M3P21 Geometry II: Algebraic Topology

Lectured by Dr Christian Urech Typeset by David Kurniadi Angdinata

Spring 2019

Contents

0	Intr	oduction	$_{ m on}$
	0.1	Introdu	action
	0.2	Some t	underlying geometric notions
		0.2.1	Homotopy
			Cell complexes
1	The	funda	mental group
	1.1	Basic o	constructions
		1.1.1	Paths and homotopy
		1.1.2	The fundamental group of the circle
		1.1.3	Induced homomorphisms
	1.2	Seifert-	van Kampen theorem
		1.2.1	Free products with amalgamation
		1.2.2	The Seifert van-Kampen theorem
		1.2.3	Applications to CW-complexes
	1.3		ng spaces
			Lifting properties

0 Introduction

0.1 Introduction

Lecture 1 Friday 11/01/19

Combines topological spaces with algebraic objects, which are groups.

- How to show that a torus is not homeomorphic to a sphere?
- How to show that $\mathbb{R}^n \ncong \mathbb{R}^m$ if $n \neq m$?

Content is fundamental groups and homology. We will follow chapter one and two from

• A Hatcher, Algebraic topology, 2002

The following are prerequisites.

- Point set topology. Topological spaces, continuous maps, product and quotient topologies, Hausdorff spaces, etc.
- Basic group theory. Normal subgroups and quotients, isomorphism theorems, free groups, presentation of groups, etc.

0.2 Some underlying geometric notions

0.2.1 Homotopy

Let X, Y be topological spaces and I = [0, 1].

Definition. A homotopy is a continuous map $F: X \times I \to Y$. For every $t \in I$ we obtain a continuous map

$$f_t: X \rightarrow Y$$

 $x \mapsto f_t(x) = F(x,t)$

Definition. Two continuous maps $f_0, f_1 : X \to Y$ are **homotopic** if there exists a homotopy $F : X \times I \to Y$ such that

$$f_0(x) = F(x,0), \qquad f_1(x) = F(x,1),$$

for all $x \in X$. We write $f_0 \cong f_1$. (Exercise: this is an equivalence relation)

Definition. Let $A \subseteq X$ be a subspace. A **retraction** of X onto A is a continuous map $r: X \to A$ such that

- r(X) = A, and
- $r \mid_A = id_A$.

Example. If $X \neq \emptyset$, $p \in X$, then X retracts to p by the constant map $X \to \{p\}$.

Definition. A **deformation retraction** of X onto $A \subseteq X$ is a retraction that is homotopic to the identity. That is, there is a continuous map

$$F: \quad X \times I \quad \to \quad A \\ (x,t) \quad \mapsto \quad f_t(x) \quad ,$$

such that $f_0 = id_X$ and $f_1 : X \to A$ is the deformation retraction.

Example. The closed n-dimensional n-disc

$$D^n = \{ x \in \mathbb{R}^n \mid |x| \le 1 \}$$

deformation retracts to $(0,\ldots,0)\in\mathbb{R}^n$. Let $f_t(x)=t\cdot x$. t=1 gives $f_1=id_{D^n}$ and t=0 gives $f_0:D^n\to(0,\ldots,0)$.

Example. Let S^n be the *n*-sphere,

$$\partial D^{n+1} = S^n = \{ x \in \mathbb{R}^n \mid |x| = 1 \}.$$

The cylinder $S^n \times I$ deformation retracts to $S^n \times \{0\}$, by defining $f_t(x,r) = (x,t \cdot r)$.

An observation is if X is a topological space, and $f: X \to \{p\}$ for $p \in X$ is a deformation retraction of X to p, then X is path connected. Indeed, if $F: X \times I \to X$ is a homotopy from id_X to f and $x \in X$ is a point, then this gives a path

$$\begin{array}{ccc}
I & \to & X \\
t & \mapsto & F(x,t)
\end{array}$$

that connects x to p. This implies that not all retractions are deformation retractions.

Example. A retraction that is not a deformation retraction. Take a space that is not path connected and retract it to a point. Let $X = \{0,1\}$ with discrete topology. $x \mapsto 0$ is a retraction, but not a deformation retraction because X is not path connected.

Definition. A continuous map $f: X \to Y$ is a **homotopy equivalence** if there is a continuous map $g: Y \to X$ such that $fg \cong id_Y$ and $gf \cong id_X$. If there exists a homotopy equivalence between X and Y, X and Y are **homotopy equivalent** or they have the same **homotopy type**.

Lemma 0.1. A deformation retraction $f: X \to A$ is a homotopy equivalence.

Proof. Let
$$i: A \hookrightarrow X$$
 be the inclusion map. Then $fi = id_A$ and $if = f \cong id_X$ by definition.

Example. The disc with two holes is equivalent to $O \cdot O$.

Example. \mathbb{R}^n deformation retracts to a point, by $f_t(x) = t \cdot x$.

Definition.

- X is **contractible** if it is homotopy equivalent to a point.
- A continuous map is **nullhomotopic** if it is homotopy equivalent to a constant map.

0.2.2 Cell complexes

Example. The torus $S^1 \times S^1$ is the union of a point, two open intervals, and the open disc $Int(D^2)$.

These are called **cells**. Can think of discs \mathbb{D}^n glued together.

Lecture 2 Tuesday 15/01/19

Definition. A CW-complex, or cell complex, is a topological space X such that there exists a decomposition

$$X = \bigcup_{n \in \mathbb{N}} X^n,$$

where the X^n are constructed inductively in the following way.

- X^n is a discrete set.
- For each $n \ge 0$ there is an collection of closed n-discs $\{D_{\alpha}^n\}$ together with continuous maps $\phi_{\alpha}: \partial D_{\alpha}^n \to X^{n-1}$, such that

$$X^n = \frac{X^{n-1} \bigsqcup_{\alpha} D^n_{\alpha}}{\sim},$$

where $x \sim \phi_{\alpha}(x)$ for all $x \in \partial D_{\alpha}^{n}$ for all α .

• A subset $U \subseteq X$ is open if and only if $U \cap X^n$ is open for all n.

Remark.

• As a set,

$$X^n = X^{n-1} \sqcup \bigsqcup_{\alpha} e_{\alpha}^n,$$

where each e_{α}^{n} is homeomorphic to an open n-disc. These e_{α}^{n} are called the n-cells of X.

• If $X = X^m$ for some m, then X is called **finite dimensional**. The minimal m such that $X = X^m$ is the **dimension** of X.

Example.

- [0,1] is a CW-complex.
- \mathbb{R} is a CW-complex.
- S^1 is a CW-complex.
- A graph is a CW-complex.
- $S^n = D^n/\partial D^n$ is a CW-complex. See worksheet 1.

Can also decompose CW-complexes.

- The sphere S^2 is one 0-cell, one 1-cell, and two 2-cells.
- The torus $S^1 \times S^1$ is one 0-cell, two 1-cells, and one 2-cell.
- The Möbius strip is two 0-cells, three 1-cells, and one 2-cell.
- The Klein bottle is one 0-cell, two 1-cells, and one 2-cell.

Definition. If X is a CW-complex with finitely many cells the **Euler characteristic** $\chi(X)$ of X is the number of even cells minus the number of odd cells.

Fact. $\chi(X)$ does not depend of the choice of cells decomposition.

Example.

- $\chi(S^n) = 0$ if n is odd and $\chi(S^n) = 2$ if n is even.
- $\bullet \ \chi\left(S^1\times S^1\right)=0.$

This is the generalisation of the following observation by Leonhard Euler. Let P be a convex polyhedron, where

- V is the number of vertices of P,
- \bullet E is the number of edges of P, and
- F is the number of faces of P.

Then V - E + F = 2.

Example. A topological space that is not a CW-complex. $X = \{0, 1\}$ with trivial topology does not contain any closed points.

Fact. CW-complexes are always Hausdorff.

1 The fundamental group

1.1 Basic constructions

1.1.1 Paths and homotopy

Let X be a topological space. A **path** is a continuous map $f: I \to X$, where I = [0, 1].

