QUÍMICA

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS Com massas atômicas referidas ao isótopo 12 do Carbono

1_																	18
1 H 1,01	2											13	14	15	16	17	? He
3 Li 6.94	4 Be											B 16,8	6 C 12,0	7 N 14,0	S O 16.0	9 F 19.6	10 Ne 20.2
11 Na 23.0	12 Mg 24.3	3	4	5	6	7	8	9	10	11	12	13 Al 27.0	14 Si 28.1	15 P 31,0	16 S 32.1	17 CI 35,8	18 Ar 39.9
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54,9	26 Fe 55.\$	27 Co 58.9	28 Ni 88.7	29 CU 63.5	30 Zn 65.4	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 96.6	38 Sr 57.7	39 Y 58.9	10 Zr 91.2	41 Nb 92,9	42 Mo 95.9	43 Tc (98)	44 Ru 101	45 Rh	46 Pd 106	47 Ag 168	48 Cd 112	49 In 115	50 Sn	51 Sb	52 Te 128	53 127	54 Xe 131
55 Cs 133	66 Ba	57-71 Série dos Lantani <mark>dios</mark>	72 Hf 178	73 Ta 151	74 W 184	75 Re	76 Os 190	77 r 192	78 Pt 195	79 Au 197	30 Hg	81 TI 204	Pb 207	83 Bi 209	\$4 Po (209)	35 At	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-163 Serie dos Actinidios	194 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (269)	DS (271)	111 Rg (272)	112 Cn (285)	113 Nh (196)	114 FI (289)	115 MC (289)	116 LV (293)	117 Ts (294)	118 Og (294)
			Série	dos Lan	tanídios												
Número	Atòmico		£7 La 139	E8 Ce 140	59 Pr 141	60 Nd	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho	68 Er 167	59 Tm 169	76 Yb 173	71 Lu 175
Símb	olo		Série	dos Acti	inídios												
() № de	Atômica e massa do nais estáv		S9 Ac (227)	96 Th 232	91 Pa 231	92 U 238	93 Np (237)	94 PU (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (255)	162 No (259)	163 Lr (262)

Obs.: Tabela periódica atualizada conforme IUPAC (sigla em inglês da União Internacional de Química Pura e Aplicada) Novembro de 2016. Essa versão atualizada inclui os elementos 113, 115, 117 e 118 com seus símbolos e massas atômicas, homologados em 28/11/2016.

Informações para a resolução de questões

- 1. Algumas cadeias carbônicas nas questões de química orgânica foram desenhadas na sua forma simplificada apenas pelas ligações entre seus carbonos. Alguns átomos ficam, assim, subentendidos.
- 2. As ligações com as representações e ligações que se aproximam do observador e ligações que se afastam do observador.

- **26.** O sal de cozinha (cloreto de sódio) tem solubilidade de 35,6 g em 100 mL de água em temperatura próxima a 0 °C. Ao juntar, em um copo, 200 mL de água a 0,1 °C, três cubos de gelo e 80 g de cloreto de sódio, o número de componentes e fases presentes no sistema, imediatamente após a mistura, será
 - (A) um componente e uma fase.
 - (B) dois componentes e duas fases.
 - (C) dois componentes e três fases.
 - (D) três componentes e duas fases.
 - (E) três componentes e quatro fases.
- 27. Os compostos abaixo apresentam a seguinte ordem decrescente de pressão de vapor a 15 °C: éter dimetílico >> etanol > água.

Considere as af<mark>irmações abaixo que explicam</mark> esse efeito.

- I Deve-se à maior massa molar das substâncias menos voláteis.
- II Deve-se à presença de ligações de hidrogênio em maior proporção na água do que no etanol e ausentes no éter dimetílico.
- III- Deve-se à elevada polaridade do éter.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.

28. Em 2019, o mundo celebra o Ano Internacional da Tabela Periódica dos Elementos Químicos, em reconhecimento a sua importância para o desenvolvimento da ciência moderna.

