Supporting Information for [[main paper title]]

Aaron P. Ragsdale*

February 28, 2021

Supporting Information

Yet to include: - Tables with data presented in figures 5 and 6

The diffusion equation, etc

$$\frac{\partial \psi}{\partial t} = \frac{1}{2} \sum_{1 \leq i,j \leq 3} \frac{\partial^2}{\partial x_i \partial x_j} \left[\frac{x_i (\delta_{i=j} - x_j) \psi}{N(t)} \right] - \frac{\rho}{2} \left(\frac{\partial}{\partial x} \right)$$

Moment equation and evolution operators

Drift

Recombination

Mutation

General selection

Moment closure via jackknife approximation

Data analysis

Grouping Thousand Genomes populations based on clustering

Citation for Alex's work: https://www.abstractsonline.com/pp8/#!/9070/presentation/2384

^{*}a ar on peace rags da le@gmail.com

Supplementary Tables

Table S1: General selection model for diploids and dominance models.

Diploid genotype	General model	Simple dominance	Gene-based dominance
$\overline{AB / AB}$	$1 + s_{AB/AB}$	$1 + 2s_A + 2s_B$	1+2s
AB / Ab	$1 + s_{AB/Ab}$	$1 + 2s_A + 2s_B h_B$	1+2s
AB / aB	$1 + s_{AB/aB}$	$1 + 2s_A h_A + 2s_B$	1+2s
AB / ab	$1 + s_{AB/ab}$	$1 + 2s_A h_A + 2s_B h_B$	1+2sh
Ab / Ab	$1 + s_{Ab/Ab}$	$1+2s_A$	1+2s
Ab / aB	$1 + s_{Ab/aB}$	$1 + 2s_A h_A + 2s_B h_B$	1+2s
Ab / ab	$1 + s_{Ab/ab}$	$1+2s_Ah_A$	1+2sh
aB / aB	$1 + s_{aB/aB}$	$1 + 2s_B$	1+2s
aB / ab	$1 + s_{aB/ab}$	$1 + 2s_B h_B$	1+2sh
ab / ab	1	1	1

Table S2: Haploid epistasis model.

Haplotype	Fitness
\overline{AB}	$(1+s_A+s_B)(1+\epsilon)$
Ab	$1 + s_A$
aB	$1 + s_B$
ab	1

Table S3: Thousand Genomes Project population descriptions for populations used in this study.

Code	Description	Region
ESN	Esan in Nigeria	Africa
GWD	Gambian in Western Divisions in the Gambia	Africa
LWK	Luhya in Webuye, Kenya	Africa
MSL	Mende in Sierra Leone	Africa
YRI	Yoruba in Ibadan, Nigeria	Africa
CEU	Utah Residents (CEPH) with Northern and Western European Ancestry	Europe
GBR	British in England and Scotland	Europe
FIN	Finnish in Finland	Europe
$_{\mathrm{IBS}}$	Iberian Population in Spain	Europe
TSI	Toscani in Italia	Europe
CDX	Chinese Dai in Xishuangbanna, China	East Asia
CHB	Han Chinese in Beijing, China	East Asia
CHS	Southern Han Chinese	East Asia
$_{ m JPT}$	Japanese in Tokyo, Japan	East Asia
KHV	Kinh in Ho Chi Minh City, Vietnam	East Asia

Table S4: Tamija's D for classes of coding mutations, both within annotated domains and outside of domains.

