Лабораторная работа №2.1.6 «Эффект Джоуля-Томсона»

Сирый Р. А.

24 февраля 2023 г.

Цель работы

Определить изменения температуры углекислого гааз при протекании через малопроницаемую перегородку при разных начальных значениях дваления и температуры, вычислить по результатам опытов коэффициентов Ван-Дер-Ваальса (a) и (b).

Оборудование

- Трубка с пористой перегородкой
- Труба Дьюара
- Термостат
- Термометр
- Дифференциальная термопара
- Микровольтметр
- Балластный баллон
- Манометр

1 Теоретическая часть

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right). \tag{2}$$

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью уравнения (1). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\rm g-T} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_P}.$$
 (3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших а велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении – при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы (3), при температуре

$$T_{\text{инв}} = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny KP}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

2 Ход работы

Результаты измерений и расчета ΔT приведены в **таб.** 1. Формулы для расчета погрешности ΔT :

$$\sigma_{\Delta T} = \Delta T \sqrt{\left(\frac{\sigma_U}{U}\right)^2 + \left(\frac{\sigma_{\xi}}{\xi}\right)^2} \tag{5}$$

Графики $\Delta T(\Delta P)$ приведены на **рис. 1—3**. Результаты расчета величин для построения графика $\mu_{\mathtt{д-r}}(1/T)$ приведены в **таб. 2**, сам график — на **рис. 4**. Итоговые значения коэффициентов Ван-Дер-Ваальса:

$$a = (0.321 \pm 0.010) \text{ H} \cdot \text{м}^4/\text{моль}^2, \quad b = (154 \pm 8) \text{ cm}^3/\text{моль}.$$

Температура инверсии:

$$T_i = \frac{2a}{Rh} = (500 \pm 30) \text{ K}$$

№	$T^{-1}, \text{ K}^{-1}$	$\mu_{\rm д-т},~{ m K/M\Pi a}$	
1	0.003411 ± 0.000006	9.84511 ± 0.4421	
2	0.003299 ± 0.000005	9.13 ± 0.3527	
3	0.003095 ± 0.000005	7.65445 ± 0.3819	

Таблица 1: Значения величин для графика $\mu_{\mathtt{д-r}}(T^{-1})$

Вывод

Коэффициент a отличен от табличного примерно на 10%, коэффициент b примерно в 4 раза больше. С чем это связано, я не знаю.

Рис. 1: График зависимости $\Delta T(\Delta P)$ при $T=20^{\circ}C$

Nº	T, ° C	ΔP , дел.	U, MKB	ξ , MKB/°C	ΔT , K	ΔP , ΜΠα		
1	20.0 ± 0.5	66.0 ± 0.5	166.0 ± 2.0	40.2 ± 0.5	4.129 ± 0.072	0.3883 ± 0.0029		
2		58.0 ± 0.5	143.0 ± 2.0		3.557 ± 0.067	0.3413 ± 0.0029		
3		49.5 ± 0.5	115.0 ± 2.0		2.861 ± 0.061	0.2913 ± 0.0029		
4		41.5 ± 0.5	93.0 ± 2.0		2.313 ± 0.057	0.2442 ± 0.0029		
5		33.0 ± 0.5	67.0 ± 2.0		1.667 ± 0.054	0.1942 ± 0.0029		
6		25.0 ± 0.5	42.0 ± 2.0		1.045 ± 0.051	0.1471 ± 0.0029		
7		16.0 ± 0.5	21.0 ± 2.0		0.522 ± 0.05	0.0941 ± 0.0029		
8		8.0 ± 0.5	4.0 ± 2.0		0.1 ± 0.05	0.0471 ± 0.0029		
9	30.0 ± 0.5	66.0 ± 0.5	157.0 ± 2.0	41.1 ± 0.5	3.82 ± 0.067	0.3883 ± 0.0029		
10		58.0 ± 0.5	135.0 ± 2.0		3.285 ± 0.063	0.3413 ± 0.0029		
11		49.5 ± 0.5	109.0 ± 2.0		2.652 ± 0.058	0.2913 ± 0.0029		
12		41.0 ± 0.5	86.0 ± 2.0		2.092 ± 0.055	0.2412 ± 0.0029		
13		33.0 ± 0.5	63.0 ± 2.0		1.533 ± 0.052	0.1942 ± 0.0029		
14		25.0 ± 0.5	41.0 ± 2.0		0.998 ± 0.05	0.1471 ± 0.0029		
15		16.5 ± 0.5	24.0 ± 2.0		0.584 ± 0.049	0.0971 ± 0.0029		
16		8.0 ± 0.5	10.0 ± 2.0		0.243 ± 0.049	0.0471 ± 0.0029		
17	50.0 ± 0.5	66.0 ± 0.5	141.0 ± 2.0	42.9 ± 0.5	3.287 ± 0.06	0.3883 ± 0.0029		
18		58.0 ± 0.5	119.0 ± 2.0		2.774 ± 0.057	0.3413 ± 0.0029		
19		49.0 ± 0.5	94.0 ± 2.0		2.191 ± 0.053	0.2883 ± 0.0029		
20		41.5 ± 0.5	75.0 ± 2.0		1.748 ± 0.051	0.2442 ± 0.0029		
21		32.0 ± 0.5	50.0 ± 2.0		1.166 ± 0.049	0.1883 ± 0.0029		
22		25.0 ± 0.5	33.0 ± 2.0		0.769 ± 0.047	0.1471 ± 0.0029		
23		16.0 ± 0.5	17.0 ± 2.0		0.396 ± 0.047	0.0941 ± 0.0029		
24		7.0 ± 0.5	5.0 ± 2.0		0.117 ± 0.047	0.0412 ± 0.0029		
	$\mathscr{E}_0=4$ мкВ							

Таблица 2: Основные измерения

Рис. 2: График зависимости $\Delta T(\Delta P)$ при $T=30^{\circ}C$

Рис. 3: График зависимости $\Delta T(\Delta P)$ при $T=50^{\circ}C$

Рис. 4: График зависимости $\mu_{{\mbox{\tiny \mathcal{I}}}-{\mbox{\tiny \mathbf{T}}}}(T^{-1})$