Nearest Neighbor Based Anomaly Detection

국가수리과학연구소 산업수학혁신센터 최 동 헌 (dhchoe@nims.re.kr)

- Ph.D. in Mathematics (Topology)
- Post Doctoral Researcher in NIMS
- Research interests
 - Low dimensional topology, Geometric topology
 - Topological data analysis
 - Time series analysis, Anomaly detection

Review

- Anomaly detection?
 - Identification of unobserved pattern in the data
 - Describe outlier as a data point that is dissimilar to other point
- Challenges in Anomaly detection
 - Inaccurate boundaries between outlier and normal behavior
 - Noise in the data which mimics real outlier
 - Labeled data might be hard to obtain
 - Highly imbalanced classification problem
 - Context dependent and so hindering the use of one model for multiple problems

Review

- Outlier detection
 - Polluted training data
 - Unsupervised learning
- Novelty detection
 - Training data consisting only of normal data
 - Semi-supervised learning
- Methods
 - Probabilistic methods, Distance-based, Neighbor-based, Domain Based, Isolation methods, Neural Networks

Review

- Classifier performance
 - To evaluate, we need labeled test data
 - Binary classifier, score function
- Evaluation
 - Confusion Matrix, Recall, Precision, AUROC
- Robust Covariance, One Class SVM

k-Nearest Neighbor(kNN) algorithm

- Simplest machine learning algorithm
- Sensitive for local structure
- Instance based learning (without model generating)
- Hyperparameters: number of neighbors (k), metric
- Optimal k depend on data (effect on decision boundary)

k-NN Classification

k-NN Regression

Outlier?

Definition 1: (Hawkins-Outlier)

An outlier is an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism.

Reference: R.Chalapathy, S.Chawla, Deep learning for anomaly detection: A survey, 2019 Jan

Distance based approach

Definition 2: (DB(pct, dmin)-Outlier)

An object *p* in a dataset *D* is a *DB(pct, dmin)*-outlier if at least percentage *pct* of the objects in *D* lies greater than distance *dmin* from *p*

Distance based approach

- DB-method takes a global view of data
- o_1, o_2 are outliers according to Hawkins' definition
- C_1 , C_2 are the set of inliers.
- In right side dataset, DB-method cannot detect outliers.

Figure 1: 2-d dataset DS1

Definition 3: (k-distance of p)

For any positive integer k, the k-distance of object p, denoted as k-distance(p), is defined as the distance d(p,o) between p and an object $o \in D$ such that:

- (i) for at least k objects $o' \in D \setminus \{p\}$ it holds that $d(p,o') \le d(p,o)$, and
- (ii) for at most k-1 objects o' \in D \ $\{p\}$ it holds that d(p,o') < d(p,o).

Definition 4: (k-distance neighborhood of p)

Given the k-distance of p, the k-distance neighborhood of p contains every object whose distance from p is not greater than the k-distance,

i.e. $N_{k-distance(p)}(p) = \{ q \in D \setminus \{p\} \mid d(p, q) \le k-distance(p) \}.$

Definition 5: (reachability distance of p w.r.t o)

Let k be a natural number. The reachability distance of object p with respect to object o is defined as

 $reach_dist_k(p, o) = \max\{k - distance(o), d(p, o)\}$

Figure 2: $reach-dist(p_1,o)$ and $reach-dist(p_2,o)$, for k=4

Definition 6: (local reachability density of p)

The local reachability density of p is defined as

$$lrd_{MinPts}(p) = 1/\left(\frac{\sum_{o \in N_{MinPts}} reach_dist_{MinPts}(p, o)}{|N_{MinPts}(p)|}\right)$$

Definition 6: ((local) outlier factor of p)

The (local) outlier factor of p is defined as

$$LOF_{MinPts}(p) = \frac{\sum_{o \in N_{MinPts}(p)} \frac{lrd_{MinPts}(o)}{lrd_{MinPts}(p)}}{|N_{MinPts}|}$$

A upper and lower bound of LOF

 $direct_{min}(p) = min\{reach_dist(p,q) | q \in N_{MinPts}(p)\}$

 $indirect_{min}(p) = min\{reach_dist(q, o) \mid q \in N_{MinPts}(p) \text{ and } o \in N_{MinPts}(q)\}$

Theorem 1: Let p be an object from D, and $1 \le MinPts \le |D|$.

Then, it is the case that

$$\frac{direct_{min}(p)}{indirect_{max}(p)} \le LOF(p) \le \frac{direct_{max}(p)}{indirect_{min}(p)}$$

A upper and lower bound of LOF

Figure 3: Illustration of theorem 1

Impact of the parameter MinPts

How LOF varies according to changing MinPts values?

Figure 7: Fluctuation of the outlier-factors within a Gaussian cluster

Impact of the parameter MinPts

- Determining a Range of MinPts Values
 - Too small MinPts cause unwanted statistical fluctuations.
 - MinPtsLB can be regarded as the minimum number of objects a "cluster" has contain
 - MinPtsUB is the maximum number of "close by" objects that can potentially be local outliers.

Impact of the parameter MinPts

 S_1 consist of 10 objects S_2 consist of 35 objects S_3 consist of 500 objects

Example dataset

Figure 8: Ranges of LOF values for different objects in a sample dataset