Grounding HEX-Programs with Expanding Domains

Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl

{eiter,fink,tkren,redl}@kr.tuwien.ac.at

1 / 19

GTTV'13, Sep 15, 2013

Motivation

HEX-Programs

- Extend ASP by external sources
- Traditional safety criteria not sufficient: value invention
- Strong safety is unnecessarily restrictive
- Liberal domain-expansion safe HEX program are more flexible, but no effective algorithms exist yet

Example

$$\Pi = \begin{cases} r_1 : t(a). & r_3 : s(Y) \leftarrow t(X), \&cat[X, a](Y). \\ r_2 : dom(aa). & r_4 : t(X) \leftarrow s(X), dom(X). \end{cases}$$

Motivation

HEX-Programs

- Extend ASP by external sources
- Traditional safety criteria not sufficient: value invention
- Strong safety is unnecessarily restrictive
- Liberal domain-expansion safe HEX program are more flexible, but no effective algorithms exist yet

Contribution

- New iterative grounding algorithm for liberal safety criteria
- Based on a grounder for ordinary ASP programs
- Avoids the worst case for the algorithm using program decomposition

HEX-Programs

HEX-programs extend ordinary ASP programs by external sources

Definition (HEX-programs)

A HEX-program consists of rules of form

$$a_1 \vee \cdots \vee a_n \leftarrow b_1, \ldots, b_m, \text{ not } b_{m+1}, \ldots, \text{ not } b_n,$$

with classical literals a_i , and classical literals or an external atoms b_i .

Definition (External Atoms)

An external atom is of the form

&
$$p[q_1,\ldots,q_k](t_1,\ldots,t_l),$$

p ... external predicate name

 $q_i \dots$ predicate names or constants

 t_i ... terms

Semantics:

1 + k + l-ary Boolean oracle function $f_{\&n}$:

& $p[q_1,\ldots,q_k](t_1,\ldots,t_l)$ is true under assignment **A**

iff
$$f_{\&p}(\mathbf{A}, q_1, \dots, q_k, t_1, \dots, t_l) = 1$$
.

Liberal Safety: Basic Concepts

Monotone Grounding Operator

$$G_{\Pi}(\Pi') = \bigcup_{r \in \Pi} \{ r\theta \mid \mathbf{A} \subseteq \mathcal{A}(\Pi'), \mathbf{A} \not\models \bot, \mathbf{A} \models B^{+}(r\theta) \},$$

where $\mathcal{A}(\Pi') = \{ \mathbf{T}a, \mathbf{F}a \mid a \in A(\Pi') \} \setminus \{ \mathbf{F}a \mid a \leftarrow . \in \Pi \}$ and $r\theta$ is the instance of r under variable substitution $\theta \colon \mathcal{V} \to \mathcal{C}$.

Example

Program Π :

$$r_1:s(a)$$
. $r_2:dom(ax)$. $r_3:dom(axx)$. $r_4:s(Y) \leftarrow s(X)$, &cat $[X,x](Y)$, $dom(Y)$.

Least fixpoint $G^{\infty}_{\Pi}(\emptyset)$ of G_{Π} :

$$r'_1$$
: $s(a)$. r'_2 : $dom(ax)$. r'_3 : $dom(axx)$.

Liberal Safety: Basic Concepts

Monotone Grounding Operator

$$G_{\Pi}(\Pi') = \bigcup_{r \in \Pi} \{ r\theta \mid \mathbf{A} \subseteq \mathcal{A}(\Pi'), \mathbf{A} \not\models \bot, \mathbf{A} \models B^+(r\theta) \},$$

where $\mathcal{A}(\Pi') = \{ \mathbf{T}a, \mathbf{F}a \mid a \in A(\Pi') \} \setminus \{ \mathbf{F}a \mid a \leftarrow . \in \Pi \}$ and $r\theta$ is the instance of r under variable substitution $\theta \colon \mathcal{V} \to \mathcal{C}$.

Example

Program Π :

$$r_1:s(a)$$
. $r_2:dom(ax)$. $r_3:dom(axx)$. $r_4:s(Y) \leftarrow s(X)$, &cat $[X,x](Y)$, $dom(Y)$.

Least fixpoint $G^\infty_\Pi(\emptyset)$ of G_Π :

$$r'_1$$
: $s(a)$. r'_2 : $dom(ax)$. r'_3 : $dom(axx)$. r'_4 : $s(ax) \leftarrow s(a)$, &cat[a,x](ax), $dom(ax)$.

