Trabajo autónomo II: Minería de Flujo de Datos

Nombre: Francisco Pérez Hernández E-mail: herpefran92@gmail.com

Asignatura: Series temporales y minería de flujos de datos Máster: Ciencia de Datos e Ingeniería de Computadores

Fecha de entrega: 05/05/2017

1 Parte teórica

1.1 Clasificación

1.1.1 Problema de clasificación

Tenemos el problema de clasificación, pero no como en el ámbito tradicional, sino que tenemos un flujo continuo de datos que va llegando de forma ordenada y, por tanto, solo se lee una vez, con la que tenemos que manejar esta información y extraer conocimiento de ella conforme van llegando los datos. Además, esta información presenta cambios en el tiempo.

1.1.2 Clasificadores utilizados

Tenemos que los dos clasificadores utilizados en esta práctica han sido el Árbol de Decisión Hoeffding y el Árbol de Hoeffding adaptativo. Son algoritmos capaces de construir árboles de decisión a partir de datos que llegan incrementalmente. Además, se basan en la desigualdad de Hoeffding de Teoría de la Probabilidad, la cual proporciona una cota superior a la probabilidad de que la suma de variables aleatorias se desvíe una cierta cantidad de su valor esperado. El criterio habitual para dividir un nodo suele ser por la ganancia de información, por el ratio de ganancia o por la minimización de la entropía.

Las principales características de estos árboles son que mantienen estadísticas en los nodos hoja, no todos los ejemplos son procesados, es incremental y el modelo está disponible en todo momento, no maneja atributos continuos, no contempla la capacidad de adaptarse a cambios en la dinámica de los datos y procesa 1.6 millones de datos en 20 minutos.

Para el modelo adaptativo tenemos que sólo los ejemplos más recientes se tienen en cuenta, mantiene un árbol alternativo por cada nodo, periódicamente evalúa la validad del modelo y sustituye un nodo por el árbol alternativo si mejora, no maneja atributos continuos y tarda entre 5 y 6 veces más que el modelo no adaptativo.

1.1.3 Diferentes modos de evaluación/validación en flujo de datos

Tenemos 3 modos principales:

- **TestThenTrain**: En el que cada individuo se utiliza para evaluar el sistema. Inmediatamente después, se usa para entrenarlo.
- Prequential evaluation: Es equivalente a TestThenTrain, pero utiliza una ventana deslizante o mecanismos para "olvidar" datos antiguos.
- **Heldout**: Se reserva un número de datos para test y se entrena con el resto.

1.2 Concept Drift

1.2.1 Problema de concept drift

El problema del desvío de concepto o concept drift es el cambio gradual o abrupto en la distribución de los datos, con lo que el modelo construido no es consistente para estos nuevos datos. El cambio puede deberse al ruido, la influencia del entorno, variación en características no contempladas en el modelo, alteraciones estacionales, etc.

1.2.2 Técnicas para resolverlo en clasificación

Tenemos distintas técnicas, donde algunas de ellas lo que hacen es basarse en algoritmos de aprendizaje incremental (online, secuencial) donde no se tienen todos los datos previos, no todos residen en memoria o el aprendizaje no finaliza al obtener el modelo, sino que se adapta continuamente. Principalmente se han dividido los algoritmos que tratan este cambio de concepto en:

- Aprendizaje online
- Algoritmos de detección del desvío
- Soluciones basadas en instancias (ventana deslizante)
- Aprendizaje de múltiples modelos (ensemble)

Tenemos diferentes algoritmos para solucionar este caso, estos algoritmos pueden ser: DDM, ADWIN, CUSUM, Page-Hinkley, etc.