Considere os elementos X, Y e Z da tabela periódica, levando em conta as seguintes afirmações.

- 1 X tem 3 elétrons na última camada.
- Y tem tendência a formar quatro ligações covalentes.
- 3 Z necessita receber dois elétrons para adquirir a configuração de um gás nobre.
- 4 Z tem raio atômico semelhante a Y.

Os elementos X, Y e Z são, respectivamente,

- (A) Al Si Se.
- (B) B Ge O.
- (C) P C Te.
- (D) Ga Ge As.
- (E) In Ba I.
- 29. O Brasil concentra 98% das reservas conhecidas de nióbio no mundo. O nióbio é muito utilizado na produção de aços especiais, que apresentam alta resistência mecânica e são usados na fabricação de dutos para óleo e gás, automóveis, navios, pontes e viadutos.

Considere as afirmações abaixo, sobre esse elemento químico.

- I Está localizado no Grupo 10 e no quarto período da tabela periódica.
- II Apresenta, em um de seus isótopos, 41 prótons e 52 nêutrons no núcleo atômico.
- III- Pode ser classificado como um lantanídeo.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.

30. Considere a tira abaixo.

Adaptado de: <www.reddit.com>. Acesso em: 05 ago. 2019.

O conceito químico, associado a essa tira, pode ser interpretado como

- (A) substâncias apolares são menos densas que a água.
- (B) substâncias polares são geralmente solúveis em água.
- (C) substâncias polares são mais densas que substâncias apolares.
- (D) substâncias apolares são mais solúveis em água que polares.
- (E) substâncias polares e apolares são miscíveis entre si.
- **31.** Considere as afirmações abaixo, sobre o óxido de cálcio, CaO.
 - I É um sólido iônico.
 - II É bastante reativo frente à água.
 - III- Possui características metálicas.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.

32. Nos aterros sanitários, o processo de biodegradação da matéria orgânica ocorre geralmente em condições anaeróbicas (em ausência de oxigênio ou de ar), produzindo gases causadores do efeito estufa, metano e gás carbônico, conforme mostrado na equação abaixo, exemplificada para a glicose.

$$C_6H_{12}O_6(s) \rightarrow 3 CH_4(g) + 3 CO_2(g)$$

O volume de gases do efeito estufa, gerado pela decomposição anaeróbica de 0,9 kg de glicose nas CNTP (0 $^{\circ}$ C e 1 atm), será de aproximadamente

- (A) 22,4 L.
- (B) 67,2 L.
- (C) 125,4 L.
- (D) 336,0 L.
- (E) 672,0 L.

33. O ácido cítrico, presente em quase todos os seres vivos, é um ácido fraco, encontrado em grande quantidade nas chamadas frutas cítricas.

Sabe-se que sua massa molar é 192 g mol⁻¹ e que a sua composição percentual em massa é de 37,5% de carbono, 58,3% de oxigênio e o restante de hidrogênio. Sua fórmula molecular é, portanto,

- (A) C₅H₅O₇.
- (B) C₅H₆O₇.
- (C) C₆H₈O₇.
- (D) C₆H₉O₈.
- (E) C₇H₁₂O₆.
- **34.** Mariscos possuem uma concha feita de carbonato de cálcio, a qual se forma quando os íons cálcio, secretados a partir das células do marisco, encontram a água do mar, rica em dióxido de carbono dissolvido.

Considere as afirmações sobre esse processo.

- I Uma das reações que ocorre é Ca^{2+} (aq) + CO_3^{2-} (aq) \rightarrow CaCO₃ (s).
- II A reação envolvendo os ions cálcio na formação da concha é uma reação do tipo ácido-base.
- III- O produto formado é classificado como um óxido básico.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.
- **35.** Descobertas por Gustav Rose, em 1839, as perovskitas representam uma classe de materiais com características únicas que hoje estão revelando inúmeras e versáteis aplicações em uma ampla gama de dispositivos tecnológicos.

