

Universidade do Minho

Escola de Engenharia

MESTRADO EM ENGENHARIA DE TELECOMUNICAÇÕES E INFORMÁTICA

Inteligência Artificial

Conceção e otimização de modelos de Machine Learning

RELATÓRIO DE PROJETO INDIVIDUAL

Camila Pinto - PG53712

Conteúdo

1	Intr	oauça	O	3				
2	Dataset							
	2.1	Atribu	itos	4				
	2.2	Explo	ração de Dados	6				
		2.2.1	Atributos region name e council area	6				
		2.2.2	Atributos car, yearbuilt e building area	7				
		2.2.3	Atributo propriety count, postcode e adress	7				
		2.2.4	Atributos latitude e longitude	8				
		2.2.5	Atributos price, landsize e builing area	8				
		2.2.6	Atributo price,rooms, distance	9				
		2.2.7	Atributo type e method	10				
	2.3	Prepar	ração de dados e Modelação	11				
		2.3.1	Column Filter	11				
		2.3.2	Numeric Outliers	12				
		2.3.3	Missing Values	12				
		2.3.4	Group By	12				
		2.3.5	Normalizer	13				
		2.3.6	Auto-Binner	13				
		2.3.7	Rule Engine	13				
	2.4	Model	o e Resultados	14				
		2.4.1	Decision Tree	14				
		2.4.2	Random Florest	16				
		2.4.3	Linear Regression	18				
3	Con	clusão		19				

Lista de Figuras

1	Resultados do módulo CrossTab entre councilarea e regioname	6
2	Amostra da tabela de estatísticas	7
3	Características do atributo postcode	7
4	Características do atributo propertycount	7
5	Características do atributo adress	8
6	Características dos atributos latitude e longitude	8
7	Resultado da visualização do diagrama de caixa	8
8	Correlações Lineares entre os atributos	9
9	Gráfico de barras do atributo type.	10
10	Gráfico de barras do atributo method.	10
11	Tratamento dos dados	11
12	Atributos retirados	11
13	Tratamento de outliers	12
14	Configuração Auto-Binner	13
15	Configuração Rule Engine	13
16	Configuração Partitioning para modelo Decision Tree e Random Florest	14
17	Modelo de Aprendizagem Decision Tree.	14
18	Configuração Decision Tree Learner	15
19	Resultados do modelo baseado em Decision Tree	15
20	Resultados do tuning ao modelo baseado em Decision Tree	16
21	Modelo de Aprendizagem Random Florest	16
22	Configuração Random Florest	17
23	Resultados do modelo Random Florest	17
24	Modelo de aprendizagem Linear Regression	18
25	Resultados do modelo Linear Regression	18

1 Introdução

O setor imobiliário, por natureza dinâmica reflete as condições socioeconômicas de uma região, refletindo não apenas as preferências dos compradores e vendedores, mas também as nuances econômicas e demográficas. Neste contexto, proponho um estudo aprofundado do mercado imobiliário de Melbourne, com o objetivo específico de analisar os dados e prever os preços de venda das propriedades.

Antes de mergulhar nos detalhes específicos do mercado imobiliário de Melbourne, é crucial observar lições aprendidas em outras regiões, especialmente em regiões do nosso próprio país, onde no geral os preços e rendas das residências têm vindo a aumentar significativamente, tornandose uma preocupação crescente para a comunidade portuguesa. Podemos destacar essa situação ao observar o paralelo existente com o mercado em Lisboa, Portugal, onde fatores como localização, infraestrutura e demanda exercem influência substancial sobre os preços das propriedades.

Por esse motivo, a análise destes dados pode servir como a base fundamental para a construção de modelos preditivos capazes de antecipar e prever tendências no mercado imobiliário. Esses *insights* abrangem a identificação de padrões de comportamento do mercado, a previsão de demandas futuras, entre outros.

Para atingir o objetivo de previsão de preços, adotarei a metodologia CRISP-DM (*Cross-Industry Standard Process for Data Mining*). Esta abordagem estruturada compreende etapas como: compreensão do negócio, compreensão dos dados e da sua qualidade, preparação dos dados (seleção dos atributos e limpeza), modelação, avaliação e, por fim, implementação.

