

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

A Python/Zig optimized and customizable implementation for the ρ_{DCCA} and DMC_x^2 methods

Fernando Ferraz Ribeiro © Universidade Federal da Bahia Gilney Figueira Zebende
Universidade Estadual
de Feira de Santana

Abstract

This paper presents tha **Zebende**, a Python package written in Python and Zig, that calculates the DFA, DCCA ρ_{DCCA} and the DMC_x^2 . The package presents an optimized algorithm that significantly improves the calculations speed. A comparison with other packages that calculates the ρ_{DCCA} . The package is also the first to implement the DMC_x^2 coefficient in a package and the first algorithm to calculates it for any number of time series.

Keywords: ρ_{DCCA} , DMC_x^2 , optimization, Python, Zig.

1. introduction

The Detrended Cross-correlation Coefficient (ρ_{DCCA}) (Zebende 2011) is a widely used coefficient that measures the cross-correlation between two non-stationary time series. It 's an extension of the Detrended Fluctuation Analysis (DFA) (Peng, Buldyrev, Havlin, Simons, Stanley, and Goldberger 1994) and the Detrended Cross-correlation Analysis (DCCA) (Podobnik and Stanley 2008): while the DFA calculates the self-affinity and long-memory properties of a time series data, and the DCCA analyses power-law cross correlations between two different non-stationary time series, the ρ_{DCCA} coefficient quantifies this cross-correlation in simple values ranging from -1 to 1, where -1 indicates a perfect anti-correlation between the series, 1 a perfect correlation and zero (0) no correlation at all.

The Detrended Multiple Cross-Correlation Coefficient (Zebende and Silva 2018) (DMC_x^2) is a generalization of the ρ_{DCCA} coefficient that correlates one time series (dependent variable) a number of time series (independent variables). The DMC_x^2 values ranges from zero (0), indicating no correlation to 1, meaning perfect correlation or anti-correlation between the

dependent and the independent variables.

This paper presents the **Zebende** Python package, an implementation of the DFA, DCCA, ρ_{DCCCA} , DMC_x^2 and utility functions related to the methods. In section 2 the steps for calculating the ρ_{DCCCA} and DMC_x^2 are presented and discussed. Section 3 shows how this library was implemented, the optimization technics and the recommended steps to use the library. In Section 4 the **Zebende** package is compared with other packages for Python and R that calculates the ρ_{DCCA} in terms of performance and usability, leading to the conclusions in Section 5.

2. Algorithms of the coefficients

The algorithms that calculates the ρ_{DCCA} uses the DFA and the DCCA steps. The DMC_x^2 coefficient uses the ρ_{DCCA} coefficient and, consequently, also embraces the DFA and the DCCA. The DFA method is described in six steps:

- 1. Taking a time series $\{x_i\}$ with i ranging from 1 to N, the integrated series X_k is calculated by $X_k = \sum_{i=1}^k [x_i \langle x \rangle]$ with k also ranging from 1 to N;
- 2. the X_k series is divided in N-n boxes of size n(time scale), each box containing n+1 values, starting in i up to i+n;
- 3. for each box, a polynomial (usually of degree 1) best fit is calculated, getting $\widetilde{X}_{k,i}$ with $i \leq k \leq (i+n)$;
- 4. in each box is calculated: $f_{DFA}^2(n,i) = \frac{1}{1+n} \sum_{k=i}^{i+n} (X_k \tilde{X}_k)^2$
- 5. for all the boxes of a time scale, the DFA is calculated as:

$$F_{DFA}(n) = \sqrt{\frac{1}{N-n} \sum_{i=1}^{N-n} f_{DFA}^2(n,i)};$$

6. for a number of different timescales (n), with possible values $4 \leq n \leq \frac{N}{4}$ the F_{DFA} function is calculated to find a relation among $F_{DFA} \times n$

The DCCA method is very similar to the DFA calculations, with the difference of analyzing two series while the DFA evaluate properties of a single time series. It's also a six steps process:

- 1. Taking two time series with the same length $\{x\alpha_i\}$ and $\{x\beta_i\}$ with i ranging from 1 to N, the integrated series $X\alpha_k$ and $X\beta_k$ are calculated by $X_k = \sum_{i=1}^k [x_i \langle x \rangle]$ for each series, with k also ranging from i to N;
- 2. $X\alpha_k$ and $X\beta_k$ series are divided in N-n boxes of size n(time scale), each box containing n+1 values, starting in i up to i+n;
- 3. for each box, a polynomial (usually of degree 1) best fit is calculated, getting $\widetilde{X\alpha_{k,i}}$ and $\widetilde{X\beta_{k,i}}$, for series $\{x\alpha_i\}$ and $\{x\beta_i\}$ respectively, with $i \leq k \leq (i+n)$;
- 4. in each box is calculated: $f_{DCCA}^2(n,i) = \frac{1}{1+n} \sum_{k=i}^{i+n} (X\alpha_k \widetilde{X\alpha}_{k,i}) \times (X\beta_k \widetilde{X\beta}_k)$

5. for all the boxes of a time scale, the DCCA is calculated as:

Comparing the algorithms, the first three are basically identical, the only difference is that the DCCA method apply those steps to two series. The step four of the DFA can be considered an analogous of the variance, replacing the average subtraction (in the variance) for the values obtained by the polynomial fit (estimated series); and the equivalent step of the DCCA is, in the same terms, compared to the covariance between the two series. The technique of fitting a curve, interpreted as a trend inside each box, and subtracting the value estimated by the trend from the actual value in the integrated series $(X_k - \tilde{X}_k)$ from now on will be called **detrended values** (DV). In the DFA algorithm, the $f_{DCCA}^2(n,i)$ function is the mean of the square of the DV, in DCCA calculations, the $f_{DCCA}^2(n,i)$ function evaluates the mean of the product of the DV of the two series in each box.

Step five of the DFA calculates the square root of the mean of the values calculates in the previous step for each box, in the DCCA, the mean of the values evaluated for each box is calculated in stead. The last step, in both cases, is more a reminder to repeat the respective previous operations for a number of difference time scales (n).

The ρ_{DCCA} is measured using Eq. 1. Considering the relation between DFA and variance and DCCA and covariance, the ρ_{DCCA} resembles Pearson correlation for a time scale n.

$$\rho_{DCCA}(n) = \frac{F_{DCCA (x\alpha, x\beta)}^2(n)}{F_{DFA (x\alpha)}(n) \times F_{DFA (x\beta)}(n)}$$
(1)

The DMC_x^2 is a generalization of the ρ_{DCCA} that calculates the correlation between one time-series $\{Y\}$, as the dependent variable, and a number j of time-series $\{X_1\}$, $\{X_2\}$, $\{X_3\}$, ..., $\{X_j\}$ defined as independent variables. The coefficient is expressed mathematically as:

$$DMC_x^2 \equiv \rho_{Y,X_i}(n)^T \times \rho^{-1}(n) \times \rho_{Y,X_i}(n)$$
(2)

In Eq. 2, $\rho^{-1}(n)$ represent the inverse of a matrix populated by all possible combinations of ρ_{DCCA} between independent variables. In Eq. 3, value $\rho_{X_1,X_2}(n)$, for instance, is the ρ_{DCCA} for independent variables X_1 and X_2 calculated with time scale n, occupying position ρ_{12} of the matrix. Two fundamental characteristics: the first is that the main diagonal values are all ones, since it's position in the matrix denotes the calculation of a cross-correlation between a series and itself. Second, the matrix is symmetric in relation to the main diagonal, as the ρ_{DCCA} is a commutative operation.

$$\rho^{-1}(n) = \begin{pmatrix} 1 & \rho_{X_1, X_2}(n) & \rho_{X_1, X_3}(n) & \dots & \rho_{X_1, X_j}(n) \\ \rho_{X_2, X_1}(n) & 1 & \rho_{X_2, X_3}(n) & \dots & \rho_{X_2, X_j}(n) \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \rho_{X_j, X_1}(n) & \rho_{X_j, X_2}(n) & \rho_{X_j, X_3}(n) & \dots & 1 \end{pmatrix}^{-1}$$
(3)

