数学实验 Mathematical Experiments

实验六: 符号计算实验 Symbolic computations

MATLAB符号计算

本次实验我们学习运用 MATLAB 一个很特别的工具箱—符号数学工具箱 (Symbolic Math Toolbox),运用该工具箱我们可以进行解析数学运算和任意指定精度数值计算,包括矩阵、函数、微积分和微分方程等:还介绍 MATLAB 便捷函数作图方法.

快速入门: 求极限, 求导数

数学问题	MATLAB程序	
$\lim_{x \to +\infty} e^{-x} = 0$	<pre>syms x; r=limit(exp(-x),x,+inf)</pre>	
$(x^2e^x)' = 2xe^x + x^2e^x$	syms x; d=diff(x*x*exp(x),x,1)	

MATLAB 符号计算和作图命令

主题词	意义	主题词	意义
主题词 sym symfun syms subs digits vpa double char factor	意义 将数值或字符串转化为符号 定义符号函数 定义符号变量或函数 变量替换 定义数值精度 任意精度计算 将符号对象转化为数值 将符号对象转化为字符串 因式分解	主题词 diff taylor taylortool jacobian int solvev pasolve dsolve ezplot	意义 求导函数 Taylor 展开 Taylor 展开计算器 Jacobi矩阵 积分 解方程 方程数值解 解微分方程 便捷函数曲线
expand collect finverse compose simplify simple numden funtool limit symsum	展开式 合并可类项 求反合函数 化为最短形式 分量分 函数计算器 符数状和	ezpolar ezplot3 ezmesh ezsurf ezcontour latex ccode matlabfunctionev alin mupad	极坐标图空间曲线 网面 曲高线 数学公式的 LaTex 格式 数学公式的 C语言代码 数学公式的 MATLAB 代码调用 Mupad 计算进人 Mupad 界面

1. 符号对象的定义

符号运算使用一种特殊的数据类型,称为符号对象 (symbolic object),用字符串形式表达,但又不同于字符串.符号运算中的变量、两数和表达式都是符号对象.

syms var1 var2··· 定义var1, var2, ···为符号变 s=sym(str) 将数值或字符串 str转化为符号对象s,数值为有理表示

s=sym(num, 'd') 将数值表达式转化为符号表达式,数值用十进制表示

subs(s, 01d, new)将符号表达式s中的符号变量old用new代替

%这是数值表达式 >>n=pj^2 n = 9.8696>>a=sym(n) %数值转化为符号对象,有理表示 a= 2778046668940015/281474976710656 >>b=sym(n,'d') %数值转化为符号对象,十进制表示 b= 9.869604401089357992304940125905 >>c=sym(pi)^2 %字符串转化为符号对象 c= pi^2 >>syms x y z; %定义符号变量x,y,z,注意变量间不加逗号 >>d=x^3+2*y^2+c %符号计算表达式 $d = x^3 + 2*y^2 + pi^2$ >>A=[a b;c-d d-x^3] %由符号表达式产生的符号矩阵, 其表达与数值矩阵有明显区别

A= [2778046668940015/281474976710656,9.86960440108935799 2304940125905] [-x^3-2*y^2, 2*y^2+pi^2]

>>A=subs(A,x,c) %将符号变量x用符号对象c替代

A=

[2778046668940015/281474976710656,9.86960440108935799 2304940125905]

[-pi^6-2*y^2, 2*y^2+pi^2]

>>A=subs(A,y,0.1) %再将符号变量y用数值0.1替代

A=

[2778046668940015/281474976710656,9.86960440108935799 2304940125905]

[-pi^6-1/50, -pi^2+1/50]

观察工作区(workspace)各变量数据类型.

每个符号对象占用60字节,远大于数值或字符,同时其运算速度也慢许多.

2. 定义符号变量用法比较 syms与sym使用对比:

```
示例:使用syms定义(与下列调用sym语句效果相同) syms x y real
```

使用sym定义:

```
x=sym( 'x', 'real');
y=sym( 'y', 'real');
```

3. 符号表达式的化简

simplify: 对表达式进行简化

示例:

```
syms x y

s1=simplify(cos(x)^2-sin(x)^2)

s2=simplify(x^3+3*x^2+3*x+1)
```

返回结果:

$$s1=cos(2*x)$$

 $s2=(x+1)^3$

4. 计算精度和数据类型转换

符号数值计算默认精度为32位十进制,是MATLAB数值计算的两倍,符号工具还提供了计算精度设置命令,可以定义任何精度的数值计算.

digits(n) 将数值计算精度设置为n位

x=vpa(s) 求s的数值结果

x=vpa(s,n) 采用n位计算精度求s得数值结果

double(s) 将符号对象转化为双精度数值

Char(s) 将符号对象转化为字符出

4. 计算精度和数据类型转换

下图给出了MATLAB中数据类型之间的转换.

数据类型转换

```
>>2^10000
ans=
Inf
>>a=sym(2);b=a^10000
b=
19950631168075838488374216268...709376
                                  %很长的整数,准确的,
而不是近似的>>vpa(b)
ans=
                                       %超过realmax的
1.9950631168807583848837421626836e+3010
实数
              %大大超出 MATLAB浮点数上限 realmax,判断为无
>>double(b)
穷大
ans
Inf
```

```
%MATLAB数值计算
>>format long;pi^2, format short
ans=
9.86960440108936
>>c=sym(pi)^2;
>>vpa(c,16) %16位,与 MATLAB数值计算相仿
ans=
9.86960401089357
>>vpa(c) %32位,默认
ans=
9.8696044010893586188344909998761
>>vpa(c,50)%高精度显示
ans=
9.8696044010893586188344909998761511353136994072408
>> double(c) %转化为数值型
ans=
9.8696
```

1. 矩阵

MATLAB大部分矩阵和数组运算符及命令都可以用于符号矩阵.

