Cache Performance Analysis

CACHE PERFORMANCE ANALYSIS ON DIFFERENT BLOCK SIZES

Figure 1: Miss_Rate Vs Block_Size

In Figure 1 we present the variation in miss rates with increase in the block size for various cache sizes. For the above mentioned scenario associativity is assumed to be 1 way.

Observation:

As expected, the miss rate follows a convex pattern for all the applications with increasing block size. Smaller block size has higher miss rate. Large blocks have a lesser miss rate.

Conclusion:

- To reduce the number of miss we should use larger block size.
 Larger block size reduces number of compulsory misses.
 Larger blocks take advantage of spatial locality.

Configuration 1b: Average Memory Access Time Vs Block size

Fig 2 : Average_Memory_Access_Time Vs Block_Size

In Figure 2 we present the variation in Average memory access time with increase in the block size for various cache sizes. For the above mentioned scenario associativity is assumed to be 1 way.

Observation:

1. With the increase in block size the memory access time increase for smaller cache.

2. With the increase in block size the memory access time initially increases and after a threshold it starts to decrease for larger cache.

Conclusion:

- 1. Larger block size with smaller cache increase miss penalty.
 - Larger block size means that fewer blocks will be in cache this increases capacity misses and conflict misses.
- 2. To reduce average memory access time:
 - We should try to reduce miss rate.
 - Make cache bigger.

CACHE PERFORMANCE ANALYSIS ON DIFFERENT SET ASSOCIATIVITY

Fig 3: Miss_Rate Vs Cache_Size

In Figure 3 we present the variation in Miss Rate with increase in the cache size for various set associativity. For the above mentioned scenario block size is assumed to be 32.

Observation:

1. 1k cache has almost the same miss rate as 512k cache for given associativity.

Conclusion:

1. Associativity is directly related to conflict misses. To reduce miss rate, associativity should be increased.

Configuration 2b: Average Memory Access Time Vs Cache size

Fig 4: Average_Memory_Access_Time Vs Cache_Size

In Figure 4 we present the variation in Average memory access time with increase in the cache size for various set associativity. For the above mentioned scenario block size is assumed to be 32.

Observation:

- 1. With the increase in cache size the memory access time decreases slowly.
- 2. Increased associativity increase the probability that contiguous data is moved into the cache on a miss.
- 3. Increased number of associativity decrease the probability that a specific line is evicted.

Conclusion:

To reduce average memory access time:

- 1. We should try to reduce miss rate.
- 2. Make cache bigger.