Linear Algebra Memorandum

1 Vectors and vector spaces

• **Definition**: For any n > 0 integer, we cand define \mathbb{R}^n , also knows as n-space:

$$\mathbb{R}^{n} = \{(v_{1}, v_{2}, \dots, v_{n}) | v_{1}, v_{2}, \dots, v_{n} \in \mathbb{R}\}$$

, where (v_1, v_2, \ldots, v_n) is a point in *n*-dimensional space with corresponding **vector** of the form

$$v = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \text{ or } \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

• Theorem: Let $a, b, c \in \mathbb{R}^n$ be vectors and $\alpha, \beta \in \mathbb{R}$ scalars.

- 1. $a+b \in \mathbb{R}^n$
- 2. a + b = b + a
- 3. (a+b)+c=a+(b+c)
- 4. $\exists 0$, such that $a + 0 = a \quad \forall a$
- 5. $\forall a \exists -a \text{ such that } a + (-a) = 0$
- 6. $\alpha a \in \mathbb{R}^n$
- 7. $\alpha(a+b) = \alpha a + \alpha b$
- 8. $(\alpha + \beta)a = \alpha a + \beta a$
- 9. $\alpha(\beta a) = (\alpha \beta)a$
- 10. 1a = a

Closure under summation

Commutativity

Associativity

Additive identity, zero vector

Additive inverse

Closure under scalar multiplication

Distributivity

Distributivity

Associativity of multiplication

Multiplicative identity

• **Definition**: Let

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

then the **dot product**, $u \cdot v$, is defined by

$$u \cdot v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

- Theorem: Given $u, v, w \in \mathbb{R}^n$ and scala $c \in \mathbb{R}$, the following properties hold
 - 1. $u \cdot v = v \cdot u$
 - 2. $u \cdot (v + w) = u \cdot v + u \cdot w$
 - 3. $c(u \cdot v) = (cu) \cdot v = u \cdot (cv) = cu \cdot v$
 - 4. $u \cdot u \ge 0$ and $u \cdot u = 0$ if and only if u = 0

• **Definition**: The **length** of a vector
$$v = \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix}$$
 is the scalar

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

- **Definition**: A **unit** vector is a vector of length 1. For any vector $v \neq 0$, we have the corresponding unit vector $u = \frac{1}{\|v\|}v$. Finding such a unit vector is called **normalizing**.
- Cauchy-Schwarz inequality: Given two vectors $u, v \in \mathbb{R}^n$, then

$$|u \cdot v| \le ||u|| \, ||v||$$

• The triangle inequality: Given two vectors $u, v \in \mathbb{R}^n$, then

$$||u + v|| \le ||u|| + ||v||$$

• **Definition**: For two vectors $u, v \in \mathbb{R}^n$, we define the **angle** between them by

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|}$$

•

- **Definition**: Two vectors $u, v \in \mathbb{R}^n$ are said to be **orthogonal** if $u \cdot v = 0$.
- Pythagoras theorem: Given two vectors $u, v \in \mathbb{R}^n$,

$$||u + v||^2 = ||u||^2 + ||v||^2$$

if and only if u and v are orthogonal.

- **Definition**: A m by n matrix is a rectangular list with m rows and n columns.
- Definition: A row vector or row matrix is a $1 \times n$ matrix:

$$a = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

where $a \in \mathbb{R}^{1 \times n}$

• Definition: A column vector or column matrix is a $1 \times n$ matrix:

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}$$

where $a \in \mathbb{R}^{n \times 1}$

• **Definition**: Let V be a set on which two operations, **addition** and **scalar multiplication** have been defined. If $u, v \in V$, the addition is denoted by u + v and if α is a scalar, then scalar multiplication is denoted by αu . If the following rules hold for all $u, v \in V$ and for all scalars α, β , then V is called a **vector space** and its elements are called **vectors**:

1.
$$u + v \in V$$

Closure under addition

2. u + v = v + u

Commutativity

3. (u+v)+w=u+(v+w)

