Objectives

- Supervised Learning
- Models in Classification and Regression.
- Supervised Learning Algorithms.

Supervised Learning

- Works under supervision
 - Algorithm learns from labelled samples
- Predict the output/label of an unseen sample
- Eg: Email Spam Filter.

Classification vs Regression

Target : Spam/Non-Spam(Discrete)

Features: Phrases in emails

Model : A linear/polynomial function

that separates data samples

Salary (Continuous)

Experience of person

A linear/polynomial function that fits data samples

Spam/Non-Spam Mails

Model Complexity and Dataset

- Model complexity related to the variation of inputs in training data set.
- Larger variety of data points —> More complex models without overfitting.
- Can collect more data in real world problems.

Supervised Learning Algorithms

- k-Nearest Neighbors
- Linear Regression
- Logistic Regression
- Support Vector Machines (SVMs)
- Decision Trees and Random Forests
- Neural networks Algorithms

Takeaways

- Target, Features, and Model in supervised learning.
- Classification and Regression Tasks.
- Important supervised learning algorithms.

Objectives

- Dependent Variable and Independent Variable.
- Variants of Linear Regression
- Model Representation
- Cost(Optimization)
 Function for Regression

Dependent/Independent Variables

Independent/ Explanatory Variable Dependent / Response Variable

Distance to city(Kms)(X1)	House Price // (L)(Y)
4.98	24
9.14	21.6
4.03	34.7
2.94	33.4
2.33	36.2

What is Regression?

Statistical method to find relationship of a Dependent variable with Independent variables

Regression

One Dependent and One Independent Variable

Model: Line equation

One Dependent and Multiple Independent Variables

Model: Linear function

Model: nth degree polynomial

Simple(Univariate) Linear Regression

- Linear Regression produces a linear model
- Simplest form : One dependent and one independent variable.
 Linear Model : y= mx+c (Line equation)

Multiple(Multivariate) Linear Regression

- Y depends on more than one independent variables.
- Linear Function : $f(X) = f(x_1, x_2, ..., x_p) = Y$

					House
X1	X2	X3	X4	X5	Price(Y)
0.00632	2.31	0.538	6.575	4.98	24
0.02731	7.07	0.469	6.421	9.14	21.6
0.02729	7.07	0.469	7.185	4.03	34.7
0.03237	2.18	0.458	6.998	2.94	33.4
0.06905	2.18	0.458	7.147	5.33	36.2
0.02985	2.18	0.458	6.43	5.21	28.7
0.08829	7.87	0.524	6.012	12.43	22.9

p = number of features
 in the dataset except
 target feature Y

$$Y = f(X) = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2 \dots \theta_p * x_p$$

Polynomial

- Relationship modelled as an Andegree polynomial.
- Allows for non-linear relationship
- Still considered Linear as its linear in the regression coefficients.

$$Y = f(X) = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2^2 \dots \theta_p * x_p^n$$

Model/Hypothesis Representation

Univariate Linear Regression Hypothesis

$$y = \theta_0 + \theta_1 * x_1$$

Multivariate Linear Regression Hypothesis

$$y = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \dots + \theta_p * x_p = \sum_{\substack{j=1 \ 0}}^p \theta_j * x_j$$

Assume x_0 =0 where x_j is feature and θ_j is model parameter

Optimal/Best Fit

How does Linear Regression work?

- Find best fitting line
- For best fit line, error between the predicted and the observed values is minimum
- Define error function as cost function

Learning algorithm find model parameter θ such that it minimize the cost.

Cost Function

X

$$e_i = h_\theta(x_i) - y_i$$

Residual Sum of Squares $RSS = e_1^2 + e_2^2 + \dots + e_m^2$; m = number of samples

Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y)^2$$

Minimize $I(\theta)$

Takeaways

- Dependent and independent variables
- Variants of Linear Regression
- Best Fit
- Hypothesis $h_{\theta}(x_i)$
- Cost Function $J(\theta)$

Objective

S

- Ordinary Least Square Estimation.
- The Linear Algebra
 Operations to find optimal parameters
- OLS algorithm
- Computational Cost

