

Contents lists available at SciVerse ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

Courcelle's theorem—A game-theoretic approach*

Joachim Kneis, Alexander Langer*, Peter Rossmanith

Department of Computer Science, RWTH Aachen University, Germany

ARTICLE INFO

Article history: Received 15 November 2009 Received in revised form 2 June 2011 Accepted 3 June 2011 Available online 30 June 2011

Keywords: Parameterized algorithms Model checking Monadic Second-Order logic Treewidth

ABSTRACT

Courcelle's theorem states that every problem definable in Monadic Second-Order logic can be solved in linear time on structures of bounded treewidth, for example, by constructing a tree automaton that recognizes or rejects a tree decomposition of the structure. Existing, optimized software like the MONA tool can be used to build the corresponding tree automata, which for bounded treewidth are of constant size. Unfortunately, the constants involved can become extremely large—every quantifier alternation requires a power set construction for the automaton. Here, the required space can become a problem in practical applications.

In this paper, we present a novel, direct approach based on model checking games, which avoids the expensive power set construction. Experiments with an implementation are promising, and we can solve problems on graphs where the automata-theoretic approach fails in practice.

© 2011 Elsevier B.V. All rights reserved.

Courcelle's celebrated theorem essentially states that every problem definable in Monadic Second-Order logic (MSO) can be solved in linear time on graphs of bounded treewidth [1]. However, the multiplicative constants in the running time, which depend on the treewidth and the MSO formula, can be extremely large [2].

Theorem 1 ([1,2]). Let $\mathcal P$ be an MSO problem and w be a positive integer. There is an algorithm A and a function $f: \mathbf N \times \mathbf N \to \mathbf N$ such that for every graph g = (V, E) of order n := |V| and treewidth at most w, A solves $\mathcal P$ on input g in time $f(\|\varphi\|, w) \cdot n$, where φ is the MSO formula defining $\mathcal P$ and $\|\varphi\|$ is its length. Furthermore, unless P = NP, the function f cannot be upper bounded by an iterated exponential of bounded height in terms of φ and w.

This result has been generalized by Arnborg, Lagergren, and Seese to Extended MSO [3], and by Courcelle and Mosbah to Monadic Second-Order evaluations using semiring homomorphisms [4]. In both cases, an MSO formula with free set variables is used to describe a property, and satisfying assignments to these set variables are evaluated in an appropriate way.

Courcelle's theorem is usually proved as follows: In time only dependent on φ and the treewidth w, a tree automaton A is constructed that accepts a tree decomposition of width w if and only if the corresponding graph satisfies the formula. This construction can either be done explicitly, by actually constructing the tree automaton (see, e.g., [3,5–10]), or implicitly via auxiliary formulas obtained by applying the Feferman–Vaught theorem [11] extended to MSO [1,12] (see, e.g., [1,13–15,10]).

In a practical setting, the biggest strength of Courcelle's theorem is at the same time its largest weakness: MSO logic has extremely large expressive power, and very short formulas can be used to express NP-hard problems. This is used in [2] to prove non-elementary worst-case lower bounds for the multiplicative constants in the linear running time. Even worse, these lower bounds already hold for the class of trees, i.e., graphs of treewidth one.

Supported by the DFG under grant RO 927/8.

^{*} Corresponding author.

On the other hand, these are worst-case lower bounds for very special classes of formulas and trees, and thus there is a good chance that in practice problems can be solved much faster. In fact, existing software like the MONA tool [16,17] for Weak Second-Order logic on two successors (WS2S) is surprisingly successful even though it is subject to the same theoretical lower bounds.

The automata-theoretic approach is therefore a promising starting point for practical applications of Courcelle's theorem, particularly since advanced and optimized tools like MONA can be used as a black box for the majority of the work, and techniques like minimizing tree automata are very well understood.

There are, however, some cases where the automata-theoretic approach is infeasible in practice, i.e., when the automata (or set of auxiliary formulas) are too large to be practically computable. This can even happen when the final minimal automata are small, but intermediate automata cannot be constructed in reasonable time and space (note that each quantifier alternation requires an automaton power set construction).

In his thesis [18], Soguet has studied the sizes of tree automata corresponding to various problems for small clique-width [19]. The automata were generated using MONA, and in many cases, the corresponding automata were surprisingly small, thanks to the well-understood minimization of tree automata. On the other hand, even for graphs of clique-width three, MONA was unable to construct the corresponding tree automata for the classical 3-Colorability problem. Even worse, the same happened for simple problems such as deciding whether the graph is connected or if its maximum degree is two.

These negative results are somewhat unsatisfying because the respective algorithm already fails in the first phase, when the automaton is constructed. The first phase, however, only depends on the treewidth (or clique-width in above cases) and the formula (i.e., the problem), but is independent of the actual input graph. On the other hand, when running the tree automaton on most graphs arising from practical problems, only few states are actually visited.

Recently, there have been a few approaches to this problem; see, e.g., [21–24]. For example, the approach of [23,24] avoids an explicit construction of the tree automaton. Instead, the state transition function is computed *on-the-fly*. Experiments indicate practical feasibility. Courcelle [25] introduces *special treewidth*, where the corresponding automata are easier to construct.

In this paper, we present a novel, game-theoretic approach, where the input structure is taken into account from the beginning via model checking games (cf., [26–28]). Therefore, only the amount of information is stored that is needed by the algorithm to solve the problem on this explicit input, and, in some sense, transitions between nodes of the tree decompositions are as well computed *on-the-fly*. We particularly avoid the expensive power set construction.

We hope that the approach can be used in those cases, where the automata are too large to be constructed in practice, but the input graphs itself are simple enough. In fact, first experiments are promising. Using the generic approach, we can, for example, solve the 3-Colorability problem on grids of size 6×33 (treewidth 6) in about 21 s and with 8 MB memory usage on standard PC hardware, and the Minimum Vertex Cover problem on the same graph in less than a second and only 1 MB of memory usage. We note that the automata construction using MONA in [18] already failed for $2 \times n$ grids (clique-width 3).

Related work

We briefly survey other approaches to Courcelle's theorem. We already mentioned that, given the MSO formula φ , one can construct a finite-state bottom-up tree automaton that accepts a tree decomposition of the input graph G if and only if $G \models \varphi$. This is sometimes called the automata-theoretic approach. A direct construction of the tree automata is described in, e.g., [9] or [10, Chapter 6]. In [29,6] a Myhill–Nerode type argument is used to show that the treewidth parse tree operators admit a right congruence with finitely many congruence classes. The method of test sets can then be used to construct the tree automaton. One can also use a reduction to the classical model checking problem for MSO on labeled trees [3,7,8]. It is well known [30,31] that this problem can be solved by constructing suitable finite-state tree automata. This approach is favorable if one likes to use existing software such as the MONA tool [16].

A model-theoretic approach is based on variants of the Feferman–Vaught theorem [11]: If a graph G can be decomposed into components G_1 and G_2 , then from the input formula φ one can construct a suitable *reduction sequence* consisting of Boolean combinations (*and*, *or*, *not*) of finitely many formulas that hold in G_1 and G_2 if and only if φ holds in G (cf., [1,12,14,10,32]). One can therefore use dynamic programming on the tree decomposition to compute the q-theory of G, i.e., set of formulas of quantifier rank at most q that hold in G (cf., [13,15,14]). Similarly, one can also inductively compute the set of satisfying assignments to the input formula [4].

We are not aware of any implementations of Courcelle's theorem based on the Feferman–Vaught approach. The construction of all possible reduction sequences for MSO formulas "obviously is not practical" [14, Section 1.6]. The algorithms presented in [13,14] are therefore infeasible in practice. However, from [4] we get that computing the particular reduction sequence for the input formula φ suffices. Some lower bounds are known for the necessary conversions into disjunctions [33], but it would still be interesting to see how this approach behaves in practice.

A few authors studied practical aspects of the automata-theoretic approach. It is mentioned in [6] that a Myhill-Nerode based program has been implemented as part of an M.Sc. thesis, which unfortunately does not seem to be publicly available.

¹ Both, treewidth and clique-width, can be defined in terms of graph grammars (hyperedge replacement grammars for treewidth, and vertex replacement grammars for clique-width; see e.g. a recent survey [20]), and in both cases, tree automata can be used to recognize parse trees of graphs.

The MONA tool [16] is a well-known and optimized implementation for the tree automata construction. The space required to construct the automata with MONA still turns out to cause severe problems in practical applications [18,22]. One idea [10, Chapter 6] is to use precomputed automata for commonly used predicates such as Conn(X) expressing that the set X is connected. Note however that the Conn(X) automaton requires $2^{2^{\Theta(k)}}$ states for graphs of clique-width k [10, Chapter 6]. An automatic translation into Monadic Datalog is proposed in [22]. Some experiments indeed suggest feasibility in practice; their prototype implementation was, however, obtained by manual construction and not by an automatic transformation from the underlying MSO formula. In [23,24] the power set construction is avoided by considering existential formulas only. The automata thus remain non-deterministic, but of course standard methods to simulate runs of the automata apply. Since the state transition function is given only implicitly, the automaton is essentially computed on-the-fly while recognizing a clique decomposition. Experiments have been conducted on graphs of comparably high clique-width and the approach is quite promising. In fact, the lack of feasible algorithms to compute the necessary clique-width parse trees seems to be the major limitation. To ease the specification of such fly-automata, Courcelle [25,34] introduces special treewidth. Special treewidth lies between path-width and treewidth, but the automata are significantly smaller and easier to construct than those for treewidth.

In this article, we present a new approach that neither uses automata-theoretic methods nor uses a Feferman–Vaught style splitting theorem. Instead, we essentially evaluate the input formula on the graph using a simple recursive model checking algorithm. In what follows, we will outline this approach.

Overview

Our starting point is the *model checking game* for MSO (Definition 3), a pebble game between two players called the *verifier* and the *falsifier* also known as the Hintikka game [26]. The verifier tries to prove that the formula holds on the input structure, while the falsifier tries to prove the opposite. In the game, the verifier moves on existential formulas (\lor, \exists) , while the falsifier moves on universal formulas (\land, \forall) .

This game can in a natural way be identified with a simple algorithm that *evaluates* the formula on the input structure in a recursive manner. If, for example, the formula is $\exists R\psi(R)$ for a set variable R, the algorithm checks whether $\psi(U)$ holds for some set U. Note that the algorithm might have to check every possible set. In this sense, the computation tree of this simple algorithm can be interpreted as the *unfolding* (cf., [35]) of the model checking game. On a structure with n elements, this straightforward recursive model checking algorithm takes time $O((2^n + n)^q)$ for a formula of quantifier rank q. By dynamic programming on the tree decomposition, we can improve this to time linear in n on structures of bounded treewidth.

This works as follows: We traverse the tree decomposition of the input structure \mathscr{A} bottom-up. At each node of the tree decomposition we preliminarily try to evaluate the formula φ on \mathscr{A} using the model checking game on the "current" substructure \mathscr{A}' of \mathscr{A} . To this end, we allow "empty" assignments x := nil to first-order variables x. Such empty assignments correspond to objects in \mathscr{A} that are not contained in \mathscr{A}' and are to be assigned in later steps. Then, two things may happen:

- We can already now determine whether $\mathscr{A} \models \varphi$ or $\mathscr{A} \not\models \varphi$. If, for instance, the formula 3col expresses the 3-Colorability problem and even \mathscr{A}' is not 3-colorable, it locally violates 3col and we can derive $\mathscr{A} \not\models 3col$.
- We cannot *yet* determine whether $\mathscr{A} \models \varphi$ or $\mathscr{A} \not\models \varphi$. For example, if the formula expresses the Dominating Set problem, then a vertex v in the "current" bag might be undominated in the current subgraph, but we do not know whether in the "future" another vertex might dominate v.

The first case is formalized in Lemmas 4 and 6. In the second case, we found a "witness", i.e., a subgame that we were unable to evaluate. We will then re-visit those undetermined subgames during the course of the dynamic programming until we finally arrive at the root of the tree decomposition, where all subgames become determined.

The next crucial observation is that MSO and FO formulas with bounded quantifier rank have limited capabilities to distinguish structures (formally captured in the \equiv_q -equivalence of structures, cf. [36]). We exploit this fact and show that we can delete redundant equivalent subgames (cf., Algorithm 3) for a suitable definition of equivalence (cf., Definition 5). We can then show that, assuming a fixed formula and bounded treewidth, the number of reduced, non-equivalent games is bounded by a constant (Lemma 8), which allows us to obtain running times linear in the size of the tree decomposition.

While this game-theoretic approach is subject to the same non-elementary lower bounds as the other approaches, the actual number of ways to play the model checking game highly depends on the input graph. For example, if the graph does not contain, say, a triangle, then the players will never move to a set of nodes that induce a triangle, while a tree automaton must work for all graphs. This observation is reflected in practical experiments, where the actual number of entries considered is typically much smaller than the corresponding worst-case bound.

1. Preliminaries

The power set of a set U is denoted by $\mathcal{P}(U)$. The disjoint union of two sets U_1 , U_2 is denoted by $U_1 \uplus U_2$. We assume that trees are rooted and denote the root of a tree \mathcal{T} by $root(\mathcal{T})$. For every $t \in \mathbb{N}$, $\exp^t(\cdot)$ is a t-times iterated exponential, i.e., $\exp^0(x) = x$ and $\exp^t(x) = 2^{\exp^{t-1}(x)}$.

For a set *U* and object *x*, we let $(x \in U)$ be defined as

$$(x \in U) = \begin{cases} 0 & \text{if } x \notin U \\ 1 & \text{if } x \in U. \end{cases}$$

To avoid cluttered notation, we may, for elements s_1, \ldots, s_l and t_1, \ldots, t_m , abbreviate $\bar{s} := \{s_1, \ldots, s_l\}$, $(\bar{s}, s') := \bar{s} \cup \{s'\}$, and $(\bar{s}, \bar{t}) := \bar{s}\bar{t} := \bar{s} \cup \bar{t}$.

1.1. Structures

We fix a countably infinite set of *symbols*. Each symbol S has an $arity r = arity(S) \ge 0$. We distinguish between *nullary* symbols with arity zero and *relation symbols* that have arity greater than zero. Relation symbols with arity one are called *unary*. For convenience, we will denote relation symbols by capital letters and nullary symbols by lower case letters.

A *vocabulary* τ is a finite set of symbols. We denote by $null(\tau)$ the set of nullary symbols in τ , by $rel(\tau)$ the set of relation symbols in τ , and by $unary(\tau)$ the set of unary relation symbols in τ . Let $arity(\tau) = \max\{arity(R) \mid R \in rel(\tau)\}$ be the maximum arity over all relation symbols in τ . If $null(\tau) = \emptyset$, we call τ relational.

Let τ be a vocabulary. A structure \mathscr{A} over τ (or τ -structure) is a tuple $\mathscr{A} = (A, (R^{\mathscr{A}})_{R \in rel(\tau)}, (c^{\mathscr{A}})_{c \in null(\tau)})$, where A is a finite set called the *universe* of \mathscr{A} , and $(R^{\mathscr{A}})_{R \in rel(\tau)}$ and $(c^{\mathscr{A}})_{c \in null(\tau)}$ are interpretations of the τ -symbols in \mathscr{A} . Here, $R^{\mathscr{A}} \subseteq A^{arity(R)}$ for each relation symbol $R \in rel(\tau)$. For a nullary symbol $C \in null(C)$ we either have $C^{\mathscr{A}} \in A$ and say that $C \in R^{arity(R)}$ in \mathscr{A} , or we write $C^{\mathscr{A}} = R^{arity(R)}$ in \mathscr{A} is denoted by interpreted $R^{arity(R)}$. If all symbols of $T^{arity(R)}$ are interpreted, we say that $T^{arity(R)}$ interpreted in $T^{arity(R)}$ or $T^{arity(R)}$ interpreted otherwise. We note that a related concept of partially equipped signatures has been used in, e.g., [29,6,37].

The set of all τ -structures is denoted by $\mathcal{STR}(\tau)$. We will always denote structures in script letters \mathcal{A} , \mathcal{B} , . . . and in roman letters A, B, . . . their corresponding universes. If the universe is empty, then we say that the structure is *empty*. Structures over a relational vocabulary τ are called *relational structures*.

For a structure \mathscr{A} , we denote by $vocabulary(\mathscr{A})$ the vocabulary of \mathscr{A} . For sets $\overline{R} = \{R_1, \ldots, R_l\} \subseteq rel(\tau)$ and $\overline{c} = \{c_1, \ldots, c_m\} \subseteq null(\tau)$, we let $\overline{R}^{\mathscr{A}} := \{R^{\mathscr{A}} \mid R \in \overline{R}\}$, and $\overline{c}^{\mathscr{A}} := \{c^{\mathscr{A}} \mid c \in \overline{c} \cap interpreted(\mathscr{A})\}$ be their corresponding interpretations.

Example 1. A graph (V, E) can in a natural way be identified with a structure \mathscr{G} over the vocabulary $\tau_{Graph} = (adj)$, where adj represents the binary adjacency relation. The universe of \mathscr{G} is V, and we interpret adj as $adj^{\mathscr{G}} = E$ in \mathscr{G} .

Let τ be a vocabulary and $\{R_1,\ldots,R_l,c_1,\ldots,c_m\}$ be a set of symbols, each of which is not contained in τ . The vocabulary $\tau'=(\tau,R_1,\ldots,R_l,c_1,\ldots,c_m)$ is called an *expansion* of τ . Similarly, if $\mathscr A$ is a τ -structure and $\mathscr A'$ is a τ' -structure that agrees with $\mathscr A$ on τ , i.e., $R^\mathscr A=R^\mathscr A'$ for each $R\in rel(\tau)$ and $c^\mathscr A=c^\mathscr A'$ for each $c\in null(\tau)$, then we call $\mathscr A'$ a τ' -expansion of $\mathscr A$. If $\mathscr A$ is a τ -structure, and U_1,\ldots,U_l are relations over A, such that $U_i\subseteq A^{arity(R_i)},\ 1\leq i\leq l$, and $u_1,\ldots,u_m\in A\cup \{nil\},$ we write $\mathscr A'=(\mathscr A,U_1,\ldots,U_l,u_1,\ldots,u_m)$ to indicate that $\mathscr A'$ is a τ' -expansion of $\mathscr A$, such that $R_i^{\mathscr A'}=U_i,\ 1\leq i\leq l$, and $C_i^{\mathscr A'}=U_i,\ 1\leq j\leq m$.

Let \mathscr{A} be a τ -structure and $\bar{a}=\{a_1,\ldots,a_m\}\subseteq A$. Then $\mathscr{A}[\bar{a}]$ is the substructure of \mathscr{A} induced by \bar{a} , where $\mathscr{A}[\bar{a}]$ has universe \bar{a} , for each relation symbol $R\in \tau$ we have $R^{\mathscr{A}[\bar{a}]}=R^{\mathscr{A}}\cap \bar{a}^{arity(R)}$, and nullary symbols c are interpreted as $c^{\mathscr{A}[\bar{a}]}=c^{\mathscr{A}}$ if $c^{\mathscr{A}}\in \bar{a}$ and become uninterpreted otherwise.

Two τ -structures $\mathscr A$ and $\mathscr B$ over the same vocabulary τ are isomorphic, denoted by $\mathscr A \cong \mathscr B$, if there is an isomorphism $h:A\to B$, where h is a bijection between A and B and

- $c \in interpreted(\mathscr{A})$ if and only if $c \in interpreted(\mathscr{B})$ for all $c \in null(\tau)$,
- $h(c^{\mathscr{A}}) = c^{\mathscr{B}}$ for every nullary symbol $c \in interpreted(\tau)$, and
- for every relation symbol $R \in \tau$ and $a_1, \ldots, a_p \in A$, where p = arity(R),

$$(a_1,\ldots,a_n)\in R^{\mathscr{A}}$$
 iff $(h(a_1),\ldots,h(a_n))\in R^{\mathscr{B}}$.

Definition 1 (*Compatibility, Union*). We call two τ -structures \mathscr{A}_1 and \mathscr{A}_2 *compatible*, if for all nullary symbols $c \in interpreted(\mathscr{A}_1) \cap interpreted(\mathscr{A}_2)$ we have $c^{\mathscr{A}_1} = c^{\mathscr{A}_2}$ and the identity $x \mapsto x$ is an isomorphism between $\mathscr{A}_1[A_1 \cap A_2]$ and $\mathscr{A}_2[A_1 \cap A_2]$.

In this case, we define the *union* of \mathscr{A}_1 and \mathscr{A}_2 , denoted by $\mathscr{A}_1 \cup \mathscr{A}_2$, as the τ -structure with universe $A := A_1 \cup A_2$ and interpretations $R^{\mathscr{A}_1 \cup \mathscr{A}_2} := R^{\mathscr{A}_1} \cup R^{\mathscr{A}_2}$ for every relation symbol $R \in \tau$. Nullary symbols $c \in null(\tau)$ with $c^{\mathscr{A}_1} = c^{\mathscr{A}_2} = nil$ remain uninterpreted in $\mathscr{A}_1 \cup \mathscr{A}_2$; otherwise $c^{\mathscr{A}_1 \cup \mathscr{A}_2} = c^{\mathscr{A}_i}$ if $c \in interpreted(\mathscr{A}_i)$ for some $i \in \{1, 2\}$.

1.2. Treewidth and tree decompositions

Tree decompositions and treewidth were introduced by Robertson and Seymour [38] in their works on the Graph Minors Project; cf. [6,8,39].

A tree decomposition of a relational τ -structure \mathscr{A} is a tuple $(\mathscr{T}, \mathscr{X})$, where $\mathscr{T} = (T, F)$ is a rooted tree and $\mathscr{X} = (X_i)_{i \in T}$ is a collection of subsets $X_i \subseteq A$, such that

- $\bullet \bigcup_{i \in T} X_i = A$,
- for all p-ary relation symbols $R \in \tau$ and all $(a_1, \ldots, a_p) \in R^{\mathscr{A}}$, there is an $i \in T$ such that $\{a_1, \ldots, a_p\} \subseteq X_i$, and for all $i, j_1, j_2 \in T$, if i is on the path between j_1 and j_2 in \mathcal{T} , then $X_{j_1} \cap X_{j_2} \subseteq X_i$.

The sets X_i are called bags. The width of a tree decomposition is the size of its largest bag minus one, and the treewidth of a structure \mathscr{A} is the minimum width of all tree decompositions of \mathscr{A} .

Without loss of generality, we assume that each tree decomposition we consider is nice. Nice tree decompositions are directed, where each edge in F has a direction away from the root, and have the following properties: Each node $i \in T$ has at most two children. For leaves $i \in T$, we have $X_i = \emptyset$. If i has exactly one child j, then there is $a \in A$ such that either $X_i = X_i \cup \{a\}$ or $X_i = X_i \setminus \{a\}$. In the former case, we say that i is an introduce node, in the latter case we call i a forget node of the tree decomposition. Finally, if a node i has two children j_1 and j_2 , then we require $X_i = X_{i_1} = X_{i_2}$ and call such nodes *join* nodes. If $i \to \cdots \to j$ is a directed path in \mathcal{T} pointing away from the root, we say that j appears below i in \mathcal{T} .

