

Seminar Statistische Lernverfahren

Klassifikation von Rezensionstypen

Till Gräfenberg, Matthias Häußler, Alexander Kohlscheen, Michael Lau, Tanja Niklas, Jonathan Schmitz

12. Dezember 2019

Inhaltsverzeichnis

- 1. Problemstellung
- 2. Erstellen von Prädiktoren
- 3. Analysemethoden
 - 3.1 Naive Bayes
 - 3.2 Entscheidungsbaum
 - 3.3 Random Forest
 - 3.4 Support Vector Machine
 - 3.5 weitere Anpassungen und Modelle

Problemstellung

► Ziel: Klassifizierung von Reviews in folgende Typen

Texttyp	introvertiert	extrovertiert
emotional	stetig	initiativ
rational	gewissenhaft	dominant

► Gegeben: 439 bereits klassifizierte Reviews

- Klassifikation sollte durch verwendete Wörter geschehen
- Zurückführung auf Grundwörter notwendig
- ▶ Benutzung verschiedener Packages in R bzw. Python ermöglichte verschiedene Verfahren.

Stemming

- Durch Abschneiden von Prä-/In- und Suffixen und Ersetzen von Umlauten, Diphtongen etc. erzeugen von Wortstämmen.
- ► Eigene Implementierung nach Vorgabe von COMPEON in R
- Für Englische Sprache bereits vorgefertigte Tools z.B.
 - porterstemmer von nltk in Python
 - snowballstemmer von nltk in Python

Probleme:

- Unregelmäßigkeit von Verben im Deutschen
- Komposita

Lemmatisierung

- Alternative: Zurückführung auf grammatikalische Grundformen
- Erfordert vorgefertigte Packages z.B.
 - SpaCy in Python
 - ▶ nltk in Python
- ▶ Diese lieferten zusätzlich Informationen über die Wortart
- Auch hier für Englische Sprache ausgereifter als die deutsche Alternative

Filterung der Prädikatoren, weitere

- Nach Erstellung der Grundwörter konnte gefiltert werden, welche Wörter häufig auftraten
- Denkbare Filtermethoden:
 - Nur Wörter, die mind. n Mal aufgetaucht sind
 - Nur Wörter, die in mind. p% der Reviews verwendet wurden
- ► Anschließend Erstellung einer binären Document-Term-Matrix, die kodiert, welche Grundwörter in welchen Reviews auftauchten
- ▶ Alternative: PCA um aussagekräftige "Wörterachsen" zu bestimmen.

PCA - Principal Component Analysis

Ziel: Dimensionsreduktion

Idee: Suche die Datenachsen, auf denen die Varianz am größten ist

Verfahren:

- ► Sei X die DT-Matrix (Spaltenmittelwerte = 0)
- ▶ Bestimme die Kovarianzmatrix $Cov = X^TX$
- **Destimme** die Eigenwerte λ_i und Eigenvektoren v_i von Cov
- Sei $V = (v_1|v_2|...)$
- ▶ Transformiere die Daten zu $\hat{X} = XV$

Problem: Die Resultate verlieren an Interpretierbarkeit

PCA - Principal Component Analysis

PCA - Principal Component Analysis

Fazit:

- Die Dominanten Reviews haben eine geringere Varianz
- keine erkennbaren Gruppen
- Mittelwerte der Gruppen sind ähnlich

Das Verfahren liefert keine besseren Ergebnisse.

Naive Bayes

▶ Das Naive Bayes Verfahren fußt auf dem Bayes Theorem

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

bzw. für unabhängige Prädiktoren $x_1, ..., x_n$ als

$$p(y|x_1,...,x_n) = \frac{p(x_1|y)\cdots p(x_n|y)p(y)}{p(x_1,...,x_n)} \propto p(x_1|y)\cdots p(x_n|y)p(y).$$

Durch Schätzen von p(y) und $p(x_i|y)$ (für die Reviewtypen y) durch die relativen Häufigkeiten, können wir dann Klassifikationen durchführen als

$$\hat{y} = \operatorname{argmax}_{y} p(y) \prod_{i=1}^{n} p(x_{i}|y).$$

Naive Bayes

- Durchführung war in R mit dem Package caret, über Python mit sklearn möglich. Mit letzterem haben wir jeweils die deutschen und englischen Reviews klassifiziert.
- Dieses Vorgehen zeigte nur wenig bessere Ergebnisse als eine einheitliche Zuweisung.

