ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

AT Instruction Set and Example

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

REVISION HISTORY

Date	Version	Contents Updated
2018-04-16	0.1	Initial Release
2018-05-18	0.2	Add wifi example
		 Add AT+CWAUTOCONN

TABLE OF CONTENTS

TABLE OF CONTENTS

1.	介绍.			1
	1.1.	文档应用	用范围	1
	1.2.	指令说明	月	1
2.	基础	AT 指令 _		2
	2.1.	基础 AT	· 指令一览表	2
	2.2.	基础 AT	· 指令描述	3
		2.2.1.	AT—测试 AT 模块	3
		2.2.2.	AT+RST—重启模块	3
		2.2.3.	AT+GMR—查询版本信息	3
		2.2.4.	AT+GSLP—进入 Deep-sleep 模式	4
		2.2.5.	ATE—开关回显功能	4
		2.2.6.	AT+RESTORE—恢复出厂设置	4
		2.2.7.	AT+UART_CUR—设置 UART 临时配置	4
		2.2.8.	AT+UART_DEF—设置 UART 配置.保存到 Flash	6
		2.2.9.	AT+SLEEP—设置 sleep 模式	7
		2.2.10.	AT+SYSRAM—查询当前剩余 RAM 大小	7
3.	WIFI	功能 AT	指令	8
	3.1.	WIFI 功	能 AT 指令一览表	8
	3.2.		能 AT 指令描述	
		3.2.1.	AT+CWMODE—设置 Wi-Fi 模式	9
		3.2.2.	AT+CWJAP—连接 AP	9
		3.2.3.	AT+CWLAPOPT—设置 CWLAP 指令的属性	11
		3.2.4.	AT+CWLAP—扫描当前可用的 AP	11
		3.2.5.	AT+CWQAP—断开与 AP 的连接	12
		3.2.6.	AT+CWDHCP—设置 DHCP	12
		3.2.7.	AT+CIPSTAMAC—设置 OPL1000 Station 接口的 MAC 地址	13
		3.2.8.	AT+CWHOSTNAME—设置 Station 的主机名称	14
		3.2.9.	AT+CWAUTOCONN—上电是否自动连接 AP	14
4.	TCP/	/IP 功能 A	NT 指令	15
	4.1.	TCP/IP	功能 AT 指令一览表	15
	4.2.	TCP/IP	功能 AT 指令描述	15
		4.2.1.	AT+CIPSTATUS—查询网络连接信息	15
		4.2.2.	AT+CIPDOMAIN—域名解析功能	16
		4.2.3.	AT+CIPSTART—建立 TCP 连接或 UDP 传输	17

TABLE OF CONTENTS

		4.2.4.	AT+CIPSEND—发送数据	18
			AT+CIPSENDEX—发送数据	
			AT+CIPCLOSE—关闭 TCP/UDP 传输	
			AT+CIFSR—查询本地 IP 地址	
			AT+CIPMUX—设置多连接	
			AT+CIPSERVER—建立 TCP 服务器	
			AT+CIPSTO—设置 TCP 服务器超时时间	
			AT+CIPDINFO—接收网络数据时是否提示对端 IP 和端口	
			AT+IPD—接收网络数据	
			AT+PING—Ping 功能	
5.	BLE		· 信令	
			>一览表	
			⋛描述	
			AT+BLEINIT—BLE 初始化	
			AT+BLEADDR—设置 BLE 设备地址	
			AT+BLENAME—设置 BLE 设备名称	
			AT+BLESCANRSPDATA—设置 BLE 扫描响应	
			AT+BLEADVPARAM—设置广播参数	
			AT+BLEADVDATA—设置 BLE 广播数据	
		5.2.7.	AT+BLEADVSTART—开始 BLE 广播	30
			AT+BLEADVSTOP—结束 BLE 广播	
			AT+BLECONNPARAM—更新 BLE 连接参数	
			AT+BLEDISCONN—断开 BLE 连接	
			AT+BLEDATALEN—设置 BLE 数据包长度	
			AT+BLECFGMTU—设置 GATT MTU 的长度	
			AT+BLEGATTSSRVCRE—GATTS 创建服务	
			AT+BLEGATTSSRVSTART—GATTS 开启服务	
		5.2.15.	AT+BLEGATTSSRVSTOP—GATTS 停止服务	34
		5.2.16.	AT+BLEGATTSSRV—GATTS 发现服务	34
		5.2.17.	AT+BLEGATTSCHAR—GATTS 发现服务特征	35
		5.2.18.	AT+BLEGATTSNTFY—GATTS 通知服务特征值	
		5.2.19.	AT+BLEGATTSIND—GATTS 指示服务特征值	37
			AT+BLEGATTSSETATTR—GATTS 设置服务特征值	
		5.2.21.	AT+BLEGATTCPRIMSRV—GATTC 发现基本服务	38
		5.2.22.	AT+BLEGATTCINCLSRV—GATTC 发现包含服务	39
			AT+BLEGATTCCHAR—GATTC 发现服务特征	
			AT+BLEGATTCRD—GATTC 读取服务特征值	

TABLE OF CONTENTS

		5.2.25.	AT+BLEGATTCWR—GATTC 写服务特征值	42
	5.3.	BLE AT	CMD Error Code	43
6.	AT指	令使用示	示例	44
	6. 1.	单连接	TCP 客户端	44
	6. 2.	UDP 传	输	45
		6.2.1.	固定远端的 UDP 通信	47
		622	远端可变的 UDP 通信	47

1. 介绍

1.1. 文档应用范围

本文档描述 OPL1000 AT 指令集功能以及使用方法。

指令集主要分为:基础 AT 指令、WIFI 功能 AT 指令、TCP/IP 功能 AT 指令、BLE 功能 AT 指令等。 OPL1000 AT 指令默认使用串口 UART1 传输,默认波特率为 115200bps,格式为 8N1。

1.2. 指令说明

AT 指令可以细分为四种类型:

类型	指令格式	描述
测试指令	AT+ <x>=?</x>	该命令用于查询设置指令的参数以及取值范围。
查询指令	AT+ <x>?</x>	该命令用于返回参数的当前值。
设置指令	AT+ <x>=<></x>	该命令用于设置用户自定义的参数值。
执行指令	AT+ <x></x>	该命令用于执行受模块内部程序控制的变参数的功能。

注意:

- 不是每条 AT 指令都具备上述 4 种类型的命令。
- []括号内为缺省值,可以不填写或者可能不显示。
- AT 指令不区分大小写。
- AT 指令以回车换行符结尾 \r\n。请注意设置串口工具为"新行模式"。

基础 AT 指令

2.1. 基础 AT 指令一览表

指令	说明
AT	测试 AT 模块
AT+RST	重启模块
AT+GMR	查看版本信息
AT+GSLP	进入 Deep-Sleep 模式
ATE	开关回显功能
AT+RESTORE	恢复出厂设置
AT+UART_CUR	设置 UART 当前临时配置
AT+UART_DEF	设置 UART 配置·保存到 flash
AT+SLEEP	设置 Sleep 模式
AT+SYSRAM	查询当前剩余 RAM 大小

2.2. 基础 AT 指令描述

2.2.1. AT—测试 AT 模块

执行指令	AT
响应	OK
参数说明	-

2.2.2. AT+RST—重启模块

执行指令	AT+RST
响应	OK
参数说明	-
注意	执行此指令后,系统会强制重启。

2.2.3. AT+GMR—查询版本信息

执行指令	AT+GMR
响应	<at info="" version=""></at>
	<sdk info="" version=""></sdk>
	<compile time=""></compile>
	OK
参数说明	• <at info="" version="">: AT 版本信息</at>
	• <sdk info="" version=""> : SDK 版本信息</sdk>
	• <compile time="">: 编译生成时间</compile>

2.2.4. AT+GSLP—进入 Deep-sleep 模式

设置指令	AT+GSLP= <time></time>
响应	<time></time>
	OK
参数说明	<time>:设置 OPL1000 的睡眠时长,单位:毫秒。 OPL1000 会在休眠设定时长后自动唤醒。</time>