2 Parte Práctica

2.1 Sección

2.1.1 Sección

Vamos a entrenar un clasificador Hoeffding Tree offline, por lo que usamos "LearnModel", con "-l" para entrenar el modelo HoeffdinTree, y con "-s" para indicar el flujo de datos "WaveformGenerator" y "-i" para indicar la semilla, la cual la vamos a variar de 1 a 5. Este modelo lo vamos a tratar en un máximo de un millón de instancias con "-m". Además, lo evaluaremos con "EvaluateModel" sobre el modelo descrito con "-m" y sobre un el flujo de datos proporcionados por "-s" que será un "WaveformGenerator" y semilla "-i" 4. Por lo que el comando ha sido:

 $\label{thm:continuous} \begin{tabular}{l} Evaluate Model-m (Learn Model-l trees. Hoeffding Tree-s (generators. Waveform Generator-i SEMILLA)-m 1000000)-s (generators. Waveform Generator-i 4) \end{tabular}$

Semilla entrenamiento	Semilla evaluación	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	4	84,509	76,765	76,774	76,702
2	4	84,512	76,77	76,778	76,707
3	4	84,59	76,887	76,895	76,825
4	4	84,666	77,001	77,009	76,939
5	4	84,481	76,723	76,731	76,66
Media		84,5516	76,8292	76,8374	76,7666
Varianza		0,0057	0,0129	0,0129	0,0131
Desviación típic	a	0,0757	0,1138	0,1136	0,1143

2.1.2 Sección

La diferencia con respecto al apartado anterior es el clasificador, pasando a ser un "HoeffdingAdaptiveTree". La orden ha sido:

EvaluateModel -m (LearnModel -l trees. HoeffdingAdaptiveTree -s

(generators.WaveformGenerator -i SEMILLA) -m 1000000) -s (generators.WaveformGenerator -i 4)

Semilla entrenamiento	Semilla evaluación	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	4	84,521	76,783	76,792	76,721
2	4	84,474	76,712	76,721	76,65
3	4	84,416	76,625	76,634	76,562
4	4	84,465	76,699	76,707	76,636
5	4	84,262	76,395	76,403	76,331
Media		84,4276	76,6428	76,6514	76,5800
Varianza		0,0100	0,0223	0,0224	0,0226
Desviación típic	a	0,0998	0,1494	0,1498	0,1502

2.1.3 Sección

Como podemos ver en las tablas anteriores, la diferencia entre ambos modelos es mínima, ya que el primero obtiene de media un 84,55% de aciertos mientras el segundo obtiene un 84,42%. Podríamos decir que el primero es ligeramente mejor para este problema.

2.2 Sección

2.2.1 Sección

Vamos a entrenar un HoeffdingTree online, mediante el modo "EvaluateInterleavedTestThenTrain" y la opción "-l" Además tendremos que el máximo número de instancias "-i" es de un millón y que la frecuencia de muestreo "-f" será de 10000. El generador será un "WaveformGenerator" y la semilla "-i" la modificaremos entre 1 y 5. Con la orden:

 $\label{thm:continuous} Evaluate Interleaved Test Then Train-I moa. classifiers. trees. Hoeffding Tree-s (generators. Waveform Generator-i SEMILLA)-i 1000000-f 10000$

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	83,8903	75,8362	75,8495	75,7872
2	83,7851	75,6774	75,6743	75,6440
3	83,8876	75,8295	75,8560	75,7898
4	84,0451	76,0694	76,0780	76,0048
5	83,8402	75,7599	75,7660	75,7110
Media	83,8897	75,8345	75,8448	75,7874
Varianza	0,0094	0,0214	0,0225	0,0184
Desviación típica	0,0969	0,1462	0,1498	0,1357

2.2.2 Sección

La diferencia con respecto al anterior será que hemos cambiado el modelo por un "HoeffdingAdaptiveTree". Con la orden:

EvaluateInterleavedTestThenTrain -I moa.classifiers.trees.HoeffdingAdaptiveTree -s (generators.WaveformGenerator -i SEMILLA) -i 1000000 -f 10000

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	83,8042	75,7072	75,7204	75,6577
2	83,7313	75,5968	75,5936	75,5632
3	83,7875	75,6792	75,7060	75,6393
4	83,7961	75,6960	75,7047	75,6303
5	83,7144	75,5712	75,5774	75,5219
Media	83,7667	75,6501	75,6604	75,6025
Varianza	0,0017	0,0038	0,0047	0,0033
Desviación típica	0,0409	0,0618	0,0689	0,0575

2.2.3 Sección

Vemos como pasaba en la sección 2.1 que la diferencia entre ambos es mínima, y que podría ser ligeramente mejor, para este problema, el modelo "HoeffdingTree" al tener un porcentaje de aciertos superior.