At last Eq. 4 represent the transposed vector of the $\rho_{Y,X_i}(n)$ between the depended variable $\{Y\}$ and each $\{X_i\}$ independent variable for a given time scale n.

$$\rho_{Y,X_i}(n)^T = [\rho_{Y,X_1}(n), \rho_{Y,X_2}(n), \cdots, \rho_{Y,X_j}(n)]$$
(4)

As the DFA and the DCCA, ρ_{DCCA} and DMC_x^2 should be evaluated in a number of time scales (n) to analyze the characteristics of each coefficient.

3. Zebende package: implementation and optimization

The implementation of the **Zebende** package follows some well defined goals:

- 1. Enhance performance;
- 2. avoid redundant calculations;
- 3. make the outputs compatibles with other data analyses tools (including data manipulation, machine learn and statistical packages);
- 4. manage multiple time series inputs;
- 5. operate the DMC_x^2 for any number of series;
- 6. create a customizable and modular set of tools;
- 7. facilitate package evolution and maintenance;
- 8. deliver an easy to use package.

The Python language was chosen because it's one of the most used languages in the data analyses field and have a great support for statistical tools and machine learning algorithms. The are a plethora of tools to load and manipulate data (Pandas, Polar, PySpark ...), execute statistical analyzes (Numpy, SciPy, StatsModels ...), machine learning (Pytorch, TensorFlow, Scykit Learn ...) and data visualization(Matplotlib, Seaborn, Plotly ...) among other data related applications.

Figure 1: Calculating ρ_{DCCA} with **Zebende** package - Simplified flowchart

The first draft of the code was written in pure Python, to rapidly prototype the way users will interact with the package. Figures 1 and 2 presents simplified flowcharts illustrating how to use the package and how the main functions $(\rho_{DCCA}$ and $DMC_x^2)$ works.

The preparation steps are the same in both functions. First the data is loaded, and should be analyzed by the researchers. Based on the data characteristics, the set should be treated to ensure the methods requirements in the "Pre-processing" stage. The package functions expects data as a matrix with the columns as the series and the lines as time steps. Columns unwanted in the indented research should also be dropped for better performance of the

Figure 2: Calculating DMC_x^2 with **Zebende** package - Simplified flowchart

algorithms in this step. The more common way to do that is to use a data manipulation package. To proceed to the next step, the data table should be in the form of a **Numpy** 2D array. Any data manipulation Python package can export a table as a **Numpy** array. The next step is to calculate the integrated series. The package provides a function, named integrated_series(), to calculate that. The code example below show how to load the libraries (using **Pandas** as the data manipulation packages and loading a .csv file as a generic example), convert to **Numpy** array and generate the integrated series.

```
# importing packages
import numpy as np
import pandas as pd
import zebende as zb

data = pd.read_csv('path_to_the_file.csv') # loading data
# Pre-processing data
# ...
data = data.to_numpy(data) #converting data to Numpy array
int_data = zb.integrated_series(data) # calculating the integrated series
```

The option of taking out the integrated series generation from the main methods (p_dcca() and dmcx2()) to an independent one was inspired by Peng et al. (1994) work, where the way of calculating integrated series was different from the one that is widely used in more recent years. The integration of the series is essentially a pre-processing step, and this approach makes easy to explore alternative ways to integrate the series or compare Peng et al. (1994) approach to the current most used one in different scenarios, or even embrace new proposals for the series integrating step.

The input and output structures of each function are displayed below:

The first two inputs are the same for functions p_dcca() and dmcx2(): input_data receive the integrated series and the tws receives an 1D array representing the time scales (box size) described in the algorithms on Section 2. The input_data is a 2D array of 64 bits floating point data. The tws accepts integers and, for convenience reasons, also floating points. Since the size of the boxes needs to be integers, in case of floating points, the values will be converted to integers by ignoring the decimal values (truncating). This two inputs are colored in light gray in Figures 1 and 2, indicating mandatory inputs.

