Formas Diferenciais e a Cohomologia de de Rham

Eduardo Sodré

IME-USP

Novembro de 2021

Motivação

"O Conceito de integração em formas é de fundamental importância em topologia diferencial, geometria, e física, e culmina num dos exemplos mais importantes de cohomologia, a saber a cohomologia de de Rham, que (mais ou menos) mede precisamente o quanto o teorema fundamental do cálculo falha em dimensões maiores e em variedades gerais."

-Terrence Tao, tradução livre

Seja $V:U\subseteq\mathbb{R}^n\to\mathbb{R}^n$ campo vetorial suave, calculamos integrais de linha sobre curvas $\gamma:[a,b]\to\mathbb{R}^n$:

$$\int_{\gamma} V(\mathbf{r}) \cdot d\mathbf{r}.$$

Se V vem de um potencial φ , $V = \nabla \varphi$, sabemos que

$$\int_{\gamma}
abla arphi(\mathbf{r}) \mathrm{d}\mathbf{r} = arphi(\gamma(b)) - arphi(\gamma(a))$$

pelo teorema fundamental do cálculo (para integrais de linha).

A integral de linha independe do caminho entre dois pontos: campo conservativo.

Vale uma recíproca: Se $V:U\to\mathbb{R}^n$ é campo conservativo, fixa $\mathbf{p_0}\in U$, e define potencial

$$\varphi(\mathbf{x}) = \int_{\mathbf{p_0}}^{\mathbf{x}} V(\mathbf{r}) \cdot d\mathbf{r}.$$

Vale que $\nabla \varphi = V!$ "Integra-se" o campo e acha potencial.

Teorema (Green)

Seja γ curva suave, simples, fechada e positivamente orientada, D região limitada pela curva, e U vizinhança de D. Funções $P,Q:U\to\mathbb{R}$ suaves, então vale

$$\int_{\gamma} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Pensa em Pdx + Qdy como integração no campo $(P, Q) \cdot (dx, dy)$. Então, se vale a condição diferencial

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

o campo é conservativo! Podemos integrá-lo.

Mas há "obstruções topológicas" para o teorema de Green valer "sempre". Considera o campo

$$\frac{-y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy.$$

Vale

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2},$$

mas, com caminho $\gamma:[0,2\pi] o \mathbb{R}^2$ por $\gamma(t)=(\cos t, \sin t)$,

$$\int_{\gamma} P dx + Q dy = 2\pi \neq 0$$

Isto pois o campo não é definido em (0,0). A presença do "buraco" impede a integrabilidade do campo.

Curiosidade: relacionado com função $\frac{1}{z}$ em $\mathbb{C}\setminus\{0\}$, mostra que log(z) não pode ser definido globalmente como potencial de 1/z.

Objetos como f(t)dt, Pdx + Qdy e $\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy$ podem ser formalizados como **formas**, objetos que "integramos" e derivamos.

A topologia do espaço fortemente afeta a integrabilidade de formas. Em certos espaços, elas satisfazerem uma condição diferencial boa implica em integrabilidade; em outros, não.

Tal informação da variedade suave (espaço) está contida em sua cohomologia de de Rham.

Informação da cohomologia \leftrightarrow informação da topologia.

Formas Diferenciais

Seja M variedade suave. Formas diferenciais: intuitivamente, maneiras de calcular k-volumes em M.

Com $p \in M$, espaço tangente T_pM é espaço vetorial. Ideia de calcular k-áreas em T_pM .

Formas em Espaços Vetoriais

Dado espaço vetorial V, uma k-forma em V é função

$$\omega: V \times \cdots \times V \to \mathbb{R}$$

R-multilinear e alternada:

$$\omega(\mathbf{v}_1,\ldots,\mathbf{v},\ldots,\mathbf{v},\ldots,\mathbf{v}_k)=0.$$

Então se $\{v_1,\ldots,v_k\}$ é LD $\implies \omega(v_1,\ldots,v_k)=0$.

Conjunto das k-formas em $V: \Lambda^k V^*$.

