Recenzja:

Model

Prospects of green hydrogen in Poland: A techno-economic analysis using a Monte Carlo approach

Jakub Ostrzołek

Autorzy pracy źródłowej: Pablo Benalcazar, Aleksandra Komorowska

Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska

12 czerwca 2024

Plan prezentacji

- Wprowadzenie do tematu
- 2 Model
- Wyniki
- Podsumowanie

Motywacja

Nadchodzące zmiany energetyczne:

EU: plan osiągnięcia nautralności klimatycznej do 2050

Model

- 17.5 GW łącznej mocy elektrolizerów H₂ do 2025
- produkcja + import 10 mln ton H₂ do 2030
- brak emisji gazów cieplarnianych do 2050
- Polityka Energetyczna Polski do 2040
- Oska Strategia Wodorowa do roku 2030

Niewiele analiz rozwojowych gospodarki H₂ na terenie Polski w stosunku do państw zachodnich. Brak analiz MC.

Zastosowania H₂

Po co nam H₂?

- posiada dużą tzw. gęstość energii tradycyjne baterie $0.1-0.27 \ kWh/kg$ benzyna $13 \ kWh/kg$ $H_2 \ (700 \ bar)$ $39.6 \ kWh/kg$
- można go tworzyć w pikach produkcji energii a potem zużyć o dogodnej porze
- można efektywnie transportować energię na duże odległości
- inne zastosowania, np: przemysł, transport, ogrzewanie

Produkcja H₂

Rodzaje produkcji H₂

- szary z gazu naturalnego lub metanu ($\sim 97\%$)
- o niebieski szary + przechwytywanie CO₂
- fioletowy z energii atomowej
- zielony z energii odnawialnej

Efektywność

Czynniki wpływające na efektywność farmy H₂

- ullet farma = elektrownia odnawialna + elektrolizer H_2
- sprzęt: elektrolizery (PEM), elektrownie (wiatrowe, PV, ...)
- warunki pogodowe, geologiczne
- koszta: CAPEX + OPEX (obsługa, prąd, woda, utrzymanie)
- metryka?

$$\begin{split} LCOH &= \frac{\left(\textit{C}_{\textit{CC}} \times \textit{CRF}\right) + \textit{C}_{\textit{O\&M}} + \textit{C}_{\textit{REP}}}{\textit{M}_{\text{H}_2}} \\ \textit{CRF} &= \frac{\textit{i} \times (1 + \textit{i})^{\textit{N}}}{(1 + \textit{i})^{\textit{N}} - 1} \\ \textit{C}_{\textit{CC}} &= \textit{P}_{\textit{el}} \times \textit{I}_{\textit{el}} \\ \textit{C}_{\textit{O\&M}} &= (\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}} \times \textit{c}_{\textit{e}}) + (\gamma \times \textit{M}_{\text{H}_2} \times \textit{c}_{\textit{w}}) + (\textit{C}_{\textit{CC}} \times \phi) \\ \textit{M}_{\text{H}_2} &= \frac{\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}}}{\textit{E}_{\textit{el}}} \\ \textit{C}_{\textit{REP}} &= \frac{\textit{i} \times (1 + \textit{i})^{\textit{N}}}{(1 + \textit{i})^{\textit{N}} - 1} \times \frac{\textit{C}_{\textit{TotalRep}}}{(1 + \textit{i})^{\textit{t}}} \end{split}$$

LCOH

$$LCOH = \frac{(C_{CC} \times CRF) + C_{O\&M} + C_{REP}}{M_{\rm H_2}}$$

$$CRF = \frac{i \times (1+i)^N}{(1+i)^N - 1}$$

$$C_{CC} = P_{el} \times I_{el}$$

$$C_{O\&M} = (\tau \times P_{el} \times u_{el} \times c_e) + (\gamma \times M_{\rm H_2} \times c_w) + (C_{CC} \times \phi)$$

$$M_{\rm H_2} = \frac{\tau \times P_{el} \times u_{el}}{E_{el}}$$

$$C_{REP} = \frac{i \times (1+i)^N}{(1+i)^N - 1} \times \frac{C_{TotalRep}}{(1+i)^t}$$

$$LCOH = \frac{(C_{CC} \times CRF) + C_{O\&M} + C_{REP}}{M_{\rm H_2}}$$

$$CRF = \frac{i \times (1+i)^N}{(1+i)^N - 1}$$

$$C_{CC} = P_{el} \times I_{el}$$

$$C_{O\&M} = (\tau \times P_{el} \times u_{el} \times c_e) + (\gamma \times M_{\rm H_2} \times c_w) + (C_{CC} \times \phi)$$

$$M_{\rm H_2} = \frac{\tau \times P_{el} \times u_{el}}{E_{el}}$$

$$C_{REP} = \frac{i \times (1+i)^N}{(1+i)^N - 1} \times \frac{C_{TotalRep}}{(1+i)^t}$$

$$\begin{split} LCOH &= \frac{\left(C_{CC} \times CRF\right) + C_{O\&M} + C_{REP}}{M_{\mathrm{H}_2}} \\ CRF &= \frac{i \times (1+i)^N}{(1+i)^N - 1} \\ C_{CC} &= P_{el} \times I_{el} \\ C_{O\&M} &= \left(\tau \times P_{el} \times u_{el} \times c_e\right) + \left(\gamma \times M_{\mathrm{H}_2} \times c_w\right) + \left(C_{CC} \times \phi\right) \\ M_{\mathrm{H}_2} &= \frac{\tau \times P_{el} \times u_{el}}{E_{el}} \\ C_{REP} &= \frac{i \times (1+i)^N}{(1+i)^N - 1} \times \frac{C_{TotalRep}}{(1+i)^t} \end{split}$$

$$\begin{split} LCOH &= \frac{\left(C_{CC} \times CRF\right) + C_{O\&M} + C_{REP}}{M_{\mathrm{H}_2}} \\ CRF &= \frac{i \times (1+i)^N}{(1+i)^N - 1} \\ C_{CC} &= P_{el} \times I_{el} \\ C_{O\&M} &= (\tau \times P_{el} \times u_{el} \times c_e) + (\gamma \times M_{\mathrm{H}_2} \times c_w) + (C_{CC} \times \phi) \\ M_{\mathrm{H}_2} &= \frac{\tau \times P_{el} \times u_{el}}{E_{el}} \\ C_{REP} &= \frac{i \times (1+i)^N}{(1+i)^N - 1} \times \frac{C_{TotalRep}}{(1+i)^t} \end{split}$$

Wvniki

LCOH

$$\begin{split} LCOH &= \frac{\left(\textit{C}_{\textit{CC}} \times \textit{CRF}\right) + \textit{C}_{\textit{O\&M}} + \textit{C}_{\textit{REP}}}{\textit{M}_{\text{H}_2}} \\ \textit{CRF} &= \frac{\textit{i} \times (1 + \textit{i})^{\textit{N}}}{(1 + \textit{i})^{\textit{N}} - 1} \\ \textit{C}_{\textit{CC}} &= \textit{P}_{\textit{el}} \times \textit{I}_{\textit{el}} \\ \textit{C}_{\textit{O\&M}} &= (\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}} \times \textit{c}_{\textit{e}}) + (\gamma \times \textit{M}_{\text{H}_2} \times \textit{c}_{\textit{w}}) + (\textit{C}_{\textit{CC}} \times \phi) \\ \textit{M}_{\text{H}_2} &= \frac{\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}}}{\textit{E}_{\textit{el}}} \\ \textit{C}_{\textit{REP}} &= \frac{\textit{i} \times (1 + \textit{i})^{\textit{N}}}{(1 + \textit{i})^{\textit{N}} - 1} \times \frac{\textit{C}_{\textit{TotalRep}}}{(1 + \textit{i})^{\textit{t}}} \end{split}$$

Capital Recovery Factor?

