Εργασία Αναγνώρησης Προτύπων και Μηχανικής Μάθησης

Βασίλης Αϊτσίδης (10330) Φίλιππος Ρωσσίδης (10379) Ομάδα 30

ΑΠΘ

18 Δεκεμβρίου 2024

- 🚺 ΜΕΡΟΣ Α Εκτίμηση με Μέγιστη Πιθανοφάνεια
- ② ΜΕΡΟΣ Β Μπεϋζιανή Εκτίμηση
- ΜΕΡΟΣ Γ Ίριδα (Δέντρο Απόφασης/ Τυχαίο Δάσος)
- 4 ΜΕΡΟΣ Δ

Υποθέτουμε ότι έχουμε δείγματα μιας τιμής x για τα οποία θέλουμε να αναλύσουμε κατά πόσο είναι αξιόπιστοι δείκτες του στρες για παίκτες βιντεπαιχνιδιών.

Γνωρίζουμε ότι η ΣΠΠ του x είναι: $p(x|\theta) = \frac{1}{\pi} \frac{1}{1+(x-\theta)^2}$, όπου το θ είναι άγνωστο.

Γνωρίζουμε επίσης ότι από σύνολο 12 δεδομένων: για 7 παίκτες που δεν ένιωσαν στρες (κλάση ω_1) οι δείκτες x ήταν

$$D_1=[2.8,-0.4,-0.8,2.3,-0.3,3.6,4.1]$$
, ενώ για τους 5 παίκτες που ένιωσαν στρες οι δείκτες x ήταν $D_2=[-4.5,-3.4,-3.1,-3.0,-2.3]$.

Για να βρούμε εάν είναι αξιόπιστος ο δείκτης x θα προσπαθήσουμε να βρούμε τρόπο να ταξινομούμε κάποιον παίκτη σε κλάσεις: στρες, όχι στρες, με τη χρήση του δείκτη x.

Στο πρώτο μέρος θα χρησιμοποιήσουμε τη μέθοδο Μέγιστης Πιθανοφάνειας.

Αρχικά μπορούμε να παρατηρήσουμε (και με μια οπτικοποίηση στο σχήμα 1): ότι οι δύο κλάσεις (για τα δείγματα που έχουμε) είναι γραμμικά διαχωρίσημες, άρα ήδη μπορούμε να συμπεράνουμε ότι το x θα έχει σχετικά αξιόπιστα αποτελέσματα.

Σχήμα: Οι τιμές των δειγμάτων. Κίτρινο=στρες, μωβ=οχι στρες

Εκτιμάμε τις παραμέτρους $\hat{\theta_1}, \hat{\theta_2}$ των ΣΠΠ και για τις δύο κλάσεις, δηλαδή τις τιμές που μεγιστοποιούν τις (συναρτήσεις πιθανοφάνειας) $p(D_1|\theta)$ και $p(D_2|\theta)$, αντίστοιχα.

Εκτελούμε τα παρακάτω βήματα για διάφορες τιμές του θ :

•
$$p(x|\theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}$$

•
$$p(D|\theta) = p(x_1, x_2, ..., x_N|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Βρίσκουμε την τιμή $\hat{\theta}$ που μεγιστοποιεί το $p(D|\theta)$.

Στην υλοποίηση επιλέχθηκαν 500 τιμές για το θ στο διάστημα [-60,60].

Δεξιά παρατίθονται οι συναρτήσεις πιθανοφάνειας $p(D|\theta)$ για τις δύο κλάσεις. Οι τιμές του θ που τις μεγιστοποιούν είναι η Εκτίμηση του αλγορίθμου. Συγκεκριμένα για τα δεδομένα που έχουμε, οι τιμές είναι: $\theta_1 = 2.525, \theta_2 = -3.246.$ Επίσης, να σημειωθεί ότι όσο περισσότερα είναι τα δείγματα, τόσο πιο στενή θα είναι η καμπύλη $p(D|\theta)$.

