CMSC 478 Lecture 3 KMA Solaiman

Supervised Learning: Classification, Perceptrons

Visual version of linear regression: Learning

Let $h_{\theta}(x) = \sum_{j=0}^{d} \theta_{j} x_{j}$ want to choose θ so that $h_{\theta}(x) \approx y$. One popular idea called **least squares**

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}.$$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

Solving the least squares optimization problem.

Gradient Descent

Animation

Gradient Descent

- $\mathcal{J}(\theta) = (\theta 4)^2 + 1$
- Find the weight (value of θ) that minimizes the loss $\mathcal J$
- $\mathcal{J}'(\theta) = ?$
- θ = 2.5
- given the current value of w, adjusting θ by an amount that has the negative of the sign of $\mathcal{J}'(\theta)$ leads to a smaller value of \mathcal{J} .

Gradient Descent

•
$$\mathcal{J}(\theta) = (\theta - 4)^2 + 1$$

- Find the weight (value of θ) that minimizes the loss J
- $\mathcal{J}'(\theta) = ?$
- θ = 2.5
- given the current value of w, adjusting θ by an amount that has the negative of the sign of $\mathcal{J}'(\theta)$ leads to a smaller value of \mathcal{J} .

$$\theta = \theta - \alpha * \mathcal{J}'(\theta)$$

Gradient Descent

	size	bedrooms	lot size		Price
	2104	4	45k	y ⁽¹⁾	400
$x^{(2)}$	2500	3	30k	$y^{(2)}$	900

What's a prediction here?

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3.$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}.$$

$$\theta^{(0)} = 0$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \qquad \text{for } j = 0, \dots, d.$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \text{ for } j = 0, \dots, d.$$

Note that α is called the **learning rate** or **step size**.

Let's compute the derivatives...

$$\frac{\partial}{\partial \theta_j} J(\theta^{(t)}) = \sum_{i=1}^n \frac{1}{2} \frac{\partial}{\partial \theta_j} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)})$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \text{ for } j = 0, \dots, d.$$

Note that α is called the **learning rate** or **step size**.

Let's compute the derivatives. . .

$$\frac{\partial}{\partial \theta_j} J(\theta^{(t)}) = \sum_{i=1}^n \frac{1}{2} \frac{\partial}{\partial \theta_j} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)})$$

For our *particular* h_{θ} we have:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d$$
 so $\frac{\partial}{\partial \theta_j} h_{\theta}(x) = x_j$

Thus, our update rule for component j can be written:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}.$$

Thus, our update rule for component j can be written:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}.$$

We write this in *vector notation* for j = 0, ..., d as:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}.$$

Saves us a lot of writing! And easier to understand ... eventually.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}.$$

A single update, our rule examines all n data points.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}.$$

- A single update, our rule examines all n data points.
- ▶ In some modern applications (more later) *n* may be in the billions or trillions!
 - ► E.g., we try to "predict" every word on the web.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}.$$

- ▶ A single update, our rule examines *all n* data points.
- ▶ In some modern applications (more later) *n* may be in the billions or trillions!
 - E.g., we try to "predict" every word on the web.
- ► Idea Sample a few points (maybe even just one!) to approximate the gradient called Stochastic Gradient (SGD).
 - SGD is the workhorse of modern ML, e.g., pytorch and tensorflow.

Stochastic Minibatch

- ▶ We randomly select a **batch** of $B \subseteq \{1, ..., n\}$ where |B| < n.
- ► We approximate the gradient using just those *B* points as follows (vs. gradient descent)

$$\frac{1}{|B|} \sum_{j \in B} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)} \text{ v.s. } \frac{1}{n} \sum_{j=1}^{n} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)}.$$

Stochastic Minibatch

- ▶ We randomly select a **batch** of $B \subseteq \{1, ..., n\}$ where |B| < n.
- ▶ We approximate the gradient using just those B points as follows (vs. gradient descent)

$$\frac{1}{|B|} \sum_{j \in B} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)} \text{ v.s. } \frac{1}{n} \sum_{j=1}^{n} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)}.$$

► So our update rule for SGD is:

All minibatches are used for each iteration, or epoch and then start the next one

$$\theta^{(t+1)} = \theta^{(t)} - \alpha_B \sum_{j \in B} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)}.$$

▶ NB: scaling of |B| versus n is "hidden" inside choice of α_B .

