Math 8750, Spring 2022

Homework 1, due on Thursday, September 1, in class.

Exercises 5.3, 5.5, 6.3, 6.4 in Tu's textbook:

1. Let S^2 be the unit sphere

$$x^2 + y^2 + z^2 = 1$$

in \mathbb{R}^3 . Define in S^2 the six charts corresponding to the six hemispheres:

$$U_1 = \{(x, y, z) \in S^2 | x > 0, \ \phi_1(x, y, z) = (y, z)\},\$$

and the analogous

$$U_2 = \{x < 0\}, U_3 = \{y > 0\}, U_4 = \{y < 0\}, U_5 = \{z > 0\}, U_6 = \{z < 0\}.$$

Describe the domain $\phi_4(U_1 \cap U_4)$ of $\phi_1 \circ \phi_4^{-1}$ and show that $\phi_1 \circ \phi_4^{-1}$ is smooth on its domain.

- **2.** Let $\{(U_{\alpha},\phi_{\alpha})\}$ and $\{(V_{\beta},\psi_{\beta})\}$ be at lases for smooth manifolds M and N of dimensions m and n, respectively. Show that the collection $\{(U_{\alpha}\times V_{\beta},\phi_{\alpha}\times\psi_{\beta})\}$ of charts is an at las on $M\times N$. Therefore, $M\times N$ is a smooth manifold of dimension m+n.
- **3.** Let V be a finite-dimensional vector space over \mathbb{R} , and $\mathrm{GL}(V)$ the group of all linear automorphisms of V. Relative to an ordered basis $e=(e_1,...,e_n)$ for V, a linear automorphism $L\in\mathrm{GL}(V)$ is represented by a matrix $[a_i^i]$ defined by

$$L(e_j) = \sum_i a_j^i e_i.$$

The map

$$\phi_e \colon \mathrm{GL}(V) \longrightarrow \mathrm{GL}(n,\mathbb{R}), \ L \mapsto [a_j^i],$$

is a bijection with an open subset of $\mathbb{R}^{n\times n}$ that makes $\mathrm{GL}(V)$ into a smooth manifold, which we denote temporarily by $\mathrm{GL}(V)_e$. If $\mathrm{GL}(V)_u$ is the manifold structure induced from another ordered basis $u=(u_1,...,u_n)$ for V, show that $\mathrm{GL}(V)_e$ is the same as $\mathrm{GL}(V)_u$.

4. Find all points in \mathbb{R}^3 in a neighborhood of which the functions $x, x^2 + y^2 + z^2 - 1, z$ can serve as a local coordinate system.

1