Data Visualization

CPE 232: Data Models

Dr. Sansiri Tarnpradab

Department of Computer Engineering, KMUTT

Announcement (INTL)

- Quiz 2 (Today, for 10 mins)
- Midterm (5/3)
- Visiting Professor (12/3)
- Proposal (19/3)

Proposal (INTL)

- As a group
 - 7-8 members per group
 - ∴ Total groups = 14

# Members Per Group		Availability (# groups)
KM (KMUTT)	EX (EXCHANGE)	
6	1	9
6	2	5

- No more than 3 pages submitted on LEB2
 - Introduction (What)
 - Objectives (Why)
- Be able to demonstrate how you apply Data Models concepts
- Due on 19/3 23.59 PM (Two weeks after our class midterm)

Review

4

Outline

- Intro to Data Visualization
- Effective Visuals
- Types of Charts
- Dashboard
- Intro to Python libraries for Data Visualization
 - Static
 - Interactive

Data Science Workflow

Ref: https://www.eddeb.com/blog/10-lessons-i-learned-being-a-data-analyst-at-quintoandar/

Data Visualization

Technique to present data in a pictorial/graphical format.

Ref: http://www.quickmeme.com/meme/3u8hy9

Significance & Benefits of Data Visualization

- Simplify complex data
- Identify patterns, trends, structure, irregularities, relationships among data
- Help find interesting regions and suitable parameters for quantitative analysis
- Gain insights into an information space by mapping data onto graphical primitives
- Provide qualitative overview of large data sets
- Comparative analysis
- Support storytelling
- Enhance engagement
- Faster decision making

Example #1

Imagine you are presenting quarterly sales data for a company over the past 5 years.

"In 2020, sales were around \$500,000 in Q1, increased to \$550,000 in Q2, dropped to \$480,000 in Q3, and slightly recovered to \$510,000 in Q4. In 2021, sales grew steadily, reaching \$700,000 by Q4. However, in 2022, there was a sharp decline in Q2 due to market conditions, dropping sales back to \$620,000 before they rose again..."

Quarterly Sales Trends (2020-2024)

Example #2

Ref: https://www.geeksforgeeks.org/python-visualize-missing-values-nan-values-using-missingno-library/

Example #3

When your girlfriend says it's okay

Ref: https://www.reddit.com/r/mathmemes/comments/18vlkbn/this_graph_made_my_eyes_melt_from_data/?rdt=60716

Revisiting Different Roles

Roles of Data Analyst

- Identify data sources that are suitable to address business questions
- Identify methods to address business questions
- Explore data and identify useful insights
- Create meaningful reports and visualizations

Things to Consider

- Clarity
- Accuracy
- ☐ Efficiency

Efficiency: Human Perception

		Cen	tral	Ea	st	Sou	uth	We	est
Product Type	Product	Sum of Profit	Sum of Sales	Sum of Profit	Sum of Sales	Sum of Profit	Sum of Sales	Sum of Profit	Sum of Sales
Coffee	Amaretto	\$5,105	\$14,011	\$1,009	\$2,993			(\$1,225)	\$9,265
	Columbian	\$8,528	\$28,913	\$27,253	\$47,386	\$8,767	\$21,664	\$11,253	\$30,357
	Decaf Irish Cream	\$9,632	\$26,155	\$2,727	\$6,261	\$2,933	\$11,592	(\$1,305)	\$18,235
	Total	\$23,265	\$69,080	\$30,989	\$56,640	\$11,700	\$33,256	\$8,724	\$57,856
Espresso	Caffe Latte					\$3,872	\$15,442	\$7,502	\$20,458
	Caffe Mocha	\$14,640	\$35,218	(\$6,230)	\$16,646	\$5,201	\$14,163	\$4,064	\$18,876
	Decaf Espresso	\$8,860	\$24,485	\$2,410	\$7,722	\$5,930	\$15,384	\$12,302	\$30,578
	Regular Espresso	Hi		\$10,062	\$24,036				
	Total	\$23,500	\$59,703	\$6,242	\$48,405	\$15,003	\$44,989	\$23,868	\$69,911
Herbal Tea	Chamomile	\$14,434	\$36,570	\$765	\$2,194	\$3,180	\$11,186	\$8,852	\$25,632
	Lemon	\$6,251	\$21,978	\$7,901	\$27,176	\$2,593	\$14,497	\$13,120	\$32,274
	Mint	\$4,069	\$9,337	(\$2,242)	\$11,992			\$4,330	\$14,380
	Total	\$24,754	\$67,885	\$6,424	\$41,362	\$5,774	\$25,683	\$26,301	\$72,285
Tea	Darjeeling	\$10,772	\$30,289	\$6,497	\$14,096			\$11,780	\$28,769
	Earl Grey	\$10,331	\$32,881	\$3,405	\$6,505			\$10,425	\$27,387
	Green Tea	\$1,227	\$5,211	\$5,654	\$11,571			(\$7,109)	\$16,063
	Total	\$22,330	\$68,380	\$15,557	\$32,172			\$15,097	\$72,220

