Package 'segclust2d'

April 24, 2024

Type Package

Title Bivariate Segmentation/Clustering Methods and Tools

Version 0.3.3

URL https://github.com/rpatin/segclust2d

BugReports https://github.com/rpatin/segclust2d/issues

Description Provides two methods for segmentation and joint segmentation/clustering of

bivariate time-series. Originally intended for ecological segmentation

(home-range and behavioural modes) but easily applied on other series,

the package also provides tools for analysing outputs from R packages 'moveHMM' and 'marcher'.

The segmentation method is a bivariate extension of Lavielle's method available in 'adehabitatLT' (Lavielle, 1999 <doi:10.1016/S0304-4149(99)00023-

X> and 2005 <doi:10.1016/j.sigpro.2005.01.012>).

This method rely on dynamic programming for efficient segmentation.

The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm.

This is an extension of Picard et al (2007) <doi:10.1111/j.1541-0420.2006.00729.x> method (formerly available in 'cghseg' package) to the bivariate case.

The method is fully described in Patin et al (2018) <doi:10.1101/444794>.

License GPL-3

LazyData TRUE

RoxygenNote 7.3.1

Depends R (>= 3.3.0)

Imports RColorBrewer (>= 1.1-2), dplyr (>= 1.0.0), plyr (>= 1.8.4), reshape2 (>= 1.4.1), ggplot2(>= 2.1.0), magrittr, Rcpp, zoo, grDevices, graphics, stats, utils, scales, rlang, methods, cli

Suggests knitr, rmarkdown, testthat, dygraphs (>= 1.1.1-1), xts (>= 0.9-7), leaflet (>= 1.0.1), sp (>= 1.2-3), adehabitatLT, depmixS4, moveHMM (>= 1.2), htmltools, move, devtools, spelling

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Encoding UTF-8

Language en-US
NeedsCompilation yes
Author Remi Patin [aut, cre],
Marie-Pierre Etienne [aut],
Emilie Lebarbier [aut],
Simon Benhamou [aut]
Maintainer Remi Patin < remi.patin@normale.fr>
Repository CRAN
Date/Publication 2024-04-24 08:00:03 UTC

${\sf R}$ topics documented:

add_covariates
angular_speed
apply_rowSums
apply_subsampling
argcheck_diag.var
argcheck_Kmax
argcheck_lmin
argcheck_ncluster
argcheck_order.var
argcheck_ordering
argcheck_scale.variable
argcheck_seg.var
argcheck_segclust
argcheck_segmentation
argcheck_type_coord
arma_repmat
augment
bisig_plot
calc_BIC
calc_dist
calc_speed
calc_stat_states
check_repetition
chooseseg_lavielle
choose_kmax
colsums_sapply
cumsum_cpp
DynProg
DynProg_algo_cpp
EM.algo_simultanee
EM.algo_simultanee_Cpp
EM.init_simultanee
Estep_simultanee
find mu sd

R	topics	documented:
---	--------	-------------

Index

Gmean_simultanee
Gmixt_algo_cpp
Gmixt_simultanee
Gmixt_simultanee_fullcpp
hybrid_simultanee
initialisePhi
likelihood
logdens_simultanee_cpp
map_segm
matrixRupt
Mstep_simultanee
Mstep_simultanee_cpp
neighborsbis
plot_segm
plot_states
prepare_HMM
prepare_shiftfit
prep_segm
prep_segm_HMM
prep_segm_shiftfit
relabel_states
repmat
ruptAsMat
segclust
segclust2d
segclust_internal
segmap_list
segmentation
segmentation-class
simulmode
simulshift
spatial_angle
stat_segm
stat_segm_HMM
$stat_segm_shiftfit \dots \dots$
subsample_rename
test_data
wrap_dynprog_cpp

4 add_covariates

add_covariates

Covariate Calculations

Description

Add several covariates to movement observations add_covariates add several covariates to a data frame with movement information. It adds: distance between location, spatial angle, speed, smoothed speed, persistence and rotation velocity (calculated with spatial angle).

Usage

Arguments

X	movement data
	additional arguments
coord.names	names of coordinates column in x
smoothed	whether speed are smoothed or not
timecol	names of POSIXct time column
units	units for time calculation. Default "hour"
radius	for spatial angle calculations

Value

data.frame with additional covariates

angular_speed 5

Examples

```
## Not run: add_covariates(move_object, coord.names = c("x","y"), smoothed = T)
## Not run:
data(simulmode)
simple_data <- simulmode[,c("dateTime","x","y")]
full_data <- add_covariates(simple_data, coord.names = c("x","y"),
    timecol = "dateTime", smoothed = TRUE, units ="min")
## End(Not run)</pre>
```

angular_speed

Calculate angular speed along a path

Description

angular_speed calculate turning angle between locations, taking a dataframe as input.

Usage

```
angular_speed(x, coord.names = c("x", "y"))
```

Arguments

x data.frame with locations
coord.names names of coordinates column in x

Value

vector of turning angle.

Author(s)

Remi Patin, Simon Benhamou.

apply_rowSums

apply_rowSums

Description

Internal function for Expectation-Maximization (EM) algorithm.

Usage

```
apply_rowSums(rupt, x)
```

6 apply_subsampling

Arguments

rupt current estimated breaks in signal

x bivariate signal

Description

if subsample = FALSE do nothing.

Usage

```
apply_subsampling(x, is_segclust, subsample, subsample_over, subsample_by)
```

Arguments

x data.frame to be subsampled

is_segclust TRUE or FALSE whether the function was called from 'segclust()' or 'segmen-

tation()'

subsample if FALSE disable subsampling

subsample_over maximum number of row accepted

subsample_by subsampling parameters

Details

else if subsample_by is missing, subsample only if $nrow(x) > subsample_over$, then it subsample with the minimum needed to get a data.frame smaller than subsample_over

if subsample_by is provided, use it to subsample.

Value

a data.frame

argcheck_diag.var 7

	1.	
argcheck_	diag.var	•

Check for argument 'diag.var'

Description

Check whether argument 'diag.var' was provided. If not, propose default value.

Usage

```
argcheck_diag.var(diag.var, seg.var)
```

Arguments

diag.var names of the variables on which statistics are calculated.

seg.var for behavioral segmentation: names of the variables used for segmentation (ei-

ther one or two names).

Value

a vector of character string

argcheck_Kmax

Check for argument 'Kmax'

Description

Check whether argument 'Kmax' was provided and is adequate before subsampling. Propose adequate value if Kmax is not provided.