Definition. Two paths f_0, f_1 are **homotopic** if there exists a homotopy between f_0 and f_1 preserving the endpoints, that is a continuous map

$$F: I \times I \to X$$

$$(s,t) \mapsto f_t(s)$$

such that

$$f_t(0) = f_0(0), \qquad f_t(1) = f_0(1),$$

for all $t \in I$, and

$$F(s,0) = f_0(s), \qquad F(s,1) = f_1(s),$$

for all $s \in I$.

Example. Let $X \subseteq \mathbb{R}^n$ be a convex set. Then all the paths in X are homotopic if they have the same endpoints.

Proof. Let $f_0, f_1: I \to X$ be two paths such that $f_0(0) = f_1(0)$ and $f_0(1) = f_1(1)$. Define

$$f_t(s) = (1 - t) f_0(s) + t f_1(s)$$
.

Lemma 1.1. Being homotopic is an equivalence relation on the set of paths with fixed endpoints. We will write $f_0 \cong f_1$ for two homotopic paths f_0 and f_1 .

Proof.

- f is homotopic to f.
- If f_0 is homotopic to f_1 by a homotopy f_t , then f_1 is homotopic to f_0 by the homotopy f_{1-t} .
- If f_0 is homotopic to f_1 by a homotopy f_t and $f_1 = g_0$ is homotopic to g_1 by a homotopy g_t , then f_0 is homotopic to g_1 by the homotopy

$$h_t = \begin{cases} f_{2t} & 0 \le t \le \frac{1}{2} \\ g_{2t-1} & \frac{1}{2} \le t \le 1 \end{cases}.$$

Then

$$H: I \times I \rightarrow X$$

 $(s,t) \mapsto h_t(s)$

is continuous because its restriction to the closed subsets $I \times [0, 1/2]$ and $I \times [1/2, 1]$ is continuous, since if the restriction to two closed subsets is continuous then the restriction to the union of these subsets is continuous.

Let X be a topological space and I = [0,1]. If $f: I \to X$ is a path, [f] is the class of all paths on X homotopic to f.

Definition. Let $f, g: I \to X$ be two paths such that f(1) = g(0). The **product path** $f \cdot g$ is the path

$$\left(f\cdot g\right)\left(s\right) = \begin{cases} f\left(2s\right) & 0 \leq s \leq \frac{1}{2} \\ g\left(2s-1\right) & \frac{1}{2} \leq s \leq 1 \end{cases}.$$

Lecture 3 Wednesday 16/01/19

A convention is that whenever we write $f \cdot g$ we implicitly assume f(1) = g(0).

Lemma 1.2. Let f_0, f_1, g_0, g_1 be paths on X such that $f_1 \cong f_0$ and $g_0 \cong g_1$. Then $f_0 \cdot g_0 \cong f_1 \cdot g_1$.

Proof.

$$\begin{array}{ccc}
I \times I & \to & X \\
(s,t) & \mapsto & (f_t \cdot g_t)(s)
\end{array}$$

is a homotopy between $f_0 \cdot g_0$ and $f_1 \cdot g_1$.

Remark. Let $\phi:[0,1]\to[0,1]$ be continuous such that $\phi(0)=0$ and $\phi(1)=1$. If $f:I\to X$ is a path, then $f\phi\cong f$. This is a **reparametrisation**.

Proof. Define

$$\phi_t(s) = (1 - t)\phi(s) + ts,$$

then $f\phi_t$ is a homotopy between $f\phi$ and f.

For $x \in X$, let the **constant path** at x be

$$\begin{array}{cccc} c_x: & I & \to & X \\ & s & \mapsto & x \end{array}.$$

For a path $f: I \to X$, define

$$\begin{array}{cccc} f^{-1}: & I & \to & X \\ & s & \mapsto & f\left(1-s\right) \end{array}.$$

Lemma 1.3. Let $f, g, h: I \to X$ be paths. Then

- 1. $(f \cdot g) \cdot h \cong f \cdot (g \cdot h)$,
- 2. $f \cdot c_{f(1)} \cong f$ and $c_{f(0)} \cdot f \cong f$, and
- 3. $f \cdot f^{-1} \cong c_{f(0)}$ and $f^{-1} \cdot f \cong c_{f(1)}$.

Proof.

1. $((f \cdot g) \cdot h) \phi = f \cdot (g \cdot h)$, where

$$\phi(s) = \begin{cases} \frac{s}{2} & s \in [0, \frac{1}{2}] \\ s - \frac{1}{4} & s \in [\frac{1}{2}, \frac{3}{4}], \\ 2s - 1 & s \in [\frac{3}{4}, 1] \end{cases}$$

so $(f \cdot g) \cdot h \cong f \cdot (g \cdot h)$ by reparametrisation.

2. Again reparametrisation, by

$$\psi(s) = \begin{cases} 2s & s \in \left[0, \frac{1}{2}\right] \\ 1 & s \in \left[\frac{1}{2}, 1\right] \end{cases}, \qquad \chi(s) = \begin{cases} 0 & s \in \left[0, \frac{1}{2}\right] \\ 2s - 1 & s \in \left[\frac{1}{2}, 1\right] \end{cases}.$$

3. Define

$$H(s,t) = \begin{cases} f(\max\{1-2s,t\}) & s \in [0,\frac{1}{2}] \\ f(\max\{2s-1,t\}) & s \in [\frac{1}{2},1] \end{cases}.$$

H is continuous, and

$$H(s,0) = f^{-1} \cdot f, \qquad H(s,1) = c_{f(1)}.$$

The inverse is similar.

Definition. A loop with basepoint $x_0 \in X$ is a path $f: I \to X$ such that $f(0) = f(1) = x_0$.

Definition. Denote by $\pi_1(X, x_0)$ the set of homotopy classes [f] of loops $f: I \to X$ with basepoint x_0 .

Proposition 1.4. $\pi_1(X, x_0)$ is a group with product $[f][g] = [f \cdot g]$ and neutral element $c_{x_0} : I \to X$, the constant path at x_0 .

Proof. Follows directly from Lemma 1.2 and Lemma 1.3.

Definition. $\pi_1(X, x_0)$ is the fundamental group of X at x_0 .

Example. Let $X \subseteq \mathbb{R}^n$ be a convex set and $x_0 \in X$. Then $\pi_1(X, x_0) = 0$.

Proof. X is convex gives that all loops are homotopic to each other.

Example.

- The fundamental group of a space X with the trivial topology is trivial, since X is simply connected, because all maps $f: I \to X$ are continuous, so path connected and all paths are homotopic.
- The fundamental group of a space X with the discrete topology is trivial, since $f: I \to X$ continuous gives f constant.

Assume $x_0, x_1 \in X$ such that x_0 and x_1 are in the same path component of X. Let $h: I \to X$ be a path such that $h(0) = x_0$ and $h(1) = x_1$. Define

$$\beta_h: \quad \pi_1\left(X, x_1\right) \quad \to \quad \pi_1\left(X, x_0\right) \\ \left[f\right] \quad \mapsto \quad \left[h \cdot f \cdot h^{-1}\right] \ .$$

This is well-defined by Lemma 1.2.

Proposition 1.5. $\beta_h : \pi_1(X, x_1) \to \pi_1(X, x_0)$ is an isomorphism.

Proof. It is a homomorphism.

$$\beta_h\left[f\cdot g\right] = \left[h\cdot f\cdot g\cdot h^{-1}\right] = \left[h\cdot f\cdot h^{-1}\right]\left[h\cdot g\cdot h^{-1}\right] = \beta_h\left[f\right]\cdot\beta_h\left[g\right],$$

and $\beta_h[c_{x_1}] = [c_{x_1}]$. It is bijective with $(\beta_h)^{-1} = \beta_{h^{-1}}$.

If X is path connected, we often write $\pi_1(X)$ instead of $\pi_1(X, x_0)$.

Definition. X is simply connected if it is path connected and $\pi_1(X) = 0$.

Proposition 1.6. X is simply connected if and only if there exists a unique homotopy class of paths between any two points of X.

Proof.

- \implies There exists a path between any two points. Let f,g be two paths from x_0 to x_1 for $x_0,x_1\in X$. $f\cdot g^{-1}\cong g\cdot g^{-1}$ gives $f\cong f\cdot g^{-1}\cdot g\cong g\cdot g^{-1}\cdot g\cong g$.
- \iff X is path connected. $x_1 = x_0$ gives that all loops at x_0 are homotopic to each other, so $\pi_1(X) = 0$.

