真菌多样性的进化

31.1 真菌是重要的分解者

31.2 真菌多样性的进化

担子的发育过程

真菌是营吸收异养的多细胞真核生物。在二界系统中,真菌被看作是一种植物,列入植物界。到了五界系统,真菌有了自己的界:真菌界(Fungi)。为什么人们不再把真菌看作植物呢?总的来说,真菌不具有植物的一般特征,而且在一些重要的性状上有着不同于植物的特点。

第一,植物最重要的特征在于它是光合自养的生物,然而没有一种真菌有叶绿素,能进行光合作用。真菌能分泌分解酶到体外基质中,使那里的较大的有机分子分解为较小的分子,真菌把后者吸收到体内作为食物。真菌是一种吸收异养的生物。

第二,植物有多种类型的细胞,并按细胞-组织-器官的层次构建植物体。 真菌由长丝状的菌丝组成,菌丝反复分支形成菌丝体。有些菌丝体呈松散的网络状,有些呈现为紧密的结构,如蘑菇。

第三,植物和真菌都有细胞壁,但是其主要成分不同,植物是纤维素,真菌 是壳多糖。

第四,在真菌的有丝分裂过程中,没有核膜的破碎和重建。有丝分裂是在核内进行的。在核内形成纺锤体,染色体移向核的两端,最后形成两个核。而在植物以及其他真核生物的有丝分裂中,到中期核膜解体,以后的过程是在细胞质中进行的,直到末期重新形成核膜,最后形成两个细胞。

第五,植物的有性生殖是比较典型的卵式生殖,真菌则通过不同交配型的菌丝相互接近、融合而实现有性过程。

31.1 真菌是重要的分解者

在生物界的系统树上,从原生生物中演化出3个多细胞真核生物的谱系和类群。一是植物界,它是营光合自养的生物,在生态系统中是生产者;一是动物界,它是营吞咽式异养的,是消费者;还有一种就是真菌界,营吸收式异养,是分解者。根据化石纪录,真菌出现于9亿年前的元古宙晚期。在4.3亿年前,某些真菌伴随着植物来到陆地。在以后的1亿年里,真菌的3个主要类型已经确立,它们是接合菌(Zygomycetaes)、子囊菌(Ascomycetaes)和担子菌(Basidiomycetaes)。

真菌的细胞内不含叶绿素,也没有质体,营寄生或腐生生活。真菌贮存的养分主要是[肝]糖原(liver starch),还有少量的蛋白质、脂肪以及微量的维生素。多数真菌有细胞壁,其主要成分为壳多糖(chitin)。除少数单细胞真菌(酵母)外,绝大多数真菌的生物体由菌丝(hyphae)构成。有些菌丝是一个长管形细胞,具有许多核,是谓无隔菌丝。有些菌丝中有横隔,把菌丝隔成许多细胞,每个细胞内含1或2个核,是谓有隔菌丝。菌丝经反复分枝形成网络,称为菌丝体(mycelium)(图 31.1)。

菌体以菌丝作为基本构造是和它的营养方式相适应的。真菌是吸收式异养的,它分泌多种水解酶到体外,把食物中的大分子分解成可溶的小分子,然后借助菌丝内较高的渗透压予以吸收。组成真菌细胞壁的壳多糖,是一种由含氮糖组成的柔韧的多聚物。长而细的菌丝,可以发育出巨大的表面积,有利于分泌水解酶到食物中并吸收养料。菌丝的顶端可侵入到植物细胞中或者生长在细胞之间。无论是营腐生生活,渗入到

图 31.1 真菌的菌丝体

死去的植物体中,还是作为寄生者去感染生活的植物,或者作为共栖者参与菌根的组成,菌丝都能分泌水解酶消化掉植物的细胞壁,并生长到细胞中去。真菌能集中自身的资源用于菌丝的生长,以极快的速率延伸到食物源。在一天内,一个菌丝体可以生长出长达1000 m的菌丝。一个蘑菇可以一夜长到它的最大体积。

