Advanced Topics in statistical signal Processing

Mobile Adaptive Networks

Signal Processing Group Technische Universität Darmstadt Supervisor: Sahar Khawatmi

Overview

Motivation

Diffusion Strategies

Data Model

ATC diffusion algorithm

Performance Analysis

Simulation

Conclusion

References

Motivation

Many biological systems exhibit sophisticated levels of adaptation and coordination, which result in remarkable and observable forms of collective motion and self-organization.

Motivation

Mobile adaptive networks exhibits these qualities:

- Robust
- ► Can react in real time to changes in the statistical properties of data
- Can adjust the network topology

Figure: Distributed Solution

Disadvantages of centralised solution:

- Single point of failure
- ► Too much information exchange between node and fusion center
- ▶ it is not easily scalable

Figure: Centralised Solution

Diffusion Strategies

- ► ATC-Adapt Then Combine
- ► CTA-Combine Then Adapt

Data Model

Measurement Model

$$d_k^o(i) = u_{k,i}^o(w^o - x_{k,i})$$
$$u_k^o = \frac{(w^o - x_k)^T}{\|w^o - x_k\|}$$
$$\mathbf{d}_k(i) = \mathbf{u}_{k,i}w^o + \mathbf{n}_k(i)$$

Cost Function

$$J^{\text{glob}}(w) = \sum_{i=1}^{N} E|\mathbf{d}_{k}(i) - \mathbf{u}_{k,i}w|^{2}$$

Data Model

The noisy location of the target is denoted by $q_{k,i}$

$$q_{k,i} = x_{k,i} + d_k(i)u_{k,i}^T$$

= $w^o + \eta_{k,i}$

where the vector noise term is given by:

$$\eta_{k,i} = n_k^d(i)u_{k,i}^T + d_k(i)n_{k,i}^{uT} + n_k^d(i)n_{k,i}^{uT}$$

We assume that $\eta_{k,i}$ is zero mean white random process with covariance matrix $C_{k,i}$ and let $\sigma_k^2(i) = \text{Tr}(C_{k,i})$ denote the trace of $C_{k,i}$.

$$C_{k,i} = \kappa \|\mathbf{w} - \mathbf{x}_{k,i}\|^2 I_M$$

ATC diffusion algorithm: Adapt-then-Combine diffusion algorithm

- 1) location $x_{k,i}$, $\{d_k(i), u_{k,i}, v_{k,i}, \sigma_k^2(i)\}$
- 2) Find $q_{k,i} = x_{k,i} + d_k(i)u_{k,i}^T$
- 3)

$$\varphi_{k,i} = w_{k,i-1} + \mu_k \sum_{l \in \mathcal{N}_{k,i}} c_{l,k}^{w} (q_{l,i} - w_{k,i-1})$$

$$\varphi_{k,i} = v_{k,i-1}^{g} + \nu_k \sum_{l \in \mathcal{N}_{k,i}} c_{l,k}^{v} (v_{l,i} - v_{k,i-1}^{g})$$

4)

$$w_{k,i} = \sum_{I \in \mathcal{N}_{k,i}} a_{I,k}^w \varphi_{I,i}$$
$$v_{k,i}^g = \sum_{I \in \mathcal{N}_{k,i}} a_{I,k}^v \phi_{I,i}$$

5)

$$\begin{aligned} v_{k,i+1} &= \lambda \cdot h(w_{k,i} - x_{k,i}) + \alpha \frac{g_{k,i}}{\|g_{k,i}\|} + \beta v_{k,i}^g + \gamma \delta_{k,i} \\ x_{k,i+1} &= x_{k,i} + \Delta t \cdot v_{k,i+1} \end{aligned}$$

$$v_{k,i+1} = \lambda \cdot h(w_{k,i} - x_{k,i}) + \alpha \frac{g_{k,i}}{\|g_{k,i}\|} + \beta v_{k,i}^g + \gamma \delta_{k,i}$$