Stochastic Minibatch vs. Gradient Descent

► Recall our rule *B* points as follows:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha_B \sum_{j \in B} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)}.$$

- ▶ If $|B| = \{1, ..., n\}$ (the whole set), then they coincide.
- ► Smaller *B* implies a lower quality approximation of the gradient (higher variance).
- Nevertheless, it may actually converge faster! (Case where the dataset has many copies of the same point—extreme, but lots of redundancy)

Stochastic Minibatch vs. Gradient Descent

► Recall our rule *B* points as follows:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha_B \sum_{j \in B} \left(h_{\theta}(x^{(j)}) - y^{(j)} \right) x^{(j)}.$$

- ▶ If $|B| = \{1, ..., n\}$ (the whole set), then they coincide.
- ► Smaller *B* implies a lower quality approximation of the gradient (higher variance).
- Nevertheless, it may actually converge faster! (Case where the dataset has many copies of the same point-extreme, but lots of redundancy)
- ► In practice, choose *B* proportional to what works well on modern parallel hardware (GPUs).

Supervised Learning and Classification

- **▶** Perceptrons
- ► Linear Regression via a Probabilistic Interpretation
- ► Logistic Regression

Linear Classification: Mushroom and Goats

	color	width	height	label
0	-0.311688	0.358501	0.936567	edible
1	-0.472327	0.817906	0.468387	poisonous

```
	exttt{sign}ig(w_c*	exttt{color} + w_w*	exttt{width} + w_h*	exttt{height}ig) \ 	exttt{sign}ig(0*-0.472327+1*0.817906-1*0.468387ig) = 	exttt{sign}ig(0.349519ig) = +1 \ 	exttt{sign}ig(0*-0.311688+1*0.358501-1*0.936567ig) = 	exttt{sign}ig(-0.578066ig) = -1
```

Linear Classification

	x1	x2	у
0	0.048589	1.120275	-1
1	0.200023	0.956716	-1
2	1.595538	1.023582	-1
3	1.315929	1.452371	-1
4	1.087080	1.513219	-1
5	0.512235	1.594651	-1
6	0.265039	1.008506	-1
7	1.606480	1.571889	-1
8	0.977585	1.550227	-1
9	1.908708	1.121259	-1
10	2.503476	3.002576	1

Classification

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\} \text{ let } y^{(i)} \in \{0, 1\}.$ Why not use regression, say least squares? A picture ...

Loss Function for Classification: 0-1 Loss

L_{0-1}	$egin{array}{l} \hat{y} \ = \ -1 \end{array}$	$\hat{y} = 1$
y = -1	0	1
y = 1	1	0

Loss Function for Classification: 0-1 Loss

$$L_{0-1}(y,\mathbf{w}\cdot\mathbf{x}) = egin{cases} 0 & ext{if } y*\mathbf{w}\cdot\mathbf{x} > 0 \ 1 & ext{otherwise} \end{cases}$$

Loss Function for Classification: 0-1 Loss

$$L_{0-1}(y,\mathbf{w}\cdot\mathbf{x}) = egin{cases} 0 & ext{if } y*\mathbf{w}\cdot\mathbf{x} > 0 \ 1 & ext{otherwise} \end{cases}$$

Perceptron Loss

$$L_P(y, \mathbf{w} \cdot \mathbf{x}) = egin{cases} 0 & ext{if } y * \mathbf{w} \cdot \mathbf{x} > 0 \ -y * \mathbf{w} \cdot \mathbf{x} & ext{otherwise} \end{cases}$$


```
def perceptron(df, label = 'y', epochs = 100, bias = True):
    if bias:
        df = df.copy()
        df.insert(0, '_x0_', 1)
    w = np.zeros(len(df.columns) - 1)
    features = [column for column in df.columns if column != label]
    for in range(epochs):
        errors = 0
        for _, row in df.iterrows():
            x = row[features]
            y = row[label]
            if y * np.dot(w, x) \le 0:
                W = W + V * X
                errors += 1
            vield w.copy()
        if errors == 0:
            break
```


Graph of Iris Dataset with logistic regression

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many...

