Vas Riemann-Integral

f: [a, b] -> IR eie Funktion, m:= int f([a, b]), M:= sup f([a,b])

Z = {x, x, ..., x, } heist are Zerleves von [a,b]

(=) $a = x_0 < x_1 < ... < x_n = b$

Sei Z = {xo, ..., xn} eine Zerlegung.

I; = [x, , x,], |I, |:= x; -x; -1, m; = inf f(I;), M; = sup f(I;) => Sx(2):= \(\frac{z}{z}\) m; |I,| die Untersumme von f bezüglich Z

=> S, (2):= \(\tilde{\infty} M; |\tilde{\infty} |\ \text{ die Obesumme von } \text{ bzsl. } \(2 \)

Se: Sx:= sup { sx(2): 2 isd ?=lesury}
Sx:= inf{Sx(2): 2 ist ?elesury}

=) f hept Riemann Integricular über [a,b] (=) =) f (R([a,b])

Te	rm	ino	Loc	ic																						
	, ,		0																							
	6		7		م ر ا	Q	Γ.,	1. 1.																		
	<i>'</i>	9 :	1	_	וו כ	`	7 01	K fee	محر																	
	6	he	of	ei	m	S	Cmr	nfu	.lkti	04	vo	4	9	OL L	1	Ι										
	((<u>=</u>)	6	•.1		.vF	7	٠.	-4.			L		.,		6	_ ,									
			G	160	C	vr		a	·rre	rehr	z:e-k	00	u	nu		G	- 9	,								
	Bes	itak		9:	Ī	- >	R	e:u	e	Sza	mm	FOL	lctio	<i>ہ</i> ہ	So	S	chr	ibl	m	دم	Fü.	, ,	lies	z c	uL	
			ſ.	-1				0.	ſ		(۱۰	. 1.														
) 9	, a	. k		o a		J	9	۱,۸۱	a	k .													
		04	, l	-eif	ધ	eir		un	bes	tim	mt	es	In	Legra	·l	vou	1 4	j .								
																	•	,								

Riemann soles Integrab; Litäts Iriterium $f \in R([a,b]) \iff \forall E > 0 \exists Z = Z(E) ? e(gvy : S_{\mu}(Z) - S_{\mu}(Z) < E$

1. Hauptsatz de Differential - und Integral rechnung

[5] FE R([a,b]) und besitzt f art [a,b] eine Stamm funktion F,

So ist $\int_{a}^{b} f(x) dx = F(b) - F(a)$

Es gibb integrier bare Funktionen, die leeine Stammfunktion desitren Es gibb nicht integrier bare Funktionen, die eine Stammfunktion desitren

2. Hauptsatz cle Dithautial - und Integralrachnung

 $F(x) := \int_{a}^{x} f(t) dt \quad (x \in [a,b])$

Sei fER([a,b]) und

- F(x) - F(x) = \$ f(t) dt (x, y \in [a, b])

- Fish Lipschitz - Shtis

- 1st $f \in C([a,b]) \Rightarrow F \in C^2([a,b])$ and $F'(x) \Rightarrow f(x)$ ($x \in [a,b]$)

Partielle Integration

 $\int_{a}^{b} f'(x) \cdot g(x) dx = \left[f(x) \cdot g(x) \right]_{a}^{b} - \int_{a}^{b} f(x) \cdot g'(x) dx$

Substitutions regula 1st y = y (x) cire ditherancebare Funktion, so school man cuch y'= dx Substitutes X = g(t)Leaf beide Seiter obleiter $\frac{dx}{dt} = g'(t)$ =) , dx = g'(t) dt"

Sin
$$K,g: I \rightarrow \mathbb{R}$$
 beschict kt

• $\{s\}$ $\{x \in [a,b]: F:s\}$ with skty $\}$ endlets

 $\{s\}$ $\{x \in [a,b]: F:s\}$ and $\{x \in [a,b]: F(x) \neq g(x)\}$ condition

• $\{s\}$ $\{x \in [a,b]: F:s\}$ and $\{x \in [a,b]: F(x) \neq g(x)\}$ condition

• $\{s\}$ $\{x \in [a,b]: F:s\}$ and $\{x \in [a,b]: F(x) \neq g(x)\}$ condition

• $\{s\}$ $\{x \in [a,b]: F:s\}$ and $\{x\}$ $\{x\}$

Es sei I ⊆ R ein Interell g ∈ C(I) und x o ∈ I (test). Detiniere G: I → R mit

 $G(x) = \int_{0}^{\infty} g(t) dt$

Dana: GE (1(I) and G'= g and I