EECS 475: Introduction to Cryptography Notes

Noah Peters

April 5, 2023

${f Abstract}$	
Lecture notes for EECS 475 at the University of Michigan.	LATEX template by Pingbang Hu.

Contents

4	Nu	mber Theory and Public Key Cryptography
	4.1	Modular Arithmetic and Euclid's Algorithm
		Group Theoretic View of Numbers
	4.3	Fast Exponentiation
	4.4	Diffie-Hellman
	4.5	Modeling Public Key Encryption
A	Ado	ditional Proofs 1
	A.1	Proof of ??

Chapter 4

Number Theory and Public Key Cryptography

Lecture 19: Number Theory

4.1 Modular Arithmetic and Euclid's Algorithm

20 Mar. 10:30

We define the set of integers, $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, and natural numbers, $\mathbb{N} = \mathbb{Z}^+ = \{1, 2, 3, \ldots\}$.

Theorem 4.1.1 (Product of primes). Every integer N > 1 can be written *uniquely* as a product of (power of) primes.

Lemma 4.1.1 (Division with remainder). Let $a \in \mathbb{Z}, b \in \mathbb{Z}^+$. \exists unique integers q, r such that a = q.b + r where $0 \le r < b$, and they can be efficiently computed in *polynomial time* relative to the *bit length*: i.e. $\log_2 a + \log_2 b + O(1)$

With the ability to perform division in polynomial time, we are able to find the **greatest common divisor** of two integers a, b:

Definition 4.1.1 (Greatest common divisor). Let $a, b \in \mathbb{Z}^+$. Then, there exists $x, y \in \mathbb{Z}$ such that gcd(a, b) = a.x + b.y. Further, gcd(a, b) is the *smallest* positive integer that can be written this way.

We claim there is an efficient algorithm, the **Extended Euclidean Algorithm**, that computes not only gcd(a, b), but also the x, y coefficients above:

Algorithm 4.1: Extended Euclidean Algorithm

Verification of Extended Euclidean Algorithm. Assuming the recursive call is successful (by induction, we can), we will get back x', y' that are the gcd of b and r:

$$b.x' + r.y' = \gcd(b, r) = \gcd(a, b)$$
$$b.x' + (a - q.b).y' = a.y' + b(x' - q.y')$$

We note that y' = x and $x' - q \cdot y' = y$ and so we are done.

We claim that the Extended Euclidean Algorithm makes O(n) recursive calls.

4.2 Group Theoretic View of Numbers

Definition 4.2.1. Let $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$, indicating the set of all possible remainders of division by N, further: $\mathbb{Z}_N^* = \{x \in \mathbb{Z}_N : \gcd(x, N) = 1\}$.

Remark. For example, $\mathbb{Z}_6^* = \{1, 5\}$. Alternatively, $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$, showing how $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$, where p is any prime number.

Lecture 20: Group Theory

We continue our review of modular arithmetic. Modular addition, subtraction, and multiplication are all closed in modular arithmetic. We have the property $a=b \mod N \Leftrightarrow N|a-b$ and further, if $a=a' \mod N$ and $b=b' \mod N$, we have:

- $a+b=a'+b' \mod N$
- $a b = a' b' \mod N$
- $a.b = a'.b' \mod N$

However, division is not always possible:

$$3 \cdot 2 = 15 \cdot 2 \mod 24 \not \Rightarrow 3 = 15 \mod 24$$

Definition 4.2.2 (Invertability). An integer b is **invertible** if $\exists c$ where $b \cdot c = 1 \mod N$.

Lemma 4.2.1. If $b \ge 1, N > 1$, b is invertible mod $N \Leftrightarrow \gcd(b, N) = 1$.

Proof. Let $b \cdot c = 1 \mod N$.

$$\Rightarrow b.c - 1 = N.q$$
$$\Rightarrow b.c - N.q = 1.$$

Thus, gcd(b, N) = 1 since gcd is the smallest positive integer that is expressible in this way.

Using the Extended Euclidean Algorithm, we can compute inverse mod N efficiently.

