

Constrained $\mathcal{H}_2/\mathcal{H}_{\infty}$ Control Design of Dynamic Virtual Power Plants via System Level Synthesis and Simple Pole Approximation

Zhong Fang (z4fang@uwaterloo.ca), Michael W. Fisher

Renewable Energy Transitions Require New Design Techniques

Converter-interfaced renewable generation is replacing conventional fossil fuel-fired synchronous machines

Sunlight Intensity

Wind Speed

Renewable Energy Transitions Require New Design Techniques

Converter-interfaced renewable generation is replacing conventional fossil fuel-fired synchronous machines

Sunlight Intensity

Wind Speed

- traditional primary frequency control need to be provided by power converters
- provide fast frequency control on similar time scales to voltage control but without cross-coupling between them

Renewable Energy Transitions Require New Design Techniques

Converter-interfaced renewable generation is replacing conventional fossil fuel-fired synchronous machines

Sunlight Intensity

- traditional primary frequency control need to be provided by power converters
- provide fast frequency control on similar time scales to voltage control but without cross-coupling between them

Wind Speed

- o operational limitations of individual devices
 - state, input, and output constraints
 - steady state gain constraint
- nonconvexity

Dynamic Virtual Power Plant

DVPP aggregates a collection of DERs to provide

- o specified as desired dynamic behavior/responses
- fast frequency and voltage control beyond mere set point tracking by (static) virtual power plant¹

Reliability

- DERs complement each other in terms of energy/power availability, response times, and weather dependency
- o none of the DERs itself is able to do so

¹B. Marinescu. "POSYTYF concept and objectives." 2020. [Online]. Available: https://posytyf-h2020.eu/project-overview/project-structure

 $\circ \ \ \text{broadcast input signal} \ \alpha = \begin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$

- $\circ \ \ \text{broadcast input signal} \ \alpha = \begin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$
- o aggregate power output

$$\underbrace{\begin{bmatrix} \Delta p_{\mathsf{agg}} \\ \Delta q_{\mathsf{agg}} \end{bmatrix}}_{y_{\mathsf{agg}}} = \sum_{i} \underbrace{\begin{bmatrix} \Delta p_{i} \\ \Delta q_{i} \end{bmatrix}}_{y_{i}}$$

- $\circ \ \ \text{broadcast input signal} \ \alpha = \begin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$
- o aggregate power output

$$\underbrace{\begin{bmatrix} \Delta p_{\mathsf{agg}} \\ \Delta q_{\mathsf{agg}} \end{bmatrix}}_{y_{\mathsf{agg}}} = \sum_{i} \underbrace{\begin{bmatrix} \Delta p_{i} \\ \Delta q_{i} \end{bmatrix}}_{y_{i}}$$

- DER i closed-loop behavior $T_{\alpha \to y_i}(z)$
- aggregate DVPP behavior

$$y_{\mathsf{agg}} = \sum_i T_{lpha
ightarrow y_i}(z) lpha$$

- \circ broadcast input signal $lpha = egin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$
- o aggregate power output

$$\underbrace{\begin{bmatrix} \Delta p_{\mathsf{agg}} \\ \Delta q_{\mathsf{agg}} \end{bmatrix}}_{y_{\mathsf{agg}}} = \sum_{i} \underbrace{\begin{bmatrix} \Delta p_{i} \\ \Delta q_{i} \end{bmatrix}}_{y_{i}}$$

- DER i closed-loop behavior $T_{\alpha \to y_i}(z)$
- aggregate DVPP behavior

$$y_{\mathsf{agg}} = \sum_{i} T_{\alpha \to y_i}(z) \alpha$$

o desired DVPP behavior

$$\underbrace{\begin{bmatrix} \Delta p_{\text{des}} \\ \Delta q_{\text{des}} \end{bmatrix}}_{y_{\text{des}}} = \underbrace{\begin{bmatrix} \frac{-d_1 h}{\tau_p z - \tau_p + h} & 0 \\ 0 & \frac{-d_2 h}{\tau_q z - \tau_q + h} \end{bmatrix}}_{T_{\text{des}}(z)} \alpha$$

- $\circ \ \ \text{broadcast input signal} \ \alpha = \begin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$
- o aggregate power output

$$\underbrace{\begin{bmatrix} \Delta p_{\text{agg}} \\ \Delta q_{\text{agg}} \end{bmatrix}}_{y_{\text{agg}}} = \sum_{i} \underbrace{\begin{bmatrix} \Delta p_{i} \\ \Delta q_{i} \end{bmatrix}}_{y_{i}}$$

- o DER i closed-loop behavior $T_{\alpha \to y_i}(z)$
- aggregate DVPP behavior

$$y_{\mathsf{agg}} = \sum_{i} T_{\alpha \to y_i}(z) \alpha$$

desired DVPP behavior

$$\underbrace{\begin{bmatrix} \Delta p_{\rm des} \\ \Delta q_{\rm des} \end{bmatrix}}_{y_{\rm des}} = \underbrace{\begin{bmatrix} \frac{-d_1 h}{\tau_p z - \tau_p + h} & 0 \\ 0 & \frac{-d_2 h}{\tau_q z - \tau_q + h} \end{bmatrix}}_{T_{\rm des}(z)} \alpha$$

aggregation condition: $\sum_i T_{\alpha \to y_i}(z) \approx T_{\rm des}(z)$

Goal: design controllers $K_i(z)$ such that aggregation condition and local DER limits are satisfied

- $\circ \ \ \text{broadcast input signal} \ \alpha = \begin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$
- o aggregate power output

$$\underbrace{\begin{bmatrix} \Delta p_{\text{agg}} \\ \Delta q_{\text{agg}} \end{bmatrix}}_{y_{\text{agg}}} = \sum_{i} \underbrace{\begin{bmatrix} \Delta p_{i} \\ \Delta q_{i} \end{bmatrix}}_{y_{i}}$$

- o DER i closed-loop behavior $T_{\alpha o y_i}(z)$
- o aggregate DVPP behavior

$$y_{\mathsf{agg}} = \sum_{i} T_{\alpha \to y_i}(z) \alpha$$

desired DVPP behavior

$$\underbrace{\begin{bmatrix} \Delta p_{\text{des}} \\ \Delta q_{\text{des}} \end{bmatrix}}_{y_{\text{des}}} = \underbrace{\begin{bmatrix} \frac{-d_1 h}{\tau_p z - \tau_p + h} & 0 \\ 0 & \frac{-d_2 h}{\tau_q z - \tau_q + h} \end{bmatrix}}_{T_{\text{des}}(z)} \alpha$$

aggregation condition: $\sum_i T_{\alpha o y_i}(z) pprox T_{\mathrm{des}}(z)$

Goal: design controllers $K_i(z)$ such that aggregation condition and local DER limits are satisfied

- $\circ \ \ \text{broadcast input signal} \ \alpha = \begin{bmatrix} \Delta f \\ \Delta v \end{bmatrix}$
- o aggregate power output

$$\underbrace{\begin{bmatrix} \Delta p_{\text{agg}} \\ \Delta q_{\text{agg}} \end{bmatrix}}_{y_{\text{agg}}} = \sum_{i} \underbrace{\begin{bmatrix} \Delta p_{i} \\ \Delta q_{i} \end{bmatrix}}_{y_{i}}$$

- o DER i closed-loop behavior $T_{\alpha \to y_i}(z)$
- o aggregate DVPP behavior

$$y_{\mathsf{agg}} = \sum_{i} T_{\alpha \to y_i}(z) \alpha$$

o desired DVPP behavior

$$\underbrace{\begin{bmatrix} \Delta p_{\text{des}} \\ \Delta q_{\text{des}} \end{bmatrix}}_{y_{\text{des}}} = \underbrace{\begin{bmatrix} \frac{-d_1 h}{\tau_p z - \tau_p + h} & 0 \\ 0 & \frac{-d_2 h}{\tau_q z - \tau_q + h} \end{bmatrix}}_{T_{\text{des}}(z)} \alpha \quad \text{subject}$$

 $\alpha \xrightarrow{T_{\alpha \to y_i}} P_i : \begin{cases} x_i^{k+1} = A_i x_i^k + B_i u_i^k + \hat{B}_i \alpha^k \\ y_i^k = C_i x_i^k \end{cases} \xrightarrow{u_i} Controller K_i(z) \xrightarrow{x_i} x_i$

subject to $\hat{B}_i T_{\alpha \to x_i}(z), \hat{B}_i T_{\alpha \to u_i}(z)$ are real, rational, strictly proper and stable state x_i , control input u_i , output y_i are limited steady state of $y_i^\infty = \lim_{z \to 1} T_{\alpha \to y_i}(z)$

Goal: design controllers $K_i(z)$ such that aggregation condition and local DER limits are satisfied

aggregation condition: $\sum_i T_{\alpha \to y_i}(z) \approx T_{\rm des}(z)$

²D. Youla, H. Jabr, and J. Bongiorno, "Modern wiener-hopf design of optimal controllers–part ii: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319–338, 1976.

³J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, "System level synthesis," Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

⁴L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, "An input-output parametrization of stabilizing controllers: Amidst youla and system level synthesis," IEEE Control Systems Letters, vol. 3, no. 4, pp. 1014–1019, 2019.

²D. Youla, H. Jabr, and J. Bongiorno, "Modern wiener-hopf design of optimal controllers–part ii: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319–338, 1976.

³ J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, "System level synthesis," Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

⁴L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, "An input-output parametrization of stabilizing controllers: Amidst youla and system level synthesis," IEEE Control Systems Letters, vol. 3, no. 4, pp. 1014–1019, 2019.

²D. Youla, H. Jabr, and J. Bongiorno, "Modern wiener-hopf design of optimal controllers–part ii: The multivariable case," IEEE Transactions on Automatic Control, vol. 21, no. 3, pp. 319–338, 1976.

³J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, "System level synthesis," Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

⁴L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, "An input-output parametrization of stabilizing controllers: Amidst youla and system level synthesis," IEEE Control Systems Letters, vol. 3, no. 4, pp. 1014–1019, 2019.

o reparameterized variables

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

$$\Phi_{u,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to u_i}(z)$$

o compute objective transfer functions as

$$T_{\alpha \to y_i} = C_i \Phi_{x,i} \hat{B}_i$$
$$T_{\alpha \to y_i} = \Phi_{y,i} \hat{B}_i$$

o $\frac{1}{z}\mathcal{RH}_{\infty}$: the infinite dimensional space of real, rational, strictly proper, stable transfer functions

o reparameterized variables

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

$$\Phi_{u,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to u_i}(z)$$

o compute objective transfer functions as

$$T_{\alpha \to y_i} = C_i \Phi_{x,i} \hat{B}_i$$
$$T_{\alpha \to y_i} = \Phi_{y,i} \hat{B}_i$$

o $\frac{1}{z}\mathcal{RH}_{\infty}$: the infinite dimensional space of real, rational, strictly proper, stable transfer functions

$$\begin{bmatrix} \underset{\{\Phi_{x,i},\Phi_{u,i}\}}{\text{minimize}} & \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} \sum_{i} C_{i}\Phi_{x,i}\hat{B}_{i} - T_{\text{des}} \end{bmatrix} \right\|_{\mathcal{H}_{2}/\mathcal{H}_{\infty}} \\ \text{subject to} & \Phi_{x,i}(z), \Phi_{u,i}(z) \in \frac{1}{z}\mathcal{R}\mathcal{H}_{\infty} \\ \\ [\text{SLS}] & (zI-A_{i})\Phi_{x,i}(z) - B_{i}\Phi_{u,i}(z) = I \end{bmatrix}$$

o reparameterized variables

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

o compute objective transfer functions as

$$T_{\alpha \to y_i} = C_i \Phi_{x,i} \hat{B}_i$$
$$T_{\alpha \to u_i} = \Phi_{u,i} \hat{B}_i$$

- o $\frac{1}{z}\mathcal{RH}_{\infty}$: the infinite dimensional space of real, rational, strictly proper, stable transfer functions
- $\circ \ \mathcal{J}[ullet]$: impulse response
- o $m_{x,i}, \ m_{u,i}, \ m_{y,i}$: DER i state, input, output bounds

$$\begin{split} & \underset{\{\Phi_{x,i},\Phi_{u,i}\}}{\text{minimize}} & \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} \sum_{i} C_{i}\Phi_{x,i}\hat{B}_{i} - T_{\text{des}} \end{bmatrix} \right\|_{\mathcal{H}_{2}/\mathcal{H}_{\infty}} \\ & \text{subject to} & \Phi_{x,i}(z), \Phi_{u,i}(z) \in \frac{1}{z}\mathcal{R}\mathcal{H}_{\infty} \\ & [\text{SLS}] & (zI - A_{i})\Phi_{x,i}(z) - B_{i}\Phi_{u,i}(z) = I \\ & [\text{state}] & x_{i}^{k} = \sum_{l=0}^{k} \mathcal{J}^{k-l} \left[\Phi_{x,i} \right] \hat{B}_{i}\alpha^{l} \leq m_{x,i} \\ & [\text{input}] & u_{i}^{k} = \sum_{l=0}^{k} \mathcal{J}^{k-l} \left[\Phi_{u,i} \right] \hat{B}_{i}\alpha^{l} \leq m_{u,i} \\ & [\text{output}] & y_{i}^{k} = \sum_{l=0}^{k} C_{i}\mathcal{J}^{k-l} \left[\Phi_{x,i} \right] \hat{B}_{i}\alpha^{l} \leq m_{y,i} \end{split}$$

o reparameterized variables

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

$$\Phi_{u,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to u_i}(z)$$

o compute objective transfer functions as

$$T_{\alpha \to y_i} = C_i \Phi_{x,i} \hat{B}_i$$
$$T_{\alpha \to y_i} = \Phi_{y,i} \hat{B}_i$$

- $\circ \frac{1}{z}\mathcal{RH}_{\infty}$: the infinite dimensional space of real, rational, strictly proper, stable transfer functions
- $\circ \ \mathcal{J}[\bullet]$: impulse response
- o $m_{x,i},\ m_{u,i},\ m_{y,i}$: DER i state, input, output bounds
- \circ d: settling time

o reparameterized variables

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

$$\Phi_{u,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to u_i}(z)$$

o compute objective transfer functions as

$$T_{\alpha \to y_i} = C_i \Phi_{x,i} \hat{B}_i$$
$$T_{\alpha \to y_i} = \Phi_{y,i} \hat{B}_i$$

- $\circ \frac{1}{z}\mathcal{RH}_{\infty}$: the infinite dimensional space of real, rational, strictly proper, stable transfer functions
- $\circ \mathcal{J}[\bullet]$: impulse response
- o $m_{x,i},\ m_{u,i},\ m_{y,i}$: DER i state, input, output bounds
- \circ d: settling time
- $\circ \;$ recover $K_i(z) = \Phi_{u,i}(z) \Phi_{x,i}^{-1}(z)$ after solving the problem

$$\begin{split} & \underset{\{\Phi_{x,i},\Phi_{u,i}\}}{\text{minimize}} & \left\| \begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \begin{bmatrix} \sum_{i} C_{i}\Phi_{x,i}\hat{B}_{i} - T_{\text{des}} \\ \sum_{i} \Phi_{u,i}\hat{B}_{i} \end{bmatrix} \right\|_{\mathcal{H}_{2}/\mathcal{H}_{\infty}} \\ & \text{subject to} & \Phi_{x,i}(z), \Phi_{u,i}(z) \in \frac{1}{z}\mathcal{R}\mathcal{H}_{\infty} \\ & [\text{SLS}] & (zI - A_{i})\Phi_{x,i}(z) - B_{i}\Phi_{u,i}(z) = I \\ & [\text{state}] & x_{i}^{k} = \sum_{l=0}^{k} \mathcal{J}^{k-l} \left[\Phi_{x,i}\right] \hat{B}_{i}\alpha^{l} \leq m_{x,i} \\ & [\text{input}] & u_{i}^{k} = \sum_{l=0}^{k} \mathcal{J}^{k-l} \left[\Phi_{u,i}\right] \hat{B}_{i}\alpha^{l} \leq m_{u,i} \\ & [\text{output}] & y_{i}^{k} = \sum_{l=0}^{k} C_{i}\mathcal{J}^{k-l} \left[\Phi_{x,i}\right] \hat{B}_{i}\alpha^{l} \leq m_{y,i} \\ & [\text{steady gain}] & y_{i}^{d} = C_{i}\Phi_{x,i}(1)\hat{B}_{i} \end{split}$$

o reparameterized variables

$$\Phi_{x,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to x_i}(z)$$

$$\Phi_{u,i}(z) \stackrel{\mathsf{SLS}}{\leftarrow} \hat{B}_i T_{\alpha \to u_i}(z)$$

o compute objective transfer functions as

$$T_{\alpha \to y_i} = C_i \Phi_{x,i} \hat{B}_i$$
$$T_{\alpha \to y_i} = \Phi_{y,i} \hat{B}_i$$

- $\circ \frac{1}{z}\mathcal{RH}_{\infty}$: the infinite dimensional space of real, rational, strictly proper, stable transfer functions
- $\circ \mathcal{J}[\bullet]$: impulse response
- o $m_{x,i},\ m_{u,i},\ m_{y,i}$: DER i state, input, output bounds
- \circ d: settling time
- $\circ \;$ recover $K_i(z) = \Phi_{u,i}(z) \Phi_{x,i}^{-1}(z)$ after solving the problem

Infinite Dimensionality

Simple Pole Approximation⁵ Addresses the Limitations of Finite Impulse Response

Finite Impulse Response (FIR)

closed-loop poles all lie at the origin

- infeasibility for stabilizable but uncontrollable systems
- high computational cost in systems with large separation of time scales
- unknown to incorporate prior knowledge about optimal closed-loop poles

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles—part i: Density and geometric convergence rate in hardy space," IEEE Transactions on Automatic Control, vol. 69, no. 8, pp. 4894–4909, 2024.

Simple Pole Approximation⁵ Addresses the Limitations of Finite Impulse Response

Finite Impulse Response (FIR)

closed-loop poles all lie at the origin

- infeasibility for stabilizable but uncontrollable systems
- high computational cost in systems with large separation of time scales
- unknown to incorporate prior knowledge about optimal closed-loop poles

Simple Pole Approximation (SPA)

any finite selection of stable poles that is closed under complex conjugation

- can apply for stabilizable but uncontrollable systems
- low computational cost in practice
- o can easily include prior knowledge

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles—part i: Density and geometric convergence rate in hardy space," IEEE Transactions on Automatic Control, vol. 69, no. 8, pp. 4894–4909, 2024.

Simple Pole Approximation⁵ Addresses the Limitations of Finite Impulse Response

Finite Impulse Response (FIR)

closed-loop poles all lie at the origin

- infeasibility for stabilizable but uncontrollable systems
- high computational cost in systems with large separation of time scales
- unknown to incorporate prior knowledge about optimal closed-loop poles

Simple Pole Approximation (SPA)

any finite selection of stable poles that is closed under complex conjugation

- o can apply for stabilizable but uncontrollable systems
- low computational cost in practice
- o can easily include prior knowledge

The closed-loop system responses are

$$\Phi_{x,i}(z) = \sum_{p \in \mathcal{P}_i} \frac{G_{p,i}}{z-p}, \ \Phi_{u,i}(z) = \sum_{p \in \mathcal{P}_i} \frac{H_{p,i}}{z-p}, \ \ \begin{matrix} G_{p,i} \text{ and } H_{p,i} \text{ are complex coefficient matrices} \end{matrix}$$

⁵M. W. Fisher, G. Hug, and F. Dörfler, "Approximation by simple poles—part i: Density and geometric convergence rate in hardy space," IEEE Transactions on Automatic Control, vol. 69, no. 8, pp. 4894–4909, 2024.

For given transfer function $\tilde{\Phi}(z) = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

linear matrix inequality (LMI)

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

For given transfer function $\tilde{\Phi}(z)=\tilde{C}(zI-\tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

1) $\|\tilde{\Phi}(z)\|_{\mathcal{H}_2}<\gamma_1$ if and only if there exist symmetric matrices K_1 , Z, such that

$$\operatorname{Trace}(Z) < \gamma_1, \begin{bmatrix} K_1 & K_1 \tilde{A} & K_1 \tilde{B} \\ \tilde{A}^{\mathsf{T}} K_1 & K_1 & 0 \\ \tilde{B}^{\mathsf{T}} K_1 & 0 & \gamma_1 I \end{bmatrix} \succ 0, \begin{bmatrix} K_1 & 0 & \tilde{C}^{\mathsf{T}} \\ 0 & I & 0 \\ \tilde{C} & 0 & Z \end{bmatrix} \succ 0.$$

linear matrix inequality (LMI)

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

For given transfer function $\tilde{\Phi}(z) = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

1) $\|\tilde{\Phi}(z)\|_{\mathcal{H}_2}<\gamma_1$ if and only if there exist symmetric matrices K_1 , Z, such that

$$\operatorname{Trace}(Z) < \gamma_1, \begin{bmatrix} K_1 & K_1 \tilde{A} & K_1 \tilde{B} \\ \tilde{A}^{\mathsf{T}} K_1 & K_1 & 0 \\ \tilde{B}^{\mathsf{T}} K_1 & 0 & \gamma_1 I \end{bmatrix} \succ 0, \begin{bmatrix} K_1 & 0 & \tilde{C}^{\mathsf{T}} \\ 0 & I & 0 \\ \tilde{C} & 0 & Z \end{bmatrix} \succ 0.$$

2) $\|\tilde{\Phi}(z)\|_{\mathcal{H}_{\infty}} < \gamma_2$ if and only if there exists symmetric matrix K_2 ,

$$\begin{bmatrix} K_2 & 0 & \tilde{A}^{\dagger} K_2 & \tilde{C}^{\dagger} \\ 0 & \gamma_2 I & \tilde{B}^{\dagger} K_2 \\ K_2 \tilde{A} & K_2 \tilde{B} & K_2 & 0 \\ \tilde{C} & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0.$$

linear matrix inequality (LMI)

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

For given transfer function $\tilde{\Phi}(z)=\tilde{C}(zI-\tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

1) $\|\tilde{\Phi}(z)\|_{\mathcal{H}_2}<\gamma_1$ if and only if there exist symmetric matrices K_1 , Z, such that

$$\operatorname{Trace}(Z) < \gamma_1, \begin{bmatrix} K_1 & K_1 \tilde{A} & K_1 \tilde{B} \\ \tilde{A}^{\mathsf{T}} K_1 & K_1 & 0 \\ \tilde{B}^{\mathsf{T}} K_1 & 0 & \gamma_1 I \end{bmatrix} \succ 0, \begin{bmatrix} K_1 & 0 & \tilde{C}^{\mathsf{T}} \\ 0 & I & 0 \\ \tilde{C} & 0 & Z \end{bmatrix} \succ 0.$$

2) $\| \tilde{\Phi}(z) \|_{\mathcal{H}_{\infty}} < \gamma_2$ if and only if there exists symmetric matrix K_2 ,

$$\begin{bmatrix} K_2 & 0 & \tilde{A}^{\mathsf{T}} K_2 & \tilde{C}^{\mathsf{T}} \\ 0 & \gamma_2 I & \tilde{B}^{\mathsf{T}} K_2 & 0 \\ K_2 \tilde{A} & K_2 \tilde{B} & K_2 & 0 \\ \tilde{C} & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0.$$

linear matrix inequality (LMI)

 a convex constraint requiring a symmetric matrix to be positive semidefinite

closed loop realization preserves linearity $\Phi_{\mathrm{obj}} = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B}$

- \circ $ilde{A}$ consists of chosen poles \mathcal{P}_i
- \circ $ilde{B}$ is also a constant matrix
- \circ $ilde{C}$ is composed of coefficient matrices $G_{p,i},\,H_{p,i}$ linearly

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3, no. 2, 2000.

For given transfer function $\tilde{\Phi}(z) = \tilde{C}(zI - \tilde{A})^{-1}\tilde{B}$, if \tilde{A} is stable in the discrete time then the following statements hold.

1) $\|\Phi(z)\|_{\mathcal{H}_2} < \gamma_1$ if and only if there exist symmetric matrices K_1 , Z, such that

2) $\|\tilde{\Phi}(z)\|_{\mathcal{H}_{\infty}} < \gamma_2$ if and only if there exists symmetric matrix K_2 .

$$\begin{bmatrix} K_2 & 0 & \tilde{A}^{\mathsf{T}} K_2 & \tilde{C}^{\mathsf{T}} \\ 0 & \gamma_2 I & \tilde{B}^{\mathsf{T}} K_2 & 0 \\ K_2 \tilde{A} & K_2 \tilde{B} & K_2 & 0 \\ \tilde{C} & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0.$$

linear matrix inequality (LMI)

- \circ \tilde{A} consists of chosen poles \mathcal{P}_i
- \circ \tilde{B} is also a constant matrix
- \circ \tilde{C} is composed of coefficient matrices $G_{p,i}$, $H_{p,i}$ linearly
- avoid the potential bilinear matrix inequalities

⁶C. Scherer and S. Weiland, "Linear matrix inequalities in control," Lecture Notes, Dutch Institute for Systems and Control, Delft, The Netherlands, vol. 3. no. 2. 2000.

Objective

$$\min_{\Phi_{\mathrm{obj}}(z) \in \frac{1}{z} \mathcal{RH}_{\infty}} \|\Phi_{\mathrm{obj}}(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi_{\mathrm{obj}}(z)\|_{\mathcal{H}_{\infty}}$$

Objective

$$\begin{split} \min_{\Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \| \Phi_{\text{obj}}(z) \|_{\mathcal{H}_{2}} + \lambda \| \Phi_{\text{obj}}(z) \|_{\mathcal{H}_{\infty}} \\ \updownarrow \\ \min_{\gamma_{1}, \gamma_{2}, \Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \gamma_{1} + \lambda \gamma_{2} \\ \text{s.t.} \quad \| \Phi_{\text{obj}}(z) \|_{\mathcal{H}_{2}} < \gamma_{1} \\ \| \Phi_{\text{obj}}(z) \|_{\mathcal{H}_{\infty}} < \gamma_{2} \end{split}$$

Objective

$$\begin{split} \min_{\Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{\infty}} \\ \updownarrow \\ \min_{\gamma_{1}, \gamma_{2}, \Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \gamma_{1} + \lambda \gamma_{2} \\ \text{s.t.} \quad \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{2}} < \gamma_{1} \\ \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{\infty}} < \gamma_{2} \end{split}$$

Objective

$$\begin{split} \min_{\Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{\infty}} \\ \updownarrow \\ \min_{\gamma_{1}, \gamma_{2}, \Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \gamma_{1} + \lambda \gamma_{2} \\ \text{s.t.} \quad \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{2}} < \gamma_{1} \\ \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{\infty}} < \gamma_{2} \end{split}$$

Constraints

SLS constraint state, input, output constraints steady gain constraint

Objective

$$\begin{split} \min_{\Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{\infty}} \\ \updownarrow \\ \min_{\gamma_{1}, \gamma_{2}, \Phi_{\text{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \gamma_{1} + \lambda \gamma_{2} \\ \text{s.t.} \quad \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{2}} < \gamma_{1} \\ \|\Phi_{\text{obj}}(z)\|_{\mathcal{H}_{\infty}} < \gamma_{2} \end{split}$$

Constraints

SLS constraint state, input, output constraints steady gain constraint

affine or linear constraints

Objective

$$\min_{\Phi_{\mathrm{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \|\Phi_{\mathrm{obj}}(z)\|_{\mathcal{H}_{2}} + \lambda \|\Phi_{\mathrm{obj}}(z)\|_{\mathcal{H}_{\infty}}$$

$$\updownarrow$$

$$\min_{\gamma_{1},\gamma_{2},\Phi_{\mathrm{obj}}(z) \in \frac{1}{z} \mathcal{R} \mathcal{H}_{\infty}} \gamma_{1} + \lambda \gamma_{2}$$
 s.t.
$$\|\Phi_{\mathrm{obj}}(z)\|_{\mathcal{H}_{2}} < \gamma_{1}$$

$$\|\Phi_{\mathrm{obj}}(z)\|_{\mathcal{H}_{\infty}} < \gamma_{2}$$
 affin

Constraints

SLS constraint state, input, output constraints steady gain constraint

affine or linear constraints

DVPP Control Design Yields an SDP

Optimization Structure

 $\circ~\mathcal{H}_2/\mathcal{H}_{\infty}$ norms are transferred to LMIs

DVPP Control Design Yields an SDP

$$\sum_{p\in\mathcal{P}_i}G_{p,i}=I \ \ -\ \ \text{affine}$$

$$(pI-A_i)\ G_{p,i}-B_i\ H_{p,i}=0 \ \ -\ \ \text{linear}$$

Optimization Structure

 $\circ~\mathcal{H}_2/\mathcal{H}_{\infty}$ norms are transferred to LMIs

DVPP Control Design Yields an SDP

$$\begin{array}{c|c} & \underset{K_1,\, K_2,\, Z,\, \{G_{p,i},\, H_{p,i}\},\, \gamma_1,\, \gamma_2}{\text{minimize}} & \gamma_1 + \lambda \gamma_2 - \text{linear} \\ & \underset{\text{subject to}}{\text{to}} & \text{Tr}(Z) < \gamma_1 \\ & \begin{bmatrix} K_1 & K_1 \tilde{A} & K_1 \tilde{B} \\ \tilde{A}^\intercal K_1 & K_1 & 0 \\ \tilde{B}^\intercal K_1 & 0 & \gamma_1 I \end{bmatrix} \succ 0 - \\ & \begin{bmatrix} K_1 & 0 & \tilde{C}(G_{p,i},H_{p,i})^\intercal \\ 0 & I & 0 \\ \tilde{C}(G_{p,i},H_{p,i}) & 0 & Z \end{bmatrix} \succ 0 - \\ & \begin{bmatrix} K_2 & 0 & \tilde{A}^\intercal K_2 & \tilde{C}(G_{p,i},H_{p,i})^\intercal \\ 0 & \gamma_2 I & \tilde{B}^\intercal K_2 & 0 \\ \tilde{C}(G_{p,i},H_{p,i}) & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0 - \\ & \begin{bmatrix} K_2 & 0 & \tilde{A}^\intercal K_2 & \tilde{C}(G_{p,i},H_{p,i})^\intercal \\ 0 & \gamma_2 I & \tilde{B}^\intercal K_2 & 0 \\ \tilde{C}(G_{p,i},H_{p,i}) & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0 - \\ & \begin{bmatrix} K_2 & 0 & \tilde{A}^\intercal K_2 & \tilde{C}(G_{p,i},H_{p,i})^\intercal \\ 0 & \gamma_2 I & \tilde{B}^\intercal K_2 & 0 \\ \tilde{C}(G_{p,i},H_{p,i}) & 0 & 0 & \gamma_2 I \end{bmatrix} \succ 0 - \\ & \begin{bmatrix} SLS \text{ constraint} \end{bmatrix} & \sum_{p \in \mathcal{P}_i} G_{p,i} = I - \text{affine} \\ & (pI - A_i) G_{p,i} - B_i H_{p,i} = 0 - \text{linear} \\ & (pI - B_i) G_{p,i} - B_i H_{p,i} = 0 -$$

$$[\text{input}] \qquad \sum_{l=0}^k \sum_{p \in \mathcal{P}_i} H_{p,i} \, p^{k-l-1} \hat{B}_i \alpha^l \leq m_{u,i} \text{- affine }$$

$$[\text{output}] \sum_{l=0}^k \sum_{p \in \mathcal{P}_i} p^{k-l-1} C_i \, G_{p,i} \, \hat{B}_i \alpha^l \leq m_{y,i} \text{- affine }$$

$$[\text{steady gain}] \qquad C_i \sum_{p \in \mathcal{P}_i} \frac{1}{1-p} \hat{B}_i = y_i^d \text{-- affine }$$

Optimization Structure

- $\circ~\mathcal{H}_2/\mathcal{H}_{\infty}$ norms are transferred to LMIs
- SLS constraint, state, input, output and steady gain constraints remain linear/affine
- DVPP control design becomes a semidefinite program (SDP)

 $\circ\,$ replace thermal-based power plant at bus 3 by a DVPP

- $\circ\,$ replace thermal-based power plant at bus 3 by a DVPP
- provide fast frequency and voltage regulation services

- o replace thermal-based power plant at bus 3 by a DVPP
- provide fast frequency and voltage regulation services
- o employ aggregative control method to the desired behavior

- replace thermal-based power plant at bus 3 by a DVPP
- provide fast frequency and voltage regulation services
- employ aggregative control method to the desired behavior

Pole Selection: first incorporate the plant poles and the poles of the desired transfer function

Spiral Method

select the remaining 10 poles along an Archimedes spiral

Control Design Method Shows Excellent Performance

Control Design Method Shows Excellent Performance

Control Design Method Shows Excellent Performance

Conclusion

We developed a new DVPP control design method that addresses the joint challenges of

- o renewable variability
- o device-level limitations

We demonstrated on the case study of IEEE 9-bus system that heterogeneous DERs can deliver reliable fast frequency and voltage regulation in aggregate to the power grid while respecting individual device limitations

Thank you for your attention

Zhong Fang (z4fang@uwaterloo.ca), Michael W. Fisher

Electrical and Computer Engineering University of Waterloo