1 Concetti di di base

Questa sezione presenta i concetti di base di teoria delle cateogrie [...]

1.1 Categorie

Definizione 1 (Categorie). Una categoria \mathcal{C} è composta da:

- 1. una collezione di oggetti $Ob(\mathcal{C})$;
- 2. una collezione di morfismi $Mor(\mathcal{C})$;
- 3. due operazioni che assegnano ad ogni morfismo f un oggetto $dom\ f$, detto dominio e un oggetto $cod\ f$, detto codominio, denotando con $f:A\to B$ il fatto che $dom\ f=A$ e $cod\ f=B$; la collezione di tutti i morfismi da un oggetto A ad un oggetto B in C è denotato con C(A,B);
- 4. un operatore di composizione che assegna ad ogni coppia di morfismi f, g tali che $dom\ g=cod\ f$, un morfismo $composto\ g\circ f:dom\ f\to cod\ g$, tale da soddisfare

$$h \circ (g \circ f) = (h \circ g) \circ f$$

per ogni f, g, h tali che $dom\ g = cod\ f$ e $dom\ h = cod\ f$;

5. per ogni oggetto A, un morfismo identità $id_A:A\to A$ tale che:

$$id_B \circ f = f = f \circ id_A$$

per ogni $f: A \to B$.

[puntualizzazione sull'utilizzo improprio del temine "collezione" nella definizione]. Un primo esempio interessante è il seguente, nonché fonte di intuizioni per buona parte di questa presentazione della teoria delle categorie.

Esempio 1. La categoria Set è la categoria degli insiemi e delle funzioni totali tra essi. La composizione di morfismi corrisponde alla composizione di funzioni, e i morfismi identità corrispondono alle funzioni identità.