Transferability and Hardness of Supervised Classification Tasks — Supplemental material —

Anh T. Tran* VinAI Research Cuong V. Nguyen Amazon Web Services Tal Hassner* Facebook AI

anstar1111@gmail.com

nguycuo@amazon.com

talhassner@gmail.com

This supplemental material includes a full proof of Theorem 1, more details on task hardness, technical implementation details, additional results for multi-class classification, and full transferability results on CelebA and AwA2 (omitting transferability plots for the 312 tasks in the CUB dataset, due to space requirements). We note that some concessions were made in order to fit these results to the limited format of an ICCV supplemental document.

1. Proof of theorem 1

From the definition of $\widetilde{\mathrm{Trf}}(T^Z \to T^Y)$, we have:

$$\widehat{\operatorname{Trf}}(T^Z \to T^Y) = l_Y(w_Z, k_Y) \qquad \text{(definition of } \widehat{\operatorname{Trf}})$$

$$\geq l_Y(w_Z, \bar{k}) \qquad \text{(definition of } k_Y \text{ and } \bar{k} \in K)$$

$$= \frac{1}{n} \sum_{i=1}^n \log \left(\sum_{z \in \mathcal{Z}} \hat{P}(y_i|z) P(z|x_i; w_Z, h_Z) \right) \qquad \text{(construction of } \bar{k})$$

$$\geq \frac{1}{n} \sum_{i=1}^n \log \left(\hat{P}(y_i|z_i) P(z_i|x_i; w_Z, h_Z) \right) \qquad \text{(replacing the sum by one of its elements)}$$

$$= \frac{1}{n} \sum_{i=1}^n \log \hat{P}(y_i|z_i) + \frac{1}{n} \sum_{i=1}^n \log P(z_i|x_i; w_Z, h_Z). \qquad (1)$$

Note that the second term in Eq. (1) is:

$$\frac{1}{n} \sum_{i=1}^{n} \log P(z_i | x_i; w_Z, h_Z) = l_Z(w_Z, h_Z).$$
 (2)

Furthermore, the first term in Eq. (1) is:

$$\begin{split} \frac{1}{n} \sum_{i=1}^n \log \hat{P}(y_i|z_i) &= \frac{1}{n} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} \left(\sum_{i \ : \ y_i = y \ \text{and} \ z_i = z} \log \hat{P}(y|z) \right) & \text{(group the summands by values of } y_i \ \text{and } z_i) \\ &= \frac{1}{n} \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} \left(|\{i \ : \ y_i = y \ \text{and} \ z_i = z\}| \ \log \hat{P}(y|z) \right) & \text{(by counting)} \\ &= \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} \left(\frac{|\{i \ : \ y_i = y \ \text{and} \ z_i = z\}|}{n} \ \log \hat{P}(y|z) \right) \\ &= \sum_{y \in \mathcal{Y}} \sum_{z \in \mathcal{Z}} \left(\hat{P}(y,z) \ \log \frac{\hat{P}(y,z)}{\hat{P}(z)} \right) & \text{(definitions of } \hat{P}(y,z) \ \text{and } \hat{P}(y|z)) \\ &= -H(Y|Z). \end{split}$$

^{*}Work at Amazon Web Services, prior to joining current affiliation.

From Eq. (1), (2), and (3), we have $\widetilde{\mathrm{Trf}}(T^Z \to T^Y) \geq l_Z(w_Z, h_Z) - H(Y|Z)$. Hence, the theorem holds.

2. More details on task hardness

On the definition of task hardness. In our paper, we assume non-overfitting of trained models. When train and test sets are sampled from the *same distribution*, this assumption typically holds for appropriately trained models [14]. This property also shows that our definition of hardness, Eq. (13) in the main paper, does not conflict with the results of Zhang et al. [14]: In such cases, the training loss of Eq. (13) correlates with the test error, and thus this definition indeed reflects task hardness, explaining the relationships between train and test errors observed in our hardness results.

On the representation for trivial tasks. Any representation for a trivial source task can fit the constant label perfectly (zero training loss). In theory, if we choose the optimal w_Z (in Eq. (1) of the main paper) as our representation, we can show Eq. (14) in the main paper. In practice, of course we cannot infer the optimal w_Z from the trivial source task, but Eq. (14) shows that we can still connect it to H(Z|C).

3. Technical implementation details

Computing the CE. Computing the CE is straightforward and involves the following steps:

- 1. Loop through the training labels of both tasks T^Z and T^Y and compute the empirical joint distribution $\hat{P}(y,z)$ by counting (Eq. (6) in the paper).
- 2. Loop through the training labels again and compute the CE using Eq. (3) above. That is,

$$H(Y|Z) = -\frac{1}{n} \sum_{i=1}^{n} \log \hat{P}(y_i|z_i).$$

Thus, computing the CE only requires running two loops through the training labels. This process is computationally efficient. In the most extreme case, computing the transferability of face recognition ($|\mathcal{Z}| > 10k$) to a facial attribute, with $|\mathcal{Y}| = 2$, required *less than a second* on a standard CPU.

This run time should be compared with the *hours* (or days) required to train deep models in order to empirically measure transferability following the process described by previous work. In particular, Taskonomy [13] reported over 47 thousand hours of GPU runtime in order to establish relationships between their 26 tasks.

Dedicated attribute training. Given a source task T^Z , we train a dedicated CNN for this task with standard ResNet-18 V2 implemented in the MXNet deep learning library [1]. We set the initial learning rate to 0.01. Learning rate was then divided by 10 after each 12 epochs. Training converged in less than 40 epochs in all 437 tasks.

Task transfer with linear SVM. After training a deep representation for a source task T^Z , we transfer it to a target task T^Y using linear support vector machines (ISVM).

First, we use the trained CNN, denoted in the paper as w_Z , to extract deep embeddings for the entire training data (one embedding per input image. Each embedding is a vector $r \in \mathbb{R}^{2048}$, which we obtain from the penultimate layer of the network. We then use these embeddings, along with the corresponding labels for target task, T^Y , to train a standard ISVM classifier, implemented by SK-Learn [8]. The ISVM parameters were kept unchanged from their default values.

Given unseen testing data, we first extract their embeddings with w_Z . We then apply the trained ISVM classifier on these features to predict labels for target task, T^Y .

4. Additional results: Generalization to multi-class

Transferability generalizes well to multi-class, as evident in our face recognition (10k labels)-to-attribute tests in Sec. 5.2. Table 1 below reports hardness tests with multi-class, CelebA, attribute aggregates. Generally speaking, the harder the task, the lower the accuracy obtained.

¹Model available from: https://mxnet.apache.org/api/python/gluon/model_zoo.html.

Multi-class	Straight/Wavy/Other	Black/Blonde/Other	Arched/Bushy/Other
Hardness ↓	1.040	0.925	0.867
Dedicated Res18	0.713	0.859	0.797
Multi-class	Bangs/Receding/Other	Gray/Blonde/Other	Goatee/Beard/None
Hardness ↓	0.690	0.575	0.557
Dedicated Res18	0.900	0.943	0.937

Table 1. Multi-class hardness examples on CelebA data.

5. Full transferability results

5.1. Attribute prediction on CelebA [7]

Figure 1. Attribute prediction; CE vs. test errors on CelebA (Extended from Fig. 2(a-d) in the paper). The source attribute, T^Z , in each plot is named in the plot title. Points represent different target tasks T^Y . Corr is the Pearson correlation coefficient between the two variables and p is the statistical significance of the correlation. In all cases, the correlation is statistically significant.

