31. Es sei P[x] die Menge aller Polynome $\sum_{i=0}^{N} a_i \times i$, $N \in \mathbb{N}_0$, $a_i \in \mathbb{Z}$, $a_N \neq 0$ für N > 0, sowie $P_+[x]$ die Menge aller Polynome $\sum_{i=0}^{N} a_i \times i$ mit $a_N > 0$. Auf $P[x] \times P_+[x]$ sei die Relation \sim durch

 $(p,q) \sim (\hat{p},\hat{q}) \Leftrightarrow p\hat{q} = \hat{p}q$

definiert. Zeigen Sie, dass ~ eine Aquivalenzrelation ist.

Beweis: Reflexivität: $(p,q) \sim (p,q) \Leftrightarrow pq = pq$ Symmetrie: $(p,q) \sim (\hat{p},\hat{q}) \Leftrightarrow p\hat{q} = \hat{p}q \Leftrightarrow \hat{p}q = p\hat{q} \Leftrightarrow (\hat{p},\hat{q}) \sim (p,q)$

Transitivität: Seien $(p,q) \sim (\hat{p},\hat{q})$ und $(\hat{p},\hat{q}) \sim (\bar{p},\bar{q})$, also $p\hat{q} = \hat{p}q$ und $\hat{p}\bar{q} = \bar{p}\hat{q}$. Dann ist

 $p(\hat{p}\hat{q}) = p(\hat{p}\hat{q}) = p(\hat{q}\hat{p}) = (\hat{p}\hat{q})\hat{p} = (\hat{p}\hat{q})\hat{p} = \hat{p}(\hat{q}\hat{p}) = \hat{p}(\hat{p}\hat{q}) \Rightarrow p\hat{q} = \hat{p}\hat{q}$

Weil beim ersten und Letzten Term $\hat{\rho}$ gekürzt werden kann, folgt $p\bar{q} = \bar{p}q \iff (p,q) \sim (\bar{p},\bar{q})$.

32. Definieren Sie auf $P[x] \times P_{+}[x]$ eine Addition $^{+}$ und Multiplikation $^{+}$, die sich auf die Äquivalenzklassen $[(p,q)]_{\sim}$ übertragen lässt, sodass die Menge

mit diesen Operationen zu einem Körper K wird. Es reicht, wenn Sie die Aussage für die Addition beweisen, d.h. wenn Sie Zeigen dass K mit der so definierten Addition auf K und einem Willelement O_K & K eine Kommutative Groppe ist.

Hinw. ! Q

7

39

Wir definieren die Addition auf P[x] x P_[x] wie folgt:

+ '
$$\left\{ \left(P[x] \times P_{+}[x] \right)^{2} \rightarrow P[x] \times P_{+}[x] \right\}$$

 $\left\{ \left(p_{1}q \right) + \left(\hat{p}_{1}\hat{q} \right) \mapsto \left(p\hat{q} + \hat{p}q_{1}q\hat{q} \right) \right\}$

Somit ist (K, +) eine abel'sche Gruppe.

Beweis: Assoziativität: $((p,q) + (\hat{p},\hat{q})) + (\bar{p},\bar{q}) = (p\hat{q} + \hat{p}q,q\hat{q}) + (\bar{p},\bar{q}) = ((p\hat{q} + \hat{p}q)\bar{q} + \bar{p}q\hat{q},q\hat{q}\bar{q}) = (p\hat{q}\bar{q} + \hat{p}q\bar{q} + \bar{p}q\bar{q},q\hat{q}\bar{q}) = (p\hat{q}\bar{q} + \hat{p}q\bar{q} + \bar{p}q\hat{q},q\hat{q}\bar{q}) = (p,q) + (\hat{p}\bar{q} + \bar{p}\hat{q},q\hat{q}) = (p,q) + (\hat{p}\bar{q},q) + (\bar{p}\bar{q},q)$

Neutrales Element: $(p,q) + (0,1) = (p \cdot 1 + 0 \cdot q, q \cdot 1)$ = (p,q)

Inverses Element: $(p,q) + (-p,q) = (pq - pq, qq) = (0,qq)^{-1}$ $(0,qq)^{-1}$ (0,1), weil $0\cdot 1 = 0\cdot qq$

