## Минобрнауки России

## Юго-Западный государственный университет

Кафедра программной инженерии

### ОТЧЕТ

|                  | о преддипломно                                    | ой (производст        | венной) пр    | рактике       |  |
|------------------|---------------------------------------------------|-----------------------|---------------|---------------|--|
|                  | наимен                                            | нование вида и типа г | ірактики      |               |  |
| на (в)           | ОБУ «Курскгражданпроект»                          |                       |               |               |  |
|                  | наименование п                                    | редприятия, организа  | ации, учрежде | ния           |  |
| Студента         | 4 курса, группы ПО                                | О-01б                 |               |               |  |
|                  |                                                   | курса, группы         |               |               |  |
|                  | Гуляевой                                          | Александры В          | икторовны     | Ы             |  |
|                  | (                                                 | рамилия, имя, отчест  | ВО            |               |  |
| предпрі          | дитель практики от иятия, организации, учреждения |                       | Оценка _      |               |  |
| зам.дирек        | стора по производств                              | y                     |               |               |  |
| долж             | ность, звание, степень                            |                       |               |               |  |
| I                | Іахомов Е. И.                                     | _                     |               |               |  |
|                  | фамилия и. о.                                     |                       | 1             | подпись, дата |  |
| •                | дитель практики от<br>ниверситета                 |                       | Оценка _      |               |  |
|                  | к.т.н. доцент                                     |                       |               |               |  |
| долж             | ность, звание, степень                            | _                     |               |               |  |
| $\mathbf{q}_{i}$ | аплыгин А. А.                                     |                       |               |               |  |
|                  | фамилия и. о.                                     | _                     | 1             | подпись, дата |  |
|                  |                                                   |                       |               |               |  |
| Члены ко         | омиссии                                           |                       |               |               |  |
|                  |                                                   | подпись, дата         |               | фамилия и. о. |  |
|                  |                                                   | подпись, дата         |               | фамилия и. о. |  |
|                  |                                                   | подпись, дата         |               | фамилия и. о. |  |

## СОДЕРЖАНИЕ

| 1 Анализ предметной области                                       | 3  |
|-------------------------------------------------------------------|----|
| 1.1 Общественный транспорт и его роль в жизни города              | 3  |
| 1.2 Преимущества и недостатки общественного транспорта – Автобу-  |    |
| СЫ                                                                | 4  |
| 1.3 Преимущества и недостатки общественного транспорта – Трамваи  | 7  |
| 1.4 Преимущества и недостатки общественного транспорта – Метро    | 8  |
| 1.5 Преимущества и недостатки общественного транспорта – Поезда   | 10 |
| 1.6 Преимущества и недостатки общественного транспорта – Троллей- |    |
| бусы                                                              | 12 |
| 1.7 Преимущества и недостатки общественного транспорта – Марш-    |    |
| рутные такси                                                      | 14 |
| 1.8 Преимущества и недостатки общественного транспорта – Такси    | 15 |
| 2 Техническое задание                                             | 18 |
| 2.1 Основание для разработки                                      | 18 |
| 2.2 Цель и назначение разработки                                  | 18 |
| 2.3 Требования пользователя к интерфейсу                          | 19 |
| 2.4 Моделирование вариантов использования                         | 22 |
| 2.4.1 Вариант использования «Регистрация аккаунта»                | 23 |
| 2.4.2 Вариант использования «Авторизация пользователя»            | 24 |
| 2.4.3 Вариант использования «Отправка обращений»                  | 24 |
| 2.4.4 Вариант использования «Модерация обращений»                 | 24 |
| 2.4.5 Вариант использования «Просмотр информации в личном каби-   |    |
| нете»                                                             | 25 |
| 2.5 Требования к оформлению документации                          | 25 |
| 3 Технический проект                                              | 26 |
| 3.1 Общие сведения о программной системе                          | 26 |
| 3.2 Проектирование архитектуры программной системы                | 27 |
| 3.2.1 Выбор архитектурного стиля и паттернов проектирования       | 27 |
| 3.2.2 Описание REST API микросервисов                             | 29 |

| 3.2.3 Структура базы данных                | 32 |
|--------------------------------------------|----|
| 3.2.3.1 Схема данных                       | 33 |
| 3.2.3.2 Описание схемы данных              | 33 |
| 3.2.4 Описание микросервисов               | 40 |
| 3.2.5 Архитектура сервисов                 | 42 |
| 3.2.5.1 Класс «CategoriesOfDriverSLicense» | 42 |
| 3.2.5.2 Класс «Driver»                     | 42 |
| 3.2.5.3 Класс «DriverStatus»               | 43 |
| 3.2.5.4 Класс «EmployeeStatus»             | 44 |
| 3.2.5.5 Класс «Flight»                     | 44 |
| 3.2.5.6 Класс «FlightsStatus»              | 45 |
| 3.2.5.7 Класс «Passenger»                  | 45 |
| 3.2.5.8 Класс «Rating»                     | 46 |
| 3.2.5.9 Класс «RouteStop»                  | 47 |
| 3.2.5.10Класс «Staff»                      | 48 |
| 3.2.5.11 Класс «Stop»                      | 49 |
| 3.2.5.12Класс «UrbanRoute»                 | 49 |
| 3.2.5.13Класс «User»                       | 50 |
| 3.2.5.14Класс «Vehicle»                    | 51 |
| 3.2.5.15Класс «EmployeeId»                 | 52 |
| 3.2.5.16Класс «DriverDto»                  | 53 |
| 3.2.5.17Класс «PassengerDto»               | 54 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ           | 55 |

#### 1 Анализ предметной области

#### 1.1 Общественный транспорт и его роль в жизни города

Перевозка людей на транспорте является ответственной и важной работой в жизни города. Ежедневно сотни тысяч людей используют общественный транспорт, чтобы добраться из пункта А в пункт Б. Благодаря городскому транспорту люди без труда могут доехать до места работы, учебы, медицинских учреждений или совершить поездку по своим делам. К общественному транспорту относятся:

- Автобусы один из самых распространенных видов городского общественного транспорта. Автобусы следуют по определенным маршрутам и останавливаются на остановках для посадки и высадки пассажиров.
- Трамваи электрические транспортные средства, движущиеся по рельсам. Трамваи также следуют по установленным маршрутам.
- Метро подземный или надземный железнодорожный транспорт, обычно имеющий несколько линий и станций. Метро обеспечивает быстрое и эффективное передвижение в городе, особенно в крупных мегаполисах.
- Поезда большинство городов имеют железнодорожное сообщение, которое обеспечивает связь между ними.
- Троллейбусы электрические транспортные средства, которые движутся по улицам города, питаясь электричеством от воздушной контактной сети, установленной над дорогами. Троллейбусы также следуют по установленным маршрутам.
- Маршрутные такси (маршрутки) небольшие пассажирские автобусы или микроавтобусы, следующие по установленным маршрутам, но обычно имеющие более гибкий график и маршрут, чем обычные автобусы.
- Такси услуга пассажирского транспорта, предоставляемая частными лицами или специализированными компаниями. Такси обычно предоставляет индивидуальные или групповые поездки на короткие и средние расстояния в пределах города или за его пределами.

Разновидностей городского транспорта много, каждый имеет свои преимущества и недостатки. Любой человек может выбрать тот вид транспорта, который ему наиболее удобен. Общественный транспорт играет важную роль в жизни города, поэтому услуги перевозки людей на транспорте должны выполняться качественно и безопасно как для самих пассажиров, так и для других участников дорожного движения города.

## 1.2 Преимущества и недостатки общественного транспорта – Автобусы

Автобусы являются основным видом общественного транспорта в жизни города. Они имеют следующие преимущества:

- Общедоступность. Автобусы предоставляют широкий охват маршрутов, что делает их доступными для большого количества жителей города. Это особенно важно для обслуживания пригородных и отдаленных районов, где другие формы общественного транспорта могут быть менее эффективны.
- Экономическая эффективность. Автобусы, как правило, имеют более низкие затраты на инфраструктуру по сравнению с другими формами общественного транспорта, такими как метро или трамвайные системы.
- Гибкость. Автобусы легче адаптировать к изменениям в маршрутах и времени движения, что делает их гибкими в управлении и обеспечении обслуживания в тех местах, где они наиболее необходимы.
- Интермодальность. Автобусы интегрируются в систему общественного транспорта, что позволяет пассажирам пересаживаться с одного вида транспорта на другой для удобства перемещения по городу.
- Экологическая устойчивость. Некоторые автобусы работают на альтернативных источниках энергии, таких как электричество или биотопливо, что делает их более экологически чистыми по сравнению с автомобилями, работающими на бензине или дизеле.
- Социальная интеграция. Автобусы способствуют социальной интеграции, предоставляя возможность перемещения для всех слоев населения,

включая тех, кто не может себе позволить собственный автомобиль или другие виды транспорта.

У автобусов помимо преимуществ, также есть и недостатки:

- Задержки. Иногда автобусы застревают в пробках, особенно в перегруженных городских центрах, что приводит к сбоям в графике движения и недовольству пассажиров.
- Негативное воздействие на окружающую среду и шум. Движение автобусов может вызывать загрязнение воздуха и шум, особенно при использовании дизельных двигателей, что наносит непоправимый вред экологии и здоровью пассажиров.
- Ограниченная вместимость. Автобусы имеют ограниченное количество сидячих мест, поэтому в периоды пиковой нагрузки они могут быть переполнены, что вызывает дискомфорт и неудобства для пассажиров.
- Безопасность. В сравнении с другими видами транспорта, такими как метро или поезда, автобусы могут представлять больший риск для безопасности, особенно при авариях на дорогах или в случае неправильного поведения пассажиров или других участников дорожного движения.
- Ограниченная скорость. Автобусы обычно движутся медленнее, чем другие виды транспорта, особенно в городах с высоким трафиком, что может сделать их менее привлекательными для тех, кто ценит скорость, удобство и время.
- Ограниченность маршрутов. В некоторых городах автобусные маршруты могут быть ограничены, в следствии чего, некоторые районы могут оставаться недоступными или иметь ограниченное обслуживание, особенно в ночное время или по выходным дням.
- Комфорт и удобство. В сравнении с более закрытыми видами транспорта, такими как метро или поезда, автобусы более подвержены воздействию внешних факторов и погодных условий, таким как пыль или грязь, что может сказаться на общей чистоте транспорта. Это может снизить общее восприятие комфорта и удобства пассажиров, особенно для тех, кто ценит чистоту и уют во время поездки.