5.2. CelebA: Transferability from identity to attributes

Attribute:	Male	Bald	Gray Hair	Mustache	Double Chin	Chubby	Sideburns	Goatee	Young	Wear Hat	
1 LNets+ANet 2015 [7]	0.980	0.980	0.970	0.950	0.920	0.910	0.960	0.950	0.870	0.990	
2 Walk and Learn 2016 [10]	0.960	0.920	0.950	0.900	0.930	0.890	0.920	0.920	0.860	0.960	
3 MOON 2016 [9]	0.981	0.988	0.981	0.968	0.963	0.954	0.976	0.970	0.881	0.990	
LMLE 2016 [5]	0.990	0.900	0.910	0.730	0.740	0.790	0.880	0.950	0.870	0.990	
5 CR-I 2017 [2]	0.960	0.970	0.950	0.940	0.890	0.870	0.920	0.960	0.840	0.980	
MCNN-AUX 2017 [4]	0.982	0.989	0.982	0.969	0.963	0.957	0.978	0.972	0.885	0.990	\rightarrow
7 DMTL 2018 [3]	0.980	0.990	0.960	0.970	0.990	0.970	0.980	0.980	0.900	0.990	
Face-SSD 2019 [6]	0.973	0.986	0.976	0.960	0.960	0.951	0.966	0.963	0.876	0.985	
Conditional Entropy	0.017	0.026	0.052	0.062	0.083	0.087	0.088	0.089	0.095	0.107	
0 Dedicated Res18	0.985	0.990	0.980	0.968	0.959	0.951	0.976	0.974	0.879	0.991	
1 FromID SVM	0.992	0.991	0.981	0.968	0.963	0.957	0.976	0.973	0.899	0.988	
Attribute:	Eye glasses	Pale Skin	Wear Necktie	Blurry	No Beard	Receding Hairline	5 clock Shadow	Rosy Cheeks	Blond Hair	Big Lips	
	0.990	0.910	0.930	0.840	0.950	0.890	0.910	0.900	0.950	0.680	
2	0.970	0.850	0.840	0.910	0.900	0.840	0.840	0.960	0.920	0.780	
,	0.995	0.970	0.966	0.957	0.956	0.936	0.940	0.948	0.959	0.715	
	0.980	0.800	0.900	0.590	0.960	0.760	0.820	0.780	0.990	0.600	
5	0.960	0.920	0.880	0.850	0.940	0.870	0.900	0.880	0.950	0.680	
	0.996	0.970	0.965	0.962	0.960	0.938	0.945	0.952	0.960	0.715	\rightarrow
i	0.990	0.970	0.970	0.960	0.970	0.940	0.950	0.960	0.910	0.880	
3	0.992	0.957	0.956	0.950	0.949	0.931	0.929	0.943	0.936	0.778	
,)	0.109	0.122	0.131	0.139	0.141	0.141	0.145	0.152	0.16	0.161	
0	0.997	0.970	0.963	0.963	0.961	0.936	0.942	0.950	0.961	0.715	
1	0.996	0.958	0.941	0.956	0.958	0.933	0.937	0.939	0.949	0.710	
Attribute:	Bushy Eyebrows	Wear Lipstick	Big Nose	Bangs	Narrow Eyes	Wear Necklace	Heavy Makeup	Black Hair	Wear Earrings	Arched Eyebrow	10
I	0.900	0.930	0.780	0.950	0.810	0.710	0.900	0.880	0.820	0.790	3
2	0.930	0.920	0.910	0.960	0.790	0.770	0.960	0.840	0.910	0.870	
	0.926	0.939	0.840	0.958	0.865	0.870	0.910	0.894	0.896	0.823	
1	0.820	0.990	0.800	0.980	0.590	0.590	0.980	0.920	0.830	0.790	
	0.840	0.940	0.800	0.950	0.720	0.740	0.840	0.900	0.830	0.800	
, i	0.928	0.941	0.845	0.960	0.872	0.866	0.915	0.898	0.904	0.834	\rightarrow
,	0.850	0.930	0.920	0.960	0.900	0.890	0.920	0.850	0.910	0.860	
}	0.896	0.926	0.823	0.952	0.890	0.878	0.920	0.879	0.869	0.820	
,)	0.192	0.202	0.232	0.236	0.252	0.252	0.27	0.286	0.291	0.306	
0	0.927	0.935	0.828	0.230	0.232	0.859	0.916	0.901	0.896	0.834	
1	0.919	0.933	0.845	0.950	0.863	0.865	0.897	0.869	0.853	0.822	
Attribute:	Brown Hair	Bags U Eyes	Oval Face	Straight Hair	Pointy Nose	Attractive	Wavy Hair	High Cheeks	Smiling	Mouth Open	Average (a
Attribute.	0.800	0.790	0.660	0.730	0.720	0.810	0.800	0.870	0.920	0.920	0.873
!	0.810	0.870	0.790	0.750	0.770	0.840	0.850	0.950	0.920	0.970	0.887
	0.894	0.849	0.757	0.823	0.765	0.817	0.825	0.870	0.926	0.935	0.909
	0.870	0.730	0.680	0.730	0.720	0.880	0.823	0.920	0.920	0.960	0.838
•	0.860	0.800	0.660	0.730	0.720	0.830	0.790	0.920	0.930	0.950	0.866
	0.892	0.849	0.660	0.730	0.730	0.831	0.790	0.890	0.930	0.937	0.800
1											
	0.960	0.990	0.780	0.850	0.780	0.850	0.870	0.880	0.940	0.940	0.926
3	0.835	0.825	0.748	0.834	0.749	0.813	0.851	0.868	0.918	0.919	0.903
9	0.315	0.324	0.339	0.339	0.341	0.361	0.381	0.476	0.521	0.551	0.011
0	0.886	0.834	0.752	0.836	0.769	0.823	0.842	0.878	0.933	0.943	0.911
11	0.854	0.838	0.733	0.812	0.769	0.820	0.800	0.859	0.909	0.901	0.902

