Catalan in C++

```
#include <iostream>
using namespace std;

int main() {
    int n = 6;
    int dp[n];
    dp[0] = 1;
    dp[1] = 1;

for (int i = 2; i < n; i++) {
        dp[i] = 0;
        for (int j = 0; j < i; j++) {
            dp[i] += dp[j] * dp[i - j - 1];
        }
    }

    for (int i = 0; i < n; i++) {
        cout << dp[i] << " ";
    }

    return 0;
}</pre>
```

Step-by-Step Execution

Initialization:

```
dp[0] = 1;
dp[1] = 1;
```

Iteration Table for dp[2] to dp[5]

i	j	Computation	dp[i]
2	0	$dp[0]\times dp[1]=1\times 1=1$	1
2	1	$dp[1] \times dp[0] = 1 \times 1 = 1$	2

Final: dp[2] = 2

i	j	Computation	dp[i]
3	0	$dp[0] \times dp[2] = 1 \times 2 = 2$	2
3	1	$dp[1]\times dp[1]=1\times 1=1$	3
3	2	$dp[2]\times dp[0]=2\times 1=2$	5

Final: dp[3] = 5

i	j	Computation	dp[i]
4	0	$dp[0]\times dp[3]=1\times 5=5$	5
4	1	$dp[1]\times dp[2]=1\times 2=2$	7
4	2	$dp[2]\times dp[1]=2\times 1=2$	9
4	3	$dp[3]\times dp[0]=5\times 1=5$	14

Final: dp[4] = 14

i	j	Computation	dp[i]
5	0	$dp[0] \times dp[4] = 1 \times 14 = 14$	14
5	1	$dp[1]\times dp[3]=1\times 5=5$	19
5	2	$dp[2]\times dp[2]=2\times 2=4$	23
5	3	$dp[3]\times dp[1]=5\times 1=5$	28
5	4	$dp[4] \times dp[0] = 14 \times 1 = 14$	42

Final: dp[5] = 42

Final DP Array:

$$dp[] = \{1, 1, 2, 5, 14, 42\}$$

Final Output:

1 1 2 5 14 42

Output:-