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many... but we'll pick one!

$$g(z)=\frac{1}{1+e^{-z}}.$$

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many... but we'll pick one!

$$g(z) = \frac{1}{1 + e^{-z}}$$
. SIGMOID

How do we interpret $h_{\theta}(x)$?

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

How do we go to a cost function from P (y | X; θ) ?

We need to go back to Maximum Likelihood Estimation that we saw before at the beginning of this lecture.

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}} \quad \text{exponents encode "if-then"}$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}} \quad \text{exponents encode "if-then"}$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Now to solve it...

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

We maximize for θ but we already saw how to do this! Just compute derivative, run (S)GD and you're done with it!

Takeaway: This is *another* example of the max likelihood method: we setup the likelihood, take logs, and compute derivatives.

Time Permitting: There is magic in the derivative...

Even more, the batch update can be written in a *remarkably* familiar form:

$$\theta^{(t+1)} = \theta^{(t)} + \sum_{j \in B} (y^{(j)} - h_{\theta}(x^{(j)})) x^{(j)}.$$

We sketch why (you can check!) We drop superscripts to simplify notation and examine a single data point:

$$y \log h_{\theta}(x) + (1 - y) \log(1 - h_{\theta}(x))$$

= $-y \log(1 + e^{-\theta^T x}) + (1 - y)(-\theta^T x) - (1 - y) \log(1 + e^{-\theta^T x})$
= $-\log(1 + e^{-\theta^T x}) - (1 - y)(\theta^T x)$

We used $1 - h_{\theta}(x) = \frac{e^{-\theta' x}}{1 - e^{-\theta T_x}}$. We now compute the derivative of this expression wrt θ and get:

$$\frac{e^{-\theta^T x}}{1 + e^{-\theta^T x}} x - (1 - y) x = (y - h_{\theta}(x)) x$$

Perceptron Learning Algorithm

- Modify link function to output either 0 or 1.
- Make g to be a threshold function
- Then use same $h_{\theta}(x) = g(\theta^T x)$ using this g
- Follow the same update rule for θ

$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Summary of Introduction to Classification

We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.

Summary of Introduction to Classification

- We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.
- We developed logistic regression from this principle.
 - Logistic regression is widely used today.

Summary of Introduction to Classification

- We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.
- We developed logistic regression from this principle.
 - Logistic regression is widely used today.
- We noticed a familiar pattern: take derivatives of the likelihood, and the derivatives had this (hopefully) intuitive "misprediction form"

Optimization Method Summary

	Compute per Step	Number of Steps
Method		to convergence
SGD	$\theta(d)$	≈ є ⁻²
Minibatch SGD		
GD	θ(nd)	≈ ε ⁻¹
Newton	$\Omega(\mathrm{nd}^2)$	≈ log(1/€)

- In classical stats, d is small (< 100), n is often small, and exact parameters matter
- In modern ML, d is huge (billions, trillions), n is huge (trillions), and parameters used only for prediction
 - ➤ These are approximate number of computing steps
 - ➤ Convergence happens when loss settles to within an error range around the final value.
 - ➤ Newton would be very fast, where SGD needs a lot of step, but individual steps are fast, makes up for it
- As a result, (minibatch) SGD is the workhorse of ML.

Classification Lecture Summary

- ▶ We saw the differences between classification and regression.
- ► We learned about a principle for probabilistic interpretation for linear regression and classification: **Maximum Likelihood**.
 - We used this to derive logistic regression.
 - ► The Maximum Likelihood principle will be used again next lecture (and in the future)