

Indeks Gini

- Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini
- · Algorytm SPRINT (IBM Inteligent Miner)
- Rozważmy przykładowy zbiór treningowy, w którym każdy rekord opisuje ocenę ryzyka, że osoba, która ubezpieczyła samochód, spowoduje wypadek. Ocena została dokonana przez firmę ubezpieczającą w oparciu o dotychczasową historię ubezpieczonego

Uniwersytet Przyrodniczy we Wrocławi

Indeks Gini - Przykład Klasyfikator (model) Zbiór treningowy Typ_sam Ryzyko high family sport high Model może być wykorzystany do oceny ryzyka związanego z high 68 ubezpieczeniem nowego klienta family low truck low Uniwersytet Przyrodniczy we Wrocławiu

KI	las۱	∕fil	kac	ia	- 7	<u>'ał</u>	οż	er	nia

Partition(Data S) { if (all points in S are of the same class) then return; for each ttribute A do evaluate splits on attribute A; Use best split found to partition S into S1 and S2 Partition(S1); Partition(S2); } Initial call: Partition(Training Data)

Uniwersytet Przyrodniczy we Wrocławii

Definicja 1: Wartość Indeksu Gini

gini(S) =
$$1 - \sum p_j^2$$

- gdzie:
 - S zbiór przykładów należących do n klas
 - $\mathbf{p_i}$ względna częstość występowania klasy j w S
- · Przykładowo:

dwie klasy, Pos i Neg, oraz zbiór przykładów S zawierający p elementów należących do klasy Pos i n elementów należących do klasy Neg

$$p_{pos} = p/(p+n)$$
 $p_{neg} = n/(n+p)$
 $gini(S) = 1 - p_{pos}^2 - p_{neg}^2$

Uniwersytet Przyrodniczy we Wrocławii

Definicja 2: Indeks podziału Gini

 Punkt podziału dzieli zbiór S na dwie partycje S1 i S2 – indeks podziału Gini jest zdefiniowany następująco:

gini_{SPLIT}(S) =
$$(p_1 + n_1)/(p+n)*gini(S_1) + (p_2 + n_2)/(p+n)*gini(S_2)$$

gdzie p₁, n₁ (p₂, n₂) oznaczają, odpowiednio,

- p₁ elementów w S₁ należących do klasy Pos,
- n₁ liczba elementów w S₁ należących do klasy Neg,
- p₂ elementów w S₂ nalężących do klasy Pos,
- n₂ liczba elementów w S₂ należących do klasy Neg

Indeks Gini

- "Najlepszym" punktem podziału zbioru S jest punkt podziału, który charakteryzuje się najmniejszą wartością indeksu podziału Gini gini_{sput}
- Dla każdego atrybutu, dla wszystkich możliwych punktów podziału, oblicz wartość indeksu podziału Gini – wybierz punkt podziału o najmniejszej wartości gini_{sput}
- Wybrany punkt podziału włącz do drzewa decyzyjnego
- Punkt podziału dzieli zbiór S na dwie partycje S1 i S2.
- Powtórz procedurę obliczania indeksu podziału dla partycji S1 i S2 – znalezione punkty podziału włącz do drzewa decyzyjnego.
- Powtarzaj procedurę dla kolejnych partycji aż do osiągnięcia warunku stopu

Uniwersytet Przyrodniczy we Wrocławii

Przykład (1)

ID	Wiek	Typ_sam	Ryzyko
0	23	family	high
1	17	sport	high
2	43	sport	high
3	68	family	low
4	32	truck	low
5	20	family	high

Uniwersytet Przyrodniczy we Wrocławi

Przykład (2)

Lista wartości atrybutu Wiek

	,	
Wiek	ID	Ryzyko
23	0	high
17		high
43	2	high
68	3	low
32	4	low
20	5	high

Lista wartości atrybutu Typ_sam

Typ_sam	ID	Ryzyko
family	0	high
sport		high
sport	2	high
family	3	low
truck	4	low
family	5	high

Przykład (3) • Możliwe punkty podziału dla atrybutu Wiek: Wiek ≤17, Wiek ≤ 20, Wiek ≤ 23, Wiek ≤ 32,Wiek ≤ 43, Wiek ≤ 68 | Liczba krotek | High | Low | | Wiek ≤ 17 | 1 | 0 | | Wiek > 17 | 3 | 2 | gini(Wiek <= 17) = 1 - (1²+0²) = 0 gini(Wiek > 17) = 1 - ((3/5)²+(2/5)²) = 0,73 gini_{SPLIT} = (1/6) * 0 + (5/6) * (0,73) = 0,6

