Linear Algebra

Contents

0	Präliminarien — — — — — — — — — — — — — — — — — — —	3
	0.1 Annulatoren	3
	0.2 Berechnen von Annulatoren, Beziehung zu HGS	5
	0.2 Bi-Dualraum	6
	0.3 Vorlesung 3	8
	0.5 Skript 5	12
	$0.5.\hat{1}$ 4 Quotientraum	
1	Polynomalgebren	17
	1.6 Skript 6	17
	1.6.1 Algebren	17
	1.6.2 Polynomalgebra	19
	1.7 Skript 7	19
	1.8 Skript 8	21
	1.8.1 Divisionsalgorithmus	22
	1.9 Skript 9	23
	1.9.1 Formale Ableitung	24
	1.10 Skript 10	27
	1.10.5 Primzerlegung (Faktorisierung)	29
2	Multilinearformen und Determinanten	31
	2.11 Skript 11	31
	2.11.6 Die symmetrischen Gruppen S_n	31
	2.12 Skript 12	34
	2.13 Skript 13	38
	2.13.7 Multilinear Formen	38
	2.13.8 Alternierende Multilineare Formen auf K^n	39
	2.14 Skript 14	40
	2.15 Skript 15	45
	2.16 Skript 16	47
3	Normalformen	52
	3.17 Skript 17	52
	3.17.9 Eigenwerte und Eigenvektoren	52
	3.18 Skript 18	56
	3.19 Skript 19	
	3.19.10 Annihilator Ideal	59
	3.20 Skript 20	
	3.20.1 Trigonalisierbarkeit	

CONTENTS 2

	3.21	Skript 21	
		3.21.12 Invariante Unterräume	
	3.22	Skript 22	
		Skript 23	
		3.23.13 Direkte Summe und Primzerlegung	
		3.23.14 Jordanketten, Jordan Zelldn und die Jordan Normalform	
	3.24	Skript 24	
		•	
4	Euk	lidische und Unitäre Räume 75	
	4.25	Skript 25	
		4.25.15 Innere Produkte:	
	4.26	Skript 26	
		4.26.16 Beziehung zu linearen Funktionalen	
	4.27	Skript 27	
		4.27.17 Hermite'sche Operatoren	
		4.27.18 Cartesische Zerlegung eines Operators	
	4.28	Skript 28	
		4.28.19 Isometrie	
		4.28.20 Orthonormal-Basis wechseln	
		4.28.21 Spektraltheorie	
	4.29	Skript 29	

0 Präliminarien

Ansatz:

K Körper und V ein endlich dimensionaler K-Vektorraum

0.1 Annulatoren

Erinnerung (s. Skript 22 LA I)

Theorem Charakterisierung von Dualbasen)

K Körper

Sei V ein n-dim. K-Vektorraum und $\mathcal{B} = (\alpha_1, \ldots, \alpha_n)$ eine geordnete Basis für V. Es gibt genau eine geordnete Dualbasis für V^* , $\mathcal{B}^* = (f_1, \ldots, f_n)$, sodass:

(1) $f_i(\alpha_i) = \delta_{ij}$

(2) $\forall f \in V^* : f = \sum_{i=1}^n f(\alpha_i) f_i$

(3) $\forall \alpha \in V : \alpha = \sum_{i=1}^{n} f_i(\alpha) \alpha_i$

Das heißt: $\forall f \in V^* \text{ und } \forall \alpha \in V \text{ gilt:}$

$$[f]_{B^*} = \begin{pmatrix} f(\alpha_1) \\ \vdots \\ f(\alpha_n) \end{pmatrix} \quad und$$
$$[\alpha]_B = \begin{pmatrix} f_1(\alpha) \\ \vdots \\ f_n(\alpha) \end{pmatrix}$$

(Dualität)

Definition 0.1.1

Sei V ein n-dim. K-Vektorraum und $S \subseteq V$. Der Annihilator (Annulator) von S, was wir mit S^0 bezeichnen, ist die folgende Untermenge von $V^*: S^0 := \{f \in V^*: S \subseteq \ker(f)\}$

Proposition 0.1.2

Folgende Aussagen gelten:

(i)
$$S_1 \subseteq S_2 \implies S_2^0 \subseteq S_1^0$$

(ii)
$$S^0 = (\operatorname{span}(S))^0$$

(iii) $S^0 \subseteq V^*$ ist ein Unterraum

(iv) span(S) =
$$\{0 \iff S^0 = V^*\}$$

(v)
$$\operatorname{span}(S) = V \iff S^0 = \{0\}$$

Proof Proposition 0.1.2

" \Longrightarrow " trivial

" \Leftarrow " z.z. span $(S) = \{0\}$ Zum Widerspruch sei $\alpha \neq 0$ und $\alpha \in \text{span}(S)$, dann ist $\{\alpha\}$ l.u. Wir ergänzen zu einer Basis \mathcal{B} für V. $\mathcal{B} = (\alpha = \alpha_1, \dots, \alpha_n)$ Sei $\mathcal{B}^* = (f_1, \dots, f_n)$ die Dualbasis für V^* . Es gilt: $f_1(\alpha_1) = 1$, also $f_1 \notin S^0$

(v)

" \Longrightarrow " folgt aus (ii) und (iv)

" \Leftarrow " Sei $S^0 = \{0\}$ z.z. $\operatorname{span}(S) = V$.

Setze $W := \operatorname{span}(S)$. Zum Widerspruch: sei $\alpha \in V \setminus W$ und $(\alpha_1, \ldots, \alpha_k) \subseteq W$ eine geordnete Basis für W. Dann ist $(\alpha_1, \ldots, \alpha_k, \alpha)$ l.u. in V.

Ergänze zu einer geordneten Basis $(\alpha_1, \ldots, \alpha_k, \alpha_{k+1} = \alpha, \ldots, \alpha_n)$. Sei nun $\mathcal{B}^* := (f_1, \ldots, f_k, f_{k+1}, \ldots, f_n)$ die Dualbasis für V^* . Es gilt

$$\underbrace{f_{k+1}(\alpha_j) = 0 : \forall j = 1, \dots, k}_{f_{k+1} \in S^0} \text{ und } \underbrace{f_{k+1}(\alpha_{k+1}) = 1}_{f_{k+1} \neq 0}$$

Corollary 0.1.3 Trennung Eigenschaft

V n-dim K-VR

Sei $W \subsetneq V$ ein Unterraum und $\alpha \in V \setminus W$. Es existiert ein $f \in V^*$ so, dass:

$$f(W) = \{0\}$$
 und $f(\alpha) \neq 0$

Proof Korollar 0.1.3

Wir werden aus Proposition 0.1.2 (v) herleiten.

(v) ist äquivalent zur Aussage

$$\forall S \subseteq V : \operatorname{span}(S) \subsetneqq V \iff S^0 \neq \{0\}$$

Sei nun S eine Basis für W dann ist span $(S) \subsetneq V$, es folgt $S^0 \neq \{0\}$, d.h. $\exists f \in V^*, f \neq 0 \land \underbrace{f \in S^0}_{f \in W^0}$

Sei $(\alpha_1, \ldots, \alpha_k)$ eine geordnete Basis für W. $\alpha \notin \text{span}(\alpha_1, \ldots, \alpha_k)$, also $(\alpha_1, \ldots, \alpha_k, \alpha)$ l.u. Ergänze zur Basis

$$\mathcal{B} = (\alpha_1, \dots, \alpha_k, \alpha_{k+1} = \alpha, \dots, \alpha_n)$$

Sei
$$\mathcal{B}^* = (f_1, \dots, f_k, f_{k+1}, \dots, f_n)$$
 Dualbasis. Setzte $f := f_{k+1}$.

Theorem 0.1.4 Dimensionsformel für Annihilatoren

Sei V ein n-dim K-VR und $W \subseteq V$ ein Unterraum **Es gilt:**

$$\dim W + \dim W^0 = \dim V$$

Proof Satz 0.1.4

Sei $(\alpha_1, \ldots, \alpha_k)$ eine geordnete Basis für W. Ergänze zu einer geordneten Basis

$$\mathcal{B} = (\alpha, \dots, \alpha_k, \alpha = \alpha_{k+1}, \dots, \alpha_n)$$

für V. Sei

$$\mathcal{B}^{\star} = (f_1, \dots, f_k, f_{k+1}, \dots, f_n)$$

die Dualbasis für V^* .

Beh. (f_{k+1},\ldots,f_n) eine Basis für W^0 .

Bew. der Beh. bemerke dass $\forall i = k+1, \ldots, n$ ist $f_i \in W^0$, weil $f_i(\alpha_j) = 0$, wenn $i \geq k+1$ und $j \leq k$.

Beweis von Satz 0.1.4 (Fortsetzung)

Nun ist $\{f_{k+1},\ldots,f_n\}\subseteq V^*$ l.u. (weil Teil einer Basis). Also genügt es nun z.z.:

span
$$\{f_{k+1}, \dots, f_n\} = W^0$$
,

also sei $f \in W^0$. Es gilt (wegen (2) Charakteristik von Dualbasen), dass $f = \sum_{i=1}^n f(\alpha_i) f_i$. Da aber $f \in W^0$ und $\alpha_1, \ldots, \alpha_k \in W$ folgt $f(\alpha_1) = \ldots = f(\alpha_k) = 0$. Also $f = \sum_{i=k+1}^n f(\alpha_i) f_i$, also $f \in \operatorname{span}(f_{k+1}, \ldots, f_n)$

Corollary zum Trennungssatz

Seien $W_1, W_2 \subseteq V$ Unterräume.

Es gilt: $W_1^0 = W_2^0 \iff W_1 = W_2$

Proof Korollar 0.1

" - " trivia

" \Longrightarrow " Zum Widerspruch

Sei $\alpha \in W_2 \setminus \hat{W}_1$. Nach Trennungssatz $\exists f \in V^*$ so dass $f(W_1) = 0$ und $f(\alpha) \neq 0$, also $f \in W_1^0$, aber $f \notin W_2^0$

0.2 Berechnen von Annulatoren, Beziehung zu HGS

Example 0.2.1

 $V = \mathbb{R}^5 \ S := \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \subseteq V$, wobei: $\alpha_1 = (2, -2, 3, 4, -1), \alpha_2 = (-1, 1, 2, 5, 2), \alpha_3 = (0, 0, -1, -2, 3), \alpha_4 = 1, -1, 2, 3, 0)$

Setze $W := \operatorname{span}(S)$. Finde W^0

Lösung:

Wir wollen beschreiben $f \in V^*$ wofür gilt: $f \in S^0$, d.h. $f(\alpha_1) = f(\alpha_2) = f(\alpha_3) = f(\alpha_4) = 0$ Es gilt allgemein (s. Bsp. 22.3 LA I) für $f \in V^*$, $\exists c_1, c_2, c_3, c_4, c_5 \in K$ s.d. $\forall (x_1, x_2, ..., x_5) \in \mathbb{R}^5 : f(x_1, x_2, ..., x_5) = \sum_{j=1}^5 c_j x_j$

Insbesondere $f \in W^0 \iff c_1, \ldots, c_5$ erfüllen $\sum_{j=1}^5 A_{ij} c_j = 0 \quad \forall 1 \leq i \leq 4$, wobei A_{ij} die

Koeffizienten der Matrix

$$\begin{pmatrix}
2 & -2 & 3 & 4 & -1 \\
-1 & 1 & 2 & 5 & 2 \\
0 & 0 & -1 & -2 & 3 \\
1 & -1 & 2 & 3 & 0
\end{pmatrix},$$

d.h. Wir müssen HGS lösen und zwar

$$A \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Gauß-Eliminations-Verfahren \implies r.Z.S.F:

$$R = \begin{pmatrix} 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ (c_1) & (c_3) & (c_5) \end{pmatrix}$$

 c_1, c_3, c_5 Hauptvariablen c_2, c_4 freie Variablen Wir bekommen

$$c_1 - c_2 - c_4 = 0$$
$$c_3 + 2c_4 = 0$$
$$c_5 = 0$$

Lösungsraum. Sezte $c_2 := a \in \mathbb{R}, c_4 := b \in \mathbb{R}$ $c_1 = a + b, c_3 = -2b, c_5 = 0$ also einsetzen. $W^0 = \{f : f(x_1, x_2, x_3, x_4, x_5) = (a + b)x_1 + ax_2 - 2bx_3 + bx_4 : a, b \in \mathbb{R}\}$

0.2 Bi-Dualraum

Als Motivation, wollen wir die folgenden Fragen betrachten:

- (1) $V \to V^*, \mathcal{B} \mapsto \mathcal{B}^*$ sie ist die Umkehrung? Genauer: Sei \mathbb{B} eine geordnete Basis für V^* , gibt es eine geordnete \mathcal{B} für V s.d. $\mathcal{B}^* = \mathbb{B}$?
- (2) $V \to V^*, W \mapsto W^0$ Wie ist die Umkehrung= Genauer formuliert: Sei U ein Unterraum von V^* , gibt es ein Unterraum W von V so dass $W^0 = U$?

Schlüssel: wir arbeiten mit $(V^*)^* := V^{**}$

Example 0.2.2

$$\dim(V^{\star\star}) = \dim(V^{\star}) = \dim V$$

Definition 0.2.3 Bi-Dualraum

 $V^{\star\star}$ heißt **Bidualraum** zu V.

Proposition 0.2.4

Sei $\alpha \in V$, α induziert (kanonisch) eine lineare Funktionale $L_{\alpha} \in V^{\star\star}$ wie folgt

$$L_{\alpha}: V^{\star} \to K$$

definiert durch: $L_{\alpha}(f) := f(\alpha) \quad \forall f \in V^{\star}$

Proof Proposition 0.2.4

Wir berechnen für $\forall c \in K, f, g \in V^*$:

$$L_{\alpha}(cf+g) = (cf+g)(\alpha) = cf(\alpha) + g(\alpha) = cL_{\alpha}(f) + L_{\alpha}(g).$$

Theorem 0.2.5

Die Abbildung $\chi: V \to V^{\star\star}, \alpha \mapsto L_{\alpha}$ definiert eine (kanonische) Isomorphie.

Proof Satz 0.2.5

 λ ist linear. Zu prüfen:

$$\chi(c\alpha + \beta) \stackrel{?}{=} c\lambda(\alpha) + \lambda(\beta)? \ \forall c \in K, \alpha, \beta \in V, f \in V^*.$$

Wir berechnen:

$$[\lambda(c\alpha + \beta)](f) = L_{c\alpha+\beta}(f)$$

$$= f(c\alpha + \beta)$$

$$= cf(\alpha) + f(\beta)$$

$$= cL_{\alpha}(f) + L_{\beta}(f)$$

$$= c\lambda(\alpha)(f) + \lambda(\beta)(f)$$

$$= [c\lambda(\alpha) + \lambda(\beta)](f)$$

Wir müssen noch zeigen dass λ bijektiv ist. Da aber dim $V = \dim V^{\star\star}$ ist (folgt aus Satz 19.10 LA I)

es genügt zu zeigen: λ ist injektiv, d.h. z.z. dass ker $(\lambda) = \{0\}$. Zum Widerspruch nehmen wir an $\exists \alpha \in V$ s.d.:

$$\lambda(\alpha) = 0$$
 aber $\alpha \neq 0$
 $L_{\alpha} \equiv 0$ aber $\alpha \neq 0$

Aber: $\alpha \neq 0 \implies \{\alpha\}$ ist l.u. $\implies \mathcal{B} = (\alpha_1 = \alpha, \dots, \alpha_n)$ eine geordnete Basis. Sei $\mathcal{B}^* = (f_1, \dots, f_n)$ Dualbasis. Es gilt dann: $f_1(\alpha) = f_1(\alpha_1) = 1$, d.h. $L_{\alpha}(f_1) = 1 \neq 0$ Wiederspruch

0.3 Vorlesung 3

Corollary 0.3.1

Sei $L \in V^{\star\star}$ bzw. Sei L eine lineare Funktionale auf V^{\star} . $\exists ! \alpha \in V$ s.d. $L = L_{\alpha}$, d.h. s.d.:

$$L(f) = f(\alpha) \quad \forall f \in V^*. \tag{1}$$

Proof Korollar 0.3.1

Setze: $\alpha := \lambda^{-1}(L)$

Corollary 0.3.2

Sei \mathbb{B} eine geordnete Basis für V^* . Dann gibt es eine geordnete Basis \mathcal{B} für V, so dass $\mathcal{B}^* = \mathbb{B}$.

Proof Korollar 0.3.2

Setze $\mathbb{B} = (f_1, \dots, f_n)$ und $\mathbb{B}^* := (L_1, \dots, L_n \text{ für } V^{**} \text{ so dass } L_i(f_j) = \delta_{ij}$

Korollar 0.3.1 liefert: $\forall i : \exists ! \alpha_i \in V \text{ mit } (1) \text{ d.h. } L_i(f) = f(\alpha_i) \forall 1 \leq i \leq n, f \in V^* \text{ Insbesondere } L_i(f_j) = f_j(\alpha_i) = \delta_{ij} \quad \forall 1 \leq i, j \leq n. \text{ Setze } \mathcal{B} := (\alpha_1, \dots, \alpha_n).$

Example 0.3.3

 $E \subseteq V^*$ $E^0 = \{L \in (V^*)^* : \forall f \in E : L(f) = 0\} \text{ Betrachte } \lambda : V \to V^{**}, \alpha \mapsto L_{\alpha}$ $\lambda^{-1}(E^0) = \{\alpha \in V : \lambda(\alpha) \in E^0\}$ $= \{\alpha \in V : L_{\alpha} \in E^0\}$ $= \{\alpha \in V : \forall f \in E : L_{\alpha} = 0\}$

 $= \{ \alpha \in V : \forall f \in E : f(\alpha) = 0 \}$

Theorem 0.3.4

 $Sei W \subseteq V Unterraum, dann gilt$

$$\lambda^{-1}(W^{00}) = W$$

Proof Satz 0.3.4

Dimensionsformel für Annihilatoren (Satz 0.1.4) liefert

$$\dim W + \dim W^0 = \dim V = \dim V^* = \dim W^0 + \dim W^{00}$$

Daraus folgt dim $W = \dim W^{00} = \dim(\lambda^{-1}(W^{00}))$

Es genügt zu zeigen: $W \subseteq \lambda^{-1}(W^{00})$

Sei $\alpha \in W$ beliebig aber fest, dann berechne $\lambda(\alpha) = L_{\alpha}$. Zu zeigen: $L_{\alpha} \in W^{00} = (W^{0})^{0}$, d.h. zu zeigen ist

$$L_{\alpha}(f) = 0$$
 für alle $f \in W^0$

Sei $f \in W^0$ beliebig aber fest, dann gilt $L_{\alpha}(f) = f(\alpha) = 0$ da $f(W^0)$ und $\alpha \in W$ Also wurde

gezeigt, dass W ein Unterraum von $\lambda^{-1}(W^{00})$ ist und

$$\dim W = \dim \lambda^{-1}(W^{00}),$$
also folgt $W = \lambda^{-1}(W^{00})$

Corollary 0.3.5

Sei
$$U \subseteq V^*, W := \lambda^{-1}(U^0) \subseteq V$$
, dann gilt

$$W^0 = U$$

Proof Korollar 0.3.5 Dimensionsformel für Annihilatoren (Satz 0.1.4)

$$\dim U + \dim^0 = \dim V^\star = \dim V = \dim W + \dim W^0$$

Bemerke $\dim W=\dim \lambda^{-1}(U^0)=\dim U^0.$ Es folgt $\dim U=\dim W^0.$ Es genügt zu zeigen: $U\subseteq W$

Bemerke

$$W = \lambda^{-1}(U^0)$$

$$= \{\alpha \in V : \lambda(\alpha \in U^0)\}$$

$$= \{\alpha \in V : L_\alpha \in U^0\}$$

$$= \{\alpha \in V : \forall f \in U : L_\alpha = 0\}$$

$$= \{\alpha \in V : \forall f \in U : f(\alpha) = 0\}.$$

Sei $f\in U$ beliebig aber fest. Zu zeigen $f\in W^0$, d.h. z.z. für alle $\alpha\in W:f(\alpha)=0$ Sei $\alpha\in W$ beliebig aber fest, dann gilt

$$f(\alpha) = L_{\alpha}(f) = 0$$

Also folgt $U \subseteq W^0$ der gleichen Dimension, also $U = W^0$

DIE TRANSPONIERTE ABBILDUNG

Sei $T:V\to W$ eine lineare Abbildung, dann induziert diese eine Abbildung $T^t:W^\star\to V^\star,g\mapsto g\circ T$ Behauptung: T^t ist linear.

Beweis: Sei $g_1, g_2 \in W^*, c \in K$, dann gilt

$$T^{t}(g_1 + cg_2) = (g_1 + cg_2) \circ T$$
$$= g_1 \circ T + (cg_2) \circ T$$
$$= g_1 \circ T + c(g_2 \circ T)$$
$$= T^{t}(g_1) + cT^{t}(g_2)$$

Definition: Die lineare Abbildung T^t wird die transponierte Abbildung zu T genannt

Theorem $0.3.\overline{6}$

Seien V, W endlich-dimensionale K-VR und T eine lineare Abbildung, dann existiert eine ein-

deutige lineare Abbildung

$$T^t: W^* \to V^* \ s.d. \ \forall \alpha \in V: \forall g \in W^*: \left(T^t(g)\right)(\alpha) = g(T(\alpha))$$

Theorem 0.4.2

- (1) $\ker(T^t) = (R_T)^0$
- (2) $\operatorname{Rang}(T^t) = \operatorname{Rang}(T)$
- (3) $R_{T^t} = (\ker(T))^0$

Proof Satz 0.4.2

(1) Es gilt

$$g \in \ker(T^t) \iff T^t(g) = 0$$

 $\iff g \circ T = 0$
 $\iff \forall \alpha \in V : g(T(\alpha)) = 0$
 $\iff g \in (R_T)^0$

(2) Setze $n := \dim V$ und $m := \dim W$ Sei ferner $r = \operatorname{Rang}(T) = \dim R_T$ Dimensionsformel für Annihilatoren (Satz 0.1.4 liefert

$$\dim R_T + \dim(R_T)^0 = \dim W$$

$$\implies r + \dim(R_T)^0 = m$$

$$\implies \dim(R_T)^0 = m - r$$

$$\implies \dim \ker T^t = m - r$$

Nach dem Homorphiesatz (Satz 18.2) gilt für die lineare Abbildung $T^t: W^* \to V^*$ schon

$$\dim R_{T^t} = \dim W^* - \dim \ker T^t$$

$$\implies \operatorname{Rang}(T^t) = \dim R_{T^t} = m - \dim \ker T^t = m - (m - r) = r = \operatorname{Rang}(T)$$

(3) Dimensionsformel für Annihilatoren (Satz 0.1.4)

$$\dim \ker T + \dim (\ker T)^0 = \dim V$$

$$\implies \dim (\ker T)^0 = \dim V - \dim \ker T = \dim R_T = \operatorname{Rang} T = \operatorname{Rang} T^t = \dim R_{T^t}$$

Es genügt daher zu zeigen, dass $R_{T^t} \subseteq (\ker T)^0$ Sei daher $f \in R_{T^t}$ beliebig aber fest. Dann gilt für jedes $\alpha \in \ker T$ schon $f(\alpha) = T^t(g)(\alpha) = (g \circ T)(\alpha) = g(T(\alpha)) = g(0) = 0$ somit folgt $f \in (\ker T)^0$

Theorem 0.4.3

Seien V,W endlich-dimensionale K-Vektorräume und eine lineare Abbildung $T:V\to W$ mit transponierter Abbildung $T^t:W^\star\to V^\star$, seien ferner $\mathcal B$ eine geordnete Basis von V mit Dualbasis $\mathcal B^\star$ und $\mathcal B'$ eine geordnete Basis von W mit Dualbasis $(\mathcal B')^\star$. Dann gilt

$$[T^t]_{(\mathcal{B}')^*,\mathcal{B}^*} = [T]^t_{\mathcal{B},\mathcal{B}'}$$

Proof Satz 0.4.3

Setze $A := [T]_{\mathcal{B},\mathcal{B}'}$ und $B := [T^t]_{(\mathcal{B}')^*,\mathcal{B}^*}$ $\mathcal{B} = (\alpha_1,\ldots,\alpha_n), \mathcal{B}^* = (f_1,\ldots,f_n)$ $\mathcal{B}' = (\beta_1,\ldots,\beta_m), (\mathcal{B}')^*(g_1,\ldots,g_m)$ Erinnerung: $T(\alpha_j) = \sum_{i=1}^m A_{ij}\beta_i$ für $j=1,\ldots,n$ $T^t(g_j) = \sum_{i=1}^n B_{ij}f_i$ für $j=1,\ldots,m$ Für beliebiges $f \in V^*$ gilt $f = \sum_{i=1}^n f(\alpha_i)f_i$ (Dualbasis) Insbesondere ergibt sich damit für $f := T^t(g_j) \in V^*$ schon

$$\sum_{i=1}^{n} B_{ij} f_i = T^t(g_j) = \sum_{i=1}^{n} (T^t(g_j))(\alpha_i) f_i = \sum_{i=1}^{n} A_{ji} f_i$$

Wir berechnen ferner

$$(T^{t}(g_{j}))(\alpha_{i}) = (g_{j} \circ T)(\alpha_{i})$$

$$= g_{j}(T(\alpha_{j}))$$

$$= g_{j}\left(\sum_{k=1}^{m} A_{j}k\beta_{k}\right)$$

$$= \sum_{k=1}^{m} A_{jk}g_{j}(\beta_{k})$$

$$= \sum_{k=1}^{m} A_{ki}\delta_{jk}$$

$$= A_{ji}$$

Somit folgt, dass $A_{ji} = B_{ij}$ für alle i und j. Damit ist $B = A^t$

Erinnerung:

Sei $A \in \mathrm{Mat}_{m \times n}(K)$

- (i) $Sr(A) := \dim Span Spalten von A$
- (ii) $Zr(A) := \dim \operatorname{span} \operatorname{Zeilen} \operatorname{von} A$

Corollary 0.4.4

Sei $A \in \operatorname{Mat}_{m \times n}(K)$. Es gilt: $\operatorname{Zr}(A) = \operatorname{Sr}(A)$.