Usage

```
argcheck_Kmax(Kmax, lmin, datalength)
```

Arguments

Kmaxmaximum number of segments.lminminimum length of segments.datalengthlength of data provided

Value

an integer

8 argcheck_ncluster

argcheck_lmin

Check for argument 'lmin'

Description

Check whether argument 'lmin' was provided and is adequate before subsampling

Usage

```
argcheck_lmin(lmin, is_segclust)
```

Arguments

1min minimum length of segments.

is_segclust TRUE if function is called from segclust; FALSE otherwise, if function is

called from segmentation.

Value

a NULL object

argcheck_ncluster

Check for argument 'ncluster'

Description

Check whether argument 'ncluster' was provided and is adequate

Usage

```
argcheck_ncluster(ncluster, Kmax)
```

Arguments

ncluster number of cluster into which segments should be grouped. Can be a vector if

one want to test several number of clusters.

Kmax maximum number of segments.

Value

a NULL object

argcheck_order.var 9

argcheck_order.var

Check for argument 'order.var'

Description

Check whether argument 'order.var' was provided. If not, propose default value.

Usage

```
argcheck_order.var(order.var, diag.var)
```

Arguments

order.var names of the variable with which states are ordered.

diag.var names of the variables on which statistics are calculated.

Value

a vector of character string

argcheck_ordering

Check for argument 'order'

Description

Check whether argument 'order' was provided for plot.segmentation and segmap. If not, propose default value.

Usage

```
argcheck_ordering(order, seg.type, order.var)
```

Arguments

order TRUE or FALSE depending on whether cluster be ordered

seg.type types of the segmentation

order.var name of the variable to order the cluster

Value

a boolean

10 argcheck_seg.var

```
argcheck_scale.variable
```

Check for argument 'scale.variable'

Description

Check whether argument 'scale.variable' was provided. If not, propose default value.

Usage

```
argcheck_scale.variable(scale.variable, is_segclust)
```

Arguments

```
scale.variable minimum length of segments.
```

is_segclust TRUE if function is called from segclust; FALSE otherwise, if function is

called from segmentation.

Value

a boolean

argcheck_seg.var

Check for argument 'seg.var'

Description

Check whether argument 'seg.var' was adequately provided. If provided, also check for its length (1 or 2) and for the existence of corresponding column names in x If unprovided, use default value (segmentation only) and tests if column names exists.

Usage

```
argcheck_seg.var(x, seg.var, is_segclust)
```

Arguments

data used for segmentation. Supported: data.frame, Move object, Itraj object for behavioral segmentation: names of the variables used for segmentation (eiseg.var

ther one or two names).

is_segclust TRUE if function is called from segclust; FALSE otherwise, if function is

called from segmentation.

Value

a list with a data.frame and a vector with two character strings

argcheck_segclust 11

argcheck_segclust	Check for argument 'ncluster' and 'nseg'
ai geneek_segetuse	Check for argument hetaster and hiseg

Description

Check whether argument 'ncluster' and 'nseg' were provided. If not, propose default value based on BIC.

Usage

```
argcheck_segclust(ncluster, nseg, ncluster.BIC, Kopt.BIC)
```

Arguments

ncluster number of cluster nseg number of segment

ncluster.BIC optimal number of cluster selected by BIC

Kopt.BIC optimal number of segment selected by BIC for each number of cluster

Value

a list with two integers

```
argcheck_segmentation Check for argument 'nseg'
```

Description

Check whether argument 'nseg' was provided. If not, propose default value based on Lavielle's criterium

Usage

```
argcheck_segmentation(nseg, Kopt.lavielle)
```

Arguments

nseg number of segment

Kopt.lavielle optimal number of segment selected with Lavielle's criterium

Value

an integer

12 arma_repmat

argcheck_type_coord

Check for deprecated 'type' and 'coord.names' argument

Description

Check whether argument 'type' and 'coord.names' were provided and communicate adequately if need be.

Usage

```
argcheck_type_coord(...)
```

Arguments

... additional parameters transmitted from segmentation or segclust

Value

```
a NULL object
```

arma_repmat

arma_repmat

Description

C++ Armadillo version for repmat function. Repeat a matrix in bloc.

Usage

```
arma_repmat(A, n, m)
```

Arguments

A matrix

n number of repetition in line

m number of repetition in column

augment 13

~	~~~	
an	gme	111

Generic function for augment

Description

see broom::augment for more informations

Usage

```
augment(x, ...)
```

Arguments

x object to be augmented ... additional arguments

bisig_plot

bisig_plot draws the plots of the bivariate signal on the same plot (scale free)

Description

bisig_plot draws the plots of the bivariate signal on the same plot (scale free)

Usage

```
bisig_plot(x, rupt = NULL, mu = NULL, pop = NULL, merge.seg = FALSE)
```

Arguments

x the signal to be plotted

rupt optional, if given add vertical lines at change points (rupt should a vector)

mu optional the mean of each class of segment,

pop optional the cluster to whom each segment belongs to,

merge.seg should segment be merged?

Value

no value

14 calc_dist

calc_BIC

Calculate BIC

Description

BIC calculates BIC given log-likelihood, number of segment and number of class

Usage

```
calc_BIC(likelihood, ncluster, nseg, n)
```

Arguments

likelihood log-likelihood
ncluster number of cluster
nseg number of segment
n number of observations

Value

a data.frame with BIC, number of cluster and number of segment

calc_dist

Calculate distance between locations

Description

calc_dist calculate distance between locations, taking a dataframe as input. Distance can also be smoothed over the two steps before and after the each point.

Usage

```
calc_dist(x, coord.names = c("x", "y"), smoothed = FALSE)
```

Arguments

x data.frame with locations

coord.names names of coordinates column in x smoothed whether distance are smoothed or not

Value

vector of distance

calc_speed 15

Author(s)

Remi Patin

Examples

```
## Not run: calc_dist(df,coord.names = c("x","y"), smoothed = T)
```

calc_speed

Calculate speed along a path

Description

calc_dist calculate speed between locations, taking a dataframe as input. Speed can also be smoothed over the two steps before and after the each point.

Usage

```
calc_speed(
   x,
   coord.names = c("x", "y"),
   timecol = "dateTime",
   smoothed = FALSE,
   units = "hour"
)
```

Arguments

x data.frame with locations

coord.names names of coordinates column in x
timecol names of POSIXct time column
smoothed whether speed are smoothed or not
units units for time calculation. Default "hour"

Value

vector of distance

Author(s)

Remi Patin

```
## Not run: calc_speed(df,coord.names = c("x","y"), timecol = "dateTime",
smoothed = T)
## End(Not run)
```

16 check_repetition

calc_stat_states

Calculate state statistics

Description

calc_stat_states calculates statistics of a given segmentation : mean and variance of the different states.