Definition 4.2.3 (Group). (G, \circ) , where $\circ : G \times G \to G$ and $\circ (g, h)$ is denoted as $g \circ h$, is a **group** if it satisfies the properties of:

- identity: $\exists e \in G$ such that $\forall g \in G : e \circ g = g \circ e = g$
- invertability: $\forall g \in G, \exists g^{-1} \text{ (or } -g) \text{ such that } g \circ g^{-1} = e$
- associativity: $\forall g_1, g_2, g_3 \in G : (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$
- (abelian groups): $\forall g, h \in G, g \circ h = h \circ g$ (i.e commutativity)

Example. For $(\mathbb{Z}_N, + \mod N)$ we have:

- identity: $a + 0 \equiv 0 + a \equiv a \mod N$
- invertability: $a + (-a) \equiv 0 \mod N$
- associativity: $a + (b + c) = (a + b) + c \mod N$

Example. For $(\mathbb{Z}_N^*, \mod N)$ we have:

- identity: $a.1 \equiv 1.a \equiv a \mod N$
- invertability: $a.(a^{-1}) \equiv 1 \mod N$
- associativity: $a.(b.c) = (a.b).c \mod N$

The size of a group, called the **group order**, is denoted as |G|. For example, $(\mathbb{Z}_N, +)$ has order N, and \mathbb{Z}_p^* , has order p-1

Theorem 4.2.1. For a group, G, where m = |G|, we have that $\forall g \in G : g^m = 1$ (where $g^m = (((g \circ g) \circ g) \circ g) \ldots)$.

Proof. For simplicity, assume G is abelian and suppose $G=\{g_1,g_2,\ldots,g_m \text{ and let } g\in G \text{ be arbitrary. Note that}$

$$g \circ g_i = g \circ g_j \Rightarrow g_i = g_j$$

and so the set $\{g \circ g_i : i \in \{1, m\}\}$ covers all elements of G exactly once. Therefore:

$$g_1 \circ -g_m = g^m(g_1 \circ \ldots \circ g_m) \Rightarrow 1 = g^m.$$

Corollary 4.2.1 (Fermat's Little Theorem). \forall prime p, $\gcd(a,p)=1 \Rightarrow a^{p-1} \equiv 1 \mod p$

Theorem 4.2.2 (Euler's Theorem). For $\Phi(N) = \left| \{a | 1 \le a \le N, \gcd(a, N) = 1\} \right|, |\mathbb{Z}_N^*| = \Phi(N)$ we have:

if
$$gcd(g, N) = 1 \Rightarrow g^{\Phi(N)} \equiv 1 \mod N$$

Corollary 4.2.2. For $m = |G| > 1, e \in \mathbb{Z}, \gcd(e, m) = 1$, define $d = e^{-1} \mod m$ and function $f_e \colon G \to G$ as $f_e(g) = g^e$. Then, f_e is a bijection whose inverse is f_d .

Definition 4.2.4 (Cyclic Groups). A group, G, is considered **cyclic** if $\exists g \in G$ such that $G = \{1 = g^0, g^1, g^2, \dots, g^{m-1}\}$. If this is the case, we say that g generates G.

Example. For $\mathbb{Z}_{7}^{*} = \{1, ..., 6\}$:

powers of 3:
$$\{3^0 \equiv 1, 3^1 \equiv 3, 3^2 \equiv 2, 3^3 \equiv 6, 3^4 \equiv 4, 3^5 \equiv 5\}$$

powers of 2:
$$\{2^0 \equiv 1, 2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 1, 2^4 \equiv 2, \ldots\}$$

and so 3 is a generator of \mathbb{Z}_7^* , but 2 is not.

If there is no $g \in G$ that generates G, then G is not cyclic. Furthermore, when g does not generate G, it generates a **subgroup**:

Definition 4.2.5. $G' \subseteq G$, is a subgroup if (G', \circ) is a group.

Theorem 4.2.3 (Lagrange's Theorem). If $G' \subseteq G$ is a subgroup, then |G'| divides |G|.

4.3 Fast Exponentiation

Suppose we have an element g and we want to compute g^M . Instead of naively multiplying g M times, we can observe that if $M = 2^m$:

$$g^{M} = g^{2^{m}} = g^{2^{m-1}} \cdot g^{2^{m-1}} = (g^{2^{m-1}})^{2}.$$

So for any M we can rewrite it as

$$M = \sum_{i=0}^{l} m_i \cdot 2^i,$$

allowing us to calculate g^m :

$$g^m = \prod_{i=0}^l g^{2^i},$$

where each g^{2^i} can be calculated using the above trick. This results in $O(l^2)$ multiplications altogether if |M| = l.

Corollary 4.3.1. Fast exponentiation allows us to compute inverses efficiently because $g^{-1} = g^{|G|-1}$ since $g^{|G|} = 1$.

We've shown we can compute g^m efficiently given g and m. But, can we efficiently compute m from g^m ? It's unknown, but conjectured to be extremely difficult to do so.

Lecture 21: Diffie-Hellman Key Exchange, DDH Assumption, Public Key Encryption and CPA Security

4.4 Diffie-Hellman

27 Mar. 10:30

The key exchance problem occurs when two individuals seek to communicate over an insecure channel. The canonical story has *Alice* and *Bob* attempting to communicate over a channel being *passively monitored* by an eavesdropper, *Eve.*

Definition 4.4.1 (Diffie-Hellman Protocol).

- 1. let Alice fix a large cyclic group G of known order q. $(|q| \approx \text{security parameter})$.
- 2. Alice discovers a generator g for $G = \mathbf{Z}_{q+1}^*$ for q+1 prime. In other words, Alice finds a number g that enumerates all elements of the group G when raised to the powers $\{0, 1, \dots, q-1\}$.
- 3. Alice chooses random $a \leftarrow \mathbb{Z}_q$, let $\mathcal{A} = g^a \in G$.
- 4. Alice sends $\mathcal{A} = g^a$, g to Bob over the insecure channel. Eve has access to this information.
- 5. Bob receives the message and chooses a random $b \leftarrow \mathbb{Z}_q$ and sends $\mathcal{B} = g^b \in G$ back to Alice.
- 6. Alice and Bob both calculate $\mathcal{K} = (g^a)^b = (g^b)^a = g^{ab}$ as their shared secret key.

An eavesdropper will have to take discrete log to break this scheme (to find a or b). Formally, the security of this scheme is based on **DDH**: **Decisional Diffie-Hellman Assumption**.

Definition 4.4.2 (Decisional Diffie-Hellman Assumption (DDH)). DDH holds for a group $G = \langle g \rangle$ (i.e. G is generated by g) if

$$(g, g^a, g^b, g^{ab}) \in G^4$$

is indistinguishable (for $a, b \leftarrow \mathbb{Z}_q, q = |G|$) from

$$(g, g^a, g^b, g^c)$$
, where $c \leftarrow \mathbf{Z}_q$

Remark. Key derivation can simply be an algorithm for turning a group element into a random bit-string.

4.5 Modeling Public Key Encryption

We want to have a protocol (Gen, Enc, Dec) that can *directly* handle public key encryption. We can model this analogously to EAV/CPA security, just in a public key setting:

Figure 4.1: Analog of EAV/CPA security in the context of public keys.

Definition 4.5.1 (Public Key CPA (EAV) Secure Scheme). For our **CPA secure public key scheme** we have:

- $Gen(1^n)$: outputs (k_p, k_s)
- $\operatorname{Enc}(k_p, m \in M)$: outputs ciphertext c
- $\operatorname{Dec}(k_s,c)$: outputs $m \in M(\text{or fail "$\bot$"})$

We analyze it's correctness. For $(k_p, k_s) \leftarrow \operatorname{Gen}(1^n)$, we always have $\forall m \in M$:

$$Dec(k_s, Enc(k_p, m)) = m$$

Remark. Note that for the first time, our Gen function outputs two *related* random keys, not just one private random string.

Just like previous instances of security, we can define public key CPA security in the context of a game. Here we have adversary \mathcal{A} against $\Pi = (\text{Gen, Enc, Dec})$. Note that unlike the original CPA game, in this scenario the adversary only prompts the oracle once since the adversary can encrypt messages of their own.

Figure 4.2: The public key CPA game.

Definition 4.5.2 (Public CPA Security). A public key encryption scheme Π as defined above is secure if \forall p.p.t. \mathcal{A} :

$$\mathbf{Adv}_{\Pi}(\mathcal{A}) := \left| \Pr_{(k_p, k_s) \leftarrow \operatorname{Gen}(1^n)} (\mathcal{A}^{\mathcal{O}_{k_p, 0}(.,.)}(k_p) = 1) - \Pr_{(k_p, k_s) \leftarrow \operatorname{Gen}(1^n)} (\mathcal{A}^{\mathcal{O}_{k_p, 1}(.,.)}(k_p) = 1) \right| = \operatorname{negl}(n).$$

Remark. The number of queries to the LR oracle, \mathcal{O} doesn't matter. I.e. if we have EAV-security allowing \mathcal{A} to query the oracle once, then we have security even if multiple queries are allowed.

