Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 _ Aula_02 - Revisão

Tema: Sistemas de Numeração e representações de dados

Sistemas de Numeração – Conversões entre bases (parte inteira e fracionária)

Parte inteira

Exemplos:

1.) Sistema decimal

```
163_{(10)} = 1x10^2 + 6x10^1 + 3x10^0 - na forma canônica
```

Para converter um valor decimal (base=10) para binário (base=2), usar divisões sucessivas por 2 e tomar os restos na ordem inversa em que forem calculados:

```
operação quociente resto
163/2
            81
                    1 (último)
81 / 2
            40
                    1
40 / 2
            20
                    0
20 / 2
            10
                    0
10 / 2
            5
                    0
5 / 2
            2
                + 1
  /2 =
             1
                    0
1
  /2 =
             0
                    1 (primeiro)
```

Sistema binário

1010 0011₍₂₎ - número na base 2

ou

```
2<sup>7</sup> 2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup> - potências da base 2
128 64 32 16 8 4 2 1 - valor decimal da potência na base 10
1 0 1 0 0 0 1 1 - coeficientes
```

2.) Para converter um valor binário (base=2) para decimal (base=10), usar a soma dos produtos de cada algarismo pela potência da base equivalente à posição:

Sistema binário

1010 0011(2)

- número na base 2

Sistema decimal

$$1x2^{7}+0x2^{6}+1x2^{5}+0x2^{4}+0x2^{3}+0x2^{2}+1x2^{1}+1x2^{0}$$
 - forma canônica $128+0+32+0+0+0+2+1=163$

Os procedimentos semelhantes servirão para converter de decimal para outras bases.

Para converter um valor decimal para a base 4 (quaternário):

operação quociente resto

$$163/4 = 40 + 3$$
 (último)

$$40 / 4 = 10 + 0$$

$$10 / 4 = 2 + 2$$

$$2 / 4 = 0 + 2$$
 (primeiro)

Sistema quaternário

2203(4)

- número na base 4

Para converter um valor decimal para a base 8 (octal):

operação quociente resto

$$163/8 = 20 + 3$$
 (último)

$$20 / 8 = 2 + 4$$

$$2 / 8 = 0 + 2$$
 (primeiro)

Sistema octal

243(8)

- número na base 8

Para converter um valor decimal para a base 16 (hexadecimal):

operação quociente resto

$$163 / 16 = 10 + 3 \text{ (último)}$$

10 / 16 = 0 + 10 (primeiro, substituindo pelo algarismo A=10)4

Sistema hexadecimal

- número na base 16

Os procedimentos semelhantes servirão para converter dessas bases para decimal.

Sistema quaternário

$$2203_{(2)} = 2x4^3 + 2x4^2 + 0x4^1 + 3x4^0$$
 - número na base 4 na forma canônica = $128 + 32 + 0 + 3 = 163_{(10)}$

Sistema octal

$$243_{(8)} = 2x8^2 + 4x8^1 + 3x8^0$$
 - número na base 8 na forma canônica = $128 + 32 + 3 = 163_{(10)}$

Sistema hexadecimal

$$A3_{(16)} = (A=)10x16^1+3x16^0$$
 - número na base 16 forma canônica = 160 + 3 = 163₍₁₀₎

3.) As bases que são potências múltiplas de outra (e apenas essas) compartilham propriedades especiais, como a possibilidade de conversões entre elas, sem passar pela base decimal:

```
Sistema binário (base=2) para quaternário (base=4=2^2): 1010 0011<sub>(2)</sub> = [10][10] [00][11]<sub>(4)</sub> = 2203<sub>(4)</sub> agrupar de 2 em 2 para a esquerda
```

```
Sistema binário (base=2) para quaternário (base=8=2^3): 1010 0011<sub>(2)</sub> = [(\underline{0})10][100][011]<sub>(8)</sub> = 243<sub>(8)</sub> agrupar de 3 em 3 para a esquerda
```

OBS: Neste caso, completar com zeros para formar os grupos.

```
Sistema binário (base=2) para quaternário (base=16=2^4): 1010 0011<sub>(2)</sub> = [1010] [0011]<sub>(16)</sub> = A3<sub>(16)</sub> e A=10 agrupar de 4 em 4 para a esquerda
```

ou usar uma tabela com as principais equivalências entre essas bases de numeração.

