국가기술자격 실기시험문제지

2018년도 제2회 기사 필답형 실기시험

자 격 종 목	시험시간	문제수	수험번호	성명
소방설비기사(기계)	2시간 30분	12	044-865-0063	다산에듀

문제 01 [배점] 15점

아래 도면은 어느 특정소방대상물인 전기실(A실), 발전기실(B실), 방재반실(C실), 배터리실(D실)을 방호하기 위한 할론 1301의 배관평면도이다. 도면 및 조건을 참조하여 할론 1301 소화약제의 최소용기 개수를 산출하시오.

[조건]

- 약제저장용기방식은 고압식이다.
- 용기 1개의 약제량은 50kg이고 내용적은 68 l이다.
- 도면상 각 실에 대한 배관내용적(용기실 내의 입상관 포함)은 다음과 같다.

A실 배관내용적 : 198ℓ	B실 배관내용적 : 78ℓ
C실 배관내용적 : 28ℓ	D실 배관내용적 : 10ℓ

- A실에 대한 할론 집합관의 배관내용적은 88ℓ이다.
- 할론약제저장용기와 집합관 사이의 연결관에 대한 내용적은 무시한다.
- 설비의 설계기준온도는 20℃로 한다.
- 액화 할론 1301의 비중은 20℃에서 1.6이다.
- 각 실의 개구부는 없다고 가정한다.
- 약제소요량 산출시 각 실의 내부기둥 및 내용물의 체적은 무시한다.
- 각 실의 층고(바닥으로부터 천정까지 높이)는 각각 다음과 같다.
 - A실 및 B실 : 5mC실 및 D실 : 3m

문제 02 [배점] 4점

소화설비의 급수배관에 사용하는 개폐 표시형 밸브 중 버터플라이(볼형식 이외) 외의 밸브를 꼭 사용하여야 하는 배관의 이름과 그 이유를 기술하시오.

문제 03 [배점] 5점

이산화탄소 소화설비의 종합정밀점검 항목에서 수동식 기동장치의 점검항목을 쓰시오.

문제 04 [배점] 15점

다음 그림은 어느 스프링클러설비의 Isometric Diagram이다. 이 도면과 주어진 조건에 의하여 헤드 A만을 개방하였을 때 실제 방수량을 계산하시오.

*() 안은 배관의 길이[m]임

ISOMETRIC 계통도(축적 : 없음)

[조건]

- 펌프의 양정력은 토출량에 관계없이 일정하다고 가정한다.(펌프토출압 : 0.3MPa)
- 헤드의 방출계수(K)는 90이다.
- 배관의 마찰손실은 하젠-윌리엄즈 공식을 따르되 계산의 편의상 다음 식과 같다고 가정한다.

$$\Delta P = \frac{6 \times 10^4 \times Q^2}{120^2 \times d^5}$$

여기서, ΔP : 배관 $1 \mathrm{m}$ 당 마찰손실압력 $[\mathrm{MPa/m}]$ Q : 배관 내의 유수량 $[\ell/\mathrm{min}]$

d : 배관의 안지름[mm]

• 배관의 호칭구경별 안지름은 다음과 같다.

호칭구경	25ϕ	32ϕ	40ϕ	50ϕ	65ϕ	80ϕ	100ϕ
내경[mm]	28	37	43	54	69	81	107

• 배관부속 및 밸브류의 등가길이[m]는 아래 표와 같으며 이 표에 없는 부속 또는 밸브류의 등가길이는 무시해 도 좋다.

호칭 구경	25 mm	32 mm	40 mm	50 mm	65 mm	80 mm	100 mm
90 ° 엘보	0.8	1.1	1.3	1.6	2.0	2.4	3.2
티측류	1.7	2.2	2.5	3.2	4.1	4.9	6.3
게이트밸브	0.2	0.2	0.3	0.3	0.4	0.5	0.7
체크밸브	2.3	3.0	3.5	4.4	5.6	6.7	8.7
알람밸브	_	_	_	_	_	_	8.7

- 가지관과 헤드 간의 마찰손실은 무시한다.
- 배관의 마찰손실, 등가길이, 마찰손실압력은 호칭구경 25 ϕ 와 같이 구하도록 한다.

