Geometria Differenziale in \mathbb{R}^n Corso di Laurea in Matematica A.A. 2024-2025 Docente: Andrea Loi

- 1. Per ogni numero naturale k costruire una funzione che sia $C^k(\mathbb{R})$ ma non $C^{k+1}(\mathbb{R})$.
- 2. Dimostrare che la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{se } x \ge 0\\ 0 & \text{se } x < 0 \end{cases}$$

risulta essere liscia ma non reale analitica.

- 3. Siano $a, b, c, d \in \mathbb{R}$, a < b. Dimostare che i seguenti intervalli sono tutti diffeomorfi tra loro e diffeomorfi a \mathbb{R} : $(a, b), (c, +\infty), (-\infty, d)$.
- 4. Dimostrare che l'applicazione (costruita a lezione)

$$h: B_0(1) \to \mathbb{R}^n, x = (x^1, \dots, x^n) \mapsto (\frac{x^1}{\sqrt{1 - \|x\|^2}}, \dots, \frac{x^n}{\sqrt{1 - \|x\|^2}})$$

definisce un diffeomorfismo tra la palla aperta unitaria centrata nell'origine di \mathbb{R}^n e \mathbb{R}^n . Dedurre che la palla aperta di centro $c \in \mathbb{R}^n$ e raggio r > 0 in \mathbb{R}^n é diffeomorfa a \mathbb{R}^n .

5. Sia $f \in C^{\infty}(\mathbb{R}^2)$. Usando il teorema di Taylor con resto dimostrare che esistono $g_{11}, g_{12}, g_{22} \in C^{\infty}(\mathbb{R}^2)$ tale che:

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2g_{11}(x,y) + xyg_{12}(x,y) + y^2g_{22}(x,y).$$

- 6. Sia $f \in C^{\infty}(\mathbb{R}^2)$ tale che $f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Sia $g(t,u) = \frac{f(t,tu)}{t}$ se $t \neq 0$ e g(0,u) = 0. Dimostare che $g \in C^{\infty}(\mathbb{R}^2)$.
- 7. Dimostrare che l'insieme $C_p^{\infty}(\mathbb{R}^n)$ dei germi delle funzioni lisce intorno a $p \in \mathbb{R}^n$ con le operazioni di somma e di prodotto definite a lezione é un algebra commutativa e unitaria.
- 8. Dimostrare che l'insieme delle derivazioni puntuali $\operatorname{Der}_p\left(C_p^{\infty}(\mathbb{R}^n)\right)$ di $C_p^{\infty}(\mathbb{R}^n)$ con le operazioni definite a lezione é uno spazio vettoriale sui \mathbb{R} .
- 9. Dimostrare che i campi di vettori lisci $\chi(U)$ su un aperto $U \subset \mathbb{R}^n$ con le operazioni definite a lezione é uno spazio vettoriale su \mathbb{R} e un $C^{\infty}(U)$ -modulo.
- 10. Sia A un algebra su un campo \mathbb{K} . Dimostrare che le operazioni

$$(D_1 + D_2)(a) = D_1(a) + D_2(a)$$
$$(\lambda D)(a) = \lambda D(a)$$

per ogni $\lambda \in \mathbb{K}$ e per ogni $D_1, D_2, D \in Der(A)$ dotano Der(A) della struttura di spazio vettoriale su \mathbb{K} .

11. Siano D_1 e D_2 due derivazioni di un algebra A su un campo \mathbb{K} $(D_1, D_2 \in Der(A))$. Mostrare che $D_1 \circ D_2$ non é necessariamente una derivazione di A, mentre $D_1 \circ D_2 - D_2 \circ D_1 \in Der(A)$.

1