Cele analiz przejściowych (interim analyses)

Wcześniejsze przerwanie (early stopping) próby z powodu

```
bezpieczeństwa (safety)
```

skuteczności (efficacy)

nieskuteczności (futility)

Modyfikacja układu doświadczalnego na podstawie zaobserwowanych wyników mająca na celu

play the winner / drop the loser

utrzymanie mocy statystycznej

dowolną modyfikację, niezależnie od przyczyny lub danych, z kontrolą p-stwa błędu I rodzaju α

Metodologia analiz przejściowych

Wielostopniowe układy dośw. (multi-stage designs) Układy "bezszwowe" (seamless designs) np. fazy II/III Układy sekwencyjne (sequential designs) Układy z sekwencyjnymi grupami (group-sequential) Korekta liczebności próbki (sample size adjustments) Stochastyczne "obcinanie" (stochastic curtailment) Układy adaptacyjne (adaptive designs)

Wcześniejsze przerywanie próby

The Helsinki Declaration states:

"Physician should cease any investigation if the hazards are found to outweigh the potential benefits."

- Trials with serious, irreversible endpoints should be stopped if one treatment is "proven" to be superior
 - Possibility for early stopping formally included in the trial design.
 - Necessity of early stopping assessed by a « Data and Safety Monitoring Board » or « Independent Data Monitoring Committee ».

Koszta wydłużania procesu opracowywania leku

Próby z ustaloną liczebnością próbki...

- 1 Liczebność umożliwiająca "wykrycie" z ustaloną mocą określonej różnicy w skuteczności leczenia dla konkretnego poziomu istotności
- 2 Wymagana liczba chorych włączana do próby

3 – Wyniki leczenia chorych analizowane na koniec próby, po zaobserwowaniu zaplanowanej (wymaganej) liczby zdarzeń

...vs próby z sekwencyjnymi grupami...

- 1 Liczebność umożliwiająca "wykrycie" z ustaloną mocą określonej różnicy w skuteczności leczenia dla konkretnego poziomu istotności
- 2 Chorzy włączani do próby do chwili analizy przejściowej
- 3a Próba jest przerywana lub
- 3b kontynuowana bez zmian
- 4 Wyniki leczenia chorych analizowane na koniec próby, po zaobserwowaniu zaplanowanej (wymaganej) liczby zdarzeń

...vs próby adaptacyjne

- 1 Liczebność umożliwiająca "wykrycie" z ustaloną mocą określonej różnicy w skuteczności leczenia dla konkretnego poziomu istotności
 2 – Chorzy włączani do próby do chwili analizy przejściowej
- 3a Próba jest przerywana lub
 - [₹]3b jest kontynuowana bez zmian lub
 - 3c jest kontynuowana z modyfikacjami
 - 4 Wyniki leczenia chorych analizowane na koniec próby, po zaobserwowaniu zaplanowanej lub zmodyfikowanej liczby zdarzeń

Próby sekwencyjne

- Analiza danych przeprowadzana po uzyskaniu każdej nowej obserwacji (konieczne ciągłe monitorowanie zdarzeń; rzadko możliwe)
- Granica decyzyjna (boundary) wyznaczana w oparciu o Z (stattystykę testową) i V (wariancję statystyki, rosnącą w czasie)

Whitehead, The Design and Analysis of Sequential Clinical Trials (1983)

Próby sekwencyjne

- Wald (1947): Sequential Probability Ratio Test
 - Statystyką jest suma obserwacji
 - Bez górnego ograniczenia liczebności próbki

Próby sekwencyjne

- Whitehead (1983): Triangular Test
 - Example: effect of chemoembolization on 2-year survival in unresectable hepatocarcinoma

Próby z sekwencyjnymi grupami

- W praktyce, analizy danych z próby klinicznej możliwe są tylko co jakiś czas.
- Nawet dla tylko dwóch analiz, p-stwo błędu l rodzaju rośnie jeśli w analizach używany jest ten sam (nominalny) poziom istotności.
- W analizach przejściowych konieczne jest więc używanie skorygowanego poziomu istotności w celu kontroli całkowitego p-stwa błędu I rodzaju na ustalonym poziomie.