10	2	4	8	16
00	0000 0000	00 00	000	00
01	0000 0001	00 01	001	01
02	0000 0010	00 02	002	02
03	0000 0011	00 03	003	03
04	0000 0100	00 10	004	04
05	0000 0101	00 11	005	05
06	0000 0110	00 12	006	06
07	0000 0111	00 13	007	07
80	0000 1000	00 20	010	80
09	0000 1001	00 21	011	09
10	0000 1010	00 22	012	0A
11	0000 1011	00 23	013	0B
12	0000 1100	00 30	014	0C
13	0000 1101	00 31	015	0D
14	0000 1110	00 32	016	0E
15	0000 1111	00 33	017	0F

Parte fracionária

Exemplos:

1.) Sistema decimal

```
0,6875_{(10)} = 6x10^{-1} + 8x10^{-2} + 7x10^{-3} + 5x10^{-4} - na forma canônica
```

Para converter a parte fracionária de um valor decimal (base=10) para binário (base=2), usar multiplicações sucessivas por 2 e tomar as partes inteiras na mesma ordem em que forem calculados, prosseguindo com a parte fracionária restante.

operação	produto	part	e inteira	parte fracionária	binário	
0,6875 * 2 =	1,3750	=	1	,3750	0,1	(primeiro)
0,3750 * 2 =	0,7500	=	0	,7500	0,10	
0,7500 * 2 =	1,5000	=	1	,5000	0,101	
0,5000 * 2 =	1,0000	=	1	,0000	0,1011	(último)

Parar, se a parte fracionária se tornar igual a zero.

Sistema binário

0,1011₍₂₎ - número na base 2

ou

Caso a parte fracionária não se tornar igual a zero dentro de certo número de operações, parar quando for alcançada a precisão desejada ou se esgotar a quantidade de casas disponíveis.

Também podem surgir dízimas, periódicas ou não.

opera	ção	produto	part	e inteira	parte fracionária	binário
0,69	* 2 =	1,38	=	1	,38	0,1 (primeiro)
0,38	* 2 =	0,76	=	0	,76	0,10
0,76	* 2 =	1,52	=	1	,52	0,101
0,52	* 2 =	1,04	=	1	,04	0,1011
0,04	* 2 =	0,08	=	0	,08	0,10110
0,08	* 2 =	0,16	=	0	,16	0,101100
0,16	* 2 =	0,32	=	0	,32	0,1011000
0,32	* 2 =	0,64	=	0	,64	0,10110000
0,64	* 2 =	1,28	=	1	,28	0,101100001
0,28	* 2 =	0,56	=	0	,56	0,1011000010
0,56	* 2 =	1,02	=	1	,02	0,10110000101
0,02	* 2 =	0,04	=	0	,04	0,101100000010 (dízima)

Para converter um valor decimal para a base 4 (quaternário):

operação produto parte inteira parte fracionária quaternário

0.6875 * 4 = 2.7500 = 2 ,7500 0,2 (primeiro) 0.7500 * 4 = 3.0000 = 3 ,0000 0,23 (último)

Sistema quaternário

0,23₍₄₎ - número na base 4

Por agrupamento do binário equivalente e substituição do valor binário por dígitos dessa base:

 $0,1011_{(2)} = 0, [10][11]_{(4)} = 0,23_{(4)}$ - agrupar de 2 em 2 para a direita

Para converter um valor decimal para a base 8 (octal):

operação produto parte inteira parte fracionária octal

0.6875 * 8 = 2.7500 = 5 ,5000 0,5 (primeiro) 0.5000 * 8 = 4.0000 = 4 ,0000 0,4 (último)

Sistema octal

0,54₍₈₎ - número na base 8

Por agrupamento do binário equivalente e completando com zeros (<u>o</u>), se necessário, e substituição do valor binário por dígitos dessa base:

 $0,1011_{(2)} = 0, [101] [100]_{(8)} = 0,54_{(8)}$ - agrupar de 3 em 3 para a direita

Para converter um valor decimal para a base 16 (hexadecimal):

operação produto parte inteira parte fracionária hexadecimal

0,6875 * 16 = 2,7500 = 11 ,0000 0,B (primeiro e último)

Sistema hexadecimal

0,B₍₁₆₎ - número na base 16

Por agrupamento do binário equivalente e substituição do valor binário por dígitos dessa base:

 $0,1011_{(2)} = 0, [1011]_{(16)} = 0,B_{(16)}$ - agrupar de 4 em 4 para a direita

