Tesina di Modelli Econometrici a.a. 2018/19

Luca Buratto Scienze statistiche ed attuariali

Ottobre 2018

Indice

1	Tav	ola I		7
	1.1	Model	llo 1	8
		1.1.1	Test di Normalità dei residui	8
		1.1.2		8
		1.1.3	Test RESET	9
		1.1.4		9
		1.1.5		0
	1.2	Model	llo 2 (vincolato)	.1
		1.2.1	Test di Normalità dei residui	.1
		1.2.2	Test di White per l'eteroschedasticità	.1
		1.2.3	Test RESET	.1
		1.2.4	Test di Chow	2
		1.2.5	Test con vincoli lineari	2
2	Tav	ola II	1	3
	2.1	Model	llo 1	.3
		2.1.1	Test di Normalità dei residui	4
		2.1.2	Test di White per l'eteroschedasticità	4
		2.1.3		4
		2.1.4		.5
	2.2	Model	llo 2 (vincolato)	7
		2.2.1	Test di Normalità dei residui	7
		2.2.2	Test di White per l'eteroschedasticità	7
		2.2.3		8
		2.2.4		8
		2.2.5	Test con vincoli lineari	8
		2.		a

4 INDICE

Consegna

Si legga l'articolo di Mankiw, Romer and Weil (MRW) riportato in pdf nell'area risorse di Moodle e utilizzando i dati in GRETL o excel associati, relativi a 75 paesi (campione Intermediate), [1]

- Si replichino le stime della colonna Intermediate dell'articolo relativa alla tabella

```
"Table I"
test di Normalità dei residui
test di eteroschedasticità
test RESET.
```

- Si replichino le stime della colonna Intermediate dell'articolo relativa alla tabella

```
"Table II"
test di Normalità dei residui
test di eteroschedasticità
test RESET.
```

- Si verifichi se vi sono eterogeneità nei parametri rispetto al gruppo di paesi $\mathrm{OECD/non}$ OECD

in generale

in particolare con riferimento a differenze nell'intercetta del modello nei due gruppi di Paesi.

Si riportino le stime, i test e i commenti in un file word o pdf da caricare in moodle.

¹cioè qui https://moodle2.units.it/pluginfile.php/208642/mod_resource/content/1/Materiale_corso/MRW.pdf

Introduzione

Il modello di Solow fondamentalmente stabilisce che i tassi di risparmio (d'ora in poi **risparmio**) e di crescita della popolazione (variabili esogene) determinano il livello di stato stazionario, ossia di equilibrio dinamico nel tempo.

Gli autori dell'opera applicarono tale modello su un dataset ottenendo che le previsioni del modello di Solow erano corrette riguardo 'la direzione' degli effetti dei regressori del modello sulla variabile esplicativa reddito pro capite (d'ora in poi **reddito**), e che più della metà della variazione del reddito pro-capite dei Paesi considerati potesse essere spiegata dai due soli regressori **risparmio** e **crescita della popolazione**. Sfortunatamente però lo stesso modello commetteva un errore di grandezza nelle previsioni degli effetti dei due regressori sul reddito, prevedendolo ben più ampio.

Gli autori espansero così il modello aggiungendo l'accumulazione di capitale sia umano che fisico, che secondo loro, influenzando le previsioni, era la variabile responsabile dell'errore nelle stime.

Le variabili contenute nel dataset fanno riferimento agli anni 1960 - 1985; in particolare le variabili utilizzate per la stima sono il tasso di crescita medio della popolazione in età lavorativa (popgrow), la quota media di investimenti reali sul PIL reale (inv), il PIL reale sulla popolazione lavorativa nel 1985 (gdp85) e la percentuale media della popolazione in età lavorativa iscritta alla scuola secondaria (school).

