

MINDAR SENIOR COLLEGE

WHERE YOUR FUTURE BEGINS NOW

MATHEMATICS: SPECIALIST 3 & 4

EXTENDED PIECE OF WORK 4

PART B

HYPERBOLIC FUNCTIONS

Time Allowed: 55 minutes

Total Marks: 40

No calculators allowed. Part A may be used for this Part.

1. [6 marks]

Sketch the following graphs. Show any important points on the axes.

(a)
$$f(x) = e^x - e^{-x}$$

(b)
$$y = \operatorname{sech} x$$
, where $\operatorname{sech} x = \frac{1}{\cosh x}$

 $h(x) = \cosh x + \sinh x$ (c)

2. [4 marks]

State whether each of the following are true or false.

For x large and positive, $\cosh x$ and $\sinh x$ have approximately the same value. (a)

For x range and positive,
$$\cosh x$$
 and $\sinh x$ have approximately the same value.

And $\cosh x = \frac{1}{2}(e^{\infty} + 0)$

And $\sinh x = \frac{1}{2}(e^{\infty} - 0)$

The

 $\lim_{x \to \infty} \tanh x = 1 \qquad \frac{e^{\infty}}{\infty} = 1 \qquad \text{free}$ (b)

(c)
$$\cosh(-x) = \cosh x$$

For x < 0 and |x| large, the graph of $y = \cosh x$ approximates the curve $y = \frac{1}{2}e^{-x}$. (d) True,

3. [7 marks]

Use the transformation suggested in Question 4 of your assignment to transform the following identities into identities involving hyperbolic functions.

(a)
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

 $\cos(A+B) = \cosh A \cosh B - i \sinh A \sinh B$
 $= \cosh A \cosh B + \sinh A \sinh B$

(b)
$$\cos 4A = 8 \sin^4 A - 8 \sin^2 A + 1$$

 $\cosh 4A = 8 (i \sinh A)^4 - 8 (i \sinh A)^2 + 1$
 $= 8 \sinh^4 A + 8 \sinh^2 A + 1$

(c)
$$\cos^6 A + \sin^6 A = 1 - \frac{3}{4} \sin^2 2A$$

 $\cosh^6 A + (i\sinh A)^6 = 1 - \frac{3}{4} (i\sinh 2A)^2$
 $\cosh^6 A - \sinh^6 A = 1 + \frac{3}{4} \sinh^2 2A$

(d)
$$\sec^2 A - \tan^2 A = 1$$

$$\frac{1}{\cos^2 A} - \frac{\sin^2 A}{\cos^2 A} = 1$$

$$\frac{1}{\cosh^2 A} + \frac{\sinh^2 A}{\cos^2 h A} = 1$$

$$\operatorname{sech}^2 A + \tanh^2 A = 1$$

4. [4 marks]

Given $\sinh x = -\frac{3}{4}$, show that $\cosh x = \frac{5}{4}$.

[Hint: use Question 2 (a) from Part A]

$$\cosh^2 x - \left(-\frac{3}{4}\right)^2 = 1$$

$$\cosh^2 x - \frac{9}{16} = 1$$

$$\cosh^2 x = \frac{25}{16}$$

$$\cosh x = \frac{+5}{4}$$

$$but \cosh x > 0$$

IF miss out coshx 70 but gives coshx 1/1/

5. [6 marks]

Use the results from Question 2 (c) in Part A to prove

 $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$

LHS =
$$(\cosh x + \sinh x)^n$$

RHS = $\cosh x + \sinh x$

$$= (e^x)^n$$

6. [7, 6 marks]

(a) Find

(i)
$$\int \cosh x \, dx = \sinh x + C$$

(ii)
$$\frac{d}{dx}(\cosh^2 x) = 2\cosh x$$
, $\sinh x$

(iii)
$$\frac{d}{dx}(\sinh 5x) = 5 \cosh 5x$$

(iv)
$$\frac{d}{dx}(\cosh x + \sinh x)^n = \frac{d}{dx}(\cosh x + \sinh x)^n$$

(b) Show that $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$

[Hint: Use Question 1 (b) from Part A and the quotient rule]

LHS:
$$\frac{d}{dn} (tanhx)$$

= $\frac{d}{dx} (\frac{smhx}{coshx})$

= $\frac{d}{dx} (\frac{smhx}{coshx})$

= $\frac{cosh^2x - sinh^2x}{cosh^2x}$

= $\frac{d}{cosh^2x}$