# A NLP INTEGRATED APPROACH FOR CLEARANCE CONTROL IN AIR TRAFFIC SERVICES

## A PROJECT REPORT

Submitted by

KAILASA ESWARAN I [211716205024] BALAJI C [211716205012]

in partial fulfilment for the award of the degree of

### **BACHELOR OF TECHNOLOGY**

In

### INFORMATION TECHNOLOGY





RAJALAKSHMI INSTITUTE OF TECHNOLOGY, KUTHAMBAKKAM

ANNA UNIVERSITY:: CHENNAI 600 025

**APRIL 2020** 

### ANNA UNIVERSITY: CHENNAI 600 025

#### **BONAFIDE CERTIFICATE**

Certified that this project report "A NLP INTEGRATED APPROACH FOR CLEARANCE CONTROL IN AIR TRAFFIC SERVICES" is the bonafide work of KAILASA ESWARAN I [211716205024] and BALAJI C [211716205012] who carried out the project work under my supervision.

| SIGNATURE                  | SIGNATURE                  |
|----------------------------|----------------------------|
| Mr.M.Ashok M.Tech., (Ph.D) | Mr.M.Ashok M.Tech., (Ph.D) |
| HEAD OF THE DEPARTMENT,    | SUPERVISOR,                |
| (INCHARGE)                 | ASSISTANT PROFESSOR,       |
| INFORMATION TECHNOLOGY,    | INFORMATION TECHNOLOGY     |
| RAJALAKSHMI INSTITUTE OF   | RAJALAKSHMI INSTITUTE OF   |
| TECHNOLOGY,                | TECHNOLOGY,                |
| KUTHAMBAKKAM, CHENNAI.     | KUTHAMBAKKAM, CHENNAI.     |
|                            |                            |

This project report submitted for viva voce examination to be held on.....

**INTERNAL EXAMINER** 

**EXTERNAL EXAMINER** 

#### **ACKNOWLEDGEMENT**

We extend our gratitude to our Chairman Mr. S. MEGANATHAN M.E., F.I.E., Chairperson Dr. (Mrs.) THANGAM MEGANATHAN M.A., M.Phil., Ph.D and Vice Chairman Dr. HAREE SHANKAR MEGANATHAN., MBBS., MD., for providing us with all the necessary resources and the other facilities for doing this project.

We are extremely grateful to our Principal **Dr. M VELAN M.E., Ph.D** for giving us valuable support and encouragement throughout our course.

We wish to thank Mr. M ASHOK M.Tech. (Ph.D), Head of the Department, Information Technology, for providing us with all necessary resources, other facilities for doing this project and for giving us valuable support and encouragement throughout this project.

We express our sincere gratitude to our guide **Mr. M ASHOK M.Tech., (Ph.D)** Senior Assistant Professor, Department of Information Technology for his guidance, constant encouragement and support. His meticulous attention and creative thinking has been a source of inspiration for us throughout this project.

We also thank all the **teaching** and **non-teaching members** in Department of Information Technology for their valuable help and guidance throughout our course.

We bestow our thanks to our family members, friends for their motivation and encouragement at all times.

#### **ABSTRACT**

Air Traffic Control (ATC) is one of the most important part in aviation. Air Traffic Controllers, sometimes referred as ATCOs, are the guardian angles of the sky. They are provided by means of ground-based traffic controllers, who directs the plane through the managed airspace, and offers consultative services to plane in noncontrolled airspace. The first motive of ATC global is to prevent collisions, organize and expedite the glide of traffic, and furnish facts and different aid for pilots. Air traffic management is one in all the foremost stressful job because it needs high level human intervention, concentration and dynamic deciding. Therefore ATC is that the least automatic field in aviation because of challenges faced in voice recognition and transmission. Our plan primarily uses decision sign detection and text to speech conversion by implementing LSTM to instruct the pilot for handling the flight. The LSTM model is fed with inputs from the pilot and undergoes text summarization part. The main downside is going to be, hissing channel, that ends up in poor voice recognition. Our project uses long short term memory of perennial neural networks for text connected process of knowledge and conjointly aims in building a good voice recognition server.

