Metody numeryczne

Wykład nr 2

dr hab. Piotr Fronczak

Przybliżone rozwiązywanie równań nieliniowych

Jedno równanie z jedną niewiadomą

Szukamy pierwiastków rzeczywistych równania f(x) = 0.

f(x) zwykle jest funkcją nieliniową, zatem korzystamy z metod iteracyjnych (poprawianie kolejnych przybliżeń pierwiastków)

Wykładnik zbieżności

- Określa szybkość zbieżności metod iteracyjnych
- Metoda jest rzędu p, jeżeli istnieje stała c taka, że dla dwóch kolejnych przybliżeń x_k i x_{k+1} zachodzi

$$\lim_{k \to \infty} \frac{\left| \mathcal{E}_{k+1} \right|}{\left| \mathcal{E}_{k} \right|^{p}} = c$$

gdzie $\varepsilon_k = X_{k+1} - X_k$.

Przypadki specjalne

p=1 (metoda liniowa),

p>1 & p<2 (metoda superliniowa)

p=2 (metoda kwadratowa),

p=3 (metoda kubiczna)

Zbieżność

- **1** 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} ... linowa z C = 10^{-1}
- 2 10^{-2} , 10^{-4} , 10^{-6} , 10^{-8} ... linowa z C = 10^{-2}
- \bullet 10⁻², 10⁻⁴, 10⁻⁸, 10⁻¹⁶... kwadratowa

Kroki podstawowe

- 1. Przeanalizuj problem pod kątem
- ➤dokładności rozwiązań
- ≻szybkości obliczeń
- 2. Jeśli to możliwe, narysuj funkcję

- 3. Oceń problemy (np. rozbieżność funkcji)
- 4. Wybierz rozwiązanie początkowe

Metoda bisekcji (połowienia)

Wybieramy przedział domknięty $\langle a; b \rangle$, wewnątrz którego znajduje się pierwiastek i na którego końcach wartości funkcji f(x) mają przeciwne znaki

Metoda bisekcji (połowienia)

- 1. Wybieramy przedział $\langle a, b \rangle$, tak by $f(a)f(b)\langle 0 \rangle$
- 2. Dzielimy przedział na połowy:

$$x_0 = a + \frac{b - a}{2}$$

3. Mamy trzy przypadki:

$$f(x_0) = 0$$
, znaleziono pierwiastek
 $f(x_0)$ ma ten sam znak co $f(a)$ zatem pierwiastek
jest w przedziale (x_0,b)
 $f(x_0)$ ma ten sam znak co $f(b)$ zatem pierwiastek
jest w przedziale (a,x_0)

4. Wybieramy przedział zawierający pierwiastek jako nowy przedział < a,b> i wracamy do kroku 2.

Metoda bisekcji: przykład

Metoda bisekcji (połowienia): uwagi

- Metoda zawsze zbieżna, jeśli tylko dobrze wybrano przedział początkowy.
- Metoda zawiedzie, gdy f(x) styczne z osią x dla f(x)=0.
- Wolna zbieżność p=1 (metoda liniowa)
- Po *k* iteracjach rozmiar przedziału zmalał do:

$$\varepsilon_0 = \frac{b_0 - a_0}{2^k}$$

• Zatem liczba iteracji konieczna do uzyskania tolerancji błędu ϵ_0 :

$$k = \log_2 \left(\frac{b_0 - a_0}{\varepsilon_0} \right)$$

Metoda Regula Falsi

- Opisana w hinduskim tekście Vaishali Ganit (III w. p.n.e.)
- Dziewięć rozdziałów sztuki matematycznej (九章算術) (200 p.n.e. 100 n.e.)
 wykorzystuje algorytm do rozwiązywania równań liniowych
- regula linia, falsus falszywy

Metoda Regula Falsi

- 1. Wybierz przedział $\langle a, b \rangle$, tak by f(a)f(b) < 0
- 2. Przybliżenie pierwiastka: punkt, w którym prosta łącząca punkty a i b przecina oś x.

równanie prostej:
$$y = \frac{f(b) - f(a)}{b - a}(x - b) + f(b)$$

Stąd, gdy
$$y=0$$
, mamy: $x_{app} = \frac{af(b)-bf(a)}{f(b)-f(a)}$

3. Mamy trzy przypadki:

$$f(x_{app}) = 0$$
, znaleziono pierwiastek $f(x_{app})$ ma ten sam znak co $f(a)$ zatem pierwiastek jest w przedziale (x_{app},b) $f(x_{app})$ ma ten sam znak co $f(b)$ zatem pierwiastek jest w przedziale (a,x_{app})