1.1.2 The fundamental group of the circle

Goal is to show that $\pi_1(S^1) \cong \mathbb{Z}$.

Lecture 4 Friday

Definition. A covering space of a space X is a space \widetilde{X} and a continuous map $p:\widetilde{X}\to X$ such that for 18/01/19 each $x\in X$ there is an open $x\in U\subseteq X$ such that

- $p^{-1}(U) = \bigcup_{i \in J} \widetilde{U_i}$, where $\widetilde{U_i} \subseteq \widetilde{X}$ is open,
- $\widetilde{U_i} \cap \widetilde{U_j} = \emptyset$ if $i \neq j$, and
- $p\mid_{\widetilde{U_i}}:\widetilde{U_j}\to U$ is a homeomorphism for all $j\in J$.

Such a U is called **evenly covered**. The \widetilde{U}_j are called **sheets**.

Example.

$$p: \ \mathbb{R} \ \to \ S^1$$
$$s \ \mapsto \ \left(\cos\left(2\pi s\right), \sin\left(2\pi s\right)\right) \ .$$

Definition. Let $p:\widetilde{X}\to X$ be a covering space. A **lift** of a continuous map $f:Y\to X$ is a continuous map $\widetilde{f}:Y\to\widetilde{X}$ such that $p\widetilde{f}=f$, so

$$Y \xrightarrow{\widetilde{f}} X$$

$$Y \xrightarrow{f} X$$

Proposition 1.7 (Unique lifting property). Let $p: \widetilde{X} \to X$ be a covering space and $f: Y \to X$ be a continuous map. If there are two lifts $\widetilde{f}_1, \widetilde{f}_2: Y \to \widetilde{X}$ of f such that $\widetilde{f}_1(y) = \widetilde{f}_2(y)$ for some $y \in Y$ and if Y is connected, then $\widetilde{f}_1 = \widetilde{f}_2$.

Proof. Let $y \in Y$ and $U \subseteq X$ be an evenly covered neighbourhood of f(y). Then

$$p^{-1}\left(U\right) = \bigcup_{j} \widetilde{U_{j}}.$$

Let \widetilde{U}_1 be the sheet such that $\widetilde{f}_1(y) \in \widetilde{U}_1$, and let \widetilde{U}_2 be the sheet such that $\widetilde{f}_2(y) \in \widetilde{U}_2$. Let $N \subseteq Y$ be open and $y \in N$ such that $\widetilde{f}_1(N) \subseteq \widetilde{U}_1$ and $\widetilde{f}_2(N) \subseteq \widetilde{U}_2$. We have $p\widetilde{f}_1 = p\widetilde{f}_2$.

$$\widetilde{f}_{1}\left(y\right) = \widetilde{f}_{2}\left(y\right) \qquad \Longleftrightarrow \qquad \widetilde{U}_{1} = \widetilde{U}_{2} \qquad \Longleftrightarrow \qquad \widetilde{f}_{1}\mid_{N} = \widetilde{f}_{2}\mid_{N}.$$

Let

$$A = \left\{ y \in Y \mid \widetilde{f}_1(y) = \widetilde{f}_2(y) \right\},\,$$

so A is open and $Y \setminus A$ is open. Thus $A \neq \emptyset$ gives A = Y.

Proposition 1.8 (Homotopy lifting property). Let $p: \widetilde{X} \to X$ be a covering space and $F: Y \times I \to X$ be a continuous map such that there exists a lift $\widetilde{f}_0: Y \times \{0\} \to \widetilde{X}$ of $F\mid_{Y \times \{0\}}$. Then there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$ of F such that $\widetilde{F}\mid_{Y \times \{0\}} = \widetilde{f}_0$.

Proof. Let $y_0 \in Y$ and $t \in I$. There are open $y_0 \in N_t \subseteq Y$ and $t \in (a_t, b_t) \subseteq I$ such that $F(N_t \times (a_t, b_t)) \subseteq U \subseteq X$, where $U \subseteq X$ is open and evenly covered. Compactness of I gives that there exist

$$0 = t_0 < \cdots < t_m = 1,$$

and there exists $y_0 \in N \subseteq Y$ open such that $F(N \times [t_i, t_{i+1}]) \subseteq U_i \subseteq X$, where $U_i \subseteq X$ is open and evenly covered. We inductively construct a lift $\widetilde{F}|_{N \times I}$ of $F|_{N \times I}$.

- $\widetilde{F}|_{N\times[0,0]}=\widetilde{f}_0|_{N\times[0,0]}$ exists.
- Assume the lift has been constructed on $N \times [0, t_i]$. Let $\widetilde{U_i} \subseteq \widetilde{X}$ be such that $p \mid_{\widetilde{U_i}} : \widetilde{U_i} \to U_i$ such that $\widetilde{F}(y_0, t_i) \subseteq \widetilde{U_i}$. After shrinking N, may assume $\widetilde{F}(N \times \{t_i\}) \subseteq \widetilde{U_i}$. Define \widetilde{F} on $N \times [t_i, t_{i+1}]$ to be composition of F with the homeomorphism $p^{-1} : U_i \to \widetilde{U_i}$.

After finitely many steps we obtain a lift $\widetilde{F}: N \times I \to \widetilde{X}$, where $y_0 \in N \subseteq Y$ is open, so for each $y \in Y$ there is a neighbourhood $N_y \subseteq Y$ such that $F|_{N_y \times I}: N_y \times I \to X$ lifts. For all $y \in Y$, $\{y\} \times I$ is connected and can be lifted, so Proposition 1.7 gives that the lift of $N \times I$ is unique. Thus there is a unique lift $\widetilde{F}: Y \times I \to \widetilde{X}$.

Example. Let X be a topological space and A be discrete. Then $p: X \times A \to X$ is a covering space. This is the **trivial covering**. (Exercise: show the unique lifting property and the homotopy lifting property for the trivial covering)

Corollary 1.9. Let $f: I \to X$ be a path, $f(0) = x_0$, and $p: \widetilde{X} \to X$ be a covering space. For each $\widetilde{x_0} \in p^{-1}(x_0)$, there is a unique lift $\widetilde{f}: I \to \widetilde{X}$ such that $\widetilde{f}(0) = \widetilde{x_0}$.

Proof. Proposition 1.8 for Y a point.

Theorem 1.10. Let $x_0 = (1,0) \in S^1$. $\pi_1(S^1, x_0)$ is the infinite cyclic group generated by the homotopy class of the loop

$$\begin{array}{ccc} \omega: & I & \to & S^1 \\ & s & \mapsto & \left(\cos\left(2\pi s\right), \sin\left(2\pi s\right)\right) \end{array}.$$

Remark.

• $[\omega]^n = [\omega_n]$, where

$$\omega_{n}\left(s\right)=\left(\cos\left(2\pi ns\right),\sin\left(2\pi ns\right)\right).$$

•

$$\begin{array}{ccc} p: & \mathbb{R} & \to & S^1 \\ & s & \mapsto & \left(\cos\left(2\pi s\right), \sin\left(2\pi s\right)\right) \end{array}$$

is a covering space.

• ω_n lifts to

$$\widetilde{\omega_n}: I \to \mathbb{R}
s \mapsto ns$$

such that $\widetilde{\omega_n}(0) = 0$ and $\widetilde{\omega_n}(1) = n$.

Proof of Theorem 1.10.

