《概率论与数理统计》复习资料

一、 考试说明

考试形式和试卷结构

考试形式:当堂开卷

试卷内容比例:概率论部分约占 72% 数理统计部分约占 28%

题型比例:选择题约占 24%,填空题约占 24%,解答题约占 52%

说明:在下列的复习题中,包括试题中题目分数约为 **70**分,包括了所有试题题型,由于考试形式为开卷,所以请同学们认真做一下下面的复习题,这样至少保证通过考试,在确保通过考试的基础上,请同学们认真复习,取得满意的成绩。

二、复习题

(一) 单项选择题

1、A、B、C表示事件,下列三个有关事件的关系式中,正确的有().

(1) A+BC= (A+B)(A+C) (2) $\overline{A + B} = \overline{A} \overline{B}$ (3) A+B=AB

 A、0 个;
 B、1 个;
 C、2 个;
 D、3 个

 知识点
 答案

 等可能概型
 c

2、掷 2颗骰子,设点数之和为 3的事件的概率为 p,则 p = ()

3、一部文集,按顺序排放在书架的同层上,则各卷自左到右或自右到左卷号恰好为 1、2、 3、4顺序的概率等于()

 $(A) \frac{1}{8}$ $(B) \frac{1}{12}$ $(C) \frac{1}{16}$ 知识点 答案 等可能概型 b

4、某次国际会议共有 1000 人参加,其中有 400 人来自天津, 350 人来自北京, 250 人来自国外。已知有 100 人将在会议发言,则恰好有 40 个发言者是天津人的概率为().

 $\mathsf{A} \leftarrow \frac{\mathsf{C}_{400}^{40} \mathsf{C}_{600}^{60}}{\mathsf{C}_{1000}^{400} \mathsf{C}_{1000}^{350} \mathsf{C}_{1000}^{250}} \qquad \mathsf{B} \leftarrow \frac{\mathsf{C}_{400}^{40} \mathsf{C}_{600}^{60}}{\mathsf{C}_{1000}^{100}} \qquad \mathsf{C} \leftarrow \frac{\mathsf{C}_{400}^{40} \mathsf{C}_{350}^{35} \mathsf{C}_{250}^{25}}{\mathsf{C}_{1000}^{400} \mathsf{C}_{1000}^{350} \mathsf{C}_{1000}^{250}} \qquad \mathsf{D} \leftarrow \frac{\mathsf{C}_{400}^{40} \mathsf{C}_{350}^{35} \mathsf{C}_{250}^{250}}{\mathsf{C}_{1000}^{1000}} = \mathsf{D} \leftarrow \mathsf{C}_{1000}^{400} \mathsf{C}_{1000}^{350} \mathsf{C}_{1000}^{250}$

知识点答案超几何概型b

5、已知 A,B 两事件满足 P(AB) = P(AB) , 若 P(A) = p , 则 P(B) = ()

A. 1 - p B. p C. p(1 - p) D. p^2

 知识点
 答案

 随机事件概率
 a

6、已知甲乙两人射击的命中率分别为 0.8 和 0.9, 现让他们各自

A、0.72; B、0.84; C、0.93; D、0.98

知识点	答案
条件概率	d

7、袋中有三张彩票,其中只有一张是可以中奖的。甲、乙、丙三个人一次从袋中取出一张彩票,则(

A、甲中奖的概率最大

B. 乙中奖的概率最大

C、丙中奖的概率最大

D、三个人中奖的概率相同

知识点	答案
条件概率与全概率公式	D

乙、丙三个厂家的产量分别占 45%,35%,20%,各厂产品中次品率分别为 4%,2%和5%.现 8、设某批产品中甲、 从中任取一件,取到的恰好是次品的概率为(

A. 0.035

B. 0.038

C. 0.076

D. 0.045

知识点	答案
全概公式	а

9、设事件 A, B相互独立,且 P(A) = $\frac{1}{3}$, P(B) = $\frac{1}{5}$,则 P(A|B) = (

知识点	答案
随机事件的独立性	d

10、设随机变量 X ~ B(2, p), Y ~ B(3, p), 若 P{ X ≥1} = $\frac{5}{9}$, 则 P{Y ≥1} =()

41	27	15
	知识点	答案
	二项分布	b

11、设随机变量 X~N(1,4),已知 Ф (-1.96)=0.025,则 P(|(X-1)/2 <1.96)=(

A 0.025

В. 0.050

C、 0.950 D、 0.975

知识点	答案
正态分布	d

A、增大 B. 减小

C、不变 D、增减不定

知识点	答案
正态分布	b

13、设 X 的概率密度为 $f_X(x) = \frac{1}{\pi(1+x^2)}$,则 Y = 2 X 的概率密度 $f_Y(y) = ($

(A)
$$\frac{2}{\pi(4+y^2)}$$
; (B) $\frac{1}{\pi(1+4y^2)}$;

$$\frac{1}{\pi(1+4y^2)}$$

) .

(C)	1	ſΓ
(0)	$\frac{\pi(1+y^2)}{\pi}$	(-

(D)	1 — arctgy .
	π

知识点	答案
随机变量函数的分布	а

14、设 X 和 Y 是相互独立的两个随机变量 , X 服从 [0,1] 上的均匀分布 , 即 $X \sim U$ (0,2) , Y 服从参数为 2 的指

数分布,即Y~e(2),则E(XY)=()

A. 1 B.2 C.3 D.4

知识点	答案
期望和方差	b

- 15、对两个随机变量 X 和 Y , 若 E[X+Y]=E[X]+E[Y] ,则().
 - $A \subset D(X+Y)=D(X)+D(Y);$
- $B \subset E[XY]=E[X]E[Y];$
- $C \setminus D(XY)=D(X)D(Y);$
- D、上述结论都不一定成立.

知识点	答案
数学期望的性质	d

- 16、随机变量 X ~ b(n, p),且已知 E(X) = 2.4, D(X) = 1.44,则此二项分布中参数 n 和 p = ().
 - (A) n = 6, p = 0.4;
- (B) n = 4, p = 0.6;
- (C) n = 6, p = 0.6;
- (D)
- n = 4, p = 0.4.

知识点	答案
数学期望	а

- 17、设随机变量 X 服从正态分布 N(0,1), Y=3X+4,则 D(Y)=()
 - Α、3
- B、4
- C、9
- D、16

知识点	答案
期望和方差	С

- 18、设随机变量 X 和 Y 都服从区间 [0,1]上的均匀分布,则 E[X+Y]= ().
 - A 、 1/6;
- B、1/2;
- C. 1:
- 知识点
 答案

 期望和方差
 c
- 19、两个相互独立的随机变量 X 和 Y 分别服从正态分布 N(1,4)和 N(0,9),则 D(2X+3Y)= ().
 - A、72
- B、 84
- C、97
- 101

D、2

, · · · =	<u> </u>
知识点	答案
数学期望与为	· · · · · · · · · · · · · · ·

- 20、对两个随机变量 X 和 Y,若 E(XY) = E(X)E(Y),则()成立。
 - (A) D(XY) = D(X)D(Y);
- (B)
- D(X + Y) = D(X) + D(Y);

- (C) X和Y相互独立;
- (D)
- X 和 Y 不相互独立 .
- 知识点
 答案

 期望和方差
 b
- 21、设随机变量 X 和 Y 的方差 D(X) , D(Y) 都不为零 , 则 D(X+Y)=D(X)+D(Y) 是 X 与 Y ().

C、独立的充分必要条件 ; D、不相关的充分条件,但不是必要条件.

知识点	答案
方差的性质	а

22、设 D(X) = 2,则根据切比雪夫不等式 P{| X – E(X)|≥3} ≤ (

知识点	答案
切比雪夫不等式	а

23、设总体 X 服从正态分布 $N(\mu, ^2)$,其中 μ 未知, 2 已知 X_1 , X_2 , X_3 是取自总体 X 的一个样本,则以下不 能作为统计量的是(

 $A \setminus X_1 + \mu$

 $B \times X_1 + X_2/4$

C、2X₁+3X₂+4X₃ D、(X₁+X₂+X₃)/ ² 答案

' ' -	
知识点	答案
统计量	а

知识点	答案
统计量	С

25、随机变量 X 服从 (0-1) 分布 ,参数 p 未知 ,有容量为 n 的样本观察值 x1, x2,, , xn,则参数 p 的最大似然估计为).