$$\begin{split} LCOH &= \frac{\left(\textit{C}_{\textit{CC}} \times \textit{CRF}\right) + \textit{C}_{\textit{O\&M}} + \textit{C}_{\textit{REP}}}{\textit{M}_{\text{H}_2}} \\ \textit{CRF} &= \frac{\textit{\textbf{i}} \times (1+\textit{\textbf{i}})^{\textit{N}}}{(1+\textit{\textbf{i}})^{\textit{N}} - 1} \\ \textit{C}_{\textit{CC}} &= \textit{P}_{\textit{el}} \times \textit{I}_{\textit{el}} \\ \textit{C}_{\textit{O\&M}} &= (\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}} \times \textit{c}_{\textit{e}}) + (\gamma \times \textit{M}_{\text{H}_2} \times \textit{c}_{\textit{w}}) + (\textit{C}_{\textit{CC}} \times \phi) \\ \textit{M}_{\text{H}_2} &= \frac{\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}}}{\textit{E}_{\textit{el}}} \\ \textit{C}_{\textit{REP}} &= \frac{\textit{\textbf{i}} \times (1+\textit{\textbf{i}})^{\textit{N}}}{(1+\textit{\textbf{i}})^{\textit{N}} - 1} \times \frac{\textit{C}_{\textit{TotalRep}}}{(1+\textit{\textbf{i}})^{\textit{t}}} \end{split}$$

Capital Recovery Factor?

		N					
		10	20	30	40		
	0.1	0.163	0.117	0.106	0.102		
	0.2	0.239	0.205	0.201	0.200		
	0.3	0.323	0.302	0.300	0.300		
	0.4	0.414	0.400	0.400	0.400		
i	0.5	0.509	0.500	0.500	0.500		
	0.6	0.606	0.600	0.600	0.600		
	0.7	0.703	0.700	0.700	0.700		
	0.8	0.802	0.800	0.800	0.800		
	0.9	0.901	0.900	0.900	0.900		

CRM w zależności od i oraz N

Utilization rate?

$$\begin{split} LCOH &= \frac{\left(\textit{C}_{\textit{CC}} \times \textit{CRF}\right) + \textit{C}_{\textit{O\&M}} + \textit{C}_{\textit{REP}}}{\textit{M}_{\text{H}_2}} \\ \textit{CRF} &= \frac{\textit{i} \times (1+\textit{i})^{\textit{N}}}{(1+\textit{i})^{\textit{N}} - 1} \\ \textit{C}_{\textit{CC}} &= \textit{P}_{\textit{el}} \times \textit{I}_{\textit{el}} \\ \textit{C}_{\textit{O\&M}} &= (\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}} \times \textit{c}_{\textit{e}}) + (\gamma \times \textit{M}_{\text{H}_2} \times \textit{c}_{\textit{w}}) + (\textit{C}_{\textit{CC}} \times \phi) \\ \textit{M}_{\text{H}_2} &= \frac{\tau \times \textit{P}_{\textit{el}} \times \textit{u}_{\textit{el}}}{\textit{E}_{\textit{el}}} \\ \textit{C}_{\textit{REP}} &= \frac{\textit{i} \times (1+\textit{i})^{\textit{N}}}{(1+\textit{i})^{\textit{N}} - 1} \times \frac{\textit{C}_{\textit{TotalRep}}}{(1+\textit{i})^{\textit{t}}} \end{split}$$

Replacement costs?

$$\begin{split} LCOH &= \frac{\left(C_{CC} \times CRF\right) + C_{O\&M} + C_{REP}}{M_{\mathrm{H}_2}} \\ CRF &= \frac{i \times (1+i)^N}{(1+i)^N - 1} \\ C_{CC} &= P_{el} \times I_{el} \\ C_{O\&M} &= (\tau \times P_{el} \times u_{el} \times c_e) + (\gamma \times M_{\mathrm{H}_2} \times c_w) + (C_{CC} \times \phi) \\ M_{\mathrm{H}_2} &= \frac{\tau \times P_{el} \times u_{el}}{E_{el}} \\ C_{REP} &= \sum_{\mathbf{f}} \frac{i \times (1+i)^N}{(1+i)^N - 1} \times \frac{C_{TotalRep}}{(1+i)^t} \end{split}$$

