

Rec'd PCT/PTO 27 JUN 2005

540875

(2)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年7月22日 (22.07.2004)

PCT

(10) 国際公開番号
WO 2004/060593 A1

- (51) 国際特許分類7: B22F 3/06
- (21) 国際出願番号: PCT/JP2003/016742
- (22) 国際出願日: 2003年12月25日 (25.12.2003)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2002-382579
2002年12月27日 (27.12.2002) JP
- (71) 出願人(米国を除く全ての指定国について): 独立行政法人産業技術総合研究所 (NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY) [JP/JP]; 〒100-8921 東京都千代田区霞が関一丁目3番1号 Tokyo (JP). 新東ブイセラックス株式会社 (SINTO V-CERAX, LTD.) [JP/JP]; 〒442-8505 愛知県豊川市穂ノ原3丁目1番 Aichi (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 渡利 広司
- (WATARI,Koji) [JP/JP]; 〒463-8560 愛知県名古屋市守山区大字下志段味字穴ヶ洞2266番地の98 独立行政法人産業技術総合研究所中部センター内 Aichi (JP). 杵鞭 義明 (KINEMUCHI,Yoshiaki) [JP/JP]; 〒463-8560 愛知県名古屋市守山区大字下志段味字穴ヶ洞2266番地の98 独立行政法人産業技術総合研究所中部センター内 Aichi (JP). 内村 勝次 (UCHIMURA,Shoji) [JP/JP]; 〒458-0833 愛知県名古屋市緑区青山2丁目145番の2 Aichi (JP). 石黒 裕之 (ISHIGURO,Hirohide) [JP/JP]; 〒443-0038 愛知県蒲郡市拾石町中屋敷24番地の9 Aichi (JP). 森光 英樹 (MORIMITSU,Hideki) [JP/JP]; 〒441-1346 愛知県新城市川田字山田平37番地27 Aichi (JP).
- (74) 代理人: 須藤 政彦 (SUDO,Masahiko); 〒103-0022 東京都中央区日本橋室町1丁目6番1号 真洋ビル6階 Tokyo (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM,

(続葉有)

(54) Title: CENTRIFUGAL SINTERING SYSTEM

(54) 発明の名称: 遠心焼結装置

(57) Abstract: A centrifugal sintering system imparting a centrifugal force field and a temperature field to a molding of ceramics or metal powder or a ceramic precursor film, characterized in that a rotor for turning a sample holder, a shaft or the sample holder used in the centrifugal sintering system is composed of ceramics. The ceramic member and the rotor for turning the sample holder are composed of conductive silicon carbide ceramics and a sample is heated indirectly by self heating only the rotor selectively using an induction heating means. The ceramics member and the sample holder are composed of a material having a large dielectric loss, and the sample is heated indirectly by heating only the sample holder selectively using a dielectric heating means.

(57) 要約: 本発明は、遠心焼結装置のローター、シャフト又は試料ホルダーを提供するものであり、本発明は、セラミックス又は金属粉体からなる成形体、又はセラミックス前駆体膜に、遠心力場及び温度場を付加する遠心焼結装置に使用するローター、シャフト又は試料ホルダーからなる部材であつて、試料ホルダーを回転させるローター、シャフト又は試料ホルダーをセラミックスで構成したことを特徴とする遠心焼結装置のセラミックス部材、上記試料ホルダーを回転させるローターを導電性炭化ケイ素セラミックスで構成し、誘導加熱手段を用いてローターだけを選択的に自己発熱することにより試料を間接加熱するようにした上記セラミックス部材、上記試料ホルダーを誘電損失の大きい材料で構成し、誘電加熱手段を用いて試料ホルダーだけを選択的に発熱させることにより試料を間接加熱するようにした上記セラミックス部材、に関する。

WO 2004/060593 A1

HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

- (84) 指定国(広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

遠心焼結装置

5 技術分野

本発明は、セラミックス又は金属粉体からなる成形体、又はセラミックス前駆体膜を、遠心場において乾燥及び／又は焼結することにより、セラミックス又は金属の焼結体、又はセラミックス膜を得る遠心焼結装置に関するものであり、更に詳しくは、試料台を高速回転させることにより、セラミックス又は金属粉体からなる成形体、又はセラミックス前駆体膜に遠心力を与えつつ、これらを乾燥及び／又は焼結することにより、セラミックス又は金属の緻密な焼結体、又は緻密なセラミックス膜を得ることを可能とする遠心焼結装置用セラミックス部材及び該セラミックス部材を装着した遠心焼結装置に関するものである。本発明は、遠心焼結装置で使用するための、試料ホルダーを高温高速回転するローター、シャフト及び試料ホルダーを提供するものとして有用である。

背景技術

一般に、遠心力を付加する装置としては、遠心分離装置が代表的なものとして実用化されている。また、焼結を前提とした高温加熱手段としては、真空やガス置換などによる雰囲気条件が制御可能で、急速加熱する手段を有する、高周波誘導加熱や誘電加熱手段が実用化されている。更に、近年、高温雰囲気下で使用される超精密回転体の代表的な部品であるガスタービンの羽根などの材料には、熱膨張が小さく、機械的強度、耐熱性、及び耐摩耗性に優れ、かつ比重が小さく、軽量化が実現できるセラミックス等が活用されるようになった。

一方、試料に遠心力を付与しつつ該試料を加熱焼成して焼結体を作製する焼結方法及び装置が提案されている（特開2002-193680号公報参照）。一般に、この種の方法では、試料に発生する遠心力は、ローターの回転数及び試料までの半径、試料の比重によって決定され、
5 以下の式で示される。

$$C\ F = 11.18 \times (N / 1000)^2 \times R \quad (1-1)$$

ここで、 $C\ F$ は発生する遠心力 (G) 、 N は毎分の回転数 (min^{-1}) 、 R はローターの中心から試料までの距離である。遠心力は、回転数の2乗、ローターの中心から試料までの距離に比例することから、ローターは、その回転数が増大すればするほど、発生する遠心力がますます大きくなり、ローター自体に発生する内部応力も増大し、それにより、ローター自体が破壊する恐れがある。表1に、例えば、ローターの中心から試料までの距離を 8 cm とした時の回転数と遠心力の関係を示す。これらのことから、回転ローター部として、高速回転に対応できる駆動部を開発すること、及びローターの中心から試料までの距離が長い、即ち、半径が大きいローターを開発することが重要となり、そのためには、これらの開発を可能とする新しい部材を開発することが重要となる。
10
15

表 1

回転数(min^{-1})	5,000	7,000	10,000	30,000	50,000	70,000
遠心力($\times G$)	2,236	4,382	8,944	80,496	223,600	438,256

20 また、回転軸を超高速で回転させるには、次の2通りの方式；（1）回転軸の曲げ危険速度をできるだけ高く設定し、この曲げ危険速度以下で回転軸を使用する剛性軸方式、及び（2）回転軸の曲げ危険速度以上で回転軸を使用する弾性軸方式、がある。これらのうち、剛性軸方式の場合には、回転軸の曲げ剛性を高くするために、この回転軸の外径を太

くする等の必要がある。しかし、回転軸を大きくすると軸受けの周速が大きくなり、その潤滑条件には限界がある。

一方、弾性軸方式では、回転軸の曲げ危険速度が比較的低速域になる様に回転軸を細径部を有する構造とし、曲がりを抑えることなく回転を上昇させて、危険速度を通過させ、回転軸を曲げ危険速度以上の高速回転域まで使用する。上記焼結装置の回転軸は、高温雰囲気で使用されるため、セラミックス軸を採用しようとしても、セラミックスは脆性材料であり、この回転軸の回転速度を、その曲げ危険速度を越えて上昇させることは、剛性軸方式の場合と同様に、材料上のたわみの許容値が小さいために困難である。そのために、この方式では、回転軸の回転速度が曲げ危険速度以下に限られてしまうという問題がある。

発明の開示

本発明は、上記従来技術の諸問題と上記事情に鑑みてなされたものであります。前述の種々の問題点をふまえて、セラミックス又は金属粉体からなる成形体、又はセラミックス前駆体膜に、遠心力場及び温度場を付加できる装置に使用するローター、シャフト又は試料ホルダーからなる部材であって、試料ホルダーを回転させるローター及びシャフトが 120 0 °C レベルの雰囲気温度を与える条件下で耐久性を有する遠心焼結装置のセラミックス部材を提供すること及び誘電加熱手段又は誘電加熱手段を用いて試料を間接加熱することを可能とする遠心焼結装置を提供することを目的とするものである。

上記課題を解決するための本発明は、以下の技術的手段から構成されます。

(1) セラミックス又は金属粉体からなる成形体、又はセラミックス前

駆体膜に、遠心力場及び温度場を付加する遠心焼結装置に使用するローター、シャフト又は試料ホルダーからなる部材であって、試料ホルダーを回転させるローター、シャフト又は試料ホルダーをセラミックスで構成し、300～1200℃の雰囲気温度を与える条件下で10～700
5 , 000Gの遠心力を付加してもこれらが熱変形せず、熱応力により破損しないようにしたことを特徴とする遠心焼結装置のセラミックス部材
。

(2) 上記試料ホルダーを回転させるローター及びシャフトを窒化ケイ素又は炭化ケイ素セラミックスで構成したことを特徴とする、前記(1)
10) 記載のセラミックス部材。

(3) 上記試料ホルダーを回転させるローターを導電性炭化ケイ素セラミックスで構成し、誘導加熱手段を用いてローターだけを選択的に自己発熱させることにより試料を間接加熱するようにしたことを特徴とする
、前記(1)又は(2)記載のセラミックス部材。

15 (4) 上記試料ホルダーを誘電損失の大きい材料で構成し、誘電加熱手段を用いて試料ホルダーだけを選択的に発熱させることにより試料を間接加熱するようにしたことを特徴とする、前記(1)又は(2)記載のセラミックス部材。

(5) 上記試料ホルダーを導電性炭化ケイ素セラミックスで構成したこ
20 とを特徴とする、前記(4)記載のセラミックス部材。

(6) 前記(1)から(5)のいずれかに記載のセラミックス部材を構成要素として含むことを特徴とする遠心焼結装置。

次に、本発明について更に詳細に説明する。

25 本発明は、前述のように、セラミックス又は金属粉体からなる成形体
、又はセラミックス前駆体膜に、遠心力場及び温度場を付加する遠心焼

結装置に使用するローター、シャフト又は試料ホルダーからなる部材であって、試料ホルダーを回転させるローター、シャフト又は試料ホルダーをセラミックスで構成し、300～1200℃の雰囲気温度を与える条件下で10～700,000Gの遠心力を付加してもこれらが熱変形せず、熱応力により破損しないようにしたことを特徴とするものである。本発明者らが検討したところによれば、高温雰囲気で高速回転する装置は、以下の条件を満たすことが必要である。即ち、(1) ローターの材質としては、熱膨張が小さく、機械的強度及び耐熱性に優れ、かつ比重が小さく、軽量化が実現できる材質であること、(2) ローターは、高速回転に対応できる空気抵抗の少ない円盤形状、及びローターの中心から試料までの距離が長い、即ち、半径が大きいローターであること、(3) シャフトとしては、熱膨張が小さく、機械的強度及び耐熱性に優れ、熱伝導率が小さく、断熱性に優れる材質であること、(4) 軸の曲げ危険速度をできるだけ高く設定でき、この曲げ危険速度以下で使用する剛性軸方式を採用すること、(5) 加熱する手段としては、高周波誘導加熱や誘電加熱方式による急速加熱が効果的であり、特に、ローター及び試料ホルダーの材質が選択的な局所加熱ができる材質であること、が必要である。

そこで、これらの課題を解決すべく検討及び研究した結果、下記の構成を採用することが重要であることが分かった。即ち、(1) ローター材料としては、1200℃レベル以下の雰囲気温度条件下で高温強度が大きく、かつ比重が小さい材質を使用することでローターの軽量化を達成する、(2) シャフト材料としては、1200℃レベル以下の雰囲気温度条件下で高温強度が大きく、かつ熱伝導率が小さい材質を使用することでローターと軸受けとの断熱性を確保する、(3) 加熱手段に優れる材料として、導電性がある材質で誘導加熱できるもの、又は誘電損失

の大きい材質で誘電加熱できるものであること、(4)流体力学的に空気抵抗が少ないローター形状として、突起のない円盤形状であること、(5)効率的な加熱・冷却が可能で、ハンドリングが容易な構造として、試料ホルダーが円盤の中に内蔵され、かつ試料ホルダーだけ選択加熱できるような材質を使用すること、が重要である。

これらの要件を総合的に考慮して、具体的な材質としては、好適には、例えば、高温高速回転するローター及び試料ホルダーに炭化ケイ素セラミックスを、また、シャフトに窒化ケイ素セラミックスを採用することにより1200℃レベルの雰囲気で耐久性に優れる前記課題が解決できることが分かった。

即ち、本発明は、高温高速回転するローター及びシャフトが、300～1200℃の雰囲気温度を与える条件下で10～700,000Gの遠心力を付加しても熱変形せず、熱応力により破損しないように、それらを、窒化ケイ素又は炭化ケイ素セラミックスで構成したことを特徴とするものである。また、本発明は、高温高速回転するローター及び試料ホルダーを炭化ケイ素セラミックスで構成し、シャフトを窒化ケイ素セラミックスで構成し、誘導加熱手段又は誘電加熱手段を使って、ローター又は試料ホルダーを自己発熱させることにより試料を選択的に加熱するようにしたことを特徴とするものである。

本発明で使用する窒化ケイ素セラミックスとしては、例えば、アルミニウム、イットリアなど焼結助剤を添加した窒化ケイ素焼結体、アルミナ、窒化アルミニウム等を添加したサイアロン焼結体などが例示される。また、同じく炭化ケイ素セラミックスとしては、例えば、ホウ素や炭素などを焼結助剤として添加した炭化ケイ素焼結体が例示される。導電性の炭化ケイ素セラミックスとしては、例えば、高純度の炭化ケイ素原料を用い、微量の等電性物質を添加して、ホットプレス焼結した炭化ケイ素

焼結体が例示される。また、誘電損失の大きい材料としては、例えば、等電性炭化ケイ素やジルコニアなどが例示される。しかし、表2に示す諸特性を有するものであれば良く、これらに限定されない。

次に、ローター及びシャフト、及び試料ホルダーの作製方法について
5 説明すると、出発原料と焼結助剤を混合粉碎し、その後、成形助剤を添
加したスラリーをスプレードライヤーで乾燥、造粒し、プレス原料を調
製する。その後、静水圧プレス成形法により円板形状及び棒状にそれぞ
れ成形し、成形助剤を脱脂後、窒化ケイ素は常圧焼結、炭化ケイ素はホ
ットプレス焼結して素材を得る。その後、機械加工して所定の形状のロ
10 ティー及びシャフト及び試料ホルダーを作製する。

本発明で使用する遠心焼結装置としては、例えば、高速回転が可能な
試料台（試料ホルダー）を有するワーク部、該ワーク部を加熱する加熱
部、加熱温度を制御する温度制御部、ワークを回転させる回転部（ロー
ター及びシャフト）、回転速度を制御する回転速度制御部、真空磁気シ
15 ルール軸受け部、及び密閉用の蓋体、を備えている焼結装置（図1）が例
示される。しかし、これらに限らず、これらと同効の手段及び機能を有
するものであれば、同様に使用することができる。本発明では、上記焼
結装置において、その回転部を構成するローター及びシャフトを上記窒
化ケイ素又は炭化ケイ素セラミックスで構成し、あるいは、上記ロータ
20 を導電性炭化ケイ素セラミックスで構成し、上記試料ホルダーを誘電
損失の大きい材料、例えば、導電性炭化ケイ素セラミックスで構成する
。

本発明では、上記構成を採用することにより、例えば、誘導加熱手段
を用いて、ローターあるいは試料ホルダーだけを選択的に発熱させること
25 により、試料を間接加熱することが可能となり、それにより、焼結過程
におけるエネルギー効率を著しく向上させることができる。また、上

記ローター及びシャフトを上記窒化ケイ素又は炭化ケイ素セラミックスで構成することにより、300～1200℃の雰囲気温度条件下で10～700,000Gの遠心力を付加しても、ステンレス製ローター及びシャフトに比べて、上記ローター及びシャフトは、熱変形せず、熱応力5により破損しないで、高い安全率で高速回転が可能である。例えば、ステンレス製では、回転数10,000min⁻¹を超えるのが、窒化ケイ素セラミックス製では、回転数が10,000min⁻¹を超えても高い安全性を有する、という予期し得ない効果が得られることが分かった。