(Bester) Naive Bayes, R, Wortaufkommen > 20

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	2	8	1		0,412	0,778	0,538
Gewissenhaft	0	0	0	0		n.d.	0	n.d.
Initiativ	4	11	28	17		0,467	0,778	0,583
Stetig	0	1	0	0		n.d.	0	n.d
Total					0,494	n.d.	0,389	n.d.

Naive Bayes, Python, Wortvorkommen in mind. 1% der Texte, Lemmatisierung mit spacy, Englisch

	D	G	I	S	Acc.	Prec.	Recall	F1				
Dominant	13	4	12	4		0,433	0,722	0,542				
Gewissenhaft	0	3	3	0		0,5	0,214	0,3				
Initiativ	4	5	16	11		0,444	0,444	0,444				
Stetig	1	2	5	3		0,273	0,167	0,207				
Total					0,407	0,413	0,387	0,373				

Naive Bayes, Python, Wortvorkommen in mind. 1% der Texte, Lemmatisierung mit spacy, Deutsch

	D	G	I	S	Acc.	Prec.	Recall	F1				
Dominant	16	2	13	2		0,444	0,889	0,593				
Gewissenhaft	0	5	4	1		0,5	0,357	0,417				
Initiativ	2	5	16	13		0,444	0,444	0,444				
Stetig	0	2	3	2		0,286	0,111	0,16				
Total					0,453	0,419	0,45	0,403				

weitere Anpassungen und Modelle

Mit Naive Bayes und den Wortarten als Prädiktoren lässt sich zuverlässig voraussagen, ob eine Person extrovertiert ist:

	extrovertiert	introvertiert
extrovertiert	30	5
introvertiert	24	27

Idee:

Nutze die Vorhersage dieses Modells um ein neues Modell anzupassen.

weitere Anpassungen und Modelle

Random Forest

Random Forest mit Naive Bayes

	D	G	I	S	
D	14	2	8	1	
G	1	4	1	0	
	3	7	25	15	
S	0	1	2	2	

	D	G	1	S
D	15	2	9	1
G	0	4	1	1
I	3	8	24	13
S	0	0	2	3

Das modifizierte Verfahren liefert im Schnitt keine besseren Ergebnisse

Entscheidungsbaum

- ► Teilt in Klassen auf
- Wahr oder Falsch Entscheidungen
- Jedes Blatt hat genau eine Klasse
- Verwende rpart

Resultate Entscheidungsbaum, R, mind. 20 mal Wörter

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	3	9	1		51,8%	77,7%	62,1%
Gewissenhaft	0	3	5	5		23,0%	21,4%	22,1%
Initiativ	2	4	19	5		63,3%	52,7%	57,5%
Stetig	2	4	3	7		43,7%	38,8%	41,1%
Total					50,0%	45,4%	47,6%	45,4%

Resultate Entscheidungsbaum, Python, mind. in 1% der Texte, englisch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	9	4	12	5		30,0%	50,0%	37,5%
Gewissenhaft	2	3	4	2		27,2%	21,4%	23,9%
Initiativ	5	5	12	8		40,0%	33,3%	36,3%
Stetig	2	2	8	3		20,0%	16,6%	18,1%
Total					31,3%	29,3%	30,3%	28,9%

Resultate Entscheidungsbaum, Python, mind. in 1% der Texte, deutsch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	13	4	16	1		38,2%	72,2%	49,9%
Gewissenhaft	2	4	1	3		40,0%	28,5%	33,2%
Initiativ	3	5	13	7		46,4%	36,1%	40,6%
Stetig	0	1	6	7		50,0%	38,8%	43,6%
Total					43,0%	43,6%	43,9%	41,8%

