Author index of Volume 105*

Arora, J.S., An exposition of the material derivative approach for structural shape sensitivity analysis	(1) 41- 62
Baiocchi, C., F. Brezzi and L.P. Franca, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) Banerjee, P.K., see Shi, Y. Polytophka, T. and I. P. Bindoman, Assumed strain stabilization of the	(1) 125–141 (2) 261–284
Belytschko, T. and L.P. Bindeman, Assumed strain stabilization of the eight node hexahedral element Belytschko, T. and I.S. Yeh, The splitting pinball method for	(2) 225–260
contact-impact problems Bindeman, L.P., see Belytschko, T.	(3) 375–393 (2) 225–260
Bishop, S.R., see Koliopulos, P.K. Brezzi, F., see Baiocchi, C.	(1) 143–150 (1) 125–141
Chen, MH., see Shyy, W. Chuang, J.M., Q.Y. Gui and C.C. Hsiung, Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded	(3) 333–358
domain	(1) 93–109
Dafalias, Y.F., see Loret, B. Dutra do Carmo, E.G., Finite element spaces with discontinuity capturing, Part I: Transport problems with boundary layers	(2) 151–180(3) 299–314
Elishakoff, I., A. Sternberg and T.J. Van Baten, Vibrations of multispan all-round clamped stiffened plates by modified dynamic	
edge effect method Elishakoff, I. and L. Zhu, Random vibration of structures by the finite	(2) 211–223
Franca, L.P., see Baiocchi, C.	(3) 359–373 (1) 125–141
Franca, L.P. and T.J.R. Hughes, Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the	
Stokes and incompressible Navier-Stokes equations Franca, L.P. and A.L. Madureira, Element diameter free stability parameters for stabilized methods applied to fluids	(2) 285–298(3) 395–403
Ganesan, R., see Ramu, S.A. Gui, Q.Y., see Chuang, J.M.	(3) 315–331 (1) 93–109

^{*} The issue number is given in front of the page numbers.

Hammoum, F., see Loret, B. Hassenpflug, W.C., Rotation angles Hsiung, C.C., see Chuang, J.M. Hughes, T.J.R., see Franca, L.P.	(2) 151–180 (1) 111–124 (1) 93–109 (2) 285–298 (3) 405–433
Hughes, T.J.R., see Jansen, K.	(3) 405–433
 Jansen, K., Z. Johan and T.J.R. Hughes, Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system Johan, Z., see Jansen, K. Johansson, L. and A. Klarbring, Thermoelastic frictional contact 	(3) 405–433 (3) 405–433
problems: Modelling, finite element approximation and numerical realization	(2) 181–210
Klarbring, A., see Johansson, L.	(2) 181–210
Koliopulos, P.K., S.R. Bishop and G.D. Stefanou, Response amplitude probability functions of a hardening Duffing oscillator subjected to filtered white noise	(1) 143–150
	()
Loret, B., F. Hammoum and Y.F. Dafalias, Computational aspects of	
large elastoplastic deformations in the presence of anisotropy and plastic spin	(2) 151–180
Madureira, A.L., see Franca, L.P.	(3) 395–403
Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem	
Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for	 (3) 395-403 (1) 1- 22 (3) 315-331
Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications	(1) 1- 22
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective 	(1) 1- 22 (3) 315-331
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer 	(1) 1- 22
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of 	 (1) 1- 22 (3) 315-331 (2) 261-284
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy 	 (1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy Stefanou, G.D., see Koliopulos, P.K. 	 (1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358 (1) 143-150
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy 	 (1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy Stefanou, G.D., see Koliopulos, P.K. Sternberg, A., see Elishakoff, I. Van Baten, T.J., see Elishakoff, I. 	 (1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358 (1) 143-150
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy Stefanou, G.D., see Koliopulos, P.K. Sternberg, A., see Elishakoff, I. 	 (1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358 (1) 143-150 (2) 211-223
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy Stefanou, G.D., see Koliopulos, P.K. Sternberg, A., see Elishakoff, I. Van Baten, T.J., see Elishakoff, I. Van Gijzen, M.B., An analysis of element-by-element preconditioners 	 (1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358 (1) 143-150 (2) 211-223 (2) 211-223
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy Stefanou, G.D., see Koliopulos, P.K. Sternberg, A., see Elishakoff, I. Van Baten, T.J., see Elishakoff, I. Van Gijzen, M.B., An analysis of element-by-element preconditioners for nonsymmetric problems Yeh, I.S., see Belytschko, T. 	(1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358 (1) 143-150 (2) 211-223 (2) 211-223 (1) 23- 40
 Rajakumar, C., Lanczos algorithm for the quadratic eigenvalue problem in engineering applications Ramu, S.A. and R. Ganesan, A Galerkin finite element technique for stochastic field problems Shi, Y. and P.K. Banerjee, Boundary element methods for convective heat transfer Shyy, W. and MH. Chen, A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy Stefanou, G.D., see Koliopulos, P.K. Sternberg, A., see Elishakoff, I. Van Baten, T.J., see Elishakoff, I. Van Gijzen, M.B., An analysis of element-by-element preconditioners for nonsymmetric problems 	(1) 1- 22 (3) 315-331 (2) 261-284 (3) 333-358 (1) 143-150 (2) 211-223 (2) 211-223 (1) 23- 40

