Numerical Linear Algebra: Homework #6

Due on September 14, 2022 at 10:00PM

Instructor: Professor Blake Barker Section 1

Michael Snyder

Problem 6.1

If P is an orthogonal projector, then I-2P is unitary. Prove this algebraically, and give a geometric interpretation.

Proof. Suppose P is an orthogonal projector. A matrix Q is unitary if $Q = Q^{-1}$, or $Q^*Q = QQ^* = I$. Using this relationship, we find

$$(I - 2P)^*(I - 2P) = I^*I - 2I^*P - 2P^*I + 2P^*(2P)$$
(1)

$$= I - 4P + 4P \tag{2}$$

$$=I. (3)$$

This verifies that I - 2P is unitary.

Geometric Interpretation Suppose $P \in C^{m \times m}$ is a projector. Then P partitions $C^{m \times m}$ into subspaces range(P) = null(I - P) and null(P) = range(I - P). Thus we consider vectors in these complementary spaces. Let the vector $v \in \text{range}(P)$. Then

$$(I - 2P)v = [(I - P) - P]v = (I - P)v - Pv = -v.$$

That is, I - 2P reflects vectors in range(P). If we instead consider $w \in \text{null}(P) = \text{range}(I - P)$, then we have

$$(I - 2P)w = [(I - P) - P]w = (I - P)w - Pw = w.$$

Thus, I - 2P is the identity for vectors in range(I - P).

Problem 6.3

Given $A \in \mathbb{C}^{m \times n}$ with $m \geq n$, show that A^*A is nonsingular if and only if A has full rank.

Proof. (\Rightarrow) Suppose first that $A \in \mathbb{C}^{m \times n}$ such that A^*A is nonsingular. This means that $A^*Ax = 0$ if and only if x = 0. That is, $\text{null}(A^*A) = \{0\}$. Suppose to the contrary that A is not full rank. Then there exists $x \neq 0$ such that y = Ax = 0. But this means

$$(A^*A)x = A^*(Ax) = A^*y = 0.$$

Since $x \neq 0$, this contradicts the fact that A^*A is nonsingular. Therefore, x must equal zero and A must have full rank.

(\Leftarrow) Now suppose that $A \in \mathbb{C}^{m \times n}$ has full rank. Then by Theorem 1.3, 0 is not a singular value of A. By Theorem 5.3 this also means that $\lambda = 0$ is not an eigenvalue of $A^*A = V\Sigma^2V^*$. Therefore, again by Theorem 1.3, A^*A is nonsingular.