Indian Institute of Technology Bhilai CS203: Theory of Computation I

Tutorial Sheet 1

- Solve the following problems before the Tutorial.
- 1. For strings x and y, prove $(xy)^R = y^R x^R$.

Solution: Prove by induction on the length of string x.

Base Case: Let |x| = 0. Therefore $x = \epsilon$. Then,

$$(xy)^R = (\epsilon y)^R = y^R = y^R \epsilon = y^R \epsilon^R = y^R x^R.$$

Inductive Hypothesis: Assume true for all strings x of length $\leq n$.

We show that property then holds for x of length = n + 1.

We know x = av, where |v| = n and $a \in \sum (a \text{ is a single character})$. Then

$$(xy)^R = ((av)y)^R$$

 $= (a(vy))^R$ (associativity of concatenation)
 $= (vy)^R a$ (definition of reverse)
 $= (y^R v^R) a$ (inductive hypothesis)
 $= y^R (v^R a)$ (associativity of concatenation)
 $= y^R (av)^R$ (definition of reverse)
 $= y^R x^R$ (since $x = av$)

2. For language L_1 and L_2 , prove $(L_1L_2)^R = L_2^R L_1^R$ and $(L_1 \cap L_2)^R = L_1^R \cap L_2^R$.

```
Solution: a) Let \sigma \in (L_1 L_2)^R.

Hence \sigma^R \in L_1 L_2.

Let \sigma^R = xy such that x \in L_1 and y \in L_2.

Now \sigma = (xy)^R = y^R x^R \in L_2^R L_1^R.

Let \sigma \in L_2^R L_1^R.

Hence \sigma = xy such that x \in L_2^R and y \in L_1^R.

Then x^R \in L_2 and y^R \in L_1.

Hence \sigma^R = y^R x^R \in L_1 L_2.

So, \sigma \in (L_1 L_2)^R. Thus Proved.

b) Prove: (L1 \cap L2)^R = L_1^R \cap L_2^R.

Let x \in (L_1 \cap L_2) \implies x \in L_1 and x \in L_2.

If x \in L_1, then x^R \in L_1^R.

If x \in L_2, then x^R \in L_2^R.

If x \in (L_1 \cap L_2), then x^R \in (L_1 \cap L_2)^R \implies x^R \in L_1^R and x^R \in L_2^R.
```

- 3. For language L, prove $L^+ = L^*$ if and only if $\epsilon \in L$.
- 4. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaa? Which strings are in L^4 ?

string	L^*	L^4	Reason
abaabaaabaa	Yes	No	combination of (ab,aa,baa,ab,aa).
aaaabaaaa	Yes	Yes	combination of (aa,aa,baa,aa).
baaaaabaaaab	No	No	combination of (baa,aa,ab,aa,aa,b).
baaaaabaa	Yes	Yes	combination of (baa,aa,ab,aa).

5. Let $\sum = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describe \overline{L} , complement of L.

Solution: $\bar{L} = \sum^* - L = \{w \in \sum^* : w \neq aa, w \neq bb\}$

- 6. Let $L_1 = \{\varepsilon, a\}$ and $L_2 = \{a, b\}$. List the elements of the following sets.
 - (i) L_1^2
 - (ii) L_2^3
 - (iii) L_1L_2
 - (iv) L_1^+
 - (v) L_2^*

Solution:

- (i) $L_1^2 = \{ \epsilon, a, a \}$
- (ii) $L_2^3 = \{ aaa, aab, aba, abb, baa, bab, bba, bbb \}$
- (iii) $L_1 L_2 = \{, a, b, aa, ab \}$
- (iv) $L_1^+ = \{\epsilon, a, aa, aaa, \dots\}$
- (v) $L_2^* = \{\epsilon, a, b, aa, ab, ba, bb, \cdots\}$
- 7. Find Kleene star (L^*) of the language $L = \{\varepsilon, 0, 01\}$.

Solution: $L = \{\epsilon, 0, 01, 00, 001, 010, 0101,\}$

i.e. L^* is set of all strings starting with 0's and no two consecutive 1's, including empty string.

