Tutorial: Desenvolvendo Componentes de Software com o Método B

David Déharbe

ForAll — Formal Methods and Research Laboratory

DIMAp — Departmento de Informática e Matemática Aplicada

UFRN — Universidade Federal do Rio Grande do Norte

Natal, RN, Brazil

INES — INC&T para Engenharia de Software

Congresso Brasileiro de Software, 2014

Propaganda

Programa de Pós-graduação em Sistemas e Computação Departamento de Informática e Matemática Aplicada Universidade Federal do Rio Grande do Norte — Natal

- Mestrado, Doutorado (fluxo contínuo, bolsas disponíveis)
- Algoritmos Experimentais, Engenharia de Software, Fundamentos da Computação, Linguagens de Programação e Métodos Formais, Processamento Gráfico e Inteligência Computacional, Sistemas Integrados e Distribuídos.
- Conceito 5
- http://www.posgraduacao.ufrn.br/ppgsc

Propaganda

Programa de Pós-graduação em Engenharia de Software Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte — Natal

- Mestrado Profissional
- Desenvolvimento de Jogos Digitais, Engenharia de Sistemas Web.

Principais referências

- J.-R. Abrial. The B-Book: Assigning programs to meanings. Oxford University Press, 1996.
- S. Schneider the b-method — an introduction Palgrave McMillan 2001
- J.B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

Roteiro

Introdução

Contextualização

Visão global do método B

(tira-gosto)

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Qual problemas o método B se propõe a solucionar?

B is a method for specifying, designing, and coding software systems [1].

- Objetivo: desenvolver componentes de software;
- Abordagem formal:
 - sintaxe
 - semântica precisa
 - raciocínio matemático para garantir corretude
- Presuposto: requisitos funcionais são definidos;
- Plataformas alvo: modelo de programação imperativo, sequencial, sem recursão, sem alocação dinâmica de memória.
- Existem ferramentas comerciais para aplicar o método B;
- Existem empresas que usam o método B.
- Existem sistemas que executam software desenvolvido com o método B.

Histórico breve

- Conceitos de base:
 - Cálculo de pré-condição mais fraca (Dijkstra);
 - Linguagens de especificação formal Z e VDM;
 - Conceitos de refinamento desenvolvido por Hoare e Jones.
- 85–88: Criação no Oxford University Programming Research Group;
- Pesquisador principal: Jean-Raymond Abrial.
 Contribuidores D. Gries, J. Prinz, C.C. Morgan, P. Gardiner, I.H. Sorensen;
- ▶ 88–94: Ferramentas comerciais (B-Toolkit).
- 2014: Ferramenta comercial Atelier-B 4.2.

Casos de sucesso

- Financiamento do projeto fundador: BP;
- Desenvolvimento do B-Toolkit: colaboração com GEC Alsthom;
- Desenvolvimento de sub-sistemas de controle do metrô: MATRA Transport, Siemens;
- Projeto de software na área de aeronáutica: GEC-Marconi, Praxis.

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

- análise da máquina: validação, verificação de viabilidade e de coerência.
 - animação/simulação
 - provas
- decisões de projeto: escolha de estruturas de dados, implementação das funcionalidades com algoritmos.
 - decisão humana
 - leis de refinamento
- análise de refinamentos: conformidade com artefatos mais abstratos.
 - provas

- análise da máquina: validação, verificação de viabilidade e de coerência.
 - animação/simulação
 - provas
- decisões de projeto: escolha de estruturas de dados, implementação das funcionalidades com algoritmos.
 - decisão humana
 - leis de refinamento
- análise de refinamentos: conformidade com artefatos mais abstratos.
 - provas

processo tipo cascata + projeto dirigido por modelo

(tira-gosto)

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Modelo semântico

- Grafo dirigido
- ▶ Vértice = Estado
 - valoração das variáveis do modelo
- Transições:
 - Conecta cada estado com sucessores possíveis
- Estados iniciais
- Estados legais

Modelo semântico

- Grafo dirigido
- Vértice = Estado
 - valoração das variáveis do modelo
- Transições:
 - Conecta cada estado com sucessores possíveis
- Estados iniciais
- Estados legais

TAMANHO → representação implícita

Modelo semântico: exemplo

- Variáveis de estado: DATA, m
- ▶ Um estado possível $DATA = \{2, 3, -1\}, m = 3$
- Estados e lógica dos predicados:
 - estado: $DATA = \{2, 3, -1\} \land m = 3$
 - ▶ conjunto de estados: $card(DATA) > 0 \implies m \in DATA$
- Estados, lógica e substituição:
 - $DATA, m := \{2, 3, -1\}, 3$
- Estados iniciais
 - ▶ DATA = {} ou DATA := {}
- Estados legais
 - ▶ $DATA \neq \{\} \Rightarrow m = \max(DATA)$

Modelo semântico: exemplo

- ▶ $DATA = \{2, 3, -1\} \land m = 3 \leadsto DATA = \{2, -1\} \land m = 2$
- Transições e lógica dos predicados

DATA =
$$\{2, 3, -1\} \land m = 3 \land$$

DATA' = $\{2, -1\} \land m' = 2$

Transições, lógica e substituição:

$$[DATA, m := DATA - \{3\}, \max(DATA - \{3\})]$$

 $DATA = \{2, 3, -1\} \land m = 3$

Especificação de componente em B

- Módulo básico de especificação: máquina.
- Máquina de estados e transições.
- Relação das variáveis.
- Especificação dos estados autorizados
- Especificação dos estados iniciais
- Especificação das transições
- Extras:
 - parâmetros, constantes, módulos de definições, sub-componentes, propriedades adicionais.

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters
SEES accesses external definitions
USES lists sub-components
CONSTANTS names useful concepts
PROPERTIES specifies useful concepts
VARIABLES list of variables
INVARIANT
invariant predicate

invariani predical

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)

CONSTRAINTS specifies parameters

SEES accesses external definitions

USES lists sub-components

CONSTANTS names useful concepts

PROPERTIES specifies useful concepts

VARIABLES *list of variables*

INVARIANT

invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters
SEES accesses external definitions
USES lists sub-components
CONSTANTS names useful concepts
PROPERTIES specifies useful concepts

VARIABLES list of variables

INVARIANT

invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters

SEES accesses external definitions

USES lists sub-components

CONSTANTS names useful concepts

PROPERTIES specifies useful concepts

VARIABLES *list of variables*

INVARIANT

invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters
SEES accesses external definitions
USES lists sub-components
CONSTANTS names useful concepts
PROPERTIES specifies useful concepts
VARIABLES list of variables

INVARIANT

invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters
SEES accesses external definitions
USES lists sub-components
CONSTANTS names useful concepts
PROPERTIES specifies useful concepts
VARIABLES list of variables
INVARIANT
invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters
SEES accesses external definitions
USES lists sub-components
CONSTANTS names useful concepts
PROPERTIES specifies useful concepts
VARIABLES list of variables
INVARIANT
invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

MACHINE Name (Parameters)
CONSTRAINTS specifies parameters
SEES accesses external definitions
USES lists sub-components
CONSTANTS names useful concepts

PROPERTIES specifies useful concepts

VARIABLES *list of variables*

INVARIANT

invariant predicate

INITIALISATION

initialization substitution

OPERATIONS

 $outputs \longleftarrow name(inputs) \stackrel{\circ}{=} substitution$

END

Tipos de dados e expressões

tipos

- tipos inteiros, booleanos, tipos enumerados, "tipos abstratos";
- produto cartesiano, registros, conjunto das partes;
- expressões:
 - expressões aritméticas e booleanas,
 - pares, tuplas,
 - conjuntos definidos por extenso, conjuntos definidos em intenção,
 - relações, funções, expressões lambda.

