(a) Consider the following composition of functors (which we also denote by NI)

$$NI: \Delta^{\mathrm{op}} \xrightarrow{\mathcal{C}} \mathcal{C}\mathrm{at^{\mathrm{op}}} \xrightarrow{\mathrm{Hom}_{\mathcal{C}\mathrm{at}}(-,I)} (\mathrm{Sets}).$$

We first explain the notations involved. Here \mathcal{C} at is the category of all small categories. For every object [n] of Δ , the functor \mathcal{C} sends [n] to a category $\mathcal{C}_{[n]} := \mathcal{C}([n])$ defined as

- The set of objects is $Ob(\mathcal{C}_{[n]}) = [n] = \{0, 1, \dots, n\};$
- $\operatorname{Hom}_{\mathcal{C}_{[n]}}(x,y) = \begin{cases} \{*\}, & \text{if } x \leq y \\ \emptyset, & \text{otherwise.} \end{cases}$ In other words, for $x,y \in [n]$, there is at most one morphism from x to y and the morphism exists if and only if $x \leq y$.

Every morphism $\alpha \colon [n] \to [m]$ is sent by \mathcal{C} to a functor \mathcal{C}_{α} from $\mathcal{C}_{[m]}$ to $\mathcal{C}_{[n]}$ defined as

- For every $x \in [n], \mathcal{C}_{\alpha}(x) = \alpha(x)$
- A morphism $x \to y$ in $\mathcal{C}_{[n]}$ is sent to the unique morphism $\alpha(x) \to \alpha(y)$, which exists since α is weakly monotone.

The second functor $\operatorname{Hom}_{\operatorname{Cat}}(-,I)$ sends a small category $\mathcal D$ to the set of all functors from $\mathcal D$ to I, which is indeed a set since I is small. Its action on morphisms between small categories is natural.

Next we verify that this NI coincides with the NI defined in the problem for simplices by showing that giving a functor in $\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[n]},I)$ is equivalent to giving a composable n-tuple of morphisms in I. Note that every morphism in $\mathcal{C}_{[n]}$ can be written as composition of morphisms of the form $(j-1) \to j$ with $j \in \{1,\ldots,n\}$. Thus giving images of all morphisms of $\mathcal{C}_{[n]}$ is equivalent to only giving images of morphisms of form $(j-1) \to j$. Now If we have a functor F from $\mathcal{C}_{[n]}$ to I, then we have for every $x \in [n]$ an object F(x) of I and for every morphism $(j-1) \to j$ in $\mathcal{C}_{[n]}$ a morphism $F_j \colon F(j-1) \to F(j)$ in I. Note that by definition the target of F_{j-1} equals the source of F_j , so (F_n, \ldots, F_1) is a composable n-tuple of morphisms in I. Conversely, given a composable n-tuple of morphisms in I, say (F_n, \ldots, F_1) as described in the problem, we may define $F \colon \mathcal{C}_{[n]} \to I$ by

•
$$F(j) := \begin{cases} \text{source}(F_{j+1}), & \text{if } 0 \leq j < n \\ \text{target}(F_n), & \text{if } j = n. \end{cases}$$

•
$$F((j-1) \to j) := F_j$$
.

The functor is well-defined by composability of (F_n, \ldots, F_1) and it clearly preserves identity and composition of morphisms. This finishes this verification. Moreove r, the above argument shows that a functor in $\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[n]}, I)$ is determined by the image of all morphisms $(j-1) \to j$ under it.

