Concours National Commun - Session 2010

Corrigé de l'épreuve de mathématiques I Filière MP

Étude de l'équation de la chaleur

Corrigé par M.TARQI

I. RÉSULTATS PRÉLIMINAIRES

1.1 Puisque f est de classe C^2 sur l'ouvert \mathcal{U} , alors, d'après le théorème de Schwarz on peut écrire, pour tout $x \in \mathcal{U}$,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x),$$

donc H_x est une matrice symétrique, et comme elle est réelle, alors H_x est diagonalisable dans une base orthonormée de \mathbb{R}^n .

1.2

1.2.1 f est de classe \mathcal{C}^2 sur l'ouvert \mathcal{U} et admet un maximum en a, donc d'après la condition nécessaire des extremums df(a)=0, donc $\frac{\partial f}{\partial x_i}(a)=0$ pour tout i=1,2,...,n. Par ailleurs, puisque \mathcal{U} est un ouvert, alors il existe $\eta>0$ tel que $B(a,\eta)\subset\mathcal{U}$, donc pour tout $|h|<\eta$, $a+h\in\mathcal{U}$ et d'après la formule de Taylor-Young, on a :

$$f(a+h) = f(a) + \frac{1}{2} \sum_{1 \le i, j \le n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(a) + o(\|h\|^2) = \frac{1}{2} Q_a(h) + o(\|h\|^2).$$

1.2.2

1.2.2.1 Soit $h = t \frac{u}{\|u\|}$, alors $|t| \le \eta$, alors

$$f\left(a + t\frac{u}{\|u\|}\right) - f(a) = \frac{t^2}{2\|u\|^2}Q_a(u) + o(t^2) \le 0,$$

ainsi pour t voisin de 0, on a :

$$t^2 Q_a(u) + o(t^2) \le 0.$$

1.2.2.2 L'inégalité précédente s'écrit aussi pour tout $t \in]-\eta, \eta[\setminus\{0\}:$

$$Q_a(u) + \varepsilon(t) \le 0,$$

où $\lim_{t\to 0} \varepsilon(t)=0$, donc quand t tend vers 0, on obtient $Q_a(u)\leq 0$, donc Q_a est négative.

1.2.3 Comme Q_a est négative, alors

$$\frac{\partial^2 f}{\partial x_i^2}(a) = (H_a(e_i)|e_i) = Q_a(e_i) \le 0.$$

Où $(e_1, e_2, ..., e_n)$ désigne la base canonique de \mathbb{R}^n et (.|.) le produit scalaire canonique.

En particulier

$$\triangle f(a) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}(a) \le 0.$$

1.3 Applications aux fonctions harmoniques

- 1.3.1 *f* est une fonction continue sur la partie compacte *K*, donc elle bornée et atteint ses bornes.
- 1.3.2 Supposons que f atteint son maximum en un point a de l'intérieur de K, alors d'après ce qui précède (question [1.2]), $\triangle f(a) \leq 0$, ce qui est absurde puisque $\triangle(f) > 0$.

Donc f atteint son maximum sur la frontière de K, c'est-à-dire :

$$\sup_{\|x\| \le 1} f(x) = \sup_{\|y\| = 1} f(y).$$

1.3.3

1.3.3.1 Pour tout $x \in K$, $f_{\varepsilon}(x) = f(x) + \varepsilon(x_1^2 + x_2^2 + ... + x_n^2)$, donc f_{ε} apparaît comme somme de deux fonctions de $\mathcal{C}^2(U) \cap \mathcal{C}(K)$, alors $f_{\varepsilon} \in \mathcal{C}^2(U) \cap \mathcal{C}(K)$ et $\forall x \in \mathcal{U}$,

$$\triangle f_{\varepsilon}(x) = \triangle f(x) + 2n\varepsilon = 2n\varepsilon.$$

1.3.3.2 Soit $a\in\mathbb{K}$ tel que $f_{\varepsilon}(a)=\sup_{\|x\|\leq 1}f_{\varepsilon}(x)$ et comme $\triangle f_{\varepsilon}>0$, alors

$$f_{\varepsilon}(a) = \sup_{\|x\| \le 1} f_{\varepsilon}(x) = \sup_{\|y\| = 1} f_{\varepsilon}(y) = \varepsilon + \sup_{\|y\| = 1} f(y)$$