Table 2. **Transferability from face recognition to facial attributes.** (Extended from Table 1 in the paper) Results for CelebA attributes, sorted in ascending order of row 9 (decreasing transferability). Classification accuracies are shown for all 40 attributes. Subject specific attributes, e.g., *male* and *bald*, are more transferable than expression related attributes such as *smiling* and *mouth open*. These identity specific attributes corresponds to the automatic grouping presented in the original CelebA paper [7]. Unlike them, however, we obtain this grouping without necessitating the training of a deep attribute classification model. Unsurprisingly, transfer results (row 11) are best on these subject specific attributes and worst for less related attributes. Rows 1-8 provide published state of the art results. Despite training only an ISVM for attribute, row 11 results are comparable with more elaborate attribute classification systems. For details, see Sec. 5.2.

5.3. Attribute prediction on AwA2 [12]

Figure 2. Attribute prediction; CE vs. test errors on AwA2 (Extended from Fig. 2(e-h) in the paper; part 1). The source attribute, T^Z , in each plot is named in the plot title. Points represent different target tasks T^Y . Corr is the Pearson correlation coefficient between the two variables and p is the statistical significance of the correlation. In all cases, the correlation is statistically significant.

Figure 3. Attribute prediction; CE vs. test errors on AwA2 (Extended from Fig. 2(e-h) in the paper; part 2). The source attribute, T^Z , in each plot is named in the plot title. Points represent different target tasks T^Y . Corr is the Pearson correlation coefficient between the two variables and p is the statistical significance of the correlation. In all cases, the correlation is statistically significant.

Figure 4. Attribute prediction; CE vs. test errors on AwA2 (Extended from Fig. 2(e-h) in the paper; part 3). The source attribute, T^Z , in each plot is named in the plot title. Points represent different target tasks T^Y . Corr is the Pearson correlation coefficient between the two variables and p is the statistical significance of the correlation. In all cases, the correlation is statistically significant.