Proof Korollar 0.4.4

Sei \mathcal{E}_n die Standardbasis für $K^{n\times 1}$ und \mathcal{E}_m die Standardbasis für $K^{m\times 1}$ Und betrachte die lineare Abbildung

$$T_A: K^{n\times 1} \to K^{m\times 1}$$

definiert durch

$$T_A \left(\begin{bmatrix} x_1 \\ \vdots \\ xn \end{bmatrix} \right) = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

 $\operatorname{die} \left[T_A \right]_{\mathcal{E}_n, \mathcal{E}_m} = A$

Bemerke dass $Sr(A) = Rang(T_A)$ weil $R_{T_A} = span(Spaltenvektoren von A)$

Außerdem ist $\operatorname{Zr} A = \operatorname{Sr} A^t$, weil die Zeilen von A sind die Spaöten von A^t . Es folgt nun aus Satz 0.4.2 (1) (anwednem mit $T := T_A$)

$$\operatorname{Sr} A = \operatorname{Rang} T_A = \operatorname{Rang} T^t = \operatorname{Sr} A^t = \operatorname{Zr} A$$

(weil
$$A^t = [T_A]_{\mathcal{E}_m^{\star}, \mathcal{E}_n^{\star}}$$
)

Definition 0.4.5

Sei $A \in \operatorname{Mat}_{m \times n}(K)$. Definiere Rang $A := rA = \operatorname{Sr} A = \operatorname{Zr} A$

0.5 Skript 5

0.5.1 4 Quotientraum

Ansatz: K ist ein Körper, V ist ein K-Vektorraum. Sei $W \subseteq V$ ein Unterraum

Definition 0.5.1

Seien $\alpha, \beta \in V$, wenn $\alpha - \beta \in W$

Bezeichnung: $\alpha \equiv \beta \mod W$. α ist kongruent zu β modulo W

Lemma 0.5.2

Die Reltaion " $\alpha \equiv \beta \mod W$ " definiert eine Äquivalenzrelation auf V.

Proof Lemma 0.5.2

- (1) \equiv ist reflexiv: $\forall \alpha \in V$ gilt $\alpha \equiv \alpha \mod W$, weil $\alpha \alpha = 0 \in W$
- (2) \equiv ist symmetrisch: $\forall \alpha, \beta \in V$ gilt: $\alpha \equiv \beta \mod W \implies \beta \equiv \mod W$, weil $(\alpha \beta) \in W \implies -(\alpha \beta) \in W \implies \beta \alpha \in W$.
- (3) Seien $\alpha \equiv \beta \mod W$ und $\alpha, \beta, \gamma \in W$ $\beta \equiv \gamma \mod W \implies (\alpha \beta) \in W$ und $(\beta \gamma) \in W \implies (\alpha \beta) + (\beta \gamma) = \alpha \gamma \in W \implies \alpha \equiv \gamma \mod W$

Also ist \equiv transitiv

Definition 0.5.3

Sei $\alpha \in V$. Die **Restklasse** von $\alpha \mod W$, oder auch **Nebenklasse** von $\alpha \mod W$ ist die Äquivalenzklasse von α bzgl der Äquivalenzrelation " $\equiv \mod W$ ". Das heißt

$$[\alpha]_W := \{\beta \in V : \alpha \equiv \beta \mod W\}.$$

Bemerkung:
$$(\beta - \alpha \in W \implies \beta - \alpha = w \in W \implies \beta = \alpha + w \text{ für } w \in W)$$

$$[\alpha]_W = \{\alpha + w : w \in W\}$$

Bezeichnung: Wir schreiben auch $\alpha + W$ für die $[\alpha]_W$.

Definition 0.5.4

Bezeichne mit V/W Die Menge aller Nebenklassen mod W, d.h.

$$V/W = \{ [\alpha]_W : \alpha \in V \}$$

V/W heißt: V modulo W

Auf diese Menge V/W wollen wir jetzt eine K-Vektorraum Struktur erklären

Definition 0.5.5

(1) Sei $[\alpha]_W$ die Nebenklasse von $\alpha \in V$. Ein Representant der Nebenklasse ist

$$\beta \in [\alpha]_W$$

(Bemerke: $[\beta]_W = [\alpha]_W$ gdw. $\alpha \in [\beta]_W$ gdw. $\beta \in [\alpha]_W$.

(2) Wir definieren Verknüpfung

$$+: V/W \times V/W \to V/W$$

Seien $\alpha_1 + W, \alpha_2 + W \in V/W$ definiere $(\alpha_1 + W) + (\alpha_2 + W) := \underbrace{(\alpha_1 + \alpha_2)}_{\in V} + W$ Wir definieren eine Skalarmultiplikation, Verknüpfung

$$K \times (V/W) \to (V/W)$$

$$\forall c \in K, \forall \alpha \in V \text{ definiere } c(\alpha + W) \coloneqq (\underbrace{c\alpha}_{\in V}) + W.$$

Lemma 0.5.6

Die Verknüpfungen (in Def 0.5.5) sind wohldefiniert unabhängig der Wahl der Repräsentanten, d.h.

- (a) $\alpha \equiv \alpha' \mod W \text{ und } \beta \equiv \beta' \mod W \implies \alpha + \beta \equiv \alpha' + \beta' \mod W$
- (b) $\alpha \equiv \alpha' \mod W \text{ und } c \in K, c\alpha \equiv c\alpha' \mod W$

Proof Lemma 0.5.6

(a) $\alpha - \alpha' \in W$ und $\beta - \beta' \in W \implies (\alpha - \alpha') + (\beta - \beta') \in W$, also $(\alpha + \beta) - (\alpha' + \beta') \in W$ $\alpha + \beta \equiv \alpha' + \beta' \mod W$.

(b) $\alpha - \alpha' \in W \implies c(\alpha - \alpha') \implies c\alpha - c\alpha' \in W \implies c\alpha \equiv c\alpha' \mod W$

Theorem 0.5.7

Die Menge V/W, versehen mit Verknüpfungen ist ein K-Vektorraum.

Proof 0.5.8 Satz 0.5.7

Ü.A. Zum Beweis bemerke dass:

nehme
$$0_{V/W} := [0_V]_W$$

Für additive Inverse: $-([\alpha]_W) = [-\alpha]_W$

Definition

 $(V/W, +_{V/W}, \cdot_K)$ ist der **Quotiontenraum** von V modulo W

Bezeichnung: $\alpha + W := \overline{\alpha}$ falls W klar im Ansatz ist

Begründung: die Schreibweise der Verknüpfungen wird einfacher: $\overline{\alpha_1} + \overline{\alpha_2} = \overline{\alpha_1 + \alpha_2} \quad \forall \alpha_1, \alpha_2 \in V$ $\forall \alpha, \alpha_1, \alpha_2 \in V, \forall c \in K : c\overline{\alpha} = \overline{c\alpha}$

Theorem 0.5.9 Die kanonische Projektion

Die Abbildung

$$\pi_W: V \to V/W$$

definiert durch

$$\forall \alpha \in V : \pi_W(\alpha) := \overline{\alpha}$$

ist eine surjektive lineare Transformation mit $\ker(\pi_W) = W$

Proof Satz 0.5.9

Linearität?

Für
$$\alpha_1, \alpha_2 \in V, c \in K : \pi_W(c\alpha_1 + \alpha_2) = \overline{c\alpha_1 + \alpha_2} = \overline{c\alpha_1} + \overline{\alpha_2} = c\overline{\alpha_1} + \overline{\alpha_2} = c\pi_W(\alpha_1) + \pi_W(\alpha_2)$$

Surjektiv: Sei $\overline{\alpha} \in V/W$, dann ist $\pi_W(\alpha) = \overline{\alpha}$. für $\alpha \in V$

$$\ker(\pi_W)$$
? Sei $\alpha \in V, \alpha \in \ker(\pi_W) \iff \pi_W(\alpha) = 0_{V/W} \iff \underbrace{\alpha + W}_{\overline{\alpha}} = W \iff \alpha \in W$

Corollary 0.5.10

Es qilt: $\dim W + \dim(V/W) = \dim V$

Proof Korollar 0.5.10

Folgt aus LAI Satz 18.2, (Dimensionssatz), Anwenden auf $T = \pi_W$

Theorem 0.5.11 Homomorphiesatz für $\overline{\text{Vektorräume}}$

Seien V, Z K-VR und $T: V \rightarrow Z$ eine lieure Transformation. Es gilt:

$$V/\ker(T) \stackrel{\overline{T}}{\simeq} R_T$$

Genauer, betrachte die Abbildung $\overline{T}: V/\ker(T) \to R_T$ definiert durch $\overline{T}(\overline{\alpha}) := T(\alpha)$ ist wohldefiniert, linear, injektiv und surjektiv

Proof Satz 0.5.11

(i) Seien $\overline{\alpha} = \overline{\alpha'}$ für $\alpha, \alpha' \in V \implies T(\alpha) = T(\alpha')$? Wir argumentieren

$$\overline{\alpha} = \overline{\alpha'} \iff \alpha - \alpha' \in \ker(T)$$
 $\iff T(\alpha - \alpha') = 0$
 $\iff T(\alpha) - T(\alpha') = 0$
 $\iff T(\alpha = T(\alpha')$

- (ii) $\overline{T}(c\overline{\alpha_1} + \overline{\alpha_2}) = c\overline{T}(\overline{\alpha_1}) + \overline{T}(\overline{\alpha_2})$ (ÜB)
- (iii) Sei $T(\alpha) \in R_T$ für ein geegnetes $\alpha \in V$. Es ist $\overline{T}(\overline{\alpha}) = T(\alpha)$ Also \overline{T} ist surjektiv.
- (iv) $\overline{\alpha} \in \ker(\overline{T}) \iff \overline{T}(\overline{\alpha}) = 0 \iff T(\alpha) = 0 \iff \alpha \in \ker(T)$

Erinnerung: Seien $W, W' \subseteq V$ so dass

- (i) V = W + W' und
- (ii) $W \cap W' = \{0\}.$

Dann ist V die **direkte Summe** von W und W', wir schreiben

$$V = W \oplus W'$$

 $\forall v \in V \exists ! w \in W, w' in W' : v = w + w'$

Corollary 0.5.12

Seien W, W' Unterräume, s. d. $V = W \oplus W'$ Es gilt:

$$\frac{W \oplus W'}{W} \simeq W'$$

Proof Korollar 0.5.12

Definiere eine Abbildung $P_W:V\to W'$ folgendermaßen: für $v\in V$ schreibe v=w+w' für geeignete $w\in W,w'\in W'$, definiere

$$P_{W'}(v) := w'$$

Beh. $P_{W'}$ ist surjektiv. Sei $w' \in W'$, dann ist $P_{W'}(0+w')=w'$

Beh. $\ker(P_{W'}) = W$ weil $v \in \ker(P_{W'}) \iff v = w + 0 \iff v \in W$

Satz 0.5.11 anwenden

$$\frac{W \oplus W'}{W} \simeq W'$$

Corollary 0.5.13

Sei $W \subseteq V$ ein Unterraum. Es gilt:

$$(V/W)^* \simeq W^0$$

Proof 0.5.14 Korollar 0.5.13

Setze $T := \pi_W$ die kanonische Projektion $T: V \to V/W$ Betrachte $T^t: (V/W)^* \to V^*$ Wir wollen Satz 0.4.2 anwenden, und bekommen

$$R_{T^t} = (\ker T)^0 = W^0$$

und

$$\ker T^t = (R_T)^0 = (V/W)^0 = \{0\}$$

Also ist $T^t: (V/W)^* \xrightarrow{\sim} W^0$ linear, injektiv und surjektiv

Corollary 0.5.15

 $Sei\ W \subseteq V\ Es\ gilt$

 $W^* \simeq V^*/W^0$

Proof 0.5.16 Korollar 0.5.14

Betrachte Id : $W \to V$ und dazu Id^t : $V^* \to W^*$ Satz 0.4.2 anwenden: $\ker(\mathrm{Id}^t) = (R_{\mathrm{Id}})^0 = W^0$ und $R_{\mathrm{Id}^t} = (\ker(\mathrm{Id}))^0 = (\{0\})^0 = W^*$

1 Polynomalgebren

1.6 Skript 6

1.6.1 Algebren

Erinnerung: Sei K ein Körper Eine K-Algebra \mathcal{A} ist ein K-Vektorraum, versehen mit Verknüpfung "Multiplikation von Vektoren"

$$\mathcal{A} \times \mathcal{A} \to \mathcal{A}, (\alpha, \beta) \mapsto \alpha\beta$$

 $\forall \alpha, \beta, \gamma \in \mathcal{A} \text{ und } c \in K$

- (a) $\alpha(\beta\gamma) = (\alpha\beta)\gamma$
- (b) $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ und $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$
- (c) $c(\alpha\beta) = (c\alpha)\beta = \alpha(c\beta)$

Wenn es ein $1 \in \mathcal{A}$ so dass $1 \cdot \alpha = \alpha \cdot 1 = \alpha \quad \forall \alpha \in \mathcal{A}$ gilt, dann heißt \mathcal{A} eine Algebra mit Einheit. Wenn $\alpha\beta = \beta\alpha \quad \alpha, \beta \in \mathcal{A}$, dann ist \mathcal{A} eine kommutative Algebra

Example 1.6.1

 $\mathcal{A} := M_{n \times n}(K)$ mit Matrixprodukt, nicht kommutativ, Einheit I_n

Example 1.6.2

 $\mathcal{A} \coloneqq L(V,V)$ versehen mit $T_1,T_2 \implies T_1 \cdot T_2 = T_1 \circ T_2$ nicht kommutative Einheit Id

Example 1.6.3 Potenzreihen Algebra

Sei $K^{\mathbb{N}_0}:\{f,f:\mathbb{N}_0\to K,f$ Abbildung} Für ein $f\in K^{\mathbb{N}_0}$ werden wir auch als Folge in K schreiben, $f=(f_n)_{n\in\mathbb{N}}=(f_0,f_1,\ldots,f_n,\ldots)$ wobei $f_n\coloneqq f(n)$

- Summe: $\forall n \in \mathbb{N}_0 : (f+g)_n := f_n + g_n$
- Skalarmultiplikation: $\forall C \in K, f \in K^{\mathbb{N}_0}(cf)_n := c(f_n)$

Damit ist $V := (K^{\mathbb{N}_0}, +, \cdot_c)$ ist ein K-Vektorraum, dim $V = \infty$.

Wir definieren nun eine weiter Verknüpfung

Produkt: $\forall f, g \in K^{\mathbb{N}_0}$ definiere

$$(fg)_n := \sum_{i=0}^n f_i g_{n-i} \quad \forall n \in \mathbb{N}_0$$

Proposition 1.6.4

Setze $\mathcal{A} := (K^{\mathbb{N}_0}, +, \cdot_c, \cdot)$ ist eine kommutative Algebra mit Einheit.

Proof Proposition 1.6.4

Wir prüfen hier Kommutativität, die Einheit (andere Axiome werden im ÜB vorkommen)

- Seien $f,g \in \mathcal{A}$ zu zeigen fg = gf
- Sei $n \in \mathbb{N}_0$ berechne:

$$(gf)_n = \sum_{i=0}^n g_i f_{n-i}$$
$$= \sum_{i=0}^n g_{n-i} f_i$$
$$= \sum_{i=0}^n f_i g_{n-i}$$
$$= (fg)_n$$

• Einheit: Zu prüfen: $x^0 = 1 := (1, 0, 0, \dots, 0, \dots)$ ÜA

– Ca.: Zu zeigen $(1 \cdot g)_n = g_n$ für alle $n \in \mathbb{N}_0$:

$$(1 \cdot g)_n = \sum_{i=0}^n 1_i g_{n-i}$$
$$= 1 \cdot g_n$$
$$= g_n$$

Bemerke die Folgen der Gestalt: $(1,0,\ldots,0,\ldots)=1,(0,1,0,\ldots,0,\ldots),(0,0,1,0,\ldots,0,\ldots),\ldots$ unendlich viele linear unabhängige Elemente aus \mathcal{A} , deshalb ist dim $\mathcal{A}=\infty$.

Bezeichnung: $x = x^1 := (0, 1, 0, \dots, 0, \dots)$ Notation: $n \in \mathbb{N}, x \in \mathcal{A}, x^n := \underbrace{x \cdot x \cdot \dots \cdot x}_{\mathbb{N} \ni n\text{-mal}}$

Proposition 1.6.5

Es ist für alle $k \in \mathbb{N}$

(1)
$$x^k = (0, \dots, 0, \underbrace{1}_{k-te \ Stelle}, 0, \dots, 0, \dots)$$

- (2) $X := \{x^k, k \in \mathbb{N}_0\}$ ist linear unabhängig
 - $\ddot{U}B$: ist X erzeugend? ist span(X) = A?
 - Was ist span X?

Definition 1.6.6 und Bezeichnung

 $\mathcal{A} = (K^{\mathbb{N}_0}, +, \cdot_c, \cdot)$ heißt die Algebra der Potenzreihen über K. Warum Potenzreihen: $f \in \mathcal{A}$ schreibe

$$f = \sum_{n=0}^{\infty} f_n x^n$$

Bezeichnung: K[x]

1.6.2 Polynomalgebra

Definition und Notation $\operatorname{span}(X) \coloneqq K[x]$, ist die Algebra der Polynome über K

- $f \in K[x]$ ist ein Polynom über K
- $f \in K[x]$, $f \neq 0$. Es gilt $f \in K[x]$ gedau dann wenn es genau ein $n \in \mathbb{N}_0$ gibt wofür $f_n \neq 0$, aber $f_k = 0$ für k > 0 Wir setzen deg f := n Grad von f. d.h. wenn $f \neq 0$ deg f = n ist $f = f_0 x^0 + f_1 x^1 + f_2 x^2 + \cdots + f_n x^n, f \neq 0$
- Sei $f \in K[x]$, definiere

support
$$f := \{n \in \mathbb{N}_0 : f_n \neq 0\}$$

- (i) support $f = \emptyset \iff f = 0$
- (ii) support f ist endlich $\iff f \in K[x]$
- (iii) Sei $f \neq 0, f \in K[x]$, dann ist max support $f = \deg f$.

1.7 Skript 7

Theorem 1.7.1

Seien $f, g \in K[x], f, g \neq 0$ Es gilt:

- (i) $fg \neq 0$
- (ii) deg(fg) = deg f + deg g
- (iii) fg ist normiert wenn f und g normiert sind
- $(iv) \ fg \ ist \ Skalarpolynom \iff f,g \ sind \ Skalarpolynom$
- (v) Falls $fg \neq 0$, gilt $\deg(f+g) \leq \max(\deg f, \deg g)$

Corollary 1.7.2

K[x] ist eine kommutative Algebra mit Einheit.

Corollary 1.7.3

K[x] ist ein Integer Ring. Es gilt $\forall f, g, h \in K[x]$. Aus fg = fh folgt g = h Beweis: $fg - fh = 0 \implies f(g - h) = 0 \implies (g - h) = 0 \implies g = h$

Definition 1.7.4

Sei $f: K \to K, y \mapsto f(y)$ eine Abbildung. f ist polynomiale Funktion, falls wir zu f endlich viele Skalare aus K finden können, so dass $f(y) = c_0 + c_1 y + \cdots + c_n y^n \quad \forall y \in K$.

Satz über Existenz von Basis eines Vektorraumes gilt für alle Vektorräume, auch unendlich-dimensional, dafür benötigt man aber das Auswahlaxiom, bzw. den Satz von Zorn (Zorn's Lemma).

Definition 1.7.5 und Notation

Sei \mathcal{A} eine K-Algebra mit Einheit. Sei $f \in K[x]$, und $\alpha \in \mathcal{A}$. Definiere

$$f(\alpha) := \underbrace{\sum_{i=0}^{n} \underbrace{f_i \alpha^i}_{\in \mathcal{A}}}_{i \in \mathcal{A}}$$

wobei $f = \sum_{i=0}^{n} f_i x^i$ und $\alpha^0 := 1$

Theorem 1.7.6

Seien A eine K-Algebra, $f, g \in K[x]$ und $\alpha \in A$ und $c \in K$. Es gelten:

(i)
$$(cf+g)(\alpha) \stackrel{1.7.5}{=} cf(\alpha) + g(\alpha)$$

(ii)
$$(fg)(\alpha) \stackrel{1.7.5}{=} f(\alpha)g(\alpha)$$
. Beweis ÜA

Example 1.7.7

Sei $\mathcal{A} = K$ ist eine K-Algebra mit Einheit. Sei $f \in K[x]$, dann definiert 1.7.5 eine Polynomfunktion $\tilde{f}: K \to K, a \mapsto f(a)$

$$f = \sum_{i=0}^{n} f_i x^i$$
 \tilde{f} ist bestimmt durch $f_0, \dots, f_n \in K$.

Example 1.7.8

Sei
$$\mathcal{A} = M_{2\times 2}(K)$$
. Sei $B = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \in \mathcal{A}, f \in K[x], f = 2x^0 + x^2$

$$f(B) = 2B^0 + B^2 = 2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$$

Wir wollen die Eigenschaften von Polynomfunktionen zusammenfassen.

Theorem 1.7.10

Sei V der K-Vektorraum Polynomfunktionen. Wir versehen V mit punktweise Multiplikation: $h_1, h_2 \in V$ und $t \in K$

$$(h_1h_2)(t) = h_1(t)h_2(t)$$

Dann ist damit die K-Algebra der Polynomfunktionen erklärt. Diese ist eine kommutative Algebra mit Einheit (die Einheit ist die Polynomfunktion $K \to K, a \mapsto 1$)

Example 1.7.11

 $K = \mathbb{F}_p$ für eine Primzahl p. Betrachte $f = (x^p - x) \in K[x] = \mathbb{F}_p[x]$ $f \neq 0$. Aber $\tilde{f} : \mathbb{F}_p \to \mathbb{F}_p$ die zugehörige Polynomfunktion ist die Nullabbildung.

z.B.
$$p = 3$$
, $f = x^3 - x = x^3 + 2x \in \mathbb{F}_3$ $f \neq 0$.

Berechnen $\tilde{f}: \mathbb{F}_3 \to \mathbb{F}_3$

$$\tilde{f}(0) = 0 = \tilde{f}(1) = 0 = \tilde{f}(2) = 0$$

1.8 Skript 8

Definition 1.8.0 Bezeichnung

Sei $K[x]^{\sim} := \{h|h: K \to K \text{ ist eine Polynomfunktion}\}$ Also ist $(K[x]^{\sim}, +, \cdot_c, \cdot)$ ist eine kommutative K-Algebra mit Einheit.

Definition 1.8.1 Homomorphismus und Isomorphismus

Seien \mathcal{A} und \mathcal{A}' K-Algebren.

(i) Eine lineare Abbildung

$$\Phi: \mathcal{A} \to \mathcal{A}'$$

Ist eine K-Algebren **Homomorphismus**, wenn darüber hinuas gilt $\forall a, b \in \mathcal{A}$:

$$\Phi(ab) = \Phi(a)\Phi(b)$$

(ii) Φ heißt K-Algebren **Isomorphismus**, wenn ker $\Phi = \{0\}$

Theorem 1.8.2

(i) Die Abbildung

$$\Phi: K[x] \to K[x]^{\sim}, f \mapsto \tilde{f}$$

ist ein surjektiver K-Algebren Homomorphismus

(ii) Wenn K unendlich ist, ist Φ ein K-Algebren Isomorphismus (d.h. K unendlich \Longrightarrow $\ker \Phi = \{0\}$)

Proof Satz 1.8.2

 Φ lineare Abbildung

- (i) $c\tilde{f}+g=c\tilde{f}+\tilde{g} \quad \forall f,g\in K[x],c\in K$. Es gilt außerdem, dass: $\tilde{f}g=\tilde{f}\tilde{g}$. Also ist Φ ein K-Algebra Homomorphismus. Sei $h\in K[x]^{\sim}$, dann ist h eine Polynomialfunktion, d.h. $\exists n\in\mathbb{N}_0:\exists c_0,\ldots,c_n\in K$ so dass $h(a)=c_0a^0+\cdots+c_na^n\quad \forall a\in K$. Setze $f(x)=\sum_{i=0}^n c_ix^i\in K[x]$ Wir berechnen $\Phi(f)=\tilde{f}\stackrel{!}{=}h$ ist Φ surjektiv!
- (ii) Zum Beweis brauchen wir Lagrange Interpolationssatz

Erinnerung LA I:

Sei $n \in N$ und $V := K[x]_{\leq n}$ der K-Vektorraum der Polynome f von deg $f \leq n$ oder f = 0. Wir haben $\dim V = n + 1$, weil z.B. $\{x^0, \dots, x^n\}$ eine Basis bildet.

Lagrange Interpolationssatz Theorem

Sei $n \in \mathbb{N}$, t_0, \ldots, t_n n+1 verschiedene Elemente aus K. Für jedes $0 \le i \le n$, $L_i \in V^*$ definiere $durch \ \forall f \in V$:

$$L_i(f) := f(t_i)$$

Dann ist $\mathcal{L} := (L_0, L \dots, L_n)$ eine Basis für V^*

Proof Lagrange Interpolationssatz

Es genügt dafür eine Dualbasis zu \mathcal{L} zu finden, d.h. eine geordnete Basis

$$\mathcal{B} = (P_0, \dots, P_n)$$
 von V ,

s.d. $L_i(P_i) = \delta_{ij} \quad \forall i, j = 0, \dots, n$

Definiere Insbesondere (Satz 22.9 LA I) $f = \sum_{i=0}^{n} f(t_i) P_i$

$$P_i \coloneqq \prod_{j \neq i} \left(\frac{x - t_j}{t_i - t_j} \right)$$

Prüfe dass $L_j(P_i) = \delta_{ij} \quad \forall i, j = 0, \dots, n$ erfüllt ist

$$L_j(P_i) = \delta_{ij}$$

Seien (P_0, \dots, P_n) LIF und $f = \sum_{i=0}^n f(t_i) P_i$, wenn $\tilde{f} = 0$ dann ist $f(t_i) = 0 \quad \forall i = 0, \dots, n$. Aus $f = \sum_{i=0}^n f(t_i) P_i$ folgt f = 0

1.8.1 Divisionsalgorithmus

Lemma 1.8.3

Seien $f, d \neq 0$, $f, d \in K[x]$ mit $\deg d \leq \deg f$. Es gibt $g \in K[x]$, so dass entweder ist f - dg = 0 $oder \deg (f - dg) < \deg f$.

Proof Lemma 1.8.3

Schreibe $\deg f := m \ge \deg d := n$.

Schreibe $deg f := m \ge deg d := h$. Schreibe $f = a_m x^m + \sum_{i=0}^{m-1} a_i x^i$, $a = b_n x^n + \sum_{i=0}^{n-1} b_i x^i$, für $a_m \in K^x$, $a_i \in K$, $b_n \in K^x$, $b_i \in K$ Betrachte $\frac{a_m}{b_n} x^{m-n} d = \frac{a_m}{b_n} x^{m-n} \left(b_n x^n + \sum_{i=0}^{n-1} b_i x^i \right) = a_m x^m + \cdots$

Also entweder $\left(f - \frac{a_m}{b_n}x^{m-n}d\right) = 0$ oder $\deg\left(f - \frac{a_m}{b_n}x^{m-n}d\right) < \deg f$.

Also setze $g := \frac{a_m}{b_n} x^{m-n}$

Theorem 1.8.4 Divisions algorithmus in K[x]

Seien $f, d \in K[x], f, d \neq 0$, so dass deg $d \leq \deg f$. Dann gibt es $q, r \in K[x]$, so dass

(i)
$$f = dq + r$$
, wobei

(ii) r = 0, oder $\deg r < \deg d$

Ferner sind q, r eindeutig durch (i) und (ii) bestimmt.

Proof Satz 1.8.4

 $f \neq 0$ und $\deg d \leq f$. Lemma 1.8.3 ergibt, dass es $g \in K[x]$ gibt, so dass f - dg = 0, oder $\deg(f - dg) < \deg f$

Wenn $f - dg \neq 0$ und $\deg(f - dg) \geq \deg d$, dann ergibt Lemma 1.8.3 $h \in K[x]$, so dass (f - dg) - dh = 0, oder $\deg(f - d(g + h)) < \deg(f - dg)$

Der deg Abstieg ist aber endlich, das heißt, nach er endlich vielen Schritten anhalten muss. die Prozedur ergibt $q \in K[x]$ und ein r = 0, oder deg r < d, und f = dq + r

Eindeutigkeit: Sei $f = dq_1 + r_1 = dq + r$ (wobei r und r_1 (ii) erfüllen)

Es folgt daraus: $d(q-q_1)=r_1-r$. Zum Widerspruch nehmen wir an, dass $q-q_1\neq 0$, dann haben wir $\deg(r_1-r)=\deg(d(q-q_1))=\deg d+\deg(q-q_1)\geq \deg d$. Jedoch ist $\deg(r_1-r)\leq \max(\deg r_1,\deg r)<\deg d\perp$

Also ist $q - q_1 = 0$, daraus folgt $(r_1 - r) = 0$, also $q_1 = q$ und $r_1 = r$

Definition 1.8.5

Seien $f, d \neq 0, f, d \in K[x]$

(i) Wir sagen d teilt f in K[x], oder f ist durch d teilbar in K[x], oder f ist ein Vielfaches von d in K[x], wenn r = 0 in Divisionsalgorithmus (DA), d.h.

$$f = dq + 0$$

(ii) In diesem Fall ist q der Quotient

1.9 Skript 9

Corollary 1.9.1

Seien $f \in K[x]$, und $c \in K$. Es gilt: (x - c) teilt f in K[x] genau dann, wenn f(c) = 0.

Proof Korollar 1.9.1

Divisionsalgorithmus $\implies \exists !q, r \in K[x]$, so dass f = (x-c)q + r, wobei r = 0 oder r < 1, i.e. $\deg r = 0$. Also ist r ein Skalarpolynom und f(c) = r. Insbesondere ist $r = 0 \iff f(c) = 0$

Definition 1.9.2

Sei $f \in K[x], c \in K$, dann ist c eine **Nullstelle von** f **in** K, wenn f(c) = 0 Abkürzung: "c ist NS von f in K"

Corollary 1.9.3

Sei $f \in K[x]$, deg f =: n, dann hat f höchstens n Nullstellen in K

Proof Korollar 1.9.3

Wir beweisen per Induktion nach $n \in \mathbb{N}_0$.

I.A.: n=0: $f=c\neq 0$, gar keine NS, wenn n=1: dann ist f=ax+c für $a\neq 0, ac\in K$ Klar gilt: $ax+c=0\iff x=\frac{-c}{a}$. Also ist $\frac{-a}{c}$ die einzige NS.

I.Annahme: Die Aussage gilt für $\forall h \in K[x] : \deg h \le n-1$

I.S.: $\deg f = n$, sei a eine NS von f in K. Dann $\exists q \in K[x]$, so dass f = (x - a)q. Also $\deg f = \deg(x - a) + \deg q \implies \deg q = \deg f - \deg(x - a) = n - 1$. Sei $b \in K$, dann ist $f(b) = 0 \iff (b - a) = 0$ oder q(b) = 0. I.Annahme $\implies q$ hat höchstens n - 1 NS in K. Daraus folgt: f hat höchstens 1 + n - 1 = n NS in K

1.9.1 Formale Ableitung

Notation (Erinnerung): Sei $f = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$ $c_i \in K$ Setze: $f^{(0)} = f = D^0 f$ (Konvention), dann $f^{(1)} := f' = c_1 + 2c_2 x + 3c_3 x^2 + \dots + nc_n x^{n-1} = D^1 f$ $f^{(2)} := f'' = D^2 f := D^1 (D^1(f))$

Note 1.9.4

Für $f, g \in K[x]$ und $c \in K$ gilt $D^1(f + cg) = D^1(f) + cD^1(g)$, d.h. $D^1 : K[x] \to K[x]$ ist ein linearer Operator. In der Tat gilt $\forall k \in \mathbb{N} : D^k := \underbrace{D \circ \cdots \circ D}_{k\text{-mal}}$ ist D^k ein linearer Operator (s. ÜB 10, LA I)

Theorem 1.9.5 Taylor's Formel

Seien Char(K) = 0. $n \in \mathbb{N}_0, a \in K, p \in K[x]$ und deg $p \le n$. Es gilt:

$$p = \sum_{i=0}^{n} p^{(i)}(a) \frac{(x-a)^{i}}{i!}$$
 (2)

Darüber hinaus sind die Koeffizienten $\frac{p^{(i)}(a)}{i!}$ eindeutig

Proof Satz 1.9.5

Sei $V = K[x] \le n$. Für i = 0, ..., n definiere

$$l_i: V \to K, l_i \in V^*$$

durch

$$l_i(p) := p^{(i)}(a) (\in K)$$

setzte
$$p_i := \frac{1}{i!}(x-a)^i \in V$$

Beh.

Es gilt $\forall i, j = 0, \dots, n$.

$$l_j(p_i) = S_{ij}$$
 (ÜB 5)

Also sind

$$(l_0,\ldots,l_n)$$
 und

$$(p_0,\ldots,p_n)$$

Dualbasen von V, V^* .

Es folgt nun aus Satz 22.8 LA I, dass

$$\forall p \in V : p = \sum_{i=0}^{n} l_i(p) p_i$$

Note 1.9.6

- (1) $1, (x-a), \dots, (x-a)^n$ sind linear unabhängig, deshalb sind die Koeffizienten in (2) eindeutig
- (2) $\operatorname{Char}(K)=0$ wird vorausgesetzt, damit $i!\neq 0 \quad \forall i=0,\ldots,n.$ Wir wollen nun Taylor's Formel ausnutzen um die Nullstellen von Polynomen weiter zu untersuchen!

Definition 1.9.7

Seien $f \in K[x], f \neq 0, c \in K$ eine Nullstelle von f.

Die Vielfachheit von c ist die größte $\mu \in \mathbb{N}$ wofür gilt: $(x-c)^{\mu}$ teilt f.

Bemerke: $1 \le \mu \le \deg f$ (u.a. Korollar 1.9.3), weil: $f = (x - c)^{\mu}g$ für geignetes $g \in K[x]$. $\deg f = \mu + \deg g$.

Theorem 1.9.8 Ableitungstest zur Berechnung der Vielfachheit einer Nullstelle

Seien $\operatorname{Char}(K) = 0$ $f \neq 0$, $\operatorname{deg} f \leq n$, and $c \in K$ eine Nullstelle von f.

Es gilt: c hat die Vielfachheit μ genau dann wenn

$$\begin{cases} f^{(k)}(c) = 0 & \text{für } 0 \le k \le \mu - 1 \text{ und} \\ f^{(\mu)} \ne 0 \end{cases}$$

Proof Satz 1.9.8

" \Longrightarrow " $(x-c)^{\mu}$ teilt f, aber $(x-c)^{\mu+1}$ teilt f nicht.

Es gibt also $g \neq 0$, so dass $f = (x-c)^{\mu}g$. Bemerke $\deg g \leq n-\mu$ und $g(c) \neq 0$. Die Taylorformel liefert für g

$$f = (x - c)^{\mu} \left(\sum_{m=0}^{n-\mu} g^{(m)}(c) \frac{(x - c)^m}{m!} \right)$$

Also:

$$f = \sum_{m=0}^{n-\mu} g^{(m)}(c) \frac{(x-c)^{\mu+m}}{m!}$$

Da die Koeffizienten von f als l. K. von $(x-c)^k$ $(0 \le k \le n)$ eindeutig sind, ergibt der

Vergleich:

$$f = \sum_{k=0}^{n} f^{(k)}(c) \frac{(x-c)^k}{k!}$$

$$\sum_{m=0}^{n-\mu} g^{(m)}(c) \frac{(x-c)^{\mu+m}}{m!} = \sum_{k=0}^{n} f^{(k)}(c) \frac{(x-c)^k}{k!}$$

$$g^{(0)}(c) \frac{(x-c)^{\mu}}{0!} + \dots + g^{(n-\mu)}(c) \frac{(x-c)^n}{(n-\mu)!} = \underbrace{\frac{f^{(0)}(c)}{0!} + \dots + \frac{f^{(\mu-1)}(c)}{(\mu-1)!}}_{-0} + \dots$$

Also

$$\frac{f^{(k)}(c)}{k!} = 0$$

für $0 \le k \le \mu - 1$ und

$$\frac{f^{(k)}(c)}{k!} = \frac{g^{(k-\mu)}(c)}{(k-\mu)!}$$

für $\mu \leq k \leq n$ Insbesondere für $k = \mu$ erhalten wir $f^{(\mu)}(c) = g(c) \neq 0$

" $\Leftarrow=$ " Wir haben

$$f = \sum_{k=u}^{n} f^{(k)}(c) \frac{(x-c)^k}{k!}$$

Also

$$f = (x - c)^{\mu} \left[\underbrace{\frac{f^{(\mu)}(c)}{\mu!} + \frac{f^{(\mu+1)}(c)}{(\mu+1)!} (x - c) + \dots + \frac{f^{(n)}(c)}{n!} (x - c)^{n-\mu}}_{:=q} \right]$$

Also
$$g(c) = \frac{f^{(\mu)}(c)}{\mu!} \neq 0$$

Also gilt

$$f = (x - c)^{\mu} q$$

mit $g(c) \neq 0$, also $(x-c)^{\mu}$ teilt f. Wir müssen noch zeigen $(x-c)^{\mu+1}$ teilt f nicht! Zum Widerspruch:

 $\exists h \in K[x] : h \neq 0 \text{ so dass } f = (x - c)^{\mu + 1}h, \text{ also}$

$$f = (x - c)^{\mu + 1}h(x - c)^{\mu}(x - c)h = (x - c)^{\mu}g$$

$$K[x]$$
 Integer $\implies g = (x - c)h$, also $g(c) = 0 \bot$

1.10 Skript 10

Definition 1.10.1

Ein K-Unterraum $M \subseteq K[x]$ ist ein **Ideal** wenn gilt: $\forall f \in K[x]$ und $g \in M$ ist $fg \in M$.

Example 1.10.2

Sei $d \in K[x]$, setzte $M := dK[x] = \{df : f \in K[x]\}$. Es gilt dK[x] ist ein Ideal.

•
$$df \in M, dg \in M, c \in K \ c(df) + dg = d(\underbrace{cf + g}_{\in K[x]})$$

•
$$f \in K[x], dg \in M = f(dg) = d(\underbrace{fg}_{\in K[x]}) \in M.$$

Definition 1.10.3

 $\langle d \rangle \coloneqq dK[x]$ heißt Hauptideal mit Erzeuger d

Example 1.10.4

$$\langle 1 \rangle = K[x], \text{ und } \langle 0 \rangle = \{0\}$$

Example 1.10.5

Seien $d_1, \ldots, d_l \in K[x]$, setze

$$M := d_1 K[x] + \cdots + d_l K[x]$$

ist ein Ideal:

- ullet M ist ein Unterraum
- Sei $p \in M, f \in K[x], p = d_1 f_1 + \dots + d_l f_l \implies pf = d_1(\underbrace{f_1 f}_{\in K[x]}) + \dots + d_l(\underbrace{f_l f}_{\in K[x]})$

Definition 1.10.6

Das Ideal $d_1K[x] + \cdots + d_lK[x] := \langle d_1, \ldots, d_l \rangle$ ist ein **endlich erzeugtes Ideal** mit Erzeugern d_1, \ldots, d_l .

Definition 1.10.7

Seien $p_1, \ldots, p_l \in K[x]$. Ein Polynom $d \in K[x]$ ist der **größte gemeinsame Teiler** von p_1, \ldots, p_l , bezeichnet mit $ggT(p_1, \ldots, p_l)$ wenn gelten

- $(1) \ \forall i: 1 \le i \le l: d|p_i|$
- (2) wenn auch $d_0 \in K[x]$ (1) erfüllt, dann $d_0|d$

Definition 1.10.8

die Polynome p_1, \ldots, p_l sind relativprim wenn $ggT(p_1, \ldots, p_l) = 1$

Theorem 1.10.9

Sei $0 \neq M \subseteq K[x]$ ein Ideal. Dann $\exists ! d \in K[x]$ normiert, so dass $M = \langle d \rangle$. Das heißt K[x] ist ein Hauptidealring.

Proof Satz 1.10.9

Existenz: Wähle $d \in M$ so, dass: $d \neq 0$, deg d ist minimal und Œ d ist normiert.

Beh.: d erzeugt M

Begründung: Sei $f \in M$, DA ergibt: f = dq + r, wobei $q, r \in K[x]$ und entweder r = 0 oder deg $r < \deg d$. Aber

$$r = \underbrace{f}_{\in M} - \underbrace{dq}_{\in M}$$

also muss r=0 (sonst würe $r\neq 0, r\in M, \deg r<\deg d\perp$). Also ist f=dq. Also ist $f\in \langle d\rangle$, also $M=\langle d\rangle$.

Eindeutigkeit: Sei $g \in K[x], g \neq 0$ g normiert so, dass M = gK[x]. Aber $d, g \in M$, also $\exists 0 \neq p, q \in K[x]$ so, dass

$$d = gp$$
 und $g = dq$,

es folgt, d = eqp. Daraus folgt deg $d = \deg d + \deg q + \deg p$. Also sind deg $p = \deg q = 0, pq$ sind Skalarppolynome. Da g, d beide normiert sind, folgt p = q = 1. Also gilt d = g

Corollary 1.10.10

Sei $0 \neq M = \langle p_1, \dots, p_l \rangle$ endlich erzeugtes Ideal von K[x] ist

(1) Der normierte Erzeuger d von M ist

$$d = \operatorname{ggT} \langle p_1, \dots, p_l \rangle$$

(2) Insbesondere wenn p_1, \ldots, p_l relativprim sind, dann ist $\langle p_1, \ldots, p_l \rangle = K[x]$

Proof Korollar 1.10.10

(1) Da $\langle d \rangle = dK[x] = \langle p_1, \dots, p_l \rangle$ und $p_i \in \langle d \rangle$ $\forall i = 1, \dots, l$ folgt $d|p_i \quad \forall i = 1, \dots, l$. Also d ist gT.

Sei $d_0 \in K[x]$ so dass $d_0|p_i$ i = 1, ..., l. Es folgt $\exists g_i \in K[x], \forall i = 1, ..., l$ so, dass

$$p_i = d_0 g_i$$

Nun ist $d \in \langle p_1, \dots, p_l \rangle$, also $d = p_1q_1 + \dots + p_lq_l$ für geeignete $q_i \in K[x]$. Also $d = d_0g_1q_1 + \dots + d_0g_lq_l = d_0\underbrace{[g_1q_1 + \dots + g_lq_l]}_{\in K[x]}$ Also $d_0|d$. Also $d = \operatorname{ggT}(p_1, \dots, p_l)$

(2) folgt unmittelbar aus (1)

1.10.5 Primzerlegung (Faktorisierung)

Definition 1.10.11

Sei $f \in K[x]$ ist **reduzibel über** K (oder **reduzibel in** K[x]) wenn es $g, h \in K[x]$ gibt mit $\deg g \geq 1$, $\deg h \geq 1$ und f = gh. Sonst ist f **irreduzibel** über K. Wenn irredzibel und $\deg f \geq 1$, nennen wir f **Primpolynom**

Note

 $f \text{ reduzibel} \implies \deg f \ge 2$

Example 1.10.12

 $f = x^2 + 1$, f ist irreduzibel über \mathbb{R} (über \mathbb{Q}) (weil f keine reele Nullstellen hat), aber reduzibel über \mathbb{C} . Weil $\sqrt{-1}$, $-\sqrt{-1} \in \mathbb{C}$ bzw. $i, -i \in \mathbb{C}$ sind komplexe Nullstellen.

Theorem 1.10.13

Seien $p, f, g \in K[x]$ und p ist Primpolynom. Aus $p|fg \implies p|f \lor p|g$.

Proof Satz 1.10.13

Setze d := ggT(f, p). Œ ist p normiert. Außerdem ist p irreduzibel. Es folgt die einzigen normierten Teiler von p sind 1 oder p. Insbesondere d = 1 oder d = p Aus Korollar 1.10.10 folgt außerdem, dass $\exists p_0, f_0 \in K[x]$ so, dass $d = p_0p + f_0f$.

d = p: dann d|f, da d = ggT(f, p)

d=1: dann ist $1=p_0p+f_0f$, also $g=p(p_0g)+f_0(fg)$ Es gilt: $p|p(p_0g)$ und p|fg (per Def.). Also p|g.

Corollary 1.10.14

Seien $f_1, \ldots, f_l \in K[x]$ sei p Primpolynom. Wenn $p|f_1 \cdots f_l \implies \exists i \in \{1, \ldots, l\}$ so, dass $p|f_i$.

Proof Korollar 1.10.14

Induktion nach l. l=2 folgt aus Satz 1.10.13. Induktionsannahme für l-1. Induktionsschritt: $p|(f_1\cdots f_{l-1})f_l\implies p|(f_1\cdots f_{l-1})f_l\implies p|(f_1\cdots f_{l-1})f_l\implies \dots$

Theorem 1.10.15

Sei $f \in K[x]$, f normiert, $\deg f \geq 1$. Dann ist f ein Produkt von normierten Primpolynomen. Die Darstellung ist eindeutig (bis auf Umnummerierung).

Proof Satz 1.10.15

Existenz: Sei deg f = n, Induktion nach n

I.A.: $\deg f = 1 \implies f$ irreduzibel. Es ist nichts weiter zu zeigen.

I.S.: n > 1, ist f irreduzibel, dann ist nichts weiter zu zeigen. Ist f reduzibel, $f = gh \deg g \ge 1$, $\deg h \ge 1$, also $\deg g < n$ und $\deg h < n$. Induktionsannahme gilt für g und

h

$$f = \underbrace{g}_{\text{Prod. v. Prim. Prod. v. Prim.}} \underbrace{h}_{\text{Prim. Prod. v. Prim.}}$$

Eindeutigkeit: Sei $f = p_1 \cdots p_l = q_1 \cdots q_s$, p_i, q_i alle normierte Primpolynome. Außerdem $p_l|q_1 \cdots q_s$. Es folgt aus Kor. 1.10.14 $\exists j \in \{1,\ldots,s\}$ so dass $P_l|q_j$. Aber p_l, q_j sind beide numerierte Primpolynome, es folgt $p_l = q_j$. Œ nach Umnommerierung $p_l = q_s$ Betrachte

$$P := p_1 \cdots p_{l-1} = q_1 \cdots q_{s-1}$$

Aber $\deg(P) < n$

I.A. $\implies p_1, \dots, p_{l-1}$ sind eine Umnummerierung der q_1, \dots, q_{s-1} (insbesondere l=s).

2 Multilinearformen und Determinanten

2.11 Skript 11

2.11.6 Die symmetrischen Gruppen S_n

Definition 2.11.0 Notation

für $n \in \mathbb{N}$, setze $\mathbb{N}_n := \{1, \dots, n\}$

Definition 2.11.1

Sei $n \in \mathbb{N}$. Eine **Permutation** auf \mathbb{N}_n ist eine Bijektion $\alpha : \mathbb{N}_n \to \mathbb{N}_n$. Wir setzen $S_n := \{\alpha : \alpha \text{ ist eine Permutation auf } \mathbb{N}_n\}$. Wir versehen S_n mit Verknüpfung:

$$\circ: S_n \times S_n \to S_n, (\alpha, \beta) \mapsto \alpha \circ \beta$$

(s. ÜB LAI (wohldefiniert))

Bezeichnungen:

- (i) $\alpha\beta = \alpha \circ \beta$
- (ii) $\alpha \in S_n$ schreibe

$$\alpha \coloneqq \begin{pmatrix} 1 & \dots & n \\ \alpha(1) & \dots & \alpha(n) \end{pmatrix}$$

"Zwei Zeilen Darstellung" einer Permutation

- (iii) (S_n, \circ) heißt die Symmetrische Gruppe auf n Elemente Warum ist (S_n, \circ) eine Gruppe?
 - Die Identitätsabbildung $\varepsilon \mathbb{N}_n \to \mathbb{N}_n$ definiert durch $\varepsilon(i) = i$. $\varepsilon \in S_n$ ist das neutrale Element für (S_n, \circ) .
 - $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$, also $(\alpha \beta) \gamma = \alpha(\beta \gamma) \ \forall \alpha, \beta, \gamma \in S_n$.
 - Bijektive Abbildungen sind invertierbar, d.h. $\forall \alpha \in S_n \exists \beta = \alpha^{-1}$ so, dass $\alpha \beta = \beta \alpha = \varepsilon$.

