

STD20NF10T4

N-channel 100 V, 0.038 Ω typ., 25 A STripFET™ II Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STD20NF10T4	100 V	0.045 Ω	25 A

- Exceptional dv/dt capability
- Application oriented characterization

Applications

Switching applications

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET™ process is specifically designed to minimize input capacitance and gate charge. It is therefore ideal as a primary switch in advanced high-efficiency isolated DC-DC converters for Telecom and Computer applications. It is also suitable for any application with low gate charge drive requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STD20NF10T4	D20NF10	DPAK	Tape and reel

Contents STD20NF10T4

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A package information	9
	4.2	DPAK (TO-252) type C package information	11
	4.3	DPAK (TO-252) packing information	14
5	Revisio	n history	16

STD20NF10T4 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	100	V
V_{DGR}	Drain-gate voltage (R_{GS} = 20 k Ω)	100	V
V _G s	Gate-source voltage	±20	V
Ι _D	Drain current (continuous) at T _C = 25 °C	25	Α
I _D	Drain current (continuous) at T _C = 100 °C	21	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	100	Α
P _{TOT}	Total dissipation at T _C = 25 °C	85	W
E _{AS} ⁽²⁾	Single pulse avalanche energy	300	mJ
dv/dt (3)	Peak diode recovery voltage slope	20	V/ns
Tj	Operating junction temperature range	55 to 175	°C
T _{stg}	Storage temperature range	- 55 to 175	J

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.76	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}Starting~T_J=25~^{\circ}C,~I_D=10~A,~V_{DD}=27~V.$

 $^{^{(3)}}I_{SD} \leq 25~A,~di/dt \leq 300~A/\mu s;~V_{DD} = V_{(BR)DSS},~T_{J} \leq T_{JMAX}.$

⁽¹⁾When mounted on 1 inch² FR-4, 2 Oz copper board.

Electrical characteristics STD20NF10T4

2 Electrical characteristics

 $T_C = 25$ ° C unless otherwise specified

Table 4: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100			V
	7	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$			1	μΑ
I _{DSS}	Zero-gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}$ $T_{C} = 125 \text{ °C}^{(1)}$			10	μΑ
Igss	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 15 A		0.038	0.045	Ω

Notes:

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
gfs ⁽¹⁾	Forward transconductance	V _{DS} = 15 V, I _D = 15 A	ı	10	ı	S
C _{iss}	Input capacitance		ı	1200	ı	pF
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	1	180	1	pF
Crss	Reverse transfer capacitance	150 20 1,1 111112, 100 0 1	ı	80	ı	pF
Qg	Total gate charge	$V_{DD} = 80 \text{ V}, I_{D} = 30 \text{ A}$		40	55	nC
Q_{gs}	Gate-source charge	V _G S = 10 V	ı	8	ı	nC
Q _{gd}	Gate-drain charge	R _G = 4.7 Ω See Figure 15: "Test circuit for gate charge behavior"	-	15	•	nC

Notes:

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 50 \text{ V}, I_{D} = 15 \text{ A}, R_{G} = 4.7 \Omega,$	-	15	-	ns
tr	Rise time	V _{GS} = 10 V	-	40	-	ns
t _{d(off)}	Turn-off delay time	See Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform"	1	45	-	ns
t _f	Fall time		-	10	-	ns

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		30	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		1		120	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0 V	-		1.3	>
t _{rr}	Reverse recovery time	$I_{SD} = 30 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$ $V_{DD} = 55 \text{ V}$	1	110		ns
Qrr	Reverse recovery charge	T _j = 150 °C See Figure 16: "Test circuit for	ı	390		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times"	1	7.5		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area

10(A)

10²

10³

4

100µs

10ms

Figure 3: Thermal impedance

K $\frac{2800PE}{d=0.5}$ $\frac{CC94790}{d=0.5}$ $\frac{CC94790}{d=0$

STD20NF10T4 Electrical characteristics

40 Q₉(nC)

Figure 8: Gate charge vs. gate-source voltage

VGS(V)

VDS=80V

ID=30A

12

20

30

3

0

10

Figure 9: Capacitance variations

C(pF)

2000

1500

Ciss

1000

Coss

0 10 20 30 40 Vos(V)

Figure 10: Normalized gate threshold voltage vs. temperature

Vos(th) (norm) Vos=Vos (lo=250 \(\mu A \)

1.0

0.8

0.6

50

100

TJ(°C)

0

-50

Test circuits STD20NF10T4

3 Test circuits

Figure 14: Test circuit for resistive load switching times

Figure 15: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12 V 47 KΩ VGD

14 VGD

14 VGD

14 VGD

15 VGD

16 CONST 100 Ω OVG

17 VGD

18 VGD

18 VGD

18 VGD

18 VGD

18 VGD

18 VGD

19 VGD

18 VGD

Figure 16: Test circuit for inductive load switching and diode recovery times

STD20NF10T4 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 DPAK (TO-252) type A package information

THERMAL PAD <u>c2</u> L2 **b**(2x) R SEATING PLANE (L1) 0,25 0068772_A_21

Figure 20: DPAK (TO-252) type A package outline

Table 8: DPAK (TO-252) type A mechanical data

STD20NF10T4

Dim	14510 01 51 711 (10 20	mm	
Dim.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	4.60	4.70	4.80
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

STD20NF10T4 Package information

4.2 DPAK (TO-252) type C package information

Figure 21: DPAK (TO-252) type C package outline

Table 9: DPAK (TO-252) type C mechanical data

mm				
Dim.				
	Min.	Тур.	Max.	
А	2.20	2.30	2.38	
A1	0.90	1.01	1.10	
A2	0.00		0.10	
b	0.72		0.85	
b4	5.13	5.33	5.46	
С	0.47		0.60	
c2	0.47		0.60	
D	6.00	6.10	6.20	
D1	5.25			
Е	6.50	6.60	6.70	
E1	4.70			
е	2.186	2.286	2.386	
Н	9.80	10.10	10.40	
L	1.40	1.50	1.70	
L1		2.90 REF		
L2	0.90		1.25	
L3		0.51 BSC		
L4	0.60	0.80	1.00	
L6		1.80 BSC		
θ1	5°	7°	9°	
θ2	5°	7°	9°	
V2	0°		8°	

STD20NF10T4 Package information

Figure 22: DPAK (TO-252) recommended footprint (dimensions are in mm)

Package information STD20NF10T4

4.3 DPAK (TO-252) packing information

Figure 23: DPAK (TO-252) tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 24: DPAK (TO-252) reel outline

Table 10: DPAK (TO-252) tape and reel mechanical data

	Table 10. DFAR (10-232) tape and reel mechanical data				
Таре				Reel	
Dim.	n	nm	Dim.	r	mm
Dilli.	Min.	Max.	Diiii.	Min.	Max.
A0	6.8	7	Α		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base	e qty.	2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Revision history STD20NF10T4

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
06-Apr-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved