实验四 直流电机转速控制实验

1 实验目的

- (1) 掌握数字 PID 控制的设计方法:
- (2) 考虑计算过程所需时间, 合理设计程序结构。

2 实验电路

2.1 实验装置硬件说明

电机控制实验箱的原理框图如图 1 所示。

图 1 电机控制实验箱原理框图

从图 1 可知,控制电机需要两个信号,分别为方向控制和转速控制,控制信号经过驱动电路后驱动电机运转,在电机的轴上安装有塑料转盘,转盘上装有小磁铁,当电机运动时带动小磁铁运动,每个小磁铁经过安装的霍尔传感器后,霍尔传感器都会输出一个脉冲信号,这个脉冲信号在实验中用于检测电机的转速。

电机有两种控制方式,即手动方式和自动方式。在手动方式时,可以通过开 关来控制电机方向;通过旋转电位器可以控制电机速度。在自动方式时,通过程 序来控制电机的方向和转速。

2.2 实验装置接口说明

控制系统与电机实验箱通过 DB9 插头连接, 其接口定义如表 1 所示。

DB9 引脚号	颜色	标号	信号特性	信号类型	信号方向
					(对实验箱而言)
1	棕	DIR	方向控制	数字量	输入
2	红	PWM	转速控制	数字量	输入
3	橙				
4	黄				
5	绿	GND	电源地	地	

表 1 电机实验箱 DB9 插头引脚信号特性

6	搤	OUTA	霍尔器件 A 输出	数字量	输出
7	灰	OUTB	霍尔器件 B 输出	数字量	输出
8	白				
9	黑				

3 PID 控制算法简介

3.1 增量式 PID 算法

增量式 PID 输出表达式为:

$$\Delta p_n = \left[(e_n - e_{n-1}) + \frac{T_s}{T_t} e_n + \frac{T_D}{T_s} (e_n - 2e_{n-1} + e_{n-2}) \right] \tag{1}$$

$$= K_p(e_n - e_{n-1}) + K_I e_n + K_D(e_n - 2e_{n-1} + e_{n-2})$$

其中:

 K_P 、 T_I 、 T_D :分别为调节器比例系数、积分时间和微分时间

T。: 采样周期

p,:第n次采样时调节器的输出

 e_n :第n次采样时的偏差值

 $K_{\rm I}$ 、 $K_{\rm D}$: PID控制算式的积分和微分系数

采用归一化参数整定法,即:

$$T_s = 0.1T_K$$
 $T_L = 0.5T_K$ $T_D = 0.125T_K$

 T_{κ} 为纯比例下的临界振荡周期,带入式(1)得:

$$\Delta p_n = K_p * (2.45e_n - 3.5e_{n-1} + 1.25e_{n-2})$$
 (2)

实际实验时,可以采取试凑法来得出 K_p 值。

3.2 增量式 PID 算法流程图

采用单片机实现 PID 算法时,可以采取如图 2 所示的流程图进行。

图 2 PID 算法流程图

3.3 闭环控制框图

图 3 是电机转速控制的闭环框图,其中 r(s) 代表要求达到的转速值,w(s)代表电机当前的转速值,折线代表电机的转速死区, $\frac{K_m}{T_m s+1}$ 代表电机的特性。

图 3 电机转速控制闭环框图

4 开发环境

程序开发调试软件为 KeilC,下载软件为 S51ISP,关于这两个软件的使用方法请参考"键盘显示实验指导书"。

5 实验要求

- (1) 通过实验箱上的键盘输入需要达到的转速值,转速范围为 200~1300r/min
- (2) 将测量到的电机转速显示到实验箱的数码管 LED3~LED6 上,转速单位为"转/分"。

6 实验报告

- (1) 绘出闭环控制框图
- (2) 写出 PID 参数调整说明
- (3) 给出软件流程图
- (4) 写出实验步骤
- (5) 附上带注释的软件源码,并对各模块进行说明
- (6) 总结实验心得

7注意事项

计算过程可能占用较长的时间,会影响 PWM 输出的稳定性,需要合理调整程序结构。