PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-261761

(43)Date of publication of application: 20.09.1994

(51)Int.CI.

C12N 15/12

C12N 5/10

C12P 21/02

C12Q 1/02

// (C12P 21/02

C12R 1:91

(21)Application number: 06-011572

(71)Applicant : ELI LILLY & CO

(22)Date of filing: 03.02.1994

(72)Inventor: DANTZIG ANNE H

HOSKINS JOANN

SKATRUD PAUL LUTHER

(30)Priority

Priority number: 93 13462

Priority date: 04.02.1993

Priority country: US

(54) MAMMALIAN INFLUX PEPTIDE TRANSPORTER

(57)Abstract:

PURPOSE: To obtain a new DNA useful for expression of mammalian influx peptide transporter activities for measuring oral bioavailability of a medicine.

CONSTITUTION: This DNA compound is an isolated one containing a DNA sequence encoding human influx peptide transporter activities, and, for example, containing the DNA sequence encoding a protein having an amino acid sequence of the formula. The DNA can be obtained by a solution or solid synthesis.

Cit lie lie Fie Cie Pto tes Als Age Fee Pro Als Val The Pho Cis len the Cip Cia for dea des the Pha Cal Gly too Lee Tyr Ly Art Arg Ale too Ago dig Glo Ite Aug See

the Gir Ace Ale Tre Yel Fal Les Die Ary Tie Arm den Cip tily Arn Fe bra for Gij Cir fie Yel Ser Ges Iso Ya. the Pta tya Set Con Val Git Cie fer Cye Pre Ang Dee Ala fay net 617 11" Fro The Tal Giv We. Als Val Gly fie fee hen the the Acr Los Ant 112 Ely tie 11: Lou Ata Yal Ful Ma fin Lys Lys Asp Lys fly bys 440 Ash Yel Cin Ser Ma Gis Me Se: BLK GIT Val Lys Pro Las Jos Ser

i Ib

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The isolated DNA compound including the DNA array which is carrying out the code of the Homo sapiens inflow peptide transporter activity.

[Claim 2] The isolated DNA compound including the DNA array which is carrying out the code of the protein which has the amino-acid-residue array of the array number 1 according to claim 1.

[Claim 3] The isolated DNA compound including the DNA array of the array number 2 according to claim 2.

[Claim 4] A recombinant DNA vector including a DNA array according to claim 1, 2, or 3.

[Claim 5] The host cell by which the transformation was carried out by the recombinant DNA vector according to claim 4.

[Claim 6] The DNA array which is carrying out the code of the Homo-sapiens inflow peptide transporter activity which installed so that it might be discovered from promotor and translation activation array; which performs the transformation of a host cell using the recombinant DNA expression vector containing (a) below approach: (1) which consists of a process of the following which makes Homo-sapiens inflow peptide transporter activity discover, and (b), and functions in a :(a) this host cell, (b) this promotor, and a translation activation array;

(2) Cultivate this host cell by which the transformation was carried out in the process (1) under the suitable conditions for the manifestation of Homo sapiens inflow peptide transporter activity.

[Claim 7] The approach according to claim 6 by which the transformation of the host cell is carried out by the recombinant DNA expression vector according to claim 4.

[Claim 8] How to consist of the following processes for measuring intracellular incorporation of a compound: By the recombinant DNA expression vector which brings about the manifestation of (a) Homo sapiens inflow peptide transporter activity, contact the cell and this compound by which the transformation was carried out, and carry out assay about; and transportation of this compound to the inside of (b) this cell.

[Claim 9] The approach according to claim 8 by which the transformation of the cell is carried out by the recombinant DNA expression vector according to claim 4.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] this invention — a recombination deoxyribonucleic acid (following "DNA") — it is related with the field of law. This invention offers the isolated DNA compound containing DNA which is carrying out the code of the inflow peptide transporter (following "inflow peptide transporter") activity of a proton-dependency. Furthermore, a recombinant DNA vector and a host cell are offered.

[0002]

[Description of the Prior Art] In a mammals cell, a peptide is conveyed out of intracellular and a cell by the transporter from which some differ. The transporter which bears functionally an outflow out of the transporter which bears the intracellular inflow of a peptide, and the cell of a peptide exists. An inflow transporter conveys a small peptide and the compound of relation into cytoplasm, and they are carrying out indirect linking to the energy source through ion inclination. An outflow transporter consists of a transporter from which some which function as removing a peptide from cytoplasm differ. [Endicott and Ling by which P-glycoprotein which removes many oncolysis objects and hydrophobic peptides is contained in these, 1989, Annu.Rev.Biochem.58:137–171; Sharma and others, 1992, J.Biol.Chem.267: 5731–5734].

[0003] This invention relates to the peptide transporter which bears the inflow of the peptide to a cell or organelle. The peptide transporter of this class A gastrointestinal tract, the kidney, [Ganapathy and others located in a placenta and liver lysosome, 1991, and Indian J.Biochem.Biophys.28 Am.J.Physiol.: 317–323; — Skopicki and others and 1991 — 261: F670–F678; Ganaopathy and others, 1981, J.Biol.Chem.256: 118–124; Bird and Lloyd, 1990, Biochim.Biophys.Acta 1024: 267–270].

