Notes du cours d'Analyse et Géometrie

Professeur: Christian Gérard

Yehor Korotenko

February 8, 2025

Contents

1	\mathbf{Intr}	roduction 1
	1.1	Éspaces \mathbb{R}^d \mathbb{C}^d
	1.2	Éspace \mathbb{C}^d
	1.3	Distance sur \mathbb{R}^d
2	Éspa	aces métriques
	2.1	Boules dans un espace métrique
	2.2	Parties bornées de (E,d)
	2.3	Fonctions bornées
	2.4	Distance entre ensembles
	2.5	Topologie des espaces métriques
	2.6	Intérieur, adhérent, frontière
		2.6.1 Intérieur
		2.6.2 Adhérent
		2.6.3 Frontière
	2.7	Suite dans un éspace métrique
	2.8	Suites de Cauchy
	2.9	Sous-suites
	2.10	Procédé de construction de l'intérieur et l'adhérence
	2.11	Compacité
		Limites et applications continues

Abstract

Professeur: Christian Gérard

- CC: 0.15
 - Pour les CC une semaine avant CC le prof va envoyer une liste des question. Les CC durent 30 minutes en TD en semaines:
 - -17/2
 - -17/3
 - -17/4
- P: 0.35
- E: 0.5

Il y aura des démonstrations en examens Chercher dans google "page personnelle cristiang gérard Orsay", puis MDD251

Chapter 1

Introduction

1.1 Éspaces \mathbb{R}^d \mathbb{C}^d

Definition 1.1.

$$\mathbb{R}^d = \{X = (x_1, \dots, x_d), x_i \in \mathbb{R}\}$$

 x_1, \ldots, x_d coordonnées cartésiennes de X

Example 1.2. d=2 coordonnées polaires:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$0 \le r \le \infty \quad \theta \in [0, 2\pi[$$

Definition 1.3. \mathbb{R}^d est un espace vectoriel sur \mathbb{R}

$$\vec{X} + \vec{Y} = (x_1 + y_1, \dots, x_d + y_d)$$
$$\lambda X = (\lambda x_1, \dots, \lambda x_d) \quad \lambda \in \mathbb{R}$$
$$\vec{0}_d = \vec{0} = (0, \dots, 0)$$

Definition 1.4. Un produit scalaire:

$$X \cdot Y = x_1 y_1 + x_2 y_2 + \dots x_d y_d = ||X|| ||Y|| \cos(\theta)$$
 (où θ est une angle entre X et Y)

Intuition. Ce produit nous dit how closely the vectors point in the same direction (cosinus tend vers 1 quand θ tend vers 0° , et cosinus tend vers 0 quand θ tend vers 90°). Et ce produit nous permet d'avoir une projection

de X sur Y par la formule:

$$Proj(X) = \frac{X \cdot Y}{\|Y\|} \cdot \frac{Y}{\|Y\|}$$

 $X \cdot Y$ donne la longeur de X et Y ensemble, en divisant cette longeur par ||Y|| (la longeur de Y) on obtient la longeur de X sur Y, il nous reste de multiplier cette longeur par un vecteur unitaire(de longeur 1) qui pointe dans la même direction que Y, (on l'obtient par $\frac{Y}{||Y||}$)

Proposition 1.5. Produit scalaire respectes ces propriétés:

- 1. bilinaiarité $\lambda \in \mathbb{R}$
 - (a) $(X+Y) \cdot Z = X \cdot Z + Y \cdot Z$
 - (b) $(\lambda X) \cdot Z = \lambda (X \cdot Z)$
 - (c) $Z \cdot (X + Y) = Z \cdot X + Z \cdot Y$
 - (d) $Z \cdot (\lambda X) = \lambda (Z \cdot X)$
- 2. symétrie $X \cdot Y = Y \cdot X$
- 3. défini positif: $X \cdot X \ge 0$ et $X \cdot X = 0 \Leftrightarrow X = 0_d$

Proposition 1.6. Cauchy-Schwarz:

$$|X \cdot Y| \le (X \cdot X)^{\frac{1}{2}} (Y \cdot Y)^{\frac{1}{2}}$$

Definition 1.7. La **norme euclidienne** d'un vecteur X est noté:

$$||X|| = \left(\sum_{n=1}^{d} x_i^2\right)^{\frac{1}{2}} = \sqrt{x_1^2 + \ldots + x_d^2} = (X \cdot X)^{\frac{1}{2}}$$

souvent noté $||X||_2$

Intuition. Par le théorème de Pythogore, c'est une longeur de ce vecteur.

Proposition 1.8. La norme suit ces propriétés:

- 1. $\|\lambda X\| = |\lambda| \|X\| X \in \mathbb{R}^d, \ \lambda \in \mathbb{R}$
- 2. $||X + Y|| \le ||X|| + ||Y||$ (inégalité triangulaire)
- 3. $||X|| \ge 0$ et $||X|| = 0 \Leftrightarrow X = 0_d$

Proof. de (2)

$$\begin{split} \|X+Y\|^2 &= (X+Y) \cdot (X+Y) = X \cdot (X+Y) + Y \cdot (X+Y) = X \cdot X + X \cdot Y + Y \cdot X + Y \cdot Y \\ &= \|X\|^2 + 2X \cdot Y + \|Y\|^2 \le \|X\|^2 + 2\|X\| \|Y\| + \|Y\|^2 = (\|X\| + \|Y\|)^2 \end{split}$$

2

Definition 1.9. Une <u>norme</u> sur \mathbb{R}^d est une application $N: \mathbb{R}^d \to \mathbb{R}$ tell que:

1.
$$N(\lambda X) = |\lambda| N(X)$$

2.
$$N(X + Y) \le N(X) + N(Y)$$

3.
$$N(X) \ge 0$$
 et $N(X) = 0 \Leftrightarrow X = 0_d$

Example 1.10.

$$||X||_1 = \sum_{n=1}^d |x_i|$$
$$||X||_{\infty} = \max_{1 \le i \le n} |x_i|$$

1.2 Éspace \mathbb{C}^d

Definition 1.11.

