Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/019823

International filing date: 27 December 2004 (27.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-063707

Filing date: 08 March 2004 (08.03.2004)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 3月 8日

出 願 番 号 Application Number:

特願2004-063707

[ST. 10/C]:

[] P 2 0 0 4 - 0 6 3 7 0 7]

出 願 人
Applicant(s):

株式会社カネカ

特 許)

特許庁長官 Commissioner, Japan Patent Office 2005年 2月 4日

) · "

ページ:

特願2004-063707

【書類名】

【整理番号】

【提出日】

【あて先】

【国際特許分類】

【発明者】

【住所又は居所】

【氏名】

【特許出願人】

【識別番号】 【氏名又は名称】

【代表者】

【手数料の表示】

【予納台帳番号】 【納付金額】

【提出物件の目録】 【物件名】

【物件名】 【物件名】 特許願

B040086

平成16年 3月 8日

特許庁長官殿

CO8F 6/14

兵庫県加古川市志方町大澤1131番地

植田 貴志

000000941

鐘淵化学工業株式会社

武田 正利

005027

21,000円

特許請求の範囲 1

明細書 1 要約書 1

【書類名】特許請求の範囲

【請求項1】

乳化重合ラテックス (ポリマー固形分100重量部)を、(A)ポリマー軟化温度(T m) に対しTm±15℃の範囲内となるように温度調整し、(B) 撹拌下にポリエチレン オキシドを $0.03\sim3.0$ 重量部加えた後、(C) $0\sim1.5$ 重量部の凝固剤を加えて ポリマー成分と水の相分離状態を形成させ、(D) さらに 0. 2~10 重量部の凝固剤を 加え体積平均粒子径が50~500μmのポリマー凝集粒子の水懸濁液を形成し、(E) 懸濁液の温度をTm以上に調整することを特徴とする、乳化重合ラテックス凝集粒子の製 造方法。

【請求項2】

乳化重合ラテックスのポリマーの体積平均粒子径が0.05~0.5 μ mであることを 特徴とする、請求項1記載の製造方法。

【請求項3】

乳化重合ラテックスのポリマー固形分濃度が10~35重量%の範囲内であることを特 徴とする、請求項1又は2に記載の製造方法。

【請求項4】

乳化重合ラテックスをポリマー軟化温度 (Tm) に対しTm±10℃の温度範囲内に調 整することを特徴とする、請求項1乃至3のいずれかに記載の製造方法。

【請求項5】

ポリマー固形分100重量部に対し、粘度平均分子量が60万~800万のポリエチレ ンオキシドを $0.01 \sim 10$ 重量%の水溶液で、 $0.05 \sim 2.0$ 重量部加えることを特 徴とする、請求項1乃至4のいずれかに記載の製造方法。

凝固剤が、一価若しくは二価の無機塩および/または無機酸の水溶液であることを特徴 とする、請求項1乃至5のいずれかに記載の製造方法。

乳化重合により製造した重合体ラテックスが、アクリル酸エステル50~100重量% 、芳香族ビニルモノマー0~40重量%、これらと共重合可能なビニルモノマー0~10 重量%ならびに多官能性モノマー0~5重量%を重合してなり、ガラス転移温度が0℃以 下のゴムラテックスの固形分50~95重量部に、メタクリル酸エステル10~100重 量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノマー0~25重量%な らびにメタクリル酸エステル、芳香族ビニルモノマーおよびシアン化ビニルモノマーと共 重合可能なビニルモノマー0~20重量%からなる単量体混合物5~50重量部をグラフ ト重合することにより得られることを特徴とする、請求項1乃至6のいずれかに記載の製 造方法。

【請求項8】

乳化重合により製造した重合体ラテックスが、メタクリル酸メチル50~95重量%と 炭素数2~8のアルキル基を有するメタクリル酸エステル5~50重量%とこれらと共重 合可能なビニルモノマー0~20重量%との混合物60~95重量部をまず乳化重合し、 その生成重合体ラテックスの存在下に、メタクリル酸メチル20~80重量%、アクリル 酸エステルおよびメタクリル酸メチルを除くメタクリル酸エステルより選ばれた1種以上 の単量体20~80重量%およびこれらと共重合可能なビニルモノマー0~20重量%と の混合物 $5\sim4$ 0 重量部を、合計量が 1 0 0 重量部になるように重合することにより得ら れることを特徴とする、請求項1乃至6のいずれかに記載の製造方法。

【請求項9】

乳化重合により製造した重合体ラテックスが、ブタジエン50~100重量%、芳香族 ビニルモノマー0~40重量%、ブタジエンおよび芳香族ビニルモノマーと共重合可能な ビニルモノマー $0 \sim 1$ 0 重量%ならびに多官能性モノマー $0 \sim 5$ 重量%を重合してなり、 ガラス転移温度が0℃以下のゴムラテックスの固形分50~95重量部に、メタクリル酸 エステル10~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモ

ページ: 2/E

ノマー0~25重量%ならびにメタクリル酸エステル、芳香族ビニルモノマーおよびシア ン化ビニルモノマーと共重合可能なビニルモノマー0~20重量%からなる単量体混合物 $5 \sim 50$ 重量部をグラフト重合することによりより得られることを特徴とする、請求項1乃至6のいずれかに記載の製造方法。

【書類名】明細書

【発明の名称】乳化重合ラテックス凝集粒子の製造方法

【技術分野】

$[0\ 0\ 0\ 1]$

本発明は、乳化重合ラテックス凝集粒子の製造方法に関する。さらに詳しくは、本発明 は、乳化重合ラテックスから体積平均粒子径が50~500μmのポリマー凝集粒子を製 造する方法に関する。

【背景技術】

[0002]

乳化重合ポリマーは、塩化ビニル樹脂、スチレン樹脂、メチルメタクリレート樹脂、ポ リカーボネート樹脂等の硬質プラスチックに少量添加し、加工性や成形体品質を向上させ る樹脂改質剤として広く用いられている。

[0003]

通常、乳化重合ラテックスから目的のグラフト共重合体を回収するためには、ラテック スを凝集させて回収する造粒操作が必要である。この造粒操作は、回収粒子の粉体特性(粒子径分布、微粉量、粗粒量等)だけでなく、脱水性や乾燥特性等、後処理時の生産性に も大きな影響を与える。従来、乳化重合により製造された高分子ラテックスから樹脂粒子 状重合体を回収する場合、一般には、ラテックスに水を加えポリマー固形分濃度を10重 量%以下に調整した後、ポリマーの軟化温度よりも十分に低い温度で凝固剤を投入し、ポ リマー凝集粒子を形成させ、その後ポリマーの軟化温度以上に加熱してスラリー状にし、 脱水乾燥を経て粉粒として回収される。

