# **IR Assignment 3**

Q1. I tried to keep both the files in separate dataframe but I got error memory out of bound error.

Q2. I have chosen the product 'Laptop' and filtered out both files in df=pd.read\_csv("filtered\_main\_df.csv",low\_memory=False)

```
df2=pd.read_csv("laptop_metadata.csv",low_memory=False)
```

Q3. Report the total number of rows for the product- for df =56756, for df2=287330

Perform appropriate pre-processing as handling missing values, duplicates and other.

## Approach:

- Read two CSV files, "filtered\_main\_df.csv" and "laptop\_metadata.csv", into Pandas DataFrames.
- Preprocess the data: drop rows with missing 'asin' values, and remove duplicate rows based on the 'asin' column from both DataFrames.
- Output the number of rows after preprocessing for each DataFrame.

## Methodologies:

- 1. Data Loading:
  - Utilize Pandas' `read csv` function to load the CSV files into DataFrames (`df` and `df2`).
- 2. Data Preprocessing:
  - Drop rows with missing 'asin' values using the `dropna` function.
  - Remove duplicate rows based on the 'asin' column using the `drop\_duplicates` function.
- 3. Reporting:
  - Print the number of rows after preprocessing for each DataFrame.

## Assumptions:

- 'asin' is the unique identifier for each item in the datasets.
- The preprocessing steps of dropping missing values and removing duplicates based on 'asin' are sufficient for data cleaning.

#### Results:

```
print("Number of rows after preprocessing in meta ", len(df2))
```

Number of rows after preprocessing in meta 56756

```
print("Number of rows after preprocessing ",len(df))
```

Number of rows after preprocessing 287330

Q4.

## Approach:

- Calculate various statistics and metrics based on the data in the DataFrame df.
- Obtain the number of reviews, average rating score, number of unique products, number of good and bad ratings, and the distribution of reviews corresponding to each rating.

### Methodologies:

- Calculate Number of Reviews:
- Determine the total number of reviews in the DataFrame df.
- Calculate Average Rating Score:
- Compute the mean rating score from the 'overall' column in the DataFrame df.
- Calculate Number of Unique Products:
- Determine the count of unique products based on the 'asin' column in the DataFrame df.
- Calculate Number of Good and Bad Ratings:
- Filter the DataFrame df to separate good and bad ratings based on a threshold (3 in this case).
- Count the number of good ratings and calculate the number of bad ratings as the difference between total reviews and good ratings.
- Calculate Number of Reviews Corresponding to Each Rating:
- Compute the frequency distribution of ratings using the 'overall' column in the DataFrame df.

## Assumptions:

- 'overall' column represents the rating scores in the DataFrame df.
- Ratings equal to or above 3 are considered good ratings, while ratings below 3 are considered bad ratings.

a. Number of Reviews: 287330

b. Average Rating Score: 4.249778999756377

c. Number of Unique Products: 9262

d. Number of Good Ratings: 253378

e. Number of Bad Ratings: 33952

f. Number of Reviews corresponding to each Rating:

1.0 20668

2.0 13284

3.0 21837

4.0 49363

5.0 182178

Name: overall, dtype: int64

### Q.5

## Approach:

- Perform text preprocessing on the 'reviewText' column of the DataFrame df.
- Implement various steps to clean and normalize text data for analysis.

## Methodologies:

- Removing HTML Tags:
- Utilize BeautifulSoup to parse and remove HTML tags from the text data.
- Removing Accented Characters:
- Normalize text by converting accented characters to their ASCII equivalents using unicodedata.normalize().
- Expanding Acronyms:
- Replace known acronyms with their expanded forms in the text data.
- Removing Special Characters:
- Implement regular expressions to remove special characters from the text data.
- Lemmatization:
- Utilize NLTK's WordNetLemmatizer to lemmatize verbs in the text data, reducing them to their base form.
- Text Normalizer:
- Lowercase all text and join lemmatized words to form normalized text.

## Assumptions:

- The 'reviewText' column contains text data that needs to be cleaned and normalized.
- Lemmatization is performed specifically for verbs (wordnet.VERB), assuming that the text mainly consists of verbs that need to be lemmatized.

