Using the QR factorization to solve a matrix equation $A\mathbf{x} = \mathbf{b}$

First suppose A is square and its columns are linearly independent.

Then A is invertible.

It follows that there is a solution (because we can write $\mathbf{x} = A^{-1}\mathbf{b}$)

QR Solver Algorithm to find the solution in this case:

Find Q, R such that A = QR and Q is column-orthogonal and R is triangular Compute vector $\mathbf{c} = Q^T \mathbf{b}$

Solve $R\mathbf{x} = \mathbf{c}$ using backward substitution, and return the solution.

Why is this correct?

- Let $\hat{\mathbf{x}}$ be the solution returned by the algorithm.
- We have $R\hat{\mathbf{x}} = Q^T \mathbf{b}$
- ▶ Multiply both sides by Q: $Q(R\hat{\mathbf{x}}) = Q(Q^T\mathbf{b})$
- Use associativity: $(QR)\hat{\mathbf{x}} = (QQ^T)\mathbf{b}$
- ► Substitute A for QR: $A\hat{\mathbf{x}} = (QQ^T)\mathbf{b}$
- ▶ Since Q and Q^T are inverses, we know QQ^T is identity matrix: $A\hat{\mathbf{x}} = \mathbb{1}\mathbf{b}$

Thus $A\hat{\mathbf{x}} = \mathbf{b}$.

Solving Ax = b

What if columns of *A* are not independent?

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ be columns of A.

Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent.

Then there is a basis consisting of a subset, say $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4$

$$\left\{ \left[\begin{array}{c|c|c} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] : x_1, x_2, x_3, x_4 \in \mathbb{R} \right\} =$$

$$\left\{ \left[\begin{array}{c|c} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_4 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_4 \end{array}\right] : x_1, x_2, x_4 \in \mathbb{R} \right\}$$

Suppose A is an $m \times n$ matrix and its columns are linearly independent.

Since each column is an *m*-vector, dimension of column space is at most m, so $n \leq m$.

What if n < m? How can we solve the matrix equation $A\mathbf{x} = \mathbf{b}$?

- ▶ Dimension of Im *f* is *n*
- Dimension of co-domain is m.
- ► Thus f is not onto.

Goal: An algorithm that, given equation $A\mathbf{x} = \mathbf{b}$, where columns are linearly independent, finds the vector $\hat{\mathbf{x}}$ minimizing $\|\mathbf{b} - A\hat{\mathbf{x}}\|$.

Solution: Same algorithm as we used for square A

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \mathbf{b}$$

Remark: There might not be a solution:

Define
$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 by $f(\mathbf{x}) = A\mathbf{x}$
Dimension of Im f is n

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \mathbf{b}$$

Recall...

High-Dimensional Fire Engine Lemma: The point in a vector space \mathcal{V} closest to \mathbf{b} is $\mathbf{b}^{\parallel\mathcal{V}}$ and the distance is $\|\mathbf{b}^{\perp\mathcal{V}}\|$.

Given equation $A\mathbf{x} = \mathbf{b}$, let \mathcal{V} be the column space of A.

We need to show that the QR Solver Algorithm returns the vector $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}} = \mathbf{b}^{||\mathcal{V}|}$.

Suppose A is an $m \times n$ matrix and its columns are linearly independent.

Since each column is an *m*-vector. dimension of column space is at most m, so $n \leq m$.

What if n < m? How can we solve the matrix equation $A\mathbf{x} = \mathbf{b}$?

- ▶ Dimension of Im f is n
- Dimension of co-domain is m.
- ► Thus f is not onto.

Goal: An algorithm that, given a matrix A whose columns are linearly independent and given **b**, finds the vector $\hat{\mathbf{x}}$ minimizing $\|\mathbf{b} - A\hat{\mathbf{x}}\|$.

