Instructor:

Trevor Klar, trevorklar@math.ucsb.edu South Hall 6431X (Grad Tower, 6th floor, blue side, first door on the right)

Office Hours:

MTWR after class 2:00-3:00, and by appointment. Details on Gauchospace.

© 2017-22 Daryl Cooper, Peter Garfield, Ebrahim Ebrahim, Nathan Schley, and Trevor Klar Please do not distribute outside of this course.

Chapter 7 (Logs)

§7.0 Logarithms and Exponentials Applications:

- Chemistry: alkalinity and acidity, pH scale
- Finance: compound interest (get rich slow)
- Geology: Richter scale for earthquakes (did you feel the earth move too ?)
- Archeology: radio carbon dating (how old is that bone?)
- Astronomy: stellar magnitude (brightness of stars)
- Sound: decibels (what did you say?, the music is too loud)
- Math: solving equations with exponents ...by performing an arithmetic operation to both sides (all of the above are examples of the use of this operation)

Chapter 7 (Logs)

Main Idea of Chapter 7:

log(x) is how many times you multiply 1 by 10 to get x

Conclusion:

Before we do logs we should be really good at powers of 10.

Powers of Ten

```
1 meter \approx 3 feet
```

- 1 centimeter = 0.01 meters = 10^{-2} meters $\approx 1/2$ inch
- 1 kilometer = $1,000 \text{ meters} = 10^3 \text{ meters} \approx 1/2 \text{ mile}$

Approximate distance (in meters), to nearest power of 10

10^7 meters 10^9 meters	Size of Earth Distance to moon	
$\frac{10^{14} \text{ meters}}{10^{16} \text{ meters}}$	Size of our solar system One light-year	
10^{21} meters 10^{27} meters	Size of the Milky Way galaxy Size of the universe (about 93 billion light-years)	
$ \begin{array}{c} 10^{80} \\ 10^{100} \\ 10^{1000} \text{ meters} \end{array} $	number of protons in the observable universe? 1 googol ???	

Exponential Basics

$$10^4 = 10 \times 10 \times 10 \times 10 = 10,000$$

= 4 lots of 10 multiplied together
= 1 followed by 4 zeroes

$$10^{x} = \underbrace{10 \times 10 \times \dots \times 10}_{x \text{ lots of } 10} = 1 \underbrace{00000 \dots 0}_{x \text{ zeros}}$$
$$= 1 \text{ followed by } x \text{ zeroes}$$

Ex:
$$10^2 \times 10^3 = (10 \times 10) \times (10 \times 10 \times 10)$$

= $10^{2+3} = 10^5$.

$$10^x \times 10^y = 10^{x+y}$$
 First Law of Exponents

Why? We can work it out!

Exponential Basics (cont'd)

```
10^{\mathbf{x}} \times 10^{\mathbf{y}} = 10^{\mathbf{x} + \mathbf{y}}
```

First Law of Exponents

Why? We can work it out:

```
(x lots of 10 multiplied together) \times (y lots of 10 multiplied together) = (x + y) lots of 10 multiplied together
```

For now x and y are positive whole numbers.

More Exponentiation

$$(10^{2})^{3} = (10 \times 10)^{3}$$
$$= (10 \times 10) \times (10 \times 10) \times (10 \times 10)$$
$$= 10^{6}$$

$$(10^a)^b = 10^{ab}$$

 $(10^a)^b = 10^{ab}$ Fourth Law of Exponents

Why? We can work it out:

$$10^a = \underbrace{10 \times 10 \times \dots \times 10}_{a \text{ times}}$$

$$(10^a)^b = \underbrace{(10 \times \dots \times 10) \times \dots \times (10 \times \dots \times 10)}_{b \text{ times}}$$

 $=10^{ab}$

Just count the zeros!

