

**PCT**WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :<br><br><b>H04L 27/00</b>                                                                                                                                                                                   | A2                                                                                                                                     | (11) Internationale Veröffentlichungsnummer: <b>WO 99/25103</b><br><br>(43) Internationales Veröffentlichungsdatum: 20. Mai 1999 (20.05.99) |
| (21) Internationales Aktenzeichen: PCT/EP98/04789<br><br>(22) Internationales Anmeldedatum: 31. Juli 1998 (31.07.98)                                                                                                                                               | (81) Bestimmungsstaaten: CA, JP, NO, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). |                                                                                                                                             |
| (30) Prioritätsdaten:<br>197 48 880.3 6. November 1997 (06.11.97) DE                                                                                                                                                                                               | Veröffentlicht<br><i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>                |                                                                                                                                             |
| (71) Anmelder (für alle Bestimmungsstaaten ausser US): DEUTSCHE TELEKOM AG [DE/DE]; Friedrich-Ebert-Allee 140, D-53113 Bonn (DE).<br><br>(72) Erfinder; und<br>(75) Erfinder/Anmelder (nur für US): HUBER, Klaus [DE/DE]; Rheinstrasse 18, D-64283 Darmstadt (DE). | <p style="text-align: right;"><i>Kopie an Drf.<br/>el W4/b</i></p>                                                                     |                                                                                                                                             |

(54) Title: METHOD AND CIRCUIT ARRANGEMENT FOR IMPROVED DATA TRANSMISSION

(54) Bezeichnung: VERFAHREN UND SCHALTUNGSANORDNUNG ZUR VERBESSERTEN DATENÜBERTRAGUNG



## (57) Abstract

The invention relates to a method and a circuit arrangement for efficient use of multistage modulation methods using orthogonal base functions for the representation of a signal to be transmitted. A 16-QAM signal constellation can be used, for instance, in a simple and optimal way, for transmitting at low data rates. The circuit arrangement corresponding to said method comprises a source (1) which supplies a data stream (2) and is connected to a code converter (3) for converting the data stream. The output of the code converter (3) is connected to a modulator (4) in which the corresponding signal points are selected with the right probability. The data stream (2) is then transmitted over a channel (5), and a demodulator (6) situated downstream from a code converter (7) carries out the inverse operation.

|                                                     |
|-----------------------------------------------------|
| Deutsche Telekom AG<br>Technologiezentrum Darmstadt |
| Eing. 31. Mai 1999                                  |
| Patentabteilung                                     |

81179106621

**(57) Zusammenfassung**

Es werden ein Verfahren und eine Schaltungsanordnung zur effizienten Nutzung von mehrstufigen Modulationsverfahren beschrieben, die orthogonale Basisfunktionen zur Darstellung des zu übertragenden Signals benutzen. Zum Beispiel, eine 16-QAM Signalkonstellation kann in einer einfachen und optimalen Weise dazu benutzt werden, um geringere Datenraten zu übertragen. Die zu diesem Verfahren entsprechende Schaltungsanordnung besteht aus einer Quelle (1), die einen Datenstrom (2) liefert und die mit einem Umcodierer (3) zur Codierung des Datenstroms verbunden ist. Der Ausgang des Umcodierers (3) ist mit einem Modulator (4) verbunden, in dem die entsprechenden Signalpunkte mit der richtigen Wahrscheinlichkeit ausgewählt werden. Nach Übertragung des Datenstroms (2) über einen Kanal (5) folgt ein Demodulator (6), dem ein Umcodierer (7) nachgeschaltet ist, der die inverse Operation durchführt.

**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss der PCT veröffentlichen.

|    |                              |    |                                   |    |                                                 |    |                                |
|----|------------------------------|----|-----------------------------------|----|-------------------------------------------------|----|--------------------------------|
| AL | Albanien                     | ES | Spanien                           | LS | Lesotho                                         | SI | Slowenien                      |
| AM | Armenien                     | FI | Finnland                          | LT | Litauen                                         | SK | Slowakei                       |
| AT | Österreich                   | FR | Frankreich                        | LU | Luxemburg                                       | SN | Senegal                        |
| AU | Australien                   | GA | Gabun                             | LV | Lettland                                        | SZ | Swasiland                      |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich            | MC | Monaco                                          | TD | Tschad                         |
| BA | Bosnien-Herzegowina          | GE | Georgien                          | MD | Republik Moldau                                 | TG | Togo                           |
| BB | Barbados                     | GH | Ghana                             | MG | Madagaskar                                      | TJ | Tadschikistan                  |
| BE | Belgien                      | GN | Guinea                            | MK | Die ehemalige jugoslawische Republik Mazedonien | TM | Turkmenistan                   |
| BF | Burkina Faso                 | GR | Griechenland                      | ML | Mali                                            | TR | Türkei                         |
| BG | Bulgarien                    | HU | Ungarn                            | MN | Mongolei                                        | TT | Trinidad und Tobago            |
| BJ | Benin                        | IE | Irland                            | MR | Mauretanien                                     | UA | Ukraine                        |
| BR | Brasilien                    | IL | Israel                            | MW | Malawi                                          | UG | Uganda                         |
| BY | Belarus                      | IS | Island                            | MX | Mexiko                                          | US | Vereinigte Staaten von Amerika |
| CA | Kanada                       | IT | Italien                           | NE | Niger                                           | UZ | Usbekistan                     |
| CF | Zentralafrikanische Republik | JP | Japan                             | NL | Niederlande                                     | VN | Vietnam                        |
| CG | Kongo                        | KE | Kenia                             | NO | Norwegen                                        | YU | Jugoslawien                    |
| CH | Schweiz                      | KG | Kirgisistan                       | NZ | Neuseeland                                      | ZW | Zimbabwe                       |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik Korea | PL | Polen                                           |    |                                |
| CM | Kamerun                      | KR | Republik Korea                    | PT | Portugal                                        |    |                                |
| CN | China                        | KZ | Kasachstan                        | RO | Rumänien                                        |    |                                |
| CU | Kuba                         | LC | St. Lucia                         | RU | Russische Föderation                            |    |                                |
| CZ | Tschechische Republik        | LI | Liechtenstein                     | SD | Sudan                                           |    |                                |
| DE | Deutschland                  | LK | Sri Lanka                         | SE | Schweden                                        |    |                                |
| DK | Dänemark                     | LR | Liberia                           | SG | Singapur                                        |    |                                |
| EE | Estland                      |    |                                   |    |                                                 |    |                                |

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales Büro



INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                      |  |    |                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------|--|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :<br><b>H04L 27/00</b>                                                         |  | A2 | (11) Internationale Veröffentlichungsnummer: <b>WO 99/25103</b>                                                                              |
|                                                                                                                                      |  |    | (43) Internationales Veröffentlichungsdatum: <b>20. Mai 1999 (20.05.99)</b>                                                                  |
| (21) Internationales Aktenzeichen: <b>PCT/EP98/04789</b>                                                                             |  |    | (81) Bestimmungsstaaten: CA, JP, NO, US, europäisches Patent<br>(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,<br>LU, MC, NL, PT, SE). |
| (22) Internationales Anmeldedatum: <b>31. Juli 1998 (31.07.98)</b>                                                                   |  |    |                                                                                                                                              |
| (30) Prioritätsdaten:<br>197 48 880.3      6. November 1997 (06.11.97)      DE                                                       |  |    | <b>Veröffentlicht</b><br><i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>               |
| (71) Anmelder (für alle Bestimmungsstaaten ausser US): DEUTSCHE TELEKOM AG [DE/DE];<br>Friedrich-Ebert-Allee 140, D-53113 Bonn (DE). |  |    |                                                                                                                                              |
| (72) Erfinder; und                                                                                                                   |  |    |                                                                                                                                              |
| (75) Erfinder/Anmelder (nur für US): HUBER, Klaus [DE/DE];<br>Rheinstrasse 18, D-64283 Darmstadt (DE).                               |  |    |                                                                                                                                              |

