

ELECTRÓNICA DIGITAL III

Trabajo Práctico Final: Modelado de un ascensor con LPC1769

Integrantes:

→ FISSORE, Lorenzo

→ NAVARRO, Matias Alejandro

Grupo Nº: 7

Carrera: Ing. en computación

Profesor: Ing.Ayarde, Martin

Fecha: 20 de noviembre de 2018

INDICE

DESCRIPCION DEL PROYECTO	3
DIAGRAMA FUNCIONAL	4
CIRCUITO TOPOLÓGICO	4
REQUERIMIENTOS	5
MODULOS UTILIZADOS	5
LISTA DE COMPONENTES ELECTRONICOS UTILIZADOS	5
CÁLCULOS	6
Polarización de transistores	6
Timers	6
Baudrate	7
ADC	7
CONEXIONES	8
DESCRIPCION DETALLADA	8
BIBLIOGRAFIA	10
ANEXOS	11
Datasheet Driver A4988	11
Datasheet Motor Paso a Paso KH42IM2B	14

DESCRIPCION DEL PROYECTO

En el siguiente proyecto, se lleva a cabo el *"Modelado de un Ascensor"* implementado con la LPC1769 y programado en C utilizando la librería de CMSIS.

El comportamiento del mismo es similar al de un ascensor real que cuenta con 3 pisos (PB (0), 1, 2), con alarma y parada de emergencia. Está implementado con un motor paso a paso (para el funcionamiento del mismo se utilizó el driver A4988 para controlarlo) que es el encargado de posicionar la cabina en el piso adecuado en función de un valor obtenido mediante ADC previamente calibrado. El tablero del ascensor es simulado mediante un teclado matricial 4x4 los cuales se utilizan las teclas numéricas para indicar el piso deseado, y las teclas (*) para el encendido de la alarma y (#) para la parada de emergencia.

También cuenta con LEDs que indican si el ascensor está subiendo, bajando o si ocurrió una parada de emergencia y un display 7 segmentos para indicar en que piso se encuentra actualmente. Se simula una cabina de control (mediante un PC) donde se transmiten datos por puerto serie (UART) del estado del ascensor constantemente.

DIAGRAMA FUNCIONAL

CIRCUITO TOPOLÓGICO

REQUERIMIENTOS

- Debe tener 3 pisos.
- Debe tener un tablero de llamada y muestra del piso en el que se encuentra junto con un indicador de dirección del movimiento.
- Debe tener una cabina, en la cual tenga el llamado a cualquiera de los 3 pisos,
 además de una parada de emergencia y una alarma sonora.
- Debe enviar información a una estación que se encuentra fuera de la cabina.

Utilizar un motor con control o motor paso a paso.

Un potenciómetro multivuelta conectado al ADC para dar precisión a la posición.

La lógica de funcionamiento debe ser acorde a uno real.

MODULOS UTILIZADOS

- Timer0
- ADC
- UART
- PWM
- GPIO

LISTA DE COMPONENTES ELECTRONICOS UTILIZADOS

- Motor paso a paso KH42JM2B
- Driver A4988
- Teclado matricial 4x4
- Módulo CP2102 (UART)
- Transistor PNP BC327
- Preset multivueltas 10ΚΩ
- Leds varios (rojo,azul,verde)
- Buzzer
- Display 7 segmentos
- Resistencias varias (220Ω, 10ΚΩ)

CÁLCULOS

Polarización de transistores

Timers

Al periférico del TimerO, se le asignó un clock de 25MHz. En base a esto se procedió a realizar los cálculos necesarios para determinar el valor que se le debe asignar al Match Register (MRO) del TimerO, para que el mismo interrumpa cada 3 segundos y la misma apague la alarma activada.

$$\frac{1}{25 \text{ MHz}} = 40 \text{ ns}$$
 $MR0 = \frac{TiempoDeseado}{40 \text{ ns}} = \frac{3 \text{ seg}}{40 \text{ ns}} = 75000000$

Baudrate

$$UART3_{baudrate} = \frac{PCLK}{16 * (256 * U0DLM + U0DLL) * \left(1 + \frac{DivAddVal}{MulVal}\right)}$$

Para poder calcular que valores se deben cargar a los registros DLM y DLL para obtener un baudrate de 9600.

ADC

El clock del ADC se configuró cumpliendo con lo especificado en el respectivo manual de usuario, es decir, que sea menor que 13 Mhz. Por lo tanto, al mismo se le asignó una Pclok_ADC = 12,5 Mhz. El período del ADC se calcula siguiendo la fórmula:

$$Frecuencia de muestro = \frac{Frecuencia de funcionamiento}{64} = 195,31 \, KHz$$

Período de muestreo =
$$\frac{1}{Frecuencia de muestro}$$
 = 5,12 μ s

CONEXIONES

DESCRIPCION DETALLADA

El proyecto una vez encendido, realiza primeramente una calibración de piso obteniendo 5 mediciones continuas del ADC para realizar un promedio y definir a partir de ello los valores correspondientes a los pisos.

Cuando se presiona el piso por primera vez, comienza el movimiento del ascensor hacia el piso destino si es una tecla de piso valida (es decir, que si el ascensor está en el piso 0 y se presiona el piso 0, el mismo no hará nada) y si luego se presiona otra tecla de piso mientras el ascensor está en movimiento el piso correspondiente es guardado en una memoria. Luego de llegar al piso destino que se cargo al principio, el ascensor realiza un tiempo de espera para luego ir al segundo piso destino.

Si la tecla de parada de emergencia se presiona mientras el ascensor está el movimiento, el mismo se detiene y enciende la luz de emergencia. Una vez detenido, no vuelve a moverse

hasta que no se presione una de las teclas de piso.

Si la tecla de alarma es presionada, enciende la alarma y el timer para que el mismo la detenga en 3 segundos. Pero no detiene el movimiento del ascensor.

Constantemente, el LPC1769 envía por puerto serie (UART) el estado del ascensor, indicando en que piso se encuentra, si se presionó la alarma o si se presionó la parada de emergencia.

BIBLIOGRAFIA

- Cortex-M3 Technical Reference Manual
- Datasheet Driver A4988
- Datasheet Motor Paso a Paso

ANFXOS

Datasheet Driver A4988

DMOS Microstepping Driver with Translator And Overcurrent Protection

Features and Benefits

- Low R_{DS(ON)} outputs
- Automatic current decay mode detection/selection
- Mixed and Slow current decay modes
- Synchronous rectification for low power dissipation
- Internal UVLO
- Crossover-current protection
- 3.3 and 5 V compatible logic supply
- Thermal shutdown circuitry
- Short-to-ground protection
- Shorted load protection
- Five selectable step modes: full, 1/2, 1/4, 1/8, and 1/16

Package:

Description

The A4988 is a complete microstepping motor driver with built-in translator for easy operation. It is designed to operate bipolar stepper motors in full-, half-, quarter-, eighth-, and sixteenth-step modes, with an output drive capacity of up to 35 V and ±2 A. The A4988 includes a fixed off-time current regulator which has the ability to operate in Slow or Mixed decay modes.

The translator is the key to the easy implementation of the A4988. Simply inputting one pulse on the STEP input drives the motor one microstep. There are no phase sequence tables, high frequency control lines, or complex interfaces to program. The A4988 interface is an ideal fit for applications where a complex microprocessor is unavailable or is overburdened.

During stepping operation, the chopping control in the A4988 automatically selects the current decay mode, Slow or Mixed. In Mixed decay mode, the device is set initially to a fast decay for a proportion of the fixed off-time, then to a slow decay for the remainder of the off-time. Mixed decay current control results in reduced audible motor noise, increased step accuracy, and reduced power dissipation.

Continued on the next page ...

Typical Application Diagram

Description (continued)

Internal synchronous rectification control circuitry is provided to improve power dissipation during PWM operation. Internal circuit protection includes: thermal shutdown with hysteresis, undervoltage lockout (UVLO), and crossover-current protection. Special power-on sequencing is not required.

The A4988 is supplied in a surface mount QFN package (ES), 5 mm \times 5 mm, with a nominal overall package height of 0.90 mm and an exposed pad for enhanced thermal dissipation. It is lead (Pb) free (suffix -T), with 100% matter tin plated leadframes.

ELECTRICAL CHARACTERISTICS 1 at TA = 25°C, VBB = 35 V (unless otherwise noted)

Characteristics	Symbol	Test Conditions	Min.	Typ. ²	Max.	Units	
Output Drivers							
Load Supply Voltage Range	V _{BB}	Operating	8	_	35	V	
Logic Supply Voltage Range	V _{DD}	Operating	3.0	-	5.5	V	
0.4-40-B	R _{DSON}	Source Driver, I _{OUT} = -1.5 A	_	320	430	mΩ	
Output On Resistance		Sink Driver, I _{OUT} = 1.5 A	_	320	430	mΩ	
B-4-Bi-4-E	.,	Source Diode, I _F = -1.5 A	_	-	1.2	V	
Body Diode Forward Voltage	V _F	Sink Diode, I _F = 1.5 A	_	-	1.2	V	
M-1 81- 81		f _{PWM} < 50 kHz	_	-	4	mA	
Motor Supply Current	IBB	Operating, outputs disabled	_	-	2	mA	
Logic Supply Current		f _{PWM} < 50 kHz	_	-	8	mA	
Logic Supply Current	I _{DD}	Outputs off	_	-	5	mA	
Control Logic							
Logic Input Voltage	V _{IN(1)}		V _{DD} ×0.7	-	-	V	
Logic input voltage	V _{IN(0)}		_	-	V _{DD} ×0.3	V	
Logic Input Current	I _{IN(1)}	$V_{IN} = V_{DD} \times 0.7$	-20	<1.0	20	μA	
Logic input Current	I _{IN(0)}	$V_{IN} = V_{DD} \times 0.3$	-20	<1.0	20	μA	
	R _{MS1}	MS1 pin	_	100	-	kΩ	
Microstep Select	R _{MS2}	MS2 pin	_	50	-	kΩ	
	R _{MS3}	MS3 pin	-	100	-	kΩ	
Logic Input Hysteresis	V _{HYS(IN)}	As a % of V _{DD}	5	11	19	96	
Blank Time	t _{BLANK}		0.7	1	1.3	μs	
Fixed Off-Time	toff	OSC = VDD or GND	20	30	40	μs	
Fixed Oil-Time		$R_{OSC} = 25 k\Omega$	23	30	37	μs	
Reference Input Voltage Range	V _{REF}		0	-	4	V	
Reference Input Current	I _{REF}		-3	0	3	μA	
	err _l	V _{REF} = 2 V, %I _{TripMAX} = 38.27%	-	-	±15	96	
Current Trip-Level Error ³		V _{REF} = 2 V, %I _{TripMAX} = 70.71%	-	-	±5	%	
		V _{REF} = 2 V, %I _{TripMAX} = 100.00%	_	-	±5	96	
Crossover Dead Time	t _{DT}		100	475	800	ns	
Protection							
Overcurrent Protection Threshold ⁴ I _{OCPST}			2.1	-	-	Α	
Thermal Shutdown Temperature			_	165	-	°C	
Thermal Shutdown Hysteresis	T _{TSDHYS}		_	15	-	°C	
VDD Undervoltage Lockout	V _{DDUVLO}	V _{DD} rising	2.7	2.8	2.9	V	
VDD Undervoltage Hysteresis	V _{DDUVLOHYS}		_	90	-	mV	

