Distributions cheat sheet GB GMS 2020

B = beta or multivariate beta function Γ = gamma function $\binom{N}{k}$ = N choose k Red terms are those that do not involve x

See also: the <u>distribution zoo</u> See also: A longer <u>list of probability distributions</u>

Туре	Domain	Name	Parameters	Mass / density	Distribution of	R function	Applications
Continuous unbounded	$x \in \mathbb{R}$	Gaussian or normal	Mean μ Variance σ^2	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}(x-\mu)^2/\sigma^2}$	Sum of independent scalars	dnorm()	Ubiquitous
	$x \in \mathbb{R}^d$	<u>Multivariate</u> <u>normal</u>	Mean vector μ Covariance matrix Σ	$\frac{1}{\sqrt{2\pi} \Sigma }e^{-\frac{1}{2}(x-\mu)^t\Sigma^{-1}(x-\mu)}$	Sum of independent vectors	<pre>dmvnorm() (mvtnorm package)</pre>	Ubiquitous
	$x \in \mathbb{R}$	<u>Laplace</u> or double exponential	Location μ Scale $b>0$	$\frac{1}{2b}e^{-\frac{ x-\mu }{b}}$		Use dexp()	Regularised (Lasso) regression
Continuous bounded	$x \in [0,1] \text{ or } (0,1)$	<u>Beta</u>	α (= "shape1") β (= "shape2")	$\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	Order statistics for uniform values	dbeta()	Prior for binomial- distributed variables
	$x \in \Delta_{d-1}$ (d-1)-dimensional simplex	<u>Dirichlet</u>	"shape" parameters $\alpha = (\alpha_1, \cdots, \alpha_d) \in \mathbb{R}^d$	$\frac{1}{B(\alpha)} \prod_i x_i^{\alpha_i - 1}$			Prior for multinomial- distribution variables
Continuous positive	[0,∞)	<u>Exponential</u>	Rate λ	$\lambda e^{-\lambda x}$	Time between events occuring at fixed rate	dexp()	Modelling waiting times between rare events
	$[0,\infty)$ or $(0,\infty)$	<u>Chi-squared</u>	Degrees of freedom \emph{k}	$\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}$	Squared Gaussian variates	dchisq()	Likelihood ratio test
Discrete	$x \in \{0,1\}$	<u>Bernoulli</u>	Success probability p	$p^x(1-p)^{1-x}$	Coin flip	dbinom()	Logistic regression
	$x\in\{0,\cdots,n\}$	<u>Binomial</u>	Number of trials n Success probability p	$\binom{n}{x}p^x(1-p)^{n-x}$	Coin flips	dbinom()	Logistic regression
	$x \in 0,1,\cdots$	Geometric	Success probability p	$(1-p)^x p$	Number of Bernoulli trials before 1 st success	dgeom()	
	$(x_i) \in \{0, \dots, n\}^d$ $\sum x_i = n$	Multinomial or categorical	Outcome probabilities $p = (p_1, p_2, \cdots, p_d)$	$\prod_i p_i^{x_i}$	Possible outcomes	<pre>dmultinom()</pre>	Multinomial logistic regression
	$\mathbf{x} \in \{0, \cdots, n\}$	<u>Hypergeometric</u>	Population size <i>N</i> Total no. of successes <i>K</i> No. of draws n	$\frac{\binom{K}{x}\binom{N-K}{n-k}}{\binom{N}{n}}$	Sample without replacement	dhyper()	Fisher's exact test
Count	$x \in 0,1,\cdots$	<u>Poisson</u>	Rate λ	$e^{-\lambda} \frac{\lambda^x}{x!}$	Number of events occuring at fixed rate	dpois()	Modelling rare events