With the mandatory steps explained, some very important optional inputs should be addressed. Starting with the ρ_{DCCA} function (dark green node in Figure 2) represents the input DCCA_of of the function. This input requires a 2D array of integers, each row is a pair of index, related to the data_input matrix. For example: if the input_data receives a four columns matrix, with index ranging from 0 to 3, that is intended to calculate de DFA for all the series but the ρ_{DCCA} between series of index 0 and 1 and also for series 2 and 3, the DCCA_of input should receive the array [[0,1], [2,3]]. If no value (or the string 'all') is given, the function will calculate all possible combinations of DCCA calculations between all the series respecting the index values order, as below:

```
[[0,1], [0,2], [0,3], [1,2], [1,3], [2,3]]
```

3.1. Implementation of the Detrended Cross-correlation Coefficient function

It's important to understand the calculation steps, the role of the DCCA_of array and how it fits in the goals of the package implementation. The code below is part of the pure Python implementation of the ρ_{DCCA} function,

The first for loop in the code operates over the values of the tws input, ensuring that step 6 of the DFA and DCCA methods, presented in Section 2, is being carried out. In other words, the calculations will be applied, sequentially, to every single value in the tws array. Three temporary arrays are allocated and resized for each time scale. The first, f2dfa_n, is used to store the calculations of the step 4 of the DFA (f_{DFA}^2) . The number of lines of this array correspond to the number of boxes in the current time scale (N-n), resized for each time scale n) and the columns is the number of series in the analysis (same size for every value of n). Second, the array dcca_n holds the values calculated in the step 4 of the DCCA (to calculate $f_{DCCA}^2(n,i)$). The number of lines also correspond to the number of boxes (resized for each n) but the number of columns equals the number of pairs (rows) in the DCCA_of input (same size in each n). The detrended_mat array has a number of lines equal to the number of points in a time scale box (n+1, resized for each n) and column count also equal to the number of time series (same size in each n). The first two temporary arrays will store data for all the boxes in the time scale, the last one will be used in each box and will have the values replaced in the next one, until the last box of the time scale. Than all the arrays will be cleared and recreated with shapes calculated with the new value of n.

After the allocation of the temporary arrays, the second for loop operates in every box for a certain time scale n. In each box, the detrended_series() function execute a one degree polynomial fit, subtract the values of the series with the value given by the interpolated curve(DV) and stores this values in the detrended_mat. After that, the **mean of the square of each** DV in the box ($f_{DFA}^2(n,i)$) is calculated in the current box for every time series and stored in the f2dfa_n array in the line associated with the current box, and the column related to each time series.

The next nested for loop operates over the DCCA_of array. For each line (pair) in the DCCA_of array, the $f_{DCCA}^2(n,i)$ is evaluated by multiplying the corresponding DV from the two series boxes in the current pair, getting the mean, and stores it in the dcca_n temporary array.

After all the pairs are calculated, the algorithm goes back to the each box for loop and head to the next box for the current time scale. when all the all the boxes are calculated, the final results for the DFA, DCCA and ρ_{DCCA} are evaluated and saved in the output vectors F_DFA_arr, DCCA_arr and P_DCCA_arr respectively.

The function named P_DCCA_output_function() in the code above, is a pointer to other functions. One that outputs the ρ_{DCCA} results in the form of a table (rows for each time

scale and columns for each DCCA_of pair) and the other outputs it the form of a 3D matrix, where each level is the matrix in Equation 3 for one of the time scales. This behavior is driven by the P_DCCA_output_matrix input (represented as the light green node in Figure 1), where False means table output and True matrix output. This is very convenient for calculating the DMC_x^2 . There are two utility functions to transform a table output in a matrix one (p_dcca_simple_to_matrix()) and also the other way around (p_dcca_matrix_to_simple()).