¹For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions*	Value	Units
Package Thermal Resistance	$R_{\theta JA}$	Four-layer PCB, based on JEDEC standard	32	°C/W

^{*}Additional thermal information available on Allegro Web site.

²Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual units, within the specified maximum and minimum limits.

³V_{ERR} = [(V_{REF}/8) - V_{SENSE}] / (V_{REF}/8).

⁴⁰vercurrent protection (OCP) is tested at T_A = 25°C in a restricted range and guaranteed by characterization.

Time Duration	Symbol	Тур.	Unit
STEP minimum, HIGH pulse width	t _A	1	μs
STEP minimum, LOW pulse width	t _B	1	μs
Setup time, input change to STEP	tc	200	ns
Hold time, input change to STEP	t _D	200	ns

Figure 1. Logic Interface Timing Diagram

Table 1. Microstepping Resolution Truth Table

MS1	MS2	MS3	Microstep Resolution	Excitation Mode	
L	L	L	Full Step	2 Phase	
Н	L	L	Half Step	1-2 Phase	
L	Н	L	Quarter Step	W1-2 Phase	
Н	Н	L	Eighth Step	2W1-2 Phase	
Н	Н	Н	Sixteenth Step	4W1-2 Phase	

Datasheet Motor Paso a Paso KH42JM2B

2-Phase Hybrid Stepping Motor 1.8° KH42 series

HIGH TORQUE, LOW VIBRATION AND LOW NOISE

■ STANDARD SPECIFICATIONS

		KH42JM2				
MODEL	SINGLE SHAFT		-902	-903	-951	
	DOUBLE SHAFT	-911	-912	-913	-961	
DRIVE METHOD			UNI-POLAR		BI-POLAR	
NUMBER OF PHASES			2		2	
STEP ANGLE	deg./step		1.8		1.8	
VOLTAGE	٧	3.42	4.4	9.25	4.59	
CURRENT	A/PHASE	1.2	0.88	0.5	0.85	
WINDING RESISTANCE	Ω/PHASE	2.85	5.5	18.5	5.4	
INDUCTANCE	mH/PHASE	2.5	5.1	16.3	9.3	
HOLDING TORQUE	mN · m	236	236	236	314	
	oz · in	33	33	33	44	
DETENT TORQUE	mN · m	14.7	14.7	14.7	14.7	
	oz · in	2.1	2.1	2.1	2.1	
ROTOR INERTIA	g · cm²	56	56	56	56	
	oz · in²	0.3	0.3	0.3	0.3	
WEIGHTS	g	260	260	260	260	
	lb	0.57	0.57	0.57	0.57	
INSULATION CLASS		JIS Class E (120°C 248° F) (UL VALUE : CLASS B-130°C 266° F)				
INSULATION RESISTANCE		500VDC 100MΩmin.				
DIELECTRIC STRENGTH		500VAC 50HZ 1min.				
OPERATING TEMP. RANGE	TC	0 to 50				
ALLOWABLE TEMP. RISE	K	70				

■ DIMENSIONS unit = mm (inch)

Features

- Improved Dynamic Torque

 (1.2 times torque of our previous model is generated at 300 r/min, on model: KH42JM2-901)
- Lowered Vibration & Noise Level (by increased stiffness of body construction)
- Improved Efficiency

 (1.1 times of our previous model, by high grade materials.)

■ TORQUE CHARACTERISTICS vs. PULSE RATE

UNI-POLAR

BI-POLAR

KH42JM2-902, 912

■ CONNECTION DIAGRAMS

■ CONNECTION CABLE TO MOTOR unit = mm (inch)

