241 Suites et séries de fonctions. Exemples et contreexemples.

I - Convergences de suite et de séries de fonctions

1. Suites de fonctions

Définition 1. Soient (f_n) et f respectivement une suite de fonctions et une fonction définies sur un ensemble X à valeurs dans un espace métrique (E,d). On dit que :

[GOU20] p. 231

— (f_n) converge simplement vers f si

$$\forall x \in X, \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, d(f_n(x), f(x)) < \epsilon$$

— (f_n) converge uniformément vers f si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, \forall x \in X, d(f_n(x), f(x)) < \epsilon$$

Proposition 2. La convergence uniforme entraîne la convergence simple.

Contre-exemple 3. La réciproque est fausse. Il suffit en effet de considérer la suite (f_n) définie pour tout $n \in \mathbb{N}$ et pour tout $x \in [0,1]$ par $f_n(x) = x^n$ converge simplement sur [0,1] mais pas uniformément.

Théorème 4 (Critère de Cauchy uniforme). Soit (f_n) une suite de fonctions définies sur un ensemble X à valeurs dans un espace métrique (E,d). Alors (f_n) converge uniformément si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall p > q \geq N, \forall x \in X, d(f_p(x), f_q(x)) < \epsilon$$

Corollaire 5. Une limite uniforme sur \mathbb{R} de fonctions polynômiales est une fonction polynômiale.

p. 237

p. 232

Notation 6. — Pour toute fonction g bornée sur un ensemble X et à valeurs dans un espace vectoriel normé $(E, \|.\|)$, on note

$$\|g\|_{\infty} = \sup_{x \in X} \|g(x)\|$$

— On note $\mathcal{B}(X, E)$ l'ensemble des applications bornées de X dans E.

Proposition 7. En reprenant les notations précédentes, une suite de fonctions (f_n) de $\mathscr{B}(X,E)$ converge uniformément vers $f \in \mathscr{B}(X,E)$ si $||f_n - f||_{\infty} \longrightarrow_{n \to +\infty} 0$.

Exemple 8. La suite de fonctions (f_n) définie pour tout $n \in \mathbb{N}$ par $f_n : x \mapsto \left(1 - \frac{x}{n}\right)^n \mathbb{1}_{[0,n]}$ converge uniformément vers $f : x \mapsto e^{-x}$ sur \mathbb{R}^+ .

2. Séries de fonctions

Définition 9. Soit (g_n) une suite de fonctions. On appelle **série de fonctions** de terme général g_n , notée $\sum g_n$ la suite de fonctions (S_n) où

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n g_k$$

Définition 10. Soient X un ensemble et $(E, \|.\|)$ un espace vectoriel normé. On dit qu'une série de fonctions à termes dans $\mathcal{B}(X, E)$ **converge normalement** si la série numérique $\sum \|g_n\|_{\infty}$ converge.

Remarque 11. En reprenant les notations précédentes, il est équivalent de dire qu'une série de fonctions $\sum g_n$ converge normalement s'il existe une série à termes positifs $\sum a_n$ convergente et telle que

$$\forall n \in \mathbb{N}, \forall x \in X, \|g_n(x)\| \le a_n$$

Exemple 12. La série de fonctions $\sum g_n$ où (g_n) est définie par

$$\forall n \in \mathbb{N}, g_n : x \mapsto \frac{x^n}{n^2}$$

converge normalement sur [0,1] car $||g_n||_{\infty} = \frac{1}{n^2}$.

Théorème 13. Une série de fonctions à valeurs dans un espace de Banach qui converge normalement sur un ensemble *X* converge uniformément sur *X*.

Contre-exemple 14. La réciproque est fausse. Par exemple, la série de fonctions $\sum (-1)^n g_n$ où (g_n) est définie par

$$\forall n \in \mathbb{N}, g_n : x \mapsto \frac{x}{n^2 + x^2}$$

converge uniformément sur \mathbb{R}^+ mais pas normalement.

p. 232

3. Définition sur un compact

Théorème 15 (Théorèmes de Dini). (i) Soit (f_n) une suite *croissante* de fonctions réelles *continues* définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction *continue* sur I, alors la convergence est uniforme.

(ii) Soit (f_n) une suite de *fonctions croissantes* réelles *continues* définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction *continue* sur I, alors la convergence est uniforme.

