1. Cours : Suites et récurrence

1 Démonstration par récurrence

Exemple introductif, tiré de l'épreuve de spécialité de Polynésie 2022 : On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{1 + u_n}.$$

A l'aide de cette expression, il est possible de calculer les termes de la suite de proche en proche.

- $u_1 =$
- $u_2 =$
- $u_3 =$
- ...

Toutefois, il n'est pas possible de calculer u_{50} sans calculer tous les termes précédents... On souhaiterait déterminer une expression de u_n en fonction de n pour tout entier naturel n.

D'après les premiers termes de notre suite, il semblerait que pour tout entier naturel n, on ait $u_n =$

Cette formule fonctionne pour les rangs 0, 1, 2 et 3 mais qu'en est-il pour le reste ?

Un moyen de s'assurer que cette formule fonctionne pour tous les rangs est de la démontrer par récurrence.

Définition 1 : Lorsque l'on souhaite démontrer une proposition mathématique qui dépend d'un entier n, il est parfois possible de démontrer cette proposition par récurrence.

Pour tout entier n, on note $\mathcal{P}(n)$ la proposition qui nous intéresse. La démonstration par récurrence comporte trois étapes :

- **Initialisation**: On montre qu'il existe un entier n_0 pour lequel $\mathcal{P}(n_0)$ est vraie;
- **Hérédité**: on montre que, si pour un entier $n \ge n_0$, $\mathcal{P}(n)$ est vraie, alors $\mathcal{P}(n+1)$ l'est également;
- Conclusion : on en conclut que pour tout entier $n \ge n_0$, la proposition $\mathcal{P}(n)$ est vraie.

Le principe du raisonnement par récurrence rappelle les dominos que l'on aligne et que l'on fait tomber, les uns à la suite des autres.

On positionne les dominos de telle sorte que, dès que l'un tombe, peu importe lequel, il entraîne le suivant dans sa chute. C'est **l'hérédité**. Seulement, encore faut-il faire effectivement tomber le premier domino, sans quoi rien ne se passe : c'est **l'initialisation**.

Si ces deux conditions sont remplies, on est certain qu'à la fin, tous les dominos seront tombés : c'est notre **conclusion**.

Une propriété utile qui peut être démontrée par récurrence est la suivante. Souvenez-vous en, elle reviendra dans un prochain chapitre!

```
Propriété 1 — Inégalité de Bernoulli : Soit a un réel strictement positif. Pour tout entier naturel n, on a (1+a)^n \ge 1 + na.
```

Démonstration 1 : Nous allons démontrer cette propriété par récurrence. Fixons-nous un réel *a* strictement positif.

Une interprétation graphique de cette inégalité est possible.

La droite d'équation y = 1 + nx n'est autre que la tangente à la courbe d'équation $y = (1+x)^n$ à l'abscisse 0. L'inégalité de Bernoulli dit donc que la courbe se trouve au-dessus de la tangente lorsque x > 0.

Nous verrons, lorsque la dérivation n'aura plus de secret pour vous, que cette remarque nous fournira une autre démonstration de l'inégalité de Bernoulli.

2 Suites majorées, minorées, bornées

Définition 2 — Suites majorées, minorées, bornées : Soit (u_n) une suite réelle. On dit que...

- ... (u_n) est *majorée* s'il existe un réel M tel que, pour tout entier naturel n, $u_n \le M$. Un tel réel M est alors appelé *majorant* de la suite (u_n) .
- ... (u_n) est *minorée* s'il existe un réel m tel que, pour tout entier naturel $n, u_n \ge m$. Un tel réel m est alors appelé *minorant* de la suite (u_n) .
- ... (u_n) est bornée si (u_n) est à la fois majorée et minorée.

Les majorants et minorants sont indépendants de n! Bien que pour tout n > 0, on ait $n \le n^2$, on ne peut pas dire que la suite (u_n) définie par $u_n = n$ est majorée. Cette indépendance se traduit dans l'ordre des quantificateurs employés dans la définition précédente (le majorant y apparaît avant l'entier n).

Exemple 2 : Pour tout n, on pose $u_n = \cos(n)$.

