Applecross Senior High School

Semester One Examination, 2019

Question/Answer booklet

MATHEMATICS SPECIALIST UNIT 1

Section One: Calculator-free

SO	LU	ΓΙΟ	NS
U			

Student number:	In figures	
	In words	
	Your name	

Time allowed for this section

Reading time before commencing work: five minutes Working time: fifty minutes

Materials required/recommended for this section

To be provided by the supervisor This Ouestion/Answer booklet

Formula sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examinatio n
Section One: Calculator-free	8	8	50	52	35
Section Two: Calculator-assumed	13	13	100	98	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet preferably using a blue/black pen. Do not use erasable or gel pens.
- 3. You must be careful to confine your answer to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 5. It is recommended that you do not use pencil, except in diagrams.
- 6. Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

Section One: Calculator-free

35% (52 Marks)

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time: 50 minutes.

Question 1 (4 marks)

In the diagram below (not drawn to scale) A, B and C lie on the circle with centre O and OA is parallel to CB.

Determine, with reasons, the size of \angle *OBA* and the size of \angle *ABC* when \angle *OAC*=23°.

$$\angle$$
 ACB= \angle *OAC*=23(Alternate angles)

$$\angle AOB = 2 \times \angle ACB = 46$$
 (Angle at centre)

$$\angle OBA = (180 - 46) \div 2 = 67$$
 ° (Isosceles)

$$\angle OBC = \angle BOA = 46$$
 (Alternate angles)

$$\angle ABC = 46 + 67 = 113^{\circ}$$

- $\checkmark \angle ACB$ with reason
- $\square \angle AOB$ with reason
- $\square \angle OBA$ with reason
- ARC

Question 2 (8 marks)

Let a=4i-8j, b=-3i+6j and c=2i+3j.

(a) Determine

(i) b-c.

Specific behaviours

√ correct vector

(ii) 3b+4a.

Solution $3 \begin{pmatrix} -3 \\ 6 \end{pmatrix} + 4 \begin{pmatrix} 4 \\ -8 \end{pmatrix} = \begin{pmatrix} -9 \\ 18 \end{pmatrix} + \begin{pmatrix} 16 \\ -32 \end{pmatrix} = \begin{pmatrix} 7 \\ -14 \end{pmatrix}$

Specific behaviours

✓ determines scalar multiples

✓ correct vector

(iii) $\dot{c}a+c\vee\dot{c}$.

(2 marks)

(1 mark)

(2 marks)

$$\sqrt{6^2 + (-5)^2} = \sqrt{61}$$

Specific behaviours

✓ determines sum✓ correct value

(b) Determine a unit vector that is parallel to a+b but in the opposite direction. (3 marks)

Solution $-\left(\binom{4}{-8} + \binom{-3}{6}\right) = \binom{-1}{2}$ $\left|\binom{-1}{2}\right| = \sqrt{5}$

Soln: $\frac{1}{\sqrt{5}} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Specific behaviours

 \checkmark determines -(a+b)

✓ determines magnitude

Question 3 (6 marks)

Body A moves 40 m on a bearing of 315 °. Express this displacement in component form (a) using unit vectors i and j. (3 marks)

Solution
$$\angle (x-axis)=135^{\circ}$$

$$r=40\cos 135^{\circ}i+40\sin 135^{\circ}j$$

$$\&-20\sqrt{2}i+20\sqrt{2}j$$
Specific behaviours
$$\checkmark \text{ correct angle from } x\text{-axis}$$

- ☐ correct *i*-coefficient
- □ correct *j*-coefficient

Body *B* moves with a velocity of $4\sqrt{3}i-4j$ ms⁻¹. Determine the speed of this body and the (b) bearing it is travelling in. (3 marks)

Solution			
$s^2 = (4\sqrt{3})^2 + (4)^2 s = 8 \text{ m/s}$			
$\angle (x-axis) = -30^{\circ}$			
Bearing = 90+30 = 120°			
Specific behaviours			
□ correct speed			
\square angle with x -axis			
□ correct bearing			

6

Question 4 (7 marks)

Quadrilateral ABCD is shown below. The midpoints of sides AB, BC, CD and DA are P, Q, Rand *S* respectively. Let $\overrightarrow{AB} = 2b$, $\overrightarrow{AC} = 2c$ and $\overrightarrow{AD} = 2d$.

(a) Sketch quadrilateral *PQRS* on the diagram above. (1 mark)

Determine expressions for \overrightarrow{AQ} , \overrightarrow{AR} and \overrightarrow{QR} in terms of b, c and d. (b)

(3 marks)

Solution
$$\overrightarrow{AQ} = 2b + \frac{1}{2}(2c - 2b) = c + b$$

$$\overrightarrow{AR} = 2d + \frac{1}{2}(2c - 2d) = c + d$$

$$\overrightarrow{QR} = \overrightarrow{QA} + \overrightarrow{ARC}(-c - b) + (c + d) = d - b$$
 Specific behaviours

- \checkmark derives expression for \overrightarrow{AQ}
- ✓ derives expression for \overrightarrow{AR}
- \checkmark derives expression for \overrightarrow{OD}

(c) Prove that
$$\overrightarrow{PQ} = \overrightarrow{SR}$$
 and $\overrightarrow{PS} = \overrightarrow{QR}$.

