

Image Classification based on CNN

T11 - PangCloud (Tianyang Liu, Yicheng Wang, Su Pu)

Motivation and Background

Deeper learning! Need GPU! Cloud! Cloud! Cloud!

Reference: http://image-net.org/

Why Cloud?

OR

Hey Siri, what's this?

Aipoly Vision App which recognizes objects on iphone, but is limited on hundreds of objects.

Overview Architecture

Convolutional Neural Networks

Convolution Core

32x32x3 image 5x5x3 filter 32 convolve (slide) over all spatial locations 32

Max Pooling

1	1	2	4	
5	6	7	8	
3	2	1	0	
1	2	3	4	

max pool with 2x2 filters and stride 2

Assumption Result

Evaluation criteria: error rate

The first application of CNN in Large Scale Visual Recognition Challenge (ILSVRC) achieved 15.3% error rate, there were some improvement on the structure in the following years.

So we expect to achieve around **10%** error rate.

Appedix 1. Convolutional layer

activation map

28

28

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Appedix 2. Pooling layer

Down sample to make the representations smaller and more manageable

6 8 3 4

Max Pooling

Convolved feature

Pooled feature

Appedix 3. Fully-Connected layer

Just like the connection method in ordinary NN, the neurons of one layer connect all the neurons in the previous layer, which means there are N*M parameters (N the number of neurons in present layer and M for the previous layer)