10 また、後記する試験例に示されるように、窒化ケイ素又は炭化ケイ素セラミックス製では、特に、破壊強度、軽量化の点で優れており、軸部の安全性、共振回転数が大きくなることが分かった。本発明の試料ホルダーを回転させるローター及びシャフト、及び試料ホルダーを使用することにより、10～700,000Gの遠心力場及び300～1200℃の温度場を付加できる遠心焼結装置を実現化することが可能となる。本発明において、加熱手段は、特に、制限されるものではないが、ローター及び／又は試料ホルダーを導電性炭化ケイ素セラミックスで構成した場合には、誘導加熱手段又は誘電加熱手段が採用される。この場合、この加熱手段の具体的な構成は特に制限されるものではなく、適宜の手段及び方法を用いることができる。

試料ホルダーは、試料の脱着が容易で、遠心力の負荷により移動しない構造にする必要がある。また、試料ホルダーに遠心力を負荷させるために、試料ホルダーの重量は可能な限り軽量化し、ホルダー毎の重量を一定にして、偏心による回転振動を発生させないことが要求される。例25えれば、ローター外周部のポケット孔に試料ホルダーを落とし込む方式とすること、試料ホルダーをビス無しで試料をセットできるように、ロー

ターに落とし込む方式とすること、が例示されるが、これらに制限されない。

次に、試験例に基づいて本発明を具体的に説明する。

ローター及びシャフトの材料の評価を、ステンレス及びセラミックスの各種材料を対象として行った。ここで、各種材料の諸特性を表2に示す。ローター及びシャフトの材料として、窒化ケイ素及び炭化ケイ素は、表2に示すように、セラミックスの中でも好適な比重、室温強度、高温強度、破壊靭性、耐熱衝撃性等を有する。

表2

各種材料	比重	ヤング率	室温強度	高温強度	高温強度	破壊靭性	耐熱衝撃性	電気抵抗	熱伝導率
	kg/cm ³	kg/cm ² × 10 ⁶	kg/cm ²	kg/cm ² (800°C)	kg/cm ² (1200°C)	MPam ^{1/2}	°C	Ω-cm	cal·cm/cm ² ·sec·°C
ステンレス	8.0	2.0	2700	1300	<220	—	—	0.079	0.04
ハステロイ	8.2	2.1	3630	1830	<560	—	—	0.118	0.02
窒化ケイ素	3.2	3.0	4900	4200	3900	6	650	>10 ¹⁴	0.07
炭化ケイ素	2.3	4.4	4600	4600	4600	3	500	0.0006	0.20
ジルコニア	6.1	2.1	9800	4900	1100	10	350	>10 ¹⁴	0.009
アルミナ	3.9	3.5	3300	3000	2500	3	200	>10 ¹⁴	0.06
サイアロン	3.2	3.3	8000	5000	4500	5	700	>10 ¹⁴	0.06

10

ローター及びシャフトの材質を評価するために、(1) ローター部材の材料選定、(2) シャフト強度の計算と材質・寸法形状の選択、(3) 共振回転数の計算、及び(4) 好適な構成の検討を行った。

(1) ローター部材の材料選定

ローターの強度は、ローター半径方向に引張り応力として発生する最大引張り応力 ($\sigma_{r\max}$) と、回転により円周方向で生ずる最大引張り応力 ($\sigma_{\theta\max}$) に対応すると考え、それらを以下の計算により求めた。即ち、ローターの半径方向に引張り応力として発生する $\sigma_{r\max}$ は、次の式：

$$20 \quad \sigma_{r\max} = (\gamma \cdot \omega^2 / 8 g) \times (3 + v) \times (b - a)^2$$

(1-2)

で表される。

一方、回転により円周方向にかかる $\sigma_{\theta_{max}}$ は、次の式：

$$\sigma_{\theta_{max}} = (\gamma \cdot \omega^2 / 4g) \times \{ (3 + \nu) \times b^2 + (1 - \nu) \times a^2 \} \quad (1-3)$$

で表される。ここで、 γ は材料の比重 (kg f/cm^3)、 ω は角速度 (rad/sec)、 ν は材料のポアソン比、 a はローターの内径 (cm)、 b はローターの外径 (cm)、 g は重力加速度 (cm/sec^2) である。

10 次に、一例として、ステンレスについて検討を行った例を示す。ここで、ローターの回転数を $15,000 \text{ min}^{-1}$ 、ローター内径 a を 0.6 cm 、ローターの外径 b を 9 cm 、ステンレスの γ を $0.00793 \text{ kg f/cm}^3$ 、 ν を 0.3 とし、ステンレス製ローターで生ずる $\sigma_{r_{max}}$ 及び $\sigma_{\theta_{max}}$ を計算すると、 581 及び 1334 kg f/cm^2 となる。表2に示すように、 800°C におけるステンレスの耐力は 1300 kg f/cm^2 であり、得られた $\sigma_{\theta_{max}}$ はステンレスの耐力より大きいことから、ステンレス製ローターは、高温 (800°C) における高速回転 ($15,000 \text{ min}^{-1}$) には適さないことが分かる。

また、他の例として、窒化ケイ素について検討を行った例を示す。窒化ケイ素の γ を 0.0032 kg f/cm^3 、 ν を 0.2 とすると、 $\sigma_{r_{max}}$ は 227 kg f/cm^2 、 $\sigma_{\theta_{max}}$ は 522.1 kg f/cm^2 となる。

窒化ケイ素の引張り応力は、表2に示すように、 4200 kg f/cm^2 であり、この値は $\sigma_{r_{max}}$ 及び $\sigma_{\theta_{max}}$ に比べ十分に大きい。そのため、窒化ケイ素製ローターは、高温 (800°C) における高速回転 ($15,000 \text{ min}^{-1}$) に適することが分かった。

安全率は、部材が変形しない限界を示すものであり、その数値の大小は、部材の材料選択の指標となる。安全率は、発生する最大引張り応力と材料固有の耐力から、以下の式で表される。

(ステンレスの場合)

