# Classification of metagenomic data

Shuya Chu, Stephen Cristiano, Bing He, Zhou Ye *Johns Hopkins University* 



December 2, 2013



# **METAGENOMICS**

"The application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species". - Lior Patcher and Kevin Chen, 2005

## **BIOLOGICAL MOTIVATION**

- ► Potential impact on public health (the human microbiome project), agriculture, biofuels, and other fields.
- ▶ If we take an environmental sample (soil, gut, . . .) and sequence the contained DNA, we will generate reads from many microbial organisms.
- ► We wish to classify each read to its correct phylogenic origin and gain some insight to the abundance of each organism within the sample.
- ► Complicated by the hierarchical structure of the classifications and since in a metagenomic sample, many reads will come from "de novo" genomes.



## EXISTING METHODS

- ► PhymmBL
  - Arthur Brady and Steven Salzberg
  - ▶ Uses Interpolated Markov Model together with BLAST to classify DNA taxonomically classify metagenomic reads.
  - ► Very accurate, but local alignment with BLAST is very slow!
- ► FACS
  - ► Henrik Stranneheim and Joakim Lundeberg
  - ▶ Bloom Filter approach very space-efficient.
  - ► Has performance issues and primary purpose is identifying DNA contamination in metagenome sample.
- ▶ Kraken
  - ► Derick Wood and Steven Salzberg
  - Novel classification algorithm utilizing exact alignment of k-mers.
  - Achieves very high speed in exchange for a slight sacrifice of sensitivity.
- ► MetaPhlAn, MEGAN, metaphyler, . . .



## DATA

INTRODUCTION

- ► RefSeq for whole genomes of bacteria (obtained from NCBI)
- Due to vastness of RefSeq, only considered proteobacterium phylum.
- ► Generated simulated FASTA files from Metasim and some of our own scripts.



## **BLOOM FILTER**



Recall: a Bloom filter is a sketch data structure that is extremely compact, but fails sometimes.

We use the PERL module Bloom::Faster to build bloom filters from our reference genomes.

 $\[1] = Bloom::Faster->new({n => $keycount, e => $falseposratebloom});\]$ 



## **BLOOM FILTER**

#### **General Process**

- ► First, split query seq into K-mers (with the same length we used to build the filter). Second, query K-mers against each Bloom Filter for each Ref Genome.
- ► Coarse Scan: Query Bloom Filter with Non-overlapping K-mers.
- ▶ **Detailed Scan**: If query seq passes the Coarse Scan, we query Bloom Filter all (overlapping) K-mers.

## Scoring

- Match score proportional to matched bp in each query seq.
- ► **Species level**: combine max and threshold for match score.
- ► **Higher level**: if species-level classification cannot be made, use mutual information criteria for classifying at genus (or higher) level.
- ► Incorporate false positive rate into match score?

## PRELIMINARY RESULTS

Query simulated data with Exact model:
Takes 43 seconds

```
Finished Reading Query Sequences
Finished Reading Ref Filter List
Filter: NC_005363.1.obj
Targetlength: 21
Finished with Classification of Query Keys
Number of sequences in original query file: 5
000
Number of remaining queries: 0
Number of Mapped Targets: 5000
Number of short queries: 0
NC_005363.1.obj 5000
Time:43 second
```

Query simulated data with 454 error model:
Takes 8 seconds

```
Finished Reading Query Sequences
Finished Reading Ref Filter List
Filter: NC_005363.1.obj
Targetlength: 21
Finished with Classification of Query Keys
Number of sequences in original query file: 5
000
Number of remaining queries: 74
Number of Mapped Targets: 4926
Number of short queries: 0
NC_005363.1.obj 4926
Time:8 second
```

## INTERPOLATED MARKOV MODEL

For modeling DNA, we need  $O(4^{n+1})$  parameters for an n-th order Markov model.

Interpolated Markov model combines the merits of both low and high order Markov model.

Basic Model:

$$P_{IMM}(x_i|x_{i-1},\dots,x_{i-n}) = \lambda_0 P(x_i) + \lambda_1 P(x_i|x_{i-1}) + \dots + \lambda_n P(x_i|x_{i-1},\dots,x_{i-n})$$

where  $\sum_{i} \lambda_{i} = 1$  Improved Model (Use History):

$$P_{IMM,n}(x_i|x_{i-1},\dots,x_{i-n})$$

$$= \lambda_n(x_i)P(x_i|x_{i-1},\dots,x_{i-n})$$

$$+ (1 - \lambda_n(x_i))P_{IMM,n-1}(x_i|x_{i-1},\dots,x_{i-n+1})$$



#### PARAMETER LEARNING

We learn the probability  $P(x_i|x_{i-1},\cdots,x_{i-n})$  by counting.

$$P(x_i|x_{i-1},\cdots,x_{i-n}) = \frac{f(x_i,x_{i-1},\cdots,x_{i-n})}{f(x_{i-1},\cdots,x_{i-n})}$$

where f is the number of occurrences of input string  $\lambda$  is determined by a  $\chi^2$  hypothesis test. If there are sufficient number of strings c to compute  $P(x_i|x_{i-1},\cdots,x_{i-n})$ , we set  $\lambda_n(x_i)$  as 1; otherwise, we compare the distribution of n-th order history and n-1-th by  $\chi^2$  hypothesis test. After doing this test, we will obtain a p-value d. We determine  $\lambda_n(x_i)$  by:

$$\lambda_n(x_i) = \begin{cases} 1.0 & \text{if } c > \text{threshold} \\ \frac{c}{400} \times d & \text{if } d \ge 0.05, c \le \text{threshold} \\ 0.0 & \text{if } d < 0.05, c \le \text{threshold} \end{cases}$$

The threshold is determined by trial and error.

## IMPROVEMENT WITH BOWTIE

#### What is Bowtie?

- ▶ Bowtie is a sequence aligner wrote by professor Langmead.
- ► It indexes the genome with an FM Index to align short reads.
- ► For each alignment, Bowtie also scores them

#### Idea for Improvement:

- Using score for previous alignment, skip some bad alignment
- ▶ Details: If the sample data get a 'bad' score when aligning to a species, then it definitely will have bad scores for the species in the same genus.



## IMPROVEMENT WITH BOWTIE

#### Set the Threshold:

- ► Give more penalties for mismatch(gap)
- ► Use the average score

## Ongoing work:

- ► Still thinking about how to get the best threshold
- ► Comparison and analysis between this and bowtie

## **ONGOING WORK**

- ► Benchmark all the methods against each other on the same machine and input.
- ► Memory footprint of bloom filter vs Markov Model.
- ► Instead of absolute classification, return a confidence score instead.
- ► Investigate how well a method deals with *de novo* genomes.

# **THANKS**

- ► Ben Langmead
- ► The developers of the open source software which aided us in this project.
- ► Hongkai Ji and Kasper Hansen