Proof. To show that one-query public CPA security \Rightarrow many query public CPA security we are essentially showing that

$$public\ EAV\ security \Rightarrow public\ CPA\ security.$$

We prove this by proposing a new adversary, A, that is capable of breaking a many-query CPA scheme, and then using this adversary to break the single-query EAV scheme.

Imagine a many-query attacker, \mathcal{A} that makes up to $q:\mathsf{poly}(n)$ queries. Consider the following worlds:

- (i) Hybrid θ : All queries answered by $c \leftarrow Enc_{k_n}(m_0)$.
- (ii) Hybrid 1: First query (m_0, m_1) answered by $c \leftarrow Enc_{k_p}(m_1)$, then $Enc_{k_p}(m_0)$ thereafter.
- (iii) Hybrid 2: First **two** queries are answered by $c \leftarrow Enc_{k_p}(m_1)$, then $Enc_{k_p}(m_0)$ thereafter.
- (iv) Hybrid q: All queries answered by $c \leftarrow Enc_{k_p}(m_1)$

These hyrbid worlds reflect the left and right worlds as follows:

- (i) **Left world**: equivalent to Hyb_0 : all queries to the LR oracle are answered by $c \leftarrow Enc_{k_p}(m_0)$.
- (ii) **Right world**: equivalent to Hyb_q : all queries answered by $c \leftarrow Enc_{k_p}(m_1)$.

We can use the idea that if an adversary, A can distinguish between the left and right worlds, they must be able to distinguish between the *i*th hybrid world and the i + 1th hybrid world where the *i*th hybrid world is defined as

$$HybridWorld_i = \text{First } i \text{ queries of } (m_0, m_1) \text{ answered by } c \leftarrow Enc_{k_p}(m_1),$$

then $c \leftarrow Enc_{k_p}(m_0)$ thereafter.

We first note that the difference between Hyb_{i-1} and Hyb_i is only in how the *i*th query is answered. We can build a "simulator" $S_i^{\mathcal{O}}(k_p)$ that gets one query and simulates either Hyb_{i-1} or Hyb_i depending on b.

Figure 4.3: A simulator that wins pEAV game using an adversary that wins the pCPA game.

Upon the j^{th} query of \mathcal{A} (m_0^j, m_1^j) :

- if j < i, S_i runs $c^j \leftarrow Enc_{k_n}(m_1^j)$.
- if j > i, S_i runs $c^j \leftarrow Enc_{k_n}(m_0^j)$.
- if j == i, S_i queries its LR oracle and gives the result to A.

Consider the two cases where S_i is in the worlds:

- (i) Left world (b = 0): then we are simulating Hyb_{i-1} .
- (ii) Right world (b = 1): then we are simulating Hyb_i .

By the triangle inequality,

$$\mathbf{Adv}_{\Pi}^{CPA} = |\Pr(\mathcal{A} = 1 \text{ in } Hyb_0) - \Pr(\mathcal{A} = 1 \text{ in } Hyb_q)|$$

$$= |\Pr(\mathcal{A} = 1 \text{ in } Hyb_0) - \Pr(\mathcal{A} = 1 \text{ in } Hyb_1) +$$

$$\Pr(\mathcal{A} = 1 \text{ in } Hyb_1) - \Pr(\mathcal{A} = 1 \text{ in } Hyb_2) +$$

$$\dots - \Pr(\mathcal{A} = 1 \text{ in } Hyb_q)|$$

$$\leq \sum_{i=1}^{q} \mathbf{Adv}_{\Pi}^{\text{Single CPA}}(\mathcal{S}_i) = q \cdot \text{negl}(n) = \text{poly}(n) \cdot \text{negl}(n) = \text{negl}(n).$$

Thus, by assuming we had single-query (pEAV) security we have concluded we also have multiquery (pCPA) security. If we didn't have multi-query security, you could use a multi-query attacker to make a single-query attacker (contradicting the assumption that we are single-query secure).

Lecture 22: CPA Model, El Gamal Cryptosystem

29 Mar. 10:30

Appendix

Appendix A

Additional Proofs

A.1 Proof of ??

We can now prove ??.

Proof of ??. See here.