MA 544: Homework 7

Carlos Salinas

February 23, 2016

PROBLEM 7.1 (WHEEDEN & ZYGMUND §4, Ex. 9)

- (a) Show that the limit of a decreasing (increasing) sequence of functions usc (lsc) at \mathbf{x}_0 is usc (lsc) at \mathbf{x}_0 . In particular, the limit of a decreasing (increasing) sequence of functions continuous at \mathbf{x}_0 is usc (lsc) at \mathbf{x}_0 .
- (b) Let f be use and less than ∞ on [a,b]. Show that there exists continuous f_k on [a,b] such that $f_k \searrow f$.

PROBLEM 7.2 (WHEEDEN & ZYGMUND §4, Ex. 11)

Let f be defined on \mathbf{R}^n and let $B(\mathbf{x})$ denote the open ball $\{\mathbf{y} \mid |\mathbf{x} - \mathbf{y}| < r\}$ with center \mathbf{x} and fixed radius r. Show that the function $g(\mathbf{x}) = \sup\{f(\mathbf{y}) \mid \mathbf{y} \in B(\mathbf{x})\}$ is use on \mathbf{R}^n . Is the same true for the closed ball $\{\mathbf{y} \mid |\mathbf{x} - \mathbf{y}| \le r\}$?

PROBLEM 7.3 (WHEEDEN & ZYGMUND §4, Ex. 15)

Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E with $|E| < \infty$. If $|f_k(M)| \le M < \infty$ for all k for each $\mathbf{x} \in E$, show that given $\varepsilon > 0$, there is closed $F \subset E$ and finite M such that $|E \setminus F| < \varepsilon$ and $|f - k(\mathbf{x})| \le M$ for all $\mathbf{x} \in F$.

PROBLEM 7.4 (WHEEDEN & ZYGMUND §4, Ex. 18)

If f is measurable on E, define $\omega_f(a) = |\{f > a\}|$ for $-\infty < a < \infty$. If $f_k \nearrow f$, show that $\omega_{f_k} \nearrow \omega_f$. If $f_k \to f$, show that $\omega_{f_k} \to \omega_f$ at each point of continuity of ω_f . [For the second part, show that if $f_k \to f$, then $\overline{\lim}_{k \to \infty} \omega_{f_k}(a) \le \omega_f(a - \varepsilon)$ and $\underline{\lim}_{k \to \infty} \omega_{f_k}(a) \ge \omega_f(a + \varepsilon)$ for every $\varepsilon > 0$.]

PROBLEM 7.5 (WHEEDEN & ZYGMUND §5, Ex. 1)

If f is a simple measurable function (not necessarily positive) taking values a_j on E_j , j=1,...,N, show that $\int_E f = \sum_{j=1}^N a_j |E_j|$. [Use (5.24)].

PROBLEM 7.6 (WHEEDEN & ZYGMUND §5, Ex. 2)

Show that the conclusion of (5.32) are not true without the assumption that $\varphi \in L(E)$. [In part (ii), for example, take $f_k = \chi_{(k,\infty)}$.]

PROBLEM 7.7 (WHEEDEN & ZYGMUND §5, Ex. 3)

Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on E. If $f_k \to f$ and $f_k \le f$ a.e. on E, show that $\int_E f_k \to \int_E f$.

PROBLEM 7.8 (WHEEDEN & ZYGMUND §5, Ex. 4)

If $f \in L(0,1)$, show that $x^k f(x) \in L(0,1)$ for k = 1,2,..., and $\int_0^1 x^k f(x) dx \to 0$.