Population	Mutation type	Region	Tajima's D
ESN	Synonymous	All	-0.882
		In domain	-0.854
		Not in domain	-0.921
	Missense	All	-1.414
		In domain	-1.535
	T 0.0	Not in domain	-1.293
	Loss of function	All	-1.483
		In domain	-2.156
		Not in domain	-1.282
GWD	Synonymous	All	-1.011
		In domain	-0.981
	3.61	Not in domain	-1.052
	Missense	All	-1.566
		In domain	-1.678
	T C.C.	Not in domain	-1.452
	Loss of function	All	-1.697
		In domain	-2.328
		Not in domain	-1.501
LWK	Synonymous	All	-1.109
		In domain	-1.088
		Not in domain	-1.139
	Missense	All	-1.589
		In domain	-1.700
		Not in domain	-1.477
	Loss of function	All	-1.666
		In domain	-2.278
		Not in domain	-1.477
MSL	Synonymous	All	-0.983
		In domain	-0.959
		Not in domain	-1.017
	Missense	All	-1.501
		In domain	-1.603
		Not in domain	-1.400
	Loss of function	All	-1.559
		In domain	-2.303
		Not in domain	-1.332
YRI	Synonymous	All	-0.928
		In domain	-0.898
		Not in domain	-0.971
	Missense	All	-1.467
		In domain	-1.586
		Not in domain	-1.348
	Loss of function	All	-1.624
		In domain	-2.237
		Not in domain	-1.424
CEU	Synonymous	All	-0.417
		In domain	-0.392

Table S4: Tamija's D for classes of coding mutations, both within annotated domains and outside of domains. (continued)

Population	Mutation type	Region	Tajima's D
	Missense	Not in domain All In domain	-0.452 -1.248 -1.404
	Loss of function	Not in domain All In domain Not in domain	-1.082 -1.501 -2.196 -1.280
FIN	Synonymous	All In domain Not in domain	-0.058 -0.047 -0.075
	Missense	All In domain	-0.883 -1.048
	Loss of function	Not in domain All In domain Not in domain	-0.710 -1.200 -2.034 -0.906
GBR	Synonymous	All In domain Not in domain	-0.319 -0.300 -0.345
	Missense	All In domain	-1.120 -1.276
	Loss of function	Not in domain All In domain Not in domain	-0.954 -1.313 -2.178 -0.997
IBS	Synonymous	All In domain Not in domain	-0.689 -0.664 -0.724
	Missense	All In domain Not in domain	-1.424 -1.560
	Loss of function	All In domain Not in domain	-1.279 -1.636 -2.349 -1.378
TSI	Synonymous	All In domain Not in domain	-0.650 -0.625 -0.685
	Missense	All In domain Not in domain	-1.422 -1.568
	Loss of function	All In domain Not in domain	-1.266 -1.655 -2.349 -1.397
CDX	Synonymous	All In domain Not in domain	-0.374 -0.366 -0.385
	Missense	All	-1.179

Table S4: Tamija's D for classes of coding mutations, both within annotated domains and outside of domains. (continued)

Population	Mutation type	Region	Tajima's D
	Loss of function	In domain Not in domain All In domain Not in domain	-1.323 -1.026 -1.360 -2.194 -1.062
СНВ	Synonymous	All In domain	-0.598 -0.593
	Missense	Not in domain All In domain Not in domain	-0.606 -1.389 -1.528 -1.239
	Loss of function	All In domain Not in domain	-1.586 -2.344 -1.298
CHS	Synonymous	All In domain	-0.544 -0.545
	Missense	Not in domain All In domain	-0.544 -1.334 -1.499
	Loss of function	Not in domain All In domain Not in domain	-1.150 -1.559 -2.290 -1.292
JPT	Synonymous	All In domain	-0.371 -0.368
	Missense	Not in domain All In domain	-0.376 -1.194 -1.355
	Loss of function	Not in domain All In domain Not in domain	-1.019 -1.410 -2.272 -1.086
KHV	Synonymous	All In domain	-0.576 -0.562
	Missense	Not in domain All In domain	-0.596 -1.346 -1.473
	Loss of function	Not in domain All In domain Not in domain	-1.210 -1.535 -2.294 -1.269

Supplementary Figures

- 1) Accuracy of jackknife for varying sample size 2) Repeat of figures 2, 3, and 4 but for average D instead of σ_d^2 3)

Figure S1: LD within and between protein-coding genes. This is the caption.

Figure S2: LD within and between coding domains and pairs outside domains at matched distances. This is the caption.

 ${\rm Figure~S3:~LD~decay~for~synonymous~and~missense~mutations~for~pairs~of~mutations~that~fall~outside~of~domains.}$

 ${\rm Figure}\ S4:\ \textbf{LD}\ decay\ for\ synonymous\ and\ missense\ mutations\ for\ pairs\ of\ mutations\ that\ fall\ inside\ the\ same\ domains.$

Supporting References