3.2. Implementation of the Detrended Multiple Cross-correlation Coefficient function

The ${\tt dmcx2}$ () function runs the p_dcca() with P_DCCA_output_matrix set to True in the background. There is no DCCA_of input for the DMC_x^2 function, instead there is a ${\tt dmcx2_of}$ parameter. This input receives a 2D matrix where each line represents the indexes of the series to be used in Equation 2. For each row, the first elements is the index of the series used as the dependent variable, the others, the index of the independent ones. There are two literal strings that can be used, for convenience as inputs for this parameter: 'all-full', that generates a 2D array with every series as the dependent variable against all the others; and 'first-full', with only one row, having the index zero series as the dependent variable in relation with all the others. The 'all-full' option is conducted by calling dmc_of_all_as_y(), also available as a utility function.

With a given $dmcx2_of$ an array with all the necessary pairs for the DCCA and ρ_{DCCA} is automatically generated and used for the background $p_dcca()$ function to calculate da matrix as in Eq. 3. The $dcca_of_from_dmcx2_of()$, also can be used as an utility function, receives the $dmcx2_of$ as input and returns the $dcca_of$ array. With the matrix ρ_{DCCA} assembled, two internal functions, that can also be used as utility functions, calculates the DMc_x^2 for all the lines in the $dmcx2_of$ matrix, for all the time scales. The first function, $dmcx2_from_p_dcca_matrix()$, that receives the ρ_{DCCA} and the $dmcx2_of$ array, is presented in the code below.

The $dmcx2_from_p_dcca_matrix()$ function executes a for loop over the ρ_{DCCA} that separates the this 3D matrix in to the 2D matrices for each time scale. Nested in this loop, another for extracts each line of the $dmcx2_of$ and passes, the extracted matrix and the line vector to the $dmcx2_from_p_dcca_matrix_2d()$, displayed here.

The dmcx2_from_p_dcca_matrix_2d() function uses Numpy methods to prepare the data to apply Eq. 2. The list of indexes is divided in y_index, holding an one item array whit the index of the dependent variable time series, and x_indexes, containing the indexes of the independent ones. The Numpy np.ix_(), although it's not a very known function of the library constructs index arrays that will use the cross product from a series of 1D arrays as inputs. It's a very convenient way to extract a sub matrix and a vector from the ρ_{DCCA} matrix. The matrix, as assembled by the p_dcca() function, will always need to have extractions of a 2D matrix and a vector, as we can see in Eq. 2. The code below is an example of the extraction process.

An illustrative arr matrix is defined as 4×4 with all ones in the main diagonal and symmetric integer values in the other cells. Since the ρ_{DCCA} ranges from -1 to 1, those values should be interpreted as place holders.

Above, a sub matrix, holding the positions 1 to 3 is extracted using np.ix_() function, and below, the extraction of the vector, first as a line and then as a column vector.

```
sub_mat_vec = np.ix_([0], [1,2,3])
print("line vector:\n", arr[sub_mat_vec])
sub_mat_vec = np.ix_([1,2,3],[0])
print("column vector:\n", arr[sub_mat_vec])

line vector:
[[2 3 4]]
column vector:
[[2]
[3]
[4]]
```

In the **Zebende** package, the vector is extracted as a column for better coherence with the DMC_x^2 theory. The method also works for dependent variable different of index 0. The resulting matrix will preserve the diagonal as 1, the symmetry regarding the main diagonal and the order of elements in the column vector respected, the code below extract the index 1 series as the dependent and the others as independent.

```
sub_mat_index = np.ix_([0,2,3], [0,2,3])
print("index combination:\n", sub_mat_index)
print("extracted matrix:\n",arr[sub_mat_index])
sub_mat_vec = np.ix_([0,2,3],[1])
print("column vector:\n", arr[sub_mat_vec])
index combination:
(array([[0],
      [2],
      [3]]), array([[0, 2, 3]]))
extracted matrix:
[[1 \ 3 \ 4]]
[3 1 7]
[4 7 1]]
column vector:
[[2]
[5]
[6]]
```

The idea of separating the calculations of the $\rho DCCA$ calculations in three distinct functions aims to different workflows. The dmcx2() function calculates and outputs all the prerequisites, as the DFA, DCCA, ρ_{DCCA} along with the DMC_x^2 . This is the most practical way of getting all this calculations conducted. But the task can also be divided in two: first use the p_dcca() function to generate DFA, DCCA, ρ_{DCCA} outputs, analyze the outputs and then get the DMC_x^2 using dmcx2_from_p_dcca_matrix().

