6/04/2023

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

The multi-server queue

Università degli studi di Roma Tor Vergata Department of Civil Engineering and Computer Science Engineering

> Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

@ 🕦 💲 (CC BY-NC-ND 4.0)

1

Analytical models the multiserver queue

Erlang, 1917

M/M/m abstract scheduling Arrivi e servizi esponenziali, cioè memoryless

$$E(N_Q)_{Erlang}$$

ci sono 'n' job
$$p(n) = \begin{cases} \frac{1}{n!} (m\rho)^n p(0) & \textit{for } n = 1, ..., m \text{ coda vuota, riempio solo i server } \mu \\ \frac{m^m}{m!} \rho^n p(0) & \textit{for } n > m \text{ oltre i server, inizio ad occupare anche la coda} \end{cases}$$

$$p(0) = \left[\sum_{i=0}^{m-1} \frac{(m\rho)^i}{i!} + \frac{(m\rho)^m}{m!(1-\rho)} \right]^{-1}$$
 probabilità che il sistema sia vuoto

Prof. Vittoria de Nitto Personè

Analytical models the multiserver queue

The Erlang-C formula

probabilità che quando un job arriva finisce in coda? == probabilità che tutti i server siano pieni

$$P_{Q} \cong \Pr\{n \ge m\} = \sum_{n=m}^{\infty} p(n)$$

$$= \sum_{n=m}^{\infty} \frac{m^{m}}{m!} \rho^{n} p(0) = \frac{m^{m}}{m!} p(0) \sum_{n=m}^{\infty} \rho^{n}$$

$$= \frac{m^{m}}{m!} p(0) \sum_{n=0}^{\infty} \rho^{n+m} = \frac{m^{m}}{m!} p(0) \rho^{n} \sum_{n=0}^{\infty} \rho^{n}$$
serie nota

Prof. Vittoria de Nitto Personè

3

Performance p.288

Analytical models the multiserver queue

3

The **Erlang-C** formula

probabilità che siano tutti pieni, dipende da 'm' e da 'rho'

$$\frac{P_Q}{P_Q} = \frac{(m\rho)^m}{m!(1-\rho)} p(0)$$

$$E\big(N_Q\big)_{Erlang} = P_Q \frac{\rho}{1-\rho}$$
 simile al caso servente singolo
$$E(N_S) = P_Q \frac{\rho}{1-\rho} + \frac{m\rho}{1-\rho}$$
 somm

$$E(N_S) = P_Q \frac{\rho}{1 - \rho} + m\rho$$

sommo quelli serviti mediamente

$$E(T_Q) = \frac{E(N_Q)}{\lambda}$$
 $E(T_Q) = P_Q \frac{\rho}{\lambda(1-\rho)} = \frac{P_Q E(S)}{1-\rho}$

Prof. Vittoria de Nitto Personè

Analytical models the multiserver queue

The Erlang formula

tempo medio per liberare uno qualsiasi dei server

M/M/m

 $E(T_Q)_{KP} = \underbrace{\rho E(S)}_{1-\rho} = \underbrace{E(S_{rem})}_{1-\rho}$

tempo per far sì che se ne liberi uno, devo metterci lei!

$$E(S) = \frac{E(S_i)}{m}$$

Infatti voglio che se ne liberi UNO qualsiasi, non uno specifico.

Prof. Vittoria de Nitto Personè

5

5

dato un certo carico, lambda e mu, la probabilità che siano tutti pieni è più piccola della probabilità che sia pieno solo uno.

6

Nel multiserver ho più "sedie" su cui far sedere i job, se devo ottimizzare l'attesa, conviene distribuire la capacità, avere ad esempio 10 server meno potenti che uno 10 volte più potente, perchè dal punto di vista dell'attesa rho>Pq Se devo minimizzare tempi di attesa è meglio la soluzione distribuita!

