Applied Statistics

Course Code: MAT1011

Dr. Sukanta Nayak

Department of Mathematics School of Advanced Sciences VIT-AP University, Amaravati Andhra Pradesh

Measures of Central Tendency

- A measure of central tendency is a descriptive statistic that describes the average, or typical value of a set of scores
- There are three common measures of central tendency:
 - the mode
 - the median
 - the mean

The Mode

• The *mode* is the score that occurs most frequently in a set of data

Bimodal Distributions

• When a distribution has two "modes," it is called *bimodal*

Multimodal Distributions

• If a distribution has more than 2 "modes," it is called *multimodal*

When To Use the Mode

- The mode is not a very useful measure of central tendency
 - It is insensitive to large changes in the data set
 - That is, two data sets that are very different from each other can have the same mode

When To Use the Mode

- The mode is primarily used with nominally scaled data
 - It is the only measure of central tendency that is appropriate for nominally scaled data

The Median

- The *median* is simply another name for the 50th percentile
 - It is the score in the middle; half of the scores are larger than the median and half of the scores are smaller than the median

How To Calculate the Median

- Conceptually, it is easy to calculate the median
 - There are many minor problems that can occur; it is best to let a computer do it
- Sort the data from highest to lowest
- Find the score in the middle
 - middle = (N + 1) / 2
 - If N, the number of scores, is even the median is the average of the middle two scores

Median Example

- What is the median of the following scores:
 10 8 14 15 7 3 3 8 12 10 9
- Sort the scores: 15 14 12 10 10 9 8 8 7 3 3
- Determine the middle score:
 middle = (N + 1) / 2 = (11 + 1) / 2 = 6
- Middle score = median = 9

Median Example

- What is the median of the following scores:
 24 18 19 42 16 12
- Sort the scores:42 24 19 18 16 12
- Determine the middle score:
 middle = (N + 1) / 2 = (6 + 1) / 2 = 3.5
- Median = average of 3^{rd} and 4^{th} scores: (19 + 18) / 2 = 18.5

When To Use the Median

- The median is often used when the distribution of scores is either positively or negatively skewed
 - The few really large scores (positively skewed) or really small scores (negatively skewed) will not overly influence the median

The Mean

- The *mean* is:
 - the arithmetic average of all the scores $(\Sigma X)/N$
 - the number, m, that makes $\Sigma(X m)$ equal to 0
 - the number, m, that makes $\Sigma(X m)^2$ a minimum
- The mean of a population is represented by the Greek letter μ ; the mean of a sample is represented by X

Calculating the Mean

- Calculate the mean of the following data:
 - 1 5 4 3 2
- Sum the scores (ΣX):

$$1 + 5 + 4 + 3 + 2 = 15$$

- Divide the sum ($\Sigma X = 15$) by the number of scores (N = 5): 15 / 5 = 3
- Mean = X = 3

When To Use the Mean

- You should use the mean when
 - the data are interval or ratio scaled
 - Many people will use the mean with ordinally scaled data too
 - and the data are not skewed
- The mean is preferred because it is sensitive to every score
 - If you change one score in the data set, the mean will change

Relations Between the Measures of Central Tendency

- In symmetrical distributions, the median and mean are equal
 - For normal distributions, mean = median = mode
- In positively skewed distributions, the mean is greater than the median
- In negatively skewed distributions, the mean is smaller than the median

Examples

Example 2.1. (a) Find the arithmetic mean of the following frequency distribution:

```
x: 1 2 3 4 5 6 7

f: 5 9 12 17 14 10 6

(b) Calculate the arithmetic mean of the marks from the following table:

Marks: 0-10 10-20 20-30 30-40 40-50 50-60

No. of students: 12 18 27 20 17 6
```

Solution	n
Solution.	ļu

x	\overline{f}	fx	
1 2 3 4 5 6 7	5 9 12 17 14 10 6	5 18 36 68 70 60 42 299	

$$\therefore \quad \overline{x} = \frac{1}{N} \quad \Sigma f x = \frac{299}{73} = 4.09$$

(b)

Marks	No. of students (f)	Mid - point (x)	fx
0-10 10-20 20-30 30-40 40-50 50-60	12 18 27 20 17 6	5 15 25 35 45 55	60 270 675 700 765 330
Total	100		- 2,800

Arithmetic mean or
$$\bar{x} = \frac{1}{N} \Sigma f x = \frac{1}{100} \times 2,800 = 28$$

Example 2.2. Calculate the mean for the following frequency distribution.

