Ly, Cuong, Assignment-1

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
library(faraway)
data("worldcup")
```

Question 1

```
dim(worldcup)
                          # There are 595 observations with 7 variables
## [1] 595
names(worldcup)
                          # 7 attributes in this dataset are Team, Position, Time, Shots,
                                                    "Passes"
## [1] "Team"
                  "Position" "Time"
                                         "Shots"
                                                                "Tackles"
                                                                           "Saves"
class(worldcup)
                          # Data Frame
## [1] "data.frame"
                            # Numerical variables are Time, Shots, Passes, Tackles, Saves
sapply(worldcup, class)
                                                        Tackles
##
        Team Position
                            Time
                                      Shots
                                               Passes
                                                                    Saves
              "factor" "integer" "integer" "integer" "integer" "integer"
                            # Categorical variables are Team and Position
```

Question 2

```
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
# a. The mean of saves that all players made
mean(worldcup$Saves)
                  # The mean of saves is 0.6672269
## [1] 0.6672269
# b. Number of players in each position
count(worldcup,c('Position')) # Defender: 188 Forward: 143
                                                         Goalkeeper: 36
##
    c("Position")
## 1
        Position 595
# c. The median number of shots that all plays made
median(worldcup$Shots) # The median numbers of shots is 1
## [1] 1
# d. The interquartile range (IQR) of passes that players made
IQR(worldcup$Passes) # The interquartile range of passes is 86.5
## [1] 86.5
______
Question 3
______
```

a. Number of forwards on each team table(worldcup\$Team,worldcup\$Position)[,2]

##	Algeria	Argentina	Australia	Brazil	Cameroon	Chile
##	3	6	3	4	5	5
##	Denmark	England	France	Germany	Ghana	Greece
##	3	4	5	6	5	5
##	Honduras	Italy	Ivory Coast	Japan	Mexico	Netherlands
##	5	6	5	4	5	5
##	New Zealand	Nigeria	North Korea	Paraguay	Portugal	Serbia
##	4	6	4	5	4	3
##	Slovakia	Slovenia	South Africa	South Korea	Spain	Switzerland
##	5	5	3	3	3	4
##	USA	Uruguay				
##	5	5				

Team had the most shots in total among all its forwards

arrange(summarize(group_by(filter(worldcup,Position=='Forward'),Team),total_shots = sum(Shots)),desc(to

```
## # A tibble: 32 x 2
     Team
##
              total_shots
##
     <fct>
                      <int>
## 1 Uruguay
                         46
## 2 Argentina
                         45
## 3 Germany
                          41
## 4 Netherlands
                          34
## 5 Spain
                          33
## 6 Ghana
                         32
## 7 Portugal
                          28
## 8 Paraguay
                          25
## 9 Brazil
                         23
## 10 USA
                          21
## # ... with 22 more rows
```

Team had the most shots in total among all its forwards is Uruguay

b. Team(s) had the defender with the most tackles

most_tackle <- max(tapply(worldcup\$Tackles,worldcup\$Team,max)) # The most tackles is 34
worldcup\$Team[worldcup\$Tackles==most_tackle]</pre>

```
## [1] Uruguay
```

32 Levels: Algeria Argentina Australia Brazil Cameroon Chile ... Uruguay

Uruguay is the team that had defender with the most tackles

c. Player played the longest time in the field? Which team did he come from?
How long did he play in the field?

```
max_time <- max(aggregate(worldcup$Time ~ worldcup$Team, max, data = worldcup)[,2]) # The max time is 5</pre>
worldcup[which(worldcup$Time==max_time),] # Use which to determine the index
                       Position Time Shots Passes Tackles Saves
##
## Arevalo Rios Uruguay Midfielder 570
                                      5
                                           195
                                                   21
## Maxi Pereira Uruguay Midfielder 570
                                       5
                                           182
                                                   15
                                            75
                                                    0
## Muslera
              Uruguay Goalkeeper 570
                                                        16
# Arevalo Rios, Maxi Pereira, and Muslera played the longest time in the field.
# They all came from Uruguay and they played 570 minutes
# d. The mean number of saves just among the goalkeepers
mean(worldcup[worldcup$Position == 'Goalkeeper', 'Saves'])
## [1] 11.02778
# The mean number of saves just among the goalkeepers is 11.02778
_______
Question 4
______
# a. Create a histogram
par(mfrow=c(2,2)) ##2 plots in each row, 2 plots in each column
for(i in 4:7) { hist(worldcup[,i], xlab=names(worldcup)[i], main=NULL) }
```



```
# We can see that four graphs are all skewed to the right
# A majority of players attempted less than 5 shots
# More than 90% of players passed less than 200
# Players mostly tackled less than 5 attempts
# 1 save is the majority
```

```
# b. Create a kernel density
par(mfrow=c(2,2))
for(i in 4:7) { plot(density(worldcup[,i]), main=NA, xlab=names(worldcup)[i]) }
```


Saves is the most difficult variable to distinguish the team's performance because the # number of observations center heavily around 0. In contrast, although Shots, Passess and # Tackles are also skewed to the right, there are some observations that lie in the right # (upper levels)

c. A boxplot to show the distribution of playing time in field by each country boxplot(worldcup\$Time~worldcup\$Team)


```
# The mean of playing time of more than half the teams is below 200
# 12 out of 32 teams have range of playing time more than 200
# The minimum value is fairly similar among teams. However, there's a big dissimilarity in
# the maximum values among teams
```

d. Correlation among all the numeric variables. Plot the correlation matrix cor(worldcup[,3:7])

```
##
                Time
                         Shots
                                              Tackles
                                    Passes
                                                            Saves
           1.0000000 0.4079231
## Time
                                0.81511932 0.6106735
                                                      0.22847723
## Shots
          0.4079231
                     1.0000000
                                0.34316326
                                           0.1762829 -0.15495828
                                1.00000000 0.7020965 -0.06205701
## Passes
          0.8151193
                     0.3431633
## Tackles 0.6106735
                     0.1762829
                                0.70209651
                                           1.0000000 -0.20118978
          0.2284772 -0.1549583 -0.06205701 -0.2011898 1.00000000
## Saves
```

library(corrplot)

corrplot 0.92 loaded

```
corrplot(cor(worldcup[,3:7]))
```



```
# Passes and Time have the highest correlation
# Tackles and Save have the lowest correlation
# Passes and Time also have high correlation
# Passes and Tackles have high correlation
# For Saves, except Time, it has a negative correlation with Shots, Passess, and Tackles
```

```
# e. A scatter plot to show the associations among shots, passes, tackles and saves by each position.

plot(worldcup[4:7], pch=21, bg=rainbow(4)[worldcup$Position], oma=c(4,3,3,3))

mtext(at=c(0.2,0.35,0.5,0.65), side=1, line=4, text=levels(worldcup$Position), col=rainbow(4))
```



```
{\it \# Midfielder \ has \ more \ passes \ but \ forward \ has \ the \ most \ shots}
```

- # Midfielder also has the most tackles
- # Goalkeeper has the most saves
- # Defender does tackles, but less than midfielder
- # Midfielder is the busiest position on the field.