

Networking Fundamentals and Security

- Aula 02 -

Mauro Cesar Bernardes

Aula 02 - Plano de Aula

Objetivo

- Revisão do conceito Internet
- Revisar conceitos da aula 01

 Revisar Exercícios
- Compreender a divisão de endereçamento em IP em Subredes.

Conteúdo

- Endereçamento IP
 - Formato
 - Classes
 - CIDR (Sub-redes)

Metodologia

 Aula expositiva e desenvolvimento de atividades práticas, com exercícios complementares sobre endereçamento e sub-redes.

Estados Unidos da América — Década de 1960

Estados Unidos da América — Década de 1960

Estados Unidos da América — Década de 1960

Estados Unidos da América — final da década de 1960 (rede ARPANET)

Estados Unidos da América – 1971

Mapa de distribuição da rede ARPANET em 1974 nos USA

ARPANET se torna uma rede Intercontinental – 1973

Evolução da ARPANET

Evolução da ARPANET

- De 1973 a 1974 o grupo International Network Working Group (INWG), liderado por Vinton Cerf, trabalhou os detalhes da ideia do protocolo TCP/IP, resultando em sua primeira especificação
- Em 1975, foi realizado um teste de comunicação entre as duas redes TCP/IP entre Stanford e UCL (as duas universidades citadas anteriormente). Em novembro de 1977, foi realizado um teste entre três redes TCP/IP entre os sites nos EUA, Reino Unido e Noruega.
- Entre 1978 e 1983: Vários outros protótipos TCP/IP foram desenvolvidos em múltiplos centros de pesquisa
- A migração da ARPANET para o TCP/IP foi oficialmente concluído no dia 1º de janeiro de 1983

ARPANET: demanda por um protocolo de endereçamento

- Evolução do TCP/IP
- De 1973 a 1974 o grupo International Network Working Group (INWG), liderado por Vinton Cerf, trabalhou os detalhes da ideia do protocolo TCP/IP, resultando em sua primeira especificação
- Em 1975, foi realizado um teste de comunicação entre as duas redes TCP/IP entre Stanford e UCL (as duas universidades citadas anteriormente). Em novembro de 1977, foi realizado um teste entre três redes TCP/IP entre os sites nos EUA, Reino Unido e Noruega.
- Entre 1978 e 1983: Vários outros protótipos TCP/IP foram desenvolvidos em múltiplos centros de pesquisa
- A migração da ARPANET para o TCP/IP foi oficialmente concluído no dia 1º de janeiro de 1983

A explosão da Internet: 1980

Diversos serviços evoluem na Internet

A explosão da Internet: 1990

Exemplo: Backbone da Cogent

(https://www.cogentco.com/files/images/network/network_map/2021web_networkmap_page.jpg)

Conexões Ópticas Submarinas em 11/08/2021

A chegada ao BRASIL

A internet chegou ao Brasil em 1981 por meio da Bitnet, uma rede de universidades fundada em 1981 e que ligava Universidade da Cidade de Nova York (CUNY) à Universidade Yale, em Connecticut. Ela conectava, por meio de um fio de cobre dentro de um cabo submarino, a Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ao Fermilab, laboratório de física especializado no estudo de partículas atômicas, que ficava em Illinois, nos Estados Unidos.

A Internet Comercial no Brasil

Explosão da INTERNET COMERCIAL no Brasil.

1995 - A internet deixou de ser privilégio das universidades e da iniciativa privada para se tornar de acesso público no Brasil. Desde então o número de provedores que oferecem o serviço e número de usuários que utilizam este recurso aumentam a cada ano

Alguns Backbones no Brasil

Conexão de mais uma rede Local (LAN) à Internet

Referência para Estudo: capítulo 11

Na aula 01 (2º Semestre)

Topologia: 2oSem Aula01AtividadePKT.pkt

Na aula 01 (2º Semestre)

Rede: 192.168.1.0

Broadcast: 192.168.1.255

Topologia: 2oSem Aula01AtividadePKT.pkt

Reflita sobre as seguintes questões:

- 1. Qual classe de endereçamento IP (A, B ou C) seria recomendada para a configuração da Rede Local (LAN) considerando o menor desperdício possível de endereços IPv4 (*Internet Protocol*)?
- 2. Considerando que seja alocado o endereço de rede 192.168.1.0 com máscara 255.255.255.0 para a configuração da rede LAN, preencha as informações a seguir:
 - a. Classe:
 - b. Endereço de Rede:
 - c. Endereço de Broadcast:
 - d. Máscara padrão:
 - e. Endereço reservado para Gateway:
 - f. Quantidade de endereços IP disponíveis para os hosts e Gateway:
 - g. O endereço de rede 192.168.1.0 com máscara 255.255.255.0 é um endereço IP Público ou Privado?
- 3. Quantos endereços de rede estão sendo utilizado até o momento?
- 4. Quantos endereços de *gateway* estão sendo utilizados:
- 5. Quantos domínios de *Broadcast* existem até o momento?

