

PyPSA-KR: An open-source energy system modelling of Korean electricity network

Kyuil Kwak, JongRoul Woo*

kwakke91@korea.ac.kr

Graduate School of Energy & Environment, Korea University

Research Overview

- This study aims to introduce the PyPSA model to Korea for the first time by developing PyPSA-KR and conducting an in-depth analysis of Korean energy system.
- PyPSA is an open-source energy system model which is useful for regional grid analysis and optimization due to its high spatial and temporal resolution
- Derive Korean renewable energy potential and power system by PyPSA-KR and validate with real-world data
- This research presents a systematic approach to expanding renewable energy and optimal capacity, contributing to the national long-term energy strategy

Status quo of modelling work in Korea

- Most of the energy models studied in Korea are Integrated Assessment Models
 - Useful for scenario-based analysis of overall energy systems But, not suitable for addressing detailed elements of the power system
- Difficulty in modelling new ESS technologies and renewable energy variability
- Therefore, this study proposes the PyPSA model

Model	Description	Spatial resolution	Temporal resolution	Approach	Free and open-source
TIMES	An optimization energy planning model that repre sents energy systems, focusing on technology and policy analysis.	Local to Global	day, night and peak hours for 4 seasons	Bottom-up	limited
GCAM	An integrated assessment model that links energ y, water, land, and climate systems to assess the implications of policy decisions.	National to Global	Annual	Bottom-up	•
LEAP	A scenario-based energy modeling tool that is us ed for integrated resource planning and climate change mitigation assessment.	Local to Global	Hourly	Hybrid	limited
PLEXOS	A power market simulation software used for modeling electricity markets and generation optimization.	National to Local	Hourly	Bottom-up	limited
PyPSA	An open-source tool for simulating and optimizing energy systems.	Local to Global	Hourly	Bottom-up	✓

Workflow of PyPSA-KR

- PyPSA-KR utilizes a modular approach, using 'snakemake' rules that break down complex tasks into manageable sub-tasks \Rightarrow increases usability and clarity
- The workflow is divided into four steps. Data collection & filter → Populate database → Create networks → Solve & Optimize networks

4. Solve network solve network

 Generates the network based on Korean onshore and offshore shapes with GIS datasets and assigns ID to the buses

(a) Onshore and offshore shapes in Korea

(b) Korean network infrastructure

Potential renewable energy

• Potential renewable energy is calculated for each node using the 'Atlite' climate package ('ERA5' dataset was used in this model)

Transmission network

- (a) Shows the **demand map in Korea** and the size of the circles represents the electricity demand of each Bus.
 - > Transmission lines are represented by lines connecting the nodes and the thickness indicates the transmission capacity of the power grid (thicker lines representing higher capacity)
- (b) Illustrates the Korean power system. It shows the distribution and capacity of power plants, as well as the clustered power grid structure (256 Bus-2Hour)
 - > Size of the circles represents the generation capacity of power plants, and the colors indicate different energy sources

(a) Demand maps

(b) Illustration of Korean power system in 2020

Optimized Results for 2036

- Rural areas are suitable for local solar generation, promoting **regional energy** independence and reducing transmission losses
- Offshore wind farms should be expanded in the **southern sea regions and** southeastern coast due to high wind potential
- Additional transmission infrastructure is needed between the east coast and inland with high concentrations of power plants to improve power distribution and grid stability

Summary & Policy Implications

- PyPSA-KR model and framework were developed to support the energy transition challenge in Korean power system
- · A key advantage of this model is the ability to easily interpret and understand the research results through visualization
- Future studies will focus on various future challenges like ESS (Li-B, H₂) mix, the impact of carbon tax, and simulations for carbon neutrality goals and strategies
- · As PyPSA is an open-source model, its adoption provides valuable insights for students and researchers in Korea