Um tipo de perovskita muito utilizado em células solares é a baseada em haletos orgânico-inorgânicos, cuja fórmula geral é ABX₃, em que A e B são cátions e X é um íon haleto. O cátion A é orgânico, maior e mais eletropositivo que o cátion B, que é tipicamente um íon metálico bivalente.

Um exemplo desse tipo de material é

- (A) CaTiO₃.
- (B) (CH₃NH₃)PbI₃.
- (C) (CH₃NH₃)FeO₃.
- (D) (CH₃COO)SnBr₃.
- (E) CsPbCl₃.

36. Teoricamente, prevê-se que um ciclo com dezoito átomos de carbono seria o menor anel de carbono possível de existir. Depois de inúmeras tentativas e fracassos, pesquisadores da Universidade de Oxford e da IBM Research conseguiram pela primeira vez sintetizar uma molécula de carbono em forma de anel com dezoito átomos de carbono, o ciclo[18]carbono (estrutura mostrada abaixo). A descoberta, publicada na revista *Science* em agosto de 2019, abre novas perspectivas de aplicações em eletrônica e nanodispositivos.

Assinale a alternativa correta em relação ao ciclo[18]carbono.

- (A) O ciclo[18]carbono constitui uma nova forma alotrópica do carbono.
- (B) O ciclo[18]carbono é classificado como um alceno.
- (C) A combustão completa de um mol de ciclo[18]carbono leva à formação da mesma quantidade de CO₂ e H₂O que a combustão completa de três moles de benzeno.
- (D) Todos os carbonos apresentam geometria trigonal plana.
- (E) A estrutura das ligações entre carbonos é semelhante à do diamante.
- **37.** Recentemente, estudantes brasileiros foram premiados pela NASA (Agência Espacial Americana) pela invenção de um chiclete de pimenta, o "Chiliclete", que auxilia os astronautas a recuperarem o paladar e o olfato. A capsaicina, molécula representada abaixo, é o componente ativo das pimentas.

A cadeia carbônica desse composto pode ser classificada como

- (A) alifática, ramificada e homogênea.
- (B) aromática, ramificada e homogênea.
- (C) alicíclica, linear e insaturada.
- (D) mista, insaturada e heterogênea.
- (E) acíclica, linear e heterogênea.

38. Na coluna da direita, são apresentados compostos de origem natural (fontes renováveis); na da esquerda, o principal componente desses compostos.

Associe adequadamente a coluna da direita à da esquerda.

(1) Glicídios

() Melaço de cana

(2) Proteínas

) Cera de abelha) Amido de milho

(3) Lipídios

- () Clara de ovo
- () Banha de porco

A sequência correta de preenchimento dos parênteses, de cima para baixo, é

- (A) 1-3-1-2-3.
- (B) 1 3 3 2 3.
- (C) 2-3-1-3-1.
- (D) 2-1-1-2-3.
- (E) 3-1-2-3-1.
- **39.** O óleo de rícino ou óleo de mamona é extraído das sementes da planta *Ricinus communis* e é constituído por, aproximadamente, 90% de triglicerídeos do ácido ricinoleico, cuja fórmula é representada na molécula abaixo.

Sobre essa molécula, é correto afirmar que

- (A) é totalmente solúvel em meio aquoso.
- (B) possui somente carbonos secundários.
- (C) é o ácido 12-hidróxi-9-trans-octadecenoico, de acordo com a nomenclatura da IUPAC.
- (D) possui fórmula molecular C₁₈H₃₃O₃.
- (E) apresenta isomeria ótica.

40. O estireno, composto utilizado para a produção de poli(estireno), pode ser sintetizado industrialmente através da rota sintética apresentada abaixo.

$$AICl_3$$
 Fe_2O_3/K_2O
 $AICl_3$
 B

Considere as afirmações abaixo, sobre essa rota sintética.