Inflation of α with multiple analyses

Probability of false positive result for several looks assuming a significance level of 0.05 is used at each look

Adjusting α for multiple analyses

Układy doświadczalne z sekwencyjnymi grupami

- Testujemy H_0 : $\Delta = 0$ vs. H_A : $\Delta \neq 0$
- m chorych włączanych do każdego z dwóch ramion próby pomiędzy analizami przejściowymi
- Rozważamy standaryzowane statystyki testowe Z_k , k=1,...,K

$$Z_{k} = \frac{\sum_{i=1}^{mk} X_{Ei} - \sum_{i=1}^{mk} X_{Ci}}{\sigma \sqrt{2mk}} = \frac{\overline{X}_{Ek} - \overline{X}_{Ck}}{\sigma \sqrt{2k/m}}$$

Układy doświadczalne z sekwencyjnymi grupami: błąd I rodzaju

P-stwo błędnego przerwania próby/odrzucenia H_0 w k-tej analizie

$$P_{H0}(|Z_1| < c_1, ..., |Z_{k-1}| < c_{k-1}, |Z_k| \ge c_k) = \pi_k$$

"Błąd I rodzaju wydatkowany w k-tej analizie"

• $P(Blad\ I\ rodzaju) = \sum \pi_k$

• Wybieramy c_k tak, aby $\sum \pi_k = \alpha$

Układy doświadczalne z sekwencyjnymi grupami: błąd II rodzaju

P-stwo błędu II rodzaju wynosi

$$1-P_{HA}(U\{|Z_1|< c_1, ..., |Z_{k-1}|< c_{k-1}, |Z_k| \ge c_k\})$$

• Zależy od K, α , β , c_k .

- Ustalając te parametry, można wyznaczyć wymaganą liczebność próbki
 - da się ja wyrazić jako R x (fixed sample size)

Łączny rozkład p-stwa oszacowań miar efektu leczenia

- ullet Załóżmy, że interesuje nas miara Δ .
- ullet Niech $\hat{\Delta}_k$ będzie oszacowaniem w k-tej analizie.
- ◆Informacja o ∆ w k-tej analjzie wynosi

$$I_k = 1/\operatorname{Var}(\hat{\Delta}_k)$$

• Dla różnych typów kryteriów oceny skuteczności leczenia, łączny rozkład p-stw oszacowań Δ jest w przybliżeniu wielowymiarowym rozkładem normalnym.

Łączny rozkład p-stwa standaryzowanych statystyk testowych

• Rozważamy test H_0 : $\Delta = 0$ w k-tej analizie przy użyciu standaryzowanej statystyki testowej Z_k :

$$Z_k = \hat{\Delta}_k / \sqrt{\operatorname{Var}(\hat{\Delta}_k)} = \hat{\Delta}_k \sqrt{I_k}$$

 $(Z_1, ..., Z_K)$ ma w przybliżeniu wielowymiarowy rozkład normalny:

$$Z_k \sim N(\Delta \sqrt{I_k}, 1)$$

 $Cov(Z_{k_1}, Z_{k_2}) = \sqrt{I_{k_1} / I_{k_2}} \text{ for } k_1 < k_2$

Łączny rozkład p-stwa statystyk testowych "score"

• Rozważamy statstyki "score" $S_k = Z_k \sqrt{I_k}$:

$$S_k \sim N(\Delta I_k, I_k)$$

Mają własność "niezależnych przyrostów":

$$Cov(S_k - S_{k-1}, S_{k'} - S_{k'-1}) = 0 \text{ for } k \neq k'$$

- ullet Zachowuje się również dla $Z_k \dots$
- ... i dla różnych kryteriów oceny skuteczności leczenia (ciągłych, binarnych, czasu do zdarzenia,...)
- Umożliwia obliczanie p-stwa błędu

Granice decyzyjne Pococka

- Odrzucamy H_0 jeśli $|Z_k| > c_P(K,\alpha)$
 - $c_P(K,\alpha)$ wybierane tak, aby P(Błąd I rodzaju) = α

 Wszystkie analizy przeprowadzane dla tego samego, skorygowanego poziomu istotności

 Relatywnie duże p-stwo wcześniejszego przerwania próby, ale moc analizy końcowej może być zmniejszona

Granice decyzyjne Pococka

• Signif. levels for Z_k (2-sided) per interim analysis (K=5)