Théorème 16 (Bernstein). Soit $f:[0,1] \to \mathbb{C}$ continue. On note

$$B_n(f): x \mapsto \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Alors,

$$||B_n(f)-f||_{\infty} \longrightarrow_{n\to+\infty} 0$$

[DEV]

Corollaire 17 (Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

On a une version plus générale de ce théorème.

Théorème 18 (Stone-Weierstrass). Soit K un espace compact et \mathscr{A} une sous-algèbre de l'algèbre de Banach réelle $\mathscr{C}(K,\mathbb{R})$. On suppose de plus que :

- (i) \mathscr{A} sépare les points de K (ie. $\forall x \in K, \exists f \in A$ telle que $f(x) \neq f(y)$).
- (ii) \mathcal{A} contient les constantes.

Alors \mathscr{A} est dense dans $\mathscr{C}(K,\mathbb{R})$.

Remarque 19. Il existe aussi une version "complexe" de ce théorème, où il faut supposer de plus que $\mathscr A$ est stable par conjugaison.

Exemple 20. La suite de polynômes réels (r_n) définie par récurrence par

$$r_0 = 0 \text{ et } \forall n \in \mathbb{N}, r_{n+1} : t \mapsto r_n(t) + \frac{1}{2}(t - r_n(t)^2)$$

converge vers $\sqrt{.}$ sur [0,1].

p. 238

p. 304

[LI]

p. 242

agreg.skyost.eu

II - Régularité de la limite

1. Continuité

Théorème 21 (de la double limite). Soient X une partie non vide d'un espace vectoriel normé de dimension finie, E un espace de Banach, (f_n) une suite de fonctions de X dans E et $a \in \overline{X}$. On suppose :

[**AMR11**] p. 146

p. 195

- (i) (f_n) converge uniformément sur X.
- (ii) $\forall n \in \mathbb{N}$, $f_n(x)$ admet une limite quand x tend vers a.

Alors,

$$\lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right)$$

Théorème 22. Soient X une partie non vide d'un espace vectoriel normé de dimension finie, E un espace de Banach, (f_n) une suite de fonctions de X dans E et $a \in X$. On suppose :

- (i) (f_n) converge uniformément sur X vers f.
- (ii) $\forall n \in \mathbb{N}$, $f_n(x)$ est continue en a.

Alors f est continue en a.

Exemple 23. La suite (f_n) définie sur \mathbb{R}^+ pour tout $n \in \mathbb{N}$ par $f_n : x \mapsto e^{-nx}$ converge vers

$$f: \begin{array}{ccc} \mathbb{R}^+ & \to & \mathbb{R}^+ \\ f: & & \\ x & \mapsto & \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{sinon} \end{cases}$$

Les fonctions f_n sont continues, mais f ne l'est pas : on n'a pas convergence uniforme sur \mathbb{R}^+ .

Théorème 24. Soient X une partie non vide d'un espace vectoriel normé, E un espace de Banach, $\sum f_n$ une série de fonctions de X dans E et $a \in \overline{X}$. On suppose :

- (i) $\sum f_n$ converge uniformément sur X.
- (ii) $\forall n \in \mathbb{N}$, $f_n(x)$ admet une limite ℓ_n quand x tend vers a.

Alors, $\sum \ell_n$ converge dans E et,

$$\lim_{x \to a} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_n(x) = \sum_{n=0}^{+\infty} \ell_n$$

Théorème 25. Soient X une partie non vide d'un espace vectoriel normé, E un espace de Banach, $\sum f_n$ une série de fonctions de X dans E et $a \in X$. On suppose :

- (i) $\sum f_n$ converge uniformément sur X.
- (ii) $\forall n \in \mathbb{N}$, f_n est continue en a.

Alors, $\sum_{n=0}^{+\infty} f_n$ est continue en a.

Exemple 26. La fonction $x \mapsto \sum_{n=0}^{+\infty} \frac{e^{-n|x|}}{n^2}$ est continue sur \mathbb{R} .

2. Dérivabilité

Théorème 27. Soient I un intervalle non vide de \mathbb{R} , E un espace vectoriel normé et (f_n) une suite de fonctions de I dans E. On suppose :

- (i) $\forall n \in \mathbb{N}$, f_n est dérivable sur I.
- (ii) (f_n) converge simplement sur I vers f.
- (iii) (f'_n) converge uniformément sur I.

Alors f est dérivable sur I et $\forall x \in I$, $f'(x) = \lim_{n \to +\infty} f'_n(x)$.

