DIVE INTO CODE

卒業課題

~再帰型ニューラルネットを用いた 脳MRIデータからの年齢予測~

2020年 4月期機械学習エンジニアコース齋藤 拓実

自己紹介 / 入校動機

<略歴>

2012年 大学医学部卒業

脳神経外科に入局、7年間臨床に従事

→「最善を尽くせていない」の思いから退職

2020年 DIC入校

動機:「医療の経験を、機械学習を

手段として価値に還元する」

価値・・・業務効率化、疾病予防

目標:

Engineer ≦ DataScientist (手段) ≦ (応用)

課題設定

< Kaggle >

*2020/06/29 終了

- <Kaggleとは>
- データ分析コンペティションのプラットフォーム
- ・社会問題解決のため各機関等が開催
- ・notebooks / discussion上での情報共有も可能

TReNDS Neuroimaging

<概要>

脳MRIデータ(数値・画像)から年齢と4変数を予測(回帰問題)

table)	ld	IC_01	IC_07	image)	A SE	Id,Predicted
	10001	0.006070	0.014466		and the same of th	10003_age,0
	10002	0.009087	0.009291	&		10003_domain1_var1,50.0
	10003	0.008151	0.014684			10003_domain1_var2,50.0 10003_domain2_var1,50.0
	10004	0.004675	0.000957			10003_domain2_var2,50.0
	10005	-0.000398	0.006878			etc.

背景:脳年齢と実年齢の乖離は、認知症等の神経疾患と関連がある

<選定理由>

- ・プロダクトの作成 ≦ データ分析技術の習熟
- ・データ取得が容易、スコアで評価が可能
- ・自分の経歴に関連する領域

Table Data

<安静時の脳MRI>

相関係数

… 血流 (機能)

Id SCN(53)_vs_SCN(69) SCN(98)_vs_SCN(69)

10001	0.368580	0.166876
10002	0.151696	-0.024819
10003	0.343415	0.109974
10004	0.132793	0.258255
10005	0.291921	0.251254

信号強度

··· 厚み(形態) Gray

ld	IC_01	IC_07
10001	0.006070	0.014466
10002	0.009087	0.009291
10003	0.008151	0.014684
10004	0.004675	0.000957
10005	-0.000398	0.006878

Approach 1

- <調査した内容>
- ・線形回帰やSVRなど古典的手法が有効
- ・LGBやXGBなど決定木系は効果が少ない
- ・多様なモデルのアンサンブル学習が、やはり有効
- … 手法に関するものが多く、特徴量作成については情報なし

Approach 2

- <独自の取り組み>
- 1. 特徴量の作成

部位毎に、機能データを形態データで割る

相関係数 ÷ 信号強度

→ 効果は誤差程度...

age: 0.1567 → 0.1558 (上位: 0.14台)

frontal & insular

frontal insular

2. アンサンブル

Blending (Ridge, SVR, LGB, XGB, Neural): 0.164

Stacking (SVR→LGB→KNN→Ridge): 0.162 (best)

→ 画像は扱えず、812位で終了(銅メダル:0.159以下)

Image Data / Approach 3

- < Image data >
- ・(53×52×63×53)の4次元配列 空間座標(x,y,z) 部位
- ・脳実質ではなく、血流信号のみ

 \mathbf{z}) × 53

- learn · 3D convolution、AutoEncode → PCAなど...
 - ·Nilearnの機能マップから、該当部位の統計量抽出など...

Recurrent Neural Network 1

- <独自の取り組み>
- ・年齢は時系列データでは? → 再帰型ニューラルネットワーク

Recurrent Neural Network 2

<方法>

- 1. 年齢別にデータをまとめ、平均をとる(欠損は内分)
- 2. 経年変化を表す系列データを作成(14~84歳)
- 上記から予測対象を引いたものを入力 → 年齢出力を学習 (モデルはLSTMなどRNN1~3層 + 全結合層)

<結果>

最高でもscore 0.182 程度 ... orz

原因:目的外使用、離散值、設計

まとめ/今後に向けて

- <課題で得たもの>
- ・DICで学んだ各手法の実践経験(習うより慣れよ)
- ・予測精度を高める技術 (score = 価値?)
- <反省点>
- ・コンペ自体は中途半端
- ・情報収集・発信が不十分
- <今後に向けて>
- □この経験を出発点とし、分析技術向上を図る
- □画像(特に神経)関連のコンペ/タスクに応用
- □画像に限らず、学んだ事を活かせる場を探していく