举例:

- >>clear;syms a b c d;A=[a,b,a,d];
- >>B=inv(A)
- >>A.\B,A\B
- >>eig(A)

2. 符号函数计算

大部分MATLAB数学函数和逻辑关系运算也可用于符号对象. 另外还有

factor(expr) 对expr作因式分解

expand(expr) 将expr展开

collect(expr,v) 将expr按变量v合并同类项

simplify(expr), simple(expr) 将expr化简

g=finverse(f,v) 求函数f(v)的反函数g(v)

symfun(expr,arg) 定义符号函数,expr为函数表达式,arg为自变量 syms fun(var1,var2,...) 定义符号函数

2. 符号函数计算

大部分MATLAB数学函数和逻辑关系运算也可用于符号对象. 另外还有

latex(expr) 数学公式的LaTex输出

ccode(expr) 数学公式的C语言代码

matlabFunction(expr) 数学公式的MATLAB函数,注意F要大写

fg=compose(f,g) 求函数f(v)和g(v)的复合函数f(g(v))

[n,d]=numden(expr)分式通分,n返回分子,d返回分母

Funtool 函数分析图形界面

```
>>syms x y; f=(x-y)^3; g=(x+y)^3;
>>h=f*g
>>hs=expand(h)
                   %展开
                   %因式分解
>>hf=factor(hs)
>>s=subs(h, y, x^2+x+1)
                        %x<sup>2</sup>+x+1替换h中的y
>>fun=symfun(f*g,[x,y]) %定义了符号函数, 自变量是x, y
fun(x, y) = (x+y)^3 * (x-y)^3
>> s = fun(x, x^2 + x + 1)
                    %符号函数计算,无须subs
>>scol=collect(s, x) %合并同类项
                      %化简
>>ssim=simplify(scol)
                 %数学公式的LaTex输出
>>latex(ssim)
>>ccode(ssim) %数学公式的c语言代码
>>matlabFunction(ssim) %数学公式的匿名函数代码
```

>>matlabFunction(ssim, 'file', 'ssample')%产生数学公式的M函数这时在当前文件夹产生一个M函数文件ssample.m,表达ssim数学公式.

下面是一个简单的反函数及复合函数的例子.

$$>>t=x^(1/3)$$
; v=finverse(t, x)

v=

 x^3

>>tv=compose(t, v)

 $tv = (x^3)^{1/3}$

>>funtool

最后的命令打开一个函数计算器,可直观地进行上述代数运算以及下一节的微积分运算,就像一个能做解析运算和作图的掌上计算器.

1. 复合计算函数compose

主要用法:

• compose(f,g) 返回复合函数f(g(y)), 其中 f=f(x), g=g(y).

x和y分别为findsym从f、g中找到的符号变量.

• compose(f, g, z) 返回复合函数f(g(z)), f=f(x), g=g(y), x,y含义同上一种用法.

最后用指定变量z代替变量y.

• compose(f, g, x, y, z) 返回复合函数f(g(z)). 将 x=g(y)代入f(x)中,最后用指定的变量z代替变量y.

1. 复合计算函数compose 示例:

```
syms x y t
f=1/(1+x);
g=sin(y)^2
h=compose(f, g, x, y, t)
运算结果:
```

2. 极限与级数

```
limit(s, x, a)
           返回符号表达式s当x→a时的极限
limit(s, x, a, 'right') 返回符号表达式s当x→a
时的右极限
limit(s, x, a, 'left')
                  返回符号表达式s当x→a
时的左极限
symsum(s, n, a, b)
                  返回符号表达式s表示的
通项当自变量n由a到b时的和
                  返回符号表达式s表示的
symprod(s, n, a, b)
通项当自变量n由a到b时的积
```

例 计算
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$$
, $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$.

```
解
>>syms n x;
>>limit((1+x/n)^n, n, inf)
ans=
exp(x)
>>symsum((-1)^n * x^n/n, n, 1, inf)
ans=
-log(1+x)
```

3. 微分

diff(s,x) 返回符号表达式s对x的导函数,注意它与第五章 差分dif的区别

diff(s, x, n) 返回符号表达式s对x的n阶导函数

hessian(f, x) 返回标量函数f的Hesse矩阵($\frac{\partial^2 f}{\partial x_i \partial x_i}$) $_{n \times n}$

例 计算:

$$(1)\frac{\partial^2}{\partial x^2}(x^2e^{-y}), \frac{\partial^2}{\partial x\partial y}(x^2e^{-y})|_{x=1,y=2};$$

$$(2) f(x_1, x_2) = \begin{pmatrix} x_1 e^{x_2} \\ \cos x_1 \end{pmatrix}$$
的Jacobi矩阵;