In sich ageschlossen: $(p,q) + (\hat{p},\hat{q}) = (p\hat{q} + \hat{p}q,q\hat{q})$, wobei $p\hat{q} + \hat{p}q \in P[x]$ ($a_i \in \mathbb{Z}$, $a_n \neq 0$, weil bei $q_i\hat{q}$ gilt $a_n \geq 0$ und somit $a_n \neq 0$) und $q\hat{q} \in P_+[x]$ ($a_n \geq 0$, weil bei $q_i\hat{q}$ gilt $a_n \geq 0$ und somit $a_n^q = a_n^{q\hat{q}} \geq 0$). Daher gilt $(p\hat{q} + \hat{p}q,q\hat{q}) \in P[x] \times P_+[x]$.

Kommutativität: $(p,q) + (\vec{p},\vec{q}) = (p\vec{q} + \vec{p}q, q\vec{q}) = (\vec{p}q + p\vec{q}, \vec{q}q)$ = $(\vec{p},\vec{q}) + (p,q)$.

Die Operation + lässt sich auf Äquivalenz klassen übertragen, da a + 6 nicht von den gewählten Repräsentanten (p,q) und (p,q) abhängig ist.

 $a + 6 := [(p,q) + (\hat{p},\hat{q})]_{2}$ mit a = (p,q) und $b = (\hat{p},\hat{q})$.

Dus liegt davam, dass wenn $(p,q) \sim (\hat{p},\hat{q})$ und $(r,s) \sim (\hat{r},\hat{s})$, also $p\hat{q} = \hat{p}q$ und $r\hat{s} = \hat{r}s$, dann $(p,q) + (r,s) \sim (\hat{p},\hat{q}) + (\hat{r},\hat{s})$.

Pazu zeigen wir voserst $(p_{iq}) + (r_{is}) \sim (\hat{p}_{iq}) + (r_{is})$: $(p_{iq}) + (r_{is}) = (p_{s} + r_{q}, q_{s})$ und $-" - = (\hat{p}_{s} + r_{q}, \hat{q}_{s})$ und daher $(p_{s} + r_{q})\hat{q}_{s} = (\hat{p}_{s} + r_{q})q_{s}$, we'l

 $(p_5+r_9)\hat{q}_5 = p_5\hat{q}_5 + r_9\hat{q}_5 = 0 + p_5\hat{q}_5 + r_9\hat{q}_5 = 0$ $(\hat{p}_9-p_9\hat{q}_5) + p_5\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + p_9\hat{q}_5 + p_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 + r_9\hat{q}_5 = \hat{p}_9\hat{q}_5 = \hat{p}_9\hat{q}_5$

Analog Kann $(\hat{\rho}, \hat{q})^+(r,s) \sim (\hat{\rho}, \hat{q})^+(\hat{r}, \hat{s})$ gezeigt werden (Kommutativität gilt) und damn muss man sich lediglich noch der Transitivität befleißigen.

33. Sei $K_{+} = \{[(p,q)]_{-} \in K: (p,q) \in P_{+} \times P_{+}\}$. Zeigen Sie, dass damit eine Ordnung auf K wohldefiniert ist, mit der K zu einem angeordneten Körper wird, der nicht Archimedisch angeordnet ist.

-

Per Körper ist nicht archimedisch angeordnet, weil (eine Bijektion von) N = K nach oben, durch N e No (es wird ja festgelegt), beschränkt ist.

34. Für welche $n \in \mathbb{N}$ wird $\mathbb{Z}_n := \{0,1,\ldots,n-1\}$ mit Addition und Multiplikation modulo n zu einem Körper?

Hinw: Zeigen Sie mit einem Schubfachargument, dass ein endlicher Integritätsbereich (nullteilerfreier Kommutativer Ring mit Eins) ein Körper ist.

In ist genau dann ein Körper, wenn n eine Primzahl ist.

7

400

3

5

49

9

Beweis: Wir wissen, dass $\forall n \in \mathbb{N}$: $\exists a, 6 \in \mathbb{N}$: $a \leq 6 \leq n$ a $a \cdot 6 = n$. Sollte n eine Primzahl sein, so ist eindeutig a = 1 (und 6 = n).