Donc pour tout $x \in K$,

$$f(x) + \varepsilon ||x||^2 \le f_{\varepsilon}(a) = \varepsilon + \sup_{\|y\|=1} f(y)$$

et quand ε tend vers 0, on obtient :

$$f(x) \le \sup_{\|y\|=1} f(y).$$

1.3.3.3 On a $\triangle f = \triangle (-f)$, donc si f est harmonique, alors -f est aussi harmonique et on aura dans ce cas

$$-f(x) \le \sup_{\|y\|=1} (-f)(y) = -\inf_{\|y\|=1} f(y).$$

ou encore

$$\inf_{\|y\|=1} f(y) \le f(x).$$

II. CONSTRUCTION D'UNE SOLUTION DU PROBLÈME

2.1 Si $x \in [-\pi, 0]$, alors $-x \in [0, \pi]$ et donc $\widetilde{\psi}(x) = -\widetilde{\psi}(-x) = -\psi(-x)$; si $x \in [\pi, 2\pi]$, alors $x - 2\pi \in [-\pi, 0]$ et donc $\widetilde{\psi}(x) = \widetilde{\psi}(x - 2\pi) = -\psi(2\pi - x)$ et enfin si $x \in [2\pi, 3\pi]$, alors $x - 2\pi \in [0, \pi]$ et par conséquent $\widetilde{\psi}(x) = \psi(x - 2\pi)$.

La fonction $\widetilde{\psi}$ est \mathcal{C}^1 sur $]-\pi,0[\cup]0,\pi[$, et

$$\lim_{t \to 0^+} \widetilde{\psi}'(t) = \lim_{t \to 0^+} \psi'(t) = \psi'(0)$$

et

$$\lim_{t \to 0^{-}} \widetilde{\psi}'(t) = \lim_{t \to 0^{-}} \frac{d}{dt} (-\psi(-t)) = \psi'(0).$$

De même on montre que $\widetilde{\varphi}'$ est continue en $-\pi$, ainsi $\widetilde{\psi}$ est \mathcal{C}^1 sur \mathbb{R} .

- 2.2 On a $b_p(\widetilde{\psi}) = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{\psi}(t) \sin(pt) dt = \frac{2}{\pi} \int_{0}^{\pi} \widetilde{\psi}(t) \sin(pt) dt = \frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sin(pt) dt = 2b_p$. Puisque ψ est impaire, $a_p(\widetilde{\psi}) = 0$ pour tout $p \in \mathbb{N}$.
- 2.3 Puisque ψ est \mathcal{C}^1 sur \mathbb{R} , alors d'après le théorème de la convergence normale, la série $\sum_{p\geq 1} |b_p(\widetilde{\psi}|)$ converge, donc la série $\sum_{p\geq 1} b_p$ est absolument convergente.
- 2.4 On a $|v_p(x,t)| \leq |b_p|$, donc la série $\sum_{p\geq 1} v_p$ est normalement convergente sur $\mathbb{R} \times [0,+\infty[$. Par ailleurs, les application $(x,t)\longmapsto b_p\sin(px)e^{-p^2t}$ sont continues sur $\mathbb{R} \times [0,+\infty[$, donc la fonction $(x,t)\longmapsto \sum_{p=1}^\infty v_p(x,t)$ est continue sur $\mathbb{R} \times [0,+\infty[$.
- 2.5 Soit $p \in \mathbb{N}^*$, la fonction v_p est produit de fonctions de classe C^{∞} sur \mathbb{R}^2 , donc elle est de classe C^{∞} sur \mathbb{R}^2 et $\forall (x,t) \in \mathbb{R}^2$,

$$\frac{\partial^2 v_p}{\partial x^2} - \frac{\partial v_p}{\partial t} = -p^2 b_p \sin(px) e^{-p^2 t} + p^2 b_p \sin(px) e^{-p^2 t} = 0.$$

- 2.6 On a pour tout $(x,t) \in \mathbb{R} \times [a,+\infty[$ et pour tout $k \in \mathbb{N}$, $|p^k v_p(x,t)| \leq b_p p^k e^{-p^2 a}$ et comme $\lim_{p \to \infty} p^k e^{-p^2 a} = 0$, alors il existe $p_0 \in \mathbb{N}$ tel que pour tout $p \geq p_0$, on a $p^k e^{-p^2 a} \leq 1$ et par conséquent pour tout $p \geq p_0$, $|p^k v_p(x,t)| \leq |b_p|$, donc la série $\sum_{p \geq 1} p^k v_p$ converge normalement sur $R \times [a,+\infty[$. On a $p^k \frac{\partial v_p}{\partial x}(x,t) = p^{k+1} \cos(px) e^{-p^2 t}$, donc le même raisonnement se fait pour montrer que la série $\sum_{p \geq 1} p^k \frac{\partial v_p}{\partial x}$ est normalement convergente sur $\mathbb{R} \times [a,+\infty[$.
- 2.7 Soit a>0 et $t\in[a,+\infty[$. Posons $\varphi(x)=\sum_{p=1}^\infty v_p(x,t).$ Montrons que φ possède en tout point de $\mathbb R$ une dérivée et que $\forall x\in\mathbb R$, $\varphi'(x)=\sum_{p=1}^\infty pb_p\cos(px)e^{-pt^2}$
 - $-\varphi$ est bien définie sur \mathbb{R} .
 - $u_p: x \longmapsto v_p(x,t)$ est de classe \mathcal{C}^1 sur \mathbb{R} pour tout $p \ge 1$ et $u_p'(x) = pb_p \cos(px)e^{-p^2t}$.
 - D'après la question [2.6], la série $\sum_{n\geq 1} u_p'$ converge normalement sur \mathbb{R} .

