OLEH: MUH RIVALDI PRASTIANTO

THANK YOU

Muh Rivaldi Prastianto

rivaldi165@gmail.

www.linkedin.com/in/muh-rivaldi

Indepth Explanation

LIST

BUSINESS PROBLEM

OBJECTIVE

EXPLORATORY DATA ANALYSIS

MODEL & EVALUATION

BUSINESS SIMULATION

CONCLUSION

Indepth Explanation

LIST

BUSINESS PROBLEM

OBJECTIVE

EXPLORATORY DATA ANALYSIS

MODEL & EVALUATION

BUSINESS SIMULATION

CONCLUSION

Of the **466,285 customers** who made loans, there were **10.8% of customers** who were **unable to pay off loans**.

Indepth Explanation

LIST

BUSINESS PROBLEM

OBJECTIVE

EXPLORATORY DATA ANALYSIS

MODEL & EVALUATION

BUSINESS SIMULATION

CONCLUSION

- Predicting a customer's ability to make loan
 repayments based on the results of Machine
 Learning
- Provide recommendations for types of loans based on the results of the Exploratory Data Analysis

Indepth Explanation

LIST

BUSINESS PROBLEM

OBJECTIVE

EXPLORATORY DATA ANALYSIS

MODEL & EVALUATION

BUSINESS SIMULATION

CONCLUSION

Categorical

- Loan term (3 year or 5 year)
- Employment length
- Home ownership
- Initial status of loan (whole or fractional)

Numerical

- Loan amount
- Interest rate
- Installment
- Annual income

LOAN TERM

- 1. Costumer with **longer loan team** will have a **higher percentage** of loan defaults.
 - 2. More costumers have a 3 years loan term.

LOAN TERM

Customers who **fail** to make loan repayments have a **lower average salary**.

However it has almost the **same monthly** payment fees.

Customers with **5 years loan term** have a average **higher salary**, but also have **higher monthly installment.**

EMPLOYMENT LENGTH

There is **no significant difference** in the **percentage of default on debt** payments from how **long the customer has been working**

DATA PREPROCESSING

1 Feature Selection

Rank Encoding
One Hot Encoding

3 • Train Test Split

4 • Modeling

5 • Evaluation

1 FEATURE SELECTION

Using Correlation Matrix

Remove feature with high multicollinearity (threshold value **>0.7**)

2 RANK & ONE HOT ENCODING

Rank encoding

One hot encoding

```
#one hot encoding
df_copy= pd.get_dummies(df_copy,columns=['home_ownership','purpose'])
```

3 TRAIN TEST SPLIT

```
X = df_copy.drop('target',axis=1).copy()
y = df_copy['target'].copy()

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42)
```

Logistic Regression

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval_train(X_train,y_train,logreg_model)

 Recall
 : 86.9%

 Precision
 : 69.9%

 F1 Score
 : 77.5%

 ROC-AUC
 : 96.2%

Recall is a measure of how many of the **positive correctly predicted**, **over all the positive cases** in the data.

Note: **1** = Costumer **can't** pay loan

Logistic Regression

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval_train(X_train,y_train,logreg_model)

 Recall
 : 86.9%

 Precision
 : 69.9%

 F1 Score
 : 77.5%

 ROC-AUC
 : 96.2%

Precision is a measure of how many of the **positive predictions made are correct** (true positives).

Note: **1** = Costumer **can't** pay loan

Logistic Regression

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval_train(X_train,y_train,logreg_model)

 Recall
 : 86.9%

 Precision
 : 69.9%

 F1 Score
 : 77.5%

 ROC-AUC
 : 96.2%

F1-Score is a measure **combining** both **precision and recall**.

Note: **1** = Costumer **can't** pay loan

Naive Bayes

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval_train(X_train,y_train,logreg_model)

Decision Tree

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval_train(X_train,y_train,logreg_model)

PREDICTED LABEL

Note: **1** = Costumer **can't** pay loan

Random Forest

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval train(X train,y train,logreg model)

Light GBM

logreg_model = LogisticRegression(random_state=42,class_weight='balanced')
eval_train(X_train,y_train,logreg_model)

PREDICTED LABEL

Note: **1** = Costumer **can't** pay loan

LIGHT GBM

Note: **1** = Costumer **can't** pay loan

0 = Costumer **can** pay loan

 Recall
 : 86,3%

 Precision
 : 99,2%

 F1 Score
 : 92,3%

 ROC-AUC
 : 98,1%

This model is able to catch **11,913** customers who failed to pay off loans out of a total of **13,798** customers.

In other words, the model is capable of lowering the level of the percentage of customers who are unable to pay off loans from **10.8% to 1.6%.**

CUT LOSS CALCULATION

Based on test data

Simulation of using the model against test data to **calculate the reduction of bank losses** from customers who **can't repay loans**.

	Actual Data	Model Result
Total costumers	131,313	119,301
Customers can repay loans	117,515	117,416
Customers can't repay loans	13,798	1.885

```
#Memfilter nasabah yang gagal membayar
Actual_loss=X_model[(X_model['target_actual']==1)]
#Memfilter nasabah yang gagal membayar pinjaman namun diprediksi dapat membayar pinjaman
Prediction_loss=X_model[(X_model['target_prediction']==0)&(X_model['target_actual']==1)]
```

CUT LOSS CALCULATION

Based on test data

	Actual Data	Model Result
Customers can't repay loans	13.798	1.885
The total loan granted	\$ 205,032,525	\$ 29,438,875
Total loan already paid	\$ 98,213,658	\$ 17,796,499
Losses from customers	\$ -106,818,866	\$ -11,642,375

```
#Perhitungan kerugian dengan mengurangi pembayaran yang sudah dilakukan dengan dana pinjaman yang sudah diberikan Prediction_loss['loss']=Prediction_loss['total_pymnt']-Prediction_loss['funded_amnt']

#Catual_loss['loss']=Actual_loss['total_pymnt']-Actual_loss['funded_amnt']

#Dana yang sudah dibayarkan round(Actual_loss['total_pymnt'].sum(),1)

#Kerugian dari nasabah round(Actual_loss['loss'].sum(),1)

#Dana yang sudah dibayarkan round(Prediction_loss['total_pymnt'].sum(),1)

#Dana yang sudah diberikan round(Prediction_loss['total_pymnt'].sum(),1)

#Kerugian dari nasabah round(Prediction_loss['funded_amnt'].sum(),1)

#Kerugian dari nasabah round(Prediction_loss['loss'].sum(),1)
```

CUT LOSS CALCULATION

Based on test data

	Actual Data	Model Result
Customers can't repay loans	13.798	1.885
The total loan granted	\$ 205,032,525	\$ 29,438,875
Total loan already paid	\$ 98,213,658	\$ 17,796,499
Losses from customers	\$ -106,818,866	\$ -11,642,375

By applying the model, it can **reduce losses** from customers by up to **89.1%**

CONCLUSION

PREDIKSI

•The model is capable of **predicting 86.3%** of customers who **fail to make payments** of loans. With potential **reduction loss** up to **89.1%**.

REKOMENDASI

•Provides a duration of loan repayment of more than 5 years. In order to reduce the cost of monthly payments .

