EE-381 Robotics-1 UG ELECTIVE

Lecture 6

Dr. Hafsa Iqbal

Department of Electrical Engineering,
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology,

Pakistan

Inverse Kinematics (IK)

 How to compute the position of each joint given the end –effector pose?

 How to generate smooth paths/trajectories for the endeffector?

Inverse Kinematics (IK)

 What joint angles to set to achieve a certain end-effector pose.

$$\xi_N = \mathcal{K}(\boldsymbol{q})$$

$$q = \{q_j, j \in [1 ... N]\}$$

$$q = \mathcal{K}^{-1}(\xi_N)$$

*We need to find angle alpha so we apply cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$r^{2} = x^{2} + y^{2}$$

$$r^{2} = a_{1}^{2} + a_{2}^{2} - 2a_{1}a_{2}\cos\alpha$$

$$\cos\alpha = \frac{a_{1}^{2} + a_{2}^{2} - r^{2}}{2a_{1}a_{2}}$$

$$= \frac{a_{1}^{2} + a_{2}^{2} - x^{2} - y^{2}}{2a_{1}a_{2}}$$

$$q_{2} = \pi - \alpha$$

$$\cos q_{2} = -\cos\alpha$$

$$\cos q_{2} = \frac{x^{2} + y^{2} - a_{1}^{2} - a_{2}^{2}}{2a_{1}a_{2}}$$

$$\beta = \tan^{-1} \frac{a_2 \sin q_2}{a_1 + a_2 \cos q_2}$$

$$q_2 = \cos^{-1} \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}$$
$$q_1 = \tan^{-1} \frac{y}{x} - \tan^{-1} \frac{a_2 \sin q_2}{a_1 + a_2 \cos q_2}$$

$$q_2 = -\cos^{-1} \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}$$
$$q_1 = \tan^{-1} \frac{y}{x} + \tan^{-1} \frac{a_2 \sin q_2}{a_1 + a_2 \cos q_2}$$

$$a\cos\theta + b\sin\theta = c$$

$$\theta = \tan^{-1}\frac{c}{\pm\sqrt{a^2 + b^2 - c^2}} - \tan^{-1}\frac{a}{b}$$