Finally we verify that the action of $d_i: [n-1] \to [n]$ on $(NI)_n$ is as required. The case for s_i will be similar and thus omitted. First, d_i induces a functor $\mathcal{C}_{d_i}: \mathcal{C}_{[n-1]} \to \mathcal{C}_{[n]}$, whose action on objects and morphisms are explained in the first paragraph. This \mathcal{C}_{d_i} induces morphism of sets

$$\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[n]}, I) \to \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[n-1]}, I)$$

$$\left(\begin{array}{c} \operatorname{images \ of} \ (j-1 \to j) \\ 1 \le j \le n \end{array} \right) \mapsto \left(\begin{array}{c} \operatorname{images \ of} \ d_i(j-1) \to d_i(j) \\ 1 \le j \le n-1 \end{array} \right).$$

Therefore, when j < i, the image of f_j is still f_j . When j = i, the image of f_j is $f_{j+1} \circ f_j$ since $d_i(i-1) \to d_i(i)$ is composition of $(i-1) \to i$ and $i \to (i+1)$. When j > i, the image of f_j is f_{j+1} , as the morphism $d_i(j-1) \to d_i(j)$ becomes $j \to j+1$. This finishes the verification and hence the proof.

(b) For every $[n] \in \Delta$, the definition of $(NF)_n$ is already given in the problem. So we only need to verify that for every morphism $\alpha \colon [n] \to [m]$, the diagram

$$(NI)_{m} \xrightarrow{(NF)_{m}} (NJ)_{m}$$

$$\downarrow^{\alpha^{*}} \qquad \downarrow^{\alpha^{*}}$$

$$(NI)_{n} \xrightarrow{(NF)_{n}} (NJ)_{n}$$

commutes. For this, let $(f_m, \ldots, f_1) \in (NI)_m$. By the equivalence

$$\{\text{elements in } (NI)_m\} \leftrightarrow \{\text{functors in } \operatorname{Hom}_{\mathcal{C}at}(\mathcal{C}_{[m]}, I) \leftrightarrow \left\{ \begin{array}{l} \text{image of morphisms } (j-1) \to j \\ \text{under a functor in } \operatorname{Hom}_{\mathcal{C}at}(\mathcal{C}_{[m]}, I) \end{array} \right\}$$
(1)

established in part (a), we may write $f_j = G((j-1) \to j)$ for all $j \in [m]$ and some functor $G \in \operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}_{[m]}, I)$. Then by definition of maps in the diagram the image of f_j under $\alpha^* \circ (NF)_m$ and $(NF)_n \circ \alpha^*$ are both $F \circ G(\alpha(j-1) \to \alpha(j))$.

(c) The inverse morphism $\psi \colon NI \times NJ \to N(I \times J)$ can be constructed as

$$(NI \times NJ)_n = (NI)_n \times (NJ)_n \xrightarrow{\psi_n} N(I \times J)_n$$
$$(f_n, \dots, f_1) \times (g_n, \dots, g_1) \mapsto (f_n \times g_n, \dots, f_1 \times g_1)$$

By writing elements of $(NI)_n$ as images of morphisms in $\mathcal{C}_{[n]}$ under some functor from $\mathcal{C}_{[n]}$ to I, as we did in the previous parts, we can show that for every $\alpha \in \operatorname{Mor}_{\Delta}([n],[m])$ the diagram

$$(NI)_m \times (NJ)_m \xrightarrow{\psi_m} N(I \times J)_m$$

$$\uparrow^{\alpha^*} \downarrow \qquad \qquad \downarrow^{\alpha^*} \downarrow$$

$$(NI)_n \times (NJ)_n \xrightarrow{\psi_n} N(I \times J)_n$$

commutes. Thus ψ is indeed a morphism between simplicial sets. By computing directly the action on elements, we can show that both the compositions

$$(NI \times NJ)_n = (NI)_n \times (NJ)_n \xrightarrow{\psi_n} N(I \times J)_n \xrightarrow{(N_{\operatorname{proj}_I}, N_{\operatorname{proj}_J})_n} (NI)_n \times (NJ)_n = (NI \times NJ)_n$$
and
$$N(I \times J)_n \xrightarrow{(N_{\operatorname{proj}_I}, N_{\operatorname{proj}_J})_n} (NI)_n \times (NJ)_n = (NI \times NJ)_n \xrightarrow{\psi_n} N(I \times J)_n$$

are identities. So $(N_{\text{proj}_I}, N_{\text{proj}_I})$ is an isomorphism between simplicial sets.

