

Design of Software Systems

Fall 2017

Course Introduction

Assist. Prof. Dr. Ronald Jabangwe

Credits:

- Credit to:
- Dr. Marco Kuhrmann
- for structure and some of the lectures

Agenda

- Team
- Schedule and Organization
- Labs and Assignments
- Goals and Content of the Course

Team

Lecture

Ronald Jabangwe <u>rja@mmmi.sdu.dk</u>

Labs and Exercise

- Sarah Hayssam Gheith <u>saghe10@student.sdu.dk</u>
- Morten Dreier modre14@student.sdu.dk
- Elena Markoska elma@mmmi.sdu.dk
- Sune Chung Jepsen <u>sujep06@student.sdu.dk</u>
- Van Nam Pham <u>vapha15@student.sdu.dk</u>

Consultation hours

on arrangement

Schedule and Organization

Lecture: Friday, 12:15-14:00 , room: U150

Labs: Friday, 14:15-16:00, room: U150, U30, U8, U21, U165

- Further information
 - Blackboard and other news
 - Lecture slides will be made available on Blackboard at the end of the day/next day
 - Other information, e.g., literature, etc. also on Blackboard

Schedule and Organization: Plan for Each Week

by lab unless stated as shown

for Week 45.

Week 36: Course introduction

**Week 37: Fundamentals (What is software architecture)

Week 38: Guest lecture: Software Architecture

Week 39: Guest lecture: Agile (focus on requirements and testing)

NOTE: Labs are every week. Week 40: Importance and Contexts of Software Architecture The format is Lecture followed

**Week 41: Quality

Week 42: No Lecture and Lab

Week 43: No Lecture and Lab - SDU arsfest

Week 44: Architecture levels and views

**Week 45: Lab only

Week 46: Design principles, patterns, and distributed systems

Week 47: Guest Lecture: Architecture and requirements

Week 48: Documentation and Architecture evaluation

Week 49: Reconstructing, re-Documenting the architecture/ Closing: sum-

up and reflection

Schedule and Organization: Labs and Assignments

- Labs
 - Each week
 - Run by the TA's
 - Participation is highly recommended
- Qualify for the exam
 - Approval for 3 assignments is required
 - Grading: pass/fail
- Assignments Total 3 (individual/group assignment)
 - Assignment_1 Available Week 37 (due Week 38)
 - Assignment_2 Available Week 41 (due in class)
 - Assignment_3 Available Week 45 (due Week 46)
 - All hand-ins will be in PDF

Schedule and Organization

Lab/Exercise Plan

- Major Exercise Topics:
 - Basic UML modelling
 - Basic C#
 - Primarily: Architecture design, analysis, documentation and implementation
 - This not a course dedicated to teaching how to code, but to teach you the idiosyncrasies of designing software systems
- Purpose of the exercises/labs
 - practical exercises
 - on modelling
 - on architectural designs and reasoning for their selection
 - on architecture evaluation

Schedule and Organization: Overview

- Course pattern: 2h lecture + 2h lab/exercise/discuss assignments
- For the lab/exercise session
 - NOTE: The only programming language used is C#
 - NOTE: Tools: IDE any.
 - NOTE: Tools: UML any.

Exam

- Exam:
 - Type: Written Exam, 120 Minutes, 7-point scale
 - Date and time: to be announced
- Exam qualification:
 - 3 qualification assignments
 - Submission is mandatory

Agenda

- Metadata
- Team
- Schedule and Organization
- Exams
- Goals and Content of the Course

- Purpose: Knowledge and Awareness
- "There is no silver bullet" → we have plenty of
 - General approaches
 - Methods
 - Tools
 - Skills and so on
- In this course
 - Selection of topics
 - In-depth discussion of some topics
 - Hands-on for selected aspects
 - Awareness for some not so "prominent" topics

F. P. Brooks, The Mythical Man-Month

Software Architecture in Practice

by Len Bass, Paul Clements and Rick Kazman

 In terms of content, this is the major reference for the course

but:

- You should study further literature that is listed in the reference list
- Literature is available
 - Library
 - Online (free)
 - Online (scientific libraries with SDU access)

Software Architecture

Vogel et al.; 2015

 In terms of structure of the course, this is the major reference for the course

but:

- You should study further literature that is listed in the reference list
- Literature is available
 - Library
 - Online (free)
 - Online (scientific libraries with SDU access)

Clean Code

Martin, R. C.; 2008

 Regarding code quality, major reference for the course

but:

- You should study further literature that is listed in the reference list
- Literature is available
 - Library
 - Online (free)
 - Online (scientific libraries with SDU access)

Further Complementing Literature

UML Distilled

Martin Fowler, Addison-Wesley Professional, 2003

- UML notations
- Examples
- Complements the book by Vogel et al.
- But there is plenty of material:
 - Library
 - Online (free)
 - Online (scientific libraries with SDU access)

General Comment...

There is NO general reading plan!

- Literature listed here is either
 - Major reference = directly linked in course
 - Complementing reference for support
- I will suggest reading certain book chapters
- Course outline gives you suggestions

But Note: This course is not a reading exercise. You take responsibility on your own learning.

- Major learning goals of this course
 - Background knowledge
 - Basics in understanding, modeling, and software architectures
 - Understanding of software lifecycle, management and quality
- Major topics
 - Architecture basics, analysis and design
 - Processes of developing software
 - Architecture and design pattern
 - Quality management

At the end of the course, you:

- Describe and rationalize the design of a software system
- Explain the importance and impact of software architecture to software (systems) development
- Explain architectural design decisions based on quality constraints
- Describe strategies for quality management and assurance
- Compare and evaluate different architecture styles