BYU ECEN

Parametric Filters For Non-Stationary Interference Mitigation in Airborne Radars

Peter Parker and A. Lee Swindlehurst

Brigham Young University Dept. of Electrical & Computer Engineering

Provo, UT 84602

voice: (801) 378-4119

fax: (801) 378-6586

email: parkerp@ee.byu.edu

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 14 MAR 2001		2. REPORT TYPE N/A			RED
				T. GOVERN GEN WILLIAM	
4. TITLE AND SUBTITLE Parametric Filters For Non Non-Stationary Interference Stationary Interference Mitigation in Airborne Mitigation in Airborne Radars				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
6. AUTHOR(S) Peter Parker; A. Lee Swindlehurst				5c. PROGRAM ELEMENT NUMBER	
				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Brigham Young University Dept. of Electrical & Computer Engineering Provo, UT 84602				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
Defense Advanced Arlington, VA 222	11. SPONSOR/MONITOR'S REPONUMBER(S)		ONITOR'S REPORT		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited					
13. SUPPLEMENTARY NO See ADM001263 fo color images.	or entire Adaptive S	ensor Array Process	sing Workshop.,	The original (document contains
14. ABSTRACT See briefing charts					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 26	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Motivation: Non-Stationary Interference

- Rapidly changing clutter locus with a circular array or bistatic radar system
- Presence of hot clutter due to an airborne jammer
- Use model of non-stationary interference to derive new filter
- Use small sample support to reduce effect of non-stationary interference

Data Model

- M antennas, N pulses
- Target in primary range bin p

$$\mathbf{x}_{p}(t) = b\mathbf{a}(\theta)e^{j\omega t} + \mathbf{c}_{p}(t), \quad t = 0, 1, 2, \dots, N-1$$

spatial steering vector

clutter, jammer, noise, etc.

Space-Time Slice

$$\boldsymbol{X}_{p} = \begin{bmatrix} \boldsymbol{x}_{p}(0) & \boldsymbol{x}_{p}(1) & \cdots & \boldsymbol{x}_{p}(N-1) \end{bmatrix}$$

$$= b\boldsymbol{a}(\theta) \boldsymbol{v}^{T}(\omega) + \boldsymbol{C}_{p}$$

$$temporal steering vector = \begin{bmatrix} 1 & e^{j\boldsymbol{w}/T_{s}} & \cdots & e^{j(N-1)\boldsymbol{w}/T_{s}} \end{bmatrix}$$

Data Model (cont.)

Vectorized Forms

1.
$$\mathbf{X}_p = \text{vec}(\mathbf{X}_p)$$

= $b\mathbf{V}(\mathbf{w}) \otimes \mathbf{a}(\mathbf{q}) + \mathbf{c}_p$

2.
$$\mathbf{X}_p = \text{Vec}(\mathbf{X}_p^T)$$

= $b\mathbf{a}(\mathbf{q}) \otimes \mathbf{V}(\mathbf{w}) + \mathbf{C}_p$

Secondary Data

target-free range bins

$$E(\boldsymbol{c}_{k}) = 0$$
 , $E(\boldsymbol{c}_{k}\boldsymbol{c}_{k}^{*}) = \boldsymbol{R}^{k}$

interference covariance

Space-Time Autoregressive Modeling

• Define
$$H(z^{-1}) = \sum_{i=0}^{L-1} \mathbf{H}_i z^{-i}$$

Model: for some L,

$$\mathbf{H}(z^{-1})\mathbf{c}_{k}(t) = \mathbf{H}_{0}\mathbf{c}_{k}(t) + \mathbf{H}_{1}\mathbf{c}_{k}(t-1) + \dots + \mathbf{H}_{L-1}\mathbf{c}_{k}(t-L+1)$$
$$= \varepsilon_{k}(t)$$

is spatially and temporally white

• To estimate $H(z^{-1})$, solve

$$\min_{\mathbf{H}_0,\dots,\mathbf{H}_L} \sum_{k=1}^{N_s} \sum_{i=L}^{N} \left\| \mathbf{H}(z^{-1}) \mathbf{c}_k(i) \right\|^2$$

closed-form least-squares solution

M 'x M matrices

Filtering the Primary Data

STAR filter attempts to minimize clutter power:

Span(\mathcal{H}) orthogonal to clutter subspace if it dominates white noise:

$$\boldsymbol{R} = \boldsymbol{H}^{\perp}\boldsymbol{Q}\;\boldsymbol{H}^{\perp*} + \boldsymbol{\sigma}^{2}\boldsymbol{I}$$
 clutter & jamming white (thermal) noise

so we project onto the orthogonal subspace using a matched subspace filter:

$$\mathbf{x}_{p}' = \mathbf{H}^{*} \left(\mathbf{H} \mathbf{H}^{*}\right)^{-1} \mathbf{H} \mathbf{x}_{p}$$
banded block Toeplitz