$[0\ 0\ 0\ 4]$

しかしながら、この方法では、(イ)粉粒の形状は不定形となり、相当の微粉末が含ま れるため、工程上のトラブルの頻発、或いは粉塵発生により作業環境が悪化する、(ロ) 得られる凝集粒子の含水率が高いため後の乾燥工程でのエネルギー消費量が多大となる、 (ハ) 通常、ポリマー軟化温度よりも十分に低い温度で凝固剤を添加(通常、重合温度よ りも大幅に低温側)した後、再度高温で熱処理操作を実施する必要があるためエネルギー 効率が悪い、(二)通常の重合時の固形分濃度である30~40重量%から固形分濃度を 10重量%以下に調整するために多量の水が使用され、排水処理の負荷が増大する、等の 課題があった。そのため、気相凝固法(例えば、特許文献1参照。)や緩凝析法(例えば 、特許文献 2 参照。)等の新規造粒法が提案されるなど、様々な改良検討がなされてきた 。しかしながら、そのような多大な努力にもかかわらず、設備コスト、省エネルギー、あ るいは排水量軽減の面で依然満足とは言い難く、新たな造粒法の開発が望まれていた。

[0005]

また、このような状況を改善する目的で、新たな造粒法として高分子凝集剤を用いる方 法が提案されている (例えば、特許文献3参照。)。この方法は、乳化重合ラテックスに 高分子凝集剤であるアニオン性ポリアクリルアミドと無機塩を加え造粒する手法である。 しかし、この場合においても、良好な凝固粒子を得るため、重合後ラテックスを多量の水 で希釈し固形分濃度が10重量%以下に調整されており排水負荷の面で満足できるもので はなかった。また乳化重合ラテックスの性状によらず80℃以上という比較的高温でのみ 造粒操作が実施可能であり、エネルギー消費量の面でも満足できるものではなかった。

【特許文献1】特開昭52-68285号公報

【特許文献2】特開昭60-217224号公報

【特許文献3】特開昭59-84922号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は上記の点に解決を与えるため、(イ)体積平均粒子径 5 0 μ m未満の微粉量が 少なく、(ロ)低含水率で乾燥時のエネルギー消費量が小さく、(ハ)ポリマー軟化温度 の近傍(重合温度近傍)での造粒操作が可能であるためエネルギー効率が良好であり、(

ニ) 固形分濃度10重量%以上での処理が可能であり排水処理の負荷が軽減する、新規の 造粒方法を提案することを課題とする。

【課題を解決するための手段】

[0007]

上記のような現状に鑑み、本発明者は鋭意検討を重ねた結果、乳化重合ラテックスを特 定の温度範囲に調整し、撹拌下にポリエチレンオキシドを加えた後、必要に応じて凝固剤 を加え、ポリマー成分と水の相分離状態を形成させ、さらに凝固剤を加えてポリマー凝集 粒子の水懸濁液を形成し、懸濁液の温度をポリマー軟化温度以上に調整することにより効 率よく乳化重合ラテックス凝集粒子を製造できることを見出し、本発明を完成するに至っ た。

[0008]

即ち、本発明は、乳化重合ラテックス(ポリマー固形分100重量部)を、(A)ポリ マー軟化温度 (Tm) に対しTm±15℃の範囲内となるように温度調整し、(B) 撹拌 下にポリエチレンオキシドを $0.03 \sim 3.0$ 重量部加えた後、(C) $0 \sim 1.5$ 重量部 の凝固剤を加えてポリマー成分と水の相分離状態を形成させ、(D)さらに $0.2\sim10$ 重量部の凝固剤を加え体積平均粒子径が50~500μmのポリマー凝集粒子の水懸濁液 を形成し、(E)懸濁液の温度をTm以上に調整することを特徴とする、乳化重合ラテッ クス凝集粒子の製造方法に関する。

[0009]

好ましい実施態様は、乳化重合ラテックスのポリマーの体積平均粒子径が0.05~0 . 5 μ mであることを特徴とする、前記の製造方法に関する。

$[0\ 0\ 1\ 0\]$

好ましい実施態様は、乳化重合ラテックスのポリマー固形分濃度が10~35重量%の 範囲内であることを特徴とする、前記いずれかに記載の製造方法に関する。

$[0\ 0\ 1\ 1]$

好ましい実施態様は、乳化重合ラテックスをポリマー軟化温度(Tm)に対しTm±1 0 ℃の温度範囲内に調整することを特徴とする、前記いずれかに記載の製造方法に関する

[0012]

好ましい実施態様は、ポリマー固形分100重量部に対し、粘度平均分子量が60万~ 800万のポリエチレンオキシドを0.01~10重量%の水溶液で、0.05~2.0 重量部加えることを特徴とする、前記いずれかに記載の製造方法に関する。

[0013]

好ましい実施態様は、凝固剤が、一価若しくは二価の無機塩および/または無機酸の水 溶液であることを特徴とする、前記いずれかに記載の製造方法に関する。

$[0\ 0\ 1\ 4]$

好ましい実施態様は、乳化重合により製造した重合体ラテックスが、アクリル酸エステ ν 5 0 \sim 1 0 0 重量%、芳香族ビニルモノマー 0 \sim 4 0 重量%、これらと共重合可能なビ ニルモノマー $0\sim1$ 0重量%ならびに多官能性モノマー $0\sim5$ 重量%を重合してなり、ガ ラス転移温度が0℃以下のゴムラテックスの固形分50~95重量部に、メタクリル酸エ ステル10~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノ マー0~25重量%ならびにメタクリル酸エステル、芳香族ビニルモノマーおよびシアン 化ビニルモノマーと共重合可能なビニルモノマー0~20重量%からなる単量体混合物5 ~50重量部をグラフト重合することにより得られることを特徴とする、前記いずれかに 記載の製造方法に関する。

[0015]

好ましい実施態様は、乳化重合により製造した重合体ラテックスが、メタクリル酸メチ ル50~95重量%と炭素数2~8のアルキル基を有するメタクリル酸エステル5~50 重量%とこれらと共重合可能なビニルモノマー0~20重量%との混合物60~95重量 部をまず乳化重合し、その生成重合体ラテックスの存在下に、メタクリル酸メチル20~

80重量%、アクリル酸エステルおよびメタクリル酸メチルを除くメタクリル酸エステル・ より選ばれた1種以上の単量体20~80重量%およびこれらと共重合可能なビニルモノ マー $0\sim2$ 0重量%との混合物 $5\sim4$ 0重量部を、合計量が100重量部になるように重 合することにより得られることを特徴とする、前記いずれかに記載の製造方法に関する。