Formas em Espaços Vetoriais

Ideia intuitiva de "k-volume" gerado por v_1, \ldots, v_k : exemplo do determinante.

Formas Diferenciais

k-forma diferencial em M: Para todo $p \in M$, toma forma $\omega_p \in \Lambda^k T_p^* M$. Queremos que varie suavemente com p.

Equivalente a uma aplicação

$$\omega: \begin{tabular}{lll} $\frac{\kappa \ \text{vezes}}{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)} & \to & C^{\infty}(M) \\ (X_1, X_2, \dots, X_k) & \mapsto & \omega(X_1, \dots, X_k) \end{tabular}$$

que é $C^{\infty}(M)$ -multilinear e alternada. Avaliando em p,

$$\omega(X_1,\ldots,X_k)(p)=\omega_p(X_1|_p,\ldots,X_k|_p).$$

de modo que $\omega_p \in \Lambda^k(T_pM)^* = \Lambda^kT_p^*M$.

k-formas em M: $\Omega^k(M)$. 0-formas são $\Omega^0(M) \cong C^\infty(M)$.

Exemplos de Formas Diferenciais

Considere $\omega \in \Omega^1(\mathbb{R}^2)$ dada por

$$Pdx + Qdy$$

Como age em campos vetoriais em \mathbb{R}^2 ? Campos em \mathbb{R}^2 se escrevem como

$$V = a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y} \cong (a(x,y),b(x,y)).$$

Avaliando em $p \in \mathbb{R}^2$,

$$V_p = a(x_p, y_p) \left. \frac{\partial}{\partial x} \right|_p + b(x_p, y_p) \left. \frac{\partial}{\partial y} \right|_p \cong (a(x_p, y_p), b(x_p, y_p))$$

pois x, y são coordenadas globais em \mathbb{R}^2 .

Exemplos de Formas Diferenciais

Calula $\omega(V) = (Pdx + Qdy)(V)$ por multilinearidade e sabendo que

$$dx\left(\frac{\partial}{\partial x}\right) = dy\left(\frac{\partial}{\partial y}\right) = 1,$$

$$dx\left(\frac{\partial}{\partial y}\right) = dy\left(\frac{\partial}{\partial x}\right) = 0.$$

Então

$$\omega(V) = aP + bQ.$$

Mas como são k-formas, para $k \ge 2$? Ainda dá pra construir a partir dos dx^i , usando **produto wedge**.

Exemplos de Formas Diferenciais

Define $dx \wedge dy$ por

$$(dx \wedge dy) \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) = 1,$$

mantendo alternatividade e multilinearidade. Generaliza para

$$(dx^{i_1}\wedge\cdots\wedge dx^{i_k})\left(\frac{\partial}{\partial x^{j_1}},\ldots,\frac{\partial}{\partial x^{j_k}}\right)=\delta_J^I$$

Essencialmente generalizações do determinante.

Multiplicação interior: Dado $X \in \mathfrak{X}(M)$ e $\omega \in \Omega^{k+1}(M)$,

$$(\iota_X\omega)(X_1,\ldots,X_k)=\omega(X,X_1,\ldots,X_k).$$

Integração de 1-formas

Com caminho suave $\gamma:[a,b]\to M$, pode-se integrar uma 1-forma em M sobre γ :

$$\int_{\gamma}\omega=\int_{a}^{b}\omega_{\gamma(t)}(\gamma'(t))dt,$$

onde $\gamma'(t) \in T_{\gamma(t)}M$. Pode-se expressar pela noção de pullback de formas.

O que seriam 1-formas "dadas por um potencial"? Como se integrariam?

O Diferencial de Funções

Dada $f \in C^{\infty}(M)$, podemos tomar a 1-forma df:

$$df(X) = X(f)$$
, pontualmente: $df_p(v) = v(f)$, $v \in T_pM$.

