1 What is a set?

Definition:	
A is a collection of elements such that, given any element, we can tell whe	ther that
element is in the set or not.	
Notation: If the element x is in set S , we write $x \in S$ and if not, we write $x \notin S$.	
Example: Based on this definition, does the order of elements matter in a set? Witnot?	hy or why
Example: Does the number of times an element is listed matter? Why or why not?	
Example: Let C be the set of all cities in Illinois. What are some elements in set C ? some non-elements?	What are
Example: Let U be the set of all integers from 12 to 17. List all elements in set U .	
Definition:	
Let A and B be sets. Then A is a of B (notation: $A \subseteq B$ OR $B \supseteq A$) if every
element of A is also in B .	
Example: What are examples of subsets of C and U above?	
Notation:	
If A is a finite set, we will denote the number of elements in A by $ A $.	
Definition:	
The is the set that has no elements (notation: \emptyset).	

\mathbf{T}	C	• ,	•	
.)	efir	11t	เกท	•
$\boldsymbol{\mathcal{L}}$		110	1	

We say two sets are _____ if every element in the first is also in the second and, conversely, every element in the second is also in the first. Thus, A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Example: Provide two examples of equal sets. (Be creative: what must remain the same and what can change?)

2 Set Operations

Definition:

The _____ of sets A and B (notation $A \cup B$) is the set consisting of all elements in A or B, meaning one of these scenarios is true:

- (1) $x \in A$ and $x \notin B$
- (2) $x \notin A$ and $x \in B$
- (3) $x \in A$ and $x \in B$.

Definition:

The _____ of sets A and B (notation $A \cap B$) is the set consisting of all elements in A and B, meaning $x \in A$ and $x \in B$.

Definition:

If the intersection of two sets is the empty set, then the sets are said to be _____.

Example: Suppose $A = \{1, 3, 5, 7, 9\}$, $B = \{2, 3, 5, 7\}$, and $C = \{2, 4, 6, 8\}$.

- (a) Determine $A \cup B$.
- (b) Determine $B \cap C$.
- (c) Which, if any, sets are disjoint?

\mathbf{T}	C	• ,	•	
	efin	11	10	m
\mathbf{L}	CIIII	uυ	.10	,,,,

The _____ of sets A and B (notation: A-B) is the set consisting of the elements in A that are not in B.

Example: Using $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 3, 5, 7\}$, find A - B and B - A. Will A - B = B - A in general?

Definition:

A set consisting of all of the elements of interest in a particular situation is called a .

Definition:

Given a universal set U and a subset A of U, the set U-A is called the _____ of A (notation: \overline{A}).

Example: Suppose $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the universal set and $A = \{1, 3, 5, 7, 9\}$, $B = \{2, 3, 5, 7\}$, and $C = \{2, 4, 6, 8\}$. What are \overline{A} , \overline{B} , and \overline{C} ?

Definition:

A ______ is a visual representation of the relationships among sets in which the universal set is represented by a rectangular region and subsets of the universal set are represented by circular disks drawn within the rectangular region. Sets not known to be disjoint should be represented by overlapping circles.

Example: Draw Venn diagrams to represent $A \cup B$, $A \cap B$, A - B, \overline{A} , $A \cup \overline{B}$, and $(\overline{A \cup B})$.

Example: Suppose $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the universal set and $A = \{1, 3, 5, 7, 9\}$, $B = \{2, 3, 5, 7\}$, and $C = \{2, 4, 6, 8\}$. Draw a Venn diagram that places each number appropriately.

Theorem 2.1:

Let U be a universal set. For any subsets A, B, and C of U, the following are true:

- (a) $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- (b) $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$
- (c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (d) $\overline{\overline{A}} = A$
- (e) $A \cup \overline{A} = U$
- (f) $A \cap \overline{A} = \emptyset$
- (g) $A \subseteq A \cup B$ and $B \subseteq A \cup B$
- (h) $A \cap B \subseteq A$ and $A \cap B \subseteq B$
- (i) $A B = A \cap \overline{B}$

Theorem 2.2, De Morgan's Laws:

For any subsets A and B of a universal set U, the following are true:

- (a) $(\overline{A \cup B}) = \overline{A} \cap \overline{B}$
- (b) $(\overline{A \cap B}) = \overline{A} \cup \overline{B}$

Example: Use Theorems 2.1 and/or 2.2 to simplify $\overline{A} \cap (A \cup B)$.

Definition:

An _____ of elements (notation: (a,b)) lists two elements and attends to the order of entries. Thus (a,b)=(c,d) if and only if a=c and b=d.

Definition:

The _____ of A and B is the set consisting of all ordered pairs (a,b) where $a \in A$ and $b \in B$ (notation: $A \times B$).

Example: Let $C = \{1, 5\}$ and $D = \{2, 4, 5\}$. Find $C \times D$ and $D \times C$.

Example: In general, will $A \times B = B \times A$? Why or why not?