PROJECT REPORT

ANTHROPOGENIC AIR PREDICTION USING MACHINE LEARNING

Submitted towards the partial fulfillment of the criteria for award of Post Graduate
In Data Analytics by Imarticus

Submitted By:

HARIHARASUDHAN P (IL031248)

Course and Batch: Post Graduate in Data Analytics & Feb-2022(PGA-22)

Abstract

Predicting air quality is necessary step to be taken by government as it is becoming the major concern among the health of human beings. Air quality Index measure the quality of air. Various air pollutants causing air pollution are Carbon dioxide, Nitrogen dioxide, carbon monoxide etc...that are released from burning of natural gas, coal and wood, industries, vehicles etc. Air Pollution can cause severe disease like lungs cancer, brain disease and even lead to death. Machine learning algorithms helps in determining the air quality index. Various research is being done in this field but still results are still not accurate. Dataset are available from Kaggle, air quality monitoring sites and divided into two Training and Testing. With help of Machine Learning algorithms.

Keywords:

Air quality index, Carbon dioxide, Nitrogen dioxide, Carbon monoxide Machine Learning algorithms.

Acknowledgements

We are using this opportunity to express my gratitude to everyone who supported us

throughout the course of this individual project. We are thankful for their aspiring guidance,

invaluably constructive criticism and friendly advice during the project work. I am sincerely

grateful to them for sharing their truthful and illuminating views on a number of issues

related to the project.

Further, we were fortunate to have ______ as our mentor. He/She has readily

shared his immense knowledge in data analytics and guide us in a manner that the outcome

resulted in enhancing our data skills.

We wish to thank, all the faculties, as this project utilized knowledge gained from every

course that formed the PGA program.

We certify that the work done by us for conceptualizing and completing this project is

original and authentic.

Date: August 30, 2022

HARIHARASUDHAN P (IL031248)

Place: Chennai

3

Certificate of Completion

I hereby certify that the project titled "ANTHROPOGENIC AIR PREDICTION USING MACHINE LEARNING" was undertaken and completed under my supervision by HARIHARASUDHAN P from the batch of PGA (Feb-2022)

Mentor: Mentor Name (if any)

Date: August 30, 2022

Place – Chennai

TABLE OF CONTENT

S. NO.	TITLE	PAGE
		NO.
	ABSTRACT	2
	Acknowledgements	3
	Certificate of completion	4
1	INTRODUCTION	6
	1.1 AIR POLLUTION	6
	1.2 PRIMARY POLLUTANTS INCLUDE	6
	1.3 SECONDARY POLLUTANTS INCLUDE	7
2	IMPORTANCE OF PROJECT	8
3	DATASET	8
4	SUMMARY OF DATA	11
5	EXPLORATORY DATA ANALYSIS	12
	5.1 Treating missing data	12
	5.2 Discover outliers of AQl using Box plot	13
	5.3 Distribution of variables	15
	5.4 Multivariate Analysis	16
6	FEATURE SELECTION USING MINMAX SCALER	16
7	TRAINING AND TEST DATASET	17
8	MODEL FOR REGRESSION	18
	8.1 LINEAR REGRESSION	18
	8.2 DECISION TREE REGRESSOR	18
	8.3 RANDO FOREST REGRESSOR	18
	8.4 XGBOOST REGRESSOR	18
	8.5 ADABOOST REGRESSOR	19
	8.6 GRADIENT BOOSTING REGRESSOR	19
	8.7 LASSO REGRESSION(LASSOCV & LASSO)	19
9	EVALUATION METRICS	20
	9.1 Mean absolute error	20
	9.2 Mean squared error	20
	9.3 Root mean squared error	20
	9.4 R-squared	21
	9.5 Adjusted R-squared	21
10	COMPARING MODEL RESULTS FOR REGRESSION	21
11	Over all model result tabulation for regression both train & test	23
12	MODEL FOR CLASSIFICATION	24
	12.1 LOGISTIC REGRESSION	24
	12.2 DECISION TREE CLASSIFIER	24
	12.3 RANDOM FOREST CLASSIFIER	25
	12.4 KNN CLASSIFIER	25
	12.5 GRADIENT BOOSTING CLASSIFIER	25
	12.6 NAÏVE BAYES CLASSIFIER	25
	12.7 SUPPORT VECTOR CLASSIFIER	25
13	MODEL EVALUATION	26
	13.1 confusion matrix	26
	13.2 Accuracy	26

	13.3 Precision	26
	13.4 Recall	27
	13.5 F1-score	27
14	COMPARING MODEL RESULTS FOR CLASSIFICATION	27
15	Over all model result tabulation for classification both train & test	29
16	CONCLUSION FOR REGRESSION MODEL	30
17	CONCLUSION FOR CLASSIFICATION MODEL	30
18	REFERENCE	31

CHAPTER 1

INTRODUCTION

1.1 AIR POLLUTION:

Air pollution is dangerous for human health and should be decrease fast in urban and rural areas so it is necessary to predict the quality of air accurately. There are many types of pollution like water pollution, air pollution, soil pollution etc but most important among these is air pollution which should be controlled immediately as humans inhale oxygen through air. There are various causes of air pollution. Outdoor air pollution caused by industries, factories, vehicles and Indoor air pollution is caused if air inside the house is contaminated by smokes, chemicals, smell. Two types of Pollutants that is causing air pollution are Primary Pollutants and Secondary Pollutants.

