AST20105 Data Structures & Algorithms

CHAPTER 6 - TREES I

Instructed by Garret Lai

Before Start

- Linked lists usually provide greater flexibility than arrays,
 - but they are linear structures and
 - it is difficult to use them to organize a hierarchical representation of objects.

Before Start

- ▶ Although stacks and queues reflect some hierarchy
- ▶ They are limited to only one dimension.

Before Start

▶ To overcome this limitation

We create a new data type called a tree that consists of nodes and arcs.

Trees

Definition

- A tree is a way to store data in hierarchical manner
- It contains a collection of nodes with no node cycle

Definition

- Unlike natural trees, these trees are depicted upside down with
 - the root at the top and
 - the leaves (terminal nodes) at the bottom

Node / Vertex:

Basic element of a tree that used to store data and pointer(s) to other nodes / vertices

Root:

The top node / starting node of the tree

Parent and child:

- Every node except the root has one parent
- A node can have any number of children

Sibling:

Nodes with same parent

- Root: v₁
- Parent and child: v_2 is the parent and v_4 and v_5 are the children
- Sibling: v₂ and v₃ are sibling, v₄ and v₅ are sibling, v₆ and v₇ are sibling, v₈ and v₉ are sibling

- Leaf:
 - Node that with no children
- Edge / Link:
 - A link from parent node to a child node
- Path:
 - A sequence of nodes, i.e. v_0 , v_1 , v_2 , ..., v_n , where there is an edge from one node to the next
- Length:
 - Number of edges on the path

- Leaf: v_5 , v_6 , v_7 , v_8 , v_9 are leaves
- Edge: All the lines are edge
- Path: (v_1, v_2, v_4, v_8) is a path from v_1 to v_8
- Length: The length of the path

 (v_1, v_2, v_4, v_8) is 3

Level:

Root is level 0, the children of root is level 1, etc.

Node depth:

Length of the unique path from the root to the node

Tree depth:

Depth of the deepest leaf

Node height:

- Length of the longest path from the node to a leaf
- All leaves are at height 0

Tree height:

Height of the root

- Level: v_1 is at level 0, v_2 & v_3 are at level 1, v_4 , v_5 , v_6 & v_7 are at level 2, v_8 & v_9 are at level 3
- Node depth of v₄: 2 (Since v₁ -> v₂ -> v₄)
- Tree depth: 3
- Node height of v_2 : 2 (Since $v_2 \rightarrow v_4 \rightarrow v_9$)
- Tree height: 3 (Since $v_1 -> v_2 -> v_4 -> v_8$)

Ancestor:

The parent, grand parent, grand grand parent, ... of a node

Descendant:

- The children, grand children, grand grand children, ... of a node
- Left sub-tree and right subtree
 - Smaller tree consisting of a node and all its descendants

- Ancestor of v_9 : v_4 , v_2 , v_1
- Descendant of v₂: v₄, v₅, v₈, v₉
- Left sub-tree of v₁: Purple triangle
- Right sub-tree of v₁: Blue triangle

Binary Trees

Binary Tree

- ▶ The simplest form of tree is a binary tree.
- A binary tree is a tree in which every node in the tree can have AT MOST two children
- ▶ A binary tree consists of
 - a node (called the root node) and

- left and right sub-trees.
 - ▶ Both the sub-trees are themselves binary trees.

Full Binary Tree

- ▶ A binary tree with 2ⁱ nodes at level i
- Properties:
 - Total number of node in the tree = $2^{h+1} 1$, where h is the tree height

- Total no. of nodes at level $0 = 2^0 = 1$
- Total no. of nodes at level $1 = 2^1 = 2$
- Total no. of nodes at level $2 = 2^2 = 4$
- Total no. of nodes at level $3 = 2^3 = 8$
- Total no. of nodes in the tree (h = 3) = $2^{(3+1)} - 1 = 15$

Complete Binary Tree

 A binary tree of height h having complete filled to depth h-l and at depth h, filled nodes are on the left

Level 0

Level 1

Level 2

Level 3

- A binary tree of height 3
- Complete filled to depth 3 1 = 2
- At depth 3, filled nodes are on the left

Binary Search Tree (BST)

Binary Search Tree is a binary tree that stores values / keys in a way such that insertion, deletion and searching could be done efficiently

Properties:

For every node v, all the values in its left sub-tree are SMALLER than the value in v, and all the values in its right sub-tree are LARGER than the value in v

NOT a Binary Search Tree

Binary Search Tree (BST) - Example

Height of Binary Search Tree

- From the last slide, it is easy to observe that a same set of data could be stored as different Binary Search Tree
- The height of a Binary Search Tree could vary depending on the order of insertion
- Say, we got n data to store in a Binary Search Tree

▶ Binary trees can be implemented in at least two ways:

- As arrays and
- As linked structures.

