

CI 2 – SLCI : ÉTUDE DU COMPORTEMENT DES SYSTÈMES LINÉAIRES CONTINUS INVARIANTS

Chapitre 5 – Étude des systèmes fondamentaux du second ordre

Schématisation du mécanisme

Modélisation par schéma bloc

Problématique:

 Le comportement réel de certains systèmes asservis peut se modéliser par des systèmes dits du second ordre. Comment modéliser de tels systèmes?

Savoirs:

- Mod-C2.3 : Modèles canoniques du second ordre
 - Mod-C2-S1 : Identifier le comportement d'un système pour l'assimiler à un modèle canonique, à partir d'une réponse temporelle
 - Mod-C2-S2 : Établir un modèle de comportement à partir de relevés expérimentaux

Ce document est en évolution permanente. Merci de signaler toutes erreurs ou coquilles.

1	Définition	. 2
2	Réponse impulsionnelle	.3
	2.1 Cas 1 : $\xi > 1$. 3
	2.2 Cas 2 : ξ < 1	. 4
	2.3 Cas 3 : $\xi = 1$. 4
3	Réponse indicielle	. 4
	3.1 Cas 1 : $\xi > 1$. 4
	3.2 Cas 2 : $\xi = 1$. 5
	3.3 Cas 3 : ξ < 1	. 6
	3.4 Évolution de la réponse en fonction du coefficient d'amortissement	. 9

1 Définition

Les systèmes du sont ordre sont régis par une équation différentielle de la forme suivante :

$$\frac{1}{\omega_0^2} \frac{d^2 s(t)}{dt^2} + \frac{2\xi}{\omega_0} \frac{d s(t)}{dt} + s(t) = Ke(t)$$

Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

On note:

- *K* est appelé le gain statique du système (rapport des unités de *S* et de *E*);
- $-\xi$ (lire xi) est appelé coefficient d'amortissement (sans unité);
- ω_0 pulsation propre du système (rad/s ou s^{-1}).

L'amortissement est parfois noté m ou z.

Schéma-bloc d'un système du second ordre :

$$E(p) \overbrace{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}^{K} S(p)$$

Amortisseur – ressort On considère que la force f(t) est l'entrée du système et que y(t) est la valeur de sortie. y(t) est la position mesurée par rapport à la position d'équilibre.

En isolant la masse M et en appliquant le théorème fondamental de la dynamique, on obtient :

$$f(t) - ky(t) - \mu \dot{y}(t) = M \ddot{y}(t)$$

On obtient ainsi une équation classique de la mécanique vibratoire où on pose. En passant dans le domaine de Laplace, on a alors :

$$F(p) - kY(p) - \mu pY(p) = Mp^2Y(p) \Longleftrightarrow F(p) = Y(p) \left(Mp^2 + k + \mu p\right)$$

On peut donc obtenir *H* puis sa forme canonique :

$$H(p) = \frac{Y(p)}{F(p)} = \frac{1}{k + \mu p + Mp^2} = \frac{\frac{1}{k}}{1 + \frac{\mu}{k}p + \frac{M}{k}p^2}$$

Exemple

Par identification on a donc:

$$K = \frac{1}{k} \qquad \omega_0 = \sqrt{\frac{k}{M}} \qquad \xi = \frac{\mu}{2k} \sqrt{\frac{k}{M}} = \frac{\mu}{2\sqrt{kM}}$$

2 Réponse impulsionnelle

La réponse impulsionnelle est donnée par une entrée du type E(p) = 1.

On a donc

$$S(p) = E(p) \cdot H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}} = \frac{N(p)}{D(p)}$$

Pour trouver les pôles de S(p), calculons le discriminant associé à D(p):

$$\Delta = \left(\frac{2\xi}{\omega_0}\right)^2 - 4\frac{1}{\omega_0^2} = \frac{4}{\omega_0^2} \left(\xi^2 - 1\right)$$

La réponse impulsionnelle va donc dépendre de ξ .