Σχήμα: Συναρτήσεις πιθανοφάνειας για τις δύο κλάσεις.

Προκειμένου να ταξινομήσουμε τα χ σε κλάσεις χρησιμοποιούμε την συνάρτηση διάκρισης:

$$g(x) = \log P(x|\hat{\theta}_1) - \log P(x|\hat{\theta}_2) + \log P(\omega_1) - \log P(\omega_2)$$

Η συνάρτηση αυτή προκύπτει από τον γενικό κανόνα του Μπεϋζ *GBR*:

$$\frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$$

με θεωρήσεις:

- $\lambda_{11} = \lambda_{22} = 0$, δηλαδή η ποινή σωστής ταξινόμησης είναι 0.
- $\lambda_{12} = \lambda_{21} = 1$, δηλαδή η ποινή λανθασμένης ταξινόμησης είναι 1.

αν λογαριθμίσουμε και τις δύο πλευρές.

$$g(x)>0\Rightarrow P(\omega_1|x)>P(\omega_2|x)$$
, αρά κατατάσουμε το x στην ω_1 .
 Διαφορετικά $g(x)<0\Rightarrow P(\omega_1|x)< P(\omega_2|x)$, αρά κατατάσουμε το x στην ω_2 .

Παρατηρήσεις

- Οι τιμές της g(x) καθορίζουν την κλάση.
- Θετικές τιμές της g(x) αντιστοιχούν στην κλάση ω_1 .
- Αρνητικές τιμές της g(x)αντιστοιχούν στην κλάση ω_2 .
- Με μία εξαίρεση την τιμή x=-0.8 όπου η g(x) είναι αρνητική, αλλά το δείγμα ανήκει στην κλάση ω_1 .

X	g(x)	Κλάση
2.8	1.689205	ω_1
-0.4	0.125017	ω_1
-0.8	-0.090887	ω_1
2.3	1.626600	ω_1
-0.3	0.178765	ω_1
3.6	1.492680	ω_1
4.1	1.344624	ω_1
-4.5	-1.145734	ω_2
-3.4	-1.401339	ω_2
-3.1	-1.358416	ω_2
-3.0	-1.326927	ω_2
-2.3	-0.961337	ω_2

Σχήμα: g(x) ως προς x. Φαίνονται οι περιοχές απόφασης του αλγορίθμου. Αν η g(x) είναι θετική αποφασίζουμε ω_1 , αλλιώς ω_2 . Όπως προαναφέρθηκε, για x=-0.8 η απόφαση είναι λανθασμένη.

- 1 ΜΕΡΟΣ Α Εκτίμηση με Μέγιστη Πιθανοφάνεια
- 2 ΜΕΡΟΣ Β Μπεϋζιανή Εκτίμηση
- ③ ΜΕΡΟΣ Γ Ίριδα (Δέντρο Απόφασης/ Τυχαίο Δάσος)
- 4 ΜΕΡΟΣ Δ

ΜΕΡΟΣ Β

- 🕕 ΜΕΡΟΣ Α Εκτίμηση με Μέγιστη Πιθανοφάνεια
- 2 ΜΕΡΟΣ Β Μπεϋζιανή Εκτίμηση
- ΜΕΡΟΣ Γ Ίριδα (Δέντρο Απόφασης/ Τυχαίο Δάσος)
- 4 ΜΕΡΟΣ Δ

ΜΕΡΟΣ Γ

- 1 ΜΕΡΟΣ Α Εκτίμηση με Μέγιστη Πιθανοφάνεια
- ΜΕΡΟΣ Β Μπεϋζιανή Εκτίμηση
- ΜΕΡΟΣ Γ Ίριδα (Δέντρο Απόφασης/ Τυχαίο Δάσος)
- 4 ΜΕΡΟΣ Δ

ΜΕΡΟΣ Δ