Day: Wednesday

Date: 7/14/2004 Time: 11:31:02

. PALM INTRANET

Inventor Name Search Result

Your Search was:

Last Name = WATANABE First Name = TAKUYA

Application#	Patent#	Status	Date Filed	Title	Inventor Name 41				
10839643	Not Issued	019	05/05/2004	THIN FILM TRANSISTOR DEVICE AND METHOD OF MANUFACTURING THE SAME	WATANABE, TAKUYA				
10806780	Not Issued	030	03/23/2004	DISPLAY DEVICE AND METHOD FOR FABRICATING THE SAME	WATANABE, TAKUYA				
10771417	Not Issued	030	02/05/2004	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN, DNA AND ITS LIGAND	WATANABE, TAKUYA				
10745419	Not Issued	030	WATANABE, TAKUYA						
10719587	Not Issued	020	11/21/2003	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN, ITS DNA AND LIGAND THEREOF	WATANABE, TAKUYA				
<u>10467019</u>	Not Issued	030	08/01/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	WATANABE, TAKUYA				
10389914	Not Issued	041	03/18/2003	FIXING STRUCTURE	WATANABE, TAKUYA				
10344381	Not Issued	030	02/06/2003	USES OF POLYPEPTIDES	WATANABE, TAKUYA				
10333192	Not Issued			NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	WATANABE, TAKUYA				
10325603	Not Issued	041	12/19/2002	THIN FILM TRANSISTOR DEVICE AND METHOD OF MANUFACTURING THE SAME	WATANABE, TAKUYA				
10311019	Not	030	12/11/2003	LIGAND TO GPR8 AND DNA	WATANABE,				

	Issued			THEREOF	TAKUYA
10192075	Not Issued	030	07/11/2002	PREVENTIVE, ALLEVIATIVE OR REMEDY FOR HYPERTENSION	WATANABE, TAKUYA
10107057	6580406	150	03/28/2002	POWER CONTROLLING CIRCUIT IN PLASMA DISPLAY UNIT AND METHOD OF CONTROLLING POWER IN THE SAME	WATANABE, TAKUYA
10070334	Not Issued	030	07/12/2002	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
10070241	Not Issued	071	02/27/2002	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
10070240	Not Issued	061	02/27/2002	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
09927360	6707442	150	08/13/2001	DRIVING APPARATUS AND DRIVING METHOD OF LIQUID CRYSTAL DISPLAY APPARATUS	WATANABE, TAKUYA
09913770	Not Issued	071	08/17/2001	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
09901909	6458392	150	07/11/2001	PREVENTIVE, ALLEVIATIVE OR REMEDY FOR HYPERTENSION	WATANABE, TAKUYA
09868010	Not Issued	164	06/11/2001	G PROTEIN-COUPLED RECEPTOR PROTEIN	WATANABE, TAKUYA
09831758	Not Issued	161	05/11/2001	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN ITS DNA AND LIGAND THEREOF	WATANABE, TAKUYA
09830707	Not Issued	161	08/17/2001	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA
09830428	6699965	150	04/26/2001	PEPTIDES THAT ACTIVATE THE G-PROTEIN COUPLED RECEPTOR PROTEIN, OT7T175	WATANABE, TAKUYA