2.1 Cas 1: $\xi > 1$

Dans ce cas, D(p) possède 2 racines réelles notées p_1 et p_2 :

$$p_{1,2} = -\xi \omega_0 \pm \omega_0 \sqrt{\xi^2 - 1}$$

D'après la transformée de Laplace inverse, on a :

$$s(t) = \frac{K\omega_0}{2\sqrt{\xi^2 - 1}} \left(e^{p_1 t} - e^{p_2 t} \right) \cdot u(t)$$

Lorsque $\xi > 1$ on parle de système amorti (régime apériodique).

Réponse impulsionnelle d'un système du second ordre – Cas où $\xi > 1$

2.2 Cas 2 : ξ < 1

Dans le domaine temporel, on a :

$$s(t) = \frac{K\omega_0}{\sqrt{1-\xi^2}} e^{-\xi\omega_0 t} \sin\left(\omega_0 t \sqrt{1-\xi^2}\right) u(t)$$

La pseudo-période des oscillations vaut :

$$T = \frac{2\pi}{\omega_0 \sqrt{1 - \xi^2}}$$

Lorsqu'il n'y a pas d'amortissement ($\xi=0$) on a une réponse sinusoïdale de pulsation ω_0 .

Réponse impulsionnelle d'un système du second ordre – Cas où ξ < 1

2.3 Cas 3 : $\xi = 1$

Dans ce cas D(p) possède une racine double.

L'allure de la réponse serait comparable à celle obtenue dans le cas du régime apériodique mais ce cas est impossible dans la réalité : on ne peut avoir une valeur réelle de ξ exactement égale à 1.

3 Réponse indicielle

Dans ce cas,

$$S(p) = \frac{1}{p} \cdot H(p)$$

3.1 Cas 1: $\xi > 1$

Dans ce cas, D(p) possède 2 racines réelles notées p_1 et p_2 :

$$\begin{cases} p_1 = \frac{-2\xi\omega_0 - \sqrt{\Delta}}{2} = \xi\omega_0 - \omega_0\sqrt{\xi^2 - 1} \\ p_2 = \frac{-2\xi\omega_0 + \sqrt{\Delta}}{2} = \xi\omega_0 + \omega_0\sqrt{\xi^2 - 1} \end{cases}$$

On a $p_1 < p_2 < 0$.

En notant $\tau_1 = -\frac{1}{p_1}$ et $\tau_2 = -\frac{1}{p_2}$, la fonction de transfert H(p) peut s'écrire sous la forme suivante :

$$H(p) = \frac{K}{\left(1 + \tau_1 p\right) \left(1 + \tau_2 p\right)}$$

En conséquence,

$$S(p) = \frac{1}{p} \cdot \frac{K}{(1 + \tau_1 p)(1 + \tau_2 p)}$$

En calculant alors la transformée de Laplace inverse, on obtient :

$$s(t) = K \left(1 - \frac{1}{\tau_1 - \tau_2} \cdot \left(\tau_1 e^{-t \frac{t}{\tau_1}} - \tau_2 e^{-t \frac{t}{\tau_2}} \right) \right)$$

On peut aussi mettre s(t) sous la forme suivante :

$$s(t) = K \left(1 - \frac{1}{2\sqrt{\xi^2 - 1}} \cdot \left(\frac{e^{p_1 t}}{p_1} - \frac{e^{p_2 t}}{p_2} \right) \right)$$

Réponse indicielle d'un système du second ordre – Cas où $\xi > 1$

En t = 0, la courbe admet une **tangente horizontale**.

La courbe ne dépasse pas son asymptote horizontale (s(t) est monotone).

Il n'y a pas de formule pour déterminer le temps de réponse à 5%.

Nous pouvons remarquer cependant que le système ressemble à un système du premier ordre lorsqu'on s'éloigne de t=0.

Le temps de réponse à 5% peut donc être approché par la valeur $t r_{5\%} = 3 \times 2\xi \omega_0$.

