# Optimizer Performance on Non-Convex Functions

Mohd Darish Khan, Hardik Singh, Suryansh Jaiswal (Group - 4) 2101MC29, 2101MC19, 2101MC41

# Introduction

In this report, we optimize two non-convex functions using various optimization algorithms. The optimization is performed with different learning rates to evaluate the performance of each algorithm.

# **Non-Convex Function Optimization**

#### **Function Definitions**

We consider the following non-convex functions:

- Function 1:  $f(x,y) = (1-x)^2 + 100(y-x^2)^2$
- Function 2:  $f(x) = \sin(\frac{1}{x})$  with f(0) = 0

# **Optimization Algorithms**

The following optimization algorithms are used:

- Gradient Descent
- Stochastic Gradient Descent (SGD)
- Adam
- RMSprop
- Adagrad

#### **Learning Rates**

The learning rates  $(\alpha)$  used for optimization are:

- $\alpha = 0.01$
- $\alpha = 0.05$
- $\alpha = 0.1$

# Results

Optimization of Function 1:  $f(x,y) = (1-x)^2 + 100(y-x^2)^2$  Convergence Behavior:

ullet Gradient Descent:



Figure 1:

- *SGD*:
- Adam:
- RMSprop:
- Adagrad:

**Inference:** The convergence of Adam and AdaGrad were better than others.

# Impact of Learning Rates

Inference: Smaller learning rate made convergence easier.

# Optimization of Function 2: $f(x) = \sin(\frac{1}{x})$

Convergence Behavior:

- Gradient Descent:
- *SGD*:
- Adam:
- RMSprop:
- Adagrad:

Inference: The convergence of Adam and AdaGrad were better than others.

### Impact of Learning Rates

Inference: Smaller learning rate made convergence easier.

# Discussion

The first function converges at (1, 1), while the second one converges at around 0.63 for substantial positive values.

# Conclusion

Adam and Adagrad were the best performing algorithms.

#### Optimization Trajectories for Different Methods and Learning Rate



Figure 2: