Relations. Partial orders.

Relations

Relations

Partial orders

Remember that a relation is a subset of the Cartesian Product of two sets.

For example,

$$R = \{(a, b) \in A \times B \mid \text{some property holds}\}\$$

$$R \subseteq A \times B$$

For convenience, we adopt the following infix notation:

when
$$(a, b) \in R$$
, we write aRb

Relations. Infix notation

Relations

Partial orders

It is originated from the relations like =, \leq , \geq , <, and >.

$$(1,2) \in R_{(<)}$$
 we usually write $1 < 2$

$$(3,3) \in R_{(=)}$$
 we usually write $3=3$

Divisibility is a relation on \mathbb{N} too. And we use infix notation:

$$(15,60) \in R_{(divides)}$$
 we write $15 \mid 60$

Relations on the same set

Relations

Partial orders

What if the sets *A* and *B* are the same?

$$R \subseteq A \times A$$

For example, =, \leq , \geq , <, > are relations on \mathbb{N} . That is, these relations are subsets of $\mathbb{N} \times \mathbb{N}$.

Def. A relation on the set *A* is

- *reflexive* if $\forall x \in A : xRx$.
- *symmetric* if $\forall x, y \in A : xRy \rightarrow yRx$.
- antisymmetric if $\forall x, y \in A : (xRy \land yRx) \rightarrow x = y$.
- transitive if $\forall x, y, z \in A : (xRy \land yRz) \rightarrow xRz$.

Relations on the same set

Relations

Partial orders

- *reflexive* if $\forall x \in A : xRx$.
- *symmetric* if $\forall x, y \in A : xRy \rightarrow yRx$.
- antisymmetric if $\forall x, y \in A : (xRy \land yRx) \rightarrow x = y$.
- transitive if $\forall x, y, z \in A : (xRy \land yRz) \rightarrow xRz$.

	reflexive?	symmetric?	antisymmetric?	transitive?
$x \equiv y \pmod{5}$	Yes	Yes	No	Yes
$ \begin{array}{c} x \mid y \\ x \le y \end{array} $	Yes Yes	No No	Yes Yes	Yes Yes

Partial orders

Relations
Partial orders

Def. A relation is a *partial order* if it is reflexive, antisymmetric, and transitive.

An example, the "divides" relation on the natural numbers is a partial order:

- It is reflexive because $x \mid x$.
- It is antisymmetric because $x \mid y$ and $y \mid x$ implies x = y.
- It is transitive because $x \mid y$ and $y \mid z$ implies $x \mid z$.

The \leq relation on the natural numbers is also a partial order. However, the < relation is not a partial order, because it is not reflexive; no number is less than itelf.

Partial orders

Relations

Partial orders

Often a partial order relation is denoted with the symbol

 \preceq

instead of a letter, like R.

This makes sense since the symbol calls to mind \leq , which is one of the most common partial orders.

 $x \leq y$ it reads as "x precedes y".

Relations

Partial orders

Def. If \leq is a partial order on the set A, then the pair (A, \leq) is called a *partially-ordered set* or *poset*.

Def. The elements x and y of a poset (A, \preceq) are called *comparable* if either $x \preceq y$ or $x \preceq y$.

When x and y are elements of A such that neither $x \leq y$ nor $y \leq x$, x and y are called *incomparable*.

Hasse diagram

Relations
Partial orders

This graph is called the *Hasse diagram* for the poset (A, \leq) .

For a and b from A, we draw an edge from a to b if $a \leq b$.

Self-loops and edges implied by transitivity are omitted.

Hasse diagram

Relations

Partial orders

Consider a poset $(\mathcal{P}(A), \subseteq)$ for $A = \{a, b, c\}$.

Its Hasse diagram:

Minimal and maximal elements

Relations

Partial orders

In a poset (A, \preceq) , an element $x \in A$ is *minimal* if there is no other element $y \in A$ such that $y \preceq x$.

Similarly, an element $x \in A$ is *maximal* if there is no other element $y \in A$ such that $x \leq y$.

There are four minimal elements.

Relations

Partial orders

Theorem. A poset (A, \preceq) has no directed cycles other than self-loops, that is, there is no sequence of $n \ge 2$ distinct elements $a_i \in A$ such that

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq \ldots \leq a_{n-1} \leq a_n \leq a_1$$

Relations

Partial orders

Theorem. A poset (A, \preceq) has no directed cycles other than self-loops, that is, there is no sequence of $n \ge 2$ distinct elements $a_i \in A$ such that

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq \ldots \leq a_{n-1} \leq a_n \leq a_1$$

Proof. Suppose that for some $n \ge 2$ such sequence $a_1 \dots a_n$ exists.

Recall that the partial order is a transitive, antisymmetric, and refelxive relation.

Relations

Partial orders

Theorem. A poset (A, \preceq) has no directed cycles other than self-loops, that is, there is no sequence of $n \ge 2$ distinct elements $a_i \in A$ such that

$$a_1 \leq a_2 \leq a_3 \leq a_4 \leq \ldots \leq a_{n-1} \leq a_n \leq a_1$$

Proof. Suppose that for some $n \ge 2$ such sequence $a_1 \dots a_n$ exists.

Recall that the partial order is a transitive, antisymmetric, and refelxive relation.

Since it's transitive: $a_1 \leq a_2$ and $a_2 \leq a_3$, therefore $a_1 \leq a_3$.

Similarly, we prove that $a_1 \leq a_4$, $a_1 \leq a_5$, ..., $a_1 \leq a_n$.

Thus $a_1 \leq a_n$ and $a_n \leq a_1$.

But \leq is antisymmetric, and therefore $a_1 = a_n$. This contradicts the supposition that $a_1, \ldots a_n$ are $n \geq 2$ distinct elements! Thus there is no such directed cycle.

Total order

Relations
Partial orders

Def. A *total order* is a partial order in which every pair of elements is comparable.

 (A, \preceq) is a total order if for every $x, y \in A$, either $x \preceq y$ or $y \preceq x$.

The \leq relation on natural numbers is a total order. However, the "divides" relation on the same set \mathbb{N} is not.

Question: Given a parially ordered set (A, \preceq) , can we make a total order \preceq_T that is "compatible" with the given partial order \preceq ? (Compatible in the sense that the total order never violates the given partial order)

Topological sort

Relations

Partial orders

Def. A *topological sort* of a poset (A, \preceq) is a total order \preceq_T s.t.

$$x \leq y$$
 implies $x \leq_T y$.

Theorem. Every finite poset has a topological sort.

Lemma. Every finite poset has a minimal element.