Практическая работа №5

Выполнил студент группы БВТ2003 Глазков Даниил

Вариант 1 $X \in N(3,10)$; е ∈ N(0,0.3); признак № 5

```
In [1]: from typing import List, Callable
        import numpy as np
        np.random.seed(42)
        fns = [
            lambda x: np.power(x, 2),
            lambda x: np.sin(x/2),
            lambda x: np.cos(2 * x),
            lambda x: x - 4,
            lambda x: -x,
            lambda x: np.abs(x),
            lambda x: (np.power(x, 3))/4,
        ]
        def generate(
                functions: List[Callable], target index: int = 0, n samples: int = 1000,
                x normal loc: float = 0., x normal scale: float = 1.,
                e_normal_loc: float = 0., e_normal_scale: float = 0.1
        ) -> np.array:
            X = np.random.normal(loc=x_normal_loc, scale=x_normal_scale, size=n_samples)
            e = np.random.normal(loc=e_normal_loc, scale=e_normal_scale, size=n_samples)
            features = np.array(
                 [np.array(function(X) + e) for index, function in enumerate(functions) i
            ) . T
            target = np.array([functions[target_index](X) + e]).T
            return np.hstack((features, target))
        target_index = 4 # fife function
        generate_for_task = lambda num: generate(fns, target_index, num, 3., 10., 0., 0.
        np.savetxt("C:\\Users\\Daniel\\Downloads\\pr\\train.csv", generate_for_task(1000)
        np.savetxt("C:\\Users\\Daniel\\Downloads\\pr\\test.csv", generate_for_task(200),
In [2]: import pandas as pd
        pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\train.csv", delimiter=',')
```

Out[2]:		63.895	-0.326	-0.555	4.387	8.387	126.849	-7.547
	0	2.893	1.001	-0.718	-2.105	1.895	1.335	-1.340
	1	89.829	-0.982	1.012	5.495	9.495	212.801	-9.459
	2	332.150	0.111	0.132	14.036	18.036	1514.488	-18.424
	3	0.643	0.533	0.461	-3.132	0.868	0.281	-0.449
	4	0.552	0.441	0.369	-3.223	0.777	0.189	-0.541
	•••							
	994	0.357	0.415	1.250	-3.490	0.510	0.323	0.132
	995	440.021	-0.882	-0.450	16.969	20.969	2307.599	-20.985
	996	88.254	-1.265	0.735	5.144	9.144	207.941	-9.673
	997	7.305	-1.026	0.604	-6.761	2.663	-5.034	2.663
	998	75.917	-1.163	-0.051	4.502	8.502	165.873	-8.949

999 rows × 7 columns

```
In [3]: import pandas as pd
pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\test.csv", delimiter=',')
```

Out[3]:		14.617	-0.413	0.885	-7.210	4.293	-12.661	4.293.1
	0	2.360	0.644	-1.057	-2.502	1.498	0.882	-1.612
	1	24.464	-0.412	-0.696	-8.708	5.140	-29.634	5.140
	2	-0.382	-0.428	0.599	-4.468	-0.308	-0.388	-0.308
	3	253.674	-1.280	0.611	-20.223	15.649	-1012.076	15.649
	4	26.489	0.686	-0.525	1.275	5.275	33.951	-4.991
	•••							
	194	12.668	-1.406	0.142	-8.055	3.185	-12.293	3.185
	195	52.415	-0.745	-0.648	2.982	6.982	95.343	-7.535
	196	9.884	0.699	0.694	-1.110	2.890	7.826	-3.493
	197	11.724	-0.928	0.917	-7.353	3.477	-9.893	3.477
	198	62.095	-0.695	-0.978	3.900	7.900	122.287	-7.858

