Nearest Neighbor Classifier & Cross Validation & Bias-Variance Tradeoff

k-Nearest Neighbor (kNN)

Multi-Class Classification

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

How to classify a test example x_t ?

Linear Models: Perceptron, SVM

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

Nonlinear Models: Deep Neural Net

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

How to classify a test example x_t ?

kNN classifier

- Find the knearest neighbors (NNs) of x_t
- Let the kNNsvote

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

k-Nearest Neighbor (kNN) classifier

- Find the k nearest neighbors of x_t
- Let the NNsvote

Question: How to measure similarity?

- Cosine similarity: $\sin(\mathbf{x},\mathbf{x}_t) = \frac{\mathbf{x}^T\mathbf{x}_t}{\|\mathbf{x}\|_2\|\mathbf{x}_t\|_2}$
- Gaussian kernel: $sim(\mathbf{x}, \mathbf{x}_t) = exp(-\frac{1}{\sigma^2} ||\mathbf{x} \mathbf{x}_t||_2^2)$
- Laplacian kernel: $sim(\mathbf{x}, \mathbf{x}_t) = exp(-\frac{1}{\sigma^2} ||\mathbf{x} \mathbf{x}_t||_1)$

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

k-Nearest Neighbor (kNN) classifier

- Find the k nearest neighbors of \mathbf{x}_t
- Let the NNsvote

Question: How to find the *k* nearest neighbors?

- Naïve algorithm
 - Compute all the similarities $sim(\mathbf{x}_1, \mathbf{x}_t), \cdots, sim(\mathbf{x}_N, \mathbf{x}_t)$
 - Sort the scores and find the top k
 - Time complexity O(Na)
- More efficient algorithms? (to be discussed later)

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

k-Nearest Neighbor (kNN) classifier

- Find the k nearest neighbors of \mathbf{x}_t
- Let the NNsvote

Question: How to vote?

• Option 1: Every neighbor has the same weight

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

k-Nearest Neighbor (kNN) classifier

- Find the k nearest neighbors of \mathbf{x}_t
- Let the NNsvote

Question: How to vote?

- Option 1: Every neighbor has the same weight
- Option 2: Nearer neighbor has a larger weight

• e.g., weight_n = $sim(\mathbf{x}_n, \mathbf{x}_t)$

KNN: Naïve Algorithm

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

Algorithm: find the k nearest neighbors to \mathbf{x}_t

- Naïve algorithm
 - Compute all the similarities $\sin(\mathbf{x}_1,\mathbf{x}_t),\cdots,\sin(\mathbf{x}_N,\mathbf{x}_t)$ and find the top k
- NO training at all
- Test: for each query, O(Nd) time complexity

KNN: Efficient Algorithm

Input: Training examples $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^d$ and labels $t_1, ..., t_N \in \mathbb{N}$.

Question: find your nearest post office (given longitude & latitude)

Question: find your nearest post office (given longitude & latitude)

Data: N = 30,000 post offices' latitude and longitude

- Post office 1: (lat₁, lon₁)
- Post office 2: (lat₂, lon₂)
- Post office 3: (lat₃, lon₃)

:

Post office N: (lat_N, lon_N)

Query: your own latitude and longitude:

(41.8781° N, 87.6298° W)

Question: Which one is your nearest post office?

Training

 Vector quantization (build landmarks)

Training

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks

Training

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks

Testing

 Compare your location with all the landmarks and find the nearest landmarks

Training

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks

Testing

 Compare your location with all the landmarks and find the nearest landmarks

Training:

- Vector quantization (build landmarks)
- Assign each post office to its nearest landmarks

Testing

- Compare your location with all the landmarks and find the nearest landmarks
- 2. Compare with the postal offices assigned to the landmarks

KNN: Efficient Algorithms

- Vector Quantization
 - Clustering based method
- KD-tree

- Locality sensitive hashing
- More resources
 - KNN Search (Wikipedia)

Hyperparameter Tuning: Cross Validation

Hyperparameters

- Parameters that cannot be directly learnt from the model
 - Polynomial regression degree: p $f(\mathbf{x}; \mathbf{w}) = \sum_{j=0}^{p} w_j x^j$
 - Regularized linear regression: λ $\mathcal{L}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|_p^p$
 - Gaussian/RBF kernel SVM: σ $k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\|\mathbf{x}_i \mathbf{x}_j\|_2^2/2\sigma^2\right)$
 - (Stochastic) gradient descent: $\alpha = \mathbf{x}_{(t+1)} = \mathbf{x}_{(t)} \alpha \mathbf{g}_{(t)}$
 - #Layers, #hidden neurons, batch size in deep neural networks
 - K-nearest neighbor: k
 How to learn good hyperparameters?