$$\mathbb{C}^d = \{X = (x_1, \dots, x_d) : x_i \in \mathbb{C}\}$$

$$z \in \mathbb{C} \quad \overline{z} = a - ib \quad \overline{z}z = a^2 + b^2 \quad |z| = \sqrt{\overline{z}z} = \sqrt{a^2 + b^2}$$

$$z = a + ib \quad a = Re z, b = Im z$$

$$Re X = (Re x_1, \dots, Re x_d) \in \mathbb{R}^d$$

$$Im X = (Im x_1, \dots, Im x_d) \in \mathbb{R}^d$$

$$X = Re X + i Im X$$

$$\in \mathbb{C}^d = Re X + i Im X$$

$$\in \mathbb{R}^d$$

 \mathbb{C}^d est un espace vécrotiel sur \mathbb{C} (même formules avec $\lambda \in \mathbb{C}$ corps des scalaires)

Definition 1.12. Produit scalaire:

$$(X|Y) = \sum_{n=1}^{d} \overline{x_i} y_i \in \mathbb{C}$$

Proposition 1.13. .

- 1. (X|Y) est "linéaire par rapport à Y"
 - $\bullet \ (Z|X+Y) = (Z|X) + (Z|Y)$
 - $(Z|\lambda X) = \lambda(Z|X) \quad \lambda \in \mathbb{C}$
 - $(Z|\lambda X + \mu Y) = \lambda(Z|X) + \mu(Z|Y)$
 - (X + Y|Z) = (X|Z) + (Y|Z)
 - $(\lambda X|Z) = \overline{\lambda}(X|Z) \quad \lambda \in \mathbb{C}$
 - $(\lambda X + \mu Y|Z) = \overline{\lambda}(X|Z) + \mu(Y|Z)$
- 2. $(Y|X) = \overline{(X|Y)}$
- 3. $(X|X) = \sum_{n=1}^{d} \overline{x_i} x_i = \sum_{n=1}^{d} |x_i|^2$ $(X|X) \ge 0$ et $(X|X) = 0 \Leftrightarrow X = 0_d$

Proof. On a Cauchy-Schwarz:

$$(X|Y) \le (X|X)^{\frac{1}{2}}(Y|Y)^{\frac{1}{2}}$$

même preuve qu'avant

On pose:

$$||X||$$
 (ou $||X||_2$)
= $(X|X)^{\frac{1}{2}} = \left(\sum_{n=1}^d |x_i|^2\right)^2$

norme hibertienne

$$\|X\|^2 = \|\mathop{Re}_{\in \mathbb{R}^d} X\|^2 + i \, \|\mathop{Im}_{\in \mathbb{R}^d} X\|^2$$

Lemma 1.14.

$$||X|| = \sup_{\|Y\| \le 1} |(X|Y)|$$

Proof. $|(X|Y)| \le ||X|| ||Y|| \le ||X|| \text{ si } ||Y|| \le 1$

$$\sup_{\|Y\| \le 1} |X|| |X||$$

Autre sens:

$$\begin{split} X \neq 0 \quad Y &= \frac{X}{\|X\|} = \lambda X \quad \lambda = \frac{1}{\|X\|} \\ \|Y\| &= |\lambda| \|X\| = \frac{1}{\|X\|} \|X\| = 1 \\ (X|Y) &= (X|\frac{X}{\|X\|}) = \frac{1}{\|X\|} (X|X) = \|X\| \\ sup\{|(X|Y)|: \|Y\| \leq 1\} \\ \|X\| \leq sup\{|(X|Y)|: \|Y\| \leq 1\} \quad \text{(prendre } Y = \frac{X}{\|X\|}\text{)} \end{split}$$

Autres normes sur \mathbb{C}^d

- $||X||_1 = \sum_{n=1}^d |x_i| \quad X \in \mathbb{C}^d$
- $\bullet ||X||_{\infty} = \sup_{1 \le i \le d} |x_i|$

1.3 Distance sur \mathbb{R}^d

On oublie norme et produit scalaire. On introduit la distance

Definition 1.15. La distance

$$d(X,Y) = \|X - Y\|$$

Definition 1.16. La distance euclidienne

$$d(X,Y) = ||X - Y|| = \sqrt{\sum_{n=1}^{d} (x_i - y_i)^2}$$

Proposition 1.17. Une distance est une application:

$$d: \mathbb{R}^d \longrightarrow \mathbb{R}$$

 $(X,Y) \longmapsto d((X,Y))$

qui suit ces propriétés:

- 1. d(X,Y) = d(Y,X) (symétrie)
- 2. $d(X,Y) \leq d(X,Z) + d(Z,Y)$ (inég. triangulaire) $\forall X,Y,Z$
- 3. $d(X,Y) \ge 0 \quad \forall X, Y \text{ et } d(X,Y) = 0 \Leftrightarrow X = Y$

Example 1.18. Distances

- 1. $d_2(X,Y) = ||X Y||_2$ (distance euclidienne sur \mathbb{R}^d)
- 2. $d_1(X,Y) = ||X Y||_1$ $d_{\infty}(X,Y) = ||X - Y||_{\infty}$
- 3. distance logarithmique sur \mathbb{R}_+ : d(a,b) = |b-a|

$$\log_{10}(a) = \frac{\log(a)}{\log(10)}$$

$$x, y \in]0, +\infty[$$

 $d_{\log}(x, y) = |\log_{10}(\frac{y}{x})|$
 i est une distance sur $]0, +\infty[$
 $d_{\log}(100, 110) = \log_{10}(1, 1)$

4. distance SNCF

d(X,Y) distance usuelle dans \mathbb{R}^2 on pose:

$$\delta(X,Y) = \begin{cases} d(X,Y) \text{ si } X,0,Y \text{ align\'es} \\ d(X,0) + d(0,Y) \text{ sinon} \end{cases}$$

5

Chapter 2

Éspaces métriques

Definition 2.1. E muni d'une application de distance d (voir Definition 1.15) se note (E, d): espace métrique

Remark 2.2. si $d_1 \neq d_2$ (E, d_1) n'a rien à faire avec (E, d_2)

Remark 2.3. Retenir la version suivante de l'inégalité triangulaire:

$$|d(x,z) - d(y,z)| \le d(x,y)$$

Remark 2.4. <u>Distance induite:</u>

Si (E,d) espace métrique et $U \subset E$. Je peux restreidnre d à $U \times U$: (U,d) est aussi un éspace metrique.

2.1 Boules dans un espace métrique

Definition 2.5. (E,d) espace métrique. Soit $x_0 \in E$ et $r \geq 0$

- 1. $B(x_0, r) = \{x \in E : d(x_0, x) < r \}$ boule ouverte de centre x_0 , de rayon r
- 2. $B_f(x_0,r)=\{x\in E: d(x_0,x)\leq r\}$ boule fermée de centre $x_0,$ de rayon r

(a) boules ouverte (i.e $d(x_0, x) < r$)

(b) boules fermée (i.e $d(x_0, x) \leq r$)

Lemma 2.6.

- 1. $B(x_0,0) = \emptyset$ (car impossible d'avoir des points qui en distance sont strictement plus petit que 0)
- 2. $B_f(x_0,0) = \{x_0\}$
- 3. $B(x_0, r_1) \subset B_f(x_0, r_1) \subset B(x_0, r_2)$ si $r_1 < r_2$
- 4. $B(x_1, r_1) \subset B(x_0, r)$ si $d(x_0, x_1) + r_1 \leq r$

Figure 2.2: Lemma 4

Proof. Je suppose que $d(x_0, x_1) \leq r$

Soit $x \in B(x_1, r_1)$ donc $d(x_1, x) < r_1$ à montrer: $x \in B(x_0, r)$ (i.e $d(x_0, x) < r$?)

L'inégalité triangulaire me dit:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $< d(x_0, x_1) + r_1 \le r$
 $\Rightarrow x \in B(x_0, r)$

Example 2.7. 1. $E = \mathbb{R}, \quad d(x, y) = |x - y|$

$$B(x_0, r) =]x_0 - r, x_0 + r[$$

2. $E = \mathbb{R}^d$, d = 2, 3, $X = (x_1, \dots, x_d)$

$$||X||_{2} = \left(\sum_{i=1}^{d} x_{i}^{2}\right)^{\frac{1}{2}}$$
$$||X||_{1} = \sum_{i=1}^{d} x_{i}$$
$$||X||_{\infty} = \max_{1 \le i \le d} |x_{i}|$$

$$d_2(X,Y) = ||Y - X||_2 = ||\vec{XY}||_2$$

$$d_1(X,Y), d_{\infty}(X,Y)$$

Property. Dans \mathbb{R}^n

- $d_{\infty}(X,Y) \leq d_1(X,Y) \leq nd_{\infty}(X,Y)$
- $d_{\infty}(X,Y) \leq d_2(X,Y) \leq \sqrt{n}d_{\infty}(X,Y)$

2.2 Parties bornées de (E, d)

Definition 2.8. Soit $A \subset E$. A est bornée si $\exists R > 0$ et $\exists x_0 \in E$ tel que

$$A \subset B(x_0, R)$$

Figure 2.3: Exemple d'un enesemble borné

Lemma 2.9. Les propriétés suivantes sont équivalentes:

- 1. A est bornée
- 2. $\forall x_0 \in E, \exists r > 0 \text{ tel que } A \subset B(x_0, r)$
- 3. $\exists r > 0$ tel que $\forall x, y \in A$ on a d(x, y) < r

Proof. de lemme

• (1) \Rightarrow (2): Hyp: $\exists x_1 \in E, \exists r_1 \in E \text{ tq } A \subset B(x_1, r_1)$ Soit $x_0 \in E$. But: trouver r tel que $A \subset B(x_0, r)$ si $x \in A$, on a: $d(x_1, x) < r_1$ <u>Je veux</u>: $d(x_0, x) < r$

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x) \le d(x_0, x_1) + r_1 < r$$
 si $r > d(x_0, x_1) + r_1$

Property. 1. Toute partie finie est bornée

- 2. Si Abotnée et $B\subset A$ alors Bbornée
- 3. L'union d'un nombre <u>fini</u> de bornés est borné

Proof. de (3).

 A_1,\ldots,A_n sont bornés. <u>Je fixe $x_0\in E$,</u> A_i borné $(1\leq i\leq n)$, donc $\exists r_i>0$ tel que $A_i\subset B(x_0,r_i)$ si $r=\max_{1\leq i\leq n}r_i$

$$A_i \subset B(x_0, r), \, \forall i \Rightarrow \bigcup_{i=1}^n A_i \subset B(x_0, r)$$

2.3 Fonctions bornées

Definition 2.10. Soit B un ensemble. Une fonction $F: B \to E$ est bornée si $F(B) = \{F(b) : b \in B\} \subset E$ est borné.

2.4 Distance entre ensembles

Definition 2.11. La distance entre deux ensembles A, B est:

$$d(A,B) := \inf_{x \in A, y \in B} d(x,y)$$

Intuitivement, on cherche deux points x et y tel que la distance est la plus petite possible.

Definition 2.12. La distance entre un points x et un ensemble B est:

$$d(x,B) := \inf_{y \in B} d(x,y)$$

La même intuition.

Property. $\forall x \in A, y \in B, d(x,y) \ge d(A,B)$ et $\forall \varepsilon > 0, \exists x \in A, y \in B$ tq $d(x,y) \le d(A,B) + \varepsilon$

Figure 2.4: Distance entre ensembles

2.5 Topologie des espaces métriques

distance $d(x,y) \longrightarrow \text{boules } B(x_0,r) \longrightarrow \text{ensembles ouverts}$

Definition 2.13. Soit (E, d) espace métrique.

1. $U \subset E$ est ouvert si $\forall x_0 \in U, \exists r > 0 \ r(x_0)$ tel que $B(x_0, r) \subset U$

2. $F \subset E$ est fermé si $E \setminus F$ est ouvert

 \emptyset est ouvert et E est ouvert. \emptyset est fermé et E est fermé.