199 rows × 7 columns

```
In [4]: import numpy as np
    from keras.layers import Input, Dense
    from keras.models import Model
    from keras.layers import GaussianNoise
    from keras.layers import BatchNormalization
    from keras.optimizers import Adam

    np.random.seed(42)

train_data = np.genfromtxt("C:\\Users\\Daniel\\Downloads\\pr\\train.csv", delimi
```

```
test_data = np.genfromtxt("C:\\Users\\Daniel\\Downloads\\pr\\test.csv", delimite
train_x, train_y = train_data[:, :6], train_data[:, 6]
test_x, test_y = test_data[:, :6], test_data[:, 6]
mean = train x.mean(axis=0)
std = train_x.std(axis=0)
train x = (train x - mean) / std
test_x = (test_x - mean) / std
basic_input_layer = Input(shape=(6,))
def create_encoder() -> Dense:
    encoded = Dense(128, activation='relu')(basic_input_layer)
    encoded = Dense(128, activation='relu')(BatchNormalization()(encoded))
    encoded = Dense(64, activation='relu')(BatchNormalization()(encoded))
    encoded = Dense(32, activation='relu', name='encode')(BatchNormalization()(e
    return encoded
def create_decoder(input_layer: Dense) -> Dense:
   decoded = Dense(64, activation='relu')(BatchNormalization()(input layer))
    decoded = Dense(128, activation='relu')(BatchNormalization()(decoded))
    decoded = Dense(6, name='decode')(decoded)
    return decoded
def create regression(input layer: Dense) -> Dense:
    predicted = Dense(128, activation='relu')(input layer)
    predicted = Dense(64, activation='relu')(BatchNormalization()(predicted))
    predicted = Dense(32, activation='relu')(BatchNormalization()(predicted))
    predicted = Dense(16, activation='relu')(predicted)
    predicted = Dense(8, activation='relu')(predicted)
    predicted = Dense(1, name="predict")(predicted)
    return predicted
encoder output = create encoder()
decoder_output = create_decoder(encoder_output)
regression output = create regression(encoder output)
encoder = Model(basic_input_layer, encoder_output, name='encoder')
decoder = Model(basic_input_layer, decoder_output, name='decoder')
regression = Model(basic_input_layer, regression_output, name='regression')
model = Model(inputs=[basic input layer], outputs=[
    decoder output,
    regression_output
])
model.compile(optimizer=Adam(learning_rate=0.0005), loss='mse', metrics='mae')
history = model.fit(train_x, [train_x, train_y], epochs=200, batch_size=32,
                    verbose=1, validation_split=0.8)
encoded_test = encoder.predict(test_x)
decoded_test = decoder.predict(test_x)
regression_test = regression.predict(test_x)
decoded_test = decoded_test * std + mean
```

```
mae = model.evaluate(test_x, [test_x, test_y])
print("O6щee MAE:", mae)

np.savetxt('C:\\Users\\Daniel\\Downloads\\pr\\encoded1.csv', encoded_test, delim
np.savetxt('C:\\Users\\Daniel\\Downloads\\pr\\regression1.csv', decoded_test, delim
np.savetxt('C:\\Users\\Daniel\\Downloads\\pr\\regression1.csv', np.vstack((test_
encoder.save('C:\\Users\\Daniel\\Downloads\\pr\\encoder1.h5')
decoder.save('C:\\Users\\Daniel\\Downloads\\pr\\regression1.h5')
regression.save('C:\\Users\\Daniel\\Downloads\\pr\\regression1.h5')
```

```
Epoch 1/200
7/7 [==========] - 2s 45ms/step - loss: 94.1044 - decode_lo
ss: 1.1810 - predict_loss: 92.9235 - decode_mae: 0.8386 - predict_mae: 7.7002 -
val_loss: 110.2989 - val_decode_loss: 1.0316 - val_predict_loss: 109.2674 - val
_decode_mae: 0.7552 - val_predict_mae: 8.3243
Epoch 2/200
7/7 [=========] - 0s 9ms/step - loss: 87.1319 - decode_los
s: 0.9290 - predict loss: 86.2029 - decode mae: 0.7292 - predict mae: 7.4158 -
val_loss: 110.2296 - val_decode_loss: 1.0270 - val_predict_loss: 109.2025 - val
_decode_mae: 0.7521 - val_predict_mae: 8.3225
Epoch 3/200
s: 0.6901 - predict_loss: 81.7276 - decode_mae: 0.6357 - predict_mae: 7.2311 -
val_loss: 110.1034 - val_decode_loss: 1.0184 - val_predict_loss: 109.0850 - val
_decode_mae: 0.7477 - val_predict_mae: 8.3191
Epoch 4/200
7/7 [========== - - 0s 9ms/step - loss: 78.0887 - decode los
s: 0.5653 - predict loss: 77.5234 - decode mae: 0.5653 - predict mae: 7.0187 -
val loss: 109.9181 - val decode loss: 1.0059 - val predict loss: 108.9122 - val
_decode_mae: 0.7426 - val_predict_mae: 8.3132
Epoch 5/200
7/7 [==========] - 0s 8ms/step - loss: 72.2893 - decode_los
s: 0.4381 - predict loss: 71.8512 - decode mae: 0.5027 - predict mae: 6.7721 -
val_loss: 109.7053 - val_decode_loss: 0.9938 - val_predict_loss: 108.7115 - val
_decode_mae: 0.7369 - val_predict_mae: 8.3060
Epoch 6/200
7/7 [===========] - 0s 8ms/step - loss: 67.2561 - decode_los
s: 0.3936 - predict_loss: 66.8625 - decode_mae: 0.4604 - predict_mae: 6.5161 -
val loss: 109.3678 - val decode loss: 0.9796 - val predict loss: 108.3882 - val
_decode_mae: 0.7304 - val_predict_mae: 8.2946
Epoch 7/200
7/7 [==========] - 0s 8ms/step - loss: 60.8750 - decode_los
s: 0.3158 - predict_loss: 60.5593 - decode_mae: 0.4273 - predict_mae: 6.2495 -
val_loss: 108.7712 - val_decode_loss: 0.9595 - val_predict_loss: 107.8118 - val
_decode_mae: 0.7229 - val_predict_mae: 8.2761
Epoch 8/200
7/7 [========== ] - 0s 12ms/step - loss: 53.5938 - decode lo
ss: 0.2881 - predict_loss: 53.3057 - decode_mae: 0.3884 - predict_mae: 5.8293 -
val_loss: 107.8405 - val_decode_loss: 0.9368 - val_predict_loss: 106.9037 - val
_decode_mae: 0.7142 - val_predict_mae: 8.2475
Epoch 9/200
7/7 [=========] - 0s 14ms/step - loss: 47.1538 - decode lo
ss: 0.2719 - predict_loss: 46.8819 - decode_mae: 0.3868 - predict_mae: 5.5219 -
val_loss: 106.4226 - val_decode_loss: 0.9109 - val_predict_loss: 105.5117 - val
_decode_mae: 0.7056 - val_predict_mae: 8.2034
Epoch 10/200
7/7 [=========] - 0s 14ms/step - loss: 39.6350 - decode_lo
ss: 0.2405 - predict loss: 39.3945 - decode mae: 0.3592 - predict mae: 5.0205 -
val_loss: 104.5111 - val_decode_loss: 0.8894 - val_predict_loss: 103.6216 - val
_decode_mae: 0.6974 - val_predict_mae: 8.1426
Epoch 11/200
7/7 [========] - 0s 12ms/step - loss: 33.7506 - decode_lo
ss: 0.2989 - predict_loss: 33.4517 - decode_mae: 0.3905 - predict_mae: 4.5473 -
val_loss: 102.0849 - val_decode_loss: 0.8807 - val_predict_loss: 101.2043 - val
_decode_mae: 0.6905 - val_predict_mae: 8.0599
Epoch 12/200
ss: 0.2252 - predict_loss: 25.2812 - decode_mae: 0.3544 - predict_mae: 4.0436 -
val_loss: 98.9199 - val_decode_loss: 0.8655 - val_predict_loss: 98.0544 - val_d
ecode_mae: 0.6835 - val_predict_mae: 7.9416
```

```
Epoch 13/200
7/7 [=========] - 0s 13ms/step - loss: 21.8966 - decode_lo
ss: 0.2171 - predict_loss: 21.6795 - decode_mae: 0.3392 - predict_mae: 3.7032 -
val_loss: 94.9169 - val_decode_loss: 0.8514 - val_predict_loss: 94.0655 - val_d
ecode_mae: 0.6768 - val_predict_mae: 7.7867
Epoch 14/200
7/7 [=========] - 0s 12ms/step - loss: 14.2564 - decode_lo
ss: 0.1848 - predict loss: 14.0716 - decode mae: 0.3167 - predict mae: 3.0270 -
val_loss: 90.7805 - val_decode_loss: 0.8384 - val_predict_loss: 89.9421 - val_d
ecode_mae: 0.6691 - val_predict_mae: 7.6289
Epoch 15/200
7/7 [==========] - 0s 14ms/step - loss: 11.1521 - decode lo
ss: 0.1925 - predict_loss: 10.9596 - decode_mae: 0.3137 - predict_mae: 2.5602 -
val_loss: 87.3123 - val_decode_loss: 0.8301 - val_predict_loss: 86.4821 - val_d
ecode_mae: 0.6639 - val_predict_mae: 7.4812
Epoch 16/200
7/7 [=========] - 0s 12ms/step - loss: 12.0659 - decode lo
ss: 0.2188 - predict loss: 11.8470 - decode mae: 0.3383 - predict mae: 2.6018 -
val loss: 83.9767 - val decode loss: 0.8246 - val predict loss: 83.1522 - val d
ecode_mae: 0.6606 - val_predict_mae: 7.3257
Epoch 17/200
7/7 [==========] - 0s 15ms/step - loss: 6.4628 - decode_los
s: 0.1896 - predict loss: 6.2731 - decode mae: 0.3126 - predict mae: 1.8938 - v
al loss: 79.5734 - val decode loss: 0.7977 - val predict loss: 78.7757 - val de
code_mae: 0.6515 - val_predict_mae: 7.1348
Epoch 18/200
7/7 [==========] - 0s 13ms/step - loss: 7.2761 - decode_los
s: 0.1897 - predict_loss: 7.0863 - decode_mae: 0.3226 - predict_mae: 2.0495 - v
al loss: 75.4826 - val decode loss: 0.7685 - val predict loss: 74.7140 - val de
code_mae: 0.6410 - val_predict_mae: 6.9282
Epoch 19/200
7/7 [=========] - 0s 14ms/step - loss: 5.8844 - decode_los
s: 0.1854 - predict_loss: 5.6989 - decode_mae: 0.3132 - predict_mae: 1.8695 - v
al_loss: 72.4685 - val_decode_loss: 0.7473 - val_predict_loss: 71.7213 - val_de
code mae: 0.6310 - val predict mae: 6.7407
Epoch 20/200
7/7 [========== ] - 0s 13ms/step - loss: 3.9203 - decode los
s: 0.1501 - predict_loss: 3.7701 - decode_mae: 0.2832 - predict_mae: 1.5292 - v
al_loss: 68.6325 - val_decode_loss: 0.7215 - val_predict_loss: 67.9110 - val_de
code_mae: 0.6181 - val_predict_mae: 6.5496
Epoch 21/200
7/7 [========= - - 0s 13ms/step - loss: 5.3071 - decode los
s: 0.1768 - predict_loss: 5.1302 - decode_mae: 0.3022 - predict_mae: 1.5844 - v
al_loss: 65.1424 - val_decode_loss: 0.7035 - val_predict_loss: 64.4388 - val_de
code_mae: 0.6080 - val_predict_mae: 6.4011
Epoch 22/200
7/7 [=========] - 0s 16ms/step - loss: 4.4293 - decode_los
s: 0.1602 - predict loss: 4.2691 - decode mae: 0.2913 - predict mae: 1.5504 - v
al_loss: 62.6581 - val_decode_loss: 0.6902 - val_predict_loss: 61.9679 - val_de
code_mae: 0.5983 - val_predict_mae: 6.2903
Epoch 23/200
7/7 [=========] - 0s 11ms/step - loss: 5.9462 - decode_los
s: 0.1692 - predict loss: 5.7770 - decode mae: 0.2989 - predict mae: 1.8191 - v
al_loss: 59.9830 - val_decode_loss: 0.6703 - val_predict_loss: 59.3127 - val_de
code_mae: 0.5871 - val_predict_mae: 6.1336
Epoch 24/200
s: 0.1772 - predict_loss: 5.1665 - decode_mae: 0.2994 - predict_mae: 1.6715 - v
al_loss: 59.0975 - val_decode_loss: 0.6600 - val_predict_loss: 58.4374 - val_de
code_mae: 0.5800 - val_predict_mae: 6.0483
```

```
Epoch 25/200
7/7 [=========] - 0s 11ms/step - loss: 4.0485 - decode_los
s: 0.1431 - predict_loss: 3.9054 - decode_mae: 0.2753 - predict_mae: 1.5881 - v
al_loss: 56.7452 - val_decode_loss: 0.6389 - val_predict_loss: 56.1064 - val_de
code_mae: 0.5696 - val_predict_mae: 5.8835
Epoch 26/200
7/7 [=========] - 0s 14ms/step - loss: 4.5115 - decode_los
s: 0.1680 - predict loss: 4.3435 - decode mae: 0.2890 - predict mae: 1.5959 - v
al_loss: 53.5641 - val_decode_loss: 0.6176 - val_predict_loss: 52.9465 - val_de
code_mae: 0.5608 - val_predict_mae: 5.7146
Epoch 27/200
s: 0.1935 - predict_loss: 4.9402 - decode_mae: 0.3168 - predict_mae: 1.6247 - v
al_loss: 50.6932 - val_decode_loss: 0.5995 - val_predict_loss: 50.0937 - val_de
code_mae: 0.5531 - val_predict_mae: 5.5604
Epoch 28/200
7/7 [=========] - 0s 14ms/step - loss: 5.0629 - decode los
s: 0.1661 - predict loss: 4.8969 - decode mae: 0.2880 - predict mae: 1.5464 - v
al loss: 48.4482 - val decode loss: 0.5800 - val predict loss: 47.8682 - val de
code_mae: 0.5447 - val_predict_mae: 5.4231
Epoch 29/200
7/7 [==========] - 0s 14ms/step - loss: 4.1501 - decode_los
s: 0.1428 - predict loss: 4.0073 - decode mae: 0.2728 - predict mae: 1.5357 - v
al loss: 44.2654 - val decode loss: 0.5485 - val predict loss: 43.7169 - val de
code_mae: 0.5280 - val_predict_mae: 5.1958
Epoch 30/200
7/7 [==========] - 0s 13ms/step - loss: 3.7083 - decode_los
s: 0.1471 - predict_loss: 3.5612 - decode_mae: 0.2757 - predict_mae: 1.5333 - v
al loss: 42.2774 - val decode loss: 0.5382 - val predict loss: 41.7392 - val de
code_mae: 0.5188 - val_predict_mae: 5.0578
Epoch 31/200
7/7 [=========] - 0s 14ms/step - loss: 4.3266 - decode_los
s: 0.1527 - predict_loss: 4.1739 - decode_mae: 0.2815 - predict_mae: 1.5674 - v
al_loss: 40.5675 - val_decode_loss: 0.5299 - val_predict_loss: 40.0376 - val_de
code mae: 0.5150 - val predict mae: 4.9383
