西南交通大学 2012 年硕士研究生入学考试 试题解析

考试科目:运筹学

一. (20分)(答在试卷上的内容无效)

考虑下列线性规划问题,假定(1)、(2)都有可行解,证明若其中一个最优解,则另外一个也有最优解:若其中一个无界,则另一个也无界;在都有最优解的条件下,若 \overline{X} 和 \overline{U} 分别为(1)、(2)的可行解,则 $C\overline{X} \geq C$ \overline{U}

$$\begin{cases}
\min z_1 = CX \\
AX \ge b
\end{cases} \qquad (2) \begin{cases}
\min z_2 = CU \\
AU \ge b
\end{cases}$$

证明: (1) 和 (2) 的对偶问题分别为:

$$(1) \begin{cases} \min z_1 = CX \\ AX \ge b \end{cases} \rightarrow \begin{cases} \max z_1' = bY \\ YA = C \\ Y \ge 0 \end{cases}$$

$$(2) \begin{cases} \min z_2 = CU \\ AU \le b \end{cases} \rightarrow \begin{cases} \max z_2' = bV \\ VA = C \\ V \ge 0 \end{cases}$$

问题 1: (1) 和 (2) 都有可行解,假设 (1) 有最优解,证明 (2) 也有最优解。

由于(1)有最优解,则(3)有可行解,(3) 与(4)约束相同,则(4)也有可行解,由 于(2)和(4)互为对偶,且都有可行解, 根据(若 X 为原问题的任意可行解,则 CX 为其对偶问题的一个下界;若 Y 为对偶问题 任一可行解,则 Yb 为原问题的一个上界)(2)、 (4)都有最优解,得证。

问题 2: (1) 和 (2) 都有可行解,假设(1) 无界,证(2) 也无界。

由于(1)有可行解,但无界,其对偶问题(3)无可行解,(3)和(4)约束相同,则(4)也无可行解。(2)和(4)互为对偶,

(2)有可行解,(4)无可行解,则知(2)无界,得证。

问题 3: (1) 和 (2) 都有最优解,则若 \overline{X} 、 \overline{U} 分别为 (1)、(2) 的可行解,则 (3) 和 (4) 也都有可行解。设 \overline{Y} 为 (3)、(4) 的 可行解。则可得 $C\overline{X} \ge b\overline{Y}$ 、 $b\overline{Y} \ge C\overline{U}$,因此 $C\overline{X} \ge C\overline{U}$ 。

二.(25分,共4小题)(答在试卷上的内容 无效)

Sostel 公司是经营南美洲 Bray 河上三个水坝上的水力发电公司,用 B1、B2、B3 分别表示这三个水坝(B1 在上游、B2 在中游、B3 在下游),由于三个水坝的高度不同,其水量转化电量的效率也不同,已知 B1 的水电转化为 12 立方米/秒转化电 4 兆瓦; B2 的水

电转化为 5 立方米/秒转化电 1.2 兆瓦; B3 的水电转化为3立方米/秒转化电1兆瓦,水 坝的现有库存水量、最低库存水量、最大库 存水量如表 1 所示。每年头三个月三个水坝 的自然入水量(包括降雨和从支流进入该水 坝的水量,但不包括上游水坝放出的水量) 如表 2 所示: 各水坝在每个月的最大发电用 水量如表 3 所示。另外,环保部门为保护鱼 类资源,要求在每条坝旁建有导流明渠,其 流量不低于 0.5 立方米/秒; 为保持电力供应 量的均衡,管理层要求相邻两个月该公司的 发电量变化不超过15%;由于该地区主要降 雨季节是春季,为保证全年其他用水量,要 求三月底各水坝库存水量不能低于最大库 存水量的90%,试建立发电站总量最大的数 学规划模型。