Usage

```
calc_stat_states(data, df.segm, diag.var, order.var = NULL)
```

Arguments

data the data.frame with the different variable

df.segm output of prep_segm function

diag.var names of the variables on which statistics are calculated order.var names of the variable with which states are ordered

Value

a data frame with mean and variance of the different states

Examples

```
## Not run: calc_stat_states(data, diag.var = c("dist","angle"),
order.var='dist', type='hmm',hmm.model=mod1.hmm)
## End(Not run)
```

check_repetition

Check for repetition in the series

Description

check_repetition checks whether the series have identical or near-identical repetition larger than lmin. if that is the case, throw an error, the algorithm cannot yet handle these repetition, because variance on the segment would be null.

Usage

```
check_repetition(x, lmin, rounding = FALSE, magnitude = 3)
```

chooseseg_lavielle 17

Arguments

X	the bivariate series to be tested
lmin	minimum length of segment
rounding	whether or not series are rounded

magnitude number of magnitude of standard deviation below which values are rounded.

i.e if magnitude = 3, difference smaller than one thousandth of the standard

deviation are rounded to the same value.

Value

a boolean, TRUE if there is any repetition larger or equal to lmin.

Examples

chooseseg_lavielle

Internal Function for choosing optimal number of segment

Description

Choosing optimal number of segment using Marc Lavielle's method. From Emilie Lebarbier. Method based on identifying breaks in the slope of the contrast.

Usage

```
chooseseg_lavielle(J, S = 0.75, ...)
```

Arguments

J	likelihood for each number of segment
S	threshold for choosing the number of segment. See adehabitatLT::chooseseg
	additional arguments

Value

a list with optimal number of segment and full data.frame of the calculus

18 colsums_sapply

choose_kmax

Finding best segmentation with a different threshold S

Description

Choosing optimal number of segment using Marc Lavielle's method. From Emilie Lebarbier. Method based on identifying breaks in the slope of the contrast.

Usage

```
choose_kmax(x, S = 0.75)
```

Arguments

- x segmentation-class object
- S threshold for choosing the number of segment. See adehabitatLT::chooseseg

Value

the optimal number of segment given threshold S.

Examples

```
## Not run:
res.seg <- segmentation(df, coord.names = c("x","y"), Kmax = 30, lmin = 10)
# find the optimal number of segment according to Lavielle's criterium with a
# different threshold.
choose_kmax(res.seg, S = 0.60)
## End(Not run)</pre>
```

colsums_sapply

colsums_sapply

Description

Internal function for Expectation-Maximization (EM) algorithm.

Usage

```
colsums_sapply(i, rupt, x, mu, tau)
```

cumsum_cpp 19

Arguments

i number of signal

rupt current estimated breaks in signal

x bivariate signal

mu mean parameter for each signal

tau tau

cumsum_cpp cumsum_cpp

Description

C++ function for cumulative sum (replacing R cumsum)

Usage

```
cumsum_cpp(x)
```

Arguments

x Numerical Vector

DynProg DynProg computes the change points given a cost matrix matD and a maximum number of segments Kmax

Description

DynProg computes the change points given a cost matrix matD and a maximum number of segments Kmax

Usage

```
DynProg(matD, Kmax)
```

Arguments

matD the cost Matrix os size n x n

Kmax the maximal number of segments

Value

a list with J.est a vector with Kmax value, the Kth is the minimum contrast for a model with K segments (-J.est is the log-likelihood) and with t.test a matrix, line K are the coordinates of the change points for a model with K segments

20 EM.algo_simultanee

DynProg_algo_cpp

Description

This function finds the best segmentation given a Cost Matrix using a dynamic programming algorithm. C++ implementation of DynProg

Usage

```
DynProg_algo_cpp(matD, Kmax)
```

Arguments

matD	Cost Matrix
IIIa LD	COSE MIGHTA

Kmax number of segments

 $\hbox{EM. algo_simultanee} \ \ \, \textit{EM.algo_simultanee} \ \, \textit{calculates the MLE of phi for given change-point} \\ instants \\$

Description

EM.algo_simultanee calculates the MLE of phi for given change-point instants

Usage

```
EM.algo_simultanee(x, rupt, P, phi, eps = 1e-06, sameSigma = FALSE)
```

Arguments

x bivariate signal

rupt the sequence of change points

P number of clusters

phi starting value for the parameter

eps eps

sameSigma TRUE if segments have the same variance

Value

a list with phi, the MLE, tau =(taukj) the probability for segment k to belong to class,lvinc = lvinc,empty = empty,dv = dv

EM.algo_simultanee_Cpp

EM.algo_simultanee calculates the MLE of phi for given change-point instants and for a fixed number of clusters

Description

EM.algo_simultanee calculates the MLE of phi for given change-point instants and for a fixed number of clusters

Usage

```
EM.algo_simultanee_Cpp(x, rupt, P, phi, eps = 1e-06, sameSigma = FALSE)
```

Arguments

x bivariate signal

rupt the sequence of change points

P number of clusters

phi starting value for the parameter

eps eps

sameSigma TRUE if segments have the same variance

Value

a list with phi, the MLE, tau =(taukj) the probability for segment k to belong to class,lvinc = lvinc,empty = empty,dv = dv

EM.init_simultanee

EM.init_simultanee proposes an initial value for the EM algorithm based on a hierarchical clustering algorithm (ascending)

Description

EM.init_simultanee proposes an initial value for the EM algorithm based on a hierarchical clustering algorithm (ascending)

Usage

```
EM.init_simultanee(x, rupt, K, P)
```

22 Estep_simultanee

Arguments

x the bivariate signal

rupt the change point instants, data.frame

K number of segments

P number of clusters

Value

phi0: candidate for the EM algorithm

Description

Estep_simultanee computes posterior probabilities and incomplete-data log-likelihood for mixture models

Usage

```
Estep_simultanee(logdensity, phi, eps = 1e-09)
```

Arguments

logdensity is a K*P matrix containing the conditional log-densities for each segment

phi a list containing the parameters of the mixture

eps eps

Value

a list with tau a K*P matrix, tau kj is the posterior probability for segment k to belong to class j and lvinc, the incomplete log likelihood P(X=x)

find_mu_sd 23

find_mu_sd Find mean and standard deviation of segments

Description

find_mu_sd calculates statistics of a given segmentation: mean and variance of the different states.

