Second-level analysis

Multilevel modeling, Robust regression, thresholding and multiple comparison correction

Suhwan Gim

Student of the Cocoan Lab

Table of contents

	The	second-level analysis (or group-level analysis)
		Introduction to multilevel model (linear-mixed effect model)
		Why is the second-level analysis needed in fMRI?
		Robust Regression Toolbox in CanlabTools
		☐ Let's try to perform Robust Regression using the pain datasets (Woo et al. 2014)
☐ Thresholding and multiple comparison correction		
		What the family-wise error rate?
		Why we need to correct multiple comparison?
		The methods that can correct a multiple comparison
		Recommended materials

(hierarchical linear models, linear mixed-effect model, mixed models, nested data models, random coefficient, random-effects models, or random parameter models)

- What is the multilevel model?
 - Statistical models of parameters that vary at more than one level
 - Multilevel models are particularly appropriate for research designs where data for participants are organized at more than one level (i.e., nested data)

• The units of analysis are usually individuals (at a lower level) who are nested within

contextual/aggregate units (at a higher level)

https://en.wikipedia.org/wiki/Multilevel_model

Figure from Uthman, O. A., Ekström, A. M., & Moradi, T. T. (2016). Influence of socioeconomic position and gender on current cigarette smoking among people living with HIV in sub-Saharan Africa:

disentangling context from composition. BMC public health, 16(1), 1-9.

- Benefits of a multilevel approach
 - Correctly account for complex data structures
 - : Where single-level model can underestimate each level's variances
 - Incorporate information on group level relationships
 - : Where aggregate analysis only examines group level, and individual analysis can ignore groups (or incorrectly treat group effects as individual effects)
 - Link context to the individual
 - : How individual relationships are moderated by broader context

https://youtu.be/YLkXP3Edd80

Nested (or hierarchical, multilevel) structure

If we don't consider the structure of data?

https://towardsdatascience.com/using-mixed-effects-models-for-linear-regression-7b7941d249bhttp://people.linguistics.mcgill.ca/~morgan/book/lmem.html

Multilevel model

How to perform? (Two stage random effects formulation)

 $Y_{ij}Employtment\ status = \beta_{0j} + \beta_{1j}Education + \beta_{2j}Martial\ Status + \beta_{3j}Wealth\ status + e_{ij}$

 Second, first-level beta become the dependent variable of next level analysis

$$\beta_{1j} = \gamma_{10} + \gamma_{11} Place \ of \ residence + u_{1j}$$

$$\beta_{2j} = \gamma_{20} + \gamma_{21} Place \ of \ residence + u_{2j}$$

$$\beta_{3j} = \gamma_{30} + \gamma_{31} Place \ of \ residence + u_{3j}$$
Second-level intercept
Second-level variable

firs-level residual

<u>Multilevel model</u>

- What is the strength?
 - The between-subject variability will be considered
 - We can explicitly examine the multilevel variable
 - Examine experimental condition effects only by controlling multilevel variable
 - Test how multilevel variable influence the first-level experimental condition effects

Multilevel Model Notation

Every level-1 b justifies a level-2 equation

$$Y_{ij} = \beta_{0j} + \beta_{1j} SES_{ij} + \beta_{2j} AGE_{ij} + \varepsilon_{ij}$$

Level 2 equations include random term...

$$eta_{0j}=\gamma_{00}+u_{0j}$$
 Equation for intercept $eta_{1j}=\gamma_{10}+u_{1j}$ Equation for SES $eta_{2j}=\gamma_{20}+u_{2j}$ Equation for AGE

Note: If you don't wish to include a random term for any level-2 equation, you don't have to!

Let's try to perform multilevel model using SEMIC pain calibration data (glmfit_multilevel in CanlabTools)