$[0\ 0\ 1\ 6]$

好ましい実施態様は、乳化重合により製造した重合体ラテックスが、ブタジエン50~ 100重量%、芳香族ビニルモノマー0~40重量%、ブタジエンおよび芳香族ビニルモ ノマーと共重合可能なビニルモノマー $0\sim1$ 0 重量%ならびに多官能性モノマー $0\sim5$ 重 量%を重合してなり、ガラス転移温度が0℃以下のゴムラテックスの固形分50~95重 量部に、メタクリル酸エステル10~100重量%、芳香族ビニルモノマー0~90重量 %、シアン化ビニルモノマー0~25重量%ならびにメタクリル酸エステル、芳香族ビニ ルモノマーおよびシアン化ビニルモノマーと共重合可能なビニルモノマー0~20重量% からなる単量体混合物5~50重量部をグラフト重合することによりより得られることを 特徴とする、前記いずれかに記載の製造方法に関する。

【発明の効果】

$[0\ 0\ 1\ 7]$

本発明の乳化重合ラテックス凝集粒子の製造方法は、従来の塩析等による造粒方法に比 べ、(イ)粒子径 5 0 μ m未満の微粉量が少なく、(ロ)低含水率で乾燥時のエネルギー 消費量が小さく、(ハ)ポリマー軟化温度近傍(重合温度近傍)での造粒操作が可能であ るためエネルギー効率が良好であり、(二) 固形分濃度10重量%以上での処理が可能で あるため排水処理の負荷を軽減できる、等の優れた効果を有する造粒操作が実現できる。 【発明を実施するための最良の形態】

[0018]

本発明における乳化重合ラテックスの重合体粒子は、(1)アクリル酸エステル50~ 100重量%、芳香族ビニルモノマー $0\sim40$ 重量%、これらと共重合可能なビニルモノ マー0~10重量%ならびに多官能性モノマー0~5重量%を重合してなりガラス転移温 度が0℃以下のゴムラテックスの固形分50~95重量部に、メタクリル酸エステル10 ~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノマー0~2 5重量%ならびにメタクリル酸エステル、芳香族ビニルモノマーおよびシアン化ビニルモ ノマーと共重合可能なビニルモノマー $0\sim 2$ 0 重量%からなる単量体混合物 $5\sim 5$ 0 重量 部をグラフト重合することにより得られる重合体ラテックス、(2)メタクリル酸メチル 50~95重量%と炭素数2~8のアルキル基を有するメタクリル酸エステル5~50重 量%とこれらと共重合可能なビニルモノマー0~20重量%との混合物60~95重量部 をまず乳化重合し、その生成重合体ラテックスの存在下に、メタクリル酸メチル20~8 0重量%とアクリル酸エステルおよびメタクリル酸メチルを除くメタクリル酸エステルよ り選ばれた 1 種以上の単量体 2 0 \sim 8 0 重量% とこれらと共重合可能なビニルモノマー 0 ~ 2 0 重量%との混合物 5 ~ 4 0 重量部を、合計量が 1 0 0 重量部になるように重合する ことにより得られる重合体ラテックス、(3)ブタジエン50~100重量%、芳香族ビ ニルモノマー0~40重量%、ブタジエンおよび芳香族ビニルモノマーと共重合可能なビ ニルモノマー0~10重量%ならびに多官能性モノマー0~5重量%を重合してなり、ガ ラス転移温度が0℃以下のゴムラテックスの固形分50~95重量部に、メタクリル酸エ ステル10~100重量%、芳香族ビニルモノマー0~90重量%、シアン化ビニルモノ マー $0\sim2$ 5重量%ならびにメタクリル酸エステル、芳香族ビニルモノマーおよびシアン 化ビニルモノマーと共重合可能なビニルモノマー0~20重量%からなる単量体混合物5 ~50重量部をグラフト重合することにより得られる重合体ラテックスの何れかが、後述 する理由により好適に使用され得る。

[0019]

上記(1)~(3)に記載した乳化重合ラテックスの重合体粒子の一般的な製造方法は 、例えば、特開平2-269755号公報、特開平8-217817号公報に詳細に記述 されている。しかしながら、これに限定されるものではない。

[0020]

上記(1)~(3)の重合体粒子が好適に使用される理由は、熱可塑性樹脂の品質改良 剤として広範に用いられており、本発明の重合体粒子として回収した場合においても、そ れらの有する様々な品質向上効果を発現させることが可能となるためである。しかしなが ら、本発明で用いることのできる乳化重合ラテックスの重合体粒子は、これらに限定され るものではなく、例えば、次のモノマー群から選ばれた1種または2種以上のモノマーを 主とする単量体組成物を共重合またはグラフト重合させた重合体粒子の単独または混合物 からなるラテックス重合体粒子を用いることができる。上記モノマー群としては、例えば 、(1)メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルへ キシルアクリレート等の炭素数が10以下のアルキル基を有するアルキルアクリレート類 、(2)メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、2ーエ チルヘキシルメタクリレート等の炭素数が10以下のアルキル基を有するアルキルメタク リレート類、(3)スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチ レン等のビニルアレーン類、(4)アクリル酸、メタクリル酸等のビニルカルボン酸類、 (5) アクリロニトリル、メタクリロニトリル等のビニルシアン類、(6)塩化ビニル、 臭化ビニル、クロロプレン等のハロゲン化ビニル類、(7)酢酸ビニル、(8)エチレン 、プロピレン、ブチレン、ブタジエン、イソブチレン等のアルケン類、(9)アリルメタ クリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジ メタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼン、グリ シジルメタクリレート等の多官能性モノマーが例示される。

[0021]

前記重合体粒子の平均粒子径には特に制限はないが、通常の乳化重合で得られる体積平均粒子径0.05~0.5 μ mの重合体粒子を好適に用いることができる。なお、前記重合体粒子の体積平均粒子径は、例えば、MICROTRAC UPA(日機装株式会社製)を用いることにより測定することができる。

[0022]

本発明で用いる乳化重合ラテックスの固形分濃度は、本発明の目的が達成される限り特に制限はないが、通常 $10 \sim 35$ 重量%が好ましく、 $12 \sim 30$ 重量%がより好ましい。乳化重合ラテックスの固形分濃度が、10 重量%よりも低い場合は、通常の乳化重合時の固形分濃度である $30 \sim 40$ 重量%から固形分濃度を10 重量%以下に調整するために多量の水が必要となり、排水負荷が増大する。一方、乳化重合ラテックスの固形分濃度が35 重量%よりも高い場合は、ポリエチレンオキシドを添加した際の系の粘度が極度に高くなり、撹拌混合操作等が困難となる場合がある。なお、ラテックスの固形分濃度の測定は、ラテックス0.5 g 55 20 55 2

