Lecture 6

Definition Let G be a group. Let & be an element of G. Let d be the smallest positive

Let d be the smallest positive integer such that $x^d = 1$, if it exists. Then d is called the order of x.

If there is no positive integer d such that $x^d = 1$, we say that x has infinite order. The order of a is denoted

by ord(x) or 1x1.

We have proved the following:

Thm Let G be a finite

 $ord(x) \leq |G|$.

group. Then, for any x ∈ G,

Find all groups of order n. n=5

Let x GG, x = 1.

Then, $2 \leq \operatorname{ord}(z) \leq 5$

If ord (x) = 2, let $y \in G$ such

that y & < 27.

Partial list: Is yx a new element or is yr in {1, x, y}?

If yx = x, y = 1

If yx=4, x=1

If yx=1, $y=x^{-1}-x$

— contra.

- contra.

contra.

So, yx is a Partial list: new clement.

auestion: What is zx?

 \uparrow exists as |6|=5.

If Zx=1, $Z=x^2=x$ — contra. If Zx=x, Z=1 — contra. If Zx=y, $z=yx^2=yx$ — contra.

If 2x = yx, z = y — contra. If 2x = Z, x = 1 — contra. So 2x needs to be a new element.

But 191=5. — contra.

So ord(x) $\neq 2$. Suppose ord (x) = 3. Partial list: 1 x x2 Is yx a new element or is it in $\{1, x, x^2, y\}$?

If
$$yx = x^n$$
 for any n , $y = x^{n-1}$ — contra.
If $yx = y$, $x = 1$ — contra.
So yx is a new element.

So	yx	15	a	new	element
List	- -			4.2)	()
l	X	χ^2		What	
y	ya			y 2 ?	

If $yx^2 = x^n$ for any n, $y = x^{n-2}$ — contra If $yx^2 = y$, $x^2 = 1$ — contra. If $yx^2 = yx$, x = 1 — contra.

so yx has to be a

new element. — contra. So ord(x) $\neq 3$.

Suppose ord(x)=4.

List $1 \times x^2 \times x^3$

If $yx = x^n$ for some n, $y = x^{n-1}$ — contra. (Similary yellow) So ord $(x) \neq 4$. possible.)

So ord (x) = 5. $G = \{1, x, x^2, x^3, x^4\}$ So, there is only one group of order 5 ("up to isomorphism").

Generalizing this pattern. Let G be a group. Let x GG such that ord(x) = d. Partial list: 1 x x2 ... xd-1 Note that these are

distinct elements.

Indeed, suppose $x^i = x^j$ for some $i < j \leq d-1$

Then $x^{1-i} = 1$. But 0 < j-i < d-1 < d.

But $d = \operatorname{ord}(x)$ and so $x^{j-1} \neq 1$

If $\langle x \rangle = G$, we have listed all elements of G. Otherwise, suppose y is such that $y \in G$, $y \notin \langle x \rangle$. Then, we could write the row y yx ---- yxd-1 below the first one.

1) Are all elements in this row distinct?

Yes. If $yx^i = yx^j$ for i < j < d-1,

we see $x^i = x^j$. But we

already know that 1, x, ... x -1 are all distinct.

2) Is there some overlap with the first row?

No. If $x' = yx^j$ for

No. If $x^i = yx^j$ for any i, j, we get $y = x^{j-i}$.

But we are already assuming

But we are already assuming $y \notin \langle x \rangle$

So, we see that if $G \neq \langle x \rangle$, we can add a complete row $\{y, yx, ----, yx^{d-1}\} = y < x >$ under the first one. If this is the complete list of elements of G, we stop.

Otherwise, there is some ZEG, such that $z \notin \langle x \rangle$, $z \notin y \langle x \rangle$. Then, we can try to write the third row containing

 $\{z, zx, - - zx^{d-1}\} = z\langle x\rangle$. By the same argument as before, these are d distinct elements. No overlaps with first row

If $Zx^i = x^j$ for some i,j

then $Z = \chi^{J-1}$. But $Z \notin \langle \chi \rangle - contra.$ No overlaps with second row

No overlaps with second row

If $zx^i = yx^j$ for some i,j

then $z = yx^{j-i} \in y\langle x\rangle$.

This process will continue until we exhaust the group.

This process will end if

191 is finite.
Then we see that d

then we see divides |G|.

We have proved:

ord(n) divides |G|.

Theorem Let G be a finite

group. Then, for any $x \in G$,