Автобусы можно классифицировать по следующим параметрам:

- Автобусы особо малого и малого класса. Автобусы малого класса, по сути, являются небольшими по размеру и предназначены для использования на городских маршрутах и в пригороде. Их можно условно разделить на две подгруппы: автобусы особо малого класса и транспортные средства (ТС) малого класса. Первая подгруппа, автобусы особо малого класса, часто используются в качестве маршруток и имеют ограничение в длине до 5 метров, а вместимость не превышает 10 человек (учитывая только сидячие места). Вторая подгруппа машин, то есть малых автобусов, имеет размеры в пределах 6-8 метров и вмещает до 40 пассажиров, включая 20 сидячих мест в салоне.
- Автобусы среднего класса. Автобусы среднего класса представляют собой транспортные средства длиной от 8 до 9,5 метров, способные вместить до 60 пассажиров, при этом половина из этих мест предназначена для сидения пассажиров. Среди них особенно популярны городские автобусы, которые разработаны с учетом специфики использования в городских условиях. Они обладают низким полом для быстрой посадки и высадки пассажиров, хорошей маневренностью, что позволяет им легко передвигаться по загруженным городским улицам, а также имеют большие накопительные площадки и удобные поручни. Все эти особенности делают их идеальным выбором для обслуживания городских маршрутов.
- Крупногабаритные автобусы. Автобусы большого класса имеют длину до 12 метров и вмещают до 90 пассажиров. Количество посадочных мест может изменяться в диапазоне от 30 до 40 в зависимости от марки и модели автобуса. Такие транспортные средства предназначены для перевозки пассажиров на большие расстояния, превышающие 500 километров и более.

## 1.3 Преимущества и недостатки общественного транспорта – Трамваи

Трамвай является одним из старейших видов городского пассажирского общественного транспорта из существующих в начале XXI века. Трамваи имеют следующие преимущества:

- Экологическая чистота. Трамваи являются одним из самых экологически чистых видов общественного транспорта, так как они работают на электричестве, а не на нефтепродуктах, и не выделяют вредных выбросов в атмосферу.
- Энергоэффективность. Электрические трамваи обычно имеют более высокую энергоэффективность по сравнению с автобусами или легковыми автомобилями, особенно если электричество производится из возобновляемых источников энергии.
- Надежность. Трамваи имеют специальные выделенные полосы движения, что делает их менее подверженными пробкам и задержкам, связанным с автомобильным трафиком.
- Высокая вместимость. Трамваи способны вместить значительное количество пассажиров, особенно на протяженных маршрутах, что делает их эффективным видом общественного транспорта для городов с высокой плотностью населения.
- Экономическая эффективность. В долгосрочной перспективе трамваи могут оказаться экономически выгодными для городов благодаря снижению затрат на топливо и обслуживание по сравнению с автобусами или легковыми автомобилями.

К основным недостаткам трамваев можно отнести:

- Ограниченная гибкость маршрутов. Трамваи привязаны к своим собственным путям, что делает их менее гибкими по сравнению с автобусами, которые могут с легкостью изменять маршруты.
- Зависимость от инфраструктуры. Для работы трамваев требуется специальная инфраструктура, включая провода для подачи электроэнергии

и специальные пути, что может быть экономически невыгодно и труднореализуемо в уже существующих городах.

- Ограниченная маневренность. Трамваи не могут опережать другие транспортные средства, а также могут быть ограничены в движении, если что-то происходит на пути их следования, например авария или поломка.
- Ограниченные возможности для расширения: Поскольку трамваи требуют специальной инфраструктуры, их модернизация и расширение требует значительно больше времени и ресурсов по сравнению с другими видами транспорта, такими как автобусы или метро.

Классификацию трамваев можно составить по следующим критериям:

- Электрические трамваи. Трамваи данного типа работают от электрической сети, подающейся по контактным проводам.
- Модернизированные исторические трамваи: ретро-трамваи, работающие на электричестве и восстановленные для туристических целей.
- Музейные трамваи: не работают в регулярном графике, а экспонируются в музеях или используются для особых событий.

## 1.4 Преимущества и недостатки общественного транспорта — Метро

Метро - это эффективная система общественного транспорта, представляющая собой сеть подземных и наземных железных дорог, соединяющих различные части города и пригородные районы. Ниже перечислены преимущества метро как вида общественного транспорта:

- Быстрая и надежная перевозка. Метро обычно предоставляет один из самых быстрых и надежных способов перемещения в городе, особенно в часы пик, когда дорожные пробки могут значительно замедлить передвижение на дорогах.
- Большая пассажировместимость. Метро способно перевозить огромное количество пассажиров в одном направлении за короткий промежуток времени благодаря длинным поездам и высокой частоте движения.

- Экономия времени. Поскольку интервалы между движением поездов метро обычно минимальны, пассажиры не тратят много времени на ожидание, а скорость движения позволяет быстро добираться до места назначения.
- Экологическая чистота. Метро работает на электричестве, что делает его одним из самых экологически чистых видов общественного транспорта, поскольку не создает вредных выбросов и не загрязняет окружающую среду.
- Эффективность в больших городах. В крупных городах с высокой плотностью населения и интенсивным транспортным движением метро является наиболее эффективным способом перевозки большого количества людей в пределах города.

У метро есть следующие недостатки:

- Высокие затраты на строительство и обслуживание. Строительство и поддержание метрополитена требует значительных финансовых ресурсов, что может значительно сказаться на бюджете города.
- Ограниченная география. Метро ограничено городской зоной и не всегда достигает отдаленных пригородных районов, что может создавать неудобства для жителей этих районов.
- Ограниченные маршруты и остановки. Метро имеет фиксированные маршруты и остановки, что может быть неудобно для пассажиров, которым нужен доступ к более удаленным или малопосещаемым районам.
- Перегруженность в часы пик. В периоды пиковой загруженности метро может стать перегруженным, что приводит к дискомфорту и неудобствам для пассажиров, особенно в тесных вагонах.
- Ограниченные часы работы. В некоторых городах метро может быть закрыто ночью или иметь ограниченное время работы, что ограничивает его доступность для пассажиров в нерабочие часы.

Метро - это не только эффективный и быстрый способ перевозки в городе, но и символ современности и развития городской инфраструктуры. Его преимущества включают быструю и надежную перевозку, высокую вместимость, экологическую чистоту и экономию времени для пассажиров. Однако,

существуют и недостатки, такие как высокие затраты на строительство и обслуживание, ограниченная география и перегруженность в часы пик.

В целом, метро остается одним из наиболее важных элементов городской жизни, обеспечивая удобство и доступность перемещения для жителей и посетителей городов. Его роль в улучшении качества городской среды, снижении транспортных проблем и влиянии на развитие экономики делает метро неотъемлемой частью современного городского образа.

# 1.5 Преимущества и недостатки общественного транспорта – Поезда

Поезда - это один из наиболее распространенных и важных видов общественного транспорта, предоставляющий возможность пассажирам быстро и эффективно перемещаться на дальние расстояния как внутри страны, так и за ее пределами. Рассмотрим преимущества поездов:

- Быстрая и комфортабельная перевозка. Поезда передвигаются с высокой скоростью и предоставляют пассажирам возможность комфортно провести время во время поездки, особенно на дальних маршрутах.
- Большая вместимость. Поезда могут перевозить большое количество пассажиров за один рейс, что делает их эффективным видом транспорта для перемещения больших групп людей или в периоды пиковой загрузки.
- Экологическая эффективность. Некоторые виды поездов, такие как электрические или гибридные поезда, могут быть более экологически чистыми по сравнению с другими видами транспорта, так как они не используют топливо внутреннего сгорания.
- Надежность и безопасность. Поезда тщательно осматриваются перед отправлением, проходят техническое обслуживание, а также регламентируются строгим правилам безопасности, что делает их одним из самых надежных видов общественного транспорта.
- Удобство для путешественников. В поездах часто предоставляются различные удобства для пассажиров, такие как купе, рестораны, бары, Wi-Fi

и развлекательные программы, что делает поездки более приятными и комфортными.

К недостаткам железнодорожного транспорта можно отнести:

- Ограниченная география. Поезда могут не достигать всех районов и населенных пунктов, особенно в отдаленных и малонаселенных областях, что ограничивает их доступность.
- Высокая стоимость. Цена билета на поезд может быть выше, по сравнению с другими видами общественного транспорта, особенно на дальние расстояния или на поездах с высоким уровнем комфорта и услуг.
- Ограниченное расписание. Поезда следуют строгому расписанию, что может быть неудобно для пассажиров, нуждающихся в гибкости во времени отправления и прибытия.
- Перегруженность в периоды пиковой загрузки. В дни высокого спроса на билеты, такие как праздничные и выходные дни, поезда могут быть переполнены, что создает ограниченность для пассажиров.

Роль поездов как вида общественного транспорта в жизни города огромна и многоаспектна. Вот несколько ключевых аспектов их влияния:

- Связь и мобильность. Поезда обеспечивают жителей города и его посетителей быстрой и удобной связью между различными районами и населенными пунктами. Они позволяют людям легко перемещаться по городу и за его пределами, обеспечивая мобильность и доступность для всех слоев населения.
- Развитие инфраструктуры. Строительство и поддержание железнодорожных путей, станций и инфраструктуры поездов способствует развитию городской инфраструктуры в целом. Это включает в себя создание новых рабочих мест, инвестиции в градостроительство и улучшение условий жизни в городе.
- Социальная интеграция. Поезда создают возможности для социальной интеграции и обмена культурными и экономическими идеями между различными сообществами и группами населения. Они предоставляют пасса-

жирам возможность встречаться, общаться и делиться опытом, способствуя культурному разнообразию и взаимопониманию.

