Homework #3 Solutions

March 15, 2016

Page 57, I: 1, 5 & 7

1. Truth-Table for ' $A \rightarrow (B \rightarrow (A \& B))$ ' (main connective in red):

\boldsymbol{A}	B	A	\rightarrow	(B	\rightarrow	(A ⊤ ⊤ ⊥ ⊥	&	B))
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	_	Τ	Т	\perp	Т	Т	\perp	\perp
\perp	Т	_	Т	Т	\perp	\perp	\perp	Т
\perp	_	_	Т	\perp	Т	\perp	\perp	\perp

 \therefore ' $A \rightarrow (B \rightarrow (A \& B))$ ' is *tautological* (it is true on all interpretations).

5. Truth-Table for ' $((F \& G) \to H) \to ((F \lor G) \to H)$ ' (main connective in red):

F	G	$\mid H \mid$	((F	&	G)	\rightarrow	H)	\rightarrow	((F	V	G)	\rightarrow	H)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	T	_	I T	Т	T	- 1	1	T	Т	Т	T	1	1
Т	_	T	Τ	\perp	\perp	Т	Т	Т	Т	Т	\perp	Т	Т
Т	_	_	T T L	\perp	\perp	Т	\perp	\perp	Т	Т	\perp	\perp	\perp
\perp	T	T		\perp	Т	Т	Т	Т	\perp	Т	Т	Т	Т
\perp	Т	_		\perp	Т	Т	\perp	Τ	\perp	Т	Т	\perp	\perp
\perp	_	Т							\perp				
\perp	_	_		\perp	\perp	Т	\perp	Т	\perp	\perp	\perp	Т	\perp

 \therefore '($(F \& G) \to H) \to ((F \lor G) \to H)$ ' is *contingent* (it is true on some interpretations, false on others).

7. Truth-Table for ' $(A \leftrightarrow B) \& ((C \rightarrow \sim A) \& (B \rightarrow C))$ ' (main connective in red):

\boldsymbol{A}	В								$\sim A)$				
Т	Т	Т	Т	Т	Т	1	Т	1	Т	T	Т	Т	Т
Т	Т	_	Т	Т	Т	\perp	\perp	Т	<u>Т</u>	\perp	Т	\perp	\perp
Т	1	Т	Т	\perp	\perp	\perp	Т	\perp	\perp	\perp	\perp	Т	Т
Т	工	_	Т	\perp	\perp	\perp	\perp	Т	\perp	Т	\perp	Т	\perp
\perp	Т	Т	1	\perp	Т	\perp	Т	Т	1 1 T T T	Т	Т	Т	Т
\perp	Т	_	1	\perp	Т	\perp	\perp	Т	Т	\perp	Т	\perp	\perp
\perp	工	Т		Т	\perp	Т	Т	Т	Т	Т	\perp	Т	Т
\perp	上		1	Т	\perp	Т	\perp	Т	Т	Т	\perp	Т	\perp

 \therefore ' $(A \leftrightarrow B) \& ((C \to \sim A) \& (B \to C))$ ' is *contingent* (it is true on some interpretations, false on others).

Page 58, II

II. Truth-Tables for the sentences in question (main connectives in red):

	\boldsymbol{A}	$\mid B \mid$	A	V	B		
_	Т	Т	Т	Т	Т		
(1)	Т	_	Т	Т	\perp		
	⊥ ⊥	Т	1	Т	Т		
	\perp	_		Τ	\perp		
	\boldsymbol{A}	$\mid B \mid$	A	\rightarrow	\boldsymbol{B}		
	Т	Т	Т	Т	Т		
(2)	Т	_	Т	\perp	\perp		
	⊥ ⊥	T		Т	Т		
	\perp	_	上	Т	Τ		
	\boldsymbol{A}	В	~	(A	&	~	B)
-	Т	Т	Т	Т	Т	Т	Т
(3)	T L	_		Т	Т	Т	\perp
	\perp	T	Т	\perp	Τ	\perp	Т
	\perp	_	Т	\perp	\perp	Т	\perp

Therefore, we have the following equivalences:

- (6) and (7) are equivalent.
- (1) and (4) are equivalent.
- (2), (3), and (5) are equivalent.

Page 58, III

III. No, if p is not a tautology, it does *not* follow that $\lceil \sim p \rceil$ is a tautology. I proved this in lecture (it's the metatheoretic question: If $\not\models p$, then does it follow that $\models \sim p ?$). There are LSL sentences such that $both \not\models p$ and $\not\models \sim p$. Any atomic wff (*e.g.*, 'A') will do. More generally, any *contingent* sentence p will, by definition, be such that $\not\models p$ and $\not\models \sim p$.