Example 2.11.2

Die Permutatio $\alpha \in S_n$ mit $\alpha(1) = 3, \alpha(2) = 5, \alpha(3) = 4, \alpha(4) = 1, \alpha(5) = 2$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$

Definition 2.11.3

- (i) Sei $\alpha \in S_5$. Wenn es $a_1, \ldots, a_m \in \mathbb{N}_n$ (verschiedene Elemente) gibt so, dass
 - (i) $\alpha(a_i) = a_{i+1} \ \forall 1 \le i \le m-1$
 - (ii) $\alpha(a_m) = a_1$ und

(iii) $\alpha(x) = x \ \forall x \notin \{a_1, \dots, a_m\}, x \in \mathbb{N}_n$

dann heißt α ein m-Zyklus

Notation: In diesem Fall schreiben wir $\alpha = \begin{pmatrix} a_1 & a_2 & \dots & a_m \end{pmatrix}$ Zyklus Notation "Ein-zeilige Bezeichnung"

- (ii) Sonderbezeichung: $\varepsilon = (1)$
- (iii) Ein 2- Zyklus heißt eine Transposition.

Example 2.11.4

(i)

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

Zwei Zeilen Notation $\alpha = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}$

(ii) $\alpha \in S_{10}$, $\alpha = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}$. Für $i = \{3, 5, 6, 7, 8, 9, 10\}$ gilt $\alpha(i) = i$

Definition 2.11.5

(i) Sei $i \in \mathbb{N}_n, \alpha \in S_n$ so, dass

$$\alpha(i) = i$$
.

Dann heißt i ein **Fixpunkt** für α

(ii) Sei $\alpha, \beta \in S_n$ sind disjunkt, wenn

$$\{x: x \in \mathbb{N}_n : \alpha(x) \neq x\} \cap \{x: x \in \mathbb{N}_n : \beta(x) \neq x\} = \emptyset$$

Example 2.11.6

 $\sigma, \tau, \gamma \in S_4$

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix}$$

eine Transposition

$$\tau := \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 4 \end{pmatrix}$$

eine Transposition

$$\gamma := \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix}$$

eine Transposition.

 σ, τ disjunkt

 σ, γ nicht disjunkt

 τ, γ nicht disjunkt

Lemma 2.11.7

Seien $\alpha_1, \ldots, \alpha_k \in S_n$ paarweise disjunkt, und $\tau \in S_n$. Dann sind die Permutationen $(\alpha_1 \cdots \alpha_k)$ und τ disjunkt genau dann, wenn $\forall i = 1, \ldots, k$ ist α_i und τ disjunkt

Theorem 2.11.8

Jede Permutation $\sigma \in S_n$ hat eine Darstellung als Produkt $\sigma = \alpha_1 \cdots \alpha_m$, wobei $\alpha_1 \cdots \alpha_m \in S_n$ sind paarweise disjunkte Zyklen

Proof

Wir werden die Aussage per Induktion nach $\Gamma(\sigma) := |\{a \in \mathbb{N}_n : \sigma(a) \neq a\}| \ (\Gamma(\sigma) \in \mathbb{N}_0)$

- **I.A.** $\Gamma(\sigma) = 0$, dann ist $\sigma = (1)$. passt
- **I.V.** die Aussage gelte für alle Permutationen $\beta \in S_n$ wofür $\Gamma(\beta) < k$
- I.S. Setze $k := \Gamma(\sigma) > 0$. Sei $i_0 \in \mathbb{N}_n$ so, dass $\sigma(i_0) \neq i_0$ Erinnerung an Notation: Für $s \in \mathbb{N}$, $\sigma \in S_n$, schreibe $\sigma^s = \underbrace{\sigma \cdots \sigma}_{s\text{-mal}} = \underbrace{\sigma \cdots \sigma}_{s\text{-$

Für $s \in \mathbb{N}$ setze

$$i_s := \sigma^s(i_0)$$

Da $\{i_s : s \in \mathbb{N}\} \subset \mathbb{N}_n$ ist die Menge endlich. Folglich gibt es $p < q \in \mathbb{N}$ so, dass $i_p = i_q$, insbesondere gilt

$$\sigma^{q-p}(i_0) = i_0$$

$$(\operatorname{da} \sigma^p(i_0) = \sigma^q(i_0) \implies \sigma^0(i_0) = \sigma^{q-p}(i_0))$$

Also ist $\{l \in \mathbb{N}, \sigma^l(i_0) = i_0\} \neq \emptyset$. Sei $\rho \geq 2$ das kleinste Element davon. Setze $r := \rho - 1$. Die Minimalität von ρ impliziert, dass $|i_0, \dots, i_r| = \rho$ (weil $i_j = i_l$ für $0 \leq j < l \leq r$ dann wäre $\sigma^{l-j}(i_0) = i_0$ also l-j < p - Widerpruch). Analog gilt:

$$\forall a \in \{i_0, \dots, i_r\} \text{ gilt } \sigma(a) \neq a. \tag{3}$$

Betrachte den Zyklus $\tau := (i_0 \ldots i_r)$. d.h.

$$\tau(i_l) = \sigma(i_l) \text{ für } 0 \le l \le r. \tag{4}$$

Außerdem

$$\forall a \in \mathbb{N}_a \text{ gilt} : \tau(a) = a \iff a \notin \{i_0, \dots, i_r\}.$$
 (5)

Aus (3) folgt

$$\forall a \in \mathbb{N}_n : \sigma(a) = a \implies a \notin \{i_0, \dots, i_r\}$$
 (6)

Aus (4), (5), (6) folgt

$$\left\{a \in \mathbb{N}_n, \tau^{-1}\sigma(a) = a\right\} = \left\{a \in \mathbb{N}_n : \sigma(a) = a\right\} \cup \left\{i_0, \dots, i_r\right\} \tag{7}$$

Also $\Gamma(\tau^{-1}\sigma) < \Gamma(\sigma)$.

I.V. anwenden auf $\tau^{-1}\sigma$.

$$\tau^{-1}\sigma = \alpha_1 \cdots \alpha_m \implies \sigma = \tau \cdot \alpha_1 \cdots \alpha_m$$

$$\forall i = 1, \dots, m \ \alpha_i \ \text{Zyklus}$$

2.12 Skript 12

Example 2.12.0

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix}$$

 $\sigma \in S_5$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 4 \end{pmatrix}$$

Theorem 2.12.1

Jede Permutation $\sigma \in S_n, n \geq 2$ ist Produkt von Transpositionen.

Bemerke: n = 1 $S_1 = \{(1)\}.$

Proof Satz 2.12.1

Das neutrale Element $(1) = (1 \ 2)(2 \ 1)$.

Sei nun $\sigma \neq (1)$, $\sigma \in S_n$ wegen Satz 2.11.8 genügt es zu zeigen dass ein Zyklus ein Produkt von Transpositionen, also $\times \sigma = (i_1 \dots i_r)$ mit $r \geq 2$.

Wenn r = 2, passt.

Jetzt r > 2.

Beh.:
$$(i_1 \ i_2 \ \dots \ i_r) = (i_1 \ i_r) (i_1 \ i_{r-1}) \cdots (i_1 \ i_3) (i_1 \ i_2).$$

Bew.: Wir berechnen

$$\left(\begin{pmatrix} i_1 & i_r \end{pmatrix} \underbrace{\begin{pmatrix} i_1 & i_{r-1} \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_3 \end{pmatrix}}_{=i_r} \underbrace{\begin{pmatrix} i_1 & i_2 \end{pmatrix} \begin{pmatrix} i_r \end{pmatrix}}_{=i_r} = \begin{pmatrix} i_1 & i_r \end{pmatrix} (i_r) \right)$$

Für i_s mit $1 \le s < r$ gilt:

Example 2.12.2

$$(1 \ 2 \ 3) \in S_4$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$$

aber auch gilt

$$(1 \ 2 \ 3) = (1 \ 3) (4 \ 2) (1 \ 2) (1 \ 4)$$

⇒ Parität eindeutig.

Wir werden zeigen, dass die Parität der Darstellung eindeutig ist! Dafür brauchen wir

Definition 2.12.3

Sei $b \in S_n$ und $f : \mathbb{Z}^n \to \mathbb{Z}$ eine Abbildung. Wir definieren $\sigma f : \mathbb{Z}^n \to \mathbb{Z}$ folgend:

$$(\sigma f)(x_1,\ldots,x_n) \coloneqq f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

Example 2.12.4

 $f: \mathbb{Z}^3 \to \mathbb{Z}$ definiert durch

$$f(x_1, x_2, x_3) \coloneqq x_1 x_2 + x_3, \sigma \in S_3 \quad \sigma \coloneqq \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}.$$

$$\sigma f: \mathbb{Z}^3 \to \mathbb{Z}, \sigma f(x_1, x_2, x_3) = f(x_2, x_3, x_1) = x_2 x_3 + x_1$$

Lemma 2.12.5

Sei $\sigma, \tau \in S_n, f, g : \mathbb{Z}^n \to \mathbb{Z}$ $(f, g \ Abbildungen).$

Es gelten:

(i)
$$\sigma(\tau f) = (\sigma \tau) f$$

(ii)
$$\sigma(fg) = (\sigma f)(\sigma g)$$
.

 $Bew.: \ddot{U}A.$

Theorem 2.12.6 Eindeutigkeit der Parität

Es gibt eine wohldefinierte Abbildung

$$sign: S_n \to \{1, -1\}$$

so, dass:

- (a) Für jede Transposition $\tau \in S_n$ gilt $sign(\tau) = -1$
- (b) Für alle $\sigma, \tau \in S_n$ gilt

$$sign(\sigma \tau) = sign(\sigma) sign(\tau)$$

Diese Abbildung ist eindeutig. Darüber hinaus gilt $\forall \sigma \in S_n : sign(\sigma) = 1$ genau dann, wenn σ ist Produkt von m Transpositionen mit m gerade, und

$$sign(\sigma) = -1$$

genau dann, wenn σ ist Produkt von m Transpositionen mit m ungerade.

Proof Satz 2.12.6

Sei $\Delta: \mathbb{Z}^n \to \mathbb{Z}$ die Abbildung

$$\Delta(x_1, \dots, x_n) := \prod_{1 \le i \le j \le n} (x_j - x_i) \tag{8}$$

Beh.: Für eine Transposition $\tau \in S_n$ gilt

$$\tau \Delta = -\Delta$$

Bew.: In der Tat, sei $\tau = (rs) \ r < s$. Aus Lemma 2.12.5 (ii) folgt

$$\tau \Delta(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} \tau(x_j - x_i)$$
(9)

• Offensichtlich, wenn $i, j \notin \{r, s\}$ ist

$$\tau(x_j - x_i) = (x_{\tau(j)} - x_{\tau(i)}) = (x_j - x_i)$$

• Für den Faktor $(x_s - x_r)$ gilt

$$\tau(x_s - x_r) = (x_r - x_s) = -(x_s - x_r)$$

• Die anderen Faktoren können wir paaren wie folgt:

$$(x_k - x_s)(x_k - x_r)$$
 wenn $k > s$
 $(x_s - x_k)(x_k - x_r)$ wenn $r < k < s$
 $(x_s - x_k)(x_r - x_k)$ wenn $k < r$

Jedes Produkt ist von τ unberührt. Alles zusammen ein Vergleich der Faktoren in (8) bzw. (9) ergibt

$$au\Delta = -\Delta$$

Sei $\sigma \in S_n$ wegen Satz 2.12.1 schreibe $\sigma = \tau_1 \cdots \tau_m$ als Produkt von Transpositionen. Aus Lemma 2.12.5 (i) folgt

$$\sigma\Delta = (\tau_1 \cdots \tau_m)\Delta = \tau_1 (\tau_2 (\cdots (\tau_m \Delta)))$$

Ferner folgt aus der Behauptung, dass

$$\tau_1 \left(\tau_2 \left(\cdots \left(\tau_m \Delta \right) \right) \right) = (-1)^m \Delta$$

Wir sehen also: entweder

 $\sigma \Delta = \Delta$ genau dann, wenn m gerade

 $\sigma \Delta = -\Delta$ genau dann, wenn m ungerade

Für $\sigma \in S_n$ setze

$$sign(\sigma) = 1$$

wenn $\sigma \Delta = \Delta$.

 $\sigma \in S_n$ setze

$$sign(\sigma) = -1$$

wenn $\sigma \Delta = -\Delta$

Definition 2.12.7

Wir nennen σ genau dann gerade, wenn $sign(\sigma) = 1$, bzw, wir nennen σ genau dann ungerade, wenn $sign(\sigma) = -1$

Betrachte folgende Untermenge von S_n .

 $A_n := \{ \sigma : \sigma \text{ ist eine gerade Permutation} \}$

Corollary 2.12.9

 A_n ist eine Untergruppe und

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$$

Proof Korollar 2.12.9

 $(1) \in A_n$.

• Seien $\sigma, \tau \in A_n$ zu zeigen $\sigma \tau \in A_n$: Wir berechnen:

$$\operatorname{sign}(\sigma\tau) \stackrel{\text{Satz 2.12.6 b}}{=} \operatorname{sign}(\sigma) \operatorname{sign}(\tau) = 1 \cdot 1 = 1$$

• Sei $\sigma \in A_n$

$$\sigma = \tau_1 \cdots \tau_m$$

wobei m gerade ist.

Wir berechnen:

$$\sigma^{-1} = \tau_m^{-1} \cdots \tau_1^{-1}$$

Nun ist die Inverse von einer Transposition wieder eine Transposition (weil $\tau = \begin{pmatrix} i_1 & i_2 \end{pmatrix} \implies \tau^{-1} \begin{pmatrix} i_2 & i_1 \end{pmatrix}, i_1, i_2 \in \mathbb{N}_n$

2. Beweis

$$\sigma = \tau_1 \cdots \tau_m$$

m gerade.

$$1 = \operatorname{sign}(1) = \operatorname{sign}(\sigma \sigma^{-1}) = \operatorname{sign}(\sigma) \operatorname{sign}(\sigma^{-1}) = \operatorname{sign}(\sigma^{-1})$$

Wir wissen

$$S_n = A_n \cup U \quad (X \cup Y = X \cup Y, X \cup Y \implies |X \cap Y| = 0)$$

wobei $U = \{ \sigma : \sigma \text{ ist ungerade} \}$

$$|S_n| = |A_n| + |U|$$

Wir zeigen $|A_n| = |U|$: Betrachte die Abbildung

$$A_n \to U, \sigma \mapsto \underbrace{\begin{pmatrix} 1 & 2 \end{pmatrix} \sigma}_{\text{sign} \begin{pmatrix} 1 & 2 \end{pmatrix} = -1}$$

Diese Abbildung ist bijektiv, also

$$|A_n| = |U|$$
.

Definition 2.12.10

Wir nennen A_n die alternierende Gruppe.

2.13 Skript 13

2.13.7 Multilinear Formen

Sei K ein Körper und U und V K-Vektorräume

$$\beta: U \times V \to K, (x, y) \mapsto \beta(x, y)$$

Die Abbildung β ist eine bilineare Funktionale (Form) falls gelten. $\forall x, x_1, x_2 \in U, \forall y, y_1, y_2 \in V, \forall c_1, c_2, d_1, d_2 \in K$

(1)
$$\beta(c_1x_1 + c_2x_2, y) = c_1\beta(x_1, y) + c_2\beta(x_2, y)$$

(2)
$$\beta(x, d_1y_2 + d_2y_2) = d_1\beta(x, y_1) + d_2\beta(x, y_2)$$

Example 2.13.2

Betrachte

$$V \times V^* \to K, (x, f) \mapsto [x, f] \coloneqq f(x)$$

ist bilineare

Definition Notation

 $L^{(2)}\left(U\times V,K\right)=\operatorname{der}K$ -Vektorraum der bilinearen Formen auf $U\times V$ versehen mit den Verknüpfungen

$$(\underbrace{c_1\beta_1 + c_2\beta_2}_{\in L^{(2)}})\underbrace{(x,y)}_{\in U\times V} := c_1\beta_1(x,y) + c_2\beta_2(x,y)$$

wie üblich

Definition 2.13.3

Seien $m \in \mathbb{N}, V_1, \dots, V_m$ K-VR. Eine Abbildung

$$\mu: V_1 \times \cdots \times V_m \to K$$

ist eine m-lineare Funktionale (m-lineare Form oder multilineare Funktionale vom Grad m) Wenn $\forall i \in \{1, ..., m\}$ gilt $\forall \alpha_i, \gamma_i \in V_i, c \in K$

$$\mu(\alpha_1,\ldots,c\alpha_i+\gamma_i,\ldots,\alpha_m)=c\mu(\alpha_1,\ldots,\alpha_i,\ldots,\alpha_m)+\mu(\alpha_1,\ldots,\gamma_i,\ldots,\alpha_m)$$

Definition Notation

 $L^{(m)}(V_1 \times \cdots \times V_m, K) = K$ -VR der *m*-linearen Formen.

Note 2.13.4

Ansatz wie oben, wenn μ multilinear ist, dann gilt

$$\mu(\alpha_1,\ldots,\alpha_i,\ldots,\alpha_m)=0$$

falls $\alpha_i = 0$

2.13.8 Alternierende Multilineare Formen auf K^n

Definition 2.13.5

Sei $n \in \mathbb{N}$ und $V = K^n$ Eine *n*-lineare Form auf

$$\delta: \underbrace{K^n \times \cdots \times K^n}_{n\text{-mal}} \to K$$

ist **alternierend**, wenn: $i, j \in \{1, ..., n\}$ mit $i \neq j$ existieren mit $Z_i = Z_j$, dann $\delta(z_1, ..., z_n) = 0$ (für $z_1, ..., z_n \in K^n$)

Definition Konvention

: δ wird auch als Abbildung auf $K^{n\times n}=\mathrm{Mat}_{n\times n}(K)$ $\delta(A)=\delta(z_1,\ldots,z_n)$ $A\in M_{n\times n}(K)$ wobei

$$A = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$

Lemma 2.13.6

Sei δ alternierend. Es gilt

- (i) z_1, \ldots, z_n sind linear abhängig $\implies \delta(z_1, \ldots, z_n) = 0$
- (ii) $\delta(z_1,\ldots,z_i,\ldots,z_i,\ldots,z_n) = -\delta(z_1,\ldots,z_i,\ldots,z_i,\ldots,z_n)$
- (iii) Allgemeiner gilt

$$\delta\left(z_{\pi(1)},\ldots,z_{\pi(n)}\right) = \operatorname{sign}(\pi)\delta(z_1,\ldots,z_n)$$

 $mit \ \pi \in S_n$

Proof Lemma 2.13.6

(i) Œ nehmen wir an lineare Abhängigkeit

$$\implies z_n = \sum_{i=1}^{n-1} c_i z_i$$

für $c_1, \ldots, c_{n-1} \in K$. Wir berechnen

$$\delta\left(z_1, \dots, z_{n-1}, \sum_{i=1}^{n-1} c_i z_i\right) = \sum_{i=1}^{n-1} c_i \delta(z_1, \dots, z_{n-1}, z_n) = 0$$

(ii) wir berechnen

$$0 = \delta(z_1, \dots, z_i + z_j, \dots, z_j + z_i, \dots, z_n)$$

$$= \delta(z_1, \dots, z_i, \dots, z_j + z_i, \dots, z_n) + \delta(z_1, \dots, z_j, \dots, z_j + z_i, \dots, z_n)$$

$$= \delta(z_1, \dots, z_i, \dots, z_j, \dots, z_n) + \underbrace{\delta(z_1, \dots, z_i, \dots, z_i, \dots, z_n)}_{=0}$$

$$+ \underbrace{\delta(z_1, \dots, z_j, \dots, z_j, \dots, z_n)}_{=0} + \delta(z_1, \dots, z_j, \dots, z_i, \dots, z_n)$$

$$= \delta(z_1, \dots, z_i, \dots, z_j, \dots, z_n) + \delta(z_1, \dots, z_j, \dots, z_i, \dots, z_n)$$

Note 2.13.7

- (1) $\operatorname{Char}(K) \neq 2$ dann gilt: Sei δ eine m-lineare Form auf K^n so, dass Lemma 2.13.6 (ii) gilt, dann ist δ alternierend.
- (2) $\operatorname{Char}(K) = 2 \ \delta : \mathbb{F}_2 \to \mathbb{F}_2, \delta \left((a,b), (c,d) \right) \coloneqq ac + bd$ ist ein Gegenbeispiel!

2.14 Skript 14

Sei δ eine alternierende lineare Form auf K^n (laut Def 2.13.5 auch als $\delta: M_{n \times n}(K) \to K$ auffassen). Sei $A \in M_{n \times n}(K)$

$$A = \begin{pmatrix} z_1 \\ \dots \\ \vdots \\ z_n \end{pmatrix}$$

Lemma 2.14.1

Sei e eine elementare Zeilenumformung Es gelten

- (i) $\delta(e(A)) = -\delta(A)$, wenn e von Typ 1 ist.
- (ii) $\delta(e(A)) = c\delta(A)$, wenn e von Typ 2 ist.
- (iii) $\delta(e(A)) = \delta(A)$, wenn e von Typ 3 ist.
- (iv) Allgemeiner gilt: $\forall c \in K : \delta(cA) = c^n \delta(A)$

Proof Lemma 2.14.1

Wir berechnen $\delta(e(A))$:

- (i) $\delta(z_1 + cz_2, z_2, \dots, z_n) = \delta(z_1, z_2, \dots, z_n) + c\delta(z_2, z_2, z_3, z_4, \dots, z_n) = \delta(z_1, \dots, z_n)$
- (ii) Folgt aus Lemma 2.13.6
- (iii) Folgt aus n-Linearität
- (iv) $\delta(cz_1, ..., cz_n) = c\delta(z_1, cz_2, ..., cz_n) = c^2\delta(z_1, z_2, cz_3, ..., cz_n) = \cdots = c^n\delta(z_1, ..., z_n)$

Lemma 2.14.2

Für jede Matrix $A \in M_{n \times n}(K)$ gibt es $\triangle_A \in K^x$, \triangle_A hngt nur von A ab, so dass

$$\delta(A) = \triangle_A \delta(r. z. s. F.(A))$$

Proof Lemma 2.14.2

 \triangle_A ergibt sich durch wiederholte Anwendung von Lemma 2.14.1. Wir bekommen \triangle_A ist ein Produkt der Gestalt

$$(-1)^l c_1 \cdots c_k$$

für geeignete $l, k \in \mathbb{N}_0$ und $c_1, \ldots, c_k \in K^x$

Note 2.14.3

(Erinnerung: Skript 7 LA I Bemerkng 7.3)

Für $A \in M_{n \times n}(K)$ Dann gilt: Entweder

Fall 1: r. Z. S. F.(A) hat eine Null Zeile, oder

Fall 2: r. Z. S. F.(A) = I_n .

Also erhalten wir auch iher eine Dichotomie:

Entweder

Fall 1: $\delta(A) = \triangle_A \cdot 0 = 0$, oder

Fall 2: $\delta(A) = \triangle_A \delta(I_n)$

Corollary 2.14.4

 $\delta \neq 0$ genau dann, wenn $\delta(I_n) \neq 0$

Proof Korollar 2.14.4

" **⇐=**": klar

" \Longrightarrow ": $\delta(I_n) = 0 \implies \delta(A) = 0$ in Fall 1 und Fall 2 in Bemerkung 2.14.3

Corollary 2.14.5

Wir nehmen an, dass $\delta \neq 0$. Sei $A \in M_{n \times n}(K)$

Es gilt: $\delta(A) \neq 0$ genau dann, wenn A invertierbar ist.

Proof Korollar 2.14.5

Folgt aus Lemma 2.14.2 und Korollar 2.14.4: weil A invertierbar \iff r. Z. S. F. $(A) = I_n$ (Skript 9 LA I, Satz 9.8)

Definition 2.14.6 Definition und Notation

 $\mathbb{A} := \operatorname{alt}^{(n)}(K^n) := \operatorname{der} \operatorname{Unterraum} \operatorname{von} L^{(n)}(K^n \times \cdots \times K^n, K) \operatorname{von} n$ -linear alternierenden Formen auf K^n

 $\mathbb{A} = \{\delta : \delta n \text{-linear alt. auf } K^n\} \subseteq L^{(n)} (K^n \times \cdots \times K^n, K)$

Corollary 2.14.8

Seien $\delta_1, \delta_2 \in \mathbb{A}$. Es gilt: $\delta_1 = \delta_2$ genau dann, wenn

$$\delta_1(I_n) = \delta_2(I_n)$$

(ooder $\delta_1(e_1,\ldots,e_n)=\delta_2(e_1,\ldots,e_n)$

Proof Korollar 2.14.8

Sei $\delta_1(I_n) = \delta_2(I_n)$, so dass

$$(\delta_1 - \delta_2)(I_n) = \delta_1(I_n) - \delta_2(I_n) = 0$$

Es folgt nun aus Kor. 2.14.4, dass

$$\delta_1 - \delta_2 = 0$$

also

$$\delta_1 = \delta_2$$

Corollary 2.14.9

 $\dim\left(\mathbb{A}\right) \leq 1$

Proof Korollar 2.14.9

 $\dim (\mathbb{A}) = 0$, passt

Ansonsten $\delta_1 \neq 0, \delta_1 \in \mathbb{A}$, wir nehmen δ_1 fest.