- (3)函数 $g(x) = lnx\sin x$ 在x = 1的5次Taylor展开:
- (4)二元函数 $f(x_1, x_2) = e^{-xy}$ 在x = 1, y = 0的三阶Taylor展开式.

```
>>clear; syms x y;
>>s=diff(x^2*exp(-y), x, 2)
\Rightarrowt=diff(x2*exp(-y), x);
>>t=diff(t,y);
>>t=subs(t, x, 1);
\Rightarrowt=subs(t, y, 2)
>>syms x1 x2; f = [x1*exp(x2); cos(x1)];
>>J=jacobian(f, [x1 x2])
```

4. 泰勒展开

回顾:泰勒公式

泰勒中值定理 如果f(x)在含有 x_0 的某个开区间(a, b)内具有直到 n+1阶的导数,则当在(a, b)内时,f(x)可以表示为 $x-x_0$ 的一个n 次多项式与一个余项 $R_n(x)$ 之和:

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1} + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

其中

$$R_{n}(x) = \frac{f^{n+1}(\xi)}{(n+1)!} (x - x_{0})^{n+1} (\xi \pm x_{0} - \xi x)^{n+1}$$

4. 泰勒展开

实验目的:应用中常用简单函数(如多项式)去近似一个复杂的函数。

Matlab泰勒展开函数taylor

基本用法:

taylor(s, x, a, 'order', n) 返回符号表达式s在a点的n-1阶 Taylor展开式,自变量为x

taylortool Taylor分析图形界面

示例:

syms x

fx=exp(x);x0=0; %展开点 n=2; %展开阶数: n-1阶

hx1=taylor(fx,x,x0,'order',n)

hx2=taylor(fx,x,'order',n,'ExpansionPoint',x0)

例 计算:

- (1)函数 $g(x) = lnx\sin x$ 在x = 1的5次Taylor展开;
- (2)二元函数 $f(x_1, x_2) = e^{-xy}$ 在x = 1, y = 0的三阶Taylor展开式.

```
>>syms x;g=log(x)*sin(x);
>>gt=taylor(g,x,1, 'Order',6); %展开
到5次式,注意这时Order=6
>>gt=vpa(gt,4) %数值近似
```

>>syms x y; taylor(exp(-x*y), [x y], [1 0], Order', 4) %展开到3次式,

Taylor展开也可使用下列图形界面:

>>taylortool

适当输入参数,注意与命令taylor不同的是这里N应输入5.

小实验: 请以函数f (x)= e^x 为例,验证随着n阶 泰勒多项式 $P_n(x)$ 的 阶数增加, $P_n(x)$ 近似函数 e^x 的程度越高。

实验思路:为了比较泰勒多项式函数与指数函数的近似程度,只做一个n阶泰勒多项式的比较不够直观。

为了反映泰勒多项式随n变换的情形,我们这里分别取n=1,4,6.

绘制三条曲线与指数函数曲线对比。

小实验: 请以函数f $(x)=e^x$ 为例,验证随着n阶 泰勒多项式 $P_n(x)$ 的 阶数增加, $P_n(x)$ 近似函数 e^x 的程度越高。

讲解程序Exp6_33.m

5. 积分

int(s)
int(s, v)
积分
int(s, a, b)
别为下、上限
int(s, v, a, b)
的定积分

符号表达式s的不定积分 符号表达式s关于变量v的不定

符号表达式s的定积分, a, b分

符号表达式s关于变量v从a到b

例 计算:

- (1) 不定积分 $\int (e^{-t} + \sin t) dt$;
- (2) 定积分 $\int_0^1 (e^{-t} + \sin t) dt$;
- (3) 定积分 $\int_{1}^{4} \frac{3\sin x^{2}}{x} dx$ (无解析解);
- (4)定积分 $\int_0^1 exp(-x^{\sin x})dx$ (无解析解);
- (5) 重积分 $\iint_{x^2+v^2<1} \sqrt{1-x^2} dxdy$;
- (6) 反常积分 $\int_1^\infty e^{-x} \sin x dx$.

```
\Rightarrowsyms t;t1=int(exp(-t)+sin(t),t)
\Rightarrow t2=int (exp(-t)+sin(t), t, 0, 1)
>>t2=vpa(t2,5) %数值结果,数据类型为符号对象
>>syms x;t3=int(3*sin(x^2)/x,1,4) %自变量x可省略
>>t3=vpa(t3,5) %用vpa找数值解
>>t4=int(exp(-x<sup>*</sup>sin(x)), x, 0, 1) %求不出解析解
>>t4=vpa(t4,5) %也可用vpa找数值解
\Rightarrowsyms x y;iy=int(sqrt(1-x^2), y, -sqrt(1-
x^2), sart (1-x^2):
>>int(iy, x, -1, 1) %重积分计算
\Rightarrowsyms x;int(exp(-x)*sin(x), x, 1, inf)
\ranglevpa (ans, 5)
```

实验4:符号计算函数求解方程与常微分方程

1. 求解代数方程(组): solve

基本用法:

```
S=solve(eqn1, eqn2,..., eqnM, var1, var2,..., varN) [S1,..., SN]=solve(eqn1, eqn2,..., eqnM, var1, var2,..., varN)
```

输入参数: 主要包含方程、未知数

eq1, eq2, ···表示方程, 用一个包含 "==" 的等式表示 var1, var2, ···表示未知数符号

注意:

输入参数中的"未知数",应使用syms命令先定义. 如果方程中含有"参数",应使用syms命令先定义.

