Using RMarkdown for reproducible and neat documents

Your name here Your affiliation here

Contents

Overview	4
You can easily create headings. This is a first order heading.	4
Then move down in heading order size	4
Like this subheading	4
And this fourth order heading	4
Define equations	5
Create, alter, and embed plots	6
Show plots with associated code	7
And tables	9
Use buttons or tabs for sub-chapters	10
Chapter 1	10
Chapter 2 (with new code)	10
More tables	10
Embed code from different languages	11
This is R code	11
shell/bash	12
Octave (and MATLAB from the RMatlab package)	12
HTML	12
CSS	12
Javascript to access html and css	13

Refere	nces	13
	Here's a complete list of available languages	13
	Python	13

Date: !r Sys.Date() R version: !r getRversion() *Corresponding author: Your email here

Overview

This document showcases how to create and use RMarkdown documents.

You can easily create headings. This is a first order heading.

Then move down in heading order size

Like this subheading

And this fourth order heading

You can write in **bold** and *italicised* text (in **two** different ways).

You can write in-line code if you want to differentiate between when you are typing normally or highlighting model parameters, for example.

Equations like this $t' = \gamma(t - vx/c^2)$, to appear within text lines.

Create links to your website.

Make footnotes 1 .

Insert line breaks between text like this, which works best in large slabs of text Insert a horizontal line break using five asterisks ('*****')

The raw Rmd file also has the code for inserting user comments.

(There is also a page break here. Best seen in PDF. Check the raw Rmd file to see the code) $\,$

 $^{^1\}mathrm{Here}$ is the footnote you created earlier, automatically formatted

Define equations

Accordingly, we write the eigenfunction of a spinless particle as the superposition of plane wave states of momentum (π) and energy (E_j) having amplitudes $a(\pi, E_j)$ (from [1]).

$$\phi n(r,t) = \sum_{i,j} a(p_i, E_j) e^{\frac{i}{\hbar}(p_i \cdot r - E_j t)}$$

Create, alter, and embed plots

Figure 1. Example of a stock plot embedded into a PDF from RMarkdown.

Show plots with associated code

```
suppressWarnings(require(viridis))
bm <- 1
par(las=1,bty="n"); xlim <- c(-5,5); ylim <- c(0,0.5)
set.seed(12)
N <- 2000
rr <- rnorm(N); rr2 <- rnorm(N^2); rr3 <- rnorm(N+0.3)</pre>
rrd <- density(rr);rrd2 <- density(rr2);rrd3 <- density(rr3)</pre>
main <- pasteO(N," points but plot better");xlab <- "Points in space"</pre>
if(bm==1){
 layout(matrix(c(rep(1,3),2:4), 2, 3, byrow = TRUE));sc <- 1
 plot(rr,las=1,bty="n",col=adjustcolor(viridis(N),0.5),pch=20,cex=runif(10,1,5),
       main=main,xlab=xlab)
for(r in list(rrd,rrd2,rrd3)){
  plot(r,xlim=xlim,ylim=ylim,main="")
 polygon(r,col=adjustcolor(viridis(250)[sc],0.5),border=viridis(250)[sc]);sc <- sc+100}</pre>
}else{par(mfrow=c(1,1))
 plot(rr,las=1,bty="n",col=adjustcolor(viridis(N),0.5),pch=20,cex=runif(10,1,5),
       main=main,xlab=xlab)}
```

2000 points but plot better

N = 2000 Bandwidth = 0. = 4000000 Bandwidth = 0 N = 2000 Bandwidth = 0.

Figure 2. Example of a plot with improved graphics and its associated code embedded into the output document from RMarkdown.

And tables

Table 1. Definitions of model parameters for individual hosts and **parasites**. Dimensions and units: -, dimensionless; cm, centimetres; J, Joules; L, length.

Parameter	Definition	Dimension(unit)
L	structural length	cm
ee	scaled reserve density	$J (cm^3)$
D	host development	_
RH	energy in reproduction buffer	J

Use buttons or tabs for sub-chapters

Chapter 1

.

Then you can add whatever you want here like you would normally write in the ${\tt Rmd}$ file.

.

Chapter 2 (with new code)

Here's an Easter egg for you \dots

andom normally distributed

More tables

Here's a new way of creating tables using the DT package

Embed code from different languages

This is R code

```
pck <- 0
if(pck==1){
    p<-c("rJava", "RNetLogo"); remove.packages(p)
    # then install rJava and RNetLogo from source
    install.packages("rJava", repos = "https://cran.r-project.org/")
    install.packages("RNetLogo", repos = "https://cran.r-project.org/")
}</pre>
```

shell/bash

```
echo "Hello Bash!"

pwd # check working dir
git init # initialise git
```

Octave (and MATLAB from the RMatlab package).

RMatlab documentation.

HTML

```
<!-- links-->
       <div class="footer">
          <a href="dd_feed.html"
           class="transition fade_in">
              Latest post
           </a>
               
           <a href="dd_contact.html"
          class="transition fade_in">
              Contact
           </a>
               
          <a href="dd_subscribe.html"</pre>
          class="transition fade_in">
              Subscribe
           </a>
       </div>
```

CSS

```
# custom code for the tabs in this file
.btn {
    border-width: 0 Opx Opx Opx;
    font-weight: normal;
    text-transform: ;
}
.btn-default {
    color: #f08080;
    background-color: #ffffff;
    border-color: #ffffff;
}
```

Javascript to access html and css

```
$('.title').css('color', 'red')
```

Python

```
x = 'hello, python world!'
print(x.split(' '))
```

Here's a complete list of available languages

```
names(knitr::knit_engines$get())
##
    [1] "awk"
                     "bash"
                                  "coffee"
                                               "gawk"
                                                            "groovy"
                                                                         "haskell"
                                                                                      "lein"
    [9] "node"
                     "octave"
                                  "perl"
                                               "psql"
                                                            "Rscript"
                                                                         "ruby"
                                                                                      "sas"
                     "sh"
                                  "stata"
                                               "zsh"
                                                            "highlight"
                                                                         "Rcpp"
                                                                                      "tikz"
## [17] "sed"
## [25] "c"
                     "fortran"
                                  "fortran95" "asv"
                                                            "cat"
                                                                         "asis"
                                                                                      "stan"
                                                            "go"
## [33] "block2"
                     "js"
                                  "css"
                                               "sql"
                                                                                      "julia"
                                                                         "python"
## [41] "scss"
```

References

[1] Efthimiades, S., Physical meaning and derivation of Schrodinger and Dirac equations, Department of Natural Sciences, Fordham University, doi: d34464566.