Conclusion : De ces points, on en déduit par un théorème de cours que φ est de classe \mathcal{C}^1 sur \mathbb{R} et que

$$\varphi'(x) = \sum_{p=1}^{\infty} u_p'(x).$$

Autrement dit, la fonction f possède en tout point de $\mathbb{R} \times]0, +\infty[$ une dérivée partielle par rapport à x et que

$$\frac{\partial f}{\partial x}(x,t) = \sum_{p=1}^{\infty} p b_p \cos(px) e^{-p^2 t}.$$

Par ailleurs, les applications $(x,t)\longmapsto pb_p\cos(px)e^{-p^2t}$ sont continues sur $\mathbb{R}\times]0,+\infty[$, et comme la série $\sum_{p\geq 1}pb_p\cos(px)e^{-p^2t}$ converge normalement sur tout $\mathbb{R}\times [a,+\infty[$, pour a>0, alors $\frac{\partial f}{\partial x}$ est continue sur $\mathbb{R}\times]0,+\infty[$.

2.8 Posons $\varphi(t)=\sum_{n=0}^\infty v_p(x,t)$. Montrons que φ possède en tout point de $]0,+\infty[$ une dérivée

et que
$$\forall t \in]0, +\infty[, \varphi'(t) = -\sum_{p=1}^{\infty} p^2 b_p \sin(px) e^{-pt^2}$$

- $\begin{array}{ll} & -\varphi \text{ est bien définie sur }]0,+\infty[.\\ & -u_p:t\longmapsto v_p(x,t) \text{ est de classe }\mathcal{C}^1 \text{ sur }]0,+\infty[\text{ pour tout }p\geq 1 \text{ et }u_p'(t)=-p^2b_p\sin(px)e^{-p^2t}. \end{array}$
- La série $\sum\limits_{p\geq 1}u'_p$ converge normalement sur $[a,+\infty[$ pour tout a>0.

Donc φ est de classe \mathcal{C}^1 sur $]0, +\infty[$ et que

$$\varphi'(t) = \sum_{p=1}^{\infty} u_p'(t).$$

Autrement dit, la fonction f possède en tout point de $\mathbb{R} \times]0, +\infty[$ une dérivée partielle par rapport à t et que

$$\frac{\partial f}{\partial t}(x,t) = -\sum_{p=1}^{\infty} p^2 b_p \sin(px) e^{-p^2 t}.$$

D'autre part, les applications $(x,t) \longmapsto p^2 b_p \sin(px) e^{-p^2 t}$ sont continues sur $\mathbb{R} \times]0,+\infty[$ et comme la série $\sum_{i=1}^{n} p^2 b_p \sin(px) e^{-p^2 t}$ converge normalement sur tout $\mathbb{R} \times [a, +\infty[$, pour a > 0, alors $\frac{\partial f}{\partial t}$ est continue sur $\mathbb{R} \times]0, +\infty[$.

2.9 Il suffit de montrer que les dérivées partielles d'ordre 2 existent et qu'elles sont continues sur $\mathbb{R} \times]0, +\infty[$. D'après les questions [2.7] et [2.8] f est de classe \mathcal{C}^1 sur $\mathbb{R} \times]0, +\infty[$, et on peut utiliser le même raisonnement pour montrer que les dérivées partielles $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial t^2}$, $\frac{\partial^2 f}{\partial x \partial t}$ et $\frac{\partial^2 f}{\partial t \partial x}$ existent et qu'elles sont continues sur $\mathbb{R} \times]0, +\infty[$, et que

$$\frac{\partial^2 f}{\partial x^2}(x,t) = -\sum_{p=1}^{\infty} p^2 \sin(px)e^{-p^2t}$$

pour tout (x, t) de $\mathbb{R} \times]0, +\infty[$. Ainsi $\forall (x,t) \in \mathbb{R} \times]0, +\infty[$

$$\frac{\partial^2 f}{\partial x^2}(x,t) - \frac{\partial f}{\partial t}(x,t) = -\sum_{p=1}^{\infty} p^2 \sin(px) e^{-p^2 t} - \left(-\sum_{p=1}^{\infty} p^2 \sin(px) e^{-p^2 t}\right) = 0$$

