- 1. Mealy model example
 - a. Design a circuit

b. State transition diagram

2. Minimizing a Mealy model

a. P₁

 $b. \quad P_2$

c. P₃

d. P₄

 $e. \quad P_5$

3. Implementing the FSM

State transition diagram

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	x =1	
i					
*					
0*					
1*					
00*					
~(00*)					

State table

4. Optimal assignment of binary codes

a. Rule of thumb for state binary code assignments

b. Assign using the rules above

Present State	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x =1	
i	*	*	1	1	
*	0*	* 1* 1		1	
0*	00*	~(00*)	1	1	
1*	~(00*)	~(00*)	1	1	
00*	i	i	0	0	
~(00*)	i	i	0	1	

Dinary Codo		AB					
DII	nary Code	00	01	11	10		
\mathcal{C}	0						
L	1						

c. Note that there may potentially be more than one valid code assignment that minimizes distance

d. Make state transition table from the above with assigned binary codes

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	x =1	
i	*	*	1	1	
*	0*	0* 1*		1	
0*	00*	~(00*)	1	1	
1*	~(00*)	~(00*)	1	1	
00*	i	i	0	0	
~(00*)	i	i	0	1	

Dinar	Codo	<i>AB</i>				
Binary	coue	00	01	11	10	
C	0	i	*	0*	00*	
C	1	~(00*)	1*			

Drosent State	Binary	Pres	ent S	tate	Input	Ne	xt Sta	ate	Output
Present State	Code	Α	В	С	X	A'	B'	C'	z
	000	0	0	0					
	000	0	0	0					
	001	0	0	1					
	001	0	0	1					
	010	0	1	0					
	010	0	1	0					
	011	0	1	1					
	011	0	1	1					
	100	1	0	0					
	100	1	0	0					
	101	1	0	1					
	101	1	0	1					
	110	1	1	0					
	110	1	1	0					
	111	1	1	1					
	111	1	1	1					

- e. Create K-maps for each flip flop based on input and present state in table above
- f. Create a K-Map based on flip-flops to determine the output combinational circuit

Present State	Binary	Pres	ent S	tate	Input	Next State		ate	Output
Present State	Code	Α	В	С	х	A'	B'	C'	Z
i	000	0	0	0	0	0	1	0	1
i	000	0	0	0	1	0	1	0	1
~(00*)	001	0	0	1	0	0	0	0	0
~(00*)	001	0	0	1	1	0	0	0	1
*	010	0	1	0	0	1	1	0	1
*	010	0	1	0	1	0	1	1	1
1*	011	0	1	1	0	0	0	1	1
1*	011	0	1	1	1	0	0	1	1
00*	100	1	0	0	0	0	0	0	0
00*	100	1	0	0	1	0	0	0	0
	101	1	0	1	0	d	d	d	d
	101	1	0	1	1	d	d	d	d
0*	110	1	1	0	0	1	0	0	1
0*	110	1	1	0	1	0	0	1	1
	111	1	1	1	0	d	d	d	d
_	111	1	1	1	1	d	d	d	d

A'		AB					
		00	01	11	10		
Car	00						
	01						
Cx	11						
	10						

B'		AB						
		00	01	11	10			
$Cx = \begin{bmatrix} \\ \\ \end{bmatrix}$	00							
	01							
	11							
	10							

<i>C</i> '		AB					
		00	01	11	10		
	00						
Car	01 11						
$Cx \mid$	11						
	10						

\boldsymbol{Z}		AB						
		00	01	11	10			
Cx	00							
	01							
	11							
	10							

g. Use derivations from the K-maps to design initial combinational circuit