Alguns exemplos de substituições

- substituição simples v := E
- substituição múltipla $v_1 \cdots v_n := E_1 \cdots E_n$
- ▶ substituição múltipla $v_1, \dots, v_n := E_1, \dots, E_n$
- ► substituição simultânea
 S₁ || · · · || S_n
- faça elemento de v :∈ E
- faça tal que v: (P)

Escolha limitada

```
Sintaxe:
CHOICE
  S_1
OR
  S_2
OR
END
Example
CHOICE
  X := -X
OR
  SKIP
END
```

Escolha ilimitada

```
Sintaxe:
 ANY
    V_1 \cdot \cdot \cdot V_n
 WHERE
   P(v_1, \cdots, v_n)
 THEN
    S
 END
Example
 ANY v WHERE
    n_1 \mod v = 0 \land n_2 \mod v = 0 \land
   \forall w \cdot w > v \Rightarrow n_1 \mod w \neq 0 \lor n_2 \mod w \neq 0
 THEN
    val := v
 END
```

Escolha limitada condicional

```
Sintaxe:
SELECT P<sub>1</sub>
THEN
WHEN
        S_2
THEN
ELSE S_n
END
Example
SELECT v1 > v2
THEN res := v1
WHEN v2 > v1
THEN res := v2
END
```

Exemplo de máquina (1)

LowBound (1/2)

```
MACHINE LowBound
VARIABLES DATA, smallest
INVARIANT
 \textit{DATA} \in \mathbb{P}(\textit{INT}) \land \textit{smallest} \in \textit{INT} \land
 (DATA \neq \emptyset \Rightarrow smallest = min(DATA))
INITIALISATION DATA := \emptyset \mid | greatest :\in INT
OPERATIONS
 drop ≙
 PRE DATA \neq \emptyset THEN
   ANY value WHERE VALUE ∈ DATA THEN
    DATA := DATA - \{value\} \mid |
    SELECT card(DATA) > 2 THEN
     smallest := min(DATA - {value})
    END
   END
 END:
```

LowBound (2/2)

```
res \longleftarrow get \triangleq \\ \textbf{PRE } DATA \neq \emptyset \textbf{ THEN} \\ res := \min(DATA) \\ \textbf{END} \\ \textbf{END}; \\ put(value) \triangleq \\ \textbf{PRE } value \in \textit{INT THEN} \\ DATA := DATA \cup \{value\} \mid\mid smallest := \min(DATA \cup \{value\}) \\ \textbf{END} \\ \textbf{END} \\ \textbf{END} \\ \\ \textbf{END} \\ \end{aligned}
```

Caderno de aniversário (parte I)

```
MACHINE BirthdayAgenda (NAME, DATE)
VARIABLES known, birthday
INVARIANT
 known \subseteq NAME \land birthday \in known \rightarrow DATE
INITIALISATION known, birthday := \emptyset, \emptyset
OPERATIONS
 Register (n, d) \hat{=}
   PRE n \in NAME \land d \in DATE \land n \notin known
   THEN
    known := known \cup \{n\} \mid \mid
    birthday := birthday \cup \{n \mapsto d\}
   END
```

Caderno de aniversário (parte II)

```
d \leftarrow FindBirthday (n) =
 PRE
  n \in NAME \land n \in known
 THEN
  d := birthday(n)
 END;
a \leftarrow FindParty(d) =
 PRE
  d \in DATE
 THEN
  a := birthday^{-1}(d)
 END
END
```

Caderno de aniversário (parte II)

```
d \leftarrow FindBirthday (n) =
 PRE
  n \in NAME \land n \in known
 THEN
  d := birthday(n)
 END;
a \leftarrow FindParty(d) =
 PRE
  d \in DATE
 THEN
  a := birthday^{-1}(d)
 END
END
```

Caderno de aniversário (parte II)

```
d \leftarrow FindBirthday (n) =
 PRE
  n \in known
 THEN
  d := birthday(n)
 END:
a \leftarrow FindParty(d) =
 PRE
  d \in DATE
 THEN
  a := birthday^{-1}(d)
 END
END
```

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Todas as expressões constando da especificação devem ser bem definidas:

```
▶ \cdots min(S)\cdots: \vdash S \neq \emptyset?
```

Todas as expressões constando da especificação devem ser bem definidas:

```
▶ \cdots min(S)\cdots: \vdash S \neq \emptyset?
```

 As restrições sobre parâmetros, constantes, variáveis devem ser satisfatíveis.

Todas as expressões constando da especificação devem ser bem definidas:

```
▶ \cdots min(S)\cdots: \vdash S \neq \emptyset?
```

- As restrições sobre parâmetros, constantes, variáveis devem ser satisfatíveis.
- A máquina deve iniciar em um estado autorizado:

A inicialização deve estabelecer o invariante.

Todas as expressões constando da especificação devem ser bem definidas:

```
▶ \cdots min(S)\cdots: \vdash S \neq \emptyset?
```

- As restrições sobre parâmetros, constantes, variáveis devem ser satisfatíveis.
- A máquina deve iniciar em um estado autorizado:

A inicialização deve estabelecer o invariante.

As operações, quando suas pré-condições são satisfeitas, não devem levar a máquina de um estado autorizado para um estado não autorizadada máquina:

As operações devem preservar o invariante.

Todas as expressões constando da especificação devem ser bem definidas:

```
▶ \cdots min(S)\cdots: \vdash S \neq \emptyset?
```

- As restrições sobre parâmetros, constantes, variáveis devem ser satisfatíveis.
- A máquina deve iniciar em um estado autorizado:

A inicialização deve estabelecer o invariante.

As operações, quando suas pré-condições são satisfeitas, não devem levar a máquina de um estado autorizado para um estado não autorizadada máquina:

As operações devem preservar o invariante.

 Geração de obrigações de prova e verificação das mesmas.

Formatação das obrigações de prova

- Fórmula lógica:
 - $\vdash H_1 \land H_2 \land \cdots H_n \Rightarrow G$
 - ▶ é válida?
- Sequente:
 - \vdash $H_1, H_2, \cdots H_n \vdash G$

A inicialização deve estabelecer o invariante:

$$H_p, H_i, H_c \vdash [S] Inv,$$

onde:

- H_p são as restrições sobre os parâmetros da máquina.
- H_i são as definições importadas.
- H_c são as restrições sobre as constantes da máquina
- S é a substituição da inicialização, e
- Inv é o invariante.

A inicialização deve estabelecer o invariante:

$$H_p, H_i, H_c \vdash [S] Inv,$$

onde:

- H_p são as restrições sobre os parâmetros da máquina.
- H_i são as definições importadas.
- H_c são as restrições sobre as constantes da máquina
- S é a substituição da inicialização, e
- Inv é o invariante.

Example

Máquina Birthday Agenda:

 $\vdash [known, birthday := \emptyset, \emptyset] \\ known \subseteq NAME \land birthday \in known \rightarrow DATE$

A inicialização deve estabelecer o invariante:

$$H_p, H_i, H_c \vdash [S] Inv,$$

onde:

- H_p são as restrições sobre os parâmetros da máquina.
- H_i são as definições importadas.
- H_c são as restrições sobre as constantes da máquina
- S é a substituição da inicialização, e
- Inv é o invariante.

Example

Máquina Birthday Agenda:

```
 \begin{array}{ll} \vdash & [\textit{known}, \textit{birthday} := \emptyset, \emptyset] \\ & \textit{known} \subseteq \textit{NAME} \land \textit{birthday} \in \textit{known} \rightarrow \textit{DATE} \\ \equiv & \vdash & (\emptyset \subseteq \textit{NAME}) \land (\emptyset \in \emptyset \rightarrow \textit{DATE}) \end{array}
```

A inicialização deve estabelecer o invariante:

$$H_p, H_i, H_c \vdash [S] Inv,$$

onde:

- H_p são as restrições sobre os parâmetros da máquina.
- H_i são as definições importadas.
- H_c são as restrições sobre as constantes da máquina
- S é a substituição da inicialização, e
- Inv é o invariante.

