### Data Analytics Project-IBM INTERNSHIP

## Sahil Thakur

sahilthakurco@gmail.com

Thakur College of Engineering and Technology

**Organization - DGT** 



Date - 12/06/2023 - 24/07/2023





# Analysis of Superstore Dataset

This project centers around conducting a thorough analysis of the SuperStore dataset, which comprises sales data from a fictitious retail store. The primary objective is to extract valuable insights regarding the store's performance and to know about specific areas that offer potential for enhancement and growth.

We are provided with various information in data set such as product type, customer demographics, regional infographics









## **INDEX**

| Sr no | Pg no | Contents                                                                                                                                                                              |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 3-9   | Overview                                                                                                                                                                              |
| 2     | 10    | Dataset                                                                                                                                                                               |
| 3     | 12-14 | Data Description                                                                                                                                                                      |
| 4     | 15-25 | EDA - EXPLORATORY DATA ANALYSIS  1. Top selling products  2. Most profitable products  3. Top Sales and Profit by  • Region  • State  • City  • Area  4. Most active segment and mode |
| 5     | 26-28 | Results<br>Conclusion                                                                                                                                                                 |

## Agenda

The goal of the "Analysis of Superstore Dataset" project is to investigate and analyze a dataset from a superstore in order to learn important details about its sales, clients, merchandise, and general performance. The project attempts to evaluate the store's strengths and weaknesses using data-driven approaches and processes, identify possible development areas, and provide databacked recommendations for improving business operations and increasing profitability.

## **Project Overview**

The project entails performing an extensive study of the Superstore dataset, which includes historical data on sales transactions, customer data, and product details. The dataset includes data on a variety of characteristics, including sales revenue, profit margins, consumer demographics, product categories, and the regions where the business is located. The project aims to identify patterns, trends, and correlations in the data by utilizing data analysis methods.



## **END USERS**

- 1. Store Management: By using the analysis's insights, store managers will be better able to manage their inventories, set reasonable prices, and spot areas where they may cut costs.
- 2. Marketing Team: The study can be used by the marketing team to identify target consumer categories, understand client preferences, and create focused marketing efforts.
- 3. Sales Team: By recognizing top-performing products, analyzing sales patterns, and adjusting sales tactics for various geographies, the sales team can benefit.
- 4. Executives and Stakeholders: The results of the project will be helpful to executives and stakeholders as they can aid in formulating strategic plans, establishing long-term objectives, and assessing overall performance.





## Solution

- Utilized the SuperStore dataset to conduct an extensive analysis of sales data, providing a deep understanding of the business's performance.
- Explored the dataset comprehensively, gaining insights into its structure, variables, and data quality, ensuring the reliability of subsequent analysis.
- Ensured accurate and reliable analysis results by performing meticulous data cleaning and preprocessing techniques on the SuperStore dataset.
- Conducted in-depth exploratory data analysis (EDA) to unveil hidden patterns, trends, and relationships within the sales data, revealing valuable
  insights.
- Investigated key performance metrics, including sales revenue, profit, and customer segments, to identify areas for improvement and growth opportunities.
- Identified potential target markets by analyzing geographical sales distribution, providing actionable information for strategic expansion.
- Examined top-selling products and popular categories, evaluating their impact on overall store performance and informing future inventory management decisions.
- Utilized advanced techniques to analyze customer behavior, including buying patterns and loyalty, enabling the optimization of marketing strategies for increased customer satisfaction and retention.

## **Value Proposition**

The following value propositions are offered by our solution:

- •Data-Driven Decision Making: By examining the Superstore dataset, we help marketing and store managers make datadriven decisions. Because they can base their judgments on thorough analysis, they may improve store performance, streamline operations, and develop more precise marketing plans.
- •Enhanced Profitability: Our analysis aids in locating chances for raising sales, enhancing inventory control, and cutting costs, all of which contribute to the Superstore's enhanced profitability. The store can increase its income and profitability by streamlining processes, discovering high-demand products, and improving pricing methods.
- •consumer Insights and Personalized Marketing: Our system offers marketing managers insightful data on consumer behavior, demographics, and preferences. Due to their ability to create targeted marketing campaigns, customize promotions, and increase client engagement, they are able to generate more revenue.