(54) Title: METHOD AND CIRCUIT ARRANGEMENT FOR IMPROVED DATA TRANSMISSION

(54) Bezeichnung: VERFAHREN UND SCHALTUNGSANORDNUNG ZUR VERBESSERTEN DATENÜBERTRAGUNG



(57) Abstract

The invention relates to a method and a circuit arrangement for efficient use of multistage modulation methods using orthogonal base functions for the representation of a signal to be transmitted. A 16-QAM signal constellation can be used, for instance, in a simple and optimal way, for transmitting at low data rates. The circuit arrangement corresponding to said method comprises a source (1) which supplies a data stream (2) and is connected to a code converter (3) for converting the data stream. The output of the code converter (3) is connected to a modulator (4) in which the corresponding signal points are selected with the right probability. The data stream (2) is then transmitted over a channel (5), and a demodulator (6) situated downstream from a code converter (7) carries out the inverse operation.

**(57) Zusammenfassung**

Es werden ein Verfahren und eine Schaltungsanordnung zur effizienten Nutzung von mehrstufigen Modulationsverfahren beschrieben, die orthogonale Basisfunktionen zur Darstellung des zu übertragenden Signals benutzen. Zum Beispiel, eine 16-QAM Signalkonstellation kann in einer einfachen und optimalen Weise dazu benutzt werden, um geringere Datenraten zu übertragen. Die zu diesem Verfahren entsprechende Schaltungsanordnung besteht aus einer Quelle (1), die einen Datenstrom (2) liefert und die mit einem Umcodierer (3) zur Codierung des Datenstroms verbunden ist. Der Ausgang des Umcodierers (3) ist mit einem Modulator (4) verbunden, in dem die entsprechenden Signalpunkte mit der richtigen Wahrscheinlichkeit ausgewählt werden. Nach Übertragung des Datenstroms (2) über einen Kanal (5) folgt ein Demodulator (6), dem ein Umcodierer (7) nachgeschaltet ist, der die inverse Operation durchführt.

**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                              |    |                                   |    |                                                 |    |                                |
|----|------------------------------|----|-----------------------------------|----|-------------------------------------------------|----|--------------------------------|
| AL | Albanien                     | ES | Spanien                           | LS | Lesotho                                         | SI | Slowenien                      |
| AM | Armenien                     | FI | Finnland                          | LT | Litauen                                         | SK | Slowakei                       |
| AT | Österreich                   | FR | Frankreich                        | LU | Luxemburg                                       | SN | Senegal                        |
| AU | Australien                   | GA | Gabun                             | LV | Lettland                                        | SZ | Swasiland                      |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich            | MC | Monaco                                          | TD | Tschad                         |
| BA | Bosnien-Herzegowina          | GE | Georgien                          | MD | Republik Moldau                                 | TG | Togo                           |
| BB | Barbados                     | GH | Ghana                             | MG | Madagaskar                                      | TJ | Tadschikistan                  |
| BE | Belgien                      | GN | Guinea                            | MK | Die ehemalige jugoslawische Republik Mazedonien | TM | Turkmenistan                   |
| BF | Burkina Faso                 | GR | Griechenland                      | ML | Mali                                            | TR | Türkei                         |
| BG | Bulgarien                    | HU | Ungarn                            | MN | Mongolei                                        | TT | Trinidad und Tobago            |
| BJ | Benin                        | IE | Irland                            | MR | Mauretanien                                     | UA | Ukraine                        |
| BR | Brasilien                    | IL | Israel                            | MW | Malawi                                          | UG | Uganda                         |
| BY | Belarus                      | IS | Island                            | MX | Mexiko                                          | US | Vereinigte Staaten von Amerika |
| CA | Kanada                       | IT | Italien                           | NE | Niger                                           | UZ | Usbekistan                     |
| CF | Zentralafrikanische Republik | JP | Japan                             | NL | Niederlande                                     | VN | Vietnam                        |
| CG | Kongo                        | KE | Kenia                             | NO | Norwegen                                        | YU | Jugoslawien                    |
| CH | Schweiz                      | KG | Kirgisistan                       | NZ | Neuseeland                                      | ZW | Zimbabwe                       |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik Korea | PL | Polen                                           |    |                                |
| CM | Kamerun                      | KR | Republik Korea                    | PT | Portugal                                        |    |                                |
| CN | China                        | KZ | Kasachstan                        | RO | Rumänien                                        |    |                                |
| CU | Kuba                         | LC | St. Lucia                         | RU | Russische Föderation                            |    |                                |
| CZ | Tschechische Republik        | LI | Liechtenstein                     | SD | Sudan                                           |    |                                |
| DE | Deutschland                  | LK | Sri Lanka                         | SE | Schweden                                        |    |                                |
| DK | Dänemark                     | LR | Liberia                           | SG | Singapur                                        |    |                                |

- 1 -

## B E S C H R E I B U N G

### VERFAHREN UND SCHALTUNGSANORDNUNG ZUR VERBESSERTEN DATENÜBERTRAGUNG

Die Erfindung betrifft ein Verfahren und eine Schaltungsanordnung zur verbesserten Datenübertragung nach dem Oberbegriff des Patentanspruchs 1 bzw. des Patentanspruchs 9.

In der Nachrichtentechnik sind Übertragungsverfahren bekannt und auch in der Praxis im Einsatz, die orthogonale Basisfunktionen zur Darstellung des zu übertragenden Signals benutzen. Derartige Übertragungsverfahren sind zum Beispiel in dem Buch R.E. Blahut, Digital Transmission of Information, Addison-Wesley, Reading, 1990, Kapitel 2 und 3, beschrieben.

Ein Nachrichtensignal  $s(t)$  im Basisband wird hierbei als Summe von orthogonalen Basisfunktionen dargestellt. Um die Nachricht  $m = (m_0, m_1, m_2 \dots m_{k-1})$ , wobei die  $m_i$  aus einem passend gewählten Alphabet ausgewählt sind, in das Signal  $s(t)$  einzubinden, bildet man das Signal wie folgt:

$$s(t) = m_0 f_0(t) + m_1 f_1(t) + \dots + m_{k-1} f_{k-1}(t).$$

Ein Nachrichtensignal kann demzufolge als Punkt im K-dimensionalen Raum angesehen werden und zwar charakterisiert durch den Wertetupel  $(m_0, m_1, \dots, m_{k-1})$ . Die Gesamtheit aller zulässigen Signale bezeichnet man als Signalkonstellation. In der Praxis besonders beliebt sind zweidimensionale Signalkonstellationen, wie zum Beispiel die in Fig. 1 der vorliegenden Anmeldung abgebildete sogenannte 16-QAM Signalkonstellation. Diese 16-QAM Signalkonstellation ist zum Beispiel in dem obengenannten Buch, Seite 63 beschrieben. Bei allen hier betrachteten

- 2 -

Signalkonstellationen sei der Mindestabstand zweier Signalpunkte auf 1 normiert. Die bekannten Übertragungsverfahren zur effizienten Nutzung von mehrstufigen Modulationsverfahren ermöglichen jedoch noch nicht die optimale Nutzung der Signalenergie von Signalkonstellationen. Zum einen können nämlich Signalkonstellationen, die sehr effizient sind, allerdings den Nachteil haben, daß die Anzahl der Signalpunkte keine Zweierpotenz ist und zum anderen können häufig benutzte Signalkonstellationen, wie zum Beispiel 16-QAM noch nicht in einfacher und optimaler Weise dazu genutzt werden, geringe Datenraten zu übertragen.

Grundsätzliche theoretische Untersuchungen zur verbesserten Datenübertragung und zur effizienten Nutzung von mehrstufigen Modulationsverfahren, die orthogonale Basisfunktionen zur Darstellung eines zu übertragenden Signals benutzen und die zum Beispiel das bekannte Huffman-Verfahren als Quellencodierverfahren anwenden sind in F.R. Kschischang, S. Pasupathy, "Optimal Nonuniform Signaling for Gaussian Channels", IEEE Transactions on Information Theory, Vol. 39, No. 3, May 1993, pp. 281-300, veröffentlicht. Praktische Implementationen dieser Untersuchungen in Form von Schaltungsanordnungen bzw. entsprechender Verfahren zum Betreiben solcher Schaltungsanordnungen sind jedoch nicht angegeben.

Der Erfahrung liegt deshalb die Aufgabe zugrunde, ein Verfahren und eine Schaltungsanordnung zur verbesserten Datenübertragung mit effizienter Nutzung von mehrstufigen Modulationsverfahren zu schaffen, die eine optimale Nutzung der Signalenergie von Signalkonstellationen ermöglichen und wodurch häufig benutzte Signalkonstellationen, wie zum Beispiel 16-QAM, in einfacher und optimaler Weise zur Übertragung geringerer Datenraten genutzt werden können.

- 3 -

Die erfindungsgemäße Lösung der Aufgabe des Verfahrens ist im Kennzeichen des Patentanspruchs 1 charakterisiert.

Weitere Lösungen bzw. Ausgestaltungen des Verfahrens sind in den Patentansprüchen 2 bis 8 und 12 bis 15 charakterisiert.

Die erfindungsgemäße Lösung für die Schaltungsanordnung ist im Kennzeichen des Patentanspruchs 9 und eine weitere Ausgestaltung ist im Kennzeichen der Patentansprüche 10 bis 12 charakterisiert.

Weitere Lösungen und Ausgestaltungen der Erfindung sind in der nachfolgenden detaillierten Beschreibung angegeben.

Das hier beschriebene Verfahren und die beschriebene Schaltungsanordnung ermöglichen die optimale Nutzung der Signalenergie von Signalkonstellationen. Dies kann für technische Anwendungen in zweierlei Hinsicht von Vorteil sein. Zum einen können Signalkonstellationen, die sehr effizient sind, allerdings den Nachteil haben, daß die Anzahl der Signalpunkte keine Zweierpotenz ist, nun auf einfache Art und Weise an praktisch verwendete Datenformate, zum Beispiel eine Bitfolge, angepaßt werden. Zum anderen können häufig benutzte Signalkonstellationen, wie zum Beispiel 16-QAM, in einfacher Weise optimal dazu genutzt werden, um geringere Datenraten zu übertragen. So kann die 16-QAM Signalkonstellation dazu benutzt werden, um im Mittel 3 Bit pro Signalpunkt zu übertragen, statt der üblichen 4 Bit pro Signalpunkt. Dies kann zum Beispiel technisch nützlich sein, um in bestehenden Sendern und Empfängern, die etwa 8-QAM mit den Punkten { (+-1/2, +-1/2), (+- $(1+\sqrt{3})/2$ , 0), (0, +- $(1+\sqrt{3})/2$ ) } als Signalkonstellation benutzen (also 3 Bit pro Signalpunkt), auf 16-QAM mit optimierten Wahrscheinlichkeiten zu wechseln, bei gleichzeitigem Leistungsgewinn von ca. 1 dB.

- 4 -

Das Verfahren hat noch eine weitere Eigenschaft, die sich vorteilhaft nutzen läßt. Dies ist die besonders einfach zu bewerkstelligende Umcodierung, wenn der Eingangsdatenstrom eine gleich verteilte Folge, insbesondere Bitfolge ist. Die Umcodierung kann dann mit einem verlustlosen Dekompressionsverfahren wie etwa dem Huffman-Verfahren erfolgen. Die inverse Umcodierungsoperation auf der Empfängerseite erfolgt demgemäß mit dem zugehörigen Kompressionsverfahren. Eine gleichverteilte Folge bzw. Bitfolge erhält man zum Beispiel durch Verschlüsselung. Dies bedeutet, daß man die gegebenenfalls lästige Gewährleistung bzw. Erzeugung einer solchen Folge durch Hinzufügen eines Mehrwertes, nämlich der Verschlüsselung, erreichen kann. Da in zukünftigen Übertragungssystemen die Verschlüsselung eine immer größere Rolle spielen wird, und heute bei vielen Systemen schon mitgeliefert wird, ist das neue Verfahren besonders praktisch. Bei der Umcodierung von dem ankommenden Quellbitstrom zu den Signalpunkten, die durch den Kanal übertragen werden, wird ein Zwischenregister als Puffer benutzt, das dazu dient, die durch die Übertragung durch den Kanal auftretende zeitlich schwankende Bitrate an die Bitrate der Quelldaten anzupassen. Bei einer Schaltungimplemmentierung hat dieses Zwischenregister eine bestimmte feste Länge. Daraus resultiert in der Praxis das Problem eines sogenannten Pufferüberlaufs. Um dieses Problem zu lösen, wird hier vorgeschlagen, die Kanaldatenrate größer als die Quelldatenrate zu wählen, wobei es vorteilhaft ist, die Kanaldatenrate geringfügig größer als die Quelldatenrate zu wählen. Dadurch ist es möglich, mit verhältnismäßig geringem Aufwand die Zwischenregisterlänge bzw. Pufferlänge anzugeben, so daß es nur noch mit vernachlässigbar kleiner (bekannter) Wahrscheinlichkeit zu einem Überlauf kommt. Bei größerer Kanaldatenrate als die Quelldatenrate kann es vorkommen, daß der Kanal bereit ist, Informationen zu übertragen, die von der Quelle noch nicht bereitgestellt

- 5 -

werden. Dieser Effekt wird hier genutzt, in dem man zum Beispiel statt der Quelldaten Synchronisationsdaten überträgt. Eine weitere Lösung besteht darin, statt der Synchronisationsdaten auch sonstige Header- bzw. Nutzdaten zu übertragen. Je größer die Kanaldatenrate ist, desto kürzer kann das Zwischenregister gewählt werden.

Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus den nachfolgenden Ausführungsbeispielen, die anhand der Zeichnungen und Tabellen beschrieben werden.

In der Beschreibung, in den Patentansprüchen, in der Zusammenfassung und in den Figuren der Zeichnung werden die in der hinten anhängenden Liste der Bezugszeichen verwendeten Begriffe und Bezugszeichen verwendet.

Die Erfindung wird nun anhand von Ausführungsbeispielen näher erklärt. In der Zeichnung bedeuten:

Fig. 1 eine 16-QAM Signalkonstellation;

Fig. 2 eine hexagonale Signalkonstellation;

Fig. 3+6 ein Prinzipschaltbild einer Schaltungsanordnung, die zur verbesserten Datenübertragung mit Hilfe effizienter Nutzung von mehrstufigen Modulationsverfahren dient;

Fig. 4 eine Tabelle 1, die die Wahrscheinlichkeiten  $p_1$ ,  $p_2$ ,  $p_3$ ,  $p_4$  für die Signalpunkte von Fig. 2 angibt und

Fig. 5 eine Tabelle 2, die die Abbildung der Binärdaten zu den Signalpunkten und umgekehrt darstellt.