Example

Máquina Birthday Agenda:

Obrigações de prova para as operações

As operações devem preservar o invariante:

$$H_p, H_i, H_c, Inv, P \vdash [S]Inv,$$

onde

- P é a pré-condição da operação, e
- S é a substituição da operação.

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE
   Register (n, d) =
     PRE n \in NAME \land d \in DATE \land n \notin known
     THEN
        known := known ∪ {n} || birthday := birthday ∪ {n \mapsto d }
     END
                                         Inv,
                                         Inv
```

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE

Register (n, d) \triangleq

PRE n \in NAME \land d \in DATE \land n \notin known

THEN

known := known \cup \{n\} \mid\mid birthday := birthday \cup \{n \mapsto d\}

END

known \subseteq NAME, birthday \in known \rightarrow DATE,

P

\vdash [S]

Inv
```

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE
   Register (n, d) =
      PRE n \in NAME \land d \in DATE \land n \notin known
      THEN
         known := known \cup \{n\} \mid birthday := birthday \cup \{n \mapsto d\}
      END
                known \subseteq NAME, birthday \in known \rightarrow DATE,
                n \in NAME, d \in DATE, n \notin known
           ⊢ [S]
                Inv
```

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE
Register\ (n, d) \triangleq
PRE\ n \in NAME \land d \in DATE \land n \notin known
THEN
known := known \cup \{n\} \mid\mid birthday := birthday \cup \{n \mapsto d\}
END
known \subseteq NAME, birthday \in known \rightarrow DATE,
n \in NAME, d \in DATE, n \notin known
\vdash [known := known \cup \{n\} \mid\mid birthday := birthday \cup \{n \mapsto d\}]
lnv
```

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE
   Register (n, d) \hat{=}
      PRE n \in NAME \land d \in DATE \land n \notin known
      THEN
         known := known \cup \{n\} \mid birthday := birthday \cup \{n \mapsto d\}
      END
          known \subseteq NAME, birthday \in known \rightarrow DATE,
          n \in NAME, d \in DATE, n \notin known
     \vdash [known := known \cup {n} || birthday := birthday \cup {n \mapsto d}]
          known \subset NAME \land birthday \in known \rightarrow DATE
```

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE
   Register (n, d) \hat{=}
      PRE n \in NAME \land d \in DATE \land n \notin known
      THEN
         known := known \cup \{n\} \mid birthday := birthday \cup \{n \mapsto d\}
      END
          known \subseteq NAME, birthday \in known \rightarrow DATE,
          n \in NAME, d \in DATE, n \notin known
     \vdash [known := known \cup {n} || birthday := birthday \cup {n \mapsto d}]
          known \subset NAME \land birthday \in known \rightarrow DATE
```

```
INVARIANT known \subseteq NAME \land birthday \in known \rightarrow DATE
   Register (n, d) \hat{=}
      PRE n \in NAME \land d \in DATE \land n \notin known
      THEN
         known := known \cup \{n\} \mid birthday := birthday \cup \{n \mapsto d\}
      END
              known \subseteq NAME, birthday \in known \rightarrow DATE,
              n \in NAME, d \in DATE, n \notin known
         \vdash [known := known \cup {n} || birthday := birthday \cup {n \mapsto d}]
              known \subseteq NAME \land birthday \in known \rightarrow DATE
              known \subseteq NAME, birthday \in known \rightarrow DATE,
  \Leftrightarrow
              n \in NAME, d \in DATE, n \notin known
         \vdash known \cup {n} \subset NAME \land
```

birthday \cup { $n \mapsto d$ } ∈ known \cup { n} \rightarrow DATE

```
known \subseteq NAME,

birthday \in known \rightarrow DATE,

n \in NAME,

d \in DATE,

n \not\in known \vdash

known \cup \{n\} \subseteq NAME \land

birthday \cup \{n \mapsto d\} \in known \cup \{n\} \rightarrow DATE
```

```
known \subseteq NAME,

birthday \in known \rightarrow DATE,

n \in NAME,

d \in DATE,

n \not\in known \vdash

known \cup \{n\} \subseteq NAME \land

birthday \cup \{n \mapsto d\} \in known \cup \{n\} \rightarrow DATE
```

```
known \subseteq NAME,
    birthday \in known \rightarrow DATE,
    n \in NAME.
    d \in DATE.
    n ∉ known
\vdash known \cup {n} \subseteq NAME
    known \subseteq NAME,
    birthday \in known \rightarrow DATE,
    n \in NAME,
    d \in DATE.
    n ∉ known
\vdash birthday \cup {n \mapsto d} ∈ known \cup {n} \rightarrow DATE
```

```
known \subseteq NAME,
    birthday \in known \rightarrow DATE,
    n \in NAME,
    d \in DATE.
    n ∉ known
\vdash known \cup {n} \subseteq NAME
    known \subseteq NAME,
    birthday \in known \rightarrow DATE,
    n \in NAME,
    d \in DATE.
    n ∉ known
\vdash birthday \cup {n \mapsto d} ∈ known \cup {n} \rightarrow DATE
```

```
known \subseteq NAME,
    birthday \in known \rightarrow DATE,
    n \in NAME.
    d \in DATE.
    n ∉ known
\vdash known \cup {n} \subseteq NAME
    known \subseteq NAME,
    birthday \in known \rightarrow DATE,
    n \in NAME,
    d \in DATE.
    n ∉ known
\vdash birthday \cup {n \mapsto d} ∈ known \cup {n} \rightarrow DATE
```

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Componentes da notação B

- Lógica de primeira ordem ;
- Teoria dos conjuntos ;
- Aritmética inteira ;
- Substituições generalizadas .

Componentes da notação B

- Lógica de primeira ordem (parecido com Z);
- Teoria dos conjuntos (parecido com Z);
- Aritmética inteira (parecido com Z);
- Substituições generalizadas (específico).

Substituições generalizadas

O que são elas?

- Meio de descrever mudanças de estado;
- Algumas são sintaticamente similares a construções de programação imperativas;
- Transformador de predicados (condições, fórmulas)

Substituições generalizadas

O que são elas?

- Meio de descrever mudanças de estado;
- Algumas são sintaticamente similares a construções de programação imperativas;
- Transformador de predicados (condições, fórmulas)

Example

A substituição [V := V+1] realiza a seguinte transformação: todas as ocorrências de V são substituídas pela expressão V+1, por exemplo

$$[V := V+1] V > 0 \equiv V+1 > 0$$

A condição V > 0 foi transformado em outra condição: V+1 > 0.

► Edsger W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of program. Communications of the ACM, 18(8):453–457, August 1975.

- Semântica de pré-condição mais fraca
- A cada tipo de substituição é associado um transformador de prédicado
- A transformação da condição P pela substituição S é denotada [S]P
- ▶ É a pré-condição mais geral para que, uma vez que a substituição S é aplicada a um estado que satisfaz esta condição, o estado resultante satisfaz P.
- ▶ Ler [S]P como "a condição mais geral tal que S estabelece P".