À la borne, il est impossible de trouver une boules qui appartient à F, car il est impossible d'avoir une boule ouverte de r=0. Exemple: circle bleu foncé Pour tout point dans $E\setminus F$ on peut trouver une boule ouverte

(b) Un ensemble ouvert pour tout point pres de la borne on peut trouver une boule infiniment petite avec des points autour ce point inclu dans U.

Figure 2.5: Démonstration des espaces ouverts et fermés

Remark 2.14. dans $\mathbb R$ les intervalles ouverts sont des ouverts (pareil pour fermés)

Remark 2.15. Une distance entre deux ensembles ouverts toujours existe et elle est infimum (qui n'est jamais atteint)

Lemma 2.16. 1. $B(x_0, r_0)$ est ouvert.

2. $B_f(x_0, r_0)$ est fermé.

Proof. 1. Soit $x_1 \in B(x_0, r_0)$ $(d(x_0, x_1) < r_0)$. But: touver $r_1 > 0$ tel que $B(x_1, r_1) \subset B(x_0, r_0)$?

> $x \in B(x_1, r_1) : d(x_1, x) < r_1$ $x \in B(x_0, r_0) \text{ si } d(x_0, x) < r_0$

facile:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $\le d(x_0, x_1) + r_1$
 $< r_0 \text{ si}$

$$r_1 < r_0 - d(x_0, x_1) > 0$$

Example 2.17. bizzare.

Soit $E = \mathbb{R}$, d(x, y) = |y - x|, A =]0, 1[ouvert, pas fermé dans \mathbb{R} .

Je regarde A comme partie de (A,d). Comme $A \setminus A = \emptyset$ qui est ouvert, donc A est fermé dans A. Par contre, les bornes ne sont jamais atteints, alors A est ouvert dans (A,d).

Theorem 2.18. .

- 1. Soit U_i , $i \in I$ une collection d'ouverts. Alors, $\bigcup_{i \in I} U_i$ est ouvert. Translate: Une union des ensembles ouverts est ouvert.
- 2. Si U_1, \ldots, U_n sont ouverts

 $\bigcap_{i=1}^{n} U_i \text{ est ouvert.}$

Translate: intersection des ensembles ouverts est ouvert.

- 1. Soit $U_i, i \in I$ une collection de fermés. Alors, $\cup_{i \in I} U_i$ est fermé. Translate: Une union des ensembles fermés est fermé.
- 2. Si U_1, \ldots, U_n sont fermés

 $\bigcap_{i=1}^{n} U_i \text{ est ferm\'e.}$

Translate: intersection des ensembles fermés est fermé.

Proof. .

- 1. Soit $x \in U := \bigcup_{i \in I} U_i$. Il existe un i noté i_0 tel que $x \in U_{i_0}$, U_{i_0} est ouvert, donc $\exists r > 0$ tel que $B(x,r) \subset U_{i_0} \subset U := \bigcup_{i \in I} U_i$.
- 2. Soit $x \in U := \bigcap_{1 \le i \le n} U_i$.

On fixe i. $x \in U_i$, U_i ouvert, donc $\exists r_i > 0$ tel que $B(x,r) \subset U_i$, $1 \le i \le n$, donc $B(x,r) \subset U := \bigcap_{1 \le i \le n} U_i$

2.6 Intérieur, adhérent, frontière

2.6.1 Intérieur

Definition 2.19. Soit $A \subset E$.

1. $x_0 \in E$ est intérieur à A si $\exists \delta > 0$ tel que:

$$B(x_0, \delta) \subset A$$

2. Int(A) (intérieur de A) = tous les points intériers à A. (aussi noté A)

Intuition. Int(A) est un ensemble qui se trouve totallement dans A et qui est loin des bords de A.

Figure 2.6: Exemple d'un intérieur

Proposition 2.20. Int(A) est le plus grand ouvert inclus dans A. De manière équivalente, Int(A) est la réunion de tous les ouverts inclus dans A.

Proof. 1. $Int(A) \subset A$: clair

2. $\frac{Int(A) \text{ est ouvert:}}{\text{Soit } x_0 \in Int(A).}$

But: trouver δ_0 tel que $B(x_0, \delta_0) \subset Int(A)$. Trouver δ_0 tel que si $d(x_0, x) < \delta_0$ alors $x \in Int(A)$?

Hyp: $x_0 \in Int(A)$. $\exists \delta_1 > 0$ tel que $B(x_0, \delta_1) \subset A$. On a vu que $B(x_0, \delta_1)$ est ouvert. Je dis que $B(x_0, \delta_1) \subset Int(A)$.

Preuve: Soit $x \in B(x_0, \delta_1)$. $B(x_0, \delta_1)$ ouvert, donc $\exists \delta_2 > 0$ tel que $B(x, \delta_2) \subset B(x_0, \delta_1) \subset A$. Donc $x \in Int(A)$, donc $B(x_0, \delta_1) \subset Int(A)$.

Int(A) est ouvert.

3. Si U est ouvert et $U \subset A$ alors $U \subset Int(A)$? $x_0 \in U$. U ouvert $\Rightarrow \exists \delta$ tel que $B(x_0, \delta) \subset U \subset A \Rightarrow x_0 \in Int(A)$

2.6.2 Adhérent

Definition 2.21. Soit $A \subset E$.

- 1. $x_0 \in E$ est <u>adhérent</u> à A, si $\forall \delta > 0$, $B(x_0, \delta)$ intérsecte A. (équivalent à $d(x_0, A) = 0$)
- 2. Adh(A) (adhérence ou fermeture de A) = ensemble des points adhérents à A (aussi noté \overline{A})

Intuition. Adherent aide à completer des ensembles. Si A est ouvert, alors ses bords n'appartiennent pas à A, mais ils appartiennent à Adh(A).

Figure 2.7: Adhérent

Proposition 2.22. Adh(A) est le plus petit fermé qui contient A (l'intérsection de tous les fermés qui contiennent A)

Proof. 1. $A \subset Adh(A)$ clair

2. Adh(A) est fermé?

On montre que $E \setminus Adh(A)$ est ouvert.