1.2 PRIMARY POLLUTANTS INCLUDE:

Carbon dioxide (CO2): Carbon dioxide is playing an important role in causing air pollution. It is also named as Greenhouse gas. Global warming a major concern caused by increase in carbon dioxide in air.CO2 is exhale by Human.CO2 is also released by burning of fossil fuels. Sulphur oxide (SOX): Sulphur dioxide (SO2) released by burning coal and petroleum. It is released by various industries. When react with Catalyst (NO2), results in H2SO4 causing acid rains that forms the major cause of Air Pollution. Nitrogen oxide (NOX): Most commonly Nitrogen dioxide (NO2) that is caused by thunderstorm, rise in temperature. Carbon monoxide (CO): -Carbon monoxide is caused by burning of coal and wood. It is released by Vehicles.It is odorless, colorless, toxic gas. It forms a smog in air and thus a

primary pollutant in air pollution. Toxic metals –Example are Lead and Mercury Chlorofluorocarbons (CFC): -Chlorofluorocarbons released by air conditioners, refrigerators which react with other gases and damage the Ozone Layer. Therefore, Ultraviolet Rays reach the earth surface and thus cause harms to human beings. Garbage, Sewage and industrial Process also causes Air Pollution. Particles originating from dust storms, forest, volcanoes in the form of solid or liquid causing air pollution.

1.3 SECONDARY POLLUTANTS INCLUDE:

Ground Level Ozone: It is just above the earth surface and forms when Hydrocarbon react with Nitrogen Oxide in the sunlight presence. Acid Rain: When Sulphur dioxide react with nitrgendioxide, oxygen and water in air thus causing acid rain and fall on ground in dry or wet form. The difference between Primary Pollutants and Secondary Pollutants is Primary Pollutants are those which are released into air directly from Source whereas Secondary Pollutants are those which are formed by reacting with either primary pollutants or with other atmospheric component. There are various pollutants causing air pollution but PM 2.5 being the major air pollutant as proposed by the author (J. Angelin Jebamalar & A. Sasi Kumar,2019) and comes out with the best results in predicting level of PM 2.5 in their research [13]. Logistic regression and autoregression help in determining the level of PM2.5 [4]. The day wise prediction of pollutant level [1] was removed by various authors further by predicting hourly wise data using different algorithm. Benzene concentration can also account into air pollution and its concentration can be determined with CO [7]. These are the causes of air pollution.

Air pollution is causing harmful effects on human beings and plants. It causes the less threatening diseases like irritation in throat, nose. Headache to most severe disease like Respiratory Problems, shortness of breath, Lungs Cancer, brain disease, kidney disease and even leads to death. There are masks which protect us from increasing air pollution and various acts are there to control air pollution. It is also necessary to create awareness among human being about air pollution. It is necessary to predict the air quality accurately. Various traditional methods are there to measure it but results are not accurate and it involves a lot of mathematical calculations. Machine Learning a subset of Artificial Intelligence has an important role in predicting air quality. Various researches are being done on measuring Air quality Index by using Machine Learning algorithms. So, to control Air Pollution first

necessary step is to measure accurately the Air Index Quality. Machine Learning algorithms plays an important role in measuring air quality index accurately. Various algorithm are compared on the basis of different condition in different areas and Neural Network comes out with best results.

2. IMPORTANCE OF PROJECT:

Having clean air to breathe is necessary for good health. Poor air quality reduces quality of life. Some air pollutants are irritants. Some smell bad. Some air pollutants can cause respiratory disease or even cancer. Air quality is important both indoors and outdoors at early stages with higher accuracy is an important task. Ground level ozone, particulate matter and allergens are common outdoor air pollutants. Secondhand smoke, mold and radon are common indoor air pollutants. Poor air quality may limit people's ability or opportunity to be physically active. People with preexisting medical conditions such as asthma, emphysema or COPD are at greater risk from poor air quality. Good air quality is an important livability indicator for a healthy community. Collecting all the past data, analyzing it with the help of different algorithms, and comparing the results.

3. DATASET:

We see the data frame has 435742 observations and 13 features, where 13 features are independent features and I add two columns they are target features is float and binary class as categorical.

1. We some float and object are there in dtypes

1 df.dt	ypes
state	object
location	object
type	object
so2	float64
no2	float64
rspm	float64
spm	float64
om2_5	float64
date	object
50i	float64
Noi	float64
Rpi	float64
SPMi	float64
AQI	float64
AQI Range	object

As per data attribute information we have, "state", "Location", "type", "date" and "AQI_Range" variables are object types and other features are float type but first 13 are independent features 14th and 15th both are dependent features for our project.

Independent Features description:

1. **State:** State of the country-(Categorical)

2. **Location:** Location of the state-(Categorical)

3. **Type:** Details of the area whether it's a Residential, Rural and other areas (or) Industrial area-(categorical)

4. **so2:** Sulfur dioxide is a colorless, reactive air pollutant with a strong odor it's a float continuous value-(Numerical)

- 5. **no2:** Nitrogen dioxide is a gaseous air pollutant composed of nitrogen and oxygen it's a mixture of gases is a float continuous value-(Numerical)
- 6. **Rspm:** Respirable Suspended Particulate Matter size of these pollutants is very tiny, which makes it virtually impossible to filter them out, which are less than 10 microns in diameter is a float continuous value-(Numerical)
- 7. **Spm:** Suspended Particulate Matter are finely divided solids or liquids that may be dispersed through the air from combustion processes, industrial activities or the natural sources is a float continuous value-(Numerical)
- 8. **P_M2.5**: Fine Particulate Matter is an air pollutant that is a concern for people's health when levels in air are high is a float continuous value-(Numerical)
- 9. Date: Date of the air pollution around 1990-2015 is object value-(Numerical)
- 10. **SOI:** Sulfur dioxide as above mentioned separated in the range of as our convention is a float continuous value-(Numerical)
- 11. **NOI:** Nitrogen dioxide as above mentioned separated in the range of as our convention is a float continuous value-(Numerical)
- 12. **RPI:** Respirable Suspended Particulate Matter as above mentioned separated in the range of as our convention is a float continuous value-(Numerical)
- 13. **SPMI:** Suspended Particulate Matter as above mentioned separated in the range of as our convention is a float continuous value-(Numerical)

Target Features description:

- 14. **AQI:** Air Quality Index gathered in all range of SOI, NOI, RPI, SPMI and then I take a value of NOI for AQI is a float continuous value-(Numerical)
- 15. **AQI_Range:** Air Quality Index _ Range is a classify the value is object value-(Categorical)

4. SUMMARY OF DATA:

1	df.describe()								
	502	no2	rspm	spm	pm2_5	SOi	Noi	Rpi	SPMi	AQI
count	435742.000000	435742.000000	435742.000000	435742.000000	435742.000000	435742.000000	435742.000000	435742.0	435742.000000	435742.000000
mean	9.968364	24.848119	98.786766	100.503296	0.871919	12.361707	30.941921	0.0	85.233420	101.773171
std	11.116635	18.801635	77.979702	150.074247	7.424595	12.433975	22.659701	0.0	120.703402	110.717619
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.000000	0.000000
25%	4.000000	13.000000	47.000000	0.000000	0.000000	5.000000	16.250000	0.0	0.000000	23.750000
50%	7.183333	21.000000	83.000000	0.000000	0.000000	8.979167	26.250000	0.0	0.000000	50.000000
75%	13.000000	32.000000	135.000000	172.000000	0.000000	16.250000	40.000000	0.0	148.000000	148.666667
max	909.000000	876.000000	6307.033333	3380.000000	504.000000	313.625000	796.666667	0.0	1086.046512	1086.046512

	Total	Percent
pm2_5	426428	97.862497
spm	237387	54.478797
agency	149481	34.304933
stn_code	144077	33.064749
rspm	40222	9.230692
so2	34646	7.951035
location_monitoring_station	27491	6.309009
no2	16233	3.725370
type	5393	1.237659
date	7	0.001606
sampling_date	3	0.000688
location	3	0.000688
state	0	0.000000

- As there are a total 435742 observations in a survey.
- The variable "pm2_5" and "spm" has more number of missing values, so may be removing these variables will be good option or else we can segregate with new features with reducing a missing value.
- The AQI values ranges from the normal value to max of 1086 range value. Which indicates outliers present in age, which need to be treated.
- The variables "agency", "stn_code", "rspm", "so2", "location_monitoring_station", "no2", "type" has few missing values which can be treated in later steps.

5. EXPLORATORY DATA ANALYSIS:

5.1 Treating missing data:

```
nullvalues = df.isnull().sum().sort_values(ascending=False)
      nullvalues
   2
pm2_5
                                426428
spm
                                237387
                                149481
agency
stn code
                                144077
rspm
                                 40222
502
                                 34646
location_monitoring_station
                                 27491
                                 16233
type
                                  5393
date
                                     7
sampling date
                                     3
location
                                     3
state
                                     0
dtype: int64
```

• isnull().sum()"" returns the number of missing values in each variables

Visualization of missing values using heatmap:

There are horizontal lines in the heatmap for "stn_code", "agency", "so2", "no2", "rspm", "spm", "location_monitoring_station", "pm2_5". Which would correspond to probable missing values.

Why do you need to fill in the missing data?

1. Because most of the machine learning models that you want to use will provide an error if you pass NaN values into it.

Methods used to treat missing values:

- 1. Fill the missing data with the mean or median value if it's a numerical variable.
- 2. Filling the missing data with mode if it's a categorical value.
- 3. Deleting the columns with complete missing values.

Visualization of missing values using the heatmap after treatment:

5.2 Discover Outliers for AQI using Box plot:

An Outlier is an observation in a given dataset that lies far from the rest of the observations. That means an outlier is vastly larger or smaller than the remaining values in the set.

Importance of treating outliers:

1. If the outliers are not removed, the model accuracy may decrease.

How to treat outliers:

- 1. Calculate the 1st and 3rd quartiles (Q1, Q3)
- 2. Compute IQR=Q3-Q1
- 3. Compute lower bound = (Q1-1.5*IQR), upper bound = (Q3+1.5*IQR)

Visualizing boxplot for AQI after treatment:

Here some of the outliers are there because I what to know the AQI_Range for classification model that's why I didn't remove the some of the outlier for feature purpose. Otherwise I remove the outliers for regression model for AQI.

5.3. Distribution of Variables

Distribution of numeric independent variables using dist plot:

distplot() function is used to plot the distplot. The distplot represents the univariate distribution of data i.e., the data distribution of a variable against the density distribution.

Here variable "AQI" the range of 0 to 10 its slightly right skew but is near normally distributed.

It can be seen that the variable "Soi", "Noi", "Rpi", and "SPMi" have slight right skew, but has a right tail. They are almost near normally distributed. But the Rpi doesn't distributed so remove the feature.

5.4. Multivariate Analysis:

Correlation is a statistic that measures the degree to which two variables move with each other. A correlation coefficient near 1 indicates a strong relationship between them; a weak correlation indicates the extent to which one variable increases as the other decreases. Correlation among multiple variables can be represented in the form of a matrix. This allows us to see which variables are correlated.

Heat map for the correlation matrix:

From the above heatmap, it can be seen that the continuous variables are not highly correlated but some of them are correlated but not it to be same row and column.

6. FEATURE SELECTION USING MINMAX SCALER:

There are many ways of data scaling, where the minimum feature is made equal to zero and the maximum feature equal to one. MinMax Scaler shrinks the data within the given range, usually from 0 to 1. It transforms data by scaling features to a given range. It scales the values to a specific value range without changing the shape of the original distribution.

7. TRAINING AND TEST DATASET:

Creating the training dataset with 70% of original data and the remaining 30% as test data.

- Train Dataset: Used to fit the machine learning model.
- **Test Dataset:** Used to evaluate the fit machine learning model.

The train_test_split function of the sklearn. Model_selection package in python splits arrays or matrices into random subsets for train and test data, respectively. To use the train_test_split function to slove classification problems the same way you do for regression analysis.

8. MODEL FOR REGRESSION:

8.1 LINEAR REGRESSION:

Linear regression is one of the easiest and most popular Machine Learning algorithms. It is a statistical method that is used for predictive analysis. Linear regression makes predictions for continuous/real or numeric variables.

Linear regression algorithm shows a linear relationship between a dependent (y) and one or more independent (y) variables, hence called as linear regression. Since linear regression shows the linear relationship, which means it finds how the value of the dependent variable is changing according to the value of the independent variable. The linear regression model provides a sloped straight line representing the relationship between the variables.

8.2 DECISION TREE REGRESSOR:

Decision tree builds regression or classification models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a tree with decision nodes and leaf nodes.

Decision tree regression observes features of an object and trains a model in the structure of a tree to predict data in the future to produce meaningful continuous output. Continuous output means that the output/result is not discrete.

8.3 RANDOM FOREST REGRESSOR:

Random Forest is an ensemble technique capable of performing both regression and classification tasks with the use of multiple decision trees and a technique called Bootstrap and Aggregation, Commonly known as bagging. The basic idea behind this is to combine multiple decision trees in determining the final output rather than relying on individual decision trees.

Random Forest has multiple decision trees as base learning models. We randomly perform row sampling and feature sampling from the dataset forming sample datasets for every model. This part is called Boostrap.

8.4 XGBOOST REGRESSOR:

Extreme Gradient Boosting, or XGBoost for short, is an efficient open-source implementation of the gradient boosting algorithm. As such, XGBoost is an algorithm, an open-source project, and a Python library.

Gradient boosting refers to a class of ensemble machine learning algorithms that can be used for classification or regression predictive modeling problems. Ensembles are constructed from decision tree models. Trees are added one at a time to the ensemble and fit to correct the prediction errors made by prior models. This is a type of ensemble machine learning model

referred to as boosting. Models are fit using any arbitrary differentiable loss function and gradient descent optimization algorithm. This gives the technique its name, "gradient boosting," as the loss gradient is minimized as the model is fit, much like a neural network.

8.5 ADABOOST REGRESSOR:

Boosting refers to a class of machine learning ensemble algorithms where models are added sequentially and later models in the sequence correct the predictions made by earlier models in the sequence. Adaboost, short for "Adaptive Boosting," is a boosting ensemble machine learning algorithm, and was one of the first successful boosting approaches.

AdaBoost combines the predictions from short one-level decision trees, called decision stumps, although other algorithms can also be used. Decision stump algorithms are used as the AdaBoost algorithm seeks to use many weak models and correct their predictions by adding additional weak models. The training algorithm involves starting with one decision tree, finding those examples in the training dataset that were misclassified, and adding more weight to those examples. Another tree is trained on the same data, although now weighted by the misclassification errors. This process is repeated until a desired number of trees are added.

8.6 GRADIENT BOOSTING REGRESSOR:

Gradient Boosting algorithm is used to generate an ensemble model by combining the weak learners or weak predictive models. Gradient boosting algorithm can be used to train models for both regression and classification problem.

Gradient Boosting Regression algorithm is used to fit the model which predicts the continuous value. Gradient boosting builds an additive mode by using multiple decision trees of fixed size as weak learners or weak predictive models. The parameter, n_estimators, decides the number of decision trees which will be used in the boosting stages. Gradient boosting differs from AdaBoost in the manner that decision stumps (one node & two leaves) are used in AdaBoost whereas decision trees of fixed size are used in Gradient Boosting.

8.7 LASSO REGRESSION: (Lassocv & Lasso)

Lasso regression is a type of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards a central point, like the mean. The lasso procedure encourages simple, sparse models (i.e. models with fewer parameters). This particular type of regression is well-suited for models showing high levels of muticollinearity or when you want to automate certain parts of model selection, like variable selection/parameter elimination. The acronym "LASSO" stands for Least Absolute Shrinkage and Selection Operator.

Lasso regression performs L1 regularization, which adds a penalty equal to the absolute value of the magnitude of coefficients. This type of regularization can result in sparse models with

few coefficients; Some coefficients can become zero and eliminated from the model. Larger penalties result in coefficient values closer to zero, which is the ideal for producing simpler models. On the other hand, L2 regularization (e.g. Ridge regression) **doesn't** result in elimination of coefficients or sparse models. This makes the Lasso far easier to interpret than the Ridge.

9. EVALUATION METRICS:

The essential step in any machine learning model is to evaluate the accuracy of the model. The Mean Squared Error, Mean absolute error, Root Mean Squared Error, and R-Squared or Coefficient of determination metrics are used to evaluate the performance of the model in regression analysis.

9.1 Mean absolute error:

• The Mean absolute error represents the average of the absolute difference between the actual and predicted values in the dataset. It measures the average of the residuals in the dataset.

9.2 Mean squared error:

• Mean Squared Error represents the average of the squared difference between the original and predicted values in the data set. It measures the variance of the residuals.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

9.3 Root mean squared error:

• Root Mean Squared Error is the square root of Mean Squared error. It measures the standard deviation of residuals.

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

9.4 R-squared:

• The coefficient of determination or R-squared represents the proportion of the variance in the dependent variable which is explained by the linear regression model. It is a scale-free score i.e. irrespective of the values being small or large, the value of R square will be less than one.

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

9.5 Adjusted R-squared:

Adjusted R squared is a modified version of R square, and it is adjusted for the number of independent variables in the model, and it will always be less than or equal to R². In the formula below n is the number of observations in the data and k is the number of the independent variables in the data.

$$R_{adj}^2 = 1 - \left\lceil \frac{(1-R^2)(n-1)}{n-k-1} \right\rceil$$

10. Comparing Model Results for Regression:

Linear Regression:

Decision Tree Regressor:

RMSE TrainingData = 12.038810589745014 RMSE TestData = 12.067931173445295	RMSE TrainingData = 2.2986197491067936e-13 RMSE TestData = 1.3912432977188145
RSquared value on train: 0.9838577840497992 RSquared value on test: 0.9836762588770496	RSquared value on train: 1.0 RSquared value on test: 0.9997830497176048
MSE 145.63496280701276	MSE 1.935557913447522
MAE 2.8535792959654005	MAE 0.20536285925292716
RMSE 12.067931173445295	RMSE 1.3912432977188145
R2_Score 0.9836762588770496	R2_Score 0.9997830497176048
Adj_r2 0.9998023857062451	Adj_r2 0.9997830456108466

Random Forest Regressor:

XGBoost Regressor:

RMSE TrainingData = 0.43989373372029156 RMSE TestData = 1.0355699699945704	RMSE TrainingData = 1.0764112757488502 RMSE TestData = 1.350338014074128
RSquared value on train: 0.9999784478033649 RSquared value on test: 0.9998797976535421	RSquared value on train: 0.9998709516468323 RSquared value on test: 0.9997956196976716
MSE 1.0724051627545554	MSE 1.8234127522536598
MAE 0.21462714512682407	MAE 0.6026434786713841
RMSE 1.0355699699945704	RMSE 1.350338014074128
R2_Score 0.9998797976535421	R2_Score 0.9997956196976716
Adj_r2 0.999879795378173	Adj_r2 0.9997956158288567

Adaboost Regressor:

Gradient Boost Regressor:

RMSE TrainingData = 16.40435764065584 RMSE TestData = 16.511461465846256	RMSE TrainingData = 2.319324295783172 RMSE TestData = 2.3837572778470717
RSquared value on train: 0.9700280880701033 RSquared value on test: 0.9694419891943319	RSquared value on train: 0.999400872927143 RSquared value on test: 0.99936308993288
MSE 272.62835973812577	MSE 5.682298759688882
MAE 3.666693302298683	MAE 0.9585351293743413
RMSE 16.511461465846256	RMSE 2.3837572778470717
R2_Score 0.9694419891943319	R2_Score 0.99936308993288
Adj_r2 0.9694414107467715	Adj_r2 0.9993630778764973

Lassocv:

RMSE TrainingData = 12.092856051786484 RMSE TestData = 12.114689797245369
N/ISE TESTDATA = 12.114089/9/242309
RSquared value on train: 0.9837125252200384
RSquared value on test: 0.9835495172906042
MSE 146.76570888348104
MAE 2.847524280196155
RMSE 12.114689797245369
R2_Score 0.9835495172906042
Adj_r2 0.9835492058913561

Lasso:

RMSE TrainingData = 12.03953656504537 RMSE TestData = 12.06756078728687
RSquared value on train: 0.9838558371459376 RSquared value on test: 0.9836772608706632
MSE 145.62602335486372
MAE 2.8518848251550204
RMSE 12.06756078728687
R2_Score 0.9836772608706632
Adi r2 0.9835492058913561

11. Overall model result tabulation for regression both train & test:

Train:

	Model	Score_Train
1	Decision Tree	1.000000
2	Random Forest	0.999978
3	XGBoost	0.999871
5	Gradient Boost	0.999401
0	Linear Regression	0.983858
6	Lassocv Regression	0.983856
7	Lasso Regression	0.983713
4	Ada Boost	0.970028

Test:

	Model	Score_Test
2	Random Forest	0.999880
3	XGBoost	0.999796
1	Decision Tree	0.999783
5	Gradient Boost	0.999363
6	Lassocv Regression	0.983677
0	Linear Regression	0.983676
7	Lasso Regression	0.983550
4	Ada Boost	0.969442

12. MODEL FOR CLASSIFICATION: 12.1 LOGISTIC REGRESSION:

Logistic regression is another powerful supervised ML algorithm used for both multiple classification and binary classification problems (when the target is categorical). It is a predictive analytic technique that is based on the probability idea. The goal of Logistic Regression is to discover a link between characteristics and the likelihood of a specific outcome.

The Logistic Regression utilizes a more sophisticated cost function, which is known as the "Sigmoid function" or "logistic function" instead of a linear function.

12.2 DECISION TREE CLASSIFIER:

A Decision Tree is a non-parametric supervised learning method. It builds a regression model in the form of a tree structure. It breaks down a data set into smaller subsets, which is called splitting.

The final result is a tree with a decision and leaf nodes. A decision node has two or more branches. The leaf node represents a class or decision. The topmost decision node in a tree that corresponds to the best predictor is called the 'root node'. The decision tree is built using different criteria like Gini index, and entropy. To build the decision tree, we used the criterion of 'entropy'. Entropy is one of the criteria used to build the decision tree. It calculates the homogeneity of the sample. The entropy is zero if the sample is completely homogeneous, and it is equal to 1 if the sample is equally divided.

12.3 RANDOM FOREST CLASSIFIER:

Random forest is a commonly-used machine learning algorithm, which combines the output of multiple decision trees to reach a single result. Its ease of use and flexibility have fueled its adoption, as it handles both classification and regression problems.

The random forest algorithm is an extension of the bagging method as it utilizes both bagging and feature randomness to create an uncorrelated forest of decision trees. Generates a random subset of features, which ensures low correlation among decision trees. This is a key difference between decision trees and random forests. While decision trees consider all the possible feature splits, random forests only select a subset of those features.

12.4 KNN CLASSIFIER:

K-Nearest Neighbours, or KNN for short, is one of the simplest machine learning algorithms and is used in a wide array of institutions. KNN is a non-parametric, lazy learning algorithm. When we say a technique is non-parametric, it means that it does not make any assumptions about the underlying data. Being a lazy learning algorithm implies that there is little to no training phase. Therefore, we can immediately classify new data points as they present themselves.

12.5 GRADIENT BOOSTING CLASSIFIER:

Gradient boosting classifier are a group of machine learning algorithms that combine many weak learning models together to create a strong predictive model. Decision trees are usually used when doing gradient boosting. Gradient boosting models are becoming popular because of their effectiveness at classifying complex datasets. It gives a prediction model in the form of an ensemble of weak prediction models, which are typically decision trees.

12.6 NAIVE BAYES CLASSIFIER:

Naive Bayes algorithm is a supervised learning algorithm, which is based on Bayes theorem and used for solving classification problems. It is mainly used in *text classification* that includes a high-dimensional training dataset.

Naïve Bayes Classifier is one of the simple and most effective Classification algorithms which helps in building the fast machine learning models that can make quick predictions. It is a probabilistic classifier, which means it predicts on the basis of the probability of an object.

12.7 SUPPORT VECTOR CLASSIFIER:

Support Vector Machine or SVM is a supervised and linear Machine Learning algorithm most commonly used for solving classification problems and is also referred to as Support

Vector Classification. SVM also supports the kernel method also called the kernel SVM which allows us to tackle non-linearity.

The objective of SVM is to draw a line that best separates the two classes of data points. SVM generates a line that can cleanly separate the two classes. How clean, you may ask. There are many possible ways of drawing a line that separates the two classes, however, in SVM, it is determined by the margins and the support vectors. The SVM then generates a hyper plane that has the maximum margin. In the case of more than 2 features and multiple dimensions, the line is replaced by a hyper plane that separates multidimensional spaces.

13. MODEL EVALUATION:

13.1Confusion matrix:

Confusion Matrix

	Actually Positive (1)	Actually Negative (o)
Predicted	True Positives	False Positives
Positive (1)	(TPs)	(FPs)
Predicted	False Negatives	True Negatives
Negative (o)	(FNs)	(TNs)

The confusion matrix is a very popular measure used while solving classification problems. It can be applied to binary classification as well as for multiclass classification problems.

TP (True Positive):

Model has given prediction No, and the real or actual value was also No.

TN (True Negative):

The model has predicted yes, and the actual value was also true.

FP (False Positive):

The model has predicted Yes, but the actual value was No. It is also called a **Type-I error**.

FN (False Negative):

The model has predicted no, but the actual value was yes, it is also called as **Type-II error**.

Performance metrics of an algorithm are accuracy, precision, recall, and F1 score, which are calculated based on the above-stated TP, TN, FP, and FN.

13.2 Accuracy:

It is one of the important parameters to determine the accuracy of the classification problems. It defines how often the model predicts the correct output. It can be calculated as the ratio of the number of correct predictions made by the classifier to all number of predictions made by the classifiers. The formula is given below: Accuracy = (TP+TN) / (TP+FP+FN+TN)

13.3 Precision:

It can be defined as the number of correct outputs provided by the model or out of all positive classes that have predicted correctly by the model, how many of them were actually true. It can be calculated using the below formula:

Precision=TP / (TP+FP)

13.4 Recall:

It is defined as the out of total positive classes, how our model predicted correctly. The recall must be as high as possible.

Recall=TP / (TP+FN)

13.5 F1 score:

If two models have low precision and high recall or vice versa, it is difficult to compare these models. So, for this purpose, we can use F-score. This score helps us to evaluate the recall and precision at the same time. The F-score is maximum if the recall is equal to the precision. It can be calculated using the below formula:

$$F1-score = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

14. Comparing Model Results for Classification:

Logistic Regression:

Decision Tree Classifier:

KappaScore is:		0383204	474587	63							96077	349266	293		
Confusion Matr							57.77			ix :-	_	_		-	
		1432		17			[[77		0	15		0	0		
[0 259	0	500		1135			Ţ		1894		_	0	_		
	10815	361	0	49			Ţ	21		19638			17.00	-	
1 10 10 10 10 10 10 10 10 10 10 10 10 10		16887	7515	2985			L	0	0		32639		100	-	
[16 0		5086	5980	67			I	0		0		11165		<u> </u>	
[0 632	1	2235	0	2632]]		[0	0	0	0	0	5500]]	
Classification			ro	call	f1-score	sunnort	Clas	sifi	cation	Repor		n r	ecall	f1-score	sunnor
	pre	cision			f1-score	#21 WW. #50000.00	Clas	sifi		pre	ecisio			f1-score	suppor
Good	pre	ecision 0.90	0	.95	0.92	77062	Clas		Good	pre	ecision		1.00	1.00	77062
Good Hazardous	pre	0.90 0.07	0	.95 .14	0.92 0.09	77062 1894		Haza	Good	pre	1.00 1.00	:	1.00 1.00	1.00 1.00	77062 1894
Good Hazardous Moderate	pre	0.90 0.07 0.69	0 0	.95 .14 .55	0.92 0.09 0.61	77062 1894 19659		Haza	Good ardous derate	pre	1.00 1.00 1.00		1.00 1.00	1.00	77062 1894 19659
Good Hazardous Moderate Poor	pre	0.90 0.07	0 0	.95 .14	0.92 0.09	77062 1894		Haz	Good ardous derate Poor	pre	1.00 1.00		1.00 1.00	1.00 1.00	77062 1894
Good Hazardous Moderate Poor Unhealthy	pre	0.90 0.07 0.69	0 0 0	.95 .14 .55	0.92 0.09 0.61	77062 1894 19659		Haza Mod Unho	Good ardous derate Poor ealthy	pre	1.00 1.00 1.00		1.00 1.00	1.00 1.00 1.00	77062 1894 19659
Good Hazardous Moderate Poor	pre	0.90 0.07 0.69 0.64	0 0 0 0	.95 .14 .55	0.92 0.09 0.61 0.57	77062 1894 19659 32639		Haza Mod Unho	Good ardous derate Poor	pre	1.00 1.00 1.00 1.00		1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	77062 1894 19659 32639
Good Hazardous Moderate Poor Unhealthy	pre	0.90 0.07 0.69 0.64 0.44	0 0 0 0	.95 .14 .55 .52	0.92 0.09 0.61 0.57 0.48	77062 1894 19659 32639 11167	Very	Haza Mod Unho unho	Good ardous derate Poor ealthy	pre	1.00 1.00 1.00 1.00 1.00		1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	77062 1894 19659 32639 11167
Good Hazardous Moderate Poor Unhealthy Very unhealthy	pre	0.90 0.07 0.69 0.64 0.44	0 0 0 0 0	.95 .14 .55 .52	0.92 0.09 0.61 0.57 0.48 0.43	77062 1894 19659 32639 11167 5500	Very	Haza Mod Unha unha	Good ardous derate Poor ealthy	pre	1.00 1.00 1.00 1.00 1.00		1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	77062 1894 19659 32639 11167 5500

Random Forest Classifier:

KNN-Classifier:

(app	aSco	re is:	0.99	9971101	1773101	.78							3853063	828439	99		
Conf	usio	n Matri	ix :-						Cor	fusio	n Mati	`ix :-					
[[77	046	0	16	0	0	0]			[[7	6845	0	217	0	0	0]	
[0	1893	0	0	0	1]			[0	1857	0	0	0	37]	
Ī	4	0 1	19654	1	0	0]			[238	0	19298	123	0	0]	
[0	0	0	32639	0	0]			[2	0	114	32468	55	0]	
[0	0	0	4	11163	0]			[0	0	0	130	11002	35]	
	0	0	0	0	2	5498]	1]	0	80	0	0	80	5340]]	
Clas	2111	cation		cision	n re	call	f1-score	support	CIC	133111	cacio	Repoi pro	ecision	n re	call	f1-score	suppor
		Good		1.00	1	.00	1.00	77062			Good	d	1.00	1	.00	1.00	77062
	Haz	ardous		1.00	1	.00	1.00	1894		Haz	ardous	5	0.96	0	.98	0.97	1894
	1000000												0.98	0	.98	0.98	19659
	1000	derate		1.00		.00	1.00	19659		Mo	derate	=	0.50	V	. 50	0.50	19059
	1000	derate Poor		1.00	1	.00	1.00	19659 32639			Poor	•	0.99		.99	0.99	32639
	Mo				1 1					Unh	Pooi ealthy	· /		0			
Very	Mo	Poor		1.00	1 1 1	.00	1.00	32639	Ver	Unh	Poor	· /	0.99	0	.99	0.99	32639
Very	Unh unh	Poor ealthy		1.00 1.00	1 1 1	.00	1.00	32639 11167	Ver	Unh ry unh	Pooi ealthy	· /	0.99 0.99	0	.99	0.99 0.99	32639 11167
Very	Unhounho	Poor ealthy ealthy		1.00 1.00	1 1 1 1	.00	1.00 1.00 1.00	32639 11167 5500		Unh ry unh ac mac	Poor ealthy ealthy	/ /	0.99 0.99	0 0 0	.99	0.99 0.99 0.98	32639 11167 5500