2.) Para converter um valor fracionário em binário (base=2) para decimal (base=10), usar a soma dos produtos de cada algarismo pela potência negativa da base equivalente à posição:

Sistema binário

 $0,1011_{(2)}$

- número na base 2

Sistema decimal

 $1x2^{-1}+0x2^{-2}+1x2^{-3}+1x2^{-4}$ - forma canônica

 $1/2^1 + 0 + 1/2^3 + 1/2^4$

1/2 + 0 + 1/8 + 1/16 = (8+2+1)/16

 $0.5 + 0 + 0.125 + 0.0625 = 0.6875_{(10)}$

Para converter um valor da base 4 (quaternário) para decimal:

Sistema quaternário

0,23(4)

- número na base 4

Sistema decimal

 $2x4^{-1} + 3x4^{-2} + 0x4^{-3} + 0x4^{-4}$ - forma canônica

 $2/4^{1} + 3/4^{2} + 0/4^{3} + 0/4^{4}$

2/4 + 3/16 + 0/64 + 0/256 = (8+3)/16

 $0.5 + 0.1875 + 0 + 0 = 0.6875_{(10)}$

Para converter um valor da base 8 (octal) para decimal:

Sistema octal

0,54(8)

- número na base 8

Sistema decimal

 $5x8^{-1} + 4x8^{-2} + 0x8^{-3} + 0x8^{-4}$ - forma canônica

 $5/8^1 + 4/8^2 + 0/8^3 + 0/8^4$

5/8 + 4/64 + 0/512 + 0/4096 = (40+4)/64

 $0,625 + 0,0625 + 0 + 0 = 0,6875_{(10)}$

Para converter um valor da base 16 (hexadecimal) para decimal:

Sistema hexadecimal

 $0,B_{(16)}$

- número na base 16

Sistema decimal

 $11x16^{-1} + 0x16^{-2} + 0x16^{-3} + 0x16^{-4}$ - forma canônica

 $11/16^1 + 0/16^2 + 0/16^3 + 0/16^4$

11/16 + 0/256 + 0/4096 + 0/65536 = (11)/16

 $0,6875 + 0 + 0 + 0 = 0,6875_{(10)}$

Representações de potências de 2.