例如: syms x y; solve (x+y==0, x-2*y==8, x, y)

实验4:符号计算函数求解方程与常微分方程

1. 求解代数方程(组): solve

基本用法:

```
S=solve(eqn1, eqn2, ..., eqnM, var1, var2, ..., varN)
[S1, ..., SN]=solve(eqn1, eqn2, ..., eqnM, var1, var2, ..., varN)
```

输出参数: (两种用法)

- 1. 如果只有1个输出参数S, 则输出参数为一个结构体变量, 未知数的解通过输出参数获取, 如未知数x的解通过 S.x获取.
- 2.如果输出参数为多个,则每个输出参数存储一个未知数的解,顺序与var1,var2,..., varN对应.

实验4:符号计算函数求解方程与常微分方程

求解代数方程(组): solve

示例:

求解含参数的方程组ax+by=10, ax-by=20

编程实现:

```
syms a b x y
s=solve( 'a*x+b*y=10', 'a*x-
b*y=20', 'x', 'y')
sol_x=s.x
sol_y=s.y
```

运行结果:

S=

x:[1x1 sym]

y:[1x1 sym]

 $sol_x=15/a$

 $sol_y=-5/b$

2. 求解微分方程函数: dsolve

基本用法:

S=dsolve(eqn1, eqn2, ..., eqnN, cond1, cond2, ..., condN)

2. 求解微分方程函数: dsolve

输入参数说明:

- ① eqn1, eqn2, ...为用包含 "=="的表达式,表示微分方程;
- ② cond1, cond2, ...表示其初始条件;
- ③输入参数中出现的未知函数、参数应用syms先定义,其中函数的定义要包含自变量符号。

例如:未知函数y(t),用下列语句定义: syms y(t)

④各阶导数的表示方法:方程中的导数用diff对未知函数求导表示,

即:未知函数y的k阶导数用 diff(y, k)表示

例如: y(t)的一阶导数,使用命令: diff(y, 1);

w(x)的二阶导数,使用命令: diff(w, 2)

2. 求解微分方程函数: dsolve

基本用法:

S=dsolve(eqn1, eqn2, ..., eqnN, cond1, cond2, ..., condN)

输出参数说明:

- ① S为常微分方程的解;
- ②如果只有1个未知函数,则S就是方程的解;
- ③如果有多个未知函数,则S为结构体,通过结构体获取方程的解.

例如:

当未知函数为x, y, 则S.x, S.y分别表示两个未知函数的表达式.

求解微分方程: dsolve

示例:

求下列微分方程的特解: $\frac{dy}{dt} = (10 - 0.02t)t$, y(0) = 4

要点:

- 1.用字符串描述微分方程及其初始条件;
- 2.导数的表示规则:以未知函数y为例,"Dy"表示对y的1阶导数, "D2y"表示对y的2阶导数,其他各阶导数类似.

编程实现:

y=dsolve('Dy=(10-0.02*t)*t', 'y(0)=4', 't')

运行结果: y=4-(t²*(t-750))/150

求得函数: $y = 4 - \frac{t^2(t-750)}{150}$

求解微分方程: dsolve

示例:

求下列微分方程的特解: $\frac{dy}{dx} = (50 - 0.01y)y, y(0) = 4$

注意事项:

- 1.调用dsolve函数时,应显示指定自变量,用一个自变量字符组成的字符串作为最后一个参数传入;
- 2.如果不指定自变量,默认自变量为t

编程实现:

y=dsolve('Dy=(50-0.01*y)*y', 'y(0)=4', 'x')

运行结果: y=5000/(exp(log(1249)-50*x)+1

分析: 去掉上述程序语句参数'x',并对比结果

回顾: 设 $C=\Gamma/(\Gamma-1)$ 为一个大于2的常数。设三个自变量 ρ , p, v的变化范围为

$$\Omega = \{ (\rho, p, v) \colon \ \rho > 0, \ |v| < 1 \}$$
 (1)

我们定义以下三个因变量

$$D = \frac{\rho}{\sqrt{1 - v^2}}, \quad m = \frac{(\rho + Cp) \, v}{1 - v^2}, \quad E = \frac{\rho + Cp}{1 - v^2} - p. \tag{2}$$

我们在课上做过一个相关数学实验,结果表明:

$$D > 0, E > \sqrt{D^2 + m^2}.$$
 (3)

定义

$$\Omega = \{V = (\rho, p, v): \ \rho > 0, \ p > 0, \ |v| < 1\}$$

$$G = \{U = (D, m, E): \ D > 0, \ E > \sqrt{D^2 + m^2}\}$$

$$S = log(p\rho^{-\Gamma})$$

Question: What is the condition on $\mathcal{H}(S)$ such that $\mathcal{E}(\mathbf{U}) = -D\mathcal{H}(S)$ is a strictly convex function of the conservative variables $\mathbf{U} \in G$?

Question: What is the condition on $\mathcal{H}(S)$ such that $\mathcal{E}(\mathbf{U}) = -D\mathcal{H}(S)$ is a strictly convex function of the conservative variables $\mathbf{U} \in G$?