Efficiency: Bertin's Three Levels of Reading

Elementary

Single value

Central Sum of Sum of Amaretto (\$1.225)Decaf Irish Cream Total Espresso Caffe Latte Decaf Espresso \$8.860 \$24.485 \$2.410 \$7,722 \$5.930 \$15.384 \$12.302 \$30.578 Regular Espresso \$10,062 \$24,036 Herbal Tea Chamomile \$5.774 \$25.683 \$26.301 \$72.285 Darjeeling Earl Grey \$10,425 Green Tea

Intermediate

Relationship between values

Global

Relationship as a whole

Presenting Different Data Types

Data Type	Description	Examples
Nominal	Data that represents categories without any inherent order. The values are just labels or names.	Apple, Banana, Orange Eagle, Jay, Hawk
Ordinal	Data that represents categories with a meaningful order, but the difference between categories is not quantifiable.	Poor, Fair, Good, Excellent Monday, Tuesday, Wednesday,
Quantitative	Data that consists of numerical values where arithmetic operations are meaningful.	150 cm, 160 cm, 170 cm 2.4, 5.98, 10.1,

Presenting Different Data Types via Area

Data Type	Description	Examples
Nominal	Data that represents categories without any inherent order. The values are just labels or names.	(Conveys ordering ••)
Ordinal	Data that represents categories with a meaningful order, but the difference between categories is not quantifiable.	
Quantitative	Data that consists of numerical values where arithmetic operations are meaningful.	

Presenting Different Data Types via Color

Data Type	Description	Examples
Nominal	Data that represents categories without any inherent order. The values are just labels or names.	
Ordinal	Data that represents categories with a meaningful order, but the difference between categories is not quantifiable.	
Quantitative	Data that consists of numerical values where arithmetic operations are meaningful.	

Various Formats

- Heatmap
- Histogram
- Bar chart
- Line chart
- Pie chart
- Scatter plot
- Dashboard
- ... and more

25

- S. Tarnpradab - Cherries

Heatmap

- Special case of a table
- Purpose: Showing magnitude using color intensity.
- Best for: Correlation matrices, frequency distributions.

Table

	Α	В	C
Category 1	15%	22%	42%
Category 2	40%	36%	20%
Category 3	35%	17%	34%
Category 4	30%	29%	26%
Category 5	55%	30%	58%
Category 6	11%	25%	49%

Heatmap

LOW-HIGH			
	Α	В	С
Category 1	15%	22%	42%
Category 2			20%
Category 3		17%	
Category 4			26%
Category 5	55%		58%
Category 6	11%	25%	49%

26

Bar Chart

- Each bar represents a category
- Its height corresponds to the value or frequency of that category.
- Various forms:
 - Vertical
 - Horizontal
 - Stacked

Category 4

Category 5

Category 4

Category 5

- S. Tarnpradab -

Category 4

Category 5

Histogram

- Consists of bars
- Each bar represents the frequency (or count) of data points within a specific range (or bin).