2.2.5. ATE—开关回显功能

执行指令	ATE
响应	OK
参数说明	• ATEO:关闭回显
	• ATE1: 开启回显

2.2.6. AT+RESTORE—恢复出厂设置

执行指令	AT+RESTORE
响应	OK
注意	恢复出厂设置,将擦除所有保存到 Flash 的参数,恢复为默认参数。
	恢复出厂设置会导致机器重启。

2.2.7. AT+UART_CUR—设置 UART 临时配置

指令	查询指令: AT+UART_CUR?	设置指令: AT+UART_CUR= <baudrate>,<databits >,<stopbits>,<parity>,<flow control=""></flow></parity></stopbits></databits </baudrate>
响应	+UART_CUR: <baudrate>,<databits>,<st opbits="">,<parity>,<flow control=""> OK</flow></parity></st></databits></baudrate>	OK

CHAPTER TWO

指令 查询指令: 设置指令:

AT+UART_CUR? AT+UART_CUR=<baudrate>,<databits >,<stopbits>,<flow control>

查询返回的是 UART 实际参数值·由于时钟分频的原因· UART 实际参数值与设置值有

一定误差,是正常现象。

参数说明 • < baudrate > : UART 波特率

• <databits>: 数据位

▶ 5:5 bit 数据位

▶ 6:6 bit 数据位

▶ 7: 7 bit 数据位

▶8:8 bit 数据位

• <stopbits>: 停止位

▶ 1: 1 bit 停止位

→ 2: 1.5 bit 停止位

▶ 3: 2 bit 停止位

• <parity> : 校验位

→ 0 : None

→ 1 : Odd

• 2 : Even

• <flow control>: 流控

▶ 0:不使能流控

1:保留

▶ 2:保留

▶ 3:同时使能 RTS 和 CTS

注意 • 本设置不保存到 flash。

• 使用流控需要硬件支持。

•波特率支持范围: 80~1000000

示例 AT+UART_CUR=115200,8,1,0,3

2.2.8. AT+UART_DEF—设置 UART 配置,保存到 Flash

指令 查询指令: 设置指令:

AT+UART_DEF? AT+UART_DEF=<baudrate>,<databits>,<stopbi

ts>,<parity>,<flow control>

响应 +UART_DEF:<baudrate>,<data OK

bits>,<stopbits>,<parity>,<flo

w control>

OK

参数说明 • < baudrate > : UART 波特率

• <databits>:数据位

→ 5:5 bit 数据位

▶ 6:6 bit 数据位

▶ 7:7 bit 数据位

▶8:8 bit 数据位

• <stopbits>: 停止位

▶ 1: 1 bit 停止位

▶ 2: 1.5 bit 停止位

▶ 3: 2 bit 停止位

• <parity> : 校验位

→ 0 : None

• 1 : Odd

• 2 : Even

• <flow control>: 流控

▶0:不使能流控

1:保留

, 2:保留

▶ 3:同时使能 RTS 和 CTS

注意 • 本设置将保存在到 flash, 重新上电后仍生效。

• 使用流控需要硬件支持。

• 波特率支持范围: 80~1000000

CHAPTER TWO

指令	查询指令:	设置指令:
	AT+UART_DEF?	AT+UART_DEF= <baudrate>,<databits>,<stopbi </stopbi ts>,<parity>,<flow control=""></flow></parity></databits></baudrate>
示例	AT+UART_DEF=115200,8,1,0,3	

2.2.9. AT+SLEEP—设置 sleep 模式

2.2.10. AT+SYSRAM—查询当前剩余 RAM 大小

查询指令	AT+SYSRAM?
响应	+SYSRAM: <remaining ram="" size=""></remaining>
	ОК
参数说明	<remaining ram="" size="">:当前剩余 RAM 大小・单位: 字节</remaining>
示例	AT+SYSRAM?
	+SYSRAM:148408
	OK

WIFI 功能 AT 指令 3.

3.1. WIFI 功能 AT 指令一览表

指令	说明
AT+CWMODE	设置 WIFI 模式
AT+CWJAP	连接 AP
AT+CWLAPOPT	设置 CWLAP 指令的属性
AT+CWLAP	扫描当前可用的 AP
AT+CWQAP	断开与 AP 连接
AT+CWDHCP	设置 DHCP
AT+CWAUTOCONN	上电是否自动连接 AP
AT+CIPSTAMAC	设置 STA 接口的 MAC 地址
AT+CIPSAT	设置 STA 的 IP 地址
AT+CWHOSTNAME	设置 STA 的主机地址

3.2. WIFI 功能 AT 指令描述

3.2.1. AT+CWMODE—设置 Wi-Fi 模式

指令	测试指令: AT+CWMODE=?	查询指令: AT+CWMODE? 功能:查询 OPL1000 当前 Wi-Fi 模式。	设置指令: AT+CWMODE= <mode> 功能:设置 OPL1000 当前 Wi-Fi 模式。</mode>
响应	+CWMODE: <mode> 取值 列表</mode>	+CWMODE: <mode></mode>	OK
	OK	OK	
参数	<mode> :</mode>		
说明 ————	▶1: Station 模式		
注意	•本设置将保存在 flash。		
	•本指令目前仅支持 station 模	式。	
示例	AT+CWMODE=1		

3.2.2. AT+CWJAP—连接 AP

指令	查询指令:	设置指令:
	AT+CWJAP?	AT+CWJAP= <ssid>,<pwd>[,<bssid>]</bssid></pwd></ssid>
	功能:查询 OPL1000 Station 已连接的 AP	功能:设置 OPL1000 Station 需连接的
	信息。	AP ·
响应	+CWJAP: <ssid>,<bssid>,<channel>,<rssi></rssi></channel></bssid></ssid>	OK
	OK	或者
		+CWJAP: <error code=""></error>
		ERROR
参数	• <ssid>:字符串参数· AP 的 SSID</ssid>	• <ssid>:目标 AP 的 SSID</ssid>
说明	说明 • <bssid>: AP 的 MAC 地址 • <channel>:信道号 • <rssi>:信号强度</rssi></channel></bssid>	• < pwd>: 密码最长 64 字节 ASCII
		• [<bssid>]:目标 AP 的 MAC 地址·一般用于有多个 SSID 相同的 AP 的情况</bssid>

CHAPTER TWO

15- 4		15 m 15 A
指令	查询指令:	设置指令:
	AT+CWJAP?	AT+CWJAP= <ssid>,<pwd>[,<bssid>]</bssid></pwd></ssid>
	功能:查询 OPL1000 Station 已连接的 AP	功能:设置 OPL1000 Station 需连接的
	信息。	AP ·
		• <error code="">:(仅供参考·并不可靠)</error>
		▶1:连接超时
		▶2:密码错误
		▶3:找不到目标 AP
		▶4:连接失败
		▶ 其他值:未知错误
		参数设置需要开启 Station 模式·若 SSID 或
		者
		password 中含有特殊符号时·例如," 或者
		\ . 需要进行转义 . 其它字符转义无效 。
提示	// If OPL1000 station connects to an AP, it v	vill prompt messages:
信息	WIFI CONNECTED	
	WIFI GOT IP	
	// If the WiFi connection ends, it will promp	t messages:
	WIFI DISCONNECT	
注意	-	
示例	AT+CWJAP="abc","0123456789"	
	例如,目标 AP 的 SSID 为 "abc", password 为 "0123456789"\",则指令如下:	
	AT+CWJAP="ab\\c","0123456789\"\\"	
	如果有多个 AP 的 SSID 均为 "abc"·可通过 B	SSID 确定目标 AP:
	AT+CWJAP="abc","0123456789","ca:d7:19:	:d8:a6:44"
	3111111 2007 3120 1007 1007 1007	

3.2.3. AT+CWLAPOPT—设置 CWLAP 指令的属性

设置 AT+CWLAPOPT=<sort_enable>,<mask>

指令

响应 OK

参数 • < sort_enable > : 指令 AT+CWLAP 的扫描结果是否按照信号强度 RSSI 值排序:

说明 → 0: 不排序

▶ 1:根据 RSSI 排序

• < mask>: 对应 bit 若为 1 · 则指令 AT+CWLAP 的扫描结果显示相关属性 · 对应 bit 若为

0,则不显示。具体如下:

▶ bit 0:设置 AT+CWLAP 的扫描结果是否显示 <ecn>

→ bit 1:设置 AT+CWLAP 的扫描结果是否显示 <ssid>

→ bit 2:设置 AT+CWLAP 的扫描结果是否显示 <rssi>

→ bit 3:设置 AT+CWLAP 的扫描结果是否显示 <mac>

→ bit 4:设置 AT+CWLAP 的扫描结果是否显示 <channel>

示例 AT+CWLAPOPT=1,31

第一个参数为 1·表示后续如果使用 AT+CWLAP 指令·扫描结果将按照信号强度 RSSI 值排序;

第二个参数为 31·即 0x1F·表示 <mask> 的相关 bit 全部置为 1·后续如果使用 AT+CWLAP 指令·

扫描结果将显示所有参数。

3.2.4. AT+CWLAP—扫描当前可用的 AP

执行 AT+CWLAP

指令 功能:列出当前可用的 AP。

响应 +CWLAP:<ecn>,<ssid>,<rssi>,<mac>,<channel>

OK

参数 • < ecn > : 加密方式

说明 → 0:OPEN

• 1 : WEP

CHAPTER TWO

执行	AT+CWLAP
指令	功能:列出当前可用的 AP。
	→ 2 : WPA_PSK
	· 3 : WPA2_PSK
	· 4 : WPA_WPA2_PSK
	▸ 5: WPA2_Enterprise(目前 AT 不支持连接这种加密 AP)
	• <ssid>:字符串参数· AP 的 SSID</ssid>
	• <rssi>: 信号强度</rssi>
	• [<mac>](选填参数):字符串参数 · AP 的 MAC 地址</mac>
	•[<channel>](选填参数) :信道号</channel>
示例	AT+CWLAP="WiFi","ca:d7:19:d8:a6:44",6
	或者查找指定 SSID 的 AP:
-	AT+CWLAP="WiFi"

3.2.5. AT+CWQAP—断开与 AP 的连接

执行指令	AT+CWQAP
响应	OK
参数说明	

AT+CWDHCP—设置 DHCP 3.2.6.

指令	查询指令:	设置指令:
	AT+CWDHCP?	AT+CWDHCP= <operate>,<mode></mode></operate>
		功能:设置 DHCP。
响应	+CWDHCP: <enable></enable>	OK
	OK	
参数	<enable>: DHCP 是否使能</enable>	• < operate > :
说明	• BitO:	▶ 0: 关闭
	▸ 0: Station DHCP 矣闭	▶ 1:开启

CHAPTER TWO

指令	查询指令:	设置指令:
	AT+CWDHCP?	AT+CWDHCP= <operate>,<mode></mode></operate>
		功能:设置 DHCP。
	▶1:Station DHCP 开启	• <mode> :</mode>
		• Bit0 : Station DHCP
注意	目前是 DHCP only 模式,必须通过 DHCP 获取 IP 地址。	
示例	AT+CWDHCP=1,1	
	使能 Station DHCP。	

AT+CIPSTAMAC—设置 OPL1000 Station 接口的 MAC 地址 3.2.7.

指令	查询指令:	设置指令:
	AT+CIPSTAMAC?	AT+CIPSTAMAC= <mac></mac>
	功能:查询 OPL1000 Station 的 MAC 地	功能:设置 OPL1000 Station 的 MAC 地
	址。	址。
响应	+CIPSTAMAC: <mac></mac>	OK
	ОК	
参数	<mac>:字符串参数. OPL1000 Station 的 MAC 地址</mac>	
说明		
注意	• 本设置保存到 flash。	
	• OPL1000 MAC 地址第一个字节的 bit 0 不能为	o 1.例如. MAC 地址可以为 "1a:" 但不能为
	"15:" ·	
	•FF:FF:FF:FF:FF:FF 和 00:00:00:00:00:00 为非	法 MAC·无法进行设置。
示例	AT+CIPSTAMAC="18:fe:35:98:d3:7b"	

3.2.8. AT+CWHOSTNAME—设置 Station 的主机名称

指令	查询指令:	设置指令:
	AT+CWHOSTNAME?	AT+CWHOSTNAME= <hostname></hostname>
	功能:查询 OPL1000 Station 的主机名称。	功能:设置 OPL1000 Station 的主机名 称。
响应	+CWHOSTNAME: <host name=""></host>	如果成功,返回
	OK	OK
	如果未使能 OPL1000 Station 模式·则返回	如果未使能 OPL1000 station 模式·则提示
	+CWHOSTNAME: <null></null>	ERROR
	OK	
参数	<hostname>: 主机名称·最长支持 32 字节</hostname>	
说明		
注意	•本设置不保存到 Flash·重启后将恢复默认值。	
	• OPL1000 Station 默认的主机名称为 "opulink"。	
示例	AT+CWMODE=1	
	AT+CWHOSTNAME="my_test"	

3.2.9. AT+CWAUTOCONN—上电是否自动连接 AP

执行指令	AT+CWAUTOCONN= <enable></enable>	
响应	OK	
参数说明	<enable> :</enable>	
	▶0: 上电不自动连接 AP	
	▶1: 上电自动连接 AP	
	OPL000 Station 默认上电自动连接 AP。	
注意	本设置保存在 flash。	
示例	AT+CWAUTOCONN=1	

4. TCP/IP 功能 AT 指令

4.1. TCP/IP 功能 AT 指令一览表

指令	说明
AT+CIPSTATUS	查询网络连接信息
AT+CIPDOMAIN	域名解析功能
AT+CIPSTART	建立 TCP 连接或 UDP 传输
AT+CIPSEND	发送数据
AT+CIPSENDEX	发送数据
AT+CIPCLOSE	关闭 TCP/UDP 传输
AT+CIFSR	查询本地 IP 地址
AT+CIPMUX	设置多连接
AT+CIPSERVER	建立 TCP 服务器
AT+CIPSTO	设置 TCP 服务器超时时间
AT+CIPDINFO	接收网络数据是是否提示对端 IP 和端口号
+IPD	接收网络数据
AT+PING	PING 功能

4.2. TCP/IP 功能 AT 指令描述

4.2.1. AT+CIPSTATUS—查询网络连接信息

执行指令	AT+CIPSTATUS
响应	STATUS: <stat></stat>
	+CIPSTATUS: <link id=""/> , <type>,<remote ip="">,<remote port="">,<local port="">,<tetype></tetype></local></remote></remote></type>
参数说明	• <stat>: OPL1000 Station 接口的状态</stat>

CHAPTER FOUR

执行指令 AT+CIPSTATUS

▶ 2: OPL1000 Station 已连接 AP,获得 IP 地址

→ 3: OPL1000 Station 已建立 TCP 或 UDP 传输

▶4: OPL1000 Station 断开网络连接

▶5: OPL1000 Station 未连接 AP

• < link ID>: 网络连接 ID (0~4),用于多连接的情况

• <type>:字符串参数, "TCP"或者 "UDP"

• < remote IP>: 字符串, 远端 IP 地址

• < remote port>: 远端端口值

• < local port>: OPL1000 本地端口值

• <tetype> :

▶ 0: OPL1000 作为客户端▶ 1: OPL1000 作为服务器

4.2.2. AT+CIPDOMAIN—域名解析功能

CHAPTER FOUR

AT+CIPSTART—建立 TCP 连接或 UDP 传输 4.2.3.