В целом, поезда играют важную роль в жизни города, обеспечивая связь, мобильность, развитие экономики и социальную интеграцию. Их значимость в общественном транспорте подчеркивается их влиянием на различные аспекты городской жизни и развития.

## 1.6 Преимущества и недостатки общественного транспорта — Троллейбусы

Троллейбусы - это вид общественного транспорта, который работает на электричестве и движется по маршрутам, оборудованным специальными проводами для подачи электроэнергии. Троллейбусы имеют следующие пре-имущества:

- Экологическая чистота. Троллейбусы работают на электричестве, что делает их одним из самых экологически чистых видов общественного транспорта. Они не выделяют вредных выбросов в атмосферу, что способствует улучшению качества воздуха в городе и снижению загрязнения окружающей среды.
- Эффективность в городском трафике. Троллейбусы обычно имеют отдельные полосы движения или право приоритетного проезда на дорогах, что позволяет им обходить пробки и двигаться более эффективно в городском трафике.
- Низкая стоимость эксплуатации. Эксплуатация троллейбусов часто обходится дешевле, чем у автобусов с двигателями внутреннего сгорания, так как электричество является более дешевым и экономически выгодным источником энергии.
- Тихий ход. Троллейбусы обычно имеют более тихий ход по сравнению с автобусами с двигателями внутреннего сгорания, что делает их более приятными для пассажиров и жителей города, особенно в ночное время.

К недостаткам троллейбуса, как вида общественного транспорта можно отнести:

- Ограниченная мобильность. Троллейбусы зависят от наличия специальной инфраструктуры в виде проводов для передачи электроэнергии. Это ограничивает их мобильность и маршруты, так как они могут двигаться только по установленным маршрутам.
- Зависимость от энергосистемы. Работа троллейбусов зависит от непрерывного функционирования электросети. Проблемы с электроснабжением или обрыв проводов могут привести к остановке движения троллейбусов и создать неудобства для пассажиров.
- Ограниченная скорость. В некоторых случаях троллейбусы могут иметь ограниченную скорость движения из-за характеристик электрического двигателя, особенно на возвышенных участках маршрута или при больших нагрузках.
- Сложности в маневрировании. Из-за необходимости следовать за проводами троллейбусы могут иметь ограниченные возможности для маневрирования на дорогах, особенно в условиях ограниченного пространства или на узких улицах.

В целом, троллейбусы представляют собой экологически чистый и эффективный вид общественного транспорта, но они также имеют свои ограничения, которые следует учитывать при планировании их использования в городской транспортной системе. Развитие сети троллейбусов требует создания и поддержания специализированной инфраструктуры, включая контактные сети и депо. Это стимулирует развитие городской транспортной инфраструктуры в целом, улучшая качество дорог и общее состояние городских улиц. В заключение, троллейбусы играют важную роль в жизни города, обеспечивая экологически чистый, экономически выгодный и социально значимый вид транспорта. Их интеграция в городскую транспортную систему способствует улучшению качества жизни горожан и устойчивому развитию городских территорий.

# 1.7 Преимущества и недостатки общественного транспорта — Маршрутные такси

Маршрутное такси (маршрутка) играет важную роль в системе общественного транспорта многих городов, предоставляя жителям гибкий и быстрый способ передвижения. Далее рассматривается преимущества и недостатки маршрутного такси, с точки зрения вида общественного транспорта, а также его роль в жизни города. Преимущества маршрутных такси:

- Высокая частота движения. Маршрутные такси часто курсируют с очень короткими интервалами, что делает их удобными для пассажиров, которым не нужно долго ждать следующего транспортного средства.
- Гибкость маршрутов и остановок. В отличие от автобусов, маршрутные такси могут останавливаться по запросу пассажиров в удобных для них местах, что увеличивает их привлекательность и удобство использования.
- Быстрая адаптация к изменяющимся условиям. Маршрутные такси могут быстро изменять свои маршруты в ответ на изменения дорожной ситуации, пробки или запросы пассажиров, что делает их более гибкими по сравнению с другими видами транспорта.
- Меньшие размеры и маневренность. Компактные размеры маршрутных такси позволяют им быстрее передвигаться по узким улицам и в условиях плотного городского трафика.

Недостатки маршрутных такси:

- Перегруженность. В часы пик маршрутные такси могут быть сильно перегружены, что снижает комфорт для пассажиров и может вызывать задержки.
- Безопасность. Маршрутные такси часто менее комфортны и безопасны по сравнению с автобусами и поездами. Пассажиры могут испытывать дискомфорт из-за тесноты, отсутствия кондиционирования и неудобных сидений.

- Экологическое воздействие. Маршрутные такси, особенно старые модели, могут быть менее экологичными по сравнению с новыми автобусами и электромобилями, выделяя больше вредных выбросов в атмосферу.
- Проблемы с управлением и регулированием. В некоторых городах маршрутные такси могут работать нелегально или полулегально, что затрудняет их регулирование и контроль за качеством услуг, безопасностью и соблюдением правил дорожного движения.

Маршрутное такси играет важную роль в системе общественного транспорта города, предоставляя гибкий и быстрый способ передвижения для жителей и гостей. Маршрутные такси часто обслуживают маршруты, которые не покрываются основными видами общественного транспорта, такими как автобусы, трамваи или метро, тем самым закрывая возможные пробелы в сети общественного транспорта, обеспечивая удобство и доступность. Однако маршрутные такси также имеют свои недостатки, включая перегруженность, проблемы с безопасностью и комфортом, а также экологические и регуляторные вызовы. Для эффективного функционирования маршрутных такси необходимо сбалансированное управление и интеграция с другими видами общественного транспорта.

## 1.8 Преимущества и недостатки общественного транспорта — Такси

Такси является важной частью городской транспортной системы. Оно обеспечивает быстрый, удобный и относительно гибкий способ передвижения, который дополняет другие виды общественного транспорта. Такси имеет следующие преимущества:

- Дополнение к общественному транспорту. Такси служат дополнением к традиционным видам общественного транспорта, таким как автобусы, трамваи и метро. Оно обеспечивает перевозки в те районы и в то время, когда другие виды транспорта недоступны или менее удобны.
- Доступность в любое время. Такси предоставляет возможность передвижения круглосуточно, что особенно важно для людей, которым необ-

ходимо передвигаться поздно ночью или рано утром, когда общественный транспорт может не работать.

- Персонализированные услуги. В отличие от других видов общественного транспорта, такси предлагает персонализированные услуги, включая поездки "от двери до двери что обеспечивает высокий уровень удобства для пассажиров.
- Быстрое реагирование на спрос. С помощью мобильных приложений и диспетчерских служб, такси зачастую быстрее реагирует на вызовы пассажиров, тем самым предоставляя услуги в кратчайшие сроки.
- Гибкость маршрутов. В отличие от автобусов и поездов, такси могут быстро адаптироваться к изменениям в дорожной ситуации и выбирать наилучший маршрут для минимизации времени в пути.

К недостаткам такси можно отнести:

- Высокая стоимость. Поездки на такси, как правило, дороже, чем использование других видов общественного транспорта, что может быть существенным недостатком для людей с ограниченным бюджетом.
- Безопасность и надежность. Уровень безопасности и надежности может варьироваться в зависимости от компании и водителя, и некоторые пассажиры могут сталкиваться с проблемами, связанными с неадекватным поведением водителей или ненадлежащим состоянием автомобиля.
- Регулирование и стандарты. Неполное регулирование такси может привести к проблемам с качеством обслуживания, соблюдением правил дорожного движения и безопасности пассажиров.

Такси играет важную роль в транспортной системе города, предоставляя гибкий, удобный и персонализированный способ передвижения. Оно является важным дополнением к другим видам общественного транспорта, особенно в тех случаях, когда необходима быстрая и прямая поездка. Однако такси также имеет свои недостатки, включая высокую стоимость, воздействие на дорожное движение и экологию, а также вариативность в качестве и безопасности услуг. Для эффективного функционирования данного вида транспорта необходимо сбалансированное управление и регулирование, что-

бы максимизировать их пользу и минимизировать негативные последствия для городской среды.

#### 2 Техническое задание

#### 2.1 Основание для разработки

На основании актуальной проблематики, связанной с частыми нарушениями правил дорожного движения, недостаточным качеством предоставления услуг общественного транспорта и другими аспектами, возникшими в сфере общественного транспорта, было принято решение о разработке вебприложения для сбора и анализа информации об инцидентах на дорогах общего пользования. Осознав актуальность проблемы, связанной с частыми нарушениями правил дорожного движения, низким уровнем обслуживания в общественном транспорте и прочими аспектами, затрагивающими сферу общественного транспорта, было принято стратегическое решение: разработать веб-приложение, предназначенное для систематического сбора и анализа информации об инцидентах на дорогах общего пользования.

#### 2.2 Цель и назначение разработки

Функциональное назначение разрабатываемого веб-приложения состоит в сборе, анализе и обработке информации, поступающей от пассажиров и граждан, касающейся инцидентов с общественным транспортом. Оно направлено на устранение текущих недостатков, связанных с инцидентами в общественном транспорте.

На данный момент приложение будет обрабатывать обращения, связанные с инцидентами в городском общественном транспорте безрельсового типа, такими как автобусы, маршрутные такси и троллейбусы. В будущем планируется увеличить масштаб функционала на все виды общественного транспорта.

Данное приложение позволит быстро и систематизировано обрабатывать инциденты, что поможет ответственным службам оперативнее реагировать на проблемы и минимизировать их влияние на пассажиров. Кроме того, приложение предоставляет гражданам платформу для обратной связи, способствуя повышению прозрачности и доверия к транспортным службам.