Substituição simples

$$[V:=E]P \equiv P[E/V]$$

$$[v := v + 1]v > 0 \equiv (v + 1) > 0 \equiv v \ge 0$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$

onde tmp é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$

onde tmp é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$

onde *tmp* é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$
$$\equiv [tmp:=V][V:=W]V>tmp$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$

onde *tmp* é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$
$$\equiv [tmp:=V][V:=W]V>tmp$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$
 onde tmp é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$

$$\equiv [tmp:=V][V:=W]V>tmp$$

$$\equiv [tmp:=V]W>tmp$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$

onde tmp é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$

$$\equiv [tmp:=V][V:=W]V>tmp$$

$$\equiv [tmp:=V]W>tmp$$

$$[V,W:=E,F]P \equiv [tmp:=F][V:=E][W:=tmp]P$$

onde tmp é uma nova variável.

$$[V,W:=W,V]V>W \equiv [tmp:=V][V:=W][W:=tmp]V>W$$

$$\equiv [tmp:=V][V:=W]V>tmp$$

$$\equiv [tmp:=V]W>tmp$$

$$\equiv W>V$$

Substituição: faça elemento

$$[x :\in S]P$$

$$\equiv (\forall x \cdot x \in S \Rightarrow P)$$

$$[\textit{val}:\in \{3,5,7\}] 0 \leq \textit{val} \land \textit{val} \leq 10$$

Substituição: faça elemento

$$[x :\in S]P$$

$$\equiv (\forall x \cdot x \in S \Rightarrow P)$$

$$\begin{aligned} [\textit{val}: & \in \{3,5,7\}] 0 \leq \textit{val} \land \textit{val} \leq 10 \\ & \equiv \ \, \forall \textit{val} \cdot \textit{val} \in \{3,5,7\} \Rightarrow 0 \leq \textit{val} \land \textit{val} \leq 10 \end{aligned}$$

Substituição: escolha limitada

[CHOICE
$$S_1$$
 OR S_2 END] P
 $\equiv [S_1]P \wedge [S_2]P$

[CHOICE
$$xx := 0$$
 OR $yy := 0$ END] $xx \times yy = 0$

Substituição: escolha limitada

[CHOICE
$$S_1$$
 OR S_2 END] P
 $\equiv [S_1]P \wedge [S_2]P$

[CHOICE
$$xx := 0$$
 OR $yy := 0$ END] $xx \times yy = 0$
 $\equiv [xx := 0]xx \times yy = 0 \land [yy := 0]xx \times yy = 0$

Substituição: escolha limitada

[CHOICE
$$S_1$$
 OR S_2 END] P
 $\equiv [S_1]P \wedge [S_2]P$

[CHOICE
$$xx := 0$$
 OR $yy := 0$ END] $xx \times yy = 0$
 $\equiv [xx := 0]xx \times yy = 0 \land [yy := 0]xx \times yy = 0$
 $\equiv 0 \times yy = 0 \land xx \times 0 = 0$

Substituição: escolha ilimitada

[ANY
$$v$$
 WHERE G THEN S END] P $\equiv \forall v \cdot G \Rightarrow [S]P$

[ANY inc WHERE
$$0 < inc \land inc + val \le MAXINT$$

THEN $val := inc + val$ END]
 $0 \le val \land val \le MAXINT$
 $\forall inc \cdot 0 < inc \land inc + val \le MAXINT$
 $\Rightarrow [val := inc + val]0 \le val \land val \le MAXINT$
 $\forall inc \cdot 0 < inc \land inc + val \le MAXINT$
 $\Rightarrow 0 \le inc + val \land inc + val \le MAXINT$

Substituição vácua

$$[SKIP]P \equiv P$$

Substituição com pré-condição

[PRE C THEN S END]
$$P \equiv C \wedge ([S]P)$$

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto)

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Generalidades

Refinamento

 é uma etapa na construção de uma implementação executável da especificação;

horizontal enriquece a especificação com requisitos funcionais adicionais;

vertical reflete uma decisão de projeto;

- versão concreta das variáveis, inicialização e operações da especificação;
- relação de refinamento: relaciona valores das variáveis concretas e abstratas.
- operações: mesma interface, mesmo comportamento observável.

Os refinamentos verticais

- Refinamento de dados codificação;
- Refinamento de operações algoritmos.
 - + entradas (enfraquece a pré-condição);
 - não determinismo (fortalece a pós-condição).

Estrutura dos refinamentos

- REFINEMENT;
- REFINES uma máquina ou outro refinamento;
- ► INVARIANT tipo das variáveis e a relação de refinamento (invariante de colagem);
- mesmas operações, com a mesma assinatura.

Exemplo: a máquina [1]

```
MACHINE ExampleM VARIABLES y INVARIANT y \in \mathbb{F}(\mathbb{N}_1) INITIALISATION y := \emptyset OPERATIONS enter(n) = \textbf{PRE } n \in \mathbb{N}_1 \textbf{ THEN } y := y \cup \{n\} \textbf{ END}; \\ m \longleftarrow getmax = \textbf{PRE } y \neq \emptyset \textbf{ THEN } m := \textbf{max}(y) \textbf{ END} \textbf{ END}
```

Exemplo: o refinamento [1]

```
REFINEMENT ExampleR
REFINES ExampleM
VARIABLES z
INVARIANT z \in \mathbb{N} \land z = \max(y \cup \{0\})
INITIALISATION z := 0
OPERATIONS
enter(n) = \text{PRE } n \in \mathbb{N}_1 \text{ THEN } z := \max(\{z, n\}) \text{ END};
m \longleftarrow getmax = \text{PRE } z \neq 0 \text{ THEN } m := z \text{ END}
END
```

Substituições para refinamentos

- sequenciamento;
- ▶ bloco BEGIN···END
- condicional IF
- condicional CASE
- variável local
- chamada de operações

$$[S1; S2]P \equiv [S1]([S2]P)$$

$$[S1;S2]P \equiv [S1]([S2]P)$$

$$[x := x + 1; x := x * 2]x = 2$$

$$[S1;S2]P \equiv [S1]([S2]P)$$

$$[x := x + 1; x := x * 2]x = 2$$

$$\equiv [x := x + 1][x := x * 2]x = 2$$

$$[S1; S2]P \equiv [S1]([S2]P)$$

$$[x := x + 1; x := x * 2]x = 2$$

$$\equiv [x := x + 1][x := x * 2]x = 2$$

$$\equiv [x := x + 1]x * 2 = 2$$

$$[S1; S2]P \equiv [S1]([S2]P)$$

$$[x := x + 1; x := x * 2]x = 2$$

$$\equiv [x := x + 1][x := x * 2]x = 2$$

$$\equiv [x := x + 1]x * 2 = 2$$

$$\equiv [x := x + 1]x = 1$$

$$[S1; S2]P \equiv [S1]([S2]P)$$

$$[x := x + 1; x := x * 2]x = 2$$

$$\equiv [x := x + 1][x := x * 2]x = 2$$

$$\equiv [x := x + 1]x * 2 = 2$$

$$\equiv [x := x + 1]x = 1$$

$$\equiv x + 1 = 1$$

$$[S1; S2]P \equiv [S1]([S2]P)$$

$$[x := x + 1; x := x * 2]x = 2$$

$$\equiv [x := x + 1][x := x * 2]x = 2$$

$$\equiv [x := x + 1]x * 2 = 2$$

$$\equiv [x := x + 1]x = 1$$

$$\equiv x + 1 = 1$$

$$\equiv x = 0$$

[IF C THEN
$$S_1$$
 ELSE S_2 END] P

$$\equiv (C \Rightarrow [S_1]P) \land (\neg C \Rightarrow [S_2]P)$$

[IF
$$V \mod 2 = 0$$
 THEN $V := V/2$ ELSE $V := 3 * V + 1$ END]
 $V \ge 0$

$$\equiv (V \mod 2 = 0) \Rightarrow ([V := V/2]V \ge 0)$$

$$\wedge (\neg (V \mod 2 = 0) \Rightarrow [V := 3 * V + 1]V \ge 0)$$

[IF C THEN
$$S_1$$
 ELSE S_2 END] P

$$\equiv (C \Rightarrow [S_1]P) \land (\neg C \Rightarrow [S_2]P)$$

[IF
$$V \mod 2 = 0$$
 THEN $V := V/2$ ELSE $V := 3 * V + 1$ END]
 $V \ge 0$

$$\equiv (V \mod 2 = 0) \Rightarrow ([V := V/2]V \ge 0)$$

$$\wedge (\neg (V \mod 2 = 0) \Rightarrow [V := 3 * V + 1]V \ge 0)$$

[IF
$$C$$
 THEN S_1 ELSE S_2 END] P
 $\equiv (C \Rightarrow [S_1]P) \land (\neg C \Rightarrow [S_2]P)$