Epoch 32/200
7/7 [=========== ] - 0s 14ms/step - loss: 4.8177 - decode los
s: 0.1656 - predict_loss: 4.6521 - decode_mae: 0.2905 - predict_mae: 1.6285 - v
al_loss: 37.1884 - val_decode_loss: 0.5096 - val_predict_loss: 36.6788 - val_de
code_mae: 0.5052 - val_predict_mae: 4.7260
Epoch 33/200
s: 0.1247 - predict_loss: 2.4240 - decode_mae: 0.2595 - predict_mae: 1.2150 - v
al_loss: 33.8587 - val_decode_loss: 0.4765 - val_predict_loss: 33.3822 - val_de
code_mae: 0.4863 - val_predict_mae: 4.4678
Epoch 34/200
7/7 [=========] - 0s 14ms/step - loss: 3.5874 - decode_los
s: 0.1318 - predict loss: 3.4556 - decode mae: 0.2626 - predict mae: 1.2005 - v
al_loss: 31.3697 - val_decode_loss: 0.4490 - val_predict_loss: 30.9207 - val_de
code_mae: 0.4716 - val_predict_mae: 4.2750
Epoch 35/200
7/7 [=========] - 0s 14ms/step - loss: 2.5852 - decode_los
s: 0.1148 - predict_loss: 2.4704 - decode_mae: 0.2483 - predict_mae: 1.2381 - v
al_loss: 30.1961 - val_decode_loss: 0.4367 - val_predict_loss: 29.7594 - val_de
code_mae: 0.4693 - val_predict_mae: 4.2330
Epoch 36/200
s: 0.1438 - predict_loss: 3.9750 - decode_mae: 0.2712 - predict_mae: 1.4716 - v
al_loss: 30.3578 - val_decode_loss: 0.4400 - val_predict_loss: 29.9178 - val_de
code_mae: 0.4686 - val_predict_mae: 4.2556
```

```
Epoch 37/200
7/7 [=========] - 0s 13ms/step - loss: 3.0820 - decode_los
s: 0.1133 - predict_loss: 2.9686 - decode_mae: 0.2404 - predict_mae: 1.3580 - v
al_loss: 27.7766 - val_decode_loss: 0.4169 - val_predict_loss: 27.3597 - val_de
code_mae: 0.4529 - val_predict_mae: 4.0629
Epoch 38/200
7/7 [=========] - 0s 14ms/step - loss: 2.5854 - decode_los
s: 0.1260 - predict loss: 2.4595 - decode mae: 0.2523 - predict mae: 1.1333 - v
al_loss: 24.8603 - val_decode_loss: 0.4023 - val_predict_loss: 24.4580 - val_de
code_mae: 0.4417 - val_predict_mae: 3.8240
Epoch 39/200
7/7 [========== - - 0s 11ms/step - loss: 4.7283 - decode los
s: 0.1693 - predict_loss: 4.5590 - decode_mae: 0.2877 - predict_mae: 1.4906 - v
al_loss: 19.8170 - val_decode_loss: 0.3701 - val_predict_loss: 19.4469 - val_de
code_mae: 0.4235 - val_predict_mae: 3.4027
Epoch 40/200
7/7 [=========] - 0s 13ms/step - loss: 6.2798 - decode los
s: 0.1538 - predict loss: 6.1260 - decode mae: 0.2872 - predict mae: 1.8028 - v
al loss: 18.5914 - val decode loss: 0.3598 - val predict loss: 18.2316 - val de
code_mae: 0.4162 - val_predict_mae: 3.2434
Epoch 41/200
7/7 [==========] - 0s 13ms/step - loss: 2.5706 - decode_los
s: 0.1088 - predict loss: 2.4619 - decode mae: 0.2399 - predict mae: 1.1847 - v
al loss: 16.1825 - val decode loss: 0.3374 - val predict loss: 15.8452 - val de
code_mae: 0.4072 - val_predict_mae: 3.1251
Epoch 42/200
7/7 [=========] - 0s 13ms/step - loss: 2.0242 - decode_los
s: 0.1086 - predict_loss: 1.9156 - decode_mae: 0.2329 - predict_mae: 0.8955 - v
al loss: 14.0636 - val decode loss: 0.3171 - val predict loss: 13.7465 - val de
code_mae: 0.3994 - val_predict_mae: 2.9835
Epoch 43/200
7/7 [=========] - 0s 13ms/step - loss: 4.1665 - decode_los
s: 0.1443 - predict_loss: 4.0222 - decode_mae: 0.2544 - predict_mae: 1.2908 - v
al_loss: 12.1804 - val_decode_loss: 0.2877 - val_predict_loss: 11.8926 - val_de
code mae: 0.3791 - val predict mae: 2.8303
Epoch 44/200
7/7 [========== ] - 0s 13ms/step - loss: 3.0862 - decode los
s: 0.1284 - predict_loss: 2.9577 - decode_mae: 0.2602 - predict_mae: 1.3086 - v
al_loss: 10.8304 - val_decode_loss: 0.2704 - val_predict_loss: 10.5600 - val_de
code_mae: 0.3626 - val_predict_mae: 2.6793
Epoch 45/200
7/7 [========== - - 0s 14ms/step - loss: 2.5704 - decode los
s: 0.1109 - predict_loss: 2.4595 - decode_mae: 0.2425 - predict_mae: 1.1771 - v
al_loss: 11.0587 - val_decode_loss: 0.2770 - val_predict_loss: 10.7817 - val_de
code_mae: 0.3595 - val_predict_mae: 2.6286
Epoch 46/200
7/7 [=========] - 0s 13ms/step - loss: 2.3438 - decode_los
s: 0.1149 - predict loss: 2.2290 - decode mae: 0.2454 - predict mae: 1.1369 - v
al_loss: 11.5836 - val_decode_loss: 0.2848 - val_predict_loss: 11.2987 - val_de
code_mae: 0.3593 - val_predict_mae: 2.6950
Epoch 47/200
7/7 [=========] - 0s 12ms/step - loss: 3.1696 - decode_los
s: 0.1404 - predict_loss: 3.0292 - decode_mae: 0.2640 - predict_mae: 1.3227 - v
al_loss: 8.4477 - val_decode_loss: 0.2491 - val_predict_loss: 8.1986 - val_deco
de_mae: 0.3344 - val_predict_mae: 2.3804
Epoch 48/200
s: 0.1424 - predict_loss: 2.6897 - decode_mae: 0.2583 - predict_mae: 1.2102 - v
al_loss: 7.5406 - val_decode_loss: 0.2361 - val_predict_loss: 7.3045 - val_deco
de_mae: 0.3227 - val_predict_mae: 2.2830
```

```
Epoch 49/200
7/7 [=========] - 0s 13ms/step - loss: 1.7257 - decode_los
s: 0.0939 - predict_loss: 1.6318 - decode_mae: 0.2239 - predict_mae: 1.0152 - v
al_loss: 7.2577 - val_decode_loss: 0.2344 - val_predict_loss: 7.0232 - val_deco
de_mae: 0.3137 - val_predict_mae: 2.1829
Epoch 50/200
7/7 [=========] - 0s 12ms/step - loss: 3.4058 - decode_los
s: 0.1309 - predict_loss: 3.2749 - decode_mae: 0.2493 - predict_mae: 1.2543 - v
al_loss: 6.8050 - val_decode_loss: 0.2231 - val_predict_loss: 6.5819 - val_deco
de_mae: 0.3023 - val_predict_mae: 2.0469
Epoch 51/200
7/7 [========== - - 0s 13ms/step - loss: 3.6597 - decode los
s: 0.1251 - predict_loss: 3.5346 - decode_mae: 0.2523 - predict_mae: 1.2032 - v
al_loss: 3.5895 - val_decode_loss: 0.1999 - val_predict_loss: 3.3895 - val_deco
de_mae: 0.2905 - val_predict_mae: 1.5141
Epoch 52/200
7/7 [=========] - 0s 13ms/step - loss: 2.2637 - decode los
s: 0.0983 - predict loss: 2.1654 - decode mae: 0.2289 - predict mae: 1.0620 - v
al loss: 4.3550 - val decode loss: 0.1950 - val predict loss: 4.1600 - val deco
de_mae: 0.2923 - val_predict_mae: 1.6473
Epoch 53/200
7/7 [==========] - 0s 13ms/step - loss: 2.9571 - decode_los
s: 0.1233 - predict_loss: 2.8338 - decode_mae: 0.2546 - predict_mae: 1.3371 - v
al_loss: 6.1501 - val_decode_loss: 0.1946 - val_predict_loss: 5.9555 - val_deco
de_mae: 0.2932 - val_predict_mae: 1.9270
Epoch 54/200
7/7 [==========] - 0s 14ms/step - loss: 3.1733 - decode_los
s: 0.1503 - predict_loss: 3.0230 - decode_mae: 0.2620 - predict_mae: 1.2896 - v
al loss: 5.5683 - val decode loss: 0.1811 - val predict loss: 5.3873 - val deco
de_mae: 0.2806 - val_predict_mae: 1.7835
Epoch 55/200
7/7 [==========] - 0s 13ms/step - loss: 1.4562 - decode_los
s: 0.0917 - predict_loss: 1.3645 - decode_mae: 0.2242 - predict_mae: 0.8618 - v
al_loss: 5.2332 - val_decode_loss: 0.1774 - val_predict_loss: 5.0558 - val_deco
de mae: 0.2728 - val predict mae: 1.6868
Epoch 56/200
7/7 [=========== ] - 0s 14ms/step - loss: 2.0918 - decode los
s: 0.1070 - predict_loss: 1.9848 - decode_mae: 0.2430 - predict_mae: 1.0657 - v
al_loss: 3.8920 - val_decode_loss: 0.1632 - val_predict_loss: 3.7289 - val_deco
de_mae: 0.2603 - val_predict_mae: 1.4772
Epoch 57/200
s: 0.0871 - predict_loss: 1.4914 - decode_mae: 0.2149 - predict_mae: 0.9183 - v
al_loss: 3.2935 - val_decode_loss: 0.1512 - val_predict_loss: 3.1423 - val_deco
de_mae: 0.2506 - val_predict_mae: 1.3650
Epoch 58/200
7/7 [=========] - 0s 14ms/step - loss: 2.2733 - decode_los
s: 0.0962 - predict loss: 2.1771 - decode mae: 0.2247 - predict mae: 1.1234 - v
al_loss: 2.6692 - val_decode_loss: 0.1487 - val_predict_loss: 2.5205 - val_deco
de_mae: 0.2454 - val_predict_mae: 1.1335
Epoch 59/200
7/7 [=========] - 0s 14ms/step - loss: 2.9200 - decode_los
s: 0.1088 - predict_loss: 2.8112 - decode_mae: 0.2324 - predict_mae: 1.1012 - v
al_loss: 3.5707 - val_decode_loss: 0.1565 - val_predict_loss: 3.4142 - val_deco
de_mae: 0.2467 - val_predict_mae: 1.3256
Epoch 60/200
s: 0.1060 - predict_loss: 2.0187 - decode_mae: 0.2403 - predict_mae: 1.0571 - v
al_loss: 2.6365 - val_decode_loss: 0.1536 - val_predict_loss: 2.4829 - val_deco
de_mae: 0.2405 - val_predict_mae: 1.1254
```

```
Epoch 61/200
7/7 [=========] - 0s 14ms/step - loss: 2.3029 - decode_los
s: 0.1069 - predict_loss: 2.1960 - decode_mae: 0.2357 - predict_mae: 1.1071 - v
al_loss: 1.9820 - val_decode_loss: 0.1439 - val_predict_loss: 1.8381 - val_deco
de_mae: 0.2329 - val_predict_mae: 0.9249
Epoch 62/200
7/7 [=========] - 0s 14ms/step - loss: 3.2403 - decode_los
s: 0.1019 - predict_loss: 3.1384 - decode_mae: 0.2331 - predict_mae: 1.3298 - v
al_loss: 2.4880 - val_decode_loss: 0.1397 - val_predict_loss: 2.3483 - val_deco
de_mae: 0.2243 - val_predict_mae: 1.0084
Epoch 63/200
7/7 [========== - - 0s 14ms/step - loss: 6.1892 - decode los
s: 0.1149 - predict_loss: 6.0743 - decode_mae: 0.2343 - predict_mae: 1.2825 - v
al_loss: 2.5083 - val_decode_loss: 0.1429 - val_predict_loss: 2.3655 - val_deco
de_mae: 0.2260 - val_predict_mae: 1.0729
Epoch 64/200
7/7 [=========] - 0s 13ms/step - loss: 1.8182 - decode los
s: 0.0896 - predict loss: 1.7286 - decode mae: 0.2181 - predict mae: 0.9831 - v
al loss: 4.7401 - val decode loss: 0.1817 - val predict loss: 4.5584 - val deco
de_mae: 0.2591 - val_predict_mae: 1.5094
Epoch 65/200
7/7 [==========] - 0s 13ms/step - loss: 1.9876 - decode_los
s: 0.1122 - predict_loss: 1.8753 - decode_mae: 0.2395 - predict_mae: 1.0412 - v
al_loss: 3.5563 - val_decode_loss: 0.1811 - val_predict_loss: 3.3752 - val_deco
de_mae: 0.2578 - val_predict_mae: 1.3402
Epoch 66/200
7/7 [==========] - 0s 13ms/step - loss: 3.3285 - decode_los
s: 0.1307 - predict_loss: 3.1978 - decode_mae: 0.2579 - predict_mae: 1.3664 - v
al loss: 2.0245 - val decode loss: 0.1645 - val predict loss: 1.8599 - val deco
de_mae: 0.2349 - val_predict_mae: 0.9624
Epoch 67/200
7/7 [=========] - 0s 14ms/step - loss: 1.9653 - decode_los
s: 0.1084 - predict_loss: 1.8569 - decode_mae: 0.2307 - predict_mae: 1.0765 - v
al_loss: 1.7051 - val_decode_loss: 0.1598 - val_predict_loss: 1.5452 - val_deco
de mae: 0.2241 - val predict mae: 0.8152
Epoch 68/200
7/7 [========== ] - 0s 13ms/step - loss: 1.5515 - decode los
s: 0.0845 - predict_loss: 1.4669 - decode_mae: 0.2099 - predict_mae: 0.9561 - v
al_loss: 1.2726 - val_decode_loss: 0.1463 - val_predict_loss: 1.1263 - val_deco
de_mae: 0.2123 - val_predict_mae: 0.7168
Epoch 69/200
7/7 [=========] - 0s 14ms/step - loss: 3.5065 - decode los
s: 0.1187 - predict_loss: 3.3878 - decode_mae: 0.2406 - predict_mae: 1.3796 - v
al_loss: 1.3926 - val_decode_loss: 0.1475 - val_predict_loss: 1.2451 - val_deco
de_mae: 0.2112 - val_predict_mae: 0.7312
Epoch 70/200
7/7 [=========] - 0s 13ms/step - loss: 1.6815 - decode_los
s: 0.0833 - predict loss: 1.5981 - decode mae: 0.2088 - predict mae: 0.9496 - v
al_loss: 1.3492 - val_decode_loss: 0.1421 - val_predict_loss: 1.2071 - val_deco
de_mae: 0.2122 - val_predict_mae: 0.7124
Epoch 71/200
7/7 [=========] - 0s 15ms/step - loss: 4.8550 - decode_los
s: 0.1172 - predict_loss: 4.7378 - decode_mae: 0.2402 - predict_mae: 1.2455 - v
al_loss: 0.9827 - val_decode_loss: 0.1322 - val_predict_loss: 0.8505 - val_deco
de_mae: 0.2075 - val_predict_mae: 0.6584
Epoch 72/200
s: 0.1146 - predict_loss: 3.0054 - decode_mae: 0.2473 - predict_mae: 1.3557 - v
al_loss: 1.0735 - val_decode_loss: 0.1356 - val_predict_loss: 0.9379 - val_deco
de_mae: 0.2155 - val_predict_mae: 0.7298
```

```
Epoch 73/200
7/7 [=========] - 0s 14ms/step - loss: 1.4712 - decode_los
s: 0.0999 - predict_loss: 1.3713 - decode_mae: 0.2237 - predict_mae: 0.9232 - v
al_loss: 1.4778 - val_decode_loss: 0.1395 - val_predict_loss: 1.3383 - val_deco
de_mae: 0.2193 - val_predict_mae: 0.7821
Epoch 74/200
7/7 [=========] - 0s 14ms/step - loss: 2.8818 - decode_los
s: 0.1135 - predict_loss: 2.7683 - decode_mae: 0.2435 - predict_mae: 1.2409 - v
al_loss: 1.4258 - val_decode_loss: 0.1357 - val_predict_loss: 1.2901 - val_deco
de_mae: 0.2136 - val_predict_mae: 0.7367