表 1 基本数据表 单位: 10⁶ m³

	现有库	最低库	最大库存
水坝	存水量	存水量	水量
B1	900	750	1460
B2	800	600	1300
В3	650	550	900

表 2 自然入水来量数据表单位: 10⁶ m³

水坝	一月份	二月份	三月份
B1	450	350	390
B2	360	400	420
В3	400	460	460

表 3 每个月的最大发电用水量单位: 10⁶ m³

水坝	一月份	二月份	三月份
B1	550	360	450
B2	300	420	460
В3	350	500	400

解:设水坝 B1 一月份、二月份和三月份发电量分别为 x_1 、 x_2 、 x_3 ,一、二、三月分通

过明渠的水量为 \mathbf{w}_1 、 \mathbf{w}_2 、 \mathbf{w}_3 ,同理设水坝

B2 相应的参数 y_1 、 y_2 、 y_3 , w_4 、 w_5 、 w_6 ,

水坝 B3 相应的参数

$$Z_1$$
, Z_2 , Z_3 , W_7 , W_8 , W_9 °

目标函数: max =

$$x_1 + x_2 + x_3 + y_1 + y_2 + y_3 + z_1 + z_2 + z_3$$

 $y \in \mathbb{R}_+$

$$800*10^{6} + 360*10^{6} + w_{1} + 3x_{1} - w_{4} - \frac{25}{6}y_{1} \le 1300*10^{6}$$

$$800*10^{6} + 360*10^{6} + w_{1} + 3x_{1} - w_{4} - \frac{25}{6}y_{1} \ge 600*10^{6}$$

$$800*10^{6} + 360*10^{6} + w_{1} + 3x_{1} - w_{4} - \frac{25}{6}y_{1} + 400*10^{6}$$

$$+ w_{2} + 3x_{2} - w_{5} - \frac{25}{6}y_{2} \ge 600*10^{6}$$

$$800*10^{6} + 360*10^{6} + w_{1} + 3x_{1} - w_{4} - \frac{25}{6}y_{1} + 400*10^{6}$$

$$+ w_{2} + 3x_{2} - w_{5} - \frac{25}{6}y_{2} \le 1300*10^{6}$$

$$800*10^{6} + 360*10^{6} + w_{1} + 3x_{1} - w_{4} - \frac{25}{6}y_{1} + 400*10^{6}$$

$$+ w_{2} + 3x_{2} - w_{5} - \frac{25}{6}y_{2} + 420*10^{6}$$

$$+ w_{3} + 3x_{3} - w_{6} - \frac{25}{6}y_{3} \ge 0.9*1300*10^{6}$$

$$800*10^{6} + 360*10^{6} + w_{1} + 3x_{1} - w_{4} - \frac{25}{6}y_{1}$$

$$+ 400*10^{6} + w_{2} + 3x_{2} - w_{5} - \frac{25}{6}y_{2} + 420*10^{6}$$

$$+ w_{3} + 3x_{3} - w_{6} - \frac{25}{6}y_{3} \le 1300*10^{6}$$

$$\begin{cases} 550*10^{6} \le 650*10^{6} + 400*10^{6} + w_{1} + 3x_{1} \\ +w_{4} + \frac{25}{6}y_{1} - w_{7} - 3z_{1} \le 900*10^{6} \\ 550*10^{6} \le 650*10^{6} + 400*10^{6} + w_{1} + 3x_{1} \\ +w_{4} + \frac{25}{6}y_{1} - w_{7} - 3z_{1} + 460*10^{6} \\ \\ +w_{5} + \frac{25}{6}y_{2} - w_{8} - 3z_{2} \le 900*10^{6} \\ \\ 900*10^{6}*0.9 \le 650*10^{6} + 400*10^{6} + w_{1} \\ +3x_{1} + w_{4} + \frac{25}{6}y_{1} - w_{7} - 3z_{1} + 460*10^{6} \\ \\ +w_{5} + \frac{25}{6}y_{2} - w_{8} - 3z_{2} + 460*10^{6} + w_{6} - \frac{25}{6}y_{3} \\ \\ -w_{9} - 3z_{3} \le 900*10^{6} \end{cases}$$

