scln

An Onion Router for Microcontrollers

Joseph Colosimo

6.858 Final Project

December 13, 2011

Testing a Cellphone

```
fig/cellmodel1.pdf
```

Testing a Cellphone

fig/cellmodel2.pdf

Testing a Cellphone

fig/cellmodel3.pdf

fig/chanmodel1.pdf

fig/chanmodel1.pdf

► Difficult to access data from radio towers

fig/chanmodel2.pdf

► Difficult to access data from radio towers

```
fig/chanmodel2.pdf
```

- ► Difficult to access data from radio towers
- ► Cellphone may not be built yet

```
fig/chanmodel3.pdf
```

- ► Difficult to access data from radio towers
- ► Cellphone may not be built yet

fig/chanmodel3.pdf

- ► Difficult to access data from radio towers
- ► Cellphone may not be built yet
- ► Hard to test specific environments

fig/chanmodel4.pdf

- ► Difficult to access data from radio towers
- ► Cellphone may not be built yet
- ► Hard to test specific environments

Simulation

```
fig/sim1.pdf
```

- ► Accurate mathematical models exist
- lacktriangle No end-to-end capability testing

Simulation

```
fig/sim2.pdf
```

- ► Accurate mathematical models exist
- lacktriangle No end-to-end capability testing

The Tradeoff

fig/tradeoff1.pdf

The Tradeoff

fig/tradeoff2.pdf

fig/tradeoff3.pdf

fig/tradeoff4.pdf

fig/chanmodel4.pdf

fig/chanmodel-chanem.pdf

► Highly accurate channel emulators are available for purchase

- ► Highly accurate channel emulators are available for purchase
- ► Designed for commercial networks

fig/planes1.pdf

- ► Highly accurate channel emulators are available for purchase
- ► Designed for commercial networks

fig/planes2.pdf

- ► Highly accurate channel emulators are available for purchase
- Designed for commercial networks
- ► Airborne networks use very different environmental models

fig/planes3.pdf

fig/modules1.pdf

fig/modules2.pdf

fig/modules3.pdf

fig/modules4.pdf

► Researched and chose a reasonable type of hardware to use for the project

- ► Researched and chose a reasonable type of hardware to use for the project
- ► FPGAs are capable of performing streaming math very fast

fig/fpgaboard.pdf

- ► Researched and chose a reasonable type of hardware to use for the project
- ► FPGAs are capable of performing streaming math very fast
- ► Need to convert analog waveform to digital, modify it, and then convert it back

fig/fpgaboard.pdf

- ► Researched and chose a reasonable type of hardware to use for the project
- ► FPGAs are capable of performing streaming math very fast
- Need to convert analog waveform to digital, modify it, and then convert it back
- ▶ High speed ADCs and DACs available as an addon board

fig/fmcboard1.pdf

- ► Researched and chose a reasonable type of hardware to use for the project
- ► FPGAs are capable of performing streaming math very fast
- Need to convert analog waveform to digital, modify it, and then convert it back
- ▶ High speed ADCs and DACs available as an addon board

fig/fmcboard2.pdf

- ► Researched and chose a reasonable type of hardware to use for the project
- ► FPGAs are capable of performing streaming math very fast
- Need to convert analog waveform to digital, modify it, and then convert it back
- ► High speed ADCs and DACs available as an addon board
- ▶ Began work on interfacing the two boards

Architecture

fig/chanmodel-chanem.pdf

Architecture

fig/arch1.pdf

Architecture

fig/arch2.pdf

Architecture

fig/arch3.pdf

Pre-processing: interpret data from ADC, convert to common stream format, downconvert

Post-processing: upconvert, convert to DAC's format

Architecture

fig/arch4.pdf

Emulation: emulate selected environment (operate on streaming format)

Implementation Plan

Timeframe	Tasks
Summer 2011	Purchased required hardware, created development
	environment, began work on interfacing FPGA with ADCs
	and DACs
January 2012	(4 weeks)
Week 3	Re-acquire hardware, continue interface work
Week 4	Create demonstration showing data traveling from one side
	of chanem to the other
Summer 2012	(10 weeks)
Week 4	Design and test digital upconverter, downconverter
Week 8	Design computer interface and associated documentation
Week 10	Create full demonstration showing conversion of signal
Fall 2012	(16 weeks)
	Devoted to research and implementation of proprietary
	emulation algorithms. Goal: 3-week research-implement-test
	cycles

► ADC/DAC troubles: lack of documentation, developer support

► ADC/DAC troubles: lack of documentation, developer support ⇒ Lincoln "gurus" — large network of FPGA specialists

- ► ADC/DAC troubles: lack of documentation, developer support ⇒ Lincoln "gurus" large network of FPGA specialists
- ► Insufficiently powerful hardware

- ► ADC/DAC troubles: lack of documentation, developer support ⇒ Lincoln "gurus" large network of FPGA specialists
- ► Insufficiently powerful hardware
 - ⇒ More advanced in-house hardware available for use

- ► ADC/DAC troubles: lack of documentation, developer support ⇒ Lincoln "gurus" large network of FPGA specialists
- ► Insufficiently powerful hardware
 - ⇒ More advanced in-house hardware available for use
- ► Do mathematical models even exist?

- ► ADC/DAC troubles: lack of documentation, developer support
 - \Rightarrow Lincoln "gurus" large network of FPGA specialists
- ► Insufficiently powerful hardware
 - ⇒ More advanced in-house hardware available for use
- ► Do mathematical models even exist?
 - ⇒ Several phenomena have been documented; approximate models should be possible

chanem in Summary

► Channel emulation is an important way to test a network algorithm in real-time

chanem in Summary

- Channel emulation is an important way to test a network algorithm in real-time
- chanem specifically aims to focus on providing emulation for under-researched airborne network environments

chanem in Summary

- Channel emulation is an important way to test a network algorithm in real-time
- chanem specifically aims to focus on providing emulation for under-researched airborne network environments
- ► The proposed implementation provides a clear path for the implementation of chanem on hardware and the research and application of mathematical models for airborne environments.