Dominik Wawszczak numer indeksu: 440014

numer grupy: 6

Zadanie 3

Rozpocznijmy od udowodnienia, że język L nie jest obliczalny.

Przypuśćmy nie wprost, że istnieje maszyna turinga \mathcal{H} , która zawsze terminuje i zostawia na taśmie 1, jeżeli wejściowy napis jest postaci $u_1 \$ u_2$, gdzie u_1 i u_2 są kodami podobnych maszyn Turinga, lub 0 w przeciwnym wypadku. Rozwiążemy problem $HALT_{\varepsilon}$ wykorzystując maszynę \mathcal{H} , co da oczywistą sprzeczność, gdyż problem $HALT_{\varepsilon}$ jest nierozstrzygalny.

Niech więc \mathcal{M} będzie dowolną maszyną Turinga. Stwórzmy maszynę \mathcal{M}' działającą w następujący sposób:

- jeśli wejściowym napisem jest ε , to maszyna \mathcal{M}' najpierw symuluje działanie maszyny \mathcal{M} na tym napisie, a następnie w miejsce wystąpienia pierwszego blanka wpisuje 1 i kończy działanie;
- \bullet w przeciwnym wypadku symuluje działanie maszyny ${\mathcal M}$ na napisie wejściowym, a następnie kończy działanie.

Wykorzysując maszynę \mathcal{H} możemy stwierdzić czy maszyny \mathcal{M} i \mathcal{M}' są podobne.

Zauważmy, że

 \mathcal{M} terminuje na $\varepsilon \iff \text{maszyny } \mathcal{M} \text{ oraz } \mathcal{M}'$ nie są podobne.

Wynika to z tego, że jeśli \mathcal{M} terminuje na ε , to \mathcal{M}' również terminuje na ε , jednak daje inny wynik. Z drugiej strony, jeśli maszyny \mathcal{M} oraz \mathcal{M}' nie są podobne, to \mathcal{M} nie terminuje na ε , ponieważ w przeciwnym wypadku \mathcal{M}' również terminowałaby na ε , dając jednak inny wynik. Z implikacji w obie strony dostajemy więc równoważność.

Z powyższego wynika, że język L nie jest obliczalny.