Réponses à l'examen du 24 octobre 2023 Sujet A

- **1. a.** $x = (38)_{10} = (212)_4$.
- **b.** $2y = 2(b^2 + 5) = 3(b 1)^2 \iff b^2 6b 7 = 0 \iff b = 7 \text{ (car } b \ge 2), \text{ d'où } y = 7^2 + 5 = (54)_{10}.$
- 2. La fraction $\frac{73}{80.239}$ est bien irréductible car 239 est un nombre premier, donc premier avec 73, et 73 ne divise ni 2 ni 5 (d'ailleurs 73 est lui aussi premier).

 $k = 4 \text{ (car } 80 = 2^4.5^1 \text{ et } \max(4,1) = 4) \text{ et } \ell = 7 \text{ (car } 7 \text{ est premier)}.$

La calculatrice donne en effet $\frac{73}{80.239} = 0,0038\overline{1799163}$.

3. a. $x^2 + (2a - 1)x + a^2 - 7a = 0$; $x = \frac{1 - 2a \pm \sqrt{\Delta}}{2}$ avec $\Delta = (2a - 1)^2 - 4(a^2 - 7a) = \dots = 24a + 1$.

Comme a est un entier, pour que cette équation ait une solution entière, il faut que $\sqrt{\Delta}$ soit un entier impair.

- **b.** À la main, les entiers $a \in \{1, ..., 6\}$ tels que 24a + 1 est le carré d'un entier sont a = 1, 2 et 5.
- **c.** Pour ces valeurs de a, on trouve respectivement x=2, 2 et 1. Tous les nombres cherchés sont donc $(12)_7, (22)_7$ et $(51)_7$.
- **4.** $\mathcal{P}(E) = \{\emptyset, \{1\}\}\$ $\mathcal{P}(\mathcal{P}(E)) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}\$ $\mathcal{P}(E \times E) = \{\emptyset, \{(1, 1)\}\}\$ $\mathcal{P}(E) \times E = \{(\emptyset, 1), (\{1\}, 1)\}\$ $\mathcal{P}(E \cap E) = \{\emptyset, \{1\}\}\$ $\mathcal{P}(E) \cap E = \emptyset$ $\mathcal{P}(E \cup E) = \{\emptyset, \{1\}\}\$ $\mathcal{P}(E) \cup E = \{\emptyset, \{1\}, 1\}$
- **5.** On peut toujours écrire X en fonction de $A \cup X$ et de $A \cap X$, par exemple $X = ((A \cup X) \setminus A) \cup (A \cap X)$. Ceci permet de montrer que f est toujours injective. En effet, si f(X) = f(Y), alors $A \cup X = A \cup Y$ et $A \cap X = A \cap Y$, donc $X = ((A \cup X) \setminus A) \cup (A \cap X) = ((A \cup Y) \setminus A) \cup (A \cap Y) = Y$.

f n'est jamais surjective, quelque soit l'ensemble non vide E et quelle que soit la partie A. Par exemple (\emptyset, E) n'a pas de préimage puisqu'on a toujours $A \cap X \subseteq A \cup X$, alors que $E \not\subseteq \emptyset$.

- **6. a.** A est un ensemble fini (inclus dans E_n) et surtout **non vide** (par exemple $n \in A$). Comme l'ordre \leq est total sur E_n , A a bien un plus petit élément.
- **b.** On a $f(a) \leq a$ puisque $a \in A$. Comme f est croissante, on a donc $f(f(a)) \leq f(a)$, ce qui montre que f(a) aussi est dans A.
- c. Comme a est le plus petit élément de A et que $f(a) \in A$, on en déduit que $a \leq f(a)$, d'où a = f(a). Ainsi a est bien un point fixe de f.
- 7. De nombreux choix sont possibles. Pour que \mathcal{A} n'ait ni plus petit ni plus grand élément, on ne doit mettre dans \mathcal{A} ni \emptyset , ni E. Il reste donc à choisir quatre éléments parmi les six restants : $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$ et $\{2,3\}$. Il se trouve que chacun de ces quinze choix remplit les conditions. Il est peut-être plus naturel de choisir deux singletons et deux doubletons, par exemple $\mathcal{A} = \{\{1\}, \{2\}, \{1,3\}, \{2,3\}\}$.
- **8. a.** $(0,5) \rightarrow (1,3) \rightarrow (2,8) \rightarrow (3,1) \rightarrow 5,4) \rightarrow (6,2) \rightarrow (8,4)$. Un seul élément minimal, qui est aussi le min et l'inf : (0,5).

