Breakout local search for the traveling salesman problem with job-times

Yuji Zou^a, Jin-Kao Hao^{a,*}, Qinghua Wu^b

^aLERIA, Université d'Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France ^bSchool of Management, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan, China

Abstract

The traveling salesman problem with job-times combines two classic NP-hard combinatorial optimization problems: the traveling salesman problem and the scheduling problem. In this problem, a traveler visits sequentially n locations with given travel-times between locations and assigns, to each visited location, one of n jobs with location-dependent job-times. When a job is assigned to a specific location, the job starts to run at that location for its given duration. The goal of the problem is to find a job assignment to minimize the maximum completion time of the n jobs. This work presents an effective heuristic algorithm for the problem based on the breakout local search method. The algorithm combines local search to explore two dedicated neighborhoods and a mixed perturbation to escape local optimum traps. To speed up the search, we introduce a dedicated strategy to identify promising neighboring solutions. We evaluate the algorithm on four sets of 310 benchmark instances in the literature. Computational results show that the proposed algorithm outperforms the previous methods, by reporting improved best results (new upper bounds) for 291 instances and equal best results for 16 other instances. The main search components of the algorithm are investigated to shed light on their contributions to the performance of the algorithm.

Keywords: Heuristics; routing-assignment problems; combinatorial optimization; local search.

1. Introduction

The Traveling Salesman Problem with Job-times (TSPJ) (Mosayebi et al., 2021) combines the traveling salesman problem (TSP) and the scheduling problem. In this problem, a traveler starts from the depot 0, visits n given locations, and returns to the depot. For each visited location l, one job j among n given

Preprint submitted to Elsevier

October 30, 2022

^{*}Corresponding author

Email addresses: yujizou6@gmail.com (Yuji Zou), jin-kao.hao@univ-angers.fr
(Jin-Kao Hao), qinghuawu1005@gmail.com (Qinghua Wu)

jobs with location-dependent processing times (job-times) jt_{lj} is assigned and the job starts to run during that time while the traveler moves to the next location. For a given job j assigned to location l, its completion time equals the travel-time from the depot 0 to location l plus the processing time jt_{lj} . For a Hamiltonian tour with the n job-location assignment, the completion time of the n jobs is the maximum completion time among the n jobs. The goal of the TSPJ is then to find the Hamiltonian tour starting from and ending at the depot 0 and including the n job-location assignments such that the maximum completion time among the n jobs is minimized. The TSPJ belongs thus to the class of min-max problems and is at least as challenging as its composing problems. A mathematical formulation of the problem presented in (Mosayebi et al., 2021) is provided in Appendix A, which is based on a conventional integer programming formulation for the TSP.

As an illustrative example, Table 1 shows the input data of a TSPJ instance where Nodes denote the depot 0 and the locations. The left and right parts of the table show the travel-times between the nodes and the location-dependent jobtimes, respectively. Fig. 1 shows two candidate solutions, i.e., two Hamiltonian tours with the job-location assignment together with the completion time of each job. One observes that the solution of Fig. 1(b) with a completion time of 70 is better than the solution of Fig. 1(a) with a completion time of 71.

Table 1: A	In instance	of the	TSPJ.
------------	-------------	--------	-------

Nodes			(des -time	s)							obs times)			
	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	4	6	5	8	9	7	7	-	_	-	-	-	-	-	-
1	4	0	8	6	7	5	6	6	V -	18	20	17	21	19	15	16
2	6	8	0	5	7	6	10	8	-	24	18	19	20	17	26	22
3	5	6	5	0	3	8	9	5	-	20	19	18	21	22	15	24
4	8	7	7	3	0	6	5	9	-	19	17	24	20	21	16	21
5	9	5	6	8	6	0	8	8	-	17	20	19	22	21	23	16
6	7	6	10	9	5	8	0	5	-	17	20	19	22	21	18	23
7	7	6	8	5	9	8	5	0	-	17	20	19	22	21	24	25

It is easy to see that the NP-hard TSP is a special case of the TSPJ when the job-times equal 0. As a result, the TSPJ is at least as difficult as the TSP and solving the problem is computationally challenging.

As discussed in Mosayebi et al. (2021), the TSPJ is a relevant model that can be used to formulate a variety of practical scenarios including autonomous robotics (Bays & Wettergren, 2017), equipment maintenance (Rashidnejad et al., 2018), highly automated manufacturing (Das & Nagendra, 1997), agricultural harvesting (Basnet et al., 2006), and disaster recovery (Barbarosoğlu et al., 2002).

The Sequence-Dependent Robotic Assembly Line Balancing Problem of type 2 (SDRALBP-2) (Lahrichi et al., 2020) is a representative application. In this problem, there are a set of operations, a set of stations and a set of robot types with different abilities. There are three decision problems. One needs to assign the operations to the stations placed in a straight line and sequence the operations in the same station. The precedence relations between the operations need

Figure 1: Two candidate solutions for the TSPJ instance are shown. The solution of Fig. 1(b) has a completion time of 70, and is thus better than the solution of Fig. 1(a) with a completion time of 71.

to be satisfied. Finally, one needs to assign a robot to process the operations in each station. The start time of an operation is sequence-dependent since the operation should be processed one by one, and there is a setup time between the operations. The operation processing time is dependent on the robot assigned to the station. The goal of the SDRALBP-2 is to minimize the maximum workload time among all the stations to achieve the balance purpose. Another relevant application is the unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources, and learning effect (Zhang et al., 2021). In this problem, a set of jobs need to be processed with a set of parallel machines. The setup time is sequence and machine-dependent. And the job processing time is dependent on the machine. The purpose of this problem is to minimize the maximum completion time among all jobs. Both applications can be conveniently formulated with the TSPJ model.

Along with the introduction of the TSPJ, Mosayebi et al. (2021) introduced four heuristic algorithms as well as four sets of 310 benchmark instances. They performed comprehensive assessments of these heuristic algorithms on these benchmark instances. They also used the CPLEX MIP solver to solve the integer model shown in Appendix A. We review these heuristic algorithms and related works in Section 2.

Given the relevance of the TSPJ and its computational challenge, it is worth developing effective methods able to provide satisfactory solutions. Currently, such methods are still scarce in the literature, this work aims to fill the gap by presenting a new heuristic algorithm for the TSPJ. Our main contributions are summarized as follows.

We propose an effective algorithm based on the breakout local search method (BLS) (Benlic & Hao, 2013a,b,c) that features two key complementary search components. First, BLS uses a dedicated tabu search procedure to explore candidate solutions based on two specific neighborhoods combined with a neighborhood reduction strategy to make the neighborhood examination more focused.

Second, BLS employes a combined perturbation strategy that adaptively applies a random perturbation and a frequency-based perturbation to help the algorithm to escape local optimum traps.

To show the effectiveness of the proposed algorithm, we carry out extensive computational experiments on the four sets of 310 benchmark instances of (Mosayebi et al., 2021). We show that our BLS algorithm significantly outperforms the existing algorithms in the literature. Specifically, we report improved best-known results (new upper bounds) for 291 instances and equal best-known results for 16 other instances. We present additional experiments to shed light on the influences of the main search components over the performance of the algorithm.

Finally, we will make the code of our algorithm publicly available, which can be used by researchers and practitioners working on the TSPJ and related problems.

In Section 2, we review related works. In Section 3, we present the proposed algorithm. In Section 4, we provide experimental results and comparisons with existing methods. In Section 5, we analyze the main components of the algorithm to shed light on their roles. Conclusions are provided in Section 6.

2. Related works

In (Mosayebi et al., 2021), four heuristic algorithms were presented for the TSPJ: TSPJ-NN, reverse assignment, TSPJ-2-opt, and local search improvement.

The TSPJ-NN algorithm is adapted from NNH-X, a method extensively used in algorithms for the TSP. NNH-X starts with any node and then chooses the nearest node among the unvisited nodes as the next node to be visited. After all the nodes have been chosen as the first node, the tour with the shortest length is selected as the initial solution. TSPJ-NN extends this method to fit the TSPJ, which assigns the job with the minimum processing time to the location node starting from the last node with every tour produced by the NNH-X method and chooses the solution with the minimum job completion time as the initial solution.

The reverse assignment algorithm is a simple but effective method to assign the jobs to the location nodes. The nodes with a later visiting sequence start the processing later, so assigning the jobs with less processing time to those nodes may shorten the completion time. Based on this idea, the reverse assignment prioritizes the later sequence location nodes and assigns the unselected job with the minimum processing time to the later visited nodes as much as possible. Specifically, job assignment starts from the last node of the tour and moves backward while assigning the unselected jobs with the minimum processing time to every node.

The TSPJ-2-opt algorithm is adapted from 2-opt, a classical local search heuristic for the TSP (Lin, 1965). TSPJ-2-opt executes the job reverse assignment after a 2-opt operation. If an improvement is possible, the update is

accepted. Then, the algorithm starts from the first node again until no improvement is possible.

The local search improvement algorithm is much more complex. It consists of two steps. In step 1, the job assignment is reconsidered with specific rules. Only when the job assigned to the location node with the maximum completion time is not the job with the minimum processing time in that node, it is possible to improve the solution. If this condition is met, this step will continue. Otherwise, the procedure moves to step 2. In step 1, first, the job with the minimum processing time in the location node with the maximum completion time is assigned to this node, and the other nodes are assigned with the job reverse assignment procedure. If there is any improvement, the change is accepted and one goes to the start point of step 1; otherwise, the procedure continues. Second, exchanging the job on the location node with the maximum completion time with the jobs in later sequence nodes is considered. If there is any improvement, the procedure goes to the start point of step 1; otherwise, goes to step 2. In step 2, the route change is applied by swapping the sequence in the tour of the node with the maximum completion time; first, this node is swapped with its predecessor in the tour; if there is any improvement, the procedure goes to the start point of step 2; otherwise the procedure continues. The second operation is named multi-node swap. Actually, it can be regarded as a 2-opt operation that takes the node with the maximum completion time as one of the two points needed in this operation and the other point starting from the first node of the tour. If there is any improvement, the procedure continues and terminates otherwise.

As shown in (Mosayebi et al., 2021), these algorithms have reported competitive results compared to the CPLEX MIP solver. Meanwhile, one notices that these algorithms are of deterministic nature and are all based on the principle of descent search. As a result, they cannot go beyond the local optima they reached at the moment of their termination, even though there would exist local optimal solutions of superior quality. In this work, we investigate a stochastic local search approach (Hoos & Stützle, 2004) that is able to visit multiple local optima solutions to find the best possible solution.

3. Breakout local search for the TSPJ

115

Our proposed algorithm for the TSPJ is based on the general breakout local search method, which has been successively applied to a number of difficult combinatorial optimization problems, such as maximum clique (Benlic & Hao, 2013a), max-cut (Benlic & Hao, 2013b), quadratic assignment (Benlic & Hao, 2013c; Aksan et al., 2017), Steiner tree problem with revenue, budget and hop constraints (Fu & Hao, 2014), assembly sequence planning (Ghandi & Masehian, 2015), and TSP (Krari et al., 2018).

A BLS algorithm iterates a dedicated local search procedure to find highquality local optimal solutions and an adaptive perturbation procedure to escape local optimum traps. Unlike the conventional iterated local search (Lourenço et al., 2003), which typically applies random perturbations, BLS employs an adaptive multi-perturbation strategy to reach a suitable search diversification. This is achieved by dynamically determining the number of perturbation moves (i.e., the perturbation length) for different types of perturbation (e.g., random or informed perturbations). By iterating the local search phase and the adaptive perturbation phase, BLS favors the balance of search intensification and diversification and helps to better explore the given search space.

In this section, we present the first breakout local search algorithm designed for solving the TSPJ. The BLS algorithm integrates two key complementary ingredients responsible for its effectiveness: a dedicated tabu search procedure exploring two complementary neighborhoods reinforced with a neighborhood reduction technique and a combined perturbation strategy for search diversification.

70 3.1. The BLS procedure

Algorithm 1: Pseudo-code of BLS for the TSPJ

```
Input: Problem instance, time limit t_{max}, search depth \omega, minimum perturbation
            length L_{min}, maximum perturbation length L_{max}.
   Output: The best solution S_h found so far.
                                                                  /* perturbation length */
2 NoImprove \leftarrow 0;
                           /* counter of consecutive loops f_{best} is not improved */
   S_{initial} \leftarrow \text{TSPJ-NN}(); /* generation of initial solution with TSPJ-NN */
                                                                     /* current solution */
   S_b \leftarrow S;
                                                         /st best solution found so far st/
   while t_{max} is not reached do
        S_l, S_c \leftarrow \text{tabu search}(S, \omega, L_{min})
                                                                            /* Section 3.4 */
        if f(S_l) < f(S_b) then
           S_b \leftarrow S_l;
        S \leftarrow \operatorname{perturbation}(S_c, L);
                                                                            /* Section 3.6 */
10
        if L < L_{max} then
11
            L \leftarrow L + 1;
13 return S_b;
                             /* return the best solution found during the search */
```

The proposed BLS algorithm follows the basic framework of the iterated local search. It starts from an initial solution built with the TSPJ-NN heuristic (line 3). Then it alternates iteratively between a tabu search phase and a dedicated perturbation phase (line 7-10). The best solution is updated when the local optimal solution found during the tabu search improves on the best solution during the past search process (line 8-9). Meanwhile, the perturbation length is updated during the tabu search according to the search information. When the tabu search is terminated, the search is considered to stagnate in a local optimum. In this case, the perturbation phase is triggered to modify the current solution S_c with the perturbation length L to help the algorithm to escape the current local optimum. Following this, the perturbation length is increased by 1 so long as it does not reach L_{max} . The solution produced by the perturbation becomes the starting point of the next round of the algorithm. The general scheme of BLS is summarized in Algorithm 1.