- If $f: I \to S^1$ be a loop at x_0 , then the homotopy lifting property gives that there exists a lift $\widetilde{f}: I \to \mathbb{R}$ such that $\widetilde{f}(0) = 0$. Since $p\left(\widetilde{f}(1)\right) = f(1) = x_0$, then $\widetilde{f}(1) = n$ for some $n \in \mathbb{Z}$. $\widetilde{\omega_n}: I \to \mathbb{R}$ is another path such that $\widetilde{\omega_n}(0) = 0$ and $\widetilde{\omega_n}(1) = n$, so $\widetilde{f} \cong \widetilde{\omega_n}$. Let $F: I \times I \to \mathbb{R}$ be a homotopy equivalence between \widetilde{f} and $\widetilde{\omega_n}$. Then $pF: I \times I \to S^1$ gives a homotopy between $p\widetilde{f} = f$ and $p\widetilde{\omega_n} = \omega_n$.
- Let $m, n \in \mathbb{Z}$ and assume $\omega_m \cong \omega_n$. Let $F: I \times I \to S^1$ be a homotopy.

$$F\left(0,t\right)=\omega_{m}\left(t\right),\qquad F\left(1,t\right)=\omega_{n}\left(t\right),\qquad F\left(s,0\right)=F\left(s,1\right)=x_{0},$$

for all $s,t\in I$. The unique lifting property gives that $\widetilde{\omega_n},\widetilde{\omega_m}:I\to\mathbb{R}$ are unique lifts such that $\widetilde{\omega_n}(0)=0=\widetilde{\omega_m}(0)$. The homotopy lifting property gives that F lifts uniquely to a homotopy $\widetilde{F}:I\times I\to\mathbb{R}$ between $\widetilde{\omega_n}$ and $\widetilde{\omega_m}$, and $\widetilde{F}(s,1)\in\mathbb{Z}$ for all $s\in I$. Thus $\widetilde{F}(s,1)=n=m$, so $\omega_m\cong\omega_n$ if and only if n=m.

Lecture 5

Tuesday 22/01/19

Lecture 6 Wednesday

23/01/19

Lecture 5 is a problem class.

Theorem 1.11. Every non-constant polynomial $p \in \mathbb{C}[z]$ has a root in \mathbb{C} .

Proof. May assume

$$p(z) = z^n + a_1 z^{n-1} + \dots + a_n.$$

Assume p has no roots in \mathbb{C} . For each $r \in \mathbb{R}_{>0}$ we obtain a loop

$$f_r: I \to \mathbb{C}$$

$$s \mapsto \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|},$$

so $|f_r(s)| = 1$. $f_r(0) = 1$ and $f_r(1) = 1$, so f_r is a loop based at 1. f_0 is the constant loop at 1. $f_r(s)$ depends continuously on r, so $f_r \cong f_0$ for all $r \in \mathbb{R}_{\geq 0}$ and $[f_r] = [f_0] = 0 \in \pi_1(S^1)$. Fix $r \in \mathbb{R}_{\geq 0}$ such that r > 1 and $r > |a_1| + \cdots + |a_n|$. For |z| = r we have

$$|z^n| > (|a_1| + \dots + |a_n|) |z^{n-1}| \ge |a_1 z^{n-1}| + \dots + |a_n| \ge |a_1 z^{n-1} + \dots + |a_n|.$$

Hence, for $0 \le t \le 1$ the polynomial $p_t(z) = z^n + t(a_1 z^{n-1} + \dots + a_n)$ has no root z with |z| = r. Define

$$F_r\left(t,s\right) = \frac{p_t\left(re^{2\pi is}\right)/p_t\left(r\right)}{\left|p_t\left(re^{2\pi is}\right)/p_t\left(r\right)\right|}.$$

 $F_r\left(0,s\right)=\omega_n\left(s\right)$ and $F_r\left(1,s\right)=f_r\left(s\right)$, so $\left[\omega_n\right]=\left[f_r\right]=0\in\pi_1\left(S^1\right)$. Theorem 1.10 gives that n=0, so p is constant.

See Hatcher Theorem 1.9 and Theorem 1.10 for more applications.

Proposition 1.12. Let X, Y be topological spaces, $x_0 \in X$, and $y_0 \in Y$. Then

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$
.

Proof. A map

$$f: Z \rightarrow X \times Y$$

 $z \mapsto (g(z), h(z))$

is continuous if and only if $g: Z \to X$ and $h: Z \to Y$ are continuous. For Z = I,

 $\left\{ \text{ loops in } X \times Y \text{ based at } (x_0, y_0) \right\} \qquad \Longleftrightarrow \qquad \left\{ \text{ loops in } X \text{ based at } x_0 \right\} \times \left\{ \text{ loops in } Y \text{ based at } y_0 \right\}.$

Two loops

$$f_1: I \rightarrow X \times Y$$
 $f_2: I \rightarrow X \times Y$ $s \mapsto (g_1(s), h_1(s))$, $s \mapsto (g_2(s), h_2(s))$

are homotopic if and only if $g_1 \cong g_2$ and $h_1 \cong h_2$, so there is a bijection

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

 $f_1 \cdot f_2 = (g_1 \cdot g_2, h_1 \cdot h_2)$ and the constant loop is mapped to the constant loop, so this is also a group isomorphism.

Example. The torus $S^1 \times S^1$ has

$$\pi_1\left(S^1\times S^1\right)\cong\pi_1\left(S^1\right)\times\pi_1\left(S^1\right)\cong\mathbb{Z}^2.$$

1.1.3 Induced homomorphisms

Let X, Y be topological spaces, $x_0 \in X$, and $\phi: X \to Y$. An observation is that ϕ induces a homomorphism

$$\phi_*: \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0)) [f] \mapsto [\phi f]$$

 ϕ_* is well-defined, since if f_t is a homotopy between the loops f_0 and f_1 based at x_0 , then ϕf_t is a homotopy of loops between ϕf_0 and ϕf_1 . Moreover,

$$\phi (f \cdot g) = (\phi f) \cdot (\phi g),$$

and ϕ maps the constant path at x_0 to the constant path at $\phi(x_0)$, so ϕ is a homomorphism.

Proposition 1.13.

1. Let $\psi: X \to Y$ and $\phi: Y \to Z$ be continuous maps between topological spaces, $x_0 \in X$, and

$$\psi_* : \pi_1(X, x_0) \to \pi_1(Y, \psi(x_0)), \qquad \phi_* : \pi_1(Y, \psi(x_0)) \to \pi_1(Z, \phi\psi(x_0)),$$

$$(\phi\psi)_* : \pi_1(X, x_0) \to \pi_1(Z, \phi\psi(x_0)).$$

Then $(\phi \psi)_* = \phi_* \psi_*$.

2. Let $id_X: X \to X$ be the identity then

$$(id_X)_*: \pi_1(X, x_0) \to \pi_1(X, x_0)$$

is the identity.

Proof.

1. Let $f: I \to X$ be a loop at x_0 , then

$$(\phi\psi)_*([f]) = [(\phi\psi)f] = [\phi(\psi f)] = \phi_*([\psi f]) = \phi_*\psi_*([f]).$$

2. $(id_X)_*([f]) = [id_X f] = [f]$.

These two observations yield in particular that if $\phi: X \to Y$ is a homeomorphism with inverse $\psi: Y \to X$, then

$$\phi_* : \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0))$$

is an isomorphism with inverse ψ_* .

Proposition 1.14. Let $\phi: X \to Y$ be a homotopy equivalence. Then

Lecture 7 Friday 25/01/19

$$\phi_* : \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0))$$

is an isomorphism for all $x_0 \in X$.

Recall that if $x_0, x_1 \in X$ and $h: I \to X$ is a path such that $h(0) = x_0$ and $h(1) = x_1$, then we obtain an isomorphism

$$\beta_h: \quad \pi_1\left(X, x_1\right) \quad \to \quad \pi_1\left(X, x_0\right) \\ \left[f\right] \quad \mapsto \quad \left[h \cdot f \cdot h^{-1}\right] \ .$$

Lemma 1.15. Let $\phi_t: X \to Y$ be a homotopy and $x_0 \in X$. Define the path

$$h: I \to Y s \mapsto \phi_s(x_0) ,$$

where $h(0) = \phi_0(x_0)$ and $h(1) = \phi_1(x_0)$. Then $(\phi_0)_* = \beta_h(\phi_1)_*$, that is the following diagram commutes.

Proof. For $t \in I$, define the path

$$h_t: I \to X s \mapsto h(ts) ,$$

where $h_t(0) = \phi_0(x_0)$ and $h_t(1) = h(t) = \phi_t(x_0)$. Let f be a loop at x_0 . Define

$$F_t = h_t \cdot (\phi_t f) \cdot h_t^{-1}.$$

Then F_t is a loop at $\phi_0(x_0)$, which is continuous in t. So F_t is a homotopy of loops between

$$F_0 = h_0 \cdot (\phi_0 f) \cdot h_0^{-1} \cong \phi_0 f, \qquad F_1 = h_1 \cdot (\phi_1 f) \cdot h_1^{-1} = h \cdot (\phi_1 f) \cdot h^{-1}.$$

Hence

$$(\phi_0)_*([f]) = [\phi_0 f] = [h \cdot (\phi_1 f) \cdot h^{-1}] = \beta_h([\phi_1 f]) = \beta_h(\phi_1)_*([f]).$$

Lemma 1.15 implies in particular the following.

Corollary 1.16. If $\psi: X \to X$ is continuous and $\psi \cong id_X$, then

$$\psi_*: \pi_1(X, x_0) \to \pi_1(X, \psi(x_0))$$

is an isomorphism for all $x_0 \in X$.

Proof. By Lemma 1.15 there is a path h from $\psi(x_0)$ to x_0 such that

so $\psi_* = \beta_h$ hence an isomorphism.

Proof of Proposition 1.14. Let $\phi: X \to Y$ be a homotopy equivalence. Let $\psi: Y \to X$ be a homotopy inverse of ϕ , that is $\phi \psi \cong id_Y$ and $\psi \phi \cong id_X$.

$$\pi_{1}\left(X,x_{0}\right) \xrightarrow{\phi_{*}} \pi_{1}\left(Y,\phi\left(x_{0}\right)\right) \xrightarrow{\psi_{*}} \pi_{1}\left(X,\psi\phi\left(x_{0}\right)\right) \xrightarrow{\phi_{*}} \pi_{1}\left(Y,\psi\phi\psi\left(x_{0}\right)\right).$$

Have to show that ϕ_* is bijective. The observation above gives that $(\psi\phi)_* = \psi_*\phi_*$ is an isomorphism, so ϕ_* is injective and ψ_* is surjective. Similarly $(\phi\psi)_* = \phi_*\psi_*$ is an isomorphism, so ψ_* is injective and ϕ_* is surjective.

Lemma 1.17. Let X be a topological space and $x_0 \in X$. Assume

$$X = \bigcup_{\alpha \in \Lambda} A_{\alpha},$$

such that

- the A_{α} are all open and path connected,
- $x_0 \in A_\alpha$ for all $\alpha \in \Lambda$, and
- all the intersections $A_{\alpha} \cap A_{\beta}$ are path connected for all $\alpha, \beta \in \Lambda$.

If f is a loop in X at x_0 , then we can write $[f] = [h_1] \dots [h_m]$, such that the h_i are loops at x_0 , and each contained in a single A_{α_i} .

Proof. f is continuous, so for all $s \in I$ there is an open neighbourhood V_s such that $f(V_s)$ such that $f(V_s) \subseteq A_\alpha$ for some α . We can choose V_s to be an interval (a_s, b_s) such that $f([a_s, b_s]) \subseteq A_\alpha$. I is compact gives that a finite number of such intervals cover I, so there is a partition

$$0 = s_0 < \dots < s_m = 1,$$

such that $f([s_{i-1}, s_i]) \subseteq A_{\alpha_i}$ for some α_i . Let f_i be the path obtained by restricting f to $[s_{i-1}, s_i]$, and rescaling. $f \cong f_1 \cdots f_m$ for $f_i \subseteq A_{\alpha_i}$ and $A_{\alpha_i} \cap A_{\alpha_j}$ is path connected. Let g_i be a path from x_0 to $f(s_i)$ in $A_{\alpha_i} \cap A_{\alpha_{i+1}}$. Let g_0, g_m be the constant loops at x_0 . $h_i = g_{i-1} \cdot f_i \cdot g_i^{-1}$ is a loop based at x_0 and $h_i \subseteq A_{\alpha_i}$. Thus

$$f \cong (g_0 \cdot f_1 \cdot g_1^{-1}) \cdot \cdots \cdot (g_{m-1} \cdot f_m \cdot g_m^{-1}),$$

so $[f] = [h_1] \dots [h_m].$

Lecture 8 Tuesday 29/01/19

Example. Möbius strip M deformation retracts to S^1 . Thus $\phi: M \to S^1$ is a homotopy equivalence, so $\pi_1(M) \cong \pi_1(S^1) \cong \mathbb{Z}$.

Example. There is no deformation retraction of S^1 to a point $p \in S^1$ because $\pi_1(S^1) \ncong \pi_1(p)$.

Example. There is no retraction of the disc D^2 to its boundary $S^1 \subseteq D^2$.

Proof. Assume there is a retraction $r: D^2 \to S^1$, consider the embedding $i: S^1 \hookrightarrow D^2$. Then $ri = id_{S^1}$. Thus

$$\begin{array}{ccc} \pi_1 \left(S^1 \right) & \stackrel{i_*}{\longrightarrow} & \pi_1 \left(D^2 \right) & \stackrel{r_*}{\longrightarrow} & \pi_1 \left(S^1 \right) \\ \mathbb{Z} & & \mathbb{Z} & & \mathbb{Z} \end{array},$$

so $r_*i_*\left(\pi_1\left(S^1\right)\right)=0$ but $r_*i_*=\left(ri\right)_*=id_{\pi_1\left(S^1\right)},$ a contradiction.

Theorem 1.18 (Brouwer fixed point theorem). Let $h: D^2 \to D^2$ be a continuous map. Then h has a fixed point, that is there exists $x \in D^2$ such that h(x) = x.

Proof. Assume $h(x) \neq x$ for all $x \in D^2$. Define $r: D^2 \to S^1$ by defining r(x) to be the intersection of the ray starting at h(x) towards x with S^1 . r is continuous, and if $x \in S^1$, then r(x) = x, so r is a retraction, a contradiction.

Lemma 1.17 gives that if $U_1, U_2 \subseteq X$ are open and path connected such that $U_1 \cup U_2 = X$ and $U_1 \cap U_2$ is path connected and $x_0 \in U_1 \cap U_2$, then every $[f] \in \pi_1(X, x_0)$ can be factorised as $[f] = [g_1][h_1] \dots [g_n][h_n]$ such that the g_i are loops at x_0 contained in U_1 and the h_i are loops at x_0 contained in U_2 . In other words, $i_1 : U_1 \hookrightarrow X$ and $i_2 : U_2 \hookrightarrow X$, so

$$(i_1)_*: \pi_1(U_1, x_0) \to \pi_1(X, x_0), \qquad (i_2)_*: \pi_1(U_2, x_0) \to \pi_1(X, x_0).$$

Lemma 1.17 gives that $(i_1)_*(\pi_1(U_1,x_0)) \cup (i_2)_*(\pi_1(U_2,x_0))$ generate $\pi_1(X,x_0)$.

Proposition 1.19. $\pi_1(S^n) = 0 \text{ if } n \geq 2.$

Proof. Let $U_1 = S^n \setminus \{(1,0,\ldots,0)\}$ and $U_2 = S^n \setminus \{(-1,0,\ldots,0)\}$. Then $U_1 \cong \mathbb{R}^n$ and $U_2 \cong \mathbb{R}^n$, by stereographic projection. $U_1 \cup U_2 = S^n$ and $U_1 \cap U_2$ is path connected. Let $x_0 \in U_1 \cap U_2$. $\pi_1(U_1,x_0) = 0$ and $\pi_1(U_2,x_0) = 0$, so Lemma 1.17 gives that $\pi_1(S^n,x_0)$.

1.2 Seifert-van Kampen theorem

1.2.1 Free products with amalgamation

Definition. If S is a set, then F_S is the **free group** on S. We can write any group G as a quotient of some free group F_S ,

$$G = \frac{F}{\langle \langle R \rangle \rangle},$$

where $\langle \langle R \rangle \rangle$ is the **normal closure** of $R \subseteq F_S$, the smallest normal subgroup of F_S containing R. We write $G = \langle S \mid R \rangle$. This is called a **presentation** of G.

Let G_0, G_1, G_2 be groups, and $f_1: G_0 \to G_1$ and $f_2: G_0 \to G_2$ be homomorphisms.

Definition. A group H together with homomorphisms $h_1: G_1 \to H$ and $h_2: G_2 \to H$ such that $h_1f_1 = h_2f_2$ is an **amalgamated product** of G_1 and G_2 over G_0 if it satisfies the following universal property. For every group G and all homomorphisms $h'_1: G_1 \to G$ and $h'_2: G_2 \to G$ such that $h'_1f_1 = h'_2f_2$, there exists a unique homomorphism $\alpha: H \to G$ such that $h'_1 = \alpha h_1$ and $h'_2 = \alpha h_2$.