## How did I customize the project

Data visualization is a regular part of projects involving data analysis, but my method stands out by making use of the potent tools Matplotlib and Seaborn. These libraries include a wide range of customisation possibilities, enabling the development of aesthetically pleasing and illuminating charts, graphs, and plots. My approach improves understanding of complicated patterns and relationships within the Superstore dataset by presenting data in a visually appealing manner and utilizing the capabilities of Matplotlib and Seaborn.

Interactive Dashboards: My solution includes interactive dashboards to deliver an amazing user experience. These dashboards give users the ability to interactively explore and interact with the data that has been evaluated, allowing them to dig down into particulars, use filters, and visualize various dimensions. The dashboards' interactive features increase engagement.

## MODELLING Techniques, Frameworks, methods used

## **Exploratory Data Analysis (EDA)**

- 1. Data Understanding: Exploratory Data Analysis (EDA) helps in gaining a deep understanding of the dataset, including its structure, variables, and content.
- 2. Pattern Identification: EDA allows the identification of patterns, trends, and relationships within the data, enabling insights into sales trends, customer behavior, and product performance.
- 3. Data Visualization: EDA involves creating various visualizations, making it easier to communicate complex information and identify trends that may not be apparent from raw data.

### **Market Segmentation**

Market segmentation is used to categorize customers based on purchasing behavior, enabling targeted marketing strategies and personalized offerings to optimize sales and customer satisfaction in the superstore.

### **Data Visualization**

Python libraries such as Matplotlib,Seaborn were used to create informative graphs, charts to properly display the findings of the analysis







## **LINKS**

#### Project Link

https://github.com/SahilRT/Analysis\_ of\_ SuperStore\_ Dataset-Data-Analytics-Project-IBM-INTERNSHIP

#### Research Papers

- SALES ANALYSIS ON SUPERSTORE DATASET
   https://www.irjmets.com/uploadedfiles/paper//issue\_ 4\_ april\_ 2023/36572/final/fin\_ irjmets1682186035.

   pdf
- Chakraborty, M. (2020). Sales Analysis of Superstore using Power Bl. Kaggle. https://www.kaggle.com/moumoyesh/sales-analysis-of-superstore-using-power-bi
- Microsoft. (n.d.). Analyse and visualize Superstore data in Power BI. https://powerbi.microsoft.com/en-us/tutorials/analyze-and-visualize-superstore-data/
- Pranav, B. (2021). Sales Analysis of Superstore Data using Power BI. Analytics Vidhya.
   https://www.analyticsvidhya.com/blog/2021/04/sales-analysis-of-superstore-data-using-power-bi/

#### Other

Super Store Sales Analysis https://medium.com/analytics-vidhya/exploratory-data-analysis-super-store-cb91c37bcb06

## **Dataset**

#### **Dataset Url**

https://www.kaggle.com/datasets/bravehart101/sample-supermarket-dataset

#### **About Dataset**

This is a sample superstore dataset, a kind of a simulation where you perform extensive data analysis to deliver insights on how the company can increase its profits while minimizing the losses.