(3 marks)

Solution		
$\overrightarrow{PS} = \overrightarrow{AS} - \overrightarrow{AP} \dot{c} d - b \dot{c} \overrightarrow{QR}$		
$\overrightarrow{PQ} = \overrightarrow{AQ} - \overrightarrow{APic}c + b - bic$		
$\overrightarrow{SR} = \overrightarrow{AR} - \overrightarrow{ASic} + d - dici \overrightarrow{PQ}$		
Specific behaviours		
\checkmark derives expression for \overrightarrow{PS} and equates to \overrightarrow{QR}		
\square derives expression for \overrightarrow{PQ}		
\square derives expression for \overrightarrow{SR} and equates to \overrightarrow{PQ}		

Question 5 (6 marks)

Consider the following statement that refers to two isosceles triangles.

If the triangles have the same area, then the triangles are congruent.

(a) Write the inverse statement and state whether it is true or false.

(2 marks)

Solution

If the triangles do not have the same area, then the triangles are not congruent.

This statement is true.

Specific behaviours

- ✓ correct inverse statement
- ☐ states true

(b) Write the converse statement and state whether it is true or false.

(2 marks)

Solution

If the triangles are congruent, then the triangles have the same area.

This statement is true.

Specific behaviours

- ✓ correct inverse statement
- ✓ states true

(c) Write the contrapositive statement and use a counter-example to explain why it is false.

(2 marks)

Solution

If the triangles are not congruent, then the triangles do not have the same area.

The isosceles triangles shown are not congruent but have the same area.

- ✓ correct contrapositive statement
- correct example that uses isosceles triangles
- Or \square shows dimensions that give same area

Question 6 (7 marks)

8

(a) The work done, in joules, by a force of F Newtons in changing the displacement of an object by s metres, is given by the scalar product of F and s. Determine the work done by

(i) force F = (10i + 8j) N that moves a small body from (2i - 8j) m to (15i + 12j) m.

(2 marks)

Solution
$$\binom{15}{12} - \binom{2}{-8} = \binom{13}{20}$$

$$w = \binom{10}{8} \cdot \binom{13}{20} = 130 + 160 = 290 \text{ J}$$
Specific behaviours
$$\checkmark \text{ displacement vector}$$

correct work done

(ii) a horizontal force of 30 N that pushes a small body 1.8 m up a slope inclined at $30\,^{\circ}$ to the horizontal. (2 marks)

Solution		
$w = 30 \times 1.8 \times \cos 30 \stackrel{?}{\circ} 30 \times 1.8 \times \frac{\sqrt{3}}{2}$		
¿27√3J		
Specific behaviours		
✓ uses correct expression		
□ correct work done		

(b) Determine the vector projection of (2i+4j) on (-3i+4j). (3 marks)

Solution	
$\begin{pmatrix} -3\\4 \end{pmatrix} \cdot \begin{pmatrix} -3\\4 \end{pmatrix} = 25$	
$\frac{10}{25} \binom{-3}{4} = \binom{-6}{5} \frac{8}{5}$	
Specific behaviours	

√ scalar products

Question 7 (6 marks)

In the diagram below (not drawn to scale), two circles intersect at F and G. AH is a tangent to the circle at H. AE is a straight line that cuts the circles at A, B, D and E and intersects chord GF at C. AB=8, GC=4.5, CF=2, AH=12 and BC < CE.

Deduce that BE=10. (a)

(2 marks)

$$AH^{2} = AB \times AEAE = 12^{2} \div 8 = 18$$

$$BE = AE - ABi 18 - 8 = 10$$

Specific behaviours

- \checkmark justifies length of AE
- \square justifies length of *BE*

(b) Determine *BC* and *CD*, justifying your answers. (4 marks)

Solution

$$BC \times CE = GC \times CF$$
$$x = BC$$

$$x(10-x)=4.5\times 2=9$$

$$x^2 - 10x + 9 = 0$$

$$(x-1)(x-9)=0$$

$$x=BC=1$$

$$AC \times CD = GC \times CF = 9$$

 $CD = 9 \div (8+1) = 1$

$$CD = 9 \div (8+1) = 1$$

- \checkmark justifies equation for BC
- ☐ length of *BC*
- \square justifies equation for CD
- length of

Question 8

(a) Evaluate $\frac{^{2020}P_2}{101 \times ^{20}P_{19}}$.

(8 marks)

(3 marks)

Solution

$$\frac{2020 P_2}{101 \times^{20} P_1} = \frac{2020!}{2018!} \div \left(101 \times \frac{20!}{19!}\right)$$

$$\stackrel{?}{6}2020 \times 2019 \div \left(101 \times 20\right)$$

$$\stackrel{?}{6}2020 \times 2019 \div 2020 \stackrel{?}{6}2019$$

Specific behaviours

- ✓ expresses as factorials
- eliminates factorials
- ☐ correct value

(b) Given that ${}^{n+1}P_r = k \times {}^nP_r$, determine the constant k in terms of n and/or r. (3 marks)

Solution

$$\begin{array}{c} {}^{n+1}P_r = \frac{(n+1)!}{(n+1-r)!} \\ \vdots \\ \frac{(n+1)n!}{(n+1-r)(n-r)!} \end{array}$$

$$\therefore k = \frac{n+1}{n+1-r}$$

Specific behaviours

- ✓ expresses LHS using factorials
- ☐ factors out term from denominator
- correct expression

(c) Given that ${}^{14}P_{12} = 43589145600$, determine ${}^{16}P_{12}$.

(2 marks)

Solution

$$^{16}P_{12} = \frac{16}{4} \times ^{15}P_{12} = 4 \times \frac{15}{3} \times ^{14}P_{12} = 20 \times ^{14}P_{12}$$

$$20 \times 43589145600 = 871782912000$$

- ✓ correct multiplier
- ☐ correct value

Supplementary page

Question number: _____

