MATH7039 - Assignment 3

Joel Thomas 44793203

1.

See attached excel spreadsheet "Q1.xlsx" for more information.

a)

Q1.														
г	0.12													
Т	0.25													
Δt	0.125													
u	1.1													
d	0.9													
so	20													
К	21													
				Suu	24.2									
		Su	22											
so	20			Sud	19.8									
		Sd	18											
				Sdd	16.2									
pu	(S0e^(rT)	- Sd)/(Su - S	Sd)	0.575565										
pd	1 - pu			0.424435										
a)														
Solution:						Formulas								
				Cuu	3.2							Cuu	=MAX(F10	-\$B\$8, 0)
		Cu	1.814388						Cu	=EXP(-\$B\$	2*\$B\$4)*(\$E\$16*F21		
C0	1.028751			Cud	0	CO	=EXP(-\$B	\$2*\$B\$4)*(\$E\$16*D2					
		Cd	0						Cd					
				Cdd	0						, ,	Cdd	=MAX(F14	
	1.028751		1.814388	Cud	0			\$2*\$B\$4)*(\$E\$16*D2	2+\$E\$17*D2	(4)	\$E\$16*F21 Cud \$E\$16*F23	=MAX(F10 +\$E\$17*F23 =MAX(F12 +\$E\$17*F25 =MAX(F14	3) :-\$B\$ 5)

Figure 1: Screenshot of calculations for \mathcal{C}_0 using given information

b)

Using information from figure 1 (r, T, etc.), the calculated put option price is displayed in figure 2 below:

b)														
Solution						Formulas:								
				Puu	0							Puu	=MAX(\$B\$	8-F10, 0)
		Pu	0.501739						Pu	=EXP(-\$B\$	2*\$B\$4)*(\$E\$16*F1	9+\$E\$17*F31)
P0	1.408107			Pud	1.2	P0	=EXP(-\$B\$	2*\$B\$4)*(\$E\$16*D30	+\$E\$17*D3	2)	Pud	=MAX(\$B\$	8-F12, 0)
		Pd	2.687351						Pd	=EXP(-\$B\$	2*\$B\$4)*(\$E\$16*F3	1+\$E\$17*F33)
				Pdd	4.8							Pdd	=MAX(\$B\$	8-F14, 0)

Figure 2: Screenshot of calculations for \boldsymbol{P}_0 using given information

c)

c)				
Show	C0 + Kexp	(-rT)	=	P0+S0
LHS				
C0 + Kexp	(-rT)	21.40811		
RHS				
P0+S0		21.40811		
So LHS = R	HS			

Figure 3: Screenshot verifying put-call parity holds

Noting that u=1.1 and d=0.9 are constant over time leading to p_u and $p_d=1-p_u$ being constant over time and $\Delta t = \frac{T}{2} = 0.125$ since this is a 2-step binomial pricing model, the recursive relationship used to price the call option

$$C_t = \begin{cases} e^{-r\Delta t} \left(p_u C^u_{t+\Delta t} + p_d C^d_{t+\Delta t} \right) if \ t < T \\ (S_T - K)^+ \ if \ t = T \end{cases}$$

Similarly, the recursive relationship used to price the put option is:

$$P_{t} = \begin{cases} e^{-r\Delta t} \left(p_{u} P_{t+\Delta t}^{u} + p_{d} P_{t+\Delta t}^{d} \right) if \ t < T \\ \left(K - S_{T} \right)^{+} if \ t = T \end{cases}$$

2.

a)

Black-Scholes PDE and terminal condition:

$$\frac{\partial C}{\partial t} + rS\frac{\partial C}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} = rC$$

$$C(S, T) = (S - K)^+$$

$$C(S,T) = (S - K)^+$$

Let C(S,t) be a solution to the Black-Scholes PDE. Relevant substitutions:

$$\tau = T - t$$

$$\rightarrow t = T - \tau$$

$$z = \log(S) + \left(r - \frac{\sigma^2}{2}\right)\tau$$

$$\rightarrow S = e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}$$

$$U(z,\tau) = e^{r\tau} C(S(z,\tau), t(z,\tau))$$

$$U(z,\tau) = e^{r\tau} C\left(e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}, T - \tau\right)$$

