Amendments to the Claims

Following is a complete listing of the claims pending in the application, as amended.

 (Currently amended) A method of increasing telomerase activity in a cell or tissue, comprising:

identifying a cell or tissue in which an increase in telomerase activity is desired, and contacting said cell or tissue with a formulation of an effective amount of an isolated compound of formula I:

where:

each of X^1, X^2 , and X^3 is independently selected from hydroxy; or β -D-xylopyranoside;

 $\underline{X^2}$ is hydroxy or β -D-glucopyranoside; lower alkoxy, lower acyloxy, keto, and a glycoside;

X3 is hydroxy or keto;

OR' is selected from hydroxy, lower alkoxy, lower acyloxy, and a glycoside;

wherein any of the hydroxyl groups on said glycoside may be substituted with a further glycoside, lower alkyl, or lower acyl, such that the compound includes a maximum of three glycosides; and R² is methyl and ____ represents a double bond between carbons 9 and 11; or, R² forms, together with carbon 9, a fused cyclopropyl ring, and ____ represents a single bond between carbons 9 and 11 wherein telomerase activity is increased.

- (Currently amended) The method of claim 1, wherein said compound includes zero, one, or two glycosides, none of which is substituted with a further glycoside.
- (Currently amended) The method of claim 2, wherein said compound includes zero or two glycosides-none of which is substituted with a further glycoside.
- (Canceled)
- (Original) The method of claim 1, wherein R² forms, together with carbon 9, a fused cyclopropyl ring, and — represents a single bond between carbons 9 and 11.
- (Currently amended) The method of claim

 [[2]], wherein each of X¹ and X² is independently selected from hydroxy, lower alkoxy, lower acyloxy, and a glycoside, and X³ is selected from hydroxy, lower alkoxy, lower acyloxy, keto, and a glycoside.
- 7. (Currently amended) The method of claim $\underline{1}$ [[2]], wherein X^1 is OH and or a glycoside, each of X^2 and OR^4 is independently OH or a glycoside, and X^2 is OH or keto.
- (Currently amended) The method of claim 1 [[2]], wherein the compound is selected from astragaloside IV, cycloastragenol, astragaloside IV I6-one, cycloastragenol 6-β-D-glucopyranoside, and or cycloastragenol 3-β-Dxylopyranoside.
- (Currently amended) The method of claim 8, wherein the compound is selected from astragaloside IV, cycloastragenol, astragenol, nd- or astragaloside IV 16-one.
- 10. (Original) The method of claim 9, wherein said compound is astragaloside IV.

11-29. (Canceled)

30-34. (Canceled)

35-82 (Canceled)

83-87. (Canceled)

- (Previous presented) The method of claim 9, wherein the compound is cycloastragenol.
- (Previous presented) The method of claim 9, wherein the compound is astragenol.
- (Previous presented) The method of claim 9, wherein the compound is astragaloside IV 16-one.
- 91. (new) A method of increasing telomerase activity in a cell or tissue, in which an increase in telomerase activity is desired, comprising contacting said cell or tissue with a formulation comprising an effective amount of an isolated compound of formula I:

where:

X¹ is hydroxy, or β-D-xylopyranoside;

X² is hydroxy or β-D-glucopyranoside;

X³ is hydroxy or keto;

OR' is hydroxy; and

R² is methyl and ____ represents a double bond between carbons 9 and 11; or, R² forms, together with carbon 9, a fused cyclopropyl ring, and ____ represents a single bond between carbons 9 and 11 wherein telomerase activity is increased.

92. (new) A method of increasing telomerase activity in a cell or tissue, comprising contacting said cell or tissue with a formulation comprising an effective amount of an isolated compound selected from cycloastragenol, astragenol, astragaloside IV I6-one, cycloastragenol 6-β-D-glucopyranoside, or cycloastragenol 3-β-D-xylopyranoside wherein telomerase activity is increased.