Associativity

4. There exists an elements (zero vector), denoted 0, such that u + 0 = u

Additive identity

5. For every $u \in V$ there exists an element $-u \in V$ such that u + (-u) = 0

Additive inverse

6. $\alpha u \in V$

Closure under scalar multiplication

7. $\alpha(u+v) = \alpha u + \alpha v$

Distributivity

8. $(\alpha + \beta)u = \alpha u + \beta u$

Distributivity

9. $\alpha(\beta u) = (\alpha \beta)u$

Associativity of multiplication

10. 1u = u

Multiplicative identity

- **Definition**: A subspace W, of a vector space V, is a non-empty subset satisfying all the requirements of a vector space under the operations of addition and scalar multiplication defined in V.
- **Theorem**: If $W \subseteq V, V \neq \emptyset$, then W is a subspace of V if and only if $u + v \in W$, $\forall u, v \in W$ and $cw \in W$, $\forall w \in W$ and any scalar c.

2 Independence and orthogonality

• **Definition**: If vector u in a vector space V can be expressed in the form

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

where c_i , i = 1, 2, ..., n are scalars, then u is called a **linear combination** of vectors $v_1, v_2, ..., v_n$.

- **Definition**: If $S = \{v_1, v_2, \dots, v_k\}$ is a set of vectors in a vector space V, the set of all linear combinations of v_1, v_2, \dots, v_k is called the **span** of v_1, v_2, \dots, v_k and is denoted by $span(v_1, v_2, \dots, v_k)$ or span(S). If V = span(S), then S is called a **spanning set** for V and V is said to be **spanned** by S.
- Definition: A set of vectors $\{v_1, v_2, \dots, v_k\}$ are said to be linearly independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

then $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$. If a set of not all zero $alpha_i$'s exists, then the set is said to be **linearly dependent**.

- Theorem: Let $S = \{v_1, v_2, \dots, v_k\}$ be a set with at least two elements $(k \ge 2)$. Then S is linearly dependent if and only if one can express at least one vector as a linear combinations of the other vectors in S.
- **Definition**: A basis for a vector space V is a set of linearly independent vectors that span V. Suppose that $S = \{v_1, v_2, \dots, v_k\}$ is a finite subset of a vector space V. Then S is a basis of V if
 - 1. The v_i are linearly independent.
 - 2. span(S) = V.

In this case, V is said to be finite dimensional.

- Theorem: If $S = \{v_1, v_2, \dots, v_k\}$ is a basis for a vector space V then any vector in V can be written as a **unique** linear combination of vectors in S.
- **Theorem**: Given that $S = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V then any set containing more than n vectors is linearly dependent.
- Theorem: Any two bases for a vector space V contain the same number of vectors.
- **Definition**: If a vector space V has a basis with n vectors, then n is called the **dimension** of V or dim(V) = n.
- **Definition**: Let V be a vector space and $u, v, w \in V$. Given any scalar c the **inner product** associates a real number, denoted by $\langle u, v \rangle$ with all pairs of vectors u, v. Furthermore, it satisfies:
 - 1. $\langle u, v \rangle = \langle v, u \rangle$

- 2. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
- 3. $c\langle u, v \rangle = \langle cu, v \rangle$
- 4. $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ if and only if v = 0

A vector space with an inner product is often called a **inner product space**.

• **Definition**: Let V be a vector space with an inner product. The **length** or **norm** of a vector $u \in V$ is given by

$$||u|| = \sqrt{\langle u, u \rangle}$$

.

- **Theorem**: The Cauchy-Schwarz inequality and the triangle inequality still hold for any vector space equipped with an inner product.
- **Definition**: Two subspaces V and W are said to be **orthogonal subspaces** if every vector in V is orthogonal to every vector in W.
- **Definition**: Given a subspace $V \in \mathbb{R}^n$, the space of all vectors orthogonal to V is called the **orthogonal** complement of V. It is denoted by V^{\perp} .
- **Definition**: A set of vectors forms an **orthogonal** set $\{q_1, q_2, \dots, q_k\}$ if $q_i \cdot q_j = 0$ for all $i \neq j$.
- Theorem: The vectors of an orthogonal set are linearly independent.
- **Definition**: A set of vectors $\{q_1, q_2, \dots, q_k\}$ are orthonormal if they are orthogonal and $q_i \cdot q_i = 1$ for all $i = 1, 2, \dots, k$. In this case, $\{q_1, q_2, \dots, q_k\}$ is called an **orthonormal** set.
- Decomposition into orthogonal components Assume that $\{q_1, q_2, \dots, q_k\}$ is an orthogonal set of vectors and u is an arbitrary vector. Then