Liberal Safety: Basic Concepts

Monotone Grounding Operator

$$G_{\Pi}(\Pi') = \bigcup_{r \in \Pi} \{ r\theta \mid \mathbf{A} \subseteq \mathcal{A}(\Pi'), \mathbf{A} \not\models \bot, \mathbf{A} \models B^+(r\theta) \},$$

where $\mathcal{A}(\Pi') = \{ \mathbf{T}a, \mathbf{F}a \mid a \in A(\Pi') \} \setminus \{ \mathbf{F}a \mid a \leftarrow . \in \Pi \}$ and $r\theta$ is the instance of r under variable substitution $\theta \colon \mathcal{V} \to \mathcal{C}$.

Example

Program Π :

$$r_1:s(a)$$
. $r_2:dom(ax)$. $r_3:dom(axx)$. $r_4:s(Y) \leftarrow s(X)$, &cat[X,x](Y), $dom(Y)$.

Least fixpoint $G^{\infty}_{\Pi}(\emptyset)$ of G_{Π} :

$$r'_1$$
: $s(a)$. r'_2 : $dom(ax)$. r'_3 : $dom(axx)$. r'_4 : $s(ax) \leftarrow s(a)$, &cat[a,x](ax), $dom(ax)$. r'_5 : $s(axx) \leftarrow s(ax)$, &cat[ax,x](axx), $dom(axx)$.

Intuition: We call a program safe if this operator produces a finite grounding

Two concepts

- lacksquare A term is bounded if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for it
- An attribute is de-safe if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position

Idea

Two concepts

- lacktriangle A term is bounded if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for it
- An attribute is de-safe if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position

Idea

- Start with empty set of bounded terms B_0 and de-safe attributes S_0
- **2** For all $n \geq 0$ until B_n and S_n do not change anymore
 - a Identify additional bounded terms $\Rightarrow B_{n+1}$ (assuming that B_n are bounded and S_n are de-safe)
 - b Identify additional de-safe attributes $\Rightarrow S_{n+1}$ (assuming that B_{n+1} are bounded and S_n are de-safe)

Two concepts

- **A** term is bounded if $G_{\Pi}(\Pi')$ contains only finitely many substitutions for it
- An attribute is de-safe if $G_{\Pi}(\Pi')$ contains only finitely many values at this attribute position

Idea

- Start with empty set of bounded terms B_0 and de-safe attributes S_0
- For all n > 0 until B_n and S_n do not change anymore
 - a Identify additional bounded terms $\Rightarrow B_{n+1}$ (assuming that B_n are bounded and S_n are de-safe)
 - **b** Identify additional de-safe attributes $\Rightarrow S_{n+1}$ (assuming that B_{n+1} are bounded and S_n are de-safe)

Identification of bounded terms in Step 2a by term bounding functions (TBFs) Concrete safety criteria can be plugged in by specific TBF $b(\Pi, r, S, B)$

⇒ TBFs are a flexible means that however must fulfill certain conditions

5/19

Range of an attribute . . . set of terms which occur in the position of the attribute.

Definition (Term Bounding Function (TBF))

Function: $b(\Pi, r, S, B)$, where

- \blacksquare Π ... Program
- $r \dots$ rule in Π
- S...set of already safe attributes
- \blacksquare $B \dots$ set of already bounded terms in r

Returns an enlarged set of bounded terms $b(\Pi, r, S, B) \supseteq B$, s.t. every $t \in b(\Pi, r, S, B)$ has finitely many substitutions in $G^{\infty}_{\Pi}(\emptyset)$ if

- (i) the attributes S have a finite range in $G_{\Pi}^{\infty}(\emptyset)$ and
- (ii) each term in $terms(r) \cap B$ has finitely many substitutions in $G^{\infty}_{\Pi}(\emptyset)$.

Range of an attribute . . . set of terms which occur in the position of the attribute.

Definition (Term Bounding Function (TBF))

Function: $b(\Pi, r, S, B)$, where

- ∏ ...Program
- r ... rule in Π
- S...set of already safe attributes
- \blacksquare B . . . set of already bounded terms in r

Returns an enlarged set of bounded terms $b(\Pi, r, S, B) \supseteq B$, s.t. every $t \in b(\Pi, r, S, B)$ has finitely many substitutions in $G_{\Pi}^{\infty}(\emptyset)$ if

- (i) the attributes S have a finite range in $G_{\Pi}^{\infty}(\emptyset)$ and
- (ii) each term in $terms(r) \cap B$ has finitely many substitutions in $G^{\infty}_{\Pi}(\emptyset)$.

