实验二 单管交流放大电路

- 1. 掌握单管放大器静态工作点的调整及电压放大倍数的测量方法。
- 2. 研究静态工作点和负载电阻对电压放大倍数的影响,进一步理解静态工作点对放大器工作的意义。
- 3. 观察放大器输出波形的非线性失真。
- 4. 熟悉低频信号发生器、示波器及晶体管毫伏表的使用方法。

二. 电路原理简述

单管放大器是放大器中最基本的一类,本实验采用固定偏置式放大电路,如图 2-1 所示。 其 中 R_{BI} =100K Ω , R_{CI} =2K Ω , R_{LI} =100 Ω , R_{WI} =1M Ω , R_{WS} =2. 2k Ω , C1=C2=10 μ F/15V, T_1 为 9013 (β =160-200)。

为保证放大器正常工作,即不失真地放大信号,首先必须适当取代静态工作点。

在晶体管、电源电压 V_{cc} 及电路其他参数(如 R_{c} 等)确定之后,静态工作点主要取决于 I_{B} 的选择。因此,调整工作点主要是调节偏置电阻的数值(本实验通过调节 R_{wl} 电位器来实现)进而可以观察工作点对输出电压波形的影响。

三. 实验设备

名称数量型号

1. 2.	多功能交直流电源 函数信号发生器	1 台 1 台	30221095 学校自备
3.	示波器	1台	学校自备
4.	晶体管毫伏表	1只	学校自备
5.	万用表	1只	学校自备
6.	电 阻	3只	$100 \Omega *1$, $2k \Omega *1$, $100k \Omega *1$
7.	电位器	2只	$2.2 \text{ k}\Omega*1, 1M\Omega*1$
8.	电 容	2 只	10 μ F/15V*2
9.	三 极管	1 只	9013*1
10.	短接桥和连接导线	若 干	P8-1 和 50148
11.	实验用9孔插件方板		300mm $ imes 298$ mm

四. 实验内容与步骤

1. 调整静态工作点

实验电路见 9 孔插件方板上的"单管交流放大电路"单元,如下图 2-2 所示。

方板上的多功能交直流电源的输入电压为+12V,用导线将电源输出分别接入方板上的"单管交流放大电路"的+12V 和地端,将图 2-2 中 J_1 、 J_2 用一短线相连, J_3 、 J_4 相连(即 Rc_1 =2k Ω) J_5 、 J_6 相连,并将 R_{W3} 放在最大位置(即负载电阻 R_L = R_{L1} + R_{W3} =2. 7k Ω 左右)检查无误后接通电源。

测量晶体管电压 V_{CE} ,同时调节电位器 R_{WI} ,使 V_{CE} =5V 左右,从而使静态工作点位于负载线的中点。

为了校验放大器的工作点是否合适,把信号发生器输出的 f=1kHz 的信号加到放大器的输入端,从零逐渐增加信号 υ_i 的幅值,用示波器观察放大器的输出电压 υ_0 的波形。若放大器工作点调整合适,则放大器的截止失真和饱和失真应该同时出现,若不是同时出现,只要稍微改变 R_{WI} 的阻值便可得到合适的工作点。

此时把信号 V_i 移出,即使 $V_{i=0}$,分别测量晶体管各点对地电压 V_c 、 V_B 和 V_E ,填入表 2-1中,然后按下式计算静态工作点。

注: 测量 R_B 阻值时, 务必断开电源。同时应断开 J₄、

J₂ 间的连线。表2-1

	测量值			计算值				
Ī	$V_{\rm C}$	V_{B}	$V_{\scriptscriptstyle E}$	I_{B} (mA)	I_{C} (mA)	$V_{CE}(V)$	β	
Ī	5.00	0.62	0	0.019	3. 490	5.00	183	

2. 测量放大器的电压放大倍数,观察 Rci和Ri对放大倍数的影响。

表 2-2

		测量值			计算值	
R_{C1}		$V_{\rm i}$	V_0	V_0	A_{V}	Av
2k Ω	$R_L = \infty$	5mV	450mV	450mV	90	90
	R _L =2. 7k Ω	5mV	386mV	450mV	77. 2	90

3. 观察静态基极电流对放大器输出电压波形的影响

在实验步骤 2 的基础上,将 R_{VI} 减小,同时增大信号发生器的输入电压 V_i 值,直到示波器上产生输出信号有明显饱和失真后,立即加大 R_{VI} 值直到出现截止失真为止。

五. 分析与讨论

- 1. 解释 Av随RL变化的原因。
- 2. 静态工作点对放大器输出波形的影响如何?

1. 根据
$$Av = -\beta \frac{RL'}{r_{be}}$$
, Av随RL增大而增大

2: 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。 如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u0的负半周将被削底; 如工作点偏低则易产生截止失真,即u0的正半周被缩项(一般截止失真不如饱和失真明显)。