IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (currently amended): An evaporator comprising:

a refrigerant inlet header; [[and]]

a refrigerant outlet header arranged side by side with respect to the refrigerant inlet header in a front-rear direction[[,]]; and

a refrigerant circulating passage [[for]] holding the [[two]] refrigerant inlet and refrigerant outlet headers in communication with each other therethrough,

wherein the refrigerant inlet header having has a refrigerant inlet at one end thereof, the refrigerant outlet header having has a refrigerant outlet at one end thereof alongside the refrigerant inlet [[end]], a refrigerant being permitted to flow from the refrigerant inlet permits a refrigerant to flow into the inlet header and to return to the outlet header through the refrigerant circulating passage so as to be sent out from the refrigerant outlet, the refrigerant inlet header is provided with a cap closing the one end of the refrigerant inlet header and forming the refrigerant inlet, [[and]] the refrigerant outlet header [[being]] is provided with a cap closing the one end of the refrigerant outlet header and forming the refrigerant outlet-closed with respective caps each at said one end-thereof, the refrigerant inlet being formed in the cap of the inlet header, the refrigerant outlet being formed in the cap of the outlet header, the caps of the inlet header and the outlet header are joined to a platelike pipe joint member having a refrigerant inlet portion in communication with the refrigerant inlet and a refrigerant outlet portion in communication with the refrigerant outlet and being joined to both the caps of the inlet hear and the outlet header, one of the caps and the pipe joint member is provided with a positioning lug which is projecting from a side edge of the one of the caps and the pipe joint member toward other one of the caps and the pipe joint member and which is configured to be fitted with a positioning recess formed in the other one of the caps and the pipe joint member, and the caps and the pipe joint member have flat surfaces to be contact with each other and are brazed such that the positioning lug is engaged with the positioning recess and that the flat surfaces of the caps and the pipe joint member are in contact with each other.

Claim 2 (currently amended): The [[An]] evaporator according to claim 1, wherein the refrigerant inlet portion and the refrigerant outlet portion of the pipe joint member are each in the form of a short tube, a refrigerant inlet pipe having a constricted end portion inserted in and joined to the refrigerant inlet portion, a refrigerant outlet pipe having an end portion inserted in and joined to the refrigerant outlet portion.

Claim 3 (currently amended): The [[An]] evaporator according to claim 2, wherein the refrigerant inlet portion is smaller than the refrigerant outlet portion in outside diameter.

Claim 4 (currently amended): The [[An]] evaporator according to claim 2, wherein the refrigerant outlet pipe is provided at said end portion with a constricted portion inserted in and joined to the refrigerant outlet portion.

Claim 5 (canceled)

Claim 6 (currently amended): The [[An]] evaporator according to claim 1, wherein the caps are in the form of an integral piece.

Claim 7 (currently amended): The [[An]] evaporator according to claim 1, wherein the inlet header and the outlet header comprise a first member forming portions of the [[two]] refrigerant inlet and outlet headers adjacent to the circulating passage and a second member forming the remaining portions of the [[two]] refrigerant inlet and outlet headers and brazed to the first member, whereby the [[two]] refrigerant inlet and outlet headers are made integral with each other, each of the caps having engaging lugs engageable with the first member and the second member respectively.

Application No. 10/579,470

Reply to Office Action of May 12, 2010

Claim 8 (withdrawn): An evaporator comprising a heat exchange core composed of tube groups in the form of a plurality of rows arranged in a front-rear direction, each of the tube groups comprising a plurality of heat exchange tubes arranged at a spacing in a left-right direction, a refrigerant inlet header positioned toward one end of each heat exchange tube and having joined thereto the heat exchange tubes of the tube group of at least one row, a refrigerant outlet header disposed toward said one end of each heat exchange tube and positioned forwardly or rearwardly of the inlet header, the outlet header having joined thereto the heat exchange tubes of the tube group of at least one row, a refrigerant inflow header positioned toward the other end of each heat exchange tube and having joined thereto the heat exchange tubes joined to the inlet header, and a refrigerant outflow header positioned toward said other end of each heat exchange tube and having joined thereto the heat exchange tubes joined to the outlet header, the inflow header and the outflow header being in communication with each other to provide a refrigerant turn portion, the inlet header and the outlet header being closed with respective caps each at one end thereof, the cap of the inlet header having a refrigerant inlet, the cap of the outlet header having a refrigerant outlet, a platelike pipe joint member having a refrigerant inlet portion in communication with the refrigerant inlet and a refrigerant outlet portion in communication with the refrigerant outlet and being joined to both the caps of the inlet header and the outlet header.

Claim 9 (withdrawn): An evaporator according to claim 8 wherein the refrigerant inlet portion and the refrigerant outlet portion of the pipe joint member are each in the form of a short tube, a refrigerant inlet pipe having a constricted end portion inserted in and joined to the refrigerant inlet portion, a refrigerant outlet pipe having an end portion inserted in and joined to the refrigerant outlet portion.

Claim 10 (withdrawn): An evaporator according to claim 9 wherein the refrigerant inlet portion is smaller than the refrigerant outlet portion in outside diameter.

Claim 11 (withdrawn): An evaporator according to claim 9 wherein the refrigerant outlet pipe is provided at said end portion with a constricted portion inserted in and joined to the refrigerant outlet portion.

Claim 12 (withdrawn): An evaporator according to claim 8 wherein one of the cap and the pipe joint member is provided with a positioning lug projecting toward the other, and the other is provided with a positioning recess for the lug to fit in.

Claim 13 (withdrawn): An evaporator according to claim 8 wherein the pipe joint member is provided with a positioning lug projecting toward the cap, and the cap is provided with a positioning recess for the lug to fit in, the inlet header and the outlet header being closed with respective blind caps each at the other end thereof, the blind caps not having the positioning recess formed in the cap.

Claim 14 (withdrawn): An evaporator according to claim 13 wherein the inlet header and the outlet header comprise a first member having the heat exchange tubes joined thereto, and a second member joined to the first member at a portion thereof opposite to the heat exchange tubes, whereby the inlet and outlet headers are made integral with each other, each of the caps and the blind caps having engaging lugs engageable with the first member and the second member respectively.

Claim 15 (withdrawn): An evaporator according to claim 14 wherein the inlet header and the outlet header are provided by dividing interior of a single refrigerant inlet-outlet tank into a front and a rear portion by partitioning means.

Claim 16 (withdrawn): An evaporator according to claim 15 wherein interior of the outlet header is divided by separating means into first and second two spaces arranged in the direction of height, and the heat exchange tubes joined to the outlet header extend into the first space, the second space of the outlet header being in communication with the refrigerant outlet.

Claim 17 (withdrawn): An evaporator according to claim 16 wherein the partitioning

means and the separating means are integral with the second member.

Claim 18 (withdrawn): An evaporator according to claim 16 wherein the caps, as well as the blind caps, are made integral with each other, and the caps, as well as the blind caps, have a first protrusion fitting in the inlet header, a second protrusion fitting in the first space of the outlet header and a third protrusion fitting in the second space of the outlet header, the first protrusion of the caps being provided with the refrigerant inlet, the third protrusion of the caps being provided with the refrigerant outlet.

Claim 19 (currently amended): A process for fabricating an evaporator, according to claim 2, the process being characterized by comprising:

forming a refrigerant inlet header, [[and]] a refrigerant outlet header arranged side by side with respect to the refrigerant inlet header in a front-rear direction, and a refrigerant circulating passage [[for]] holding the [[two]] refrigerant inlet and outlet headers in communication with each other therethrough[[,]];

joining a cap having a refrigerant inlet to one end of the <u>refrigerant</u> inlet header; [[and]]

joining a cap having a refrigerant outlet to one end of the outlet header[[,]];

joining a platelike pipe joint member having a refrigerant inlet portion in the form of a [[short]] tube and to be in communication with the <u>refrigerant</u> inlet and a refrigerant outlet portion in the form of a [[short]] tube and to be in communication with the <u>refrigerant</u> outlet to both the caps of the <u>refrigerant</u> inlet header and the <u>refrigerant</u> outlet header, thereafter;

inserting a constricted end portion of a refrigerant inlet pipe into the <u>refrigerant</u> inlet portion of the pipe joint member and an end portion of a refrigerant outlet pipe into the <u>refrigerant</u> outlet portion of the pipe joint member[[,]]; and

Application No. 10/579,470

Reply to Office Action of May 12, 2010

brazing the <u>refrigerant</u> inlet portion and the <u>refrigerant</u> outlet portion of the pipe joint member to the <u>refrigerant</u> inlet pipe and the <u>refrigerant</u> outlet pipe respectively at the same time using a high-frequency heating coil in the form of a spectacle-shaped assembly of two annular portions, with one of the annular portions positioned around the <u>refrigerant</u> inlet portion of the pipe joint member and the other annular portion positioned around the <u>refrigerant</u> outlet portion thereof.

Claim 20 (withdrawn): A process for fabricating an evaporator according to claim 9, the process being characterized by making a heat exchange core composed of tube groups in the form of a plurality of rows arranged in a front-rear direction, each of the tube groups comprising a plurality of heat exchange tubes arranged at a spacing in a left-right direction, a refrigerant inlet header positioned toward one end of each heat exchange tube and having joined thereto the heat exchange tubes of the tube group of at least one row, a refrigerant outlet header disposed toward said one end of each heat exchange tube and positioned forwardly or rearwardly of the inlet header, the outlet header having joined thereto the heat exchange tubes of the tube group of at least one row, a refrigerant inflow header positioned toward the other end of each heat exchange tube and having joined thereto the heat exchange tubes joined to the inlet header, and a refrigerant outflow header positioned toward said other end of each heat exchange tube and having joined thereto the heat exchange tubes joined to the outlet header by collectively brazing the components, conducting a brazing operation simultaneously with the collective brazing step to braze a cap having a refrigerant inlet to one end of the inlet header and a cap having a refrigerant outlet to one end of the outlet header, to braze blind caps respectively to the other ends of the inlet header and the outlet header, and to braze a pipe joint member having a refrigerant inlet portion in the form of a short tube and to be in communication with the inlet and a refrigerant outlet portion in the form of a short tube and to be in communication with the outlet to both the caps of the inlet header and the

outlet header, thereafter inserting a constricted end portion of a refrigerant inlet pipe into the inlet portion of the pipe joint member and an end portion of a refrigerant outlet pipe into the outlet portion of the pipe joint member, and brazing the inlet portion and the outlet portion of the pipe joint member to the inlet pipe and the outlet pipe respectively at the same time using a high-frequency heating coil in the form of a spectacle-shaped assembly of two annular portions, with one of the annular portions positioned around the inlet portion of the pipe joint member and the other annular portion positioned around the outlet portion thereof.

Claims 21-22 (canceled)

Claim 23 (new): The process for fabricating an evaporator according to claim 19, wherein the refrigerant inlet portion is smaller than the refrigerant outlet portion in outside diameter.

Claim 24 (new): The process for fabricating an evaporator according to claim 19, wherein one of the caps and the pipe joint member is provided with a positioning lug projecting toward the other one of the caps and the pipe joint member, and the other one of the caps and the pipe joint member is provided with a positioning recess configured to be fitted with the positioning lug.

Claim 25 (new): The process for fabricating an evaporator according to claim 19, wherein the caps are in the form of an integral piece.