Х	2 ^X	X ₍₁₀₎		X ₍₂₎	X ₍₄₎	X ₍₈₎	X ₍₁₆₎
0	20		1	1	1	1	1
1	2 ¹		2	10	2	2	2
2	2 ²		4	100	10	4	4
3	2 ³		8	1000	20	10	8
4	24		16	1 0000	100	20	10
5	2 ⁵		32	10 0000	200	40	20
6	2 ⁶		64	100 0000	1000	100	40
7	27		128	1000 0000	2000	200	80
8	28		256	1 0000 0000	10000	400	100
9	2 ⁹		512	10 0000 0000	20000	1000	200
10	2 ¹⁰	1	1024	100 0000 0000	100000	2000	400
Х	2 ^X	X ₍₁₀₎		X ₍₂₎	X ₍₄₎	X ₍₈₎	X ₍₁₆₎
х							
-10	2-10		1024	X ₍₂₎	X ₍₄₎	X ₍₈₎	X ₍₁₆₎
-10 -9	2 ⁻¹⁰ 2 ⁻⁹	0,0009765625 = 1/1 0,001953125 = 1/1	/512	0,000000001		0,0004 0,001	0,004 0,008
-10 -9 -8	2 ⁻¹⁰ 2 ⁻⁹ 2 ⁻⁸	0,0009765625 = 1/1 0,001953125 = 1/1		0,0000000001 0,000000001 0,00000001	0,00001	0,0004	0,004
-10 -9	2 ⁻¹⁰ 2 ⁻⁹ 2 ⁻⁸ 2 ⁻⁷	0,0009765625 = 1/1 0,001953125 = 1/1 0,00390625 = 1/1	/512	0,000000001	0,00001 0,00002	0,0004 0,001	0,004 0,008
-10 -9 -8 -7 -6	2 ⁻¹⁰ 2 ⁻⁹ 2 ⁻⁸ 2 ⁻⁷ 2 ⁻⁶	0,0009765625 = 1/1 0,001953125 = 1/1 0,00390625 = 1/1 0,0078125 = 1/1	/512 /256	0,0000000001 0,000000001 0,00000001	0,00001 0,00002 0,0001	0,0004 0,001 0,002	0,004 0,008 0,01
-10 -9 -8 -7	2 ⁻¹⁰ 2 ⁻⁹ 2 ⁻⁸ 2 ⁻⁷ 2 ⁻⁶ 2 ⁻⁵	0,0009765625 = 1/1 0,001953125 = 1/1 0,00390625 = 1/1 0,0078125 = 1/1 0,015625 = 1	/512 /256 /128	0,000000001 0,00000001 0,0000001 0,0000001	0,00001 0,00002 0,0001 0,0002	0,0004 0,001 0,002 0,004	0,004 0,008 0,01 0,02
-10 -9 -8 -7 -6	2-10 2-9 2-8 2-7 2-6 2-5 2-4	0,0009765625 = 1/1 0,001953125 = 1/1 0,00390625 = 1/1 0,0078125 = 1/1 0,015625 = 1 0,03125 = 1	/512 /256 /128 I/64	0,000000001 0,00000001 0,0000001 0,000001 0,000001	0,00001 0,00002 0,0001 0,0002 0,001	0,0004 0,001 0,002 0,004 0,01	0,004 0,008 0,01 0,02 0,04
-10 -9 -8 -7 -6 -5 -4 -3	2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3	0,0009765625 = 1/1 0,001953125 = 1/1 0,00390625 = 1/1 0,0078125 = 1/1 0,015625 = 1 0,03125 = 1 0,0625 = 1	/512 /256 /128 //64 1/32	0,0000000001 0,00000001 0,0000001 0,000001 0,000001	0,00001 0,00002 0,0001 0,0002 0,001 0,002	0,0004 0,001 0,002 0,004 0,01 0,02	0,004 0,008 0,01 0,02 0,04 0,08
-10 -9 -8 -7 -6 -5 -4 -3 -2	2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3 2-2	0,0009765625 = 1/1 0,001953125 = 1/1 0,00390625 = 1/1 0,0078125 = 1/1 0,015625 = 1 0,03125 = 1 0,0625 = 1	/512 /256 /128 1/64 1/32 1/16	0,000000001 0,00000001 0,0000001 0,000001 0,00001 0,00001	0,00001 0,00002 0,0001 0,0002 0,001 0,002 0,01	0,0004 0,001 0,002 0,004 0,01 0,02 0,04	0,004 0,008 0,01 0,02 0,04 0,08 0,1
-10 -9 -8 -7 -6 -5 -4 -3	2-10 2-9 2-8 2-7 2-6 2-5 2-4 2-3	0,0009765625 = 1/1 0,001953125 = 1/ 0,00390625 = 1/ 0,0078125 = 1/ 0,015625 = 1 0,03125 = 1 0,0625 = 1 0,125 = 0,25 =	/512 /256 /128 I/64 I/32 I/16 1/8	0,0000000001 0,000000001 0,00000001 0,0000001 0,000001 0,00001 0,0001	0,00001 0,00002 0,0001 0,0002 0,001 0,002 0,01 0,02	0,0004 0,001 0,002 0,004 0,01 0,02 0,04 0,1	0,004 0,008 0,01 0,02 0,04 0,08 0,1 0,2

Apêndices

A1.) Equivalências entre sistemas de numeração (parte inteira com agrupamento):

Decimal	Hexadecimal	Octal	Quaternário	Binário
0	00 = [0000] [0000]	00 = [000][000]	00 = [00] [00]	0 0000
1	01 = [0000] [0001]	01 = [000] [001]	01 = [00] [01]	0 0001
2	02 = [0000] [0010]	02 = [000] [010]	02 = [00] [10]	0 0010
3	03 = [0000] [0011]	03 = [000] [011]	03 = [00] [11]	0 0011
4	04 = [0000] [0100]	04 = [000] [100]	10 = [01] [00]	0 0100
5	05 = [0000] [0101]	05 = [000] [101]	11 = [01] [01]	0 0101
6	06 = [0000] [0110]	06 = [000] [110]	12 = [01] [10]	0 0110
7	07 = [0000] [0111]	07 = [000] [111]	13 = [01] [11]	0 0111
8	08 = [0000] [1000]	10 = [001] [000]	20 = [10] [00]	0 1000
9	09 = [0000] [1001]	11 = [001] [001]	21 = [10] [01]	0 1001
10	0A = [0000] [1010]	12 = [001] [010]	22 = [10] [10]	0 1010
11	0B = [0000] [1011]	13 = [001] [011]	23 = [10] [11]	0 1011
12	0C = [0000] [1100]	14 = [001] [100]	30 = [11] [00]	0 1100
13	0D = [0000] [1101]	15 = [001] [101]	31 = [11] [01]	0 1101
14	0E = [0000] [1110]	16 = [001] [110]	32 = [11] [10]	0 1110
15	0F = [0000] [1111]	17 = [001] [111]	33 = [11] [11]	0 1111
16	10 = [0001] [0000]	20 = [010] [000]	40 = [[00][01]] [[00][00]]	1 0000