09806924	Not Issued	161	05/07/2001	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA	
09806258	Not Issued	161	03/28/2001	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND IT'S DNA	WATANABE, TAKUYA	
09799695	6502829	150	03/07/2001	GASKET-SQUEEZE CONSTRUCTION	WATANABE, TAKUYA	
09787879	Not Issued	061	03/22/2001	NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	WATANABE, TAKUYA	
09739789	Not Issued	083	12/20/2000	PLASMA DISPLAY PANEL DRIVE APPARATUS AND DRIVE METHOD	WATANABE, TAKUYA	
09713890	6376861	150	11/16/2000 THIN FILM TRANSISTOR AND METHOD FOR FABRICATING THE SAME		WATANABE, TAKUYA	
09477059	6255706	150	01/03/2000	THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING SAME	WATANABE, TAKUYA	
09380593	6287624	150	09/13/1999	FOODS CONTAINING FAT OR OIL	WATANABE, TAKUYA	
09176102	6236393	150	10/21/1998	INTERFACE CIRCUIT AND LIQUID CRYSTAL DRIVING CIRCUIT	WATANABE, TAKUYA	
<u>09173001</u>	6340961	150	10/15/1998	METHOD AND APPARATUS FOR DISPLAYING MOVING IMAGES WHILE CORRECTING FALSE MOVING IMAGE CONTOURS	WATANABE, TAKUYA	
09149128	5994717	150	09/08/1998	THIN-FILM TRANSISTOR AND METHOD FOR FABRICATING SAME AND LIQUID CRYSTAL DISPLAY DEVICE	WATANABE, TAKUYA	
08766725	5801147	150	12/13/1996	POLYPEPTIDES AND USE THEREOF	WATANABE, TAKUYA	
08749675	5846855			THIN-FILM TRANSISTOR AND METHOD FOR FABRICATING SAME AND LIQUID CRYSTAL DISPLAY DEVICE	WATANABE, TAKUYA	
07932455	5623050	150	08/18/1992	STABLE POLYPEPTIDES	WATANABE,	

				HAVING C-AMP PRODUCTION ENHANCING ACTIVITY AND THE USE THEREOF	TAKUYA
07912486	5340977	150	07/13/1992	SOLID-STATE IMAGE PICKUP DEVICE	WATANABE, TAKUYA
07732059	5208320	150	07/18/1991	A NOVEL POLYPEPTIDE HAVING C-AMP-PRODUCING ACTIVITY	WATANABE , TAKUYA
<u>07318638</u>	4876219	250	03/03/1989	METHOD OF FORMING A HETEROEPITAXIAL SEMICONDUCTOR THIN FILM USING AMORPHOUS BUFFER LAYERS	WATANABE , TAKUYA
07026900	4804560	150	03/17/1987		WATANABE , TAKUYA

Inventor Search Completed: No Records to Display.

Soonah Anothon, Inventor	Last Name	First Name	
Search Another: Inventor		TAKUYA	Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Day: Wednesday

Date: 7/14/2004 Time: 11:31:55

• PALM INTRANET

Inventor Name Search Result

Your Search was:

Last Name = TERAO First Name = YASUKO

Application#	Patent#	Status	Date Filed	Title	Inventor Name 15	
10771417	Not Issued	030	02/05/2004	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN, DNA AND ITS LIGAND	TERAO, YASUKO	
10719587	Not Issued	020	11/21/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN, ITS DNA AND LIGAND THEREOF	TERAO, YASUKO	
<u>10467019</u>	Not Issued	030	08/01/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	TERAO, YASUKO	
10433561	Not Issued	030	05/30/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS AND DNAS THEREOF	TERAO, YASUKO	
10362504	Not Issued	030	05/29/2003	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN	TERAO, YASUKO	
10333192	Not Issued	030	09/29/2003	NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	TERAO, YASUKO	
10296294	Not Issued	030	11/21/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO	
10070240	Not Issued	061	02/27/2002	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO	
09913770	9913770 Not Issued 07		08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO	
09831758	Not Issued	161	05/11/2001	NOVEL G PROTEIN COUPLED RECEPTOR PROTEIN ITS DNA AND LIGAND THEREOF	TERAO, YASUKO	
09830707	Not Issued	161	08/17/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO	
09830428	6699965	150	04/26/2001	PEPTIDES THAT ACTIVATE	TERAO, YASUKO	

			II .	THE G-PROTEIN COUPLED RECEPTOR PROTEIN, OT7T175	
09806924	Not Issued	161	1	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO
09806258	Not Issued	161		NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND IT'S DNA	TERAO, YASUKO
09787879	Not Issued	061	03/22/2001	NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA THEREOF	TERAO, YASUKO

Inventor Search Completed: No Records to Display.