 $x_0 \in Adh(A) \Leftrightarrow \forall \delta > 0, \ B(x_0, \delta) \cap A \neq \emptyset$

 $x_0\not\in Adh(A) \Leftrightarrow \exists \delta_0>0 \text{ tq } B(x_0,\delta_0)\cap A=\emptyset \Leftrightarrow \exists \delta_0>0 \text{ tq } B(x_0,\delta_0)\subset E\setminus A \Leftrightarrow x_0\in Int(E\setminus A)$

Alors:

$$E \setminus Adh(A) = Int(E \setminus A)$$
$$Adh(A) = (Int(\underbrace{A^{c}}_{=E \setminus A}))^{c}$$

13

Definition 2.23. Soit $A \subset B$. On dit que A est dense dans B si $B \subset Adh(A)$ Soit $x_0 \in B$, $\forall \varepsilon > 0 \, \exists x_\varepsilon \in A$ tel que $d(x_0, x_\varepsilon) < \varepsilon$

Example 2.24.

$$\mathbb{Q}^2 = \{(x, y) : x, y \in \mathbb{Q}\} \text{ dense dans } \mathbb{R}^2$$

2.6.3 Frontière

Definition 2.25. Soit $A \subset E$. La frontière de A (ou le bord de A) noté Fr(A) ou ∂A c'est:

$$Adh(A) \cap Adh(E \setminus A)$$

Example 2.26. dans \mathbb{R}

1. $Int(\mathbb{Q}) = \emptyset$

- 2. $Int(\mathbb{R} \setminus \mathbb{Q}) = \emptyset$
- 3. $Adh(\mathbb{Q}) = \mathbb{R}$
- 4. $Adh(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
- 5. $Fr(\mathbb{Q}) = \mathbb{R}$
- 6. $Fr(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$

Example 2.27. $E = \{a, b, c\}$ On pose:

- d(a,a) = d(b,b) = d(c,c) = 0
- d(a,b) = d(b,a) = d(b,c) = d(b,c) = 1
- d(a,c) = d(c,a) = 2

$$B(a,2) = \{a,b\} = Adh(B(a,2))$$

 $B_f(a,2) = \{a,b,c\}$

Proposition 2.28. 1. $Int(A) \subset A \subset Adh(A)$

- 2. $E = Int(E \setminus A) \cup Fr(A) \cup Int(A)$ (union disjointe)
- 3. $E \setminus Int(A) = Adh(E \setminus A)$
- 4. $E \setminus Adh(A) = Int(E \setminus A)$
- 5. $Fr(A) = Adh(A) \setminus Int(A)$

Proposition 2.29. 1. A ouvert $\Leftrightarrow A = Int(A)$

- 2. A fermé $\Leftrightarrow A = Adh(A)$
- 3. $x \in Adh(A) \Leftrightarrow d(x, A) = 0$
- 4. $x \in Int(A) \Leftrightarrow d(x, E \setminus A) > 0$

2.7 Suite dans un éspace métrique

Definition 2.30. E un ensemble. Une suite dans E: notée $(u_n)_{n\in\mathbb{N}}$ c'est une fonction $u:\mathbb{N}\to E$ où u(n) est noté u_n est le le n^{ième} terme de la suite $(u_n)_{n\in\mathbb{N}}$.

Si
$$E = \mathbb{R}^d$$

$$\mathbb{R}^d \ni X_n = (x_{1,n}, \dots, x_{d,n})$$

où $(x_{i,n})_{n\in\mathbb{N}}$ suites dans \mathbb{R}

Definition 2.31. Soit (x_n) une suite dans E et $x \in E$. On dit que $\lim_{n\to\infty} x_n = x$ si $\lim_{n\to\infty} d(x_n, x) = 0$. $(\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tq si } n \geq N, d(x_n, x) < \varepsilon)$

Proposition 2.32. $(x_n)_{n\in\mathbb{N}}$ est bornée si $\{x_n:n\in\mathbb{N}\}(\subset E)$ est un ensemble borné.

Remark 2.33. dans \mathbb{R}^d muni de d_2 (distance euclidienne)

$$X_n = (x_{1,n}, \dots, x_{d,n})$$

$$X = (x_1, \dots, x_d)$$

$$\lim_{n \to \infty} X_n = X \Leftrightarrow \lim_{n \to \infty} x_{i,n} = x_i \quad (1 \le i \le d)$$

Proposition 2.34. la limite d'une suite convergente est unique.

Proof.

Si
$$X_n \xrightarrow[n \to \infty]{} X$$
 et $X_n \xrightarrow[n \to \infty]{} X'$

$$d(X, X') \leq \underbrace{d(X, X_n)}_{\to 0} + \underbrace{d(X_n, X')}_{\to 0} \Rightarrow d(X, X') = 0 \Rightarrow X = X'$$

Proposition 2.35. (lien aven l'adhérence)

- 1. $x \in Adh(A)$ si et seulement s'il existe une suite (x_n) d'éléments de A telle que $\lim_{n\to\infty} x_n = x$
- 2. A est fermé ssi pour toute suite (x_n) d'éléments de A qui converge vers $x \in E$ on a $x \in A$

Intuition. 1. Si $(x_n)_{n\in\mathbb{N}}$ est d'éléments de A ($\forall n\in\mathbb{N}, x_n\in A$), donc elle converge vers un éléments x qui peut être soit dans A, soit à la borne des éléments de A, alors à la frontière.

2. Si la limite de toute suite $(x_n)_{n\in\mathbb{N}}$ des éléments de A est aussi dans A, alors la frontière de A est inclu dans A. Car l'une des suites tend vers la borne.

