

BaseBoostDepth: Exploiting Larger **Baselines for Self-Supervised** Monocular Depth Estimation

Loughborough University

Kieran Saunders, Luis J. Manso, George Vogiatzis

In geometric approaches, increasing baseline separation improves depth accuracy, but most self-supervised models use small separations. However, using larger separations typically can reduce depth quality due to brightness changes and occlusions. Our method employs curriculum learning to introduce larger baselines progressively, while also incorporating incremental pose estimation to address pose drift, thereby improving accuracy. Additionally, error-induced reconstructions further enhance robustness.

<u>Warmup</u>

Tri-Minimization (Sec. 3.3)

 $I_{t'} \in \{I_{t-1}, I_{t+1}, I_{t-2}, I_{t+2}\}$

 $P_{t
ightarrow t \pm 2} = PoseNet(I_t, I_{t \pm 2})$

 $L_p = \min_{t'}(pe(I_t, I_{t'
ightarrow t}))$

Epoch 1

Epoch 10

Preliminaries

<u>Image Reconstructions Using Depth And Pose</u>

$$I_{t'
ightarrow t} = I_{t'} \langle Proj(D_t, P_{t
ightarrow t'}, K)
angle$$

Photometric Loss

$$pe(I_a,I_b) = rac{0.85}{2} \Big(1 - SSIM(I_a,I_b) \Big) + (1 - 0.85) ||I_a - I_b||$$

Minimize Between Reconstructions

$$L_p = \min_{t'}(pe(I_t, I_{t'
ightarrow t}))$$

Quantitative Results

We conduct an extensive ablation study, progressively adding each contribution and comparing the results to the baseline Monodepth2. We also show the effect of using larger frame separations without our curriculum learning scheme.

	Contributions						KII II							SINS	
Ablation	Skip	Pre	Tri.	Incri. Pose	Part. Incri.	Err. Rec.	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	Acc	Comp
Monodepth2 [9]	1						0.106	0.818	4.750	0.196	0.874	0.957	0.979	2.516	17.193
Monodepth2 [9]	4						0.107	0.832	4.723	0.186	0.887	0.961	0.982	2.512	14.856
Monodepth2 [9]	[4]						0.146	1.164	5.289	0.221	0.813	0.940	0.975	2.465	5.278
BaseBoostDepth	C	X					0.115	0.916	4.856	0.190	0.877	0.960	0.983	2.442	5.518
BaseBoostDepth	С	X	✓				0.112	0.867	4.762	0.187	0.879	0.962	0.983	2.417	3.433
BaseBoostDepth	С	X	✓	✓			0.109	0.868	4.767	0.186	0.883	0.961	0.982	2.489	6.547
BaseBoostDepth	С	X	√	✓	✓		0.107	0.799	4.656	0.184	0.884	0.963	0.983	2.450	4.290
BaseBoostDepth	С	X	✓	✓	✓	✓	0.106	<u>0.736</u>	4.584	0.184	0.883	0.963	0.983	2.453	3.810
BaseBoostDepth _{pre}	C	✓	✓	✓	✓	✓	0.104	0.738	4.544	0.183	0.888	0.963	0.983	<u>2.432</u>	4.763

We show state-of-the-art performance on the KITTI dataset using MonoViT's backbone at a resolution of 640×192 .

Method	Abs Rel	Sq Rel	RMSE	RMSE log	δ < 1.25	$\delta < 1.25^2$	$\delta < 1.25^3$
Monodepth2 [9]	0.106	0.818	4.750	0.196	0.874	0.957	0.979
CADepth [32]	0.102	0.752	4.504	0.181	0.894	0.964	0.983
DIFFNet [36]	0.101	0.749	4.445	0.179	0.898	0.965	0.983
MonoViT [34]	0.098	0.683	4.333	<u>0.174</u>	0.904	<u>0.967</u>	0.984
BaseBoostDepth	0.106	0.736	4.584	0.184	0.883	0.963	0.983
BaseBoostDepth _{pre}	0.104	0.738	4.544	0.183	0.888	0.963	0.983
BaseBoostDepth [†] _{pre}	0.096	0.648	4.201	0.170	0.906	0.968	0.985

Notably, we achieve state-of-the-art performance on the SYNS dataset across image-based, edge-based, and point cloud-based metrics, showcasing our accuracy in 3D space.

			Image-Ba	sed	Edge-Based		Point Cloud-Based		
Method	Abs Rel	MAE	Sq Rel	RMSE	RMSE log	Acc	Comp	F-Score	IoU
Monodepth2 [9]	0.334	6.901	5.285	12.089	0.405	2.516	17.193	0.242	0.149
CADepth [32]	0.363	8.787	5.548	13.512	0.546	2.473	19.045	0.022	0.012
DIFFNet [36]	0.311	6.554	4.690	11.610	0.383	<u>2.411</u>	12.116	0.258	0.161
MonoViT [34]	0.287	<u>6.195</u>	4.399	<u>11.124</u>	0.354	2.443	15.672	0.264	0.164
BaseBoostDepth	0.334	6.878	4.854	11.847	0.409	2.453	3.810	0.275	0.174
BaseBoostDepth _{pre}	0.328	6.752	4.815	11.752	0.405	2.432	<u>4.763</u>	0.268	0.168
BaseBoostDepth [†] _{pre}	0.278	5.951	3.795	10.575	0.351	2.409	5.314	0.300	0.191

Method

Our method uses a curriculum-learning-inspired optimization strategy that splits training into two stages: warm-up and boosting, where the boosting stage takes full advantage of larger baselines.

Increasing Baseline Width

- We gradually increase the baseline width during training.
- To reduce the impact of brightness changes and occlusions from larger baselines, we reconstruct the target image using triples of future and past frames, referred to as tri-minimization.
- To address significant drift in pose estimation over larger baselines, we break down the pose estimation process into smaller increments within larger intervals.
- Additionally, we introduce controlled pose errors to add noise to the network.

Qualitative Results

We compare BaseBoostDepth to Monodepth2 (MD2) and observe substantial improvements in edge definition. Notably, this improvement is most pronounced around high-contrast bright pixels.