## TABLE OF CONTENTS

| CHAPTER<br>NO |     | TITLE                                                                                        | PAGE<br>NO |
|---------------|-----|----------------------------------------------------------------------------------------------|------------|
|               |     | ABSTRACT                                                                                     | i          |
|               |     | LIST OF FIGURES                                                                              | ix         |
|               |     | LIST OF TABLES                                                                               | xi         |
| 1             |     | INTRODUCTION                                                                                 |            |
|               | 1.1 | INTRODUCTION TO AIR TRAFFIC CONTROL                                                          | 2          |
|               |     | 1.1.1 AIRPORT TRAFFIC CONTORL TOWER                                                          | 2          |
|               |     | 1.1.2 GROUND CONTROL                                                                         | 5          |
|               |     | 1.1.3 AIR CONTROL OR LOCAL CONTROL                                                           | 6          |
|               |     | 1.1.4 APPROACH AND TERMINAL CONTORL                                                          | 6          |
|               |     | 1.1.5 AREA OR CENTRE CONTROL                                                                 | 8          |
|               |     | 1.1.6 RADAR COVERAGE                                                                         | 9          |
|               | 1.2 | INTRODUCTION TO DATA MINING IN AVIATION (AIR TRANSPORT MANAGEMENT)                           | 10         |
|               |     | 1.2.1 DATA MINING IN AIR TRAFFIC FLOW FORCASTING                                             | 12         |
|               |     | 1.2.2 DATA MINING IN AIR TRAFFIC FLOW MANAGEMENT AND ANALYSIS FOR INFLIGHT COST OPTIMIZATION | 13         |
|               |     | 1.2.3 DATA MINING METHODS TO INCREASE SAFETY AND REDUCE THE NEGATIVE IMPACTS IN AVIATION     | 13         |
|               | 1.3 | RESPONSIBILITIES OF AN AIR TRAFFIC CONTROLLER                                                | 14         |
|               | 1.4 | PROBLEMS IN AIR TRAFFIC CONTROL                                                              | 15         |
|               | 1.5 | ATC ERROR CATEGORIES                                                                         | 17         |
|               | 1.6 | PROBLEM DEFINITION                                                                           | 19         |

|   | 1.7  | OBJECTIVE                                                                         | 21 |
|---|------|-----------------------------------------------------------------------------------|----|
|   | 1.8  | KEYWORDS                                                                          | 22 |
|   |      | 1.8.1 AVIATION                                                                    | 22 |
|   |      | 1.8.2 AIR TRAFFIC CONTROL                                                         | 22 |
|   |      | 1.8.3 APPROACH CONTROL                                                            | 28 |
|   |      | 1.8.3.1 TERMINAL RADAR APPROACH CONTROL                                           | 23 |
|   |      | 1.8.4 CLEARANCE CONTROL                                                           | 24 |
|   |      | 1.8.5 VOICE RECOGNITION                                                           | 24 |
|   |      | 1.8.6 CALL SIGN                                                                   | 25 |
|   |      | 1.8.7 FLIGHT PLAN                                                                 | 26 |
|   | 1.9  | AN OUTLINE OF EXISTING SYSTEM                                                     | 28 |
|   |      | 1.8.1 DISADVANTAGES OF EXISTING SYSTEM                                            | 29 |
|   | 1.10 | SUMMARY                                                                           | 29 |
|   |      |                                                                                   |    |
| 2 |      | LITERATURE SURVEY                                                                 |    |
|   | 2.1  | INTRODUCTION                                                                      | 30 |
|   | 2.2  | RESEARCH PAPERS                                                                   | 30 |
|   |      | 2.2.1 USING LSTM ENCODER-DECODER ALGORITHM FOR DETECTING ANAMALOUS ADS-B MESSAGES | 31 |
|   |      | 2.2.2 EMOTIONAL STATISTICAL PARAMTERIC SPEECH SYNTHESIS USING LSTM-RNNs           | 31 |
|   |      | 2.2.3 APPLICATION OF DATA MINING IN AIR TRAFFIC FORECASTING                       | 32 |
|   |      | 2.2.4 INTELLIGENT AIR TRAFFIC CONTROL USING NEURAL NETWORKS                       | 33 |
|   |      |                                                                                   |    |

|   |     | 2.2.6 LONG SHORT TERM MEMORY BASED RECURRENT                                                                  | 34  |
|---|-----|---------------------------------------------------------------------------------------------------------------|-----|
|   |     | NEURAL NETWORK ARCHITECTURES FOR LARGE                                                                        |     |
|   |     | VOCABULARY SPEECH RECOGNITION 2.2.7 TTS SYNTHESIS WITH BIDIRECTIONAL LSTM BASED                               | 2.4 |
|   |     | RECURRENT NEURAL NETWORKS                                                                                     | 34  |
|   |     | 2.2.8 CONTEXT DEPENDENT RECURRENT NEURAL NETWORK                                                              | 35  |
|   |     | LANGUAGE MODEL                                                                                                | 33  |
|   |     | 2.2.9 LSTM NEURAL NETWORS FOR LANGUAGE MODELLING                                                              | 35  |
|   |     | 2.2.10 AIR TRAFFIC VOLUME AND AIR TRAFFIC HUMAN ERRORS                                                        | 36  |
|   |     | 2.2.11 DATA MINING FOR AIR TRAFFIC FLOW FORECASTING: A HYBRID MODEL FOR NEURAL NETWORK & STATISTICAL ANALYSIS | 36  |
|   |     | 2.2.12 SPEECH RECOGNITION USING RECURRENT NEURAL                                                              | 37  |
|   |     | PREDICTION MODEL                                                                                              |     |
|   | 2.3 | SUMMARY                                                                                                       | 38  |
| 3 |     | SYSTEM DESIGN                                                                                                 |     |
|   | 3.1 | INTRODUCTION                                                                                                  | 39  |
|   | 3.2 | SYSTEM ARCHITECTURE                                                                                           | 39  |
|   | 3.3 | PROCESS FLOW                                                                                                  | 41  |
|   | 3.4 | ENTITY RELATIONSHIP MODEL                                                                                     | 42  |
|   | 3.5 | DATA FLOW DIAGRAM                                                                                             | 43  |
|   |     | 3.5.1 DFD LEVEL 0                                                                                             | 44  |
|   |     | 3.5.2 DFD LEVEL 1                                                                                             | 44  |
|   |     | 3.5.3 DFD LEVEL 2                                                                                             | 45  |