6 INDICE

Capitolo 1

Tavola I

Di seguito riporto stime e risultati ottenuti, che, come da consegna dell'esercizio, sono relativi alla sola colonna della variabile Intermediate presente nella Tavola I (pg 414). L'equazione del modello di regressione (vd formula (7) di pg 411) è la seguente:

$$\ln\left[\frac{Y}{L}\right] = a + \frac{\alpha}{1-\alpha}\ln(s) - \frac{\alpha}{1-\alpha}\ln(n+g+\delta) + \varepsilon$$

con le ipotesi:

- g, δ costanti fra Paesi.
- $s,n \perp\!\!\!\!\perp \varepsilon$ (tassi di risparmio, crescita popolazione indipendenti da fattori specifici del Paese) \Rightarrow stimo equazione con OLS
- $g+\delta=0.05$ ('piccole' variazioni di $g+\delta$ hanno un modesto effetto sulle stime)

dove

- $\frac{Y}{L}$ reddito pro-capite (var. dipendente). Y è prodotto, L è lavoro (input modello)
- a livello della tecnologia; è una costante (intercetta)
- α quota di capitale sul reddito supposta pari a = $\frac{1}{3}$ nel modello di Solow \Rightarrow elasticità del reddito procapite rispetto al tasso di risparmio di circa 0.5 ed una elasticità rispetto a $(n+g+\delta)$ pari a -0.5
- $\bullet \; s$ quota media degli investimenti reali
- $n + g + \delta$ coeff. relativi a crescita popolazione. g è l'avanzamento tecnologico; n è tasso di crescita medio della popolazione in età lavorativa
- ε shock specifico del Paese

L'equazione verrà stimata in 2 modi:

- 1 non vincolando alcun coefficiente (modello 1)
- 2 imponendo il vincolo che coefficienti di $\ln(s)$ e $\ln(n+g+\delta)$ siano uguali ed opposti (modello 2)

1.1 Modello 1

Operazioni in Gretl:

- filtro i dati secondo la dummy Intermed = 1 (elimino 23 osservazioni)
- definizione nuove variabili con numeri con la virgola, anziché valori %
- passaggio ai logaritmi
- \bullet aggiunta di nuova variabile g definita come differenza dei logaritmi delle variabili (solo per metodo di stima 1)

 \Rightarrow

```
filtrare i dati: selezioniamo "impostata campione in base a condizione" e selezioniamo "intermed"
```

```
rateInv = inv /100 lrateInv = ln(rateInv)
```

lgdp85 = ln(gdp85)

ratePopgrow=popgrow/100 \rightarrow rate005Popgrow =ratePopgrow + 0.05 \rightarrow lrate005PopGrow = ln(rate005Popgrow)

Output:

Modello 1: OLS, usando le osservazioni 1-75

Variabile dipendente: lgdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	5,34587i	1,54308	3,464	0,0009 ***
lrate005 Pop Grow	-2,01720	0,533866	-3,778	0,0003 ***
lrateInv	1,31755	0,170943	7,708	0,0000 ***
Media var. dipendente	e 8,402521	SQM var.	dipendente	0,951074
Somma quadr. residui	26,84751	(SEE) E.S	S. della regress	sione 0,610641
R^2	0,598908	R^2 corrett	5O	0,587767
F(2,72)	53,75507	P-value(F	')	$5,\!21\mathrm{e}\!\!-\!\!15$
Log-verosimiglianza	-67,89608	Criterio d	i Akaike	141,7922
Criterio di Schwarz	148,7446	Hannan-C	Quinn	144,5682

1.1.1 Test di Normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi-quadro(2) = 4,600 con p-value 0,10028. Accetto l'ipotesi nulla.

Qui l'ipotesi H_0 è la normalità dei residui. Essa viene non rifiutata. Da ciò segue che anche gli stimatori hanno distribuzione Normale

1.1.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2=4,367934,$ con p-value = P(Chi-quadro(5) > 4,367934) = 0,497745. Accetto l'ipotesi nulla.