Epoch 75/200
7/7 [========== - - 0s 13ms/step - loss: 2.4103 - decode los
s: 0.1125 - predict_loss: 2.2978 - decode_mae: 0.2379 - predict_mae: 1.1338 - v
al_loss: 1.1874 - val_decode_loss: 0.1248 - val_predict_loss: 1.0627 - val_deco
de_mae: 0.2060 - val_predict_mae: 0.6692
Epoch 76/200
7/7 [=========] - 0s 14ms/step - loss: 1.5699 - decode los
s: 0.1089 - predict loss: 1.4610 - decode mae: 0.2368 - predict mae: 0.9369 - v
al loss: 1.3736 - val decode loss: 0.1163 - val predict loss: 1.2573 - val deco
de_mae: 0.2033 - val_predict_mae: 0.7088
Epoch 77/200
7/7 [==========] - 0s 14ms/step - loss: 1.3617 - decode_los
s: 0.0989 - predict_loss: 1.2629 - decode_mae: 0.2251 - predict_mae: 0.8768 - v
al_loss: 1.7239 - val_decode_loss: 0.1125 - val_predict_loss: 1.6114 - val_deco
de_mae: 0.2014 - val_predict_mae: 0.7332
Epoch 78/200
s: 0.1152 - predict_loss: 2.0023 - decode_mae: 0.2402 - predict_mae: 1.0821 - v
al loss: 1.6419 - val decode loss: 0.1096 - val predict loss: 1.5322 - val deco
de_mae: 0.1974 - val_predict_mae: 0.6858
Epoch 79/200
7/7 [=========] - 0s 11ms/step - loss: 3.7194 - decode_los
s: 0.1130 - predict_loss: 3.6064 - decode_mae: 0.2394 - predict_mae: 1.3446 - v
al_loss: 1.4282 - val_decode_loss: 0.1064 - val_predict_loss: 1.3218 - val_deco
de mae: 0.1896 - val predict mae: 0.7130
Epoch 80/200
7/7 [========== ] - 0s 12ms/step - loss: 1.9449 - decode los
s: 0.1012 - predict_loss: 1.8436 - decode_mae: 0.2351 - predict_mae: 1.0253 - v
al_loss: 1.9703 - val_decode_loss: 0.1104 - val_predict_loss: 1.8600 - val_deco
de_mae: 0.1913 - val_predict_mae: 0.9473
Epoch 81/200
7/7 [=========] - 0s 12ms/step - loss: 2.4185 - decode los
s: 0.1099 - predict_loss: 2.3086 - decode_mae: 0.2327 - predict_mae: 1.1978 - v
al_loss: 1.7219 - val_decode_loss: 0.1075 - val_predict_loss: 1.6143 - val_deco
de_mae: 0.1933 - val_predict_mae: 0.8391
Epoch 82/200
7/7 [=========] - 0s 14ms/step - loss: 1.5594 - decode_los
s: 0.0865 - predict loss: 1.4729 - decode mae: 0.2124 - predict mae: 0.9196 - v
al_loss: 1.9817 - val_decode_loss: 0.1170 - val_predict_loss: 1.8647 - val_deco
de_mae: 0.2050 - val_predict_mae: 0.8563
Epoch 83/200
7/7 [=========] - 0s 13ms/step - loss: 1.8052 - decode_los
s: 0.0939 - predict_loss: 1.7113 - decode_mae: 0.2171 - predict_mae: 0.9737 - v
al_loss: 1.5547 - val_decode_loss: 0.1125 - val_predict_loss: 1.4422 - val_deco
de_mae: 0.1996 - val_predict_mae: 0.7708
Epoch 84/200
s: 0.1095 - predict_loss: 2.1189 - decode_mae: 0.2232 - predict_mae: 1.0321 - v
al_loss: 1.6692 - val_decode_loss: 0.1040 - val_predict_loss: 1.5652 - val_deco
de_mae: 0.1840 - val_predict_mae: 0.8428
```

```
Epoch 85/200
7/7 [=========] - 0s 12ms/step - loss: 1.8814 - decode_los
s: 0.0788 - predict_loss: 1.8026 - decode_mae: 0.1961 - predict_mae: 0.9178 - v
al_loss: 2.0230 - val_decode_loss: 0.1011 - val_predict_loss: 1.9219 - val_deco
de_mae: 0.1861 - val_predict_mae: 0.7823
Epoch 86/200
7/7 [=========] - 0s 14ms/step - loss: 1.5664 - decode_los
s: 0.0827 - predict_loss: 1.4837 - decode_mae: 0.2160 - predict_mae: 0.9426 - v
al_loss: 1.8222 - val_decode_loss: 0.0992 - val_predict_loss: 1.7230 - val_deco
de_mae: 0.1821 - val_predict_mae: 0.7617
Epoch 87/200
7/7 [========== - - 0s 14ms/step - loss: 1.1955 - decode los
s: 0.0684 - predict_loss: 1.1271 - decode_mae: 0.1911 - predict_mae: 0.8023 - v
al_loss: 1.7314 - val_decode_loss: 0.1026 - val_predict_loss: 1.6288 - val_deco
de_mae: 0.1774 - val_predict_mae: 0.7608
Epoch 88/200
7/7 [=========] - 0s 13ms/step - loss: 1.4382 - decode los
s: 0.0754 - predict loss: 1.3628 - decode mae: 0.1969 - predict mae: 0.9250 - v
al loss: 1.8700 - val decode loss: 0.1030 - val predict loss: 1.7670 - val deco
de_mae: 0.1768 - val_predict_mae: 0.7530
Epoch 89/200
7/7 [==========] - 0s 13ms/step - loss: 1.2897 - decode_los
s: 0.0860 - predict_loss: 1.2037 - decode_mae: 0.2007 - predict_mae: 0.7818 - v
al_loss: 1.8345 - val_decode_loss: 0.1015 - val_predict_loss: 1.7329 - val_deco
de_mae: 0.1752 - val_predict_mae: 0.6946
Epoch 90/200
7/7 [===========] - 0s 13ms/step - loss: 1.2849 - decode_los
s: 0.0879 - predict_loss: 1.1970 - decode_mae: 0.2127 - predict_mae: 0.8543 - v
al loss: 2.0677 - val decode loss: 0.1079 - val predict loss: 1.9598 - val deco
de_mae: 0.1812 - val_predict_mae: 0.7334
Epoch 91/200
7/7 [=========] - 0s 13ms/step - loss: 1.6098 - decode_los
s: 0.0757 - predict_loss: 1.5342 - decode_mae: 0.2065 - predict_mae: 0.9194 - v
al_loss: 1.6545 - val_decode_loss: 0.1063 - val_predict_loss: 1.5481 - val_deco
de mae: 0.1752 - val predict mae: 0.6549
Epoch 92/200
7/7 [========== ] - 0s 13ms/step - loss: 1.8089 - decode los
s: 0.0790 - predict_loss: 1.7299 - decode_mae: 0.1950 - predict_mae: 0.9697 - v
al_loss: 1.5818 - val_decode_loss: 0.1049 - val_predict_loss: 1.4769 - val_deco
de_mae: 0.1729 - val_predict_mae: 0.6725
Epoch 93/200
7/7 [========= - - 0s 13ms/step - loss: 3.9906 - decode los
s: 0.1297 - predict_loss: 3.8609 - decode_mae: 0.2299 - predict_mae: 1.2170 - v
al_loss: 1.7799 - val_decode_loss: 0.1073 - val_predict_loss: 1.6725 - val_deco
de_mae: 0.1748 - val_predict_mae: 0.6870
Epoch 94/200
7/7 [=========] - 0s 13ms/step - loss: 1.2308 - decode_los
s: 0.0637 - predict loss: 1.1672 - decode mae: 0.1869 - predict mae: 0.7804 - v
al_loss: 2.2307 - val_decode_loss: 0.1126 - val_predict_loss: 2.1181 - val_deco
de_mae: 0.1841 - val_predict_mae: 0.7671
Epoch 95/200
7/7 [=========] - 0s 12ms/step - loss: 1.9260 - decode_los
s: 0.0839 - predict_loss: 1.8421 - decode_mae: 0.2042 - predict_mae: 0.8517 - v
al_loss: 1.6065 - val_decode_loss: 0.1142 - val_predict_loss: 1.4923 - val_deco
de_mae: 0.1832 - val_predict_mae: 0.6687
Epoch 96/200
s: 0.1031 - predict_loss: 2.4526 - decode_mae: 0.2195 - predict_mae: 0.9928 - v
al_loss: 1.7611 - val_decode_loss: 0.1181 - val_predict_loss: 1.6430 - val_deco
de_mae: 0.1855 - val_predict_mae: 0.7101
```

```
Epoch 97/200
7/7 [==========] - 0s 12ms/step - loss: 1.4423 - decode_los
s: 0.0739 - predict_loss: 1.3684 - decode_mae: 0.1959 - predict_mae: 0.9008 - v
al_loss: 2.6129 - val_decode_loss: 0.1218 - val_predict_loss: 2.4911 - val_deco
de_mae: 0.2005 - val_predict_mae: 0.8522
Epoch 98/200
7/7 [=========] - 0s 12ms/step - loss: 1.4181 - decode_los
s: 0.0775 - predict_loss: 1.3406 - decode_mae: 0.2106 - predict_mae: 0.8861 - v
al_loss: 2.1174 - val_decode_loss: 0.1210 - val_predict_loss: 1.9964 - val_deco
de_mae: 0.2035 - val_predict_mae: 0.7153
Epoch 99/200
s: 0.0860 - predict_loss: 1.6246 - decode_mae: 0.2172 - predict_mae: 0.9714 - v
al_loss: 2.1494 - val_decode_loss: 0.1162 - val_predict_loss: 2.0332 - val_deco
de_mae: 0.2014 - val_predict_mae: 0.6535
Epoch 100/200
7/7 [=========] - 0s 14ms/step - loss: 1.6232 - decode los
s: 0.0888 - predict loss: 1.5344 - decode mae: 0.2132 - predict mae: 0.9490 - v
al loss: 2.8088 - val decode loss: 0.1120 - val predict loss: 2.6968 - val deco
de_mae: 0.2008 - val_predict_mae: 0.7169
Epoch 101/200
7/7 [==========] - 0s 13ms/step - loss: 1.8245 - decode_los
s: 0.0926 - predict_loss: 1.7320 - decode_mae: 0.2266 - predict_mae: 1.0495 - v
al_loss: 2.6150 - val_decode_loss: 0.1108 - val_predict_loss: 2.5042 - val_deco
de_mae: 0.1990 - val_predict_mae: 0.7162
Epoch 102/200
s: 0.1032 - predict_loss: 2.4533 - decode_mae: 0.2207 - predict_mae: 1.1558 - v
al loss: 2.1085 - val decode loss: 0.1060 - val predict loss: 2.0025 - val deco
de_mae: 0.1859 - val_predict_mae: 0.7258
Epoch 103/200
7/7 [=========] - 0s 18ms/step - loss: 1.4669 - decode_los
s: 0.0803 - predict_loss: 1.3866 - decode_mae: 0.2024 - predict_mae: 0.9237 - v
al_loss: 2.5237 - val_decode_loss: 0.1057 - val_predict_loss: 2.4181 - val_deco
de mae: 0.1851 - val predict mae: 0.7621
Epoch 104/200
7/7 [=========== ] - 0s 14ms/step - loss: 1.1747 - decode los
s: 0.0754 - predict_loss: 1.0993 - decode_mae: 0.1975 - predict_mae: 0.8137 - v
al_loss: 2.0167 - val_decode_loss: 0.0978 - val_predict_loss: 1.9189 - val_deco
de_mae: 0.1771 - val_predict_mae: 0.7711
Epoch 105/200
7/7 [=========] - 0s 12ms/step - loss: 3.3321 - decode los
s: 0.0806 - predict_loss: 3.2515 - decode_mae: 0.1957 - predict_mae: 0.9737 - v
al_loss: 1.7813 - val_decode_loss: 0.0933 - val_predict_loss: 1.6880 - val_deco
de_mae: 0.1725 - val_predict_mae: 0.6699
Epoch 106/200
7/7 [=========] - 0s 14ms/step - loss: 1.2861 - decode_los
s: 0.0643 - predict loss: 1.2218 - decode mae: 0.1777 - predict mae: 0.8292 - v
al_loss: 2.1539 - val_decode_loss: 0.0934 - val_predict_loss: 2.0605 - val_deco
de_mae: 0.1791 - val_predict_mae: 0.6734
Epoch 107/200
7/7 [=========] - 0s 12ms/step - loss: 2.5968 - decode_los
s: 0.0860 - predict_loss: 2.5108 - decode_mae: 0.2148 - predict_mae: 1.0654 - v
al_loss: 2.8080 - val_decode_loss: 0.0912 - val_predict_loss: 2.7168 - val_deco
de_mae: 0.1788 - val_predict_mae: 0.7727
Epoch 108/200
s: 0.0946 - predict_loss: 1.7587 - decode_mae: 0.2100 - predict_mae: 0.9204 - v
al_loss: 4.6821 - val_decode_loss: 0.0903 - val_predict_loss: 4.5919 - val_deco
de_mae: 0.1769 - val_predict_mae: 1.0088
```

```
Epoch 109/200
7/7 [==========] - 0s 14ms/step - loss: 2.9216 - decode_los
s: 0.0901 - predict_loss: 2.8315 - decode_mae: 0.2155 - predict_mae: 1.2293 - v
al_loss: 3.5274 - val_decode_loss: 0.0864 - val_predict_loss: 3.4410 - val_deco
de_mae: 0.1716 - val_predict_mae: 0.8968
Epoch 110/200
7/7 [=========] - 0s 13ms/step - loss: 1.6453 - decode_los
s: 0.0863 - predict_loss: 1.5590 - decode_mae: 0.2041 - predict_mae: 0.9569 - v
al_loss: 2.3158 - val_decode_loss: 0.0844 - val_predict_loss: 2.2314 - val_deco
de_mae: 0.1691 - val_predict_mae: 0.7807
Epoch 111/200
s: 0.0804 - predict_loss: 1.4392 - decode_mae: 0.2031 - predict_mae: 0.8451 - v
al_loss: 2.5651 - val_decode_loss: 0.0833 - val_predict_loss: 2.4818 - val_deco
de_mae: 0.1714 - val_predict_mae: 0.7368
Epoch 112/200
7/7 [=========] - 0s 15ms/step - loss: 1.2025 - decode los
s: 0.0719 - predict loss: 1.1306 - decode mae: 0.1864 - predict mae: 0.7913 - v
al loss: 3.7689 - val decode loss: 0.0917 - val predict loss: 3.6771 - val deco
de_mae: 0.1812 - val_predict_mae: 0.8766
Epoch 113/200
7/7 [=========] - 0s 14ms/step - loss: 1.4991 - decode_los
s: 0.0749 - predict_loss: 1.4242 - decode_mae: 0.1991 - predict_mae: 0.9148 - v
al_loss: 3.3068 - val_decode_loss: 0.0911 - val_predict_loss: 3.2157 - val_deco
de_mae: 0.1801 - val_predict_mae: 0.8396
Epoch 114/200
7/7 [==========] - 0s 13ms/step - loss: 1.4358 - decode_los
s: 0.0710 - predict_loss: 1.3648 - decode_mae: 0.1901 - predict_mae: 0.8549 - v
al loss: 2.7841 - val decode loss: 0.0920 - val predict loss: 2.6920 - val deco
de_mae: 0.1761 - val_predict_mae: 0.7584
Epoch 115/200
7/7 [==========] - 0s 13ms/step - loss: 1.0199 - decode_los
s: 0.0584 - predict_loss: 0.9615 - decode_mae: 0.1711 - predict_mae: 0.7495 - v
al_loss: 2.5842 - val_decode_loss: 0.0886 - val_predict_loss: 2.4956 - val_deco
de mae: 0.1681 - val predict mae: 0.8128
Epoch 116/200
7/7 [========== ] - 0s 11ms/step - loss: 1.4010 - decode los
s: 0.0830 - predict_loss: 1.3180 - decode_mae: 0.2043 - predict_mae: 0.8447 - v
al_loss: 2.7363 - val_decode_loss: 0.0867 - val_predict_loss: 2.6496 - val_deco
de_mae: 0.1655 - val_predict_mae: 0.8137
Epoch 117/200
7/7 [========= - - 0s 13ms/step - loss: 2.2374 - decode los
s: 0.0598 - predict_loss: 2.1776 - decode_mae: 0.1718 - predict_mae: 0.7047 - v
al_loss: 2.7420 - val_decode_loss: 0.0894 - val_predict_loss: 2.6526 - val_deco
de_mae: 0.1677 - val_predict_mae: 0.7580
Epoch 118/200
7/7 [=========] - 0s 13ms/step - loss: 2.4585 - decode_los
