Definition of centroid

For a 2D rectangle $C = [0, L_x] \times [0, L_y] \in \mathbb{R}^2$ where the mass density function is f(x, y) for $(x, y) \in C$. The centroid of C is defined as the coordinate (x_c, y_c) where

$$x_{c} = \frac{\int_{0}^{L_{y}} \int_{0}^{L_{x}} xf(x,y) dx dy}{\int_{0}^{L_{y}} \int_{0}^{L_{x}} f(x,y) dx dy}, \qquad y_{c} = \frac{\int_{0}^{L_{y}} \int_{0}^{L_{x}} yf(x,y) dx dy}{\int_{0}^{L_{y}} \int_{0}^{L_{x}} f(x,y) dx dy}$$

Problem 1

As shown in the figure, suppose C is partitioned into smaller rectangles (called pixels) $C_{n,m} = [(n-1)D_x, nD_x] \times [(m-1)D_y, mD_y]$ for n=1,2,...,N and m=1,2,...,M. That is, there are a total of $N \times M$ pixels and they have the same size of $D_x \times D_y$. The mass over each pixel is uniformly distributed, that is, the density function f(x,y) on each pixel is a constant but unknown. However, the total mass on the (n,m)th pixel is known and is equal to $U_{n,m}$ for n=1,2,...,N and m=1,2,...,M. From the above definition of centroid, derive the centroid formula of C in terms of $U_{n,m}$, D_x , D_y , N and M.

Problem 2

As shown in the figure below, suppose $D_x = 100$, $D_y = 120$, N = 5, M = 4, and the mass of each pixel $U_{n,m}$ is given in the figure below. Based on your formula in Problem 1, make your program on MATLAB (or any other computer language) to calculate the centroid of C.

ν γ	\		/			
MD_{y}	1.1	7.0	9.1	6.5	2.3	
$2D_y$	4.2	13.1	21.3	14.1	7.4	
	5.4	12.2	19.3	15.0	6.2	
D_y	3.2	5.1	1.9	4.2	3.5	
0	$D_x = 2D_x$				N	$D_x \qquad x$

Submit your solution to Problem 1 and programing codes with the calculated centroid in Problem 2.