Phần Lý thuyết

- 1. Giới thiệu chung Mô hình hệ VXL Nguyên tắc hoạt động
- 2. Cấu trúc và hoạt động của vi xử lý 8085
- 3. Quá trình thực hiện 1 lệnh trong VXL 8085
- 4. Giới thiệu về vi điều khiển PIC
- 5. Bộ công cụ nạp chương trình, công cụ mô phỏng vi điều khiển
- 6. Bộ định thời Timer
- 7. Ghép nối với bộ hiển thị
- 8. ADC
- 9. Giao tiếp truyền dữ liệu
- 10. Ngắt
- 11. PWM

Nội dung

- 1. Giới thiệu chung
- 2. Cấu trúc PIC16F877A
- 3. Tổ chức bộ nhớ
- 4. Các thanh ghi
- 5. Các cổng vào/ra
- 6. Mạch tạo dao động
- 7. Các chế độ reset

Thông tin cơ bản

- PIC (Programmable Intelligent Computer)
- Dòng PIC đầu tiên **PIC1650** được phát triển bởi General Instrument phục vụ giao tiếp máy chủ 16 bit CP1600, nên PIC còn được gọi bởi *Peripheral Interface Controller*
- Vi điều khiển kiến trúc RISC Reduced Instructions Set Computer
- Họ PIC gồm các vi điều khiển từ 8 bit cho tới 32 bit. Thông dụng nhất là các họ 8 bit được sử dụng trong các bài toán điều khiển, tự động hoá,...

8 bit PIC

Features	Baseline	Mid-Range	Enhanced Mid- Range	Advanced PIC18	
Families	PIC10, PIC12, PIC16	PIC10, PIC12	PIC12Fxxx,PIC16Fx	PIC 18	
Program Memory	Max 3 K B		Max 28 KB	Max 128 KB	
Data Memory			Max 1-5 KB	Max 4 KB	
Performance	5 MIPS	5 MIPS	8 MIPS	16 MIPS	
Features	 8-bit ADC Internal Oscillator Comparator 	Addition to baseline I2C/SPI PWM UART 10-bit ADC	Addition to midrange • Multiple Peripheral communication • High Performance • PWM with independent Time Space	 CAN USB ETHERNET LIN PLL Clock generator 	

8 bit PIC

Các ký hiệu của vi điều khiển PIC

- PIC12xxxx: độ dài lệnh là 12 bit
- PIC16xxxx: độ dài lệnh là 14 bit
- PIC18xxxx: độ dài lệnh là 16 bit

Các ký hiệu trong mã PIC

- C: PIC có bộ nhớ EPROM (riêng 16C84 là EEPROM)
- F: PIC có bộ nhớ flash
- LF: PIC có bộ nhớ flash hoạt động ở điện áp thấp
- LV: tương tự như LF, đây là kí hiệu cũ
- A ở cuối: bộ nhớ flash

Lựa chọn PIC như thế nào?

- Căn cứ vào ứng dụng đang xây dựng
- Chú ý số lượng chân của vi điều khiển cần thiết cho ứng dụng
- Chọn loại có bộ nhớ flash để có thể xoá/nạp chương trình được nhiều lần
- Căn cứ các khối chức năng được tích hợp sẵn trong vi điều khiển, các chuẩn giao tiếp
- Dung lượng bộ nhớ chương trình

PIC16F877A

40-Pin PDIP

PIC16F877A

Key Features	PIC16F873A	PIC16F874A	PIC16F876A	PIC16F877A
Operating Frequency	DC - 20 MHz			
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory (bytes)	128	128	256	256
Interrupts	14	15	14	15
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications		PSP	_	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Analog Comparators	2	2	2	2
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN

PIC16F877A

- Tốc độ hoạt động tối đa cho phép là 20 MHz với chu kì lệnh là 200ns
- Bộ nhớ chương trình 8K x 14 bit
- Bộ nhớ dữ liệu 368 x 8 byte RAM và 256 x 8 byte EEPROM
- Số cổng I/O là 5 (A, B, C, D, E) với 33 chân I/O
- 3 bộ định thời Timer
- 2 bộ Capture/so sánh/ điều chế độ rộng xung PWM
- Có các chuẩn giao tiếp cơ bản SSP, SPI, I2C, USART, PSP
- 8 kênh chuyển đổi ADC 10 bit
- Watchdog timer với bộ dao động trong
- Có thể hoạt động với nhiều dạng Oscillator khác nhau

Các cổng vào ra

• 5 cổng vào ra PORT A (RA), PORT B (RB), PORT C (RC), PORT D (RD) và PORT E (RE)

PORT A	RA0-RA5	6 bit
PORT B	RB0-RB7	8 bit
PORT C	RC0-RC7	8 bit
PORT D	RD0-RD7	8 bit
PORT E	RE0-RE2	3 bit

- 8 đầu vào analog tại các chân AN0-AN7
- Giao tiếp USART bởi 2 chân tín hiệu TX và RX
- Chân nhận tín hiệu đồng bộ nối tiếp SCK, chân tín hiệu ra SCL của giao thức truyền thông SPI và I2C
- Chân nhận tín hiệu đồng bộ CK và cổng dữ liệu ra đồng bộ DT

Các cổng vào ra

- Chân dữ liệu ra SD0 (chế độ SPI)
- Chân dữ liệu vào SD1 (chế độ SPI)
- Chân SDA: dữ liệu vào/ra trong chế độ I2C
- CCP1 và CCP2 là các chân Capture/so sánh/ điều chế độ rộng xung PWM
- OSC1: chân nhận dao động (oscillator input)
- OSC2: chân đưa ra dao động (oscillator output)
- MCLR: master clear pin, chân reset cứng VXL, tích cực mức thấp
- Vpp: đầu vào điện áp lập trình
- Vref(+/-): điện áp tham chiếu
- SS: cổng đồng bộ nối tiếp khi chọn slave

Các cổng vào ra

- T0CK1: Đầu vào clock cho TIMER 0
- T1OS0: Đầu ra dao động TIMER 1
- T1OS1: Đầu vào dao động TIMER 1
- T1CK1: đầu vào clock của TIMER 1
- PGD: đường dữ liệu lập trình nối tiếp
- PGC: đường xung nhịp clock nối tiếp
- PGM: đầu vào điện áp thấp lập trình
- INT: ngắt ngoài
- CS: Select Control, RD: Read Control cho cổng slave song song
- PSP0-PSP7: cổng slave song song

Sơ đồ cấu trúc bên trong

Tổ chức bộ nhớ của PIC16F877

Bộ nhớ của PIC 16F877 được chia thành 3 vùng

- 1. Vùng bộ nhớ chương trình
- 2. Vùng bộ nhớ dữ liệu
- 3. Dữ liệu EEPROM

Vùng nhớ chương trình

- Dung lượng nhớ 8K x 14 bit word, đánh địa chỉ từ 0000h tới 1FFFh, gồm 4 trang page0-page3
- Dung lượng chương trình tối đa sẽ là 8*1024 lệnh
- Thanh ghi PC (13 bit) trỏ tới địa chỉ của lệnh đang thực hiện
- Khi reset, PC sẽ trở về địa chỉ 0000h
- Khi gặp ngắt, PC sẽ nhảy tới địa chỉ của vector ngắt 0004h
- Lưu ý là vùng nhớ chương trình không bao gồm vùng nhớ stack

Vùng nhớ dữ liệu

- Bộ nhớ dữ liệu của PIC là bộ nhớ EEPROM được chia thành nhiều bank
- Với PIC16F877A có 4 bank, mỗi bank dung lượng 128 bytes, bao gồm
- Các thanh ghi có chức năng đặc biệt SFR (Special Function Register)
- Các thanh ghi đa mục đích GPR (General Purpose Register)