When the power is 0 or negative

What is 10° ?= 1 But why? We can work it out:

$$10^0 \times 10^1 = 10^{0+1}$$

so $10^0 \times 10 = 10$
and therefore $10^0 = 10/10 = 1$

Summary: we used the first law of exponents to figure out what 10^0 must be.

There is a second explanation in the book!

What is
$$10^{-2}$$
?= $1/100 = 0.01$ But why? We can work it out:

$$10^{-2} \times 10^2 = 10^{-2+2} = 10^0 = 1$$

therefore $10^{-2} = \frac{1}{10^2}$ and $10^{-a} = \frac{1}{10^a}$

There is a second explanation in the book

The Five Laws of Exponents

(1)
$$10^a \times 10^b = 10^{a+b}$$

$$(2) 10^0 = 1$$

(3)
$$10^{-a} = 1/10^a$$

$$(4) (10^a)^b = 10^{ab}$$

(5)
$$10^a/10^b = 10^{a-b}$$

1. What is $10^3 \times 10^4$?

$$A = 10^{12}$$
 $B = 10^7$ $C = 10^{34}$ $D = 10^0$ $E = 10^{-7}$

$$D = 10^0$$

$$E = 10^{-7}$$

2. Find $10^3/10^4$

$$A = 10^7$$
 $B = 10^1$ $C = 10^{-4}$ $D = 10^{-1}$ $E = 10^{-7}$

$$=10^{-4}$$

$$D = 10^{-1}$$

$$E = 10^{-7}$$

3. Find $(10^3)^4$.

$$A = 10^7$$
 $B = 10^1$ $C = 10^{12}$ $D = 10^{-1}$ $E = 10^0$

The Five Laws of Exponents

(1)
$$10^a \times 10^b = 10^{a+b}$$

$$(2) 10^0 = 1$$

(3)
$$10^{-a} = 1/10^a$$

$$(4) (10^a)^b = 10^{ab}$$

(5)
$$10^a/10^b = 10^{a-b}$$

4. What is $(10^2 \times 10^3)^4$?

$$A = 10^8$$
 $B = 10^9$ $C = 10^{12}$ $D = 10^{20}$ $E = 10^{24}$

$$C = 10^{12}$$

$$D = 10^{20}$$
 E

5. What is $(10^2 \times 10^6)/(10^2 \times 10^3)$?

$$A = 10^2$$
 $B = 10^3$ $C = 10^{-1}$ $D = 10^7$ $E = 10^6$

$$10^{3}$$

$$C = 10^{-1}$$

$$0 = 10^7$$

$$\Xi = 10^6$$

6. What is $(10^2/10^5)^{-2}$?

$$A = 10^{-6}$$

$$C = 10^{6}$$

$$D - 10^4$$

$$A = 10^{-6}$$
 $B = 10^{-5}$ $C = 10^{6}$ $D = 10^{4}$ $E = 10^{5}$

§7.1 Fractional Exponents

We can work them out!

- 7. What is $10^{0.5} = 10^{1/2}$? Answer: $10^{0.5} = \sqrt{10} \approx 3.16288$
- 8. What is $10^{0.1} = 10^{1/10}$? Answer: $10^{0.1} = \sqrt[10]{10} \approx 1.258926$
- 9. Similarly: $10^{0.01} = \sqrt[100]{10} \approx 1.02329$ $10^{0.001} = \sqrt[1000]{10} \approx 1.00231$
- **10.** What is $10^{0.27}$? Answer:

$$10^{0.27} = 10^{27/100} = \sqrt[100]{10^{27}} = (\sqrt[100]{10})^{27} \approx 1.862$$

§7.2 Logarithms

 $\log(y)$ is how many tens you multiply together to get y

$$10^{\log(y)} = y$$

$$\log(10) = ?1$$
 because $10^1 = 10$
 $\log(100) = ? = 2$ because $10^2 = 100$
 $\log(1000) = ? = 3$ because $10^3 = 1000$
 $\log(100,000) =$
 $A = 2$ $B = 3$ $C = 4$ $D = 5$ $E = 6$ D

Still moving to Logarithms

 $\log(y)$ is how may tens you multiply together to get y

$$10^{\log(y)} = y$$

$$\log(0.1) = ?-1$$
 because $10^{-1} = 1/10 = 0.1$
 $\log(0.01) = ? = -2$ because $10^{-2} = 1/100 = 0.01$
 $\log(10^x) = ? = x$ duh?

