EmojifyText - Project Description

Minh Vu

FPT University

February 10, 2022

1 Problem Statement

Build a deep neural network to classify emotions (happy, sad, etc.) from the text.**NOTE**: To make the problem more interesting, I have extended it to output the emojis instead of emotions.

2 Data Preparation

 The dataset is collected from exercises of the Sequence Models course on Coursera. The original dataset includes 188 phrases with 5 classes (denoted as N CLASSES) as visualized below.

label	-	emoji
0	-	•
1	-	9
2	-	$\stackrel{\smile}{\smile}$
3	-	<u>~~</u>
4	-	¥1

2. The dataset is divided as follow.

Table 1: Training and testing dataset preparation

Dataset	No. of phrases	Ratio
Training	150	80%
Testing	38	20%
Total	188	100%

3. The maximum sentence length (denoted as MAX_SENTENCE_LEN) in the dataset is

3 Model Explanation

1. A simple **BiLSTM** architecture is used for this model. Also, the **GloVe-6B-50d** [1] pretrained embedding vectors (trained on 6B tokens and 50 dimensional feature

vectors) will be used for the embedding layer. The overall architecture is described in the figure below.

- 2. The **dropout technique** [2] is used to help prevent the model from being overfitted and the dropout percentage was set to 0.3 in this project.
- 3. The activation function used in the last dense layer is the **softmax function** since there are 5 classes in the dataset. The softmax function can be calculated as:

$$softmax(z_i) = \frac{\exp z_i}{\Sigma_j \exp z_j}$$

- 4. The Categorical Crossentropy loss function will be used since there are more than 2 classes.
- 5. Also, the learning algorithm being used is **Adam** [3].

References

- [1] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word representation. In *Empirical Methods in Natural Language Processing (EMNLP)*, pages 1532–1543, 2014.
- [2] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15(56):1929–1958, 2014.
- [3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.