Introduction to NGS data analysis

Richard Smith-Unna

- 1. Rigour and reproducibility
- 2. Getting your read data
- 3. What your data looks like: the FASTQ format
- 4. Organising the raw data
- 5. Read data quality checking
- 6. Quality improvement
- 7. Getting hold of a reference
- 8. Aligning reads to the reference
- 9. Application-specific workflows

1. Rigour and reproducibility

- Bioinformatics is science
- Keep a (digital) lab book
- Diligently record protocols:
 - software versions
 - commands
 - settings
 - file manipulations
 - numerical conversions
- Publish your code
- Data driven discovery is valid science, but requires self control

2. Getting your read data

- FTP or HTTP transfer (wget or curl)
- Might require a special program or plugin (e.g. Aspera)
- Files are compressed FASTQ, separate files for left and right pairs
- Verify file integrity after download (md5sum)
- Pay attention to download expiry dates
- Backup

3. What your data looks like: the FASTQ format

```
@HWUSI-EAS100R:6:73:941:1973#0/1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

sequence identifier

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

base quality

4. Organising the raw data

- if samples are multiplexed, map barcodes to samples
- may require splitting, e.g. with fastx-toolkit barcode splitter
- organise according to condition and sample
- give files machine-parseable names
 - rice_wet_rep1_left.fq.gz
 - rice_wet_rep1_right.fq.gz
 - rice_wet_rep2_left.fq.gz
 - rice_wet_rep2_right.fq.gz
 - rice_dry_rep1_left.fq.gz
 - rice_dry_rep1_right.fq.gz
 - rice_dry_rep2_left.fq.gz
 - rice_dry_rep2_rightt.fq.gz

5. Read data quality checking

5. Read data quality checking

Sequence content (%)

6. Quality improvement

common approaches:

- trimming adapters
- trimming low-quality bases
- trimming to a fixed length
- discarding low-quality reads

tools:

- trimmomatic
- fastx-toolkit

7. Getting hold of a reference

genome or transcriptome?

- genome for:
 - variant calling
 - DNase-seq
 - CHiP-seq
- transcriptome for:
 - RNAseq
- FASTA format

7. Getting hold of a reference

- sources of existing references:
 - ENSEMBL http://ensembl.org
 - JGI http://genome.jgi.doe.gov
 - EBI genomes
 http://www.ebi.ac.uk/
 genomes/bacteria.html
- assembling your own:
 - covered tomorrow

8. Aligning reads to the reference

- Estimate the original source location of each read
- Simon will cover this in the next lecture

9. Application-specific workflows

- Usually starts by converting read alignments into some numerical summary data (e.g. expression counts, peak calls)
- Running programs from the command-line
- Using specialist packages in a programming language like R (http://bioconductor.org), Python or Ruby (http://biogems.info)
- Writing your own analysis code
- Performing statistical analysis on alignment summary data
- Normalisation: accounting for different sample sizes
- Storytelling and plotting