Tema 2: Resolución de problemas en el Espacio de búsqueda

1. Representación de problemas según el espacio de estado	s
☐ El 8-puzzle	
Los misioneros	
☐ El granjero, el lobo, la col y la cabra	
☐ Las garrafas	
2. Resolución de problemas con Estrategias de búsqueda	
Métodos no informados o ciegos	
Métodos informados o heurísticos	

IAIC - Curso 2010-11

1. Espacio de Estados: Conceptos básicos

 E5	yac	do de Estados. Conceptos basicos
Da	do ι	ın problema, necesito representarlo en el ordenador usando:
	Est	ado: situación actual, conjunto de todas las características relevantes
		Ajedrez: situación de las piezas en el tablero
		Ruta de tráfico: densidad de tráfico en cada calle de la ciudad
Có	mo (evoluciona un problema hasta llegar a la solución:
	Со	n las acciones válidas (movimientos usando operadores)
		Ajedrez: muevo una pieza
		Ruta tráfico: escojo ir por una calle
	Qu	ié ha cambiado: otra situación diferente (otro estado)
		Ajedrez: otra situación de las piezas
		Ruta de Tráfico: he avanzado por esa calle, estoy en otro lugar
Esp	oaci	o de Estados: El conjunto de todas las situaciones posibles
Sol	ucić	ón: un estado o el camino para llegar a él
Lle	gar	a las <mark>solución</mark> depende de qué movimientos haga yo:
	Qu	é Estrategia de Búsqueda utilizo

Cómo definir el Estado en un problema

Carácterísticas relevantes. Sí pero...cuáles lo son?
 Cuando cambia algo en el estado del problema: qué influye?
 Donde termina un estado y empieza el siguiente?
 EJ: Trayectoria de una nave desde la tierra a Marte
 Un estado es una foto en un instante hecha cada cierto intervalo de tiempo
 Se hace una estimación aproximada de la localización
 Qué pasa si cambian varias cosas a la vez?
 EJ: Jugando al tenis: dos jugadores se mueven a la vez !!
 Infinitos estados, cambios continuos sin pausa
 Localización aproximada, tiempo continuo pasa a "cortado" en instantes
 EJ: Jugando al fútbol: mucha más complejidad
 Qué pasa si desconocemos partes relevantes del problema?
 Aproximaciones, estimaciones de otros problemas conocidos
 Heurísticas

IAIC – Curso 2010-11 Tema 2 - 3

Ignorarlas: la búsqueda funcionará peor o no encontrará solución

Convenio de representación: Elementos y Pasos

- 1. Definir componentes de un estado: estado(...)
- 2. Estado inicial inicial (Estado)

Estados objetivos objetivo (Estado) :- condiciones Objetivo.

Estados de peligro peligro (Estado) :- CondiciónPeligro.

- 3. Operadores (o función sucesor o movimiento):
 - ☐ Acciones disponibles para pasar de un estado al siguiente:

movimiento(Estado, EstadoSig, CosteOper, NombreOper):
Especificación (formada por precondiciones, acciones y por \+peligro(EstadoSig) ... evitar estados de peligro)

- 4. Coste del operador : representa el esfuerzo de aplicar dicho operador una vez
- 5. Función de coste de la solución suma coste operadores aplicados
- 6. Solución: camino desde el estado inicial a un estado objetivo
 - ☐ Pueden haber soluciones (caminos) de diferentes costes

→ ver documento: convenioEspacioEstados.PDF

Ejemplo del 8-puzzle

Definición de Espacio de estados Grafo dirigido: vértices-estados, arcos-acciones Estados alcanzables desde el estado inicial Definido implícitamente por el estado inicial y los operadores Simplificación del 15-puzzle ■ Tablero de 3*3 8 fichas numeradas Un posible estado inicial 6 1 hueco 5 8 2 **Operadores** Estado objetivo 4 3 4 6 7 6 8 6 6 5 8 2 8 2 5 8 2 Estados alcanzables en un paso Tema 2 - 5 IAIC - Curso 2010-11

Representar Espacio de Estados: Abstracción adecuada

- ☐ Se representa un problema mediante abstracción
 - ☐ Eliminar detalles irrelevantes en la representación
- Una representación puede simplificar o complicar
 - ☐ La resolución del problema
- EJ: Representación del problema del 8-puzzle

→ (es buena?)