Solution: Same algorithm as we used for square A

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \mathbf{b}$$

Remark: There might not be a solution:

Define
$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 by $f(\mathbf{x}) = A\mathbf{x}$
Dimension of Im f is n

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \mathbf{b}$$

Recall...

High-Dimensional Fire Engine Lemma: The point in a vector space \mathcal{V} closest to \mathbf{b} is $\mathbf{b}^{\parallel\mathcal{V}}$ and the distance is $\|\mathbf{b}^{\perp\mathcal{V}}\|$.

Given equation $A\mathbf{x} = \mathbf{b}$, let \mathcal{V} be the column space of A.

We need to show that the QR Solver Algorithm returns $\mathbf{b}^{\parallel\mathcal{V}}$.

Let Q be a column-orthogonal matrix. Let \mathbf{b} be a vector, and write $\mathbf{b} = \mathbf{b}^{||} + \mathbf{b}^{\perp}$ where $\mathbf{b}^{||}$ is projection of \mathbf{b} onto Col Q and \mathbf{b}^{\perp} is projection orthogonal to Col Q.

Let **u** be the coordinate representation of \mathbf{b}^{\parallel} in terms of columns of Q.

By linear-combinations definition of matrix-vector multiplication,

$$\left[\begin{array}{c} \mathbf{b}^{||} \end{array}\right] = \left[\begin{array}{c} Q \end{array}\right] \left[\begin{array}{c} \mathbf{u} \end{array}\right]$$

Multiply both sides on the left by Q^T :

$$\begin{bmatrix} & Q^T & \end{bmatrix} \begin{bmatrix} \mathbf{b}^{||} \end{bmatrix} = \begin{bmatrix} & Q^T & \end{bmatrix} \begin{bmatrix} & Q & \end{bmatrix} \begin{bmatrix} \mathbf{u} \end{bmatrix}$$

Let Q be a column-orthogonal matrix. Let \mathbf{b} be a vector, and write $\mathbf{b} = \mathbf{b}^{||} + \mathbf{b}^{\perp}$ where $\mathbf{b}^{||}$ is projection of \mathbf{b} onto Col Q and \mathbf{b}^{\perp} is projection orthogonal to Col Q.

Let **u** be the coordinate representation of \mathbf{b}^{\parallel} in terms of columns of Q.

Multiply both sides on the left by Q^T :

$$\begin{bmatrix} & & & & \\ & & & & \end{bmatrix} \begin{bmatrix} \mathbf{b}^{||} \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & \\ & & & \end{bmatrix} \begin{bmatrix} \mathbf{u} \end{bmatrix}$$

Substitute using $Q^TQ = 1$

Let Q be a column-orthogonal matrix. Let \mathbf{b} be a vector, and write $\mathbf{b} = \mathbf{b}^{||} + \mathbf{b}^{\perp}$ where $\mathbf{b}^{||}$ is projection of \mathbf{b} onto Col Q and \mathbf{b}^{\perp} is projection orthogonal to Col Q.

Let **u** be the coordinate representation of \mathbf{b}^{\parallel} in terms of columns of Q.

$$\mathbf{P} Q^T \mathbf{b}^{||} = \mathbf{u}$$

Since \mathbf{b}^{\perp} is orthogonal to Col Q,

$$\mathbf{q}_i \cdot \mathbf{b}^{\perp} = 0$$
 for every column \mathbf{q}_i of Q

Therefore, by dot-product definition of matrix-vector multiplication,

$$\left[egin{array}{cccc} Q^{\mathcal{T}} & \end{array}
ight] \left| egin{array}{cccc} oldsymbol{b}^{oldsymbol{oldsymbol{oldsymbol{b}}}} & = \left[egin{array}{c} 0 \ dots \ 0 \end{array}
ight]$$

Let Q be a column-orthogonal matrix. Let **b** be a vector, and write $\mathbf{b} = \mathbf{b}^{\parallel} + \mathbf{b}^{\perp}$ where \mathbf{b}^{\parallel} is projection of \mathbf{b} onto Col Q and \mathbf{b}^{\perp} is projection orthogonal to Col Q.