2.3 Sección

2.3.1 Sección

Realizamos un "EvaluateInterleavedTestThenTrain" sobre un clasificador "-l" que es el "HoeffdingTree" con un número de instancias "-i" de dos millones y un flujo de datos "-s" que es el "RandomRBFGeneratorDrift" en el que la velocidad de cambio del centroide "-s" es de 0.001, el número de centroides con drift "-k" es 3, una semilla del modelo "-r" que va variando entre 1 y 5 como también la semilla de las instancias "-i" y que tiene un número de atributos "-a" igual a 7 y el número de centroides en el modelo "-n" igual a 3. La orden sería:

EvaluateInterleavedTestThenTrain - I moa.classifiers.trees.HoeffdingTree -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 3 -r SEMILLA -i SEMILLA -a 7 -n 3) -i 2000000

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	77,4545	54,7757	54,8526	52,9810
2	83,9565	29,3917	43,1454	5,5781
3	73,4734	43,0588	43,9611	30,7641
4	73,0467	44,9855	44,8941	36,9974
5	72,0616	43,1521	43,3551	36,3311

Media	75,9985	43,0728	46,0417	32,5303
Varianza	24,0095	81,9488	24,7211	295,5432
Desviación típica	4,9000	9,0526	4,9720	17,1914

2.3.2 Sección

El cambio con respecto al anterior es el clasificador ya que ahora tendremos un "HoeffdingAdaptiveTree". La orden sería:

EvaluateInterleavedTestThenTrain -l moa.classifiers.trees. HoeffdingAdaptiveTree -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 3 -r SEMILLA -i SEMILLA -a 7 -n 3) -i 2000000

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	96,2492	92,4913	92,4891	92,1777
2	92,6471	73,9267	73,9430	56,7256
3	96,3096	92,1943	92,2040	90,3681
4	95,9832	91,7716	91,7876	90,6108
5	90,9961	81,6579	81,7447	79,4810
Media	94,4370	86,4084	86,4337	81,8726
Varianza	6,0562	69,4006	69,1582	223,2040
Desviación típica	2,4609	8,3307	8,3161	14,9400

2.3.3 Sección

Si nos fijamos en los datos proporcionados por estos modelos, vemos como la media para el acierto de clasificación con el modelo normal es de 75% mientras que para el modelo adaptativo es del 94%, con lo que se podría decir que el modelo adaptativo, como era de esperar, funciona mejor en un tipo de problemas como este en el que tenemos un cambio de concepto.

2.4 Sección

2.4.1 Sección

Si vemos los cambios con respecto al apartado anterior de la sección 2.3, vemos como el cambio es el tipo de evaluación, de forma que tenemos un "EvaluatePrequential" con el que iremos olvidando instancias pasadas. La orden sería:

Evaluate Prequential -l trees. Hoeffding Tree -s (generators. Random RBFGenerator Drift -s 0.001 -k 3 -r \$SEMILLA -i \$SEMILLA -a 7 -n 3) -i 2000000

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	76,6	52,5587	53,6633	51,0460
2	86,5	39,8256	48,0769	14,5569
3	52,9000	-0,10626	0,8421	-25,59999
4	65,3	29,6037	33,0115	21,4932
5	63,3	25,2844	24,6406	16,2100

Media	68,9200	29,4332	32,0469	15,5412
Varianza	167,3420	383,1530	438,4382	747,5077
Desviación típica	12,9361	19,5743	20,9389	27,3406

Y con adaptativo cambiando solamente el clasificador "HoeffdingAdaptiveTree": EvaluatePrequential -l trees. HoeffdingAdaptiveTree -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 3 -r \$SEMILLA -i \$SEMILLA -a 7 -n 3) -i 2000000

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	96,6	93,1907	93,2673	92,8870
2	95,3	82,1983	81,9230	70,2531
3	98,0	95,7559	95,7894	94,6666
4	96,3	92,4689	92,8571	91,6289
5	91,9	83,4006	83,3675	81,5068
Media	95,6200	89,4029	89,4409	86,1885
Varianza	5,2570	38,0106	40,0051	105,5503
Desviación típica	2,2928	6,1653	6,3250	10,2738