Usage

```
find_mu_sd(df.states, diag.var)
```

Arguments

df. states a list of data.frame

diag.var names of the variables on which statistics are calculated

Value

a data.frame with mean and variance of the different states

Gmean_simultanee	Gmean_simultanee calculates the cost matrix for a segmentation
	model with changes in the mean and variance for all signals

Description

Gmean_simultanee calculates the cost matrix for a segmentation model with changes in the mean and variance for all signals

Usage

```
Gmean_simultanee(Don, lmin, sameVar = FALSE)
```

Arguments

Don the bivariate signal

1min minimum size for a segment, default value is 2sameVar whether variance is the same for each segment.

Value

the cost matrix G(i,j) which contains the variance of the data between point (i+1) to point j

24 *Gmixt_simultanee*

Gmixt_algo_cpp Gmi

Description

Internal C++ algorithm for computing the cost matrix.

Usage

```
Gmixt_algo_cpp(zi, lgi, P, mvec, wk, svec, prop)
```

Arguments

zi vector of observations
lgi vector of indices
P number of class

mvec vector of means for each class wk temporary vector for calculations

svec vector of standard deviations for each class

prop mixture vector

Gmixt_simultanee calculates the cost matrix for a segmenta-

tion/clustering model

Description

Return matrix G(i,j), the mixture density for segment between points (i+1) to j:

$$G(i,j) = \sum_{p=1}^{P} \log(\pi_p f(y^{ij}; \theta_p))$$

Rq: this density if factorized in order to avoid numerical zeros in the log

Usage

```
Gmixt_simultanee(Don, lmin, phi)
```

Arguments

Don the bivariate signal

lmin the minimum size for a segmentphi the parameters of the mixture

Value

a matrix

Description

C++ function replacing Gmixt_simultanee

Usage

```
Gmixt_simultanee_fullcpp(Don, lmin, prop, mu, s)
```

Arguments

Don	Bivariate Signal
lmin	minimum length of segments
prop	mixture parameters
mu	mean parameters
S	standard deviation parameters

hybrid_simultanee

hybrid_simultanee performs a simultaneous seg - clustering for bivariate signals.

Description

It is an algorithm which combines dynamic programming and the EM algorithm to calculate the MLE of phi and T, which are the mixture parameters and the change point instants. this algorithm is run for a given number of clusters, and estimates the parameters for a segmentation/clustering model with P clusters and 1:Kmax segments

Usage

```
hybrid_simultanee(
    x,
    P,
    Kmax,
    lmin = 3,
    sameSigma = TRUE,
    sameVar.init = FALSE,
    eps = 1e-06,
    lissage = TRUE,
    pureR = FALSE,
    ...
)
```

26 initialisePhi

Arguments

x the two-dimensional signal, one line per dimension

P the number of classes

Kmax the maximal number of segments

lmin minimum length of segment

sameSigma should segment have the same variance

sameVar.init sameVar.init

eps eps

lissage should likelihood be smoothed

pureR should algorithm run in full R or use Rcpp speed improvements

... additional parameters

Value

a list with Linc, the incomplete loglikelihood =Linc,param=paramtau posterior probability

initialisePhi is the constructor for a set of parameters for a segclust

model

Description

initialisePhi is the constructor for a set of parameters for a segclust model

Usage

```
initialisePhi(P, val = -Inf)
```

Arguments

P number of classes

val the value used for initialisation default is -Inf

Value

a set of parameter phi

likelihood 27

likelihood

Generic function for likelihood

Description

Generic function for likelihood

Usage

```
likelihood(x, ...)
```

Arguments

x object from which likelihood can be extracted

... additional parameters

logdens_simultanee_cpp

logdens_simultanee_cpp

Description

Calculate logdensity of a bivariate signal

Usage

```
logdens_simultanee_cpp(xk, mu, sigma, prop)
logdens_simultanee(xk, phi)
```

Arguments

xk the bivariate signal

mu mean parameter for each signal

sigma standard deviation parameter for each signal

prop mixture parameter

phi parameters of the mixture, P components

Value

the value of the log density

28 map_segm

map_segm

plot_segm plot segmented movement data on a map.

Description

plot_segm plot segmented movement data on a map.

Usage

```
map_segm(
  data,
  output,
  interactive = FALSE,
  html = FALSE,
  scale = 1,
  UTMstring = "+proj=longlat +datum=WGS84 +no_defs",
  width = 400,
  height = 400,
  order = NULL,
  pointsize = 1,
  linesize = 0.5,
  coord.names = c("x", "y"),
  ...
)
```

Arguments

data the data.frame with the different variable outputs of the segmentation or segclust algorithm for one number of segment output interactive should graph be interactive with leaflet? should the graph be incorporated in a markdown file through htmltools::tagList() html for dividing coordinates to have compatibility with leaflet scale UTMstring projection of the coordinates width width height height order should cluster be ordered pointsize size of points linesize size of lines names of coordinates coord.names additional arguments

Value

```
a ggplot object
```

matrixRupt 29

Examples

```
## Not run:
#res.seg is a result of the segmentation-only algorithm :
nseg = 10
outputs = res.seg$outputs[[paste(nseg, "segments")]]
map <- map_segm(data=res.seg$data,output=outputs)
#res.segclust is a result of the segmentation-clusturing algorithm :
nseg = 10; ncluster = 3
outputs = res.segclust$outputs[[paste(ncluster,"class -",nseg, "segments")]]
map <- map_segm(data=res.seg$data,output=outputs)
## End(Not run)</pre>
```

matrixRupt

matrixRupt transforms a vector of change point into a data.frame with start and end of every segment

Description

matrixRupt transforms a vector of change point into a data.frame with start and end of every segment

Usage

```
matrixRupt(x, vectorRupt)
```

Arguments

x the

vectorRupt the vector containing the change point

Value

the matrix of change point

Mstep_simultanee

Mstep_simultanee computes the MLE within the EM framework

Description

Mstep_simultanee computes the MLE within the EM framework

Usage

```
Mstep_simultanee(x, rupt, tau, phi, sameSigma = TRUE)
```

Arguments

x the bivariate signal rupt the rupture dataframe

tau the K*P matrix containing posterior probabilities of membership to clusters

phi the parameters of the mixture

sameSigma TRUE if all segment have the same variance

Value

phi the updated value of the parameters

Description

Mstep_simultanee computes the MLE within the EM framework

Usage

Mstep_simultanee_cpp(x, rupt, tau, phi, sameSigma = TRUE)

Arguments

x the bivariate signal rupt the rupture dataframe

tau the K*P matrix containing posterior probabilities of membership to clusters

phi the parameters of the mixture

sameSigma whether segments have the same variance

Value

phi the updated value of the parameters

neighborsbis 31

neighborsbis	neighbors tests whether neighbors of point k,P can be used to re- initialize the EM algorithm and to improve the log-likelihood.
	minute me 201 angerman ana te impreve me teg imetineean

Description

neighbors tests whether neighbors of point k,P can be used to re-initialize the EM algorithm and to improve the log-likelihood.