Granice decyzyjne O'Briena-Fleminga

- Odrzucamy H_0 jeśli / Z_k / $> c_{OBF}(K, \alpha) \sqrt{(K/k)}$
 - Dla k=K mamy $/Z_K/>c_{OBF}(K,\alpha)$
 - $c_{OBF}(K,\alpha)$ wybierane tak, aby $P(Blad\ I\ rodzaju) = \alpha$

 "Wczesne" analizy przy użyciu mocno skorygowanego poziomu istotności

 Relatywnie małe p-stwo przerwania próby, ale moc analizy końcowej praktycznie niezmieniona

Granice decyzyjne O'Briena-Fleminga

• Signif. levels for Z_k (2-sided) per interim analysis (K=5)

Granice decyzyjne Wanga-Tsiatisa

Wang & Tsiatis (1987):

Odrzucamy H_0 jeśli / Z_k / > $c_{WT}(K,\alpha,\theta)(k$ / $K)^{\theta}$ - $\frac{1}{2}$

- $\theta = 0.5$ daje granice Pococka; $\theta = 0$, O'Briena-Fleminga
- dostępne w EaSt

 Umożliwiają wybór rozwiązań pośrednich pomiędzy granicami Pococka i O'B-F

Granice decyzyjne Wanga-Tsiatisa

• Signif. levels for Z_k (2-sided) per interim analysis (K=5) with $\theta = 0.2$

Granice decyzyjne Haybittle-Peto

Haybittle & Peto (1976):

Odrzucamy
$$H_0$$
 jeśli / Z_k / > 3 dla $k=1,...,K-1$
Odrzucamy H_0 jeśli / Z_k / > $c_{HP}(K,\alpha)$ dla $k=K$

• $|Z_k| > 3$ odpowiada użyciu p < 0.0026

- "Wczesne" analizy dla mocno obniżonego, ale akceptowalnego poziomu istotności
- Intuicyjne podejście, łatwe do zaimplementowania (pomijając korektę dla analizy końcowej)

Granice decyzyjne Haybittle-Peto

• Signif. levels for Z_k (2-sided) per interim analysis (K=5)

Porównanie różnych granic decyzyjnych

• Signif. levels for Z_k (2-sided) per interim analysis (K=5)

Porównanie różnych granic decyzyjnych

• Z_k per interim analysis (K=5)

Potencjalne oszczędności / straty dla użycia prób z sekwencyjnymi grupami

Oczekiwane liczebności próbki dla K=5:

- kryterium o rozkładzie normalnym z σ = 2
- $\alpha = 0.05$
- $-\beta = 0.1 \, \text{dla} / \mu_A \mu_B / = 1$

,			
$ \mu_A - \mu_B $	Fixed sample	Pocock	O'Brien-Fleming
0.0	170	205	179
0.5	170	182	168
1.0	170	117	130
1.5	170	70	94

Wcześniejsze przerywanie próby

- ullet W celu **odrzucenia** H_0 o *braku efektu leczenia*
 - Uniknięcie podawania mniej skutecznego leczenia kolejnym chorym
 - Sensowne jeśli nie trzeba gromadzić dodatkowych danych o, np., toksyczności czy efektach długoterminowych.

- ullet W celu **przyjęcia** H_0 o *braku efektu leczenia*
 - Stopping "for futility" or "abandoning a lost cause"
 - Oszczędza czas i środki gdy próba z dużym p-stwem nie przyniesie pożądanych wyników.

Test dwustronny

Early stopping to reject H_0

An inner wedge: Early stopping to reject H_0 or accept H_0

Abandoning a lost cause:

Only an inner wedge

Test jednostronny

Early stopping to reject H_0 or accept H_0

Early stopping only to reject H_0

Abandoning a lost cause:

Early stopping only to accept H_0

Strategia "wydatkowania błędu" (error-spending)

- Usuwa wymóg ustalania liczby analiz w równych odstępach
- Lan & DeMets (1983): "wydatkowanie" błędu I rodzaju

- Układ dośw. z maksymalną informacją:
 - ullet Funkcja wydatkowania błędu $ightarrow f(\mathcal{I})$
 - Określa granice decyzyjne
 - Akceptujemy H_0 jeśli osiągamy I_{max} bez odrzucenia hipotezy zerowej

Error spending tests

Analysis 1:

Observed information \mathcal{I}_1 .

