### Laboratorio de Procesado Digital de Señal - 3º GITT

## Práctica 7: filtrado adaptativo utilizando el algoritmo LMS

En esta práctica se va a construir un filtro adaptativo, mediante el algoritmo LMS (*Least Mean Squares*), que va a permitir cancelar el ruido ambiente de una señal de audio.

Para el desarrollo de esta práctica, el alumno necesita unos altavoces o auriculares.

Programe en Matlab los siguientes apartados, comentando el código.

Al finalizar la práctica, suba a la plataforma web de la asignatura (Moodle) un archivo PDF, en el que se responda a los apartados de la práctica y en el que se presenten las figuras que se piden, y un archivo .m, con el código de Matlab con el que se obtienen los resultados.

### Diagrama de bloques y datos

Como bien sabe el alumno, los sistemas adaptativos se puede emplear, entre otras cosas, para identificación de sistemas, predicción, cancelación de ruido, cancelación de eco y ecualización adaptativa. En esta práctica se va a construir un sistema adaptativo para cancelar el ruido de fondo de una grabación de audio.

El diagrama de bloques del sistema adaptativo a construir es el siguiente:



Donde s[n] es la señal de audio sin ruido de fondo; r[n] es el ruido de fondo que se ha capturado al grabar la señal de audio; d[n] = s[n] + r[n] es la grabación de audio con el ruido de fondo, el cual se quiere cancelar;  $x[n] = \tilde{r}[n]$  es el ruido, correlado con r[n], al cual se debe adaptar el sistema para estimar r[n];  $\underline{w}[n]$  son los M+1 coeficientes del filtro adaptativo para el instante n;  $y[n] = \hat{r}[n]$  es el ruido estimado; y  $e[n] = d[n] - \hat{r}[n] = \hat{s}[n]$  es el error del sistema adaptativo y, para el caso de aplicación de esta práctica, la estimación de la señal de audio sin ruido de fondo.

1 Práctica 7. V1

#### Al alumno se le facilita:

- un archivo con la grabación de audio, a la cual queremos quitarle el ruido de fondo, que corresponde con la señal d[n];
- un archivo con ruido de fondo, distinto al ruido de fondo de la grabación de audio, pero correlado con éste, que corresponde con la señal x[n];
- un archivo con los parámetros M y  $\mu$  del filtro adaptativo.

A partir de los datos facilitados al alumno, realice los siguientes apartados.

- a) Lea el archivo con la grabación de audio que le ha facilitado el profesor. La señal obtenida se denominará d[n]. Reproduzca esta señal de audio.
- b) Lea el archivo con el ruido de fondo que le ha facilitado el profesor. La señal obtenida se denominará x[n]. Reproduzca esta señal de audio.

## Implementación del algoritmo LMS

En este apartado el alumno construirá el sistema adaptativo descrito en el bloque anterior y que cancele el ruido de fondo de la grabación. Para ello, va a implementar el algoritmo LMS visto en clase, como método para minimizar la potencia media de la señal error e[n] del sistema. Puede consultar una introducción de este algoritmo al final de esta práctica y la documentación subida a Moodle.

Realice los siguientes apartados:

- a) Implemente el algoritmo LMS para el sistema adaptativo propuesto, con los parámetros del filtro M y  $\mu$  facilitados por el profesor.
- b) Incluya el código del algoritmo en este apartado del informe de la práctica, comentando las líneas más significativas.
- c) Justifique si el valor de  $\mu$  facilitado es coherente para el algoritmo LMS.

#### Análisis de resultados

En esta última parte de la práctica se van a analizar los resultados de aplicar el algoritmo LMS a las señales facilitadas por el profesor.

Realice los siguientes apartados, a partir de los resultados de los bloques anteriores:

- a) Analice, en el dominio del tiempo, las señales d(t) y e(t), correspondientes a la señal de audio original con ruido y a la señal de audio con el ruido filtrado, respectivamente.
  Exponga y justifique gráficamente las conclusiones extraídas de dicho análisis.
- b) Analice, en el dominio del tiempo, las señales x(t) e y(t), correspondientes al ruido y a su estimación, respectivamente. Exponga y justifique gráficamente las conclusiones.
- c) Analice, en el dominio de la frecuencia, las señales d[n], x[n], y[n] y e[n]. Exponga y justifique gráficamente las conclusiones extraídas de dicho análisis.
- d) Represente el valor de todos los coeficientes del filtro en cada iteración del algoritmo.
- e) Los coeficientes ¿convergen hacia algún valor? Indique cuáles.

# Introducción al algoritmo LMS

El algoritmo LMS es un tipo de algoritmo adaptativo que se basa en la aproximación del gradiente de la superficie de error a través de la expresión:

$$\underline{\nabla \xi(\underline{w})} \approx -2 \cdot e[n] \cdot \underline{x}'[n] \equiv \underline{\widehat{\nabla \xi[n]}}$$

Donde el vector  $\underline{x}'[n]$  corresponde con las últimas M+1 muestras de entrada al filtro; y M es el orden de éste.