Usage

```
neighborsbis(
  kv.hull,
  x,
  L,
  k,
  param,
  P,
  lmin,
  eps,
  sameSigma = TRUE,
  pureR = FALSE
)
```

Arguments

kv.hull	convex hull of likelihood
х	the initial dataset
L	the likelihood
k	the points of interest
param	param outputs of segmentation
Р	the number of class
lmin	minimal size of the segment to be implemented
eps	eps
sameSigma	should segments have same variance?
pureR	should algorithm use only R functions or benefit from Rcpp faster algorithm

Value

smoothing likelihood

32 plot_segm

plot_segm

Plot segmentation on time-serie

Description

plot_segm plot segmented time serie.

Usage

```
plot_segm(
  data,
  output,
  interactive = FALSE,
  diag.var,
  x_col = "expectTime",
  html = FALSE,
  order = FALSE,
  stationarity = FALSE
)
```

Arguments

data the data.frame with the different variable
output outputs of the segmentation or segclust algorithm for one number of segment
interactive should graph be interactive through leaflet?
diag.var names of the variables on which statistics are calculated
x_col column name for time
html should the graph be incorporated in a markdown file through htmltools::tagList()
order should cluster be ordered

if TRUE, cut each segment in three and plot each part with its own mean to assess stationarity of each segment

Value

a graph

stationarity

```
## Not run:
#res.segclust is the results of the segmentation-clustering algorithm
ncluster = 3
nseg = 10
g <- plot_segm(data = res.segclust$data, output =
    res.segclust$outputs[[paste(ncluster,"class -",nseg, "segments")]],
    diag.var = x$`Diagnostic variables`,x_col = 'dateTime)
#res.seg is the results of the segmentation-only algorithm</pre>
```

plot_states 33

```
nseg = 10
g <- plot_segm(data = res.segclust$data,
output = res.segclust$outputs[[paste(nseg, "segments")]],
  diag.var = x$`Diagnostic variables`,x_col = 'dateTime)
## End(Not run)</pre>
```

plot_states

Plot states statistics

Description

plot_states plot states statistics

Usage

```
plot_states(outputs, diag.var, position_width = 0.3, order = FALSE)
```

Arguments

outputs outputs of the segmentation or segclust algorithm for one number of segment diag.var names of the variables on which statistics are calculated position_width width between different model if several models are compared order should cluster be ordered

Value

a graph

```
## Not run:
#res.segclust is the results of the segmentation-clustering algorithm
ncluster = 3
nseg = 10
g <- plot_states(output = res.segclust$outputs[[
    paste(ncluster,"class -",nseg, "segments")
]],
diag.var = c("dist","angle2")
#res.seg is the results of the segmentation-only algorithm
nseg = 10
g <- plot_states(output = res.segclust$outputs[[paste(nseg, "segments")]],
diag.var = c("dist","angle2"))
## End(Not run)</pre>
```

34 prepare_HMM

prepare_HMM

Prepare HMM output for proper comparison plots

Description

```
prepare_HMM
```

Usage

```
prepare_HMM(data, hmm.model = NULL, diag.var, order.var = diag.var[1])
```

Arguments

data data
hmm.model hmm.model
diag.var diag.var
order.var order.var

```
## Not run:
# Example taken from moveHMM package.
# 1. simulate data
# define all the arguments of simData
nbAnimals <- 1
nbStates <- 2
nbCovs <- 2
mu<-c(15,50)
sigma < -c(10, 20)
angleMean <- c(pi,0)</pre>
kappa \leftarrow c(0.7,1.5)
stepPar <- c(mu, sigma)</pre>
anglePar <- c(angleMean,kappa)</pre>
stepDist <- "gamma"</pre>
angleDist <- "vm"</pre>
zeroInflation <- FALSE
obsPerAnimal < c(50,100)
data <- moveHMM::simData(nbAnimals=nbAnimals,nbStates=nbStates,</pre>
                 stepDist=stepDist,angleDist=angleDist,
                 stepPar=stepPar,anglePar=anglePar,nbCovs=nbCovs,
                 zeroInflation=zeroInflation,
                 obsPerAnimal=obsPerAnimal)
### 2. fit the model to the simulated data
# define initial values for the parameters
mu0 < -c(20,70)
sigma0 <- c(10,30)
kappa0 <- c(1,1)
```

prepare_shiftfit 35

prepare_shiftfit

Prepare shiftfit output for proper comparison plots

Description

```
prepare_shiftfit
```

Usage

```
prepare_shiftfit(
  data,
  shiftfit.model = NULL,
  diag.var,
  order.var = diag.var[1]
)
```

Arguments

```
data data
shiftfit.model shiftfit.model
diag.var diag.var
order.var order.var
```

```
## Not run:
data(simulshift)
# 1. subsample to a reasonable size
subdata <- simulshift[seq(1,30000,by = 100),]
# 2. use algorithm from marcher package
MWN.fit <- with(subdata,</pre>
```

36 prep_segm_HMM

```
marcher::estimate_shift(T=indice, X=x, Y=y,n.clust = 3))
# 3. convert output
MWN.segm <- prepare_shiftfit(subdata,MWN.fit,diag.var = c("x","y"))
# 4. use segclust2d functions
plot(MWN.segm)
plot(MWN.segm,stationarity = TRUE)
segmap(MWN.segm)
## End(Not run)</pre>
```

prep_segm

Find segment and states for a Picard model

Description

prep_segm find the different segment and states of a given HMM model

Usage

```
prep_segm(data, param, seg.type = NULL, nseg = NULL)
```

Arguments

data the data.frame with the different variable param the param output of the segmentation

seg.type either 'hybrid' or 'dynprog' nseg number of segment chosen

Value

a data.frame with states of the different segments

prep_segm_HMM

Internal function for HMM

Description

```
prep_segm_HMM
```

Usage

```
prep_segm_HMM(data, hmm.model)
```

Arguments

data data

hmm.model hmm.model

prep_segm_shiftfit 37

Description

```
prep_segm_shiftfit
```

Usage

```
prep_segm_shiftfit(data, shiftfit.model)
```

Arguments

```
data data
shiftfit.model shiftfit.model
```

relabel_states

Relabel states of a segmentation/clustering output

Description

relabel_states relabel the states of a segmentation/clustering output. This allows merging different states into the same if for instance several of the model states represent the same behavioural states.