3.2. Search space and solution evaluation

Given a TSPJ instance with n jobs and n locations, a candidate solution can be represented by two n-dimensional permutation vectors. Let $\pi_1: \{1, \ldots, n\} \to \{1, \ldots, n\}$ be a permutation function representing a TSP tour starting from and ending at the depot 0 and let Π_1 denote the set of all these permutation functions. Let $\pi_2: \{1, \ldots, n\} \to \{1, \ldots, n\}$ be a job-location assignment and let Π_2 denote the set of all these assignments. Then a candidate solution can be represented as $S = (\pi_1, \pi_2), \pi_1 \in \Pi_1, \pi_2 \in \Pi_2$. The search space is formally defined as follows:

$$\Omega = \{ (\pi_1, \pi_2) : \pi_1 \in \Pi_1, \pi_2 \in \Pi_2 \}$$
 (1)

Given a solution $S \in \Omega$ in the search space, its quality is assessed by the evaluation function f:

$$f(S) = \max(\max(TS_l + \sum_{j=1}^{n} Z_{lj}jt_{lj}), TS_l + Z_{l0}jt_{l0}) \quad \forall l = 1, \dots, n$$
 (2)

where TS_l is the processing start time of the job assigned to location node l, the binary variable Z_{lj} equals 1 or 0 according to whether job j is assigned to location node l or not, and jt_{lj} is the job processing time of job j in location node l.

3.3. Initial solution

BLS uses the TSPJ-NN heuristic of (Mosayebi et al., 2021) to obtain an initial solution of reasonable quality. Compared with NNH-X for the TSP, TSPJ-NN considers not only the traveling time but also the job processing time. It can be seen as an extension of NNH-X, which executes the job reverse procedure every time a tour is obtained with a selected node as the first node of the tour. The specific steps of TSPJ-NN are as follows:

- Select any node as the starting node, then choose the nearest unvisited node as the next node; continue this until a TSP tour is obtained. Start from the last node of the tour and assign the unassigned job with the minimum processing time to this node; continue this operation backward till all jobs have been assigned. Calculate the latest job completion time as the objective of the generated solution.
- After all the nodes have been used as the first node of a tour, choose the solution with the minimum completion time as the initial solution.

3.4. Examination of candidate solutions with tabu search

BLS uses tabu search (TS) (Glover & Laguna, 1998) to examine candidate solutions of the search space defined in Section 3.2. In this section, we present the general tabu search procedure while the two neighborhoods it explores are presented in Section 3.5.

The general scheme of the tabu search procedure is summarized in Algorithm 2 while its main components are presented in the following subsections. Starting from a given input solution S, the algorithm iteratively examines other candidate solutions by exploring two neighborhoods. At each iteration, TS chooses the best eligible neighboring solution among the available neighboring solutions to become the current solution S_c (lines 4-7). Since a neighborhood reduction is applied, it may happen that no neighboring solution is available. In this case, the current solution is slightly perturbed (with perturbation length of 1) (line 8). Each time the current solution S_c becomes better than the recorded local best solution S_l found by the current tabu search run, S_l is updated by S_c (lines 10-11). If S_c is also better than the global best solution S_b from the BLS algorithm, the counter for consecutive non-improvement loops is reset to 0 and the perturbation length L is reset to its minimum L_{min} (lines 12-14). Otherwise, if the current iteration does not update S_b , the consecutive non-improvement counter NoImprove is incremented by 1 (line 15). After the move operation, the tabu list is updated according to the information of the move and the current iteration; meanwhile, the frequencies of the edges or jobs related to the executed move are also updated. When the NoImprove counter reaches ω (a parameter), the search is considered to be trapped in a deep local optimum. The TS procedure terminates and returns the local best solution S_l and its current solution S_c . As shown in Algorithm 1 (Section 3.1), S_l will be used by the BLS algorithm to conditionally update the global best solution, while S_c will be used as input of the perturbation procedure (Section 3.6).

3.5. Neighborhoods

Tabu search examines candidate solutions by exploring two neighborhoods induced by two basic move operators (denoted by 2-opt and j-swap).

3.5.1. 2-opt neighborhood

2-opt (Lin, 1965) is a well-known operator for the TSP. The 2-opt operator basically deletes two edges of the current tour and adds two new edges (see Fig. 2 for an illustrative example). For the TSP, the objective is related to the tour length difference between the two added edges and the two removed edges. The TSPJ is much different since the job start time in the nodes of the reversed edges is changed, so the objective variance after a 2-opt move is much more complex to calculate. The simplest way to obtain the objective value after a 2-opt move is to calculate, for each location node of the tour, the arriving time, i.e., job processing start time, thus getting the job completion time. However, this is time-consuming.

To accelerate the neighborhood evaluation, our BLS algorithm uses a neighborhood reduction method to eliminate unpromising neighboring solutions. Let l_m denote the node that has the maximum completion time. As shown in Fig. 2(c), when l_m is visited behind the second node involved in the 2-opt move, if $\Delta = D_{ac} + D_{bd} - D_{ab} - D_{cd} > 0$, where D is the distance between any two nodes, then we know that such a move results in a longer tour, increases the

Algorithm 2: Pseudo-code of tabu search

 $NoImprove \leftarrow NoImprove + 1;$

Update the tabu list TL and the frequency matrices F_e, F_j ;

15

16

18 return S_l , S_c ;

Input: Input solution S, reduced neighborhood N_1 , N_2 , search depth ω , minimum perturbation length L_{min} , current global best solution found so far S_b . Output: The current solution S_c , the local optimal solution found during tabu search S_l . 1 $NoImprove \leftarrow 0$; /* initialization of non-improvement iteration counter */ /* S_c is the current solution */ $S_l \leftarrow S;$ /* S_l records the local best solution found during tabu search */ while $NoImprove < \omega$ do if $N_1(S_c) \cup N_2(S_c) \neq \emptyset$ then Choose the best eligible neighboring solution $S' \in N_1(S_c) \cup N_2(S_c)$; 6 else $S_c \leftarrow perturbation(S_c, 1);$ 9 if $f(S_c) < f(S_l)$ then 10 $S_l \leftarrow S_c;$ 11 if $f(S_c) < f(S_b)$ then 12 13 $NoImprove \leftarrow 0;$ $L \leftarrow L_{min};$ 14

job start time in l_m , and leads to the increase of the finishing time. Thus, it is no use to consider such moves in the search process. In our BLS, we ignore them. We have observed that l_m is often visited in the later sequence. So most of the solutions produced by a 2-opt move are as shown in Fig. 2(c), that are not considered by BLS.

Formally, the reduced neighborhood N_1 is defined as Eqs. (3) - (5), where S is the given solution, $N_1'(S)$ is the whole 2-opt neighborhood, and $N_{f1}(S)$ is the set of filtered neighborhood, $e_1 = (l_a, l_b)$ and $e_2 = (l_c, l_d)$ are the two deleted edges with their nodes l_a, l_b, l_c, l_d , E is the edge set, $S \oplus 2$ -opt (l_a, l_b, l_c, l_d) is the resulting neighboring solution. Let p be the variation representing the position of the location node in the tour and l_a be the p_a th location node to be visited. We use Δ'' to denote the tour length variation resulting from the 2-opt.

$$N_1(S) = N_1'(S) \setminus N_{f1}(S) \tag{3}$$

$$N_1'(S) = \{S' : S' = S \oplus 2\text{-}opt(l_a, l_b, l_c, l_d), (l_a, l_b) = e_1, (l_c, l_d) = e_2, e_1, e_2 \in E\}$$

$$(4)$$

$$N_{f1}(S) = \{S'' : S'' = S \oplus 2\text{-}opt(l_a, l_b, l_c, l_d), p_m \ge max\{p_a, p_b, p_c, p_d\}, \Delta'' > 0\}$$
(5)

Figure 2: Three possible 2-opt moves according to the position of the node with the maximum completion time denoted by l_m . (a) l_m belongs to the reversed edge, (b) l_m is before the first node of 2-opt, (c) l_m is behind the second node of 2-opt.

At each iteration, instead of examining all neighboring solutions in $N_1'(S)$ induced by 2-opt move, our BLS algorithm examines the reduced neighborhood $N_{f1}(S)$ to focus on promising solutions only. The size of the $N_1'(S)$ neighborhood is n*(n-1)/2. The time complexity of calculating the objective value of a neighboring solution is O(n). So the time complexity of examining $N_1'(S)$ is $O(n^3)$. For the reduced neighborhood $N_{f1}(S)$, there are three cases for the 2-opt move, as shown in Fig. 2. For the cases of Fig. 2(a) and 2(b), O(n) time is needed to identify the objective value of a neighboring solution. For the case of Fig. 2(c), the worst situation is that the Δ'' values resulting from the move are all less than 0. Then the time complexity is the same as for $N_1'(S)$, i.e., $O(n^3)$. The best situation is that the Δ'' values are all greater than 0 and m is equal to n, the time complexity becomes $O(n^2)$. From the experimental results in Section 5.1, we can observe that the neighborhood reduction can significantly improve the effectiveness of the BLS algorithm.

3.5.2. j-swap neighborhood

The j-swap operator is inspired by the popular swap operator, which is extremely effective for permutation-based assignment problems like quadratic assignment (Benlic & Hao, 2013c, 2015; Taillard, 1991). Since the TSPJ includes a job assignment task, we naturally adopt j-swap for this problem.

The j-swap operator exchanges the assignments of two jobs (see Fig. 3 for an example). Thus only the job processing times of the two involved nodes are exchanged without changing the processing start time of each exchanged job. It is easy to observe that only changing the job assigned to the node with the maximum completion time (i.e. l_m) may decrease (improve) the objective value. So in our algorithm, we constrain j-swap to focus on the moves related to that job only. In other words, j-swap only changes the job assigned to the location

Figure 3: j-swap, exchange the job j_e assigned to the node having the maximum completion time l_m with another job j_b assigned to location node l_r .

with the maximum completion time with another job.

Formally, the reduced j-swap neighborhood N_2 is defined as follows, where j_b and j_e are the jobs exchanged in j-swap, and m is the index of the location node with the maximum completion time l_m .

$$N_2(S) = \{ S' : S' = S \oplus j\text{-swap}(j_b, j_e), jt_{mb} < jt_{me} \}$$
 (6)

As shown in Fig. 3, we try to exchange the job j_e assigned to l_m with another job. Let jt_{me} be the processing time of j_e in the location node l_m , let jt_{mb} be the processing time of the job to be changed to l_m . Then only when $jt_{mb} < jt_{me}$ is satisfied, we consider this move operation. Clearly the time complexity of our constrained j-swap operator is O(n), reducing significantly the time complexity $O(n^2)$ for the unconstrained j-swap operator.

3.5.3. Tabu list management

Our BLS algorithm employs two tabu lists to avoid short-term cycling: an edge tabu list for 2-opt move and a job tabu list for j-swap. For 2-opt, once an edge e is deleted from the solution by the 2-opt move, the edge is added to the edge tabu list and is forbidden to be added again to the solution during the next consecutive β iterations (β is the so-called tabu tenure). So if any of the two new edges used by the 2-opt move is in tabu statue, this move will not be performed. Similarly, for j-swap, when a job j is removed from a location node l, the job is forbidden to be assigned to this location node l again during the next consecutive β iterations.

During the search process, the best neighboring solution not forbidden by any tabu list is selected to replace the current solution. Notice that the tabu statue of a move is ignored if it can produce a solution better than the best solution ever found, which is called aspiration criterion (Glover & Laguna, 1998).

3.6. Combined perturbation

The tabu mechanism can prevent the search from the short-term cycles, but it may fail to prevent the algorithm from being trapped into deep local optima.

Algorithm 3: Pseudo-code of combined perturbation

```
Input: Input solution S_c, frequency matrices F_e, F_j.
    Output: Perturbed S.
 1 Identify the job assigned to the node with the maximum completion time j_m in S_c
     if rand(0,1) < 0.5 then
          /With probability 0.5, apply random perturbation;
2
        if rand(0,1) < 0.5 then
3
             e_1, e_2 \leftarrow Two randomly choosed edges in S_c;
 4
             S \leftarrow \text{Execute the } 2\text{-}opt \text{ operation with } e_1 \text{ and } e_2;
 6
                 \leftarrow A randomly choosed job;
             S \leftarrow \text{Exchange } j_m \text{ and } j_r;
9
   else
          With probability 0.5, apply frequency-based perturbation;
10
        if rand(0,1) < 0.5 then
11
             e_3, e_4 \leftarrow Two edges with the least and the second least move frequency;
12
              S \leftarrow \text{Execute the } 2\text{-}opt \text{ operation with } e_3 \text{ and } e_4;
13
14
                 \leftarrow The job with the least move frequency
15
                \leftarrow Exchange j_m and j_f;
16
17 Update the frequency matrices F_e and F_i;
18 return S;
```

To boost the global diversification of the algorithm, we introduce a dedicated perturbation strategy, which is triggered when the search is judged to be stagnating. According to the general BLS approach, our BLS algorithm for the TSPJ mixes two types of perturbations: informed perturbation (guided by historical search information related to move frequencies) and random perturbation. Indeed, frequency-guided perturbation has proved to be quite successful in several algorithms (Zhou & Hao, 2017; Li et al., 2020), while random perturbation is very popular in iterated local search algorithms.

The perturbation strategy is described in Algorithm 3. We choose the perturbation type with an equal probability (line 1). There are two move operators for perturbation, which are applied with an equal probability as well. For the random perturbation, we randomly select two edges to be replaced for the 2-opt move and a job to exchange with the job assigned to the location node with the maximum completion time (lines 3-8). For the frequency-based perturbation, we use the move frequency of the edges and the jobs to guide the perturbation (lines 10-16). For this, we maintain a long-term memory represented by two vectors F_e and F_j to record the number of times an edge or a job is involved in a 2-opt or j-swap move. We select the edges or location nodes that have the least and second least frequency to perform the perturbation. The specific steps are as follows:

- Initially, set the frequency of all edges and jobs to 0, i.e., $F_e(e) = 0, F_j(j) = 0$ for each edge $e \in E$, job $j \in J$, where E is the edge set and J is the job set.
- Subsequently, during the search process, F_e and F_j are updated each time a

2-opt or j-swap move is performed.