Class-interval:

0-8 8-16 16-24 24-32

32-40

Frequency:

16 24

15

Solution.

Class-interval	mid-value	Frequency	d = (x-A)/h	fd
	(x)	(f)		
0–8	4	8	-3	-24
8–16	12	7	-2	-14
16-24	20	16	-1,	-16
24-32	28	24	0	0
32-40	36	15	1	15
40-48	44	7	2	14
		77		-25

Hère we take A = 28 and h = 8.

$$\vec{x} = A + \frac{h \sum f d}{N} = 28 + \frac{8 \times (-25)}{77} = 28 - \frac{200}{77} = 25.404$$

Example 2.3. The average salary of male employees in a firm was Rs.520 and that of females was Rs.420. The mean salary of all the employees was Rs.500. Find the percentage of male and female employees.

Solution. Let n_1 and n_2 denote respectively the number of male and female employees in the concern and \overline{x}_1 and \overline{x}_2 denote respectively their average salary (in rupees). Let \overline{x} denote the avarage salary of all the workers in the firm.

We are given that:

$$\overline{x}_1 = 520$$
, $\overline{x}_2 = 420$ and $\overline{x} = 500$

Also we know

$$\overline{x} = \frac{n_1 \,\overline{x_1} + n_2 \,\overline{x_2}}{n_1 + n_2}$$

$$\Rightarrow 500 \, (n_1 + n_2) = 520 \, n_1 + 420 \, n_2$$

$$\Rightarrow (520 - 500) \, n_1 = (500 - 420) \, n_2$$

$$\Rightarrow 20 \, n_1 = 80 \, n_2$$

$$\Rightarrow \frac{n_1}{n_2} = \frac{4}{1}$$

Hence the percentage of male employees in the firm

$$=\frac{4}{4+1}\times 100 = 80$$

and percentage of female employees in the firm

$$=\frac{1}{4+1}\times 100=20$$

Example 2.5. Obtain the median for the following frequency distribution:

x: 8 10 11 16 20 -25 15

Solution.

x	\overline{f}	c.f.
i	8	8
2	10	18
3	11	29
4	16	45
5	20	65
6	25	90
7	15	105
8	9	114 120
9	6	120
	120	

Hence $N = 120 \implies N/2 = 60$

Cumulative frequency (c.f.) just greater than N/2, is 65 and the value of x corresponding to 65 is 5. Therefore, median is 5.

Example 2.6. Find the median wage of the following distribution:

No. of labourers: 3 5 20 10 5

[Gorakhpur Univ. B. Sc. 1989]

Solution.

Wages (in Rs.)	No. of labourers	c.f.
20-30	3 .	3
3040	5	8
4050	20	28
50—60	10	38
60—70	·5	43

Here N/2 = 43/2 = 21.5. Cumulative frequency just greater than 21.5 is 28 and the corresponding class is 40-50. Thus median class is 40-50. Hence using (2.6), we get

Median =
$$40 + \frac{10}{20}(21.5 - 8) = 40 + 6.75 = 46.75$$

Thus median wage is Rs. 46.75.

References

- 1. Norean R. Sharpe, Richard D. De Veaux, Paul F. Velleman, Business Statistics, Fourth Edition, Pearson Education. 2019.
- 2. R.E. Walpole, R.H. Mayers, S.L. Mayers and K.Ye, Probability and Statistics for engineers and scientists, 9th Edition, Pearson Education, 2018.
- 3. S. C. Gupta and V. K. Kapoor, Fundamentals of Applied Statistics, S. Chand, 2006.
- 4. Douglas C. Montgomery, George C. Runger, Applied Statistics and Probability for Engineers, Sixth Edition, John Wiley and Sons, 2014.
- 5. Miller & Freund's, Probability and statistics for engineers, 8th edition, Pearson publication, 2018.

THE END