Algorithm Summary

1. Use SVD on secondary data to solve for $[\mathbf{H}_0 \ \mathbf{H}_1 \ \cdots \ \mathbf{H}_{L-1}]$

computational order: $O(N_s M^2 L^2 (N - L + 1))$

2. Form \mathcal{H} and filter data: $\mathbf{P}_{\mathcal{H}^*} \mathbf{X}_{p}$

computational order: $O(M'M^2L^2(N-L+1))$

3. Perform regular beam and Doppler filtering for detection

computational order: negligible

Resultant test statistic is $(\mathbf{v} \otimes \mathbf{a})^* \mathbf{P}_{\mathcal{A}} \mathbf{x}_{\rho}$ not $(\mathbf{v} \otimes \mathbf{a})^* \mathbf{R}^{-1} \mathbf{x}_{\rho}$

Prior Work

- Vector AR models used previously for clutter modeling by Michels, Rangaswamy, etc.
- Standard STAP filters extended to handle range-varying and hot clutter models by Zatman, Rabideau, etc.
- Matched subspace detectors used for subspace interference by Scharf
- Here, we extend the parametric model to handle the non-stationary interference

Range-Varying STAR Filter

To improve performance at short ranges, use linearly varying matrix coefficients:

 extended data vector

$$\sum_{i=0}^{L-1} \left[\mathbf{H}_{i} \quad \Delta \mathbf{H}_{i} \right] \begin{bmatrix} \mathbf{c}_{k}(t-i) \\ \alpha k \mathbf{c}_{k}(t-i) \end{bmatrix} = \varepsilon_{k}(t), \quad t = L+1, \dots, N$$

$$M' \times M \text{ matrices}$$
spatially and temporally white

- Analogous to ESMI technique of Hayward
- To normalized the noise subspace

$$\alpha = \sqrt{\frac{12}{(N_s + 2)(N_s + 1)}}$$

Range-Varying STAR Filter

 Minimize clutter power assuming linearly varying statistics

$$\mathbf{e}_{k} = \widetilde{\mathcal{H}} \begin{bmatrix} \mathbf{c}_{k} \\ \mathbf{a} \ \mathbf{kc}_{k} \end{bmatrix}$$

$$\mathcal{H} \text{ from STAR filter}$$

Extended STAR filter coefficients ∆ℋ

$$\widetilde{\mathcal{H}} = \begin{bmatrix} \mathbf{H}_{L-1} & \mathbf{L} & \mathbf{H}_0 & \mathbf{0} & \Delta \mathbf{H}_{L-1} \mathbf{L} & \Delta \mathbf{H}_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_{L-1} \mathbf{L} & \mathbf{H}_0 & \mathbf{0} & \Delta \mathbf{H}_{L-1} & \mathbf{L} & \Delta \mathbf{H}_0 \end{bmatrix}$$

Filter data with matched subspace filter

$$\mathbf{X}_{\boldsymbol{\rho}}' = \widetilde{\mathcal{H}}^* \left(\widetilde{\mathcal{H}} \widetilde{\mathcal{H}}^* \right)^{-1} \widetilde{\mathcal{H}} \begin{bmatrix} \mathbf{X}_{\boldsymbol{\rho}} \\ \mathbf{0} \end{bmatrix} = \mathbf{P}_{\widetilde{\mathcal{H}}^*} \begin{bmatrix} \mathbf{X}_{\boldsymbol{\rho}} \\ \mathbf{0} \end{bmatrix} \boldsymbol{\mu}$$

k=0 for primary range bin

where

Range-Varying STAR Filter

Define

$$\boldsymbol{C}_{k} = \begin{bmatrix} \boldsymbol{c}_{k}(L+1) & \boldsymbol{c}_{k}(N) \\ \vdots & \cdots & \vdots \\ \boldsymbol{c}_{k}(1) & \boldsymbol{c}_{k}(N-L) \end{bmatrix}$$

Estimate filter coefficients:

$$[\boldsymbol{H}_0 \dots \boldsymbol{H}_{L-1} \Delta \boldsymbol{H}_0 \dots \Delta \boldsymbol{H}_{L-1}]$$

as the left singular vectors with the *M'* smallest singular values of the extended data matrix:

$$\begin{bmatrix} \mathbf{C}_{-N_s/2} & \cdots & \mathbf{C}_{N_s/2} \\ -\frac{\alpha N_s}{2} \mathbf{C}_{-N_s/2} & \cdots & \frac{\alpha N_s}{2} \mathbf{C}_{-N_s/2} \end{bmatrix}$$