- ☐ El estado no debe incluir:
 - □ el material o el color del tablero (irrelevante)
- Estados: localización de cada ficha (y hueco)
 - □ en cada una de las 9 casillas
- ☐ Estado inicial: puede ser cualquiera
- Coste de operadores:
 - cada operador tiene coste 1 (asumido para este ejemplo)
- □ Coste del camino: suma de aplicar operadores = número de pasos dados

Tema 2 - 6

Espacio de E.: Elección de abstracción para Representación

- Estados y operadores "cooperan" para la resolución del problema
 - ☐ Su representación debe ser compatible
- Los operadores deben ser
 - ☐ Tan generales como sea posible: parametrizarlos
 - reducir el número de (operadores) reglas distintas.
 - □ Deterministas: aplicados al mismo estado dan siempre el mismo resultado
- Ejemplo del Puzzle, tres modos de definir operadores
 - 1. 9!*4 operadores: uno por estado y movto -- muy específicos hay 9! estados y cada uno sus estados sucesores (máximo 4)
 - 2. 8*4 operadores: uno por ficha (hay 8) y --preferible pero puede mejorarse movto (arriba, abajo, derecha o izquierda)
 - 3. 4 operadores que mueven el hueco arriba, abajo, derecha o izquierda parametrizado (i, j) que indica donde está el hueco

Tema 2 - 7

Fragmento del espacio de estados del 8-puzzle

Espacio de Estados: Niveles de representación

Desc	cripción	de la	Represen	tación:
------	----------	-------	----------	---------

- Especifican estados y operadores a nivel conocimiento
- con diagramas o texto

☐ Implementación de la Representación:

- ☐ Define estados mediante una estructura de datos
- ☐ Define operadores en un lenguaje formal
- ☐ Implementación de estados y operadores en un lenguaje de programación
- ☐ Ejemplo: Representación de los estados del 8-puzzle
 - Descripción
 - Estados: localización de cada ficha y del hueco en cada una de las 9 casillas
 - Implementación: Muchas opciones
 - matriz 3*3,
 - vector de longitud 9,
 - conjunto de hechos {(superior_izda = 3), (superior_centro = 8), ...}

Tema 2 - 9

Ejemplo: los misioneros y los caníbales

■ Enunciado (H1EJ3)

- 3 misioneros y 3 caníbales en la orilla de un río junto con 1 bote
- ☐ El objetivo es que pasen todos a la otra orilla
- Hay dos restricciones
 - Deben cruzar usando el bote en el que sólo pueden ir 1 o 2 personas
 - ☐ En ninguna de las orillas puede haber más caníbales que misioneros

 Representar el problema según el paradigma del espacio de estados y dibujar el espacio de estados

Ejemplo: los misioneros y los caníbales

__ A __

- Descripción de la Representación
 - Es necesario abstraer y dejar fuera características irrelevantes como: intentar identificar a las personas concretas M1, M2, M3, C1, C2, C3
 - ☐ 7 "personajes" → ¿guardamos la posición de todos?
 - ☐ Estado = nº de misioneros, caníbales y bote en cada orilla
- Posibilidades para representar el estado
 - ☐ (M1, M2, M3, C1, C2, C3, B)
 - □ (NM_OI, NC_OI, NM_OD, NC_OD, B)

IAIC - Curso 2010-11

Tema 2 - 11

Ejemplo: los misioneros y los caníbales -- B --

- Descripción de la Representación
- PASO 1: definir el estado
- □ Estado = nº de misioneros, caníbales y bote en la orilla de partida
- ☐ Acordamos que la orilla inicial sea el margen izquierdo del río
- ☐ Se asume: cruce del río instantáneo (irrelevante el tiempo)
- □ Estado = (NM, NC, B)
 - □ NM es el número de misioneros en la orilla izquierda (0, 1, 2 o 3)
 - □ NC es el número de caníbales en la orilla izquierda (0, 1, 2 o 3)
 - \square B es la posición del bote (0= dcha ó 1 = izq)
- ☐ El sitio donde está el bote es fundamental para los viajes
 - ☐ Determina si son o no aplicables ciertos operadores
 - **□** (2, 1, 0) ≠ (2, 1, 1)

Ejemplo: los misioneros y los caníbales -- B --

PASO 2: definir estados inicial y objetivo

Estado inicial (3, 3, 1)

Estado objetivo (0, 0, 0)

(0, 0, 1) no es posible

(2, 2, 0) Estados intermedios no peligrosos

(3, 2, 1)