Concrete TBFs based on (i) syntactic criteria, (ii) semantic properties (malign cycles in the attribute dependency graph or meta-information like finite domain and finite fiber), or (iii) composed TBFs.

Grounding Algorithm

Definition (Liberal Domain-expansion Safety Relevance)

A set R of external atoms is relevant for liberal de-safety of a program Π , if $\Pi|_R$ is liberally de-safe and $var(r) = var(r|_R)$, for all $r \in \Pi$.

Definition (Input Auxiliary Rule)

For HEX-program Π and $\&g[\mathbf{Y}](\mathbf{X})$, construct $r_{inp}^{\&g[\mathbf{Y}](\mathbf{X})}$:

- lacksquare The head is $H(r_{inp}^{\&g[\mathbf{Y}](\mathbf{X})}) = \{g_{inp}(\mathbf{Y})\}$, where g_{inp} is a fresh predicate; and
- The body $B(r_{inp}^{\&g[\mathbf{Y}](\mathbf{X})})$ contains each $b \in B^+(r) \setminus \{\&g[\mathbf{Y}](\mathbf{X})\}$ such that $\&g[\mathbf{Y}](\mathbf{X})$ joins b, and b is de-safety-relevant if it is an external atom.

Grounding Algorithm

Definition (External Atom Guessing Rule)

For HEX-program Π and &g[Y](X), construct $r_{guess}^{\&g[Y](X)}$:

- The head is $H(r_{guess}^{\&g[Y](X)}) = \{e_{r,\&g[Y]}(X), ne_{r,\&g[Y]}(X)\}$
- The body $B(r_{guess}^{\&g[Y](X)})$ contains
 - (i) each $b \in B^+(r) \setminus \{\&g[Y](X)\}$ such that &g[Y](X) joins b and b is de-safety-relevant if it is an external atom; and
 - (ii) $g_{inp}(\mathbf{Y})$.
- Based on this, we devised a grounding algorithm GroundHEX for liberally domain-expansion safe HEX programs
- Uses an iterative grounding approach

Grounding Algorithm GroundHEX

```
Input: A liberally de-safe HEX-program \Pi
Output: A ground HEX-program \Pi_a s.t. \Pi_a \equiv \Pi
Choose a set R of de-safety-relevant external atoms in \Pi
\Pi_p := \Pi \cup \{r_{inp}^{\&g[Y](X)} \mid \&g[Y](X) \text{ in } r \in \Pi\} \cup \{r_{ouess}^{\&g[Y](X)} \mid \&g[Y](X) \not\in R\}
Replace all external atoms \&g[Y](X) in all rules r in \Pi_p by e_{r,\&gY}(X)
repeat
         \Pi_{pg} := \mathsf{GroundASP}(\Pi_p) \ / \star \ \mathsf{partial} \ \mathsf{grounding}
         /* evaluate all de-safety-relevant external atoms
        for \&g[Y](X) \in R in a rule r \in \Pi do
                 \mathbf{A}_{ma} := \{ \mathbf{T}p(\mathbf{c}) \mid a(\mathbf{c}) \in A(\Pi_{np}), p \in \mathbf{Y}_m \} \cup \{ \mathbf{F}p(\mathbf{c}) \mid a(\mathbf{c}) \in A(\Pi_{np}), p \in \mathbf{Y}_a \}
                  /* do this under all relevant assignments
                 for \mathbf{A}_{nm}\subseteq\{\mathbf{T}p(\mathbf{c}),\mathbf{F}p(\mathbf{c})\mid p(\mathbf{c})\in A(\Pi_{pg}),p\in\mathbf{Y}_n\} s.t. \nexists a:\mathbf{T}a,\mathbf{F}a\in\mathbf{A}_{nm} do
                          \mathbf{A} := (\mathbf{A}_{ma} \cup \mathbf{A}_{nm} \cup \{\mathbf{T}a \mid a \leftarrow \in \Pi_{pg}\}) \setminus \{\mathbf{F}a \mid a \leftarrow \in \Pi_{pg}\}\
                          for \mathbf{y} \in \{\mathbf{c} \mid r_{inp}^{\&g[\mathbf{Y}](\mathbf{X})}(\mathbf{c}) \in A(\Pi_{pg})\} do
                         Let O = \{\mathbf{x} \mid f_{\mathbf{\delta g}}(\mathbf{A} \cup \mathbf{A}_{nm}, \mathbf{y}, \mathbf{x}) = 1\}
/* add the respective ground guessing rules
\Pi_P := \Pi_P \cup \{e_{r,\mathbf{\delta g}[\mathbf{y}]}(\mathbf{x}) \vee ne_{r,\mathbf{\delta g}[\mathbf{y}]}(\mathbf{x}) \leftarrow | \mathbf{x} \in O\}
until \Pi_{ng} did not change
Remove input auxiliary rules and external atom guessing rules from \Pi_{pg}
```

