

Condensing CNNs with Partial Differential Equations

Anil Kag and Venkatesh Saligrama (ECE Department, Boston University)

Tiny Models

Discrete CNNs (ResNet, EfficientNet)

> Repetitions are expensive : compute & storage

ODE CNNs (Neural-ODE, NeuPDE)

Does not scale to large scale datasets

	MNIST	Acc. (%)	#Params	#MAC
-	Neural-ODE	99.49	220K	100M
	NeuPDE	99.49	180K	50M
	ResNet	99.51	600K	30M

ODE CNNs (MDEQ)

> Scales up to Imagenet, **But** computationally expensive

Imagenet-1K	Acc. (%)	#Params	#MACs
ResNet	77.8	60M	11B
DenseNet	76.3	14M	3.5B
MDEQ-Small	75.5	18M	21B

Feature Comparison with Prior Work

Architecture Type	Architecture	Storage Reduction	Compute Reduction	Large Scale Datasets
Discrete-CNNs	ResNet	1x	1x	
	Neural-ODE		X	X
ODE-CNNs —	NeuPDE		X	X
	MDEQ		X	
Global-CNNs (ours)	ResNet-Global			

Our Proposal: Global Layer based on PDEs

Apply PDE instead of repetitions

Diffusion | Advection | Source

Visualization : MNIST-10

Feature Backbone		Confusion b/w 3 & 5
Convolution	92.01	27
Residual	92.53	30
Global	95.03	9

➤ Baseline Comparison : CIFAR-10

Architecture	Accuracy (%)	#Params	#MACs	Inference Time (s)	Depth
ResNet-32	92.49	460K	70M	4.5	15
MDEQ	92.28	1.1M	1.5B	23.3	_
ResNet-Global	91.93	162K	15M	1.9	6

Empirical Evaluation Highlights

> Low Model Footprint @ Similar Accuracy

Architecture	CIFAR-10 Acc. (%)	CIFAR-100 Acc. (%)	#Params	#MACs
NeuPDE	95.4	76.4	9M	4.1B
MDEQ	93.8	71.1	10M	8.3B
ResNet-32	92.4	68.6	473K	70M
ResNet-Global	91.9	68.1	168K	15M
DenseNet	95.3	77.2	800K	297M
DenseNet-Global	95.0	75.7	481K	136M
DARTS	97.1	82.5	3.4M	539M
DARTS-Global	96.9	81.9	835K	213M

> High Accuracy @ Similar Model Footprint

riigii Accuracy & Cirmai Model i Colprint						
Architecture	CIFAR-100 Acc. (%)	#Params	#MACs	CIFAR-100 Acc. (%)	#Params	#MACs
ResNet-56	70.4	861K	127M	35.2	14K	3.4M
ResNet-Global	74.3	1.3M	119M	43.6	16K	3.6M
DenseNet	77.2	800K	297M	_	-	-
DenseNet-Global	78.9	922K	247M	_	-	-
Wide-ResNet	79.1	9M	1.3B	39	23K	9.8M
Wide-ResNet-Global	80.5	9M	1.3B	50.2	24K	8.7M
DARTS	82.5	3.4M	539M	54.6	43K	7.7M
DARTS-Global	84.2	2.4M	519M	60.7	41K	8.2M

Scales easily to Imagenet-1K

Architecture	Top-1 Acc. (%)	#Params	#MACs
MDEQ-Small	75.5	18M	21B
MBV2	71.9	3.4M	300M
MBV2-Global	71.6	1.6M	193M
MBV3	75.2	5.4M	219M
MBV3-Global	74.1	3M	156M
EfficientNet-B0	77.1	5.3M	390M
EfficientNet-B0-Global	76.1	2.4M	244M

https://github.com/anilkagak2/PDE_GlobalLayer