[0004] Usually, an inflow peptide transporter is located in the brush border of the epithelial cell of membrane. The property of a transporter is studied among an intestinal-mucosa preparation object in the location of a basis, and is further studied by in vitro one using the brush-border-membrane vesicle, the isolated intestines cell, and the cell culture object. A rat, a hamster, a rabbit, a fowl, The preparation object obtained from a Japanese newt and Homo sapiens [Ganapathy and Leibach to which it uses for and research is done, 1991, Curr.Biol.3: 695-701; Said and others, 1988, Biochim.Biophys.Acta 941: 232-240; Kramer and others and 1988, Biochim.Biophys.Acta 939: 167-172; Colonge and others, 1990 and Am.J.Physiol. 259 : G775-G780; Shimada and Hoshi, 1986, Jpn.J.Physiol.36: 451-465; Matthews and Burston, 1984, and Clinical Sci., 67: 541-549]. A small peptide (JI and tripeptide), an antibiotic (some oral beta-lactams are included), Oral angiotensin converting enzyme (ACE) inhibitor, The solute from which many containing oral renin inhibitor differ and by the inflow peptide transporter [Ganapathy and Leibach which are conveyed into the cytoplasm of an intestines cell, 1991, and Curr.Biol.3: -- 695-701; Okano and others, 1986, and J.Biol.Chem.261 : 14130-14134; Nakashima and others, 1984, Biochem.Pharm.33:3345-3352; Muranushi and others, 1989, Pharm.Res.6 : 308-312; Friedman and Amidon, 1989 and Pharm.Res.6 : 1043-1047; Friedman and Amidon, 1990, J.Control.Rel.13: 141-146; Kramer, 1991, and 17 th International Congress of Chemotherapy, June 23-28, Berlin, F.R.G., Abstract No.1415].

[0005] An inflow peptide transporter plays a central role in absorption of the oral medicine object

containing beta-lactam and ACE inhibitor of a certain kind. The inflow peptide transporter was able to distinguish what is absorbed in taking orally in Homo sapiens, and a thing without that right among 27 sorts of investigated beta-lactam antibiotics [Tabas and others, 1991, and 31 st Interscience Conference on Antimicrobial Agents and Chemotherapy Abstract No.164]. Furthermore, the thing for which a parenteral beta-lactam antibiotic is not conveyed although an inflow peptide transporter conveys many oral beta-lactam antibiotics In the research using Homo sapiens intestines Caco-2 cell and the rabbit intestines brush film [Dantzig and others shown and 1992, Biochim.Biophys.Acta 1112: 167-173; Dantzig and others, 1992 and 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy, Anaheim, CA, and Abstract No.1460; Snyder and others and 1992, 32 nd Interscience Conference on Antimicrobial Agents and Chemotherapy Abstract No.1461; Okano and others, 1986, J.Biol.Chem.261:14130-14134]. Same research which predicts oral absorption of which ACE inhibitor the capacity of an inflow peptide transporter is investigated and is carried out is done [Friedman and Amidon, 1989, and Pharm.Res.6:1043-1047].

[0006] Inflow peptide transporters are a sodium dependency and energy dependence. Symport of the proton is carried out with a substrate ("proton-dependency"). A substrate [Hoshi which presents the capacity condensed to intracellular to level higher than the level which exists out of a cell, 1986, Ion Gradient-Coupled Transport, and INSERM symposium No.26. Editors: F.Alvarado and C.H.van Os, Elsevier Science Publishers; Ganapathy and Leibach, 1991, and Curr.Opinion Cell Biol.3:695-701; Ganapathy and others, 1991, Indian J.Biochem.Biophys.28: 317-323]. The substrate specificity of an inflow peptide transporter is investigated in some kinds. Although these are not the same As very similar [Inui and others who comes out and exists, 1992, and J.Pharmacol.Exp.Thera.260 :482-486; Ganapathy and Leibach, 1983, and J.Biol.Chem.258: 14189-14192; Yasumoto and Sugiyama, 1980 and Agric.Biol.Chem. 44: 1339-1344; Nakashima and others, 1984, Biochem.Pharmacol.33: 3345-3352; Okano and others, 1986, Biochem.Pharmacol.35: 1781-1786]. The binding site of an inflow peptide transporter is not known, therefore its description of the absolute chemical structure required for association and transportation of a solute is also strange, research of correlation of the structure of a substrate and inhibitor and activity is done, and it is unnecessary to transportation -- [as which the structural description of shoes is solved — Bai and others, 1991, and Pharm.Res.8: — 593-599; Snyder and others, 1992, 32 nd Interscience Conferenceon Antimicrobial Agents and Chemotherapy, Oct.11-14, Anaheim, CA, and Abstract No.1461].

[0007] Inflow peptide transporter activity is [Kramer identified as 127,000dalton membrane protein from rabbit intestinal mucosa by the optical affinity-labeling method using the penicillin or the cefalexin analog by which the radiation label was carried out by which the radiation label was carried out, 1987, and Biochim.Biophys.Acta 905:65-74.; Kramer and others, 1988, Biochem.PHarmacol.37: 247-2435]. [which the 127,000dalton protein of purification of the rabbit intestinal-mucosa preparation object origin reconfigurated in liposome gave association and transportation activity — Kramer and others, 1990, and Biochim.Biophys.Acta 1030: — 50-59]. [by which the rabbit inflow peptide transporter is functionally discovered in Xenopus laevis oocyte — Miyamoto and others, 1991, and J.Biol.Chem.266: — 4742-4745]. However, the structure of the cloning gene which is carrying out the code of the mammalian inflow peptide transporter, or one of its components are not reported to any kinds.

[0008] Probably, cloning of an inflow peptide transporter will be useful for development of the approach of enabling the quick identification and the development of an oral absorption drug which use this device. An oral bioavailability is the very desirable property of many drugs. Probably, especially measurement of the oral bioavailability of the drug in the phase in early stages of development will be advantageous. Current and a drug are first evaluated about an oral bioavailability in the animal model. This process needs selection of a small number of compound very much, and composition of this compound must be expanded to extent evaluated in these models. When a compound is not absorbed in taking orally using these models, in order to attain an oral bioavailability, the analog of the compound is created in many cases. This process wastes time amount, is difficult and requires costs. Furthermore, although you may set to the animal model and it is absorbed, there are many examples of the compound which is not absorbed by Homo sapiens. Since it supplements with this conventional approach, other evaluation approaches are needed.

