ES120 Spring 2018 - Section 4 Notes

Matheus Fernandes

February 22, 2018

Problem 1:

Figure 1

For the cylindrical shaft shown, determine the maximum shearing stress caused by a torque of magnitude T=1.5 kN·m.

Solution 1

In order to determine the maximum shear stress caused by a torque onto the shaft we must convert the physical torque (which is equivalent to a force) to a stress. The relationship between torque and maximum shear stress is given by:

$$au_{max} = \frac{Tr}{I},$$
 (1)

where J is the polar moment of inertia for a cylinder as described per the document at the end of the notes. We can then obtain the equation for J as:

$$J = \frac{\pi}{2}c^4 \tag{2}$$

such that we can solve for au_{max} as

$$au_{max} = \frac{2T}{\pi c^3} = \frac{(2)(1500)}{\pi (0.022)^3} = 89.7 \text{MPa}$$
 (3)

February 22, 2018 ES120 Section Notes

Problem 2:

Figure 2

Knowing that the internal diameter of the hollow shaft shown is d=0.9 in., determine the maximum shearing stress caused by a torque of magnitude T=9 kip·in.

Solution 2

Similar to the previous problem we know that the maximum shear stress is dictated by the equation

$$\tau_{max} = \frac{Tr}{J},\tag{4}$$

where now our radii differ in that for an annulus. So our c's become

$$c_1 = 0.5 * 0.9 = 0.45 \text{ in}$$
 (5)

$$c_2 = 0.5 * 1.6 = 0.8 \text{ in}$$
 (6)

Our second moment of an annulus can be calculated by subtracting the moment of the inner from the outer such that:

$$J = \frac{\pi}{2}(c_2^4 - c_2^4) = \frac{\pi}{2}(0.8^4 - 0.45^4) = 0.5790 \text{ in}^4$$
 (7)

Applying that in to the equation for au_{max} we get

$$au_{max} = \frac{(9)(0.8)}{0.5790} = 12.44 \text{ ksi}$$
 (8)

February 22, 2018 ES120 Section Notes

Problem 3:

Figure 3

The torques shown are exerted on pulleys A and B. Knowing that each shaft is solid, determine the maximum shearing stress (a) in shaft AB, (b) in shaft BC.

Part A
Part B

	Description	Figure	Area moment of inertia	Comment
A filled c	ircular area of radius <i>r</i>		$I_x=rac{\pi}{4}r^4 \ I_y=rac{\pi}{4}r^4 \ I_z=rac{\pi}{2}r^4$ [1]	I_z is the Polar moment of inertia.
An annul	lus of inner radius r_1 and outer radius		$egin{aligned} I_x &= rac{\pi}{4} \left({r_2}^4 - {r_1}^4 ight) \ I_y &= rac{\pi}{4} \left({r_2}^4 - {r_1}^4 ight) \ I_z &= rac{\pi}{2} \left({r_2}^4 - {r_1}^4 ight) \end{aligned}$	For thin tubes, $m{r}\equiv m{r_1} pprox m{r_2}$ and $m{r_2}\equiv m{r_1}+m{t}$. So, for a thin tube, $m{I_x}=m{I_y}pprox \pi m{r^3}m{t}$. $m{I_z}$ is the Polar moment of inertia.
and radio	ircular sector of angle θ in radians us r with respect to an axis through roid of the sector and the center of		$I_x = (\theta - \sin \theta) rac{r^4}{8}$	This formula is valid only for $0 \le \theta \le \pi$