Logica e Reti Logiche

Esercitazione

Francesco Pasquale

18 maggio 2023

Esercizio 1. Scrivere in binario i seguenti numeri espressi in decimale¹

$$11_{10}$$
, 87_{10} , 118_{10} , 365_{10} , 512_{10}

Esercizio 2. Scrivere in binario la vostra data di nascita.

Tipicamente il formato decimale di una data è gg/mm/aaaa. Come dovrebbe essere il formato di una data in binario?

Se doveste scegliere una base b per scrivere le date, quale scegliereste? perché?

Esercizio 3. Scrivere in decimale i seguenti numeri espressi in binario

$$1010_2$$
, 110110_2 , 11001100_2 , 11110000_2 , 01011010_2

Esercizio 4. Scrivere in esadecimale i numeri degli Esercizi 1 e 3.

Esercizio 5. Scrivere in binario e in decimale i seguenti numeri espressi in esadecimale

$$A5_{16}$$
, $35B1_{16}$, $CEE22_{16}$, $6E42_{16}$, $D0000000_{16}$

Esercizio 6. Scrivere in esadecimale il vostro numero di matricola.

Esercizio 7. Scrivere in complemento a due a dieci bit i numeri seguenti

$$11_{10}$$
, -87_{10} , 118_{10} , -365_{10} , -512_{10}

Esercizio 8. Che numeri codificano in complemento a due a sei bit le seguenti sequenze di bit?

$$010101_{\bar{2}}, \quad 101010_{\bar{2}}, \quad 110101_{\bar{2}}, \quad 011111_{\bar{2}}, \quad 111111_{\bar{2}}$$

Esercizio 9. Scrivere in complemento a due a sei bit i seguenti numeri decimali ed eseguire le somme. Quali di loro vanno in overflow?

$$16_{10} + 9_{10}$$
, $27_{10} + 31_{10}$, $-4_{10} + 19_{10}$, $3_{10} + (-32_{10})$ $-27_{10} + (-31_{10})$

¹Usiamo la notazione n_b per indicare che n è la rappresentazione del numero in base b. Per esempio, 121_{10} è una rappresentazione del numero centoventuno, mentre 121_3 è una rappresentazione del numero sedici. Il numero b, che indica la base, si intende sempre espresso in decimale.

		000	001	010	011	100	101	110	111
		0	1	2	3	4	5	6	7
0000	0	NUL	DLE	SP	0	<u>@</u>	P	*	p
0001	1	SOH	DC1		1	A	Q	a	q
0010	2	STX	DC2	"	2	В	R	b	r
0011	3	ETX	DC3	#	3	C	S	c	S
0100	4	EOT	DC4	S	4	D	T	d	t
0101	5	ENQ	NAK	%	5	Е	U	e	u
0110	6	ACK	SYN	&	6	F	V	f	v
0111	7	BEL	ETB	4	7	G	W	g	w
1000	8	BS	CAN	(8	Н	X	h	X
1001	9	HT	EM)	9	I	Y	i	У
1010	10	LF	SUB	*	:	J	Z	j	Z
1011	11	VT	ESC	+	;	K	[k	{
1100	12	FF	FS	,	<	L	\	1	!
1101	13	CR	GS	-	=	M]	m	}
1110	14	SO	RS		^	N	•	n	?
1111	15	SI	US	/	?	О	-	0	DEL

Figura 1: Codifica ASCII

Nella codifica ASCII (si veda la Figura 1) si usano 7 bit per codificare $2^7=128$ caratteri.²

Esercizio 10. Scrivete il vostro nome in codifica ASCII. Scrivete poi in esadecimale la codifica di ogni lettera del vostro nome.