Contre-exemple 28. La suite (f_n) définie sur \mathbb{R} pour tout $n \in \mathbb{N}$ par $f_n : x \mapsto \left(x^2 + \frac{1}{n^2}\right)^{\frac{1}{2}}$ converge vers $x \mapsto |x|$, qui n'est pas dérivable à l'origine bien que les f_n le soient.

Théorème 29. Soient I = [a, b] un segment non vide de \mathbb{R} , E un espace de Banach et (f_n) une suite de fonctions de I dans E. On suppose :

- (i) $\forall n \in \mathbb{N}$, f_n est de classe \mathscr{C}^1 sur I.
- (ii) Il existe $x_0 \in I$ tel que $(f_n(x_0))$ converge.
- (iii) (f'_n) converge uniformément sur I vers g.

Alors (f_n) converge uniformément sur I vers f de classe \mathscr{C}^1 sur I et f' = g.

Théorème 30. Soient I un intervalle non vide de \mathbb{R} , E un espace de Banach et $\sum f_n$ une série de fonctions de I dans E. On suppose :

- (i) \forall *n* ∈ \mathbb{N} , f_n est dérivable sur *I*.
- (ii) Il existe $x_0 \in I$ tel que $\sum f_n(x_0)$ converge.
- (iii) $\sum f'_n$ converge uniformément sur I.

Alors $\sum f_n$ converge simplement sur I uniformément sur tout compact de I, et,

$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

p. 148

p. 198

Exemple 31. La fonction $\zeta: s \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^s}$ est \mathscr{C}^{∞} sur]1, $+\infty$ [et,

$$\forall k \in \mathbb{N}, \forall s \in]1, +\infty[, \zeta^{(k)}(s) = (-1)^k \sum_{n=1}^{+\infty} \frac{(\ln(s))^k}{n^s}$$

3. Mesurabilité, intégrabilité

Théorème 32. Soient I = [a, b] un segment non vide de \mathbb{R} , E un espace de Banach et (f_n) une suite de fonctions de I dans E. On suppose :

[GOU20] p. 233

- (i) $\forall n \in \mathbb{N}$, f_n est continue sur I.
- (ii) (f_n) converge uniformément sur I vers f.

Alors f est continue et $\lim_{n\to+\infty} \int_a^b f_n(t) dt = \int_a^b f(t) dt$. Plus généralement, la fonction $F: x \mapsto \int_a^x f(t) dt$ est limite uniforme sur I de la suite de fonctions (F_n) définie par

$$\forall n \in \mathbb{N}, F_n : x \mapsto \int_a^x f_n(t) \, \mathrm{d}t$$

Remarque 33. L'interversion se fait sous des hypothèses beaucoup moins contraignantes à l'aide du théorème de convergence dominée.

[**B-P**] p. 124

Théorème 34 (Convergence monotone). Soit (f_n) une suite croissante de fonctions mesurables positives. Alors, la limite f de cette suite est mesurable positive, et,

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu$$

p. 137

Théorème 35 (Lemme de Fatou). Soit (f_n) une suite de fonctions mesurables positives. Alors,

$$0 \le \int_X \liminf f_n \, \mathrm{d}\mu \le \liminf \int_X f_n \, \mathrm{d}\mu \le +\infty$$

Exemple 36. Soit f croissante sur [0,1], continue en 0 et dérivable en 1 et dérivable pp. dans [0,1]. Alors,

$$\int_0^1 f'(x) \, \mathrm{d}x \le f(1) - f(0)$$

Théorème 37 (Convergence dominée). Soit (f_n) une suite d'éléments de \mathcal{L}_1 telle que :

(i) pp. en x, $(f_n(x))$ converge dans \mathbb{K} vers f(x).

(ii) $\exists g \in \mathcal{L}_1$ positive telle que

$$\forall n \in \mathbb{N}$$
, pp. en x , $|f_n(x)| \le g(x)$

Alors,

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu \text{ et } \lim_{n \to +\infty} \int_X |f_n - f| \, \mathrm{d}\mu = 0$$

Exemple 38. — On reprend l'Exemple 36 et on suppose f partout dérivable sur [0,1] de dérivée bornée. Alors l'inégalité est une égalité.

— Soit $\alpha > 1$. On pose $\forall n \ge 1$, $I_n(\alpha) = \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-\alpha x} dx$. Alors,

$$\lim_{n \to +\infty} I_n(\alpha) = \int_0^{+\infty} e^{(1-\alpha)x} \, \mathrm{d}x = \frac{1}{\alpha - 1}$$

Exemple 39.

