Machine Learning

Machine Learning

Linear Regression

$$h_{\theta}(x^{(i)}) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_i x_j$$

 $x_0 = 1, \quad j = \text{the number of features}$

$$\textit{Least Squared Error} = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost Function =
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
, $m = number\ of\ sample\ data$

Derivative of cost function at θ_i :

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Polynomial Regression

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Decision Tree Regression

Random Forest Regression

KNN Classification

SVM

To separate the two classes of data points, there are many possible hyperplanes that could be chosen.

Our objective is to find a plane that has the maximum margin, i.e the maximum distance between data points of both classes

Decision Tree Classification

Random Forest Classification

Unsupervised Learning

K-means Clustering

Knn clustering

Hierarchical Clustering

PCA

Iterati	on 1
---------	------

		(2, 10)	(5, 8)	(1, 2)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	0	5	9	1
A2	(2, 5)	5	6	4	3
A3	(8, 4)	12	7	9	2
A4	(5, 8)	5	0	10	2
A5	(7, 5)	10	5	9	2
A6	(6, 4)	10	5	7	2
A7	(1, 2)	9	10	0	3.
A8	(4, 9)	3	2	10	2

Cluster 1	Cluster 2	Cluster 3
(2, 10)	(8, 4)	(2, 5)
	(5, 8)	(1, 2)
	(7, 5)	*
	(6, 4)	
	(4, 9)	

- For Cluster 1, we only have one point A1(2, 10), which was the old mean, so the cluster center remains the same.
- For Cluster 2, we have ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6,6)
- For Cluster 3, we have ((2+1)/2, (5+2)/2) = (1.5, 3.5)

		(2, 10)	(6, 6)	(1.5, 3.5)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	0	8	7	1
A2	(2, 5)	5	5	2	3
A3	(8, 4)	12	4	7	2
A4	(5, 8)	5	3	8	2
A5	(7, 5)	10	2	7	2
A6	(6, 4)	10	2	5	2
A7	(1, 2)	9	9	2	3
A8	(4, 9)	3	5	8	1

- In Cluster 1, we have points 1 and 8. Therefore the centroid is: ((2+4)/2,(10+9)/2)=(3,9.5)
- In Cluster 2, we have points 3,4,5 and 6. Therefore, the centroid is: ((8+5+7+6)/4,(4+8+5+4)/4)=(6.5,5.25)
- For Cluster 3, we have points 2 and 7. Therefore, the centroid is: ((2+1)/2,(5+2)/2)=(1.5,3.5)

		(3, 9.5)	(6.5, 5.25)	(1.5, 3.5)	
83	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	1.5	9.25	7	1
A2	(2, 5)	5.5	4.75	2	3
A3	(8, 4)	10.5	2.75	7	2
A4	(5, 8)	3.5	4.25	8	1
A5	(7, 5)	8.5	0.75	7	2
A6	(6, 4)	8.5	1.75	5	2
A7	(1, 2)	9.5	8.75	2	3
A8	(4, 9)	1.5	6.25	8	1

- In Cluster 1, we have points 1, 4, and 8. Therefore the centroid is: ((2+5+4)/2,(10+8+9)/2)=(3.67,9)
- In Cluster 2, we have points 3,5 and 6. Therefore, the centroid is: ((8+7+6)/4,(4+5+4)/4)=(7,4.3)
- For Cluster 3, we have points 2 and 7. Therefore, the centroid is: ((2+1)/2,(5+2)/2)=(1.5,3.5)

		(3.67, 9)	(7,4.3)	(1.5, 3.5)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	2.67	10.7	7	1
A2	(2, 5)	5.67	5.7	2	3
A3	(8, 4)	9.33	1.3	7	2
A4	(5, 8)	2.33	5.7	8	1
A5	(7, 5)	7.33	0.7	7	2
A6	(6, 4)	7.33	1.3	5	2
A7	(1, 2)	9.67	8.3	2	3
A8	(4, 9)	0.33	7.7	8	1

Logistic Regression

Sigmoid Function

Result

TRAIN DATA

Step by step

 $Cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1 - y)log(h_{\theta}(x))$

Determine Learning Rate (a) $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} -y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right]$$

m = number of samples

$$egin{aligned} rac{\partial J}{\partial w} &= rac{1}{m} x (y_h ead - y)^T \ rac{\partial J}{\partial b} &= rac{1}{m} \sum_{i=1}^m (y_h ead - y) \end{aligned}$$

Forward Propagation

Backward Propagation