Function $dmcx2_from_p_dcca_matrix_2d()$ can be used to more customizable applications. Imagine a use case where only the ρ_{DCCA} anti-correlation, inside a certain range, in relation to the dependent variable, with the $dmcx2_0f$ set to all-full. From previous ρ_{DCCA} studies is known that this coefficient can vary from positive to negative and vice versa in different time scales. This implies that the ρ_{DCCA} matrix should be analyzed in every time scale from every line of the $dmcx2_of$, also implies that the $dmcx2_of$ may not be a matrix in the since that the rows may have different. The Numpy ND Array could not hold that. Many different workarounds could be proposed for that situation. In the implementation of this package, function $dmcx2_from_p_dcca_matrix_2d()$ allow the user to make a custom code that extracts the ρ_{DCCA} matrix for the current time scale and extracts the elements that fit the rules from each $dmcx2_of$ row.

3.3. Zig implementation

The Python implementation successfully reflects the implementation goals presented in Sec. 3 but the performance could benefit with the integration of a low-level language. Zig was chosen to enhance the algorithms performance. It's a low-level language that gain popularity in recent years and provides performance similar to C and Fortran in some scenarios (Kacs, Lee, Zarins, and Brown 2024).

The interest for using ZIg for this project also relies on the cross-compiling capabilities of the Zig compiler. For a small research group maintaining a package could be challenging and the ability to to compile all releases for all platforms in a single machine is a great advantage. The Zig compiler can generate binaries for Windows, Linux and MacOS from a single machine. The Zig compiler is also very fast, and the language is very easy to learn, with a syntax that is very similar to C.

The implementation focus on writing technics ρ_{DCCA} function in Zig exposed as a C Application Binary Interface (ABI), called by Python using the **ctypes** package. The ρ_{DCCA} function is the most computational expensive part of the package, and the performance gain was expected to be significant.

The output arrays are allocated in the Python side and passed as pointers to the Zig function together with the series matrix, tws and DCCA_of arrays. The Zig function receives the pointers and the size of the arrays as inputs, and the results are stored in the same memory space. Before passing to Zig must be assured that the arrays are contiguous, using the np.ascontiguousarray() function. The boolean parameter P_dcca_matrix_output is also passed to the Zig function, to determine if the output of the ρ_{DCCA} should be a table or a matrix.

The Zig implementation follows the same steps as the Python one, but repspecting languages differences. In Python, using Numpy, all the time series calculations occur in the same line of code, using the Numpy broadcasting capabilities. In Zig, the calculations are made in a nested for loop.

3.4. Algorithm optimization

Although the Zig implementation presents a significant performance gain, the algorithm still can be optimized. The strategy is to focus on avoiding repeated calculations in the process. The code below shows the calculations of the polynomial fit before the optimization.

```
pub fn lin_ls_fit(win: []f64, time: []f64) [2]f64 {
   var x_sum: f64 = 0;
   var y_sum: f64 = 0;
   var xy_sum: f64 = 0;
   var x2 sum: f64 = 0;
   for (win, time) |w, t| {
        x_sum += t;
        y_sum += w;
        xy_sum += t * w;
       x2_sum += pow(f64, t, 2);
   }
   const n: f64 = @as(f64, @floatFromInt(time.len));
   //slope
   const slope: f64 = (((n * xy_sum) - (x_sum * y_sum)) /
        ((n * x2_sum) - (pow(f64, x_sum, 2))));
   //inter
    const inter: f64 = ((y_sum - (slope * x_sum)) /
        (n));
   //result
   return [_]f64{ slope, inter };
}
```

The code above calculates the slope and the intercept of a linear least squares fit. The function runs on every box for every time scale. In the optimized version, for consecutive boxes, the value of the sums from the previous box is used to calculate the next one without a loop for every item in the box. This technic proved to be very efficient in increasing performance. the expressions below show the effectiveness of the optimized algorithm.