$$\begin{aligned} & [\textbf{IF} \textit{V} \; \textit{mod} \; 2 = 0 \; \textbf{THEN} \; \textit{V} := \textit{V}/2 \; \textbf{ELSE} \; \textit{V} := 3 * \textit{V} + 1 \; \textbf{END}] \\ & \textit{V} \geq 0 \\ & \equiv & (\textit{V} \; \textit{mod} \; 2 = 0) \Rightarrow (\textit{V}/2 \geq 0) \\ & \land & (\neg(\textit{V} \; \textit{mod} \; 2 = 0) \Rightarrow [\textit{V} := 3 * \textit{V} + 1] \textit{V} \geq 0) \end{aligned}$$

[IF C THEN
$$S_1$$
 ELSE S_2 END] P

$$\equiv (C \Rightarrow [S_1]P) \land (\neg C \Rightarrow [S_2]P)$$

[IF
$$V \mod 2 = 0$$
 THEN $V := V/2$ ELSE $V := 3 * V + 1$ END]
 $V \ge 0$

$$\equiv (V \mod 2 = 0) \Rightarrow (V/2 \ge 0)$$

$$\land (\neg (V \mod 2 = 0) \Rightarrow [V := 3 * V + 1]V \ge 0)$$

[IF C THEN
$$S_1$$
 ELSE S_2 END] P

$$\equiv (C \Rightarrow [S_1]P) \land (\neg C \Rightarrow [S_2]P)$$

[IF
$$V \mod 2 = 0$$
 THEN $V := V/2$ ELSE $V := 3 * V + 1$ END]
 $V \ge 0$

$$\equiv (V \mod 2 = 0) \Rightarrow (V/2 \ge 0)$$

$$\land (\neg (V \mod 2 = 0) \Rightarrow (3 * V + 1 \ge 0))$$

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Obligações de prova

- O refinamento tem que ser "compatível" com a especificação;
 - refinamento de execuções (trace refinement)
- inicialização: INIT_R → INIT_M;
- ▶ operações: OP_R ~→ OP_M.
- "compatível":
 - pré-condição abstrata ⇒ concreta;
 - substituição resulte em valores concretos compatíveis com os abstratos, como definido na relação INV_R. pós-condição concreta ⇒ abstrata.

Refinamento, verificação e inicialização

- Especificação
 - ► INV_M: invariante da especificação;
 - ► INIT_M: inicialização;
 - ▶ consistência: [INIT_M]INV_M.
- INV_R: relação de refinamento;
 - ► ¬INV_R: relação de incompatibilidade entre estados abstratos e concretos;
- ► [INIT_M]¬INV_R: estados iniciais concretos incompatíveis com estado inicial abstrato.
- Obrigação de prova:

$$[INIT_R] \neg [INIT_M] \neg INV_R.$$

Nenhum estado inicial concreto é incompatível com um estado inicial abstrato.

$$\begin{split} [\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ \Leftrightarrow \quad [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(y \cup \{0\})) \end{split}$$

$$\begin{split} & [\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ & \Leftrightarrow \quad [z := 0] \neg [\textbf{\textit{y}} := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(\textbf{\textit{y}} \cup \{0\})) \end{split}$$

$\begin{aligned} &[\mathbf{INIT_R}] \neg [\mathbf{INIT_M}] \neg \mathbf{INV_R} \\ &\Leftrightarrow & [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \max(y \cup \{0\})) \\ &\Leftrightarrow & [z := 0] \neg \neg (z \in \mathbb{N} \land z = \max(\emptyset \cup \{0\})) \end{aligned}$

$$\begin{split} &[\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\Leftrightarrow \quad [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(y \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] \neg \neg (z \in \mathbb{N} \land z = \textbf{max}(\emptyset \cup \{0\})) \end{split}$$

$\begin{aligned} &[\mathbf{INIT_R}] \neg [\mathbf{INIT_M}] \neg \mathbf{INV_R} \\ &\Leftrightarrow & [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \mathbf{max}(y \cup \{0\})) \\ &\Leftrightarrow & [z := 0] \neg \neg (z \in \mathbb{N} \land z = \mathbf{max}(\emptyset \cup \{0\})) \\ &\Leftrightarrow & [z := 0] z \in \mathbb{N} \land z = \mathbf{max}(\{0\}) \end{aligned}$

```
\begin{aligned} &[\mathbf{INIT_R}] \neg [\mathbf{INIT_M}] \neg \mathbf{INV_R} \\ &\Leftrightarrow & [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \max(y \cup \{0\})) \\ &\Leftrightarrow & [z := 0] \neg \neg (z \in \mathbb{N} \land z = \max(\emptyset \cup \{0\})) \\ &\Leftrightarrow & [z := 0] z \in \mathbb{N} \land z = \max(\{0\}) \end{aligned}
```

```
\begin{split} &[\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\Leftrightarrow \quad [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(y \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] \neg \neg (z \in \mathbb{N} \land z = \textbf{max}(\emptyset \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] z \in \mathbb{N} \land z = \textbf{max}(\{0\}) \\ &\Leftrightarrow \quad 0 \in \mathbb{N} \land 0 = \textbf{max}(\{0\}) \end{split}
```

```
\begin{split} &[\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\Leftrightarrow \quad [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(y \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] \neg \neg (z \in \mathbb{N} \land z = \textbf{max}(\emptyset \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] z \in \mathbb{N} \land z = \textbf{max}(\{0\}) \\ &\Leftrightarrow \quad 0 \in \mathbb{N} \land 0 = \textbf{max}(\{0\}) \end{split}
```

Using: $max({n}) = n$.

```
\begin{aligned} &[\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\Leftrightarrow \quad [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(y \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] \neg \neg (z \in \mathbb{N} \land z = \textbf{max}(\emptyset \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] z \in \mathbb{N} \land z = \textbf{max}(\{0\}) \\ &\Leftrightarrow \quad 0 \in \mathbb{N} \land 0 = \textbf{max}(\{0\}) \\ &\Leftrightarrow \quad 0 \in \mathbb{N} \land 0 = 0 \end{aligned}
```

```
\begin{aligned} &[\textbf{INIT}_{\textbf{R}}] \neg [\textbf{INIT}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\Leftrightarrow \quad [z := 0] \neg [y := \emptyset] \neg (z \in \mathbb{N} \land z = \textbf{max}(y \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] \neg \neg (z \in \mathbb{N} \land z = \textbf{max}(\emptyset \cup \{0\})) \\ &\Leftrightarrow \quad [z := 0] z \in \mathbb{N} \land z = \textbf{max}(\{0\}) \\ &\Leftrightarrow \quad 0 \in \mathbb{N} \land 0 = \textbf{max}(\{0\}) \\ &\Leftrightarrow \quad 0 \in \mathbb{N} \land 0 = 0 \\ &\Leftrightarrow \quad \top \end{aligned}
```

```
\begin{array}{lll} \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} & \vdash & \text{PRE}_{\text{R}} \\ \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} & \vdash & [\text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg [\text{INV}_{\text{R}} \end{array}
```

