Aufgabenstellung und Lösung

Es ist die folgende Aufgabe zu lösen:

- (a) Formulieren Sie den Residuensatz.
- (b) Bestimmen Sie für die durch

$$f(z) := \frac{z+2i}{z^2+4} + \left(z - \frac{1}{2}\right) \exp\left(\frac{1}{z - \frac{1}{2}}\right)$$

definierte Funktion alle Singularitäten sowie deren Typ und das Residuum in jeder Singularität.

(c) Nutzen Sie die Teilaufgaben (a) und (b), um das Integral

$$\oint_{\gamma} f(z) \, \mathrm{d}z$$

zu berechnen, wobei $\gamma:[0,2\pi]\to\mathbb{C}$ durch

$$\gamma(t) := \begin{cases} -1 + e^{(2it)} & t \in [0, \pi] \\ 1 - e^{-2(t-\pi)i} & t \in (\pi, 2\pi] \end{cases}$$

gegeben ist.

Lösungsvorschlag: Teilaufgabe (a): Es seien $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Weiter sei mit $S := \{z_1, \ldots, z_n\} \subset U^c$ die Menge der isolierten Singularitäten von f, wobei n = |S| endlich ist. Sei γ ein geschlossener Weg mit $\operatorname{im}(\gamma) \subset U \setminus S$. Dann gilt für das komplexe Wegintegral

$$\oint_{\gamma} f(z) dz = 2\pi i \cdot \sum_{m=1}^{n} \eta_{\gamma}(z_m) \operatorname{Res}_{z=z_m} (f(z)),$$

wobei $\eta_{\gamma}(z_m)$ die Windungszahl von γ um die Singularität in z_m ist.

Teilaufgabe (b): Es gilt

$$\frac{z+2i}{z^2+4} = \frac{z+2i}{(z+2i)(z-2i)} = \frac{1}{z-2i}.$$

Für die Betrachtung der beiden isolierten Singularitäten bei $z_{1/2} = \pm 2i$ von f genügt es, den ersten Summanden von f zu betrachten, denn der zweite Summand ist in einer offenen Umgebung um $z_{1/2} = \pm i$ holomorph. Für $z_{1/2} = \pm 2i$ gilt:

· $z_1 = -2i$ ist sowohl einfach Nullstelle des Nenners als auch des Zählers von $\frac{z+2i}{z^2+4}$. Daher existiert der Grenzwert

$$\lim_{z \to -2i} f(z) = \frac{1}{-4i} + \left(-2i - \frac{1}{2}\right) \exp\left(\frac{1}{-2i - \frac{1}{2}}\right) \in \mathbb{C},$$

weshalb f in $z_1 = -2i$ stetig fortsetzbar ist und die isolierte Singularität hebbar. Das Residuum ist daher $\underset{z=-2i}{\operatorname{Res}} (f(z)) = 0.$

· $z_2 = 2i$ ist einfach Nullstelle des Nenners von $\frac{z+2i}{z^2+4}$. Es gilt einerseits

$$\lim_{z \to 2i} |f(z)| = \infty$$

und andererseits

$$\lim_{z \to 2i} (z - 2i) \cdot f(z) = \lim_{z \to 2i} \left(1 + (z - 2i) \left(z - \frac{1}{2} \right) \exp\left(\frac{1}{z - \frac{1}{2}} \right) \right) = 1 + 0 = 1,$$

weshalb bei z_2 ein Pol erster Ordnung vorliegt. Gleichzeitig ist der zweite Grenzwert der Wert des Residuums von f dort, also $\underset{z=2i}{\text{Res}}(f(z)) = 1$.

Die dritte isolierte Singularität von f liegt bei $z_3 = \frac{1}{2}$, da das Argument der Exponentialfunktion dort eine Polstelle hat. Gleichwohl hat f bei z_3 eine wesentliche Singularität. Um dies zu zeigen, betrachten wir

$$\left(z - \frac{1}{2}\right) \cdot \exp\left(\frac{1}{z - \frac{1}{2}}\right) = \left(z - \frac{1}{2}\right) \cdot \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \left(\frac{1}{z - \frac{1}{2}}\right)^k$$

$$= \left(z - \frac{1}{2}\right) \cdot \left[1 + \frac{1}{z - \frac{1}{2}} + \frac{1}{2! \cdot \left(z - \frac{1}{2}\right)^2} + \frac{1}{3! \cdot \left(z - \frac{1}{2}\right)^3} + \dots\right]$$

$$= \left(z - \frac{1}{2}\right) + 1 + \frac{1}{2! \cdot \left(z - \frac{1}{2}\right)} + \frac{1}{3! \cdot \left(z - \frac{1}{2}\right)^2} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \left(\frac{1}{z - \frac{1}{2}}\right)^{k-1} = \sum_{m=-\infty}^{0} \frac{1}{(-m)!} \cdot \left(z - \frac{1}{2}\right)^{m+1}.$$

Da der erste Summand von f in einer offenen Umgebung um $z_3 = \frac{1}{2}$ holomorph ist, ist genau die obige Reihe die Laurent-Reihe von f um $z_3 = \frac{1}{2}$. Offensichtlich bricht ihr Hauptteil nicht ab, weshalb es sich um eine wesentliche Singularität handelt. Für das

Residuum gilt $\underset{z=\frac{1}{2}}{\text{Res}} (f(z)) = c_{-1} = \frac{1}{2!} = \frac{1}{2}.$

Teilaufgabe (c): Der gegebene Weg γ ist geschlossen, denn $\gamma(0) = \gamma(2\pi)$, allerdings ist auch jeder Teilweg von γ geschlossen, denn $\gamma(0) = \gamma(\pi) = \gamma(2\pi)$. Graphisch handelt es sich dabei um eine liegende 8, wobei diese sich aus zwei Kreisen mit Radius 1 zusammensetzt, deren Mittelpunkte bei ± 1 liegen. Von den isolierten Singularitäten von f wird nur diejenige bei $z_3 = \frac{1}{2}$ umrundet, und zwar im Uhrzeigersinn (also mathematisch negativ) und einmal. Die Windungszahl für z_3 ist also $\eta_{\gamma}(z_3) = -1$. Mit dem Residuensatz folgt dann

$$\oint_{\gamma} f(z) dz = 2\pi i \cdot \eta_{\gamma}(z_3) \cdot \operatorname{Res}_{z=z_3} (f(z)) = 2\pi i \cdot (-1) \cdot \frac{1}{2} = -\pi i.$$