Subject index of Volume 105*

Dynamics

Rotation angles, W.C. Hassenpflug Response amplitude probability functions of a hardening Duffing	(1) 111–124
oscillator subjected to filtered white noise, P.K. Koliopulos,	
S.R. Bishop and G.D. Stefanou	(1) 143–150
Vibrations of multispan all-round clamped stiffened plates by modified	
dynamic edge effect method, I. Elishakoff, A. Sternberg and	
T.J. Van Baten	(2) 211-223
A Galerkin finite element technique for stochastic field problems,	
S.A. Ramu and R. Ganesan	(3) 315–331
Finite difference methods	
A study of the transport process of buoyancy-induced and	
thermocapillary flow of molten alloy, W. Shyy and MH. Chen	(3) 333–358
Finite element and matrix methods	
Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.),	
C. Baiocchi, F. Brezzi and L.P. Franca	(1) 125-141
Thermoelastic frictional contact problems: Modelling, finite element	
approximation and numerical realization, L. Johansson and	
A. Klarbring	(2) 181-210
Assumed strain stabilization of the eight node hexahedral element,	
T. Belytschko and L.P. Bindeman	(2) 225-260
Convergence analyses of Galerkin least-squares methods for symmetric	
advective-diffusive forms of the Stokes and incompressible	
Navier-Stokes equations, L.P. Franca and T.J.R. Hughes	(2) 285-298
Finite element spaces with discontinuity capturing, Part I: Transport	(2) 200 244
problems with boundary layers, E.G. Dutra do Carmo	(3) 299–314
A Galerkin finite element technique for stochastic field problems,	(2) 215 221
S.A. Ramu and R. Ganesan	(3) 315–331
Random vibration of structures by the finite element method,	(2) 250 272
I. Elishakoff and L. Zhu The splitting pinball method for contact impact problems. T. Belytschko.	(3) 359–373
The splitting pinball method for contact-impact problems, T. Belytschko and I.S. Yeh	(3) 375–393
and 1.5. Ich	(3) 313-333

^{*} The issue number is given in front of the page numbers.

Element diameter free stability parameters for stabilized methods applied to fluids, L.P. Franca and A.L. Madureira Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system,	(3) 395–403
K. Jansen, Z. Johan and T.J.R. Hughes	(3) 405–433
Fluid mechanics	
Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, L.P. Franca and T.J.R. Hughes	(2) 285–298
Finite element spaces with discontinuity capturing, Part I: Transport	
problems with boundary layers, E.G. Dutra do Carmo A study of the transport process of buoyancy-induced and	(3) 299–314
thermocapillary flow of molten alloy, W. Shyy and MH. Chen Element diameter free stability parameters for stabilized methods	(3) 333–358
applied to fluids, L.P. Franca and A.L. Madureira Implementation of a one-equation turbulence model within a stabilized	(3) 395–403
finite element formulation of a symmetric advective-diffusive system, K. Jansen, Z. Johan and T.J.R. Hughes	(3) 405–433
General Rayleigh-Ritz and Galerkin techniques	
Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.), C. Baiocchi, F. Brezzi and L.P. Franca	(1) 125–141
A Galerkin finite element technique for stochastic field problems, S.A. Ramu and R. Ganesan	(3) 315–331
Heat and diffusion	
Boundary element methods for convective heat transfer, Y. Shi and P.K. Banerjee	(2) 261–284
Incompressible and near incompressible media	
Theory and computation of the steady state harmonic response of viscoelastic rubber parts, A.B. Zdunek	(1) 63- 92
Kinematics	
Rotation angles, W.C. Hassenpflug	(1) 111–124
Matrix calculus	
Lanczos algorithm for the quadratic eigenvalue problem in engineering applications, C. Rajakumar	(1) 1- 22