#### Details

- Size 1.11 mb (.csv)
- Rows 9994
- Columns 13

## **Import Dataset**

```
In [6]:
         # Importing libraries
         import pandas as pd
         import numpy as np
In [7]:
         # Importing the dataset
         df = pd.read_csv("Analysis of Super Store - DA.csv")
         df
                                                                 Postal
Code Region Category
                  Ship
                                                                                                 Sub-
                        Segment Country
                                                                                                          Sales Quantity Discount
                                                                                             Category
                                    United
                        Consumer
                                             Henderson Kentucky 42420 South
                                                                                  Furniture
                                                                                            Bookcases 261.9600
                                                                                                                              0.00
                Second
Class Consumer
                                    United
                                                                                                                              0.00 2
                                            Henderson Kentucky 42420 South
                                                                                  Furniture
                                                                                               Chairs 731.9400
                Second
                       Corporate
                                           Los Angeles California 90036
                                                                                               Labels 14.6200
                                                                                                                              0.00
                                                                                   Supplies
                                    United
            3 Standard Consumer
                                                          Florida 33311 South
                                                                                                Tables 957.5775
                                                                                                                              0.45 -3
                                                                                  Furniture
                                    States
            4 Standard Consumer
                                    United
                                                                                     Office
                                                                                               Storage 22.3680
                                                          Florida 33311
                                                                         South
                                                                                                                              0.20
                                                                                   Supplies
                                    United
                       Consumer
                                                                                                                              0.20
                                                Miami
                                                          Florida 33180
                                                                         South
                                                                                  Furniture Furnishings 25.2480
                                     States
```

## **DATASET INFO**

DataFrame.count: Count number of non-NA/null observations.

DataFrame.max: Maximum of the values in the object.

DataFrame.min: Minimum of the values in the object.

DataFrame.mean: Mean of the values.

DataFrame.std: Standard deviation of the observations.

DataFrame.select-dtypes: Subset of a DataFrame including/excluding columns based on their dtype.

df.describe()

|       | Postal Code  | Sales        | Quantity    | Discount    | Profit       |
|-------|--------------|--------------|-------------|-------------|--------------|
| count | 9994.000000  | 9994.000000  | 9994.000000 | 9994.000000 | 9994.000000  |
| mean  | 55190.379428 | 229.858001   | 3.789574    | 0.156203    | 28.656896    |
| std   | 32063.693350 | 623.245101   | 2.225110    | 0.206452    | 234.260108   |
| min   | 1040.000000  | 0.444000     | 1.000000    | 0.000000    | -6599.978000 |
| 25%   | 23223.000000 | 17.280000    | 2.000000    | 0.000000    | 1.728750     |
| 50%   | 56430.500000 | 54.490000    | 3.000000    | 0.200000    | 8.666500     |
| 75%   | 90008.000000 | 209.940000   | 5.000000    | 0.200000    | 29.364000    |
| max   | 99301.000000 | 22638.480000 | 14.000000   | 0.800000    | 8399.976000  |
|       |              |              |             |             |              |

```
•00
```

#### NULL VALUES

```
df.isna().sum()

Ship Mode 0
Segment 0
Country 0
City 0
State 0
Postal Code 0
Region 0
Category 0
Sub-Category 0
Sub-Category 0
Sub-Category 0
Discount 0
Profit 0
dtype: int64
```

#### UNIQUE VALUES

# unique values

```
for feature in df_cat.columns:
    print(feature,':',df[feature].nunique())

Ship Mode : 4
Segment : 3
Country : 1
City : 531
State : 49
Region : 4
Category : 3
Sub-Category : 17
```

#### Read the Duplicate value

```
df.duplicated().sum()
```

0

#### FEATURES OF DATASET

df\_cat.head()

|   | Ship Mode      | Segment   | Country       | City            | State      | Region | Category        | Sub-Category |
|---|----------------|-----------|---------------|-----------------|------------|--------|-----------------|--------------|
| 0 | Second Class   | Consumer  | United States | Henderson       | Kentucky   | South  | Furniture       | Bookcases    |
| 1 | Second Class   | Consumer  | United States | Henderson       | Kentucky   | South  | Furniture       | Chairs       |
| 2 | Second Class   | Corporate | United States | Los Angeles     | California | West   | Office Supplies | Labels       |
| 3 | Standard Class | Consumer  | United States | Fort Lauderdale | Florida    | South  | Furniture       | Tables       |
| 4 | Standard Class | Consumer  | United States | Fort Lauderdale | Florida    | South  | Office Supplies | Storage      |

