STSAL - Partea I

May 8, 2023

1 Subjectul I

 $\varphi \coloneqq S \triangleleft \{X\}_K$ and $\Psi \coloneqq S \mid \equiv X$, give an example of BAN formula Γ such that Ψ can be inferred from $\Gamma \bigcup \{\varphi\}$.

2 Subjectul II

- 1. $I \to R : \{\{K_2\}_{sk(I)}\}_{K_1}$
- 2. $R \rightarrow I : \{"STLS", R, n_R\}_{K_2}$
- 3. $I \to R : \{I, n_R\}_{K_2}$

2.1 Idealizare

- P1. $R \triangleleft \{\{R \stackrel{K_2}{\longleftrightarrow} I\}_{K_I^{-1}}\}_{K_1}$
- P2. $I \triangleleft \{"STLS", n_R\}_{K_2}$
- P3. $R \triangleleft \{n_R\}_{K_2}$

2.2 Asumptii

- A1. $R \equiv (R \stackrel{K_1}{\longleftrightarrow} I)$
- A2. $R \mid \equiv \stackrel{K_I}{\longmapsto} B$
- A3. $R \mid \equiv \#(R \stackrel{K_2}{\longleftrightarrow} I)$

A4. $R \mid \equiv (I \Rightarrow (R \stackrel{K_2}{\longleftrightarrow} I))$

- A5. $R \mid \equiv \#(n_R)$
- A6. $I \mid \equiv \#(n_R)$
- A7. $I \mid \equiv (R \stackrel{K_2}{\longleftrightarrow} I)$

2.3 Demonstratie

- 1. $R \triangleleft \{R \stackrel{K_2}{\longleftrightarrow} I\}_{K_I^{-1}}$, din [SC3: A1, P1]
- 2. $R \mid \equiv I \mid \sim (R \stackrel{K_2}{\longleftrightarrow} I)$, din [MM-PK: A2, 1]
- 3. $R \mid \equiv I \mid \equiv (R \stackrel{K_2}{\longleftrightarrow} I)$, din [NV: A3, 2]
- 4. $R \mid \equiv (R \stackrel{K_2}{\longleftrightarrow} I)$, din [JR: A4, 3]
- 5. $R \mid \equiv I \mid \sim nR,$ din [MM-SK: 4, P3]
- 6. $R \mid \equiv I \mid \equiv nR,$ din [NV: A5, 5] QED
- 7. $I \mid \equiv R \mid \sim ("STLS", n_R),$ din [MM-SK: A7, P2]
- 8. $I \mid \equiv R \mid \sim n_R$, din [BC4: 7]
- 9. $I \mid \equiv R \mid \equiv n_R, \, \mathrm{din} \; [\mathrm{NV: A6, \, 8}]$

3 Subjectul 3

3.1 Detalierea actiunilor

- \bullet $I \rightarrow R: I, R$
- $R \rightarrow S: I, R$
- $I \rightarrow R : \{I, pk(I)\}_{sk(S)}$
- $R \rightarrow I : \{R, n_R\}_{sk(S)}$
- $I \rightarrow R : \{n_R, I\}_{sk(I)}$
- claim(I, R, recent alive)

3.2 Specificarea rolurilor

- $send_1(I, R, (I, R))$
- $recv_1(R, I, (I, R))$
- $send_2(R, S, (I, R))$
- $recv_1(S, R, (I, R))$
- $send_3(S, R, \{I, pk(I)\}_{sk(S)})$
- $recv_3(R, S, \{I, pk(I)\}_{sk(S)})$
- $send_4(R, I, \{R, n_R\}_{sk(R)})$
- $recv_4(I, R, \{R, V\}_{sk(R)})$
- $send_5(I, R, \{V, I\}_{sk(R)})$
- $recv_5(R, I, \{n_R, I\}_{sk(R)})$
- $claim_6(I, R, recent alive)$

- $send_1(I, R, (I, R))$
- $recv_1(R, I, (I, R))$
- $send_2(R, S, (I, R))$
- $recv_1(S, R, (I, R))$
- $send_3(S, R, \{I, pk(I)\}_{sk(S)})$
- $recv_3(R, S, \{I, pk(I)\}_{sk(S)})$
- $send_4(R, I, \{R, n_R\}_{sk(R)})$
- $recv_4(I, R, \{R, V\}_{sk(R)})$
- $send_5(I, R, \{V, I\}_{sk(R)})$
- $recv_5(R, I, \{n_R, I\}_{sk(R)})$
- $claim_6(I, R, recent alive)$
- $P(I) = \{(\{pk(I), sk(I), pk(R), pk(S)\}, send_1(I, R, (I, R)); recv_4(I, R, \{R, V\}_{sk(R)} send_5(I, R, \{V, I\}_{sk(R)})\}$