

CSC 3001 · Assignment 3

Due: 23:59, November 8th, 2024

Instructions:

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- You must independently complete each assignment.
- You must submit your assignment in Blackboard with all necessary supplemental material.
- Late submission will not be graded.

Question 1 (10 marks)

Please use the Euclid's GCD algorithm to calculate the greatest common divisor of 534 and 271.

Solution

 $\gcd(534,271) = \gcd(263,271) = \gcd(263,8) = \gcd(7,8) = \gcd(7,1) = 1.$

Question 2 (10 marks)

For any integers a and b which at least one of them doesn't equal to 0, show that any common divisor of a and b divides gcd(a, b).

Solution

If one of a and b equals to 0, gcd(a, b) is just the absolute value of the nonzero one of them, the common divisors of a and b are just the divisors of the nonzero one. So the statement is true. If both a and b don't equal to 0, we assume d is a common divisor of a and b. Suppose that $gcd(a, b) = \alpha a + \beta b$ where $\alpha, \beta \in \mathbb{Z}$, $d \mid a, d \mid b$, so $d \mid gcd(a, b)$.

Then we conclude that any common divisor of a and b divides gcd(a, b).

Question 3 (10 marks)

Show that gcd(ab, c) = gcd(a, c) if gcd(b, c) = 1.

Solution

Since $gcd(a, c) \mid a, gcd(a, c) \mid c$, we know $gcd(a, c) \mid ab, gcd(a, c) \mid c$, so gcd(a, c) is a positive common divisor of ab and c. $gcd(a, c) \leq gcd(ab, c)$.

Then since we know $gcd(a,c) = \alpha_0 a + \beta_0 c$ and $1 = gcd(b,c) = \alpha_1 b + \beta_1 c$ for some integers $\alpha_0, \alpha_1, \beta_0, \beta_1$, we have

$$\gcd(a,c) = (\alpha_0 a + \beta_0 c)(\alpha_1 b + \beta_1 c)$$
$$= \alpha_0 \alpha_1 a b + (\alpha_0 a \beta_1 + \beta_0 \alpha_1 b + \beta_0 c \beta_1) c.$$

So from gcd(ab, c) = spc(ab, c), we have $gcd(ab, c) \le gcd(a, c)$. Then we conclude that gcd(ab, c) = gcd(a, c) if gcd(b, c) = 1.

Question 4 (10 marks)

Show that if gcd(a, b) = 1, then gcd(ab, c) = gcd(a, c) gcd(b, c).

Solution

Since we have $gcd(a, c) = m_0a + n_0c$ and $gcd(b, c) = m_1b + n_1c$ for some integers m_0, m_1, n_0, n_1 , we have

$$\gcd(a,c)\gcd(b,c) = (m_0a + n_0c)(m_1b + n_1c) = m_0m_1ab + (m_0n_1a + n_0m_1b + n_0n_1c)c$$

is a positive integer linear combination of ab and c, we know $\gcd(ab,c) \leq \gcd(a,c)\gcd(b,c)$. Then for the reverse inequality, firstly we know $\gcd(a,c)\gcd(b,c) \mid ab$, then we want to prove that $\gcd(a,c)\gcd(b,c) \mid c$. Since $\gcd(a,b)=1$, we know there is an integer linear combination $\alpha a + \beta b = 1$ and we have $\alpha ac + \beta bc = c$. Since $\gcd(a,c) \mid a$ and $\gcd(b,c) \mid c$, we have $\gcd(a,c)\gcd(b,c) \mid ac$. By similarity, $\gcd(a,c)\gcd(b,c) \mid bc$. So $\gcd(a,c)\gcd(b,c) \mid \alpha ac + \beta bc$ i.e. $\gcd(a,c)\gcd(b,c) \mid c$. So $\gcd(a,c)\gcd(b,c)$ is a common divisor of ab and c, so $\gcd(a,c)\gcd(b,c) \leq \gcd(ab,c)$. We conclude that if $\gcd(a,b)=1$, then $\gcd(ab,c)=\gcd(a,c)\gcd(b,c)$.

Question 5 (10 marks)

For every linear transformation $A: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix}$ satisfied $a,b,c,d \in \mathbb{Z}$, prove that $\gcd(x,y) \mid \gcd(X,Y) \mid \det(A) \gcd(x,y)$ for any $x,y \in \mathbb{Z}$.

Solution

Since both X and Y are integer linear combination of x and y, we know $gcd(x, y) \mid gcd(X, Y)$ from the question 2.

Then we suppose gcd(x,y) = mx + ny which is an integer linear combination of x and y. We have

$$(md - nc)X + (an - mb)Y$$

$$= (md - nc)(ax + by) + (an - mb)(cx + dy)$$

$$= (ad - bc)mx + (ad - bc)ny$$

$$= (ad - bc)(mx + ny)$$

$$= det(A) \gcd(x, y).$$

Since both md - nc and an - mb are integers, we know $gcd(X, Y) \mid det(A) gcd(x, y)$.

Question 6 (10 marks)

Find all solutions x, if they exist, to the system of equivalences:

$$2x \equiv 6 \pmod{14}$$
$$3x \equiv 9 \pmod{15}$$
$$5x \equiv 20 \pmod{60}.$$

Solution

Since $gcd(2, 14) = 2 \mid 6, gcd(3, 15) = 3 \mid 9, gcd(5, 60) = 5 \mid 20$, every single equation has solutions. Then we transform the system as

$$x \equiv 3 \pmod{7}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 4 \pmod{12}$.