Diagram modelu

Stałe

Parameter	Unit	Scenario I	Scenario II	Scenario III	Reference
Rated power of electrolyzer	kW	1000	6000	20000	[18,51]
Stack efficiency ^a	%	59.0	63.0	71.0	[59]
Power consumption	kWh/kg	51.0	46.0	44.0	[59]
Lifetime	yrs	20	20	30	[38,86-89]
Maintenance cost	% of electrolyzer cost	5.0	2.2	1.85	[89]
Replacement cost	% of electrolyzer cost	42.0	42.0	42.0	[14,31,90]
Replacement year	yrs	7.0	10.0	15.0	[91]
Water requirement	L/kg H ₂	9.0	9.0	9.0	[31]
Lower heating value of hydrogen	kWh/kg	33.3	33.3	33.3	[89]
^a Based on lower heating value (LHV)).				

Model

Wartości stałych

Stałe

$$LCOH = rac{(oldsymbol{C}_{CC} imes oldsymbol{CRF}) + oldsymbol{C}_{O\&M} + oldsymbol{C}_{REP}}{oldsymbol{M}_{ ext{H}_2}}$$
 $CRF = rac{i imes (1+i)^N}{(1+i)^N - 1}$
 $C_{CC} = oldsymbol{P}_{el} imes l_{el}$
 $C_{O\&M} = (oldsymbol{ au} imes oldsymbol{P}_{el} imes u_{el} imes c_e) + (oldsymbol{\gamma} imes oldsymbol{M}_{ ext{H}_2} imes c_w) + (oldsymbol{C}_{CC} imes \phi)$
 $M_{ ext{H}_2} = rac{oldsymbol{ au} imes oldsymbol{P}_{el} imes u_{el}}{oldsymbol{E}_{el}}$
 $C_{REP} = rac{i imes (1+i)^N}{(1+i)^N - 1} imes rac{oldsymbol{C}_{TotalRep}}{(1+i)^t}$

Zmienne

Parameter	Unit	Scenario I	Scenario II	Scenario III
Cost of electrolyzer	€/kW	PERT (500.0; 1164.8; 2097.6)	PERT (315.6; 362.0; 403.4)	PERT (138.6; 174.5; 210.5)
Electricity price (onshore wind)	€/MWh	PERT (24.7; 53.1; 131.3)	PERT (25.4; 33.9; 42.3)	PERT (16.9; 21.1; 25.4)
Electricity price (ground solar PV)	€/MWh	PERT (28.7; 53.0; 145.7)	PERT (16.9; 42.3; 67.7)	PERT (8.5; 22.5; 42.3)
Price of water	€/kg	Tr (0.00094; 0.00098; 0.00103)	Tr (0.00106; 0.00113; 0.00118)	Tr (0.00143; 0.00150; 0.00158)
Interest rate	%	Tr (6.0; 8.0; 10.0)	Tr (6.0; 8.0; 10.0)	Tr (6.0; 8.0; 10.0)

Note: PERT(A; B; C) — Beta-PERT distribution with a λ (lambda) parameter of 4; Tr(A; B; C) — Triangular distribution; A — the lowest possible value, B — the highest probability value, C — the highest possible values.

Wartości zmiennych

Zmienne

Parameter	Unit	Scenario I	Scenario II	Scenario III
Cost of electrolyzer	€/kW	PERT (500.0; 1164.8; 2097.6)	PERT (315.6; 362.0; 403.4)	PERT (138.6; 174.5; 210.5)
Electricity price (onshore wind)	€/MWh	PERT (24.7; 53.1; 131.3)	PERT (25.4; 33.9; 42.3)	PERT (16.9; 21.1; 25.4)
Electricity price (ground solar PV)	€/MWh	PERT (28.7; 53.0; 145.7)	PERT (16.9; 42.3; 67.7)	PERT (8.5; 22.5; 42.3)
Price of water	€/kg	Tr (0.00094; 0.00098; 0.00103)	Tr (0.00106; 0.00113; 0.00118)	Tr (0.00143; 0.00150; 0.00158)
Interest rate	%	Tr (6.0; 8.0; 10.0)	Tr (6.0; 8.0; 10.0)	Tr (6.0; 8.0; 10.0)

Note: PERT(A; B; C) – Beta-PERT distribution with a \(\(\) (lambda\) parameter of 4; \(\) Tr(A; B; C) – Triangular distribution; A – the lowest possible value, B – the highest probability value, C – the highest possible values.

