Chapitre 16. Intégrales à paramètre

I, *J* intervalles d'intérieur non vide, *E* un evn.

1 Le théorème de convergence dominée

1.1 Le théorème de convergence dominée

Théorème 1.1 (Théorème de convergence monotone). Soit $g_n : I \to [0, +\infty]$ mesurables et $g_n : I \to [0, +\infty]$ On suppose que :

- 1. $(g_n)_{n \in \mathbb{N}}$ converge simplement vers g
- 2. $\forall n \in \mathbb{N}, 0 \leq g_n \leq g_{n+1}$

Alors dans $[0, +\infty]$

$$\lim_{n\to+\infty}\int_I g_n = \int_I g \in [0,+\infty]$$

Corollaire 1.2. Soit $F_0: I \to \mathbb{R}_+$ intégrable et $F_n: I \to \mathbb{R}_+$ $(n \ge 1)$ mesurable.

On suppose:

- 1. $\forall n \in \mathbb{N}, 0 \leq F_{n+1} \leq F_n$
- 2. (F_n) converge simplement vers 0

Alors

$$\int_{I} F_{n} \xrightarrow[n \to +\infty]{} 0$$

1.2 Énoncé du théorème de convergence dominée

Théorème 1.3 (Théorème de convergence dominée). Soit $f_n: I \to \mathbb{K}$ continue par morceaux $(n \in \mathbb{N})$ On suppose :

- 1. $(f_n)_{n\geq 0}$ converge simplement vers $f:I\to \mathbb{K}$ continue par morceaux sur I
- 2. Il existe $\varphi: I \to \mathbb{R}_+$ <u>intégrable</u> telle que $\forall n \in \mathbb{N}, \forall t \in I \quad |f_n(x)| \le \varphi(t)$ (Hypothèse de domination)

Alors les f_n sont intégrables et f aussi et

$$\int_{I} f_{n} \xrightarrow[n \to +\infty]{} \int_{I} f$$

On a même

$$||f_n - f||_1 = \int_I |f_n - f| \xrightarrow[n \to +\infty]{} 0$$

1.3 Premiers exemples d'application

Quelques exercices classiques :

1. Montrer que

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt \xrightarrow[n \to +\infty]{} 0$$

2. Soit $f : [0,1] \to \mathbb{K}$ continue.

Montrer que

$$I_n = \int_0^1 f\left(\frac{x}{n}\right) dx \xrightarrow[n \to +\infty]{} f(0)$$

3. Soit $f:[0,1] \to \mathbb{K}$ continue avec $\lim_{t\to\infty} f=0$. Montrer que

$$I_n = \int_0^1 f(nx)dx \xrightarrow[n \to +\infty]{} f(0)$$

4. Soit $n \ge 1$ et

$$I_n = \int_1^{+\infty} e^{-x^n} dx$$

Montrer que $I_n \xrightarrow[n \to +\infty]{} 0$ et $I_n \underset{+\infty}{\sim} \frac{\alpha}{n}$ avec α à exprimer avec une intégrale.

5. Montrer que

$$I_n = \int_0^n \left(1 - \frac{x^2}{n^2}\right)^{n^2} dx \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-x^2} dx$$

1.4 Théorème de convergence dominée appliquée à l'interversion série / suite

Corollaire 1.4 (Théorème de convergence dominée). Soit $f_n: I \to \mathbb{K}$ continues par morceaux $(n \in \mathbb{N})$ On suppose que :

- 1. $\sum f_n$ converge simplement vers $\sum_{n=0}^{+\infty} f_n C^0$ par morceaux.
- 2. Il existe $\varphi:I \to \mathbb{R}_+$ intégrable telle que $\forall n \in \mathbb{N} \, \left| \sum\limits_{k=0}^n f_k \right| \leq \varphi$ (Domination)

Alors les f_n sont intégrables, $\sum f_n$ est intégrable et

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

1.5 Le théorème d'intégration terme à terme

Théorème 1.5 (Théorème d'intégration terme à terme pour les fonctions positives).

Soit $f_n: I \to \mathbb{R}_+$ intégrable $(n \in \mathbb{N})$

On suppose que $\sum f_n$ converge simplement et que $\sum_{n=0}^{+\infty} f_n$ est continue par morceaux.

Alors dans $[0, +\infty]$ on a

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

En particulier

$$\sum_{n=0}^{+\infty} f_n \text{ intégrable } \iff \sum_{n\in\mathbb{N}} \int_I f_n < +\infty$$

Dans ces conditions, dans \mathbb{R}_+^*

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

Théorème 1.6 (Théorème d'intégration terme à terme). Soit $f_n : I \to \mathbb{K}$ intégrables $(n \in \mathbb{N})$ On suppose que :

1. $\sum f_n$ converge simplement vers une fonction continue par morceaux.

$$2. \sum_{n\in\mathbb{N}} \int_{I} |f_n| < +\infty$$

Alors $\sum_{n=0}^{+\infty} f_n$ est intégrable et

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I}$$

De plus

$$\left| \int_{I} \sum_{n=0}^{+\infty} f_n \right| \le \sum_{n=0}^{+\infty} \int_{I} |f_n|$$

2

2 Continuité et dérivabilité des intégrales à paramètre

2.1 Convergence dominée avec un paramètre continue

Corollaire 2.1. Soit $f:(x,t)\in A\times I\mapsto f(x,t)\in \mathbb{K}$ avec $A\subset E$ (E evn) et a adhérent à A Soit $g:I\to \mathbb{K}$ continue par morceaux.

