FH JOANNEUM GRAZ

Model Based Design

Mechanical System Rocket & Electrical System

Training Unit 03

Autor David B. Heer Jakob Graz, October 31, 2018

 $\begin{array}{c} Lecturer \\ \text{Alfred Steinhuber} \end{array}$

Contents 1

Contents

Ι	Flight of a Model Rocket	2
1 I	Introduction	2
2 1	Model	2
3 5	Simulation	3
II	Electrical System	4
List	of Figures	5
Tah	nellen	6

Part I

Flight of a Model Rocket

1 Introduction

[TODO - Grundlagen]

- 1. Acceleration with constant force 0.15 seconds with 16N
- 2. Parabelflight Until the parachute ist open at a velocity of $-20^m/_s$
- 3. Parachute flight Constant velocity of $-20^m/_s$

$$v\left(t\right) = v_0 + a * t \tag{1}$$

$$s(t) = s_0 + v_0 * t + 0.5 * a * t^2$$
 (2)

2 Model

Figure 1: Overview of the simulink model.

3 Simulation

Figure 2: Scope from the Simulation.

```
clear all; clc; close all;
1
                    응응
3
                    % g inverted
4
                    m=0.05; g=-9.81; tEngine=0.15; Force=16; vChute=-20; Dt=0.01;
5
                    clear t v h
6
                    n=1;
                    t(n) = 0; v(n) = 0; h(n) = 0; t(2) = 0;
8
9
10
                    % Segment 1
11
                    a1=(Force-m*g)/m;
12
                    while (t(n) < tEngine) && (n < 50000)
13
                    n=n+1;
14
                    t(n) = t(n-1) + Dt;
15
                    v(n) = a1 *t (n) ;
16
                    h(n) = 0.5*a1*t(n)^2;
17
                    end;
18
                    v1=v(n); h1=h(n); t1=t(n);
19
20
                    % Segment 2
21
```

References 4

```
while v(n) \ge vChute && v \le v
22
                    n=n+1;
23
                    t(n) = t(n-1) + Dt;
24
                    v(n) = v1 - g*(t(n) - t1);
25
                    h(n) = h1+v1 * (t(n)-t1)-0.5*g* (t(n)-t1)^2;
26
27
                    v2=v(n); h2=h(n); t2=t(n);
28
                    % Segment 3
30
                    while h(n) > 0 \&\& n < 50000
31
                    n=n+1;
32
33
                    t(n) = t(n-1) + Dt;
                    v(n)=vChute;
34
                    h (n) = h2 + vChute* (t(n) - t2);
35
                    end
36
37
                    응응
                    subplot(1,2,1)
39
                    plot(t,h,t2,h2, 'ro', t1, h1, 'r+')
40
                    xlabel('Time_[s]');
41
                    ylabel('Hight_[m]');
                    subplot(1,2,2)
43
                    plot(t, v, t2, v2, 'ro', t1, v1, 'r+')
                    xlabel('Time_[s]');
45
                    ylabel('Velocity_[m]');
```

Part II

Electrical System

[TODO - input jakobs code]

References

List of Figures 5

Libu Of Figures	\mathbf{List}	of	Figures
-----------------	-----------------	----	---------

1	Overview of the simulink model	2
2	Scope from the Simulation	3

List of Tables 6

List of Tables