Transport de données par un lien Radio Fréquence

Numéro de Dossier: 49440

TIPE 2019: Transport

Chaine de Transmission

- Signal numérique (Mot binaire)
- Signal audio ou vidéo
- Grandeur physique convertie
- etc.....

Applications:

- Dispositif de Radiocommande (Domotique)
- Systèmes de surveillance à distance
- -Téléphonie Mobile
- -etc.....

L'émetteur:

Recommandations de conception:

- L'oscillateur devrait être stable en fonction de la variation de température et la tension d'alimentation.
- •Le classe de l'amplificateur de puissance de sortie devrait être choisi en fonction du type modulation.
- •L'adaptation d'impédance entre les étages constituant l'émetteur devrait être prise en considération.

L'émetteur: Oscillateur sinusoïdale

A(p): Gain de l'amplificateur A

B(p): rapport de transfert du réseau de réaction B

Réseau de réaction

Condition générale d'oscillation: Critère de Barkhaussen

A(p).B(p)=1

Equation sur les arguments:

Cette équation fixe la fréquence d'oscillation en fonction des paramètres du B.

Equation sur les modules: à $\omega = \omega_{\text{osc}}$

$$|A(p).B(p)|=1$$

Cette équation fixe la condition d'amplification en fonction des paramètres du A en vue de maintenir l'amplitude des oscillations constante.

Introduction

-A quoi sert la modulation?

On module un signal pour pouvoir le transmettre facilement par voie hertzienne en translatant le spectre BF (signal modulant) vers les HF (<u>Porteuse</u>)

Techniques de

Modulation

- -Les Types de modulation:
- La modulation d'amplitude (AM)
- La modulation de fréquence (FM)
- La modulation de phase (PM)
- -La modulation Numérique (ASK; FSK; PSK;.....)
- -Avantages et Inconvénients :

Modulation AM:

- + Simplicité de réalisation
- Gaspillage de puissance
- Polluante et indiscrète

Modulation FM et PM:

- + Moins perturbant
- Encombrement assez important

Notre étude sera limité en particulier à la modulation AM en vue la simplicité de conception.

Modulation AM

Modulation AM Double Bande Sans Porteuse: (représentation avec Python)

Avec fo>>>fm

Modulation AM

Modulation AM Double Bande Sans Porteuse:

Modulation AM

Modulation AM Double Bande Avec Porteuse:

$$s(t)=A(1+k\cos 2\pi f_m t)\cos 2\pi f_{ot}$$

avec k: l'indice de modulation

Modulation AM

Techniques de

Modulation

Modulation AM Double Bande Avec Porteuse: Représentation des courbes avec Python:

k<1 K=0.5

k>1 K=1.5 (Surmodulation)

k=1

Modulation AM

Modulation AM Double Bande Avec Porteuse: Représentation spectrale avec Python:

Introduction

La partie expérimentale est réalisée au seins de la faculté des sciences de SFAX(Tunisie) pendant le mois de Décembre 2019 sous le suivi d'un enseignant du département Physique.

Modulation AM

Matériels utilisés:

- -2 GBF
- -Deux maquettes électroniques
- -Un oscilloscope
- -Un générateur d'alimentation stabilisé

A=4.88V / f=5.051kHz

A=5.32V/f=147.3kHz

Objectif Principal:

Initiation à l'étude des transmetteurs RF dans l'objectif de transporter des données à distance.

Techniques de

Modulation

Contributions:

- Etude de la conception des structures de L'émetteur et récepteur RF.
- Analyse théorique des techniques de modulations.
- Réalisation d'une expérience qui a permis de relever des sorties réelles des signaux modulés et démodulés en AM.

Les programmes pythons:

```
import matplotlib.pyplot as plt
import numpy as np
from math import pi
plt.close('all')
Fs=2000
t=np.arange(o,2,1/Fs)
fo=20
A=1
p=A*np.cos(2*pi*fo*t)
fm=2
Am=0.5
m=Am*np.cos(2*pi*fm*t)
s=p*m
plt.plot(t,p*m)
plt.xlabel('temps'); plt.ylabel('s(t)')
plt.grid(True)
plt.show()
```

```
import matplotlib.pyplot as plt
from scipy.fftpack import fft
import numpy as np
from math import pi
plt.close('all')
Fs=1000
t=np.arange(o,1,1/Fs)
f=30
A=0.5
p=np.cos(2*pi*20*t)
m=0.5*np.cos(2*pi*2*t)
s=p^*(1+m)
plt.subplot(2,1,1)
plt.plot(t,m*p);
plt.xlabel('temps(s)'); plt.ylabel('m(t) signal modulant')
n=np.size(t)
fr=(Fs/2)*np.linspace(0,1,n/2)
X=fft(m*p)
X_m=(2/n)*abs(X[o:np.size(fr)])
plt.subplot(2,1,2)
plt.plot(fr,X_m); plt.title('spectre')
plt.xlabel('frequence(Hz)'); plt.ylabel('Am(f)')
plt.tight_layout()
plt.show()
```