	Przykład (4)					
Liczba krotek	High	Low				
Wiek <= 20	2	0				
Wiek > 20	2	2				
gini(Wiek <= 20)	= 1- (1	2+0 ²):	= 0			
gini(Wiek >20) =	1- ((1/	(2) ² +(1)	$(2)^2$) = 1/	2		
gini _{SPLIT} = (2/6) *	0 + (4)	/6) * (1	/8) = <u>1/3</u>	= 0.33	3	
Liczba krotek High Low						
Wiek <= 23 3 0						
		Wiel	> 23	1	2	
	gini(Wiek <= 23) = 1- (12+02) = 0					
gini(Wiek > 23) = 1- $((1/3)2+(2/3)2) = 4/9$						
$gini_{SPLIT} = (3/6) * 0 + (3/6) * (4/9) = 2/9 = 0.22$						
Ţ	Jniwers	YTET PRZ	YRODNICZY	WE WRO	CŁAWIU	

Przykład (5) Liczba krotek High Low Wiek <= 32 3 1 Wiek > 32 1 1 gini(Wiek ≤ 32) = 1- $((3/4)^2+(1/4)^2)$ = 3/8 gini(Wiek > 32) = 1- $((1/2)^2+(1/2)^2)$ = 1/2 gini_{SPLIT} = (4/6) * (3/8) + (2/6) * (1/2) = 7/24 = 0.29 Najmniejsza wartość indeksu podziału gini_{SPLIT} posiada punkt podziału Wiek ≤ 23, stad, tworzymy wierzchołek drzewa decyzyjnego dla punktu podziału Wiek = (23+32)/2 = 27.5

Przv	ykład	۱(6

• Drzewo decyzyjne, po pierwszym podziale zbioru treningowego, ma następująca postać:

 Zauważmy, że pierwsza partycja S1 jest partycją "czystą", w tym sensie, że wszystkie rekordy należące do tej partycji należą do jednej klasy.

Uniwersytet Przyrodniczy we Wrocławiu

Przykład (7)

• Listę wartości atrybutów dzielimy w punkcie podziału: Listy wartości atrybutów dla Wiek >=27.5:

Wiek	ID	Ryzyko
17	1	high
20	5	high
23	0	hiah

Typ_sam	ID	Ryzyko
family	0	high
sport	1	high
family	5	high

• Listy wartości atrybutów dla Wiek > 27.5:

Wiek	ID	Ryzyko
32	4	low
43	2	high
68	3	low

Typ_sam	ID	Ryzyko
sport	2	high
family	3	low
truck	4	low

Uniwersytet Przyrodniczy we Wrocławiu

Przykład (8)

Ocena punktów podziału dla atrybutu kategorycznego

Musimy dokonać oceny wszystkich punktów podziału atrybutu kategorycznego - 2^N kombinacji, gdzie N oznacza liczbę wartości atrybutu kategorycznego

Liczba krotek	high	low
Typ_sam={sport}		0
Typ_sam={family}	0	1
Typ_sam={truck}	0	1

gini(Typ_sam \in {sport}) = $1 - 1^2 - 0^2 = 0$ gini(Typ_sam \in {family}) = $1 - 0^2 - 1^2 = 0$ gini(Typ_sam \in {truck}) = $1 - 0^2 - 1^2 = 0$

Przykład (9)

- gini(Typ_sam ∈ { sport, family }) = 1 (1/2)² (1/2)² = 1/2
- gini(Typ_sam \in { sport, truck }) = 1 $(1/2)^2$ $(1/2)^2$ = 1/2
- gini(Typ_sam \in { family, truck }) = 1 0^2 1^2 = 0
- $gini_{SPLIT}(Typ_sam \in \{ sport \}) = (1/3) * 0 + (2/3) * 0 = 0$
- $gini_{SPLIT}(Typ_sam \in \{family\}) = (1/3) * 0 + (2/3)*(1/2) = 1/3$
- $gini_{SPLIT}(Typ_sam \in \{ truck \}) = (1/3) * 0 + (2/3)*(1/2) = 1/3$
- $gini_{SPLIT}(Typ_sam \in \{ sport, family \}) = (2/3)*(1/2)+(1/3)*0=1/3$
- $gini_{SPLIT}(Typ_sam \in \{ sport, truck \}) = (2/3)*(1/2)+(1/3)*0=1/3$
- gini_{SPLIT}(Typ_sam ∈ { family, truck }) = (2/3)*0+(1/3)*0 = 0

Uniwersytet Przypodniczy we Wroczawii

Przykład (10)

• Drzewo decyzyjne po wprowadzeniu wierzchołka ma postać:

Uniwersytet Przyrodniczy we Wrocławi

Zysk informacyjny

- Do wyboru atrybutu testowego w wierzchołku drzewa decyzyjnego wykorzystujemy miarę zysku informacyjnego
- Jako atrybut testowy (aktualny wierzchołek drzewa decyzyjnego) wybieramy atrybut o największym zysku informacyjnym (lub największej redukcji entropii)
- Atrybut testowy minimalizuje ilość informacji niezbędnej do klasyfikacji przykładów w partycjach uzyskanych w wyniku podziału

Zysk informacyjny – Oczekiwana ilość informacji (1)

- Niech S oznacza zbiór s przykładów. Załóżmy, że atrybut decyzyjny posiada m różnych wartości definiujących m klas, C_i (dla i=1, ..., m)
- Niech s_i oznacza liczbę przykładów zbioru S należących do klasy C_i
- Oczekiwana ilość informacji niezbędna do zaklasyfikowania danego przykładu:

$$I(s_1,...,s_m) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Uniwersytet Przyrodniczy we Wrocławii