With every node $i \in T$ of a (nice) tree decomposition of a τ -structure \mathscr{A} we associate a substructure \mathscr{A}_i defined as follows: Let $A_i \subseteq A$ be the set of objects in X_i or in bags X_i for nodes i below i in the tree decomposition. Then we let $\mathcal{A}_i := \mathcal{A}[A_i]$ be the substructure of \mathscr{A} induced by A_i .

Computing the treewidth of a graph is NP-complete [40]. However, the algorithms in this paper rely on a given tree decomposition of the input structure. For graphs G, there is a fixed-parameter tractable algorithm [41,6] with a running time of $2^{O(tw(G)^3)}|G|$, whose dependence on the treewidth might become a problem in practical applications. In a practical setting, heuristics seem to work well and often nearly optimal tree decompositions can be computed [42,43]. Using Gaifman graphs, one can also compute tree decompositions of arbitrary structures; cf., [8, Section 11.3]. In the following, we therefore just assume that a tree decomposition is given as part of the input. For more information on treewidth, we refer the reader to surveys such as [44,45].

1.3. MSO logic

We denote by $MSO(\tau)$ the set of Monadic Second-Order sentences over a vocabulary τ . The definition is by induction on the structure of sentences simultaneously for all τ . Firstly, for every p-ary relation symbol $R \in \tau$ and any nullary symbols $c_1, \ldots, c_p \in \tau$, MSO(τ) contains the atomic formula $R(c_1, \ldots, c_p)$. If R is unary, we may abbreviate R(c) as $c \in R$. Secondly:

- If φ , ψ are in MSO(τ), then $\neg \varphi$, $\varphi \lor \psi$, and $\varphi \land \psi$ are in MSO(τ),
- If $\varphi \in MSO(\tau \cup \{c\})$ for some nullary symbol c, then both, $\forall c\varphi$ and $\exists c\varphi$ are in $MSO(\tau)$. This is called *first order* or *object* quantification.
- If $\varphi \in MSO(\tau \cup \{R\})$ for a unary relation symbol R, then both, $\forall R\varphi$ and $\exists R\varphi$ are in $MSO(\tau)$. The corresponding case is called set quantification.

Note that we do not distinguish between "basic" symbols (contained in a certain "base" vocabulary such as τ_{Graph}), and symbols that are used as variables subject to quantification. Let τ be a vocabulary and $\varphi \in MSO(\tau)$ be a formula. Let $\tau' \subseteq \tau$ be the smallest vocabulary with $\varphi \in MSO(\tau')$. Then we call the symbols in $unary(\tau') \cup null(\tau')$ the free symbols of φ . Let $\|\varphi\|$ be the size of a suitable encoding of φ .

If $\varphi \in \{\forall c\psi, \forall R\psi, \psi_1 \land \psi_2\}$ for some c, R, ψ, ψ_1 , and ψ_2 , we call φ universal. Similarly, we call φ existential if $\varphi \in \{\forall c\psi, \forall R\psi, \psi_1 \land \psi_2\}$ for some c, R, ψ, ψ_1 , and ψ_2 , we call φ universal. Similarly, we call φ $\{\exists c\psi, \exists R\psi, \psi_1 \vee \psi_2\}.$

If φ does not contain set quantifiers, then we say that φ is first order and contained in FO(τ). Note that in particular all atomic formulas of MSO(τ) are first order. The quantifier rank $qr(\varphi)$ of a formula $\varphi \in MSO(\tau)$ denotes the maximum number of nested quantifiers in φ , counting both first order and set quantifiers, and is defined by induction over the structure of φ as

- $qr(\varphi) = 0$ if φ is an atomic formula,
- $ar(\varphi) = ar(\neg \varphi)$.
- $qr(\varphi) = \max\{qr(\psi_1), qr(\psi_2)\}\ \text{if } \varphi \in \{\psi_1 \land \psi_2, \psi_1 \lor \psi_2\}, \text{ and }$
- $qr(\varphi) = qr(\psi) + 1$ if $\varphi \in \{ \forall R\psi, \exists R\psi, \forall c\psi, \exists c\psi \}$.

Without loss of generality, we assume throughout the paper that every formula is in negation normal form, i.e., the negation symbol — only occurs in front of atomic formulas. This can be achieved by a simple rewriting of the formula.

For a τ -structure \mathscr{A} that fully interprets τ and a formula $\varphi \in MSO(\tau)$, we write $\mathscr{A} \models \varphi$ if and only if φ holds in \mathscr{A} or is true in \(\sqrt{in} \) in the classical sense, cf. [46,36]. We will not specify this further, since we will switch to a game-theoretic characterization in the remainder of this paper; cf., Section 2.

In [3], Extended MSO was introduced. Here, an MSO formula over a relational vocabulary is given together with an evaluation or optimization goal over the unary relation symbols (set variables). This principle was furthermore generalized to semiring homomorphisms in [4], where satisfying interpretations of the free relation symbols are to be expressed in terms of an appropriate semiring.

In this paper, we will consider MSO-definable linear optimization problems, also called LinMSO optimization problems. It is not hard to see that the methods in this paper extend to other classes of MSO-definable problems, such as counting and enumeration problems. See, e.g., [10, Chapter 6] for an overview of MSO-definable problems and their algorithmic applications.

Definition 2 (LinMSO *Optimization Problem*). Let τ be a relational vocabulary, $\bar{R} = \{R_1, \dots, R_l\} \subseteq \tau$ be a set of unary relation symbols, $\varphi \in \mathsf{MSO}(\tau)$, and $\tau' = \tau \setminus \bar{R}$. Let $\alpha_1, \dots, \alpha_l \in \mathbf{Z}$ and min $\emptyset := \infty$. The problem of computing

$$\min \left\{ \sum_{k=1}^{l} \alpha_k |U_k| |U_i \subseteq A, 1 \le i \le l, \text{ and } (\mathscr{A}, U_1, \dots, U_l) \models \varphi \right\}$$

for a given τ' -structure \mathscr{A} is called a *LinMSO* optimization problem.

Example 2. Consider the formulas vc(R), $ds(R) \in MSO(\tau_{Graph} \cup \{R\})$, and $3col \in MSO(\tau_{Graph})$:

$$vc(R) = \forall x \forall y (\neg adj(x, y) \lor x \in R \lor y \in R)$$

$$ds(R) = \forall x (x \in R \lor \exists y (y \in R \land adj(x, y)))$$

$$3col = \exists R_1 \exists R_2 \exists R_3 \left(\forall x \left(\bigvee_{i=1}^3 (x \in R_i) \land \bigwedge_{i \neq j} (\neg x \in R_i \lor \neg x \in R_j) \right) \right)$$

$$\land \forall x \forall y \left(\neg adj(x, y) \lor \bigwedge_{i=1}^3 (\neg x \in R_i \lor \neg y \in R_i) \right) \right).$$

Then, given a τ_{Graph} -structure \mathscr{G} ,

$$\min\{|C||C \subseteq A \land (\mathcal{G}, C) \models vc\},$$

$$\min\{|D||D \subseteq A \land (\mathcal{G}, D) \models ds\}, \text{ and}$$

$$\min\{0|\mathcal{G} \models 3col\}$$

express the well-known graph problems MINIMUM VERTEX COVER, MINIMUM DOMINATING SET, and 3-COLORABILITY, respectively.

2. Model checking games

The semantics of MSO in the classical sense (cf. [46,36]) can be characterized by using a two player pebble game, called the *Hintikka game* or *model checking game*; cf. [26–28].

A pebble game $\mathfrak{G} = (P, M, P_0, P_1, p_0)$ between two players, say Player 0 and Player 1, consists of a finite set P of positions, two disjoint sets $P_0, P_1 \subseteq P$ assigning positions to the two players, an *initial position* $p_0 \in P$, and an acyclic binary relation $M \subseteq P \times P$, which specifies the valid *moves* in the game. We only allow moves from positions assigned to one of the two players, i.e., we require $p \in P_0 \cup P_1$ for all $(p, p') \in M$. On the other hand, we do allow that positions without outgoing moves are assigned to players. Let $|\mathfrak{G}| := |P|$ be the *size* of \mathfrak{G} .

For $p \in P$, we let $next_g(p) = \{p' \in P \mid (p, p') \in M\}$ be the set of positions reachable from p via a move in M. For any position $p \in next_g(p_0)$ we let $subgame_g(p) = (P, M, P_0, P_1, p)$ be a subgame of g, which is issued from the new initial position p. The set of all subgames of g is denoted by subgames(g). If g is clear from the context, we usually omit the subscript and write next(p) and subgame(p).

A play of g is a maximal sequence (p_0, \ldots, p_l) of positions $p_0, \ldots, p_{l-1} \in P_0 \cup P_1$, such that between any subsequent positions p_i and p_{i+1} there is a valid move, i.e., $(p_i, p_{i+1}) \in M$ for $0 \le i \le l-1$. Since M is acyclic, such a play is finite and is said to have l rounds and to end in position p_l .

The rules of the game are that in the *i*th round of the play, where $1 \le i \le l-1$, the player assigned to position p_i has to place a valid *move*, i.e., has to choose the next position $p_{i+1} \in next(p_i)$. If no such position p_{i+1} exists, or the position p_i is not assigned to either of the players, the play ends. If the play ends in a position p_l with $p_l \in P_i$, where $i \in \{0, 1\}$, then the other player, Player (1-i), wins the play. If, however, the play ends in a position p_l with $p_l \notin P_0 \cup P_1$, then there is a draw and none of the players wins the play. The goal of game is to force the other player into a position where they cannot move.

We say that a player has a winning strategy on g, if and only if they can win every play of the game irrespective of the choices of the other player. For instance, Player 0 has a winning strategy on g if and only if either

- $p_0 \in P_0$ and there is a move $(p_0, p_1) \in M$ such that Player 0 has a winning strategy on $subgame_q(p_1)$; or
- $p_0 \in P_1$ and Player 0 has a winning strategy on $subgame_g(p_1)$ for all moves $(p_0, p_1) \in M$. Note that this includes the case that Player 1 cannot move at all.

A game g is said to be determined if either one of the players has a winning strategy on g, otherwise g is undetermined.

We fix two special games \bot and \top on which the first player and the second player, respectively, have winning strategies. One can efficiently test whether one of the player has a winning strategy on a game \mathfrak{g} ; cf., [27,28]. Algorithm 1 determines whether one of the players has a winning strategy on a game \mathfrak{g} and returns \bot if the falsifier has a winning strategy, and \top

Algorithm 1 Evaluating a game.

```
Algorithm eval(9)
Input: A game \mathcal{G} = (P, M, P_0, P_1, p_0).
if g \in \{\top, \bot\} then return g
Let P' = \{p_0\}, M' = \emptyset, P'_0 = P_0 \cap \{p_0\}, \text{ and } P'_1 = P_1 \cap \{p_0\}.
for p' \in next(p_0) do
      Let (P'', M', P_0'', P_1'', p_0'') = eval(subgame_g(p')).
      Update P' := P' \cup P'' and P'_0 := P'_0 \cup P''_0, P'_1 := P'_1 \cup P''_1.
      Update M' := M' \cup M'' \cup \{(p'_0, p''_0)\}.
Let g' = (P', M', P'_0, P'_1, p_0) and compute subgames (g').
if p_0 \in P_0' then
      if subgames(g') = \{\top\} or subgames(g') = \emptyset then return \top
      if \bot \in subgames(g') then return \bot
if p_0 \in P_1' then
      if subgames(g') = \{\bot\} or subgames(g') = \emptyset then return \bot
      if \top \in subgames(\mathfrak{G}') then return \top
return 9'
```

if the verifier has a winning strategy. If none of the players has a winning strategy, the algorithm returns a corresponding "proof", a list of all the plays of 9 that ended with a draw.

In the case of the model checking game, we call the two players the falsifier and the verifier. The verifier wants to prove that a formula is true on a structure (or, the structure satisfies the formula), while the falsifier tries to show that it is false (or, the structure does not satisfy the formula). The reader may therefore consider that \top means "true" and \bot means "false".

Definition 3 (Model Checking Game). The (classical) model checking game $\mathcal{MC}(\mathcal{A}, \varphi) = (P, M, P_0, P_1, p_0)$ over a τ -structure \mathscr{A} that fully interprets τ and a formula $\varphi \in \mathsf{MSO}(\tau)$ is defined by induction over the structure of φ as follows. Let $p_0 = (\mathscr{A}[\bar{c}^\mathscr{A}], \varphi)$, where $\bar{c} = null(\tau)$. If φ is an atomic or negated formula, then $\mathscr{MC}(\mathscr{A}, \varphi) = (\{p_0\}, \emptyset, P_0, P_1, p_0)$, where

```
• p_0 \in P_0 if and only if
    -\varphi = R(c_1, \ldots, c_p) and (c_1^{\mathscr{A}}, \ldots, c_n^{\mathscr{A}}) \in R^{\mathscr{A}}, or
    -\psi = \neg R(c_1,\ldots,c_p) and (c_1^{\mathscr{A}},\ldots,c_n^{\mathscr{A}}) \notin R^{\mathscr{A}}.
• p_0 \in P_1 if and only if
    -\varphi = R(c_1, \ldots, c_p) and (c_1^{\mathscr{A}}, \ldots, c_p^{\mathscr{A}}) \notin R^{\mathscr{A}}, or
   -\psi = \neg R(c_1, \ldots, c_p) \text{ and } (c_1^{\mathscr{A}}, \ldots, c_n^{\mathscr{A}}) \in R^{\mathscr{A}}.
```

If $\varphi \in \{ \forall R\psi, \exists R\psi \}$ for some relation symbol R, let $\mathscr{A}_U = (\mathscr{A}, U)$ for $U \subseteq A$ be the (τ, R) -expansion of \mathscr{A} with $R^{\mathcal{A}_U} = U$, and let $\mathcal{MC}(\mathcal{A}_U, \psi) = (P_U, M_U, P_{0,U}, P_{1,U}, p_U)$ be the corresponding model checking game over \mathcal{A}_U and ψ . Then $\mathcal{MC}(\mathcal{A}, \varphi) = (P, M, P_0, P_1, p_0)$, where

- $P = \{p_0\} \cup \bigcup_{U \subset A} P_U$,
- $M = \bigcup_{U \subset A} (M_U \cup \{(p_0, p_U)\}),$
- $P_0 = P_0' \cup \bigcup_{U \subseteq A} P_{0,U}$, where $P_0' = \{p_0\}$ iff $\varphi = \forall R \psi$ and $P_0' = \emptyset$ otherwise,
- $P_1 = P_1' \cup \bigcup_{U \subseteq A} P_{1,U}$, where $P_1' = \{p_0\}$ iff $\varphi = \exists R \psi$ and $P_1' = \emptyset$ otherwise.

If $\varphi \in \{\forall c \psi, \exists c \psi\}$ for some nullary symbol c, let $\mathscr{A}_a = (\mathscr{A}, a)$ be the (τ, c) -expansion of \mathscr{A} with $c^{\mathscr{A}_a} = a \in A$, and let $\mathcal{MC}(\mathcal{A}_a, \psi) = (P_a, M_a, P_{0,a}, P_{1,a}, p_a)$ be the corresponding model checking game over \mathcal{A}_a and ψ . Then $\mathcal{MC}(\mathcal{A}, \varphi) = (P_a, M_a, P_{0,a}, P_{1,a}, p_a)$ (P, M, P_0, P_1, p_0) , where

- $P = \{p_0\} \cup \bigcup_{a \in A} P_a$,
- $M = \bigcup_{a \in A} (M_a \cup \{(p_0, p_a)\}),$ $P_0 = P'_0 \cup \bigcup_{a \in A} P_{0,a}$, where $P'_0 = \{p_0\}$ iff $\varphi = \forall c \psi$ and $P'_0 = \emptyset$ otherwise, $P_1 = P'_1 \cup \bigcup_{a \in A} P_{1,a}$, where $P'_1 = \{p_0\}$ iff $\varphi = \exists c \psi$ and $P'_1 = \emptyset$ otherwise.

If $\varphi \in \{\psi_1 \wedge \psi_2, \psi_1 \vee \psi_2\}$, let $\mathcal{MC}(\mathscr{A}, \psi) = (P_{\psi}, M_{\psi}, P_{0,\psi}, P_{1,\psi}, p_{\psi})$ be the model checking game over \mathscr{A} and $\psi \in \{\psi_1, \psi_2\}$. Then $\mathcal{MC}(\mathscr{A}, \varphi) = (P, M, P_0, P_1, p_0)$, where

- $P = \{p_0\} \cup \bigcup_{\psi \in \{\psi_1, \psi_2\}} P_{\psi}$,
- $M = \bigcup_{\psi \in \{\psi_1, \psi_2\}} (M_{\psi} \cup \{(p_0, p_{\psi})\}),$
- $P_0 = P_0' \cup \bigcup_{\psi \in \{\psi_1, \psi_2\}} P_{0,\psi}$, where $P_0' = \{p_0\}$ iff $\varphi = \psi_1 \wedge \psi_2$ and $P_0' = \emptyset$ otherwise,
- $P_1 = P_1' \cup \bigcup_{\psi \in \{\psi_1, \psi_2\}} P_{1,\psi}$, where $P_1' = \{p_0\}$ iff $\varphi = \psi_1 \vee \psi_2$ and $P_1' = \emptyset$ otherwise.

Note that the falsifier is the *universal* player and moves on universal formulas, while the verifier is the *existential* player and moves on existential formulas, Furthermore, if the structure \mathscr{A} is empty, then, by definition, $\mathscr{A} \models \forall c \psi$ and $\mathscr{A} \not\models \exists c \psi$ for all ψ . In the model checking game, this corresponds to the case that there are no moves from the current position. Consequently, the play ends and the player assigned to this position looses. On non-empty structures, each play ends in an atomic or negated atomic formula. The goal of the verifier is to make the play end in a position (\mathscr{A}', ψ) with $\mathscr{A}' \models \psi$, and conversely the goal of the falsifier is to force the play into an ending position (\mathscr{A}', ψ) with $\mathscr{A}' \not\models \psi$. It is well known that the classical model checking game is determined [26] and that the verifier has a winning strategy on $\mathcal{MC}(\mathcal{A}, \varphi)$ if and only if $\mathscr{A} \models \varphi$; see, e.g., [27].

2.1. An extension of the classical model checking game

We will now consider an extension of the model checking game that has the following two central properties:

- It is defined for structures that interpret vocabularies only partially; and
- it is "well defined" under taking the union of structures in the sense that if one of the players has a winning strategy on the game on \mathscr{A} and φ , then the same player has a winning strategy in the game on $\mathscr{A} \cup \mathscr{B}$ and φ for all structures \mathscr{B} compatible with \mathcal{A} .

Before we give the formal definition of the new game, let us briefly mention why we require these properties: Recall that we want to use the model checking game $\mathcal{MC}(\mathscr{A}, \varphi)$ to decide algorithmically whether a formula $\varphi \in \mathsf{MSO}(\tau)$ holds in a τ -structure \mathscr{A} , If φ contains set quantifiers, then there is a number of positions in $\mathscr{MC}(\mathscr{A}, \varphi)$ that grows exponentially with the size of A. In order to avoid exponential running time on structures of bounded treewidth, a tree decomposition $(\mathcal{T}, \mathcal{X})$ of \mathscr{A} , where $\mathscr{T}=(T,F)$, is traversed bottom-up by a dynamic programming algorithm. At a node $i\in T$, we only consider the substructure \mathcal{A}_i of \mathcal{A} . Then in general $\mathcal{A}[A_i]$ does not fully interpret τ , which explains the first requirement.

For the second requirement, note that for each $i \in T$ there is a τ -structure \mathscr{B}_i , such that \mathscr{A} can be written as $\mathscr{A} = \mathscr{A}_i \cup \mathscr{B}_i$. The structure \mathcal{B}_i is sometimes called the "future" of \mathcal{A}_i in the literature. Therefore, if one of the players has a winning strategy in the game on \mathscr{A}_i and φ , we require that the same player has a winning strategy on $\mathscr{A} = \mathscr{A}_i \cup \mathscr{B}_i$ and φ .

In order to make the inductive construction work, we additionally need to distinguish the nodes in the "current" bag X_i of the tree decomposition. The game therefore additionally depends on a given set $X = X_i \subseteq A$, which is kept as additional information in the positions of $\mathcal{EMC}(\mathscr{A}, X, \varphi)$, but will not be used in the definition of the game any further.

Definition 4 (Extended Model Checking Game). The extended model checking game $\mathcal{EMC}(\mathcal{A}, X, \varphi) = (P, M, P_0, P_1, p_0)$ over a τ -structure \mathscr{A} , a set $X \subseteq A$, and a formula $\varphi \in \mathsf{MSO}(\tau)$ is defined by induction over the structure of φ as follows. Let $p_0 = (\mathscr{A}[X \cup \bar{c}^{\mathscr{A}}], X, \varphi)$, where $\bar{c} = null(\tau)$. If φ is an atomic or negated formula, then $\mathscr{EMC}(\mathscr{A}, \varphi) = (\{p_0\}, \emptyset, P_0, P_1, p_0)$, where

- $p_0 \in P_0$ if and only if either
 - $-\varphi = R(c_1, \ldots, c_p)$, such that $\{c_1, \ldots, c_p\} \subseteq interpreted(\mathscr{A})$, and $(c_1^{\mathscr{A}}, \ldots, c_n^{\mathscr{A}}) \in R^{\mathscr{A}}$, or
 - $-\varphi = \neg R(c_1, \ldots, c_p)$, such that $\{c_1, \ldots, c_p\} \subseteq interpreted(\mathscr{A})$, and $(c_1^{\mathscr{A}}, \ldots, c_p^{\mathscr{A}}) \notin R^{\mathscr{A}}$.
- $p_0 \in P_1$ if and only if either
 - $-\varphi=R(c_1,\ldots,c_p)$, such that $\{c_1,\ldots,c_p\}\subseteq interpreted(\mathscr{A})$, and $(c_1^{\mathscr{A}},\ldots,c_p^{\mathscr{A}})\not\in R^{\mathscr{A}}$, or
 - $-\varphi = \neg R(c_1, \ldots, c_p)$, such that $\{c_1, \ldots, c_p\} \subseteq interpreted(\mathscr{A})$, and $(c_1^{\mathscr{A}}, \ldots, c_n^{\mathscr{A}}) \in R^{\mathscr{A}}$.

If $\varphi \in \{ \forall R \psi, \exists R \psi \}$ for some relation symbol R, or $\varphi \in \{ \psi_1 \land \psi_2, \psi_1 \lor \psi_2 \}$, then $\mathcal{EMC}(\mathscr{A}, X, \varphi)$ is defined analogously to $\mathcal{MC}(\mathcal{A}, \varphi)$.

If $\varphi \in \{\forall c \psi, \exists c \psi\}$ for some nullary symbol c, let $\mathscr{A}_u = (\mathscr{A}, u)$ be the (τ, c) -expansion of \mathscr{A} with $c^{\mathscr{A}_u} = u \in A$ or $c^{\mathscr{A}_{u}} = \text{nil}$, and let $\mathscr{EMC}(\mathscr{A}_{u}, X, \psi) = (P_{u}, M_{u}, P_{0,u}, P_{1,u}, p_{u})$ be the corresponding extended model checking game over \mathscr{A}_{u} and ψ . Then $\mathcal{EMC}(\mathcal{A}, X, \varphi) = (P, M, P_0, P_1, p_0)$, where

- $P = \{p_0\} \cup \bigcup_{u \in A \cup \{\text{nil}\}} P_u$,
- $M = \bigcup_{u \in A \cup \{\text{nil}\}} (M_u \cup \{(p_0, p_u)\}),$
- $P_0 = P_0' \cup \bigcup_{u \in A \cup \{\text{nil}\}} P_{0,u}$, where $P_0' = \{p_0\}$ iff $\varphi = \forall c \psi$ and $P_0' = \emptyset$ otherwise, $P_1 = P_1' \cup \bigcup_{u \in A \cup \{\text{nil}\}} P_{1,u}$, where $P_1' = \{p_0\}$ iff $\varphi = \exists c \psi$ and $P_1' = \emptyset$ otherwise.

