Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра сетей и устройств телекоммуникаций

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ И ПРОГРАММНОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНЫХ УЗЛОВ ТЕЛЕКОММУНИКАЦИЙ

Методические указания к лабораторным работам В 2-х частях

Минск БГУИР 2010

УДК 004.438:621.39(076.5) ББК 32.973.26-018.1+32.811я73 О-29

Составители: О. Г. Смолякова, Е. Г. Макейчик

О-29 Моделирование функциональных узлов телекоммуникаций /: метод. указ. к лаб. работе по курсу «Объектно-ориентированное программирование в телекоммуникациях» для студ. спец. 1-45 01 03 «Сети телекоммуникаций», 1-45 01 05 «Системы распределения мультимедийной информации» днев. и заоч. форм обуч. / сост. О.Г. Смолякова, Е.Г. Макейчик. – Минск: БГУИР, 2010. – 22 с. ил.

Методические указания состоят из лабораторной работы, в которой изложены условия и методы решения 15 простейших задач на языке JAVA; заданий по вариантам и контрольных вопросов. Каждое задание включает четыре задачи.

УДК 004.438:621.39(076.5) ББК 32.973.26-018.1+32.811я73

- © Смолякова О.Г., Макейчик Е.Г., составление, 2010
- © УО «Белорусский государственный университет информатике и радиоэлектроники», 2010

Лабораторная работа №1

РЕШЕНИЕ ПРОСТЕЙШИХ ЗАДАЧ

Цель работы: изучить синтаксис языка Java на примере решения простейших задач.

Примеры решения задач

Задача 1

Вычислить значение выражения по формуле (все переменные принимают действительные значения):

Задача 2

Вычислить периметр и площадь прямоугольного треугольника по длинам a и b двух катетов.

```
public class Main {
    public Main() {
    }

    public static void main(String[] args) {
        double a,b; // два катета
        double c=0; // гипотенуза
        double P; // периметр
        double S; // площадь
        a=10;
        b=20;
```

```
c=Math.sqrt(a*a+b*b);
P=a+b+c;
S=0.5*a*b;
System.out.println("Периметр = "+P+" площадь = "+S);
}
```

Заданы координаты трех вершин треугольника (x1, y1),(x2, y2),(x3, y3) – найти его периметр и площадь.

Рис. 1. Вычисление периметра и площади треугольника по длинам сторон

```
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;
import static java.lang.Math.abs;
import java.util.Scanner;
public class ex03 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        double x1=0, y1=0, x2=0, y2=0, x3=0, y3=0;
        double a, b, c;
        double P, S;
        double p;
        System.out.print("Введите x1: ");
        if(sc.hasNextDouble())
             x1 = sc.nextDouble();
        System.out.print("Введите y1: ");
        if(sc.hasNextDouble())
             v1 = sc.nextDouble();
        System.out.print("Введите x2: ");
```

```
if(sc.hasNextDouble())
             x2 = sc.nextDouble();
         System.out.print("Введите y2: ");
         if (sc.hasNextDouble())
             v2 = sc.nextDouble();
         System.out.print("Введите х3: ");
         if(sc.hasNextDouble())
             x3 = sc.nextDouble();
         System.out.print("Введите y3: ");
         if(sc.hasNextDouble())
             y3 = sc.nextDouble();
         a = sgrt(pow(abs(abs(x1) -
abs(x3)), 2) + pow(abs(abs(y1) - abs(y3)), 2));
        b=sqrt(pow(abs(abs(x3)-
abs(x2)), 2) + pow(abs(abs(y3) - abs(y2)), 2));
         c=sgrt(pow(abs(abs(x1) -
abs(x2)), 2) + pow(abs(abs(y1) - abs(y2)), 2));
         P=a+b+c;
        p = P/2;
         S = sqrt(p*(p-a)*(p-b)*(p-c));
         System.out.println(a+" "+b+" "+c);
        System.out.println("Перимерт треугольника равен
P="+P+", площадь S="+S);
}
```

Окружность вписана в квадрат заданной площади. Найти площадь квадрата, вписанного в эту окружность. Во сколько раз площадь вписанного квадрата меньше площади заданного?

Рис. 2. Определение площади квадрата

```
public class Kvadrat {
    public static void main(String[] args)
    {
```

```
double Skv; // площадь внешнего квадрата double stonona_kv;
double radius_okr;
double Skv2; // площадь внутреннего кdадрата double x; // во сколько раз площадь вписанно-го квадрата меньше заданного Skv = 25;
stonona_kv = Math.sqrt(Skv); // вычисляем сторону квадрата radius_okr = stonona_kv/2;
Skv2 = 0.5*radius_okr*radius_okr*4;
x = Skv/Skv2;
System.out.println("x="+x);
}
```

Составить линейную программу, печатающую значение true, если указанное высказывание является истинным, и false — в противном случае: сумма двух первых цифр заданного четырехзначного числа равна сумме двух его последних цифр.

```
public class Zad05 {
        public static void main(String[] args) {
        int x = 2332; // заданное четырехзначное число
        int[] mas = new int[4]; //объявляем массив mas на
четыре элемента
        char[] chStr = new char[4];
        String str; // объявление строки
        str = Integer.toString(x); // переводим целое
число в строку
        chStr = str.toCharArray(); // преобразуем строку
в массив символов и наносим их и массив chStr
        for(int i=0; i<chStr.length; i++){</pre>
             mas[i] = Integer.parseInt(chStr[i]+""); //
преобразуем символы в соответствущие числа и запоминаем
их в массиве
        if((mas[0]+mas[1]) == (mas[2]+mas[3]))
            System.out.println("TRUE");
        else
            System.out.println("FALSE");
    }
}
```

Составить линейную программу, печатающую значение true, если указанное высказывание является истинным, и false — в противном случае: в заданном натуральном трехзначном числе N имеется четная цифра.

```
import java.util.Scanner;
public class ex06 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int number=0;
        int digit=0;
        System.out.print("Введите число: ");
        if(sc.hasNextInt())
             number = sc.nextInt();
        while (number != 0)
             digit = number % 10;
             number = number/10;
             if (digit%2 == 0)
                 System.out.println("В числе есть четная
цифра.");
                 return;
             }
        System.out.println("В числе нет четных цифр.");
}
```

Задача 7

Составить линейную программу, печатающую значение true, если указанное высказывание является истинным, и false — в противном случае: среди заданных целых чисел A, B, C, D есть хотя бы два четных.

```
import java.util.Scanner;
public class ex07 {

   public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int A=0,B=0,C=0,D=0;
        int count = 0;
```

```
System.out.print("Введите число A: ");
        if(sc.hasNextInt())
             A = sc.nextInt();
        System.out.print("Введите число В: ");
        if(sc.hasNextInt())
             B = sc.nextInt();
        System.out.print("Введите число С: ");
        if(sc.hasNextInt())
             C = sc.nextInt();
        System.out.print("Введите число D: ");
        if (sc.hasNextInt())
            D = sc.nextInt();
        if (A\%2 == 0) count++;
        if (B%2 == 0) count++;
        if (C%2 == 0) count++;
        if (D%2 == 0) count++;
        if (count >=2)
             System.out.println("В последовательности
есть более двух четных чисел.");
        else
             System.out.println("В последовательности нет
более двух четных чисел.");
}
```

Составить линейную программу, печатающую значение true, если указанное высказывание является истинным, и false — в противном случае: квадрат заданного трехзначного числа равен кубу суммы цифр этого числа.

```
import java.util.Scanner;
public class ex08 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int number=0;
        int sum_digit_number = 0;
        int kv_number;
        int kub_number;

        System.out.print("Введите число: ");
        if(sc.hasNextInt())
            number = sc.nextInt();
        kv_number = number*number;
```

```
while (number%10 != 0)
{
    sum_digit_number += number % 10;
    number = number/10;
}
sum_digit_number += number;
kub_number = (int) Math.pow(sum_digit_number, 3);

if (kub_number == kv_number)
    System.out.println("TRUE");
else
    System.out.println("FALSE");
}
```

