MATH 321: Review Part 2

1. Let X_1 and X_2 be independent random variables where $X_1 \sim \text{Normal}\,(\mu=1,\sigma=2)$, and $X_2 \sim \text{Normal}\,(\mu=5,\sigma=3)$.

Find $P(3X_1 - X_2 < 2)$.

2. Let $X_{(1)}, \dots, X_{(8)}$ be the order statistics of a random sample of size n=8 from a random variable X with pdf

 $f(x) = \frac{3}{4}(x^2 + 1), \quad 0 \le x \le 1$

(a) Find the cdf of X, $F_X(x)$, and $P(X \le 0.25)$.

(b) Find the cdfs $F_{X_{(1)}}(x)$ and $F_{X_{(8)}}(x)$.

(c) Find the pdfs $f_{X_{(1)}}(x)$ and $f_{X_{(8)}}(x)$.

(d) Find the cdf $F_{X_{(6)}}(x)$)
-----------------------------------	---

(e) Find
$$P(X_{(6)} \le 0.25)$$
.

(f) Find the pdf
$$f_{X_{(5)}}(x)$$
.

(g) Write the integrals to find
$$E(X_{(5)})$$
 and $P(X_{(5)} \geq 0.75)$

- 3. Let X_1, \ldots, X_n be a random sample from $f(x \mid \theta) = \theta x$, $0 < x < 1, \theta > 0$.
 - (a) Find the MME of θ .

- (b) Show if $\hat{\theta}_{MME}$ is unbiased.
- 4. Let X_1, \ldots, X_n be a random sample from $f(x \mid \theta) = (\theta + 1)x^{\theta}, \quad 0 < x < 1, \ \theta > -1.$
 - (a) Find the MLE of θ .

(b) Find the MLE of $E(X) = \frac{\theta + 1}{\theta + 2}$.

- 5. Let X_1, \ldots, X_{35} be a random sample from a Geometric (p = 0.45) experiment.
 - (a) Let Y_1 be the average number of trials to get the first success in the n=35 runs of this experiment, i.e. $Y_1=\bar{X}$. Find the distribution of Y_1 .

(b) Let Y_2 be the total number of runs (across all trials) to get the first success in n=35 trials of this experiment, i.e. $Y_2 = \sum_{i=1}^{35} X_i$. Find the distribution of Y_2 .

- 6. Let X_1, \ldots, X_{40} be a random sample from a f(x), where $\mu = 15$ and σ^2 is unknown. Let \bar{X} be the sample mean and S be the sample standard deviation.
 - (a) Find the distribution of \bar{X} .

(b) Find the distribution of $\frac{\bar{X} - 15}{S/\sqrt{40}}$.

(c) Suppose we know the population variance $\sigma^2 = 4$. Find the distribution of $\frac{\bar{X} - 15}{2/\sqrt{40}}$.