$Module\ 2A003: M\'ethodes\ math\'ematiques\ pour\ la$ m'ecanique

Examen du 20 Février 2017

Durée de l'épreuve : 2 heures.

Tout document interdit, travail strictement personnel.

La rigueur et la clarté de la rédaction seront prises en compte dans la note finale.

Exercice 1

On considère l'espace vectoriel $E = \mathbb{R}^3$ et sa base canonique (e_1, e_2, e_3) , avec $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. On définit les vecteurs $u = e_1 + e_2 + 2e_3$, $v = 3e_2 + 2e_3$.

1. Montrer que les vecteurs u, v et e_3 forment une base de E. Donner la matrice de passage, notée P, de la base (e_1, e_2, e_3) à la base (u, v, e_3) .

Soit f l'endomorphisme dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} -2 & -1 & 2\\ -15 & -6 & 11\\ -14 & -6 & 11 \end{array}\right)$$

- 2. Déterminer le noyau et l'image de f.
- 3. Calculer f(u), f(v) et $f(e_3)$ dans la base (e_1, e_2, e_3) .
- 4. Déterminer T la matrice de f dans la base (u, v, e_3) . Quelle relation y a-t-il entre A, T, P?
- 5. Exprimer f(u), f(v) et $f(e_3)$ dans la base (u, v, e_3) .
- 6. Montrer que $(T-I)^n=0, \forall n\geq 3$. En déduire que $(A-I)^n=0, \forall n\geq 3$.
- 7. En utilisant le résultat précédent, exprimer A^n à l'aide du binôme de Newton en fonction de $n,\,I,\,A$ et $A^2.$

Exercice 2

Soit E l'ensemble des matrices carrées de taille 3 à coefficients réels de $M_3(\mathbb{R})$ de la forme :

$$M = \left(\begin{array}{ccc} 0 & a & a \\ b & 0 & a \\ b & b & 0 \end{array}\right), \quad a, b \in \mathbb{R}$$

- 1. E est-il un sous-espace vectoriel de $M_3(\mathbb{R})$?
- 2. Soit $\varphi(\lambda)$ le polynôme caractéristique de M. Calculer $\varphi(\lambda)$.
- 3. On se place dans le cas a = b non nuls. Ecrire l'expression de $\varphi(\lambda)$ dans ce cas particulier.
 - i) Calculer les valeurs propres de M et les espaces des vecteurs propres associés.
 - ii) Montrer que M est diagonalisable et déterminer la matrice diagonale M' correspondante.
- 4. On se place maintenant dans le cas $a \neq b$. Montrer qu'on peut exprimer $\varphi(\lambda)$ sous la forme :

$$\varphi(\lambda) = -\frac{a(\lambda+b)^3 - b(\lambda+a)^3}{a-b} \tag{1}$$

i) En utilisant l'identité remarquable suivante

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

calculer les valeurs propres de M sur \mathbb{C} .

- ii) Sans faire le calcul des vecteurs propres, déterminer si M est diagonalisable sur $\mathbb C$ et donner sa matrice diagonale si elle existe.
- iii) Que peut-on dire quand à l'existence d'une matrice diagonale sur \mathbb{R} ?

Exercice 3

Soit A une matrice carrée d'ordre n. Quelle est la relation entre det(A) et det(-A)? Montrer que toute matrice carrée A antisymétrique ($^tA = -A$) d'ordre n avec n impair est singulière (n'admet pas de matrice inverse).