RIO208 - TP DIMENSIONNEMENT OFDMA

1) Simuler le processus des utilisateurs répartis selon un processus de Poisson d'intensité $\lambda = 0.01~m^{-2}$ dans la cellule de rayon R = 320m.

```
r=320; %Rayon du disk en metres
xx0=0; yy0=0; %centre of disk
%Simulate Poisson Processus:
lambda=0.01; %intensity m^-2
areaTotal=pi*r^2;
numbPoints=poissrnd(areaTotal*lambda);
theta=2*pi*(rand(numbPoints,1)); %angular coordinates
rho=r*sqrt(rand(numbPoints,1)); %radial coordinates
%Convert from polar to Cartesian coordinates
[xx,yy]=pol2cart(theta,rho); %x/y coordinates of Poisson points
C=[xx,yy];
th = 0:pi/50:2*pi;
xunit = r * cos(th) + xx0;
yunit = r * sin(th) + yy0;
figure(1)
%Plotting
scatter(xx,yy);
hold on
plot(xunit, yunit);
scatter(0,0,'filled','red');
hold off
xlabel('x');ylabel('y');
axis square;
```


- **2)** Quel est le nombre moyen d'utilisateurs dans la cellule ? $\mathbb{E}[\Phi(A)] = \mu(A)$. = $\lambda * \text{Aire} = \lambda * \pi * R^2 = 3217$
- Quel est le processus des utilisateurs actifs à chaque instant dans la cellule ? et quel est leur nombre moyen ? La probabilité pour un utilisateur d'être actif vaut p = 0.01.

C'est un processus de poisson mais maintenant avec une intensité $\lambda_p = \lambda * p = 0.001~m^{-2}$

areaTotal * lambda * p = 32.17 Utilisateurs Actifs

4) Calculer q_{max} le nombre maximum de ressources qu'un utilisateur peut demander. On considère que tous les utilisateurs demandent un débit de C = 162 kb/s, et la largeur de bande d'un resource block est de w = 180 kHz. Le SNR_{min} vaut 0.1

$$q(x) = \left\lceil \frac{C(x)}{w \log_2(1 + SINR(x))} \right\rceil$$

En remplaçant les valeurs dans la formule, on obtient q(x)=7 RB

Probabilité d'Outage

5) Estimer Ps pour S allant de Smin = 160 à Smax = 180. La probabilité Ps s'estime en comptant le nombre de fois où il y a outage sur 10000 simulations.

```
for s=160:1:180
 for j=1:10000
  lambda=0.01*p; %intensity m^-1
  areaTotal=pi*r^2;
  numbPoints=poissrnd(areaTotal*lambda);
  \label{lem:coordinates}  \  \, \text{theta=2*pi*(rand(numbPoints,1)); \$angular coordinates} 
  rho=r*sqrt(rand(numbPoints,1)); %radial coordinates
  %Convert from polar to Cartesian coordinates
  [xx,yy]=pol2cart(theta,rho); %x/y coordinates of Poisson points
  C=[xx,yy];
  F=0;
for i=1:1:numbPoints
    0=[0 \ 0];
    Y = [C(i,1) C(i,2)];
    dis=pdist2(Y,O);
    F=F+ceil(c/(w*log2(1+K/(dis^2.8))));
end
    if F>s
       Count=Count+1;
    end
 end
PS(s) = Count/10000;
Count=0;
end
```

S	Probabilité d'Outage
160	0.0222
161	0.0207
162	0.0192
163	0.0158
164	0.0145
165	0.0129
166	0.0111
167	0.0126
168	0.0091
169	0.0074
170	0.0066
171	0.0069
172	0.0064
173	0.0064
174	0.006
175	0.0041
176	0.0055
177	0.0045
178	0.0029
179	0.0032
180	0.0038

6) Combien valent θ et α tels que On sait que :

On pose
$$\beta = q_{max}$$
 et $\alpha = q_{max}R\sqrt{\lambda\pi}$ et on a

$$\beta = 7$$
 $\alpha = 39.7$

7) Combien vaut le nombre moyen de ressources E[F] demandées dans la cellule E[F]=112

```
rk=zeros(1,7);
for i=1:1:6
    rk(i)=(K/(2^(c/(w*i))-1))^(1/2.8);
end
rk(7)=r;
EF=0;
for i=1:1:7
    if i==1
    EF=EF+lambda*pi*i*(rk(i)^2);
else
    kl=i-1;
EF=EF+lambda*pi*i*(rk(i)^2-rk(kl)^2);
end
end
```

8) Vérifier que l'inégalité de concentration est bien vérifiée dans les résultats de simulation de la question 4.