Chart 5.7.1
Distribution of salaries of the employees of ABC Corporation

Ref: https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/histo/5214822-eng.htm

Histogram VS Bar Chart

	Histogram	Bar Chart
Type of Data	Continuous	Categorical (discrete)
X-axis	Ranges (bins of numbers)	Distinct categories
Purpose	To show distribution of data	To compare values between categories
Use Cases	Analyzing frequency, shape, and spread of data (e.g., test scores, temperatures)	Comparing groups (e.g., sales by region, customer preferences)

Line Chart

- Used to plot continuous data
- Show trend
- Various forms:
 - o Line
 - Line with range
 - Slopegraph

Pie Chart

- A circular statistical graphic divided into slices
- Each slice represents a proportion of a whole
- Could be hard to read
- Not recommended when precision and clarity are important

Scatter Plot

- Points
- Purpose: To visualize relationships or correlations between two numerical variables.
- Convey:
 - Interesting point
 - Trend
 - Cluster

Ref: https://planyway.com/blog/how-to-make-a-scatter-plot

Dashboard

- A panel to display all your data visualizations in one place
- Various types of visual data
- Quick understanding at a glance

Sales

\$297K this month

▲ \$16k vs last month

\$9.6K today

\$20.6к yesterday

NPS (past 30 days)

Biggest deals this month

Alice	\$8,600
Jared	\$8,500
Heather	\$7,540
Shaun	\$7,450
Marsha	\$6,530
Jared	\$4,565
Heather	\$4,560
Polly	\$4,215
Dalisu	\$3,560

Very Helpful!!

Social followers

19.5_K

LinkedIn 11 v yday 10.5_K

Twitter

22 v yday

Website (past 7 days)

27.2_K

126

Users

▲ 1.6_K vs last week

Enquiries

▼ 28 vs last week

Recent feedback very good "thumbs up"

Dashboard vs Report

Dashboard

- High-level view of the data
- Created to answer a single question

Report

- More narrow focus
- In-depth view into a dataset
- Tend to concentrate on a single item or event

Application Examples

- Customer metrics
- Logistics information
- Sales information
- Human resources data
- Web analytics
- Project management

Python Libraries

Static

- Matplotlib
- Seaborn

Interactive

- Plotly
- Bokeh
- pygal
- Folium
- PowerBl

- → Freedom to fully explore data
- → More engaging
- → Better understanding of data

Interactive Visualization: Pros & Cons

Pros

- Allow users to explore data at their own pace and level
- Provide user with more control
 - Hypothesis testing
 - Compare scenario
 - Perform what-if analysis
- Enhance storytelling and presentation

Cons

- Require time, effort, skills to develop than static charts
- Could confuse users
 - Many options → Distraction
- Readers might come up with a different conclusion

In Summary

- Intro to Data Visualization
- Effective Visuals
- Types of Charts
- Dashboard
- Intro to Python libraries for Data Visualization
 - Static
 - Interactive

Ref: https://www.reddit.com/r/sciencememes/comments/13gp2wk/data_visualization_meme/

Q & A

- S. Tarnpradab -

Resources

- S. Tarnpradab -

GETTING STARTED

1. Install

In the terminal sudo pip install plotly

2. Sign Up & Configure

http://www.plot.lv/python/ getting-started

3. Boilerplate Imports

import plotly.plotly as py import plotly.graph_objs as go

trace = $\{ 'x' : [1, 2], 'y' : [1, 2] \}$ data = [trace] layout = {} fig = go.Figure (data = data, layout = layout)

In the terminal: plot_url = py.plot (fig) Or in the IPython notebook: py.iplot (fig)

BASIC CHARTS

```
    ✓ Line Plots

    Bubble Charts

trace1 = go.Scatter (
                                   trace = go.Scatter (
 x = [1, 2], y = [1, 2]
                                    x = [1, 2, 3], y = [1, 2, 3],
trace2 = go.Scatter (
                                    marker = dict (
 x = [1, 2], y = [2, 1]
                                     color = [ 'red', 'blue',
py.iplot ([trace1, trace2])
                                      'green' ]
                                     size = [ 30, 80, 200 ]),
                                     mode = 'markers')
                                   py.iplot ([trace])
```

: Scatter Plots

trace1 = go.Scatter (x = [1, 2, 3], y = [1, 2, 3],text = ['A', 'B', 'C'], textposition = 'top center' mode = 'markers+text') mode = [trace] py.iplot (data)

Bar Charts

trace = go.Bar (x = [1, 2], y = [1, 2]data = [trace] py.iplot (data)

Area Plots

Heatmaps

data = [trace]

py.iplot (data)

trace = go.Heatmap (

z = [[1, 2, 3, 4],

[5, 6, 7, 8]])

trace = go.Scatter (x = [1, 2], y = [1, 2],fill = 'tonexty') data = [trace] py.iplot (data)