In dem Restkörper Z_n gilt also auch $a \cdot 6 = n$ und somit $a \cdot 6 = n$. Weil n = 0 und $a \cdot 6 = a \cdot 6$, ist $a \cdot 6 = 0$. Ein Körper ist "nullteilerfrei", also ist a = 0 v a = 0. Sei also a = 0 donn auch a = n. Somit ist a = 0 vielfaches von $a \cdot a = 0$ voraussetzung auch $a = a \cdot a = a$ und durch $a \cdot a = a$ auch $a = a \cdot a = a$ die Einzige Lösung für die obere Ungleichung in ist eine Primzahl!

35. Zeigen Sie, dass Kein endlicher Körper angeordnet werden Kann. Hinw: Betrachten Sie 1, 1+1, 1+1+1, Beweis: Wir wissen, dass P endlich und somit ein sup P hat. Nun gilt aber LSUPPJ \(\frac{1}{n} / n \cdot 1_K + 1_K > \sup P 3 Wenn ein endlicher Körper wirklich augeordnet ware, dann 3 ware P aber durch + abgeschlossen. Dies widerspricht jedoch dem oberen Argument.

36. Bsp. 2.16 Man stelle eine Formel für $(n \in \mathbb{N})$ $p(n) := \sum_{k=1}^{n} (2k-1)^2 = 1^2 + 3^2 + ... + (2n-1)^2$

auf und beweise diese mittels vollständiger luduktion.

Hinweis: Setzen Sie unbestimmt $p(u) = au^3 + 6u^2 + cn + d$ an, und ermitteln Sie die unbekannten Koestizienfen durch Einsetzen von n = 1, n = 2, usw.

Dazu werden 4 unabhängige Gleichungen benötigt:

$$I : a \cdot 1^3 + b \cdot 1^2 + c \cdot 1 + d = 1^2$$

200

$$II : a \cdot 2^3 + 6 \cdot 2^2 + c \cdot 2 + d = 1^2 + 3^2$$

$$\underline{\mathbf{M}}: a \cdot 3^3 + 6 \cdot 3^2 + c \cdot 3 + d = 1^2 + 3^2 + 5^2$$

$$\underline{N}: a \cdot 4^3 + 6 \cdot 4^2 + c \cdot 4 + d = 1^2 + 3^2 + 5^2 + 7^2$$

Wir schreiben sie zur besseren Übersicht in ein Raster:

I	1		1	1 1		I	ı	1	1	1	1
II	8	4	2	1 10	Gauß'scher	I	0	ż	?	?	3
II	27	9	3	1 35	Eliminations -	II	0	0	Ş	2	Š
V	64	16	4	1 84	Algoritmus	V	0	0	0	?	2

(2):
$$I = I \cdot 27$$
; $III = III \cdot 8$; $III = III \cdot I$; $I \cdot 216 \cdot 216 \cdot 216 \cdot 216$ $II \cdot 0 \cdot -4 \cdot 6 \cdot 7$ $III \cdot 0 \cdot -144 \cdot -192 \cdot -208 \cdot 64$ $III \cdot 0 \cdot 64 \cdot 16 \cdot 6 \cdot 1 \cdot 184$ $III \cdot 1728 \cdot 172$

-

19

I	1728	1728	1728	1728	1728
I	O	- 1296	- 1944	- 2268	648
Ш	0			1188	
A	0	0		-54	

Jetzt erkennen wir, dass

I:
$$1728 \cdot a + 1728 \cdot 0 + 1728 \cdot (-1/3) + 1728 \cdot 0 =$$

$$1728 \Rightarrow a = 4/3$$

Es ist also davon auszugehen, dass die folgende Formel hinreichend ist:

$$p(n) = \sum_{k=1}^{n} (2k-1)^{2} = \frac{4}{3} \cdot n^{3} - \frac{1}{3} \cdot n$$

