

Machine Learning

Dimensionality Reduction

Motivation I:

Data Compression

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

Data Compression

10000 -> 1000

Reduce data from 3D to 2D

Machine Learning

Dimensionality Reduction

Motivation II:

Data Visualization

Data Visualization

Country

China

India

Russia

Singapore

USA

→ Canada

X,

GDP

(trillions of

US\$)

1.577

5.878

1.632

1.48

0.223

14.527

[resources from en.wikipedia.org]

X2

Per capita

GDP

(thousands

of intl. \$)

39.17

7.54

3.41

19.84

56.69

46.86

X3

Human

Develop-

0.908

0.687

0.547

0.755

0.866

0.91

...

XE	18 20

X4

Life

ment Index|expectancy|percentage)|

80.7

73

64.7

65.5

80

78.3

...

× (1) e 1050

Xs

Poverty

Index

(Gini as

32.6

46.9

36.8

39.9

42.5

40.8

...

= 112	
	% 6

Mean

household

income

(thousands

of US\$)

67.293

10.22

0.735

0.72

67.1

84.3

...

• • •

...

...

...

...

...

...

Andrew Ng

Data Visualization

Data Visaalizatioi	•		ZuselRz
Country	z_1	z_2	_
Canada	1.6	1.2	
China	1.7	0.3	Reduce dota
India	1.6	0.2	from SOD
Russia	1.4	0.5	40 5D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Machine Learning

Dimensionality Reduction

Principal Component

Analysis problem

formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression PCA: minimize projection error

PCA is not linear regression

Machine Learning

Dimensionality Reduction

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable

$$x_2 = \text{number of bedrooms}$$
, scale feature range of values.
$$x_2 = \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100$$

Principal Component Analysis (PCA) algorithm

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions

$$U = \begin{bmatrix} u_{\alpha}, u_{\alpha}, u_{\alpha}, \dots, u_{n} \\ \vdots & \vdots & \vdots \\ u_{\alpha}, u_{\alpha}, \dots, u_{n} \end{bmatrix} \qquad (1 \in \mathbb{Z}_{N \times N})$$

Principal Component Analysis (PCA) algorithm

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$

$$\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});$$

$$\Rightarrow \text{Ureduce} = U(:,1:k);$$

$$\Rightarrow z = \text{Ureduce}' *x;$$

Machine Learning

Dimensionality Reduction

Reconstruction from compressed representation

Reconstruction from compressed representation

Andrew Ng

 x_1

Machine Learning

Dimensionality Reduction

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{N} \approx \frac{1}{N} \left(\frac{1}{N} \right)^{N} = \frac{1}{N} \left(\frac{1}{N} \right)$ Total variation in the data: 👆 😤 🛚 🖍 🗥 🕽 🕽

Typically, choose k to be smallest value so that

"99% of variance is retained"

Using S Choosing k (number of principal components) k Matrix

```
Algorithm:
Try PCA with k=1
Compute U_{reduce}, \underline{z}^{(1)}, z_{\underline{\phantom{a}}}^{(2)},
   \ldots, z_{approx}^{(m)}, x_{approx}^{(1)}, \ldots, x_{approx}^{(m)}
 Check if
                                         < 0.01?
```


Choosing k (number of principal components)

→ [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

Matrix

K=100

Using S

Machine Learning

Dimensionality Reduction

Advice for applying PCA

Supervised learning speedup

$$x^{(1)}, y^{(1)}, (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extract inputs:

N cognic

Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$

Note: Mapping $x^{(i)} \rightarrow z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test

Andrew Ng

Sets

Application of PCA

- Compression
 - Reduce memory/disk needed to store data

Visualization k=3

Bad use of PCA: To prevent overfitting

 \rightarrow Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of

features to k < n.—

Thus, fewer features, less likely to overfit.

Bod

Bad way to address over-fitting!!!
Use regularization instead!!!

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left| \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right|$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- \rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- \rightarrow Train logistic regression on $\{(z_t^{(i)}, y^{(1)}), \dots, (z_{t-1}^{(n)}, y^{(m)})\}$ \rightarrow Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on
- \rightarrow Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\}$
- → How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$. Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.