Z- und Laplace-Transformierte ausgewählter Funktionen

$x\left(t\right)$	$X\left(s\right)$	$x\left(kT_A\right)$	$X\left(z\right)$	Anmerkung
$\delta\left(t\right) = \begin{cases} \infty & t = 0\\ 0 & \text{sonst} \end{cases}$	1	$\delta\left(kT_A\right) = \begin{cases} \infty & k = 0\\ 0 & \text{sonst} \end{cases}$	1	Dirac-Impuls
$\sigma\left(t\right) = \begin{cases} 1 & t \ge 0\\ 0 & \text{sonst} \end{cases}$	$\frac{1}{s}$	$\sigma\left(kT_A\right) = \begin{cases} 1 & k \ge 0\\ 0 & \text{sonst} \end{cases}$	$\frac{z}{z-1}$	Sprungfunktion, Ü-Fkt. des I-Gliedes
e^{-at}	$\frac{1}{s+a}$	e^{-akT_A}	$\frac{z}{z-e^{-aT_A}}$	Exponentialfunktion, Ü-Fkt. des PT1-Gliedes
te^{-at}	$\frac{1}{(s+a)^2}$	$kT_A e^{-akT_A}$	$T_A \frac{ze^{-aT_A}}{\left(z - e^{-aT_A}\right)^2}$	-
t	$\frac{1}{s^2}$	kT_A	$T_A \frac{z}{(z-1)^2}$	Rampenfunktion
t^2	$\frac{2}{s^3}$	$(kT_A)^2$	$T_A \frac{z(z+1)}{(z-1)^3}$	Parabel