31.2 真菌多样性的进化

31.2.1 接合菌的有性过程是通过配子 囊的接合而完成的

黑根霉(Rhizopus)是一种常见的接合菌。馒头、 面包上黑色的毛样霉斑就是黑根霉。它的菌丝体由无 隔菌丝组成。核为单倍性的。菌丝在基质表面匍匐生 长,有假根伸入基质吸收营养。无性生殖时,与假根相 对的一面,长出直立菌丝,顶端膨胀成孢子囊。成熟孢 子呈黑色,散落后萌发出新的菌丝体。黑根霉有两种 不同的交配型(mating type),在书中常常分别用"+" 和"-"来表示。当环境条件恶劣时,黑根霉进行有性 生殖。邻近具有不同交配型的菌丝体各长出一短枝。 短枝顶端膨大,用横隔隔离出若干单倍性的核,成为配 子囊。不同交配型的配子囊相互接触,它们连接处的 细胞壁消失,两个配子囊成为一个细胞,原生质融合称 为胞质融合(plasmogamy)。然后不同交配型的核两两 融合,形成二倍体的接合孢子(zygospore),称为核融合 (karyogamy)。成熟的接合孢子囊具有厚壁,壁上有疣 状突起。此时接合孢子囊进入休眠,借以抵抗干旱气 候及其他严峻的环境条件。在条件适宜时,中止休眠, 厚壁破裂,生出一菌丝,在其顶端生一孢子囊。其内二 倍体的核经减数分裂产生多个单倍的"+"、"-"孢 子。孢子囊壁破裂,孢子散出,萌发成新的菌丝体(图 31.2)。

31.2.2 子囊是子囊菌的有性生殖器官

火丝菌(Pyronema)是常见的子囊菌。它的菌丝为有隔菌丝,多分枝。无性生殖以分支菌丝的顶端产生分生孢子(conidia)来完成。有性生殖时,一些菌丝的顶端膨大,分别产生出多核的精子囊和产囊体。产囊体上有一条弯管状的受精丝。当受精丝和精子囊接触时,细胞壁融解形成一小孔,精子囊中的细胞质和核流

图 31.2 黑根霉生活史

入产囊体。这时,产囊体中有分别来自精子囊和产囊 体的2种核,但没有发生核融合。由产囊体产生出产 囊菌丝。产囊菌丝分枝并产生横壁,形成许多细胞,每 个细胞具一对核。产囊菌丝和单核的营养菌丝共同形 成子囊果(ascocarp)。在子囊果中,产囊菌丝分枝的 顶端不断产生出子囊母细胞。在此细胞中,雌雄核融 合成为二倍体的合子,随即进行一次减数分裂和一次有 丝分裂,形成8个子核。以后,每核周围的细胞质彼此 分离并分泌一壁,成为孢子。子囊母细胞因此而变成含 有8个子囊孢子(ascospore)的子囊(ascus)。在产囊菌 丝形成子囊果时,单核的营养菌丝也在其中生长成网, 并有菌丝渗入到子囊之间,形成细长的隔丝,二者共同 组成子囊果。子囊和隔丝排为子实层。子囊成熟时,囊 内发生很大压力,将子囊孢子射出(图 31.3)。

子囊菌是真菌中物种数量最多的一类。许多物种 是我们熟知的,并同人类生活有密切的关系。如在酿 酒和食品发酵中广泛应用的酵母菌(yeasts),遗传学中 作为研究材料的链孢霉(Neurospora crassa),提取青霉 素用的青霉(Penicillium)、著名的中药材冬虫夏草 (Cordyceps sinensis),以及危害禾谷类作物的白粉菌 (Erysiphe),麦角菌(Claviceps)。来自麦角的毒物能引 起坏疽、神经性痉挛、灼痛、幻觉及暂时性神经错乱乃 至死亡。从麦角中提取出数种毒素,有些成分剂量很