Theorem 1. For a smooth function $\mathcal{H}(S)$, the corresponding $\mathcal{E}(\mathbf{U}) = -D\mathcal{H}(S)$ is a strictly convex entropy function of \mathbf{U} if and only if

$$\mathcal{H}'(S) > 0, \qquad \mathcal{H}'(S) - \Gamma \mathcal{H}''(S) > 0.$$
 (4)

We study the convexity of $\mathscr{E}(\mathbf{U})$ by investigating the positive definiteness of the associated Hessian matrix

$$\mathscr{E}_{\mathbf{u}\mathbf{u}} := \left(\frac{\partial^2 \mathscr{E}}{\partial u_i \partial u_j}\right)_{1 \le i, j \le d+2},$$

where u_i denotes the *i*th component of **U**. A straightforward computation gives

$$\frac{\partial^2 \mathscr{E}}{\partial u_i \partial u_j} = -\mathscr{H}'(S) \left(\frac{\partial D}{\partial u_i} \frac{\partial S}{\partial u_j} + \frac{\partial D}{\partial u_j} \frac{\partial S}{\partial u_i} \right) - D\mathscr{H}''(S) \frac{\partial S}{\partial u_i} \frac{\partial S}{\partial u_j} - D\mathscr{H}'(S) \frac{\partial^2 S}{\partial u_i \partial u_j},$$

which implies that

$$\mathcal{E}_{\mathbf{u}\mathbf{u}} = -\mathcal{H}'(S) \left(\mathbf{e}_{1} S_{\mathbf{u}}^{\top} + S_{\mathbf{u}} \mathbf{e}_{1}^{\top} + D S_{\mathbf{u}\mathbf{u}} \right) - D \mathcal{H}''(S) S_{\mathbf{u}} S_{\mathbf{u}}^{\top}$$

$$= -\mathcal{H}'(S) \mathbf{A}_{1} + \frac{D}{\Gamma} \left(\mathcal{H}'(S) - \Gamma \mathcal{H}''(S) \right) S_{\mathbf{u}} S_{\mathbf{u}}^{\top}, \tag{5}$$

where $\mathbf{e}_1 = (1, \mathbf{0}_{d+1}^{\top})^{\top}$, $\mathbf{0}_{d+1}$ denotes the zero vector of length d+1, and

$$\mathbf{A}_1 := \mathbf{e}_1 S_{\mathbf{u}}^{\top} + S_{\mathbf{u}} \mathbf{e}_1^{\top} + D S_{\mathbf{u}\mathbf{u}} + \frac{1}{\Gamma} D S_{\mathbf{u}} S_{\mathbf{u}}^{\top}.$$

Since S cannot be explicitly formulated in terms of U, direct derivation of $S_{\mathbf{u}}$ and $S_{\mathbf{u}\mathbf{u}}$ is difficult. Let us consider the primitive variables $\mathbf{V} = (\boldsymbol{\rho}, \boldsymbol{v}^{\top}, \boldsymbol{p})^{\top}$. Note that both S and U can be explicitly formulated in terms of V, then it is easy to derive

$$\frac{\partial S}{\partial \mathbf{V}} = \begin{pmatrix} -\Gamma/\rho, \mathbf{0}_d^\top, 1/\rho \end{pmatrix}, \qquad \frac{\partial \mathbf{U}}{\partial \mathbf{V}} = \begin{pmatrix} W & \rho W^3 \mathbf{v}^\top & 0 \\ W^2 \mathbf{v} & \rho h W^2 \mathbf{I}_d + 2\rho h W^4 \mathbf{v} \mathbf{v}^\top & \frac{\Gamma W^2}{\Gamma - 1} \mathbf{v} \\ W^2 & 2\rho h W^4 \mathbf{v}^\top & \frac{\Gamma W^2}{\Gamma - 1} - 1 \end{pmatrix},$$

Since S cannot be explicitly formulated in terms of U, direct derivation of $S_{\mathbf{u}}$ and $S_{\mathbf{u}\mathbf{u}}$ is difficult. Let us consider the primitive variables $\mathbf{V} = (\boldsymbol{\rho}, \boldsymbol{v}^{\top}, \boldsymbol{p})^{\top}$. Note that both S and U can be explicitly formulated in terms of V, then it is easy to derive

$$\frac{\partial S}{\partial \mathbf{V}} = \begin{pmatrix} -\Gamma/\rho, \mathbf{0}_d^\top, 1/\rho \end{pmatrix}, \qquad \frac{\partial \mathbf{U}}{\partial \mathbf{V}} = \begin{pmatrix} W & \rho W^3 \mathbf{v}^\top & 0 \\ W^2 \mathbf{v} & \rho h W^2 \mathbf{I}_d + 2\rho h W^4 \mathbf{v} \mathbf{v}^\top & \frac{\Gamma W^2}{\Gamma - 1} \mathbf{v} \\ W^2 & 2\rho h W^4 \mathbf{v}^\top & \frac{\Gamma W^2}{\Gamma - 1} - 1 \end{pmatrix},$$

where \mathbf{I}_d denotes the identity matrix of size d. The inverse of the matrix $\frac{\partial \mathbf{U}}{\partial \mathbf{V}}$ gives