## **Exploratory Data Analysis**

### **Top 5 Selling Products**

```
# Group the data by Subcategory and sum up the sales
subcategory_group = df.groupby(["Sub-Category"]).sum()["Sales"]
# Sort the data by sales in descending order
top subcategory sales =
subcategory_group.sort_values(ascending=False)
top5_subcategory_sales =
pd.DataFrame(top subcategory sales.head())
top5 subcategory sales.plot(kind="bar")
plt.title("Top 5 Selling Product-type")
# Add labels to the x and y axes
plt.xlabel("Product Type")
plt.ylabel("Total Sales")
# Show the plot
plt.show()
```



### **Top 5 Profitable Products**

```
product_profit = df.groupby(["Sub-
Category"]).sum()["Profit"]
```

```
top_profit =
product_profit.sort_values(ascending=False)
```

top5\_profit =pd.DataFrame(top\_profit.head())

### **#Top 5 Profitting products**

top5\_profit.plot(kind="bar")

plt.title("Top 5 most profitting sales")

plt.xlabel("Product Type")
plt.ylabel("Profit")

plt.show()







## **Top Sales and Profit by**

### **Top Regions by Sales**

# Group the data by Region and calculate the total sales for each

region\_sales = df\_places.groupby(['Region'],
as\_index=False).sum()
region\_sales.sort\_values(by='Sales',
ascending=False, inplace=True)

### # Total sales by region

plt.bar(region\_sales['Region'], region\_sales['Sales']) plt.xlabel("Region") plt.ylabel("Sales") plt.title("Sales in Region") plt.show()



## **Top Regions by Profit**

## # Group the data by Region and calculate the total profit for each

region\_profit = df\_places.groupby(['Region'],
as\_index=False).sum()
region\_profit.sort\_values(by='Profit',
ascending=False, inplace=True)

### # Profit in each region

plt.bar(region\_profit['Region'], region\_profit['Profit']) plt.xlabel("Region") plt.ylabel("Profit") plt.title("Profit in Region") plt.show()



## Top States by Sales

state\_sales = df\_places.groupby(['State'],
as\_index=False).sum()
state\_sales.sort\_values(by='Sales',
ascending=False, inplace=True)

plt.bar(state\_sales['State'], state\_sales['Sales']) plt.xlabel("State") plt.ylabel("Sales") plt.title("State Sales") plt.xticks(rotation=90)

plt.show()
state\_sales.head()





## Top States by Profit

state\_profit = df\_places.groupby(['State'],
as\_index=False).sum()
state\_profit.sort\_values(by='Profit',
ascending=False, inplace=True)

plt.bar(state\_profit['State'], state\_profit['Profit'])
plt.xlabel("State")
plt.ylabel("Profit")
plt.title("State Profit")
plt.xticks(rotation=90)

plt.show()
state profit.head()







### Top Cities by Sales

city\_sales = df\_places.groupby('City',
as\_index=False).sum()
city\_sales.sort\_values(by='Sales',
ascending=False, inplace=True)

# Select the top 5 cities top5 cities sales = city sales.head()

plt.bar(top5\_cities\_sales['City'], top5\_cities\_sales['Sales']) plt.xlabel("City") plt.ylabel("Sales") plt.title("Top Cities by Sales")

plt.show()
top5\_cities\_sales



| 329 | New York City | 256368.161 |  |
|-----|---------------|------------|--|
| 266 | Los Angeles   | 175851.341 |  |
| 452 | Seattle       | 119540.742 |  |
| 438 | San Francisco | 112669.092 |  |
| 374 | Philadelphia  | 109077.013 |  |

## **Top Cities by Profit**

city\_profit = df\_places.groupby('City',
as\_index=False).sum()
city\_profit.sort\_values(by='Profit',
ascending=False, inplace=True)

# Select the top 5 cities top5 cities profit = city profit.head()

plt.bar(top5\_cities\_profit['City'], top5\_cities\_profit['Profit']) plt.xlabel("City") plt.ylabel("Profit") plt.title("Top Cities by Profit")

plt.show()
top5\_cities\_profit



|     | City          | Sales      | Profit     |
|-----|---------------|------------|------------|
| 329 | New York City | 256368.161 | 62036.9837 |
| 266 | Los Angeles   | 175851.341 | 30440.7579 |
| 452 | Seattle       | 119540.742 | 29156.0967 |
| 438 | San Francisco | 112669.092 | 17507.3854 |
| 123 | Detroit       | 42446.944  | 13181.7908 |
|     |               |            |            |