Un seul élément maximal, qui est aussi le max et le sup : (8,4).

b.
$$(0,5) \rightarrow (2,8)$$

$$(1,3) \rightarrow (5,4) \rightarrow (8,4)$$

$$\nearrow \qquad \nearrow \qquad \qquad (3,1) \rightarrow (6,2)$$

Éléments minimaux : (0,5), (1,3) et (3,1).

Éléments maximaux : (2,8) et (8,4).

Pas de minimum, ni de maximum.

 $\inf A = (0,1), \sup A = (8,8).$

9. a. $B_1 = \{a, b, aab, abb\},$

 $B_2 = \{a, b, aab, abb, aaabb, aabbb\},\$

 $B_3 = \{a, b, aab, abb, aaabb, aaabbb, aaaabbb, aaabbbb\}.$

b. L est l'ensemble de tous les mots ayant d'abord une suite de a, puis une suite de b, avec exactement un a de plus ou de moins que de b; autrement dit,

$$L = \{a^n b^{n+1} ; n \in \mathbb{N}\} \cup \{a^{n+1} b^n ; n \in \mathbb{N}\}.$$

- **c.** Notons E la réunion précédente. Pour tout $n \in \mathbb{N}$, les mots $a^n b^{n+1}$ et $a^{n+1} b^n$ sont bien dans B_n , d'où $E \subseteq L$. Réciproquement, on a $B = \{a, b\} \subseteq E$ et E est stable par f, donc $L \subseteq E$.
- 10. (a+b)(c+d)(a+c)(b+d) = (a+b)(a+c)(c+d)(b+d) = (a+bc)(cb+d) = (a+bc)(d+bc) = ad+bc. $\overline{ab} + \overline{bc} + \overline{cd} + \overline{da} = \overline{ab}.\overline{bc}.\overline{cd}.\overline{da} = abbccdda = abcd$.
- 11. $f(a,b,c) = abc + (a + \overline{a}) \, \overline{b} \, (c + \overline{c}) = abc + a\overline{b}c + a\overline{b}\overline{c} + \overline{a}\overline{b}c + \overline{a}\overline{b}\overline{c}.$ $\overline{f}(a,b,c) = ab\overline{c} + \overline{a}bc + \overline{a}b\overline{c}.$ $\operatorname{Donc} f(a,b,c) = (\overline{a} + \overline{b} + c)(a + \overline{b} + \overline{c})(a + \overline{b} + c).$
- **12. a.** $abx + a\overline{b}x + \overline{a}bx + \overline{a}b\overline{x} = abx + ab\overline{x} + \overline{a}bx + \overline{a}b\overline{x}$.
- **b.** $a\overline{b}x = ab\overline{x} = 0.$
- **c.** $a \cap b \subseteq x \subseteq \overline{a} \cup b$.
- 13. a. $a\overline{a} = 0$, ce qui montre la réflexivité.

Si $a \le b$ alors ab = a et si de plus $b \le a$, alors ab = b, donc a = b, ce qui montre l'antisymétrie.

Si a = ab et $b\bar{c} = 0$, alors $a\bar{c} = (ab)\bar{c} = a(b\bar{c}) = a.0 = 0$, d'où $a \leqslant c$, ce qui montre la transitivité.

- **b.** On vérifie facilement que $0 \le a \le 1$ pour tout $a \in B$, donc B a un plus petit élément qui est 0 et un plus grand élément qui est 1.
- **c.** Si $B = \mathbb{B} = \{0, 1\}$, elle est totale. Sinon, soit $a \in B \setminus \{0, 1\}$. Alors a n'est pas comparable à \overline{a} . En effet, on a $a.\overline{a} = a.a = a \neq 0$ donc $a \nleq \overline{a}$, et de même $\overline{a}.\overline{a} = \overline{a} \neq 0$ donc $\overline{a} \nleq a$. Ainsi cet ordre n'est jamais total dès que $B \neq \mathbb{B}$.

