Noble Huang (Mulia Widjaja)				
SANTA CLARA UNIVERSITY	ELEN 115 – Spring 2023	S. Krishnan		
Homework #6				

5. The regulator in Figure 5 employs a zener diode D_Z that is specified to have a 8V drop at a test current of 25mA with r_z =10 Ω and I_{ZK} =0.2mA.

(a) Find **the value of R** needed to obtain an output voltage $V_{out} = 7.8V$ at nominal supply voltage Vs and no load.

a.	10-7.8 = 7.8-7.75 + 0 R = 10
	22 = 0.05 R
	R = 22 · 20 = 490 \(\Omega\)

- (b) With the value of R as obtained in (a) and nominal Vs find the ${\bf value}$ of ${\bf V}_{{\bf out}}$ with a load resistance of
 - (i) $R_L = 10k\Omega$

10-Vout = 49 Vout - 391 + 0.044 Vout	
35	= 45.094 Vout
Vous	= 351 45.049 (7.792 V)

(ii) $R_L = 1k\Omega$

ii.	RL= 1 KQ
	VERKE
	10-Vout = Vout - 7.75 + Vout
	440 10 1K
	10-Vout = 49 Vout - 34 + 0.44 Vout
	351 = 45,49 Vout
	THE WALL OF THE
	Vout = 351 = (7,724 V)
	15.49