Lógica para Computação Método dos Tableaux

Thiago Alves Rocha

thiagoalvesifce@gmail.com

Tópicos

Introdução

2 Tableaux

3 Exemplos

Introdução

- A Dedução Natural permite mostrar que uma fórmula é conclusão de um conjunto de premissas
- Infelizmente não fornece, de maneira óbvia, um algoritmo para realizar essa verificação
- Além disso, a Dedução Natural permite mostrar que $\Gamma \vdash \varphi$ mas não consegue mostrar que $\Gamma \not\vdash \varphi$
- Tabelas Verdade permitem fazer essa verificação mas a quantidade de linhas da Tabela Verdade é exponencial na quantidade de atômicas

Introdução

- Vamos apresentar o método dos Tableaux
- É um método por refutação
- Para mostrar que $\Gamma \vdash_{\mathcal{T}} \varphi$ vamos mostrar que $\Gamma \cup \{ \neg \varphi \} \vdash_{\mathcal{T}} \bot$
- Caso não seja possível chegar em \bot , o tableaux fornece um contra-exemplo para $\Gamma \vdash_{\mathcal{T}} \varphi$, ou seja, temos que $\Gamma \nvdash_{\mathcal{T}} \varphi$

Introdução

• Tableau para mostrar que $p o q, q o r \vdash_{\mathcal{T}} p o r$

$$(p \rightarrow q)$$

$$(q \rightarrow r)$$

$$\neg (p \rightarrow r)$$

$$p$$

$$\neg r$$

$$p$$

$$q$$

$$x$$

$$q$$

$$x$$

$$x$$

- Um tableau tem o formato de uma árvore
- Regras que podem adicionar novas fórmulas ao final de um ramo ou bifurcar um ramo em dois

Tableaux

• Se queremos mostrar que $\gamma_1,...,\gamma_k \vdash_{\mathcal{T}} \varphi$ iniciamos o tableau da seguinte forma:

$$\begin{array}{ccc} \gamma_1 & & \\ \cdot & \cdot & \\ \cdot & \gamma_k & \\ \neg \varphi & \end{array}$$

• Em seguida, o tableau é expandido através das regras

• Regras em que não ocorre bifurcação

$$(\psi_1 \wedge \psi_2)$$

$$\psi_1$$

$$\psi_2$$

$$\neg(\psi_1 \lor \psi_2)$$
$$\neg\psi_1$$
$$\neg\psi_2$$

• Regras em que não ocorre bifurcação

$$\neg(\neg\psi_1)\\\psi_1$$

• Regras em que ocorre bifurcação

$$\neg(\psi_1 \wedge \psi_2)$$

$$\neg\psi_1 \quad \neg\psi_2$$

$$(\psi_1 \vee \psi_2)$$

$$\widehat{\psi_1} \quad \psi_2$$

Regras em que ocorre bifurcação

$$(\psi_1 \to \psi_2)$$

$$\widehat{\neg \psi_1 \quad \psi_2}$$

• Tableau para $p, (p \land q) \rightarrow r \vdash_{\mathcal{T}} r$

Tableaux

- Note que não podemos aplicar regras em fórmulas p e $\neg p$ em que p é atômica
- Em cada ramo, uma fórmula só precisa ser expandida uma única vez

Definição

Um ramo em um tableau que não possui mais fórmulas para serem expandidas é chamado de ramo **saturado**

- Como as regras geram fórmulas de tamanho menor então quando todas as fórmulas tiverem sido expandidas até chegar nas atômicas temos todos os ramos saturados
- O processo de expansão sempre termina

Tableaux

Definição

Um ramo em um tableau está **fechado** se possui uma fórmula φ e sua negação $\neg \varphi$. Um ramo é aberto quando não está fechado.

 Um ramo fechado n\u00e3o precisa mais ser expandido, mesmo que ainda n\u00e3o esteja saturado

Definição

Um tableau está fechado se todos os seus ramos estão fechados. Caso contrário, o tableau está aberto.

Definição

Temos que $\gamma_1,...,\gamma_k \vdash_T \varphi$ pelo método dos Tableaux se existe um tableau fechado para ele.

• Vamos mostrar que $\vdash_{\mathcal{T}} p \lor \neg p$

• Vamos mostrar que $\vdash_{\mathcal{T}} p \lor \neg p$

$$\neg(p \lor \neg p)$$
$$\neg p$$
$$\neg \neg p$$
$$\times$$

ullet Vamos provar que $p
ightarrow q, q
ightarrow r dash_T p
ightarrow r$

• Vamos provar $p \rightarrow q, q \rightarrow r \vdash_{\mathcal{T}} p \rightarrow r$

- Temos um ramo saturado e aberto
- O que significa?

- Temos um ramo saturado e aberto
- O que significa?
- Um contra exemplo: v(p) = True, v(q) = False e v(r) = False
- $p, (p \land q) \rightarrow r \not\vdash_T r$

Corretude e Completude

Teorema da Corretude e Completude do Método dos Tableaux

Seja Γ um conjunto de fórmulas e φ uma fórmula. $\Gamma \vdash_{\mathcal{T}} \varphi$ se e somente se $\Gamma \models \varphi$.

• Será que é possível mostrar $p \lor q, p \to r, q \to (r \lor s) \vdash_{\mathcal{T}} r$?

• Será que é possível mostrar $p \lor q, p \to r, q \to (r \lor s) \vdash_{\mathcal{T}} r$?

• Será que é possível mostrar $p \lor q, p \to r, q \to (r \lor s) \vdash_{\mathcal{T}} r$?

- Um contra exemplo: v(p) = False, v(q) = True e v(r) = False
- $p \lor q, p \to r, q \to (r \lor s) \not\vdash_{\mathcal{T}} r$

• Será que é possível mostrar $p \lor q, p \to r, q \to r \vdash_{\mathcal{T}} r$?

• Será que é possível mostrar $p \lor q, p \to r, q \to r \vdash_{\mathcal{T}} r$?

 Será que é possível construir outro tableau para p ∨ q, p → r, q → r ⊢_T r?

 Será que é possível construir outro tableau para p ∨ q, p → r, q → r ⊢_T r?

Considere as premissas a seguir:

- Se Guga joga uma partida de tênis, a torcida comparece se o ingresso é barato.
- Se Guga joga um partida de tênis, o ingresso é barato.

Usando o método dos Tableaux, mostre que podemos concluir que

Se Guga joga um partida de tênis, a torcida comparece.

Considerações

- Em geral, por motivos de eficiência, aplicamos as regras que não bifurcam antes
- A ordem de aplicação das regras podem influenciar no tamanho do tableau
- É mais simples de implementar que a Dedução Natural
- Diferente da Dedução Natural, com o método dos Tableaux podemos mostrar que $\Gamma \not\vdash_{\mathcal{T}} \varphi$
- O método dos Tableaux é mais eficiente que usar Tabela Verdade