Sei $\delta_2 \in \mathbb{A}$, Sei $A \in M_{n \times n}(K)$ wie im Fall 2 von Bemerkung 2.14.3. Wir berechnen

$$\delta(A) = \triangle_A \delta_2(I_n) = \triangle_A \frac{\delta_2(I_n)}{\delta_1(I_n)} \delta_1(I_n) \tag{*}$$

Setze $d := \frac{\delta_2(I_n)}{\delta_1(I_n)} \in K$

Es folgt:

$$\delta_2(A) = d\left(\triangle_A \delta_1(I_n)\right) = d\delta_1(A), d \in K$$

Wir werden nun zeigen, dass es $\delta \in \mathbb{A}$ gibt mit $\delta(I_n) = 1$ wegen Korollar 2.14.8 ist dann diese δ notwendig eindeutig. Sobald wir δ gefunden haben, wissen wir

$$\dim\left(\mathbb{A}\right) = 1$$

Ziel: zu zeigen $\exists \delta \in \mathbb{A} \text{ so, dass } \delta(I_n) = 1.$

Formelberechnung:

Sei $\delta \in \mathbb{A}$ und $A \in M_{n \times n}(K)$ schreiben

$$A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$$

$$a_{ij} \in K \forall i, j$$

$$A = \begin{pmatrix} z_1 \\ \dots \\ \vdots \\ z_n \end{pmatrix}$$

wobei, $\forall i: 1 \leq i \leq n, z_i$ die *i*-te Zeile der Matrix A.

Sei e_1, \ldots, e_n die Standard Basis von K^n . Sir schreiben $\forall i: 1 \leq i \leq n$

$$z_i \coloneqq \sum_{j_i=1}^n a_{ij_i} e_{j_i}$$

(die eindeutige Darstellung von z_i in der Standardbasis). Wir berechnen:

$$\delta(A) = \delta\left(\sum_{j_1=1}^n a_{ij_1} e_{j_1}, \dots, \sum_{j_n=1}^n a_{nj_n} e_{j_n}\right) = \sum_{j_1,\dots,j_n=1}^n a_{1j_1} \cdots a_{nj_n}$$
 (**)

Prüfen!!

Für jeden Summand in (**) betrachte die Abbildung

$$\{1,\ldots,n\}\to\{1,\ldots,n\}\,,i\mapsto j_i$$

- Wenn solch eine Abbliidung **nicht** injektiv ist, dann gibt es eine Widerholung in (j_1, \ldots, j_n) und entsprechend ist der Summand = 0 (weil δ alternierend ist!)
- Die abbildung (für einen gegebenen Summand in (**)) ist injektiv, dann ist sie eine Permutation $\pi \in S_n$ und damit im Summand in (**) erhalten wir:

$$\delta(e_{j_1}, \dots, e_{j_n}) = \delta\left(e_{\pi(1)}, \dots, e_{\pi(n)}\right) \stackrel{Lem.2.13.6}{=} \operatorname{sign}\left(\pi\right) \delta\left(e_1, \dots, 1_n\right).$$

Also können wir nun (**) umschreiben:

$$(**) = \sum_{\pi \in S_n} \operatorname{sign}(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)} \delta(I_n)$$
$$= \delta(I_n) \sum_{\pi \in S_n} \operatorname{sign}(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)}$$

Wir sehen also dass wenn wir $\delta(I_n) = 1$ setzen, dann bekommen wir

$$\delta(A) = \operatorname{sign}(\pi) \prod_{i=1}^{n} a_{i\pi(i)} \det$$

Wir müssen nur noch prüfen, dass det eine n-lineare alternierende Form definiert!

Definition Notation

$$A = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$

$$\delta: K^n \times \cdots \times K^n$$

$$\delta(z_1, \dots, z_n)$$

$$\delta(z_1 + dz'_1, z_2, \dots, z_n) \ d \in K$$

$$A' = \begin{pmatrix} z'_1 \\ \vdots \\ z'_n \end{pmatrix}$$

$$A' = \begin{pmatrix} z_1' \\ \vdots \\ z_n' \end{pmatrix}$$

Theorem 2.14.10

Die Formel (det) definiert eine n-lineare alternierende Form δ mit $\delta(I_n) = 1$.

Proof Satz 2.14.10

 $\times n \geq 2$.

 $z_1 + dz'_1 = [a_{11} + da'_{11} \cdots a_{1n} + da'_{1n}]$. Also müssen wir berechnen

$$sign(\pi) \left(\left(a_{1\pi(1)} + da'_{1\pi(1)} \right) a_{2\pi(1)} \cdots a_{n\pi(n)} \right)$$

= $sign(\pi) \left(\left(a_{1\pi(1)} \cdots a_{n\pi(n)} \right) + d \left(a'_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)} \right) \right)$

usw. ÜB

• alternierend? Sei $z_1 = z_2$, zu zeigen $\delta(A) = 0$ $z_1 = z_2$ i.e. $a_{1j} = a_{2j} \ \forall i \leq j \leq n$, i.e. $a_{i\pi(j)}=a_{2\pi(j)} \ \forall \pi \in S_n$. Wir berechnen $\delta(A)$ (Wie in der Formel (det)) (mithilfe der Angambe $S_n = A_n \cup A_n \begin{pmatrix} 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \end{pmatrix} \in S_n$

$$\delta(A) = \underbrace{\sum_{\pi \in A_n} \operatorname{sign}(\pi) \left(a_{1\pi(1)} a_{2\pi(2)} \cdots a_{n\pi(n)} \right)}_{I} + \underbrace{\sum_{\pi \in A_n} \operatorname{sign}\left(\pi \begin{pmatrix} 1 & 2 \end{pmatrix}\right)}_{I} \left(a_{1\pi(1-2)(1)} a_{2\pi(1-2)(2)} \cdots a_{n\pi(1-2)(n)} \right)}_{II}$$

$$= I + II$$

$$= 0$$

• zu zeigen $\delta(I_n) = 1$. Sei A diagonal, also $i \neq j \implies a_{ij} = 0$. Die $\forall i, j = 1, \dots, n$ einzige $\pi \in S_n$, wofür der Summand in der (det) Formel $\neq 0$, ist $\pi(i) = i \ \forall i = 1, \ldots, n$ also $\pi = (1) \in S_n$ also $\delta(A) = a_{11} \cdots a_{nn}$ Insbesondere $\delta(I_n)$

Definition Bezeichung

 $\delta(A)$ die δ (det) erfüllt werden wird det(A) genannt

Corollary 2.14.11

 $\dim(\mathbb{A}) = 1$. Insbesondere gilt: $\forall \delta \in \operatorname{alt}^{(n)}(K^n)$ und $\operatorname{Ain}M_{n \times n}(K)$ gilt $\delta(A) = \det(A)\delta(I_n)$

Proof Korollar 2.14.11

 $\det \in \mathbb{A}, \det \neq 0 \ \forall \delta \in \mathbb{A} : \exists d \in K \text{ so teilt } \delta = d \det \text{ i.e. } \forall A \in M_{n \times n}(K)$

$$\delta(A) = d \det(A),$$

Insbesondere $A = I_n$, i.e.

$$\delta(I_n) = d \det(I_n)$$

$$\delta(I_n) = d$$

 $\delta(I_n) = d \det(I_n)$ $\delta(I_n) = d$ i.e. $\delta(A) = \delta(I_n) \det(A)$

2.15 Skript 15

Corollary 2.15.1

Für alle $\delta \in A, \delta \neq 0 \ \forall A \in M_{n \times n}(K) \ gilt: \ \delta(A) = \det(A)\delta(I_n)$

Note 2.15.2

Sei R kommutativer Ring 1, $\delta \in \text{alt}^{(n)}(\mathbb{R}^n)$ können analog definieren! Der Hauptsatz 2.14.10 gilt: $A \in M_{n \times n}(R), A = (a_{ij})_{i,j},$ definiere

$$\det(A) = \sum_{\pi \in S_n} \operatorname{sign} \pi a_{1\pi(1)} \cdots a_{n\pi(n)} \underbrace{\det(I_n)}_{=1}$$

Example 2.15.3

Setze R := K[x] und

$$A = \begin{pmatrix} x & 0 & -x \\ 0 & 1 & 0 \\ 1 & 0 & x^3 \end{pmatrix}$$

$$\det(A) = x^4 + x^2$$

Theorem 2.15.4

Sei $A \in M_{n \times n}(R)$. Es gilt:

$$\det(A) = \det\left(A^t\right)$$

Proof Satz 2.15.4

Betrachte:

$$\prod_{i=1}^{n} a_i \pi(i) = \prod_{i=1, j=\pi(i)}^{n} a_{ij} = \prod_{j=1, i=\pi^{-1}(j)}^{\infty} a_{ij} = \prod_{j=1}^{n} a_{\pi^{-1}(j)j} = \prod_{j=1}^{n} a_{j\pi^{-1}(j)}^{t}$$

Daraus folgt:

$$\det(A) = \sum_{\pi \in S_n} \operatorname{sign} \pi \prod_{i=1}^n a_{i\pi(i)} = \sum_{\pi^{-1}S_n} \operatorname{sign} (\pi^{-1}) \prod_{j=1}^n a_{j\pi^{-1}(j)}^t = \det (A^t)$$

Theorem 2.15.5

 $\forall A, B \in M_{n \times n}(R) \text{ gilt:}$

$$\det(AB) = \det(A) \cdot \det(B)$$

Proof Satz 2.15.5

Sei B fest und $A = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$. Definiere

$$\delta_B(A) := \det(AB) = \delta_B(z_1, \dots, z_n) = \det(z_1B, \dots, z_nB)$$

(Bmk 7.6 L.A.I)

Beh.: δ_B ist *n*-linear und alternierend (ÜB).

Also

$$\delta_B \in \operatorname{alt}^{(n)}(\mathbb{R}^n)$$

Korollar 2.15.1 $\implies \delta_B(A) = \det(A)\delta_B(I_n) = \det(A)\det(B)$

Corollary 2.15.6

Sei A invertierbar. Es gilt

$$\det\left(A^{-1}\right) = \left(\det\left(A\right)\right)^{-1}$$

Definition Notation (Erinnerung)

Sei $A \in M_{n \times n}(R)$, $i, j \in \{1, ..., n\}$. Wir A[i|j] (entfernen von A die i-te Zeile und j-te Spalte).

$$D_{ij}(A) := \det(A[i|j])$$

Theorem 2.15.7

 $Sei j, 1 \le j \le n fest. Setze$

$$\delta(A) := \sum_{i=1}^{n} (-1)^{i+j} a_{ij} D_{ij}(A)$$

Dann ist $\delta \in \operatorname{alt}^{(n)}(R^n)$ und $\delta(I_n) = 1$

Proof Satz 2.15.7

Siehe Skript 15 S.2, S.3

Details und gegebenenfalls die Plenumsübung

Corollary 2.15.8

Sei $A \in M_{n \times n}(R)$. Für jedes $1 \le j \le n$ gilt:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} D_{ij}(A)$$

2.16 Skript 16

 $A \in M_{n \times n}(R)$

Note 2.16.1 Erinnerung

$$C_{ij} = (-1)^{i+j} D_{ij}$$

der ij-te Kofaktor von A.

Lemma 2.16.2 Hilfslemma

 $\forall k, j = 1, \dots, n$

$$k \neq j \implies \sum_{i=1}^{n} A_{ik} C_{ij} = 0$$

Proof Hilfslemma 2.16.2

Ersetze die j-te Spalte von A durch ihre k-te Spalte, nenne die so erhaltene Matrix B, weil B zwei Wiederholte Spalten hat, ist det B=0. Nun ist

$$B[i|j] = A[i|j]$$

Also berechnen wir

$$0 = \det B$$

$$= \sum_{i=1}^{n} (-1)^{i+j} B_{ij} \det B[i|j]$$

$$= \sum_{i=1}^{n} (-1)^{i+j} A_{ik} \det A[i|j]$$

$$= \sum_{i=1}^{n} A_{ik} C_{ij}$$

Wir fassen zusammen:

Corollary 2.16.3

(a)

$$\det A = \sum_{i=1}^{n} A_{ij} C_{ij}$$

$$\sum_{i=1}^{n} A_{ik} C_{ij} = \begin{cases} \det A & j=k\\ 0 & j\neq k \end{cases}$$
 (*)

Definition 2.16.4 Notation (Erinnerung)

Sei $A \in M_{n \times n}(R), i, j \in \{1, \dots, n\}$. Wir A[i|j] (entfernen von A die i-te Zeile und j-te Spalte)...

$$D_{ij}(A) := \det(A[i|j])$$

Note Erinnerung

$$(\operatorname{adj} A)_{ij} := C_{ji} = (-1)^{-1} \det A[j|i]$$

Corollary 2.16.5

$$(\operatorname{adj} A)(A) = \det(A)I_n \tag{**}$$

Proof Korollar 2.16.5

Matrixprodukt + (*)

Wir zeigen jetzt umgekehrt:

Lemma 2.16.6

 $A (\operatorname{adj} A) = \det (A) I_n$

Proof Lemma 2.16.6

gleich

Proof Lemma 2.16.6

Es gilt

$$A^t[i|j] = A[j|i]^t$$

 $\forall i,j=1,\ldots,n$ Satz 2.15.4 $\implies ij$ -te Kofaktor von $A^t=ji$ -te Kofaktor. Also

$$\operatorname{adj}(A^{t}) = \operatorname{adj}(A)^{t} \tag{***}$$

Nun impliziert (**) für A^t :

$$(\operatorname{adj} A^t) A^t = (\operatorname{det} A^t) I_n = (\operatorname{det} A) I_n$$

zusammen mit (***) erhalten wir

$$(\operatorname{adj} A)^t A^t = [A (\operatorname{adj} A)]^t = (\det A) I_n = A (\operatorname{adj} A).$$

Corollary 2.16.7

$$A(\operatorname{adj} A) = \det(A)I_n$$

und

$$(\operatorname{adj} A) A = \det(A) I_n \tag{\dagger}$$

Insbesondere wenn A, det $A \neq 0$, folgt $A^{-1} = \det(A)^{-1} \operatorname{adj}(A)$

Theorem 2.16.8

 $A \in M_{n \times n}(R)$ ist über R invertierbar genau dann, wenn $\det(A) \in R^x$ (eine Einheit in R). Insbesondere wenn R = K ein Körper ist, dann ist A invertierbar genau dann wenn $\det(A) \neq 0$. Wenn R = K[x], dann ist A invertierbar geau dann wenn $\det(A) \in K^x$. Ist A invertierbar, so ist

$$A^{-1} = (\det A)^{-1} \operatorname{adj}(A)$$

Proof Satz 2.16.8

aus (†) sehen wir: $\det A$ invertierbar $\implies A$ invertierbar mit

$$A^{-1} = (\det A)^{-1} \operatorname{adj}(A)$$

umgekert: A invertierbar über

$$R \implies AA^{-1} = I_n$$

$$\implies \det(AA^{-1}) = 1$$

$$\implies \det(A) \det(A^{-1}) = 1$$

$$\implies \det(A) \in R^x$$

Wir berechnen $(K[x])^{\times}$ seien $f, g \in K[x]$

$$fg = 1 \implies \deg f + \deg g = 0 \implies \deg f = \deg g = 0$$

Also die Einheiten von K[x] sind die Skalarpolynome $\neq 0$, i.e K^x

Example 2.16.9

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$\det(A) = a_{11}a_{22} - a_{21}a_{12}$$
$$\operatorname{adj}(A) = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in M_{2 \times 2}(\mathbb{Z})$$

$$\det(A) = -1 \notin \mathbb{Z}^x,$$

A ist nicht invertierbar über \mathbb{Z} . $-2 \in \mathbb{Q}^{-1}$, $A^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$

Example 2.16.10

$$R = \mathbb{R}[x]$$

$$A = \begin{pmatrix} x^2 + x & x+1 \\ x-1 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} x^2 - 1 & x + 2 \\ x^2 - 2x + 3 & x \end{pmatrix}$$

$$\det(A) = x + 1,$$

A ist **nicht** invertierbar

$$\det(B) = -6$$

B invertierbar

Lemma 2.16.11

Ähnliche Matrizen haben gleiche Determinanten.

Proof Lemma 2.16.11

Seien $A, B \in M_{n \times n}(K)$ ähnlich, d.h. $\exists P$ invertierbar so, dass

$$B = P^{-1}AP$$

Berechne:

$$\det B = \det (P^{-1}AP)$$

$$= \det (P^{-1}) \det (A) \det (P)$$

$$= \det (P)^{-1} \det (A) \det (P)$$

$$= \det A$$

Definition 2.16.12

Sei K ein Körper V ein K-Vektorraum, dim V=n, und

$$T:V\to V$$

ein linearer Operator iwr definieren

$$det(T) := det([T]_{\mathcal{B}})$$

wobei $\mathcal B$ eine beliebe geordnete Basis für V ist.

Theorem 2.16.13 Cramer's Regel

Sei $A \in M_{n \times n}(K)$ mit $det(A) \neq 0$ und

$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in K^{n \times 1}$$

Betrachte das LGS:

$$(S)AX = Y$$

wobei

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Dann können wir die eindeutige Lösung von (S)

$$X = A^{-1}Y$$

so beischreiben: $\forall j = 1, ..., n \ x_j = \det(B_j) (\det(A))^{-1}$ wobei B_j die $n \times n$ Matrix ist, die man erhält, wenn man die j-te Spalte von A durch Y ersetzt.

Proof Satz 2.16.13

Multiplizieren mit adj(A) ergibt

$$\underbrace{(\operatorname{adj}(A)A)}_{\det(A)I_n}X = \operatorname{adj}(A)Y$$

$$\overset{\text{Kor. 2.16.7}}{\Longrightarrow} \det(A)X = \operatorname{adj}(A)Y$$

Also

$$\det(A)x_j = \sum_{i=1}^n (\operatorname{adj} A)_{ji} y_i$$

Also gilt $\forall j = 1, \dots, n$ (laut Definition 2.16.4)

$$\det(A)x_{j} = \sum_{i=1}^{n} (-1)^{i+j} \det(A[i|j])y_{i}$$

$$= \sum_{i=1}^{n} (-1)^{i+j} y_{i} \det A[i|j]$$

$$= \sum_{i=1}^{n} (-1)^{i+j} y_{j} \det B_{j}[i|j]$$

$$\overset{\text{Kor } 2.15.8}{=} \det B_{j}$$

3 Normalformen

3.17 Skript 17

3.17.9 Eigenwerte und Eigenvektoren

Sei V ein n-dim K-VR über

Definition 3.17.1

Sei $T \in \mathcal{L}(\mathcal{V}, \mathcal{V})$ und $c \in K$.

(a) c ist ein Eigenwert für T, falls $\exists \alpha \in V, \alpha \neq 0$ so, dass

$$T(\alpha) = c\alpha$$

(b) sei $\alpha \in V$ so, dass

$$T(\alpha) = c\alpha$$

Dann ist α ein Eigenvektor

(c) $W_c := \{\alpha \in V, T(\alpha)\}$ der **Eigenraum** zu c

Note 3.17.2

$$W_c = \ker\left(cI - T\right)$$

weil

$$W_c = \{\alpha : c\alpha - T(\alpha) = 0\}$$

Theorem 3.17.3

Wir folgern aus Satz 2.16.8 und Bem. 3.17.2 und Def. 3.17.1: Sei $T \in \mathcal{L}(V, V)$, $c \in K$. Folgende Aussagen sind äquivalent:

- (i) c ist ein Eigenwert von T
- (ii) (cI T) ist **nicht** invertierbar
- (iii) $\det(cI T) = 0$

Proof Satz 3.17.3

- "(i) \Longrightarrow (ii)": wenn c Eigenwert von T, dann existiert ein $\alpha \in V$ mit $\alpha \neq 0$, so dass $(cI T)(\alpha) = 0$, somit Kern nicht trivial, also (cI T) nicht invertierbar
- "(ii) \implies (iii)": ...
- "(iii) \Longrightarrow (i)": $\det(cI T) = 0$ bedeutet (cI T) nicht invertierbar, also Kern trivial, also existiert kein $\alpha \in V, \dots$ vllt. auch einfacher mit Widerspruch

Theorem 3.17.4

 $\det(cI-T)$ ist ein normiertes Polynom von Grad n. Die Eigenwerte von T sind also seine NS in K. Insbesondere hat T höchstens n Eigenwerte in K

Proof Satz 3.17.4

Sei \mathcal{B} eine geordnete Basis für $V, A := [T]_{\mathcal{B}}$. Es ist $xI_n - A = [xI - T]_{\mathcal{B}}$

$$B \coloneqq xI_n - A$$

$$= \begin{pmatrix} x & 0 & \dots & 0 \\ 0 & x & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & x \end{pmatrix} - A$$

$$= \begin{pmatrix} x - a_{11} & \dots & -a_{1n} \\ -a_{21} & \ddots & \vdots \\ \vdots & & x - a_{nn} \end{pmatrix}$$

wobei $A_{ij} = a_{ij}$ Also $b_{ii} = (x - a_{ii})$, deg $b_{ii} = 1$. Die Einträge von B sind 0 Polynome, Polynome von Grad 0 oder 1. Berechne

$$\det B = \sum_{\tau \in S_n} \operatorname{sign} \tau b_{1\tau(1)} \cdots b_{n\tau(n)}$$

$$\deg (b_{1\tau(1)}\cdots b_{n\tau(n)}) = |\{i \in \{1,\ldots,n\} : \tau(i) = i\}|$$

Also ist

$$\prod_{i=1}^{n} (x - a_{ii})$$

der einzige Term von Grad n, und somit ist der Hauptterm! Also

$$\deg(\det B) = n$$

und ist normiert

Definition 3.17.5

Sei $A \in M_{n \times n}(K)$ und $c \in K$, c ist c ist ein **Eigenwert von** A falls $\det(cI - A) = 0$.

Definition 3.17.6

 $f(x) := \det(xI_n - A)$ für $A \in M_{n \times n}(K)$ heißt das **Charakteristische** Polynom von A

Lemma 3.17.7

Ähnliche Matrizen haben das gleiche charakteristische Polynom

Proof Lemma 3.17.7

$$B = P^{-1}AP$$

$$\det(xI - B) = \det(xI - P^{-1}AP)$$

$$= \det(P^{-1}(xI - A)^{P})$$

$$= \det(P^{-1}\det(xI - A)\det(P))$$

$$= \det(xI - A)$$

Definition 3.17.8

Sei V endlich dimensional, $T \in \mathcal{L}(V, V)$

$$\operatorname{CharPol}(T) = \operatorname{CharPol}([T]_{\mathcal{B}})$$

für irgendeine geordnete Basis \mathcal{B} von V

Example 3.17.9

(1)

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}), \det(xI - A) = x^2 + 1$$

hat keine reelle NS, also hat A keine reelle Eigenwerte

(2)

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix} \in M_{3\times3} (\mathbb{R})$$

$$|xI - A| = x^3 - 5x^2 + 8x - 4 = (x - 1)(x - 2)^2$$

Eigenwerte c = 1, c = 2

Berechne Eigenvektoren

• $c = 1 \ker (A - I) := W_1$

$$(A-I) = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

 \implies Rang(A) = 2, dim $W_1 = 1$ Wir wollen eine Basis für W_1 finden, löse

$$(A-1)\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Hier $\alpha_1 = (1,0,2) \neq 0$ ist eine Lösung, und $\{\alpha_1\}$ ist eine Basis für W_1

• $c = 2 W_2$?

$$(A-2I) = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{pmatrix}$$

hat Rang $(A) = 2 \implies \dim W_2 = 1$ Lösung wie oben $\alpha_2 = (1, 1, 2) \neq 0$ und $\{\alpha_2\}$ eine Basis

Lemma 3.17.10

Sei $T \in \mathcal{L}(V, V)$ seien c_i für i = 1, ..., k Eigenwerte von T (in K) und $\forall i \neq j, i, j \in \{1, ..., k\}$: $c_i \neq c_j$ Sei $v_i \neq 0$, $v_i \in V$ Eigenvektor zum Eigenwert c_i . Dann ist $\{v_1, ..., v_k\}$ linear Unabhängig

Proof Lemma 3.17.10

Wir führen Induktion nach k

I.A. k=2: wenn $v_2=cv_1$ dann ist $v_2\in W_{c_1}$, dann ist v_2 Eigenvektor zu $c_1\perp$

I.V. Für k-1

I.S. Seien v_1, \ldots, v_k linear abhängig

Bem.: Sei $v \in V$, $v \neq 0$ kann v nicht Eigenvektor sein zu verschiedenen Eigenwerten! Œ

$$v_k = \sum_{i=1}^{k-1} v_i$$

Wir berechnen

$$T(v_k) = c_k v_k = c_k \sum_{i=1}^{k-1} v_i$$

$$= T(v_k) = \sum_{i=1}^{k-1} T(v_i) = \sum_{i=1}^{k-1} c_i v_i$$

$$\implies c_k \sum_{i=1}^{k-1} v_i = \sum_{i=1}^{k-1} c_i v_i$$

$$\implies \sum_{i=1}^{k-1} (c_k - c_i) v_i = 0.$$

Aus I.V. folgt $c_k - c_i = 0 \ \forall i = 1, ..., k - 1$

Corollary 3.17.11

Sei dim V = n, $T \in \mathcal{L}(V, V)$. Wir nehmen an, dass T n verschiedene Eigenwerte $d_1, \ldots, d_n \in K$ hat. Dann hat V eine Basis \mathcal{D} bestehend aus Eigenvektoren für T.