Proof. de Prop. 2.35

1. (\Leftarrow) Soit (x_n) avec $x_n \in A \quad \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} x_n = x$. J'ai $d(x_n, x) \xrightarrow[n \to \infty]{} 0$ et $x_n \in A$, donc

$$inf_{y \in A}(d(x,y)) = 0 = d(x,A)$$

$$d(x, A) = 0 \Leftrightarrow x \in Adh(A)$$

 (\Rightarrow) Soit $x \in Adh(A)$

$$\Leftrightarrow d(x,A) = 0$$

$$\Leftrightarrow \forall \varepsilon > 0, \ \exists x_\varepsilon \in A \text{ tel que } d(x,x_\varepsilon) < \varepsilon$$

Prendre $\varepsilon = \frac{1}{n}$, je pose $u_n = x_{\frac{1}{n}}$. $u_n \in A$ $d(x, u_n) < \frac{1}{n}$, donc $\lim_{n \to \infty} u_n = x$

2. (\Rightarrow) Soit A fermé, donc

$$A = Adh(A)$$

Si (x_n) suite dans A qui converge vers x.

$$x \in Adh(A) = A$$

 (\Leftarrow) On dit que $Adh(A) \subset A$. Comme $A \subset Adh(A)$, donc A = Adh(A)

2.8 Suites de Cauchy

Definition 2.36. $(x_n)_{n\in\mathbb{N}}$ suite dans E est de Cauchy si:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \in \mathbb{N} \text{ tel que } \forall n, p \geq N(\varepsilon), d(x_n, x_p) \leq \varepsilon$$

Intuition. Une suite de Cauchy c'est comme on mesure un point et on le localise, i.e:

- 1. On dit qu'il est entre 0 et 1.
- 2. Ensuite, on precise plus et on dit qu'il est entre 0.5 et 0.6.
- 3. Puis, entre 0.55 et 0.56

On peut infiniment augmenter le niveau de précision. C'est ça l'idée d'une suite de Cauchy.

Proposition 2.37. 1. Toute suite de Cauchy est bornée.

2. Toute suite convergente est de Cauchy

Proof. 1. voir poly

- 2. Soit (x_n) une suite avec $\lim_{n\to\infty} x_n = x$ avec $x\in E$.
 - Hyp: $\frac{\varepsilon}{2} > 0 \,\exists N(\frac{\varepsilon}{2}) \in \mathbb{N} \text{ tel que } \forall n \geq N(\frac{\varepsilon}{2}), d(x_n, x) \leq \varepsilon/2$
 - À montrer: $\varepsilon > 0 \,\exists M(\varepsilon) \in \mathbb{N}$ tel que $\forall n, p \geq M(\varepsilon), d(x_n, x_p) \leq \varepsilon$

$$d(x_n, x_p) < d(x_n, x) + d(x, x_p) \text{ si } n, p \ge N(\frac{\varepsilon}{2}) d(x_n, x_p) \le 2\frac{\varepsilon}{2} = \varepsilon$$

Definition 2.38. (E,d) est complet si toute suite de cauchy dans E est convergente.

Definition 2.39. Un éspace métrique (E,d) est **complet** si toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E converge vers une limite x qui appartient aussi à E.

Example 2.40. Un éspace métrique (]0,1],d) avec d une distance euclidienne n'est pas complet, car soit une suite: $x_n = \frac{1}{n}$ dont la limite est 0. Par contre, $0 \notin]0,1]$. Donc cet éspace n'est pas complet.

Figure 2.8: ([0,1],d) n'est pas complet

Example 2.41. Un éspace (\mathbb{Q}, d) n'est pas complet. Car on peut prendre une suite x_n tendant vers $\sqrt{2} \notin \mathbb{Q}$.

Figure 2.9: \mathbb{Q} pas complet

Proposition 2.42. \mathbb{R}^d muni de la distance usuelle est complet.

Proof.

$$X_n = (x_{1,n}, \dots, x_{d,n})$$

 $|x_i - y_i| \le d(X, Y) = ||X - Y||_2 \quad \forall 1 \le i \le d$

les suites réelles $(x_{i,n})_{n\in\mathbb{N}}$ sont de Cauchy si (X_n) est de Cauchy.

Property. \mathbb{R} est complet

Proof. (Suit de la propriété de la borne supérieure)

Il existe $x_i \in \mathbb{R}$ avec $1 \le i \le d$ tels que $|x_{i,n} - x_i| \xrightarrow[n \to \infty]{} 0$

$$d(X,Y) \le \sqrt{d} \max_{1 \le i \le d} |x_i - y_i|$$

donc
$$X_n \xrightarrow[n\to\infty]{} X$$
, $X = (x_1, \dots, x_d)$

2.9 Sous-suites

Definition 2.43. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans E. Une suite

$$(y_n)_{n\in\mathbb{N}}$$
 avec $y_n=x_{\phi(n)}$

où $\phi: \mathbb{N} \to \mathbb{N}$ est <u>strictement croissante</u> est appelée **sous-suite** de la suite (x_n) .

Example 2.44. Soit une application $\phi : \mathbb{N} \to \mathbb{N}$ telle que $\phi(n) = 2n$. Donc $(x_n)_{\phi(n)}$ est une sous-suite de $(x_n)_{n \in \mathbb{N}}$ et:

$$(x_n)_{\phi(n)} = \{x_0, x_2, x_4, \ldots\}$$

Proposition 2.45. 1. Toute sous-suite d'une suite convergente converge vers la limite de cette suite.

Cela signifie que, $\forall (x_n)_{n\in\mathbb{N}}$ tq $\exists x\in E, \lim_{n\to\infty} x_n=x$

$$\forall \phi: \mathbb{N} \to \mathbb{N}$$
 strictement croissante, $\lim_{n \to \infty} x_{\phi(n)} = x$

2. Si (x_n) est de Cauchy et admet une sous-suite qui converge vers X, alors (x_n) converge vers x.

Proof. 1. Soit (x_n) avec $\lim x_n = x$

$$\forall \varepsilon > 0 \,\exists M(\varepsilon) \text{ tq si } n > N(\varepsilon), d(x_n, x) < \varepsilon$$

Soit $y_n = x_{\phi(n)}$ une sous-suite.