- 6 -

Wie bereits ausgeführt wurde, benutzen bekannte Übertragungsverfahren orthogonale Basisfunktionen zur Darstellung des zu übertragenden Signals. Ein Nachrichtensignal  $s(t)$  wird hierbei als Summe von orthogonalen Basisfunktionen dargestellt. Ein Nachrichtensignal kann als Punkt im K-dimensionalen Raum angesehen werden. Die Gesamtheit aller zulässigen Signalpunkte wird als Signalkonstellation bezeichnet, wobei die in Fig. 1 abgebildete sogenannte 16-QAM Signalkonstellation, die eine der zweidimensionalen Signalkonstellationen darstellt, besonders beliebt ist.

Hat eine Signalkonstellation insgesamt  $M$  Signalpunkte, von denen je  $M_j$  die Signalenergie  $E_j$  haben und ist die Wahrscheinlichkeit für das Auftreten eines solchen Signalpunktes gleich  $p_j$ , so erreicht man die nach Leistung bzw. Informationsrate bei dieser Leistung optimalen Werte durch Einstellung der Wahrscheinlichkeiten gemäß der unten angegebenen Formel. Der Wert  $L$  gibt an, wieviel verschiedene Energienstufen insgesamt auftreten.

$$p_j = p_1 \cdot \left( \frac{E_j - E_1}{E_L - E_1} \right) \quad j = 1, 2, \dots, L \text{ und } E_{j+1} > E_j$$

Als Beispiel wird hier die hexagonale Signalkonstellation in Fig. 2 angegeben. Aus Normierungsgründen ist der Mindestabstand der Signalpunkte zu eins gewählt. Hier sind  $L = 4$  Energienstufen vorhanden.  $E_1 = 0$ ,  $E_2 = 1$ ,  $E_3 = 3$  und  $E_4 = 4$ . Es gibt einen Signalpunkt mit Signalenergie Null ( $M_1 = 1$ ) und je 6 Signalpunkte mit Signalenergien 1, 3 und 4, das heißt also  $M_2 = M_3 = M_4 = 6$ .

Um zum Beispiel einen Datenstrom mit einer bestimmten Wahrscheinlichkeitsverteilung auf die entsprechenden Signalpunkte abzubilden, wird ein verlustloser Datenkompressionsalgorithmus, wie zum Beispiel das Huffman-Verfahren, benutzt. Dieser Datenkompressionsalgorithmus

- 7 -

sorgt dafür, daß die entsprechenden Signalpunkte mit der oben angegebenen Wahrscheinlichkeit auftreten. Das Huffman-Verfahren ist zum Beispiel beschrieben in D.A. Huffman, "A Method for the Construction of Minimum Redundancy Codes", Proc. IRE, Vol. 40, Sept. 1952, Seiten 1098-1101. Im nachfolgenden Beispiel wird eine binäre Bitfolge, bei der die Wahrscheinlichkeit für Einsen und Nullen gleich ist und die Bits statistisch unabhängig sind, umcodiert und zwar so, daß mit der in Fig. 2 dargestellten Signalkonstellation mit 19 Signalpunkten effizient im Mittel  $H = 4$  Bits pro Signalpunkt übertragen werden können. Aus der angegebenen Tabelle 1 nach Fig. 4 erhält man dann die Wahrscheinlichkeiten für das Auftreten der einzelnen Signalpunkte. Anwendung eines Datenkompressionsverfahrens führt auf eine Zuordnung, wie man sie beispielsweise in Tabelle 2 findet. Mit der in Tabelle 2 gemäß Fig. 5 dargestellten Zuordnung kommt man der optimalen mittleren Signalenergie  $E_s = 1,7224$  sehr nahe. Man erhält eine mittlere Signalenergie von 1,8125. Zum Vergleich, die herkömmliche 16-QAM Signalkonstellation hat eine mittlere Signalenergie von 2,5. Das heißt mit anderen Worten, gegenüber der bekannten 16-QAM erhält man bei diesem einfachen Verfahren eine Verbesserung von 10  $\lg (2.5/1.8125)$  dB , das heißt etwa 1,4 dB. Mit komplexeren Zuordnungen kann man sich dem optimalen Wert beliebig annähern. Zur Veranschaulichung, mit obiger Zuordnung würde die mit einer Münze erzeugte Bitfolge 01110100001111100111011110001 dann mit den Signalpunkten  $Z_{32}$   $Z_1$   $Z_{25}$   $Z_{23}$   $Z_{25}$   $Z_{21}$   $Z_{24}$   $Z_{25}$  übertragen. Dabei ist  $Z_1$  der Signalpunkt mit Energie Null,  $Z_{2j}$ , wobei  $j = 1..6$  ist, sind die Signalpunkte mit Energie 1,  $Z_3$ , sind die Signalpunkte mit Energie 3 und  $Z_4$ , sind die Punkte mit Energie 4. Die Decodierung nach der Übertragung folgt entsprechend.

- 8 -

Im folgenden wird anhand eines Prinzipschaltbildes nach Fig. 3 der Aufbau einer Schaltungsanordnung zur Durchführung des oben beschriebenen Verfahrens näher erklärt.

Es wird angenommen, daß eine Datenquelle 1 einen Datenstrom 2 liefert. Ein Umcodierer 3 sorgt dann dafür, daß ein Modulator 4 die entsprechenden Signalpunkte mit der richtigen Wahrscheinlichkeit auswählt. Nach Übertragung des Datenstromes 2 über einen Übertragungskanal 5 folgt nach einem nachgeschalteten Demodulator 6 mit Hilfe eines Umcodierers 7 die entsprechende inverse Operation, worauf schließlich der Datenstrom 2 zu einer Datensenke 8 gelangt. Der jeweilige Datenstrom 2 ist auf den Verbindungs- bzw. Übertragungsleitungen oder -kanälen zwischen den Komponenten 1, 3 bis 8 durch Pfeilspitzen auf den jeweiligen Leitungen bzw. Kanälen dargestellt.

Bei der Umcodierung von dem ankommenden Quellbitstrom zu den Signalpunkten, die durch den Kanal übertragen werden, wird ein nicht dargestelltes Zwischenregister als Puffer eingefügt, das dazu dient, die durch die Übertragung durch den Kanal auftretende zeitlich schwankende Bitrate an die Bitrate der Quelldaten anzupassen. Das Zwischenregister bzw. der Puffer hat in jeder Implementation in Form einer Schaltung eine bestimmte Länge, woraus sich in der Praxis ein Problem ergeben kann, das in der Möglichkeit eines Überlaufs besteht. Dieses Problem kann dadurch gelöst werden, daß man die Kanaldatenrate etwas größer als die Quellendatenrate wählt. Damit läßt sich mit verhältnismäßig geringem Aufwand die Pufferlänge bzw. Zwischenregisterlänge angeben, so daß es nur mit vernachlässigbarer kleiner (bekannter) Wahrscheinlichkeit zu einem Pufferüberlauf bzw. Zwischenregisterüberlauf kommt.

- 9 -

Wählt man die Kanaldatenrate geringfügig größer als die Quelldatenrate, so kann es in der praktischen Realisierung einer Schaltungsanordnung vorkommen, daß der Kanal bereit ist, Informationen zu übertragen, die von der Quelle noch nicht bereitgestellt werden.