### **Top Areas by Sales**

```
area_sales = df_places.groupby('Postal Code',
as_index=False).sum()
area_sales.sort_values(by='Sales',
ascending=False, inplace=True)
```

### # Select the top 5 areas

```
top5_areas_sales = area_sales.head()
mylabels=(top5_areas_sales['Postal Code'])
y=np.array(top5_areas_sales['Sales'])
plt.pie(y, labels = mylabels)
```

plt.title("Top Areas by Sales")

plt.show() top5\_areas\_sales



|     | Postal Code | Sales     | Profit     |
|-----|-------------|-----------|------------|
| 54  | 10024       | 78697.182 | 21653.7248 |
| 55  | 10035       | 77357.885 | 16533.8669 |
| 52  | 10009       | 54761.496 | 13697.0019 |
| 578 | 94122       | 52667.467 | 7712.5958  |
| 53  | 10011       | 45551.598 | 10152.3901 |

### Top Areas by Profit

area\_profit = df\_places.groupby('Postal Code', as index=False).sum() area profit.sort values(by='Profit', ascending=False, inplace=True)

### # Select the top 5 areas

top5 areas profit = area profit.head() mylabels=(top5\_areas\_profit['Postal Code']) y=np.array(top5 areas profit['Profit']) plt.pie(y, labels = mylabels)

plt.title("Top Areas by Profit")

plt.show() top5\_areas\_profit



|     | rostal Code | Sales     | FIOIIL     |
|-----|-------------|-----------|------------|
| 54  | 10024       | 78697.182 | 21653.7248 |
| 55  | 10035       | 77357.885 | 16533.8669 |
| 52  | 10009       | 54761.496 | 13697.0019 |
| 621 | 98115       | 41160.908 | 13303.8755 |
| 53  | 10011       | 45551.598 | 10152.3901 |



## Most Active Segment and Mode

#### **#Related Sales**

table= df.pivot\_table(index='Segment', columns='Ship Mode', values='Sales', aggfunc='sum') table.plot(kind='bar') plt.xticks(rotation=0) plt.show()

table

| Ship Mode   | First Class | Same Day  | Second Class | Standard Class |
|-------------|-------------|-----------|--------------|----------------|
| Segment     |             |           |              |                |
| Consumer    | 159168.9650 | 60596.359 | 231498.9496  | 710137.0714    |
| Corporate   | 105858.4699 | 45121.323 | 146126.0388  | 409040.5351    |
| Home Office | 86400.9880  | 22645.443 | 81568.5810   | 239038.1365    |





## **Results**

#### **BEST SALES**

df['Profit Margin'] = df['Profit'] / df['Sales']

# Group category and data and calculate the average profit margin for each

avg\_profit\_margin = df.groupby('Category')['Profit Margin'].mean()

plt.figure(figsize=(15,6)) avg\_profit\_margin.plot(kind='bar')

plt.title("Average Profit Margin of category")
plt.xlabel("Category")
plt.ylabel("Average Profit Margin")
plt.xticks(rotation=0)
plt.show()

avg\_profit\_margin





## Conclusion

The study of the superstore dataset revealed useful insights into sales trends, customer behavior, and product performance, allowing data-driven recommendations to optimize business operations and increase overall profitability. The project's findings provide a strategic roadmap for decision-making and enhancing the competitiveness of the superstore in the market for store management, marketing teams, and executives.

**Best Region :** [West]

**Best State:** [california, New York]

Best Cities: [New York City, Los Angeles, Seattle, San Francisco, Detroit]

**Best Areas:** [10024,10035,1009]

Category with highest avg profit margin – **Technology** (*O.156*)

Most active sales segment – **Consumer**Most used Ship mode – **Standard Class** 





# Thank you!

Credits - https://github.com/SahilRT