Definition 3.17.12

Sei dim V = n, $T \in \mathcal{L}(V, V)$. T ist **diagonalisierbar** über K, falls V eine Basis, bestehend aus Eigenvektoren von T hat.

Note 3.17.13

 $d_1, \ldots, d_n \in K$ n-verschiedene Eigenwerte von T, \mathcal{D} die geordnete Basis wie im Korollar 3.17.11, dann ist

$$[T]_{\mathcal{D}} = \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}$$

3.18 Skript 18

Corollary 3.18.1 Verallgemeinerung Lemma 3.17.10

 $\dim V = n, T \in \mathcal{L}(V, V), d_1, \dots, d_k \in K$ verschiedene Eigenwerte von T für $i \in \{1, \dots, k\}$ Sei

$$\mathcal{B}_i \subseteq W_{d_i}$$

linear unabhängig. Dann ist $\mathcal{B} = \bigcup_{i \in I} B_i$

Proof Korollar 3.18.1

$$L \coloneqq \{v_1, \dots, v_l\} \subseteq \mathcal{B}$$

Betrachte

$$\sum_{j=1}^{l} c_j v_j$$

Setze

$$L_i \coloneqq L \cap \mathcal{B}_i$$

und setze

$$\alpha_i \coloneqq \sum_{v_j \in L_i} c_j v_j \in W_{d_i} \tag{*}$$

(Konvention falls $L_i = \emptyset$, setzte $\alpha_i = 0$). Also wenn

$$0 = \sum_{j=1}^{l} c_j v_j \implies \sum_{i=1}^{k} \alpha_i = 0$$

Beh.: Wenn

$$\sum_{i=1}^{k} \alpha_i = 0$$

dann ist $\alpha_i = 0 \quad \forall i = 1, \dots, k$

Bew. der Beh. sonst

$$\alpha_i \neq 0$$
,

Eigenvektoren zu verschiedenen Eigenwerten und linear abhängig. Widerspruch zu 3.17.10 zurück in (*) $\alpha_1 = 0 \implies$

$$\sum_{v_j \in L_i} c_j v_j = 0$$

aber v_j sind per Annahme linear unabhängig. Also $c_j=0 \ \forall j=1,\dots,k$

Theorem 3.18.2 Verallgemeinerung von Korollar 3.17.11

Sei dim V = n, $T \in \mathcal{L}(V, V)$, $d_1, \ldots, d_k \in K$ die verschiedenen Eigenwerte von T in K. Es gilt: T ist diagonalisierbar über K genau dann, wenn

$$\sum_{j=1}^{k} \dim W_{d_j} = n$$

Proof Satz 3.18.2

" \Longleftarrow ": Sei \mathcal{B}_j eine Basis für W_{d_j} für jedes $j=1,\ldots,k$ setze

$$B = \bigcup_{j=1}^{k} \mathcal{B}_j$$

Korollar 3.18.1 $\implies \mathcal{B}$ linear unabängig

" \Longrightarrow ": Sei $\mathcal B$ eine Basis für V von Eigenvektoren von T. Setze $\mathcal B_j=\mathcal B\cap W_{d_j}$ Also ist

$$\mathcal{B} = \bigcup_{j=1}^{k} B_j$$

$$|\mathcal{B}| = n$$

Setze

$$l_i = |\mathcal{B}_i|$$

also

$$n = \sum_{j=1}^{k} l_j$$

Beh.: $l_j = \dim W_{d_j}$ Es ist klar, dass

$$l_j \leq \dim W_{d_i}$$

Wenn $l_i < \dim W_{d_i}$, dann $\exists \beta \in W_{d_i}$ so, dass

$$\mathcal{B}_i' = \mathcal{B}_i \cup \{\beta\}$$

linear unabhängig ist. Aber dann

$$\mathcal{B}' = \mathcal{B} \cup \{\beta\}$$

linear unabhängig! Aber $|\mathcal{B}'| = n + 1 \perp$

Sei \mathcal{D} die Basis

$$[T]_{\mathcal{D}} = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & d_1 & \\ & & & \ddots \end{pmatrix}$$

Wobei $\forall i = 1, \dots, k, d_i$ erscheint $l_i \coloneqq \dim W_{d_i}$ mal

Mit diesem Ansatz

$$\operatorname{CharPol}(T) = \operatorname{CharPol}([T]_{\mathcal{D}}) = \prod_{i=1}^{k} (x - d_i)^{l_i} \tag{\dagger}$$

Umgekehrt, sei $T \in \mathcal{L}(V, V)$, CharPol(T) genau so, wie in (\dagger) ist, dann ist T diagonalisierbar (wegen Satz 3.18.2) wir haben bewiesen

Theorem 3.18.3

Sei dim $V = n, T \in \mathcal{L}(V, V)$. Es gilt: T ist diagonalisierbar genau dann wenn $\operatorname{CharPol}(T) = \prod_{i=1}^k (x-d_i)^{l_i}$.

Terminologie: $\dim W_d$ wird auch als $d \in K$ Eigenwert geometrische Vielfachheit der Eigenwerte d genannt

T ist diagonalisierbar (über K) genau dann wenn $\operatorname{CharPol}(T)$ als Produkt von lin. Faktoren über K erfüllt und die algebraische Vielfachheit jeder Nullstelle ist gleich geometrischer Vielfachheit jeder Eigenwerte

Theorem 3.18.4

Sei dim V = n, $T \in \mathcal{L}(V, V)$, $d \in K$. Eigenwerte von T mit Vielfachheit μ . Es gilt: $l := \dim(W_d) \leq \mu$

Proof Satz 3.18.4

Sei $(\alpha_1, \ldots, \alpha_l)$ eine Basis für W_d , ergänze $\mathcal{B} = (\alpha_1, \ldots, \alpha_l, \alpha_{l+1}, \ldots, \alpha_n)$ zur Basis von V. Berechne

$$A := [T]_{\mathcal{B}} = \begin{pmatrix} d & 0 & \\ & \ddots & & B \\ 0 & & d & \\ & 0 & & C \end{pmatrix}$$

$$\det(xI - A) = \begin{pmatrix} x - d & 0 \\ & \ddots & -B \\ 0 & x - d & \\ & 0 & xI - C \end{pmatrix} \stackrel{\text{ÜB}}{=} (x - d)^l \det(xI - c)$$

Dies impliziert $l \leq \mu$

Example 3.18.5

$$A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

über \mathbb{R} CharPol = $(x-1)(x-2)^2$

$$d_1 = 1$$

$$A = \begin{pmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & -5 \end{pmatrix}$$

 $\operatorname{Rang}\left(A-I\right)=2$

$$d_2 = 2$$

$$A = \begin{pmatrix} 3 & -6 & -6 \\ -2 & 3 & 2 \\ 3 & -6 & -6 \end{pmatrix}$$

 $\operatorname{Rang}(A-2I)=1$ Also $\dim W_{d_1}=1$, $\dim W_{d_2}=2$, also $\dim W_{d_1}+\dim W_{d_2}=3$, also T diagonal und

$$[T]_{\mathcal{D}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

3.19 Skript 19

3.19.10 Annihilator Ideal

 $\dim V = n, T \in \mathcal{L}(V, V), V$ K-Vektorraum

Proposition 3.19.1

 $Es\ gelten$

- (1) $A(T) := \{ p \in K[x]; p(T) = 0 \}$ ist ein Ideal
- (2) $A(T) \neq \{0\}$

Proof Proposition 3.19.1

- (1) (p+q)(T) = p(T) + q(T) und $\forall p, q \in K[x] \ (pq)(T) = p(T)q(T)$ (1) folgt.
- (2) Betrachte die $n^2 + 1$ Elemente in $\mathcal{L}(V, V)$.

$$I, T, T^2, \dots, T^{n^2} \in \mathcal{L}(V, V)$$

Aber dim $\mathcal{L}(V, V) = n^2$ Also sind die linear abhängig i.e. $\exists c_0, \dots, c_{n^2} \in K$.

$$c_0 I + c_1 T + \dots + c_{n^2} T^{n^2} = 0$$

und die c_i sind **nicht**alle gleich 0. Also das Polynom

$$c_0 + c_1 x + \dots + c_{n^2} x^{n^2} = g(x) \neq 0$$

$$g(x) \in \mathcal{A}(T)$$

Definition 3.19.2

 $\mathcal{A}(T)$ ist annihilator Ideal. Der (eindeutig bestimmte normierte Erzeuger von $\mathcal{A}(T)$ ist das minimal Polynom von T und wird mit MinPolT bezeichnet.

Note 3.19.3

- (1) $deg(MinPol(T)) \le n^2$
- (2) p = MinPol(T) ist Charakterisiert durch
 - (a) $p \in K[x]$
 - (b) p(T) = 0
 - (c) $\forall q \in K[x] : \deg q < \deg p \implies q(T) \neq 0$

Definition 3.19.4

für ein $A \in Mat_{n \times n}(K)$ sind $\mathcal{A}(A)$ und MinPol(A) analog definiert

Note 3.19.5

(1) Sei \mathcal{B} eine geordnete Basis von V und $f \in K[x]$. Es gilt $[f(T)]_{\mathcal{B}} = f([T]_{\mathcal{B}})$ Insbesondere für $A = [T]_{\mathcal{B}}$ gilt

$$f(T) = 0 \iff f(A) = 0$$

(2) Es folgt: ähnliche Matrizen haben das gleiche minimale Polynom!

Theorem 3.19.6

Sei $T \in \mathcal{L}(V,V)$ (oder $A \in Mat_{n \times n}(K)$). Es gilt: CharPol(T) und MinPol(T) haben, bis auf Vielfachheit, dieselben Nullstellen in K

Proof Satz 3.19.6

Sei p := MinPol(T) und $c \in K$. Zu zeigen $p(c) = 0 \iff c$ ist Eigenwert von T

"
$$\Rightarrow$$
 ": $p(c) = 0 \implies p = (x - c)q$.

$$\deg q < \deg p$$

Also ist $q(T) \neq 0$. Also wähle $\beta \in V$ so, dass $\alpha \coloneqq q(T)(\beta) \neq 0$ Es gilt $0 = p(T)(\beta) = (T - cI)(qT)(\beta) = (T - cI)(\alpha)$ Also ist α Eigenvektor und c Eigenwert

" \Leftarrow ": Sei $T(\alpha) = c\alpha$, $\alpha \neq 0$, $\alpha \in V$, $c \in K$ Nun gilt: $p(T)(\alpha) \stackrel{\text{ÜB}}{=} p(c)\alpha = 0$. Da aber p(T) = 0 und $\alpha \neq 0$, folgt p(c) = 0

Proposition 3.19.7

Sei T diagonalisierbar. Dann zerfällt das MinPol(T) (über K) in verschiedene lineare Faktoren

Proof Proposition 3.19.7

Sei T diagonalisierbar und $c_1, \ldots, c_k \in K$ die verschiedenen Eigenwerte. Setze p := MinPol T. Wegen Satz 3.19.6 ist deg $p \ge k$. Betrachte $q(x) := (x - c_1) \cdots (x - c_k)$. Wir berechnen:

$$(T - c_1 I) \cdots (T - c_k I) (\alpha) = 0$$

für α Eigenvektor $\in V$ (weil α Eigenvektor zum Eigenwert c_i , für geeignetes i). Da es eine Basis gibt bestehend aus Eigenvektoren für T. Also q(T) verschwindet auf dieser Basis der Eiegnvektoren. Das impliziert

$$q(T) = 0$$

Also $q(x) \in \text{Annihilator}(T)$ Es folgt nun aus Bemerkung 3.19.3 $\deg q = k \leq \deg p$ und q ist normiert, folgt q(x) = p(x)

Example 3.19.8

Wir berechnen MinPol A := p für A im Beispiel 3.17.9 (ii)

$$CharPol(A) = (x-1)(x-2)^2$$

A ist **nicht** diagonalisierbar. Also hier können wir **nicht** Proposition 3.19.7 anwenden. Aber wir können Satz 3.17.6 anwenden. Also p die Nullstellen 1 und 2 hat. Wir probieren Polynome der Form

$$(x-1)^k (x-2)^l$$

mit $k \ge 1, l \ge 1, 2 \le k + l \le 3^2 = 9$ Wir probieren k = l = 1

$$(A-I)(A-2I) = \begin{pmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \\ 4 & 0 & -2 \end{pmatrix}$$

Also ist $deg(p) \ge 3$. Nun probieren wir:

$$(x-1)^2 (x-2)$$
 oder

$$(x-1)(x-2)^2$$

Wir berechnen:

$$(A-I)(A-2I)^2 = 0$$

Also ist $p(x) = (x - 1)(x - 2)^2 \implies \text{MinPol } A = \text{CharPol } A$.

3.20 Skript 20

Theorem 3.20.1 von Cayley Hamilton

 $Sei \dim V = n, L \in \mathcal{L}(V, V)$

$$f := \operatorname{CharPol}(L)$$
.

Es gilt f(L) = 0. Insbesondere teilt MinPol(L) das CharPol(L)

Proof Satz von Cayley Hamilton 3.20.1

Sei \mathcal{K} die Algebra der Polynome in L und $\mathcal{B} = (\alpha_1, \dots, \alpha_n)$ für V. Setze

$$A := [L]_{\mathcal{B}}$$

d.h.

$$L(\alpha_i) = \sum_{j=1}^n A_{ji} \alpha_j$$

 $\forall i \leq i \leq n$

• Wir schreiben diese um, als

$$\sum_{j=1}^{n} \left(\delta_{ij} L - A_{ji} I \right) \left(\alpha_{j} \right) = 0 \quad \forall 1 \le i \le n$$

$$\tag{1}$$

Sei B die $n \times n$ Matrix mit den Koeffizienten in $\mathcal K$ definiert durch

$$B_{ij} = S_{ij}L - A_{ji}I$$

Beh.:

$$\det B = f(L)$$
 und

$$\det B = 0$$

• Wir haben $f(x) = \det(xI - A) = \det(xI - A)^t$. Wir berechnen

$$(xI - A)_{ij}^t = \delta_{ij}x - A_{ji}$$

Also gilt:

$$(xI - A)_{ij}^{t}(L) = \delta_{ij}L - A_{ji}I = B_{ij}$$

Außerdem gilt:

$$f(L) = [\det(xI - A)] (L)$$

$$= [\det(xI - A)^t] (L)$$

$$= \det((xI - A)^t (L))$$

$$= \det B.$$

• Wir zeigen $\det B = 0$. Dafür genügt es zu zeigen, dass

$$(\det B)(\alpha_k) = 0 \quad k = 1, \dots, n$$

Wegen (1) gelten B_{ij} und α_j :

$$\sum_{j=1}^{n} B_{ij}(\alpha_j) = 0 \quad \forall 1 \le i \le n$$
 (2)

• Setze $\tilde{B} = \text{adj } B$ Aus (2) folgt, für alle k und i

$$\tilde{B}_{ki}\left(\sum_{j=1}^{n} B_{ij}\alpha_{j}\right) = 0 = \sum_{j=1}^{n} \tilde{B}_{ki}B_{ij}\alpha_{j}$$

Wir summieren über i und bekommen

$$0 = \sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{B}_{ki} B_{ij} \alpha_{j} = \sum_{j=1}^{n} \underbrace{\left(\sum_{i=1}^{n} \tilde{B}_{ki} B_{ij}\right)}_{kj \text{-te Koef von } \tilde{B}B} (\alpha_{j})$$

3.20.1 Trigonalisierbarkeit

Sei V endlich dimensional K-VR

Definition 3.20.2

 $T \in \mathcal{L}(V, V)$ ist trigonalisierbar falls es eine Basis \mathcal{B} für V gibt so dass $[T]_{\mathcal{B}}$ eine obere \triangle -Matrix ist (d.h. $a_{ij} = 0$ für i > j)

Theorem 3.20.3

Es gilt: T ist trigonalisierbar \iff CharPol(T) zerfällt in linear-Faktoren über K, (d.h. CharPol $(T) = (x - c_1)^{n_1} \cdots (x - c_k)^{n_k}$ mit $c_i \in K$)

Proof Satz 3.20.3

"
$$\Longrightarrow$$
" $[T]_{\mathcal{B}} = A \triangle \text{-Matrix} \implies \det(xI - A) = \prod_{i=1}^{n} (x - a_{ii}).$

" \Leftarrow " Wir beweisen per Induktion über dim V = n eine Basis $\mathcal{B} = (\alpha_1, \dots, \alpha_n)$ aufbauen wofür $[T]_{\mathcal{B}}$ eine \triangle -Matrix ist. Da T mindestens ein Eigenwert $c_1 \in K$ hat, sei $\alpha \neq 0$ ein Eigenvektor $\{\alpha\}$ linear unabhängig $\stackrel{\text{Basis Ergänzung}}{\Longrightarrow} (\alpha, \beta_2, \dots, \beta_n)$ für V, Matrixdarstellung von T in dieser Basis

$$\begin{pmatrix} c_1 & a_{12} & \dots & a_{1n} \\ \hline 0 & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ 0 & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
(*)

$$\Gamma \in M_{(n-1)\times(n-1)}(K)$$

Setze $W = \operatorname{span} \{\beta_2, \dots, \beta_n\}$ definiere $G \in \mathcal{L}(W, W)$

$$Gw = \Gamma w$$
 für alle $w \in W$

Wir sehen aus (*) $\operatorname{CharPol}(T) = (x - c_1) \operatorname{CharPol}(G)$

Eindeutigkeit der Faktoren in K[x], folgt CharPol(G) Produkt von linearen Faktoren. I.A. liefert nun eine geordnete Basis $(\alpha_1, \ldots, \alpha_n)$ so, dass die Matrixdarstellung von G eine obere \triangle -Matrix ist

3.21 Skript 21

3.21.12 Invariante Unterräume

Definition 3.21.1

Sei $W \subseteq V$ ein Unterraum und $T \in \mathcal{L}(V, V)$. Dann ist W **T-invariant** falls $T(W) \subseteq W$

Example 3.21.2

- (0) $\{0\}$, und V sind T-invariant für aale $T \in \mathcal{L}(V, V)$.
- (1) Sei D der Ableitung Operator auf V := K[x] und $W = K[x] \le d$. Dann ist W T-invariant
- (2) Sei $U \subset \mathcal{L}(V, V)$ so, dass TU = UT, setze
 - (a) W = Bild(U)
 - (b) $N = \ker(U)$

Dann sind W und N T-invariant

Proof

(a) Sei $\alpha \in Bild(U)$, $\exists \beta$ so, dass $\alpha = U(\beta)$.

$$T(\alpha) = T(U(\beta)) = U(T(\beta)) \in \text{Bild } U$$

- (b) Sei $\alpha \in N$, berechne $U(T(\alpha)) = t(U(\alpha)) = T(0) = 0 \implies T(\alpha) \in N$
- (3) $W \subseteq V$ ist T-invariant $\implies W$ ist g(T)-invariant für alle $g(x) \in K[x]$ ÜB
- (4) Für alle $g \in K[x]$ gilt

$$q(T)T = Tq(T)(\ddot{\mathbf{U}}\mathbf{A})$$

Insbesondere gilt g(T) = cI - T. Daraus folgt wegen (2) $\ker(T - cI)$ T-invariant, d.h. der Eigenraum zum Eigenwert $c \in K$ ist T-invariant.

• Der Operator T_w : sei $T \in \mathcal{L}(V, V)$, $W \subseteq V$ ist T-invariant. setze

$$T|_W := T_W$$

$$T_W: W \to W$$
,

also ist

$$T_W \in \mathcal{L}(W, W)$$

† Matrix Darstellung für T_W : Sei $W \subseteq V$ T-invariant mit dim W = r. Sei $\mathcal{B}' = (\alpha_1, \ldots, \alpha_r)$ eine geordnete Basis für W. Ergänze \mathcal{B}' zu einer Basis $\mathcal{B} = (\alpha_1, \ldots, \alpha_r, \alpha_{r+1}, \ldots, \alpha_n)$ für V. Betrachte $A = [T]_{\mathcal{B}}$ Wir haben die Gleichungen

$$T(\alpha_j) = \sum_{i=1}^n A_{ij}\alpha_i$$

Da W T-invariant ist, sind $T(\alpha_i) \in W$ für $j \leq r$ Also

$$T(\alpha_j) = \sum_{i=1}^r A_{ij}\alpha_i$$

Das heißt $A_{ij} = 0$ für $j \leq r$ und i > r Also sieht A so aus

$$A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$$

wobei $B: r \times r, C: r \times (n-r), D: (n-r) \times (n-r)$ und $B = [T_W]_{\mathcal{B}'}$.

Lemma 3.21.3

Sei $T \in \mathcal{L}(V, V)$ $W \subseteq V$, T-invariant. Es gelten:

- (a) CharPol T_W teilt CharPol T
- (b) $\operatorname{MinPol} T_W$ teilt $\operatorname{MinPol} T$

Proof Lemma 3.21.3

Seien \mathcal{B}' und \mathcal{B} so gewählt wie in (\dagger) , in A und B wie in (\dagger) $\ddot{\mathbb{U}}B \Longrightarrow$

(i)

$$\underbrace{\det(xI - A)}_{\text{CharPol }T} = \underbrace{\det(xI - B)}_{\text{CharPol }T} \det(xI - D)$$

(ii)

$$A^k = \begin{pmatrix} B^k & C_k \\ 0 & D^k \end{pmatrix}$$

wobei C_k eine $r \times (n-r)$ -Matrix für $k \in \mathbb{N}_0$.

Es folgt daraus, dass ein Polynom $q \in Annihilator(A)$ ist q auch $\in Annihilator(B)$. Also teilt MinPol B das MinPol A.

Lemma 3.22.1

Sei $W \subseteq V$ ein Unterraum, sei \mathcal{B}' eine geordnete Basis für W, und

$$\mathcal{B}' \cup \mathcal{B}''$$

eine ergänzende Basis für V. Dann gelten

- (i) $\overline{\mathcal{B}''}$ ist eine Basis für V/W
- (ii) Umgekehrt, wenn $(\overline{\beta_{r+1}}, \ldots, \overline{\beta_n})$ eine geordnete Basis für V/W ist, dann ist

$$\mathcal{B}' \cup \{\beta_{r+1}, \dots, \beta_n\}$$

ist eine Basis für V.

Note

Sei $W \subseteq V$ T-invariant. Dann ist die Abbildung

$$\overline{T}: V/W \to V/W$$

so definiert

$$\overline{T}(\overline{\alpha}) \coloneqq \overline{T(\alpha)}$$

ist wohldefiniert und ist linear. Also ist $\overline{T} \in \mathcal{L}(V/W, V/W)$.

Proof

"wohldefiniert": Zu zeigen $\overline{\alpha_1} = \overline{\alpha_2} \implies \overline{T(\alpha_1)} = \overline{T(\alpha_2)}$ $\underbrace{\mathbf{Bew.:}}_{T(\alpha_2)} \alpha_1 - \alpha_2 \in W \implies T(\alpha_1 - \alpha_2) \in W \implies T(\alpha_1) - T(\alpha_2) \in W \implies \overline{T(\alpha_1)} = \overline{T(\alpha_2)}$

Theorem 3.22.2

Sei $W \subseteq V$ T-invariant \mathcal{B}' geordnete Basis für W, ergänzt

$$\mathcal{B} = \mathcal{B}' \cup \mathcal{B}''$$

von V. Es gilt

$$A = [T]_{\mathcal{B}} = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$$

wobei $D = [\overline{T}]_{\overline{\mathcal{B}''}}$ und $\mathcal{B} = [T_W]_{\mathcal{B}'}$.

