Оценка собственных значений возмущенного линейного оператора

И. Н. Нестеров, С. В. Клочков, А. С. Чурсанова

Дан линейный оператор $\mathbb{A} \in \operatorname{End} \mathbb{C}^n$ со своей матрицей $\mathscr{A} = (a_{ij}),$ внедиагональные элементы которой малы по сравнению с диагональными. Представим оператор \mathbb{A} в виде разности $\mathbb{A} = A - B$ двух линейных операторов

 $A, B \in \operatorname{End} \mathbb{C}^n$, заданных матрицами \mathcal{A} и \mathcal{B} соответственно:

$$\mathcal{A} = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}, \qquad \mathcal{B} = - \begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ a_{21} & 0 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & 0 \end{pmatrix}.$$

Оператор A будем называть *невозмущенным* оператором, оператор B возмущением оператора A, а A — возмущенным линейным оператором. Как уже говорилось, элементы матрицы возмущения $\mathcal B$ малы по сравнению с элементами невозмущенной матрицы $\mathcal A$.

Требуется получить оценку одного определенного собственного значения (далее всюду будем делать вывод для первого собственного значения). Знаем, что это оцениваемое собственное значение отлично от других.

Разложим пространство $\mathrm{End}\,\mathbb{C}^n$ в прямую сумму $\mathfrak{X}_1\oplus\mathfrak{X}_2$ инвариантных относительно невозмущенного оператора A подпространств \mathfrak{X}_1 и \mathfrak{X}_2 , где $\mathfrak{X}_1=\mathbb{C},\mathfrak{X}_2=\mathbb{C}^{n-1}$. При этом потребуем, чтобы множества $\sigma_i=\sigma(A_i),$ i=1,2 взаимно не пересекались $(A_i=A|_{\mathfrak{X}_i},i=1,2$ — сужение A на \mathfrak{X}_i и $A=A_1\oplus A_2$). Как уже было сказано, будем искать оценку первого собственного значения, поэтому пусть $\mathfrak{X}_1=\mathcal{L}(e_1)$ — линейная оболочка, натянутая на базисный вектор $e_1=(1,0,\ldots,0),$ а $\mathfrak{X}_2=\mathcal{L}(e_2,\ldots,e_n).$

В соответствии с заданным разложением пространства \mathbb{C}^n будем рассматривать два трансформатора: $\mathcal{J} \colon \operatorname{End} \mathbb{C}^n \to \operatorname{End} \mathbb{C}^n$, $\Gamma \colon \operatorname{End} \mathbb{C}^n \to \operatorname{End} \mathbb{C}^n$, таких что:

1. $\forall X \in \text{End } \mathbb{C}^n$ матрица оператора $\mathcal{J}X$ имеет вид:

$$\mathcal{J}X = \begin{pmatrix} x_{11} & 0 & \dots & 0 \\ 0 & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & x_{n2} & \dots & x_{nn} \end{pmatrix};$$

2. ΓX определяется как решение уравнения:

$$A\Gamma X - \Gamma XA = X - \mathcal{J}X, \quad \forall X \in \text{End } \mathbb{C}^n.$$
 (1)

Определим вид матрицы оператора ΓX . Для этого запишем равенство (1)

для элемента (i, j):

$$(A\Gamma X)_{ij} - (\Gamma XA)_{ij} = \begin{cases} x_{ij}, & i = 1 \text{ и } j = 2 \dots n; \\ x_{ij}, & j = 1 \text{ и } i = 2 \dots n; \\ 0, & \text{иначе.} \end{cases}$$
 (2)

Пусть $\Gamma X = Y$. Заметим, что $(AY)_{ij} = a_{ii}y_{ij}$. Подставим полученный результат в формулу (2):

$$a_{ii}y_{ij} - a_{jj}y_{ij} = \begin{cases} x_{ij}, & i = 1 \text{ и } j = 2\dots n; \\ x_{ij}, & j = 1 \text{ и } i = 2\dots n; \\ 0, & \text{иначе.} \end{cases}$$
 (3)

Обозначим за Ω множество $\{(i,j)\colon i=1$ и $j=2\dots n,$ или j=1 и $i=2\dots n\}.$ Тогда

$$y_{ij} = \begin{cases} \frac{x_{ij}}{a_{ii} - a_{jj}}, & (i, j) \in \Omega \\ 0, & \text{иначе.} \end{cases}$$
 (4)

Таким образом мы получили, что матрица оператора ΓX имеет вид:

$$\Gamma X = \begin{pmatrix} 0 & \frac{x_{12}}{a_{11} - a_{22}} & \dots & \frac{x_{1n}}{a_{11} - a_{nn}} \\ \frac{x_{21}}{a_{22} - a_{11}} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{x_{n1}}{a_{nn} - a_{11}} & 0 & \dots & 0 \end{pmatrix}.$$

Легко заметить, что $\|\Gamma X\|\leqslant \gamma\,\|X\|$, где $\gamma=rac{1}{\min\limits_{\Omega}|a_{ii}-a_{jj}|}.$