$$\forall 1 < i \le (N - n), \ \sum_{k=i}^{i+n} T_k = \left(\sum_{j=i-1}^{(i+n)-1} T_j\right) - T_{i-1} + T_{i+n}$$
 (5)

$$\forall \ 1 < i \le (N - n), \ \sum_{k=i}^{i+n} T_k^2 = \left(\sum_{j=i-1}^{(i+n)-1} T_j^2\right) - T_{i-1}^2 + T_{i+n}^2$$
 (6)

$$\forall 1 < i \le (N - n), \sum_{k=i}^{i+n} S_k = \left(\sum_{j=i-1}^{(i+n)-1} S_j\right) - S_{i-1} + S_{i+n}$$
 (7)

$$\forall \ 1 < i \le (N-n), \ \sum_{k=i}^{i+n} (S_k \times T_k) = \left(\sum_{j=i-1}^{(i+n)-1} (S_j \times T_j)\right) - (S_{i-1} \times T_{i-1}) + (S_{i+n} \times T_{i+n}) \ (8)$$

The expressions (Eq. 5, Eq. 6, Eq. 7 and Eq.8) showcases how the optimizations can be implemented in the code. Each expression display that the sum of the values in a box can be calculated using the sum of the previous box and the values of the first and last elements of the current box. Eq.5 presents the sum of the time stamps values and Eq.6 the sum of the

squares of the time stamps values. This calculations occur once for every box in every time scale and is stored in variables. Eq.7 and Eq.8 presents the same calculations for the series values. Storing values for each time series.

Also, to optimize the calculations from one time scale to the next, the first sums for the first box are saved in a temporary variable. Considering the current time scale as tws_prev and the consecutive as tws_current. To calculate the current value, the algorithm takes the sums from the tws_prev and add the values with indexes that exceed the tws_prev size. The code was also rewritten with structs, to hold the temporary values and the functions for better readability. The code below shows the optimized version of polynomial fitting calculations.

```
fn shiftWindow( self: *MainOperator,
               n: usize, win_start: usize,
                F_DFA_ptr: *allowzero [*c]f64) void {
   self.time_window = self.time[win_start ..][ .. (n + 1)];
   // print("win_start {}\n", .{win_start});
   if (win_start != 0) {
       // updating sum_x
        self.current.sum_x = self.current.sum_x - self.left_x + self.time_window[n];
        // updating sum x^2
        self.current.sum_x2 = self.current.sum_x2 -
       pow(f64, self.left_x, 2) + pow(f64, self.time_window[n], 2);
        // updating y and y*x for every serie
        for (self.series, 0..) |serie, sr_index| {
           serie.current.sum_y = serie.current.sum_y -
            serie.left_y + serie.serie[win_start + n];
           serie.current.sum_xy = serie.current.sum_xy -
            (self.left_x * serie.left_y) +
            (self.time_window[n] * serie.serie[win_start + n]);
            serie.left_y = serie.serie[win_start];
            self.detrended(serie, win_start, &F_DFA_ptr.*[sr_index]);
   } else { // win_start == 0
        self.current.window_len = n + 1;
       for (self.previous.window_len..self.current.window_len) |i| {
            self.previous.sum_x += self.time_window[i];
            self.previous.sum_x2 += pow(f64, self.time_window[i], 2);
           for (self.series) |serie| {
                serie.previous.sum_y += serie.serie[i];
                serie.previous.sum_xy += self.time_window[i] * serie.serie[i];
           }
       }
       // updating current sum values
```

```
self.current.sum_x = self.previous.sum_x;
self.current.sum_x2 = self.previous.sum_x2;

for (self.series, 0..) |serie, sr_index| {
    serie.current.sum_xy = serie.previous.sum_xy;
    serie.current.sum_y = serie.previous.sum_y;

    serie.left_y = serie.serie[win_start];
    self.detrended(serie, win_start, &F_DFA_ptr.*[sr_index]);
    }
}
self.left_x = self.time_window[0];
}
```

In the code above, the MainOperator is a structure that holds the time series (Y_n) , the time stamps(x), the sums for the time window and for each series and the temporary variables that holds the first values of the previous box. The shiftWindow() function is a method of the MainOperator structure. The function receives the size of the box, the index of the first element of the box, and a pointer to the F_{DFA}^2 array. The function is called for every box in every time scale. The function is responsible for updating the sums of the time series, the sums of the DV and the DV matrix.

