CM146, Fall 2018 Problem Set 03: Jonathan Chu

November 18, 2018

1 VC Dimension

(a) The VC Dimension of H is 3. To prove this we will show that VC \geq 3 and VC < 4.

The model $ax^2 + bx + c$; $a, b, c \in R$ can change sign twice at any values of x, beginning with either sign $\{-1, 1\}$ at $x = -\infty$. Therefore any label assignment to any three points can be separated by the model, and $VC \ge 3$.

With four points, however, our model will not be able to separate the data in every case. Consider the case of $x_1 \le x_2 \le x_3 \le x_4$ (all spatial configurations of four examples must satisfy this property) with $x_1 = x_3 = -1$ and $x_2 = x_4 = 1$. Since there are three sign changes as x goes from $-\infty$ to ∞ , our hypothesis space does not contain a model that can separate these points.

2 Kernels

(a) Expanding the kernel,

$$K_{\beta}(\mathbf{x}, \mathbf{z}) = 1 + 3(\beta \mathbf{x} \cdot \mathbf{z})^{2} + 3(\beta \mathbf{x} \cdot \mathbf{z}) + (\beta \mathbf{x} \cdot \mathbf{z})^{3} = 1 + 3\beta^{2}(x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}) + 3\beta(x_{1}z_{1} + x_{2}z_{2}) + \beta^{3}(x_{1}^{3}z_{1}^{3} + 3x_{1}z_{1}x_{2}^{2}z_{2}^{2} + 3x_{1}^{2}z_{1}^{2}x_{2}z_{2} + x_{2}^{3}z_{2}^{3})$$

$$\phi_{\beta}(\mathbf{x})^{T}\phi_{\beta}(\mathbf{z}) = K_{\beta}(\mathbf{x}, \mathbf{z})$$

$$\Rightarrow \text{ for } \mathbf{y} \in \mathbb{R}^{2},$$

$$\phi_{\beta}(\mathbf{y}) = (1, \sqrt{3}\beta y_{1}^{2}, \sqrt{3}\beta y_{1}y_{2}, \sqrt{3}\beta y_{2}^{2}, \sqrt{3}\beta y_{1}, \sqrt{3}\beta y_{2},$$

$$\sqrt{\beta^{3}}y_{1}^{3}, \sqrt{3\beta^{3}}y_{1}y_{2}^{3}, \sqrt{3\beta^{3}}y_{1}^{2}y_{2}, \sqrt{\beta^{3}}y_{2}^{3})$$

 $K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x} \cdot \mathbf{z})^3$ is equivalent to $K_{\beta}(\mathbf{x}, \mathbf{z}) = (1 + \beta \mathbf{x} \cdot \mathbf{z})^3$ with $\beta = 1$. The parameter β acts as a coefficient for elements of the feature mapping, with high β placing more weight on higher degree elements. It is an additional parameter that gives even more flexibility in the feature map.

3 SVM

(a) By graphing the data, it is clear that the line separating the data with maximum margin is one with slope $\frac{1}{2}$, passing through point $(1, \frac{1}{2})$. In other words, $\frac{w_1^*}{w_2^*} = -\frac{1}{2}$.

The two constraints we must satisfy are:

$$n = 1: w_1^* + w_2^* \ge 1$$

$$n=2:-w_1^* \ge 1$$

By inspection, $w_1^* = -1, w_2^* = 2$ satisfy both constraints as equalities and minimize $||w^*||$.

(b) With the additional parameter b, we seek a weight vector w^* with magnitude less than $\sqrt{5}$, the magnitude from part (a).

Geometrically, it is obvious that the line maximizing the margin γ is a horizontal line through the point $(1, \frac{1}{2})$

$$\Rightarrow w_1^* = 0, w_2^* > 0$$

The new constraints we must satisfy are:

$$n = 1: w_2^* + b \ge 1$$

$$n = 2 : -b \ge 1$$

$$\Rightarrow b = -1$$

$$\Rightarrow w_2^* = 2$$

The magnitude $||w^*|| = 2$

4 Twitter analysis using SVMs

4.1 Feature Extraction

Done.

4.2 Hyper-parameter Selection for a Linear-Kernel SVM

It's beneficial to maintain class proportions across folds because a fold without any regulated proportion could be less representative of the actual data. In extreme cases, a train or test set in a particular fold could be missing examples of a certain label in which case the training and test error values will be far off from reality.

For example, a training set containing no positively labeled examples would simply predict negative always and achieve 0 training error, but it would perform poorly on the test set, where all the positive examples have been placed.

С	accuracy	F1-score	AUROC
10-3	0.7089	0.8297	0.5000
10^{-2}	0.7107	0.8306	0.5031
10-1	0.8060	0.8755	0.7188
10^{0}	0.8146	0.8749	0.7531
10^{1}	0.8182	0.8766	0.7592
10^{2}	0.8182	0.8766	0.7592
best C	10^{2}	10^{2}	10^{2}

The score seems to increase as C increases, for every metric. With every metric, the value of C with the best score was 10^2 .

4.3 Test-Set Performance

With $C = 10^2$,

Metric	Test Performance Score
Accuracy	0.7429
F1-Score	0.4375
AUROC	0.6259