

8 Binäre Suchbäume

Einführung

Definition

Ein binärer Suchbaum (binary search tree, BST) ist ein binärer Baum, für den die folgende Eigenschaft gilt (=binäre Suchbaum-Eigenschaft oder BST-Eigenschaft):

Sei x ein Knoten in einem binären Suchbaum.

- Ist y ein Knoten im linken Teilbaum von x, so gilt y.key ≤ x.key.
- Ist y ein Knoten im rechten Teilbaum von x, so gilt y.key ≥ x.key.

Beispiele

Bemerkungen

- Wir betrachten BST's als verzeigerte Datenstruktur.
- Jeder Knoten ist ein Objekt mit
 - Schlüssel
 - Satellitendaten
 - Zeiger auf linkes Kind
 - Zeiger auf rechtes Kind
 - Zeiger auf Elternknoten
- Wir werden die BST-Eigenschaft für die Anwendung ein wenig strenger fassen

Notation

- T Der BST selber wird mit T bezeichnet.
- x, y, z Knoten.
- x.key
 Der Schlüssel des Knoten x.
- x.left
 Zeiger auf linkes Kind.
- x.right Zeiger auf rechtes Kind.
- x.parent Zeiger auf Elternknoten.
- NIL Leerer Zeiger.

Traversierung

- Baum durchlaufen, durchsuchen
- Systematisches Untersuchen der Knoten in einer bestimmten Reihenfolge

Möglichkeiten einen Baum zu durchlaufen:

- Pre-order (Hauptreihenfolge) WLR
- In-order (Nebenreihenfolge) LWR
- Post-order (symmetrische Reihenfolge) LRW
- Level-order (Ebenen-Reihenfolge, nur mit zusätzlichen Zeigern möglich)

Traversierung: In-Order-Tree-Walk

Was gibt In-Order-Tree-Walk aus? 2 3 5 5 7 8

Traversierung: In-Order-Tree-Walk

Korrektheit von In-Order-Tree-Walk

Ergibt sich intuitiv aus der Definition von binären Suchbäumen: Wenn

 der linke Teilbaum jedes Knoten x nur Elemente mit Schlüsseln ≤ x.key enthält

und

 der rechte Teilbaum jedes Knoten x nur Elemente mit Schlüsseln ≥ x.key enthält

dann werden die Knoten in aufsteigender Reihenfolge besucht.

Annahme:

- Sei x Wurzel eines Teilbaums mit n Knoten.
- Da jeder Knoten einmal betrachtet wird, hat der Algorithmus In-Order-Tree-Walk(x) die Laufzeit

$$T(n) = \Theta(n)$$

Beweis:

 Sei T (n) die Zeit, die In-Order-Tree-Walk beim Aufruf mit der Wurzel eines Teilbaums mit n Knoten benötigt.

n = 0: Für den Test (x = NIL) wird eine kleine konstante Zeit benötigt, so dass T(0) = c, mit c > 0.

n > 0: Sei x ein Knoten, dessen linker Teilbaum k Knoten enthalte. Dann enthält der rechte Teilbaum n - k - 1 Knoten.

Beweis (Forts.)

Die Laufzeit beträgt dann T(n) = T(k) + T(n − k − 1) + d

 d > 0 steht für die eigentliche Laufzeit von In-Order-Tree-Walk mit Ausnahme der Zeit für rekursive Aufrufe.

Es soll nun bewiesen werden, dass

$$T(n) = (c + d) \cdot n + c$$

wobei gilt $T(n) = \Theta(n)$

Für
$$n = 0$$
: $(c + d) \cdot 0 + c = c = T(0)$

Für
$$n > 0$$
: $T(n) = T(k) + T(n - k - 1) + d$

$$= ((c + d)k + c) + ((c + d)(n - k - 1) + c) + d$$

$$= (c + d)k + c + (c + d)n - (c + d)k - (c + d) + c + d$$

$$= (c + d)n + c - (c + d) + c + d$$

$$= (c + d)n + c = \Theta(n)$$

Traversierung: Pre-Order-Tree-Walk

Was gibt Pre-Order-Tree-Walk aus? 5 3 2 5 7 8

Traversierung: Post-Order-Tree-Walk

Was gibt Post-Order-Tree-Walk aus? 2 5 3 8 7 5

Weitere Eigenschaften

- Knotenanzahl eines Binärbaums
- Höhe eines Binärbaums
- Wichtig: Laufzeit der Algorithmen ist meist von der Höhe h eines Baums abhängig