4. Wybierz przedział zawierający pierwiastek jako nowy przedział $\langle a, b \rangle$ i wróć do kroku 2.

Metoda Regula Falsi: przykład

Metoda Regula Falsi: uwagi

- Metoda zawsze zbieżna, jeśli tylko dobrze wybrano przedział początkowy.
- Metoda zawiedzie, gdy f(x) styczne z osią x dla f(x)=0.
- Wolna zbieżność p=1 (metoda liniowa)

Metoda Newtona

Wybierzmy pewien punkt początkowy x_k i rozwińmy funkcję f(x) w szereg Taylora

$$f(x_k + \Delta x) = f(x_k) + \Delta x \left. \frac{df}{dx} \right|_{x_k} + \left. \frac{(\Delta x)^2}{2} \left. \frac{d^2 f}{dx^2} \right|_{x_k} + \dots$$

Podstawmy $\Delta x = x_{k+1} - x_k$ i weźmy tylko dwa wyrazy rozwinięcia:

$$f(x_{k+1}) \approx f(x_k) + (x_{k+1} - x_k)f'(x_k)$$

Niech $f(x_{k+1}) = 0$. Wtedy

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Metoda Newtona: przykład

Metoda Newtona: przykład c.d.

Szukamy pierwiastków $x - x^{1/3} - 2 = 0$

$$x - x^{1/3} - 2 = 0$$

Liczymy pochodną
$$f'(x) = 1 - \frac{1}{3}x^{-2/3}$$

Równanie iteracyjne
$$x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679
2	3.52138015	0.85598641	3.771×10^{-7}
3	3.52137971	0.85598640	2.664×10^{-15}
4	3.52137971	0.85598640	0.0

Metoda Newtona: uwagi

- Szybka zbieżność p=2 (metoda kwadratowa)
- Wymaga analitycznej znajomości f'(x)
- Metoda zbieżna, gdy f(x), f'(x), f''(x) ciągłe, f'(x) <> 0 w pobliżu rozwiązania, początkowa wartość x_1 leży blisko rozwiązania

Fraktale

- ma nietrywialną strukturę w każdej skali,
- struktura ta nie daje się łatwo opisać w języku tradycyjnej geometrii euklidesowej,
- jest samo-podobny,
- ma wymiar wymierny (fractional) a nie całkowity

obraz Lichtenberga: wyładowanie elektryczne w dielektryku.

Brokuł romanesco

Drzewo

Liście

Fraktale Netwona

Weźmy równanie f(z) = 0, $z \in C$, np. $z^3 - 1 = 0$

Równanie zespolone stopnia n ma n pierwiastków.

W zależności od wyboru punktu warunku początkowego (x + iy) metoda Newtona doprowadzi nas do jednego z n pierwiastków.

Punkty te następnie oznacza się różnym kolorem w zależności od:

rozwiązania, do którego dąży dany punkt: prędkości znalezienia rozwiązania:

... lub oba warunki naraz:

Metoda siecznych

Do wyznaczenia k+1 przybliżenia korzystamy z punktów k-1 i k.

Korzystając z podobieństwa trójkątów:

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{f(x_2) - 0}{x_2 - x_3}$$

Stąd
$$x_3 = x_2 - \frac{f(x_2)(x_1 - x_2)}{f(x_1) - f(x_2)}$$

Ogólnie
$$x_{k+1} = x_k - \frac{f(x_k)(x_{k-1} - x_k)}{f(x_{k-1}) - f(x_k)}$$

Metoda siecznych: przykład

Metoda siecznych: uwagi

Metoda między Regula falsi a Newtona

Zbieżność szybsza niż liniowa
$$\frac{1+\sqrt{5}}{2} \approx 1.618$$

$$x_{k+1} = x_k - \frac{f(x_k)(x_{k-1} - x_k)}{f(x_{k-1}) - f(x_k)} \qquad \qquad x_{k+1} = x_k - \frac{f(x_k)}{f(x_{k-1}) - f(x_k)}$$

Przybliżenie pochodnej

Nie musimy znać analitycznej postaci f'(x)!

Newton
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Ale te same problemy ze zbieżnością co w metodzie Newtona. Najpierw wolna ale pewna bisekcja, potem szybka metoda siecznych.

