

Evaluation Metrics for ML Performance

Jiahui Chen
Department of Mathematical Sciences
University of Arkansas

Introduction

- Use statistical values to evaluate the performance of a ML algorithm
- Compare the predictive power between different ML predictors
- We need to analyze two types of predictors, regressors and classifiers

Evaluation Metrics for Regression

- Root mean square error (RMSE)
- Pearson correlation (R_p)
- Spearman correlation (R_s)
- Kendall Tau (τ)

RMSE

Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives *M* predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

(To avoid heavy notation we set

$$y_i \equiv y^{(i)}$$
 and $\hat{y}_i \equiv \hat{y}^{(i)}$ in this lecture)

RMSE will measure the root mean square errors between predicted labels and the exact labels

$$RMSE = \sqrt{\frac{\sum_{i=1}^{M} (\hat{y}_i - y_i)^2}{M}}$$

The smaller RMSE means the better predictive power

RMSE: Example

Our true labels

$$y_1 = 3, y_2 = -0.5, y_3 = 2, y_4 = 7$$

Predictor A gives the predicted labels:

$$\hat{y}_1 = 2.5, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 8$$

RMSE for predictor RMSE_A =
$$\sqrt{\frac{\sum_{i=1}^{4}(\hat{y}_i - y_i)^2}{4}} = 0.612$$

Predictor B gives the predicted labels:

$$\tilde{y}_1 = 1.5, \tilde{y}_2 = 1.0, \tilde{y}_3 = 2, \tilde{y}_4 = 4$$

RMSE for predictor RMSE_B =
$$\sqrt{\frac{\sum_{i=1}^{4} (\tilde{y}_i - y_i)^2}{4}} = 1.837$$

Predictor A is better than predictor B.

Pearson Correlation

Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives M predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

Pearson correlation measures the linear correlation between two vectors $(y_1, y_2, ..., y_M)$ and $(\hat{y}_1, \hat{y}_2, ..., \hat{y}_M)$

Interpretation

Formulation

Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives *M* predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

$$R_p = \frac{\sum_{i=1}^{M} (\hat{y}_i - \hat{\mu})(y_i - \mu)}{\sqrt{\sum_{i=1}^{M} (\hat{y}_i - \hat{\mu})^2} \sqrt{\sum_{i=1}^{M} (y_i - \mu)^2}}$$

where

$$\hat{\mu} = \frac{1}{M} \sum_{i=1}^{M} \hat{y}_i, \qquad \mu = \frac{1}{M} \sum_{i=1}^{M} y_i$$

Range

Example

Our true labels

$$y_1 = 3, y_2 = -0.5, y_3 = 2, y_4 = 7$$

Predictor A gives the predicted labels

$$\hat{y}_1 = 2.5, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 8$$

Pearson correlation of the Predictor A

$$R_p(A) = 0.985$$

Predictor B gives the predicted labels

$$\tilde{y}_1 = 1.5, \tilde{y}_2 = 1.0, \tilde{y}_3 = 2, \tilde{y}_4 = 4$$

Pearson correlation of the Predictor B

$$R_p(B) = 0.940$$

Predictor A is better than predictor B

Spearman Correlation

Spearman correlation measures monotonic relationship

While Pearson correlation measures the linear relationship

Spearman Correlation

Spearman Correlation

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Formulation

- Spearman correlation is considered as the Pearson correlation of the rank values of variables
- Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives *M* predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

And their ranks are

 r_1, r_2, \dots, r_M and $\hat{r}_1, \hat{r}_2, \dots, \hat{r}_M$, respectively.

$$R_{S} = \frac{\sum_{i=1}^{M} (\hat{r}_{i} - \hat{\mu})(r_{i} - \mu)}{\sqrt{\sum_{i=1}^{M} (\hat{r}_{i} - \hat{\mu})^{2}} \sqrt{\sum_{i=1}^{M} (r_{i} - \mu)^{2}}}$$

• Range: $-1 \le R_s \le 1$

Example

Our true labels

$$y_1 = 3, y_2 = -0.5, y_3 = 2, y_4 = 7$$

Predictor A gives the predicted labels

$$\hat{y}_1 = 2.5, \hat{y}_2 = 0, \hat{y}_3 = 2, \hat{y}_4 = 2$$

Get rank of values

$$\begin{aligned} y_4 > y_1 > y_3 > y_2 \\ rank(y_1) &= 2, rank(y_2) = 4, rank(y_3) = 3, rank(y_4) = 1 \\ \hat{y}_1 > \hat{y}_3 &= \hat{y}_4 > \hat{y}_2 \\ rank(\hat{y}_1) &= 1, rank(\hat{y}_2) = 4, rank(\hat{y}_3) = 2.5, rank(\hat{y}_4) = 2.5 \end{aligned}$$

Spearman correlation = Pearson correlation of
 [2,4,3,1] and [1,4,2.5,2.5]

$$R_s = 0.632$$

When all ranks are distinct integers

$$R_{s} = 1 - \frac{6\sum_{i=1}^{M} (\hat{r}_{i} - r_{i})^{2}}{M(M^{2} - 1)}$$

If we compare performance of two predictors, the higher is the better

Kendall Tau Correlation

- Kendall Tau is denoted by au
- It measures relationship based on the rank of variables as in Spearman rank

but Kendall Tau considers the directional agreement instead of the difference

Formulation

Assume we have M true labels

$$y_1, y_2, \dots, y_M$$

Our predictor gives *M* predicted labels

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_M$$

- Any observation pairs (y_i, \hat{y}_i) and (y_i, \hat{y}_i) , $i \neq j$ are said to be
 - concordant: if both $y_i>y_j$ and $\hat{y}_i>\hat{y}_j$ or both $y_i< y_j$ and $\hat{y}_i<\hat{y}_j$
 - discordant: if both $y_i > y_j$ and $\hat{y}_i < \hat{y}_j$ or both $y_i < y_j$ and $\hat{y}_i > \hat{y}_j$
 - neither concordant or discordant: if $y_i = y_i$ or $\hat{y}_i = \hat{y}_i$

Formulation

- P = # of concordant pairs,
- Q = # of discordant pairs
- Kendall Tau τ is defined as

$$\tau = \frac{P - Q}{M(M - 1)/2}$$

• Kendall Tau accounting for ties, called Tau-b (τ_h)

$$\tau_b = \frac{P - Q}{\sqrt{P + Q + Y_0} \sqrt{P + Q + \hat{Y}_0}}$$

where Y_0 : # of ties only in y variables

 \hat{Y}_0 : # of ties only in \hat{y} variables.

We do not count the ties in both y and \hat{y} variables

Example

Our true labels

$$y_1=2, y_2=-1, y_3=1, y_4=4$$
 Predictor A gives the predicted labels
$$\hat{y}_1=1, \hat{y}_2=0, \hat{y}_3=2, \hat{y}_4=2$$
 # of concordant pairs = 4 # of discordant pairs = 1; # of ties in y variables =0; # of ties in \hat{y} variables =1;
$$M=4$$

$$\tau=\frac{4-1}{4\times 3/2}=0.5, \tau_b=\frac{4-1}{\sqrt{4+1+0}\times \sqrt{4+1+1}}\sim 0.548$$

Evaluations for Classifiers

Example

Our true labels

Predicted labels

Accuracy:

Count how many correctly predicted labels

$$Accuracy = \frac{7}{10} = 0.7$$

Confusion Matrix

 Confusion matrix is a table represents the details about the performance of algorithm on each label

Our true labels

Predicted labels

N=10	Predicted as 0	Predicted as 1
True label :0	2	2
True label: 1	1	5

Ture/False Positive/Negative

N=10	Predicted as 0	Predicted as 1
True label :0	2 (True Negative (TN))	2 (False Positive (FP))
True label: 1	1 (False Negative (FN))	5 (True Positive (TP))

N=10	Predicted as 0	Predicted as 1	
True label :0	TNR=TN/(TN+FP)	FPR=FP/(TN+FP)	
True label: 1	FNR=FN/(FN+TP)	TPR=TP/(FN+TP)	
	True label :0	True label :0 TNR=TN/(TN+FP)	

True/False Positive/Negative

N=10	Predicted as 0	Predicted as 1	
True label: 1	1 (False Negative (FN)) 5 (True Positive (TP))		
True label :0	2 (True Negative (TN))	2 (False Positive (FP))	
N=10	Predicted as 0	Predicted as 1	

 True label :0
 TNR=0.5
 FPR=0.5

 True label: 1
 FNR=0.167
 TPR=0.833

Due to the meaningful of each label, we may wish to reduce **FPR** or **FNR**

Receiver Operating Characteristic (ROC) Curve

■ In logistic regression, we choose threshold z = 0.5 $p_{\mathbf{c}}(\mathbf{x}) \ge 0.5$: label of \mathbf{x} is 1 $p_{\mathbf{c}}(\mathbf{x}) < 0.5$: label of \mathbf{x} is 0

- If we increase value of threshold z
 - TPR? FPR? TNR? FNR?
- If we decrease value of threshold z
 - TPR? FPR? TNR? FNR?
- When we vary $0 \le z \le 1$, we get different pairs (TPR, FPR).

The plot of (TPR, FPR) gives us ROC curve.

ROC and AUC

	Threshold	FPR	TPR
	0.693	0.0	0.033
	0.493	0.0	0.4
	0.482	0.05	0.4
	••••	•••	•••
	0.311	0.3	0.833
		•••	•••
	0.024	1.0	1.0

ROC and AUC

AUC = area under the curve

Precision and Recall

- Used when we want to evaluate the performance of predictor on a specific label
- Assume our data has 12 dogs and some cats
- Our predictor identifies 8 dogs, however among these 8 dogs, only 5 ones are true dogs and the rest
 (3) is cat.

Precision of our predictor=
$$\frac{5}{8}$$

Recall (sensitivity) of our predictor =
$$\frac{5}{12}$$

Precision and Recall

Precision and Recall

- $0 \le \text{Precision} \le 1, 0 \le \text{Recall} \le 1$
- Precision = 1 or Recall = 1 does not indicate we have a good predictor
- Precision or Recall does not help us compare the performance between different predictors
- A good predictor needs to achieve high values for both Precision and Recall

Precision-Recall Curve and Average Precision (AP)

- For a predefined threshold we have a pair value (Precision, Recall).
- Plot of all pairs (Precision, Recall) = Precision-Recall curve
- AUC of Precision-Recall curve = Average Precision (AP)
- Consider N different thresholds, we obtain N pairs $(P_i, R_i), 1 \le i \le N$

$$AP = \sum_{i=1}^{N-1} (R_{i+1} - R_i) P_i$$

Precision-Recall Curve and Average Precision (AP)

F₁ Score

• F_1 score measures the harmonic mean of precision and recall

$$\frac{2}{F_1} = \frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}$$

or

$$F_1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

• $0 \le F_1 \le 1$. Higher F_1 value, better predictor

F₁ Score

Precision	Recall	F_1
1	1	1
0.1	0.1	0.1
0.5	0.5	0.5
1	0.1	0.182
0.3	0.8	0.36

F_{β} Score

• A generalized form of F_1 is F_β $F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}$

- When $\beta = 1$ we get F_1 score
- When $\beta > 1$ we emphasize precision
- When $\beta < 1$ we emphasize recall

How to Evaluate Predictor on Multi-labels datasets

Example: our true labels[1,0,1,1,2,2,1,2,0,1]

Our predicted labels

N=10	Predicted as 0	Predicted as 1	Predicted as 2
True label :0	1	1	0
True label: 1	O	$\frac{3}{\text{ccuracy}} = \frac{1+3}{1}$	$\frac{2+2}{}=0.6$
True label: 2	1	0	02

Micro-Average TPR and Micro-Average FPR

- Assuming we have 3 labels
- $Total TP = TP^0 + TP^1 + TP^2$
- Total $FP = FP^0 + FP^1 + FP^2$
- Total $TN = TN^0 + TN^1 + TN^2$
- Total $FN = FN^0 + FN^1 + FN^2$

$$Micro - average FPR = \frac{Total FP}{Total FP + Total TN}$$

$$Micro - average TPR = \frac{Total TP}{Total TP + Total FN}$$

→ Micro-Average ROC curve

Micro-Average Precision and Micro-Average Recall

$$Micro - average Recall = \frac{Total TP}{Total TP + Total FN}$$

→ Micro-Average AP curve

Micro-Average TPR and Micro-Average FPR

Macro – Average TPR =
$$\frac{\text{TPR}^0 + \text{TPR}^1 + \text{TPR}^2}{3}$$
Macro – Average FPR =
$$\frac{\text{FPR}^0 + \text{FPR}^1 + \text{FPR}^2}{3}$$

Where TPRⁱ and FPRⁱ are the precision and recall for each label, respectively.

→ Macro-Average ROC curve

Micro-Average Precision and Micro-Average Recall

Macro – Average Precision =
$$\frac{P^0 + P^1 + P^2}{3}$$
Macro – Average Recall =
$$\frac{R^0 + R^1 + R^2}{3}$$

Where P^i and R^i are the precision and recall for each label, respectively.

→ Macro-Average AP curve

