

Liste des logiciels et bases de données utilisés (avec numéros de versions)	
TNBC	
MpBC	
МрВС	
MpBC	
MpBC	
MpBC	
MpBC	

Section Principale

I. Introduction

- A. Contexte et état de l'art
- B. Présentation des MpBC
- C. Problématique(s)

II. Matériels et méthodes

- A. Echantillons MpBC
 - 1. Prélèvement/Collecte et fixation
 - a) Provenance des échantillons
 - b) FFPE fixation
 - c) H&E coloration
 - 2. Séquençage
 - a) Référence de la techno, profondeur ?, kit use
 - 3. Annotation phénotypique des spots
 - a) Annotations via clustering k-means (Loupe Browser)
 - b) Annotations expert anatomopathologiste
- B. Software et packages
 - 1. RStudio et language R
 - *a)* Version du logiciel
 - 2. Analyse des marqueurs phénotypiques
 - a) Loupe Browser
 - (1) Version du logiciel
 - b) Seurat
 - (1) Version du package
 - (2) Contrôle qualité et filtrage des spots
 - (a) UMI & Features count,
 - (b) % gènes mitochondriaux
 - (c) ...
 - (3) Normalisation et Scaling
 - (a) Nombre de gène sélectionné
 - (4) Déterminations des paramètres UMAP de façon empirique
 - (5) Clustering
 - (a) Type de l'algorithme use (=Louvain)
 - c) Harmony
 - (1) Version du package
 - (2) Paramètres de la correction batch-effect
 - 3. Analyse des marqueurs génotypiques
 - a) InferCNVPlus
 - (1) Constitution du groupe de cellule de références
 - (2) Normalisation
 - (3) Tests statistiques

III. Résultats

- A. Analyse des marqueurs phénotypiques
 - 1. Réduction PCA harmony
 - a) Figure 1 : Réduction PCA après correction Harmony
 - 2. Projection UMAP (après Clustering)
 - a) Figure 2 : Projection UMAP (après épuration des spots contradictoires entre annotations expert et clustering seurat)
 - 3. Feature Plot
 - a) Figure 3 : Illumination de la UMAP selon les gènes marqueurs
 - (1) Rajouter sur les figures, des * avec les termes GO (fonctions) pour les gènes représentés
 - 4. Dot Plot
 - a) Figure 4 : Features selon types cellulaires
 - b) Figure 5: Features selon les patients
- B. Analyse des marqueurs génotypiques
 - 1. Visualisation des différences de score CNA entre compartiment
 - a) Figure 6 : Shift Plot
 - b) Figure 7 : Effect_size en fonction p_val
 - (1) Modifier la figure pour la mettre sous forme de VolcanoPlot (abscisse = Size Effect, ordo = Log10(Pval_adj), Différence sans val absolue)
 - c) Figure 8 : P val barplot par bras
 - d) Figure 9 : Heatmap Plot
 - e) Figure 10 : Correlation Plot

IV. Discussions

- A. Limites de la technologie Visium
 - 1. Risque d'hétérogénéité cellulaire intra-spot
 - a) Séparation imparfaite des clusters (UMAP)
 - *b)* Trop faible spécificité des marqueurs génétiques pour les sous-types cellulaires
 - (1) Marqueurs pour le moment trop patient-spécifique plutôt que cluster-spécifique
 - c) Dilution/Perturbation du signal CNA
 - (1) Quelques cellules non cancéreuses au sein des spots annotés cancéreux
 - d) Difficulté pour caractériser des marqueurs génétiques et CNA spécifiques aux sous-types
- B. Perspectives du projet
 - 1. Analyse approfondie via snRNA-seq
 - a) Création d'un atlas MpBC spécifique
 - 2. Microdissection des sous-types spécifiques
 - a) Déterminants génétiques
 - (1) Mutations drivers de chaque sous-type
 - (2) Mutations clonales à l'origine de tous les MpBC
 - b) Déterminants non génétiques
 - (1) Epigénétique & méthylome
 - (2) Microenvironnement & interaction ligand-récepteur
 - 3. Caractérisation des marqueurs et voies de signalisation pour le diagnostique

V. Conclusions