Un grafo G è una coppia G=(V,E) in cui V è un insieme finito ed E è un insieme di coppie di elementi di V. Per esempio, G=(V,E) dove

$$V = \{a, b, c, d\}, \qquad E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}\}. \tag{1}$$

Gli elementi di V si chiamano nodi (o vertici) del grafo, gli elementi di E si chiamano archi. Ogni grafo può essere disegnato pensando ai nodi come punti e agli archi come linee che uniscono i punti. Per esempio, il grafo in (1) può essere disegnato come in Figura 2

Un grafo in cui $V \in \{0,1\}^n$, ossia l'insieme di tutte le stringhe di n bit, ed E è formato da tutte le coppie di stringhe che differiscono per un unico bit si chiama n-cubo.

Esercizio 11. Disegnare un 3-cubo e un 4-cubo.

Esercizio 12. Quanti nodi contiene un *n*-cubo? quanti archi?

 $^{^2}$ Nella tabella in Figura 1 i tre bit che indicizzano le colonne sono quelli più significativi. Per esempio, la codifica della lettera ${\cal F}$ è 1000110

Figura 2: Disegno del grafo in (1)

Un cammino in un grafo è una sequenza di nodi (v_0, v_1, \ldots, v_k) tali che $\{v_i, v_{i+1}\}$ è un arco per ogni $i = 0, 1, \ldots, k-1$. Per esempio, nel grafo in (1) (si faccia riferimento anche alla Figura 2) (a, c, d) è un cammino, mentre (a, b, d) non è un cammino.

Esercizio 13. Evidenziare il cammino individuato dal codice Gray nel disegno di un 3-cubo e nel disegno di un 4-cubo.

Esercizio 14. Costruire un circuito che implementi la formula seguente

$$(p \to q \land r) \lor (\neg q \to \neg p)$$

Esercizio 15. Costruire un circuito che implementi la seguente tabella di verità

Esercizio 16. Costruire un circuito che implementi la seguente funzione booleana³ $f: \{0,1\}^3 \to \{0,1\}$

$$f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$$

Esercizio 17. Costruire un circuito che implementi la seguente funzione booleana $f: \{0,1\}^4 \to \{0,1\}$

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{se } x_1 + x_2 + x_3 + x_4 \equiv 0 \mod 3 \\ 0 & \text{altrimenti} \end{cases}$$

Esercizio 18. Scrivere la mappa di Karnaugh della tabella di verità dell'Esercizio 15. Qual è il numero di implicanti che avete?

 $^{^3}$ Con in simbolo \oplus indichiamo l'operatore XOR (OR esclusivo), quindi in generale $x_1 \oplus \cdots \oplus x_n$ vale 1 se un numero dispari di variabili sono 1 e vale 0 altrimenti

Esercizio 19. Sappiamo come costruire una formula in forma normale disgiuntiva (somma di prodotti) a partire da una mappa di Karnaugh. Come possiamo costruire una formula in forma normale congiuntiva (prodotto di somme) a partire dalla stessa mappa (senza costruire prima la disgiuntiva)?

Esercizio 20. Progettare un circuito che prenda in input due numeri espressi in binario a quattro bit, $\mathbf{a} = a_3 a_2 a_1 a_0$ e $\mathbf{b} = b_3 b_2 b_1 b_0$ e restituisca 1 se \mathbf{b} è il doppio di \mathbf{a} e 0 altrimenti (per esempio, se $a_3 a_2 a_1 a_0 = 0110$ e $b_3 b_2 b_1 b_0 = 1100$ il circuito deve restituire 1, perché $\mathbf{a} = (6)_{10}$ e $\mathbf{b} = (12)_{10}$).

Esercizio 21. Progettare un circuito che implementi il seguente algoritmo.

```
INPUT: Tre bit, x_1, x_2, x_3.

OUTPUT: Un bit, y.

if x_1 = 1 then

y = x_2

else

y = x_3

return y
```

Esercizio 22. Progettare un circuito con tre ingressi, x_0, x_1, x_2 , e un'uscita, y, che implementi la formula seguente

$$y = \overline{x_0}x_2 + \overline{x_1}x_2 + x_0x_1\overline{x_2}$$

usando due *Half-Adder* e nessun'altra porta logica.