COMPUTER SCIENCE 349A

Handout Number 2

Measures of error (pages 56-59 of the 6th edition of the textbook; pages 59-62 of the 7th edition)

If p denotes the true (exact) value of some quantity, and p* denotes some approximation to p, then

$$|E_t| = |p - p|$$

is called the absolute error, and

$$\left|\varepsilon_{t}\right| = \frac{\left|p-p^{*}\right|}{\left|p\right|} = \left|1-\frac{p^{*}}{p}\right|$$
 (if $p \neq 0$)

is called the **relative error**.

Absolute error is not a meaningful measure of error unless you know the magnitude of p, the quantity you are approximating. For example,

if p = 1234321 and $p^* = 1234000$, then $|E_t| = 321$ seems large, although p^* is quite accurate and agrees with p to 4 significant digits;

if p = 0.001234 and $p^* = 0.001111$, then $|E_t| = 0.000123$ seems small, although p^* is not very accurate and agrees with p to only 1 significant digit.

Relative error, which is always meaningful, in fact indicates the number of correct significant digits in an approximation p^* .

Example

Consider $p = \pi = 3.14159265 \cdots$

approximations $p * to p$	number of correct significant digits	relative error
3.1	2	0.013
3.14	3	0.00051
3.141	4	0.00019
3.1415	5	0.000029

Definition of the number n of significant digits in an approximation p^* to a value p:

If $n \ge 0$ is the largest integer such that

$$\left|\varepsilon_{t}\right| = \frac{\left|p-p\right|^{*}}{\left|p\right|} < 5 \times 10^{-n},$$

then p^* approximates p to n significant digits.

Thus, if you know the magnitude of the relative error, then you know how many correct significant digits your approximation has.

Note: in order to compute the relative error, you need to know the true (exact) value p. In any real application, the exact answer p will be unknown.

Approximation of the relative error in an iterative algorithm

In this course and in many applications, **iterative algorithms** are used to compute a sequence

$$p_1, p_2, p_3, \ldots, p_{i-1}, p_i, \ldots$$

of approximations to a value p. If p is unknown, then the relative error in any current approximation p_i is approximated using the previous approximation p_{i-1} :

$$\left|\varepsilon_{a}\right| = \frac{\left|p_{i}-p_{i-1}\right|}{\left|p_{i}\right|} = \left|1-\frac{p_{i-1}}{p_{i}}\right|.$$

See (3.5) on page 57 of the 6th edition; page 60 of the 7th edition.

A **result** given on page 58 of 6th edition (page 61 of the 7th): if $|\varepsilon_a| < 0.5 \times 10^{-n}$, then the approximation p_i is accurate to at least n significant digits.

EXAMPLE 3.2 (pages 58-59 of the 6th edition; pages 61-62 of the 7th))

Compute a sequence of approximations to e^x using the first few terms in the infinite series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

For example, let

$$p_{1} = 1$$

$$p_{2} = 1 + x$$

$$p_{3} = 1 + x + \frac{x^{2}}{2}$$

$$p_{4} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6}$$

and so on.

Results using x = 0.5 (note that the true value $p = e^{0.5} = 1.648721\cdots$ is used to compute $|\mathcal{E}_t|$):

i	p_i	$\left \left \mathcal{\varepsilon}_t \right = \frac{\left e^{0.5} - p_i \right }{\left e^{0.5} \right } \right $	$\left \varepsilon_a \right = \frac{\left p_i - p_{i-1} \right }{\left p_i \right }$
1	1	0.393	
2	1.5	0.0902	0.333
3	1.625	0.0144	0.0769
4	1.645833	0.00175	0.0127
5	1.6484375	0.000172	0.00158
6	1.6486979	0.0000142	0.000158

Note that the value of $|\varepsilon_t|$, which can only be computed if you know the true (exact) answer p, indicates the number of correct significant digits in each computed approximation p_i : for example,

$$0.0144 < 5 \times 10^{-2}$$
 and $p_3 = 1.625$ has 2 correct significant digits $0.000172 < 5 \times 10^{-4}$ and $p_5 = 1.6484375$ has 4 correct significant digits

In practice, if a sequence of approximations $\{p_i\}$ to some <u>unknown</u> value p is computed using an iterative algorithm (we will use several such algorithms in this course), then the exact relative errors $|\varepsilon_i|$ cannot be computed. However, the relative error in each approximation p_i can be approximated by computing $|\varepsilon_a|$. As given in (3.6) and (3.7) on page 58 of the 6^{th} or page 61 of the 7^{th} ed. if $|\varepsilon_a| < 0.5 \times 10^{-n}$, then p_i is accurate to <u>at least</u> n significant digits. Note that this holds true for the results in the above table. For example, when i=6,

$$\left| \varepsilon_a \right| = 0.000158 < 0.5 \times 10^{-3}$$
,

implying that $p_6 = 1.6486979$ has at least 3 correct significant digits (in fact, it has 4).