Soorah Another Inventor	Last Name	First Name
Search Another: Inventor	TERAO	YASUKO Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Day: Wednesday

Date: 7/14/2004 Time: 11:32:08

• * PALM INTRANET

Inventor Name Search Result

Your Search was:

Last Name = SHINTANI First Name = YASUKO

Application#	Patent#	Status	Date Filed	Title	Inventor Name 1
09913770	Not Issued	071		NOVEL G PROTEIN- COUPLED RECEPTOR PROTEIN AND DNA THEREOF	SHINTANI, YASUKO

Inventor Search Completed: No Records to Display.

Sarush Amatham Immentan	Last Name	First Name	
Search Another: Inventor	SHINTANI	YASUKO	Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

FILE 'HOME' ENTERED AT 11:53:19 ON 14 JUL 2004

=> FIL MEDLINE SCISEARCH EMBASE BIOSIS COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST

0.21 0.21

FILE 'MEDLINE' ENTERED AT 11:53:29 ON 14 JUL 2004

FILE 'SCISEARCH' ENTERED AT 11:53:29 ON 14 JUL 2004 COPYRIGHT 2004 THOMSON ISI

FILE 'EMBASE' ENTERED AT 11:53:29 ON 14 JUL 2004 COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'BIOSIS' ENTERED AT 11:53:29 ON 14 JUL 2004 COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC.(R)

=> s hSLT

L1 18 HSLT

=> dup rem l1
PROCESSING COMPLETED FOR L1

L2 6 DUP REM L1 (12 DUPLICATES REMOVED)

=> d his

(FILE 'HOME' ENTERED AT 11:53:19 ON 14 JUL 2004)

FILE 'MEDLINE, SCISEARCH, EMBASE, BIOSIS' ENTERED AT 11:53:29 ON 14 JUL 2004

L1 18 S HSLT

L2 6 DUP REM L1 (12 DUPLICATES REMOVED)

=> d 12 1-6 ti ab au

L2 ANSWER 1 OF 6 MEDLINE on STN DUPLICATE 1

TI Gene expression in Escherichia coli biofilms.

AB DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p< or =0.05) compared to suspension cells, including several genes for the stress response (hslS, hslT, hha, and soxS), type I fimbriae (fimG), metabolism (metK), and 11 genes of unknown function (ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation. Copyright 2004 Springer-Verlag

L2 ANSWER 2 OF 6 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN ΤI Retention of nutritional quality of soybean during extrusion cooking. AB Trypsin inhibitor (TI) is one of the major anti-nutritional components of soybean and must be inactivated before its protein content can be safely and efficiently utilized for food and feed purposes. However, retention of the protein quality is also a prime consideration while inactivating TI. This research was conducted to study the effect of extrusion process conditions (temperature, screw speed and moisture content) on trypsin inhibitor activity (TIA) and nitrogen solubility index (NSI) and to develop a model for prediction of TI inactivation during extrusion cooking based on its reaction kinetics. A laboratory size single screw extruder was used for extrusion cooking of full-fat soybean implementing a (4X4X4)X2 full factorial design. TIA was measured using a standard procedure and NSI by AACC procedure. The reaction rate constant for loss of TIA was calculated based on its activation energy from literature and experimental TIA data. The statistical models correlating product temperature with operating conditions and activation energy were combined with mathematical equations for predicting TIA during the cooking process. TIA and NSI of the soybean (William 82 variety) were found to be 47.0 TIU mg-1 and 78% respectively. Trypsin inhibitor inactivation ranged from 90% of that of raw soybean at low screw speed (75 rpm) and high barrel temperature (170degreeC) (LSHT) to 50% for higher screw speed (150 rpm) and low barrel temperature (140degreeC) (HSLT). Reduction in NSI for similar extrusion conditions ranged from 95% at LSHT to 50% at HSLT of that of raw soybeans. Variations between predicted and measured TIA values were less than 1% for the given conditions. Results indicated that reduction in TIA and NSI occurred mainly in the compression and metering sections of the extruder and that they paralleled each other, thereby making it difficult to retain high NSI while inactivating TI. However, the efficiency of extrusion cooking for TI inactivation has been proved. The model can be used for determining optimum conditions for extrusion cooking of soybean for food and feed purposes. AU Khan, M.; Huff, H. E.; Hsieh, F. [Reprint Author]; Grebing, S.; Porter,

L2 ANSWER 3 OF 6 MEDLINE on STN

J.; Li, Y.

