

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050035504

FCC REPORT (WIFI)

Applicant: Nexpro International Limitada

Address of Applicant: Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del

Bufete Facio Y Canas

Equipment Under Test (EUT)

Product Name: WCDMA Mobile Phone

Model No.: ROCKET

Trade mark: Sendtel

FCC ID: ZYPROCKET

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 May, 2015

Date of Test: 26 May, to 03 Jun., 2015

Date of report issued: 04 Jun., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	04 Jun., 2015	Original

Prepared by: Date: 04 Jun., 2015

Report Clerk

Reviewed by: Date: 04 Jun., 2015

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	8
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	ST RESULTS AND MEASUREMENT DATA	10
	6.1	Antenna requirement:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7 6.7.		
	6.7.		
			
7	TES	ST SETUP PHOTO	68
8	EU1	Γ CONSTRUCTIONAL DETAILS	69

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Nexpro International Limitada
Address of Applicant:	Guadalupe, Barrio Tournon, Frente Al Hotel Villas Oficinas Del Bufete Facio Y Canas
Manufacturer:	Shenzhen Malata Mobile Communication Co.,LTD.
Address of Manufacturer:	25/F, Malata Technology Building,NO.9998 Shennan Avenue, Shenzhen, P.R. China

5.2 General Description of E.U.T.

•	<u> </u>				
Product Name:	WCDMA Mobile Phone				
Model No.:	ROCKET				
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))				
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)				
Channel separation:	5MHz				
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)				
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)				
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps				
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps				
Data speed (IEEE 802.11n):	Up to 150Mbps				
Antenna Type:	Internal Antenna				
Antenna gain:	1.69 dBi				
AC adapter:	Input:100-240V AC,50/60Hz 0.15A Output:5V DC MAX 0.5A				
Power supply:	Rechargeable Li-ion Battery DC3.7V-1450mAh				

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15050035504

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

P P Report No: CCIS15050035504

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.69 dBi.

6.2 Conducted Emission

	,					
Test Requirement:	FCC Part 15 C Section 15.207	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Francisco de CALLEY	Limit (c	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling im The peripheral devices as through a LISN that provi with 50ohm termination. (test setup and photograph Both sides of A.C. line are interference. In order to fi positions of equipment are changed according to AN measurement. 	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted 				
Test setup:	LISN 40cm		er — AC power			
Test Instruments:	Refer to section 5.6 for details					
i est mistraments.	Refer to section 5.3 for details					
Test mode:						

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : WCDMA Mobile Phone Condition

EUT

Model : ROCKET Test Mode : Wifi Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

CHAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	d₿	₫₿	dBu₹	dBu∀	dB	
1	0.299	15.72	0.26	10.74	26.72	50.28	-23.56	Average
2	0.518	32.89	0.28	10.76	43.93	56.00	-12.07	QP
3	0.538	18.39	0.27	10.76	29.42	46.00	-16.58	Average
1 2 3 4 5 6 7 8 9	0.747	29.91	0.19	10.79	40.89	56.00	-15.11	QP
5	1.043	30.44	0.22	10.88	41.54	56.00	-14.46	QP
6	1.082	16.60	0.23	10.88	27.71	46.00	-18.29	Average
7	1.949	15.75	0.29	10.96	27.00	46.00	-19.00	Average
8	2.384	32.66	0.29	10.94	43.89	56.00	-12.11	QP
9	3.156	40.97	0.29	10.91	52.17	56.00	-3.83	QP
10	3.190	23,60	0.29	10.91	34.80	46.00	-11.20	Average
11	4.598	34.40	0.28	10.86	45.54	56.00	-10.46	QP
12	4.598	18.90	0.28	10.86	30.04	46.00	-15.96	Average

Line:

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE EUT : WCDMA Mobile Phone

Model : ROCKET Test Mode : Wifi Mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