[0009]

[Problem(s) to be Solved by the Invention] Especially this invention offers the host cell by which the transformation was carried out by the isolated DNA compound including the DNA array which is carrying out the code of the mammalian inflow peptide transporter activity, the recombinant DNA expression vectors which are carrying out the code of the mammalian inflow peptide transporter activity, and these recombinant DNA expression vectors. These recombinant DNA expression vectors and host cells are useful in the approach for making inflow peptide transporter activity discover. (a) below: (1) which this approach becomes from the following processes And (b) So that it may be discovered from promotor and translation activation array; which performs the transformation of a host cell using the included recombinant DNA expression vector, and functions in a :(a) this host cell, (b) this promotor, and a translation activation array DNA array which is carrying out the code of the inflow peptide transporter activity of the installed mammals;

(2) Cultivate this host cell by which the transformation was carried out in the process (1) under the suitable conditions for the manifestation of inflow peptide transporter activity.

[0010] Probably, the capacity which predicts the taking-orally-availability of the drug in Homo sapiens by the initial stage of a drug discovery process will be advantageous. For this purpose, this invention offers a useful analysis means in the prediction of the oral availability of the physic compound in Homo sapiens by the inflow peptide transporter. That is, by the recombinant DNA expression vector which brings about the manifestation of :(a) mammals inflow peptide transporter activity about the approach for measuring incorporation of the compound by the cell which consists of the following processes, one mode of this invention contacts the cell and this compound by which the transformation was carried out, and carries out assay about; and transportation of this compound to the inside of (b) this cell.

[0011] Other modes as these modes of this invention and a hybridization probe of the DNA array of this invention, such as use, are explained in more detail below, and are indicated to a claim.
[0012]

[Means for Solving the Problem]

Definition coding array: The DNA array in the reading frame of the gene which carries out the code of the amino-acid-residue array of the protein discovered from a gene.

DHFR: Dihydrofolate reductase gene.

Gene: The DNA segment containing the promotor who installed so that a gene product might be made to discover, a translation activation array, a coding array, and 3' regulatory sequence.

Inflow peptide transporter activity: Migration of the substrate which crosses the film depending on existence of the proton gradient of internal directivity. Functionally, activity can be measured by measuring transportation of the compound which crosses the film under the absence of the excessive amount of the known substrate (for example, [a small peptide (for example, JI and tripeptide), an antibiotic (for example, cefalexin), oral angiotensin converting enzyme (ACE) inhibitor, and oral renin inhibitor]) of a transporter, or existence under existence of pH-inclination (that is, external one has acidity higher than the interior of a cell or a membrane vesicle) of internal directivity.

Promotor: The DNA array which makes the imprint of DNA order or start.

Recombinant-DNA expression vector: It is all the DNA matter that reproduces autonomously or performs a nest, although a plasmid is included, it is not limited to it, but the promotor and other regulatory sequences which were installed so that the DNA segment which carries out the code of a polypeptide or the RNA might be made to discover are included.

Recombinant-DNA array: It is all the DNA arrays that excepted the host chromosome which drew DNA, and include the DNA array by which isolation and composition or partial composition was carried out.

restriction fragment: -- all the lines produced according to an operation of the restriction enzyme beyond 1 or it -- a DNA molecule.

Translation activation array: The accommodation DNA array which promotes a translation in the protein of mRNA when it imprints to mRNA.

all the nucleotides and amino acid abbreviation which were used by this detail letter — an United States patent trademark station — 37 C.F.R.Section — as shown in 1.822 (b) and (1992), it accepts. [0013] The restriction enzyme and functional map which were shown in the explanatory view side of a drawing are the near display of the recombinant DNA vector indicated in this specification. The

information on a limit part is not comprehensive. The restriction enzyme part of many predetermined molds may exist from the actually shown part on a map. <u>Drawing 1</u> is the restriction enzyme part and functional map of a plasmid pPSJ179. <u>Drawing 2</u> is the restriction enzyme part and functional map of a plasmid pPSJ189.

[0014] Detailed explanation this invention offers the isolated DNA compound including the DNA array which is carrying out the code of the mammals inflow peptide transporter activity. The amino acid sequence of an inflow peptide transporter is shown as an array number 1 among an array table. The DNA array which is carrying out the code of the inflow peptide transporter is shown as an array number 2 among an array table.

[0015] This contractor will admit that it is possible to build the DNA array from which many which carry out the code of the array number 1 differ with the property of the degeneracy of a gene code. The DNA array shown by the array number 2 is one [mere] of many possible inflow peptide transporter coding arrays. therefore, the structure indicated in the following and the attached example about the desirable DNA compound, vector, and transformant of this invention — the thing for instantiation — it is — it does not pass and does not have the intention of limiting the range of this invention.

[0016] An array can be prepared by various approaches, therefore is limited to no specific preparation means now when the array of an inflow peptide transporter became known, the DNA array of this invention — a DNA synthesis method, cDNA cloning, genome cloning, and polymerase chain reaction (PCR) — it can manufacture by law or some approaches including the combination of these approaches, these and other approaches — Maniatis[— "molecular cloning: —— a laboratory — a manual — " — Cold Spring Harbor Press — ColdSpring Harbor Laboratory — Cold Spring Harbor — New York —] (1989) — or — F. — M. — Ausbel — ** — [— "— molecular biology — recently — a protocol — " — 1989 —] — indicating — having — ****. The contents of both bibliography of these shall constitute some of these specifications.

[0017] The DNA array of this invention is compoundable using an approach and equipment available as a commercial item. For example, the DNA array of this invention can be manufactured using a solid phase phosphotriester method. A DNA array is compoundable with the amelioration phosphotriester method using the DNA construction block protected completely, such a synthesis method — substantial — Itakura et al. — [1977 and Science 198: 1056] and Crea[—

Proc.Natl.Acad.Sci.U.S.A.75: 575], and Narang et al. — [1980 and Methods in Enzymology 68: It can carry out according to the approach of 90]. It adds to the approach by handicraft and is ABS 380A. A DNA array is compoundable using automation synthesizer units, such as a DNA synthesizer (Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404). Moreover, polymerase chain reaction can be made to generate a DNA array. For example, refer to the United States patent numbers 4,800,159 and 4,683,202 and the Europe patent public presentation number 0258017 (March 2, 1987 public presentation).