MT23040 Jafreen Rizvi

The 'reviewText' column in the DataFrame df is processed to remove HTML tags, accented characters, special characters, and lemmatize verbs. The text is then normalized to lowercase.

Q6.

Approach:

Perform exploratory data analysis (EDA) on the merged DataFrame merged\_df to extract relevant statistics regarding reviews of electronic products. The analysis includes identifying top and least reviewed brands, most positively reviewed product, rating distribution over consecutive years, word cloud analysis for good and bad ratings, distribution of ratings versus number of reviews, year with maximum reviews, and year with the highest number of customers.

Methodologies:

a. Top 20 most reviewed brands:

Group the data by brand and aggregate the sum of overall ratings.

Sort the brands based on the sum of ratings in descending order to identify the top 20 most reviewed brands.

|      | brand        | overall |
|------|--------------|---------|
| 1152 | Logitech     | 49817.0 |
| 158  | Asus         | 45874.0 |
| 363  | Case Logic   | 42210.0 |
| 506  | Dell         | 37015.0 |
| 109  | AmazonBasics | 29091.0 |
| 140  | Apple        | 21146.0 |
| 842  | HP           | 19197.0 |
| 77   | Acer         | 18356.0 |
| 1383 | PWR+         | 18336.0 |
| 430  | Corsair      | 16966.0 |
| 1729 | Targus       | 16946.0 |
| 1127 | Lenovo       | 15846.0 |
| 649  | Evecase      | 15031.0 |
| 124  | Anker        | 13667.0 |
| 766  | Generic      | 13604.0 |
| 1817 | UGREEN       | 12543.0 |
| 1884 | VicTsing     | 12301.0 |
| 1742 | TeckNet      | 12154.0 |
| 1790 | Toshiba      | 11159.0 |
| 1562 | Samsung      | 9681.0  |

# b. Top 20 least reviewed brands:

Similar to the approach for the most reviewed brands, but sorting in ascending order to identify the least reviewed brands.

|      | brand        | overall |
|------|--------------|---------|
| 1704 | THZY         | 10.0    |
| 704  | Fly Infotech | 11.0    |
| 1141 | LinDon-Tech  | 11.0    |
| 730  | GE           | 12.0    |
| 115  | Ammorn       | 13.0    |
| 343  | CSRET        | 13.0    |
| 1971 | Xorastra     | 13.0    |
| 540  | Ducti        | 13.0    |
| 33   | AIKONSOUND   | 13.0    |
| 1366 | Osurce       | 13.0    |
| 326  | COMEHERE     | 14.0    |
| 1532 | SODIAL(TM)   | 14.0    |
| 428  | Cooper Cases | 14.0    |
| 752  | GSAstore TM  | 15.0    |
| 1875 | Vensmile     | 15.0    |
| 1356 | Ona          | 15.0    |
| 136  | Aokland      | 15.0    |
| 1399 | Pesp         | 15.0    |
| 1444 | QualityArt   | 15.0    |
| 970  | Jopuzia      | 15.0    |

# c. Most positively reviewed product:

Calculate the mean overall rating for each product brand.

Identify the brand with the highest mean rating as the most positively reviewed product.

# most reviewed brand

|      | brand    | overall |  |
|------|----------|---------|--|
| 1152 | Logitech | 49817.0 |  |

# d. Count of ratings over 5 consecutive years:

Extract the year from the 'reviewTime' column.

Filter the data for the years 2012 to 2017.

Count the ratings for each year to observe trends over consecutive years.

Count of Ratings for Laptop from 2012 to 2017:

|   | year | overall |
|---|------|---------|
| 0 | 2012 | 10390   |
| 1 | 2013 | 22074   |
| 2 | 2014 | 38368   |
| 3 | 2015 | 60879   |
| 4 | 2016 | 71854   |
| 5 | 2017 | 47936   |

# e. Word Cloud for good and bad ratings:

Preprocess the text data by converting to lowercase, removing punctuation, and stopwords.

Separate reviews into good and bad based on specific keywords.

Generate word clouds to visualize the most commonly used words in good and bad reviews.



## Word Cloud for Bad Reviews



f. Distribution of Ratings vs. No. of Reviews:

Count the number of reviews for each rating.