Eiter et al. (TU Vienna)

return $\Pi_{n\sigma}$

Replace all $e_{g_p[\mathbf{y}]}(\mathbf{x})$ in Π by $g_p[\mathbf{y}](\mathbf{x})$

Grounding Algorithm

Example

Program Π :

$$f: d(a).\ d(b).\ d(c).$$
 $r_1: s(Y) \leftarrow \&diff[d,n](Y), d(Y).$ $r_2: n(Y) \leftarrow \&diff[d,s](Y), d(Y).$ $r_3: c(Z) \leftarrow \&count[s](Z).$

Grounding Algorithm

Example

Program Π :

$$\begin{array}{ll} f:d(a).\ d(b).\ d(c). & r_1:s(Y)\leftarrow \&diff[d,n](Y),d(Y).\\ & r_2:n(Y)\leftarrow \&diff[d,s](Y),d(Y).\\ & r_3:c(Z)\leftarrow \&count[s](Z). \end{array}$$

 Π_p at the beginning of the first iteration:

$$f: d(a). \ d(b). \ d(c).$$
 $r_1: s(Y) \leftarrow e_1(Y), d(Y).$ $g_1: e_1(Y) \lor ne_1(Y) \leftarrow d(Y).$ $r_2: n(Y) \leftarrow e_2(Y), d(Y).$ $g_2: e_2(Y) \lor ne_2(Y) \leftarrow d(Y).$ $r_3: c(Z) \leftarrow e_3(Z).$

$$(e_1(Y), e_2(Y), e_3(Z) \text{ short for } e_{r_1, \& diff[d,n]}(Y), e_{r_2, \& diff[d,s]}(Y), e_{r_3, \& count[s]}(Z), \text{ resp.})$$

Evaluates &count[s](Z) under all $\mathbf{A} \subseteq \{s(a), s(b), s(c)\}$

Adds rules
$$\{e_3(Z) \lor ne_3(Z) \leftarrow | Z \in \{0, 1, 2, 3\}\}$$

Program Decomposition

Traditional HEX-algorithms

- Program decomposition sometimes necessary
- 2 Intuition: Program is split whenever value invention may occur

Example

Program Π :

$$f: d(a). \ d(b). \ d(c).$$
 $r_1: s(Y) \leftarrow \&diff[d, n](Y), d(Y).$ $r_2: n(Y) \leftarrow \&diff[d, s](Y), d(Y).$ $r_3: c(Z) \leftarrow \&count[s](Z).$

needs to be partitioned into evaluation units

$$u_1 = \{f, r_1, r_2\}$$

$$u_2 = \{r_3\}$$

where u_1 depends nonmonotonically on u_2

Program Decomposition

New Grounding Algorithm GreedyGEG

Now: Program decomposition not necessary

But: Sometimes useful

Program Decomposition

return $\mathcal{E} = \langle V, E \rangle$

New Grounding Algorithm GreedyGEG

Now: Program decomposition not necessary But: Sometimes useful

```
Input: A liberally de-safe HEX-program \Pi Output: A generalized evaluation graph \mathcal{E} = \langle V, E \rangle for \Pi Let V be the set of (subset-maximal) strongly connected components of G = \langle \Pi, \rightarrow_m \cup \rightarrow_n \rangle Update E while V was modified \mathbf{do} for u_1, u_2 \in V such that u_1 \neq u_2 \mathbf{do} if there is no indirect path from u_1 to u_2 (via some u' \neq u_1, u_2) or vice versa then if no de-relevant \&g[\mathbf{y}](\mathbf{x}) in some u_2 has a nonmonotonic predicate input from u_1 then V := (V \setminus \{u_1, u_2\}) \cup \{u_1 \cup u_2\} Update E
```

#	w. domain predicates			w/o domain predicates		
	wall clock	ground	solve	wall clock	ground	solve
15	0.59	0.28	0.08	0.49	0.23	0.06
25	5.78	4.67	0.33	2.94	1.90	0.35
35	36.99	33.99	1.00	14.02	11.30	0.95
45	161.91	155.40	2.18	53.09	47.19	2.22
55		_	n/a	171.46	158.58	5.74
65		_	n/a	_		n/a

Table: Reachability

#	w. don	nain predi	cates	w/o domain predicates		
	wall clock	ground	solve	wall clock	ground	solve
10	0.49	0.01	0.39	0.52	0.02	0.41
20	3.90	0.05	3.62	4.67	0.10	4.23
30	16.12	0.18	15.32	19.59	0.36	18.32
40	48.47	0.48	46.71	51.55	0.90	48.74
50	115.56	1.00	112.14	119.40	1.79	114.11
60	254.66	1.84	248.88	257.78	3.35	248.51

Table: Set Partitioning

#	w. domain predicates			w/o domain predicates		
	wall clock	ground	solve	wall clock	ground	solve
5	0.06	< 0.005	0.01	0.08	0.02	0.01
10	0.14	< 0.005	0.08	1.32	1.12	0.10
11	0.27	< 0.005	0.19	2.85	2.43	0.27
12	0.32	< 0.005	0.23	6.05	5.53	0.26
13	0.69	0.01	0.60	12.70	11.76	0.61
14	0.66	< 0.005	0.57	28.17	26.70	0.73
15	1.66	0.01	1.49	59.73	57.14	1.46
16	1.69	0.01	1.53	139.47	131.87	1.92
17	3.83	0.01	3.57	_	_	n/a
18	4.34	0.01	4.08	_	_	n/a
19	10.07	0.01	9.56	_	_	n/a
20	11.36	0.01	10.87			n/a
24	95.60	0.01	93.35		_	n/a
25	_	0.01	_		_	n/a

Table: Bird-penguin

#	w. domain predicates			w/o domain predicates			
	wall clock	ground	solve	wall clock	ground	solve	
5	0.22	0.04	0.10	0.10	0.01	0.04	
6	1.11	0.33	0.54	0.10	0.01	0.04	
7	9.84	4.02	4.42	0.11	0.01	0.05	
8	115.69	61.97	42.30	0.12	0.01	0.05	
9		_	n/a	0.14	0.01	0.07	
10	_	_	n/a	0.15	0.08	0.01	
15	_	_	n/a	0.23	0.14	0.01	
20	_	_	n/a	0.47	0.35	0.02	
25	_	_	n/a	1.90	1.58	0.06	
30	_	_	n/a	4.11	3.50	0.12	
35	_	_	n/a	20.98	18.45	0.51	
40		_	n/a	61.94	54.62	1.46	
45		_	n/a	144.22	133.99	2.26	
50	_		n/a			n/a	

Table: Merge Sort

#	m	onolithic		greedy			
	wall clock	ground	solve	wall clock	ground	solve	
4	0.57	0.11	0.38	0.25	0.01	0.18	
5	2.12	0.67	1.26	0.44	0.01	0.37	
6	18.93	7.45	10.86	0.88	0.01	0.80	
7	237.09	170.12	65.12	1.65	0.01	1.57	
8	_	_	n/a	3.13	0.01	3.05	
9	_	_	n/a	7.41	0.02	7.31	
10	_	_	n/a	15.92	0.02	15.81	
11	_	_	n/a	31.19	0.02	31.05	
12	_	_	n/a	63.16	0.02	62.95	
13		_	n/a	172.75	0.03	172.38	
14		_	n/a	256.60	0.01	256.44	
15	_	_	n/a	290.01	< 0.005	290.00	

Table: Argumentation

Conclusion

ASP Programs with External Sources

- Ordinary safety criteria not enough because of value invention
- Traditional strong safety is unnecessarily restrictive
 - ⇒ liberal domain-expansion safety

New Grounding Algorithm

- Based on ordinary ASP grounders
- Can ground any liberally de-safe program without splitting
- But: splitting sometimes useful for performance reasons

Future Work

- Refine and extend concept of liberally de-safety
- Exploit further syntactic and semantic properties to improve grounding
- Extend research to avoid the worst case

References

Calimeri, F., Cozza, S., and Ianni, G. (2007).

External Sources of Knowledge and Value Invention in Logic Programming.

Annals of Mathematics and Artificial Intelligence, 50(3-4):333-361.

Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2006).

Effective Integration of Declarative Rules with External Evaluations for Semantic-Web Reasoning.

In 3rd European Semantic Web Conference (ESWC'06), volume 4011 of LNCS, pages 273–287. Springer.

Syrjänen, T. (2001).

Omega-restricted logic programs.

In 6th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'01), volume 2173 of LNCS, pages 267–279. Springer.

Zantema, H. (1994).

Termination of term rewriting: Interpretation and type elimination.

Journal of Symbolic Computation, 17(1):23-50.