An analysis of element-by-element preconditioners for nonsymmetric problems, M.B. van Gijzen	(1) 23- 40
Miscellaneous topics	
Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded domain, J.M. Chuang, Q.Y. Gui and C.C. Hsiung	(1) 93–109
Nonlinear mechanics	
Rotation angles, W.C. Hassenpflug Computational aspects of large elastoplastic deformations in the presence of anisotropy and plastic spin, B. Loret, F. Hammoum and	(1) 111–124
Y.F. Dafalias Thermoelastic frictional contact problems: Modelling, finite element	(2) 151–180
approximation and numerical realization, L. Johansson and A. Klarbring	(2) 181–210
Assumed strain stabilization of the eight node hexahedral element, T. Belytschko and L.P. Bindeman	(2) 225–260
Numerical solution procedure	
Lanczos algorithm for the quadratic eigenvalue problem in engineering applications, C. Rajakumar	(1) 1- 22
An analysis of element-by-element preconditioners for nonsymmetric problems, M.B. van Gijzen	(1) 23- 40
An exposition of the material derivative approach for structural shape sensitivity analysis, J.S. Arora	(1) 41- 62
Numerical computation of Schwarz-Christoffel transformation for simply connected unbounded domain, J.M. Chuang, Q.Y. Gui and	(1) 93–109
C.C. Hsiung Thermoelastic frictional contact problems: Modelling, finite element	(1) 93-109
approximation and numerical realization, L. Johansson and A. Klarbring Convergence analyses of Galerkin least-squares methods for symmetric	(2) 181–210
advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, L.P. Franca and T.J.R. Hughes	(2) 285–298
Finite element spaces with discontinuity capturing, Part I: Transport problems with boundary layers, E.G. Dutra do Carmo	(3) 299–314
A Galerkin finite element technique for stochastic field problems, S.A. Ramu and R. Ganesan	(3) 315–331
A study of the transport process of buoyancy-induced and thermocapillary flow of molten alloy, W. Shyy and MH. Chen The splitting pinball method for contact-impact problems, T. Belytschko	(3) 333–358
and I.S. Yeh	(3) 375–393

Element diameter free stability parameters for stabilized methods (3) 395 - 403applied to fluids, L.P. Franca and A.L. Madureira Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system, (3) 405 - 433K. Jansen, Z. Johan and T.J.R. Hughes **Optimization** An exposition of the material derivative approach for structural shape (1) 41- 62 sensitivity analysis, J.S. Arora Plasticity : Computational aspects of large elastoplastic deformations in the presence of anisotropy and plastic spin, B. Loret, F. Hammoum and (2) 151 - 180Y.F. Dafalias Solution of integral equations (singularity method) Boundary element methods for convective heat transfer, Y. Shi and P.K. Banerjee (2) 261-284Stability in structural mechanics A Galerkin finite element technique for stochastic field problems, S.A. Ramu and R. Ganesan (3) 315-331Stochastic processes A Galerkin finite element technique for stochastic field problems, S.A. Ramu and R. Ganesan (3) 315–331 Structural mechanics An exposition of the material derivative approach for structural shape sensitivity analysis, J.S. Arora (1) 41- 62 Assumed strain stabilization of the eight node hexahedral element, T. Belytschko and L.P. Bindeman (2) 225-260The splitting pinball method for contact-impact problems, T. Belytschko and I.S. Yeh (3) 375 - 393Systems of linear and nonlinear simultaneous equations An analysis of element-by-element preconditioners for nonsymmetric problems, M.B. van Gijzen (1) 23- 40

(3) 405-433

Transport phenomena

Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.),
C. Baiocchi, F. Brezzi and L.P. Franca

Convergence analyses of Galerkin least-squares methods for symmetric advective—diffusive forms of the Stokes and incompressible
Navier—Stokes equations, L.P. Franca and T.J.R. Hughes

Finite element spaces with discontinuity capturing, Part I: Transport problems with boundary layers, E.G. Dutra do Carmo

Element diameter free stability parameters for stabilized methods applied to fluids, L.P. Franca and A.L. Madureira

Implementation of a one-equation turbulence model within a stabilized

(1) 125–141

(2) 285–298

(3) 299–314

finite element formulation of a symmetric advective-diffusive system,

Turbulence

Implementation of a one-equation turbulence model within a stabilized finite element formulation of a symmetric advective-diffusive system,

K. Jansen, Z. Johan and T.J.R. Hughes

(3) 405-433

Viscoelastic and viscoplastic media

K. Jansen, Z. Johan and T.J.R. Hughes

Theory and computation of the steady state harmonic response of viscoelastic rubber parts, A.B. Zdunek (1) 63-92