5 安全率 $S = \text{材料固有の耐力} / \text{発生する最大引張り応力}$ (1-4)

(窒化ケイ素の場合)

安全率 $S = \text{許容引張り応力} / \text{発生する最大引張り応力}$ (1-5)

ここで、(1-2) 及び (1-3) 式をもとに、窒化ケイ素製及びステンレス製ローターの回転数が変化した時のローターに生ずる $\sigma_{r\max}$ と $\sigma_{\theta\max}$ を求め、上記 (1-4) 及び (1-5) 式から安全率について計算を行い、安全性について検討した。尚、800°Cにおけるステンレスの耐力は、表2をもとに、 1300 kgf/cm^2 とした。一方、セラミックスでは、脆性材料で変形能が極端に小さいため、耐力の代わりに、引張り破壊強度を用いた。800°Cにおける窒化ケイ素の破壊強度は、表2より、 4200 kgf/cm^2 とした。

図2と図3に、800°Cにおける半径方向及び円周方向のステンレス製及び窒化ケイ素製ローターの回転数と安全率の関係を示す。窒化ケイ素の場合は、ステンレスに比べて、所定の回転数の範囲では、安全率は高い値を示した。特に、窒化ケイ素の場合、回転数 $25,000 \text{ min}^{-1}$ の高速回転では、半径方向に対し約7、円周方向に対し約3の高い値を示したが、ステンレスの場合、半径方向で約2、円周方向で1以下の低い値を示した。このことは、窒化ケイ素製ローターは、ステンレス製ローターに比べて、高い安全率で高速回転が可能であることを示し、 $10,000 \text{ min}^{-1}$ を越えても窒化ケイ素製ローターは安全性が高いことを示す。一方、ステンレス製ローターでは、回転数 $10,000 \text{ min}^{-1}$ 以上では安全率が確保できているが、それ以上では確保できず、

そのために、ステンレス製ローターは、回転数 $10,000 \text{ min}^{-1}$ 以下しか適用できないことが分かった。

(2) 軸強度の計算と材質・寸法形状の選択

シャフトの強度計算式を以下に示す。

5 軸にかかる遠心力 (kgf)

$$F = \{W \times (\delta + \varepsilon) / g\} \times \omega^2 \quad (1-6)$$

遠心力による軸たわみ量 (cm)

$$\delta = F \cdot L^3 / 3E \cdot I \quad (1-7)$$

軸に発生する最大引張り応力 (kgf/cm²)

$$10 \quad \sigma_{\max} = F \cdot L / Z \quad (1-8)$$

尚、Wはローター重量 (kgf)、δは軸たわみ量 (cm)、εはローター偏心量 (cm)、ωは角速度 (rad/sec)、Lは軸長 (固定端からの長さ) (cm)、Eはヤング率 (kgf/cm²)、Iは断面2次モーメント (cm⁴)、Zは断面係数 (cm³) である。

15 ここで、ステンレス製の軸に発生する応力について検討した。上記(1)の安全率の結果から、ステンレス製ローターの場合、回転数が $10,000 \text{ min}^{-1}$ を越えないことが重要である。そのため、図1に示す形状のローターを対象とし、回転数を $10,000 \text{ min}^{-1}$ として計算した。ローターの重量Wを 4.06 kgf 、ローター偏心量εを 0.01 cm 、軸径dを 3 cm 、軸長Lを 12 cm 、ヤング率Eを $2,000,000 \text{ kgf/cm}^2$ 、断面2次モーメントIを 3.97 cm^4 、断面係数Zを 2.65 cm^3 とした。

20 Iについては、 $I = \pi d^4 / 64$ するために、 3.97 の値となつた。Zについては、 $Z = \pi d^3 / 32$ から 2.65 の値を利用した。これら25の値をもとに計算すると、軸にかかる遠心力Fは $66,250 \text{ kgf} \cdot \text{cm/sec}^2$ 、軸たわみ量δは $49 \mu\text{m}$ 、軸に発生する最大引張

り応力 σ_{max} は 306 kgf/cm^2 、であった。得られた最大引っ張り応力をもとに、 800°C におけるステンレスの耐力は、表2をもとに、 1300 kgf/cm^2 として安全率を計算すると 4. 2 となつた。
一方、窒化ケイ素についても同様に強度計算を行つた。重量Wを 1. 6
5 2 kgf 、ローター偏心量 ε を 0.01 cm 、軸径を 3 cm 、軸長Lを
 12 cm 、ヤング率Eを $3,000,000 \text{ kgf/cm}^2$ 、断面2次モーメントIを 3.97 cm^4 、断面係数Zを 2.65 cm^3 とした。
回転数については、ステンレスと比較するために、 $10,000 \text{ m i n}^{-1}$ とした。計算により得られた軸にかかる遠心力Fは $19,475 \text{ kgf} \cdot \text{cm/sec}^2$ 、軸たわみ量 δ は $10 \mu\text{m}$ 、軸に発生する最大引張り応力 σ_{max} は 90 kgf/cm^2 、となつた。このとき、得られた最大引っ張り応力をもとに、 800°C における安全率を計算すると 4
10 6. 7 となつた。軸径は同一で材質を変えることで、重量が 2. 5 倍軽量化され、ヤング率が 1. 5 倍大きくなることになる。最終的な安全率は、ステンレス製に対し、窒化ケイ素製では約 11 倍になり、信頼性が
15 飛躍的に向上することが分かつた。

