Pseudocode for basic steps of execution cycle

LOOP Fetch next instruction

Advance PC

Decode the instruction

Execute the instruction

Continue loop

Pipeline

- In theory, each instruction is one instruction cycle
- In practice, there is interdependency between instructions
 - Solution: instruction scheduling

Branch instructions flush and refill the instruction pipeline.

The ARM Barrel Shifter

- ARM architectures have a unique piece of hardware known as a barrel shifter.
 - Device moves bits in a word left or right.
- Most processors have stand alone instructions for shifting bits.
- ARM allows shifts as part of regular instructions.
- Allows for quick multiplication and division.

Using the Barrel Shifter: The Second Operand

- Register, optionally with shift operation applied.
- * Shift value can be either be:
 - 5 bit unsigned integer
 - Specified in bottom byte of another register.

* Immediate value

- 8 bit number
- Can be rotated right through an even number of positions.
- Assembler will calculate rotate for you from constant.

ARM Data Sizes and Instructions

- ▶ The ARM is a 32-bit RISC architecture, so in relation to that:
 - Byte means 8 bits
 - Halfword means 16 bits (two bytes)
 - Word means 32 bits (four bytes)
- ► ARM cores can be configured to view words stored in memory as either Big-Endian or Little-Endian format.

Big Endian vs. Little Endian

How 0x12345678 would be stored in a 32-bit memory?

0x103	78	sses	0x103	12
0x102	56	g addresses	0x102	34
0x101	34	Increasing	0x101	56
0x100	12	In	0x100	78

Big Endian

Little Endian

ARM

Exception Handling

- When an exception occurs, the ARM:
 - Copies CPSR into SPSR_<mode>
 - Sets appropriate CPSR bits
 - Change to ARM state
 - Change to exception mode
 - Disable interrupts (if appropriate)
 - Stores the return address in LR <mode>
 - Sets PC to vector address
- To return, exception handler needs to:
 - Restore CPSR from SPSR <mode>
 - Restore PC from LR_<mode>

This can only be done in ARM state.

Vector Table

Vector table can be at 0xFFFF0000 on ARM720T and on ARM9/10 family devices