Идет n-я секунда суток; определить, сколько полных часов, минут и секунд прошло к этому моменту.

```
import java.util.Scanner;
public class ex01 {
    public static void main(String[] args) {
        int n=0;
        int hour, min, sec;
        Scanner sc = new Scanner(System.in);
        System.out.print("Введите количество секунд: ");
        if(sc.hasNextInt())
             n = sc.nextInt();
        if ((n>86400)||(n<0))
         {
             System.out.println("Неверное значение.");
             return:
         }
        hour = n/3600;
        n = n - hour*3600;
        min = n / 60;
        n = n - min * 60;
        sec = n;
        System.out.println("В "+n+" секундах: "+hour+"
   "+min+" мин. "+sec+" сек.");
    }
}
```

Даны две точки A(x1, y1) и B(x2, y2). Составить алгоритм, определяющий, какая из точек находится ближе к началу координат.

Рис. 3. Определение близости точки

```
import java.util.Scanner;
public class Ex10 {
    public static void main(String[] args)
        Scanner sc = new Scanner(System.in);
        double x1=0, y1=0, x2=0, y2=0;
        double a, b;
        System.out.print("Введите x1: ");
        if(sc.hasNextDouble())
             x1 = sc.nextDouble();
        System.out.print("Введите y1: ");
        if(sc.hasNextDouble())
             y1 = sc.nextDouble();
        System. out. print ("Введите x2: ");
        if(sc.hasNextDouble())
             x2 = sc.nextDouble();
        System. out. print ("Введите y2: ");
        if(sc.hasNextDouble())
             y2 = sc.nextDouble();
        a=Math.sqrt(x1*x1+y1*y1);
        b=Math.sqrt(x2*x2+y2*y2);
```

Заданы размеры A, B прямоугольного отверстия и размеры x, y, z кирпича. Определить, пройдет ли кирпич через отверстие.

```
import java.util.Scanner;
public class Ex11 {
    public static void main(String[] args) {
         Scanner sc = new Scanner(System.in);
         double a=0, b=0, x=0, y=0, z=0;
         System.out.print("Введите a: ");
         if(sc.hasNextDouble())
             a = sc.nextDouble();
         System.out.print("Введите b: ");
         if(sc.hasNextDouble())
             b = sc.nextDouble();
         System.out.print("Введите х: ");
         if(sc.hasNextDouble())
             x = sc.nextDouble();
         System.out.print("Введите у: ");
         if(sc.hasNextDouble())
             y = sc.nextDouble();
         System.out.print("Введите z: ");
         if (sc.hasNextDouble())
             z = sc.nextDouble();
         if ((a>x) && (b>y)) Sytem.out.println("Пройдет.");
         else if ((a>y) && (b>x))
System. out. println ("Пройдет.");
         else if ((a>x) \& \& (b>z))
System. out. println ("Пройдет.");
         else if ((a>z) \& \& (b>x))
System. out. println ("Пройдет.");
```

```
else if ((a>y) && (b>z))

System.out.println("Пройдет.");

else if ((a>z) && (b>y))

System.out.println("Пройдет.");

else System.out.println("Не пройдет.");

}
```

Дано действительное число h. Выяснить, имеет ли уравнение $ax^2 + bx + c = 0$ действительные корни, если:

$$a = \sqrt{\frac{|\sin 8h| + 17}{(1 - \sin 4h \cos(h^2 + 18))^2}}, \quad b = 1 - \sqrt{\frac{3}{3 + |tg \, ah^2 - \sin ah|}},$$

$$c = ah^2 \sin bh + bh^3 \cos ah,$$

Найти действительные корни или сообщить об их отсутствии.

```
import java.util.Scanner;
public class Ex12 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        double h=0, a, b, c, D, x1, x2;
        System.out.print("Введите h: ");
        if(sc.hasNextDouble())
h = sc.nextDouble();
a = Math.sgrt((Math.abs(Math.sin(8*h))+17))/Math.pow(1-
Math.sin(4*h)*Math.cos(h*h+18),2);
b = 1-Math.sgrt(3/(3+Math.abs(Math.tan(a*h*h)-
Math.sin(a*h)));
c = a*h*h*Math.sin(b*h)+b*Math.pow(h,3)*Math.cos(a*h);
        D=b*b-4*a*c;
        if (D<0)
             System.out.println("Действительных корней
нет.");
             return;
        else if (D == 0)
              {
                 x1 = (-b)/(2*a);
```

Вычислить значение функции

$$F(x) = \begin{cases} -x^2 + 3x + 9, & \text{åñëè } x \ge 3; \\ \frac{1}{x^3 - 6}, & \text{åñëè } x < 3. \end{cases}$$

Задача 13

```
import java.util.Scanner;
public class Ex13 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        double x=0, Fx;
        System.out.print("Введите x: ");
        if(sc.hasNextDouble())
            x = sc.nextDouble();
        if (x >= 3)
            Fx = -x*x+3*x+9;
        else
            Fx = 1/(Math.pow(x, 3)-6);
        System.out.println("F(x)="+Fx);
    }
}
```

Задача 14

Написать программу, позволяющую по последней цифре числа определить последнюю цифру его квадрата.

```
import java.util.Scanner;
public class Ex14 {
    public static void main(String[] args) {
```

```
int number=0;
         int posl zifra number;
         int posl zifra kv number;
         System.out.print("Введите число: ");
         if(sc.hasNextInt())
             number = sc.nextInt();
         posl zifra number = number%10;
         switch(posl zifra number)
         {
         case 0:
             posl zifra kv number = 0;
             break;
         case 1:
             posl zifra kv number = 1;
             break;
         case 2:
             posl zifra kv number = 4;
             break;
         case 3:
             posl zifra kv number = 9;
             break;
         case 4:
             posl zifra kv number = 6;
             break;
         case 5:
             posl zifra kv number = 5;
             break;
         case 6:
             posl zifra kv number = 6;
             break;
         case 7:
             posl zifra kv number = 9;
             break;
         case 8:
             posl zifra kv number = 4;
             break;
         case 9:
             posl zifra kv number = 1;
             break;
         default:
             System.out.println("Что-то не то с програм-
мой.");
             return;
```

Scanner sc = new Scanner(System.in);

```
}
System.out.println("Квадрат числа "+number+"
paвняется "+posl_zifra_kv_number);
}
```

Составить программу, которая по заданным году и номеру месяца m определяет количество дней в этом месяце.

```
import java.util.Scanner;
public class Ex15 {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int year=0, month=0, col day=0;
        System.out.print("Введите год: ");
        if(sc.hasNextInt())
             year = sc.nextInt();
        System.out.print("Введите номер месяца: ");
        if(sc.hasNextInt())
            month = sc.nextInt();
        switch (month)
        case 1:
        case 3:
        case 5:
        case 7:
        case 8:
        case 10:
        case 12:
             col day = 31;
            break;
        case 2:
             if (year % 4 == 0) col day = 29;
             else col day = 28;
            break:
        case 4:
        case 6:
        case 9:
        case 11:
             col day = 30;
            break;
        System.out.println("Количество дней равно -
```

ЗАДАНИЯ

Вариант 1

Задача 1.	Написать программу нахождения суммы большего и меньшего					
	из трех чисел.					
Задача 2.	Составить программу для вычисления значений функции $F(x)$ на отрезке $[a, b]$ с шагом h . Результат представить в виде таблицы, первый столбец которой — значения аргумента, второй — соответствующие значения функции					
	$F(x) = \frac{x}{\cos(x)}.$					
Задача 3.	Дано натуральное число N . Составить программу для формирования массива, элементами которого являются цифры числа N .					
Задача 4.	Сформировать квадратную матрицу порядка N по правилу					
	$A[I,J] = \sin\left(\frac{I^2 - J^2}{N}\right)$					
	и подсчитать количество положительных элементов в ней.					

