Getting started with Conda and Nextflow

Week 4 - Workflow Management Training Workshop Robert A. Petit III, PhD

Note! Switching things up this week

Conda and Nextflow are expansive topics

Mixing lecture with hands-on exercises

Please interrupt and ask questions

BIOCONDA

Topics for Today

nexiflow

nf-core

Tentative Schedule

- Conda and Installation (~20 minutes)
- Nextflow and Example Runs (~30 minutes)
- Break (~10 minutes)
- Nextflow Channels & Processes (~20 minutes)
- Nextflow DSL1 vs DSL2 (~20 minutes)
- Additional Exercises and Discussion
- Wrap-up (Final ~15 minutes)

- A package manager for installing 1000s of tools
- Available on Windows, Mac, and Linux
 - Windows has fewer available packages
- Packages are grouped into channels
 - <u>conda-forge</u> 18k+ general, non-domain specific tools
 - <u>Bioconda</u> 4k+ bioinformatic tools and libraries
 - Can even set up a personal channel

```
conda create -n fastq-scan fastq-scan
conda activate fastq-scan
fastq-scan -h
Usage: cat FASTQ | fastq-scan [options]
Version: 1.0.0
Optional arguments:
            Genome size for calculating estimated
                 sequencing coverage. (Default 1)
            ASCII offset for input quality scores,
                 can be 33 or 64. (Default 33)
             Print only the QC stats, do not print
    -q
                read lengths or per-base quality scores
             Print version information and exit
    - V
             Show this message and exit
    -h
```

BIOCONDA for all your bioinformatic tools

- Makes bioinformatics accessible
 - Easy installs, dependency handling
- Downstream containerization*
 - Docker Biocontainers
 - Singularity Images <u>Galaxy Project</u>
- Truly a community driven repository
 - More than 1,300 people have contributed
- Currently 4,000+ recipes are available
- Learn more at <u>bioconda.github.io</u>

Exercise 1: Conda

Exercise 1: Install Conda and Serotype a Shigella genome

- Head on over to GitHub: <u>Exercise 1 Conda</u>
- Together we will:
 - Install Miniconda3
 - Install Mamba
 - Create a "Shigatyper" environment
 - Serotype and Shigella genome
- Wrap up the exercise

When to use and not use CONDA

- Use Conda:
 - Rapid prototyping
 - Need a quick answers
 - Personal systems

- Skip Conda:
 - Production should use containers (Docker or Singularity)
 - HPC and Cloud environments
 - Using Windows only (e.g., not using WSL2)

Conda "best practices"

- Keep the initial "base" environment clean
 - Mamba is an exception
- Use "conda create" for isolated environments
 - Treat these environments as disposable
- Channel priority is important
 - Prefer conda-forge before bioconda

Common Conda issues to keep in mind

- "Unable to solve environment"
- Automated docker builds can be problematic
 - If a StaPH-B Docker container is available, use it
 - Rigorous manual builds that are verified to be working
- Curtis Kapsak is an expert for using Docker for bioinformatics
- Conda is can be fragile if misused
 - Fragility increases as "base" environment grows
 - If all else fails, just reinstall it

Questions or comments?

nexiflow

A popular workflow manager in Bioinformatics

```
nextflow.enable.dsl=2

process sayHello {
   input:
     val cheers
   output:
     stdout

"""
   echo $cheers
"""
}

workflow {
   channel.of('Ciao', 'Hello', 'Hola') | sayHello | view
}
```

- Enables scalable and reproducible pipelines, with built in resumability
- Supports Conda, Docker, and Singularity
- Seamlessly move between local resources, HPC, and major cloud providers
- Regularly solicits user feedback to guide future developments

next own independent

- Execute on a laptop of the cloud, with a simple parameter change
- Available on:
 - Bioconda, Docker, Singularity
 - Google Cloud Platform
 - Amazon Web Services
 - Microsoft Azure
 - HPC Schedulers
- Executable from:
 - Nextflow Tower

Google Cloud

nf-core pushing Nextflow to the limits

- Community effort to collect curated Nextflow pipelines
 - 2400 Slack users, 1000+ GitHub contributors
- Includes 60+ hi-quality bioinformatic pipelines
 - rnaseq, mag, bactmap, many more
- nf-core/modules has 400+ DSL2* modules available
- Standardized <u>guidelines</u> for developers
- Thorough review process produces robust pipelines

Web platforms that support Nextflow

- Freely available web-platforms for the execution of bioinformatic pipelines
- No command-line knowledge required, allowing users to do more science
- **Platforms:**

- Nextflow Tower from Segera Labs
 - Supports workflows written in Nextflow
- nextflow tower Platform agnostic and supports many providers
 - HPC, Google Cloud, Microsoft Azure, Amazon Web Services
 - Community showcase of curated pipelines

- Nextflow executed inside Jupyter notebooks
- Limited to Google Cloud Platform

CGC from Seven Bridges

- Extensive API for executing workflows
- Limited to Amazon Web Services

Exercise 2: Nextflow Introduction

Executing Nextflow Pipelines

• Use "nextflow run" to execute pipelines

nextflow run main.nf

Can also run from GitHub repository

nextflow run nf-core/rnaseq

• "-resume" allows pipelines to be resumed

nextflow run nf-core/rnaseq -resume

• Many <u>command-line arguments</u> available, and additional <u>sub-commands</u>

Exercise 2: Install Nextflow and run a few workflows

Head on over to GitHub: <u>Exercise 2 – Nextflow Introduction</u>

- Together we will:
 - Create a "Nextflow" environment
 - Execute Hello World
 - Execute Bactopia/nf-core test workflows
 - Browse Nextflow outputs
- Wrap up the exercise

A few things to keep in mind about Nextflow

- Missing features:
 - Command line argument parser
 - nf-core has a <u>library to handle this</u>
 - Dry run feature
 - "stub runs" are a decent alternative
- Error messages can sometimes be hard to decipher
- By default, Nextflow uses all available resources

Questions or Comments?

Break Time ~10 minutes

Exercise 3: Nextflow Channels, Operators, and Processes

Nextflow Basic Structure

- Channel
 - Queue Channel
 - "First-in, First-out" (FIFO) connecting processes and operators
 - Value Channel
 - Stores a single value (e.g., genome size)
 - Can be a named list (e.g., ["id": "my_sample", "genome_size": 360000])
- Channels can be used by Operators and Processes

Channel Operators

- Methods to connect channels, or transform values of channels
 - Filtering
 - Transforming
 - Splitting
 - Combining
 - Forking
 - Math

More than <u>50 Operators</u> available to use

Processes

- The basic unit for executing user scripts
- <u>30+ directives</u> adjust optional settings
 - Can be dynamic
- Inputs and outputs are channels
 - Can be optional
- Conditional executions using 'when'
- The script block executes user code

```
process < name > {
   [ directives ]
   input:
    < process inputs >
   output:
    < process outputs >
   when:
    < condition >
   [script|shell|exec]:
   < user script to be executed >
```

Exercise 3: Nextflow Channels and Processes

• Head on over to GitHub: Exercise 3 - Nextflow Channels and Processes

- Together we will:
 - Demonstrate Operators
 - Demonstrate FIFO nature of Channels
 - Pass Channels between Processes
 - Create Channels from Process outputs
- Wrap up the exercise

FIFO Can Cause "Unexpected" Results

One Solution: Carry Inputs Across Processes

Questions or Comments?

Exercise 4: Nextflow DSL1 vs DSL2

nextflow DSL1

- The original syntax for Nextflow language
- Pipelines were written in a single script
 - Increased maintenance burden as pipeline grew
- Pipelines were not modular
 - Difficult to reuse pieces from one pipeline in another
- Data channels were one-time use
 - Required channels to be duplicated

nextflow DSL2

- Major evolution in the Nextflow language
- Introduced true modularization in Nextflow workflows
 - Modules A <u>reusable</u> Nextflow script with a process definition
 - Subworkflows Multiple modules linked together
- Modules are portable and easily shared between workflows
- Data channels can be used more than once