s: 0.1043 - predict loss: 2.3542 - decode mae: 0.2143 - predict mae: 1.0356 - v
al_loss: 3.0797 - val_decode_loss: 0.0911 - val_predict_loss: 2.9887 - val_deco
de_mae: 0.1692 - val_predict_mae: 0.9536
Epoch 119/200
7/7 [=========] - 0s 13ms/step - loss: 0.8370 - decode_los
s: 0.0704 - predict_loss: 0.7666 - decode_mae: 0.1878 - predict_mae: 0.6773 - v
al_loss: 3.6642 - val_decode_loss: 0.0979 - val_predict_loss: 3.5663 - val_deco
de_mae: 0.1799 - val_predict_mae: 1.0485
Epoch 120/200
7/7 [=============== ] - 0s 14ms/step - loss: 1.4286 - decode_los
s: 0.0756 - predict_loss: 1.3530 - decode_mae: 0.1937 - predict_mae: 0.8894 - v
al_loss: 3.3027 - val_decode_loss: 0.0954 - val_predict_loss: 3.2073 - val_deco
de_mae: 0.1771 - val_predict_mae: 0.9361
```

```
Epoch 121/200
7/7 [=========] - 0s 14ms/step - loss: 1.8795 - decode_los
s: 0.0790 - predict_loss: 1.8005 - decode_mae: 0.1999 - predict_mae: 0.9453 - v
al_loss: 3.2333 - val_decode_loss: 0.0931 - val_predict_loss: 3.1402 - val_deco
de_mae: 0.1687 - val_predict_mae: 0.8997
Epoch 122/200
7/7 [=========] - 0s 13ms/step - loss: 1.8599 - decode_los
s: 0.0954 - predict_loss: 1.7646 - decode_mae: 0.2159 - predict_mae: 1.0064 - v
al_loss: 3.5324 - val_decode_loss: 0.0906 - val_predict_loss: 3.4418 - val_deco
de_mae: 0.1650 - val_predict_mae: 0.9372
Epoch 123/200
s: 0.0685 - predict_loss: 1.3675 - decode_mae: 0.1902 - predict_mae: 0.8864 - v
al_loss: 4.5911 - val_decode_loss: 0.0929 - val_predict_loss: 4.4982 - val_deco
de_mae: 0.1672 - val_predict_mae: 0.9624
Epoch 124/200
7/7 [=========] - 0s 11ms/step - loss: 1.1601 - decode los
s: 0.0717 - predict loss: 1.0884 - decode mae: 0.1952 - predict mae: 0.8061 - v
al loss: 2.8991 - val decode loss: 0.0846 - val predict loss: 2.8145 - val deco
de_mae: 0.1581 - val_predict_mae: 0.8281
Epoch 125/200
7/7 [==========] - 0s 12ms/step - loss: 1.4475 - decode_los
s: 0.0648 - predict_loss: 1.3828 - decode_mae: 0.1836 - predict_mae: 0.8566 - v
al_loss: 2.7001 - val_decode_loss: 0.0869 - val_predict_loss: 2.6133 - val_deco
de_mae: 0.1600 - val_predict_mae: 0.8267
Epoch 126/200
7/7 [==========] - 0s 13ms/step - loss: 2.1803 - decode_los
s: 0.1078 - predict_loss: 2.0725 - decode_mae: 0.2227 - predict_mae: 0.9302 - v
al loss: 3.8731 - val decode loss: 0.0901 - val predict loss: 3.7830 - val deco
de_mae: 0.1666 - val_predict_mae: 1.0288
Epoch 127/200
7/7 [=========] - 0s 14ms/step - loss: 1.8958 - decode_los
s: 0.0813 - predict_loss: 1.8145 - decode_mae: 0.2058 - predict_mae: 0.9708 - v
al_loss: 3.4174 - val_decode_loss: 0.0883 - val_predict_loss: 3.3291 - val_deco
de mae: 0.1622 - val predict mae: 0.9683
Epoch 128/200
7/7 [========== ] - 0s 15ms/step - loss: 1.4790 - decode los
s: 0.0694 - predict_loss: 1.4095 - decode_mae: 0.1909 - predict_mae: 0.8384 - v
al_loss: 2.4766 - val_decode_loss: 0.0901 - val_predict_loss: 2.3865 - val_deco
de_mae: 0.1572 - val_predict_mae: 0.8213
Epoch 129/200
7/7 [========= - - 0s 13ms/step - loss: 1.6329 - decode los
s: 0.0702 - predict_loss: 1.5627 - decode_mae: 0.1931 - predict_mae: 0.9541 - v
al_loss: 2.2452 - val_decode_loss: 0.0923 - val_predict_loss: 2.1528 - val_deco
de_mae: 0.1553 - val_predict_mae: 0.7202
Epoch 130/200
7/7 [=========] - 0s 12ms/step - loss: 1.3593 - decode_los
s: 0.0656 - predict loss: 1.2938 - decode mae: 0.1871 - predict mae: 0.8913 - v
al_loss: 2.3778 - val_decode_loss: 0.0901 - val_predict_loss: 2.2877 - val_deco
de_mae: 0.1530 - val_predict_mae: 0.7255
Epoch 131/200
7/7 [========] - 0s 12ms/step - loss: 0.9998 - decode_los
s: 0.0600 - predict_loss: 0.9397 - decode_mae: 0.1760 - predict_mae: 0.6879 - v
al_loss: 2.1163 - val_decode_loss: 0.0909 - val_predict_loss: 2.0255 - val_deco
de_mae: 0.1515 - val_predict_mae: 0.7165
Epoch 132/200
7/7 [=============== ] - 0s 12ms/step - loss: 0.8916 - decode_los
s: 0.0584 - predict_loss: 0.8332 - decode_mae: 0.1699 - predict_mae: 0.6904 - v
al_loss: 2.1554 - val_decode_loss: 0.0937 - val_predict_loss: 2.0617 - val_deco
de_mae: 0.1542 - val_predict_mae: 0.7585
```

```
Epoch 133/200
7/7 [==========] - 0s 13ms/step - loss: 1.3011 - decode_los
s: 0.0786 - predict_loss: 1.2225 - decode_mae: 0.1945 - predict_mae: 0.8095 - v
al_loss: 3.4636 - val_decode_loss: 0.0970 - val_predict_loss: 3.3667 - val_deco
de_mae: 0.1602 - val_predict_mae: 0.8048
Epoch 134/200
7/7 [=========] - 0s 13ms/step - loss: 0.8174 - decode_los
s: 0.0621 - predict_loss: 0.7553 - decode_mae: 0.1749 - predict_mae: 0.6304 - v
al_loss: 2.7722 - val_decode_loss: 0.0966 - val_predict_loss: 2.6757 - val_deco
de_mae: 0.1598 - val_predict_mae: 0.7000
Epoch 135/200
7/7 [========== - - 0s 13ms/step - loss: 1.4030 - decode los
s: 0.0715 - predict_loss: 1.3316 - decode_mae: 0.1793 - predict_mae: 0.8169 - v
al_loss: 2.2324 - val_decode_loss: 0.0940 - val_predict_loss: 2.1385 - val_deco
de_mae: 0.1547 - val_predict_mae: 0.6936
Epoch 136/200
7/7 [=========] - 0s 13ms/step - loss: 1.6185 - decode los
s: 0.0766 - predict loss: 1.5419 - decode mae: 0.2005 - predict mae: 0.9343 - v
al loss: 2.5434 - val decode loss: 0.0878 - val predict loss: 2.4556 - val deco
de_mae: 0.1516 - val_predict_mae: 0.5999
Epoch 137/200
7/7 [==========] - 0s 13ms/step - loss: 0.8902 - decode_los
s: 0.0793 - predict_loss: 0.8109 - decode_mae: 0.1845 - predict_mae: 0.6567 - v
al_loss: 2.9446 - val_decode_loss: 0.0808 - val_predict_loss: 2.8638 - val_deco
de_mae: 0.1510 - val_predict_mae: 0.6857
Epoch 138/200
7/7 [==========] - 0s 13ms/step - loss: 0.9332 - decode_los
s: 0.0603 - predict_loss: 0.8729 - decode_mae: 0.1774 - predict_mae: 0.7160 - v
al loss: 2.9608 - val decode loss: 0.0846 - val predict loss: 2.8763 - val deco
de_mae: 0.1577 - val_predict_mae: 0.6899
Epoch 139/200
7/7 [=========] - 0s 13ms/step - loss: 1.2224 - decode_los
s: 0.0587 - predict_loss: 1.1637 - decode_mae: 0.1747 - predict_mae: 0.7861 - v
al_loss: 2.7329 - val_decode_loss: 0.0825 - val_predict_loss: 2.6504 - val_deco
de mae: 0.1527 - val predict mae: 0.7458
Epoch 140/200
7/7 [========== ] - 0s 13ms/step - loss: 1.0199 - decode los
s: 0.0611 - predict_loss: 0.9588 - decode_mae: 0.1795 - predict_mae: 0.6982 - v
al_loss: 2.9327 - val_decode_loss: 0.0810 - val_predict_loss: 2.8517 - val_deco
de_mae: 0.1497 - val_predict_mae: 0.7139
Epoch 141/200
7/7 [========= - - 0s 13ms/step - loss: 0.7438 - decode los
s: 0.0647 - predict_loss: 0.6792 - decode_mae: 0.1794 - predict_mae: 0.6357 - v
al_loss: 3.4082 - val_decode_loss: 0.0817 - val_predict_loss: 3.3266 - val_deco
de_mae: 0.1484 - val_predict_mae: 0.7220
Epoch 142/200
7/7 [=========] - 0s 13ms/step - loss: 1.4832 - decode_los
s: 0.0609 - predict loss: 1.4223 - decode mae: 0.1754 - predict mae: 0.7689 - v
al_loss: 2.7095 - val_decode_loss: 0.0842 - val_predict_loss: 2.6253 - val_deco
de_mae: 0.1482 - val_predict_mae: 0.5968
Epoch 143/200
7/7 [=========] - 0s 12ms/step - loss: 1.0622 - decode_los
s: 0.0632 - predict_loss: 0.9991 - decode_mae: 0.1821 - predict_mae: 0.7445 - v
al_loss: 2.4238 - val_decode_loss: 0.0851 - val_predict_loss: 2.3387 - val_deco
de_mae: 0.1487 - val_predict_mae: 0.6731
Epoch 144/200
s: 0.0740 - predict_loss: 1.2059 - decode_mae: 0.1891 - predict_mae: 0.7997 - v
al_loss: 2.9372 - val_decode_loss: 0.0794 - val_predict_loss: 2.8578 - val_deco
de_mae: 0.1488 - val_predict_mae: 0.6636
```

```
Epoch 145/200
7/7 [==========] - 0s 14ms/step - loss: 1.6601 - decode_los
s: 0.0692 - predict_loss: 1.5909 - decode_mae: 0.1731 - predict_mae: 0.8263 - v
al_loss: 3.8994 - val_decode_loss: 0.0819 - val_predict_loss: 3.8175 - val_deco
de_mae: 0.1539 - val_predict_mae: 0.7466
Epoch 146/200
7/7 [=========] - 0s 13ms/step - loss: 1.9800 - decode_los
s: 0.0676 - predict_loss: 1.9123 - decode_mae: 0.1834 - predict_mae: 0.9496 - v
al_loss: 2.5524 - val_decode_loss: 0.0808 - val_predict_loss: 2.4716 - val_deco
de_mae: 0.1501 - val_predict_mae: 0.6130
Epoch 147/200
s: 0.0840 - predict_loss: 1.4140 - decode_mae: 0.1929 - predict_mae: 0.7546 - v
al_loss: 2.3622 - val_decode_loss: 0.0799 - val_predict_loss: 2.2823 - val_deco
de_mae: 0.1484 - val_predict_mae: 0.6785
Epoch 148/200
7/7 [=========] - 0s 12ms/step - loss: 1.2485 - decode los
s: 0.0628 - predict loss: 1.1857 - decode mae: 0.1794 - predict mae: 0.8603 - v
al loss: 2.9323 - val decode loss: 0.0847 - val predict loss: 2.8476 - val deco
de_mae: 0.1539 - val_predict_mae: 0.7065
Epoch 149/200
7/7 [=========] - 0s 12ms/step - loss: 1.4923 - decode_los
s: 0.0731 - predict_loss: 1.4192 - decode_mae: 0.1973 - predict_mae: 0.9169 - v
al_loss: 3.8032 - val_decode_loss: 0.0861 - val_predict_loss: 3.7172 - val_deco
de_mae: 0.1548 - val_predict_mae: 0.8314
Epoch 150/200
7/7 [==========] - 0s 12ms/step - loss: 1.5553 - decode_los
s: 0.0734 - predict_loss: 1.4819 - decode_mae: 0.1868 - predict_mae: 0.8441 - v
al loss: 3.0735 - val decode loss: 0.0883 - val predict loss: 2.9852 - val deco
de_mae: 0.1506 - val_predict_mae: 0.7241
Epoch 151/200
7/7 [==========] - 0s 12ms/step - loss: 1.2110 - decode_los
s: 0.0612 - predict_loss: 1.1498 - decode_mae: 0.1791 - predict_mae: 0.8207 - v
al_loss: 3.0227 - val_decode_loss: 0.0865 - val_predict_loss: 2.9361 - val_deco
de mae: 0.1518 - val predict mae: 0.7158
Epoch 152/200
7/7 [=========== ] - 0s 14ms/step - loss: 0.8935 - decode los
s: 0.0677 - predict_loss: 0.8258 - decode_mae: 0.1818 - predict_mae: 0.6593 - v
al_loss: 2.9491 - val_decode_loss: 0.0874 - val_predict_loss: 2.8617 - val_deco
de_mae: 0.1519 - val_predict_mae: 0.6535
Epoch 153/200
7/7 [========= - - 0s 13ms/step - loss: 0.7218 - decode los
s: 0.0531 - predict_loss: 0.6688 - decode_mae: 0.1642 - predict_mae: 0.6304 - v
al_loss: 3.5330 - val_decode_loss: 0.0903 - val_predict_loss: 3.4426 - val_deco
de_mae: 0.1536 - val_predict_mae: 0.6951
Epoch 154/200
7/7 [=========] - 0s 14ms/step - loss: 1.3210 - decode_los
s: 0.0605 - predict loss: 1.2605 - decode mae: 0.1780 - predict mae: 0.8032 - v
al_loss: 3.6652 - val_decode_loss: 0.0933 - val_predict_loss: 3.5719 - val_deco
de_mae: 0.1537 - val_predict_mae: 0.6450
Epoch 155/200
7/7 [=========] - 0s 12ms/step - loss: 0.7456 - decode_los
s: 0.0591 - predict_loss: 0.6865 - decode_mae: 0.1734 - predict_mae: 0.6332 - v
al_loss: 3.5144 - val_decode_loss: 0.0895 - val_predict_loss: 3.4249 - val_deco
de_mae: 0.1489 - val_predict_mae: 0.6398
Epoch 156/200
s: 0.0530 - predict_loss: 0.9149 - decode_mae: 0.1625 - predict_mae: 0.7427 - v
al_loss: 3.5784 - val_decode_loss: 0.0858 - val_predict_loss: 3.4927 - val_deco
de_mae: 0.1457 - val_predict_mae: 0.6283
```

```
Epoch 157/200
7/7 [=========] - 0s 14ms/step - loss: 0.7164 - decode_los
s: 0.0581 - predict_loss: 0.6584 - decode_mae: 0.1715 - predict_mae: 0.6307 - v
al_loss: 3.8619 - val_decode_loss: 0.0854 - val_predict_loss: 3.7765 - val_deco
de_mae: 0.1454 - val_predict_mae: 0.6451
Epoch 158/200
7/7 [=========] - 0s 13ms/step - loss: 1.2667 - decode_los
s: 0.0618 - predict_loss: 1.2049 - decode_mae: 0.1705 - predict_mae: 0.6924 - v
al_loss: 3.4628 - val_decode_loss: 0.0851 - val_predict_loss: 3.3777 - val_deco
de_mae: 0.1478 - val_predict_mae: 0.6194
Epoch 159/200
7/7 [========== - - 0s 14ms/step - loss: 0.6992 - decode los
s: 0.0621 - predict_loss: 0.6370 - decode_mae: 0.1690 - predict_mae: 0.6148 - v
al_loss: 3.1137 - val_decode_loss: 0.0867 - val_predict_loss: 3.0271 - val_deco
de_mae: 0.1506 - val_predict_mae: 0.6910
Epoch 160/200
7/7 [=========] - 0s 12ms/step - loss: 1.0533 - decode los
s: 0.0745 - predict loss: 0.9788 - decode mae: 0.1906 - predict mae: 0.7761 - v
al loss: 2.9235 - val decode loss: 0.0847 - val predict loss: 2.8388 - val deco
