RECOMMENDER SYSTEM

Matrix Factorization - Alternating Least Squares

PROBLEM DATASET
DESCRIPTION

02. MF - ALS

AGENDA

03. RECOMMEND
TO USERS

04. TUNE PARAMETERS

05. PROBLEM

06. PROS CONS

DATASET

MovieLens 100k

100836 ratings

Each user had rated at least 20 movies

9742 movies

Minimum rating 0.5 Maximum rating 5.0

610 users

The most rated movie had voted 329 times

DATA PREPARATION

MF - ALS

- Start with randomly generated U and V
 - Fix U and find V
- Fix V and find U
- Repeat until number of iteration reached

ERROR FUNCTION AND COMPUTE FACTORS

Error Function that we want to minimize

$$L = \sum_{i,j \in Obs} w_{i,j} (c_{i,j} - u_{i,j} v_{i,j}^T)^2 + \lambda (\|U\|^2 + \|V\|^2)$$

Set Vector V as constant and take the derivative w.r.t U

$$\frac{\partial L}{\partial U} = -2\sum w(c - uv^T)v + 2\lambda U = 0$$

$$= U(wV^TV + \lambda I) = wCV$$

$$= U = wCV(wV^TV + \lambda I)^{-1}$$

Similarly, we can calculate the V by following same procedure

$$\frac{\partial L}{\partial V} = V = wCU(wU^TU + \lambda I)^{-1}$$

CHANGE IN ERROR WITH ITERATIONS

RECOMMEND TO USERS

RECOMMEND TO USER (455) EXAMPLE

MOVIE ID	SCORE	TITLE	GENRES
296	3.56	Pulp Fiction (1994)	Comedy Crime Drama Thriller
153	2.31	Batman Forever (1995)	Action Adventure Comedy Crime
185	2.16	Net, The (1995)	Action Crime Thriller
47	2.03	Seven (a.k.a. Se7en) (1995)	Mystery Thriller
208	1.87	Waterworld (1995)	Action Adventure Sci-Fi

CV STEPS

Mask the observations and divide the data by given K

Prepare the train and test data, set test set to zero like non-observed ones Calculate the approximated matrix with new train set

Calculate the error on test set and repeat with the range of K

COLD START PROBLEM FOR USERS

What should we recommend when a new user enter the system

User has no ratings, so we can recommend most popular movies

Most popular movies are the ones which have the highest average of ratings

RECOMMEND TO NEW USER EXAMPLE

MOVIE ID	SCORE	TITLE	GENRES
318	2.30	Shawshank Redemption, The (1994)	Crime Drama
356	2.24	Forrest Gump (1994)	Comedy Drama Romance War
296	2.11	Pulp Fiction (1994)	Comedy Crime Drama Thriller
2571	1.91	Matrix, The (1999)	Action Sci-Fi Thriller
593	1.90	Silence of the Lambs, The (1991)	Crime Horror Thriller

PROS CONS

Converges fast with few iteration

Train and recommendations are efficient

Provide a solution for cold start problem for users

Reliant on Loss Squares only (ALS)

Sparsity may spawn problems

Parameter tuning takes time

REFERENCES

MovieLens

MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS

Matrix Factorization | Recommendation Systems

1 ALSWR

Explicit Matrix Factorization: ALS, SGD, and All That Jazz

THANKS

Do you have any questions?