	Daphani 2						
Задача 1.	Написать программу, по длинам сторон распознающую среди всех треугольников ABC прямоугольные. Если таковых нет, то вычислить величину угла C .						
Задача 2.	Составить программу для вычисления значений функции $F(x)$ на отрезке $[a, b]$ с шагом h . Результат представить в виде таблицы, первый столбец которой — значения аргумента, второй — соответствующие значения функции						
	$F(x) = \sin(x) + 0.5\cos(x).$						
Задача 3.	Составить программу, определяющую, в каком из данных двух чисел больше цифр.						
Задача 4.	Магическим квадратом порядка n называется квадратная матрица размера $n \times n$, составленная из чисел 1, 2, 3,, n^2 так, что суммы по каждому столбцу, каждой строке и каждой из двух больших диагоналей равны между собой. Построить такой квадрат. Пример магического квадрата порядка 3: 6 1 8 7 5 3 2 9 4						

	Daphani 5				
Задача 1.	Найти $\max\{\min(a, b), \min(c, d)\}.$				
Задача 2.	Составить программу для вычисления значений функции $F(x)$				
	на отрезке $[a, b]$ с шагом h . Результат представить в виде табли-				
	цы, первый столбец которой – значения аргумента, второй - со-				
	ответствующие значения функции				
	F(x) = tg(2x) - 3.				
Задача 3.	Заменить данное натуральное число на число, которое получает-				
	ся из исходного записью его цифр в обратном порядке (напри-				
	мер, дано число 156, нужно получить 651).				
Задача 4.	Получить квадратную матрицу порядка п				
	$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$				
	$ \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \end{pmatrix} $				
	$ 0 \ 0 \ 2 \ \cdots \ 0 \ 0 $				
	$\begin{bmatrix} \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n-1 \end{bmatrix}$				
	$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & n-1 \end{pmatrix}$				

Вариант 4

	_						
Задача 1.	Даны три числа a , b , c . Определить, какое из них равно d . Если						
	ни одно не равно d , то найти $\max(d-a, d-b, d-c)$.						
Задача 2.	Составить программу для вычисления значений функции $F(x)$						
	на отрезке $[a, b]$ с шагом h . Результат представить в виде табли-						
	цы, первый столбец которой – значения аргумента, второй – со-						
	ответствующие значения функции						
	$F(x) = -\cos(2x).$						
Задача 3.	Даны натуральные числа K и N . Составить программу формиро-						
	вания массива A , элементами которого являются числа, сумма						
	цифр которых равна K и которые не большее N .						
Задача 4.	Получить квадратную матрицу порядка n :						
	$\begin{pmatrix} 1 & 2 & \cdots & n-1 & n \end{pmatrix}$						
	$n+1$ $n+2$ \cdots $2n-1$ $2n$						
	$2n+1$ $2n+2$ \cdots $3n-1$ $3n$.						
	: : ··. ··. :						
	$(n-1)n+1 (n-1)n+2 \cdots n^2+1 n^2$						

	Daphan S
Задача 1.	Даны четыре точки $A1(x1,y1)$, $A2(x2,y2)$, $A3(x3,y3)$, $A4(x4,y4)$.
	Определить, будут ли они вершинами параллелограмма.
Задача 2.	Составить программу для вычисления значений функции $F(x)$
	на отрезке $[a, b]$ с шагом h . Результат представить в виде табли-

	цы, первый столбец которой – значения аргумента, второй – со-						
	ответствующие значения функции						
	$F(x) = 7\sin^2(x) - \frac{1}{2}\cos(x).$						
Задача 3.	Даны три квадратных матрицы A , B , C n -го порядка. Вывести на						
	печать ту из них, норма которой наименьшая. Пояснение. Нор-						
	мой матрицы назовем максимум из абсолютных величин ее						
	элементов.						
Задача 4.	Дан линейный массив $x_1, x_2,, x_{n-1}, x_n$. Получить действитель-						
	ную квадратную матрицу порядка n:						
	$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}.$						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$						
	: : : : :						
	$\left(x_1^{n-1} x_2^{n-1} x_3^{n-1} \cdots x_n^{n-1}\right)$						

Duphun V								
Задача 1.	Даны три точки $A(x1,y1)$, $B(x2,y2)$ и $C(x3,y3)$. Определить, будут							
	ли они расположены на одной прямой. Если нет, то вычислить							
	угол АВС.							
Задача 2.	Составить программу для вычисления значений функции $F(x)$							
	на отрезке $[a, b]$ с шагом h . Результат представить в виде табли-							
	цы, первый столбец которой – значения аргумента, второй – со-							
	ответствующие значения функции							
	$F(x) = \sin^2(x) - \cos(2x).$							
Задача 3.	Два натуральных числа называются «дружественными», если							
	каждое из них равно сумме всех делителей (кроме его самого)							
	другого числа (например, числа 220 и 284). Найти все пары							
	«дружественных чисел», которые не больше данного числа N.							
Задача 4.	Дан линейный массив $x_1, x_2,, x_{n-1}, x_n$. Получить действитель-							
	ную квадратную матрицу порядка <i>n</i> :							
	$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \end{pmatrix}$							
	$\begin{vmatrix} x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \end{vmatrix}$							
	$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ x_1^3 & x_2^3 & x_3^3 & \cdots & x_n^3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & x_3^n & \cdots & x_n^n \end{pmatrix}.$							
	$\begin{pmatrix} x_1^n & x_2^n & x_3^n & \cdots & x_n^n \end{pmatrix}$							

Барнант /							
Задача 1.	Даны действительные числа а, b, с. Удвоить эти числа, если						
	a > b > c, и заменить их абсолютными значениями, если это не						
	так.						
Задача 2.	Составить программу для вычисления значений функции $F(x)$						
	на отрезке $[a, b]$ с шагом h . Результат представить в виде табли-						
	цы, первый столбец которой – значения аргумента, второй – со-						
	ответствующие значения функции						
	$\Gamma(x) = 1 + (x)$						
	$F(x) = \frac{1}{2} ctg\left(\frac{x}{4}\right) + 4.$						
Задача 3.	Два простых числа называются «близнецами», если они отли-						
Зада на э.	чаются друг от друга на 2 (например, 41 и 43). Напечатать все						
	пары «близнецов» из отрезка $[n, 2n]$, где n - заданное натураль-						
	ное число больше 2.						
Задача 4.	Составить программу, которая заполняет квадратную матрицу						
	порядка п натуральными числами $1, 2, 3,, n^2$, записывая их в						
	нее «по спирали».						
	Например, для $n = 5$ получаем следующую матрицу:						
	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 16 & 17 & 18 & 19 & 6 \end{pmatrix} $						
	16 17 18 19 6						
	15 24 25 20 7 .						
	14 23 22 21 8						
	14 23 22 21 8 13 12 11 10 9						

Задача 1.	На оси OX расположены три точки a,b,c . Определить, какая из			
	точек (b или c) расположена ближе к a .			
Задача 2.	Составить программу для вычисления значений функции $F(x)$ на отрезке $[a, b]$ с шагом h . Результат представить в виде таблицы, первый столбец которой — значения аргумента, второй — соответствующие значения функции $F(x) = x^2 \sin^2\left(x\right) + 1.$			
Задача 3.	Натуральное число, в записи которого n цифр, называется числом Армстронга, если сумма его цифр, возведенная в степень n , равна самому числу. Найти все числа Армстронга от 1 до k .			

Задача 4.	Получить матрицу							
		(1	0	0	•••	0	0	1)
		0	1	0	•••	0	1	0
		0	0	1	•••	1	0	0
		:	:	:	٠.	:	:	:
		0	1	0		0	1	0
		$\lfloor 1$	0	0	•••	0	0	1)