(d) We claim that there is an isomorphism $\varphi \colon \Delta[1] \to N[1]$ between simplicial sets, which will be constructed later. If this holds, we have the following diagram (identify NI with $NI \times \Delta[0]$)

where NH is the morphism constructed from H as in part (b). The commutativity of this diagram can be showed by routine verifications on simplices, using the definition of each maps and the equivalence (1). And the existence of such a commutative diagram is just the definition of a simplicial homotopy between NF and NG.

Now we show our claim by briefly explaining the construction of the isomorphism $\varphi \colon \Delta[1] \to N[1]$. For every $n \in \mathbb{N}$, define

$$\varphi_n \colon (\Delta[1])_n \to (N[1])_n$$

$$(g \colon [n] \to [1]) \mapsto (g_n, \dots, g_1), \text{ with } g_j = \begin{cases} \mathrm{Id}_0, & \text{if } g(j) = g(j-1) = 0\\ f \colon 0 \to 1, & \text{if } g(j) = 1, g(j-1) = 0\\ \mathrm{Id}_1, & \text{if } g(j) = g(j-1) = 1. \end{cases}$$

For every $\alpha \colon [n] \to [m]$, The diagram

$$\begin{array}{c|c} (\Delta[1])_m & \xrightarrow{\alpha^*} & (\Delta[1])_n \\ & & & & & \varphi_n \\ (N[1])_m & \xrightarrow{\alpha^*} & (N[1])_n \end{array}$$

commutes because if we choose some $(g:[m] \to [1]) \in (\Delta[1])_m$, then by computing with the definition of maps and the equivalence (1), we find that

$$\alpha^* \circ \varphi_m(g) = \varphi_n \circ \alpha^*(g) = (g_n, \dots, g_1)$$
with $g_j = \begin{cases} \operatorname{Id}_0, & \text{if } g \circ \alpha(j) = g \circ \alpha(j-1) = 0 \\ f : 0 \to 1, & \text{if } g \circ \alpha(j) = 1, g \circ \alpha(j-1) = 0 \\ \operatorname{Id}_1, & \text{if } g \circ \alpha(j) = g \circ \alpha(j-1) = 1. \end{cases}$

So φ is a morphism. Now we describe its inverse $\psi \colon N[1] \to \Delta[1]$. Given some composable *n*-tuple $(g_n, \ldots, g_1) \in (N[1])_n$, there are three possibilities (by composability)

- $g_n = \cdots = g_1 = \operatorname{Id}_0$
- There is one j such that $g_n = \cdots = g_{j+1} = \mathrm{Id}_1$, $g_j = f$ and $g_{j-1} = \cdots = g_1 = \mathrm{Id}_0$
- $g_n = \cdots = g_1 = \operatorname{Id}_1$

In the first case, we let $\psi_n(g_n, \ldots, g_1)$ sends [n] to 0. In the second case, $\psi_n(g_n, \ldots, g_1)$ send $1, \ldots, j-1$ to 0 and j, \ldots, n to 1. In the third case, $\psi_n(g_n, \ldots, g_1)$ sends [n] to 1. It is then straightforward to verify that ψ is indeed a morphism and that both $(\psi \circ \varphi)_n$ and $(\varphi \circ \psi)_n$ are identities for all $n \in \mathbb{N}$.

(e) Let $F: I \to J$ and $G: J \to I$ be functors such that there exist natural transformations $\tau: GF \to \operatorname{Id}_I$ and $\tau': FG \to \operatorname{Id}_J$. The process in part (d) shows that τ yields a simplicial homotopy between $N(GF) = NG \circ NF$ and $N(\operatorname{Id}_I) = \operatorname{Id}_{NI}$. Similarly, τ' yields a simplicial homotopy between $N(FG) = NF \circ NG$ and $N(\operatorname{Id}_J) = \operatorname{Id}_{NJ}$. Thus NI and NJ are homotopy equivalent simplicial sets.