Em coordenadas locais x^1, \ldots, x^n , escreve-se

$$df = \frac{\partial f}{\partial x^1} dx^1 + \ldots + \frac{\partial f}{\partial x^n} dx^n$$

É o **diferencial** de f. Já sabemos integrar:

$$\int_{\gamma} df = \int_{a}^{b} df_{\gamma(t)}(\gamma'(t))dt = \int_{a}^{b} (f \circ \gamma)'(t)dt = f(B) - f(A)$$

Então, quando sabemos se existe $f \in C^{\infty}(M)$ tal que $df = \omega$?

A Derivada Exterior

Pode estender a noção de diferencial para formas.

Teorema

Existe um único operador \mathbb{R} -linear $d:\Omega(M) o \Omega(M)$ tal que

- ② $d \circ d = 0$;
- Para $f \in C^{\infty}(M)$, df é o diferencial de f.

Em coordenadas locais,

$$d\left(\sum_{I}'\omega_{I}dx^{I}\right)=\sum_{I}'d\omega^{I}\wedge dx^{I}=\sum_{I}'\sum_{i=1}^{n}\frac{\partial\omega_{I}}{\partial x^{i}}dx^{i}\wedge dx^{I}.$$

A Derivada Exterior

Note que

$$Pdx + Qdy \stackrel{d}{\longmapsto} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

então, nas condições do teorema de Green, se $d\omega=0$, o campo é conservativo, e $\omega=d\varphi$, podemos "integrar"!

Forma ω é **fechada** se $d\omega = 0$.

Forma ω é **exata** se $\omega = d\eta$.

Fácil ver que exata ⇒ fechada.

Quando que forma fechada é exata?

A Cohomologia de de Rham

Temos a sequência de espaços vetoriais

$$\Omega^{0}(M) \stackrel{d}{\to} \Omega^{1}(M) \stackrel{d}{\to} \cdots \stackrel{d}{\to} \Omega^{n-1} \stackrel{d}{\to} \Omega^{n}(M) \stackrel{d}{\to} 0$$

$$k$$
-formas fechadas: $Z^k(M) = \ker(d: \Omega^k(M) \to \Omega^{k+1}(M))$

$$k$$
-formas exatas: $B^k(M) = \operatorname{Im} (d : \Omega^{k-1}(M) \to \Omega^k(M))$

"Grupos" de cohomologia de de Rham:

$$H_{dR}^k(M) = Z^k(M)/B^k(M).$$

$$[\omega] = [\eta] \iff \exists \alpha \text{ tal que } \omega - \eta = d\alpha.$$

Pullback de Formas

Com $F: M \to N$ maps suave entre variedades, dada $\omega \in \Omega^k(N)$, podemos definir o **pullback** $F^*\omega \in \Omega^k(M)$:

$$(F^*\omega)_p(v_1,\ldots,v_k)=\omega_{F(p)}(dF_p(v_1),\ldots,dF_p(v_k))$$

 $F^*:\Omega^k(N) o\Omega^k(M)$ é \mathbb{R} -linear, e satisfaz

- $F^*(f\omega) = (f \circ F)F^*\omega$;
- $F^*(\omega \wedge \eta) = F^*\omega \wedge F^*\eta$;
- $\bullet \ (G \circ F)^*\omega = F^*(G^*\omega);$
- $(\operatorname{Id}_M)^*\omega = \omega$.

Então Ω^k : **Man** \rightarrow **Vec** é funtor contravariante!

A Cohomologia de de Rham como Funtor

Possível mostrar que pullback comuta com derivada exterior:

$$F^*(d\omega) = d(F^*\omega)$$

Conclui que pullback preserva formas fechadas e exatas.

Proposição

Para qualquer mapa suave $F: M \to N$ entre variedades suaves, o pullback $F^*: \Omega^k(N) \to \Omega^k(M)$ preserva formas fechadas e exatas. Portanto, existe um mapa de cohomologia induzido $F^*: H^k_{dR}(N) \to H^k_{dR}(M)$, tal que $H^k_{dR}: \mathbf{Man} \to \mathbf{Vec}$ é funtor contravariante.

 $F^*[\omega] = [F^*\omega]$ é bem definido, e mostra que a cohomologia é invariante por *difeomorfismos*.