$$v = u - \frac{q_1^T u}{q_1^T q_1} q_1 - \dots - \frac{q_k^T u}{q_k^T q_k} q_k$$

is orthogonal to $\{q_1, q_2, \dots, q_k\}$. We can write $proj_{q_i}u = \frac{q_i^T u}{q_i^T q_i}q_i$ for the projection of u along q_i .

• Gram-Schmidt orthogonalization Let $X = \{x_1, x_2, \dots, x_n\}$ be a set of linearly independent vectors in \mathbb{R}^m and $m \geq n$. For obtaining an orthonormal set of vectors $Q = \{q_1, q_2, \dots, q_n\}$, such that span(Q) = span(X), we can use the following formulae:

$$q_j = \frac{x_j - \sum_{i=1}^{j-1} (q_i^T x_j) q_i}{\left\| x_j - \sum_{i=1}^{j-1} (q_i^T x_j) q_i \right\|}$$

• **Definition**: A matrix with orthonormal columns will be denoted by Q and is called an **orthonormal** matrix.

3 Matrices

• Matrix addition: Two matrices in M_{mn} can be added together as follows:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nn} + b_{nn} \end{bmatrix}$$

• Scalar matrix multiplication: We can multiply $\alpha \in \mathbb{R}$ with a matrix in M_{mn} as follows:

$$\alpha \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{n1} & \alpha a_{n2} & \dots & \alpha a_{nn} \end{bmatrix}$$

• Matrix multiplication: If $A \in M_{mn}$ and $B \in M_{np}$, then $AB = C \in M_{mp}$ can be computed as follows:

$$AB = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}b_{i1} & \sum_{i=1}^{n} a_{1i}b_{i2} & \dots & \sum_{i=1}^{n} a_{1i}b_{ip} \\ \sum_{i=1}^{n} a_{2i}b_{i1} & \sum_{i=1}^{n} a_{2i}b_{i2} & \dots & \sum_{i=1}^{n} a_{2i}b_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} a_{mi}b_{i1} & \sum_{i=1}^{n} a_{mi}b_{i2} & \dots & \sum_{i=1}^{n} a_{mi}b_{ip} \end{bmatrix} C$$

- **Definition**: The **transpose** of a matrix A, denoted A^T , is the matrix having the i-th column of A as it's i-th row.
- **Definition**: A matrix A is symmetric if $A = A^T$.
- **Definition**: The *n* by *n* identity matrix, denoted I_n is given by

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- .
- **Definition**: Let A be an m by n matrix, the **column space**, or **range**, denoted by C(A), contains all linear combinations of the columns of A and is a subspace of \mathbb{R}^m .
- **Definition**: Let A be an m by n matrix, the **row space**, denoted by R(A), contains all linear combinations of the rows of A and is a subspace of \mathbb{R}^n .
- Theorem: Let A be an m by n matrix. The system $Ax = b, x \in \mathbb{R}^n, b \in \mathbb{R}^m$ is solvable if and only if $b \in C(A)$.
- **Definition**: The **nullspace** of an m by n matrix A consists of all vectors x such that Ax = 0. It is denoted by N(A) and is a subspace of \mathbb{R}^n .
- **Theorem**: The columns of A are linearly independent exactly when N(A) = 0.
- Theorem: The row space R(A) is orthogonal to the nullspace N(A). The column space C(A) is orthogonal to the left nullspace $N(A^T)$.
- **Definition**: The **column rank** of a matrix is the dimension of its column space and the **row rank** of a matrix is teh dimension of its row space. The column rank and row rank are always equal:

$$dim(C(A)) = dim(R(A))$$

We can refer to this number as the **rank** of matrix A, denoted rank(A).

