Package 'metaLINCS'

July 11, 2022

Title Enrichment analysis of LINCS L1000 drug signatures using meta-level connectivity mapping Version 0.9.0 **Description** 'metaLINCS' calculates and visualises correlation between experimental gene expression profiles with pertubation signatures from the LINCS L1000 project that has collected gene expression profiles for thousands of perturbagens at a variety of time points, doses, and cell lines. **License** GPL (>= 3) URL https://github.com/bigomics/metaLINCS BugReports https://github.com/bigomics/metaLINCS/issues **Depends** R (>= 3.5.0) Imports corrplot, fgsea, gplots, graphics, Matrix, qlcMatrix, stats, utils, uwot Suggests knitr, rmarkdown, testthat (>= 3.0.0) VignetteBuilder knitr Config/testthat/edition 3 **Encoding** UTF-8 LazyData true LazyDataCompression bzip2 **Roxygen** list(markdown = TRUE) RoxygenNote 7.1.2

10

R topics documented:

computeC	connectivity	Enr	ich	ım	en	t.														,	2
computeN	l oaEnrichm	ent																 			2
DrugsAnr	ot																	 			2
mDrugEn	rich																	 			4
metaLINC	CS																	 			4
plotActiva	itionMap .																				1
plotDrugO	Connectivity																				8
plotMOA																					8
selectResi	ılt																	 			9

computeConnectivityEnrichment

Compute Connectivity Enrichment

Description

Compute Connectivity Enrichment

Usage

Index

```
computeConnectivityEnrichment(
    mFC,
    names = NULL,
    mDrugEnrich = metaLINCS::mDrugEnrich,
    nmin = 15,
    nprune = 250
)
```

Arguments

mFC A matrix of differential gene expression fold-change of own experiment, the

rows name of the matrix must be the genes names

names Names in case mFC is a vector

mDrugEnrich a large matrix represents the gene expression fold change in the presence of

different perturbations, either various drugs concentrations or other genetic en-

gineering techniques as gene-knock-in etc..

nmin the minimum number of experiments in the drug set

nprune takes only the (nprune) top matching drugs for each comparison to reduce the

size of the matrix. default is 0 to take the full matrix

Value

list of drugs enrichment statistics and annotations

computeMoaEnrichment

Examples

```
# from the data-sets provided as examples within the package load the .rda files
# DrugsAnnot, mDrugEnrich, mFC
res <- computeConnectivityEnrichment(mFC, mDrugEnrich, nmin=15, nprune = 250)
```

computeMoaEnrichment Get the mechanism of action object

Description

Get the mechanism of action object

Usage

```
computeMoaEnrichment(res, annot = metaLINCS::DrugsAnnot)
```

Arguments

is the output object from computeConnectivityEnrichment() res

is a drug annotation table with moa and target columns annot

Value

MoA Mechanism of Action object

Examples

```
# from the data-sets provided as examples within the package load the .rda files
# DrugsAnnot, mDrugEnrich, mFC
res <- computeConnectivityEnrichment(mFC)</pre>
moa <- computeMoaEnrichment(res)</pre>
```

DrugsAnnot

Annotation of a set of drugs

Description

This data set is a matrix represents the drugs annotation that contains drugs' names, targets, mechanism of action, clinical phase, disease area, and indication.

Usage

```
data("DrugsAnnot")
```

4 mDrugEnrich

Format

A data frame with 6125 observations on the following 6 variables.

pert_iname a character vector clinical_phase a character vector moa a character vector target a character vector disease_area a character vector indication a character vector

Details

L1000 repurposing drugs . For research use only. Do not use the Repurposing Hub to make clinical treatment decisions. BROAD DOES NOT GUARANTEE OR WARRANT THE ACCURACY OF THE DATA WITHIN THE REPURPOSING HUB.

Source

"The Drug Repurposing Hub, Broad Institute" http://www.broadinstitute.org/repurposing

References

Corsello SM, et al. Nature Medicine. 2017 Apr 7;23(4):405-408. doi: 10.1038/nm.4306

Examples

```
head(metaLINCS::DrugsAnnot)
## str(DrugsAnnot)
```

mDrugEnrich

The drugs activity on 1001 genes

Description

Large matrix representing the gene expression fold change of 1001 genes in the presence of 20220 different drugs concentrations and working time.

Usage

metaLINCS::mDrugEnrich

Format

A gene expression matrix (log2FC) with 1001 rows and 20220 columns corresponding to 1001 genes and 20220 drug perturbation experiments.

metaLINCS 5

Details

The LINCS L1000 project has collected gene expression profiles for thousands of perturbagens at a variety of time points, doses, and cell lines. A full list of the chemical and genetic perturbations used can be found on the CLUE website along with their descriptions.

Source

https://lincsproject.org/LINCS/tools/workflows/find-the-best-place-to-obtain-the-lincs-11000-data

References

Duan Q et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 2014 Jul;42 (Web Server issue):W449-60.

Examples

```
head(metaLINCS::mDrugEnrich)
## maybe str(mDrugEnrich) ; plot(mDrugEnrich) ...
```

metaLINCS

metaLINCS: is a new method to visualise correlations between experimental gene expression profiles and drug connectivity map profiles

Description

The metaLINCS package provides three categories of important functions: computePeturbEnrichment, computeComboEnrichment and several plotting functions

metaLINCS functions

computeConnectivityEnrichment: Compute Connectivity Enrichment based on database and annotation provided as input parameter USAGE: computeConnectivityEnrichment(mFC = mFC, mDrugEnrich = mDrugEnrich, nprune = 250, contrast = NULL)

plotActivationMap: Plot drug Activity Map. USAGE: plotActivationMap(res, nterms = 50, nfc = 20)

computeMoaEnrichment: Compute mechanism-of-action enrichment USAGE: computeMoaEnrichment(dsea)

plotDrugConnectivity: Plot Drug Connectivity USAGE: plotDrugConnectivity(dsea) plotMOA: Plot mechanism of action bargraph USAGE: plotMOA(dsea, ntop = 16)

6 mFC

mFC

Fold change matrix of differential gene expresion from RNA-seq data of multiple myeloma

Description

Example signature data as query input for the analysis. This is the matrix that you probably want to replace. There are 6 contrasts:glucocorticoid sensitive vs glucocorticoid resistant ("Resistant.vs.Sensitive"); Treated with Withaferin-A vs untreated ("WithaferinA.vs.Untreated"); untreated glucocorticoid resistant cells vs untreated glucocorticoid sensitive cells ("UTR.vs.UTS"); Treated with Withaferin-A glucocorticoid resistant cells vs Treated with Withaferin-A glucocorticoid sensitive cells ("WAR.vs.WAS"); Treated Resistant vs Untreated Resistant ("WAR.vs.UTR"); Treated sensitive vs Untreated sensitive ("WAS.vs.UTS")

Usage

dim(mFC)
head(mFC)

Format

A data frame with 5332 observations on the following 6 variables.

Resistant.vs.Sensitive a numeric vector WithaferinA.vs.Untreated a numeric vector UTR.vs.UTS a numeric vector WAR.vs.WAS a numeric vector WAR.vs.UTR a numeric vector WAS.vs.UTS a numeric vector

Details

The RNAseq data from (Logie et al 2021) study. They compared the therapeutic efficacy of the phytochemical kinase inhibitor withaferin A with the clinically approved BTK inhibitor ibrutinib to target hyperactivated tyrosine kinase signaling in glucocorticoid-resistant multiple myeloma cells. The results demonstrate that withaferin-A induced cell death of glucocorticoid-resistant MM1R cells involves covalent cysteine targeting of multiple Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including BTK.

Source

GEO accession number GSE162475

References

Logie E, Chirumamilla CS, Perez-Novo C, Shaw P et al. Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cell. Cancers (Basel) 2021 Mar 31;13(7). PMID: 33807411

plotActivationMap 7

Examples

```
data(mFC)
## maybe str(mFC) ; plot(mFC) ...
```

 ${\tt plotActivationMap}$

Plot drug Activity Map

Description

Plot drug Activity Map

Usage

```
plotActivationMap(res, nterms = 60, nfc = 20, rot = FALSE)
```

Arguments

nterms	integer
nfc	integer
dsea	drugs set enrichment analysis object as output of getActiveDSEA
drugs	a list of drugs enrichment stats and annotations the output of compute PeturbEnrichment() $\label{eq:compute}$
method	the computation methods of Enrichment, either using GSEA algorithm or the rank correlation.
contr	is a character string represent the two compared conditions(contrast) as it is provided from the fold-change matrix

Value

plot of drug activity map

Examples

```
# from the data-sets provided as examples within the package load the .rda files
#DrugsAnnot, mDrugEnrich, mFC
res <- computeConnectivityEnrichment(mFC)
plotActivationMap(res, nterms = 50, nfc=20, rot=TRUE)</pre>
```

8 plotMOA

Description

Plot Drug Connectivity

Usage

```
plotDrugConnectivity(res, contr, drugs = NULL, nplots = 25)
```

Arguments

res is a result object from the output of computeConnectivityEnrichment()

contr is a index of the selected contrast drugs is a vector of selected drugs to show nplots is the number of plots to show

Value

```
a plot of drug connectivity
```

Examples

```
# from the data-sets provided as examples within the package load the .rda files
# DrugsAnnot, mDrugEnrich, mFC
res <- computeConnectivityEnrichment(mFC)
plotDrugConnectivity(res, contr=1, nplots=16)</pre>
```

plotMOA

Plot mechanism of action

Description

Plot mechanism of action

Usage

```
plotMOA(moa, contr = NULL, type = c("drugClass", "targetGene"), ntop = 20)
```

Arguments

ntop	the number of the top enteries (genes or drug), $ntop = 16$ as a default value
dsea	is dsea object which is the output of the function getActiveDSEA()

selectResult 9

Value

plot of mechanism of action

Examples

```
# from the data-sets provided as examples within the package load the .rda files
# DrugsAnnot, mDrugEnrich, mFC
res <- computeConnectivityEnrichment(mFC)
moa <- computeMoaEnrichment(res)
plotMOA(moa, contr=1, type="drugClass", ntop=25)</pre>
```

selectResult

Select result

Description

Select result

Usage

```
selectResult(res, contr)
```

Arguments

res is the result from computeConnectivityEnrichment()

contr contrast selection

Value

selected result for selected contrast

Examples

```
res1 <- selectResult(res,1)</pre>
```

Index

```
* datasets
DrugsAnnot, 3
mDrugEnrich, 4
mFC, 6

computeConnectivityEnrichment, 2
computeMoaEnrichment, 3

DrugsAnnot, 3

mDrugEnrich, 4
metaLINCS, 5
mFC, 6

plotActivationMap, 7
plotDrugConnectivity, 8
plotMOA, 8

selectResult, 9
```