(emark		D	TTCH	0.11			^	
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
-	MHz	dBu₹	₫₿	d₿	dBu₹	dBu₹	dB	
1	0.182	16.64	0.28	10.77	27.69	54.42	-26.73	Average
1 2 3 4 5 6 7 8 9	0.529	20.67	0.28	10.76	31.71	46.00	-14.29	Average
3	0.535	35, 28	0.28	10.76	46.32	56.00	-9.68	QP
4	1.043	17.03	0.25	10.88	28.16	46.00	-17.84	Average
5	1.071	30.05	0.25	10.88	41.18	56.00	-14.82	QP
6	1.602	16.78	0.26	10.93	27.97	46.00	-18.03	Average
7	2.622	37.24	0.27	10.93	48.44	56.00	-7.56	QP
8	3.224	26.16	0.27	10.91	37.34	46.00	-8.66	Average
9	3.241	42.71	0.27	10.91	53.89	56.00	-2.11	QP
10	4.622	21.49	0.29	10.86	32.64	46.00	-13.36	Average
11	4.647	37.96	0.29	10.86	49.11	56.00	-6.89	QP
12	6.121	33.27	0.31	10.82	44.40	60.00	-15.60	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2009 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.			

Measurement Data

	Ma	aximum Conduct				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	17.88	14.94	15.13	13.73		
Middle	18.12	16.46	16.49	15.99	30.00	Pass
Highest	18.58	15.91	16.34	14.28		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.4:2009 and KDB558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.24	16.24	17.28	35.52		
Middle	10.24	16.32	17.28	35.68	>500	Pass
Highest	10.24	16.32	17.12	35.68		

T (011		99% Occupy	1			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.96	16.48	17.60	36.00		
Middle	12.96	16.48	17.60	36.00	N/A	N/A
Highest	13.12	16.48	17.60	35.84		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 29.MAY.2015 10:20:23

Lowest channel

Date: 29.MAY.2015 10:24:07

Middle channel

Date: 29.MAY.2015 10:25:03

Highest channel

Date: 29.MAY.2015 10:31:09

Lowest channel

Date: 29.MAY.2015 10:28:58

Middle channel

Date: 29.MAY.2015 10:26:57

Highest channel

Date: 29.MAY.2015 10:34:20

Lowest channel

Date: 29.MAY.2015 10:35:49

Middle channel

Date: 29.MAY.2015 10:40:09

Highest channel

Date: 29.MAY.2015 10:41:42

Lowest channel

Date: 29.MAY.2015 10:45:24

Middle channel

Date: 29.MAY.2015 10:47:41

Highest channel

Page 23 of 69

99% OBW

Test mode: 802.11b

Date: 29.MAY.2015 10:51:16

Lowest channel

Date: 29.MAY.2015 10:50:57

Middle channel

Date: 29.MAY.2015 10:50:34

Highest channel

Test mode: 802.11g

Date: 29.MAY.2015 10:51:46

Lowest channel

Date: 29.MAY.2015 10:52:27

Middle channel

Date: 29.MAY.2015 10:52:56

Highest channel

Test mode: 802.11n(H20)

Date: 29.MAY.2015 10:54:29

Lowest channel

Date: 29.MAY.2015 10:53:58

Middle channel

Date: 29.MAY.2015 10:53:29

Highest channel

Test mode: 802.11n(H40)

Date: 29.MAY.2015 10:54:59

Lowest channel

Date: 29.MAY.2015 10:55:42

Middle channel

Date: 29.MAY.2015 10:56:17

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
	• •		
Test Method:	ANSI C63.4:2009 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

T O		Power Spec		5 "		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	4.46	-0.84	-0.95	-6.47		
Middle	4.53	0.35	0.33	-4.14	8.00	Pass
Highest	4.95	-0.08	-0.28	-5.93		

Test plot as follows:

Date: 29.MAY.2015 10:58:03

Lowest channel

Date: 29.MAY.2015 10:58:40

Middle channel

Date: 29.MAY.2015 10:59:12

Highest channel

Test mode: 802.11g

Date: 29.MAY.2015 11:00:54

Lowest channel

Date: 29.MAY.2015 11:00:26

Middle channel

Date: 29.MAY.2015 10:59:54

Highest channel

Test mode: 802.11n(H20)

Date: 29.MAY.2015 11:01:23

Lowest channel

Date: 29.MAY.2015 11:01:47

Middle channel

Date: 29.MAY.2015 11:02:11

Highest channel

Test mode: 802.11n(H40)