В соответствии с поставленной целью, были определены следующие задачи:

- 1. Разработка информационного веб-приложения.
- 2. Создание базы данных.
- 3. Реализация функций авторизации и регистрации.
- 4. Внедрение функционала для создания и отображения новостной ленты.
  - 5. Реализация системы обратной связи.

В результате выполнения поставленных задач будет разработано полноценное информационное веб-приложение. Оно будет включать в себя надежную базу данных, обеспечивающую хранение, обработку и анализ информации, а также функции авторизации и регистрации пользователей. Дополнительно, приложение будет оснащено лентой новостей для своевременного информирования граждан и системой обратной связи, что позволит улучшить взаимодействие между пассажирами и другими участниками дорожного движения и транспортными службами.

#### 2.3 Требования пользователя к интерфейсу

Веб-приложение должно содержать следующие компоненты:

- форма регистрации;
- форма авторизации;
- форма для добавления обращения;
- раздел «Новостная лента», представляющий собой список обращений, успешно прошедших модерацию;
  - отображение рейтинга водителя;
  - личный кабинет пользователя;
  - административная панель.

На рисунках 2.1-2.4 представлены макеты интерфейса пользователя программного продукта.



Рисунок 2.1 – Макет формы регистрации



Рисунок 2.2 – Макет формы авторизации



Рисунок 2.3 — Раздел «Новостная лента»



Рисунок 2.4 – Раздел «Отправка обращения»

#### 2.4 Моделирование вариантов использования

Для разрабатываемого веб-приложения была реализована диаграмма прецедентов - модель, обеспечивающая наглядное представление вариантов его использования.

Она способствует физической разработке и детальному анализу взаимосвязей объектов. Для построения диаграммы вариантов использования применяется унифицированный язык визуального моделирования UML.

Диаграмма вариантов использования описывает функциональное назначение разрабатываемой системы, то есть показывает, что система будет делать в процессе своего функционирования. Она представляет собой исходное концептуальное представление системы в процессе проектирования и разработки. В проектируемой системе прецеденты представляют собой действия, предоставляемые системой актерам или сущностям, взаимодействующим с системой. Актером является сущность, взаимодействующая с системой извне, будь то человек или техническое устройство. Прецедент описывает набор действий, которые система выполняет для актера.

На основании анализа предметной области в разрабатываемом вебприложении сбора и анализа информации об инцидентах с общественным транспортом должны быть реализованы следующие прецеденты:

- 1. Регистрация аккаунта.
- 2. Авторизация пользователя.
- 3. Отправка обращений.
- 4. Публикация обращений.
- 5. Просмотр информации в личном кабинете.
- 6. Модерация обращений.

На рисунке 2.5 представлены функциональные требования к системе в виде диаграммы прецедентов нотации UML.



Рисунок 2.5 – Диаграмма прецедентов

#### 2.4.1 Вариант использования «Регистрация аккаунта»

Заинтересованные лица и их требования: Пользователи, желающие получить доступ к веб-приложению.

Предусловие: Пользователь открывает страницу регистрации.

Постусловие: Пользователь имеет аккаунт в системе.

Основной успешный сценарий:

- 1. Пользователь заходит на страницу регистрации.
- 2. Пользователь корректно заполняет все поля формы регистрации.
- 3. Пользователь нажимает на кнопку «Зарегистрироваться».
- 4. Система создает аккаунт пользователя.

#### 2.4.2 Вариант использования «Авторизация пользователя»

Заинтересованные лица и их требования: Пользователи, желающие получить доступ к веб-приложению.

Предусловие: Пользователь открывает страницу авторизации.

Постусловие: Пользователь попадает на главную страницу.

Основной успешный сценарий:

- 1. Пользователь заходит на страницу авторизации.
- 2. Пользователь корректно вводит логин и пароль от своего аккаунта в соответствующих полях формы.
  - 3. Пользователь нажимает на кнопку «Войти».
  - 4. Система загружает главную страницу.

#### 2.4.3 Вариант использования «Отправка обращений»

Заинтересованные лица и их требования: Пользователи, желающие оставить обращение о случившемся инциденте.

Предусловие: Пользователь открывает раздел «Оставить обращение».

Постусловие: Пользователь отправляет обращение в систему.

Основной успешный сценарий:

- 1. Пользователь заходит в раздел «Оставить обращение».
- 2. Пользователь заполняет все необходимые поля.
- 3. Пользователь нажимает на кнопку «Отправить».
- 4. Система создает новое обращение и отправляет его на проверку администратору.

#### 2.4.4 Вариант использования «Модерация обращений»

Заинтересованные лица и их требования: Пользователи, которые несут ответственность за корректность контента обращений.

Предусловие: Пользователь вошел в систему под своим аккаунтом, имеющим расширенные права доступа.

Постусловие: Пользователь допускает обращение для публикации.

Основной успешный сценарий:

- 1. Пользователь заходит в раздел «Новые обращения».
- 2. Пользователь проверяет правильность введённых данных, а также содержание обращения на корректность и достоверность.
  - 3. Пользователь нажимает на кнопку «Опубликовать».
- 4. Система показывает обращение на главной странице с целью ознакомления для других пользователей.

# 2.4.5 Вариант использования «Просмотр информации в личном кабинете»

Заинтересованные лица и их требования: Пользователи, желающие ознакомится или дополнить информацию о себе в личном кабинете.

Предусловие: Пользователь заходит в систему под своим аккаунтом.

Постусловие: Пользователь просматривает или дополняет информацию о себе.

Основной успешный сценарий:

- 1. Пользователь заходит в раздел «Личный кабинет».
- 2. Пользователь просматривает имеющуюся информацию и/или добавляет новую информацию.
- 3. Пользователь нажимает на кнопку «Сохранить» при добавлении новых данных.
- 4. Система выводит сообщение «Данные сохранены», при добавлении новых данных.

#### 2.5 Требования к оформлению документации

Разработка программной документации и программного изделия должна производиться согласно ГОСТ 19.102-77 и ГОСТ 34.601-90. Единая система программной документации.

#### 3 Технический проект

#### 3.1 Общие сведения о программной системе

Необходимо спроектировать и реализовать веб-приложение, которое будет предназначено для освещения инцидентов, связанных с общественным транспортом, таких как автобусы, троллейбусы и маршрутные такси. В вебприложение предоставит пользователям возможность просматривать посты и видеозаписи, содержащие информацию об инцидентах с общественным транспортом.

Для доступа к просмотру или оставлению обращений пользователи должны будут зарегистрироваться или войти в систему, что обеспечит контроль над контентом и позволит отслеживать активность каждого пользователя. Пользователи смогут оставлять свои обращения о случившихся инцидентах, заполняя форму обратной связи, где они будут описывать произошедшее событие. Зарегистрированные пользователи смогут просматривать все доступные посты и видеозаписи, связанные с инцидентами, которые будут отображаться в формате новостной ленты. Все оставленные обращения будут проходить обязательную модерацию, где тексты проверяются на отсутствие неподобающего контента. Только обращения, прошедшие модерацию, будут публиковаться в ленте.

Администраторы получат расширенные права доступа, позволяющие им добавлять новых водителей в базу данных, редактировать существующую информацию, а также управлять обращениями. Административная панель предоставит все необходимые инструменты для этих задач. В приложении будет предусмотрена функция отображения рейтинга водителей, что позволит пассажирам оценивать их работу и оставлять обратную связь. Пользователи также будут иметь доступ к личному кабинету, где они смогут управлять своей информацией, просматривать свои обращения и взаимодействовать с приложением. Это веб-приложение будет реализовано для освещения инцидентов, связанных с общественным городским транспортом, и будет служить

платформой для обмена информацией между пассажирами и ответственными органами.

Основная цель системы — предоставлять актуальные данные о происшествиях, чтобы ответственные службы могли оперативно реагировать на возникающие проблемы и улучшать качество обслуживания общественного транспорта.

### 3.2 Проектирование архитектуры программной системы

#### 3.2.1 Выбор архитектурного стиля и паттернов проектирования

Архитектурный стиль и паттерны проектирования играют важную роль в создании высокопроизводительных, масштабируемых и безопасных систем, особенно когда речь идет о разработке REST API. REST API, или Representational State Transfer Application Programming Interface, представляет собой архитектурный стиль, который опирается на принципы унификации интерфейсов и передачи состояния между клиентом и сервером. При разработке REST API чрезвычайно важно правильно выбрать архитектурный стиль и использовать соответствующие паттерны проектирования, чтобы обеспечить эффективную работу системы и удовлетворить потребности пользователей.

Один из ключевых паттернов проектирования, который можно использовать при разработке REST API, - это паттерн Facade. Паттерн Facade позволяет создать унифицированный интерфейс для взаимодействия с комплексной системой, скрывая детали реализации и предоставляя простой и понятный интерфейс для внешних клиентов. Применение этого паттерна позволяет сделать REST API более модульным и гибким, упрощая его использование и поддержку.

Еще один важный паттерн - это Адаптер. В контексте REST API, Адаптер позволяет преобразовывать данные из одного формата в другой, обеспечивая совместимость между различными системами и источниками данных. Например, если данные получаются в формате, который необходимо преоб-

разовать для работы с REST API, Адаптер может быть использован для выполнения этой задачи, обеспечивая единый формат данных для всей системы.

Клиент-серверная архитектура также играет важную роль в разработке REST API. Этот архитектурный стиль разделяет систему на две основные части: клиентскую сторону, которая отправляет запросы на сервер, и серверную сторону, которая обрабатывает эти запросы и возвращает результаты. Это позволяет создать масштабируемую и гибкую систему, которая может обрабатывать большие объемы запросов от множества клиентов одновременно.