Metoda szukania punktu stałego

Równanie f(x) = 0 zastępujemy równaniem x - g(x) = 0, czyli x = g(x)

Rozwiązania szukamy iteracyjnie: $x_{k+1} = g(x_k)$

Metoda szukania punktu stałego

Metoda szukania punktu stałego: przykład

$$x-x^{1/3}-2=0$$

Trzy sposoby zapisu:

$$x_{k+1} = g_1(x_k) = x_k^{1/3} + 2$$

$$x_{k+1} = g_2(x_k) = (x_k - 2)^3$$

$$x_{k+1} = g_3(x_k) = \frac{6 + 2x_k^{1/3}}{3 - x_k^{2/3}}$$

Czy jest jakaś różnica?

k	$g_1(x_{k-1})$	$g_2(x_{k-1})$	$g_3(x_{k-1})$
0	3	3	3
1	3.4422495703	1	3.5266442931
2	3.5098974493	-1	3.5213801474
3	3.5197243050	-27	3.5213797068
4	3.5211412691	-24389	3.5213797068
5	3.5213453678	-1.451×10^{13}	3.5213797068
6	3.5213747615	-3.055×10^{39}	3.5213797068
7	3.5213789946	-2.852×10^{118}	3.5213797068
8	3.5213796042	∞	3.5213797068
9	3.5213796920	∞	3.5213797068

zbieżność rozbieżność szybka zbieżność

Metoda szukania punktu stałego: zbieżność

Twierdzenie:

Jeśli funkcja g jest ciągła w [a, b] i ograniczona $a \le g(x) \le b$ dla każdego $x \in [a, b]$, to funkcja posiada przynajmniej jeden punkt stały

Jeśli ponadto g'(x) jest ciągła na (a, b) i spełniona jest nierówność: $|g'(x)| \le c < 1$, to ciąg iteracji $x_{n+1} = g(x_n)$ jest zbieżny do punktu stałego.

Dla opornych: jeśli g(x) jest gładka i ograniczona i niezbyt stroma, to proces iteracyjny jest zbieżny.

Metoda szukania punktu stałego: zbieżność

Metoda szukania punktu stałego: przykład

$$x - x^{1/3} - 2 = 0$$

Trzy sposoby zapisu:

$$x_{k+1} = g_1(x_k) = x_k^{1/3} + 2$$

$$x_{k+1} = g_2(x_k) = (x_k - 2)^3$$

$$x_{k+1} = g_3(x_k) = \frac{6 + 2x_k^{1/3}}{3 - x_k^{-2/3}}$$

k	$g_1(x_{k-1})$	$g_2(x_{k-1})$	$g_3(x_{k-1})$
0	3	3	3
1	3.4422495703	1	3.5266442931
2	3.5098974493	-1	3.5213801474
3	3.5197243050	-27	3.5213797068
4	3.5211412691	-24389	3.5213797068
5	3.5213453678	-1.451×10^{13}	3.5213797068
6	3.5213747615	-3.055×10^{39}	3.5213797068
7	3.5213789946	-2.852×10^{118}	3.5213797068
8	3.5213796042	∞	3.5213797068
9	3.5213796920	∞	3.5213797068

Czy jest jakaś różnica?

 $g_3'(x) = \frac{2(x - x^{1/3} - 2)}{x^{1/3}(1 - 3x^{2/3})^2}$

zbieżność rozbieżność szybka zbieżność

Równania z wieloma pierwiastkami

```
krok = 1; //<---- szerokość przedziału
a = 0; //<---- lewa granica pierwszego przedziału
b = a + krok; //<---- prawa granica pierwszego przedziału
while(b < bmax)</pre>
  if(f(a) * f(b) < 0) //<-- sprawdź, czy funkcja zmienia znak
     root[i] = FindRoots(f,a,b); //<-- np. bisekcja
     i = i + 1:
  a = b;   //<---- lewa granica nowego przedziału
  b = a + krok; //<--- prawa granica nowego przedziału
  };
```

Układy równań nieliniowych

Metoda Newtona

Dla układu dwóch równań: $f_1(x, y) = 0$

$$f_2(x, y) = 0$$

Wybieramy rozwiązania początkowe x_1 i y_1 . Jeśli są one blisko rozwiązań prawdziwych x_2 i y_2 , to rozwinięcie Taylora funkcji f_1 i f_2 wokół x_1 i y_1 :

$$f_{1}(x_{2}, y_{2}) = f_{1}(x_{1}, y_{1}) + (x_{2} - x_{1}) \frac{\partial f_{1}}{\partial x} \Big|_{x_{1}, y_{1}} + (y_{2} - y_{1}) \frac{\partial f_{1}}{\partial y} \Big|_{x_{1}, y_{1}} + \dots$$