Random Forest

- Entscheidungsbaum nicht beste Option
 - gut für Trainingsdaten
 - nicht flexibel
 - Probleme mit neuen Datensätzen
- Generiere neue Testdaten durch Wählen mit Zurücklegen
- Erzeuge Entscheidungsbaum
- ► Generiere so viele Entscheidungsbäume
- Entscheidung durch Mehrheitsentscheidung
- R randomForest 2000 Bäume, analog in Python

Resultate Random Forest, R, mind. 20 mal Wörter

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	2	10	0		53,8%	77,7%	63,5%
Gewissenhaft	2	4	0	1		57,1%	28,5%	28,0%
Initiativ	2	7	25	14		52,0%	69,4%	59,4%
Stetig	0	1	1	3		60,0%	16,6%	26,0%
Total					53,4%	55,7%	48,0%	44,2%

Resultate Random Forest, Python, mind. in 1% der Texte, englisch

	D	G	ı	S	Acc.	Prec.	Recall	F1
Dominant	16	4	14	4		42,1%	88,8%	57,1%
Gewissenhaft	0	6	2	1		66,6%	42,8%	52,1%
Initiativ	1	4	16	9		53,3%	44,4%	48,4%
Stetig	1	0	4	4		44,4%	22,2%	29,6%
Total					48,8%	51,6%	49,5%	46,8%

Resultate Random Forest, Python, mind. in 1% der Texte, deutsch

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	15	4	15	2		41,6%	83,3%	55,4%
Gewissenhaft	0	3	4	3		30,0%	21,4%	24,9%
Initiativ	2	4	15	9		50,0%	41,6%	45,4%
Stetig	1	3	2	4		40,0%	22,2%	28,5%
Total					43,0%	40,4%	42,1%	38,5%

Support Vector Machine

- Versucht Entscheidungsgrenze (Hyperebene) zu finden, die die Distanz der nächsten Datenpunkte jeder Klasse zu ihr maximiert
- Diese nächsten Datenpunkte sind die Support Vectors

Quelle: https://towardsdatascience.com/support-vector-machines-for-classification-fc7c1565e3

Support Vector Machine

- Verschiedene Kerne (Funktionen) um dem Separierungsproblem gerecht zu werden
- Kerne projizieren nicht-linear separierbare Daten niedrigerer
 Dimensionen auf linear-separierbare Daten höherer Dimensionen
- Vier häufig verwendete Kerne:
 - Linear
 - Polynomiell
 - Radial
 - Sigmoidal (Tangens hyperbolicus)
- In R mit e1071 und in Python mit sklearn

Resultate Support Vector Machine, R, mind. 10 mal Wörter, Radialer Kern

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	3	8	1		0,538	0,778	0,636
Gewissenhaft	0	1	1	0		0,500	0,071	0,163
Initiativ	4	10	27	14		0,570	0,750	0,419
Stetig	0	0	0	3		1,000	0,167	0,209
Total					0,5233	0,632	0,441	0,410

Resultate Support Vector Machine, Python, Englisch, mind. 20 mal Wörter, Sigmoid Kern

	D	G	I	S	Acc.	Prec.	Recall	F1
Dominant	14	2	9	1		0,54	0,78	0,64
Gewissenhaft	0	5	4	1		0,50	0,36	0,42
Initiativ	3	5	19	13		0,47	0,53	0,50
Stetig	1	2	4	3		0,30	0,17	0,21
Total					0,477	0,45	0,46	0,44

Schwierigkeiten

- Keine eindeutige Klassifikation
 - Auch für Menschen nicht eindeutig
 - ► Teilweise sehr geringe Unterschiede zwischen den Typen
- Stemming nicht unbedingt eindeutig
 - Unregelmäßigkeit von Verben im Deutschen
 - Komposita
- Geringe Zahl an Trainingsdaten
- Unbalanciertes Studiendesign
- Representativität
 - Introvertierte Kunden schreiben weniger häufig Reviews
 - Nur positive Bewertungen lagen vor