For the games we consider throughout this paper, one can decide from a position $p \in P$ whether $p \in P_0$ or $p \in P_1$ (cf., the definitions of \mathcal{MC} and \mathcal{EMC}). To avoid cluttered notation, we will therefore usually omit the sets P_0 and P_1 from the tuple (P, M, P_0, P_1, p_0) and identify games with the triple (P, M, p_0) . Fig. 1 shows a simplified schematic of an extended model checking game and the result after an application of the evaluation algorithm eval.

If \mathscr{A} is τ -structure, then $\mathscr{MC}(\mathscr{A}, \varphi)$ can be embedded into $\mathscr{EMC}(\mathscr{A}, X, \varphi)$ such that for each play of $\mathscr{MC}(\mathscr{A}, \varphi)$ there is a corresponding, equivalent play of $\mathscr{EMC}(\mathscr{A}, X, \varphi)$. Note, however, that the two games are not identical, since $\mathscr{EMC}(\mathscr{A}, X, \varphi)$ contains positions where nullary symbols remain uninterpreted, which do not exist in $\mathcal{MC}(\mathcal{A}, \varphi)$. Algorithm 2 effectively computes this embedding (Lemma 1). Furthermore, if $\mathcal{EMC}(\mathcal{A}, X, \varphi)$ is determined, then so is $\mathcal{MC}(\mathcal{A}, \varphi)$ (Lemma 3).

Fig. 1. Top: simplified schematic of $\mathcal{EMC}(\mathscr{A}, \emptyset, \varphi)$ for the structure \mathscr{A} with universe $A = \{a\}$ and $\varphi = \exists Y \forall x (x \in Y)$. Bottom: $eval(\mathcal{EMC}(\mathscr{A}, \emptyset, \varphi))$. The lower branch witnesses a play that ends with a draw.

Algorithm 2 Converting \mathcal{EMC} to \mathcal{MC}

```
Algorithm convert(\mathcal{G})
Input: A game \mathcal{G} = (P, M, p_0) with p_0 = (\mathcal{H}, X, \varphi).

if \mathcal{G} \in \{\top, \bot\} then return \mathcal{G}.

Let \bar{c} = null(vocabulary(\mathcal{H})).

Let p'_0 = (\mathcal{H}[\bar{c}^{\mathcal{H}}], \varphi), P' = \{p'_0\}, \text{ and } M' = \emptyset.

for p_1 = (\mathcal{H}_1, X, \psi) \in next(p_0) \text{ s.t. } \mathcal{H}_1 \in \mathcal{STR}(\tau') \text{ fully interprets } \tau' \text{ do}

Let (P'_1, M'_1, p'_1) = convert(subgame_{\mathcal{G}}(p_1)).

Update P' := P' \cup P'_1 \text{ and } M' := M' \cup M'_1 \cup \{(p'_0, p'_1)\}.

return (P', M', p'_0)
```

Lemma 1. Let \mathscr{A} be a τ -structure that fully interprets τ , $X \subseteq A$, and $\varphi \in \mathsf{MSO}(\tau)$. Then, using Algorithm 2, we have

```
\mathcal{MC}(\mathscr{A}, \varphi) = convert(\mathcal{EMC}(\mathscr{A}, X, \varphi)).
```

Proof. The proof is an induction over the structure of φ . For atomic or negated atomic formulas, the statement trivially holds by definition of $\mathcal{MC}(\mathscr{A}, \varphi)$, since $subgames(\mathcal{EMC}(\mathscr{A}, X, \varphi)) = \emptyset$. Let $\mathfrak{G} = \mathcal{EMC}(\mathscr{A}, X, \varphi) = (P, M, p_0)$.

Let $\varphi \in \{\forall R\psi, \exists R\psi\}$ or $\varphi \in \{\psi_1 \land \psi_2, \psi_1 \lor \psi_2\}$ and $\psi \in \{\psi_1, \psi_2\}$ and consider $p = (\mathscr{H}, X, \psi) \in \mathit{next}_{\S}(p_0)$. We have $\mathit{subgame}_{\S}(p) = \mathscr{EMC}(\mathscr{A}', X, \psi)$, where either $\mathscr{A}' = (\mathscr{A}, U)$ is an (τ, R) -expansion of \mathscr{A} for some $U \subseteq A$, or $\mathscr{A}' = \mathscr{A}$, respectively. Since \mathscr{A} fully interprets (τ, R) , and we obtain $\mathscr{MC}(\mathscr{A}', \psi) = \mathit{convert}(\mathscr{EMC}(\mathscr{A}', X, \psi))$ by the induction hypothesis.

If otherwise $\varphi \in \{\forall c\psi, \exists c\psi\}$, consider $p = (\mathscr{H}, X, \psi) \in next_{\S}(p_0)$. By definition, $subgame_{\S}(p) = \mathscr{EMC}(\mathscr{A}', X, \psi)$, where \mathscr{A}' is a (τ, c) -expansion of \mathscr{A} with $c^{\mathscr{A}'} \in A \cup \{\text{nil}\}$. If all constant symbols are interpreted in \mathscr{H} , then $c^{\mathscr{A}'} \neq \text{nil}$, i.e., (τ, c) is fully interpreted in \mathscr{A}' . By the induction hypothesis we get $\mathscr{MC}(\mathscr{A}', \psi) = convert(\mathscr{EMC}(\mathscr{A}', X, \psi))$. Together, the statement follows. \square

We now prove that if an extended model game is determined, then the corresponding winning player can win the game without using any further "nil-moves". This will be useful in the proof of Lemma 3.

Lemma 2. Let \mathscr{A}_1 and \mathscr{A}_2 be τ -structures with $A_1 = A_2$ and $c \in null(\tau)$, such that $c^{\mathscr{A}_1} = \text{nil}$, $R^{\mathscr{A}_1} = R^{\mathscr{A}_2}$ for all $R \in rel(\tau)$ and $d^{\mathscr{A}_1} = d^{\mathscr{A}_2}$ for all $d \in null(\tau) \setminus \{c\}$. Let $\varphi \in MSO(\tau)$.

```
If eval(\mathcal{EMC}(\mathcal{A}_1, X, \varphi)) \in \{\top, \bot\}, then A_1 \neq \emptyset and
```

$$eval(\mathcal{EMC}(\mathcal{A}_1, X, \varphi)) = eval(\mathcal{EMC}(\mathcal{A}_2, X, \varphi)).$$

Before we give the formal proof, consider the following high-level argument: Suppose that $eval(\mathcal{EMC}(\mathscr{A}_1, X, \varphi)) = \top$. Then there is at least one play of the game $\mathcal{EMC}(\mathscr{A}_1, X, \varphi)$ that is won by the verifier. Consider an arbitrary play (p_0, \ldots, p_l) won by the verifier and let $p_l = (\mathscr{H}, X, \psi)$. Since p_l is assigned to the falsifier, all constant symbols occurring in ψ are

interpreted and hence different from c. The verifier can therefore win the game without depending on formulas where c occurs.

Proof. The proof is an induction over the structure of φ .

Let $eval(\mathcal{EMC}(\mathscr{A}_1, X, \varphi)) \in \{\top, \bot\}$. If φ is an atomic or negated formula, say $\varphi = R(c_1, \ldots, c_p)$, then $\{c_1, \ldots, c_p\} \subseteq interpreted(\mathscr{A}_1)$. Therefore, $A_1 \neq \emptyset$ and for all $1 \leq i \leq p$, we have $c \neq c_i$ and $c_i^{\mathscr{A}_1} = c_i^{\mathscr{A}_2}$, which implies $eval(\mathcal{EMC}(\mathscr{A}_1, X, \varphi)) = eval(\mathcal{EMC}(\mathscr{A}_2, X, \varphi))$.

If $\varphi \in \{\forall R \psi, \exists R \psi\}$ for a relation symbol R, let $U \subseteq A$ and \mathscr{A}'_1 , \mathscr{A}'_2 be the (τ, R) -expansions of \mathscr{A}_1 and \mathscr{A}_2 , respectively, with $R^{\mathscr{A}'_1} = R^{\mathscr{A}'_2} = U$. Then by the induction hypothesis $eval(\mathscr{EMC}(\mathscr{A}'_1, X, \psi)) = eval(\mathscr{EMC}(\mathscr{A}'_2, X, \psi))$ if $eval(\mathscr{EMC}(\mathscr{A}'_1, X, \psi)) \in \{\top, \bot\}$.

Similarly, if $\varphi \in \{ \forall d\psi, \exists d\psi \}$ for a nullary symbol d, let \mathscr{A}'_1 and \mathscr{A}'_2 be (τ, d) -expansions of \mathscr{A}_1 and \mathscr{A}_2 , respectively, such that $d^{\mathscr{A}'_1} = d^{\mathscr{A}'_2}$. Then by the induction hypothesis $eval(\mathscr{EMC}(\mathscr{A}'_1, X, \psi)) = eval(\mathscr{EMC}(\mathscr{A}'_2, X, \psi))$, if $eval(\mathscr{EMC}(\mathscr{A}'_1, X, \psi)) \in \{\top, \bot\}$.

Finally, if $\varphi \in \{\psi_1 \land \psi_2, \psi_1 \lor \psi_2\}$, then from $eval(\mathcal{EMC}(\mathscr{A}_1, X, \psi)) \in \{\top, \bot\}$, where $\psi \in \{\psi_1, \psi_2\}$, we get $eval(\mathcal{EMC}(\mathscr{A}'_1, X, \psi)) = eval(\mathcal{EMC}(\mathscr{A}'_2, X, \psi))$.

Together, the statement of the lemma follows. \Box

We can now prove that if some player has a winning strategy in the extended model checking game, then the same player has a winning strategy in the classical model checking game.

```
Lemma 3. Let \mathscr{A} \in \mathscr{STR}(\tau) that fully interprets \tau, X \subseteq A, and \varphi \in \mathsf{MSO}(\tau). If eval(\mathscr{EMC}(\mathscr{A}, X, \varphi)) \in \{\top, \bot\}, then eval(\mathscr{MC}(\mathscr{A}, \varphi)) = eval(\mathscr{EMC}(\mathscr{A}, X, \varphi)).
```

Proof. The proof is an induction over the structure of φ .

Suppose $eval(\mathscr{EMC}(\mathscr{A},X,\varphi)) = \top$ (the case \bot is shown analogously). If φ is an atomic or negated atomic formula, then the statement clearly holds. If $\varphi = \psi_1 \land \psi_2$, then for each $\psi \in \{\psi_1,\psi_2\}$ we have $eval(\mathscr{EMC}(\mathscr{A},X,\psi)) = \top$. This implies $eval(\mathscr{MC}(\mathscr{A},\psi)) = \top$ by the induction hypothesis, and therefore $eval(\mathscr{MC}(\mathscr{A},\varphi)) = \top$.

Similarly, if $\varphi = \forall R \psi$ for a relation symbol R, then $eval(\mathcal{EMC}(\mathscr{A}', X, \psi)) = \top$ for each (τ, R) -expansion \mathscr{A}' of \mathscr{A} , each of which fully interprets (τ, R) . We therefore get $eval(\mathscr{MC}(\mathscr{A}', \psi)) = \top$ by the induction hypothesis, and conclude $eval(\mathscr{MC}(\mathscr{A}, \varphi)) = \top$.

If $\varphi = \forall c \psi$ for a nullary symbol c, then $eval(\mathcal{EMC}(\mathscr{A}', X, \psi)) = \top$ for each (τ, c) -expansion \mathscr{A}' of \mathscr{A} that fully interprets (τ, c) , and $eval(\mathscr{MC}(\mathscr{A}', \psi)) = \top$ by the induction hypothesis. Therefore, $eval(\mathscr{MC}(\mathscr{A}, \varphi)) = \top$.

If $\varphi = \psi_1 \vee \psi_2$, then there is $\psi \in \{\psi_1, \psi_2\}$ with $eval(\mathcal{EMC}(\mathscr{A}, X, \psi)) = \top$. We get $eval(\mathcal{MC}(\mathscr{A}, \psi)) = \top$ by the induction hypothesis, and therefore $eval(\mathcal{MC}(\mathscr{A}, \varphi)) = \top$.

Similarly, if $\varphi = \exists R \psi$ for a relation symbol R, then there is a (τ, R) -expansion \mathscr{A}' of \mathscr{A} with $eval(\mathscr{EMC}(\mathscr{A}', X, \psi)) = \top$. Since \mathscr{A} fully interprets (τ, R) . Using the induction hypothesis, we have $eval(\mathscr{MC}(\mathscr{A}', \psi)) = \top$ and therefore $eval(\mathscr{MC}(\mathscr{A}, \varphi)) = \top$.

Finally, if $\varphi = \exists c \psi$ for a nullary symbol c, then there is a (τ, c) -expansion \mathscr{A}' of \mathscr{A} with $eval(\mathscr{EMC}(\mathscr{A}', X, \psi)) = \top$. By Lemma 2, we can assume $c^{\mathscr{A}} \neq \text{nil}$. Then \mathscr{A}' fully interprets (τ, c) and we get $eval(\mathscr{MC}(\mathscr{A}', \psi)) = \top$ by the induction hypothesis. Therefore $eval(\mathscr{MC}(\mathscr{A}, \varphi)) = \top$.

We can significantly strengthen this statement further: If $\mathcal{EMC}(\mathscr{A}, X, \varphi)$ is determined, then $\mathcal{EMC}(\mathscr{A} \cup \mathscr{B}, X, \varphi)$ is also determined for *all* \mathscr{B} compatible with \mathscr{A} . Note that the union $\mathscr{A} \cup \mathscr{B}$ arises on *join* or *introduce* nodes i of the tree decomposition, where $X = X_i$ is the current bag, cf., Fig. 2.

Recall, for instance, the example 3-Colorable from the introduction: If a subgraph \mathscr{A}' of a graph \mathscr{A} is not 3-colorable, then clearly \mathscr{A} is not 3-colorable either. The following lemma formalizes this observation.

Let us give a brief high-level explanation before we state the lemma and give its proof. Roughly speaking, if $\mathcal{G} = \mathcal{EMC}(\mathscr{A}, X, \varphi)$ is determined, then moves to objects $b \in B \setminus A$ in $\mathcal{G}' = \mathcal{EMC}(\mathscr{A} \cup \mathscr{B}, X, \varphi)$ are either "irrelevant" for a player's strategy or already "sufficiently" captured by moves to nil (cf., Lemma 2). If therefore one of the players, say the falsifier, has a winning strategy in \mathcal{G} , then in some sense this winning strategy carries over to \mathcal{G}' . In the case of 3-Colorabllity, if \mathscr{A} is not 3-colorable, then the falsifier has a winning strategy on $\mathcal{EMC}(\mathscr{A}, X, 3col)$: No matter which three sets the verifier chooses, either these sets are not a partition or not independent sets. In either case there are witnessing vertices that the falsifier can choose. Thus, no matter which subsets the verifier chooses in $\mathcal{G}' = \mathcal{EMC}(\mathscr{A} \cup \mathscr{B}, X, 3col)$, the falsifier can then choose the same witnessing vertices to win each play of \mathcal{G}' .

Lemma 4 (Introduce). Let \mathscr{A} and \mathscr{B} be compatible τ -structures with $B = A \uplus \{b\}$. Let $X \subseteq A$ and $\varphi \in \mathsf{MSO}(\tau)$. Let $\mathcal{G} = \mathscr{EMC}(\mathscr{A}, X, \varphi)$ and $\mathcal{G}' = \mathscr{EMC}(\mathscr{B}, X \cup \{b\}, \varphi)$.

```
1. If eval(\mathfrak{F}) = \top, then eval(\mathfrak{F}') = \top.
```

2. If $eval(\mathfrak{G}) = \bot$, then $eval(\mathfrak{G}') = \bot$.

Fig. 2. Introduce (left): If \mathscr{A} and \mathscr{B} are such that $\mathscr{A} = \mathscr{B}[A]$, then winning strategies for $\mathscr{EMC}(\mathscr{A}, X, \varphi)$ carry over to $\mathscr{EMC}(\mathscr{B}, X \cup \{b\}, \varphi)$. Join/union (right): If \mathscr{A} and \mathscr{B} are compatible, then winning strategies for $\mathscr{EMC}(\mathscr{A}, X, \varphi)$ carry over to $\mathscr{EMC}(\mathscr{A} \cup \mathscr{B}, X, \varphi)$.

Proof. We prove the lemma by induction over the structure of φ . Let $\bar{c} = null(\tau)$. Let $\mathfrak{G} = (P, M, p_0)$ and $\mathfrak{G}' = (P', M', p'_0)$ with $p_0 = (\mathscr{H}, X, \varphi)$ and $p'_0 = (\mathscr{H}', X \cup \{b\}, \varphi)$, where $\mathscr{H} = \mathscr{A}[X \cup \bar{c}^{\mathscr{A}}]$ and $\mathscr{H}' = \mathscr{B}[X \cup \{b\} \cup \bar{c}^{\mathscr{B}}]$. Suppose $eval(\mathfrak{G}) = T$ (the second case $eval(\mathfrak{G}) = \bot$ is proven analogously).

Let $\varphi = R(c_1, \dots, c_p)$ or $\varphi = \neg R(c_1, \dots, c_p)$ for a relation symbol $R \in \tau$. We have $eval(\mathfrak{G}) = \top$, and hence, by definition $c_i \in interpreted(\mathscr{G})$ for all $1 \leq i \leq p$. Here, $c_i^{\mathscr{H}} = c_i^{\mathscr{H}} = c_i^{\mathscr{H}}$ for all $1 \leq i \leq p$, since \mathscr{A} and \mathscr{B} are compatible, and therefore $R^{\mathscr{H}} = R^{\mathscr{H}'} \cap H^p$, since $H = H' \setminus \{b\}$. Hence, $(c_1^{\mathscr{H}}, \dots, c_p^{\mathscr{H}}) \in R^{\mathscr{H}}$ if and only if $(c_1^{\mathscr{H}'}, \dots, c_p^{\mathscr{H}'}) \in R^{\mathscr{H}'}$, and thus $eval(\mathfrak{G}') = \top$.

Assume now that $\varphi = \psi_1 \wedge \psi_2$ or $\varphi = \psi_1 \vee \psi_2$. By definition, for each $\psi \in \{\psi_1, \psi_2\}$ there is a subgame $g_{\psi} = \mathcal{EMC}(\mathscr{A}, X, \psi) \in subgames(g)$ and a subgame $g'_{\psi} = \mathcal{EMC}(\mathscr{B}, X \cup \{b\}, \psi) \in subgames(g')$. By the induction hypothesis, $eval(g'_{\psi}) = \top$ if $eval(g_{\psi}) = \top$, and hence $eval(g') = \top$ if $eval(g) = \top$.

If $\varphi = \forall R \psi$ or $\varphi = \exists R \psi$, then for each $U \subseteq A$ there is a subgame $\mathfrak{G}_U = \mathcal{EMC}((\mathscr{A}, U), X, \psi) \in subgames(\mathfrak{F})$, and for each $U' \subseteq B$ there is a subgame $\mathfrak{G}'_{U'} = \mathcal{EMC}((\mathscr{B}, U'), X \cup \{b\}, \psi) \in subgames(\mathfrak{F}')$.

If $\varphi = \forall R \psi$, consider an arbitrary $U' \subseteq B$ and let $U = U' \setminus \{b\}$. We know, by definition of $eval(\mathfrak{G}_U)$, that $eval(\mathfrak{G}_U) = \top$. Furthermore, (\mathscr{A}, U) and (\mathscr{B}, U') are compatible, and therefore, by the induction hypothesis, also $eval(\mathfrak{G}'_{U'}) = \top$. Therefore, $eval(\mathfrak{G}'_{U'}) = \top$ for all $U' \subseteq B$, and hence $eval(\mathfrak{G}') = \top$.

 $eval(\mathcal{G}'_{U'}) = \top$ for all $U' \subseteq B$, and hence $eval(\mathcal{G}') = \top$. If otherwise $\varphi = \exists R \psi$, then there is some $U \subseteq A$ such that $eval(\mathcal{G}_U) = \top$. Since (\mathscr{A}, U) and (\mathscr{B}, U) are compatible, $eval(\mathcal{G}'_U) = \top$ by the induction hypothesis. Therefore, $eval(\mathcal{G}') = \top$.

If $\varphi = \forall c \psi$, consider an arbitrary (τ, c) -expansion \mathscr{B}' of \mathscr{B} and let $\mathscr{A}' := \mathscr{B}[A]$. Note that if $c^{\mathscr{B}'} \neq b$, then $c^{\mathscr{A}'} = c^{\mathscr{B}'} \in A$, and if $c^{\mathscr{B}'} = b$ or $c^{\mathscr{B}'} = n$ il, then $c^{\mathscr{A}'} = n$ il. In either case, \mathscr{A}' and \mathscr{B}' are compatible. We know, by definition of $eval(\mathfrak{F})$, that $eval(\mathfrak{E} \mathscr{M} \mathscr{C}(\mathscr{A}', X, \psi)) = \top$. Hence, by the induction hypothesis, $eval(\mathfrak{E} \mathscr{M} \mathscr{C}(\mathscr{B}', X \cup \{b\}, \psi)) = \top$. All in all, $eval(\mathfrak{F}') = \top$.

Assume now that $\varphi = \exists c \psi$. Since $eval(\mathfrak{F}) = \top$, we know that there is a (τ, c) -expansion \mathscr{A}' of \mathscr{A} , such that $eval(\mathscr{EMC}(\mathscr{A}', X, \psi)) = \top$. Let \mathscr{B}' the (τ, c) -expansion of \mathscr{B} with $c^{\mathscr{B}'} = c^{\mathscr{A}'}$. Then \mathscr{A}' and \mathscr{B}' are compatible, and using the induction hypothesis as above, we obtain $eval(\mathfrak{F}') = \top$. \square

Corollary 1. Let \mathscr{A} and \mathscr{B} be compatible τ -structures with $A \subseteq B$. Let $X \subseteq A$ and $\varphi \in \mathsf{MSO}(\tau)$. Let $\mathscr{G} = \mathscr{EMC}(\mathscr{A}, X, \varphi)$ and $\mathscr{G}' = \mathscr{EMC}(\mathscr{B}, X \cup (B \setminus A), \varphi)$.

- 1. If $eval(\mathfrak{G}) = \top$, then $eval(\mathfrak{G}') = \top$.
- 2. If $eval(\mathfrak{G}) = \bot$, then $eval(\mathfrak{G}') = \bot$.

Proof. We use Lemma 4 and induction over $|B \setminus A|$. Let $eval(\mathcal{G}) \in \{\top, \bot\}$.