Let **u** be the coordinate representation of \mathbf{b}^{\parallel} in terms of columns of Q.

$$P Q^T \mathbf{b}^{||} = \mathbf{u}$$

$$\mathbf{P} Q^T \mathbf{b}^{\perp} = \mathbf{0}$$

Therefore
$$Q^T \mathbf{b} = Q^T \left(\mathbf{b}^{||} + \mathbf{b}^{\perp} \right) = Q^T \mathbf{b}^{||} + Q^T \mathbf{b}^{\perp} = Q^T \mathbf{b}^{||} = Q^T \mathbf{b}^{||}$$

 $Q^{T}\mathbf{b} = Q^{T}(\mathbf{b}^{||} + \mathbf{b}^{\perp}) = Q^{T}\mathbf{b}^{||} + Q^{T}\mathbf{b}^{\perp} = Q^{T}\mathbf{b}^{||} = \mathbf{u}$

To go from representation
$${\bf u}$$
 to ${\bf b}^{||},$ multiply by Q :

Let Q be a column-orthogonal matrix. Let \mathbf{b} be a vector, and write $\mathbf{b} = \mathbf{b}^{||} + \mathbf{b}^{\perp}$ where $\mathbf{b}^{||}$ is projection of \mathbf{b} onto Col Q and \mathbf{b}^{\perp} is projection orthogonal to Col Q.

Summary:

$$\triangleright QQ^T\mathbf{b} = \mathbf{b}^{||}$$

QR Solver Algorithm for $A\mathbf{x} \approx \mathbf{b}$

Summary:

 $ightharpoonup QQ^T\mathbf{b} = \mathbf{b}^{||}$

Proposed algorithm:

Find Q,R such that A=QR and Q is column-orthogonal and R is triangular Compute vector $\mathbf{c}=Q^T\mathbf{b}$

Solve $R\mathbf{x} = \mathbf{c}$ using backward substitution, and return the solution $\hat{\mathbf{x}}$.

Goal: To show that the solution $\hat{\mathbf{x}}$ returned is the vector that minimizes $\|\mathbf{b} - A\hat{\mathbf{x}}\|$

Every vector of the form $A\mathbf{x}$ is in Col A (= Col Q)

By the High-Dimensional Fire Engine Lemma, the vector in Col A closest to \mathbf{b} is $\mathbf{b}^{||}$, the projection of \mathbf{b} onto Col A.

Solution $\hat{\mathbf{x}}$ satisfies $R\hat{\mathbf{x}} = Q^T \mathbf{b}$

Multiply by $Q: QR\hat{\mathbf{x}} = QQ^T\mathbf{b}$

Therefore $A\hat{\mathbf{x}} = \mathbf{b}^{||}$

The Normal Equations

Let A be a matrix with linearly independent columns. Let QR be its QR factorization. We have given one algorithm for solving the least-squares problem $A\mathbf{x} \approx \mathbf{b}$:

Find Q, R such that A = QR and Q is column-orthogonal and R is triangular Compute vector $\mathbf{c} = Q^T \mathbf{b}$ Solve $R\mathbf{x} = \mathbf{c}$ using backward substitution, and return the solution $\hat{\mathbf{x}}$.

However, there are other ways to find solution.

Not hard to show that

- \triangleright A^TA is an invertible matrix
- ► The solution to the matrix-vector equation $(A^TA)\mathbf{x} = A^T\mathbf{b}$ is the solution to the least-squares problem $A\mathbf{x} \approx \mathbf{b}$
- ► Can use another method (e.g. Gaussian elimination) to solve $(A^TA)\mathbf{x} = A^T\mathbf{b}$

The linear equations making up $A^T A \mathbf{x} = A^T \mathbf{b}$ are called the *normal equations*