6. Full hardness results

6.1. CelebA [7] attribute prediction hardness

1 Attribute	Bald	Mustache	Gray Hair	Pale Skin	Double Chin	Wearing Hat	Blurry	Sideburns	Chubby	Goatee	\rightarrow
2 Conditional Entropy↑	0.107	0.173	0.174	0.177	0.189	0.194	0.201	0.217	0.22	0.235	\rightarrow
\rightarrow	Eyeglasses	Rosy Cheeks	Wearing Necktie	Receding Hairline	5 oClock Shadow	Narrow Eyes	Wearing Necklace	Bushy Eyebrows	Blond Hair	Bangs	\rightarrow
\rightarrow	0.241	0.242	0.261	0.278	0.349	0.357	0.373	0.409	0.419	0.425	\rightarrow
\rightarrow	No Beard	Wearing Earrings	Bags Under Eyes	Brown Hair	Straight Hair	Young	Big Nose	Black Hair	Big Lips	Arched Eyebro	$\overline{ws} \rightarrow$
\rightarrow	0.448	0.485	0.507	0.508	0.512	0.535	0.545	0.55	0.552	0.58	\rightarrow
\rightarrow	Pointy Nose	Oval Face	Wavy Hair	Heavy Makeup	Male	High Cheekbones	Wearing Lipstick	Smiling	Mouth Slightly Open	Attractive	
\rightarrow	0.591	0.597	0.627	0.667	0.679	0.689	0.692	0.693	0.693	0.693	

Table 3. **CelebA task hardness.** CelebA facial attributes sorted in ascending order of hardness along with their respective hardness scores. Hardness scores listed above are compared with empirical test errors for each task and shown to be strongly correlated (Fig. 6(a) in the paper). Note that the *male* classification task, appearing here as relatively hard, is the easiest task to transfer from face recognition (Table 2).

6.2. AwA2 [12] attribute prediction hardness

1 Attribute	Flys	Red	Skimmer	Desert	Plankton	Insects	Tunnels	Hands	Tusks	Strainteeth	Cave	Blue	Stripes	Scavenger	Hops →
2 Conditional Entropy↑	0.057	0.089	0.112	0.125	0.140	0.170	0.181	0.200	0.205	0.229	0.243	0.251	0.263	0.270	$0.284 \rightarrow$
\rightarrow	Oldworld	Orange	Yellow	Quadrapedal	Flippers	Ground	Ocean	Coastal	Arctic	Walks	Swims	Water	Weak	Longneck	$Bipedal \rightarrow$
\rightarrow	0.294	0.303	0.315	0.324	0.345	0.381	0.391	0.392	0.408	0.429	0.433	0.433	0.439	0.444	$0.444 \rightarrow$
\rightarrow	Tree	Chewteeth	Hibernate	Nocturnal	Fast	Furry	Stalker	Newworld	Tail	Horns	Hairless	Jungle	Buckteeth	Spots	Active \rightarrow
\rightarrow	0.450	0.454	0.477	0.487	0.501	0.507	0.511	0.514	0.515	0.518	0.524	0.526	0.527	0.562	$0.570 \rightarrow$
\rightarrow	Mountains	Strong	Bush	Pads	Fish	Big	Timid	Hunter	Small	Brown	Longleg	Hooves	Agility	Nestspot	Smart \rightarrow
\rightarrow	0.580	0.582	0.585	0.593	0.599	0.601	0.617	0.624	0.630	0.643	0.644	0.645	0.646	0.648	$0.648 \rightarrow$
\rightarrow	Group	Meat	Patches	Fierce	Forest	Claws	Black	Muscle	Meatteeth	Slow	Fields	Vegetation	Domestic	Grazer	Gray →
\rightarrow	0.649	0.651	0.656	0.661	0.667	0.667	0.669	0.672	0.674	0.675	0.678	0.679	0.682	0.686	$0.690 \rightarrow$
\rightarrow	Paws	Plains	Solitary	Toughskin	Bulbous	White	Forager	Inactive	Smelly	Lean					
\rightarrow	0.691	0.692	0.692	0.692	0.693	0.693	0.693	0.693	0.693	0.693					

Table 4. **AWA2 task hardness.** AWA2 attributes sorted in ascending order of hardness along with their respective hardness scores. Hardness scores listed above are compared with empirical test errors for each task and shown to be strongly correlated (Fig. 6(b) in the paper).