Theorem 1.20. Given $f_1: G_0 \to G_1$ and $f_2: G_0 \to G_2$. Then there exists an amalgamated product, unique up to isomorphism. We denote it by $G_1 * G_2$.

Proof. Worksheet 2.

Lecture 9 Wednesday 30/01/19

 $G_0 = \{id\}$ is the **free product**. We write $G_1 * G_2$ instead of $G_1 * G_2$. Let $G_1 = \langle S_1 \mid R_1 \rangle$ and $G_2 = \langle S_2 \mid R_2 \rangle$. Then $G_1 * G_2 = \langle S_1 \sqcup S_2 \mid R_1 \cup R_2 \rangle$, with injections $G_i \hookrightarrow G_1 * G_2$ for i = 1, 2. More generally,

$$G_1 * G_2 \cong \frac{G_1 \underset{G_0}{*} G_2}{N}.$$

where N is the normal closure of the set

$$\left\{ f_{1}\left(g\right) f_{2}\left(g\right) ^{-1}\mid g\in G_{0}\right\} \subseteq G_{1}\ast G_{2}.$$

1.2.2 The Seifert van-Kampen theorem

Theorem 1.21 (Seifert-van Kampen). Let X be a topological space and $U_1, U_2 \subseteq X$ be open and path connected such that $X = U_1 \cup U_2$ and $U_1 \cap U_2$ is path connected and let $x_0 \in U_1 \cap U_2$. Then

$$\pi_1(X, x_0) \cong \pi_1(U_1, x_0) \underset{\pi_1(U_1 \cap U_2, x_0)}{*} \pi_2(U_2, x_0) \cong \frac{\pi_1(U_1, x_0) * \pi_1(U_2, x_0)}{N},$$

where N is the normal closure of the set

$$\left\{ \left(j_{1}\right)_{*}\left(\omega\right)\left(j_{2}\right)_{*}\left(\omega\right)^{-1}\mid\omega\in\pi_{1}\left(U_{1}\cap U_{2},x_{0}\right)\right\} ,$$

and $j_i: U_1 \cap U_2 \hookrightarrow U_i$.

Proof. Consider the natural homomorphism

$$\Phi: \pi_1(U_1, x_0) * \pi_1(U_2, x_0) \to \pi_1(X, x_0).$$

 Φ is surjective by Lemma 1.17. $N \subseteq Ker(\Phi)$. Want to show that $N = Ker(\Phi)$. A **factorisation** of an element $[f] \in \pi_1(X, x_0)$ is a formal product $[f_1] \dots [f_k]$ such that

- each f_i is a loop at x_0 in one of the U_i and $[f_i] \in \pi_1(U_i, x_0)$ is its homotopy class, and
- the loop $f_1 \cdot \cdots \cdot f_k$ is homotopic to f in X.

A factorisation of [f] is a word in $\pi_1(U_1, x_0) * \pi_1(U_2, x_0)$ that is mapped to [f] by Φ . Two factorisations of [f] are **equivalent** if they are related by finitely many of the following two moves.

- If $[f_i]$ and $[f_{i+1}]$ lie in the same group $\pi_1(U_i, x_0)$, exchange $[f_i][f_{i+1}]$ with $[f_i \cdot f_{i+1}]$. These are the relations in $\pi_1(U_i, x_0) * \pi_1(U_i, x_0)$.
- If f_i is a loop in $U_1 \cap U_2$, consider $[f_i]$ as an element in $\pi_1(U_1, x_0)$ instead of $\pi_1(U_2, x_0)$, and vice versa. These are the relations in $\pi_1(U_1, x_0) * \pi_1(U_2, x_0) / N$.

Given $[f] \in \pi_1(X, x_0)$, we want to show that any two factorisations of [f] are equivalent. Let $[f_1] \dots [f_k]$ and $[f'_1] \dots [f'_l]$ be two factorisations of [f], so the two loops $f_1 \dots f_k$ and $f'_1 \dots f'_k$ are homotopic. Let $F: I \times I \to X$ be a homotopy. By compactness, there exist

$$0 = s_0 < \dots < s_m = 1, \qquad 0 = t_0 < \dots < t_n = 1,$$

such that $R_{i,j} = [s_{i-1}, s_i] \times [t_{j-1}, t_j]$ and $F(R_{ij}) \subseteq U_1$ or $F(R_{ij}) \subseteq U_2$. May assume $0 = s_0 < \cdots < s_m = 1$ subdivides the products $f_1 \cdot \cdots \cdot f_k$ and $f'_1 \cdot \cdots \cdot f'_l$. Relabel the R_{ij} to R_1, \ldots, R_{mn} .

mn-m+1		mn
:	٠	:
1		m

A path γ in $I \times I$ from left to right gives a loop $F \mid_{\gamma}$ in X at x_0 . Let γ_r be the path separating the first r rectangles from the others, so

$$F \mid_{\gamma_0} \cong f_1 \cdot \dots \cdot f_k, \qquad F \mid_{\gamma_{mn}} = f'_1 \cdot \dots \cdot f'_l.$$

Let v be a grid point. Choose a path g_v in X from x_0 to F(v), such that g_v is contained in $U_1 \cap U_2$ if $F(v) \in U_1 \cap U_2$ and in a single U_i otherwise. This gives us a factorisation of $[F|_{\gamma_r}]$ into loops only contained in U_1 or U_2 . The factorisations associated to γ_r and γ_{r+1} are equivalent, because the homotopy between $F|_{\gamma_r}$ and $F|_{\gamma_{r+1}}$ by pushing γ_r through R_r takes place within a single U_i .

Theorem 1.22 (Seifert-van Kampen, strong version). Let X be a path connected topological space such that

Lecture 10 Friday 01/02/19

- $X = \bigcup_{\alpha} A_{\alpha}$,
- A_{α} , $A_{\alpha} \cap A_{\beta}$, and $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ are open and path connected for all α, β, γ , and
- $x_0 \in \cap_{\alpha} A_{\alpha}$.

Then

$$\pi_1(X, x_0) \cong \frac{*\pi_1(A_\alpha, x_0)}{N},$$

where $N \subseteq *\pi_1(A_\alpha, x_0)$ is the normal closure of the set

$$\left\{ \left(i_{\alpha\beta}\right)_{*}\left(\omega\right)\left(i_{\beta\alpha}\right)_{*}\left(\omega\right)^{-1}\mid\omega\in\pi_{1}\left(A_{\alpha}\cap A_{\beta}\right)\right\} ,$$

and $i_{\alpha\beta}: A_{\alpha} \cap A_{\beta} \hookrightarrow A_{\alpha}$ is the inclusion.

Example. Let $S^1 \vee S^1$ be the wedge product. Fix $x \in S^1$ and $y \in S^1$. Then

$$S^1 \vee S^1 = \frac{S^1 \sqcup S^1}{x \sim y} = \overset{b}{\mathcal{O}} \cdot \overset{a}{\mathcal{O}}.$$

Let

$$A = O \cdot (, \quad B =) \cdot O, \quad A \cap B =) \cdot (.$$

 $\pi_1(A) \cong \langle b \rangle \cong \mathbb{Z}, \ \pi_1(B) \cong \langle a \rangle \cong \mathbb{Z}, \ \text{and} \ \pi_1(A \cap B) = \{id\}. \ A, \ B, \ \text{and} \ A \cap B \ \text{are open and path connected.}$ Van Kampen gives

$$\pi_1\left(S^1\vee S^1\right)\cong\pi_1\left(A\right)*\pi_1\left(B\right)\cong\mathbb{Z}*\mathbb{Z}\cong F_{\{a,b\}}.$$

More generally, let $X = S_{a_1}^1 \vee \cdots \vee S_{a_n}^1$. By induction,

$$\pi_1(X) = \mathbb{Z} * \cdots * \mathbb{Z} \cong F_{\{a_1,\dots,a_n\}}.$$

Similarly, let $X = \bigvee_{\alpha \in \Lambda} S_{\alpha}^1$. Strong version of van Kampen gives

$$\pi_1(X) = \underset{\alpha \in \Lambda}{*} \mathbb{Z} = F_{\Lambda}.$$

Example. Let T be a torus and $x_0 \in T$. Let

 $A = T \setminus \{ \text{small closed disc } D \}, \qquad B = \{ \text{open set that contains } D \text{ and } x_0 \}.$

- A is homotopy equivalent to $S^1 \vee S^1$, so $\pi_1(A) \cong F_{\{a,b\}}$.
- B is homeomorphic to D^2 , so $\pi_1(B) = \{id\}$.
- $A \cap B$ is homotopy equivalent to S^1 , so $\pi_1(A \cap B) \cong \mathbb{Z}$.

A, B, and $A \cap B$ are open and path connected. Van Kampen gives

$$\pi_1\left(T\right) \cong \frac{\pi_1\left(A\right)}{\left\langle\left\langle i_*\left(\pi_1\left(A\cap B\right)\right)\right\rangle\right\rangle},$$

where $i: A \cap B \hookrightarrow A$. Then

$$i_*: \pi_1(A \cap B) = \langle \omega \rangle \rightarrow \pi_1(A)$$

 $\omega \mapsto aba^{-1}b^{-1}$,

SO

$$\pi_1\left(T\right) \cong \frac{F_{\{a,b\}}}{\left\langle\left\langle aba^{-1}b^{-1}\right\rangle\right\rangle} = \left\langle a,b \mid aba^{-1}b^{-1}\right\rangle \cong \mathbb{Z}^2.$$

1.2.3 Applications to CW-complexes

Let X be a path connected topological space. Let Y be the space obtained by attaching 2-cells $\{e_{\alpha}^2\}$ to X along maps $\phi_{\alpha}: \partial D^2 = S^1 \to X$. Consider the loops

$$\begin{array}{cccc} \phi_{\alpha}': & I & \to & X \\ & s & \mapsto & \phi_{\alpha} \left(\cos \left(2\pi s\right), \sin \left(2\pi s\right)\right) \end{array},$$

based at $\phi_{\alpha}'(0)$. Let γ_{α} be a path from x_0 to $\phi_{\alpha}'(0)$ for each α . Then $\gamma_{\alpha} \cdot \phi_{\alpha} \cdot \gamma_{\alpha}^{-1}$ is a loop at x_0 . After attaching e_{α}^2 , the loop $\gamma_{\alpha} \cdot \phi_{\alpha} \cdot \gamma_{\alpha}^{-1}$ is homotopic to the constant loop at x_0 . Let $N \subseteq \pi_1(X, x_0)$ be the normal closure of all the elements of the form $[\gamma_{\alpha} \cdot \phi_{\alpha} \cdot \gamma_{\alpha}^{-1}]$. The inclusion $i: X \hookrightarrow Y$ yields

$$i_*: \pi_1(X, x_0) \to \pi_1(Y, x_0)$$
,

and $N \subseteq Ker(i_*)$.

Proposition 1.23. This inclusion $i: X \hookrightarrow Y$ induces a surjection

$$i_*: \pi_1(X, x_0) \to \pi_1(Y, x_0),$$

and $Ker(i_*) = N$, so

$$\pi_1(Y, x_0) \cong \frac{\pi_1(X, x_0)}{N}.$$

Proof. Construct a space Z from Y by attaching a strip $I \times I$ to Y by identifying the lower edge $I \times \{0\}$ with the path γ_{α} and the right edge $\{1\} \times I$ with an arch on e_{α}^2 . Attach all the left edges of the strips with each other. Z deformation retracts to Y. Choose a point $y_{\alpha} \in e_{\alpha}^2$ for each α , such that y_{α} is not contained in X or in the attached strip. Let

$$A = Z \setminus \bigcup_{\alpha} \{y_{\alpha}\}, \qquad B = Z \setminus X.$$

- \bullet A deformation retracts to X.
- B is homotopy equivalent to a point.
- $A \cap B$ is homotopy equivalent to

{paths
$$\gamma_{\alpha}$$
 from x_0 to loops ϕ'_{α} } = $\overset{\phi'_{\alpha}}{O} \overset{\gamma_{\alpha}}{\cdot} \overset{x_0}{\cdot} \overset{\gamma_{\alpha}}{\cdot} \overset{\phi'_{\alpha}}{\circ}$.

A, B, and $A \cap B$ are open and path connected. Van Kampen gives

$$\pi_1(Y) \cong \pi_1(Z) = \frac{\pi_1(A)}{\langle \langle j_* (\pi_1(A \cap B)) \rangle \rangle},$$

where $j:A\cap B\hookrightarrow A$ is the inclusion. So $\langle\langle j_*\left(\pi_1\left(A\cap B\right)\right)\rangle\rangle$ is exactly N. Thus $\pi_1\left(A\right)=\pi_1\left(X\right).$

Lecture 11 Tuesday 05/02/19

Corollary 1.24. For every group G there exists a two-dimensional CW-complex X_G such that $\pi_1\left(X_G\right)=G$.

Proof. Let $G = \langle \{g_{\alpha}\} \mid \{r_{\beta}\} \rangle$ be a presentation of G, that is

$$G = \frac{F_{\{g_{\alpha}\}}}{\langle\langle\{r_{\beta}\}\rangle\rangle}.$$

Seen last time that $\pi_1 \left(\bigvee_{g_{\alpha}} S_{g_{\alpha}}^1 \right) = F_{\{g_{\alpha}\}}$. Each word r_{β} defines a loop in $\bigvee_{g_{\alpha}} S_{g_{\alpha}}^1$. Attach 2-cells to $\bigvee_{g_{\alpha}} S_{g_{\alpha}}^1$ along the loops defined by the relations $\{r_{\beta}\}$. Call this new CW-complex Y. Proposition 1.23 gives that

$$\pi_1(Y, x_0) \cong \frac{\pi_1(X, x_0)}{\langle \langle \{r_\beta\} \rangle \rangle} \cong \frac{F_{\{g_\alpha\}}}{\langle \langle \{r_\beta\} \rangle \rangle} \cong G.$$

Remark. Let $X = \bigcup_n X^n$ be a CW-complex, path connected. Proposition 1.23 can be used to show the following two facts.

- The inclusion $X^1 \hookrightarrow X$ induces a surjective homomorphism $\pi_1(X^1) \to \pi_1(X)$.
- The inclusion $X^2 \hookrightarrow X$ induces an isomorphism $\pi_1\left(X^2\right) \to \pi_1\left(X\right)$.

1.3 Covering spaces

1.3.1 Lifting properties

Let X be a topological space. Recall that a **covering space** is $p: \widetilde{X} \to X$ such that each $x \in X$ has an open neighbourhood U such that

$$p^{-1}\left(U\right) =\bigcup_{\alpha}\widetilde{U_{\alpha}},$$

where U_{α} are pairwise disjoint and $p|_{\widetilde{U_{\alpha}}}:\widetilde{U_{\alpha}}\to U$ is a homeomorphism for all α .

Example.

Let $f: Y \to X$ be a continuous map. A **lift** of f is a continuous map $\widetilde{f}: Y \to \widetilde{X}$ such that $p\widetilde{f} = f$, where $p: \widetilde{X} \to X$ is a covering space. Let Y be connected.

- Unique lifting property states that if two lifts \widetilde{f}_1 and \widetilde{f}_2 of f coincide at one point, then they coincide on all of Y.
- Homotopy lifting property states that if $f_t: Y \to X$ is a homotopy and $\widetilde{f_0}: Y \to \widetilde{X}$ is a lift of f_0 then there exists a unique homotopy $\widetilde{f_t}: Y \to \widetilde{X}$ of $\widetilde{f_0}$ that lifts f_t .

Remark.

- If Y is a point, this is called the **path lifting property**. Let $f: I \to X$ be a path with $f(0) = x_0$. If $\widetilde{x_0} \in p^{-1}(x_0)$, then there is a unique path $\widetilde{f}: I \to \widetilde{X}$ lifting f and starting at $\widetilde{x_0}$.
- In particular, the lift of a constant path is constant.
- This implies in particular that the lift of a homotopy of paths is again a homotopy of paths. The endpoints $f_t(0)$ and $f_t(1)$ define constant paths as t varies.