Knotenanzahl

Beispiel

Abzählen der Knoten in jeder Ebene

Verallgemeinern Summieren

Knotenanzahl

Ebene	Anzahl Knoten	
0	1	
1	2	8
2	4	
3	8	(4) (12)
	1	6 10 14 2 5 7 9 11 13 15

Knotenanzahl

Zusammenfassung

Ein Binärbaum der Höhe h hat maximal

$$n(h) = \underbrace{1 + 2 + 4 + \dots + 2^{h}}_{geometrische Reihe}$$
$$= \sum_{i=0}^{h} 2^{i}$$
$$= 2^{h+1} - 1$$

Knoten.

Man nennt diese max. Knotenzahl auch die Kapazität des Baums.

Beispiel

Anzahl Knoten	Min. Höhe	Max. Höhe
1	0	0
2	1	1
3	1	2
4	2	3
5	2	4

Allgemein

 Sei T ein Binärbaum und n die Anzahl der Knoten von T, dann hat T eine maximale Höhe von

$$h_{max} = n - 1$$

und eine minimale Höhe von

$$h_{min} \leq \lceil \log_2 n \rceil$$

Beweis für maximale Höhe h_{max}

- Die maximale Höhe h_{max} kann in einem Baum nur dann erreicht werden, wenn der Baum zu einer linearen Liste der Länge n entartet.
- Die maximale H\u00f6he ist dann gleich der Pfadl\u00e4nge n 1

$$h_{max} = n - 1$$

Beweis für minimale Höhe h_{min}

 Ein Baum hat die minimale Höhe, wenn er seine maximale Kapazität ausschöpft.

$$n = 2^{h+1} - 1$$

$$n + 1 = 2^{h+1}$$

$$\log_2(n+1) = h + 1$$

$$\log_2(n+1) - 1 = h$$

Da die Höhe ganzzahlig ist, gilt:

$$h_{min} = [\log_2 n + 1] - 1 \le [\log_2 n]$$

Kleine Übung

Vollziehen Sie die Ungleichung durch Tabellieren nach

n	$\lceil \log_2 n + 1 \rceil$	$\lceil \log_2 n \rceil$

Operationen

- Suchen (rekursiv und nichtrekursiv)
- Minimum, Maximum
- Nachfolger, Vorgänger

Suchen

Überlegungen:

Suche nach Knoten mit Schlüssel 7

Suche nach Knoten mit Schlüssel 8

Rekursiver Algorithmus

Nichtrekursiver Algorithmus

Suchen nach Minimum und Maximum

Überlegungen:

 Wie (wo) finde ich das Element mit minimalem Schlüssel?

 Wie (wo) finde ich das Element mit maximalem Schlüssel?

Suche nach Minimum

Suche nach Maximum

Nachfolger und Vorgänger

Nachfolger (successor)

Der Nachfolger eines Knotens x ist der Knoten y mit minimalem Schlüssel k > x .key. In anderen Worten: Der Nachfolger eines Knotens ist der Knoten mit dem nächstgrößeren Schlüssel im Baum.

Vorgänger (predecessor)

 Der Vorgänger eines Knotens x ist der Knoten y mit maximalem Schlüssel k < x .key . In anderen Worten: Der Vorgänger eines Knotens ist der Knoten mit dem nächstkleineren Schlüssel im Baum.