$$\frac{\partial \mathbf{V}}{\partial \mathbf{U}} = \frac{1}{\rho h(1 - c_s^2 ||\mathbf{v}||^2)} \begin{pmatrix} \rho h(1 - (\Gamma - 1)||\mathbf{v}||^2) W^{-1} & -\rho (1 + (\Gamma - 1)||\mathbf{v}||^2) \mathbf{v}^\top & \rho \Gamma ||\mathbf{v}||^2 \\ (\Gamma - 1) W^{-3} \mathbf{v} & \mathbf{A}_2 & \Gamma \left(||\mathbf{v}||^2 - 1 \right) \mathbf{v} \\ -(\Gamma p + (\Gamma - 1)\rho) W^{-1} & -(2\Gamma p + (\Gamma - 1)\rho) \mathbf{v}^\top & \Gamma p \left(1 + ||\mathbf{v}||^2 \right) + (\Gamma - 1)\rho \end{pmatrix}$$

with $c_s = \sqrt{\frac{\Gamma p}{\rho h}}$ denoting the acoustic wave speed in the RHD case (note that $0 < c_s < 1$), and

$$\mathbf{A}_2 := \left(1 - \|\mathbf{v}\|^2\right) \left[\left(1 - c_s^2 \|\mathbf{v}\|^2\right) \mathbf{I}_d + \left(\Gamma - 1 + c_s^2\right) \mathbf{v} \mathbf{v}^\top \right].$$

这个求逆过程很复杂,我是先借助符号计算、最后再手动演算的;见演示程序

It follows that

$$S_{\mathbf{u}}^{\top} = \frac{\partial S}{\partial \mathbf{U}} = \frac{\partial S}{\partial \mathbf{V}} \frac{\partial \mathbf{V}}{\partial \mathbf{U}} = \frac{\Gamma - 1}{p} \left(-hW^{-1}, -\mathbf{v}^{\top}, 1 \right).$$

The derivative of $S_{\mathbf{u}}^{\top}$ with respect to **V** gives

$$S_{\mathbf{u}\mathbf{v}} = \begin{pmatrix} \frac{\Gamma}{\rho^2} \sqrt{1 - \|\mathbf{v}\|^2} & \frac{\Gamma - 1}{p} h W \mathbf{v}^\top & \frac{\Gamma - 1}{p^2} \sqrt{1 - \|\mathbf{v}\|^2} \\ \mathbf{0}_d & -\frac{\Gamma - 1}{p} \mathbf{I}_d & \frac{\Gamma - 1}{p^2} \mathbf{v} \\ 0 & \mathbf{0}_d^\top & -\frac{\Gamma - 1}{p^2} \end{pmatrix}.$$

Then we obtain

$$\mathbf{A}_{1} = \mathbf{e}_{1} S_{\mathbf{u}}^{\top} + S_{\mathbf{u}} \mathbf{e}_{1}^{\top} + D S_{\mathbf{u} \mathbf{v}} \frac{\partial \mathbf{V}}{\partial \mathbf{U}} + \frac{1}{\Gamma} D S_{\mathbf{u}} S_{\mathbf{u}}^{\top}$$

It follows that

$$S_{\mathbf{u}}^{\top} = \frac{\partial S}{\partial \mathbf{U}} = \frac{\partial S}{\partial \mathbf{V}} \frac{\partial \mathbf{V}}{\partial \mathbf{U}} = \frac{\Gamma - 1}{p} \left(-hW^{-1}, -\mathbf{v}^{\top}, 1 \right).$$

The derivative of $S_{\mathbf{u}}^{\top}$ with respect to **V** gives

$$S_{\mathbf{u}\mathbf{v}} = \begin{pmatrix} \frac{\Gamma}{\rho^2} \sqrt{1 - \|\mathbf{v}\|^2} & \frac{\Gamma - 1}{p} h W \mathbf{v}^\top & \frac{\Gamma - 1}{p^2} \sqrt{1 - \|\mathbf{v}\|^2} \\ \mathbf{0}_d & -\frac{\Gamma - 1}{p} \mathbf{I}_d & \frac{\Gamma - 1}{p^2} \mathbf{v} \\ 0 & \mathbf{0}_d^\top & -\frac{\Gamma - 1}{p^2} \end{pmatrix}.$$

Then we obtain

$$\mathbf{A}_{1} = \mathbf{e}_{1} S_{\mathbf{u}}^{\top} + S_{\mathbf{u}} \mathbf{e}_{1}^{\top} + D S_{\mathbf{u} \mathbf{v}} \frac{\partial \mathbf{V}}{\partial \mathbf{U}} + \frac{1}{\Gamma} D S_{\mathbf{u}} S_{\mathbf{u}}^{\top}$$

$$= \frac{1 - \Gamma}{ph(h-1)(1 - c_{s}^{2} ||\mathbf{v}||^{2})} \begin{pmatrix} a_{1} & a_{2} \mathbf{v}^{\top} & a_{3} \\ a_{2} \mathbf{v} & \mathbf{A}_{3} & a_{4} \mathbf{v} \\ a_{3} & a_{4} \mathbf{v}^{\top} & a_{5} \end{pmatrix}$$

with

$$a_{1} := h(\Gamma - 1)W^{-1} > 0, \qquad a_{2} := (2h - 1)(\Gamma - 1), \qquad a_{3} := -(\Gamma - 1)(h + (h - 1)\|\mathbf{v}\|^{2}),$$

$$\mathbf{A}_{3} := \frac{(h - 1)(1 - c_{s}^{2}\|\mathbf{v}\|^{2})}{W}\mathbf{I}_{d} + W\left((h - 1)(1 - c_{s}^{2}\|\mathbf{v}\|^{2}) + \frac{1}{h}(\Gamma - 1)(2h - 1)^{2}\right)\mathbf{v}\mathbf{v}^{\top},$$

$$a_{4} := W\left(h(1 - c_{s}^{2}\|\mathbf{v}\|^{2}) - \Gamma(2h - 1)\right), \qquad a_{5} := W\left((h - 1)(2\Gamma - 1)\|\mathbf{v}\|^{2} + (\Gamma - 1)h\right).$$

