

Chapter 12

Simple Linear Regression

ALWAYS LEARNING

Objectives

In this chapter, you learn:

- How to use regression analysis to predict the value of a dependent variable based on a value of an independent variable
- To understand the meaning of the regression coefficients b₀ and b₁
- To evaluate the assumptions of regression analysis and know what to do if the assumptions are violated
- To make inferences about the slope and correlation coefficient
- To estimate mean values and predict individual values

Correlation vs. Regression

איר נגדיר הורלציה?

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation
 - Scatter plots were first presented in Ch. 2
 - Correlation was first presented in Ch. 3

12.1 Regression Models

Linear relationships

Curvilinear relationships

Types of Relationships

(continued)

Types of Relationships

(continued)

איך ייראה הגרף במקרה של קידוד 1-הומ?

12.2 Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable
- Dependent variable: the variable we wish to predict or explain
- Independent variable: the variable used to predict or explain the dependent variable

Simple Linear Regression Model

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

וה יקרה כאשר תהיה לנו סדרה של משתנים מסבירים?

Simple Linear Regression Model

Simple Linear Regression Model

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

Estimated (or predicted) Y value for observation i

Estimate of the regression intercept

Estimate of the regression slope

Value of X for observation i

נרך חזוי

The Least Squares Method

 b_0 and b_1 are obtained by finding the values that minimize the sum of the squared differences between Y and \hat{Y} :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

אמיתי - חזוי

 $MSE = 1/n(sigma(Yi-yi)^2)$

Finding the Least Squares Equation

The coefficients b₀ and b₁, and other regression results in this chapter, will be found using Excel or Minitab

או בכל דרך אחרת לחיישוב נומרי

Interpretation of the Slope and the Intercept

נקודת חיתוך עם ציר אנכי

 b₀ is the estimated mean value of Y when the value of X is zero

מקדם הרגרסיה

b₁ is the estimated change in the mean
 value of Y as a result of a one-unit increase in X

Simple Linear Regression **Example**

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Simple Linear Regression Example: Data

House Price in \$1000s (Y)	Square Feet (X)		
245	1400		
312	1600		
279	1700		
308	1875		
199	1100		
219	1550		
405	2350		
324	2450		
319	1425		
255	1700		

Simple Linear Regression Example: **Scatter Plot**

House price model: Scatter Plot

Simple Linear Regression Example: Using Excel Data Analysis Function

1. Choose Data

2. Choose Data Analysis

3. Choose Regression

In Python: SKLEARN

Simple Linear Regression Example: **Using Excel Data Analysis Function**

(continued)

Enter Y range and X range and desired options

Simple Linear Regression Example: Excel Output

Regression St	atistics							
Multiple R	0.76211	The regression equation is:						
R Square	0.58082				/			
Adjusted R Square	0.52842	house price	= 98.248	33 + 0.	10977 (squ	are feet)		
Standard Error	41.33032	1						
Observations	10							
ANOVA						•		
	df	SS	MS	F	Significance F			
Regression	1/	18934.9348	18934.9348	11.0848	0.01039			
Residual	/8	13665.5652	1708.1957					
Total	9	32600.5000						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386		
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580		

Simple Linear Regression Example: Minitab Output

The regression equation is

Price = 98.2 + 0.110 Square Feet

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 98.25
 58.03
 1.69
 0.129

 Square Feet
 0.10977
 0.03297
 3.33
 0.010

S = 41.3303 R-Sq = 58.1% R-Sq(adj) = 52.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 18935 18935 11.08 0.010
Residual Error 8 13666 1708
Total 9 32600

The regression equation is:

house price = 98.24833 + 0.10977 (square feet)

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line

house price = 98.24833 + 0.10977 (square feet)

Simple Linear Regression Example: Interpretation of b_o

- bo is the estimated mean value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b₀ has no practical application

Simple Linear Regression Example: Interpreting b₁

house price = 98.24833 + 0.10977 (square feet)

- b₁ estimates the change in the mean value of Y as a result of a one-unit increase in X
 - Here, $b_1 = 0.10977$ tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Simple Linear Regression **Example: Making Predictions**

Predict the price for a house with 2000 square feet:

פשום נציב, לא?

house price =
$$98.25 + 0.1098$$
 (sq.ft.)

$$=98.25+0.1098(2000)$$

$$= 317.85$$

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Simple Linear Regression Example: Making Predictions

 When using a regression model for prediction, only predict within the relevant range of data

Do not try to extrapolate beyond the range of observed X's

12.4 Assumptions of Regression L.I.N.E

- Linearity
 - The relationship between X and Y is linear
- Independence of Errors
 - Error values are statistically independent
 - Particularly important when data are collected over a period of time
- Normality of Error
 - Error values are normally distributed for any given value of X
- Equal Variance (also called homoscedasticity)
 - The probability distribution of the errors has constant variance

Chapter Summary

In this chapter we discussed:

- How to use regression analysis to predict the value of a dependent variable based on a value of an independent variable
- To understand the meaning of the regression coefficients b₀ and b₁
- To evaluate the assumptions of regression analysis and know what to do if the assumptions are violated
- To make inferences about the slope and correlation coefficient
- To estimate mean values and predict individual values