6.3. CUB [11] attribute prediction hardness

	le::olive 0.025 te::pink 0.035 ne::pink	unc::purple 0.027	fe::pink 0.027	upc::pink	untc::purple	cc::pink	wc::pink	bec::pink	tc::purple 0.033	lc::iridescent	1
	3.025 ::pink 3.035	0.027	0.027					0.032	0.033		
	::pink 3.035 :::pink			0.028	0.030	0.030	0.031	0.032		0.034	↑
	:::pink	wc::purple	brc::pink	uptc::purple	blc::olive	untc::pink	bkc::pink	lc::purple	cc::purple	pc::pink	1 1
		unc::nink	occo.o	bkc: purple	blc: pink	fcnirnle	oco.o	ec:blue	ocnurnle	0.036	1
	0.038	0.040	0.040	0.041	0.042	0.042	0.042	0.049	0.051	0.053	1
	tc:: green	fc::green	bkc::rufous	uptc::rufous	blc::iridescent	sh::long-legged-like	pec::rufons	untc::rufous	ec::rufons	brc:: green	1
	0.054	0.054	0.057	0.057	0.057	0.061	0.064	0.064	0.064	0.064	1
	wc::rufous 0.066	Ic::rufous 0.067	cc::green 0.069	upc::rufous 0.070	untc::green 0.071	bec::green 0.072	tc::olive 0.072	brc::rufous 0.074	blc::rufous 0.074	unc::green 0.074	↑ ↑
	tc::rufous	brc::iridescent	nc::green	bc::rufous	unc::rufous	uptc::green	nc::rufous	bec::iridescent	ec::buff	tc::iridescent	1
	0.074	0.075	970.0	9/0.0	0.076	7,000	0.077	0.080	0.081	0.082	\uparrow
	bls::hooked	fc::rufons	lc::blue	ec::orange	untc::iridescent	unc::iridescent	uptc::iridescent	untc::orange	bkc::orange	cc::rufons	1
	0.082	0.082	0.082	0.084	0.084	680:0	0.089	0.089	680.0	0.090	\uparrow
	fc::iridescent 0.092	ec::yellow 0.092	sh::chicken-like-marsh 0.093	nc::orange 0.093	cc::iridescent 0.094	si::very-large 0.094	tc::orange 0.095	untc::red 0.095	pc::iridescent 0.095	uptc::orange 0.097	1 1
→ pkc	:::green	cc::orange	ec::grey	pc::green	wc::green	lc::yellow	wc::iridescent	brc::olive	nbc::green	nc::iridescent	1
0	0.099	0.099	0.099	0.099	0.100	0.100	0.101	0.103	0.107	0.107	↑
	ized	bkc::iridescent	fc::olive	cc::olive	plc::plue	fc::orange	pec::plue	bls::curved	bls::needle	wc::orange	1
	0.108	0.108	0.110	0.112	0.112	0.113	0.113	0.113	0.113	0.114	1
↑ ↑	0.115	0.117	wc::red 0.117	o.117	0.118	0.118	0.119	0.120	upc::orange 0.123	0.126	1
dn	upc::red	unc::blue	sh::hawk-like	brc::orange	nc::olive	brc::blue	bec::orange	sh::upland-ground-like	hp::spotted	tc::blue	1
^	0.129	0.130	0.133	0.134	0.134	0.137	0.139	0.139	0.141	0.141	\uparrow
onn ←	unc::orange	untc::olive	ec::brown	pc::orange	si::large	lc::red	uptc::olive	hp::unique-pattern	bec::red	ec::white	↑ ^
	pcred	ncred	hn:-crested	lc.rwhite	Plc.red	chrewallow-like	0.130	brcred	ble::enatulate	0.102	1
	0.162	0.162	0.165	0.167	0.167	0.170	0.172	0.173	0.174	0.175	1
	fc::red	bkc::olive	pc::olive	wc::olive	hp::masked	untc::blue	sh::hummingbird-like	ts::forked-tail	sh::sandpiper-like	cc::red	1
