

SRM Institute of Science and Technology College of Engineering and Technology

Batch 1 SET A

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024 (EVEN)

Test: CLAT- 1 Date: 17.02.2024

Course Code & Title: 21ECC202T & Analog and Linear Electronic Circuits Duration: 4 PM-4:50 PM

Year & Sem: II & IV Max. Marks: 25

Course Articulation Matrix:

Course Articulation Matrix		Program Outcomes (POs)														
		Graduate Attributes										PSOs				
COs	At the end of this course, learners will be able to:	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1:	Apply the small-signal equivalent circuit in the analysis of single and multistage transistor amplifier circuits	2	2	3		-	-	-	-	-	-	-	-	-	-	3
CO-2:	Infer the DC and AC characteristics of the operational amplifier	2	2	3		-	-	-	-	-	-	1	-	-	-	3
CO-3:	Classify and identify the suitable feedback topologies and oscillators	2	2	3		-	1	-	ī	-	-	1	1	-	1	3
CO-4:	Elucidate and design linear and non-linear applications of op-amp	2	2	3		-	-	-	-	-	-	-	-	-	-	3
CO-5:	Illustrate the function of application-specific ICs	2	2	3		-	-	-	-	-	-	-	-	-	-	3

Part – A (5x1 = 5 Marks) Answer all the questions							
Q. No	Question	Marks	BL	CO	PO		
1.	c) Linear	1	1	1	1		
2.	d) increase in overall gain and reduction in overall bandwidth	1	1	1	1		
3.	c) MOSFET	1	1	1	1		
4.	b) All Capacitor	1	1	1	1		
5.	a) Darlington pair	1	1	1	1		
Part – B (2 x 4 = 8 Marks) Instructions: Answer any 2 Questions							

	*Vsing Millers Theorem, equivalent Capacitance is Ceq = (1+ Av) C = (1+ Av) Cqd (2 marks) When the MOSFET is biased in the saturation region, as in an amplifier circuit, the major contribution to the total gate-to-drain capacitance Cgd is the overlap capacitance. This overlap capacitance is multiplied because of the Miller effect and may become a significant factor in the bandwidth of an amplifier. (2 Marks)				
9.	$Part - C (1 \times 12 = 12 Marks)$	12	3	1	3
7.	(2 Marks) Ac analysis The Ac equivalent that of the couscode amps. can be disunated by the stage-8 (c8) (2 Marks) The Resistance, Rin Rin1 = R2 R3 Rib1 where Rib1 = 711 Rin2 ~ 91e		2	1	

(1 Marks)		
output Resistance, Rout		
Routi = Rinz		
Routa = RellRL		
(1 Marks)		
Voltage gain, Av Avi = -gm x eff. Theris. @ Collector of Stage-1 = -gm 7e ~ 1 Av2 = gm x eff. Theris. @ Collector of Stage-2 = gm (Rc RL) The overall Voltage gain of the amps. is given by Av = Avi x Av2 = gm (Rc RL)		
(2 Marks)		
Current Gain, Ai Ai = Av x Rin = gm (ReHRL) x (R2 R3 Rib1) Rout (ReHRL)		
= gm (R2 R3 Rib1)		
(2 Marks)		
$A_v=g_m(R_c R_L) = 20 \text{ mA/V *(} 1.5 \text{ k}\Omega \mid\mid 10 \text{ k}\Omega \text{)} = 26 \text{ (2 Marks)}$		

Signature of Course Teacher

Approved by the Course Coordinator

Approved by the Academic Advisor