Exemplos de Grupos de Cohomologia

M variedade suave $\implies H^0_{dR}(M) = \mathbb{R}^{\rho}$, ρ a quantidade de componentes conexas de M.

Em \mathbb{R} : $\omega = f(x)dx$, então $\omega = dg$,

$$g(x) = \int_0^x f(t)dt.$$

Em S^1 : forma ângulo $d\theta$ (apenas notação: **não** é exata!). Mostra que $H^1_{dR}(S^1) \neq 0$. De fato, mostra-se que

$$\int_{S^1}:\Omega^1(S^1) o\mathbb{R}$$

induz isomorfismo $H^1_{dR}(S^1) \cong \mathbb{R}$.

Sejam $F, G: M \rightarrow N$ mapas suaves. Quando que $F^* = G^*$?

Para $\omega \in Z^k(N)$, precisa decidir existência de η tal que $G^*\omega - F^*\omega = d\eta$.

Constrói algo mais geral e sistemático: família de mapas $h: \Omega^k(M) \to \Omega^{k-1}(M)$ tal que

$$d(h\omega) + h(d\omega) = G^*\omega - F^*\omega$$

h é dito **operador de homotopia** entre F^* e G^* .

Proposição

Se $F, G: M \rightarrow N$ são tais que existe operador de homotopia h entre

F* e G*, então os mapas induzidos de cohomologia

 $F^*, G^*: H^k_{dR}(N) \to H^k_{dR}(M)$ são iguais.

Mas quando existe operador de homotopia?

Quando os mapas são homotópicos!

Lema

Considere $i_t: M \to M \times I$, $i_t(x) = (x, t)$. Então existe operador de homotopia entre $i_0^*, i_1^*: \Omega(M \times I) \to \Omega(M)$.

AVISO: Utilização extensa de técnicas de topologia diferencial!

Seja s a coordenada em \mathbb{R} , e $S \in \mathfrak{X}(M \times I)$ o campo $S_{(a,s)} = (0, \partial_s|_s)$. Identifica-se

$$T_{(q,s)}(M \times I) \cong T_q M \oplus T_s \mathbb{R}.$$

Dado $\omega \in \Omega^k(M \times I)$, define-se

$$h\omega \coloneqq \int_0^1 i_t^*(\iota_S\omega)dt,$$

ou seja,

$$(h\omega)_q = \int_0^1 (i_t^*(\iota_S\omega))_q dt$$

integrando é função de t em $\Lambda^{k-1}(T_q^*M)$.

ldeia de "integração nas fibras" da projeção $\pi:M\times I\to M$, S campo vertical. Será suave em coordenadas locais, e define (k-1)-forma.

Possível diferenciar sob sinal de integração:

$$d(h\omega) = \int_0^1 d(i_t^*(\iota_S\omega))dt.$$

Calcula pela fórmula mágica de Cartan $\mathcal{L}_X = d \circ \iota_X + \iota_X \circ d$:

$$egin{aligned} h(d\omega) + d(h\omega) &= \int_0^1 \left(i_t^*(\iota_S d\omega) + d(i_t^*(\iota_S \omega)) \right) dt \ &= \int_0^1 i_t^*(\iota_S d\omega + d\iota_S \omega) dt \ &= \int_0^1 \iota_t^*(\mathcal{L}_S \omega) dt \end{aligned}$$

Simplificamos a derivada de Lie: o fluxo de S é $\theta_t(q,s)=(q,s+t)$, completo, e $i_t=\theta_t\circ i_0$. Sabemos que

$$\mathcal{L}_{\mathcal{S}}\omega = \left.rac{d}{dt}
ight|_{t=0} heta_t^*\omega \implies \left.rac{d}{dt}
ight|_{t=t_0} heta_t^*\omega = heta_{t_0}^*(\mathcal{L}_{\mathcal{S}}\omega)$$

Então

$$\iota_t^*(\mathcal{L}_S\omega) = \iota_0^*(\theta_t^*(\mathcal{L}_S\omega)) = i_0^*\left(rac{d}{dt}(\theta_t^*\omega)
ight) = rac{d}{dt}\iota_0^*(\theta_t^*\omega) = rac{d}{dt}\iota_t^*\omega$$

e portanto

$$h(d\omega) + d(h\omega) = \int_0^1 \frac{d}{dt} \iota_t^* \omega dt = \iota_1^* \omega - \iota_0^* \omega. \quad \Box$$

Proposição

Sejam M, N variedades suaves e $F, G: M \rightarrow N$ mapas suaves homotópicos. Para todo k, os mapas de cohomologia induzidos

$$F^*, G^*: H^k_{dR}(N) \rightarrow H^k_{dR}(M)$$

são iguais.

