CSE 3010 – Data Structures & Algorithms

Lecture #33

What will be covered today

- Operations on a binary tree
- Representation of a binary tree in C
- Traversing a binary tree
- Introduction to binary search tree

Specific operations on binary tree

createBinaryTree()	Create an empty binary tree
hasLeftChild(node)	Return if the given node has a left child
hasRightChild(node)	Return if the given node has a right child
isLeftChild(node)	Return if the given node is a left child
isRightChild(node)	Return if the given node is a right child
insertLeft(node,element)	Insert the element as the left child of the node
insertRight(node,element)	Insert the element as the left child of the node
remove(element)	Remove the element from the tree

Representation of a binary tree in C

```
typedef int ITEM;
// Node in a binary tree without a pointer
to a parent node
typedef struct node {
    ITEM key;
    struct node *left;
    struct node *right;
} BSTNODE
```

Connecting nodes with its left and right nodes gives the binary tree

Representation of a binary tree in C

```
typedef int ITEM;
// Node in a binary tree with a pointer to
a parent node
typedef struct node {
     ITEM key;
     struct node *left;
     struct node *right;
     struct node *parent;
} BSTNODE
```

Traversing a binary tree

- Three methods
 - In order traversal
 - Left node, root node, right node
 - Pre order traversal
 - Root node, left node, right node
 - Post order traversal
 - Left node, right node, root node

Binary search tree

- <u>Search tree</u> is a tree data structure used for finding a key in the input dataset
- For a search tree key for each node must be:
 - Greater than any keys in the sub trees on the left
 - Less than any keys in any of the sub trees on the right
- Binary Search Tree is a tree in which following properties hold true for all nodes
 - Left sub tree of a node has a key less than or equal to its parent node's key
 - Right sub-tree of a node has a key greater than to its parent node's key

Binary search tree - Examples

