Predicting outcomes in neovascular Age-related Macular Degeneration from retinal images using a convolutional neural network

Supervisors:

Clinical: *****

Machine Learning: *****

Outline

- 1. Introduction & Background
- 2. Research aim
- 3. Literature Review
- 4. Data & Domain
- 5. Methodology
- 6. Results
- 7. Discussion
- 8. Conclusion & Future Work

What is AMD?

Age-related Macular Degeneration

A Leading Cause of Vision Loss

- Can lead to severe vision impairment
- Affects mainly elderly people

Rising Cases with an Ageing Population

- More AMD cases expected as people live longer
- Early diagnosis & effective treatment are crucial

Normal Vision

Vision in nAMD

AMD types

Dry AMD

- More common
- Slower progression
- No effective treatment currently

Wet AMD

- Less common but more severe
- Characterised by abnormal blood vessel growth
- Treatable with anti-VEGF injections

"Fig. 1. Illustration of the ocular anatomy and intravitreal injection...," n.d.

Optical Coherence Tomography (OCT) Scan

- Non-invasive imaging technique
- Produces high-resolution cross-sectional images of the retina
- Helps visualise retinal layers, fluid accumulation, and biomarkers relevant to AMD

Image credit: spelio, Flickr (CC BY 2.0) https://www.flickr.com/photos/spelio/49526627638

What does an OCT scan look like?

- Shows retinal layers in detail
- Key tool for detecting abnormalities

Figure 2. "Figure 3 OCT of left eye – showing IRF... | Oxford Academic," n.d

Patients Often Ask

- How many injections will they need?
- Will they still be able to **drive** in a year?

To Address These Questions

 Can a deep learning model based on baseline OCT images predict injection frequency over 12 months?

Can it predict future visual acuity (e.g., driving ability)?

How to predict?

Key Biomarkers - Features linked to disease

- IRF (Intraretinal Fluid), SRF (Subretinal Fluid)
- SHRM (Subretinal Hyperreflective Material)
- PED (Pigment Epithelial Detachment)

"jcm-13-06244-g001.png," n.d.

Key Biomarkers

IRF (Intraretinal Fluid), SRF (Subretinal Fluid)

Fluid - low signals helial Detachment)

"jcm-13-06244-g001.png," n.d.

1-2. Key Biomarkers

The retinal pigment layer separates from the tissue below

- IRF (Intraretinal Fluid), SRF (Subretinal Fluid)
- PED (Pigment Epithelial Detachment)
- SHRM (Subretinal Hyperreflective Material)

"jcm-13-06244-g001.png," n.d.

1-2. Key Biomarkers

bright, solid-looking material under the retina

- PED (Pigmen Phanelial Detachment)
- **SHRM** (Subretinal Hyperreflective Material)

"jcm-13-06244-g001.png," n.d.

What are Convolutional Neural Networks (CNNs)?

- CNNs extract image features hierarchically.
- Construct of convolution, ReLU activation, pooling, and fully connected layers.
- In ophthalmology, CNNs detect fluid and classify AMD stages.

Prior Work

- Al in medical imaging improves diagnosis and efficiency.
- In ophthalmology, CNNs detect fluid and classify disease stages in OCT.

Existing models:

- RETFluidNet, Vienna Fluid Monitor, Deep Sequence, 3D U-Net.
- Strong performance in segmentation and risk stratification.

Prior Work

- Prior CNNs focus on image-level tasks (fluid detection, disease staging).
- They do not predict clinical outcomes (e.g., treatment count, visual acuity).
- This dissertation explores outcome prediction, aiming for direct clinical relevance.

Data & Domain

- OCT scans from the Heidelberg Spectralis system
- 15 cases' OCT scans with nAMD (wet AMD) from 6 NHS clinics across the UK
- → Multi-site data ensures diversity in imaging and clinical cases

Dataset & Preprocessing

1. Selected **14** patients' data out of 15 (clinician decision – poor-quality scan excluded)

2. Selected **7** important slices per patient

Final dataset: 14 patients × 7 slices = 98 OCT images

Dataset & Preprocessing

3. Cropped and resized images to 450×450 pixels

Approaches

How well can a CNN predict Treatment Frequency and Visual Acuity?

Challenges: Limited dataset size

Approaches:

- 1. Cross-validation (7 splits): Reducing variance and ensuring more robust evaluation
- 2. Data Augmentation: Expanding the dataset artificially to stabilise training
- 3. Transfer Learning: Leveraging prior knowledge from pre-trained models

Approach 1 - Data split (Cross-Validation)

Low

High

Two groups each:

• Visual acuity (words) : < **72** or ≥ **72**

7-fold cross-validation with balanced splits.

Models

Approach 2 - Model Generalisation

Augmentation:

flip, zoom, contrast changes, noise — improves robustness to OCT scan variations

Regularisation:

batch normalisation, dropout layers, early stopping — prevents overfitting

Baseline CNN Model

Model Architecture

- 4 convolutional layers -> Detect patterns from edges to complex shapes
- 2 fully connected layers -> Combine features for final classification

Approach 3 - Transfer learning

Use knowledge from a pretrained model to improve performance on target task

Baseline Performance (No Augmentation)

Treatment, VA -> Around 0.5

Improvement 1: Data Augmentation

Treatment: 0.57 -> 0.67

VA: 0.45 -> 0.68

Improvement 2: Transfer Learning

Treatment: 0.67 -> 0.9

VA: 0.68 -> 0.70

Cross-validation

Treatment:

- Augmentation $\approx 0.69 \pm 0.15$
- Transfer $\approx 0.86 \pm 0.20$

Visual Acuity (VA):

- Augmentation $\approx 0.68 \pm 0.16$
- Transfer $\approx 0.71 \pm 0.17$
- Transfer shows higher mean accuracy but larger variability across splits
- Augmentation is slightly more stable

Summary of findings

Without augmentation:

Treatment > VA

With augmentation:

• Treatment < VA

Transfer learning:

Treatment > VA

None < Augmentation < Transfer

Black box & Explainable AI (XAI)

Clinicians

- Look for **biomarkers** (fluid, PED, SHRM, etc.)
- Use them for diagnosis and treatment planning
- Link biomarkers to prognosis

CNN Model

- Learns patterns directly from OCT images
- Highlights regions contributing most to prediction (e.g. via Grad-CAM)
- Ideally aligns with clinical biomarkers

Correlation between Treatment and VA

Very low correlation between treatment and vision. \rightarrow 0.086585

DELETED

Grad-Cam

- Highlights regions in an image that influence the CNN's prediction
- Supports clinical validation and interpretability

In This Study

 Applied to each model's predictions (were verified by ophthalmologists)

Result - Grad-Cam

Model Performance from Clinician Perspective

- Model struggles to detect intra-retinal and subretinal fluid consistently
- Performs better at identifying highly reflective material in certain cases
- Some false positives/negatives remain, highlighting the need for further refinement

Discussion

- Augmentation generally boosts treatment prediction accuracy.
- VA prediction is less affected by augmentation, needing tailored strategies.
- Transfer learning yields the best accuracy, especially for treatment.
- Accuracies vary per split, so task-specific tuning is essential.

Summary

Findings

- CNN with augmentation is effective on small datasets
- Transfer learning achieves higher accuracy but risks of overfitting
- Grad-CAM improves interpretability, but clinical alignment is limited

Future Work

- Larger datasets to improve stability and reduce overfitting
- Multi-class prediction for Treatment; regression for VA
- Stronger validation strategies