A、 $x_1, x_2, , x_n$ 中的最大值 $\max\{x_1, x_2, , x_n\}$ B、 $x_1, x_2, , x_n$ 中的最小值 $\min\{x_1, x_2, , x_n\}$

C、 $x_1, x_2,, x_n$ 的中间值 $x_{n/2}$

D、x₁, x₂,, , x_n的平均值(x_{1+x2+}, +x_n)/n

知识点	答案
最大似然估计	D

26、设总体 X ~ N(┗,σ²),σ² 已知而 ┗ 为未知参数 , X₁, X₂, X 是从总体 X 中抽取的样本 , 记

 $X = \frac{1}{2} \sum_{i=1}^{n} X_{i}$, 又 $\Phi(x)$ 表示标准正态分布的分布函数 , 已知

(1.96)=0.975 , (1.28)=0.90 ,则 └ 的置

信度为 0.95 的置信区间是(

A.
$$(\bar{X} - 0.975 \cdot \frac{\sigma}{\sqrt{n}}, \bar{X} + 0.975 \cdot \frac{\sigma}{\sqrt{n}}),$$

B.
$$(\chi -1.96 \cdot \frac{\sigma}{\sqrt{n}}, \chi +1.96 \cdot \frac{\sigma}{\sqrt{n}}),$$

C.
$$(\bar{X} - 1.28 \cdot \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.28 \cdot \frac{\sigma}{\sqrt{n}}),$$

D.
$$(\bar{X} - 0.90 \cdot \frac{\sigma}{\sqrt{n}}, \bar{X} + 0.90 \cdot \frac{\sigma}{\sqrt{n}}).$$

知识点	答案
区间估计	b

27、设总体 ξ 服从正态分布 $N(\underline{\mu}, \sigma^2)$, 其中 $\underline{\mu}, \sigma^2$ 均为未知参数 , $\xi_1, \xi_2, \cdots \xi_n$ 是取自总体 ξ 的样本 , 记

 $\xi = \frac{1}{n} \sum_{i=1}^{n} \xi_i$, $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \xi_i)^2$, 则 L 的置信度为 $1-\alpha$ 的置信区间为 (

A.
$$(\xi - t_{\underline{\alpha}}(n-1) \cdot \frac{S_n}{\sqrt{n}}, \xi + t_{\underline{\alpha}}(n-1) \cdot \frac{S_n}{\sqrt{n}})$$

B.
$$(\overline{\xi} - t_{\underline{\alpha}}(n-1) \cdot \frac{S_n}{\sqrt{n-1}}, \overline{\xi} + t_{\underline{\alpha}}(n-1) \cdot \frac{S_n}{\sqrt{n-1}})$$

C.
$$(\xi - t_{\alpha}(n-1) \cdot \frac{\sigma}{\sqrt{n}}, \xi + t_{\alpha}(n-1) \cdot \frac{\sigma}{\sqrt{n}})$$

D.
$$(\xi - t_{\alpha}(n-1) \cdot \frac{\sigma}{\sqrt{n-1}}, \xi + t_{\alpha}(n-1) \cdot \frac{\sigma}{\sqrt{n-1}})$$

知识点	答案
区间估计	b

服从正态分布 $N(\stackrel{\mu}{,} \sigma^2)$,其中 $\stackrel{\mu}{,}$ 未知而 σ^2 已知,($\stackrel{\xi}{,}$, $\stackrel{\xi}{,}_2$, \cdots $\stackrel{\xi}{,}_n$)为取自总体 $\stackrel{\xi}{,}$ 的样本,记 28、设总体

$$\xi = \frac{1}{2} \sum_{n=1}^{n} \xi$$
 ,则 ($\xi - Z_{0.05} \cdot \frac{\sigma}{\sqrt{n}}, \xi + Z_{0.05} \cdot \frac{\sigma}{\sqrt{n}}$)作为 L 的置信区间,其置信度为 ()。