Beispiel: Nachfolger

X	Tree- Successor(x)
3	4
6	7
15	17
13	15
17	18
4	6

Nachfolger

Beobachtungen

- x hat rechten Teilbaum:
 Nachfolger von x ist das Minimum im rechten Teilbaum, das ist der am weitesten links stehende Knoten im rechten Teilbaum.
- x hat keinen rechten Teilbaum:
 Falls x einen Nachfolger y hat, so ist y der tiefste Knoten, dessen linkes
 Kind im Baum vor x liegt.
 Anders formuliert: Man geht im Baum so weit nach oben, bis man auf
 einen Knoten trifft, der linkes Kind seines Vaters ist. Dabei muss man x
 selbst mit berücksichtigen.

Nachfolger

Beobachtungen

- Interessant: Man braucht keine Schlüssel-Vergleiche auszuführen, die gesamte Information steckt in der Struktur des Baumes.
- Wie viele Kinder hat der Nachfolger von x?
 - 0/1, falls x 2 Kinder hat. Dann ist Minimum y im rechten Teilbaum Nachfolger. y
 hat entweder kein Kind oder nur einen rechten Teilbaum.
 - 1/2 sonst, da x im Baum unter dem Nachfolger y liegt.
- Wir nehmen an, dass alle Schlüssel paarweise verschieden sind.
- Falls das nicht gilt, wird als Nachfolger von x der Knoten y definiert, den der Algorithmus zurückliefert.

Nachfolger

```
function TREE-SUCCESSOR(x)
      if x = NIL then
         return NIL
3.
      else if x .right \neq NIL then
         return TREE-MINIMUM(x .right )
5.
      end if
6.
      y = x .parent
      while y \neq NIL \land x = y .right do
8.
9.
         X = Y
10.
         y = y .parent
      end while
11.
      return y
12.
    end function
```


Beispiel: Vorgänger

X	Tree- Predecessor(x)
3	2
6	4
15	13
13	9
17	15
4	3

Vorgänger

Beobachtungen

- Das Problem ist symmetrisch zum Nachfolger-Problem
 - x hat linken Teilbaum:
 Vorgänger von x ist das Maximum im linken Teilbaum, das ist der am weitesten rechts stehende Knoten im linken Teilbaum.
 - x hat keinen linken Teilbaum: Falls x einen Vorgänger y hat, so ist y der tiefste Knoten, dessen rechtes Kind im Baum vor x liegt. Anders formuliert: Man geht im Baum so weit nach oben, bis man auf einen Knoten trifft, der rechtes Kind seines Vaters ist. Dabei muss man x selbst mit berücksichtigen.

Vorgänger

Beobachtungen

- Man braucht auch hier keine Schlüssel-Vergleiche auszuführen. Die gesamte Information steckt in der Struktur des Baumes.
- Auch hier gilt bei nicht paarweise verschiedenen Schlüsseln, dass als Vorgänger von x der Knoten y definiert wird, den der Algorithmus zurückliefert.

Vorgänger

```
function TREE-PREDECESSOR(x)
    if x = NIL then
         return NIL
      else if x .left \neq NIL then
         return TREE-MAXIMUM(x .left )
5.
      end if
   y = x .parent
      while y \neq NIL \land x = y .left do
8.
9.
         X = Y
10.
         y = y .parent
      end while
11.
      return y
12.
    end function
```


Laufzeit der Operationen

Alle bisher betrachteten Algorithmen verfolgen den Baum

- abwärts (Minimim, Maximum)
- aufwärts (Vorgänger, Nachfolger)

Die Laufzeit ist also von der Höhe abhängig. Es gilt:

$$T(n) = O(h)$$

= $O(log(n))$

Modifikationsoperationen im Baum

Überblick

- Einfügen und Löschen als modifizierende Operationen
- Im Unterschied zu vorherigen Datenstrukturen: Suchbaumeigenschaft muss erhalten bleiben
- Einfügen? Leicht, wenn einfach "unten" eingefügt wird
- Löschen? Ist wohl etwas schwieriger

