Here is a list of problems selected from the textbook to help you better prepare for the midterm exam.

HW1:

- 2.2. Question 16
 - **16.** Let *A* and *B* be sets. Show that
 - a) $(A \cap B) \subseteq A$.
- **b**) $A \subseteq (A \cup B)$.
- c) $A B \subseteq A$.
- **d**) $A \cap (B A) = \emptyset$.
- e) $A \cup (B A) = A \cup B$.
- 2.2. Question 41
- 2.2. Question 42
 - **41.** Show that $A \oplus B = (A \cup B) (A \cap B)$.
 - **42.** Show that $A \oplus B = (A B) \cup (B A)$.
- 2.2. Question 56
- **56.** Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i,
 - **a**) $A_i = \{i, i+1, i+2, \dots\}.$
 - **b**) $A_i = \{0, i\}.$
 - c) $A_i = (0, i)$, that is, the set of real numbers x with 0 < x < i.
 - **d)** $A_i = (i, \infty)$, that is, the set of real numbers x with x > i.
- 2.3. Question 15
- **15.** Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if
 - **a**) f(m, n) = m + n.
 - **b)** $f(m, n) = m^2 + n^2$.
 - **c**) f(m, n) = m.
 - **d**) f(m, n) = |n|.
 - **e**) f(m, n) = m n.

2.3. Question 17

- 7. Find the domain and range of these functions.
 - **a)** the function that assigns to each pair of positive integers the maximum of these two integers
 - **b**) the function that assigns to each positive integer the number of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that do not appear as decimal digits of the integer
 - c) the function that assigns to a bit string the number of times the block 11 appears
 - **d**) the function that assigns to a bit string the numerical position of the first 1 in the string and that assigns the value 0 to a bit string consisting of all 0s

HW2:

- 6.1.17
- 6.1.22
- 6.1.30
- 6.1.41 (this is fun)
- 6.1.53
- 6.2.3 Example11
- 6.2.23

HW3:

63 813

A group contains *n* men and *n* women. How many ways are there to arrange these people in a row if the men and women alternate?

63 024

How many ways are there for 10 women and six men to stand in a line so that no two men stand next to each other? [Hint: First position the women and then consider possible positions for the men.]

64 Q22

22. How many permutations of the letters *ABCDEFGH* contain

- a) the string ED?
- **b**) the string *CDE*?
- c) the strings BA and FGH?
- d) the strings AB, DE, and GH?
- e) the strings CAB and BED?
- f) the strings BCA and ABF?

6,4 915

Give a formula for the coefficient of x^k in the expansion of $(x^2 - 1/x)^{100}$, where k is an integer.

6.4 Q22

Show that if n and k are integers with $1 \le k \le n$, then $\binom{n}{k} \le n^k/2^{k-1}$.

6.4 029

Let n be a positive integer. Show that

$$\binom{2n}{n+1} + \binom{2n}{n} = \binom{2n+2}{n+1}/2.$$

HW4:

Section 3.2 Question 5

5. Show that $(x^2 + 1)/(x + 1)$ is O(x).

Section 3.2 Question 9

9. Show that $x^2 + 4x + 17$ is $O(x^3)$ but that x^3 is not $O(x^2 + 4x + 17)$.

Section 3.2 Question 14

14. Determine whether x^3 is O(g(x)) for each of these functions g(x).

a)
$$g(x) = x^2$$

b)
$$g(x) = x^3$$

a)
$$g(x) = x$$

c) $g(x) = x^2 + x^3$

d)
$$g(x) = x^2 + x^4$$

e)
$$g(x) = 3^x$$

f)
$$g(x) = x^3/2$$

Section 3.2 Question 31

31. Show that f(x) is $\Theta(g(x))$ if and only if f(x) is O(g(x)) and g(x) is O(f(x)).

HW5:

Section 1.7 Question 16

16. Prove that if x, y, and z are integers and x + y + z is odd, then at least one of x, y, and z is odd.

(Prove by contradiction)

Section 1.8 Question 6

6. Use a proof by cases to show that min(a, min(b, c)) = min(min(a, b), c) whenever a, b, and c are real numbers.

19. Suppose that a and b are odd integers with $a \neq b$. Show there is a unique integer c such that |a - c| = |b - c|.

Section 5.1 Question 12

12. Prove that

$$\sum_{j=0}^{n} \left(-\frac{1}{2} \right)^{j} = \frac{2^{n+1} + (-1)^{n}}{3 \cdot 2^{n}}$$

whenever n is a nonnegative integer.

Section 5.1 Question 19

19. Let P(n) be the statement that

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n},$$

where n is an integer greater than 1.

- a) What is the statement P(2)?
- **b)** Show that P(2) is true, completing the basis step of a proof by mathematical induction that P(n) is true for all integers n greater than 1.
- c) What is the inductive hypothesis of a proof by mathematical induction that P(n) is true for all integers n greater than 1?
- **d)** What do you need to prove in the inductive step of a proof by mathematical induction that P(n) is true for all integers n greater than 1?
- e) Complete the inductive step of a proof by mathematical induction that P(n) is true for all integers n greater than 1.
- f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.

37. Prove that if n is a positive integer, then 133 divides $11^{n+1} + 12^{2n-1}$.