[0023]

本発明では、乳化重合ラテックスの温度が、ポリマー軟化温度(Tm)に対し $Tm\pm15$ Cの範囲内となるように温度調整することが好ましく、 $Tm\pm10$ Cの範囲内となるように温度調整することがより好ましい。乳化重合ラテックスの温度が(Tm-15) Cより低い場合は、粒子径 50μ m未満の凝集粒子の生成が頻発するため好ましくない。一方、乳化重合ラテックスの温度が(Tm+15) Cより高い場合は、目的とする粒子径から大きく外れた粗大粒子の生成が頻発するため好ましくない。ここでポリマー軟化温度とは、塩析により得たポリマー凝集粒子の水懸濁液を加熱した際に、ポリマー凝集粒子内の含水率が、加温前の含水率よりも5重量%以上低下する温度を意味する。本発明におけるポリマー軟化温度の測定は、乳化重合ラテックスを透析チューブに入れ両端を結び、20 C05 重量%塩化カルシウム水溶液に5時間浸漬し、完全に凝固を終了させチューブ状の凝固体を得、ここで得たチューブ凝固体を30 C09 C00 C0

[0024]

本発明では、乳化重合ラテックスにポリエチレンオキシドを水溶液あるいは粉体等のニート状態で加えることができるが、通常水溶液で加えるのが操作上簡便であることから好ましい。ポリエチレンオキシド水溶液の濃度には特に制限はないが、通常、0.01~10重量%であることが好ましい。水溶液濃度が、0.01重量%よりも低い場合は所定量のポリエチレンオキシドを加えるために多量の水溶液を使用する必要があり好ましくない。また、水溶液濃度が10重量%よりも高い場合は、ポリエチレンオキシド水溶液の粘度が高くなり取り扱いが困難となるため好ましくない。

[0025]

本発明で用いるポリエチレンオキシドは、粘度平均分子量が60万~800万であること好ましい。粘度平均分子量が60万よりも低い場合は、乳化重合ラテックスにポリエチレンオキシドを添加しても軟凝集状態が形成されず、本発明の目的を達成できない場合がある。一方、粘度平均分子量が800万よりも高い場合は、乳化重合ラテックスにポリエチレンオキシドを添加した時の粘度上昇が激しくなり、撹拌混合操作が困難となる場合がある。ここで、乳化重合ラテックスの軟凝集状態とは、例えばポリエチレンオキシド分子鎖がラテックス粒子間を架橋することにより系の粘度が上昇した状態であり、ポリエチレンオキシドを添加する前の乳化重合ラテックスの粘度よりも2倍以上系の粘度が上昇した状態を意味する。なお、ポリエチレンオキシドの粘度平均分子量は、ベンゼン溶媒、20℃の条件で測定することができる。

[0026]

本発明で用いるポリエチレンオキシドは、エチレンオキシドを重合して得られるエチレンオキシド単位を有する高分子化合物であればよく、例えば、ポリエチレンオキシド、高級アルコールエチレンオキシド付加物、アルキルフェノールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、多価アルコール脂肪酸エステルエチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、脂肪酸アミドエチレンオキシド付加物、油脂のエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物などが用いることができる。中でも、粘度平均分子量が60万~800万のポリエチレンオキシドを用いるのが好ましい。

[0027]

また、ポリエチレンオキシドの添加方法には特に制限はなく、所定量をラテックスに一 気に添加、分割添加、あるいは連続的に添加することができる。

[0028]

ポリエチレンオキシドの添加量は、乳化重合ポリマー固形分100重量部に対し、 $0.03 \sim 3.0$ 重量部($300 \sim 3000$ 0 p p m)が好ましく、 $0.05 \sim 2$ 重量部がより好ましい。ポリエチレンオキシドの添加量が0.03重量部よりも少ない場合は、軟凝集状のポリマー成分と水の相分離状態の形成が起こりにくくなる傾向にあり、その後の凝固剤の添加で粗大粒子の形成が頻発する、あるいは最悪の場合系が塊状化し、本発明の目的を達成できなくなる場合がある。一方、ポリエチレンオキシドの添加量が3.0重量部よりも多い場合は、その後の造粒挙動等には大きな影響は少ないが、低含水率化や微粉量削減効果はポリエチレンオキシドを $0.03 \sim 3.0$ 重量部の範囲で添加した場合と大差がないこと、また製造コストの高騰の面でも好ましくない。

[0029]

本発明では、乳化重合ラテックスにポリエチレンオキシドを添加している途中あるいは添加終了後に、乳化重合ポリマー粒子、ポリエチレンオキシド、および水の3成分の軟凝集状態が形成される。その後、同温で撹拌を継続する、あるいは凝固剤を $0 \sim 1.5$ 重量部加えると、軟凝集状ポリマー成分から水が分離し始め、系は、軟凝集状ポリマー成分と水の相分離状態となる。さらに、凝固剤を $0.2 \sim 10$ 重量部添加すると、軟凝集状ポリマー成分からの水の分離がさらに進行し、最終的にポリマー凝集粒子の水懸濁液が形成さ

れる。

[0030]

本発明において、軟凝集状ポリマー成分から水を分離させ、軟凝集状ポリマー成分と水の相分離状態を形成するために加える凝固剤は $0\sim1$. 5 重量部が好ましい。この相分離状態の形成は、乳化重合ラテックスの体積平均粒子径に依存し、体積平均粒子径が0. 1 μ m以下の場合には凝固剤を0. $2\sim1$. 5 重量部程度加えるのが好ましく、体積平均粒子径が0. 1 μ m以上の場合は $0\sim1$. 0 重量部程度加えるのが好ましい。

[0031]

さらに本発明において、軟凝集状ポリマー成分と水の相分離状態からポリマー凝集粒子の水懸濁液を形成させるために加える凝固剤は 0.2~10重量部であることが好ましい。ここでの凝固剤の添加量が 0.2重量部より少ない場合は、軟凝集状成分が残存し、その後の脱水操作が困難となるため好ましくない。また、ここでの凝固剤が 10重量部より多い場合は回収後のポリマー凝集粒子中の残留金属塩量が増え、耐熱性等の品質に悪影響を及ぼすため好ましくない。

[0032]