Funktionsweise

- Der Prozedur TREE-INSERT() wird die Wurzel Teines BST sowie ein Knoten z übergeben.
- Die Felder z.left und z.right müssen mit NIL initialisiert sein.
- z.parent wird vom Algorithmus geändert.
- Der Wert des Schlüssels (das Feld z.key) dient zum Einordnen in den BST

Variablen

- z Knoten, der eingefügt wird
- x Laufvariable zum Suchen der Einfügeposition
- y Knoten, an den eingefügt wird. Vater von z.


```
function TREE-INSERT(T, z)
      y = NIL
      x = T.root
3.
       while x \neq NIL do
         y = x
         if z . key < x . key then
6.
            x = x .left
        else
8.
           x = x .right
9.
         end if
10.
       end while
11.
```

Erläuterung:

Z. 4-11 Suchen der Einfügeposition. Man steigt so lange ab, bis man mit *y* einen Blattknoten erreicht hat.

Ergebnis: *y* ist Vater des neuen Knotens oder *NIL*. Dann ist der neue Knoten Wurzel des Baums.

- 12. z.parent = y
- 13. if y = N/L then
- 14. T.root = z
- 15. else if z . key < y . key then
- 16. y.left = z
- 17. else
- 18. y.right = z
- 19. end if
- 20. end function

Erläuterung:

- Z. 12 *y* wird als Vater von *z* gesetzt.
- Z. 13-14 Falls y == NIL ist der neue Knoten Wurzel.
- Z. 16-20 z wird an y als linkes oder rechtes Kind angehängt

Kleine Übung

 Fügen Sie in diesen Baum den Knoten mit dem Schlüssel 8 ein. Protokollieren Sie alle Variablen im Ablauf des Algorithmus.

- Bemerkungen
- Struktur des Baumes wird durch die Einfügereihenfolge bestimmt
- Dabei entstehende Bäume heißen natürlich.
- Es gibt n! viele Möglichkeiten (Reihenfolgen), Knoten in Bäume einzufügen. Es gibt aber nicht n! viele Bäume.
 - Günstig: Vollständiger Baum $\Rightarrow T(n) = O(\log n)$.
 - Ungünstig: Lineare Liste $\Rightarrow T(n) = O(n)$.
- Wichtige Fragen:
 - Was liegt dazwischen und wie häufig kommen welche Varianten vor?
 - Was ist der "mittlere" Fall?
 - Ergebnis: Die erwartete Höhe eines natürlichen BST mit n Knoten ist O(log n).

Beispiel 1

Löschen des Knotens z

mit z.key = 13

Beispiel 1 Löschen des Knotens z mit z.key = 13

Beispiel 2
Löschen eines Knotens z
mit z.key = 16

Beispiel 2
Löschen eines Knotens z
mit z.key = 16

Beispiel 3 Löschen des Knotens z mit z.key = 5

Beispiel 3 Löschen des Knotens z mit z.key = 5

Beobachtung

- Das Vorgehen beim Löschen hängt offenbar von der Anzahl der Kinder des zu löschenden Knotens ab.
- Ein Knoten ohne Kinder (Blattknoten) kann direkt entfernt werden.
- Ein Knoten mit einem Kind kann durch Herauslösen entfernt werden.
- Es gibt viele Arten, wie man Knoten mit zwei Kindern entfernen kann (z.B: Ersetzen durch Vorgänger oder Nachfolger)

z ist Blattknoten

z hat 1 Kind

z hat 2 Kinder

- Funktionsweise
- Hat der zu löschende Knoten z höchstens 1 Kind, so ist das Löschen einfach.
- Hat z kein linkes Kind, so wird z durch sein rechtes Kind ersetzt, auch wenn dies NIL ist. Ist das rechte Kind NIL, dann liegt der Fall vor, dass z keine Kinder hat. Ist das rechte Kind nicht NIL, dann liegt der Fall vor, dass z genau ein Kind hat.
- Hat z genau ein Kind (das muss jetzt das linke Kind sein), so wird z durch sein linkes Kind ersetzt.
- Ansonsten (z hat 2 Kinder) bestimmt man den Nachfolger y von z im rechten
 Teilbaum, der ja sicher kein linkes Kind hat. y wird herausgelöst und ersetzt z
 - Ist y rechtes Kind von z, können wir z so ersetzen, da es keine Kinder hat
 - Ansonsten liegt y mitten im rechten Teilbaum. y wird zunächst durch sein eigenes rechtes Kind x ersetzt. Anschließend wird z durch y ersetzt.

