MTH 430 METRIC SPACES AND TOPOLOGY

Final Exam June 10, 2020

Show all your work and justify your answers. And, please, write clearly!

Problem I.

- a) Let $\mathbb{Q} \subset \mathbb{R}$ be the set of rational numbers. Find \mathbb{Q} , \mathbb{Q} , \mathbb{Q}^b , where the superscript b indicates the frontier of a set.
- **b)** Find all the connected components of \mathbb{Q} .

Problem II.

- a) Show that $f: X \to Y$ is continuous if and only if $f^{-1}(C) \subset X$ is closed for every closed $C \subset Y$.
- **b)** Then show that a function $f: X \to Y$ is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$.

Problem III.

- a) Let $g: X \to Y$ be continuous, where Y is Hausdorff, and let $q \in Y$. Show that the set $G_q = \{x \in X \mid g(x) = q\}$ is closed in X.
- b) Let X denote the space of real numbers with the finite-complement topology, and define $f: \mathbb{R}^1 \to X$ by $f(x) = x^3$, where \mathbb{R}^1 is equipped with the usual Euclidean topology. Is f continuous? Is it a homeomorphism?

Problem IV.

- a) Let X be compact and assume that $\{C_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is a collection of closed subsets of X with the property that given any finite set of indices $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subset \mathcal{A}, n \geq 1$, then $C_{\alpha_1} \cap C_{\alpha_2} \cap \cdots \cap C_{\alpha_n} \neq \emptyset$. Show that $\bigcap_{\alpha \in \mathcal{A}} C_{\alpha} \neq \emptyset$.
- **b)** Let \mathbb{R}^{2*} be the 1-point compactification of the plane \mathbb{R}^2 as in problem 4 of assignment 4. show that \mathbb{R}^{2*} is homeomorphic with the 2-dimensional unit sphere $S^2 \subset \mathbb{R}^3$.

Problem V. Let X be a topological space, and let $\Delta \colon X \to X \times X$ be the diagonal map $\Delta(x) = (x, x)$. Equip $X \times X$ with the product topology.

- a) Show that Δ is continuous.
- **b)** Show that X is Hausdorff if and only if the diagonal $\Delta(X) \subset X \times X$ is closed in $X \times X$.

Problem VI.

- a) Show that the product of two path-connected spaces is path-connected.
- **b)** Show that the sphere S^n is path-connected for any $n \geq 1$.

Problem VII.

- a) Let $I^2 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le 1\}$. Identify the vertical sides by the relation $(0,y) \sim (1,y), 0 \le y \le 1$. Show that I^2/\sim is homeomorphic with $S^1 \times I$, where I = [0,1] denotes the closed unit interval in \mathbb{R} .
- **b)** Let $A = \begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix} \subset I$. Show that I/A is homeomorphic with I.