Sujet B

- **14. a.** $x = (51)_{10} = (201)_5$.
- **b.** $3y = 3(3b+4) = (b+1)^2 + 2(b+1) + 3 \Leftrightarrow b^2 5b 6 = 0 \Leftrightarrow b = 6 \text{ (car } b \ge 2), \text{ d'où } y = (22)_{10}.$
- **15. a.** $x^2 + (2a 1)x + a^2 6a = 0$; $x = \frac{1 2a \pm \sqrt{\Delta}}{2}$ avec $\Delta = (2a 1)^2 4(a^2 6a) = \dots = 20a + 1$.

Comme a est un entier, pour que cette équation ait une solution entière, il faut que $\sqrt{\Delta}$ soit un entier impair.

- **b.** À la main, le seul entier $a \in \{1, \dots, 5\}$ tel que 20a + 1 est le carré d'un entier est a = 4.
- c. Pour cette valeur de a, on trouve x = 1. L'unique nombre cherché est donc $(41)_6 = (25)_{10}$.
- 16. La fraction $\frac{23}{250.239}$ est bien irréductible car 239 est un nombre premier, donc premier avec 23, et 23 ne divise ni 2 ni 5 (d'ailleurs 23 est lui aussi premier).

 $k = 3 \text{ (car } 250 = 2^{1}.5^{3} \text{ et } \max(1,3) = 3) \text{ et } \ell = 7 \text{ (car } 7 \text{ est premier)}.$

La calculatrice donne en effet $\frac{23}{250.239} = 0,000\overline{3849372}$.

- $\begin{aligned} \textbf{17.} \quad \mathcal{P}(E) &= \big\{\emptyset, \{a\}\big\} \\ \mathcal{P}(E) \cup E &= \big\{\emptyset, \{a\}, a\big\} \\ \mathcal{P}(E) \times E &= \big\{(\emptyset, a), (\{a\}, a)\big\} \end{aligned} \qquad \begin{aligned} \mathcal{P}(\mathcal{P}(E)) &= \big\{\emptyset, \{\emptyset\}, \{\{a\}\}, \{\emptyset, \{a\}\}\}\big\} \\ \mathcal{P}(E) \times E &= \big\{(\emptyset, a), (\{a\}, a)\big\} \end{aligned} \qquad \begin{aligned} \mathcal{P}(E \times E) &= \big\{\emptyset, \{(a, a)\}\big\} \\ \mathcal{P}(E) \cap E &= \emptyset \end{aligned} \qquad \end{aligned}$
- **18. a.** A est un ensemble fini (inclus dans E_n) et surtout **non vide** (par exemple $1 \in A$). Comme l'ordre \leq est total sur E_n , A a bien un plus grand élément.
- **b.** On a $a \le f(a)$ puisque $a \in A$. Comme f est croissante, on a donc $f(a) \le f(f(a))$, ce qui montre que f(a) aussi est dans A.
- **c.** Comme a est le plus grand élément de A et que $f(a) \in A$, on en déduit que $f(a) \leq a$, d'où a = f(a). Ainsi a est bien un point fixe de f.
- **19.** f n'est jamais injective. Par exemple $f(E,E) = f(\emptyset,\emptyset) = (\emptyset,\emptyset)$ alors que $(E,E) \neq (\emptyset,\emptyset)$.

f n'est jamais surjective non plus car $X \setminus Y$ et $Y \setminus X$ ne s'intersectent jamais. Par exemple (E, E) n'a pas de préimage.

20. Pour que \mathcal{A} n'ait ni plus petit ni plus grand élément, on ne doit mettre dans \mathcal{A} ni \emptyset , ni son sup $\{a,b,c\}$. Il reste donc à choisir cinq éléments parmi les six restants : $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$ et $\{b,c\}$. Il se trouve que chacun de ces six choix remplit les conditions. On peut par exemple écarter le dernier $\{b,c\}$ et choisir $\mathcal{A} = \{\{a\},\{b\},\{c\},\{a,b\},\{a,c\}\}$.

21. a. $(1,4) \rightarrow (2,2) \rightarrow (2,5) \rightarrow (3,4) \rightarrow (3,8) \rightarrow (5,1) \rightarrow (7,3)$.

