Санкт-Петербургский Политехнический Университет _{им.} Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №8

3 курс, группа 3630102/70301

Студент Лебедев К.С.

Преподаватель Баженов А. Н.

Содержание

1.	Список таблиц	3
2.	Постановка задачи	4
3.	Теория	4
4.	Реализация	4
5.	Результаты	5
6.	Выводы	5
7.	Список литературы	5
8.	Приложения	5

1	Список	таблиц

1	Результаты	 5

2 Постановка задачи

Для двух выборок 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров масштаба и положения построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma = 0.95$.

3 Теория

Оценкой максимального правдоподобия для математического ожидания является среднее арифметическое: $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Оценка максимального правдоподобия для дисперсии вычисляется по формуле: $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$

Доверительным интервалом или интервальной оценкой числовой характеристики или параметра распределения θ с доверительной вероятностью γ называется интервал со случайными границами (θ_1, θ_2), содержащий параметр θ с вероятностью γ [4].

Функция распределения Стьюдента [5]:

$$T = \sqrt{n-1} \frac{\overline{x} - \mu}{\delta} \tag{1}$$

Функция плотности распределения χ^2 [6]:

$$f(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x > 0 \end{cases}$$
 (2)

Интервальная оценка математического ожидания [7]:

$$P = \left(\overline{x} - \frac{\sigma t_{1-\frac{a}{2}}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{\sigma t_{1-\frac{a}{2}}(n-1)}{\sqrt{n-1}}\right) = \gamma, \tag{3}$$

где $t_{1-\frac{a}{2}}$ – квантиль распределения Стьюдента порядка $1-\frac{a}{2}$. Интервальная оценка дисперсии [5]:

$$P = \left(\frac{\sigma\sqrt{n}}{\sqrt{\chi_{1-\frac{\alpha}{2}}^2(n-1)}} < \sigma < \frac{\sigma\sqrt{n}}{\sqrt{\chi_{\frac{\alpha}{2}}^2(n-1)}}\right) = \gamma,\tag{4}$$

где $\chi^2_{1-\frac{a}{2}}, \chi^2_{\frac{a}{2}}$ – квантили распределения Стьюдента порядков $1-\frac{a}{2}$ и $\frac{a}{2}$ соответственно. Асимптотическая интервальная оценка математического ожидания [5]:

$$P = \left(\overline{x} - \frac{\sigma u_{1-\frac{a}{2}}}{\sqrt{n}} < \mu < \overline{x} + \frac{\sigma u_{1-\frac{a}{2}}}{\sqrt{n}}\right) = \gamma, \tag{5}$$

где $u_{1-\frac{a}{2}}$ – квантиль нормального распределения N(x,0,1) порядка $1-\frac{a}{2}$.

4 Реализация

Работы была выполнена на языке Python3.7. Для генерации выборок использовался модуль [1]. Для построения графиков использовалась библиотека matplotlib [2]. Функции распределения обрабатывались при помощи библиотеки scipy.stats [3]

5 Результаты

Таблица 1: Результаты

Метод	n	μ	σ
На основе ММП	20	[-0.33527, 0.40768]	[0.71165, 1.36749]
TIA OCHOBE WIWIII	100	[-0.20017, 0.16315]	[0.79980, 1.05748]
Асимптотический	20	[-0.37421, 0.44662]	[0.75586, 1.11704]
Асимптотический	100	[-0.19705, 0.16003]	[0.80188, 1.01998]

6 Выводы

По полученным результатам видно, что оба подхода дают лучший результат на выборках большого объема. Если рассматривать результаты для выборки объема n=20 элементов, то видно, что интервал меньше и точнее в классической интервальной оценке.

7 Список литературы

- [1] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html
- [2] Модуль matplotlib https://matplotlib.org/users/index.html
- [3] Модуль scipy https://docs.scipy.org/doc/scipy/reference/
- [4] https://en.wikipedia.org/wiki/Confidence interval
- $[5] \ https://en.wikipedia.org/wiki/Student\%27s_t-distribution$
- [6] https://en.wikipedia.org/wiki/Chi-squared distribution
- [7] Шевляков Г. Л. Лекции по математической статистике, 2019.

8 Приложения

Kод отчёта: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab8.tex

Kод лаборатрной: https://github.com/MisterProper9000/MatStatLabs/blob/master/MatStatLab5/MatStatLab8.py