Будем искать такой оператор $X_0\in\operatorname{End}\operatorname{\mathbb{C}}^n$, чтобы выполнялось равенство

$$(A - B)(I + \Gamma X_0) = (I + \Gamma X_0)(A - \mathcal{J}X_0). \tag{5}$$

При условии $\|\Gamma X_0\| \leqslant 1$ (тогда оператор $I + \Gamma X_0$ обратим) равенство (5) означает подобие операторов A - B и $A - \mathcal{J} X_0$. Таким образом задача оценки первого собственного значения возмущенного оператора A - B сводится к задаче оценки первого собственного значения оператора $A - \mathcal{J} X_0$, равного $a_{11} - x_{11}^0$ в силу указанного разложения пространства \mathbb{C}^n . Необходимо получить оценку x_{11}^0 матрицы оператора X_0 . Для этого сначала преобразуем равенство (5):

$$A + A\Gamma X - B - B\Gamma X = A - \mathcal{J}X + \Gamma XA - \Gamma X\mathcal{J}X;$$

$$A\Gamma X - \Gamma XA - B\Gamma X + \mathcal{J}X + \Gamma X\mathcal{J}X - B = 0;$$

$$X - \mathcal{J}X - B\Gamma X + \mathcal{J}X + \Gamma X\mathcal{J}X - B = 0;$$

$$X = B\Gamma X - \Gamma X\mathcal{J}X + B.$$
(6)

Применим к уравнению (6) трансформатор \mathcal{J} :

$$\mathcal{J}X = \mathcal{J}B\Gamma X + \mathcal{J}B,$$

и подставим $\mathcal{J}X$ в уравнение (6). Получаем нелинейное уравнение

$$X = B\Gamma X - \Gamma X \mathcal{J}(B\Gamma X) - \Gamma X \mathcal{J}B - B = \Phi(X). \tag{7}$$

Условие разрешимости уравнения (7) следует из следующей теоремы: **Теорема 1.** *Если выполняется условие*

$$\gamma \|B\| < \frac{1}{4},$$

то уравнение (7) имеет решение X_0 , для которого выполнено равенство (5).

Доказательство.

Для доказательства воспользуемся методом сжимающих отображений. Теорема доказана.

Пусть P_1, P_2 — проекторы, ассоциированные с указанным в начале разложением пространства \mathbb{C}^n . Заметим, что $\forall X \in \text{End } \mathbb{C}^n$ выполняется:

1. $\mathcal{J}X = P_1XP_1 + P_2XP_2$;

2.
$$P_i(\Gamma X)P_j = \Gamma(P_i X P_j), i, j = 1, 2,$$
и $P_i(\Gamma X)P_i = 0, i = 1, 2.$

Таким образом пространство \mathbb{C}^n можно представить в виде прямой суммы $\mathfrak{X}=\mathfrak{X}_{11}\oplus\mathfrak{X}_{12}\oplus\mathfrak{X}_{21}\oplus\mathfrak{X}_{22}$ подпространств, где $\mathfrak{X}_{ij}=\{P_i\mathfrak{X}P_j,X\in\operatorname{End}\mathbb{C}^n\},$ i,j=1,2. Через X_{ij} будем обозначать оператор $P_iXP_j,\ i,j=1,2.$ таким образом $X=(P_1+P_2)X(P_1+P_2)=X_{11}+X_{12}+X_{21}+X_{22},\ X\in\operatorname{End}\mathbb{C}^n.$ Применим операторы P_1 и P_2 к обеим частям уравнения (7).

1. Применим справа и слева проектор P_1 :

$$\begin{split} P_{1}XP_{1} &= P_{1}B\Gamma XP_{1} - P_{1}\Gamma X\mathcal{J}(B\Gamma X)P_{1} - P_{1}\Gamma X\mathcal{J}BP_{1} - P_{1}BP_{1}; \\ X_{11} &= (B_{11} + B_{12})(\Gamma X_{11} + \Gamma X_{21}) - \\ &- (\Gamma X_{11} + \Gamma X_{12})\mathcal{J}((B_{11} + B_{12})(\Gamma X_{11} + \Gamma X_{21})) - \\ &- (\Gamma X_{11} + \Gamma X_{12})(\mathcal{J}B_{11} + \mathcal{J}B_{21}) + B_{11}; \end{split}$$

Будем учитывать, что $\mathcal{J}X_{12} = \mathcal{J}X_{21} = 0$ и $\Gamma X_{11} = \Gamma X_{22} = 0$.

$$X_{11} = (B_{11} + B_{12})\Gamma X_{21} - \Gamma X_{12} \mathcal{J}((B_{11} + B_{12})\Gamma X_{21}) - \Gamma X_{12} \mathcal{J}B_{11} + B_{11};$$

$$X_{11} = B_{12}\Gamma X_{21} + B_{11};$$
(8)

2. Применим справа проектор P_1 , а слева P_2 :

$$P_{2}XP_{1} = P_{2}B\Gamma XP_{1} - P_{2}\Gamma X\mathcal{J}(B\Gamma X)P_{1} - P_{2}\Gamma X\mathcal{J}BP_{1} - P_{2}BP_{1};$$

$$X_{21} = (B_{11} + B_{22})\Gamma X_{21} - \Gamma X_{21}\mathcal{J}(B_{12}\Gamma X_{21}) - \Gamma X_{21}B_{11} + B_{21};$$

$$X_{21} = B_{22}\Gamma X_{21} - (\Gamma X_{21})B_{12}\Gamma X_{21} - (\Gamma X_{21})B_{11} + B_{21};$$
(9)

Искомую оценку элемента x_{11} оператора X, являющегося решением нелинейного уравнения (7) мы получим, получив оценку $||X_{11}||$. Для оценки $||X_{11}||$ в свою очередь требуется оценка $||X_{21}||$ и разрешимость уравнения (9). Потому сформулируем и докажем следующую теорему:

Теорема 2. //ТОДО формулировка теоремы

Доказательство.

Доказательство теоремы.