O conjunto de dados (dataset) proposto contém informações abrangentes sobre o setor imobiliário em Melbourne, compreendendo cerca de 21 atributos, variando entre dados do tipo string, double e integer. Para a modelagem, propõe-se a utilização de dois modelos entre os seguintes: Decision Tree, Random Forest, Clustering (k-means) e Linear Regression.

2 Dataset

2.1 Atributos

O dataset apresenta os seguintes atributos:

- Suburb nome do subúrbio,
- Address morada,
- Rooms Número de quartos,
- Type br quarto(s); h casa, chalé, vila, geminada; u apartamento, duplex; t casa em condomínio; dev site terreno para desenvolvimento; o res outras residenciais,
- Price Preço em dollars,
- Method S propriedade vendida; SP propriedade vendida antecipadamente; PI propriedade não vendida em leilão; PN vendida antecipadamente sem divulgação; SN vendida sem divulgação; NB sem oferta; VB oferta do vendedor; W retirada antes do leilão; SA vendida após o leilão; SS vendida após o leilão sem divulgação de preço.
 N/A preço ou lance mais alto não disponível,
- SellerG Agente imobiliário,
- Date Data de venda,
- Distance Distância do CBD(central business district),
- Postcode código postal,
- Bedroom quantidade de quartos.
- Bathroom número de casas de banho.
- Car quantidade de vagas para os carros.
- Landsize tamanho do terreno.
- BuildingArea tamanho do edíficio.
- YearBuilt ano de construção,

- $\bullet\,$ Council Area - concelho,
- \bullet latitude,
- longitude,
- Regionname Nome da região,
- Propertycount quantidade de propriedades existentes no subúrbio.

2.2 Exploração de Dados

De modo a perceber a qualidade dos dados, procedeu-se à exploração destes através da utilização de alguns componentes de análise estatística nomeadamente o Data Explorer, Statistics, Crosstab, Linear Correlation, bem como componentes de visualização gráfica, tal como Box Plot e Bar Chart.

2.2.1 Atributos region name e council area

A partir da análise do dataset verifica-se que os atributos region name e council area estavam relacionados. Assim sendo, utilizou-se o módulo Crosstable e foi possível analisar a distribuição por frequência entre estas duas colunas do dataset. Analisando a figura nota-se que os atributos correspondem á mesma informação, visto que as frequências são em muitos casos 100%, e não em todos devido à elevada quantidade de missing values.

Figura 1: Resultados do módulo CrossTab entre councilarea e regioname.

2.2.2 Atributos car, yearbuilt e building area

A partir da análise do módulo Statistics verificou-se que os atributos mencionados possuem um elevado número de missing values. Juntamente com a visualização dos resultados do Linear Correlation verifiquei que o atributo yearbuilt tem uma correlação negativa com a variável price, pelo que deste modo a sua inclusão não seria benéfica.

Figura 2: Amostra da tabela de estatísticas.

2.2.3 Atributo propriety count, postcode e adress

Através do módulo Data Explorer, identificámos uma alta variância nas variáveis, propriety count e postcode, também notámos que a variável adress possuí um unique value > 1000. Desta forma, introduzir estes dados no modelo não tem grande importância, além de que pode levar a problemas de overfitting.

Figura 4: Características do atributo propertycount.

Figura 5: Características do atributo adress.

2.2.4 Atributos latitude e longitude

Em contrapartida estes atributos apresentam uma pequena variância e um baixo desvio padrão. Deste modo, como se trata de coordenadas pode-se assumir que sejam na mesma região.

Figura 6: Características dos atributos latitude e longitude.

2.2.5 Atributos price, landsize e builing area

Com o auxilio do módulo Data Explorer, seguido do módulo para visualização Box Plot, foi possível identificar a presença de uma grande quantidade de outliers nestes atributos. Na figura 7 podemos ver os outliers no caso da variável price.

Figura 7: Resultado da visualização do diagrama de caixa.

