Méthode: Exploiter un spectre de raies

Le spectre d'émission d'un élément chimique est donné ci-dessous.

- Déterminer la longueur d'onde de chaque rayonnement monochromatique présent dans le spectre.
- Déterminer l'échelle de l'axe gradué représentant les longueurs d'onde.

6,0 cm sur l'axe gradué représentent 200 nm.

Mesurer la position, par rapport à l'origine de l'axe gradué, de chaque rayonnement monochromatique.

Les rayonnements sont respectivement à 1,4 cm, 3,3 cm et 3,6 cm de la première graduation de l'axe gradué soit 500 nm.

En déduire, à l'aide de l'échelle, les longueurs d'onde correspondantes.

On calcule pour le premier rayonnement :

•
$$\lambda_1 = 500 + \frac{1.4 \times 200}{6.0} = 547 \text{ nm}.$$

De la même façon, on obtient pour les rayonnements suivants $\lambda_2 = 610$ nm et $\lambda_3 = 620$ nm.

Identifier l'élément chimique.

Données Longueurs d'onde de quelques raies spectrales

Élément chimique	Oxygène O	Phosphore P
Longueurs d'onde à	437;533;	545;547;
(en nm)	543 ; 558 ; 615	609 ; 619

Comparer les longueurs d'onde des rayonnements du spectre à ceux caractéristiques des éléments chimiques.

Par comparaison et en tenant compte des imprécisions de mesure, on identifie l'élément phosphore.

Méthode : Exploiter un spectre de raies

Le spectre d'émission d'un élément chimique est donné ci-dessous.

- Déterminer la longueur d'onde de chaque rayonnement monochromatique présent dans le spectre.
- Déterminer l'échelle de l'axe gradué représentant les longueurs d'onde.

6,0 cm sur l'axe gradué représentent 200 nm.

Mesurer la position, par rapport à l'origine de l'axe gradué, de chaque rayonnement monochromatique.

Les rayonnements sont respectivement à 1,4 cm, 3,3 cm et 3,6 cm de la première graduation de l'axe gradué soit 500 nm.

En déduire, à l'aide de l'échelle, les longueurs d'onde correspondantes.

On calcule pour le premier rayonnement :
$$\bullet \; \lambda_1 = 500 + \frac{1.4 \times 200}{6.0} = 547 \; \text{nm}.$$

De la même façon, on obtient pour les rayonnements suivants $\lambda_2 = 610$ nm et $\lambda_3 = 620$ nm.

Identifier l'élément chimique.

Données Longueurs d'onde de quelques raies spectrales

Élément chimique	Oxygène O	Phosphore P
Longueurs d'onde à	437;533;	545;547;
(en nm)	543 ; 558 ; 615	609 ; 619

Comparer les longueurs d'onde des rayonnements du spectre à ceux caractéristiques des éléments chimiques.

Par comparaison et en tenant compte des imprécisions de mesure, on identifie l'élément phosphore.