Con esto, los pasos para la implementación del algoritmo LMS son:

- 1.- Actualizar el vector  $\underline{x}'[n]$  con la nueva muestra recibida en cada instante.
- 2.- Calcular la muestra de salida correspondiente con:

$$y[n] = \sum_{k=1}^{M+1} w_k[n] \cdot x'[n-k] = \underline{w}^T[n] \cdot \underline{x}'[n]$$

3.- Calcular la muestra correspondiente de la señal de error con:

$$e[n] = d[n] - y[n]$$

4.- Actualizar los coeficientes del filtro (pesos) siguiendo la aproximación del gradiente con:

$$\underline{w}[n+1] = \underline{w}[n] + 2 \cdot \mu \cdot e[n] \cdot \underline{x}'[n]$$

5.- Continuar hasta la última muestra de x[n].

# **Funciones de Matlab**

Consulte la ayuda de Matlab para conocer el significado de cada uno de los argumentos.

| Miscelánea                                                                                  |                                         |
|---------------------------------------------------------------------------------------------|-----------------------------------------|
| Borra todas las variables del Workspace                                                     | clear                                   |
| Cierra todas las figuras abiertas                                                           | close all                               |
| Limpia la ventana de comandos                                                               | clc                                     |
| Carga en el Workspace las variables almacenadas en el archivo nombre archivo.mat            | load 'nombre_archivo.mat'               |
| Devuelve la longitud del vector <b>x</b>                                                    | y = length(x);                          |
| Devuelve una matriz de ceros de tamaño <b>a</b> filas y <b>b</b> columnas                   | y = zeros(a, b);                        |
| Muestra el mensaje de <b>text</b> o por pantalla                                            | disp('texto');                          |
| Convierte en string (cadena de caracteres) el número 🛪                                      | y = num2str(x);                         |
| Representación                                                                              |                                         |
| Abre una nueva ventana para representar gráficamente                                        | figure;                                 |
| Representación en ejes x-y uniendo los puntos                                               | plot(ejex, ejey, '');                   |
| Congela la figura activa para poder superponer más representaciones                         | hold on;                                |
| Activa la rejilla de la representación                                                      | grid on;                                |
| Pone título a la representación                                                             | title('Texto');                         |
| Pone etiqueta en eje <b>x</b> . La función <b>y Labe 1</b> hace lo mismo en el eje <b>y</b> | xlabel('Texto');                        |
| Representa el eje 🗴 entre los valores ini y fin. La función ylim hace lo mismo en el eje y  | <pre>xlim([ini fin]);</pre>             |
| Muestra una leyenda en la figura, donde se muestran los textos indicados                    | <pre>legend('Texto1', 'Texto2',);</pre> |
|                                                                                             |                                         |

| Audio                                                                                                              |                                                     |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Lee el archivo de audio £ile                                                                                       | [y, fs] = audioread('file');                        |
| Reproduce la señal de audio ${f y}$ a una frecuencia de muestreo ${f fs}$                                          | sound(y, fs);                                       |
| Vectores                                                                                                           |                                                     |
| Genera el vector de valores v entre ini y fin equiespaciados del ta                                                | v = ini : delta : fin;                              |
| Genera el vector <b>v</b> de <b>N</b> valores equiespaciados entre ini y fin (inclusive)                           | v = linspace(ini, fin, N);                          |
| Genera el vector ${f v}$ con los elementos del vector ${f x}$ desde el ${f a}$ hasta el ${f b}$ (inclusive)        | $\mathbf{v} = \mathbf{x}(\mathbf{a}; \mathbf{b}) ;$ |
| Concatena los vectores fila ${f x}$ e ${f y}$                                                                      | v = [x , y];                                        |
| Concatena los vectores columna <b>x</b> e $\mathbf{y}$                                                             | $\mathbf{v} = [\mathbf{x} \ ; \ \mathbf{y}];$       |
| Matemáticas                                                                                                        |                                                     |
| Calcula el valor absoluto del número ${f x}$ , o el módulo de éste si es un número complejo                        | y = abs(x);                                         |
| Calcula la transformada de Fourier del vector <b>x</b>                                                             | X = fft(x, length(x)) / length(x);                  |
| Trasposición del espectro en frecuencias <b>x</b>                                                                  | <pre>X = fftshift(abs(X));</pre>                    |
| Calcula el sumatorio de todos los valores del vector <b>x</b>                                                      | y = sum(x);                                         |
| Multiplica, elemento a elemento, los vectores/matrices <b>x</b> e ${f y}$ , los cuales deben tener el mismo tamaño | $z = x \cdot * y$ ;                                 |
| Calcula la potencia de la señal 🗴                                                                                  | y = var(x);                                         |

5 Práctica 7. V1