Homomorphic Machine Learning with SEAL

Hao Chen¹, Kyoohyung Han², Zhicong Huang³, Amir Jalali⁴, Kim Laine¹, Ran Gilad-Bachrach¹, Kristin Lauter¹

¹Microsoft Research, ²Seoul National University, ³École Polytechnique Fédérale de Lausanne, ⁴Florida Atlantic University

Homomorphic Machine Learning

To run learning phase of machine learning in encrypted state, what is the problem? **message size problem**

```
Data: X, y
Result: W
\alpha: learning rate, N: number of samples, K: number of variables;
initialization W (as origin point);
initialization r (as origin point):
for i in [0, N) do
    compute inner product \langle \vec{X}_i, \vec{W} \rangle = V_i;
    compute approximate sigmoid f to V_i;
end
for i in range [0, K) do
    compute derivative \Delta_i = \sum_{j \in B_k} (Y_j - f(V_j)) \cdot X_{j,i};
    add residue to derivative \Delta_i = \Delta_i + r_i;
    extract sign of derivative sign = 1 if \Delta_i > 0 otherwise - 1;
    update weight vector element W_i = W_i + \alpha \cdot \text{sign};
    update residue vector element r_i = \Delta_i + \alpha \cdot \text{sign};
end
```

Instead of using gradient decent, "1-Bit Stochastic Gradient Descent" used only sign information in learning and this solves the message size problem [1].

Polynomial Approximate of Sigmoid Function

- Mini-max polynomial approximate
 - Range [-5, 5]
 - Degree 1 and 3 for each

Figure 1: Mini-max approximate for sigmoid

Homomorphic Flooring using SEAL

FV style encryption of message m: $c_1(x) + c_2(x) \cdot sk(x) = q \cdot I(x) + \Delta \cdot \text{msg} + \text{err}$

- Only need to keep lowest digit part, this makes our recrypt faster with approx-recrypt.
- Full process is little-bit expensive than bootstrapping, but we can perfume bootstrapping and flooring at once.
- Sign Extraction can be expressed by floor function.
- Furthermore, we can adapt SIMD technique.

Encryption Parameter

- We used SEAL with RNS-FV version and bootstrapping implementation.
- Each coefficient modulus chain is 60-bit prime integer

$$\begin{split} & \texttt{coeff_mod_count} = 16 \\ & \texttt{poly_modulus} = X^{32768} + 1 \\ & \texttt{plain_modulus} = 2,048,383 \end{split}$$

Setting and Result

- Number of samples: $1000 \sim 2000$
- Number of features: $10 \sim 64$
- Number of iteration: $10 \sim 20$ (depend on learning rate)