■ 建立 TCP 连接

设置指令 TCP 单连接 (AT+CIPMUX=0) 时: TCP 多连接 (AT+CIPMUX=1) 时:

> AT+CIPSTART=<type>,<remote AT+CIPSTART=<link ID>,<type>,<remote IP>,<remote port>[,<TCP keep alive>]

> > IP>,<remote port>[,<TCP keep

alive>]

响应 OK

参数说明 • < link ID>: 网络连接 ID (0 ~ 4),用于多连接的情况

• <type>:字符串参数,连接类型, "TCP", "UDP"或 "SSL"

• <remote IP>: 字符串参数,远端 IP 地址

• <remote port>: 远端端口号

• [<TCP keep alive>]: TCP keep-alive 侦测时间,默认关闭此功能,建议自行设置开启此

功能

▶ 0: 关闭 TCP keep-alive 功能

▶1~7200: 侦测时间,单位为 1s

提示信息 // If the TCP connection is established, it will prompt message as below

[<link ID>,] CONNECT

// If the TCP connection ends, it will prompt message as below

[<link ID>,] CLOSED

注意 建议创建 TCP 连接时,开启 keep-alive 功能。

示例 AT+CIPSTART="TCP","192.168.101.110",1000

■ 建立 UDP 传输

设置指令 单连接模式 (AT+CIPMUX=0) 时: 多连接模式 (AT+CIPMUX=1) 时:

AT+CIPSTART=<type>,<remote

IP>,<remote port>[,(<UDP local

port>),(<UDP mode>)]

AT+CIPSTART=<link

ID>,<type>,<remote IP>,<remote

port>[,<UDP local port>,<UDP

mode>1

响应 OK

参数说明 • < link ID>: 网络连接 ID (0 ~ 4),用于多连接的情况

CHAPTER FOUR

设置指令 单连接模式 (AT+CIPMUX=0) 时:

AT+CIPSTART=<type>,<remote IP>,<remote port>[,(<UDP local

port>),(<UDP mode>)]

多连接模式 (AT+CIPMUX=1) 时:

AT+CIPSTART=<link

ID>,<type>,<remote IP>,<remote port>[,<UDP local port>,<UDP

mode>]

• <type>:字符串参数,连接类型, "TCP", "UDP"或 "SSL"

• < remote IP> : 字符串参数,远端 IP 地址

• < remote port>: 远端端口号

•[<UDP local port>]: UDP 本地端口

• [<UDP mode>]: UDP 传输的属性,若透传,则必须为 0

▶0:收到数据后,不更改远端目标,默认值为0

▶1:收到数据后,改变一次远端目标

▶2:收到数据后,改变远端目标

注意:

使用 <UDP mode> 必须先填写 <UDP local port>。

提示信息 // If the UDP transmission is established, it will prompt message as below

[<link ID>,] CONNECT

// If the UDP transmission ends, it will prompt message as below

[<link ID>,] CLOSED

示例 AT+CIPSTART="UDP","192.168.101.110",1000,1002,2

4.2.4. AT+CIPSEND—发送数据

设置指令 1. 单连接时: (+CIPMUX=0)

AT+CIPSEND=<length>

2. 多连接时: (+CIPMUX=1)

AT+CIPSEND=<link ID>,<length>

3. 如果是 UDP 传输,可以设置远端 IP 和端口:

AT+CIPSEND=[<link ID>,]<length>[,<remote IP>,<remote port>]功能: 在普通传

输模式时,设置发送数据的长度。

响应 发送指定长度的数据。

CHAPTER FOUR

设置指令 1. 单连接时: (+CIPMUX=0)

AT+CIPSEND=<length>

2. 多连接时: (+CIPMUX=1)

AT+CIPSEND=<link ID>,<length>

3. 如果是 UDP 传输,可以设置远端 IP 和端口:

AT+CIPSEND=[<link ID>,]<length>[,<remote IP>,<remote port>]功能: 在普通传输模式时,设置发送数据的长度。

收到此命令后先换行返回 > · 然后开始接收串口数据 · 当数据长度满 length 时发送数据 · 回到普通指令模式 · 等待下一条 AT 指令 · 如果未建立连接或连接被断开 · 返回:

ERROR

如果数据发送成功,返回:

SEND OK

如果数据发送失败,返回:

SENDFAIL

参数说明 • < link ID>: 网络连接 ID 号 (0 ~ 4),用于多连接的情况

• < length > : 数字参数,表明发送数据的长度,最大长度为 2048

•[<remote IP>]: UDP 传输可以设置对端 IP

• [<remote port>]: UDP 传输可以设置对端端口

示例

4.2.5. AT+CIPSENDEX—发送数据

指令 设置指令:

1. 单连接时: (+CIPMUX=0) AT+CIPSENDEX=<length> 2. 多连接时: (+CIPMUX=1)

AT+CIPSENDEX=<link ID>,<length>

3. 如果是 UDP 传输,可以设置远端 IP 和端口:

AT+CIPSENDEX=[<link ID>,]<length>[,<remote IP>,<remote port>]

指令功能: 在普通传输模式时,设置发送数据的长度。

响应 发送指定长度的数据。

CHAPTER FOUR

指令 设置指令:

1. 单连接时: (+CIPMUX=0)

AT+CIPSENDEX=<length>

2. 多连接时: (+CIPMUX=1)

AT+CIPSENDEX=<link ID>,<length>

3. 如果是 UDP 传输,可以设置远端 IP 和端口:

AT+CIPSENDEX=[<link ID>,]<length>[,<remote IP>,<remote port>]

指令功能: 在普通传输模式时,设置发送数据的长度。

收到此命令后先换行返回 > · 然后开始接收串口数据· 当数据长度满 length 或者遇到字符 \0 时·发送数据。

如果未建立连接或连接被断开,返回:

ERROR

如果数据发送成功,返回:

SEND OK

如果数据发送失败,返回:

SENDFAIL

参数说明 • < link ID>: 网络连接 ID 号 (0 ~ 4),用于多连接的情况

• < length > : 数字参数 · 表明发送数据的长度 · 最大长度为 2048

• 当接收数据长度满 length 或者遇到字符 \0 时,发送数据,回到普通指令模式,等待下一条 AT 指令。

•用户如需发送 \0、请转义为 \\0。

4.2.6. AT+CIPCLOSE—— 关闭 TCP/UDP 传输

指令 设置指令(用于多连接的情况): 执行指令(用于单连接的情况):

AT+CIPCLOSE=<link ID> AT+CIPCLOSE

功能: 关闭 TCP/UDP 传输。

响应 OK

参数说明 link ID>:需要关闭的连接 ID号。当 ID为5时,关闭所有连接。

提示信息 // When connection ends, it will prompt message as below

[<link ID>,] CLOSED

4.2.7. AT+CIFSR—查询本地 IP 地址

执行指令	AT+CIFSR
响应	+CIFSR:STAIP, < Station IP address>
	+CIFSR:STAMAC, <station macaddress=""></station>
	ОК
参数说明	<ip address=""> :</ip>
	OPL1000 Station 的 IP 地址
	<mac address=""> :</mac>
	OPL1000 Station 的 MAC 地址
注意	OPL1000 Station IP 需连上 AP 后·才可以查询。

AT+CIPMUX—设置多连接 4.2.8.

