

DUBLIN CITY UNIVERSITY

SEMESTER 1 IN-CLASS TEST 2018/2019

MODULE: EE458 – Control Systems Analysis

PROGRAMME(S):

ECE BEng Electronic & Computer Engineering

ME B.Eng. in Mechatronic Engineering

ECSAO Study Abroad (Engineering & Computing) ECSA Study Abroad (Engineering & Computing)

YEAR OF STUDY: 4,O,X

EXAMINER(S):

Dr. Brendan Hayes (Ext:7984)
Dr. Simon Watson External

TIME ALLOWED: 1 Hour

INSTRUCTIONS: Answer Question 1.

Marks will be lost if all necessary work is not clearly

shown.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO.

The use of programmable or text storing calculators is expressly forbidden. Please note that where a candidate answers more than the required number of questions, the examiner will mark all questions attempted and then select the highest scoring ones.

Requirements for this paper:

INSTRUCTIONS FOR COMPUTER-BASED WORK

IMPORTANT: PLEASE READ THIS SHEET CAREFULLY BEFORE

COMMENCING THIS EXAM.

GENERAL:

- Set up your own directory (called your student exam number) in c:\temp as saving to c:\temp is faster than saving to the USB flash drive.
- All m-files, script files, SIMULINK files, plot files and diary files (with extension txt) must be saved to the network drive Q: \ and to the USB flash drive.
- Save your work regularly. No credit is given for work that has been 'lost'.
- At the end of the exam, it is your responsibility to ensure that all your work has been saved successfully to the network drive Q: \ and to the USB flash drive.

SAVING PLOTS:

- The plot must be generated to your satisfaction in the Figure window. Do not minimize this window.
- Save your plot as type *.fig only. Other formats are not acceptable.
- **N.B.** Make sure that you save your plot to c:\temp\... Make sure that you use a unique name for the plots.

DIARY FILES:

- It is recommended that you use a separate diary file for each part of a question.
- To open/start a diary file, at the MATLAB Command Prompt, type:

>> diary c:\temp\examnum\diary1.txt
>> diary on

To close a diary file, at the MATLAB Command Prompt, type:

>> diary off

USEFUL MATLAB FUNCTIONS:

abs	acos	angle	asin	atan	axis
bandwidth	bode	break	c2d	cd	clear
clf	close	conv	cos	det	eig
else	evalfr	exit	exp	feedback	figure
find	for	function	grid	help	if
imag	impulse	inv	isstable	label	length
log	log10	logspace	lsim	margin	max
mean	min	norm	nyquist	ones	open
ode45	pi	pinv	plot	pole	poly
print	pzmap	quit	rand	rank	real
residue	rlocfind	rlocus	roots	round	semilogx
series	sign	sim	sin	size	sqrt
SS	ssdata	step	subplot	sum	tan
text	tf	tf2ss	tfdata	title	while
who	xlabel	ylabel	zeros	zgrid	zpk
zpkdata	zoom				

• **Please note:** the use of solve(), stepinfo(), sisotool(), rltool(), sgrid() or any of their related functions is not allowed as part of this assessment.

[TOTAL MARKS: 25]

[See Appendix for applicable formulae]

Q 1(a) [7 Marks]

A closed-loop control system is described by the block diagram in Figure Q1.

Figure Q1

where
$$G(s) = \frac{0.25s + 1}{s}$$
 and $C(s) = \frac{k_C}{0.2s + 1}$

- (i) determine the **type** of the system in **Figure Q1** and hence comment on the steady-state error caused by an input R(s) = 2/s when D(s) = 0.
- (ii) find the transfer function between the measured output $Y_m(s)$ and the disturbance input D(s) when R(s) = 0.

Q 1(b) [5 Marks]

- (i) Derive an expression for the error signal, $E(s) = R(s) Y_m(s)$, for the system in **Figure Q1**.
- (ii) Present the Final Value Theorem (FVT) formula for the steady-state error.
- (iii) Use the FVT to design the gain, k_C , to give a steady-state error of -15% when R(s)=2/s, and $D(s)=1/s^2$.

Q 1(c) [6 Marks]

- (i) Use **SIMULINK** to simulate the system in **Figure Q1** for the value of K_C designed in **Q 1(b)(iii)** in response to both of the inputs described in **Q 1(b)(iii)** for 15 seconds; C(s) should be implemented using a **SIMULINK** Zero-Pole block.
- (ii) Plot the error response signal and then save this plot.
- (iii) Use **MATLAB** to measure the steady-state error value.

Q 1(d) [7 Marks]

- (i) Present the formula for the Sensitivity of a closed-loop system to a parameter of the open-loop system.
- (ii) Present the appropriate **chain-rule** version of this formula when the parameter to be varied is k_C and the open loop system containing k_C is C(s).
- (iii) Hence, use the chain rule version of the sensitivity formula to find an expression for the sensitivity of the closed-loop system in **Figure Q1** to variations in the parameter k_C when D(s) = 0.

[End of Question1]

APPENDIX

Please note: the use of solve, stepinfo(), sisotool(), rltool(), sgrid() or any of their related functions is not allowed as part of this assessment.

Selection of Laplace and Z-Transforms

<i>f(t)</i>	F(s)	F(z),	
	1	T	
1		$\frac{1-z^{-1}}{1}$	
	1	Tz^{-1}	
t	$\frac{\overline{s^2}}{s^2}$	$(1-z^{-1})^2$	
	2	$T^2z^{-1}(1+z^{-1})$	
t ²	$\overline{s^3}$	$(1-z^{-1})^3$	
	1	1	
e^{-aT}	$\frac{\overline{s+a}}{s+a}$	$\overline{1 - e^{-aT}z^{-1}}$	
	1	$Te^{-aT}z^{-1}$	
te^{-aT}	$\overline{(s+a)^2}$	$ \frac{1 - e^{-aT}z^{-1}}{Te^{-aT}z^{-1}} $ $ \frac{Te^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2} $	

Product rule:

$$y = uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Quotient Rule:

$$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Chain Rule:

$$y = u(v(x)) \Rightarrow \frac{dy}{dx} = \frac{du}{dv}\frac{dv}{dx}$$

[END OF APPENDICES]

[END OF EXAM]