Mathématiques actuarielles IARD-1 ACT-2005 Notes de cours

Gabriel Crépeault-Cauchon Nicholas Langevin

4 octobre 2018

Table des matières

1	Rap	pel sur les notions de probabilité et statistiques	1
	1.1	Quantités à savoir	1
	1.2	La loi normale	2
	1.3	Queue de distribution	2
2	Тур	es de contrats et primes	4
	2.1	Contrat avec limite	5
		2.1.1 Cas avec inflation	5
	2.2	Contrat avec déductible ordinaire	6
		2.2.1 Remarques	6
		2.2.2 Prime Stop-Loss	7
		2.2.3 Cas avec inflation	8
	2.3	Mean Excess Loss	9
		2.3.1 Remarques	9
	2.4	Contrat avec Déductible franchise	10
	2.5	Contrat avec déductible ordinaire et limite sous l'inflation	11
	2.6	Co-assurance	12
	2.7	Cas général	12
3	Esti	mation non-paramétrique	13
	3.1	Terminologie	13
	3.2	Estimation de données complètes	14
		3.2.1 Estimation de donnée groupées (Fonction OGIVE)	15
	3.3	Estimation de la fonction de survie	17
	3.4	Estimateur Kaplan-Meier	17
	3.5	l'approche conditionnelle pour estimer $S(t)$	17

Résumé

Ce document résume les notes de cours prises en classe dans le cours de Mathématiques actuarielles IARD-1, ainsi que des notions prises du livre *LOSS MODELS* - *From Data to Decisions, 4th edition*.

Chapitre 1

Rappel sur les notions de probabilité et statistiques

1.1 Quantités à savoir

Raw moments On représente le k^e moment par μ'_k , soit

$$\mu_k' = E\left[X^k\right] \tag{1.1}$$

Moments centraux Le k^e moment central est représenté par

$$\mu_k = E\left[(X - \mu)^k \right] \tag{1.2}$$

Exemple 1.1.1 Quelques exemples de moments centraux

C

La variance est le 2^e moment central :

$$Var(X) = \mu_2 = E\left[(X - \mu)^2\right]$$

Le 3^e moment centré, qui est utilisé pour calculer le coefficient d'asymétrie :

$$\mu_3 = E\left[(X - \mu)^3 \right]$$

Coefficient d'asymétrie Le coefficient d'asymétrie, aussi appelé *skewness*, est représentée par

 $S_k = \frac{\mu_3}{\sigma^2} \tag{1.3}$

Soit le 3^{e} moment standarisé. Si $S_{k}=0$, alors la distribution tend vers une loi normale.

Coefficient d'applatissement Le coefficient d'applatissement, aussi appelé *Kurtosis*, se définit par

 $Kurtosis = \frac{\mu_4}{\sigma^4}$ (1.4)

Cette quantité permet de mesurer l'épaisseur de l'aile (tail) de la distribution. Si $E\left[z^4\right]=3$, alors la distribution tend vers une loi normale $N(\mu,\sigma^2)$.

1.2 La loi normale

La fonction génératrice des moments

$$M_{x}(t) = M_{x}(0) + \frac{M'_{x}t}{1!} + \frac{M''_{x}t^{2}}{2!} + \dots + \frac{M_{x}^{(n)t^{n}}}{n!}$$
$$= 1 + \frac{E[x]t}{1!} + \frac{E[x^{2}]t^{2}}{2!} + \dots + \frac{E[x^{n}]t^{n}}{n!}$$

On pose : $c_k = \frac{E[x^n]}{n!}$ alors,

$$E[x^k] = C_k k! (1.5)$$

1.3 Queue de distribution

- 1. So is $f_1(x)$ une fonction tels que les 3 premiers moment existe : $E[x^4] = \infty$
- 2. So is $f_2(x)$ une fonction tels que les 2 premiers moment existe : $E[x^2] = \infty$ Alors,

$$\lim_{x \to \infty} r(x) = \frac{f_1(x)}{f_2(x)} = \begin{cases} \infty, f_1(x) \text{a une aile plus lourde que } f_2(x) \\ 0, f_2(x) \text{a une aile plus lourde que } f_1(x) \end{cases}$$

Exemple 1.3.1

So is $f_{x_1}(x_1) \sim pareto(\alpha, \theta)$ et $f_{x_2}(x_2) \sim gamma(\alpha, \lambda)$

$$\lim_{x \to \infty} r(x) = \lim_{x \to \infty} \frac{f_{x_1}(x_1)}{f_{x_2}(x_2)}$$

$$= \frac{\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}}{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}$$

$$= C \frac{e^{-\lambda x}}{x^{\alpha-1} (x+\theta)^{\alpha+1}}$$

$$= \infty$$

La pareto a une queue plus lourde que la gamma

La fonction de hasard

$$h(x) = \frac{f(x)}{s(x)} \tag{1.6}$$

Si à partir de M, h(x) est décroissante $\Leftrightarrow f(x)$ décroit trop lentement, alors f(x) à une aile lourde.