	File ddress		File Address		File Address		File Address
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General Purpose	197h
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch	CMCON	9Ch		11Ch		19Ch
CCP2CON	1Dh	CVRCON	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
		General		General		General	
General		Purpose		Purpose		Purpose	
Purpose		Register		Register		Register	
Register		80 Bytes		80 Bytes		80 Bytes	
96 Bytes			EFh		16Fh	l	1EFh
		accesses	F0h	accesses	170h	accesses	1F0h
		70h-7Fh		70h-7Fh		70h - 7Fh	
	7Fh		FFh		17Fh	Don't 2	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	
* Not a ph	ysical regi						
te 1: These re	agisters an	e not implemente:	d on the P	IC16F876A.			

Thanh ghi STATUS

STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

• Chứa kết quả thực hiện phép toán của ALU, trạng thái reset và các bit chọn bank cần truy xuất trong bộ nhớ dữ liệu

Thanh ghi OPTION_REG

OPTION_REG REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	
bit 7							bit 0	

- Thanh ghi này cho phép đọc và ghi
- điều khiển các chức năng pull-up của các chân trong PORTB, xác lập các tham số về xung tác động, cạnh tác động của ngắt ngoại vi và bộ định thời Timer0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Thanh ghi INTCON

INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	
bit 7							bit 0	1

- Thanh ghi này cho phép đọc và ghi
- chứa các bit điều khiển và bit cờ hiệu khi timer0 bị tràn, ngắt ngoại vi RB0/INT và ngắt interupt-on-change tại các chân của PORTB

Thanh ghi PIE1

PIE1 REGISTER (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7		•	•	•	•		bit 0

• chứa các bit điều khiển chi tiết các ngắt của các khối chức năng ngoại vi

Thanh ghi PIR1

PIR1 REGISTER (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

• chứa cờ ngắt của khối chức năng ngoại vi, các ngắt này được cho phép bởi các bit điều khiển trong thanh ghi PIE1

Thanh ghi PIE2

PIE2 REGISTER (ADDRESS 8Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
_	CMIE	_	EEIE	BCLIE	_	_	CCP2IE
bit 7	•	•					bit 0

• chứa các bit điều khiển các ngắt của các khối chức năng CCP2, SSP bus, ngắt của bộ so sánh và ngắt ghi vào bộ nhớ EEPROM

Thanh ghi PIR2

PIR2 REGISTER (ADDRESS 0Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
_	CMIF	_	EEIF	BCLIF			CCP2IF
bit 7							bit 0

• chứa cờ ngắt của khối chức năng ngoại vi, các ngắt này được cho phép bởi các bit điều khiển trong thanh ghi PIE2

Thanh ghi PCON

PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
_	_	_	_	_	_	POR	BOR
bit 7	•	•	•	•			bit 0

• Chứa các cờ hiệu cho biết trạng thái các chế độ reset của vi điều khiển

Thanh ghi đa mục đích GPR

- Là tập hợp các thanh ghi có thể được truy xuất trực tiếp hoặc gián tiếp thông qua thanh ghi FSR
- Có thể lưu các dữ liệu thông thường tuỳ theo mục đích của người sử dụng, chứa biến, hằng số, kết quả hoặc các tham số phục vụ cho chương trình

Stack

- Không nằm trong bộ nhớ chương trình hay bộ nhớ dữ liệu
- Đây là vùng nhớ đặc biệt không cho phép đọc/ghi
- Stack của PIC 16F877A có khả năng đọc 8 địa chỉ và hoạt động theo cơ chế xoay vòng
- Các thao tác với stack hoàn toàn bị điều khiển bởi CPU
- Vùng nhớ stack được dùng tới khi chương trình thao tác với lệnh CALL và các lệnh RETURN

PORTA-RA

- PORTA là cổng có 6 bit
- Có thể set là input hoặc output tuỳ thuộc vào thanh ghi TRISA

TRISA bit	1	input
INISABIL	0	Output

Tương tự với PORTB, PORTC... và thanh ghi TRISB, TRISC,...