de_mae: 0.1494 - val_predict_mae: 0.6641
Epoch 161/200
7/7 [==========] - 0s 12ms/step - loss: 0.6807 - decode_los
s: 0.0521 - predict_loss: 0.6286 - decode_mae: 0.1645 - predict_mae: 0.5790 - v
al_loss: 2.5022 - val_decode_loss: 0.0767 - val_predict_loss: 2.4255 - val_deco
de_mae: 0.1440 - val_predict_mae: 0.5900
Epoch 162/200
7/7 [===========] - 0s 13ms/step - loss: 0.9097 - decode_los
s: 0.0724 - predict_loss: 0.8373 - decode_mae: 0.1763 - predict_mae: 0.6442 - v
al loss: 2.1407 - val decode loss: 0.0741 - val predict loss: 2.0665 - val deco
de_mae: 0.1431 - val_predict_mae: 0.5896
Epoch 163/200
7/7 [==========] - 0s 14ms/step - loss: 1.0352 - decode_los
s: 0.0669 - predict_loss: 0.9683 - decode_mae: 0.1860 - predict_mae: 0.7053 - v
al_loss: 3.2132 - val_decode_loss: 0.0850 - val_predict_loss: 3.1282 - val_deco
de mae: 0.1520 - val predict mae: 0.7321
Epoch 164/200
7/7 [========== ] - 0s 13ms/step - loss: 1.3397 - decode los
s: 0.0662 - predict_loss: 1.2735 - decode_mae: 0.1776 - predict_mae: 0.7287 - v
al_loss: 2.7257 - val_decode_loss: 0.0836 - val_predict_loss: 2.6421 - val_deco
de_mae: 0.1476 - val_predict_mae: 0.6703
Epoch 165/200
7/7 [========= - - 0s 15ms/step - loss: 0.6274 - decode los
s: 0.0539 - predict_loss: 0.5735 - decode_mae: 0.1645 - predict_mae: 0.5784 - v
al_loss: 2.1440 - val_decode_loss: 0.0793 - val_predict_loss: 2.0647 - val_deco
de_mae: 0.1403 - val_predict_mae: 0.5400
Epoch 166/200
7/7 [=========] - 0s 15ms/step - loss: 0.8073 - decode_los
s: 0.0552 - predict loss: 0.7521 - decode mae: 0.1662 - predict mae: 0.6723 - v
al_loss: 2.5711 - val_decode_loss: 0.0808 - val_predict_loss: 2.4903 - val_deco
de_mae: 0.1397 - val_predict_mae: 0.5900
Epoch 167/200
7/7 [=========] - 0s 14ms/step - loss: 0.9438 - decode_los
s: 0.0635 - predict_loss: 0.8803 - decode_mae: 0.1726 - predict_mae: 0.6785 - v
al_loss: 2.9565 - val_decode_loss: 0.0816 - val_predict_loss: 2.8749 - val_deco
de_mae: 0.1415 - val_predict_mae: 0.6637
Epoch 168/200
s: 0.0721 - predict_loss: 1.9985 - decode_mae: 0.1916 - predict_mae: 1.0605 - v
al_loss: 2.1507 - val_decode_loss: 0.0823 - val_predict_loss: 2.0684 - val_deco
de_mae: 0.1411 - val_predict_mae: 0.6117
```

```
Epoch 169/200
7/7 [=========] - 0s 14ms/step - loss: 1.0631 - decode_los
s: 0.0537 - predict_loss: 1.0094 - decode_mae: 0.1631 - predict_mae: 0.7732 - v
al_loss: 2.4072 - val_decode_loss: 0.0786 - val_predict_loss: 2.3286 - val_deco
de_mae: 0.1377 - val_predict_mae: 0.6967
Epoch 170/200
7/7 [=========] - 0s 13ms/step - loss: 1.1580 - decode_los
s: 0.0621 - predict_loss: 1.0959 - decode_mae: 0.1779 - predict_mae: 0.7645 - v
al_loss: 3.6102 - val_decode_loss: 0.0769 - val_predict_loss: 3.5333 - val_deco
de_mae: 0.1424 - val_predict_mae: 0.7953
Epoch 171/200
s: 0.0600 - predict_loss: 1.0141 - decode_mae: 0.1688 - predict_mae: 0.7282 - v
al_loss: 2.4205 - val_decode_loss: 0.0771 - val_predict_loss: 2.3434 - val_deco
de_mae: 0.1352 - val_predict_mae: 0.6542
Epoch 172/200
7/7 [=========] - 0s 13ms/step - loss: 0.7947 - decode los
s: 0.0567 - predict loss: 0.7380 - decode mae: 0.1674 - predict mae: 0.6467 - v
al loss: 2.3071 - val decode loss: 0.0790 - val predict loss: 2.2281 - val deco
de_mae: 0.1359 - val_predict_mae: 0.7189
Epoch 173/200
7/7 [==========] - 0s 14ms/step - loss: 0.8905 - decode_los
s: 0.0610 - predict_loss: 0.8296 - decode_mae: 0.1667 - predict_mae: 0.6850 - v
al_loss: 2.5883 - val_decode_loss: 0.0821 - val_predict_loss: 2.5062 - val_deco
de_mae: 0.1425 - val_predict_mae: 0.7018
Epoch 174/200
7/7 [==========] - 0s 14ms/step - loss: 1.1130 - decode_los
s: 0.0711 - predict_loss: 1.0419 - decode_mae: 0.1895 - predict_mae: 0.7960 - v
al loss: 3.1093 - val decode loss: 0.0834 - val predict loss: 3.0259 - val deco
de_mae: 0.1491 - val_predict_mae: 0.7460
Epoch 175/200
7/7 [==========] - 0s 13ms/step - loss: 2.4704 - decode_los
s: 0.0699 - predict_loss: 2.4005 - decode_mae: 0.1826 - predict_mae: 0.8658 - v
al_loss: 2.6355 - val_decode_loss: 0.0818 - val_predict_loss: 2.5537 - val_deco
de mae: 0.1445 - val predict mae: 0.6501
Epoch 176/200
7/7 [========== ] - 0s 13ms/step - loss: 1.1771 - decode los
s: 0.0703 - predict_loss: 1.1068 - decode_mae: 0.1813 - predict_mae: 0.7000 - v
al_loss: 2.3501 - val_decode_loss: 0.0892 - val_predict_loss: 2.2610 - val_deco
de_mae: 0.1538 - val_predict_mae: 0.7047
Epoch 177/200
s: 0.0873 - predict_loss: 1.2799 - decode_mae: 0.1873 - predict_mae: 0.6825 - v
al_loss: 2.6224 - val_decode_loss: 0.0931 - val_predict_loss: 2.5293 - val_deco
de_mae: 0.1670 - val_predict_mae: 0.7116
Epoch 178/200
7/7 [=========] - 0s 14ms/step - loss: 1.0566 - decode_los
s: 0.0667 - predict loss: 0.9899 - decode mae: 0.1876 - predict mae: 0.7692 - v
al_loss: 3.6475 - val_decode_loss: 0.1052 - val_predict_loss: 3.5423 - val_deco
de_mae: 0.1799 - val_predict_mae: 0.8648
Epoch 179/200
7/7 [=========] - 0s 13ms/step - loss: 1.1710 - decode_los
s: 0.0667 - predict_loss: 1.1044 - decode_mae: 0.1848 - predict_mae: 0.7820 - v
al_loss: 2.2905 - val_decode_loss: 0.1014 - val_predict_loss: 2.1891 - val_deco
de_mae: 0.1675 - val_predict_mae: 0.7264
Epoch 180/200
s: 0.0547 - predict_loss: 0.8317 - decode_mae: 0.1680 - predict_mae: 0.7004 - v
al_loss: 2.3106 - val_decode_loss: 0.1001 - val_predict_loss: 2.2105 - val_deco
de_mae: 0.1647 - val_predict_mae: 0.7395
```

```
Epoch 181/200
7/7 [==========] - 0s 13ms/step - loss: 1.3519 - decode_los
s: 0.0773 - predict_loss: 1.2746 - decode_mae: 0.2012 - predict_mae: 0.7871 - v
al_loss: 2.4449 - val_decode_loss: 0.0926 - val_predict_loss: 2.3523 - val_deco
de_mae: 0.1577 - val_predict_mae: 0.7491
Epoch 182/200
7/7 [=========] - 0s 14ms/step - loss: 1.0048 - decode_los
s: 0.0573 - predict_loss: 0.9475 - decode_mae: 0.1750 - predict_mae: 0.7488 - v
al_loss: 2.5956 - val_decode_loss: 0.0898 - val_predict_loss: 2.5058 - val_deco
de_mae: 0.1632 - val_predict_mae: 0.7935
Epoch 183/200
7/7 [========== - - 0s 13ms/step - loss: 1.1568 - decode los
s: 0.0708 - predict_loss: 1.0860 - decode_mae: 0.1927 - predict_mae: 0.8063 - v
al_loss: 2.3627 - val_decode_loss: 0.0854 - val_predict_loss: 2.2773 - val_deco
de_mae: 0.1601 - val_predict_mae: 0.7500
Epoch 184/200
7/7 [=========] - 0s 13ms/step - loss: 1.4116 - decode los
s: 0.0738 - predict loss: 1.3377 - decode mae: 0.1976 - predict mae: 0.8339 - v
al loss: 2.8332 - val decode loss: 0.0763 - val predict loss: 2.7569 - val deco
de_mae: 0.1536 - val_predict_mae: 0.7310
Epoch 185/200
7/7 [==========] - Os 14ms/step - loss: 2.0404 - decode_los
s: 0.0842 - predict_loss: 1.9562 - decode_mae: 0.1996 - predict_mae: 1.0350 - v
al_loss: 2.9696 - val_decode_loss: 0.0718 - val_predict_loss: 2.8978 - val_deco
de_mae: 0.1430 - val_predict_mae: 0.6974
Epoch 186/200
7/7 [==========] - 0s 12ms/step - loss: 1.0254 - decode_los
s: 0.0597 - predict_loss: 0.9657 - decode_mae: 0.1693 - predict_mae: 0.7429 - v
al loss: 2.5026 - val decode loss: 0.0715 - val predict loss: 2.4311 - val deco
de_mae: 0.1395 - val_predict_mae: 0.6135
Epoch 187/200
7/7 [=========] - 0s 13ms/step - loss: 0.8445 - decode_los
s: 0.0559 - predict_loss: 0.7887 - decode_mae: 0.1650 - predict_mae: 0.7072 - v
al_loss: 3.1267 - val_decode_loss: 0.0696 - val_predict_loss: 3.0571 - val_deco
de mae: 0.1394 - val predict mae: 0.6627
Epoch 188/200
7/7 [========== ] - 0s 13ms/step - loss: 0.9586 - decode los
s: 0.0578 - predict_loss: 0.9008 - decode_mae: 0.1706 - predict_mae: 0.7317 - v
al_loss: 3.9178 - val_decode_loss: 0.0679 - val_predict_loss: 3.8499 - val_deco
de_mae: 0.1408 - val_predict_mae: 0.6360
Epoch 189/200
7/7 [========== - - 0s 14ms/step - loss: 1.8920 - decode los
s: 0.0777 - predict_loss: 1.8144 - decode_mae: 0.1834 - predict_mae: 0.7771 - v
al_loss: 2.6316 - val_decode_loss: 0.0662 - val_predict_loss: 2.5653 - val_deco
de_mae: 0.1365 - val_predict_mae: 0.5599
Epoch 190/200
7/7 [=========] - 0s 15ms/step - loss: 0.8695 - decode_los
s: 0.0635 - predict loss: 0.8060 - decode mae: 0.1667 - predict mae: 0.6736 - v
al_loss: 2.3552 - val_decode_loss: 0.0699 - val_predict_loss: 2.2852 - val_deco
de_mae: 0.1389 - val_predict_mae: 0.6477
Epoch 191/200
7/7 [=========] - 0s 14ms/step - loss: 0.7860 - decode_los
s: 0.0692 - predict_loss: 0.7168 - decode_mae: 0.1827 - predict_mae: 0.6517 - v
al_loss: 3.1361 - val_decode_loss: 0.0688 - val_predict_loss: 3.0673 - val_deco
de_mae: 0.1447 - val_predict_mae: 0.8121
Epoch 192/200
s: 0.0536 - predict_loss: 0.6128 - decode_mae: 0.1618 - predict_mae: 0.6281 - v
al_loss: 3.6993 - val_decode_loss: 0.0726 - val_predict_loss: 3.6267 - val_deco
de_mae: 0.1492 - val_predict_mae: 0.8277
```

```
Epoch 193/200
7/7 [==========] - 0s 14ms/step - loss: 1.2950 - decode_los
s: 0.0639 - predict_loss: 1.2311 - decode_mae: 0.1746 - predict_mae: 0.8353 - v
al_loss: 3.2942 - val_decode_loss: 0.0769 - val_predict_loss: 3.2173 - val_deco
de_mae: 0.1500 - val_predict_mae: 0.7245
Epoch 194/200
7/7 [=========] - 0s 13ms/step - loss: 0.8682 - decode_los
s: 0.0613 - predict loss: 0.8069 - decode mae: 0.1719 - predict mae: 0.6755 - v
al_loss: 2.0726 - val_decode_loss: 0.0863 - val_predict_loss: 1.9863 - val_deco
de_mae: 0.1528 - val_predict_mae: 0.6174
Epoch 195/200
7/7 [========== - - 0s 14ms/step - loss: 0.7972 - decode los
s: 0.0564 - predict_loss: 0.7408 - decode_mae: 0.1577 - predict_mae: 0.6120 - v
al_loss: 2.2826 - val_decode_loss: 0.0774 - val_predict_loss: 2.2051 - val_deco
de_mae: 0.1446 - val_predict_mae: 0.7074
Epoch 196/200
7/7 [=========] - 0s 13ms/step - loss: 1.0822 - decode los
s: 0.0568 - predict loss: 1.0255 - decode mae: 0.1667 - predict mae: 0.7237 - v
al loss: 4.2384 - val decode loss: 0.0705 - val predict loss: 4.1679 - val deco
de_mae: 0.1421 - val_predict_mae: 0.8391
Epoch 197/200
7/7 [==========] - 0s 13ms/step - loss: 0.9547 - decode_los
s: 0.0573 - predict loss: 0.8974 - decode mae: 0.1663 - predict mae: 0.7016 - v
al_loss: 4.0926 - val_decode_loss: 0.0720 - val_predict_loss: 4.0206 - val_deco
de_mae: 0.1408 - val_predict_mae: 0.8108
Epoch 198/200
7/7 [==========] - 0s 11ms/step - loss: 0.6409 - decode_los
s: 0.0552 - predict_loss: 0.5857 - decode_mae: 0.1586 - predict_mae: 0.5711 - v
al loss: 3.6061 - val decode loss: 0.0728 - val predict loss: 3.5333 - val deco
de_mae: 0.1409 - val_predict_mae: 0.6619
Epoch 199/200
7/7 [=========] - 0s 12ms/step - loss: 0.8843 - decode_los
s: 0.0522 - predict_loss: 0.8321 - decode_mae: 0.1565 - predict_mae: 0.6284 - v
al_loss: 2.5384 - val_decode_loss: 0.0696 - val_predict_loss: 2.4688 - val_deco
de mae: 0.1337 - val predict mae: 0.5932
Epoch 200/200
7/7 [========== ] - 0s 14ms/step - loss: 0.9802 - decode los
s: 0.0661 - predict_loss: 0.9141 - decode_mae: 0.1828 - predict_mae: 0.7557 - v
al_loss: 4.9524 - val_decode_loss: 0.0711 - val_predict_loss: 4.8813 - val_deco
de_mae: 0.1400 - val_predict_mae: 0.7379
7/7 [======= ] - 0s 791us/step
7/7 [=======] - 0s 2ms/step
7/7 [=======] - 0s 1ms/step
s: 0.0590 - predict_loss: 2.5986 - decode_mae: 0.1361 - predict_mae: 0.7163
Общее MAE: [2.657607078552246, 0.0589837022125721, 2.598623275756836, 0.1361242
6817417145, 0.7162818312644958]
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet
to be built. `model.compile_metrics` will be empty until you train or evaluate
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet
to be built. `model.compile_metrics` will be empty until you train or evaluate
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet
to be built. `model.compile_metrics` will be empty until you train or evaluate
```