The if statement in the code above is responsible for updating the sums for the current box. The first if block is executed for every box except the first one in each time scale, where the else block is executed instead.

The if block first update the values for the sum of the time stamps (sum_x) and the sum of the squares of the time stamps (sum_x 2). Then, for every series, the sum of the series values (sum_y) and the sum of the product of the series and the time stamps are updated (sum_xy). Than the values are passed to the detrended function that calculates The DV and the DFA for the current box.

The else block is executed for the first box in each time scale. For consecutive time scales, the values of the sums are updated using the values of the previous box, looping and adding only the values in the current box that don't overlap with the previous one. The detrended function is also called for every series in the time scale.

The three implementations, pure Python, Zlg and optimized Zig, where tested and the results are presented in the next section.

4. Results

The algorithm was tested with data and results from the (Ribeiro, de Almeida Brito, Filho, Cruz, and Zebende 2025), the original data came from the *Physionet* open-access website, available at this link:

```
https://physionet.org/content/eegmmidb/1.0.0/
```

This comprehensive dataset, with 108 subjects processes for all the 12 experiments, with the

 ρ_{DCCA} and DMC_x^2 calculated for all the subjects and experiments, where used to compare result and validate the implementations.

Regarding performance, the pure Python implementation, the Zig implementation and the optimized Zig where compared with 3 oder packages that calculates the ρ_{DCCA} . Researching the R CRAN package repository, the DCCA DFA packages where found, and, from the Python pypi, the DCCA package was used.

The **DFA** is a pure R implementation. The **DCCA** is a R package with a **Java** implementation Regarding performance

5. Summary and discussion

References

- Kacs D, Lee J, Zarins J, Brown N (2024). "Pragma driven shared memory parallelism in Zig by supporting OpenMP loop directives." In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 930–938. doi:10.1109/SCW63240.2024.00132.
- Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994). "Mosaic Organization of DNA Nucleotides." **49**(2), 1685–1689.
- Podobnik B, Stanley HE (2008). "Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series." *Physical Review Letters*, **100**(8). ISSN 00319007. doi:10.1103/PhysRevLett.100.084102. 0709.0281.
- Ribeiro FF, de Almeida Brito A, Filho FMO, Cruz JAL, Zebende GF (2025). "DCCA multi cross-correlation analysis applied on EEG signals to study motor activity (Real/Imaginary)." Biomedical Signal Processing and Control, 103, 107419. ISSN 1746-8094. doi:https://doi.org/10.1016/j.bspc.2024.107419. URL https://www.sciencedirect.com/science/article/pii/S1746809424014770.
- Zebende GF (2011). "DCCA cross-correlation coefficient: Quantifying level of cross-correlation." *Physica A: Statistical Mechanics and its Applications*, **390**(4), 614–618. ISSN 03784371. doi:10.1016/j.physa.2010.10.022. URL http://dx.doi.org/10.1016/j.physa.2010.10.022.
- Zebende GF, Silva AM (2018). "Detrended Multiple Cross-Correlation Coefficient." *Physica A*, **510**, 91–97. ISSN 0378-4371. doi:10.1016/j.physa.2018.06.119.

Affiliation:

Fernando Ferraz Ribeiro Universidade Federal da Bahia Faculty of Achitecture Universität Innsbruck Universitätsstr. 15 6020 Innsbruck, Austria

E-mail: fernando.ribeiro@ufba.br

and

Centro Universitário Senai-Cimatec

http://www.jstatsoft.org/

http://www.foastat.org/

Submitted: yyyy-mm-dd

Accepted: yyyy-mm-dd