Considerando que até o momento temos todos os equipamentos em **uma única Rede Local** (192.168.1.0 / 255.255.255.0) responda:

Questão relacionada a desempenho:

1. O que aconteceria com o número de *Broadcast* caso todos os switches recebessem hosts até o seu limite de portas (24 hosts em cada switch)?

Questão relacionada a segurança:

O que fazer para que pacotes originários nos hosts conectados ao switch LAB1 e ao switch LAB2 **não** alcancem os equipamentos conectados aos **Switch Financeiro**?

Na aula 01 (2º Semestre)

PC0-LAB1 Switch LAB1 PC1-LAB1 PC3-LAB2 Local Area Network (LAN) Rede Local

Topologia: 2oSem Aula01AtividadePKT.pkt

Reflita sobre as seguintes questões:

- 1. Qual classe de endereçamento IP (A, B ou C) seria recomendada para a configuração da Rede Local (LAN) considerando o menor desperdício possível de endereços IPv4 (*Internet Protocol*)?
- 2. Considerando que seja alocado o endereço de rede 192.168.1.0 com máscara 255.255.255.0 para a configuração da rede LAN, preencha as informações a seguir:
 - a. Classe: C
 - b. Endereço de Rede: 192.168.1.0
 - c. Endereço de Broadcast: 192.168.1.255
 - d. Máscara padrão: 255.255.255.0
 - e. Endereço reservado para Gateway: 192.168.1.1
 - f. Quantidade de endereços IP disponíveis para os hosts e Gateway: 254
 - g. O endereço de rede 192.168.1.0 com máscara 255.255.255.0 é um endereço IP Público ou Privado? **Privado (não existe para a Internet)**
- 3. Quantos endereços de rede estão sendo utilizado até o momento? 1 para rede local e 1 para a rede de ligação com a Internet
- Quantos endereços de gateway estão sendo utilizados: 1 para rede LAN
- 5. Quantos domínios de *Broadcast* existem até o momento? Na rede local, apenas 1

Considerando que até o momento temos todos os equipamentos em **uma única Rede Local** (192.168.1.0 / 255.255.255.0) responda:

Questão relacionada a desempenho:

- 1. O que aconteceria com o número de *Broadcast* caso todos os switches recebessem hosts até o seu limite de portas (24 hosts em cada switch)?
 - Muitos broadcasts em uma rede prejudicam o seu desempenho

Questão relacionada a segurança:

- O que fazer para que pacotes originários nos hosts conectados ao switch LAB1 e ao switch LAB2 não alcancem os equipamentos conectados aos Switch Financeiro?
- Divisão em 2 redes distintas (dois segmentos de rede interligados pelo roteador, onde serão configuradas as políticas de segurança)

Revisando: Endereços IPv4 Públicos e Privados

- Endereços IPv4 públicos são endereços roteados globalmente entre os roteadores do provedor de serviços de Internet (ISP). No entanto, nem todos os endereços IPv4 disponíveis podem ser usados na Internet. Existem blocos de endereços (conhecidos como endereços privados) que são usados pela maioria das organizações para atribuir endereços IPv4 a hosts internos.
- Em meados dos anos 90, com a introdução da *World Wide Web* (WWW), endereços IPv4 privados foram introduzidos devido ao esgotamento do espaço de endereços IPv4.
- Como os endereços IPv4 privados não são roteados na Internet, existindo apenas no âmbito da rede local, possuem como característica a capacidade de serem utilizados em mais de uma rede (não são exclusivos e podem ser usados internamente em qualquer rede). Por exemplo: é possível que uma rede local em uma residência utilize o endereço de rede IPv4 privado 192.168.1.0 (/24) e uma outra rede local, em outra residência, utilize o mesmo endereço de rede IPv4 privado 192.168.1.0 (/24) (neste caso precisaremos fazer uso de uma técnica complementar denominada NAT Network Address Translation)
- Observação: A solução a longo prazo para o esgotamento de endereços IPv4 foi o IPv6.

Os blocos de endereços privados

Endereço de rede e prefixo	RFC 1918 Intervalo de endereçosprivados
10.0.0.0/8	10.0.0.0 - 10.255.255.255
172.16.0.0/12	172.16.0.0 - 172.31.255.255
192.168.0.0/16	192.168.0.0 - 192.168.255.255