Proof 3.22.3 Satz 3.22.2

$$T(\alpha_i) = \sum_{j=1}^n A_{ji} \alpha_j \quad \text{für } 1 \le i \le n$$
 (*)

$$A = \begin{pmatrix} B & A_{1,r+1} & & \\ & \vdots & & \\ & A_{r,r+1} & & \\ & \vdots & & \\ & A_{n,r+1} & & \end{pmatrix}$$

$$T(\alpha_i) = \sum_{j=1}^r A_{ji}\alpha_j \quad \text{für } 1 \le i \le n \sum_{j=r+1}^n A_{ji}\alpha_j \quad \text{für } 1 \le i \le n$$
 (**)

Also ist

$$\overline{T(\alpha_i)} = \sum_{j=r+1}^{n} A_{ji} \overline{\alpha_j} = \overline{T}(\overline{\alpha_j})$$

für
$$r+1 \le i \le n$$

Corollary 3.22.4

 $\operatorname{CharPol} T = (\operatorname{CharPol} T_W) \left(\operatorname{CharPol} \overline{T} \right)$

Ziel ist es Korollar 3.22.6 zu beweisen

Hintergrund: in Satz 3.20.3 hatten wir bewiesen V end. dim. VR, $T \in \mathcal{L}(V, V)$.

T ist **trigonalisierbar** genau dann, wenn CharPolT im Produkt von linearen Faktoren über K zerfällt. Kor. 3.22.6 gibt uns dieselbe Charakterisierung mithilfe von

 $\operatorname{MinPol} T$

anstatt

 $\operatorname{CharPol} T$

Corollary 3.22.6

Sei K Körper, $T \in \mathcal{L}(V, V)$, V endlich dimensionaler Vektorraum. Dann ist T trigonalisierbar genau dann, wenn MinPol T im Produkt von linearen Faktoren über K zerfällt.

Proposition

Sei K Körper, V endl. K-VR, $T \in \mathcal{L}(V, V)$

Es gilt: CharPolT zerfällt im Produkt von linearen Faktoren über K genau dann, wenn MinPolT zerfällt im Produkt von linearen Faktoren über K.

Für den Beweis der Proposition brauchen wir ein Konzept und Aussage, die wir erst in der Vorlesung Algebra I im Wintersemester 2024 beweisen werden.

Definition 3.22.7

Sei K ein Körper und $p \in K[x]$, deg p = n, $n \in \mathbb{N}$. Eine Körpererweiterung

Z|K

ist ein **Zerfällungskörper für** p, wenn p(x) zerfällt im Produkt von linearen Faktoren über Z.

Das heißt $\exists l_i \in \mathbb{N}, c_i \in \mathbb{Z} \text{ und } l \in \mathbb{N} \text{ so, dass}$

$$p(x) = \prod_{i=1}^{l} (x - c_i)^{l_i}$$
 (*)

Das heißt, c_1, \ldots, c_l sind Nullstellen von p und

$$\sum_{i=1}^{l} l_i = n$$

Theorem

Sei K ein Körper, $p \in K[x]$, deg $p \in \mathbb{N}$. Dann gibt es ein Zerfällungskörper Z|K für p.

Proof

 $VL\ Algebra\ I$

Proof Proposition

Sei Z|K ein Zerfällungskörper von

 $\operatorname{CharPol}_K T.$

Dann sind die NS von $\operatorname{CharPol}_Z T$ die c_1,\ldots,c_l wie in der Faktorisierung (*). Wir haben aber bewiesen, dass $\operatorname{MinPol}_Z T$ und $\operatorname{CharPol}_Z T$ dieselbe Nullstelle in Z haben. Insbesondere ist Z auch ein Zerfällungskörper für $\operatorname{MinPol}_Z T$. Das heißt wiederum, das $\operatorname{MinPol}_Z T$ im Produkt von linearen Faktoren und umgekehrt zerfällt: wenn $\operatorname{MinPol}_Z T$ in Produkt von linearen Faktoren in Z zerfällt, dann ist Z Zerfällungskörper für $\operatorname{CharPol}_Z T$, also zerfällt $\operatorname{CharPol}_Z T$ in Produkt von linearen Faktoren wie in (*).

Aber

 $\operatorname{CharPol}_{Z} T = \operatorname{CharPol}_{K} T$ $\operatorname{MinPol}_{Z} T = \operatorname{MinPol}_{K} T$

Corollary 3.22.8 Charakterisierung von Trigonalisierbarkeit

Sei K ein Körper, V ednl dim. K-VR, und $T \in \mathcal{L}(V,V)$. Es gilt: T ist trigonalisierbar über K genau dann, wenn CharPol T zerfällt über K genau dann wenn MinPol T zerfällt über K

3.23 Skript 23

3.23.13 Direkte Summe und Primzerlegung

Lemma 3.23.1

Sei V K-VR, W_1, \ldots, W_k Unterräume von V. Die folgende Aussagen sind äquivalent.

(i) W_1, \ldots, W_k sind unabhängig, d.h. sei $\alpha_i \in W_i$ für $1 \le i \le k$ so, dass

$$\sum_{i=1}^{k} \alpha_i = 0,$$

dann ist $\alpha_i = 0 \ \forall i = 1, \dots, k$.

(ii)

$$W_j \cap (W_1, \dots, W_j) = \{0\} \text{ für } 2 \le j \le k$$

(iii) Ist \mathcal{B}_i eine Basis für W_i , dann ist

$$\mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_I$$

eine Basis für $W_1 + \cdots + W_k$

Definition Notation und Terminologie

Wir schreiben $V = W_1 + \cdots + W_k$, wenn V, die **Summe** von Unterräumen W_i ist, und wir schreiben

$$V = W_1 \oplus \cdots \oplus W_k$$

wenn die Unterräume W_1, \ldots, W_k die Bedingungen von Lemma 3.23.1 erfüllen und sagen V ist die **direkte Summe**.

Τ

Theorem 3.23.2 Primzerlegung von V bezüglich Primfaktorisierung MinPol T

Sei V endl dim über K, $T \in \mathcal{L}(V,V)$. Setze MinPol $T = p = p_1^{r_1} \cdots p_k^{r_k}$ die Primfaktorisierung in K[x] (wobei p_i verschiedene normierte irreduzible Polynome in K[x] sind und $r_i \in \mathbb{N}$) Setze $W_i = \ker p_i(T)^{r_i}$ für $1 \leq i \leq k$. Dann sind W_i , für $1 \leq i \leq k$, T-invariante Unterräume, und darüber hinaus gelten

(i)
$$V = W_1 \oplus \cdots \oplus W_k$$

(ii) MinPol $T_{W_i} = p_i^{r_i}$ für $1 \le i \le k$.

Proposition 3.23.3

Sei V endl dim K-VR $T \in \mathcal{L}(V, V)$. MinPol $T = m = m_1 m_2$ mit $ggT(m_1, m_2) = 1$ Setze $V_1 = \ker m_i(T)$ für i = 1, 2. Es gelten: V_1, V_2 sind T-invariant und $V = V_1 \oplus V_2$ und MinPol $T_{V_i} = m_i$

 $f\ddot{u}r \ i = 1, 2$

Proof Proposition 3.23.3

Da m_1, m_2 relativprim sind $\exists q_1, \dots, q_2 \in K[x]$ so, dass

 $1 = m_1 q_1 + m_2 q_2$

oder

$$I = m_1(T)q_1(T) + m_2(T)q_2(T) \tag{*}$$

Beh 1: $V_1 = I_m m_2(T)$ und $V_2 = I_m m_1(T)$

Bew.: $0 = m(T) = m_1(T)m_2(T)$, also $I_m m_2(T) \subseteq \ker m_1(T)$ umgekehrt $v \in \ker m_1(T)$, gilt wegen (*)

$$v = \underbrace{q_1(T)m_1(T)(v)}_{=0} + \underbrace{m_2(T)\left(q_2(t)\right)\left(v\right)}_{\in I_m m_2(v)}$$

Beh. 2 $V = V_1 \oplus V_2$

Bew.:

(1) Summe:

Sei $v \in V$, wegen (*) schreibe

$$v = \underbrace{m_1(T)q_1(T)(v)}_{\in I_m m_1} + \underbrace{m_2(T)q_2(T)(v)}_{\in I_m m_2(T)}$$

(2) direkt:

Sei
$$v \in V_1 \cap V_2$$
, wegen (*) gilt $v = \underbrace{q_1(T)m_1(T)(v)}_{=0} + \underbrace{q_2(T)m_2(T)(v)}_{=0}$. Sei nun ...

Da $V_i = \ker m_i(T)$ für i = 1, 2 ist es klar, dass $m_i(T_{V_i}) = 0$, d.h.

$$\tilde{m}_1|m_1 \text{ und } \tilde{m}_2|m_2$$
 (**)

Beh. 3: $\tilde{m}_1\tilde{m}_2$ annihiliert T **Bew.:** Seien $v_1 \in V_1$ und $v_2 \in V_2$, $v = v_1 + v_2 \in V$, rechne

$$\tilde{m}_{1}(T)\tilde{m}_{2}(T)(v_{1}+v_{2}=\tilde{m}_{1}(T)\left[\tilde{m}_{2}(T)(v_{2})+\tilde{m}_{2}(T)(v_{1})\right]$$

$$=\tilde{m}_{1}(T)\left[0+\underbrace{\tilde{m}_{2}(T)(v_{1})}_{\in V_{1} \text{ weil Bsp 3.20.2 (4)}}\right]$$

$$=0$$

Da $\tilde{m}_2\tilde{m}_1$ annihiliert $T \implies m_1m_2|\tilde{m}_1\tilde{m}_2$. Aber m_1, m_2 sind normiert folgt nun aus (**), dass $\tilde{m}_1 = m_1$ und $\tilde{m}_2 = m_2$

Theorem 3.23.4 Diag. Kriterium für MinPol T

(Umkerhung von Prop. 3.19.7) T ist diagonalisierbar \iff MinPolT zerfällt in verschiedene lineare Faktoren in K[x].

Proof Satz 3.23.4

" \Longrightarrow " siehe Prop 3.19.7

3.23.14 Jordanketten, Jordan Zelldn und die Jordan Normalform.

Definition 3.23.5

Sei $c \in K$ Eigenwert für T, $0 \neq v_1 \in V$ Eigenvektor zum c. Sei $l \in \mathbb{N}$ und $v_2, \ldots, v_l \in V$. Der Vektoren-Tupel (v_1, \ldots, v_l) ist eine Jordankette der Länge l zum Eigenwert c, falls

$$(T-cI) v_i = v_{i-1}$$
 für $i = 2, \ldots, l$

$$(T-cI) v_i = 0$$
 für $i=1$

Lemma 3.23.6

Sei $\mathcal{B} = (v_1, \dots, v_l)$ eine Jordankette. Dann ist $\{v_1, \dots, v_l\}$ linear unabhängig und

$$W := \operatorname{span} \{v_1, \dots, v_l\}$$

ist T-invariant. Die Matrixdarstellung $[T_W]_{\mathcal{B}}$ ist die Jordan Zelle

$$J_l(c)$$

der Dimension l zum Eigenwert c. Es gilt:

$$[T_W]_{\mathcal{B}} = \begin{pmatrix} c & 1 & 0 & \dots & 0 \\ 0 & c & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & & \dots & c & 1 \\ 0 & & \dots & & c \end{pmatrix}$$

3.24 Skript 24

Note 3.24.0 Erinnerung

Sei $W \subseteq V$ und $W' \subseteq V$ so, dass $V = W \oplus W'$, dann heißt W' Komplement von W in V.

Note 3.24.1 Bemerkung

Sei $W \subseteq V$ und $v_1, \ldots, v_s \in V$ linear unabhängig so, dass span $\{v_1, \ldots, v_s\} \cap W = \{0\}$. Dann kann man $\{v_1, \ldots, v_s\}$ zu einer Basis von einem Komplement von W fortsetzen.

Proof Bemerkung 3.24.1

ÜΑ

Theorem 3.24.2 Jordan Normalform

Sei MinPol $T = (x - c)^r$, mit $c \in K$. Dann hat V eine Basis aus Jordanketten zum Eigenwert c (eine Jordanbasis) Die längsten Ketten haben die Länge r, die Anzahl der Ketten in jeder Länge ist eindeutig bestimmt.

Proof Satz 3.24.2 Jordan Normalform

Beobachte $\ker(T - cI) \subseteq \cdots \subseteq \ker(T - cI)^r = V$.

Behauptung: Seien $j \ge 2$ und $v^1, \ldots, v^s \in \ker(T - cI)^j$ linear unabhängig und span $\{v^1, \ldots, v^s\} \cap \ker(T - cI)^{j-1} = \{0\}$. **Dann gelten**:

1.
$$w^1 \coloneqq (T-cI)\,v^1,\ldots,w^s \coloneqq (T-cI)v^s \in \ker(T-cI)^{j-1}$$
 sind linear unabhängig und

2. span
$$\{w^1, \dots, w^s\} \cap \ker(T - cI)^{j-1} = \{0\}$$

Bew. der Beh.:

1.
$$0 = (T - cI)^j v^i = (T - cI)^{j-1} \underbrace{(T - cI) v^i}_{w^i}$$
.

• Sei

$$\sum_{i=1}^{s} w^i = 0,$$

 \mathbf{SO}

$$\sum_{i=1}^{s} c_i (T - cI) v^i = 0$$

Also

$$(T - cI)\sum_{i=1}^{s} c_i v^i = 0.$$

Also

$$\sum_{i=1}^{s} c_i v^i \in \ker(T - cI)^{j-1}$$

(weil
$$(T - cI)^{j-1} \left(\sum c_i v^i\right) (T - cI)^{j-2} \underbrace{(T - cI) \left(\sum c_i v^i\right)}_{0} = 0$$
) Also ist

$$\sum_{i=1}^{s} c_i v^i \in \operatorname{span}\left\{v^1, \dots, v^s\right\} \cap \ker \left(T - cI\right)^{j-1}.$$

Also

$$\sum_{i=1}^{s} c_i v^i = 0 \bot$$

3 Normalformen 73

2. Betrachte
$$\sum c_i w^i$$
 so, dass $(T-cI)^{j-2} \left(\sum c_i w^i\right) = 0$. Dann ist $(T-cI)^{j-1} \left(\sum c_i v^i\right) = 0$, so $\sum c_i v^i = 0$, so $(T-cI)v^i = 0 = \sum c_i w^i$

Wir bauen nun eine Basis aus Jordanketten folgendermaßen:

• $n_r = \dim \ker (T - cI)^r - \dim \ker (T - cI)^{r-1}$ und schreibe

$$\ker (T - cI)^r = V = V_r \oplus \ker (T - cI)^{r-1}.$$

Sei $\{v_r^1, \ldots, v_r^{n_r}\}$ eine Basis für V_r . Setze

$$v_{r-1}^1 := (T - cI)v_r^1, \dots, v_{r-1}^{n_r} \in \ker (T - cI)^{r-1}$$

und ergänze zu einer Basis von einem Komplement V_{r-1} von $\ker(T-cI)^{r-2}$ in $\ker(T-cI)^{r-1}$.

$$\left\{v_{r-1}^1, \dots, v_{r-1}^{n_r}, v_{r-1}^{n_r+1}, \dots, v_{r-1}^{n_r+n_{r-1}}\right\}$$

Also ist $n_{r-1} = \dim \ker(T - cI)^{r-1} - \dim \ker(T - cI)^{r-2} - n_r$ und $\ker(T - cI)^{r-1} = V_{r-1} \oplus \ker(T - cI)^{r-2}$. Wir verfahren so weiter für $i = r - 2, \ldots, 1$. Dabei berechnen wir immer:

$$n_i := \dim \ker (T - cI)^i - \dim \ker (T - cI)^{i-1} - n_r - \dots - n_{i+1}.$$

Im letztem Schriftt bekommen wir

$$v_1 = (T - cI)v_2^1, \dots, v_1^{n_r + \dots + n_2} = (T - cI)v_2^{n_r + \dots + n_2}, \dots$$

welches wir zu einer Baiss von $\ker(T-cI)$ ergänzen

$$v_1^1, \dots, v_1^{n_r + \dots + n_2}, v_1^{n_r + \dots + n_2 + 1}, \dots, v_1^{n_r + \dots + n_2 + n_1}$$

Insbesondere

$$n_1 = \dim \ker(I - cI)^1 - \dim \ker(T - cI)^0 - n_r - \dots - n_2 = \dim \ker(T - cI) - \sum_{i=2}^r n_i$$

Dies ist die Gestalt der Jordanbasis für V, die wir so erhalten (wobei jede "Spalte" hierunter ist eine Jordankette):

(Also n_r Jordanketten der Länge r, n_{r-1} Jordanketten der Länge $r-1, \ldots, n_1$ Jordanketten der Länge 1)

3 Normalformen 74

Note 3.24.3

$$[T]_{\mathcal{B}} = \begin{pmatrix} J_r(c) & & & & & \\ & \ddots & & & & \\ & & J_r(c) & & & \\ & & & \ddots & & \\ & & & & J_1(c) & & \\ & & & & \ddots & \\ & & & & & J_1(c) \end{pmatrix}$$

wobei die Jordanzelle $J_i(c)$ n_i -mal erscheint

Corollary 3.24.4

 $Falls\ \mathrm{MinPol}\ T\ (oder\ \mathrm{CharPol}\ T\ zerf\"{a}llt\ \"{u}ber\ K,\ dann\ hat\ V\ eine\ Basis\ von\ Jordanketten\ zu\ den\ verschiedenen\ Eigenwert.$

Proof Korollar 3.24.4

 $\operatorname{MinPol} T = (x - c_1)^{r_1} \cdots (x - c_k)^{r_k}$ Primzerlegung Satz 3.23.2 liefert

$$V = W_1 \oplus \cdots \oplus W_k$$

mit W_i T-inv- und MinPol $T_{W_i}=(x-\subset c_i)^{r_i}$ $\forall i=1,\ldots,k$. Die Jordan nOrmalform lierfert Basen \mathcal{B}_{c_i} con Jordanketten für T_{W_i} für jeden Eigenwert c_i . Setze

$$\mathcal{B} = igcup_{i=1}^k \mathcal{B}_{c_i}.$$

4 Euklidische und Unitäre Räume

4.25 Skript 25

4.25.15 Innere Produkte:

Definition 4.25.0

Eine inneres Produkt (auch Skalarprodukt) auf V ist eine Abbildung

$$V \times V \to K, (x, y) \mapsto (x|y)$$

so, dass

(1)
$$(x|y) = \overline{(y|y)} \leftarrow \text{Da } (x|x) = \overline{(x|x)}, \text{ also } (x|x) \in \mathbb{R}.$$

(2)
$$(c_1x_1 + c_2x_2|y) = c_1(x_1|y) + c_2(x_2|y)$$

(3)
$$(x|x) \ge 0$$
 und $(x|x) = 0 \iff x = 0$

Note 4.25.1 Bemerkung

Wir folgern: $(x|c_1y_1 + c_2y_2) = \overline{(c_1y_1 + c_2y_2|x)} = \overline{c_1(y_1|x) + c_2(y_2|x)} = \overline{c_1}(y_1|x) + \overline{c_2}(y_2|x) = \overline{c_1}(y_1|x) + \overline{c_2}(y_2|x) = \overline{c_1}(x|y_1) + \overline{c_2}(x|y_2).$

Wir setzen $(x|x) = ||x||^2$ und $||x|| := \sqrt{(x|x)}$ nennen wir die **Norm von** x.

Note 4.25.2 Bemerkung

Es gilt ||cx|| = |c| ||x||.

Definition Terminologie

- $K = \mathbb{R}, (V, (\cdot|\cdot))$ ist euklidischer Raum und $(\cdot|\cdot)$ heißt symmetrisch bilineare positiv definite Form.
- $K = \mathbb{C}, (V, (\cdot|\cdot))$ heißt hermitescher oder unitärer Raum und $(\cdot|\cdot)$ ist hermitesch symmetrisch, oder konjugiert bilieare positiv definite Form

Example 4.25.3

Auf $V = K^n$ so definiert: **standard Skalarprodukt**

$$(x|y) = \sum_{i=1}^{n} \varepsilon_i \overline{\eta_i}$$

wobei $x = (\varepsilon_1, \dots, \varepsilon_n) \in V, y = (\eta_1, \dots, \eta_n) \in V.$

Definition 4.25.4

Ansatz $(V, (\cdot|\cdot))$

(i) $x, y \in V$ sind **orthogonal** falls (x|y) = 0 (oder (y|x) = 0)

- (ii) $W_1, W_2 \subseteq V$ Unterräume von V W_1, W_2 sind **orthogonal** wenn $(x|y) = 0 \ \forall x \in W_1$ und $y \in W_2$
- (iii) $S \subseteq V$ ist **orthonormal** falls (x|y) = 0 für $x \neq y$ und (x|y) = 1 für $x = y \neq 0$. Also $S = \{x_1, \ldots, x_n\}$ ist orthonormal falls $(x_i|x_j) = \delta_{ij} \ \forall i, j = 1, \ldots, n$

Note 4.25.5

(i) S ist orthonormal $\implies S$ ist linear unabhängig

Proof

Sei

$$\sum c_i x_i = 0 \implies 0 = \left(\sum c_i x_i | x_j\right) = \sum c_i (x_i | x_j) = c_j \quad \forall j$$

(ii) $\dim V = n \implies |S| \le n \text{ wenn } S \text{ orthonormal}$

Note 4.25.6

orthogonale dim $V := \max\{|S|; Sorthonormal\}$

Note 4.25.7

orthonormale $\dim V \leq \dim V$

Definition Notation

Für $S \subseteq V$ setze $S^{\perp} := \{x \in V | (x|s) = 0\} \, \forall s \in S$

Note 4.25.8

- (i) S^{\perp} ist ein Unterraum
- (ii) $S \subseteq (S^{\perp})^{\perp} = S^{\perp \perp}$
- (iii) $\operatorname{span}(S) \subseteq S^{\perp \perp}$

Proof Bemerkung 4.25.8

Wir beweisen

(i)
$$0=(0|y) \implies \{0\}\subseteq S^\perp$$
 Für $x_1,x_2\in S^\perp,c\in K:(x_1+cx_2|s)=(x_1|s)+c(x_2|s)=0$ $\forall s\in S$

(ii) und (iii) folgen aus (i)

Definition 4.25.9

Sei $W \subseteq V$ ein Unterraum, W^{\perp} heißt das **orthogonale Kompement von** W in V

Theorem 4.25.10 Bessel's Ungleichung

Sei $S = \{x_1, \ldots, x_n\}$ orthonormal, $x \in V$. Setze $c_i := (x|x_i)$ für $i = 1, \ldots, n$. Es gelten:

$$\sum_{i} |c_i|^2 \le ||x||^2$$

(ii)

$$x' \coloneqq x - \sum_{i} c_i x_i$$

ist orthogonal zu $x_j \ \forall j = 1, \dots, n$

Proof Satz 4.25.10 Bessel's Ungleichung

(i) Wir berechnen

$$0 \le (x'|x') = (x - \sum_{i} c_i x_i | x - \sum_{i} c_i x_i)$$

$$= (x|x) - \sum_{i} c_i (x_i | x) - \sum_{i} \overline{c_i} (x | x_i) + \sum_{ij} c_i \overline{c_j} (x_i | x_j)$$

$$= ||x|| - \sum_{i} c_i \overline{c_i} - \sum_{i} \overline{c_i} c_i + \sum_{i} c_i \overline{c_i}$$

$$= ||x|| - \sum_{i} |c_i|^2$$

damit ist die (i) bewiesen

(ii)

$$(x'|x_j) = (x|x_j) - \sum_i c_i(x_i|x_j) = c_j - c_i = 0$$

4.26 Skript 26

Theorem 4.26.1 Ungleichung von Schwarz

Für alle $x, y \in V$ gilt:

$$|(x|y)| \le ||x|| \, ||y||$$
.

Proof Satz 4.26.1 Ungleichung von Schwarz

wenn y = 0 passt.

Sei $y \neq 0$ setze

$$y_1 \coloneqq \frac{y}{\|y\|}$$

so, dass $|y_1|$ ist orthonormal. Bessel $\implies |(x|y_1)| \le ||x||^2$, d.h.

$$\frac{1}{\|y\|}\left|(x|y)\right|^2 \leq \left\|x\right\|^2 \implies \left|(x|y)\right|^2 \leq \left\|x\right\|^2 \left\|y^2\right\|$$

Definition 4.26.2

$$\delta(x,y) = \|x - y\|$$

ist **Distanz** zwischen x und y.

