Exercises: Divergence Theorem and Stokes' Theorem

Problem 1. This exercise allows you to see the main idea behind the proof of the Divergence Theorem. Suppose that T is a closed region in \mathbb{R}^3 whose boundary surface S can be divided into xy-monotone surfaces: S_1 and S_2 , whose projections onto the xy-plane are the same region D. (For example, the ball $x^2 + y^2 + z^2 \le 1$ is such a region because we can divide its boundary into two xy-monotone surfaces (i) S_1 : $x^2 + y^2 + z^2 = 1$ with $z \ge 0$, and (ii) S_2 : $x^2 + y^2 + z^2 = 1$ with $z \le 0$.) Let f(x, y, z) be a function that is continuous on S. Orient S by taking its outer side. Prove that

$$\iiint_T \frac{\partial f}{\partial z} \, dx dy dz = \iint_S f \, dx dy.$$

Problem 2. Consider the cylinder $x^2 + y^2 \le 1$ and $0 \le z \le 1$. Let S be the boundary of the cylinder; see below. Use the Divergence Theorem to calculate $\iint_S xy \, dy \, dz + y^2 \, dx \, dz + z \, dx \, dy$.

Problem 3. This exercise allows you to derive another popular form of the Divergence theorem. Let T be a closed region in \mathbb{R}^3 that is bounded by a surface S, which is the union of a finite number of smooth surfaces $S_1, ..., S_k$. Define f(x, y, z) to be a vector function that is continuous on each S_i $(1 \le i \le k)$. For each point p = (x, y, z), define n(x, y, z) to be the unit vector of S at p pointing towards the outside of S. Prove:

$$\iiint_T \operatorname{div} \mathbf{f} \, dx dy dz = \iint_S \mathbf{f} \cdot \mathbf{n} \, dA.$$

Problem 4. Let $f = [e^x, e^y, e^z]$. Let S be the boundary of the cube with $|x| \le 1$, $|y| \le 1$, and $|z| \le 1$. Let n be defined as in the previous problem. Calculate $\iint_S \mathbf{f} \cdot \mathbf{n} \, dA$.

Problem 5. Let C be the curve that is the intersection of

$$x^2 + y^2 = 2z$$
$$z = 2$$

Designate the direction of C as passing points (2,0,2), (0,2,2), and (-2,0,2) in this sequence. Use the Stokes' theorem to calculate $\int_C y \, dx - xz \, dy + yz^2 \, dz$.

Problem 6. This exercise allows you to see an alternative form of the Stokes' theorem. Let S be a piecewise surface and C its boundary curve, both oriented in the way described in the Stokes

theorem (see lecture notes). Also, let f_1, f_2, f_3 be functions that have continuous partial derivatives on each smooth surface that constitutes S.

Define $\mathbf{f}(x,y,z) = [f_1, f_2, f_3]$, and $\mathbf{n}(x,y,z)$ be the unit normal vector of S at point (x,y,z), emanating from the side of S chosen. Fix any point p^* on S. Given any point S on S, denote by S the length of the curve from S to S, following the direction of S. Let $\mathbf{r}(s) = [x(s), y(s), z(s)]$ be a parametric form of S. Prove:

$$\iint_{S} \operatorname{curl} \boldsymbol{f} \cdot \boldsymbol{n} \, dA = \int_{C} \boldsymbol{f} \cdot \boldsymbol{r}'(s) \, ds.$$

Problem 7. Let S be the surface $z=x^2$ with $0 \le x \le 2$ and $0 \le y \le 1$. Orient S by taking its upper side. Define $\mathbf{f} = [e^y, e^z, e^x]$. Calculate $\iint_S \operatorname{curl} \mathbf{f} \cdot \mathbf{n} \, dA$, where \mathbf{n} is as defined in the previous problem. Calculate $\iint_S \operatorname{curl} \mathbf{f} \cdot \mathbf{n} \, dA$.

Problem 8. Fix a vector function $f(x, y, z) = [f_1, f_2, f_3]$. Prove that if $\operatorname{curl} f = 0$, then the class of line integrals $\int_C f_1 dx + f_2 dy + f_3 dz$ is path independent.