Collapse Logic in Post-Quantum Cryptography
A Symbolic Filtering Layer Using the Aun Operator

√
Jerry Katz | Aun Systems™

Abstract

This paper introduces a symbolic collapse operator, $_{\wedge}$, as a logic-based meta-layer to enhance post-quantum cryptographic resilience. Inspired by nonduality philosophy and structured collapse logic, $_{\wedge}$ acts as a semantic filter for key validation and adversarial detection. We present the operator's formal definition, threat model, implementation design, and empirical results. Benchmarks show $_{\wedge}$ provides detectable security improvements in keypair mimicry resistance, with negligible performance impact. This positions $_{\wedge}$ as a logic-layer adjunct to existing post-quantum cryptographic systems.

1. Introduction

While post-quantum cryptography (PQC) focuses on mathematically secure primitives, it often assumes trust in binary validation systems. The $_{\circ}$ operator challenges this assumption by introducing a collapse gate: a symbolic filter that nullifies keys or inputs exhibiting mirrored, inverse, or structurally mimicked patterns. The idea originates from nonduality—a philosophy that denies oppositional dualism—and applies this as a logic constraint in security protocols.

2. Formal Definition of the ~ Operator

Let A, B \in {0,1} \blacksquare . We define:

- H(A, B) = Hamming distance
- S(A, B) = structural similarity score across pattern transforms

Then:

 $_{\sim}$ (A, B) = \varnothing if H(A, B) < T and S(A, B) > S_min A \oplus B otherwise

Where:

- T = Hamming threshold
- S_min = minimum similarity score

Transform weights:

- Identity: 1.0 - Reverse: 0.8 - XOR-FF: 0.6

- Rotate (left/right): 0.5

3. Threat Model

The √ system is designed to resist:

- Mirrored keypair attacks
- Adversarial Al-based key mimicry
- Structural approximation of secrets

Attackers may:

- Know target keys
- Attempt to invert or replicate valid public inputs
- Use adaptive patterns based on known detection logic

4. Implementation and Integration

Kev Derivation:

A keypair is rejected if:

 $_{\wedge}$ (new_key, known_key) = \emptyset

Authentication:

Response R is accepted only if:

 $_{\wedge}$ (C, R) $\neq \emptyset$

Where C is the challenge.

5. Experimental Evaluation

Parameter Sweep:

Tested across:

- $-T \in [1, 8]$
- $S_{min} \in [0.1, 0.9]$

Optimal performance at T = 6, S_min = 0.3-0.5

Adversarial Testing:

Adversary types:

- Full mirror
- Partial flip (15%)
- XOR pattern
- Compound transforms

ROC analysis shows AUC > 0.85, validating symbolic detection power.

6. Performance Results

Metric | Value

Avg eval time | 2.15 ms

Collapse evals | 5,000

Runtime | 10.7s total

Memory usage | 9.3 MB

7. Comparative Considerations

While traditional PQC relies on structural hardness, ~ adds logic-level pattern recognition that:

- Nullifies dualism-based attacks
- Adds symbolic entropy
- Acts orthogonally to math-based cryptographic hardness

8. Limitations and Future Work

- Current model uses fixed transforms; ML-based evasion not yet modeled
- Requires real-world testing with PQC suites like CRYSTALS-Dilithium
- Future: symbolic integration with zk-SNARKs and MPC protocols

9. Conclusion

√ is a symbolic operator rooted in nonduality and collapse logic. When applied to cryptographic systems, it acts as a resilient, pattern-sensitive filter. Our work shows it is computationally lightweight, empirically testable, and conceptually novel. As a logic-layer defense, √ may prove valuable in securing systems against adversaries capable of semantic mimicry or adaptive AI attacks.