Для обеспечения безопасности данных в REST API широко используются протокол HTTPS и технология ODBC (Open Database Connectivity). HTTPS обеспечивает защищенное соединение между клиентом и сервером, шифруя данные и предотвращая их несанкционированный доступ или изменение. ODBC, с другой стороны, предоставляет универсальный интерфейс для доступа к различным базам данных, позволяя безопасно и эффективно работать с данными в REST API.

Архитектура всей системы представлена на рисунке 3.1.



Рисунок 3.1 – Архитектура программной системы

### 3.2.2 Описание REST API микросервисов

Таблица 3.1 – Описание методов для работы с водителями

| НТТР-метод       | Описание        | Входные пара-    | Выходные пара- |
|------------------|-----------------|------------------|----------------|
|                  |                 | метры            | метры          |
| POST /api/Driver | Добавление дан- | Data: object     | Driver: object |
| Controller       | ных о водителе  |                  |                |
| GET /api/Driver  | Получение дан-  | UserId: integer  | Driver: object |
| Controller/:id   | ных о водителе  |                  |                |
| PUT /api/Driver  | Обновление дан- | UserId: integer, | Driver: object |
| Controller/:id   | ных водителя    | DriverUp: object |                |
| DELETE           | Удаление дан-   | UserId: integer  | -              |
| /api/Driver      | ных о водителе  |                  |                |
| Controller/:id   |                 |                  |                |

Таблица 3.2 – Описание методов для работы с пассажирами

| НТТР-метод      | Описание        | Входные пара-    | Выходные пара-    |
|-----------------|-----------------|------------------|-------------------|
|                 |                 | метры            | метры             |
| GET             | Получение дан-  | UserId: integer  | Passenger: object |
| /api/Passenger  | ных о пассажире |                  |                   |
| Controller/:id  |                 |                  |                   |
| PUT             | Обновление дан- | UserId: integer, | Passenger: object |
| /api/Passenger  | ных пассажира   | PassengerUp:     |                   |
| Controller/:idd |                 | object           |                   |
| DELETE          | Удаление дан-   | UserId: integer  | -                 |
| /api/Passenger  | ных о пассажире |                  |                   |
| Controller/:id  |                 |                  |                   |

Таблица 3.3 – Описание методов для работы с сотрудниками

| НТТР-метод                 | Описание                             | Входные пара-    | Выходные пара-   |
|----------------------------|--------------------------------------|------------------|------------------|
|                            |                                      | метры            | метры            |
| POST /api/                 | Добавление но-                       | Data: object     | Employee: object |
| Employee                   | вого сотрудника                      |                  |                  |
| Controller                 |                                      |                  |                  |
| GET /api/                  | /арі/ Получение дан- UserId: integer |                  | Employee: object |
| Employee                   | ных о сотрудни-                      |                  |                  |
| Controller/:id             | ке                                   |                  |                  |
| PUT /api/                  | Обновление дан-                      | UserId: integer, | Employee: object |
| Employee                   | ных сотрудника                       | EmployeeUp:      |                  |
| Controller/:id             |                                      | object           |                  |
| DELETE /api/ Удаление дан- |                                      | UserId: integer  | -                |
| Employee                   | ных о сотрудни-                      |                  |                  |
| Controller/:id             | ке                                   |                  |                  |

Таблица 3.4 – Описание методов для работы с новостной лентой

| НТТР-метод                | Описание                 | Входные пара-     | Выходные пара-         |
|---------------------------|--------------------------|-------------------|------------------------|
|                           |                          | метры             | метры                  |
| GET /api/News             | Получение всех           | -                 | Ratings:               |
| Generator записей из таб- |                          |                   | List <object></object> |
| Controller                | лицы                     |                   |                        |
| GET /api/                 | Получение кон-           | RatingId: integer | Rating: object         |
| Employee                  | кретной записи           |                   |                        |
| GET /api/News             | GET /api/News из таблицы |                   |                        |
| Generator                 |                          |                   |                        |
| Controller/:id            |                          |                   |                        |

Таблица 3.4 – Продолжение таблицы 3.4

| НТТР-метод             | Описание         | Входные пара-      | Выходные пара-         |  |
|------------------------|------------------|--------------------|------------------------|--|
|                        |                  | метры              | метры                  |  |
| GET /api/News          | Получение запи-  | PublishedEntry:    | Ratings:               |  |
| Generator              | сей, которые еще | bool               | List <object></object> |  |
| Controller             | не были опубли-  |                    |                        |  |
| /noPublished           | кованы           |                    |                        |  |
| POST /api/News         | Добавление       | Data: object       | Rating: object         |  |
| Generator              | новой записи     |                    |                        |  |
| Controllerd            |                  |                    |                        |  |
| PUT /api/News          | Обновление       | RatingId: integer, | Rating: object         |  |
| Generator              | записи в таблице | RatingUp: object   |                        |  |
| Controller/:id         |                  |                    |                        |  |
| DELETE Удаление записи |                  | RatingId: integer  | -                      |  |
| /api/News из таблицы   |                  |                    |                        |  |
| Generator              |                  |                    |                        |  |
| Controller/:id         |                  |                    |                        |  |

Таблица 3.5 – Описание методов для работы авторизации и регистрации

| НТТР-метод         | Описание        | Входные пара-    | Выходные пара-    |
|--------------------|-----------------|------------------|-------------------|
|                    |                 | метры            | метры             |
| POST /api/         | Регистрация но- | Data: object     | Passenger: object |
| Autorisation       | вого пассажира  |                  |                   |
| Controller/        |                 |                  |                   |
| registration       |                 |                  |                   |
| POST /api/         | Авторизация     | Login: string,   | UserId: integer,  |
| Autorisation       | пользователя    | Password: string | RoleInTheSystem:  |
| Controller/: login |                 |                  | string            |

Таблица 3.6 – Описание методов для работы с маршрутами

| НТТР-метод     | Описание        | Входные пара-     | Выходные пара-         |
|----------------|-----------------|-------------------|------------------------|
|                |                 | метры             | метры                  |
| POST /api/     | Добавление но-  | Data: object      | UrbanRoute:            |
| UrbanRoute     | вого маршрута   |                   | object                 |
| Controller     |                 |                   |                        |
| GET /api/      | Получение нуж-  | RouteId: integer  | UrbanRoute:            |
| UrbanRoute     | ного маршрута   |                   | object                 |
| Controller/:id |                 |                   |                        |
| GET /api/      | Получение всех  | -                 | UrbanRoutes:           |
| UrbanRoute     | маршрутов       |                   | List <object></object> |
| Controller     |                 |                   |                        |
| PUT /api/      | Обновление дан- | RouteId: integer, | UrbanRoute:            |
| UrbanRoute     | ных о маршруте  | UrbanRouteUp:     | object                 |
| Controller/:id |                 | object            |                        |
| DELETE /api/   | Удаление марш-  | RouteId: integer  | -                      |
| UrbanRoute     | рута            |                   |                        |
| Controller/:id |                 |                   |                        |

#### 3.2.3 Структура базы данных

В качестве системы управления базами данных была выбрана реляционная СУБД Microsoft SQL Server. Она предназначена для хранения и управления данными, а также для выполнения различных задач по их обработке, анализу и управлению. SQL Server используется в корпоративных приложениях, веб-приложениях и других системах, где требуется надежное и масштабируемое хранилище данных.

#### 3.2.3.1 Схема данных

На основании анализа предметной области и технического задания была разработана база данных, предназначенная для хранения и обработки хранящейся информации. Схема данных представлена на рисунке 3.2.



Рисунок 3.2 – Схема данных

Все сущности базы данных приведены к третьей нормальной форме, что означает, что каждая таблица удовлетворяет требованиям нормализации.

Приведение базы данных к третьей нормальной форме помогает повысить эффективность запросов, уменьшить риск возникновения аномалий при обновлении данных и повысить отказоустойчивость.

#### 3.2.3.2 Описание схемы данных

Ниже приведено полное описание структуры базы данных, включая все таблицы и их атрибуты.

Таблица 3.7 – Описание таблицы «Users»

| Key Type | Optionality | Column Name | Data Type | Size |
|----------|-------------|-------------|-----------|------|
| pk       | *           | User ID     | INTEGER   |      |
|          | *           | Login       | NVARCHAR  | 100  |
|          | *           | Password    | NVARCHAR  | 100  |
|          | *           | Role in the | NVARCHAR  | 15   |
|          |             | system      |           |      |
|          | 0           | Confirmed   | BIT       |      |
|          |             | entry       |           |      |
|          | 0           | Active user | BIT       |      |
|          |             | account     |           |      |

Таблица 3.8 – Описание таблицы «Drivers»

| Key Type | Optionality | Column Name      | Data Type | Size |
|----------|-------------|------------------|-----------|------|
| pk       | *           | Driver ID        | INTEGER   |      |
|          | *           | Full name        | NVARCHAR  | 100  |
|          | *           | Photo            | NVARCHAR  | MAX  |
|          | *           | License series   | NVARCHAR  | 5    |
|          | *           | License          | NVARCHAR  | 6    |
|          |             | number           |           |      |
|          | *           | Date of issue    | DATE      |      |
|          |             | of the first     |           |      |
|          |             | driver's license |           |      |
|          | *           | Phone number     | NVARCHAR  | 20   |
|          | *           | Email address    | NVARCHAR  | 150  |

Таблица 3.9 – Описание таблицы «Categories of driver's license»

| Key Type | Optionality | Column Name   | Data Type | Size |
|----------|-------------|---------------|-----------|------|
| pk       | *           | Entity ID     | INTEGER   |      |
| fk       | *           | Driver ID     | INTEGER   |      |
|          | *           | Category      | NVARCHAR  | 50   |
|          | *           | Date of issue | DATE      |      |
|          | *           | End date      | DATE      |      |

Таблица 3.10 – Описание таблицы «Driver status»

| Key Type | Optionality | Column Name | Data Type | Size |
|----------|-------------|-------------|-----------|------|
| pk       | *           | Status ID   | INTEGER   |      |
| fk       | *           | Driver ID   | INTEGER   |      |
|          | *           | Status      | NVARCHAR  | 50   |
|          | *           | Start date  | DATE      |      |
|          | 0           | End date    | DATE      |      |
|          | 0           | Note        | NVARCHAR  | 500  |