IAIC - Curso 2010-11

Tema 2 - 13

Ejemplo: los misioneros y los caníbales -- B --

- Operadores ¿ Qué determina un cambio de estado?
- (PASO 3)
- ☐ Hay 5: el bote siempre cruza el río junto a 1 o 2 personas
 - ☐ 1 misionero: M
 - 2 misioneros: MM
 - □ 1 caníbal: C
 - 2 caníbales: CC
 - ☐ 1 misionero y 1 caníbal: MC
- ☐ Especificación de operadores (por ahora asumo coste operador = 1)
 - El sitio donde está el bote es fundamental
 - □ P.ej., no podría cruzar ningún misionero en los estados (0, _, 1) y (3, _, 0)
 - □ cruzaM (NM, NC, B)
 - \square Precondiciones: { (NM > 0 \land B = 1) \lor (NM < 3 \land B = 0) }
 - \square Acciones: si B = 1 entonces $NM := NM-1 \land B := 0 \rightarrow (NM-1, NC, 0)$

si B = 0 entonces $NM := NM+1 \land B := 1 \rightarrow (NM+1, NC, 1)$

Función de coste de camino = número de veces que se cruza el río

Ejemplo: los misioneros y los caníbales

-- B --

- □ Situaciones de peligro ¿en bote? ¿en orillas? (PASO 2 , cont.)
- □ En el bote no hay peligro (por viajar un máximo de 2 personas en él)
 □ Si el máximo fuese 3 o 4, sí habría peligro (y sería otro problema)
 - ☐ Hay que comprobar la condición de peligrosidad en las orillas (en estados)
- ☐ Estudio de la peligrosidad de un estado (NM, NC, B)
 - \square (3, 3, 1) y (2, 2, 0) no son estados peligrosos
 - ☐ (1, 2, 0) y (2, 3, 0) son ejemplos de estados peligrosos
 - ☐ ¿Bastará NM < NC como condición de peligrosidad?
 - ☐ En (2, 1, 0) ¿no hay peligro?
 - □ ¡En la orilla derecha hay 1 misionero con 2 caníbales!
 - □ En (0, 2, 1) ¿hay peligro?
 - □ ¡Si no hay misioneros no hay peligro!
- Condición de peligrosidad
 - \square (NM < NC \land NM \neq 0) \lor (NM > NC \land NM \neq 3)

Tema 2 - 15

Ejemplo: los misioneros y los caníbales -- B --

Espacio de estados (cálculo del ta

- ☐ En principio, habría 4*4*2 = 32 estados posibles (NM, NC, B)
- ☐ Hay 4 estados inalcanzables (por lo tanto, hay 28 estados alcanzables)
 - Obvios como (0, 0, 1) y (3, 3, 0)
 - Y no tan obvios como (3, 0, 1) y (0, 3, 0)
 - ☐ Hay 12 estados de peligro
 - □ (1, 2, _), (2, 3, _), (1, 3, _), (2, 1, _), (2, 0, _), (1, 0, _)
 - ☐ Hay 16 estados alcanzables seguros
- ☐ Por lo tanto, el espacio de estados se compone de 12+16 = 28 estados
- A veces la condición de peligrosidad aparece dentro del operador
 - Supone no generar los estados de peligro al aplicar un operador
 - ☐ En ese caso, el espacio de estados estaría compuesto por 16 estados
- Nosotros la especificaremos aparte en la mayoría de las ocasiones
 - ☐ Impone condiciones sobre el nuevo estado y no sobre el estado actual

IAIC - Curso 2010-11

Ejemplo: los misioneros y los caníbales

-- B --

Espacio de estados

- Desarrollad vosotros el resto del espacio de estados
 - A partir del estado (3, 2, 1)
 - ☐ Grafo dirigido con ciclos
 - ☐ Estados de peligro:
- peligro
- No se resuelve el problema, por lo que no se sigue por ahí

IAIC – Curso 2010-11

Ejemplo: los misioneros y los caníbales

-- B --

Tema 2 - 17

- Implementación en Prolog
 - □ Estado inicial con predicado inicial/1 inicial(estado(3, 3, 1)).
 - Estado objetivo con predicado *objetivo/1* objetivo(estado(0, 0, 0)).
 - Condición de peligrosidad con predicado peligro/1 peligro(estado(NM, NC, _)):-

(NM < NC, NM = 0); (NM > NC, NM = 3).

