SO BASIC NEURAL NETWORKS 2025

Agenda:

- Session 1: Deep Learning fundamentals
- Session 2: CNN fundamentals
- Session 3: Practical considerations about CNN
- Session 4: Evaluation

2025 SCHOOL AT THE IAA-CSIC

EDUARDO SÁNCHEZ KARHUNEN (fesanchez@us.es)

DEPT. ARTIFICIAL INTELLIGENCE. UNIV. SEVILLE. SPAIN

2025 SCHOOL AT THE IAA-CSIC

EDUARDO SÁNCHEZ KARHUNEN

DEPT. ARTIFICIAL INTELLIGENCE. UNIV. SEVILLE. SPAIN

Neuroscience – The Origin

McCulloch-Pitts model (Chicago, 1943):

- First computational model of a neuron.
- Inspiration: brain operation = composition of logical functions.

How it works:

- Inputs: boolean.
- Aggregation: all inputs summed together.
- Neuron "fires or triggers" an output: takes a decision.
 - Output: 1/0. If sum reaches a certain threshold θ .

Model parameters:

• Threshold heta (manually set).

$$y = 1$$
 if $\sum_{i=1}^{n} x_i \ge \theta$ $y = 0$ if $\sum_{i=1}^{n} x_i < \theta$

Functional & Geometric Interpretation

The First Trainable Neuron (or The Fly's Eye)

Perceptron - Rosenblatt (NY, 1958):

Generalization of the McCulloch-Pitts' model:

- More realistic: **inputs** $\in \mathbb{R}$.
- Allows assign importance (or "weights") to inputs: w_i .
- Proposed neuron = almost "exactly" nowadays neuron.

Generalization cost:

- Number of parameters increases: $(\theta) \Rightarrow (\theta, w_i)$.
- (θ) set manually => (θ, w_i) needed a learning algorithm.

$$y = 1 \quad \text{if} \quad \sum_{i=1}^{n} w_i x_i \ge \theta$$

$$y = 0 \quad \text{if} \quad \sum_{i=1}^{n} w_i x_i < \theta$$

Little Changes – Huge Geometric Impact

McCulloch-Pitch (MP)

$$y = 1 \quad \text{if } \sum_{i=1}^{n} x_i \ge \theta$$

$$y = 0 \quad \text{if } \sum_{i=1}^{n} x_i < \theta$$

Perceptron

$$y = 1 \quad \text{if } \sum_{i=1}^{n} w_i x_i \ge \theta$$

$$y = 0 \quad \text{if} \quad \sum_{i=1}^{n} w_i x_i < \theta$$

Luckily There was a Learning Algorithm

Meaning of learning:

- Dataset: tuples $\{(x_i, y_i), i = 1 \dots N\}$.
- Goal: obtain model parameters (θ, w_i) .
- s.t: classify properly the whole input dataset.
- How: iterative adjustment of weight vector.

Perceptron Convergence Theorem:

- θ is considered as a weight w_0 .
- Based on same distance between prediction and true value.
- If dataset is linearly separable:
 - Guaranteed to find a solution in a finite number of steps.

$$\sum_{i=1}^{n} w_i x_i > \theta \implies \sum_{i=1}^{n} w_i x_i - \theta > 0$$

$$\sum_{i=1}^{n} w_i x_i - \theta * 1 > 0 \quad \Rightarrow \sum_{i=0}^{n} w_i x_i > 0$$

con
$$x_0$$
=1, w_0 = θ

The XOR Problem (Cards on the Table)

Minsky & Papert (MIT, 1969):

Explained perceptron's critical limitation:

- Not able to solve the simple XOR function.
- Solution: stacking layers of neurons.
- Problem: no known algorithm for training multi-layer networks.

x_1	x_2	XOR	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

Simplifying notation: remove sum operator

Not Everything are Peaches & Cream

Obstacle race:

- This criticism led to widespread pessimism about future of Neural Networks.
- Funding dried up. Scientific community abandoned this line of research (1969 ...)
- Alternation of hypes and winters:
 - hypes: periods of great optimism, huge expectations and advances.
 - winters: expectations are not met, starts a period of pessimism. Reduction of investments and leaves this line of research.

Al Winter: 20 Years Searching the Holy Grail

▶ 1st Al Winter:

- Minsky & Papert criticism.
- Worldwide pessimism: ANN have no future.
- ANN are abandoned for years (1969-1986).

Grail = train multilayer networks

- Proposed by Werbos (1982) in his PhD.
- Popularized by Rumelhart & Hinton (1986):
 - Backpropagation + Gradient descent.
- Still the main training technique nowadays.

Key requirement: all components must be differentiable: new smooth activation functions.

Multi-Layer Perceptron (MLP)

We had all ingredients:

- Multilayer is needed (1969).
- Training algorithm was proposed (1986):
 - Backpropagation + Gradient descent.
- A new hype begins.

MLP is a Feedforward NN:

- Groups of perceptrons: arranged in layers.
- Signal flows in only one direction: "no cycles".
- Dense layers: every neuron is connected to every neuron in the next layer.

Multilayer perceptron

Ingredients of MLPs

Layers and parameters:

- Input layer: Network's entry point.
 - Purpose: Receive the raw data vector X.
 - Structure: # neurons = # input features in X.
- Hidden layers: Workhorses.
 - Purpose: if multiple hidden layers is called "Deep".
 - Structure: Dense layers
 - $W^{[i]}$: weight matrix and b_i : bias vector.
 - Φ_i : a common activation function.
- Output layer: Generates the prediction.
 - Structure: # neurons and activation function Φ_i depend on the specific task to solve (e.g. classification, regression).

The Mathematics of an MLP

Mathematical standpoint:

Is a sequence of matrix operations + activation function application

$$Y = \phi_2(W^{[2]}A_1) = \phi_2(W^{[2]}\phi_1(W^{[1]}X)) = (\phi_2 \circ W^{[2]} \circ \phi_1 \circ W^{[1]})X$$

NN training interpretation

 ϕ_1 and ϕ_2 nothing to learn: are prefixed

Find values of matrices: $W^{[1]}$ and $W^{[2]}$

Crucial role of non-linearity:

- Composition of linear functions = linear function
- Can only learn linear "things":

$$Y = W^{[2]}A_1 = W^{[2]}(W^{[1]}X) = (W^{[2]}W^{[1]})X$$

- To learn non-linear problems = break linearity
- Activation function = Non-linearity

Layers as Representation Transformers

▶ The real role of a layer = interdimensional portal

credits

Matrix Operations are not Easy to Interpret

Dimensional jump in action:

- Entering the portal (entering a layer):
 - Layer receives a vector of n_1 components.
 - A point in a n_1 -dim space.
- Exiting the portal (output a layer):
 - The layer "performs" its operations: sums and non-linearities.
 - Outputs a vector of n_2 = # neurons of layer.
 - A point in a new n_2 -dim space.

Why Change Problem Dimension?

In SVM (Support Vector Machines):

Facing a non-linearly separable dataset:

Dimensionality expansion

- Choose kernel from predetermined "Catalogue" of kernels.
- By trial & error: Projects data into a higher-dim space.
- Where a linear separator can be found.

In Neural Networks:

- Idea is generalized and automated.
- Network learns the best "kernel".
- The one that better separate the classes in the concrete task.

credits

Visualizing the Transformation

 ϕ_i :

Non-linearly separable in 2D

$$# = n_{input}$$
 $# = n_1$
 $\Phi = \Phi = \Phi_1$

neuron 1

neuron 2

neuron 3

credits

Now Decision is Trivial

What the Network Actually Learns

Hierarchical learning:

- Each layer builds a new "vision of the world" based on the features of the previous layer vision.
 - Each neuron is asking a simple yes/no question.
 - The # neurons in a layer = # questions to ask.
 - Dimension of the new representation = # neurons of the layer.
- NN has learnt a hierarchical representation of the dataset useful to solve a specific task.

Knowledge is stored in:

- Network architecture (#layers, #neurons per layer).
- Model params $\{W^{[i]}$, weight matrices $\}$.
- Transfer learning: stored knowledge for solving a task could be reused to solve a different but related task.

Internalized Feature Engineering

Input

Input

Workflows have changes:

NEURAL NETWORKS

TRADITIONAL ML

NN learns relevant features automatically from the raw data

Feature extraction + Classification

19

Not Car

Output

credits

Fortunately: It is Still an Art

▶ The art of architecture design:

- For low-dimensional datasets:
 - To expand dimensionality = increasing #neurons in the following layers.
 - Crate a reach representation space.
 - Reduce dimensionality to "distill" key features.
 - Typically, dimension is reduced gradually.

- For high-dimensional dataset: (images)
 - There is an excess of information.
 - Progressively reduce dimensionality step by step.
 - Result: create more meaningful and compact representations.

Output Layer = f(stack)

Binary classification:

- Classical example: dogs vs. cats
- # neurons = 1.
- Desired output interpretation: $P(A_{out} = Y = 1)$
- Activation function: sigmoid. $\phi_{out} = \sigma(z)$

Multiclass classification:

- Classical example: dogs vs. cats vs. horses
- # neurons = # classes
- Desired neuron *i* output interpretation: $P(A_{out} = Y = i)$
- To give a probability interpretation: $\sum_{i=1}^{n} P(A_{out} = Y = i) = 1$
- Activation function: softmax. $\phi_{out} = softmax(z)$

$$\sigma(z)=rac{1}{1+e^{-z}}$$

$$softmax(z)_i = rac{e^{z_i}}{\sum_{i=1}^n e^{z_i}}$$

- a) If $z_i < 0$, then $e^{z_i} > 0$
- b) Values normalization $\sum_{i=1}^{n} e^{z_i}$

Measuring Error: Loss Functions

Specific loss for tasks:

- Task 1: Image location (Bounding box to locate object).
 - Problem: multi-regression, predict rectangle corners.
 - Loss function: Intersection-over-Union (IoU)
- Task 2: Object detection.
 - Problem: detect if object appears in an image or not.
 - Loss function: Mean Average Precision (mAP)
- Task 3: Image segmentation
 - Problem: associate to each pixel a class label.
 - Loss function: Pixel-wise cross entropy
- Task 4: Image classification
 - Problem: associate a class to each image
 - Loss function : CrossEntropy

22

Classification Problems: Crossentropy

Why such a strange expression?

