

Problem 1 Let L_1 be the language accepted by the finite automaton given on Figure 1.

Figure 1: Language L_1

Let L_2 be the language generated by the context-free grammar $G_2 = (V, \Sigma, P, S_2)$, where $\Sigma = \{a, b, c, e\}$, $V = \{S_2\}$, and the production set P is:

$$S_2 \rightarrow aS_2a \mid bS_2b \mid cS_2c \mid \lambda$$

(a) Write 5 distinct strings that belong to L_1 but do not belong to L_2 (belong to $L_1 \setminus L_2$). If such strings do not exist, state it and explain why.

Answer:

acc, acbc, cca,
aacc, aacaa

(b) Write 5 distinct strings that belong to L_2 but do not belong to L_1 (belong to $L_2 \setminus L_1$). If such strings do not exist, state it and explain why.

Answer:

a, aa, bb, abba, baab

(c) Write 5 distinct strings that belong to L_1 and L_2 (belong to $L_1 \cap L_2$). If such strings do not exist, state it and explain why.

Answer:

cc, acca, aaccaa,
cbcb, aebbca

(d) Write 5 distinct strings over alphabet $\{a, b, c, d\}$ that do not belong to L_1 and do not belong to L_2 (belong to $\overline{L_1 \cap L_2}$). If such strings do not exist, state it and explain why.

Answer:

ccc, c, bcb, ba, cb

(e) Write 5 distinct strings that belong to $a^*c^*b^*e^*c^*a^*$ but do not belong to L_1 (belong to $a^*c^*b^*e^*c^*a^* \setminus L_1$). If such strings do not exist, state it and explain why.

Answer:

a, c, ccc, ab, a

(f) Write 5 distinct strings that belong to L_1 but have a length equal to 3. If such strings do not exist, state it and explain why.

Answer:

only 4 exist:
acc, cbc, ccc, cca

Problem 3 (a) Calculate the image of the sequence $\langle 3, 0, 1, 1 \rangle$ under Gödel numbering and show your work. If this image does not exist, state it and explain why.

Answer:

$$\begin{aligned} g(\langle 3, 0, 1, 1 \rangle) &= \\ 2^{3+1} \cdot 3^{0+1} \cdot 5^{1+1} \cdot 7^{1+1} &= \\ 16 \cdot 3 \cdot 25 \cdot 49 &= \\ 4 \cdot 100 \cdot 3 \cdot 49 &= \\ 400 \cdot 147 &= \\ 158800 & \end{aligned}$$

(b) Calculate the pre-image (original) of the number 5880 under Gödel numbering and show your work. If this pre-image does not exist, state it and explain why.

Answer:

$$\begin{aligned} 5880 &= 2 \cdot 2940 \\ &= 2 \cdot 2 \cdot 1470 \\ &= 2 \cdot 2 \cdot 2 \cdot 735 \\ &= 2 \cdot 2 \cdot 2 \cdot 3 \cdot 245 \\ &= 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot 49 \\ &= 2^3 \cdot 3 \cdot 5 \cdot 7^2 \end{aligned}$$

$$\begin{aligned} g^{-1}(5880) &= \\ \boxed{1 \cdot \langle 2, 0, 0, 1 \rangle} & \end{aligned}$$

LAST NAME: Schudam
FIRST NAME:

In each of the cases below, state the cardinality of the given set. If this cardinality is finite, state the exact number; if it is infinite, specify whether it is countable or uncountable.