Plot a pie chart to visualize the distribution of ratings.

# Distribution of Ratings vs. No. of Reviews



# g. Year with maximum reviews:

Extract the year from the 'reviewTime' column.

Count reviews for each year and identify the year with the maximum reviews.

The product got maximum reviews in the year: 2016

h. Year with the highest number of customers:

The year with the highest number of customers is: 2016

Group the data by year and count the number of unique customers (products) for each year.

Identify the year with the highest number of customers.

## Assumptions:

The 'merged\_df' DataFrame contains the merged data of reviews and product metadata.

The 'reviewTime' column is in datetime format and contains review timestamps.

Q7.

Approach:

Utilize CountVectorizer from scikit-learn to convert the text data in the 'reviewText' column of the DataFrame df into a bag-of-words (BoW) representation. This will enable the extraction of features from the text data, which can be used for further analysis or modeling tasks.

## Methodologies:

- Initialize CountVectorizer:
- Import CountVectorizer from the scikit-learn library.
- Fit and Transform the Data:
- Initialize an instance of CountVectorizer.
- Fit the CountVectorizer on the 'reviewText' column to learn the vocabulary and transform the text data into a sparse matrix representation.
- Get Feature Names:
- Retrieve the feature names from the CountVectorizer instance. These feature names correspond to the unique words in the text data.

## Assumptions:

- The 'reviewText' column contains textual data that needs to be converted into a bag-of-words representation.
- No specific preprocessing steps (such as tokenization or stopword removal) are applied before using CountVectorizer. If needed, additional preprocessing can be done before fitting the CountVectorizer.

- The text data in the 'reviewText' column of DataFrame df is converted into a bag-of-words representation using CountVectorizer.
- The feature names (unique words) extracted from the text data are obtained.

## Q8, Q9 and Q10

### Approach:

In this task, we aim to compare the performance of five different machine learning models in classifying the sentiment of reviews into three categories: Good, Average, and Bad. We'll use the review text as the input feature and the rating class as the target variable. The data will be divided into training and testing sets in a 75:25 ratio for evaluation.

## Methodologies:

- Data Preparation:
- Define a function categorize\_rating() to categorize ratings into three classes: Good, Average, and Bad based on the given criteria.
- Apply this function to create the 'rating class' column in the DataFrame df.
- Train-Test Split:
- Split the data into training and testing sets using the bag-of-words representation (X\_bow) as the input feature and the 'rating\_class' column as the target variable. The ratio of the traintest split is set to 75:25.
- Model Training and Evaluation:
- Initialize and train five machine learning models: Logistic Regression, Decision Tree, Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN).
- For each model, predict the target variable on the test set and calculate the classification report, including precision, recall, F1-score, and support for each target class (Good, Average, Bad).

## Assumptions:

- The 'rating\_class' column is created based on the categorization function provided.
- The bag-of-words representation (X\_bow) is used as the input feature for model training.
- The target variable (y) consists of three classes: Good, Average, and Bad.
- The performance of the models is evaluated using precision, recall, F1-score, and support for each target class.

- Five machine learning models are trained and evaluated based on their performance metrics.
- The classification report for each model is displayed, providing insights into the precision, recall, F1-score, and support for each target class (Good, Average, Bad).