If $B \setminus A = \emptyset$ and therefore $\mathscr{A} = \mathscr{B}$, the statement clearly holds. Otherwise, consider $b \in B \setminus A$ and let $\mathscr{A}' = (\mathscr{A} \cup \mathscr{B})[A \cup \{b\}]$. From $eval(\mathfrak{F}) \in \{\top, \bot\}$ we get $eval(\mathscr{E} \mathcal{MC}(\mathscr{A}', X \cup \{b\}, \varphi)) = eval(\mathfrak{F})$ by Lemma 4.

We can now use the induction hypothesis on \mathscr{A}' , \mathscr{B} and $X \cup \{b\}$, since \mathscr{A}' and \mathscr{B} a compatible and $|B \setminus A'| < |B \setminus A|$, and obtain $eval(\mathfrak{G}') = eval(\mathfrak{G})$. \square

The *forget* operation at a node i of a tree decomposition does not change the underlying structure \mathscr{A}_i . It is therefore not surprising that any winning strategies carry over.

Lemma 5 (Forget). Let \mathscr{A} be a τ -structure, $X' \subseteq X \subseteq A$ and $\varphi \in \mathsf{MSO}(\tau)$. Let $\mathscr{G} = \mathscr{EMC}(\mathscr{A}, X, \varphi)$ and $\mathscr{G}' = \mathscr{EMC}(\mathscr{A}, X', \varphi)$.

- 1. If $eval(\mathcal{G}) = \top$, then $eval(\mathcal{G}') = \top$.
- 2. If $eval(\mathfrak{G}) = \bot$, then $eval(\mathfrak{G}') = \bot$.

Proof. Let $\mathcal{G} = (P, M, P_0, P_1, p_0)$ and $\mathcal{G}' = (P', M', P'_0, P'_1, p'_0)$. It is not hard to see that \mathcal{G} and \mathcal{G}' are almost identical, the only difference being slightly differently labeled positions: By definition, $p_0 = (\mathcal{H}, X, \varphi)$ and $p'_0 = (\mathcal{H}', X', \varphi)$, where $\mathcal{H} = \mathcal{A}[X \cup c^{\mathscr{A}}]$ and $\mathcal{H}' = \mathcal{A}[X' \cup c^{\mathscr{A}}]$. In particular, $p_0 \in P_i$ if and only if $p'_0 \in P'_i$, where $i \in \{1, 2\}$. By induction over the structure of φ , the claim then easily follows. \square

Algorithm 3 Reducing a game.

```
Algorithm reduce(\mathfrak{G})

Input: A game \mathfrak{G} = (P, M, p_0) with p_0 = (\mathscr{H}, X, \varphi).

if \mathfrak{G} \in \{\top, \bot\} then return \mathfrak{G}

if \varphi is an atomic or negated atomic formula then return eval(\mathfrak{G})

Let P' := \{p_0\} and M' := \emptyset.

for p \in next(p_0) do

Let \mathfrak{G}' = (P'_1, M'_1, p') := reduce(subgame_{\mathfrak{G}}(p)).

if \varphi is universal and \mathfrak{G}' = \bot then return \bot

if \varphi is existential and \mathfrak{G}' = \top then return \top

if \mathfrak{G}' \notin \{\top, \bot\} and \mathfrak{G}' \ncong \mathfrak{G}'' for all \mathfrak{G}'' \in subgames((P', M', p_0)) then

Update P' := P' \cup P'_1 and M' := M' \cup M'_1 \cup \{(p_0, p')\}.

if P' = \{p_0\} then return eval((P', M', p_0)).
```

Finally we show that the same holds for *join* nodes of a tree decomposition. Note that the corresponding operation on structures is the union.

```
Lemma 6 (Join/Union). Let \mathscr{A}, \mathscr{B} be compatible \tau-structures, X = A \cap B, and \varphi \in \mathsf{MSO}(\tau). Let \mathscr{G} = \mathscr{EMC}(\mathscr{A}, X, \varphi) and \mathscr{G}' = \mathscr{EMC}(\mathscr{A} \cup \mathscr{B}, X, \varphi).
```

```
1. If eval(\mathfrak{F}) = \top, then eval(\mathfrak{F}') = \top.
2. If eval(\mathfrak{F}) = \bot, then eval(\mathfrak{F}') = \bot.
```

Proof. Let $eval(\mathcal{EMC}(\mathscr{A}, X, \varphi)) \in \{\top, \bot\}$. By Corollary 1, $eval(\mathcal{EMC}(\mathscr{A} \cup \mathscr{B}, X \cup (B \setminus A), \varphi)) = eval(\mathcal{EMC}(\mathscr{A}, X, \varphi))$. The claim then immediately follows by Lemma 5. \Box

3. Reducing the size of games

In this section we show that for every game $\mathcal{G} = (P, M, P_0) = \mathcal{EMC}(\mathcal{A}, X, \varphi)$ one can construct a game $\mathcal{G}' = (P', M', p_0)$ such that $eval(\mathcal{G}) = eval(\mathcal{G}')$ if $eval(\mathcal{G}) \in \{\top, \bot\}$, but $P' \subseteq P$ and $M' \subseteq M'$ are typically much smaller than P and M. This will be crucial for obtaining the desired running times of our algorithm. We first define a suitable notion of *equivalence* between games.

Definition 5 (Equivalent Games). We say that two positions p_1 , p_2 are equivalent, denoted by $p_1 \cong p_2$ iff

- $p_1 = (\mathcal{H}_1, X, \varphi)$ and $p_2 = (\mathcal{H}_2, X, \varphi)$ for some formula φ and set $X \subseteq H_1 \cap H_2$,
- there is an isomorphism $h: H_1 \to H_2$ between \mathcal{H}_1 and \mathcal{H}_2 , such that h(a) = a for all $a \in X$.

We say that two games $g_1 = (P_1, M_1, p_1)$ and $g_2 = (P_2, M_2, p_2)$ are *equivalent*, denoted by $g_1 \cong g_2$, if $p_1 \cong p_2$ and there is a bijection π : $subgames(g_1) \rightarrow subgames(g_2)$, such that $g' \cong \pi(g')$ for all $g' \in subgames(g_1)$.

We now define a *reduce operation* that significantly shrinks the size of a game \mathfrak{g} (see Algorithm 3). Firstly, subgames won by the opponent player are removed. If, for instance, the formula is universal, then the falsifier can safely ignore subgames that evaluate as \top , i.e., for which the verifier has a winning strategy. For example, it is easy to see that we can remove the two subgames \top and \bot in Fig. 1.

Secondly, we only need to keep one representation per equivalence class under \cong for all undetermined games. Here, we use the fact that $eval(\mathfrak{G}_1)\cong eval(\mathfrak{G}_2)$ for any \mathfrak{G}_1 , \mathfrak{G}_2 with $\mathfrak{G}_1\cong \mathfrak{G}_2$. We will not explicitly prove this claim. If, however, $\mathfrak{G}_1=\mathscr{EMC}(\mathscr{A}_1,X,\varphi)$ and $\mathfrak{G}_2=\mathscr{EMC}(\mathscr{A}_2,X,\varphi)$ for some τ -structures \mathscr{A}_1 and \mathscr{A}_2 , for $X\subseteq A_1\cap A_2$ and $\varphi\in MSO(\tau)$, then the bijection π induced by the definition of \cong yields a bisimulation between $\mathscr{EMC}(\mathscr{A}_1,X,\varphi)$ and $\mathscr{EMC}(\mathscr{A}_2,X,\varphi)$. In particular, if both \mathfrak{G}_1 and \mathfrak{G}_2 are subgames of the same game \mathscr{G} , then it suffices to keep either subgame as "witness" for possible winning positions for the respective player in the model checking game. Thus, removing equivalent subgames from a game \mathfrak{G} can be seen as a variant of taking the *bisimulation quotient* (cf., [47, Chapter 7]) of \mathfrak{G} .

See Figs. 3 and 4 in Section 6 for two examples.

Lemma 7. Let \mathscr{A} be a τ -structure, $X \subseteq A$, and $\varphi \in MSO(\tau)$. Let $\mathscr{G} = \mathscr{EMC}(\mathscr{A}, X, \varphi)$. Then

- ullet eval(${\mathfrak F}$) = \top , if and only if reduce(${\mathfrak F}$) = \top , and
- $eval(\mathcal{G}) = \bot$, if and only if $reduce(\mathcal{G}) = \bot$.

Proof. Let $g = (P, M, p_0)$, where $p_0 = (\mathcal{H}, X, \varphi)$. Without loss of generality, we assume that $g \notin \{\top, \bot\}$. We only show the first case (\top) , the second statement is proven analogously. The proof is an induction over the structure of φ . If φ is an

Fig. 3. Simplified schematic of $reduce(\mathscr{A}, X, vc)$, where \mathscr{A} has universe $A = \{a\}, X = A$ and $a \notin R^{\mathscr{A}}$. If any of the symbols x or y remains uninterpreted (cases x :=nil and y :=nil in the figure), then some of the plays in $\mathscr{E}\mathscr{MC}(\mathscr{A}, \emptyset, vc)$ end with a draw and still persist in the reduced game. If $\mathscr{A} = \mathscr{A}_i$ and $X = X_i$ for a node i of a tree decomposition, then this essentially means that it is still open whether nodes in the "future" of i will be adjacent or whether they will be contained in R.

Fig. 4. Simplified schematic of $reduce(\mathscr{A}, X, ds)$, where \mathscr{A} has universe $A = \{a, b\}, X = A$, and $R^{\mathscr{A}} = \{b\}$, such that a and b are not adjacent. Then a might still be dominated by a "future" vertex; the corresponding plays (following the upper y :=nil branch in the figure) end with a draw and therefore persist in the reduced game. Similarly, the branch x :=nil corresponds to the case that "future" vertices are chosen as interpretations for x. Such vertices can also be dominated by b, which is represented by the y := b branch in the figure.

atomic or negated atomic formula or $P = \{p_0\}$, then the statement holds by definition of $reduce(\mathfrak{F})$. For the induction step, assume φ is not an atomic or negated formula, and $next(p_0) \neq \emptyset$.

Let $\mathcal{G}_p = subgame_{\mathfrak{g}}(p)$ for all $p \in next(p_0)$ and let $eval(\mathcal{G}_p) = \top$. If φ is existential, then there is $p \in next(p_0)$ with $eval(\mathcal{G}_p) = \top$. By the induction hypothesis, $reduce(\mathcal{G}_p) = eval(\mathcal{G}_p) = \top$, and therefore $reduce(\mathcal{G}_p) = \top$. Similarly, if φ is universal, then $eval(\mathcal{G}_p) = \top$ for all $p \in next(p_0)$. By the induction hypothesis, $reduce(\mathcal{G}_p) = \top$ for each $p \in next(p_0)$. Hence, we have $P' = \{p_0\}$ after the for-loop. Since φ is universal, the call to $eval((P', M', p_0))$ returns \top by definition, and therefore $reduce(\mathcal{G}_p) = \top$.

Conversely, let $reduce(\mathfrak{F}) = \top$. If φ is existential, then there must be some $p \in next(p_0)$ with $reduce(\mathfrak{F}_p) = \top$. Assume for a contradiction that $reduce(\mathfrak{F}_p) = \bot$ for all $p \in next(p_0)$. Then $P' = \{p_0\}$ after the for-loop, which implies $eval((P', M', p_0)) = \bot$, a contradiction. Let therefore p be such a position with $reduce(\mathfrak{F}_p) = \top$. Then, by the induction hypothesis, $eval(\mathfrak{F}_p) = \top$ for this p, and therefore also $eval(\mathfrak{F}) = \top$. If φ is universal, then we know $P' = \{p_0\}$ after the for-loop, as this is the only possibility how $reduce(\mathfrak{F})$ can return \top . Therefore, $reduce(\mathfrak{F}_p) = \top$ for all $p \in next(p_0)$, and hence $eval(\mathfrak{F}) = \top$ by the induction hypothesis and definition of $eval(\mathfrak{F})$. \square

Now we prove an upper bound for the size of a reduced game. Since this is a general upper bound for arbitrary formulas and structures, we cannot expect better bounds than the known lower bounds (unless P = NP) [2].

Definition 6 (Equivalent Structures). Let τ be a vocabulary and $\varphi \in MSO(\tau)$. Let \mathscr{A}_1 , \mathscr{A}_2 be two τ -structures and $X \subseteq A_1 \cap A_2$. We call \mathscr{A}_1 and \mathscr{A}_2 equivalent with respect to φ and X, denoted by $\mathscr{A}_1 \cong_{X, \varphi} \mathscr{A}_2$, if $reduce(\mathscr{EMC}(\mathscr{A}_1, X, \varphi)) \cong reduce(\mathscr{EMC}(\mathscr{A}_2, X, \varphi))$.

For an arbitrary set *X* of objects, we let

$$\mathcal{STR}(\tau, X) = \{ \mathscr{A} \in \mathcal{STR}(\tau) \mid X \subseteq A \}$$

be the set of all τ -structures that contain X, and $\mathcal{STR}(\tau, X)/\cong_{X, \varphi}$ the set of equivalence classes of $\mathcal{STR}(\tau, X)$ under $\cong_{X, \varphi}$. We let

$$N_{X,\omega} := |\mathcal{STR}(\tau, X)/\cong_{X,\omega}|.$$

Lemma 8. Let τ be a vocabulary, $\varphi \in MSO(\tau)$, and X be a set of objects. Then

$$N_{X,\varphi} \leq \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)}),$$

where $\|\varphi\|$ is the length of an encoding of φ .

Proof. Without loss of generality, we assume τ is minimal such that $\varphi \in \mathsf{MSO}(\tau)$ and therefore $\|\varphi\| \ge \max\{|\tau|, \mathit{arity}(\tau)\}$. We prove the claim by induction over the structure of φ .

If φ is an atomic or negated atomic formula, let $\bar{c}=null(\tau)$, and $\mathscr{A}\in \mathscr{STR}(\tau,X)$. Let $\mathscr{G}_{\mathscr{A}}=reduce(\mathscr{EMC}(\mathscr{A},X,\varphi))$. Then either $\mathscr{G}_{\mathscr{A}}\in \{\top,\bot\}$, or $\mathscr{G}_{\mathscr{A}}=(P,M,p_0)$, where $p_0=(\mathscr{H},X,\varphi)$ and $\mathscr{H}=\mathscr{A}[X\cup c^{\mathscr{A}}]$. Hence, $N_{X,\varphi}$ depends on the number of non-isomorphic structures on at most $n:=|X|+|\bar{c}^{\mathscr{A}}|\leq |X|+|null(\tau)|$ objects. For a fixed relation symbol $R\in \tau$, there are $2^{n^{arity(R)}}$ ways to choose the interpretation $R^{\mathscr{H}}$. The total number of non-isomorphic τ -structures over at most n objects is therefore bounded by $N_{X,\varphi}\leq \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)})$.

If $\varphi = \psi_1 \wedge \psi_2$ or $\varphi = \psi_1 \vee \psi_2$, then $qr(\varphi) = \max\{qr(\psi_1), qr(\psi_2)\}$ and $\|\psi_1\| + \|\psi_2\| \leq \|\varphi\|$. Furthermore, by the induction hypothesis we get $N_{X,\psi_i} \leq \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\psi_i\|)})$. We conclude that $N_{X,\varphi} = O(N_{X,\psi_1} \cdot N_{X,\psi_2}) \leq \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)})$.

If $\varphi \in \{\forall c\psi, \exists c\psi, \forall R\psi, \exists R\psi\}$, then $qr(\psi) = qr(\varphi) - 1$, $\|\psi\| < \|\varphi\|$, and, by the induction hypothesis, $N_{X,\psi} = \exp^{qr(\psi)+1}((|X|+1)^{O(\|\psi\|)})$. Since reduce() ignores equivalent subgames, the total number $N_{X,\varphi}$ is upper-bounded by $2^{N_{X,\psi}} \le \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)})$. \square

Lemma 9. Let \mathscr{A} be a τ -structure, $X \subseteq A$ and $\varphi \in \mathsf{MSO}(\tau)$. Then

$$|reduce(\mathcal{EMC}(\mathcal{A}, X, \varphi))| \le \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)}),$$

where $\|\varphi\|$ is the length of an encoding of φ .

Proof. We use induction over the structure of φ . If φ is an atomic or negated atomic formula, then $\mathfrak{F} = \mathcal{EMC}(\mathscr{A}, X, \varphi)$ contains only a single position and $reduce(\mathfrak{F}) \in \{\top, \bot, \mathfrak{F}\}$.

If $\varphi = \psi_1 \wedge \psi_2$ or $\varphi = \psi_1 \vee \psi_2$, let, for $i \in \{1, 2\}$, be $g_{\psi_i} = \mathcal{EMC}(\mathscr{A}, X, \psi_i)$. By the induction hypothesis, $|reduce(g_{\psi_i})| = \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\psi_i\|)})$ where $qr(\psi_i) \leq qr(\varphi)$ and $\|\psi_1\| + \|\psi_2\| \leq \|\varphi\|$, and therefore,

$$\begin{split} |\mathit{reduce}(\mathfrak{F})| &\leq 1 + |\mathit{reduce}(\mathfrak{F}_{\psi_1})| + |\mathit{reduce}(\mathfrak{F}_{\psi_2})| \\ &\leq \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)}). \end{split}$$

If otherwise $\varphi \in \{ \forall c \psi, \exists c \psi, \forall R \psi, \exists R \psi \}$, then $qr(\psi) = qr(\varphi) - 1$ and $\|\psi\| < \|\varphi\|$. Since equivalent subgames are ignored,

$$|reduce(\mathcal{G})| \le 1 + N_{X,\psi} \cdot \exp^{qr(\psi)+1}((|X|+1)^{O(\|\psi\|)})$$

 $\le \exp^{qr(\varphi)+1}((|X|+1)^{O(\|\varphi\|)}). \quad \Box$

4. Combining and extending games

In this section, we show how model checking games on structures can be computed inductively. We will introduce two algorithms: Algorithm 4 will be used when structures are *combined*, i.e., taking the union of two compatible structures. This happens at *join* and *introduce* nodes of the tree decomposition. Algorithm 5 will be used when objects are removed from the set *X*, which happens at *forget* nodes of the tree decomposition. We first will study the case of combining games. The next lemma is required for technical reasons.

Lemma 10. Let \mathscr{A}_1 and \mathscr{A}_2 be compatible τ -structures, $\varphi \in MSO(\tau)$ and let $X_1 \subseteq A_1$ and $X_2 \subseteq A_2$ with $A_1 \cap A_2 = X_1 \cap X_2$. Let, for $i \in \{1, 2\}$, $\mathscr{R}_i = reduce(\mathscr{EMC}(\mathscr{A}_i, X_i, \varphi)) \notin \{\top, \bot\}$ and $\mathscr{G}_i = (P_i, M_i, p_i) \cong \mathscr{R}_i$, where $p_i = (\mathscr{H}_i, X_i, \varphi)$. Then \mathscr{H}_1 and \mathscr{H}_2 are compatible.

Proof. Let $\bar{c} = null(\tau)$. Since $g_i \cong \mathcal{R}_i$, we have, by Definition 5, $\mathcal{H}_i \cong \mathscr{A}_i[X_i \cup \bar{c}^{\mathscr{A}_i}]$ for an isomorphism h_i with $h_i(a) = a$ for all $a \in X_i$.

Algorithm 4 Combining two games.

```
Algorithm combine(g_1, g_2)

Input: Two games g_i = (P_i, M_i, p_i) with p_i = (\mathcal{H}, X_i, \varphi), where \mathcal{H}_1 and \mathcal{H}_2 are compatible \tau-structures, X_i \subseteq H_i, and \varphi \in \mathsf{MSO}(\tau).

Let p_0 := (\mathcal{H}_1 \cup \mathcal{H}_2, X_1 \cup X_2, \varphi), P := \{p_0\} and M := \emptyset.

for each (p_1', p_2') \in next(p_1) \times next(p_2) do

Let p_1' = (\mathcal{H}_1', X_1, \psi_1) and p_2' = (\mathcal{H}_2', X_2, \psi_2).

if \psi_1 = \psi_2 and \mathcal{H}_1' and \mathcal{H}_2' are compatible then

Let (P', M', p_0') = combine(subgame_{g_1}(p_1'), subgame_{g_2}(p_2')).

Update P := P \cup P' and M := M \cup M' \cup \{(p_0, p_0')\}.

return reduce((P, M, p_0))
```

```
By definition, \bar{c}^{\mathscr{A}_i} = \{c^{\mathscr{A}_i} \mid c \in \bar{c} \cap interpreted(\mathscr{A}_i)\}, and therefore c \in interpreted(\mathscr{A}_i) if and only if c \in interpreted(\mathscr{H}_i). If c^{\mathscr{H}_i} \in H_1 \cap H_2, then in particular c^{\mathscr{H}_i} \in A_1 \cap A_2 \subseteq X_i. Hence, c^{\mathscr{H}_i} = h_i(c^{\mathscr{H}_i}) = c^{\mathscr{A}_i}. Since \mathscr{A}_1 and \mathscr{A}_2 are compatible, c^{\mathscr{A}_1} = c^{\mathscr{A}_2} for all c^{\mathscr{A}_i} \in A_1 \cap A_2, and therefore c^{\mathscr{H}_1} = c^{\mathscr{H}_2} for all c^{\mathscr{H}_i} \in H_1 \cap H_2. Accordingly, \mathscr{H}_1 and \mathscr{H}_2 are compatible. \square
```

We now prove that for a structure \mathscr{A} with $\mathscr{A} = \mathscr{A}_1 \cup \mathscr{A}_2$ the reduced model checking game $\mathscr{R} = reduce(\mathscr{EMC}(\mathscr{A}, X, \varphi))$ can, up to equivalence, be computed from $\mathscr{R}_1 = reduce(\mathscr{EMC}(\mathscr{A}_1, X, \varphi))$ and $\mathscr{R}_2 = reduce(\mathscr{EMC}(\mathscr{A}_2, X, \varphi))$. Hence, there is a mapping *combine*: $(\mathscr{R}_1, \mathscr{R}_2) \mapsto \mathscr{R}$, which is recursively computed by Algorithm 4. For, Algorithm 4 essentially computes the Cartesian product of plays in the games over \mathscr{A}_1 and \mathscr{A}_2 , respectively. This is possible because each set $U \subseteq A$ can be split into $U \cap A_1$ and $U \cap A_2$, such that $(\mathscr{A}_1, U \cap A_1) \cup (\mathscr{A}_2, U \cap A_2) = (\mathscr{A}, U)$. Similarly, each interpretation of a nullary symbol is either nil, or contained in $A_1 \cap A_2$, in $A_1 \setminus A_2$, or in $A_2 \setminus A_1$ (cf., Fig. 2). These cases can be reconstructed from the respective subgames on \mathscr{A}_1 and \mathscr{A}_2 .