指令	查询指令:	设置指令:	
	AT+CIPMUX?	AT+CIPMUX= <mode></mode>	
		功能:设置连接类型。	
响应	+CIPMUX: <mode></mode>	OK	
	ОК		
参数说明	<mode> :</mode>		
	▶0: 单连接模式		
	▶1: 多连接模式		
注意	•默认为单连接;		
	•只有非透传模式 (AT+CIPMODE=0)·才能设置为多连接;		
	•必须在没有连接建立的情况下·设置连接模式;		
	•如果建立了 TCP 服务器,想切换为单连接,必须关闭服务器 (AT+CIPSERVER=0),服务		
	器仅支持多连接。		
示例	AT+CIPMUX=1		

CHAPTER FOUR

4.2.9. AT+CIPSERVER—建立 TCP 服务器

指令 设置指令: 查询指令: AT+CIPSERVER? AT+CIPSERVER=<mode>[,<port>] 功能:设置服务器。 响应 OK +CIPSERVER:<mode>,<port> OK 参数 <mode> : 说明 ▶0: 关闭服务器 ▶1:建立服务器 [<port>]: 选填参数。端口号,默认为 333。 提示 // If the connection is established, it will prompt message as below 信息 [<link ID>,] CONNECT // If the connection ends, it will prompt message as below [<link ID>,] CLOSED 注意 •多连接情况下 (AT+CIPMUX=1) · 才能开启服务器。 • 创建服务器后,自动建立服务器监听。 • 当有客户端接入,会自动占用一个连接 ID。 示例 • 建立 TCP 服务器 AT+CIPMUX=1 AT+CIPSERVER=1,80

4.2.10. AT+CIPSTO—设置 TCP 服务器超时时间

指令查询指令:设置指令:AT+CIPSTO?AT+CIPSTO=<time>功能: 查询 TCP 服务器超时时间。功能: 设置 TCP 服务器超时时间。响应+CIPSTO:<time>
OKOK参数说明<ti><time>: TCP 服务器超时时间,取值范围 0 ~ 7200s。

CHAPTER FOUR

指令查询指令:
AT+CIPSTO?
功能:查询 TCP 服务器超时时间。AT+CIPSTO=<time>
功能:设置 TCP 服务器超时时间。注意• OPL1000 作为 TCP 服务器·会断开一直不通信直至超时了的 TCP 客户端连接。
• 如果设置 AT+CIPSTO=0 · 则永远不会超时,不建议这样设置。示例AT+CIPMUX=1
AT+CIPSERVER=1,1001

4.2.11. AT+CIPDINFO—接收网络数据时是否提示对端 IP 和端口

 设置指令
 AT+CIPDINFO=<mode>

 响应
 OK

 参数
 <mode>:

 说明
 > 0: 不显示对端 IP 和端口

 > 1: 显示对端 IP 和端口

 亦例
 AT+CIPDINFO=1

4.2.12. AT+IPD—接收网络数据

AT+CIPSTO=10

参数 此指令在普通指令模式下有效· OPL1000 接收到网络数据时向串口发送 +IPD 和数据。

• [<remote IP>]: 网络通信对端 IP·由指令 AT+CIPDINFO=1 使能显示

• [<remote port>]: 网络通信对端端口,由指令 AT+CIPDINFO=1 使能

• < link ID>: 收到网络连接的 ID 号

<len>: 数据长度<data>: 收到的数据

说明

CHAPTER FOUR

4.2.13. AT+PING—Ping 功能

设置指令 AT+PING=<IP> 功能: ping 功能。

响应 +PING:<time> OK 或 +PING:TIMEOUT

参数说明 • <IP>: 字符串参数 • IP 地址 • <time> : ping 响应时间

ERROR

示例 AT+PING="192.168.1.1" AT+PING="www.baidu.com"

BLE 相关 AT 指令 5.

5.1. BLE 指令一览表

指令	
AT+BLEINIT	BLE 初始化
AT+BLEADDR	· 设置 BLE 设备地址
AT+BLENAME	设置 BLE 设备名称
AT+BLESCANRSPDATA	设置 BLE 扫描回应
AT+BLEADVPARAM	
AT+BLEADVDATA	设置 BLE 广播数据
AT+BLEADVSTART	开始 BLE 广播
AT+BLEADVSTOP	结束 BLE 广播
AT+BLECONNPARAM	更新 BLE 连接参数
AT+BLEDISCONN	断开 BLE 连接
AT+BLEDATALEN	设置 BLE 数据包长度
AT+BLECFGMTU	设置 BLE MTU 长度
AT+BLEGATTSSRVCRE	GATTS 创建服务
AT+BLEGATTSSRVSTART	GATTS 开启服务
AT+BLEGATTSSRVSTOP	GATTS 关闭服务
AT+BLEGATTSSRV	GATTS 查询服务
AT+BLEGATTSCHAR	GATTS 查询服务特征
AT+BLEGATTSNTFY	GATTS 通知服务特征值
AT+BLEGATTSIND	GATTS 指示服务特征值
AT+BLEGATTSSETATTR	GATTS 设置服务特征值
AT+BLEGATTCPRIMSRV	GATTC 发现基本服务
AT+BLEGATTCINCLSRV	GATTC 发现包含服务

指令	说明
AT+BLEGATTCINCLSRV	GATTC 发现包含服务
AT+BLEGATTCCHAR	GATTC 查询服务特征
AT+BLEGATTCRD	GATTC 读取服务特征值
AT+BLEGATTCWR	GATTC 写服务特征值

5.2. BLE 指令描述

5.2.1. AT+BLEINIT—BLE 初始化

指令	查询指令:	设置指令:
	AT+BLEINIT?	AT+BLEINIT= <init></init>
	功能:查询 BLE 是否初始化。	功能:设置 BLE 初始化角色。
响应	如果 BLE 未初始化·则查询返回	OK
	+BLEINIT:0	
	OK	
	如果 BLE 已初始化·则查询返回	
	+BLEINIT: <role></role>	
	OK	
参数说明	<init> :</init>	
	1: client role	
	2: server + client role	
注意	• 使用 BLE 相关 AT 指令前,必须先调用本条设置指令,初始化 BLE 角色。	
示例	AT+BLEINIT=1	

5.2.2. AT+BLEADDR—设置 BLE 设备地址

指令	查询指令: AT+BLEADDR? 功能:查询 BLE 设备的 public address。	设置指令: AT+BLEADDR= <addr_type>,<random_addr> 功能:设置 BLE 设备的地址。 目前仅支持设置 random address。</random_addr></addr_type>
响应	+BLEADDR: <ble_public_addr> OK</ble_public_addr>	ОК
参数	<addr_type> :</addr_type>	
说明	• 0 : public address	
	→ 1 : random address	
注意	•目前仅支持查询 public address·仅支持设置 random address。	
	• random address 要求最高两个 bit 必须	全 1.详细可参考 BLE spec。
示例	AT+BLEADDR=1,"08:7f:24:87:1c:f7"	

5.2.3. AT+BLENAME—设置 BLE 设备名称

指令	查询指令:	设置指令:
	AT+BLENAME?	AT+BLENAME= <device_name></device_name>
	功能:查询 BLE 设备名称。	功能:设置 BLE 设备名称。
响应	+BLENAME: <device_name></device_name>	OK
	OK	
参数	<device_name>: BLE 设备名称</device_name>	
说明		
注意	•默认设备名称为"BLE_AT"。	
	• 本指令设置的设备名称·需要在建立 BLE 连	接之后・对端设备才能获取到・它其实设置的
	是 GAP service 中 device name characteristic 的值,详情请见 BLE core v4.2 vol.3 part C 12.1。	
	• 如果是需要在扫描广播包时得到的设备名称	·则需要通过 AT+BLEADVDATA 设置。
示例	AT+BLENAME="opl_demo"	

5.2.4. AT+BLESCANRSPDATA—设置 BLE 扫描响应

指令 设置指令:

AT+BLESCANRSPDATA=<scan_rsp_data>

功能:设置 BLE 扫描响应。

响应 OK

参数说明 <scan_rsp_data>:扫描响应。参数实际为 HEX 字串。例如,设置扫描响应为 0x11 0x22

0x33 0x44

0x55,则设置指令为: AT+BLESCANRSPDATA="1122334455"

注意 扫描响应支持的最大长度为 31 字节。

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLESCANRSPDATA="1122334455"

5.2.5. AT+BLEADVPARAM—设置广播参数

指令 查询指令: 设置指令:

AT+BLEADVPARAM? AT+BLEADVPARAM=<adv_int_min>,<adv_int

功能:查询广播参数。 __max>,

<adv_type>,<own_addr_type>,<channel_map

>

[,<adv_filter_policy>,<peer_addr_type>,<peer

_addr>]