/

p.289 performance

Analytical models server organizations

Communication systems

Frequency-division Multiplexing

Statistical multiplexing

$$\begin{array}{c} \lambda_{m} \Longrightarrow \coprod \stackrel{}{\coprod} \stackrel{}{\coprod} \stackrel{}{\coprod} \longrightarrow \\ \lambda_{m} \Longrightarrow \coprod \stackrel{}{\coprod} \stackrel{}{\coprod} \stackrel{}{\coprod} \longrightarrow \\ \end{array}$$

$$\lambda \Longrightarrow \iiint m \mu \longrightarrow$$

$$E(T_S) = \frac{\rho E(S)}{1 - \rho} + E(S) = \frac{E(S)}{1 - \rho}$$
$$E(T_S) = \frac{1}{\mu \left(1 - \frac{\lambda}{\mu}\right)} = \frac{1}{\mu - \lambda}$$

M/M/1

Prof. Vittoria de Nitto Personè

13

13

Analytical models server organizations

Communication systems

Frequency-division Multiplexing

Statistical multiplexing

$$\begin{array}{c} \lambda_{m} \Longrightarrow \coprod \stackrel{}{\coprod} \stackrel{}{\coprod} \stackrel{}{\coprod} \longrightarrow \\ \lambda_{m} \Longrightarrow \coprod \stackrel{}{\coprod} \stackrel{}{\coprod} \stackrel{}{\coprod} \longrightarrow \\ \end{array}$$

$$E(T_S)^{FDM} = \frac{1}{\mu - \frac{\lambda}{m}} = \frac{m}{m\mu - \lambda}$$

$$E(T_S)^{SM} = \frac{1}{m\mu - \lambda}$$

FDM shows a response time m times greater then for SM!

Prof. Vittoria de Nitto Personè

14

14

FDM però garantisce a ciascun flusso una specifica frequenza di servizio!

11/04/2023

Analytical models server organizations

Server Organizations

$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho}$$
 $E(T_Q)_{KP} = \frac{\rho E(S)}{1 - \rho}$

from the waiting time perspective the distributed capacity solution produces an improvement in the user perceived QoS

Prof. Vittoria de Nitto Personè

21

21

Analytical models server organizations

Server Organizations

What about the response time perspective??

$$E(T_S)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} + E(S_i)$$

$$E(T_S)_{KP} = \frac{\rho E(S)}{1 - \rho} + E(S)$$

$$E(S_i) = \frac{1}{\mu} = m \frac{1}{m\mu} = mE(S)$$

Prof. Vittoria de Nitto Personè

22

Scaling factor

What about waiting and response time?

$$\rho = \frac{\lambda}{m\mu}$$

$$\rho = \frac{a\lambda}{ma\mu} = \frac{\lambda}{m\mu}$$

$$E(S_i) = \frac{1}{\mu}$$

$$E(S_i) = \frac{1}{a\mu}$$

$$E(S) = \frac{E(S_i)}{m}$$

Prof. Vittoria de Nitto Personè

27

27

Analytical models server organizations

Scaling factor

Mean waiting time

$$E(T_Q)_{m,a} = \frac{P_Q E(S)_{m,a}}{1 - \rho} = \frac{P_Q}{ma\mu(1 - \rho)} = \frac{1}{a} \frac{P_Q E(S)m,1}{(1 - \rho)} = \frac{1}{a} E(T_Q)_{m,1}$$

Prof. Vittoria de Nitto Personè

28

$$\lambda_{\rm m} \Longrightarrow \coprod \mu \longrightarrow \lambda_{\rm m} \Longrightarrow \coprod \lambda_{\rm m} \Longrightarrow \coprod \lambda_{\rm m} \Longrightarrow \coprod \lambda_{\rm m} \Longrightarrow \lambda_{\rm m}$$

$$\lambda \Longrightarrow \boxed{m} \mu \longrightarrow$$

 $\lambda = 4$ j/s, m $\mu = 4x1.5 = 6$ j/s E(S)=0.166667 s

 $\rho = 0.666667$

$$E(T_S) = \frac{1}{m\mu - \lambda} = 0.5$$

$$E(T_Q) = 0.3334$$

Prof. Vittoria de Nitto Personè

31

31

$$\lambda_{m} \Longrightarrow \square \mu \longrightarrow \lambda_{m} \Longrightarrow \lambda_{m} \Longrightarrow \square \mu \longrightarrow \lambda_{m} \Longrightarrow \lambda$$

Prof. Vittoria de Nitto Personè