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{x^n}{x^{2n} + 1} \, \mathrm{d}x = 0$$

[AMR11] p. 156

III - Séries particulières

1. Séries entières

Définition 40. On appelle **série entière** toute série de fonctions de la forme $\sum a_n z^n$ où z est une variable complexe et où (a_n) est une suite complexe.

[**GOU20**] p. 247

Lemme 41 (Abel). Soient $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ tels que $(a_n z_0^n)$ soit bornée. Alors :

- (i) $\forall z \in \mathbb{C}$ tel que $|z| < |z_0|$, $\sum a_n z^n$ converge absolument.
- (ii) $\forall r \in]0, |z_0|[, \sum a_n z^n \text{ converge normalement dans } \overline{D}(0, r) = \{z \in \mathbb{C} \mid |z| \le r\}.$

Définition 42. En reprenant les notations précédentes, le nombre

$$R = \sup\{r \ge 0 \mid (|a_n|r^n) \text{ est bornée}\}$$

est le **rayon de convergence** de $\sum a_n z^n$.

Exemple 43. — $\sum n^2 z^n$ a un rayon de convergence égal à 1.

— $\sum \frac{z^n}{n!}$ a un rayon de convergence infini. On note $z\mapsto e^z$ la fonction somme.

p. 255

Proposition 44. Soit $\sum a_n z^n$ une série entière de rayon de convergence $r \neq 0$. Alors $S \in \mathcal{H}(D(0,r))$ et,

[**QUE**] p. 57

[GOU20]

p. 263

$$S'(z) = \sum_{n=0}^{+\infty} n a_n z^{n-1}$$

pour tout $z \in D(0, r)$.

Plus précisément, pour tout $k \in \mathbb{N}$, S est k fois dérivable avec

$$S^{(k)}(z) = \sum_{n=k}^{+\infty} n(n-1)...(n-k+1)a_n z^{n-k}$$

[DEV]

Théorème 45 (Abel angulaire). Soit $\sum a_n z^n$ une série entière de rayon de convergence supérieur ou égal à 1 telle que $\sum a_n$ converge. On note f la somme de cette série sur le disque unité D de $\mathbb C$. On fixe $\theta_0 \in \left[0, \frac{\pi}{2}\right[$ et on pose $\Delta_{\theta_0} = \{z \in D \mid \exists \rho > 0 \text{ et } \exists \theta \in [-\theta_0, \theta_0] \text{ tels que } z = 1 - \rho e^{i\theta}\}.$

Alors $\lim_{\substack{z \to 1 \ z \in \Delta_{\theta_0}}} f(z) = \sum_{n=0}^{+\infty} a_n$.

Application 46.

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)} = \frac{\pi}{4}$$

Application 47.

$$\sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$$

Contre-exemple 48. La réciproque est fausse :

$$\lim_{\substack{z \to 1 \\ |z| < 1}} (-1)^n z^n = \lim_{\substack{z \to 1 \\ |z| < 1}} \frac{1}{1+z} = \frac{1}{2}$$

Théorème 49 (Taubérien faible). Soit $\sum a_n z^n$ une série entière de rayon de convergence 1. On note f la somme de cette série sur D(0,1). On suppose que

$$\exists S \in \mathbb{C} \text{ tel que } \lim_{\substack{x \to 1 \\ x < 1}} f(x) = S$$

Si $a_n = o(\frac{1}{n})$, alors $\sum a_n$ converge et $\sum_{n=0}^{+\infty} a_n = S$.

Remarque 50. Ce dernier résultat est une réciproque partielle du Théorème 45. Il reste vrai en supposant $a_n = O\left(\frac{1}{n}\right)$ (c'est le théorème Taubérien fort).

2. Séries de Fourier

Notation 51. — Pour tout $p \in [1, +\infty]$, on note $L_p^{2\pi}$ l'espace des fonctions $f : \mathbb{R} \to \mathbb{C}$, 2π -périodiques et mesurables, telles que $||f||_p < +\infty$.

[**Z-Q**] p. 73

— Pour tout $n \in \mathbb{Z}$, on note e_n la fonction 2π -périodique définie pour tout $t \in \mathbb{R}$ par $e_n(t) = e^{int}$.