A2.) Equivalências entre sistemas de numeração (parte fracionária com agrupamento):

Decimal	Hexadecimal	Octal	Quaternário	Binário
00/16=0,0000	0.0 = 0, [0000]	0.00 = 0, [000][000]	0,00 = 0, [00][00]	0, 0000
01/16=0,0625	0,1 = 0, [0001]	0.04 = 0, [000][001]	0.01 = 0, [00][01]	0, 0001
02/16=0,1250	0,2 = 0, [0010]	0,10 = 0, [000] [010]	0.02 = 0, [00] [10]	0, 0010
03/16=0,1875	0,3 = 0, [0011]	0.14 = 0, [000][011]	0,03 = 0, [00] [11]	0, 0011
04/16=0,2500	0,4 = 0, [0100]	0,20 = 0, [000] [100]	0,10 = 0, [01] [00]	0, 0100
05/16=0,3125	0,5 = 0, [0101]	0,24 = 0, [000][101]	0,11 = 0, [01] [01]	0, 0101
06/16=0,3750	0,6 = 0, [0110]	0,30 = 0, [000] [110]	0,12 = 0, [01] [10]	0, 0110
07/16=0,4375	0,7 = 0, [0111]	0,34 = 0, [000] [111]	0,13 = 0, [01] [11]	0, 0111
08/16=0,5000	0.8 = 0, [1000]	0,40 = 0, [001] [000]	0,20 = 0, [10][00]	0, 1000
09/16=0,5625	0,9 = 0, [1001]	0,44 = 0, [001] [001]	0,21 = 0, [10] [01]	0, 1001
10/16=0,6250	0,A = 0, [1010]	0,50 = 0, [001] [010]	0,22 = 0, [10] [10]	0, 1010
11/16=0,6875	0,B = 0, [1011]	0,54 = 0, [001] [011]	0,23 = 0, [10] [11]	0, 1011
12/16=0,7500	0,C = 0, [1100]	0,60 = 0, [001] [100]	0,30 = 0, [11] [00]	0, 1100
13/16=0,8125	0,D = 0, [1101]	0,64 = 0, [001] [101]	0,31 = 0, [11] [01]	0, 1101
14/16=0,8750	0,E = 0, [1110]	0,70 = 0, [001] [110]	0,32 = 0, [11] [10]	0, 1110
15/16=0,9375	0,F = 0, [1111]	0,74 = 0, [001] [111]	0,33 = 0, [11] [11]	0, 1111
16/16=1,0000	1,0 = 1, [0000]	1,00 = 1, [000] [000]	1,00 = [[00][01]], [[00][00]]	1, 0000

Preparação

Vídeos recomendados

Como preparação para o início das atividades, recomenda-se assistir os seguintes vídeos:

http://www.youtube.com/watch?v=wP_bJGUOnMk http://www.youtube.com/watch?v=EJ8Iqw67FgE http://www.youtube.com/watch?v=vjSKQPTkJ_o

Exercícios

Orientação geral:

Apresentar soluções apenas em formato texto (.txt).

Outras formas de soluções, se entregues, serão avaliadas como atividades extras (.v, .c, .java, .xls). As funções poderão ser desenvolvidas em Verilog, C ou Java (ver modelo Guia_02.java),

e as execuções deverão usar arquivo textos como entradas e saídas.

Planilhas deverão ser programadas e/ou usar funções nativas. Descartá-las como texto formatado. Exemplos em Verilog serão fornecidos como ponto de partida.