onde

- ▶ PRE_M e OP_M pré-condição e substituição da specificação da operação
- PRE_R and OP_R pré-condição e substituição do refinamento da operação

$$\begin{split} &\text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash \text{PRE}_{\text{R}} \\ &\iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \vdash n \in \mathbb{N}_1 \end{split}$$

$$\begin{split} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash \text{PRE}_{\text{R}} \\ & \iff \quad y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), \textit{n} \in \mathbb{N}_1 \vdash \textit{n} \in \mathbb{N}_1 \\ & \iff \quad \top \end{split}$$

$$\begin{split} \textbf{INV}_{\textbf{M}}, \textbf{INV}_{\textbf{R}}, \textbf{PRE}_{\textbf{M}} &\Rightarrow [\textbf{OP}_{\textbf{R}}] \neg [\textbf{OP}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\iff \qquad \qquad y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash \qquad \qquad [z := \text{max}(\{z, n\})] \\ &\neg \neg (z \in \mathbb{N} \land z = \text{max}(y \cup \{n\} \cup \{0\})) \end{split}$$

$$\begin{split} \textbf{INV}_{\textbf{M}}, \textbf{INV}_{\textbf{R}}, \textbf{PRE}_{\textbf{M}} &\Rightarrow [\textbf{OP}_{\textbf{R}}] \neg [\textbf{OP}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\iff \qquad \qquad y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash \qquad \qquad [z := \text{max}(\{z, n\})] \\ &\vdash \qquad \qquad \neg \neg (z \in \mathbb{N} \land z = \text{max}(y \cup \{n\} \cup \{0\})) \end{split}$$

$$\begin{split} \textbf{INV}_{\textbf{M}}, \textbf{INV}_{\textbf{R}}, \textbf{PRE}_{\textbf{M}} &\Rightarrow [\textbf{OP}_{\textbf{R}}] \neg [\textbf{OP}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\iff \qquad \qquad y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash \qquad [z := \text{max}(\{z, n\})] \\ &\qquad \qquad (z \in \mathbb{N} \land z = \text{max}(y \cup \{n\} \cup \{0\})) \end{split}$$

$$\begin{split} \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} &\Rightarrow [\text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \\ &\iff \qquad \qquad y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash \qquad \qquad [z := \text{max}(\{z, n\})] \\ &\qquad \qquad (z \in \mathbb{N} \land z = \text{max}(y \cup \{n\} \cup \{0\})) \end{split}$$

$$\begin{split} \textbf{INV}_{\textbf{M}}, \textbf{INV}_{\textbf{R}}, \textbf{PRE}_{\textbf{M}} &\vdash [\textbf{OP}_{\textbf{R}}] \neg [\textbf{OP}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash & \text{max}(\{z, n\}) \in \mathbb{N} \land \\ & \text{max}(\{z, n\}) = \text{max}(y \cup \{n\} \cup \{0\}) \end{split}$$

```
\begin{split} \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [\text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), n \in \mathbb{N}_1 \\ \vdash & \text{max}(\{z, n\}) \in \mathbb{N} \land \\ & \text{max}(\{z, n\}) = \text{max}(y \cup \{n\} \cup \{0\}) \end{split}
```

$$\begin{split} \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} &\Rightarrow [\text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \\ &\iff \quad z \in \mathbb{N}, z = \max(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash \quad \max(\{z, n\}) = \max(y \cup \{n\} \cup \{0\}) \end{split}$$

```
\begin{aligned} \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} &\Rightarrow [\mathsf{OP_R}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \\ &\iff \quad z \in \mathbb{N}, z = \max(y \cup \{0\}), \, n \in \mathbb{N}_1 \\ &\vdash \quad \max(\{z, n\}) = \max(y \cup \{n\} \cup \{0\}) \end{aligned} Utilizando: \max(\max(S_1 \cup S_2) \cup S_3) = \max(S_1 \cup S_2 \cup S_3).
```

$$\begin{split} \textbf{INV}_{\textbf{M}}, \textbf{INV}_{\textbf{R}}, \textbf{PRE}_{\textbf{M}} &\Rightarrow [\textbf{OP}_{\textbf{R}}] \neg [\textbf{OP}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \\ &\iff \quad z \in \mathbb{N}, z = \max(y \cup \{0\}), n \in \mathbb{N}_1 \\ &\vdash \quad \max(\{z, n\}) = \max(y \cup \{n\} \cup \{0\}) \\ &\iff \quad \top \end{split}$$

Obrigações de prova:

$$\begin{aligned} &\text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash \text{PRE}_{\text{R}} \\ &\text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[o := o'] \text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg (\text{INV}_{\text{R}} \wedge o = o') \end{aligned}$$

onde:

▶ o é a saída, e o' um novo identificador.

 $\text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash \text{PRE}_{\text{R}}$

$$\mathsf{INV}_{\mathsf{M}}, \mathsf{INV}_{\mathsf{R}}, \mathsf{PRE}_{\mathsf{M}} \vdash \mathsf{PRE}_{\mathsf{R}} \\ \iff y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \vdash z \neq 0$$

$$\begin{array}{ll} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash \mathsf{PRE_R} \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \vdash z \neq 0 \\ \iff & \top \end{array}$$

$$\begin{aligned} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[o := o'] \text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \land o = o' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \\ & \vdash [[m := m']m := z] \neg ([m := \max(y)]) \\ & \neg (z \in \mathbb{N} \land z = \max(y \cup \{0\}) \land m = m') \end{aligned}$$

 $\begin{aligned} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash [[\mathsf{o} := \mathsf{o}'] \mathsf{OP_R}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \land \mathsf{o} = \mathsf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash & [[m := m']m := z] \neg ([m := \mathsf{max}(y)]) \\ & \neg (z \in \mathbb{N} \land z = \mathsf{max}(y \cup \{0\}) \land m = m') \end{aligned}$

$$\begin{aligned} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash [[\mathsf{o} := \mathsf{o}'] \mathsf{OP_M}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \land \mathsf{o} = \mathsf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash & [[m := m']m := z] \\ & \neg \neg (z \in \mathbb{N} \land z = \mathsf{max}(y \cup \{0\}) \land \mathsf{max}(y) = m') \end{aligned}$$

$$\begin{aligned} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash [[\mathsf{o} := \mathsf{o}'] \mathsf{OP_M}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \land \mathsf{o} = \mathsf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash & [[m := m']m := z] \\ & \neg \neg (z \in \mathbb{N} \land z = \mathsf{max}(y \cup \{0\}) \land \mathsf{max}(y) = m') \end{aligned}$$

$$\begin{aligned} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash [[\mathsf{o} := \mathsf{o}'] \mathsf{OP_R}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \land \mathsf{o} = \mathsf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash & [[m := m']m := z] \\ & z \in \mathbb{N} \land z = \mathsf{max}(y \cup \{0\}) \land \mathsf{max}(y) = m' \end{aligned}$$

$$\begin{aligned} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash [[\mathsf{o} := \mathsf{o}'] \mathsf{OP_R}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \land \mathsf{o} = \mathsf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash & [[m := m]m := z] \\ & z \in \mathbb{N} \land z = \mathsf{max}(y \cup \{0\}) \land \mathsf{max}(y) = m' \end{aligned}$$

$$\begin{aligned} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[\textbf{o} := \textbf{o}'] \text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \land \textbf{o} = \textbf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash [m' := z] z \in \mathbb{N} \land z = \text{max}(y \cup \{0\}) \land \text{max}(y) = m' \end{aligned}$$

$$\begin{aligned} & \mathsf{INV_M}, \mathsf{INV_R}, \mathsf{PRE_M} \vdash [[\mathsf{o} := \mathsf{o}'] \mathsf{OP_M}] \neg [\mathsf{OP_M}] \neg \mathsf{INV_R} \land \mathsf{o} = \mathsf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \mathsf{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash [m' := z] z \in \mathbb{N} \land z = \mathsf{max}(y \cup \{0\}) \land \mathsf{max}(y) = m' \end{aligned}$$

$$\begin{split} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[\textbf{o} := \textbf{o}'] \text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \land \textbf{o} = \textbf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), y \neq \emptyset \\ & \vdash z \in \mathbb{N} \land z = \text{max}(y \cup \{0\}) \land \text{max}(y) = z \end{split}$$