Since each two numbers of 7, 5, 12 are coprime, we can use Chinese remainder theorem to solve the system. We assume x = 60a + 84b + 35c and we have

$$60a \equiv 3 \pmod{7}$$

 $84b \equiv 3 \pmod{5}$
 $35c \equiv 4 \pmod{12}$.

We further reduce the coefficients as

$$4a \equiv 3 \pmod{7}$$

 $4b \equiv 3 \pmod{5}$
 $11c \equiv 4 \pmod{12}$.

Then from the multiplicative inverse, we have

$$a \equiv 6 \pmod{7}$$

 $b \equiv 2 \pmod{5}$
 $c \equiv 8 \pmod{12}$.

So we have $x \equiv 60 \times 6 + 84 \times 2 + 35 \times 8 \pmod{420}$, we arrange it as $x \equiv 388 \pmod{420}$.

Question 7 (10 marks)

Prove the following statements:

- 1. If $ac \equiv bc \pmod{m}$, we have $a \equiv b \pmod{\frac{m}{\gcd(c,m)}}$;
- 2. Denote a' and b' as the inverse of $a \pmod m$ and $b \pmod m$. If $\gcd(a, m) = \gcd(b, m) = 1$, $a \equiv b \pmod m$ if and only if $a' \equiv b' \pmod m$.

Solution

- 1. Since $m \mid c(a-b)$, $\frac{m}{\gcd(c,m)} \mid \frac{c}{\gcd(c,m)}(a-b)$. $\gcd(\frac{m}{\gcd(c,m)}, \frac{c}{\gcd(c,m)}) = 1$, so we have $\frac{m}{\gcd(c,m)} \mid (a-b)$.
- 2. If $a \equiv b \pmod{m}$, we have $a'a \equiv a'b \pmod{m}$, i.e. $1 \equiv a'b \pmod{m}$. Since $1 \equiv b'b \pmod{m}$, we have $m \mid (a'-b')b$. Since $\gcd(m,b)=1$, $m \mid a'-b'$. So $a' \equiv b' \pmod{m}$.

By the same method, we can prove the reverse argument and prove the whole argument.

Question 8 (10 marks)

Consider the Fibonacci sequence $\{F_n\}$, where $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for other n. Prove that $3 \mid F_n$ if and only if $4 \mid n$ for $n \in \mathbb{N}$.

Solution

$$F_0 \equiv 0 \pmod{3}; F_1 \equiv 1 \pmod{3}; F_2 \equiv 1 \pmod{3}; F_3 \equiv 2 \pmod{3}; F_4 \equiv 0 \pmod{3}; F_5 \equiv 2 \pmod{3}; F_6 \equiv 2 \pmod{3}; F_7 \equiv 1 \pmod{3}...$$

We can prove that for arbitrary $i \in \mathbb{Z}^*$, we have

$$F_{8i-8} \equiv 0 \pmod{3}; F_{8i-7} \equiv 1 \pmod{3}; F_{8i-6} \equiv 1 \pmod{3}; F_{8i-5} \equiv 2 \pmod{3}; F_{8i-4} \equiv 0 \pmod{3}; F_{8i-3} \equiv 2 \pmod{3}; F_{8i-2} \equiv 2 \pmod{3}; F_{8i-1} \equiv 1 \pmod{3}...$$

The i = 1 case is true as above. We assume when i = k the statement is true, we prove for i = k + 1 case.

Since $F_{8i-8} = F_{8(i-1)-1} + F_{8(i-1)-2}$ and $F_{8(i-1)-1} \equiv 1 \pmod{3}$, $F_{8(i-1)-2} \equiv 2 \pmod{3}$, we have $F_{8(i-1)-1} + F_{8(i-1)-2} \equiv 1+2 \pmod{3}$, i.e. $F_{8i-8} \equiv 0 \pmod{3}$. Then we following the same process, we can prove that i = k+1 case is true.

Then we observe that for every $k \in \mathbb{N}$, $F_{4k} \equiv 0 \pmod{3}$, we conclude that $3 \mid F_n$ if and only if $4 \mid n$ for $n \in \mathbb{N}$.

Question 9 (10 marks)

For an arbitrary prime number $p \geq 5$, we have the inverse i' of $i \pmod{p}$ if $p \nmid i$. Prove that $\sum_{i=1}^{p-1} (i')^2 \equiv 0 \pmod{p}$.

Solution

We know all $i \in \{1, 2, ..., p-1\}$ are different respect to $i \pmod{p}$ and the inverse of i is congruent to some unique $j \in \{1, 2, ..., p-1\}$ modulo p. So we have

$$\sum_{i=1}^{p-1} (i')^2 \equiv \sum_{i=1}^{p-1} i^2 = \frac{1}{6}p(p-1)(2p-1) \equiv 0 \pmod{p}.$$

Question 10 (10 marks)

p is prime and a and b are integers, prove $(a+b)^p \equiv a^p + b^p \pmod{p}$.

Solution

We first prove that for any integer k, $k^p \equiv k \pmod{p}$. If $p \mid k$, we have $k^p \equiv k \equiv 0 \pmod{p}$. If $p \nmid k$, we know $k \equiv i \pmod{p}$ for some $i \in \{1, 2, ..., p-1\}$. Then from Fermat's little theorem we know

$$k^p \equiv i^p \equiv i \equiv k \pmod{p}$$
.

With the conclusion above, we have

$$(a+b)^p \equiv a+b \equiv a^p + b^p \pmod{p}.$$

So we prove the statement.