DUPLICATE 2

TI Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature.

AB The involvement of heat-inducible genes, including the heat-shock genes, in the acute response to temperature stress is well established. However, their importance in genetic adaptation to long-term temperature stress is less clear. Here we use high-density arrays to examine changes in expression for 35 heat-inducible genes in three independent lines of Escherichia coli that evolved at high temperature (41.5 degrees C) for 2,000 generations. lines exhibited significant changes in heat-inducible gene expression relative to their ancestor, including parallel changes in fkpA, gapA, and hslT. group, the heat-inducible genes were significantly more likely than noncandidate genes to have evolved changes in expression. Genes encoding molecular chaperones and ATP-dependent proteases, key components of the cytoplasmic stress response, exhibit relatively little expression change; whereas genes with periplasmic functions exhibit significant expression changes suggesting a key role for the extracytoplasmic stress response in the adaptation to high temperature. Following acclimation at 41.5 degrees C, two of the three lines exhibited significantly improved survival at 50 degrees C, indicating changes in inducible thermotolerance. Thus evolution at high temperature led to significant changes at the molecular level in heatinducible gene expression and at the organismal level in inducible thermotolerance and fitness.

Riehle Michelle M; Bennett Albert F; Lenski Richard E; Long Anthony D

- L2 ANSWER 4 OF 6 SCISEARCH COPYRIGHT 2004 THOMSON ISI on STN
- TI DEFECTS IN PLASTICALLY DEFORMED SEMICONDUCTORS STUDIED BY POSITRON-ANNIHILATION SILICON AND GERMANIUM
- This paper is concerned with positron-annihilation studies in floating-zone AΒ silicon, which has been plastically deformed under high-stress and lowtemperature conditions (HSLT). Positron lifetime spectra were decomposed into three components by means of the trapping model. Two defect-related lifetimes were found to be constant (tau2 = 300 ps and tau3 = 590 ps); they are constant during annealing. They are attributed to positron capture and annihilation by dislocation states (tau2) and microvoids (tau3). The microvoids (vacancy clusters) consist of at least ten vacancies. According to the model of diffusion-limited positron trapping, an upper limit of the microvoid concentrations is estimated. A pronounced increase of the microvoid-related trapping rate was observed after 600-degrees-C annealing of samples macroscopically deformed in the HSLT step. The positron capture to dislocations is also described as diffusion limited and the dislocation densities obtained agree satisfactorily with densities measured by transmission electron microscopy. Nonconservative dislocation motion and relaxation (jog dragging) during annealing is proposed as an efficient vacancy-generation process. Similar clustering effects were observed for HSLT-deformed high-purity germanium at appropriately lower temperatures. The characteristic defect-related positron lifetimes in Ge are determined to be tau2 = 325 ps and tau3 = 520 ps for dislocations and microvoids, respectively.
- AU KRAUSEREHBERG R (Reprint); BROHL M; LEIPNER H S; DROST T; POLITY A; BEYER U; ALEXANDER H
- L2 ANSWER 5 OF 6 MEDLINE on STN DUPLICATE 3
- TI Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli.
- Sequences of four new heat-shock (HS) genes of Escherichia coli organized into AB two operons were determined. The operon at 83 min specifies two proteins of 15.8 kDa (HslT) and 16.1 kDa (HslS), which are identical to IbpA and IbpB, respectively. Expression of mRNA from a sigma 32-dependent promoter of the hslTS/ibpAB operon is stimulated 30-75-fold upon temperature upshift. transcription start point (tsp) is located at a G, 96 bp upstream from the AUG start codon of hslT /ibpA. The deduced amino acid sequences of HslT/IbpA and HslS/IbpB are 48% identical to each other and were found to be remotely related to the chloroplast low-molecular-weight HS protein, which is highly conserved among plants. The second hs operon is much less actively stimulated by temperature upshift, although it has a hs promoter that perfectly matches the consensus of promoters recognized by sigma 32. Located at 88.9 min, the hslVU operon specifies proteins of 19.1 kDa (HslV) and 49.6 kDa (HslU). Multiple tsp were found in this operon. HslV is remotely related to the eukaryotic proteasome proteins, and HslU is very similar to a Pasteurella haemolytica protein of unknown function. Both HslU and the P. haemolytica protein share a ATP/GTP-binding motif near their N-termini. The two operons described here are transcribed counterclockwise on the standard genetic map. ΑU Chuang S E; Burland V; Plunkett G 3rd; Daniels D L; Blattner F R
- L2 ANSWER 6 OF 6 MEDLINE on STN DUPLICATE 4
- TI The relationship between antidiuretic hormone and plasma or urine osmolalities during water restriction test and hypertonic saline loading test in normal children--a change in the apparent tubular response to AVP during these two tests.
- AB We present here the results of water restriction test (WRT) and hypertonic saline loading test (HSLT) in normal children. Maximal urine osmolality during WRT (W-Umax; 1040 +/- 154 mOsm/kg) may be age-dependent (W-Umax = 812 + 23*age, r = 0.52, p < 0.05), although maximal arginine vasopressin (AVP) levels during WRT did not show any correlation with age. The relationship