Polynomial Regression

Underfitting

Overfitting

Polynomial Regression

Training Error vs Testing Error

Hyperparameter Tuning

Question: For the polynomial regression model, how to determine the degree p?

Answer: The degree p leads to the smallest testerror

Hyper-Parameter Tuning

Trai	ining	Set

Test Set

Test MSE = 23.2

Test MSE = 19.0

Test MSE = 16.7

Test MSE = 12.2

Test MSE = 14.8

Train a degree-6 polynomial regression

──→ Test MSE = 25.1

Train a degree-7 polynomial regression

Test MSE = 39.4

Train a degree-8 polynomial regression

Test MSE = 53.0

Hyperparameter Tuning

Training Set		Test Set
Train a degree-1 polynomial regression	\longrightarrow	Test MSE = 23.2
Train a degree-2 polynomial regression	\longrightarrow	Test MSE = 19.0
Train a degree-3 polynomial regression	\longrightarrow	Test MSE = 16.7
Train a degree-4 polynomial regression	\longrightarrow	Test MSE = 12.2
Train a degree-5 polynomial regression	\longrightarrow	Test MSE = 14.8
Train a degree-6 polynomial regression	\longrightarrow	Test MSE = 25.1
Train a degree-7 polynomial regression	\longrightarrow	Test MSE = 39.4
Train a degree-8 polynomial regression	\longrightarrow	Test MSE = 53.0

Hyperparameter Tuning

Trair	ning	Set
4		

Train a degree-1 polynomial regression

Train a degree-2 polynomial regression

Train a degree-3 polynomial regression

Train a degree-4 polynomial regression

Train a degree-5 polynomial regression

Train a degree-6 polynomial regression

Train a degree-7 polynomial regression

Train a degree-8 polynomial regression

Test Set

Tes MSE=13.2

 \rightarrow Test SE = 9.0

——— Test F 16.7

Test M = 12.2

Test M = 14.8

Test 1 25.1

Test SE = 9.4

Tes MSE=\3.0

Training Set		Validation Set
Train a degree-1 polynomial regression	\longrightarrow	Valid. MSE=23.1

Train a degree-2 polynomial regression	\longrightarrow	Valid. MSE=19.2
riair a degree-2 polyriornal regression		valid. IVOL — 13.2

Train a degree-3 polynomial regression	\longrightarrow	Valid. MSE=16.3
--	-------------------	-----------------

Train a degree-5 polynomial regression	\longrightarrow	Valid. MSE=14.4
--	-------------------	-----------------

k-Fold Cross-Validation

- 1. Propose a grid of hyperparameters
 - E.g. $p \in \{1, 2, 3, 4, 5\}$.
- 2. Randomly partition the training samples to k parts
 - k-1 parts for training
 - The remaining 1 part for test
- 3. Compute the averaged errors of the k repeats
 - Called the validation error
- 4. Choose the hyper-parameter *p* that leads to the smallest validation error

Example: 10-Fold Cross-Validation

Example: 10-Fold Cross-Validation

Hyperparameter	Validation error	Test error
p=1	23.1	MSE = 12.2
p=2	19.2	
p=3	16.3	
p=4	12.5	
p=5	14.4	
•••	•••	

Bias-Variance Trade-Off

Bias and Variance

- Every learning algorithm has assumptions about the model hypothesis space
 - Linear
 - SVM with RBF kernel
 - Athree-layer neural network with ReLU activations
- Bias
 - True error (loss) of the best classifier in the hypothesis space
- Underfitting: Large bias
 - Hypothesis space is simple
 - Classifiers from hypothesis space cannot represent the target function