- Ngõ vào của đầu vào analog
- RA4 ngõ vào xung clock của Timer0
- Đầu vào của các điện áp Vref cho các bộ chuyển đổi A/D và bộ so sánh

PORTA-RA

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-/CVREF	bit 2	TTL	Input/output or analog input or VREF- or CVREF.
RA3/AN3/VREF+	bit 3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI/C1OUT	bit 4	ST	Input/output or external clock input for Timer0 or comparator output. Output is open-drain type.
RA5/AN4/SS/C2OUT	bit 5	TTL	Input/output or analog input or slave select input for synchronous serial port or comparator output.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
05h	PORTA		_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_		PORTA D	ata Direct	ion Regist	er			11 1111	11 1111
9Ch	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	0000 0111
9Dh	CVRCON	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	000- 0000	000- 0000
9Fh	ADCON1	ADFM	ADCS2			PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

CMCON thanh ghi điều khiển bộ so sánh

CVRCON1 thanh ghi điều khiển bộ ADC

CVRCON thanh ghi điều khiển bộ so sánh điện áp

PORTB-RB

- PORTB là cổng có 8 bit
- input hoặc output
- Là chân tín hiệu vào của ngắt ngoài RB0/INT
- Các chân RB3/PGM, RB6/PGC và RB7/PGD được kết hợp với chức năng In-circuit debugger và chức năng Low-voltage Programming

PORTB-RB

Name	Bit#	Buffer	Function
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit 1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit 2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM ⁽³⁾	bit 3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or in-circuit debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or in-circuit debugger pin. Internal software programmable weak pull-up. Serial programming data.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Value on: POR, BOR		e on ther sets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx	xxxx	uuuu	uuuu
86h, 186h	TRISB	PORTB	ORTB Data Direction Register							1111	1111	1111	1111
81h, 181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111	1111	1111	1111

OPTION_REG điều khiển ngắt ngoại vi và bộ Timer0

PORTC-RC

- PORTC là cổng có 8 bit
- input hoặc output
- Là chân chức năng của các bộ so sánh, Timer1, bộ điều chế độ rộng xung PWM
- Các chuẩn giao tiếp truyền thông I2C, SPI, SSP, USART

PORTC-RC

Name	Bit#	Buffer Type	Function
RC0/T10S0/T1CKI	bit 0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit 1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/ Compare2 output/PWM2 output.
RC2/CCP1	bit 2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	bit 3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit 4	ST	RC4 can also be the SPI data in (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit 5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit 6	ST	Input/output port pin or USART asynchronous transmit or synchronous clock.
RC7/RX/DT	bit 7	ST	Input/output port pin or USART asynchronous receive or synchronous data.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuu	ıu
87h	TRISC	PORTC	Data Dire	ection Re	gister					1111 1111	1111 111	L1

PORTD-RD

- PORTD là cổng có 8 bit
- input hoặc output
- Có thể được cấu hình là cổng song song 8 bit của vi điều khiển bằng cách đặt chế độ PSPMODE

PORTD-RD

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 0.
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 2.
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 3.
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 4.
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 5.
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 6.
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or Parallel Slave Port bit 7.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Value on: POR, BOR		Value on all other Resets	
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx	xxxx	uuuu	uuuu	
88h	TRISD	PORTI	D Data	Directio	n Register					1111	1111	1111	1111	
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE I	Data Dire	ction Bits	0000	-111	0000	-111	

TRISE điều khiển xuất/nhập PORTE và chuẩn giao tiếp PSP

PORTE-RE

- PORTE là cổng có 3 bit
- input hoặc output
- Được sử dụng để cấu hình cho cổng PORTD hoạt động trong chế độ PSPMODE