Diesen Effekt kann man vorteilhaft nutzen, in dem man statt der Quelldaten Synchronisationsdaten überträgt. Außerdem können statt der Synchronisationsdaten auch sonstige Header- bzw. Nutzdaten übertragen werden. Je größer die Kanaldatenrate im Verhältnis zur Quelldatenrate ist, umso kürzer kann das Zwischenregister bzw. der Zwischenpuffer gewählt werden.

Eine weitere Variante mit diesem Bufferüberlauf bzw. Unterlauf umzugehen ist, in dem Umcodierer 3 zwei oder gegebenenfalls noch mehr Umcodiertabellen vorzusehen, wobei die eine Tabelle zu einer Kanaldatenrate, die größer als die Quelldatenrate ist, führt und die andere Tabelle zu einer Kanaldatenrate, die kleiner als die Quelldatenrate ist. In Abhängigkeit vom Zustand des Zwischenspeichers kann der Umcodierer 3 dann gesteuert werden. Das heißt, wenn der Zwischenspeicher Gefahr läuft überzulaufen, wird die Kanaldatenrate gewählt, die größer als die Quelldatenrate ist. Im umgekehrten Fall, wenn fast keine Daten mehr im Zwischenspeicher sind, wird die Kanaldatenrate gewählt, die kleiner als die Quelldatenrate ist.

In Fig. 6, die von Fig. 3 abgeleitet ist, ist der allgemeinste Fall, der obige Möglichkeit einschließt, dargestellt. Die Möglichkeit, den Umcodierer 3 abhängig vom Zwischenspeicher 9 zu steuern, ist in Fig. 6 durch die gestrichelte Linie vom Zwischenspeicher mit Steuereinheit bzw. Recheneinheit 9 zum Umcodierer 3 angezeigt. In Fig. 6 ist ebenfalls eine optionale zweite Datenquelle 1' eingezeichnet (für den Spezialfall, daß die Rate dieser

- 10 -

Datenquelle gleich Null ist, verschwindet diese Quelle). Die zweite Datenquelle 1' ermöglicht, wie oben beschrieben, die Übertragung von zusätzlichen Daten. Die gestrichelten Linien vom Umcodierer 3 zur zweiten Datenquelle 1' zeigen an, auf welche Weise man beispielsweise Prüfdaten zur Fehlerkorrektur in das Verfahren integrieren kann. Die Quelldatenrate und die Rate der erzeugten Prüfzeichen dürfen zusammen im Mittel die mittlere Kanaldatenrate nicht übersteigen. Analog zur zweiten Datenquelle 1' und dem Zwischenspeicher mit Steuer- bzw. Recheneinheit 9 sind zwischen Datensenke 8 und inversen Umcodierer 7 eine zweite Datensenke 8' und ein Zwischenspeicher mit Steuer- und Recheneinheit 9' eingefügt.

Zur weiteren Verbesserung des Verfahrens kann man spezielle Codierverfahren, die zum Beispiel für QAM oder hexagonale Signalkonstellationen entworfen wurden und in den Artikeln K. Huber, "Codes over Gaussian Integers", IEEE Transactions on Information Theory, Vol. 40, No. 1, January 1994, pp. 207-216 und K. Huber, "Codes over Eisenstein-Jacobi Integers", Finite Fields: Theory, Applications and Algorithms, (Las Vegas 1993), Contemporary Math. Vol. 168, American Math. Society, Providence, RI, pp. 165-179 sowie K. Huber, "Codes over Tori", IEEE Transactions on Information Theory, Vol. 43, No. 2, March 1997, pp. 740-744, zu finden sind, benutzen.

- 11 -

**Liste der Bezugzeichen**

- 1,1' Datenquelle
- 2 Datenstrom
- 3 Umcodierer
- 4 Modulator
- 5 Kanal
- 6 Demodulator
- 7 Inverser Umcodierer
- 8,8' Datensenke
- 9,9' Zwischenspeicher mit Steuer- bzw. Recheneinheit

- 12 -

P A T E N T A N S P R Ü C H E

1. Verfahren zur verbesserten Datenübertragung und zur effizienten Nutzung von mehrstufigen Modulationsverfahren, die orthogonale Basisfunktionen zur Darstellung eines zu übertragenden Signals benutzen, dadurch gekennzeichnet,  
daß Signalpunkte mit einer bestimmten Signalenergie einer Signalkonstellation, die entsprechend eingestellter bzw. gewählter Wahrscheinlichkeiten zur Optimierung der Signalenergie bzw. Datenrate ausgewählt werden.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet,  
daß Quellencodierverfahren, wie zum Beispiel das bekannte Huffman-Verfahren, zur Anpassung von Datenfolgen zwecks Benutzung von orthogonalen Verfahren angewendet werden.
3. Verfahren nach einem der Patentansprüche 1 oder 2, dadurch gekennzeichnet,  
daß zum Schutz gegen Übertragungsfehler ein dem Modulationsverfahren und Kanal angepaßter und fehlerkorrigierender Code verwendet wird, dessen Prüfzeichen mittels einer zweiten Datenquelle (1') eingefügt werden.
4. Verfahren nach Patentanspruch 3, dadurch gekennzeichnet,  
daß der fehlerkorrigierende Code ein Blockcode ist.

- 13 -

5. Verfahren nach Patentanspruch 3, dadurch gekennzeichnet,  
daß der fehlerkorrigierende Code ein Faltungscode ist.
6. Verfahren nach Patentanspruch 4, dadurch gekennzeichnet,  
daß der Blockcode ein Code über Gaußschen ganzen Zahlen modulo einer Gaußschen Zahl ist.
7. Verfahren nach Patentanspruch 4, dadurch gekennzeichnet,  
daß der Blockcode ein Code über Eisenstein-Jacobi Zahlen modulo einer Eisenstein-Jacobi Zahl ist.
8. Verfahren nach einem der Patentansprüche 1 bis 7, dadurch gekennzeichnet,  
daß der Eingangsdatenstrom verschlüsselt ist.
9. Schaltungsanordnung zur Durchführung des Verfahrens zur verbesserten Datenübertragung mittels orthogonaler Funktionen, dadurch gekennzeichnet,  
daß einer Datenquelle (1) für einen Datenstrom (2) ein Umcodierer (3) nachgeschaltet ist, dessen Ausgang mit einem Modulator (4) zur Auswahl der entsprechenden Signalpunkte mit der richtigen Wahrscheinlichkeit verbunden ist,  
daß der Ausgang des Modulators (4) mit dem Eingang eines Kanals (5) verbunden ist, dessen Ausgang mit dem Eingang eines Demodulators (6) verbunden ist, dem ein inverser Codierer (7) zur Durchführung der inversen

- 14 -

Operation zu der des Codierers (3) nachgeschaltet ist und

daß der Ausgang dieses Codierers (7) mit einer Senke (8) für den Datenstrom (2) verbunden ist.

10. Schaltungsanordnung zur Durchführung des Verfahrens zur verbesserten Datenübertragung mittels orthogonaler Funktionen nach einem der Patentansprüche 1 bis 8, dadurch gekennzeichnet,

daß ein Zwischenspeicher mit einer Steuer-/Recheneinheit (9) vorhanden ist, die den Umcodierer (3') zwischen mindestens zwei Umcodierungstabellen wechselt, derart, daß es zu keinem Speicherüberlauf kommt, kombiniert mit den entsprechenden inversen Einrichtungen (8' und 9') auf der Empfänger- bzw. Datensenkenseite.