Gradient Boosting Classifier:

Naïve Bayes Classifier:

							9152557797 305014163									596303725 35472313	
	E070 TO 182		: 0.9	997316	7004997	704		755)				: 0.70	512459	546276	296		
	7039	0	23	0	0	0	.1		[[724		0		0	0	e	1	
11,	0	1894	0			0			[[/24	0	1882		0	. 8	12		
L	3		19656				(- 2)		[]	750		11068	5841	_			
L	0	0		32639	170	0	-		[2	0	0		23034		2		
Ļ		0			11167	0	1		L	0	0			10889			
Ĺ	0	0				5500	d.,		L T	0	359						
L									L		7.7.7.	1 77 .		-		11	
Cla	ssifi	cation	n Repo	rt :-					Class	sifi	catio	n Repoi	rt :-				
			pr	ecisio	n re	ecall	f1-score	support				pre	ecisio	n r	ecall	f1-score	support
		Good	d	1.00	1	1.00	1.00	77062			Goo	d	0.96	,	0.94	0.95	77062
	Haz	ardous	5	1.00	1	1.00	1.00	1894		Haz	ardou	S	0.84	(0.99	0.91	1894
	Mo	derate	2	1.00	1	1.00	1.00	19659		Mo	derat	e	0.66		0.56	0.61	19659
		Poor	^	1.00	1	1.00	1.00	32639			Pool	r	0.80	,	0.71	0.75	32639
	Unh	ealthy	/	1.00	1	1.00	1.00	11167		Unh	ealth	V	0.56		0.98	0.71	11167
Ver	y unh	ealthy	/	1.00	1	1.00	1.00	5500	Very		ealth		0.96		0.92	0.94	5500
	ac	curacy	/				1.00	147921		ac	curac	у				0.84	147921
	mac	ro av	3	1.00	1	1.00	1.00	147921		mac	ro av	g	0.80		0.85	0.81	147921
W	eight	ed av	3	1.00	1	1.00	1.00	147921	wei		ed av		0.85		0.84	0.84	1 <mark>4</mark> 7921

Support Vector Classifier:

Model accuracy on train is: 0.9939608822426641 Model accuracy on test is: 0.9936655376856566 KappaScore is: 0.9903217898617975 Confusion Matrix :-[[76827 0 232 3 0] 0 0 1893 1893 0 0 0 0 19171 91 0 0 66 32570 1 1] 01 397 2 0 44 11123 0 0 0 0] 0 0 0] 57 0 43 5400]]

Classification	Report :-			
	precision	recall	f1-score	support
Good	0.99	1.00	1.00	77062
Hazardous	0.97	1.00	0.98	1894
Moderate	0.98	0.98	0.98	19659
Poor	1.00	1.00	1.00	32639
Unhealthy	1.00	1.00	1.00	11167
Very unhealthy	1.00	0.98	0.99	5500
accuracy			0.99	147921
macro avg	0.99	0.99	0.99	147921
weighted avg	0.99	0.99	0.99	147921

15. Overall model result tabulation for Classification both train & test:

Train:

	Model	Score_Train
1	Decision Tree Classifier	1.000000
2	Random Forest classifier	1.000000
4	Gradient Boost Classifier	0.999920
3	K-nearestneigbour	0.996076
6	Support Vector classifier	0.993961
5	Naviebayes	0.839911
0	Logistic Regression	0.739812

Test:

16. CONCLUSION FOR REGRESSION MODEL:

- ➤ The supervised Regression learning algorithms named in the above result have been implemented on the given dataset. The performance of the models was evaluated using the RMSE, R_Squared, MSE, MAE, and R2_Score with Range of AQI Features.
- ➤ The above table shows that the Decision Tree has the highest value but Random Forest better performance measures like RMSE, RSquared, MSE, MAE, and R2_Score. Therefore, it can be concluded that the Random Forest gives a better performance comparing with other all model and score can be used to predict the existence of AQI.

17. CONCLUSION FOR CLASSIFICATION MODEL:

- ➤ The supervised classification learning algorithms named in the above result have been implemented on the given dataset. The performance of the models was evaluated using the accuracy, precision, recall, f1-score and support with multi classification as Good, Moderate, Poor, Unhealty, Very unhealty and Hazardous.
- The above table shows that the Decision Tree and Random Forest as show has the highest values but Random Forest better performance measures like Precision, Recall, f1-score, Support and accuracy. Therefore, it can be concluded that the Random Forest gives a better performance when comparing with other model and accuracy can be used to predict the existence of AQI_Range in AQI.

18. REFERENCE:		
	31	