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit 0	ST/TTL ⁽¹⁾	I/O port pin or read control input in Parallel Slave Port mode or analog input: RD 1 = Idle 0 = Read operation. Contents of PORTD register are output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit 1	ST/TTL ⁽¹⁾	I/O port pin or write control input in Parallel Slave Port mode or analog input: WR 1 = Idle 0 = Write operation. Value of PORTD I/O pins is latched into PORTD register (if chip selected).
RE2/CS/AN7	bit 2	ST/TTL ⁽¹⁾	I/O port pin or chip select control input in Parallel Slave Port mode or analog input: TS 1 = Device is not selected 0 = Device is selected

PORTE-RE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
09h	PORTE	_	_	_	_	-	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Direct	tion bits	0000 -111	0000 -111
9Fh	ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

ADCON1 điều khiển khối ADC

		bit 3	Unimplemented: Read as '0'
			PORTE Data Direction Bits:
		bit 2	Bit 2: Direction Control bit for pin RE2/CS/AN7
	Parallel Slave Port Status/Control Bits:		1 = Input 0 = Output
bit 7	IBF: Input Buffer Full Status bit	bit 1	Bit 1: Direction Control bit for pin RE1/WR/AN6
	1 = A word has been received and is waiting to be read by the CPU0 = No word has been received		1 = Input 0 = Output
bit 6	OBF: Output Buffer Full Status bit	bit 0	Bit 0: Direction Control bit for pin RE0/RD/AN5
	1 = The output buffer still holds a previously written word0 = The output buffer has been read		1 = Input 0 = Output
bit 5	IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)		
	 1 = A write occurred when a previously input word has not been software) 0 = No overflow occurred 	read (must	be cleared in
bit 4	PSPMODE: Parallel Slave Port Mode Select bit		
	1 = PORTD functions in Parallel Slave Port mode 0 = PORTD functions in general purpose I/O mode		

Công song song khi truyền đi

Cổng song song khi nhận về

Mạch dao động

Các dạng dao động

LP: Low-power crystal - Thạch anh năng lượng thấp

XT: Crystal/Resonator - Thạch anh/cộng hưởng

HS: High-speed Crystal/Resonator - Thạch anh/cộng hưởng tốc độ cao

RC: Resistor/Capacitor - Điện trở/Tụ điện

• Dao động thạch anh/cộng hưởng

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
XT	200 kHz	47-68 pF	47-68 pF	
	1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	15 pF	
	8 MHz	15-33 pF	15-33 pF	
	20 MHz	15-33 pF	15-33 pF	

Crystals Used					
32 kHz	Epson C-001R32.768K-A	± 20 PPM			
200 kHz	STD XTL 200.000KHz	± 20 PPM			
1 MHz	ECS ECS-10-13-1	± 50 PPM			
4 MHz	ECS ECS-40-20-1	± 50 PPM			
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM			
20 MHz	EPSON CA-301 20.000M-C	± 30 PPM			

Mạch dao động

• Sử dụng dao động từ nguồn ngoài

Dao động kiểu RC

Được sử dụng trong trường hợp tiết kiệm chi phí

Tần số phụ thuộc vào điện áp cấp, các giá trị của R,C, nhiệt độ môi trường, cách đóng gói chân VĐK

Các chế độ reset

- Power-on-reset. POR
- Reset MCLR trong lúc hoạt động bình thường
- Reset MCLR trong chế độ sleep

- Reset WDT trong chế độ bình thường
- Reset WDT trong chế độ sleep
- Brown-out reset

- Một vài thanh ghi không bị ảnh hưởng bởi reset. Trạng thái của chúng là không xác định khi POR và không thay đổi với các kiểu reset còn lại.
- Hầu hết các thanh ghi sẽ bị reset ở các chế độ (trừ WDT trong chế độ sleep)
- Các bit TO và $P\overline{D}$ sẽ được set hoặc reset tuỳ thuộc vào tình huống reset khác nhau