Chapitre 2

Types de contrats et primes

Dans cette section ¹, on définit deux nouvelles variables

Définition 2.0.1 Per-Loss Variable

Soit X le montant des dommages d'une réclamation. On peut définir Y^L comme le montant payé par l'assureur lors de toute perte. Mathématiquement,

$$Y^{L} = g(X) \quad , Y^{L} \sim f_{X}(x) \tag{2.1}$$

Définition 2.0.2 *Per-Payment* variable

Cette variable se définit plutôt comme le montant qui sera payé par l'assureur (i.e le montant de la perte, sachant qu'il y aura un paiement). Alors,

$$Y^{P} = g(X) \quad , Y^{P} \sim \frac{f_{X}(x)}{S_{X}(x)}$$
 (2.2)

 Y^P n'a donc pas de probabilité définie à y = 0 (puisque ce n'est pas possible, sachant que x est assez grand pour qu'il y ait un paiement.

^{1.} Section 8.1 à 8.5 dans le livre

2.1 Contrat avec limite

On analyse la fonction de perte d'un contrat avec une limite supérieure *u*. Alors, on définit *Y* comme

$$Y = (X \wedge u) = \min(X, u) = \begin{cases} x & , x \le u \\ u & , x > u \end{cases}$$
 (2.3)

Aussi,

$$E[Y] = E[\min(X, u)]$$

$$= \int_0^u x f_X(x) dx + u \int_u^\infty f_X(x) dx$$

$$= \int_0^u x f_X(x) dx + u S(u)$$

2.1.1 Cas avec inflation

On a vu le contrat avec perte limitée, mais sans parler d'inflation. Supposons qu'on a le scénario <u>avec inflation</u>, où X' = (1+r)X et r représente le taux d'inflation appliqué au montant de perte. Alors, il faut ajuster u pour tenir compte de l'inflation.

$$Y = \begin{cases} (1+r)X & , (1+r)X \le u \\ u & , (1+r)X > u \end{cases}$$
$$= \begin{cases} (1+r)X & , x \le \frac{u}{1+r} \\ u & , x > \frac{u}{1+r} \end{cases}$$

Définition 2.1.1 Prime Limited Loss sous l'inflation
$$E\left[X' \wedge u\right] = (1+r)E\left[X \wedge \frac{u}{1+r}\right] \tag{2.4}$$

Démonstration.

$$E[Y] = \int_0^{\frac{u}{1+r}} (1+r)x f_X(x) dx + u \int_{\frac{u}{1+r}}^{\infty} f_X(x) dx$$

$$= (1+r) \int_0^{\frac{d}{1+r}} f f_X(x) dx + s S_X \left(\frac{u}{1+r}\right)$$

$$= (1+r) \left(\int_0^{\frac{u}{1+r}} x f_X(x) dx + \frac{u}{1+r} S_X \left(\frac{u}{1+r}\right)\right)$$

$$= (1+r) E\left[X \wedge \frac{u}{1+r}\right]$$

2.2 Contrat avec déductible ordinaire

Soit un contrat avec perte X, où on paie 0 si $X \le d$ et X - d si X > d, où d est le déductible ordinaire. Alors,

$$Y = (X - d)_{+} = \max(X - d, 0) = \begin{cases} 0 & , X \le d \\ X - d & , X > d \end{cases}$$
 (2.5)

2.2.1 Remarques

- (1) X est une variable aléatoire continue
- (2) mais Y^L est une variable aléatoire mixte, car

$$\Pr(Y^L = y) = \begin{cases} F_X(d) & , y = 0 \\ f_X(y+d) & , y > 0 \end{cases}$$

(3) La fonction de répartition de Y^L est définie par

$$F_{Y}(y) = \begin{cases} F_{X}(d) & , y = 0 \\ F_{X}(d) + \int_{0}^{y} f_{X}(u+d) du & \\ F_{X}(d) + F_{X}(y+d) - F_{X}(d) & \\ F_{X}(y+d) & y > 0 \end{cases}$$

(4) les fonctions de survie S(y) et fonction de hasard h(y) sont définies par

$$S_Y(y) = 1 - F_Y(y)$$
$$h(y) = \frac{f_Y(y)}{S_Y(y)}$$

(5) La prime de ce contrat est appelée la prime *stop-loss*, qui représente l'espérance de ce contrat.