- Finally, the random or frequency-based perturbation is applied with equal probability and each chosen perturbation performs, with equal probability, either the 2-opt or j-swap move L times (L is the perturbation length). During the perturbation process, the frequency vectors are updated.

4. Computational results

We now report extensive computational results of the proposed BLS algorithm on benchmark instances and comparisons with state-of-the-art algorithms.

4.1. Benchmark instances

Our experiments are based on four sets of 310 instances with different sizes introduced in Mosayebi et al. (2021). The traveling distance between different locations of the instances in Set I is from the TSPLIB (Reinelt, 1991), whose optimal solutions for the TSP are known. The job processing time in different location nodes is generated randomly and is required to be between 50 to 80 percent of the optimal tour length. The traveling time and the job processing time in other sets are all produced randomly. The job processing time is required to be under 50 to 80 percent of the tour length obtained by the NNH-X heuristic and 2-opt. More information about these instances can be found in Mosayebi et al. (2021)¹.

Set I (10 instances): These instances are constructed based on 10 TSP instances from the TSPLIB: gr17, gr21, gr24, fri26, bays29, gr48, eil51, berlin52, eil76, and eil101.

Set II, Set III, Set IV (100 instances per set): The instances from these sets are constructed randomly. The node and job numbers are from 40 to 50, 400 to 500, and 1000 to 1200, respectively, which cover small, medium, and large instances.

4.2. Experimental protocol and reference algorithms

Table 2: Parameters tuning results.

Parameter setting. BLS has four parameters: tabu tenure β , search depth ω , minimum perturbation length l_0 , maximum perturbation length l_{max} . In order to calibrate these parameters, we used the "IRACE" (López-Ibáñez et al.,

 $^{^1{}m The}$ instances are available at https://github.com/TSPJLIB

2016) package to automatically identify a set of suitable parameter values. In this experiment, we randomly selected 1 instance from Set I, 3 instances from Set II, Set III, Set IV, respectively. The maximum number of runs (tuning budget) was set to be 1000. The candidate values of these parameters and the final selected values are shown in Table 2.

Reference algorithms. For our comparative study, we use as our reference methods the four heuristic algorithms proposed in Mosayebi et al. (2021) (denotated by Pro.I, Pro.II, Pro.III and Pro.IV), which represent the state-of-the-art for solving the TSPJ. Given that the source codes of these algorithms are unavailable, we faithfully re-implemented them, and verified that the results from our implementation match the results initially reported in Mosayebi et al. (2021). In addition to these main reference algorithms, we also run the CPLEX solver on the mathematical model presented in Appendix A with a time limit of 7200 seconds.

Experimental setting. BLS and the re-implemented reference algorithms were programmed in C++ and complied with the g++ compiler with the -O3 option. All the experiments were conducted on a computer with an Intel Xeon E5-2670 processor of 2.5 GHz CPU and 6 GB RAM running Linux. In order to eliminate stochastic factors, each algorithm was run 10 times on each instance with a different random seed per run.

Stopping condition. The reference algorithms are of deterministic nature and stop when no improvement can be reached. To make a fair comparison between BLS and the reference algorithms, we identify the average running time required by the four reference algorithms from Mosayebi et al. (2021) to reach their best solutions for the 10 instances of Set I and the average running time required by them to find their best solutions for the 100 instances of Set II, Set III and Set IV.

Specifically, for Set I, the cutoff time is set to be 60 seconds for eil101-J, 30 seconds for gr48-J, eil51-J, berlin52-J and eil76-J, 10 seconds for the 5 remaining instances. For the other sets, the cutoff time is 0.0012 seconds for Set II, 2.19 seconds for Set III and 33.93 seconds for Set IV. As such, our BLS algorithm is run under a fair stopping condition compared to the reference algorithms.

Finally, in order to better show the long term behavior of our BLS algorithm, we additionally run BLS with a relaxed stopping condition, 30 seconds for Set II, 50 seconds for Set III and 70 seconds for Set IV.

4.3. Computational results and comparison

This section reports the comparative results between the proposed BLS algorithm and reference algorithms (denotated by Pro.I, Pro.II, Pro.III and Pro.IV). The results are obtained according to the experimental protocol above.

The comparative results of the BLS and the four reference algorithms are summarized in Table 3 while the detailed results on each instance are provided in Appendix B (Table B.6 - Table B.12). In Table 3, the first column indicates the benchmark set. Column 2 presents the cut-off time running by our BLS, for Set I which has detailed results in Mosayebi et al. (2021). Column 3 shows

Table 3: Summary of the number of instances where BLS reports a better (W), equal (T) or worse (L) f_{best} value compared to the results in Mosayebi et al. (2021) including the p-values from the Wilcoxon singed-rank test on the benchmark sets between BLS and each reference algorithm Pro.I, Pro.II, Pro.III and Pro.IV.

Instance	Cut-off time(s)	Pair algorithms	W	Т	L	p-value
		BLS vs. BKS	9	1	0	0.0077
		BLS vs. Pro.I	9	1	0	0.0077
Set I	-	BLS vs. Pro.II	10	0	0	0.0020
		BLS vs. Pro.III	9	1	0	0.0077
		BLS vs. Pro.IV	9	1	0	0.0077
		BLS vs. BKS	46	18	36	0.6662
		BLS vs. Pro.I	80	13	7	2.389e-12
Set II	0.0012	BLS vs. Pro.II	69	7	29	1.384e-4
		BLS vs. Pro.III	76	16	8	8.332e-12
		BLS vs. Pro.IV	79	11	10	3.58e-12
		BLS vs. BKS	98	0	2	4.5e-18
		BLS vs. Pro.I	100	0	0	3.876e-18
Set III	2.19	BLS vs. Pro.II	98	0	2	4.371e-17
		BLS vs. Pro.III	100	0	0	3.877e-18
		BLS vs. Pro.IV	100	0	0	3.877e-18
		BLS vs. BKS	97	0	3	9.246e-17
		BLS vs. Pro.I	99	0	1	4.874e-17
Set IV	33.93	BLS vs. Pro.II	98	0	2	8.479e-16
		BLS vs. Pro.III	99	0	1	5.166e-17
		BLS vs. Pro.IV	98	0	2	5.399e-17
		BLS vs. BKS	84	15	1	1.363e-15
		BLS vs. Pro.I	91	8	1	8.58e-17
Set II	30	BLS vs. Pro.II	97	3	0	1.13e-17
		BLS vs. Pro.III	88	11	1	2.754e-16
		BLS vs. Pro.IV	91	8	1	1.231e-16
		BLS vs. BKS	99	0	1	3.98e-18
		BLS vs. Pro.I	100	0	0	3.881e-18
Set III	50	BLS vs. Pro.II	99	0	1	3.998e-18
		BLS vs. Pro.III	100	0	0	3.882e-18
		BLS vs. Pro.IV	100	0	0	3.883e-18
		BLS vs. BKS	99	0	1	7.547e-17
		BLS vs. Pro.I	99	0	1	3.186e-19
Set IV	70	BLS vs. Pro.II	99	0	1	7.548e-17
		BLS vs. Pro.III	99	0	1	3.234e-17
		BLS vs. Pro.IV	99	0	1	2.711e-17

the compared algorithms including the best-known solutions (BKS). Columns 4-6 indicate the number of instances for which BLS obtains a better, equal, or worse f_{best} value compared to each reference algorithm. To check the statistical significance of the compared results, the p-values from the Wilcoxon singned-rank test on f_{best} values over the instances from the same set between BLS and the compared algorithms are shown in column 7 and a p-value smaller than 0.05 indicates a statistical significant difference.

From the summarized results of Table 3 and detailed results of Appendix B, we observe that our BLS algorithm performs extremely well compared to the algorithms proposed in Mosayebi et al. (2021). In particular, BLS discovers 291 record-breaking results (new upper bounds) out of the 310 instances while matching the best-known results for 16 other instances. BLS reports a slightly worse result only on 3 instances (instance 36 in Set II, instance 48 in Set III, instance 19 in Set IV), with a small gap to the best-known result of 0.38%, 0.03%, and 0.2% respectively.

The p-values of Table 3 from the Wilcoxon signed-rank test are much smaller than 0.05 except for the results of Set II with the extreme short running time. Nevertheless, the results of our BLS are still better for most instances. It can be confirmed that the results of our BLS are significantly better than the compared results.

4.4. Convergence analysis

Figure 4: Convergence curves (running profiles) of BLS and three reference procedures for solving instance 61 from set IV.

To illustrate the running behavior of the compared algorithms during the search process, we provide in Fig. 4 their convergence curves (also called running profiles) of the BLS algorithm and three reference procedures on instance 61 from set IV, where the X-axis and Y-axis show the running time in seconds and the best objective value, respectively. The procedure II is ignored in this study because it focuses on the tour length optimization first, then constructs the final solution with the job reverse procedure. Hence, it is impossible to get the objective value of this procedure during the search process.

From Fig. 4, we observe that BLS and Pro.IV improve their best solutions more drastically than Pro.I and Pro.II. More importantly, BLS is able to continue its improvement along the time while the reference procedures fail to do so from some time point. This indicates that BLS has a lasting search capacity, making it possible for the algorithm to reach high-quality solutions that the reference algorithms cannot attain.

5. Assessment of algorithmic components

In this section, we analyze the two essential components of our BLS algorithm: neighborhood reduction and frequency-based perturbation.

5.1. Importance of the neighborhood reduction

To verify the importance of the neighborhood reduction on the BLS algorithm, we created a BLS variant named BLS-NoReduction, which did not use the neighborhood reduction. We run the two algorithms independently 10 times on the large size instances of set IV, using the parameters in Section 4.2 and

a cut-off time of 70 seconds per run and per instance. Table 4 summarizes the comparative results of BLS and BLS-NoReduction on these 100 instances. From these two tables, one observes that BLS significantly dominates BLS-NoReduction, indicating that the performance of BLS deteriorates greatly if the neighborhood reduction is removed from the algorithm. This experiment confirms thus the usefulness of the neighborhood reduction as a critical technique contributing to the effectiveness of the BLS algorithm.

Table 4: Summarized results of BLS and BLS-NoReduction on the 100 large instances of Set III in terms of average result and running time together with the p-values from the Wilcoxon singed-rank test.

	BLS-NoReduction	BLS
Average	14932.4	13653
T_{avq}	70.009	31.09
p-value	4.96e-18	

5.2. Influence of the frequency-based perturbation

The frequency-based perturbation is designed to help the algorithm to escape local optimum traps. To show the influence of this strategy, we created a variant of BLS named BLS-Random which only applies the random perturbation mentioned in Section 3.6. We ran BLS-Random on all the instances under the relaxed stopping condition discussed in Section 4.2. The results were summarized in Table 5. In this table, columns 2 and 3 show for BLS and BLS-Random the grand average of the best objective values of all the instances of each set. Columns 5-7 present the number of instances for which the BLS algorithm reached a better, the same and a worse result compared to BLS-Random.

Table 5 shows that BLS with the frequency-based perturbation performs significantly better than the variant with the random perturbation only. This experiment confirms the benefit of the frequency-based perturbation for the performance of the BLS algorithm.

Table 5: Summarized results of BLS and BLS-Random, including the number of instances for which BLS reports a better (W), equal (T) or worse (L) average value compared to BLS-Random and the p-values from the Wilcoxon singed-rank test.

Instance	$_{\mathrm{BLS}_{Avg}}$	${\tt BLS-Random}_{Avg}$	p-value	W	т	L
Set I Set II Set III Set IV	3729.90 280.85 3463.19 13625.51	3730.41 281.58 3469.73 13642.81	0.00018 3.176e-7 4.96e-18	2 46 62 69	8 56 24 26	0 8 14 5

6. Conclusion

As a combined routing and scheduling problem, the Traveling Salesman Problem with Job-time has a number of relevant practical applications in real

- life. This paper introduced a breakout local search algorithm, which employs a tabu search to explore two dedicated neighborhoods and applies a combined perturbation to escape local optima. A neighborhood reduction strategy was designed to identify promising neighbor solutions and accelerate the search process
- The proposed algorithm has been assessed on four sets of 310 instances in the literature and showed a highly competitive performance compared to the current best methods. Specifically, our algorithm has established new best-known results (updated upper bounds) for 291 out of the 310 benchmark instances (> 93% cases). Additional experiments have confirmed the usefulness of the neighborhood reduction and combined perturbation for the performance of the algorithm.

The algorithm in this work can be further improved. First, since the TSPJ involves two classic NP-hard problems, the search space is extremely complex. It is worth investigating other neighborhoods based on dedicated features of the problem to be able to explore the space more effectively. Second, the algorithm needs to make decisions during its search process (e.g., when should the perturbation be triggered, which type of perturbation should be applied...). To ensure informative decisions, reinforcement learning techniques could be useful. Finally, no dedicated exact algorithm exists for the problem studied in this work. Research on exact algorithms is thus needed.

Acknowledgments

We thank the authors of (Mosayebi et al., 2021) for making the TSPJ benchmark instances available and answering our questions. This work was partially supported by the National Natural Science Foundation Program of China (Grant No. 72122006). Support from CSC (Grant No. 202106050037) for the first author is acknowledged.