Thanh ghi STATUS	bit 4	TO: Time-out bit
		1 = After power-up, CLRWDT instruction or SLEEP instruction
		0 = A WDT time-out occurred
	bit 3	PD: Power-down bit
		1 = After power-up or by the CLRWDT instruction
		0 = By execution of the SLEEP instruction

Các chế độ reset

Reset MCLR

- Chân MCLR có bộ lọc nhiễu bên trong nên sẽ loại bỏ các tín hiệu nhỏ.
- Điện trở $R1 < 40 \text{ k}\Omega$ để đảm bảo điện áp rơi trên điện trở không vượt quá các thông số chỉ định
- Điện trở $R2 > 1 \ k\Omega$ để hạn chế dòng điện vào chân của vi điều khiển

Reset POR

- Khi chip bắt đầu hoạt động, các thông số làm việc phải đúng để đảm bảo hoạt động của mạch
- Khi các thông số không được đảm bảo, trạng thái reset sẽ được giữ lại cho đến khi đúng

Reset khi mới cấp điện PWRT

- PWRT tạo ra khoảng thời gian 72 ms chờ mở nguồn cho POR
- PWRT hoạt động dựa vào bộ dao động RC ở bên trong
- Chip được giữ ở trạng thái reset trong suốt khoảng thời gian PWRT hoạt động. Thời gian trì hoãn này đảm bảo cho nguồn cấp V_{DD} tăng đến mức có thể chấp nhận được
- Thời gian trì hoãn phụ thuộc vào V_{DD}, nhiệt độ và các biến xử lý

Bộ dao động Start-up OST

- OST cho phép tạo ra trễ 1024 chu kỳ xung dao động từ OSC1 sau khi kết thúc trễ do PWRT.
- Điều này đảm bảo thạch anh bước vào giai đoạn hoạt động ổn định
- OST chỉ dùng cho các kiểu reset XT, LP, và HS và chỉ dùng cho reset POR hoặc đánh thức CPU khỏi chế độ ngủ

Reset Brown-out BOR

- Khi điện áp nguồn V_{DD} giảm xuống dưới mức V_{BOR} (khoảng 4V) trong khoảng thời gian T_{BOR} (khoảng 100 μ s) thì sẽ xảy ra reset Brown-out
- Bit BODEN có thể cho phép/không cho phép reset Brown-out
- Reset Brown-out sẽ duy trì cho đến khi điện áp V_{DD} tăng lớn hơn V_{BOR} . Sau đó Power-up Timer sẽ giữ chip ở trạng thái reset trong khoảng thời gian T_{PWRT} (72 ms)
- Power-up Timer luôn được phép khi mạch Brown-out reset được phép bất chấp trạng thái của bit định cấu hình PWRT

Trình tự thời gian khi mở nguồn

• Trình tự thời gian sẽ là: Thời gian trì hoãn PWRT bắt đầu khi reset POR xảy ra. Sau đó OST đếm 1024 chu kỳ dao động khi PWRT kết thúc. Khi kết thúc OSR thì chip mới thoát khỏi trạng thái reset

Ossillator Configuration	Power-up		Brown out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	Sleep	
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	_	

Thanh ghi trạng thái/công suất PCON

- PCON có 2 bit phụ thuộc vào từng loại chip
- Bit 0 bit trạng thái BOR, có giá trị không xác định khi reset POR. Bình thường bit này cần được set lên giá trị 1. Sau khi reset, cần kiểm tra xem giá trị có về 0 hay không, từ đó xác định reset BOR đã xảy ra
- Bit 1 bit trạng thái POR. Nó bị xoá khi reset POR và không ảnh hưởng bởi các kiểu reset khác. Bit này cần set lên 1 sau khi POR xảy ra