11. Schaltungsanordnung nach einem der Patentansprüche 9 oder 10 zur Durchführung des Verfahrens zur verbesserten Datenübertragung mittels orthogonaler Funktionen, dadurch gekennzeichnet,

daß der Ausgang des Modulators (4) gepuffert mit dem Eingang des Kanals (5), insbesondere über ein Zwischenregister bzw. einen Puffer verbunden ist.

12. Schaltungsanordnung nach den Patentansprüchen 9, 10 oder 11, dadurch gekennzeichnet,

daß eine zweite Datenquelle (1') den Zwischenspeicher mit zusätzlichen Daten beliefert, die entweder Nutz-, Synchronisations- oder Prüfdaten sind.

- 15 -

13. Verfahren nach Patentanspruch 1 zum Betreiben einer Schaltungsanordnung nach einem der Patentansprüche 9 oder 10, dadurch gekennzeichnet,  
daß die Kanaldatenrate größer als die Quelldatenrate gewählt wird.
14. Verfahren nach den Patentansprüchen 1 bzw. 13, dadurch gekennzeichnet,  
daß beim Nichtanliegen von Quellbits an der Schaltung Synchronisationsdaten übertragen werden.
15. Verfahren nach Patentanspruch 1 bzw. 13, dadurch gekennzeichnet,  
daß beim Nichtanliegen von Quellbits an der Schaltung sonstige Verwaltungs- oder Nutzdaten übertragen werden.

*THIS PAGE BLANK (USPTO)*

1 / 3



FIG. 1



FIG. 2



FIG. 3

*THIS PAGE BLANK (USPTO)*

2 / 3

| $E_s$  | $p_1$  | $p_2$                 | $p_3$                 | $p_4$                 | $H$        |
|--------|--------|-----------------------|-----------------------|-----------------------|------------|
| 2.526  | 1/19   | 1/19                  | 1/19                  | 1/19                  | 4.2479 bit |
| 1.7224 | 0.1313 | 0.08534               | 0.03603               | 0.02341               | 4 bit      |
| 0.8118 | 0.3372 | $9.931 \cdot 10^{-2}$ | $8.614 \cdot 10^{-3}$ | $2.537 \cdot 10^{-3}$ | 3 bit      |
| 0.3962 | 0.6133 | $6.370 \cdot 10^{-2}$ | $6.870 \cdot 10^{-4}$ | $7.135 \cdot 10^{-5}$ | 2 bit      |

FIG. 4

| Punkt    | binäre Daten |
|----------|--------------|
| $z_1$    | 100          |
| $z_{21}$ | 1101         |
| $z_{22}$ | 1100         |
| $z_{23}$ | 1111         |
| $z_{24}$ | 1110         |
| $z_{25}$ | 001          |
| $z_{26}$ | 000          |
| $z_{31}$ | 01111        |
| $z_{32}$ | 01110        |
| $z_{33}$ | 10101        |
| $z_{34}$ | 10100        |
| $z_{35}$ | 10111        |
| $z_{36}$ | 10110        |
| $z_{41}$ | 01001        |
| $z_{42}$ | 01000        |
| $z_{43}$ | 01011        |
| $z_{44}$ | 01010        |
| $z_{45}$ | 01101        |
| $z_{46}$ | 01100        |

FIG. 5

**THIS PAGE BLANK (USPTO)**

3 / 3



FIG. 6

**THIS PAGE BLANK (USPTO)**

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM  
Internationales Büro



INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                                                                                                                                                    |    |                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Internationale Patentklassifikation <sup>6</sup> :<br><b>H04L 27/34, 25/02</b>                                                                                                                                                                                | A3 | (11) Internationale Veröffentlichungsnummer: <b>WO 99/25103</b><br><br>(43) Internationales Veröffentlichungsdatum: 20. Mai 1999 (20.05.99)                                                                                                                                                                                   |
| (21) Internationales Aktenzeichen: PCT/EP98/04789<br><br>(22) Internationales Anmeldedatum: 31. Juli 1998 (31.07.98)<br><br>(30) Prioritätsdaten:<br>197 48 880.3 6. November 1997 (06.11.97) DE                                                                   |    | (81) Bestimmungsstaaten: CA, JP, NO, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).<br><br><b>Veröffentlicht</b><br><i>Mit internationalem Recherchenbericht.</i><br><br>(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 10. September 1999 (10.09.99) |
| (71) Anmelder (für alle Bestimmungsstaaten ausser US): DEUTSCHE TELEKOM AG [DE/DE]; Friedrich-Ebert-Allee 140, D-53113 Bonn (DE).<br><br>(72) Erfinder; und<br>(75) Erfinder/Anmelder (nur für US): HUBER, Klaus [DE/DE]; Rheinstrasse 18, D-64283 Darmstadt (DE). |    |                                                                                                                                                                                                                                                                                                                               |

(54) **Title:** METHOD AND CIRCUIT ARRANGEMENT FOR TRANSMITTING SELECTED SIGNAL POINTS OF A SIGNAL CONSTELLATION

(54) **Bezeichnung:** VERFAHREN UND SCHALTUNGSANORDNUNG ZUR ÜBERTRAGUNG AUSGEWÄHLTEN SIGNALPUNKTEN EINER SIGNALKONSTELLATION



(57) **Abstract**

The invention relates to a method and a circuit arrangement for efficient use of multistage modulation methods using orthogonal base functions for the representation of a signal to be transmitted. A 16-QAM signal constellation can be used, for instance, in a simple and optimal way, for transmitting at low data rates. The circuit arrangement corresponding to said method comprises a source (1) which supplies a data stream (2) and is connected to a code converter (3) for converting the data stream. The output of the code converter (3) is connected to a modulator (4) in which the corresponding signal points are selected with the right probability. The data stream (2) is then transmitted over a channel (5), and a demodulator (6) situated downstream from a code converter (7) carries out the inverse operation.

**(57) Zusammenfassung**

Es werden ein Verfahren und eine Schaltungsanordnung zur effizienten Nutzung von mehrstufigen Modulationsverfahren beschrieben, die orthogonale Basisfunktionen zur Darstellung des zu übertragenden Signals benutzen. Zum Beispiel, eine 16-QAM Signalkonstellation kann in eine einfache und optimale Weise dazu benutzt werden, um geringere Datenraten zu übertragen. Die zu diesem Verfahren entsprechende Schaltungsanordnung besteht aus einer Quelle (1), die einen Datenstrom (2) liefert und die mit einem Umcodierer (3) zur Codierung des Datenstroms verbunden ist. Der Ausgang des Umcodierers (3) ist mit einem Modulator (4) verbunden, in dem die entsprechenden Signalpunkte mit der richtigen Wahrscheinlichkeit ausgewählt werden. Nach Übertragung des Datenstroms (2) über einen Kanal (5) folgt ein Demodulator (6), dem ein Umcodierer (7) nachgeschaltet ist, der die inverse Operation durchführt.