2.4.2 Sección

Podemos ver que, en el modelo normal, tenemos una variación de los resultados muy grande comparado con el modelo adaptativo con el que tenemos unos resultados más estables de media. Además, pasamos de un 68% de acierto de media, a un 95% de acierto con el modelo adaptativo, como era de esperar para este tipo de problema en el que vamos olvidando instancias y tenemos un cambio de concepto. Además, hemos pasado de un 94,43% de acierto en la sección 2.3, a un 95,62% de acierto en este modelo en el que olvidamos instancias, por lo que podríamos decir que, aparentemente, es mejor olvidar instancias pasadas.

2.5 Sección

2.5.1 Sección

Vamos a incluir mecanismos para reinicializar modelos tras la detección de cambios de concepto, por lo que hemos cambiado, con respecto al apartado 2.3, ya que ahora nuestro clasificador "-l" será un clasificador "SingleClassifierDrift" donde su clasificador es un "HoeffdingTree". La orden sería:

EvaluateInterleavedTestThenTrain -I (moa.classifiers.drift.SingleClassifierDrift -I trees.HoeffdingTree) -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 3 -r SEMILLA -i SEMILLA -a 7 -n 3) -i 2000000

Semilla	Aciertos	Estadístico	Estadístico	Estadístico
	clasificación	Карра	Карра	Карра М
			temporal	temporal

1	97,1995	94,3919	94,3919	94,1595
2	90,5015	65,5687	66,3395	44,0979
3	97,0895	93,8475	93,8514	92,4034
4	96,5851	93,0011	93,0182	92,0177
5	92,5628	84,8316	84,9212	83,0514
Media	94,7877	86,3282	86,5044	81,1460
Varianza	9,4168	149,8218	141,9376	447,6166
Desviación típica	3,0687	12,2402	11,9138	21,1570

2.5.2 Sección

Hemos cambiado, con respecto al apartado anterior, el clasificador interno, que ahora es un "HoeffdingAdaptiveTree". La orden sería:

EvaluateInterleavedTestThenTrain -l (moa.classifiers.drift.SingleClassifierDrift -l trees. HoeffdingAdaptiveTree) -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 3 -r \$SEMILLA -i \$SEMILLA -a 7 -n 3) -i 2000000

Semilla	Aciertos clasificación	Estadístico Kappa	Estadístico Kappa temporal	Estadístico Kappa M temporal
1	96,5227	93,0386	93,0367	92,7481
2	92,8668	74,7934	74,7214	58,0183
3	96,8055	93,2458	93,2514	91,6621
4	96,2444	92,3027	92,3218	91,2215
5	91,2725	82,2160	82,3050	80,1108
Media	94,7424	87,1193	87,1273	82,7522
Varianza	6,3100	68,8525	69,1423	217,4440
Desviación típica	2,5120	8,2977	8,3152	14,7460

2.5.3 Sección

Si observamos los resultados de la sección 2.5 vemos como no hay cambios significativos entre ambos modelos, ya que como se produce reinicialización no hay mucha diferencia entre los modelos, siendo un poco difícil elegir un modelo como mejor que otro, pero si nos fiamos en las varianzas y desviaciones típicas, podríamos decir que el modelo adaptativo se comporta algo mejor y más estable que el normal.

Con respecto a los apartados 2.3, 2.4 y 2.5 tenemos diferencias. En el 2.3 tenemos que el problema es de cambio de concepto y el método adaptativo funciona mejor ya que consigue adaptarse a este cambio. Con respecto al 2.4, ocurre lo mismo, pero funcionando un poco mejor que el 2.3 ya que al olvidar instancias pasadas no se condiciona el modelo. En estos dos apartados, el modelo adaptativo ha funcionado mejor que el modelo normal, pero en el apartado 2.5 vemos cómo funcionan ambos modelos casi igual. El problema es que, en este último apartado tenemos que los modelos se reinicializan tras el cambio de concepto, por lo que puede ser que en algunas

situaciones nos perjudique el no saber lo que paso anteriormente a la hora de construir el modelo, pero en situaciones como las vistas durante este trabajo, los resultados no se ven afectados para estas técnicas.