Heat/diffusion PDE and initial condition:

$$\frac{\partial U}{\partial \tau} - \frac{1}{2}\sigma^2 \frac{\partial^2 U}{\partial z^2} = 0$$

$$U(z,0) = f(z)$$

$$\frac{\partial U}{\partial \tau} = \frac{\partial}{\partial \tau} \left(e^{r\tau} C \left(e^{z - \left(r - \frac{\sigma^2}{2} \right) \tau}, T - \tau \right) \right)$$

Using the product and multivariate chain rule:

$$\frac{\partial U}{\partial \tau} = re^{r\tau}C + e^{r\tau}\left(\frac{\partial C}{\partial S}\frac{\partial S}{\partial \tau} + \frac{\partial C}{\partial t}\frac{\partial t}{\partial \tau}\right)$$

$$\frac{\partial S}{\partial \tau} = -\left(r - \frac{\sigma^2}{2}\right) e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}$$

$$\frac{\partial t}{\partial \tau} = -1$$

$$\begin{split} &\frac{\partial U}{\partial \tau} = r e^{r\tau} C + e^{r\tau} \left(\left(\frac{\sigma^2}{2} - r \right) e^{z - \left(r - \frac{\sigma^2}{2} \right) \tau} \frac{\partial C}{\partial S} - \frac{\partial C}{\partial t} \right) \\ &\frac{\partial U}{\partial \tau} = e^{r\tau} \left[r C + \left(\frac{\sigma^2}{2} - r \right) e^{z - \left(r - \frac{\sigma^2}{2} \right) \tau} \frac{\partial C}{\partial S} - \frac{\partial C}{\partial t} \right] \end{split}$$

$$\frac{\partial U}{\partial z} = \frac{\partial}{\partial z} \left(e^{r\tau} C \left(e^{z - \left(r - \frac{\sigma^2}{2} \right) \tau}, T - \tau \right) \right)$$

Using the multivariate chain rule:

$$\frac{\partial U}{\partial z} = e^{r\tau} \left(\frac{\partial C}{\partial S} \frac{\partial S}{\partial z} + \frac{\partial C}{\partial t} \frac{\partial t}{\partial z} \right)$$

$$\frac{\partial S}{\partial z} = e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}$$

$$\frac{\partial t}{\partial z} = 0$$

$$\therefore \frac{\partial U}{\partial z} = e^{r\tau} \left(e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \frac{\partial C}{\partial S} + 0 \right)$$

$$\frac{\partial U}{\partial z} = e^{r\tau} \left(e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \frac{\partial C}{\partial S} \right)$$

$$\frac{\partial^{2} U}{\partial z^{2}} = \frac{\partial}{\partial z} \left(e^{r\tau} \left(e^{z - \left(r - \frac{\sigma^{2}}{2} \right) \tau} \frac{\partial C}{\partial S} \right) \right)$$
$$\frac{\partial^{2} U}{\partial z^{2}} = e^{r\tau} \left[\frac{\partial}{\partial z} \left(e^{z - \left(r - \frac{\sigma^{2}}{2} \right) \tau} \frac{\partial C}{\partial S} \right) \right]$$

Using the product and multivariate chain rule:

$$\begin{split} &\frac{\partial^2 U}{\partial z^2} = e^{r\tau} \left[e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \frac{\partial C}{\partial S} + e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \left(\frac{\partial^2 C}{\partial S^2} \frac{\partial S}{\partial z} + \frac{\partial C}{\partial t \partial S} \frac{\partial t}{\partial z} \right) \right] \\ &\frac{\partial^2 U}{\partial z^2} = e^{r\tau} \left[e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \frac{\partial C}{\partial S} + e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \left(e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \frac{\partial^2 C}{\partial S^2} + 0 \right) \right] \end{split}$$

$$\frac{\partial^2 U}{\partial z^2} = e^{r\tau} \left[e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau} \frac{\partial C}{\partial S} + e^{2\left(z - \left(r - \frac{\sigma^2}{2}\right)\tau\right)} \frac{\partial^2 C}{\partial S^2} \right]$$