Wartości zmiennych

Utilization rate u_{el} ???

Gdzie jest u_{el} ?

NUTS-2 2021	Region	Ground PV CF	Onshore Wind CF		
PL21	Małopolskie	12.64	17.12		
PL22	Śląskie	12.65	17.12		
PL41	Wielkopolskie	12.76	25.57		
PL42	Zachodniopomorskie	11.92	33.10		
PL43	Lubuskie	12.69	23.47		
PL51	Dolnośląskie	12.82	26.58		
PL52	Opolskie	12.95	26.38		
PL61	Kujawsko-pomorskie	12.35	28.88		
PL62	Warmińsko-mazurskie	11.82	29.58		
PL63	Pomorskie	11.84	35.04		
PL71	Łódzkie	12.70	23.62		
PL72	Świętokrzyskie	12.94	20.77		
PL81	Lubelskie	12.97	23.61		
PL82	Podkarpackie	12.66	16.72		
PL84	Podlaskie	12.23	28.15		
PL91	Warszawski stołeczny	12.45	24.67		
PL92	Mazowiecki regionalny	12.45	24.67		
Source: Own work based on [80,81].					

Średnie współczynniki wydajności "capacity factor" (CF)

Gdzie jest u_{el} ?

Mapy średnich CF dla PV

Mapy średnich CF dla elektrowni wiatrowych

Gdzie jest u_{el} ?

Nigdzie.

Mapy LCOH

Mapa mediany LCOH – scenariusz 1 (lewo - PV, prawo - wiatr)

Mapy LCOH

Mapa mediany LCOH - scenariusz 2 (lewo - PV, prawo - wiatr)

Mapy LCOH

Mapa mediany LCOH - scenariusz 3 (lewo - PV, prawo - wiatr)

Rozkład LCOH – scenariusz 1 (lewo - PV, prawo - wiatr)

Rozkład LCOH – scenariusz 2 (lewo - PV, prawo - wiatr)

Rozkład LCOH – scenariusz 3 (lewo - PV, prawo - wiatr)

Analiza wrażliwości

Analiza wrażliwości – scenariusz 1 (lewo - PV, prawo - wiatr)

Analiza wrażliwości

Analiza wrażliwości – scenariusz 2 (lewo - PV, prawo - wiatr)

Analiza wrażliwości

Analiza wrażliwości – scenariusz 3 (lewo - PV, prawo - wiatr)

Dodatkowe uwagi

- brak specyfikacji generatora liczb pseudolosowych
- miejscami nieprzyjemna kompozycja (w kilku rozdziałach to samo, przeplatane wykresy)
- + duża większość założeń ma źródła
- + wartości parametrów/zmiennych mają źródła
- + brak błędów ortograficznych, językowych, itp.
- + słowniczek skrótów na początku
- + dobrze sformatowane

- uzasadniona motywacja
- ładny język, dobrze sie czytało (nie licząc kompozycji)

- mógłby być krótszy
- brak reprodukowalności

Bibliografia I

Benalcazar, Pablo and Aleksandra Komorowska. "Prospects of green hydrogen in Poland: A techno-economic analysis using a Monte Carlo approach". In: International Journal of Hydrogen Energy 47.9 (2022), pp. 5779–5796. ISSN: 0360-3199. DOI: https://doi.org/10.1016/j.ijhydene.2021.12.001. URL: https://www.sciencedirect.com/science/article/ pii/S0360319921047017.

Testy

- Silnik testowany jednostkowo
- Moduł dekodujący i pliki zasad testowane integracyjnie, wraz z silnikiem
- Serwis API testowany integracyjnie wraz z pozostałymi komponentami

Model

Testy manualne