FCC PART 15C

MEASUREMENT AND TEST REPORT

Applicant : Shenzhen Techtion Electronic Co., Ltd

Address: 16N, Block B, Fortune Plaza, 7002 Shenzhen Road,

Futian, Shenzhen, China

Equipment Type : Bluetooth Module

Brand Name : ISSC

Model(s) No. : TECHTION T46

FCC ID : YBX-BT-T46V108

Test Regulation : FCC 47 CFR Part 15 Subpart C 2009, Section 15.247

Test Result : Complied

Date of Test : April 24 to July 7, 2010

Prepared by : KTS International Laboratories Limited

6/F., Tower A, XinAnHu Commercial Plaza, BaoAn 5th

District, ShenZhen, China

Tel: (86) 755 26499308 Fax: (86) 755 26499356

E-mail: ktshk@ktscert.com

Approved by :

Kathy Yeung/Manager

Notes : This test report shall not be produced in full or

partial, without the written approval of KTS

International Laboratories Limited

The results in this report apply only to the sample

tested.

This test report must not be used by the customer to claim product certification, approval, or

endorsement by NVLAP, NIST, or any agency of the

Febderal Government

TABLE OF CONTENTS

CONTENT	'S	PAGES
SECTION	1: GENERAL INFORMATION	3
SECTION	2: EMC EQUIPMENT LIST	4
SECTION	3: TEST PROCEDURE	5
SECTION	4: POWER LINE CONDUCTED EMISSION	6-9
SECTION	5: NUMBER OF HOPPING CHANNELS/CHANNEL CARRIER SPACING	10-12
SECTION	6: DWELL TIME OF A HOPPING CHANNEL	13-14
SECTION	7: 20DB BANDWIDTH	15-16
SECTION	8: POWER OUTPUT	17
SECTION	9: FIELD STRENGTH OF SPURIOUS EMISSIONS	18-24
SECTION	10: FIELD STRENGTH OF SPURIOUS EMISSIONS(CONTINUED)	25-26
SECTION	11:RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED E	3AND 27-29
EXHIBIT	INCLUDING:	

BLOCK DIAGRAM
SCHEMATIC
LABEL SAMPLES
LABEL LOCATION
USER MANUAL
EXTERNAL PHOTOGRAPHS
INTERNAL PHOTOGRAPHS
OPERATIONAL DESCRIPTION
TEST SETUP PHOTOGRAPHS

SECTION 1: General Information:

Product Description for Equipment Under Test (EUT) Client Information

Applicant: Shenzhen Techtion Electronic Co., Ltd

Address: 16N, Block B, Fortune Plaza, 7002 Shenzhen Road, Futian,

Shenzhen, China

Manufacturer: Same as applicant

General description of EUT

EUT Name : Bluetooth Module Model No. : TECHTION T46

Output Power : 1.4 mW

Frequency of Operation : 2402-2480 MHz

Power Supply : DC 3.3V

Antenna Type : PCB Pattern Antenna

Number of Channels : 79
Channels Separaion : 1 MHz

Test Lab:

Measurements were made at the test site of SEM.Test Compliance Service Co., Ltd. Located at 3/F, Jinbao Commerce Building, Xin'an Fanshen Road, Bao'an District, Shenzhen, P.R.China.

The Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files which the Registration No.: 994117.

Test Standards:

All measurements contained in this report were conducted with ANSI C63.4-2003 and DA-00-705.

SECTION 2: EMC EQUIPMENT LIST

DEVICE	MANUFACTURER	MODEL	SERIAL	CAL/CHAR DATE	DUE DATE
Spectrum	ROHDE&SCHWARZ	FSEA20	DE25181	2009/08/12	2010/08/11
Analyzer					
Positioning	C&C	CC-C-1F	N/A	2009/08/12	2010/08/11
Controller					
Trilog	SCHWARZBECK	VULB9163	9163-333	2009/07/21	2010/07/20
Broadband					
Antenna					
Horn Antenna	SCHWARZBECK	ввнх 9120	9120-426	2009/07/21	2010/07/20
RF Switch	EM	EMSW18	SW060023	2009/08/12	2010/08/11
Amplifier	Agilent	8447F	3113A06717	2009/08/12	2010/08/11
Coaxial Cable	SCHWARZBECK	AK9513	9513-10	2009/08/12	2010/08/11
Spectrum	Agilent	E4402B	US41192821	2009/08/12	2010/08/11
Analyzer					
EMI Test	ROHDE&SCHWARZ	ESPI	101611	2009/08/12	2010/08/11
Receiver					
Receiver	ETS	2175	57337	2009/08/12	2010/08/11
Antenna					
50 ohm Coaxial	ETS	SUCOFLEX	25498514	2009/08/12	2010/08/11
Cable		104			
Puls Limiter	ROHDE&SCHWARZ	ESH3-Z2	100911	2009/08/12	2010/08/11
LISN	SCHWARZBECK	NSLK8126	8126-224	2009/08/12	2010/08/11
LISN	EMCO	3825/2	11967C	2009/08/12	2010/08/11

SECTION 3: TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of KTS International Laboratories Limited.