Usage

```
relabel_states(mode.segclust, newlabel, ncluster, nseg, order = TRUE)
```

Arguments

mode.segclust segclust output

newlabel a vector with the new names ordered, corresponding to state_ordered

ncluster the number of cluster for which you want relabeling
nseg the number of segment for which you want relabeling

order boolean, whether this changes the ordered states or not. FALSE value obsolete

for now

Value

a segmentation object with state names changed for the segmentation specified by ncluster and nseg

38 ruptAsMat

repmat

repmat repeats a matrix

Description

repmat repeats a matrix

Usage

```
repmat(a, n, m)
```

Arguments

a the base matrix

n number of repetition in lines
m number of repetition in columns

Value

a matrix with n repeats of a in lines et m in columns

ruptAsMat

ruptAsMat is an internal function to transform a vector giving the change point to matrix 2 columns matrix in which each line gives the beginning and the end of a segment

Description

ruptAsMat is an internal function to transform a vector giving the change point to matrix 2 columns matrix in which each line gives the beginning and the end of a segment

Usage

```
ruptAsMat(vectRupt)
```

Arguments

vectRupt

the vector of change point

Value

the matrix containing the segments

segclust 39

segclust

Segmentation/Clustering of movement data - Generic function

Description

Joint Segmentation/Clustering of movement data. Method available for data.frame, move and Itraj objects. The algorithm finds the optimal segmentation for a given number of cluster and segments using an iterated alternation of a Dynamic Programming algorithm and an Expectation-Maximization algorithm. Among the different segmentation found, the best one can be chosen using the maximum of a BIC penalized likelihood.

Usage

```
segclust(x, ...)
## S3 method for class 'data.frame'
segclust(x, ...)
## S3 method for class 'Move'
segclust(x, ...)
## S3 method for class 'ltraj'
segclust(x, ...)
```

Arguments

x data.frame with observations... additional parameters given to segclust_internal.

Value

```
a segmentation-class object
```

Examples

```
#' @examples
df <- test_data()$data
#' # data is a data.frame with column 'x' and 'y'
# Simple segmentation with automatic subsampling
# if data has more than 1000 rows:
res <- segclust(df,
   Kmax = 15, lmin = 10, ncluster = 2:4,
   seg.var = c("x","y"))
# Plot results
plot(res)
segmap(res, coord.names = c("x","y"))
# check penalized likelihood of
# alternative number of segment possible.</pre>
```

40 segclust2d

```
# There should be a clear break if the segmentation is good
plot_BIC(res)
## Not run:
# Advanced options:
# Run with automatic subsampling if df has more than 500 rows:
res <- segclust(df, Kmax = 30, lmin = 10, ncluster = 2:4,
                seg.var = c("x","y"), subsample_over = 500)
# Run with subsampling by 2:
res <- segclust(df, Kmax = 30, lmin = 10, ncluster = 2:4,
                seg.var = c("x","y"), subsample_by = 2)
# Disable subsampling:
res <- segclust(df, Kmax = 30, lmin = 10,
                ncluster = 2:4, seg.var = c("x","y"), subsample = FALSE)
# Disabling automatic scaling of variables for segmentation (standardazing
# the variables) :
res <- segclust(df, Kmax = 30, lmin = 10,
                 seg.var = c("dist","angle"), scale.variable = FALSE)
## End(Not run)
```

segclust2d

segclust2d: tools for segmentation of animal GPS movement data

Description

Provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages moveHMM and marcher.

Details

The segmentation method is a bivariate extension of Lavielle's method available in adehabitatLT (Lavielle 1999; and 2005). This method rely on dynamic programming for efficient segmentation.

The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) method (formerly available in cghseg package) to the bivariate case.

The full description of the method is published in Patin et al. (2020).

References:

Lavielle, M. (1999) Detection of multiple changes in a sequence of dependent variables. *Stochastic Processes and their Applications*, **83**: 79–102.

Lavielle, M. (2005) Using penalized contrasts for the change-point problem. Report number 5339, Institut national de recherche en informatique et en automatique.

Patin, R., Etienne, M. P., Lebarbier, E., Chamaille-Jammes, S., & Benhamou, S. (2020). Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements. *Journal of Animal Ecology*, 89(1), 44-56.

Picard, F., Robin, S., Lebarbier, E. and Daudin, J.-J. (2007), A Segmentation/Clustering Model for the Analysis of Array CGH Data. *Biometrics*, 63: 758-766. doi:10.1111/j.1541-0420.2006.00729.x

segclust_internal 41

Author(s)

Maintainer: Remi Patin < remi.patin@normale.fr>

Authors:

- Marie-Pierre Etienne
- Emilie Lebarbier
- Simon Benhamou

See Also

Useful links:

- https://github.com/rpatin/segclust2d
- Report bugs at https://github.com/rpatin/segclust2d/issues

segclust_internal

Internal segmentation/clustering function

Description

Internal segmentation/clustering function

Usage

```
segclust_internal(
    x,
    seg.var,
    diag.var,
    order.var,
    Kmax,
    ncluster,
    lmin,
    scale.variable,
    sameSigma = FALSE,
    ...
)
```

Arguments

X	data.frame with observations
seg.var	names of the variables used for segmentation (either one or two names).
diag.var	names of the variables on which statistics are calculated.
order.var	names of the variable with which states are ordered.
Kmax	maximum number of segments.

42 segmap_list

ncluster number of cluster into which segments should be grouped. Can be a vector if one want to test several number of clusters.

lmin minimum length of segments.

scale.variable TRUE or FALSE for automatic scaling of variables (reduction and centering)

sameSigma does segments have same variance?

additional arguments given to chooseseg_lavielle

segmap_list

segmap_list create maps with a list of object of segmentation class

Description

segmap_list create maps with a list of object of segmentation class

Usage

```
segmap_list(
  x_list,
  ncluster_list = NULL,
  nseg_list = NULL,
  pointsize = 1,
  linesize = 0.5,
  coord.names = c("x", "y")
)
```

Arguments

x_list list of segmentation objects for different individuals or path

ncluster_list list of number of cluster to be selected for each individual. If empty, the function

takes the default one

nseg_list list of number of segment to be selected for each individual. If empty, the func-

tion takes the default one

pointsize size of points linesize size of lines

coord.names names of coordinates

Value

```
a ggplot2 graph
```

segmentation 43

segmentation

Segmentation of movement data - Generic function

Description

Segmentation of movement data. No clustering. Method available for data.frame, move and ltraj object. The algorithm finds for each number of segment the optimal segmentation using a Dynamic Programming approach. The number of segment is then chosen using Lavielle's (2005) procedure based on locating rupture in the penalized likelihood.