- A, 0.95 B , 0.05 C , 0.975 D

知识点	答案
区间估计	d

-)为犯第二类错误。
 - A、H为真,接受 H
- B 、H₀不真,接受 H₀
 - C、H为真,拒绝 H
- D
- 、H·不真,拒绝 H

知识点	答案
假设检验	а

- 30、在假设检验中,显著性水平
 - A、P{接受 H₀|H₀为假}
- В
- 、置信度为 α
- C、P{拒绝 H₀|H₀为真}

A、只犯第一类错误

В

、无具体意义

知识点	答案
假设检验	С

- 31、在假设检验中,下列结论正确的是(

- 、只犯第二类错误
- C、既可能犯第一类也可能犯第二类错误
- D 、不犯第一类也不犯第二类错误

知识点	答案
假设检验	С

(二)填空题

1、 从一个装有 10 个黑球和 4 个白球的袋中,抽出 5 个球、其中 2 个是黑球、 3 个是白球的抽取方法共有
种.
(答案: 180)
知识点
(答案: 4!/5 ⁴ =24/625)
知识点
等可能概型
3、由 50 人组成的人群中至少有两个人在同一天过生日的概率为
(答案: 0.97)
知识点
等可能概型
4、设 P(A)=P(B)=1/2, P(AB)=1/3, 则 A 与 B 都不发生的概率为
(答案: 1/3)
知识点
<u>随机事件的概率</u> ————————————————————————————————————
5、设 A B是两随机事件,且 P(A)=0.6,P(B)=0.7,A⊂B,则 P(A B)=
(答案: 6/7)
知识点
大 广 版 <u>学</u>
6、若 P(A)=1/2,P(B)=1/3,P(B A)=1/3, 则 P(A B)=
(答案: 1/2)
知识点
独立性
该项任务将被完成的概率为 .
(答案: 0.98)
知识点
独立性
8、同时掷 3 枚均匀的硬币,则至多有一枚硬币字面朝上的概率为
(答案: 7/8)
知识点 ————————————————————————————————————
<u>伯努利概型</u>
9、离散型随机变量 X的分布律为 P{X=k}=k/ a,k=1,2,3,则常数 a为
(答案: 6)
知识点

10、一电话总机每分钟收到呼唤的次数服从参数为 4的泊松分布,则某一分钟呼唤次数大于

2 的概率是

(答案: 1 –13e ⁻⁴)

知识点 泊松分布

11、 设三次独立试验中, 事件 A 出现的概率相等, 若已知 A 至少出现一次的概率等于 19/27,则事件 A 在一次

试验中出现的概率为 .

(答案: 1/3)

知识点 二项分布

12、设随机变量 X的概率密度函数如下,则常数 a为 _____

$$f(x) = \begin{cases} a \cos x & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0 & \text{ 其它} \end{cases}$$

(答案: 1/2)

知识点

概率密度

13、设X在(0,a)服从均匀分布,已知方程 4x²+4Xx+X+2=0 有实根的概率为 0.8 ,则

a = _____ .

(答案: 10)

知识点 均匀分布

(答案: 2)

知识点

连续型随机变量的分布

15、设随机变量 X 服从二项分布 B(5,p)、 Y 服从二项分布 B(5,p), 且它们相互独立,则 Z=X+Y 服从二项分布

B(n,p) , 其中 n=_____.

(答案: 10)

知识点

随机变量函数的分布

16、在句子 " the girl put on her little red hat

"中随机的取一单词,以 X表示取到的单词所包含的字母

个数,则 E(X) = _____.

(答案: 27/8)

知识点

数学期望

 17、设随机变量 X 的分布律为
 ? -1 0 0.5 1 2 ?

 ie 1/3 1/6 1/6 1/12 1/4 ?

(答案: 1/2)

知识点 数学期望

18、 设 X~N(1,4), Y~N(-1,9) , 且 X 与 Y 相互独立 ,则 D(-3X-4Y)= _____.

(答案: 180)

知识点 方差

19、设 D(X)=1 , D(Y)=2 , 且 X 与 Y 相互独立 , 则 D(X-2Y)= .

(答案: 9)

知识点 方差的性质

20、设 X~P()若 E[(X-1)(X-2)]=1 ,则 <u>=</u>.

(答案: 1)

知识点数学期望

(答案: 100)

知识点数学期望与方差

22、设 E[X]=E[Y]=2,cov(X,Y)= - 1/6,则 E[XY]= ______.

(答案: 23/6)

知识点 协方差与相关系数

23、设 E(X)=0 , D(X)=1 ,则根据切比雪夫不等式 P{-2<X<2} _____ .

(答案: 3/4)

知识点 切比雪夫不等式

24、设总体 X ~ ¹/₁ (n) , X₁, X₂, X₁₀ 是来自 X 的样本 , 则

$$D(X) = _{n_{i}} (\sharp P X = \frac{1}{n_{i}} X_{i}).$$

(答案: n/5)

知识点 ^{X2} 分布

25、已知 X ~ t(n),则 X ² ~ _____.

(答案: F(1, n))

知识点 F 分布

26、数理统计中的一类基本问题是依据样本所提供的信息,对总体分布的未知参数作出估计,称之

(答案:参数估计)

知识点 参数估计

- 27、采用的估计方法不同,同一未知参数有不同的估计量,这就要求建立衡量一个估计量优劣的标准,一般来
- 说, 其评价标准有三种: , 和相合性

(答案:无偏性;有效性)

知识点

估计量的评选标准

28、设总体 $\overline{X} \sim N(\underline{\mu}, \sigma^2)$, 且 σ^2 已知 , X_1, X_2, \cdots, X_n 为来自总体 X 的容量为 n 的样本 , $\overline{X} = -\sum_{i=1}^{n} X_i$, 总 $n_{i=1}$

体均值 $\stackrel{\text{L}}{=}$ 的置信水平为 $1-\alpha$ 的置信区间是 $(X-\lambda\frac{\sigma}{\sqrt{n}},X+\lambda\frac{\sigma}{\sqrt{n}})$, 则 $\lambda=$ ______.

(答案: Z_亞)

知识点

区间估计

29、设 ($\xi_1, \xi_2, \cdots, \xi_n$) 是取自正态总体 $N(L, \sigma^2)$ 的样本,若 σ^2 已知,要检验 $H_0: L = L_0(L_0)$ 为已知常数),

H₀: ┡ ≠ ┡₀, 应用 _____检验法;检验的统计量是 _____; 当 时成立时,该统计量服从 _____分布。

(答案: U; U = $\frac{\xi - \mu_0}{\sigma / \sqrt{n}}$;标准正态)

知识点 假设检验

30、设 E 总体 X~N(μ, ²), X₁, X₂,,, X_n为其样本,其中 ²未知。则对假设检验问题 H_{0: μ= μ}, H_{1: μ ομ} 在显著水平 下,应取拒绝域 _____。

(答案: $\left|\frac{\overline{x} - \mu_0}{s/\sqrt{n}}\right| \ge t_{\underline{\alpha}}(n-1)$)

知识点

假设检验

31、设总体 $\frac{\xi}{\alpha} \sim N(\stackrel{\mu}{,}\sigma^2)$,如果使用 $\frac{\chi^2}{\alpha}$ 检验法,且在给定的显著性水平 $\frac{\alpha}{\alpha}$,其拒绝域为 $(\frac{\chi^2}{\alpha}(n-1), \stackrel{+\infty}{+\infty})$,则

相应的假设检验 $H_1: _____;$ 若拒绝域为 $(0, \chi_{1}^2 \underline{\alpha}_{2}(n-1)] \cup [\chi_{\underline{\alpha}_{2}}^2(n-1), +\infty)$,则相应的假设检验 $H_1: _____$ 。

(答案: $H_0: \sigma^2 \leq \sigma_0^2$; $H_0: \sigma^2 = \sigma_0^2$)

知识点

假设检验

(三)计算和证明题

1、有两台钻机钻孔,第一台钻孔数量是第二台的两倍,第一台钻孔不合格率为 0.05 第二台钻孔不合格率为 0.08 规发现一钻孔不合格,求是第一台钻孔的概率 .

(答案: 5/9)

从结果反推原因的问题 ,用贝叶斯公式:

令事件 A= 该孔是第一台钻机钻的; B= 该孔不合格

P(B)=(2/3)*(1/20)+(1/3)*0.08=1/30+2/75

P(AB)=(2/3)*(1/20)=1/30

P(A|B)=P(AB)/P(B)=(1/30)/(1/30+2/75)=5/9

知识点

贝叶斯公式

2、某种型号的电器的寿命 X (以小时记)具有以下的概率密度:

$$f(x) = \begin{cases} \frac{1000}{x^2} & x > 1000 \\ 0 & \exists E \end{cases}$$

现有一大批此种器件,设各器件损坏与否相互独立,任取 5只,问其中至少有 2只寿命大于 2000小时的概率 是多少?

