Analyse statistique de l'influence des composantes physiologiques et comportementales sur la fréquence cardiaque

Présentation des données

Ran Ran

Sat

alpha

Gender Femal

Echantillons des deltas d'hommes et de femmes en fonction de la course ou non, de leur taille et de leur consommation d'alcool

Expérience mesurant la fréquence cardiaque après un effort d'1min.

Composantes comportementales et physiologique

> summary(eval7						
Height	Weight	Age	Gender	Smokes	Alcohol	Exercise
Min. :140.0	Min. : 41.00	Min. :18.00	Min. :1.000	Min. :1.0	Min. :1.000	Min. :1.000
1st Qu.:166.2	1st Qu.: 57.00	1st Qu.:19.00	1st Qu.:1.000	1st Qu.:2.0	1st Qu.:1.000	1st Qu.:2.000
Median:173.0	Median : 63.00	Median :20.00	Median :1.000	Median :2.0	Median :1.000	Median :2.000
Mean :173.4	Mean : 66.74	Mean :20.56	Mean :1.464	Mean :1.9	Mean :1.382	Mean :2.209
3rd Qu.:180.0	3rd Qu.: 75.00	3rd Qu.:21.00	3rd Qu.:2.000	3rd Qu.:2.0	3rd Qu.:2.000	3rd Qu.:3.000
Max. :195.0	Max. :110.00	Max. :45.00	Max. :2.000	Max. :2.0	Max. :2.000	Max. :3.000
Ran	Pulse1	Pulse2	Year	IMC	delta	
Min. :1.000	Min. : 47.00	Min. : 56.0	Min. :93.00	Min. :16.59	Min. :-12.0	00
1st Qu.:1.000	1st Qu.: 68.00	1st Qu.: 72.0	1st Qu.:95.00	1st Qu.:19.51	1st Qu.: -2.0	00
Median :2.000	Median : 76.00	Median: 84.0	Median:96.00	Median :21.58	Median : 4.0	00
Mean :1.582	Mean : 75.69	Mean : 96.8	Mean :95.63	Mean :22.01	Mean : 21.:	11
3rd Qu.:2.000	3rd Qu.: 82.00	3rd Qu.:125.0	3rd Qu.:97.00	3rd Qu.:24.20	3rd Qu.: 49.0	00
Max. :2.000	Max. :145.00	Max. :176.0	Max. :98.00	Max. :32.14	Max. : 94.0	00

1) Quels paramètres influencent la fréquence cardiaque ?

```
3
```

```
> breaks.aov <- aov(delta ~ Gender+Age+Smokes+Alcohol+Exercice+
+ Ran+Height*Weight*IMC)</pre>
```

> anova(breaks.aov)

Analysis of Variance Table

Response: delta

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Gender	1	9	9	0.0445	0.83335	
Age	1	735	735	3.6891	0.05780	
Smokes	1	1041	1041	5.2249	0.02451	*
Alcohol	1	459	459	2.3010	0.13265	
Exercice	2	102	51	0.2568	0.77409	
Ran	1	70789	70789	355.2119	< 2e-16	***
Height	1	437	437	2.1952	0.14179	
Weight	1	79	79	0.3961	0.53066	
IMC	1	1029	1029	5.1610	0.02538	*
Height:Weight	1	162	162	0.8146	0.36907	
Height: IMC	1	13	13	0.0664	0.79714	
Weight: IMC	1	307	307	1.5413	0.21752	
Height: Weight: IMC	1	52	52	0.2586	0.61229	
Residuals	94	18733	199			

H0 : la variabilité de delta suit la même loi normal que les autres variables.

H1 : au moins une distribution dont la moyenne s'écarte des autres moyennes

Accepte H1 : Facteurs de variabilité de la variance delta : Age Smokes Ran

```
> breaks.aov <- aov(delta ~ Age+Smokes+Ran)</p>
> anova(breaks.aov)
Analysis of Variance Table
Response: delta
           Df Sum Sq Mean Sq F value Pr(>F)
Age
                 744
                               3.7334 0.05603
                1024
                        1024
Smokes
                               5.1377 0.02546 *
               71257
                       71257 357.6208 < 2e-16 ***
Residuals 105
                         199
               20922
```

m

Signif. codes:

2) Existe-t-il une différence du pouls au repos selon le mode de vie ?

H0 : μ 1 = μ 2 : la moyenne des pouls 1 chez les fumeurs et la moyenne du pouls1 chez les non fumeurs sont égales

H1 μ1≠μ2 : les moyennes sont différentes chez les chez les fumeurs et chez les non fumeurs

> var.test(delta_SmokesYes,delta_SmokesNo)

F test to compare two variances

data: delta_SmokesYes and delta_SmokesNo F=0.9332, num df = 66, denom df = 41, p-value = 0.7893 alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval: 0.5245769 1.6003353

sample estimates: ratio of variances 0.9331991 On ne rejette pas H0

pvalue= 0.19

Alcool:

pvalue= 0.46

Normalité? Egalité des variances? Test à effectuer Test paramétrique?

	Oui	Student	Oui
Oui			
	Non	Welch	Oui
Non	$Ignor\acute{e}$	Wilcoxon	Non


```
> prop.test(c(P1BAS,P1HAS),c(P1BAS+P1BAR,P1HAS+P1HAR))
       2-sample test for equality of proportions with continuity correction
data: c(P1BAS, P1HAS) out of c(P1BAS + P1BAR, P1HAS + P1HAR)
X-squared = 0.35867, df = 1, p-value = 0.5492
alternative hypothesis: two.sided
                                                     > MP
95 percent confidence interval:
 -0.1951133 0.4559829
sample estimates:
                                                     [1,]
   prop 1
            prop 2
                                                     [2,]
0.6521739 0.5217391
> MP <- rbind(c(P1BAS, P1BAR), c(P1HAS, P1HAR))
> # Fisher
> fisher.test(MP)
        Fisher's Exact Test for Count Data
data: MP
p-value = 0.5455
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
                                         > MP
   0.1087056 234.7561625
                                                [,1] [,2]
sample estimates:
                                         [1,]
                                                        17
odds ratio
   2.97405
                                                  33
                                                         29
```

H0 : les variables sont indépendantes

H1: Les variables sont liées

- Test du Khi deux pour la Comparaison de pulse1 avant et après 95
- Test de Fisher pour Comparaison de **pulse1 avant et après 95 chez les fumeurs** car conditions d'application du Khi2 non respecté (effectif calculé sous $H_0: A_{ii} \ge$
- → Aucun sous groupe ne montre un changement de proportions de coureurs après changement de protocol

Perspectives et conclusion

- 1. L'âge, Fumer ou Courir influencent la variabilité de la FC après effort
- 2. Pas de différence significative sur le pouls au repos entre les consommateurs réguliers de tabac, d'alcool ou d'exercice
- 3. Le changement de protocol n'a pas mis en évidence des sous-groupes de population ayant introduit des biais d'autosélection

<u>Problèmes</u>

- → Manque d'effectif
- → Manque de reproductibilité

Perspectives

- → Poser des seuil de positivité
- → Prédire la FC après effort

Merci de votre attention