	0.175	0.180	0.181	0.182	0.183	0.184	0.184	0.189	0.190	0.193	↑
odin ↑	upc::01ive 0.193	0.205	wc::bine 0.208	uptc::blue 0.209	nc::blue 0.212	0.217	0.219	0.220	0.222	upc:: blue 0.226	↑ ↑
::da	pe	sh::pigeon-like	bll::longer-than-head	uptc::yellow	sh::duck-like	pc::plue	bep::spotted	bls::hooked-seabird	brp::spotted	sh::tree-clinging-like	 ↑
) ↑		0.231	0.231	0.231	0.231	0.235	0.240	0.240	0.248	0.250	\uparrow
	sh::gull-like	hp::striped	blc::orange	cc::yellow	untc::yellow	bkp::spotted	blc::brown	wp::spotted	nc::yellow	ws::long-wings	↑
	0.234	0.260	0.262 formallom	0.2/1	0.278	0.284 harranolog	0.293	0.294 hambanin	10.294	0.294	^ ^
1	0.298	0.301	0.307	wsbload-wings 0.313	0.318	0.318	0.318	0.323	0.328	0.330	1
ts::sd	ts::squared-tail	upc::yellow	unc::brown	ped::striped	tc::yellow	ec::black	hp::capped	hp::eyeline	hp::eyebrow	cc::white	1
		0.346	0.356	0.360	0.363	0.368	0.371	0.374	0.375	0.380	↑
) 10 10	0.381	wstapered-wings 0.382	0.383	0.384	0.386	0.402	0.403	0.412	pcyenow 0.416	0.421	1
†	tc::buff	blc::buff	uptc::buff	bec::yellow	untc::buff	bec::black	hp::eyering	bep::multi-colored	unc::yellow	tc::grey	1
→	0.425	0.431	0.437	0.440	0.443	0.444	0.446	0.450	0.450	0.451	\uparrow
ou ↑ ↑	nc::buff 0.456	tp::striped 0.466	uptc::white 0.476	fc::brown 0.483	bkc::buff 0.483	lc::buff 0.483	nc::brown 0.484	bec::grey 0.485	upc::buff 0.490	pc::buff 0.490	↑ ↑
	brc::buff	si::medium	bkc::white	bec::buff	unc::black	brp::multi-colored	wc::buff	cc::brown	brc:: grey	unc::buff	1
	0.492	0.493	0.494	0.494	0.496	0.496	0.498	0.501	0.503	0.510	↑
on o	unc::grey 0.513	bkp::striped 0.514	10::grey 0.518	untc::brown 0.520	0.528	uptc::brown 0.530	ts::pointed-tail 0.531	oc::grey 0.534	tc::black 0.544	si::very-small 0.549	↑ ↑
.pc:	nc::white	untc::white	bkp::multi-colored	pc::brown	nc::grey	bkc::brown	upc::white	untc::grey	wp::striped	hp::plain	1
	0.549	0.554	0.555	0.564	0.572	0.573	0.582	0.584	0.587	0.588	\uparrow
sig ↑	0.590	uptc::grey 0.591	blc::grey 0.594	wc::white 0.596	upc::brown 0.599	pc::white 0.602	nc::black 0.604	pc::grey 0.605	wc::brown 0.606	tp::multi-colored 0.606	↑ ↑
	lc::black	bkc::grey	ws::pointed-wings	lc::grey	wp::solid	wp::multi-colored	wc::grey	upc::grey	fc::black	pep::solid	1
	0.610	0.616	0.619	0.622	0.626	0.627	0.628	0.633	0.643	0.646	\uparrow
13 1	cc::black	pc::black	tc::white	bkc::black	bll::same-as-head	ts::notched-tail	uptc::black 0.667	orc::white	bis::all-purpose	brb::solid	1
	bll::shorter-than-head	bec::white	ws::rounded-wings	unc::white	untc::black	upc::black	blc::black	bkp::solid	tp::solid	wc::black	1
	0.681	0.681	0.682	0.684	0.685	0.688	0.688	0.691	0.691	0.691	1
→ sh::per	sh::perching-like	si::small									