Proposition 4.26.3

 $\forall x, y, z \in V$

(i)
$$\delta(x,y) = \delta(y,x)$$

(ii)
$$\delta(x,y) \ge 0$$
, $\delta(x,y) = 0 \iff x = y$

(iii)
$$\delta(x,y) \le \delta(x,z) + \delta(z,y)$$

Proof Proposition 4.26.3

(iii)

$$||x + y||^{2} = (x + y|x + y)$$

$$= ||x||^{2} + (x|y) + (y|x) + ||y||^{2}$$

$$= ||x||^{2} + 2 \operatorname{Re}(x|y) + ||y||^{2}$$

$$\leq ||x||^{2} + 2 |(x|y)| + ||y||^{2}$$

$$\leq ||x||^{2} + 2 ||x|| ||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}$$

Theorem 4.26.4 Gram-Schmidt Verfahren

Sei $(V, (\cdot | \cdot))$ inneres Produkt dim V = n. Dann hat V eine orthonormale Basis.

Proof Satz 4.26.4 Gram-Schmidt Verfahren

Sei $\mathcal{X} = \{x_1, \dots, x_n\}$ eine Basis für V. Wir werden eine orthonormale Basis

$$\mathcal{J} = \{y_1, \dots, y_n\}$$

per Induktion aufbauen

I.A.:
$$x_1 \neq 0$$
. Setze $y_1 := \frac{x_1}{\|x_1\|}$

I.Annahme: Seien y_1, \ldots, y_r schon definiert so, dass $\{y_1, \ldots, y_r\}$ orthonormal und $y_j \in \text{span}\{x_1, \ldots, x_j\} \forall j = 1, \ldots, r$.

I.S.: Setze

$$c_j := (x_{r+1}|y_j) \forall j = 1, \dots, r$$

Betrachte $z := x_{r+1} - \sum_{i=1}^{r} c_i y_i$ Berechne

$$(z|y_j) = (x_{r+1}|y_j) - c_j = c_j - c_j = 0 \quad \forall j = 1, \dots, r$$

 $z \in \text{span}\{x_{r+1}, y_1, \dots, y_r\}$

Setze
$$y_{r+1} := \frac{z}{\|z\|}$$
.

Bew.: $\{y_1, ..., y_{r+1}\}$ orthonormal, l.u., span $\{x_1, ..., x_n\} = \text{span } \{y_1, ..., y_n\}$

$(V, (\cdot|\cdot) K\text{-VR}, K = \mathbb{R} \text{ oder } \mathbb{C}: \dim V < \infty$

Theorem 4.26.7

Sei $W \subseteq V$ ein Unterraum. Es gelten

- (1) $V = W \oplus W^{\perp}$
- (2) $W^{\perp \perp} = W$

Proof Satz 4.26.7

(1) Sei $\mathcal{X} = \{x_1, \dots, x_n\}$ eine orthonormale Basis für W (Existenz folgt aus Gram-Schmidt). Sei $z \in V$. setze

$$x := \sum_{i=1}^{n} c_i x_i$$

wobei $c_i := (z|x_i)$. Es ist $x \in W$. Bessel liefert y := z - x ist orthogonal zu $x_i \, \forall i = 1, \ldots, n$, und somit $y \in W^{\perp}$. Also z = x + y, wobei $x \in W, y \in W^{\perp}$. Es gilt $W \cap W^{\perp} = \{0\}$ (weil $(x|x) = 0 \iff x = 0$

(2) Sei $z \in V$, z = x + y wie in (1). Berechne $(z|x) = ||x||^2 + (y|x) = ||x||^2$. Analog $(z|y) = ||y||^2$. Sei nun $z \in W^{\perp \perp}$, dann ist $(z|y) = 0 = ||y||^2$. Also $z = x \in W$

4.26.16 Beziehung zu linearen Funktionalen

Theorem 4.26.8 Riesz Darstellung

Sei $f \in V^*$, dann $\exists ! y \in V$ so, dass

$$\forall x \in V : f(x) = (x|) \tag{\dagger}$$

Proof Satz 4.26.8 Riesz Darstellung

 $\exists z$

- Sei f = 0 setze y = 0, dann sind Forderungen erfüllt
- Sei $f \neq 0$, betrachte

$$W := \ker(f) \subseteq V$$
 oder

$$W^{\perp} \neq \{0\}$$

• sei $y_0 \neq 0, y_0 \in W^{\perp} \times ||y_0|| = 1$. Setze $y := \overline{f(y_0)}y_0$. Beobachte

$$(y_0|y) = (y_0|\overline{f(y_0)y_0} = f(y_0)(y_0|y_0) = f(y_0)$$

somit gilt (†) für y_0

• Für $x = \lambda y_0$ berechnen wir allgemein.

$$f(x) = f(\lambda y_0) = \lambda f(y_0) = \lambda(y_0|y) = (\lambda y_0|y) = (x|y).$$

Also (†)

• Für $x \in W$ berechne:

$$(x|y) = (x|\overline{f(y_0)}y_0) = f(y_0)(x|y_0) = 0 = f(x).$$

Also (†) erfüllt. Sei nun $x \in V$ beliebig und schreibe $x = x_0 + \lambda y_0$ wobei $\lambda := \frac{f(x)}{f(y_0)}$ und $x_0 := x - \lambda y_0$ Berechne

$$f(x_0) = f(x) - \frac{f(x)}{f(y_0)} f(y_0) = 0$$

also ist $x_0 \in W$ und

$$f(x) = f(x_0) + f(\lambda y_0) \stackrel{(\dagger)}{=} (x_0|y) + (\lambda y_0|y) = (x_0 + \lambda y_0|y) = (x|y)$$

Damit (†) erfüllt.

Eindeutigkeit: Seien $y_1, y_2 \in V$ mit $(x|y_1) = (x|y_2) \ \forall x \in V$. Dann ist $(x|(y-y_2)) = 0 \ \forall x \in V$. Insbesondere gilt es auch für $x = y_1 - y_2$. Also $y_1 - y_2 = 0 \implies y_1 = y_2$

Theorem 4.26.9

 $Die\ Abbildung$

$$\rho: V^* \to V, f \mapsto y$$

(wobei $y = \rho(f)$ eindeutig definiert ist (RDS) durch $f(x) = (x|\rho(f)) \ \forall x \in V$ erfüllt:

- (i) $\rho(f_1 + f_2) = \rho(f_1) + \rho(f_2)$
- (ii) ρ surjektiv
- (iii) ρ injektiv und Achtung
- (iv) $\rho(cf) = \overline{c}\rho(f) \ \forall c \in K$

 ρ ist ein konjugierter Isomorphismus

Proof Satz 4.26.9

- (i) ÜA
- (ii) Sei $y \in V$, setze $\forall x \in V : f(x) := (x|y)$. Dann ist $f \in V^*$ und $\rho(f) = y$
- (iii) $f(x) = (x|y) = 0 \implies f = 0$
- (iv) setze $z \coloneqq \rho(cf), y \coloneqq \rho(f)$. Zu zeigen: $z = \overline{c}y$, d.h. zu zeigen:

$$\forall x \in V : (cf)(x) = (x|\overline{c}y)$$

Tatsächlich berechne:

$$(cf)(x) = cf(x) = c(x|y) = (x|\overline{c}y)$$

Corollary 4.26.10

$\ddot{U}bertragung$

I. $\forall f_1, f_2 \in V^* \ setze$

$$(f_1|f_2) \coloneqq (\rho(f_1)|\rho(f_2))$$

definiert ein inneres Produkt auf V^* .

II. Sei $\mathcal{X} = \{x_1, \dots, x_n\}$ und eine Basis für V, \exists eine Basis $\mathcal{Y} = \{y_1, \dots, y_n\}$ eine Basis für V so, dass

$$(x_i|y_j) = \delta_{ij} \ \forall i,j=1,\ldots,n$$

III. Für $W \subseteq V$ Unterräume gilt

$$\rho(W^{\circ}) = W^{\perp}$$

IV. Sei $T \in \mathcal{L}(V,V)$ Definiere T^* durch $(Tx|y) \coloneqq (x|T^*y) \ \forall x \in V$, also d.h. $\forall y,z \in V$: $T^*(y) = z$ genau dann wenn $\forall x \in V : (x|z) = (Tx|y)$ $T^* \in \mathcal{L}(V,V)$ Def: T^* ist die transponierte konjugierte zu T

Eigenschaften von T^*

- (1) $(cT)^* = \overline{c}T^*, c \in K$
- (2) Seien \mathcal{X} und \mathcal{Y} die δ -Basen wie in II. Sei $[T]_{\mathcal{X}} := A$ und Es gilt: $[T^*]_{\mathcal{Y}} = \overline{A^t} := A^*$ d.h. die ij-te Koeffizient von A^* ist $\overline{a_{ji}}$
- (3) $\det A^* = \overline{\det A}$
- (4) die Eigenwerte von A^* sind die Konjugierten der Eigenwerte von A

4.27 Skript 27

4.27.17 Hermite'sche Operatoren

$$T^*: (Tx|y) = (x|T^*y) \text{ oder } (x|Ty) = (T^*x|y)$$

Definition 4.27.1

- (i) Sei $T \in \mathcal{L}(V,V)$. T ist **Hermite'sch** (oder **selbstadjungiert**) falls $T^* = T$, d.h. T ist Hermite'sch falls gilt
- (ii) $K = \mathbb{R}, T = T^*$. T ist reell symmetrisch
- (iii) $K=\mathbb{C},\,T=T^*$ Theißt komplex Hermite'sch

Theorem 4.27.2

Sei $T \in \mathcal{L}(V, V)$ Hermite'sch. Es gelten $(Tx|x) \in \mathbb{R} \ \forall x \in V \ und \ alle \ Eigenwerte \ von \ T \ sind \ reell.$

Proof Satz 4.27.2

Wir berechnen für $x \in V$ (Tx|x) = (x|T(x)) = (Tx|x). Sei nun Tx = cx mit $x \in V, x \neq 0$ dann ist

$$\underbrace{\left(Tx|x\right)}_{\in\mathbb{R}} = \left(cx|x\right) = c\underbrace{\left\|x\right\|^{2}}_{\in\mathbb{R}^{x}}$$

$$\implies c \in \mathbb{R}.$$

Note Matrixdarstellung

Sei \mathcal{X} eine orthonormale Basis (Gram-Schmidt). In diesem Fall ist \mathcal{Y} von II gleich \mathcal{X} . (d.h. \mathcal{X} ist selbstdual). Sei T Hermite'sch, $T = T^*$, dann bekommen wir

$$A = [T]_{\mathcal{X}} \stackrel{(2)}{=} \overline{A^t} = A^*$$

Das heißt

 $a_{ij} = \overline{a_{ji}}$ (A ist komplex Hermite'sch). (\mathbb{C})

 $a_{ij} = a_{ji} \ (A \text{ ist symmetrisch}) \ (\mathbb{R})$

Note 4.27.3

(i) umgekehrt sei A Hermite'sche Matrix, und \mathcal{X} eine orthonormale Basis für V, $\mathcal{X} = \{x_1, \ldots, x_n\}$. Dann ist der Operator $T_A \in \mathcal{L}(V, V)$ ist auch Hermite'sch (**Erinnerung:**

$$T_A\left(\sum_{i=1}^n \varepsilon_i x_i\right) := A \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

- (ii) T_1, T_2 Hermite'sch $\Longrightarrow T_1 + T_2$
- (iii) Sei $T \neq 0$ Hermite'sch und $\alpha \in K$, $\alpha \neq 0$, dann ist αT Hermite'sch genau dann wenn $\alpha \in \mathbb{R}$
- (iv) T ist invertierbar und Hermite'sch $\iff T^{-1}$ Hermite'sch

Theorem 4.27.4

Seien T_1, T_2 Hermite'sch. Es gilt: T_1T_2 ist Hermite'sch genau dann wenn

$$T_1T_2 = T_2T_1$$

Proof Satz 4.27.4

Wir berechnen:

$$(T_1T_2)^* = T_1T_2 \iff T_2^*T_1^* = T_1T_2 \iff T_2T_1 = T_1T_2$$

Theorem 4.27.5

- (i) Sei T_1 Hermite'sch und $T_2 \in \mathcal{L}(V,V), \ T_2 \neq 0$ dann ist $T_2^*T_1T_2$ Hermite'sch
- $(ii) \ umgekehrt \ T_2^*T_1T_2 \ Hermite'sch \ ist \ und \ T_2 \ invertierbar, \ dann \ ist \ T_1 \ Hermite'sch$

Proof Satz 4.27.5

(i)

$$(T_2^*T_1T_2)^* = T_2^*T_1^*T_2^{**} = T_2^*T_1T_2$$

(ii)

$$T_2^*T_1T_2 = (T_2^*T_1T_2)^* = T_2^*T_1^*T_2$$

Nun ist T_2 invertierbar, es folgt aus Bemerkung 4.27.3, dass T_2^* invertierbar ist: Die letzte Gleichung multiplizieren links mit $(T_2^*)^{-1}$ und rechts mit T_2^{-1} und bekommen $T_1 = T_1^*$

4.27.18 Cartesische Zerlegung eines Operators

Definition 4.27.6

 $T \in \mathcal{L}(V,V)$ heißt schief Hermite'sch, wenn $T^* = -T$

Note 4.27.7

Sei $T \in \mathcal{L}(V, V)$

• schreibe

$$T = T_1 + T_2 \tag{\dagger}$$

wobei

$$T_1 := \frac{T + T^*}{2}$$
 und

$$T_2 := \frac{T - T^*}{2}$$

bemerke, dass $T_1^* = T_1$ Hermite'sch und $T_2^* = -T^*$ schief Hermite'sch

- $K=C:T_2$ ist schief Hermite'sch $\iff T_2=iT_3$ wobe
i T_3 komplex Hermite'sch ist
- In diesem Fall ist (†) äquivalent zu

$$T = T_1 + iT_3$$

4.28 Skript 28

4.28.19 Isometrie

Definition 4.28.1

Sei $U \in \mathcal{L}(V, V)$ U ist eine **Isometrie** wenn $U^* = U^{-1}$.

 $K = \mathbb{R}$ orthogonal

 $K = \mathbb{C}$ unitär

Theorem 4.28.2

Für $U \in \mathcal{L}(V, V)$ sind äquivalent:

(1)
$$U^*U = UU^* = Id$$

(2)
$$(Ux|Uy) = (x|y) \ \forall x, y \in V$$

(3)
$$||Ux|| = ||x|| \ \forall x \in V.$$

(4)
$$||Ux - Uy|| = x - y$$

Proof Satz 4.28.2

"(1)
$$\Longrightarrow$$
 (2)" Berechne: $(Ux|Uy) = (x|U^*Uy) = (x|y)$

"(2)
$$\Longrightarrow$$
 (3)" anwenden von (2) mit $x = y$.

"(3)
$$\Longrightarrow$$
 (1)" Wir haben wegen Erinnerung 27.0:

$$(Ux|Ux) = (U^*Ux|x) = (x|x)$$

Also
$$([U^*U - \operatorname{Id}]x|x) = 0 \ \forall x \in V$$

setze: $T := U^*U - \text{Id.}$ wegen 4.27.3 (ii) ist Hermite'sch. Ferner gilt: $(Tx|x) = 0 \ \forall x \in V$

Behauptung: $(Tx|y) = 0 \ \forall x, y \in V$

Beweis der Behauptung: benutze folgende Gleichungen für Hermite'sche Operatoren. Für $K = \mathbb{R}$:

$$2(Tx|y) = (T(x+y)|x+y) - (T(x-y)|x-y)$$
 Bitte Prüfen!

Für
$$K = \mathbb{C}$$

$$4(Tx|y) = (T(x+y)|(x+y)) - (T(x-y)|x-y) + i(T(x+iy)|(x+iy)) - i(T(x-iy)|(x-iy))$$

womit die Beh. bewiesen ist.

Also Beh. gilt insbesondere für x=y. Das heißt: $(Tx|Tx)=0 \ \forall x\in V$. D.h. $\|Tx\|=0 \ \forall x\in V$, also $Tx=0 \ \forall x\in V \implies T=0$

Note 4.28.3

$$U$$
 Isometrie \implies (4) $||Ux - Uy|| = ||x - y|| \ \forall x, y \in V$.

Theorem 4.28.4

Eigenwerte von Isometrien haben den absoluten Betrag gleich 1.

Proof Satz 4.28.4

Sei $c \in \mathbb{C}$ Eigenwert $x \neq 0$, $x \in V$ Eigenvektor. Also Ux = cx. Es ist ||Ux|| = ||x|| also $||cx|| = |c| \, ||x|| = ||x||$

4.28.20 Orthonormal-Basis wechseln

Theorem 4.28.5

Sei $\mathcal{X} = \{x_1, \dots, x_n\}$ eine orthonormale Basis, $U \in \mathcal{L}(V, V)$. Dann ist U eine Isometrie genau dann wenn

$$U\mathcal{X} := \{Ux_1, \dots, Ux_n\}$$

eine orthonormale Basis ist.

Definition 4.28.6

Sei $A \in M_{n \times n}(K)$

- wenn $K = \mathbb{R}$, A ist **orthogonal** wenn $AA^t = A^tA = I_n$
- wenn $K = \mathbb{C}$, A ist **unitär** wenn $AA^* = A^*A = I_n$

Note 4.28.7

- (i) Seien U eine Isometrie und \mathcal{X} eine orthonormale Basis, dann ist $[U]_{\mathcal{X}}$ unitär (bzw. orthogonal)
- (ii) Sei \mathcal{X} eine orthonormale Basis und \mathcal{B} eine beliebige Basis. Dann ist \mathcal{B} orthonormal genau dann, wenn die Basiswechsel Matrix unitär (bzw. orthogonal) ist.

4.28.21 Spektraltheorie

- (a) Hermite'sche $(T^* = T)$
- (b) schief Hermite'sche $(T^* = -T)$
- (c) unitäre (bzw. orthogonale) $(T^* = T^{-1})$

alle diese Operatoren erfüllen folgende Eigenschaft:

Definition 4.28.8

 $T \in \mathcal{L}(V, V)$ ist **normal**, falls $T^*T = TT^*$

Theorem 4.28.9 Spektralsatz für normale Operatoren

(vgl. Satz 3.23.2 Primzerlegung)

Sei $T \in \mathcal{L}(V, V)$ normal und setze p = MinPol(T). Dann ist $p = p_1 \cdots p_k$ wobei p_i irreduzible und normiert ist $\forall i \in 1, \ldots, k$ (i.e. $\deg p_i = 1$ oder 2) Für jedes $i = 1, \ldots, k$: Sei $W_i \coloneqq \ker p_i(T)$ der

T-invariante Unterraum von V. Dann ist W_i orthogonal zu W_i für alle $i \neq j$ und

$$V = W_1 \oplus \cdots \oplus W_k$$

i.e. V ist die orthogonale direkte Summe von W_1, \ldots, W_k .

Für den Beweis brauchen wir

Lemma 4.28.10

Sei $T \in \mathcal{L}(V, V)$ und sei $W \subseteq V$ T-invariant. Dann ist $W^{\perp} \subseteq V$ T^* -invariant

Proof Hilfslemma 4.28.10

Sei $u \in W^{\perp}$ und $w \in W$, und berechne

$$(w|T^*u) = (Tw|u) = 0 \quad \forall w \in W$$

Also ist $T^*u \in W^{\perp}$

4.29 Skript 29

Note 4.29.1

Da $(T^*)^* = T$ (siehe ÜA). Nun können wir Lemma 4.28.10 auf T^* anwenden und bekommen

$$W \subseteq V$$
 T^* -invariant

dann ist

$$W^{\perp} \subseteq V$$
 T-invariant

Lemma 4.29.2

Sei $T \in \mathcal{L}(V, V)$ normal und $g(x) \in K[x]$ und $W := \ker g(T)$. Dann ist W^{\perp} T-invariant

Proof Lemma 4.29.2

Wir zeigen, dass W T^* -invariant ist. Nun T normal $\implies TT^* = T^*T \implies g(T)T^* = T^*g(T)$. Sei $u \in W$. Berechne

$$g(T)T^*(u) = T^*(g(T)(u)) = 0.$$

Also $T^*(u) \in W$. Also W T^* -invariant. Aus Bem. 4.29.1 folgt: W^{\perp} T-invariant

Note 4.29.3

Sei g ein Faktor vo p := MinPol(T), dann ist g(T) nicht invertierbar. In der Tat: Sei p = gh mit $0 < \deg h < \deg p$. Wäre g(T) invertierbar, dann hätten wir

$$0 = g(T)^{-1}p(T) = g(T)^{-1}g(T)h(T)$$

Also h(T) = 0, aber $\deg h < \deg p$

Proof 4.29.4 Spektralsatz Satz 4.28.9

- Wir bemerkten vorab, dass W_i T-invariant (siehe 3.21.2 (2))
- Sei $p = p_1 \cdots p_k$ wir zeigen $p_i \neq p_j$ für $i \neq j$ und

$$V = W_1 \oplus \cdots \oplus W_k$$

die orthogonale direkte Summe.

Beweis per Induktion mache

Ind. Anf.: k = 1 passt

Ind. Ann.: gilt k-1

Ind. Sch. Lemma 4.29.2 impliziert dass W_1^{\perp} T-invariant ist. Bemerke $p_1={\rm MinPol}(T_{W_1})$ Betrachte $T_{W_1^{\perp}}$ und

$$\ker p_1\left(T_{W_1^{\perp}}\right) = \{0\}$$

 $(x \in W_1^{\perp} \text{ und } x \in \ker p_1(T) = W_1 \implies x = 0)$ Also ist $p_1(T_{W_1^{\perp}})$ ist invertierbar, und somit (wegen Bem. 4.29.3) ist p_1 kein Faktor von MinPol $(T_{W_1^{\perp}})$. Setze

$$P_2 \coloneqq \operatorname{MinPol}\left(T_{W_1^{\perp}}\right)$$

Also sind p_1, P_2 teilerfremd. Also ist $p = \text{kgV}(p_1, P_2) = p_1 P_2$. Also ist $P_2 = p_2 \cdots p_k$, und $p_1 \neq p_j$ für $j = 2, \dots, k$.

• Nun wollen wir Ind. Ann. auf $T_{W_1^{\perp}}$ anwenden. Da T normal ist, ist auch $T_{W_1^{\perp}}$ normal. Wir bekommen (wie im Beweis Satz 3.23.3) folgt nun

$$W_1^{\perp} = W_2 \oplus \cdots \oplus W_k.$$

Alles zusammen

$$V = W_1 \oplus W_1^{\perp} = W_1 \oplus \cdots W_k$$

orthogonale direkte Summe

Corollary 4.29.5 zum Spektralsatz

 $f\ddot{u}r\ K=\mathbb{C}$

Sei $T \in \mathcal{L}(V, V)$ normal. Es gibt eine orthonormale Basis bestehend aus Eigenvektoren von T.

Proof Spektralsatz

 $\forall i = 1, ..., k$, sind die p_i linear, $p_i = (x - z_i)$ und W_i der Eigenraum zum Eigenwert z_i . Wähle eine orthonormal-Basis G-S. \mathcal{X}_i für W_i und setze $\forall i = 1, ..., k$

$$\mathcal{X} = \mathcal{X}_1 U \cdots U \mathcal{X}_k$$

Corollary 4.29.6 Eigenvektoren von Hermite'schen Operatoren

 $K = \mathbb{C}$, T normal. Es gilt: T ist Hermite'sch \iff Eigenwerte von $T \in \mathbb{R}$ sind.

Proof Korollar Eigenvektoren von Hermite'schen Operatoren

" ⇒ ": Satz 4.27.2

" \Longrightarrow ": Folgt aus orthogonal diagonalisierbar:

$$D = [T]_{\mathcal{X}} = \begin{pmatrix} d_1 & 0 \\ & \ddots \\ 0 & d_n \end{pmatrix}$$

$$d_i \in \mathbb{R}, D^* = D$$

Corollary 4.29.7 Eigenwerte von unitär

Sei $K = \mathbb{C}$, T normal. Es gilt T ist unit $\ddot{a}r \iff$ alle Eigenwerte von T absolut Betrag = 1 haben.

Proof Eigenwerte von unitären Operatoren

" \Longrightarrow ": Satz 4.28.4

" \Leftarrow ": Aus Kor. orthogonal diagonalisierbar haben wir bekommen, $\mathcal X$ eine orthogonale Basis bestehend aus Eigenvektoren.

$$D := [T]_{\mathcal{X}} = \begin{pmatrix} z_1 & & 0 \\ & \ddots & \\ 0 & & z_n \end{pmatrix}$$

 z_i sind Eigenwerte von \mathbb{C} .

Beh.: D ist unitär!

Berechne
$$D^* = \overline{D^t} = \begin{pmatrix} \overline{z_1} & 0 \\ & \ddots \\ 0 & \overline{z_n} \end{pmatrix}$$

Berechne

$$\mathbb{D}^* = \begin{pmatrix} z_1 \overline{z_1} & 0 \\ & \ddots & \\ 0 & & z_n \overline{z_n} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$