Avec les valeurs extraites de la question 5 pour P, nous pouvons corroborer l'inégalité, sachant que y = S - E[F]

$$P(F \geq E[F] + y) \leq \exp\left[-\left(\frac{y}{\beta} + \frac{\alpha^2}{\beta^2}\right) \ln\left(1 + \frac{\beta y}{\alpha^2}\right) + \frac{y}{\beta}\right].$$


```
y=160-EF:1:179-EF;
t=exp(-((y/beta)+(alpha^2/beta^2)).*log(1+((beta*y)/alpha^2))+y/beta);
figure (1)
plot(y,t);
hold on
plot(y,PS1);
hold off
xlabel('S');ylabel('Probabilite');
legend({'Equation','P(F>E[F]+y)'},'Location','northwest');
```

9) On cherche à dimensionner la cellule avec l'inégalité de concentration : déterminer le nombre de ressources S nécessaires pour avoir le majorant de la probabilité d'outage Ps inférieur à 0.01 Pour dimensionner, il faut donc chercher S tel que, Alors seuil=0.01

$$y = S - E[F]$$

$$\exp\Big(-\Big(\frac{y}{\beta}+\frac{\alpha^2}{\beta^2}\Big)\ln\Big(1+\frac{\beta y}{\alpha^2}\Big)+\frac{y}{\beta}\Big)\leq \text{seuil}.$$

A partir du graphique, nous pouvons trouver le point y pour lequel la probabilité commence à être inférieure à 0,01.

$$y = 130$$

 $S = y + E[F] = 130 + 112 = 242$

10) On considère le dimensionnement *S* obtenu à la question précédente. Que vaut alors la probabilité d'outage *Ps* ?

on utilise le même code que dans la question 5 et on obtient que la probabilité d'outage est 0

11) Toujours en utilisant le même dimensionnement S, calculer la probabilité d'outage dans le cas où λ varie de 10%, puis de 20%, puis si γ c'est qui varie de 2%, puis de 5%.

λ	Probabilité
	d'outage
$\lambda + 0.2\lambda$	0.0002
$\lambda - 0.2\lambda$	0
$\lambda + 0.1\lambda$	0.0001
$\lambda - 0.1\lambda$	0

γ	Probabilité
	d'outage
$\gamma + 0.02\gamma$	0.0001
$\gamma - 0.02\gamma$	0
$\gamma + 0.05\gamma$	0.0066
$\gamma - 0.05\gamma$	0

12) Que dire alors du dimensionnement *S* obtenu grâce à l'inégalité de concentration à la question 8. ?

En général, nous pouvons dire que le réseau est surdimensionné, ceci parce que la fonction de probabilité P(F > E[F] + y) est beaucoup plus grande que l'équation limitante, donc les valeurs que nous obtenons pour S sont plus grandes que celles trouvées expérimentalement.

Introduction du fading

13) Calculer Ps pour S allant de Smin = 195 à Smax = 215.

```
for s=195:1:215
for j=1:10000
 lambda=0.01*p; %intensity m^-1
 areaTotal=pi*r^2;
 numbPoints=poissrnd(areaTotal*(lambda));
 theta=2*pi*(rand(numbPoints,1)); %angular coordinates
 rho=r*sqrt(rand(numbPoints,1)); %radial coordinates
  %Convert from polar to Cartesian coordinates
 [xx,yy]=pol2cart(theta,rho); %x/y coordinates of Poisson points
 C=[xx,yy];
 xx=xx+xx0;
   уу=уу+уу0;
 F=0;
for i=1:1:numbPoints
    0=[0 \ 0];
   Y=[C(i,1) C(i,2)];
   dis=pdist2(Y,O);
    m=exprnd(1);
    F=F+min(7,ceil(c/(w*log2(1+(K*m)/(dis^2.8)))));
end
    if F>s
       Count=Count+1;
    end
end
Ps(s-Sinicial) = Count/10000;
Count=0;
end
```

S	Probabilité d'Outage
195	0.0201
196	0.0183
197	0.0153
198	0.0139
199	0.0136
200	0.013
201	0.0106
202	0.011
203	0.0094
204	0.0088
205	0.0089
206	0.0064
207	0.0077
208	0.0049
209	0.0042
210	0.0055
211	0.0043
212	0.0036
213	0.0032
214	0.0038
215	0.0029

14) Combien vaut le nombre de ressources moyen demandées $\mathsf{E}[\mathsf{F}]$? On rappelle que la fonction Gamma est définie par

$$\mathbb{E}[F_M] = \mathbb{E}[F]\Gamma\left(\frac{2}{\gamma} + 1\right)$$

EFm=EF*gamma((2/2.8)+1)=102.10;

15) Calculer le dimensionnement S nécessaire pour avoir le majorant par inégalité de concentration de la probabilité d'outage inférieur à 0.01

$$y = S - E[Fm]$$

 $S = 131 + 102.1 = 233.1$

De la courbe obtenue à la question 9, nous pouvons obtenir la valeur de y, et avec la moyenne, nous pouvons obtenir la valeur de S