What is claimed is:

5

10

15

 A method of computing a distance measure between first and second mixture type probability distribution functions,

$$G(x) = \sum_{i=1}^{N} \mu_i g_i(x), \qquad H(x) = \sum_{k=1}^{K} \gamma_k h_k(x),$$

comprising the step of evaluating the equation:

$$D_{M}(G, H) = \min_{w = [\omega_{k}]} \sum_{i=1}^{N} \sum_{k=1}^{K} \omega_{ik} d(g_{i}, h_{k}),$$

where $d(g_i,\,h_i)$ is a function of the distance between a component, g_i , of the first probability distribution function and a component, h_k , of the second probability distribution function

where 20

$$\sum_{i=1}^{N} \mu_{i} = 1 \text{ and } \sum_{k=1}^{K} \gamma_{k} = 1.$$

25 and

$$\omega_{ik} \geq 0, \ 1 \leq i \leq N, \ 1 \leq k \leq K$$

30

$$\sum_{k=1}^{K} \omega_{ik} = \mu_i, 1 \le i \le N, \sum_{i=1}^{N} \omega_{ik} = \gamma_k, 1 \le k \le K.$$

35
2. The method according to claim 1 wherein at least one of said first and second mixture probability distribution functions includes a Gaussian Mixture Model.

- The method according to claim 1 wherein the element distance between the first and
 second probability distance functions includes Kullback Leibler Distance.
 - The method of claim 1 wherein the first and second probability distribution functions are Gaussian mixture models derived from audio segments.
- 10 5. A computer program embedded in a storage medium for computing a distance measure between first and second mixture type probability distribution functions,

$$G(x) = \sum_{i=1}^N \mu_i g_i(x), \qquad H(x) = \sum_{k=1}^K \gamma_k h_k(x),$$

15 in accordance with the equation:

$$D_{M}(G, H) = \min_{w = \{\omega_{k}\}} \sum_{i=1}^{N} \sum_{k=1}^{K} \omega_{ik} d(g_{i}, h_{k}),$$

 $\begin{tabular}{ll} 20 & where $d(g_i,\,h_k)$ is a function of the distance between a component, g_i, of the first probability distribution function and a component, h_k, of the second probability distribution function $d(g_i,\,h_k)$ is a function of the distance between a component, g_i, of the first probability distribution function $d(g_i,\,h_k)$ is a function of the distance between a component, g_i, of the first probability distribution function $d(g_i,\,h_k)$ is a function of the distance between a component, g_i, of the first probability distribution function $d(g_i,\,h_k)$ is a function of the distance between a component, g_i, of the first probability distribution function $d(g_i,\,h_k)$ is a function $d(g_i,\,h_k)$ is a function $d(g_i,\,h_k)$ is a function $d(g_i,\,h_k)$ of the second probability distribution function $d(g_i,\,h_k)$ is a func$

where

$$\sum_{i=1}^{N} \mu_{i} = 1 \text{ and } \sum_{k=1}^{K} \gamma_{k} = 1.$$

and

$$\omega_{ik} \ge 0, \ 1 \le i \le N, \ 1 \le k \le K$$

35 and
$$\sum_{k=1}^{K} \omega_{ik} = \mu_i, \ 1 \le i \le N, \sum_{i=1}^{N} \omega_{ik} = \gamma_k, \ 1 \le k \le K.$$

- The computer program according to claim 5 wherein at least one of said first and
 second mixture probability distribution functions includes a Gaussian Mixture Model.
 - The computer program according to claim 5 wherein the element distance between the first and second probability distance functions includes Kullback Leibler Distance.
- 10 8. The computer program of claim 5 wherein the first and second probability distribution functions are Gaussian mixture models derived from audio segments.
 - A computer system for computing a distance measure between first and second mixture type probability distribution functions,

$$G(x) = \sum_{i=1}^N \mu_i g_i(x), \qquad H(x) = \sum_{k=1}^K \gamma_k h_k(x),$$

in accordance with the equation:

$$D_{M}(G,H) = \min_{w = [\omega_{k}]} \sum_{i=1}^{N} \sum_{k=1}^{K} \omega_{ik} d(g_{i},h_{k}),$$

where $d(g_i, h_k)$ is a function of the distance between a component, g_i , of the first probability distribution function and a component, h_k , of the second probability distribution function

25 where

$$\sum_{i=1}^{N} \mu_i = 1 \quad and \quad \sum_{k=1}^{K} \gamma_k = 1.$$

30 and

$$\omega_{ik} \ge 0, \ 1 \le i \le N, \ 1 \le k \le K$$

35 and 10

$$5 \quad \sum_{k=1}^K \omega_{ik} = \mu_i, \, 1 \leq i \leq N, \, \sum_{i=1}^N \omega_{ik} = \gamma_k, \, 1 \leq k \leq K.$$

- 10. The computer system according to claim 9 wherein at least one of said first and second mixture probability distribution functions includes a Gaussian Mixture Model.
- 11. The computer system according to claim 9 wherein the element distance between the first and second probability distance functions includes Kullback Leibler Distance.
- 12. The computer system of claim 9 wherein the first and second probability distribution functions are Gaussian mixture models derived from audio segments.
 - 13. A method for computing a distance measure between first and second mixture type probability distribution functions G and H, wherein:

20
$$G(x) = \sum_{i=1}^{N} \mu_i g_i(x),$$

wherein μ_i is a weight imposed on a component, $g_i(x)$, of the first probability distribution function and

25
$$H(x) = \sum_{k=1}^{K} \gamma_k h_k(x),$$

wherein γ_k is a weight imposed on a component h_k , of the second probability distribution function comprising the steps of:

- 30 computing an element distance, d(g_i, h_k), between each g_i and each h_k where 1 ≤ i ≤ N,1 ≤ k ≤ K,
- computing an overall distance, denoted by $D_M(G,H)$, between the first mixture probability distribution function, G, and the second mixture probability distribution function, H, based on a weighted sum of the all element distances,

$$\sum_{i=1}^{N}\sum_{k=1}^{K}\omega_{ik}d(g_{i},h_{k}),$$

wherein weights $\omega_{l,k}$ imposed on the element distances $d(g_l, h_k)$, are chosen so that the overall distance $D_M(G, H)$ is minimized and

$$\omega_{ik} \ge 0$$
, $1 \le i \le N$, $1 \le k \le K$

$$\sum_{i=1}^N \omega_{ik} = \gamma_k, 1 \le k \le K, \quad and$$

$$\sum_{k=1}^{K} \omega_{ik} = \mu_i, 1 \le i \le N.$$

15

- 14. The method according to claim 13 wherein at least one of said first and second mixture probability distribution functions includes a Gaussian Mixture Model.
- 20 15. The method according to claim 13 wherein the element distance between the first and second probability distance functions includes Kullback Leibler Distance.
 - 16. The method of claim 13 wherein the first and second probability distribution functions are Gaussian mixture models derived from audio segments.

25

30

35