Lecture 1
Course logistics
Course textbook: Oudot (See lonk)
Overview of topological Data Analysis (TDA)
Motivation.
Motivation. Under Stand Structure en data. Exploratory data analys. - clusters - clusters - loops, holes "I down some hole" or loop.
- loops, holes)
the tollow void in a sphere is a sphere is a 2-d-mensional hole.
Create involvent teather for MC
- Molecular database
- texture databases Londonials design/discovery
- genetics
- incorporation into deep learning
- computational geometry
- robotics / sensor networks.

Quich history of TDA-
Topology (Euler, Pointers, pre 1940)
Alaebraiz topology (1940s - present)
idea of functor-turns a statement/property of topological spaces/maps
of topological spaces/maps
to a statement about vector spaces/maps
Rabbins '00 - early work on homology + sampling
Edelsbrunner, Lotsher, Z. 02., persistent
Carlsson, Z. 05
Mapper als-107
Mapper als. 07 Zizzas homology 09-10
last 10 years: - apprentions
and continuing - compulational acceleration
_ integration w/ Mil/Statisties
= generalization/formatization

Simplicial complex:
Xo: Nertex set (0-simplices) } Graph Xi: Edge set (1-simplices)) (undersected)
X, : Edge set (1-simplices)) (undirected)
Xo= {(i), i=1 n3
$x_{i} \subseteq \{(i,j) \mid i,j=1,n, i < j \}$
Xz. Tréangles
Xu: N-Simplicus: V-Simplicus: (Your Vu) Vo- Vu = £1 n }
Volume of the state of the stat
chesn complex 2000 210 (2000 Cz 2000 Chesn Complex), du 3 = Cx
Cu: Vector Space W/ basis element for each k-Simplex in X (Vo- Va)
The maps from Cher Ch., map basis elt. for simplex to liv. romb. of basis elts or simplex boundary.

> (Vo... Vn) = U(Vo... VE ... Vn) Exemoved it vertice (ilay) (Virva.) (No, VZ) dy: (Vo.-Vz) -> Z-(-1) (Vo.- Vi -- Vk) Du 0 2 mi = 0 di: incidence matrix of graph. Homology: 200 duer = 0: He=ker dn/ing dut dian Hu - Ba. k-dimensional topological features. (ounfs din Ho= # connected components dem Hi: # loops / 1-dimensional holos. den Hu. & K-denseusonal vords. Bo=-

Persistent homology: track how homology Changes over a filtration.

 $X(0.2) \subseteq X(G.5) \subseteq X(I.0) \subseteq X(2.0)$ $f(1+rad.on) \times (G) \subseteq X(S) \quad r \in S$

 $X(r) \hookrightarrow X(s)$

Hu(X(x)) France

rance

HM(xr) Y(r) -> V(s) -> V(t) ->

Persistant homology computes

persistance bancode - {(bi, di)} ieI