• **Definition**: The **inverse** of a matrix $A \in M_{nn}$, denoted by A^{-1} , satisfies

$$A^{-1}A = AA^{-1} = I_n$$

- .
- Theorem: If the inverse exists, it is unique.

• **Definition**: An n by n **elementary matrix** is any matrix that can be obtained by performing an elementary row operation on I_n . There are three types of elementary matrices:

$$-E_{r_2 \leftarrow sr_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

scalig of a row

$$- E_{r_1 \leftrightarrow r_3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

interchanging two rows

 $- E_{r_3 \leftarrow r_3 + cr_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{bmatrix}$

adding a multiple of one row to another

- Row reduction by elementary matrix transformations: By successively applying elementary row operations, every matrix can be transformed into the following forms:
 - 1. A matrix is in row echelon form (REF) if:
 - all nonzero rows are above any rows of all zero.
 - the leading coefficient (the first nonzero number from the left, also called the **pivot**) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
 - 2. A matrix is in reduced row echelon form (REF) if:
 - it is in row echelon form.
 - every leading coefficient is 1 and the only nonzero entry in its column.

The process of transforming the matrix into REF is called **Gaussian elimination**, while the one that leads to RREF if called **Gauss-Jordan elimination**.

- Theorem: A matrix is invertible if and only if its RREF is the identity matrix I_n and its inverse is the sequence of elementary row operations what were applied to it to reduce it to RREF, applied to I_n .
- Theorem: Let A be an n by n matrix. The followin statements are equivalent:
 - 1. A is invertible.
 - 2. Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
 - 3. Ax = 0 has only the trivial solution.
 - 4. Using Gauss-Jordan elimination we may reduce the matrix to I_n .
 - 5. A is the product of elementary matrices.
 - 6. rank(A) = n.
 - 7. $N(A) = \{0\}.$
 - 8. The column vectors of A are linearly independent.
 - 9. The row vectors of A are linearly independent.

4 Systems of linear equations

• **Definition**: A system of m equations with n variables:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$Ax = b$$
,

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$.

- **Definition**: A system is called **homogeneous** if $b = 0 \iff Ax = 0$.
- **Definition**: A system is called **overdetermined** if $A \in \mathbb{R}^{m \times n}$ with m > n.
- **Definition**: A system is called **underdetermined** if $A \in \mathbb{R}^{m \times n}$ with m < n.
- **Definition**: A system is called **consistent** if it has at least one solution and **inconsistent** if it has no solutions.
- Theorem: If A is an m by n matrix,

$$n = rank(A) + dim(N(A))$$

Determinants and elementary matrix factorizations

- **Definition**: A permutation $\sigma \in S_n$ is said to have an **inversion** (i, j) if $\sigma(i) > \sigma(j)$.
- **Definition**: A permutation is said to be **even/odd** if the total number of inversions it has is even/odd. We can define the **sign** of the permutation to be $(-1)^{N(\sigma)}$, where $N(\sigma)$ is the number of inversions in σ .
- **Definition**: The **determinant** of a n by n matrix A is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) A_{1,\sigma(1)} A_{2,\sigma(2)} \dots A_{n,\sigma(n)}$$

• Theorem: Let A be a $n \times n$ matrix.

If A is of size 1×1 then $det(A) = A_{11}$.

Let D_{ij} be the $(N-1) \times (N-1)$ matrix obtained from A by deleting row i and column j. Set $\Delta_{ij} = (-1)^{i+j} det(D_{ij})$. Δ_{ij} is called the **cofactor** of A_{ij} .