Таблица 3.11 – Описание таблицы «Staff»

| Key Type | Optionality | Column Name   | Data Type | Size |
|----------|-------------|---------------|-----------|------|
| pk       | *           | Employee ID   | INTEGER   |      |
|          | *           | Full name     | NVARCHAR  | 100  |
|          | *           | Employee      | NVARCHAR  | 75   |
|          |             | position      |           |      |
|          | *           | Place of work | NVARCHAR  | 150  |
|          | *           | Phone number  | NVARCHAR  | 20   |
|          | *           | Email address | NVARCHAR  | 150  |
| fk       | *           | User ID       | INTEGER   |      |

Таблица 3.12 – Описание таблицы «Employee status»

| Key Type | Optionality | Column Name | Data Type | Size |
|----------|-------------|-------------|-----------|------|
| pk       | *           | Status ID   | INTEGER   |      |
| fk       | *           | Employee ID | INTEGER   |      |
|          | *           | Employee    | NVARCHAR  | 75   |
|          |             | position    |           |      |
|          | *           | Status      | NVARCHAR  | 50   |
|          | *           | Start date  | DATE      |      |
|          | 0           | End date    | DATE      |      |

Таблица 3.13 – Описание таблицы «Passengers»

| Key Type | Optionality | Column Name   | Data Type | Size |
|----------|-------------|---------------|-----------|------|
| pk       | *           | Passenger ID  | INTEGER   |      |
|          | *           | Full name     | NVARCHAR  | 100  |
|          | *           | Date of birth | DATE      |      |
|          | *           | Phone number  | NVARCHAR  | 20   |
|          | *           | Email address | NVARCHAR  | 150  |
| fk       | *           | User ID       | INTEGER   |      |

Таблица 3.14 – Описание таблицы «Vehicles»

| Key Type | Optionality | Column Name  | Data Type | Size |
|----------|-------------|--------------|-----------|------|
| pk       | *           | Vehicles ID  | INTEGER   |      |
|          | *           | Brand        | NVARCHAR  | 100  |
|          | *           | Model        | NVARCHAR  | 100  |
|          | *           | Year of      | DATE      |      |
|          |             | manufacture  |           |      |
|          | *           | State number | NVARCHAR  | 15   |

# Продолжение таблицы 3.14

| Key Type | Optionality | Column Name    | Data Type | Size |
|----------|-------------|----------------|-----------|------|
|          | *           | On-board       | NVARCHAR  | 5    |
|          |             | number         |           |      |
|          | 0           | Cost           | MONEY     |      |
|          | *           | Engine power   | INTEGER   |      |
|          | *           | Purpose of the | NVARCHAR  | 100  |
|          |             | vehicle        |           |      |
|          | *           | Vehicle class  | NVARCHAR  | 100  |
|          | *           | Passenger      | INTEGER   |      |
|          |             | capacity       |           |      |
|          | *           | Photo          | NVARCHAR  | MAX  |

Таблица 3.15 — Описание таблицы «Urban routes»

| Key Type | Optionality | Column Name    | Data Type | Size |
|----------|-------------|----------------|-----------|------|
| pk       | *           | Route ID       | INTEGER   |      |
|          | *           | Route number   | INTEGER   |      |
|          | 0           | Route index    | NVARCHAR  | 1    |
|          | *           | Route name     | NVARCHAR  | 100  |
|          | *           | Time to get on | TIME      |      |
|          |             | the line       |           |      |
|          | *           | Time of        | TIME      |      |
|          |             | departure from |           |      |
|          |             | the line       |           |      |
|          | 0           | Movement       | INTEGER   |      |
|          |             | interval       |           |      |

Таблица 3.16 – Описание таблицы «Stops»

| Key Type | Optionality | Column Name  | Data Type | Size |
|----------|-------------|--------------|-----------|------|
| pk       | *           | Stops ID     | INTEGER   |      |
|          | *           | Stop name    | NVARCHAR  | 100  |
|          | *           | Latitude     | DECIMAL   | 9,6  |
|          | *           | Longitude    | DECIMAL   | 9,6  |
|          | 0           | Stop address | NVARCHAR  | 150  |
|          | 0           | Note         | NVARCHAR  | 500  |

Таблица 3.17 – Описание таблицы «Route stops»

| Key Type | Optionality | Column Name    | Data Type | Size |
|----------|-------------|----------------|-----------|------|
| pk       | *           | Route stops ID | INTEGER   |      |
| fk       | *           | Route ID       | INTEGER   |      |
| fk       | *           | Stop ID        | INTEGER   |      |
|          | *           | Stop Order     | INTEGER   | 9,6  |
|          | 0           | Start point    | BIT       |      |
|          | 0           | End point      | BIT       |      |

Таблица 3.18 – Описание таблицы «Flights»

| Key Type | Optionality | Column Name     | Data Type | Size |
|----------|-------------|-----------------|-----------|------|
| pk       | *           | Flights ID      | INTEGER   |      |
| fk       | *           | Driver ID       | INTEGER   |      |
| fk       | *           | Route ID        | INTEGER   |      |
| fk       | *           | Vehicle ID      | INTEGER   |      |
|          | 0           | Actual time to  | DATETIME  |      |
|          |             | get on the line |           |      |

# Продолжение таблицы 3.18

| Key Type | Optionality | Column Name    | Data Type | Size |
|----------|-------------|----------------|-----------|------|
|          | 0           | Actual time of | DATETIME  |      |
|          |             | departure from |           |      |
|          |             | the line       |           |      |

# Таблица 3.19 — Описание таблицы «Flights status»

| Key Type | Optionality | Column Name    | Data Type | Size |
|----------|-------------|----------------|-----------|------|
| pk       | *           | Status ID      | INTEGER   |      |
| fk       | *           | Flight ID      | INTEGER   |      |
|          | *           | Status         | NVARCHAR  | 50   |
|          | 0           | Start datetime | DATETIME  |      |
|          | 0           | End datetime   | DATETIME  |      |
|          | 0           | Note           | NVARCHAR  | 500  |

# Таблица 3.20 – Описание таблицы «Ratings»

| Key Type | Optionality | Column Name  | Data Type | Size |
|----------|-------------|--------------|-----------|------|
| pk       | *           | Rating ID    | INTEGER   |      |
| fk       | *           | Passenger ID | INTEGER   |      |
| fk       | *           | Driver ID    | INTEGER   |      |
| fk       | *           | Responsible  | INTEGER   |      |
|          |             | employee ID  |           |      |
|          | *           | Passenger    | NUMERIC   | 10,2 |
|          |             | rating       |           |      |
|          | *           | Passenger    | NVARCHAR  | 100  |
|          |             | feedback     |           |      |
|          | 0           | Comment on   | NVARCHAR  | 250  |
|          |             | the rating   |           |      |

Продолжение таблицы 3.20

| Key Type | Optionality | Column Name | Data Type | Size |
|----------|-------------|-------------|-----------|------|
|          | 0           | Photo       | NVARCHAR  | MAX  |
|          |             | materials   |           |      |
|          | 0           | Video       | NVARCHAR  | MAX  |
|          |             | materials   |           |      |
|          | *           | Date of the | DATE      |      |
|          |             | incident    |           |      |
|          | *           | Date of     | DATE      |      |
|          |             | dispatch    |           |      |
|          | 0           | Published   | BIT       |      |
|          |             | entry       |           |      |
|          | 0           | Date of     | DATE      |      |
|          |             | publication |           |      |

#### 3.2.4 Описание микросервисов

Микросервисы играют ключевую роль в разрабатываемом вебприложении, поскольку они обеспечивают модульную архитектуру, гибкость и масштабируемость системы. Каждый микросервис представляет собой отдельную функциональную единицу, специализирующуюся на определенной задаче, что позволяет легко разрабатывать, развертывать и масштабировать приложение.

### 1. Микросервис обработки обращений.

Назначение: Обработка обращений от граждан, связанных с инцидентами на общественном транспорте.

Функции: Прием обращений, проверка корректности данных, направление обращений на модерацию администратору.

Преимущества: Обеспечивает структурированное и оперативное управление обращениями, что способствует быстрому реагированию на проблемы и улучшению качества обслуживания пассажиров.

2. Микросервис аутентификации и авторизации пользователей.

Назначение: Обеспечение безопасного доступа пользователей к вебприложению.

Функции: Управление регистрацией новых пользователей, проверка учетных данных при входе, назначение ролей и прав доступа.

Преимущества: Гарантирует, что только авторизованные пользователи могут оставлять обращения и получать доступ к персонализированным функциям приложения, обеспечивая безопасность данных и предотвращение несанкционированного доступа.

3. Микросервис работы с базой данных через панель администратора (управление базой данных).

Назначение: Управление базой данных администратором системы.

Функции: Добавление новых водителей в базу данных, редактирование и удаление информации, мониторинг активности пользователей, управление обращениями и отчетами.

Преимущества: Обеспечивает администратору удобные инструменты для управления данными, что повышает эффективность администрирования и поддержания актуальности данных.

4. Микросервис регистрации.

Назначение: Обеспечение удобного процесса регистрации новых пользователей в системе.

Функции: Обработка регистрационных данных, проверка уникальности пользователей, отправка подтверждений по электронной почте.

Преимущества: Облегчает процесс регистрации, повышая удобство для пользователей и увеличивая количество участников, активно использующих приложение.

Эти микросервисы интегрированы для создания эффективной и надежной системы управления инцидентами в общественном транспорте. Они обеспечивают структурированный подход к обработке обращений, защиту данных, гибкость управления и удобство для конечных пользователей, что

в конечном итоге способствует улучшению качества обслуживания и повышению доверия к транспортным службам.