本発明に用いることのできる凝固剤としては、該乳化重合ラテックスを凝析・凝固し得る性質を有する無機酸(塩)および/または有機酸(塩)の水溶液であれば良いが、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、硫酸カリウム、硫酸ナトリウム、硫酸アンモニウム、塩化アンモニウム、硝酸ナトリウム、硝酸カリウム、塩化カルシウム、硫酸第一鉄、硫酸マグネシウム、硫酸亜鉛、硫酸銅、塩化バリウム、塩化第一鉄、塩化等二鉄、塩化マグネシウム、硫酸等二鉄、硫酸アルミニウム、カリウムミョウバン、鉄ミョウバン等の無機塩類の水溶液、塩酸、硫酸、明ン酸等の無機酸類の水溶液、酢酸、ギ酸等の有機酸類およびそれらの水溶液、酢酸ナトリウム、酢酸カルシウム、ギ酸ナトリウム、非酸カルシウム等の有機酸塩類の水溶液を単独にまたは2種以上を混合して用いることができる。これらの中でも、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化アンモニウム、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化バリウム、塩酸、硫酸等の一価若しくは二価の無機塩あるいは無機酸の水溶液が好適に使用できる。前記凝固剤の添加方法には特に制限は無く、一気に添加、分割添加、あるいは連続的に添加することができる。

[0033]

本発明により得られるポリマー凝集粒子の体積平均粒子径は $50\sim500\mu$ mが好ましい。体積平均粒子径が 50μ mよりも小さい場合は、脱水排水中への微粉の流出が顕著となるため好ましくない。一方、体積平均粒子径(目的ポリマー凝集粒子の多段凝集を含む)が 500μ mよりも大きい場合は、脱水後含水率が高くなり、乾燥に要する時間が長くなるため好ましくない。ポリマー凝集粒子の粒子径は、本発明の範囲内において、温度が低いほど、あるいは撹拌混合が激しいほど小さくなる傾向にあるが、本発明の範囲内で目的粒子径のポリマー凝集粒子が得られるよう、それらを調整すればよい。なお、ポリマー凝集粒子の体積平均粒子径は、MICROTRAC FRA-SVRSC(日機装株式会社製)を用いることにより測定することができる。

[0034]

本発明では、ポリマー凝集粒子の水懸濁液が得られた段階で、ポリマー凝集粒子の水懸濁液の温度をポリマー軟化温度(Tm)以上に調整し、熱処理により凝集粒子内のポリマー粒子間の融着を促進させる。熱処理の温度は特に上限はないが、通常、120℃以下であることが操作上簡便であるため好ましい。これにより、ポリマー凝集粒子の機械的強度が増すとともにポリマー凝集粒子の含水率が低下する。なお、この操作は、本発明の範囲内において造粒操作をポリマー軟化温度(Tm)以上で行った場合は特に実施しなくてもよい。また、加熱処理を実施するにあたり、加熱中および乾燥時(後)の粒子間凝集を抑制するため公知の粒子間融着防止処理を実施しても良い。

[0035]

【実施例】

[0036]

次に本発明を実施例に基づいて更に詳細に説明するが、本発明はかかる実施例のみに限 定されるものではない。

[0037]

(脱水後含水率の測定)

実施例、比較例および参考例で得られた凝集粒子懸濁液100g(固形分濃度:5~38重量%)をアスピレーターで3分間吸引ろ過した後、脱水樹脂を回収し、100℃熱風対流型乾燥機に12時間入れて水分を蒸発させ、乾燥前の脱水直後樹脂重量をWw、乾燥後樹脂重量をWdとし、下記式1から求めた。

脱水後含水率 $(\%) = [(Ww-Wd)/Ww] \times 100$ (式1)

[0038]

(微粒子ポリマー成分含量の測定)

実施例、比較例および参考例で得られた凝集粒子懸濁液の粒子径分布を、マイクロトラック(日機装株式会社製MICROTRAC FRA-SVRSC)で測定し、 50μ m未満の粒子の累積頻度%から求めた。

[0039]

(粗大ポリマー凝集粒子含量の測定)

実施例、比較例および参考例で得られた凝集粒子懸濁液1000g(固形分濃度: $8\sim38重量%$)をアスピレーターで吸引ろ過した後、脱水樹脂を回収し、50 ℃熱風対流型乾燥機に24 時間入れて水分を蒸発させ、得られた乾燥粒子を16 メッシュ篩上に残った乾燥粒子重量をW1、16 メッシュ篩を通過した乾燥粒子重量をW2とし、式2 から求めた。

ー 粗大ポリマー凝集粒子含量 (%) = [(W1) / (W1+W2)] ×100 (式2)

[0040]

(ポリマー軟化温度Tmの測定)

片端を結んだ透析チューブ(フナコシ株式会社製スペクトラバイオテックメンブレン/ポア 1.1、MWCO8000、16mm)に乳化重合ラテックス10gを入れ、ソーセージ状になるようにもう一端を結び、20℃の5重量%塩化カルシウム水溶液3000gに5時間浸漬し完全に凝固を終了させ、チューブ状の凝固体を得た。ここで得られたチューブ凝固体を、30℃~99℃まで5℃刻みで各温水中に10分間浸漬し加熱処理を実施した。各温度で得られたチューブ凝固体を100℃熱風対流型乾燥機に12時間入れて水分を蒸発させ、乾燥前のチューブ凝固体重量をWa、乾燥後のチューブ凝固体重量をWbとして、式3から含水率を求め、含水率が加温前の含水率よりも5重量%以上低下した温度をポリマー軟化温度(Tmと)した。

含水率 (%) = [(Wa-Wb)/Wa]×100 (式3)

[0041]

実施例、比較例および参考例の中で用いる部および%は、それぞれ重量部および重量%を示す。また、実施例、比較例および参考例の中で用いる平均粒子径は体積平均粒子径を示す。

[0042]

(実施例1)

温度計、攪拌機、還流冷却器、窒素流入口装置、単量体と乳化剤の添加装置を有するガラス反応器に、蒸留水124部、ラウリル硫酸ナトリウム0.035部を仕込み、窒素気流中で攪拌しながら50 \mathbb{C} に昇温した。次にブチルアクリレート(BA)11.20部、2- \mathbb{C} \mathbb{C}

た混合液、およびエチレンジアミンテトラアセティックアシッド・2 N a 塩 0 . 0 1 部と硫酸第一鉄・7 水塩 0 . 0 0 5 部を蒸留水 5 部に溶解した混合液を仕込んだ。 1 時間攪拌後、そこに B A 6 8 . 5 1 部、2 - E H A 7 . 6 1 部、A M A 0 . 3 8 部およびクメンハイドロパーオキサイド 0 . 1 部からなる単量体の混合物を、4 時間を要して滴下した。また、前記の単量体混合物の添加とともに、1 部のラウリル硫酸ナトリウムを 5 %水溶液にしたものを 4 時間にわたり連続的に追加した。単量体混合物添加終了後、1 . 5 時間攪拌を続け、アクリル系架橋ゴム重合体を得た。このアクリル系架橋ゴム重合体に、グラフト単量体成分として、メチルアクリレート(MMA) 1 0 . 4 5 部、B A 0 . 5 5 部ならびにクメンハイドロパーオキサイド 0 . 0 1 部の混合物を 5 0 0 で 0 1 時間にわたって連続的に添加した。添加終了後クメンハイドロパーオキサイド 0 . 0 1 部を添加し、さらに 0 5 時間攪拌を続けて重合を完結させ、体積平均粒子径 0 . 0 1 0 1 0 2 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 0 5 0 3 0 3 0 4 0 5 0 3 0 4 0 5 0 6 0 5 0 6 0 6 0 6 0 6 0 7 0 9 0 8 0 9 0