Date: 29.MAY.2015 11:02:41

Lowest channel

Date: 29.MAY.2015 11:03:19

Middle channel

Date: 29.MAY.2015 11:04:03

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2009 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Date: 29.MAY.2015 11:07:09

Lowest channel

Date: 29.MAY.2015 11:16:14

Highest channel

802.11g

Date: 29.MAY.2015 11:08:20

Lowest channel

Date: 29.MAY.2015 11:14:53

Highest channel

802.11n(H20)

Date: 29.MAY.2015 11:09:27

Lowest channel

Date: 29.MAY.2015 11:13:50

Highest channel

Date: 29.MAY.2015 11:12:50

802.11n(H40)

Date: 29.MAY.2015 11:11:19

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	2.3GHz to 2.5GHz					
Test site:	Measurement Distance: 3m					
	Micasurement Distance. Jiii					
Receiver setup:	Frequency Detector		RBW	VBW	Remark	
	Poak		1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
Limit:						
	Freque	ency	Limit (dBuV/m @3m)		Remark	
	Above 1GHz		54.00		Average Value	
Test Procedure:	1. The EUT was placed or		74.00		Peak Value	
	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 					
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier					
Test Instruments:	Refer to section	Refer to section 5.6 for details				
Test mode:		Refer to section 5.3 for details				
Test results:	Passed					

802.11b

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Pro : 355RF

EUT : WCDMA Mobile Phone Model : ROCKET

Test mode : Wifi-b-L Mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 355RF

EUT : WCDMA Mobile Phone

Model : ROCKET

: Wifi-b-L Mode Test mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

(C)	· ·			A 12					
			Ant enna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	₫₿	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
			27.58		100000000000000000000000000000000000000	53.84			The state of the s
5	2390,000	7.85	27.58	6, 63	0.00	42.06	54.00	-11.99	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro : 355RF

EUT : WCDMA Mobile Phone

Model : ROCKET

: Wifi-b-H Mode Test mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C

Test Engineer: MT REMARK

Dallot	57.	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	d₿	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 355RF

EUT WCDMA Mobile Phone

Model : ROCKET

Test mode : Wifi-b-H Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C H

Huni:55%

Test Engineer: MT REMARK :

Tallett.		n		0.11	D		* * * * * *	A	
	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜	dB/m	d₿	₫B	dBu√/m	dBu∜/m	d₿	
1	2483.500				0.00				
2	2483.500	9.14	27.52	6.85	0.00	43.51	54.00	-10.49	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 355RF Pro

EUT : WCDMA Mobile Phone

Model : ROCKET Test mode : Wifi-g-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	* *	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level			
3	MHz	dBuV	dB/m	d₿	₫B	dBuV/m	dBuV/m	d₿	
1	2390.000								
2	2390, 000	12.48	27, 58	6, 63	0.00	46, 69	54.00	-7.31	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 355RF Pro

WCDMA Mobile Phone EUT

Model : ROCKET

Test mode : Wifi-g-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Humi: 55%

Test Engineer: MT

REMARK

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuV	dB/m	₫B	₫B	dBu∜/m	dBuV/m	₫B	
2390.000 2390.000		27.58 27.58			62.21 45.60			Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Pro 355RF

EUT WCDMA Mobile Phone

: ROCKET Model

Test mode : Wifi-G-H Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

лы									
		Read	Ant enna	Cable	Preamp		Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
	2483.500					67.06			
)	2483, 500	15, 01	27, 52	6, 85	0.00	49, 38	54,00	-4.62	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 355RF Condition

Pro

EUT : WCDMA Mobile Phone

: ROCKET Model Test mode : Wifi-G-H Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

 121								
		Ant enna				Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuV	dB/m	₫B	₫B	dBu∜/m	dBuV/m	₫B	
2483.500 2483.500	77.00			0.00				Peak Average

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 355RF

WCDMA Mobile Phone EUT

Model : ROCKET

Test mode : Wifi-n20-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMA

Al	CK :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level			Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	₫B	
	2390.104	29.61	27.58	6.63	0.00	63.82	74.00	-10.18	Peak
	2300 104	10 15	97 EQ	6 63	0.00	46 36	E4 00	_T GA	0