Com homotopia $H: M \times I \rightarrow N$, temos

$$F^* = (H \circ i_0)^* = i_0^* \circ H^* = i_1^* \circ H^* = (H \circ i_1)^* = G^*.$$

Teorema (Invariância Homotópica da Cohomologia)

Sejam M, N variedades suaves homotopicamente equivalentes. Então para todo $k, H^k_{dR}(M) \cong H^k_{dR}(N)$, e os isomorfismos são induzidos por qualquer equivalência homotópica $F: M \to N$.

 $F: M \to N \ G \to N$ equivalências homotópicas: pode assumir F, G suaves, pois existem $\widetilde{F}, \widetilde{G}$ suaves homotópicas a $F \in G$.

Então $G \circ F \cong Id_M$, $F \circ G \cong Id_N$,

$$F^* \circ G^* = (G \circ F)^* = (\operatorname{Id}_M)^* = \operatorname{Id}_{H^k_{dR}(M)}$$

e analogamente $G^* \circ F^* = \operatorname{Id}_{H^k_{dR}(N)}$.

Corolário

A cohomologia de de Rham é invariante por homeomorfismos.

Aplicações da Invariância Homotópica

Teorema

Se M é contrátil, então para $k \ge 1$, $H_{dR}^k(M) = 0$.

Lema (Poincaré)

Se $U \subseteq \mathbb{R}^n$ é aberto estrelado, então $H^k_{dR}(U) = 0$, $\forall k \geq 1$.

Corolário

Toda forma fechada é localmente exata.

Mais Resultados: First Cohomology

Seja M variedade suave conexa e $q \in M$. Define-se mapa $\Phi: H^1_{dR}(M) \times \pi_1(M,q) \to \mathbb{R}$:

$$\Phi[\omega][\gamma] = \int_{\widetilde{\gamma}} \omega$$

 $\widetilde{\gamma}$ loop suave por partes na mesma classe de homotopia de $\gamma.$

É bem definido para ω , poi se $[\omega_1] = [\omega']$, $\omega - \omega' = df$, e

$$\int_{\widetilde{\gamma}} \omega - \int_{\widetilde{\gamma}} \omega' = \int_{\widetilde{\gamma}} df = f(q) - f(q) = 0.$$

Mais Resultados: First Cohomology

É também bem definindo para $\widetilde{\gamma}$, como consequência do teorema de Stokes e ω ser fechada. Com $\widetilde{\gamma}, \widetilde{\gamma}' \in \pi_1(M, q)$ homotópicos,

$$\int_{\widetilde{\gamma}'} \omega - \int_{\widetilde{\gamma}} \omega = \int_{D} d\omega = 0$$

Teorema

O mapa linear $H^1_{dR}(M) \to \operatorname{Hom}(\pi_1(M,q),\mathbb{R})$ dado por $[\omega] \mapsto \Phi[\omega][\cdot]$ é isomorfismo

Mais Resultados: First Cohomology

Intuitivamente:

- $H^0_{dR}(M)$ espaço das funções $f:M o\mathbb{R}$ localmente constantes;
- $H^1_{dR}(M)$ espaço das integrais de linha $\gamma \mapsto \int_{\gamma} \omega$ "localmente constantes" (variando γ homotopicamente fixando extremos), módulo as trivialmente constantes (conservativas, ou seja, quando ω é exata).

Corolário

Se M tem grupo fundamental finito, então $H^1_{dR}(M) = 0$.