- I A reação A é uma reação de substituição no anel aromático.
- II A reação B é uma reação de hidrogenação com catálise heterogênea.
- III- O composto AlCl₃ é um ácido de Lewis.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas I e III.
- (D) Apenas II e III.
- (E) I, II e III.
- **41.** Na reação de cloração do 2-metilbutano em presença de luz ultravioleta, há formação de produtos monossubstituídos e HCl. O número de produto(s) monossubstituído(s) diferente(s) que podem ser formados é igual a
 - (A) 1.
 - (B) 2.
 - (C) 3.
 - (D) 4.
 - (E) 5.
- **42.** A dessalinização da água do mar é um processo que transforma água do mar em água potável e garante o abastecimento de milhões de pessoas no mundo. Abaixo são descritas algumas técnicas empregadas nesse processo.
 - 1 Aquecimento da água do mar, seguido de evaporação e condensação do vapor d'água.
 - 2 Resfriamento da água do mar até formação de gelo, composto essencialmente de água pura.
 - 3 Passagem da água do mar por uma membrana semipermeável, através da aplicação de uma pressão elevada.

As propriedades coligativas, envolvidas nas técnicas descritas nos itens 1, 2 e 3, podem ser classificadas, respectivamente, como

- (A) ebulioscopia, crioscopia e osmose reversa.
- (B) destilação, cristalização e filtração a vácuo.
- (C) destilação, congelamento e filtração a vácuo.
- (D) ebulioscopia, tonoscopia e osmose reversa.
- (E) tonoscopia, crioscopia e osmose.

43. Uma suspensão de sulfato de bário pode ser usada como agente de contraste em exames de raios-X. O sulfato de bário é um sal pouco solúvel, com constante do produto de solubilidade $1,1 \times 10^{-10}$.

Em relação a uma solução aquosa saturada desse sal, contendo uma certa quantidade de sal sólido, não dissolvido, são feitas as seguintes afirmações.

- I A adição de nitrato de bário diminui a quantidade de sólido não dissolvido.
- II A adição de sulfato de sódio aumenta a quantidade de sólido não dissolvido.
- III- Uma reação reversível, na qual a dissolução do sal é exatamente contrabalançada pela sua precipitação, é estabelecida nessa situação.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas I e III.
- (D) Apenas II e III.
- (E) I, II e III.
- **44.** Uma solução é preparada misturando-se 40,00 mL de NaOH de concentração 0,30 mol L⁻¹ e 60,00 mL de KOH 0,20 mol L⁻¹.

As concentraç<mark>ões molares de íons Na+, K+ e OH- na solução resultante</mark> serão, em mol L-1, respectivamente,

- (A) 0,012; 0,012 e 0,024.
- (B) 0,04; 0,06 e 0,10.
- (C) 0,12; 0,12 e 0,12.
- (D) 0,12; 0,12 e 0,24.
- (E) 0,30; 0,20 e 0,50.
- **45.** A reação de formação do etanol é definida abaixo.

$$2 C(s) + 3 H2(g) + \frac{1}{2} O2(g) \rightarrow C2H5OH(I)$$

Embora essa reação, tal como está escrita, não possa ser realizada em laboratório, pode-se calcular seu efeito térmico, mediante uma combinação adequada de outras reações.

Usando as reações abaixo,

$$C(s) + O2(g) \rightarrow CO2(g)$$

 $\Delta_f H^{\circ} = -394 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$$

 $\Delta_{\rm f} \, {\rm H}^{\circ} = -286 \, {\rm kJ \, mol^{-1}}$

$$C_2H_5OH(I) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(I)$$

 $\Delta f H^{\circ} = -1368 \text{ kJ mol}^{-1}$

a entalpia da reação de formação do etanol, em kJ mol-1, é

- (A) 2048.
- (B) 1368.
- (C) 278.
- (D) + 394.
- (E) + 2048.

46. Em altas temperaturas, o hidrogênio molecular pode estar em equilíbrio com o hidrogênio atômico através da seguinte reação

$$H_2(g) \rightleftharpoons 2 H(g)$$

Sobre essa reação, são feitas as seguintes afirmações.