- To implement a tree as an array,
 - A node is declared as a structure with an information field and two "pointer" fields
 - These pointer fields contain the indexes of the array cells in which the left and right children are stored, if there are any.
 - The root is always located in the first cell, cell 0, and
 - I indicates a null child.

Index	Info	Left	Right
0	13	4	2
1	31	6	-1
2	25	7	1
3	12	-1	-1
4	10	5	3
5	2	-1	-1
6	29	-1	-1
7	20	-1	-1

However, this implementation may be inconvenient, even if the array is flexible

Locations of children must be known to insert a new node, and these locations may need to be located sequentially.

- However, this implementation may be inconvenient, even if the array is flexible
 - After deleting a node from the tree, a hole in the array would have to be eliminated.
 - This can be done either by using a special marker for an unused cell, which may lead to populating the array with many unused cells, or
 - By moving elements by one position, which also requires updating references to the elements that have been moved.

- A Binary Search Tree is constructed using nodes, similar to linked list
- A Binary Search Tree node / vertex should contain
 - Data
 - Two pointers (left pointer to the left sub-tree and right pointer to the right sub-tree)
- A leaf node has both left and right pointers point to NULL

```
class BSTNode
{
   public:
    BSTNode(const int value)
   {
      left = right = NULL;
      data = value;
   }

   int data;
   BSTNode* left;
   BSTNode* right;
};
```

Binary Search Tree Operations

- BSTNode* insertNode(BSTNode*& n, const int v)
 - Insert a node to the Binary Search Tree
- BSTNode* deleteNode(BSTNode*& n, const int v)
 - Delete a node from the Binary Search Tree
- BSTNode* findNode(BSTNode* n, const int v)
 - Find the node with value v
- BSTNode* findMin(BSTNode* n)
 - Find the node with the smallest key
- BSTNode* findMax(BSTNode* n)
 - Find the node with the largest key
- void preOrder(BSTNode* n)
 - Print all the keys using pre-order traversal
- void inOrder(BSTNode* n)
 - Print all the keys using in-order traversal
- void postOrder(BSTNode* n)
 - Print all the keys using post-order traversal

```
BSTree.h
class BSTree
  public:
     BSTNode* root:
    BSTNode* temp;
     BSTree();
     ~BSTree();
     BSTNode* insertNode(BSTNode*& n, const int v);
     BSTNode* deleteNode (BSTNode*& n, const int v);
     BSTNode* findNode(BSTNode* n, const int v);
     BSTNode* findMin(BSTNode* n);
     BSTNode* findMax(BSTNode* n);
     void preOrder(BSTNode* n);
     void inOrder(BSTNode* n);
     void postOrder(BSTNode* n);
};
```

```
BSTree::BSTree()
{
  root = NULL;
  temp = NULL;
}

BSTree::~BSTree()
{
}
```

Searching a Binary Search Tree

- Search algorithm traverses the tree "in-depth", choosing appropriate way to go, following binary search tree property and compares value of each visited node with the one, we are looking for.
- ▶ Algorithm stops in two cases:
 - a node with necessary value is found;
 - algorithm has no way to go.

- Search algorithm in detail
 - > Search algorithm utilizes recursion.
 - Starting from the root,

- Search algorithm in detail
 - I. check, whether value in current node and searched value are equal. If so, value is found. Otherwise,
 - 2. if searched value is less than the node's value:
 - if current node has no left child, searched value doesn't exist in the BST;
 - otherwise, handle the left child with the same algorithm.
 - 3. if searched value is greater than the node's value:
 - if current node has no right child, searched value doesn't exist in the BST;
 - otherwise, handle the right child with the same algorithm.
 - Running time: O(h)