2.10 D'après ce qui précède, $f:(x,t)\longmapsto\sum_{i=1}^\infty v_p(x,t)$ vérifie la condition (i) de (1). D'autre part, pour tout $t \in [0,R]$, $f(0,t) = f(\pi,t) = 0$; donc la deuxième condition est aussi vérifie, enfin, pour tout x de $[0,\pi]$, $f(x,0)=\sum_{n=1}^{\infty}b_{p}\sin(px)=\widetilde{\varphi}(x)=\psi(x)$.

En conclusion, la restriction de f à $\overline{\Omega}$ est solution du problème (1).

III. UNICITÉ DE LA SOLUTION

3.1 Un résultat utile

3.1.1 Par définition $g'(b) = \lim_{t \to b^-} \frac{g(t) - g(b)}{t - b}$ et comme $g(t) - g(b) \le 0$ pour tout $t \in]a, b]$, alors $g'(b) \geq 0$.

$$\lim_{x \to x_0^-} \frac{g(x) - g(x_0)}{x - x_0} \ge 0 \quad \text{et} \qquad \lim_{x \to x_0^+} \frac{g(x) - g(x_0)}{x - x_0} \le 0$$

et comme g est dérivable en x_0 alors

$$g'(x_0) = g'_d(x_0) = g'_q(x_0) = 0$$

La formule de Taylor-Young à l'ordre 2 s'écrit sous la forme :

$$g(x_0 + h) - g(x_0) = \frac{h^2}{2}g''(x_0) + o(h^2).$$

Comme dans la question [1.2] de la première partie, $g''(x_0) \le 0$.

3.2

3.2.1 f est une fonction continue sur $\overline{\Omega}_r$, qui est un compact de \mathbb{R}^2 ; donc f est bornée et atteint ses bornes ; en particulier il existe $(x_0, t_0) \in \overline{\Omega}_r$ tel que

$$F(x_0, t_0) = \sup_{(x,t) \in \overline{\Omega_r}} F(x,t).$$

3.2.2 Si $(x_0, t_0) \in \Omega_r$, qui est ouvert et puisque F est \mathcal{C}^1 sur Ω_r , alors d'après la condition nécessaire des extremums,

$$\frac{\partial F}{\partial x}(x_0, t_0) = \frac{\partial F}{\partial t}(x_0, t_0) = 0.$$

La fonction $x \longmapsto F(x,t_0)$ est deux fois dérivable sur $]0,\pi[$ et admet un maximum en x_0 , donc $\frac{\partial^2 f}{\partial x^2}(x_0,t_0) \leq 0$ (la question [3.1.2] de cette partie).

3.2.3 La fonction $g: x \longmapsto F(x,r) = F(x,t_0)$ est deux fois dérivable sur $]0,\pi[$ et admet un maximum en x_0 , donc $g''(x_0) = \frac{\partial^2 F}{\partial x^2}(x_0,t_0) \leq 0$.

De même , la fonction $t \longmapsto F(x_0,t)$ est deux fois dérivable sur]0,r] et admet un maximum en $t_0=r$, donc

$$\frac{\partial F}{\partial t}(x_0, t_0) = \frac{\partial F}{\partial t}(x_0, r) \ge 0.$$

3.2.4 Si $(x_0, t_0) \in \Omega_r$, alors $\frac{\partial^2 f}{\partial x^2}(x_0, t_0) - \frac{\partial f}{\partial t}(x_0, t_0) = \frac{\partial^2 f}{\partial x^2}(x_0, t_0) \le 0$, mais ceci est absurde.

Si $(x_0, t_0) \in \Lambda_r$, alors $\frac{\partial^2 f}{\partial x^2}(x_0, t_0) - \frac{\partial f}{\partial t}(x_0, t_0) \le 0$, et ceci aussi est absurde.

Donc la condition $\frac{\partial^2 f}{\partial x^2} - \frac{\partial f}{\partial t} > 0$ implique que $(x_0, t_0) \in \Gamma_r$.