Reject H_0 if $|Z_1| > c_1$ where

$$Pr_{\theta=0}\{|Z_1| > c_1\} = f(\mathcal{I}_1).$$

Analysis 2:

Cumulative information \mathcal{I}_2 .

Reject H_0 if $|Z_2| > c_2$ where

$$Pr_{\theta=0}\{|Z_1| < c_1, |Z_2| > c_2\}$$

= $f(\mathcal{I}_2) - f(\mathcal{I}_1)$.

Strategia "wydatkowania błędu"

- •f(t)=min(α ln (1+(e-1)t,α) daje ≈ granice Pococka

- • $f(t)=min(\alpha t^{\theta},\alpha)$:
 - $\theta = 1$ odpowiada granicom Pococka, 3 granicom O'B-F

Ile analiz przejściowych?

 Jedna lub dwie dają największą część zysku w terminach redukcji oczekiwanej liczebności próbki

Minimalny zysk dla więcej niż 5 analiz

Kiedy przeprowadzać analizy?

- Używając strategii "wydatkowania błędu", pełna elastyczność co do liczby i terminu analiz
 - pierwsza nie powinna być "za wcześnie" (na ogół gdy mamy ~ 50% całkowitej informacji)
 - analizy w rónych odstępach zalecane z przyczyn praktycznych
- Strategia/termin analiz nie powinny być wybierane na podstawie zaobserwowanych wyników

Analiza końcowa w próbie z sekwencyjnymi grupami

- Dla testów dwustronnych i wczesnego przerywania na korzyść H_A , estymator najw. wiarogodności na ogół przeszacowuje Δ
 - dodatnie obciążenie dla $\Delta > 0$, ujemne dla $\Delta < 0$
 - bo przerywamy próbę jeśli oszacowanie jest duże
 - opracowano estymatory korygujące obciążenie

Independent Data Monitoring Committee (IDMC)

Niezależny od organizatorów próby

- Eksperci z różnych dyscyplin
 - klinicyści, statystycy, etycy, ...

 Ochrona interesów i bezpieczeństwa chorych, przy jednoczesnym zapewnieniu naukowej wiarygodności próby

IDMC: zadania

- Ocena porównywalności ramion próby
- Monitorowanie tempa rekrutacji i czasu trwania próby
- Monitorowanie jakości gromadzonych danych
- Monitorowanie bezpieczeństwa/toksyczności
 - Na ogół bez "zaślepiania"
- Ocena różnic w skuteczności leczenia
 - "Zaślepiona" całkowicie lub częściowo (np. przez użycie kodów X /Y dla porównywanych metod leczenia)

IDMC: pytania

- Czy próba powinna być kontynuowana?
 - bezpieczeństwo
 - skuteczność
 - wyniki innych prób

Czy protokół powinien zostać zmodyfikowany?

Modyfikacja liczebnośći próki

Dla kryteriów oceny skuteczności o rozkładzie normalnym

$$n_{I} = \frac{2(z_{1-\beta} + z_{1-\alpha/2})^{2}}{\left(\frac{\Delta}{\sigma}\right)^{2}}$$

- Liczebność próbki zależy od σ^2
- ullet Dla błędnej wartości, n_I może być zbyt małe
- Idea: "wewnętrzne badanie pilotażowe"
 - szacujemy σ² z danych uzyskanych na początku próby
 - wyznaczamy nową luiczebność póbki, n_A
 - jeśli konieczne, włączamy więcej niż n, chorych

Wewnętrzne badanie pilotażowe

- Szacujemy σ^2 przez s^2_0 z początkowych danych
 - Wittes & Brian (1990): "tradycyjne" oszacowanie (bez zaślepiania)
 - Kieser & Friede (2003): oszacowanie zaślepione

- ullet Wyznaczamy nową liczebność próbki, n_A
 - Wittes & Brian (1990): przyjmujemy $n = max(n_I, n_A)$
 - Birkett & Day (1994): $n = max(aktualne n, n_A)$
 - Gould & Shih (1992): $n = min(n_A, 2n_I) jeśli n_A > 1.25n_I$

