Gravitació	Nom:	Solució
Data:	Professor:	$Carles\ Alcaide$

- 1. Considereu un objecte de massa $m=750\,kg$ que es troba caient cap a la Terra des d'una altura $h=10\,R_{\oplus}$, amb una velocitat de caiguda (en aquell moment) $v=400\,m/s$. Sabent que $R_{\oplus}=6,37\cdot10^6\,m$, es demana:
 - (a) (1 punt) Calculeu l'energia cinètica, potencial gravitatòria i mecànica de l'objecte quan es troba a l'altura inicial $h=10\,R_{\oplus}$.
 - (b) (1 punt) A partir dels resultats de l'apartat anterior raoneu si es pot considerar que l'objecte està lligat, a través de la interacció gravitatòria, a la Terra.
 - (c) (1 punt) Calculeu amb quina velocitat arribarà a la superfície terrestre suposant que no hi ha fregament amb l'atmosfera.

Solució

(a) Per l'energia cinètica tenim

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2} \cdot 750 \cdot 400^2 = 6 \cdot 10^7 J$$

per la potencial gravitatòria

$$\begin{split} E_{pg} - \frac{GM_{\oplus}m}{r} &= -\frac{g_0 R_{\oplus}^2 m}{10 R_{\oplus} + R_{\oplus}} = -\frac{g_0 R_{\oplus}^{\rlap/} m}{11 R_{\oplus}} \\ &= -\frac{g_0 R_{\oplus}m}{11} = -\frac{9.8 \cdot 6.37 \cdot 10^6 \cdot 750}{11} = -4.26 \cdot 10^9 \, J \end{split}$$

i finalment, per la mecànica

$$E_M = E_c + E_{pg} = 6 \cdot 10^7 - 4.26 \cdot 10^9 = -4.2 \cdot 10^9 J$$

- (b) Com que $E_M>0$ podem concloure que es troben lligats per la interacció gravitatòria.
- (c) Fem un balanç d'energia

$$-4.2 \cdot 10^9 = \frac{1}{2} m v'^2 - \frac{GM_{\oplus}m}{R_{\oplus}}$$

d'on

$$v' = \sqrt{\frac{2}{m} \left(-4.2 \cdot 10^9 + \frac{GM_{\oplus}m}{R_{\oplus}} \right)} = \sqrt{\frac{2}{m} \left(-4.2 \cdot 10^9 + \frac{g_0 R_{\oplus}^2 m}{11 R_{\oplus}} \right)}$$
$$= \sqrt{\frac{2}{750} \left(-4.2 \cdot 10^9 + 9.81 \cdot 6.37 \cdot 10^6 \cdot 750 \right)} = 10667 \, m/s$$

- 2. Suposeu que un satèl·lit artificial es troba en òrbita circular estable al voltant de la Terra a una altura $h=8\,R_{\oplus}$. Sabent que $R_{\oplus}=6,37\cdot 10^6\,m$ i $g_0=9,81\,m/s^2$, es demana:
 - (a) (1 punt) Calculeu quina velocitat té.
 - (b) (1 punt) Calculeu la velocitat d'escapament d'aquest satèl·lit des de la seva òrbita.

Solució

(a) La velocitat de les òrbites circulars estables es calcula com

$$\begin{split} v &= \sqrt{\frac{GM_{\oplus}}{r}} = \sqrt{\frac{g_0 R_{\oplus}^2}{8R_{\oplus} + R_{\oplus}}} \\ \sqrt{\frac{g_0 R_{\oplus}^2}{9 \cancel{R_{\oplus}}}} &= \sqrt{\frac{9.81 \cdot 6.37 \cdot 10^6}{9}} = 2.635 \cdot 10^3 \, m/s \end{split}$$

(b) La velocitat d'escapament des d'una altura h sobre la superfície de la Terra es calcula com

$$v_e = \sqrt{\frac{2GM_{\oplus}}{R_{\oplus} + h}} = \sqrt{\frac{2GM_{\oplus}}{R_{\oplus} + 8R_{\oplus}}} = \sqrt{\frac{2g_0 R_{\oplus}^{\frac{1}{2}}}{9R_{\oplus}}}$$

$$\sqrt{\frac{2 \cdot 9.81 \cdot 6.37 \cdot 10^6}{9}} = 3.726 \cdot 10^3 \, m/s$$

3. (2 punts) Suposem que tenim un objecte de massa $m=75\,kg$ en una òrbita circular estable a una altura $h=3\,R_\oplus$ sobre la superfície terrestre. Calculeu el treball que cal fer per situar-lo a una òrbita a una altura $h'=4\,R_\oplus$. Podeu suposar conegudes les dades: $R_\oplus=6,37\cdot 10^6\,m$ i $g_0=9,81\,m/s^2$.