[0043]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0044]

(実施例2)

実施例 1 と同様に、乳化重合ラテックスA(体積平均粒子径 0 . 1 7 5 μ m、ポリマー 固形分濃度 4 0 %、ポリマー軟化温度 4 0 %)を得た。

[0045]

2 Lのセパラブルフラスコに、乳化重合ラテックスA250g(ポリマー固形分100部)を採り、脱イオン水750gを加え、40℃に調整した(ポリマー固形分濃度10%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液20g(0.2部)を1.5分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液5g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液5g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液20g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0046]

(実施例3)

実施例 1 と同様に、乳化重合ラテックスA (体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%) を得た。

[0047]

2 Lのセパラブルフラスコに、乳化重合ラテックスA750g(ポリマー固形分100部)を採り、脱イオン水250gを加え、40℃に調整した(ポリマー固形分濃度30%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液60g(0.2部)を5分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液15g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液15g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液60g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0048]

(実施例4)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0049]

2 Lのセパラブルフラスコに、乳化重合ラテックスA875g(ポリマー固形分100 部)を採り、脱イオン水125gを加え、40℃に調整した(ポリマー固形分濃度35%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液70g(0.2部)を7分間かけて連続添加し 、続いて15%硫酸ナトリウム水溶液17.5g(0.75部)を添加した。この時、系 は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水 溶液 17.5g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝 集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液70g(1.0部)を 加えた後、80℃に加熱して熱処理操作を実施した。

[0050]

(実施例5)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0051]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100 部)を採り、脱イオン水500gを加え、25℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万) 水溶液40g(0.2部) を3分間かけて連続添加し 、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟 凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液 10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間 の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後 、80℃に加熱して熱処理操作を実施した。

[0052]

(実施例 6)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0053]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100 部) を採り、脱イオン水500gを加え、55℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加し 、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟 凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液 10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間 の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後 、55℃で5分間撹拌した。

[0054]

(実施例7)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0055]

2 Lのセパラブルフラスコに、乳化重合ラテックスA775g(ポリマー固形分100 部) を採り、脱イオン水225gを加え、40℃に調整した(ポリマー固形分濃度31%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-3Z、粘 度平均分子量 605 -1105)水溶液 93g (0.3部) を 9 分間かけて連続添加し、続いて 15% 硫酸ナトリウム水溶液 15.5g (0.75部) を添加した。この時、系は軟凝集状ポリマー成分と水の 2 相分離状態となった。そこへ、 15% 塩化カルシウム水溶液 15.5g (0.75部) を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、 5% パルミチン酸カリウム水溶液 62g (1.0部) を加えた後、 80% に加熱して熱処理操作を実施した。

[0056]

(実施例8)

実施例 1 と同様に、乳化重合ラテックス A (体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%)を得た。

[0057]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で0.5%ポリエチレンオキシド(住友精化株式会社製PEO-18 Z、粘度平均分子量430万~480万)水溶液20g(0.05部)を1.5分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0058]

(実施例9)

実施例 1 と同様に、乳化重合ラテックスA(体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%)を得た。

[0059]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で0.5%ポリエチレンオキシド(住友精化株式会社製PEO-27、粘度平均分子量600万~800万)水溶液20g(0.05部)を1.5分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0060]

(実施例10)

実施例 1 と同様に、乳化重合ラテックス A (体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%)を得た。

[0061]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液600g(3.0部)を30分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液40g(3.0部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0062]

(実施例11)

実施例 1 と同様に、乳化重合ラテックス A (体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%)を得た。

[0063]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

$[0\ 0\ 6\ 4\]$

(実施例12)

実施例 1 と同様に、乳化重合ラテックス A (体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%)を得た。

[0065]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液4g(0.30部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0066]

(実施例13)

実施例 1 と同様に、乳化重合ラテックスA(体積平均粒子径 0 . 175μ m、ポリマー 固形分濃度 40%、ポリマー軟化温度 40%)を得た。

[0067]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液133g(10部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0068]

(実施例14)

撹拌機付反応器に脱イオン水 200 部、パルミチン酸カリウム 0.08 部、および硫酸ナトリウム 0.01 部を仕込み、窒素置換後、70 ℃に昇温した。これに過硫酸カリウム 0.1 部を加え 30 分間撹拌した後、メチルメタクリレート 80 部、ブチルアクリレート 20 部よりなるモノマー混合物を 4 時間に渡って連続追加した。その間、モノマー混合物 添加開始から、30 分、60 分、90 分、および 120 分目にパルミチン酸カリウム 0.4 部を追加した。モノマー添加終了後、同温度で 1.5 時間保持し重合を完結させ、乳化重合ラテックス 1.5 (体積平均粒子径 1.5 の 1.5 の 1.5 で)を得た。

[0069]

2 Lのセパラブルフラスコに、乳化重合ラテックスB500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、75℃に調整した(ポリマー固形分濃度16%

)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液32g(0.2部)を3分間かけて連続添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液8g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。その後、95%に加熱して熱処理操作を実施した。

[0070]

(実施例15)

撹拌機付反応器に脱イオン水 200 部、パルミチン酸カリウム 0.3 部、および硫酸ナトリウム 0.01 部を仕込み、窒素置換後、70 \mathbb{C} に昇温した。これに過硫酸カリウム 0.1 部を加え 30 分間撹拌した後、メチルメタクリレート 80 部、ブチルアクリレート 20 の部よりなるモノマー混合物を 4 時間に渡って連続追加した。その間、モノマー混合物添加開始から、30 分、60 分、90 分、および 120 分目にパルミチン酸カリウム 0.4 部を追加した。モノマー添加終了後、同温度で 1.5 時間保持し重合を完結させ、乳化重合ラテックス \mathbb{C} (体積平均粒子径 0.072 μ m、ポリマー固形分濃度 32 %、ポリマー軟化温度 70 \mathbb{C})を得た。

[0071]