Beweis:
$$1A:(2\cdot 1-1)^2=\frac{6}{3}\cdot 1^3-\frac{1}{3}\cdot 1$$

15:
$$\sum_{k=1}^{n+1} (2k-1)^2 = \sum_{k=1}^{n} (2k-1)^2 + (2(n+1)-1)^2 = \sum_{k=1}^{n} (2k-1)^2 + (2k-$$

$$\frac{4}{3} \cdot n^3 - \frac{1}{3} \cdot n + (2n+1)^2 = \frac{4}{3} \cdot (n+1)^3 - \frac{1}{3} \cdot (n+1) \Leftrightarrow$$

$$\frac{4}{3}$$
, $\frac{3}{3}$ - $\frac{1}{3}$ · $\frac{1}{$

$$\frac{6}{3} \cdot n^3 - \frac{1}{3} \cdot n + 6n^2 + 4n + 1 = \frac{6}{3} \cdot n^3 + 6n^2 + 6n + \frac{6}{3} - \frac{1}{3} \cdot n - \frac{1}{3} \Leftrightarrow$$

37. Bsp. 2.17 Zeige mittels vollständiger Induktion, dass für n E N, n 22,

$$\frac{h}{\sum_{k=2}^{n} \frac{1}{k^2-1}} = \frac{3}{4} - \frac{2n+1}{2n(n+1)}.$$

Beweis:
$$1A: \frac{1}{2^2-1} = \frac{3}{4} - \frac{2n+1}{2n(n+1)} \implies 1/3 = 1/3$$

15:
$$\sum_{k=2}^{n+1} \frac{1}{k^2-1} = \sum_{k=2}^{n} \frac{1}{k^2-1} + \frac{1}{(n+1)^2-1} =$$

$$\frac{3}{4} - \frac{2n+1}{2n(n+1)} + \frac{1}{n^2 + 2n} = \frac{3}{4} - \frac{(2n+1)(n^2 + 2n) - 2n(n+1)}{2n(n+1)(n^2 + 2n)} =$$

$$\frac{3}{4} - \frac{2n^3 + 4n^2 + n^2 + 2n - 2n^2 - 2n}{2n^2 (n+1)(n+2)} = \frac{3}{4} - \frac{2n^3 + 3n^2}{2n^2 (n+1)(n+2)} =$$

$$\frac{3}{4} - \frac{2n+2+1}{2(n+1)(n+2)} = \frac{3}{4} - \frac{2(n+1)+1}{2(n+1)((n+1)+1)}$$

38. Bsp. 2.19 Zeige mittels vollständige luduktion, dass für $n \in \mathbb{N}$, $n \ge 2$,

$$\prod_{K=1}^{n}\left(1+\frac{1}{n+k}\right)=2-\frac{1}{n+1}.$$

Beweis:
$$|A:(1+\frac{1}{2+1})(1+\frac{1}{2+2})=2-\frac{1}{2+1}$$

 $\Rightarrow 5/3=5/3$

15:
$$\prod_{K=1}^{n+1} \left(1 + \frac{1}{(n+1)+K} \right) = \prod_{K=2}^{n+2} \left(1 + \frac{1}{n+K} \right) =$$

$$\prod_{K=2}^{n} \left(1 + \frac{1}{n+K}\right) \cdot \left(1 + \frac{1}{n+(n+1)}\right) \cdot \left(1 + \frac{1}{n+(n+2)}\right) \stackrel{(1V)}{=}$$

$$\left(2-\frac{1}{n+1}\right)\cdot\left(\frac{1}{1+1/(n+1)}\right)\left(\frac{2n+2}{2n+1}\right)\left(\frac{2n+3}{2n+2}\right)=$$

$$\left(\frac{2(n+1)-1}{n+1}\right)\left(\frac{1}{n+2}\right)\left(\frac{2n+3}{2n+1}\right) =$$

$$(2n+1)(1/(n+2))(\frac{2n+3}{2n+1}) = \frac{2n+4-1}{n+2} = \frac{2(n+2)-1}{n+2} =$$

$$\frac{2(n+2)}{n+2} - \frac{1}{n+2} = 2 - \frac{1}{(n+1)+1}$$

39. Bsp. 2.20 Zeige mittels vollständiger luduktion, dass für $n \in \mathbb{N}$, $n \ge 2$,

$$\prod_{k=2}^{n} \left(1 - \frac{2}{k(k+1)}\right) = \frac{1}{3} \left(1 + \frac{2}{n}\right).$$