[산출근거]

호칭구경	배관의 마찰손실[MPa]	등가길이	마찰손실압력[MPa]
25ϕ	$\Delta P = 2.421 \times 10^{-7} \times Q^2$	직관 : 2+2=4 엘보 : 1×0.8=0.8 계 : 4.8 m	$1.162 \times 10^{-6} \times Q^2$
32 ø			
40ϕ			
50ϕ			
65ϕ			
100ϕ			

- (1) 배관의 총마찰손실[MPa]
- (2) 실층고 환산 낙차수두[m]
- (3) A점의 방수량[ℓ/min]
- (4) A점의 방수압[MPa]

문제 05 [배점] 5점

건식 스프링클러에 하향식 헤드를 부착하는 경우 드라이펜던트(건식형)의 헤드를 사용한다. 사용목적과 구조 및 기능에 대하여 간단히 설명하시오.

문제 06 [배점] 8점

경유를 연료로 사용하는 바닥면적이 100m²이고 높이가 3.5m인 발전기실에 할로겐화합물 및 불활성기체 소화설비를 설치하고자 한다. 제시한 [조건]을 이용하여 다음 각 물음에 답하시오.

[조건]

- IG-541의 A. B급 소화농도는 32%로 한다.
- IG-541의 저장용기는 80ℓ용 12.4m³/병으로 적용한다.
- 선형상수를 이용하도록 하며 방사시 기준온도는 20℃이다.

소화약제	K ₁	K ₂
IG-541	0.65799	0.00239

• 불활성기체 약제 저장량 $X[m^3/m^3]$ 은 다음과 같다.

$$X = 2.303 \frac{V_S}{S} \times \log \left(\frac{100}{100 - C} \right)$$

- (1) 발전기실에 필요한 IG-541의 최소 용기수를 구하시오.
- (2) 할로겐화합물 및 불활성기체 소화약제의 구비조건을 5가지 쓰시오.

문제 07 [배점] 8점

옥내소화전설비의 가압송수장치의 체절운전의 시험방법을 기술하시오.

문제 08 [배점] 12점

가로 20m, 세로 10m인 특수가연물을 저장하는 창고에 포소화설비를 설치하고자 한다. 다음 조건에 따라 물음에 답하시오.

[조건]

- 포헤드를 정방형으로 설치한다.
- 포원액은 3% 수성막포이다.
- 전양정은 35m, 효율은 65%, 여유율은 10%이다.
- (1) 포헤드의 수량은 몇 개인가?
- (2) 수원의 저장량은 몇 m³ 이상으로 하여야 하는가?
- (3) 포원액의 양은 몇 ℓ 이상으로 하여야 하는가?
- (4) 전동기의 출력은 몇 kW인가?

문제 09 [배점] 4점

이산화탄소소화설비의 과압배출구를 설치하여야 하는 장소를 쓰시오.

문제 10 [배점] 10점

경유를 저장하는 위험물 옥외저장탱크의 높이가 7m, 직경 10m인 콘루프탱크(Con Roof Tank)에 표형 포방출구 및 옥 외보조포소화전 2개가 설치되었다.

[조건]

- 배관의 낙차수두와 마찰손실수두는 55m이다.
- 폼챔버 압력수두로 양정계산(그림 참조, 보조포소화전 압력수두는 무시)한다.
- 펌프의 효율은 65%이고, 전달계수는 1.1이다.
- 배관의 송액량은 제외한다.
- ※ 그림 및 별표 참조로 계산하시오.

[별표] 고정포방출구의 방출량 및 방사시간

포방출구의	Į	 형		 형	특	형	III:	형 	IV	형
종류 위험물의 구분	포수용 액량 [ℓ/m²]	방출율 [ℓ/m² ·min]								
제4류 위험물 중 인화점이 21℃ 미만인 것	120	4	220	4	240	8	220	4	220	4
제4류 위험물 중 인화점이 21℃ 이상 70℃ 미 만인 것	80	4	120	4	160	8	120	4	120	4
제4류 위험물 중 인화점이 70℃ 이상인 것	60	4	100	4	120	8	100	4	100	4
제4류 위험물 중 수용 성의 것	160	8	240	8	_	_	_	_	240	8

- (1) 포소화약제의 양[ℓ]을 구하시오.
 - ① 고정포방출구의 포소화약제량 (Q_1)
 - ② 옥외보조포소화전 약제량 (Q_2)
- (2) 펌프 동력[kW]을 계산하시오.

문제 11 [배점] 10점

그림과 같은 옥내소화전 설비를 다음의 조건에 따라 설치하려고 한다. 이때 다음 물음에 답하시오.

[조건]

- P_1 : 옥내소화전펌프
- P₂ : 잡용수 양수펌프
- 펌프의 후드밸브로부터 6층 옥내소화전함 호스 접결구까지의 마찰손실 및 저항 손실수두는 실양정의 30%로 한다.
- 펌프의 효율은 60%이다.
- 옥내소화전의 개수는 각층 5개씩이다.
- ullet 소방호스의 마찰손실수두는 $7 \mathrm{m}$ 이고 전동기 전달계수(K)는 1.2이다.
- (1) 펌프의 최소유량은 몇 ℓ/min인가?
- (2) 수원의 최소유효 저수량은 몇 m³인가?
- (3) 옥상에 설치하여야 하는 수원의 양은 몇 m³인가?
- (4) 펌프의 양정은 몇 m인가?
- (5) 펌프의 수동력, 축동력, 모터동력은 각각 몇 kW인가?
- (6) 노즐에서 방수압력이 0.7MPa을 초과할 경우 감압하는 방법 3가지를 쓰시오.
- (7) 노즐 선단에서 봉상 방수의 경우 방수압 측정 요령을 쓰시오.

문제 12	[배점] 4점
스프링클러설비에 설치하는 건식밸브의 기능을 2가지 쓰시오.	[매감] 4감
•	
•	

[정답지]

1.

- ① A실
 - 계산과정

약제저장량 =
$$\{(30m \times 30m) - (15m \times 15m)\} \times 5m \times 0.32kg/m^3 = 1080kg$$

용기개수 = $\frac{1080kg}{50kg}$ = 21.6 병 \Rightarrow 22 병

- 답 : 22병
- ② B실
 - 계산과정

약제저장량
$$=(15m\times15m)\times5m\times0.32kg/m^3=360kg$$

용기개수 $=\frac{360kg}{50kg}=7.2$ 병 \Rightarrow 8병

- 답 : 8병
- ③ C실
 - 계산과정

약제저장량
$$=(10m\times 15m)\times 3m\times 0.32kg/m^3=144kg$$
용기개수 $=\frac{144kg}{50kg}=2.88$ 병 \Rightarrow 3병

- 답 : 3병
- ④ D실
 - 계산과정

약제저장량
$$=(10m\times 5m)\times 3m\times 0.32kg/m^3=48kg$$

용기개수 $=\frac{48kg}{50kg}=0.96$ 병 \Rightarrow 1병

• 답 : 1병

2.

- (1) 배관 : 펌프 흡입측 배관
- (2) 이유 : 마찰손실이 커서 공동현상이 발생할 우려가 있기 때문

3.

- ① 방호구역별 또는 방호대상물 설치 위치(높이 포함) 및 기능
- ② 조작부의 보호판 및 기동장치의 표지상태
- ③ 전원 등 상태
- ④ 음향경보장치와 연동기능
- ⑤ 방출지연비상스위치 작동상태

4.

호칭구경	배관의 마찰손실[MPa]	등가길이	마찰손실압력[MPa]
25ϕ	$\Delta P = 6 \times 10^4 \times \frac{Q^2}{120^2 \times 28^5}$ $= 2.421 \times 10^{-7} \times Q^2$	직관 : 2+2=4m <u>90°엘보 : 0.8m</u> 계 : 4.8m	$2.421 \times 10^{-7} \times Q^2 \times 4.8 m$ $= 1.162 \times 10^{-6} \times Q^2$
32ϕ	$\Delta P = 6 \times 10^4 \times \frac{Q^2}{120^2 \times 37^5}$ $= 6.008 \times 10^{-8} \times Q^2$	<u>직관 1m</u> 계 : 1m	
40ϕ	$ \Delta P = 6 \times 10^4 \times \frac{Q^2}{120^2 \times 43^5} $ $ = 2.834 \times 10^{-8} \times Q^2 $	직관 : 2+0.15 = 2.15 m 90°엘보 : 1.3 m <u>티측류 : 2.5 m</u> 계 : 5.95 m	$2.834 \times 10^{-8} \times Q^{2} \times 5.95 m$ $= 1.686 \times 10^{-7} \times Q^{2}$
50 φ	$ \Delta P = 6 \times 10^4 \times \frac{Q^2}{120^2 \times 54^5} $ $ = 9.074 \times 10^{-9} \times Q^2 $	<u> 직관 : 2m</u> 계 : 2m	$9.074 \times 10^{-9} \times Q^{2} \times 2m$ $= 1.815 \times 10^{-8} \times Q^{2}$
65ϕ	$ \Delta P = 6 \times 10^4 \times \frac{Q^2}{120^2 \times 69^5} $ $ = 2.664 \times 10^{-9} \times Q^2 $	직관 : 5+3=8 <i>m</i> <u>90°엘보 : 2<i>m</i></u> 계 : 10 <i>m</i>	$2.664 \times 10^{-9} \times Q^2 \times 10 m$ $= 2.664 \times 10^{-8} \times Q^2$
100ϕ	$\Delta P = 6 \times 10^4 \times \frac{Q^2}{120^2 \times 107^5}$ $= 2.97 \times 10^{-10} \times Q^2$	직관 : $0.2 + 0.2 = 0.4 m$ 체크밸브 : $8.7 m$ 게이트밸브 : $0.7 m$ <u>알람밸브 : $8.7 m$</u> 계 : $18.5 m$	$2.97 \times 10^{-10} \times Q^{2} \times 18.5 m$ $= 5.494 \times 10^{-9} \times Q^{2}$

