDI [FORMAT=9.4];
PRINT ITERA " NUMBER OF ITERATIONS";
PRINT " AVERAGE OF THE MAXIMA OF THE PROBALITIES:";
RESET NONAME;
PRINT CALI [FORMAT=8.4];
RESET NAME;
QUIT;
DATA T1; SET FINAL;
INIGROUP=CLASO; DROP CLASO;
TITLE2 'INITIAL AND FINAL CLASSIFICATIONS';
PROC FREQ; TABLES INIGROUP*FINGROUP / NOCOL NOPERCENT;
PROC FREQ; TABLES W*FINGROUP / NOPERCENT;
PROC PRINT; VAR NOBS W INIGROUP FINGROUP MAXPROB;
DATA T2; SET BAJAS;
INIGROUP=CLASO; DROP CLASO MAXPROB;
IF INIGROUP EQ 0 THEN DELETE;
TITLE2 'OBSERVATIONS CLASSIFIED WITH LEAST THAN 75% OF PROBABILITY';
PROC PRINT;
RUN:
TITLE '
                 ١;
RUN;
PROC SORT DATA=DATAO OUT=T1; BY NOBS;
PROC SORT DATA=FINAL OUT=T2; BY NOBS;
DATA FIN; MERGE T1 T2; BY NOBS;
PROC SORT DATA=FIN OUT=C1; BY FINGROUP;
PROC MEANS NOPRINT DATA=C1; BY FINGROUP;
/*L10*/ VAR ad sd ph eh grw;
/*L11*/ OUTPUT OUT=C2 MEAN= ad sd ph eh grw;
DATA MED; SET C2; SIZE= FREQ ; DROP FREQ TYPE ;
PROC PRINT;
/*L12/ proc candisc data=fin mah; var ad sd ph eh grw; class fingroup;
RUN;
```

Results

1. Frequency analysis showing the formation of each value of the *W* variable:

```
The FREQ Procedure

Cumulative Cumulative Per- Cum. Per-
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Freq. cent Freq. cent
```

0	0	0	0	1	0	0	0	1	0	1	0	1	0	1	1	6.67	1	6.67
0	0	0	0	1	0	1	0	1	0	1	0	1	1	1	1	6.67	2	13.33
0	0	0	1	0	0	0	0	1	0	1	0	0	1	0	1	6.67	3	0.00
0	0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	6.67	4	6.67
0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	1	6.67	5	33.33
0	0	1	0	1	0	1	0	1	0	1	0	1	1	1	1	6.67	6	40.00
0	1	0	0	0	0	0	1	0	1	0	1	1	0	1	1	6.67	7	46.67
0	1	0	1	1	0	0	1	0	1	0	1	1	0	1	1	6.67	8	53.33
0	1	1	0	0	1	0	1	0	0	1	0	1	1	1	1	6.67	9	60.00
1	0	1	1	1	0	1	0	1	0	0	1	0	0	1	1	6.67	10	66.67
1	0	1	1	1	1	1	0	0	1	0	1	0	0	0	2	13.33	12	80.00
1	0	1	1	1	1	1	0	1	0	0	1	0	0	0	1	6.67	13	86.67
1	1	0	1	0	0	0	0	0	1	0	0	1	0	1	1	6.67	14	93.33
1	1	1	0	0	1	0	1	0	0	1	0	1	1	0	1	6.67	15	100.00

2. Names of the categorical (VARCLAS) and continuous (VARCONT) variables; number of levels of the *W* variable (M), number of groups (G), and number of continuous variables (P); numbers of observations by cell (ENE), total number of observations (N), number of observations by group (ENEI); and number of observations by multinomial cell (ENES):

VARCLAS	VARCONT	М	G	P VA	ARTAO		
NOBS CLASO W	ad sd ph eh grw	14	5	GF GF GF	ROUP01 ROUP02 ROUP03 ROUP04 ROUP05		
ENE					N	ENEI	ENES
0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 1 1 0 0 0 0	0 0 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 0 0	15	2 4 2 4 3	1 1 1 1 1 1 1 1 1 1 1 2 1

3. Description of the initial grouping: variance-covariance matrix (V), det(V) = DETS, vectors of means by group (MEDI), proportion of observations by group (ALFA), and proportion of observations by cell (PE):

```
V
   6.8643
            7.5542
                      -0.7639
                                -1.2623
                                         13.8824
  7.5542
           10.7997
                      0.3649
                                0.6961 -110.3075
 -0.7639
             0.3649
                      42.2084
                                26.2318
                                          88.4037
 -1.2623
             0.6961
                      26.2318
                                36.8485
                                        157.3504
 13.8824 -110.3075
                      88.4037 157.3504 11672.031
  DETS
44954302
                       MEDI
 87.5500
            93.1400
                    108.1650
                                46.3600
                                         227.8700
 87.2275
            90.0825
                    106.1675
                                38.1950
                                         440.5850
 88.9500
            91.9300 107.0000
                                38.6500
                                         394.4850
 89.9400
            91.4400 120.9150
                                46.4725 542.7450
 87.7700
            89.4767 107.7800
                                44.1033 406.7600
 ALFA
0.13333
0.26667
0.13333
0.26667
0.20000
                   PΕ
```

```
0.00010 0.00010 0.00010 0.00010 0.33297  
0.00010 0.00010 0.00010 0.00010 0.33297  
0.00010 0.00010 0.49940 0.00010 0.00010  
0.00010 0.00010 0.49940 0.00010 0.00010  
0.00010 0.24975 0.00010 0.00010 0.00010  
0.00010 0.00010 0.00010 0.00010 0.33297  
0.00010 0.24975 0.00010 0.00010 0.33297  
0.00010 0.24975 0.00010 0.00010 0.00010  
0.00010 0.24975 0.00010 0.00010 0.00010  
0.00010 0.24975 0.00010 0.00010 0.00010  
0.00010 0.00010 0.00010 0.00010 0.00010  
0.00010 0.00010 0.00010 0.24963 0.00010  
0.00010 0.00010 0.00010 0.24963 0.00010  
0.00010 0.00010 0.00010 0.24963 0.00010  
0.00010 0.00010 0.00010 0.24963 0.00010  
0.00010 0.00010 0.00010 0.24963 0.00010  
0.00010 0.24975 0.00010 0.00010 0.00010  
0.49940 0.00010 0.00010 0.00010 0.00010  
0.49940 0.00010 0.00010 0.00010 0.00010  
0.49940 0.00010 0.00010 0.00010 0.00010  
0.49940 0.00010 0.00010 0.00010 0.00010 0.00010
```

4. Convergence of the log-likelihood:

LOG LIKELIHOOD :

```
-277.82415
-277.79638
-277.69873
-276.90376
```

```
-271.46840
-262.19260
-258.50714
-258.50701
-258.50701
```

5. Final results: Description of the resulting groups:

-258.507	FINAL LOG-LIKELIHOOD			
		V		
5.5976 0.5649 -0.2552	9.1068 4.0598 2.7156	0.5649 4.0598 37.4202 24.9494 -78.6771	2.7156 24.9494 36.7351	
DETS				
3426193.4		MEDI		
92.9700	91.4333 89.4840 96.7700 91.4400 90.2050	107.6680 100.3300	38.8621 35.7700 46.4725	452.1069 290.7808 542.7451
ITERA				
9	NUM	BER OF ITE	RATIONS	
AVERAGE	OF THE MA	XIMUM PROBA	ABILITIES:	:
1.0000				

INITIAL AND FINAL CLASSIFICATIONS

The FREQ Procedure

6. Two-way tables of the observed changes produced by the MLM and the distribution of the *W* variable into the final groups:

				0.00		
3	0.00	1 50.00	1 50.00	0.00	0.00	2
4	0	0 0.00	0.00	1 4 100.00	0.00	4
5	1 33.33	0.00	0.00	0	2 66.67	3
Total	3	5	1	4	2	15

Table of W by FINGROUP

W	FINGROUP
VV	LINGKOOL

1	2] 3	4	5	Total
	0.00	0.00	0.00		1
		0.00	0.00	1 100.00 50.00	1
0.00 0.00	100.00	0.00	0.00	0.00	1
0.00 0.00	0.00	1 100.00 100.00	0.00	0.00	1
0.00	100.00	0.00	0.00	0	1
100.00	0.00	0.00	0.00	0.00	1
0.00	100.00	0.00	0.00	0.00	1
0.00	1 100.00 20.00	0.00	0.00	0.00	1
				0.00	1
	0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	1 2 0 0 0 0.00 0.00 0.00 0.00 0 0 0 0 0 0 0 0	1 2 3 0 0 0 0 0 0 0 0 0	1 2 3 4	1

10	0.00	0.00	0.00	-	0.00	1
11	0.00	0.00	0.00	2 100.00 50.00	0.00	2
12	0.00	0.00	0.00		0.00	1
13	0.00	1 100.00 20.00	0.00		0.00	1
14	1 100.00 33.33	0.00	0.00		0.00	1
Total	3	5	1	4	2	15

7. Initial (INIGROUP) and final (FINGROUP) classification by observation (NOBS), and probability of membership of each observation into the final group:

INITIAL AND FINAL CLASSIFICATIO	1S
---------------------------------	----

Obs	NOBS	W	INIGROUP	FINGROUP	MAXPROB
1	10	1	5	5	1.00000
2	11	2	5	5	1.00000
3	8	3	3	2	1.00000
4	4	4	3	3	1.00000
5	2	5	2	2	1.00000
6	7	6	5	1	1.00000
7	14	7	2	2	1.00000
8	13	8	2	2	1.00000
9	1	9	1	1	1.00000
10	5	10	4	4	1.00000
11	6	11	4	4	1.00000
12	9	11	4	4	1.00000
13	15	12	4	4	1.00000
14	12	13	2	2	0.99996
15	3	14	1	1	1.00000

8. Description of the observations classified in a group with membership probability less than or equal to 0.75. *In this example, there were no observations classified with 0.75 or less probability.*

9. Means of the continuous variables by FINGROUP:

Obs	FINGRO	UP ad	sd	ph	eh	grw	SIZE
1	1	86.3167	91.4333	106.000	44.8767	239.660	3
2	2	86.7680	89.4840	107.668	38.8620	452.106	5
3	3	92.9700	96.7700	100.330	35.7700	290.780	1
4	4	89.9400	91.4400	120.915	46.4725	542.745	4
5	5	89.7300	90.2050	110.835	45.2000	478.520	2

10. Canonical analysis:

The CANDISC Procedure

Observations	15	DF Total	14
Variables	5	DF Within Classes	10
Classes	5	DF Between Classes	4

Class Level Information

FINGROUP	Variable Name	Frequency	Weight	Proportion
1	_1	3	3.0000	0.200000
2	2	5	5.0000	0.333333
3	_3	1	1.0000	0.066667
4	4	4	4.0000	0.266667
5	_ 5	2	2.0000	0.133333

11. Mahalanobis distances between groups:

Pairwise Squared Distances Between Groups

$$D^2(i|j)$$
 $\overline{X}_i - \overline{X}_j$ COV^{-1} $\overline{X}_i - \overline{X}_j$

Squared Distance to FINGROUP

FINC	From GROUP 1	2	3	4	5
1 2	0 9.69890	9.69890	31.89182 47.17016	32.03905 25.33743	53.71280 64.65959
3	31.89182	47.17016	0	21.83177	11.25790
4	32.03905	25.33743	21.83177	0	16.44569
5	53.71280	64.65959	11.25790	16.44569	0

12. Canonical analysis:

Eigenvalues of Inv(E)*H	Test of HO: The canonical
= CanRsq/(1-CanRsq)	correlations in the current
	row and all that follow are zero

Eigenval	ue	(Cumulati	ve Like	elihood			Pr > F
Eigen-	Differ-	Propor-	Cumula-	Likelihood	Approx.	Num	Den	
value	ence	tion	tive	Ratio	F Value	DF	DF	Pr > F
13.0060	9.4873	0.7566	0.7566	0.00896176	3.28	20	20.85	0.0048
3.5187	3.0719	0.2047	0.9613	0.12551810	1.87	12	18.812	0.1089
0.4468	0.2281	0.0260	0.9873	0.56717249	0.87	6	16	0.5349
0.2187		0.0127	1.0000	0.82057834	0.98	2	9	0.4107

13. Correlations between the canonical and the original variables:

Pooled Within Canonical Structure

Variable	Can1	Can2	Can3	Can4
	.237833	0.038504	-0.573316 -0.342918	0.675213
ph 0	.130221	0.426431	0.662903	0.598061
	.077913	0.038632 0.581677	0.779939 -0.090215	0.275478 -0.512354

14. Class means on canonical variables:

FI	NGROUP	Can1	Can2	Can3	Can4
1 2	-2.195 -2.871		-2.087516850 0.763304861	0.619110701 -0.330874168	0.208971868 -0.251208708
3	2.982	907431	-2.512395225	-1.568231850	0.543463597
4	2.006	569437	1.682283872	0.234528031	0.361097995
5	4.967	973060	-0.885357009	0.213579232	-0.679363820

Chapter 16

Mixed Linear Model Approaches for Quantitative Genetic Models

Jixiang Wu Jun Zhu Johnie N. Jenkins

Purpose

Computer software for estimating variance and covariance components, correlations, and predicting genetic effects.

Software Description

We describe a suite of genetic software that employs mixed linear model approaches. The various components relate to three categories, viz, genetic models for diallel crosses (Table 16.1), seed traits (Table 16.2), and developmental traits (Table 16.3). It can also be used to analyze regional agronomic trials.

This software has several features:

- 1. Handles complicated genetic models for agronomic traits, seed traits, and developmental traits
- 2. Analyzes unbalanced data
- 3. Utilizes jackknifing techniques to test the significance of each genetic parameter
- 4. Provides some important references containing results
- 5. Fast computation

System Requirements

Hardware: PC 486 or above; 16MB RAM, or more; 10 MB or more available hard disk space

Operating System: Microsoft Windows 95/98, Microsoft Windows NT 3.5 or above.

Installing

The software suite is available upon request to the author or from the Web site: http://msa.ars.usda.gov/ms/msstate/csrl/jenkins.htm.

All related files are compressed into RUNWIN32.EXE, a self-extracting file. To install the software,

- 1. Copy RUNWIN32.ZIP to a subdirectory (e.g. *c:\WIN32*) on hard disk using Windows Explorer or Windows NT Explorer.
- 2. Double click RUNWIN32.ZIP and all files will be extracted into the current subdirectory WinZip 6.3 extraction software.

Tasks Performed by the Software

This software performs analyses on agronomic traits for diallel cross models; seed models; developmental models; and regional trials.

A. Programs for Diallel Cross Models

Table 16.1 shows programs for diallel crosses.

This software can be used to estimate genetic variance components and genetic covariance components and to predict genetic effects and heterosis for AD, ADM, and ADAA models.

B. Programs for Seed Models

Table 16.2 includes programs for seed models. These programs can also be used to estimate genetic variance components, genetic covariance components, and to predict genetic effects of diploid seed and triploid seed models.

TABLE 16.1. Diallel Crosses

Genetic Models	Jackknife by cell	Jackknife by block
AD ¹	GENAD	GENAD
	GENVAR1C	GENVAR1R
	GENCOV1C	GENCOV1R
	GENHET1C	GENHET1R
ADM ²	GENADM	GENADM
	GENVAR1C	GENVAR1R
ADAA ³	GENADAA	GENADAA
	GENVAR1C	GENVAR1R
	GENCOV1C	GENCOV1R

¹Additive-dominance models

TABLE 16.2. Seed Models

Genetic models	Jackknife by cell	Jackknife by block
Diploid	GENDIPLD	GENDIPLD
	GENVAR0C	GENVAR0R
	GENCOV0C	GENCOV0R
	GENHET0C	GENHET0R
Triploid	GENTRIPL	GENTRIPL
•	GENVAR0C	GENVAR0R
	GENCOV0C	GENCOV0R
	GENHET0C	GENHET0R

C. Programs for Developmental Genetic Models

Table 16.3 includes programs for developmental traits. These programs can be used to create conditional data files, to estimate conditional genetic variance components, and to predict conditional genetic effects for AD, ADM, ADAA for diploid or triploid seed models. Some programs have appeared in Tables 16.1 and 16.2.

²Additive-dominance maternal models

³Additive-dominance additive × additive epistasis models

Genetic Models	Jackknife by cells	Jackknife by block
AD	GENAD	GENAD
	GENCOND1	GENCOND1
	GENVAR1C	GENVAR1R
ADM	GENADM	GENADM
	GENCOND1	GENCOND1
	GENVAR1C	GENVAR1R
ADAA	GENADAA	GENADAA
	GENCOND1	GENCOND1
	GENVAR1C	GENVAR1R
Diploid	GENDIPLD	GENDIPLD
	GENCOND0	GENCOND0
	GANVAR0C	GENVAR0R
Triploid	GENTRIPL	GENTRIPL
	GENCOND0	GENCOND0
	GENVAR0C	GENVAR0R

TABLE 16.3. Developmental Traits

Use of the Software Package

A. Diallel Model Analysis

Step 1. Build a data file. The arrangement of data is shown in file dial1.txt. on the Web page. The first five columns in this file represent environment (e.g., year or location), female, male, generation, and block. In column 1, enter environment number (1...e); in column 2 and 3, enter female and male number, respectively (1...p); and in column 5 enter block number (1...b). The data identifiers should be consecutive positive integers, each beginning with 1. The generation codes for column 4 are 0 for parents, 1 for F_1 , and 2 for F_2 . Enter data in columns 6 to n.

Step 2. Create an information matrix based on genetic models. Run GENAD for AD model, GENADM for ADM model, and GENADE for ADAA model. For example, when GENAD is chosen, prompts will automatically appear on screen as follows:

Input name of your data file: (e.g., dial 1.txt)
Do you have block effects within location (or environment)? Y/N

When running GENADM, you will see an extra prompt:

Do you analyze triploid endosperm? Y/N

Two files will be automatically created, e.g., *dial1.dat*, *dial1.mat*, where, *dial1.mat* contains matrix information, and *dial1.dat* contains the data of traits to be analyzed.

Step 3. Estimate the variance components and predict genetic effects. For example, when GENVAR1C or GENVAR1R is selected on the screen you will see the following prompts:

Input name of your data file: (input the data file name as given in Step 2). What kind of parents did you use? Input 1 for inbred or 0 for outbred. Choose prediction method. Do you want to use LUP or AUP? Input L for LUP and O for AUP.

Input coefficients for each parent: 1 for first group, -1 for second group, 0 for others.

Input sampling number for the jackknife procedure if running GENVAR1C.

The results are automatically stored in a file named, for example, *dial1.var*. *Step 4*. Estimate covariance components and correlation coefficients. After finishing step 3, you can run GENCOV1C or GENCOV1R, and you will see the following prompts:

Input name of your data file: (the name given in Step 2); What kind of parents did you use? Input 1 for inbred or 0 for outbred; Input sampling number for the jackknife procedure: if running GENCOV1C.

The results are automatically stored in a file named, for example, *dial1.cor*. *Step 5*. Predict heterosis. After running step 2, you can run GENHET1C or GENHET1R. Follow the prompts that automatically appear on the screen after you have chosen to run either model:

Input name of your data file: (input the name used in Step 2); What kind of parents did you use? Input 1 for inbred or 0 for outbred;

Input sampling number for the jackknife procedure: if running GENHET1C.

The results are automatically stored in a file named, for example, *dial1.pre*. Note: During the process, other temporary files such as *matrix.var*, *matrix.uq2*, *matrix.uq3*, *matrix.uq4*, *matrix.uq5*, or *matdjc.var* will be created. The user should delete these files after finishing all analyses.

B. Seed Model Analysis

Step 1. Build a data file. The arrangement of data is shown in file ctseed.txt. The first five columns in this data file represent environment (e.g., year, location), female, male, generation, and block. In column 1, enter environment number $(1 \dots e)$, in column 2, female number, in column 3, male number $(1 \dots p)$, and in column 5, block number $(1 \dots b)$. The data identifiers should be consecutive integers, each beginning with 1. The generation codes for column 4 are 0 for parent, 1 for F_1 , 2 for F_2 , 3 for $BC1 = (F_1 \times P_1)$, 4 for $BC2 = (F_1 \times P_2)$, 5 for $RBC1 = (P_1 \times F_1)$, and 6 for $RBC2 = (P_2 \times P_2)$. Enter data in columns 6 to n.

Step 2. Construct an information matrix based on genetic models; GENDIPLD for diploid seed model and GENTRIPL for triploid seed model. When GENDIPLD is run, the following prompts appear on the screen:

Input name of your data file: (for example, enter ctseed.txt) Do you have block effect within location? Y/N

Note: Two files will be automatically created, *ctseed.dat*, *ctseed.mat*, where *ctseed.mat* contains matrix information, and *ctseed.dat* contains data on traits to be analyzed.

Step 3. Estimate variance components and predict genetic effects. For example, for GENVAR0C or GENVAR0R, the following prompts will appear on the screen:

Input name of your data file: (name given in Step 2)

Choose prediction method. Do you want to use LUP or AUP? For LUP, input L, for AUP input O.

Input coefficients for each parent: 1 for first group, -1 for second group, and 0 for others;

Input sampling number for the jackknife procedure: if running GENVAROC.

The results are automatically stored in the *ctseed.var* file.

Step 4. Estimate covariance components and correlation coefficients. For example, run GENCOV0C or GENCOV0R. When running this program, on-screen prompts include:

Input name of your data file: (name given in Step 2)
Input sampling number for the jackknife procedure: if running
GENCOVOC

The results are automatically stored in the *ctseed.cov* file. Note: The user should delete temporary files created during the execution of the program, after finishing all analyses.

C. Developmental Genetic Model Analysis

- *Step 1*. Construct the file. The file format is the same as for the diallel and seed models.
 - Step 2. Convert traits to conditional traits.
 - (a) Construct information matrix based on genetic models.

For example, for AD model run GENAD and follow the on-screen prompts.

Input name of your data file: filename.txt Do you have blocks within location? Y/N

- (b) Run GENCOND1 or GENCOND0, where GENCOND1 is for AD, ADM, and ADAA models; and GENCOND0 is for diploid and triploid seed models.
- Step 3. Now run steps 2 through 5 from A (diallel models) or B (seed models), the only difference being the change in the name of input file from *filename.txt* to *filename.doc* (the latter is a conditional data file).

D. Crop Regional Trial Analysis

Software included: GENTEST, GENETESTM, and GENTESTW. These programs can be used to estimate variance components, compare

the significance of differences among varieties, and to evaluate the stability of each variety.

Step 1. Build the data file. The arrangement of data is shown in the file *msbean.txt*. The four columns represent variety, year, location, and replication. In the first column, enter variety number (check variety should be the highest number; this is important if you choose to transform data relative to the check). In the second column, enter year number. In the third column, location number; and in the fourth column enter replication number. The data identifiers should be consecutive positive integers beginning with 1.

Step 2. Construct an information matrix based on chosen genetic models.

For example, run GENTEST and follow these on-screen prompts: Input name of your data file:

Step 3. Estimate stability for a single trait.

For example, run GENTESTM and follow the on-screen prompts:

Input name of your data file: (from Step 1).

Do you want to transform data relative to check genotype? Y/N

How many linear contrasts do you want?

Input coefficients for each variety: 1 for first group, -1 for second group, 0 for others.

The results are automatically stored in the *region.var* file. The results include variance components, linear contrasts among different genotypes, and stability of each genotype for each trait.

Step 4. Estimate stability for multiple traits.

For example, run GENTESTW and follow on-screen prompts:

Input name of your data file: (from Step 1).

Input weight or values for each trait (sum of these weights = 1.0).

How many linear contrasts do you want?

Input coefficients for each variety: 1 for first group, -1 for second group, 0 for others.

The results are automatically stored in the *region.cov* file. These results include variance and covariance components and stability of each genotype for multiple traits.

The following references may help the reader to understand the use of software packages and Internet sites.

- Atchley, W.R. and Zhu, J. (1997). Developmental quantitative genetics, conditional epigenetic variability and growth in mice. *Genetics* 147:765-776.
- Cockerham, C.C. (1980). Random and fixed effects in plant genetics. *Theoretical and Applied Genetics* 56:119-131.
- Cockerham, C.C. and Weir, B.S. (1977). Quadratic analysis of reciprocal crosses. Biometrics 33:187-203.
- Eisen, E.J., Bohren, B.B., and McKean, H.E. (1966). Sex-linked and maternal effects in the diallel cross. *Australian Journal of Biological Science* 19:1061-1071.
- Fisher, R.A. (1925). *Statistical Methods for Research Workers*, First Edition. Oliver & Boyd, Edinburgh and London.
- Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. *Australian Journal of Biological Science* 9:463-493.
- Hallauer, A.R. and Miranda, J.B. (1981). *Quantitative Genetics in Maize Breeding*. Iowa State University Press, Ames, Iowa.
- Hartley, H.D. and Rao, J.N.K. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. *Biometrika* 54:93-108.
- Henderson, C.R. (1963). Selection index and expected genetic advance. In Hanson, W.D. and Robinson, H.F. (Eds.), *Statistical Genetics and Plant Breeding* (pp. 141-163). Washington, DC: National Academy of Science, National Research Council.
- Miller, R.G. (1974). The jackknife: A review. Biometrika 61:1-15.
- Patterson, H.D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. *Biometrika* 58:545-554.
- Rao, C.R. (1971). Estimation of variance and covariance components MINQUE theory. *Journal of Multivariate Analysis* 1:257-275.
- Rao, C.R. and Kleffe, J. (1980). Estimation of variance components. In Krishnaiah, P.R. (Ed.), *Handbook of Statistics*, Vol. 1 (pp. 1-40). North-Holland, New York.
- Searle, S.R., Casella, G., and McCulloch, C.E. (1992). *Variance Components*. John Wiley and Sons, New York.
- Shi, C.H., Zhu, J., Zeng, R.C., and Chen, G.L. (1997). Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. *Theoretical and Applied Genetics* 95:294-300.
- Wu, J.X., Zhu, J., Ji, D.F., and Xu, F.H. (1995). Genetic analysis for heterosis of fiber traits in Upland cotton (Chinese). *Acta Gossypii Sinica* 7(4):217-222.
- Yan, J.Q., Zhu, J., He, C.X., Benmoussa, M., and Wu, P. (1998). Molecular dissection of developmental behavior of plant height in rice (*Oryza sativa L.*). Genetics 150:1257-1265.

- Yan, X.F., Xu, S.Y., Xu, Y.H., and Zhu, J. (1998). Genetic investigation of contributions of embryo and endosperm genes to malt kolbach index, alpha-amylase activity and wort nitrogen content in barley. *Theoretical and Applied Genetics* 96(5):709-715.
- Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. *Genetics* 136:1457-1468.
- Zhu, J. (1989). Estimation of genetic variance components in the general mixed model. Doctoral dissertation, North Carolina State University, Raleigh, NC.
- Zhu, J. (1993a). Methods of predicting genotype value and heterosis for offspring of hybrids (Chinese). *Journal of Biomathematics* 8(1):32-44.
- Zhu, J. (1993b). Mixed model approaches for estimating covariances between two traits with unequal design matrices (Chinese). *Journal of Biomathematics* 8(3):24-30.
- Zhu, J. (1994). General genetic models and new analysis methods for quantitative traits (Chinese). *Journal of Zhejiang Agricultural University* 20(6):551-559.
- Zhu, J. (1996). Analysis methods for seed models with genotype × environment interactions (Chinese). *Acta Genetica Sinica* 23(1):56-68.
- Zhu, J. (1998). Mixed model approaches of mapping genes for complex quantitative traits. In Wang, L.Z. and Dai, J.R. (Eds.), *Proceedings of Genetics and Crop Breeding of China* (pp. 19-20). Chinese Agricultural Science and Technology Publication House, Beijing.
- Zhu, J., Wang, G.J., and Zhang, R.C. (1997). Genetic analysis on gene effects and GE interaction effects for kernel nutrient quality traits of Upland cotton (Chinese). *Journal of Biomathematics* 12(2):111-120.
- Zhu, J. and Weir, B.S. (1994a). Analysis of cytoplasmic and maternal effects: I. A genetic model for diploid plant seeds and animals. *Theoretical and Applied Genetics* 89:153-159.
- Zhu, J. and Weir, B.S. (1994b). Analysis of cytoplasmic and maternal effects: II. Genetic models for triploid endosperm. *Theoretical and Applied Genetics* 89:160-166.
- Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. *Theoretical and Applied Genetics* 92(1):1-9.

Chapter 17

Best Linear Unbiased Prediction (BLUP) for Genotype Performance

Mónica Balzarini Scott Milligan

Importance

Whenever the examined genotypes (varieties, clones, cultivars, etc.) in an experiment can be regarded as random samples from larger sets or populations, genotype effects should also be considered random in the model. Commonly, random genotype effects are assumed to broaden inferences, i.e., to allow inference about a reference population. Moreover, pairwise comparisons between specific genotypes that have been examined will also be feasible. In addition to estimating genotype variance components, which are of intrinsic interest with random genotype effects, genotypes can be compared by calculating best linear unbiased predictors (BLUPs) of genotype effects. In this context, "best" means minimum mean squared prediction error (MSPE). The smaller the MSPE, the greater the relationship between the dependent and independent variables.

BLUPs are used to predict random effects in mixed models. The predictable function, $\mu + G_i$, i = 1,...,g, allows inference about the performance of the *i*th genotype from a trial involving g randomly selected varieties (broad inference). Thus, the BLUPs of $\mu + G_i$ in a mixed model have a similar role as the genotype mean in a fixed-effect model. BLUPs are called *shrinkage estimators* because they are obtained by regression toward the overall mean based on the variance components of the model effects. A simple version of BLUP to estimate genetic performance of the *i*th genotype, in a model containing unrelated genotypes as random effects, is

BLUP
$$(\mu + G_i) = \overline{Y}$$
.. $F^G \overline{Y}_i$. $-\overline{Y}$..

where F^G is the shrinkage factor that =

$$\frac{\sigma_G^2}{\sigma_G^2 \frac{\sigma_e^2}{n}}$$
,

where σ_G^2 is genetic variance or variance among genotypes, σ_e^2 is the error variance or variance within genotype, and n is the number of observations per genotype. Thus, for this simple model, the estimator moves the genotype mean toward the overall mean depending on the magnitude of a trait's heritability. A large heritability value implies little shrinkage or more reliability of genotype means, and in such a case, genotype BLUPs resemble genotype means. Therefore, the smaller the heritability value, the larger the shrinkage of extreme genotype means toward μ with a reduction in the risk of misinterpretation.

The BLUP for the predictable function, μ G_i E_j $G \times E_{ij}$, i = 1,...,g and j = 1,...,l, in a model also involving environment and genotype-by-environment interaction (GE) random effects, assuming independent and equal variance random effects, is

BLUP
$$\mu$$
 G_i E_j $G \times E_{ij}$ $\overline{Y} \dots$ F^G $\overline{Y}_i \dots - \overline{Y} \dots$
$$F^{GE}$$
 $\overline{Y} \dots - \overline{Y} i \dots - \overline{Y} i \dots - \overline{Y} i \dots$

where FG, FE, and FGE are the following shrinkage factors:

$$F^G = rac{\sigma_G^2 - rac{\sigma_{GE}^2}{l}}{\sigma_G^2 - \sigma_{GE}^2 - rac{\sigma_e^2}{nl}} \quad F^E = rac{\sigma_E^2 - rac{\sigma_{GE}^2}{g}}{\sigma_E^2 - \sigma_{GE}^2 - rac{\sigma_e^2}{ng}} \quad F^{GE} = rac{\sigma_{GE}^2}{\sigma_{GE}^2 - rac{\sigma_e^2}{n}}$$

where σ_{GE}^2 represents the *GE* variance component, σ_E^2 is the variance component associated with environment effects, and g and l are the number of environments and genotypes in the experiment, respectively.

A general form of BLUP of random effects can be obtained by expressing them as a solution of the mixed model equation (extended normal equations). In matrix form, a normal mixed model is

$$y X\beta Zu e$$

where y is an n vector of observable random variables (data), X and Z are known design matrices, β is a p vector of fixed effects, and u (random effects) and e (error term) are unobservable normal random m and n vectors with covariance matrices G and R, respectively. The variance-covariance matrix is V = ZGZ' + R. Estimates of β and u can be written as follows:

$$\hat{\mathbf{y}} = (X^{\mathsf{T}}\hat{\mathbf{y}}^{-1}X)^{\mathsf{T}}X^{\mathsf{T}}\hat{\mathbf{y}}^{-1}y$$

$$\hat{\mathbf{u}} = \hat{\mathbf{y}}Z^{\mathsf{T}}\hat{\mathbf{y}}^{-1}(y - X\hat{\mathbf{y}})$$

Since variance components are usually unknown, estimated covariance matrices are used in place of true matrices. Thus, the vector \hat{u} is better referred to as an empirical BLUP (EBLUP) to indicate that it is approximated from the data. The vector \hat{u} can be interpreted as a weighted deviation of genotype means from the overall mean after adjusting for fixed effects. Provided that G is nonsingular, the estimated covariance matrix of B and \hat{u} can be written as follows:

$$\vec{C} = \begin{bmatrix} \vec{C}_{11} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{22} \end{bmatrix}, \text{ where } \begin{bmatrix} \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{22} \end{bmatrix}, \text{ where } \begin{bmatrix} \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{22} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{22} & \vec{C}_{21} \\ \vec{C}_{22} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{22} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{22} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C}_{21} \\ \vec{C}_{22} & \vec{C}_{21} \\ \vec{C}_{21} & \vec{C$$

The elements of \vec{e}_{22} provide the estimated prediction error variances that allow comparisons of BLUPs. A predictable function $K \beta M u$ is estimated by $K' \not \beta + M' \hat{u}$. Thus, the BLUP of μG_i is $\not \alpha + \vec{G}_i$. As a linear combination of fixed and random model effects, its prediction error variance can be easily derived from \vec{e} . These estimates address the objective of assessing and comparing genotype performance in a mixed model context. The square root of the prediction error variance (a standard error analog) can be used to approximate Prediction Intervals for the pairwise BLUP differences.

If the genotypes were genetically related, a matrix of genetic relationships, A, may be used to adjust the matrix G and, in turn, the BLUPs. These relationships may be computed from pedigree or molecular-based analyses. The covariance matrix for the genetic effects is commonly written as G $\sigma_G^2 A$, where elements in A are used to represent genetic related-

ness between any two genotypes, and it is expressed as a proportion of genetic variance. Note that A = I represents the special case of unrelated genotypes. Several covariance structures for G and R may be reasonable. Likewise, following the aforementioned procedure, different BLUP versions can be obtained.

A SAS macro was developed to obtain BLUPs of genotype effects, prediction errors, BLUPs of the predictable functions μ G_i , and pairwise, approximated prediction intervals for the differences between the BLUPs of two genotypes. The macro uses restricted maximum likelihood (REML) variance component estimates obtained from PROC MIXED of SAS (SAS, 1997). It calls for an IML module to obtain and compare the BLUPs derived with or without (Model = GGR) (model = GI), assuming a given genetic relationship among the examined genotypes.

EXAMPLE

Two sample data sets, one with a large genotypic variance and the other with a small genotypic variance, are provided to show how a simple (assuming genotypes are not related) version of BLUP for genotypes (broad inference) works. Each data set contains four genotypes and four replicates per genotype.

<pre>data AltaH2; input genotype y; datalines;</pre>	<pre>data BajaH2; input genotype y; datalines;</pre>
1 28.41	1 18.41
1 27.35	1 17.35
1 27.25	1 17.25
1 28.42	1 18.42
2 19.90	2 19.90
2 18.93	2 18.93
2 19.52	2 19.52
2 19.61	2 19.61
3 19.65	3 19.45
3 18.79	3 19.65
3 18.86	3 21.86
3 19.45	3 20.79
4 21.80	4 21.80
4 18.61	4 18.61
4 22.37	4 22.52
4 22.52	4 17.37

Assuming the macro file is being retrieved from a floppy disk, write:

The macro arguments that can be modified by the user are:

```
Model :enter GI for Independent or unrelated Genotypes enter GR for Related Genotypes
Workds:work data set name
Ldata :name for the data set containing a Genetic relationship coefficient matrix. Required if model=GR
S2_G :enter a known Genetic VarianceValue (otherwise it is estimated)
S2_A :enter a known Additive Variance Value (optional)
S2_E : enter a known Error Variance Value (otherwise it is estimated)
Class : classification variables excluding genotype (optional)
Fixed : model fixed effects separated by blanks (optional)
C_Matrix :YES to print mixed model parameter covariance matrix
PredRes : YES to print Predicted and Residual Values
```

If the model GI (unrelated genotypes) is fitted to both data sets, the BLUPs of genotype effects and the BLUPs of $\mu + G_i$ shown in the output will be as follows:

Alta	H2 data set	BajaH2 data set			
BLUP (G_1)	BLUP (m + G_i)	BLUP (G_i)	BLUP (m + G_i)		
5.799	27.764 A	-0.992	18.473 B		
-2.435	19.529 C	0.015	19.480 A		
-2.733	19.231 C	0.600	20.065 A		
-0.630	21.335 B	0.376	19.841 A		

The BLUP differences among the ten possible pairwise comparisons of genotype versus a 95 percent prediction interval column containing either 1 or 0 for each contrast are shown. The zeros indicate that the prediction interval for the BLUP difference contains a zero value, which can be interpreted as not different in genotypic performance. For the AltaH2 data set, all BLUP differences, except those between genotypes 2 and 3, are significant. For the BajaH2 data set, only the difference between genotype 1 and 3 is significant. Here we show the traditional genotype means and least

significant difference (LSD) for both sample data sets to compare BLUP performance against ordinary mean performance:

AltaH2	data set	BajaH2	data set
Genotype Mean	LSD signif- icance	Genotype Mean	LSD signif- icance
27.858	A	17.856	В
19.490	С	19.490	AB
19.187	С	20.438	A
21.325	В	20.075	A

Note: For a large trait heritability, BLUPs closely resemble means, but a small genotype variance component shrinks genotype performances toward the overall mean, yielding different significances in the BajaH2 data set. In a real data set (large number of genotypes and probably different genotype sample sizes), shrinkage might provide significant improvement over genotype means.

The data GR is a sample data set to enter the covariance coefficient matrix for a set of four genotypes. The columns parm (equal to 1) and row (from 1 to g) should be in the data set to conform with SAS PROC MIXED requirements for using the covariance structure type = LIN(1). This structure indicates that the covariance parameters in G are a linear combination of variance components. This variance component may be the additive variance (entered as macro argument) to obtain BLUPs with shrinkage factors based on the narrow-sense heritability (matrix coefficients should be $2*r_{ij}$, where r_{ij} is the coancestry coefficient between genotypes i and j). The variance component might also be a genetic variance, entered as a macro argument or estimated from the data. The sample data GR shows a covariance coefficient (0.5) between genotypes 2 and 3.

```
Data GR;
input parm row col1-col4;
datalines;
1 1 1 0 0 0
1 2 0 1 0.5 0
1 3 0 0.5 1 0
1 4 0 0 0 1
```

The relationship coefficient matrix data set should be indicated in the macro argument LDATA, whenever model GGR is required. The output interpretation is the same as before, but BLUPs have been calculated assuming the given genetic relationship among the genotypes.