Search for 3 in the tree

Find Min / Max

▶ findMin

- Algorithm:
 - Start at the root and keep going left if there is a left child. The ending point is the smallest element
- Running time: O(h)

findMax

- Algorithm:
 - Start at the root and keep going right if there is a right child. The ending point is the largest element
- Running time: O(h)

```
BSTNode* BSTree::findNode(BSTNode* n, const int v) {
   if(n == NULL)
      return NULL;
   if(v < n->data)
      return findNode(n->left, v);
   else if(v > n->data)
      return findNode(n->right, v);
   else
      return n;
BSTNode* BSTree::findMin(BSTNode* n) {
   if(n == NULL)
      return NULL;
   else if(n->left == NULL)
      return n;
   else
      return findMin(n->left);
}
BSTNode* BSTree::findMax(BSTNode* n) {
   if(n == NULL)
      return NULL;
   else if(n->right == NULL)
      return n;
   else
      return findMax(n->right);
```

Tree Traversal

Tree Traversal

Tree traversal is the process of visiting each node in the tree exactly one time.

Traversal may be interpreted as putting all nodes on one line or linearizing a tree.

Tree Traversal

- The definition of traversal specifies only one condition
 - Visiting each node only one time
 - But it does not specify the order in which the nodes are visited

Tree Traversal

- Hence, there are as many tree traversals as there are permutations of nodes
- For a tree with n nodes, there are n! different traversals.

Most of them, however, are rather chaotic and do not indicate much regularity so that implementing such traversals lacks generality.

Tree Traversal

- In the face of such an abundance of traversals and the apparent uselessness of most of them
 - We would like to restrict our attention to two classes only, namely
 - Breadth-first traversals and
 - Depth-first traversals

Breadth-first Traversal

- Breadth-first traversal is visiting each node
 - starting from the highest (or lowest) level and
 - moving down (or up) level by level,
 - visiting nodes on each level from left to right (or from right to left).

Breadth-first Traversal

```
void BSTree::BreadthFirstTraversal(BSTNode *root) {
  if (root == NULL)
       return;
  deque <BSTNode *> queue;
  queue.push back(root); //push element at the back of the queue
  while (!queue.empty()) {
       BSTNode *p = queue.front();
       cout << p->data << "\t";</pre>
      queue.pop front();
      if (p->left != NULL)
         queue.push back(p->left);
      if (p->right != NULL)
         queue.push back(p->right);
   cout << endl;</pre>
```

Breadth-first Traversal

A top-down, left-to-right breadth-first traversal of the tree results in the sequence

13, 10, 25, 2, 12, 20, 31, 29

Depth-first traversal

- proceeds as far as possible to the left (or right),
- then backs up until the first crossroad, goes one step to the right (or left), and
- again as far as possible to the left (or right).
- We repeat this process until all nodes are visited.

This definition, however, does not clearly specify exactly when nodes are visited:

- Before proceeding down the tree or after backing up?
- ▶ There are some variations of the depth-first traversal.

- ▶ There are three tasks of interest in this type of traversal:
 - V − visiting a node
 - ▶ L traversing the left subtree
 - ▶ R traversing the right subtree

- An orderly traversal takes place if these tasks are performed in the same order for each node.
- The three tasks can themselves be ordered in 3! = 6 ways, so there are six possible ordered depth-first traversals:

- VLR VRL
- ▶ LVR RVL
- LRV RLV

- It can be reduced to three traversals where the move is always from left to right and attention is focused on the following three traversals:
 - ▶ VLR preorder tree traversal
 - ▶ LVR inorder tree traversal
 - ▶ LRV postorder tree traversal

Pre-order Traversal

- Visit the node
- Recursively visit all nodes in the left sub-tree
- Recursively visit all nodes in the right sub-tree

Order to visit: a, b, d, h, I, e, j, c, f, g

In-order Traversal

- Recursively visit all nodes in the left sub-tree
- Visit the node
- Recursively visit all nodes in the right sub-tree

Order to visit: h, d, i, b, j, e, a, f, c, g

Post-order Traversal

- Recursively visit all nodes in the left sub-tree
- Recursively visit all nodes in the right sub-tree
- Visit the node

Order to visit: h, I, d, j, e, b, f, g, c, a

Exercise:

- Pre-order:
- ▶ In-order:
- Post-order:


```
void BSTree::preOrder(BSTNode* n) {
   if(n != NULL) {
      cout << n->data << "\t";</pre>
      preOrder(n->left);
      preOrder(n->right);
}
void BSTree::inOrder(BSTNode* n) {
   if(n != NULL) {
      inOrder(n->left);
      cout << n->data << "\t";</pre>
      inOrder(n->right);
void BSTree::postOrder(BSTNode* n) {
   if(n != NULL) {
      postOrder(n->left);
      postOrder(n->right);
      cout << n->data << "\t";</pre>
```

- ▶ Adding a value to BST can be divided into two stages:
 - search for a place to put a new element;
 - insert the new element to this place.

