PR 2 TBFO

Sunday, September 10, 2023

Nama: Raden Francisco Trianto Bratadiningrat

NIM: 13522091

* Exercise 2.3.1: Convert to a DFA the following NFA:

	0	1
-> p	{p,q}	{p}
{p,q}	{p,q,r}	{p,r}
{p,q,r}	{p,q,r,s}	{p,r}
{p,r}	{p,q,s}	{p}
*{p,q,r,s}	${p,q,r,s}$	{p,r,s}
*{p,q,s}	{p,q,r,s}	{p,r,s}
*{p,r,s}	{p,q,s}	{p,s}
*{p,s}	{p,q,s}	{p,s}

Exercise 2.3.2: Convert to a DFA the following NFA:

	0	1
$\rightarrow p$	$\{q,s\}$	$\{q\}$
*q	$\{r\}$	$\{q,r\}$
r	$\{s\}$	$\{p\}$
*s	Ø	$\{p\}$

	0	1
-> p	{q,s}	{q}
*{q}	{r}	{q,r}
{r}	{s}	{p}
*{s}	х	{p}
*{r,s}	{s}	{p}
*{q,r}	{r,s}	{p,q,r}
*{q,s}	{r}	{p,q,r}
*{p,q,r}	{q,r,s}	{p,q,r}
*{q,r,s}	{r,s}	{p,q,r}
х	х	x

! Exercise 2.3.4: Give nondeterministic finite automata to accept the following languages. Try to take advantage of nondeterminism as much as possible.

* a) The set of strings over alphabet $\{0,1,\ldots,9\}$ such that the final digit has appeared before.

b) The set of strings over alphabet {0, 1, ..., 9} such that the final digit has not appeared before.

c) The set of strings of 0's and 1's such that there are two 0's separated by a number of positions that is a multiple of 4. Note that 0 is an allowable multiple of 4.

0	1	
-> q0 {q0,q1}		
{q2}	{q3}	
Ø	Ø	
{q4}	{q4}	
{q5}	{q5}	
{q2}	{q1}	
	{q0,q1} {q2} Ø {q4} {q5}	

2.4.1

Exercise 2.4.1: Design NFA's to recognize the following sets of strings.

a) abc, abd, and aacd. Assume the alphabet is $\{a, b, c, d\}$.

	а	b	С	d
-> q0	{q0,q1}	{q0}	{q0}	{q0}
q1	{q4}	{q2}	Ø	Ø
q2	Ø	Ø	{q3}	{q3}
*q3	Ø	Ø	Ø	Ø
q4	Ø	Ø	{q5}	Ø
q5	Ø	Ø	Ø	{q3}

b) 0101, 101, and 011.

	0	1
-> q0	{q0,q1}	{q0,q2}
q1	Ø	{q2,q3}
q2	{q3}	Ø
q3	Ø	{q4}
q4	Ø	Ø

c) ab, bc, and ca. Assume the alphabet is $\{a,b,c\}$.

	а	b	С
-> q0	{q0,q1}	{q0,q2}	{q0,q3}
q1	Ø	{q4}	Ø
q2	Ø	Ø	{q4}
q3	{q4}	Ø	Ø
*q4	Ø	Ø	Ø

