6.6b Do Now: Distance formula, perpendicular and parallel slopes

- 1. If the slope of a line is $m=\frac{1}{2}$, find the slope of a parallel line and a perpendicular line.
 - (a) $m_{\parallel} =$

- (b) $m_{\perp} =$
- 2. Write down the slope perpendicular to the given slope.
 - (a) $m = -\frac{3}{5}$ $m_{\perp} =$
- (c) m = 0.75 $m_{\perp} =$

- (b) m = -2 $m_{\perp} =$
- (d) $m = -\frac{1}{2}$ $m_{\perp} =$
- 3. The line l has the equation $y = -\frac{1}{2}x + 3$.
 - (a) What is the slope of the line k, given $k \parallel l$?
 - (b) What is the slope of the line j, given $j \perp l$?
- 4. Find the length of the given segment, AB, A(1) and B(17).

5. Find XY, a segment in the x-y plane, with X(-1, -6) and Y(11, -6).

$$X(-1,-6)$$
 $Y(11,-6)$

6. Find c. Leave in radical form. (use $a^2 + b^2 = c^2$)

7. What is the length of \overline{CD} if C(3,1) and D(7,-2)?

Use
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

8. What is the length of \overline{EF} if E(2,1) and F(-10,6)?

Early finishers

9. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = \frac{3}{2}x - 9$$

$$y = -\frac{2}{3}x + 4$$

Are the lines parallel, perpendicular, or neither? Justify your answer.

10. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = \frac{1}{4}x + 2$$

$$x - y = -3$$

Are the lines parallel, perpendicular, or neither? Justify your answer.