2.2.2 Prime Stop-Loss

On veut calculer l'espérance du contrat avec déductible ordinaire :

$$E[Y] = E[(X - d)_{+}]$$

$$= \int_{d}^{\infty} (x - d)f(x)dx$$

$$= \int_{d}^{\infty} xf(x)dx - d\int_{d}^{\infty} f(x)dx$$
Intégration par partie
$$= -xS(x)\Big|_{d}^{\infty} + \int_{d}^{\infty} S(x)dx - sS(d)$$

$$= 0 \pm S(d) + \int_{d}^{\infty} S(x)dx = S(d)$$

$$= \int_{d}^{\infty} S(x)dx$$

Définition 2.2.1 Prime Stop-Loss

On peut définir la prime Stop-Loss comme

$$E[(X-d)_{+}] = E[X] - E[X \wedge d]$$
 (2.6)

Démonstration. À compléter

2.2.3 Cas avec inflation

$$Y = \begin{cases} 0 & , X' \le d \\ X' - d & , d' > d \end{cases}$$

où X' = (1+r)X. On peut travailler seulement avec le X initial :

$$Y = \begin{cases} 0 & ,x \le \frac{d}{1+r} \\ (1+r)X - d & ,x > \frac{d}{1+r} \end{cases}$$

Et la prime Stop-Loss,

$$E[Y] = \int_{\frac{d}{1+r}}^{\infty} ((1+r)x - d) f_X(x) dx$$

= $(1+r) \int_{\frac{d}{1+r}}^{\infty} x f_X(x) dx - \frac{d}{1+r} \int_{\frac{d}{1+r}}^{\infty} f_X(x) dx$

Définition 2.2.2 Prime Stop-Loss sous le scénario d'inflation

$$E\left[(X'-d)_{+}\right] = (1+r)\left(E\left[X\right] - E\left[X \wedge \frac{d}{1+r}\right]\right) \tag{2.7}$$

Démonstration.

$$E[Y] = (1+r) \int_{\frac{d}{1+r}}^{\infty} x f_X(x) dx - d \int_{\frac{d}{1+r}}^{\infty} f_X(x) dx$$

En ajoutant un terme,

$$=\underbrace{(1+r)\int_{0}^{\frac{d}{1+r}}xf_{X}(x)dx+\int_{\frac{d}{1+r}}^{\infty}xf_{X}(x)dx-\underbrace{\int_{0}^{\frac{d}{1+r}}xf_{X}(x)dx-\frac{d}{1+r}\int_{\frac{d}{1+r}}^{\infty}f_{X}(x)dx}_{E[X]}}_{E[X]}$$

$$=E[X]-E\left[X\wedge\frac{d}{1+r}\right]$$

2.3 Mean Excess Loss

Le Mean Excess Loss représente la perte excédentaire à d, sachant que X > d. Mathématiquement,

$$Y = \begin{cases} 0 & , x \le d \\ X - d & , x > d \end{cases}$$

où
$$X \sim \frac{f(x)}{S(d)}, x \ge d$$
.

2.3.1 Remarques

(1) La fonction de densité de Y est représentée par

$$\Pr(Y^P = y) = \begin{cases} \frac{f_X(y+d)}{S(d)} & , y > 0 \end{cases}$$

- (2) Y est une v.a. continue
- (3) les fonctions de survie et de hasard sont, respectivement :

$$h(y) = \frac{f_Y(y_d)}{S_Y(y+d)}$$
$$S(y) = \frac{S_X(y+d)}{S(d)}$$

(4) l'espérance de la v.a. $Y^{P\,2}$ (mean excess loss) est définie par

$$e(d) = E[Y^P]$$

$$= E[X - d|X > d]$$

$$= \int_{d}^{\infty} (x - d) \frac{f(x)}{S(d)} dx$$

On note donc

$$e(d)S(d) = \underbrace{\int_{d}^{\infty} (x - d)f(x)dx}_{\tag{2.8}}$$

^{2.} Le P en exposant signifie per pay, qui indique que sur X.

