清华大学本科生考试试题专用纸 ☆A☆卷

考试课	程 : 复变函数	<u>:引论</u> (闭卷, ;	满分70分)	考试时间: 2011 ²	年1月5日下午2:30	-4:30
系别	班号_	学号_		_ 姓名	考试教室	/ 教
<u>注意:</u>	选择题、填空	题直接答于词	【卷,其余题	目答在专用答题	纸上,且注明题号	<u>=</u> • c
					ī一个正确答案,持 接打√或×视为无效	
不可能	取到的是:	平面C内一条 ² C. $\frac{i\pi}{2}$;		的Jordan闭曲线	, 则下面值中,∳ _{C (z-}	$\frac{z}{+i)(z-i)^2}dz$
	_	向圆周: $x^2 + y^2 - 8\pi i$; C.	00			
		医函数中,在复 $\overline{z}(z)\sqrt{ Im(z) };$		不可导的是: $\overline{Im(z) }; \mathrm{D.}\;(z-$	$1)^2 \arg z$.	
取0且在	E单位圆周∂D	上恒等于4,则	下列表达式中		盘 \overline{D} 上连续,若 $(f(z)$ D. $f''(0) = 0$.) ² 在D内恒不
	_			$(z^2 - y^3)(z = x + iy)$ D. $-iz^3 + c$.	确定的解析函数 $f($	$z) = u + iv \mathbf{\xi}$:
		函数 $f(z)$ 满足lin C3; 1		$=-9$,则 $\lim_{z o 0}Re($ 。	(f(z))为:	
		则实积分 $\int_0^{2\pi} \frac{1}{a^2+1}$; C.				
得分[、填空 题(5小	题7个空,每	个空3分,共21分	})	
1、z = 0 奇点)。	是 $f(z)$ 的2级 $rac{z}{2}$	> 点,则 $z = 0$ 是	$\stackrel{\underline{\mathbf{d}}}{=} \frac{\sin^2 z}{(f(z))^3} \stackrel{\underline{}}{=} \underline{}$			(要求填何种

- 2、设 $f(z) = \frac{z^n + 1}{(z+1)(z^n 1)}$,其中n为正整数,则 $Res[f(z), \infty] = \underline{\hspace{1cm}}$ 。

- 5、 $\sin \frac{1}{1-z-z^2}$ 在 $z_0 = 0$ 的Taylor展开式是 $\sum_{n=0}^{\infty} c_n z^n$,则此幂级数收敛半径为_____。

三、分析与计算题(3小题,共23分,注意:每题要有必要的分析与计算过程,只写答案没有过程不给分)

- 1、(7分) 设f(z)为整函数,若f(0) = A及f'(0) = B,计算积分 $I = \int_0^{2\pi} f(4e^{i\theta}) \cos^2 \frac{\theta}{2} d\theta$.
- 2、(7分)设 $f(z) = z \sinh \frac{z}{z-1}$,计算积分

$$I = \frac{1}{2\pi i} \oint_{|z|=2} f(z) dz,$$

并说明 ∞ 是函数f(z)的何种奇点。

3、(9分) 判断幂级数 $\sum_{n=1}^{+\infty} \frac{z^{2n}}{2n}$ 的收敛半径R,并求出其在|z| < R内和函数f(z)及和函数的导数函数f'(z).

四、分析证明题(5分)

设f(z)在z = 0的某个空心邻域 $B = \{z \in \mathbb{C} : 0 < |z| < R\} \ (R > 0)$ 内解析且以z = 0为奇点,已知存在复数列 $\{z_n\}_{n=0}^{\infty} \subset B$ 满足下列条件(1)(2)(3):

(1)
$$\lim_{n\to\infty} z_n = 0$$
, (2) $\lim_{n\to\infty} f'(z_n) = 1$, $\not \Sigma$ (3) $f(z_n) \equiv 2$, $\not \nabla \forall n \in \mathbb{N}$,

试判断z = 0为f(z)的何种孤立奇点,并证明你的结论。

- 1. 请在交卷前仔细检查试卷和专用答题纸上自己的姓名、学号以及考试教室等信息是否已经完整填写;
- 2. 考试结束时,请将本试卷正面朝外沿竖中线折叠,然后同稿纸一道夹在专用答题纸里一并上交。