Hypothesis for Linear Regression

- Data: $< x_1, x_2, x_3, ..., x_p, y > : y -> Target feature$
- Hypothesis: p -> no. of features; m -> no. of samples

$$h_{\theta}(X) = y = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \dots + \theta_p * x_p$$

$$= \sum_{\substack{j = 0 \\ 0}}^{p} \theta_j * x_j \qquad \text{Assume } x_0 = 0$$
In Vector Form:
$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{bmatrix} \begin{bmatrix} x_0 & x_1 & \dots & x_p \end{bmatrix} = \theta^T X = h \quad (X)$$

Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y)^{2}$$

Residuals/Error
Distance between the best fit and actual values

• Best fit by Solving $J(\theta)$; Minimize $J(\theta)$

Derivative of Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$
$$(X\theta - Y)^2$$
$$(X\theta - Y)^T (X\theta - Y)$$

$$\frac{\partial J(\theta)}{\partial t} = \frac{\partial}{\partial t} [(X\theta - Y)^T (X\theta - Y)]$$
$$= 2X^T X \theta - 2X^T Y$$

$$Cost'\theta = 0$$

$$2X^{T}X\theta - 2X^{T}Y = 0$$

$$2X^{T}X\theta = 2X^{T}Y$$

$$\theta = (X^{T}X)^{-1}(X^{T}Y)$$

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix} \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

Ordinary Least Square (OLS) Estimation

OLS Linear Regression Algorithm:

- 1. From the training data set, construct the input matrix **X** and the output vector **Y**
- 2. Assuming X^TX is invertible (positive definite and non-singular),

Compute
$$(X^TX)^{-1}$$

3. Return $\theta = (X^T X)^{-1} (X^T Y)$

Exampl

9

Exampi

e

- X^TX [[2.55315156 6.203175] [6.203175 16.]]
- X^TY
 [1045.072 410.32273457]
- $(X^TX)^{-1}(X^TY)$ [51.84358978 34.75229435]

Exampi

e

•
$$\theta = (X^T X)^{-1} (X^T Y)$$

[51.84358978 34.75229435]

$$\theta_0 = 51.844$$

$$\theta_1 = 34.75$$

$$y' = \theta_0 + \theta_1 x$$
Hypothesis
$$h(x)$$

Exampl

• Best Fit Line Equation = 51.844 + 34.75 * x

Computational cost of OLS

What operations are necessary?
 Overall: 1 matrix inversion + 3 matrix multiplications

What if X is too big to compute this explicitly (e.g. m ~ 10⁶)?

• If X is reasonably small, Can we always evaluate Inverse? X^TX should be nonsingular

Takeaways

- Residual/Error in Linear regression line
- Cost function and its derivative
- Ordinary Least square Method
- Example of Best Fit

Objective s

Gradient descent

 Linear Regression Algorithm

Optimization Objective of Linear Regression

Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y)$$

• Best fit by Solving $J(\theta)$; Minimize $J(\theta)$

Search Strategy

- Choose the initial value of parameter θ .
- Until we reach a minimum Choose new value for θ to reduce $J(\theta)$

Choose values for θ such that $J(\theta)$ reduces during each iteration

Direction of Search

- Gradient (Derivative) is the rate of change of a function
- It's a vector that
 - Points in the direction of greatest increase of a function
 - Is zero at a local maximum or local minimum (because there is no single direction of increase)

 $J(\theta)$

Learning rate:
 Step size taken to decrease
 the function value

Negative Gradient!!

- Choose a direction in which J(θ) is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$
- Positive => increasing
- Negative => decreasing

Gradient of Cost Function

$$J(\theta) = \frac{1}{2m} \sum_{\{i=\}}^{m} (h_{\theta}(x) - y)^{2}$$

$$= \frac{1}{2m} \sum_{\{i=\}}^{m} (y_{i} - h_{\theta}(x_{i}))^{2}$$

$$= \frac{1}{\theta_{\eta}} \sum_{i} (y_{i} - (\theta_{0}x_{i0} + \theta_{1}x_{i1} + \theta_{2}x_{i2} + \dots)^{2}$$

$$= \frac{1}{2m} \sum_{i} (e(\theta))^{2}$$

$$\begin{vmatrix} \frac{\partial J}{\partial \theta_0} = \frac{1}{2m} \Sigma_i 2e_i(\theta) \frac{\partial}{\partial \theta_0} e_i(\theta) \\ = \frac{1}{m} \Sigma_i (h_{\theta}(x_i) - y_i) x_{i0} \end{vmatrix}$$