References

- Aksan, Y., Dökeroglu, T., & Cosar, A. (2017). A stagnation-aware cooperative parallel breakout local search algorithm for the quadratic assignment problem. Computers & Industrial Engineering, 103, 105–115.
- Barbarosoğlu, G., Özdamar, L., & Cevik, A. (2002). An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. *European Journal of Operational Research*, 140, 118–133.
- Basnet, C. B., Foulds, L. R., & Wilson, J. M. (2006). Scheduling contractors' farm-to-farm crop harvesting operations. *International Transactions in Operational Research*, 13, 1–15.
- Bays, M. J., & Wettergren, T. A. (2017). Service agent–transport agent task planning incorporating robust scheduling techniques. Robotics and Autonomous Systems, 89, 15–26.

- Benlic, U., & Hao, J.-K. (2013a). Breakout local search for maximum clique problems. Computers & Operations Research, 40, 192–206.
 - Benlic, U., & Hao, J.-K. (2013b). Breakout local search for the max-cut problem. Engineering Applications of Artificial Intelligence, 26, 1162–1173.
 - Benlic, U., & Hao, J.-K. (2013c). Breakout local search for the quadratic assignment problem. Applied Mathematics and Computation, 219, 4800–4815.
 - Benlic, U., & Hao, J.-K. (2015). Memetic search for the quadratic assignment problem. *Expert Systems with Applications*, 42, 584–595.
 - Das, S. K., & Nagendra, P. (1997). Selection of routes in a flexible manufacturing facility. *International Journal of Production Economics*, 48, 237–247.
- Fu, Z.-H., & Hao, J.-K. (2014). Breakout local search for the steiner tree problem with revenue, budget and hop constraints. European Journal of Operational Research, 232, 209–220.
 - Gavish, B., & Graves, S. C. (1978). The travelling salesman problem and related problems. *Working paper*, *GR-078-78*, Operations Research Center, Massachusetts Institute of Techno.
 - Ghandi, S., & Masehian, E. (2015). A breakout local search (BLS) method for solving the assembly sequence planning problem. Engineering Applications of Artificial Intelligence, 39, 245–266.
- Glover, F., & Laguna, M. (1998). Tabu search. In *Handbook of Combinatorial Optimization* (pp. 2093–2229). Springer.
 - Hoos, H. H., & Stützle, T. (2004). Stochastic Local Search: Foundations & Applications. Elsevier / Morgan Kaufmann.
 - Krari, M. E., Ahiod, B., & Benani, B. E. (2018). Breakout local search for the travelling salesman problem. *Computing and Informatics*, 37, 656–672.
- Lahrichi, Y., Deroussi, L., Grangeon, N., & Norre, S. (2020). A min-max path approach for balancing robotic assembly lines with sequence-dependent setup times. In *Proceedings of 13ème Conference Internationale de Modlisation, Optimisation et Simulation (MOSIM 2020), 12-14 November, Agadir, Marocco.*
- Li, M., Hao, J.-K., & Wu, Q. (2020). General swap-based multiple neighborhood adaptive search for the maximum balanced biclique problem. *Computers & Operations Research*, 119, 104922.
 - Lin, S. (1965). Computer solutions of the traveling salesman problem. *Bell System Technical Journal*, 44, 2245–2269.
- López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. *Operations Research Perspectives*, 3, 43–58.

- Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In *Handbook of Metaheuristics* (pp. 320–353). Springer.
- Mosayebi, M., Sodhi, M., & Wettergren, T. A. (2021). The traveling salesman problem with job-times (tspj). Computers & Operations Research, 129, 105226.
 - Rashidnejad, M., Ebrahimnejad, S., & Safari, J. (2018). A bi-objective model of preventive maintenance planning in distributed systems considering vehicle routing problem. *Computers & Industrial Engineering*, 120, 360–381.
- Reinelt, G. (1991). Tsplib—a traveling salesman problem library. ORSA Journal on Computing, 3, 376–384.
 - Taillard, É. D. (1991). Robust taboo search for the quadratic assignment problem. *Parallel Computing*, 17, 443–455.
- Zhang, L., Deng, Q., Lin, R., Gong, G., & Han, W. (2021). A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect. Expert Systems with Applications, 175, 114843.
 - Zhou, Y., & Hao, J.-K. (2017). Frequency-driven tabu search for the maximum s-plex problem. *Computers & Operations Research*, 86, 65–78.

Appendix A. Mathematical model of the TSPJ (Mosayebi et al., 2021)

The mathematical model of the TSPJ presented in (Mosayebi et al., 2021) is based on the classical TSP model proposed by Gavish & Graves (1978). The TSPJ can be defined on an complete graph G = (L, E) and a job set J. Let E be a set of edges, and $L = (l_0, l_1, \ldots, l_n)$ be the set of location nodes with the vertex 0 being the depot. Some other notions used in the model are:

Parameters:

 Y_{lk} : The sequence number of edges visited;

 C_{max} : The maximum completion time among all the jobs;

 TS_l : The arriving time at node l, also the time to start work of the job assigned to this node;

 D_{lk} : The travel-time from node l to node k;

 jt_{lj} : The processing time of job j assigned to node l;

Variables:

 X_{lk} : Indicating whether the edges E_{lk} is traversed from node l to node k; Z_{lj} : Indicating whether the job j is assigned to the location node l;

On the basis of the above mentioned parameters and decision variables, the TSPJ is formulated as the following mixed integer program:

$$\min C_{max} \tag{A.1}$$

s.t.
$$C_{max} \ge TS_l + \sum_{j=1}^{n} Z_{lj} j t_{lj} \quad \forall l = 1, \dots, n$$
 (A.2)

$$C_{max} \ge TS_l + Z_{l0}jt_{l0} \quad \forall l = 1, \dots, n$$
(A.3)

$$\sum_{l=1}^{n} Z_{lj} = 1 \quad \forall j = 1, \dots, n \tag{A.4}$$

$$\sum_{j=1}^{n} Z_{lj} = 1 \quad \forall l = 1, \dots, n$$
(A.5)

$$\sum_{k=0}^{n} X_{lk} = 1 \quad \forall l = 0, \dots, n \quad l \neq k$$
(A.6)

$$\sum_{l=0}^{n} X_{lk} = 1 \quad \forall k = 0, \dots, n \quad l \neq k$$
(A.7)

$$\sum_{k=0}^{n} Y_{lk} - \sum_{k=0}^{n} Y_{kl} = 1 \quad \forall l = 1, \dots, n \quad l \neq k$$
(A.8)

$$Y_{lk} \le nX_{lk} \quad \forall l = 1, \dots, n \quad \forall k = 0, \dots, n \quad l \ne k$$
 (A.9)

$$TS_l + D_{lk} - (1 - X_{lk})M \le TS_k \quad \forall l = 0, \dots, n \quad \forall k = 1, \dots, n \quad l \ne k$$
(A.10)

$$X_{lk}, Z_{lj} \in \{0, 1\}, \quad TS_l, Y_{lk} \ge 0 \quad \forall l = 1, \dots, n \quad k = 0, \dots, n \quad j = 1, \dots, n$$
(A.11)

Eqs. (A.1)-(A.3) are used to calculate the objective value. Eqs. (A.4) and (A.5) are the job assignment constraints, which require that one job is assigned to one location node and vice versa. Eqs. (A.6) and (Eqs.A.7) are the route restrictions that force that all the nodes are visited only once. Eqs. (A.8) and (Eqs.A.9) are the subtour eliminators. Eq. (A.10) is the job processing start time restriction between different location nodes; the node arriving time (i.e., the job processing start time) cannot be less than the arriving time of the previous location node plus the traveling time between them. M is a large enough number. Eq. 6(A.11) defines the domain of each variable X,Z,Y and TS.

Appendix B. Detailed results

This section shows detailed computational results of the proposed BLS algorithm compared to the results of the reference algorithms in (Mosayebi et al., 2021) on the four sets of TSPJ benchmark instances. The results of the CPLEX

MIP solver with the model of Appendix A with a time limit of 7200 seconds are also included for the (small) instances of Set I.

620

Table B.6 shows the results on the 10 instances of Set I. In this table, column 1 gives the name of instances, columns 2 and 3 show the upper bound and lower bound obtained by GAMS/CPLEX, columns 4 and 5 show the best results among the reference algorithms and the time needed to reach each result. The data in columns 2 - 5 are directly extracted from (Mosayebi et al., 2021). Columns 6 and 7 give the results obtained by our BLS algorithm under the cutoff conditions given in Section 4.2. gap-1 and gap-2 in columns 8 and 9 are the gaps between our results with respect to the best upper bound obtained by CPLEX and the reference algorithms, respectively. A negative gap (in bold) indicates an improved upper bound. We observe that BLS can find improved upper bounds for all instances except one case.

Table B.7 shows the results on the 100 instances of Set II. Column 1 is the name of the instance, columns 2 - 3 show the best results among the four reference algorithms of (Mosayebi et al., 2021) and the times needed to attain these best results. Columns 4 - 7 are the results of our BLS algorithm according to two stopping conditions (see Section 4.2) and the time to get these results. BLS-1 shows the results under the cutoff condition of (Mosayebi et al., 2021) (0.0012 seconds for Set II). BLS-2 shows the results under the relaxed cutoff condition (30 seconds for Set II). Columns 8 and 9 show the upper and lower bound from the CPLEX MIP solver using the model of Appendix A. Columns 10 - 11 show the gaps between BLS with the best-known results. A negative gap (in bold) indicates an improved upper bound. We observe that BLS can find improved upper bounds for all instances except 17 cases.

Tables B.8 and B.9 shows the results on the 200 instances of sets III and IV with the same information as in Table B.7 except that the results of CPLEX are not reported due to the fact that CPLEX reports within 7200 seconds bad results for the instances of Set III and even fails to find a feasible solution for the instances of Set IV. From these results, we observe that BLS is able to improve all previous upper bounds for the 200 instances of sets III and IV except 2 cases.

Finally, Tables B.10 - B.12 show the best results and the times to get these results of the four re-implemented algorithms of (Mosayebi et al., 2021) on each instance of Set II, Set III, and Set IV, respectively. These results were obtained under the cutoff condition of (Mosayebi et al., 2021). We observe that compared to the results reported in (Mosayebi et al., 2021), our reimplementation obtains slightly better results for Set II and better results for sets III and IV.

Table B.6: Computational results of the proposed BLS algorithm and comparison with the best-known results from the four references of (Mosayebi et al., 2021) on instances from Set I.

Instance	CPLEX		Reference a	Reference algorithm		\$	gap-1	gap-2
	UB	LB	f_{bks}	t_{bks}	f_{best}	t_{best}		
gr12-J	2760	2760	2760	0.13	2760	0.0001	0	0
gr21-J	7788	7712	7956	0.21	7788	0.001	0	-2.11
gr24-J	1806	1802	1818	0.34	1806	0.001	0	-0.66
fri26-J	1283	1282.94	1326	0.22	1283	0.001	0	-3.24
bays29-J	2937	2892.88	2940	0.57	2916	0.001	-0.715	-0.82
gr48-J	7288	7215.36	7499	2.48	7282	0.019	-0.0823	-2.89
eil51-J	630	627.94	640.2	5.69	628.51	0.014	-0.2365	-1.83
berlin52-J	11087.5	10976.96	11225.77	1.41	11087.21	0.001	-0.0026	-1.23
eil76-J	802.27	799.47	822.46	3.32	801.91	6.26	-0.0449	-2.5
eil101-J	947.42	940.59	975.94	14.75	946.33	59.34	-0.1151	-3.03

Table B.7: Computational results of the proposed BLS algorithm and comparison with the best results from the four references of (Mosayebi et al., 2021) on the instances from Set II.

