descriptive statistics 1-1: relationships: summarizing more than one variable: crosstabs and correlation, (Wheelan, 2013, ch3,4)

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Wednesday 16th September, 2020 10:08

howto describe data?

- numbers
- graphs (always better unless very few data, say <5)
 humans recognize patterns in graphs better and faster
- break it up into subsets/subsamples! dig deeper!
 - say see hist/tab for males and females separately
 - say corr or crosstab for low and hi val separately that's a quick way to see nonlinear relationship!
 eg may rise and fall, eg swb and place size in china
- ♦ googSheet or xournal

few categories / categorical

- use contingency tab / cross-tab (bc you cross-tab dat)
- use percents, not counts: usually clearer
- · so what's the relationship: age and being a student?

What is your	Are you a student?				
age?	Yes - Full Time	Yes - Part Time	No	Total	
15 and under	88%	12%	-	8	
16 - 18	95%	-	5%	42	
19 - 23	68%	12%	20%	205	
24 - 29	16%	10%	74%	353	
30 - 35	5%	9%	86%	192	
36 - 45	4%	8%	88%	165	
over 45	1%	7%	92%	129	

 $[\]diamond$ http://www.custominsight.com/articles/crosstab-sample.asp

crosstabs: row percents v col percents Sort: Cols + Rows + Count All % Row % Col %

100%

Total

	Number of Em	nployees at Co	mpany							
Job Satisfaction	1-25	26-100	101-999	1,000-3,000	> 30	000	Total			
Hate my job	24.4%	14.1%	26.9%	12.8%		21.8%	100%			
I'm not happy in my job	31.6%	21.3%	19.2%	6.3%		21.5%	100%			
It's a paycheck		20.4%	22.6%	7.7%	^	21.8%	100%			
I enjoy going to work		^ 21.8%	21.3%	7.0%		17.6%	100%			
Love my job		17.2%	× 17.0%	5.0%	×	13.0%	100%			
Sort: Cols ▼ Rows ▼ Count All % Row % Col % Number of Employees at Company										
Job Satisfaction	1-25	26-100	101-99	99 1,000	-3,000	> 3	000			
Hate my job	0.	. 8%	2.8%	1.5%	2.2%		1.5%			
I'm not happy in my job	6.	.6%	7.9%	7.1%	7.2%		9.3%			
It's a paycheck	¥ 12.	.6% 16	5.4%	18.1%	18.9%	^	20.4%			
I enjoy going to work	∛ 43.	.3% ^ 51	1.6%	50.3%	50.8%		48.4%			
Love my job	36.	.7% ~ 23	3.2% × 2	23.0%	20.9%	×	20.5%			

100%

100%

100%

100%

percentage change v percentage point change

- ♦ say good school's dropout rate increases from 2% to 4%
- percentage point increase is 4-2=2
- percentage increase is $(\frac{4-2}{2})*100 = 100$
- say bad school's dropout rate increases from 50% to
 75%
- percentage point increase is 75 50 = 25
- percentage increase is $\left(\frac{75-50}{50}\right)*100 = 50$
- · if you start from low base (eg 2), then small percentage point increase is huge percent increase!

many categories / continuous data

- use correlation and scatterplots
 - · just plot them in scatterplot; identify outliers!
 - xournal: ex with outliers cops/1k and crime (note dc and camden)
 - · correlation range: -1 to 1
 - $\cdot < |4|$ low
 - $\cdot |.4 .6|$ moderate
 - $\cdot > |.7|$ strong
- again, keep in mind causation v correlation

correlations for different scenarios

scatterplot

 \Diamond

· also see http://www.socialresearchmethods.net/kb/statcorr.php

next slide: https://danley.camden.rutgers.edu/2017/04/13/
 who-suspends-the-highest-percentage-of-camden-students-freedom-prep/

do scatterplots

- it is useful to produce a scatterplot
 - · you'd see outliers-
 - · and whether the relationship is due to them
 - blackboard: relationships biased due to outliers
- · say marriage rate and divorce rate and Nevada

calculate it!

- there are formulas in wheelan and trochim
 - but can just calc with software :)
 - · can do it excel or google sheets etc
 - · but it's 21st century, so lets do it in Python :)
 - see des.py

Wheelan in ch11 mentions Whitehall studies

- fascinating stuff!
- high status causes better health!
 - · great book 'Status Syndrome' http://a.co/jaUuwT7
- say nobel prize or oscar boosts one's health and longevity
 - · these successful folks live longer and in better health
 - than exact same people (income, lifestyle, etc) but without status

closer look at status syndrome

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566175/
- see Table 2A for correlations
 - especially 'Decision latitude'
 - · conclusions? extra credit

wrap-up

- end every class discussing what we covered and quick look at next week
- end with a review Q&A,
- give some examples (essp in pub pol and pub adm) for concepts covered
- students will discuss concepts from the class
- \Diamond
- quick look at next class

bibliography I

 $\label{eq:Wheelan} \mbox{Wheelan, C. (2013): } \mbox{\underline{Naked statistics: stripping the dread from the data, WW Norton \& Company.}$