電動フリーラインスケート

背景

現在販売されているモビリティ

ホバーボード

セグウェイ

電動スケートボード

フリーラインスケートの現状

フリーラインスケートがマイナーなスケートということもあり、 電動化されたフリーラインスケートは販売されれていない

利点

スピードが早い

サイズが小さく、持ち運びが便利

欠点

動きだしとそのスピードを出すのに力 が必要であり、乗ることが難しい

動き出しとそのスピードを出すには足の力が必要であり、乗ることが難しい

電動化にすることによって初動に全く力を必要とせずに地上でスノーボードを 乗っている感覚を楽しむことができる

目的

電動フリーラインスケートの設計・製作をし、作製した電動フリーランスケートに試乗をして、その性能を確認すること。

仕様の設定

最高時速	30km/h	
タイヤの直径	70mm	
積載質量	80kg	
走行時間	30分	
制御方式	PWM	
ワイヤレス制御	Arduino	

モーターを選ぶための計算

最高時速	30km/h	
タイヤの直径	70mm	
積載質量	80kg	

回転数はN=2274rpm

加速度をa=0.5m/sと設定

トルクT=rF=rma

出力p=2πTN/60

出力はp=667W

その中でもサイズの小さい モーターを選定した

購入した部品

モーター

回転時定数	電圧	回転数	最大電流	最大出力
rpm / V	V	rpm	A	W
140	36	5040	38	

HELEISH社製のBRH6355 -140KV

選定したArduino

ArduinoMKR 1010

これはArduino製品とWifiベースの IoTアプリケーションを接続し、設定で きる特徴がある。

リポバッテリー

ゼエエ Zeee

容量は6000mAh 電圧は7.4V

特徴

同じ大きさのバッテリーと比べ、エネルギー密度が高く大容量かつ高い出力を持っている

昇圧モジュール

VKLSAN社製 XL6009

バッテリーの電圧が7.4V モーターの電圧が36V

入力電圧が3V-32V 出力電圧が5V-35V

モータードライバー

DORK社製 ZS-X11F

- 動作電圧範囲 6-50V
- PLC PWM信号制御となっている
- DCブラシレス3相モータに適合する

かさ歯車

ギア比は1:2

モジュールは1.5

SB1.5-4020 \(\subset SB1.5-2040 \)

タイヤ

市販されているフリーラインスケートの部品を流用

赤外線

arduino 学習キットの付属品 IRセンサー、リモコンを使用

部品の価格

(単位:円)

ブラシレスモーター	7,814	
モータードライバー	2,088	
昇圧モジュール	598	
リポバッテリー	6,999	
Arduino MKR WiFi 1010	4,200	
タイヤ	3,680	
かさ歯車	4,707	
3極プラグ	980	
T型コネクター	371	
合計金額	23,597	

プログラム

```
#include <IRremote.h>
                                    //ピンの設定
const int irReceiverPin = 2;
IRrecv irrecv(irReceiverPin);
decode results results;
int motor = 5;
                                   //デフォルトの速度
int speed = 100;
void setup() {
pinMode(motor, OUTPUT);
                                  //出力の設定
Serial.begin(9600);
irrecv.enableIRIn();
void loop() {
                                   //赤外線信号の受け取り
if (irrecv.decode(&results))
  translateIR();
analogWrite(motor, speed);
                                   //モーターの制御
Serial.print("irCode: ");
 Serial.print(results.value, HEX);
 Serial.print(", bits: ");
Serial.println(results.bits);
 irrecv.resume();
 delay(100);
void translateIR()
```

```
switch(results.value)
                                  //コントローラーからの信号の受信
                                 //マイナス信号の認識
     case OxFFE01F:
                                 //0.5m/s2で減速する
        speed = speed - 18;
     if( speed <= 100 )
        speed =100;
                                 //最低の速度の設定
      Serial.println(speed);
      delay(1000);
        break;
                                 //プラス信号の認識
      case 0xFFA857:
                                 // 0.5m/s2で加速する
             speed = speed + 18;
        if( speed > 255 )
                                //最大の速度
          speed = 255;
        Serial.println(speed);
        delay(100);
        break;
                                //デフォルトの速度
     default:
       Serial.println(" other button ");
```

回路

フローチャート

設計

タイヤの取り付け部

購入したスケート本体から切断したものを使用した

モーター側の歯車

歯車は取り付けた際に上端がボードと干渉する

上部を旋盤を用いて加工

旋盤に取り付けるための治具

タイヤ側のかさ歯車

回路

外観

スイッチ

2層目

保護カバー

本体となる板

板厚5mmアルミニウム板を使用

組み立て方法

完成図

加速、減速をしている様子

走行している様子