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 355RF Pro

EUT : WCDMA Mobile Phone

: ROCKET Model

: Wifi-n20-L Mode Test mode

Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

693		Antenna Factor						
MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
2390,000 2390,000					63.54 45.51			

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 355RF

EUT : WCDMA Mobile Phone

: ROCKET Model

Test mode : Wifi-n20-H Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

RE

EMAF	K :	Read	Antenna	Cable	Presen		Limit	Over	
	Freq								Remark
	MHz	dBuV	dB/m	₫B	d₿	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500	4 100 0	27.52 27.52			100000000000000000000000000000000000000	74.00 54.00	1	A Company

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 355RF

WCDMA Mobile Phone EUT

Model : ROCKET

Test mode : Wifi-n20-H Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

11	u.	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	dB/m	dB	d₿	dBuV/m	dBuV/m	₫B	
	2483.500 2483.500	C 10 10 10 10 10 10 10 10 10 10 10 10 10	27.52 27.52	V - 5 C - 5 V - 5			74.00 54.00		Peak Average

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 355RF Pro

: WCDMA Mobile Phone EUT

Model : ROCKET

Test mode : Wifi-n40-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK

III AL		Pood	Ant enna	Cabla	Drooms		Limit	Over	
	Freq		Factor						Remark
	MHz	₫₿u₹	dB/m	₫B	dB	dBuV/m	dBuV/m	₫B	
1	2388.053	32.64	27.58	6.63	0.00	66.85	74.00	-7.15	Peak
2	2388.053	9.26	27.58	6.63	0.00	43.47	54.00	-10.53	Average
3	2390.000							-10.95	
4	2390.000	9.57	27.58	6.63	0.00	43.78	54.00	-10.22	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro 355RF

EUT : WCDMA Mobile Phone

Model : ROCKET

Test mode : Wifi-n40-L Mode Power Rating : AC120/60Hz

Environment : Temp: 25.5°C

Test Engineer: MT REMARK :

	Freq		Antenna Factor				Limit Line		Remark
1	MHz	dBu₹	dB/m	dB	dB	dBu√/m	dBu√/m	āB	
1 2 3 4	2388.584 2388.584 2390.000 2390.000	9.35 27.87	27.58 27.58	6.63 6.63 6.63	0.00	43.56 62.08	54.00 74.00	-11.92	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Pro : 355RF

EUT : WCDMA Mobile Phone

Model : ROCKET

Test mode : Wifi-n40-H Mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

METER		Charles on the last	v urodnich underson i	The section is			* * * * * * * * * * * * * * * * * * * *	0.4.00.0000	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	$\overline{dBuV/m}$	dB	
1	2483.500	34.64	27.52	6.85	0.00	69.01	74.00	-4.99	Peak
2	2483.500	11.08	27.52	6.85	0.00	45.45	54.00	-8.55	Average
3	2485.633	35.17	27.52	6.85	0.00	69.54	74.00	-4.46	Peak
4	2485.633	10.78	27.52	6.85	0.00	45.15	54.00	-8.85	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro : 355RF

EUT : WCDMA Mobile Phone : ROCKET Model Test mode : Wifi-n40-H Mode

Power Rating: AC120/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

CHEAT		Road	Antenna	Cable	Dreamn		Limit	Over	
	Freq		Factor						
	MHz	dBuV	—dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1	2483.500	36.30	27.52	6.85	0.00	70.67	74.00	-3.33	Peak
2	2483.500	11.78	27.52	6.85	0.00	46.15	54.00	-7.85	Average
3	2485.633	37.31	27.52	6.85	0.00	71.68	74.00	-2.32	Peak
	2485.633	11.53	27.52	6.85	0.00	45.90	54.00	-8.10	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 52 of 69

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.4:2009 and KDB558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	radiated measurement.							
	Spectrum Analyzer							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 29.MAY.2015 11:27:41

