과제 3 추가 설명

16bit ones' complement checksum

Checksum algorithm

16bit Bit wise operation

Bit wise 연산자를 사용하여 연산

integer type , char type 모두 16bit 으로 맞춘 후 bit-wise operation 진행 ex) bit-wise operation

UINT16 Sum = A ^ B UINT16 Carry = A & B

Char 의 경우 아래의 예시처럼 16bit 으로 맞춘 후 진행 할 수 있음

ex) char data[4] = AAAA

UINT16 sum = (left shift data[0] by 8 bit ^ data[1]) ^ (left shift data[2] by 8 bit^ data[3]) UINT16 carry = (left shift data[0] by 8 bit ^ data[1]) & (left shift data[2] by 8 bit^ data[3])

주의 사항:

bit-wise 연산을 위해 char type 의 형변환이 필요 할 수 있음

Bit-wise operation 을 사용하는 one's complement addition

```
one's complement addition:
              UINT16 Sum = 0
              Loop(until 패킷의 모든 요소에 대한 addition 완료 할 때까지)
                             x = Sum
                             y= 16bit 으로 변환된 패킷의 요소
                                                              Logic에 따라, Carry의 맨 상위 bit 에 carry bit이
                                                              발생하면 곧 wrap around carry 다 발생한 것이
                             UINT16 Sum = x bit-wise XOR y
                                                              므로 wrap around addition을 진행해줘야 하며.
                             UINT16 carry = x bit-wise AND y
                                                              carry 안의 최상위 bit이 1인지를 검사하여 이
                             loop(carry != 0)
                                                              를 알 수 있음
                                           condition(carry bit-wise AND left-most-bit)
이 수도코드는 두 개의 요소에 대한 계산을 수행
구현 목표:
                                                          wrap around carry state
  패킷 요소의 모든 값의 합
   wrap around bit 처리
                                           left shift carry by 1 bit
   모든 요소에 대한 addition 완료 후 bitflip 을 통한
                                           x = Sum
   one's complement
이 수도코드는 하나의 예시일뿐 구현 방식 자유
                                           v = carrv
                                           Sum = x bit-wise XOR y
                                           carry = x bit-wise AND y
                                                                      Wrap around carry state on
                             condition (wrap around carry state){
                                           unsigned variable 1
                                           Sum = unsigned variable bit-wise addition Sum
              Checksum = bitflip sum
```

수도코드 에 따른 4bit 연산 예시

```
left-most-bit = 1000
                                        1011
                                        0110
                            Bit-wise OP -----
                                 Sum = 1101
                                Carry = 0010
                         left-most-bit = 1000
      Carry bit-wise AND left-most-bit ------
    Carry bit-wise AND left-most-bit = 0000
               Left Shift carry by 1bit = 0100
Sum bit-wise OP left shift carry by 1 bit ------
                                 Sum = 1001
                                Carry = 0100
                         left-most-bit = 1000
      Carry bit-wise AND left-most-bit ------
    Carry bit-wise AND left-most-bit = 0000
               Left Shift carry by 1bit = 1000
Sum bit-wise OP left shift carry by 1 bit ------
                                 Sum = 0001
                                Carry = 1000
                        left-most-bit = 1000
      Carry bit-wise AND left-most-bit ------
  Carry bit-wise AND left-most-bit = 1000
              Left Shift carry by 1 bit = 0000
Sum bit-wise OP left shift carry by 1 bit ------
                                 Sum = 0001
                     Wrap around bit = 0001
     Sum bit-wise OP Wrap around bit ------
                                 Sum = 0000
                                Carry = 0010
                        left-most-bit = 1000
      Carry bit-wise AND left-most-bit ------
     Carry bit-wise AND left-most-bit =0000
               Left Shift carry by 1 bit = 0100
Sum bit-wise OP left shift carry by 1 bit -----
```

Sum = 0010Carry = 0000

checksum

Checksum

패킷안의 모든 요소(data, seqnum, acknum)의 합 의 one's complement

one's complement를 이용한 corruption 판별

Checksum 은 bitwise 연산을 통해 corruption 을 판별

Wrap around carry 가 발생하여도 summation 값이 1001 1101 0011 1001

(sum) 1000 0000 0000 0101

일 경우

summation result =0001 1101 0011 1111

(Checksum received) =1110 0010 1100 0000

Checksum ^ summation result =1111 1111 1111 1111

(after one's complement)Checksum ^ summation result =0000 0000 0000 0000

패킷 손상되지 않음

필수 구현 사항

구현 방식 자유

가산점을 위한 필수 구현 사항
Bit-wise summation 을 통한 acknum, seqnum, data 의 합
checksum = 합의 One's complement
패킷 손상 여부 판별