[0018] It can be known widely, and can get down and the approach for a solution and solid phase composition can use various automation synthesizer units available as a commercial item according to a known protocol. for example, Stewart and Young [Solid Phase Synthesis 2nd edition, Pierce Chemical Company, and 1984]; Tam et al. — [1983 and J.Am.Chem.Assoc.105: 6442];, and Merrifield et al. — [1982 and Biochemistry 21: 5020] — reference.

[0019] DNA which is carrying out the code of the mammalian inflow peptide transporter activity can be cloned in various vectors by the well-known approach for the time being in the fields. Many suitable vectors including cosmid, a plasmid, a bacteriophage, a baculovirus, and a virus can be used. One of the main requirements to such a vector is being able to carry out the transformation of self's being reproduced and the host cell. Preferably, this vector is a recombinant DNA expression vector which may make the inflow peptide transporter activity of the mammals in which a code is carried out by the DNA array of this invention discover. The usual expression vector contains at least promoterregion, a 5 '- untranslation region, coding array, and 3'-untranslation region, a replication origin, a selective marker, and the conclusion section of an imprint. Furthermore, although the array in which a useful vector presupposes that it is possible the reproduction in Escherichia coli is included by this invention, it is usually because it is much more efficient that this prepares plasmid DNA in E.coli from other host organisms.

[0020] The various expression vectors which can be embellished in order to make the new DNA array of this invention discover exist. It does not have the intention of only mentioning as an example the specific vector illustrated in this specification, and limiting the range of this invention. the discovered method -- Maniatis[-- "molecular cloning It is indicated by :laboratory manual"] or the "latest protocol of molecular biology" [16.3-17.44] (1989). Moreover, the discovered method in Saccharomyces is indicated by "the latest protocol of molecular biology" (1989). [0021] Prokaryon nature vectors, such as a pNH vector (Stratageneinc., 11099 N.Torrey Pines Rd., LaJolla, CA 92037), a pET vector (Novogen Inc., 565 Science Dr., and Madison WI 53711), and a pGEX vector (Pharmacia LKB Biotechnology Inc., Piscataway, and NJ 08854), are contained in the vector suitable for using it in the case of this invention operation. For the example of an eukaryon nature vector useful in the case of this invention operation Vector pRc/CMV, pRc/RSV and pREP (it Invitrogen(s)) 11588 Sorrento Valley Baculovirus vectors, such as Rd., San Diego, CA 92121;pVL1392, and pVL1393, pAC360 (Invitrogen); YRP17, YIP5, and YEP24 () [New] Yeast vectors, such as England Biolabs, Beverly, and MA, And Picchia vectors, such as pRS403, pRS413 (Stratagene Inc.), and pHIL-D1 (Phillips Petroleum Co., Bartlesville, -74004), are contained. [0022] A functional promotor is contained in the promotor for using it in the expression vector of this invention in a prokaryotic cell or an eukaryotic cell. In a prokaryotic cell, a lactose (lac) control member, a bacteriophage lambda (pL) control member, an arabinose control member, a tryptophan (trp) control member, bacteriophage T7 control members, and these hybrids are contained in a functional promotor. In an eukaryotic cell, Saccharomyces promotors, such as Picchia promotors, such as baculovirus promotors, such as an Epstein Barr virus promotor, an adenovirus promotor, an SV40 promotor, a Rous-sarcoma-virus promotor, a cytomegalovirus, and an AcMNPV polyhedron promotor, and an alcohol oxidase promotor, a gal4 inductivity promotor, and a PGK compositionality promotor, are contained in a functional promotor.

[0023] Furthermore, the vector of this invention can contain one of the various markers of a large number which make easy selection of a host cell by which the transformation was carried out of arbitration. The gene related to the enzyme relevant to temperature sensitivity, drug tolerance, or the phenotype property of a host organism is contained in such a marker.

[0024] After inserting into a vector the DNA array which is carrying out the code of the mammalian inflow peptide transporter activity, the vector can be used and the transformation of the host cell can be carried out. Usually, the cellularity living thing containing the prokaryotic cell or eukaryotic cell by which a transformation may be carried out to a host cell by the vector containing DNA of this invention is included. The transformation of a cell and the approach of transfection are common knowledge for the time being in the fields, and can be found out in common bibliographies, such as Maniatis et al. (1989) and the "latest protocol of molecular biology" (1989).

[0025] This invention is not limited to the use to a specific host cell. The vector of this invention can be introduced into many host cells, and can be made to discover. The host cell to which the transformation of this invention was carried out can be cultivated in the usual nutrition culture medium embellished suitably because of induction of a promotor, selection of a transformant, or magnification of a gene. Probably culture conditions, such as temperature and pH, are conditions already used about the host cell chosen for the manifestation, and will be clear to this contractor. [0026] It depends for selection of a specific host cell on the specific expression vector used in order to make the inflow peptide transporter activity—coding DNA compound of this invention discover to some extent. After introducing to the host cell of the vector of this invention, a transformant can be chosen based on selectable phenotype. The selectable marker which exists on an expression vector can give this selectable phenotype.

[0027] In a suitable host cell, for example, prokaryotic cell; Chinese hamster ovary cell CHO-DHFR-[American Type Culture Collection, such as Escherichia coli and Bacillus subtilis (ATCC), From 12301 Parklawn Drive, Rockville, and Maryland 20852-1776, under trust number ATCC CRL-9096 Available], Chinese hamster ovary cell CHO-K1 (ATCC CCL-61), The Syrian hamster cell AV12 (ATCC CRL 1573), A Homo sapiens lymphocyte CCRF-CEM cell, a Homo sapiens neuroblastoma cell, the Buta kidney cell (LLC-PK1, ATCC CL101), and liver, A brain, Eukaryotic cells, such as the skin and a cell of the suprarenal gland origin; yeast cell;Spodoptera frugiperda Sf9 () which reaches Saccharomyces cerevisiae and contains Picchia pastoris [ATCC] The insect cell

containing the Leucania larva cell of CRL 1711 etc.; a fungus cell including an Aspergillus kind is contained.