	Барнані У
Задача 1.	Даны три положительных числа а, b, с. Проверить, будут ли они
	сторонами треугольника. Если да, то вычислить площадь этого
	треугольника.
Задача 2.	Составить программу для вычисления значений функции $F(x)$ на
	отрезке $[a, b]$ с шагом h . Результат представить в виде таблицы, пер-
	вый столбец которой – значения аргумента, второй – соот-
	ветствующие значения функции
	$F(x) = 2\cos\sqrt{x} + 0.5.$
Задача 3.	Написать программу, которая находит и выводит на печать все че-
	тырехзначные числа вида <i>abcd</i> , для которых выполняются условия
	a) a, b, c, d – разные цифры;
	$\boxed{6) \ \overline{ab} - \overline{cd} = a + b + c + d}.$
Задача 4.	Получить матрицу
	$(1 \ 2 \ 3 \ \cdots \ 8 \ 9 \ 10)$
	0 1 2 7 8 9
	0 0 1 6 7 8
	$\begin{pmatrix} 1 & 2 & 3 & \cdots & 8 & 9 & 10 \\ 0 & 1 & 2 & \cdots & 7 & 8 & 9 \\ 0 & 0 & 1 & \cdots & 6 & 7 & 8 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 2 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}.$
	$(0 \ 0 \ 0 \ \cdots \ 0 \ 0 \ 1)$

Задача 1.	Написать программу решения уравнения $ax^3 + bx = 0$ для произ-
	вольных a, b .
Задача 2.	Составить программу для вычисления значений функции $F(x)$ на
	отрезке $[a, b]$ с шагом h . Результат представить в виде таблицы, пер-
	вый столбец которой – значения аргумента, второй – соот-
	ветствующие значения функции
	$F(x) = \frac{1}{2}\sin\left(\frac{x}{4}\right) + 1.$
Задача 3.	Найти все простые натуральные числа, не превосходящие <i>n</i> , двоич-

	ная запись которых представляет собой палиндром, т. е. читается одинаково слева направо и справа налево.								
Задача 4.	Даны действительные числа $a_1, a_2,, a_n$. Получить квадратную								
	матрицу порядка n :								
		$\left(a_{1}\right)$	a_2	a_3	•••	a_{n-2}	a_{n-1} a_n	a_n	
		a_3	a_4	a_5	•••	a_n	a_{1}	a_2	
		:	÷	:	٠.	:	÷	:	•
		a_{n-1}	a_n	a_{1}	•••	a_{n-4}	a_{n-3}	a_{n-2}	
		$\left(a_{n}\right)$	a_1	a_2	•••	a_{n-3}	a_{n-2}	a_{n-1}	

Контрольные вопросы

- 1. Перечислите основные свойства и преимущества платформы Java.
- 2. Что такое JVM?
- 3. Является ли язык Java компилируемым или интерпретируемым?
- 4. Что такое механизм автоматической сборки мусора (garbage collector)?
- 5. В чем сходства и различия Java и C/C++?
- 6. Почему Java является платформой, а не языком программирования?
- 7. Что означает сообщение deprecated?
- 8. Что такое JDK и JRE? В чем сходство и разница между ними?
- 9. Какой будет результат следующих действий:

$$1/0$$
 $1./0$ $1/0$. $1./0$. '\n'+'\r'

10. Чему будет равно следующее выражение и значения переменных x и y после вычислений?

int
$$x = 0$$
, $y = 0$;
print((++x == 1) || (y++ == 1));

- 11. Являются ли следующие слова ключевыми:
 - a) true
 - b) goto
 - c) null
 - d) const
 - e) false
- 12. Каков будет результат следующего примера:

```
byte b = 3;
int c = b;
c++;
print(++b = = c);
```

- 13. Приведите пример значения целочисленной переменной x, при которой следующие выражения неверны:
 - a) $x \times 30/30 = = x$;
 - b) $x/30 \times 30 = = x$;

Учебное издание

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ И ПРОГРАММНОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНЫХ УЗЛОВ ТЕЛЕКОММУНИКАЦИЙ

Методические указания

Составители: Смолякова Ольга Георгиевна Макейчик Екатерина Геннадьевна

Редактор Т.П. Андрейченко Корректор

 Подписано в печать
 Формат 60х48 1/16
 Бумага офсетная.

 Гарнитура «Таймс».
 Печать ризографическая.
 Усл. печ. л.

 Уч.-изд. л. 1,0.
 Тираж 50 экз.
 Заказ 535.

Издатель и полиграфическое исполнение: Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» ЛИ № 02330/0494371 от 16.03.2009. ЛП № 02330/0494175 от 30.04.2009. 220013, Минск, П. Бровки, 6