HELSINGIN YLIOPISTO MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Pro gradu -tutkielma

Stone-Čech kompaktisointi

Pekka Keipi

Ohjaaja: Erik Elfving 23. helmikuuta 2017

Sisältö

1	Johdanto	2
2	Esitietoja	3
3	Uniformiset rakenteet	4

Luku 1 Johdanto

Luku 2

Esitietoja

Olkoon X joukko ja V,W sen osajoukko
ja. Merkitään tällöin joukkoilla V ja W seuraavasti:

 $V\circ W=\{(x,z)\mid \text{ on olemassa sellainen }y\in X \text{ jolla }(x,y)\in V \text{ ja }(y,z)\in W\}$ ja $W^2=W\circ W.$

Luku 3

Uniformiset rakenteet

Tässä kappaleessa tutustutaan uniformisiin rakenteisiin ja näiden keskeisiin ominaisuuksiin [1].

Määritelmä 3.1. Uniforminen rakenne (tai uniformisuus) joukolle X annetaan karteesisen tulon $X \times X$ potenssijoukon $\mathcal{P}(X \times X)$ osajoukkona \mathcal{U} , jolle pätee

- (U1) Jos $V \in \mathcal{U}$ ja $V \subset W \subset X \times X$ niin $W \in \mathcal{U}$,
- (U2) Jokainen äärellinen leikkaus joukon \mathcal{U} alkioista kuuluu joukkoon \mathcal{U} ,
- (U3) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in \mathcal{U}$ osajoukko,
- (U4) Jos $V \in \mathcal{U}$, niin $V^{-1} = \{(y, x) \mid (x, y) \in V\} \in \mathcal{U}$,
- (U5) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W^2 \subset V$.

Uniformisen rakenteen muodostavia joukkoja $V \in \mathcal{U}$ sanotaan uniformisuuden \mathcal{U} lähistöksi. Joukkoa X joka on varustettu uniformisuudella \mathcal{U} sanotaan univormiseksi avaruudeksi.

Huomautus 3.2. Uniformisuuden \mathcal{U} lähistöön (entourage) $V \in \mathcal{U}$ kuuluvien pisteiden $x, y \in V$ sanotaan olevan V-lähellä, tarpeeksi lähellä tai mielivaltaisen lähellä toisiaan.

Huomautus 3.3. Mikäli muut ehdot pätevät, voidaan ehdot (U4) ja (U5) korvata yhtäpitävällä ehdolla

(U4a) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W \circ W^{-1} \subset V$.

Huomautus 3.4. Jos joukko X on tyhjä, niin ehdon (U3) nojalla joukon X uniformiteetti \mathcal{U} on tyhjä. Erityisesti $\{\emptyset\}$ on joukon X ainoa ehdot täyttävä uniformiteetti, jos joukko X on tyhjä.

Määritelmä 3.5. Olkoon X joukko ja joukko $\mathcal{U} \subset X \times X$ sen uniformiteetti. Tällöin lähistöjen joukko $B \subset \mathcal{U}$ on uniformiteetin \mathcal{U} kanta, jos jokaiselle lähistölle $V \in \mathcal{U}$ löytyy kannan alkio $W \in B$, jolla pätee $W \subset V$.

Määritelmä 3.6. Olkoon X joukko. Joukko $B \subset \mathcal{P}(X \times X)$ on joukon X uniformisuuden kanta, jos joukolle B pätee

- (B1) Jos $V_1, V_2 \in B$ niin on olemassa sellainen $V_3 \in B$, jolla $V_3 \subset V_1 \cap V_2$,
- (B2) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in B$ osajoukko,
- (B3) Jos $V \in B$, niin on olemassa sellainen $V' \in B$, jolla $V' \subset V^{-1}$,
- (B4) Jos $V \in B$, niin on olemassa sellainen $W \in B$, jolla $W^2 \subset V$.

Määritelmä 3.7. Uniformisen avaruuden topologia. Olkoon joukko X varustettu uniformisuudella \mathcal{U} ja $x \in X$. Olkoon $V(x) = \{y \in X \mid (x,y) \in V\}$ lähistön $V \in \mathcal{U}$ määräämä ympäristö alkiolle $x \in X$.

Huomautus 3.8.

Lause 3.9.

Määritelmä 3.10.

Kirjallisuutta

- [1] Nicolas Bourbaki: General Topology Part 1, 1. painos, Hermann, 1966.
- [2] Nicolas Bourbaki: General Topology Part 2, 1. painos, Hermann, 1966.
- [3] Jussi Väisälä: Topologia II, 2. korjattu painos, Limes ry, 2005.