Usage

```
segmentation(x, ...)
## S3 method for class 'data.frame'
segmentation(x, ...)
## S3 method for class 'Move'
segmentation(x, ...)
## S3 method for class 'ltraj'
segmentation(x, ...)
segmentation_internal(
  seg.var,
 diag.var,
 order.var,
  lmin,
 Kmax,
  scale.variable,
  sameSigma = FALSE,
)
```

Arguments

```
data.frame with observations
Х
                  additional parameters given to chooseseg_lavielle
. . .
                  names of the variables used for segmentation (either one or two names).
seg.var
                  names of the variables on which statistics are calculated.
diag.var
                  names of the variable with which states are ordered.
order.var
lmin
                  minimum length of segments.
Kmax
                  maximum number of segments.
scale.variable TRUE or FALSE for automatic scaling of variables (reduction and centering)
                  does segments have same variance?
sameSigma
```

Value

```
a segmentation-class object
```

Examples

```
df <- test_data()$data</pre>
#' # data is a data.frame with column 'x' and 'y'
# Simple segmentation with automatic subsampling
# if data has more than 1000 rows:
res <- segmentation(df, Kmax = 30, lmin = 10, seg.var = c("x","y"))
# Plot results
plot(res)
segmap(res)
# check likelihood of alternative number of segment possible. There should
# be a clear break if the segmentation is good
plot_likelihood(res)
## Not run:
# Advanced options:
# Run with automatic subsampling if df has more than 500 rows:
res <- segmentation(df, Kmax = 30, lmin = 10,
seg.var = c("x","y"), subsample_over = 500)
# Run with subsampling by 2:
res <- segmentation(df, Kmax = 30, lmin = 10,
seg.var = c("x","y"), subsample_by = 2)
# Disable subsampling:
res <- segmentation(df, Kmax = 30, lmin = 10,
seg.var = c("x","y"), subsample = FALSE)
# Run on other kind of variables :
res <- segmentation(df, Kmax = 30, lmin = 10, seg.var = c("dist", "angle"))
# Automatic scaling of variables for segmentation
(set a mean of 0 and a standard deviation of 1 for both variables)
res <- segmentation(df, Kmax = 30, lmin = 10,
 seg.var = c("dist", "angle"), scale.variable = TRUE)
## End(Not run)
```

segmentation-class

segmentation class description

Description

```
segmentation class description
print.segmentation prints object of segmentation class
```

plot.segmentation plot object of segmentation class - wrapper for plot_segm

likelihood.segmentation deprecated function for plotting likelihood estimates of segmentation object. Now use plot_likelihood.

plot_likelihood plot likelihood estimates of a segmentation object - works only for picard segmentation.

get_likelihood returns likelihood estimates of a segmentation object. Deprecated, now use logLik.segmentation.

logLik.segmentation returns log-likelihood estimates of a segmentation object

plot_BIC plot BIC estimates of a segmentation object - works only for segclust algorithm.

BIC returns BIC-based penalized log-likelihood estimates of a segmentation object when segmentation/clustering has been run.

stateplot plot state distribution of a segmentation object

states return data.frame with states statistics a segmentation object

segment return data.frame with segment information of a segmentation object

augment. segmentation return data.frame with original data and state information of a segmentation object

segmap create maps with object of segmentation class (interpreting latitude/longitude)

Usage

```
## S3 method for class 'segmentation'
print(x, max.level = 1, ...)

## S3 method for class 'segmentation'
plot(x, nseg, ncluster, interactive = FALSE, xcol = "indice", order, ...)

## S3 method for class 'segmentation'
likelihood(x, ...)

plot_likelihood(x)

## S3 method for class 'segmentation'
logLik(object, ...)

plot_BIC(x)

## S3 method for class 'segmentation'
BIC(object, ...)

stateplot(x, nseg, ncluster, order)

states(x, nseg, ncluster)
```

```
segment(x, nseg, ncluster)
## S3 method for class 'segmentation'
augment(x, nseg, ncluster, colname_state = "state", ...)
segmap(
 Х,
  interactive = FALSE,
 nseg,
 ncluster,
 html = FALSE,
  scale = 1,
 width = 400,
 height = 400,
 order,
  pointsize = 1,
 linesize = 0.5,
)
```

Arguments

Χ

argument to be passed to utils::str() max.level additional arguments number of segment chosen nseg ncluster number of classes chosen whether plot are interactive (dygraphs/leaflet) or not (ggplot2) interactive column for x axis. can be POSIXct xcol order should cluster be ordered a segmentation-class object, created by segclust. object colname_state column name for the added state column html whether htmltools::tagList should be applied on the returned object object for integrating in html pages scale for dividing coordinates to have compatibility with leaflet width width height height pointsize size of points

a segmentation object generated by segmentation

Examples

linesize

```
## Not run:
plot(res.segclust)
```

size of lines

```
plot(res.segclust, nseg = 10, ncluster = 3)
## End(Not run)
## Not run:
plot_likelihood(res.seg)
## End(Not run)
## Not run:
logLik(res.seg)
## End(Not run)
## Not run:
plot_BIC(res.segclust)
## End(Not run)
## Not run:
plot_BIC(res.segclust)
## End(Not run)
## Not run:
stateplot(res.segclust)
stateplot(res.seg)
## End(Not run)
## Not run:
states(res.segclust)
states(res.seg)
## End(Not run)
## Not run:
segment(res.segclust)
segment(res.segclust, ncluster = 3, nseg = 30)
segment(res.seg)
segment(res.seg, nseg = 4)
## End(Not run)
## Not run:
augment(res.segclust)
augment(res.segclust, ncluster = 3, nseg = 30)
augment(res.seg)
augment(res.seg, nseg = 4)
## End(Not run)
## Not run:
segmap(res.segclust, coord.names = c("x", "y"))
segmap(res.segclust, ncluster = 3, nseg = 30)
segmap(res.seg)
```

48 simulmode

```
segmap(res.seg, nseg = 4)
## End(Not run)
```

simulmode

Simulations of behavioural mode

Description

A dataset containing a simulation of 3 different behavioural mode

Usage

simulmode

Format

A data frame with 302 rows and 10 variables:

indice index of position

x x coordinates

y y coordinates

speed smoothed speed

spatial_angle angle at constant step length

dist raw speed

angle angular speed

vit_p persistence speed

vit_r rotation speed

vit_p_spa persistence speed calculated with spatial angles

vit_r_spa rotation speed calculated with spatial angles

dateTime arbitrary date in POSIXct format

simulshift 49

simulshift

Simulations of home-range shift

Description

A dataset containing a simulation of home-range shift

Usage

simulshift

Format

A data frame with 53940 rows and 10 variables:

indice index of position

x x coordinates

y y coordinates

dateTime arbitrary date in POSIXct format

spatial_angle

Calculate spatial angle along a path

Description

spatial_angle calculate spatial angle between locations, taking a dataframe as input. Spatial angle is considered as the angle between the focus point, the first location entering a given circle and the last location inside.

