Rank-74243 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 74243

General information

Number of lines	4
Number of points	9
Number of singular points	2
Number of Eckardt points	1
Number of double points	2
Number of single points	5
Number of points off lines	1
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{4}
Type of lines on points	$3, 2^2, 1^5, 0$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0)$$
$$1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{19}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

Rank of lines: (0, 4, 28, 34)

Rank of points on Klein quadric: (0, 2, 19, 1)

Eckardt Points

The surface has 1 Eckardt points:

$$0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0). T = -1$$

Double Points

The surface has 2 Double points:

The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

 $P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$

Single Points

The surface has 5 single points:

The single points on the surface are:

 $0: P_3 = (0,0,0,1)$ lies on line ℓ_3

1: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

2: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_1

The single points on the surface are:

 $3: P_7 = (0, 1, 1, 0)$ lies on line ℓ_2

4: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_3

Points on surface but on no line

The surface has 1 points not on any line:

The points on the surface but not on lines are:

$$0: P_{11} = (1, 1, 0, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} & 0\ 1\ 2\ 3\\ \hline 0\ 0\ 1\ 1\ 0\\ 1\ 1\ 0\ 1\ 1\\ 2\ 1\ 1\ 0\ 1\\ 3\ 0\ 1\ 1\ 0\\ \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_0	P_2	P_2

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_1	P_2	P_2

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_2

The surface has 9 points:

The points on the surface are:

 $8: P_{12} = (0, 0, 1, 1)$

 $0: P_0 = (1,0,0,0)$ $1: P_1 = (0,1,0,0)$ $2: P_2 = (0,0,1,0)$ $3: P_3 = (0,0,0,1)$ $4: P_5 = (1, 1, 0, 0)$ $5: P_6 = (1, 0, 1, 0)$ $6: P_7 = (0, 1, 1, 0)$ $7: P_{11} = (1, 1, 0, 1)$