Définition 2.3.1 Loss Eliminating Ratio

Le Loss Eliminating Ratio (LER), nous permet d'obtenir le pourcentage de perte qu'on ne paiera pas grâce au déductible d:

$$ELR = \frac{E[X] - E[(X - d)_{+}]}{E[X]}$$

Mais on sait que

$$E[(X-d)_{+}] = E[X] - E[X \wedge d]$$

Alors,

$$ELR = \frac{E[X \wedge d]}{E[X]} \tag{2.9}$$

2.4 Contrat avec Déductible franchise

Soit *Y* le contrat qui a un déductible franchise. Dans ce type de contrat, on va payer l'intégralité de la perte, lorsque celle-ci dépassera un déductible. Mathématiquement,

$$Y = \begin{cases} 0 & , X \le d \\ X & , X > d \end{cases}$$

Caractéristiques

(1) La fonction de densité est définie par

$$f_Y(y) = \begin{cases} F_X(d) & , y = 0 \\ f_X(y) & , y > 0 \end{cases}$$

(2) La fonction de répartition de ce contrat est

$$F_Y(y) = \begin{cases} F_X(d) & , y = 0 \\ F_X(d) & , 0 < y \le d \\ \frac{F_X(y) - F_X(d)}{S_X(d)} & , y > d \end{cases}$$

2.5 Contrat avec déductible ordinaire et limite sous l'inflation

On peut combiner les contrats vu plus tôt, comme c'est le cas ici : ce contrat prévoit un déductible ordinaire d ainsi qu'une limite au contrat u. De plus, on s'intéresse au scénario sous l'inflation. Alors,

$$Y = \begin{cases} 0 & , X \le \frac{d}{1+r} \\ (1+r)X - d & , \frac{d}{1+r} \le X \le \frac{u}{1+r} \\ u = d & , X > \frac{u}{1+r} \end{cases}$$

Et l'espérance est

Définition 2.5.1 Prime d'un contrat avec déductible d et limite u

$$E[Y] = (1+r)\left(E\left[X \wedge \frac{u}{1+r}\right] - E\left[X \wedge \frac{d}{1+r}\right]\right) \tag{2.10}$$

Démonstration. On va utiliser $Y = Y_1 - Y_2$ pour prouver (2.10). On définit Y_1 et Y_2 :

$$Y_{1} = \begin{cases} 0 & ,X \leq \frac{d}{1+r} \\ (1+r)X - d & ,X > \frac{d}{1+r} \end{cases}$$

$$Y_{2} = \begin{cases} 0 & ,X \leq \frac{u}{1+r} \\ (1+r)X - u & ,X > \frac{u}{1+r} \end{cases}$$

On connait leur espérance respective

$$E[Y_1] = (1+r)\left(E[X] - E\left[X \wedge \frac{d}{1+r}\right]\right)$$
$$E[Y_2] = (1+r)\left(E[X] - E\left[X \wedge \frac{u}{1+r}\right]\right)$$

Alors,

$$E[Y] = E[Y_1] - E[Y_2]$$

$$= (1+r)\left(E\left[X \wedge \frac{u}{1+r}\right] - E\left[X \wedge \frac{d}{1+r}\right]\right)$$

$$E[Y] = \int_{\frac{d}{1+r}}^{\frac{u}{1+r}} ((1+r)x - d) f_X(x) dx + \int_{\frac{u}{1+r}}^{\infty} (u - d) f_X(x) dx$$
$$= (1+r) \left(E\left[X \wedge \frac{u}{1+r}\right] - E\left[X \wedge \frac{d}{1+r}\right] \right)$$

2.6 Co-assurance

Soit α le pourcentage de co-assurance.

$$Y = \begin{cases} 0 & , X \le d \\ X - d & , X > d \end{cases}$$

$$Y^{C} = \begin{cases} 0 & , X \le d \\ \alpha(X - d) & , X > d \end{cases}$$

Alors,

$$E\left[Y^{C}\right] = \alpha E\left[Y\right] \tag{2.11}$$

2.7 Cas général

Voici une formule générale, avec un déductible d, un taux d'inflation r, un pourcentage de coassurance de α et une limite de u:

$$Y^{L} = \begin{cases} 0 & , x \leq \frac{d}{1+r} \\ \alpha \left((1+r)x - d \right) & , \frac{d}{1+r} \leq x \leq \frac{u}{1+r} \\ \alpha (u-d) & , x > \frac{u}{1+r} \end{cases}$$
 (2.12)

Chapitre 3

Estimation non-paramétrique

À savoir pour examen partiel

- ✓ Loi normale
- ✔ Loi gamma
- ✓ Loi poisson
- ✔ Loi binomiale
- ✓ intégration par partie poru la loi exponentielle
- ✓ fonction densité, moyenne, variance et fgm

3.1 Terminologie

Pour $X_1,...,X_n$ qui sont iid. On a

$$E[g(X)] = \int g(x)dF(x)$$

$$= \int g(x)f_X(x)dx$$

$$= \int g(x)F_n(x)$$

$$= \frac{1}{n}\sum_{i=1}^n g(x_i)$$

... est un estimateur non-paramétrique

3.2 Estimation de données complètes

On cherche à estimer F(t) ou S(t), lorsque nos données sont complètes (i.e. $x_1,...,x_n$ qui sont iid). Alors, l'estimateur non paramétrique pour F(t):

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n 1_{[x_i \le t]}$$
 (3.1)

où $\mathbf{1}_{[.]}$ représente une fonction indicatrice.