Fix $x_0 \in X$ and $\widetilde{x_0} \in \widetilde{X}$ such that $p(\widetilde{x_0}) = x_0$, so

$$p_*: \pi_1\left(\widetilde{X}, \widetilde{x_0}\right) \to \pi_1\left(X, x_0\right).$$

To every element in $\pi_1(X, x_0)$ we can associate a homotopy class of paths in \widetilde{X} starting at $\widetilde{x_0}$.

Proposition 1.25.

- 1. $p_*: \pi_1\left(\widetilde{X}, \widetilde{x_0}\right) \to \pi_1\left(X, x_0\right)$ is injective.
- 2. $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right) \subseteq \pi_1\left(X,x_0\right)$ consists of the homotopy classes of loops at x_0 whose lifts to \widetilde{X} starting at $\widetilde{x_0}$ are loops.

Proof.

- 1. Let $\widetilde{f}_0: I \to \widetilde{X}$ be a loop at $\widetilde{x_0}$ such that $\left[\widetilde{f}_0\right] \in Ker\left(p_*\right)$, so $p\widetilde{f}_0 = f_0$ is homotopic to the constant loop at x_0 . Let $f_t: I \to X$ be a homotopy between f_0 and the constant loop. Homotopy lifting property and remark gives that f_t lifts to a homotopy \widetilde{f}_t of paths between \widetilde{f}_0 and the constant loop, so $\left[\widetilde{f}_0\right] = id \in \pi_1\left(\widetilde{X}, \widetilde{x_0}\right)$ and p_* is injective.
- 2. Let $f: I \to X$ be a loop at x_0 that lifts to a loop \widetilde{f} at $\widetilde{x_0}$. Then $p\widetilde{f} = f$, so $p_*\left(\left[\widetilde{f}\right]\right) = [f]$. On the other hand, if $f: I \to X$ is a loop at x_0 such that there exists a loop $\widetilde{f}: I \to \widetilde{X}$ at $\widetilde{x_0}$ with $p_*\left(\left[\widetilde{f}\right]\right) = [f]$, then f is homotopic to $p\widetilde{f}$. Homotopy lifting property gives that there exists a loop $\widetilde{f}': I \to \widetilde{X}$ at x_0 such that $p\widetilde{f}' = f$.

Let $p: \widetilde{X} \to X$ be a covering space. Let $U \subseteq X$ be an evenly covered neighbourhood of $x \in X$. Let

Lecture 12 Wednesday 06/02/19

$$p^{-1}(U) = \bigsqcup_{\alpha \in \Lambda} \widetilde{U_{\alpha}}.$$

Then the cardinality $|p^{-1}(x)|$ of $p^{-1}(x)$ is exactly the cardinality of $|\Lambda|$. The set of sheets is in bijection with $p^{-1}(x)$. So the cardinality of $p^{-1}(x)$ is locally constant. If X is connected, the cardinality of $p^{-1}(x)$ is constant.

Notation. Let X, Y be topological spaces, $x \in X$, and $y \in Y$. A continuous map

$$f:(X,x)\to (Y,y)$$

is a continuous map $f: X \to Y$ such that f(x) = y.

Proposition 1.26. Let X, \widetilde{X} be path connected and

$$p:\left(\widetilde{X},\widetilde{x_0}\right)\to (X,x_0)$$

be a covering space. Then the number of sheets of p equals the index of $p_*\left(\pi_1\left(\widetilde{X},\widetilde{x_0}\right)\right)$ in $\pi_1\left(X,x_0\right)$.

Proof. Let g be a loop in X at x_0 and \widetilde{g} be its lift to \widetilde{X} starting at $\widetilde{x_0}$. Let $H = p_* \left(\pi_1 \left(\widetilde{X}, \widetilde{x_0} \right) \right)$ and let $[h] \in H$. Then $h \cdot g$ lifts to a path $\widetilde{h} \cdot \widetilde{g}$ in \widetilde{X} starting at $\widetilde{x_0}$ with the same endpoint as \widetilde{g} , because \widetilde{h} is a loop, by Proposition 1.25. Define

so Φ is well-defined. Want to show that Φ is bijective.

- Φ is surjective because \widetilde{X} is path connected. Let \widetilde{g} be a path in \widetilde{X} from $\widetilde{x_0}$ to any point $\widetilde{x_0'} \in p^{-1}(x_0)$, then $g = p \cdot \widetilde{g}$ and $\Phi(H[g]) = \widetilde{x_0'}$.
- Φ is injective, since if $\Phi(H[g_1]) = \Phi(H[g_2])$ then the lift $\widetilde{g_1} \cdot \widetilde{g_2}^{-1}$ of $g_1 \cdot g_2^{-1}$ defines a loop in \widetilde{X} at $\widetilde{x_0}$. Proposition 1.25 gives $[g_1][g_2]^{-1} \in H$, so $H[g_1] = H[g_2]$.

We say that a topological space X has a certain property (P) locally if for each point $x \in X$ and each neighbourhood U of x there is an open neighbourhood $V \subseteq U$ having this property (P).

Example. X is locally path connected or X is locally simply connected.

Proposition 1.27. Let

$$p: \left(\widetilde{X}, \widetilde{x_0}\right) \to (X, x_0)$$

be a covering space and

$$f: (Y, y_0) \to (X, x_0)$$

a continuous map, where Y is path connected and locally path connected. Then there is a lift

$$\widetilde{f}: (Y, y_0) \to \left(\widetilde{X}, \widetilde{x_0}\right)$$

if and only if $f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$.

$$(Y, y_0) \xrightarrow{\widetilde{f}} (X, \widetilde{x_0})$$

$$\downarrow^p \cdot (X, x_0)$$

Proof.

- \implies Clear, because $f = p\widetilde{f}$ implies $f_* = p_*\widetilde{f}_*$.
- \Leftarrow Assume $f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$. For each $y \in Y$ choose a path γ from y_0 to y, so $f\gamma$ is a path in X from x_0 to f(y). By path lifting, we can lift $f\gamma$ to a path $\widetilde{f\gamma}$ in \widetilde{X} starting at $\widetilde{x_0}$. Define the map

$$\widetilde{f}: (Y, y_0) \to \left(\widetilde{X}, \widetilde{x_0}\right) \\ y \mapsto \widetilde{f\gamma}(1) .$$

$$\widetilde{x_0} \stackrel{\widetilde{f}}{=} \widetilde{f}(y) \\ \downarrow p \\ y_0 \stackrel{\gamma}{=} y \stackrel{\gamma}{\longrightarrow} x_0 \stackrel{f\gamma}{=} f(y)$$

- This map is well-defined, that is does not depend on the choice of γ . Let γ' be another path from y_0 to y. Then $h_0 = (f\gamma') \cdot (f\gamma)^{-1}$ is a loop at x_0 and $[h_0] \in f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x_0}))$. Proposition 1.25 gives that can lift h_0 to a loop $\widetilde{h_0}$ at $\widetilde{x_0}$. The first half of $\widetilde{h_0}$ is $\widetilde{f\gamma'}$ and the second half is $\widetilde{f\gamma}^{-1}$, so $\widetilde{f\gamma}(1) = \widetilde{f\gamma'}(1)$. Thus \widetilde{f} is well-defined.
- We have $p\widetilde{f} = f$, so \widetilde{f} lifts f.
- It remains to show that \widetilde{f} is continuous. Let $y \in Y$ and let U be an evenly covered neighbourhood of f(y). Let \widetilde{U} be the sheet above U such that $\widetilde{f}(y) \in \widetilde{U}$, so $p \mid_{\widetilde{U}} : \widetilde{U} \to U$ is a homeomorphism. Let $V \subseteq Y$ be a path connected neighbourhood of y such that $f(V) \subseteq U$. Fix a path γ from y_0 to y. Let $y' \in V$ be arbitrary and η be a path from y to y', so $\gamma \cdot \eta$ is a path from y_0 to y'. Then $(f\gamma) \cdot (f\eta)$ is a path in U from x_0 to f(y'). $\widetilde{f\eta} = (p \mid_{\widetilde{U}})^{-1} f\eta$, so $\widetilde{f} \mid_{V} = (p \mid_{\widetilde{U}})^{-1} f$. Thus $\widetilde{f} \mid_{V} : V \to \widetilde{U}$ is continuous, so \widetilde{f} is continuous.