MODELO PREDITIVO DE ENCARGOS MÉDICOS ANUAIS INDIVIDUAIS

Cintia Zago, Guilherme Machado, Rodrigo Vidal

cintiazago@gmail.com / 26guilhermemachado@gmail.com / rodrigo.vidal@fbsbrasil.com.br FIAP – Faculdade de Informática e Administração Paulista São Paulo, Brasil

Resumo — este documento apresenta a aplicação de dois modelos de aprendizado de máquina para prever o valor dos custos médicos anuais individuais de um determinado conjunto de dados. Diferentes técnicas de pré-processamento de dados foram realizadas para utilização dos algoritmos. Foram utilizados os modelos de regressão linear e árvore de decisão.

Keywords— python; machine learning; inteligência artificial;

I. Introdução

Nos últimos anos, encargos de planos de saúde tornou-se uma área de grande interesse tanto para empresas do setor médico quanto para pesquisadores. Com o aumento contínuo desses valores, é crucial desenvolver modelos que possam prever com precisão esses gastos, permitindo às pessoas uma melhor previsibilidade e gestão financeira. Este projeto tem como objetivo aplicar e comparar dois modelos de *machine learning* para prever os gastos de encargos médicos com base em um conjunto de dados que inclui atributos dos segurados, como idade, sexo, IMC, número de filhos e região.

II. GERAÇÃO E EXPLORAÇÃO DOS DADOS

Para fins de estudo, uma base de dados fictícia será gerada utilizando um algoritmo desenvolvido em Python. O código gera um arquivo .csv com determinado número de linhas definidas pelo usuário.

O conjunto de dados é gerado com os seguintes atributos: idade, gênero, IMC, fumante, quantidade de filhos, região e encargos (atributo *target*). Cada atributo tem o seu valor gerado aleatoriamente com base em uma faixa de valores pré-definidos pelo usuário. Dependendo do valor gerado, será aplicado certo peso fixo para os cálculos dos encargos.

A implementação do algoritmo gerador de dados foi baseado em pesquisas reais e que apresenta as correlações dos atributos com os cálculos dos encargos, sendo estes relacionados diretamente com a expectativa de vida, que por sua vez, é influenciada, por exemplo, pelo consumo do cigarro, faixa etária e IMC (Índice de Massa Corporal).

III. PRE-PROCESSAMENTO

A preparação dos dados é uma etapa crucial em qualquer projeto de *machine learning*, pois garante que os dados estejam em um formato adequado para os modelos serem aplicados.

Neste projeto realizamos várias operações de pré-processamento para tratar variáveis categóricas, normalizar os dados e lidar com valores ausentes (quando necessário). Abaixo, estão as principais etapas realizadas:

A. Label Encoding

Convertemos as variáveis categóricas 'gênero' e 'fumante' em valores numéricos, onde cada categoria é representada por um número inteiro.

B. One-Hot Encoding

Transformamos a variável categórica 'região' em múltiplas colunas binárias. Esta técnica é útil quando as categorias não possuem uma ordem intrínseca.

C. Normalização dos Dados

A normalização dos dados é essencial para garantir que todas as variáveis contribuem igualmente para o modelo de *machine learning*. Utilizamos a técnica de *Min-Max Scaling* para normalizar os dados numéricos, escalando-os para um intervalo de 0 a 1.

D. Tratamento de Valores Ausentes

Valores ausentes podem afetar o desempenho dos modelos de *machine learning*. Utilizamos o *SimpleImputer* para preencher valores ausentes com a mediana das respectivas colunas, garantindo que os dados estejam completos.

Essas etapas de pré-processamento garantem que os dados estejam adequadamente preparados para aplicação dos modelos de *machine learning*, melhorando a qualidade das previsões.

IV. APLICAÇÃO DOS MODELOS

Nesta seção, descreveremos os modelos de *machine learning* aplicados para prever os encargos médicos. O primeiro modelo que utilizamos foi a Regressão Linear.