[**GOU20**] p. 268

Définition 52. Soit $f \in L_1^{2\pi}$. On appelle :

— Coefficients de Fourier complexes, les complexes définis par

$$\forall n \in \mathbb{Z}, c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt = \langle f, e_n \rangle$$

— **Série de Fourier** associée à f la série $(S_N(f))$ définie par

$$\forall N \in \mathbb{N}, S_N(f) = \sum_{n=-N}^{N} c_n(f) e_n \stackrel{(*)}{=} \frac{a_0(f)}{2} + \sum_{n=1}^{N} (a_n(f)\cos(nx) + b_n(f)\sin(nx))$$

p. 271

Théorème 53 (Dirichlet). Soient $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique, continue par morceaux sur \mathbb{R} et $t_0 \in \mathbb{R}$ tels que la fonction

$$h \mapsto \frac{f(t_0 + h) + f(t_0 - h) - f(t_0^+) - f(t_0^-)}{h}$$

est bornée au voisinage de 0. Alors,

$$S_N(f)(t_0) \longrightarrow_{N \to +\infty} \frac{f(t_0^+) + f(t_0^-)}{2}$$

Contre-exemple 54. Soit $f : \mathbb{R} \to \mathbb{R}$ paire, 2π -périodique telle que :

$$\forall x \in [0, \pi], f(x) = \sum_{p=1}^{+\infty} \frac{1}{p^2} \sin\left((2^{p^3} + 1)\frac{x}{2}\right)$$

Alors f est bien définie et continue sur $\mathbb R$. Cependant, sa série de Fourier diverge en 0.

Corollaire 55. Soient $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique, \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors,

$$\forall x \in \mathbb{R}, S_N(f)(x) \longrightarrow_{N \to +\infty} \frac{f(x^+) + f(x^-)}{2}$$

En particulier, si f est continue en x, la série de Fourier de f converge vers f(x).

Exemple 56. En reprenant la fonction de l'Exemple 56,

$$\forall x \in [-\pi, \pi], f(x) = \frac{2}{3} - \frac{4}{\pi^2} \sum_{n=1}^{+\infty} (-1)^n \frac{\cos(nx)}{n^2}$$

Proposition 57. Soit $f \in L_1^{2\pi}$ et telle que sa série de Fourier converge normalement. Alors, la somme $g: x \mapsto \sum_{n=-\infty}^{+\infty} c_n(f)e_n(x)$ est une fonction continue 2π -périodique presque partout égale à f. De plus, si f est continue, l'égalité f(x) = g(x) est vraie pour tout x.

[**BMP**]

Proposition 58. Soit $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique continue et \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors $(S_N(f))$ converge normalement vers f.

Application 59 (Développement eulérien de la cotangente).

[AMR08] p. 211

$$\forall u \in \mathbb{R} \setminus \pi \mathbb{Z}$$
, $\operatorname{cotan}(u) = \frac{1}{u} + \sum_{n=1}^{+\infty} \frac{2u}{u^2 - n^2 \pi^2}$

Théorème 60 (Formule sommatoire de Poisson). Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 telle que $f(x) = O\left(\frac{1}{x^2}\right)$ et $f'(x) = O\left(\frac{1}{x^2}\right)$ quand $|x| \to +\infty$. Alors :

[**GOU20**] p. 284

$$\forall x \in \mathbb{R}, \ \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \widehat{f}(2\pi n) e^{2i\pi nx}$$

Application 61 (Identité de Jacobi).

$$\forall s > 0, \sum_{n = -\infty}^{+\infty} e^{-\pi n^2 s} = \frac{1}{\sqrt{s}} \sum_{n = -\infty}^{+\infty} e^{-\frac{\pi n^2}{s}}$$

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

Suites et séries numériques, suites et séries de fonctions

[AMR11]

Mohammed El-Amrani. *Suites et séries numériques, suites et séries de fonctions*. Ellipses, 15 nov. 2011.

https://www.editions-ellipses.fr/accueil/3910-14234-suites-et-series-numeriques-suites-et-series-de-fonctions-9782729870393.html.

Objectif agrégation

[BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Analyse [B-P]

Marc Briane et Gilles Pages. *Analyse. Théorie de l'intégration*. 8^e éd. De Boeck Supérieur, 29 août 2023

https://www.deboecksuperieur.com/ouvrage/9782807359550-analyse-theorie-de-l-integration.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

 $\label{eq:https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.$

Analyse complexe et applications

[QUE]

Martine Quefféllec et Hervé Queffélec. *Analyse complexe et applications. Nouveau tirage.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/analyse-complexe-et-applications/.

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation*. *Agrégation/Master Mathématiques*. 5^e éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$