UNIVERSITY OF GHANA MATH 223-CALCULUS II

Duration: 1 hour 30 minutes

- 1- a) Let $(v_k)_{k\geq 1}$ be an arithmetic sequence such that $v_1=-3$. Find the integer n and the common difference d so that $v_n=6$ and $S_n=v_1+v_2+\ldots+v_n=28.5$.
 - b) Let $(a_k)_{k\geq 1}$ be a geometric sequence. Find the integer k and the common ratio r so that $v_1=48, v_k=243$ and $S_k=v_1+v_2+\ldots+v_k=633$.
 - c) Consider the sequences (u_n) defined by $u_0=1$ and $u_{n+1}=\frac{2}{3}u_n-\frac{1}{3}$ and $v_n=u_n+1$.

Prove that (v_n) is a geometric sequence.

Find v_n and hence u_n as a function of n. Deduce the limit of u_n .

2- a) Find if the following series converge or not.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\sqrt{5}}}; \ \sum_{n=0}^{\infty} \frac{4n-1}{n^3+1}; \ \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{3\sqrt{n}+5}; \ \sum_{n=0}^{\infty} \frac{3}{n+2}.$$

Justify all your answers.

- b) Find the partial sum S_n and hence evaluate the series $\sum_{n=0}^{\infty} 5\left(\frac{1}{2}\right)^n$.
- c) Consider the series $S = \sum_{n=1}^{\infty} \frac{-5}{n^2 + 4n + 3}$.
 - i) Why is S convergent?
 - ii) Find the partial sum S_n and hence determine the value of S.
- **3-** a) Determine the radius and the interval of convergence of the following power series

$$\sum_{n=1}^{\infty} \frac{2^n}{n+3} (x+2)^n.$$

- b) Find the Taylor's series about a = 0 of $f(x) = \ln(1 x)$. Give an expression of the Taylor's polynomial or order 4 with error term (Lagrange reminder) and estimate the error for $x \in (-1, 1)$.
- c) Recall for $f:[a,b]\to\mathbb{R}$, the Riemann sum is given by

$$R_n = \frac{b-a}{n} \sum_{k=1}^n f(a+k\frac{b-a}{n}).$$

Using the Riemann sum, evaluate the Riemann integral $\int_3^5 (2x - 3x^2) dx$.

1