

CASE STUDY FINAL PRESENTATION

SINEM KARAOMEROGLU
SARA MORADI JAFARBEGLOO
UGUR EYLIK

Introduction

- Objective: Explore various machine learning approaches for estimating bulldozer productivity
- Data Generation Techniques: Uniform distribution, Monte Carlo simulation, Latin hypercube sampling
- Machine Learning Models: Linear regression, random forest, ridge regression, lasso regression, Elastic Net regression

Phase 1 - Methodology & Results

- Dataset Size: 1000 data points
- Techniques Used: Uniform distribution, Monte Carlo simulation, Latin hypercube sampling
- Models Evaluated: Linear regression, random forest

Model	R^2	MSE	
Uniform Distribution with Linear Regression	0.9160	4.1119	←
Uniform Distribution with Random Forest	0.8055	9.5275	
Monte Carlo Simulation with Linear Regression	0.9160	4.1119	←
Monte Carlo Simulation with Random Forest	0.8055	9.5275	
Latin Hypercube Sampling with Linear Regression	0.9234	5.3756	—
Latin Hypercube Sampling with Random Forest	0.8195	11.2527	

Phase 2 - Methodology & Results

- Dataset Size: Increased to 5000 data points
- Additional Techniques: Feature
 engineering and preprocessing (encoding
 types, VIF analysis, polynomial features,
 hyperparameter tuning with CV)
- Models Evaluated: Linear regression,
 random forest, ridge regression, lasso
 regression, Elastic Net regression

Model	R ²	MSE	1
Uniform Distribution with Linear Regression	0.6910	20.4564	
Uniform Distribution with Random Forest	0.7486	16.6451	←
Uniform Distribution with Ridge Regression	0.6912	20.4442	1
Uniform Distribution with Lasso Regression	0.6914	20.4325]
Uniform Distribution with Elastic Net Regression	0.6914	20.4339	1
Monte Carlo Simulation with Linear Regression	0.5900	17.4087	1
Monte Carlo Simulation with Random Forest	0.7486	16.6451]←—
Monte Carlo Simulation with Ridge Regression	0.5900	17.4116	1
Monte Carlo Simulation with Lasso Regression	0.5891	17.4482	1
Monte Carlo Simulation with Elastic Net Regression	0.5891	17.4487	1
Latin Hypercube Sampling with Linear Regression	0.7058	18.8080	1
Latin Hypercube Sampling with Random Forest	0.7239	16.5157]←—
Latin Hypercube Sampling with Ridge Regression	0.6991	18.7784	1
Latin Hypercube Sampling with Lasso Regression	0.7168	18.9227	1
Latin Hypercube Sampling with Elastic Net Regression	0.6976	18.8724	1

Strengths & Limitations

04

• Strengths:

- o Comprehensive comparison of data generation techniques and machine learning models
- Enhanced performance with feature engineering and preprocessing techniques

• Limitations:

o Synthetic nature of data may not capture real-world nuances

Actual vs Predicted Productivity and Residuals Plot for Linear

Regression Model on Monte Carlo Simulation Data

Conclusion

- Better results with <u>Linear Regression</u> when the dataset is <u>less complex</u> and <u>easier to implement and interpret</u>
- The <u>Linear Regression</u> with <u>Latin Hypercube Sampling</u> yielded the best overall performance when <u>data</u> was 1000
- Random Forest is more <u>flexible</u> and better at <u>modeling complex patterns</u> in the data
- The Random Forest with <u>Uniform Distribution</u> yielded the best overall performance when <u>data was 5000</u>
- As the amount of our <u>data increases</u>, <u>Monte Carlo Simulation</u> creates a more <u>dispersed dataset</u> and makes it more <u>difficult to build a model</u> on it

Thankyou