

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 4

Markus Stein 21 August 2019

Mais sobre Intervalos de Confiança (IC)

• Exemplo 1: Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim Bernoulli(\theta)$. Encontre um IC para θ . Qual a distribuição amostral de $\hat{\theta}$?

Intervalo de confiança (Assintótico) e Verossimilhança

"O que podemos falar da distribuição dos estimadores de máxima verossimilhança (EMV) $\hat{\theta}_{EMV}$?"

• Pelo TCL lembre que, sob algumas condições de regularidade, $\frac{\hat{\theta}_{EMV} - \theta}{\sqrt{[nI_1(\theta)]^{-1}}} \xrightarrow{d} Z \sim Normal(0, 1)$.

Definição (Intervalo Assintótico para θ): (Bolfarine e Sandoval, seção 5.4.) Intervalos de Connfiança approximados podem ser construídos com base na distribuição asintótica dos EMVs. Com base no TCL e sob algumas condições de regularidade, uma quantidade pivotal assintoticamente normal é dada por $Q(\boldsymbol{X};\theta) = \frac{\hat{\theta}_{EMV} - \theta}{\sqrt{[nI_1(\theta)]^{-1}}}$.

- Sempre $Q(X;\theta)$ produzirá ICs $[t_1,t_2]$?
- "Plug-in" versus "correção de continuidade"!
- ... continuação Exemplo 1: Seja $X = (X_1, ..., X_n)$ uma amostra aleatória de $X \sim Bernoulli(\theta)$. Encontre um IC para θ baseado na distribuição assintótica de $Q(X; \theta)$.
 - Para $Q(\boldsymbol{X}; \theta) = \frac{\hat{\theta} \theta}{\sqrt{\frac{\theta(1-\theta)}{n}}}$ temos que $Q(\boldsymbol{X}; \theta) \sim Normal(0, 1)$, para $n \to \infty$. Então, podemos encontrar valores q_1 e q_2 tais que $P(q_1 \le Q \le q_2) = 1 \alpha$ se e somente se $P(t_1 \le \theta \le t_2) = 1 \alpha$. Como isolar θ na expressão $-z \le \frac{\hat{\theta} \theta}{\sqrt{\frac{\theta(1-\theta)}{n}}} \le z$? (correção de continuidade)

(A solução não é trivial, envolve resolver uma equação quadrática em θ .) Obtemos $IC[1-\alpha;\theta] = \frac{\hat{\theta} + \frac{z}{2n} \pm z \sqrt{\frac{z^2}{4n^2} + \frac{\hat{\theta}(1-\hat{\theta})}{n}}}{1 + \frac{z^2}{n}}$.

– Utilizando o estimador plug-in para $I_1(\hat{\theta})$ temos $IC[\theta; 1-\alpha] = \hat{\theta} \pm z_{\alpha/2} \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}$.

Relembrando o método delta...

Definição (Intervalo Assintótico para $g(\theta)$):

• continuação Exemplo 1: Encontre um IC para $g(\theta) = \theta(1-\theta)$

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Tarefa:	Fazer	lista	1	para	entregar.
---------	-------	-------	---	------	-----------

Leitura: "Uma senora toma chá" capítulo 12.