2 Lのセパラブルフラスコに、乳化重合ラテックスC500g(ポリマー固形分100部)を採り、脱イオン水500gを加え、75℃に調整した(ポリマー固形分濃度16%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘度平均分子量170万~220万)水溶液32g(0.2部)を3分間かけて連続添加し、続いて15%硫酸ナトリウム水溶液8g(0.75部)を添加した。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液8g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。その後、95℃に加熱して熱処理操作を実施した。

[0072]

(実施例16)

撹拌機付反応器に脱イオン水220部、ほう酸0.3部、炭酸ナトリウム0.03部、 N-ラウロイルサルコシン酸ナトリウム 0.09部、ホルムアルデヒドスルホキシル酸ナ トリウム 0. 09部、エチレンジアミン四酢酸ナトリウム 0. 006部、および硫酸第一 鉄7水塩0.002部を仕込み、窒素置換後、80℃に昇温した。これにメチルメタクリ レート25部、アリルメタクリレート0.1部、t-ブチルハイドロパーオキサイド0. 1部よりなるモノマー混合物のうち25%を一括して仕込み、45分間重合を行った。続 いてこの混合液の残り75%を1時間に渡って連続追加した。追加終了後、同温度で2時 間保持し重合を完結させた。また、この間に0.2部のN-ラウロイルサルコシン酸ナト リウムを追加した。得られた最内層架橋メタクリル系重合体ラテックス中の重合体粒子の 体積平均粒子径は、 0.160μ mであり、重合転化率(重合生成量/モノマー仕込量imes100)は98%であった。続いて、上記架橋メタクリル系重合体ラテックスを窒素気流 中で80℃に保ち、過硫酸カリウム0.1部を添加した後、ブチルアクリレート41部、 スチレン9部、アリルメタクリレート1部のモノマー混合液を5時間に渡って連続追加し た。この間にオレイン酸カリウム 0. 1部を 3回に分けて添加した。モノマー混合液の追 加終了後、重合を完結させるためにさらに過硫酸カリウムを 0.05部添加し2時間保持 した。得られた重合体の体積平均粒子径は 0. 230 μmであり、重合転化率は 99%で あった。続いて、得られた上記ゴム状重合体ラテックスを80℃に保ち、過硫酸カリウム 0. 02部を添加した後メチルメタクリレート24部、ブチルアクリレート1部、tード デシルメルカプタン 0. 1部の混合液を1時間に渡って連続追加した。モノマー混合液の 追加終了後1時間保持し、体積平均粒子径が0.250 μ mの多層構造を持つ乳化重合ラ テックスD (体積平均粒子径0.250μm、ポリマー固形分濃度33%、ポリマー軟化 温度 7 5 ℃) を得た。

[0073]

2 Lのセパラブルフラスコに、乳化重合ラテックスD606g(ポリマー固形分100

部)を採り、脱イオン水394gを加え、75℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液20g(0.1部)を3分間かけて連続添加し た。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩 化カルシウム水溶液10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。 その後、95℃に加熱して熱処理操作を実施した。

[0074]

(比較例1)

実施例1と同様に、乳化重合ラテックスA (体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0075]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100 部) を採り、脱イオン水500gを加え、20℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液40g(0. 2部)を3分間かけて連続添加し 、続いて15%硫酸ナトリウム水溶液10g(0..75部)を添加した。この時、系は軟 凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液 10g(0.75部)を加えると、クリーム状の微粒子ポリマー凝集粒子の水懸濁液が形 成された。

[0076]

(比較例2)

実施例1と同様に、乳化重合ラテックスA (体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0077]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100 部) を採り、脱イオン水500gを加え、60℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加し 、続いて15%硫酸ナトリウム水溶液10g(0.75部)を添加した。この時、系は軟 凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩化カルシウム水溶液 10g(0.75部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間 の融着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後 、80℃に加熱して熱処理操作を実施した。

[0078]

(比較例3)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g (ポリマー固形分100 部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液5.0g(0.025部)を0.5分間かけて 連続添加した。この時、系は増粘状態となった。そこへ、15%塩化カルシウム水溶液2 0g(1.5部)を加え、ポリマー凝集粒子の水懸濁液を得た。ポリマー凝集粒子間の融 着を防止するため、5%パルミチン酸カリウム水溶液40g(1.0部)を加えた後、8 0℃に加熱して熱処理操作を実施した。

[080]

(比較例4)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0081]

2 Lのセパラブルフラスコに、乳化重合ラテックスA500g(ポリマー固形分100 部)を採り、脱イオン水500gを加え、40℃に調整した(ポリマー固形分濃度20%)。そこへ、撹拌下で1%ポリエチレンオキシド(住友精化株式会社製PEO-8Z、粘 度平均分子量170万~220万)水溶液40g(0.2部)を3分間かけて連続添加し た。この時、系は軟凝集状ポリマー成分と水の2相分離状態となった。そこへ、15%塩 化カルシウム水溶液 1.3g(0.10部)を加え、ポリマー凝集粒子と軟凝集状ポリマ - 成分の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸 カリウム水溶液40g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した

[0082]

(参考例)

実施例1と同様に、乳化重合ラテックスA(体積平均粒子径0.175μm、ポリマー 固形分濃度40%、ポリマー軟化温度40℃)を得た。

[0083]

2 Lのセパラブルフラスコに、乳化重合ラテックスA200g (ポリマー固形分100 部) を採り、脱イオン水800gを加え、5℃に調整した(ポリマー固形分濃度8%)。 そこへ、撹拌下で15%塩化カルシウム水溶液32g(6.0部)を加え、ポリマー凝集 粒子の水懸濁液を得た。ポリマー凝集粒子間の融着を防止するため、5%パルミチン酸カ リウム水溶液16g(1.0部)を加えた後、80℃に加熱して熱処理操作を実施した。

[0084]

表 1 には、乳化重合ラテックスA \sim D のポリマー軟化温度T m の測定結果を示した。乳 化重合ラテックスAのポリマー軟化温度Tmは40℃、乳化重合ラテックスBおよびCの ポリマー軟化温度Tmは70℃、乳化重合ラテックスDのポリマー軟化温度Tmは75℃ であった。

[0085]

【表 1】

【表1】

[衣工]				
熱処理温度 ℃	ラテックスA	ラテックスB	ラテックスC	ラテックスD
2 0	51.2	60.9	60.0	62.0
2 5	51.2			
3 0	50.7			
3 5	49.4			
4 0	45.7	61.8	58.4	61.8
4 5	43.2	61.5	59.5	61.2
5 0	41.4	62.0	58.6	60.4
5 5	38. 2	61.0	57.5	61.0
6 0	36.9	58.8	58.6	61.4
6 5	35.1	57.9	57.5	60.1
7 0	33.9	40.3	36.5	59.1
7 5	33.2	39.8	37.5	56.5
8 0	32.5	39.6	35.4	46.5
8 5		40.2	36.5	45.5
9 0		40.5	36.5	44.4
9 5		40.1	37.5	44.6
9 9		40.3	37.8	44.8
ポリマー軟化温				7.5
度Tm ℃	4 0	7.0	7 0	7 5