Lemma 11. Let \mathscr{A}_1 and \mathscr{A}_2 be compatible τ -structures, $\varphi \in MSO(\tau)$ and let $X_1 \subseteq A_1$ and $X_2 \subseteq A_2$ with $A_1 \cap A_2 = X_1 \cap X_2$. Let, for $i \in \{1, 2\}$, $\mathscr{R}_i = reduce(\mathscr{EMC}(\mathscr{A}_i, X_i, \varphi)) \notin \{\top, \bot\}$ and $\mathscr{G}_i \cong \mathscr{R}_i$. Then

```
reduce(\mathcal{EMC}(\mathcal{A}_1 \cup \mathcal{A}_2, X_1 \cup X_2, \varphi)) \cong combine(\mathcal{G}_1, \mathcal{G}_2).
```

Proof. The proof is an induction over the structure of φ . Let $\mathscr{A} = \mathscr{A}_1 \cup \mathscr{A}_2$, $X = X_1 \cup X_2$, and $\bar{c} = null(\tau)$. Let $\mathscr{R} = (P_{\mathscr{R}}, M_{\mathscr{R}}, p_{\mathscr{R}}) = reduce(\mathscr{EMC}(\mathscr{A}, X, \varphi))$ and $\mathscr{G} = (P_{\mathscr{G}}, M_{\mathscr{G}}, p_{\mathscr{G}}) = combine(\mathscr{G}_1, \mathscr{G}_2)$. Let, for $i \in \{1, 2\}$, $\mathscr{G}_i = (P_{\mathscr{G}_i}, M_{\mathscr{G}_i}, p_{\mathscr{G}_i})$ and $p_{\mathscr{G}_i} = (\mathscr{H}_i, X_i, \varphi)$.

By Lemma 10, \mathscr{H}_1 and \mathscr{H}_2 are compatible. Furthermore, $\mathscr{A}_i[X_i \cup \overline{c}^{\mathscr{A}_i}] \cong \mathscr{H}_i$, and thus $\mathscr{A}[X \cup \overline{c}^{\mathscr{A}}] = \mathscr{A}_1[X_1 \cup \overline{c}^{\mathscr{A}_1}] \cup \mathscr{A}_2[X_2 \cup \overline{c}^{\mathscr{A}_2}] \cong \mathscr{H}_1 \cup \mathscr{H}_2$.

If $\mathcal{R} \notin \{\top, \bot\}$, then $p_{\mathcal{R}} = (\mathscr{A}[X \cup \bar{c}^{\mathscr{A}}], X, \varphi)$. Therefore,

```
p_{\mathcal{R}} = (\mathscr{A}[X \cup \bar{c}^{\mathscr{A}}], X, \varphi) \cong (\mathscr{H}_1 \cup \mathscr{H}_2, X_1 \cup X_2, \varphi) = p_{\mathfrak{A}}.
```

Let φ be an atomic or negated atomic formula. If $\mathcal{R} \not\in \{\top, \bot\}$ the lemma already holds with above considerations. Therefore consider the case $\mathcal{R} \in \{\top, \bot\}$, say $\mathcal{R} = \top$. Then $eval(\mathcal{EMC}(\mathscr{A}, X, \varphi)) = \mathcal{R} = \top$ by Lemma 7. Therefore, $\mathcal{R} = \top$ if and only if the verifier wins the play (p_0) , where p_0 is the initial position of $\mathcal{EMC}(\mathscr{A}[X \cup \overline{c}^\mathscr{A}], X, \varphi)$. The claim then follows, since $p_0 = (\mathscr{A}[X \cup \overline{c}^\mathscr{A}], X, \varphi) \cong p_g$, where in particular $\mathscr{A}[X \cup \overline{c}^\mathscr{A}] \cong \mathscr{H}_1 \cup \mathscr{H}_2$ and $X = X_1 \cup X_2$.

For the induction step, we distinguish the following cases.

```
Case \varphi = \psi_1 \wedge \psi_2 or \varphi = \psi_1 \vee \psi_2.
```

Let, for $\psi \in \{\psi_1, \psi_2\}$, $\mathcal{R}_{\psi} = reduce(\mathcal{EMC}(\mathscr{A}, X, \psi))$ and, for each $i \in \{1, 2\}$, be $\mathcal{R}_{i,\psi} = reduce(\mathcal{EMC}(\mathscr{A}_i, X_i, \psi))$. Consider $\psi \in \{\psi_1, \psi_2\}$ with $\mathcal{R}_{\psi} \notin \{\top, \bot\}$ and suppose there was $i \in \{1, 2\}$, say i = 1, with $\mathcal{R}_{1,\psi} \in \{\top, \bot\}$. Let $\mathcal{U}_{1,\psi} = \mathcal{EMC}(\mathscr{A}_1, X_1, \psi)$ and $\mathcal{U}_{\psi} = \mathcal{EMC}(\mathscr{A}, X_1 \cup A_2, \psi)$. By Lemma 7, $eval(\mathcal{U}_{1,\psi}) \in \{\top, \bot\}$, and therefore by Corollary 1, $eval(\mathcal{U}_{\psi}) \in \{\top, \bot\}$. Since $X_1 \cup X_2 \cup X_1 \cup A_2$, also $eval(\mathscr{A}, X_1 \cup X_2, \psi) \in \{\top, \bot\}$. This contradicts $\mathcal{R}_{\psi} \notin \{\top, \bot\}$ via Lemma 7.

Therefore, we have $\mathcal{R}_{i,\psi} \notin \{\top, \bot\}$ for each $i \in \{1, 2\}$, which implies $\mathcal{R}_i \notin \{\top, \bot\}$. Since $\mathcal{G}_i \cong \mathcal{R}_i$ for $i \in \{1, 2\}$, there is $\mathcal{G}_{i,\psi} \in subgames(\mathcal{G}_i)$ with $\mathcal{G}_{i,\psi} \cong \mathcal{R}_{i,\psi}$. The computation of $combine(\mathcal{G}_1, \mathcal{G}_2)$ will eventually compute $combine(\mathcal{G}_{1,\psi}, \mathcal{G}_{2,\psi})$. Then $subgames(combine(\mathcal{G}_1, \mathcal{G}_2))$ contains the required subgame $combine(\mathcal{G}_{1,\psi}, \mathcal{G}_{2,\psi}) \cong \mathcal{R}_{\psi}$ by the induction hypothesis.

Conversely, let $\psi \in \{\psi_1, \psi_2\}$ and $(g_{1,\psi}, g_{2,\psi}) \in subgames(g_1) \times subgames(g_2)$ such that $combine(g_1, g_2)$ calls $combine(g_{1,\psi}, g_{2,\psi})$. From $g_i \cong \mathcal{R}_i$ we get $g_{i,\psi} \cong \mathcal{R}_{i,\psi}$. Then $combine(g_{1,\psi}, g_{2,\psi}) \cong \mathcal{R}_{\psi}$ by the induction hypothesis.

Together, the statement of the lemma follows.

```
Case \varphi = \forall R \psi or \varphi = \exists R \psi.
```

Consider an arbitrary $U \subseteq A$ and let $\mathcal{R}' = reduce(\mathcal{EMC}(\mathscr{A}', X, \psi))$, where $\mathscr{A}' = (\mathscr{A}, U)$ with $R^{\mathscr{A}'} = U$. For $i \in \{1, 2\}$, let $U_i = U \cap A_i$ and $\mathcal{R}'_i = reduce(\mathcal{EMC}(\mathscr{A}'_i, X_i, \psi))$, where $\mathscr{A}'_i = (\mathscr{A}_i, U_i)$. If $\mathcal{R}' \notin \{\top, \bot\}$, then $\mathcal{R}'_i \notin \{\top, \bot\}$ for each $i \in \{1, 2\}$ by using a combination of Lemma 7 and Corollary 1. Therefore, $\mathcal{R}_i \notin \{\top, \bot\}$. Since $\mathscr{G}_i \cong \mathcal{R}_i$, there is $\mathscr{G}_i' = (P'_i, M'_i, p'_i) \in subgames(\mathscr{G}_i)$ with $\mathscr{G}'_i \cong \mathscr{R}'_i$. Let $p'_i = (\mathscr{H}'_i, X_i, \psi)$. Since \mathscr{A}'_1 and \mathscr{A}'_2 are compatible and $\mathscr{G}'_i \cong \mathscr{R}'_i$, we by

Algorithm 5 Forgetting an object.

```
Algorithm forget(\mathcal{G}, x)

Input: A game \mathcal{G} = (P, M, p_0) with p_0 = (\mathcal{H}, X, \varphi) and x \in X

if there is c \in interpreted(\mathcal{H}) with c^{\mathcal{H}} = x then

let p'_0 = (\mathcal{H}, X \setminus \{x\}, \varphi)

else let p'_0 = (\mathcal{H}[H \setminus \{x\}], X \setminus \{x\}, \varphi).

Let P' = \{p'_0\} and M' = \emptyset.

for each \mathcal{G}' \in subgames(\mathcal{G}) do

Let (P'', M'', p''_0) = forget(\mathcal{G}', x).

Set P' := P' \cup P'' and M' := M' \cup M''.

return reduce((P', M', p'_0))
```

Lemma 10 have that \mathcal{H}'_1 and \mathcal{H}'_2 are compatible. Therefore, the algorithm eventually calls $combine(\mathfrak{g}'_1,\mathfrak{g}'_2)$. By the induction hypothesis, $combine(\mathfrak{g}'_1,\mathfrak{g}'_2)\cong \mathcal{R}'$.

Conversely, assume the algorithm calls $combine(g'_1, g'_2)$, where $g'_i = (P'_i, M'_i, p'_i) \in subgames(g_i)$ for $i \in \{1, 2\}$. From $g_i \cong \mathcal{R}_i$ we get $g'_i \cong reduce(\mathcal{EMC}(\mathscr{A}'_i, X_i, \psi))$, where $\mathscr{A}'_i = (\mathscr{A}_i, U_i)$ for some $U_i \subseteq A_i$. Let $p'_i = (\mathscr{H}'_i, X_i, \psi)$. Since \mathscr{H}_1 and \mathscr{H}_2 are compatible and $A_1 \cap A_2 \subseteq X_i \subseteq H_i$, also \mathscr{A}'_1 and \mathscr{A}'_2 are compatible. Therefore, the induction hypothesis implies $combine(g'_1, g'_2) \cong reduce(\mathcal{EMC}(\mathscr{A}', X, \psi))$, where $\mathscr{A}' = (\mathscr{A}, U_1 \cup U_2)$ with $R^{\mathscr{A}'} = U_1 \cup U_2$.

Together, the statement of the lemma follows.

Case $\varphi = \forall c \psi$ or $\varphi = \exists c \psi$.

Consider a (τ,c) -expansion \mathscr{A}' of \mathscr{A} and let $\mathscr{R}' = reduce(\mathscr{EMC}(\mathscr{A}',X,\psi))$. Let, for $i \in \{1,2\}$, $\mathscr{A}'_i = \mathscr{A}'[A_i]$ be the (τ,c) -expansion of \mathscr{A}_i with $c^{\mathscr{A}'_i} = c^{\mathscr{A}'}$ if $c^{\mathscr{A}'} \in A_i$, and $c^{\mathscr{A}'_i} = \text{nil}$ otherwise. Let $\mathscr{R}'_i = reduce(\mathscr{EMC}(\mathscr{A}'_i,X_i,\psi))$. If $\mathscr{R}' \notin \{\top,\bot\}$, then $\mathscr{R}'_i \notin \{\top,\bot\}$ by a combination of Lemma 7 and Corollary 1. Therefore, $\mathscr{R}_i \notin \{\top,\bot\}$. Since $\mathscr{G}_i \cong \mathscr{R}_i$, there is $\mathscr{G}'_i = (P'_i,M'_i,p'_i) \in subgames(\mathscr{G}_i)$ with $\mathscr{G}'_i \cong \mathscr{R}'_i$. Let $p'_i = (\mathscr{K}'_i,X_i,\psi)$. Since \mathscr{A}'_1 and \mathscr{A}'_2 are compatible and $\mathscr{G}'_1 \cong \mathscr{R}'_1$, Lemma 10 implies that \mathscr{K}'_1 and \mathscr{K}'_2 are compatible. The algorithm therefore eventually calls $combine(\mathscr{G}'_1,\mathscr{G}'_2)$. By the induction hypothesis, $combine(\mathscr{G}'_1,\mathscr{G}'_2) \cong \mathscr{R}'$.

Conversely, assume the algorithm calls $combine(g_1', g_2')$, where for each $i \in \{1, 2\}$ we have $g_i' = (P_i', M_i', p_i') \in subgames(g_i)$. From $g_i \cong \mathcal{R}_i$ we get $g_i' \cong reduce(\mathscr{A}_i', X_i, \psi)$ for some (τ, c) -expansion \mathscr{A}_i' of \mathscr{A}_i . Since \mathscr{H}_1 and \mathscr{H}_2 are compatible and $A_1 \cap A_2 \subseteq X_i \subseteq H_i$, also \mathscr{A}_1' and \mathscr{A}_2' are compatible. By the induction hypothesis, $combine(g_1', g_2') \cong reduce(\mathscr{EMC}(\mathscr{A}', X, \psi))$, where $\mathscr{A}' = \mathscr{A}_1' \cup \mathscr{A}_2'$.

Together, the statement of the lemma follows.

Lemma 12. Let \mathscr{A} be a τ -structure, $X \subseteq A$ and $x \in X$. Let $\varphi \in \mathsf{MSO}(\tau)$ and $\mathscr{G} \cong \mathsf{reduce}(\mathscr{EMC}(\mathscr{A}, X, \varphi)) \not\in \{\top, \bot\}$. Then $\mathsf{reduce}(\mathscr{EMC}(\mathscr{A}, X \setminus \{x\}, \varphi)) \cong \mathsf{forget}(\mathscr{G}, x)$.

Proof. We use induction over the structure of φ . Let $\bar{c} = null(\tau)$, $X' = X \setminus \{x\}$, $\mathcal{R}' = (P_{\mathcal{R}'}, M_{\mathcal{R}'}, p_{\mathcal{R}'}) = reduce(\mathscr{A}, X \setminus \{x\}, \varphi)$. Let $\mathcal{G} = (P_{\mathcal{G}}, F_{\mathcal{G}}, p_{\mathcal{G}})$ with $p_{\mathcal{G}} = (\mathscr{H}, X, \varphi)$. Here, $\mathscr{H} \cong \mathscr{A}[X \cup c^{\mathscr{A}}]$, since $\mathcal{G} \cong reduce(\mathscr{EMC}(\mathscr{A}, X, \varphi))$.

If φ is an atomic or negated atomic formula and $\mathcal{R}' \notin \{\top, \bot\}$, the statement holds since $p_{\mathcal{R}'} = (\mathscr{A}[X' \cup c^{\mathscr{A}}], X', \varphi)$ by definition.

If otherwise φ is an atomic or negated atomic formula and $\mathcal{R}' \in \{\top, \bot\}$, let $\mathcal{H}' = \mathcal{H}[H \setminus \{x\}]$ if $c^{\mathcal{H}} \neq x$ for all $c \in interpreted(\mathcal{H})$, and $\mathcal{H}' = \mathcal{H}$ otherwise. If $\mathcal{R}' \in \{\top, \bot\}$, then $eval(\mathcal{EMC}(\mathcal{A}, X', \varphi)) = \mathcal{R}'$ by Lemma 7. Since $\mathcal{H}' \cong \mathcal{A}[X' \cup c^{\mathcal{A}}]$, we have $eval(\mathcal{EMC}(\mathcal{A}, X', \varphi)) = eval(\mathcal{EMC}(\mathcal{H}', X', \varphi'))$ and

```
eval(\mathcal{EMC}(\mathcal{H}', X', \varphi')) = reduce(\mathcal{EMC}(\mathcal{H}', X', \varphi)) = forget(\mathcal{G}, x).
```

For the induction step, let $\mathfrak{G}' \in subgames(\mathfrak{G})$ be an arbitrary subgame of \mathfrak{G} . Since $\mathfrak{G} \cong reduce(\mathcal{EMC}(\mathscr{A}, X, \varphi))$, we know that $\mathfrak{G}' \cong reduce(\mathcal{EMC}(\mathscr{A}', X, \psi))$ for some expansion \mathscr{A}' of \mathscr{A} and subformula ψ of φ . By the induction hypothesis,

```
forget(\mathcal{G}', x) \cong reduce(\mathcal{EMC}(\mathcal{A}', X \setminus \{x\}, \psi)).
```

Conversely, if $\mathcal{R}'' = reduce(\mathcal{EMC}(\mathscr{A}', X \setminus \{x\}, \psi))$ is a subgame of \mathcal{R}' , then $\mathcal{R}'' \notin \{\top, \bot\}$. This implies $reduce(\mathcal{EMC}(\mathscr{A}', X, \psi)) \notin \{\top, \bot\}$ by Lemmas 5 and 7. Therefore, there is $\mathcal{G}' \in subgames(\mathcal{G})$ with $\mathcal{G}' \cong reduce(\mathcal{EMC}(\mathscr{A}', X, \psi))$. By the induction hypothesis, $\mathcal{R}'' \cong forget(\mathcal{G}', x)$.

Together, the statement of the lemma follows. \Box

Finally, we come back to Algorithm 2 and show that its correctness translates to reduced games.

Lemma 13. Let \mathscr{A} be a τ -structure that fully interprets $\tau, X \subseteq A$, and $\varphi \in \mathsf{MSO}(\tau)$. Let $\mathscr{G} \cong \mathsf{reduce}(\mathscr{EMC}(\mathscr{A}, X, \varphi))$. Then $\mathsf{eval}(\mathscr{MC}(\mathscr{A}, \varphi)) = \mathsf{eval}(\mathsf{convert}(\mathscr{G}))$.

Proof. We prove the statement by induction over the structure of φ . Recall that $\mathcal{M} = \mathcal{MC}(\mathscr{A}, X, \varphi)$ is determined and hence $eval(\mathscr{M}) \in \{\top, \bot\}$.

If $\mathfrak{G} \in \{\top, \bot\}$, then $\mathfrak{G} = convert(\mathfrak{G})$. We get $\mathfrak{G} = eval(\mathcal{EMC}(\mathscr{A}, X, \varphi))$ from Lemma 7 and therefore, using Lemma 3 for the first equality.

$$eval(\mathcal{MC}(\mathcal{A}, \varphi)) = eval(\mathcal{EMC}(\mathcal{A}, X, \varphi)) = \mathcal{G} = eval(\mathcal{G}) = eval(convert(\mathcal{G})).$$

Let therefore $\mathcal{G} = (P, M, p_0) \not\in \{\top, \bot\}$ with $p_0 = (\mathcal{H}, X, \varphi)$ and suppose $eval(\mathcal{MC}(\mathscr{A}, \varphi)) = \top$ (the case \bot is shown analogously). For atomic or negated atomic formulas, the statement holds since, by definition, $\mathcal{G} \cong reduce(\mathcal{EMC}(\mathscr{A}, X, \varphi)) = \mathcal{EMC}(\mathscr{A}, X, \varphi)$, and hence $\mathcal{MC}(\mathscr{A}, \varphi) = convert(\mathcal{G})$ by Lemma 1.

If $\varphi \in \{ \forall R\psi, \exists R\psi \}$, say $\varphi = \forall R\psi$, consider $U \subseteq A$ and let $\mathscr{A}' = (\mathscr{A}, U)$ with $R^{\mathscr{A}'} = U$. If there is $\mathscr{G}' \in subgames(\mathscr{G})$ with $\mathscr{G}' \cong reduce(\mathscr{EMC}(\mathscr{A}', X, \psi))$, then $eval(\mathscr{MC}(\mathscr{A}', \varphi)) = eval(convert(\mathscr{G}'))$ by the induction hypothesis. If otherwise there is no such \mathscr{G}' in $subgames(\mathscr{G})$, then $reduce(\mathscr{EMC}(\mathscr{A}', X, \psi)) = \top$ by definition of $reduce(\mathscr{EMC}(\mathscr{A}', X, \psi)) = \top$. By Lemmas 1–7, we then conclude $eval(\mathscr{MC}(\mathscr{A}', \psi)) = \top$. Together, the lemma follows.

Similarly, if $\varphi \in \{\psi_1 \land \psi_2, \psi_1 \lor \psi_2\}$, then for $\psi \in \{\psi_1, \psi_2\}$ either there is $\mathcal{G}' \in subgames(\mathcal{G})$, such that $\mathcal{G}' \cong reduce(\mathscr{A}, X, \psi)$, or there is no such \mathcal{G}' contained in $subgames(\mathcal{G})$. In the former case we again obtain $eval(\mathscr{MC}, \psi) = eval(convert(\mathcal{G}'))$ by the induction hypothesis, and in the latter case we can again argue that $\mathcal{G}' \cong reduce(\mathscr{EMC}(\mathscr{A}, X, \psi)) \in \{\top, \bot\}$.

Finally, let $\varphi \in \{\forall c \psi, \exists c \psi\}$. For any $a \in A$ and $\mathscr{A}' = (\mathscr{A}, a)$, where $c^{\mathscr{A}'} = a$, we argue analogously to the previous cases that either there is $\mathscr{G}' \in subgames(\mathscr{G})$, such that $\mathscr{G}' \cong reduce(\mathscr{A}', X, \psi)$, or there is no such \mathscr{G}' contained in $subgames(\mathscr{G})$, which implies $\mathscr{G}' \cong reduce(\mathscr{EMC}(\mathscr{A}', X, \psi)) \in \{\top, \bot\}$.

Hence, consider the (τ,c) -expansion \mathscr{A}' of \mathscr{A} with $c^{\mathscr{A}'}=$ nil. If there is $\mathscr{G}'=(P',M',p'_0)\in subgames(\mathscr{G})$ with $\mathscr{G}'\cong reduce(\mathscr{EMC}(\mathscr{A}',X,\psi))$, then $\mathscr{G}'\notin\{\top,\bot\}$. In particular, $\mathscr{G}'=(\mathscr{H}',X,\psi)$, where \mathscr{H}' does not interpret (τ,c) fully. Therefore, $convert(\mathscr{G})$ removes the subgame \mathscr{G}' from \mathscr{G} . In either case, $convert(\mathscr{G})$ does only contain subgames where c has been interpreted as an object in A, as considered above. Together, the statement of the lemma then follows. \Box

5. Courcelle's theorem

We can now reprove Courcelle's theorem for LinMSO optimization problems. We will abbreviate $reduce(\mathscr{A}, X, \varphi) := reduce(\mathscr{EMC}(\mathscr{A}, X, \varphi))$ throughout this section. Note that for MSO sentences without an optimization function the theorem already follows from the considerations in the previous sections: By Lemma 9, the size of a reduced game is bounded by a constant when the treewidth w of the input structure and the formula φ are considered constant. Given a tree decomposition $(\mathcal{T}, \mathcal{X})$ for \mathscr{A} with O(|A|) nodes and width w, one can therefore construct $\mathscr{R} = reduce(\mathscr{A}, X, \varphi)$ in O(|A|) steps. Each step requires only constant time, since computing the mappings forget and formula for equires constant time only. We will now use this observation to prove the theorem for LinMSO problems.

Theorem 2. Fix a relational vocabulary τ , a set $\bar{R} = \{R_1, \dots, R_l\} \subseteq \text{unary}(\tau)$ of unary relation symbols, and $\tau' = \tau \setminus \bar{R}$. Let $\varphi \in \mathsf{MSO}(\tau)$, and $w, \alpha_1, \dots, \alpha_l \in \mathbf{Z}$ be constants. Given a τ' -structure \mathscr{A} together with a tree decomposition $(\mathcal{T}, \mathcal{X})$ of \mathscr{A} having width at most w, where $\mathcal{T} = (T, F)$ and $\mathcal{X} = (X_i)_{i \in T}$, one can compute

$$\min \left\{ \sum_{k=1}^{l} \alpha_k |U_k| |U_i \subseteq A, \ 1 \le i \le l, \ \text{and} \ (\mathscr{A}, U_1, \dots, U_l) \models \varphi \right\}$$

in time O(|T|).