Bias and Variance

- Performance of a classifier is dependent on the specific training set
 - Model will change if slightly changing the training set
- Variance
 - Describes how much the best classifier depends on the training set
- Overfitting: Large variance
 - Hypothesis space is complex
 - Classifiers are very flexible and unconstrained

Suppose the optimal model is the center

High bias

Each dot is a learnt model

Low variance

High variance

Suppose the optimal model is the center

High bias

Each dot is a learnt model

Low variance

High variance

Suppose the optimal model is the center

High bias

Each dot is a learnt model

Low variance

High variance

Suppose the optimal model is the center

High bias

Each dot is a learnt model

Low variance

High variance

Suppose the optimal model is the center

High bias

Each dot is a learnt model

Low variance

High variance

Bias in ML Models

Regardless of (size of) training sample, model will produce consistent (large) errors

Variance in ML Models

Different samples of training data yield different model fits

Given data set
$$\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\} \sim p(\mathcal{D})$$

Model f built from the data set \mathcal{D}

Prediction of a testing example x is given by f(x; D)

Expected mean squared error of a testing example (x, y)

$$MSE_{x} = E_{D} \left[\left(y - f(x; D) \right)^{2} \right]$$

$$MSE_{x} = E_{D} \left[\left(y - f(x; \mathcal{D}) \right)^{2} \right]$$
Bias: difference
$$= (E_{D}[f(x; \mathcal{D})] - E[y|x])^{2}$$
between average
$$+ E_{D}[(f(x; \mathcal{D}) - E_{D}[f(x; \mathcal{D})])^{2}]$$
model prediction
$$+ E[(y - E[y|x])^{2}]$$

(across data sets)

and the target

$$MSE_{x} = E_{\mathcal{D}|x} \left[\left(y - f(x; \mathcal{D}) \right)^{2} \right]$$

$$= (E_{\mathcal{D}}[f(x; \mathcal{D})] - E[y|x])^{2}$$

$$+ E_{\mathcal{D}}[(f(x; \mathcal{D}) - E_{\mathcal{D}}[f(x; \mathcal{D})])^{2}]$$
(across data sets)
$$+ E[(y - E[y|x])^{2}]$$

for a given point

$$MSE_{x} = E_{\mathcal{D}|x} \left[\left(y - f(x; \mathcal{D}) \right)^{2} \right]$$

$$= (E_{\mathcal{D}}[f(x; \mathcal{D})] - E[y|x])^{2}$$

$$+ E_{\mathcal{D}}[(f(x; \mathcal{D}) - E_{\mathcal{D}}[f(x; \mathcal{D})])^{2}]$$

$$+ E[(y - E[y|x])^{2}]$$

intrinsic noise in data set

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Bias-Variance Tradeoff Is Revealed Via Test Set Not Training Set

Bias-Variance Tradeoff Is Revealed Via Test Set Not Training Set

Summary: Bias-Variance Tradeoff

- Error = bias² + variance (+ noise)
- High bias →both training and test error can be high
 - Arises when the classifier underfits/cannot represent the data
- High variance → training error can be low, but test error will be high
 - Arises when the classifier overfits the training set/is very powerful

Bias-Variance Tradeoff Control

- Reduce bias
 - Higher polynomial degrees
 - Deeper models
 - Deep neural nets/decision trees, etc
 - Smaller k in k-nearest neighbors
- Reduce variance
 - Ensemble methods (bagging, boosting)
 - Stronger regularization
 - L1, L2 regularization
 - Larger k in k-nearest neighbors
 - More training data

Summary

- K-Nearest Neighbor Classifier
 - No training
 - Time complexity O(Nd), independent of number of classes
 - Efficient algorithms: Vector Quantization(VQ)
- Hyperparameter Tuning
 - K-fold cross validation
 - Split training set into training set + validation set
 - Learn hyperparameter via validation set (NOT test set)
- Bias-Variance Tradeoff
 - Test/Generalization error = bias² + variance (+ Noise)
 - Simple model: large bias, small variance
 - Complex model: small bias, large variance

Acknowledgement

Some slides are from **Shusen Wang**

https://github.com/wangshusen/DeepLearning

Mike Mozer

University of Colorado at Boulder