Let us define the invertible matrix

$$\mathbf{P}_1 = \begin{pmatrix} 1 & \mathbf{0}_d^\top & 0 \\ -\frac{a_2}{a_1} \mathbf{v} & \mathbf{I}_d & \mathbf{0}_d \\ -\frac{a_3}{a_1} & \mathbf{0}_d^\top & 1 \end{pmatrix}.$$

A straightforward computation gives

$$\mathbf{P}_{1}\mathbf{A}_{1}\mathbf{P}_{1}^{\top} = \frac{1-\Gamma}{ph(h-1)(1-c_{s}^{2}||\mathbf{v}||^{2})} \begin{pmatrix} a_{1} & \mathbf{0}_{d+1}^{\top} \\ \mathbf{0}_{d+1} & a_{6}\mathbf{A}_{4} \end{pmatrix}$$
(6)

with $a_6 := (h-1)W(1-c_s^2||\mathbf{v}||^2) > 0$, and

$$\mathbf{A}_4 := \begin{pmatrix} (1 - \|\mathbf{v}\|^2) \mathbf{I}_d + \mathbf{v}\mathbf{v}^\top & -\mathbf{v} \\ -\mathbf{v}^\top & \|\mathbf{v}\|^2 \end{pmatrix}. \tag{7}$$

Note that

$$\mathbf{P}_{1}S_{\mathbf{u}} = \frac{\Gamma - 1}{p} \left(-hW^{-1}, 2(h - 1)\mathbf{v}^{\top}, (1 - h)(1 + \|\mathbf{v}\|^{2}) \right)^{\top} =: \frac{\Gamma - 1}{p} \mathbf{b}_{1}.$$
 (8)

Let us define the invertible matrix

$$\mathbf{P}_1 = \begin{pmatrix} 1 & \mathbf{0}_d^\top & 0 \\ -\frac{a_2}{a_1} \mathbf{v} & \mathbf{I}_d & \mathbf{0}_d \\ -\frac{a_3}{a_1} & \mathbf{0}_d^\top & 1 \end{pmatrix}.$$

Combining equations (5), (6) and (8) gives

$$\mathbf{P}_{1}\mathcal{E}_{\mathbf{u}\mathbf{u}}\mathbf{P}_{1}^{\top} = a_{7}\mathcal{H}'(S)\mathbf{A}_{5} + a_{8}(\mathcal{H}'(S) - \Gamma\mathcal{H}''(S))\boldsymbol{b}_{1}\boldsymbol{b}_{1}^{\top}$$

$$\tag{9}$$

with $a_7 := \frac{\Gamma - 1}{ph(h-1)(1 - c_s^2 ||\mathbf{v}||^2)} > 0$, $a_8 := \frac{D(\Gamma - 1)^2}{p^2 \Gamma} > 0$, and

$$\mathbf{A}_5 := \begin{pmatrix} a_1 & \mathbf{0}_{d+1}^\top \\ \mathbf{0}_{d+1} & a_6 \mathbf{A}_4 \end{pmatrix}.$$

Let us study the property of \mathbf{A}_4 defined in (7). The matrix $(1 - \|\mathbf{v}\|^2)\mathbf{I}_d + \mathbf{v}\mathbf{v}^{\top}$ is symmetric and its eigenvalues consist of 1 and $1 - \|\mathbf{v}\|^2$, which are all positive, implying that $(1 - \|\mathbf{v}\|^2)\mathbf{I}_d + \mathbf{v}\mathbf{v}^{\top}$ is positive definite. Furthermore, a straightforward calculation shows $\det(\mathbf{A}_4) = 0$. Therefore, \mathbf{A}_4 is positive semi-definite, and $\operatorname{rank}(\mathbf{A}_4) = d$. Since $a_1 > 0$ and $a_6 > 0$, it follows that \mathbf{A}_5 is positive semi-definite, and $\operatorname{rank}(\mathbf{A}_5) = d + 1$. Hence, there exists a $\operatorname{rank}(d+1)$ matrix $\mathbf{A}_6 \in \mathbb{R}^{(d+1) \times (d+2)}$ such that

$$\mathbf{A}_6^{\mathsf{T}} \mathbf{A}_6 = \mathbf{A}_5. \tag{10}$$

Because \mathscr{E}_{uu} and $\mathbf{P}_1\mathscr{E}_{uu}\mathbf{P}_1^{\top}$ are congruent, it suffices to prove that the matrix $\mathbf{P}_1\mathscr{E}_{uu}\mathbf{P}_1^{\top}$ is positive definite if and only if $\mathscr{H}(S)$ satisfies the condition (4).