Instance	Reference	algorithms	ВІ	LS-1	BL	S-2	UB	LB	gap-1	gap-2
	f_{bks}	t_{bks}	f_{best}	t_{best}	f_{best}	t_{best}			5-r -	5-r -
1	319	0.00114	301	0.00114	301	0.00218	367	125	-5.64	-5.64
2	273	0.00116	279	0.00096	267	0.00156	300	106	2.2	-2.2
	288	0.00117	285	0.001	280	0.00263	319	120	-1.04	-2.78
Į.	289	0.00189	291	0.00107	283	0.00175	376	114	0.69	-2.08
	282	0.00247	281	0.00114	280	0.00343	356	118	-0.35	-0.71
	305 286	$0.00063 \\ 0.00254$	303 288	0.00084 0.00116	299 285	0.00086 0.00212	347 332	127 113	-0.66 0.7	-1.97 -0.35
, }	254	0.00234	257	0.00116	252	0.00212	300	104	1.18	-0.79
9	290	0.00066	287	0.0007	285	0.0019	313	121.21	-1.03	-1.72
10	313	0.00167	314	0.00113	313	0.00185	379	127	0.32	0
11	299	0.00079	303	0.00101	297	0.00245	334	121	1.34	-0.67
12	284	0.00322	282	0.00098	280	0.00274	338	124	-0.7	-1.41
13	268 270	0.00127	268 267	0.00124	263	0.00177	336	105	0	-1.87
14 15	270	0.00107 0.00056	271	0.00056 0.00115	267 270	0.00078 0.00153	335 313	105 111.82	-1.11 0	-1.11 -0.37
16	299	0.00125	303	0.00113	297	0.00133	371	127	1.34	-0.67
17	265	0.00125	270	0.00116	263	0.00267	317	112	1.89	-0.75
18	258	0.00082	252	0.00093	252	0.00096	286	100.15	-2.33	-2.33
19	248	0.00076	241	0.00105	239	0.00195	264	98.67	-2.82	-3.63
20	289	0.0006	283	0.00114	283	0.00119	369	120	-2.08	-2.08
21	285	0.00089	291	0.00104	284	0.00093	329	117	2.11	-0.35
22	236	0.00078	242	0.00109	236	0.00302	257	99	2.54	0
23 24	279 298	0.0007 0.00099	283 295	0.00103 0.00115	276 292	0.00163 0.00206	313 376	108 121	1.43 -1.01	-1.08 -2.01
25	240	0.00099	248	0.00113	238	0.00206	273	97	3.33	-0.83
26	291	0.00076	298	0.00117	291	0.00338	356	125	2.41	0.00
27	297	0.00184	297	0.0011	296	0.00298	403	131	0	-0.34
28	285	0.00191	283	0.00119	283	0.0012	331	117	-0.7	-0.7
29	299	0.00232	299	0.00092	299	0.00154	328	132	0	0
30 31	304	0.00205 0.00083	300 259	$0.00121 \\ 0.00121$	298 259	0.00252	$\frac{369}{314}$	$\frac{125}{114}$	-1.32 -0.77	-1.97
32	261 325	0.00083	259 319	0.00121	319	$0.00172 \\ 0.00116$	362	137.26	-0.77	-0.77 -1.85
33	306	0.00099	306	0.00108	306	0.00116	359	122	-1.83	-1.83
34	294	0.00154	294	0.00119	294	0.00144	337	128	ő	o o
35	283	0.00184	280	0.00118	280	0.00136	314	120	-1.06	-1.06
36	263	0.0016	264	0.00078	264	0.00078	299	119	0.38	0.38
37	279	0.00082	271	0.00099	271	0.0015	294	111	-2.87	-2.87
38	249	0.00064	250	0.00112	247	0.00104	295	105	0.4	-0.8
39 40	276 256	0.00086 0.00116	279 258	0.00089 0.0009	274 255	0.0007 0.00206	348 293	$\frac{126}{107}$	1.09 0.78	-0.72 -0.39
40 41	287	0.00052	258 291	0.0009	282	0.00206	303	121	1.39	-0.39
12	297	0.00122	295	0.00101	292	0.00235	328	116.26	-0.67	-1.68
13	297	0.00129	294	0.00101	294	0.00175	325	124	-1.01	-1.01
14	271	0.0011	267	0.00111	267	0.00139	301	109	-1.48	-1.48
45	325	0.00163	327	0.00093	322	0.00386	437	133	0.62	-0.92
46 47	248	0.00066	246	0.00107	242	0.0011	256	103	-0.81	-2.42
.8	325 300	$0.00086 \\ 0.00145$	319 299	$0.00119 \\ 0.0011$	317 295	0.00128 0.0018	368 330	133 124	-1.85 -0.33	-2.46 -1.67
19	265	0.00145	266	0.0011	264	0.0018	337	115.99	0.38	-0.38
9	200	0.00100	200	0.00100	204	0.00100	331	110.55	0.30	-0.56
										-0.38

50	293	0.00195	292	0.00094	291	0.00349	325	125	-0.34	-0.68	
51	275	0.00111	275	0.00091	275	0.00106	316	118	0	0	
52	341	0.00155	338	0.00103	338	0.00215	412	138	-0.88	-0.88	
53	286	0.00124	286	0.00093	285	0.00248	349	117	0	-0.35	
54	267	0.00071	269	0.00096	265	0.00172	307	114	0.75	-0.75	
55	304	0.0005	305	0.00097	300	0.00226	342	130	0.33	-1.32	
56	289	0.00084	292	0.00067	288	0.00079	339	127	1.04	-0.35	
57	257	0.00034	257	0.00007	254	0.00257	305	111	0	-1.17	
			336		336		370	142			
58	341	0.00134		0.00079		0.00113			-1.47	-1.47	
59	288	0.00107	285	0.0009	284	0.00205	371	118	-1.04	-1.39	
60	257	0.001	256	0.00086	256	0.00286	308	100	-0.39	-0.39	
61	307	0.00187	313	0.0011	307	0.00258	366	131	1.95	0	
62	289	0.00162	289	0.00101	289	0.00117	332	120	0	0	
63	274	0.00145	274	0.00094	274	0.00111	377	113	0	0	
64	290	0.00082	309	0.00098	283	0.00385	289	111.06	6.55	-2.41	
65	269	0.00112	268	0.00076	268	0.00115	422	118	-0.37	-0.37	
66	290	0.00188	287	0.00121	286	0.00302	482	132	-1.03	-1.38	
67	320	0.00121	325	0.00117	319	0.00225	331	126	1.56	-0.31	
68	301	0.00179	299	0.00133	295	0.00366	369	121	-0.66	-1.99	
69	300	0.00226	311	0.00115	297	0.00232	299	114	3.67	-1	
70	273	0.00123	273	0.00078	273	0.00081	299	114	0	0	
71	295	0.00123	295	0.00086	295	0.00085	384	118	Ö	0	
72	259	0.00091	256	0.00093	256	0.00078	271	107	-1.16	-1.16	
73	278	0.00177	277	0.00087	275	0.00154	320	119	-0.36	-1.08	
74	271	0.00088	271	0.00116	271	0.00104	305	113	0	-1.00	
75	212	0.00063	212	0.00075	212	0.00051	259	88	0	0	
76	297	0.00084	294	0.00073	293	0.00101	321	120	-1.01	-1.35	
77	274	0.00084	273	0.00088	271	0.00101	313	122	-0.36	-1.09	
78	258	0.00109	261	0.00093	255	0.00177	291	111	1.16	-1.16	
79	281	0.0013	280	0.00103	280	0.00208	315	113	-0.36	-0.36	
80	280	0.00079	281	0.00104	271		299	117		-3.21	
			261			0.00244			0.36	-3.21	
81	259	0.00148		0.00093	259	0.00115	284	112	0.77		
82	345	0.00187	348	0.00115	339	0.0016	482	146	0.87	-1.74	
83	259	0.00175	257	0.00109	257	0.00118	341	104	-0.77	-0.77	
84	272	0.00108	267	0.00056	264	0.00195	274	114	-1.84	-2.94	
85	300	0.00124	300	0.00076	296	0.00267	333	123	0	-1.33	
86	338	0.00063	342	0.00073	333	0.00232	374	139	1.18	-1.48	
87	261	0.00087	261	0.0012	257	0.00223	303	107	0	-1.53	
88	305	0.00169	299	0.00098	295	0.00281	328	126	-1.97	-3.28	
89	288	0.00084	289	0.00069	287	0.00098	302	113	0.35	-0.35	
90	322	0.00108	327	0.00119	321	0.00141	346	127	1.55	-0.31	
91	281	0.00115	280	0.00098	274	0.00302	360	115	-0.36	-2.49	
92	300	0.00061	309	0.00071	296	0.00249	389	130	3	-1.33	
93	309	0.0012	299	0.00104	295	0.00218	312	120	-3.24	-4.53	
94	309	0.00105	308	0.0012	307	0.00302	323	123	-0.32	-0.65	
95	260	0.00126	256	0.0012	256	0.00129	269	103	-1.54	-1.54	
96	268	0.00092	273	0.0012	263	0.00428	273	106	1.87	-1.87	
97	256	0.00083	249	0.00074	249	0.00125	259	99	-2.73	-2.73	
98	298	0.00068	298	0.00119	289	0.00192	304	116	0	-3.02	
99	278	0.00135	277	0.0012	265	0.00171	277	106	-0.36	-4.68	
100	249	0.00083	248	0.00119	248	0.00086	263	99	-0.4	-0.4	
Avg	284.44	0.00121	284.33	0.00101	280.85	0.00189		-	-0.0297	-1.2484	
8		0.00		0.00-0-		***************************************			******		_

Table B.8: Computational results of the proposed BLS algorithm and comparison with the best results from the four references of (Mosayebi et al., 2021) on the instances of Set III.

Instance _	Reference algorithms		BLS-1		BLS	-2	gap-1	gap-2
- Instance	f_{bks}	t_{bks}	f_{best}	tbest	f_{best}	t_{best}	8mp 1	Sup.
1	3235	0.71	3219	2.18	3187	2.64	-0.49	-1.48
2	3494	0.57	3452	0.91	3442	2.09	-1.2	-1.49
3	3467	3.59	3436	1.59	3426	3.36	-0.89	-1.18
4	3465	4.44	3447	0.81	3447	1.1	-0.52	-0.5
5	3673	0.66	3647	1.94	3637	3.47	-0.71	-0.98
6	3273	0.61	3233	1.12	3237	0.97	-1.22	-1.
7	3571	0.93	3537	1.72	3521	5.09	-0.95	-1.4
8	3604	0.68	3562	2.06	3558	3.72	-1.17	-1.28
9	3335	0.76	3330	2.07	3320	2.31	-0.15	-0.4
10	3544	0.89	3514	1.6	3497	2.48	-0.85	-1.3
11	3401	0.73	3362	2.18	3363	1.38	-1.15	-1.1
12 13	3510 3523	1.88 1.14	3473 3514	1.63 1.96	3457 3476	$\frac{2.87}{4.63}$	-1.05 -0.26	-1.5 -1.3
14	3480	0.42	3456	1.09	3444	1.38	-0.69	-1.0
15	3462	2.04	3444	1.26	3444	2.03	-0.52	-0.5
16	3699	7.22	3661	1.87	3655	3.59	-1.03	-1.19
17	3571	7.89	3502	1.79	3491	4.05	-1.93	-2.2
18	3593	0.99	3572	1.2	3558	2.7	-0.58	-0.9
19	3501	3.68	3432	1.77	3438	1.3	-1.97	-1.8
20	3504	0.72	3476	0.88	3476	1.3	-0.8	-0.8
21	3589	0.5	3564	2.08	3561	2.24	-0.7	-0.78
22	3685	9.75	3654	1.58	3649	3.52	-0.84	-0.98
23	3398	2.66	3354	1.34	3349	2.29	-1.29	-1.4
24	3476	2.41	3455	2.07	3412	10.41	-0.6	-1.8
25	3671	7.15	3617	2	3606	6.36	-1.47	-1.7
26	3477	0.73	3433	1.9	3433	2.49	-1.27	-1.2
27	3576	0.9	3584	2.19	3554	2.66	0.22	-0.6
28	3505	0.82	3456	2.03	3467	1.83	-1.4	-1.08
29	3327	0.53 1.69	3269	0.85	3269 3210	0.9	-1.74 -1.23	-1.7
30 31	3255 3324	0.37	3215 3284	$0.93 \\ 2.08$	3256	$\frac{3.37}{1.39}$	-1.23	-1.38 -2.08
32	3559	0.91	3563	1.62	3538	2.57	0.11	-0.59
33	3667	0.96	3615	2.05	3612	1.63	-1.42	-1.
34	3492	5.32	3434	1.29	3424	2.9	-1.66	-1.9
35	3505	1.87	3429	1.49	3427	3.06	-2.17	-2.2
36	3467	0.4	3433	1.54	3438	1.46	-0.98	-0.8
37	3663	4.94	3651	1.83	3651	4.36	-0.33	-0.3
38	3621	0.91	3581	1.72	3578	2.82	-1.1	-1.19
39	3432	0.53	3390	1.75	3387	2.66	-1.22	-1.3
40	3293	0.35	3250	1.11	3248	1.31	-1.31	-1.3
41	3465	0.8	3429	1.05	3419	2.66	-1.04	-1.3
42	3506	0.79	3479	2.18	3471	2.87	-0.77	
43	3406	1.68	3390	1.56	3383	1.95	-0.47	-0.68
44	3616	6.17	3550	2.02	3548	5	-1.83	-1.88
45 46	3587 3386	$\frac{2.61}{2.27}$	3529 3347	1.48 1.46	3526 3333	$\frac{2.52}{0.96}$	-1.62 -1.15	-1.5
47	3335	0.69	3306	0.97	3290	3.14	-0.87	-1.3
48	3558	0.78	3559	2.15	3559	1.98	-0.25	0.0
49	3602	0.83	3550	2.02	3562	1.73	-1.44	-1.1
50	3594	8.24	3529	1.85	3526	3.15	-1.81	-1.89
51	3373	0.52	3336	0.72	3336	1.14	-1.1	-1.
52	3317	0.67	3299	1.45	3293	4.29	-0.54	-0.7
53	3528	0.44	3473	2.08	3480	1.14	-1.56	-1.30
54	3368	7.44	3347	1.07	3340	2.23	-0.62	-0.8
55	3739	0.57	3677	2.06	3677	1.56	-1.66	-1.6
56	3682	0.51	3648	2.16	3626	4.59	-0.92	-1.5
57	3709	8.86	3671	1.88	3665	3.73	-1.02	-1.19
58	3633	0.63	3591	1.85	3591	2.47	-1.16	-1.1
59	3302	0.4	3250	0.93	3244	1.12	-1.57	-1.7
60	3392	3.37	3364	0.85	3364	0.94	-0.83	-0.8
61	3421	3.92	3367	1.48	3365	1.6	-1.58	-1.6
62	3609	0.74	3574	1.61	3567	2.03	-0.97	-1.1
63 64	3558 3470	0.51 2.03	3532 3452	$\frac{1.67}{1.16}$	3526 3452	$\frac{3.35}{1.27}$	-0.73	-0.5
65	3732	1.01	3691	1.16	3687	2.11	-0.52 -1.1	-1.2
66	3645	4.25	3610	1.81	3603	3.35	-0.96	-1.1
67	3427	2.38	3421	2.05	3420	2.14	-0.18	-0.:
68	3343	2.11	3303	1.61	3296	2.07	-1.2	-1.4
69	3641	0.56	3598	1.9	3568	3.61	-1.18	-:
70	3520	0.89	3495	1.16	3482	2.08	-0.71	-1.0
71	3599	0.76	3564	1	3563	2.04	-0.97	-
72	3623	5.24	3576	2.12	3558	2.63	-1.3	-1.7
73	3413	4.51	3339	1.88	3335	2.25	-2.17	-2.2
74	3281	0.6	3252	1.86	3255	1.61	-0.88	-0.7
75	3390	3.65	3368	0.83	3358	2.25	-0.65	-0.9
76	3645	0.85	3601	1.7	3595	2.87	-1.21	-1.3
77	3472	0.56	3445	1.62	3445	1.91	-0.78	-0.78
78	3444	3.48	3421	0.95	3421	1.07	-0.67	-0.6
79	3676	1.07	3646	2.14	3608	3.25	-0.82	-1.8
80	3554	0.76	3535	1.87	3528	7.22	-0.53	-0.73
81	3437	$\frac{3.66}{1.92}$	3381 3429	0.64 1.89	3381	0.8	-1.63	-1.6 -1.6
82	3475				3419	4.39	-1.32	