The remainder of this section is devoted to the proof of this theorem. We give an algorithm that essentially works as follows: In a first phase, the algorithm uses dynamic programming on the tree decomposition (based on Lemmas 14–17) to compute the reduced extended model checking games $\mathfrak{G} \cong reduce(\mathscr{A}'_i, \mathscr{O}, \varphi)$ and the values $\sum_{k=1}^l \alpha_k |U_k|$ for all structures $\mathscr{A}'_i = (\mathscr{A}, U_1, \ldots, U_l)$ where $U_i \subseteq A$ for $1 \le i \le l$. We observe that the formula φ is the same for all i. This differs from the proofs using the Feferman–Vaught paradigm (cf., [10, Chapter 5] or [1]), where (many) different formulas are used for substructures. Also note that by the previous sections the algorithm does not need to distinguish between equivalent games. In a second phase, the algorithm tests whether the verifier has a winning strategy on convert(G), or, in other words (Lemma 13), whether $(\mathscr{A}, U_1, \ldots, U_l) \models \varphi$. The algorithm then collects the values $\sum_{k=1}^l \alpha_k |U_k|$ for all $\mathscr{A}'_i = (\mathscr{A}, U_1, \ldots, U_l)$ with $\mathscr{A}'_i \models \varphi$ and outputs the optimal one. Since most of the games considered are equivalent (Lemma 8), we can obtain the desired run time bounds.

Without loss of generality, we assume $X_{root(\mathcal{T})} = \emptyset$. Recall that for each $i \in \mathcal{T}$, \mathscr{A}_i is the substructure of \mathscr{A} induced by those objects that appear at or below i in the tree decomposition. Let, for $i \in \mathcal{T}$,

$$\mathcal{A}\mathcal{R}_i = \mathscr{P}(A_i) \times \cdots \times \mathscr{P}(A_i) = \mathscr{P}(A_i)^l$$

be the set of possible interpretations of the free (unary) relation symbols (R_1, \ldots, R_l) in \mathscr{A}_i ,

$$\mathcal{E}\mathcal{X}\mathcal{P}_i = \{(\mathcal{A}_i, U_1, \dots, U_l) \mid (U_1, \dots, U_l) \in \mathcal{A}\mathcal{R}_i\}$$

be the set of their corresponding τ -expansions of \mathcal{A}_i , where for each $1 \le j \le l$ the symbol R_i is interpreted as U_i , and

$$\mathcal{RED}_i = \{ reduce(\mathscr{A}_i', X_i, \varphi) \mid \mathscr{A}_i' \in \mathcal{EXP}_i \}$$

be the corresponding extended model checking games in their reduced form. We let $(U_1, \ldots, U_l) \cap X_i := (U_1 \cap X_i, \ldots, U_l \cap X_i)$ and

$$\mathcal{AR}_i \cap X_i = \{(U_1, \dots, U_l) \cap X_i \mid (U_1, \dots, U_l) \in \mathcal{AR}_i\}$$

be the restriction of \mathcal{AR}_i to X_i , and let, for $\bar{U} = (U_1, \dots, U_l) \in \mathcal{AR}_i \cap X_i$,

$$\mathcal{EXP}_i(\bar{U}) = \{ \mathscr{A}_i' \in \mathcal{EXP}_i \mid R_i^{\mathscr{A}_i'} \cap X_i = U_j \text{ for } 1 \le j \le l \}$$

be the set of τ -expansions of \mathscr{A} that "match" \bar{U} on X_i . Let

$$\mathcal{RED}_i(\bar{U}) = \{ reduce(\mathscr{A}_i', X_i, \varphi) \mid \mathscr{A}_i' \in \mathcal{EXP}_i(\bar{U}) \}$$

be the corresponding games, and, for arbitrary games \mathcal{R} ,

$$\mathcal{EXP}_i(\bar{U}, \mathcal{R}) = \{ \mathscr{A}_i' \in \mathcal{EXP}_i(\bar{U}) \mid \mathcal{R} \cong reduce(\mathscr{A}_i', X_i, \varphi) \}$$

and

$$\mathcal{RED}_i(\bar{U}, \mathcal{R}) = \{ \mathcal{R}' \in \mathcal{RED}_i(\bar{U}) \mid \mathcal{R} \cong \mathcal{R}' \}.$$

Finally, we let, for $\bar{U} = (U_1, \dots, U_l) \in \mathcal{AR}_i$,

$$\mathscr{A}_i(\bar{U}) = (\mathscr{A}_i, U_1, \ldots, U_l)[X_i],$$

where $R_i^{\mathscr{A}_i(\bar{U})} = U_i \cap X_i$ for each $1 \le i \le l$, and

$$\mathcal{R}(\bar{U}) = reduce(\mathcal{A}_i(\bar{U}), X_i, \varphi).$$

5.1. The algorithm

We use dynamic programming on the tree decomposition as follows. As usual, we associate with each node $i \in T$ of the tree decomposition a *table S_i* that contains feasible, *partial* solutions and their corresponding *value val_i* under the optimization function.

Formally, we let $S_i: \mathcal{AR}_i \cap X_i \to \mathcal{P}(\mathcal{RED}_i \setminus \{\bot\})$ map tuples $\bar{U} \in \mathcal{AR}_i \cap X_i$ to sets of *feasible* games over \mathscr{A}_i , i.e., games \mathcal{R} with $\mathcal{R} \neq \bot$, and let $val_i: \mathcal{RED}_i \to \mathbf{Z}_{\infty}$ be the corresponding values, where $\mathbf{Z}_{\infty} = \mathbf{Z} \cup \{\infty\}$.

Initially, we let $S_i(\bar{U}) := \emptyset$ for all $\bar{U} \in \mathcal{AR}_i \cap X_i$ and $val_i(\mathcal{R}) := \infty$ for all $\mathcal{R} \in \mathcal{RED}_i$.

Phase 1. The algorithm traverses the tree decomposition bottom-up. Recall that each node $i \in T$ is either a leaf, or of one of the three types *introduce*, *forget*, or *join*. The algorithm distinguishes these four cases as follows.

leaf: Let $X_i = \{x\}$. For all $\bar{U} = (U_1, \dots, U_l) \in \mathcal{AR}_i \cap X_i$ the algorithm considers $\mathcal{R}(\bar{U}) = reduce(\mathscr{A}_i(\bar{U}), X_i, \varphi)$. If $\mathcal{R}(\bar{U}) \neq \bot$, then the algorithm sets

$$S_i(\bar{U}) := \{\mathcal{R}(\bar{U})\}$$
 and $val_i(\mathcal{R}(\bar{U})) := 0$.

introduce: Let *j* be the unique child of *i* and $X_i = X_i \cup \{x\}$ for $x \notin A_i$.

For each $\bar{U}_j = (U_{j,1}, \ldots, U_{j,l}) \in \mathcal{AR}_j \cap X_j$, and each $\bar{U}_i = (U_{i,1}, \ldots, U_{i,l}) \in \mathcal{AR}_i \cap X_i$ such that $(U_{j,1}, \ldots, U_{j,l}) = (U_{i,1} \cap X_j, \ldots, U_{i,l} \cap X_j)$, the algorithm considers each $\mathcal{R}_j \in S_j(\bar{U}_j)$.

$$\mathcal{R}_i = \begin{cases} \top & \text{if } \mathcal{R}_j = \top \text{ and } \\ \textit{combine}(\mathcal{R}_j, \mathcal{R}(\bar{U}_i)) & \text{otherwise.} \end{cases}$$

If there is $\mathcal{R}_i' \in S_i(\bar{U}_i)$ with $\mathcal{R}_i' \cong \mathcal{R}_i$, then let $\mathcal{R}_i := \mathcal{R}_i'$ instead.

If $\mathcal{R}_i \neq \bot$, the algorithm sets

$$S_i(\bar{U}) := S_i(\bar{U}) \cup \{\mathcal{R}_i\}$$
 and $val_i(\mathcal{R}_i) := \min\{val_i(\mathcal{R}_i), val_i(\mathcal{R}_i)\}.$

forget: Let *j* be the unique child of *i* and $X_i \cup \{x\} = X_i$ for $x \notin A_i$.

For each $\bar{U}_j = (U_{j,1}, \dots, U_{j,l}) \in \mathcal{AR}_j \cap X_j$ the algorithm considers each $\mathcal{R}_j \in S_j(\bar{U}_j)$. Let $\bar{U}_i = (U_{i,1}, \dots, U_{i,l}) = (U_{j,1} \cap X_i, \dots, U_{j,l} \cap X_i)$ and

$$\mathcal{R}_i = \begin{cases} \top & \text{if } \mathcal{R}_j = \top \text{ and} \\ \textit{forget}(\mathcal{R}_i, x) & \text{otherwise.} \end{cases}$$

If there is $\mathcal{R}'_i \in S_i(\bar{U}_i)$ with $\mathcal{R}'_i \cong \mathcal{R}_i$, then let $\mathcal{R}_i := \mathcal{R}'_i$ instead. If now $\mathcal{R}_i \neq \bot$, the algorithm sets $S_i(\bar{U}_i) := S_i(\bar{U}_i) \cup \{\mathcal{R}_i\}$ and

$$val_i(\mathcal{R}_i) := \min \left\{ val_i(\mathcal{R}_i), val_j(\mathcal{R}_j) + \sum_{k=1}^{l} \alpha_k(x \in U_{i,k}) \right\}$$

where $(x \in U_{i,k}) \in \{0, 1\}$ as defined in Section 1.

join: Let j_1, j_2 be the children of i. Then $X_i = X_{j_1} = X_{j_2}$.

For each $\bar{U} = (U_1, \dots, U_l) \in \mathcal{AR}_i \cap X_i$ the algorithm considers each pair $(\mathcal{R}_{j_1}, \mathcal{R}_{j_2}) \in S_{j_1}(\bar{U}) \times S_{j_2}(\bar{U})$. Let

$$\mathcal{R}_i = \begin{cases} \top & \text{if } \mathcal{R}_{j_1} = \top \text{ or } \mathcal{R}_{j_2} = \top \text{ and} \\ \textit{combine}(\mathcal{R}_{j_1}, \, \mathcal{R}_{j_2}) & \text{otherwise.} \end{cases}$$

If there is $\mathcal{R}'_i \in S_i(\bar{U}_i)$ with $\mathcal{R}'_i \cong \mathcal{R}_i$, then let $\mathcal{R}_i := \mathcal{R}'_i$ instead. If now $\mathcal{R}_i \neq \bot$, the algorithm sets $S_i(\bar{U}_i) := S_i(\bar{U}_i) \cup \{\mathcal{R}_i\}$ and

$$val_i(\mathcal{R}_i) := \min\{val_i(\mathcal{R}_i), val_{j_1}(\mathcal{R}_{j_1}) + val_{j_2}(\mathcal{R}_{j_2})\}.$$

Phase 2. Let $r = root(\mathcal{T})$ and

$$\bar{U}_r = (\emptyset, \dots, \emptyset) \in \mathcal{AR}_r \cap X_r = \mathcal{AR}_r \cap \emptyset.$$

The algorithm starts with $OPT := \infty$ and considers each $\mathcal{R}_r \in S_r(\bar{U}_r)$. If $eval(convert(\mathcal{R}_r)) = \top$, then the algorithm updates $OPT := \min\{OPT, val_r(\mathcal{R}_r)\}$.

Finally, the algorithm outputs OPT.

5.2. Proofs

In order to show that the algorithm is correct and computes the optimal solution, we use induction over the structure of the tree decomposition to prove that the following assertion is invariant.

Property 1. After the algorithm has processed a node $i \in T$ in Phase 1, for each $\bar{U} = (U_1, \dots, U_l) \in \mathcal{AR}_i \cap X_i$ we have that

- (I) for each $\mathscr{A}_i' \in \mathscr{EXP}_i(\bar{U})$ with $\mathscr{R} = reduce(\mathscr{A}_i', X_i, \varphi) \neq \bot$ there is exactly one $\mathscr{R}' \in S_i(\bar{U})$ with $\mathscr{R}' \cong \mathscr{R}$,
- (II) for each game $\mathcal{R} \in S_i(\bar{U})$ we have $\mathcal{R} \neq \bot$ and $\mathcal{RED}_i(\bar{U}, \mathcal{R}) \neq \emptyset$, and
- (III) for each $\mathcal{R} \in S_i(\bar{U})$ we have

$$val_i(\mathcal{R}) = \min \left\{ \sum_{k=1}^l \alpha_k |R_k^{\mathscr{A}_i'} \setminus X_i| |\mathscr{A}_i' \in \mathcal{EXP}_i(\bar{U}, \mathcal{R}) \wedge reduce(\mathscr{A}_i', X_i, \varphi) \neq \bot \right\}.$$

Here, (I) guarantees that S_i is *complete*, i.e., $S_i(\bar{U})$ contains games for all feasible partial solutions, (II) guarantees that all games in $S_i(\bar{U})$ do, in fact, correspond to a reduced game over some τ -expansion of \mathscr{A}_i , and (III) guarantees that we also compute the correct solution, i.e., $val_i(\mathcal{R})$ is optimal for $\mathcal{RED}_i(\bar{U},\mathcal{R})$. Note that the "exactly one" in (I) is required for the claimed running time, but not for the correctness of the solution.

Lemma 14. Property 1 holds for leaves of the tree decomposition.

Proof. Let $i \in T$ be a leaf and $\bar{U} = (U_1, \dots, U_l) \in A\mathcal{R}_i \cap X_i = A\mathcal{R}_i$. Since i is a leaf, we have

$$\mathcal{RED}_i(\bar{U}) = \{ \mathscr{A}_i(\bar{U}) \mid \bar{U} \in \mathcal{AR}_i \cap X_i \},$$

such that (I) and (II) clearly hold. Furthermore, $\mathcal{R}_j^{\mathscr{A}_l(\bar{U})}\setminus X_i=\emptyset$ for all $1\leq j\leq l$, since $A_i\setminus X_i=\emptyset$, and therefore $val_i(\mathcal{R})=0$ for all $\mathcal{R}\in\mathcal{RED}_i$. \square

Lemma 15. Let $i \in T$ be an introduce node of the tree decomposition and $j \in T$ be the unique child of i. If Property 1 holds for j before the algorithm processes i, then it also holds for i.

Proof. Let $X_i = X_j \cup \{x\}$, where $x \notin A_j$. Let $\bar{U}_i = (U_{i,1}, \dots, U_{i,l}) \in \mathcal{AR}_i \cap X_i$ and $\bar{U}_j = (U_{j,1}, \dots, U_{j,l}) \in \mathcal{AR}_j \cap X_j$ with $(U_{j,1}, \dots, U_{j,l}) = (U_{i,1} \cap X_j, \dots, U_{i,l} \cap X_j)$.

Consider $\mathscr{A}_i' \in \mathscr{EXP}_i(\bar{U}_i)$ and let $\mathscr{A}_j' = \mathscr{A}_i'[A_j]$. If $\mathscr{R}_i = reduce(\mathscr{A}_i', X_i, \varphi) \neq \bot$, then also $\mathscr{R}_j = reduce(\mathscr{A}_j', X_j, \varphi) \neq \bot$ by Lemmas 4 and 7. By Property 1, $S_j(\bar{U}_j)$ therefore contains exactly one game \mathscr{R}_j' with $\mathscr{R}_j' \cong \mathscr{R}_j$. If $\mathscr{R}_j' = \top$, then $\mathscr{R}_i = \top$ by Lemmas 4 and 7. Otherwise, the algorithm computes $\mathscr{R}_i' = combine(\mathscr{R}_j', \mathscr{R}(\bar{U}_i))$. By Lemma 11, $\mathscr{R}_i' \cong \mathscr{R}_i$, which implies part (I) of the property.

Conversely, consider $\mathcal{R}_i \in S_i(\bar{U}_i)$. Then either $\mathcal{R}_i = \top$ and there is $\mathcal{R}_j \in S_j(\bar{U}_j)$ with $\mathcal{R}_j = \top$, or there is $\mathcal{R}_j \in S_j(\bar{U}_j)$ with $\mathcal{R}_i \cong combine(\mathcal{R}_j, \mathcal{R}_i(\bar{U}_i))$. By the property for $j, \mathcal{RED}_j(\mathcal{R}_j) \neq \emptyset$. From this we get there is $\mathcal{R}'_j \in \mathcal{RED}_j(\bar{U}_j, \mathcal{R}_j)$ such that $\mathcal{R}'_j \cong \mathcal{R}_j$ and $\mathcal{R}'_j = reduce(\mathcal{A}'_j, X_j, \varphi)$ for some $\mathcal{A}'_j \in \mathcal{EXP}_j(\bar{U}_j)$. Let $\mathcal{A}'_i \in \mathcal{EXP}_i(\bar{U}_i)$, chosen in a way such that $(\mathcal{R}_1^{\mathcal{A}'_j}, \dots, \mathcal{R}_l^{\mathcal{A}'_j}) = (\mathcal{R}_1^{\mathcal{A}'_l} \cap \mathcal{A}_i, \dots, \mathcal{R}_l^{\mathcal{A}'_l} \cap \mathcal{A}_i)$.

If $\Re_j = \top$, then, by Lemmas 4 and 7, $reduce(\mathscr{A}_i', X_i, \varphi) = \top \in S_i(\bar{U}_i)$. Otherwise, $reduce(\mathscr{A}_i, X_i, \varphi) \cong combine(\Re_j, \Re(\bar{U}_i))$ by Lemma 11. Either case implies (II).

Finally, let $\mathcal{R}_i \in S_i(\bar{U}_i)$ and $\mathcal{O}_i \in \mathcal{EXP}_i(\bar{U}_i, \mathcal{R}_i)$ with $reduce(\mathcal{O}_i, X_i, \varphi) \neq \bot$ and

$$\sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathcal{O}_{i}} \setminus X_{i}| = \min \left\{ \sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathcal{A}'_{i}} \setminus X_{i}| |\mathcal{A}'_{i} \in \mathcal{EXP}_{i}(\bar{U}_{i}, \mathcal{R}_{i}) \wedge reduce(\mathcal{A}'_{i}, X_{i}, \varphi) \neq \bot \right\}.$$

Let $\mathscr{O}_j = \mathscr{O}_i[A_j]$. By Lemmas 4 and 7, $\mathscr{R}_j = reduce(\mathscr{O}_j, X_j, \varphi) \neq \bot$. Therefore, either $\mathscr{R}_j = reduce(\mathscr{O}_j, X_j, \varphi) = \mathscr{R}_i = \top$, or otherwise $combine(\mathscr{R}_j, \mathscr{R}(\bar{U}_i)) \cong reduce(\mathscr{O}_j \cup \mathscr{A}_i(\bar{U}_i), X_i, \varphi) \cong \mathscr{R}_i$ by Lemma 11.

We need that \mathscr{O}_j is optimal for $\mathcal{EXP}_j(\bar{U}_j, \mathcal{R}_j)$. To this end, assume there was $\mathscr{A}'_j \in \mathcal{EXP}_j(\bar{U}_j, \mathcal{R}_j)$ with $\mathcal{R}'_j = reduce(\mathscr{A}'_i, X_i, \varphi)$, such that either $\mathcal{R}'_i = \top$ or $\mathcal{R}_i \cong combine(\mathcal{R}'_i, \mathscr{A}_i(\bar{U}_i))$, and furthermore

$$\sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{O}_j} \setminus X_j| > \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}_j'} \setminus X_j|.$$

Since, $\mathcal{R}'_i \cong \mathcal{R}_i$, we have, by Lemma 11,

$$\mathcal{R}_i' \cong \begin{cases} \top & \text{if } \mathcal{R}_j = \top \text{ and } \\ combine(\mathcal{R}_j, \mathcal{R}(\bar{U}_i)) & \text{otherwise,} \end{cases}$$

where $\mathcal{R}_i' = reduce(\mathscr{A}_i', X_i, \varphi)$ and $\mathscr{A}_i' = \mathscr{A}_i' \cup \mathscr{A}_i(\bar{U}_i)$. Therefore,

$$\sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathcal{O}_{i}} \setminus X_{i}| > \sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathcal{A}_{i}} \setminus X_{i}|,$$

a contradiction to the minimality of \mathcal{O}_i . We conclude that \mathcal{O}_i is optimal for $\mathcal{EXP}_i(\bar{U}_i, \mathcal{R}_i)$. From this we get that

$$val_j(\mathcal{R}_j) = \sum_{k=1}^{l} \alpha_k |R_k^{\mathcal{O}_j} \setminus X_j|$$

by the property for i, which implies (III). \Box

Lemma 16. Let $i \in T$ be a forget node of the tree decomposition and $j \in T$ be the unique child of i. If Property 1 holds for j before the algorithm processes i, then it also holds for i.

Proof. Let j be the unique child of i and $X_i \cup \{x\} = X_j$ for $x \notin X_i$. Note that $\mathscr{A}_i = \mathscr{A}_j$. Let $\bar{U}_i = (U_{i,1}, \dots, U_{i,l}) \in \mathcal{AR}_i \cap X_i$.

Consider $\mathscr{A}_i' \in \mathscr{EXP}_i(\bar{U}_l)$ with $\mathscr{R}_i = reduce(\mathscr{A}_i', X_i, \varphi) \neq \bot$ and let $\bar{U}_j = (U_{j,1}, \ldots, U_{j,l}) = (R_1^{\mathscr{A}_i'}, \ldots, R_l^{\mathscr{A}_i'}) \cap X_j \in \mathscr{AR}_j \cap X_j$ and $\mathscr{R}_j = reduce(\mathscr{A}_i', X_j, \varphi)$. Then, by Lemmas 4 and 7, $\mathscr{R}_j \neq \bot$. Therefore, by the property for j, there is $\mathscr{R}_j' \in S_j(\bar{U}_j)$ with $\mathscr{R}_j' \cong \mathscr{R}_j$. If $\mathscr{R}_j' = \mathscr{R}_j = \top$, then, by Lemma 5, also $\mathscr{R}_i = \top$. Otherwise, the algorithm computes $\mathscr{R}_i' = forget(\mathscr{R}_i', x) \cong \mathscr{R}_j$. Either case implies (I).

Conversely, consider $\mathcal{R}_i \in S_i(\bar{U}_i)$. Then either $\mathcal{R}_i = \top$ and there is $\bar{U}_j \in \mathcal{AR}_j \cap X_j$ and $\mathcal{R}_j \in S_j(\bar{U}_j)$ with $\mathcal{R}_j = \top$ and $\bar{U}_i = \bar{U}_j \cap X_i$, or there is $\bar{U}_j \in \mathcal{AR}_j \cap X_j$ and $\mathcal{R}_j \in S_j(\bar{U}_j)$, such that $\bar{U}_i = \bar{U}_j \cap X_i$ and $\mathcal{R}_i \cong forget(\mathcal{R}_j, x)$. By the property for j, in either case $\mathcal{RED}_j(\mathcal{R}_j) \neq \emptyset$. Therefore, there is $\mathcal{R}'_j \in \mathcal{RED}_j(\bar{U}_j, \mathcal{R})$, where $\mathcal{R}'_j \cong \mathcal{R}_j$ and $\mathcal{R}'_j = reduce(\mathscr{A}'_j, X_j, \varphi)$, for some $\mathscr{A}'_i \in \mathcal{EXP}_j(\bar{U}_j)$.