the model.

C:\Users\Daniel\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras
\src\engine\training.py:3079: UserWarning: You are saving your model as an HDF5
file via `model.save()`. This file format is considered legacy. We recommend us
ing instead the native Keras format, e.g. `model.save('my_model.keras')`.
 saving_api.save_model(

```
In [5]: import matplotlib.pyplot as plt

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper right')
plt.show()
```

Model loss


```
In [6]: plt.scatter(test_y, regression_test)
    plt.xlabel("True Values")
    plt.ylabel("Predictions")
    plt.axis('equal')
    plt.axis('square')
    plt.xlim([0, plt.xlim()[1]])
    plt.ylim([0, plt.ylim()[1]])
    plt.plot([-100, 100], [-100, 100])
    plt.show()
```


In [7]:
import pandas as pd
pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\train.csv", delimiter=',')

Out[7]:		63.895	-0.326	-0.555	4.387	8.387	126.849	-7.547
	0	2.893	1.001	-0.718	-2.105	1.895	1.335	-1.340
	1	89.829	-0.982	1.012	5.495	9.495	212.801	-9.459
	2	332.150	0.111	0.132	14.036	18.036	1514.488	-18.424
	3	0.643	0.533	0.461	-3.132	0.868	0.281	-0.449
	4	0.552	0.441	0.369	-3.223	0.777	0.189	-0.541
	•••							
	994	0.357	0.415	1.250	-3.490	0.510	0.323	0.132
	995	440.021	-0.882	-0.450	16.969	20.969	2307.599	-20.985
	996	88.254	-1.265	0.735	5.144	9.144	207.941	-9.673
	997	7.305	-1.026	0.604	-6.761	2.663	-5.034	2.663
	998	75.917	-1.163	-0.051	4.502	8.502	165.873	-8.949