导流渠流量为 0.5*3600*24*30=1296000,

$$w_1 \ge 1296000$$
 $w_2 \ge 1296000$
 $w_3 \ge 1296000$ $w_4 \ge 1296000$
 $w_5 \ge 1296000$ $w_6 \ge 1296000$
 $w_7 \ge 1296000$ $w_8 \ge 1296000$
 $w_9 \ge 1296000$
 $x_2 + y_2 + z_2 \ge 0.85*(x_1 + y_1 + z_1)$

 $x_2 + y_2 + z_2 \le 1.15 * (x_1 + y_1 + z_1)$

$$x_3 + y_3 + z_3 \ge 0.85 * (x_2 + y_2 + z_2)$$

 $x_2 + y_2 + z_2 \le 1.15 * (x_2 + y_2 + z_2)$

三.(25分,共4小题)(答在试卷上的内容 无效)

某工厂与客户签订合同,当月起连续三个月 每月末向客户提供某种产品。该厂三个月的 生产能力、单位产品生产成本及客户需求如 表 4 所示。已知单位产品每积压一个月需支 付存储费 2 元。在签订合同时,工厂有该产 品的库存量 5 个,工厂希望在完成该任务 3 个月末完成合同后还能储存该产品 10 个。 问工厂应如何安排生产计划,使在满足上述 条件的情况下总的费用最少?用表上作业 法求解。

表 4

月份	正常生产能力	加 班 生 产 能力	需求量	单合品常生成	单品 常 生 成
1	30	15	30	50	55
2	40	15	30	60	65
3	20	10	30	55	62

解: 用 *x*_{ij} 表示第 i 月生产用于第 j 月交货的产品数。根据题意列出产销平衡表如下,其中增加虚拟营销地 4,销量为 (5+30+15+40+15+20+10) - (30+30+40)

=5.

表 1

产销	1	2	3	4	产量
Ιο	2	4	6	0	5
I ₁	50	52	54	0	30
I ₂	55	57	59	0	15
II 1	M	60	62	0	40
II 2	M	65	67	0	15

III_1	M	M	55	0	20
III_2	M	M	62	0	10
销量	30	30	40	35	

利用伏格尔求初始基可行解,得:

表 2

) 产销	1	2	3	4
Ιο	5			
I ₁	25	5		
I ₂		15		
II 1		10	20	10
II 2				15
III_1			20	
III_2				10

利用为位势法进行检验:

表 3

前产	1	2	3	4	$\mathbf{u_i}$
I o	2	0 4	0 6	56 0	0
I 1	50	52	0 54	8 0	48
I ₂	0 55	57	0 59	3 0	53
II 1	М	60	62	0	56
II 2	М	5 65	5 67	0	56
III.	M	M	55	7 0	49
III ₂	М	M	0 62	0	56
Vj	2	4	6	-56	

由表 3 可知, 所得非基变量的检验数都为非

负。

所以,表2中的解即为最优解。

四. (20分)(答在试卷上的内容无效)

用隐枚举法求解下列 0-1 线性规划问题:

$$\begin{cases} \max z = 5x_1 + 7x_2 + 10x_3 + 3x_4 + x_5 \\ x_1 - 3x_2 + 5x_2 + x_4 - x_5 \ge 2 \\ -2x_1 + 6x_2 - 3x_3 - 2x_4 + 5x_5 \ge 0 \\ -2x_2 + 2x_3 - x_4 - x_5 \ge 1 \end{cases}$$

解:原问题可化为以下形式:

$$\min z_1 = 5x_1 + 7x_2 + 10x_3 + 3x_4 + x_5$$

$$\begin{cases} -x_1 + 3x_2 - 5x_3 - 3x_4 + 4x_5 \le 5 \\ 2x_1 - 6x_2 + 3x_3 + 2x_4 - 2x_5 \le -2 \\ x_2 - 2x_3 + x_4 + x_5 \le 1 \\ x_j = 0$$
或1,对一切j。