(1) 배관의 총마찰손실

• 계산과정

$$\begin{aligned} (1.162 \times 10^{-6} \times Q^2) + (6.008 \times 10^{-8} \times Q^2) + (1.686 \times 10^{-7} \times Q^2) + (1.815 \times 10^{-8} \times Q^2) \\ + (2.664 \times 10^{-8} \times Q^2) + (5.494 \times 10^{-9} \times Q^2) = 1.44 \times 10^{-6} \ Q^2[\mathit{MPa}] \end{aligned}$$

- 답 : 1.44×10⁻⁶ Q²[MPa]
- (2) 실층고 환산 낙차수두
 - 계산과정 : 0.2m + 0.3m + 0.2m + 0.6m + 3m + 0.15m = 4.45m
 - 답 : 4.45m
- (3) A점의 방수량
 - 계산과정

$$Q = K\sqrt{10P}$$
 에서 $K = 90$

$$P = 0.3 - (0.045 + 1.44 \times 10^{-6} Q^2) = 0.255 - 1.44 \times 10^{-6} Q^2 \lceil MPa \rceil$$

$$\therefore Q = 90\sqrt{10 \times (0.255 - 1.44 \times 10^{-6} Q^2)}$$

$$Q^2 = 90^2 \times (2.55 - 1.44 \times 10^{-5} Q^2)$$

$$Q^2 = 90^2 \times 2.55 - 90^2 \times 1.44 \times 10^{-5} Q^2$$

$$1.117Q^2 = 20,655$$

$$Q = \sqrt{\frac{20,655}{1.117}} = 135.98 \, \ell/mi \, n$$

• 답 : 135.98 ℓ/min

- (4) A점의 방수압
 - 계산과정

$$Q = \sqrt{10P}$$

$$10P = \left(\frac{Q}{K}\right)^2 = \left(\frac{135.98 \, \ell/mi \, n}{90}\right)^2 = 2.29 MPa$$

- $\therefore P = 0.23 MPa$
- 답 : 0.23MPa

5.

- (1) 사용목적 : 하향식 배관의 경우 배관 안에 물이 배수되지 않아 동파 및 부식의 원인이 되기 때문
- (2) 구조 및 기능 : 배관 안에 부동액 또는 질소를 봉입해 하향식 헤드가 감열되어 개방되는 경우 부동액 및 질소 가 방사된 후에 물이 방사될 수 있도록 되어 있음

6.

- (1) IG-541의 최소 용기수
 - 계산과정

$$X=2.303 imes rac{0.7058}{0.7058} imes \log \left(rac{100}{100-41.6}
ight)=0.538[m^3/m^3]$$
약제량 = 체적 \times $X=\left(100m^2\times3.5m\right)\! imes 0.538m^3/m^3=188.3m^3$ 최소 용기수=188.3 $m^3\div12.4m^3$ /병=15.19=16병

- 답 : 16병
- (2) 할로겐화합물 및 불활성기체 소화약제의 구비조건
 - ① 독성이 낮고 설계농도는 NOAEL 이하일 것
 - ② 오존층 파괴지수. 지구온난화지수가 낮을 것
 - ③ 비전도성이고 소화 후 증발잔유물이 없을 것
 - ④ 저장 시 분해하지 않고 용기를 부식시키지 않을 것
 - ⑤ 소화효과는 할론 소화약제와 유사할 것

7.

- ① 제어반에서 충압펌프의 운전스위치를 수동(정지)으로 한다.
- ② 펌프의 토출측 주밸브를 잠근다.
- ③ 성능시험배관상에 설치된 개폐밸브가 잠겨 있는지 확인한다.
- ④ 압력챔버의 배수밸브를 개방하고 주펌프가 기동되면 배수밸브를 잠근다.
- ⑤ 릴리프밸브가 개방될 때의 압력을 압력계에서 읽고 그 값이 체절압력 미만인지 확인한다.

8.

- (1) 포헤드의 수량
 - 계산과정

헤드간의 간격
$$S=2Rcos45\degree=2\times2.1m\times cos45\degree=2.97m$$

가로 =
$$20m \div 2.97m = 6.73 \Rightarrow 7$$
개

세로 =
$$10m \div 2.97m = 3.37 \Rightarrow 4$$
개

∴ 헤드의 개수 = 7 × 4 = 28개

• 답 : 28개

(2) 수원의 저장량

• 계산과정 : $Q_w = (20m \times 10m) \times 6.5\ell/(min \cdot m^2) \times 10min \times 0.97 = 12,610\ell = 12.61m^3$

• 답 : 12.61m³

(3) 포원액의 양

• 계산과정 : $Q_F = (20m \times 10m) \times 6.5\ell/(min \cdot m^2) \times 10min \times 0.03 = 390\ell$

• 답 : 390ℓ

(4) 전동기의 출력

• 계산과정 : $Q=Q_F+Q_w=39\ell/mi\,n+1261\ell/mi\,n=1300\ell/mi\,n=1.3m^3/mi\,n$ $P=\frac{0.163\times Q\times H}{\eta}\times K=\frac{0.163\times 1.3m^3/mi\,n\times 35m}{0.65}\times 1.1=12.55\,\mathrm{kW}$

• 답 : 12.55kW

9.

소화약제가 방출 시 과압으로 인하여 구조물 등에 손상이 생길 우려가 있는 장소

10.

(1) 포소화약제의 양

① 고정포방출구의 포소화약제량

• 계산과정 : $Q=A\times Q_1\times T\times S=rac{\pi}{4}(10m)^2\times 4\,\ell/(m^2\cdot mi\,n)\times 30mi\,n\times 0.03=282.74\,\ell$

• 답 : 282.74ℓ

② 보조포소화전 약제량

• 계산과정 : $Q = N \times S \times 8000 \ell = 2 \times 0.03 \times 8000 \ell = 480 \ell$

• 답 : 480ℓ

(2) 펌프동력

• 계산과정 : $Q = \frac{\pi}{4}(10m)^2 \times 4\ell/(m^2 \cdot min) + 400\ell/min \times 2$ 개 = $1114\ell/min = 1.114m^3/min$ H = 55m + 30m = 85m $P = \frac{0.163 \times Q \times H}{\eta} \times K = \frac{0.163 \times 1.114m^3/min \times 85m}{0.65} \times 1.1 = 26.12 \text{kW}$

• 답 : 26.12 kW

11.

(1) 최소유량

• 계산과정 : $Q = N \times 130 \ell/min = 2$ 개 $\times 130 \ell/min = 260 \ell/min$

• 답 : 260 l/min

(2) 저수량

• 계산과정 : $Q = N \times 2.6m^3 = 2$ 개 $\times 2.6m^3 = 5.2m^3$

• 답 : 5.2m³

- (3) 옥상에 설치하여야 하는 수원의 양
 - 계산과정 : 수원은 유효수량 외에 유효수량의 $\frac{1}{3}$ 이상을 옥상에 설치하여야 한다.

$$\therefore 5.2m^3 \times \frac{1}{3} = 1.73m^3$$

- 답 : 1.73m³
- (4) 양정
 - 계산과정

실양정
$$h_1 = 0.8m + 1m + (3m \times 6$$
개층) $+ 2m = 21.8m$

배관 마찰손실수두
$$h_2 = 21.8m \times 0.3 = 6.54m$$

소방호스 마찰손실수두
$$h_3 = 7m$$

전양정
$$H = h_1 + h_2 + h_3 + 17 = 21.8m + 6.54m + 7m + 17 = 52.34m$$

- 답 : 52.34m
- (5) 동력
 - ① 수동력
 - 계산과정 : $P = 0.163QH = 0.163 \times 0.26m^3/min \times 52.34m = 2.22kW$
 - 답 : 2.22kW
 - ② 축동력

• 계산과정 :
$$P = \frac{0.163\,QH}{\eta} = \frac{0.163 \times 0.26 m^3/mi\,n \times 52.34 m}{0.6} = 3.7\,\mathrm{kW}$$

- 답 : 3.7kW
- ③ 모터동력

• 계산과정 :
$$P = \frac{0.163QH}{\eta} \times K = \frac{0.163 \times 0.26m^3/min \times 52.34m}{0.6} \times 1.2 = 4.44$$
kW

- 답 : 4.44kW
- (6) ① 중계펌프(Booster Pump)에 의한 방법
 - ② 고가수조에 의한 방법
 - ③ 감압밸브에 의한 방법
- (7) 직사형 노즐이 선단에 노즐직경의 0.5D(내경)만큼 떨어진 지점에서 피토게이지상의 눈금을 읽어 압력을 구하고 유량을 계산한다.

12.

- ① 경보기능
- ② 역류방지기능