```
/*
                                                                     * /
/*SAMPLE DATA SET FOR OBTAINING BLUPS FOR GENOTYPE PERFORMANCE
                                                                    * /
/*Data ALTAH2 shows a larger genotype variance than data BAJAH2
                                                                    * /
/*Data GR shows how to inputa genetic relationship matrix
                                                                    * /
/*The following variable names should be the same in your data set:*/
/*genotype, y (for trait values), Parm (equals 1), row (from 1 to g) */
/*Col1 to Colq to indicate the q columns of the relationship matrix*/
data AltaH2;
input genotype y bl;
datalines;
1 28.41 1
1 27.35 2
1 27.25 3
1 28.42 4
2 19.90 1
2 18.93 2
2 19.52 3
2 19.61 4
3 19.65 1
3 18.79 2
3 18.86 3
3 19.45 4
4 21.80 1
4 18.61 2
4 22.37 3
4 22.52 4
data BajaH2;
input genotype y;
datalines;
1 18.41
1 17.35
1 17.25
1 18.42
2 19.90
2 18.93
2 19.52
2 19.61
3 19.45
3 19.65
3 21.86
3 20.79
4 21.80
4 18.61
4 22.52
4 17.37
Data GR;
input parm row coll-col4;
datalines;
1 1 1 0 0 0
1 2 0 1 0.5 0
1 3 0 0.5 1 0
1 4 0 0 0 1
;
```

```
/*Macro BLUP GP produces Genotype Performance BLUPs for models with */
/*only genotype effects as random. Two versions of genotype BLUPs */
/*can be obtained (with or without relationship among genotypes)
/*The macro arguments are:
                                                                    */
                                                                    * /
/*Model :enter GI for Independent or unrelated Genotypes
                                                                    */
/* enter GR for Related Genotypes
                                                                     * /
/*Workds:work data set name
                                                                     * /
/*Ldata :name for the data set containing a Genetic
/* relationship coefficient matrix. Required if model=GR
                                                                    * /
/*S2 G :enter a known Genetic Variance (otherwise it is estimated) */
/*S2 A :enter a known Additive Variance (optional)
                                                                    * /
/*S2_E :enter a known Error Variance (otherwise it is estimated) */
/*Class:classification variables excluding genotype (optional)
                                                                    * /
/*Fixed :model fixed effects separated by blanks (optional)
                                                                    * /
/*C matrix:YES to print mixed model parameter covariance matrix
                                                                   */
                                                                    * /
/*PredRes :YES to print Predicted and Residual Values
                                                                    */
options nodate nocenter;
%macro BLUP GP(Model=GI, Workds=BajaH2, Ldata=GR, S2 G=, S2 A=, S2 E=,
               Class=, Fixed=, C matrix=Yes, PredRes=);
proc mixed data=&workds noclprint noitprint covtest;
class genotype &class;
model y=&Fixed/pm p;
%if (&model=GI) %then %do;
random Genotype/s ;
%end;
%if (&model=GGR) %then %do;
random Genotype/ldata=&ldata type=lin(1) s;
make 'solutionR' noprint out=BLUP&model;
make 'covparms' out=V&model;
make 'predmeans' noprint out=L&model;
make 'predicted' noprint out=Pred&model;
                                                                    * /
                                                                    */
/*Calculate the Predictable Function Mu+Genotype effect
                                                                    */
Data BLUPs:
set BLUP&model;
Keep Genotype BLUP P Error P value;
BLUP= EST ;
P Error= SEPRED ;
P Value= PT ;
%if (&S2 G<0) %then %do;
%if (&S2 A<0) %then %do;
proc print;
```

```
title1 'Genotype effect BLUPs, Prediction Error and P-Value for
     H0:BLUP=0';
run;
%end;
%end;
title1 ' ';
%if (&model=GGR) %then %do;
data AR:
set &ldata;
drop parm row;
%end;
data level;
set &workds;
keep genotype;
data VarComp;
set V&model;
if covparm='Residual' or Covparm='GENOTYPE' or covparm='LIN(1)';
data Y;
set &workds;
keep Y;
 proc iml;
 use Y;
  read all into Y;
 use L&model var{ resid };
 read all into ya;
  use level;
  read all into level;
  use VarComp;
  read all into VC;
  Z=design(level);
  yp=inv(Z^*Z)*Z^*ya;
  S2e=VC(|2,1|);
  S2u=VC(|1,1|);
  %if (&S2 E>0) %then %do; S2e=&S2 E; print S2e; %end;
  %if (&S2 G>0) %then %do; S2u=&S2 G; print S2u; %end;
  %if (&S2 A>0) %then %do; S2u=&S2 A; print S2u; %end;
  %if (&model=GI) %then %do;
    AR=I(nrow(Z));
    V=inv(Z^*Z)*Z^*(S2u*Z*AR*Z^+S2e*I(nrow(Z)))*Z*inv(Z^*Z)^;
  %end;
  %if (&model=GGR) %then %do;
    use AR;
    read all into AR;
    V=inv(Z^*Z)*Z^*(S2u*Z*AR*Z^+S2e*I(nrow(Z)))*Z*inv(Z^*Z)^;
  %end;
```

```
C=VC(|1,1|)*AR;
BLUPg=C*inv(V)*yp;
X=J(nrow(level),1);
G=S2u*AR;
R=S2e*I(nrow(Z));
V=Z*G*Z`+R;
Beta=inv(X`*X)*X`*Y;
K=J(nrow(Z),1);
M=I(nrow(Z));
PF=K`*Beta+ M`*BLUPg;
/*
                                                                         * /
/*Calculate Prediction Error Variances
                                                                         * /
                                                                         * /
C11=Ginv(X^*inv(V)*X);
C21 = -G*Z `*inv(V) *X*C11;
C22=inv(Z^*inv(R)*Z+inv(G))-C21*X^*inv(V)*Z*G;
COV BU=(C11||C21^{\circ}) //(C21||C22);
VarPF=K`*C11*K+M`*C22*M+2*M*C21*K;
ncon=Nrow(PF) * (Nrow(PF) -1) /2;
row=0;
LPF=shape(0,ncon,nrow(BLUPG));
Gi=shape(0,ncon,1);
Gi=shape(0,ncon,1);
do i=1 to nrow(BLUPg);
  do j=1 to nrow(BlUPg);
   If i<j then do;
                 row=row+1;
                 LPF[row, i] = 1;
                 LPF[row, j] = -1;
                 Gi[row, 1] = i;
                 Gj[row, 1] = j;
                end:
  end;
end:
Con PF=LPF*PF;
Var C=LPF*VarPF*LPF`;
PF Diff=Con PF;
Con PF=Con PF@j(1,nrow(LPF));
CValue=2*SQRT(Diag(Var C));
LS_IC=Diag(Con_PF+CValue);
LI IC=Diag(Con PF-CValue);
Pred Int=J(nrow(LPF),1);
  do i=1 to nrow(LPF);
     If LS IC[i,i]>0 then do; If LI IC[i,i]<0 then Pred Int[i]=0; end;
  end;
```

```
Best Linear Unbiased Prediction (BLUP) for Genotype Performance
                                                                      191
                                                                       */
/*Printing Results
                                                                       */
                                                                       */
print 'Predictable Functions and Pairwise Differences';
print BLUPg PF Gi GJ PF Diff Pred Int;
print 'Pred Int=0 means no different BLUPs';
%if (&C matrix=YES) %then %do;
 print COV BU;
%end;
%if (&PredRes=YES) %then %do;
 proc print data=Pred&model;
%end;
%mend BLUP GP;
```

%BLUP GP;

run;

Chapter 18

Graphing GE and GGE Biplots

Juan Burgueño José Crossa Mateo Vargas

Purpose

- To analyze multienvironment trials and to study genotype × environment interaction (GEI) using linear/bilinear AMMI or SREG models.
- To graph biplots to describe GEI and to identify megaenvironments and cultivars with best performance.

Definitions

The linear/bilinear AMMI model is

$$\bar{y}_{ii}$$
, μ τ_i δ_i t α_{ik} α_{ik} t

and the linear/bilinear SREG model is

$$\overline{y}_{ij}$$
. μ δ_j $k_1 k_2 \alpha_{ik} k_3 \beta_i$

where \bar{y}_{ij} is mean of the ith cultivar in the jth environment; μ is the overall mean, τ_i is the genotypic effect; δ_j is the site effect; $k_1 = 1 - 2 - \dots = r$ represents the singular values (scaling constants); $\alpha_{ik} = \alpha_{1k}, \dots, \alpha_{gk} = \alpha_{gk}$ and $k_1 = 1 - 2 - \dots = r$ are the singular vectors for cultivars and environment, respectively, with $k_1 = 1 - 2 - \dots = r$ and $k_2 = 1 - 2 - \dots = r$ and $k_3 = 1 - 2 - \dots = r$ sidual error with NID $k_4 = 1 - 2 - \dots = r$ with $k_5 = 1 - 2 - \dots = r$ is pooled error variance and $k_5 = 1 - 2 - \dots = r$ is number of replicates).

Originators

- Gollob, H.F. (1968). A statistical model which combines features of factor analytic and analysis of variance. *Psychometrika* 33:73-115.
- Mandel, J. (1961). Non-additivity in two-way analysis of variance. *Journal of the American Statistical Association* 56:878-888.

Biplot

Biplots graph scores of sites and genotypes of the first bilinear term against scores of sites and genotypes of the second bilinear term.

Originators

- Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. *Biometrika* 58:453-467.
- Yan, W., Hunt, L.A., Sheng, Q, and Szlavnics, Z. (2000). Cultivar evaluation and megaenvironment investigation based on the GGE biplot. *Crop Science* 40:597-605.

Software Available

Burgueño, J., Crossa, J., and Vargas, M. (2001). SAS PROGRAMS for graphing GE and GGE biplots. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), INT, accessed online http://www.cimmyt.org/biometrics.

Key References

- Burgueño, J., Crossa, J., and Vargas, M. (2001). SAS PROGRAMS for graphing GE and GGE biplots. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), INT, accessed online http://www.cimmyt.org/biometrics.
- Vargas, M. and Crossa, J. (2000). The AMMI analysis and the graph of the biplot in SAS. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) INT. México, p. 42.
- Yan, W., Hunt, L.A., Sheng, Q., and Szlavnics, Z. (2000). Cultivar evaluation and megaenvironment investigation based on the GGE biplot. *Crop Science* 40:597-605.

Contact

Juan A. Burgueño. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) INT. Apdo. 6-641 C.P. 06600 México, D.F., Mexico.

Data to Be Analyzed

Yield (kg·ha⁻¹), obtained from individual analysis by year:

year genotype	1990	1991	1992	1993	1994	1995
í	5991.67	6640.33	5518.67	6657.67	6701.67	5280.67
2	7160.67	6081.00	5638.00	6688.67	7280.33	5869.67
3	7793.00	6954.33	5399.67	7553.33	7196.00	6041.00
4	7715.00	7170.00	6536.00	6530.67	7610.67	6284.00
5	8082.67	7224.67	6229.00	8087.67	7092.33	5891.00
6	8179.00	7467.33	6680.00	7296.00	8510.33	6901.67
7	7780.00	7095.67	7175.00	8385.67	8579.33	6931.67
8	7864.00	7632.33	7075.00	8529.67	8591.67	7012.33

Case 1

Using the AMMI model for obtaining the GE biplot:

```
/* setup output */
OPTIONS PS = 5000 LS=78 NODATE;
FILENAME BIPLOT 'EXAMPLE1.CGM';
GOPTIONS DEVICE=CGMMWWC GSFNAME=BIPLOT GSFMODE=REPLACE;
/* read data file */
DATA RAW;
           INFILE 'c:\cimmyt\amii\EXAMPLE1.DAT';
           INPUT ENV $ GEN $ YIELD;
           YLD=YIELD/1000;
/* analysis linear-bilinear model */
PROC GLM DATA=RAW OUTSTAT=STATS ;
           CLASS ENV GEN;
           MODEL YLD = ENV GEN ENV*GEN/SS4;
DATA STATS2;
SET STATS ;
DROP NAME TYPE;
IF SOURCE = 'ERROR' THEN DELETE;
/* values obtained from previous analysis */
MSE=0.1580245;
DFE=94;
NREP=3;
SS=SS*NREP;
MS=SS/DF;
F=MS/MSE;
PROB=1-PROBF (F, DF, DFE);
PROC PRINT DATA=STATS2 NOOBS;
           VAR SOURCE DF SS MS F PROB;
/* define AMMI model */
PROC GLM DATA=RAW NOPRINT;
           CLASS ENV GEN;
           MODEL YLD = ENV GEN / SS4 ;
           OUTPUT OUT=OUTRES R=RESID;
PROC SORT DATA=OUTRES;
```

```
BY GEN ENV;
PROC TRANSPOSE DATA=OUTRES OUT=OUTRES2;
            BY GEN;
            ID ENV;
            VAR RESID;
PROC IML;
USE OUTRES2;
READ ALL INTO RESID;
NGEN=NROW (RESID);
NENV=NCOL (RESID);
USE STATS2;
READ VAR {MSE} INTO MSEM;
READ VAR {DFE} INTO DFEM;
READ VAR {NREP} INTO NREP;
CALL SVD (U, L, V, RESID);
MINIMO=MIN (NGEN, NENV);
L=L[1:MINIMO,];
SS=(L##2)*NREP;
SUMA=SUM(SS);
PERCENT= ((1/SUMA) #SS) *100;
MINIMO=MIN (NGEN, NENV);
PERCENTA=0;
            DO I = 1 TO MINIMO;
                       DF = (NGEN-1) + (NENV-1) - (2*I-1);
                       DFA=DFA//DF;
                       PORCEACU=PERCENT[I,];
                       PERCENTA=PERCENTA+PORCEACU;
                       PERCENAC=PERCENAC//PERCENTA;
            END;
DFE=J (MINIMO, 1, DFEM);
MSE=J (MINIMO, 1, MSEM);
SSDF=SS||PERCENT||PERCENAC||DFA||DFE||MSE;
L12=L##0.5;
SCOREG1=U[,1]#L12[1,];
SCOREG2=U[,2]#L12[2,];
SCOREG3=U[,3]#L12[3,];
SCOREE1=V[,1]#L12[1,];
SCOREE2=V[,2]#L12[2,];
SCOREE3=V[,3]#L12[3,];
SCOREG=SCOREG1 | | SCOREG2 | | SCOREG3;
SCOREE=SCOREE1 | | SCOREE2 | | SCOREE3;
SCORES=SCOREG//SCOREE;
CREATE SUMAS FROM SSDF;
APPEND FROM SSDF;
CLOSE SUMAS;
CREATE SCORES FROM SCORES;
APPEND FROM SCORES ;
CLOSE SCORES;
/* obtaining the biplot's polygon and its perpendiculars */
d1=scoreg[,1:2][cvexhull(scoreg[,1:2])[loc(cvexhull(scoreg[,1:2])>0),];
d=d1//d1[1,];
xxx=J(nrow(d)-1,1,0);
yyy=J(nrow(d)-1,1,0);
ppp={0 1,1 0};
            do i=1 to nrow(d)-1;
                       dd=d[i:i+1,];
                                if dd[1,1]>dd[2,1] then ddd=ppp*dd;
                                else ddd=dd;
                       p = (ddd[2,2] - ddd[1,2]) / (ddd[2,1] - ddd[1,1]) ;
```

```
if p<0 then ss=1;
                               else ss=-1 ;
                       r=tan((180-90-
abs(atan(p)*180/3.14156))*3.14156/180)*ss;
                       aa=(ddd[1,2]+ddd[2,2])/2-p*(ddd[1,1]+ddd[2,1])/2;
                       xx=aa/(r-p);
                               if abs(r) < 1 then xxx[i, ]=1;
                               else xxx[i,]=1/abs(r);
                                     if xx<0 then xxx[i,]=-xxx[i,];
                                     else xxx[i,]=xxx[i,];
                       yyy[i,]=xxx[i,]*r;
            end:
kk=xxx||yyy;
xx1 = \{V1 \ V2\};
create pol from d[colNAME=xx1];
append from d;
close pol;
xx2 = {V3 V4};
create perp from kk[colNAME=xx2];
append from kk;
close perp;
data pol; set pol; TYPE="pol";
data perp; set perp; TYPE="per";
DATA SSAMMI;
SET SUMAS;
SSAMMI =COL1:
PERCENT =COL2;
PERCENAC=COL3;
DFAMMI =COL4;
DFE =COL5;
MSE =COL6;
DROP COL1 - COL6;
MSAMMI=SSAMMI/DFAMMI;
F AMMI=MSAMMI/MSE;
PROBF=1-PROBF (F AMMI, DFAMMI, DFE);
PROC PRINT DATA=SSAMMI NOOBS;
           VAR SSAMMI PERCENT PERCENAC DFAMMI MSAMMI F AMMI PROBF;
/* prepare data for plotting */
PROC SORT DATA=RAW;
           BY GEN;
PROC MEANS DATA = RAW NOPRINT;
           BY GEN ;
            VAR YLD;
            OUTPUT OUT = MEDIAG MEAN=YLD;
DATA NAMEG;
            SET MEDIAG;
            TYPE = 'GEN';
           NAME = GEN;
           KEEP TYPE NAME YLD;
PROC SORT DATA=RAW;
            BY ENV;
PROC MEANS DATA = RAW NOPRINT;
            BY ENV ;
            VAR YLD;
           OUTPUT OUT = MEDIAE MEAN=YLD;
DATA NAMEE:
           SET MEDIAE:
           TYPE = 'ENV';
```

```
NAME1 = 'S' | ENV;
           NAME = COMPRESS(NAME1);
            KEEP TYPE NAME YLD;
DATA NAMETYPE;
            SET NAMEG NAMEE;
DATA BIPLOTO ;
           MERGE NAMETYPE SCORES;
            DIM1=COL1;
            DIM2=COL2;
            DIM3=COL3;
           DROP COL1-COL3;
data biplot ;
            set biplot0 pol perp;
PROC PRINT DATA=BIPLOT NOOBS;
           VAR TYPE NAME YLD DIM1 DIM2 DIM3;
Data labels;
            set biplot ;
            retain xsys '2' ysys '2';
            length function text $8 ;
            text = name ;
                       if type = 'GEN' then do;
                               color='black ';
                               size = 0.6;
                               style = 'hwcgm001';
                               x = dim1;
                               y = dim2;
                                     if dim1 >= 0
                                       then position='5';
                                     else position='5';
                               function = 'LABEL';
                               output;
                       end;
                       if type = 'ENV' then DO;
                               color='black ';
                               size = 0.6;
                               style = 'hwcgm001';
                               x = 0.0;
                               y = 0.0;
                               function='MOVE';
                               output;
                               x = dim1;
                               v = dim2;
                               function='DRAW';
                               output;
                                     if dim1 >= 0
                                       then position='5';
                                     else position='5';
                               function='LABEL';
                               output;
                               end;
                       if type = "per" then do;
                               color='red';
                               line=2;
                               size = 0.6;
                               style = 'hwcqm001';
                               x=0.0;
                               v=0.0;
                               function='MOVE';
                               output;
                               x=v3;
```

```
v=v4;
                                 function='DRAW';
                                output;
                        end:
/* graphing the biplot */
Proc gplot data=biplot;
Plot dim2*dim1 v2*v1 / overlay Annotate=labels frame
            Vref=0.0 Href = 0.0
            cvref=black chref=black
            lvref=3 lhref=3
            vaxis=axis2 haxis=axis1
            vminor=1 hminor=1 nolegend;
            symbol1 v=none c=black h=0.7;
            symbol2 v=none c=blue i=j line=3;
            axis2
                        length = 6.0 in
                        order = (-1.0 \text{ to } 1.0 \text{ by } 0.2)
                        label=(f=hwcgm001 h=1.2 a=90 r=0 'Factor 2')
                       value=(h=0.8)
                       minor=none;
            axis1
                       length = 6.0 in
                       order = (-1.0 \text{ to } 1.0 \text{ by } 0.2)
                       label=(f=hwcgm001 h=1.2 'Factor 1')
                       value=(h=0.8)
                       minor=none;
run;
```

Output

The SAS System
General Linear Models Procedure
Class Level Information

Class Levels Values

ENV 6 90 91 92 93 94 95 GEN 8 1 2 3 4 5 6 7 8

Number of observations in data set = 48

0

General Linear Models Procedure

Dependent Variable:YLD

1.000000 0

Source	DF	Sum of Squares	Mean Square	FValue	Pr>F
Model	47	36.27979794	0.77191059		
Error	0				
Corrected Total	47	36.27979794			
R-Square C.V	. Ro	otMSE YLDMe	ean		

7.053890

200 Handbook of Formulas and Software for Plant Geneticists and Breeders

Source	DF	TypeIVSS	Mear	n Square	FValue	Pr>F
ENV	5	16.39991745	3.2	7998349		
GEN	7	14.25289126	5 2.0	3612732		
ENV*GEN	35	5.62698924	0.1	6077112		
SOURCE	DF	SS	MS		F	PROB
ENV	5	49.1998	9.83995	62.	2685 .	0000000000
GEN	7	42.7587	6.10838	38.	6547 .	0000000000
ENV*GEN	35	16.8810	0.48231	3.	0521 .	0000096813
SSAMMI	PERCENT	PERCENAC	DFAMMI	MSAMMI	F_AMMI	PROBF
7.24287	42.9055	42.906	11	0.65844	4.16671	0.00005
5.42327	32.1265	75.032	9	0.60259	3.81324	0.00039
2.96965	17.5917	92.624	7	0.42424	2.68462	0.01403
1.19061	7.0530	99.677	5	0.23812	1.50686	0.19509
0.05457	0.3233	100.000	3	0.01819	0.11511	0.95106
TYPE	NAME	YLD	DIM1	DIM2	Γ	DIM3
GEN	1	6.13178	0.0095	6 -0.4	0614	0.71637
GEN	2	6.45306	-0.2078	5 0.1	1243 -	-0.42252
GEN	3	6.82289	0.5472	3 0.3	8688 -	-0.17175
GEN	4	6.97439	-0.5503	9 0.4	8510	0.32201
GEN	5	7.10122	0.7980	7 0.2	2696	0.09611
GEN	6	7.50572	-0.5052	7 0.3	1346 -	-0.10796
GEN	7	7.65789	-0.1222	3 -0.6	1605 -	-0.38304
GEN	8	7.78417	0.0308	8 -0.5	0265 -	-0.04923
ENV	S90	7.57075	0.2609	4 0.8	8469 -	-0.35836
ENV	S91	7.03321	0.1470	0 0.2	4992	0.80484
ENV	S92	6.28142	-0.3962	9 -0.3	0402	0.23481
ENV	S93	7.46617	0.9185	8 -0.5	8360 -	-0.19014
ENV	S94	7.69529	-0.5888	2 -0.2	5741 -	-0.30403
ENV	S95	6.27650	-0.3414	0.0	1041 -	-0.18713

Case 2

Previous codes

Using the SREG model for obtaining the GGE biplot (required changes to the previous program are highlighted in bold):

AMMI Model	SREG Model
PROC GLM DATA=RAW NOPRINT;	PROC GLM DATA=RAW NOPRINT;
CLASS ENV GEN ;	CLASS ENV;
MODEL YLD = ENV GEN/SS4;	MODEL YLD = ENV/SSR;
OUTPUT OUT=OUTRES R=RESID;	OUTPUT OUT=OUTRES R=RESID;

The range of the scores should be changed.

i levious codes	Wodilled Codes
Axis2	Axis 2
length = 6.0 in order = (-1 to 1 by 10)	length = 6.0 in order = (-1.2 to 1.2 by 10)
label=(f=hwcgm001 h=1.2 a=90 r=0 'Factor 2')	label=(f=hwcgm001 h=1.2 a=90 r=0 'Factor2')
value=(h=0.8)	value=(h=0.8)
minor=none;	minor=none;

Modified codes

axis 1

length = 6.0 in order = (-1 to 1 by 10)label=(f=hwcgm001 h=1.2 'Factor 1')value=(h=0.8)

minor=none;

Previous codes

if abs(r)<1 then xxx[i,]=1;
else xxx[i,]=1/abs(r);</pre>

axis1

length = 6.0 in order = (-1.2 to 1.2 by 10)label=(f=hwcgm001 h=1.2 'Factor 1')

value=(h=**0.6**) minor=none;

Modified codes

if abs(r)<1 then xxx[i,]=1.2; else xxx[i,]=1.2/abs(r);

Ouput

General Linear Models Procedure Class Level Information

Class Levels Values

ENV 6 90 91 92 93 94 95 GEN 8 1 2 3 4 5 6 7 8

Number of observations in data set = 48

General Linear Models Procedure

Dependent Variable: YLD

Source Model Error Corrected Total	DF 47 0	Sum of Squares 36.27979794		FValue .	Pr>F	
R-Square 1.000000	C.V. 0	RootMSE 0	YLDMean 7.053890			
Source ENV GEN ENV*GEN	DF 5 7 35	TypeIVSS 16.39991745 14.25289126 5.62698924	3.27998349	FValue	Pr>F	
SOURCE ENV GEN ENV*GEN	DF 5 7 35	SS 49.1998 42.7587 16.8810	MS 9.83995 6.10838 0.48231	F 62.2685 38.6547 3.0521	.000000000	0
SSAMMI 43.8940 7.1690	PERCENT 73.5988 12.0206	PERCENAC 73.599 85.619	DFAMMI 11 9	MSAMMI 3.99037 0.79656	F_AMMI 25.2516 5.0407	PROBF 0.00000 0.00002

5.1750 2.2756 1.0970 0.0289	8.6771 3.8156 1.8394 0.0485	94.296 98.112 99.951 100.000	7 5 3 1	0.45513 2.8	783 0.00016 801 0.01830 140 0.08092 832 0.66965
TYPE GEN GEN GEN GEN GEN GEN GEN GEN ENV ENV ENV ENV	NAME 1 2 3 4 5 6 7 8 S90 S91 S92 S93 S94 S95	YLD 6.13178 6.45306 6.82289 6.97439 7.10122 7.50572 7.65789 7.78417 7.57075 7.03321 6.28142 7.46617 7.69529 6.27650	DIM1 -1.16627 -0.71482 -0.31952 -0.12234 0.02080 0.56288 0.81001 0.92925 0.74276 0.52365 0.85870 0.84586 0.94654 0.80649	0.50436 0.4 -0.60031 0.3 0.78280 0.2 -0.48905 0.3 -0.01615 -0.4 0.12340 -0.3 0.23078 0.9 0.09414 0.1 -0.35358 -0.3 0.99020 -0.4 -0.52657 -0.1	4719 6686 0386 9015 8332 5601 7082 8218 8338 2375 0693 4343

Chapter 19

Analysis for Regional Trials with Unbalanced Data

Jun Zhu

Purpose

To analyze unbalanced data of regional trials for comparing varieties by linear contrast tests.

Definitions

Statistical Model

Analysis of experimental data from regional trials is based on the following linear model, which regards the genotypic effects (G) as fixed and further partitions the random E (E = Y + L + YL) and GE interaction effects (GE = GY + GL + GYL) (h = 1,2,...,g; $i = 1,2,...,n_h$; $j = 1,2,...,n_h$; k = 1,2,...,r):

$$y_{\mathit{hijk}}$$
 G_{h} Y_{i} L_{j} YL_{ij} GY_{hi} GL_{hj} GYL_{hij} $B_{\mathit{k}\,(\mathit{ij})}$ e_{hijk}

where, Y = year effect, L = location effect, $YL = \text{year} \times \text{location}$ interaction effect, $GY = \text{genotype} \times \text{year}$ effect, $GL = \text{genotype} \times \text{location}$ effect, $GYL = \text{genotype} \times \text{year} \times \text{location}$ interaction effect, B = block effect, and e = residual effect.

Analysis

Balanced data of regional trials can be easily analyzed using ANOVA methods. The experimental data of regional trials, however, are quite often unbalanced because of missing genotype records in specific locations and

years. Mixed model approaches can then be applied for analyzing unbalanced data of a single trait and multiple traits from regional trials (Zhu, Lai, and Xu, 1993; Zhu, Xu, and Lai, 1993). The phenotypic data of trait y (f = 1, 2, ..., t) can be expressed in a matrix form of a mixed linear model:

with variance matrix:

The covariance between traits $y_{(f)}$ and $y_{(f)}$ is

$$C_{(f,f)}$$
 $\sigma_{u(f)/u(f)}U_{u}U_{u}^{T}$.

Both variance $(V_{(f)})$ and covariance $(C_{(f,f')})$ matrices can be estimated by the MINQUE(1) method (Zhu, 1992; Zhu and Weir, 1996). Comparison of genotypes for trait f can be conducted by testing linear contrast among genotype effects $\binom{s}{h-1} c_h G_{h(f)}$. The linear contrast can be estimated by

$$C_{(f)} c^T \hat{b} c^T (X^T \hat{V}_{(f)}^{-1} X)^- X^T \hat{V}_{(f)}^{-1} y_{(f)}$$

with sampling variance $\hat{\sigma}^2(C_{(f)})$ $c^T(X^T\hat{V}_{(f)}^{-1}X)^-c$.

If $\left|C_{(f)} / \hat{\sigma}(C_{(f)})\right| = z_{(a/2)}$, reject the null hypothesis H_0 : $\int_{a}^{g} c_h G_{h(f)} = 0$ and accept the alternative hypothesis H_1 : $\int_{a}^{g} c_h G_{h(f)} = 0$ at a significance level $= \alpha$.

To compare the weighted genotypic merits of t traits $\binom{t}{f-1} w_f G_{h(f)}$, the weighted linear contrast can be estimated by

$$C_{W} = \sum_{h=1}^{g} c_{h}^{t} w_{f} \hat{G}_{h(f)} = \sum_{f=1}^{t} w_{f} C_{(f)}$$

with sampling variance

$$\sigma^{2}(C_{W}) = \int_{f=1}^{t} w_{f}^{2} \sigma^{2}(C_{(f)}) = 2 \int_{f=1}^{t-1} \int_{f=1}^{t} w_{f} w_{f} \sigma(C_{(f)}, C_{(f)})$$

where, $\hat{\sigma}(C_{(f)}, C_{(f)})$ $c^T(X^T\hat{C}_{(f,f)}^{-1}X)^-c$ is the covariance between $C_{(f)}$ and $C_{(f)}$.

If $|C_W / \hat{\sigma}(C_W)| = z_{(\alpha/2)}$, reject the null hypothesis H_0 : $\int_{h=1}^{g} c_h \int_{f=1}^{t} w_f G_{h(f)} = 0$ and accept the alternative hypothesis H_1 : $\int_{h=1}^{g} c_h \int_{f=1}^{t} w_f G_{h(f)} = 0$ at a significant level $= \alpha$.

Originators

- Zhu, J. (1992). Mixed model approaches for estimating genetic variances and covariances. *Journal of Biomathematics* 7(1):1-11.
- Zhu, J., Lai, M.G., and Xu, F.H. (1993). Analysis methods for unbalanced data from regional trial of crop variety: Analysis for multiple traits (Chinese). *Journal of Zhejiang Agricultural University* 19(3):241-247.
- Zhu, J. and Weir, B.S. (1996). Diallel analysis for sex-linked and maternal effects. *Theoretical and Applied Genetics* 92(1):1-9.
- Zhu, J., Xu, F.H., and Lai, M.G. (1993). Analysis methods for unbalanced data from regional trials of crop variety: Analysis for single trait (Chinese). *Journal of Zhejiang Agricultural University* 19(1):7-13.

Software Available

Zhu, J. (1997). GENTEST.EXE a computer software for constructing regional test models, GENTESTM.EXE for analyzing single traits of regional tests, and GENTESTW.EXE for analyzing multiple traits of regional tests. *Analysis Methods for Genetic Models* (pp. 285-292), Agricultural Publication House of China, Beijing (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Unbalanced data (COTTEST.TXT) to be analyzed (Variety = 3, Year = 2, Location = 8, Blk = 1):

Year	Loca	Blk		Lint%
1	1		65.7	40.6
	2			40.0
	3			39.5
	4			38.3
	5		63.0	40.7
1	6		26.1	37.6
2	1		64.7	39.3
2	2		61.9	40.5
2	3		58.2	40.0
2	4	1	45.3	38.6
2	5	1	56.7	38.8
2	6	1	44.8	37.3
2	7	1	46.7	40.2
2	8	1	52.1	39.0
1	1	1	64.3	44.0
1	2	1	64.2	42.7
1	3	1	69.7	43.8
1	4	1	34.3	40.3
	5	1	59.4	43.9
	6	1	63.3	42.3
		1	59.1	43.3
1	8	1	76.2	44.5
2	1	1	65.7	42.7
2	2	1	78.4	44.5
2	3	1	66.6	43.5
2	4	1	48.6	41.4
2	5	1	70.0	42.3
2	6	1	61.0	40.4
2	7	1	63.0	45.1
2	8	1	73.6	45.0
	1	1	61.4	41.9
	2	1	75.9	38.8
1	3	1	75.3	40.0
1	4	1	61.3	37.6
1	5	1	64.1	40.4
1	6	1	57.8	38.2
1	7	1	86.8	40.5
1	8	1	64.8	40.4
2	3	1	72.3	40.0
	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 1 3 1 4 1 5 1 6 2 2 2 3 2 4 2 2 5 2 6 2 7 2 8 1 1 2 2 2 3 2 4 2 2 5 2 6 2 7 2 8 1 1 2 2 2 3 2 4 2 2 5 2 6 6 2 7 2 8 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 6 1 2 1 1 2 2 1 2 3 1 2 4 1 2 6 1 2 7 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 3 1 2 4 1 2 5 1 2 7 1 2 8 1 1 1 1 1 2 1 2 3 1 2 4 1 2 7 1	1 1 1 65.7 1 2 1 55.9 1 3 1 83.3 1 4 1 47.0 1 5 1 63.0 1 6 1 26.1 2 1 1 64.7 2 2 1 61.9 2 3 1 58.2 2 4 1 45.3 2 5 1 56.7 2 8 1 52.1 1 1 1 64.3 1 2 1 64.2 1 3 1 69.7 1 4 1 34.3 1 5 1 59.4 1 6 1 63.3 1 7 1 59.1 1 8 1 76.2 2 1 1 66.6 2 4 1 48.6 2 5 1

3	2	4	1	50.7	38.1
3	2	5	1	52.7	38.8
3	2	6	1	63.3	37.8
3	2	7	1	72.0	40.3
3	2	8	1	73.2	40.0

- 1. Use GENTEST.EXE for generating mating design matrix and data. Before running these programs, create a file for your analysis with four design columns, followed by trait columns. The four design columns are: variety, year, location, and block. There is a limitation (<100 traits) for the number of trait columns.
- 2. Run GENTESTM.EXE for analyzing each trait. Standard errors of estimates are calculated by jackknifing over locations for stability testing. Always run GENTESTM.EXE before analyzing multiple traits. This program will allow you to choose data transformation based on check variety. You will also need to input coefficients (1, 0, or −1) for conducting linear contrasts for different varieties. The results will be automatically stored in a file named COTTEST.VAR for analysis of single traits.
- 3. After you finish analysis for each trait, run GENTESTW.EXE for combining analysis of all traits studied. This program will allow you to choose weight coefficients for each trait. The results will be automatically stored in a file named COTTEST.VAR for analysis of multiple traits.

Output 1 for Single Trait Test

```
Traits =, 2

Variance components =, 6

File name is cottest.VAR

Date and Time for Analysis: Thu Jun 22 20:36:15 2000

Variance Components Estimated by MINQUE(1) with GENTESTW.EXE.

Contrast 1: + + -

Contrast 2: + -

Contrast 3: + - -

Analysis of trait Yield

Estimate of Var(Y) =, 0

Estimate of Var(L) =, 43.7906

Estimate of Var(GY) =, 1.79863

Estimate of Var(GL) =, 31.5667

Estimate of Var(e) =, 55.9106
```

```
Mean,
Mean of Variety:,
                             S.E.
Mean of Variety 1 =, 55.1, 3.86105
Mean of Variety 2 = 63.5875, 3.71664
Mean of Variety 3 = 66.5429, 3.86105
(3), V1, 55.1000,
(2), V2, 63.5875, a AB
(1), V3, 66.5429, a B
Contrast, C-value, S.E., Standard Normal z-value
(1) This Linear Contrast Test Is for Varieties: (V1, V2) vs. (V3)
Contrast 1, -14.398222, 7.480348, 1.924806
(2) This Linear Contrast Test Is for Varieties: (V1) vs. (V2)
Contrast 2, -8.487495, 4.215852, 2.013234
(3) This Linear Contrast Test Is for Varieties: (V1) vs. (V2, V3)
Contrast 3, -19.930346, 7.480348, 2.664361
Stability Analysis for Variety
Estimates and S.E. are obtained by Jackknifing over environments.
Stability Analysis for Variety 1:
a = -25.4509, S.E. = 24.3941, 0.95 C.I. is < -73.2633 & 22.3616 >
b = 1.32148, S.E. = 0.3862, 0.95 C.I. is < 0.564532 & 2.07844 >
r = 0.83176, S.E. = 0.0856267, 0.95 C.I. is < 0.663932 & 0.999588 >
Stability Analysis for Variety 2:
 a = 8.36712, S.E. = 25.0719, 0.95 C.I. is < -40.7739 \& 57.5081 >
b = 0.879325, S.E. = 0.386812, 0.95 C.I. is < 0.121172 & 1.63748 >
r = 0.718145, S.E. = 0.157704, 0.95 C.I. is < 0.409044 & 1.02725 >
Stability Analysis for Variety 3:
a = 16.9362, S.E. = 13.7335, 0.95 C.I. is < -9.98134 & 43.8538 >
b = 0.804752, S.E. = 0.227599, 0.95 C.I. is < 0.358659 \& 1.25085 >
r = 0.740325, S.E. = 0.104486, 0.95 C.I. is < 0.535531 & 0.945118 >
Stability in Order for Variety
Order by b (3), V 3, a = 16.9362, b = 0.8048, r = 0.7403
Order by b ( 2), V 2 , a = 8.3671 , b = 0.8793 , r = 0.7181 Order by b ( 1), V 1 , a = -25.4509 , b = 1.3215 , r = 0.8318
Analysis of trait Lint%
Estimate of Var(Y) = 0
Estimate of Var(L) = 0.812176
Estimate of Var(YL) = 0.495318
Estimate of Var(GY) = 0
Estimate of Var(GL) = 0.175569
Estimate of Var(e) = 0.244097
Mean of Variety:, Mean, S.E.
Mean of Variety 1 = 39.3143, 0.428769
Mean of Variety 2 = 43.1063, 0.411924
Mean of Variety 3 = 39.4857, 0.428769
(3), V1, 39.3143, a A
(2), V3, 39.4857, a
(1), V2, 43.1063,
```

```
Contrast, C-value, S.E., Standard Normal z-value
(1) This Linear Contrast Test Is for Varieties: (V1, V2) vs. (V3)
Contrast 1, 3.449110, 0.552117, 6.247059
(2) This Linear Contrast Test Is for Varieties: (V1) vs. (V2)
Contrast 2, -3.791962, 0.297600, 12.741823
(3) This Linear Contrast Test Is for Varieties: (V1) vs. (V2, V3)
Contrast 3, -3.963402, 0.552117, 7.178548
Stability Analysis for Variety
Estimates and S.E. are obtained by Jackknifing over environments.
Stability Analysis for Variety 1:
a = 7.89727, S.E. = 4.23156, 0.95 C.I. is < -0.396587 & 16.1911 >
b = 0.772582, S.E. = 0.103208, 0.95 C.I. is < 0.570295 & 0.974869 >
r = 0.905533, S.E. = 0.0482835, 0.95 C.I. is < 0.810898 & 1.00017 >
Stability Analysis for Variety 2:
 a = 0.177973, S.E. = 4.68567, 0.95 C.I. is < -9.00594 \& 9.36189 >
b = 1.05051, S.E. = 0.115322, 0.95 C.I. is < 0.824481 & 1.27654 >
r = 0.917149, S.E. = 0.0463384, 0.95 C.I. is < 0.826326 & 1.00797 >
Stability Analysis for Variety 3:
 a = 2.71998, S.E. = 4.52641, 0.95 C.I. is < -6.15178 \& 11.5917 >
b = 0.902994, S.E. = 0.113154, 0.95 C.I. is < 0.681213 & 1.12478 >
r = 0.937269, S.E. = 0.0332955, 0.95 C.I. is < 0.87201 & 1.00253 >
Stability in Order for Variety
Order by b (3), V1, a = 7.8973, b = 0.7726, r = 0.9055
Order by b ( 2), V 3 , a=2.7200 , b=0.9030 , r=0.9373 Order by b ( 1), V 2 , a=0.1780 , b=1.0505 , r=0.9171
Time Used (Hour) = 0.009722
```

Output 2 for Multiple Trait Test

```
Traits =, 2
Variance components =, 6
File name is cottest.COV
Date and Time for Analysis: Thu Jun 22 20:38:33 2000

Variance Components Estimated by MINQUE(1) with GENTESTW.EXE.

