Applied Mechanics 1 Formulae

Rules of Cosine and Sine

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Linear Motion

$$\vec{v} = \vec{u} + \vec{a}t$$

$$\vec{s} = \frac{\vec{u} + \vec{v}}{2}t$$

$$\vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$$

$$\vec{v}^2 = \vec{u}^2 + 2\vec{a} \cdot \vec{s}$$

 $Linear\ momentum = m\vec{v}$

where:

- \vec{u} : Initial velocity
- \vec{v} : Final velocity
- \vec{s} : Displacement
- \vec{a} : Acceleration
- *m*: Mass
- t: Time

Angular Motion

$$\omega_2 = \omega_1 \mp \alpha t$$

$$\theta = \frac{\omega_1 + \omega_2}{2}t$$

$$\theta = \omega_1 t \mp \frac{1}{2} \alpha t^2$$

$$\omega_2^2 = \omega_1^2 \mp 2\alpha\theta$$

Angular momentum = $mr^2\omega$

Angular momentum = $I\omega$

$$I = mk^2$$

$$\tau = I\alpha$$

$$k = \sqrt{\frac{I}{A}}$$
 (for area) or $k = \sqrt{\frac{I}{m}}$ (for mass),

Rotational K.E. =
$$\frac{1}{2}I\omega^2$$

where:

- ω_1 : Initial angular velocity (rad/s)
- ω_2 : Final angular velocity (rad/s)
- θ Angular displacement (rad)
- α : Angular acceleration (rad/s²)
- t: Time
- m: Mass

• r: Radius

• I: Moment of inertia

• k: Radius of gyration

• τ : Torque

• A: Area of the cross-section (for area calculations)

• m: Mass of the body (for mass calculations)

Relation Between Linear and Angular Motion

The relationship between linear and angular motion is described by the following equations:

 $s = r\theta$ (linear displacement s and angular displacement θ).

 $v = r\omega$ (linear velocity v and angular velocity ω),

 $a = r\alpha$ (linear acceleration a and angular acceleration α).

Conditions of Equilibrium for Simple Beams

Sum of Horizontal Forces	Sum of Vertical Force	Sum of Moments
$\sum F_x = 0$	$\sum F_y = 0$	$\sum M = 0$

Centre of Gravity

$$\bar{x} = \frac{\sum Moments\ of\ Weights}{\sum Weights} \qquad \bar{y} = \frac{\sum Moments\ of\ Weights}{\sum Weights}$$

Centroid

$$\bar{x} = \frac{\sum \bar{x}_i \ A_i}{\sum A_i} \qquad \bar{y} = \frac{\sum \bar{y}_i \ A_i}{\sum A_i}$$

Parallel Axis Theorem

To find the moment of inertia about an axis parallel to the centroidal axis:

$$I=I_c+Ad^2$$

Table 2: Centroids of Common Shapes

Shape	Area	\bar{x}	$ar{y}$	
	A = bh	b/2	h/2	
	$rac{bh}{2}$	b/3	h/3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(a+b)h}{2}$	$\frac{a^2 + ab + b^2}{3(a+b)}$	$\frac{h(2a+b)}{3(a+b)}$	
\overline{y} o \overline{x} x'	πr^2	r	r	
	$rac{\pi r^2}{2}$	r	$\frac{4r}{3\pi}$	
\overline{y}	$rac{\pi r^2}{4}$	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	

Second Moments of Common Shapes

Table 3: Second moments

Shape	Second moment (I_x)	Second moment (I_y)
	$I_x = \frac{1}{12}bh^3$	$I_y = \frac{1}{12}b^3h$
$y \uparrow$	$I_x = \frac{1}{3}bh^3$	$I_y = \frac{1}{3}b^3h$
\overline{x}	$I_x = \tfrac{\pi}{4} r^4$	$I_y=rac{\pi}{4}r^4$
	$I_x = \tfrac{\pi}{4} (r_2^4 - r_1^4)$	$I_y=\tfrac{\pi}{4}(r_2^4-r_1^4)$

$$I_x = \tfrac{\pi}{8} r^4$$

$$I_y = \tfrac{\pi}{8} r^4$$

$$I_x = \frac{\pi}{16} r^4$$

$$I_y = \frac{\pi}{16} r^4$$

$$I_x = \frac{1}{12}bh^3$$

$$I_x = \frac{1}{36}bh^3$$