Exemplo

$$\begin{split} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[\textbf{o} := \textbf{o}'] \text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \land \textbf{o} = \textbf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \\ & \vdash z \in \mathbb{N} \land z = \max(y \cup \{0\}) \land \max(y) = z \end{split}$$

Exemplo

$$\begin{aligned} & \text{INV}_{\mathbf{M}}, \text{INV}_{\mathbf{R}}, \text{PRE}_{\mathbf{M}} \vdash [[\mathbf{o} := \mathbf{o}'] \text{OP}_{\mathbf{R}}] \neg [\text{OP}_{\mathbf{M}}] \neg \text{INV}_{\mathbf{R}} \land \mathbf{o} = \mathbf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \vdash z \in \mathbb{N} \\ & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \vdash z = \max(y \cup \{0\}), y \neq \emptyset \vdash \max(y) = z \end{aligned}$$

Exemplo

$$\begin{split} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[\textbf{o} := \textbf{o}'] \text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg [\text{INV}_{\text{R}} \land \textbf{o} = \textbf{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \vdash z \in \mathbb{N} \\ & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \vdash z = \max(y \cup \{0\}), y \neq \emptyset \vdash \max(y) = z \end{split}$$

$$\begin{aligned} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[\text{o} := \text{o}']\text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \land \text{o} = \text{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \text{max}(y \cup \{0\}), y \neq \emptyset \vdash \text{max}(y) = z \end{aligned}$$

$$\begin{aligned} & \text{INV}_{\text{M}}, \text{INV}_{\text{R}}, \text{PRE}_{\text{M}} \vdash [[\text{o} := \text{o}']\text{OP}_{\text{R}}] \neg [\text{OP}_{\text{M}}] \neg \text{INV}_{\text{R}} \land \text{o} = \text{o}' \\ \iff & y \in \mathbb{F}(\mathbb{N}_1), z \in \mathbb{N}, z = \max(y \cup \{0\}), y \neq \emptyset \vdash \max(y) = z \end{aligned}$$

$$\begin{array}{l} \textbf{INV}_{\textbf{M}}, \textbf{INV}_{\textbf{R}}, \textbf{PRE}_{\textbf{M}} \vdash [[\textbf{o} := \textbf{o}'] \textbf{OP}_{\textbf{R}}] \neg [\textbf{OP}_{\textbf{M}}] \neg \textbf{INV}_{\textbf{R}} \wedge \textbf{o} = \textbf{o}' \\ \top \end{array}$$

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Implementação no método B

- Artefato "Implementation"
 - codificação dos com um sistema de tipos clássico;
 - realização das operações com o paradigmo imperativo sequencial.
- É um tipo de refinamento (mesmas obrigações de prova).
- Propriedades verificadas:
 - Determinística.
 - Todos os dados são de um tipo diretamente codificável
 - variáveis concretas,
 - instâncias de máquinas de biblioteca.

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementar

Ferramentas

Ferramentas industriais

Complementos

Máquinas de biblioteca

- Módulos reutilizáveis
- Podem ser
 - desenvolvidas com o método B
 - básicas e desenvolvidas usando um outro método
- Exemplo:
 - Tipos: Booleanos, tipos inteiros, enumerações, arranjos, registros, string;
 - Chamadas de sistema: TCP/IP connections, file manipulations, etc.

Construção de laços

Laços são uma fonte de erros:

- não terminam;
- terminam cedo demais, ou tarde demais;
- as variáveis tem valores errados;

Sintaxe

WHILE T: formula **DO** B: substitution VARIANT V: expression INVARIANT I: formula END

variante:

- expressão inteira;
- limite superior da quantidade de repetições;
- prova do término;

invariante

- fórmula lógica
- verdadeira cada vez que a guarda é avaliada
- caracteriza a relação entre os dados do algoritmo
- prova da corretude.

Exemplo de laço

```
y := x; ctr := 0;

WHILE ctr < 5 DO

x := x + 1; ctr := ctr + 1

VARIANT 6 - ctr

INVARIANT ctr \in 0...5 \land x = y + ctr

END
```

Verificação de laço

[INIT; WHILE T DO B VARIANT V INVARIANT I END]R

Obrigações de prova:

```
I-rule O invariante do laço é verdadeiro a primeira vez:
```

 $C \vdash [INIT]I$

C: condições correspondentes ao contexto de execução;

F-rule R é verdadeiro quando o laço termina: $I, \neg T \vdash R$;

P-rule preservação do invariante: $I, T \vdash [B]I$;

T1-rule o variante nunca é negativo:

 $I \vdash V \in \mathbb{N};$

T2-rule o variante é diminuído:

$$I, T \vdash [V_i := V][B]V < V_i.$$

Verificação de um laço: exemplo

```
[y := x; ctr := 0; \\ \textbf{WHILE } ctr < 5 \textbf{ DO} \\ x := x + 1; ctr := ctr + 1 \\ \textbf{VARIANT } 6 - ctr \\ \textbf{INVARIANT } ctr \in 0..5 \land x = y + ctr \\ \textbf{END}]x = y + 5
```

$$[\textit{INIT}]\textit{I} \iff [\textit{x} := \textit{y}; \textit{ctr} := 0]\textit{ctr} \in 0..5 \land \textit{x} = \textit{y} + \textit{ctr}$$

[INIT]
$$l \iff [x := y; ctr := 0] ctr \in 0..5 \land x = y + ctr$$

$$[INIT]I \iff [x := y; ctr := 0]ctr \in 0..5 \land x = y + ctr$$
$$\iff [x := y][ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$[INIT]I \iff [x := y; ctr := 0]ctr \in 0..5 \land x = y + ctr$$
$$\iff [x := y][ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$[INIT]I \iff [x := y; ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y][ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y]0 \in 0..5 \land x = y + 0$$

$$[INIT]I \iff [x := y; ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y][ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y]0 \in 0..5 \land x = y + 0$$

$$[INIT]I \iff [x := y; ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y][ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y]0 \in 0..5 \land x = y + 0$$

$$\iff 0 \in 0..5 \land y = y + 0$$

$$[INIT]I \iff [x := y; ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y][ctr := 0]ctr \in 0..5 \land x = y + ctr$$

$$\iff [x := y]0 \in 0..5 \land x = y + 0$$

$$\iff 0 \in 0..5 \land y = y + 0$$

$$\iff \top$$

$$I, \neg T \vdash R \iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$I, \neg T \vdash R \iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$I, \neg T \vdash R$$

$$\iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$\iff ctr \in 0..5, x = y + ctr, ctr \ge 5 \vdash x = y + 5$$

$$I, \neg T \vdash R$$

$$\iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$\iff ctr \in 0..5, x = y + ctr, ctr \ge 5 \vdash x = y + 5$$

$$I, \neg T \vdash R$$

$$\iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$\iff ctr \in 0..5, x = y + ctr, ctr \ge 5 \vdash x = y + 5$$

$$\iff ctr = 5, x = y + ctr \vdash x = y + 5$$

$$I, \neg T \vdash R$$

$$\iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$\iff ctr \in 0..5, x = y + ctr, ctr \ge 5 \vdash x = y + 5$$