Qui l'ipotesi H_0 è la presenza di omoschedasticità che non si rifiuta, poiché il p-value = 0, 5 > 0.05. Ossia le stime sono consistenti, quindi non serve testare il modello utilizzando gli s.e. robusti

1.1. MODELLO 1 9

1.1.3 Test RESET

- Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0.357307, con p-value = P(F(2,70) > 0.357307) = 0.701. Accetto l'ipotesi nulla.
- Test RESET di specificazione (solo quadrati) Statistica test: F = 0,470045, con p-value = P(F(1,71) > 0,470045) = 0,495. Accetto l'ipotesi nulla.
- Test RESET di specificazione (solo cubi) Statistica test: F = 0,444703, con p-value = P(F(1,71) > 0,444703) = 0,507. Accetto l'ipotesi nulla.

Qui l'ipotesi H_0 è la linearità del modello di regressione. In tutti e tre i casi (con variabili in forma quadratica e cubiche, solo quadratica, solo cubica) non si rifiuta l'ipotesi nulla. Viene così confermata la corretta specificazione del modello

1.1.4 Test di Chow

Regressione aumentata per il test Chow OLS, usando le osservazioni 1-75 Variabile dipendente: lgdp8

	coefficiente	errore std.	rapporto t	p-value
const	— 10,7499	2,36535	4,545	2,28e-05 ***
lrate005PopGrow	0,285895	0,928888	0,3078	0,7592
lrateInv	1,08344	0,183827	5,894	1,25e-07 ***
OECD	2,72927	4,47593	0,6098	0,5440
OE_lrate005PopGro	1,02782	1,58646	0,6479	0,5192
OE_lrateInv	0,583547	0,680128	0,8580	0,3939
Media var. dipendente	8,402521	SQM var. dipendente	0,951074	
Somma quadr. residui	22,38248	E.S. della regressione	0,569547	
R-quadro	0,665614	R-quadro corretto	0,641384	
F(5, 69)	27,46972	P-value(F)	3,44e-15	
Log-verosimiglianza	61,07502	Criterio di Akaike	134,1500	
Criterio di Schwarz	148,0550	Hannan-Quinn	139,7021	
F(3, 69) = 4,58823	,	•	,	
con p-value 0,0055				

I risultati mostrano che i coefficienti dei tre regressori sono altamente significativi, rifiutiamo quindi l'ipotesi nulla essendo il p-value <1%. Interpretazione del modello: se aumenta in media di una unità (1%) il tasso di crescita della popolazione, il decremento del reddito pro capite dimuinuirà in media di circa 2 unità (2%). Anche il Test F presenta un valore del p-value molto basso (<1%).

L'indice R^2 aggiustato è poco meno di 0,6 ciò significa che circa il 60% della varianza complessiva è spiegata dal modello appena stimato. Inoltre se la quota degli investimenti sul PIL aumenta in media di una unità (1%), allora anche il reddito pro capite aumenterà di 1,3 unità (1,31%)

Lo scopo del Test di Chow è verificare la presenza di eterogeneità nei parametri rispetto ai gruppi di Paesi OECD vs Non OECD. In questo caso viene rifiutata l'ipotesi nulla (p-value =0,0055), concludo quindi che vi è eterogeneità tra i parametri.

Con riferimento ai Paesi OECD (scelto nelle impostazioni di gretl), i test di nullità dei coefficienti stabiliscono che è significativamente $\neq 0$ la probabilità che siano nulli i coeff. di $lrate_Inv$ (è la quota media di investimenti sul PIL reale) e dell'intercetta, mentre per le altre 4 variabili non rifiutiamo l'ipotesi di nullità.

1.1.5 Significatività dell'intercetta

Effettuo un sotto-campionamento per Paesi non OECD (ma con buoni dati) ottenendo un modello del tipo