30MHz~25GHz

Middle channel

Date: 29.MAY.2015 11:28:22

30MHz~25GHz

Highest channel

Date: 29.MAY.2015 11:29:08

30MHz~25GHz

Test mode: 802.11g

Date: 29.MAY.2015 11:32:44

30MHz~25GHz

Middle channel

Date: 29.MAY.2015 11:32:09

30MHz~25GHz

Highest channel

Date: 29.MAY.2015 11:31:19

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 29.MAY.2015 11:33:48

30MHz~25GHz

Middle channel

Date: 29.MAY.2015 11:34:33

30MHz~25GHz

Highest channel

Date: 29.MAY.2015 11:35:23

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 29.MAY.2015 11:40:23

30MHz~25GHz

Middle channel

Date: 29.MAY.2015 11:40:54

30MHz~25GHz

Highest channel

Date: 29.MAY.2015 11:41:24

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.4:2009									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:										
	Frequency Detector RBW VBW Remark									
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value					
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	ABOVE TOTIZ	Peak	1MHz	10Hz	Average Value					
Limit:	_			· • • • •						
	Freque		Limit (dBuV/	•	Remark					
	30MHz-88		40.0		Quasi-peak Value					
	88MHz-21		43.5 46.0		Quasi-peak Value					
	216MHz-960MHz-		54.0 54.0		Quasi-peak Value Quasi-peak Value					
			54.0		Average Value					
	Above 1	GHz	74.0		Peak Value					
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna the ground Both horizon make the make the maters and to find the rospecified B 6. If the emission of the EUT have 10dB	at a 3 meter of the position ras set 3 meter was mountained and vertice and and vertice and the rota table maximum reactiver system and width with sion level of the would be rependent of the position of the would be rependent of the maximum the would be rependent of the maximum would the rotal table maximum reactiver system and width with sion level of the would be rependent would be rependent of the rotal table would be rependent of the rotal table would be rependent of the rotal table and would be rependent of the rotal table and table an	camber. The tage of the highesters away from the maximum cal polarization was turned to was turned to maximum the maximum the was turned to maximum the EUT in peasesting could borted. Otherwolder to the maximum the could be the could be the could be the tested to the maximum the could be the could be the tested to the maximum the could be the tested to the tested	able was ro st radiation. the interfer op of a varia e meter to for a value of the ons of the ar to heights from 0 degr eak Detect old Mode. ak mode wa be stopped a vise the emi one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Pro : 355RF

EUT : WCDMA Mobile Phone

: ROCKET Model Test mode : Wifi Mode

Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

DIROTA									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBuV	$\overline{dB/m}$	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	32.864	48.49	12.31	0.46	29.96	31.30	40.00	-8.70	QP
2	67.913	36.44	9.47	0.77	29.74	16.94	40.00	-23.06	QP
2 3 4 5	101.289	33.77	13.02	0.97	29.52	18, 24	43.50	-25.26	QP
4	265.676	33.79	12.26	1.67	28.51	19.21	46.00	-26.79	QP
5	361.714	35.95	14.43	1.98	28.61	23.75	46.00	-22.25	QP
6	463.970	40.25	15.71	2.30	28.89	29.37	46.00	-16.63	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro 355RF :

: WCDMA Mobile Phone : ROCKET EUT

Model Test mode : Wifi Mode Power Rating : AC120/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK

THEFT	n :								
	Freq		Antenna Factor				Limit Line		Remark
2	MHz	dBu∛	dB/m	₫₿	dB	dBuV/m	dBuV/m	dB	
1	32.067	38.56	12.32	0.45	29.97	21.36	40.00	-18.64	QP
1 2 3 4 5 6	100.934	33.74	13.06	0.97	29.52	18.25	43.50	-25, 25	QP
3	122.404	40.41	10.09	1.14	29.38	22.26	43.50	-21.24	QP
4	234.991	39.02	11.83	1.55	28.62	23.78	46.00	-22.22	QP
5	302.481	33.89	13.08	1.78	28.45	20.30	46.00	-25.70	QP
6	463.970	43.80	15.71	2.30	28.89	32.92	46.00	-13.08	QP

Above 1GHz

Test mode: 8	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.59	31.53	8.90	40.24	46.78	74.00	-27.22	Vertical
4824.00	47.23	31.53	8.90	40.24	47.42	74.00	-26.58	Horizontal
Test mode: 80	02.11b		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.92	31.53	8.90	40.24	38.11	54.00	-15.89	Vertical
4824.00	38.69	31.53	8.90	40.24	38.88	54.00	-15.12	Horizontal