功能:设置广播参数。

响应 +BLEADVPARAM:<adv_int_min>,<a OK

dv_int_max>,<adv_type>,<own_add
r_type>,<channel_map>,<adv_filter
_policy>,<peer_addr_type>,<peer_a</pre>

ddr>

OK

参数说明 <adv_int_min>:最小广播间隔,取值范围: 0x0020 ~ 0x4000

<adv_int_max>:最大广播间隔,取值范围: 0x0020~0x4000

<adv_type>:广播类型

→ 0 : ADV_TYPE_IND

CHAPTER FIVE

指令	查询指令:	设置指令:
	AT+BLEADVPARAM?	AT+BLEADVPARAM= <adv_int_min>,<adv_int< td=""></adv_int<></adv_int_min>
	功能:查询广播参数。	_max>,
		<adv_type>,<own_addr_type>,<channel_map< td=""></channel_map<></own_addr_type></adv_type>
		>

[,<adv_filter_policy>,<peer_addr_type>,<peer _addr>]

功能:设置广播参数。

▶ 1: ADV_TYPE_DIRECT_IND_HIGH

2 : ADV_TYPE_SCAN_IND

3 : ADV_TYPE_NONCONN_IND <own_addr_type>: BLE 地址类型

→ 0 : BLE_ADDR_TYPE_PUBLIC

▶ 1 : BLE_ADDR_TYPE_RANDOM

<channel_map>:广播信道

↑ 1 : ADV_CHNL_37

• 2 : ADV_CHNL_38

• 4 : ADV_CHNL_39

→ 7: ADV_CHNL_ALL

[<adv_filter_policy>](选填参数):过滤器规则

• 0 : ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

↑ 1 : ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

2 : ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

3 : ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

[<peer_addr_type>](选填参数):对方 BLE 地址类型

• 0 : PUBLIC

1: RANDOM

[<peer_addr>](选填参数):对方 BLE 地址

注意 <adv_filter_policy>,<peer_addr_type>,<peer_addr>三个参数要求同时缺省,或者同时 设置。

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEADVPARAM=50,50,0,0,4,0,0,"12:34:45:78:66:88"

5.2.6. AT+BLEADVDATA—设置 BLE 广播数据

指令 设置指令:

AT+BLEADVDATA=<adv_data>

功能:设置 BLE 广播数据。

响应 OK

参数说明 <adv_data>:广播数据包。参数实际为 HEX 字串。例如,设置广播数据为 0x11 0x22

0x33 0x44 0x55 · 则设置指令为: AT+BLEADVDATA="1122334455"

注意 广播包最大长度为 31 字节。

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEADVDATA="1122334455"

5.2.7. AT+BLEADVSTART—开始 BLE 广播

指令 执行指令:

AT+BLEADVSTART

功能:开始 BLE 广播。

响应 OK

参数说明 无

注意 • 若未设置广播参数(AT+BLEADVPARAM=<adv_parameter>),则使用默认广播参

数;

•若未设置广播数据(AT+BLEADVDATA=<adv_data>),则发送全 0 数据包。

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEADVSTART

5.2.8. AT+BLEADVSTOP—结束 BLE 广播

指令 执行指令:

AT+BLEADVSTOP

功能:结束 BLE 广播。

响应 OK

指令 执行指令:

> AT+BLEADVSTOP 功能:结束 BLE 广播。

参数说明 无

注意 若开始广播后,成功建立 BLE 连接,则会自动结束 BLE 广播,无需调用本指令。

示例 AT+BLEINIT=2 // 初始化为 server

> AT+BLEADVSTART AT+BLEADVSTOP

AT+BLECONNPARAM—更新 BLE 连接参数 5.2.9.

指令 查询指令: 设置指令:

> AT+BLECONNPARAM? AT+BLECONNPARAM=<conn_inde

> x>,<min_interval>,<max_interval>, 功能:查询 BLE 连接参数。

> > <latency>,<timeout> 功能:更新 BLE 连接参数。

如果更新失败,将提示

<conn_index>,-1

响应 +BLECONNPARAM:<conn_index>,<min_inter OK //指令已接收,将尝试更新连接参

val>,<max_interval>,<cur_interval>,<latency

数 >,<timeout>

OK +BLECONNPARAM:

<conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接 参数说明

<min interval>:最小连接间隔,取值范围: 0x0006~0x0C80

<max interval>:最大连接间隔,取值范围: 0x0006~0x0C80

<cur_interval>:当前连接间隔

<latency>:时延,取值范围: 0x0000~0x01F3

<timeout>:超时,取值范围: 0x000A~0x0C80

注意 本指令要求先建立连接,并且仅支持 BLE client 更新连接参数。

示例 AT+BLEINIT=1 // 初始化为 client

AT+BLECONN=0,"24:0a:c4:09:34:23" // 建立 BLE 连接

AT+BLECONNPARAM=0,12,14,1,500 // 更新 BLE 连接参数

5.2.10. AT+BLEDISCONN—断开 BLE 连接

指令	设置指令:
	AT+BLEDISCONN= <conn_index></conn_index>
	功能:断开 BLE 连接。
响应	+BLEDISCONN: <conn_index>,<remote_address></remote_address></conn_index>
	OK
参数说明	<conn_index>: BLE 连接号·当前只支持 index 为 0 的单连接</conn_index>
	<remote_address>: 对方 BLE 设备地址</remote_address>
示例	AT+BLEINIT=1 // 初始化为 client
	AT+BLECONN=0,"24:0a:c4:09:34:23" // 建立 BLE 连接
	AT+BLEDISCONN=0 // 断开 BLE 连接

5.2.11. AT+BLEDATALEN—设置 BLE 数据包长度

指令	设置指令:
	AT+BLEDATALEN= <conn_index>,<pkt_data_len></pkt_data_len></conn_index>
	功能:设置 BLE 数据包长度。
响应	OK
参数说明	<conn_index>: BLE 连接号·当前只支持 index 为 0 的单连接</conn_index>
	<pkt_data_len>:数据包长度·取值范围: 0x001b ~ 0x00fb</pkt_data_len>
注意	需要先建立 BLE 连接,才能设置 packet length。
示例	AT+BLEINIT=1 // 初始化为 client
	AT+BLECONN=0,"24:0a:c4:09:34:23"
	AT+BLEDATALEN=0,30

5.2.12. AT+BLECFGMTU—设置 GATT MTU 的长度

指令 设置指令: 设置指令:

AT+BLECFGMTU = < conn_index>, < mtu_size>

功能:查询 GATT (Generic Attribute 功能:设置 GATT MTU 的长度。

Profile) MTU 的长度。

响应 +BLECFGMTU:<conn_index>,<mtu_size> OK // 指令已接收

OK

参数 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

说明 <mtu_size>: BLE 最大传输单元的长度

注意 • 仅 BLE client 支持设置 GATT MTU 长度,并且需要先建立 BLE 连接,才能设置 MTU 长度。

• 最终实际的 MTU 长度需经过协商,设置指令返回 OK 仅表示尝试协商 MTU,因此,设置长度不一定生效,建议设置后,使用查询指令 AT+BLECFGMTU? 查询实际的 MTU 长度。

示例 AT+BLEINIT=1 // 初始化为 client

AT+BLECONN=0,"24:12:5f:9d:91:98"// 建立 BLE 连接

AT+BLECFGMTU=0,300

5.2.13. AT+BLEGATTSSRVCRE—GATTS 创建服务

指令 执行指令:

AT+BLEGATTSSRVCRE 功能: GATTS 创建服务。

响应 OK

参数说明 无

注意 • OPL1000 作为 server 应该在初始化完成后,及时创建服务。 BLE 连接建立后,无法创建

服务。

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE

CHAPTER FIVE

5.2.14. AT+BLEGATTSSRVSTART—GATTS 开启服务

指令 执行指令: 设置指令:

AT+BLEGATTSSRVSTART AT+BLEGATTSSRVSTART=<srv_index>

功能: GATTS 开启全部服务。 功能: GATTS 开启某指定服务。

响应 OK

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE AT+BLEGATTSSRVSTART

5.2.15. AT+BLEGATTSSRVSTOP—GATTS 停止服务

指令 执行指令: 设置指令:

功能: GATTS 停止全部服务。 功能: GATTS 停止某指定服务。

响应 OK

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE
AT+BLEGATTSSRVSTART
AT+BLEGATTSSRVSTOP

5.2.16. AT+BLEGATTSSRV—GATTS 发现服务

指令 查询指令:

AT+BLEGATTSSRV?

