I. EXPERIMENT NO.: 05

II. TITLE:

Obtaining Bode plot and Nyquist plot of different types of systems using MATLAB, and determination of their frequency domain specifications with/ without MATLAB.

III. OBJECTIVE:

To learn the process for finding the control system specifications for a particular system, from its Bode plot and Nyquist plot using MATLAB control toolbox.

IV. Work to be done in MATLAB environment:

1. Draw the Bode plot for the following system, and complete the given table.

PROCEDURE:

- 1. Open the MATLAB command window.
- **2.** Define the transfer function as "sys = tf(num,den)".
- **3.** Type the command "bode(sys)"
- **4.** Bode plot pops up.
- 5. Right click on the graph, select 'All Characteristics' and then select desired option.
- 2. Draw the Nyquist plot for the following system, and complete the given table.

PROCEDURE:

- 1. Open the MATLAB command window.
- **2.** Define the transfer function as "sys = tf(num,den)".
- **3.** Type the command "nuquist(sys)"
- **4.** Nyquist plot pops up.
- 5. Right click on the graph, select 'All Characteristics' and then select desired option.

I. The characteristic equation is $1 + \frac{K}{(s+1)(s+3)} = 0$. Determine the range of K for which the system will operate in stable zone. Then for stable zone, unstable zone and marginally stable case draw the Bode plot using the MATLAB control system toolbox.

Gain K	Gain crossover frequency (radian/s)	Phase margin (degree)	Phase crossover frequency (radian/s)	Gain margin (dB)	Comment on stability
					Stable
					Unstable
					Marginally stable

II. The characteristic equation is $1 + \frac{K(s+1)(s+2)}{s(s+3)(s+4)} = 0$. Determine the range of K for which the system will operate in stable zone. Then for stable zone, unstable zone and marginally stable case draw the Bode plot using the MATLAB control system toolbox.

Gain K	Gain crossover frequency (radian/s)	Phase margin (degree)	Phase crossover frequency (radian/s)	Gain margin (dB)	Comment on stability
		*			Stable
		~~			Unstable
					Marginally stable

III. The characteristic equation is $1 + \frac{K}{\left(s^2 + 6s + 3\right)} = 0$. Determine the range of K for which

the system will operate in stable zone. Then for stable zone, unstable zone and marginally stable case draw the Bode plot using the MATLAB control system toolbox.

Gain K	Gain crossover frequency (radian/s)	Phase margin (degree)	Phase crossover frequency (radian/s)	Gain margin (dB)	Comment on stability
					Stable
					Unstable
					Marginally stable

IV. The characteristic equation is
$$1 + \frac{K}{s(s+4)(s^2+4s+12)} = 0$$
. Determine the range of K

for which the system will operate in stable zone. Then for stable zone, unstable zone and marginally stable case draw the Bode plot using the MATLAB control system toolbox.

Gain K	Gain crossover frequency (radian/s)	Phase margin (degree)	Phase crossover frequency (radian/s)	Gain margin (dB)	Comment on stability
					Stable
					Unstable
					Marginally stable

V. The characteristic equation is
$$1 + \frac{K}{s(s^2 + 2s + 2)} = 0$$
. Determine the range of K for

which the system will operate in stable zone. Then for stable zone, unstable zone and marginally stable case draw the Bode plot using the MATLAB control system toolbox.

Gain K	Gain crossover frequency (radian/s)	Phase margin (degree)	Phase crossover frequency (radian/s)	Gain margin (dB)	Comment on stability
		X			Stable
					Unstable
					Marginally stable

VI. The characteristic equation is
$$1 + \frac{K}{s(s+3)(s^2+2s+2)} = 0$$
. Determine the range of K for

which the system will operate in stable zone. Then for stable zone, unstable zone and marginally stable case draw the Bode plot using the MATLAB control system toolbox.

Gain K	Gain crossover frequency (radian/s)	Phase margin (degree)	Phase crossover frequency (radian/s)	Gain margin (dB)	Comment on stability
					Stable
					Unstable
					Marginally stable

REFERENCES:

- 1. K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education.
- 2. R.C. Dorf & R.H. Bishop, "Modern Control System", 11th Edition, Pearson Education.
- 3. B.C. Kuo & F. Golnaraghi, "Automatic Control Systems", 8th Edition, PHI.