• <u>But:</u> Soit $\varepsilon > 0$, trouver $N(\varepsilon)$ tq si $n \ge N(\varepsilon)$, $d(\underbrace{y_n}_{:=x_{\phi(n)}}, x) \le \varepsilon$

Je choisis $N(\varepsilon)$ tel que si $n \geq N(\varepsilon)$ alors $\phi(n) \geq M(\varepsilon)$, donc $d(y_n, x)d(x_{\phi(n)}, x) \leq \varepsilon$. C'est possible car $\phi(n) \xrightarrow[n \to \infty]{} \infty$, $N(\varepsilon) = M(\varepsilon)$

- 2. Hyp1: $\forall \varepsilon > 0 \exists M(\varepsilon) \text{ tq si } n, p \geq M(\varepsilon) \ d(x_n, x_p) \leq \varepsilon$
 - Hyp2: $\forall \varepsilon > 0 \,\exists P(\varepsilon) \text{ tq si } p \geq P(\varepsilon), d(y_p, x) \leq \varepsilon, d(y_p, x) = d(x_{\phi(p)}, x)$

$$d(x_n, x) \leq d(x_n, x_{\phi(p)}) + d(x_{\phi(p)}, x)$$
 par l'inégalité triangulaire

$$d(x_n, x_{\phi(p)}) \le \varepsilon \text{ si } n \ge M(\varepsilon) \text{ et } \phi(p) \ge M(\varepsilon)$$

$$d(x_{\phi(p)}, x) \le \varepsilon \text{ si } p \ge P(\varepsilon)$$

Si $n \geq M(\varepsilon)$, je choisis p tel que $\phi(p) \geq M(\varepsilon)$ et $p \geq P(\varepsilon)$. Je fixe ce p!

si
$$n \ge M(\varepsilon)$$
 alors $d(x_n, x) \le 2\varepsilon$

2.10 Procédé de construction de l'intérieur et l'adhérence

J'ai $A \subset \mathbb{R}$ ou \mathbb{R}^2 (ou \mathbb{R}^3). Je dois trouver Int(A) et Adh(A)

- 1. Je dessine A sur une feuille
- 2. Je pense que Int(A) = C (C dit être inclu dans A!)
 - (a) Je montre que <u>C est ouvert</u> (facile), donc

$$C\subset Int(A)$$

car Int(A) est le plus grand ouvert inclu dans A.

- (b) Je montre que $Int(A) \subset C$, i.e je montre que les points dans A mais pas dans C ne sont pas dans Int(A): je prends $X \in A, X \notin C$, je montre que $X \notin Int(A)$ Je construit une suite (X_n) avec $X_n \notin A$ mais $X_n \to X$.
- 3. Je pense que Adh(A) = B (il faut que $A \subset B$)
 - (a) Je montre que B est fermé (facile)

donc
$$Adh(A) \subset B$$

18

(b) On montre que $B \subset Adh(A)$: On fixe $X \in B$, on cherche une suite (X_n) avec $X_n \in A$ et $X_n \xrightarrow[n \to \infty]{} X$. On regarde seulement les $X \in B, X \notin A$

Example 2.46.

$$A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y \le 4, x \ne y\}$$

Figure 2.10: Exemple de l'intérieur

.

- Je dévine que $Int(A) = C = \{(x, y) \mid 2x + 3y < 4, x \neq y\}$
- Convect: $\{(x,y) \mid 2x + 3y < 4, x < y\} \cup \{(x,y) \mid 2x + 3y < 4, x > y\}$

Je construit une suite (X_n) avec $X_n \not\in A$ mais $X_n \to X$. Soit $X \in A, X \not\in C, X = (x,y)$ donc: 2x + 3y = 4 $x \neq y$

$$X_n = (x, y + \frac{1}{n})$$

$$2x_n + 3y_n = 2x + 3y + \frac{3}{n} = 4 + \frac{3}{n} > 4$$

$$X_n \not\in A \text{ mais } X_n \to X$$

Example 2.47.

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = x^{-1}\}\$$

 $Int(A) = \emptyset$? $C = \emptyset$

Figure 2.11: Exemple de l'intérieur de l'hyperbole

 $\emptyset \text{ ouvert, donc } C \subset Int(A)$ Soit $X \in A$ $X \not\in C$, donc $X \in A$.

$$X_n := (x, y + \frac{1}{n}) \quad X_n \notin A$$

$$x_n y_n = xy + \frac{x}{n} = 1 + \frac{x}{n} \neq 1$$

$$X_n \xrightarrow[n \to \infty]{} X \text{ donc } X \notin Int(A)$$

$$Int(A) = \emptyset$$

Example 2.48.

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = x^{-1}\}\$$

Adh(A) = ?

Je pense que Adh(A) = A (B = A). Il suffit de montrer que A <u>est fermé</u>.

$$x > 0$$
 $y \le \frac{1}{x}$ $y \ge \frac{1}{x}$

Si $X_n = (x_n, y_n)$ $X_n \in A$ et $X_n \to X$, alors $X \in A$

$$X = (x, y) \quad \begin{array}{ccc} x_n \to x & x_n \to x \\ y_n \to y & \frac{1}{x_n} \to y \end{array} \quad (x_n > 0)$$

donc x > 0 et $y = \frac{1}{x}$ donc $X \in A$

A est fermé

Example 2.49.

$$A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y \le 4, x \ne y\}$$

Figure 2.12: example-adherence

.

- 1. B est fermé (facile), donc $Adh(A) \subset B$
- 2. Soit $X \in B$. On montre que $X \in Adh(A)$ (on cherche $X_n \in A$ avec $X_n \to X$) Je regarde juste $X \in B, X \not\in A$

$$X_n = (x_n, y_n) \in A \quad x_n \to x \text{ et } y_n \to y$$

$$x_n = x + \frac{1}{n}, y_n = y = x$$

$$X_n \to X \text{ et } 2x_n + 3y_n = 2x + 3y - \frac{2}{n} \le 4etx_n \ne y_n$$

donc $X_n \in A$

Example 2.50.

$$\begin{split} A &= \{(x,y) \mid |x| \leq 1, |y| < 1\} \\ Int(A) &= \{(x,y) \mid |x| < 1, |y| < 1\} \\ Adh(A) &= \{(x,y) \mid |x| \leq 1, |y| \leq 1\} \end{split}$$

Example 2.51.

$$A = \{(x, y) \mid x > 0, y = \sin(\frac{1}{n})\}\$$

$$Adh(A) = A \cup \{(0,y) \mid -1 \leq y \leq 1\} \ Int(A) =$$

2.11 Compacité

Definition 2.52. Soit $F \subset E$. Un **recouvrement ouvert** de F, est une union des enesembles ouverts: $\bigcup_{i \in I} U_i$ tel que $F \subset \bigcup_{i \in I} U_i$

Example 2.53. Soit F =]0,1[. Soit $A = \{]\frac{1}{n}, 1 + \frac{1}{n}[, n \in N\}$. $F \subset \bigcup_{n \in N^*} A_n$ i.e union infinie des A_i couvre F.