01.) Fazer as conversões entre as bases indicadas:

- a.) $0,10111_{(2)} = X_{(10)}$
- b.) $0.01010_{(2)} = X_{(10)}$
- c.) $0.01011_{(2)} = X_{(10)}$
- d.) $1,01001_{(2)} = X_{(10)}$
- e.) $11,11010_{(2)} = X_{(10)}$

01a.) mediante uso de uma função bin2double(x)

01b.) mediante uso de uma planilha

Exemplo:

X ₍₁₀₎	20,	2-1	2-2	2-3	2-4	2-5	2-6	2-7	Σ	X ₍₂₎
	1,	1/2	1/4	1/8	1/16	1/32	1/64	1/128		
	0,	0	1	1	0	0	0	0	1/4+1/8	0,011
										(usar dígitos)

01c.) mediante uso de um programa em Verilog

endmodule // Guia_0201

```
/*
 Guia_0201
module Guia_0201;
// define data
 real
            x = 0; // decimal
 real power2 = 1.0; // power of 2
 integer
            y = 7; // counter
 reg [7:0] b = 8'b10100000; // binary (only fraction part, Big Endian)
// actions
 initial
  begin: main
   $display ( "Guia_0201 - Tests" );
   display ( "x = \%f", x );
   display ( "b = 0.%8b", b );
   while (y >= 0)
   begin
    power2 = power2 / 2.0;
    if (b[y] == 1)
     begin
     x = x + power2;
     end
    display ( "x = \%f", x );
    y=y-1;
   end // end while
  end // main
```

02.) Fazer as conversões entre as bases indicadas:

- a.) $0,12500_{(10)} = X_{(2)}$
- b.) $0.87500_{(10)} = X_{(2)}$
- c.) $1,25000_{(10)} = X_{(2)}$
- d.) $3,75000_{(10)} = X_{(2)}$
- e.) 14, 03125 $_{(10)} = X_{(2)}$

02a.) mediante uso de uma função double2bin(x)

02b.) mediante uso de uma planilha

Exemplo:

X ₍₁₀₎	20,	2-1	2-2	2-3	2-4	2-5	2-6	2-7	Σ	X ₍₂₎
	1,	1/2	1/4	1/8	1/16	1/32	1/64	1/128		
0,375	0,	0	1	1	0	0	0	0	1/4+1/8	
										(subtrair)

```
Guia_0202
module Guia_0202;
// define data
 real
          x = 0.75; // decimal
 integer y = 7; // counter
 reg [7:0] b = 0; // binary
// actions
 initial
  begin: main
   $display ( "Guia_0202 - Tests" );
   display("x = %f", x);
   display ( "b = 0.\%8b", b );
   while (x > 0 \&\& y >= 0)
   begin
    if (x^*2 >= 1)
     begin
     b[y] = 1;
     x = x^2.0 - 1.0;
     end
    else
     begin
     b[y] = 0;
     x = x^2.0;
     end // end if
    \frac{0}{b} = 0.\%8b'', b);
    y=y-1;
   end // end while
  end // main
```

endmodule // Guia_0202

03.) Fazer as conversões de base entre as bases indicadas:

DICAS: Para uma mesma base ou usar agrupamentos ou desagrupamentos.

Para conferir, compare os valores decimais equivalentes.

Completar com zeros, se necessário

- a.) $0,101100_{(2)} = X_{(4)}$
- b.) $0,101101_{(2)} = X_{(8)}$
- c.) $0,101010_{(2)} = X_{(16)}$
- d.) $1,1111110_{(2)} = X_{(8)}$
- e.) $1011,111_{(2)} = X_{(16)}$

03a.) mediante uso de uma função dbin2base(base, x)

03b.) mediante uso de uma planilha

Exemplo:

X ₍₁₀₎	2-1	2-2	2-3	2-4	2-5	2-6	2-7	2-8	Σ	nova base
	1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256		
0,375	,0	1	1	0	0	0	0	0	1/4+1/8=0,25+0,125	0,01100000(2)
	,0	1	1	0	0	0	0	0		
	2 ¹	20	2 ¹	20	2 ¹	20	2 ¹	20		
		4-1		4 -2		4-3		4-4		
		/4		/16		/64		/256		0, <u>01</u> <u>10</u> 00 00 ₍₂₎
0,375	(0+1)	/4	(1*2+0)	/16	(0+0)	/64	(0+0)	/256	1/4+2/16+0+0=6/16	0, <u>1</u> <u>2</u> 0 0 ₍₄₎
	,0	1	1	0	0	0	0	0	(completar com 0)	
	2 ²	2 ¹	20	2 ²	2 ¹	20	2 ²	2 ¹		
			8-1			8-2				
			/8			/64		/512	(potência com 0 extra)	0, <u>011</u> 000 00 ₍₂₎
0,375	(0+	1*2+1)	/ 8	(0+	0+0)	/64	(0+0)	/512	3/8+0+0 = 3/8	0 , <u>3 </u> 0 0(8)
	,0	1	1	0	0	0	0	0		
	2 ³	2 ²	2 ¹	20	2 ³	2 ²	2 ¹	20		
					8 ¹		•	8 ¹		
				/16				/256		0, <u>0110</u> 0000 ₍₂₎
0,375	(0+	1*4+	1*2+0)	/16	(0+	0+	0+0)	/256	6/16+0 = 6/16	0, <u>6</u> 0 ₍₁₆₎