2.2.6 Atributo price, rooms, distance

Um dos principais objetivos ao analisar estes dados é investigar possíveis correlações entre os atributos em questão. Ao utilizar o módulo Correlação Linear, pude identificar algumas associações notáveis, destacando a relação significativa entre o price e o rooms(0.4966). Isto faz sentido no contexto do mercado imobiliário, pois, à medida que o número de divisões aumenta, o preço da propriedade também tende a subir. Esta tendência é observada de forma semelhante para os atributos bedroom(0,476), bathrooms(0,467). Concluo, assim, que a infraestrutura de uma habitação está correlacionada positivamente com o preço.

Por outro lado, o atributo distance apresenta uma correlação negativa (-0.1625). Isto significa que, à medida que a distância até ao Central Business District aumenta, o preço da propriedade tende a diminuir. Esta correlação reflete adequadamente as dinâmicas do mercado imobiliário, onde o aumento da distância de pontos com recursos como supermercados, postos de trabalho, etc., contribui para a diminuição do interesse de compra.

Figura 8: Correlações Lineares entre os atributos.

2.2.7 Atributo type e method

Cada propriedade apresenta um tipo, e consequentemente cada venda apresenta um método. Nas próximas figuras conseguimos ver os tipos e métodos que existem e a sua quantidade no dataset.

Figura 9: Gráfico de barras do atributo type.

Figura 10: Gráfico de barras do atributo method.

2.3 Preparação de dados e Modelação

Com base na etapa da exploração dos dados observou-se que era necessário tratar os dados de modo a melhorar a qualidade do dataset.

Figura 11: Tratamento dos dados.

2.3.1 Column Filter

De forma a colocar o dataset com melhor qualidade aplicou-se o módulo Column Filter. Este módulo permite retirar certos atributos à tabela. Assim, as colunas que foram retiradas podem ser observadas na figura 12. A decisão de remover esses atributos baseou-se em critérios específicos, incluindo a presença de um número considerável de valores ausentes, alta variabilidade e redundância de informações em relação a outros atributos. Estas decisões foram testadas de modo a perceber qual contribuía para o melhor desempenho do modelo.

Figura 12: Atributos retirados.

Além dos representados na imagem, retirou-se Latitude, Longitude e Property Count.

2.3.2 Numeric Outliers

Como vimos anteirormente, as variáveis apresentam outliers, assim temos de tratar os mesmos. Este nó deteta e trata os valores atípicos para cada uma das colunas selecionadas individualmente através do intervalo interquartil (IQR). Optei por tratar os atributos que apresentam valores mais extremos e contribuem para uma melhoria do modelo.

Figura 13: Tratamento de outliers.

2.3.3 Missing Values

Como observado no módulo Statistics, identificámos a presença de missing values nos dados, optamos por excluir o atributo "YearBuilt", sendo um dos principais motivos a alta incidência de valores ausentes. Além disso, notamos a presença de valores ausentes nas variáveis "Building Area" (tipo double) e "Car" (tipo integer). Para lidar com esses valores ausentes, aplicamos o módulo Missing Values, tal que:

Number (integer): Mediana Number (double): Mediana

2.3.4 Group By

Tendo em conta que no setor imobiliário, as características da casa têm uma influência significativa no preço, agrupei todas as caracteríticas relevantes com a média do atributo preço. Para tal utilizei o módulo group by.

2.3.5 Normalizer

Como os atributos apresentam escalas muito diferetes, e para treinar o modelo de Regressão Linear é benéfico colocar todas as variáveis na mesma escala, utilizei o Normalizer, para colocar na escala [0,1].

2.3.6 Auto-Binner

No módulo Auto-Binner procedeu-se à uniformização dos dados. Deste modo, foi possível agrupar dados numéricos em intervalos, denominados de bins. O número de bins a utilizar foi sendo mudado ao longo do desenvolvimento do projeto até encontrar um valor, no qual se atingiu o melhor resultado, neste caso, 3 bins.

Figura 14: Configuração Auto-Binner.

2.3.7 Rule Engine

Neste módulo procedeu-se a alteração da denominação dos bins do atributo Mean(price) para uma certa categoria. A denominação das categorias usadas foram "Low, Medium e High". Também foi selecionada a opção de substituir a coluna do price.

Figura 15: Configuração Rule Engine.