Exercise 4: Nextflow DSL1 vs DSL2

• Head on over to GitHub: <u>Exercise 4 - Nextflow DSL1 vs DSL2</u>

- Together we will:
 - Demonstrate config file usage
 - Walk through "scan-n-trim" DSL1 pipeline
 - Walk through "scan-n-trim" DSL2 pipeline
 - Alter command-line arguements
- Wrap up the exercise

Choose DSL2 Going Forward

DSL1 pipelines must tell Nextflow to use DSL1

New pipelines should be written in DSL2

- <u>nf-core/modules</u> has 500+ ready to use DSL2 modules
 - Rapid prototyping and pipeline building
 - Version controlled, extensive logging, supports Conda, Docker and Singularity

Questions or Comments?

Additional Exercise Ideas

- Use "publishDir" to adjust how files are output
- Use "label" to adjust runtime requirements
- Create a "config profile" to switch between Conda and Docker

Create a DSL2 pipeline <u>using modules from nf-core</u>

Additional Nextflow Resources

Nextflow and Bioconda specific support channels

- Nextflow Slack
 - General Nextflow Support
 - Nextflow devs regularly helping users
- Nf-core Slack
 - Nf-core and Nextflow devs regularly helping users
- Bioconda Gitter
 - Mostly related to submitting Bioconda recipes
- StaPH-B Slack
 - Many users from the state public health labs

Nextflow Continuing Education

- Nextflow Training Workshop
 - 10+ hour Nextflow course given by <u>Seqera Labs</u>
- Nextflow and nf-core
 - 10+ hour course being developed by nf-core members available from <u>Software Carpentries</u>
- <u>Reproducible, scalable, and shareable analysis</u> workflows with Nextflow
 - 10+ hour Nextflow course by <u>Sateesh Peri</u>, <u>Michael</u> <u>Cipriano</u>, and <u>Matthew Hunter Seabolt</u>

Useful Nextflow Links

Nextflow Documentation

 Extensive documentation of Channel operators, Process directives, executors, and many other Nextflow features

Awesome Nextflow

- A curated list of Nextflow pipelines
- Presentations, tutorials, videos, etc...

Nextflow Patterns

A repository of ways to do things in Nextflow

Useful nf-core Links

- <u>nf-core</u>
 - Nf-core's main website, includes documentation for each pipeline, module documentation, etc...
- nf-core bytesize Talks
 - 20-minute videos covering all things nf-core, Nextflow, and best practices
- <u>nf-core/modules</u>
 - More than 400 ready-to-use DSL2 modules
- <u>nf-core/configs</u>
 - Numerous (80+) Nextflow configs for inspiration
- nf-core/tools
 - Python package with helper tools for the nf-core community.

Nextflow DSL2 pipelines for inspiration

- Make use of them, or use their source code for ideas
- nf-core/rnaseq
 - RNA sequencing analysis pipeline with gene counts and extensive QC
 - Cutting-edge on Nextflow features
- Bactopia (shameless plug)
 - For the complete analysis of bacterial genomes
 - Illumina and Nanopore support, 130+ bioinformatic tools, 30+ additional workflows

Workflow managers make bioinformatics manageable

- Manages the execution of pipelines
 - Linking inputs/outputs of bioinformatic tools
 - Queuing jobs locally, on clusters, or the cloud
 - Logging, errors, audit trails
- Promote reproducible and reusable science
- Common workflow languages:
 - Nextflow, WDL, and Snakemake
- Pick one that works for you

The <u>beginnings</u> of a strong bioinformatic skill set

- Accessibility and Portability
 - Docker
 - Conda
- Reproducibility
 - Workflow Description Language (WDL)
 - Nextflow
- Bioinformatic Platforms
 - Terra.bio
 - Nextflow Tower

But don't let it end here!

- This has only been the <u>beginnings</u> of a strong bioinformatic skill set
- Practice, practice, practice
- Make mistakes, break things, debugging error messages is a top-tier skill
- Try to figure things out, but don't hesitate to ask questions

Questions or Comments?