Let $\mathscr{A}'_i = \mathscr{A}'_j$. If $\mathscr{R}_j = \top$, then, by Lemmas 5 and 7, $reduce(\mathscr{A}'_i, X_i, \varphi) = \top \in S_i(\bar{U}_i)$. Otherwise, $reduce(\mathscr{A}'_i, X_i, \varphi) \cong forget(\mathscr{R}_i, x) \cong \mathscr{R}_i$ according to Lemma 12. Either case implies (II).

Finally, consider $\mathcal{R}_i \in S_i(\bar{U}_i)$ and let $\mathcal{O}_i \in \mathcal{EXP}_i(\bar{U}_i, \mathcal{R}_i)$ such that

$$\sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathcal{O}_{i}} \setminus X_{i}| = \min \left\{ \sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathcal{A}_{i}'} \setminus X_{i}| |\mathcal{A}_{i}' \in \mathcal{EXP}_{i}(\bar{U}_{i}, \mathcal{R}_{i}) \land reduce(\mathcal{A}_{i}', X_{i}, \varphi) \neq \bot \right\}$$

and $reduce(\mathscr{O}_i, X_i, \varphi) \neq \bot$. Let $\mathscr{O}_j = \mathscr{O}_i$. Then, by Lemmas 5 and 7, $\mathscr{R}_j = reduce(\mathscr{O}_j, X_j, \varphi) \neq \bot$. By (II), there is $\mathscr{R}_j' \in S_j(\bar{U}_j)$ with $\mathscr{R}_j' \cong \mathscr{R}_j$, where $\bar{U}_j = (R_1^{\mathscr{O}_j} \cap X_j, \dots, R_l^{\mathscr{O}_j} \cap X_j)$. Analogue to the previous case, we obtain that \mathscr{O}_j is optimal in $\mathscr{RED}_i(\bar{U}_j, \mathscr{R}_j)$. Therefore, by the induction hypothesis,

$$val_{j}(\mathcal{R}_{j}) = \sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathscr{O}_{j}} \setminus X_{j}| = \sum_{k=1}^{l} \alpha_{k} |R_{k}^{\mathscr{O}_{j}} \setminus X_{i}| - \sum_{k=1}^{l} \alpha_{k} (x \in R_{k}^{\mathscr{O}_{i}} \setminus X_{i}),$$

which implies (III). \Box

Lemma 17. Let $i \in T$ be a join node of the tree decomposition with children $j_1, j_2 \in T$. If Property 1 holds for j_1 and j_2 before the algorithm processes i, then it also holds for i.

Proof. Note that $X_i = X_{j_1} = X_{j_2}$. Let $\bar{U} = (U_1, \dots, U_l) \in \mathcal{AR}_i \cap X_i = \mathcal{AR}_{j_1} \cap X_{j_1} = \mathcal{AR}_{j_2} \cap X_{j_2}$.

Consider $\mathscr{A}_i' \in \mathscr{EXP}_i(\bar{U})$ and let, for $j \in \{j_1, j_2\}$, be $\mathscr{A}_j' = \mathscr{A}_i'[A_j]$. If $\mathscr{R}_i = reduce(\mathscr{A}_i', X_i, \varphi) \neq \bot$, then, for $j \in \{j_1, j_2\}$, also $\mathscr{R}_j = reduce(\mathscr{A}_j', X_j, \varphi) \neq \bot$ by Lemmas 6 and 7. By the property for $j \in \{j_1, j_2\}$, $S_j(\bar{U})$ therefore contains exactly one \mathscr{R}_j' with $\mathscr{R}_j' \cong \mathscr{R}_j$. If $\mathscr{R}_j' = \top$, then $\mathscr{R}_i = \top$ by Lemmas 6 and 7. Otherwise, the algorithm computes $\mathscr{R}_i' = combine(\mathscr{R}_{j_1}, \mathscr{R}_{j_2})$. By Lemma 11, $\mathscr{R}_i' \cong \mathscr{R}_i$, which implies (I).

Conversely, consider $\mathcal{R}_i \in S_i(\bar{U})$. Then either $\mathcal{R}_i = \top$ and there is $j \in \{j_1, j_2\}$ and $\mathcal{R}_j \in S_j(\bar{U})$ with $\mathcal{R}_j = \top$, or there is $(\mathcal{R}_{j_1}, \mathcal{R}_{j_2}) \in S_{j_1}(\bar{U}) \times S_{j_2}(\bar{U})$, such that $\mathcal{R}_i \cong combine(\mathcal{R}_{j_1}, \mathcal{R}_{j_2})$. By the property for $j \in \{j_1, j_2\}$, we have $\mathcal{RED}_j(\mathcal{R}_j) \neq \emptyset$, and therefore there is $R'_j \in \mathcal{RED}_j(\bar{U}, \mathcal{R}_j)$ with $\mathcal{R}'_j \cong \mathcal{R}_j$ and $\mathcal{R}'_j = reduce(\mathscr{A}'_j, X_j, \varphi)$, where $\mathscr{A}'_j = (\mathscr{A}_j, R_1^{\mathscr{A}_j}, \dots, R_l^{\mathscr{A}_j}) \in \mathcal{EXP}_j(\bar{U})$. Let $\mathscr{A}'_i = (\mathscr{A}_i, R_1^{\mathscr{A}_i}, \dots, R_l^{\mathscr{A}_i}) \in \mathcal{EXP}_i(\bar{U})$, such that $R_k^{\mathscr{A}_i} = R_k^{\mathscr{A}_{j_1}} \cup R_k^{\mathscr{A}_{j_2}}$ for all $1 \leq k \leq l$.

If $\top \in \{\mathcal{R}_{j_1}, \mathcal{R}_{j_2}\}$, then, by Lemmas 6 and 7, $reduce(\mathscr{A}_i', X_i, \varphi) = \top \in S_i(\bar{U})$. Otherwise, $reduce(\mathscr{A}_i, X_i, \varphi) \cong combine(\mathcal{R}_{j_1}, \mathcal{R}_{j_2})$ by Lemma 11. Either case implies (II).

Now consider $\mathcal{R}_i \in S_i(\bar{U})$ and $\mathcal{O}_i \in \mathcal{EXP}_i(\bar{U}, \mathcal{R}_i)$ with $reduce(\mathcal{O}_i, X_i, \varphi) \neq \bot$ and

$$\sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{O}_i} \setminus X_i| = \min \left\{ \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}_i'} \setminus X_i| |\mathscr{A}_i' \in \mathscr{EXP}_i(\bar{U}, \mathscr{R}_i) \wedge reduce(\mathscr{A}_i', X_i, \varphi) \neq \bot \right\}.$$

Let, for $j \in \{j_1, j_2\}$, $\mathscr{O}_j = \mathscr{O}_i[A_j]$. Then, by Lemmas 6 and 7, $\mathscr{R}_j = reduce(\mathscr{O}_j, X_j, \varphi) \neq \bot$. Therefore, either $\mathscr{R}_j = reduce(\mathscr{O}_j, X_j, \varphi) = \mathscr{R}_i = \top$ for some $j \in \{j_1, j_2\}$, or $combine(\mathscr{R}_{j_1}, \mathscr{R}_{j_2}) \cong reduce(\mathscr{O}_{j_1} \cup \mathscr{O}_{j_2}, X_i, \varphi) \cong \mathscr{R}_i$ by Lemma 11. Assume there were $j \in \{j_1, j_2\}$, say $j = j_1$, and $\mathscr{A}_i' \in \mathscr{EXP}_j(\bar{U}, \mathscr{R}_j)$ with $\mathscr{R}_j' = reduce(\mathscr{A}_j', X_j, \varphi)$, such that

$$\sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{O}_j} \setminus X_j| > \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}_j'} \setminus X_j|$$

and either $\mathcal{R}'_j = \top$ or $\mathcal{R}_i \cong combine(\mathcal{R}'_j, \mathcal{R}'_{j_2})$ for some $\mathcal{R}'_{j_2} \in \mathcal{RED}_{j_2}(\bar{U}, \mathcal{R}_{j_2})$. Since $A_{j_1} \cap A_{j_2} = X_i$, structures $(\mathscr{A}'_{j_1}, \mathscr{A}'_{j_2}) \in \mathcal{RED}_{j_1}(\bar{U}) \times \mathcal{RED}_{j_2}(\bar{U})$ are compatible. By the property, part (II), we have $\mathcal{R}'_{j_2} \cong reduce(\mathscr{A}'_{j_2}, X_{j_2}, \varphi)$ for some $\mathscr{A}'_{j_2} \in \mathcal{EXP}_{j_2}(\bar{U})$. Without loss of generality, we assume $\mathscr{A}'_{j_2} = \mathscr{O}_{j_2}$, since each \mathscr{A}'_{j_2} with

$$\sum_{k=1}^{l} \alpha_k |R_k^{\mathcal{O}_{j_2}} \setminus X_j| \ge \sum_{k=1}^{l} \alpha_k |R_k^{\mathcal{A}'_{j_2}} \setminus X_j|$$

yields the same contradiction. Therefore, since $\mathcal{R}_i'\cong\mathcal{R}_i$, we have

$$\mathcal{R}_i' \cong \begin{cases} \top & \text{if } \mathcal{R}_j' = \top \text{ or } \mathcal{R}_{j_2} = \top \text{ and} \\ \textit{combine}(\mathcal{R}_j', \mathcal{R}_{j_2}) & \text{otherwise,} \end{cases}$$

by Lemma 11, where $\mathcal{R}'_i = reduce(\mathscr{A}'_i \cup \mathscr{O}_{j_2}, X_i, \varphi)$. Therefore,

$$\sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{O}_i} \setminus X_i| > \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{O}_j'} \setminus X_i| + \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{O}_{j_2}} \setminus X_i|$$

a contradiction to the minimality of \mathscr{O}_i . Therefore, for $j \in \{j_1, j_2\}$, \mathscr{O}_j is optimal in $\mathcal{EXP}_i(\bar{U}, \mathcal{R}_j)$, and

$$val_j(\mathcal{R}_j) = \sum_{k=1}^l \alpha_k |R_k^{\mathcal{O}_j} \setminus X_j|$$

by the property for j. By (II), there is $\mathcal{R}_j' \in S_j(\bar{U})$ with $\mathcal{R}_j' \cong \mathcal{R}_j$, which then implies (III). \square

Lemma 18. Let $r = root(\mathcal{T})$ be the root of the tree decomposition, where $X_r = \emptyset$, and let Property 1 hold for r. Let $\bar{U} = (\emptyset, \dots, \emptyset)$ and

$$OPT = \min \left\{ \sum_{k=1}^{l} \alpha_k |U_k| |U_i \subseteq A, \ 1 \le i \le l, \ and \ (\mathscr{A}, U_1, \dots, U_l) \models \varphi \right\}$$

be an optimal solution for the LinMSO-problem. Then

$$OPT = \min\{val_r(\mathcal{R}) \mid \mathcal{R} \in S_r(\bar{U}) \land eval(convert(\mathcal{R})) = \top\}.$$

Proof. Note that $\mathscr{A} = \mathscr{A}_r$. Let \mathscr{A}' be optimal, i.e., let \mathscr{A}' be a τ -expansion of \mathscr{A} , such that $\mathscr{A}' \models \varphi$ and

$$\sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}'} \setminus X_r| = \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}'}| = OPT.$$

Let $\mathcal{R} = reduce(\mathscr{A}', X_r, \varphi)$. We have $eval(\mathscr{MC}(\mathscr{A}', \varphi)) = \top$ since $\mathscr{A}' \models \varphi$, and therefore

$$eval(convert(\mathcal{R})) = eval(\mathcal{MC}(\mathcal{A}', \varphi)) = \top$$

by Lemma 13. Note that $X_r = \emptyset$ and therefore $\mathcal{AR}_r \cap X_r = \{(\emptyset, \dots, \emptyset)\}$. By Property 1, part (I), there is $\mathcal{R}' \in S_j(\bar{U})$, such that $\mathcal{R}' \cong \mathcal{R}$, which implies $OPT = val_r(\mathcal{R}')$ by part (III) and the optimality of \mathscr{A}' for $\mathcal{EXP}_r(\bar{U}, \mathcal{R})$. Since $eval(convert(\mathcal{R}')) = \top$, we also have

$$OPT = val_r(\mathcal{R}') > min\{val_r(\mathcal{R}'') \mid \mathcal{R}'' \in S_r(\bar{U}) \land eval(convert(\mathcal{R}'')) = \top\}.$$

Conversely, let $\mathcal{R} \in S_r(\bar{U})$, such that $eval(convert(\mathcal{R})) = \top$ and

$$val_r(\mathcal{R}) = \min\{val_r(\mathcal{R}') \mid \mathcal{R}' \in S_r(\bar{U}) \land eval(convert(\mathcal{R}')) = \top\}.$$

By part (II) of the property, there is a τ -expansion \mathscr{A}'' of \mathscr{A} , such that $\mathscr{R} \cong reduce(\mathscr{A}'', X_r, \varphi)$. Since $eval(convert(\mathscr{R})) = \top$, we have $\mathscr{A}'' \models \varphi$ by Lemma 13. Without loss of generality, we can assume by part (III), that \mathscr{A}'' is optimal for $\mathscr{EXP}_r(\bar{U}, \mathscr{R})$, i.e., $val_r(\mathscr{R}) = \sum_{k=1}^l \alpha_k |R_k^{\mathscr{A}''} \setminus X_r|$. We then directly conclude

$$val_r(\mathcal{R}) = \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}''}| \ge OPT = \sum_{k=1}^{l} \alpha_k |R_k^{\mathscr{A}'}|. \quad \Box$$

We can now prove Theorem 2.

Proof of Theorem 2. Using induction over the structure of the tree decomposition and Lemmas 14–17 for the respective nodes, we know that Property 1 holds for the root node of the tree decomposition after the algorithm has finished Phase 1. By Lemma 18, the algorithm outputs the correct solution in Phase 2.

For the running time, consider $i \in T$. We have $|\mathcal{AR}_i \cap X_i| = O(2^{|X_i|l})$, which for constant $l \leq |\tau|$ and $|X_i| \leq w+1$ is a constant. For $\bar{U} \in \mathcal{AR}_i \cap X_i$, consider the set $S_i(\bar{U})$. Since the algorithm only inserts games into $S_i(\bar{U})$, if $S_i(\bar{U})$ does not already contain an equivalent game,

$$|S_i(\bar{U})| \le N_{X_i,\varphi} \le \exp^{qr(\varphi)+1}((|X_i|+1)^{O(\|\varphi\|)}),$$

by Lemma 8, which for bounded $|X_i|$ is constant. Furthermore, by Lemma 9, for each $\mathcal{R} \in S_i(\bar{U})$,

$$|\mathcal{R}| < \exp^{qr(\varphi)+1}((|X_i|+1)^{O(\|\varphi\|)}),$$

again a constant. Finally, each position of each game is of the form (\mathcal{H}, X_i, ψ) , where $\|\psi\| \le \|\varphi\|$ and $\|\mathcal{H}\| = O(|X_i| + \|\varphi\|)$, where $\|\mathcal{H}\|$ denotes the size of a suitable encoding of \mathcal{H} . All operations on games, i.e., reduce(), eval(), combine(), forget(), and convert(), therefore take constant time.

In total, at a node $i \in T$, a constant number of entries or pairs, respectively, is considered, and each operation takes constant time. The running time is therefore O(|T|). \square

5.3. Extensions

Semiring homomorphisms. Note that the algorithm implicitly used a homomorphism

$$h: (U_1, \ldots, U_l) \mapsto \sum_{k=1}^l \alpha_k |U_k|$$

from the semiring $(\mathscr{P}(\mathcal{AR}_r), \hat{\uplus}, \cup, \hat{\emptyset}, \emptyset)$ into the semiring $(\mathbf{Z}_{\infty}, +, \min, 0, \infty)$. Here, $\mathscr{P}(\mathcal{AR}_r)$ is the set of all possible interpretations of the free relation symbols (i.e., a set of tuples of sets), $\hat{\uplus}$ is a component-wise, disjoint union with neutral element $\hat{\emptyset} = (\emptyset, \dots, \emptyset)$, and \cup is the regular union of sets. The extension to other semiring homomorphisms, e.g., to count the number of interpretations satisfying the MSO property φ , is rather straightforward. See [4] for a list of many interesting semirings.

Many-sorted structures. In this article, we considered one-sorted structures, i.e., structures whose universe contains objects of a single sort only. It is not hard to extend the results established in this paper to MSO on many-sorted structures. Courcelle's original works [1,5] were already proven for MSO on many-sorted structures. However, this extension has few benefits in algorithmic applications since one can easily simulate many-sorted structures by introducing unary relation symbols that distinguish the respective objects in a common universe accordingly. Transforming a τ -structure and a corresponding tree

decomposition of width w accordingly can be done efficiently. The resulting tree decomposition will have width at most $\max\{w, arity(\tau)\}$. It remains to see for an implementation which of the two approaches performs better.

Edge set quantification. Recall from Example 1 that a graph G = (V, E) can in a natural way be identified with a structure over the vocabulary $\tau_{\text{Graph}} = (adj)$, where V is identified with the universe of vertices, and adj is interpreted as E. Since MSO as defined in this article only allows quantification over unary relation symbols, edge set quantification is impossible in this model. However, MSO logic with edge set quantification is strictly more powerful than MSO that allows vertex set quantification only. For instance, the Hamiltonian Path problem for graphs cannot be expressed in MSO(τ_{Graph}), since this requires the use of edge-set quantification (see [36], for instance).

If edge set quantification is a requirement, one can either use a two-sorted structure as in [1], or one can use the incidence graph, i.e. a one-sorted structure as in [10]. For example, one can use unary relation symbols V and E, which allow to distinguish vertices from edges, and use a binary relation symbol inc for the incidence relation. Graphs with multi-edges can be represented similarly.

6. Solving concrete problems

In the analysis of the running time of the algorithm, we were rather pessimistic w.r.t. the constants hidden in the O(|T|). Recall that unless P = NP, these cannot be bounded by an elementary function, i.e., the running time of the algorithm cannot be $O(f(\|\varphi\|, w)n)$ for a fixed function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ that is a nesting of exponentials of bounded depth [2].

The picture changes dramatically once we assume the *problem* is fixed, i.e., the problem description consisting of the vocabulary τ , a formula $\varphi \in \mathsf{MSO}(\tau)$ and the integers $\alpha_1,\ldots,\alpha_l \in \mathbf{Z}$ are constants. Specialized and comparably efficient algorithms exist for many problems, e.g., of running time $O(2^w poly(w)n)$ for the Minimum Vertex Cover problem, or of $O(3^w poly(w)n)$ for Minimum Dominating Set and 3-Colorability, cf. [48,49], where poly(w) is a fixed polynomial in w. Recent results furthermore indicate that better running times are improbable [50]. Assuming small treewidth, such algorithms might still turn out to be feasible in many practical applications, cf. [45].

In this section, we estimate the running times of our generic approach for the three aforementioned problems. Let $(\mathcal{T}, \mathcal{X})$ be a tree decomposition of the input graph structure \mathscr{A} over τ_{Graph} , where $\mathcal{T} = (T, F)$ and $\mathcal{X} = (X_i)_{i \in T}$ with $|X_i| \leq w$ for all $i \in T$, i.e., \mathscr{A} has treewidth at most w - 1.

6.1. MINIMUM VERTEX COVER

Recall from Example 2 that the formula

$$vc = \forall x \forall y (\neg adj(x, y) \lor x \in R \lor y \in R)$$

is true on a (τ_{Graph}, R) -structure (\mathscr{G}, U) if and only if $U \subseteq G$ is a vertex cover for the graph \mathscr{G} . Using the notation from the previous section, we claim that for each $i \in T$ and for all $\bar{U} \in \mathcal{AR}_i \cap X_i$, the set $S_i(\bar{U})$ contains at most one entry \mathscr{R} , and if $\mathscr{R} \in S_i(\bar{U})$ for some \bar{U} , then $|\mathscr{R}| = poly(w)$. To this end, consider arbitrary $\bar{U} \in \mathscr{AR}_i \cap X_i$ and let $\mathscr{A}_i' \in \mathscr{EXP}_i(\bar{U})$.

For any $a \in A_i$, such that $a \in R^{\mathscr{A}_i'}$, the verifier has a winning strategy on $\mathscr{G} = \mathscr{EMC}(\mathscr{A}_i'', X_i, \forall y ...)$, where $\mathscr{A}_i'' = (\mathscr{A}_i', a)$ with $x^{\mathscr{A}_i''} = a$, since the atomic formula $x \in R$ is always satisfied for all y. Therefore, $eval(\mathscr{G}) = reduce(\mathscr{G}) = \top$ and reduce() removes the subgame \mathscr{G} from $\mathscr{EMC}(\mathscr{A}_i', X_i, vc)$.

Consider now a subgame $\mathcal{EMC}(\mathscr{A}_i'', X_i, \forall y \ldots)$, where $\mathscr{A}_i'' = (\mathscr{A}_i', a)$ with $a \notin R^{\mathscr{A}_i''}$. If there is $b \in A_i$, such that $(a, b) \in adj^{\mathscr{A}_i''}$ and $b \notin R^{\mathscr{A}_i''}$, then the falsifier has a winning strategy on $\mathcal{EMC}(\mathscr{A}_i', X_i, vc)$ and consequently $reduce(\mathscr{A}_i', X_i, vc) = \bot$. If otherwise for all $b \in A_i$ either $b \in R^{\mathscr{A}_i''}$ or $(a, b) \notin adj^{\mathscr{A}_i''}$, then we get $reduce((\mathscr{A}_i', a, b), X_i, \ldots) = \top$, and the corresponding subgame will be removed by reduce(). Therefore only the subgame on \mathscr{A}_i'' with $y^{\mathscr{A}_i''} = nil$ remains undetermined. We conclude $\mathcal{EMC}((\mathscr{A}_i', b_1), X_i, \forall y \ldots) \cong \mathcal{EMC}((\mathscr{A}_i', b_2), X_i, \forall y \ldots)$ for all $b_1, b_2 \in A_i \setminus X_i$.

Due to the symmetry of x and y in the vertex cover formula, we can argue analogously for the cases where the roles of x and y have been interchanged. Therefore, $\mathcal{R}_1 \cong \mathcal{R}_2$ for all \mathcal{R}_1 , $\mathcal{R}_2 \in \mathcal{RED}_i(\bar{U})$, from which we conclude $|S_i(\bar{U})| \leq 1$. Each game is of size $|\mathcal{R}| = O(w)$, since by above considerations

$$|subgames(reduce(\mathscr{A}_{i}'', X_{i}, \forall y \ldots))| \leq \begin{cases} |X_{i}| + 1 + 1 & \text{if } x \mathscr{A}_{i}'' = \text{nil} \\ 1 & \text{if } x \mathscr{A}_{i}'' \in A_{i} \end{cases}$$

and $|subgames(reduce(\mathscr{A}'_i, X_i, vc))| \le |X_i| + 1 + 1$: In both cases, we have $|X_i|$ subgames for the vertices in X_i , one subgame for all vertices in $A_i \setminus X_i$ (since all of them are equivalent), and one subgame for the case that x and y, respectively, remain uninterpreted. See Fig. 3 for an example.