LAYOUT

```
-/- Axes
:= Legends
trace1 = go.Scatter (
                                  trace = go.Scatter (
  name = 'Calvin'
                                    x = [1, 2, 3, 4],
  x = [1, 2], y = [1, 2]
                                    y = [1, 2, 3, 6]
trace2 = go.Scatter (
                                  axis_template = dict (
  name = 'Hobbes'
                                    showgrid = False,
  x = [2, 1], y = [2, 1]
                                    zeroline = False,
                                    nticks = 20.
                                    showline = True,
                                    title = 'X AXIS'
layout = go.Layout (
                                    mirror = 'all')
 showlegend = True,
                                  layout = go.Layout (
  legend = dict (
                                    xaxis = axis template.
   x = 0.2, y = 0.5)
                                    yaxis = axis_template,
data = [trace1, trace2]
                                  data = [ trace ]
fig = go.Figure (
                                  fig = go.Figure (
 data = data,
                                    data = data
  layout = layout)
                                    layout = layout
py.iplot (fig)
                                  py.iplot (fig)
```

PYTHON CLIENT

ALL LAYOUTS PLOT.LY/PYTHON/REFERENCE/#LAYOUT

PLOT.LY/PYTHON

STATISTICAL CHARTS MAPS 3D CHARTS FIGURE HIERARCHY Histograms **8** Bubble Map ◆ 3D Surface Plots Figure { } DATA [] trace = dict (trace = go.Surface (trace = go.Histogram (TRACE {} colorscale = 'Viridis', x = [1, 2, 3, 3, 3, 4, 5]type = 'scattergeo', x, y, z [] data = [trace] z = [[3, 5, 8, 13],lon = [100, 400], lat = [0, 0], color, text, size [] py.iplot (data) [21, 13, 8, 5]) marker = dict (colorscale ABC or [] data = [trace] marker = ['red', 'blue'] MARKER {} py.iplot (data) size = [30, 50]), color ABC mode = 'markers') symbol ABC py.iplot ([trace]) LINE {} color ABC width 123 Choropleth Map HTH Box Plots 3D Line Plots LAYOUT { } title ABC XAXIS, YAXIS {} trace = go.Box (trc = dict (trace = go.Scatter3D (SCENE {} x = [1, 2, 3, 3, 3, 4, 5]type = 'choropleth', x = [9, 8, 5, 1], y = [1, 2, 4, 8],XAXIS, YAXIS, ZAXIS { } data = [trace] locations = ['AZ' , 'CA' , 'VT'] , z = [11, 8, 15, 3],GEO {} py.iplot (data) locationmode = 'USA-states', mode = 'lines') LEGEND {} colorscale = ['Viridis'], data = [trace] ANNOTATIONS { } z = [10, 20, 40]py.iplot (data) lyt = dict (geo = dict (scope = 'usa')) map = go.Figure (data = [trc], layout = lyt) py.iplot (map) 2D Histogram Scatter Map 3D Scatter Plots {} = dictionary [] = list trace = go.Historgram2d (trace = dict (trace = go.Scatter3D (ABC = string x = [1, 2, 3, 3, 3, 4, 5],type = 'scattergeo', x = [9, 8, 5, 1], y = [1, 2, 4, 8],123 = number x = [1, 2, 3, 3, 3, 4, 5]Ion = [42, 39] , lat = [12, 22] , z = [11, 8, 15, 3],data = [trace] marker = ['Rome', 'Greece'], mode = 'markers') mode = 'markers') data = [trace] py.iplot (data) py.iplot ([trace]) py.iplot (data)

ALL LAYOUTS

PLOT.LY/PYTHON/REFERENCE

PYTHON CLIENT

PLOT.LY/PYTHON

DOCSV

EXAMPLE APPS

COMPANY

PRICING

DEMO DASH

Q

Bioinformatics & Life Sciences

Singapore Institute for Clinical Sciences (SICS) is not the first to visualize health data through Dash's interactive platform. Explore examples of bioinformatics in a variety of Python and Dash applications, ranging from genomics, public health, clinical trials, 3D images, and more.

← ALL APPS