Definition 2.54. Un ensemble $F \subset E$ est **compact** si <u>pour tout</u> recouvrement ouvert, i.e <u>pour tout</u> union des ensembles ouvert $\bigcup_{i \in I} U_i$ qui couvre F, on peut prendre un nombre <u>fini</u> des U_i et couvrir F.

Theorem 2.55. Un ensemble $K \subset E$ est compact, si toute suite $(x_n)_{n \in \mathbb{N}}$ des éléments de K, possede une sous-suite qui converge vers un éléments $x \in K$.

Intuition. S'il existe tel suite $(x_n)_{n\in\mathbb{N}}$ sans sous-suite convergente vers un éléments de K, donc les valeurs sont en-dehors de K et donc il existe un ensemble qui couvre K seulement avec un nombre infini des ensembles.

Pourquoi a-t-on besoin de compacité? Car cela nous donne une

Proposition 2.56. • Si $K \subset E$ est compact, alors K est fermé et borné.

- Si K est compact et F est fermé, donc $K \cap F$ est compact. Autrement dire, si K est compact, alors tout fermé $F \subset K$ est compact.
- ullet Si K est compact, donc K est complet.

Property. La différence entre *compacité* et complecité:

- complecité nous assure qu'il n'y a pas de trou dans un espace
- compacité nous assure qu'un ensemble est fermé et borné

2.12 Limites et applications continues

Definition 2.57. Soit (E_1, d_1) et (E_2, d_2) deux éspaces métriques, $x_0 \in E_1$, $l \in E_2$ et $F : E_1 \to E_2$ une application.

- 1. On dit que $\lim_{x\to x_0} F(x) = l$ si pour tout $\varepsilon > 0$, $\exists \alpha > 0$ tel que pour tout $x \in E_1$ tel que $d_1(x_0, x) \le \alpha$ on a $d_2(f(x), l) \le \varepsilon$
- 2. On dit que F est continue en x_0 si $\lim_{x\to x_0} f(x) = f(x_0)$
- 3. On dit que F est continue si F est continue en tout $x \in E_1$

Proposition 2.58. definition de la continuité topologique.

Soit (E_1, d_1) et (E_2, d_2) deux éspaces métriques et la fonction $F: E_1 \to E_2$, on dit que F est continue si et seulement si:

$$\forall U \subset E_2 \text{ ouvert}, F^{-1}(U) \text{ ouvert}$$

où
$$F^{-1}(U) = \{ x \in E_1 \mid F(x) \in U \}$$

Figure 2.13: continuite-topologique

Proof. de la proposition-définition 2.58

1. Montrons que F continue \Rightarrow si U ouvert donc $F^{-1}(U)$ ouvert. Supposons que F continue. Soit $y \in U$, alors $\exists x_0 \in F^{-1}(U)$ tel que $F(x_0) = y$, comme F est continue, donc:

$$\forall \varepsilon > 0, \exists \alpha > 0 \text{ tq } \forall x \in E_1 \text{ tq } d(x_0, x) < \alpha \Rightarrow d(y = F(x_0), x) < \varepsilon$$

Or U est ouvert, alors pour y, il existe ε tq $B(y,\varepsilon)\subset U$, comme F continue, il existe α , tq $\forall x\in B(x_0,\alpha),\,y\in B(y,\varepsilon)\subset U$. Alors, on a montré que $\forall x\in F^{-1}(U),\,\exists \alpha$ tq $B(x,\alpha)\subset F^{-1}(U)$, donc $F^{-1}(U)$ est ouvert.

2. Montrons que F continue \Leftarrow si U ouvert donc $F^{-1}(U)$ ouvert. Supposons que $\forall U$ ouvert $\subset E_2$, $F^{-1}(U)$ est ouvert.

Soit $y \in U$ et $\varepsilon > 0$, posons: $U := B(y, \varepsilon)$ ouvert $\subset E_2$ donc $F^{-1}(U)$ ouvert, d'où $\forall x \in F^{-1}(U) \exists \alpha > 0$ tq $B(x, \alpha) \subset F^{-1}(U)$. Par la définition de la boule ouverte, on a:

$$\forall y := f(x_0), \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in E_1 \text{ tq } d(x_0, x) < \alpha, d(f(x), y = f(x_0)) < \varepsilon$$

Example 2.59. résultat de cette proposition. Prenons la fonction: $f(x) = x^2$. $f^{-1}(]4, 9[) = \{x \in \mathbb{R} \mid 4 < x^2 < 9\} =]-3, -2[\cup]2, 3[$. Autrement dire, la continuité de f (évident) donne que U =]4, 9[ouvert, alors $f^{-1}(U)$ aussi ouvert.

Proposition 2.60. Si F est continue \Leftrightarrow tout U fermé donne $F^{-1}(U)$ aussi fermé

Proof. La preuve est identique à celui de la proposition 2.58 quand on passe au complémentaire $E_2 \setminus U$. \square

Proposition 2.61. F est continue si et seulement si $\forall (x_n)_{n\in\mathbb{N}}$ avec $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} F(x_n) = F(x)$

Bibliography

- [1] Christian Gérard. Analyse et Géométrie (OLMA251). fre.
- [2] Christian Gérard. Cours Magistral d'Analyse et Géométrie (OLMA251) à l'Université Paris-Saclay. 2024-2025.