between plasma osmolality (Posm) and AVP during HSLT in children (AVP = 0.31* (Posm-277)) was similar to that in normal adults. A plateau urine osmolality during HSLT (H-Umax) was 713 +/- 109 mOsm/kg. It did not increase with age. AVP levels 3 h after the infusion did not correlate with age. Minimal AVP and Posm values (about 6 pg/ml, 295 mOsm/kg, respectively) for creating H-Umax apparently existed during HSLT. The minimal AVP value (about 6 pg/ml) for H-Umax (during HSLT) was higher than the AVP levels (2.41 +/- 1.37 pg/ml) at W-Umax (during WRT). W-Umax (1040 +/- 154 mOsm/kg) was significantly higher than H-Umax (713 +/- 109 mOsm/kg). Judging from the above comparison of AVP and Uosm (W, H-Umax) at the plateau state of WRT and HSLT in normal children, a change in the apparent tubular response to AVP may be one of the important factors to maintain circulatory volume (CV).

AU Hasegawa Y

=>

---Logging off of STN---

=>

Executing the logoff script...

=> LOG Y

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 59.81 60.02

FULL ESTIMATED COST

STN INTERNATIONAL LOGOFF AT 11:55:47 ON 14 JUL 2004

L Number	Hits	Search Text	DB	Time stamp
1	62	watanabe-takuya.in. or terao-yasuko.in. or shintani-yasuko.in.	USPAT; US-PGPUB; EPO; DERWENT	2004/07/14 11:46
4	15	hSLT	USPAT; US-PGPUB; EPO; DERWENT	2004/07/14 11:47

East Search 14 July 2004

Method for screening mch receptor antagonist/agonist	r arrays 702/20	Method for high-density microarray mediated gene expression profiling 435/6	Cellular arrays for the identification of altered gene expression 435/6 435/471	Hydraulic motor having multiple speed ratio capability 418/61.3	Cellular arrays for the identification of altered gene expression 435/6 435/29	Anti cavitation system for two-speed motors 418/61.3 418/1	Method for high-density microarray medicated gene expression profiling 435/6 435/252.31; 435/252.32; 435/252.33; 435/252.34; 435/252.5; 435/5: 435/91.1: 435/91.2: 536/23.1: 536/24.3: 536/24.3:	Hydraulic motor having multiple speed ratio capability 418/61.3 418/60	Vacuum latchtack throat plate with a vacuum generating apparatus 112/260 112/287; 112/288; 112/DIG.1	Aligning device for sleeve (112/470.05; 112/470.05; 112/470.07; 112/475.03; 112/475.07	Two-speed valve-in star motor 418/57 418/133; 418/186; 418/61.3	On-line monitoring of steam turbine performance 700/287 376/211; 376/217; 376/245; 376/259	ed val c mot s fluic
20040506	20040115	20040101	20031127	20020411	20040406	20040120	20030819	20030408	19970325	19921103	19871229	19750325	19880803 20020306
US-PGPUB	US-PGPUB	US-PGPUB	US-PGPUB	US-PGPUB	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	EPO WENT
US 20040086941 A1	US 20040009485 A1	US 20040002094 A1	US 20030219736 A1	US 20020041816 A1	US 6716582 B2	US 6679691 B1	US 6607885 B1	US 6544018 B2	US 5613454 A	US 5159874 A	US 4715798 A	US 3873817 A	EP 276680 A2 A2, A3, B1 EPO EP 1184573 A A2, A3DERWENT

Novel G protein-coupled receptor protein, its DNA and ligand thereof	435/320.1 435/325, 435/09.1, 330/330, 330/23.3 Novel g protein-coupled receptor protein 435/320.1 435/325, 435/69.1; 435/7.1; 514/12; 530/350	siologically active peptide and use thereof 5/320.1; 435/325; 435/69.1; 530/350; 530	Uses of polypeptides 514/12 514/44	Novel physiologically active peptide and use thereof 435/7.1 530/387.1	Novel g protein-coupled receptor protein and dna thereof 435/69.1 435/320.1; 435/325; 435/7.1; 530/350; 530/388.22; 536/23.5	Novel g protein-coupled receptor proteins and dnas thereof 435/7.1 435/320.1; 435/325; 435/69.1; 530/350; 530/388.22; 536/23.5	Fixing structure 220/200	Thin film transistor substrate and method of manufacturing the same 438/30 257/59; 257/E21.703; 257/E27.111; 438/151; 438/154	Thin film transistor device and method of manufacturing the same 257/59 257/72; 438/149; 438/48	Preventive, alleviative or remedy for hypertension 424/776 514/263.31	Power controlling circuit in plasma display unit and method of controlling power in the same 345/63	Driving apparatus and driving method of liquid crystal display apparatus 345/204	Preventive, alleviative or remedy for hypertension 424/776	METHOD AND APPARATUS FOR DISPLAYING MOVING IMAGES
					~)	6 1	10	4	₩.	6				
20040708	20040527	20040422	20040318	20040311	20040212	20040212	20030925	20030814	20030814	20021219	20021003	20020411	20020221	20020110
US-PGPUB 20040708	US-PGPUB 20040527		US-PGPUB 20040318	US-PGPUB 20040311	US-PGPUB 20040212	US-PGPUB 20040212	US-PGPUB 2003092	US-PGPUB 2003081	US-PGPUB 2003081	US-PGPUB 20021219	US-PGPUB 20021003	US-PGPUB 20020411	US-PGPUB 20020221	US-PGPUB 20020110

WHILE CORRECTING FALSE MOVING IMAGE CONTOURS 345/581	Gasket-squeeze construction 277/594	Plasma display panel drive apparatus and drive method 345/60 345/77	Driving apparatus and driving method of liquid crystal display apparatus 345/100 345/96	Peptides that activate the G-protein coupled receptor protein, 0T7T175 530/300 530/326; 530/327; 530/328	Power controlling circuit in plasma display unit and method of controlling power in the same	Gasket-squeeze construction 277/593 277/598	Preventive, alleviative or remedy for hypertension 424/725; 426/629	Thin film transistor and method for fabricating the same 257/59 257/350; 257/412; 257/72; 257/762; 257/763; 257/764; 257/765; 257/E21.19; 257/E21.703; 257/E27.111; 257/E29.147; 257/E29.151; 438/155	Method and apparatus for displaying moving images while correcting false moving image contours 345/63 84/690: 84/88: 84/89: 84/90	Foods containing fat or oil 426/601 426/601	n trans, 291;	Interface circuit and liquid crystal driving circuit 345/211 345/204; 345/98	n trans levice
	20010927	20010628	20040316	20040302	20030617	20030107	20021001	20020423	20020122	20010911	20010703	20010522	19991130
	US-PGPUB	US-PGPUB	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT	USPAT
	US 20010024019 A1	US 20010005188 A1	US 6707442 B2	US 6699965 B1	US 6580406 B2	US 6502829 B2	US 6458392 B1	US 6376861 B1	US 6340961 B1	US 6287624 B1	US 6255706 B1	US 6236393 B1	US 5994717 A