(答案: <u>13</u>) 16

先求出他的函数分布 F(x)=-1000*x^-1 P(X>2000)=1-(F(2000)-F(1000))=1-(-1/2-(-1))=1/2

然后记取出器件寿命大于 2000 小时的个数为 y 用二项分布求出 P(y=1),P(y=0) 的概率再 1-P(y=1)-P(y=0) 就可以算出 P(y>=2) 的概率了

最后结果是 P=0.90625 = 13 16

> 知识点 二项分布

3、根据以往经验,某种电器元件的寿命服从均值为 120 小时的指数分布,现随机地取 100 个,设他们的寿命是相互独立的,求这 100 个元件的寿命的总和大于 12960 个小时的概率 .

标准正态分布数值表:

х	0.7	0.75	0.8	0.85	0.9	0.95
x)	0.7580	0.7734	0.7881	0.8023	0.8159	0.8289

(答案: 0.2119)

单个元件均值 E(X)=120 , 概率密度 f(x)=1/120e^(-x/120)

方差 D(X)=120*120=14400

100 个元件寿命 S=X1+X2+...+X120

E (S) =120*100=12000

D(S) = 14400*100 = 1440000

所以【(S-12000)/1200 】服从标准正太分布 中心极限定理。

P(S>12960)=P【(S-12000)/1200> (12960-12000)/1200) 】=P【(S-12000)/1200>0.8 】=1-0.8 的正太分布=1-0.7881=0.2119

知识点

正态分布

4、 X 的概率密度为

$$f_{x}(x) = \begin{cases} \frac{x}{8} & 0 < x < 4 \\ 0 & \text{其它} \end{cases}$$
 , 求随机变量 $Y = 2X + 8$ 的概率密度。

知识点

随机变量函数的分布

F(y)=
$$P(Y \le y) = P(2x+8 \le y)$$

= $P(X \le \frac{1}{2}y-4)$
当 $\frac{1}{2}y-4 < 0$ 即 $\frac{1}{2}y < 8$ 即 $\frac{1}{2}y = 0$.
当 $\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$.
 $\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y + \frac{1}{2}y = 0$
= $\frac{1}{2}(\frac{1}{2}y + \frac{1}{2}y + \frac{1}{2$

答案:
$$f_{Y}(y) = \begin{cases} \frac{1}{32}y - \frac{1}{4} & 8 < y < 16 \\ 0 & 其它 \end{cases}$$

5、一枚均匀的硬币抛掷 3次,设X为3次抛掷中正面出现的次数, Y为反面出现的次数,求并列出 (X,Y)的联合分布律。

(答案:

(X,Y)=(0,3) 表示三次抛硬币三次全部是反面 P(X=0,Y=3)=(1/2)^3=1/8

(X,Y)=(1,1) 表示三次抛硬币一次正两次反面 P(X=1,Y=1)=C(1,3)(1/2)^3=3/8

(X,Y)=(2,1) 表示三次抛硬币两次正一次反面 P(X=2,Y=1)=C(2,3)(1/2)^3=3/8

(X,Y)=(3,3) 表示三次抛硬币三次全部是正面 P(X=3,Y=3)=(1/2)^3=1/8

X\Y	0	1	2	3
0	0	0	0	1/8
1	0	0	3/8	0
2	0	3/8	0	0
3	1/8	0	0	0

)

知识点联合分布

6、有两个相互独立工作的电子装置,它们的寿命 Xk(k=1,2)(小时)服从同一指数分布 e(250),其概率密度为

因两个电子装置为串联,

因而N的概率密度为

$$f_{\min}(x) = \begin{cases} \frac{2}{\theta} e^{-2x/\theta}, & x > 0 \\ 0, & x \le 0. \end{cases}$$

于是N的数学期望为

$$E(N) = \int_{-\infty}^{\infty} x f_{\min}(x) dx = \int_{0}^{\infty} \frac{2x}{\theta} e^{-2x/\theta} dx = \frac{\theta}{2}.$$

(答案: 125)

知识点

多维随机变量

7、设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} c, & |y| < x, 0 < x < 1 \\ 0, & 其它 \end{cases}$, 其中 c 为常数 .

(1) 求常数 C;

(2) 求边缘概率密度 $f_{x}(x)$ 和 $f_{y}(y)$, 并说明 X 和 Y 是否相互独立 .

知识点

多维随机变量

8、设随机变量 X和 Y 具有联合概率密度

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x \\ 0, & \exists v \le y \le x \end{cases}$$
,求边缘概率密度
$$f_x(x) \times f_y(y)$$
.

知识点 多维随机变量

9、设(X,Y)的联合分布律为

Y\X	1	0	3
-1	0.2	0.1	0
1	0.1	0	0.3
2	0 . 1	0.1	0 . 1

求:(1) E[X];(2) E[Y];(3) E[XY]

知识点

多维随机变量

解:P{X=1}=0.4 ,P{X=0}=0.2 ,P{X=3}=0.4 ,E[X] =1*0.4+0*0.2+3*0.4=1.6 P{Y=1}=0.4 ,P{Y=-1}=0.3 ,P{Y=2}=0.3 ,E[Y] =1*0.4+-1*0.3+2*0.3=0.7

E[XY] = 1.6

10、甲、乙两船均为 7 点到 8 点到达某码头,且两船到达时间是随机的,每只船卸货需要 20 分钟,码头同一时间只能允许一只船卸货,求两只船使用码头发生冲突的概率。

解:X、Y均服从(0,60)上的均匀分布, P{|X-Y| 20}=1-40×40/60/60=5/9

知识点
独立的随机变量

11、设 X,Y 相互独立,它们分布律分别为

X 1 3 p 3 0.3 0.7

Y 2 4

试求随机变量 Z=X+Y的分布律。

答案:

知识点

多维随机变量函数的分布

知识点

数学期望

答案: 1

13、 随机变量 X 的分布律如下:

X	0	1	2	3	
P	1	1		1	1
_ '	2	_	1	8	8

求 E(X), E(
$$\frac{1}{1+X}$$
), E(X²).

知识点

数学期望

答案: 15/8

14、假定每个人生日在各个月份的概率相同,求三个人中生日在第一季度的人数的期望。

(答案: $\frac{3}{4}$)

设三个随机变量 i,(i=1,2,3), 如果 3 个人中的第 i 个人在第一季度出生 i,0 i=1, 否则 i=0, 则 i=1, 例 i=0, 则 i=1, 份布,且有

P(i=1)=1/4, 因此 E i=1/4,(i=1,2,3)

设 为 3 个人在第一季度出生的人数 ,则 = 1+ 2+ 3,

因此 E =E(1+ 2+ 3)=3E i=3/4=0.75

知识点

数学期望

15、 掷 20 个骰子, 求这 20 个骰子出现的点数之和的数学期望 ...

知识点

数学期望

答案: 70=((1+2+3+4+5+6)*1/6)*20=(21*1/6)*20=70

16、设发行体育彩票 1000 万张,其中一等奖 1 张,奖金 500 万元,二等奖 9 张,奖金 1 万元,三等奖 90 张,奖金 100元,四等奖 900 张,奖金 10元,问一张奖券获得奖金的期望值为多少?

(答案: 0.5108)

(1*500+9*1+90*0.01+900*0.001) /1000=0.5108

知识点 数学期望

17、设连续型随机变量 X的概率密度为 $f(x) = \hat{f}(x) = \hat{f}(x) = \hat{f}(x)$ else

(答案: a=2,k=3)

18、随机变量 X 的概率密度为
$$f(x) = \begin{cases} \frac{1}{2} + \frac{x}{4} & -2 \le x < 0 \\ \frac{1}{2} - \frac{x}{4} & 0 \le x \le 2 \text{ , } 求 D(X) \text{ o} \end{cases}$$
 其他

(答案: 2/3)

19、 设连续型随机变量 (X,Y)的概率密度为

$$f(x,y) = \begin{cases} 12y^2 & 0 \le y \le x \le 1 \\ 0 & 其它 \end{cases}, \, \bar{x} \, \rho_{XY}.$$

知识点

相关系数

解
$$f_x(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^x 12y^2 dy = 4x^3 & 0 \le x \le 1 \\ 0 & 其它 \end{cases}$$

$$E(x) = \int_0^1 x^{1/4} dx = \frac{4}{5}$$

$$f_y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_y^1 12y^2 dx = 12y^2 (1-y) & 0 \le y \le 1 \\ 0 &$$
其它

$$E(y) = \int_0^1 12y^2 (1-y) y dy = \frac{3}{5}$$

$$E(xy) = \int_0^1 dx \int_0^x xy \cdot 12y^2 dy = \int_0^1 3x^5 dx = \frac{1}{2}$$