03c.) mediante uso de um programa em Verilog

```
Guia_0203
module Guia_0203;
// define data
 real x = 0.625;
                                // decimal
 reg [7:0] b = 8'b1010\_0000; // binary
// actions
 initial
  begin: main
   $display ( "Guia_0203 - Tests" );
   \frac{1}{x} = \frac{1}{x} \cdot x
   display ( "b = 0.%8b", b );
   $display ( "b = 0.\%x\%x (16)", b[7:4],b[3:0] );
   $display ("b = 0.\%0\%0 (8) ", b[7:5],b[4:2]); // missing last group !!!
  end // main
endmodule // Guia 0203
```

04.) Fazer as conversões de base entre as bases indicadas:

DICAS: Para uma mesma base ou usar agrupamentos ou desagrupamentos. Para conferir, compare os valores decimais equivalentes.

```
a.) 0,132_{(4)} = X_{(2)}
b.) 0,312_{(4)} = X_{(16)}
c.) 0,357_{(8)} = X_{(2)}
d.) 4,350_{(8)} = X_{(4)} DICA: Converter para binário primeiro, depois para a base 4.
e.) C,670_{(16)} = X_{(4)} DICA: Converter diretamente por desagrupamento.
```

04a.) mediante uso de uma função dbase2base(base1, base2, x)

04b.) mediante uso de uma planilha

04c.) mediante uso de um programa em Verilog

```
Guia_0204
module Guia_0204;
// define data
         real
                                                   x = 0.625;
                                                                                                                                                         // decimal
         reg [7:0] b = 8'b1010\_0000; // binary
         integer q [3:0];
// actions
         initial
           begin: main
               $display ( "Guia_0204 - Tests" );
               \frac{1}{x} = \frac{1}{x} \cdot x
               display ( "b = 0.%8b", b );
               $display ( "b = 0.\%x\%x (16)", b[7:4],b[3:0] );
               q[3] = b[7:6];
               q[2] = b[5:4];
               q[1] = b[3:2];
               q[0] = b[1:0];
               \frac{5}{5} $\frac{1}{5}$ $\fra
               $\display ("q = 0.\%2d \%2d \%2d \%2d (4)", q[3], q[2], q[1], q[0]);
            end // main
endmodule // Guia 0204
```

05.) Fazer as operações indicadas:

```
a.) 101,11_{(2)} + 11,101_{(2)} = X_{(2)}
b.) 1011,101_{(2)} - 10,01_{(2)} = X_{(2)} (OBS.: Colocar operandos do mesmo tamanho) c.) 100,101_{(2)} * 11,01_{(2)} = X_{(2)} (OBS.: Considerar as vírgulas, após operar) d.) 10101,111_{(2)} / 10,11_{(2)} = X_{(2)} (OBS.: Considerar resto de divisão inteira (%)) DICA: Para conferir o resultado, converter para a base 10.
```

05a.) mediante uso de uma função dbinEval (bin1, "?", bin2)

05b.) mediante uso de uma planilha

```
05c.) mediante uso de um programa em Verilog
```

```
/*
 Guia_0205
module Guia_0205;
// define data
  reg [7:0] a = 8'b000_1010; // binary
  reg [7:0] b = 8'b000\_1100; // binary
  reg [7:0] c;
// actions
  initial
  begin: main
   $display ( "Guia_0205 - Tests" );
   \alpha = \%8b^{\circ}, a;
   \frac{1}{b} = \frac{8b}{b}, b);
   c = a+b;
   display ( c = a+b = %8b, c );
   c = a-b;
   \frac{c}{c} = a-b = 8b'', c;
   c = b-a;
   \frac{c}{c} = b-a = 8b'', c;
   c = a*b;
   display ( c = a*b = %8b", c );
   c = b/a;
   display ( "c = b/a = %8b", c );
  end // main
```

