AdventureWorks BI Workflow Report

Scope: Data model design, relationships, key DAX measures, and calculated columns used to build the Executive, Map, Product Detail, Customer Detail, and Decomposition Tree dashboards.

1) Workflow (from raw data to dashboard)

1. Ingest & Staging

- Sales, Products, Customers, Territories, Returns → imported/linked.
- Created a dedicated Calendar table.

2. Modeling

- o Built a star schema with Sales Data and Returns Data as facts.
- Conformed dimensions: Calendar, Product, Product Subcategory, Product Category, Customer, Territory.
- Added disconnected tables for Price Adjustment and Metric Selections.

3. Business Logic

- Created calculated columns (keys, names, flags).
- Authored measures for core KPIs, period comps, rolling windows, targets/variances, and "what-if" pricing.

4. Visualization

 KPI cards, trend lines, decomposition tree, geo map, top-N tables, category bars, target gauges.

2) Data Model (star schema)

Fact Tables

Sales Data

Keys: CustomerKey, ProductKey, TerritoryKey, OrderDate
Metrics: OrderQuantity, OrderLineItem, ProductCost, ProductPrice.

Returns Data

Keys: ProductKey, TerritoryKey, ReturnDate

Metrics: ReturnQuantity.

Dimension Tables

- Calendar Lookup Date (active to Sales[OrderDate]), derived fields: DayName, Month, Month Name, Month Num, Start of Month, Start of Quarter, Weekend.
- Product Lookup ProductKey, ProductName, ProductColor, ModelName, ProductCost, ProductPrice, DiscountedPrice.
- **Product Subcategories Lookup** ProductSubcategoryKey, SubcategoryName.
- **Product Categories Lookup** ProductCategoryKey, CategoryName.
- **Customer Lookup** CustomerKey, FullName, AnnualIncome, Occupation, Education, etc.
- **Territory Lookup** TerritoryKey, Country, Region, Continent.

Slicer / Helper (Disconnected) Tables

- Measure Table housing all measures.
- Price Adjustment parameter table for what-if analysis (Price Adjustment, Price Adjustment Value).

- Product Metric Selection allows switching metrics (Orders / Revenue / Profit / Returns / Return%).
- Customer Metric Selection toggles customer KPIs (e.g., Count / RPC).

Relationship Summary

- Calendar[Date] → (1: active)* → Sales Data[OrderDate]
- Calendar[Date] → (1: inactive)* → Returns Data[ReturnDate] (activated in measures with USERELATIONSHIP)
- Product Lookup[ProductKey] → (1:*) → Sales Data[ProductKey], Returns Data[ProductKey]
- Product Subcategories Lookup[ProductSubcategoryKey] → (1:*) → Product Lookup[ProductSubcategoryKey]
- Product Categories Lookup[ProductCategoryKey] → (1:*) → Product Subcategories Lookup[ProductCategoryKey]
- Customer Lookup[CustomerKey] → (1:*) → Sales Data[CustomerKey]
- Territory Lookup[TerritoryKey] → (1:*) → Sales Data[TerritoryKey],
 Returns Data[TerritoryKey]
- Disconnected: Price Adjustment, Metric Selection tables (no physical relationships).

3) Calculated Columns (examples)

```
-- Calendar: Weekend flag
Weekend = IF(WEEKDAY('Calendar Lookup'[Date],2) > 5, TRUE(), FALSE())
-- Customer: Full name
Full Name = 'Customer Lookup'[FirstName] & " " & 'Customer
Lookup'[LastName]
```

```
-- Product: Retail price (if not present)
Retail Price = COALESCE('Product Lookup'[ProductPrice],'Product
Lookup'[DiscountedPrice])
```

(Note: Most business logic stays in measures; columns are light and semantic.)

4) Core Measures (from Measure Table)

4.1 Base KPIs

```
Total Orders =
SUM('Sales Data'[OrderQuantity])
Total Revenue =
SUMX('Sales Data', 'Sales Data'[OrderQuantity] * 'Sales
Data'[ProductPrice])
Total Cost =
SUMX('Sales Data', 'Sales Data'[OrderQuantity] * 'Sales
Data'[ProductCost])
Total Profit =
[Total Revenue] - [Total Cost]
Quantity Returned =
CALCULATE(SUM('Returns Data'[ReturnQuantity]),
         USERELATIONSHIP('Calendar Lookup'[Date], 'Returns
Data'[ReturnDate]))
Total Returns = [Quantity Returned]
Return Rate =
DIVIDE([Total Returns], [Total Orders])
```

4.2 Customer KPIs

```
Total Customers = DISTINCTCOUNT('Customer Lookup'[CustomerKey])
```

```
AvgRevenuePerCustomer =
DIVIDE([Total Revenue], [Total Customers])
```

4.3 Product-specific (bikes & accessories)

```
Bike Sales =
CALCULATE([Total Revenue], 'Product Categories Lookup'[CategoryName] =
"Bikes")

Bikes Returned =
CALCULATE([Total Returns], 'Product Categories Lookup'[CategoryName] =
"Bikes")

Bike Return rate = DIVIDE([Bikes Returned], CALCULATE([Total Orders],
'Product Categories Lookup'[CategoryName] = "Bikes"))
```

4.4 "What-If" Pricing (disconnected Price Adjustment table)

4.5 Targets & Gaps (for gauges and cards)

```
Order Target = 213 -- or from a target table
Order Target Gap = [Order Target] - [Total Orders]
```

```
Revenue Target = 7180 -- scoped monthly; or LOOKUPVALUE from a target table

Revenue Target Gap = [Revenue Target] - [Total Revenue]

Profit Target = 4613

Profit Target Gap = [Profit Target] - [Total Profit]
```

4.6 Time Intelligence & Rolling Windows

```
Previous Month Revenue =
CALCULATE([Total Revenue],
          DATEADD('Calendar Lookup'[Date], -1, MONTH))
Previous Month Profit =
CALCULATE([Total Profit],
          DATEADD('Calendar Lookup'[Date], -1, MONTH))
Previous Month Orders =
CALCULATE([Total Orders],
          DATEADD('Calendar Lookup'[Date], -1, MONTH))
10 Day Rolling Revenue =
VAR LastDate = MAX('Calendar Lookup'[Date])
RETURN CALCULATE([Total Revenue],
                 DATESINPERIOD('Calendar Lookup'[Date], LastDate, -10,
DAY))
90 Day Rolling profit =
VAR LastDate = MAX('Calendar Lookup'[Date])
RETURN CALCULATE([Total Profit],
                 DATESINPERIOD('Calendar Lookup'[Date], LastDate, -90,
DAY))
YTD Revenue =
TOTALYTD([Total Revenue], 'Calendar Lookup'[Date])
```

4.7 Share-of & Composition

```
All orders = CALCULATE([Total Orders], ALL('Product Lookup'))
% of All Orders = DIVIDE([Total Orders], [All orders])
All Returns = CALCULATE([Total Returns], ALL('Product Lookup'))
% of All Returns = DIVIDE([Total Returns], [All Returns])
4.8 Price & Ticket Size
Avg Retail Price = AVERAGE('Product Lookup'[ProductPrice])
High Ticket Orders =
CALCULATE([Total Orders],
         FILTER(VALUES('Product Lookup'[ProductKey]),
                 'Product Lookup'[ProductPrice] > [Avg Retail Price]))
Over Average Price =
DIVIDE([High Ticket Orders], [Total Orders])
4.9 Weekend / Day-type metrics
Weekend Orders =
CALCULATE([Total Orders], 'Calendar Lookup'[Weekend] = TRUE())
4.10 Metric Switchers (disconnected selection tables)
Product Metric Selection (single-select slicer with values: "Orders", "Revenue", "Profit",
"Returns", "Return %")
Selected Product Metric :=
VAR Sel = SELECTEDVALUE('Product metric Selection' [Product metric
Selection], "Orders")
RETURN
SWITCH(
    TRUE(),
    Sel = "Orders", [Total Orders],
    Sel = "Revenue", [Total Revenue],
    Sel = "Profit", [Total Profit],
    Sel = "Returns", [Total Returns],
```

Sel = "Return %", [Return Rate],

```
[Total Orders]
```

Customer Metric Selection (e.g., "Total Customers", "Revenue per Customer")

```
Selected Customer Metric :=
VAR Sel = SELECTEDVALUE('Customer Metric Selection'[Customer Metric Selection], "Total Customers")
RETURN
SWITCH(
    TRUE(),
    Sel = "Total Customers", [Total Customers],
    Sel = "Revenue per Customer", [AvgRevenuePerCustomer],
    [Total Customers]
)
```

5) Visuals → Measures Mapping

- KPI Cards (Revenue, Orders, Profit, Return Rate): [Total Revenue], [Total Orders], [Total Profit], [Return Rate].
- Revenue Trending: [Total Revenue] with trend line; comparison to [Previous Month Revenue] and [YTD Revenue].
- Orders by Category / Top 10 Products: [Total Orders], % of All Orders.
- Return KPI bubbles in table: [Return Rate].
- **Product Detail Gauges:** Order/Revenue/Profit Target vs actual and Gap measures.
- **Price What-If slider:** drives [Adjusted Price], [Adjusted Revenue], [Adjusted Profit].
- **Customer Detail:** [Total Customers], [AvgRevenuePerCustomer], and switcher [Selected Customer Metric].

- Map: [Total Orders] aggregated by Territory Lookup[Country].
- Decomposition Tree: base measure [Total Orders] with dimensions Category → Subcategory → Product.

6) Design Choices & Rationale

- **Star schema** minimizes ambiguity and optimizes DAX performance.
- Inactive Calendar

 Returns keeps a single canonical Date table; USERELATIONSHIP activates it only when needed.
- **Disconnected parameter/selection tables** enable what-if analysis and metric switching without polluting relationships.
- **Measures over columns** keeps the model lean and responsive; time intelligence stays fully filter-aware.
- Targets separated from actuals for clean variances and gauge visuals.

7) Implementation Tips / Gotchas

- Always mark Calendar as a Date table.
- Ensure one active date relationship (Sales) and one inactive (Returns).
- For performance, use **SUMX** only when row context is required; otherwise plain SUM.
- Use **format strings** (₹, %, K/M abbreviations) to match card visuals.
- For the Top-N product table, apply a **TOPN()** filter or visual "Top N" with [Total Orders].