- I A quantidade de hidrogênio atômico aumenta com o aumento da temperatura, porque a reação é endotérmica.
- II Em condições de baixa temperatura, não há energia suficiente para romper a ligação.
- III- A variação de entalpia envolvida na reação é o dobro da entalpia de formação do hidrogênio atômico nas condições da reação.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas I e III.
- (D) Apenas II e III.
- (E) I, II e III.
- **47.** A reação do relógio de iodo é bastante comum em feirás de ciências e em demonstrações didáticas. Nela, a ocorrência de várias reações que envolvem iodo e compostos, contendo enxofre em diversos estados de oxidação, leva à formação de uma coloração azul súbita, dependente da concentração dos reagentes.

Uma possibilidade de realização dessa reação usa persulfato, tiossulfato e iodeto, e, nesse caso, uma das etapas é a reação entre o íon persulfato $(S_2O_8)^2$) e o íon iodeto (I^-) , cuja velocidade de decomposição do persulfato foi determinada e encontra-se na tabela abaixo.

	Со	ncentrações iniciais (mol L-1)					
Experimento	S ₂ O ₈	I-	Velocidade inicial (mol L ⁻¹ s ⁻¹)				
1	0,08	0,16	0,512				
2	0,08	0,32	1,024				
3	0,32	0,16	2,048				
4	0,16	0,40	×				

Assinale a alternativa que apresenta a velocidade inicial x do experimento 4, em mol L^{-1} s^{-1} , tendo em vista as condições expressas acima.

- (A) 0,512
- (B) 2,048
- (C) 2,560
- (D) 6,400
- (E) 8,120

48. A combustão incompleta de substâncias, contendo carbono, pode formar o monóxido de carbono, o qual é extremamente tóxico. O monóxido de carbono, na presença de oxigênio, pode ser convertido no dióxido de carbono, em catalisadores automotivos, de acordo com a reação abaixo.

Em um determinado recipiente, contendo inicialmente monóxido de carbono e oxigênio, estabeleceuse um equilíbrio em que se pode determinar a pressão total da mistura, 6,1 atm, e as pressões parciais de monóxido de carbono e de dióxido de carbono, as quais foram, respectivamente, 0,5 atm e 4,0 atm.

O valor da constante de equilíbrio será igual a

- (A) 1,6.
- (B) 10,6.
- (C) 22,4.
- (D) 32.
- (E) 40.
- **49.** O ácido nitroso, HNO₂, é um ácido fraco com $K_A = 4.3 \times 10^{-4}$.

A respeito de uma solução aquosa de NaNO2, considere as seguintes afirmações.

- I É uma solução de pH menor que 7.
- II É mais alcalina do que uma solução aquosa de NaCl.
- III- É mais ácida do que uma solução aquosa de NaOH de mesma concentração.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas I e III.
- (D) Apenas II e III. (E) I, II e III.
- **50.** Baterias de Li -- CO₂ são de grande interesse atual, devido a questões ambientais e energéticas, pois utilizam CO₂ e abrem um novo caminho para conversão e armazenamento de energia.

Uma das propostas sobre as semirreações eletroquímicas envolvidas nessa bateria é apresentada abaixo.

$$3CO_{2}(g) + 4Li^{+} + 4e^{-} \rightarrow 2Li_{2}CO_{3}(s) + C(s)$$
 $E^{o} = 2$

$$2CO_2(g) + O_2(g) + 4Li^+ + 4e^- \rightarrow 2Li_2CO_3(s)$$
 $E^0 = -3.8V$

Sobre essas baterias, é correto afirmar que

- (A) o cátion lítio é o agente oxidante; e o gás carbônico, o agente redutor.
- (B) no funcionamento da bateria, 1 mol de CO_2 é consumido gerando 1 mol de O_2 .
- (C) no ânodo, ocorre formação de carbono elementar e carbonato de lítio.
- (D) para recarregar a bateria, é necessário aplicar uma força eletromotriz de 3,8 V.
- (E) o oxigênio sofre redução espontânea no cátodo.