**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                              |    |                                   |    |                                                 |    |                                |
|----|------------------------------|----|-----------------------------------|----|-------------------------------------------------|----|--------------------------------|
| AL | Albanien                     | ES | Spanien                           | LS | Lesotho                                         | SI | Slowenien                      |
| AM | Armenien                     | FI | Finnland                          | LT | Litauen                                         | SK | Slowakei                       |
| AT | Österreich                   | FR | Frankreich                        | LU | Luxemburg                                       | SN | Senegal                        |
| AU | Australien                   | GA | Gabun                             | LV | Lettland                                        | SZ | Swasiland                      |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich            | MC | Monaco                                          | TD | Tschad                         |
| BA | Bosnien-Herzegowina          | GE | Georgien                          | MD | Republik Moldau                                 | TG | Togo                           |
| BB | Barbados                     | GH | Ghana                             | MG | Madagaskar                                      | TJ | Tadschikistan                  |
| BE | Belgien                      | GN | Guinea                            | MK | Die ehemalige jugoslawische Republik Mazedonien | TM | Turkmenistan                   |
| BF | Burkina Faso                 | GR | Griechenland                      | ML | Mali                                            | TR | Türkei                         |
| BG | Bulgarien                    | HU | Ungarn                            | MN | Mongolei                                        | TT | Trinidad und Tobago            |
| BJ | Benin                        | IE | Irland                            | MR | Mauretanien                                     | UA | Ukraine                        |
| BR | Brasilien                    | IL | Israel                            | MW | Malawi                                          | UG | Uganda                         |
| BY | Belarus                      | IS | Island                            | MX | Mexiko                                          | US | Vereinigte Staaten von Amerika |
| CA | Kanada                       | IT | Italien                           | NE | Niger                                           | UZ | Usbekistan                     |
| CF | Zentralafrikanische Republik | JP | Japan                             | NL | Niederlande                                     | VN | Vietnam                        |
| CG | Kongo                        | KE | Kenia                             | NO | Norwegen                                        | YU | Jugoslawien                    |
| CH | Schweiz                      | KG | Kirgisistan                       | NZ | Neuseeland                                      | ZW | Zimbabwe                       |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik Korea | PL | Polen                                           |    |                                |
| CM | Kamerun                      | KR | Republik Korea                    | PT | Portugal                                        |    |                                |
| CN | China                        | KZ | Kasachstan                        | RO | Rumänien                                        |    |                                |
| CU | Kuba                         | LC | St. Lucia                         | RU | Russische Föderation                            |    |                                |
| CZ | Tschechische Republik        | LI | Liechtenstein                     | SD | Sudan                                           |    |                                |
| DE | Deutschland                  | LK | Sri Lanka                         | SE | Schweden                                        |    |                                |
| DK | Dänemark                     | LR | Liberia                           | SG | Singapur                                        |    |                                |

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 98/04789

## A. CLASSIFICATION OF SUBJECT MATTER

6

IPC : H04L27/34 H04L25/02

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

6

IPC : H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                    | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | US 5 493 586 A (BROWNLIE JOHN D ET AL), 20 February 1996 (20.02.96), see abstract<br>see column 1, lines 21-34<br>see column 2, line 41 - column 3, line 35<br>see column 13, lines 8-33<br>see claim 1, see figure 1                 | 1-5                   |
| X         | EP 0 703 689 A (ALCATEL ITALIA), 27 March 1996 (20.03.96), see abstract<br>see page 3, lines 7-25                                                                                                                                     | 1-4,9                 |
| Y         | see page 5, line 40 - page 6, line 12<br>see claims 1,3,6; see figures 1,2                                                                                                                                                            | 6-8                   |
| X         | EP 0 674 413 A (AT & T CORP), 27 September 1995 (27.09.95),<br>see column 2, lines 15-39<br>see column 5, lines 21-37<br>see column 5, line 48 - column 6, line 10<br>See column 7, lines 5-10,<br>see claims 1,6,10; see figures 1-3 | 1,2,9,<br>13-15       |

 Further documents are listed in the continuation of Box C. See patent family annex.

\* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&amp;" document member of the same patent family

Date of the actual completion of the international search

15 June 1999 (15.06.99)

Date of mailing of the international search report

24 June 1999 (24.06.99)

Name and mailing address of the ISA/

EUROPEAN PATENT OFFICE  
Facsimile No.

Authorized officer

Telephone No.

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 98/04789

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                             | Relevant to claim No. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | KSCHISCHANG F R ET AL: "OPTIMAL NONUNIFORM SIGNALING FOR GAUSSIAN CHANNELS"<br>IEEE TRANSACTIONS ON INFORMATION THEORY,<br>volume 39, No. 3, 1 May 1993 (01.05.93), pages 913-929,<br>XP000383031 New York, US<br>Cited in the application<br>see abstract<br>see paragraph VIIB, see figures 5-7                                                                                              | 1,2                   |
| X         | LIVINGSTON J N: "SHAPING USING VARIABLE-SIZE REGIONS"<br>IEEE TRANSACTIONS ON INFORMATION THEORY,<br>volume 38, No.4, 1 July 1992 (01.07.92), pages 1347-1353,<br>XP000287144 New York, US<br>see abstract<br>see paragraph II, see paragraph V, see figures 2,6                                                                                                                               | 1,2,<br>13-15         |
| X         | US 4 937 844 A (KAO MING-LUH), 26 June 1990 (26.06.90),<br>see abstract<br>see column 4, line 23 - column 5, line 33<br>see figures 1-7                                                                                                                                                                                                                                                        | 1,2,<br>10-15         |
| Y         | HUBER KLAUS: "Decoding algorithms for block codes over two-dimensional signal-constellations"<br>PROCEEDING OF THE 1994 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY; TRODHEIM, NORW JUN 27-JUL 1 1994,<br>1994, XP002095658<br>IEEE Int Symp Inf Theor Proc; IEEE International Symposium on Information Theory - Proceedings 1994 IEEE,<br>Piscataway, NJ, US , see the whole document | 6,7                   |
| Y         | US 5 583 892 A (DRAKUL SPASE ET AL), 10 December 1996<br>(10.12.96), see abstract<br>see column 2, line 61 - column 3, line 5<br>see column 41, lines 1-45                                                                                                                                                                                                                                     | 8                     |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/EP 98/04789

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**  

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

**INTERNATIONAL SEARCH REPORT**  
Information on patent family members

|                                                        |
|--------------------------------------------------------|
| International Application No<br><b>PCT/EP 98/04789</b> |
|--------------------------------------------------------|

| Patent document cited in search report | Publication date | Patent family member(s) |             | Publication date |
|----------------------------------------|------------------|-------------------------|-------------|------------------|
| US 5493586 A                           | 20-02-1996       | CA                      | 2106844 A,C | 29-09-1992       |
|                                        |                  | CA                      | 2106848 A,C | 29-09-1992       |
|                                        |                  | DE                      | 69226361 D  | 27-08-1998       |
|                                        |                  | DE                      | 69226361 T  | 24-12-1998       |
|                                        |                  | EP                      | 0577670 A   | 12-01-1994       |
|                                        |                  | EP                      | 0577672 A   | 12-01-1994       |
|                                        |                  | EP                      | 0836305 A   | 15-04-1998       |
|                                        |                  | WO                      | 9217971 A   | 15-10-1992       |
|                                        |                  | WO                      | 9217972 A   | 15-10-1992       |
|                                        |                  | JP                      | 6506328 T   | 14-07-1994       |
|                                        |                  | JP                      | 6506329 T   | 14-07-1994       |
|                                        |                  | US                      | 5623516 A   | 22-04-1997       |
| EP 0703689 A                           | 27-03-1996       | IT                      | 1273695 B   | 09-07-1997       |
|                                        |                  | JP                      | 8195782 A   | 30-07-1996       |
|                                        |                  | NO                      | 952729 A    | 29-01-1996       |
|                                        |                  | US                      | 5608760 A   | 04-03-1997       |
| EP 0674413 A                           | 27-09-1995       | JP                      | 7273812 A   | 20-10-1995       |
|                                        |                  | US                      | 5901135 A   | 04-05-1999       |
| US 4937844 A                           | 26-06-1990       | <b>NONE</b>             |             |                  |
| US 5583892 A                           | 10-12-1996       | SI                      | 9300025 A   | 30-09-1994       |
|                                        |                  | AU                      | 5880594 A   | 15-08-1994       |
|                                        |                  | WO                      | 9417596 A   | 04-08-1994       |
|                                        |                  | EP                      | 0714571 A   | 05-06-1996       |

