ART VANDELAY

- Male
- Active 19 year old
- Developmental Dysplasia of the Hip affecting the right hip
- Limb Length Discrepancy of the right leg (2.5 cm)
- Limited range of

TREATMENT

- Cementless total hip arthroplasty
- Osteotomy at the base of the femoral neck to preserve maximum amount of bone¹
- Stem is strictly fitted into the medullary canal to promote osseointegration^{1,2} (see right)
- Acetabular shell is optimally fitted to the hip to promote osseointegration, but optionally fixed to the hip with nails

Right: wire-frame rendering of implant stem in femur

Biomimicry in Implant Design: NativeStem

McMaster University Adam Yu, Luka Mircetic, Aidan Forsyth, and Eric Kang McMaster University Integrated Biomedical Engineering and Health Sciences I

Harnessing nature's patterns and strategies to better integrate implant and bone

STEM

- Registration to the geometry of the medullary canal promotes osseointegration¹
- Short stem (~50 mm) has native stress distribution^{1,2}
- Absence of contact between the stem and distal cortex reduces stress shielding, bone resorption, and thigh pain¹
- Reduces proximal stress shielding without reducing primary stability¹
- Porous structure reduces stress shielding by ~50%³
- Randomly oriented pores has local fluctuations in shear stresses that are crucial to stimulating osseogenesis¹
- Prevents catastrophic structural failure compared to periodic or regular pores¹ (see left, right)
- Fullcure MED610 photopolymer allows for 3D printing of porous structure: biomaterial used in orthopedics⁴
- Exhibits roughness that can be manipulated to control proliferation of cell growth⁴
- 3D printing orientation affects mechanical properties⁴

$-\,d\nabla^2 v = \gamma\,(b-u^2v)$ Top: governing PDE of porous pattern⁴; right: 2D slice of porous stem⁴ Left: stress strain curve of randomly oriented pores versus regularly or periodically oriented pores⁴ Random pores H = 30 mm D = 30 mm (10x scale) ---- Random pores H = 15 mm D = 15 mm (5x scale)

BALL AND LINER

- 42.5 mm and 16 mm titanium aluminium alloy⁵ ball and neck (see top)
- 1 mm thick wearresistant⁶ cross-linked Ultra High Molecular Weight Polyethylene (UHMWPE)
- Liner protects ball from corrosion and reduces friction between ball and acetabular shell than competing materials⁶

McMaster University

Top: CAD model of ball and liner; bottom: positioning of liner with respect to implant

ACETABULAR SHELL

- Elliptical shape creates interference fit, which allows for maximum bone contact and stability⁷
- Notches on bottom fixes liner in place
- Trabecular metal is made of tantalum⁸
- High fatigue strength and elastic modulus allows it to elastically deform before fracture⁸
- Porous biomaterial reduces stress shielding⁹
- Similar structural, functional and physiological properties to that of trabecular bone¹⁰ (see right)

Left: bone/trabecular metal integration¹⁰; right: trabeculae (top) 9, trabecular metal (bottom)9

ARTIFICIAL LIGAMENT

- Ligamentum Teres Femoris is crucial for range of motion of the femur¹¹
- To improve patients range of motion and increase prevention of dislocation¹¹ (see top)
- Thin Cylindrical Attachment; almost identical in shape and function to native¹²
- Quarter Sphere; Provides additional reinforcement which helps to prevent dislocation
- LARS: Terephthalic Polyethylene Polyester¹²
- Articular woven fibres resist fatigue and can withstand a force of 5000 N¹²
- Attached to a socket and ball with K-Wire¹²

1] Feyen et al., Bone Joint J. 2014 [2] Castelli et al., Hip International, 2014 [4] Velasco et al., Journal of Computational Design and Engineering, 2016. [5] Sansone et al., Clinical Cases in Mineral and Bone Metabolism, 2013.

[7] Resurfacingscan, Acetabular cup: An important component of your hip prosthesis, 2018.

[8] Zimmer Biomet, Zimmer Trabecular Metal Technology, 2018. [9] Eid et al., The Egyptian Orthopaedic Journal, 2018. 10] Zimmer Dental, Trabecular Metal Technology: Introducing Osseoincor poration to implant dentistry, 2018. [11] O'Donnell JM et al., Journal of Hip Preservation Surgery, 2014 [12] Corin Australia, Connected Orthopedic Insights, 2018