小时可作为药物,例如,一种麦角化合物可用来治疗高 血压。

31.2.3 担子菌的担孢子生在担子的 外面

蘑菇(Agaricus campestris)是常见的可食用的扫子 菌。菌丝有横隔。单倍体的担孢子(basidiospore)萌发 生成单倍体的单核菌丝。两条不同交配型的菌丝生长 到一起,彼此结合,细胞质即行融合,但细胞核只相互 靠近而不融合,形成双核菌丝体。双核菌丝的分枝末 端形成担子(basidium)。担子菌中的担子和子囊菌中 的子囊相当。环境中的信号,如下雨、温度变化、季节 变化等,能使双核菌丝连同一些单核菌丝紧密结合,组 成子实体,或称担子果(basidiocarp)。这就是我们习 见被称之为蘑菇的部分。担子果上部为伞状的菌盖, 菌盖下为菌柄。在菌盖下侧的表面为子实层,由棒状 的担子和不育的侧丝组成。有性生殖中,担子中的双 核融合,形成二倍体的合子核,随即经过减数分裂形成 4个单倍性的核。此时,担子的顶端产生4个突起,每 一个核分别流入一个突起中,发育成一个担孢子。担 子菌和子囊菌的一个主要区别是:子囊菌的子囊孢子 在子囊内形成,担子菌的担孢子却生在担子的外边 (图 31.4)。

图 31.3 火丝菌生活史

图 31.4 蘑菇生活史

纵观接合菌、子囊菌、担子菌的生活史,大多数真菌生活史有3个不同的时期。在单倍体时期和双倍体时期之间,还有一个独特的第三期,称为双核期,细胞中含有2种不同的核。当不同交配型的核(如火丝菌

和蘑菇)或雌雄核融合成合子后,随即进行减数分裂。 所以它们的双倍体时期就是合子期,不存在一个双倍 体的多细胞菌丝体的阶段。

很多担子菌寄生在植物体内,引起作物病害。如

玉蜀黍黑粉菌(Ustilago maydis),菌丝寄生在玉米植株上,玉米组织受刺激,长大成瘤,其中充满黑色孢子。小麦杆锈病菌(Puccinia graminis)寄生于小麦、大麦上。而木耳(Auricularia)、银耳(Tremella)是著名的食用菌。灵芝(Fomes japonicus)是著名中药和制造保健食品的一种珍贵的基础材料。

31.2.4 地衣是生物扩展生存领域的 先驱

在干燥的岩石或树皮上,常有灰白、暗绿、淡黄、鲜红等多种颜色的生物,看起来干枯而无生气,其实生命力极强,这就是地衣(Lichens)。

地衣是真菌和绿藻(或蓝细菌)的共生体(图 31.5)。参与组成地衣的真菌大多是子囊菌,也有担子菌。真菌从它的光合自养的伙伴那里得到营养物质,而绿藻(或蓝细菌)从真菌那里得到水和矿物质,并受到保护,防止水分的过度蒸发。这种互惠共生的关系,使它们能在很严峻的环境条件下生长。在没有土壤的环境中,植物很难生存,地衣可生长在极小的岩石裂缝中,并能促使岩石风化而成为土壤。地衣常常是生物占领新陆地的先锋。

在极度干燥的条件下,地衣可以脱去水分,停止光 合作用,进入休眠状态,这时仅仅有极微的呼吸作用。 下雨了,或条件好转,地衣会很快地吸收水分,以很高 的速率进行光合作用并生长。地衣可长期保持生命, 有些地衣已生活了1000年,比得上最古老的植物。

地衣可以进行无性生殖。一块从地衣上脱落的碎片,如果含有真菌和绿藻(或蓝细菌)二者,则可以在空气中散布到其他地方,生长出新的地衣。它们也可以单独进行生殖,包括有性和无性的生殖。地衣中的真菌有性或无性生殖的后代,必须同有关绿藻(或蓝细菌)重新组合起来,才能生存。

北极地区的地衣是北极驯鹿的主要食物。有些地衣,如石蕊(Cladonia),可用作酸碱指示剂。

图 31.5 地衣——真菌和绿藻的共生体(引自 Campbell 等,2000)

思考题

- 1. 为什么说真菌不是植物?
- 2. 试说明真菌生物体的菌丝结构对吸收营养的适应。
- 3. 真菌的生活史有哪些不同于陆生植物的特点?
- 4. 子囊菌的子囊孢子的形成和担子菌的担孢子的形成有什么不同?
- 5. 各举两例真菌中的常见食用菌、著名药用菌、农作物的病原菌。