[0028] the manifestation in a prokaryotic cell and an eukaryotic cell — Maniatis et al. (1989), Kaufmann["the principle of gene engineering, and an approach", and J.K — the volume on Setlow, and Plenum Press 9: It is indicated by 155 and] (1988). The manifestation of yeast is indicated by Barr and others [the volume gene engineering" of "yeast, and on Butterworth, and Boston 1989]. The manifestation in an insect cell is Maeda[1989, "the annual report of entomology", and 34.: It is indicated by 351].

[0029] The DNA array shown by the array number 2 was acquired from the cDNA clone prepared from mRNA of Caco-2 cellular in. Caco-2 cellular in is [Dantzig and Bergin which are the Homo sapiens colonic gland cancer cellular in where incorporating an antibiotic by the inflow peptide transporter is shown, 1990, and Biochim.Biophys.Acta 1027. : 211-217; Dantzig and others, 1992, Biochim.Biophys.Acta 1112 : 167-173]. Caco-2 cell is available under ATCC to the trust number ATCC HTB37.

[0030] The instantiation vector of this invention was introduced into Escherichia coli RR1 or E.coli DH5 alpha cell, and it ****ed to Northern Regional Research Laboratories (NRRL) (Peoria and Illinois 61604) on January 21, 1993, and carried out to a part of permanent storage culture collection. A specific culture and a specific trust number are shown in Table 1.

[Table 1]

Table [] 1 culture Trust number E.coli K12 — DH5 alpha/pPSJ 179 NRRL B-21041 E.coli K12 RR1/pPSJ189 NRRL B- 21042 [0031] A culture comes to hand and a plasmid is isolated with a conventional method. Subsequently, in order to make a mammals inflow peptide transporter produce, this plasmid can be introduced into a direct host cell.

[0032] Die length is about 8500 base pairs, and a plasmid pPSJ179 contains DNA which is carrying out the code of the inflow peptide transporter of the Caco-2 cell origin. The plasmid pPSJ179 built the 3.4 kb Xbal-HindIII cDNA restriction enzyme fragmentation containing inflow peptide transporter-coding DNA by carrying out cloning into vector pRc/RSV (Invitrogen) available as a commercial item. Since the inflow peptide transporter had the HindIII restriction enzyme part inside, it used partial restriction enzyme digestion in cloning of 3.4kb Xbal-HindIII fragmentation. A plasmid pPSJ179 contains the inflow peptide transporter gene installed so that it might be discovered from the neomycin resistance gene and Rous-sarcoma-virus (RSV) promotor for the selection in the ampicillin resistance gene for the selection in Escherichia coli, and an eukaryotic cell. The restriction enzyme and functional map of a plasmid pPSJ179 are shown in attached drawing 1.

[0033] A plasmid pPSJ189 is also the example of the vector of this invention. A plasmid pPSJ89 is the magnitude of about 12.2 kilobases. A plasmid pPSJ189 contains the KpnI-Spel restriction fragment of the 3.4 kilobase pairs containing inflow peptide transporter-coding DNA cloned in the variant with which Plasmid pHD was embellished. Plasmid pHD was embellished so that the restriction enzyme part for making easy cloning of the KpnI-Spel restriction fragment of the 3.4 kilobase pairs containing inflow peptide transporter coding DNA might be included. Plasmid pHD is indicated in the Europe patent public presentation number 0245949 (November 19, 1987 public presentation). A plasmid pPSJ189 contains BK enhancer and the adenovirus main late promoters which were installed for the hygromycin tolerance gene for the selection in the ampicillin resistance gene for the selection in Escherichia coli, and an eukaryotic cell, a DHFR gene, and inflow peptide transporter gene expression. The restriction enzyme and functional map of a plasmid pPSJ189 are shown in attached drawing 2.

[0034] This contractor will admit that inflow peptide transporter coding DNA can be started as various restriction enzyme fragmentation from plasmids pPSJ179 and pPSJ189, and may be cloned in many expression vectors. For example, the inflow peptide transporter coding activity DNA can be started as KpnI-SpeI restriction enzyme fragmentation of 3.4 kilobase pairs from a plasmid pPSJ189 as 3.4 kilobase-pair HindIII-XbaI restriction enzyme fragmentation from a plasmid pPSJ179. This contractor will accept the thing for which partial restriction enzyme digestion will be required, in order to prepare the DNA fragment which carries out the code of the perfect inflow peptide transporter to because of that of the existence of many restriction enzyme parts in plasmid DNA. Identification, isolation, and the approach for carrying out cloning are common knowledge for the time being in the

fields about various restriction enzyme fragmentation including the inflow peptide transporter coding activity DNA.

[0035] other transporters by which structure is similar to the inflow peptide transporter of this invention based on the indication of this specification — polymerase chain reaction (PCR) — it can identify with the combination of the approaches of common knowledge, such as law and DNA hybridization, or these approaches. An inflow peptide transporter consists of an extracellular field (about amino acid residue 1–778 of the array number 1), and a transformer MENN bulan field (about amino acid residue 778–809 of the array number 1). An extracellular field is [Takeichi and M. which are very much related to the family of the protein known as cadherin, 1990, and Annu.Rev.Biochem.59.: 237–252]. A cadherin family has the outside of a highly preservable cell, and an intracellular field. However, an inflow peptide transporter is [Klinter which does not have the intracellular field of shelf life where it is shown that it is required for the functional activity of cadherin, 1992, and Cell 69.: 225–236]. The protein related to an inflow peptide transporter can be identified using the hybridization method based on this difference between cadherin and an inflow peptide transporter.