図4に、温度 800°C における回転軸の強度、即ち、ステンレス製と窒化ケイ素製回転軸の回転数と軸の安全率の関係を示す。窒化ケイ素製の場合は、ステンレス製に比べて、所定の回転数の範囲では、安全率は
20 高い値を示した。特に、窒化ケイ素製のローター及び軸について、安全率の値は、共振回転数以下で使用すれば数値的にも十分な信頼性を有する。そこで、この結果をもとに、窒化ケイ素系及びステンレス製のローター及び軸の寸法を決定した。ここで、回転軸は、軸受けに固定されており、軸径が大口径ほど剛性が高く、安全率は高くなるが、軸受けの周速が大きくなり、軸受けの寿命と関連して制約される。ここでは、潤滑方式として、グリース潤滑条件下で、許容回転速度 $35,000 \text{ m i n}^{-1}$

n-1 以下の条件下では軸径を 3 cmとした。

(3) 共振回転数の計算

共振回転数の計算式を以下に示す。

共振回転数 ($m\ i\ n^{-1}$)

$$n = (30/\pi) \times (3E \cdot I \cdot g/L^3 \cdot W)^{1/2} \quad (1-9)$$

ここで、Wはローター重量 (kgf)、Lは軸長 (固定端からの長さ) (cm)、Eはヤング率 (kgf/cm^2)、Iは断面2次モーメント (cm^4)、gは重力加速度 (cm/sec^2)である。上記式をもとに、ステンレス製及び窒化ケイ素製ローターと軸を採用した場合の共振回転数を計算した。ステンレス製ローターの重量Wを4.06 kgf、ステンレス製軸径dを3 cm、軸長Lを12 cm、ヤング率Eを2,000,000 kgf/cm²、断面2次モーメントIを3.97 cm⁴、重力加速度gを980 cm/sec²、とした。このときの断面2次モーメントIは $I = \pi d^4 / 64$ から求めたものである。計算で求められる共振回転数nは、17,440 m i n⁻¹であった。

一方、窒化ケイ素製ローターの重量Wを1.62 kgf、窒化ケイ素製の軸径を3 cm、軸長Lを12 cm、ヤング率Eを3,000,000 kgf/cm²、断面2次モーメントIを3.97 cm⁴、とした。このときの断面2次モーメントIは、 $I = \pi d^4 / 64$ から求めた。計算により得られた共振回転数nは、33,790 m i n⁻¹であった。図5に、ステンレスと窒化ケイ素の場合の軸長が変化したときの共振回転数の値を示す。軸長が短くなるにつれて相乗的に共振回転数は大きくなり、窒化ケイ素はステンレスの2倍の値を示した。

また、図6に、ステンレスと窒化ケイ素の場合のローター重量が変化したときの共振回転数の値を示す。ローター重量が小さくなるにつれて相乗的に共振回転数は大きくなるが、軸長などの効果はなかった。また

、窒化ケイ素は比重が小さいため、共振回転数は高くなっている。これらの結果から、できるだけ軽量化したローターで軸長を短くした構造が有利となることが分かった。窒化ケイ素製の回転軸を採用することにより、共振回転数が高速化できる。しかしながら、窒化ケイ素は、脆性材料であり、共振回転数域では即時破壊する危険性があるため、共振回転数以下で使用することが不可欠の条件である。尚、セラミックス材料として、窒化ケイ素の場合を中心に説明したが、炭化ケイ素について検討したところ、炭化ケイ素も、物性的に同等の性質を有しており、同等の効果が期待できることが分かった。

10 (4) 好適な構成

ローター部の構成については、検討結果から、以下のことが分かった。即ち、窒化ケイ素製ローターは、ステンレス製ローターに比べて、高い安全率で高速回転が可能であり、 $10,000 \text{ min}^{-1}$ を越えても窒化ケイ素製ローターは、安全性が高い。また、ステンレス製ローターの場合、回転数が $10,000 \text{ min}^{-1}$ を越えないことが必要である。軸部の構成においては、検討結果から、以下のことが分かった。即ち、軸の材質を変えただけで、重量が2.5倍軽量化され、ヤング率が1.5倍大きくなることになり、最終的な安全率は、ステンレス製に対し、窒化ケイ素では、約11倍になり、信頼性が飛躍的に向上する。共振回転数については、検討結果から、以下のことが分かった。即ち、軸長が短くなるにつれて、相乗的に共振回転数は大きくなり、窒化ケイ素は、ステンレスの2倍の値を示した。できるだけ軽量化したローターで、軸長を短くした構造が有利となること、窒化ケイ素製の回転軸を採用することにより共振回転数が高速回転化できることが分かった。以上の結果をもとに作製した窒化ケイ素製ローター及び軸の一例をステンレス製と併せて表3に示す。

表 3

材質	ステンレス製	窒化ケイ素製
形状及びサイズ	図1-2参照	
ローター重量(kg)	4.06	1.62
軸径(cm)	3.0	3.0
軸長(cm)	12.0	12.0
断面2次モーメント(cm ⁴)	3.97	3.97
断面係数(cm ³)	2.65	2.65
ヤング率(kgf/cm ²)	2,000,000	3,000,000
共振回転数	17,440	33,790

図面の簡単な説明

図 1 は、遠心焼結装置の概念図を示す。

5 図 2 は、温度 800 ℃におけるステンレス及び窒化ケイ素ローターの回転数との安全率の関係（径方向）を示す。

図 3 は、温度 800 ℃におけるステンレス及び窒化ケイ素ローターの回転数との安全率の関係（円周方向）を示す。

10 図 4 は、温度 800 ℃における回転軸の回転数と軸の安全率の関係を示す。

図 5 は、温度 800 ℃における軸長が変化したときの共振回転数の計算結果を示す。

図 6 は、温度 800 ℃におけるローター重量が変化したときの共振回転数の計算結果を示す。

15 図 7 は、誘導加熱試験の概要図を示す。

図 8 は、電気抵抗の異なる炭化ケイ素の加熱昇温テスト結果を示す。

図 9 は、試験装置のシステム全体構成図を示す。

符号の説明

- 1 加熱部
- 2 温度制御部
- 5 3 回転部
- 4 回転速度制御部
- 5 真空磁気シール軸受け部
- 6 蓋体
- W ワーク部

10

発明を実施するための最良の形態

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。

実施例 1

15 (1) 導電性セラミックスの誘導加熱試験

本発明では、誘導加熱を利用して、ローターもしくは試料ホルダーの部材を導電性材料とし、その自己発熱を通じて被加熱体を加熱する方式を採用した。その場合、ローターもしくは試料ホルダーの部材には、高い導電性の他に、軽量性、高強度、高熱伝導性などが必要とされる。