<W1>: 0.6, <W2>: 0.4,

Analysis for Public Users

Estimated Var for <Yield>
Estimate for Var(Y) =, -7.04805
Estimate for Var(L) =, 98.8959
Estimate for Var(YL) =, -1.89563
Estimate for Var(GY) =, 4.06199
Estimate for Var(GL) =, 71.2897
Estimate for Var(e) =, 126.267
```

```
Estimated Cov for <Yield> & <Lint%>
Estimate for Cov (Y) = -0.0680642
Estimate for Cov (L) =, 29.2247
Estimate for Cov (YL) =, -2.47928
Estimate for Cov (GY) =, 1.12331
Estimate for Cov (GL) =, 1.57541
Estimate for Cov (e) =,
                        4.52009
Estimated Var for <Lint%>
Estimate for Var(Y) = -0.280077
Estimate for Var(L) = 5.20919
Estimate for Var(YL) = , 3.1769
Estimate for Var(GY) = -0.097269
Estimate for Var(GL) = 1.12607
Estimate for Var(e) = 1.56561
Analysis for multiple traits:
Combined Variety Mean:
Mean of Variety:, Mean,
Mean of Variety 1 =, 89.5086, 3.82078
Mean of Variety 2 =, 101.003, 3.68336
Mean of Variety 3 =, 100, 3.82078
(3), V1, 89.5086,
                        a A
 (2), V3, 100.0000, a A
 (1), V2, 101.0029, a A
Contrast, C-value, S.E. , Standard Normal z-value
(1) This Linear Contrast Test Is for Varieties:
Cont. 1, -9.488488, 49.575051, 0.191396
(2) This Linear Contrast Test Is for Varieties:
Cont. 2, -11.494320, 15.667476, 0.733642
(3) This Linear Contrast Test Is for Varieties:
Cont. 3, -21.985739, 49.575054, 0.443484
Stability Analysis for Variety
Estimates and S.E. are obtained by Jackknifing over environments.
Stability Analysis for Variety 1:
 a = -28.7855, S.E. = 34.6409, 0.95 C.I. is < -96.6817 & 39.1106 >
b = 1.23013, S.E. = 0.351782, 0.95 C.I. is < 0.540642 & 1.91963 >
 r = 0.827958, S.E. = 0.0706079, 0.95 C.I. is < 0.689566 \& 0.966349 >
Stability Analysis for Variety 2:
 a = 11.0869, S.E. = 35.9274, 0.95 C.I. is < -59.3307 \& 81.5045 >
b = 0.917704, S.E. = 0.35883, 0.95 C.I. is < 0.214397 \& 1.62101 >
r = 0.753344, S.E. = 0.1381, 0.95 C.I. is < 0.482668 & 1.02402 >
Stability Analysis for Variety 3:
 a = 21.659, S.E. = 19.4541, 0.95 C.I. is < -16.4711 \& 59.7891 >
b = 0.808956, S.E. = 0.204255, 0.95 C.I. is < 0.408615 & 1.2093 >
r = 0.781107, S.E. = 0.0871521, 0.95 C.I. is < 0.610289 & 0.951926 >
Stability in Order for Variety
Order of b (3), V 3, a = 21.6590, b = 0.8090, r = 0.7811
Order of b ( 2), V 2, a = 11.0869, b = 0.9177, r = 0.7533
Order of b (1), V1, a = -28.7855, b = 1.2301, r = 0.8280
Time Used (Hour) = 0.006667
```

Chapter 20

Conditional Mapping of QTL with Epistatic Effects and QTL-by-Environment Interaction Effects for Developmental Traits

Jun Zhu

Purpose

To map quantitative trait loci (QTL) for net effects due to gene expression from time t-1 to t.

Definitions

Genetic Model

For multiple-environment data of doubled haploid (DH) or recombinant inbred line (RIL) populations, the conditional phenotypic value of the jth genetic entry in environment h at time t, given phenotypic value at time t-1, can be expressed as the following conditional genetic model:

where $\mu_{(t|t-1)}$ is the conditional population mean; $a_{1(t|t-1)}$ and $a_{2(t|t-1)}$ are the conditional additive effects of loci Q_1 and Q_2 , respectively; $aa_{(t|t-1)}$ is the

conditional additive × additive epistatic effect of loci Q_1 and Q_2 ; $x_{A_{lj}}$, $x_{A_{2j}}$, and x_{AA_j} are coefficients of these conditional genetic main effects; $e_{E_{k(t|t-1)}}$ is the conditional random effect of environment h with coefficient $u_{E_{hj}}$; $e_{A_1E_{h(t|t-1)}}$ (or $e_{A_2E_{h(t|t-1)}}$) is the conditional additive × environment interaction effect with coefficient $u_{A_1E_{hj}}$ (or $u_{A_2E_{hj}}$) for Q_1 (or Q_2); $e_{AAE_{h(t|t-1)}}$ is the conditional epistasis × environment interaction effect with coefficient $u_{AAE_{hj}}$; e_{M_f} is the conditional marker main effect with coefficient u_{M_f} ; $e_{MM_{l(t|t-1)}}$ is the conditional marker × marker interaction effect with coefficient u_{MM_j} ; $e_{ME_{hp(t|t-1)}}$ is the conditional marker × environment interaction effect with coefficient $u_{ME_{hpj}}$; $e_{MME_{hq(t|t-1)}}$ is the marker × marker × environment interaction effect with coefficient $u_{ME_{hpj}}$; $e_{MME_{hq(t|t-1)}}$ is the conditional residual effect.

Mixed Linear Model

The conditional epistasis QTL model can be expressed in the matrix form as follows:

where $y_{(t|t-1)}$ is the conditional phenotype vector; $\boldsymbol{b}_{(t|t-1)}$ is the conditional fixed parameter vector for conditional population mean and QTL effects; \boldsymbol{X} is the known incidence matrix of the fixed parameters; $\boldsymbol{e}_{1(t|t-1)} = \boldsymbol{e}_{E(t|t-1)} \sim N(0, \sigma_{E(t|t-1)}^2 \boldsymbol{I})$ is the vector of conditional environment effects; $\boldsymbol{e}_{2(t|t-1)} = \boldsymbol{e}_{A_1E(t|t-1)} \sim N(0, \sigma_{A_1E(t|t-1)}^2 \boldsymbol{I})$ is the vector of conditional $A_1 \times E$ interaction effects; $\boldsymbol{e}_{3(t|t-1)} = \boldsymbol{e}_{A_2E(t|t-1)} \sim N(0, \sigma_{A_2E(t|t-1)}^2 \boldsymbol{I})$ is the vector of conditional $A_2 \times E$ interaction effects; $\boldsymbol{O}, \boldsymbol{e}_4 + t/t - 1 = \boldsymbol{e}_{AAE} + t/t - 1 \sim N = 0$, $\sigma_{AAE(t|t-1)}^2 \boldsymbol{R}_{AAE} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE(t|t-1)} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE(t|t-1)} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE(t|t-1)} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE} = \boldsymbol{e}_{AAE(t|t-1)} = \boldsymbol{e}_{AAE(t|t-1)}$

the vector of conditional marker main effects; $e_{6(t|t-1)}$ $e_{MM(t|t-1)} \sim N(0, \alpha_{MM(t|t-1)}^2)$ R_{MM}) is the vector of conditional interaction marker main effects; $e_{7(t|t-1)}$ $e_{ME(t|t-1)} \sim N(0, \sigma_{MM(t|t-1)}^2)$ is the vector of conditional $M \times E$ interaction effects; $e_{8(t|t-1)}$ $e_{MME(t|t-1)} \sim N(0, \sigma_{MME(t|t-1)}^2)$ is the vector of conditional $MM \times E$ interaction effects; $e_{9(t|t-1)}$ $e_{(t|t-1)} \sim N(0, \sigma_{(t|t-1)}^2)$ is the vector of conditional residual effects; $U_u(u=1, 2, ..., 8)$ is the known incidence matrix of the conditional random effects, and U_0 I.

Analysis Methodology

With observed phenotypic data at time t-1 ($y_{(t-1)}$) and time t ($y_{(t)}$), conditional phenotypic data $y_{(t|t-1)}$ can be obtained via mixed model approaches (Zhu, 1995). Then a mixed-model-based composite interval mapping (MCIM) can be used for mapping QTLs with conditional epistatic effects and QTL × environment interaction effects (Zhu, 1998; Zhu and Weir, 1998; Wang et al., 1999). The likelihood function (L) for the parameters of conditional fixed effects $b_{(t|t-1)}$ and conditional variance components $[\sigma^2_{u(t|t-1)}]$ is

$$L(b_{(t|t-1)}, V_{(t|t-1)}) \quad 2 \right)^{-\frac{n}{2}} |V_{(t|t-1)}|^{-\frac{1}{2}} \times \exp \left[-\frac{1}{2} (y_{(t|t-1)} - Xb_{(t|t-1)})^T V_{(t|t-1)}^{-1} (y_{(t|t-1)} - Xb_{(t|t-1)})\right]$$

with the log of the likelihood function (l)

$$\begin{split} l(b_{(t|t-1)}, & V_{(t|t-1)} & -\frac{n}{2}\ln(2^{-}) - \frac{1}{2}\ln \left|V_{(t|-1)}\right| - \frac{1}{2}(y_{(t|t-1)} \\ & -Xb_{(t|t-1)})^T V_{(t|t-1)}^{-1}(y_{(t|t-1)} - Xb_{(t|t-1)}). \end{split}$$

For searching QTL, null hypothesis for genetic parameters (conditional QTL main effects and QE interaction effects) can be tested by the likelihood ratio statistic (LR):

$$LR \quad 2l_1(\hat{b}_{(t|t-1)1}, V_{(t|t-1)1}) - 2l_0(\hat{b}_{(t|t-1)0}, V_{(t|t-1)0}).$$

The maximum likelihood estimates of QTL effects in $b_{\scriptscriptstyle(t|t-1)}$ can be obtained by

$$\hat{b}_{(t|t-1)} = X^T V_{(t|t-1)}^{-1} X^{-1} X^T V_{(t|t-1)}^{-1} y_{(t|t-1)}$$

with variance-covariance matrix

$$\operatorname{var}(\hat{b}_{(t|t-1)}) \quad X^T V_{(t|t-1)}^{-1} X)^{-1}$$
.

Conditional QE interaction effects (conditional additive × environment interaction $e_{A_iE(t|t-1)}$ and $e_{A_jE(t|t-1)}$, conditional epistasis × environment interaction $e_{AA_{ij}E(t|t-1)}$) can be obtained by the best linear unbiased prediction (BLUP) method:

$$\hat{e}_{u(t|t-1)} \quad \sigma_{u(t|t-1)}^2 U_u^T Q_{(t|t-1)} y_{(t|t-1)}$$

with variance-covariance matrix

$$\operatorname{var}(\hat{e}_{u(t|t-1)} \ \sigma_{u(t|t-1)}^4 U_u^T Q_{(t|t-1)} U_u$$

where
$$Q_{(t|t-1)}$$
 $V_{(t|t-1)}^{-1} - V_{(t|t-1)}^{-1} X (X^T V_{(t|t-1)}^{-1} X)^{-1} X^T V_{(t|t-1)}^{-1}$.

Originators

- Wang, D., Zhu, J., Li, Z.K., and Paterson, A.H. (1999). Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. *Theoretical and Applied Genetics* 99:1255-1264.
- Zhu, J. (1995). Analysis of conditional effects and variance components in developmental genetics. *Genetics* 141(4):1633-1639.
- Zhu, J. (1998). Mixed model approaches of mapping genes for complex quantitative traits. In Wang, L.Z. and Dai J.R. (Eds.), *Proceedings of Genetics and Crop Breeding of China* (pp.19-20). Chinese Agricultural Science and Technology Publication House, Beijing.
- Zhu, J. and Weir, B.S. (1998). Mixed model approaches for genetic analysis of quantitative traits. In Chen, L.S., Ruan, S.G., and Zhu, J. (Eds.), *Advanced Topics in Biomathematics: Proceedings of International Conference on Mathematical Biology* (pp. 321-330). World Scientific Publishing Co., Singapore.

Software Available

- Wang, D., Zhu, J., Li, Z.K., and Paterson, A.H. (1999). QTLMapper Version 1.0: A computer software for mapping quantitative trait loci (QTLs) with additive effects, epistatic effects and QTL × environment interactions. *User Manual for QTLMapper Version 1.0* (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.
- Zhu, J. (1997). GENCOND1.EXE, a computer software for calculating conditional phenotypic data. *Analysis Methods for Genetic Models* (pp. 278-285), Agricultural Publication House of China, Beijing (program free of charge).

Chapter 21

Mapping QTL with Epistatic Effects and QTL-by-Environment Interaction Effects

Jun Zhu

Purpose

To map quantitative trait loci (QTL) with additive, epistatic, and QTL-by-environment interaction effects for doubled haploid (DH) or recombinant inbred line (RIL) populations.

Definitions

Genetic Model

If multiple-environment data of DH or RIL populations are used for mapping QTL, the phenotypic value of the *j*th genetic entry in environment *h* can be expressed as shown in the genetic model

where μ is the population mean; a_1 and a_2 are the additive effects of loci Q_1 and Q_2 , respectively; aa is the additive \times additive epistatic effect of loci Q_1 and Q_2 ; $x_{A_{1j}}$, $x_{A_{2j}}$, and x_{AA_j} are coefficients of these genetic main effects; e_{E_h} is the random effect of environment h with coefficient $u_{E_{hj}}$; $e_{A_1E_h}$ (or $e_{A_2E_h}$) is the additive \times environment interaction effect with coefficient $u_{A_1E_{hj}}$

(or $u_{A_2E_{h_j}}$) for Q_1 (or Q_2); e_{AAE_h} is the epistasis \times environment interaction effect with coefficient $u_{AAE_{h_j}}$; e_{M_f} is the marker main effect with coefficient $u_{M_{M_i}}$; e_{MM_l} is the marker \times marker interaction effect with coefficient u_{MM_i} ; $e_{ME_{h_p}}$ is the marker \times environment interaction effect with coefficient $u_{ME_{h_p}}$; $e_{MME_{h_q}}$ is the marker \times environment interaction effect with coefficient $u_{MME_{n_l}}$; and e_{Min} is the residual effect.

Mixed Linear Model

The epistatic QTL model can be expressed in matrix form as

where \boldsymbol{y} is the phenotype vector; \boldsymbol{b} is the fixed parameter vector for population mean and QTL effects; \boldsymbol{X} is the known incidence matrix of the fixed parameters; $\boldsymbol{e}_1 = \boldsymbol{e}_E \sim N(0, \sigma_E^2 \boldsymbol{I})$ is the vector of environment effects; $\boldsymbol{e}_2 = \boldsymbol{e}_{A_1E} \sim N(0, \sigma_{A_1E}^2 \boldsymbol{I})$ is the vector of A1 × E interaction effects; $\boldsymbol{e}_3 = \boldsymbol{e}_{A_2E} \sim N(0, \sigma_{A_2E}^2 \boldsymbol{I})$ is the vector of A2 × E interaction effects; $\boldsymbol{e}_4 = \boldsymbol{e}_{AAE} \sim N(0, \sigma_{AAE}^2 \boldsymbol{R}_{AAE})$ is the vector of AA × E interaction effects; $\boldsymbol{e}_5 = \boldsymbol{e}_M \sim N(0, \sigma_{AME}^2 \boldsymbol{R}_{AAE})$ is the vector of marker main effects; $\boldsymbol{e}_6 = \boldsymbol{e}_{MM} \sim N(0, \sigma_{MME}^2 \boldsymbol{R}_{MME})$ is the vector of interaction marker main effects; $\boldsymbol{e}_7 = \boldsymbol{e}_{ME} \sim N(0, \sigma_{MME}^2 \boldsymbol{R}_{ME})$ is the vector of M × E interaction effects; $\boldsymbol{e}_8 = \boldsymbol{e}_{MME} \sim N(0, \sigma_{MME}^2 \boldsymbol{R}_{MME})$ is the vector of MM × E interaction effects; $\boldsymbol{e}_9 = \boldsymbol{e} \sim N(0, \sigma^2 \boldsymbol{I})$ is the vector of residual effects; $\boldsymbol{U}_u(u=1,2,\ldots,8)$ is the known incidence matrix of the random effects, and $\boldsymbol{U}_9 = \boldsymbol{I}$.

Analysis Methodology

An approach of mixed-model-based composite interval mapping (MCIM) can be constructed for handling epistatic effects and QTL × environment interaction effects. The likelihood function (L) for the parameters of fixed effects b and variance components $[\sigma_u^2]$ is

$$L(b,V)$$
 $(2)^{-\frac{n}{2}}|V|^{-\frac{1}{2}}\exp -\frac{1}{2}(y-Xb)^TV^{-1}(y-Xb)$

with the log of the likelihood function (l)

$$l(b,V) = -\frac{n}{2}\ln(2) - \frac{1}{2}\ln|V| - \frac{1}{2}(y - Xb)^T V^{-1}(y - Xb).$$

For searching QTL, the null hypothesis for genetic parameters (QTL main effects and $Q \times E$ interaction effects) can be tested by the likelihood ratio statistic (LR):

$$LR \ 2l_1(\hat{b}_1, v_1) - 2l_0(\hat{b}_0, v_0).$$

The maximum likelihood estimates of QTL effects in b can be obtained by

$$\hat{b} (X^T V^{-1} X)^{-1} X^T V^{-1} y$$

with variance-covariance matrix

$$var(\hat{b}) (X^T V^{-1} X)^{-1}$$
.

Q × E interaction effects (additive × environment interaction e_{A_iE} and e_{A_jE} , epistasis × environment interaction $e_{AA_{ij}E}$) can be obtained by the best linear unbiased prediction (BLUP) method:

$$\hat{e}_u \quad \sigma_u^2 U_u^T Q y$$

with variance-covariance matrix

$$\operatorname{var}(\hat{e}_u) \quad \sigma_u^4 U_u^T Q U_u$$

where
$$Q V^{-1} - V^{-1}X(X^TV^{-1}X)^{-1}X^TV^{-1}$$
.

Originators

- Wang, D., Zhu, J., Li, Z.K., and Paterson, A.H. (1999). Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. *Theoretical and Applied Genetics* 99:1255-1264.
- Zhu, J. (1998). Mixed model approaches of mapping genes for complex quantitative traits. In Wang, L.Z. and Dai, J.R. (Eds.), *Proceedings of Genetics and Crop Breeding in China* (pp. 19-20). Chinese Agricultural Science and Technology Publication House, Beijing.
- Zhu, J. and Weir, B.S. (1998). Mixed model approaches for genetic analysis of quantitative traits. In Chen, L.S., Ruan, S.G., and Zhu, J. (Eds.), *Advanced Topics in Biomathematics: Proceedings of International Conference on Mathematical Biology* (pp. 321-330). World Scientific Publishing Co., Singapore.

Software Available

Wang, D., Zhu, J., Li, Z.K., and Paterson, A.H. (1999). *User Manual for QTLMapper Version 1.0: A Computer Software for Mapping Quantitative Trait Loci (QTLs) with Additive Effects, Epistatic Effects and QTL* × *Environment Interactions* (program free of charge). Contact Dr. Jun Zhu, Department of Agronomy, Zhejiang University, Hangzhou, China. E-mail: <jzhu@zju.edu.cn>.

EXAMPLE

Data of DH population with ninety-six lines and fifty-four markers on three chromosomes (provided by Drs. N. Huang and P. Wu). Data analysis method is described in detail in the user manual for QTLMapper Version 1.0 (Wang et al., 1999).

Data file (ckge.map) for map information:

```
_Chromosomes 3
_MarkerNumbers 18 15 21
_DistanceUnit cM
```

*MapBegin	*		
Marker#	ch1	ch2	ch3
1	0	0	0
2	19.236	12.9949	7.7618
3	16.2488	5.3402	13.2518
4	4.8552	22.2875	6.9239
5	4.8047	27.7327	9.8037

6	15.3881	6.3438	2.7929
7	15.5969	29.4517	17.5239
8	15.0048	10.2825	41.7545
9	3.8375	8.9339	37.3036
10	3.2747	12.824	15.8394
11	34.4392	8.4598	18.7639
12	2.5322	5.1683	2.5121
13	23.7979	10.1262	5.0168
14	8.2644	5.2896	28.9405
15	13.3483	13.2089	1.9109
16	33.5319		22.7256
17	2.5622		15.2455
18	9.2129		32.48
19			7.1483
20			9.4924
21			18.718

MapEnd

Data file for marker and trait information:

```
_Population DH Genotypes 96
```

- Observations 192
- _Environments yes
- _Replications no
- TraitNumber 5
- _TotalMarker 54
- MarkerCode P1=1 P2=2 F1=3 F1P1=4 F1P2=5

```
*MarkerBegin*
Ind M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26M27
                       1
                           1
                              2
                                  2
                                      2
                                                     2
                                                         2
                                                            1
                                                                1
                                                                    1
                                                                        2
                                                                           2
                                                                               2
                                                                                          1
                                                                                                      2
2
                          1
                              2
                                  2
                                      2
                                          2
                                                 1
                                                     1
                                                         1
                                                                       2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
                                                                                              1
                                                                                                  1
                                                                                                      1
                       1
                                                            1
                                                                1
                                                                    1
3
           2
               2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                                                       2
                                                                           2
                                                                               2
   1
                                         1
                                             1
                                                 1
                                                     1
                                                         1
                                                            1
                                                                1
                                                                    1
                                                                                   1
                                                                                       1
                                                                                          1
                                                                                              1
                                                                                                  1
           2
               2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                                                2
                                                                    2
                                                                       2
                                                                           2
                                                                               2
                                                                                                      2
   2
       2
                                         1
                                                 1
                                                     1
                                                         1
                                                                                   2
                                                                                       1
                                                                                          1
5
       2
           1
                   1
                       1
                           1
                              2
                                  2
                                      2
                                          2
                                                     2
                                                            1
                                                                1
                                                                    1
                                                                        2
                                                                           2
                                                                               2
                                                                                   2
                              2
                                  2
                                      2
           2
               2
                   2
                       2
                          2
                                          1
                                                            2
                                                                2
                                                                    2
                                                                        2
                                                                           2
                                                                                          1
    1
        1
                                             1
                                                     1
                                                         1
                                                                               1
                                                                                   1
                                                                                       1
                                                                                              1
7
           2
                   2
                      2
                          2
                              2
                                  2
                                      2
                                          2
                                             2
                                                     1
                                                                       2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
    1
        1
                                                         1
                                                                1
                                                                    1
                                                                                              1
               2 2
                      2
                         2
                             2
                                  2
                                                                           2
          2
       2
                                                     1
                                                         1
                                                                    1
9
    2
       2
           2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                          1
                                             1
                                                 1
                                                     1
                                                         1
                                                            1
                                                                1
                                                                    1
                                                                        2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
                                                                                          1
                                                                                              1
    1
        2
           2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                          2
                                             2
                                                 2
                                                     2
                                                        2
                                                            2
                                                                2
                                                                    2
                                                                               1
                                                                                                      2
10
                                                                        1
                                                                           1
                                                                                   1
                                                                                       1
                                                                                          1
       2
           2
                   2
                      2
                          2
                              2
                                  2
                                      2
                                                         2
                                                            2
                                                                2
                                                                    2
                                                                       2
                                                                           2
                                                                               2
                                                                                   2
11
   2
                                         1
                                             1
                                                     1
                                                                                       1
                                                                                          1
                                                                                              1
                                                                                                  1
                                                                                                      1
                   1
                          1
                              1
                                  1
                                                 2
                                                     2
                                                        2
                                                                           1
                                                                               2
                                                                                   2
                                                                                       2
                                                                                          2
                                                                                              2
12
       1
           1
              1
                      1
                                      1
                                         1
                                             1
                                                            1
                                                                1
                                                                    1
                                                                       1
                                                                                                      1
   1
13
   2
       2
               2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                          2
                                             2
                                                     1
                                                         1
                                                            1
                                                                1
                                                                    2
                                                                        2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
                                                                                          2
                                                                                                      2
   2
                          2
                              2
                                  2
                                      2
                                         2
                                             2
                                                     2
                                                        2
                                                            2
                                                                2
                                                                    2
                                                                           1
                                                                               2
                                                                                   1
                                                                                       1
                                                                                           1
                                                                                                      2
14
       1
           1
               1
                   1
                       1
                                                                        1
15
    2
       2
           2
               2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                         2
                                             2
                                                 1
                                                     1
                                                         2
                                                            2
                                                                2
                                                                    2
                                                                       2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
                                                                                          2
                                                                                              2
                                                                                                      2
       2
           2
               2
                   2
                      2
                          2
                              2
                                  2
                                      2
                                         2
                                             2
                                                 2
                                                     2
                                                        2
                                                            2
                                                                2
                                                                    2
                                                                                       2
16
   2
                                                                       1
                                                                           1
                                                                               1
                                                                                   1
                              2
                                  2
                                      2
                                          2
                                             2
                                                 2
17
    2
        2
           2
               2
                   2
                       2
                          2
                                                     2
                                                        2
                                                            2
                                                                2
                                                                    2
                                                                       1
                                                                           2
                                                                               2
                                                                                   2
                                                                                                      2
18
           2
               2
                   2
                       2
                          2
                              2
                                  2
                                      2
                                          1
                                                                    2
                                                                       2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       1
                                                                                          1
    1
        1
                                             1
                                                 1
                                                     1
                                                         1
                                                            1
                                                                1
                                                                                              1
                                                                                                  1
                                                                                                      1
                              2
                                  2
                                      2
                                                     2
                                                        2
                                                                                   2
19
   1
       1
               1
                   1
                       1
                          1
                                         1
                                                            1
                                                                1
                                                                    1
                                                                       1
                                                                           1
                                                                                           2
                                                                                              1
                                                                                                  1
                                                                                                      1
20
           2
               2
                  2
                      2
                          2
                              2
                                  2
                                      2
                                         2
                                             2
                                                 2
                                                     2
                                                        1
                                                            2
                                                                2
                                                                    2
                                                                       2
                                                                           2
                                                                               2
                                                                                   1
                                                                                      1
                                                                                          1
                                                                                              2
                                                                                                  2
                                                                                                      2
   1
       1
                              2
                                  2
                                      2
21
   2
        2
           2
               2
                   2
                      1
                          2
                                         2
                                             2
                                                 2
                                                     2
                                                        2
                                                            1
                                                                1
                                                                    1
                                                                        2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       1
                                                                                          1
                                                                                              1
                                                                                                  2
                                                                                                      2
22
        2
           2
               2
                   2
                       2
                          1
                              1
                                  1
                                      1
                                                            1
                                                                1
                                                                    1
                                                                        1
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
                                                                                          2
                                                                                              2
                                                                                                  1
   1
                                          1
                                             1
                                                     1
                                                         1
                                                                                                      1
                          2
                              2
                                                                           2
                                                                               2
                                                                                   2
                                                                                       2
                                                                                          2
                                                                                              2
23
        1
                       2
                                  2
                                      2
                                          1
                                                     1
                                                         1
                                                            2
                                                                2
                                                                    2
                                                                        2
                                                                                                  2
                                                                                                      2
    1
           1
                   1
                                             1
                                                 1
                       2
                          2
                              2
                                      2
                                                         2
                                                            2
                                                                    2
24
   2
        2
           2
                                  1
                                         1
                                             1
                                                 1
                                                     1
                                                                1
                                                                       1
                                                                           1
                                                                               1
                                                                                              2
                                                                                                  2
                       2
                          2
                              2
                                  2
                                      2
                                          1
                                             1
```

26 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
112112222212112222121212221211122122122
111222 .222 .2121122212 .2222121111221221212211221
1 .121212 .2121211 .22122222212122212 .121221 .2
121222222212121122212 .222212111122122121 .2122211211211222
221212 . 222121211222222222222221222122122122 . 2222212211212122
22121212221222 . 12222222222222222222122122122222222
221212222212222222222212122222222222212222
221212222212222222222111222222222212212
221212222212222222222121222222222221221
121112212121122211221 .12122222222211222 .22222222
1211122121 .1122211222121212122222222211222 .2222 .222 .112221221
1212222121222221211212121222222222112222
121222212122221211222112221122221122222112222
1 222222 . 121 . 2221111122211221222112221122211222 . 11111122211
22122222112122221211122111221222.222122.1211222.21111.2111
2212222211212222121112211122111222121222122121
221222221221212121112211122112212222122121
211112.211.1222222211222211222212221222
122112121212222122211222211222211222222
12211 . 12212222122112222211222222122222222
122112121222211111221122112112222222211 .1 .21222121211111
22121112 .2211111112 .121122 .122222 .212111 .21 .1121 .2111 .
221212112112222211211211211211211222222
221211112212221121122 .21222211122222212121112212111121111
2212.222221121.22.212222111222222121212222111112111.
22121211211222112112211221112222211111221222121

83	1	1	2	2	2	2	2	2	2	2	1			1	1	2	2	2	1	2	2	1	1	1	2	2	2
84	1	1	1	1	1	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2
85	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	2	2	2	2	2	2	1	1
86	2	2	1	1	1	1	2	2	2	2	2	2	2	2	2	1	1	1	2	2		2	2	2	2	2	2
87	2	2	2	2	2	2	2	2	2	2	2	2	1	1			2	2	2	2	2	1	1	1	1	1	1
88	1	1	1	1	1	2	2	2	2	2	2	2	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2
89	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	2	2	2	1	1	1	2	2	2
90	1	1	2	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Ċ	2	2	2	2
91	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1		1	2	2	2
92	2	2	2	_	2	2	2	2	_	2	1	1	_	2	_	2	2	2	1	1	1	1	•	2	2	2	2
93	1	1	1	1	1	1	2	2	2	2	2	2	2	2	•	_	2	2	1	1	1	1	1	1	1	1	1
94	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	i	2	2	2
٠.	4	4	4	4	4	1	1	_	_	_	4	4	4	4	4	4	4	4	4	4	4	4	1	1	_	_	_
95	ı	- 1	- 1	- 1	ı	2	2	2	2	2	ı	- 1	- 1	- 1	ı	- 1	ı	ı	- 1	- 1	- 1	- 1	2	2	2	2	2
96	1	1	1	1	1	1	1	2	2		2	2	1	1	1	1	1	2	2		2	2	2	2	1	1	1
M28	3 M29	9 M3	0 M3	1 M3	32 M3	33 M3	34 M;	35 M	36 M	37 M	138 M	139 N	140 N	141 N	/142 N	И43 I	M44	M45	M46	M47	M48	M49	M50	M51	M52	2 M53	3 M54
0	_	_	_	_	_	_	_	_	_	_	_	_	_	4	_	4	4	4	4	4	4	-	_	_		_	

TraitB	egin											
Env#	Ind#	SH5 ;	Env#	Ind#	SH5	;	Env#	Ind#	SH5 ;	Env#	Ind#	SH5 ;
1	1	52.5 ;	1	49	77.6	;	2	1	43.8 ;	2	49	66.7 ;
1	2	62.5 ;	1	50	50.4	;	2	2	39.5 ;	2	50	50.1 ;
1	3	77.9 ;	1	51	60.0	;	2	3	57.8 ;	2	51	56.7 ;
1	4	57.2 ;	1	52	68.6	:	2	4	44.9 :	2	52	56.4 ;
1	5	51.7 ;	1	53	58.0	:	2	5	41.9 ;	2	53	53.3 ;
1	6	62.5 ;	1	54	67.2		2	6	44.2 ;	2	54	58.4 ;
1	7	56.0 ;	1	55	65.2		2	7	46.8 ;	2	55	60.1 ;
1	8	62.7 ;	1	56	66.7		2	8	51.4 ;	2	56	57.2 ;
1	9	62.1 ;	i	57	67.1	,	2	9	46.4 :	2	57	53.1 ;
1	10	76.2 ;	1	58	59.6	,	2	10	65.6 ;	2	58	54.9 ;
1	11	69.1 ;	1	59	67.5	,	2	11	53.0 ;	2	59	56.0 ;
1	12	68.4 ;	1	60	67.7	,	2	12	58.4 ;	2	60	52.6 ;
1	13	45.4 ;	1		60.3	,	2	13	,	2		52.0 ;
		,		61		,			40.2 ;		61	,
1	14	68.4 ;	1	62	70.9	,	2	14	59.1 ;	2	62	57.0 ;
1	15	83.9 ;	1	63	78.8	,	2	15	67.7 ;	2	63	65.0 ;
1	16	81.5 ;	1	64	70.9	;	2	16	67.7 ;	2	64	59.0 ;
1	17	74.4 ;	1	65	52.2	;	2	17	63.7 ;	2	65	46.3 ;
1	18	73.9 ;	1	66	70.7	;	2	18	68.0 ;	2	66	55.3 ;
1	19	58.7 ;	1	67	66.3	;	2	19	48.7 ;	2	67	58.4 ;
1	20	64.5 ;	1	68	55.0	;	2	20	51.8 ;	2	68	48.9 ;
1	21	61.2 ;	1	69	75.3	;	2	21	49.9 ;	2	69	59.6 ;
1	22	48.5 ;	1	70	75.5	;	2	22	41.1 ;	2	70	56.8 ;
1	23	48.2 ;	1	71	57.5	;	2	23	34.1 ;	2	71	43.4 ;
1	24	83.5 ;	1	72	49.7	;	2	24	71.4 ;	2	72	42.5 ;
1	25	55.2 ;	1	73	75.5	;	2	25	44.6 ;	2	73	66.5 ;
1	26	49.6 ;	1	74	52.5	;	2	26	47.0 ;	2	74	40.1 ;
1	27	77.3 ;	1	75	64.6	;	2	27	62.3 ;	2	75	57.3 ;
1	28	78.5 ;	1	76	57.2	;	2	28	60.8 ;	2	76	52.8 ;
1	29	71.0 ;	1	77	52.1	;	2	29	64.1 ;	2	77	43.4 ;
1	30	67.2 ;	1	78	53.9	;	2	30	62.3 ;	2	78	46.8 ;
1	31	80.9 ;	1	79	72.0	;	2	31	67.6 ;	2	79	63.1 ;
1	32	88.4 ;	1	80	70.0	;	2	32	77.3 ;	2	80	57.8 ;
1	33	79.2 ;	1	81	52.3	;	2	33	66.1 ;	2	81	43.2 ;
1	34	77.1 ;	1	82	55.5	:	2	34	58.6 ;	2	82	43.3 ;
1	35	72.7 ;	1	83	63.7	:	2	35	57.9 ;	2	83	48.3 ;
1	36	78.6 ;	1	84	62.1	:	2	36	60.3 ;	2	84	57.5 ;
1	37	65.1 ;	1	85	61.0		2	37	55.1 ;	2	85	50.2 ;
1	38	48.8 ;	1	86	71.8		2	38	44.3 ;	2	86	59.9 ;
1	39	65.5 ;	1	87	76.6		2	39	47.1 ;	2	87	58.6 ;
1	40	79.3 ;	1	88	55.4		2	40	71.4 ;	2	88	44.1 ;
1	41	81.8 ;	i	89	60.9	,	2	41	70.1 ;	2	89	43.6 ;
1	42	63.8 ;	i	90	58.9	,	2	42	57.4 ;	2	90	44.7 ;
1	43	96.6 ;	1	91	44.4	,	2	43	76.0 ;	2	91	37.0 ;
1			1			,	2	43 44	,	2		
1	44 45	67.2 ;		92	73.6	,			56.7 ;		92	56.3 ;
	45 46	55.5 ;	1	93	73.8 82.4	,	2 2	45 46	46.1 ;	2	93	63.6 ;
1	46	44.2 ;	1	94		,		46	28.3 ;	2	94	69.8 ;
1	47	80.1 ;	1	95	53.7	,	2	47	67.7 ;	2	95	41.8 ;
1	48	75.9 ;	1	96	64.2	;	2	48	66.7 ;	2	96	55.4 ;

^{*}TraitEnd*

How to use the software:

- 1. Run QTLMAPPER.EXE to analyze QTL positions and effects. First create two files: one is a map file (ckge.map) and the other is a marker and trait file (ckge.txt). Choose run from submenu and map epistatic QTL.
- 2. After finishing the general analysis, choose output submenu and screen putative additive-effect QTL or epistatic QTL. The results are presented in Output 1.
- 3. Run jackknife test in output submenu for detecting significant additive and epistatic effects. The results are presented in Output 2.

Output 1 for Contribution of QTL Effects

```
// Result file created by QTLMapper V 1.0
// Data file name:
                      D:\QTLSOURCE\ckge.txt
// Marker map file name: D:\QTLSOURCE\ckge.map
// Environments: yes
// Replications:
// Contents: relative contributions (H^2) for putative main-effect
     QTLs/epistatic QTLs
     Calculations based on: D:\QTLSOURCE\ckge.jke
   BGV control method: A (control marker main & interaction ef-
     fects)
# Date: 2000-07-04 Time: 14:05:56
Trait 1: SH5
Ch-Ini Int.Namei Sitei(M) Ch-Inj Int.Namej Sitej(M) H^2(Ai) H^2(Ai) H^2(AAij) H^2(AEi) H^2(AEi) H^2(AEi)
    M5-M6 0.00 1-17 M17-M18 0.04
                                   0.0000 0.0714 0.0000
                                                      0.0000
                                                             0.0001
                                                                   0.0000
    M9-M10 0.00 1-15 M15-M16 0.12
                                   0.0000 0.2532 0.0000
                                                      0.0000
                                                             0.0001
                                                                   0.0011
    M24-M25 0.28 3-18 M51-M52 0.06
                                   0.0000 0.0727 0.0000
                                                             0.0001
2-6
                                                      0.0000
                                                                   0.0000
    M27-M28 0.02 3-16 M49-M50 0.00
                                   0.0625 0.0000 0.0000
                                                             0.0001
                                                      0.0000
General contributions:
  Additive (A): H^2(A) = 0.6131; Epistasis: H^2(AA) = 0.0000
  OE Interactions: H^2(AE) = 0.0003; H^2(AAE) = 0.0011
```

End

Output 2 for QTL A and AA Effects