[0036] Under a certain hybridization method, a probe specific to a cadherin family and the shelf-life extracellular field of an inflow peptide transporter, and the shelf-life intracellular field of b cadherin family is obtained. Such a probe can be obtained using the PCR method. In this case, template DNA may be cDNA obtained from the cellular in of a different tissue form which discovers genomic DNA or inflow peptide transporter activity, and cadherin. The kidney, an intestinal tract, the cell of the pancreas origin, or the endothelial cell of the "blood-brain" gateway origin is contained in the possible source of supply for template DNA.

[0037] A specific probe is first used for the highly preservable extracellular field of a cadherin family and an inflow peptide transporter in a hybridization experiment, and the gene which has the extracellular field of cadherin and other peptide transporters is identified. Subsequently, the gene which carries out the code of the cadherin is identified, using the probe obtained from the intracellular field of cadherin as a hybridization probe. Although it reacts with the probe to an extracellular field, the candidate of an inflow peptide transporter deserves the gene to which the probe to an intracellular field does not react. These genes are cloned in a recombinant DNA expression vector, and it introduces into a suitable host cell. Subsequently, assay of the host cell by which the transformation was carried out is carried out about the manifestation of inflow peptide transporter activity.

[0038] The same result can be mentioned using a different-species hybridization method. In this case, a possible inflow peptide transporter is distinguished from cadherin using the DNA fragment showing a part for the outside of the cell of cadherin, and the interior of a cell.

[0039] Other genes which are carrying out the code of the peptide transportation activity using the conventional hybridization method using DNA which is carrying out the code of the inflow peptide transporter of this invention, or the probe based on the part of the arbitration can be identified. For example, the gene which has peptide transportation activity using the probe based on the array number 2 or its part can be identified. Moreover, the gene which has peptide transportation activity using the probe based on the amino acid sequence of the array number 1 or its part which degenerated can be identified. Maniatis and others (1989) is indicating the hybridization method. [0040] As shown above, this invention offers the approach for measuring incorporation of the compound by the inflow peptide transporter. This approach is useful in prediction of the oral bioavailability of the compound by the inflow peptide transporter in Homo sapiens. A variety of compounds can be examined about the incorporation by the inflow peptide transporter. A small peptide and a small remedy object, for example, an antibiotic, ACE inhibitor, and renin inhibitor are contained in the example of such a compound. These compounds are mere instantiation. This approach is applicable to any compounds as a matter of fact, in order to examine the capacity incorporated by the inflow peptide transporter. Therefore, in one mode, this invention contacts the cell and this compound by which the transformation was carried out by the recombinant DNA expression vector which brings about the manifestation of a mammals inflow peptide transporter activity which offers the approach for measuring incorporation of the compound to the inside of a cell of consisting of the following processes, and carries out assay about transportation of this compound

to the inside of b this cell.

[0041] The example of the recombinant DNA expression vector which brings about the manifestation of useful inflow peptide transporter activity in the approach of this invention was indicated above. Such a recombinant DNA expression vector can be adjusted for the optimal manifestation of the inflow peptide transporter activity in the host cell chosen for a manifestation.

[0042] The various cells containing the cell indicated above can be used in this approach. Especially the cell that lacks inflow peptide transporter activity before the transformation in the recombinant DNA expression vector of this invention is useful in this method. The cell which has incorporation of a measurable compound before the transformation in the recombinant DNA expression vector of this invention is also useful. Assay of the cell by which the transformation was carried out by the recombinant DNA expression vector which is carrying out the code of the inflow peptide transporter activity in which case can be carried out about increase of transportation of the trial compound to this cell.

[0043] In this mode of this invention into a useful cell For example, prokaryotic cells, such as Escherichia coli and Bacillus subtilis; Chinese hamster ovary cell CHO-DHFR-[American Type Culture Collection (ATCC), From 12301 Parklawn Drive, Rockville, and Maryland 20852–1776, under trust number ATCC CRL-9096 Available], Chinese hamster ovary cell CHO-K1 (ATCC CCL-61), The Syrian hamster cell AV12 (ATCC CRL 1573), A Homo sapiens lymphocyte CCRF-CEM cell, a Homo sapiens neuroblastoma cell, the Buta kidney cell (LLC-PK1, ATCC CL101), and liver, A brain, Eukaryotic cells, such as the skin and a cell of the suprarenal gland origin; yeast cell; Spodoptera frugiperda Sf9 () which reaches Saccharomyces cerevisiae and contains Picchia pastoris [ATCC] The insect cell containing the Leucania larva cell of CRL 1711 etc.; a fungus cell including an Aspergillus kind is contained. Moreover, probably, the peptide transportation deletion mutant of the cell which made reference upwards will be useful in the approach of this invention. such a peptide transportation deletion mutant — Escherichia coli[— DeFelice and others, 1973, and J.Bacteriol.116: 751-7560] and yeast [— Island and others, 1991, and Curr.Genet.20: 457-463; Marder and others, 1978, and J.Bacteriol.136: It is indicated about 1174-1177].

[0044] Probably, the specific vectors used in order to make an inflow peptide transporter discover as shown above differ according to the host cell to be used.

[0045] Incorporation of the compound by the transformer FEKUTANTO cell which has discovered inflow peptide transporter activity can be measured by various approaches. measurement of an appearance of a trial compound host intracellular to these approaches, i.e., this cell, — dissolving — a melt sample — a high speed liquid chromatography — or when the radiation label of this compound is carried out, measurement by analyzing a compound by detection of radioactivity is included. Moreover, other properties related to a specific trial compound can be measured. That is, in order to screen a specific compound, the assay usually used can be used, for example, the capacity of a compound to permute association of the ligand to a receptor in receptor assay (or enhancement), the capacity of the compound which checks a related enzyme (or stimulus), the capacity of the compound which checks growth of a living thing (or stimulus), or a trial compound has — will come out and I will be — being of a certain kind — others — a property can be used. Inflow peptide transporter activity can be measured using various assays containing the assay currently indicated by Bradner and Claridge [volume 1984, "screening system in antineoplastic drug", and on W.A.Remers, Wiley-Interscience Pub., John Wiley and Sons, and Inc.N.Y., and NY].