# INTERNATIONALER RECHERCHENBERICHT

In nationales Aktenzeichen

PCT/EP 98/04789

**A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**  
IPK 6 H04L27/34 H04L25/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole )

IPK 6 H04L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

**C. ALS WESENTLICH ANGESEHENE UNTERLAGEN**

| Kategorie: | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                 | Betr. Anspruch Nr. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X          | US 5 493 586 A (BROWNLIE JOHN D ET AL)<br>20. Februar 1996<br>siehe Zusammenfassung<br>siehe Spalte 1, Zeile 21-34<br>siehe Spalte 2, Zeile 41 - Spalte 3, Zeile 35<br>siehe Spalte 13, Zeile 8-33<br>siehe Anspruch 1<br>siehe Abbildung 1<br>--- | 1-5                |
| X          | EP 0 703 689 A (ALCATEL ITALIA)<br>27. März 1996<br>siehe Zusammenfassung<br>siehe Seite 3, Zeile 7-25<br>siehe Seite 5, Zeile 40 - Seite 6, Zeile 12<br>siehe Ansprüche 1,3,6<br>siehe Abbildungen 1,2<br>---                                     | 1-4, 9             |
| Y          | ---                                                                                                                                                                                                                                                | 6-8                |
|            | -/-                                                                                                                                                                                                                                                |                    |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindender Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindender Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

15. Juni 1999

24.06.1999

Name und Postanschrift der Internationalen Recherchenbehörde  
Europäisches Patentamt, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Toumpoulidis, T

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen

PCT/EP 98/04789

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                                                                                                                                                                       | Betr. Anspruch Nr. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X         | EP 0 674 413 A (AT & T CORP)<br>27. September 1995<br>siehe Spalte 2, Zeile 15-39<br>siehe Spalte 5, Zeile 21-37<br>siehe Spalte 5, Zeile 48 - Spalte 6, Zeile<br>10<br>siehe Spalte 7, Zeile 5-10<br>siehe Ansprüche 1,6,10<br>siehe Abbildungen 1-3<br>---                                                                                                                                                             | 1,2,9,<br>13-15    |
| X         | KSCHISCHANG F R ET AL: "OPTIMAL<br>NONUNIFORM SIGNALING FOR GAUSSIAN<br>CHANNELS"<br>IEEE TRANSACTIONS ON INFORMATION THEORY,<br>Bd. 39, Nr. 3, 1. Mai 1993, Seiten<br>913-929, XP000383031<br>New York, US<br>in der Anmeldung erwähnt<br>siehe Zusammenfassung<br>siehe Absatz VII B<br>siehe Abbildungen 5-7<br>---                                                                                                   | 1,2                |
| X         | LIVINGSTON J N: "SHAPING USING<br>VARIABLE-SIZE REGIONS"<br>IEEE TRANSACTIONS ON INFORMATION THEORY,<br>Bd. 38, Nr. 4, 1. Juli 1992, Seiten<br>1347-1353, XP000287144<br>New York, US<br>siehe Zusammenfassung<br>siehe Absatz II<br>siehe Absatz V<br>siehe Abbildungen 2,6<br>---                                                                                                                                      | 1,2,<br>13-15      |
| X         | US 4 937 844 A (KAO MING-LUH)<br>26. Juni 1990<br>siehe Zusammenfassung<br>siehe Spalte 4, Zeile 23 - Spalte 5, Zeile<br>33<br>siehe Abbildungen 1-7<br>---                                                                                                                                                                                                                                                              | 1,2,<br>10-15      |
| Y         | HUBER KLAUS: "Decoding algorithms for<br>block codes over two-dimensional<br>signal-constellations"<br>PROCEEDINGS OF THE 1994 IEEE INTERNATIONAL<br>SYMPOSIUM ON INFORMATION THEORY; TRODHEIM,<br>NORW JUN 27-JUL 1 1994, 1994, XP002095658<br>IEEE Int Symp Inf Theor Proc; IEEE<br>International Symposium on Information<br>Theory - Proceedings 1994 IEEE,<br>Piscataway, NJ, US<br>siehe das ganze Dokument<br>--- | 6,7                |

-/-

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen  
PCT/EP 98/04789

## C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                           | Betr. Anspruch Nr. |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Y         | US 5 583 892 A (DRAKUL SPASE ET AL)<br>10. Dezember 1996<br>siehe Zusammenfassung<br>siehe Spalte 2, Zeile 61 - Spalte 3, Zeile<br>5<br>siehe Spalte 41, Zeile 1-45<br>----- | 8                  |

## INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen

PCT/EP 98/04789

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1.  Ansprüche Nr.  
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
  
2.  Ansprüche Nr.  
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
  
3.  Ansprüche Nr.  
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1.  Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
  
2.  Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
  
3.  Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
  
4.  Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.  
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 98/04789

| Im Recherchenbericht angeführtes Patentdokument | Datum der Veröffentlichung | Mitglied(er) der Patentfamilie |          |     | Datum der Veröffentlichung |
|-------------------------------------------------|----------------------------|--------------------------------|----------|-----|----------------------------|
| US 5493586 A                                    | 20-02-1996                 | CA                             | 2106844  | A,C | 29-09-1992                 |
|                                                 |                            | CA                             | 2106848  | A,C | 29-09-1992                 |
|                                                 |                            | DE                             | 69226361 | D   | 27-08-1998                 |
|                                                 |                            | DE                             | 69226361 | T   | 24-12-1998                 |
|                                                 |                            | EP                             | 0577670  | A   | 12-01-1994                 |
|                                                 |                            | EP                             | 0577672  | A   | 12-01-1994                 |
|                                                 |                            | EP                             | 0836305  | A   | 15-04-1998                 |
|                                                 |                            | WO                             | 9217971  | A   | 15-10-1992                 |
|                                                 |                            | WO                             | 9217972  | A   | 15-10-1992                 |
|                                                 |                            | JP                             | 6506328  | T   | 14-07-1994                 |
|                                                 |                            | JP                             | 6506329  | T   | 14-07-1994                 |
|                                                 |                            | US                             | 5623516  | A   | 22-04-1997                 |
| EP 0703689 A                                    | 27-03-1996                 | IT                             | 1273695  | B   | 09-07-1997                 |
|                                                 |                            | JP                             | 8195782  | A   | 30-07-1996                 |
|                                                 |                            | NO                             | 952729   | A   | 29-01-1996                 |
|                                                 |                            | US                             | 5608760  | A   | 04-03-1997                 |
| EP 0674413 A                                    | 27-09-1995                 | JP                             | 7273812  | A   | 20-10-1995                 |
|                                                 |                            | US                             | 5901135  | A   | 04-05-1999                 |
| US 4937844 A                                    | 26-06-1990                 | KEINE                          |          |     |                            |
| US 5583892 A                                    | 10-12-1996                 | SI                             | 9300025  | A   | 30-09-1994                 |
|                                                 |                            | AU                             | 5880594  | A   | 15-08-1994                 |
|                                                 |                            | WO                             | 9417596  | A   | 04-08-1994                 |
|                                                 |                            | EP                             | 0714571  | A   | 05-06-1996                 |

**THIS PAGE BLANK (USPTO)**