$$\iff ctr = 5, x = y + ctr \vdash x = y + 5$$

$$I, \neg T \vdash R$$

$$\iff ctr \in 0..5, x = y + ctr, \neg(ctr < 5) \vdash x = y + 5$$

$$\iff ctr \in 0..5, x = y + ctr, ctr \ge 5 \vdash x = y + 5$$

$$\iff ctr = 5, x = y + ctr \vdash x = y + 5$$

$$\iff \vdash \top$$

$$\begin{array}{ll}
I \vdash V \in \mathbb{N} \\
\iff ctr \in 0..5, x = y + ctr \vdash 6 - ctr \in \mathbb{N} \\
\iff ctr \in 0..5 \vdash 6 - ctr \in \mathbb{N}
\end{array}$$

$$\begin{array}{l}
I \vdash V \in \mathbb{N} \\
\Leftrightarrow ctr \in 0..5, x = y + ctr \vdash 6 - ctr \in \mathbb{N} \\
\Leftrightarrow ctr \in 0..5 \vdash 6 - ctr \in \mathbb{N} \\
\Leftrightarrow ctr = 0 \vdash 6 - ctr \in \mathbb{N} \\
ctr = 1 \vdash 6 - ctr \in \mathbb{N} \\
ctr = 2 \vdash 6 - ctr \in \mathbb{N} \\
ctr = 3 \vdash 6 - ctr \in \mathbb{N} \\
ctr = 4 \vdash 6 - ctr \in \mathbb{N} \\
ctr = 5 \vdash 6 - ctr \in \mathbb{N}
\end{array}$$

$$\begin{array}{c} I \vdash V \in \mathbb{N} \\ \iff ctr \in 0..5, x = y + ctr \vdash 6 - ctr \in \mathbb{N} \\ \iff ctr \in 0..5 \vdash 6 - ctr \in \mathbb{N} \\ \iff ctr = 0 \vdash 6 - ctr \in \mathbb{N} \\ ctr = 1 \vdash 6 - ctr \in \mathbb{N} \\ ctr = 2 \vdash 6 - ctr \in \mathbb{N} \\ ctr = 3 \vdash 6 - ctr \in \mathbb{N} \\ ctr = 4 \vdash 6 - ctr \in \mathbb{N} \\ ctr = 5 \vdash 6 - ctr \in \mathbb{N} \\ \iff \top \end{array}$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash$$

$$[V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash$$

$$[V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i \\ \iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash \\ [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i \\ \iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash \\ [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i \\ \iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash \\ [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i \\ \iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash \\ [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$\iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr][x := x + 1]6 - (ctr + 1) < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$\iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr][x := x + 1]6 - (ctr + 1) < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$\iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr][x := x + 1]6 - (ctr + 1) < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr]6 - (ctr + 1) < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$\iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr][x := x + 1]6 - (ctr + 1) < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr]6 - (ctr + 1) < V_i$$

$$I, T \vdash [V_i := V][B]V < V_i$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$$

$$\iff ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash [V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr][x := x + 1]6 - (ctr + 1) < V_i$$

$$\iff \cdots \vdash [V_i := 6 - ctr]6 - (ctr + 1) < V_i$$

$$\iff \cdots \vdash 5 - ctr < 6 - ctr$$

$$I, T \vdash [V_i := V][B]V < V_i$$

⇔ $ctr \in 0..5, x = y + ctr, ctr < 5 \vdash$
 $[V_i := 6 - ctr][x := x + 1; ctr := ctr + 1]6 - ctr < V_i$

⇔ $ctr \in 0..5, \land x = y + ctr, ctr < 5 \vdash$
 $[V_i := 6 - ctr][x := x + 1][ctr := ctr + 1]6 - ctr < V_i$

⇔ $\cdots \vdash [V_i := 6 - ctr][x := x + 1]6 - (ctr + 1) < V_i$

⇔ $\cdots \vdash [V_i := 6 - ctr]6 - (ctr + 1) < V_i$

⇔ $\cdots \vdash 5 - ctr < 6 - ctr$

⇔ \top

$$I, T \vdash [B]I$$

$$\iff ctr \in 0..5, x = y + ctrctr < 5 \vdash$$

$$[x := x + 1; ctr := ctr + 1]ctr \in 0..5 \land x = y + ctr$$

$$I, T \vdash [B]I$$

$$\iff ctr \in 0..5, x = y + ctrctr < 5 \vdash$$

$$[x := x + 1; ctr := ctr + 1]ctr \in 0..5 \land x = y + ctr$$

$$I, T \vdash [B]I$$

$$\iff ctr \in 0..5, x = y + ctrctr < 5 \vdash$$

$$[x := x + 1; ctr := ctr + 1]ctr \in 0..5 \land x = y + ctr$$

$$\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash$$

$$[x := x + 1][ctr := ctr + 1]$$

$$ctr \in 0..5 \land x = y + ctr$$

$$I, T \vdash [B]I$$

$$\Leftrightarrow ctr \in 0..5, x = y + ctrctr < 5 \vdash$$

$$[x := x + 1; ctr := ctr + 1]ctr \in 0..5 \land x = y + ctr$$

$$\Leftrightarrow ctr \in 0..5, x = y + ctr, ctr < 5 \vdash$$

$$[x := x + 1][ctr := ctr + 1]$$

$$ctr \in 0..5 \land x = y + ctr$$

$$I, T \vdash [B]I$$

⇔ $ctr \in 0..5, x = y + ctrctr < 5 \vdash [x := x + 1; ctr := ctr + 1]ctr \in 0..5 \land x = y + ctr$

⇔ $ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [x := x + 1][ctr := ctr + 1]$
 $ctr \in 0..5 \land x = y + ctr$

⇔ $ctr \in 0..5, x = y + ctr$

⇔ $ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [x := x + 1]$
 $ctr + 1 \in 0..5 \land x = y + ctr + 1$

$$I, T \vdash [B]I$$
 $\iff ctr \in 0..5, x = y + ctrctr < 5 \vdash [x := x + 1; ctr := ctr + 1]ctr \in 0..5 \land x = y + ctr$
 $\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [x := x + 1][ctr := ctr + 1]$
 $ctr \in 0..5 \land x = y + ctr$
 $\iff ctr \in 0..5, x = y + ctr, ctr < 5 \vdash [x := x + 1]$
 $ctr + 1 \in 0..5 \land x = y + ctr + 1$
 $ctr \in 0..5 \land x = y + ctr + 1$
 $ctr \in 0..5 \land x = y + ctr + 1$

Outline

Introdução

Contextualização

Visão global do método B

(tira-gosto

Especificação dos requisitos funcionais

Uma notação para especificar

Verificação da especificação

Substituições generalizadas e obrigações de prova

Refinamento

Uma notação para refinar

Verificação de refinamentos

Implementação

Introdução

Uma linguagem para implementai

Ferramentas

Ferramentas industriais

Complementos

AtelierB

- Verificação de sintaxe;
- Verificação de tipos;
- Prova automática e semi-automática;
- Gerenciamento do processo;
- Síntese de código C, ADA;
- Linha de comandos ou interação gráfica;
- Animação (B-RAMA);
- Automação de refinamentos (BART);
- Gratuito, código parcialmente aberto, formato aberto (XML): extensível.
 - Animação, model-checking (ProB)
 - Verificação automática (BEval)
 - Geração de código (b2llvm)

Aspectos que este tutorial não abordou

- Açúcar sintático;
- Construções de modularização.

Pesquisa e B

- Integração com outras tecnologias de engenharia de software (UML);
 - Integração com outros formalismos: CSP, CCS.
- Síntese de código;
- Automação das atividades de verificação;
- Extensão do domínio de modelagem: probabilidade, aspectos temporais, domínios contínuos, etc.