84	3567	4.36	3523	1.98	3503	2.07	-1.23	-1.79
85	3508	4.96	3445	1.49	3446	1.44	-1.8	-1.77
86	3588	1.54	3535	1.39	3503	2.87	-1.48	-2.37
87	3541	0.62	3503	1.64	3494	3.01	-1.07	-1.33
88	3374	3.48	3339	1.25	3334	2.09	-1.04	-1.19
89	3442	0.65	3382	1.14	3382	1.29	-1.74	-1.74
90	3839	1.14	3813	1.92	3798	5.44	-0.68	-1.07
91	3448	2.46	3436	1.57	3431	1.91	-0.35	-0.49
92	3522	0.81	3503	1.63	3502	3.94	-0.54	-0.57
93	3315	2.13	3294	1.91	3281	3.96	-0.63	-1.03
94	3486	1.21	3431	1.8	3442	0.9	-1.58	-1.26
95	3629	0.89	3576	1.61	3576	2.12	-1.46	-1.46
96	3441	0.63	3410	1.26	3409	1.42	-0.9	-0.93
97	3637	5.41	3623	2.03	3594	3.72	-0.38	-1.18
98	3311	2.8	3275	1.63	3264	3.51	-1.09	-1.42
99	3746	1.92	3710	1.2	3709	1.74	-0.96	-0.99
100	3510	5.33	3470	1.61	3474	1.59	-1.14	-1.03
Avg	3506.92	2.1905	3470.46	1.6046	3463.19	2.6264	-1.0396	-1.2465

Table B.9: Computational results of the proposed BLS algorithm and comparison with the best results from the four references of (Mosayebi et al., 2021) on the instances of Set IV.

Instance	Reference al	gorithms	BLS	-1	BLS-	2	gap-1	gap-2
	f_{bks}	t_{bks}	f_{best}	t_{best}	f_{best}	t_{best}		
1	13946	8.61	13735	33.85	13735	39.17	-1.51	-1.51
2	14434	87.97	14327	32.82	14264	49.5	-0.74	-1.18
3	13313	12.45	13192	32.43	13178	30.6	-0.91	-1.01
4	13682	25.26	13480	25.01	13480	37.93	-1.48	-1.48
5	13835	16.46	13732	29.15	13708	31.91	-0.74	-0.92
6	14204	16.16	14114	30.7	14087	41.38	-0.63	-0.82
7	13745	49.29	13619	25.02	13620	28.37	-0.03	-0.82
8								-0.91
	13831	13.34	13714	23.37	13673	56.85	-0.85	
9	14016	226.5	13857	27.91	13857	30.4	-1.13	-1.13
10	13736	60.12	13553	27.87	13543	31.42	-1.33	-1.41
11	13192	9.78	13080	25.22	13058	25.61	-0.85	-1.02
12	13563	14.71	13461	28.37	13446	33.03	-0.75	-0.86
13	13149	11.79	13078	20.3	13067	29.83	-0.54	-0.62
14	14003	62.32	13914	33.13	13900	50.29	-0.64	-0.74
15	13619	12.19	13568	21.32	13568	25.77	-0.37	-0.37
16	13309	43.21	13154	17.71	13147	28.34	-1.16	-1.22
17	13273	12.02	13108	19.61	13092	22.71	-1.24	-1.36
18	13677	13.04	13574	25.67	13574	28.51	-0.75	-0.75
19	13978	16.26	14009	30.77	14006	57.04	0.22	0.2
20	14095	14.55	14009	32.7	13973	69.3	-0.61	-0.87
21	13535	8.21	13341	16.36	13341	26.83	-1.43	-1.43
22	13971	13.5	13967	20.51	13974	29.67	-0.03	0.02
23	13392	52.99	13224	31.24	13211	33.29	-1.25	-1.35
24	13991	16.06	13964	30.86	13964	35.25	-0.19	-0.19
25	14261	19.24	14155	25.19	14154	41.11	-0.74	-0.15
26	14023	53.14	14039	28.4	14015	35.74	0.11	-0.76
27		23.55		18.32		19.87	-0.6	-0.06
28	13240	12.06	13161		13161		-0.64	-0.6
	13698		13611	27.69	13575	28.87		
29	13462	27.81	13332	30.25	13345	37.92	-0.97	-0.87
30	13608	21.15	13495	26.58	13486	27.72	-0.83	-0.9
31	13771	84.1	13583	27.97	13548	28.24	-1.37	-1.62
32	13745	15.77	13634	18.2	13630	32.29	-0.81	-0.84
33	13709	13.27	14087	39.4	14068	72.28	2.76	2.62
34	14352	17.8	14244	28.83	14206	40.31	-0.75	-1.02
35	12854	9.98	12667	26.09	12616	45.64	-1.45	-1.85
36	13869	7.05	13715	24.62	13714	49.3	-1.11	-1.12
37	13729	12.83	13675	28.29	13653	38.1	-0.39	-0.55
38	13775	16.77	13632	31.54	13628	35.84	-1.04	-1.07
39	14243	9.98	14147	28.95	14128	62.3	-0.67	-0.81
40	13962	17.01	13909	29.19	13908	26.05	-0.38	-0.39
41	13463	8.67	13400	33.55	13390	29.61	-0.47	-0.54
42	13917	39.85	13843	28.37	13810	41.86	-0.53	-0.77
43	13698	91.51	13521	26.51	13526	29.75	-1.29	-1.26
44	12963	10.09	12704	30.6	12673	17.93	-2	-2.24
45	13222	25.29	13087	23.57	13078	29.93	-1.02	-1.09
46	13883	14.89	13761	33.94	13739	47.84	-0.88	-1.04
47	14677	9.78	14552	33.99	14545	58.54	-0.85	-0.9
48	14090	18.41	14024	31.02	14016	38.96	-0.47	-0.53
49	14340	10.19	14145	27.09	14143	35.93	-1.36	-1.37
50	13896	8.95	13819	31.18		49.7	-0.55	-0.59
50 51					13814			
	14157	83.48	13992	29.98	13975	63.56	-1.17	-1.29
52	13892	229.9	13796	32.56	13759	62.43	-0.69	-0.96
53	13917	39.03	13786	33.26	13776	36.39	-0.94	-1.01
54	13731	39.07	13630	19.1	13613	64.17	-0.74	-0.86
55	13776	8.72	13602	25.21	13602	29.26	-1.26	-1.26
56	13803	21.43	13673	31.91	13666	35.44	-0.94	-0.99
57	13881	33.41	13802	25.75	13793	30.41	-0.57	-0.63
58	14371	40.68	14187	32.08	14193	39.89	-1.28	-1.24
59	13669	6.55	13557	33.5	13509	36.85	-0.82	-1.17

60									
62	60	13799	7.51	13678	26.51	13669	30.32	-0.88	-0.94
63	61	13584	23.87	13476	30.07	13434	41.71	-0.8	-1.1
64	62	13641	200.77	13492	26.85	13463	32.58	-1.09	-1.3
65 13719 8.03 13594 33.96 13888 28.63 -0.91 -0.95 67 13597 39.4 13520 22.6 13520 24.48 -0.57 -0.57 68 13441 61.9 13345 21.61 13333 45.08 -0.71 -0.8 69 13667 29.06 13637 32.16 13609 58.51 -0.22 -0.42 70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21 71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13889 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14165 41.19 14051 28.13 14034 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 136	63	13923	15.61	13809	32.68	13795	37.01	-0.82	-0.92
66 14478 9.74 14378 33.51 14321 57.54 -0.69 -1.08 67 13597 39.4 13520 22.6 13520 24.48 -0.57 -0.57 68 13441 61.9 13345 21.61 13333 45.08 -0.71 -0.8 69 13667 29.06 13637 32.16 13609 58.51 -0.22 -0.42 70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21 11 71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 -1.43 74 14189 133.59 14076 30.08 14084 62.26 -0.8 -0.92 75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54	64	13176	26.31	13053	21.17	13053	26.19	-0.93	-0.93
67 13597 39.4 13520 22.6 13520 24.48 -0.57 -0.57 68 13441 61.9 13345 21.61 13609 58.51 -0.22 -0.42 70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21 71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14165 41.19 14051 28.13 14034 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13665 31.31 13813 41.84 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14	65	13719	8.03	13594	33.96	13588	28.63	-0.91	-0.95
68 13441 61.9 13345 21.61 13833 45.08 -0.71 -0.8 69 13667 29.06 13637 32.16 13609 55.51 -0.22 -0.42 70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21 71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14165 41.19 14051 28.13 14034 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 0.87 75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 1.21 77 133	66	14478	9.74	14378	33.51	14321	57.54	-0.69	-1.08
69 13667 29.06 13637 32.16 13609 58.51 -0.22 -0.42 70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21 71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05	67	13597	39.4	13520	22.6	13520	24.48	-0.57	-0.57
70 13769 16.39 13615 32.27 13602 42.12 -1.12 -1.21 71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14165 41.19 14051 28.13 14034 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13565 31.31 13813 41.84 -1.21 -1.21 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 <td< td=""><td>68</td><td>13441</td><td>61.9</td><td>13345</td><td>21.61</td><td>13333</td><td>45.08</td><td>-0.71</td><td>-0.8</td></td<>	68	13441	61.9	13345	21.61	13333	45.08	-0.71	-0.8
71 13506 11.19 13336 28.59 13289 62.25 -1.26 -1.61 72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14165 41.19 14051 28.13 14034 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 13644 8.09 13495 26.62 13474 28.82 -1.09 -1.25 80	69	13667	29.06	13637	32.16	13609	58.51	-0.22	-0.42
72 13859 7.99 13701 21.93 13660 36.12 -1.14 -1.44 73 14165 41.19 14051 28.13 14034 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.22 -0.66 -1.05 -0.66 -1.05 -0.68 -1.05	70	13769	16.39	13615	32.27	13602	42.12		-1.21
73 14165 41.19 14051 28.13 14084 62.26 -0.8 -0.92 74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13565 31.31 13837 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 13644 8.09 13495 26.62 13474 28.82 -1.09 -1.25 80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.7 81 13109 11.71 13003 18.06 12949 44.17 -0.81 -1.22 83 13240 19.54		13506		13336	28.59	13289			
74 14189 133.59 14076 30.08 14066 47.77 -0.8 -0.87 75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 13604 8.09 13495 26.62 13474 28.82 -1.09 -1.25 80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.7 81 13109 11.71 13003 18.06 12949 44.17 -0.81 -1.22 82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04 83 <td< td=""><td>72</td><td>13859</td><td>7.99</td><td>13701</td><td>21.93</td><td>13660</td><td>36.12</td><td></td><td>-1.44</td></td<>	72	13859	7.99	13701	21.93	13660	36.12		-1.44
75 13610 14.23 13565 31.31 13537 40.55 -0.33 -0.54 76 13982 15.76 13813 23.1 13813 41.84 -1.21 -1.21 77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 13644 8.09 13487 32.02 13511 25.87 -0.87 -0.7 80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.7 81 13109 11.71 13006 12949 44.17 -0.81 -1.22 82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194	73	14165	41.19	14051	28.13	14034			-0.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
77 13331 5.86 13139 22.44 13129 38.59 -1.44 -1.52 78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 13644 8.09 13495 26.62 13474 28.82 -1.09 -1.25 80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.7 81 13109 11.71 13805 31.60 12949 44.17 -0.81 -1.22 82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04 83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.7 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 1									
78 14157 100.31 14063 23.25 14008 42.93 -0.66 -1.05 79 13644 8.09 13495 26.62 13474 28.82 -1.09 -1.25 80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.7 81 13109 11.71 13003 18.06 12949 44.17 -0.81 -1.22 82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04 83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.7 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 1	76	13982	15.76	13813	23.1	13813	41.84	-1.21	-1.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13331	5.86	13139	22.44	13129			-1.52
80 13606 29.39 13487 32.02 13511 25.87 -0.87 -0.7 81 13109 11.71 13003 18.06 12949 44.17 -0.81 -1.22 82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04 83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.7 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13				14063		14008			
81 13109 11.71 13003 18.06 12949 44.17 -0.81 -1.22 82 13979 15.17 13865 31.62 13833 55.26 -0.82 -1.04 83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.7 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 25.61 13330 23.65 -0.97 -0.97 91 14	79	13644		13495	26.62	13474	28.82	-1.09	
82 13979 15.17 13865 31.62 13883 55.26 -0.82 -1.04 83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.7 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 25.61 13330 23.65 -0.97 -0.97 90 14117 12.97 13943 33.43 13980 57.62 -0.94 -0.97 92 13	80	13606	29.39	13487	32.02	13511	25.87	-0.87	-0.7
83 13240 19.54 13036 26.31 13015 31.86 -1.54 -1.7 84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 23.65 -0.97 -0.97 90 14117 12.97 13984 33.43 13980 57.62 -0.94 -0.97 91 14093 28.81 13997 30.54 13990 45.51 -0.68 -0.73 92 13648 15.04 13		13109		13003	18.06			-0.81	
84 13710 23.06 13558 32.88 13548 25.89 -1.11 -1.18 85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 25.61 13330 23.65 -0.97 -0.97 90 14117 12.97 13984 33.43 13980 67.62 -0.94 -0.97 91 14093 28.81 13997 30.54 13990 45.51 -0.68 -0.73 92 13648 15.04 13481 21.56 13472 37.91 -1.22 -1.29 93 1	82	13979	15.17	13865	31.62	13833	55.26	-0.82	-1.04
85 13194 6.26 13123 26.36 13095 42.5 -0.54 -0.75 86 14443 8.14 14335 23.56 14295 69.77 -0.75 -1.02 87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 25.61 13330 23.65 -0.97 -0.97 90 14117 12.97 13984 33.43 13980 57.62 -0.94 -0.97 91 14093 28.81 13997 30.54 13990 45.51 -0.68 -0.73 92 13648 15.04 13481 21.65 13472 37.91 -1.22 -1.29 93 13764 13.44 13662 28.79 13688 66.2 -0.74 -0.77 94 13	83	13240	19.54	13036	26.31	13015	31.86		-1.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		13710	23.06	13558	32.88	13548			-1.18
87 13115 28.09 13022 33.97 13041 22.35 -0.71 -0.56 88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 25.61 13330 23.65 -0.97 -0.97 90 14117 12.97 13984 33.43 13980 57.62 -0.94 -0.97 91 14093 28.81 13997 30.54 13990 45.51 -0.68 -0.73 92 13648 15.04 13481 21.65 13472 37.91 -1.22 -1.29 93 13764 13.44 13662 28.79 13658 66.2 -0.74 -0.77 94 13889 13.85 13769 31.39 13739 54.22 -0.86 -1.08 95 13888 13.4 13850 31.45 13855 27.41 -0.27 -0.24 96									
88 13559 6.87 13432 19.51 13404 28.86 -0.94 -1.14 89 13460 26.1 13330 25.61 13330 23.65 -0.97 -0.97 90 14117 12.97 13984 33.43 13980 57.62 -0.94 -0.97 91 14093 28.81 13997 30.54 13990 45.51 -0.68 -0.73 92 13648 15.04 13481 21.65 13472 37.91 -1.22 -1.29 93 13764 13.44 13662 28.79 13658 66.2 -0.74 -0.77 94 13889 13.85 13769 31.39 13739 54.22 -0.86 -1.08 95 13888 13.4 13850 31.45 13855 27.41 -0.27 -0.24 96 13540 15.88 13366 23.18 13331 23.35 -1.29 -1.54 98									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
92 13648 15.04 13481 21.65 13472 37.91 -1.22 -1.29 93 13764 13.44 13662 28.79 13658 66.2 -0.74 -0.77 94 13889 13.85 13769 31.39 13739 54.22 -0.86 -1.08 95 13888 13.4 13850 31.45 13855 27.41 -0.27 -0.24 96 13540 15.88 13366 23.18 13331 23.35 -1.29 -1.54 97 13180 128.84 13111 25.86 13097 69.16 -0.52 -0.63 98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89 99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
93 13764 13.44 13662 28.79 13688 66.2 -0.74 -0.77 94 13889 13.85 13769 31.39 13739 54.22 -0.86 -1.08 95 13888 13.4 13850 31.45 13855 27.41 -0.27 -0.24 96 13540 15.88 13366 23.18 13331 23.35 -1.29 -1.54 97 13180 128.84 13111 25.86 13097 69.16 -0.52 -0.63 98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89 99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
94 13889 13.85 13769 31.39 13739 54.22 -0.86 -1.08 95 13888 13.4 13850 31.45 13855 27.41 -0.27 -0.24 96 13540 15.88 13366 23.18 13331 23.35 -1.29 -1.54 97 13180 128.84 13111 25.86 13097 69.16 -0.52 -0.63 98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89 99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
96 13540 15.88 13366 23.18 13331 23.35 -1.29 -1.54 97 13180 128.84 13111 25.86 13097 69.16 -0.52 -0.63 98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89 99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
97 13180 128.84 13111 25.86 13097 69.16 -0.52 -0.63 98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89 99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
98 13606 101.99 13357 32.85 13349 58.25 -1.83 -1.89 99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
99 14919 18.12 14758 31.25 14725 65.41 -1.08 -1.3 100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
100 13236 161.45 13092 21.33 13091 27.79 -1.09 -1.1									
Avg 13756.68 33.9312 13642.04 27.75 13627.03 39.8 -0.8352 -0.9443									
	Avg	13756.68	33.9312	13642.04	27.75	13627.03	39.8	-0.8352	-0.9443

