گزارش پروژه اول درس شناسایی الگو

برای انجام این پروژه، تمامی مراحل لازم و کار های انجام شده را در سلول های بالای کد ها توضیح داده شده است. توجه شود که برای کلاسیفایر ها و متریک ها از ماژول sklearn استفاده شده است. همچنین برای بدست آوردن بردار های BOW و BOW انیز از ماژول sklearn استفاده کردیم. در دو روش BOW و BOW تا ویژگی در نظر گرفته ایم.(زیرا برای مقادیر بیشتر مثلا 20000 تا با مشکل کمبود رم در colab مواجه شدیم.). در روش bert هر review را به جمله هایش review کردیم و هر جمله را به مدل bert در نظر گرفتیم. و به مدل bert در نظر گرفتیم. با توجه به طولانی بودن اجرای روش svm برای هیچ یک از حالت ها موفق به اجرای این کلاسیفایر نشدیم.

نتیاج به صورت زیر است: (max هر ستون پر رنگ شده است.)

BOW	AUC	ROC	Precision	Recall	F1_score
Naïve Bayes	0.7707 891684 332626	(array([0. , 0.079 59682, 1.]), arra y([0. , 0.62117515 , 1.]), array([2. , 1., 0.]))	0.886415 52511415 52	0.62117 5152993 8803	0.730462 59495308 2
SVM					
Decision tree	0.7188 912443 50226	(array([0. , 0.27494 9, 1.]), array([0. , 0.71273149, 1.]), array([2., 1., 0.]))	0.721621 51216944 07	0.71273 1490740 3703	0.717148 95158369 22
Random Forest	0.7632 894684 21263	<pre>(array([0.</pre>	0.800145 91217910 72	0.70189 1924323 027	0.747805 33537884 61

bert	AUC	ROC	Precision	Recall	F1_score
Naïve Bayes	0.8359 065637 374505	(array([0. , 0.139 87441, 1.]), arra y([0. , 0.81168753 , 1.]), array([2. , 1., 0.]))	0.853005 46448087 43	0.81168 7532498 7001	0.831833 73982906 68
SVM					
Decision tree	0.7783 088676 452942	<pre>(array([0.</pre>	0.780315 84884376 76	0.77472 9010839 5665	0.777512 39387431 53
Random Forest	0.8324 467021 319149	(array([0. , 0.144 75421, 1.]), arra y([0. , 0.80964761 , 1.]), array([2. , 1., 0.]))	0.848329 91073299 52	0.80964 7614095 4362	0.828537 51381441 61

TF_IDF(Removing stop words)	AUC	ROC	Precision	Recall	F1_score
Naïve Bayes	0.716 25134 99460 021	<pre>(array([0.</pre>	0.771669 76533842 52	0.6142 554297 828087	0.684022 98338604 07
SVM					
Decision tree	0.705 77176 91292 349	(array([0. , 0.28838846, 1.]), array([0. , 0.699932, 1.]), array([2., 1., 0.]))	0.708203 48860739	0.6999 320027 198912	0.704043 45202172 6
Random Forest	0.780 50877 96488 14	<pre>(array([0.</pre>	0.830490 10367577 76	0.7048 918043 278268	0.762553 81752882 89

TF_IDF(without removing stop words)	AUC	ROC	Precision	Recall	F1_score
Naïve Bayes	0.716 73133 07467 702	<pre>(array([0.</pre>	0.769993 52234789 98	0.6180 952761 889524	0.685733 30374972 26
SVM					
Decision tree	0.702 61189 55241 789	<pre>(array([0.</pre>	0.704245 79654046 2	0.6986 120555 177793	0.701417 61375045 18
Random Forest	0.748 99004 03983 841	<pre>(array([0.</pre>	0.799393 99769141 97	0.6648 134074 637014	0.725918 80855152 55
		• 1 / /			

از لحاظ معيار AUC در روش BOW كلاسيفاير naïve bayes از همه بهتر بوده است.

از لحاظ معيار AUC در روش bert كلاسيفاير naïve bayes باز همه بهتر بوده است.

از لحاظ معيار AUC در روش tf idf بدون حذف و با حذف كلمات توقفي كلاسيفاير Random forestاز همه بهتر بوده است.

در کل بهترین AUC را به ترتیب روش های bert و tf idf با حذف کلمات توقفی و BOW و tf idf بدون حذف کلمات توقفی است.

با مقیسه

از لحاظ معيار f1 score در روش BOW كلاسيفاير naïve bayes از همه بهتر بوده است.

از لحاظ معيار f1 score در روش bert كلاسيفاير naïve bayes باز همه از همه بهتر بوده است.

از لحاظ معيار f1 score در روش tf idf بدون حذف و با حذف كلمات توقفي كلاسيفاير Random forestاز همه بهتر بوده است.

در کل بهترین f1 score را به ترتیب روش های bert و tf idf با حذف کلمات توقفی و BOW و tf idf بدون حذف کلمات توقفی است.

در نهایت بهترین روش استفاده از bert و کلاسیفایر naïve bayes است.