Databases

Lecture 8

The Physical Structure of Databases

DBMS Architecture

The Memory Hierarchy

- primary storage
 - cache, main memory
 - very fast access to data
 - volatile
 - currently used data
- secondary storage
 - e.g., magnetic disks
 - slower storage devices
 - nonvolatile
 - disks sequential, direct access
 - main database

- tertiary storage
 - e.g., optical disks, tapes
 - slowest storage devices
 - nonvolatile
 - tapes
 - only sequential access
 - good for archives, backups
 - unsuitable for data that is frequently accessed

The Memory Hierarchy

- disks and tapes significantly cheaper than main memory
- large amounts of data that shouldn't be discarded when the system is restarted
- => the need for DBMSs that bring data from disks into main memory for processing

- direct access
- extremely used in database applications
- DBMSs applications don't need to know whether the data is on disk or in main memory
- disk block
 - sequence of contiguous bytes
 - unit for data storage
 - unit for data transfer (reading data from disk / writing data to disk)
 - reading / writing a block an input / output (I/O) operation
- tracks
 - concentric rings containing blocks, recorded on one or more platters

- sectors
 - arcs on tracks
- platters
 - single-sided, double-sided (data recorded on one / both surfaces)
- cylinder
 - set of all tracks with the same diameter
- disk heads
 - one per recorded surface
 - to read / write a block, a head must be on top of the block
 - all disk heads are moved as a unit
 - systems with one active head

- sector size
 - characteristic of the disk, cannot be modified
- block size
 - multiple of the sector size

[Si08]

- DBMSs operate on data when it is in memory
- block unit for data transfer between disk and main memory
- time to access a desired location:
 - main memory approximately the same for any location
 - disk depends on where the data is stored
- disk access time:
 - seek time + rotational delay + transfer time
 - seek time
 - time to move the disk head to the desired track (smaller platter size => decreased seek time)
 - rotational delay
 - time for the block to get under the head
 - transfer time
 - time to read / write the block, once the disk head is positioned over it

- time required for DB operations dominated by the time taken to transfer blocks between disk and main memory
- goal
 - minimize access time
 - for this purpose, data should be carefully placed on disk
- records that are often used together should be close to each other:
 - same block
 - same track
 - same cylinder
 - adjacent cylinder
- accessing data in a sequential fashion reduces seek time and rotational delay

- * characteristics, e.g.:
- storage capacity (e.g., GB)
- platters
 - number, single-sided or double-sided
- average / max seek time (ms)
- average rotational delay (ms)
- number of rotations / min
- data transfer rate (MB/s)
- ...

Moore's Law

- Gordon Moore: "the improvement of integrated circuits is following an exponential curve that doubles every 18 months"
- parameters that follow Moore's law
 - speed of processors (number of instructions executed / sec)
 - no. of bits / chip
 - capacity of largest disks
- parameters that do not follow Moore's law
 - speed of accessing data in main memory
 - disk rotation speed
- => "latency" keeps increasing
 - time to move data between memory hierarchy levels appears to take longer compared with computation time

Solid-State Disks

- NAND flash components
- faster random access
- higher data transfer rates
- no moving parts
- higher cost per GB
- limited write cycles

Managing Disk Space

- the disk space manager (DSM) manages space on disk
- page
 - unit of data
 - size of a page = size of a disk block
 - R/W a page one I/O operation
- upper layers in the DBMS can treat the data as a collection of pages
- DSM
 - commands to allocate / deallocate / read / write a page
 - knows which pages are on which disk blocks
 - monitors disk usage, keeping track of available disk blocks

Managing Disk Space

- free blocks can be identified:
 - by maintaining a linked list of free blocks (on deallocation, a block is added to the list)
 - by maintaining a bitmap with one bit / block, indicating whether the corresponding block is used or not
 - allows for fast identification of contiguous available areas on disk

- e.g., DB = 500.000 pages, main memory 1000 available pages, query that scans the entire file
- buffer manager (BM)
 - brings new data pages from disk to main memory as they are required
 - decides what main memory pages can be replaced
 - manages the available main memory
 - collection of pages called the buffer pool (BP)
 - frame
 - page in the BP
 - slot that can hold a page
- replacement policy
 - policy that dictates the choice of replacement frames in the BP

- higher level layer L in the DBMS asks the BM for page P
- if P is not in the BP, the BM brings it into a frame F in the BP
- when P is no longer needed, L notifies the BM (it releases P), so F can be reused

• if P has been modified, L notifies the BM, which propagates the changes in F to the disk

Sabina S. CS

- BM maintains 2 variables for each frame F
 - pin_count
 - number of current users (requested the page in F but haven't released it yet)
 - only frames with pin_count = 0 can be chosen as replacement frames
 - dirty
 - boolean value indicating whether the page in F has been changed since being brought into F
- incrementing pin_count
 - pinning a page P in a frame F
- decrementing pin_count
 - unpinning a page

- initially, pin_count = 0, dirty = off, ∀ F ∈ BP
- Lasks for a page P; the BM:
- 1. checks whether page P is in the BP; if so, pin_count(F)++, where F is the frame containing P

otherwise:

- a. BM chooses a frame FR for replacement
- if the BP contains multiple frames with pin_count = 0, one frame is chosen according to the BM's replacement policy
- pin_count(FR)++;
- b. if dirty(FR) = on, BM writes the page in FR to disk
- c. BM reads page P in frame FR
- 2. the BM returns the address of the BP frame that contains P to L

- obs. if no BP frame has pin_count = 0 and page P is not in BP, BM has to wait / the transaction may be aborted
- page requested by several transactions; no conflicting updates
- crash recovery, Write-Ahead Log (WAL) protocol additional restrictions when a frame is chosen for replacement
- replacement policies
 - Least Recently Used (LRU)
 - queue of pointers to frames with pin_count = 0
 - a frame is added to the end of the queue when its pin_count becomes
 - the frame at the head of the queue is chosen for replacement
 - Most Recently Used (MRU)
 - random

- replacement policies
 - clock replacement
 - LRU variant
 - n number of frames in BP
 - frame referenced bit; set to on when pin_count becomes 0
 - crt variable frames 1 through n, circular order
 - if the current frame is not chosen, then crt++, examine next frame
 - if *pin_count* > 0
 - current frame not a candidate, crt++
 - if referenced = on
 - referenced := off, crt++
 - if pin_count = 0 AND referenced = off
 - choose current frame for replacement

- replacement policies
 - can have a significant impact on performance
- example:
 - BM uses LRU
 - repeated scans of file f
 - BP: 5 frames, *f*: <= 5 pages
 - first scan of f brings all the pages in the BP
 - subsequent scans find all the pages in the BP
 - BP: 5 frames, *f*: 6 pages
 - sequential flooding: every scan of f reads all the pages
 - MRU better in this case

Disk Space Manager & Buffer Manager

- DSM
 - portability different OSs
- BM
 - DBMS can anticipate the next several page requests (operations with a known page access pattern, like sequential scans)
 - prefetching BM brings pages in the BP before they are requested
 - prefetched pages
 - contiguous: faster reading (than reading the same pages at different times)
 - not contiguous: determine an access order that minimizes seek times / rotational delays

Disk Space Manager & Buffer Manager

- BM
 - DBMS needs
 - ability to explicitly force a page to disk
 - ability to write some pages to disk before other pages are written
 - WAL protocol first write log records describing page changes, then write modified page

References

- [Ta13] ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra02] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga09] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009
- [Ha96] HANSEN, G., HANSEN, J., Database Management And Design (2nd Edition), Prentice Hall, 1996
- [Ra02S] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, Slides for the 3rd Edition, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [Si11] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (6th Edition), McGraw-Hill, 2011
- [Si19S] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts, Slides for the 7th Edition, http://codex.cs.yale.edu/avi/db-book/
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html