# Elementi di Informatica (Lezione I) Introduzione

## Cos'è l'informatica?

## Informatica

Informazione + Automazione

Si riferisce ai processi e alle tecnologie che rendono possibile l'immagazzinamento e l'elaborazione dell'informazione.

### Evoluzione della teoria

#### ➤Gli antenati del moderno computer:

- Macchina analitica di Babbage (1830).
- Macchina universale di Turing (anni '30).
  - Nozione di computabilità.
- Macchina di von Neumann (anni '40).

## La macchina computer ...

Il *modello* iniziale (grezzo) che assumeremo di un computer è il seguente:



## I due grandi "protagonisti" del computer

#### DATI OPERAZIONI

- ➤ Prima di "metter mano" alla programmazione dobbiamo:
  - acquisire un "modello mentale" di come il computer rappresenta i DATI;
  - acquisire un "modello mentale" di come il computer organizza ed esegue le sue OPERAZIONI;
- La presentazione di *modelli* adeguati per dati e operazioni sarà oggetto delle prossime discussioni.

## Sono davvero differenti i due "protagonisti"?

#### ≻NO!

- L'equivalenza tra dati e programmi è un principio matematico scoperto nel 1920 da Church. Questo fatto è di grande importanza per la così detta "programmazione funzionale" (LISP, SCHEME, parte dell'HASKEL).
  - Rincontrerete questa equivalenza nella vostra formazione più tardi.
- ➤ Per questo corso, assumeremo un punto di vista più "classico" distinguendo bene tra i due.

#### DATI

- ➤ In maniera un po' semplificata diremo che i *dati* sono:
  - Numeri
    - interi, decimali;
  - Testi
    - sequenze alfanumeriche;
  - · Testi "formattati"
    - sequenze alfanumeriche con codici che ne condizionano la "apparenza";
  - · Segnali digitali
    - "imitano" i segnali analogici a cui siamo abituati (suoni e immagini).
- ➤ In seguito, vedremo come il computer rappresenta tali informazioni.

## I dati e l'alfabeto digitale...

0 , 1

 $1024 = 2^{10}$ 

- ➤ Una cifra binaria è pari ad 1b (BIT).
- ➤ 8 cifre binarie sono pari ad 1B (BYTE).
  - 1024 B sono pari ad 1KB (un KiloByte);
  - 1024 KB sono pari ad 1MB (un MegaByte);
  - 1024 MB sono pari ad 1GB (un GigaByte);
  - 1024 GB sono pari ad 1TB (un TeraByte).

#### **OPERAZIONI**

- ➤ In generale, un computer esegue *operazioni* logiche e aritmetiche.
- ➤ Un *programma* contiene la descrizione di tutte le operazioni da eseguire.
  - L'attività del redigere programmi per i calcolatori è detta *programmazione* e sarà l'obiettivo del corso.

## Impariamo a programmare ...

- ➤ Partiamo un po' da lontano ...
  - Programmare è una attività che si "apprende"!
    - Come fare?
    - Da dove iniziare?
  - Procediamo con una analogia:
    - Come si fa ad imparare a guidare?
      - ❖ Un po' di teoria, tanta pratica.
      - Sono necessari tutti e due gli ingredienti?

## Perché bisogna "sapere" prima di "fare"?

#### ➤ Procediamo con l'analogia:

- Dobbiamo sapere:
  - a cosa servono i pedali,
  - a cosa serve lo sterzo,
  - a cosa servono i pulsanti,
  - eccetera ...
- Per poter guidare ...senza problemi !!!

## "Sapere a cosa serve" vuol dire:

- ➤ Possedere un <u>MODELLO MENTALE</u> della macchina che si ha di fronte.
  - In termini più precisi significa:
    - Conoscere le parti della macchina;
    - Conoscere in quali "stati" la macchina si può trovare;
    - Sapere come cambia lo "stato" della macchina agendo sulle sue parti;
    - Sapere "leggere" gli "stati" della macchina.

## Ma per "sapere" occorre "fare"!

- ➤ L'uomo apprende "facendo"!
  - Un principiante viene informato dall'istruttore che premere il freno arresta la macchina (teoria). Il principiante acquisisce un primo "modello mentale" abbastanza grezzo del freno.
    - Ma quanto premere? Quanto veloce? Con che rapidità si arresta l'auto dopo la frenata? Solo la *pratica* potrà portare il principiante ad un modello raffinato e "utile".
  - Come si può apprendere un modello simile senza l'esperienza?

Ovvero, come imparereste a programmare senza *esercitarvi* ???