Die Funktion TRANSPLANT erledigt das Ersetzen/Umhängen von Teilbäumen.

```
function TRANSPLANT(T, u, v)
       if u.parent = NIL then
2.
         T.root = v
       else if u = u.parent .left then
         u.parent .left = v
       else
6.
         u.parent .right = v
       end if
8.
       if v \neq NIL then
9.
         v.parent = u.parent
10.
       end if
11.
    end function
```

Erläuterung:

- Z. 2-3 Behandelt den Fall, dass *u* die Wurzel des Baums ist.
- Z. 4-5 Hängt v als linkes Kind ein.
- Z. 6-7 Hängt *v* als rechtes Kind ein.
- Z. 9-10 Wenn *v* nicht *NIL* ist, wird *v.parent* aktualisiert.

Achtung: *v.left* und *v.right* werden durch die Funktion nicht akualisiert. Dies muss ggfls. die aufrufende Funktion erledigen.


```
function TREE-DELETE(T, z)
          if z.left = NIL then
2.
            TRANSPLANT(T, z, z.right)
          else if z.right = NIL then
4.
            TRANSPLANT(T, z, z.left)
          else
6.
            y = TREE-MINIMUM(z.right)
            if y.parent != z then
8.
               TRANSPLANT(T, y, y.right)
               y.right = z.right
               y.right.parent = y
            end if
12.
          \mathsf{TRANSPLANT}(T, z, y)
13.
          y.left = z.left
14.
          y.left .parent = y
       end if
16.
     end function
17.
```

Erläuterung:

- Z. 2-3 Behandelt den Fall, dass z kein linkes Kind hat.
- Z. 4-5 Behandelt den Fall, dass z kein rechtes Kind (aber ein linkes Kind) hat.Z. 7 Suche des Nachfolgers y von z im rechten Teilbaum.
- Z. 8-11 Wenn y nicht rechtes Kind von z ist, so wird y zunächst durch sein rechtes Kind ersetzt und anschließend z's rechtes Kind an y gehängt. Danach:
- Z. 13-15 y ersetzt z und z's linkes Kind wird an y gehängt.

- Löschen Sie aus diesem Baum den Knoten mit Schlüssel 3.
- Protokollieren Sie alle Variablen im Ablauf des Algorithmus.

- Löschen Sie aus diesem Baum den Knoten mit Schlüssel 16.
- Protokollieren Sie alle Variablen im Ablauf des Algorithmus.

- Löschen Sie aus diesem Baum den Knoten mit Schlüssel 5.
- Protokollieren Sie alle Variablen im Ablauf des Algorithmus.

- Löschen Sie aus diesem Baum den Knoten mit Schlüssel 15.
- Protokollieren Sie alle Variablen im Ablauf des Algorithmus.

Binäre Suchbäume

Zusammenfassung

- Alle Wörterbuchoperationen konnten effizient realisiert werden.
 - Ungünstigste Laufzeit: T (n) = O(n)
 - Günstigste Laufzeit: $T(n) = O(h) = O(\log n)$
- Wir wissen wenig über die Struktur (v.a. Höhe) eines Baums im allgemeinen Fall.
- Man kann zeigen, dass die erwartete Höhe eines BST im mittleren Fall O(log n) ist.
- Dennoch: Hinzufügen und Löschen kann im Verlauf der Lebenszeit eines Baums zu ungünstigen, nicht balancierten Bäumen führen.
- Im nächsten Kapitel wird eine Variante der BST vorgestellt, die zu "einigermaßen" balancierten Bäumen führt.