$O\Pi$ «Политология», 2022-23

Введение в ТВиМС

Совместное распределение случайных величин. Ковариация и корреляция. (08 февраля)

А. А. Макаров, А. А. Тамбовцева

Задача 1. В психологическом тесте два вопроса имеют по три варианта ответа. Каждому из вариантов ответа присваивается сырой балл в зависимости от выраженности тестируемого свойства. Совместное распределение сырых баллов за каждый ответ задано таблицей:

$X \setminus Y$	0	1	2
0	0.2	0.05	0
1	0.15	0.1	0.05
2	0.05	0.2	?

- (a) Запишите маргинальные распределения случайных величин X и Y.
- (b) Проверьте, можно ли считать, что ответы на вопросы независимы.
- (c) Найдите условные вероятности $P(Y = 2 \mid X = 2)$ и $P(Y = 2 \mid X = 0)$.
- (d) Запишите ряд распределения случайной величины X + Y.
- (e) Найдите математическое ожидание случайной величины $X \cdot Y$.

Задача 2. X — число чашек кофе, которое респондент выпивает по утрам, Y — число вещей, которое он забывает сделать утром из-за низкой концентрации внимания. Совместное распределение случайных величин X и Y выглядит следующим образом (одна вероятность пропущена):

$X \setminus Y$	0	1
0	0.1	0.1
1	0.1	0.2
2	0.2	?

- (a) Запишите маргинальные распределения случайных величин X и Y и найдите их математические ожидания.
- (b) Вычислите Cov(X, Y).
- (c) Вычислите Corr(X,Y).

Задача 3. X и Y – дискретные случайные величины. Известно, что $\mathrm{D}(X)=4,$ $\mathrm{D}(Y)=9$ и $\mathrm{Cov}(X,Y)=3.$

- (a) Найдите Cov(2X, 4Y).
- (b) Найдите Corr(X, Y) и Corr(4X, 3Y).
- (c) Найдите D(X+Y).
- (d) Найдите D(X 3Y).

Задача 4. Совместное распределение случайных величин X и Y задано с помощью таблицы:

$X \setminus Y$	0	1
1	0.24	0.36
4	0.16	0.24

Проверьте, являются ли величины X и Y независимыми. Найдите $\mathrm{Corr}(X,Y)$.