Table B.10: Results of the four reimplemented algorithms of (Mosayebi et al., 2021) on the instances of Set II.

Instance	Р	ro.I	Pro.II		Pr	Pro.III		Pro.IV		
	f_{best}	t_{best}	f_{best}	t_{best}	f_{best}	t_{best}	f_{best}	t_{best}		
1	319	0.00114	320	0.00062	319	0.00114	319	0.0012		
2	280	0.00085	275	0.00061	280	0.00086	273	0.00116		
3	296	0.00188	288	0.00117	296	0.00187	292	0.00231		
4	289	0.00189	293	0.00106	289	0.00153	289	0.00176		
5	282	0.00247	282	0.00122	282	0.0018	282	0.00262		
6	309	0.00127	305	0.00063	309	0.00102	316	0.0013		
7	288	0.00145	292	0.00081	288	0.00121	286	0.00254		
8	264	0.001	254	0.00071	264	0.00089	264	0.00158		
9	293	0.00081	290	0.00066	293	0.00082	298	0.00169		
10	316	0.0015	320	0.00092	316	0.0016	313	0.00167		
11	305	0.00149	299	0.00079	305	0.00161	306	0.00172		
12	284	0.00322	287	0.00119	284	0.00294	284	0.00255		
13	276	0.00173	268	0.00127	276	0.00175	272	0.00174		
14	270	0.00107	270	0.0008	270	0.00106	270	0.00111		
15	277	0.00092	271	0.00056	277	0.00089	273	0.00147		
16	303	0.00237	299	0.00125	303	0.00196	303	0.0019		
17	271	0.00112	265	0.001	271	0.00098	271	0.0012		
18	258	0.00082	258	0.0008	258	0.00071	258	0.00098		
19	251	0.00095	248	0.00076	251	0.00077	257	0.00123		
20	293	0.00187	289	0.0006	293	0.00148	295	0.00216		
21	291	0.00114	285	0.00089	291	0.001	291	0.00137		
22	236	0.00078	239	0.00064	236	0.00075	236	0.00079		
23	288	0.0013	279	0.0007	288	0.00107	288	0.00116		
24	299	0.00204	298	0.00099	299	0.00208	299	0.00205		
25	256	0.0014	240	0.00074	256	0.00136	256	0.00123		
26	305	0.00092	291	0.00076	305	0.00088	305	0.00077		
27	297	0.00184	305	0.00115	297	0.00178	297	0.00188		
28	285	0.00191	288	0.00095	285	0.00178	290	0.00139		
29	299	0.00232	299	0.00112	299	0.00238	304	0.00155		
30	307	0.00181	305	0.00101	307	0.00183	304	0.00205		
31	268	0.00115	261	0.00083	267	0.00108	267	0.00112		
32	332	0.00123	328	0.0008	332	0.0011	325	0.00099		
33	312	0.00165	309	0.00146	306	0.00181	312	0.00172		
34	294	0.00154	311	0.00096	294	0.00151	294	0.00161		
35	283	0.00184	290	0.00122	283	0.00186	297	0.00156		

36	263	0.0016	265	0.00081	263	0.00148	263	0.00156
37	284	0.0011	279	0.00082	284	0.00139	280	0.00173
38	251	0.00106	249	0.00064	251	0.0009	251	0.00083
39	280	0.00138	276	0.00086	280	0.0012	280	0.00141
40	261	0.00287	256	0.00116	261	0.00229	261	0.00248
41	295	0.00088	287	0.00052	295	0.00087	299	0.00148
42	302	0.00101	300	0.0008	302	0.00091	297	0.00122
43	298	0.00226	297	0.00129	299	0.00183	299	0.00244
44	272	0.00142	277	0.00084	271	0.0011	271	0.00122
45	337	0.0015	325	0.00163	337	0.00149	342	0.00231
46	252	0.00088	248	0.00066	252	0.00081	252	0.00091
47	330	0.0018	325	0.00086	330	0.00113	330	0.00132
48	300	0.00145	302	0.00109	300	0.00146	307	0.00178
49	269	0.00174	265	0.00105	280	0.00156	276	0.00117
50	293	0.00195	294	0.0007	293	0.00191	293	0.00147
51	278	0.00097	282	0.00072	275	0.00111	275	0.00096
52	341	0.00155	351	0.00088	341	0.00155	341	0.00175
53	288	0.00155	286	0.00124	288	0.0017	294	0.00161
54	273	0.00077	267	0.00071	273	0.00077	273	0.00084
55	307	0.00221	304	0.0005	307	0.00193	307	0.0018
56	289	0.00084	289	0.00051	289	0.00086	311	0.00107
57	257	0.00154	260	0.00107	257	0.00154	260	0.00168
58	341	0.00134	347	0.00092	341	0.00132	341	0.00154
59	293	0.00211	288	0.00107	293	0.0019	293	0.00217
60	259	0.00107	257	0.001	259	0.00103	261	0.00144
61	307	0.00187	309	0.00072	307	0.00183	318	0.0021
62	289	0.00162	309	0.00098	289	0.00156	289	0.00172
63	275	0.00151	286	0.00075	275	0.00168	274	0.00145
64	297	0.00175	290	0.00082	297	0.00179	311	0.00126
65	272	0.00107	275	0.00058	272	0.00086	269	0.00112
66	294	0.00164	296	0.00107	294	0.00135	290	0.00188
67	325	0.00157	320	0.00121	325	0.00131	325	0.00172
68	301	0.00179	302	0.00085	301	0.00152	302	0.00191
69	309	0.00188	307	0.00097	309	0.00162	300	0.00226
70	273	0.00123	280	0.00078	273	0.00091	291	0.00109
71	295	0.00123	298	0.00083	295	0.00111	301	0.00117
72	259	0.00091	259	0.0008	259	0.00082	259	0.00096
73	278	0.00177	281	0.00092	278	0.0015	281	0.00218
74	271	0.00088	277	0.00101	271	0.00119	271	0.0014
75	216	0.0007	212	0.00063	212	0.00063	212	0.00089
76	300	0.00101	297	0.00084	300	0.001	300	0.00106
77	275	0.00174	281	0.00064	275	0.00165	274	0.00109
78	272	0.0014	258	0.00099	272	0.0014	263	0.00195
79	281	0.0013	282	0.00093	281	0.00133	286	0.00233
80	283	0.00122	280	0.00079	283	0.00134	281	0.00152
81 82	273 361	0.00113	$\frac{271}{347}$	0.00075	273	0.0011	259	0.00148
		0.00153		0.001	361	0.00147	$\frac{345}{259}$	0.00187
83	259	0.00175	261	0.00085	259	0.00168		0.00171
84 85	274 300	$0.0009 \\ 0.00124$	275 306	0.00071 0.00095	274 300	$0.00084 \\ 0.00117$	272 302	$0.00108 \\ 0.00125$
86	341	0.00124	338	0.00063	341	0.00117	343	0.00123
87	275	0.00113	261	0.00087	275	0.00012	270	0.0014
88	312	0.00094	311	0.00087	312	0.00092	305	0.00110
89	293	0.00030	288	0.00101	293	0.00037	297	0.00103
90	329	0.00112	322	0.00108	329	0.00114	324	0.00123
91	290	0.00127	281	0.00108	290	0.00154	290	0.00323
92	323	0.00183	300	0.00113	323	0.00138	319	0.00129
93	318	0.00147	309	0.0001	318	0.00143	318	0.00142
94	311	0.00228	309	0.0012	311	0.00152	312	0.00159
94 95	262	0.00173	265	0.00103	260	0.00132	260	0.00132
96	280	0.00177	268	0.00094	280	0.00120	277	0.00128
97	256	0.00128	266	0.00052	256	0.0011	256	0.00202
98	320	0.00113	298	0.00068	320	0.00093	314	0.00120
99	287	0.00113	278	0.00135	287	0.0017	281	0.00205
100	258	0.00132	261	0.00074	249	0.00083	249	0.00200
				0.000.		0.0000		0.000.4

Table B.11: Results of the four reimplemented algorithms of (Mosayebi et al., 2021) on the instances of Set III.