- K: network outputs are a probability.
- Heavily penalize (log near zero) confident wrong answers
 - If true value = 1. If $P(Y = 1) \approx 0$
 - If true value = 0. If $P(Y = 1) \approx 1$
- Combine both branches:
 - Each branch is weighted using $y^{(i)}$ and $1 y^{(i)}$.
- Generalized for > 2 classes.

▶ Total loss function:

$$J = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \cdot log(\hat{y}^{(i)}) + (1-y^{(i)}) \cdot log(1-\hat{y}^{(i)})]$$

Giving Sense to Network Training

Meaning of network training?

- Once fixed the network architecture:
 - # layers & # neurons per layer.
 - Activation function of each layer.
- Given a problem & a dataset
- Given an error measure: loss function
- Goal: find values of parameters

$$J(\mathbf{x};\theta) = J(\mathbf{x};W^{[i]})$$

$$\theta = W^{[i]}, i = 1, \dots n$$

- Loss landscape is non-convex: due to the non-linear activation functions.
 - Probably only local minima will be found.
- Parameter space of dimension 10⁴-10⁷.

Network Training: Backpropagation + GD

Backpropagation (Rumelhart, 1986)

- Forward pass (or forward propagation):
 - Fed input, network make a prediction..
 - Obtain the error between prediction and true label.
- Reverse pass (backward propagation):
 - Obtain error gradient w. r. t. all weights:

$$\nabla J = \frac{\partial J}{\partial W_i}$$

Making use chain-rule: backpropagated errors traversing the NN.

- Gradient descent:
 - Weights adjusted in the direction that reduces error.
 - Size of this step controlled by Learning rate.

Backpropagation Variants: Batchsize

Key point:

- ¿How much input samples are considered to obtain the error?
- All samples are considered (Batch GD):
 - Update has access to the whole info.
 - Very slow, more stable towards the local minima.
- One sample at a time (Stochastic GD, SGD):
 - Strongly biased update.
 - High variance in the obtained gradients.
- Small random subsets (Mini-Batch GD):
 - Reduces variance, with a more stable convergence.
 - Standard nowadays. New hyperparameter: Batchsize (32, 64, 128, ...).

2nd Al Winter: What is Happening Here?

Against all odds:

- During training: unexpected problems appeared.
- Worst of all: unknown problems source.

2nd Al Winter starts 1986 - 2010

Problem	Solution	
Lack of training data	Wait until digital revolution	
Lack of computing power	Development of GPU, TPU,	
Strong dependence on the value of η (learning rate)	Learning rate schedules	
Gradient descent is slow	Faster optimizers	
	Novel activation functions	
Gradient instabilities	Weight initialization techniques	
Gradient instabilities	Batch normalization	
	Gradient clipping	

FASTER OPTIMIZERS

Gradient Descent = slow!!

	Class	Convergence speed	Convergence quality
abla J	SGD	*	***
	SGD(momentum=)	**	***
	SGD(momentum=, nesterov=True)	**	***
	Adagrad	***	* (stops too early)
η	RMSprop	***	** Of ***
	Adam	***	** or ***
	Nadam	***	** or ***
	AdaMax	***	** or ***
		SGD SGD(momentum=) SGD(momentum=, nesterov=True) Adagrad RMSprop Adam Nadam	SGD * SGD(momentum=) ** SGD(momentum=, nesterov=True) ** Adagrad *** RMSprop *** γ Adam ***

ACTIVATION FUNCTION EVOLUTION

Period	Visualización	Name	$\phi(z)$	Características	Current use
McColluch-Pitts (50s)	θ	Step function (Heaviside)	$= \begin{cases} 0, z < \theta \\ 1, z \ge \theta \end{cases}$	Non-differentiable	Theoret. Use
	θ	Sign function	$= \begin{cases} -1, z < \theta \\ +1, z \ge \theta \end{cases}$	Non-differentiable	Theoret. Use
Backpropagation (90s)	<u>σ</u>	Sigmoid/logistic	$=\frac{1}{1+e^{-z}}$	Slow train	Last layer
		Tanh	$=2\sigma(2z)-1$	Slow train	Last layer
Nowadays (<2015)		ReLU (Rectified Linear Unit)	$= \max(0, z)$	Fast train	Hidden layer