|   | 3.6 | UML DIAGRAMS                                   | 45 |
|---|-----|------------------------------------------------|----|
|   |     | 3.6.1 USE CASE DIAGRAM                         | 46 |
|   |     | 3.6.2 ACTIVITY DIAGRAM                         | 47 |
|   |     | 3.6.3 CLASS DIAGRAM                            | 48 |
|   | 3.7 | SUMMARY                                        | 50 |
| 4 |     | SYSTEM IMPLEMENTATION                          |    |
|   | 4.1 | INTRODUCTION                                   | 51 |
|   | 4.2 | SYSTEM MODULES                                 | 52 |
|   |     | 4.2.1 SPEECH REQUEST TO TEXT                   | 54 |
|   |     | 4.2.2 TEXT SUMMARIZATION                       | 55 |
|   |     | 4.2.3 RESPONSE GENERATION                      | 56 |
|   |     | 4.2.3.1 FLIGHT INFORMATION INCLUSION           | 58 |
|   |     | 4.2.4 TEXT TO PILOT RESPONSE                   | 58 |
|   | 4.3 | SUMMARY                                        | 59 |
| 5 |     | TESTING                                        |    |
|   | 5.1 | INTRODUCTION                                   | 60 |
|   | 5.2 | TEST CASES                                     | 61 |
|   |     | 5.2.1 MODULE 1 - PILOT REQUEST TO TEXT         | 61 |
|   |     | 5.2.2 MODULE 2 – TEXT SUMMARIZATION USING LSTM | 63 |
|   |     | 5.2.3 MODULE 3 – RESPONSE GENERATION           | 65 |
|   |     | 5.2.4 MODULE 4 – TEXT TO PILOT RESPONSE        | 67 |
|   | 5 3 | SUMMARY                                        | 68 |

| 6 |     | EXPERIMENTAL ANALYSIS                              |    |
|---|-----|----------------------------------------------------|----|
|   | 6.1 | INTRODUCTION                                       | 70 |
|   | 6.2 | ANALYSIS OF EXISTING ATC SYSTEM                    | 70 |
|   | 6.3 | ANALYSIS OF STRESS FACTOR IN EXISTING SYSTEM       | 72 |
|   | 6.4 | ANALYSIS OF PROPOSED SYSTEM                        | 74 |
|   | 6.5 | MODULE ANALYSIS                                    | 75 |
|   |     | 6.5.1 MODULE 1 – SPEECH TO TEXT ANALYSIS           | 75 |
|   |     | 6.5.2 MODULE 2 – TEXT SUMMARIZATION ANALYSIS       | 76 |
|   |     | 6.5.3 MODULE 3 – ANALYSIS OF RESPONSE GENERATION   | 77 |
|   |     | 6.5.3.1 SUB MODULE1 – FLIGHT INFORMATION INCLUSION | 77 |
|   |     | 6.5.4 MODULE 4 – TEXT TO SPEECH ANALYSIS           | 78 |
|   | 6.6 | ANALYSIS OF LSTM                                   | 78 |
|   | 6.7 | SUMMARY                                            | 80 |
| 7 |     | FUTURE WORK                                        |    |
|   | 7.1 | INTRODUCTION                                       | 81 |
|   | 7.2 | FUTURE ENHANCEMENT                                 | 81 |
|   |     | 7.2.1 DEPARTURE CLEARANCE                          | 82 |
|   |     | 7.2.2 AUTOMATION IN DEPARUTRE CLEARANCE            | 84 |
|   |     | 7.2.3 PUSHBACK                                     | 85 |
|   |     | 7.2.3.1 THE KEY THREAT TO AIRCRAFT SAFETY          | 87 |
|   |     | 7.2.3.2 ACCIDENTS AND INCIDENTS                    | 88 |
|   |     | 7.2.4 AUTOMATION IN PROVIDING ATIS DATA            | 91 |
|   | 7.3 | SUMMARY                                            |    |