3.3

3.3.1 Puisque pour tout $p \in \mathbb{N}^*$, $\Gamma_{r_p} \subset \Gamma_R$, alors la suite $(z_p)_{p \geq 1}$ d'éléments de Γ_R est bornée, et d'après le théorème de Weirstrass, on peut extraire une sous-suite $(z_{\sigma(p)})_{p \geq 1}$ qui converge dans Γ_R vers un élément $z = (x^*, t^*)$.

D'autre part, on a pour tout $p \in \mathbb{N}^*$, $\Omega_{r_p} \subset \Omega_{r_{p+1}}$, donc $\sup_{(x,t) \in \Omega_p} F(x,t) \leq \sup_{(x,t) \in \Omega_{p+1}} F(x,t)$

et par conséquent $F(z_p) \leq F(z_{p+1})$, donc $(F(z_p))_{p\geq 1}$ est croissante, il est de même de la sous-suite $(F(z_{\sigma}(p)))_{p>1}$.

On a aussi F est continue sur Γ_R et $\lim_{p\to\infty}z_{\sigma(p)}=z$, donc $F(z_{\sigma(p)})_{p\geq 1}$ tend vers F(z).

3.3.2 Soit $(x,t) \in [0,\pi] \times [0,R]$, alors il existe $p \in \mathbb{N}^*$ tel que $(x,t) \in \overline{\Omega}_{\sigma(p)}$ et donc

$$F(x,t) \le \sup_{(x,t) \in \overline{\Omega}_{\sigma(p)}} F(x,t) = F(x_{\sigma(p)}, t_{\sigma(p)})$$

et par conséquent $F(x,t) \leq \lim_{p \to \infty} F(x_{\sigma(p)},t_{\sigma(p)}) = F(x^*,t^*)$; et comme F est continue sur $\overline{\Omega}_R$, alors,

$$F(x,R) = \lim_{t \to R} F(x,t) \le F(x^*, t^*).$$

Donc l'inégalité précédente est vraie pour tout $(x,t) \in \overline{\Omega}_R$.

3.4

3.4.1 Il est clair que $F_p \in \mathcal{C}(\overline{\Omega}_R) \cap \mathcal{C}^2(\Omega_R)$ et que $\forall (x,t) \in \Omega_R$,

$$\frac{\partial^2 F_p}{\partial x^2}(x,t) - \frac{\partial F_p}{\partial t}(x,t) = \frac{\partial^2 F}{\partial x^2}(x,t) - \frac{\partial F}{\partial t}(x,t) + \frac{2}{p} > 0.$$

3.4.2 D'après la question [3.3] de cette partie, pour chaque $p\in\mathbb{N}^*$, il existe $(x_p,t_p)\in\Omega_p$ tel que

$$F_p(x_p, t_p) = \sup_{(x,t) \in \overline{\Omega}_R} F_p(x, t).$$

3.4.3 $(x_p,t_p)_{p\geq 1}$ est une suite d'éléments d'une partie bornée, donc admet une sous-suite convergente $(x_{\sigma(p)},t_{\sigma(p)})_{p\geq 1}$ vers $(x^*,t^*)\in \Gamma_R$, l'égalité précédente s'écrit enore sous la forme

$$F(x_{\sigma(p)}, t_{\sigma(p)}) + \frac{x_{\sigma(p)}^2}{\sigma(p)} = \sup_{(x,t) \in \overline{\Omega}_R} F(x,t) + \frac{R^2}{\sigma(p)}.$$

et quand p tend vers l'infini on obtient l'égalité :

$$F(x^*, t^*) = \sup_{(x,t) \in \overline{\Omega}_R} F(x, t).$$

3.5 D'après ce précède et par application du résultat de la question [3.4] à F et -F, il existe deux couples (x_1^*, t_1^*) et (x_2^*, t_2^*) de Γ_R tels que :

$$0 = F(x_1^*, t_1^*) = \sup_{(x,t) \in \overline{\Omega}_R} F(x,t).$$
$$0 = F(x_2^*, t_2^*) = \sup_{(x,t) \in \overline{\Omega}_R} (-F)(x,t) = -\inf_{(x,t) \in \overline{\Omega}_R} F(x,t).$$

Donc la fonction F est identiquement nulle sur $\overline{\Omega}_R$.

3.6 D'après la deuxième partie, f est solution du problème (1), donc la fonction $G = f_1 - f$ vérifie l'équation

$$\frac{\partial^2 F}{\partial x^2} - \frac{\partial F}{\partial t} = 0$$

sur Ω_R , et par la question [3.5], la fonction G est nulle sur $\overline{\Omega}_R$, donc $f_1 = f$. D'où l'unicité de la solution du problème (1).

•••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr