(9) Calcular la derivada direccional de f en el punto P_o y en la dirección del vector \vec{u} dado.

$$\mathcal{D}_{\bar{n}} f(\bar{a}) = \langle \nabla f(\bar{a}), \bar{u} \rangle = \frac{\partial f}{\partial x_i} (\bar{a}) u_1 + \dots + \frac{\partial f}{\partial x_n} (\bar{a}) u_n.$$

(a)
$$f(x,y) = xe^{2y}$$
, $P_o = (2,0)$, $\vec{u} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.

Veamos si \vec{u} es unitario: $||\vec{u}|| = \sqrt{(^4/z)^2 + (^{\sqrt{5}}/z)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{4} = 1$, entonces es unitario.

Ahora calculemos los derivados parciales:

$$f_{\mu}(\nu_{j}\gamma) = e^{2\gamma}$$
 \Rightarrow $f_{\mu}(2,0) = 1$

$$f_{V}(\kappa, \gamma) = \kappa e^{2\gamma} \cdot 2 = 2\kappa e^{2\gamma} \Rightarrow f_{V}(2,0) = 4$$

Por 6 tonco
$$\langle (1,4), (1/2, \sqrt{3}/2) \rangle = 1/2 + \sqrt{3}/2 = \frac{1+\sqrt{3}}{2}$$

(b)
$$f(x,y) = \ln(x^2 + y^2 + z^2)$$
, $P_o = (1,3,2)$, $\vec{u} = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$.

Vermos si \vec{u} es unicario: $||\vec{u}|| = \sqrt{\left(\sqrt[4]{\sqrt{3}} \right)^2 + \left(\sqrt[4]{\sqrt{3}} \right)^2} = \sqrt{4/3} + \sqrt{4/3} = \sqrt{4} = 4$, entonces es unicario

Mora calculamos las derivadas parciales:

$$f_{\kappa}(\kappa,\gamma,z) = \frac{2\kappa}{\kappa^2 + \gamma^2 + z^2} \qquad \Rightarrow \qquad f_{\kappa}(\gamma,3,z) = \frac{2}{\kappa^2} = \frac{1}{\kappa^2}$$

$$f_{\gamma}(\kappa,\gamma,\overline{z}) = \frac{z\gamma}{\kappa^2 + \gamma^2 + \overline{z}^2} \qquad \Rightarrow \qquad f_{\gamma}(4,3,2) = \frac{6}{44} = \frac{3}{7}$$

$$\left(\frac{1}{2}(\kappa_{1}\gamma, z)\right) = \frac{2z}{\kappa^{2} + \gamma^{2} + z^{2}}$$
 \Rightarrow $\int_{z}^{z} (4,3,z) = \frac{4}{44} = \frac{z}{z}$