Bayesian Econometrics

Andrés Ramírez Hassan

Universidad Eafit Departamento de Economía

February 6, 2017

Outline

Conjugate Families

- A Conjugate family is a kind of prior distributions for which the posterior distribution can be easily calculated.
- Conjugate prior distributions play an important role in Bayesian methods, because their use can simplify the process of integration required for marginalization.
- When a prior and posterior are from a same family, the actualization process for parameters is simplified.

Conjungate Families Binomial distribution

Theorem

Suppose that $X_1 cdots X_n$ is a random sample from a Bernoulli distribution with parameter p, which is unknown. Also assume that the prior distribution for p is beta with parameters $\alpha(>0)$ and $\beta(>0)$. Then the posterior distribution for p, is beta with parameters $\alpha + \sum X_i$ and $\beta + n + \sum X_i$.

Binomial distribution

$$\pi(p) \propto p^{\alpha-1}(1-p)^{\beta-1},$$

 $L(p|X) \propto p^{\sum X_i}(1-p)^{n-\sum X_i}$

then,

$$\pi(p|X) \propto \pi(p)L(p|X)$$

 $\pi(p|X) \propto p^{\alpha+\sum X_i-1}(1-p)^{\beta+n-\sum X_i-1}.$

We can see that: $p|x \sim beta(\alpha + \sum X_i; \beta + n - \sum X_i)$.

Conjungate Families Poisson distribution

Theorem

Suppose that $X_1 \ldots X_n$ is a random sample from a Poisson distribution with unknown mean λ . Also assume that the prior distribution for λ is Gamma with parameters $\alpha(>0)$ and $\beta(>0)$. Then the posterior distribution for λ is Gamma with parameters $\alpha + \sum X_i$ and $\beta + n$.

Poisson distribution

$$\pi(\lambda) \propto \lambda^{\alpha-1} e^{-\lambda \beta},$$

 $L(\lambda|X) \propto e^{-n\lambda} \lambda^{\sum X_i},$

then,

$$\pi(\lambda|X) \propto \pi(\lambda)L(\lambda|X)$$

 $\pi(\rho|X) \propto \lambda^{\alpha+\sum X_i-1}e^{-\lambda(\beta+n)}$.

We can see that: $\lambda | x \sim Gamma(\alpha + \sum X_i; \beta + n)$.

Conjungate Families Exponential distribution

Theorem

Suppose that $X_1 \ldots X_n$ is a random sample from an Exponential distribution with unknown mean λ . Also assume that the prior distribution for λ is Gamma with parameters $\alpha(>0)$ and $\beta(>0)$. Then the posterior distribution for λ is Gamma with parameters $\alpha + n$ and $\beta + \sum X_i$.

Exponential distribution

$$\pi(\lambda) \propto \lambda^{\alpha-1} e^{-\lambda \beta},$$

 $L(\lambda|X) \propto \lambda^n e^{-\lambda \sum X_i},$

then,

$$\pi(\lambda|X) \propto \pi(\lambda)L(\lambda|X)$$

 $\pi(\rho|X) \propto \lambda^{\alpha+n-1}e^{-\lambda(\beta+\sum X_i)}$.

We can see that: $\lambda | x \sim Gamma(\alpha + n; \beta + \sum X_i)$.

Normal-Gamma

Theorem

Suppose that $X_1 \ldots X_n$ is a random sample from a Normal distribution with unknown parameters μ and precision τ . Also assume that the prior distributions for μ and τ are respectively Normal $N(\mu_0, \tau_0)$ and $Gamma(\alpha_0, \beta_0)$. The posterior distributions for both are respectively $N(\mu_1, \tau_1)$ and $Gamma(\alpha_1, \underline{\beta}_1)$, where:

$$\mu_1 = \frac{\tau_0 \mu_0 + n\bar{X}}{\tau_0 + n}; \ \tau_1 = \tau_0 + n; \alpha_1 = \alpha_0 + n/2 \text{ and}$$
$$\beta_1 = \beta_0 + \frac{1}{2} \sum (X_i - \bar{X})^2 + \frac{\tau_0 n(\bar{X} - \mu_0)}{2(\tau_0 - n)}.$$