Substituting these expressions back into the heat/diffusion PDE:

$$\begin{split} &\frac{\partial U}{\partial \tau} - \frac{1}{2}\sigma^2\frac{\partial^2 U}{\partial z^2} = 0 \\ &e^{r\tau}\left[rC + \left(\frac{\sigma^2}{2} - r\right)e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}\frac{\partial C}{\partial S} - \frac{\partial C}{\partial t}\right] - \frac{1}{2}\sigma^2e^{r\tau}\left[e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}\frac{\partial C}{\partial S} + e^{2\left(z - \left(r - \frac{\sigma^2}{2}\right)\tau\right)}\frac{\partial^2 C}{\partial S^2}\right] = 0 \\ &rC + \left(\frac{\sigma^2}{2} - r\right)e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}\frac{\partial C}{\partial S} - \frac{\partial C}{\partial t} - \frac{1}{2}\sigma^2e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}\frac{\partial C}{\partial S} - \frac{1}{2}\sigma^2e^{2\left(z - \left(r - \frac{\sigma^2}{2}\right)\tau\right)}\frac{\partial^2 C}{\partial S^2} = 0 \end{split}$$

Substituting
$$S = e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}$$
:

$$rC + \left(\frac{\sigma^2}{2} - r\right)S\frac{\partial C}{\partial S} - \frac{\partial C}{\partial t} - \frac{1}{2}\sigma^2S\frac{\partial C}{\partial S} - \frac{1}{2}\sigma^2S^2\frac{\partial^2C}{\partial S^2} = 0$$

$$rc + \frac{1}{2}\sigma^{2}S\frac{\partial C}{\partial S} - rS\frac{\partial C}{\partial S} - \frac{\partial C}{\partial t} - \frac{1}{2}\sigma^{2}S\frac{\partial C}{\partial S} - \frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}C}{\partial S^{2}} = 0$$

$$\therefore \frac{\partial C}{\partial t} + rS \frac{\partial C}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} = rC$$

This is the Black-Scholes PDE from earlier and since we let C(S,t) be a solution satisfying this PDE, we now know that $U(z,\tau)=e^{r\tau}C\left(e^{z-\left(r-\frac{\sigma^2}{2}\right)\tau},T-\tau\right)$ satisfies the heat/diffusion PDE.

b)

The aim in this question is to replace the fundamental solution to the heat/diffusion PDE with one that contains instances of the standard normal distribution CDF $N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$. The fundamental solution to the heat/diffusion PDE is given by:

$$U(z,\tau) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} e^{-\frac{1(z-\zeta)^2}{2\sigma^2\tau}} f(\zeta) d\zeta$$

$$(z - \zeta)^2 = (\zeta - z)^2$$

$$\therefore U(z,\tau) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} e^{-\frac{1(\zeta-z)^2}{2\sigma^2\tau}} f(\zeta) d\zeta$$

Noting that if $\tau=0$, $t=T-\tau=T$ and $S=e^{z-\left(r-\frac{\sigma^2}{2}\right)\tau}=e^z$, using the initial condition:

$$U(z,0) = e^{r \cdot 0} C\left(e^{z - \left(r - \frac{\sigma^2}{2}\right) \cdot 0}, T - 0\right)$$

$$U(z,0) = C(e^z,T)$$

$$U(z,0) = (e^z - K)^+$$

This is positive iff:

$$e^z - K > 0 \rightarrow z > \ln(K)$$

Using this to replace the lower limit of integration $(-\infty)$:

$$U(z,\tau) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} e^{-\frac{1(\zeta-z)^2}{2\sigma^2\tau}} f(\zeta) d\zeta$$

$$f(\zeta) = U(\zeta, 0) = (e^{\zeta} - K)^{+}$$

$$\therefore U(z,\tau) = \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} e^{-\frac{1(\zeta-z)^2}{2\sigma^2\tau}} \left(e^{\zeta} - K\right) d\zeta$$

$$U(z,\tau) = \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} \left(e^{\zeta - \frac{1(\zeta - z)^2}{2\sigma^2\tau}} - Ke^{-\frac{1(\zeta - z)^2}{2\sigma^2\tau}} \right) d\zeta$$

$$U(z,\tau) = \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} e^{\zeta - \frac{1(\zeta - z)^{2}}{2\sigma^{2}\tau}} d\zeta - K \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} e^{-\frac{1(\zeta - z)^{2}}{2\sigma^{2}\tau}} d\zeta$$

Let:

$$U_1 = \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} e^{\zeta - \frac{1(\zeta - z)^2}{2\sigma^2\tau}} d\zeta$$

$$U_{2} = -K \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} e^{-\frac{1(\zeta-z)^{2}}{2} \sigma^{2}\tau} d\zeta$$

The aim is now to convert these integrals into the standard normal CDF. Considering U_1 first:

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = \frac{2\sigma^2 \tau \zeta - (\zeta - z)^2}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = \frac{2\sigma^2 \tau \zeta - \zeta^2 + 2z\tau - z^2}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = -\frac{\zeta^2 - 2(\sigma^2 \tau + z)\zeta + z^2}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = -\frac{\zeta^2 - 2(\sigma^2 \tau + z)\zeta + (\sigma^2 \tau + z)^2 + z^2 - (\sigma^2 \tau + z)^2}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = -\frac{(\zeta - \sigma^2 \tau - z)^2 + z^2 - \sigma^4 \tau^2 - 2\sigma^2 \tau z - z^2}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = -\frac{(\zeta - \sigma^2 \tau - z)^2 - \sigma^4 \tau^2 - 2\sigma^2 \tau z}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = \frac{2\sigma^2 \tau z + \sigma^4 \tau^2 - (\zeta - \sigma^2 \tau - z)^2}{2\sigma^2 \tau}$$

$$\zeta - \frac{1}{2} \frac{(\zeta - z)^2}{\sigma^2 \tau} = z + \frac{\sigma^2 \tau}{2} - \frac{1}{2} \frac{(\zeta - \sigma^2 \tau - z)^2}{\sigma^2 \tau}$$

$$\therefore U_1 = \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2\tau}} e^{z + \frac{\sigma^2\tau}{2} - \frac{1(\zeta - \sigma^2\tau - z)^2}{2\sigma^2\tau}} d\zeta$$

$$U_{1} = e^{z + \frac{\sigma^{2}\tau}{2}} \int_{\ln(K)}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}\tau}} e^{-\frac{1(\zeta - \sigma^{2}\tau - z)^{2}}{2}} d\zeta$$

Let:

$$x = \frac{\zeta - \sigma^2 \tau - z}{\sigma \sqrt{\tau}}$$

$$\frac{\partial x}{\partial \zeta} = \frac{1}{\sigma\sqrt{\tau}} \to \partial \zeta = \sigma\sqrt{\tau}\partial x$$

$$\zeta = \ln(K) \to x = \frac{\ln(K) - \sigma^2 \tau - z}{\sigma \sqrt{\tau}}$$

$$\zeta \to +\infty \to \chi \to +\infty$$

$$\therefore U_1 = e^{z + \frac{\sigma^2 \tau}{2}} \int_{\frac{\ln(K) - \sigma^2 \tau - z}{\sigma \sqrt{\tau}}}^{\infty} \frac{1}{\sqrt{2\pi} \sigma \sqrt{\tau}} e^{-\frac{1}{2}x^2} \sigma \sqrt{\tau} \, dx$$

$$U_{1} = e^{z + \frac{\sigma^{2}\tau}{2}} \int_{\frac{\ln(K) - \sigma^{2}\tau - z}{\sigma\sqrt{\tau}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$$

$$U_{1} = e^{z + \frac{\sigma^{2}\tau}{2}} \int_{\frac{\ln(K) - \sigma^{2}\tau - z}{\sigma\sqrt{\tau}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$$

$$U_1 = e^{z + \frac{\sigma^2 \tau}{2}} N\left(\frac{z + \sigma^2 \tau - \ln(K)}{\sigma \sqrt{\tau}}\right)$$
using $N(x) = N(-x)$

Now considering U_2 :

Let:

$$x = \frac{\zeta - z}{\sigma\sqrt{\tau}}$$

$$\frac{\partial x}{\partial \zeta} = \frac{1}{\sigma\sqrt{\tau}} \to \partial \zeta = \sigma\sqrt{\tau}\partial x$$

$$\zeta = \ln(K) \to x = \frac{\ln(K) - z}{\sigma\sqrt{\tau}}$$

$$\zeta \to +\infty \to x \to +\infty$$

$$\therefore U_2 = -K \int_{-\infty}^{\infty} \frac{1}{\sqrt{\tau}} e^{-t}$$

$$\therefore U_2 = -K \int_{\frac{\ln(K) - z}{\sigma\sqrt{\tau}}}^{\infty} \frac{1}{\sqrt{2\pi}\sigma\sqrt{\tau}} e^{-\frac{1}{2}x^2} \sigma\sqrt{\tau} \, dx$$

$$U_2 = -K \int_{\frac{\ln(K) - z}{\sigma\sqrt{\tau}}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

$$U_2 = -KN\left(\frac{z - \ln(K)}{\sigma\sqrt{\tau}}\right)$$

using N(x) = N(-x)

$$\begin{split} & \therefore U = U_1 + U_2 \\ & U = e^{z + \frac{\sigma^2 \tau}{2}} N\left(\frac{z + \sigma^2 \tau - \ln(K)}{\sigma \sqrt{\tau}}\right) - KN\left(\frac{z - \ln(K)}{\sigma \sqrt{\tau}}\right) \end{split}$$

which is expressed in terms of N(.).

c)

To transform the solution $U(z,\tau)$ back to find C(S,t), we make use of the substitutions used for $t(z,\tau)$ and $S(z,\tau)$ used in a):

$$U(z,\tau) = e^{r\tau} C\left(S = e^{z - \left(r - \frac{\sigma^2}{2}\right)\tau}, t = T - \tau\right)$$

$$\therefore C(S,t) = e^{-r\tau} U\left(z = \ln(S) + \left(r - \frac{\sigma^2}{2}\right)\tau, \tau = T - t\right)$$

$$C(S,t) = e^{-r(T-t)} \left[e^{\ln(S) + \left(r - \frac{\sigma^2}{2}\right)(T-t) + \frac{\sigma^2}{2}(T-t)}N\left(\frac{\ln(S) + \left(r - \frac{\sigma^2}{2}\right)(T-t) + \sigma^2(T-t) - \ln(K)}{\sigma\sqrt{T-t}}\right)\right]$$

$$-KN\left(\frac{\ln(S) + \left(r - \frac{\sigma^2}{2}\right)(T-t) - \ln(K)}{\sigma\sqrt{T-t}}\right)\right]$$

$$C(S,t) = e^{-r(T-t)} \left[Se^{r(T-t)} N \left(\frac{\ln\left(\frac{S}{K}\right) + r(T-t) + \frac{\sigma^2}{2}(T-t)}{\sigma\sqrt{T-t}} \right) - KN \left(\frac{\ln\left(\frac{S}{K}\right) + r(T-t) - \frac{\sigma^2}{2}(T-t)}{\sigma\sqrt{T-t}} \right) \right]$$

$$C(S,t) = e^{-r(T-t)} \left[Se^{r(T-t)} N \left(\frac{\ln\left(\frac{S}{K}\right) + r(T-t)}{\sigma\sqrt{T-t}} + \frac{\sigma\sqrt{T-t}}{2} \right) - KN \left(\frac{\ln\left(\frac{S}{K}\right) + r(T-t)}{\sigma\sqrt{T-t}} - \frac{\sigma\sqrt{T-t}}{2} \right) \right]$$

$$C(S,t) = SN \left(\frac{\ln\left(\frac{S}{K}\right) + \ln(e^{r(T-t)})}{\sigma\sqrt{T-t}} + \frac{\sigma\sqrt{T-t}}{2} \right) - Ke^{-r(T-t)} N \left(\frac{\ln\left(\frac{S}{K}\right) + \ln(e^{r(T-t)})}{\sigma\sqrt{T-t}} - \frac{\sigma\sqrt{T-t}}{2} \right) \right]$$

$$C(S,t) = SN \left(\frac{\ln\left(\frac{Se^{r(T-t)}}{K}\right)}{\sigma\sqrt{T-t}} + \frac{\sigma\sqrt{T-t}}{2} \right) - Ke^{-r(T-t)} N \left(\frac{\ln\left(\frac{Se^{r(T-t)}}{K}\right)}{\sigma\sqrt{T-t}} - \frac{\sigma\sqrt{T-t}}{2} \right) \right]$$

$$\therefore C(S,t) = SN(d_1) - Ke^{-r(T-t)} N(d_2) = C^{BS}(S,t)$$

$$d_{1,2} = d_{+,-} = \frac{\ln\left(\frac{Se^{r(T-t)}}{K}\right)}{\sigma\sqrt{T-t}} \pm \frac{\sigma\sqrt{T-t}}{2}$$

3.

See attached excel spreadsheet "Q3.xlsx" for more information.

The formulas for the Black-Scholes option pricing model are:

$$\begin{split} C^{BS}(S,t) &= SN(d_1) - Ke^{-r(T-t)}N(d_2) \\ P^{BS}(S,t) &= Ke^{-r(T-t)}N(-d_2) - SN(-d_1) \\ N(x) &= \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}dx \\ d_1 &= \frac{\log\left(\frac{Se^{r(T-t)}}{K}\right)}{\sigma\sqrt{T-t}} + \left(\frac{\sigma\sqrt{T-t}}{2}\right) \\ d_2 &= 1 - d_1 \end{split}$$

Q3.						
r	0.12					
Т	0.25					
s	20					
к	21					
σ	0.2					
Since t=0):					Formulas:
d1	(In(S/K)+	(r + σ^2/2)	T)/(σT^(1	/2))	-0.1379	=(LN(\$B\$4/\$B\$5)+(\$B\$2+(\$B\$6^2)/2)*\$B\$3)/(\$B\$6*\$B\$3^(1/2))
d2	d1 - σT^(1,	/2)			-0.2379	=F9-\$B\$6*\$B\$3^(1/2)
a)						
Solution:						Formulas:
C(S, 0)	SN(d1) - K	exp(-rT)N	(d2)	0.629597		=\$B\$4*NORM.S.DIST(F9, TRUE)-\$B\$5*EXP(-\$B\$2*\$B\$3)*NORM.S.DIST(F10, TRUE)
b)						
Solution:						Formulas:
P(S, 0)	Kexp(-rT)I	N(-d2) - SN	J(-d1)	1.008953		=\$B\$5*EXP(-\$B\$2*\$B\$3)*NORM.S.DIST(-F10, TRUE)-\$B\$4*NORM.S.DIST(-F9, TRUE
c)						
Show	C0 + Kexp	(-rT)	=	P0 + S0		
LHS						Formulas:
C0 + Kexp	o(-rT)	21.00895	i			=E14+\$B\$5*EXP(-\$B\$2*\$B\$3)

Figure 4: Verifying parts a) b) and c) of Q1. using the B-S formulas using $\sigma=0.2$

We make use of Excel's Goal Seek in order to estimate an appropriate value for σ such that the B-S model matches the binomial model:

d)													
From Q1.													
Binomial	C0	1.028751											
	P0	1.408107											
B-S C0:													
σ	0.300554		Change t	his cell usir	ng Excel's Goal Seek	Formulas:							
d1	-0.0499						/\$B\$5)+(\$	B\$2+(\$B\$3	7^2)/2)*\$B	\$3)/(\$B\$37	, 7*\$B\$3^(1/	2))	
d2	-0.20018					=B38-\$B\$3							
C0	1.029014					=\$B\$4*NO	RM.S.DIS	T(B38, TRU	E)-\$B\$5*EX	P(-\$B\$2*\$	B\$3)*NORI	И.S.DIST(В	39, TRUE)
B-S P0:													
σ	0.300513		Change t	his cell usir	ng Excel's Goal Seek	Formulas:							
d1	-0.04993					=(LN(\$B\$4	/\$B\$5)+(\$	B\$2+(\$B\$4	I3^2)/2)*\$B	\$3)/(\$B\$43	*\$B\$3^(1/	2))	
d2	-0.20018					=B44-\$B\$4	3*\$B\$3^(1/2)					
P0	1.408207					=\$B\$5*EXF	(-\$B\$2*\$	B\$3)*NOR	M.S.DIST(-B	45, TRUE)-	\$B\$4*NOF	M.S.DIST(-	B44, TRUE
Show	C0 + Kexp	(-rT)	=	P0 + S0									
LHS						Formulas:							
C0 + Kexp	o(-rT)	21.40837				=B40+\$B\$5	*EXP(-\$B	\$2*\$B\$3)					
RHS													
P0 + S0		21.40821				=B46+\$B\$4	ļ						
So LHS = F	RHS												

Figure 5: Using Goal Seek to estimate an appropriate value for σ to match the binomial model

4.

See attached excel spreadsheet "Q4.xlsx" for more information.

a)

The mean and standard deviation of the shares are calculated using:

$$\mu_i = \mathbb{E}[R_i]$$

$$\mu_i = \frac{1}{T} \sum_{t=1}^{T} R_{i,t}$$

where $R_{i,t}$ = random return on the i-th asset at time t.

$$\sigma_i^2 = \mathbb{E}[(R_i - \mathbb{E}[R_i])^2]$$

$$\sigma_i^2 = \mathbb{E}[(R_i - \mu_i)^2]$$

$$\sigma_i^2 = \frac{1}{T} \sum_{t=1}^T (R_{i,t} - \mu_i)^2$$

$$\therefore \sigma_i = \sqrt{\frac{1}{T} \sum_{t=1}^T (R_{i,t} - \mu_i)^2}$$

In Excel, these are calculated using the AVERAGE and STDEV.P (standard deviation of a population) functions respectively:

a)								
				Formulas	of column	B only (oth	ners identi	cal):
μί	0.053658	0.065292	0.049515	=AVERAGE	E(B4:B103)			
σί	0.129754	0.224264	0.227065	=STDEV.P((B4:B103)			

Figure 6: Screenshot of μ_i and σ_i for the 3 shares

b)

The correlation coefficient between any two shares is given by:

$$\rho_{i,j} = \frac{\sigma_{i,j}}{\sigma_i \sigma_j}$$

$$\rho_{i,j} = \frac{\mathbb{E}[(R_i - \mathbb{E}[R_i])(R_j - \mathbb{E}[R_j])]}{\mathbb{E}[(R_i - \mathbb{E}[R_i])^2] \cdot \mathbb{E}[(R_j - \mathbb{E}[R_j])^2]}$$

$$\rho_{i,j} = \frac{\frac{1}{T} \sum_{t=1}^{T} (R_{i,t} - \mu_i)(R_{j,t} - \mu_j)}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} (R_{i,t} - \mu_i)^2} \cdot \sqrt{\frac{1}{T} \sum_{t=1}^{T} (R_{j,t} - \mu_j)^2}}$$

$$\rho_{i,j} = \frac{\sum_{t=1}^{T} (R_{i,t} - \mu_i)(R_{j,t} - \mu_j)}{\sqrt{\sum_{t=1}^{T} (R_{i,t} - \mu_i)^2} \cdot \sum_{t=1}^{T} (R_{j,t} - \mu_j)^2}$$

This is achieved using the CORREL function in Excel:

b)					
			Formulas:		
p12	-0.56007		=CORREL(B4:B103,C4	(C103)
p13	0.683001		=CORREL(B4:B103,D4	:D103)

Figure 7: Screenshot of $ho_{i,j}$ for (i,j)=(1,2) and (1,3)

c)

Using the formulas:

$$\begin{split} w_1 &= 0.5 \\ w_2 &= 1 - w_1 = 0.5 \\ \mu_p &= w_1 \mu_1 + w_2 \mu_2 \\ \sigma_p^2 &= w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2 w_1 w_2 \sigma_{1,2} \\ \sigma_p &= \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2 w_1 w_2 \sigma_1 \sigma_2 \rho_{1,2}} \end{split}$$

c)										
w1		0.5								
w2	1-w1	0.5								
				Formulas:						
μр	0.059475			=C116*B10)7+C117*C	107				
σр	0.092918			=(C116^2*	B108^2+C1	.17^2*C108	3^2+2*C116	*C117*B10	08*C108*B	112)^(1/2)

Figure 8: Screenshot of μ_p and σ_p

Diversification benefits occur whenever a portfolio is created where each of the individual assets have <1 correlation with any of the other assets in the portfolio. Hence, due to the strong negative correlation $\rho_{1,2}$ between shares A_1 and A_2 , the portfolio risk σ_p is lower than the risk from owning the individual shares (σ_1 or σ_2) alone.

d)

Using the formulas:

$$\begin{split} w_1 &= 0.5 \\ w_3 &= 1 - w_1 = 0.5 \\ \mu_p &= w_1 \mu_1 + w_3 \mu_3 \\ \sigma_p^2 &= w_1^2 \sigma_1^2 + w_3^2 \sigma_3^2 + 2 w_1 w_3 \sigma_{1,3} \\ \sigma_p &= \sqrt{w_1^2 \sigma_1^2 + w_3^2 \sigma_3^2 + 2 w_1 w_3 \sigma_1 \sigma_3 \rho_{1,3}} \end{split}$$

d)										
w1		0.5								
w3	1-w1	0.5								
				Formulas:						
μр	0.051586			=C124*B10)7+C125*D	107				
σр	0.164804			=(C124^2*	B108^2+C1	L25^2*D108	3^2+2*C12	4*C125*B1	08*D108*B	113)^(1/2)

Figure 8: Screenshot of μ_p and σ_p

Similar to c), diversification benefits occur whenever a portfolio is created where each of the individual assets have < 1 correlation with any of the other assets in the portfolio. However, this time, the portfolio risk σ_p is much higher because the correlation is strongly positive and thus lower diversification benefits are enjoyed in this portfolio.

Need to find w_1 and w_2 and then calculate μ_p and σ_p as in c).

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{1,2}$$

$$\sigma_p^2 = w_1^2 \sigma_1^2 + (1 - w_1)^2 \sigma_2^2 + 2w_1 (1 - w_1) \sigma_{1,2}$$

$$\sigma_p^2 = w_1^2 \sigma_1^2 + (1 - w_1)^2 \sigma_2^2 + 2w_1 \sigma_1 \sigma_2 \rho_{1,2} - 2w_1^2 \sigma_1 \sigma_2 \rho_{1,2}$$

Portfolio variance minimised by setting first partial derivative w.r.t w_1 equal to 0:

$$\begin{split} &\frac{\partial \sigma_p^2}{\partial w_1} = 2w_1\sigma_1^2 - 2(1-w_1)\sigma_2^2 + 2\sigma_1\sigma_2\rho_{1,2} - 4w_1\sigma_1\sigma_2\rho_{1,2} \\ &0 = 2w_1\sigma_1^2 - 2\sigma_2^2 + 2w_1\sigma_2^2 + 2\sigma_1\sigma_2\rho_{1,2} - 4w_1\sigma_1\sigma_2\rho_{1,2} \\ &0 = w_1\sigma_1^2 - \sigma_2^2 + w_1\sigma_2^2 + \sigma_1\sigma_2\rho_{1,2} - 2w_1\sigma_1\sigma_2\rho_{1,2} \\ &\sigma_2^2 - \sigma_1\sigma_2\rho_{1,2} = w_1\left(\sigma_1^2 + \sigma_2^2 - 2\sigma_1\sigma_2\rho_{1,2}\right) \\ &\therefore w_1 = \frac{\sigma_2^2 - \sigma_1\sigma_2\rho_{1,2}}{\sigma_1^2 + \sigma_2^2 - 2\sigma_1\sigma_2\rho_{1,2}} \end{split}$$

$$w_2 = 1 - w_1$$

These are the optimal weights to minimise the portfolio variance:

e)													
							Formulas:						
w1	(σ2^2 - σ1α	σ2ρ1,2)/(σ	1^2 + σ2^2	-2σ1σ2ρ1,	2)	0.667751	=(C108^2-	B108*C108	*B112)/(B1	.08^2+C108	3^2-2*B108	*C108*B11	12)
w2	1 - w1					0.332249	=1-G133						
μр	0.057523						=G133*B1	07+G134*C	107				
σр	0.076338						=(G133^2*	B108^2+G:	L34^2*C108	3^2+2*G13	3*G134*B1	08*C108*B	112)^(1/2)

Figure 9: Screenshot of μ_p and σ_p using portfolio variance minimising weights

Using the MV portfolio optimisation approach to minimise portfolio variance, the optimal weights are $w_1=0.6678$ and $w_2=0.3322$. A portfolio comprised of these weights has lower risk $\sigma_p=0.076$ than an equally weighted portfolio of the same assets $\sigma_p=0.093$ (i.e. b)) and the individual assets alone.

5.

See attached excel spreadsheet "Q5.xlsx" for more information.

f)

Using the same formulas from 4.a), in Excel, μ_i and σ_i are calculated using the AVERAGE and STDEV.P (standard deviation of a population) functions respectively:

f)								
				Formulas	of column	F only (oth	ers identio	al):
μί	0.015101	0.01821	0.012511	=AVERAGE	E(F5:F104)			
σί	0.068516	0.103254	0.101841	=STDEV.P((F5:F104)			

Figure 10: Screenshot of μ_i and σ_i for the 3 shares

g)

Using the same formulas from 4.b), $\rho_{i,j}$ is calculated using the CORREL function in Excel:

g)					
			Formulas:		
p12	-0.69329		=CORREL(I	5:F104,G5	:G104)
ρ 13	0.75801		=CORREL(I	5:F104,H5	:H104)

Figure 11: Screenshot of $ho_{i,j}$ for (i,j)=(1,2) and (1,3)

h)

Figure 12: Graph of all 3 share prices over time

Shares 1 and 2 have a strong negative correlation whereas shares 1 and 3 have a strong positive correlation from g). This is very similar to 4.b). From the graph, negative correlation is evident between shares 1 and 2 because shares 1 (orange) and 2 (grey) tend to move in opposite directions over time. Conversely, positive correlation between shares 1 and 3 is evident because shares 1 (orange) and 3 (yellow) tend to move together over time. The time-series analogue for this relationship between shares 1 and 3 is known as cointegration where large deviations from both series do not persist over time.