[ЦПМ, кружок по математике] [2024-2025]

группа 10-1

А. Филатов 17 октября

Линейный функции

Числовая функция f на плоскости называется *линейной*, если выполнено одно из двух эквивалентных условий:

• Для любых точек A,B,C и вещественных λ и μ таких, что $\mu+\lambda\neq 0$ и точка C делит отрезок AB в отношении $\dfrac{\overline{AC}}{\overline{CB}}=\dfrac{\mu}{\lambda}$, верно равенство

$$f(C) = \frac{\lambda}{\lambda + \mu} f(A) + \frac{\mu}{\lambda + \mu} f(B).$$

• Существуют вещественных числа a,b,c такие, что для любой точки A с координатами (x,y) верно

$$f(A) = ax + by + c.$$

Основные примеры линейных функций:

- $f(X) \equiv const.$
- f(X) ориентированное расстояние от точки X до фиксированной прямой l.
- f(X) ориентированная площадь треугольника XBC, где B и C фиксированные точки.
- f(X) разность степеней точки X относительно двух фиксированных окружностей ω_1 и ω_2 .
- **1. (а)** Докажите, что множеством нулей линейной функции служит прямая, плоскость либо пустое множество.
 - **(b)** Докажите, что линейная комбинация линейных функций вновь линейная функция.
- 2. Построив соответствующую линейную функцию, докажите, что основания трёх внешних биссектрис неравнобедренного треугольника лежат на одной прямой.
- **3. (a)** В треугольнике *ABC* проведены биссектрисы AA_1 и CC_1 . На отрезке A_1C_1 взята произвольная точка P. Докажите, что сумма расстояний от P до AB и BC равна расстоянию до AC.
 - **(b)** Дан выпуклый четырёхугольник ABCD. Лучи AB и DC пересекаются в точке P, лучи AD и BC в точке Q. Биссектрисы углов BAD и BCD пересекаются в точке X, биссектрисы углов ABC и ADC в точке Y; наконец, внешние биссектрисы углов APC и AQC пересекаются в точке Z. Докажите, что точки X, Y, Z лежат на одной прямой.

- **4.** В остроугольном треугольнике ABC проведены высоты BB_1 и CC_1 . С центром в точке B построена окружность ω_B радиуса $\frac{1}{2}BB_1$; с центром в точке C построена окружность ω_C радиуса $\frac{1}{2}CC_1$. Прямая l общая внешняя касательная к окружностям ω_B и ω_C , не пересекающая треугольник ABC. Докажите, что инцентр треугольника, образованного прямыми AB, AC и l, лежит на отрезке BC.
- **5. (a)** (Прямая Гаусса) Продолжения сторон *AB* и *CD* выпуклого четырёхугольника *ABCD* пересекаются в точке *E*, продолжения сторон *BC* и *AD* в точке *F*. Построив соответствующую линейную функцию, докажите, что середины отрезков *AC*, *BD*, *EF* лежат на одной прямой.
 - **(b)** (*Теорема Ньютона*) Использовав построенную линейную функцию, докажите, что в описанном четырехугольнике центр вписанной окружности лежит на прямой Гаусса этого четырехугольника.
- **6.** Прямая l делит площадь и периметр треугольника ABC пополам. Докажите, что l проходит через центр вписанной окружности треугольника ABC.
- 7. Даны две окружности ω_A и ω_B , лежащие вне друг друга. Рассматриваются всевозможные пары точек A и B такие, что $A \in \omega_A$, $B \in \omega_B$ и длины отрезков касательных из A к ω_B и из B к ω_A равны. Найдите локус (т.е. геометрическое место) середин всевозможных отрезков AB.
- **8.** Внешние биссектрисы BB_1 и CC_1 треугольника ABC с наименьшей стороной BC пересекаются в точке I_A . На отрезках BC_1 , CB_1 взяли точки X и Y соответственно так, что отрезок XY проходит через I_A . Докажите, что отражения прямых CX и BY относительно осей CI_A и BI_A соответственно пересекаются на прямой B_1C_1 .
- **9.** Из точки на вписанной окружности треугольника провели касательные к трем вневписанным окружностям. Докажите, что из этих отрезков можно составить прямоугольный треугольник тогда и только тогда, когда она лежит на одной из средних линий треугольника.
- **10.** Вписанная окружность в треугольник *ABC* касается его сторон *BC*, *AC* и *AB* в точках A_1 , B_1 и C_1 . Прямая B_1C_1 пересекает описанную окружность *ABC* в точках P и Q. Окружность описанную около PA_1Q обозначим через ω_a . Аналогично определяются ω_b , ω_c . Докажите, что радикальный центр ω_a , ω_b и ω_c ортоцентр $A_1B_1C_1$.
- 11. Пусть O и H центр описанной окружности и ортоцентр остроугольного неравнобедренного треугольника ABC соответственно. Срединный перпендикуляр к отрезку AH пересекает стороны AB и AC в точках X_A и Y_A соответственно. Пусть K_A это точка пересечения описанных окружностей треугольников OX_AY_A и BOC, отличная от O. Аналогично определим точки K_B и K_C . Докажите, что K_A , K_B , K_C и O лежат на одной окружности.