Niveau: Première année de PCSI

COLLE 11 = POLYNÔMES ET FRACTIONS RATIONNELLES

Connaître son cours:

- 1. Soit $P \in \mathbb{K}_n[X]$ et $a \in \mathbb{K}$. Montrer que $P(X) = \sum_{k=0}^n \frac{P^{(k)}(a)}{k!} (X-a)^k$. En déduire qu'une racine a de P est de multiplicité r si, et seulement si, $P^{(k)}(a) = 0$ pour tout $k \le r 1$ et $P^{(r)}(a) \ne 0$.
- 2. Rappeler le Théorème de d'Alembert-Gauss et montrer qu'un polynôme $P \in \mathbb{C}[X]$ non constant est surjectif de \mathbb{C} dans \mathbb{C} . Est-ce vrai de \mathbb{R} dans \mathbb{R} ?
- 3. Soit $P, Q \in \mathbb{K}[X]$, rappeler la définition du produit de P et Q le polynôme noté P.Q. Montrer que $\deg(P.Q) = \deg(P) + \deg(Q)$.

Exercices:

Exercice 1. (*)

Soit $a, b \in \mathbb{R}$, déterminer la dérivée d'ordre n de la fonction polynomiale f définie par $f(x) = (x-a)^n (x-b)^n$. En étudiant le cas a = b, trouver la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 2. (**)

Trouver un polynôme de degré 5 tel que P(X) + 10 soit divisible par $(X + 2)^3$ et P(X) - 10 soit divisible par $(X - 2)^3$.

Exercice 3. (**)

Factoriser la fraction rationnelle dont la décomposition en éléments simples est :

$$\sum_{\omega \in \mathbb{U}_n} \frac{\omega^3}{X - \omega}$$

Exercice 4. (***)

Trouver tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{U}) \subset \mathbb{U}$.

Exercice 5. (*)

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(X+1)(X-1)}$.
- 2. En déduire la limite de la suite $(S_n)_{n\geq 2}$ suivante : $S_n = \sum_{k=2}^n \frac{1}{k(k+1)(k-1)}$.

Exercice 6. (**)

Montrer que l'ensemble des polynômes unitaires, de degré n > 0, à coefficients entiers et à racines complexes dans \mathbb{U} est fini.