3.2 Cas 2: $\xi = 1$

Dans ce cas, $\tau_1 = \tau_2 = \tau_0$, on parle d'amortissement critique, l'existence d'un pôle double modifie le décomposition en éléments simples et on obtient :

$$s(t) = K \left(1 - \left(1 + \frac{1}{\tau_0} \right) e^{-\frac{t}{\tau_0}} \right)$$

La réponse est plus rapide que si $\xi > 1$ ($t r_{5\%} = 5\omega_0$), mais l'allure de la courbe est très similaire.

3.3 Cas **3** : ξ < 1

Dans ce cas on parle de système sous amorti.

Dans ce cas, H(p) admet deux pôles complexes conjuguées :

$$p = -\left(\xi \pm j\sqrt{1-\xi^2}\right)\omega_0$$

La décomposition de S(p) en éléments simples et le calcul de la transformée de Laplace inverse nous donne :

$$s(t) = K \left[1 - \frac{e^{-\xi \omega_0 t}}{\sqrt{1 - \xi^2}} \cdot \sin\left(\omega_0 \sqrt{1 - \xi^2} t + \arccos \xi\right) \right]$$

La courbe admet toujours une tangente horizontale à t=0.

On observe l'apparition d'oscillations autour de la valeur finale (réponse pseudo-périodique), d'autant plus amorties que ξ est élevé. Pour $\xi=0$, la réponse est sinusoïdale d'amplitude 2K.

Les courbes enveloppes ont pour équation les courbes suivantes :

$$y(t) = K \left(1 \pm \frac{e^{-\xi \omega_0 t}}{\sqrt{1 - \xi^2}} \right)$$

Remarque

On définit parfois ω_p :

$$\omega_p = \omega_0 \sqrt{1 - \xi^2}$$

La pseudo-période des oscillations est donnée par :

Résultat

$$T_p = \frac{2\pi}{\omega_0 \sqrt{1 - \xi^2}}$$

3.3.1 Résultats sur les dépassements

Lorsque ξ est inférieur à 1, la réponse indicielle génère des dépassements.

On montre que le premier dépassement est obtenu pour :

$$t_1 = \frac{\pi}{\omega_0 \sqrt{1 - \xi^2}} = \frac{T_p}{2}$$

La valeur du dépassement (en pourcentage) peut se calculer alors ainsi :

$$D_{1\%} = \left| \frac{s(t_1) - s(\infty)}{s(\infty) - s(0)} \right|$$

Le premier dépassement pour cent vaut :

$$D_{1\%} = e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}}$$

La valeur du pic est donnée par $D_{1\%} \cdot K \cdot E_0$ (E_0 valeur de l'échelon d'entrée).

Le kedépassement pour cent vaut :

$$D_{k\%} = e^{\frac{-k\pi\xi}{\sqrt{1-\xi^2}}}$$

L'abaque ci-dessous permet de connaître la valeur du k^edépassement **pour cent** en fonction du facteur d'amortissement. Lorsque l'amortissement tend vers 1, on peut ainsi mettre en évidence que la valeur des dépassements est de plus en plus faible.

3.3.2 Résultat sur le temps de réponse à 5%

La rapidité d'un système du second ordre va se calculer par le temps de réponse à 5%. Le temps de réponse dépend de ω_0 et ξ et ne pas s'écrire sous une forme analytique simple.

L'abaque ci-contre donne le temps de réponse réduit $t\,r_{5\%}\omega_0$ en fonction du coefficient d'amortissement ξ .

On note que le temps de réponse est minimum lorsque $\xi \simeq 0,7$. Dans ces conditions :

$$t_{r5\%} \cdot \omega_0 = 3$$

3.4 Évolution de la réponse en fonction du coefficient d'amortissement

On peut montrer que pour la réponse indicielle d'un système du second ordre

- il existe une tangente horizontale à l'origine;
- la valeur finale tend vers KE_0 (si l'échelon d'entrée vaut E_0).