[Example] It has the intention of the example shown below helping much more understanding of this invention. The matter, the specific kind, and the specific conditions of being used have the intention of explaining this invention in more detail, and do not tend to limit the just range of this invention. The approach for actuation of DNA and analysis was performed as essentially indicated by Maniatis and others (1989). The conditions for a restriction enzyme reaction are manufacturer [Boehringer Mannheim (BM), Indianapolis, and IN.; New England Biolabs (NEB), Beverly, MA; The conditions currently recommended by Bethesda Research Labs (BRL), Gaithersburg, and MD] were used. [0047] Transfection of the example 1 Chinese hamster ovary cell (CHO-K1 and ATCC CCL 61) was carried out by the plasmid pPSJ179 using the calcium precipitate protocol indicated in the Stratagene mammalian transfection kit (Stratagene Catalog # 200285). A plasmid pPSJ179 can be

isolated from Escherichia coli K12 DH5 alpha/pPSJ 179 (NRRL B-21041) using the usual alkali-SDS method (Maniatis and others, 1989). The transfection method of a calcium precipitate protocol was performed as follows. It is calcium of 20microg mostly about CHO-K1 cell (one day after 100mm culture plate and plaiting) of complete growth. - It incubated for 20 minutes at 37 degrees C with the DNA sample which precipitated. The DNA sample was either a plasmid pPSJ179 or plasmid pRc/RSV as contrast. Then, this cell was proliferated for three days in F12 culture medium which contains fetal calf serum (Hyclone Laboratories Inc., Logan, UT 84321) 10%. The culture medium was permuted by the growth medium which contains a selection drug and G-418 sulfate (Gibco, Grand Island, NY) by ml in 300microg /, and the cell was proliferated for 13 days at 37 degrees C among 3% CO2 incubator next. The colony chosen for next research was proliferated in the selected time amount and the 37-degree C selected selective medium among 5% CO2 incubator. Transformer FEKUTANTO was evaluated about the manifestation of an inflow peptide transporter using the reactant monoclonal antibody to enzyme joint immune absorbance assay (ELISA) and an inflow peptide transporter. It chose for transportation research of the clone which discovered the inflow peptide transporter antigen of level higher than contrast. according to an exception method -- Dantzig et al. -- [1990 and Biochim.Biophys.Acta 1027: Choose a clone about the manifestation of an inflow peptide transporter using the approach indicated by 211-217]. Furthermore, the clone containing DNA which is carrying out the code of the inflow peptide transporter can be identified using the hybridization method using the probe based on the array number 1.

[0048] The clone chosen in the example 2 example 1 was evaluated about incorporation of antibiotic cefalexin. Cefalexin is available from Eli Lilly and Company (Indianapolis, IN). CHO-K1 cell (per well – 0.5 to 1x105 cells) by which transfection was carried out — above — Costar24— a well — it was made to increase for three days in a plate The R balanced salt solution (Gibco, Grand Island, NY) (Trans-EBSS) including 25mM HEPES and pH7.4 washed the complete growth cell, it incubated for 45 minutes at 37 degrees C, and, subsequently suction removed Trans-EBSS. This cell was incubated under existence of 1mM [14C] cefalexin among the R balanced salt solution (sodium non-**, Trans-EBSS) of sodium non-** including the 120mM choline chloride, 25mM MES, and pH6.0. Then, washed the cell by ice-cooling Trans-EBSS and pH7.4, it was made to dissolve in 0.2N NaOH, and the part was extracted for scintillation count measurement.

[0049] Typical transformer FEKUTANTO (clone 9) showed incorporation of high [14C] cefalexin more nearly intentionally than contrast. It was shown by next research that incorporation of the cefalexin of 1mM by this transformer FEKUTANTO is checked by the existence of 50mM(s) of Gly-L-Pro (GP) which is the dipeptide which competes with the incorporation by the inflow peptide transporter. By incubating a cell with 1mM [14C] cefalexin and GP, incorporation of the drug in typical transformer FEKUTANTO (clone 9) decreased to the level of a reference cell. Furthermore, transportation of 1mM [14C] cefalexin by the reference cell was not checked by the Gly-L-Pro dipeptide. The result of these researches is shown in Table 2.

Table 2

table 2 [] A sample Incorporation of 14C-cefalexin (nmol/mg all cell protein) A clone 9 6.6**0.3 Clone 9+GP 4.5**0.03 Contrast 3.3**0.6 Contrast +GP 4.7**0.4 [0050] [Layout Table]

[0051] array number: — die-length [of one array]: — mold [of 832 arrays]: — amino acid topology: — class [of straight chain-like array]: — protein array: — Met Ile Leu Gln Ala His Leu His Ser Leu Cys Leu Leu Met Leu 1 5 10 15 Tyr Leu Ala Thr Gly Tyr Gly Gln Glu Gly Lys Phe Ser Gly Pro 20 25 30 Leu Lys Pro Met Thr Phe Ser Ile Tyr Glu Gly Gln Glu Pro Ser 35 40 45 Gln Ile Ile Phe Gln Phe Lys Ala Asn Pro Pro Ala Val Thr Phe 50 55 60 Glu Leu Thr GlyGlu Thr Asp Asn Ile Phe Val Ile Glu Arg Glu 65 70 75 Gly Leu Leu TyrTyr Asn Arg Ala Leu Asp Arg Glu Thr Arg Ser 80 85 90 Thr His Asn LeuGln Val Ala Ala Leu Asp Ala Asn Gly Ile Ile 95 100105 Val Glu Gly Pro Val Pro Ile Thr Ile Glu ValLys Asp Ile Asn 110 115 120 Asp Asn Arg Pro Thr Phe Leu Gln Ser Lys Tyr Glu Gly Ser Val 125 130 135 Arg Gln Asn Ser Arg Pro Gly Lys Pro Phe Leu Tyr Val Asn Ala 140 145 150 Thr Asp Leu Asp Asp Pro Ala Thr Pro Asn Gly Gln Leu Tyr Tyr 155 160 165 Gln Ile Val Ile Gln Leu Pro Met Ile Asn Asn Val Met Tyr Phe 170 175 180 Gln Ile Asn Asn Lys Thr Gly Ala Ile Ser Leu Thr Arg Glu Gly 185 190 195 Ser Gln GluLeu Asn Pro Ala Lys Asn Pro Ser Tyr Asn Leu Val 200 205 210 Ile SerVal Lys Asp Met Gly Gly Gln Ser Glu Asn Ser Phe Ser 215 220 225 Asp Thr Thr Ser Val Asp Ile Ile Val

