Problem 7

- 1) List generators of C9: {1, 2, 4, 5, 7, 8} which are all elements coprime to 9. In the other groups of order 9, all non-identity elements must have order 3 because 3 is the only factor of 9.
- 2) Let G be a group of order 9 that does not equal C_9 . Since G is not cyclic $\exists a \in G$ s.t. order(a) = 3 and a generates $\{1, a, a^2\} \in G$. Picking $b \in G \{1, a, a^2\}$ gives $\{b, b^2\}$. $\{1, a, a^2\}$ and $\{b, b^2\}$ cannot have any elements in common because b cannot be equivalent to 1, a and a^2 because that would imply $b \in \{1, a, a^2\}$ but $b \in G \{1, a, a^2\}$.
- 3) $\{1, a, a^2, b, b^2\}$ are all distinct from above. What remains is to show $\{ab, a^2b, ab^2, a^2b^2\}$ are distinct from every other value.

```
ab:
ab \neq 1 because that implies b = a^{-1}
ab \neq a because that implies b = 1
ab \neq b because that implies a = 1
ab \neq a^2 because that implies b = a
ab \neq b^2 because that implies a = b
ab \neq a^2b because that implies a = a^2 or b = ab
ab \neq ab^2 because that implies b = b^2 or a = ab
ab \neq a^2b^2 because that implies b = b^2 and a = a^2 or a = a^2b or b = ab^2
a^2b:
a^2b \neq 1 because that implies b = (a^2)^{-1}
a^2b \neq a because that implies b = a^2
a^2b \neq b because that implies a^2 = 1
a^2b \neq a^2 because that implies b = 1
a^2b \neq b^2 because that implies b = ab^2
a^2b \neq ab because that implies a = a^2
a^2b \neq ab^2 because that implies b = a^2b^2
a^2b \neq a^2b^2 because that implies b = b^2
```

```
ab^2: ab^2 \neq 1 because that implies b^2 = (a)^{-1} ab^2 \neq a because that implies b^2 = 1 ab^2 \neq b because that implies a = b^2 ab^2 \neq a^2 because that implies b^2 = a ab^2 \neq b^2 because that implies a = 1 ab^2 \neq ab because that implies a = ab^2 ab^2 \neq a^2b because that implies a = a^2b^2 ab^2 \neq a^2b because that implies a = a^2b^2 ab^2 \neq a^2b^2 because that implies a = a^2
```

 $a^2b^2 \neq 1$ because that implies $b^2 = (a^2)^{-1}$ $a^2b^2 \neq a$ because that implies $b^2 = 1$ $a^2b^2 \neq a^2$ because that implies a = b $a^2b^2 \neq a^2$ because that implies $b^2 = 1$ $a^2b^2 \neq b^2$ because that implies $a^2 = 1$ $a^2b^2 \neq a^2$ because that implies $a^2 = 1$ $a^2b^2 \neq a^2$ because that implies $a^2 = a$ and $a^2b^2 \neq a^2b^2$ because that implies $a^2 = a^2b^2$ $a^2b^2 \neq a^2b^2$ because that implies $a^2 = a^2b^2$

4) What is ba?

 a^2b^2 :

 $ba \neq 1$ because that implies $a = b^{-1}$ $ba \neq a$ because that implies b = 1 $ba \neq b$ because that implies a = 1 $ba \neq a^2$ because that implies b = a $ba \neq b^2$ because that implies a = bSo $ba \in \{ab, a^2b, ab^2, a^2, b^2\}$

- 5) If G_1 and G_2 are groups, then $G_1 \times G_2 = (g_1, g_2)$ is also a group. $H = (G_1 \times G_2, *)$
 - (1) H is closed because (a,b)*(c,d) = (ac, bd) and $ac \in G_1$ and $bd \in G_2$
 - (2) * is associative on G_1 and G_2 so it associative on H
 - (3) $\exists g_1^{-1} \in G_1 \text{ and } \exists g_2^{-1} \in G_2 \text{ s.t. } \exists (g_1^{-1}, g_2^{-1}) \text{ s.t. } (g_1, g_2) * (g_1^{-1}, g_2^{-1}) = (1, 1)$
 - (4) $(1_{G_1}, 1_{G_2}) = (1, 1)$ is the identity

6)
$$G_1 = \{1, a, a^2\}$$
 and $G_2 = \{1, b, b^2\}$

$G_1 imes G_2$	1	b	b^2
1	(1,1)	(1, b)	$(1,b^2)$
а	(a,1)	(a,b)	(a,b^2)
a^2	$(a^2,1)$	(a^2,b)	(a^2,b^2)

The elements of the table are the elements of G. This shows that G can be formed by the cross product of two smaller groups. Since G is the cross product of two arbitrary groups G_1 and G_2 then no matter which order the cross product is applied, you will still get G. That shows that ba = ab, so G is abelian.

7) Cayley Table assuming $ba = a^2b$ Initial Table:

	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
1	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
а	а	a^2	1	ab	ab^2	a^2b	b	a^2b^2	b^2
a^2	a^2	1	а	a^2b	a^2b^2	b	ab	b^2	ab^2
b	b			b^2	1				
b^2	b^2			1	b				
ab	ab			ab^2	а				
a^2b	a^2b			a^2b^2	a^2				
ab^2	ab^2			а	ab				
a^2b^2	a^2b^2			a^2	a^2b				

Calcuations:

ba=aab baa =aaba=aaaab bab=aabb baab=aababb baabb=aababb=aaaabbb

```
bba=baab=aabab=aabab=abb
bbaa=baaba=aabaab=aaaabab=aaabab=aaabb=aabb
bbab=baabb=aababb=aabbb=abbb
bbaab=baabab=aabaabb=aaaabb=abaabb=aaababb=aaabbb=aabbb
bbabb=baabbb=aababbb=aababbb=abbbb
bbaabb=baababb=aabaabbb=aaaabbb=aaaabbbb=aaaabbbb=aabbbb
aba=aaab
abaa =aaaba=aaaaab
abab=aaabb
abaab=aaabab=aaaaabb
ababb=aaabbb
abaabb=aaababb=aaaaabbb
aaba=aaaab
aabaa =aaaaba=aaaaaab
aabab=aaaabb
aabaab=aaaabab=aaaaaabb
aababb=aaaabbb
aabaabb=aaaabbb=aaaaaabbb
abba=abaab=aaabab=aaaabb=aabb
abbaa=abaaba=aaabaaab=aaaabaab=aabaab=aaaabab=aaaabb=aaabb
abbab=abaabb=aaababb=aaabbb=aabbb
abbaab=abaabab=aaabaaabb=aaaabaabb=aaaababb=aaaababb=aaaabbb=aaabbb
abbabb=abaabbb=aaababbb=aaabbbb=aabbbb
b
```

Final Table:

	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
1	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
а	а	a^2	1	ab	ab^2	a^2b	b	a^2b^2	b^2
a^2	a^2	1	а	a^2b	a^2b^2	b	ab	b^2	ab^2
b	b	a^2b	ab	b^2	1	a^2b^2	ab^2	a^2	а
b^2	b^2	ab^2	a^2b^2	1	b	а	a^2	ab	a^2b
ab	ab	b	a^2b	ab^2	а	b^2	a^2b^2	1	a^2
a^2b	a^2b	ab	b	a^2b^2	a^2	ab^2	b^2	а	1
ab^2	ab^2	a^2b^2	b^2	а	ab	a^2	1	a^2b	b
a^2b^2	a^2b^2	b^2	ab^2	a^2	a^2b	1	а	b	ab

Counterexample to being associative: $(b^2 * ab^2) * ab = ab * ab = b^2$ $b^2 * (ab^2 * ab) = b^2 a^2 = a^2 b^2$

$$(b^2 * ab^2) * ab = ab * ab = b^2$$

$$b^2 * (ab^2 * ab) = b^2 a^2 = a^2 b^2$$

The above two results are different so the Cayley Table is not associative.

8) Cayley Table assuming $ba = ab^2$ Initial Table:

	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
1	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
а	а	a^2	1	ab	ab^2	a^2b	b	a^2b^2	b^2
a^2	a^2	1	а	a^2b	a^2b^2	b	ab	b^2	ab^2
b	b			b^2	1				
b^2	b^2			1	b				
ab	ab			ab^2	а				
a^2b	a^2b			a^2b^2	a^2				
ab^2	ab^2			а	ab				
a^2b^2	a^2b^2			a^2	a^2b				

Calculations:

```
baa = abba=abbb=aab
bab=abbb=a
baab=abbab=abbbb=aabb
babb=abbbb=ab
baabb=abbabb =ababbbbb=aa
aba=aabb
abaa =aabba=aababb=aaabbbb=aaab
abbb=a
abab=aabbb=aa
abaab=aabbab=aaabbbb=aaabb
ababb=aabbbb=aab
abaabb=aabbabb =aaabbbbbb=aaa
aaba=aaabb
aabaa =aaabba=aaabbbb=aaaab
aabbb=aa
aabab=aabbb=aaa
aabaab=aaabbab=aaababbb=aaaabb
```

aababb=aaabbbb=aaab aabaabb=aaabbabb =aaababbbb=aaaa

bba=babb=abbbb

bbaa=babba=abbbabb=ababbbbb=aabbbbbbbb=aabb

bbab=babbb=abbbbb

bbabb=babbbb=abbbbbb

abba=ababb=aabbbb

abbab=ababbb=aabbbbb

abbabb=ababbbb=aabbbbbb

Finished table:

	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
1	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
а	а	a^2	1	ab	ab^2	a^2b	b	a^2b^2	b^2
a^2	a^2	1	а	a^2b	a^2b^2	b	ab	b^2	ab^2
b	b	ab^2	a^2b	b^2	1	а	a^2b^2	ab	a^2
b^2	b^2	ab	a^2b^2	1	b	ab^2	a^2	а	a^2b
ab	ab	a^2b^2	b	ab^2	а	a^2	b^2	a^2b	1
a^2b	a^2b	b^2	ab	a^2b^2	a^2	1	ab^2	b	а
ab^2	ab^2	a^2b	b^2	а	ab	a^2b^2	1	a^2	b
a^2b^2	a^2b^2	b	ab^2	a^2	a^2b	b^2	а	1	ab

Counterexample to being associative:

$$(b^2 * a^2b) * ab = a^2 * ab = b$$

$$b^2 * (a^2b * ab) = b^2 * 1 = b^2$$

The above two results are different so the Cayley Table is not associative.

9) Cayley Table assuming $ba = a^2b^2$ Initial Table:

	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
1	1	а	a^2	b	b^2	ab	a^2b	ab^2	a^2b^2
а	а	a^2	1	ab	ab^2	a^2b	b	a^2b^2	b^2
a^2	a^2	1	а	a^2b	a^2b^2	b	ab	b^2	ab^2
b	b			b^2	1				
b^2	b^2			1	b				
ab	ab			ab^2	а				
a^2b	a^2b			a^2b^2	a^2				
ab^2	ab^2			а	ab				
a^2b^2	a^2b^2			a^2	a^2b				

Calculations:

ba=aabb

Trying to get rid of ba in ba^2 seems to get stuck in a loop.

I think it gets stuck here because if $ba = a^2b^2$ that would mean $b = a^2$ and $a = b^2$ which is not possible.

10) From work above it can be seen that there are only two groups of order 9, and that they are abelian. These groups would be C_9 and $C_3 \times C_3$.