

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Duration: 3 Hrs

Semester: IV

Branch: IT/COMP

End Semester Examination

July 2019

Max. Marks: 60

Class: S.E.

Course Code: IT41 / CE41

Name of the Course: Design And Analysis of Algorithm

Instructions:

(1) All Questions are Compulsory.

(2) Draw neat diagrams.

(3) Assume suitable data if necessary.

No.	Question				Max.	CO	
Q. 1 a)	i. For each function $f(n)$ along the left side of the table, and for each function $g(n)$ across the top, write O , Ω , or Θ in the appropriate space, depending on whether $f(n) = O(g(n))$, $f(n) = \Omega(g(n))$, or $f(n) = \Theta(g(n))$. If more than one such relation holds between $f(n)$ and $g(n)$, write only the strongest one. The first row is a demo solution for $f(n) = n^2$.					CO1	
	g(n)						
			n	n log n	n ²		
	(C)	n ²	Ω	Ω	θ		
	f(n)	n d		The second section	elected dress sales		
		log n	SIA PROPERTY	La La La La La Constituti	es comuserous		
	non-overlann	ing sub prob	lem can be solv	ved by combining	solutions of	01	
	i. Use the sub	oing sub prob	hod to solve th	s callede given recurrence		01	CO1
2.1.b)	i. Use the sub	ostitution met $T(n) = 2T(n)$	hod to solve the 1/2) + n	e given recurrenc		02	CO1
Q.1.b)	i. Use the sub	ostitution met $T(n)=2T(n)$ given recurrent $(n)=4T(n/2)$	hod to solve the 1/2) + n nces using mass 2) + n	e given recurrence			CO1

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous College Affiliated to University of Mumbai)

Q. 2 a)	i. Write a program in C for finding k th smallest element from an array using divide and conquer approach. Show the output of your program for the given set of inputs to find 5 th smallest element: 22 13 -5 -8 15 60 17 31 47	04	CO2
	ii. Analyze it's time complexity by stating its recurrence relation.	02	
Q2. b)	 i. State the steps to be followed to develop a dynamic programming solution for 0/1 knapsack problem ii. Apply the Dynamic Programming approach to find Optimal solution for following 0/1 knapsack problem. Capacity of knapsack is 8. 		CO3
	Item i Value v _i Weight w _i		
	1 15 1 2 10 5 3 9 3 4 5 4		
2.3a)	i. State and apply the steps to be followed to develop a dynamic programming solution to the Longest common Subsequence ii. Apply the Dynamic Programming approach to find LCS for following two strings. X = ABCAB and Y = AABACA. Explain branch and bound strategy in general and how it can be used to	03 03	
	and the training with example	06	CO4
Q.3 b)	Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm. Assume starting node is 'a'	06	CO3
	$\begin{bmatrix} b & 7 & \\ 8 & 11 & \\ 4 & d & \\ 5 & 6 & 9 & \\ 12 & \end{bmatrix}$		

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous College Affiliated to University of Mumbai)

	OR		
	i. Write an algorithm for Single source shortest path.	03	
	ii. Apply Single source shortest path algorithm to find shortest path from source node 's'	03	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Q.4 a)	i. Construct the string matching automaton for the given pattern and show the sequences of states it enters in for the given text and also show occurrences of pattern in the text	03	CO5
	Pattern: abcabca Text: aaababcabca abaab		
	ii. Compute KMP prefix function for the given pattern and check if it is present in given text.	03	
	Pattern = abcabdababababababababababababababababab		
Q.4 b)	i. Explain the Back tracking strategy and explain the N queen problem and its algorithm and solve it for 4 queens. Derive the condition for checking if placing the queen is safe or not?	06	CO4
	OR .		
	 i. Write a backtracking algorithm for sum of subsets problem. ii. Apply the backtracking algorithm for solving sum of subset 	02	
	problem. Let n=6, M=13 and W(15)=(1,2,3,5,8,13). Find all possible subsets of W that Sum to M.	02	
	iii. Draw the portion of state space tree for fixed tuple size solution.	02	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Q.5a)	Formulate a linear programming model and identify the objective function and constraints and also formulate it into it's standard form:	04	CO6
	A woodworker builds and sells band-saw boxes. He manufactures two types of boxes using a combination of three types of wood, maple, walnut and cherry. To construct the Type I box, the carpenter requires 2 board foot (bf) (The board foot is a specialized unit of measure for the volume of lumber. It is the volume of a one-foot length of a board one foot wide and one inch thick) maple and 1 bf walnut. To construct the Type II box, he requires 3 bf of cherry and 1 bf of walnut. Given that he has 10 bf of maple, and Type II box for \$160, how many of each box type I of box for \$120 maximize his revenue? Assume that the woodworker can build the boxes in any size, therefore fractional solutions are acceptable		
Q.5. b)	Solve the following problem using SIMPLEX maximize: $P = 2x + 3y + 4z$	06	C06
	subject to:		
	$3x + 2y + z \le 10$		
	$2x + 5y + 3z \le 15$		
	$ x, y \ge 0 $		