999 rows × 7 columns

```
In [8]:
    import pandas as pd
    pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\test.csv", delimiter=',')
```

Out[8]:		14.617	-0.413	0.885	-7.210	4.293	-12.661	4.293.1
	0	2.360	0.644	-1.057	-2.502	1.498	0.882	-1.612
	1	24.464	-0.412	-0.696	-8.708	5.140	-29.634	5.140
	2	-0.382	-0.428	0.599	-4.468	-0.308	-0.388	-0.308
	3	253.674	-1.280	0.611	-20.223	15.649	-1012.076	15.649
	4	26.489	0.686	-0.525	1.275	5.275	33.951	-4.991
	•••							
	194	12.668	-1.406	0.142	-8.055	3.185	-12.293	3.185
	195	52.415	-0.745	-0.648	2.982	6.982	95.343	-7.535
	196	9.884	0.699	0.694	-1.110	2.890	7.826	-3.493
	197	11.724	-0.928	0.917	-7.353	3.477	-9.893	3.477
	198	62.095	-0.695	-0.978	3.900	7.900	122.287	-7.858

199 rows × 7 columns

```
In [9]: import pandas as pd
pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\encoded.csv", delimiter=',')
```

Out[9]:		0.480	0.000	0.300	2.060	1.773	0.000.1	2.256	0.000.2
	0	0.768	1.961	3.535	4.138	1.293	3.678	5.002	0.089
	1	1.362	0.164	0.000	3.061	1.704	0.609	3.886	0.000
	2	0.705	0.793	1.556	2.854	1.507	0.895	2.043	0.000
	3	0.795	0.000	0.000	4.365	3.274	0.000	6.817	0.000
	4	0.337	2.376	5.238	4.295	0.880	4.501	4.375	0.877
	•••						•••		
	194	1.315	0.279	0.548	3.975	2.061	0.581	4.035	0.000
	195	0.478	3.645	7.525	7.108	0.742	6.233	6.371	0.430
	196	0.088	1.433	3.198	2.983	1.468	2.005	2.172	0.639
	197	0.649	0.131	0.761	2.912	1.827	0.189	2.749	0.000
	198	0.571	4.135	8.724	8.143	0.873	7.359	7.710	0.441

199 rows × 8 columns

```
In [10]: import pandas as pd
    pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\decoded.csv", delimiter=',')
```

Out[10]:		47.045	-0.454	0.948	-7.792	4.589	118.431
	0	-0.994	0.301	-1.198	-1.825	3.478	85.415
	1	51.664	-0.663	-0.690	-9.474	6.247	-212.922
	2	-11.818	-0.222	0.571	-3.348	1.339	126.028
	3	277.694	-0.855	0.611	-18.906	15.277	-1042.377
	4	21.957	0.648	-0.723	1.275	4.785	15.694
	•••						
	194	48.917	-1.222	-0.016	-8.210	4.333	82.757
	195	53.670	-0.641	-0.649	2.846	7.682	147.154
	196	15.398	0.972	0.934	-0.912	2.909	-73.365
	197	47.185	-0.804	0.979	-8.020	4.235	77.167
	198	73.068	-0.638	-0.950	3.616	8.157	278.794

199 rows × 6 columns

```
In [11]: import pandas as pd
  pd.read_csv("C:\\Users\\Daniel\\Downloads\\pr\\regression.csv", delimiter=',')
```

Out[11]:		4.293	0.175
	0	-1.612	-2.330
	1	5.140	0.175
	2	-0.308	0.082
	3	15.649	0.175
	4	-4.991	-5.145
	•••		
	194	3.185	0.175
	195	-7.535	-7.278
	196	-3.493	-2.768
	197	3.477	0.175
	198	-7.858	-8.302

199 rows × 2 columns