endmodule // Guia_0205

Modelo em Java

```
Arquitetura de Computadores I - Guia_02.
  Nome: _____ Matricula: _____
*/
public class Guia_02
{
  Contador de erros.
 private static int errors = 0;
  Testar se dois valores sao iguais.
  @param x - primeiro valor
  @param y - segundo valor
 */
 public static void test_equals (Object x, Object y)
   if ( (""+x).compareTo(""+y) != 0 )
    errors = errors + 1;
 } // end test_equals ()
  Exibir o total de erros.
  @return mensagem com o total de erros
 public static String test_report ()
   return ( ""+errors );
 } // end test_report ( )
  Converter valor binario para decimal com parte fracionaria.
  @return decimal equivalente
  @param value - valor binario
 public static double bin2double (String value)
  return ( -1.0 );
 } // end bin2double ( )
```

```
Converter valor decimal para binario com parte fracionaria.
 @return valor binario equivalente
 @param value - decimal
public static String double2bin (double value)
 return ( "0" );
} // end double2bin ( )
 Converter valor binario com parte fracionaria para base indicada.
 @return base para a conversao
 @param value - valor binario
*/
public static String dbin2base (String value, int base)
 return ( "0" );
} // end dbin2base ()
 Converter valor com parte fracionaria de uma base para outra base indicada.
 @return valor equivalente na segunda base
 @param value - valor na base1
 @param base1 - primeira base
 @param base2 - base para a conversao
*/
public static String dbase2base (String value, int base1, int base2)
 return ( "0" );
} // end dbase2base ( )
 Operar valores em binartest_
 @return valor resultante da operacao, se valida
 @param value1 - primeiro valor binario
 @param op
                  - operacao
 @param value2 - segundo valor binario
public static String dbinEval (String value1, String op, String value2)
 return ( "0" );
} // end dbinEval ( )
```

```
Acao principal.
 public static void main (String [] args)
  System.out.println ( "Guia_02 - Java Tests" );
  System.out.println ( "Nome: _____ Matricula: ____ " );
  System.out.println ();
  test_equals (bin2double (
                               "0.10111"), 0);
  test equals (bin2double (
                               "0.01010"), 0);
  test_equals (bin2double (
                               "0.01011"), 0);
  test_equals (bin2double (
                               "1.01001"), 0);
  test equals (bin2double ("11.11010"), 0);
  System.out.println
                           ("1. errorTotalReport = "+test_report ());
  test_equals (double2bin (
                               0.12500), "0");
  test_equals (double2bin (
                               0.87500), "0");
  test equals (double2bin (
                               1.25000), "0");
  test_equals (double2bin (
                               3.75000), "0");
  test equals (double2bin (14.03125), "0");
  System.out.println
                           ( "2. errorTotalReport = "+test_report ( ) );
  test equals (dbin2base ("0.101100", 4), "0");
                           ( "0.101101", 8), "0");
  test_equals (dbin2base
  test equals (dbin2base ("0.101011", 16), "0");
  test equals (dbin2base ("1.111110", 8), "0");
  test_equals (dbin2base ("1011.1110", 16), "0");
  System.out.println
                           ( "3. errorTotalRepor = "+test_report ( ) );
  test_equals (dbase2base ( "0.132", 4, 2), "0");
  test equals (dbase2base ("0.312", 4, 16), "0");
  test_equals (dbase2base ("0.357", 8, 2), "0");
  test equals (dbase2base ( "4.350", 8, 4), "0");
  test_equals (dbase2base ("C.670", 16, 4), "0");
  System.out.println
                            ( "4. errorTotalReport = "+test_report ( ) );
                               "101.110", "+", "11.101"), "0");
  test equals (dbinEval
                              "1011.101", "-", "10.01" ), "0");
  test_equals (dbinEval
                               "100.101", "*", "11.01" ), "0");
  test_equals (dbinEval
                            ("10101.111", "/", "10.11"), "0");
  test equals (dbinEval
  test_equals (dbinEval
                               "1110101","%", "1001" ), "0" );
  System.out.println
                            ( "5. errorTotalReport = "+test_report ( ) );
  System.out.print ( "\n\nApertar ENTER para terminar." );
  System.console ().readLine ();
} // end main ()
} // end class
```