Moiz Tanvir 22I-1932

Deep Learning Assignment 1 - Short Report

1. Network Details

This project implements a **multi-task convolutional neural network** to predict three outputs from face images:

- Expression (exp): 8-class categorical classification
- Valence (val): continuous regression
- Arousal (aro): continuous regression

Two pretrained backbones are evaluated:

- **ResNet50** and **VGG16**, both loaded with **ImageNet weights** and used as frozen feature extractors (include top=False).
- A shared **global average pooling** layer feeds a 512-unit ReLU dense layer with 0.5 dropout.
- Three heads branch out:
 - o exp: Dense(8, softmax)
 - o val: Dense(1, linear)
 - o aro: Dense(1, linear)

The model is compiled with **Adam optimizer**, multi-output losses (categorical_crossentropy for exp, mean-squared error for val and aro), and corresponding metrics (accuracy for exp, MSE for val/aro). Each network trains for **10 epochs** with a **batch size of 32**.

2. Dataset and Splits

The dataset directory contains images/ and per-image annotations/ for expression, valence, and arousal. After cleaning invalid labels (-2), the data are split as follows:

• **Training:** 64 % of total images

• Validation: 16 %

• Test: 20 %

A custom MultiOutputGenerator performs on-the-fly loading and optional augmentation (rotation, shifts, horizontal flips) for training batches.

3. Training Graphs

During training, expression accuracy and loss curves were plotted:

• **ResNet50** showed low but slightly improving training/validation accuracy.

• VGG16 displayed similar behavior but with higher overall validation loss and longer training time.

4. Performance Measures

For classification, the following metrics are computed on the held-out test set:

• Accuracy, Macro-F1, Cohen's Kappa, ROC-AUC, and mean Precision-Recall AUC.

For **regression** (valence & arousal):

• Root Mean Squared Error (RMSE), Pearson correlation (corr), Sign Agreement (SAGR), and Concordance Correlation Coefficient (CCC).

5. Results

Metric	ResNet50	VGG16
Classification Accuracy	0.1200	0.1200
F1 (macro)	0.0268	0.1056
Карра	0.0000	-0.0062
ROC-AUC	0.5376	0.4924
Valence RMSE	0.4813	0.4962
Valence Corr	0.0032	0.0523
Valence CCC	0.0002	0.0250
Arousal RMSE	0.3842	0.3948
Arousal Corr	0.0781	0.0109
Arousal CCC	0.0075	0.0052
Train Time (s)	1,194	5,482

6. Discussion & Comparison

- Both models perform **near chance** for the 8-class expression task (random ≈ 12.5 %), indicating that 10 epochs and frozen backbones are insufficient for meaningful learning.
- Regression outputs show **low correlation** and small CCC, though SAGR values (~0.7) suggest moderate agreement on sign.
- ResNet50 offers similar or slightly better regression metrics and finishes almost 4.5× faster than VGG16, making it the more efficient backbone under identical settings.
- VGG16 shows marginally higher macro-F1 but requires much longer training time.

7. Conclusion

The multi-output CNN framework successfully integrates classification and regression heads but requires **further tuning**—such as unfreezing deeper layers, longer training, and larger datasets—to surpass baseline performance. Among the tested architectures, **ResNet50** is **preferred** for its faster training and slightly stronger overall metrics.