Search for a place

- At this stage an algorithm should follow binary search tree property.
 - If a new value is less than the current node's value, go to the left subtree, else go to the right subtree.
 - Following this simple rule, the algorithm reaches a node, which has no left or right subtree.
 - By the moment a place for insertion is found, we can say for sure, that a new value has no duplicate in the tree.
 - Initially, a new node has no children, so it is a leaf.

Search for a place

Let us see it at the picture.
 Gray circles indicate possible places for a new node

- Let's go down to algorithm itself. Starting from the root,
 - check, whether value in current node and a new value are equal. If so, duplicate is found. Otherwise,
 - 2. if a new value is less than the node's value:
 - if a current node has no left child, place for insertion has been found;
 - otherwise, handle the left child with the same algorithm.
 - 3. if a new value is greater than the node's value:
 - if a current node has no right child, place for insertion has been found;
 - otherwise, handle the right child with the same algorithm.
 - Running time: O(h)

Insert 4 to the tree, shown above

Insert 4 to the tree, shown above


```
BSTNode* BSTree::insertNode(BSTNode*& n,const int v)
   if(n == NULL)
      BSTNode* item = new BSTNode(v);
      n = item;
   else
      if(v < n->data)
         n->left = insertNode(n->left, v);
      else if(v > n->data)
         n->right = insertNode(n->right, v);
   return n;
```

BSTree.cpp

Remove operation on binary search tree is more complicated, than add and search.

- Basically, it can be divided into two stages:
 - search for a node to remove;
 - if the node is found, run remove algorithm.

- Remove algorithm in detail
 - First stage is identical to algorithm for lookup, except we should track the parent of the current node.
 - Second part is more tricky.
 There are three cases, which are described below.

- Case I: Node to be removed has no children.
 - This case is quite simple.
 - Algorithm sets corresponding link of the parent to NULL and disposes the node.

- ▶ Case I: Node to be removed has no children.
 - **Example.** Remove -4 from a BST.

- ▶ Case 2: Node to be removed has one child.
 - It this case, node is **cut** from the tree and algorithm links single child (with it's subtree) directly to the parent of the removed node.

- ▶ Case 2: Node to be removed has one child.
 - **Example.** Remove 18 from a BST.

- ▶ Case 2: Node to be removed has one child.
 - **Example.** Remove 18 from a BST.

- Case 3: Node to be removed has two children.
 - This is the most complex case.
 - To solve it, let us see one useful BST property first.

- ▶ Case 3: Node to be removed has two children.
 - We are going to use the idea, that the same set of values may be represented as different binary-search trees. For example those BSTs:

- Case 3: Node to be removed has two children.
 - The above trees contain the same values {5, 19, 21, 25}. To transform first tree into second one, we can do following:
 - choose minimum element from the right subtree (19 in the example);
 - replace 5 by 19;
 - hang 5 as a left child.

- The same approach can be utilized to remove a node, which has two children:
 - find a minimum value in the right subtree;
 - replace value of the node to be removed with found minimum.
 Now, right subtree contains a duplicate!
 - apply remove to the right subtree to remove a duplicate.

Notice, that the node with minimum value has no left child and, therefore, it's removal may result in first or second cases only.

- ▶ Case 3: Node to be removed has two children.
 - **Example.** Remove 12 from a BST.

- Case 3: Node to be removed has two children.
 - Find minimum element in the right subtree of the node to be removed. In current example it is 19.

- ▶ Case 3: Node to be removed has two children.
 - Replace 12 with 19. Notice, that only values are replaced, not nodes. Now we have two nodes with the same value.

- ▶ Case 3: Node to be removed has two children.
 - Remove 19 from the left sub-tree.


```
BSTNode* BSTree::deleteNode(BSTNode*& n,const int v) {
   BSTNode* min, *temp;
   if(n == NULL)
      return NULL;
   else if(v < n->data)
      return deleteNode(n->left,v);
   else if(v > n->data)
      return deleteNode(n->right, v);
   else {
      if(n->left && n->right) {
         min = findMin(n->right);
         n->data = min->data;
         deleteNode(n->right,n->data);
      else {
        temp = n;
        if(n->left == NULL)
           n = n->right;
        else if(n->right == NULL)
           n = n->left;
        delete temp;
      return n;
```

Chapter 6 End