(c) set whose regular expression over $\Sigma = \{a, b\}$ is:

$$\emptyset \cup a$$

Answer: 1

(d) set whose regular expression over $\Sigma = \{a, b\}$ is:

$$\emptyset^* \cup a^*$$

Answer: infinite and countable

(e) set whose regular expression over $\Sigma = \{a, b\}$ is:

$$\emptyset^* \cup a$$

Answer: 2

(f) set whose regular expression over $\Sigma = \{a, b\}$ is:

$$\emptyset^* a$$

Answer: 1

(g) set whose regular expression over $\Sigma = \{a, b\}$ is:

$$\emptyset a$$

Answer: 0

(h) set whose regular expression over $\Sigma = \{a, b\}$ is:

$$\emptyset^* \cup \lambda$$

Answer: 1

(i) class of languages over $\Sigma = \{a, b\}$ that are regular;
Answer: infinite and countable

Problem 5 Let L be the set of all strings over the alphabet $\{a, b, c\}$ which satisfy all of the following conditions:

1. does not begin with c ;
2. does not end with a ;
3. has an odd length.

(a) Write 5 distinct strings that belong to L . If such strings do not exist, state it and explain why.

b, bbb, abc, bcb,
aab

(b) Write a regular expression that represents the language L . If such a regular expression does not exist, state it and explain why.

Answer:

(d) Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S), \Sigma = \{a, b, c\}$$

$$V = \{S, A, B, Z, E\}$$

$$P: S \rightarrow b \mid A \Sigma E B$$

$$A \rightarrow a \mid b$$

$$B \rightarrow b \mid c$$

$$Z \rightarrow a \mid b \mid c$$

$$E \rightarrow \lambda \mid E E \mid ZZ$$

$$b \cup (a \cup b)(a \cup b \cup c)(a \cup b \cup c)(a \cup b \cup c)^\ast (b \cup c)$$

(c) Draw a state-transition graph of a finite automaton that accepts the language L . If such an automaton does not exist, state it and explain why.

Answer:

Problem 7 Let L be the set of all strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties.

1. if the string does not contain any b 's then its length is even and it contains exactly one a ;
2. if the string contains a positive even number of b 's, then its length is odd and it contains exactly one c ;
3. if the string contains an odd number of b 's, then it is a palindrome.

Write a complete formal definition of a context-free grammar that generates the language L . If such a grammar does not exist, state it and explain why.

Answer:

$$G = (V, \Sigma, P, S), \Sigma = \{a, b, c\}$$

$$V = \{S, S_1, S_2, S_3, E, N_{00}, N_{01}, N_{02}, Y_{00}, Y_{01}, Y_{02}, N_{10}, N_{11}, N_{12}, Y_{10}, Y_{11}, Y_{12}\}$$

P:

$$S \rightarrow S_1 | S_2 | S_3$$

$$S_1 \rightarrow E a c E | E c a E$$

$$E \rightarrow c c E | \lambda$$

$$S_3 \rightarrow a S_3 a | b S_3 b | c S_3 c | \lambda$$

$$S_2 \rightarrow N_{00} | Y_{02} \rightarrow \lambda$$

$$N_{00} \rightarrow a N_{10} | b N_{01} | c Y_{00}$$

$$b_{01} \rightarrow a N_{11} | b N_{02} | c Y_{01}$$

$$N_{02} \rightarrow a N_{12} | b N_{01} | c Y_{02}$$

$$Y_{00} \rightarrow a Y_{10} | b Y_{01}$$

$$Y_{01} \rightarrow a Y_{11} | b Y_{02}$$

$$Y_{02} \rightarrow a Y_{12} | b Y_{01}$$

LAST NAME: _____
FIRST NAME: Solution

N : no c
Y : seen c

first index : count a
second index : count b

$$\begin{aligned} N_{10} &\rightarrow a N_{00} | b N_{11} | c Y_{10} \\ N_{11} &\rightarrow a N_{01} | b N_{12} | c Y_{11} \\ N_{12} &\rightarrow a N_{02} | b N_{11} | c Y_{12} \\ Y_{10} &\rightarrow a Y_{00} | b Y_{11} \\ Y_{11} &\rightarrow a Y_{01} | b Y_{12} \\ Y_{12} &\rightarrow a Y_{02} | b Y_{11} \end{aligned}$$