

Introduction

- Goal: distribution of the outcomes in a badminton tournament
- Approach: Bayesian data analysis on historical data

23-21, 21-6

Ranking spread

- Ranking spreads = rank(2nd player) rank(1st player)
- For example:
 - Spread(from 1st rank player to 8th rank player) = 8 1 = 7
 - Spread(from 2nd rank player to unrank player) = 12 2 = 10

Win degree

• Win degrees = $\{1,2,3,4,5,6\}$

- 1 Lose Lose → Lose
- 2 Lose Win Lose → Lose
- 3 Win Lose Lose → Lose
- 4 Lose Win Win → Win
- 5 Win Lose Win → Win
- 6 Win Win → Win

Example of spread 11 and win degree 4

Preprocess

- Objective: 1-d space collection
- Reduction rules:
 - Same spreads, higher win degree correlates to higher value (arrow A)
 - Same win degrees, lower spread correlates to higher value (arrow B)
- How:
 - Starts with an extreme value
 - Increase by step 1

Dataset

• Outcome of the dataset after preprocessing (67x5)

	Tournament 1	Tournament 2	Tournament 3	Tournament 4	Tournament 5
Match 1	6.0	17.0	16.0	6.0	1.0
Match 2	15.0	15.0	17.0	13.0	17.0
Match 3	16.0	7.0	4.0	17.0	5.0
Match 4	15.0	13.0	17.0	17.0	13.0
Match 5	19.0	20.0	20.0	15.0	17.0

Models

- Priors
 - Uniform (weak prior)
 - Inverse Gamma (on variance, conjugate prior to the normal likelihood)
- Likelihood
 - Normal
- Models
 - Pooled with uniform prior
 - Pooled with inverse gamma prior
 - Hierarchical with uniform prior
 - Hierarchical with inverse gamma prior

Convergence diagnostics 1/2

- Pre-conditions
 - Stan's default parameters
 - adapt_delta=0.9
- Validation criteria
 - Rhat < 1.1
 - Effective sample size high
 - Divergences 0

Convergence diagnostics 2/2

Model comparison with PSIS-LOO

- All the models are reliable (very low k-values)
- Model with best predictive accuracy is Pooled model with inverse gamma prior (highest PSIS-LOO value)

	Models	Psisloo	P_eff	Max k value	Min k value	Mean k value
0	Pooled model with uniform prior	-1056.45	1.67	-0.07	-0.25	-0.18
1	Pooled model with inverse gamma prior	-1056.38	1.64	-0.01	-0.16	-0.11
2	Hierarchical model with uniform prior	-1057.25	2.96	0.10	-0.14	-0.05
3	Hierarchical model with inverse gamma prior	-1057.39	3.10	0.11	-0.18	-0.04

Posterior predictive checking

- Similar trend
- Errors are considerable why?

Conclusions 1/2

- Problems
 - Direct inference of a single match
 - Divergences in hierarchical model
- Improvements
 - Alternative models: Binomial, Multinomial
 - Joint distribution of some parameters (absolute ranking + win degree)
 - Sensitivity analysis for the prior and model

Conclusions 2/2

- Badminton domain perspective:
 - Visible correlation between spread and win degree
 - Extreme outcome (towards 1 or 28) not expected
- Statistical inference perspective
 - Given the domain knowledge, one would expect the distribution of the estimand to be a normal distribution
 - Highly data-driven
 - Hierarchical model ends up as pooled model