## **APPENDICES**

|            | REFERENCES          | R1 |
|------------|---------------------|----|
| APPENDIX D | PUBLICATIONS        | D1 |
| APPENDIX C | SYSTEM REQUIREMENTS | C1 |
| APPENDIX B | SAMPLE CODING       | B1 |
| APPENDIX A | SAMPLE SCREENSHOTS  | A1 |

# LIST OF FIGURES

| FIGURE<br>NO | TITLE                                 | PAGE<br>NO |
|--------------|---------------------------------------|------------|
| 1.1          | LONDON HEATHROW AIRPORT ATC TOWER     | 4          |
| 1.2          | ATC TOWER INTERIOR                    | 4          |
| 1.3          | GROUND CONTROL STAFFS                 | 5          |
| 1.4          | APPROACH AND TERMINAL CONTROL ROOM    | 7          |
| 1.5          | AREA CONTROL                          | 8          |
| 1.6          | SOUTHWEST AIRLINES B737               | 11         |
| 1.7          | VOICE RECOGNITION                     | 25         |
| 1.8          | FLIGHT PLAN OF SRI LANKAN AIRLINES    | 27         |
| 3.1          | PROPOSED SYSTEM ARCHITECTURE          | 40         |
| 3.2          | PROCESS FLOW                          | 41         |
| 3.3          | ER DIAGRAM                            | 43         |
| 3.4          | DFD LEVEL 0                           | 44         |
| 3.5          | DFD LEVEL 1                           | 44         |
| 3.6          | DFD LEVEL 2                           | 45         |
| 3.7          | USE CASE DIAGRAM                      | 46         |
| 3.8          | ACTIVITY DIAGRAM                      | 47         |
| 3.9          | CLASS DIAGRAM                         | 49         |
| 4.1          | VOICE RADIO COMMUNICATION             | 52         |
| 4.2          | PERSONAL COMPUTER AND EARPHONES       | 53         |
| 4.3          | AUDIO INPUT                           | 53         |
| 4.4          | SYSTEM RESPONSE AFTER RECEIVING AUDIO | 53         |
| 4.5          | AUDIO CONVERTED TO TEXT               | 55         |

| 4.6   | CONVERTED TEXT REQUEST                                   | 55 |
|-------|----------------------------------------------------------|----|
| 4.7   | TOKENIZED TEXT                                           | 56 |
| 4.8   | TEXT SUMMARIZATION                                       | 56 |
| 4.9   | RESPONSE GENERATION                                      | 57 |
| 4.10  | AUDIO RESPONSE                                           | 59 |
| 6.1   | STRUCTURE OF ATC HUMAN ERRORS<br>CAUSED BY STRESS FACTOR | 73 |
| 6.2   | ERROR FREQUENCY BY LEVELS OF AIR TRAFFIC VOLUME          | 74 |
| 6.3   | TEXT SUMMARIZATION USING DEEP LEARNING                   | 79 |
| 7.1   | PRE-DEPARTUREN CLEARANCE                                 | 83 |
| 7.2   | PUSHBACK                                                 | 86 |
| 7.3   | WORKING OF ATIS                                          | 92 |
| A1.1  | AIR TRAFFIC CONTROLLER                                   | A1 |
| A1.2  | VOICE RADIO COMMUNICATION                                | A1 |
| A1.3  | ATC INTERIOR                                             | A2 |
| A1.4  | PC AND EARPHONES                                         | A2 |
| A1.5  | AUDIO INPUT                                              | A3 |
| A1.6  | SYSTEM RESPONSE AFTER RECEIVING AUDIO                    | A3 |
| A1.7  | AUDIO CONVERTED TO TEXT                                  | A4 |
| A1.8  | TEXT SUMMARIZATION                                       | A4 |
| A1.9  | RESPONSE GENERATION                                      | A5 |
| A1.10 | AUDIO RESPONSE                                           | A5 |

## LIST OF TABLES

| TABLE NO | TITLE                                                 | PAGE NO |
|----------|-------------------------------------------------------|---------|
| 1.1      | STRUCTURE OF ATC HUMAN CONTROL ELEMENTS               | 18      |
| 1.2      | MAJOR AIRPLANE ACCIDENTS RELATED TO ATC HUMAN FACTORS | 20      |
| 5.1      | TEST CASES FOR MODULE-1                               | 61      |
| 5.2      | TEST CASES FOR MODULE-2                               | 63      |
| 5.3      | TEST CASES FOR MODULE-3                               | 65      |
| 5.4      | TEST CASES FOR MODULE-4                               | 67      |