```
// Result file created by QTLMapper V 1.0
// Data file name: D:\QTLSOURCE\ckge.txt
// Marker map file name: D:\QTLSOURCE\ckge.map
// Environments: yes
// Replications: no
// Contents: Jackknife test results for epistatic QTLs
// Jackknife based on: D:\QTLSOURCE\ckge.fle
// BGV control method: A (control marker main & interaction effects)
// Threshold probability: 0.005000
# Date: 2000-07-04 Time: 13:48:12
Trait 1: SH5
```

Ch-Ini	Int.Namei	Sitei(M)	Ch-Inj	Int.Namej	0.04	Ai	Probi	Aj	Probj	AAij	Probij
1-5	M5-M6	0.00	1-17	M17-M18		0.055	0.9410	-4.541	0.0000	1.044	0.1782
1-9	M9-M10	0.00	1-15	M15-M16		-1.458	0.3977	-8.553	0.0003	-4.077	0.0559
2-6	M24-M25	0.28	3-18	M51-M52		2.115	0.0270	-4.582	0.0000	-1.209	0.1388
2-9	M27-M28	0.02	3-16	M49-M50		4.250	0.0000	-0.887	0.2098	-0.175	0.8197
AEi1 -0.122 0.081 0.025 0.137 End	Prob 0.5595 0.7146 0.8673 0.2064	AEi2 0.122 -0.080 -0.026 -0.137	Prob 0.5590 0.7188 0.8604 0.2064	0.144	Prob 0.0532 0.5623 0.1465 0.2267	AEj2 0.194 -0.143 0.159 0.131	Prob 0.0534 0.5645 0.1452 0.2254	AAEij1 0.201 0.393 0.159 -0.144	Prob 0.0558 0.0001 0.1237 0.1296	AAEij2 -0.201 -0.394 -0.159 0.144	Prob 0.0558 0.0001 0.1233 0.1303

Chapter 22

Gene Segregation and Linkage Analysis

Jinsheng Liu Todd C. Wehner Sandra B. Donaghy

Purpose

To calculate single-gene goodness-of-fit testing to analyze gene linkage relationships, including calculations of chi-square, probability value, and two-locus-combined phases, for all gene pairs in segregation for the F_2 , BC_{1P1} , and BC_{1P2} generations. Recombination frequency and standard error are calculated according to the linkage phase.

Genetic Analysis

Linkage is estimated using the chi-square method, a widely used standard for genetic data analysis (although it may produce inaccurate results in some cases). Recombination frequency (RF) and standard error (SE) are calculated according to phase (coupling or repulsion), using the following formulas (Sinnott and Dunn, 1939; Weir, 1994).

Definitions

F₂ (repulsion):

RF
$$p \sqrt{\frac{-(bc \quad ad) \quad \sqrt{(bc \quad ad)^2 \quad ad(bc-ad)}}{(bc-ad)}}$$

F₂ (coupling):

RF
$$1-p$$

SE $\sqrt{(1-p^2)(2-p^2)/2n(1-2p^2)}$

BC₁ (only coupling accepted):

$$\begin{array}{ccc} RF & (b & c)/n \\ SE & \sqrt{RF(1-RF)/n} \end{array}$$

where a ($A_B_$), b (A_bb), c ($aaB_$) and d (aabb) are genotype segregation ratios in F_2 or BC_1 .

Originators

Sinnott, E.W. and Dunn, L.C. (1939). *Principles of Genetics*. McGraw-Hill, New York. Weir, B.S. (1994). *Genetic Data Analysis: Methods for Discrete Population Data*. Sinauer, Sunderland, MA.

Software Available

Files can be found on the World Wide Web at http://cuke.hort.ncsu.edu/cucurbit/ Wehner/software.html>. Or, send a 3.5" floppy disk to Todd C. Wehner, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609.

Publication

Liu, J.S., Wehner, T.C., and Donaghy, S.B. (1997). SASGENE: A SAS computer program for genetic analysis of gene segregation and linkage. *Journal of Heredity* 88: 253-254.

Some References Using the Software

Wehner, T.C., Liu, J.S., Staub, J.E., and Fazio, G. (2003). Segregation and linkage of 14 loci in cucumber. *Journal of American Society of Horticulture Science*.

Contact

Dr. Todd Wehner, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA. E-mail: <todd_wehner@ncsu.edu>; Web site: http://cuke.hort.ncsu.edu.

Revisions That Have Been Made

SASGene1.0 and 1.1 had an error in the formula for calculation of SE for RF in coupling. F_2 (coupling):

$$RF = 1-p$$

 $SE = \sqrt{(1-p^2)(1-p^2)/2n(1-2p^2)}$

SASGene1.2 has been corrected F₂ (coupling):

RF
$$1-p$$

SE $\sqrt{(1-p^2)(2 p^2)/2n(1 2p^2)}$

EXAMPLE

Data to be analyzed:

Plot	Rep	Fam	Gen	Plnt	Вi	Rc	Dv	Sp	Ll	Df	F	В	D	U	Tu
1	1	28	1	1	В	N	N	N	L	N	M	M	D	N	M
2	1	28	1	2	В	N	N	N	L	N	M	M	D	N	M
3	1	28	1	3	В	N	N	N	L	N	M	M	D	N	M
4	1	28	1	4	В	N	N	N	L	N	M	M	D	N	M
5	1	28	1	5	В	N	N	N	L	N	M	M	D	N	M
6	1	28	2	1	N	N	N	N	N	D	G	M	D	U	S
7	1	28	2	2	N	N	N	N	N	D	G	M	S	U	S
8	1	28	2	3	N	N	N	N	N	D	G	M	S	U	S
9	1	28	2	4	N	N	N	N	N	D	G	M	S	U	S
10	1	28	2	5	N	N	N	N	N	D	G	M	S	U	S
11	1	28	3	1	В	N	N	N	N	N	G	M	D	N	M
12	1	28	3	2	В	N	N	N	N	N	G	M	D	N	W
13	1	28	3	3	В	N	N	N	N	N	G	M	D	N	M
14	1	28	3	4	В	N	N	N	N	N	G	M	D	N	W
15	1	28	3	5	В	N	N	N	N	N	M	M	D	N	M
16	1	28	3	6	В	N	N	N	N	N	G	M	D	N	W
17	1	28	4	1	В		N	N	N	D	G	M	D	U	S
18	1	28	4	2	N		N	N	L	D	G	M		U	S
19	1	28	4	3	В	N	N	N	N	D	0	M		U	S
20	1	28	4	4	В	N	N	N	N	N	G	M	D	N	M
21	1	28	4	5	В	N	N	N	N	N	M	M	D	N	M
22	1	28	4	6	В	N	N	N	N	N	G	M	D	N	W
23	1	28	4	7	В	N	N	N	L	N	G	M	D	N	M
24	1	28	4	8	В	N	N	N	N	N	G	M	D	U	W
25	1	28	4	9	В	N	N	N	N	D	G	W	D	N	W
26	1	28	4	10	N	N	N	N	N	D	G	M	D	U	S
27	1	28	4	11	N	N	N	N	N	N	G	W	D	N	W

469 470 471 472 473 474 475 476 477 478 479 480 481	2290133333333333333333333333333333333333
55555555555555	
30 30 30 30 30 30 30 30 30 30 30 30 30	28 28 28 28 28 28 28 28 28 28 28 28 28 2
1 1 1 1 2 2 2 2 2 3 3	4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6
1 2 3 4 5 1 2 3 4 5 1 2 3	12 13 14 15 16 17 18 12 34 56 78 91 23 45 12 34 56 78 91 23 45 67
N N N N N N N B B	88 18 18 18 18 18 18 18 18 18 18 18 18 1
R R R R N N N N	N N N N N N N N N N N N N N N N N N N
N N N N N N N N N	
S S S N N N N N	
N N N N N N N N N	
N N N N D D N D	
M M M G G G G G G M G G	00000··0000000000000000000000000000000
B B B W W W B B B B	
U N N U U U U U N N	ועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותועותו
W W W S S S W W W	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

482	5	30	3	4	В	N	N	N	N	D	G	В	D	N	M
483	5	30	3	5	В	N	N	N	N	N	G	В	D	N	W
484	5	30	3	6	В	N	N	N	N	D	G	В	D	N	W
485	5	30	4	1	В	N	N	N	N	N	G	В	D	N	W
486	5	30	4	2	В	N	N	N	N	N	G	W	D	U	S
487	5	30	4	3	N	R	N	S	N	N	G	W	D	U	W
488	5	30	4	4	В	N	N	N	N	D	G	В	S	U	W
489	5	30	4	5	В	N	N	N	N	D	G	В	S	U	W
490	5	30	4	6	В	N	N	N	N	N	G	В	D	N	W
491	5	30	4	7	В	N	N	N	N	N	G	W	D	U	S
492	5	30	4	8	В	N	N	N	N	D	G	В	D	N	W
493	5	30	4	9	N	N	N	N	N	N	G	W	D	N	S
494	5	30	4	10	N	N	N	N	N	D	G	В	D	N	S
495	5	30	4	11	В	N	N	N	N	N	G	В	D	N	W
496	5	30	4	12	В	N	N	N	N	D	G	В	D	U	S
497	5	30	4	13	В	N	N	N	N	D	G	W	S	U	W
498	5	30	4	14	В	N	N	N	N	D	G	В	D	N	W
499	5	30	4	15	N	N	N	N	N	N	G	В	D	N	W
500	5	30	4	16	N	N	N	N	N	N	G	W	D	U	S
501	5	30	4	17	N	N	N	N	N	N	G	В	D	N	W
502	5	30	4	18	N	N	N	N	N	N	G	В	D	N	W
503	5	30	5	1	В	N	N	N	N	D	G	В	D	N	W
504	5	30	5	2	N	R	N	S	N	N	G	В	D	U	W
505	5	30	5	3	В	N	N	N	N	D	N	В	D	U	W
506	5	30	5	4	N	R	N	S	N	N	M				
507	5	30	5	5	В	N	N	N	N	N	G	В	D	N	W
508	5	30	5	6	В	N	N	N	N	D	G	В	D	N	W
509	5	30	5	7	В	N	N	N	N	N	G	В	D	N	W
510	5	30	5	8	В	R	N	S	N	N	M	В	D	N	W
511	5	30	5	9	N	R	N	S	N	N	M				
512	5	30	6	1	В	N	N	N	N	D	G	В	D	N	W
513	5	30	6	2	N	N	N	N	N	D	G	В	D	U	S
514	5	30	6	3	В	N	N	N	N	D	G	В	D	U	M
515	5	30	6	4	В	N	N	N	N	D	G	M	D	U	S
516	5	30	6	5	N	N	N	N	N	D	G	В	D	N	W
517	5	30	6	6	В	N	N	N	N	D	G	M	D	N	W
518	5	30	6	7	N	N	N	N	N	D	G	W	D	U	M
519	5	30	6	8	N	N	N	N	N	D	M	W	D	U	S
520	5	30	6	9	В	N	N	N	N	D	G	W	D	N	S

•

SAS Program (Five Files)

File 1: readme.txt

SASGENE 1.1 Program for Analysis of Gene Segregation and Linkage November 5, 1997

Instructions for Running SASGENE Macros

The SASGENE program for gene segregation and linkage analysis is written in SAS macro language. There are four SAS files. Three are macro files and one is an example. The first macro, SGENE, is for single-gene goodness-of-fit tests. The second macro, LINKAGE, is for analysis of gene linkage relationships. The third macro, CONVERT, is optional and converts gene values to "D" for dominant and "R" for recessive. STARTUP.SAS illustrates how to use the macros. The STARTUP.SAS file can easily be modified for other experiments of interest to the user.

The macros are written for version six and later versions of SAS. The amount of disk space required increases as the number of genes for the linkage analysis increases.

To use the macros, the user must create an input data file that will record data for the following fields: plot number, replication number, plant number, family number, generation number, and gene (or trait) names. Note that plot number, replication number, and plant number are used only for collecting data and are not used by the program for computing statistics. The user may specify any value for the family variable, but the macro requires values of 1, 2, 3, 4, 5, or 6 for the GNR (generation) variable (1 for P1, 2 for P2, 3 for F1, 4 for F2, 5 for BC1P1, 6 for BC1P2). Valid SAS variable names are used for the gene names. The genes (or traits) are variables (columns) and their values are observations (rows). Family and generation are identification variables. In the data file, the values of P1, P2, and F1 should not be omitted or the results may be incorrect.

The SGENE and LINKAGE macros require gene values to be coded as "D" for dominant, "R" for recessive, and "." or blank for a missing value. An optional macro, CONVERT, converts the original gene values to "D," "R," or missing. For each gene and family, the most frequent value for F1 is the dominant gene. Any other nonmissing values are treated as recessive, and any missing values are counted as missing.

An example of a SAS data set follows:

```
data orig;
  input PLOT REP FAMILY GNR BI $ RC $ DV $ SP $
  LL $ DF $ F $ B $ D $ U $ TU $;
  cards;
  1  1  20  1  N R N S N N M B D N W
  2  1  20  1  N R N S N N M B D N W
  3  1  20  1  N R N S N N M B D N W
  4  1  20  1  N R N S N N M B D N W
  .
  run;
```

Either the macro code or a %INCLUDE (also known as %INC) statement is needed to define the macro to the SAS system. The user may include the macro into the program editor or use a %INC statement, such as %inc 'sgene.sas'. The %INC statement specifies the physical name of the external file where the macro is stored. The physical name is the name by which the host system recognizes the file. Depending on the host system and location of the file, the entire file name may need to be specified.

Examples:

```
%inc 'c:\mysas\sgene.sas';
%inc '~/sasmacro/sgene.sas';
```

The file, SGENE.SAS, contains the SAS macro, SGENE. File names, such as SGENE.SAS, usually carry the *sas* extension if the file is a SAS program or a SAS macro.

Once the macro is defined to SAS, the macro can be invoked. To invoke the macro, specify the %, the macro name (either SGENE, LINKAGE, or CONVERT), and the required parameters in parenthesis.

The SGENE macro has three parameters:

DS—name of the SAS data set to analyze

GENES—gene names from the SAS data set

P1—critical value for about half of the frequency of one parent to determine the expected segregation ratio (1:1 or 1:0) in BC1 generation

Example:

The linkage macro has four parameters:

DS—name of the SAS data set to analyze

GENES—gene names from the SAS data set

P1, P2—critical value for about half of the frequency of the parents to determine if the phase is coupling or repulsion

Example:

The convert macro has three parameters:

DS—name of the SAS data set to convert
GENES—list of the desired gene names from the SAS data set
DSOUT—name of the SAS data set after conversion

Example

Several additional files are stored in the same location as the introduction:

STARTUP.SAS—example that illustrates how to use the macros ORIG.DAT—sample data for the startup.sas file CONVERT.SAS—file that contains the SAS macro convert SGENE.SAS—file that contains the SAS macro sgene LINKAGE.SAS—file that contains the SAS macro linkage

File 2: STARTUP.SAS

```
example: filename in 'orig.dat';
* 2. Include the macros with the %INCLUDE (%inc) statement.
    Specify the physical name of the external file where the macro *
    is stored. The physical name is enclosed in single quotes.
    example: %inc 'convert.sas';
            %inc 'sgene.sas';
            %inc 'linkage.sas';
    Summary:
    The user only needs to change the information inside the
    quotes on the FILENAME and %INCLUDE statements below.
    The information inside the quotes specifies the name of the
    external file where the data or macros are stored. It may be *
    necessary to specify the entire file name inside the quotes.
    example: %inc 'c:\sasmacro\convert.sas';
*****************
filename in 'example.dat'; /* name and location of data file
                                                       * /
%inc 'convert.sas'; /* name and location of SAS macro CONVERT
%inc 'sgene.sas'; /* name and location of SAS macro SGENE
%inc 'linkage.sas'; /* name and location of SAS macro LINKAGE */
*************
   include any desired titles and options
*****************
title 'Cucumber Gene Linkage Example';
options nodate pageno=1;
options linesize=80 pagesize=500;
*****
   Create SAS dataset
    The user will need to modify the INPUT statement to specify
     the gene names from their experiment. If list input is used,
    then missing values should be coded with a "."
    Macros are expecting the following variable names:
    family = family code
    gnr = generation code
    Macros are expecting the following values for GNR variable:
     1 for P1
     2 for P2
     3 for F1
     4 for F2
     5 for BC1P1
     6 for BC1P2
    P1, P2 and F1 generations must be included
     for program to run (1 plant each is sufficient)
********************
data original;
  infile in missover pad; /* MISSOVER & PAD are options on INFILE */
  input plot rep family gnr plnt bi $ rc $ dv $ sp $ 11 $ df $
       f $ b $ d $ u $ tu $;
  run;
```

```
****************
   Invoke the CONVERT macro if the user needs to convert the gene
  values to "D" or "R". Otherwise delete the %convert statement.
  The SGENE and LINKAGE macros are expecting the following gene
  values:
   D for Dominant,
  R for Recessive,
   . or blank for missing value.
 Specify the following parameters:
     DS - SAS dataset to convert
     GENES - gene names from the SAS dataset
     DSOUT - output SAS dataset that has been converted
*******************
%convert(ds=original,
       genes=BI RC DV SP LL DF F B D U TU,
       dsout=new);
*****
   Invoke the SGENE macro.
   Modify the following parameters for your experiment:
         - SAS dataset to analyze (possibly the output dataset
           from the CONVERT macro.
     GENES - gene names from the SAS dataset
     P1 - critical value for about half of the frequency of one *
           parent to determine the expected segregation ratio
            (1:1 or 1:0) in BC1 generation.
            Indicates the number of plants of parent 1
            that you feel must have the trait
            before you accept it as uniform
            (for example, 15 plants of P1 measured;
            critical value set at 10,
            allowing 5 misclassifications)
*********************
%sqene(ds=new,
     genes=BI RC DV SP LL DF F B D U TU,
     p1=9);
Invoke the LINKAGE macro.
   Modify the following parameters for your experiment:
     DS - SAS dataset to analyze (possibly the output dataset
           from the CONVERT macro).
     GENES - gene names from the SAS dataset
     P1, P2- critical value for about half of the frequency of
            the parents to determine if the phase is coupling or
            repulsion.
            Indicates the number of plants of parent 1
            that you feel must have the trait
            before you accept it as uniform
            (for example, 15 plants of P1 measured;
            critical value set at 10,
            allowing 5 misclassifications)
********************
%linkage(ds=new,
```

```
genes=BI RC DV SP LL DF F B D U TU,
p1=9,
p2=9);
```

File 3: CONVERT.SAS

```
******************
    SASGENE 1.1
    Program for Analysis of
    Gene Segregation and Linkage
    November 5, 1997
********************
%macro convert
     (ds= last , /* SAS dataset to analyze(default:uses last one)*/
      genes=, /* gene variable names dsout= /* name of new SAS dataset after conversion
      );
****************
* Name: CONVERT
* Purpose: Converts gene values to Dominant or Recessive
* Written: 09/14/95
* Modified: 10/02/95
  03/05/97
* Products: Base SAS
* Example: %convert(ds=save.orig,
         genes=BI RC DV SP LL DF F B D U TU SS NS,
         dsout=new);
***************
proc format;
  value gnrx
   1='P1'
    2='P2'
    3='F1'
    4='F2'
    5='BC1P1'
    6='BC1P2'
title2 'Gene Segregation and Linkage Analysis';
%local nogene word geneid i;
 /* create nogenes macro variable
                                                      */
 /\star nogenes is the number of genes listed in &genes
                                                      * /
 %let nogenes=0;
 %if &genes ne %then %do;
    %let word=%scan(&genes,1);
```

```
%do %while (&word ne );
          %let nogenes=%eval(&nogenes+1);
          %let word=%scan(&genes, &nogenes+1);
          %end;
     %end;
                                                                   * /
  /* create geneid macro variable
  /* geneid is the names of the genes in quotes
                                                                   * /
  /* used in array for identification in output
                                                                  * /
  %let word=%scan(&genes,1);
  %let geneid=%str(%'&word%');
  %do i=2 %to &nogenes;
     %let word=%scan(&genes,&i);
      %let geneid=%str(&geneid, %'&word%');
     %end;
proc sort data=&ds out=_orig; by family; run;
data generat; set orig;
  length id 3;
  array y{*} &genes;
  array yc{*} $ n1-n&nogenes (%unquote(&geneid));
  id=0;
  do i = 1 to dim(y);
     \overline{id+1};
     code= y{ i };
     gene=yc{ i };
     output;
     end;
  keep family id gene gnr code;
proc sort data= generat; by family id; run;
proc freq noprint;
  by family id gene;
  where code not=' ';
  tables code / out= count;
  run;
proc means noprint; by family id;
  var count;
  output out= nocode n=n;
data look; merge count nocode; by family id;
  if n>2;
  run;
proc print label;
title3 'Observed frequencies for each gene locus and allele code';
title4 'These genes in this table have more than 2 codes:';
title5 ' some codes may have been misentered ';
title6 'WARNING!!! Program will convert to 2 codes (D and R)
title7 '
                 Dominant will be assigned,
   ٠,
title8 '
             other non-missing codes will be set to Recessive
  var family gene code count;
  label count='FREQUENCY';
  run;
```

```
/* delete gene-family ids that do not make sense for analysis
 /* delete when the phenotype of P1 is the same as the
 /*
                                                                  * /
                    phenotype of P2
title3 ' ';
proc freq
            data= generat noprint;
  by family id gene;
  tables code*gnr / out= gnrcode(drop=percent);
  run:
data gnrcode; set gnrcode;
  if code=' ' then delete;
proc sort data= gnrcode; by family id gene gnr descending count;
   run;
data delete(keep=family id gene); set gnrcode;
  by family id gene gnr;
  retain d1:
  if first.id then do;
     d1=' ';
                  ١;
     d2="
     end;
   if first.gnr then do;
     if gnr=1 then d1=code;
         else if gnr=2 then do;
                            d2=code;
                            if d1=d2 then output delete;
                            end;
     end:
  run;
proc print data= delete(drop=id);
  title3 'These gene-family combinations will be deleted ';
  title4 'since the phenotype for P1 and P2 are the same ';
  title5 'and do not fit the assumptions of the analysis.';
data generat look; merge generat delete(in=yes);
  by family id gene;
  if yes then output look;
     else output generat;
  run;
            data= look;
proc freq
  by family id gene;
  tables code*gnr / missprint nocum nopercent norow nocol;
  label gnr='GENERATION';
  format gnr gnrx.;
  run;
  /* find the dominant gene by looking at generation 3 (F1) */
title3 ' ';
proc freq noprint data= generat;
  by family id gene;
  where qnr=3;
  tables code / out= count;
   run;
proc sort; by family id count; run;
data dom; set count;
  by family id;
```

```
array c $ c1-c&nogenes;
   retain c1-c&nogenes;
   length c1-c@nogenes $8;
   if first.family then do;
      do i =1 to &nogenes;
         c{ i }=' ';
         end;
      end:
   if last.id then c{id}=code;
   if last.family then output;
   keep family c1-c&nogenes;
   run:
data &dsout; merge orig dom;
  by family;
   array genes { * }
                     &genes;
   array dom{*} $ c1-c&nogenes;
   do i =1 to dim(genes);
      if dom{ i }=' ' then genes{ i }=' ';/*useless data- no domi-
     nant*/
         else do;
         if genes{ i }=dom{ i }
                                  then genes{ i }='D';
            else if genes\{\underline{i}\}=' ' then genes\{\underline{i}\}=' ';
            else genes{_i }='R';
         end:
      end;
   drop c1-c&nogenes i;
data check; merge orig dom;
  by family;
   array genes &genes;
   array dom $ c1-c&nogenes;
   array yc{*} $ n1-n&nogenes (%unquote(&geneid));
   id=0;
   do i =1 to dim(genes);
      id+1;
     gene=yc{ i };
     old code=genes{ i };
      if dom{ i }=' 'then new code=' '; /*useless data- no dominant
     * /
         else do;
         if genes{_i_}=dom{_i_}
                                  then new code='D';
            else if genes{ i }=' ' then new code=' ';
            else new code='R';
         end;
      output;
      end:
   drop c1-c&nogenes n1-n&nogenes &genes;
title4 "Conversion to 'D' or 'R' for each gene and family";
proc freq;
   tables id*gene*family*new code*old code/list nopercent nocum
     nofreq;
```

```
run;
proc datasets library=work memtype=data nolist;
  delete _check _count _dom _generat _look _nocode _orig _delete _gnrcode;
  quit;
%mend convert;
```

File 4: SGENE.SAS

```
****************
    SASGENE 1.1
    Program for Analysis of
   Gene Segregation and Linkage
    November 5, 1997
********************
%macro sgene
      (ds= last , /* SAS dataset to analyze(default:uses last one) */
       genes=, /* gene variable names
               /* freq of parent(P1) to determine Dom. or Rec. */
       p1=
       );
******************
* Name: SGENE
* Purpose: Single Locus Goodness of Fit Test
* Written: 06/22/95
* Modified: 10/03/95
         03/05/97
* Example: %sgene(ds=dst,
         genes=BI RC DV SP LL DF F B D U TU,
        p1=9);
************
%local nogene word geneid i;
title2 'Gene Segregation and Linkage Analysis';
title3 'Single Locus Goodness of Fit Test';
title4 'Probability >.05 is accepted as Single Locus';
options missing=' ';
proc format;
  picture prob
     1ow-\overline{0.05}
             ='9.999*'
     0.05<-<0.06='9.999'
     0.06-high = '9.99'
    ;
  value _gnrx
1='P1'
    2='P2'
    3='F1'
```

```
4='F2'
    5='BC1P1'
     6='BC1P2'
    run;
  /* create nogenes macro variable
                                                                 */
  /* nogenes is the number of genes listed in &genes
                                                                 * /
  %let nogenes=0;
  %if &genes ne %then %do;
     %let word=%scan(&genes,1);
      %do %while (&word ne );
         %let nogenes=%eval(&nogenes+1);
         %let word=%scan(&genes, &nogenes+1);
         %end;
      %end;
  /* create geneid macro variable
                                                                  * /
  /* geneid is the names of the genes in quotes
                                                                  * /
                                                                  * /
      used in array for identification in output
  %let word=%scan(&genes,1);
  %let geneid=%str(%'&word%');
  %do i=2 %to &nogenes;
      %let word=%scan(&genes,&i);
      %let geneid=%str(&geneid,%'&word%');
     %end;
data gent(keep=id family gnr a gene aa bb ee)
     look(keep=obs family gnr &genes);
   set &ds;
  length id aa bb ee 3
         obs 4
         a $ 1;
  array y{*} &genes;
  array yc{*} $ n1-n&nogenes (%unquote(&geneid));
 /* create an obs. for each gene
 /* a will be the response variable for phenotype of individual
 /* of each gene
                                                                    * /
 /* gene will be the character id of each gene name
                                                                   * /
 /* id will be the numeric id of the gene -used for sorting
                                                                  * /
  obs+1;
  id=0;
  do i = 1 to dim(y);
        id+1;
        a=y{ i }; gene=yc{ i };
        a=upcase(a);
 /* ensure all values are in upper case
                                                        * /
                                                        */
 /* if the phenotype is dominant, then aa=1
                                                        * /
 /* if the phenotype is recessive, then bb=1
        aa=0; bb=0; ee=0;
         if a = 'D' then aa = 1;
         else if a ='R' then bb=1;
         else if a =' ' then ee=1;
         else do;
```

```
put '****** ERROR ******
                  'Invalid value for gene ' gene
                  ' (' gene '='a ') at obs=' obs;
              output look;
              end:
         output gent;
         end;
   run;
   /* print any invalid data values for gene to notify user */
title4 'Invalid data value for at least one gene'
      ' (value is not D, R, or missing)';
proc print data= look;
   id obs;
   run;
proc datasets library=work nolist;
   delete look;
   run;
title4 'Probability > .05 is accepted as Single Locus';
   /* compute the sums for number of dominant and recessive
   /* individuals in 6 generations
                                                               * /
proc means data= gent noprint nway;
   class id family gnr;
   id gene;
   var aa bb ee;
   output out = sum sum=d r missing;
   run;
   /* compute chi square and probability */
data chisq; set sum;
  by id family;
   retain g1 omit;
   if first.family then do;
                           g1=' ';
                           omit='no ';
                           end:
   gltext=' ';
/* determine if the genotype of recurrent parent is dominant or
/* recessive; this information is needed to choose
                                                                  * /
                                                                  */
/* expected 1:1 or 1:0 for chisq in BC1 and BC2
if gnr =1 then do;
  t=sum(d,r);
   if t<=0 then omit='yes';
   if 0<d<&p1 then g1='REC';
      else if d>=&p1 then g1='DOM';
      else q1=' ';
   end;
if omit='yes' then delete;
if qnr >3 then do;
  t=d+r;
   chisq=0; df=0;
```

```
/* expected is 3:1 for chisq in F2 */
if qnr=4 then do;
       g1text='3:1';
       /*chisq for 3:1
                           */
       chisq=(d-t*0.75)**2/(t*0.75) + (r-t*0.25)**2/(t*0.25);
       end;
   /* choose expected 1:1 or 1:0 for chisq in BC1 and BC2 */
   /* according to dominant or recessive recurrent parent */
   else if gnr =5 then do;
        if q1='DOM' then do;
            g1text='1:0';
            chisq=((d-t)**2)/t;
            end:
        else if g1='REC' then do;
            q1text='1:1';
            chisq=(d-t*0.5)**2/(t*0.5) +
                  (r-t*0.5)**2/(t*0.5);
            end;
        end;
   else if gnr =6 then do;
        if q1='DOM' then do;
            g1text='1:1';
            chisq=(d-t*0.5)**2/(t*0.5) + (r-t*0.5)**2/(t*0.5);
        if q1='REC' then do;
            g1text='1:0';
            chisq=((d-t)**2)/t;
            end:
        end;
   df=1;
   prob=probchi(chisq,df);
   prob=1-prob;
   end;
 drop omit;
 drop id type t g1;
run;
proc datasets library=work nolist;
   delete gent sum;
   run;
proc print noobs label uniform data= chisq;
   by notsorted gene family;
  pageby gene;
  format chisq 8.2 prob _prob. gnr _gnrx.;
   label gnr='GENERATION';
   label d='DOMINANT';
   label r='RECESSIVE';
   label gltext='EXPECTED';
   label freq ='N';
  run;
%mend sgene;
```

File 5: LINKAGE.SAS

```
****************
     SASGENE 1.2
     Program for Analysis of
     Gene Segregation and Linkage
    March 2, 1999
    linkage.sas of SASGENE 1.2 differs from SASGENE 1.1
    because there was an error in the calculation of
    the SE for the F2 (coupling) as follows:
    in SASGENE 1.1 the formula was:
              se=((1-p*p)*(1+p*p)/(2*t*(1+2*p*p)))**0.5;
    in SASGENE 1.2 the formula is now:
              se=((1-p*p)*(2+p*p)/(2*t*(1+2*p*p)))**0.5;
*******************
%macro linkage
     (ds= last , /* SAS dataset to analyze(default:uses last one) */
      genes=, /* gene variable names
      p1=,
              /* freq of P1 to determine Coupling or Repulsion */
               /* freq of P2 to determine Coupling or Repulsion */
      p2=
      );
*****
* Name: LINKAGE
 Purpose: Linkage Analysis for
          Recombination Frequency Data in F2, BC1P1 & BC2P2 Pop.
* Written: 06/22/95
* Modified: 10/03/95
          03/05/97
* Example: %linkage(ds=dst,
          genes=BI RC DV SP LL DF F B D U TU,
          p1=9
         p2 = 9
          );
* Note:
       The number of genes listed affects the amount of
          time the program takes to execute. The resources for
          your platform will determine the number of genes you
          can use. Increasing the number of genes increases
          the work space that is needed.
%local nogenes word geneid i;
title2 'Gene Segregation and Linkage Analysis';
title3 'Recombination Frequency Data in F2, BC1P1 & BC1P2 Population';
title4 'Prob with * indicates gene pair might be linked';
options missing=' ';
```

```
proc format;
   picture _prob
      10w-0.05 = 9.999*
      0.05<-<0.06='9.999'
      0.06-high = '9.99'
                 = '
      ;
   value gnrx
     4 = ' F \overline{2} '
     5='BC1P1'
     6='BC1P2';
  run;
  /* create nogenes macro variable
                                                                      */
  /* nogenes is the number of genes listed in &genes
                                                                      * /
  %let nogenes=0;
  %if &genes ne %then %do;
      %let word=%scan(&genes,1);
      %do %while (&word ne );
          %let nogenes=%eval(&nogenes+1);
          %let word=%scan(&genes, &nogenes+1);
          %end;
      %end;
                                                                       * /
  /* create geneid macro variable
  /* geneid is the names of the genes in quotes
                                                                       */
                                                                       * /
  /* used in array for identification of output
  %let word=%scan(&genes,1);
  %let geneid=%str(%'&word%');
  %do i=2 %to &nogenes;
      %let word=%scan(&genes,&i);
      %let geneid=%str(&geneid, %'&word%');
      %end;
data gent;
   set &ds;
   length id aa bb cc dd ee 3
   m n $ 1;
array y{*} &genes;
   array yc{*} $ n1-n&nogenes (%unquote(&geneid));
/* create an obs. for each pair of genes
                                                                        * /
                                                                        * /
/* m will be the response variable for gene1
/* n will be the response variable for gene2
                                                                        */
/* id will be the numeric id of the (i,j)th combination of gene pair*/
/* genel character id of the i-th part of (i,j) pair */
/* gene2 character id of the j-th part of (i,j) pair */
obs+1;
 id=0;
   do i = 1 to dim(y) - 1;
      \overline{do} j = i +1 to dim(y);
         id+1;
         m=y{ i_};    n=y{_j_};
         m=upcase(m);
         n=upcase(n);
         gene1=yc{ i }; gene2=yc{ j };
         aa=0; bb=0; cc=0; dd=0; ee=0;
```

```
if m = 'D' and n = 'D' then aa=1;
           else if m ='D' and n ='R' then bb=1;
           else if m ='R' and n ='D' then cc=1;
           else if m = 'R' and n = 'R' then dd=1;
           else if m =' ' or n =' ' then ee=1;
           else put '******ERROR*****
                    'Invalid data value on obs=' obs ' for '
                      yc{ i }'=' m ' or ' yc{ j }'=' n;
         output;
         end;
      end;
   keep id family gnr m n genel gene2 aa bb cc dd ee;
  /* compute the sums of dominant and recessive individuals */
  /* a=AABB b=AAbb c=aaBB d=aabb */
proc means data= gent noprint nway;
   class id family gnr;
    id gene1 gene2;
   var aa bb cc dd ee;
   output out = sum(drop= type ) sum=a b c d missing ;
   run;
data P12; set sum;
  by id family;
   retain phase
           pldd pldr plrd plrr
           p2dd p2dr p2rd p2rr
           omit:
   if first.family then do;
      pldd=.; pldr=.; plrd=.; plrr=.;
      p2dd=.; p2dr=.; p2rd=.; p2rr=.;
     phase=' ';
      omit='no ';
      end;
 if gnr=1 then do;
     t=sum(a,b,c,d);
      if t<=0 then omit='yes';
      if a=>&p1 then p1dd=1;
      if b=>&p1 then p1dr=1;
      if c=>&p1 then p1rd=1;
      if d=>&p1 then p1rr=1;
      end;
   else if gnr=2 then do;
     if a=>&p2 then p2dd=1;
      if b=>&p2 then p2dr=1;
      if c=>&p2 then p2rd=1;
      if d=>&p2 then p2rr=1;
  /* determine if phase= "C"(coupling),
  /*
                         "R" (repulsion), or
                                               * /
  /*
                         " "(useless phase).
                pldd=1 and p2rr=1 then phase='C';
         else if plrr=1 and p2dd=1 then phase='C';
```

```
else if pldr=1 and p2rd=1 then phase='R';
         else if plrd=1 and p2dr=1 then phase='R';
      end:
  if omit='yes' then delete;
/* compute the chisq, probability, recombination frequencies (rf) */
/* and standard error (se).
if phase not=' ' and gnr>3 then do;
  t=sum(a,b,c,d);
  chisq=0; df=0;
  if qnr=4 then do;
       chisq=(a**2)/(t*9/16)+(b**2)/(t*3/16)+(c**2)/(t*3/16)
                   +(d**2)/(t*1/16) -t;
       div=b*c-a*d;
       if div ne 0 then do;
          p=((-(b*c+a*d)+((b*c+a*d)**2+a*d*(b*c-a*d))**0.5)/div)
            **0.5;
          se=((1-p*p)*(2+p*p)/(2*t*(1+2*p*p)))**0.5;
         end:
       if phase='C' then rf=1-p;
          else if phase='R' then rf=p;
       end:
    else if 5<=gnr <=6 then do;
       chisq= (a-t*0.25)**2/(t*0.25)+(b-t*0.25)**2/(t*0.25)
             + (c-t*0.25)**2/(t*0.25)+ (d-t*0.25)**2/(t*0.25);
       rf= (b+c)/t;
       se=(rf*(1-rf)/t)**0.5;
      end;
   df=3;
    prob=probchi(chisq,df);
   prob=1-prob;
   end;
drop omit;
drop pldd pldr plrd plrr p2dd p2dr p2rd p2rr div p;
run;
/* only print for good phases and generations 4, 5, and 6 */
data gnr4to6;
  set p12;
  if phase=' ' then delete;
  if gnr > 3;
proc sort; by gnr phase id family; run;
proc print noobs label split='*' uniform data= gnr4to6;
  by gnr;
  pageby gnr;
  var gene1 gene2 family phase freq a b c d missing chisq df prob
    rf se;
  format chisq 5.1 rf se 6.3 prob prob. gnr gnrx.;
  label gnr='GENERATION';
  label family='FAM';
  label freq ='N';
  label missing='MISS*-ING';
```

label se='STD *ERROR';
run;
%mend linkage;

SAS Output: Single-Gene Goodness-of-Fit

Cucumber Gene Linkage Example
Single Locus Goodness of Fit Test
Probability >.05 is accepted as Single Locus
GENE=SS FAMILY=44

GENERATION	N	DOMINANT	RECESSIVE	MISSING	EXPECTED	CHISQ	DF	PROB
P1	45	45	0	0				
P2	45	1	40	4				
F1	54	49	5	0				
F2	162	103	55	4	3:1	8.11	1	0.004*
BC1P1	81	78	3	0	1:0	0.11	1	0.73
BC1P2	81	38	42	1	1:1	0.20	1	0.65

SAS Output: Linkage Analysis

Cucumber Gene Linkage Example
Recombination Frequency (RF) Data in F2, & BC1 Population
Prob with * indicates gene pair might be linked

GENERATION=F2

									MISS-		STI)		
GENE1	GENE2	FAM	PHAS:	ΕN	A	В	С	D	ING	CHISQ	DF	PROB	RF	ERROR
U	SS	30	С	162	69	27	24	36	6	75.8	3	0.000*	0.323	0.036
U	SS	44	C	162	77	27	26	28	4	35.5	3	0.000*	0.350	0.038
U	NS	28	С	162	89	16	18	21	16	24.3	3	0.000*	0.265	0.034
U	NS	30	C	162	74	22	33	27	6	35.0	3	0.000*	0.364	0.038
RC	NS	30	R	162	83	34	24	15	6	4.8	3	0.18	0.559	0.042

Chapter 23

Mapping Functions

M. Humberto Reyes-Valdés

Purpose

To map genes and markers and to predict recombination frequencies.

Definitions

Mapping function: A mathematical function that relates map distances to recombination frequencies.

Genetic map distance (in morgans): The average number of crossovers per meiotic event between two loci. Genetic distance relates to physical distance, but they are not equivalent.

Morgan unit: A unit for expressing the distance between chromosome loci based on recombination. Haldane (1919) named it after T. H. Morgan.

Coincidence: Actual double recombinations/number expected with no interference. Each mapping function is based on an assumption about coincidence.

Originators

Carter, T.C. and Falconer, D.S. (1951). Stocks for detecting linkage in the mouse, and the theory of their design. *Journal of Genetics* 50:307-323.

Haldane, J.B.S. (1919). The combination of linkage values, and the calculation of distances between the loci of linked factors. *Journal of Genetics* 8:299-309.

Kosambi, D.D. (1944). The estimation of map distances from recombination values. *Annals of Eugenics* 12:172-175.

Pascoe, L. and Morton, N.E. (1987). The use of map functions in multipoint mapping. *American Journal of Human Genetics* 40:174-183.

Software Available

Reyes-Valdés, M.H. *GenMath* (a Mathematica application for genetics).

Key References Using the Formulas

Haley, C.S. and Knott, S.A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. *Heredity* 69:315-324.

Reyes-Valdés, M.H. (2000). A model for marker-based selection in gene introgression breeding programs. *Crop Science* 40:91-98.

Contact

Dr. M. Humberto Reyes-Valdés, Universidad Autónoma Agraria Antonio Narro, Departamento de Fitomejoramiento, Buenavista, Saltillo, Coahuila, Mexico. C.P. 25315. Email: cmhreyes@uaaan.mx.

EXAMPLES

Example 1

Convert the following recombination frequencies to map distances using the various mapping functions in Table 23.1:

[0.05, 0.10, 0.15, 0.20, 0.25]

TABLE 23.1. Mapping Functions

Author	Function		Coincidence
Haldane (1919)	$\frac{1}{n}$ $-\frac{1}{2}\log$	$J_e(1-2y)$	1
Kosambi (1944)	$m = \frac{1}{2}$ tanh	$1^{-1}(2y)$	2 <i>y</i>
Pascoe and Morton (1987)	$m - \frac{\log_{\theta}[0]}{2}$	$\frac{1-2y)^2/(1-2y-4y^2)]}{12} \frac{\sqrt{3}\tan^{-1}[(1-4y)/\sqrt{3}]}{6} -0.15115$	(2 <i>y</i>) ²
Carter and Fal- coner (1951)	$m = \frac{1}{4}[tant]$	$n^{-1}(2y)$ $tan^{-1}(2y)$	(2 <i>y</i>) ³

Note: Where m = genetic map distance in morgans; y = recombination frequency; tan, $\tan^{-1} =$ tangent and inverse tangent, respectively; tanh, $\tanh^{-1} =$ hyperbolic tangent and inverse hyperbolic tangent, respectively.

The formulas in Table 23.1 can be used manually, but a computer program greatly facilitates calculations. Although the development of GenMath—a genetics package—is not fully complete, it can be used, at this time, for several applications, including mapping functions. The program runs in Mathematica software by Wolfram Research. With GenMath, proceed as follows:

1. Load GenMath in a Mathematica notebook. The prompts *In* and *Out* represent input and output, respectively.

```
In: <C:\genmath.m</pre>
```

2. To know the commands available in the package, type:

```
In: ?Global `Genmath `*
```

The output will be:

Out:			
Abo	GenDis	Iden	PathAnalysis
Avef	HFun	IHFun	PMFun
CFun	Hw	IKFun	ReadConv
ChiTest	HwAbo	IPMFun	Ssd
Comp	Hwmean	KFun	Varc
Eftab	ICFun	Nsim	

3. To know how a command works, e.g., HFun, type:

```
In: ?HFun
```

The output will be:

```
Out:
HFun[r] gives genetic distance in morgans for a given
   recombination fraction r, based on Haldane mapping
   function
```

4. You can convert each value, one by one, as follows:

```
In: HFun[0.05]
Out: 0.0526803
```

5. Or you can convert the entire vector in one step.

```
In: Map[HFun, {0.05,0.1,0.15,0.2,0.25}]
Out: {0.0526803, 0.111572, 0.178337, 0.255413, 0.346574}
```

6. Since units in the output are in morgans, multiply by 100 to get centimorgans.

```
In: Map[HFun, {0.05,0.1,0.15,0.2,0.25}]100
Out: {5.26803, 11.1572, 17.8337, 25.5413, 34.6574}
```

7. To obtain the whole matrix of map distances in centimorgans with the use of the four functions, combine the commands: HFun (Haldane), KFun (Kosambi), PMFun (Pascoe and Morton), and CFun (Carter and Falconer).

```
Tn:
TableForm[{Map[HFun, {0.05, 0.1, 0.15, 0.2, 0.25}],
Map[KFun, {0.05, 0.1, 0.15, 0.2, 0.25}],
Map[PMFun, {0.05, 0.1, 0.15, 0.2, 0.25}],
Map[CFun, {0.05, 0.1, 0.15, 0.2, 0.25}]}100]
Out:
5.26803
         11.1572
                   17.8337
                             25.5413
                                        34.6574
5.01677 10.1366 15.476 21.1824
                                        27.4653
5.00125 10.0201 15.1028 20.3322
                                        25.8425
         10.0032 15.0244 20.1039 25.3238
5.0001
```

Each row in this output corresponds to a given mapping function, in the same order depicted in Table 23.1. Notice that for low recombination frequencies (e.g., 0.05), map distances are similar with the use of all the mapping functions. However, as the recombination frequencies increase, map distances diverge. Thus, Haldane's mapping function is not a good choice for high recombination frequencies.

Example 2

Convert the following map distances, given in centimorgans, to recombination frequencies using the four mapping functions:

```
[10, 20, 30, 40, 50, 200]
```

One way to convert them is to find the analytical inverse of the mapping functions, i.e., to write y as a function of m, which may prove difficult when using the last two formulas in Table 23.1. With GenMath, use the commands for inverse mapping functions: IHFun, IKFun, IPMFun,

ICFun. To convert a single value, e.g., 10, with a given inverse mapping function, proceed as follows:

```
In: IPMFun[.1]
Out: 0.0998006
```

Notice that the map distance was divided by 100 to convert it to morgans before applying the command IPMFun.

To perform all the conversions and present them in table form, you can proceed as follows:

```
Tn:
TableForm[{Map[IHFun, {0.1, 0.2, 0.3, 0.4, .5, 2}],
Map [IKFun, \{.1, .2, .3, .4, .5, 2\}],
Map[IPMFun, \{.1, .2, .3, .4, .5, 2\}],
Map[ICFun, \{.1, .2, .3, .4, .5, 2\}]}]//N
Out:
0.0906346
             0.16484
                         0.225594
                                     0.275336
                                                 0.31606
                                                              0.490842
             0.189974
                                                              0.499665
0.0986877
                         0.268525
                                     0.332018 0.380797
             0.196886
                         0.285161
                                                 0.41152
                                                              0.499987
0.0998006
                                     0.357854
0.0999684
             0.198987
                         0.292644
                                     0.372168
                                                 0.42959
                                                              0.5
```

Example 3

Plot recombination frequencies against map distances between 0 and 2 morgans using the functions of Haldane and Pascoe and Morton. With the use of GenMath, both plots can be combined as follows:


```
In:
Plot[{IHFun[x],IPMFun[x]},{x,0,2},PlotPoints->100]
Out:
```

The upper line corresponds to the function of Haldane, and the lower one to the function of Pascoe and Morton.

Final Remarks

All the formulas presented in this chapter assume coincidence = $(2y)^k$, where k is a constant that depends on a mapping function. The formulas include the most widely used mapping functions, but several other functions have also been developed. For an excellent account of this topic, the reader is referred to:

Crow, J.F. (1990). Mapping functions. Genetics 125:669-671.

Chapter 24

Bootstrap and Jackknife for Genetic Diversity Parameter Estimates

Julio Di Rienzo Mónica Balzarini

Purpose

Bootstrap and jackknife are resampling (sample from a sample) techniques. Whenever distributional properties of parameter estimates cannot be analytically derived due to complex structures of sample data or statistics, bootstrap and jackknife procedures can provide empirical parameter estimates.

Definitions

Bootstrap for Mean and Standard Error

An original sample of size n should be available to obtain bootstrap samples. A bootstrap sample is a random sample of size n drawn with replacement from the original sample. The process is as follows:

- 1. Obtain a bootstrap sample and calculate the desired parameter estimator, say $\hat{\ }$, from it.
- 2. Repeat step 1 *K* times. The bootstrap mean is the mean across all *K* runs of the estimator values,

$$\overline{\theta}^{B} = \frac{1}{K} \sum_{i=1}^{K} \overline{\theta}_{i}^{B},$$

and the bootstrap standard error of the estimator is

$$SE^{B} = \sqrt{\frac{1}{K-1} \sum_{i=1}^{K} (\overrightarrow{\theta}_{i} - \overline{\theta}^{B})^{2}}$$

Jackknife for Mean and Standard Error

An original sample of size *n* should be available to obtain jackknife samples. A jackknife sample is newly obtained from the original sample by leaving out one sample unit or object. The *i*th jackknife sample is the original data set with the *i*th object removed. The process is as follows:

- 1. Obtain a jackknife sample and calculate the desired parameter estimator, say , from it.
- 2. Repeat step 1 leaving out a different sample unit each time. For an original sample of size *n*, the total number of jackknife samples will be *n*. The jackknife mean is the mean across *n* estimator values,

$$\overline{\theta}^{J} = \frac{1}{n} \sum_{i=1}^{n} \overline{\theta}_{i} \quad ,$$

and the jackknife standard error of the estimator is

$$SE^{J} = \sqrt{\frac{n-1}{n} \sum_{i=1}^{a} (\overline{\theta}_{i} - \overline{\theta}^{J})^{2}}.$$

The coefficient multiplying the sample variance is an inflation factor used to account for a smaller variation among jackknife samples than among bootstrap samples.

Application for Genetic Diversity Parameters

These computationally intensive techniques can be used to extract mean and standard errors of genetic diversity parameters from genomic data. With genotypes as sample units and several loci examined, the following multilocus statistics estimate genetic diversity:

1. Proportion of polymorphic loci (P) = the total number of polymorphic loci divided by the total number of loci examined. A locus is considered polymorphic if two or more alleles are detected.

- 2. Average number of alleles (Aa) = the total number of alleles counted in the sample divided by the total number of loci examined.
- 3. Effective number of alleles (Ae) = the reciprocal of the sum across all alleles.
- 4. Nei's expected heterozygosity (He),

He
$$\frac{1}{L_{i,1}}^{L} \frac{2n}{2n-1} (1 - \sum_{i=1}^{a} x_i^2),$$

where n is the sample size, a is the number of alleles, x_i is the frequency of the ith allele at the jth locus, and L is the number of loci examined.

5. Nei's biased expected heterozygosity (BHe),

BHe
$$\frac{1}{L_{i-1}}^{L} (1 - \sum_{i=1}^{a} x_i^2)$$

A computer program (Genetic_Diversity.exe) was developed to calculate bootstrap and jackknife means and standard errors of multilocus statistics. It may be obtained free of charge from http://www.infostat.com. ar>Web page. It is a user-friendly program that allows reading of text files structured with genotypes and loci as row and column factors, respectively. By opening the program, a default file of five genotypes and thirteen loci is automatically loaded. The user may select either the bootstrap or jackknife procedure to calculate genetic diversity measures and their standard errors. If jackknife is chosen, an output sample size other than one (default value for the number of sample units left out each time) can be obtained. If bootstrap is chosen, the number of bootstrap replications, K, can be specified. The default value for K is 250. There is no maximum number of alleles that can be specified, but the limitation may be the number of different symbols available to identify them. The program does not distinguish between upper- and lowercase letters.

Jackknife and bootstrap routines can be easily adapted to other sample functions (not necessarily genetic diversity statistics). For questions, please contact Dr. Balzarini <mbalzari@agro.uncor.edu>.

Chapter 25

Software on Genetic Linkage and Mapping Available Through the Internet

Manjit S. Kang

Purpose

With the increasing use of Internet resources in all scientific fields, it becomes necessary to compile a meaningful list of software relative to mapping of markers and quantitative trait loci (QTL) that can be accessed through the Internet. Geneticists are now heavily engaged in mapping QTL for important plant and animal traits. Thus, they can benefit from such a list. The list assembled in this chapter, with modifications, is patterned after one that already exists at http://linkage.rockefeller.edu/soft/ (attributed to Dr. Wentian Li of Rockefeller University). This list contains only those software programs that have a functional Web site. The Weizmann Institute of Science, Genome, and Bioinformatics also has a listing of some of the linkage and mapping-related software at the following Web site: http://bioinformatics.weizmann.ac.il/repository/mapping_software.html. Table 25.1 contains more than 100 such entries and a brief statement about the intended purpose of each software and its important features.

The reader should note that listed Web sites can change location without notice. No guarantee is made that they will remain operational. This list, or any other such list, should be regarded as informational in nature.

The reader is encouraged to check the Web sites listed in Table 25.1 to obtain additional information about software(s) of interest. Although many can be downloaded free of charge, others may require a fee.

TABLE 25.1. An Abbreviated Listing of Software on Genetic Linkage and Mapping

Name of Software	Features/Purpose	Web Site
ACT: Analysis of Complex Traits	Various modules can do the following: Calculate the proportion of genes which are identical by descent, shared in a nuclear family, assess increased allele sharing between all pairs of affected relatives, perform multivariate analysis of complex traits, estimate variance components using maximum likelihood and quasi-likelihood, and generate first-degree relationship coefficients for extended families.	http://www.epigenetic.org/ Linkage/act.html
ALLASS: ALLele ASSociation	Nonparametric linkage and association mapping of disease genes. The ALLASS program implements a model for localizing disease genes by allelic association in a set of disease and normal haplotypes. The program can also model linkage disequilibrium between pairs of SNPs where SNP haplotypes are available.	http://cedar.genetics.soton. ac.uk/pub/PROGRAMS/ ALLASS
ALP: Automated Linkage Preprocessor	ALP, a Microsoft Windows application, is designed to analyze microsatellite DNA fragments separated on an automated laser fluorescence sequencer (ALF, Pharmacia Biotech). ALP sizes DNA fragments, removes PCR stutter and other artifacts, if provided with pedigree data it performs genotyping checks to ensure a Mendelian inheritance pattern is followed, and formats data for Lathrop's linkage program package.	http://www.hgu.mrc.ac.uk/ Softdata/ALP/
Analyze	Simplifies the performance of a large array of parametric and nonparametric tests for linkage and association on data entered in linkage format pedigree and parameter files.	ftp://ftp.ebi.ac.uk/pub/ software/linkage_and_ mapping/linkage_cpmc_ columbia/analyze/
APM: Affected Pedi- gree-member Method	Linkage analysis.	http://watson.hgen.pitt.edu/ register/docs/apm.html
Arlequin	An exploratory population genetics software environment able to handle large samples of molecular data (RFLPs, DNA sequences, microsatellites).	http://lgb.unige.ch/arlequin/
ASPEX: Affected Sibling Pairs EXclusion map	Performs multipoint exclusion mapping of affected sibling pair data for discrete traits. Allows genome-wide scan.	ftp://lahmed.stanford.edu/pub/ aspex/

	Autoscan	Helps automate the tedious process of creating input files from genotype data of genome-wide scans.	http://www.genetics.ucla.edu/software/autoscan/
	Beta	Performs nonparametric linkage analysis using allele sharing in sibling pairs.	http://cedar.genetics. soton.ac. uk/pub/PROGRAMS/BETA
	BLOCK: BLOCKing Gibbs sampler for pedigree analysis	Perform general pedigree analysis on a general pedigree. Performs two-point linkage analysis on a general pedigree with an arbitrary number of alleles. Employs Markov chain Monte Carlo and Gibb's sampling.	http://www.cs.auc.dk/~claus/block.html
	Borel (see also PANGAEA)	Programs for inference of genealogical relationships from genetic data, including siblingship inference.	ftp://ftp.u.washington.edu/ pub/user-supported/pangaea/ PANGAEA/BOREL/
	CarthaGene	CarthaGene is a genetic/radiated hybrid mapping software. Uses multipoint maximum likelihood estimations of distances. Handles data made up of several distinct populations, which may each be either F2 backcross, recombinant inbred lines, F2 intercross, phase known outbreds, and/or radiated hybrids. Keeps best maps.	http://www.inra.fr/bia/T/ CarthaGene/
	CASPAR: Computer- ized Affected Sibling Pair Analyzer and Reporter	An exploratory program to study the genetics of complex (polygenic) diseases. Helps perform conditional linkage analyses, in which the population can be subdivided according to criteria at some loci and analyzed for linkage at other loci. Uses simulation to overcome the problems inherent in multiple testing.	http://www.ncbi.nlm.nih.gov/ CBBresearch/Schaffer/caspar. html
	Ceph2Map	Constructs linkage maps. Developed from CRI-MAP v2.4.	http://cedar.genetics.soton.ac. uk/pub/PROGRAMS/ ceph2map
	Clump	Utilizes the Monte Carlo method for assessing significance of a case-control association study with multiallelic markers. Useful for any $2 \times N$ contingency table, especially when N is large.	http://www.mds.qmw.ac.uk/ statgen/dcurtis/software.html
	Combin	A software package developed for constructing ultradense linkage maps. Handles RFLP, SSR, and AFLP marker data.	http://www.dpw.wau.nl/pv/pub/combin/
267	COMDS: COMbineD Segregation and link- age analysis	Combined segregation and linkage analysis, incorporating severity and diathesis.	http://cedar.genetics.soton.ac. uk/pub/PROGRAMS/comds

TABLE 25.1 (continued)

Name of Software	Features/Purpose	Web Site
CoPE: Collaborative Pedigree drawing Environment	A JAVA program for drawing pedigrees and a standardized system for pedigree storage. Intended for epidemiologists and statisticians to share their familial data through networks.	http://www.infobiogen.fr/ services/CoPE/
CRI-MAP	Allows automated construction of multilocus linkage maps.	http://compgen.rutgers.edu/ multimap/crimap/index.html
CRI-MAP-PVM: CRI-MAP with Parallel Virtual Machine	A version of the CRI-MAP program for genetic likelihood computations that runs CRI-MAP's FLIPS and ALL functions in parallel on a distributed network of work stations.	http://compgen.rutgers.edu/ multimap/crimappvm.html
Cyrillic	A program for drawing pedigrees and for linking their data to programs for calculating genetic risks, analyzing linkage to DNA markers, and aligning haplotypes.	http://www.cyrillicsoftware. com/
dGene	A simple dBASE III program for the management of pedigree and locus data. Permits easy extraction of genetic data for use with Mendel and Fisher.	http://www.biomath.medsch. ucla.edu/faculty/klange/ software.html
DMap: Disequilibrium Map	Uses information from all disease locus-marker pairs while modeling the variability in disequilibrium values due to the evolutionary dynamics of the population.	http://lib.stat.cmu.edu/ ~bdevlin/
ECLIPSE (see also PANGAEA): Error Correcting Likelihoods In Pedigree Structure Estimation	It is a set of three programs (preproc, eclipse2, and eclipse3). Analyzes genetic-marker data for genotypic errors and pedigree errors.	http://stat.washington.edu/ thompson/Genepi/pangea. shtml.
EH (EH+): Estimating Haplotype-frequencies	Estimates haplotype frequencies. Also provides log likelihood, chisquares, and the degrees of freedom under H_0 (no allelic association) and H_1 (allelic association) hypotheses.	ftp://linkage.rockefeller.edu/ software/eh/
ERPA: Extended Relative Pair Analysis	Performs nonparametric linkage analysis.	ftp://ftp.ebi.ac.uk/pub/ software/linkage_and_ mapping/statgen/dcurtis/

	ETDT: Extended Trans- mission/Disequilibrium Test	Performs TDT on markers with more than two alleles using a logistic regression analysis.	ftp://ftp.ebi.ac.uk/pub/ software/linkage_and_ mapping/statgen/dcurtis/
	FASTLINK (see also LINKAGE): faster version of LINKAGE	Maps disease genes and their approximate locations.	http://www.ncbi.nlm.nih.gov/ CBBresearch/Schaffer/fastlin k.html
	FAST-MAP: Fluorescent Allele-calling Software Toolkit: Microsatellite Automation Package	A pattern recognition program that facilitates fully automated genotyping of microsatellite markers.	http://www-2.cs.cmu.edu/~ genome/FAST-MAP.html
	FASTSLINK (see also SLINK): faster SLINK	Conditional simulation of genetic data on pedigrees.	http://watson.hgen.pitt.edu/ register/soft_doc.html
	FBAT: Family-Based Association Test	A program for implementing a broad class of family-based association tests that are adjusted for population admixture.	http://www.biostat.harvard. edu/~fbat/fbat.htm
	Firstord	A method for preliminary ordering of loci based on two-point LOD scores.	http://www.mds.qmw.ac.uk/ statgen/dcurtis/software.html
	Fisher	A program for genetic analysis of biometric traits that are controlled by a combination of polygenic inheritance and complex environ- mental factors.	http://www.biomath.medsch. ucla.edu/faculty/klange/ software.html
	GAP: Genetic Analysis Package	A comprehensive package for the management and analysis of pedigree data. Provides powerful database management tools specifically designed for family data. Automatic pedigree drawing. Segregation and linkage analysis, based on traditional maximum likelihood methods and newer, more powerful, Monte Carlo methods that can model both genetic and environmental factors.	http://icarus2.hsc.usc.edu/ epicenter/gap.html
	GAS: Genetic Analysis System	An integrated computer program designed to automate and accelerate the acquisition and analysis of genomic data.	http://us- ers.ox.ac.uk/~ayoung/ gas.html
)	GASP: Genometric Analysis Simulation Program	Generates samples of family data based on user-specified genetic models. Verifies analysis algorithms relative to the underlying theory. Tests the statistical validity of newly developed methods of genetic segregation and linkage analysis and investigates the statistical properties of test statistics. Determines the power and robustness of these methods. Allows application of insights gained from these simulation experiments to ongoing collaborative genetic analyses.	http://www.nhgri.nih.gov/DIR/IDRB/GASP/

TABLE 25.1 (continued)

Name of Software	Features/Purpose	Web Site
GASSOC: Genetic ASSOCiation analysis software	Statistical methods for genetic associations using cases and their parents. Include TDT for multiple marker alleles.	http://www.mayo.edu/statgen/
Genehunter	Used for multipoint linkage analysis and nonparametric linkage analysis.	http://www.fhcrc.org/labs/ kruglyak/Downloads/index. html
Genehunter-Imprinting	In German. Parametric (LOD score) analysis of traits conditioned by imprinted genes.	http://www.meb.uni-bonn.de/ imbie/mitarbeiter/strauch/
GenoCheck	Identifies genotypes likely to be errors. Based on Fastlink.	http://www.crpc.rice.edu/ softlib/geno.html
GenoDB: GENOtype DataBase	Manipulates large amounts of genotype data generated with fluorescently labeled dinucleotide markers.	http://osteoporosis.creighton.edu/
GGT: Graphical Geno- Typing package	Enables representation of molecular marker data by simple chromosome drawings in several ways. Commonly used marker file types that contain marker information serve as input for this program.	http://www.dpw.wau.nl/pv/ PUB/ggt/
GRR: Graphical Representation of Relationships	Designed for detection of relationship specification errors in general pedigrees by use of genome scan marker data.	http://qtl.well.ox.ac.uk/GRR/
GSCAN: Genomic Software for Complex Analysis of Nucleotides	Linkage program based on a semiparametric method. Allows semiparametric two-point linkage, linkage disequilibrium, and combined linkage/linkage-disequilibrium analysis of general pedigree data for discrete traits, including pedigree consistency checks and pedigree drawing, gene-gene and gene-environment interaction incorporation, and Z-score computation.	http://cougar.fhcrc.org/~filq/ html/main.htm
Haplo	Haplotyping with computation of conditional probabilities.	http://watson.hgen.pitt.edu/ register/soft_doc.html
HAPPY: reconstructing HAPlotYpes	Two-stage analysis: ancestral haplotype reconstruction using dynamic programming followed by QTL testing by linear regression.	http://www.well.ox.ac.uk/~ rmott/happy.html

	Hardy (see also PANGAEA)	Hardy contains program and documentation for Monte Carlo estimation of P values in sparse, two-dimensional contingency tables, or for Hardy Weinberg equilibrium.	http://www.stat.washington. edu/thompson/Genepi/ Hardy.shtml
	JoinMap	Software for the calculation of genetic linkage maps. Can handle many common types of mapping populations (BC1, F2, RILs, [doubled] haploids, full-sib family of outbreeders). Can combine (join) data derived from several sources into an integrated map.	http://www.plant. wageningen-ur.nl/default. asp?section= products&page=/products/ mapping/joinmap/jmintro.htm
	KINDRED	A program that stores and maintains data on families and members of families, and automatically draws pedigrees in a format suitable for presentation/publication.	http://icarus2.hsc.usc.edu/ epicenter/kindred.html
	LDB: Location DataBase	Gives locations for expressed sequences and polymorphic markers. Locations are obtained by integrating data of different types (genetic linkage maps, radiation hybrid maps, physical maps, cytogenetic data, and mouse homology) and constructing a single summary map. Integrates genetic linkage map and physical map.	ftp://cedar.genetics.soton. ac.uk/public_html/ldb.html
	Linkage: general pedi- grees (see also FASTLINK)	The core of the Linkage package is a series of programs for maximum likelihood estimation of recombination rates, calculation of LOD score tables, and analysis of genetic risks.	ftp://linkage.rockefeller. edu/software/linkage/
	Linkbase	An easy and practical tool for connecting the genotype data produced by automatic sequencers (ABI Prism 377 [Perkin Elmer] and ALF [Pharmacia]) to linkage and sib-pair programs.	http://www.ktl.fi/molbio/ software/linkbase/newintro. html
	Loki (see also PANGAEA)	Analyzes quantitative traits observed on large pedigrees using Monte Carlo multipoint linkage and segregation analysis.	ftp://ftp.u.washington.edu/ pub/user-supported/pangaea/ PANGAEA/Loki/
ę	Map/Map+/Map+H	Performs multiple pairwise linkage analysis and incorporates interference.	http://cedar.genet- ics.soton.ac. uk/pub/PROGRAMS/map+; http://cedar.genetics.soton. ac.uk/pub/PROGRAMS/ map+h

TABLE 25.1 (continued)

Name of Software	Features/Purpose	Web Site
MAPL: MAPping and QTL analysis	Provides segregation ratio, linkage test, recombination value, grouping of markers, ordering of markers by metric multidimensional scaling, drawing maps, and graphical genotypes, as well as QTL analysis by interval mapping and ANOVA.	http://peach.ab.a.u-tokyo.ac. jp/~ukai/mapl98.html
Mapmaker/Exp	Constructs genetic linkage maps.	http://www-genome.wi.mit. edu/genome_software
Mapmaker/HOMOZ: HOMOZygosity map- ping	Calculates multipoint LOD scores in pedigrees with inbreeding loops.	ftp://ftp-genome.wi.mit.edu/ distribution/software/homoz/
Mapmaker/QTL	Helps map genes controlling quantitative traits.	ftp://ftp-genome.wi.mit.edu/ distribution/software/newqtl/
Map Manager Classic	A program for Apple Macintosh personal computer that helps analyze the results of genetic mapping experiments using backcrosses, intercrosses, or recombinant inbred strains.	http://mapmgr.roswellpark.org /classic.html
Map Manager QT	A version of Map Manager with additional functions for analyzing quantitative traits. A graphic, interactive program to map quantitative trait loci by regression methods.	http://mapmgr.roswellpark.org /mmQT.html
Map Manager QTX	A version of Map Manager that combines the cross-platform design of Map Manager XP with enhanced QT analysis from Map Manager QT. Allows detection and localization of quantitative trait loci by fast regression-based single locus association, simple interval mapping, and composite interval mapping. Calculates empirical significance values by permutation tests. Allows a choice of Haldane, Kosambi, and Morgan mapping functions. Supports advanced backcross and advanced intercross designs.	
МарРор	For selective mapping and bin mapping.	http://www.bio.unc.edu/ faculty/vision/lab/mappop/

Mapqtl	For calculation of QTL positions on genetic maps via interval mapping, composite interval mapping, or a nonparametric method.	http://www.plant.dlo.nl/de- fault. asp?section=prod- ucts&page= products/map- ping/mapqtl/ mgintro.htm
MCLEEPS: Monte Carlo Likelihood Esti- mation of Effective Pop- ulation Size	For estimating effective population size from temporal changes in allele frequencies.	http://www.stat.washington. edu/thompson/Genepi/ Mcleeps.shtml
MEGA2: Manipulation Environment for Ge- netic Analyses	A data-handling program for facilitating genetic linkage and association analyses.	http://watson.hgen.pitt.edu/ mega2.html
Mendel	For genetic analysis of human pedigree data involving a small number of loci. Useful for segregation analysis, linkage calculations, genetic counseling, and allele frequency estimation.	http://www.biomath.medsch. ucla.edu/faculty/klange/ software.html
MFLINK: Model Free Linkage analysis	Performs (nearly) model-free linkage analysis.	http://www.mds.qmw.ac.uk/ statgen/dcurtis/software.html
MIM: Multipoint Identi- cal-by-descent Method	For partitioning genetic variance of quantitative traits to specific chromosome regions using data on nuclear families.	ftp://morgan.med.utah.edu/ pub/Mim/
Mld	A shuffling version of conditional tests for different combinations of allelic and genotypic disequilibrium on haploid and diploid data.	ftp://statgen.ncsu.edu/pub/ zaykin/
MORGAN:MOnte CaRlo Genetic ANalysis (see also PANGAEA)	For segregation and linkage analysis, using Markov chain and Monte Carlo methods. Includes MCMC methods for multilocus gene identity by descent and homozygosity mapping.	http://www.stat.washington. edu/thompson/Genepi/ Morgan.shtml
MultiMap	For automated construction of genetic maps. Developed for large- scale linkage mapping of markers genotyped in reference pedi- grees. Adapted for automated construction of radiation hybrid maps.	http://compgen.rutgers.edu/ multimap/index.shtml
NOPAR	Nonparametric linkage and association tests for quantitative traits.	http://cedar.genet- ics.soton.ac. uk/pub/PROGRAMS/nopar/

TABLE 25.1 (continued)

Name of Software	Features/Purpose	Web Site
PANGAEA: Pedigree Analysis for Genetics And Epidemiological Attributes	A nine-program package for genetic analyses including: Borel, Hardy, MORGAN, Pedpack, InSegT, Loki, MCLEEPS, Pedfiddler, and Eclipse.	http://www.stat.washington. edu/thompson/Genepi/ pangaea.shtml
PAP: Pedigree Analysis Package	Computes the likelihood of specified parameter values; provides the probability of each genotype for pedigree members; simulates phenotypes for output into files; maximizes the likelihood over specified parameters (with or without standard errors); computes the standard errors of parameters for unknown estimates; simulates phenotypes and estimates parameter values; estimates expected LOD scores; and computes a grid of likelihood over one or two parameters. Also does TDT.	http://hasstedt.genetics.utah. edu/
PED: PEdigree Draw- ing software	A tool for fast and standardized drawing of pedigrees.	http://www.medgen.de/ped/ index.htm
PedCheck	Detects marker-typing incompatibilities in pedigree data.	http://watson.hgen.pitt.edu/ register/docs/pedcheck.html
Pedfiddler	A set of programs to manipulate pedigree graphs. Can be used as a stand-alone version of the graphics facilities found in Pedpack. Pedfiddler is not fully compatible with Pedpack because it is not intended for analysis but for graphical purposes only.	http://www.stat.washington. edu/thompson/Genepi/ Pedfiddler.shtml
PedHunter	A software package that facilitates creation and verification of pedigrees within large genealogies.	http://www.ncbi.nlm.nih.gov/ CBBresearch/Schaffer/ pedhunter.html
Pedigree/Draw	For creation, editing, and drawing of pedigrees of human or non- human families. The package consists of applications, example files, and a user's guide.	http://www.sfbr.org/sfbr/ public/ software/pedraw/peddrw.html
PedJava	Uses browser technology to enter pedigrees into a database.	http://cooke.gsf.de/wjst/ download.cfm

PedPlot: PEDigree PLOTting program PEDRAW/WPEDRAW: PEDigree DRAWing/Windows PEDigree DRAWing	Helps view a family structure by generating a plot from a pedfile/datafile pair. A pedigree drawing program using LINKAGE or LINKSYS data files.	http://www.chg.duke.edu/ software/pedplot.html http://www.mds.qmw.ac.uk/ statgen/dcurtis/software.html
PEDSYS: PEDigree database system	For management of genetic, pedigree, and demographic data. Designed principally for use with pedigree analysis of either human or nonhuman subjects.	http://www.sfbr.org/sfbr/ public/ software/pedsys/pedsys.html
Pointer	For complex segregation analysis with mixed models.	http://cedar.genetics. soton.ac. uk/pub/PROGRAMS/pointer
Progeny	Provides a method of tracking, managing, and viewing genetic data using the most advanced pedigree drawing and database technology.	http://www.progeny2000.com/
QTDT: Quantitative (trait) Transmission/Dis- equilibrium Test	Provides a convenient one-stop interface for family-based tests of linkage disequilibrium.	http://www.sph.umich.edu/ csg/abecasis/QTDT
QTL Cartographer	A suite of programs to map quantitative traits using a map of molecular markers.	http://statgen.ncsu.edu/qtlcart/cartographer.html
QUGENE: QUantitative GENEtics	A flexible platform for investigation of the characteristics of genetic models. The architecture of the software has two main levels: (1) the genotype-environment system engine and (2) the application modules. The engine is the platform on which the different systems for investigation are generated and the modules are used to conduct the simulation experiments.	http://pig.ag.uq.edu.au/ qu-gene/
Relative	For relationship estimation, in particular between putative siblings when parents are untyped.	ftp://linkage.rockefeller.edu/ software/relative/
RelCheck	For verifying relationships between all pairs of individuals in a linkage study. Allows for the presence of genotyping errors.	http://biosun01.biostat.jhsph.edu/~kbroman/software/
RHMAPPER: Radiation Hybrid MAPPER	An interactive program for radiation hybrid mapping. Uses a hidden Markov model for calculating maximum likelihood.	http://www-genome.wi.mit. edu/ftp/pub/software/ rhmapper/

TABLE 25.1 (continued)

Name of Software	Features/Purpose	Web Site
SAGE: Statistical Analysis for Genetic Epidemiology	A software package containing more than twenty programs for use in genetic analysis of family and pedigree data.	http://darwin.cwru.edu/ octance/sage/sage.php
Sib-Pair	For simple nonparametric genetic analysis of family data.	http://www2.qimr.edu.au/ davidD/
Simibd	For performing nonparametric linkage analysis.	http://watson.hgen.pitt.edu/ register/soft_doc.html
SimWalk2	For haplotype, parametric and nonparametric linkage, identity by descent, and mistyping analyses, using Markov chain, Monte Carlo, and simulated annealing algorithm.	http://watson.hgen.pitt.edu/ register/soft_doc.html
SOLAR: Sequential Oligogenic Linkage Analysis Routines	A software package for genetic variance components analysis, including linkage analysis, quantitative genetic analysis, and covariate screening.	http://www.sfbr.org/sfbr/ public/ software/solar/index.html
SPERM	For the analysis of sperm typing data.	http://www.biomath.medsch. ucla.edu/faculty/klange/ software.html
SPERMSEG	For analysis of segregation in single-sperm data.	http://galton.uchicago.edu/ ~mcpeek/software/spermseg/
SPLINK: Affected Sib Pairs LINKage Analysis	A program for sibling pair linkage analysis. Maximum likelihood subject to possible triangle restriction. Marker haplotypes based on several closely linked markers. Haplotype frequencies are estimated from the data.	http://www-gene.cimr.cam.ac. uk/clayton/software/
TDT-PC: Transmission Disequilibrium Test Power Calculator	To compute the statistical power of the Transmission/Disequilibrium Test (TDT), which is a powerful test for linkage in the presence of association.	http://biosun01.biostat.jhsph. edu/~wmchen/pc.html
TDT/S-TDT: Transmission Disequilibrium Test and Sibling-Transmission Disequilibrium Test		http://genomics.med.upenn. edu/spielman/TDT.htm

Transmit	For transmission disequilibrium testing. Marker haplotypes based on several closely linked markers. Parental genotype and/or haplotype phase may be missing.	http://www.gene.cimr.cam.ac. uk/clayton/software
2DMAP: 2-Dimensional Crossover-based MAP	For constructing two-dimensional crossover-based maps.	http://www.genlink.wustl.edu/software/
Typenext	To simulate marker data for untyped individuals to determine how much information each untyped individual would contribute if typed.	ftp://linkage.rockefeller.edu/ software/typenext/
Vitesse	For likelihood calculation on pedigrees.	http://watson.hgen.pitt.edu/ register/soft_doc.html
Web-Preplink	Prepares data files for Linkage using web interface.	http://linkage.rockefeller.edu/ gui/webpreplink.html

Note: AFLP = Amplified fragment length polymorphism; LOD = Logarithm of odds; the odds are the likelihood that linkage exists relative to the likelihood that linkage does not exist; QTL = quantitative trait loci; RIL = recombinant inbred line; RFLP = restriction fragment length polymorphism; SNP = single nucleotide polymorphism; SSR = simple sequence repeat.

Gregor

Todd Krone

Importance

An easy to use and valuable simulation tool to help plant breeders create population scenarios and subsequently observe the effects of selection via phenotype and/or genotype.

Originators

Dr. Nick Tinker and Dr. Diane E. Mather Tinker, N.A. and Mather, D.E. (1993). GREGOR: Software for genetic simulation. *Journal of Heredity* 84:237.

Summary of One Scientist's Use of Gregor

This software program was found to be very useful when planning and executing backcrossing and breeding programs in maize. Its simplicity allows quick and efficient testing of various breeding questions. Many options and applications can be utilized in this program, but this brief summary does not allow complete coverage. I used Gregor for:

1. Testing the effects of varying assumptions on a backcrossing and breeding program. Many assumptions are made in a plant breeding program based on an understanding of the principles of plant breeding theory. Although theory gives an understanding of the effects that may result from varying assumptions, simulating a wide array of assumptions in Gregor provides a much deeper understanding of the effects. The many assumptions that can be tested using Gregor are

- number of genes affecting a trait,
- magnitude of gene effects,
- gene action,
- · heritability,
- · population size, and
- population type (e.g., F₂, doubled haploids, recombinant inbred lines [RILs], etc.).

Gregor gives several options for evaluation of the simulation, such as viewing graphical genotypes and summary statistics for any given trait. It is also very simple to export data to Microsoft Excel or other programs to evaluate the results more deeply. This process helps one understand the assumptions that are critical to the success of a program.

- 2. Testing the effect of varying assumptions on the effectiveness of gene mapping. The variables can be varied, as in the breeding program simulations (point number 1), along with marker number, distribution of markers, and marker dominance/additivity. Although Gregor can give summary statistics for markers of interest, it is found to be most useful when exporting data to Excel or Mapmaker for analysis. Theories can lead to good assumptions, but testing them in Gregor is a fast and inexpensive way to verify them.
- 3. Testing the effect of varying assumptions on selection for a trait via molecular markers. Once a breeding program is established, and molecular marker associations have been determined for a trait of interest, marker-assisted selection can be applied. This is a subheading of the breeding program as marker-assisted selection is simply another tool that can be used in a breeding program. In Gregor, molecular markers are listed as separate menu options from population and trait. The use of markers in breeding programs is not generally accepted as a common tool. Rather, it is seen as a developing tool. Thus, it is listed as a separate application. In many applications, marker-assisted selection may be appropriate. Prior to executing a selection scheme, it should be run through Gregor first to determine the appropriate marker number and distribution. This has been particularly useful in developing marker-assisted selection for backcross breeding.

Gregor 281

Gregor is limited in that it is DOS based and restricts population size. However, other publicly available simulation software that can simulate breeding situations in such an effective and easy way are not known. Overall, the primary benefit of Gregor is that you can easily tailor simulations for any breeding scenario. In addition to having a sound knowledge of principles of genetics and breeding, the breeder should benefit from a virtual run of the breeding program. The software allows wise testing of practices prior to expending large sums of money and time executing a breeding program.

Software Available

- Dr. Diane E. Mather, Department of Plant Science, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada. FAX: 514-398-7897. E-mail: <dianemather@mcgill.ca>. For a link to a Web site that describes Gregor, set your browser to http://gnome.agrenv.mcgill.ca>.
- Dr. Nicholas A. Tinker, Agriculture and Agri-Food, Canada, Biometrics and Bioproducts, ECORC, K. W. Neatby Building, Floor 2, Room 2056, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, CANADA.

Analysis for an Experiment Designed As Augmented Lattice Square Design

Walter T. Federer

Importance

Augmented experiment designs are used internationally for screening large numbers of new genotypes used in early generations of plantbreeding programs. Any experiment design (complete block, incomplete block, row-column, or other) may be selected for the standard treatments replicated r times each. The blocks, incomplete blocks, or rows and columns are enlarged to accommodate the new treatments usually included only once in the experiment. The lattice square experiment design controls variation within each complete block in two directions (rows and columns). Augmented lattice square designs (ALSDs) are easily constructed as described by Federer, W. T. (2002) in "Construction and Analysis of an Augmented Lattice Square Design," Biometrical Journal 44(2):251-257. ALSDs can accommodate c = 2k or 3k check or standard cultivars in r = kcomplete blocks and $n = k^2(k-2)$ or $k^2(k-3)$ new genotypes. An ALSD with k = 4 = r, c = 8, and n = 32 illustrates a statistical analysis. A trend analysis using polynomial regression is used. The following data are presented for all sixty-four responses.

/*The infile for the data is auglsd8. The five columns of the data set below represent, respectively, Rep, Row, Col, Trt, and Yield. In the Trt column, checks are numbered 33-40 and new treatments are numbered 1-32*/

```
1 1 1 33 17
1 1 2 1 9
1 1 3 2 9
1 1 4 40 23
1 2 1 37 21
1 2 2 34 18
```

```
1
    2
        3
              3
                    9
1
    2
        4
              4
                    9
    3
1
              5
                    9
        1
1
    3
        2
             38
                  22
    3
        3
1
             35
                  19
1
    3
                    9
        4
              7
                    9
1
1
1
    4
        1
        2
    4
              8
                  19
    4
        3
             39
                  23
    4
4
             36
                  20
        1
             33
                  17
    1
        2
              9
                    8
   1
1
2
2
2
2
2
3
        3
             10
                    8
        4
             39
                  25
        1
             40
                  22
        2
            34
                  18
        3
            11
                  18
        4
            12
                  18
        1
             13
                  18
    3
        2
             37
                  23
    3
        3
            35
                  19
        4
            14
                  17
    4
        1
             15
                  16
        2
    4
             16
                  21
    4
        3
             38
                  25
    4
             36
                  20
    1
        1
             33
                  24
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
    1
        2
            17
                  17
    1
        3
            18
                  17
   1
        4
             38
                  18
   2
2
2
2
3
3
3
        1
             39
                  22
             34
                  12
        3
            19
                  17
        4
             20
                  16
        1
             21
                  17
        2
                  25
            40
        3
            35
                  15
    3
             22
                  17
        4
    4
        1
             23
                  17
        2
    4
                  17
             24
    4
        3
             37
                  15
3
    4
        4
             36
                  15
4
    1
        1
             33
                  28
    1
        2
4
             25
                  20
    1
        3
             26
                  20
4
    1
             37
                  25
4
        4
   2
2
2
2
3
                  29
4
             38
        2
4
             34
                  22
4
        3
             27
                  26
4
        4
             28
                  26
4
        1
             29
                  16
4
    3
        2
             39
                  32
    3
4
        3
             35
                  25
4
    3
             30
                  26
        4
4
    4
        1
             31
                  16
4
    4
        2
                  16
             32
```

40 25

36 30

The SAS/GLM and SAS/MIXED codes for this data set are as follows:

```
options ls = 76;
proc iml;
  opn3= orpol(1:4,2); /* The 4 is the number of columns and 2 indi-
     cates that
  linear and quadratic polynomial regression coefficients are desired.
  opn3[,1] = (1:4);
  op3 =opn3; print op3; /* Print-out of coefficients. */
create opn3 from opn3[colname ={'COL' 'C1' 'C2'}]; append from opn3;
  close opn3; run;
  opn4 =orpol(1:4,2); /* There are 4 rows and two regressions. */
  opn4[,1]=(1:4);
  op4 = opn4;
                         print op4;
  create opn4 from opn4[colname ={'ROW' 'R1' 'R2'}]; append from opn4;
  close opn4; run;
data auglsd8;
  infile 'auglsd8.dat';
  input rep row col trt yield;
  if (trt>32) then new = 0; else new = 1;
/* This divides the 40 entries into 32 new treatments which are
considered as random effects and 8 checks which are fixed effects. */
  if (new) then trtn = 999; else trtn = trt;
data augbig; set auglsd8;
^{\prime st} The regression coefficients are added to the data set. ^{st}/
  idx = n ; run;
proc sort data = augbig;
 by COL; run; data augbig; merge augbig opn3; by COL; run;
proc sort data = augbig;
  by ROW; run; data augbig; merge augbig opn4; by ROW; run;
proc sort data = augbig; by idx; run;
proc glm data = augbig;
  class row col trt trtn rep;
  model yield = rep trt C1*rep R1*rep C1*R1*rep;
 lsmeans trt/out = lsmeans noprint; run;
proc sort data = lsmeans; by descending lsmean;
/* n is usually quite large and this statement arranges the fixed
effect means in descending order for viewing. */
proc print; run;
proc mixed data = augbig;
   class rep row col trt trtn;
   model yield = trtn/solution;
   random rep C1*rep R1*rep C1*R1*rep trt*new/solution;
/* These two statements obtain solutions for the various effects. */
   lsmeans trtn; make 'solutionr' out = sr noprint; run;
proc sort data = sr;
   by descending est;
/*The effect solutions are arranged from largest to smallest. */
proc print; run;
quit;
```

The output in the preceding example and program is presented in a modified version of the actual output. Following are the linear and quadratic coefficients:

		OP3 1 2 3 4	-0.67082 -0.223607 0.223606 0.670820	58 -0.	. 5 . 5	
		OP4 1 2 3 4	-0.67082 -0.223606 0.223606 0.670820	68 -0.	. 5 . 5	
Class Levels ROW 4 COL 4 TRT 40 TRTN 9 REP 4	Values 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 22 23 24 2 33 34 35 3 1 2 3 4 Number of	6 7 8 9 10 5 26 27 28	3 29 30 31 9 40 999 /	3 14 15 16 1 32 33 34 /* Checks	1 35 36 3 numbered	7 38 39 40
Dependent Var Source Model Error Corrected Tot	DF 54 9	D Sum of Square 2022.63 58.84 2081.48	es 3549 1888	Mean Square 37.45621 6.53876	F Value 5.73	Pr > F 0.0041
	R-Square 0.971727	13.	C.V. 62652	Root MSF 2.5571		IELD Mean 18.7656
Dependent Var Source REP TRT C1*REP R1*REP C1*R1*REP Source REP TRT C1*REP R1*REP C1*REP C1*REP	DF 3 39 4 4 4	Type I S 634.9218 1284.6875 52.7652 3.3894 46.8713 Type III 240.6713 1066.1011 37.8687 23.7729 46.8713	88 211 50 32 28 13 85 11 85 Mean 82 80 62 27 78 9	Square 1.64063 2.94071 3.19132 0.84737 1.71784 Square 0.22377 7.33593 9.46720 5.94324	F Value 32.37 5.04 2.02 0.13 1.79 F Value 12.27 4.18 1.45 0.91 1.79	Pr > F 0.0001 0.0070 0.1755 0.9677 0.2145 Pr > F 0.0016 0.0137 0.2953 0.4985 0.2145
Fixed effect	1 2 3 4 5 6 7 8	NAME_ YIELD	36 28 22 23 33 26 30 24 39 24 20 23 28 23 40 23 38 22	LSMEAN 3.5625 7.5443 6.5625 4.3923 4.1171 3.9249 3.9249 3.0745 3.0142 2.9711 2.3609	STDERR 3.98587 3.87268 3.98587 3.87268 1.67939 3.40407 1.67939 1.67939 2.89414	

11	YIELD	27	22.2280	2.89414
12	YIELD	18	22.0455	3.40407
13	YIELD	14	21.9964	3.87268
14	YIELD	17	21.7855	3.87268
15	YIELD	37	20.8976	1.67939
16	YIELD	35	20.5625	1.41148
17	YIELD	12	20.0757	3.40407
18	YIELD	11	19.6544	2.89414
19	YIELD	34	17.8125	1.41148
20	YIELD	25	17.2728	3.87268
21	YIELD	26	16.5147	3.40407
22	YIELD	24	15.8193	5.01784
23	YIELD	6	14.5671	3.87268
24	YIELD	1	14.3972	3.87268
25	YIELD	9	14.0444	3.87268
26	YIELD	8	13.7216	5.01784
27	YIELD	21	12.9400	5.01784
28	YIELD	16	12.6102	5.01784
29	YIELD	4	11.6749	3.40407
30	YIELD	2	11.5900	3.40407
31	YIELD	3	11.2568	2.89414
32	YIELD	10	10.5998	3.40407
33	YIELD	13	10.1342	5.01784
34	YIELD	23	8.6472	8.44815
35	YIELD	32	7.5988	5.01784
36	YIELD	29	7.0391	5.01784
37	YIELD	5	3.6367	5.01784
38	YIELD	31	3.5431	8.44815
39	YIELD	15	-0.5431	8.44815
40	YIELD	7	-3.1472	8.44815

REML Estimation Iteration History

Iteration	Evaluations	Objective	Criterion
0	1	245.77696870	
1	3	218.84012634	0.00762773
2	2	218.34805379	0.00012725
3	2	218.33482743	0.00000093
4	1	218.33472566	0.00000000
		Convergence cri	teria met.

Covariance Parameter Estimates (REML)

Cov Parm	Estimate
REP	11.99469629
C1*REP	1.88018116
R1*REP	3.98577174
C1*R1*REP	4.69746155
NEW*TRT	5.87662721
Residual	8.41233535

Solution for Fixed Effects

Effect	TRTN	Estimate	Std Error	DF	t	Pr > t
INTERCEPT		15.84932467	1.85872722	3	8.53	0.0034
Effect	TRTN	Estimate 6.02505345	Std Error	DF	t	Pr > t
TRTN	33		1.80689098	9	3.33	0.0087

TRTN TRTN TRTN TRTN TRTN TRTN TRTN	34 35 36 37 38 39	1.78104271 3.51473327 4.97612515 5.08850236 7.28885283 9.63215629 8.35433917	1.61807612 1.61757976 1.80199562 1.67222656 1.67222656 1.67222656	9 9 9 9 9	1.10 2.17 2.76 3.04 4.36 5.76	0.2996 0.0578 0.0221 0.0140 0.0018 0.0003
TRTN	40	8.35433917	1.67222656	9	5.00	0.0007
TRTN	999	0.00000000	•			•

Least Squares Means (Check, fixed effect means.)

Effect	TRTN	LSMEAN	Std Error	DF	t	Pr > t
TRTN	33	21.87437812	2.39139410	9	9.15	0.0001
TRTN	34	17.63036738	2.26946107	9	7.77	0.0001
TRTN	35	19.36405795	2.26934312	9	8.53	0.0001
TRTN	36	20.82544982	2.38836997	9	8.72	0.0001
TRTN	37	20.93782703	2.31267932	9	9.05	0.0001
TRTN	38	23.13817750	2.31267932	9	10.00	0.0001
TRTN	39	25.48148096	2.31267932	9	11.02	0.0001
TRTN	40	24.20366385	2.31267932	9	10.47	0.0001
TRTN	999	15.84932467	1.85872722	9	8.53	0.0001
			, , ,			

(Solutions for random effects arranged in descending order. To obtain the means, add the intercept value to each of the effects below.)

OBS	EFFECT	REP	TRT	EST	SEPRED	DF	T	PT
1	REP	4		4.85091339	1.86295604	- 9-	2.60	$\overline{0.02}86$
2	R1*REP	2		2.51920549	1.33546047	9	1.89	0.0919
3	NEW*TRT		8	2.16475642	1.94313336	9	1.11	0.2941
4	NEW*TRT		27	2.01517588	1.90869357	9	1.06	0.3186
5	NEW*TRT		28	1.85527717	1.93230928	9	0.96	0.3621
6	NEW*TRT		30	1.81072275	1.93311801	9	0.94	0.3734
7	C1*R1*REP	4		1.73101272	1.85245416	9	0.93	0.3745
8	NEW*TRT		16	1.54679253	1.94313336	9	0.80	0.4465
9	NEW*TRT		22	1.54645580	1.93311801	9	0.80	0.4443
10	C1*REP	4		1.25643193	1.09118038	9	1.15	0.2792
11	NEW*TRT		24	1.25209662	1.94313336	9	0.64	0.5354
12	NEW*TRT		11	1.23086038	1.90869357	9	0.64	0.5351
13	NEW*TRT		19	1.17618212	1.90869357	9	0.62	0.5530
14	NEW*TRT		12	1.11283909	1.93230928	9	0.58	0.5788
15	NEW*TRT		18	1.01457415	1.94260482	9	0.52	0.6141
16	R1*REP	1		1.01019332	1.33546047	9	0.76	0.4687
17	NEW*TRT		23	1.00479517	1.99102006	9	0.50	0.6259
18	NEW*TRT		20	0.93494169	1.93230928	9	0.48	0.6400
19	NEW*TRT		21	0.92045869	1.93273116	9	0.48	0.6452
20	NEW*TRT		17	0.88317994	1.94374142	9	0.45	0.6603
21	NEW*TRT		13	0.83974581	1.93273116	9	0.43	0.6742
22	NEW*TRT		14	0.40203254	1.93311801	9	0.21	0.8399
23	C1*REP	2		0.34480113	1.09118038	9	0.32	0.7592
24	C1*R1*REP	1		0.28936528	1.85245416	9	0.16	0.8793
25	NEW*TRT		33	0.00000000	2.42417557	9	0.00	1.0000
26	NEW*TRT		34	0.0000000	2.42417557	9	0.00	1.0000
27	NEW*TRT		35	0.00000000	2.42417557	9	0.00	1.0000
28	NEW*TRT		36	0.00000000	2.42417557	9	0.00	1.0000
29	NEW*TRT		37	0.00000000	2.42417557	9	0.00	1.0000
30	NEW*TRT		38	0.00000000	2.42417557	9	0.00	1.0000
31	NEW*TRT		39	0.00000000	2.42417557	9	0.00	1.0000
32	NEW*TRT		40	0.00000000	2.42417557	9	0.00	1.0000
33	C1*REP	1		-0.02662262	1.09118038	9	-0.02	0.9811
34	REP	2		-0.42232220	1.86295604	9	-0.23	0.8257
35	C1*R1*REP	3		-0.46971222	1.85245416	9	-0.25	0.8055
36	NEW*TRT		25	-0.53275905	1.94374142	9	-0.27	0.7902
37	NEW*TRT		26	-0.55027490	1.94260482	9	-0.28	0.7834

38 39 40	NEW*TRT R1*REP R1*REP	3 4	15	-0.60995214 -0.77362810 -0.91895723	1.99102006 1.33546047 1.33546047	9 9 9	-0.31 -0.58 -0.69	0.7663 0.5766 0.5087
41	NEW*TRT		31	-1.01254232	1.99102006	9	-0.51	0.6233
42	C1*REP	3		-1.02947994	1.09118038	9	-0.94	0.3701
43	C1*R1*REP	2		-1.32767888	1.85245416	9	-0.72	0.4917
44	NEW*TRT		2	-1.38564933	1.94260482	9	-0.71	0.4937
45	NEW*TRT		29	-1.39513647	1.93273116	9	-0.72	0.4887
46	NEW*TRT		1	-1.42624812	1.94374142	9	-0.73	0.4818
47	NEW*TRT		32	-1.45720674	1.94313336	9	-0.75	0.4724
48	NEW*TRT		4	-1.56655327	1.93230928	9	-0.81	0.4384
49	NEW*TRT		3	-1.58335059	1.90869357	9	-0.83	0.4282
50	REP	3		-1.67547560	1.86295604	9	-0.90	0.3919
51	NEW*TRT		5	-1.76704354	1.93273116	9	-0.91	0.3844
52	NEW*TRT		6	-1.78805600	1.93311801	9	-0.92	0.3791
53	NEW*TRT		7	-1.91714185	1.99102006	9	-0.96	0.3608
54	NEW*TRT		9	-2.24587207	1.94374142	9	-1.16	0.2777
55	NEW*TRT		10	-2.47310037	1.94260482	9	-1.27	0.2349
56	REP	1		-2.75311559	1.86295604	9	-1.48	0.1736

Augmented Row-Column Design and Trend Analyses

Walter T. Federer Russell D. Wolfinger

Purpose

To obtain estimates of augmented treatments under a mixed model.

Data

The fifteen-row by twelve-column designed data set, as outlined in Federer (1998), is used in this chapter. There are two checks repeated r=30 times each and 120 new or augmented treatments each included once. Since the row-column design was not connected, in the sense that not all row, column, and treatment effects have solutions, it was necessary to use functions of row and column effects. Orthogonal polynomial regressions up to tenth degree for columns and up to twelfth degree for rows were computed. Those regressions with F-values lower than the 25 percent level were omitted from the model. Since row-column orientation may not be in the same direction as gradients in the experiment, interactions of row and column regressions were employed to account for the variation.

The treatments are divided into fixed effects (checks) and random effects (augmented treatments). An ordering of treatment effects from highest to lowest is useful since large numbers of augmented treatments are usually encountered in this type of screening experiment. The following SAS program constructs orthogonal polynomial coefficients.

References

- Federer, W.T. (1998). Recovery of interblock, intergradient, and intervariety information in incomplete block and lattice rectangle designed experiments. *Biometrics* 54(2):471-481.
- Wolfinger, R.D., Federer, W.T., and Cordero-Brana, O. (1997). Recovering information in augmented designs, using SAS PROC GLM and PROC MIXED. Agronomy Journal 89:856-859.

SAS Code

```
/* ---Create orthogonal polynomial regression coefficients.---*/
proc iml;
 opn12=orpol(1:12,10); /*---12 rows and up to tenth degree coeffi-
     cients---*/
  opn12[,1] = (1:12);
 op12=opn12;
  create opn12 from opn12[colname={'COL' 'C1' 'C2' 'C3' 'C4' 'C5'
'C6' 'C7' 'C8' 'C9' 'C10'}]; append from opn12;
  close opn12; run;
  opn15 = orpol(1:15,12); /*---15 columns, up to 12^{th} degree coeffi-
     cients---*/
 opn15[,1]=(1:15)^{\cdot};
 op15 = opn15;
  create opn15 from opn15[colname={'ROW' 'R1' 'R2' 'R3' 'R4' 'R5'
'R6' 'R7' 'R8' 'R9' 'R10' 'R11' 'R12'}]; append from opn15;
close opn15;
run;
/* The data set augmercl.dat contained responses for grain weight and
     eight other characteristics of the 122 wheat genotypes (treat-
     ments) and comes from site number 1. */
data augsitel;
  infile 'augmerc1.dat';
  input site col row trt grainwt ca cb cc cd ra rb rc rd;
/* The following statements partition the 122 treatments into two
     sets, checks (fixed) and new (treated as random). */
  if (trt>120) then new = 0; else new = 1; if (new) then trtn= 999;
    else trtn=trt;
/* The following steps create the data set augbig for analyses. */
data augbig; set augsitel;
  idx = n;
run;
proc sort data = augbig;
 by col; run;
data augbig;
 merge augbig opn12;
 by col;
          run;
proc sort data = augbig;
 by row; run;
data augbig;
 merge augbig opn15;
 by row; run;
proc sort data = augbig;
```

```
by idx;
run;
/* Exploratory model selection resulted in the following model for
     this data set. Residuals may also be obtained. */
proc glm data = augbig;
   class row col trt trtn;
   model grainwt =C1 C2 C3 C4 C6 C8 R1 R2 R4 R8 R10 R1*C1
   R1*C2 R1*C3 trt;
   output out = subres R = resid; proc print; /*---Printed in augbig--
run;
/* "info nobound" may be included in the following statement if this
     type of solution for variance components is desired. Also, if
     ANOVA solutions for the variance components are desired, the
     PARMS procedure statement may be used after the random statement
     in PROC MIXED. REML solutions may not be appropriate for mean
     squares with few degrees of freedom. The trt*new in the random
     statement is used when augmented treatments are treated as random
     effects. */
proc mixed data = augbig;
  class row col trt trtn;
  model grainwt = trtn/solution;
  random R1 R2 R4 R8 R10 C1 C2 C3 C4 C6 C8 R1*C1 R1*C2 R1*C3
  trt*new / solution;
  1smeans trtn;
 make 'solutionr' out = sr noprint;
/* The following statements arrange the solutions in descending order.
proc sort data = sr;
  by descending EST ;
proc print;
run;
Using the data and program described above, an abbreviated output is
     given below:
Class Levels
               Values
        15
             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ROW
       12
              1 2 3 4 5 6 7 8 9 10 11 12
COL
TRT
       122
              1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
              23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
              42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
              61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
              80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
              99 100 101 102 103 104 105 106 107 108 109 110 111 112
              113 114 115 116 117 118 119 120 121 122
TRTN
                   121 122 999 /* Checks are number 121 and 122. */
Dependent Variable: GRAINWT
                            Sum of
                                           Mean
Source
                     DF
                            Squares
                                           Square
                                                      F Value
                                                                Pr > F
Model
                     135
                           1685564.291
                                          12485.661
                                                      3.62
                                                                 0.0001
Error
                        44 151761.820
                                           3449.132
Corrected Total
                    179
                            1837326.111
                R-Square
                                  C.V.
                                           Root MSE
                                                           GRAINWT Mean
                0.917401
                             6.664109
                                           58.72931
                                                               881.2778
```

Dependent	Variable:	GRAINWT			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
C1	1	7.053	7.053	0.00	0.9641
C2	1	78620.049	78620.049	22.79	0.0001
C3	1	31357.514	31357.514	9.09	0.0043
C4	1	35185.066	35185.066	10.20	0.0026
C6	1	15954.687	15954.687	4.63	0.0370
C8	1	88778.180	88778.180	25.74	0.0001
R1	1	130227.001	130227.001	37.76	0.0001
R2	1	3182.964	3182.964	0.92	0.3420
R4	1	34117.771	34117.771	9.89	0.0030
R8	1	20274.909	20274.909	5.88	0.0195
R10	1	16821.594	16821.594	4.88	0.0325
C1*R1	1	138479.979	138479.979	40.15	0.0001
C2*R1	1	61605.531	61605.531	17.86	0.0001
C3*R1	1	13248.961	13248.961	3.84	0.0564
TRT	121	1017703.032	8410.769	2.44	0.0005
Source	DF	Type III SS	Mean Square	F Value	Pr > F
C1	1	12952.986	12952.986	3.76	0.0591
C2	1	48712.489	48712.489	14.12	0.0005
C3	1	42867.475	42867.475	12.43	0.0010
C4	1	22613.228	22613.228	6.56	0.0140
C6	1	31220.232	31220.232	9.05	0.0043
C8	1	77300.177	77300.177	22.41	0.0001
R1	1	28677.708	28677.708	8.31	0.0061
R2	1	12832.205	12832.205	3.72	0.0602
R4	1	4992.843	4992.843	1.45	0.2354
R8	1	20170.221	20170.221	5.85	0.0198
R10	1	15068.496	15068.496	4.37	0.0424
C1*R1	1	52885.122	52885.122	15.33	0.0003
C2*R1	1	24976.581	24976.581	7.24	0.0100
C3*R1	1	7998.357	7998.357	2.32	0.1350
TRT	121	1017703.032	8410.769	2.44	0.0005

The MIXED Procedure

	Parameter Estimates (REML)
--	----------------------------

COVALLATICE	I a I a I I C C C I	постиассо	(1/11/11)
Cov Parm	Estima	ate	
R1	9685.7206	435	
R2	147.76385	914	
R4	2382.8694	456	
R8	1165.7087	131	
R10	1055.8582	605	
C1	0.00000	000	
C2	5739.94040	029	
C3	2401.8203	763	
C4	1702.2868	779	
C6	1375.7002	135	
C8	6678.60869	902	
R1*C1	125150.998	358	
R1*C2	62327.029	930	
R1*C3	7191.33420	388	
NEW*TRT	2880.2792	533	
Residual	4385.0838	420	

Solution for Fixed Effects

Effect	TRTN	Estimate	Std Error	DF	t	Pr > t
INTERCEPT		887.85653363	7.78342790	44	114.07	0.0001
TRTN	121	22.56422549	14.52418333	44	1.55	0.1275
TRTN	122	-62.03676062	14.42385015	44	-4.30	0.0001

	Effect TRTN TRTN TRTN	TRTN 121 122 999	Lea LSMEAN 910.42075912 825.81977301 887.85653363	ast Squares Me Std Error 12.23674167 12.15736600 7.78342790	ans DF t 44 74.4 44 67.9 44 114.0	0.0	Pr > t 001 001 001
15 1 OBS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	highest no EFFECT R1*C1 R1 R1 NEW*TRT C8 NEW*TRT R1*C3 NEW*TRT	ew tre TRT 60 21 11 99 2 35 118 58 111 46 120 61 38 82 90	atment effects EST 345.50045585 95.98535922 86.34108807 79.38460062 62.77643482 62.42608658 58.69112792 56.51372478 54.08461760 49.05376892 48.88460726 46.12302563 45.39408465 44.40038633 44.15378862 44.13816913 42.88822110 39.16602034 38.75002538 37.87365601	SEPRED 76.02914755 21.73762881 42.34708520 19.40852139 43.26254487 57.39674225 43.23892480 42.26198657 42.75771851 42.25202699 42.18955585 42.12266951 42.56352985 18.47150180 20.28481411 42.18922373 42.42913604 42.53422618 42.53422618 42.5342264	DF — 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	T 4.54 4.42 2.04 4.09 1.45 1.09 1.36 1.34 1.26 1.17 1.16 1.16 1.08 2.46 2.19 1.05 1.01 0.93 0.91	PT 0.0001 0.0475 0.0002 0.1539 0.2827 0.1816 0.1880 0.2126 0.2499 0.2512 0.2521 0.2844 0.0180 0.3010 0.3039 0.3188 0.3589 0.3676 0.3759
	Rand	om eff	ects 21 to 119	9 deleted.			
15 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	NEW*TRT C2 NEW*TRT	w trea 5 23 107 55 42 56 28 17 6 51 52 43 44 81 50	**Thent effects.** -36.65859703 -36.94625121 -40.26108079 -40.771903829 -40.77369290 -41.41021039 -41.70085605 -49.15984900 -52.33527614 -57.85952344 -73.26618742 -75.09659823 -80.06306299 -80.23408721 -85.99507895 -91.58752547 -238.5012759	. 42.24564023 43.22631392 42.27021281 42.17831063 42.69072074 42.21331886 42.31372687 42.44192942 42.15283284 42.47160123 19.28735943 42.62419762 42.56340110 42.42893008 42.43715136 42.56624934 73.78434826	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-0.87 -0.85 -0.95 -0.97 -0.96 -0.98 -0.99 -1.16 -1.24 -1.36 -3.80 -1.76 -1.88 -1.89 -2.03 -2.15 -3.23	0.3902 0.3973 0.3461 0.3396 0.3447 0.3320 0.3298 0.2210 0.1800 0.0004 0.0066 0.0652 0.0488 0.0370 0.0023

PROC GLM and PROC MIXED Codes for Trend Analyses for Row-Column-Designed Experiments

Walter T. Federer Russell D. Wolfinger

Purpose

The program outlined in this chapter may be used for a variety of response models in row-column experiments. The example used to illustrate the steps in this program is a randomized complete block design (RCBD) that was laid out as an eight-row by seven-column field experiment. The experiment with data is described in Federer and Schlottfeldt (1954). The data include twenty plant heights in centimeters for seven different treatments. Since the experiment was planted as an eight-row by seven-column arrangement, an RCBD analysis may not be appropriate. The SAS code is written to compare five different response models that account for the spatial variation present. Variation orientation was different than the row-column layout.

SAS PROC GLM and PROC MIXED codes are presented for standard textbook analyses of variance for RCBD and for row-column design. These are followed by codes for trend analyses using standardized orthogonal polynomial regressions for rows and columns and for interaction of row and column regressions. A trend model using row, column, and interactions of row and column regressions appears to control the variation for this experiment. A PROC GLM analysis of variance and residuals is useful in exploratory model selection that takes account of spatial variation in the experiment. A PROC MIXED analysis is then used to recover information from the random effects (Federer, 1998; Federer and Wolfinger, 1998).

References

- Federer, W.T. (1998). Recovery of interblock, intergradient, and intervariety information in incomplete block and lattice rectangle designed experiments. *Biometrics* 54(2):471-481.
- Federer, W.T. and Schlottfeldt, C.S. (1954). The use of covariance to control gradients in experiments. *Biometrics* 10:282-290.
- Federer, W.T. and Wolfinger, R.D. (1998). SAS PROC GLM and PROC MIXED code for recovering inter-effect information. *Agronomy Journal* 90:545-551.

SAS Code

```
/*---input the data---*/
data colrow;
  input height row col trt;
  /*---rescale data for stability---*/
  y = height/1000;
  datalines;
1299.2 1 1 6
875.9 1 2 7
960.7 1 3 4
1004.0 1 4 3
1173.2 1 5 1
1031.9 1 6 2
1421.1 1 7 5
1369.2 2 1 2
844.2 2 2 5
968.7 2 3 6
975.5 2 4 7
1322.4 2 5 3
1172.6 2 6 1
1418.9 2 7 4
1169.5 3 1 1
975.8 3 2 5
873.4 3 3 3
797.8 3 4 7
1069.7 3 5 2
1093.3 3 6 6
1169.6 3 7 4
1219.1 4 1 6
971.7 4 2 1
607.6 4 3 7
1000.0 4 4 4
1343.3 4 5 2
999.4 4 6 5
1181.3 4 7 3
1120.0 5 1 6
827.0 5 2 7
671.9 5 3 4
972.2 5 4 3
1083.7 5 5 1
1146.9 5 6 2
```

```
993.8
              7
       6
1031.5
           1
 846.5
      6 2
             2
 667.8 6 3
853.6 6 4 3
      6 5 1
1087.1
             5
 990.2 6 6
1021.9 6 7 6
1076.4 7 1 2
 917.9
      7 2
             1
       7
          3
             5
 627.6
776.4 7
          4 6
960.4 7 5 3
852.4 7 6 7
      7
          7
1006.2
             4
1099.6 8 1 4
 947.4 8 2 5
787.1 8 3 2
      8 4 1
898.3
      8 5 3
1174.9
1003.3 8 6 6
947.6 8 7 7
run;
/*---code to construct orthogonal polynomials---*/
proc iml;
  /*---7 columns and up to 6th degree polynomials---*/
  opn4=orpol(1:7,6);
  opn4[,1] = (1:7);
  op4 = opn4;
  create opn4 from opn4[colname={'col' 'c1' 'c2' 'c3' 'c4' 'c5'
     'c6'}];
  append from opn4;
  close opn4;
  /*--8 rows and up to 7th degree polynomials---*/
  opn3=orpol(1:8,7);
  opn3[,1] = (1:8);
  op3 = opn3;
  create opn3 from opn3[colname={'row' 'r1' 'r2' 'r3' 'r4' 'r5'
     'r6' 'r7'}];
  append from opn3;
  close opn3;
/*---merge in polynomial coefficients---*/
data rcbig;
  set colrow;
  idx = n;
proc sort data=rcbig;
  by col;
data rcbig;
  merge rcbig opn4;
  by col;
proc sort data=rcbig;
  by row;
data rcbig;
  merge rcbig opn3;
  by row;
```

```
proc sort data = rcbig;
   by idx;
run;
/*---3d plot of data, one can also substitue row and column variables
     as well as residuals for
     y to see how they model the trend---*/
proc q3d data=rcbiq;
   plot row*col=y / rotate=20;
/*---standard rcbd analysis with rows as blocks; treatments are not
     significantly different --- */
/*---fixed-effects row model for RCBD---*/
proc glm data=rcbig;
   class row col trt;
   model v = row trt;
   output out=subres r=resid;
run;
/*---standard row-column analysis fits much better than RBCD, and now
     treatment 7 is significantly different---*/
/*---fixed-effects row-column model---*/
proc glm data=rcbig;
   class row col trt;
   model y = row col trt;
   output out=subres r=resid;
/*---model for random differential gradients within rows; does not fit
     as well as row-column model, but results are similar---*/
/*---fixed-effects model for gradients within rows ---*/
proc glm data=rcbig;
   class row col trt;
   model y = trt row c2*row c3*row c4*row;
   output out=subres r=resid;
/*---Fixed-effects polynomial model; it may be that a trend and analy-
     sis is desired in that only certain polynomial regressions are
     needed to explain the row and column variation. Also, since spa-
     tial variation may not be in the row-column orientation of the
     experiment, interactions of regressions may be needed to account
     for this type of spatial variation. Of the 13 polynomial regres-
     sions for rows and columns and the 16 interactions ci*rj, for i,
     j = 1, 2, 3, and 4, those that had F-values greater than F at the
     25% level were retained in the response model.---*/
proc glm data=rcbig;
   class row col trt;
   model y = trt c1 c2 c3 c5 r1 r2 r3 r5 r6 r7 c1*r1 c2*r1 c2*r3 c3*r2
     c4*r1 c4*r2;
   output out=subres r=resid;
/*---random polynomial coefficient model---*/
proc mixed data=rcbig;
   class row col trt;
   model y = trt / ddfm=res;
   random c1 c2 c3 c5 r1 r2 r3 r5 r6 r7 c1*r1 c2*r1 c2*r3 c3*r2 c4*r1
     c4*r2;
   lsmeans trt / diff adjust=tukey;
run:
```

```
/*---Since the row and column variations were quite un-patterned,
    i.e., only c4, c6, and r4 were not in the model, the following
    analysis may be more appropriate for this data set.---*/
proc glm data=rcbig;
    class row col trt;
    model y = row col trt c1*r1 c2*r1 c2*r3 c3*r2 c4*r1 c4*r2;
run;
/*---combination model---*/
proc mixed data=rcbig;
    class row col trt;
    model y = trt / ddfm=res;
    random row col c1*r1 c2*r1 c2*r3 c3*r2 c4*r1 c4*r2
    repeated / type=sp(exp) (row col) subject=intercept;
    lsmeans trt / diff adjust=tukey;
run;
```

An abbreviated output from this code is presented below:

RCBD ANOVA Dependent Variabl Source Model Error Corrected Total	e: Y DF 13 42 55	Sum of Squares 0.6621903 1.2695862 1.9317766	7 0.03022824	F Value 1.69	e Pr > F 0.1004
	R-Square 0.342788	C.V 17.1720			Y Mean 1.012475
Dependent Varia	DF 7 6 DF 7 6	Type I SS 0.38831490 0.27387545 Type III SS 0.38831490 0.27387545	Mean Square 0.05547356 0.04564591 Mean Square 0.05547356 0.04564591	F Value 1.84 1.51 F Value 1.84 1.51	Pr > F 0.1056 0.1985 Pr > F 0.1056 0.1985
Row-column ANOV. Dependent Variabl Source Model Error Corrected Total	e: Y DF 19 36	Squares 1.66711058	Mean Square 0.08774266 0.00735183	F Value	Pr > F 0.0001
	R-Square 0.862993	C.V 8.46863			Y Mean 1.012475
Source ROW COL TRT Source ROW COL TRT	DF 7 6 6 DF 7 6	Type I SS 0.38831490 1.15907213 0.11972355 Type III S 0.38831490 1.00492023 0.11972355	0.19317869 0.01995392 S Mean Square 0.05547356 0.16748671	F Value 7.55 26.28 2.71 F Value 7.55 22.78 2.71	Pr > F 0.0001 0.0001 0.0281 Pr > F 0.0001 0.0001 0.0281
Gradients within Dependent Variabl Source Model Error Corrected Total		Sum of Squares 1.72819875 0.20357788 1.93177662	Mean Square 0.04670807 0.01130988	F Value	Pr > F 0.0011

	R-Square 0.894616				Y Mean 1.012475
Dependent Variabl Source TRT ROW C2*ROW C3*ROW C4*ROW Source TRT ROW C2*ROW C3*ROW C4*ROW	e: Y DF 6 7 8 8 8 DF 6 7 8 8 8 DF	Type I SS 0.27387545 0.27387545 0.38831490 0.60283912 0.32440799 0.13876129 Type III SS 0.25638292 0.38831490 0.59754712 0.32649657 0.13876129	Mean Square 0.04564591 0.05547356 0.07535489 0.04055100 0.01734516 Mean Square 0.04273049 0.055547356 0.07469339 0.04081207 0.01734516	F Value 4.04 4.90 6.66 3.59 1.53 F Value 3.78 4.90 6.60 3.61 1.53	Pr > F 0.0098 0.0030 0.0004 0.0116 0.2142 Pr > F 0.0130 0.0030 0.0030 0.00113 0.2142
Trend ANOVA Dependent Variabl Source Model Error Corrected Total	DF 22 33 55	Sum of Squares 1.79302842 0.13874820 1.93177662	Mean Square 0.08150129 0.00420449	F Value 19.38	Pr > F 0.0001
	R-Square 0.928176				Y Mean 1.012475
Dependent Variabl	e: Y				
Source TRT C1 C2 C3 C5 R1 R2 R3 R5 R6 R7 C1*R1 C2*R3 C3*R2 R1*C4 R2*C4 C2*R1	DF 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type I SS 0.27387545 0.09681321 0.53598746 0.22278336 0.13314475 0.27808763 0.02147675 0.04373966 0.02033078 0.01185195 0.01086024 0.00973558 0.01107563 0.04705541 0.04578624 0.00916801 0.02125631	Mean Square 0.04564591 0.09681321 0.53598746 0.22278336 0.13314475 0.27808763 0.02147675 0.04373966 0.02033078 0.01185195 0.01086024 0.00973558 0.01107563 0.04705541 0.04578624 0.00916801 0.02125631	F Value 10.86 23.03 127.48 52.99 31.67 66.14 5.11 10.40 4.84 2.82 2.58 2.32 2.63 11.19 10.89 2.18 5.06	Pr > F 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0305 0.0350 0.1026 0.1175 0.1376 0.1141 0.0021 0.0023 0.1492 0.0313
Source TRT C1 C2 C3 C5 R1 R2 R3 R5 R6 R7 C1*R1 C2*R3 C3*R2 R1*C4 R2*C4 C2*R1	DF 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type III SS 0.16044158 0.06777963 0.44309828 0.24999420 0.13222351 0.27808763 0.02147675 0.04373966 0.02033078 0.01185195 0.01086024 0.00914040 0.01580043 0.04870965 0.04431490 0.01028565 0.02125631	Mean Square 0.02674026 0.06777963 0.44309828 0.24999420 0.13222351 0.27808763 0.02147675 0.04373966 0.02033078 0.01185195 0.01086024 0.00914040 0.01580043 0.04870965 0.04431490 0.01028565 0.02125631	F Value 6.36 16.12 105.39 59.46 31.45 66.14 5.11 10.40 4.84 2.82 2.58 2.17 3.76 11.59 10.54 2.45 5.06	Pr > F 0.0002 0.0003 0.0001 0.0001 0.0001 0.0305 0.0028 0.0350 0.1026 0.1175 0.1498 0.0611 0.0018 0.0027 0.1273 0.0313

C1*R1 0.00559139 C2*R1 0.01769383 C2*R3 0.01540992 C3*R2 0.04762647 R1*C4 0.04172363 R2*C4 0.00559275 Residual 0.00421378	Cov Parm C1 C2 C3 C5 R1 R2 R3 R5 R6 R7 C1*R1 C2*R1 C2*R1 C2*R3 C3*R2 R1*C4 R2*C4	0.01769383 0.01540992 0.04762647 0.04172363 0.00559275	(REML)
---	---	--	--------

Least Squares Means

Effect	TRT	LSMEAN	Std Error	DF	t	Pr > t
TRT	1	1.03145832	0.02506657	33	41.15	0.0001
TRT	2	1.03632328	0.02409811	33	43.00	0.0001
TRT	3	1.08344910	0.02517848	33	43.03	0.0001
TRT	4	1.06286153	0.02574839	33	41.28	0.0001
TRT	5	0.95488139	0.02447435	33	39.02	0.0001
TRT	6	1.01891389	0.02524623	33	40.36	0.0001
TRT	7	0.89943749	0.02437852	33	36.89	0.0001

Row-column and Dependent Variable		of regressions Sum of	or combina Mean	tion ANOVA	I
Source	DF	Squares	Square	F Value	Pr > F
Model	25	1.79923177	0.07196927	16.29	0.0001
Error	30	0.13254485	0.00441816		
Corrected Total	55	1.93177662			
	R-Square 0.931387	C.V. 6.565027	Root MSE 0.066469		Y Mean 1.012475

Dependent Variable: Y					
Source ROW COL TRT C1*R1 R1*C2 C2*R3 C3*R2 R1*C4 R2*C4	DF 7 6 6 1 1 1 1	Type I SS 0.38831490 1.15907213 0.11972355 0.00957865 0.01825578 0.00785874 0.04166095 0.04499265 0.00977442	Mean Square 0.05547356 0.19317869 0.01995392 0.00957865 0.01825578 0.00785874 0.04166095 0.04499265 0.00977442	F Value 12.56 43.72 4.52 2.17 4.13 1.78 9.43 10.18 2.21	Pr > F 0.0001 0.0001 0.0023 0.1513 0.0510 0.1923 0.0045 0.0033 0.1473
Source ROW COL TRT C1*R1 R1*C2	DF 7 6 6 1	Type III SS 0.38831490 1.01906239 0.11791625 0.00939749 0.02030565	Mean Square 0.05547356 0.16984373 0.01965271 0.00939749 0.02030565	F Value 12.56 38.44 4.45 2.13 4.60	Pr > F 0.0001 0.0001 0.0025 0.1551 0.0403

304 Handbook of Formulas and Software for Plant Geneticists and Breeders

C2*R3	1	0.01290053	0.01290053	2.92	0.0978
C3*R2	1	0.04269878	0.04269878	9.66	0.0041
R1*C4	1	0.04417127	0.04417127	10.00	0.0036
R2*C4	1	0.00977442	0.00977442	2.21	0.1473

Covariance Parameter Estimates (REML)

0.00729090 0.02179930 0.00584283 0.01598859 0.01084891 0.04046662 0.04157133
-0.00000000 0.00443729

Least Squares Means

Effect	TRT	LSMEAN	Std Error	DF	t	Pr > t
TRT	1	1.03279947	0.06849923	49	15.08	0.0001
TRT	2	1.04085965	0.06827608	49	15.24	0.0001
TRT	3	1.07188050	0.06898348	49	15.54	0.0001
TRT	4	1.05156492	0.06912807	49	15.21	0.0001
TRT	5	0.96546152	0.06879786	49	14.03	0.0001
TRT	6	1.02168355	0.06853511	49	14.91	0.0001
TRT	7	0.90307540	0.06835031	49	13.21	0.0001

Differences of Least Squares Means

D.C.C	mp.m	mp.m	D166	a. 1 =			
Effect	TRT	TRT	Difference	Std Error	DF	t	Pr > t
TRT	1	2	-0.00806018	0.03504670	49	-0.23	0.8191
TRT	1	3	-0.03908103	0.03618394	49	-1.08	0.2854
TRT	1	4	-0.01876545	0.03958021	49	-0.47	0.6375
TRT	1	5	0.06733794	0.03740107	49	1.80	0.0780
TRT	1	6	0.01111592	0.03811781	49	0.29	0.7718
TRT	1	7	0.12972407	0.03761943	49	3.45	0.0012
TRT	2	3	-0.03102085	0.03841115	49	-0.81	0.4232
TRT	2	4	-0.01070527	0.03929203	49	-0.27	0.7864
TRT	2	5	0.07539812	0.03608589	49	2.09	0.0419
TRT	2	6	0.01917610	0.03569990	49	0.54	0.5936
TRT	2	7	0.13778425	0.03651435	49	3.77	0.0004
TRT	3	4	0.02031558	0.03754102	49	0.54	0.5909
TRT	3	5	0.10641897	0.04097063	49	2.60	0.0124
TRT	3	6	0.05019695	0.03892509	49	1.29	0.2033
TRT	3	7	0.16880510	0.03807134	49	4.43	0.0001
TRT	4	5	0.08610340	0.03927030	49	2.19	0.0331
TRT	4	6	0.02988137	0.03847642	49	0.78	0.4411
TRT	4	7	0.14848952	0.03787633	49	3.92	0.0003
TRT	5	6	-0.05622202	0.03756983	49	-1.50	0.1409
TRT	5	7	0.06238613	0.03639929	49	1.71	0.0929
TRT	6	7	0.11860815	0.03565169	49	3.33	0.0017

Differences of Least Squares Means Adjustment Adj P Tukey-Kramer 1.0000 Tukey-Kramer 0.9310 Tukey-Kramer 0.9991

Tukey-Kramer	0.5541
Tukey-Kramer	0.9999
Tukey-Kramer	0.0187
Tukey-Kramer	0.9831
Tukey-Kramer	1.0000
Tukey-Kramer	0.3749
Tukey-Kramer	0.9981
Tukey-Kramer	0.0074
Tukey-Kramer	0.9980
Tukey-Kramer	0.1492
Tukey-Kramer	0.8534
Tukey-Kramer	0.0010
Tukey-Kramer	0.3182
Tukey-Kramer	0.9862
Tukey-Kramer	0.0048
Tukey-Kramer	0.7455
Tukey-Kramer	0.6103
Tukey-Kramer	0.0260

SAS/GLM and SAS/MIXED for Trend Analyses Using Fourier and Polynomial Regression for Centered and Noncentered Variates

Walter T. Federer Murari Singh Russell D. Wolfinger

Purpose

Spatial variations that are cyclic in nature should have statistical procedures to account for their occurrence. Since Fourier polynomial regression is a procedure that fits cyclic variations, a code is given in this chapter for such analyses. The data set used to illustrate the code's application is an eight-row, seven-column experiment on tobacco plant heights by Federer and Schlottfeldt (1954). The experiment was designed as a randomized complete block design, but was laid out as an eight-row by seven-column design instead. The laying out of an RCBD in a row-column arrangement is appropriate. However, the analysis needs to take the layout and any other type of variation into account. The spatial variation in the experimental area was noncyclical and not entirely row-column oriented. The Fourier regression model would not be expected to perform well with this data set because the variation was not cyclic. If it is desired to use noncentered polynomial regression, a code for this is also given in this chapter. Note that which regressions to retain in the model will need to be determined from a Type I rather than a Type III or IV analysis.

Codes for trend analyses are presented in the following order: Fourier regression trend analysis (FRTA), noncentered variate polynomial regression trend analysis (NPRTA), randomized complete block design (RCBD),

row-column design (RCD), orthogonal polynomial (centered variates) regression trend analysis (PRTA), and a mixture of row-column and orthogonal polynomial regression trend analyses. The last is considered to be the appropriate model for this data set. Since only three orthogonal polynomials—degrees 4 and 6 in columns and degree 4 in rows, c4, c6, and r4—were omitted in the next to last analysis, it was decided to use the last analysis listed as an appropriate model to explain the spatial variation. For this model, the blocking effect parameters were taken to be random for the SAS/MIXED procedure and treatment estimates and means were obtained. The code is useful for exploratory model selection in patterning spatial variation.

References

Federer, W.T. (1998). Recovery of interblock, intergradient, and intervariety information in incomplete block and lattice rectangle designed experiments. *Biometrics* 54(2):471-481.

Federer, W.T. and Schlottfeldt, C.S. (1954). The use of covariance to control gradients in experiments. *Biometrics* 10:282-290 [Errata, *Biometrics* 11:251, 1955].

SAS Codes

```
/*--The SAS codes for obtaining standard textbook RCBD and RCD analy-
     sis, FRTA, NPRTA, and PRTA analyses are given below: -- */
data colrow;
infile 'colrow.dat';
input Yield row col Trt;
/*--code for Fourier polynomials, FRTA--*/
           NTrt = 7; Nrow = 8; Ncol = 7;
Frc1 = Sin(2*3.14159*col/Ncol)
Frc2 = Cos(2*3.14159*col/Ncol)
Frr1 = Sin(2*3.14159*row/Nrow)
Frr2 = Cos(2*3.14159*row/Nrow)
/*--code for non-centered polynomials, NPRTA--*/
pc1= col; pc2=col**2;pc3=col**3;pc4=col**4;pc5=col**5;pc6=col**6;
pr1= row; pr2=row**2;pr3=row**3;pr4=row**4;pr5=row**5;
pr6=row**6; pr7 = row**7;
run;
/*--code for ANOVA using Fourier series, FRTA--*/
proc glm data = colrow ;
 class Trt row col ;
model Yield = Trt Frc1 Frc2 Frr1 Frr2 Frc1*Frr1 Frc1*Frr2
              Frc2*Frr1 Frc2*Frr2;
/*--code for ANOVA using non-centered polynomials, NPRTA--*/
proc glm data = colrow;
```

```
class Trt row col ;
model Yield = Trt pc1 pc2 pc3 pc4 pc5 pc6 pr1 pr2 pr3 pr4 pr5 pr6
pr7 pc1*pr1 pc2*pr1 pc2*pr3 pc3*pr2 pc4*pr1 pc4*pr2; run;
/*--code to construct orthogonal polynomials--*/
Proc iml;
/*--7 columns and up to 6th degree polynomials--*/
opn4=orpol(1:7,6);
opn4[,1]=(1:7);
op4=opn4;
create opn4 from opn4[colname={'col' 'c1' 'c2' 'c3' 'c4' 'c5' 'c6'}];
append from opn4;
close opn4;
/*--8 rows and up to 7th degree polynomials--*/
opn3=orpol(1:8,7);
 opn3[,1]=(1:8);
op3=opn3;
create opn3 from opn3[colname={'row' 'r1' 'r2' 'r3' 'r4' 'r5'
'r6' 'r7'}];
append from opn3;
close opn3; run;
/*--merge in polynomial coefficients--*/
data rcbiq;
set colrow;
idx = n;
proc sort data = rcbig;
 by col ;
data rcbig ;
 merge rcbig opn4;
 by col ;
proc sort data = rcbig;
 by row ;
data rcbiq ;
 merge rcbig opn3;
 by row ;
proc sort data = rcbiq ;
 by idx ;
run;
/*--ANOVA for randomized complete blocks(rows), RCBD--*/
Proc Glm data = rcbig ;
Class row Trt :
Model Yield = row Trt ;
run ;
/*--ANOVA for row-column design, RCD--*/
Proc Glm data = rcbig ;
Class row col Trt :
Model Yield = row col Trt;
run;
/*--ANOVA using orthogonal polynomials after omitting regressors
which had an F-value less than the 25% level, PRTA--*/
Proc Glm data = rcbiq;
 Class Trt row col ;
 Model Yield = Trt c1 c2 c3 c5 r1 r2 r3 r5 r6 r7 c1*r1 c2*r1
 c2*r3 c3*r2 c4*r1 c4*r2;
run ;
```

```
/*--ANOVA for mixture of row-column and orthogonal polynomial regression trend analysis--this is the preferred analysis--*/
Proc Glm data = rcbig ;;
  Class row col Trt;
  Model Yield = row col Trt c1*r1 c2*r1 c2*r3 c3*r2 c4*r1 c4*r2 ;
  Run;
  /*--random blocking effects and fixed Trt effects--*/
Proc Mixed data = rcbig;
  Class row col Trt;
  Model Yield = Trt/solution;
  Random row col c1*r1 c2*r1 c2*r3 c3*r2 c4*r1 c4*r2;
  Lsmeans Trt;
run;
```

SAS Program Output (Abbreviated)

General Linear Models Procedure

Dependent Var	riable:	YIELD						
				Sum of]	Mean	
Source		DF		Squares		Sq	uare	F Value
Pr > F								
Model		14	1363	8645.120		97403	.223	7.03
0.0001								
Error		41	568	31.505		13856	. 866	
Corrected Tot	-a1	55		776.625			• • • •	
COTTCCCC TO	Ju 1	33	1001	. 7 7 0 • 02 0				
	R-	Square	C.	V.	Root	MSE	YI	ELD Mean
	0.	705902	11.	62648	117.	7152	10	12.475
Dependent Var	riable:	YIELD						
Source	DF	Type	I SS	Mean S	quare	F	Value	Pr > F
TRT	6	273875.	4500	45645	.9083		3.29	0.0097
FRC1	1	48018.	4941	48018	.4941		3.47	0.0698
FRC2	1	702583.		702583			50.70	0.0001
FRR1	1	301163.		301163			21.73	0.0001
FRR2	1	7263.			.2834		0.52	0.4732
FRC1*FRR1	1	2486.			.5375		0.18	0.6741
FRC1*FRR2	1	26380			.3457		1.90	0.1751
FRC2*FRR1	1		.9593		.9593		0.01	0.9301
FRC2*FRR2	1	1766.			.4703		0.13	0.7229
FRCZ "FRRZ	Τ.	1700.	.4703	1700	0.4703		0.13	0.7229
Source	DF	Type II	II SS	Mean S	quare	F	Value	Pr > F
TRT	6	233771.	.3341	38961	.8890		2.81	0.0220
FRC1	1	17663.	3134	17663	.3134		1.27	0.2655
FRC2	1	718308.	7485	718308	.7485		51.84	0.0001
FRR1	1	301163.	4356	301163	.4356		21.73	0.0001
FRR2	1	7263.			.2583		0.52	0.4732
FRC1*FRR1	1	1924			.3838		0.14	0.7113
FRC1*FRR2	1	26805.			.6766		1.93	0.1718
FRC2*FRR1	1		.7531		.7531		0.00	0.9467
FRC2*FRR2	1	1766.			. 4703		0.13	0.7229
LVCZ LVVZ	Т	Ι/00.	4/03	T / 00	.4/03		0.13	0.1229

Dependent	Variable:	YIELD							
1			m of		Mean				
Source	DF	Sc	uares		Square	F	Value		Pr > F
Model	25	172773	1.702	6	9109.268		10.16		0.0001
Error	30	20404	4.923		6801.497				
Corrected	Total 55	193177	6.625						
	R	-Square	C.V.		Root MSE		YII	ELD	Mean
	0	.894374	8.14	5504	82.47119		10	12.4	175
Dependent	Variable:								
Source	DF		I SS		n Square	F	Value		Pr > F
TRT	6	273875			645.9083		6.71		0.0001
PC1	1		.2065		813.2065		14.23		0.0007
PC2	1	535987	.4627	535	987.4627		78.80		0.0001
PC3	1	222783	.3577	222	783.3577		32.76		0.0001
PC4	1	17076	.3332		076.3332		2.51		0.1236
PC5	1	130081	.1699	130	081.1699		19.13		0.0001
PC6	1	2178	.7015	2	178.7015		0.32		0.5756
PR1	1	278087	.6327	278	087.6327		40.89		0.0001
PR2	1	21476	.7478	21	476.7478		3.16		0.0857
PR3	1	43739	.6582	43	739.6582		6.43		0.0167
PR4	1	1967	.8963	1	967.8963		0.29		0.5946
PR5	1	20330	.7758	20	330.7758		2.99		0.0941
PR6	1	11851	.9481	11	851.9481		1.74		0.1968
PR7	1	10860	.2508	10	860.2508		1.60		0.2161
PC1*PR1	1	9578	.6523	9	578.6523		1.41		0.2446
PC2*PR1	1	18255	.7824	18	255.7824		2.68		0.1118
PC2*PR3	1	518	.4962		518.4962		0.08		0.7844
PC3*PR2	1	64	.3080		64.3080		0.01		0.9232
PC4*PR1	1	27989	.2845	27	989.2845		4.12		0.0515
PC4*PR2	1	4214	.5876	4	214.5876		0.62		0.4374
Source	DF	Type I			n Square	F	Value		Pr > F
TRT	6	99655.			09.28238		2.44		0.0483
PC1	1		68785		98.68785		0.01		0.9049
PC2	1	23.	75368		23.75368		0.00		0.9533
PC3	1		88482		67.88482		0.01		0.9211
PC4	1	561.	62765	5	61.62765		0.08		0.7758
PC5	1	1513.	16254	15	13.16254		0.22		0.6406
PC6	1		59147		20.59147		0.41		0.5245
PR1	1	17782.	73420	177	82.73420		2.61		0.1164
PR2	1	16210.	23452	162	10.23452		2.38		0.1331
PR3	1	14741.	72628	147	41.72628		2.17		0.1514
PR4	1	13480.	96650	134	80.96650		1.98		0.1695
PR5	1	12426.	54810	124	26.54810		1.83		0.1866
PR6	1	11559.	77509	115	59.77509		1.70		0.2023
PR7	1	10860.	25084	108	60.25084		1.60		0.2161
PC1*PR1	1	3426.	85586	34	26.85586		0.50		0.4833
PC2*PR1	1	6236.	00944	62	36.00944		0.92		0.3460
PC2*PR3	1	1843.	47705		43.47705		0.27		0.6065
PC3*PR2	1	633.	86885	6	33.86885		0.09		0.7623
PC4*PR1	1	20811.	22981	208	11.22981		3.06		0.0905

312 Handbook o	of Formulas and Softwar	re for Plant Geneticists	and Breede	ers
PC4*PR2 Dependent Variabl	1 4214.58759 Le: YIELD	4214.58759	0.62	0.4374
Model 1	Sum of Squares 13 662190.3521 1269586.2729 1931776.6250	Mean Square 50937.7194 30228.2446	F Value 1.69	Pr > F 0.1004
	R-Square C.V 0.342788 17.3	Root MSE 17205 173.8627		ELD Mean 12.475
	General Line	ear Models Proced	ure	
Dependent Variabl Source D ROW TRT	Le: YIELD DF Type I SS 7 388314.9021 6 273875.4500		F Value 1.84 1.51	Pr > F 0.1056 0.1985
Source E ROW TRT	Type III SS 7 388314.9021 6 273875.4500	Mean Square 55473.5574 45645.9083	F Value 1.84 1.51	Pr > F 0.1056 0.1985
	General Line	ear Models Proced	ure	
Dependent Variabl	Le: YIELD Sum of	Mean		
Model 1	OF Squares 19 1667110.584 36 264666.041 1931776.625	Square 87742.662 7351.834	F Value 11.93	Pr > F 0.0001
	R-Square C.V 0.862993 8.4	Root MSE 85.74284	YIELI 1012.	Mean .475
	General Line	ear Models Proced	ure	
Dependent Variabl Source DF ROW 7 COL 6 TRT 6	Le: YIELD Type I SS 388314.902 1159072.132 119723.549	55473.557 193178.689 2	Value 7.55 6.28 2.71	Pr > F 0.0001 0.0001 0.0281
Source DF ROW 7 COL 6 TRT 6	Type III SS 388314.902 1004920.232 119723.549	55473.557 167486.705 2	Value 7.55 2.78 2.71	Pr > F 0.0001 0.0001 0.0281

General Linear Models Procedure

Dependent Variable:	YIELD			
_	Sum of	Mean		
Source DF	Squares	Square	F Value	Pr > F
Model 22	1793028.425	81501.292	19.38	0.0001
Error 33	138748.200	4204.491		
Corrected Total 55	1931776.625			
F	-Square C.V.	Root MSE	YIELD	Mean

0.928176 6.404311 64.84205 1012.475 General Linear Models Procedure

Dependent Source TRT C1 C2 C3 C5	Variable: DF 6 1 1 1	YIELD Type I SS 273875.4500 96813.2065 535987.4627 222783.3577 133144.7539	Mean Square 45645.9083 96813.2065 535987.4627 222783.3577 133144.7539	F Value 10.86 23.03 127.48 52.99 31.67	Pr > F 0.0001 0.0001 0.0001 0.0001 0.0001
R1 R2 R3 R5 R6	1 1 1 1	278087.6327 21476.7478 43739.6582 20330.7758 11851.9481	278087.6327 21476.7478 43739.6582 20330.7758 11851.9481	66.14 5.11 10.40 4.84 2.82	0.0001 0.0305 0.0028 0.0350 0.1026
R7 C1*R1 C2*R1 C2*R3 C3*R2 R1*C4	1 1 1 1 1	10860.2434 9735.5843 20003.6652 11087.8978 47865.7583 45098.6300	10860.2434 9735.5843 20003.6652 11087.8978 47865.7583 45098.6300	2.58 2.32 4.76 2.64 11.38 10.73	0.1175 0.1376 0.0364 0.1139 0.0019 0.0025
R2*C4	1	10285.6523	10285.6523	2.45	0.1273
Source TRT C1 C2 C3 C5 R1	DF 6 1 1 1 1	Type III SS 160441.5837 67779.6280 443098.2755 249994.1996 132223.5073 278087.6327	Mean Square 26740.2639 67779.6280 443098.2755 249994.1996 132223.5073 278087.6327	F Value 6.36 16.12 105.39 59.46 31.45 66.14	Pr > F 0.0002 0.0003 0.0001 0.0001 0.0001
R1 R2 R3 R5 R6 R7	1 1 1 1 1	21476.7478 43739.6582 20330.7758 11851.9481 10860.2434	21476.7478 43739.6582 20330.7758 11851.9481 10860.2434	5.11 10.40 4.84 2.82 2.58	0.0001 0.0305 0.0028 0.0350 0.1026 0.1175
C1*R1 C2*R1 C2*R3 C3*R2 R1* R2*C4	1 1 1 1 1	9140.3988 21256.3073 15800.4345 48709.6471 44314.8960 10285.6523	9140.3988 21256.3073 15800.4345 48709.6471 44314.8960 10285.6523	2.17 5.06 3.76 11.59 10.54 2.45	0.1498 0.0313 0.0611 0.0018 0.0027 0.1273

General Linear Models Procedure

Dependent Variable: YIELD

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	25	1799231.771	71969.271	16.29	0.0001
Error	30	132544.854	4418.162		
Corrected Total	55	1931776.625			

R-Square C.V. Root MSE YIELD Mean 0.931387 6.565027 66.46925 1012.475

General Linear Models Procedure

Dependent	Variable:	YIELD			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
ROW	7	388314.902	55473.557	12.56	0.0001
COT.	6	1159072 132	193178.689	43.72	0 0001

314 Handbook of Formulas and Software for Plant Geneticists and Breeders

TRT C1*R1 R1*C2 C2*R3 C3*R2 R1*C4 R2*C4	6 1 1 1 1 1	119723.549 9578.652 18255.782 7858.737 41660.946 44992.650 9774.420	19953.925 9578.652 18255.782 7858.737 41660.946 44992.650 9774.420	4.52 2.17 4.13 1.78 9.43 10.18 2.21	0.0023 0.1513 0.0510 0.1923 0.0045 0.0033 0.1473
Source	DF	Type III SS	Mean Square	F Value	Pr > F
ROW	7	388314.902	55473.557	12.56	0.0001
COL	6	1019062.385	169843.731	38.44	0.0001
TRT	6	117916.250	19652.708	4.45	0.0025
C1*R1	1	9397.488	9397.488	2.13	0.1551
R1*C2	1	20305.653	20305.653	4.60	0.0403
C2*R3	1	12900.535	12900.535	2.92	0.0978
C3*R2	1	42698.784	42698.784	9.66	0.0041
R1*C4	1	44171.272	44171.272	10.00	0.0036
R2*C4	1	9774.420	9774.420	2.21	0.1473

Covariance Parameter Estimates (REML)

Cov Parm	Estimate
ROW	7290.8987058
COL	21799.310745
C1*R1	5842.8474878
R1*C2	15988.580408
C2*R3	10848.115411
C3*R2	40466.589248
R1*C4	41571.338509
R2*C4	4747.3414225
Residual	4437.2974998

Solution for Fixed Effects

	t TRT		Std Error	DF	t	Pr > t
INTE	RCEPT	903.07551781	68.35032779	6	13.21	0.0001
TRT	1	129.72384541	37.61944012	30	3.45	0.0017
TRT	2	137.78424774	36.51437318	30	3.77	0.0007
TRT	3	168.80483626	38.07134440	30	4.43	0.0001
TRT	4	148.48914899	37.87631974	30	3.92	0.0005
TRT	5	62.38611199	36.39931336	30	1.71	0.0969
TRT	6	118.60818492	35.65171322	30	3.33	0.0023
TRT	7	0.0000000				

Tests of Fixed Effects

		Source TRT	NDF 6	DDF 30	Туре	III F 4.64	Pr > F 0.0019
			Least	Squar	es Mea	ans	
Effect	TRT	LSMEAN	Std I	Error	DF	t	Pr > t
TRT	1	1032.7993632	68.4992	24871	30	15.08	0.0001
TRT	2	1040.8597656	68.2761	L0042	30	15.24	0.0001
TRT	3	1071.8803541	68.9834	19917	30	15.54	0.0001
TRT	4	1051.5646668	69.1280	08466	30	15.21	0.0001
TRT	5	965.46162980	68.7978	38141	30	14.03	0.0001
TRT	6	1021.6837027	68.5351	12010	30	14.91	0.0001
TRT	7	903.07551781	68.3503	32779	30	13.21	0.0001

Chapter 31

PROC GLM and PROC MIXED for Trend Analysis of Incomplete Block- and Lattice Rectangle-Designed Experiments

Walter T. Federer Russell D. Wolfinger

Purpose

For resolvable row-column or lattice rectangle designs, a variety of analysis options are given in this chapter. These programs are for randomized complete block designs, incomplete block designs with rows (columns) as blocks, standard textbook analysis, differential gradients within rows (columns), and trend analysis using orthogonal polynomial regression functions of the rows and columns and their interactions. The example used in this chapter pulls data from Table 12.5 of W. G. Cochran and G. M. Cox's 1957 book *Experimental Designs*.

There are sixteen insecticide treatments arranged in four rows and four columns within each of the five complete blocks (replicates) to form a balanced lattice square. The data are means of three counts of plants infected with boll weevil. The trend analysis is the most appropriate analysis for these data. The code can also be used for incomplete block design by either deleting the row or the column category.

SAS Code

```
options ls = 76;
proc iml;
  opn4=orpol(1:4,3); /* 4 columns and 3 regressions. */
  opn4[,1] = (1:4)`;
  op4= opn4;    print op4;
  create opn4 from opn4[colname={'COL' 'C1' 'C2' 'C3'}];
  append from opn4;
```

```
close opn4;
run;
  opn3=orpol(1:4,3); /* 4 rows and 3 regressions. */ opn3[,1] =
  op3 = opn3; print op3;
   create opn3 from opn3[colname={'ROW' 'R1' 'R2' 'R3'}];
  append from opn3;
  close opn3;
run;
data lsgr;
  infile 'lsgr1645.dat'; /* Name of data file. */
  input count rep ROW COL treat;
data lsbig; /* Name of lsgr after adding 6 polynomial regressions. */
  set lsgr;
  idx = n; run;
proc sort data= lsbig;
  by
        COL ; run;
data lsbig;
  merge lsbig opn4;
  by COL; run;
proc sort data = lsbig;
  by ROW; run;
data lsbig;
  merge lsbig opn3;
  by ROW; run;
proc sort data = lsbig; by idx; run;
proc print; run;
/*In the codes below, a fixed-effects model is given first using PROC
     GLM; this is followed by a code for a random-effects mode using
     PROC MIXED. */
/* Randomized complete block design analysis. */
proc glm data = lsbig; class rep row col treat;
  model count = rep treat;
run;
proc mixed data = lsbig;
  class rep row col treat;
  model count = treat;
  random rep;
  1smeans treat;
/* Incomplete block (row) analysis. */
proc glm data = lsbig; class rep row col treat;
  model yield = rep row(rep) treat;
run;
proc mixed data = lsbig;
  class rep row col treat;
  model count = treat;
  ramdom rep row(rep);
  1smeans treat;
/* Standard textbook lattice square analysis. */
proc glm data = lsbig; class rep row col treat;
  model count = rep treat row(rep) col(rep);
run;
```

```
proc mixed data - lsbig;
   class rep row col treat;
  model count = treat;
  random rep row(rep) col(rep);
   1smeans treat;
run;
/* Differential linear gradients within rows analysis. Quadratic and
     cubic gradients did not appear to be present for these data.
     This analysis is deemed appropriate for the data in Table 12.3 of
     W. G/ Cochran and G. M. Cox's 1957 book entitled Experimental De-
     signs, but not for this example. */
proc glm data = lsbig; class rep row col treat;
  model count = rep treat row(rep) C1*row(rep);
proc mixed data = lsbig;
  class rep row col treat;
  model count = treat/solution;
  random rep row(rep) C1*row(rep);
   lsmeans treat;run;/* Trend analysis using polynomial regressions
     and their interactions. */
proc qlm data = lsbig; class rep row col treat;
  model count = rep treat r1*rep r2*rep c1*rep c1*r1*rep
     c2*r1*rep c2*r2*rep c3*r2*rep;run;
proc mixed data = lsbig;
                          class rep row col treat;
  model count = treat/solution;
   random rep r1*rep r2*rep c1*rep c1*r1*rep c2*r1*rep c2*r2*rep
     c3*r2*rep;
   1smeans treat:
run;
```

An abbreviated part of the output of the previous code follows.

/* Linear, quadratic, and cubic polynomial regression coefficients. */