Then, for any fixed i,

5

$$det(A) = \sum_{j=1}^{n} A_{ij} \Delta_{ij}$$

Alternatively, for any fixed j,

$$det(A) = \sum_{i=1}^{n} A_{ij} \Delta_{ij}$$

- **Definition**: A matrix A is called **(non-)singular** if its determinant is (not) 0.
- **Theorem**: Determinants have the following properties:
 - 1. $det(I_n) = 1$.
 - 2. $det(A_{r_i \leftrightarrow r_i}) = -det(A)$, for $i \neq j$.
 - 3. $det(A_{r_i \leftarrow \lambda r_i}) = \lambda det(A)$
 - 4. $det(A_{r_i \leftarrow r_i + v}) = det(A) + det(A_{r_i \leftarrow v})$, where v is a vector.
 - 5. det(A) = 0 if A has a row of zeros.
 - 6. $det(A) = A_{11}A_{22}...A_{nn}$ if A is lower or upper triangular.
 - 7. det(A) = 0 if A has two identical rows.
 - 8. $det(A_{r_i \leftarrow r_i + \lambda r_i}) = det(A)$
 - 9. det(AB) = det(A)det(B)

- 10. A square matrix is invertible if and only if $det(A) \neq 0$.
- 11. $det(A) = det(A^T)$.
- LU factorization: Given a matrix $A \in M_{nn}$, we can proceed as follows to reduce it to the form A = LU, where L is a lower triangular matrix and U an upper triangular one: use elementary row operations to reduce it A to an upper triangular matrix $E_k \dots E_2 E_1 A = U$, and then write $A = E_1^{-1} E_2^{-1} \dots E_k^{-1} U$. Since we have only used operations of adding a row j to a row i where j < i, we know that E_i is lower triangular, $i = 1, 2, \dots, k$. Hence, E_i^{-1} is also lower triangular, and so is their product, so let $L = E_1^{-1} E_2^{-1} \dots E_k^{-1}$, such that A = LU.
- Solving triangular systems of equations: If L is a lower triangular matrix and we want to solve Ly = b:

$$\begin{bmatrix} L_{11} & 0 & \dots & 0 \\ L_{21} & L_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \dots & L_{nn} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

. This may be solved writing

$$y_1 = \frac{1}{L_{1,1}}b_1$$

$$y_2 = \frac{1}{L_{2,2}}(b_2 - L_{2,1}y_1)$$

$$\vdots$$

$$y_n = \frac{1}{L_{n,n}}(b_n - L_{n,1}y_1 - L_{n,2}y_2 - \dots - L_{n,n-1}y_{n-1})$$

• Solving systems with LU factorizations: If we want to solve Ax = b, A non-singular, write A = LU and solve LUx = b. Writing y = Ux allows us to write the above equation as a pair of 2 linear systems:

$$Ly = b$$
 and $Ux = y$

. Since both L and U are triangular, we can solve the systems with the above mentioned method.

6 Linear transformations

- **Definition**: A **linear transformation** from a vector space U to a vector space V is a mapping $T: U \to V$, such that, for all $u, v \in U$ and for all scalars c:
 - 1. $T(u) \in V$
 - 2. T(u+v) = T(u) + T(v)
 - 3. T(cu) = cT(u)
- **Theorem**: For any linear transformation $T: U \to V, T(0) = 0$.
- **Definition**: Let u_1, u_2, \ldots, u_n be a basis for a vector space U. Any vector $u \in U$ may then be written

$$u = \sum_{i=1}^{n} \beta_i u_i$$

with respect to the basis u_1, u_2, \ldots, u_n . We then say that u has the coordinates $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$ with respect to the basis u_1, u_2, \ldots, u_n .

• **Definition**: Suppose U and V are vector spaces and $T: U \to V$ is a linear transformation. Given bases for U and V, there always exists a matrix A such that T(u) = Au for all $u \in U$. Let u_1, u_2, \ldots, u_m be a basis for U and v_1, v_2, \ldots, v_n be a basis for V. Then express $T(u_j)$ as a linear combination of the basis vectors of V:

$$T(u_j) = \sum_{i=1}^{n} A_{i,j} v_i$$

- . By gathering these constants in a matrix, we obtain the transformation matrix A.
- **Definition**: Suppose U and V are vector spaces and $T: U \in V$ is a linear transformation.
 - The **kernel** or **nullspace** of T, Ker(T), is the set of vectors $u \in U$ such that T(u) = 0.
 - The range or image of T, Im(T) is the set of vectors $v \in V$ such that v = T(u) for some $u \in U$.
- **Theorem**: The kernel and range form vector spaces. The dimension of the kernel is known as the **nullity** of the transformation. The dimension of the range is known as the **rank** of the transformation. Also, it holds that:

$$dim(Ker(T)) + dim(Im(T)) = dim(U)$$

7 Eigenvalues and eigenvectors

• **Definition** Let A be an $n \times n$ matrix and suppose that

$$Au = \lambda u$$

for some scalar λ and non-zero vector u. We then say that λ is an **eigenvalue** of A, with corresponding eigenvector u.