#### 3.2.5 Архитектура сервисов

#### 3.2.5.1 Класс «CategoriesOfDriverSLicense»

«CategoriesOfDriverSLicense» - класс, используется для получения подробной информации о лицензиях водителя.

Таблица 3.21 – Свойства класса "CategoriesOfDriverSLicense"

| Свойство    | Тип      | Обязательное | Описание       |
|-------------|----------|--------------|----------------|
| EntityId    | int      | true         | Уникальный     |
|             |          |              | идентификатор  |
| DriverId    | int      | true         | Идентификатор  |
|             |          |              | водителя       |
| Category    | string   | true         | Категория ВУ   |
| DateOfIssue | DateTime | true         | Дата получения |
|             |          |              | категории      |
| EndDate     | DateTime | true         | Дата оконча-   |
|             |          |              | ния действия   |
|             |          |              | категории      |

#### 3.2.5.2 Класс «Driver»

«Driver» - класс, содержащий в себе данные о водителе.

Таблица 3.22 – Свойства класса "Driver"

| Свойство | Тип    | Обязательное | Описание      |
|----------|--------|--------------|---------------|
| DriverId | int    | true         | Идентификатор |
|          |        |              | водителя      |
| FullName | string | true         | ФИО водителя  |

Таблица 3.22 – Продолжение таблицы 3.22

| Свойство           | Тип      | Обязательное | Описание         |
|--------------------|----------|--------------|------------------|
| Photo              | string   | true         | Путь к файлу с   |
|                    |          |              | фото водителя    |
| LicenseSeries      | string   | true         | Серия ВУ         |
| LicenseNumber      | string   | true         | Номер ВУ         |
| DateOfIsueOfThe    | DateTime | true         | Дата выдачи пер- |
| FirstDrivrSLicense |          |              | вого ВУ          |
| PhoneNumber        | string   | true         | Номер телефона   |
| EmailAddress       | string   | true         | Электронная      |
|                    |          |              | почта            |
| UserId             | int      | true         | Идентификатор    |
|                    |          |              | пользователя     |

### 3.2.5.3 Класс «DriverStatus»

«DriverStatus» - класс, который используется для получения сведений о статусе водителя (может быть уволен, либо находится на больничном).

Таблица 3.23 – Свойства класса "DriverStatus"

| Свойство  | Тип      | Обязательное | Описание       |
|-----------|----------|--------------|----------------|
| StatusId  | int      | true         | Уникальный     |
|           |          |              | идентификатор  |
| DriverId  | int      | true         | Идентификатор  |
|           |          |              | водителя       |
| Status    | string   | true         | Его статус     |
| StartDate | DateTime | true         | Начальная дата |
| EndDate   | DateTime | false        | Конечная дата  |
| Note      | string   | false        | Примечание     |

### 3.2.5.4 Класс «EmployeeStatus»

«EmployeeStatus» - подобный классу «DriverStatus», содержит информацию о статусе сотрудников.

Таблица 3.24 – Свойства класса "EmployeeStatus"

| Свойство   | Тип      | Обязательное | Описание       |
|------------|----------|--------------|----------------|
| StatusId   | int      | true         | Уникальный     |
|            |          |              | идентификатор  |
| EmployeeId | int      | true         | Идентификатор  |
|            |          |              | сотрудника     |
| Status     | string   | true         | Его статус     |
| StartDate  | DateTime | true         | Начальная дата |
| EndDate    | DateTime | false        | Конечная дата  |
| Note       | string   | false        | Примечание     |

#### 3.2.5.5 Класс «Flight»

«Flight» - содержит информацию о рейсах совершаемых водителями по заданным маршрутам.

Таблица 3.25 – Свойства класса "Flight"

| Свойство  | Тип | Обязательное | Описание      |
|-----------|-----|--------------|---------------|
| FlightId  | int | true         | Уникальный    |
|           |     |              | идентификатор |
| DriverId  | int | true         | Идентификатор |
|           |     |              | водителя      |
| RouteId   | int | true         | Идентификатор |
|           |     |              | маршрута      |
| VehicleId | int | true         | Идентификатор |
|           |     |              | автобуса      |

Таблица 3.25 – Продолжение таблицы 3.25

| Свойство      | Тип      | Обязательное | Описание        |
|---------------|----------|--------------|-----------------|
| ActualTimeTo  | DateTime | false        | Время выхода на |
| GetOnTheLine  |          |              | линию           |
| ActualTimeOf  | DateTime | false        | Время схода с   |
| DepartureFrom |          |              | линии           |
| TheLine       |          |              |                 |

### 3.2.5.6 Класс «FlightsStatus»

«FlightsStatus» - используется для получения сведений о статусе рейса.

Таблица 3.26 – Свойства класса "FlightsStatus"

| Свойство      | Тип      | Обязательное | Описание         |
|---------------|----------|--------------|------------------|
| StatusId      | int      | true         | Уникальный       |
|               |          |              | идентификатор    |
| FlightId      | int      | true         | Идентификатор    |
|               |          |              | рейса            |
| Status        | string   | true         | Статус рейса     |
| StartDatetime | DateTime | false        | Начальная дата и |
|               |          |              | время            |
| EndDatetime   | DateTime | false        | Конечная дата и  |
|               |          |              | время            |
| Note          | string   | false        | Примечание       |

## 3.2.5.7 Класс «Passenger»

«Passenger» - применяется для работы с данными пассажиров.

Таблица 3.27 — Свойства класса "Passenger"

| Свойство     | Тип      | Обязательное | Описание       |
|--------------|----------|--------------|----------------|
| PassengerId  | int      | true         | Уникальный     |
|              |          |              | идентификатор  |
| FullName     | string   | true         | ФИО пассажира  |
| DateOfBirth  | DateTime | true         | Дата рождения  |
| PhoneNumber  | string   | true         | Номер телефона |
| EmailAddress | string   | true         | Электронная    |
|              |          |              | почта          |
| UserId       | int      | true         | Идентификатор  |
|              |          |              | пользователя   |

### 3.2.5.8 Класс «Rating»

«Rating» - используется для сбора информации и формирования рейтинга водителей на основе отзывов пассажиров.

Таблица 3.28 — Свойства класса "Rating"

| Свойство         | Тип     | Обязательное | Описание         |
|------------------|---------|--------------|------------------|
| RatingId         | int     | true         | Уникальный       |
|                  |         |              | идентификатор    |
| PassengerId      | int     | true         | Идентификатор    |
|                  |         |              | пассажира        |
| DriverId         | int     | true         | Идентификатор    |
|                  |         |              | водителя         |
| Responsible      | int     | true         | Идентификатор    |
| Employee         |         |              | ответственного   |
|                  |         |              | сотрудника       |
| Passenger Rating | decimal | true         | Оценка от пасса- |
|                  |         |              | жира             |

Таблица 3.28 – Продолжение таблицы 3.28

| Свойство          | Тип      | Обязательное | Описание        |
|-------------------|----------|--------------|-----------------|
| Passenger         | string   | true         | Обращение пас-  |
| Feedback          |          |              | сажира          |
| CommentOn         | string   | false        | Дополнительные  |
| TheRating         |          |              | сведения        |
| PhotoMaterials    | string   | false        | Путь к файлу с  |
|                   |          |              | фотоматериалом  |
| VideoMaterials    | string   | false        | Путь к файлу с  |
|                   |          |              | видеоматериа-   |
|                   |          |              | лом             |
| DateOf            | DateTime | true         | Дата произошед- |
| TheIncident       |          |              | шего инцидента  |
| DateOfDispatcht   | DateTime | true         | Дата отправки   |
|                   |          |              | обращения       |
| PublishedEntry    | bool     | false        | Было ли опубли- |
|                   |          |              | ковано обраще-  |
|                   |          |              | ние             |
| DateOfPublication | DateTime | false        | Дата публикации |

# 3.2.5.9 Класс «RouteStop»

«RouteStop» - содержит информацию об остановках на конкретном маршруте.

Таблица 3.29 — Свойства класса "RouteStop"

| Свойство    | Тип | Обязательное | Описание      |
|-------------|-----|--------------|---------------|
| RouteStopId | int | true         | Уникальный    |
|             |     |              | идентификатор |
| RouteId     | int | true         | Идентификатор |
|             |     |              | маршрута      |

Таблица 3.29 – Продолжение таблицы 3.29

| Свойство   | Тип  | Обязательное | Описание        |
|------------|------|--------------|-----------------|
| StopId     | int  | true         | Идентификатор   |
|            |      |              | остановки       |
| StopOrder  | int  | true         | Порядок следо-  |
|            |      |              | вания остановок |
| StartPoint | bool | false        | Является ли     |
|            |      |              | остановка на-   |
|            |      |              | чальной точкой  |
|            |      |              | маршрута        |
| EndPoint   | bool | false        | Является ли     |
|            |      |              | остановка ко-   |
|            |      |              | нечной точкой   |
|            |      |              | маршрута        |

### 3.2.5.10 Класс «Staff»

«Staff» - класс, содержащий в себе данные о сотруднике.

Таблица 3.30 – Свойства класса "Staff"

| Свойство         | Тип    | Обязательное | Описание       |
|------------------|--------|--------------|----------------|
| EmployeeId       | int    | true         | Уникальный     |
|                  |        |              | идентификатор  |
| FullName         | string | true         | ФИО сотрудника |
| EmployeePosition | string | true         | Занимаемая     |
|                  |        |              | должность      |
| PlaceOfWork      | string | true         | Место работы   |
| PhoneNumber      | string | true         | Номер телефона |
| EmailAddress     | string | true         | Электронная    |
|                  |        |              | почта          |

Таблица 3.30 – Продолжение таблицы 3.30

| Свойство | Тип | Обязательное | Описание      |
|----------|-----|--------------|---------------|
| UserId   | int | true         | Идентификатор |
|          |     |              | пользователя  |

### 3.2.5.11 Класс «Stop»

«Stop» - используется для получения и добавления информации об остановках в городе.

