1 (Balkan Mathematical Olympiad 1998) Prove that there are no integers x and yPEN H15 satisfying $x^2 = y^5 - 4$.

First Solution. Assume to the contrary that $a^2 = b^5 - 4$ for some integers a and b. First consider when a is even:

Since $b^5 = a^2 + 4$ is even, b is also even. Since $a^2 + 4 = b^5$ is divisible by 2^5 , we have $a^2 \equiv -4 \pmod{2^5}$. However, this is a contradiction. This is because even $x^2 \equiv -4 \pmod{16}$ is not possible.

Now, consider the case when a is odd. We rewrite the equation in the form

$$b^5 = a^2 + 4 = (a+2i)(a-2i) \tag{1}$$

and work on $\mathbb{Z}[i] = \{x + yi \mid x, y \in \mathbb{Z}\}$, the ring of Gaussian integers. Since a is odd, we find that a + 2i and a - 2i are relatively prime in $\mathbb{Z}[i]$. (Indeed, if $\alpha \in \mathbb{Z}[i]$ divides both a + 2i and a - 2i, then α also divides (a + 2i) - (a - 2i) = 4i. In other words, α is a divisor of 4i. Since α also divides a + 2i and since a is odd, this implies that α is a unit in $\mathbb{Z}[i]$.)

We recall that $\mathbb{Z}[i]$ is a unique factorization domain. Since a+2i and a-2i are relatively prime, $b^5=(a+2i)(a-2i)$ guarantees that

$$a + 2i = \lambda_1 \eta_1^5, \quad a - 2i = \lambda_2 \eta_2^5,$$
 (2)

where $\eta_1, \eta_1 \in \mathbb{Z}[i]$ and λ_1, λ_2 are units in $\mathbb{Z}[i]$. Since $\lambda_1 \in \{1, -1, i, -i\}$, we get $\lambda_1 = {\lambda_1}^5$. Hence, we can write

$$a + 2i = \lambda_1 \eta_1^{5} = (\lambda_1 \eta_1)^{5}. \tag{3}$$

After setting $\lambda_1 \eta_1 = p + qi$, where $p, q \in \mathbb{Z}$, it becomes

$$a + 2i = (p + qi)^5. (4)$$

Taking conjugates, we also get $a - 2i = (p - qi)^5$. It follows that

$$4i = (a+2i) - (a-2i) = (p+qi)^5 - (p-qi)^5 = 2(5p^4q - 10p^2q^3 + q^5)i$$
 (5)

or

$$2 = q \left(5p^3 - 10p^2q^2 + q^4\right). (6)$$

Now, we get back in the game on \mathbb{Z} . Since q divides 2, we get $q \in \{-2, -1, 1, 2\}$. Reading the above equation modulo 5, $2 \equiv q^5 \pmod{5}$. Since Fermat's Little Theorem says that $q^5 \equiv q \pmod{5}$, we have $2 \equiv q \pmod{5}$ or q = 2. However, plugging q = 2 into the above equation, we obtain $2 = 2 \left(5p^3 - 40p^2 + 16\right)$ or $3 = p^2(p-8)$. Since p^2 divides 3, we get $p = \pm 1$. However, $p = \pm 1$ means that $p^2(p-8) = -7, -9$. This is a contradiction.

Second Solution. Now, assume to the contrary that $a^2 = b^5 - 4$ for some integers a and b. As in the first solution, it is easy to show that the case when a is odd is impossible. We consider the case when a is odd. So, b is also odd. Since $a = b^2 - 2^5$, one may rewrite the equation in the form

$$a^{2} + 6^{2} = b^{5} + 2^{5} = (b+2) \left(b^{4} + (-2)b^{3} + (-2)^{2}b^{2} + (-2)^{3}b + (-2)^{4}\right).$$
 (7)

Letting $d_1 = b + 2$ and $d_2 = b^4 + (-2)b^3 + (-2)^2b^2 + (-2)^3b + (-2)^4$, we get

$$a^2 + 6^2 = b^5 + 2^5 = d_1 d_2. (8)$$

We can exclude the case when $d_1 = -1$ or when $d_2 = -1$. Indeed, $d_1 = -1$ or b = -3 implies that

$$a^{2} + 6^{2} = b^{5} + 2^{5} = (-3)^{5} + 2^{5} < 0,$$
 (9)

which is a contradiction. If $d_2 = -1$, then $b^5 + 2^5 = d_1 d_2 = -d_1 = -b - 2$ or $b^5 + b = (-2)^5 + (-2)$. Since the function $t \mapsto t^5 + t$ is strictly increasing, we have b = -2 or $a^2 = b^5 + 4 = -28 < 0$, which is a contradiction.