• **Definition**: To find the eigenvalues of a matrix, we use the characteristic equation:

$$det(A - \lambda I) = 0$$

- , which will be a polynomial of degree n in λ . This mean A can have at most n eigenvalues.
- **Theorem**: Suppose A has n distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with corresponding eigenvectors v_1, v_2, \dots, v_n . There are 2 useful properties:
 - 1. The eigenvectors v_1, v_2, \ldots, v_n are linearly independent.
 - 2. Define the matrices S and D by

$$S = \begin{pmatrix} v_1 & v_2 & \dots & v_n \end{pmatrix}, \quad D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

We may then write $D = S^{-1}AS$ and we say A can be diagonalized.

• **Definition**: If A and B are $n \times n$ matrices and there exists another $n \times n$ matrix X such that

$$A = X^{-1}BX$$

- , then A and B are knows as **similar matrices**.
- **Theorem**: Let A be a real, symmetric matrix of size $n \times n$. The matrix A will then have the following properties:
 - 1. A will have n real eigenvalues (possibly including repeated eigenvalues).
 - 2. Eigenvectors corresponding to different eigenvalues are orthogonal.

3. A diagonal matrix D and an orthogonal matrix P exist such that

$$D = P^T A P$$

where the columns of P are the normalized eigenvectors of A.

• **Theorem**: Let A be a matrix. If A can be diagonalized, then we can easily compute the powers of A:

$$A^n = SD^n S^{-1}$$

• Power method: For estimating the eigenvalues with the largest absolute value and its corresponding eigenvector, we can use the following iterative method starting with an initial guess for the eigenvector, x_0 :

$$y = Ax_{k-1}$$
 $M = max|y_i|$
$$x_k = \frac{1}{M}y$$

As $k \to \infty$, x_k approaches the eigenvector corresponding to the larges eigenvalue in absolute value. This eigenvalue may then be estimated by the **Raleigh quotient**:

$$\lambda_{max} = \frac{x_k^T A x_k}{x_k^T x_k}$$

- **Perron's theorem**: Let A be a $n \times n$ matrix with all entries positive. We will refer to this as a **positive** matrix. The matrix A has a real eigenvalue λ_1 satisfying:
 - 1. $\lambda_1 > 0$.
 - 2. λ_1 has a corresponding positive eigenvector.
 - 3. For any other eigenvalue λ of A, $|\lambda| \leq \lambda_1$.
- **Definition**: A matrix A is called **reducible** if, subjet to some permutations of the rows, P, and the same permutation of the columns, P^T , A can be written in the block form

$$PAP^T = \begin{bmatrix} B & C \\ O & D \end{bmatrix}$$

where B and D are square matrices. Otherwise, the matrix is said to be **irreducible**.

- Perron-Frobenius theorem: Let A be a $n \times n$ non-negative irreducible matrix. Then A has a unique real eigenvalue λ_1 satisfying:
 - 1. $\lambda_1 > 0$.
 - 2. λ_1 has a corresponding positive eigenvector.
 - 3. For any other eigenvalue λ of A, $|\lambda| \leq \lambda_1$.
 - 4. If $|\lambda| = \lambda_1$ then λ is a complex root of the equation $\lambda^n \lambda_1^n = 0$.

8 Iterative methods for solving linear systems

- **Definition**: A sparse matrix is a matrix that has very large N, but few non-zero entries per row.
- Iterative methods: When using iterative methods to solve systems of equations, it will be useful to write

$$A = D - L - U$$

, where

- -L contains the entries of A strictly below the diagonal.