$$So, \frac{\partial J}{\partial \theta_j} = \frac{1}{2m} \Sigma_i 2e(\theta) \frac{\partial}{\partial \theta_j} e(\theta)$$

$$= \frac{1}{m} \Sigma_i (h_{\theta}(x) - y_i) x_{i}$$

$$\frac{\partial}{\partial \theta_0} e_i(\theta) = \frac{\partial}{\partial \theta_0} y_i - \left(\frac{\partial}{\partial \theta_0} \theta_0 x_i + \frac{\partial}{\partial \theta_0} \theta_1 x_{i1} + \frac{\partial}{\partial \theta_0} \theta_2 x_{i2} + \dots \frac{\partial}{\partial \theta_0} \theta_p x_{ip}\right)$$

$$= -x_{i0}$$

Gradient Descent

- Optimization algorithm
- Idea: Tweak parameters iteratively in order to minimize cost function.

 $\alpha \frac{\partial J(\theta)}{\partial \alpha}$; α is the learning rate/step

Input : Dataset :

Gradienti Rescretz Algorithm $\langle x_1, x_2, ..., x_p, y \rangle$

- Initialize the model parameters($\theta_0, \theta_1, \dots, \theta_p$) with some random values.
- 2. Compute the partial derivatives of the cost function w.r.tto each of the parameters $\theta_0, \theta_1, \dots, \theta_p$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x) - y_i) x$$

3. After computing the derivative update the parameters

$$\theta_{j} = \theta - \frac{\alpha}{m} \sum_{i=1}^{m} (h_{\theta}(x) - y_{i})x$$

- 4. Compute $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) y)^2$ with new set of parameters θ 5. Repeat steps 2,3,4 until the cost function $J(\theta)$ converges to a minimum value

Challenge

S

Takeaways

- Gradient descent
- Linear Regression
 Algorithm
- Local optima and Global optima problem

Objective s

- Parameter Update
- Impact of learning rate
- Gradient descent variants and their features.

Gradient Descent Algorithm

An Iterative Optimization Algorithm

- 1. Initialize θ with random values
- 2. Repeat Until Convergence

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(for j=1,2,...,p simultaneously)

Linear Regression Model

$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip}$$

$$h_{\theta}(X) = \theta^T X$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x) - y)^{2}$$

Parameter update

Negative slope

$\theta_i = \theta_i - \alpha(+ve\ value)$ Cost $\theta_j = \theta_j - \alpha(-ve\ value)$ Cost Start Start Slope = 0Slope = 0General Update function

Positive slope

Impact of Learning rate

 Too small learning rate → Algorithm requires many iterations to converge.

Convergence Start Reach minimum value of the cost function

Impact of Learning rate

- High learning rate → Algorithm diverges with larger values.
- Not able to find good solution.

G radient Descent Variants

- Batch Gradient Descent.
- Stochastic Gradient Descent.
- Mini Batch Gradient Descent.

Batch Gradient Descent

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta} J(\theta)$$

$$\theta_{j} = \theta - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_{i}) - y) x_{i}$$

• Calculations over the full training set X of size m, at each Gradient Descent step.

Slow on very large training set.

Stochastic Gradient Descent

• At each step pick a random instance x_i of the training set.

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta} J(\theta)$$

• Pick a sample x_i one by one to update the parameter

$$\theta_j = \theta_j - \alpha (h_\theta(x_i) - y_i) x_{ij}$$

- Faster than batch processing.
- Better chance of finding the global minimum.

Cost

Mini Batch Gradient Descent

- Computes the gradients on small random sets of instances called mini batches.
- Mini-batch requires the configuration of an additional "minibatch size" hyperparameter for the learning algorithm.

$$\theta_{j} = \theta_{j} - \alpha \underbrace{\partial}_{\partial \theta} J(\theta)$$

$$\theta_{j} = \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m_{k}} (h(x_{i}) - y_{i}) x_{ij}$$

Compariso

 In parameter space batch gradient descent stops at the minimum while stochastic and mini batch continue to walk around.

Takeaways

- Parameter Update
- Impact of learning rate
- Variants of gradient descent.

References

- 1 Andreas Muller, "Introduction to Machine Learning with Python: A Guide for Data Scientists", Shroff/O'Reilly, 2016.
- 2 Alexey Grigorev, Machine Learning Bookcamp, Manning, 2020.
- 3 AurolienGeron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow, Shroff/O'Reilly", 2017.