Table 5. **CUB task hardness.** CUB attributes sorted in ascending order of hardness along with their respective hardness scores. Hardness scores listed above are compared with empirical test errors for each task and shown to be strongly correlated (Fig. 6(c) in the paper). Attribute names are abbreviated due to space concerns. Full names are provided in Table 6.

bls has bill shape uptc has upper tail color	unte has under tail color	tp has tail pattern
we has wing color hp has head pattern	nc has nape color	bep has belly pattern
upc has upperparts color brc has breast color	bec has belly color	pc has primary color
unc has underparts color tc has throat color	ws has wing shape	lc has leg color
brp has breast pattern ec has eye color	si has size	blc has bill color
bkc has back color bll has bill length	sh has shape	cc has crown color
ts has tail shape fc has forehead color	bkp has back pattern	wp has wing pattern

Table 6. **CUB attribute name abbreviations.** Abbreviations used in Table 5 for the attributes in the CUB dataset [11].

References

- [1] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. *arXiv* preprint arXiv:1512.01274, 2015. 2
- [2] Q. Dong, S. Gong, and X. Zhu. Class rectification hard mining for imbalanced deep learning. In *Proc. Conf. Comput. Vision Pattern Recognition*, pages 1851–1860, 2017. 5
- [3] H. Han, A. K. Jain, F. Wang, S. Shan, and X. Chen. Heterogeneous face attribute estimation: A deep multi-task learning approach. *Trans. Pattern Anal. Mach. Intell.*, 40(11):2597–2609, 2018. 5
- [4] E. M. Hand and R. Chellappa. Attributes for improved attributes: A multi-task network utilizing implicit and explicit relationships for facial attribute classification. In AAAI Conf. on Artificial Intelligence, 2017. 5
- [5] C. Huang, Y. Li, C. Change Loy, and X. Tang. Learning deep representation for imbalanced classification. In *Proc. Conf. Comput. Vision Pattern Recognition*, pages 5375–5384, 2016. 5
- [6] Y. Jang, H. Gunes, and I. Patras. Registration-free face-ssd: Single shot analysis of smiles, facial attributes, and affect in the wild. *Comput. Vision Image Understanding*, 2019. 5
- [7] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proc. Int. Conf. Comput. Vision, 2015. 3, 5, 9
- [8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learning Research, 12:2825–2830, 2011.
- [9] E. M. Rudd, M. Günther, and T. E. Boult. Moon: A mixed objective optimization network for the recognition of facial attributes. In *European Conf. Comput. Vision*, pages 19–35. Springer, 2016. 5
- [10] J. Wang, Y. Cheng, and R. Schmidt Feris. Walk and learn: Facial attribute representation learning from egocentric video and contextual data. In Proc. Conf. Comput. Vision Pattern Recognition, pages 2295–2304, 2016. 5
- [11] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010. 9, 11
- [12] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. *Trans. Pattern Anal. Mach. Intell.*, 2018. 6, 9
- [13] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese. Taskonomy: Disentangling task transfer learning. In *Proc. Conf. Comput. Vision Pattern Recognition*, pages 3712–3722, 2018.
- [14] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. In *Int. Conf. on Learning Representations*, 2017. 2