V Semester B.E. (CSE/ISE) Degree Examination, June/July 2015 (2K11 Scheme) CI 55: COMPUTER GRAPHICS

Time: 3 Hours Max. Marks: 100

Instruction: Answer any five full questions, selecting atleast two from each Part.

PART – A				
1.	a)	With an aid of a functional schematic, describe graphics pipeline with major process in image processing.	10	
	b)	Explain the concept of pinhole camera which is an example of an imaging system. Derive the expression for angle of view. Also indicate the advantages and disadvantages of this.	10	
2.	a)	List out different open GL primitives, giving example for each.	10	
	b)	Write an open GL program for a 2-D Sierpinski gasket using mid-point of each of triangle. Indicate the assumptions made in generating the above.	5	
	c)	Explain the library organization of open GL interface.	5	
3.	a)	What are the various clauses of logical input devices that are supported by open GL? Explain the functionality of each of these clauses.	10	
	b)	Explain how an event driven input can be programmed for (i) keyboard (ii) mouse.	10	
4.	a)	Explain rotation, transformation and scaling, with open GL functions.	10	
	b)	Explain the complete procedure of converting a world object frame into camera frame using the model view matrix.	10	
PART-B				
5.	a)	Write an open GL program to rotate a cube about X, Y and Z axis. Use mouse buttons to select axis of rotation.	10	
	b)	What is concatenation? How does it affect the efficiency of transformation?	5	
	c)	What are quaternions? Explain its advantages.	5	

EJ – 1227

6.	a)	With a neat sketches, explain the various types of views that are employed in computer graphics systems.	10
	b)	Briefly discuss the following along with the open GL functions.	
		i) Perspective projection	
		ii) Orthogonal projections.	10
7.	a)	Explain the Rhong lighting model. Discuss the advantages and disadvantages of this model.	10
	b)	What are the different methods available for shading a polygon? Briefly discuss any two of them.	10
8.	Wr	rite short notes on :	20
	a)	Hidden surface removal	
	b)	Cohen-Sutherland algorithm	
	c)	Liang-Barskey algorithm	
	d)	Bresenham's Rasterization.	