G. en el caso 3D sea [li] define un sutema de coordenadas dextragiro Demestre que (a) e: (e; xex) i.j. K = 1,2,3 y las pensitaciones ciclicas
e: (e; xex) 2,314
3,11,2
Intentamos generar de la bate dual la loase covariante sea entonics $e' = \underbrace{\ell_2 \times \ell_3}_{\ell_1 \cdot (\ell_2 \times \ell_3)}, \quad \underbrace{\ell^2}_{\ell_1 \cdot (\ell_2 \times \ell_3)}, \quad \underbrace{\ell^3}_{\ell_1 \cdot (\ell_2 \times \ell_3)} = \underbrace{\ell_1 \times \ell_2}_{\ell_1 \cdot (\ell_2 \times \ell_3)}$ esto sera aerto si ei.e. = 1 1 ei.e. = 0 $e' \cdot e_1 = \frac{e_2 \times e_3}{e_1 \cdot (e_2 \times e_3)} \cdot e_1 = \frac{e_1 \cdot (e_2 \times e_3)^{-1}}{e_1 \cdot (e_2 \times e_3)} = 1$ $\frac{\ell^2 \cdot \ell_2 = 0_3 \times \ell_4}{\ell_1 \cdot (\ell_2 \times \ell_3)} \cdot \ell_2 \Rightarrow \frac{\ell_2 \cdot (\ell_3 \times \ell_4)}{\ell_1 \cdot (\ell_2 \times \ell_3)} \xrightarrow{\text{producto tripol}} \frac{\ell_2 \cdot (\ell_3 \times \ell_4)}{\ell_3 \times \ell_4}$ $\xrightarrow{\text{ci clicas tenemos}} \frac{\ell_2 \cdot (\ell_3 \times \ell_4)}{\ell_3 \times \ell_4}$ $\ell^{3} \cdot \ell_{3} = \underbrace{\ell_{1} \times \ell_{2}}_{\ell_{1} \cdot (\ell_{2} \times \ell_{3})} \cdot \ell_{3} \Rightarrow \underbrace{\frac{\ell_{3} \cdot (\ell_{1} \times \ell_{2})}{\ell_{1} \cdot (\ell_{2} \times \ell_{3})}}_{\ell_{3} \cdot (\ell_{2} \times \ell_{3})} = \underbrace{\frac{\ell_{2} \cdot (\ell_{1} \times \ell_{2})}{\ell_{2} \cdot (\ell_{2} \times \ell_{3})}}_{\ell_{3} \cdot (\ell_{2} \times \ell_{3})} = \underbrace{\frac{\ell_{3} \cdot (\ell_{1} \times \ell_{2})}{\ell_{3} \cdot (\ell_{2} \times \ell_{3})}}_{\ell_{3} \cdot (\ell_{2} \times \ell_{3})}$ tenemas que cie; =1/ $e^{i\cdot l_2} = \underbrace{l_2 \times l_3}_{l_2 \times l_3}$. $l_2 = \underbrace{l_2 \cdot (l_2 \times l_3)}_{l_1 \cdot (l_2 \times l_3)} - \underbrace{Ror}_{l_2 \times l_3}$ popiedades $\underbrace{l_2 \times l_3}_{l_2 \times l_3} + \underbrace{l_2 \times l_3}_{l_2 \times l_3} = \underbrace{l_2 \cdot (l_2 \times l_3)}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3} = \underbrace{l_2 \times l_3}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3} = \underbrace{l_2 \times l_3}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3} = \underbrace{l_2 \times l_3}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3} = \underbrace{l_2 \times l_3}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3} = \underbrace{l_2 \times l_3}_{l_2 \times l_3} - \underbrace{l_2 \times l_3}_{l_2 \times l_3}$ $e' \cdot l_3 = \frac{e_2 \times l_3}{e_1 \cdot (l_2 \times l_3)} \cdot l_3 = \frac{e_3 (e_2 \times e_3)}{e_1 \cdot (e_2 \times l_3)} = 0 \quad \dots \quad \text{y all para todos}$ Siendo entonces ei. 0; =0 Q.E.D

(b) s, los volumenes; V=e, (e2xe3) y V=e.(e2xe3) entonces $V\vec{V}=1$ $e' = \frac{(e_{1} \times e_{3})}{e_{1}(e_{2} \times e_{3})} \quad e^{2} = \frac{(e_{3} \times e_{1})}{e_{1}(e_{2} \times e_{3})} \quad e^{3} = \frac{(e_{1} \times e_{2})}{e_{1}(e_{2} \times e_{3})}$ $\sqrt{V} = e_1 \cdot (e_1 \times e_3) \cdot \left(\frac{e_2 \times e_3}{e_1 \cdot (e_2 \times e_3)} \cdot \left(\frac{e_3 \times e_1}{e_1 \cdot (e_2 \times e_3)} \times \frac{e_1 \times e_2}{e_1 \cdot (e_2 \times e_3)} \right)$ $\sqrt{\tilde{V}} = e_2 \times e_3 \cdot (e_2 \times e_3)$ VN = e1. e1 = 1 QED (c) ¿ Que vector satisface a.e'=1, Demvertre que es unico sea $e' = \frac{e_i \times e_k}{e_i \cdot (e_i \times e_k)}$ $y = \alpha = (\alpha_1 | q_a, \alpha_3)$ $a \cdot (e_j \times e_k) = e_i \cdot (e_j \times e_k)$ $q = \underbrace{e_i \cdot (e_j \times e_k)^1}_{(e_j \times e_k)}$ $q = e_i \quad \text{entonces} \quad e_i \cdot e_i = 1$

$W_1 = 4i + 2j +$	ucto vectorial de das vectores a y b
	Expresados en esta base son tal que
W2 = 31+3j	a = (a1, a2 1 a3)
W3 = 2K	b=(b1, b2, b3)
	$a = a_1 W_1 + a_2 W_2 + a_3 W_3$
	$6 = a_1 w_1 + b_2 w_2 + b_3 w_3$
$a \times b = ij$	W a = 0, 1 = 0
$\begin{array}{c c} \alpha_1 w_1 & \alpha_2 \\ \hline \end{array}$	$u_2 a_3 w$
5,W, b,	$ \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{w} = \mathbf{E}_{ijk} \mathbf{a}_{j} \mathbf{b}_{k} $ $ \mathbf{a}_{2} \mathbf{b}_{3} \mathbf{w} = \mathbf{E}_{ijk} \mathbf{a}_{j} \mathbf{b}_{k} $
Las pases reciprocal	\{e^{\dagger}\}
e'= (wa x w3) =	Gi - GJ
$\omega_1 \cdot (\omega_2 \times \omega_3)$	-36
2 (14-2(11)-)	
$e^{2} = \frac{\left(\omega_{3} \times \omega_{1} \right)}{\omega_{1} \cdot \left(\omega_{2} \times \omega_{3} \right)} =$	-12î -36
$e^3 = (W_1 \times W_2)$	= -32+3j-18k
W1. (W2 X W3)	-36
I Las componentes	covariantes y contravariantes de q = 2+2j+3k
Covariantes	Contravariantes
/alw1> = 15	$\angle e^1 \mid \hat{a} \mid = \frac{1}{6}$
a W2> = 9	$\sum_{e^2} q = \frac{1}{3}$
$-q w_3>=6$	$Ze^{3} 9 = \frac{17}{12}$
1 911 3	