相似

Didnelpsun

目录

1	特征	持征值与特征向量								
	1.1	定义	1							
	1.2	性质	1							
		1.2.1 特征值性质	1							
		1.2.2 特征向量性质	1							
	1.3	运算	2							
		1.3.1 具体型	2							
		1.3.2 抽象型	2							
2	相似		3							
	2.1	矩阵相似	3							
		2.1.1 定义	3							
		2.1.2 性质	3							
	2.2	相似对角化	3							
		2.2.1 定义	3							
		2.2.2 对角化条件	3							
		2.2.3 步骤	3							
	2.3	应用	3							
	2.4	相似对角化	3							
	2.5	反向问题	3							
		2.5.1 参数	3							
		2.5.2 矩阵	3							
	2.6	幂与函数	3							

主要包括特征值与特征向量,相似矩阵,对角矩阵。 这里的矩阵都是指方阵。

1 特征值与特征向量

1.1 定义

设 $A \not\in n$ 阶矩阵, λ 是一个数,若存在 n 维非零列向量 $\xi \neq 0$,使得 $A\xi = \lambda \xi$,则 λ 是 A 的特征值, ξ 是 A 的对应于特征值 λ 的特征向量。

1.2 性质

1.2.1 特征值性质

设 $A = (a_{ij})_{n \times n}$, λ_i $(i = 1, 2, \dots, n)$ 是 A 的特征值,则:

1.
$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} = tr(A)$$
。主对角线元素和即矩阵的迹。

$$2. \prod_{i=1}^{n} \lambda_i = |A| \circ$$

1.2.2 特征向量性质

- 1. k 重特征值 λ 至多只有 k 个线性无关的特征向量。
- 2. 若 ξ_1 和 ξ_2 是 A 的属于不同特征值 λ_1 和 λ_2 的特征向量,则 ξ_1 和 ξ_2 线性 无关。
- 3. 若 ξ_1 和 ξ_2 是 A 的属于同特征值 λ 的特征向量,则 $k_1\xi_1 + k_2\xi_2$ (k_1k_2 不同时为 0) 仍是 A 的属于特征值 λ 的特征向量。

证明性质二: 利用定义法,首先 $A\xi_1 = \lambda_1\xi_1$, $A\xi_2 = \lambda_2\xi_2$ 。 要证明两个特征向量线性无关,则证明 $k_1\xi_1 + k_2\xi_2 = 0$ 时 $k_1 = k_2 = 0$ 。 $Ak_1\xi_1 + Ak_2\xi_2 = k_1\lambda_1\xi_1 + k_2\lambda_1\xi_2 = 0$ 。又 $k_1\xi_1 + k_2\xi_2 = \lambda_1k_1\xi_1 + \lambda_1k_2\xi_2 = 0$, 两式相减: $k_2(\lambda_2 - \lambda_1)\xi_2 = 0$,且 $\lambda_1 \neq \Lambda_2$, $\xi_2 \neq 0$,∴ $k_2 = 0$ 。 代入 $k_1\xi_1 + k_2\xi_2 = 0$,即 $k_1\xi_1 = 0$,又 $\xi_1 \neq 0$,∴ $k_1 = 0$ 。

1.3 运算

 $\therefore \lambda \xi - A \xi = 0$, $\therefore (\lambda E - A) \xi = 0$, $\chi \xi \neq 0$, $\therefore (\lambda E - A) x = 0$ 有非零解。 从而 $\lambda E - A$ 所表示的方阵线性相关,为降秩,从而 $|\lambda E - A| = 0$ 。 $|\lambda E - A| = 0$ 也称为特征方程或是特征多项式,解出的 λ_i 就是特征值。 将 λ_i 代回原方程,所有非零的解就是 ξ 。

1.3.1 具体型

若矩阵 A 为对角线矩阵,则特征值为对角线上元素。

注意:特征向量因为要求不为 0,所以需要 $k \neq 0$ 。

例题: 求
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$
 的特征值与特征向量。

例题: 求
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$
 的特征值与特征向量。
$$|\lambda E - A| = \begin{vmatrix} \lambda_2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \Lambda \end{vmatrix} = (\lambda - 2)(\lambda - 1)\lambda - 4\lambda - 4(\lambda - 2) = \lambda^3 - 3\lambda^2 - 1$$

$$6\lambda + 8 = (\lambda + 2)(\lambda - 1)(\lambda - 4) = 0$$

$$\lambda_1 = -2$$
, $\lambda_2 = 1$, $\lambda = 4$.

当计算 $|\lambda E - A|$ 时往往难点就是从多项式中解出 λ ,对于 $f(\lambda) = a_k \lambda^k + A$ $\cdots + a_1\lambda + a_0 = 0$,可以使用试根法:

- 1. 若 $a_0 = 0$, $\lambda = 0$ 就是其根。
- 2. 若 $a_k + \cdots + a_1 + a_0 = 0$, $\lambda = 1$ 就是其根。
- 4. 若 $a_k = 1$,且系数都是整数,则有理根是整数,且均为 a_0 的因子。

对于第四个, 如 $\lambda^3 - 4\lambda^2 + 3\lambda + 2 = 0$, 2 的因子为 ± 1 和 ± 2 , 分别代入得 到一根为 2。

1.3.2 抽象型

1. 利用定义,寻找 $A\xi = \lambda \xi$, $\xi \neq 0$, $\lambda \in A$ 的特征值, $\xi \in A$ 属于 λ 的特 征向量。

2. 根据 $|\lambda E - A| = 0$ 计算出对应的 λ 值,再计算 ξ 的值。

矩阵	A	kA	A^k	f(A)	A^{-1}	A^*	$P^{-1}AP$	A^T
特征值	λ	$k\lambda$	λ^k	$f(\lambda)$	λ^{-1}	$ A /\lambda$	λ	λ
特征向量	ξ	ξ	ξ	ξ	ξ	ξ	$P^{-1}\xi$	无关

例题: 设 A 为 n 阶矩阵,且 $A^T = A$ (此时 A 就是幂等矩阵)。

- (1) 求 A 的特征值可能的取值。
- (2) 证明 E + A 是可逆矩阵。
- (1) 解: $A^2 = A$, $f(A) = A^2 A = 0$, $f(\lambda) = \lambda^2 \lambda = 0$, $\lambda_1 = 0$, $\lambda_2 = 1$ 。 值得注意的是这里求的 λ 是可能的取值,因为不同的矩阵特征值不同,只有通过 $|\lambda E A| = 0$ 的值才是真实的特征值。

2 相似

- 2.1 矩阵相似
- 2.1.1 定义
- 2.1.2 性质
- 2.2 相似对角化
- 2.2.1 定义
- 2.2.2 对角化条件
- 2.2.3 步骤
- 2.3 应用
- 2.4 相似对角化
- 2.5 反向问题
- 2.5.1 参数
- 2.5.2 矩阵
- 2.6 幂与函数