$u^{^{\scriptscriptstyle b}}$

b UNIVERSITÄT RERN

Question 2:

- A) Consider the following *(non modular)* hash function. Messages are in the form of a sequence of numbers in Z_n , $M = (a_1, a_2, ..., a_t)$. The hash value is calculated as $\sum_{i=1}^t a_i$ for some predefined value n.
 - Does this hash function satisfy any of the requirements for a hash function (provided table)?
- B) Repeat part (a) for the hash function $h=(\sum_{i=1}^{t}(a_i)^2)modn$.
- C) Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and n = 989.

Explain your answers for all subquestions.

Requirement
Variable input size
Fixed output size
Efficiency
Preimage resistant (one-way property)
Second preimage resistant (weak collision resistant)
Collision resistant (strong collision resistant)

Pseudorandomness

Question 3:

b UNIVERSITÄT BERN

- A) State the value of the padding field in SHA-512 if the length of the message is:
 - 5000 bits
 - 5001 bits
 - 5002 bits
- B) State the value of the length field in SHA-512 if the length of the message is:
 - 5000 bits
 - 5001 bits
 - 5002 bits

For both subquestions justify your answer.

$u^{^{\mathsf{b}}}$

UNIVERSITÄT BERN

Question 4:

Explain the differences in the algorithms of SHA-3 and MD5. Which one is used today? Why?