sample

23 березня 2024 р.

1 Комп'ютерний практикум No1

1.0.1 Мета роботи: навчитися виконувати статистичну обробку при значних вибірках значень експериментальних даних.

```
[3]: # List all required packages
library(tidyverse)
library(patchwork)
library(ggthemes)
library(ggpmisc)
library(writexl)
library(ggsci)
library(ggsci)
options(repr.plot.width=20, repr.plot.height=10)
options(warn=-1)
options(digits = 4)
```

1.0.2 Впорядкування даних (Data tidying)

```
[5]: # Set data to example datasets
data <- df1
data_tidy <- as.data.frame(lapply(data,rep,data$n))</pre>
```

1.0.3 Розрахунки (Calculations)

За необхідності відфільтровую значення з високою похибкою

Filter the the measurments with error, redo the calculations!

```
[6]: # Filter data with high error: abs(d) >= 3S
     data_tidy <- data_tidy |>
       filter(ph != 10.1 & ph != 10.9)
[7]: # Calculate avg, sd, var and 3sd
     ph_avg = mean(data_tidy$ph)
     ph_sd = sd(data_tidy$ph)
     ph_var = ph_sd**2
     ph_3sd = ph_sd * 3
     print(c(ph_avg, ph_sd, ph_var, ph_3sd))
    [1] 10.4794 0.1127 0.0127 0.3380
[8]: # Working with data, check if pH fits in |d|< 3sd
     data_tidy_err <- data_tidy |>
       group_by(ph) |>
       summarise(
        n = n()
      ) |>
      mutate(
        ph_d = abs(ph_avg - ph),
         err = if_else(ph_d > ph_3sd, "Error", "Ok")
      )
     data_tidy_err |>
      filter(err == "Error")
     \#> A tibble: 1 \times 4
     # ph
                \boldsymbol{n}
                          ph_d
                                  err
     # <dbl>
                   <int>
                                 <dbl>
                                             <chr>
     # 9.8
                 1
                          0.4834783
                                           Error <---- FILTER THIS VALUE BEFORE
      → CALCULATIONS
                                  ph d
                                          err
    A tibble: 0 \boxtimes 4
                  <dbl>
                          <int> <dbl>
                                         <chr>
[9]: # Data calculation
     data_ok <- data_tidy_err |>
      mutate(
         p = n / sum(n),
        F_x = cumsum(p),
         phi_x = 1 / (ph_sd * sqrt(2 * pi)) * exp(-(ph - ph_avg)^2 / (2 * ph_sd^2)),
```

ph_pnorm = pnorm(ph, mean = ph_avg, sd = ph_sd),
ph_dnorm = dnorm(ph, mean = ph_avg, sd = ph_sd),

tibble(data_ok)

	ph	n	$\mathrm{ph}_{-}\mathrm{d}$	err	p	F_x	phi_x	ph_pnorm	ph_dnorm
A tibble: $6 \boxtimes 9$	<dbl $>$	<int $>$	<dbl $>$	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
	10.2	3	0.27938	Ok	0.03093	0.03093	0.16369	0.006577	0.16369
	10.3	9	0.17938	Ok	0.09278	0.12371	0.99703	0.055688	0.99703
	10.4	22	0.07938	Ok	0.22680	0.35052	2.76251	0.240554	2.76251
	10.5	38	0.02062	Ok	0.39175	0.74227	3.48189	0.572598	3.48189
	10.6	23	0.12062	Ok	0.23711	0.97938	1.99636	0.857805	1.99636
	10.8	2	0.32062	Ok	0.02062	1.00000	0.06178	0.997783	0.06178

1.0.4 Розрахунки для знаходження довірчого інтервалу та остаточного результату

```
[12]: # Get the sum of all measurments
sum_n = sum(data_ok$n)

# Set the Student coefficient p = 95%,

f = (sum_n - 1)
tpf = 1.981
s_x = ph_sd / sqrt(sum_n)

delta_x = tpf * s_x

print(paste0("pH = ",round(ph_avg,2),"±",round(delta_x,2)))
```

[1] "pH = 10.48 ± 0.02 "

1.1 Побудова графіків (Plotting the graphs)

```
[13]: p1 <- data_ok |>
        ggplot(aes(x = ph, y = F_x)) +
        geom_point(color = "darkblue") +
        geom_smooth(se = FALSE, span = 0.7, color = "darkblue") +
        xlab("Рис. 2. Інтегральна крива розподілу значень рН") +
        ylab("F(pH)") +
        theme_clean()
      p2 <- data_ok |>
        ggplot(aes(x = ph, y = phi_x)) +
        geom_point(color = "darkblue") +
        geom_smooth(se = FALSE, span = 0.7, color = "darkblue") +
        xlab("Рис. 3. Диференційна крива розподілу значень рН") +
        ylab("\phi(pH)") +
        theme_clean()
      p3 <- data_ok |>
        ggplot(aes(x = ph, y = ph_pnorm)) +
        geom_point(color = "darkblue") +
```

```
geom_smooth(se = FALSE, span = 0.7, color = "darkblue") +
  xlab("Рис. 4. Інтегральна крива розподілу значень рН") +
  ylab("F(pH)") +
  theme_clean()
p4 <- data_ok |>
  ggplot(aes(x = ph, y = ph_dnorm)) +
  geom_point(color = "darkblue") +
  geom_smooth(se = FALSE, color = "darkblue", span = 0.7) +
  xlab("Рис. 5. Диференційна крива розподілу значень рН") +
  vlab("\phi(pH)") +
  theme_clean()
p5 <- data_ok |>
  ggplot(aes(x = ph, y = p)) +
  geom_bar(stat = "identity", fill = "darkred") +
  xlab("Рис. 1. Гістограма розподілу ймовірностей значень рН") +
  ylab("p") +
  theme_clean()
```

[14]: # Render the plots suppressMessages(p5 | ((p1 + p2) / (p3 + p4)))

```
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```


- 1.2 Остаточний результат (Final result)
- 1.3 $pH = 10.48 \pm 0.02$