Estatística e Informática

Aula 06 - Probabilidade Parte I

Alan Rodrigo Panosso alan.panosso@unesp.br

Departamento de Engenharia e Ciências Exatas FCAV/UNESP

(02-06-2022)

Revisão sobre Teoria dos Conjuntos

Definições

Conjuntos: é uma coleção de qualquer tipo de objetos – pessoas, animais, plantas, fenômenos, estímulos, respostas, traços genéticos, métodos, ideias e possibilidades lógicas. Dizemos que um conjunto está bem definido quando está claro que um objeto pertence ou não pertence ao conjunto. A ambiguidade não é permitida.

- Conjunto dos números 2, 3, 5, 7.
- Conjunto de estudantes dessa sala.
- Conjunto de meses que se iniciam pela letra J.
- Conjunto de números pares.
- Conjunto de árvores dentro dessa sala de aula.

Elemento (ou membro): é o nome que se dá a cada objeto do conjunto.

Conjunto finito: contém um número finito de elementos.

- Conjunto dos números 2, 3, 5, 7.
- Conjunto de estudantes dessa sala.
- Conjunto de meses que se iniciam pela letra J.

Conjunto infinito: contém um número infinito de elementos. Conjunto de números pares.

Conjunto vazio: não contém elementos Conjunto de árvores dentro dessa sala de aula.

Notações e Símbolos

Conjuntos: São representados por letras maiúsculas tais como A,B,C,\ldots

Elementos: São representados por letras minúsculas tais como a,b,c,\ldots

Conjunto vazio: é representado pelo zero cortado por uma barra, é o símbolo padrão ϕ ou $\{\}$. É aquele desprovido de elementos.

Formas de apresentação

Forma Tabular: Os elementos de um conjunto são reunidos por chaves. Conjunto dos números 2,3,5,7:

$$A = \{2, 3, 5, 7\}$$

Forma de construção: Para conjuntos grandes devemos caracterizar seus elementos por meio de afirmações matemáticas, pois, por exemplo, somos incapazes de relacionar todos os números maiores que 5, uma vez que este conjunto é infinito, assim, introduzimos um elemento variável, x, e definimos como $Z = \{x | x > 5\}$, lêse "o conjunto de todo os números x tal que, x seja maior que 5".

Para o exemplo anterior, temos:

 $A=\{x|x \ {\rm \acute{e}}\ n^{\rm o}\ {\rm primo}\ {\rm menor}\ {\rm que}\ 10\}$ Conjunto solução: A teoria dos conjuntos pode ser utilizada para apresentar as soluções de problemas matemáticos. Por exemplo:

$$A = \{x | x^2 = 4\}$$

$$A=\{-2,2\}$$

$$B = \{t | 3t - 4 = 5\}$$

$$B = \{3\}$$

Pertinência

Para indicar que um objeto é elemento de um conjunto, usamos o símbolo de pertinência. \in (peano).

$$a \in T$$

significa que "a é elemento do conjunto T" ou "a pertence a T".

O oposto pode ser expresso por ∉, significando **"não é elemento"** ou **"não pertence a"**.

$$5\in\aleph$$

$$\frac{1}{2}\in\mathfrak{R}$$

$$rac{1}{2}
ot\in\aleph$$

Continência

Subconjunto: Para um conjunto A contendo somente elementos de um conjunto B, mas não necessariamente todos os membros de B, então A é **subconjunto** de B.

$$A \subset B$$

ou B é **superconjunto** de A.

$$B\supset A$$

E dizemos que "A está contido em B" ou "B contém A".

Essa definição de subconjunto nos permite dizer que um conjunto é subconjunto de si mesmo:

$$B \subset B$$

O conjunto vazio é considerado subconjunto de qualquer conjunto, isto é

$$\phi \subset A$$

Igualdade entre conjuntos: Dois conjuntos são ditos iguais, em símbolos:

$$A = B$$

se, e somente se:

$$A \subset B \in A \supset B$$

.

Os conjuntos contiverem exatamente os mesmos elementos.

Se x for um elemento, então $x \in A$ impelica que $x \in B$ e vice-versa.

de forma análoga, se x
otin A implica que x
otin B

Exemplo

$$\{1,2,3\} = \{3,1,2\} = \{1,2,2,3\}$$

Conjunto Universo ou universal: Formado por todos os elementos que têm uma característica desejada:

Notação: U ou ${f \mho}$:

$$U\supset A\supset \phi, orall A$$

•

Conjunto potência ou conjunto das partes: Seja A um conjunto finito, define-se o conjunto das partes de A ou conjunto potência como sendo o conjunto cujos elementos são todos os possíveis subconjuntos formados com os elementos de A:

Notação $P(A)=2^n=a$ on de n é o número de elementos do conjunto A:

Exercício:

Se $B = \{1, 2, 3\}$ qual o conjunto potência de B?

Subconjunto com 0 elementos = ϕ Subconjunto com 1 elementos = $\{1, 2\}$; $\{3\}$ Subconjunto com 2 elementos = $\{1, 2\}$; $\{1, 3\}$; $\{2, 3\}$ Subconjunto com 3 elementos $\{1, 2, 3\}$

$$P(B) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Observe que 3 é diferente de $\{3\}$, pois 3 é um elemento e $\{3\}$ é um conjunto.

Podemos dizer que:

Conjuntos Disjuntos: São aqueles que não têm elementos comum, ou seja, A
eq B.

 $A=\{1,2,3\}$ e $B=\{4,5,6\}$, assim A e B são disjuntos.

 $A=\{1,3\}$ e $B=\{x\}$, assim A e B são disjuntos.

 $A=\{2,3\}$ e $B=\{4,3\}$, assim A e B $n\tilde{a}o$ $s\tilde{a}o$ disjuntos.

Diagrama de Venn-Euler

Conjuntos de qualquer tipo de elementos são representados por conjunto de pontos. Para simplificação do desenho, são utilizados pontos em um **círculo** ou em um **retângulo**.

Tal representação é chama de **Diagrama de Venn-Euler** que são representações geométricas de conjuntos e seus elementos bem como das relações destes conjuntos.

Operações com conjuntos

União ou Reunião (OU)

Com dois conjuntos A e B, podemos sempre formar um novo conjunto C, por exemplo, simplesmente pelo agrupamento de seus elementos. Chamamos a esse novo conjunto de união, e escrevemos simbolicamente:

$$C = A \cup B$$

Lemos "A União B" ou "A Reunião B", ou seja, o conjunto C contém exatamente os elementos que estão em A ou em B, ou em **ambos**.

A operação de União assemelha-se à adição. Entretanto, devemos observar que:

$$A \cup A = A$$
 e se $B \subset A$, então:

$$A \cup B = A$$

 $A \cup B = \{x | x \in A \text{ ou } x \in B \text{ ou } (x \in A, x \in B)\}$

 $A \cup B = \{x | x \in A \text{ ou } x \in B \text{ ou } (x \in A, x \in B)\}$

$A \cup A = A$ e se $B \subset A, \text{ então: } A \cup B = A$

Propriedades da União

i) Comutativa:

$$A \cup B = B \cup A$$

ii) Associativa

$$A \cup (B \cup C) = (A \cup B) \cup C = (A \cup B \cup C)$$

iii)
$$A \cup \phi = \phi \cup A = A, \forall A$$

iv)
$$A \cup U = U \cup A = U, orall A$$

Interseção (E)

Em analogia, imaginemos duas retas que se interceptam, as duas retas podem ser consideradas como conjuntos infinitos de pontos. Os dois conjuntos têm um ponto em comum o ponto de interseção.

Generalizando, sejam A e B dois conjunto quaisquer, podemos estar interessados em saber se os dois conjuntos estão sobrepostos, isto é, se os dois conjuntos possuem elementos em comum, seja ele vazio ou não, a interseção de A e B escrevemos:

$$D = A \cap B$$

Lemos "D é igual a A interseção B", ou "A inter B".

$$A\cap B=\{x|x\in A,x\in B\}$$

Neste caso, quando dois conjuntos não possuem elementos em comum, então D é um conjunto vazio, os dois conjuntos são então chamados de ${f disjuntos}.$

Propriedades da Interseção

i) Comutativa:

$$A \cap B = B \cap A$$

ii) Associativa

$$A \cap (B \cap C) = (A \cap B) \cap C = (A \cap B \cap C)$$

iii)
$$A \cap \phi = \phi \cap A = \phi, \forall A$$

iv)
$$A \cap U = U \cap A = A, \forall A$$

Operações com conjuntos

1) Primeira Lei Distributiva

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

2) Segunda Lei Distributiva

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

1) Primeira Lei Distributiva Dados 3 conjuntos, A, B e C, podemos demonstrar que: $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

2) Segunda Lei Distributiva Dados 3 conjuntos, A, B e C, podemos demonstrar que: $A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$

Conjunto Complementar

Conjunto Complementar: Seja A um subconjunto de U, isto é $A \setminus \mathbf{subet} U$. Então estamos interessados nos elementos de U que não pertencem a A. Ele formam um novo conjunto, que é chamado "o complementar de \mathbf{A} em \mathbf{U} ". Representado por: \bar{A} ou A^c .

$$ar{A}=\{x|x\in U, x
otin A\}$$

Definido a operação de interseção, observe que se A for um subconjunto de um conjunto universo U e $ar{A}$ o complemento de A, então:

i)
$$A\cap ar{A}=\phi, orall A$$

ii)
$$A \cup ar{A} = U, orall A$$

Utilize o diagrama de Venn para provar as propriedades:

$$a)(ar{A} \, ar{\cap} \, B) = ar{A} \cup ar{B}$$

$$a)(A \, ar{\cap}\, B) = ar{A} \cup ar{B}$$
 $b)(A \, ar{\cup}\, B) = ar{A} \cap ar{B}$

 $(ar{A} \, ar{\cap} \, B) = ar{A} \cup ar{B}$

 $(ar{A}\,ar{\cup}\,B)=ar{A}\capar{B}$

Exercícios

- 1) Em uma sala de aula há 30 meninas, 21 crianças ruivas, 13 meninos não ruivos e 4 meninas ruivas. Pergunta-se:
- a)Quantos são os meninos ruivos?
- b)Quantas são as meninas não ruivas?
- c)Quantas crianças há na escola?
- d)Quantas crianças são ruivas ou meninas?
- e)Quantas crianças não são ruivas ou meninas?
- f)Quantas crianças não são, ruivas ou meninas?
- 2) Em uma comunidade de animais são consumidas 3 espécies de plantas A, B e C. Uma pesquisa apresentou os seguintes resultados:

Alimentos	A	В	С	AeB	AeC	ВеС	AeBeC	nenhum dos três
Número de Animais que	100	150	200	20	40	30	10	130
consomente								

- a) Quantos animais foram amostrados?
- b) Quantos animais consomem somente 2 espécies de plantas?
- c) Quantos animais não consomem a planta B?
- d) Quantos animais não consomem \hat{A} ou não consomem B?

Respostas

- 1) Respostas
 - a) 17
 - b) 26
 - c) 60
 - d) 47
 - e) 43
 - f) 13

M		F	
13	R 17	4	26

- 2) Resposta:
 - a) 500
 - b) 60
 - c) 350
 - d) 480

