8

_				
⊢un	CIO	1es	linea	les
	OIOI		IIIICu	

Nombre y apellidos:	
Curso:	Fecha:

FUNCIONES LINEALES

FUNCIÓN DE PROPORCIONALIDAD

- Su ecuación es y =
 Su gráfica es una
 que pasa por

 EJEMPLO:
- FUNCIÓN y = mx + n
- Su gráfica es una
 m es la
 Corta al eje Y en el punto

FIFMPIO.

- **FUNCIÓN CONSTANTE**
- La ecuación de la función constante es $y = \dots$
- Su gráfica es una
 paralela al eje
 de

EJEMPLO:

PENDIENTE DE UNA RECTA

Para reconocer la pendiente de una recta:

- · Se despeja
- · La pendiente es

EJEMPLO: La pendiente de la recta 3x - 2y = 0

es: m =

La pendiente de una recta de la que conocemos dos de sus puntos, $A(x_1, y_1)$ y $B(x_2, y_2)$, se calcula así:

EJEMPLO: La pendiente de la recta que pasa por

(0, 1) y (2, 5) es: $m = \dots$

ECUACIÓN DE UNA RECTA

Ecuación punto-pendiente:

• Si de una recta conocemos su pendiente, m, y un punto, (x_1, y_1) , su ecuación es: $y = \dots$

EJEMPLo: Ecuación de la recta que pasa por (2, 5) con pendiente -2: $y = \dots$

Forma general de la ecuación de una recta

- Operando, cualquier ecuación de una recta puede ponerse en la forma x + y = x.

EJEMPLo: Forma general de la recta de ecuación $y = 5 - \frac{2}{3}(x + 2)$: x + y =

ESTUDIO CONJUNTO DE DOS FUNCIONES

• Para hallar analíticamente el punto de corte de dos funciones, se resuelve el sistema formado por

EJEMPLo: Las funciones 3x + 2y = -5 y -x + y = 1 se cortan en el punto de coordenadas:

$$x = \dots \qquad y = \dots$$

8

Funciones lineales

Nombre y apellidos:	
Curso:	Fecha:

PRACTICA

- 1 Cuando caminamos, al mismo ritmo, recorremos 12 m en 8 segundos.
 - a) Representa en una tabla la relación x (tiempo en segundos) con y (metros recorridos). Halla y para x = 1, 2, 3, 4.

b) ¿Cuántos metros recorremos en 4 segundos? ¿Y en un segundo?

c) Escribe la expresión algebraica que relaciona y con x.

d) Representa gráficamente la función y = f(x). ¿Cuál es su pendiente?

2 Representa gráficamente las siguientes funciones lineales:

a)
$$y = 3x$$

b)
$$y = 2x + 1$$

c)
$$y = -2x + 1$$

APLICA. ELASTICIDAD DE LOS MUELLES

De entre tres muelles, A, B, C, de 10 cm cada uno, pero de distinto metal, queremos elegir el que soporte más peso sin estirarse (deformarse) mucho.

Usamos pesos desde 1 a 5 kg. El muelle A se estira 2 cm cada kilo que colguemos. El muelle B se estira 1 cm por cada kilo y el C se estira 1 cm por cada 2 kg que colguemos.

1 Construye para cada muelle una tabla que relacione y (cm de longitud del muelle) con x (kg colgados).

a)	Х	0	1	2	3
	y	10			

b)	Х	0	1	2	3
	у	10			

2 Construye las tres gráficas (x, y) en los mismos ejes.

3 ¿Qué muelle es el más resistente (soporta más peso estirándose menos)?

4 Cada muelle se romperá cuando se estire un máximo de 15 cm. ¿Para qué valor de x (kg) se rompe cada muelle?

Funciones lineales

Nombre y apellidos:

Curso: Fecha:

PRACTICA

1 a) Representa gráficamente la relación $y \in (\infty)$ con $x \in (\infty)$

x (kg)	1	2	3	4	5
y (€)	0,5	1	1,5	2	2,5

b) ¿Cuál es la expresión algebraica de esta relación?

c) ¿Cuál es la pendiente de la función?

2 Representa la función y = 3x + 2. ¿Cuál es su pendiente? ¿Y la ordenada en el origen?

3 Escribe la ecuación de la recta que pasa por A(2, 4) y B(-1, -2). ¿Cuál es su pendiente? Represéntala gráficamente.

4 Observa estas gráficas, encuentra la pendiente y la ordenada en el origen y escribe la ecuación de cada recta.

APLICA. LA GRAN ETAPA DE UN CICLISTA CAMPEÓN

Se celebra la etapa de montaña entre las localidades de *Mourier* y *Rengón* (*M* y *R*), de 180 km. El perfil de esa etapa (relación de la altura sobre el nivel del mar con el kilómetro del recorrido) viene dado en esta gráfica:

1 ¿Cuál es la cima *Pantani* (mayor altura)? ¿En qué kilómetro del recorrido se encuentra?

El ganador fue Emil Trepa. La carrera se desarrolló así:

Tramo MA: pelotón (40 km/h)

Tramo AB: Emil y 8 corredores

(v = 20 km/h)

Tramo BC: Emil solo (v = 10 km/h)

Tramo CR: Emil solo (v = 40 km/h)

2 Halla las gráficas de las funciones lineales espacio, e, y tiempo, t, del ganador en cada tramo del recorrido.

MA	A t	t 1	AB	t				
40 km/h	е	40			20 km/h	е	80	120

BC	t		
10 km/h	е	120	140

CR	t		
40 km/h	е	140	

¿Cuál es la pendiente de esta gráfica en cada tramo?

- **3** ¿Qué relación tiene este dato con la velocidad de cada tramo?
- 4 ¿Cuánto tiempo tardó Emil en ascender a C? ¿Y en descender?

Soluciones

Ficha de trabajo A

PRACTICA

1 a)

X	1	2	3	4	 8
У	1,5	3	4,5	6	 12

b) En 4 s recorremos 6 m.

En 1 s recorremos 1,5 m.

- c) y = 1.5x
- d) pendiente = 1.5 = 3/2

2

APLICA

1 a)

Γ	Х	0	1	2	3	4	5
Г	у	10	12	14	16	18	20

b) x

	0					
у	10	11	12	13	14	15

c)

X	0	1	2	3	4	5
У	10	10,5	11	11,5	12	12,5

2

- 3 El muelle más resistente es el C.
- 4 A) se rompe con 3 kg.
 - B) se rompe con 5 kg.
 - C) No se rompe.

Ficha de trabajo B

PRACTICA

1 a)

- b) y = 0.5x
- c) m = 0.5 = 1/2

2

$$m=\frac{3}{1}=3$$

$$n = 1$$

3

$$m = \frac{-2-4}{-1-2} = 2$$

$$y - 2 = 2(x - y)$$

$$y = 2x - 6$$

- **4** a) m = 2; n = 1; y = 2x + 1
 - b) m = -2/3; n = 2; y = (-2x/3) + 2
 - c) m = 0; n = 2; y = 2

APLICA

1 La cima Pantani está en el kilómetro 140 y tiene una altura de 1500 m.

2	MA	t	1	2
	IVIA	е	40	80

A D	t	2	3	4
Ab	е	80	100	120

DC.	t	4	5	6
ВС	е	120	100	120

CR	t	6	7
	е	140	180

$$m_{MA} = 40$$

$$m_{AB} = 20$$

$$m_{BC} = 10$$

 $m_{CR} = 40$

- 3 Corresponden a las velocidades.
- 4 En llegar a C tardó 6 horas, y en descender, 1 h.