[0086]

表 2 には、実施例 $1\sim1$ 6、比較例 $1\sim4$ 、および参考例の乳化重合ラテックス種、ポリマー軟化温度 T m、ラテックス粒子径、凝集時の固形分濃度、凝集時の温度、ポリエチレンオキシド粘度平均分子量、ポリエチレンオキシド使用部数、凝固剤種、および凝固剤使用部数をそれぞれ示した。

[0087]

【表2】

参考例	比較例4	比較例3	比較例2	比較例1	夫.施岁J L O			実施例14	実施例13	実施例12	美施例 1 1	1	実施例10	実施例9	表.加例 &	大地で	世春座7	実施例6	実施例 5	実施例4	大畑でして	米温ごり	中存をつ	実施例1			[表2]
Α	Α	Α	A	A	.	ן	C	В	Α	Α	A	>	Α	Α	۶	> ;	A	A	Α	A	. 5	Δ	Α	Α	ソッツへ伸	乳化重合ラ	
40	40	40	40	4		80	7 5	7 5	40	40	4.0	2	4 0	40		4	40	40	40	40			40	40	Tm °C	ポリター 製 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
0. 175	0.175	0. 175		, ,-	1 7	0.250	0.072	0.138	0.175	0. 175		0 175	0. 175	0. 1 7 0	, ,	17	0.175	0.175	1	1 -	7	17	0.175	0.175	# 11	LTX粒子径	
8	1,5	T			0	20	16	1 6	20	2.0		20	20	0.0		20	3 1	20				30	10	20	1	固形分濃	
o	40					8 0	7 5	7 5	40	40		40	40	4		40	40	0 0				40	40	4 0		凝集温度°C	
	170~220	0 0	1 - 0	9	170~220	170~220	170~220	170~220	0~22	1 0	70~99	170~220	170~220	10	800~800	430~480	60~110	70.0	3 C	70~99	170~220	170~220	170~220	170~220		ポリエチレンオキ シド分子量 万	
		3 6	> `	- 1	0. 2	0. 1	0. 2	0. 4	1	1.	0. 2	0. 2	3. 0	1	0.05	0.05	0. 3	1.	- 1	0. 2	0. 2	0. 2	0. 2	0. 2		ポリエチフン オキシド 鹄	
	回 3 一 }	一一一一一	祖チセラシセス	一一	周上		同上	3	11 3 T		画	塩化カルシウム	周上		画	刊上				同上	同上	P	画	横代カアツウム	人とウにメータ部	凝固剂種	
	٠ ١	- 1	1. 5	画上	同上	0. 75	7	2		10	0.3	0.75	3. 0	0.75/	三十	同十	1 3 F		川	画上	间上	国	三十	۱, ` ا	0.75/	凝固剂部数	

[0088]

表3には、実施例 $1\sim16$ 、比較例 $1\sim4$ および参考例で得られた乳化重合ポリマー凝集粒子の、含水率、体積平均粒子径、16メッシュ篩上に残った粗粒量%、および体積平均粒子径 50 μ m未満の微粉量%を示した。

[0089] 【表3】

参考例	比較例4	比較例3	比較例2	比較例1	実施例16	実施例15	実施例14	実施例13	実施例12	実施例11	実施例10	実施例9	実施例8	実施例7	実施例6	実施例5	実施例4	実施例3	実施例2	実施例1		[表3]
A	Α	Α	A	Α	D	С	В	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	A	Α	Α	乳化重合ラテッ クス種	
45.5	ろ過困難	34. 2	37. 2	46.0	36.0	29.8	28. 2	26. 2	28.6	27.6	29.6	28.7	31.9	30.6	32.1	27. 9	22. 1	24.0	34. 2	28. 3	光浴	↑
221	1	350		12	278	164	219	176	186	231	201	172	150	255	287	154	268	272	202	197		数七字子の七字事が
18. 9	1	8. 4	1.		0.0	1	1.	1.	1.		.		0. 6	١.	1	1	1.		1	1	· · · · · · · · · · · · · · · · · · ·	相类品
100	100		1 1 7	0 1	٠ ٠	0 0		1.	1	2.0	1.	1.	.	1		0. 9	1.	Ι.	1	1 0	3%	微粉量

[0090]

以上の結果より、本発明の乳化重合ラテックス凝集粒子の製造方法では、従来の塩析・ 凝析等による造粒方法に比べ、(イ)粒子径が50μm未満の微粉量が少なく、(ロ)低 含水率で乾燥時のエネルギー消費量が小さな凝集粒子となっており、(ハ)ポリマー軟化 温度近傍(重合温度近傍)での造粒操作が可能であるためエネルギー効率が良好であり、 (二) 固形分濃度10重量%以上での処理が可能であるため排水処理の負荷を軽減できる ことがわかる。

【要約】

【課題】 従来の塩析等による乳化重合ラテックスの造粒操作に比べ、微粉量が少なく、低含水率で乾燥時のエネルギー消費量が小さく、ポリマー軟化温度近傍(重合温度近傍)での造粒操作が可能でエネルギー効率が良好であり、排水処理の負荷を軽減できる、新規の造粒方法を提案することを課題とする。

【解決手段】 乳化重合ラテックス(ポリマー固形分100重量部)を、(A)ポリマー軟化温度(Tm)に対しTm ± 15 $\mathbb C$ の範囲内となるように温度調整し、(B)撹拌下にポリエチレンオキシドを $0.03\sim3.0$ 重量部加えた後、(C) $0\sim1.5$ 重量部の凝固剤を加えてポリマー成分と水の相分離状態を形成させ、(D)さらに $0.2\sim10$ 重量部の凝固剤を加え体積平均粒子径が $50\sim500$ μ mのポリマー凝集粒子の水懸濁液を形成し、(E)懸濁液の温度をTm以上に調整することを特徴とする、乳化重合ラテックス凝集粒子の製造方法。

【選択図】なし

1/E

特願2004-063707

出願人履歴情報

識別番号

[000000941]

1. 変更年月日

1990年 8月27日

[変更理由] 住 所

新規登録

氏 名

大阪府大阪市北区中之島3丁目2番4号

鐘淵化学工業株式会社

2. 変更年月日 [変更理由]

2004年 9月 1日

[理由] 名称変更

住 所 名

大阪府大阪市北区中之島3丁目2番4号

株式会社カネカ