← Natural Language Processing & Word Embeddings

9/10 points (90.00%)

Quiz, 10 questions

Next Item

1/1 points

1.

Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.

True

False

Correct

The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.

1/1 points

2.

What is t-SNE?

•	A linear transformation that allows us to solve analogies on word vectors aral Language Processing & Word Embeddings A non-linear dimensionality reduction technique questions	9/10 points (90.00%)
	Correct Yes	
	A supervised learning algorithm for learning word embeddings An open-source sequence modeling library	
∨ 3.	1 / 1 points	

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a Nathitahibanguagesing seword Embeddings

9/10 points (90.00%)

 \leftarrow

Quiz, 10 questions

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

False

1/1 points

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

Natural Janguage Processing & Word Embeddings \leftarrow

9/10 points (90.00%)

Quiz, 10 questions

Correct

Yes!

$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

Un-selected is correct

$$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

Correct

Yes!

$$e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$$

Un-selected is correct

points

5.

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?

It is computationally wasteful.

9/10 points (90.00%)

Quiz, 10 questions

The correct formula is $E^Tst o_{1234}.$
This doesn't handle unknown words (<unk>).</unk>
None of the above: calling the Python snippet as described above is fine.

1/1 points

6.

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

True

Correct

False

1/1

points

7.

In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.

and c chosen from the training set? Pick the best answer. Natural Language Processing & Word Embeddings

9/10 points (90.00%)

Quiz, 10 questions c is the one word that comes immediately before t.

 \emph{c} and \emph{t} are chosen to be nearby words.

- c is a sequence of several words immediately before t.
- c is the sequence of all the words in the sentence before t.

1/1 points

8.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

 $heta_t$ and e_c are both 500 dimensional vectors.

Correct

 $heta_t$ and e_c are both 10000 dimensional vectors.

Un-selected is correct

← Natural Language Processing & Word Embeddings

9/10 points (90.00%)

Quiz, $\log e_c$ are both trained with an optimization algorithm such as Adam or gradient descent.

Correct

After training, we should expect $heta_t$ to be very close to e_c when t and c are the same word.

Un-selected is correct

0/1 points

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

 $igcap_i$ and e_j should be initialized to 0 at the beginning of training.

Un-selected is correct

 $igcup heta_i$ and e_j should be initialized randomly at the beginning of training.

Correct

← Natural Language Processing & Word Embeddings

9/10 points (90.00%)

Quiz, $X_{ij}^{0 \, {
m questions}}$ is the number of times word i appears in the context of word j.

Correct

The weighting function f(.) must satisfy f(0) = 0.

This should be selected

1/1 points

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

 $m_1 >> m_2$

Correct

 $m_1 \ll m_2$

← Natural Language Processing & Word Embeddings

9/10 points (90.00%)