Raciocínio análogo ao teorema de Seifert-van Kampen:

Podemos ver o mapa induzido no pullback:

Pullbacks são restrições, $k^*\omega = \omega|_U$.

Teorema (Mayer-Vietoris)

Seja M variedade sauve, $U, V \subseteq M$ abertos com $U \cup V = M$. Para todo k, existe mapa linear $\delta: H^k_{dR}(U \cap V) \to H^{k+1}_{dR}(M)$ tal que a seguinte sequência é exata:

$$\cdots \xrightarrow{\delta} H_{dR}^{k}(M) \xrightarrow{k^{*} \oplus l^{*}} H_{dR}^{k}(U) \oplus H_{dR}^{k}(V)$$
$$\xrightarrow{i^{*} - j^{*}} H_{dR}^{k}(U \cap V) \xrightarrow{\delta} H_{dR}^{k+1}(M) \xrightarrow{k^{*} \oplus l^{*}} \cdots$$

Permite calcular cohomologia das esferas S^n !

Sabemos que
$$H^0_{dR}(S^n)=\mathbb{R}$$
, e $H^1_{dR}(S^n)=\mathbb{R}$.

Tomando
$$U = S^n \setminus \{N\}$$
 e $V = S^n \setminus \{S\}$, temos

$$U \cong V \cong \mathbb{R}^n$$
 e $U \cap V \cong \mathbb{R}^n \setminus \{0\} \underset{h,e}{\cong} S^{n-1}$

Dada sequência exata

$$H_{dR}^{p-1}(U) \oplus H_{dR}^{p-1}(V) \to H_{dR}^{p-1}(U \cap V)$$

$$\to H_{dR}^{p}(S^{n}) \to H_{dR}^{p}(U) \oplus H_{dR}^{p}(V)$$

conclui que, para p > 1,

$$H_{dR}^{p-1}(S^{n-1}) \cong H_{dR}^p(S^n).$$

A Cohomologia das Esferas

Teorema

Para $n \ge 1$, a cohomologia de de Rham da esfera S^n é dada por

$$H_{dR}^p(S^n) = \begin{cases} \mathbb{R}, & \text{se } p = 0 \text{ ou } p = n, \\ 0, & \text{se } 0$$

Cohomologia de de Rham

Mais resultados: Top Cohomology

Lema

Seja ω é n-forma em \mathbb{R}^n de suporte no cubo aberto unitário C^n e $\int_{\mathbb{R}^n} \omega = 0$, então existe (n-1)-forma η de suporte em C^n tal que $d\eta = \omega$.

Possível deduzir o *n*-ésimo grupo de cohomologia:

Teorema

Se M é variedade suave conexa compacta orientável n-dimensional, então $H^n_{dR}(M) \cong \mathbb{R}$. Tal isomorfismo é dado pela integração em M:

$$\int_M: H^n_{dR}(M) \to \mathbb{R}, \quad [\omega] \mapsto \int_M \omega.$$

Mais Resultados: Top Cohomology

Teorema (Caso orientável não-compacto)

Se M é variedade suave conexa orientável não-compacta, então $H^n_{dR}(M)=0$.

Teorema (Caso não-orientável)

Se M é variedade suave conexa não-orientável, então $H_{dR}^n(M)=0$.

Outros Resultados

Proposição

Se M é variedade suave conexa compacta, então seus grupos de cohomologia têm dimensão finita.

Pode definir a característica de Euler:

$$\chi(M) = \sum_{k=0}^{n} (-1)^k \dim H_{dR}^k(M)$$

É invariante topológico, pode mostrar que $\chi(M)=0$ quando n é ímpar e M é orientável.

Referências

- [1] Raoul Bott e Loring Tu. *Differential Forms in Algebraic Topology*. 1^a ed. Graduate Texts in Mathematics. Springer, 2020.
- [2] Claudio Gorodski. *Smooth Manifolds*. 1^a ed. Compact Textbooks in Mathematics. Birkhäuser, 2020.
- [3] John M. Lee. *Introduction to Smooth Manifolds*. 2^a ed. Graduate Texts in Mathematics. Springer, 2012.