

## ALGORYTMY I STRUKTURY DANYCH

## LABORATORIUM 1: ALGORYTMY WYSZUKIWANIA I SORTOWANIA

**Programowanie strukturalne** polega na budowaniu algorytmów (i programów) z użyciem tylko trzech konstrukcji:

- sekwencyjnej
- warunkowej
- iteracyjnej (ograniczonej i warunkowej)





Aplikacja do rysowania schematów blokowych: <a href="https://app.diagrams.net/">https://app.diagrams.net/</a>

**Zadanie 1**. Narysuj schemat blokowy algorytmu sprawdzającego, czy podana przez użytkownika wartość występuje liście, a następnie napisz program w oparciu o ten schemat. (*Pliki do wykorzystania*: *zadanie1.py*)

Zadanie 2. Zaprojektuj algorytm wyszukiwania minimalnej wartości w liście.



**Zadanie 2\*.** Zaprojektuj algorytm wyszukiwania minimalnej wartości w każdym wierszu listy dwuwymiarowej. Po znalezieniu minimalnej wartości wstaw ją na początek danego wiersza, zamieniając ją z wartością, która znajdowała się dotychczas na początku wiersza.

**Zadanie 3.** Wykonaj analizę działania algorytmu sortowania bąbelkowego na przykładowych danych. (*Pliki do wykorzystania*: *Lab1\_zadania.xlsx*, arkusz *zadanie\_3*)

<u>Dodatkowo\*</u>: Zaimplementuj algorytm sortowania bąbelkowego, który kończy działanie, jeśli w jednym przejściu całej tablicy nie dokonał żadnych zamian elementów.

(*Pliki do wykorzystania*: *zadanie3\_bubbleSort.py*)

## ZŁOŻONOŚĆ OBLICZENIOWA

**Złożoność obliczeniowa** określa liczbę instrukcji wykonywaną przez program dla zadanego zbioru danych wejściowych.

**Złożoność pamięciowa** jest to liczba komórek pamięci potrzebnych do rozwiązania dowolnego zadania rozmiaru *n*.





D. Harel "Rzecz o istocie informatyki"

Na rysunku stałe  $K_1$  do  $K_4$  są związane z czterema możliwymi drogami. Zakłada się, iż każde wykonanie lokalnego odcinka obejmuje nie więcej niż  $K_i$  instrukcji.



**Zadanie 4**. Wykonaj analizę złożoności obliczeniowej algorytmu sortowania bąbelkowego. (*Pliki do wykorzystania*: *bubble\_sort\_complexity.pdf*)

**Zadanie 5.** Wykonaj analizę działania algorytmu sortowania przez wybór na przykładowych danych. (*Pliki do wykorzystania*: *Lab1\_zadania.xlsx*, arkusz *zadanie\_5*)

**Zadanie 6.** Wykonaj analizę działania algorytmu sortowania przez wstawianie na przykładowych danych.

(Pliki do wykorzystania: Lab1\_zadania.xlsx, arkusz zadanie\_6)

**Zadanie 7**. Wykonaj analizę złożoności obliczeniowej algorytmu sortowania przez wstawianie. (*Pliki do wykorzystania*: insert\_sort\_complexity.pdf)

**Zadanie 8\***. Napisz program sortowania **liczb** naturalnych "leksykograficznie" względem rozwinięć dziesiętnych.

Przykład: Wejście: 1, 2, 3, 11, 21, 111, 231

Wyjście: 1, 11, 111, 2, 21, 231, 3

**Zadanie 9\*.** Napisz program sortowania wierszy macierzy "leksykograficznie". Zastosuj algorytm sortowania przez wybór (selectionSort) lub przez wstawianie (insertSort).