- D contains the entries of A on the diagonal.
- -U contains the entries of A strictly above the diagonal.

Also, let u_0 be the initial guess of the iterative algorithm, u_n the guess after n steps and $e_n = u_n - u$ the error after n steps.

• The Jacobi method: Iterative step:

$$Du_n = (L+U)u_{n-1} + b$$

. Let

$$G = D^{-1}(L+U)$$

• The Gauss-Seidel method: Iterative step:

$$(D-L)u_n = Uu_{n-1} + b$$

. Let

$$G = (D - L)^{-1}U$$

• The successive over relaxation (SOR) method: Iterative step:

$$(D - \omega L)u_n = ((1 - \omega)D + \omega U)u_{n-1} + \omega b$$

where $\omega \in (0,1]$ is a parameter chosen by the user. Let

$$G = (D - \omega L)^{-1}((1 - \omega)D + \omega U)$$

• Error analysis: In all three cases, it can be proven that $e_n = Ge_{n-1}$, which leads to

$$e_n = G^n e_0$$

- . For $e_n \to 0$, we need $|\lambda_{max}| < 1$, where λ_{max} is the largest modulus eigenvalue of G. For the rate of convergence to be higher, we want $|\lambda_{max}|$ to be as small as possible. Thus, in the SOR method, we can choose ω that minimizes $|\lambda_{max}|$.
- **Definition**: A symmetric matrix A is said to be **positive definite** if $x^T A x > 0$ for all $x \neq 0$.
- **Theorem**: A symmetric matrix is positive definite if and only if it has positive eigenvalues.
- Theorem: Let A be a real, symmetric, positive definite matrix of size $n \times n$. Define

$$F(x) = \frac{1}{2}x^T A x - x^T b$$

- . Then, the solution u to the system Au = b is equal to the unique minimum of F(x).
- Method of steepest decent: Iterative step:

$$r_{n-1} = b - Au_{n-1}$$

$$u_n = u_{n-1} + \frac{r_{n-1}^T r_{n-1}}{r_{n-1}^T A r_{n-1}} r_{n-1}$$

- **Definition**: An over-determined system is a system Au = b where:
 - A is a $N \times M$ matrix with N > M.
 - u is a vector of length M.
 - b is a vector of length N.

- **Definition**: Since we probably can't satisfy all the equations of an over-determined system, we seek the **least squares** solution, the one that minimizes $||r||^2 = ||Au b||^2$
- Theorem: The least-squares solution satisfies the normal equation

$$A^T A u = A^T b$$

- . This is a linear system of size $M \times M$.
- QR factorization: If $A = (v_1 \ v_2 \ \dots \ v_M)$ where v_1, v_2, \dots, v_M are linearly independent vectors, then we can write A as

$$A = \begin{pmatrix} q_1 & q_2 & \dots & q_M \end{pmatrix} \begin{pmatrix} q_1 \cdot v_1 & q_1 \cdot v_2 & \dots & q_1 \cdot v_M \\ 0 & q_2 \cdot v_2 & \dots & q_2 \cdot v_M \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_M \cdot v_M \end{pmatrix} = QR$$

. This is called the **QR factorization** of A, where Q is orthogonal and R is upper triangular. We can use this in the normal equation, transforming it to

$$Ru = Q^T b$$

- , which is an upper triangular system that may be solved easily.
- **Definition**: Let A be a non-singular $N \times N$ matrix and let v be a vector of length N. We define the **norm** of A by

$$||A|| = \max_{v \neq 0} \frac{||Av||}{||v||}$$

• **Theorem**: For a matrix A, we have:

-
$$||A|| = \sqrt{\lambda_{max}}$$

$$- \|A^{-1}\| = \sqrt{\frac{1}{\lambda_{min}}}$$

• **Definition**: For a non-singular matrix M, suppose we want to solve Mu = c. Let δc be the error in c and δu be the error we obtain in u. Then,

$$\frac{\|\delta u\|}{\|u\|} = k(M) \frac{\|\delta c\|}{\|c\|}$$

, where k(M) is the **condition number** of M,

$$k(M) = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}$$