257/59 257/350; 257/61; 257/66; 257/72; 257/E21.414; 257/E29.117; 257/E29.299 USPAT 19981208 Thin-film transistor and method for fabricating same and liquid crystal display device 257/E29.117; 257/E29.299; 438/159	ides a	USPAT 19970422 Stable polypeptides having c-AMP production enhancing activity and the use thereof	ite ima	USPAT 19930504 Polypeptide having c-AMP-producing activity 530/324 530/326	USPAT 19891024 Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers 117/90 117/104; 117/105; 117/106; 117/953; 117/954; 148/DIG.154; 148/DIG.169; 148/DIG.25; 148/DIG.2; 148/DIG.97; 257/190; 257/63;	257/646; 257/E21.112; 257/E21.125; 438/483; 438/933 USPAT 19890214 Method of selectively depositing tungsten upon a semiconductor substrate 438/675 257/E21.171; 257/E21.295; 257/E21.586; 427/125;	epo 20031029 NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	EPO 20030917 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS AND DNAS	EPO 20030507 USE OF POLYPEPTIDE EPO 20030416 NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	EPO 20030319 LIGAND TO GPR8 AND DNA THEREOF EPO 20030108 NOVEL PROTEIN, DNA THEREOF AND PROCESS FOR PRODUCING THE
US 5846855 A US	US 5801147 A US	US 5623050 A US	US 5340977 A US	US 5208320 A US	US 4876219 A US	US 4804560 A US	EP 1357129 A2 EF	EP 1344823 A1 EF THEREOF	3 A1 2 A1	EP 1293567 A1 EF EP 1273658 A1 EF SAME

.04 RFRP-CONTAINING PROLACTIN SECRETION REGULATORY AGENT	19 NOVEL MOUSE TYPE KISS-1 RECEPTOR PROTEIN AND DNA THEREOF	15 NOVEL PHYSIOLOGICALLY ACTIVE PEPTIDE AND USE THEREOF	22 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA	.22 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA	22 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA		14 NOVEE G FROIEIN-COUPLED RECEFIOR FROIEIN AND DINA	04 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA		12 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN, ITS DNA AND	22 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS AND DNAS		.22 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEINS, DNAS THEREOF	08 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA	25 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA	25 NOVEL G PROTEIN-COUPLED RECEPTOR PROTEIN AND DNA				of them univaried having e-man producing activity.
20021204	20020919	20020815	20020522	20020522	20020522	20020116	20011114	20011004	20010926	20010912	20010822		20010822	20010808	20010725	20010725		20000112	10030303	2000
EPO	EPO	EPO	EPO	EPO	EPO	EPO	EFO	EPO	EPO	EPO	EPO	\$ \$	EPO O THE SAME	O THE SAME EPO	EPO	EPO	,	EPO	EPO	
EP 1262190 A1	WO 2072816 A1	WO 2062944 A2	EP 1207201 A1 THEREOF	EP 1207198 A1 THEREOF	EP 1207169 A1 THEREOF	EP 1172112 A2	EF 1133932 A1 THEREOF	EP 1138693 A1 THEREOF	EP 1136732 A2	EP 1132405 A1	EP 1126029 A1	THEREOF	EP 1126028 A1	EP 1122313 A1	EP 1118621 A1	I HEKEOF EP 1118620 A1	THEREOF	EP 970615 A1	EP 520487 A2	22 10+62C 12

122 Polypeptides having c-AMP producing activity 514/12 514/13 530/326 530/326	
EPO 19920122	198909
EPO	EPO
EP 467279 A2	EP 331467 A2 A2, A3, B1 EPO 19890906

•

•