Atividade em Aula: 20Sem Aula02 Atividade 1 - Endereço IP .docx

Endereço IPv4 válido para host	Classe	Endereço de Rede Público ou Privado?	Máscara padrão	Endereço de Rede (padrão)	Representação em binário do endereço de rede	Endereço de broadcast (padrão)	Nº de IPs disponíveis para hosts e gateway na rede
168.201.67.129	В	Público	255.255.0.0	168.201.0.0	10101000.11001001.00000000.00000000	168.201.255.255	65.534
100.201.202.1	Α	Público	255.0.0.0	100.0.0.0	1100100.00000000.0000000.00000000	100.255.255.255	16.777.21
215.65.68.1	C	Público	255.255.255.0	215.65.68.0	11010111.010000001.010000100.00000000	215.65.68.255	254
172.16.254.255	В	Privado	255.255.0.0	172.16.0.0	10101100.00010000.000000000.00000000	172.16.255.255	65.534
13.210.65.128	Α	Público	255.0.0.0	13.0.0.0	00001101.00000000.00000000.00000000	13.255.255.255	16.777.214
201.207.208.5	C	Público	255.255.255.0	201.207.208.0	11001001.11001111.11010000 .00000000	201.207.208	254
114.78.98.160	Α	Público	255.0.0.0	114.0.0.0	01110010.00000000.00000000.00000000	114.255.255.255	16.777.214
201.203.204.208	C	Público	255.255.255.0	201.203.204.0	11001001.11001011.11001100.00000000	201.203.204.255	254
205.131.142.15	C	Público	255.255.255.0	205.131.142.0	11001101.10000011.10001110.00000000	205.131.142.255	254
186.12.14.192	В	Público	255.255.0.0	186.12.0.0	10111010.00001100.00000000.00000000	186.12.255.255	65.534
220.28.45.65	C	Público	255.255.255.0	220.28.45.0	11011100.00001000.00101101.00000000	220.28.45.255	254
123.135.142.15	Α	Público	255.0.0.0	123.0.0.0	01111011.00000000.00000000.00000000	123.255.255.255	16.777.214
192.168.255.35	C	Privado	255.255.255.0	192.168.255. 0	11000000.101010000.11111111 .00000000	192.168.255.255	254
175.62.12.65	В	Público	255.255.0.0	172.62.0.0	10101100.00111110.00000000.00000000	172.62.255.255	65.534
10.123.32.45	A	Privado	255.0.0.0	10.0.0.0	00001010.00000000.00000000.00000000	10.255.255.255	16.777.214
121.35.45.65	A	Público	255.0.0.0	121.0.0.0	01111001.00000000.00000000.00000000	121.255.255.255	16.777.214
172.32.254.253	В	Público	255.255.0.0	172.32.0.0	10101100.00100000.00000000.00000000	172.32.255.255	65.534
172.30.255.250	В	Privado	255.255.0.0	172.30.0.0	10101100.00011110 .00000000.00000000	172.30.255.255	65.534

Atividade até a próxima semana: 20Sem Aula02 Atividade 2 - Endereço IP .docx

Endereço IPv4	Classe	Endereço de Rede Público ou Privado?	Máscara padrão	Endereço de Rede (padrão)	Representação em binário do endereço de rede	Endereço de broadcast (padrão)	Nº de IPs disponíveis para hosts e gateway na rede
192.168.10.9	С	PRIVADO	255.255.255.0	192.168.10. <mark>0</mark>		192.168.10.255	
1.1.1.1	Α	Público	255.0.0.0	1.0.0.0		1.255.255.255	
192.168.0.5	C	Privado	255.255.255.0	192.168.0.0		192.168.0.255	
8.8.8.8	A	Público	255.0.0.0	0.0.08		8.255.255.255	
192.168.1.5	C	Privado	255.255.255.0	192.168.1.0		192.168.1.255	
0.0.0.0							
255.255.255							
125.255.1.1	Α	Público	255.0.0.0	125.0.0.0			
172.20.120.10	В	Privado	255.255.0.0	172.20.0.0			65,534
192.168.10.8				192.168.10. <mark>0</mark>			
192.168.20.30	С		255.255.255. 0	192.168.20. <mark>0</mark>			
193 168 100 10	C			192 168 100 0			

Identificador de Rede

- Os hosts de uma rede local podem se comunicar diretamente apenas com os dispositivos que tenham a mesma endereço de rede (mesmo ID de rede).
- Eles podem compartilhar o mesmo segmento físico (estarem no mesmo local, fisicamente) mas, se tiverem números de rede diferentes, precisarão de um dispositivo de camada 3 (roteador) para fazer a conexão entre as redes

Identificador de Rede

- Os hosts de uma rede local podem se comunicar diretamente apenas com os dispositivos que tenham a mesma endereço de rede (mesmo ID de rede).
- Eles podem compartilhar o mesmo segmento físico (estarem no mesmo local, fisicamente) mas, se tiverem números de rede diferentes, precisarão de um dispositivo de camada 3 (roteador) para fazer a conexão entre as redes

Roteadores

Retornando à aula 02

Sub-Redes

Os administradores de rede às vezes precisam dividir redes locais, particularmente as grandes redes, em redes menores, chamadas de *sub-redes*, para entre outros motivos:

- DESEMPENHO: reduzir o tamanho dos domínios de broadcast;
- SEGURANÇA: permitir melhor gerenciamento de segurança entre segmentos de rede (sub-redes).

Reduzindo domínios de Broadcast

- Um dos motivos para se usar sub-redes é reduzir o tamanho de um domínio de broadcast (de camada 2: quando quadros são enviados para a rede local endereçados para FF-FF-FF-FF-FF).
- Os broadcasts são enviados a todos os hosts em uma mesma rede ou subrede (enfim, todos os hosts no mesmo endereço de rede). (Um exemplo: em uma requisição DHCP)
- Quando o tráfego de broadcast começar a ocupar demais a largura de banda disponível, os administradores de rede poderão optar por reduzir o tamanho do domínio de broadcast de camada 2.

Domínio de Broadcast

Um domínio de *broadcast* é um segmento lógico de uma <u>rede de</u> <u>computadores</u> em que um computador ou qualquer outro dispositivo conectado à rede é capaz de se comunicar com outro sem a necessidade de utilizar um <u>dispositivo de roteamento</u> (roteador).

- Embora os switches filtrem a maioria dos quadros com base nos endereços MAC, eles não filtram quadros de broadcast.
- Para que outros switches na LAN recebam quadros de broadcast, os switches precisam enviar esses quadros para todas as portas.
- Um conjunto de switches interconectados forma um único domínio de broadcast.
- Somente um dispositivo de camada de rede, como um roteador, pode dividir um domínio de broadcast de camada 2.
- Os roteadores são usados para segmentar tanto domínios de broadcast como domínios de colisão.

Reduzindo domínios de Broadcast

Figura 1: Rede local utilizando um dispositivo de camada 2 (switch) como elemento central da rede: 1 único domínio de broadcast

Figura 2: Rede local utilizando um dispositivo de camada 3 (roteador) como elemento central da rede: 4 domínios de Broadcast.

Observação: para cada 'domínio de *broadcast*' precisaremos de um **endereço de rede exclusivo** (endereço de rede único para o domínio).

Cenário com um único domínio de Broadcast

Um broadcast enviado por um host, por exemplo o PC6, irá alcançar todos os equipamentos no mesmo domínio de broadcast.

Cenário com vários domínios de Broadcast

Um broadcast enviado por um host, por exemplo o PC15, irá alcançar todos os equipamentos no mesmo domínio de broadcast. (apenas os equipamentos na área amarela)

Atividade em Aula: Arquivo: 20Sem Aula02AtividadePKT.pkt

(arquivo .pkt disponível na área de apostilas do portal da FIAP e na área de arquivos da disciplina no Microsoft Teams)

Analise o cenário apresentado

Na aula anterior: Todos os equipamentos utilizando o mesmo endereço de rede, em um único domínio de *broadcast*.

Nesta aula: Serão configurados 4 sub-redes (4 domínios de *broadcast* separados por um roteador). Cada sub-rede precisará de um endereço de rede exclusivo (ID único)

Passo 1: Utilize o arquivo 20Sem Aula02AtividadePKT.pkt

Utilize o arquivo *2oSem Aula02AtividadePKT.pkt* ou construa sua própria topologia.

Caso opte por construir sua própria topologia, o roteador escolhido para esta atividade é o **PT-Empty** (como demonstrado na ilustração).

Passo 2: Acrescentar Interfaces Gigabit Ethernet no Roteador

Passo 3: Ligue o roteador

Passo 4: Compare o Resultado com a figura abaixo

Passo 5: Ligue o Switch LAB1 ao Switch LAB2

Passo 6: Ligue o Switch LAB1 ao Roteador

Passo 7: Ligue os demais equipamentos ao Roteador como na figura

Passo 8: Análise

- Cada interface do roteador define uma rede exclusiva (uma rede diferente das demais)
- 2. A interface Gig0/0 está conectada à WAN (internet) e será configurada pelo ISP (provedor Internet).
- As demais interfaces (Gig0/1, Gig0/2, Gig0/3 e Gig0/4) estão conectadas a 4 LANs diferentes (4 sub-redes)
- 4. Cada sub-rede precisará de um endereço de rede EXCLUSIVO (ÚNICO!) para a configuração dos equipamentos
- Qual o problema em alocar um endereço de rede Classe C para cada uma das LANS? (DESPERDÍCIO de endereço IP)

Passo 9: Análise:

- Cada interface do roteador define uma rede exclusiva (uma rede diferente das demais)
- 2. A interface Gig0/0 está conectada à WAN (internet) e será configurada pelo ISP (provedor Internet).
- As demais interfaces (Gig0/1, Gig0/2, Gig0/3 e Gig0/4) estão conectadas a 4 LANs diferentes
- endereço de rede EXCLUSIVO (ÚNICO!) para a configuração dos equipamentos
- Qual o problema em alocar um endereço de rede Classe C para cada uma das LANS? (DESPERDÍCIO de endereço IP)

Para resolver o problema de DESPERDÍCIO de endereço IP, introduziu-se o esquema CIDR (*Classless Inter-Domain Routing*), onde a divisão do endereço IP em endereço de rede e endereço de host DEIXA DE SER determinada pela classe do endereço, mas pela máscara de sub-rede, que indica quantos bits compõem o endereço de rede.

CIDR (RFC 1518 e 1519)

- Introduzido em 1993, como um refinamento para a forma como o tráfego era conduzido pelas redes <u>IP</u>;
- Apesar das possibilidades que a criação das classes de endereços proporcionou, a estrutura ainda era pouco flexível, causando o desperdício de endereços IP:
 - Exemplo:
 - a empresa anterior com 11 computadores utilizaria toda uma classe C de endereços (254 hosts) para endereçar seus equipamentos;
 - caso seja feita a organização em 4 redes locais, seriam necessários 4 classes C (o que consumiria inicialmente 1016 endereços IP).

 Ainda pior: uma empresa com 300 hosts precisaria utilizar uma classe B que comporta até 65.534 hosts, desperdiçando 65.234 endereços.

- CIDR permite a criação de sub-redes, o que apresenta os seguintes benefícios:
 - Maior flexibilidade ao esquema de endereçamento TCP/IP, com melhor aproveitamento dos endereços;
 - Aumento da performance da rede, uma vez que o tráfego local das subredes e as mensagens broadcast não são propagados para toda a rede;
 - Simplificação da tabela de roteamento dos roteadores.

• O CIDR trouxe maior liberdade na utilização de endereços IP, através da subdivisão de redes maiores em sub-redes menores, utilizando-se do recurso da "Máscara de sub-rede".

 Uma empresa pode utilizar um endereço de rede Classe A, B ou C para a sua rede corporativa e dividir essa rede em sub-redes menores.

- Exemplo: pode ser conveniente dividir uma rede corporativa que utilize uma rede de Classe B 172.25.0.0 em sub-redes menores (uma para cada filial de cada país).
- Isto evita que as mensagens broadcast de um país sejam difundidas para todas as filiais do mundo, gerando tráfego excessivo na rede.
- A rede dessa empresa é definida pelos bytes 172.25, portanto todos os hosts cujo endereço começar por 172.25 pertencerão à rede.

Para entender a Máscara de Sub-rede, é necessário entender a operação Binária AND.

Máscara de sub-redes

- A Máscara de Sub-rede é uma sequência de 4 bytes (assim como o endereço IP), onde:
 - os bits 1 indicam bits do endereço IP que se referem ao endereço de rede,
 - os bits 0 referem-se aos bits do endereço de host.
- A Máscara de Sub-rede define quantos bits do endereço IP referem-se ao endereço de rede.

- Para determinar qual é o endereço de rede de um endereço IP, deve-se fazer uma operação AND entre o endereço IP e a Máscara de Sub-rede. O resultado será o endereço de rede.
- Todos os hosts cujo resultado dessa operação for igual pertencem à mesma rede.
- Cada host de uma rede, além de receber um endereço IP único, deve também ser configurado com sua Máscara de Sub-rede (igual para todos os hosts da sub-rede).

Máscaras Padrão

As Máscaras de Sub-rede padrão para endereços das Classes A, B e C são:

Classe	Endereços
Α	255.0.0.0
В	255.255.0.0
С	255.255.25.0

Máscaras Padrão

Convertendo as máscaras padrão de sua representação em decimal para sua representação em binário, obteremos:

Classe	Máscara de Sub-rede Padrão					
Α	255.0.0.0	11111111.00000000.00000000.00000000	/8			
В	255.255.0.0	111111111111111111000000000000000000000	/16			
С	255.255.255. 0	1111111111111111111111111111000000000	/24			

- O que significa que nos endereços de:
 - Classe A: todos os bits do primeiro byte indicam a rede,
 - Classe B: os dois primeiros bytes indicam a rede
 - Classe C: os três primeiros bytes indicam a rede.

Notação baseada no tamanho do prefixo de rede

- Existe uma notação que define a Máscara de Sub-rede simplesmente pelo número de 1's que ela contém
 - (Notação baseada no tamanho do prefixo de rede).
- Por exemplo, uma rede Classe A poderia ser definida por:
 - 119.0.0.0 /8 (o que significa que sua Máscara de Sub-rede contém 8 bits em 1

Classe	Endereços
Α	255.0.0.0 ou /8
В	255.255.0.0 ou /16
С	255.255.255.0 ou /24

Sub-redes

Pode-se dividir uma rede em sub-redes menores utilizando máscaras de sub-rede diferentes do padrão definido pelas classes de endereços.

Um exemplo:

- Uma empresa solicitou e recebeu o endereço de rede classe C 200.16.23.0;
- Você quer subdividir a rede local (LAN) dessa empresa em 4 sub-redes que serão interconectadas por roteadores;
- Você precisará usar uma máscara de sub-rede personalizada (CIDR), a partir da classe C original, e terá um roteador entre as sub-redes para rotear um pacote de uma sub-rede para outra.
- Determine o número de bits que você precisará "tomar emprestados" da parte do host do endereço recebido e depois o número de bits que restaram para os endereços de host.

A ilustração abaixo representa a topologia desejada.

o endereço de rede classe C 200.16.23.0 terá que ser dividido em 4 sub-redes

Um exemplo:

Classe C

```
Rede= 200. 16. 23.0

Máscara Padrão= 255.255.255.0

rede.rede.rede.host
```

```
Máscara Padrão= 111111111.11111111.1111111.00000000
```

```
Endereço de Rede= 11001000.00010000.000101111.00000000
Endereço de Broadcast= 11001000.00010000.000101111.11111111
```


2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	1	0	0	1	0	0	0

> Percebe-se que utilizar apenas um bit da parte host irá gerar a máscara 255.255.255.128 e possibilitar apenas 2 endereços de rede:

 Como serão necessárias 4 sub-redes, precisa-se utilizar pelo menos 2 bits do endereço de host (os dois primeiros bits) para gerar a máscara 255.255.255.192 e 4 endereços de rede diferentes;

Apenas duas sub-redes não resolvem o problema!!

Representação

Máscaras válidas

Decimal	Binário
0	0000000
128	10000000
192	11000000
224	11100000
240	11110000
248	11111000
252	11111100
254	11111110
255	11111111

128	64	32	16	8	4	2	1	
1	0	0	0	0	0	0	0	= 128
1	1	0	0	0	0	0	0	= 192
1	1	1	0	0	0	0	0	= 224

Máscaras válidas

Comprimento do Prefixo	Máscara de sub- rede	Máscara de sub-rede em binário (n = rede, h = host)	# de sub- redes	# de hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.1111111.10000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn.nnhhhhhh 11111111.11111111.1111111.11000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnn.nnnhhhhh 11111111.11111111.1111111.11100000	8	30
/28	255.255.255.240	nnnnnnnn.nnnnnnnn.nnnnnnn.nnnnhhhh 11111111.11111111.1111111.11110000	16	14
/29	255.255.255.248	nnnnnnnn.nnnnnnnn.nnnnnnn.nnnnnhhh 11111111.11111111.11111111.11111000	32	6
/30	255.255.252	nnnnnnnn.nnnnnnnn.nnnnnnn.nnnnnhh 11111111.11111111.1111111.11111100	64	2

Iremos utilizar parte dos bits destinados para endereçar host para criar sub-redes

Máscaras válidas para uma Classe C

	Bits de Host	10000000	11000000	11100000	11110000	11111000	11111100	ĺ
/	Decimal	128	192	224	240	248	252	
	máscara sub-rede	255.255.255.128	255.255.255. <mark>192</mark>	255.255.255. <mark>224</mark>	255.255.255. <mark>240</mark>	255.255.255. <mark>248</mark>	255.255.255. 252	
	Nº de subredes	2	4	8	16	32	64	
	Nº IPs nas sub-redes	128	64	32	16	8	4	
1	Nº IPs válidos nas subredes	126	62	30	14	6	2	

Classe C

Máscara Padrão

255.255.255.0

11111111.11111111.11111111.000000000

Rede . Rede . Host

Exemplo

192 . 168 . 1 . 0 11000000.10101000.00000001.000000000

Bits
destinados
a
endereçar
hosts

lascara sub-rede	255.255.255.126	200.200.200.192	255.255.255.224	255.255.255.240	255.255.255.246	255.255.255.252
Nº de subredes	2	4	8	16	32	64
Ps nas sub-redes	128	64	32	16	8	4
Ps válidos nas subredes	126	62	30	14	6	2
				0 - 15	0 a 7	0 a 3 4 a 7
		0		0 a 15	8 a 15	8 a 11 12 a 15
		, and the second se	0 a 31		16 a 23	16 a 19 20 a 23
				16 a 31	24 a 31	24 a 27 28 a 31
		a			32 a 39	32 a 35
Para sub-redes Ps válidos nas subredes 12 Faixa de Endereços IP	0			32 a 47	40 a 47	36 a 39 40 a 43
		63	32 = 63		48 a 55	44 a 47 48 a 51
		03		48 a 63		52 a 55 56 a 59
	a				56 a 63	60 a 63 64 a 67
				64 a 79	64 a 71	68 a 71 72 a 75
		64	64 a 95		72 a 79	76 a 79
	127		04 2 33	80 a 95	80 a 87	80 a 83 84 a 87
				00 4 33	88 a 95	88 a 91 92 a 95
		a		06 - 111	96 a 103	96 a 99 100 a 103
		127	06 107	96 a 111	104 a 111	104 a 107 108 a 111
Patricia de			96 a 127	112 a 127	112 a 119	112 a 115 116 a 119
					120 a 127	120 a 123 124 a 127
Endereços		120	128 a 159	128 a 143	128 a 135	128 a 131
IP					136 a 143	132 a 135 136 a 139
		128		144 a 159	144 a 151	140 a 143 144 a 147
						148 a 151 152 a 155
		a			152 a 159	156 a 159 160 a 163
	100			160 a 175	160 a 167	164 a 167 168 a 171
	128		160 <u>a</u> 191		168 a 175	172 a 175 176 a 179
		191	100 4 131	176 a 191	176 a 183	180 a 183
				170 4 171	184 a 191	184 a 187 188 a 191
	a.			100 - 007	192 a 199	192 a 195 196 a 199
		192	100 000	192 a 207	200 a 207	200 a 203 204 a 207
	255		192 - 223		208 a 215	208 a 211 212 a 215
				208 a 223	216 a 223	216 a 219 220 a 223
		a		224 a 239	224 a 231	224 a 227
					232 a 239	228 a 231 232 a 235
		255	224 = 255			236 a 239 240 a 243
		255		0.40	240 a 247	244 a 247

240 a 255

248 a 255

252 a 255

Exemplos de Sub-redes a partir de um Classe C: 255.255.255.0

A tabela destaca todos os cenários possíveis para a sub-rede de um prefixo classe C 255.255.255.0 (/24)

Comprimento do Prefixo	Máscara de sub- rede	Endereço de rede (r = rede, h = host)	Nº de subredes	N⁰ de hosts
/24	255.255.255. 0	rrrrrr. rrrrrr. rrrrrr.hhhhhhhh 1111111.111111.1111111.0000000	1	254
/25	255.255.255. 128	rrrrrr. rrrrrr. rrrrrr.rhhhhhh 1111111.111111.1111111.10000000	2	126
/26	255.255.255. 192	rrrrrr. rrrrrr. rrrrrr.rrhhhhhh 11111111.111111.1111111.11000000	4	62
/27	255.255.255. 224	rrrrrr. rrrrrr. rrrrrr.rrhhhhh 1111111.111111.1111111.11100000	8	30
/28	255.255.255. 240	rrrrrr. rrrrrr. rrrrrr.rrhhhh 1111111.111111.1111111.1110000	16	14
/29	255.255.255. 248	rrrrrr. rrrrrr. rrrrrr.rrrhhh 1111111.111111.1111111.1111000	32	6
/30	255.255.255. 252	rrrrrr. rrrrrr. rrrrrr.rrrhh 1111111.111111.1111111.1111100	64	2

Máscaras válidas: Classe C

Considere um endereço classe C:

X.X.X.0

(rede.rede.host)

Máscara padrão = 255.255.25.0

Máscara padrão em Binário: 111111111.11111111.11111111.00000000

Nº de (sub) redes desejados	Nº de bits do host	Máscara em Binário	Decimal (parte de host)	Máscara de sub-rede	Notação simpli- ficada	Número de hosts
1	0	11111111.11111111.11111111.00000000	0	255.255.255. <mark>0</mark>	/24	254
2	1	11111111.11111111.1111111.10000000	128	255.255.255. <mark>128</mark>	/25	126
3-4	2	11111111.11111111.11111111.11000000	192	255.255.255.192	/26	62
5-8	3	11111111.11111111.11111111.1 <mark>11</mark> 00000	224	255.255.255. <mark>224</mark>	/27	30
9-16	4	11111111.11111111.11111111. <mark>1111</mark> 0000	240	255.255.255. <mark>240</mark>	/28	14
17-32	5	11111111.11111111.11111111. <mark>11111</mark> 000	248	255.255.255. <mark>248</mark>	/29	6
33-64	6	11111111.11111111.11111111.1111100	252	255.255.255. <mark>252</mark>	/30	2

Máscaras válidas: Classe B

Considere um endereço <u>classe B:</u> x.x.0.0 (rede.rede.host.host)

Máscara padrão= 255.255.0.0 (111111111.11111111.00000000.0000000)

Nº de sub- redes desejado	Nº de bits do host	Máscara Padrão em Binário (11111111. 11111111.0000000.0000000)	Decimal (parte de host)	Máscara de sub- rede (Padrão: 255.0.0.0)	Notação simpli- ficada	Número de hosts
2	1	1111111.11111111. <mark>1</mark> 0000000.00000000	128.0	255.255.128.0	/17	32.766
3-4	2	11111111.11111111. <mark>11</mark> 000000.000000000	192.0	255.255.192.0	/18	16.382
5-8	3	11111111.11111111. <mark>111</mark> 00000.00000000	224.0	255.255.224.0	/19	8.190
9-16	4	11111111.11111111. <mark>1111</mark> 0000.00000000	240.0	255.255.240.0	/20	4.094
17-32	5	11111111.11111111. <mark>11111</mark> 000.00000000	248.0	255.255.248.0	/21	2046
33-64	6	11111111.11111111. <mark>111111</mark> 00.00000000	252.0	255.255.252.0	/22	1022
65-128	7	11111111.11111111. <mark>111111</mark> 10.00000000	254.0	255.255. <mark>254.0</mark>	/23	510
129-256	8	11111111.11111111.11111111.000000000	255.0	255.255.255.0	/24	254
257-512	9	11111111.11111111.111111111.10000000	255.128	255.255.255.128	/25	126
513-1024	10	11111111.11111111.111111111.11000000	255.192	255.255.255.192	/26	62
1025-2048	11	11111111.11111111.1111111111111100000	255.224	255.255.255.224	/27	30
2049-4096	12	11111111.11111111.111111111.11110000	255.240	255.255.255.240	/28	14
4097-8192	13	11111111.11111111.11111111.11111000	255.248	255.255.255.248	/29	6
8193-16384	14	11111111.11111111.111111111.111111110	255.252	255.255.255.252	/30	2

Máscaras válidas: Classe A

Considere um endereço <u>classe A:</u> X.0.0.0 (rede.host.host)

Máscara padrão= 255.0.0.0 (11111111.00000000.00000000.00000000)

Nº de sub- redes desejado	Nº de bits do host	Máscara Padrão em Binário (11111111.00000000.0000000.0000000)	Decimal (parte de host)	Máscara de subrede (Padrão: 255.0.0.0)	Notação simpli- ficada	Número de hosts
2	1	11111111.10000000.000000000.00000000	128.0.0	255.128.0.0	/9	8.388.606
3-4	2	11111111.11000000.00000000.00000000	192.0.0	255.192.0.0	/10	4.194.302
5-8	3	11111111.11100000.00000000.000000000	224.0.0	255.224.0.0	/11	2.097.150
9-16	4	11111111.11110000.00000000.00000000	240.0.0	255.240.0.0	/12	1.048.574
17-32	5	11111111.11111000.00000000.00000000	248.0.0	255.248.0.0	/13	524.286
33-64	6	11111111.11111100.00000000.00000000	252.0.0	255.252.0.0	/14	262.142
65-128	7	11111111.11111110.00000000.00000000	254.0.0	255.254.0.0	/15	131.070
129-256	8	1111111.11111111.00000000.00000000	255.0.0	255.255.0.0	/16	65.534
257-512	9	11111111.11111111.10000000.00000000	255.128.0	255.255.128.0	/17	32.766
513-1024	10	11111111.11111111.11000000.000000000	255.192.0	255.255.192.0	/18	16.382
1025-2048	11	11111111.11111111.11100000.00000000	255.224.0	255.255.224.0	/19	8.190
2049-4096	12	11111111.11111111.11110000.00000000	255.240.0	255.255.240.0	/20	4094
	()					
2097153- 4194304	22	11111111.11111111.111111111111111111111	255.255.252	255.255.255.252	/30	2

Atividade (2^a Atividade para o 1^o checkpoint)

Passo 1: Configure os Gateways no Roteador

Passo 2: Configure TODOS os hosts com endereço IP estático

Passo 2: Configure TODOS os hosts com endereço IP estático

Passo 3: Realize testes de comunicação entre os equipamentos

Passo 4: Realize a configuração do serviço DHCP no Server0

Passo 5: Configure todos os hosts para receber endereço a partir do DHCP

Passo 6: Quais hosts receberam endereço IPv4 a partir do DHCP?

Faça upload do arquivo configurado na área de trabalhos

Faça upload do arquivo configurado na área de trabalhos

Atividades da aula 02 para composição da Nota do 1º Checkpoint

Utilize o arquivo '2oSem Aula 02 AtividadePKT.pkt'
e realize a configuração dos passos descritos nos slides de 78 a 85.

Ao final, faça upload do arquivo com o resultado na área de trabalhos da FIAP:

Atividades da Aula 02 - 2o Semestre

Entregável:

1. Arquivo .pkt com a configuração realizada no arquivo '2oSem Aula 02 AtividadePKT.pkt'

O upload do arquivo deverá ser realizado até o início da aula da próxima semana, quando a atividade será corrigida.

Lembre-se:

Além de ser uma atitude antiética, o plágio em trabalhos acadêmicos é considerada crime e poderá comprometer sua carreira acadêmica e profissional

Referência para Estudo: capítulo 11

Referências Bibliográficas complementares

Bibliografia Básica:

Kurose, James F. e Ross, Keith W. Redes de Computadores e a Internet. São Paulo,5ªed,Pearson,2013

Tanenbaum, Andrew S. Redes de Computadores. São Paulo, 4ªed., Campus,2003.

Forouzan, Behrouz A. Comunicação de Dados e Redes de Computadores. São Paulo, 3ªed.,Bookman, 2008.

Stallings, William. Redes e Sistemas de Comunicação de Dados. São Paulo, 3ªed., Campus, 2007