Test mode: 8	02.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.32	31.58	8.98	40.15	47.73	74.00	-26.27	Vertical
4874.00	47.32	31.58	8.98	40.15	47.73	74.00	-26.27	Horizontal
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.33	31.58	8.98	40.15	38.74	54.00	-15.26	Vertical
4874.00	38.67	31.58	8.98	40.15	39.08	54.00	-14.92	Horizontal

Test mode: 80	02.11b		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.15	31.69	9.08	40.03	48.89	74.00	-25.11	Vertical
4924.00	48.31	31.69	9.08	40.03	49.05	74.00	-24.95	Horizontal
Test mode: 8	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.46	31.69	9.08	40.03	40.20	54.00	-13.80	Vertical
4924.00	39.48	31.69	9.08	40.03	40.22	54.00	-13.78	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	46.32	31.53	8.90	40.24	46.51	74.00	-27.49	Vertical
4824.00	47.59	31.53	8.90	40.24	47.78	74.00	-26.22	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	38.11	31.53	8.90	40.24	38.30	54.00	-15.70	Vertical
4824.00	38.23	31.53	8.90	40.24	38.42	54.00	-15.58	Horizontal

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	47.02	31.58	8.98	40.15	47.43	74.00	-26.57	Vertical
4874.00	47.63	31.58	8.98	40.15	48.04	74.00	-25.96	Horizontal
Test mode: 80)2.11g		Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.32	31.58	8.98	40.15	39.73	54.00	-14.27	Vertical
4874.00	38.14	31.58	8.98	40.15	38.55	54.00	-15.45	Horizontal

Test mode: 8	: 802.11g		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.74	31.69	9.08	40.03	49.48	74.00	-24.52	Vertical
4924.00	47.63	31.69	9.08	40.03	48.37	74.00	-25.63	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.56	31.69	9.08	40.03	39.30	54.00	-14.70	Vertical
4924.00	38.78	31.69	9.08	40.03	39.52	54.00	-14.48	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.33	31.53	8.90	40.24	47.52	74.00	-26.48	Vertical
4824.00	47.11	31.53	8.90	40.24	47.30	74.00	-26.70	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	38.98	31.53	8.90	40.24	39.17	54.00	-14.83	Vertical
4824.00	38.21	31.53	8.90	40.24	38.40	54.00	-15.60	Horizontal

Test mode: 8	02.11n(H20)		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.69	31.58	8.98	40.15	47.10	74.00	-26.90	Vertical	
4874.00	46.13	31.58	8.98	40.15	46.54	74.00	-27.46	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.65	31.58	8.98	40.15	37.06	54.00	-16.94	Vertical	
4874.00	37.95	31.58	8.98	40.15	38.36	54.00	-15.64	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.77	31.69	9.08	40.03	48.51	74.00	-25.49	Vertical
4924.00	47.90	31.69	9.08	40.03	48.64	74.00	-25.36	Horizontal
Test mode: 80	est mode: 802.11n(H20)			nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.74	31.69	9.08	40.03	40.48	54.00	-13.52	Vertical
4924.00	37.46	31.69	9.08	40.03	38.20	54.00	-15.80	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	46.36	31.53	8.90	40.24	46.55	74.00	-27.45	Vertical
4844.00	46.58	31.53	8.90	40.24	46.77	74.00	-27.23	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	38.47	31.53	8.90	40.24	38.66	54.00	-15.34	Vertical
4844.00	38.56	31.53	8.90	40.24	38.75	54.00	-15.25	Horizontal

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.63	31.58	8.98	40.15	48.04	74.00	-25.96	Vertical	
4874.00	46.41	31.58	8.98	40.15	46.82	74.00	-27.18	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Ave			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.25	31.58	8.98	40.15	36.66	54.00	-17.34	Vertical	
4874.00	36.02	31.58	8.98	40.15	36.43	54.00	-17.57	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	47.12	31.69	9.08	40.03	47.86	74.00	-26.14	Vertical
4904.00	46.99	31.69	9.08	40.03	47.73	74.00	-26.27	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	37.45	31.69	9.08	40.03	38.19	54.00	-15.81	Vertical
4904.00	37.03	31.69	9.08	40.03	37.77	54.00	-16.23	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.