Homework 4

Due date: Nov. 9th, 2021

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- If needed, round the number to the nearest hundredths, i.e., rounding it to 2 decimal places.

1. For the circuit below, the switch has been open for a long time. At t=0, the switch was closed. Given Vs=10V, R1=2 Ω , R2=3 Ω , R3=1 Ω , L=4H, C=2F

find
$$Vc(0+)$$
, $\frac{dVc(0+)}{dt}$, $iL(0+)$, $\frac{diL(0+)}{dt}$.

2. For the circuit below. The switch has been closed for a long time. At t=0, the switch was opened. Calculate v(t) for t>0.

3. For the circuit below: R=100 Ω , L=0.25H, C= $\frac{1}{7500}$ F. $V(t) = \begin{cases} 0, & t < 0 \\ 10e^{-10t}, & t > 0 \end{cases}$

Find the expression of Vc(t) for t > 0

4. In the circuit below, we assume that the switch is at Position A for a long time, but moved to Position B at t = 0. Given that I = 1A, $R_I = 10\Omega$, $R_2 = 10\Omega$, $R_3 = 10\Omega$, C = 1F, L = 2H; calculate i(t) for t > 0.

5. For the circuit below. The operational amplifier is working in the linear mode. Given $V_s = u(t)$ V; C₁=C₂=60 μ F and no initial energy stored in both capacitors. find expression of $v_0(t)$ for 0 < t < 0.5 sec.

6. For the circuit below. The switch has been open for a long time. At t = 0 the switch is closed. There is no energy stored in inductors L1 and L2. Given R1 = 10Ω , R2 = 5Ω , L1 = 1H, L2 = 2H, Vs = 3V, find $i_L(t)$ for t > 0.

