

Inventory management with leading indicator augmented hierarchical forecasts

Yves R. Sagaert¹, Nikolaos Kourentzes²

¹ VIVES University of Applied Sciences, Kortrijk, Belgium

Motivation for leading indicators
Introduction

B2B raw materials for tire manufacturing:

- Leading indicator: purchases of two and four-wheel vehicles (Sweden)
- Vehicle sales lead tire sales, and lead B2B material sales

Motivation for leading indicators
Challenges

Connection target variable – explanatory variable (indicator):

- Spurious correlation possible (trend, seasonality, ...)
 - => Include autoregressive & seasonal dummy inputs
 - => Incorporate differencing

Lead order of the explanatory variable (indicator):

- Incorporate lead order of 1 12 months
- Limit us of lead order conditional in time

Leading indicators for tactical sales forecasting

Different business decision horizons

Leading indicators for tactical sales forecasting

Different business decision horizons

Optimal level for leading indicators
Introduction

Different hierarchical levels could benefit from leading indicators in B2B sales

- 1. Do leading indicators improve forecasting accuracy and operational inventory management?
 - How to best select & model the leading indicators?
 (statistical learning vs machine learning models)
 - 2. What is the best level to include relevant indicators?
- 2. Does the improvement comes from hierarchical alignment or from the leading indicator information?

Model Specification

Hierarchical structure

E = Exponential Smoothing (ETS) base model at the this level

- Univariate (trends, seasonality, ..)

L = LASSO methodology at the this level

- Transparent output
- Identify most important leading indicators

G = LGBM with all indicators at this level

- Model nonlinear interactions
- Multicollinearity is not a problem
- Computational intensive & not transparant

Eg. LEE = Hierarchical reconciliation of forecasts

Lasso on Top; ETS on low and mid level hogsechool

Model Specification

Hierarchical structure

The multi-period forecasts \hat{y}_{t+h} on different levels might be incoherent

Therefore, we reconcile these forecasts to make them coherent via:

$$\tilde{m{y}}_{t+h} = m{S}m{G}\hat{m{y}}_{t+h}$$

with
$$oldsymbol{G}_h = (oldsymbol{S}' oldsymbol{W}_h^{-1} oldsymbol{S})^{-1} oldsymbol{S}' oldsymbol{W}_h^{-1}$$

We obtain probabilistic forecasts via bootstrapping forecast traces based on Panagiotelis et al. (2024)

SIR 2024

___ Data

B2B Company dataset

- Hierarchy of 5 business units and 14 stock-keeping-units
- 1000+ "interesting" leading indicators selected
- Data 2005:2016

Experimental setup

- No forecasting of leading indicators → lag effect 1:12 months + unconditional setup
- Sales forecast horizon h = 1:12 months
- Experiment of 13 rolling origins

Results

Error metrics

Bias and accuracy

$$s^{p} = \frac{1}{r-1} \sum_{t=1}^{r-1} (|y_{t+1} - y_{t}|)^{p},$$

RMSsE_h =
$$\frac{1}{o} \sqrt{\sum_{i=1}^{o} \frac{(y_{i+h} - \hat{y}_{i+h})^2}{s^2}},$$

AMsE_h = $\frac{1}{o} \left| \sum_{i=1}^{o} \frac{y_{i+h} - \hat{y}_{i+h}}{s^1} \right|,$
sPIN_h = $\frac{1}{o} \sum_{i=1}^{o} \frac{w_i}{s^1},$
 $w_i = \begin{cases} (y_i - \hat{Q}_i)\alpha, & \text{if } y_i \ge \hat{Q}_i\\ (\hat{Q}_i - y_i)(1 - \alpha), & \text{if } y_i < \hat{Q}_i \end{cases}$

ICID 2024

Results

Error metrics

Non – cummulative metrics:

$$e_t = y_t - \hat{y}_t$$

Cummulative metric over lead times:

$$ce_{Lt} = \sum_{i=1}^{L} y_{t+i-1} - \sum_{i=1}^{L} \hat{y}_{t+i-1}$$

200

___ Results

Root Mean Scaled Squared Error

F	orecasting	performance	at t	$_{ m he}$	SKU-	level
---	------------	-------------	------	------------	------	-------

Torecasting performance at the Sixo-level							
Method		Non-cumulative			Cumulative		
		t+3	t+6	t+12	t+3	t+6	t+12
				R.	MSsE		
В	$_{\rm G}^{\rm E}$	0.824 0.837 2.772	0.874 0.873 2.860	$0.930 \\ 0.985 \\ 2.922$	2.048 1.962 8.274	3.931 3.473 17.063	8.005 7.632 34.863
Н	EEE LLL GGG	0.815 0.912 1.218	0.868 0.969 1.202	0.937 1.076 1.163	2.007 2.188 3.211	3.999 4.161 6.040	7.928 8.422 10.802
LU	LLE LEE LLG LGG	0.879 0.817 1.022 1.154	0.931 0.849 1.035 1.148	1.019 0.891 1.063 1.134	2.024 1.936 2.511 2.996	3.920 3.620 4.675 5.655	7.979 6.817 8.239 10.106

7000

Results

Root Mean Scaled Squared Error

Forecasting pe	erformance	at th	ie SKU-	level
----------------	------------	-------	---------	-------

Torontoling Performance at the Sire level							
	Non-cumulative			(Cumulative		
Method	t+3	t+6	t+12	t+3	t+6	t+12	
		RMSsE					
$_{\rm GEE}^{\rm LEE}$	$0.817 \\ 0.810$	0.849 0.856	$0.891 \\ 0.914$	1.936 1.981	3.620 3.877	6.817 7.589	
	AMsE						
$_{\rm GEE}^{\rm LEE}$	$\frac{1.307}{1.291}$	$1.354 \\ 1.361$	1.419 1.451	3.121 3.180	5.794 6.230	10.890 12.213	
	sPIN						
$_{\rm GEE}^{\rm LEE}$	$0.167 \\ 0.173$	$0.181 \\ 0.193$	$0.217 \\ 0.231$	$0.434 \\ 0.439$	$0.864 \\ 0.922$	1.771 1.988	

7000

Inventory evaluation

- Order up-to inventory policy with lost sales
- Review lead time 3, 6, 12
- Different target fill rates: 90 99.9 %
- 108 periods as burn-in sample before the test set

___ Results

Inventory Performance

$$FR_{\alpha} = \frac{1}{o} \sum_{i=1}^{o} \frac{d_i(\alpha)}{y_i}$$

The effect of hierarchical reconcilation

Results

Inventory Performance

The optimal hierarchical level of identifying leading indicators
- LEE leads to higher fill rates

<u></u> //	Results
	Inventory Performance

	_		
Horizon	Lasso	LightGBM	Common
1	23.2	226.5	2.0
2	31.4	219.7	3.6
$\frac{2}{3}$	32.0	224.4	3.4
4	30.7	220.1	3.4
5	36.5	214.5	4.2
6	33.5	214.8	5.8
7	34.5	204.2	5.5
8	35.4	194.2	7.0
9	36.8	185.8	7.6
10	37.3	168.5	9.6
11	33.2	155.4	9.1
12	30.3	138.4	12.8

Hierarchial forecast modelling with leading indicators: LASSO vs LGBM

אכטר חור

___ Results Model insights

Contribution of each hierarchical level in the final forecast

Insight in the relevant leading indicators

Conclusion

- The diversity of information across the hierarchical levels maximises the benefits Leading indicators on the bottom level do not work well

 - Combining leading indicators on top + univariate inforation on lower levels works
- Leading indicator information contributes major on the top level, however the choice of modelling is of secondary importance
 LASSO provides managerial insight and requires less indicators
- The improved sales forecasting effect can be carried on to stock-keeping-unit (SKU) level via hierarchical reconciliation
- The improvement originates from a three-fold play between
 Leading indicator information
 Hierarchical reconciliation

 - Empirical forecast distributions

Thank you for your attention Questions?

yves.sagaert@vives.be

yForecasting.github.io

www.linkedin.com/in/yvessagaert

References

Babai, M. Z., Boylan, J. E., & Rostami-Tabar, B. (2024). Demand forecasting in supply chains: a review of aggregation and hierarchical approaches. *International Journal of Production Research*, 60(1), 324-348.

A. Panagiotelis, P. Gamakumara, G. Athanasopoulos et al., (2024) Probabilistic forecast reconciliation: Properties, evaluation and score optimisation, European Journal of Operational Research.

Sagaert, Y. R., Aghezzaf, E. H., Kourentzes, N., & Desmet, B. (2018a). Tactical sales forecasting using a very large set of macroeconomic indicators. *European Journal of Operational Research*, 264(2), 558-569.

Sagaert, Y. R., Aghezzaf, E. H., Kourentzes, N., & Desmet, B. (2018b). Temporal big data for tactical sales forecasting in the tire industry. *Interfaces*, *48*(2), 121-129.

Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2018). Forecasting hierarchical and grouped time series through trace minimization. working paper 15/15, Department of Econometrics & Business Statistics, Monash University.

