SEMINARS 9+10

- 1) Which of the following subsets is a subspace in the space mentioned nearby:
 - a) $A = \{(x, y) \in \mathbb{R}^2 \mid ax + by = 0\}, (a, b \in \mathbb{R} \text{ are given}) \text{ in } \mathbb{R}\mathbb{R}^2;$
 - b) D = [-1, 1] in $\mathbb{R}\mathbb{R}$;
 - b') $D' = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ in $\mathbb{R}\mathbb{R}^2$;
 - b") $D'' = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}$ in \mathbb{R}^n ;
 - c) $P_n(\mathbb{R}) = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f \leq n \}$ in $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ is given});$
 - d) $B = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f = n \}$ in $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ is given})?$
- 2) Let V be a K-vector space, $A \leq_K V$ and $C_V A = V \setminus A$.
 - i) Is $C_V A$ a subspace in KV?
 - ii) What about $C_V A \cup \{0\}$?
- 3) Let V be a K-vector space, $S \leq_K V$ and $x, y \in V$. We denote $\langle S, x \rangle = \langle S \cup \{x\} \rangle$. Show that if $x \in V \setminus S$ and $x \in \langle S, y \rangle$ then $y \in \langle S, x \rangle$.
- 4) Let V be a K-vector space and $\alpha, \beta, \gamma \in K$, $x, y, z \in V$ such that $\alpha \gamma \neq 0$ and $\alpha x + \beta y + \gamma z = 0$. Show that $\langle x, y \rangle = \langle y, z \rangle$.
- 5) Is the real vector space $\mathbb{R}_3[X] = \{ f \in \mathbb{R}[X] \mid \deg f \leq 3 \}$ generated by the set

$$\{f_1 = 3X + 2, f_2 = 4X^2 - X + 1, f_3 = X^3 - X^2 + 3\}$$
?

Why?

- 6) Let V, V' be K-vector spaces, $f: V \to V'$ a linear map, $A \leq_K V$ and $A' \leq_K V'$. Show that:
 - a) $f(A) = \{ f(a) \in V' \mid a \in A \} \leq_K V';$
 - b) $f^{-1}(A') = \{x \in V \mid f(x) \in A'\} \le_K V.$
- 7) In the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$ we consider

$$\mathbb{R}_o^{\mathbb{R}} = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is odd}\}, \ \mathbb{R}_e^{\mathbb{R}} = \{f: \mathbb{R} \to \mathbb{R} \mid f \text{ is even}\}.$$

Show that $\mathbb{R}_o^{\mathbb{R}}$ şi $\mathbb{R}_e^{\mathbb{R}}$ are subspaces of $\mathbb{R}^{\mathbb{R}}$ and $\mathbb{R}^{\mathbb{R}} = \mathbb{R}_o^{\mathbb{R}} \oplus \mathbb{R}_e^{\mathbb{R}}$.

- 8) Show that the property of being a direct summand is transitive.
- 9) Let us consider:
- a) $f_1: \mathbb{R}^2 \to \mathbb{R}^2$, $f_1(x,y) = (-x,y)$ (the symmetry with respect to Oy);
- b) $f_2: \mathbb{R}^2 \to \mathbb{R}^2, f_2(x,y) = (x,-y)$ (the symmetry with respect to Ox);
- c) $f_3: \mathbb{R}^2 \to \mathbb{R}^2$, $f_3(x,y) = (x\cos\varphi y\sin\varphi, x\sin\varphi + y\cos\varphi)$, $\varphi \in \mathbb{R}$, (the plane rotation of angle φ);
- d) $f_4: \mathbb{R}^2 \to \mathbb{R}^3, f_4(x,y) = (x+y, 2x-y, 3x+2y).$

Show that f_1 , f_2 , f_3 , f_4 are \mathbb{R} -linear maps. Are they isomorphisms? Are they automorphisms?

10) Can you find an \mathbb{R} -linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ such that

$$f(1,0,3) = (1,1)$$
 şi $f(-2,0,-6) = (2,1)$?

1