 $F_x(t)$ aura donc la forme suivante :

$$F_n(t) = \begin{cases} 0 & , t < x_{(1)} \\ \frac{1}{n} & , x_{(1)} \le t < x_{(2)} \\ \frac{2}{n} & , x_{(2)} \le t < x_{(3)} \\ \dots & \\ 1 & , t \ge x_{(n)} \end{cases}$$
(3.2)

où $t \in [0, x_{(n)}].$

Remarques

- (1) Lorsque $F_n(t) \to F(t)$, alors
- (2) Puisqu'on a

$$\sum_{i=1}^{n} 1_{[x_i \le t]} \sim Bin(n, \Pr(X \le t))$$

Alors,

$$E[F_n(t)] = \frac{1}{n} nF(t)$$

$$= F(t) \quad \text{(C'est un estimateur sans biais)}$$

$$Var(F_n(t)) = \frac{1}{n^2} nF(t)S(t)$$

$$= \frac{F(t)S(t)}{n}$$

$$= 0$$

3.2.1 Estimation de donnée groupées (Fonction OGIVE)

CETTE MATIÈRE NE SERA PAS TESTÉE À L'EXAMEN

Dans certains contextes, on a n données qui sont groupées en intervalle. La fonction OGIVE permet d'interpoler entre 2 points x_i et $_{i+1}$.

$$c_{j-1} \le x \le c_j$$

$$F_n(c_{j-1}) \le F_n(x) \le F_n(c_j)$$

La formule est

$$F_n^{\text{OGIVE}}(x) = \frac{c_j - x}{c_j - c_{j-1}} F_n(c_j - 1) + \frac{x - c_{j-1}}{c_j - c_{j-1}} F_n(c_j)$$
(3.3)

Remarques

(1) Si $x = c_{i-1}$,

$$F_n(c_{j-1}) = F_n^{\text{OGIVE}}(c_{j-1})$$

(2) Si
$$x = c_j$$
,

$$F_n(c_j) = F_n^{\text{OGIVE}}(c_j)$$

Exemple 3.2.1 Exemple concret

(3.4)

L'assureur a groupé n = 10 données en intervalles.

Alors,

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n I[x_i \le t]$$

$$F_n(1) = \frac{2}{10}$$

$$F_n(2) = \frac{5}{10}$$

$$F_n(3) = \frac{9}{10}$$

$$F_n(4) = \frac{10}{10}$$

$$= 1$$

En dérivant (3.3), on obtient

$$f_n(x) = \frac{\partial}{\partial x} F_x(x)$$

$$= \frac{1}{c_j - c_{j-1}} F_x(c_j) - \frac{1}{c_j - c_{j-1}} F_n(c_{j-1})$$

$$= \frac{F_n(c_j) - F_n(c_{j-1})}{c_j - c_{j-1}}$$

3.3 Estimation de la fonction de survie

Soit $S_n(t)$ la fonction de survie empirique. Alors,

$$S_n(t) = 1 - F_n(t)$$

$$= \frac{n}{n} - \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \le t\}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (1 - 1_{\{x_i \le t\}})$$

$$= \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i > t\}}$$

3.4 Estimateur Kaplan-Meier

3.5 l'approche conditionnelle pour estimer S(t)

$$S(t) = \frac{S(t_1)}{S(t_0)} \times \frac{S(t_2)}{S(t_1)} \times \dots \times \frac{S(t)}{S(t_{i-1})}$$
$$= \frac{S(t)}{\underbrace{S(t_0)}_{1}}$$
$$= S(t)$$

Alors,

$$S(t) = \prod_{j \le t} p_j \tag{3.5}$$

Ça nous suggère un autre estimateur pour S(t):

$$\hat{S}(t) = \prod_{j \le t} (1 - \hat{q}_j) \tag{3.6}$$

Ceci est l'approche conditionnelle pour estimer S(t). Et si jamais on a des données complètes, $S_n(t) = \hat{S}(t)$.