2.
$$36^{\frac{1}{2}} = 6 \text{ or } 16^{\frac{1}{4}} = 2 \text{ is imputed M}$$

$$\frac{1}{8^{\frac{3}{2}}} \text{ or } \frac{1}{\sqrt[3]{8}}^{2}$$

$$\frac{1}{4} \text{ c.a.o}$$
Al

- (b) THE MINIMUM VALUE U "-4" AI AT PENAUSE "(-2,-4)" AS ANSWER
- (c) $3(x+2)^2 = 4^{11}$ MH $x+2 = \pm \left[\frac{1}{2}\right]^{1}$ *MI At $2 = -2 \pm \frac{2}{\sqrt{3}}$ or $2 = -2 \pm \frac{2}{3}\sqrt{3}$ o. \pm Al C.a.o

SHAPE SYMMETRICAL IN Y" BI (0₁3) 31

"SHARE IN CORRECT POSITION" (2,0)

(0,4) BI

SHIPE IN CORRECT POSITION

(0,7) Alder/

(b)
$$\left(\frac{dy}{6b} = \right) - 3x^2 - 2x$$
 M

IMPLIES GRADIENT IS -1 (NOTE THAT POINT IL ALSO (-1,0)
$$AI$$
 CORRECT USE OF $M-M=M(x-x_0)$

CORRECT USE OF
$$y-y_0=M(x-x_0)$$

$$y-0=-I(x+i)$$

6. (a)
$$(u_2 =) a + 260$$
 Al $(u_3 =) \frac{3}{2}a + 130$ Al $\frac{3}{4}a + 65$ Al $\frac{3}a + 65$ Al $\frac{3}{4}a + 65$ Al $\frac{3}{4}a + 65$ Al $\frac{3}{4}a + 65$

$$\frac{11}{4}9 + 65 = 72$$
 M * $9 = 4$ Ca.o Al

(b) "9 =
$$4 + \frac{1}{2}u_9$$
" MI
 $u_9 = 10$ AI

CALWLATTON MUST BE SEEN, THEN FRUAL 1116 A

8. a)
$$(f(\alpha) =) \int -\frac{4}{32} d\alpha = \frac{6}{2} \int -43^{2} d\alpha$$
. MI
 $(f(\alpha) =) \frac{4}{32} + c = \frac{6}{2} = \frac{4}{32} + c$ Al Al

 $c = -2 = \frac{6}{2} = \frac{4}{32} + c = \frac{4}{32} + c$ Al

 $c = -2 = \frac{6}{2} = \frac{4}{32} + c = \frac{4}{32} + c$ Al

9.
$$k(2x^2+1) = x^2 - 2x$$
 MI
 $(2k-1)x^2 + 2x + k = 0$ AI
 $b^2 - 4ac = 0$ or $2^2 - 4(2k-1)k = 0$ MI
 $2k^2 - k - 1 = 0$ or $8k^2 - 4k - 4 = 0$ AI
 $(2k+1)(k+1)$ MI
 $k = \begin{pmatrix} 1 & A1 \\ -\frac{1}{2} & A1 \end{pmatrix}$

10. a)
$$2(2x+4) + 2(3x+2)$$
 of $10x+12$ MI
 $27 < ||bx+12|| < 52$ Alft
 $27 - ||2|| < ||lox||| < 52 - ||2||$ MI ft.
 $1.5 < x < 4$ O.E AI

b)
$$(2x+4)(3x+2)-4x<98$$
 MI
 $6x^2+12x-90<0$ of $x^2+2x-15<0$ AI
 $(x-3)(x+5)$ MI
C.V ACK IMPLIED AS 3 & -5 (BOTH) AI
 $-5x^2$ OR SIMILAR METHOD MI
 $1.5<2$ $x<3$ 0.5 Al dep

11. a)
$$y - 4 = \frac{1}{2}(x - 3)$$
 o. \overline{x}
 $y = \frac{1}{2}x + \frac{5}{2}$

- 6) SUBSTITUTES CONVICINGY 2=3 TO OBTAN y=1
- c) $\sqrt{(1-4)^2+(-3-3)^2}$ 0.E $\sqrt{45}'$ OR $3\sqrt{5}'$

d)
$$\frac{1}{2}P + \frac{5}{2}P$$
 31
 $\sqrt{125} = \sqrt{(\frac{1}{2}P - \frac{3}{2})^2 + (P-3)^2}$ o. E (Squart Roots May) MI
 $500 = 5P^2 - 30P + 45$ o. E.
 $(-9) P^2 - 6P - 91 = 0$ Al
 $(-9) P + 13$ MI
 $(-9) P + 13$ MI
 $(-9) P + 13$ MI