Un seul élément minimal, qui est aussi le min et l'inf: (1,4).

Un seul élément maximal, qui est aussi le max et le sup : (7,3).

b.

Éléments minimaux : (1,4), (2,2) et (5,1).

Éléments maximaux : (3,8) et (7,3).

Pas de minimum, ni de maximum.

 $\inf A = (1, 1), \sup A = (7, 8).$

22. a. $B_1 = \{\varepsilon, a, b\},\$

 $B_2 = \{\varepsilon, a, b, aa, ab, bb\},\$

 $B_3 = \{\varepsilon, a, b, aa, ab, bb, aaa, aab, abb, bbb\}.$

b. L est l'ensemble de tous les mots ayant d'abord une suite (éventuellement vide) de a, puis une suite de b, chacune de longueur arbitraire; autrement dit,

$$L = \{a^m b^n ; m, n \in \mathbb{N}\}.$$

c. Notons $E = \{a^m b^n : m, n \in \mathbb{N}\}$. On montre par récurrence sur m + n que, pour tout $m, n \in \mathbb{N}$, le mot $a^m b^n$ est dans B_{m+n} , d'où $E \subseteq L$. Réciproquement, on a $B = \{\varepsilon\} \subseteq E$ et E est stable par f et g, donc $L \subseteq E$.

23. (a+b)(b+c)(c+a) + ab + bc + ca = (ac+b)(c+a) + ab + bc + ca= acc + bc + aca + ba + ab + bc + ca = ab + bc + ca + ab + bc + ca= ab + bc + ca.

$$\overline{\overline{\overline{a}+\overline{b}}\cdot\overline{\overline{b}+\overline{c}}\cdot\overline{\overline{c}+\overline{a}}} = \overline{\overline{a}}\overline{\overline{b}}\cdot\overline{\overline{b}}\overline{\overline{c}}\cdot\overline{\overline{c}\overline{a}} = \overline{ab\cdot bc\cdot ca} = \overline{abc}\ (=\overline{a}+\overline{b}+\overline{c}).$$

24. $f(a,b,c) = abc + ab\overline{c} + ab\overline{c} + \overline{a}b\overline{c} = abc + ab\overline{c} + \overline{a}b\overline{c}$.

 $\overline{f}(a,b,c) = a\overline{b}c + a\overline{b}\overline{c} + \overline{a}bc + \overline{a}\overline{b}c + \overline{a}\overline{b}\overline{c}.$

Donc $f(a,b,c) = (\overline{a}+b+\overline{c})(\overline{a}+b+c)(a+\overline{b}+\overline{c})(a+b+\overline{c})(a+b+c).$

25. a. $abx + a\overline{b}x + \overline{a}bx + \overline{a}\overline{b}x + \overline{a}b\overline{x} = abx + ab\overline{x} + \overline{a}bx + \overline{a}b\overline{x}$.

b. $a\overline{b}x = \overline{a}\overline{b}x = ab\overline{x} = 0 \Leftrightarrow \overline{b}x = ab\overline{x} = 0.$

c. $a \cap b \subseteq x \subseteq b$.

26. a. On a $a\overline{b} = 0 \Leftrightarrow \overline{a\overline{b}} = \overline{0} \Leftrightarrow \overline{a} + b = 1$.

Ensuite, si ab = a, alors en multipliant par \bar{b} , on obtient $0 = a.0 = ab\bar{b} = a\bar{b}$. Réciproquement, si $\bar{a} + b = 1$, alors $a = a.1 = a(\bar{a} + b) = a\bar{a} + ab = 0 + ab = ab$.

De même, si a+b=b, alors $\overline{a}+b=\overline{a}+a+b=1+b=1$ et, réciproquement, si $a\overline{b}=0$, alors

$$b = 0 + b = a\overline{a} + b = (a+b)(\overline{a}+b) = (a+b).1 = a+b.$$

b. $a\overline{a} = 0$, ce qui montre la réflexivité.

Si $a\leqslant b$ alors ab=a et si de plus $b\leqslant a,$ alors ab=b, donc a=b, ce qui montre l'antisymétrie.

Si a = ab et bc = b, alors a = ab = abc = ac, d'où $a \le c$, ce qui montre la transitivité.