# Devoir en temps libre n°4

## Partie I. Cinétique de la formation d'un complexe

### Information sur la spectrophotométrie :

La spectrophotométrie mesure l'absorbance A d'une solution dans une cuve de longueur L: la lumière arrive sur la cuve avec une intensité  $I_0$  et ressort avec une intensité  $I < I_0$ .



Par définition,

$$A = log\left(\frac{I_0}{I}\right)$$

L'absorbance est reliée à la composition de la solution (loi de Beer-Lambert) :

$$A = \sum_{i} L. \, \varepsilon_{i}. \, C_{i}$$

avec i les constituants absorbant la lumière utilisée :

- C<sub>i</sub> est la concentration du constituant i
- $\varepsilon_i$  est une constante pour le constituant i (coefficient d'extinction molaire)

On étudie la cinétique de la réaction suivante :

$$Cr(H_2O)_6^{3+} + H_2Y^{2-} = Cr(HY)H_2O + H_3O^+ + 4H_2O$$

La vitesse de la réaction peut s'écrire :

$$v = -\frac{d[Cr(H_2O)_6^{3+}]}{dt} = k.[Cr(H_2O)_6^{3+}]^{\alpha}.[H_2Y^{2-}]^{\beta}.[H_3O^+]^{\chi}$$

Pour la curiosité: H<sub>2</sub>Y<sub>2</sub><sup>-</sup> est le ligand EDTA avec 2 H<sup>+</sup>

La cinétique est suivie par spectrophotométrie en mesurant l'absorbance A de la solution au cours du temps. Pour la lumière choisie,  $Cr(H_2O)_6^{3+}$  et  $Cr(HY)H_2O$  sont les seules espèces qui absorbent avec des coefficients d'extinction molaire  $\varepsilon_1$  pour  $Cr(H_2O)_6^{3+}$  et  $\varepsilon_2$  pour  $Cr(HY)H_2O$ :

$$A = L.(\varepsilon_1.[Cr(H_2O)_6^{3+}] + \varepsilon_2.[Cr(HY)H_2O])$$

1. La première expérience est réalisée dans une solution tampon de pH = 5 en prenant comme concentrations initiales :  $[Cr(H_2O)_6^{3+}]_0 = a = 3,0.10^{-3} \text{ mol.L}^{-1}$  et  $[H_2Y^{2-}]_0 = b = 0,30 \text{ mol.L}^{-1}$ .

| t (min) | 0     | 5     | 10    | 25    | 40    | 60    | ∞     |
|---------|-------|-------|-------|-------|-------|-------|-------|
| A       | 0,056 | 0,220 | 0,360 | 0,660 | 0,830 | 0,960 | 1,080 |

- 1.1 En écrivant  $x = [Cr(HY)H_2O]$  pour la date t, exprimer l'absorbance  $A_t$  de la solution à la date t en fonction de x, a,  $\varepsilon_1$ ,  $\varepsilon_2$  et L longueur de la cuve. Exprimer l'absorbance  $A_0$  de la solution initiale et l'absorbance  $A_{\infty}$  obtenue quand la réaction est considérée terminée.
- 1.2 Montrer que si  $\alpha = 1$ ,  $f(t) = \ln \frac{A_{\infty} A_{\tau}}{A_{\infty} A_{0}}$  est une droite en théorie.
- 1.3 Vérifier que  $\alpha = 1$  avec les valeurs de l'expérience.
- 1.4 Donner la valeur de la constante apparente de vitesse  $k_{app}$  à pH = 5.
- 2. D'autres expériences ont été réalisées en modifiant le pH et la concentration initiale b. La concentration initiale a reste égale à  $3,0.10^{-3}$  mol.L<sup>-1</sup>. Dans chaque cas, on a déterminé la valeur de la constante apparente de vitesse  $k_{app}$ .

| Expérience                   | 2     | 3     | 4     | 5     |
|------------------------------|-------|-------|-------|-------|
| pН                           | 4,6   | 5,2   | 5,2   | 4,8   |
| $b = [H_2Y^{2-}]_0$          | 0,300 | 0,300 | 0,150 | 0,150 |
| $k_{app}  (\text{min}^{-1})$ | 0,014 | 0,057 | 0,028 | 0,011 |

Déterminer  $\beta$ ,  $\chi$  et la constante k de la réaction.

### Partie II. Cinétique de décomposition de l'arsine

La décomposition de l'arsine AsH3 en arsenic As et dihydrogène H2 s'écrit :

$$AsH_{3(g)} = As_{(s)} + \frac{3}{2}H_{2(g)}$$

Cette réaction est d'ordre 1 par rapport à l'arsine. On note k sa constante de vitesse. On étudie un réacteur fermé de volume constant contenant initialement uniquement de l'arsine à la pression  $P_0$ . La température du réacteur est maintenue constante au cours de la réaction. On supposera que les gaz ont un comportement de gaz parfaits.

- 1. Déterminer l'expression théorique de la pression partielle en arsine  $P(AsH_3)$  en fonction du temps t, de k et de  $P_0$ .
- 2. En déduire l'expression théorique de la pression totale du système P en fonction de  $P_0$ , de k et du temps t. Vers quelle valeur tend la pression totale du système lorsque le temps tend vers l'infini ?
- 3. Expliquer comment on peut évaluer la constante k à partir de mesures expérimentales de la pression totale P en fonction du temps t?