We now clam that the integer $b^5 + 2^5 = d_1 d_2$ has a prime divisor $q \neq 3$ with $q \equiv -1 \pmod{4}$.

STEP 1 We show that it is not possible that both d_1 and d_2 are divisible by 3. Indeed, if d_1 is divisible by 3, since $b \equiv d_1 - 2 \equiv -2 \pmod{3}$, we find that

$$d_2 \equiv b^4 + (-2)b^3 + (-2)^2b^2 + (-2)^3b + (-2)^4 \equiv 5(-2)^4 \not\equiv 0 \pmod{3}. \tag{10}$$

STEP 2 If $b \equiv -1 \pmod{4}$, then we get $a^2 \equiv b^5 - 4 \equiv -1 \pmod{4}$, which is impossible. Hence, $b \equiv 1 \pmod{4}$. Since $d_1 \equiv b + 2 \equiv -1 \pmod{4}$ and since $d_1 \neq -1$, we see that $|d_1| > 1$. Since $d_1 \equiv -1 \pmod{4}$ and since $|d_1| > 1$, we see that d_1 has at least one prime divisor congruent to -1 modulo 4.

STEP 3 It follows from $d_1d_2 \equiv b^5 + 2^5 \equiv 1 \pmod{4}$ and from $d_1 \equiv b + 2 \equiv -1 \pmod{4}$ that $d_2 \equiv -1 \pmod{4}$. It follows from this and from $d_2 \neq -1$ that $|d_2| > 1$. Since $d_2 \equiv -1 \pmod{4}$, this implies that d_2 also has at least one prime divisor congruent to $-1 \pmod{4}$.

Combining results from STEP 1 through STEP 3, we conclude that at least one of d_1 or d_2 has a prime divisor $q \neq 3$ with $q \equiv -1 \pmod{4}$. Since q divides $b^5 + 2^5 = d_1 d_2$, our claim is proved.

Now, we employ the following well-known result.

Proposition 1. Let $p \equiv -1 \pmod{4}$ be a prime. Let a and b are integers such that $a^2 + b^2$ is divisible by p. Then, both a and b are divisible by p.

Since $a^2 + 6^2 = b^5 + 2^5$, this means that q also divides $a^2 + 6^2$. From Proposition, we see that both a and b are divisible by a. Since $a \equiv -1 \pmod{4}$ and since a divides a, we get $a \equiv -1 \pmod{4}$ and since a divides a, we get $a \equiv -1 \pmod{4}$ and since a divides a.

Now, we offer two different ways to establish Proposition 1.

FIRST PROOF OF PROPOSITION 1 Assume to the contrary that at least one of them are not divisible by p. Since p divides $a^2 + b^2$, we see that none of them are divisible by p. Since p divides $a^2 + b^2$, we obtain $a^2 \equiv -b^2 \pmod{p}$. Raise both sides of the congruence to the power $\frac{p-1}{2}$ and apply FERMAT'S LITTLE THEOREM to obtain

$$1 \equiv a^{p-1} \equiv (-1)^{\frac{p-1}{2}} b^{p-1} \equiv -b^{p-1} \equiv -1 \pmod{p}.$$
 (11)

This is a contradiction because p is an odd prime.

SECOND PROOF OF PROPOSITION 1 Again, assume to the contrary that none of them are divisible by p. Since p divides $a^2 + b^2$, we have the congruence $a^2 \equiv -b^2 \pmod{p}$ or $\left(ab^{-1}\right)^2 \equiv -1 \pmod{p}$. This means that -1 is a quadratic residue modulo p, which is a contradiction for $p \equiv -1 \pmod{4}$.

Third Solution. Just toss the Diophantine equation $x^2 = y^5 - 4$ on the field $\mathbb{Z}/11\mathbb{Z}$! It turns out that $x^2 - y^5 \equiv -4 \pmod{11}$ has no solutions. Here is an example of straightforward generalizations:

Proposition 2. Let $p \equiv -1, 11 \pmod{60}$ be a prime. Then, the equation

$$y^{\frac{p-1}{2}} = x^2 + 4 \tag{12}$$

has no integral solutions.

HINT. Read the equation modulo p!