INSTITUTO FEDERAL Paraíba

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA – CAMPUS CAMPINA GRANDE CURSO: BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO PERÍODO TURMA: DISCIPLINA: PROFESSOR: CESAR VASCONCELOS SEMESTRE LETIVO: 2023.1

GitHub: https://github.com/cesarvasconcelos/cplus-poo

Usando C++, implemente os seguintes algoritmos (utilize **módulos** e **funções** onde achar necessário):

- 1. Em um sistema de supermercado, as maçãs custam R\$1.50 cada, se forem compradas menos de uma dúzia; e custam R\$ 1.10 cada, se o cliente comprar a partir de 12 maçãs. Escreva um algoritmo que leia a quantidade de maçãs compradas pelo cliente, calcule e escreva o custo total da compra.
- 2. Escreva um algoritmo para ler um número inteiro e exiba se ele é maior, igual ou menor que zero.
- 3. Faça um programa para uma escola que, dadas três notas de um aluno e seu nome completo, exiba, no final, o nome do estudante, a média final e o seu conceito, observando que:
 - a. a média final é calculada a partir da média aritmética simples das 3 notas;
 - b. o conceito é determinado a partir da tabela a seguir:

MÉDIA FINAL	CONCEITO
≥ 80	Α
$\geq 50 e < 80$	В
< 50	С

c. A mensagem final exibida do sistema deve ter o seguinte formato (substitua os espaços entre <> pelos respectivos valores passados como entrada para o sistema):

"As notas fornecidas como entrada foram: <N1>, <N2> e <N3> com Média final: <M>"

4. Escreva um programa para uma clínica médica que determine o grau de obesidade de uma pessoa. Devem ser fornecidos como entrada o peso (em kilogramas) e a altura (em metros) da pessoa. O grau de obesidade é determinado pelo IMC – Índice de Massa Corpórea (IMC = Peso / Altura²). No final, o programa deve emitir as mensagens correspondentes conforme a tabela a seguir:

Valor do IMC	Mensagem do sistema
Abaixo de 18.5	Você está abaixo do seu peso ideal
Entre 18.5 e 24.9	Parabéns! Você está no seu peso ideal!
Entre 25.0 e 29.9	Você está acima do seu peso (sobrepeso)
Entre 30.0 e 34.9	Obesidade grau I
Entre 35.0 e 39.9	Obesidade grau II

[&]quot;<Fulano de tal> obteve conceito <X>"

Acima de 40.0	Obsesidade grau III
---------------	---------------------

- 5. Faça um programa que leia o nome do eleitor e sua idade e seja capaz de informar sua classe eleitoral, de acordo com as instruções abaixo:
 - a. Não eleitor (abaixo de 16 anos);
 - b. Eleitor obrigatório (entre 18 e 65 anos) e
 - c. Eleitor facultativo (16, 17 anos ou acima dos 65 anos).
- 6. O preço do Kw/h é aplicado de acordo com a quantidade de energia elétrica consumida, conforme pode-se ver na tabela abaixo:

CONSUMO MENSAL (CM)	PREÇO Kw/h (em R\$)
<i>CM</i> ≥ 300	R\$ 1.00
$CM \ge 200 e CM < 300$	R\$ 0.80
CM < 200	R\$ 0.20

Faça um programa para receber o consumo mensal e depois calcular o total a pagar no mês. A saída do sistema deve ter o seguinte formato:

Consumidor: <FULANO>

Consumo mensal: <X>

Preço do kw/h em R\$: <P> Total a pagar R\$: <Y>

- 7. Faça um programa que receba 3 diferentes números inteiros como entrada e informe qual é o MAIOR.
- 8. Escreve um programa em C++ que calcule o imposto de renda (IR) final, de acordo com as informações abaixo. Os valores em reais de Salário Bruto e Desconto INSS, bem como o Número de dependentes devem ser lidos pelo teclado.
 - a. Desconto = R\$ 90,00 por cada dependente
 - b. Base de Cálculo = Salário Bruto (Desconto * Nº de dependentes) Desconto INSS
 - c. IR (em Reais) = (Base de cálculo) * Alíquota Parcela a deduzir

Base de Cálculo	Alíquota adicional (%)	Parcela a Deduzir
até 900.80	Isento	R\$ 0.00
até 1800.50	15%	R\$ 135.00
acima de 1800.50	27.5%	R\$ 315.00

 A diretoria de uma Equipe de Futebol deseja aumentar o salário de seus jogadores registrados. O ajuste salarial deve obedecer a seguinte tabela:

Salário atual (R\$)	Aumento (%)
até 1000.00	30%

até 1500.00	20%
até 2000.00	15%
até 2500.00	10%
acima de 2500.00	5%

Preparar um algoritmo para ler o nome e o salário atual do jogador (em reais) e, no final, possa imprimir seus dados junto com o salário anterior e o novo salário reajustado.

- 10. Numa fábrica, os trabalhadores são divididos em 3 classes:
 - a. os que fazem até 30 peças por mês (Classe C)
 - b. os que fazem de 31 a 44 peças por mês (Classe B)
 - c. os que fazem mais de 44 peças por mês (Classe A)

A classe \underline{C} recebe apenas o salário-mínimo (SM). A classe \underline{B} recebe SM + 5% do SM. A classe \underline{A} recebe SM + 15% do SM.

Faça um programa que:

- a. Leia Salário Mínimo, Nome do funcionário e o nº de peças fabricadas por mês;
- b. Calcule o salário final do funcionário e, ainda, imprima a classe que o funcionário pertence;

A saída do sistema deve ter o seguinte formato:

Funcionário: <FULANO>

Salário Mínimo (R\$): <SM>

Número de peças fabricadas: <X>

Classe: <A, B ou C>

Salário final calculado (R\$): <Y>