2.4 Modelo e Resultados

Para o desenvolvimento de modelos de aprendizagem foram utilizados os modelos: Decision Tree, Random Florest e o Linear Regression.

Para alimentar o learner, utilizou-se o módulo **Partitioning** de forma a dividir o dataset em dois.No caso dos modelos Linear Decision Trees, 80% train e 20% test, no caso do modelo Linear Regression 70% train e 30% test.

De modo a homogeneizar a amostra foi usado o modo *stratifed sampling*, assim foram testados vários atributos de modo a selecionar o que iria fornecer melhor desempenho ao modelo. Optouse pelo *type*, cuja diferença do segundo melhor classifado é 1,94%.

Para o modelo Regression Linear, optei por usar o modo Draw Randomly.

Figura 16: Configuração Partitioning para modelo Decision Tree e Random Florest.

2.4.1 Decision Tree

Na figura 17 pode-se observar a implementação do modelo de aprendizagem Decision Tree.

Figura 17: Modelo de Aprendizagem Decision Tree.

Após vários testes, concluiu-se que a melhor configuração do node coincide com a utilização do Gini index e do MDL.

Figura 18: Configuração Decision Tree Learner.

Assim, obteu-se uma accuracy de 77,19%.

Figura 19: Resultados do modelo baseado em Decision Tree.

Tuning

Para otimizar o modelo realizei o processo de ajustar os hiperparâmetros para melhorar seu desempenho.

Primeiro testei aumentando o número de min number records per node alncançando o valor ótimo demonstrado na figura 18.

Posteriormente, decidi implementar um loop com o objetivo de otimizar os parâmentros respeitando a função de preço, para tal segui o que foi aprendido nas aulas. Deste modo verifiquei que o melhor valor é 0,777.

Figura 20: Resultados do tuning ao modelo baseado em Decision Tree.

2.4.2 Random Florest

Utilizei também o modelo de aprendizagem Random Florest para verificar se a utilização de múltiplas árvores de decisão traria alguma vantagem em termos de resultados, assim verifiquei que o valor de accuracy aumentou.

Figura 21: Modelo de Aprendizagem Random Florest.

Após vários testes, conclui que a melhor configuração do modelo é com base no Information Gain com uma diferença de 0,68% em relação ao $Gini\ Index$.

Figura 22: Configuração Random Florest.

Assim, obtive uma accuracy de 80,66%.

Scorer View Confusion Matrix											
		High (Predicted)	Low (Predicted)		Medium (Predicted)					
High (Actual)		755	755		5	146	83.33%				
Low (Actual)		5		767		108	87.16%				
Medium (A	(ctual)	127		121		614	71.23%				
		85.12%			85.89%	70.74%					
Overall Statistics											
Overall Accuracy Overall Error		Cohen's kappa (ð□□¹)	Correctly	Classified	Incorrectly Classified						
80.66%	19.34%	0.710	2136		512	1					

Figura 23: Resultados do modelo Random Florest.

2.4.3 Linear Regression

Para conhecimento e avaliação adicional implementei também o modelo Linear Regression.

Figura 24: Modelo de aprendizagem Linear Regression.

Desta forma, obtivemos os seguintes resultados:

Row	Prediction (Mean(Price)) Number (double)				
R^2	0.676				
mea	0.102				
mea	0.017				
root	0.131				
mea	0.004				
mea	0.307				
adju	0.676				

Figura 25: Resultados do modelo Linear Regression.

Tendo em conta estes resultados verificamos que o valor de 0.676 significa que aproximadamente 67,6% da variabilidade nos dados de saída é explicada pelo modelo. O valor mean signed difference de 0.004 sugere que, em média, o modelo tem uma ligeira tendência de superestimar as previsões em relação aos valores reais. Por fim, o valor R² ajustado ,0.676, é o mesmo que o R² padrão, indicando que o ajuste do modelo permanece consistente após ajustar para o número de variáveis.

3 Conclusão

Em suma, com a realização deste projeto foi possível conceber e otimizar modelos de machine learning, nomeadamente os modelos de Decision Tree, Random Florest e Linear Regression.

Além disso, verificou-se um desempenho ligeiramente melhor por parte do modelo baseado em Random Forest.