Para avaliar a performance dos modelos de *machine learning*, é essencial separar os dados em dois conjuntos: um para treino e outro para teste. A função *train_test_split* da biblioteca *scikit-learn* facilita esta divisão. Ela recebe como entrada o conjunto de dados completo e retorna dois subconjuntos: um para treinar o modelo (*training set*) e outro para avaliar sua performance (*testing set*)¹.

Utilizar esta função é crucial porque evita que o modelo seja avaliado nos mesmos dados nos quais foi treinado, o que levaria a uma superestimação da sua capacidade preditiva. Neste projeto, os dados foram divididos em 80% para treino e 20% para teste. Essa proporção é comum e geralmente oferece um bom equilíbrio entre ter dados suficientes para treinar o modelo e dados suficientes para avaliar sua performance.

A. Regressão Linear

A Regressão Linear é um dos modelos mais simples de *machine learning*. Ela assume que existe uma relação linear entre as variáveis independentes (atributos) e a variável dependente (*target*). A biblioteca Python *scikit-learn* possui a classe *LinearRegression* que foi utilizada para este projeto.

B. Árvore de Decisão

A Árvore de Decisão é um modelo que divide os dados em subconjuntos com base em uma série de perguntas de verdadeiro/falso sobre os atributos, resultando em uma estrutura semelhante a uma árvore. É um modelo intuitivo e fácil de interpretar. Utilizamos a biblioteca scikit-learn, que possui a classe DecisionTreeRegressor; para treinar o modelo.

V. AVALIAÇÃO DOS MODELOS

Para avaliar os modelos, utilizamos várias métricas, incluindo o Erro Médio Quadrático (MSE), o Erro Absoluto Médio (MAE), o coeficiente de determinação (R²), e o Erro Percentual Absoluto Médio (MAPE). Estas métricas nos ajudam a entender a precisão e a eficiência dos modelos na previsão dos encargos médicos.

RESULTADOS DA REGRESSÃO LINEAR

Métrica	Resultado
MAE	2627.2511
R ²	0.5923
MAPE	62.25%
MSE	3585.83

RESULTADOS DA ÁRVORE DE DECISÃO

Métrica	Resultado
MAE	696.3760
R ²	0.9533
MAPE	11.6351%
MSE	1213.95

O coeficiente de determinação varia entre 0 e 1, onde valores próximos a 1 indicam um modelo que explica bem a variabilidade dos dados.

De acordo com os gráficos de dispersão abaixo, pode-se identificar que ao utilizar-se o modelo de Regressão Linear, os valores reais e previstos possuem maior discrepância em relação ao resultado obtido utilizando-se o modelo e Árvore de Decisão, o que pode ser visto ao identificar que os pontos azuis (que indicam valores reais) e os pontos vermelhos (que indicam os valores previstos) pouco se encontram no primeiro gráfico.

Gráfico de Dispersão gerado pela Regressão Linear

Gráfico de Dispersão gerado pela Árvore de Decisão

VI. Conclusão

Os resultados indicam que a Regressão Linear tem uma capacidade moderada de explicar a variabilidade nos encargos médicos individuais de planos de saúde, com um coeficiente de determinação de 0.5923. No entanto, os valores relativamente altos de MAPE e MAE sugerem que o modelo pode não ser muito preciso para algumas observações.

Os resultados para a Árvore de Decisão são significativamente melhores, com um coeficiente de determinação de 0.9533, indicando uma capacidade muito alta de explicar a variabilidade nos dados. Os valores baixos de MAPE e MAE sugerem que o modelo é bastante preciso na predição dos gastos.

Assim, concluímos que:

- 1. A Regressão Linear pode ser mais simples e interpretável, mas pode não capturar relações não lineares nos dados
- 2. A Árvore de Decisão pode capturar essas relações complexas, mas pode ser mais suscetível a *overfitting*, especialmente se a profundidade não for limitada.

Referências

- [1] Documentação oficial: scikit-learn.. Disponível em https://scikit-learn.org/stable/modules/generated/sklearn.model selection.train_test_split.html>. Acesso em: 19 de maio de 2024.
- [2] Introduction to Machine Learning with Python. A guide for data scientists. Andreas C. Muller, Sarah Guido. O'Reilly