所有子域都停止分枝,问题的最优解为(0,1,1,0,0),z=17。

五. (20分)(答在试卷上的内容无效)

一种科研小组研制的某个装置由 3 各部件串联组成,装置的总可靠度等于每个部件的可靠度相乘。现距交付总体实验还有 5 个工作日,根据分析,对部件 i 再做天的调试,可使可靠度达到 $R_i(X_i)$,具体数值见表 5。若同一工作日只能对一个部件进行调试,那么如何分配 5 个工作日用于各部件的调试,使装置的可靠度最大? 用动态规划方法求解。

表 5

X_i	$R_1(x_1)$	$R_2(x_2)$	R ₃ (x ₃)
0	0.88	0.82	0.9
1	0.9	0.85	0.92
2	0.92	0.9	0.95
3	0.93	0.93	0.97
4	0.94	0.94	0.98

 \mathbf{M} : 状态变量 S_k 表示第 k 个部件分配调试时

时拥有的调试天数,决策变量 X_k 表示第k个部件分配的调试天数,状态转移方程:

$$S_{k+1} = S_k - X_k$$

基本方程为:

$$f_k(S_k) = \max_{0 \le X_k \le S_k} \{ (S_k, X_k) \times f_{k+1}(S_{k+1}) \},$$

 $f_4(S_4)=1$;

当 k=3 时, f₃(0)=0.9, f₃(1)=0.92, f₃(2)=0.95,

$$f_{3}(3)=0.97, \quad f_{3}(4)=0.98, \quad f_{3}(5)=0.99;$$

$$\stackrel{\square}{=} k=2 \text{ Iff},$$

$$f_{2}(0) = \max_{0 \le X_{2} \le 0} \left\{ R_{2}(X_{2}) \times f_{3}(0-X_{2}) \right\}$$

$$= 0.82 \times 0.9 = 0.738$$

$$f_{2}(1) = \max_{0 \le X_{2} \le 1} \left\{ R_{2}(X_{2}) \times f_{3}(1-X_{2}) \right\}$$

$$= \max \left\{ 0.82 \times 0.92, 0.85 \times 0.9 \right\}$$

$$= \max \left\{ 0.7544, 0.765 \right\} = 0.765$$

$$f_{2}(2) = \max_{0 \le X_{2} \le 2} \left\{ R_{2}(X_{2}) \times f_{3}(2-X_{2}) \right\}$$

$$= \max_{0 \le X_{2} \le 2} \left\{ 0.82 \times 0.95, 0.85 \times 0.92, 0.9 \times 0.9 \right\}$$

$$= \max_{0 \le X_{2} \le 3} \left\{ 0.779, 0.782, 0.81 \right\} = 0.81$$

$$f_{2}(3) = \max_{0 \le X_{2} \le 3} \left\{ R_{2}(X_{2}) \times f_{3}(3-X_{2}) \right\}$$

$$= \max_{0 \le X_{2} \le 3} \left\{ 0.82 \times 0.97, 0.85 \times 0.95, 0.9 \times 0.92, 0.93 \times 0.9 \right\}$$

$$= \max_{0 \le X_{2} \le 3} \left\{ 0.7954, 0.8075, 0.828, 0.837 \right\} = 0.837$$

$$f_{2}(4) = \max_{0 \le X_{2} \le 3} \left\{ R_{2}(X_{2}) \times f_{3}(4-X_{2}) \right\}$$

$$= \max_{0 \le X_{2} \le 3} \left\{ 0.82 \times 0.98, 0.85 \times 0.97, \\ 0.9 \times 0.95, 0.93 \times 0.92, 0.94 \times 0.9 \right\}$$

$$= \max_{0 \le X_{2} \le 3} \left\{ 0.8036, 0.8245, 0.855, 0.8556, 0.846 \right\}$$

$$= 0.8556$$

$$f_{2}(5) = \max_{0 \le X_{2} \le 5} \left\{ R_{2}(X_{2}) \times f_{3}(5 - X_{2}) \right\}$$

$$= \max_{0 \le X_{2} \le 5} \left\{ 0.82 \times 0.99, 0.85 \times 0.98, 0.9 \times 0.97, \right\}$$

$$= \max_{0 \le X_{2} \le 5} \left\{ 0.93 \times 0.95, 0.94 \times 0.92, 0.96 \times 0.9 \right\}$$

$$= \max_{0 \le X_{2} \le 5} \left\{ 0.8118, 0.833, 0.873, 0.8835, 0.8648, 0.864 \right\}$$

$$= 0.8835$$

$$\stackrel{\text{H}}{=} \text{ k=1 } \text{ F},$$

$$f_{1}(5) = \max_{0 \le X_{1} \le 5} \left\{ R_{1}(X_{1}) \times f_{2}(5 - X_{1}) \right\}$$

$$= \max_{0 \le X_{1} \le 5} \left\{ 0.88 \times 0.8835, 0.9 \times 0.8556, 0.92 \times 0.837, \right\}$$

$$= \max_{0 \le X_{1} \le 5} \left\{ 0.77748, 0.77004, 0.77004, 0.7533, 0.7191, 0.7011 \right\}$$

$$= 0.77748$$

$$\text{比 F} X_{1} = 0, X_{2} = 3, X_{3} = 2.$$

六.(25分,共4小题)(答在试卷上的内容 无效)

本单位有一批商品要运送给客户,可能运送 的路线如下图所示,各个路线运送能力和运 送费用单价已标注在图上(路线运输能力、 运送费用单价),应如何组织运送才能使该 单位运送成本最少。

解:此为最小费用最大流问题,先求出其最大流,再在最大流情况下求最小费用:

v₁sv₂v₁为负,min(7,4,)=4

此时已达到最优,应按图2运输。

七. 选择题(15分,共3小题)(答在试卷 上的内容无效)

- 1.下列叙述中正确的是____B
- A. 如果线性规划问题存在最优解,则最优解一定对应可行域的一个顶点;

- B. 单纯形法计算中,如不按最小比值原则 选取换出变量,则在下一个解中至少有一个 基变量的值为负;
- **C.** 单纯形法计算中,选取最大检验数 Y_k 对应的变量 X_k 作为换入变量,将使目标函数值得到最快的增长;
- **D.** 若 $X^{(1)}$ 、 $X^{(2)}$ 分别是某一线性规划问题的最优解,则 $X = \lambda_1 X^{(1)} + \lambda_2 X^{(2)}$ 也是该线性规划问题的最优解,其中 λ_1 、 λ_2 为正的实数;
- E. 对一个有 n 个变量、m 个约束的标准形线性规划问题,其可行域顶点恰有 C_n^m 个。
- 2. 求解整数规划常用的算法有_____BC____, 求解 1-0 规划常用的算法有______D___ 求解指派问题常用的算法有______F__。

A. 単纯形法	B.分枝足界法
C.割平面法	D.完全枚举法
E.隐枚举法	F. 匈牙利法
G.表上作业法	
3. 动态规划方法是	解决B,它是在
明确	的基础上,建立
FGHI,最终求出	出 <u> </u>
A. 动态问题	
B. 多阶段决策过程	凹题
C. 阶段和阶段数	
D. 无后效性	
E. 最优性原理	
F. 基本方程	
G. 决策变量与允许	F变量结合
H. 阶段指标与指标	下函数
I. 状态转移方程	

J. 逆序解法

- K. 最优决策序列和最优目标值
- L. 状态与状态变量