```
OP3
                             1 -0.67082
                                                0.5 -0.223607
                             2 -0.223607
                                               -0.5 0.6708204
                             3 0.2236068
                                               -0.5 - 0.67082
                             4 0.6708204
                                                0.5 0.2236068
/* Randomized complete block analysis. */
Dependent Variable: COUNT
                               Sum of
                                              Mean
                             Squares
                                              Square
                       DF
                                                         F Value
                                                                    Pr > F
Source
                                              67.14553 1.73
Model
                       19
                              1275.76500
                                                                    0.0564
                       60
                             2332.77300
                                              38.87955
Error
                              3608.53800
                       79
Corrected Total
                                 11.2.55 Mean Square F Value Pr > F
31.56300 7.89075 0.20 0.9358
44.20200 82.94680 2.13 0.0200
                      DF
Source
                              Type I SS
REP
                        Δ
TREAT
                       15
                              1244.20200
                                           Mean Square F Value Pr > F
7.89075 0.20 0.9358
82.94680 2.13 0.0200
                              Type III SS
Source
                      DF
                                31.56300 7.89075
REP
                        4
                       15
TREAT
                              1244.20200
/*Standard textbook analysis. */
```

Dependent Variable: COUNT

Source Model Error Corrected Total	DF 49 30 79	Sum of Squares 2928.37008 680.16792 3608.53800	Mean Square 59.76265 22.67226	F Value 2.64	Pr > F 0.0029
Source REP TREAT ROW(REP) COL(REP)	DF 4 15 15	Type I SS 31.56300 1244.20200 1093.01550 559.58958	Mean Square 7.89075 82.94680 72.86770 37.30597	F Value 0.35 3.66 3.21 1.65	Pr > F 0.8433 0.0012 0.0032 0.1197
Source REP TREAT ROW(REP) COL(REP)	DF 4 15 15 15	Type III SS 31.56300 319.45208 1026.75583 559.58958	Mean Square 7.89075 21.29681 68.45039 37.30597	F Value 0.35 0.94 3.02 1.65	Pr > F 0.8433 0.5350 0.0049 0.1197

/* Differential linear gradients within rows and replicates. This is
 an appropriate analysis for the data in Table 12.3 of Cochran and
 Cox (1957). Experimental Designs but not for this data set. */
Dependent Variable: COUNT

Source Model Error Corrected Tota	DF 54 25 79	Sum of Squares 3134.27638 474.26162 3608.53800	Mean Square 58.04216 18.97046	F Value 3.06	Pr > F 0.0016
	R-Square 0.868572	C.V. 39.94048	Root MSE 4.35551		UNT Mean .9050
Source	DF	Type I SS	Mean Square	F Value	
REP	4	31.56300	7.89075	0.42	
TREAT	15	1244.20200	82.94680	4.37	
ROW(REP)	15	1093.01550	72.86770	3.84	
C1*ROW(REP)	20	765.49588	38.27479	2.02	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
REP	4	31.563000	7.890750	0.42	0.7955
TREAT	15	347.188383	23.145892	1.22	0.3202
ROW(REP)	15	884.112744	58.940850	3.11	0.0060
C1*ROW(REP)	20	765.495883	38.274794	2.02	0.0488

/* Polynomial regression trend analysis considered appropriate for this example.*/

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	54	3384.66411	62.67896	7.00	0.0001
Error	25	223.87389	8.95496		
Corrected Total	79	3608.53800			
	R-Square	C.V.	Root MSE	COUI	NT Mean
	0.937960	27.44139	2.99248	10.9	9050
Source	DF	Type I SS	Mean Square	F Value	Pr > F
REP	4	31.56300	7.89075	0.88	0.4893
TREAT	15	1244.20200	82.94680	9.26	0.0001
R1*REP	5	845.22838	169.04568	18.88	0.0001
R2*REP	5	246.02137	49.20427	5.49	0.0015
C1*REP	5	434.80006	86.96001	9.71	0.0001
R1*C1*REP	5	118.25808	23.65162	2.64	0.0475
R1*C2*REP	5	174.90489	34.98098	3.91	0.0094

R2*C2*REP R2*C3*REP	5 5	156.38244 133.30389	31.27649 26.66078	3.49 2.98	0.0157 0.0305
Source REP TREAT R1*REP R2*REP C1*REP R1*C1*REP R1*C2*REP R2*C2*REP	DF 4 15 5 5 5 5	Type III SS 31.563000 421.496008 809.864820 177.016456 352.057631 96.281349 204.368728 138.464513	Mean Square 7.890750 28.099734 161.972964 35.403291 70.411526 19.256270 40.873746 27.692903	F Value 0.88 3.14 18.09 3.95 7.86 2.15 4.56 3.09	Pr > F 0.4893 0.0056 0.0001 0.0089 0.0001 0.0923 0.0043 0.0262
R2*C3*REP	5	133.303894	26.660779	2.98	0.0202

Cov Parm	Estimate
REP	0.00000000
R1*REP	53.23803826
R2*REP	9.80562147
C1*REP	23.76781000
R1*C1*REP	9.98969710
R1*C2*REP	45.69858595
R2*C2*REP	31.54099937
R2*C3*REP	21.49617387
Residual	9.00079394

Tests of Fixed Effects

Source	NDF	DDF	Type	III F	Pr > F
TREAT	1.5	25		3.41	0.0033

Least Squares Means

Effect	TREAT	LSMEAN	Std Error	DF	t	Pr > t
TREAT	1	5.10314265	1.63982935	25	3.11	0.0046
TREAT	2	13.43151284	1.75595605	25	7.65	0.0001
TREAT	3	9.78194530	1.71248681	25	5.71	0.0001
TREAT	4	11.59100160	1.70310420	25	6.81	0.0001
TREAT	5	12.04012050	1.77463190	25	6.78	0.0001
TREAT	6	6.46087629	1.71679001	25	3.76	0.0009
TREAT	7	4.87293305	1.65381037	25	2.95	0.0069
TREAT	8	11.43810953	1.88342899	25	6.07	0.0001
TREAT	9	9.89142127	1.65449886	25	5.98	0.0001
TREAT	10	15.19391731	1.92490202	25	7.89	0.0001
TREAT	11	15.29420036	1.80297734	25	8.48	0.0001
TREAT	12	11.46771203	1.69521361	25	6.76	0.0001
TREAT	13	10.39896987	1.63737478	25	6.35	0.0001
TREAT	14	15.23542928	1.71894217	25	8.86	0.0001
TREAT	15	8.54488157	1.66229114	25	5.14	0.0001
TREAT	16	13.73382654	1.67968857	25	8.18	0.0001

Chapter 32

Partitioning Crop Yield into Genetic Components

Vasilia A. Fasoula Dionysia A. Fasoula

Importance

To increase efficiency in plant breeding by selecting for high yield and stability from the early generations of selection. Partitioning crop yield into genetic components increases efficiency and offers the following advantages: (1) yield and stability genes are selected early in the program, rather than late-generation testing where most genes are irretrievably lost; (2) breeders can identify and cross, in early generations, complementary lines for genes that control the three components of crop yield and combine them in one line; and (3) breeders can develop density-independent cultivars especially favored by farmers.

Genetic Components of Crop Yield

- 1. *Genes controlling yield potential per plant*. These genes contribute to the production of density-independent cultivars by expanding the lower limit of the optimal productivity density range.
- 2. Genes conferring tolerance to biotic and abiotic stresses. These genes enhance the production of density-independent cultivars by expanding the upper limit of the optimal productivity density range.
- 3. *Genes controlling responsiveness to inputs*. These genes enable cultivars to exploit optimal growing conditions.

Parameters That Determine the Genetic Components

- 1. The progeny mean yield per plant (\bar{x}) evaluates and selects genes contributing to higher yield.
- 2. The progeny standardized mean (\bar{x}/s) evaluates and selects genes contributing to stability of performance.
- 3. The progeny standardized selection differential $(\bar{x}_{sel} \bar{x})/s$ evaluates and selects genes that exploit nonstress environments, where \bar{x} is the progeny mean, s is the progeny phenotypic standard deviation, and \bar{x}_{sel} is the mean yield of the selected plants at a predetermined selection pressure.

Conditions of Selection

To partition crop yield into genetic components, it is essential to perform selection under the following conditions:

- 1. Absence of competition. This condition increases response to selection by reducing the masking effect of competition on single-plant heritability and by optimizing the range of phenotypic expression.
- 2. Enhanced gene fixation. This condition is essential for (1) reducing the masking effect of heterozygosity on single-plant heritability, (2) exploiting additive alleles, and (3) increasing genetic advance through selection.
- 3. *Multiple environment evaluation*. This condition exposes progenies to the environmental diversity encountered over the target area of adaptation and improves heritability by allowing selection for reduced genotype-by-environment interaction and increased responsiveness to inputs.
- 4. *Utilization of the honeycomb selection designs*. Comparable evaluation of progenies across the target area of adaptation requires designs that fulfill four conditions: (1) effective sampling of environmental diversity, (2) concurrent selection among and within progenies, (3) joint selection for broad as well as specific adaptation, and (4) application of high selection pressures.
- 5. *Nonstop selection*. This condition refers to the constant improvement of the crop yield and quality of released and adapted cultivars. Continuous selection after the release of cultivars is imposed by the con-

stant need to eliminate undesirable mutations while exploiting desirable ones.

Originators

Fasoula, V.A. and Fasoula, D.A. (2000). Honeycomb breeding: Principles and applications. *Plant Breeding Reviews* 18:177-250.

Software Available

Batzios, D.P. and Roupakias, D.G. (1997). HONEY: A microcomputer program for plant selection and analysis of the honeycomb designs. *Crop Science* 37:744-747 (program free of charge).

For software distribution, contact Dimitrios P. Batzios, Variety Research Institute, 57400 Sindos, Greece. Tel. + 302310796-264. FAX + 302310796-343. E-mail: <Varinst@spark.net.gr>. The software refers to honeycomb breeding as it appears in Fasoula and Fasoula (1995) and Fasoula and Fasoula (2000).

Contact

Vasilia A. Fasoula, Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602-6810, USA. E-mail: <vfasoula@uga.edu>.

EXAMPLE

The following example (Table 32.1) demonstrates the partitioning of crop yield into genetic components and shows the evaluation of twenty F_4 cotton lines plus one check tested in a replicated-honeycomb trial (Fasoulas and Fasoula, 1995) across two locations with a total of 100 replications (fifty replications per location). This example is included in the available software and utilizes data from Batzios (1997).

Lines were evaluated in the absence of competition in two locations for the three genetic components of crop yield: (1) yield per plant, (2) tolerance to stresses, and (3) responsiveness to inputs. The check (line 21) represents the cotton cultivar Sindos 80 developed in Greece. The three ge-

TABLE 32.1. Evaluation of 20 F₄ cotton lines selected for high yield per plant

Progeny lines	Mean yield (g		Tolerance to stresses		Responsiveness to inputs	
	(\overline{x})	(%)*	(\bar{x}/s)	(%)*	$(\overline{X}_{sel} - \overline{X})/s$	(%)*
15	315.0	100	2.42	100	1.86	91
11	305.8	97	2.08	86	1.67	82
3	298.1	95	2.22	92	1.71	83
5	272.2	86	1.59	66	1.71	84
12	259.9	82	1.72	71	1.69	82
17	250.1	79	1.90	79	1.70	83
18 7	245.5	78	2.36	97	1.71	85
1	236.8	75	2.07	86	1.75	85
13	235.5	75	1.62	67	1.76	86
6	235.4	75	1.54	64	1.69	83
14	216.6	69	2.03	84	1.62	79
19	215.5	68	2.07	86	1.67	81
2	208.3	66	1.71	71	1.44	70
8	199.7	63	1.20	50	1.58	77
21(ck)	198.0	63	1.64	68	1.83	89
16	184.5	58	1.61	67	1.93	94
20	179.4	57	1.81	75	1.74	85
9	169.6	54	1.18	49	1.58	77
4	167.9	53	1.23	51	2.05	100
10	159.3	51	1.25	52	1.82	89
	130.4	41	1.29	53	1.78	87

^{*}Percent of highest value

netic components of crop yield were calculated from 100 values of single plants representative of each progeny line grown in the honeycomb experiments.

Conclusions

An analysis of Table 32.1 data leads to several conclusions that are relevant to the benefits of partitioning crop yield into genetic components:

- 1. Percent range of expression: 41 to 100 for the first component, 49 to 100 for the second component, and 70 to 100 for the third component. Thus, in this genetic material, genes controlling yield per plant and tolerance to stresses showed the largest variation.
- 2. The check cultivar (21) has the following relative values compared to the best line: 58 percent for the first component, 67 percent for the second component, and 94 percent for the third. Evidently, for the check cultivar, the genetic components of crop yield ranks in relative importance as: responsiveness to inputs → tolerance to stresses → yield per plant.
- 3. The best F₄ line on the basis of the component evaluation is line 15. Three best plants were selected from line 15 and seven other plants were selected from the most superior lines of Table 32.1, and their progenies were tested as F_{4:6} lines in evaluation trials. These 10 best F_{4:6} lines derived by the honeycomb methodology, along with the 10 best F_{4:6} lines derived by the conventional methodology, were evaluated in randomized complete block (RCB) trials. The lines derived from honeycomb breeding outperformed the lines derived from conventional breeding (Batzios, 1997; Batzios et al., 2001). More specifically, in the RCB trials, the three best F_{4:6} lines (15-1, 15-2, and 15-3), derived from line 15, produced the following yield superiority in percent of the check cultivar Sindos 80.

The best F _{4:6}	Yield (%)
15-1	154
15-2	141
15-3	128
Sindos 80	100

Lines 15-1 and 15-2 ranked first and outyielded the other eighteen lines. This indicates that honeycomb selection for superior component and quality performance across the target area of adaptation can be a safe and efficient way to exploit desirable genes in every generation to substantially increase efficiency.

4. Selection for the three crop yield components and quality across the target area of adaptation at all stages of the breeding program makes regional testing unnecessary and halves the time required to release a cultivar.

- 5. Given that selection is based on genetic components of crop yield, the developed cultivars are density independent, an advantage favored greatly by farmers since density-independent cultivars perform well at a greater range of plant densities.
- If during evaluation and selection no lines show satisfactory relative superiority, promising lines that complement each other for the three components of crop yield and quality are crossed to obtain desirable recombinant lines.

A Noteworthy Relation

When evaluation is performed in the absence of competition, an important relation is revealed between the genetic components of crop yield and the parameters of the general response equation. Thus, starting from the general response equation

$$R i h^2 \sigma_p$$
 (Falconer, 1989)

and substituting heritability by its equivalent σ_g^2/σ_p^2 , the equation becomes

$$R \quad i \frac{\sigma_g}{\sigma_p} \sigma_g$$
 (Falconer, 1989)

where *i* is the intensity of selection or the standardized selection differential, h^2 is the heritability, σ_p is the phenotypic standard deviation, and σ_g is the genotypic standard deviation.

Iliadis (1998) estimated the correlation coefficient between σ_g and \bar{x} (progeny mean yield per plant) in chickpea grown in the absence of competition. This correlation coefficient (r=0.95) was high. This suggests that when evaluation is practiced in the absence of competition that maximizes both \bar{x} and σ_g , \bar{x} may replace σ_g and the equation becomes

$$R i \frac{\overline{x}}{\sigma_n} \overline{x}.$$

The new formula is a product of (1) the progeny standardized selection differential, (2) the progeny standardized mean, and (3) the progeny mean, i.e., the product of the three genetic components of crop yield (Fasoula and Fasoula, 2000), described in detail previously.

REFERENCES

- Batzios, D.P. (1997). Effectiveness of selection methods in cotton (*Gossypium hirsutum* L.) breeding. Doctoral thesis, Department of Genetics and Plant Breeding, Aristotelian University, Thessaloniki, Greece.
- Batzios, D.P. and Roupakias, D.G. (1997). HONEY: A microcomputer program for plant selection and analysis of the honeycomb designs. *Crop Science* 37:744-747.
- Batzios, D.P., Roupakias, D.G., Kechagia, U., and Galanopoulou-Sendouca, S. (2001). Comparative efficiency of honeycomb and conventional pedigree methods of selection for yield and fiber quality in cotton (*Gossypium* spp.). *Euphytica* 122:203-221.
- Falconer, D.S. (1989). *Introduction to quantitative genetics*. John Wiley & Sons, New York.
- Fasoula, V.A. and Fasoula, D.A. (2000). Honeycomb breeding: Principles and applications. *Plant Breeding Reviews* 18:177-250.
- Fasoulas, A.C. and Fasoula, V.A. (1995). Honeycomb selection designs. *Plant Breeding Reviews* 13:87-139.
- Iliadis, C.G. (1998). Evaluation of a breeding methodology for developing germplasm in chick-pea (*Cicer arietinum* L.). Doctoral thesis, Department of Genetics and Plant Breeding, Aristotelian University, Thessaloniki, Greece.

Short Note 1

Inbreeding Coefficient in Mass Selection in Maize

Fidel Márquez-Sánchez

Importance

To know how much inbreeding is being generated through the course of mass selection.

Definitions

Inbreeding coefficient at generation *t*: the amount of inbreeding that has been accumulated up to cycle *t* of selection.

$$F(MS)_{t}$$
 1/2nm 1 2m(n-1) F_{t-1} 2(m-1) F_{t-2} F_{t-3}

where $F(MS)_t$ = inbreeding coefficient at cycle t of mass selection; n = number of open-pollinated ears that make the seed balanced composite from where the population under selection originates; m = number of seeds per open-pollinated ear.

Originator

Márquez-Sánchez, F. (1998). Expected inbreeding with recurrent selection in maize: I. Mass selection and modified ear-to-row selection. *Crop Science* 38(6):1432-1436.

Contact

Dr. Fidel Márquez-Sánchez. E-mail: <fidelmqz@hotmail.com>.

Observations

n and m must be adjusted by the variance effective number,

$$N_{e(v)} N[4s/(1 2s)],$$

where N = nm, and s is the selection pressure (Crossa and Venkovsky, 1997). The adjustment is made as follows:

$$n = [N_{e(v)}Q]^{\frac{1}{2}}$$

 $m = [N_{e(v)}/Q]^{\frac{1}{2}}$, where $Q = n/m$.

In the case of modified ear-to-row selection the actual number of plants (N) in the selection plot must first be adjusted by the inbreeding effective number,

$$N_{e(f)} = 4N_{fr}N_{mr}/(N_{fr} = N_{mr}),$$

where N_{fr} and N_{mr} are the numbers of female and male rows, respectively, of the detasseling-selection plot (Falconer, 1961).

REFERENCES

Crossa, J. and Venkovsky, R. (1997). Variance effective population size for two-stage sampling of monoecious species. *Crop Science* 37:14-26.

Falconer, D.S. (1961). *Introduction to Quantitative Genetics*. The Ronald Press Company, New York.

Short Note 2

Regression of Forage Yield Against a Growth Index As a Tool for Interpretation of Multiple Harvest Data

Jeffery F. Pedersen

Purpose

Concise representation of multiple harvest forage data and as a graphical aid in assessing the value of a forage variety across an entire growing season.

Originator

Pedersen, J.F., Moore, K.J., and van Santen, E. (1991). Interpretive analyses for forage yield trial data. *Agronomy Journal* 83:774-776.

Contact

Dr. J. F. Pedersen, USDA-ARS, 344 Keim Hall, University of Nebraska, Lincoln, NE 68583-0937, USA. E-mail: <jfp@unlserve.unl.edu>.

EXAMPLE

DATA ONE;						
INPUT REP	YEAR MONTH	\$ LINE \$	KGHA;			
CARDS;						
1		87		Apr	AUVigor	2487
1		87		May	AUVigor	1228
1		87		Jun	AUVigor	407
1		87		Dec	AUVigor	78

9	9	0
. Ť.	. Ti	1.

1	87	Apr	Johnston	793
1	87	May	Johnston	985
1	87	Jun	Johnston	514
1	87	Dec	Johnston	0
2	87	Apr	AUVigor	2491
2	87	May	AUVigor	1232
2	87	Jun	AUVigor	411
2	87	Dec	AUVigor	82
2	87	Apr	Johnston	797
2	87	May	Johnston	989
2	87	Jun	Johnston	518
2	87	Dec	Johnston	0;

PROC SORT; BY MONTH YEAR LINE; RUN;

* The following PROC GLM does not contribute directly to the stability analysis. It tests for differences due to MONTH*YEAR (environment) LINE and the LINE*MONTH*YEAR interaction *;

PROC GLM; CLASS MONTH YEAR REP LINE; MODEL KGHA=MONTH*YEAR REP(MONTH*YEAR) LINE LINE*MONTH*YEAR; MEANS LINE MONTH*YEAR LINE*MONTH*YEAR; RUN;

* The following PROC MEANS outputs a data set named TWO with KGHA means across reps *;

PROC MEANS NOPRINT; BY MONTH YEAR LINE; VARIABLES KGHA; OUTPUT OUT=TWO MEAN=KGHA; RUN;

PROC PRINT DATA=TWO; RUN;

* The following PROC GLM is used to put MONTH*YEAR(environmental) means onto the data set. MONTH*YEAR mean=COLM. The new data set is named THREE. The ANOVA generated is not otherwise used for data interpretation*;

PROC GLM; CLASS MONTH YEAR; MODEL KGHA=MONTH*YEAR; OUTPUT OUT=THREE PREDICTED=COLM; RUN;

* The following PROC GLM puts the grand mean (YBAR) and the value for the environmental mean minus the grand mean (COLEF) on a data set named FOUR. COLEF is the environmental index for the stability analysis *;

PROC GLM; MODEL COLM=;

```
OUTPUT OUT=FOUR PREDICTED=YBAR RESIDUAL=COLEF;
RUN;
PROC PRINT;
RUN:
* The following PROC GLM calculates the regression coefficient for
    KGHA on COLEF (the environmental index) for each line. Estimates
     of XBAR and b are given for each line in the ANOVA. Predicted
     values=YHAT and residuals=RY. Outputed data set= FIVE. *;
* To test H0: b=1, t= (estimate - 1) / SE
df= df shown for COLEF*LINE in ANOVA *;
PROC GLM;
CLASSES LINE;
MODEL KGHA=LINE COLEF*LINE / P NOINT SOLUTION;
OUTPUT OUT=FIVE PREDICTED=YHAT RESIDUAL=RY:
RUN;
PROC PLOT:
PLOT YHAT*COLEF=LINE;
RUN;
PROC SORT;
BY LINE:
RUN:
PROC PLOT;
BY LINE:
PLOT KGHA*COLEF='*' YHAT*COLEF=LINE/OVERLAY;
RUN:
* The following PROC MEANS generates the raw sum of squares (USS) for
     deviations of the means from regression on environment index.
    Variance of deviation from regression can be calculated as USS /
    n-2 *;
* To test H0: F=1
               r (USS/#obs-2) (#lines/#lines-1)
                 Error MS (#lines/#lines-1)
where r = \#replications
#lines/#lines-1 = correction factor
Error MS = error ms from last ANOVA
df= df #obs-2, pooled error df (from 1st PROC GLM) *;
PROC MEANS USS;
BY LINE;
VARIABLES RY;
RUN:
```

Short Note 3

Tolerance Index

Lajos Bona

Purpose

To identify the tolerance level of tested cereal (or other plant) cultivars/entries. The simple formula outlined in this chapter was applied for evaluation of small-grain cereal entries for acid soil tolerance, but it can serve as a useful tool for other traits as well. Among and within species, ranking and numerical evaluation of a range of entries will be reliable based on tolerance index (*Ti*).

Definitions

Tolerance index refers to the characteristic production (grain yield, biomass, root or shoot length, etc.) of a genotype in a given stress environment (e.g., acid soil) relative to a nonstress environment (e.g., improved or limed acid soil).

$$Ti_{GY} = ALRL_{(-L)} / ALRL_{(-L)}$$

where, Ti = tolerance index (for grain yield) for a certain genotype, $ALRL_{(-L)}$ = calculated mean longest root length of a genotype in unlimed (-L) acid soil (production in stress environment), $ALRL_{(+L)}$ = calculated mean longest root length of a genotype in limed (+L) acid soil (production in nonstress environment).

or

$$Ti_{GY} \quad AGY_{(-L)} / AGY_{(-L)}$$

where, Ti = tolerance index (for grain yield) for a certain genotype, $AGY_{(-L)}$ = observed grain yield of a genotype in unlimed (-L) acid soil (production in stressed environment), $AGY_{(+L)}$ = observed grain yield of a genotype in limed (+L) acid soil (production in nonstressed environment).

Originator

Bona, L., Wright, R.J., and Baligar, V.C. (1991). A rapid method for screening cereals for acid soil tolerance. *Cereal Research Communications* 19:465-468.

Short Note 4

Computer Program to Calculate Population Size

Leví M Mansur

Purpose

To calculate population size necessary to recover any number of individuals exhibiting a trait.

Definitions

Sedcole (1977) provided four methods to calculate the total number of plants needed to obtain one or more segregants with desired genes for a given probability of success. The following formula gives an accurate result:

$$n = 2(r-0.5) \quad z^2(1-q) \quad z \quad z^2 \quad 1-q)^2 = 4(1-q)(r-0.5)^{-1/2} \quad /2q$$

where n = total number of plants needed, r = required number of plants with desired genes, q = frequency of plants with desired genes, p = value that is function of (p).

Originator

Sedcole, J.R. (1977). Number of plants necessary to recover a trait. *Crop Science* 17:667-668.

Software Available

Mansur, L.M., Hadder, K., and Suárez, J.C. (1990). Computer program to calculate population size necessary to recover any number of individuals exhibiting a trait. *Journal of Heredity* 81:407-440 (software free of charge). E-mail: Leví Mansur at <levi@entelchile.net>.

Example

Data to be analyzed r = 10, P = 0.95, q = 0.25, germination rate = 0.8. The number of progenies that must be grown is N = 75.

Index

2DMAP program, 277	Augmented experiment designs, 283 Augmented lattice square design, 283 Augmented row-column design, 291
Abiotic stress, 321 Acid soil tolerance, 335 ACT (analysis of complex traits) program, 266 Additive genetic correlation, 109, 110, 113 Additive genetic covariance(s), 110, 111, 113 Additive genetic effects, 77 Additive genetic variance, 97, 98, 110 Additive-by-additive genetic model, 51 Additive-by-environment effect, 68 Additive-dominance model, 39, 43, 44, 45, 55, 118	Augmented treatments, 291 AUP (adjusted unbiased prediction), 26, 42 Automatic sequencers, 271 Autoregression, 137 Autoscan program, 267 Autosomal genes additive effect, 68 dominance effect, 68 Average number of alleles, 263
Additive-dominance-epistasis model, 51,	Backcross breeding, 280
57 Additive-effect QTL, 228	Balanced data, endosperm and seed
AFLP (amplified fragment-length	models, 21 Balanced lattice square, 137, 146, 315
polymorphism), 267	Balanced lattice square experiment, 146
ALLASS (allele association) program, 266	Beta program, 267
Allele frequency estimation, 273	Bin mapping, 272
ALP (automated linkage preprocessor)	Biotechnology, 153
program, 266	Biotic stress, 321
AMMI (Additive Main Effects and	Biplot, 193, 195, 201
Multiplicative Interaction), 145	BLOCK program, 267
Analysis of variance, 110	BLUP (best linear unbiased prediction),
Analyze program, 266	181
Animal genetic model, 67	Bootstrap
Animal model, 70	for genetic diversity parameter
APM (affected pedigree-member method)	calculation, 263
program, 266	for mean, 261, 263
Arlequin program, 266	for standard error, 261
ASPEX (affected sibling pairs exclusion	Borel program, 267, 274
map) program, 266	Broad adaptation, 123
Association analysis, 273	Broad inference(s), 181, 184

Canonical analysis, 156, 169	Covariance, 29, 55, 109, 179
Carter-Falconer mapping function, 255,	Covariance analysis, 34, 73, 98, 110
256	Covariance analysis output, 47, 61, 75
CarthaGene program, 267	Covariance between seed and plant traits,
CASPAR program, 267	27, 28
Categorical variables, 153	Covariance component estimation, 31, 45,
Centered variates, 307	57, 171, 177
Ceph2Map program, 267	Covariance components, 21, 39, 43, 51, 53
Chickpea, 326	Covariance estimation, 109
Chi-square method, 231	Covariate screening, 276
Chromosome drawing, 270	Covariates, 124
Classifying observations into	CRI-MAP program, 268
homogeneous groups, 153	CRI-MAP-PVM program, 268
Clump program, 267	Crop yield components, 321
Coancestry coefficient(s), 98, 99, 100,	Cyrillic program, 268
108, 186	Cytoplasm effect, 23
Coefficient of coancestry, 98, 99, 108, 186	Cytoplasm general heritability, 25
Coincidence, 255, 260	Cytoplasm general response, 26
Combin program, 267	Cytoplasm interaction heritability, 25
COMDS program, 267	Cytoplasm interaction response, 26
Competition, 322	Cytoplasm-by-environment effect, 23
Complete block design, 283	
Composite interval mapping, 272, 273	
Conditional distribution, 115	Data preparation for Linkage program,
Conditional genetic effects, 116	277
Conditional genetic model, 213	Degrees of freedom simulation, 137
Conditional genetic variance components,	Density-independent cultivars, 321, 326
173	Developmental analysis, 115
Conditional linkage analysis, 267	Developmental genetic model analysis,
Conditional mapping of QTL, 213	119, 173, 177
Conditional phenotypic data, 215	Developmental traits, 171, 174, 213
Conditional QTL-by-environment effect,	dGene program, 268
216	Diallel analysis
Conditional random variables, 115	additive-dominance model, 39
Conditional variance analysis, 119	additive-dominance-epistasis model,
Conditional variance components, 116	51, 67
Conditional variance-covariance matrix,	animal model, 67
116	endosperm model, 21
Contingency table, 267	genotype-by-environment effect model,
Continuous variables, 153, 156	67
CoPE program, 268	maternal effect model, 67
Correlated response, 109	sexlinked model, 67
Correlation coefficient estimation, 171,	Diallel crosses, 171-173
177	Diallel defined, 2
Coupling phase linkage, 232, 233	Diallel mating design, 1

Index 341

Diallel method 1, 1-3, 7 Epistatic-by-environment interaction Diallel method 2, 1, 2, 15 effect, 220, 221 Diallel method 3, 1, 2, 16 ERPA program, 268 ETDT program, 269 Diallel method 4, 1, 2, 18 Diallel model analysis, 174 Expectation maximization (EM), 154 DIALLEL-SAS, xiii, 1-3 Experimental error variance, 131 Dinucleotide markers, 270 Diploid seed models, 22, 173 Direct additive effect, 23 Family-based association test, 269 Direct additive-by-environment effect, 23 FASTLINK program, 269 Direct dominance effect, 23 FAST-MAP program, 269 Direct dominance-by-environment effect, FBAT program, 269 Firstord program, 269 Direct effects (path analysis), 89 Fisher program, 269 Direct general heritability, 25 Fixed-effects model, 181 Direct interaction heritability, 25 Forage quality, 111 Direct interaction response, 26 Forage yield, 331 DMap program, 268 Fourier regression and trend analysis, 307 DNA sequences, 266 Frequency analysis, 162 Dominance genetic effects, 77 Full-sib families, 98-100, 108, 271 Dominance genetic variance, 97, 98 Dominance heterosis, 42, 54 Dominance-by-environment effect, 68 Gamble notation, 77 Double coancestry coefficient, 98-100, 108 GAP program, 269 Doubled haploid (DH) population, 213, GAS program, 269 219, 222, 271, 280 GASP program, 269 GASSOC program, 270 Gaussian model, 153 GCA (general combining ability), 1, 2 Early selection, 321 GENDIPLD for seed model, 29, 30 Ear-to-row selection, 330 Gene fixation, 322 EBLUP (empirical best linear unbiased Gene linkage relationships, 231 prediction), 183 Gene mapping, 280 ECLIPSE program, 268, 274 Gene segregation, 231, 232 Eclipse2, 268 Genealogical relationships, 267 Eclipse3, 268 Genealogy, 274 Ecovalence, 123 GeneCheck program, 270 Effective number of alleles, 263 Gene-environment interaction, 270 Effective population size calculation, 273 Gene-gene interaction, 270 EH program, 268 Genehunter program, 270 Endosperm, 119 Genehunter-Imprinting program, 270 Environmental variance, 130 General heritability, 25, 42, 53, 70 Epistasis, 51, 57, 77 General heterosis, 26, 27, 42, 54

General linear model, 1

General response, 26, 42, 53, 70

Epistatic effects, 77, 213, 219

Epistatic QTL, 220, 228

Generation means analysis, 77, 79, 81 Genotypic standard deviation, 326 Genetic advance, 322 Genotyping checks, 266 Genetic analysis of pedigree data, 276 Genotyping errors, 275 Genetic components of crop yield, 321 Genotyping microsatellite markers, 269 GENTRIPL program for endosperm traits, Genetic correlations, 109, 111 Genetic counseling, 273 GGE (Genotype + Genotype-by-environment Genetic data management, 275 interaction), 193, 201 Genetic diversity, 261-263 GGE biplot, 201 Genetic effect prediction, 55, 171, 176 Genetic effects, 55, 77 GGT program, 270 Gibb's sampling, 267 Genetic likelihood computing, 268 Goodness-of-fit testing, 231 Genetic linkage analysis, 273 Graphical representation of relationship, Genetic linkage map, 271, 272 Genetic linkage software on the Internet, GREGOR limitations, 281 265 GREGOR program, 279 Genetic map distance definition, 255 Griffing's diallel methods, 1-3 Genetic mapping using backcrosses/RIL, Growth index, 331 272 GRR program, 270 Genetic marker data analysis, 268 GSCAN program, 270 Genetic model, 21, 39, 51, 67, 174 Genetic partitioning for diploid seed model, 22 Genetic partitioning for triploid Haldane's mapping function, 255, 256, endosperm model, 22 258, 259 Genetic resource conservation, 153 Half-sib families, 98, 109-112 Genetic risk, 268, 271 Haplo program, 270 Genetic variance components, 69, 97, 99, Haplotype aligning, 268 108 Haplotype frequency, 268, 276 Genetic variance partitioning, 273 Haplotype reconstruction, 270 Genetic variation, 115 HAPPY program, 270 Genetics of complex diseases, 267 Hardy program, 271, 274 GenMath, 256-258 Hardy Weinberg equilibrium, 271 GenoDB program, 270 Hayman methodology, 77, 79 Genome-wide scan, 266, 267 Heritability, 21, 67, 322, 326 Genomic data, 262, 269 components, 25, 39, 41, 53, 70 Genotype-by-environment effect, 39, 40, and shrinkage, 182 51, 68, 98 Heterogametic progeny, 68 Genotype-by-environment interaction, *xiii*, Heterogeneity, 124 129, 182, 193, 275, 322 Heterosis, 29, 45 and AMMI, 145 Heterosis analysis, 35 Heterosis analysis output, 48, 62 in diallel analysis, 21 in heterosis, 26 Heterosis based on population mean, 43 and stability, 123, 124 Heterosis components, 26, 42, 54, 55, 70 Genotype-by-environment interaction Heterosis prediction, 31, 57, 175 variance, 131 Hidden Markov model, 275

Index 343

Honeycomb breeding, 325 Honeycomb experiment, 324 Honeycomb selection, 322 Honeycomb trial, 323

Identical by descent, 266, 276 Imprinted genes, 270 Inbreeding coefficient, 329 Inbreeding effective number, 330 Incomplete block design, 283, 315 Indirect effects, 89 Input response, 325 Insect resistance, 77 InSegT program, 274 Interaction effects, 40 Interaction heritability, 25, 42, 53, 70 Interaction response, 26, 27, 42, 54 Interaction response, 26, 42, 53, 70 Interference, 271

Jackknife, 57, 119, 175, 228, 261 for genetic diversity parameter calculation, 263 for mean/standard error, 262 Jackknifing, 44, 73, 171, 173, 174 JoinMap program, 271

KINDRED program, 271 Kosambi mapping function, 255, 256 Kriging, 137

Lattice rectangle design, 315 LDB program, 271 Least significant difference (LSD), 186 Likelihood calculation, 277 Likelihood ratio, 221 Linkage, 253, 271-273, 275-277 coupling phase, 231, 232 genetic correlation, 109 repulsion phase, 231 Linkage and mapping, *xiii*, 265
Linkage disequilibrium, 266, 270, 275
Linkage mapping of markers, 273
Linkage maps, 267
Linkage program, 269, 271
Linkage test, 272
Linkbase program, 271
Locating polymorphic markers, 271
Loci ordering, 269
LOD score, 269-272, 274, 277
Logistic regression analysis, 269
Loki program, 271, 274
LUP (linear unbiased prediction), 26, 42

Magnesium concentration, 111 Mahalanobis distance, 168 Maize days to anthesis, 156, 279 ear height, 156 grain weight, 156 plant height, 156 silking, 156 Maize breeding, 279 Map drawing, 272 Map Manager Classic program, 272 Map Manager QT program, 272 Map Manager QTX program, 272 Map/Map+/Map+H program, 271 MAPL program, 272 Mapmaker, 272, 280 Mapmaker/Exp program, 272 Mapmaker/HOMOZ program, 272 Mapmaker/QTL program, 272 Mapping disease genes, 269 Mapping functions, 255, 256, 258, 260, 272 Mapping QTL, 272, 273 epistatic effects, 219 QTL-by-environment effects, 219 Mapping quantitative traits, 272, 275 Mapping software on the Internet, 265 MapPop program, 272 Mapqtl program, 273 Marker grouping, 272 Marker haplotypes, 277

Marker-assisted selection, 280 Marker-by-environment interaction effect, Marker-by-marker interaction effect, 220 Marker-by-marker-by-environment effect, Marker-typing incompatibility, 274 Markov chain Monte Carlo (MCMC), 267 Mass selection in maize, 329 Maternal additive effect, 23 Maternal additive-by-environment effect, 23 Maternal dominance effect, 23 Maternal dominance-by-environment effect, 23 Maternal effect, 2, 24, 68 Maternal general heritability, 25 Maternal general response, 26 Maternal interaction heritability, 25 Maternal interaction response, 26 Maternal-by-environment effect, 68 Mating design, 1, 21, 39, 51, 67 Matrix programming language of SAS, xiii MCLEEPS program, 273, 274 Mean cross product, 110 MEGA2 program, 273 Megaenvironment identification, 193 Mendel program, 273 MFLINK program, 273 Microsatellite DNA fragments, 266 MIM program, 273 MINQUE, 24, 206 equations, 41 unbiased variance estimation, 53, 69, 116 Mixed linear model, 23, 40, 52, 68, 220 augmented treatments, 291 time-dependent traits, 115 Mixed model approaches, 97, 116, 171 BLUPs, 181 unbalanced data, 206 Mixed-model-based composite interval mapping (MCIM), 215, 221 MLD program, 273 MLM (modified location model), 153 Model-free linkage analysis, 273

Molecular marker map, 275 Molecular markers, xiii, 280 Monte Carlo estimation of P, 271 Monte Carlo methods, 267, 269, 273, 276 Monte Carlo multipoint linkage analysis, 271 MORGAN program, 273, 274 Morgan unit definition, 255 MSPE (minimum mean squared prediction error), 181 Multienvironment experiments, 1, 39, 51, 322 Multilocus linkage maps, 268 MultiMap program, 273 Multiple harvest data, 331 Multiple marker alleles, 270 Multiple pairwise linkage analysis, 271 Multiple trait analysis, 206, 211 Multipoint exclusion mapping, 266 Multipoint linkage analysis, 270 Multipoint LOD score calculation, 272 Multipoint mapping, 255 Multipoint maximum likelihood distance estimation, 267

Narrow-sense heritability, 97, 186
Nei's expected heterozygosity, 263
Neutral detergent fiber, 111
Nonadditivity, 124
Noncentered polynomial regression, 307
Noncentered variates, 307
Nonmaternal effect, 2
Nonparametric linkage analysis, 266-268, 273, 276
Nonstop selection, 322
NOPAR program, 273
Normal deviates, 137
Normal mixed model, 182
North Carolina design I, 111
North Carolina design II, 111

Orthogonal polynomial regression, 291, 297, 308, 315

Index 345

PANGAEA program, 274 PAP program, 274 Parametric analysis, 270 Pascoe-Morton mapping function, 255, 256, 259 Path coefficient analysis, 89 PATHSAS, 89, 91, 95 PED program, 274 PedCheck program, 274 Pedfiddler program, 274 PedHunter program, 274 Pedigree data analysis, 269 Pedigree drawing, 268, 269, 271, 274, 275 Pedigree graphs, 274 Pedigree plotting, 275	QTDT program, 275 QTL (quantitative trait loci), 213, 265 QTL analysis, 272 QTL Cartographer program, 275 QTL effects, 228 QTL mapping, 219 QTL testing by linear regression, 270 QTL-by-environment interaction, 213, 215, 221 QTL-epistasis model, 220 Quantitative genetic analysis, 276 Quantitative genetic models, 171 Quantitative trait loci (QTL), 213, 265 Quantitative traits, 89, 115 QUGENE program, 275
Pedigree/Draw program, 274 PedJava program, 274 Pedpack program, 274 PedPlot program, 275 PEDRAW/WPEDRAW program, 275 PEDSYS program, 275 Phenotypic standard deviation, 326	Radiation hybrid mapping, 271, 275 Random effects, 182, 291 Random factors, 28 Randomization plan, 137 Randomized complete block design, 112, 297, 307, 315, 325
Physical maps, 271 Pleiotropy, 109 Pointer program, 275 Polygenic inheritance, 269 Polymorphic loci, 262 Polynomial regression, 137, 307 Population genetics software, 266 Population size, 280, 281, 337 Prediction error variances, 183 Prediction methods, 57, 119 Preproc, 268 Principal component analysis, 137	Reciprocal crosses, 1 Reciprocal effect, 2 Recombination frequencies, 231, 255, 259 Recombination rate, 271 Regional test models, 207 Regional trial analysis, 171, 177, 205 Relationship estimation, 275 Relative program, 275 RelCheck program, 275 REML (restricted maximum likelihood), 53, 97, 129 REML program, 103, 107
Principal component analysis, 137 Principal components, 145, 146 Probability density function (PDF), 153 PROC INBREED, 99 Progeny program, 275 Program listing diallel method 1, 3 diallel method 2, 15 diallel method 3, 16 diallel method 4, 18	Replications-within-environment variance, 131 Resampling techniques, 261 Response to inputs, 321, 322 Restriction fragment length polymorphism (RFLP), 156 RHMAPPER program, 275 RIL (recombinant inbred lines), 213, 219, 271, 280 Row-column design, 283, 297, 308, 315

SAGE program, 276 SNP (single nucleotide polymorphism), 266 SASGENE program, 232, 233, 235, 236 SOLAR program, 276 SAS_STABLE program, 129 Spatial variation, 145, 307, 308 SCA (specific combining ability), 1 SPERM program, 276 Scaling constants, 193 Sperm typing, 276 Seed model, 21, 22, 27, 29, 30 SPERMSEG program, 276 Seed model analysis, 172, 173, 176 SPLINK program, 276 Seed quality, 27 SREG (sites regression), 201 Seed traits, 171 SSR (simple sequence repeat), 267 Segregation analysis, 267, 269, 271, 273, Stability estimation, 178 275 Stability for multiple traits, 179 Segregation ratio computation, 272 Stability variance, *xiii*, 123, 124, 129 Selection conditions, 322 Statistical property of sum method, 110 Selection differential, 322, 326, 327 Sum method for additive genetic Selection effect, 279 correlation, 109, 111 Selection for yield and stability, 321 Sum method for estimating covariance, 110 Selection indices, 109 Selection intensity, 326 Selection response, 21, 39, 51, 67, 97 TDT-PC program, 276 Selection response equation, 326 TDT/S-TDT program, 276 Selective mapping, 272 Testing assumptions, 279, 280 Semiparametric linkage analysis, 270 Sex linkage, 119 Testing breeding questions, 279 Sexlinked additive-by-environment effect, Time-dependent traits, 115 68 Tobacco, 307 Shrinkage estimators, 181 Tolerance index, 335, 336 Shrinkage factors, 182 Tolerance to stress, 325 Sibling transmission disequilibrium test, Transmission disequilibrium test, 269, 276 270, 274, 276, 277 Siblingship inference, 267 Transmit program, 277 Sib-Pair program, 276 Trend analysis, 308 Simibd program, 276 AMMI, 145 Simple sequence repeat (SSR), 267 augmented design, 291 Simulating degrees of freedom, 137 Fourier and polynomial regression, 307 Simulating marker data, 277 incomplete block and lattice-rectangle Simulation of genetic data, 269 experiments, 315 Simulation tool for breeding, 279 row-column-designed experiments, 297 SimWalk2 program, 276 Triploid endosperm model, 22 Single nucleotide polymorphism (SNP), 266 Triploid seed models, 173 Single trait analysis, 209 Two-dimensional crossover-based maps, Single trait test, 31 277 Single-gene goodness-of-fit, 253 Single-sperm data, 276 Two-point linkage analysis, 267 Singular values, 193 Two-point LOD score, 269 Smoothing, 137 Typenext program, 277

Index 347

Unbalanced data
endosperm model, 21
regional trials, 205
seed model, 21
Unbalanced data analysis, 206
Unbalanced data handling, 171
Unbiased estimation of covariance, 41
Unconditional data, 118

Variance analysis, 45, 58, 73, 110 Variance component, 53, 55, 175 Variance component estimation, 45, 57, 171, 176, 179 Variance components, 21, 39, 43, 51, 67 Variance estimation, 70 Vitesse program, 277

Web-Preplink program, 277

Yield and stability genes, 321 Yield potential, 321

Z-score computation, 270