ESTAR Filter Example

20 element circular array, 18 pulses SCR = -58dB SNR = 10dB

Computational Comparison

Some typical numbers: M = 20, N = 18, M' = 20

- STAR Filter (L=5): $O(140,000N_s) + O(2,800,000)$
- ESTAR Filter (L=4):

$$O(4N_sM^2L^2(N-L+1)) + O(M^{\prime}M^2L^2(N-L+1))$$

= $O(384,000N_s) + O(1,920,000)$

Extended PRI staggered algorithm:

$$O(4N_sM^2K^2(N-K+1))+O(4\rho M^2K^2(N-K+1))=O(230,000N_s)+O(20,000,000)$$

of sub-CPIs = 3

rank of sub-CPI covariance ≈ 90

Average SINR Loss

Performance with Range-Varying Weights

Performance with Range-Varying Weights

3-D STAR Filter for Hot Clutter

- Update filter for each new pulse received
 - Derive slow-time varying STAR filter
 - Can be used with intrinsic clutter motion
- Add fast-time matrix taps to exploit correlations across range bins
 - Additional filter taps help mitigate mainbeam jamming signals

Slow Time-Varying STAR Filter

 Same structure as the STAR filter but with new coefficients for each pulse

$$\mathcal{H}_{TV} = \begin{bmatrix} \mathbf{H}_{L-1}(1) & \cdots & \mathbf{H}_{0}(1) & \mathbf{0} \\ \vdots & \ddots & \ddots \\ \mathbf{0} & \mathbf{H}_{L-1}(N-L+1) & \cdots & \mathbf{H}_{0}(N-L+1) \end{bmatrix}$$

 Additional sample support required due to additional parameters to model slow-time variation

3D-STAR Filter

- Use slow-time varying STAR filter to model correlation across pulses
- For some fast-time filter order J, model the fast-time correlation as:

$$\sum_{j=0}^{J-1} \mathcal{H}_{TV,j} \mathbf{C}_{k-j} = \varepsilon_k, \quad k = J+1, \dots, P$$

subscript denotes which fast-time sample \mathcal{H} is associated with

number of fast-time samples used to whiten data

 Similar to a 2-D vector AR model with the slow-time taps changing with each pulse

Estimation of Parameters

Define

$$\widetilde{H}(t) = [H_{0,0}(t) \quad H_{1,0}(t) \quad \cdots \quad H_{L-1,J-1}(t)]$$

$$\boldsymbol{g}_{k}(t) = \begin{bmatrix} \boldsymbol{c}_{k}(t+L-1) \\ \vdots \\ \boldsymbol{c}_{k}(t) \end{bmatrix} \qquad \boldsymbol{G}_{k}(t) = \begin{bmatrix} \boldsymbol{g}_{k+J-1}(t) & \boldsymbol{g}_{k+P-1}(t) \\ \vdots & \cdots & \vdots \\ \boldsymbol{g}_{k}(t) & \boldsymbol{g}_{k+P-J}(t) \end{bmatrix}$$

Least squares solution:

$$\min_{\widetilde{\boldsymbol{H}}(t)} \sum_{k=1}^{N_s} \left\| \widetilde{\boldsymbol{H}}(t) \boldsymbol{G}_{k}(t) \right\|^2$$

New minimization for each slow-time step

Filtering the Primary Data

3D-STAR filter can be written as:

 Project out the interference using 3D matched subspace filter

$$\begin{bmatrix} \mathbf{X}_{p}^{\prime} \\ \vdots \\ \mathbf{X}_{p-P+1}^{\prime} \end{bmatrix} = \mathbf{H}^{*} \left(\mathbf{H} \mathbf{H}^{*} \quad \mathbf{H} \begin{bmatrix} \mathbf{X}_{p} \\ \vdots \\ \mathbf{X}_{p-P+1} \end{bmatrix} = \mathbf{P}_{\parallel} \cdot \begin{bmatrix} \mathbf{X}_{p} \\ \vdots \\ \mathbf{X}_{p-P+1} \end{bmatrix}$$

Highly structured nature of subspace, small sample support make full 3-D STAR solution feasible

Computational Comparison

Some typical numbers: M = 20, N = 18, M' = 20, P = 3

- STAR Filter (L=7): $O(235,000N_s) + O(4,700,000)$
- 3D-STAR Filter (L=2): $O(N_s(MLJ)^2(N-L+1)(P-J+1)) + O(M'(MLJ)^2(N-L+1)(P-J+1))$
- $\underline{\mathsf{J=2:}}$ $O(218,000N_s) + O(4,350,000)$
- $\underline{\mathsf{J=1:}}$ $O(82,000N_s) + O(1,630,000)$
- Optimized 3D-post-Doppler algorithm:

$$O(N_s(MKP)^2(N-K+1)) + O(\tilde{n}(MKP)^2(N-K+1)) = O(518,000N_s) + O(70,000,000)$$

of sub-CPIs = 3

rank of sub-CPI covariance ≅ 135

Hot Clutter Examples

Hot Clutter Examples

Hot Clutter Examples

Conclusions

- STAR based filtering ideal for STAP problems that require small secondary sample support
- Easily extended to handle hot or range-varying clutter models
- Simulations with realistic circular array data show promising performance
- The structured nature of the filters leads to computationally efficient algorithms