On suppose:

- 1. Pour tout $t \in I$, $f(x,y) \xrightarrow[x \to a]{} g(t)$
- 2. Pour tout $x \in A$, $t \mapsto f(x,t)$ est C^0 par morceaux.
- 3. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in A \times I, |f(x,t)| \leq \varphi$ (Domination)

Alors pour tout $x \in A$, $f(x, \cdot)$ (ie. $t \mapsto f(x, t)$) est intégrable, g aussi et

$$\int_{I} f(x,t) dt \xrightarrow[x \to a]{} \int_{I} g(t) dt$$

2.2 Continuité

Théorème 2.2. Soit $A \subset E$ (E evn) et $f:(x,t) \in A \times I \mapsto f(x,t) \in \mathbb{K}$ On suppose :

- 1. Pour tout $x \in A$, $t \mapsto f(x,t)$ est continue par morceaux.
- 2. Pour tout $t \in I$, $x \mapsto f(x, t)$ est continue.
- 3. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in A \times I, |f(x,t)| \leq \varphi$ (Domination)

Alors

$$F: x \in A \mapsto \int_I f(x,t) \, dt$$

est bien définie et continue en A

2.3 Dérivation sous le signe intégral

Théorème 2.3 (Formule de Leibniz). Soit $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \mapsto f(x,t) \end{cases}$

On suppose:

- 1. À x fixé $t \mapsto f(x,t)$ est intégrable sur I
- 2. À t fixé $x \mapsto f(x,t)$ est C^1 sur J
- 3. À x fixé $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux.
- 4. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in J \times I$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$ (Domination)

Alors

$$F: x \in J \mapsto \int_I f(x,t) dt$$

est de classe C^1 et $\forall x \in J$

$$F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$

3

Proposition 2.4. Soit $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \mapsto f(x,t) \end{cases}$ et $k \in \mathbb{N}^*$

On suppose:

- 1. À t fixé $x \mapsto f(x,t)$ est C^k sur J
- 2. Pour tout $0 \le i \le k-1$, à x fixé $t \mapsto \frac{\partial^i f}{\partial x^i}(x,t)$ est intégrable sur I

3. À x fixé $t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux.

4. Il existe $\varphi:I\to\mathbb{R}_+$ intégrable telle que $\forall (x,t)\in J\times I$, $\left|\frac{\partial^k f}{\partial x^k}(x,t)\right|\leq \varphi(t)$ (Domination)

Alors

$$F: x \in J \mapsto \int_I f(x,t) \, dt$$

est de classe C^k et $\forall i \in [1, k], x \in J$

$$F^{(i)}(x) = \int_{I} \frac{\partial^{i} f}{\partial x^{i}}(x, t) dt$$

Corollaire 2.5. Soit $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \mapsto f(x,t) \end{cases}$

On suppose:

1. À t fixé $x \mapsto f(x,t)$ est $C^{+\infty}$ sur J

2. Pour tout $k \in \mathbb{N}$, à x fixé $t \mapsto \frac{\partial^i f}{\partial x^i}(x,t)$ est continue par morceaux.

3. Pour tout $k \in \mathbb{N}$ il existe $\varphi_k : I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in J \times I$, $\left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leq \varphi_k(t)$ (Domination)

Alors

$$F: x \in J \mapsto \int_I f(x,t) dt$$

est de classe $C^{+\infty}$ et $\forall k \geq 0$, $x \in J$

$$F^{(i)}(x) = \int_{I} \frac{\partial^{i} f}{\partial x^{i}}(x, t) dt$$

2.4 La fonction Γ d'Euler (HP)

Définition 2.6. Pour x > 0 on pose

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

C'est la fonction Gamma d'Euler.

Extension : Si $z \in \mathbb{C}$ avec Re(z) > 0 alors on peut définir $\Gamma(z)$ de la même façon.

Proposition 2.7.

• Pour x > 0, $\Gamma(x+1) = x\Gamma(x)$ En particulier $\forall n \in \mathbb{N}$, $\Gamma(n+1) = n!$

 $\Gamma\left(\frac{1}{2}\right) = \int_{\mathbb{R}} e^{-x^2} \, dx = \sqrt{\pi}$

Proposition 2.8. La fonction Γ est de classe $C^{+\infty}$ et pour x > 0, $k \in \mathbb{N}$

$$\Gamma^{(k)}(x) = \int_0^{+\infty} (\ln t)^k t^{x-1} e^{-t} dt$$

 Γ est convexe et $\lim_{0^+}\Gamma = \lim_{+\infty}\Gamma = +\infty$