☐ Operadores con predicado movimiento/4

Representación: pensar en estados y operadores La representación de los estados afecta La facilidad/dificultad de la especificación de operadores Y a la complejidad para resolver el problema ■ Ejemplo de los misioneros ☐ (M1, M2, M3, C1, C2, C3, B) □ cruzaM1 (M1, M2, M3, C1, C2, C3, B) □ Precondiciones: $\{M1 = B\}$ □ Acciones: si B = izquierda entonces $M1 := derecha \land B := derecha$ si $B = derecha entonces M1 := izquierda \land B := izquierda$ ☐ Habría que especificar 21 operadores 3 para cruzar a un misionero 3 para cruzar a un caníbal 3 para cruzar a dos misioneros 3 para cruzar a dos caníbales 9 para cruzar a un caníbal y a un misionero

La información redundante supone hacer cambios en más componentes

Representación: pensar en estados y operadores

□ (NM_OI, NC_OI, NM_OD, NC_OD, B)

IAIC - Curso 2010-11

☐ Ejemplo del 8-puzzle: posibilidades para los operadores
☐ Centrarse en los estados era implanteable (1 operador / 1 estado)
□ 9!*4 = 1.451.520 operadores
Centrarse en la ficha a mover era factible
■ 8*4 operadores
Puede parametrizarse la especificación de los operadores
 Dependiendo de cómo se haga la representación de estados
 Debe facilitar localizar y cambiar cuál es la posición de una ficha concreta
izquierda(Ficha), derecha(Ficha), arriba(Ficha), abajo(Ficha)
Aunque así sea más fácil, seguirían saliendo 32 operadores
Centrarse en el hueco (la mejor opción)
☐ Salían 4 operadores

http://freeweb.siol.net/danej/riverIQGame.swf

IAIC – Curso 2010-11 Tema 2 - 21

http://freeweb.siol.net/danej/riverIQGame.swf

- Test japonés
 - ☐ Todo el mundo tiene que cruzar el río
 - Sólo 2 personas pueden cruzar a la vez
 - El padre no puede permanecer con ninguna de sus hijas sin que esté presente la madre
 - La madre no puede permanecer con ninguno de sus hijos sin que esté presente el padre
 - □ El ladrón no puede permanecer con ningún miembro de la familia sin que esté presente el policía
 - ☐ Sólo saben manejar la balsa la madre, el padre y el policía: sin uno de ellos a bordo, la balsa no se mueve
- ☐ Aplicación: para empezar haz clic sobre el círculo azul
 - ☐ Para mover las personas haz clic sobre ellos
 - ☐ Para que la balsa cruce el río, haz clic sobre la pala del otro lado

Ejercicio: las garrafas de 4 y 3 litros

Enunciado
2 garrafas vacías con capacidades de 4 y 3 litros, respectivamente
Objetivo: la garrafa de 4 litros ha de contener exactamente 2 litros
Medios: grifo para rellenarlas y posibilidad de trasvasar líquido de una garrafa a la otra, hasta que la 1ª se vacíe o la 2ª se llene
Descripción Representación
Estados: líquido que contienen las garrafas de 4 y 3 litros
pares (x, y) donde x es el nº de litros que contiene la garrafa de 4 litros e y es el nº de litros en la garrafa de 3 litros
☐ Estado inicial: (0, 0) ¿Objetivo?
Operadores (p.e. llena-4: llenar del grifo la garrafa de 4 litros)
como reglas: precondición y acción asociada
☐ <i>Ilena-4 (x, y)</i> : ¿Resto operadores?
□ precondición: x < 4 (si no, sería un movim absurdo, sin cambio de estado)
acción: construir el estado (4, y)
IAIC – Curso 2010-11 Tema 2 - 23

Ejercicio: el granjero, el lobo, la cabra y la col

□ El problema del granjero, el lobo, la cabra y la col
Un granjero, un lobo, una cabra y una col se encuentran en la orilla izquierda de un río
El objetivo es que pasen a la orilla derecha del río
☐ Las restricciones son:
☐ deben cruzar en una barca
la barca debe ser tripulada por el granjero
la barca sólo tiene capacidad para un pasajero más
 el lobo se comerá al la cabra si se los deja juntos sin compañía en una de las orillas (sin granjero; la col no lo evita)
la cabra se comerá la col si se los deja solos (sin granjero)
□ Ejercicio:
Representación de estados (incluyendo el inicial y el objetivo)
Condición de peligrosidad
Especificación de operadores y dibujar espacio de estados

Tema 2 - 24

Ejercicios de representación: Hoja 1

□ Hoja 1 de ejercicios:
☐ Las garrafas <i>(ejercicio 1)</i>
☐ El granjero, el lobo, la cabra y la col (ejercicio 2)
☐ El laberinto (ejercicio 12)
☐ El juego de cartas del 15 (ejercicio 13)
Mundo de bloques (ejercicio 14)
El problema del mono (ejercicio 15)
□ → Crear un enunciado adecuado (ejercicio 18)
Interesante porque descubres tus dudas en reconocer problemas
Por ahora, resolved sólo la parte de representación
No dejaremos soluciones
☐ Son para que los hagáis
Ver en clase como se resuelven algunos de ellos