Nathan Solomon Page 1

1 5/29/2024 lecture

- Casimir element
- Spin groups
- Lenz vector
- Use Frobenius theorem to show that only 0, 1, and 3 dimensional spheres are Lie groups
- Review universal covers
- See Sakurai "Modern QM" chapter 4 and Kirillov Chapter 7
- Show that $\mathfrak{so}(3) \oplus \mathfrak{so}(3) = \mathfrak{so}(4)$
- Root spaces

1.1 Cartan subalgebras

REVIEW ADJOINT REPRESENTATION

Let G be a real, n-dimensional, compact Lie group, and \mathfrak{g} be it's Lie algebra. For any $x \in \mathfrak{g}$, define the function

$$\operatorname{ad}_x: \mathfrak{g}^{\mathbb{C}} \to g^{\mathbb{C}}, \qquad \operatorname{ad}_x(y) = [x, y].$$

and let $\mathfrak{h}\subset\mathfrak{g}$ be a maximal abelian subalgebra, called the "Cartan subalgebra".

For any linear map $\alpha : \mathfrak{h} \to \mathbb{C}$, which we call a "root", we can define a "root space" \mathfrak{g}_{α} , which is the set of elements $x \in \mathfrak{g}^{\mathbb{C}}$ such that $\mathrm{ad}_h(x) = [h, x] = \alpha(h)x$ for any $h \in \mathfrak{h}$.

If W is the set of weights of the representation $\mathfrak{g}^{\mathbb{C}}$, then

$$\mathfrak{g}^{\mathbb{C}}=\mathfrak{h}\oplus\left(igoplus_{lpha\in W}\mathfrak{g}_{lpha}
ight)$$

is called the "root space decomposition".

1.2 Killing form

An inner product $\langle \cdot | \cdot \rangle$ is called degenerate iff the statement " $\langle x | y \rangle = 0$ for every y" implies x = 0.

In the coordinate system that we talked about, we can define an inner product (x, y) called the "Killing form" as

$$(x,y) = \operatorname{Tr}_{\mathfrak{g}} (\operatorname{ad}_x \operatorname{ad}_y).$$

The Lie algebra \mathfrak{g} is called "semisimple" iff the Killing form is non-degenerate.

Theorem 1.1. g is semisimple iff (1) it has no center and (2) it is a direct sum of simple Lie algebras.