Zysk informacyjny – Oczekiwana ilość informacji (2)

- p_i oznacza prawdopodobieństwo, że dowolny przykład należy do klasy Ci (oszacowanie - s_i/s)
- Niech atrybut A posiada v różnych wartości:

Atrybut A dzieli zbiór S na partycje $\{S_1, S_2, ..., S_v\}$, gdzie S_j zawiera przykłady ze zbioru S, których wartość atrybutu A wynosi a_i

 Wybierając atrybut A jako atrybut testowy tworzymy wierzchołek drzewa, którego łuki wychodzące posiadają etykiety {a₁, a₂, ..., a_v} i łączą dany wierzchołek A z wierzchołkami zawierającymi partycje {S₁, S₂, ..., S_v}

Uniwersytet Przyrodniczy we Wrocławii

Zysk informacyjny – Entropia

Niech s_{ij} oznacza liczbę przykładów z klasy C_i w partycji S_j.
 Entropie podziału zbioru S na partycje, według atrybutu A definiujemy następująco:

$$E(A_1, A_2, ... A_r) = \sum_{j=1}^{r} \frac{(s_{1j} + s_{2j} + ... + s_{mj})}{s} I(s_{1j}, s_{2j}, ..., s_{mj})$$

Im mniejsza wartość entropii, tym większa "czystość" podziału zbioru S na partycje

Zysk informacyjny – waga j-tej partycji

 Współczynnik (s_{1j} + s_{2j} +...+s_{mj})/s stanowi wage j-tej partycji i zdefiniowany jest jako iloraz liczby przykładów w j-tej partycji (i.e. krotek posiadających wartość a_j atrybutu A) do całkowitej liczby przykładów w zbiorze S. Zauważmy, że dla danej partycji S_p

$$I(s_{1j}, s_{2j}, ..., s_{mj}) = -\sum_{i=1}^{m} p_{ij} \log_2(p_{ij})$$

 gdzie p_{ij} = s_{ij}/|S_j| i określa prawdopodobieństwo, że przykład z S_i należy do klasy Ci

Uniwersytet Przyrodniczy we Wrocławii

Zysk informacyjny – Gain(A)

 Zysk informacyjny, wynikający z podziału zbioru S na partycje według atrybutu A, definiujemy następująco:

$$Gain(A) = I(s_1, s_2, ..., s_m) - E(A)$$

 Gain(A) oznacza oczekiwana redukcje entropii (nieuporządkowania) spowodowana znajomością wartości atrybutu A

Uniwersytet Przyrodniczy we Wrocławii

Przykład (1) dochód student status wiek kupi_komputer wysoki kawaler wysoki nie zonaty nie 31..40 wysoki tak średni nie kawaler >40 tak niski tak zonaty 31..40 tak żonaty tak tak kawaler tak średni tak kawaler tak zonaty 31..40 średni nie żonaty tak 31..40 wysoki tak zonaty

Przykład (2)

- Rozważmy przedstawiony zbiór treningowy opisujący klientów sklepu komputerowego
- Atrybut decyzyjny, "kupi_komputer", posiada dwie wartości (tak, nie), stad, wyróżniamy dwie klasy (m=2)

C1 odpowiada wartości tak - s1 = 9

C2 odpowiada wartości **nie -** s2 = 5

$$I(s_1, s_2) = I(9,5) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$$

Uniwersytet Przyrodniczy we Wroczawii

Przykład (3)

 Następnie, obliczamy entropie każdego deskryptora Rozpocznijmy od atrybutu wiek:

dla wiek ='<=30'
$$s_{11}$$
=2 s_{21} =3 $l(s_{11}, s_{21})$ = 0.971

dla wiek ='31..40'

$$s_{12}$$
=4 s_{22} =0 $I(s_{12}, s_{22})$ = 0

Uniwersytet Przyrodniczy we Wrocławi

Przykład (4)

• Entropia atrybutu "wiek" wynosi:

E("wiek")=5/14 *I(
$$s_{11}$$
, s_{21}) +4/14* I(s_{12} , s_{2} 2) +
+ 5/14* I(s_{13} , s_{23}) = 0.694

 Zysk informacyjny wynikający z podziału zbioru S według atrybutu wiek wynosi:

$$Gain(",wiek") = I(s_1, s_2) - E(",wiek") = 0.246$$

Przykład (5)

Analogicznie obliczamy zysk informacyjny dla pozostałych atrybutów:

Gain(dochód) = 0.029 Gain(student) = 0.151 Gain(status) = 0.048

- Ponieważ "wiek" daje największy zysk informacyjny spośród wszystkich deskryptorów, atrybut ten jest wybierany jako pierwszy atrybut testowy
- Tworzymy wierzchołek drzewa o etykiecie "wiek", oraz etykietowane łuki wychodzące, łączące wierzchołek "wiek" z wierzchołkami odpowiadającymi partycjom zbioru utworzonymi według atrybutu "wiek"

