112062576 Lab5 report

前言:

對每一個參數設定不同的值一個一個去比較情況,所以總共會有 3*3*3*3*2*2=324 種不同的 benchmark outputs,並且統一用 csv 紀錄。

Define parameter ranges

batch_sizes=(16 32 64)

seq lengths=(512 1024 2048)

num heads=(8 16 32)

emb dims=(512 1024 2048)

implementations=("Pytorch" "Flash2")

causal flags=(true false)

Analyze:

1. Cuda out of memory

觀測何種狀況會導致 Cuda out of memory。基本上當 seq_lengths >= 1024 && batch size >= 32 時就會發生了

2. Peak Memory Usage vs Number of Attention Heads

隨著 Attention head 數量增加,記憶體使用量也顯著增加。尤其當注意力頭數從 8 增加到 16 和 32 時,記憶體使用量有大幅上升。在相同的注意力頭數量下,Flash2 相比於 PyTorch 實作,記憶體使用量低。PyTorch 在Attention heads 數增加時,由於計算的並行性和矩陣操作變多,其內部實現可能無法像 Flash2 一樣進行高效優化,因此導致記憶體使用量更高。

3. FLOPS vs Sequence Length

PyTorch 實作使用藍色, Flash2 使用紅色, 每條線上的不同點是由於在不同的實驗中考慮了其他參數 (例如 batch、heads 等) 的變化而導致的。

從圖中可以看到,無論 Flash2 Pytorch 方式, FLOPS 雙雙都有提升,但可以看的出來 Flash2 明顯優於 PyTorch 成長幅度,甚至在序列長度增加到 1024 及以上時, Flash2 的 FLOPS 顯示出更高的計算效率,達到 40 TFLOPs/s 左右。

說明 Flash2 更適合應用於計算密集型且需要處理大量長序列的場景。

4. Forward Time Vs Batch Size

在固定參數的情況下(seq_lengths = 1024, num_heads = 16, emb_dims = 1024), 不同 batch_sizes 下的 forward time 對比。

可以先發現第一點,當 batch_size 為 64 時,PyTorch 遇到了「記憶體不足 (Out of Memory)」的情況,特別是在 seq_lengths、num_heads 和 emb_dims 都相對較高的情況下,模型需要使用大量的 Cuda memory 來進行矩陣計算 和存儲中間結果。

隨著批量大小增加,每次前向傳播需要處理的數據量增多,這導致了計算負荷和內存需求的增加。因此,前向傳播時間隨著批量大小的增加而增加是符 合預期的。