(i). First prove the condition (4) is sufficient for the positive definiteness of $\mathbf{P}_1 \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_1^{\top}$. Because \mathbf{A}_5 and $\mathbf{b}_1 \mathbf{b}_1^{\top}$ are both positive semi-definite, by (9) we know that $\mathbf{P}_1 \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_1^{\top}$ is positive semi-definite under the condition (4). It means

$$\mathbf{z}^{\mathsf{T}} \mathbf{P}_1 \mathscr{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_1^{\mathsf{T}} \mathbf{z} \ge 0, \qquad \forall \mathbf{z} \in \mathbb{R}^{d+2}.$$
 (11)

Hence, it suffices to show z = 0 when $z^{\top} \mathbf{P}_1 \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_1^{\top} z = 0$. Using (9) and (10), we have

$$\mathbf{z}^{\top} \mathbf{P}_{1} \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_{1}^{\top} \mathbf{z} = a_{7} \mathcal{H}'(S) \|\mathbf{A}_{6} \mathbf{z}\|^{2} + a_{8} \left(\mathcal{H}'(S) - \Gamma \mathcal{H}''(S)\right) \left|\mathbf{b}_{1}^{\top} \mathbf{z}\right|^{2} = 0,$$

which implies $\mathbf{A}_6 \mathbf{z} = \mathbf{0}_{d+1}$ and $\mathbf{b}_1^{\top} \mathbf{z} = 0$. Then $\mathbf{A}_5 \mathbf{z} = \mathbf{A}_6^{\top} \mathbf{A}_6 \mathbf{z} = \mathbf{0}$. Let $\mathbf{z} =: (z^{(1)}, \mathbf{z}^{(2)}, z^{(3)})^{\top}$ with $\mathbf{z}^{(2)} \in \mathbb{R}^d$. From $\mathbf{A}_5 \mathbf{z} = \mathbf{0}$ we can deduce that $a_1 z^{(1)} = 0$ and $a_6 \mathbf{A}_4 (\mathbf{z}^{(2)}, z^{(3)})^{\top} = \mathbf{0}$. It further yields $z^{(1)} = 0$ and

$$(1 - \|\mathbf{v}\|^2)\mathbf{z}^{(2)} + \mathbf{v}\mathbf{v}^{\mathsf{T}}\mathbf{z}^{(2)} - z^{(3)}\mathbf{v} = \mathbf{0}_d$$
 (12)

$$-\mathbf{v}^{\mathsf{T}}\mathbf{z}^{(2)} + \|\mathbf{v}\|^2 z^{(3)} = 0. \tag{13}$$

Combining $z^{(1)} = 0$ and $\boldsymbol{b}_1^{\mathsf{T}} \boldsymbol{z} = 0$ gives

$$2(h-1)\mathbf{v}^{\top}\mathbf{z}^{(2)} + (1-h)(1+||\mathbf{v}||^2)z^{(3)} = 0,$$

which, together with (13), imply $\mathbf{v}^{\top}\mathbf{z}^{(2)} = z^{(3)} = 0$. Substituting it into (12) gives $\mathbf{z}^{(2)} = \mathbf{0}_d$. Therefore, we have $\mathbf{z} = \mathbf{0}$ when $\mathbf{z}^{\top}\mathbf{P}_1\mathscr{E}_{\mathbf{u}\mathbf{u}}\mathbf{P}_1^{\top}\mathbf{z} = 0$. This along with (11) yield that $\mathbf{P}_1\mathscr{E}_{\mathbf{u}\mathbf{u}}\mathbf{P}_1^{\top}$ is positive definite under the condition (4). This completes the proof of sufficiency.

(ii). Then prove the condition (4) is necessary for the positive definiteness of $\mathbf{P}_1 \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_1^{\top}$. Assume that $\mathbf{P}_1 \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_1^{\top}$ is positive definite, then

$$\mathbf{z}^{\top} \mathbf{P}_{1} \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_{1}^{\top} \mathbf{z} = a_{7} \mathcal{H}'(S) \mathbf{z}^{\top} \mathbf{A}_{5} \mathbf{z} + a_{8} \left(\mathcal{H}'(S) - \Gamma \mathcal{H}''(S) \right) \left| \mathbf{b}_{1}^{\top} \mathbf{z} \right|^{2} > 0, \ \forall \mathbf{z} \in \mathbb{R}^{d+2} \setminus \{ \mathbf{0} \}.$$
 (14)

Note that the matrix A_5 does not have full rank. There exist two vectors $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^{d+2} \setminus \{\mathbf{0}\}$ such that $A_5\mathbf{z}_1 = \mathbf{0}$ and $\mathbf{b}_1^{\mathsf{T}}\mathbf{z}_2 = 0$, respectively. It follows from (14) that

$$0 < \mathbf{z}_{1}^{\top} \mathbf{P}_{1} \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_{1}^{\top} \mathbf{z}_{2} = a_{7} \mathcal{H}'(S) \mathbf{z}_{2}^{\top} \mathbf{A}_{5} \mathbf{z}_{2} = a_{7} \mathcal{H}'(S) \|\mathbf{A}_{6} \mathbf{z}_{2}\|^{2},$$

$$0 < \mathbf{z}_{1}^{\top} \mathbf{P}_{1} \mathcal{E}_{\mathbf{u}\mathbf{u}} \mathbf{P}_{1}^{\top} \mathbf{z}_{1} = a_{8} \left(\mathcal{H}'(S) - \Gamma \mathcal{H}''(S) \right) \left| \mathbf{b}_{1}^{\top} \mathbf{z}_{1} \right|^{2},$$

which implies $\mathcal{H}'(S) > 0$ and $\mathcal{H}'(S) - \Gamma \mathcal{H}''(S) > 0$, respectively. This completes the proof of necessity.