Beweis:
$$|A: |-\frac{2}{2(2+1)} = \frac{1}{3}(1+\frac{2}{2}) \Leftrightarrow 2/3 = 2/3$$

$$|5: \prod_{k=2}^{n+1} (1-\frac{2}{k(k+1)}) = \prod_{k=2}^{n} (1+\frac{2}{k(k+1)}) (1-\frac{2}{(n+1)(n+2)}) = \frac{1}{3}(1+\frac{2}{n})(\frac{n^2+3n+2-2}{(n+1)(n+2)}) = \frac{1}{3}(\frac{n+2}{n})(\frac{n^2+3n}{(n+1)(n+2)}) = \frac{1}{3}(\frac{n+3}{n+1}) = \frac{1}{3}(\frac{2+(n+1)}{n+1}) = \frac{1}{3}(\frac{2}{n+1}+\frac{n+1}{n+1}) = \frac{1}{3}(\frac{2}{n+1}+\frac{2}{n+1})$$

40. Bsp 2.21 Zeige mittels vollständiger Induktion :

*

_

う

(a) Z" > n für ne N und 2" > n² für ne N, n > 5.

(6) Für ein beliebiges $x \ge 2$ aus einem angeordneter Körper, folgere man $x^n > n$ für $n \in \mathbb{N}$ und $x^n > n^2$ für alle $n \in \mathbb{N}$, $n \ge 5$.

Beweis: |A: 2' = 2 > 1 $|S: 2^{n+1} = 2^n \cdot 2 > n+1 \Leftrightarrow 2^n > n > \frac{n+1}{2} \Leftrightarrow 2^n > n > \frac{n+1}{2} \Leftrightarrow 2^n > n > \frac{n+1}{2} = \frac{n+1}{2} + \frac{1}{2} \Leftrightarrow 2^n > n > \frac{n+1}{2} - \frac{1}{2}$ Laut IV gilt diese Aussage erst recht.

 $|A: Z^{5} > 5^{2} \Leftrightarrow 32 > 25$ $|S: Z^{n+1}| > (n+1)^{2} \Leftrightarrow Z^{n} \cdot 2 > n^{2} + 2n + 1 \Leftrightarrow$ $|Z^{n}| > n^{2} > \frac{n^{2} + 2n + 1}{2}$ $|A: 5^{2}| > \frac{5^{2} + 2 \cdot 5 + 1}{2} \Leftrightarrow 25 > \frac{25 + 10 + 1}{2} = \frac{36}{2} = 18$ $|S: (n+1)^{2}| > \frac{(n+1)^{2} + 2(n+1) + 1}{2} \Leftrightarrow n^{2} + 2n + 1 > \frac{n^{2} + 2n + 1 + 2n + 2 + 1}{2}$ $|S: (n+1)^{2}| > \frac{n^{2} + 4n + 4}{2} \Leftrightarrow n^{2} > n^{2} / 2 + 1 \Leftrightarrow n^{2} - 1 > n^{2} / 2 \Leftrightarrow$ $|S: (n+1)^{2}| > \frac{n^{2} + 4n + 4}{2} \Leftrightarrow n^{2} > n^{2} / 2 + 1 \Leftrightarrow n^{2} - 1 > n^{2} / 2 \Leftrightarrow$ $|S: (n+1)^{2}| > \frac{n^{2} + 2n + 1}{2} \Leftrightarrow n^{2} > n^{2} + 2n + 1 \Rightarrow 2n^{2} + 2n + 3$ $|S: (n+1)^{2}| > \frac{n^{2} + 2n + 1}{2} \Leftrightarrow n^{2} + 2n + 3 \Leftrightarrow n^{2} + 2n > 1$

Die Beweis führung in (6) erfolgt analog, mit den zosätzlichen Argumenten: $2 \le x \Rightarrow 2^{-1} \ge x^{-1}$ und der Rechenregel $0 \le a \le 6$ $\land 0 \le c \le cl \Rightarrow ac \le 6d$. Manchmal ist es auch praktisch $x = 2 + \varepsilon$ mit $\varepsilon \ge 0$ zo betrachten.