How confused are you?

$$\log(100,000) = ?$$

$$A=2$$
 $B=3$ $C=4$ $D=5$ $E=6$

$$\log(0.001) = ?$$

$$A = 3$$
 $B = 0$ $C = 0.001$ $D = -2$ $E = -3$ E

$$\log(100 \times 1000) = ?$$

$$A = 6$$
 $B = 5$ $C = 3$ $D = 9$ $E = -5$ B

$$\log(100/1000) = ?$$

$$A = -1$$
 $B = 0$ $C = 1$ $D = -3$ $E = -5$ A

Key Fact Of Logs

First Law of Logs
$$\log(a \times b) = \log(a) + \log(b)$$

This means logs convert multiplication into addition.

Example:
$$\log(100 \times 1000) = \log(100) + \log(1000) = 2 + 3 = 5$$

It is easy to understand why the first law works:

```
\log(\mathbf{a}) = \text{(how many 10's you multiply to get } \mathbf{a})
\log(\mathbf{b}) = (\text{how many 10's you multiply to get } \mathbf{b})
```

THEREFORE multiplying ALL these 10s gives $a \times b$

CONCLUDE $\log(a \times b)$ is this number of 10s: that is, $\log(a) + \log(b)$.

7.3 Using Log Tables

We are told: $\log(2) \approx 0.3$ (from table page 289)

$$\log(20) = \log(10 \times 2)$$

$$= \log(10) + \log(2)$$

$$\approx 1 + 0.3$$

$$\approx 1.3$$
we know $\log(10) = 1$

Use this method to find $\log(200)$

$$A = 30$$
 $B = 3$ $C = 2.3$ $D = 30$

7.3 Using Log Tables

We are told: $\log(2) \approx 0.3$ (from table page 289)

$$\log(20) = \log(10 \times 2)$$

$$= \log(10) + \log(2) \qquad \text{we know } \log(10) = 1$$

$$\approx 1 + 0.3$$

$$\approx 1.3$$

Use this method to find log(200)

$$A = 30$$
 $B = 3$ $C = 2.3$ $D = 30$

June 30, 2022: Exponents and Logarithms

Trevor Klar, UCSB Mathematics

$$\log (100 \times 2) = \log(100) + \log(2)$$

$$= 2 + 0.3$$

$$= 2.3$$

A few more

We are still told $\log(2) \approx 0.3$

Find $\log(0.002)$

$$A = -3.3$$
 $B = -2.3$ $C = -2.7$ $D = -3.7$

Find $\log(2\times10^x)$

$$A = 2x$$
 $B = 2 + x$ $C = .3x$ $D = 10x + log(2)$ $E = x + .3$ E

A few more

We are still told $\log(2) \approx 0.3$

Find
$$\log(0.002)^{-0}$$
 (002 = 2×10⁻¹)

$$A = -3.3$$
 $B = -2.3$ $C = -2.7$ $D = -3.7$

$$\frac{1}{1092} + \log(10^3) = \frac{3.0}{-2.7}$$

Find $\log(2 \times 10^x)$

$$A = 2x$$
 $B = 2 + x$ $C = .3x$ $D = 10x + log(2)$ $E = x + .3$

A Trick!

The graph and the table can both be used to find logs of numbers between 1 and 10.

To find the log of ANY number, we move the decimal point:

$$\log(10^n \times x) = n + \log(x)$$

Example:

$$\log(275.67) = \log(10^2 \times 2.7567) = 2 + \underbrace{\log(2.7567)}_{\text{look this up!}}$$

Its called the MOVING DECIMAL POINT TRICK because 2 is how many places you need to move the decimal point of 275.67 to obtain a number between 1 and 10.

Inverses!

logs are "opposite" of exponents (inverse function of antilog) So every fact about exponents corresponds to a fact about logs:

	laws of exponents	corresponding law of logs
(1)	$10^{\mathbf{a}} \times 10^{\mathbf{b}} = 10^{\mathbf{a} + \mathbf{b}}$	$\log(xy) = \log(x) + \log(y)$
(2)	$10^{0} = 1$	$\log(1) = \frac{0}{1}$
(3)	$10^{-a} = 1/10^{a}$	$\log(1/x) = -\log(x)$
(4)	$(10^{\mathbf{a}})^{\mathbf{p}} = 10^{\mathbf{a}\mathbf{p}}$	$\log(x^{\mathbf{p}}) = \frac{p}{p}\log(x)$
(5)	$10^{a}/10^{b} = 10^{a-b}$	$\log(x/y) = \log(x) - \log(y)$

Example: $\log(x^a/y^b) = ?$

$$A = a \log(x)/(b \log(y)) \qquad B = a \log(x) + b \log(y)$$

$$C = a \log(x) - b \log(y) \quad D = (a + \log(x)) - (b + \log(y)) \boxed{\mathbf{C}}$$

Explanation of (4)

$$\log(a \times a) = \log(a) + \log(a) = \frac{2}{2}\log(a)$$
$$\log(a \times a \times a) = \log(a) + \log(a) + \log(a) = \frac{3}{2}\log(a)$$

In general: the number of tens you multiply to get x^p is p times as many tens as you multiply to get x.

What is $\log(\sqrt{x^7})$?

$$A = 7 + \log(x)$$
 $B = (7/2) + \log(x)$ $C = 7/2$ $D = 7/2 \log(x)$ $D = 7/2 \log(x)$

Find x by solving $10^x = 5$.

A= 5 B= 0.5 C=
$$\log(5)$$
 D= $\log(0.5)$ E= $\log(5) - \log(10)$

Rule (4): $\log(x^p) = p \log(x)$

Explanation of (4)

$$\log(a \times a) = \log(a) + \log(a) = 2\log(a)$$
$$\log(a \times a \times a) = \log(a) + \log(a) + \log(a) = 3\log(a)$$

In general: the number of tens you multiply to get x^p is p times as many tens as you multiply to get x.

What is $\log(\sqrt{x^7})$?

$$A = 7 + \log(x) \quad B = (7/2) + \log(x) \quad C = 7/2 \quad D = 7/2 \log(x)$$

$$\log(\sqrt{x^2}) = \log(x^2) = \frac{7}{2} \log(x^2)$$

< ∷ ₾

lec07

Rule (4): $\log(x^p) = p \log(x)$

Explanation of (4)

$$\log(a \times a) = \log(a) + \log(a) = \frac{2}{2}\log(a)$$
$$\log(a \times a \times a) = \log(a) + \log(a) + \log(a) = \frac{3}{2}\log(a)$$

In general: the number of tens you multiply to get x^p is p times as many tens as you multiply to get x.

What is $\log(\sqrt{x^7})$?

$$A = 7 + \log(x)$$
 $B = (7/2) + \log(x)$ $C = 7/2$ $D = 7/2\log(x)$ D

Find x by solving $10^x = 5$.

$$A = 5$$
 $B = 0.5$ $C = \log(5)$ $D = \log(0.5)$ $E = \log(5) - \log(10)$

$$\log(10^{x}) = \log(5)$$

$$2^{x} = 5$$

$$x = \log(s)$$
 $\log(2^{\circ}) = \log(s)$

$$\mathcal{X} = \{0\}^{\frac{5}{2}}$$

That's it. Thanks for being here.

Properties of Logs