"Who said that?" Building classifiers that predict which TV show character said a given line!

Christine Yang, Juliana Fakhoury, Duanchen (Dora) Liu, Jiaxuan (Isabell) Huang and Wenyu (Emma) Huang

Link to Github: www.github.com/yingyangle/whosaidthat

INTRODUCTION

Motivation: Understand which techniques are useful for authorship attribution on shorter utterances

Goal: Building classifiers that predict which character said a given line of dialogue

Methods:

- Using features
- Word embeddings

Idea: Try 3 powerful classifiers!

- Random Forests
- Logistic Regression
- Neural Networks

Hypothesis: Genre will affect accuracy

DATA

The Big Bang Theory [sitcom]

- scrape scripts from WordPress website
- split lines and label the speaker for each line
- 45,825 lines, 7 characters

The Simpsons [cartoon]

- found existing labeled scripts in .csv format
- 67,955 lines, 5 characters

Desperate Housewives [drama]

- convert .doc scripts to .csv
- standardize speaker names and formatting
- 18,437 lines, 4 characters

Speaker	Line
Howard	[no, ,, it, ', s, okay, ., what, ?]
Raj	<pre>[oh, ., very, clever, ., but, still, racist, .]</pre>
Sheldon	[i, ', ll, pay, you, 40, dollar, .]

Normalization & Preprocessing:

- Convert all letters to lowercase
- **Tokenize** and **lemmatize** words
- Convert number words into digits
- \circ Test/Train \rightarrow **20/80 split**

The Simpsons had the largest disparity in lines per character **Desperate Housewives** had the most even dataset

METHODOLOGY

FEATURES: 2 APPROACHES

Manual Feature Selection

- type-token ratio, punctuation use
- utterance length, average word length
- polarity & subjectivity (textblob)
- # of stop words, neologisms, number words, **profanity** words
- # of words in utterance that are also in each character's 20 most frequent words

Word Embeddings

- get word vector embeddings from word2vec
- o word vectors → sentence vector
- constructed embeddings using 2 corpora:
 - Google News corpus
 - show script (training data)

Lisa 0.05 Bart

Polarity & **Subjectivity** differ greatly **across shows** (above). Word Length & Utterance Length make Sheldon easily identifiable (below).

Subjectivity

RESULTS

Big Bang Theory

		Accuracy	Precision	Recall
Ma lings Fea	Random Baseline	0.25		
	Majority Baseline	0.28		
	Random Forest	0.34	0.34	0.34
	Logistic Regression	0.34	0.35	0.34
	Neural Net	0.34	0.36	0.34
	Random Forest	0.34	0.34	0.33
	Logistic Regression	0.36	0.36	0.35

0.33

0.33

0.33

CONCLUSION

Best model: Logistic Regression Best features: Word Embeddings

- Higher accuracy for almost all cases!
- On average, 6.6 percentage points above majority baseline

Hypothesis: Genre will affect accuracy

- Easiest show to predict: Desperate House
- Dramas have subplots for each character, topic might help distinguish characters

Future steps!

- Explore additional features: Arousal, Dominance, POS and Topic
- Try BERT and Google's universal sentence encoder
- Tune parameters to optimize classification
- Try more TV shows to understand if indeed genre plays a role in classification