Таблица 3.31 – Свойства класса "Stop"

| Свойство    | Тип     | Обязательное | Описание        |
|-------------|---------|--------------|-----------------|
| StopId      | int     | true         | Уникальный      |
|             |         |              | идентификатор   |
| StopName    | string  | true         | Название оста-  |
|             |         |              | новки           |
| Latitude    | decimal | true         | Широта          |
| Longitude   | decimal | true         | Долгота         |
| StopAddress | string  | false        | Адрес остановки |
| Note        | string  | false        | Примечание      |

#### 3.2.5.12 Класс «UrbanRoute»

«UrbanRoute» - содержит данные о городских маршрутах.

Таблица 3.32 – Свойства класса "UrbanRoute"

| Свойство    | Тип | Обязательное | Описание       |
|-------------|-----|--------------|----------------|
| RouteId     | int | true         | Уникальный     |
|             |     |              | идентификатор  |
| RouteNumber | int | true         | Номер маршрута |

Таблица 3.32 – Продолжение таблицы 3.32

| Свойство         | Тип      | Обязательное | Описание        |
|------------------|----------|--------------|-----------------|
| RouteIndex       | string   | false        | Индекс маршру-  |
|                  |          |              | та              |
| RouteName        | string   | true         | Наименование    |
|                  |          |              | маршрута        |
| TimeToGet        | TimeSpan | true         | Время начала    |
| OnTheLine        |          |              | обслуживания    |
|                  |          |              | маршрута        |
| TimeOfDeparture  | TimeSpan | true         | Время оконча-   |
| FromTheLine      |          |              | ния обслужива-  |
|                  |          |              | ния маршрута    |
| MovementInterval | int      | true         | Интервал движе- |
|                  |          |              | ния ТС          |

### 3.2.5.13 Класс «User»

«User» - класс, содержащий в себе данные пользователей вебприложения.

Таблица 3.33 — Свойства класса "User"

| Свойство        | Тип    | Обязательное | Описание        |
|-----------------|--------|--------------|-----------------|
| UserId          | int    | true         | Уникальный      |
|                 |        |              | идентификатор   |
| Login           | string | true         | Логин пользова- |
|                 |        |              | теля            |
| Password        | string | true         | Пароль пользо-  |
|                 |        |              | вателя          |
| RoleInTheSystem | string | true         | Роль в системе  |

Таблица 3.33 – Продолжение таблицы 3.33

| Свойство       | Тип  | Обязательное | Описание         |
|----------------|------|--------------|------------------|
| ConfirmedEntry | bool | false        | Подтвержден ли   |
|                |      |              | аккаунт пользо-  |
|                |      |              | вателя           |
| ActiveUser     | bool | false        | Активен ли акка- |
| Account        |      |              | унт пользователя |

## 3.2.5.14 Класс «Vehicle»

«Vehicle» - содержит данные о маршрутном транспортном средстве.

Таблица 3.34 – Свойства класса "Vehicle"

| Свойство      | Тип      | Обязательное | Описание        |
|---------------|----------|--------------|-----------------|
| VehicleId     | int      | true         | Уникальный      |
|               |          |              | идентификатор   |
| Brand         | string   | true         | Марка ТС        |
| Model         | string   | true         | Модель ТС       |
| YearOf        | DateTime | true         | Год производ-   |
| Manufacture   |          |              | ства            |
| StateNumber   | string   | true         | Государственный |
|               |          |              | регистрацион-   |
|               |          |              | ный знак        |
| OnBoardNumber | string   | true         | Бортовой номер  |
|               |          |              | TC              |
| Cost          | decimal  | false        | Стоимость ТС    |
| EnginePower   | int      | true         | Мощность        |
|               |          |              | двигателя в     |
|               |          |              | лошадиных       |
|               |          |              | силах           |

Таблица 3.34 – Продолжение таблицы 3.34

| Свойство          | Тип    | Обязательное | Описание        |
|-------------------|--------|--------------|-----------------|
| PurposeOfThe      | string | true         | Цель назначения |
| Vehicle           |        |              | TC              |
| VehicleClass      | string | true         | Класс ТС        |
| PassengerCapacity | int    | true         | Вместимость     |
|                   |        |              | пассажиров      |
| Photo             | string | true         | Путь к файлу с  |
|                   |        |              | фото ТС         |

## 3.2.5.15 Класс «EmployeeId»

«EmployeeId» - содержит в себе данные пользователя системы и информацию о сотруднике.

Таблица 3.35 – Свойства класса "EmployeeId"

| Свойство     | Тип    | Обязательное | Описание        |
|--------------|--------|--------------|-----------------|
| EmployeeId   | int    | true         | Уникальный      |
|              |        |              | идентификатор   |
| FullName     | string | true         | ФИО сотрудника  |
| Employee     | string | true         | Занимаемая      |
| Position     |        |              | должность       |
| PlaceOfWork  | string | true         | Место работы    |
| PhoneNumber  | string | true         | Номер телефона  |
| EmailAddress | string | true         | Электронная     |
|              |        |              | почта           |
| Login        | string | true         | Логин пользова- |
|              |        |              | теля            |
| Password     | string | true         | Пароль пользо-  |
|              |        |              | вателя          |

Таблица 3.35 – Продолжение таблицы 3.35

| Свойство       | Тип    | Обязательное | Описание         |
|----------------|--------|--------------|------------------|
| RoleIn         | string | true         | Роль в системе   |
| TheSystem      |        |              |                  |
| ConfirmedEntry | bool   | false        | Подтвержден ли   |
|                |        |              | аккаунт пользо-  |
|                |        |              | вателя           |
| ActiveUser     | bool   | false        | Активен ли акка- |
| Account        |        |              | унт пользователя |

### 3.2.5.16 Класс «DriverDto»

«DriverDto» - содержит в себе данные пользователя системы и информацию о водителе.

Таблица 3.36 – Свойства класса "DriverDto"

| Свойство     | Тип    | Обязательное | Описание        |
|--------------|--------|--------------|-----------------|
| DriverId     | int    | true         | Идентификатор   |
|              |        |              | водителя        |
| FullName     | string | true         | ФИО водителя    |
| Photo        | string | true         | Путь к файлу с  |
|              |        |              | фото водителя   |
| PhoneNumber  | string | true         | Номер телефона  |
| EmailAddress | string | true         | Электронная     |
|              |        |              | почта           |
| Login        | string | true         | Логин пользова- |
|              |        |              | теля            |
| Password     | string | true         | Пароль пользо-  |
|              |        |              | вателя          |
| RoleIn       | string | true         | Роль в системе  |
| TheSystem    |        |              |                 |

Таблица 3.36 – Продолжение таблицы 3.36

| Свойство       | Тип  | Обязательное | Описание         |
|----------------|------|--------------|------------------|
| ConfirmedEntry | bool | false        | Подтвержден ли   |
|                |      |              | аккаунт пользо-  |
|                |      |              | вателя           |
| ActiveUser     | bool | false        | Активен ли акка- |
| Account        |      |              | унт пользователя |

# 3.2.5.17 Класс «PassengerDto»

«PassengerDto» - содержит всю информацию о пассажире, включая пользовательские данные.

Таблица 3.37 – Свойства класса "PassengerDto"

| Свойство       | Тип      | Обязательное | Описание        |
|----------------|----------|--------------|-----------------|
| PassengerId    | int      | true         | Уникальный      |
|                |          |              | идентификатор   |
| FullName       | string   | true         | ФИО пассажира   |
| DateOfBirth    | DateTime | true         | Дата рождения   |
| PhoneNumber    | string   | true         | Номер телефона  |
| EmailAddress   | string   | true         | Электронная     |
|                |          |              | почта           |
| Login          | string   | true         | Логин пользова- |
|                |          |              | теля            |
| Password       | string   | true         | Пароль пользо-  |
|                |          |              | вателя          |
| RoleIn         | string   | true         | Роль в системе  |
| TheSystem      |          |              |                 |
| ConfirmedEntry | bool     | false        | Подтвержден ли  |
|                |          |              | аккаунт пользо- |
|                |          |              | вателя          |

Таблица 3.37 – Продолжение таблицы 3.37

| Свойство   | Тип  | Обязательное | Описание         |
|------------|------|--------------|------------------|
| ActiveUser | bool | false        | Активен ли акка- |
| Account    |      |              | унт пользователя |

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Фримен, А. Практикум по программированию на JavaScript / А. Фримен. Москва : Вильямс, 2013. 960 с. ISBN 978-5-8459-1799-7. Текст : непосредственный.
- 2. Баланов, А.Построение микросервисной архитектуры и разработка высоконагруженных приложений. Учебное пособие, Москва: Лань, 2024. 244 с. ISBN 978-5-507-48747-9. Текст: непосредственный.
- 3. Веру, Л. Секреты CSS. Идеальные решения ежедневных задач / Л. Веру. Санкт-Петербург : Питер, 2016. 336 с. ISBN 978-5-496-02082-4. Текст : непосредственный.
- 4. Голдстайн, А. HTML5 и CSS3 для всех / А. Голдстайн, Л. Лазарис, Э. Уэйл. Москва : Вильямс, 2012. 368 с. ISBN 978-5-699-57580-0. Текст : непосредственный.
- 5. Дэкетт, Д. HTML и CSS. Разработка и создание веб-сайтов / Д. Дэкетт. Москва : Эксмо, 2014. 480 с. ISBN 978-5-699-64193-2. Текст : непосредственный.
- 6. Макфарланд, Д. Большая книга CSS / Д. Макфарланд. Санкт-Петербург : Питер, 2012.-560 с. ISBN 978-5-496-02080-0. Текст : непосредственный.
- 7. Лоусон, Б. Изучаем HTML5. Библиотека специалиста / Б. Лоусон, Р. Шарп. Санкт-Петербург : Питер, 2013 286 с. ISBN 978-5-459-01156-2. Текст : непосредственный.