POWER LINE CONDUCTED INTERFERENCE:

The procedure used was ANSI STANDARD C63.4-2003 using a 50uH LISN. Both lines were observed with the UUT transmitting. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed. The ambient temperature of the UUT was 76F with a humidity of 55%.

BANDWIDTH 20 dB: The measurements were made with the spectrum analyzer's resolution bandwidth (RBW) = 1 MHz and the video bandwidth (VBW) = 3 MHz and the span set as shown on plot.

POWER OUTPUT: The RF power output was measured at the antenna feed point using a peak power meter.

ANTENNA CONDUCTED EMISSIONS: The RBW = 100 kHz, VBW = 300 kHz and the span set to 10.0 MHz and the spectrum was scanned from 30 MHz to the 10th Harmonic of the fundamental. Above 1 GHz the resolution bandwidth was 1 MHz and the VBW = 3 MHz and the span to 50 MHz.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using an Agilent spectrum receiver with pre-selector. The bandwidth (RBW) of the spectrum receiver was 100 kHz up to 1 GHz and 1 MHz above 1 GHz with an appropriate sweep speed. The VBW above 1 GHz was 3 MHz. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient temperature of the UUT was 76° F with a humidity of 55%.

SECTION 4: POWER LINE CONDUCTED EMISSION

RULES PART NO.: 15.107(a)

REQUIREMENTS:QUASI-PEAK AVERAGE

0.15-0.5 MHz 66-56 dBuV 56-46 dBu

0.5-5.0 56 46

0.5-5.0 56 46 5.0-30. 60 50

TEST PROCEDURE: ANSI C63.4-2003. The spectrum was scanned from .15 to 30MHz.

TEST DATA: LINE 1

Date: 7.JUL.2010 20:07:53

	EDIT PEAK LIST (Prescan Results)	
Trace1:	-QP		
Trace2:	-AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1 Max Peak	234 kHz	36.52	-25.78
1 Max Peak	286 kHz	36.44	-24.19
2 Average	23.986 MHz	29.87	-20.12
1 Max Peak	23.986 MHz	31.65	-28.34
2 Average	25.002 MHz	28.84	-21.15
1 Max Peak	25.002 MHz	31.16	-28.83

Date: 7.JUL.2010 20:08:02

TEST DATA: LINE 2

Date: 7.JUL.2010 20:09:43

	EDIT PEAK LIST (Prescan Results)	
Trace1:	-QP		
Trace2:	-AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1 Max Peak	338 kHz	35.90	-23.34
2 Average	23.986 MHz	28.01	-21.98
1 Max Peak	23.986 MHz	29.96	-30.03
1 Max Peak	25.002 MHz	29.51	-30.48
2 Average	25.002 MHz	26.16	-23.83

Date: 7.JUL.2010 20:09:51

SECTION 5: NUMBER OF HOPPING CHANNELS

RULES PART NO.: 15.247(a)1

REQUIREMENTS: The number of hops is 79 hops at a separation of 1 MHz, the requirement in the 2400 - 2483.5 MHz band is a minimum of 75 hops.

Measurement Data: Complies

Total number of Hopping Channels: 79

See below for actual measured spectrum plots.

NUMBER OF HOPPING CHANNELS

CHANNEL/CARRIER SPACING

SECTION 6: DWELL TIME OF A HOPPING CHANNEL

RULES PART NO.: 15.247(a)(1)(i)

REQUIREMENTS: The dwell time is $\underline{370}$ µs at 2.402GHz, $\underline{360}$ µs at 2.441GHz and $\underline{370}$ µs at 2.480GHz

SECTION 7: 20dB BANDWIDTH

RULE PART NO.: 15.247(a)(1)(iii)

REQUIREMENTS: The 20 dB bandwidth measured was 379.1 kHz at 2.402GHz

REQUIREMENTS: The 20 dB bandwidth measured was 374.1 kHz at 2.480GHz

Three places in the band were measured and the worst case presented above.

SECTION 8: POWER OUTPUT

RULE PART NO.: 15.247 (b) (1)

REQUIREMENTS: 1.0 Watt or +30 dBm

MEASUREMENT: 2402 MHz 1.421 mW or 0.001421 Watts EIRP

2441 MHz $\frac{1.443 \text{ mW}}{1.433 \text{ mW}}$ or 0.001443 Watts EIRP 2480 MHz $\frac{1.433 \text{ mW}}{1.433 \text{ mW}}$ or 0.001433 Watts EIRP

Method: 15.247(c)

The device under test has an integral antenna and the power was measured on a radiated basis.

SECTION 9: FIELD STRENGTH OF SPURIOUS EMISSIONS

RULES PART NO.: 15.247(c), 15.205 &15.209(b)

REQUIREMENTS:

FIELD STRENGTH FIELD STRENGTH S15.209

of Fundamental: of Harmonics 30 - 88 MHz 40 dBuV/m @3M

902-928MHz 88 -216 MHz 43.5

2.4-2.4835GHz 127.37dBuV/m 216 -960 MHz 46

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 20 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

Emissions that fall in the restricted bands (15.205) must be less than 54dBuV/m otherwise the spurious and harmonics must be attenuated by at least 20dB.

TEST DATA: 30-1000 MHz see next page

Job No.:TechtionPolarziation:HorizontalStandard:FCC Class B 3M RadiationPower Source:DC 3.3V

 Test item:
 Radiation Test
 Date:
 10/07/01/

 Temp.(
 26(C)/60%RH
 Time:
 10/34/22

C)/Hum.(%RH):

EUT: Bluetooth Test By:

Model: Distance: 3m

Note: HIGH CH

Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
32.6340	28.76	6.61	35.37	40.00	-4.63			peak
41.4215	23.97	7.95	31.92	40.00	-8.08			peak
72.0843	29.36	2.87	32.23	40.00	-7.77			peak
84.1100	31.22	4.63	35.85	40.00	-4.15			peak
166.0680	26.74	3.93	30.67	43.50	-12.83			peak
	(MHz) 32.6340 41.4215 72.0843 84.1100	(MHz) (dBuV/m) 32.6340 28.76 41.4215 23.97 72.0843 29.36 84.1100 31.22	(MHz) (dBuV/m) dB/m 32.6340 28.76 6.61 41.4215 23.97 7.95 72.0843 29.36 2.87 84.1100 31.22 4.63	(MHz) (dBuV/m) dB/m (dBuV/m) 32.6340 28.76 6.61 35.37 41.4215 23.97 7.95 31.92 72.0843 29.36 2.87 32.23 84.1100 31.22 4.63 35.85	(MHz) (dBuV/m) dB/m (dBuV/m) (dBuV/m) 32.6340 28.76 6.61 35.37 40.00 41.4215 23.97 7.95 31.92 40.00 72.0843 29.36 2.87 32.23 40.00 84.1100 31.22 4.63 35.85 40.00	(MHz) (dBuV/m) dB/m (dBuV/m) (dBuV/m) (dB) 32.6340 28.76 6.61 35.37 40.00 -4.63 41.4215 23.97 7.95 31.92 40.00 -8.08 72.0843 29.36 2.87 32.23 40.00 -7.77 84.1100 31.22 4.63 35.85 40.00 -4.15	(MHz) (dBuV/m) dB/m (dBuV/m) (dBuV/m) (dB) () 32.6340 28.76 6.61 35.37 40.00 -4.63 41.4215 23.97 7.95 31.92 40.00 -8.08 72.0843 29.36 2.87 32.23 40.00 -7.77 84.1100 31.22 4.63 35.85 40.00 -4.15	(MHz) (dBuV/m) dB/m (dBuV/m) (dBuV/m) (dB) () (cm) 32.6340 28.76 6.61 35.37 40.00 -4.63 -4.63 -4.4215 23.97 7.95 31.92 40.00 -8.08 -8.08 -72.0843 29.36 2.87 32.23 40.00 -7.77 -7.77 84.1100 31.22 4.63 35.85 40.00 -4.15

Vertical Job No.: Techtion Polarziation: Standard: FCC Class B 3M Radiation DC 3.3V Power Source: Test item: 10/07/01/ Radiation Test Date: Temp.(26(C)/60%RH Time: 10/35/55

C)/Hum.(%RH):

EUT: Bluetooth Test By:

Model: Distance: 3m

Note: HIGH CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	$d\mathbf{B}/\mathbf{m}$	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	32.1795	32.20	6.62	38.82	40.00	-1.18			QP
2	40.2757	30.25	7.94	38.19	40.00	-1.81			QP
3	51.8430	27.31	7.61	34.92	40.00	-5.08			QP
4	84.1100	28.89	4.63	33.52	40.00	-6.48			peak

Job No.: Techtion Polarziation: Horizontal FCC Class B 3M Radiation DC 3.3V Standard: Power Source: 10/07/01/ Test item: Radiation Test Date: Temp.(26(C)/60%RH 10/30/22 Time:

C)/Hum.(%RH):

EUT: Bluetooth Test By:

Model: Distance: 3m

Note: LOW CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	31.9546	27.70	6.62	34.32	40.00	-5.68			peak
2	42.6000	23.41	7.96	31.37	40.00	-8.63			peak
3	56.0007	22.22	7.41	29.63	40.00	-10.37			peak
4	84.1100	27.53	4.63	32.16	40.00	-7.84			peak
5	232.5318	27.07	7.03	34.10	46.00	-11.90			peak

Job No.: Techtion Polarziation: Vertical Standard: FCC Class B 3M Radiation Power Source: DC 3.3V Test item: Radiation Test Date: 10/07/01/ Temp.(26(C)/60%RH Time: 10/43/41

C)/Hum.(%RH):

EUT: Bluetooth Test By:

Model: Distance: 3m

Note: LOW CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	32.4059	32.79	6.62	39.41	40.00	-0.59			QP
2	41.1320	31.05	7.94	38.99	40.00	-1.01			QP
3	51.4807	28.82	7.62	36.44	40.00	-3.56			QP
4	67.6751	29.89	4.13	34.02	40.00	-5.98			peak
5	499.4247	24.79	12.88	37.67	46.00	-8.33			peak

Job No.: Techtion Polarziation: Horizontal FCC Class B 3M Radiation DC 3.3V Standard: Power Source: 10/07/01/ Test item: Radiation Test Date: Temp.(26(C)/60%RH Time: 10/32/47

C)/Hum.(%RH):

EUT: Bluetooth Test By:

Model: Distance: 3m

Note: MIDDLE CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	33.0950	27.19	6.61	33.80	40.00	-6.20			peak
2	43.2017	25.08	7.96	33.04	40.00	-6.96			peak
3	84.1100	29.38	4.63	34.01	40.00	-5.99			peak
4	166.0680	26.52	3.93	30.45	43.50	-13.05			peak

10/41/13

 Job No.:
 Techtion
 Polarziation:
 Vertical

 Standard:
 FCC Class B 3M Radiation
 Power Source:
 DC 3.3V

 Test item:
 Radiation Test
 Date:
 10/07/01/

Time:

Temp.(26(C)/60%RH

C)/Hum.(%RH):

EUT: Bluetooth Test By:

Model: Distance: 3m

Note: MIDDLE CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	$d\mathbf{B}/\mathbf{m}$	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	32.4059	32.86	6.62	39.48	40.00	-0.52			QP
2	39.4372	29.88	7.78	37.66	40.00	-2.34			QP
3	44.1202	29.63	7.98	37.61	40.00	-2.39			QP
4	51.4807	27.47	7.62	35.09	40.00	-4.91			peak
5	72.0843	30.25	2.87	33.12	40.00	-6.88			peak

SECTION 10: FIELD STRENGTH OF SPURIOUS EMISSIONS (CONTINUED)

TEST DATA: Above 1000 MHz

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
			L	ow Cha	nnel (10	to 25G	Hz)			
4804.0	AV	43.8	66	Н	34.1	5.2	33.0	50.1	54	-3.9
4804.0	AV	42.0	135	V	34.1	5.2	33.0	48.3	54	-5.7
7206.0	AV	38.4	45	Н	37.4	6.1	33.5	48.4	54	-5.6
7206.0	AV	36.1	60	V	37.4	6.1	33.5	46.1	54	-7.9
2402.0	AV	88.3	45	Н	29.1	3.7	34.0	87.1		(Fund.)
2402.0	AV	87.0	98	٧	29.1	3.7	34.0	85.8		(Fund.)
4804.0	PK	45.7	56	Н	37.4	6.1	33.5	55.7	74	-18.3
4804.0	PK	47.6	60	٧	34.1	5.2	33.0	53.9	74	-20.1
7206.0	PK	47.7	266	Н	34.1	5.2	33.0	54.0	74	-20.0
7206.0	PK	41.7	185	V	37.4	6.1	33.5	51.7	74	-22.3
2402.0	PK	93.9	90	Н	29.1	3.7	34.0	92.7		(Fund.)
2402.0	PK	92.6	43	V	29.1	3.7	34.0	91.4		(Fund.)
			Mic	dle Cl	nannel (1G to 25	GHz)			
4882.0	AV	43.4	145	Н	34.1	5.2	33.0	49.7	54	-4.3
4882.0	AV	41.0	65	V	34.1	5.2	33.0	47.3	54	-6.7
7323.0	AV	36.2	142	Н	37.4	6.1	33.5	46.2	54	-7.8
7323.0	AV	34.8	22	V	37.4	6.1	33.5	44.8	54	-9.2
2441.0	AV	89.7	242	Н	29.1	3.7	34.0	88.5		(Fund.)
2441.0	AV	87.2	113	V	29.1	3.7	34.0	86.0		(Fund.)
4882.0	PK	45.3	25	Н	37.4	6.1	33.5	55.3	74	-18.7
4882.0	PK	42.9	55	V	37.4	6.1	33.5	52.9	74	-21.1
7323.0	PK	45.5	14	Н	34.1	5.2	33.0	51.8	74	-22.2
7323.0	PK	44.1	0	V	34.1	5.2	33.0	50.4	74	-23.6
2441.0	PK	95.3	90	Н	29.1	3.7	34.0	94.1		(Fund.)
2441.0	PK	92.8	55	٧	29.1	3.7	34.0	91.6		(Fund.)

			H	igh Cha	annel (1	G to 250	GHz)			
4960.0	AV	36.8	87	Н	37.4	6.1	33.5	46.8	54	-7.2
4960.0	AV	34.7	26	V	37.4	6.1	33.5	44.7	54	-9.3
7440.0	AV	42.5	251	Н	34.1	5.2	33.0	48.8	54	-5.2
7440.0	AV	40.2	66	٧	34.1	5.2	33.0	46.5	54	-7.5
2480.0	AV	89.1	315	Н	29.1	3.7	34.0	87.9		(Fund.)
2480.0	AV	87.6	108	٧	29.1	3.7	34.0	86.4		(Fund.)
4960.0	PK	46.1	55	Н	34.1	5.2	33.0	52.4	74	-21.6
4960.0	PK	44.0	102	٧	34.1	5.2	33.0	50.3	74	-23.7
7440.0	PK	44.4	269	Н	37.4	6.1	33.5	54.4	74	-19.6
7440.0	PK	42.1	103	V	37.4	6.1	33.5	52.1	74	-21.9
2480.0	PK	94.7	157	Н	29.1	3.7	34.0	93.5		(Fund.)
2480.0	PK	93.2	55	V	29.1	3.7	34.0	92.0		(Fund.)

Method of Measuring Radiated Spurious Emissions

Equipment placed 80cm above ground on a rotatable platform.

METHOD OF MEASUREMENT: The procedure used was ANSI STANDARD C63.4-2003 & the FCC/OET Guidance on Measurements for Direct Sequence Spread Spectrum Systems - Public Notice 54797 Dated July 12, 1995.

SECTION 11: RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND

RULE PART NO.: 15.205

REQUIREMENTS: Emissions that fall in the restricted bands (15.205). These emissions must be less than or equal to 500 uV/m (54 dBuV/m).

TEST PROCEDURE: An in band field strength measurement of the fundamental Emission using the RBW and detector function required by C63.4-2003 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted band is presented below.

Highest Bandedge

Job No.:	Techtion	Polarziation:	Horizontal
Standard:	FCC Part15C Above 1G	Power Source:	DC 3.3V
Test item:	Radiation Test	Date:	10/07/01/
Temp.(26(C)/60%RH	Time:	10/52/59
C)/Hum.(%RH):			
EUT:	Bluetooth	Test By:	
Model:		Distance:	3 m
Note:	HIGHEST CH		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	$d\mathbf{B}/\mathbf{m}$	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	2483.500	12.06	35.97	48.03	54.00	-5.97			AVE

Lowest Bandedge

Techtion Job No.: Polarziation: Horizontal Standard: FCC Part15C Above 1G Power Source: DC 3.3V Test item: Date: Radiation Test 10/07/01/ 26(C)/60%RH Temp.(Time: 10/50/21 C)/Hum.(%RH): EUT: Test By: Bluetooth Model: Distance: 3m

Note: LOWEST CH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	2390.000	11.90	34.59	46.49	54.00	-7.51			AVE
2	2400.000	16.71	34.68	51.39	54.00	-2.61			AVE