- 8. Prove distributive properties for the languages L_1, L_2, L_3
 - (i) $(L_1 \cup L_2)L_3 = L_1L_3 \cup L_2L_3$

```
Solution: Suppose x \in (L_1 \cup L_2) L_3

\Rightarrow x = x_1 x_2, for some x_1 \in (L_1 \cup L_2) and some x_2 \in L_3

\Rightarrow x = x_1 x_2, for some x_1 \in L_1 or x_1 \in L_2 and some x_2 \in L_3

\Rightarrow x = x_1 x_2, for some x_1 \in L_1 and x_2 \in L_3 or some x_1 \in L_2 and x_2 \in L_3

\Rightarrow x \in L_1 L_3 or L_2 L_3

\Rightarrow x \in L_1 L_3 \cup L_2 L_3

Conversely, suppose x \in L_1 L_3 \cup L_2 L_3.

Without loss of generality, assume x \notin L_1 L_3. Then x \in L_2 L_3.

\Rightarrow x = x_3 x_4, for some x_3 \in L_2 and x_4 \in L_3

\Rightarrow x = x_3 x_4, for some x_3 \in (L_1 \cup L_2) and x_4 \in L_3

\Rightarrow x \in ((L_1 \cup L_2) L_3).

Hence, (L_1 \cup L_2) L_3 = L_1 L_3 \cup L_2 L_3
```

(ii) $L_1(L_2 \cup L_3) = L_1L_3 \cup L_1L_3$

```
Solution: L_1 (L_2 \cup L_3) = L_1 L_3 \cup L_1 L_3.

Suppose that L_1(L_2 \cup L_3)

\Rightarrow x = x_1x_2, for some x_1 \in L_1, and some x_2 \in (L_2 \cup L_3)

\Rightarrow x = x_1x_2, for some x_1 \in L_1, and x_2 \in L_2 or x_2 \in L_3

\Rightarrow x = x_1x_2, for some x_1 \in L_1 and x_2 \in L_2, or x_1 \in L_1 and x_2 \in L_3

\Rightarrow x \in L_1L_2 or x \in L_1L_3

\Rightarrow x \in L_1L_2 \cup x \in L_1L_3.

Conversely, suppose x \in L_1L_2 \cup x \in L_1L_3 \Rightarrow x \in L_1L_2 or x \in L_1L_3.

Without loss of generality, assume x \notin L_1L_2. Then x \in L_1L_3.

\Rightarrow x = x_3x_4, for some x_3 \in L_1 and x_4 \in L_3

\Rightarrow x = x_3x_4, for some x_3 \in L_1 and x_4 \in (L_2 \cup L_3)

\Rightarrow x \in L_1(L_2 \cup L_3)

Hence, L_1(L_2 \cup L_3) = L_1L_2 \cup L_1L_3.
```

9. Prove $L^*L = LL^* = L^+$.

```
Solution: As we know that, L^+ is defined to be L + LL + LLL + \ldots. Also, L^* = \epsilon + L + LL + LLL + \ldots. Thus, LL^* = L\epsilon + LL + LLL + \ldots. When we remember that L\epsilon = L, we see that the infinite expressions for LL^* and L^+ are the same. That proves L^+ = LL^*. The proof L^+ = L^*L is similar.
```

- 10. Write the regular expressions corresponding to the following languages:
 - (i) The set of all strings over some alphabet $\Sigma = \{0, 1\}$ with even number of 0's.

Solution: $1^*(01^*01^*)^*$ or $(1+01^*0)^*$

(ii) The set of all strings over some alphabet \sum that have an a in the 5th position from the right.

Solution: $(a + b)^*a(a + b)(a + b)(a + b)(a + b)$

(iii) The set of all strings over some alphabet \sum with no consecutive a's.

Solution: $(b+ab)^*(\epsilon+a)$

(iv) The set of all strings over $\{a,b\}$ in which every occurrence of b is not before an occurrence of a.

Solution: a^*b^*