Wewnętrzne badanie pilotażowe

- Dla małych badań pilotażowych i n_I, p-stwo błędu l rodzaju wzrasta dla modyfikacji bez zaślepienia
 - przynajmniej 10 chorych/grupa w badaniu pilotażowym
- Dla zaślepionej modyfikacji, generalnie nie ma problemu
- Oczekiwana moc nieco mniejsza dla obu metod

- Modyfikacja nie powinna opierać się na oszacowaniach miary efektu leczenia
 - tylko na oszacowaniach wariancji

Binarne kryteria oceny skuteczności leczenia

$$n = \frac{\left(z_{1-\alpha} + z_{1-\beta}\right)^2 2\overline{\pi} \left(1 - \overline{\pi}\right)}{\frac{\Delta^2}{\pi}}$$

$$\overline{\pi} = \frac{\pi_E + \pi_C}{2}$$

- Gould & Shih (1992): oszacowanie pilotażowe π na połączonych danych z obu grup
 - zaślepione
- Herson & Wittes (1993): szacujemy $\pi_C z$ danych pilotażowych, a π_E przez (oszacowane π_C) + Δ
 - bez zaślepiania

Stochastyczne "obcinanie"

- Przerywamy próbę, jeśli p-stwo odrzucenia hipotezy zerowej, warunkowo ze względu na zaobserwowane dane, jest wysokie
 - mocy warunkowa
 - moc przewidywana
 - podejście nieparametryczne

Moc warunkowa

- Rozważamy "test odniesienia" T
 - dla testowania hipotezy zerowej H₀: Δ=0
- Dla k-tej analizy, definiujemy $p_k(\Delta) = P_{HA}(\text{test odrzuci H}_0 \mid \text{zgromadzone dane})$
- Duża wartość $p_k(0)$ sugeruje, że T odrzuci H_0
 - przerywamy próbę, odrzucamy H_0 dla $p_k(0) > \xi = 0.8$ lub 0.9
 - przerywamy próbę, przyjmujemy H_0 dla $1-p_k(\Delta)>\xi'$ (1-sided) lub dla $1-p_k(-\Delta)>\xi'$ oraz $1-p_k(\Delta)>\xi'$ (2-sided)
- P-stwo błędu I rodzaju nie większe niż α / ξ
 - Dla błędu II rodzaju nie większe niż β / ξ'

Moc warunkowa

- Moc bezwarunkowa przy α=0.05 i β=0.1 dla Δ=0.2
- Moc warunkowa dla analizy przejściowej z oszacowaniem Δ=0.1
 - p-stwo odrzucenia h. zerowej na koniec próby zredukowane z 0.9 do 0.1

Figure 10.1 Conditional and unconditional power curves for a one-sided test

Moc warunkowa

 Granice decyzyjne odpowiadające stochastycznemu "obcinaniu" Figure 10.2 Stopping boundary for a stochastically curtailed one-sided test using th conditional power approach. The reference test is a fixed sample one-sided test with Type error probability $\alpha = 0.05$ and information level $\mathcal{I}_{f,1} = 214.1$, set to achieve power 0.9 at $\theta = 0.2$. The stochastic curtailment parameters are $\gamma = \gamma' = 0.8$.

Moc warunkowa i przewidywana

- Problem z podejściem opartym na mocy warunkowej: obliczenia oparte na wartości ∆ odbiegającej od aktualnego oszacowania.
- Rozwiązanie: uśrednienie po wartościach Δ
- "Moc przewidywana" $P_k = \int p_k(\Delta) \pi(\Delta \mid \mathrm{data}) d\Delta$
 - π(Δ | data) jest rozkładem a posteriori
 - Przerywamy próbę, odrzucamy H_0 dla $P_k > \xi$ itd.
 - Jaki rozkład a priori?

Moc przewidywana

- Granice decyzyjne odpowiadające stochastycznemu "obcinaniu"
- Węższe niż dla mocy warunkowej
 - łatwiej przerwać próbę

Figure 10.4 Stopping boundary for a stochastically curtailed one-sided test using the predictive power approach with a uniform prior. The reference test is a fixed sample one-sided test with Type I error probability $\alpha=0.05$ and information level $\mathcal{I}_{f,1}=214.1$, set to achieve power 0.9 at $\theta=0.2$. The stochastic curtailment parameters are $\gamma=\gamma'=0.8$.