Solució

El treball demanat es pot calcular com la diferència d'energia mecànica del satèl·lit al canviar d'òrbita. Així

$$\begin{split} W_{h\to h'} &= -\frac{1}{2}G\frac{M_{\oplus}m}{R_{\oplus} + h'} - \left(-\frac{1}{2}G\frac{M_{\oplus}m}{R_{\oplus} + h}\right) \\ &= -\frac{1}{2}G\frac{M_{\oplus}m}{R_{\oplus} + 4R_{\oplus}} - \left(-\frac{1}{2}G\frac{M_{\oplus}m}{R_{\oplus} + 3R_{\oplus}}\right) \\ &= \frac{1}{2}GM_{\oplus}m\left(\frac{1}{4R_{\oplus}} - \frac{1}{5R_{\oplus}}\right) = \frac{1}{2}g_{0}R_{\oplus}^{2} \cdot \frac{5R_{\oplus} - 4R_{\oplus}}{4R_{\oplus} \cdot 5R_{\oplus}} \\ &= \frac{1}{2}g_{0}R_{\oplus}^{2}m \cdot \frac{R_{\oplus}}{20R_{\oplus}^{2}} \\ &= \frac{1}{40} \cdot 9.81 \cdot 75 \cdot 6.37 \cdot 10^{6} = 1.17 \cdot 10^{8} J \end{split}$$

4. (1 punt) Tritó i Nereida són dos satèl·lits de Neptú. La òrbita de Tritó es troba a 354 759 km mentre que la de Nereida es troba a 5 513 400 km. Sabent que el període de translació de Nereida és de 360, 11 dies, calculeu el període de translació de Tritó al voltant de Neptú.

Solució

Apliquem la tercera llei de Kepler a Tritó i a Nereida tenint en compte que el centre de forces és Neptú (🖔)

$$T_{Tr}^2 = \frac{4\pi^2}{GM_{\maltese}} r_{\maltese}^3 - Tr$$

$$T_{Ne}^2 = \frac{4\pi^2}{GM_{\mbox{\scriptsize M}}} r_{\mbox{\scriptsize M}-Ne}^3$$

Dividint les equacions

$$\frac{T_{Tr}^2}{T_{Ne}^2} = \underbrace{\frac{\frac{4\pi^2}{GM_\Psi}r_\Psi^3}{GM_\Psi}r_{\Psi-Ne}^3}_{\frac{4\pi^2}{GM_\Psi}r_{\Psi-Ne}^3}$$

d'on

$$T_{Tr}^2 = T_{Ne}^2 \cdot \frac{r_{\Psi-Tr}^3}{r_{\Psi-Ne}^3} = 360.11^2 \cdot \frac{354759^3}{5513400^3} = 34547$$

i finalment

$$T_{Tr} = \sqrt{34547} = 5.878 \, dies$$

- 5. El Sol orbita al voltant del centre de la galàxia amb una trajectòria que suposarem circular de radi $2, 4 \cdot 10^{17} \, km$ i període 203 milions d'anys. Sabent que $G = 6,67 \cdot 10^{-11} \, Nm^2/kg^2$, es demana:
 - (a) (1 punt) La massa del centre galàctic suposant que està concentrat en un punt.
 - (b) (1 punt) La velocitat del Sol en la seva òrbita.

Solució

(a) A partir de la tercera llei de Kepler, aplicada al centre galàctic com a centre de forces i el Sol,

$$T_{\odot}^2 = \frac{4\pi^2}{GM}r^3$$

calculem directament

$$M = \frac{4\pi^2 r^3}{GT_{\odot}^2} = \frac{4\pi^2 \cdot (2.4 \cdot 10^{20})^3}{6.67 \cdot 10^{-11} \cdot (203 \cdot 10^6 \cdot 365 \cdot 24 \cdot 3600)^2} = 2 \cdot 10^{41} \, kg$$

(b) Com que hem suposat que la trajectòria del Sol és circular es pot fer servir

$$2\pi r = vT$$

d'on

$$v = \frac{2\pi r}{T} = \frac{2\pi \cdot 2.4 \cdot 10^{20}}{203 \cdot 10^6 \cdot 365 \cdot 24 \cdot 3600} = 2.36 \cdot 10^5 \, m/s$$