

Tutorial 4 Random Signal Analysis

Problem 1 (Transmission through LTI)

Prove that if a WSS process X(t) with mean μ_X and autocorrelation function $R_X(\tau)$ passes through an LTI system with impulse response h(t), the output process is also a WSS process with:

- 1) Mean: $\mu_Y = \mu_X \int_{-\infty}^{\infty} h(t) dt = \mu_X H(0)$
- 2) Autocorrelation: $R_Y(\tau) = R_X(\tau) * h(\tau) * h(-\tau)$
- 3) Power Spectrum: $G_Y(f) = G_X(f) |H(f)|^2$

Problem 2 (Power)

Determine the power of the following random signals:

1) X(t)=X, and X is a uniform random variable over [-A/2, A/2].

2)
$$X(t) = \sum_{n=-\infty}^{\infty} Z_n \cdot v(t - nT_0)$$

where $Z_n=Z$ is a discrete random variable and v(t) is a deterministic signal with duration T_0 , i.e., $v(t)\neq 0$ if and only if $|t| \leq T_0/2$.