

I/O Devices – Motors

EECS 388 - Fall 2022

© Prof. Mohammad Alian

Context

- Recommended reading:
 - Datasheet of the devices

 Chapter 14 and 16 of "AVR Microcontroller and Embedded systems"

Motors are the muscles of cyber-physical systems

VS.

VS.

DC Motor

Servo Motor

Stepper Motor

DC Motors

DC Motors

 Use magnetic fields to convert electrical energy to mechanical energy

- Brushed
 - The current is provided with two metallic brushes
 - Windings wrapped around rotator teeth
- Brushless
 - Permanent magnet rotor
 - Windings wrapped around stator polls

Rotor

Stator

How to Control the Speed of a DC Motor?

 Speed of the motor is directly proportional to supply voltage.

Pulse-Width Modulation (PWM)

- Controlling average power delivery by switching the power on and off at a fast rate
- Duty cycle: the portion of "on" time: $\frac{T'}{T}$ * 100 (%)
- Average Voltage = Duty Cycle * V

DAC VS. PWM?

- Depends on the application
- Overhead?
- ➤ Example: Driving an LED?
 - PWM: switching is faster than the eye's response
- ➤ Example: Small DC motors?
 - PWM: mechanical inertia smoothens the movement
- ➤ Example: Generating sound?
 - DAC: we need a continuous, noise free analog signal

Servo Motors

Servo Motor

 A self-contained electrical device for precise control of linear or angular position or velocity

Servo Motor Control Using PWM

- Angle = Function(PWM duty cycle)
 - E.g., 1ms = 0 degree, 1.5ms = 90 deg., 2ms = 180 deg.

Stepper Motors

Stepper Motors

- More accurately controlled than a normal motor allowing fractional turns or n revolutions to be easily done
- Low speed, and lower torque than a comparable
 D.C. motor
- Useful for precise positioning for robotics

Stepper motor

- Stepper motor is a motor, whose rotation angle is proportional to its input pulse.
- 4-step switching sequence
 - One tooth pitch per 4 seq

Step #	Winding A	WindingB	Winding C	Winding D		
1	1	0	0	1	1	
2	1	1	0	0		Counter
3	0	1	1	0	•	Clockwise
4	0	0	1	1	4	-

Stepper Motor Step Angles

 Minimum step angle is a function of number of teeth on the rotor

Step Angle	Steps Per Revolution	
(360/500) = 0.72	500	
1.8	200	
2	180	~
2.5	144	
5	72	
7.5	48	
15	24	

Vector Generation

 Write C code to generate the bit stream on the GPIO pins

