Prof. Fabián Barrera Prieto (MSc) Electiva de Robótica – Universidad ECCI

Como actividad introductoria y opcional, pueden realizar alguno de los cursos gratuitos de Python en los links:

https://www.freecodecamp.org/learn/scientific-computing-with-python/https://www.freecodecamp.org/learn/data-analysis-with-python/https://www.freecodecamp.org/learn/machine-learning-with-python/

Taller 1 – Python (código)

A. Sin interacción de consola

- 1. Realice un programa que sume, reste, multiplique (producto punto y producto cruz) y divida dos vectores previamente inicializados.
- 2. Realice un programa que sume, reste, multiplique (producto punto y producto cruz) y divida dos matrices previamente inicializadas.
- 3. Realice un programa que convierta coordenadas rectangulares a cilíndricas y esféricas, para lo cual deben consultar sobre el uso de funciones trigonométricas en Python.
- 4. Realice un programa para el cálculo de la resistencia de una RTD de platino (PT100) en función de la temperatura.
- 5. Realice en funciones las rotaciones en X, Y y Z, donde se tenga un parámetro de entrada (ángulo) y un parámetro de salida (matriz).
- 6. Realice un programa que calcule la fuerza de avance y retroceso de un cilindro neumático de doble efecto. Debe establecer previamente los valores de presión, así como las dimensiones físicas del cilindro para realizar el cálculo.

B. Con interacción de consola (fprintf o disp) y teclado (input)

- 1. Realice un programa que calcule la potencia que consume un circuito ingresando por teclado el valor de corriente y voltaje.
- 2. Realice un programa que calcule X números aleatorios en un rango determinado por el usuario.
- 3. Realice un programa para el cálculo de volúmenes (Prisma, Pirámide, Cono truncado, Cilindro) donde el usuario pueda seleccionar el sólido y los parámetros de cada volumen.
- 4. Realice un programa que le permita al usuario escoger entre robot Cilíndrico, Cartesiano y esférico, donde como respuesta a la selección conteste con el tipo y número de articulaciones que posee.
- 5. Escribir un programa que realice la pregunta ¿Desea continuar Si/No? y que no deje de hacerla hasta que el usuario teclee No.

C. Uso de las funciones para graficar

- 1. Realice un programa que grafique el comportamiento de un sensor PT100 desde -200°C a 200°C.
- 2. Realice un programa que le permita al usuario ingresar los coeficientes de una función de transferencia de segundo orden y graficar su comportamiento, además se debe mostrar que tipo de sistema es: subamortiguado, criticamente amortiguado y sobreamortiguado.
- 3. Implemente la ecuación de carga y descarga para un circuito RC. El usuario ingresa por teclado el valor de voltaje (V), capacitancia (μF) y resistencia (Ω). Posteriormente realice en Python la gráfica.
- 4. Consulte y elabore un sistema coordenado X, Y y Z donde se dibuje un vector con coordenadas ingresadas por el usuario.
- 5. Dibuje el nombre de cada uno de los integrantes del grupo en un plot en 2D, teniendo en cuenta líneas rectas y/o curvas.

Prof. Fabián Barrera Prieto (MSc) Electiva de Robótica – Universidad ECCI

6. Obtenga las coordenadas X y Y de los contornos de dos logos de automóviles (Chevrolet, Hyundai, Mazda, etc.), a través de Python.