| 11_1001_1                                      | _cneck_operm | 126_1 6301 | -(         |         |
|------------------------------------------------|--------------|------------|------------|---------|
| Classification                                 | n Report for | Logistic   | Regressio  | n:      |
|                                                | precision    |            | f1-score   | support |
|                                                |              |            |            |         |
| Good                                           | 0.43         | 0.12       | 0.19       | 5508    |
| Average                                        | 0.71         | 0.57       | 0.63       | 8416    |
| Bad                                            | 0.89         | 0.97       | 0.93       | 57909   |
| bau                                            | 0.03         | 0.57       | 0.55       | 37909   |
| accuracy                                       |              |            | 0.86       | 71833   |
| macro avg                                      | 0.68         | 0.55       | 0.58       | 71833   |
| weighted avg                                   | 0.83         | 0.86       | 0.84       | 71833   |
| weighted avg                                   | 0.65         | 0.80       | 0.84       | /1055   |
| Classification                                 | . Denent for | Decision   | Tuest      |         |
| Classification                                 |              |            |            |         |
|                                                | precision    | recall     | f1-score   | support |
|                                                |              | 0.40       |            |         |
| Good                                           | 0.24         | 0.19       | 0.21       | 5508    |
| Average                                        | 0.51         | 0.49       | 0.50       | 8416    |
| Bad                                            | 0.89         | 0.91       | 0.90       | 57909   |
|                                                |              |            |            |         |
| accuracy                                       |              |            | 0.81       | 71833   |
| macro avg                                      | 0.55         | 0.53       | 0.54       | 71833   |
| weighted avg                                   | 0.79         | 0.81       | 0.80       | 71833   |
|                                                |              |            |            |         |
| Classification                                 | n Report for | Random F   | orest:     |         |
|                                                | precision    | recall     | f1-score   | support |
|                                                |              |            |            |         |
| Good                                           | 0.80         | 0.06       | 0.11       | 5508    |
| Average                                        | 0.86         | 0.28       | 0.42       | 8416    |
| Bad                                            | 0.84         | 1.00       | 0.91       | 57909   |
|                                                |              |            |            |         |
| accuracy                                       |              |            | 0.84       | 71833   |
| macro avg                                      | 0.83         | 0.44       | 0.48       | 71833   |
| weighted avg                                   | 0.84         | 0.84       | 0.79       | 71833   |
|                                                |              |            |            |         |
| Classification                                 | n Report for | Support    | Vector Mac | hine:   |
|                                                | precision    |            |            | support |
|                                                |              |            |            |         |
| Good                                           | 0.45         | 0.03       | 0.06       | 5508    |
| Average                                        | 0.75         | 0.56       | 0.64       | 8416    |
| Bad                                            | 0.88         | 0.99       | 0.93       | 57909   |
| buu                                            | 0.00         | 0.55       | 0.55       | 3,303   |
| accuracy                                       |              |            | 0.86       | 71833   |
| macro avg                                      | 0.69         | 0.53       | 0.54       |         |
| weighted avg                                   | 0.83         | 0.86       | 0.83       | 71833   |
| werBuren av8                                   | 0.00         | 0.00       | 0.03       | /1000   |
| Classification Report for K-Nearest Neighbors: |              |            |            |         |
| CIGSSITICACIO                                  |              |            |            |         |
|                                                | precision    | recarr     | LT-2COL6   | support |

Q11.

Approach:

In this task, we aim to create a user-item rating matrix, normalize the ratings using min-max scaling, and then build a user-user collaborative filtering recommender system. We will find the top N similar users based on cosine similarity and evaluate the recommendation performance using k-fold cross-validation. Finally, we will report the Mean Absolute Error (MAE) for different values of N (number of similar users) in the recommendation system.

Methodologies:

Collaborative Filtering:

a) Create User-Item Rating Matrix:

Use the provided DataFrame merged\_df containing user-item-rating data to create a user-item rating matrix.

b) Normalize Ratings using Min-Max Scaling:

Use MinMaxScaler to normalize the ratings in the user-item matrix.

- c) User-User Recommender System:
- i) Find Top N Similar Users:

Calculate cosine similarity between users to find the top N similar users for each user.

ii) K-Fold Cross-Validation (K=5):

Divide the dataset into 5 subsets for k-fold cross-validation.

iii) Predict Missing Values and Calculate Error:

For each fold, predict the missing ratings using the training set and calculate the MAE using the validation set.

iv) Report MAE for Different Values of N:

Evaluate the recommendation system's performance for N = 10, 20, 30, 40, and 50 similar users.

## Assumptions:

- The DataFrame merged\_df contains user-item-rating data.
- The user-item rating matrix is created from the DataFrame.
- Ratings are normalized using min-max scaling.
- Cosine similarity is used to find similar users.
- K-fold cross-validation with K=5 is applied for evaluation.
- MAE is used as the evaluation metric for recommendation performance.

# MT23040 Jafreen Rizvi

- User-item rating matrix and normalized ratings are created.
- Top N similar users are found using cosine similarity.
- K-fold cross-validation is performed to evaluate the recommendation system's performance.
- MAE is reported for different values of N (number of similar users) in the recommendation system.