Usage

```
spatial\_angle(x, coord.names = c("x", "y"), radius = NULL)
```

Arguments

x data.frame with locations

coord.names names of coordinates column in x

radius for angle calculation. Default is median of step length.

Value

vector of spatial angle.

stat_segm

Author(s)

Remi Patin, Simon Benhamou.

Examples

```
## Not run:
data(simulmode)
spatial_angle(simulmode)
## End(Not run)
```

stat_segm

Calculate statistics on a given segmentation

Description

stat_segm calculates statistics of a given segmentation : mean and variance of the different states. it also creates standard objects for plot.

Usage

```
stat_segm(
  data,
  diag.var,
  order.var = NULL,
  param = NULL,
  seg.type = NULL,
  nseg
)
```

Arguments

data the data.frame with the different variable
diag.var names of the variables on which statistics are calculated
order.var names of the variable with which states are ordered
param parameters of output segmentation
seg.type either 'hybrid' or 'dynprog'
nseg number of segment chosen

Value

a list which first element is a data.frame with states of the different segments and which second element is a data.frame with mean and variance of the different states

stat_segm_HMM 51

Examples

```
## Not run:
#res.segclust is a result of a segmentation-clustering algorithm
param <- res.segclust$param[["3 class"]]
nseg = 10
out <- stat_segm(data, diag.var = c("dist","angle"),
    order.var = "dist", param = param, nseg=nseg, seg.type = "segclust")
## End(Not run)</pre>
```

 $stat_segm_HMM$

Get segment statistic for HMM model

Description

```
stat\_segm\_HMM
```

Usage

```
stat_segm_HMM(data, hmm.model = NULL, diag.var, order.var = NULL)
```

Arguments

data data

hmm.model hmm.model diag.var diag.var order.var order.var

stat_segm_shiftfit

Get segment statistic for shiftfit model

Description

```
stat_segm_shiftfit
```

Usage

```
stat_segm_shiftfit(data, shiftfit.model = NULL, diag.var, order.var = NULL)
```

Arguments

```
data data
```

shiftfit.model shiftfit.model diag.var diag.var order.var order.var 52 wrap_dynprog_cpp

Description

merge subsampled data.frame df with fulldata to add segmentation information on the full data.frame

Usage

```
subsample_rename(df, fulldata, colname)
```

Arguments

df subsampled data.frame with additional information on segmentation

fulldata full data.frame colname column name

test_data Test function generating fake data

Description

Test function generating fake data

Usage

```
test_data()
```

Description

DynProg Rcpp DynProg computes the change points given a cost matrix matD and a maximum number of segments Kmax

Usage

```
wrap_dynprog_cpp(G, K)
```

wrap_dynprog_cpp 53

Arguments

G the cost Matrix os size n x n

K the number of segments considered

Value

a list with J.est a vector with Kmax value, the Kth is the minimum contrast for a model with K segments (-J.est is the log-likelihood) and with t.test a matrix, line K are the coordinates of the change points for a model with K segments

Index

* datasets	EM.algo_simultanee, 20
simulmode, 48	EM.algo_simultanee_Cpp, 21
simulshift, 49	EM.init_simultanee, 21
	Estep_simultanee, 22
add_covariates, 4	
angular_speed, 5	find_mu_sd, 23
apply_rowSums, 5	
apply_subsampling, 6	<pre>get_likelihood(segmentation-class), 44</pre>
argcheck_diag.var, 7	Gmean_simultanee, 23
argcheck_Kmax, 7	Gmixt_algo_cpp, 24
argcheck_lmin, 8	Gmixt_simultanee, 24, 25
argcheck_ncluster, 8	<pre>Gmixt_simultanee_fullcpp, 25</pre>
argcheck_order.var,9	hybrid simultanes 25
argcheck_ordering,9	hybrid_simultanee, 25
argcheck_scale.variable, 10	initialisePhi, 26
argcheck_seg.var, 10	111111111111111111111111111111111111111
argcheck_segclust, 11	likelihood, 27
argcheck_segmentation, 11	likelihood.segmentation
argcheck_type_coord, 12	(segmentation-class), 44
arma_repmat, 12	logdens_simultanee
augment, 13	(logdens_simultanee_cpp), 27
augment.segmentation	logdens_simultanee_cpp, 27
(segmentation-class), 44	logLik.segmentation, 45
	logLik.segmentation
BIC. segmentation (segmentation-class),	(segmentation-class), 44
44	, ,
bisig_plot, 13	map_segm, 28
	matrixRupt, 29
calc_BIC, 14	Mstep_simultanee, 29
calc_dist, 14	Mstep_simultanee_cpp, 30
calc_speed, 15	
calc_stat_states, 16	neighborsbis, 31
check_repetition, 16	
choose_kmax, 18	<pre>plot.segmentation(segmentation-class),</pre>
chooseseg_lavielle, 17, 42, 43	44
colsums_sapply, 18	plot_BIC (segmentation-class), 44
cumsum_cpp, 19	plot_likelihood, 45
D D 10.20	plot_likelihood(segmentation-class), 44
DynProg, 19, 20	plot_segm, 32, 45
DynProg_algo_cpp, 20	plot_states, 33

INDEX 55

```
prep_segm, 36
prep_segm_HMM, 36
prep_segm_shiftfit, 37
prepare_HMM, 34
prepare_shiftfit, 35
print.segmentation
        (segmentation-class), 44
relabel_states, 37
repmat, 38
ruptAsMat, 38
segclust, 8, 10, 12, 39
segclust2d, 40
segclust2d-package (segclust2d), 40
segclust_internal, 39, 41
segmap (segmentation-class), 44
segmap_list, 42
segment (segmentation-class), 44
segmentation, 8, 10, 12, 43, 46
segmentation-class, 44
segmentation_internal(segmentation), 43
simulmode, 48
simulshift, 49
spatial_angle, 49
stat_segm, 50
stat_segm_HMM, 51
stat_segm_shiftfit, 51
stateplot (segmentation-class), 44
states (segmentation-class), 44
subsample_rename, 52
test_data, 52
wrap_dynprog_cpp, 52
```