$$f_{2}(x_{2}, y_{2}) = f_{2}(x_{1}, y_{1}) + (x_{2} - x_{1}) \frac{\partial f_{2}}{\partial x} \Big|_{x_{1}, y_{1}} + (y_{2} - y_{1}) \frac{\partial f_{2}}{\partial y} \Big|_{x_{1}, y_{1}} + \dots$$

$$0$$

$$\begin{cases}
\frac{\partial f_1}{\partial x}\Big|_{x_1, y_1} \Delta x + \frac{\partial f_1}{\partial y}\Big|_{x_1, y_1} \Delta y = -f_1(x_1, y_1) \\
\frac{\partial f_2}{\partial x}\Big|_{x_1, y_1} \Delta x + \frac{\partial f_2}{\partial y}\Big|_{x_1, y_1} \Delta y = -f_2(x_1, y_1)
\end{cases}$$

Czyli układ dwóch równań liniowych. Korzystając z reguły Cramera:

$$\begin{cases}
\Delta x = \frac{-f_1(x_1, y_1) \frac{\partial f_2}{\partial y} \Big|_{x_1, y_1} + f_2(x_1, y_1) \frac{\partial f_1}{\partial y} \Big|_{x_1, y_1}}{J(f_1(x_1, y_1), f_2(x_1, y_1))} \\
-f_2(x_1, y_1) \frac{\partial f_1}{\partial x} \Big|_{x_1, y_1} + f_1(x_1, y_1) \frac{\partial f_2}{\partial x} \Big|_{x_1, y_1}}{J(f_1(x_1, y_1), f_2(x_1, y_1))}
\end{cases}$$

gdzie
$$J$$
 – jakobian: $J(f_1, f_2) = \det \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$

Układy równań nieliniowych: przykład

$$\begin{cases} f_1(x, y) = y - \frac{1}{2} \left(e^{x/2} + e^{-x/2} \right) = 0 \\ f_2(x, y) = 9x^2 + 25y^2 - 225 = 0 \end{cases}$$

$$J(f_1, f_2) = \det \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \det \begin{bmatrix} -\frac{1}{4} \left(e^{x/2} - e^{-x/2} \right) & 1 \\ 18x & 50y \end{bmatrix} = -\frac{1}{4} \left(e^{x/2} - e^{-x/2} \right) 50y - 18x$$

```
F1(x,y) = function \{ y -0.5*(exp(x/2)+exp(-x/2)) \}
F2(x,y) = function \{ 9*x^2+25*y^2-225 \}
F1x(x,y) = function \{ -(exp(x/2) + exp(-x/2))/4 \}
F1y(x,y) = function \{ 1 \}
F2x(x,y) = function \{ 18*x \}
F2y(x,y) = function \{ 50*y \}
Jacob (x, y) = function \{ -(exp(x/2) + exp(-x/2))/4*50*y-18*x \}
xi = 2.5; yi = 2; Err = 0.001;
                                     Warunki początkowe i dopuszczalny błąd
for(i=1;i<=5;i++)
  Delx = (-F1(xi,yi)*F2y(xi,yi)+F2(xi,yi)*F1y(xi,yi)) / Jacob(xi,yi);
  Dely = (-F2(xi,yi)*F1x(xi,yi)+F1(xi,yi)*F2x(xi,yi)) / Jacob(xi,yi);
  xip1 = xi + Delx;
  yip1 = yi + Dely;
  Errx = abs((xip1 - xi)/xi);
                                             X_{k+1} i Y_{k+1}
                                                                \Delta x i \Delta y
  Erry = abs((yip1 - yi)/yi);
  if(Errx<Err && Erry<Err) break;</pre>
  xi = xip1; yi = yip1;
                                         Błąd względny rozwiązania
  };
```

i	X	у	Errx	Erry
1	3.0731	2.4296	0.22926	0.21479
2	3.0345	2.3849	0.01258	0.01840
3	3.0314	2.3858	0.00102	0.00037
4	3.0312	2.3859	0.00007	0.00004

Układy równań nieliniowych: uwagi

W ogólności:

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{bmatrix} = \begin{bmatrix} -f_1 \\ -f_2 \\ \vdots \\ -f_n \end{bmatrix}$$

- 1. Zbieżność nie jest gwarantowana.
- 2. Funkcje f_1, \ldots, f_n i ich pochodne muszą być ciągłe i ograniczone w pobliżu rozwiązania
- 3. $J(f_1, ..., f_n) <> 0$ w pobliżu rozwiązania
- 4. Warunki początkowe wystarczająco blisko prawdziwego rozwiązania
- 5. Dla układu n>3 równań powyższe równanie trzeba rozwiązać numerycznie.