20 そこで、本実施例では、これらの条件を満たす材料として、炭化ケイ素を選択し、各種の炭化ケイ素セラミックス部材の加熱昇温特性について試験した。

(2) 試験サンプルの物性

試験サンプルとしては、導電性が大きく異なる3種類を準備した(表25 4)。特に、サンプルAは、最も導電性が高い低電気抵抗の材質であり、サンプルCは、最も導電性が低い高電気抵抗の材質である。サンプル

は、すべてホットプレス法により作製したものである（製造メーカー：屋久島電工（株））。サンプルサイズは、 $20\text{ mm} \times 20\text{ mm} \times 10\text{ mm}$ であり、表4に、サンプル物性値を示す。

（3）試験方法

5 誘導加熱試験（加熱昇温テスト）として、サンプル表面に熱電対を接觸させ、昇温速度 $200\text{ }^{\circ}\text{C}/\text{min}$ を目安に、誘導加熱装置（最大出力： 30 kW 、周波数： $60\sim70\text{ kHz}$ ）の出力をコントロールし、熱電対によりサンプル表面温度を計測した。図7に、誘導加熱試験の概要図を示す。

10 （4）試験結果

図8に、加熱昇温テスト結果を示す。横軸に経過時間、縦軸にサンプルの表面温度を示す。電気抵抗が小さい低電気抵抗のサンプルAでは最大負荷電力 3.9 kW で $200\text{ }^{\circ}\text{C}/\text{min}$ の昇温速度が達成できた。一方、電気抵抗が大きい高電気抵抗のサンプルCでは最大負荷電力 10 kW でも $10\text{ }^{\circ}\text{C}/\text{min}$ の昇温速度しか達成できないことが分かった。これらのことより、被加熱物の電気抵抗が大きく影響することが分かった。

（5）ローター又は試料ホルダーの材質

上記試験から、ローター又は試料ホルダーの材質としては、加熱出力が小さく、高速昇温可能な低電気抵抗の炭化ケイ素が好適であると考えられた。

実施例 2

ローター及びシャフトを表4に示す窒化ケイ素製のものと同一の寸法の炭化ケイ素セラミックスで構成した遠心焼結装置を使用し、加熱雰囲気温度 $1200\text{ }^{\circ}\text{C}$ の条件下で回転数 $30,000\text{ min}^{-1}$ で回転させた

。その結果、熱変形による回転振動の発生もなく、支障なく高速運転で
きることが確認された。また、共振回転数の近辺の回転数 $32,000\text{ min}^{-1}$ から、振動が発生しはじめ、予測した通りであることが検証さ
れた。

5 表 4

試験片名	サンプルA	サンプルB	サンプルC
密度(g/cm^3)	3.19	3.19	3.20
曲げ強度(MPa)	520	520	610
ヤング率(GPa)	420	420	430
熱伝導率(W/m·K)	200	194	235
電気抵抗($\mu\Omega\cdot\text{cm}$)	0.6	1	3000

実施例 3

本実施例では、試料ホルダーを内蔵した高温高速回転するローターを
導電性炭化ケイ素セラミックス（実施例 1 に示すサンプル A と同一の材
質）で構成し、また、シャフトを窒化ケイ素セラミックスで構成した遠
心焼結装置を使用した。ローター及びシャフトの寸法は、表 3 に示す窒
化ケイ素製のものと同一とした。該装置において、回転数 $30,000\text{ min}^{-1}$ でローターを回転させながら、最大出力：30 kW、周波数：
10 70 kHz の誘導加熱装置の誘導加熱コイルを用いてローターだけを選
択的に自己発熱させて試料ホルダーに装着した試料を間接加熱し、80
15 0 °C/h の昇温速度で 1200 °Cまで加熱し、2 時間保持した。その
結果、試料ホルダー及び試料は、1200 °Cに間接加熱された。3 時間
連続運転した結果、支障なく運転できることが確認された。図 9 に試験
した装置のシステム全体構成図を示す。

実施例 4

本実施例では、試料ホルダーを内蔵した高温高速回転するローター及びシャフトを窒化ケイ素セラミックスで構成し、また、試料ホルダーを炭化ケイ素セラミックスで構成した遠心焼結装置を使用した。ローター

5 及びシャフトの寸法は、表 3 に示す窒化ケイ素製のものと同一とした。

該装置において、回転数 $30,000 \text{ min}^{-1}$ でローターを回転させながら、最大出力： 10 kW 、周波数： 70 kHz の誘導加熱装置の誘導加熱コイルを用いて試料ホルダーだけを選択的に自己発熱させて該試料ホルダーに装着した試料を間接加熱し、 $1200^\circ\text{C}/\text{hr}$ の昇温速度で

10 1200°C まで加熱し、2時間保持した。3時間連続運転した結果、支障なく運転できることが確認された。

実施例 5

本実施例では、試料ホルダーを高温高速回転させるローター及びシャ

15 フトを電気的に絶縁性の窒化ケイ素セラミックスで構成し、また、試料ホルダーを誘電損失の大きい材料である炭化ケイ素セラミックスで構成した遠心焼結装置を使用した。また、誘電加熱手段として、出力 5 kW の工業用マイクロ波加熱装置を用いた。試料ホルダーに試料を装着し、誘電加熱により試料ホルダーだけを選択的に自己発熱させて試料を間接