## Partie III. Décomposition de l'eau oxygénée

On s'intéresse dans ce problème à la réaction de décomposition spontanée du peroxyde d'hydrogène en solution aqueuse, selon l'équation :

$$H_2O_{2(aq)} = \frac{1}{2} O_{2(g)} + H_2O_{(\ell)}$$
 constante d'équilibre  $K^{\circ} = 2.10^{18}$ 

La réaction est menée dans une éprouvette munie d'un piston mobile, pouvant coulisser librement, ce qui permet de maintenir la pression à la valeur constante  $P = P^{\circ} = 1,000$  bar. La température est fixée à T = 293 K. Les gaz seront considérés comme parfaits.

#### Données :

Point triple de l'eau :  $T_T = 0.01$  °C ;  $P_T = 611$  Pa Point critique de l'eau :  $T_C = 374$  °C ;  $P_C = 22$  MPa

Masse molaire de l'eau :  $M_{\text{eau}} = 18,0 \text{ g.mol}^{-1}$ 

L'air sera modélisé comme un mélange de dioxygène et de diazote, aux fractions molaires respectives  $x_{02} = 0.20$  et  $x_{N2} = 0.80$ .

La constante des gaz parfaits vaut :  $R = 8,31 \text{ J.mol}^{-1}.\text{K}^{-1}$ .



Schéma: Situation initiale de l'éprouvette

### A) Évaporation de l'eau dans l'éprouvette

- **Q1**. Donner l'allure du diagramme de phases (T,P) de l'eau, y placer le point triple T, le point critique C, le point de fusion F et le point d'ébullition E.
- **Q2**. Dans l'industrie, l'eau n'est pas utilisée couramment dans son état supercritique. Est-ce parce qu'il n'y a pas d'applications utiles envisageables ? Y a-t-il d'autres raisons ?
- Q3. Qu'appelle-t-on « pression de vapeur de l'eau à 293 K » ? Parmi les trois valeurs suivantes, retrouver celle qui correspond à cette pression de vapeur : 588 Pa ; 23,4 mbar ; 1,74 bar ? Expliquer.
- **Q4**. Écrire l'équation de la réaction d'évaporation de l'eau dans l'éprouvette. Déterminer la valeur de la constante d'équilibre  $K^{\circ}_{vap}$  de cette réaction.

On introduit 10 mL d'eau pure dans l'éprouvette, l'eau étant surmontée de 30 mL d'air sec. Le piston mobile est alors sur la graduation « 40 mL » (voir schéma).

- Q5. Montrer que de l'eau doit nécessairement commencer à s'évaporer.
- **Q6**. Dans l'hypothèse où l'air est saturé de vapeur d'eau dans l'état final et sachant que la pression dans l'enceinte est constante et égale à P° = 1,000 bar à cause du piston mobile, déterminer la pression partielle de l'air dans l'état final. En déduire le nouveau volume de la phase gazeuse.
- Q7. Vérifier alors l'hypothèse que l'air est bien saturé de vapeur d'eau dans l'état final.

Étant donné la faible quantité relative d'eau qui s'évapore, on négligera tout phénomène d'évaporation d'eau par **la suite**.

### B) Décomposition de l'eau oxygénée, étude thermodynamique

On vide l'éprouvette de l'expérience précédente, on la sèche, puis on introduit 10 mL d'une solution aqueuse de peroxyde d'hydrogène  $H_2O_2$  de concentration  $C_0 = 1,200$  mol.L<sup>-1</sup>. Cette solution est surmontée de 30 mL d'air (schéma de la situation initiale identique à l'expérience précédente).

- **Q8**. Au vu de la valeur de la constante d'équilibre, quelle hypothèse raisonnable peut-on formuler quant à l'avancement final de la réaction de décomposition de H<sub>2</sub>O<sub>2</sub>?
- **Q9**. Décrire le système à l'état final : composition de la phase gazeuse et de la phase liquide, nouvelle position du piston.

Rappel : on néglige tout phénomène d'évaporation de l'eau.

### C) Décomposition de l'eau oxygénée, étude cinétique

On se replace dans la situation initiale de l'expérience précédente, puis on suit l'évolution de la concentration de H<sub>2</sub>O<sub>2</sub> dans la solution au cours du temps. Les résultats sont consignés dans le tableau ci-dessous :

| temps / h <sup>-1</sup>                                | 0     | 0,5   | 1     | 2     | 4     | 8     |
|--------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| [H <sub>2</sub> O <sub>2</sub> ] / mol.L <sup>-1</sup> | 1,200 | 0,952 | 0,755 | 0,474 | 0,188 | 0,029 |
| v / mol.L <sup>-1</sup> .h <sup>-1</sup>               | 0,577 | 0,442 | 0,350 | 0,221 | 0,089 | 0,016 |

- Q10. Ecrire les définitions de la vitesse de formation de O<sub>2</sub> et de la vitesse de réaction. Établir que, si la réaction de décomposition de H<sub>2</sub>O<sub>2</sub> a un ordre, alors la loi de vitesse.
- **Q11**. Déterminer l'ordre de la réaction et sa constante de vitesse *k*. Est-ce que la réaction est d'accord la loi de vitesse de van't Hoff?

On modifie seulement la température de la réaction de décomposition de H<sub>2</sub>O<sub>2</sub>. Les autres deux expériences sont réalisées et ces vitesses initiales détectées et celle précédente sont comparées dans le tableau :

| N°           | Température | Rapport de vitesse initiale |  |  |
|--------------|-------------|-----------------------------|--|--|
| d'expérience | (K)         | $v_{n,init.}/v_{1,init.}$   |  |  |
| 1            | 293         | 1,0                         |  |  |
| 2            | 298         | 1,7                         |  |  |
| 3            | 303         | 2,8                         |  |  |

- Q12. Ecrire l'expression de la loi d'Arrhénius. Préciser les signifiants et l'unités pour chaque grandeur physique.
- Q13. Calculer l'énergie d'activation.