 $l_gdp85 = 10,745 + 0,2859 * lrate005PopGrow + 1,08344 * lrInv$

Modello 2: OLS, usando le osservazioni 1–53 Variabile dipendente: lgdp85

	Coeff	iciente	Err	ore Std.	rapporto t	p-value
const	10,74	99	2,6	0527	4,126	0,0001 ***
lrate 005 Pop Grow	0,28	5895	1,0	2311	$0,\!2794$	0,7811
lrateInv	1,08	344	0,20	02473	5,351	0,0000 ***
Media var. dipende	ente	7,9784	168	SQM v	ar. dipendente	0,777310
Somma quadr. res	idui	19,676	335	E.S. de	lla regressione	0,627317
R^2		0,3737	743	R^2 corr	retto	0,348692
F(2, 50)		14,919	970	P-value	e(F)	$8,\!30e\!-\!06$
Log-verosimiglianz	a	-48,945	557	Criterio	o di Akaike	103,8911
Criterio di Schwarz	Z	109,80	020	Hannar	n–Quinn	106,1642

Il modello di regressione per i paesi OECD (tramite OLS, dopo aver filtrato 53 osservazioni \to 75-53=22) è del tipo

 $l_{gdp} = 8,02061 - 0,741921 * lrate005 Popgrow + 0,499 * lrateInv$

Modello 3: OLS, usando le osservazioni 1–22 Variabile dipendente: lgdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	8,02061	2,51789	3,185	0,0049 ***
lrate005 Pop Grow	-0,741921	0,852195	-0,8706	0,3948
lrateInv	$0,\!499890$	$0,\!433896$	$1,\!152$	0,2636
Media var. dipende	ente 9,424	104 SQM va	ar. dipendente	0,379645
Somma quadr. resi	dui 2,706	122 E.S. del	lla regressione	0,377396
R^2	0,105	$926 ext{ } R^2 ext{ corr}$	etto	0,011813
F(2, 19)	1,125	522 P-value	(F)	0,345181
Log-verosimiglianza	-8,165	863 Criterio	di Akaike	22,33173
Criterio di Schwarz	25.60	485 Hannan	-Quinn	23.10278

L'intercetta è significativa per entrambi i Paesi: sia OECD che non OECD; la differenza dell'intercetta fra Paesi OECD e non è 10,7499-8,02061=2,72929. Confrontando le differenze sui restanti coefficienti, tanto più le differenze saranno diverse da zero tanto più sarà distorta la stima dell'effetto causale.

1.2 Modello 2 (vincolato)

Stimo ora il modello, sempre con metodo OLS, imponendo il vincolo che i coefficienti di $\ln(s) = -\ln(n+g+\delta)$. Saranno svolti gli stessi test per il modello precedente. Si assume che $g+\delta=0.05$, poichè piccole variazioni di questa ipotesi hanno un modesto effetto sulle stime. L'unica variabile esplicativa del modello è la differenza appena definita (diffl=lrateInv-lrate005PopGrow).

Modello 2: OLS, usando le osservazioni 1–76 Variabile dipendente: lgdp85

	Coefficiente	Errore St	rapporto t	p-value
$\frac{\mathrm{const}}{\mathrm{diffl}}$	$6.98182,0 \\ 1,11154$	$126446,55 \\ 0,164$	22,2,04e-057*** 6,747	7,58e-016***,
Media va	r. dipendente	7,649539	SQM var. dipendente	0,866098
Somma c	quadr. residui	34,83309	E.S. della regressione	0,686088
R^2		0,380849	R^2 corretto	$0,\!372482$
F(1,74)		$45,\!51857$	P-value (F)	2,90e-09
Log-veros	simiglianza	-78,19303	Criterio di Akaike	160,3861
Criterio o	di Schwarz	165,0475	Hannan-Quinn	162,2490

1.2.1 Test di Normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi-quadro(2) = 6,031 con p-value 0,04901. Rifiuto ipotesi nulla.

1.2.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2=1,683358,$ con p-value = P(Chi-quadro(2) > 1,683358) = 0,430986. Non rifiuto l'ipotesi nulla.

1.2.3 Test RESET

Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0.259749, con p-value = P(F(2,71) > 0.259749) = 0.772. Non rifiuto l'ipotesi nulla

Test RESET di specificazione (solo quadrati) Statistica test: F = 0.478325, con p-value = P(F(1,72) > 0.478325) = 0.491. Non rifiuto l'ipotesi nulla

Test RESET di specificazione (solo cubi) Statistica test: F = 0.467759, con p-value = P(F(1,72) > 0.467759) = 0.496. Non rifiuto l'ipotesi nulla

errore std. rapporto t p-value

1.2.4 Test di Chow

Test Chow per differenza strutturale rispetto a OECD F(2,71)=6,48079 con p-value 0,0026. Rifiuto ipotesi nulla.

1.2.5 Test con vincoli lineari

Con riferimento al Modello 2 del paragrafo 1.1.5, effettuiamo il test con il seguente vincolo lineare:

$$b[lrateInv] + b[lrate005PopGrow] = 0$$

Vincolo: b[lrateInv] + b[lrate005PopGrow] = 0Statistica test: F(1, 72) = 1,29333, con p-value = **0.259206**

				
const	7,09292	$0,\!145614$	48,71	2,04e-057 ***
lrateInv	$1,\!43096$	$0,\!139123$	10,29	7,58e-016 ***
lrate 005 Pop Grow	-1,43096	$0,\!139123$	$-10,\!29$	7,58e-016 ***

Errore standard della regressione = 0.61186

Stime vincolate:

Avendo un indice $R^2=0.61$ abbiamo che circa il 61% della varianza è spiegata dal modello, ciò significa che la regressione spiega circa il 61% della variabilità della variazione del reddito.

La restrizione effettuata che si è utilizzata non è rifiuta e pertanto i risultati supportano il modello di Solow. Inoltre dal test di Chow si legge un p-value più basso 0,0026, quindi si rifiuta maggiormente, rispetto al modello precedente, l'ipotesi nulla di omogeneità dei parametri.

Capitolo 2

Tavola II

Passando alla tavola di pg 102, osserviamo che il modello di Solow presenta l'aggiunta della variabile capitale umano. Infatti nel prosieguo delle loro ricerche gli autori osservarono che il capitale umano potenzialmente è in grado di alterare sia la modellizzazione teorica che l'analisi empirica della scelta economica. Successivamente essi mostrarono che l'esclusione di tale variabile abbia influenzato i coefficienti associati all'investimento in capitale fisico e alla crescita della popolazione. Nell'implementazione del modello essi

Per implementare il modello, limitarono l'analisi all'investimento in capitale umano nella forma di educazione scolastica, usando un'altra variabile - (school) che è h nel mio modello - al posto dell'accumulazione di capitale umano cosicché misurasse 'la percentuale di popolazione in età lavorativa iscritta alla scuola secondaria'. Segue formula del modello di regressione di pg. 418.

$$\ln\left[\frac{Y}{L}\right] = \ln[A(0)] + gt + \frac{\alpha}{1-\alpha}\ln(s_k) - \frac{\alpha}{1-\alpha}\ln(n+g+\delta) + \frac{\beta}{1-\alpha}\ln(h^*)$$

Di seguito vengono riportati i risultati ottenuti in gretl, dopo aver aggiunto la forma logaritmica alla variabile *School* ed aver replicato la colonna centrale della tavola II di pg. 420.

2.1 Modello 1

Modello 1: OLS, usando le osservazioni 1–75 Variabile dipendente: lgdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	7,79131	1,19242	6,534	8,30e-09 ***,
lrate005 Pop Grow	-1,49978	$0,\!403216$	-3,720	1,49e-05 ***,
lrateInv	0,700367	$0,\!150583$	4,651	0,0004 ***,
l r school	0.730549	0.0952292	7.671	6.79e-011 ***.

Media var. dipendente	8,402521	SQM var. dipendente	0,951074
Somma quadr. residui	14,67963	E.S. della regressione	$0,\!454704$
R^2	0,780692	R^2 corretto	0,771425
F(3,71)	84,24848	P-value (F)	$2,\!44e-\!23$
Log-verosimiglianza	$-45,\!25687$	Criterio di Akaike	$98,\!51375$
Criterio di Schwarz	107,7837	Hannan-Quinn	102,2151

Tutte le variabili del modello hanno coefficienti significativamente diversi da zero, inoltre anche il test F ha un p-value inferiore a 5%. Rifiutiamo quindi tutte le ipotesi nulle dei vari test. Dall'indice R^2 notiamo che il 77% della varianza del reddito pro-capite è spiegata dal modello. I coefficienti beta del modello si interpretano al solito modo: ad es. lrateschool ha un ceoff di 0.7, dunque se percentuale di popolazione in età lavorativa iscritta alla scuola secondaria aumenta dell'1% si osserverà un aumento del reddito pro-capite pari a circa lo 0.73%.

2.1.1 Test di Normalità dei residui

 H_0 : l'errore è distribuito normalmente.

Test per l'ipotesi nulla di distribuzione normale: Chi-quadro(2) = 2,123 con p-value 0,34593. Non rifiuto H_0 , quindi i residui di distribuiscono come una Normale.

2.1.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2=8,594657$, con p-value = P(Chi-quadro(9)>8,594657)=0,475500. Non si rifiuta H_0 ipotesi di omoschedasticità.

2.1.3 Test RESET

Test RESET di specificazione (quadrati e cubi) Statistica test: F=0.765695, con p-value = P(F(2,69)>0.765695)=0.469

Test RESET di specificazione (solo quadrati) Statistica test: F = 1,553304, con p-value = P(F(1,70) > 1,5533) = 0,217

Test RESET di specificazione (solo cubi) Statistica test: F = 1,552062, con p-value = P(F(1,70) > 1,55206) = 0,217

In tutti e tre i casi non rifiuto l'ipotesi nulla, dunque il modello è correttamente specificato.

Confronto fra i 2 modelli

Confronto Modello (paragrafo 1.1) senza la variabile School, con il modello appena calcolato

Modello 1: OLS, usando le osservazioni 1–75 (paragrafo 1.1) Variabile dipendente: lgdp85

2.1. MODELLO 1 15

•	Coefficiente	Errore Std.	rapporto t	p-value
const	5,34587i	1,54308	3,464	0,0009 ***
lrate005PopGrow	-2,01720	0,533866	-3,778	0,0003 ***
lrateInv	1,31755	$0,\!170943$	7,708	0,0000 ***
Media var. dipendente	8,402521	SQM var.	dipendente	0,951074
Somma quadr. residui	26,84751	(SEE) E.S	6. della regres	sione 0,610641
R^2	0,598908	R^2 correct	to	0,587767
F(2,72)	53,75507	P-value(F	")	$5,\!21\mathrm{e}\!\!-\!\!15$
Log-verosimiglianza	$-67,\!89608$	Criterio d	i Akaike	141,7922
Criterio di Schwarz	148,7446	Hannan-C	Quinn	$144,\!5682$

Modello 1: OLS, usando le osservazioni 1–75 (paragrafo 2.1) Variabile dipendente: lgdp85

	Coeffi	ciente	Err	ore Std.	rapporto t	p-value
const	7,79	131	1,19	9242	6,534	0,0000 ***
lrate 005 Pop Grow	-1,49	978	0,40	03216	-3,720	0,0004 ***
lrateInv	0,70	0367	0,18	50583	4,651	0,0000 ***
l_r_school	0,73	0549	0,09	952292	7,671	0,0000 ***
Media var. dipend	ente	8,402	521	SQM va	r. dipendente	0,951074
Somma quadr. res	idui	14,67	963	E.S. del	la regressione	$0,\!454704$
R^2		0,780	692	R^2 corre	etto	0,771425
F(3,71)		84,24	848	P-value	(F)	$2,\!44e-\!23$
Log-verosimiglianz	a -	$-45,\!25$	687	Criterio	di Akaike	$98,\!51375$
Criterio di Schwarz	Z	107,7	837	Hannan	-Quinn	102,2151

Il secondo modello ha un indice R^2 maggiore del primo, cosa che mi aspettavo poiché ha una un regressore in più. Il coefficiente di lrate005PopGrow è diminuito, impatta di meno sulla v. esplicativa, lo stesso avviene per lrateInv. Infine il secondo modello è l'interecetta (const) più alta, ciò è dovuto a causa dell'effetto del fattore di proporzionalità della variabile implementata.

2.1.4 Test di Chow

Verifichiamo se vi siano differenze strutturali rispetto alla varabile dicotomica OECD

Regressione aumentata per il test Chow

OLS, usando le osservazioni 1-75 Variabile dipendente: lgdp85	coeff	errore std.	nonn onto t	n wolue
	coen	errore std.	rapporto t	p-value
const	12,0683	1,79070	6,739	4,42e-09 ***
lrate005PopGrow	$0,\!357497$	0,699517	0,5111	0,6110
lrateInv	0,561413	$0,\!156657$	3,584	0,0006 ***
l_r_school	0,672092	0,0944468	7,116	9,38e-010 ***
OECD	3,43138	3,38927	1,012	0,3150
$OE_{lrate} = 005 PopGrow$	1,43300	1,20606	1,188	0,2390
OE_lrateInv	$0,\!285280$	0,529155	0,5391	0,5916
OE_l_r_school	0,0954788	0,392687	0,2431	0,8086
Media var. dipendente	8,402521	SQM v. dip	0,951074	
Somma quadr. residui	12,32292	E.S. regr	0,428864	
R-quadro	0,815900	R-quadro corretto	0,796666	
F(7, 67)	42,41903	P-value(F)	$3,\!25e-22$	
Log-verosimiglianza	38,69437	Criterio di Akaike	93,38874	
Criterio di Schwarz	111,9286	Hannan-Quinn	100,7915	
Test Chow per differenza				
strutturale risp a OECD				
F(4, 67) = 3,20338				
con p-value 0,0181				1
- ,				

Nel modello dei non OECD sono significativi sia l'intercetta e il coefficiente per la variabile $l_{rs}chool$. Come già visto per il modello della tabella 1, il reddito pro-capite di partenza per i paesi non OECD è più basso rispetto a quello dei paesi OECD; se pure i paesi OECD abbiano un livello di partenza più alto (8,637 contro il 7,84 per i paesi non OECD) la crescita media percentuale del reddito pro-capite è più lenta rispetto ai paesi non OECD.

Visto il valore-p ottenuto dal test rifiutiamo l'ipotesi nulla di omogeneità dei parametri.

Variabile dipendente: lgdp85 (NON OECD)				
coefficiente	errore std.	rapporto t	p-value	
const	12,0683	1,92017	$6,\!285$	8,50e-08 ***
lrateInv	$0,\!561413$	0,167984	3,342	0,0016 ***
lrate005PopGrow	$0,\!357497$	0,750095	0,4766	0,6358
l_r_school	$0,\!672092$	$0,\!101276$	6,636	2,43e-08 ***

da cui i modelli in formula:

 $l_g dp 85 = 12,06834 + 0,561413 * lrateInv + 0,357497 * lrate005 PopGrow + 0,67209 * l_{rs} chool(OECD) + 0.0000 + 0.0$

 $l_g dp 85 = 8,6368 + 0,276*lrateInv - 1,07551*rate005PopGrow5 + 0,767571*rschool(nonOECD) \\$

Modello 2: OLS, usando le oss 1-22 (OECD)					
Variabile dipendente: lgdp85					
coefficiente	errore std.	rapporto t	p-value		
const	8,63689	2,21427	3,901	0,0010	***
lrateInv	0,276134	0,388924	0,7100	0,4868	
lrate005PopGrow	1,07551	0,756005	1,423	0,1719	
l_r_school	0,767571	$0,\!293298$	2,617	0,0175	**
1_1_SCHOOL	0,101311	0,293290	2,017	0,0175	,

2.2 Modello 2 (vincolato)

Ricordando che

$$diffl = lrateInv - lrate005PopGrow$$

e costruendo la nuova variabile

 $diff_l_r_school_popgrow = l_r_school - lrate005PopGrow$

andiamo a stimare il nuovo modello:

Modello 1: OLS, usando le osservazioni 1–75 Variabile dipendente: lgdp85

	Coefficiente	Errore Std.	rapporto t	p-value
const	7,96624	0,154438	51,58	1,33e-058 ***,
diff_l_r_school_popgrow	0,733038	0,0930925	7,874	2,63e-011 ***,
diffl	0,709078	$0,\!137653$	5,151	2,17e-06 ***,
Media var. dipendente	8,402521	SQM var. dip	pendente	0,951074
Somma quadr. residui	14,68416	E.S. della reg	gressione	0,451605
R^2	0,780624	R^2 corretto		0,774531
F(2,72)	$128,\!1020$	P-value (F)		1,92e-24
Log-verosimiglianza	$-45,\!26844$	Criterio di A	kaike	96,53687
Criterio di Schwarz	103,4893	Hannan-Quir	nn	99,31291

L'indice \mathbb{R}^2 spiega il 78% della variabilità del reddito fra Paesi.

2.2.1 Test di Normalità dei residui

Test per l'ipotesi nulla di distribuzione normale: Chi-quadro(2) = 2,228conp-value0,32831. Non rifiuto l'ipotesi nulla.

2.2.2 Test di White per l'eteroschedasticità

Statistica test: $TR^2=5,926438,$ con p-value = P(Chi-quadro(5) > 5,926438) = 0,313443. Non rifiuto l'ipotesi nulla.

2.2.3 Test RESET

Test RESET di specificazione (quadrati e cubi) Statistica test: F = 0.616863, con p-value = P(F(2,70) > 0.616863) = 0.543. Non rifiuto l'ipotesi nulla.

Test RESET di specificazione (solo quadrati) Statistica test: F = 1,248747, con p-value = P(F(1,71) > 1,24875) = 0,268. Non rifiuto l'ipotesi nulla.

Test RESET di specificazione (solo cubi) Statistica test: F = 1,242627, con p-value = P(F(1,71) > 1,24263) = 0,269. Non rifiuto l'ipotesi nulla.

2.2.4 Test di Chow

Test Chow per differenza strutturale rispetto a OECD F(3, 69) = 2,40774 con p-value 0,0745. Rfiuto l'ipotesi nulla di omogeneità dei parametri.

2.2.5 Test con vincoli lineari

Come si è fatto per la tavola 1, imponiamo i seguenti vincoli sui coefficienti::

$$l_r_inv = -l_r_005popgrow$$

$$l_r_school = -l_r_005popgrow$$

in gretl

$$b[2] + b[3] = 0$$

$$b[4] + b[3] = 0$$

Stimiamo il modello OLS con i suddetti vincoli:

Insieme di vincoli				
1: $b[lrateInv] + b[lrate005PopGrow] = 0$				
2: $b[l_r_school] + b[lrate005PopGrow] = 0$				
Statistica test: $F(2, 18) = 0.544301$,				
con p-value = 0.589502				
Stime vincolate:	coeff	errore std.	rapporto t	p-value
const	10,0131	0,206780	48,42	3,31e-022 ***
lrateInv	0,599064	0,198372	3,020	0,0068 ***
lrate005PopGrow	0,599064	0,198372	3,020	0,0068 ***
l_r_school	0,599064	0,198372	3,020	0,0068 ***
Errore standard della regressione = 0.322398				

Le restrizioni sui coefficienti del modello non vengono rifiutate

19

2.3 Conclusione

Concludo affermando che l'aggiunta della variabile *capitaleumano*, anche se tramite un suo sostituto impreciso come la scolarità, migliora le prestazioni del modello di Solow contribuisce a migliorare la variabilità dei redditi pro-capite tra Paesi; contribuisce inoltre a alla riduzione dei valori dei coefficienti degli investimenti e della popolazione stimati nel Modello 1 del primo capitolo.

Bibliografia

[1] Weil D. Mankiw G, Romer D. A contribution to the empirics of economic growth. The Quarterly Journal of Economics, May 1992.