20 加熱し、 $1200^\circ\text{C}/\text{hr}$ の昇温速度で 800°C まで加熱し、1時間保持した。加熱手段を誘電加熱とした他は実施例 4 と同様とした。その結果、試料ホルダー及び試料は、 800°C に間接加熱された。3時間連続運転した結果、支障なく運転できることが確認された。

25 産業上の利用可能性

以上詳述したように、本発明は、遠心焼結装置に使用するローター、

シャフト又は試料ホルダーからなる部材に係るものであり、本発明により、 1) 試料ホルダーを高温高速回転するローター及びシャフトを窒化ケイ素又は炭化ケイ素セラミックスで構成することにより、 300～1200℃の雰囲気温度を与える条件下で数十万Gの遠心力を附加しても熱変形せず、熱応力により破損しないで、耐久性に優れる装置とすることが可能となった、 2) 試料ホルダーを高温高速回転するローター及び／又は試料ホルダーを炭化ケイ素セラミックスで、また、シャフトを窒化ケイ素セラミックスで構成することにより、誘導加熱手段又は誘電加熱手段を使って、ローター又は試料ホルダーを自己発熱させることにより試料を選択的に加熱することが可能であり、それにより効率的な焼結が可能となった、 3) ローター及び試料ホルダーの少なくとも一部に、導電性炭化ケイ素セラミックス材料を用いることにより、試料を選択的に加熱することが可能となり、遠心焼結操作及びエネルギー負荷の点で、高精度及び高効率な焼結が可能となった、という格別の効果が奏される。

請求の範囲

1. セラミックス又は金属粉体からなる成形体、又はセラミックス前駆体膜に、遠心力場及び温度場を付加する遠心焼結装置に使用するローター、シャフト又は試料ホルダーからなる部材であって、試料ホルダーを回転させるローター、シャフト又は試料ホルダーをセラミックスで構成し、300～1200℃の雰囲気温度を与える条件下で10～700,000Gの遠心力を付加してもこれらが熱変形せず、熱応力により破損しないようにしたことを特徴とする遠心焼結装置のセラミックス部材。

2. 上記試料ホルダーを回転させるローター及びシャフトを窒化ケイ素又は炭化ケイ素セラミックスで構成したことを特徴とする、請求項1記載のセラミックス部材。

3. 上記試料ホルダーを回転させるローターを導電性炭化ケイ素セラミックスで構成し、誘導加熱手段を用いてローターだけを選択的に自己発熱させることにより試料を間接加熱するようにしたことを特徴とする、請求項1又は2記載のセラミックス部材。

4. 上記試料ホルダーを誘電損失の大きい材料で構成し、誘電加熱手段を用いて試料ホルダーだけを選択的に発熱させることにより試料を間接加熱するようにしたことを特徴とする、請求項1又は2記載のセラミックス部材。

5. 上記試料ホルダーを導電性炭化ケイ素セラミックスで構成したことを特徴とする、請求項4記載のセラミックス部材。

6. 請求項1から5のいずれかに記載のセラミックス部材を構成要素として含むことを特徴とする遠心焼結装置。

1 / 9

図 1

2 / 9

図 2

3 / 9

図 3

4 / 9

図 4

5 / 9

図 5

6 / 9

図 6

7 / 9

図 7

8 / 9

図 8

9 / 9

図 9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/16742

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ B22F3/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ B22F3/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2003
 Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 1219580 A (National Institute of Advanced Industrial Science and Technology), 03 July, 2002 (03.07.02), & JP 2002-193680 A	1-6
Y	JP 11-092294 A (Japan Science and Technology Corp.), 06 April, 1999 (06.04.99), (Family: none)	1-6
Y	JP 10-212182 A (Toyo Tanso Co., Ltd.), 11 August, 1998 (11.08.98), (Family: none)	1-6
Y	JP 10-087370 A (Hitachi, Ltd.), 07 April, 1998 (07.04.98), (Family: none)	1-6

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
---	--

Date of the actual completion of the international search
29 January, 2004 (29.01.04)

Date of mailing of the international search report
17 February, 2004 (17.02.04)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/16742

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 09-221367 A (Chichibu Onoda Cement Corp.), 26 August, 1997 (26.08.97), (Family: none)	1-6

A. 発明の属する分野の分類（国際特許分類（IPC））

Int C17 B22F3/06

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int C17 B22F3/06

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1996年

日本国公開実用新案公報 1971-2003年

日本国登録実用新案公報 1994-2003年

日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	次頁参照	

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

29.01.2004

国際調査報告の発送日

17.2.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

山本 一正

4K 7454

印

電話番号 03-3581-1101 内線 6729

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	E P 1 2 1 9 5 8 0 A (National Institute of Advanced Industrial Science and Technology) 2002.07.03 & J P 2 0 0 2 - 1 9 3 6 8 0 A	1-6
Y	J P 1 1 - 0 9 2 2 9 4 A (科学技術振興事業団) 1 9 9 9 . 0 4 . 0 6 (ファミリーなし)	1-6
Y	J P 1 0 - 2 1 2 1 8 2 A (東洋炭素 株式会社) 1 9 9 8 . 0 8 . 1 1 (ファミリーなし)	1-6
Y	J P 1 0 - 0 8 7 3 7 0 A (株式会社 日立製作所) 1 9 9 8 . 0 4 . 0 7 (ファミリーなし)	1-6
Y	J P 0 9 - 2 2 1 3 6 7 A (秩父小野田 株式会社) 1 9 9 7 . 0 8 . 2 6 (ファミリーなし)	1-6