Cov(XY) = E(XY) - E(X)E(Y) =
$$\frac{1}{2} - \frac{4}{5} \times \frac{3}{5} = \frac{1}{50}$$

$$\nabla = \int_0^1 x^2 \cdot 4x^3 dx = \frac{2}{3}$$

所以
$$D(x) = E(x^2) - E^2(x) = \frac{2}{3} - (\frac{4}{5})^2 = \frac{2}{75}$$

$$E(y^2) = \int_0^1 12y^2(1-y)y^2dy = 12\int_0^1 (y^4 - y^5)dy = \frac{2}{5}$$

$$D(y) = E(y^{2}) - E^{2}(y) = \frac{2}{5} - (\frac{3}{5})^{2} = \frac{1}{25}$$

20、设对目标独立发射 400 发炮弹,单发命中率等于 0.1,试用中心极限定理近似计算命中数超过 50 发的概率。 标准正态分布数值表:

Х	1.65	1.67	1.70
x)	0.9505	0.9525	0.9554

(答案: 0.0475)

知识点

中心极限定理

21、一食品店出售价格分别为 1元、1.5元、2元的3种蛋糕,顾客购买哪一种蛋糕是随机的,购买 3种蛋糕的概率分别为 0.3、0.5、0.2,某天共售出 200块蛋糕,求这天的收入不低于 300元的概率。

标准正态分布数值表:

X	2.00	2 . 01	2 . 02	2 . 03	2 . 04	2.05

x() 0.9772 0.9778 0.	9783 0.9788 0.9793 0.9798
----------------------	---------------------------

(答案: 0.0217)

设 售 出 的 第 i 只 蛋 糕 的 价 格 为 X(i), 则 E(x(i))=0.3+0.75+0.4=1.45,

 $E(x(i)^2)=1^*1^*0.3+1.5^*1.5^*0.5+2^*2^*0.2=2.225$

 $D(X(i)) = E(x(i)^2) - (E(x(i)))^2 = 2.225 - 1.45^2 =$

0.1225

根据独立同分布的中心极限定理 ,Y=X(1)+...+X(300) 近似服从正态分布 N(387,14.67), 所以 收入至少 400 元的概率为 P(Y>=400) = 1-F((400-387)/3.83)=1-F(3.394)=1

知识点

中心极限定理

22、设总体 X 的概率密度为 $f(x,\theta)= \begin{cases} \frac{1}{\theta}e^{-x} & x>0 \\ 0 & x\leq 0 \end{cases}$, 其中未知参数 $\theta>0$. 设 x_1,x_2,\cdots,x_n 是来自总体 X 的样

本.

- (1) 求 θ 的最大似然估计量;
- (2) 说明该估计量是否为无偏估计量

(答案:(1) $\theta = \overline{X}$;(2) 是无偏估计量)

知识点

点估计

23、设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 & 1$ 其它 $f(x,0) = (\theta > -1), X_1, X_2, \cdots, X_n$ 是来自总体 X 的样本,

求 θ 的矩估计量和最大似然估计量

(答案:矩估计量
$$\theta = \frac{1-2\overline{X}}{\overline{X}-1}$$
;最大似然估计量 $\theta = \frac{n}{-\ln X_1 - \ln X_2 - \cdots - \ln X_n} - 1$)

知识点

点估计

24、一公交车起点站候车人数服从泊松分布 P()观察 40 趟车的候车人数如下:

车的趟数	1	3	5	5	6	7	3	3	4	3
候车人数	1	2	3	4	5	6	7	8	9	10

求 的矩估计值.

答案: 的矩估计值 5.625

知识点	
矩估计	

25、设总体 X 的均值和方差分别为 $E(X) = \stackrel{L}{\sim} 10 D(X) = \sigma^2$, $X_1, X_2, \stackrel{\cdots}{\sim} X_n$ 是来自总体 X 的容量为 n的样本,

试证明 $\frac{1}{12} = X$ 和 $\frac{1}{12} = X_1$ 都是 $\frac{1}{12}$ 的无偏估计量,且 $\frac{1}{12}$ 较 $\frac{1}{12}$ 有效。

知识点

估计量的评选标准