功能: GATTS 发现服务。

响应 +BLEGATTSSRV:<srv_index>,<start>,<srv_uuid>,<srv_type>

OK

CHAPTER FIVE

指令 查询指令:

AT+BLEGATTSSRV?

功能: GATTS 发现服务。

参数说明 <srv_index>:服务序号,从1起始递增

<start>:

▶0:服务未开始

▶1:服务已开始

<srv_uuid>: 服务的 UUID

<srv_type>:服务的类型

▶ 0:次要服务

▶ 1:首要服务

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRV?

5.2.17. AT+BLEGATTSCHAR—GATTS 发现服务特征

指令 查询指令:

AT+BLEGATTSCHAR?

功能: GATTS 发现服务特征。

响应 //对于服务特征信息,显示如下:

+BLEGATTSCHAR:"char", <srv_index>, <char_index>, <char_uuid>, <char_prop>

//对于描述符信息,显示如下:

+BLEGATTSCHAR:"desc", < srv_index > , < char_index > , < desc_index >

OK

参数说明 <srv_index>:服务序号,从1起始递增

<char_index>:服务特征的序号,从1起始递增

<char_uuid>: 服务特征的 UUID
<char_prop>: 服务特征的属性
<desc_index>: 特征描述符序号

CHAPTER FIVE

指令 查询指令:

AT+BLEGATTSCHAR?

功能: GATTS 发现服务特征。

示例 AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

5.2.18. AT+BLEGATTSNTFY—GATTS 通知服务特征值

指令 设置指令:

AT+BLEGATTSNTFY=<conn_index>,<srv_index>,<char_index>,<length>

功能: GATTS 通知服务特征值。

响应 收到此命令后先换行返回 >,然后开始接收串口数据,当数据长度满 <length> 时,执行

通知操作。若通知操作成功,则提示 OK

参数说明 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

<srv index>:服务序号,由指令AT+BLEGATTSCHAR?查询可得

<char_index>:服务特征的序号,由指令AT+BLEGATTSCHAR?查询可得

<length>:数据长度

示例 以下为 notify 的简单示例,

AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART// 开始广播、等待 client 连接、并配置接收 notify

AT+BLEGATTSCHAR?// 查询允许 notify 的特征

//例如,使用3号服务的6号特征通知长度为4的数据

AT+BLEGATTSNTFY=0,3,6,4

// 提示 > 符号后,输入 4 字节数据即可,例如 "1234"

5.2.19. AT+BLEGATTSIND—GATTS 指示服务特征值

指令 设置指令:

AT+BLEGATTSIND=<conn_index>,<srv_index>,<char_index>,<length>

功能: GATTS 指示服务特征值。

响应 收到此命令后先换行返回 >,然后开始接收串口数据,当数据长度满 <length> 时,执行

指示操作。若指示操作成功,则提示 OK

参数说明 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

<srv_index>:服务序号,由指令AT+BLEGATTSCHAR?查询可得

<char_index>:服务特征的序号,由指令AT+BLEGATTSCHAR?查询可得

<length>:数据长度

示例 以下为 indicate 的简单示例·

AT+BLEINIT=2 // 初始化为 server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART// 开始广播·等待 client 连接· client 端连接后,应该设置为接收

indication

AT+BLEGATTSCHAR?// 查询允许 indicate 的特征

//例如,使用3号服务的7号特征指示长度为4的数据

AT+BLEGATTSIND=0,3,7,4

// 提示 > 符号后,输入 4 字节数据即可,例如 "1234"

5.2.20. AT+BLEGATTSSETATTR—GATTS 设置服务特征值

指令 设置指令:

AT+BLEGATTSSETATTR=<srv_index>,<char_index>[,<desc_index>],<length>

功能: GATTS 设置服务特征(描述符)值。

响应 收到此命令后先换行返回 >,然后开始接收串口数据,当数据长度满 <length> 时,执行

设置操作。若设置操作成功,则提示 OK

参数说明 <srv_index>:服务发现结果序号,由 AT+BLEGATTSCHAR? 查询结果中获得

<char_index>:服务特征的序号,由 AT+BLEGATTSCHAR? 查询结果中获得

#-A	りまたる 。
指令	设置指令:
	AT+BLEGATTSSETATTR= <srv_index>,<char_index>[,<desc_index>],<length></length></desc_index></char_index></srv_index>
	功能: GATTS 设置服务特征(描述符)值。
	[<desc_index>](选填参数):特征描述符序号。若填写,则设置描述符的值;若未填写,则设置特征值。</desc_index>
	<length>: 数据长度</length>
注意 	<length>不能超过该特征 (描述符) 支持的最大长度。例如,该服务特征值为 "0x30 0x31",最大长度为 2,如果设置 <lengh> 为 3 超过最大长度,则会报错。</lengh></length>
示例	AT+BLEINIT=2 // 初始化为 server
	AT+BLEGATTSSRVCRE
	AT+BLEGATTSSRVSTART
	AT+BLEGATTSCHAR?
	//例如·向1号服务的1号特征写入长度为4的数据
	AT+BLEGATTSSETATTR=1,1,,4
	// 提示 > 符号后·输入 4 字节数据即可·例如 "1234"

5.2.21. AT+BLEGATTCPRIMSRV—GATTC 发现基本服务

指令	设置指令:
	AT+BLEGATTCPRIMSRV= <conn_index></conn_index>
	功能: GATTC 发现基本服务。
响应	+BLEGATTCPRIMSRV: <conn_index>,<srv_index>,<srv_uuid>,<srv_type></srv_type></srv_uuid></srv_index></conn_index>
	ОК
参数说明	<conn_index>: BLE 连接号·当前只支持 index 为 0 的单连接</conn_index>
	<srv_index>:服务发现结果序号·从 1 起始递增</srv_index>
	<srv_uuid>:服务的 UUID</srv_uuid>
	<srv_type>:服务的类型</srv_type>
	▶ 0: 次要服务
	▶ 1: 首要服务
注意	使用本指令·需要先建立 BLE 连接。
示例	AT+BLEINIT=1 // 初始化为 client

指令 设置指令:

AT+BLEGATTCPRIMSRV=<conn_index>

功能: GATTC 发现基本服务。

AT+BLECONN=0,"24:12:5f:9d:91:98"// 建立 BLE 连接

AT+BLEGATTCPRIMSRV=0

5.2.22. AT+BLEGATTCINCLSRV—GATTC 发现包含服务

指令 设置指令:

AT+BLEGATTCINCLSRV=<conn_index>,<srv_index>

功能: GATTC 发现包含服务。

响应 +BLEGATTCINCLSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>,<included_

srv_uuid>,<included_srv_type>

OK

参数说明 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

<srv_index>:服务发现结果序号,由 AT+BLEGATTCPRIMSRV=<conn_index> 查询结

果中获得

<srv_uuid>:服务的 UUID

<srv_type>:服务的类型

▶0:次要服务

·1:首要服务

<included_srv_uuid>:包含服务的 UUID

<included_srv_type>:包含服务的类型

▶ 0:次要服务

▶ 1:首要服务

注意 使用本指令,需要先建立 BLE 连接。

示例 AT+BLEINIT=1 // 初始化为 client

AT+BLECONN=0,"24:12:5f:9d:91:98"// 建立 BLE 连接

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCINCLSRV=0,1//根据前一条指令的查询结果,指定 index 查询

5.2.23. AT+BLEGATTCCHAR—GATTC 发现服务特征

指令 设置指令:

AT+BLEGATTCCHAR=<conn_index>,<srv_index>

功能: GATTC 发现服务特征。

响应 //对于服务特征信息,显示如下:

+BLEGATTCCHAR:"char", <conn_index>, <srv_index>, <char_index>, <char_uuid>, <char_prop>

//对于描述符信息,显示如下:

+BLEGATTCCHAR:"desc", <conn_index> ,

<srv_index>,<char_index>,<desc_index>,<desc_uuid>

OK

参数说明 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

<srv_index>:服务发现结果序号,由AT+BLEGATTCPRIMSRV=<conn_index>查询结

果中获得

<char_index>:服务特征的序号,从1起始递增

<char_uuid>:服务特征的 UUID <char_prop>:服务特征的属性 <desc_index>:特征描述符序号

<desc_uuid>:特征描述符的 UUID

注意 使用本指令·需要先建立 BLE 连接。

示例 AT+BLEINIT=1 // 初始化为 client

AT+BLECONN=0,"24:12:5f:9d:91:98"// 建立 BLE 连接

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,1//根据前一条指令的查询结果,指定 index 查询

5.2.24. AT+BLEGATTCRD—GATTC 读取服务特征值

指令 设置指令:

AT+BLEGATTCRD=<conn_index>,<srv_index>,<char_index>[,<desc_index>]

功能: GATTC 读取服务特征(描述符)值。

响应 +BLEGATTCRD:<conn_index>,<len>,<value>

OK

参数说明 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

<srv_index>:服务发现结果序号,由 AT+BLEGATTCPRIMSRV=<conn_index> 查询结

果中获得

<char_index>:服务特征的序号,由

AT+BLEGATTCCHAR=<conn_index>,<srv_index> 查询结果中获得

[<desc_index>](选填参数):特征描述符序号。若不设置·读取特征值;若设置·读取

描述符的值。

<len>:数据长度

<value>: HEX 字串

→ 若由指令 AT+BLEGATTCRD=<conn_index>,<srv_index>,<char_index> 读取服务特征的值。例如指令

读取返回"+BLEGATTCRD:0,1,30"表示特征值长度为 1 个字节·内容为 HEX 字串 "0x30"。

, 若由指令

AT+BLEGATTCRD=<conn_index>,<srv_index>,<char_index>,<desc_index> 读取服务特征描

並符的值·例如指令读取返回 "+BLEGATTCRD:0,4,30313233" 表示特征描述符的值长度为 4 个字节·内容为 HEX 字串 "0x30 0x31 0x32 0x33"。

注意 • 使用本指令,需要先建立 BLE 连接。

• 如果该服务特征属性不支持读操作,则指令会报错。

示例 AT+BLEINIT=1 // 初始化为 client

AT+BLECONN=0,"24:12:5f:9d:91:98"// 建立 BLE 连接

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3//根据前一条指令的查询结果,指定 index 查询

AT+BLEGATTCRD=0,3,2,1//例如, 读取第 3 号服务的第 2 号特征的第 1 号描述符信息

5.2.25. AT+BLEGATTCWR—GATTC 写服务特征值

指令 设置指令:

AT+BLEGATTCWR=<conn_index>,<srv_index>,<char_index>[,<desc_index>],<le ngth>

功能: GATTC 写服务特征(描述符)值。

响应 收到此命令后先换行返回 >,然后开始接收串口数据,当数据长度满 <length> 时,执行

写操作。若写操作成功,则提示 OK

参数说明 <conn_index>: BLE 连接号,当前只支持 index 为 0 的单连接

<srv_index> : 服务发现结果序号 · 由 AT+BLEGATTCPRIMSRV=<conn_index> 查询结

果中获得

<char_index>:服务特征的序号,由

AT+BLEGATTCCHAR=<conn_index>,<srv_index> 查询结果中获得

[<desc_index>](选填参数):特征描述符序号。若不设置,则写特征值;若设置,写描

述符的值。

<length>:数据长度

注意 • 使用本指令,需要先建立 BLE 连接。

• 如果该服务特征(描述符)属性不支持写操作,则指令会报错。

示例 AT+BLEINIT=1 // 初始化为 client

AT+BLECONN=0,"24:12:5f:9d:91:98"// 建立 BLE 连接

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3//根据前一条指令的查询结果,指定 index 查询

// 例如,向第3号服务的第4号特征,写入长度为6的数据

AT+BLEGATTCWR=0,3,4,,6

// 提示 > 后,通过串口输入数据 "123456" 即可

5.3. BLE AT CMD Error Code

Code	Description
1	BLE is not initialized
2	The memory is not enough
3	No such command
4	Invalid parameter
5	Invalid state
6	Command is in progress
7	Fail
8	Already (in the wanted state)
9	Wrong role
10	Busy
11	No random address
12	No peer address
13	The number of connections is out of max (only one connection is supported)
14	Service does not start
15	Invalid characteristic property
16	No GATT service
17	No GATT include service
18	No GATT characteristic
19	No GATT characteristic descriptor
20	No read permission
21	No write permission
22	GATT read fail
23	GATT write fail
24	Invalid characteristic value length

6. AT 指令使用示例

本章介绍几种常见的 AT 指令使用示例。

6.1. 单连接 TCP 客户端

1 · 设置 Wi-Fi 模式:

AT+CWMOD=1 // Station mode

响应:

OK

2. 连接路由:

AT+CWJAP="SSID","password"

响应:

OK

WIFI CONNECTED

WIFI GOT IP

3 · 查询设备 IP 信息:

AT+CIFSR

响应:

- +CIFSR:STAIP, "169.254.119.102"
- +CIFSR:STAMAC,"22:33:44:55:66:76"

OK

4. 设置 PC 与 OPL000 连接同一个路由,在 PC 上使用网络调试助手,创建一个 TCP 服务器:

5 · OPL00 作为客户端连接到 TCP 服务器: AT+CIPSTART="TCP","192.254.172.156",8080 // protocol、server IP & port

6. 发送数据:

AT+CIPSEND=4

OK

>ABCD

Recv 4 bytes

SEND OK

7 · 接收数据:

+IPD,n:xxxxx // received n bytes, data=xxxxx

6.2. UDP 传输

1. 设置 Wi-Fi 模式:

AT+CWMOD=1 // Station mode

响应:

OK

2. 连接路由:

AT+CWJAP="SSID","password"

响应:

OK

WIFI CONNECTED

WIFI GOT IP

3. 查询设备 IP 信息:

AT+CIFSR

响应:

- +CIFSR:STAIP, "169.254.119.102"
- +CIFSR:STAMAC,"22:33:44:55:66:76"

OK

4. 设置 PC 与 OPL000 连接同一个路由,在 PC 上使用网络调试助手,创建 UDP 传输:

下面介绍两种 UDP 通信的示例:

6.2.1. 固定远端的 UDP 通信

UDP 通信的远端固定,由 AT+CIPSTART 指令的最后参数 0 决定,分配一个连接号给这个固定连接,在通信过程中远端信息不会被改变。

```
1·使能多连接:
AT+CIPMUX=1
响应:
OK
```

 $2 \cdot$ 创建 UDP 传输,例如,分配连接 ID 为 4。

AT+CIPSTART=4,"UDP","169.254.172.156",8080,1112,0

响应:

4,CONNECT

OK

3. 发送数据:

AT+CIPSEND=4,5

OK

> ABCDE

Recv 5 bytes

SEND OK

4. 接收数据:

+IPD,n:xxxxx // received n bytes, data=xxxxx

5 · 断开 UDP 传输:

4,CLOSED

OK

6.2.2. 远端可变的 UDP 通信

1. 创建 UDP 传输·最后参数为 2: AT+CIPSTART="UDP","169.254.172.156",8080,1112,2 响应:

CONNECT

OK

2. 发送数据

AT+CIPSEND=5

OK

> ABCDE

Recv 5 bytes

SEND OK

3. 接收数据:

+IPD,n:xxxxx // received n bytes, data=xxxxx

4. 断开 UDP 传输:

0,CLOSED

OK

OPL1000

CONTACT

sales@Opulinks.com