La suite (u_n) est

Exemple 3 : Pour tout entier naturel n, on pose $v_n = n^2 + 1$.

La suite (v_n) est

En revanche, elle n'est pas majorée.

Exemple 4 : Pour tout entier naturel n, on pose $w_n = (-1)^n n$. Cette suite n'est ni majorée, ni minorée.

Lorsqu'une suite est définie par récurrence, une majoration ou une minoration de cette suite peut elle-même être démontrée par récurrence.

■ Exemple 5 : On considère la suite (u_n) définie par $u_0 = 5$ et pour tout entier naturel n, $u_{n+1} = 0.5u_n + 2$. Pour tout entier naturel n, on note $\mathscr{P}(n)$ la proposition « $u_n \ge 4$ ».

Jason LAPEYRONNIE http://mathoutils.fr

Si l'on se donne une fonction f définie sur un ensemble I et une suite (u_n) à valeurs dans I telle que, pour tout entier naturel n, $u_{n+1} = f(u_n)$, l'étude de la fonction f pourra également nous fournir des informations sur la suite (u_n) étudiée.

Exemple 6 : On considère une fonction f définie sur \mathbb{R} et dont le tableau de variations est le suivant.

On considère alors la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$. Pour tout entier naturel n, on considère la proposition $\mathcal{P}(n)$: « $0 \le u_n \le 3$ ».

3 Suites croissantes, suites décroissantes

Définition 3 — Variations d'une suite : Soit (u_n) une suite réelle et n_0 un entier naturel.

- On dit que (u_n) est *croissante* à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $u_{n+1} \ge u_n$.
- On dit que (u_n) est décroissante à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $u_{n+1} \le u_n$.

Étudier la croissance ou la décroissance d'une suite revient donc souvent à étudier le signe de $u_{n+1} - u_n$.

■ Exemple 7 : On considère la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 - n$. Pour tout entier naturel n,

$$u_{n+1} - u_n =$$

La suite (u_n) est donc

Jason LAPEYRONNIE http://mathoutils.fr

Propriété 2 : Soit (u_n) une suite strictement positive et n_0 un entier naturel.

- (u_n) est croissante à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $\frac{u_{n+1}}{u_n} \ge 1$.
- (u_n) est décroissante à partir de n_0 si, pour tout entier naturel $n \ge n_0$, $\frac{u_{n+1}}{u_n} \le 1$.
- **Exemple 8**: On considère la suite (u_n) définie pour tout entier naturel non nul n par $u_n = \frac{2^n}{n}$. Pour tout entier naturel non nul n, on a $u_n > 0$ et

$$\frac{u_{n+1}}{u_n} =$$

Encore une fois, lorsqu'une suite est définie par récurrence, ses variations peuvent également être étudiées par récurrence.

Exemple 9: On considère la suite (u_n) définie par $u_0 = 4$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{5 + u_n}$.

Pour tout entier naturel n, on note $\mathcal{P}(n)$ la proposition $0 \le u_{n+1} \le u_n$. Montrer que $\mathcal{P}(n)$ est vraie pour tout entier naturel n démontrera que la suite (u_n) est décroissante et minorée par 0, un résultat qui nous intéressera fortement dans un prochain chapitre...

Jason LAPEYRONNIE

Comme précédemment, si l'on dispose d'une fonction f que l'on sait étudier et d'une suite (u_n) telle que pour tout entier naturel n, $u_{n+1} = f(u_n)$, il est sans doute possible d'utiliser les informations que nous avons sur la fonction pour en déduire des informations sur notre suite.

Attention! Ce n'est pas parce que la fonction f est croissante que la suite le sera également!

Exemple 10 : On considère une fonction f définie sur \mathbb{R} et dont le tableau de variations est le suivant.

On considère alors la suite (u_n) définie par $u_0 = 3$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

On souhaite montrer que la suite (u_n) est décroissante et bornée par -1 et 5. Pour tout entier naturel n, on considère alors la proposition $\mathscr{P}(n)$: « $-1 \le u_{n+1} \le u_n \le 5$ ».

Jason LAPEYRONNIE http://mathoutils.fr