Assign every node k two sets of non-negative real coefficients $c_{k,l}$ and $a_{l,k}$

$$\sum_{l=1}^{N} c_{k,l} = \sum_{l=1}^{N} a_{l,k} = 1, \quad c_{l,k} = a_{l,k} = 0 \quad \text{if} \quad l \notin \mathcal{N}_k.$$

$$h(w - x_k) = \begin{cases} w - x_k, & \text{if} \quad ||w - x_k|| \le s \\ s \cdot \frac{w - x_k}{||w - x_k||}, & \text{otherwise} \end{cases}$$

$$\delta_{k,i} = \sum_{l \in \mathcal{N}_k \setminus \{k\}} (||x_{l,i} - x_{k,i}|| - r) \frac{x_{l,i} - x_{k,i}}{||x_{l,i} - x_{k,i}||}$$

$$g_{k,i} = -\sum_{l \in \mathcal{N}_k \setminus \{k\}} [\sigma_i^2(l) - \sigma_k^2(i)] \frac{x_{l,i} - x_{k,i}}{||x_{l,i} - x_{k,i}||}$$

Figure: Near-field and far-field

$$0<\mu_k<\frac{2}{\lambda_{max}(R_u)}$$

 $R_u = E[\mathbf{u}^T \mathbf{u}]$ Covariance matrix

Figure: Cost function

Mean-Square-Deviation:

$$MSD_w \stackrel{\triangle}{=} \lim_{i \to \infty} \frac{1}{N} \sum_{k=1}^N E \| w - \mathbf{w}_{k,i} \|^2$$

Mean-Square-Error:

$$\mathsf{MSE}_{v} \stackrel{\triangle}{=} \frac{1}{N} \sum_{k=1}^{N} E \| \mathbf{v}_{\hat{i}}^{g} - \mathbf{v}_{k, \hat{i}}^{g} \|^{2}$$

Mean-Square-Disagreement:

$$D_{v} \stackrel{\triangle}{=} \frac{1}{N} \sum_{k=1}^{N} E \|\mathbf{v}_{\hat{i}}^{g} - \mathbf{v}_{k,\hat{i}}\|^{2}$$

Figure: Transient network MSD for estimating the target location, w^{o}

Figure: Transient network MSE for estimating the velocity of the center gravity in the far-field

Figure: Transient network mean-square disagreement of velocities in the far-field

Figure: Transient network MSD for estimating the target location w^o

Simulation

Number of nodes N	50
Dimension	2
C-Matrix	Identity Matrix
A-Matrix	Uniform distribution
μ	0.5
Max-Neighbours	10
α	0.5
γ	0.5
κ	0.0005
β	0.5
λ	0.5

Table: Simulation Parameters

Figure: Maneuvers of mobile networks at t = 25 sec

Figure: Maneuvers of mobile networks at t = 75 sec

Figure: Maneuvers of mobile networks at t = 150 sec

Figure: Maneuvers of mobile networks at t = 200 sec

Figure: Noise variance over the plane.

Maneuvers of mobile networks in \mathbb{R}^2 over time.

Maneuvers of mobile networks in \mathbb{R}^2 over time.

Conclusion

- Strategies involve two diffusion steps
 - Estimation of Target
 - Tracking the centre of the mass of the network
- ▶ Analysis of mean-square performance of the diffusion scheme
- ▶ Simulation of Algorithm to emulate coherent motion

References

- 1. S. Y. Tu and A. H. Sayed," Mobile Adaptive Networks", *IEEE journal of selected topics in signal processing*, vol. 5, no. 4, pp. 649-664, August 2011.
- 2. A. H. Sayed, S. Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, "Diffusion Strategies for Adaptation and Learning over Networks", *IEEE signal processing magazine*, pp. 155-171, May 2013.
- F. S. Cattivelli and A. H. Sayed, Diffusion LMS Strategies for Distributed Estimation, *IEEE Transactions on Signal Processing*, vol. 58, no. 3, pp. 10351048, Mar. 2010.

Thanks for your attention! Any questions?