Clique aqui para ler pelo PDF e melhorar a experiência

Semana 4: Estruturas Condicionais (If-Else)

```
int x = 1;

if (x > 3) {
    printf("x is greater than 3\n");
} else {
    printf("x is less than or equal to 3\n");
}
```

Nesta aula, vamos abordar as **estruturas condicionais** na linguagem C. As estruturas condicionais são usadas para tomar decisões no código, ou seja, fazer com que o programa execute ações diferentes dependendo de certas condições.

Operadores Relacionais e Lógicos

Antes de entender como usar as estruturas condicionais, é essencial conhecer os operadores relacionais e lógicos, pois eles são usados nas condições das instruções if.

Operadores Relacionais

Os operadores relacionais comparam dois valores e retornam true (1) ou false (0). Aqui estão os operadores mais comuns:

- ==: igual a
- !=: diferente de
- >: maior que
- <: menor que
- >=: maior ou igual a
- <=: menor ou igual a

Operadores Lógicos

Os operadores lógicos são usados para combinar várias condições. Os operadores lógicos mais comuns em C são:

- &&: E lógico (true se ambas as condições forem verdadeiras)
- ||: OU lógico (true se pelo menos uma condição for verdadeira)
- !: NÃO lógico (inverte o valor da condição)

Introdução à Lógica Condicional

Estrutura Condicional Simples: if

A estrutura if é usada para verificar uma condição. Se a condição for verdadeira (true), o bloco de código dentro do if será executado.

Exemplo de if simples:

```
#include <stdio.h>

int main() {
    int numero = 5;

    if (numero > 0) {
        printf("O numero eh positivo.\n");
    }

    return 0;
}
```

Exemplo para comparar uma variável a um valor:

```
#include <stdio.h>
int main() {
   int numero = 5;

   if (numero == 2) {
      printf("O numero eh igual a 2.\n");
   }

   return 0;
}
```

Exemplo de condicional com operador lógico:

```
#include <stdio.h>
int main() {
   int numero = 5;

if (numero > 0 && numero == 5) { // Se o número é positivo e igual a 5
      printf("O numero eh positivo e igual a 5.\n");
   }

return 0;
}
```

Estrutura Condicional Composta: if-else

O if-else permite executar um bloco de código se a condição for verdadeira e outro bloco se for falsa.

Exemplo de if-else:

```
#include <stdio.h>

int main() {
    int numero = -3;

if (numero > 0) {
        printf("0 numero eh positivo.\n");
    } else {
        printf("0 numero nao eh positivo.\n");
    }

    return 0;
}
```

No código acima, caso o número não seja positivo (maior do que 0) o programa entrará direto no corpo de execução do else. Resultando no print "O numero nao eh positivo".

Estrutura Condicional Aninhada: if-else if

Você pode usar o else if para verificar múltiplas condições. O programa avalia cada condição na ordem e executa o bloco de código da primeira condição verdadeira.

Exemplo de else-if:

```
#include <stdio.h>
int main() {
    int numero = 0;

if (numero > 0) {
        printf("0 número é positivo.\n");
    } else if (numero < 0) {
        printf("0 número é negativo.\n");
    } else {
        printf("0 número é zero.\n");
    }

    return 0;
}</pre>
```

O programa primeiro verificará se a variável número é maior que 0, se for, ele executará o print e não executará nem o else-if nem o else. Caso ele não seja maior que 0 será verificado agora se é menor que 0, se for executará o print e não executará o else. Caso o número não seja maior ou menor que 0, então ele só pode ser 0.

Aplicações Práticas de Condicionais

Agora, vamos ver alguns exemplos práticos de como usar estruturas condicionais em programas do dia a dia.

1) Verificar se um número é positivo, negativo ou zero

Este programa pede ao usuário um número e verifica se ele é positivo, negativo ou zero.

Exemplos de execução:

```
Digite um numero: 5
O numero eh positivo.

Digite um numero: -5
O numero eh negativo.

Digite um numero: 0
O numero eh zero.
```

2) Cálculo de Descontos com Base em Faixas de Valores

Neste exemplo, vamos calcular o desconto de um produto com base em seu valor. O desconto será aplicado de acordo com a faixa de preço:

- Valores acima de 100 têm 10% de desconto
- Valores entre 50 e 100 têm 5% de desconto
- Valores abaixo de 50 não têm desconto

Exemplos de execução:

Valores acima de 100

```
Digite o preco do produto: 110.5
O valor final com desconto eh: 99.45
```

Valores entre 50 e 100

```
Digite um numero: 100.0
O valor final com desconto eh: 95.00
```

Valores abaixo de 50

```
Digite um numero: 40.75
O valor final com desconto eh: 40.75
```

Atenção: atente-se pois a variável que receberá o preço inserido pelo usuário é do tipo float. Além disso, os prints são formatados com 2 casas decimais.

3) Cálculo de IMC 2.0

Na aula anterior, criamos um algoritmo simples para calcular o IMC de um usuário com base em sua altura e peso. Agora, vamos dar mais utilidade a essa aplicação. Com base no valor do IMC calculado, você vai usar estruturas condicionais para exibir a classificação correspondente à condição do usuário, como 'abaixo do peso', 'peso normal', 'sobrepeso', ou 'obesidade'.

Fórmula do IMC: IMC = peso (em kg) / (altura * altura)

IMC (kg/m²)	Diagnóstico
Menos de 18.5	Abaixo do peso
18.5 - 24.9	Peso normal
25.0 - 29.9	Sobrepeso
30.0 - 34.9	Obesidade Grau 1
35.0 - 39.9	Obesidade Grau 2
40.0 ou mais	Obesidade Grau 3 (mórbida)

Exemplos de execução:

Digite seu peso em kg: 55

Digite sua altura em metros: 1.75

Seu IMC eh: 17.96 Abaixo do peso

Digite seu peso em kg: 85.5

Digite sua altura em metros: 1.91

Seu IMC eh: 23.43

Peso normal

Digite seu peso em kg: 85

Digite sua altura em metros: 1.80

Seu IMC eh: 26.23

Sobrepeso

Digite seu peso em kg: 90

Digite sua altura em metros: 1.65

```
Seu IMC eh: 33.06
Obesidade Grau 1
```

```
Digite seu peso em kg: 95
Digite sua altura em metros: 1.60
Seu IMC eh: 37.11
Obesidade Grau 2
```

```
Digite seu peso em kg: 120
Digite sua altura em metros: 1.70
Seu IMC eh: 41.52
Obesidade Grau 3 (morbida)
```

Noção de Blocos e Escopo

Em C, um **bloco** de código é definido por chaves {}. Quando usamos estruturas condicionais, é importante entender que variáveis declaradas dentro de um bloco só são visíveis dentro desse bloco. Esse conceito é chamado de **escopo**.

Exemplo de escopo:

```
#include <stdio.h>
int main() {
   int x = 10;

   if (x > 0) {
      int y = 20; // 'y' só existe dentro deste bloco if
      printf("Dentro do if, y = %d\n", y);
   }

// A variável 'y' não pode ser acessada aqui
   // printf("Fora do if, y = %d\n", y); // Isso resultaria em um erro
   return 0;
}
```

Conclusão

Com essas estruturas condicionais, você pode controlar o fluxo de execução dos seus programas e fazer com que eles tomem decisões com base em condições. Pratique criando programas que verificam diferentes situações e explore a lógica condicional no seu código.

Na próxima aula, vamos aprender sobre laços de repetição (loops) e como eles podem ser usados para repetir blocos de código.