

Introducción a AMBA

AHB-Lite – AHB Multilayer - APB

Guillermo Güichal Gastón Rodriguez

Temario (1)

- ☐ Buses On-Chip:
 - Descripción
 - Ejemplos
- ☐ AMBA:
 - Descripción
 - Historia
 - Topologías
- ☐ AHB-Lite:
 - Descripción
 - Componentes
 - Transferencias
 - Bursts
 - Conexionado

Temario (2)

- **□** AHB Multilayer:
 - Descripción
 - Topologías
- ☐ APB:
 - Descripción
 - Transferencias
- **□** Referencias

Descripción (1)

- □Surgen como un intento de estandarizar las interfaces de comunicación entre "cores".
- □Permiten la creación de libraries de componentes reutilizables.
- ☐Simplifican el proceso de integración.
- □Facilitan la verificación del diseño.
- □Buscan maximizar la eficiencia del sistema (mayor ancho de banda, menor consumo)

Descripción (2)

- ☐Se usan principalmente en diseños de SoC
- □Contienen uP, DSP, DMA, y periféricos
- □Permiten manejar la complejidad de diseños que integran gran cantidad de cores.
- En diseños de FPGA, quizás con menor complejidad, igualmente permiten ordenar el diseño.

Diseño Ad-Hoc (2)

Descripción

- □ AMBA (Advanced Microcontroller Bus Architecture)
- ☐Es un conjunto de protocolos de interconexión de componentes "on-chip"
- □Fué desarrollado por ARM en 1996
- ☐ Se ha transformado en un estándard de facto :
 para diseños de SoC

Historia (1)

- ☐ Los primeros buses fueron:
 - Advanced System Bus (ASB).
 - Advanced Peripheral Bus (APB).
- ☐ En la segunda versión, AMBA 2, se agregó el:
 - Advance High-performance Bus (AHB), que reemplaza al ASB.
- ☐ La tercera generación, AMBA 3, incorpora a:
 - Advanced eXtensible Interface (AXI): SoCs de muy alta frecuencia de operación, muy customizable.
 - Advanced Trace Bus (ATB): debug & trace in-circuit (CoreSight)
- ☐ Además se modifica el AHB:
 - Se reemplaza AHB full por el AHB-Lite.
 - Se crea el AHB Multilayer.

Historia (2)

- □La última generación es la AMBA 4, que incorpora a:
 - □AXI4: un update del AXI rev. 1.0 (AXI3)
 - □AXI4-Lite: un subset del AXI4, pensado para interfaces hacia bloques de registros.
 - □AXI4-Stream: una variante de AXI4, pensado para conexiones punto a punto sin address, por ejemplo para audio o video.

Sistema AMBA típico

AMBA Advanced High-performance Bus (AHB)

- * High performance
- * Pipelined operation
- * Burst transfers
- * Multiple bus masters
- * Split transactions

AMBA Advanced Peripheral Bus (APB)

- * Low power
- * Latched address and control
- * Simple interface
- * Suitable for many peripherals

Sistema AHB (full)

Sistema AHB-Lite

Descripción

- □Para sistemas de alta performance con un solo master.
- □ Algunas de sus características principales:
 - Operación con solo el flanco ascendente del reloj
 - Soporta transferencias en burst
 - Implementación con multiplexores (no tri-states)
 - Ancho del bus de datos de 32 bits, ampliable a 64, 128, 256, 512, y 1024 bits.

Componentes

- **□** Master
- ☐Slave/s
- □ Decoder
- **□** Multiplexer

Master

- □ Provee el address y la información de control para iniciar operaciones de lectura o escritura.
- ☐ Provee el dato durante los ciclos de escritura.

Slave

- Responde a las transferencias iniciadas por el master.
- ☐ Usa la señal HSELx para saber que la transferencia le pertenece.
- □ Indica si la operación terminó con éxito, si hubo un error o si se debe esperar para completarla.
- ☐ Provee del dato durante las operaciones de lectura.

Decoder

- Decodifica el address de cada transferencia.
- □ Provee una señal de selección para el slave involucrado en la operación.
- □ También provee una señal de control para el multiplexor.
- ☐ Se necesita en todos los sistemas que cuenten con dos o mas slaves.

Multiplexer

- ☐Se requiere de un multiplexor Slave-to-Master para seleccionar el dato de lectura y las señales de respuesta de los slaves hacia el master.
- ☐ Es controlado por el decoder.
- ☐ Se requiere en todas aquellas aplicaciones que usen dos o mas slaves.

Operación (1)

- □El master inicia una transferencia al colocar el address y las señales de control.
- □ Las transferecias pueden ser:
 - Simple
 - Burst incremental
 - Wrapping bursts
- Los datos se mueven del master al slave durante las escrituras, y del slave al master en las lecturas.

Operación (2)

□Cada transferencia se divide en dos fases: □Address phase □ Data phase □Los slaves no pueden pedir que se extienda la address phase, así que deben poder latchear el address y las señales de control. ☐Si pueden insertar wait states durante la data phase, usando la señal HREADY ☐El slave usa HRESP para indicar el éxito o no de la transferencia.

Transferencia básica

Wait states

Figure 3-3 Read transfer with wait states

Figure 3-4 shows a write transfer with one wait state.

Figure 3-4 Write transfer with wait state

Bursts

- ☐ Se definen los siguientes tipos:
 - Transferencias simples (1 beat)
 - Bursts de longitud indefinida (1 o mas beats)
 - Bursts de 4, 8 y 16 beats
- □Los burst de longitud definida pueden ser:
 - Incrementales
 - Wrapping bursts
- □Los de longitud indefinida solo pueden ser incrementales.

Ejemplo: WRAP4

Ejemplo: INCR8

Ejemplo: INCR

Interconexión del bus

Descripción

- □Permite gran flexibilidad de interconexión.
- ☐Se pueden crear complejos sistemas con múltiples masters.
- ☐Se puede optimizar la performance en las secciones críticas.
- ☐Se necesitan mas recursos de ruteo (Si son necesarios).
- □El arbitraje no es mas centralizado.

Agrupamiento de slaves

Agrupamiento de masters

Descripción

- □Pensado para minimizar el consumo de potencia y la complejidad de las interfaces.
- □ Debe ser usado para integrar aquellos componentes que no requieran gran ancho de banda.
- ☐Es parte de un sistema AMBA, donde el único master APB es el bridge AHB to APB.
- □ Puede utilizar un diferente dominio de reloj (con PCLK de menor frecuencia que el HCLK).

17 August 2004

Referencias

□ http://en.wikipedia.org/wiki/Advanced_Microcontr oller Bus Architecture □ http://www.arm.com/products/systemip/amba/amba-open-specifications.php □ AMBA[™] Specification (Rev 2.0) - 13th May 1999 □ AMBA™ 3 AHB-Lite Protocol (v1.0) -Specification - 06 June 2006 ☐ Multi-layer AHB Overview - 10 May 2004 □ AMBA™ 3 APB Protocol (v1.0) - Specification -

Contacto

Gastón Rodriguez

grodriguez@emtech.com.ar

EmTech

info@emtech.com.ar

www.emtech.com.ar