It is not hard to see that $reduce(\mathcal{R})$, $eval(\mathcal{R})$, $convert(\mathcal{R})$, $forget(\mathcal{R}_1)$ and $combine(\mathcal{R}_1, \mathcal{R}_2)$ can be implemented in a way such that they run in time polynomial in $|\mathcal{R}|$ and $|\mathcal{R}_1| + |\mathcal{R}_2|$. Hence, we immediately find that the generic algorithm introduced in this article reaches, up to factors polynomial in w, the running time of $O(2^w n)$ of the specialized algorithm, since $|\mathcal{A}\mathcal{R}_i \cap X_i| = 2^{|X_i|}$ for all $i \in T$.

6.2. MINIMUM DOMINATING SET

The formula $ds = \forall x(x \in R \vee \exists y(y \in R \land adj(x, y)))$ holds in (\mathcal{G}, U) if and only if $U \subseteq G$ is a dominating set for the graph \mathcal{G} . Let for each $i \in T$ and $\bar{U} = (U_1) \in \mathcal{AR}_i \cap X_i$ be $k = |X_i| - |U_1|$. We claim that $|S_j(\bar{U})| \leq 2^k$. To this end, let again $\mathscr{A}_i' \in \mathcal{EXP}_i(\bar{U})$ and $\mathcal{R} = reduce(\mathscr{A}_i', X_i, ds)$. Let $U \subseteq A_i$ be such that $\mathscr{A}_i' = (\mathscr{A}_i, U)$.

If U dominates $a \in A_i$, then either $a \in U$ and $reduce((\mathscr{A}_i, a), X_i, x \in R) = \top$, or there is $b \in U$ that is adjacent to a, and $reduce((\mathscr{A}_i, a), X_i, \exists y \dots) = \top$. In both cases we get $\mathscr{R}' = reduce((\mathscr{A}_i, a), X_i, x \in R \vee \exists y \dots) = \top$, and therefore $\mathscr{R}' \notin subgames(\mathscr{R})$.

If $a \in A_i$ is not dominated by U, then $reduce((\mathscr{A}'_i, a), X_i, x \in R) = \bot$ and $reduce(\mathscr{A}''_i, X_i, y \in R \land adj(x, y)) = \bot$ for all \mathscr{A}''_i with $x^{\mathscr{A}''_i} = a$ and $y^{\mathscr{A}''_i} \in A_i$. These games are therefore removed by reduce(). Only the game $reduce(\mathscr{A}''_i, X_i, y \in R \land adj(x, y))$ with $x^{\mathscr{A}''_i} = a$ and $y^{\mathscr{A}''_i} = n$ il remains undetermined. Thus for all $a_1, a_2 \in A_i \setminus X_i$ that are not dominated by U we have $reduce((\mathscr{A}'_i, a_1), X_i, x \in R \lor \exists y \ldots)$.

For \mathscr{A}_i'' with $x^{\mathscr{A}_i''}=$ nil the game $reduce(\mathscr{A}_i'',X_i,x\in R)$ remains undetermined. For all $b\in A_i\setminus U$ we have $reduce(\mathscr{A}_i'',b),X_i,y\in R\wedge adj(x,y))=\bot$ due to the subformula $y\in R$; the corresponding subgame is therefore removed from $\mathscr{EMC}(\mathscr{A}_i'',X_i,\exists y\ldots)$. For all $b_1,b_2\in A_i\cap U$ we again have $reduce(\mathscr{A}_i'',b_1),X_i,y\in R\wedge adj(x,y))\cong reduce(\mathscr{A}_i'',b_2),X_i,y\in R\wedge adj(x,y))$.

All in all, either two games $\mathcal{R}_1, \mathcal{R}_2 \in \mathcal{RED}_i(\bar{U})$ only differ w.r.t. the subset of *undominated* nodes in X_i . Since there are k nodes in X_i that are not contained in U, this bounds $|S_j(\bar{U})| \leq 2^k$. For each of them, we have $|subgames(reduce(\mathscr{A}_i'', X_i, \forall x \ldots))| \leq |X_i| + 1 + 1$ corresponding to at most $|X_i|$ undominated nodes in X_i , at most one undominated node in $A_i \setminus X_i$ and the subgame for \mathscr{A}_i'' with $x^{\mathscr{A}_i''} = \text{nil}$. Furthermore, $|subgames(reduce(\mathscr{A}_i'', X_i, x \in R \vee \exists y \ldots))| = O(1)$ for \mathscr{A}_i'' with $x^{\mathscr{A}_i''} \neq \text{nil}$ and $|subgames(reduce(\mathscr{A}_i'', X_i, x \in R \vee \exists y \ldots))| \leq |X_i| + 1 + 1$. We conclude that $|\mathcal{R}| = O(|X_i|)$. See Fig. 4 for an example.

In total, at a node $i \in T$, there are therefore at most

$$\sum_{k=0}^{w} {w \choose k} 2^k = 3^w$$

entries stored, and each entry has size $|\mathcal{R}| = O(w)$. Nodes $i \in T$ of type leaf, forget are therefore processed in time $O(3^w poly(w))$. For join nodes $i \in T$ with children j_1, j_2 , every pair in $S_{j_1}(\bar{U}) \times S_{j_2}(\bar{U})$ is considered. Therefore, at most

$$\sum_{\bar{U}\in\mathcal{AR}_i\cap X_i}|S_{j_1}(\bar{U})|\cdot|S_{j_2}(\bar{U})|\leq \sum_{k=0}^w {w\choose k} 2^k 2^k = 5^w$$

entries are considered, which yields a running time of $O(5^w poly(w)n)$. This does not yet match the best specialized algorithm for the MINIMUM DOMINATING SET problem [49] with a running time of $O(3^w poly(w)n)$, but is still faster than combining all pairs with a running time of $O(9^w poly(w)n)$. We note that both the $O(3^w poly(w)n)$ bound from [49] and the $O(4^w n)$ bound from [51] exploit a certain "monotonicity" property of domination like problems, which does not hold for all problems that are expressible in MSO (INDEPENDENT DOMINATING SET being an example).

6.3. 3-COLORABILITY

The formula

$$3col = \exists R_1 \exists R_2 \exists R_3 \left(\forall x \left(\bigvee_{i=1}^3 (x \in R_i) \land \bigwedge_{i \neq j} (\neg x \in R_i \lor \neg x \in R_j) \right) \land \forall x \forall y \left(\neg adj(x, y) \lor \bigwedge_{i=1}^3 (\neg x \in R_i \lor \neg y \in R_i) \right) \right)$$

defining the 3-Colorability problem has no free symbols. Therefore $\mathcal{AR}_i = \{()\}$, where () is the empty tuple, and the table S_j contains at most one entry $\mathcal{R} = reduce(\mathscr{A}_i, X_i, 3col)$. We estimate the size of \mathcal{R} . For, let $3col = \exists R_1 \exists R_2 \exists R_3 \varphi$, where $\varphi = part \land is$. Here, $part = \forall x \dots$ expresses that the R_i are a partition of the universe, and $is = \forall x \forall y \dots$ ensures that each R_i is an independent set.

If $\bar{U} = (U_1, U_2, U_3) \in \mathcal{P}(A_i)^3$ is not a partition of A_i , then the falsifier wins $\mathcal{EMC}((\mathscr{A}_i, U_1, U_2, U_3), X_i, part)$, and therefore $reduce((\mathscr{A}_i, \bar{U}), X_i, \varphi) \not\in subgames(\mathcal{R})$. Otherwise, $\mathcal{EMC}((\mathscr{A}_i, \bar{U}, a), X_i, part) = \top$ for all $a \in A_i$ and undetermined when x remains uninterpreted. Using the same arguments as for the similar vertex cover formula vc, we have $\mathcal{R}_1 \cong \mathcal{R}_2$ for all $\bar{U}_j = (U_{j,1}, U_{j,2}, U_{j,3}) \in \mathcal{P}(A_i)^3$ with $\bar{U}_1 \cap X_i = \bar{U}_2 \cap X_i$ and $\mathcal{R}_j = reduce((\mathscr{A}_i, \bar{U}_j), X_i, is) \neq \bot$, $1 \leq j \leq 2$. This implies $reduce((\mathscr{A}_i, \bar{U}_1), X_i, \varphi) \cong reduce((\mathscr{A}_i, \bar{U}_2), X_i, \varphi)$. Thus, $subgames(\mathcal{R})$ contains at most $O(3^w)$ subgames $\mathcal{R}_i = reduce((\mathscr{A}_i, \bar{U}_j), X_i, \dots) \neq \bot$, which bounds $|\mathcal{R}| = O(3^w poly(w))$.

Thus, assuming $combine(\mathcal{R}_1, \mathcal{R}_2)$ requires time $\Theta(|\mathcal{R}_1| \cdot |\mathcal{R}_2| \cdot (|\varphi| + |X_i|))$, we only can bound the total running time by $O(9^w poly(n))$. This can probably be improved to $O(3^w poly(n))$ using a similar approach as for the tables $S_i(\bar{U})$.

Table 1Running times and memory usage on random subgraphs of grids with about 200 vertices.

Dimension	Runs	Time in seconds			Memory in MB		
		Min	Max	Median	Min	Max	Mediar
1 × 200	40	0.2	0.2	0.2	1	1	1
2 × 100	40	0.3	0.4	0.3	1	1	1
3×66	40	0.5	0.9	0.6	1	1	1
4×50	40	0.1	1.0	0.1	1	1	1
5×40	40	0.2	0.4	0.3	1	2	2
6×33	40	0.3	0.9	0.5	2	3	2
7×28	40	0.6	1.9	1.0	2	5	3
8 × 25	40	1.2	4.6	2.3	3	9	5
9×22	40	1.9	13.6	5.2	5	18	10
10×20	40	4.4	41.4	13.7	9	36	19.5
11 × 18	40	11.3	156.4	46.2	16	62	39
12 × 16	40	28.2	642.4	185.2	27	128	76
13 × 15	40	61.3	44 min	679.4	42	268	145.5
14×14	40	308.7	2 h 50 min	50 min	80	468	283

Dimension	Runs	Runs Time in seconds			Memory in MB		
		Min	Max	Median	Min	Max	Median
1 × 200	40	0.3	0.3	0.3	1	1	1
2×100	40	0.8	1.0	0.9	1	1	1
3×66	40	0.2	0.3	0.2	1	1	1
4×50	40	0.6	0.9	0.8	2	3	2.5
5×40	40	2.2	3.2	2.8	4	6	6
6×33	40	8.3	12.8	11.6	11	17	15
7×28	40	40.3	85.4	71.0	27	47	42
8 × 25	40	238.9	681.2	493.7	68	137	112
9×22	35	26min	2 h 23 min	1 h 27 min	170	386	332

3-Colorability

Dimension	Runs	Time in seconds		Memory in MB			
		Min	Max	Median	Min	Max	Median
1 × 200	20	0.5	0.6	0.5	1	1	1
2×100	20	0.2	0.2	0.2	1	1	1
3×66	20	0.7	1.6	0.9	2	2	2
4×50	20	3.3	6.3	4.8	5	5	5
5×40	20	15.3	38.3	29.3	10	15	14
6×33	20	99.6	317.4	233.0	26	45	42
7×28	20	771.6	45 min	37 min	70	139	123
8 × 25	15	1 h 7 min	7 h 27 min	3 h 53 min	146	373	268

7. Practical experiments and conclusion

We started to implement the approach presented in this article in C++. The current version works for graphs over the vocabulary $\tau_{\text{Graph}} = (adj)$. At certain places, the implementation varies from the algorithms presented in this paper for increased efficiency. For instance, reduce() is usually not called explicitly but computed directly where needed.

We list some running times and memory usage of the implementation when solving the three problems discussed in the previous section (Tables 1 and 2). Input graphs are randomly generated subgraphs of $n \times m$ grids and Erdős–Rényi random graphs. All graphs have about 200 vertices and the probability to include an edge ranges between 0.001 and 0.015. For the grid-subgraphs we used path decompositions of width n. Tree decompositions for the random graphs were computed by a triangulation heuristics (cf. [52]). The tests were done under Linux 2.6.32 on a Intel Core 2 Quad CPU Q6600 (2.40 GHz) with 4 GB RAM.

8. Conclusion

Motivated by a practical application, we present an alternative proof of Courcelle's theorem. Our proof is based on model checking games and tries to avoid expensive constructions such as the power set construction for tree automata, which turned out to cause some problems in practice.

Let us mention that our approach could be made simpler if we applied it to graphs of bounded clique-width. The union operation for *join* nodes of a tree decomposition involves a "fusion" of elements and of interpretations of nullary symbols. The clique-width parse trees do not use nullary symbols and the union is replaced by a disjoint union, which simplifies

Table 2Running times and memory usage for some random graphs on 200 vertices, grouped by the width of the tree decomposition used.

MINIMUM VERTEX COVER									
Width	Runs	Time in secon	Time in seconds			Memory in MB			
	Min	Max	Median	Min	Max	Median			
1	387	0.5	0.8	0.6	2	3	2		
2	179	0.1	1.0	0.8	2	4	3		
3	68	0.1	0.3	0.2	3	4	3		
4	74	0.2	0.5	0.3	3	4	4		
5	69	0.4	1.3	0.7	3	4	4		
6	62	0.9	2.3	1.4	4	6	5		
7	38	1.5	5.5	3.1	5	11	9		
8	36	2.5	14.0	6.3	8	20	15		
9	45	7.4	34.9	16.6	18	40	27		
10	29	24.8	121.6	56.8	30	78	56		
11	28	55.8	382.1	156.8	56	138	103		
12	29	164.6	1495.9	392.7	100	293	160		

MITATIANTIAN	DOMINATING	CET

Width	Runs	Time in seconds			Memory in MB		
		Min	Max	Median	Min	Max	Median
1	387	0.6	0.9	0.7	2	3	2
2	174	0.1	1.0	0.2	2	4	3
3	39	0.2	0.8	0.5	3	4	3
4	30	0.7	4.5	2.6	4	8	6
5	17	4.3	29.2	16.5	8	21	16
6	9	112.3	318.5	187.8	38	63	49
7	1	40 min	40 min	40 min	162	162	162
8	3	9 h 48 min	18 h 2 min	14 h 23 min	319	338	321
9	1	12 h 0 min	12 h 0 min	12 h 0 min	347	347	347

_	<u> </u>		
3 -	COLO	DRAE	BILITY

Width	Runs	Time in seconds			Memory in MB		
		Min	Max	Median	Min	Max	Median
1	387	0.1	0.2	0.1	2	3	2
2	174	0.2	0.8	0.5	2	4	3
3	39	0.8	3.6	2.2	3	6	5
4	30	4.1	22.2	15.0	7	16	13
5	17	35.3	156.9	99.9	19	52	37
6	9	485.8	1328.8	1168.8	81	150	125
8	2	9 h 22 min	20 h 51 min	15 h 6 min	446	664	555

many of the operations. On the other hand, the lack of suitable algorithms to compute the mandatory clique-width parse trees favors treewidth based techniques for practical applications.

First experiments with our approach do indeed indicate practical feasibility. An implementation based on our proof can solve the 3-Colorability problem for some graphs where the automata-theoretic approach based on the well-known MONA tool failed. The running times of our generic implementation can still not compete with specialized, hand-written algorithms that can easily solve problems such as, say 3-Colorability, for graphs of treewidth 15 and beyond. We are confident that further optimization can improve the feasibility of our generic approach in practical applications even more.

Acknowledgments

The authors thank an anonymous referee for valuable comments and suggestions that significantly helped to improve the quality of the paper. The authors thank Somnath Sikdar for useful discussions on earlier drafts of this paper. The third author thanks Bruno Courcelle for pointing out how to use incidence graphs to handle edge set quantification in a simple way.

References

- [1] B. Courcelle, The monadic second order theory of graphs I: recognisable sets of finite graphs, Inform. Comput. 85 (1990) 12-75.
- [2] M. Frick, M. Grohe, The complexity of first-order and monadic second-order logic revisited, Ann. Pure Appl. Logic 130 (1–3) (2004) 3–31.
- [3] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (2) (1991) 308-340.
- [4] B. Courcelle, M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs, Theoret. Comput. Sci. 109 (1-2) (1993) 49-82.
- [5] B. Courcelle, Graph rewriting: an algebraic and logic approach, in: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), Elsevier, 1990, pp. 193–242.
- [6] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-Verlag, 1999.

- [7] J. Flum, M. Frick, M. Grohe, Ouery evaluation via tree-decompositions, J. ACM 49 (6) (2002) 716–752.
- [8] I. Flum, M. Grohe, Parameterized Complexity Theory, Springer-Verlag, 2006.
- [9] M. Weyer, Modifizierte parametrische Komplexitätstheorie, Ph.D. Thesis, Universität Freiburg, 2008.
- [10] B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second-Order Logic, A Language Theoretic Approach, Cambridge University Press, 2011 (submitted for publication).
- S. Feferman, R. Vaught, The first order properties of algebraic systems, Fund, Math. 47 (1959) 57-103.
- [12] Y. Gurevich, Modest theory of short chains. I, J. Symbolic Logic 44 (4) (1979) 481–490.
- [13] M. Frick, Easy instances for model checking, Ph.D. Thesis, Universität Freiburg, 2001.
- [14] J.A. Makowsky, Algorithmic uses of the Feferman-Vaught theorem, Ann. Pure Appl. Logic 126 (1-3) (2004) 159-213.
- [15] M. Grohe, Logic, graphs, and algorithms, in: J. Flum, E. Grädel, T. Wilke (Eds.), Logic and Automata: History and Perspectives, Amsterdam University Press, Amsterdam, 2007, pp. 357–422.
- [16] N. Klarlund, A. Møller, MONA version 1.4 user manual, BRICS, Dept. of Comp. Sc., University of Aarhus, Available from: http://www.brics.dk/mona/ (January 2001).
- N. Klarlund, A. Møller, M.I. Schwartzbach, MONA implementation secrets, in: Proc. of CIAA00, Springer-Verlag, 2001, pp. 182–194.
- [18] D. Soguet, Génération automatique d'algorithmes linéaires, Doctoral Dissertation, University Paris-Sud, 2008.
- [19] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique width, Theory Comput. Syst. 33 (2000) 125-150
- [20] B. Courcelle, Graph structure and monadic second-order logic: language theoretical aspects, in: Proceedings of the 35th International Colloquium on Automata, Languages, and Programming, ICALP, in: Lecture Notes in Computer Science, vol. 5125, Springer, 2008, pp. 1–13.
- [21] G. Gottlob, R. Pichler, F. Wei, Abduction with bounded treewidth: from theoretical tractability to practically efficient computation, in: Proc. of 23rd AAAI, AAAI Press, 2008, pp. 1541-1546.
- [22] G. Gottlob, R. Pichler, F. Wei, Monadic datalog over finite structures of bounded treewidth, ACM Trans. Comput. Log. 12 (1) (2010) 3:1-3:48.
- [23] B. Courcelle, I.A. Durand, Verifying monadic second-order graph properties with tree automata, in: C. Rhodes (Ed.), 3rd European Lisp Symposium, Informal Proceedings, 2010, pp. 7-21.
- [24] B. Courcelle, I.A. Durand, Tractable constructions of finite automata from monadic second-order formulas, presented at Logical Approaches to Barriers in Computing and Complexity, Greifswald, Germany, 2010.
- B. Courcelle, Special tree-width and the verification of monadic second-order graph properties, in: Proceedings of the 30th Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, in: Leibniz International Proceedings in Informatics, LIPIcs, vol. 8, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2010, pp. 13–29.

 [26] J. Hintikka, Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic, Clarendon Press, 1973.
- [27] E. Grädel, Finite model theory and descriptive complexity, in: Finite Model Theory and its Applications, Springer, 2007, pp. 125–230.
- [28] E. Grädel, Back and forth between logics and games, in: K.R. Apt, E. Grädel (Eds.), Lectures in Game Theory for Computer Scientists, Cambridge University Press, 2011, pp. 99-145.
- K.A. Abrahamson, M.R. Fellows, Finite automata, bounded treewidth, and well-quasiordering, in: Graph Structure Theory, in: Contemporary Mathematics, vol. 147, American Mathematical Society, 1993, pp. 539–564.
- [30] J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Math. Syst. Theory 2 (1)(1968)57-81
- [31] J. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (1970) 406–451.
- [32] T. Ganzow, Ł. Kaiser, New algorithm for weak monadic second-order logic on inductive structures, in: Proceedings of the 24th International Workshop on Computer Science Logic, CSL, in: Lecture Notes in Computer Science, vol. 6247, Springer, 2010, pp. 366-380.
- [33] P.B. Miltersen, J. Radhakrishnan, I. Wegener, On converting CNF to DNF, Theoret. Comput. Sci. 347 (1-2) (2005) 325-335.
- [34] B. Courcelle, On the model-checking of monadic second-order formulas with edge set quantifications, Discrete Appl. Math. (in press).
- [35] K.L. McMillan, A technique of state space search based on unfolding, Form. Methods Syst. Des. 6 (1995) 45–65.
- [36] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, 1999.
- R. Ganian, P. Hlinený, On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width, Discrete Appl. Math. 158 (7) (2010) 851-867.
- N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986) 309–322.
- [39] R. Diestel, Graph Theory, 4th ed., Springer-Verlag, Heidelberg, 2010.
- [40] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebr. Discrete Methods 8 (1987) 277–284.
- [41] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996) 1305–1317.
- [42] H. Bodlaender, A.M.C.A. Koster, Treewidth computations I. Upper bounds, Inform. Comput. 208 (3) (2010) 259–275.
- [43] H.L. Bodlaender, A.M.C.A. Koster, Treewidth computations II. Lower bounds, Inform. Comput. 209 (7) (2011) 1103–1119.
- [44] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernet. 11 (1993) 1–21.
- [45] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1–45.
- [46] A. Tarski, The semantic conception of truth, Philos. Phenomenolog. Res. 4 (1944) 13-47.
- C. Baier, L.-P. Katoen, Principles of Model Checking, in: Representation and Mind Series, The MIT Press, 2008,
- 48] J.A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Math. 10 (4) (1997) 529–550.
- [49] J.M.M. van Rooij, H.L. Bodlaender, P. Rossmanith, Dynamic programming on tree decompositions using generalised fast subset convolution, in: ESA, in: Lecture Notes in Computer Science, vol. 5757, Springer, 2009, pp. 566-577.
- D. Lokshtanov, D. Marx, S. Saurabh, Known algorithms on graphs on bounded treewidth are probably optimal, in: Proceedings of the 22th ACM-SIAM Symposium on Discrete Algorithms, SODA, 2011, pp. 777–789.
- J. Alber, R. Niedermeier, Improved tree decomposition based algorithms for domination-like problems, in: Proceedings of the 5th Symposium on Latin American Theoretical Informatics, LATIN, in: Lecture Notes in Computer Science, vol. 2286, Springer, Cancun, Mexico, 2002, pp. 613–627.
- [52] H.L. Bodlaender, Necessary edges in k-chordalisations of graphs, J. Comb. Optim. 7 (3) (2003) 283–290.