HOME CHAPTERS LOGIN

# 22. UTM Zone Characteristics



The illustration in Figure 2.23.1, below, depicts the area covered by a single UTM coordinate system grid zone. Each UTM zone spans 6° of longitude, from 84° North and 80° South. Zones taper from 666,000 meters in "width" at the Equator (where 1° of longitude is about 111 kilometers in length) to only about 70,000 meters at 84° North and about 116,000 meters at 80° South. Polar areas are covered by polar coordinate systems. Each UTM zone is subdivided along the equator into two halves, north and south.



The illustration below in Figure 2.23.2 shows how UTM coordinate grids relate to the area of coverage illustrated above in Figure 2.23.1. The north and south halves are shown side by side for comparison. Each half is assigned its own **origin**. The north south zone origins are positioned to south and west of the zone. North zone origins are positioned on the Equator, 500,000 meters west of the central meridian. Origins are positioned so that every coordinate value within every zone is a positive number. This minimizes the chance of errors in distance and area calculations. By definition, both origins are located 500,000

The Nature of Geographic Information



## Chapters

- ► Chapter 1: Data and Information
- ▼ Chapter 2: Scales and

#### Transformations

- 1. Overview
- 2. Scale
- 3. Scale as Scope
- 4. Map and Photo Scale
- 5. Graphic Map Scales
- 6. Map Scale and Accuracy
- 7. Scale as a Verb
- 8. Geospatial Measurement Scales
- 9. Coordinate Systems
- 10. Geographic Coordinate System
- 11. Geographic Coordinate Formats
- 12. Horizontal Datums
- 13. Geoids
- 14. Ellipsoids
- 15. Control Points and Datum Shifts
- 16. Coordinate Transformations
- 17. Plane Coordinate Transformations

meters west of the central meridian of the zone (in other words, the easting of the central meridian is always 500,000 meters E). These are considered "false" origins since they are located outside the zones to which they refer. UTM eastings range from 167,000 meters to 833,000 meters at the equator. These ranges narrow toward the poles. Northings range from 0 meters to nearly 9,400,000 in North zones and from just over 1,000,000 meters to 10,000,000 meters in South zones. Note that positions at latitudes higher than 84° North and 80° South are defined in Polar Stereographic coordinate systems that supplement the UTM system.



Figure 2.23.2 UTM coordinate system zone characteristics. Yellow represents areas in which UTM coordinates are valid for a given zone. Red lines parallel to the central meridian represent the two standard lines employed in each Transverse Mercator projection. Each square grid cell in the illustration spans 500,000 meters on each side.

See the Bibliography (last page of the chapter) for further readings about the UTM grid system.



This textbook is used as a resource in Penn State's Online Geospatial Education online degree and certificate programs. If this topic is interesting to you and you want to learn more about online GIS and GEOINT education at Penn State, check out

our Geospatial Education Program Office.

< 21. The UTM Grid and Transverse Mercator Projection up

23. National Grids >

- 18. Datum
  Transformations
- 19. Map Projections
- 20. UTM Coordinate System
- 21. The UTM Grid and Transverse Mercator Projection

# • 22. UTM Zone Characteristics

- 23. National Grids
- 24. State Plane Coordinate System
- 25. The SPC Grid and Map Projections
- 26. SPC Zone Characteristics
- 27. Map Projections
- 28. Geometric Properties Preserved and Distorted
- 29. Classifying Projection Methods
- 30. Summary
- 31. Bibliography
- Chapter 3: Census Data and Thematic Maps
- Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- ► Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

### Navigation

• login

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.



Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Login
- Services
- EMS

 College of Earth and Mineral Sciences

- Department of Energy and Mineral
- Engineering
   Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online
   Geospatial
   Education
   Programs
- Renewable Energy and Sustainability Policy Program Office

iMPS in

 BA in Energy and Sustainability Policy Program Office Related Links

- Penn State
   Digital
   Learning
   Cooperative
- Penn State
   World Campus
- Web Learning
   @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.



2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802

Privacy & Legal Statements | Copyright Information
The Pennsylvania State University © 2023