Instance	Pro.I		Pro.II		Pro.III		Pro.IV	
	f_{best}	t_{best}	f_{best}	t_{best}	f_{best}	t_{best}	f_{best}	t_{best}
1	3253	5.22	3235	0.71	3275	3.14	3257	2.19
2	3525	2.66	3494	0.57	3525	1.88	3525	1.69
3	3467	3.59	3477	0.8	3485	1.83	3481	2.23
4	3480	1.39	3486	0.68	3480	1.37	3465	4.44
5	3726	2.82	3673	0.66	3726	1.84	3700	3.21
6	3289	2.16	3273	0.61	3289	1.93	3284	1.59
7	3614	10.17	3571	0.93	3601	8	3601	6.79
8	3638	3.59	3604	0.68	3638	2.41	3635	6.16
9	3372	3.25	3335	0.76	3372	2.3	3373	1.77
10	3588	9.2	3544	0.89	3588	8.57	3551	3.98
11	3421	4.38	3401	0.73	3421	4	3421	3.86
12	3510	1.88	3521	0.43	3510	1.78	3555	3.23

1.0	9500	0.00	0500	1.14	0500	0.10	0550	0.00
13	3586	3.69	3523	1.14	3586	3.18	3550	2.86
14	3498	2.21	3480	0.42	3494	2.04	3494	1.79
15	3472	3.38	3484	0.85	3462	2.04	3493	2.5
16	3699	7.22	3725	1	3699	6.72	3723	6.76
17	3579	6.45	3588	0.76	3579	4.62	3571	7.89
18	3619	2.08	3593	0.99	3619	1.91	3658	3.64
19	3534	3.48	3530	0.62	3534	2.48	3501	3.68
20		2.16						
	3510		3504	0.72	3510	1.51	3524	7.37
21	3611	5.03	3589	0.5	3590	5.93	3628	4.1
22	3695	7.47	3714	1.15	3695	6.96	3685	9.75
23	3412	1.66	3416	0.38	3398	2.66	3401	1.35
24	3476	2.41	3481	0.99	3476	1.53	3491	1.95
25	3671	7.15	3676	0.99	3671	6.97	3671	4.75
26	3551	3.3	3477	0.73	3551	3.13	3551	2.81
27	3601	1.91	3576	0.9	3601	1.95	3606	5
								0.00
28	3562	1.59	3528	0.73	3562	1.52	3505	0.82
29	3365	1.85	3327	0.53	3365	1.74	3376	2.66
30	3255	1.69	3276	0.67	3255	1.6	3256	1.48
31	3335	2.82	3324	0.37	3335	2.02	3346	2.98
32	3605	2.27	3559	0.91	3605	1.51	3608	2.91
33	3703	3.15	3667	0.96	3703	2.24	3681	1.51
34	3523	4.95	3502	0.48	3492	5.32	3492	4.05
35	3507	1.96	3509	0.48		1.36	3505	1.87
					3507			
36	3523	2.07	3467	0.4	3523	1.39	3532	3.06
37	3663	4.94	3668	0.98	3663	4.61	3679	8.39
38	3643	4.05	3621	0.91	3643	3.84	3660	6.25
39	3435	3.84	3432	0.53	3435	3.58	3435	3.24
40	3297	2.51	3293	0.35	3309	2.02	3352	2.41
41	3473	2.13	3465	0.8	3473	2.07	3486	2.5
42	3527	2.65	3506	0.79	3527	2.39	3516	7.2
43	3434	1.97	3415	0.71	3434	1.95	3406	1.68
44	3616	6.17	3634	0.82	3616	5.87	3648	4.77
45	3599	1.76	3612	0.8	3599	2.26	3587	2.61
46	3431	1.44	3388	0.61	3431	0.93	3386	2.27
47	3373	1.64	3335	0.69	3373	1.11	3342	4.5
48	3620	2.01	3558	0.78	3617	1.78	3605	2.07
49	3613	4.83	3602	0.83	3613	3.42	3613	3.19
50	3608	4.39	3601		3608	4.25	3594	8.24
				0.54				
51	3409	2.15	3373	0.52	3409	2.05	3409	1.72
52	3346	2.53	3317	0.67	3346	2.2	3328	0.94
53	3543	4.12	3528	0.44	3543	3.79	3538	3.55
	3368		3382		3368			
54		7.44		0.75		6.64	3375	5.09
55	3801	7.3	3739	0.57	3801	7.39	3801	5.69
56	3709	2.68	3682	0.51	3709	2.5	3749	2.47
57	3709	8.86	3748	1.08	3709	7.97	3709	7.71
58	3658	3.77	3633	0.63	3650	3.36	3661	4.94
59	3338	4.43	3302	0.4	3330	2.93	3338	1.96
60	3392	3.37	3404	0.42	3392	2.53	3405	2.13
61	3422	5.27	3422	0.47	3421	3.92	3435	2.66
62	3641	2.59	3609	0.74	3630	3.7	3625	3.68
63	3570	8.53	3558	0.51	3570	8.27	3583	7.63
64	3470	2.03	3470	0.48	3470	1.93	3472	2.92
65	3758	1.82	3732	1.01	3758	3.26	3758	2.95
66	3650	4.22	3661	0.78	3645	4.25	3660	3.3
67	3427	2.38	3460	0.65	3427	2.38	3427	2.18
68	3343	2.11	3375	0.8	3350	1.37	3350	1.14
69	3658	5.09	3641	0.56	3658	3.65	3658	3.01
70	3532	4.2	3520	0.89	3532	3.94	3532	3.38
71	3600	5.06	3599	0.76	3600	4.75	3633	4.53
72	3627	10.32	3630	1.06	3627	9.01	3623	5.24
73	3413	4.51	3428	0.4	3413	4.16	3413	3.35
74	3330	4.14	3281	0.6	3330	3.79	3330	3.34
75	3390	3.65	3416	0.69	3390	2.66	3424	1.88
76	3662	3.63	3645	0.85	3662	2.57	3657	4.65
77	3495	3.23	3472	0.56	3495	3.04	3478	2.98
		4.22				3.12		
78	3490		3480	0.51	3490		3444	3.48
79	3695	1.55	3676	1.07	3695	2.78	3680	2.8
80	3609	2.34	3554	0.76	3609	2.13	3561	3.18
81	3456	1.51	3446	0.32	3456	1.48	3437	3.66
82	3475	1.92	3482	0.77	3475	1.87	3475	1.84
83	3433	2.52	3428	0.73	3433	2.36	3443	3.66
84	3567	4.36	3588	0.47	3567	3.18	3570	8.63
85	3514	3.77	3541	0.77	3514	2.71	3508	4.96
86	3588	1.54	3595	0.36	3588	0.97	3611	3.14
87	3589	4.27	3541	0.62	3589	3.08	3554	9.34
88	3374	3.48	3386	0.66	3374	3.45	3396	4.76
89	3451	2.27	3442	0.65	3451	2.14	3459	1.92
90	3876	3.57	3839	1.14	3876	3.7	3895	2.34
91	3470	1.7	3502	0.6	3470	2.22	3448	2.46
92	3559	3.64	3522	0.81	3559	2.68	3531	4.55
93	3316	3.9	3319	0.58	3315	2.13	3315	2.53
94	3486	1.21	3495	0.62	3486	0.78	3493	3.34
95	3645	4.54	3629	0.89	3645	4.22	3645	4.34
96	3458	1.65	3441	0.63	3458	1.55	3458	1.39
97		3.34						5.41
	3676		3646	1.04	3676	3.2	3637	0.41
98	3311	2.8	3325	0.7	3311	2.61	3354	2.25
99	3752	5.11	3752	0.87	3752	8.32	3746	1.92
100	3510	5.33	3526	0.97	3510	5.12	3523	4.01
100	3010	0.00	0020	0.0.	0010	0.12	0020	1.01

Table B.12: The results of the four reimplemented algorithms of (Mosayebi et al., 2021) on the instances of Set IV.

	Pro.I		Pro.II		Pro.III		Pro.IV	
Instance	f_{best}	t_{best}	f_{best}	tbest	f_{best}	tbest	f_{best}	t_{bes}
1	13980	112.97	13946	8.61	13982	119.2	13982	110.5
2	14542	186.77	14467	18.05	14434	87.97	14434	78.3
3	13441	61.15	13313	12.45	13450	68.74	13366	46.7
4	13696	61.44	13690	13.8	13690	80.7	13682	115.
5	13901	109.25	13835	16.46	13901	111.6	13937	168.09
6	14286	142.6	14204	16.16	14286	88.96	14250	29.0
7	13745	49.29	13753	13.17	13745	35.94	13745	30.6
8	13855	180.92	13831	13.34	13855	137.84	13858	130.5
9	14134	143.34	14097	15.98	14016	226.5	14117	161.14
10	13736	60.12	13754	12.06	13736	43.62	13762	117.78
11	13282	42.88	13192	9.78	13282	40.61	13296	18.5
12	13610	177.31	13563	14.71	13698	115.34	13647	91.1
13	13257	69.66	13149	11.79	13257	62.79	13193	84.1
14	14003	62.32	14034	15.42	14003	72.62	14013	143.0
15	13730	50.69	13619	12.19	13730	46.23	13709	55.8
16	13309	43.21	13356	10.43	13309	38.51	13372	38.9
17	13310	26.48	13273	12.02	13323	20.85	13296	54.9
18	13761	55.35	13677	13.04	13761	49.35	13857	116.3
19	14143	145.96	13978	16.26	14108	53.59	14123	126.
20	14134	88.64	14095	14.55	14134	86.17	14152	69.0
21	13566	48.7	13535	8.21	13566	47.47	13569	184.8
22	14141	61.07	13971	13.5	14141	60.34	14137	118.6
23	13392	52.99	13393	12.5	13392	49.91	13468	55.7
24	14161	136.83	13991	16.06	14142	119.77	14108	155.8
25	14381	74.53	14261	19.24	14379	71.52	14360	51.3
26	14206	67.36	14068	8.44	14206	66.57	14023	350.2
27	13245	58.94	13296	9.47	13245	54.93	13240	60.
28	13757	57.58	13698	12.06	13707	43.05	13709	47.0
29	13528	86.76	13535	12.45	13528	85.3	13462	100.8
30	13759	93.67	13656	12.01	13759	90.48	13608	67.3
31	13771	84.1	13799	6.32	13771	81.2	13792	122.8
32	13889	157.23	13745	15.77	13873	150.2	13859	137.
33	13843	103.04	13709	13.27	13843	98.4	13843	86.0
34	14404	36.25	14352	17.8	14404	35.48	14403	186.1
35	12885	146.16	12854	9.98	12885	146.65	12912	124.4
36	13940	32.36	13869	7.05	13940	30.06	13906	169.6
37	13862	64.51	13729	12.83	13862	63.53	13895	67.0
38	13850	82.97	13775	16.77	13850	80.65	13837	124.2
39	14324	199.25	14243	9.98	14324	191.65	14324	160.3
40	14038	45.76	13962	17.01	14038	43.8	13979	75.7
41	13629	144.78	13463	8.67	13629	135.82	13628	122.4
42	13974	63.52	13947	14.55	13974	61.07	13917	207.
43	13698	91.51	13724	12.66	13698	87.37	13768	35.6
44	12991	103.86	12963	10.09	12987	97.94	13076	22.9
45	13253	123.3	13302	10.49	13253	115.81	13222	95.0
46	13950	99.24	13883	14.89	13950	94.75	13950	84.6
47	14748	43.61	14677	9.78	14748	44.4	14709	69.2
48	14142	66.63	14090	18.41	14142	66.19	14162	95.2
49	14341	75.18	14340	10.19	14341	71.03	14418	62.7
50	13987	89.82	13896	8.95	13987	84.89	13945	47.
51	14157	83.48	14158	16.57	14157	81.57	14198	63.8
52	13892	229.9	13956	16.96	13892	217.55	14004	235.7
53	13925	243.13	13992	16.42	13925	216.86	13917	88.7
54	13753	193.36	13879	12.8	13753	178.52	13731	151.3
55	13840	59.93	13776	8.72	13840	55.43	13842	54.2
56	13846	129.6	13840	6.61	13846	95.87	13803	160.7
57	14015	35.61	13952	15.15	14015	32.6	13881	124.9
58	14550 13742	128.35	14441 13669	15.89	14550 13742	116.8 50.29	14371	128.4 73.6
59		54.31		6.55			13825	
60 61	13835 13680	88.57	13799 13584	7.51 11.78	13809 13680	134.73	13893 13613	109.2 29.
		55.56				57.03		
62 63	13641 13948	200.77 47.7	13656 13923	12.02 15.61	13707 13948	127.78 45.79	13678 14025	122.8 132.6
64	13299	81.65	13190	11.63	13299	60.08	13176	89.4
65	13773	56.59	13719	8.03	13773	54.44	13824	134.2
66 67	14553 13617	326.79 37.2	14478 13642	9.74 7.58	14553 13597	313.5 39.4	14553 13639	277.3 123.2
68	13530	32.35	13468	5.89	13441	61.9	13494	80.7
69 70	13702	70.72 88.44	13792 13769	13.92 16.39	13702	67.02 81.64	13667 13800	41.6 84.6
70	13826 13565		13769		13826			180.1
		197.43	13506	11.19 7.99	13565	190.37	13579	
72	13888	80.25			13873	78.43	13896	86.5
73 74	14343 14202	98.04 182.64	14200 14235	13.56 14.4	14343 14189	91.99 133.59	14165 14259	79. 121.2
75 76	13792 14063	46.84 149.41	13610 13982	14.23 15.76	13792 14063	44.38 138.4	13792 14063	95.2 121.2
77	13386	29.01 120.3	13331 14184	5.86 9.02	13386 14157	26.89 100.31	13467 14160	59.1 92.3
78	14263							
	13779 13614	104.36 184.91	13644 13717	8.09 13.65	13779 13606	132.84 164.04	13712 13606	23. 150

81	13155	74.37	13109	11.71	13155	55.86	13195	65.91	
82	13986	35.53	13979	15.17	13986	24.29	13986	27.46	
83	13263	122.13	13243	11.88	13263	114.18	13240	67.73	
84	13754	33.23	13710	7.77	13754	32.88	13715	138.62	
85	13301	48.17	13194	6.26	13301	43.81	13273	138.34	
86	14483	110.51	14443	8.14	14483	103.65	14544	152.88	
87	13122	91.57	13150	11.74	13116	53.45	13115	59.96	
88	13658	47.88	13559	6.87	13658	44.86	13584	127.06	
89	13460	26.1	13497	11.4	13460	25.84	13595	112.5	
90	14156	52.33	14117	12.97	14232	25.71	14214	23.33	
91	14126	140.15	14101	17.48	14126	144.31	14093	170.07	
92	13747	70.04	13648	15.04	13705	66.87	13686	80.52	
93	13823	28.77	13764	13.44	13823	27.64	13768	142.08	
94	13927	81.01	13889	13.85	13927	79.25	13916	66.63	
95	13927	119.82	13888	13.4	13927	113.75	14017	180.84	
96	13540	81.05	13575	11.3	13540	104.72	13540	94.26	
97	13247	29.07	13196	12.12	13180	128.84	13182	93.69	
98	13663	91.97	13618	11	13606	101.99	13606	91.88	
99	15056	226.23	14919	18.12	15014	179.76	14960	282.83	
100	13236	161.45	13242	10.13	13236	148.62	13330	134.05	