Thr Glu Asn Ile Trp Lys 230 235 240 Ala Pro Lys Pro Val Glu Met Val Glu Asn Ser Thr Asp Pro His 245 250 255 Pro Ile Lys Ile Thr Gln Val Arg Trp Asn Asp Pro Gly Ala Gln 260 265 270 Tyr Ser Leu Val Asp Lys Glu Lys LeuPro Arg Phe Pro Phe Ser 275 280 285 Ile Asp GlnGlu Gly Asp Ile-Tyr-Val-Thr-Gln Pro Leu Asp Arg 290 295 300Glu Glu Lys Asp Ala-Tyr-Val-Phe-Tyr Ala Val Ala Lys Asp-Glu 305 310 315Tyr Gly Lys Pro Leu-Ser-Tyr-Pro-LeuGlu Ile His Val Lys Val 320 325330 Lys Asp Ile Asn Asp Asn Pro Pro Thr Cys Pro Ser Pro Val Thr 335 340 345 Val Phe Glu Val Gln Glu Asn Glu Arg Leu Gly Asn Ser Ile Gly 350 355 360 Thr Leu Thr Ala His Asp Arg Asp Glu Glu Asn Thr Ala Asn Ser 365370 375 Phe Leu Asn Tyr Arg Ile Val Glu Gln Thr Pro Lys Leu Pro Met 380 385 390 Asp Gly Leu Phe Leu Ile Gin ThrTyr Ala Gly Met Leu Gin Leu 395 400 405 AlaLys Gin Ser Leu Lys Lys Gln Asp Thr Pro Gln Tyr Asn Leu 410 415 420 Thr Ile Glu Val Ser Asp Lys Asp Phe Lys Thr Leu Cys Phe Val 425 430 435 Gln Ile Asn VallleAsp Ile Asn Asp Gln Ile Pro Ile Phe Glu 440 445 450 Lys Ser Asp Tyr Gly Asn Leu Thr Leu Ala Glu Asp Thr Asn Ile 455 460 465 Gly Ser Thr Ile LeuThr Ile Gln Ala Thr Asp Ala Asp Glu Pro 470 475 480 Phe Thr Gly Ser SerLys Ile Leu Tyr His Ile Lys Gly Asp 485 490 495 Ser Glu Gly Arg LeuGly Val Asp Thr Asp Pro His Thr Asn Thr 500 505 510 Gly Tyr Val Ile IleLys Lys Pro Leu Asp Phe Glu Thr Ala Ala 515 520 525 Val Ser Asn Ile Val Phe Lys Ala Glu Asn Pro Glu Pro Leu Val 530 535 540 Phe Gly Val Lys TyrAsn Ala Ser Ser Phe Ala Lys Phe Thr Leu 545 550 555 Ile Val Thr Asp Val Asn Glu Ala Pro Gln Phe Ser Gln His Val 560 565 570 Phe Gln Ala Lys Val Ser Glu Asp Val Ala Ile Gly Thr Lys Val 575 580 585 Gly Asn Val Thr AlaLys Asp Pro Glu Gly Leu Asp Ile Ser Tyr 590 595 600 Ser-Leu-Arg-Gly-Asp Thr Arg Gly Trp Leu-Lys-Ile-Asp-His-Val 605 610 615Thr Gly Glu Ile Phe-Ser-Val-Ala-Pro Leu Asp Arg Glu Ala-Gly 620 625 630Ser Pro Tyr A rg Val Gin Val Val Ala Thr Glu Val Gly Gly Ser 635 640645 Ser Leu Ser Ser Val Ser Glu Phe His Leu Ile Leu Met Asp Val 650 655 660 Asn Asp Asn Pro Pro Arg Leu Ala Lys Asp Tyr Thr Gly Leu Phe 665 670675 Phe Cys His Pro Leu Ser Ala Pro Gly Ser Leu Ile Phe Glu Ala 680 685 690 Thr Asp Asp Asp Gln His Leu Phe Arg Gly Pro His Phe Thr Phe 695 700 705 Ser Leu Gly Ser Gly Ser Leu Gln Asn Asp Trp Glu Val Ser Lys 710 715 720 Ile Asn Gly Thr His Ala Arg Leu Ser Thr Arg His Thr Asp Phe 725 730 735 Glu Glu Arg Ala Tyr Val Val Leu IleArg Ile Asn Asp Gly Gly 740 745750 Arg Pro Pro Leu Glu Glylle Val Ser Leu Pro Val Thr Phe Cys 755 760 765 Ser Cys Val Glu Gly Ser Cys Phe Arg Pro Ala Gly His Gln Thr 770 775 780 Gly Ile Pro Thr Val Gly Met Ala Val Gly Ile Leu Leu Thr Thr 785 790 795 Leu Leu Val Ile Gly Ile lle Leu Ala Val Val Phe Ile Arg Ile 800 805 810 Lys Lys Asp Lys Gly Lys Asp Asn Val Glu Ser Ala Gln Ala Ser 815 820 825 Glu Val Lys Pro Leu Arg Ser 830 832 [0052] array number: -- die-length [of two arrays]: -- mold [of 2499 arrays]: -- number [of nucleic-acid chains]: -- double strand topology: -- class [of straight chain-like array]: -- DNA array: --ATGATACTTC AGGCCCATCT TCACTCCCTG TGTCTTCTTA TGCTTTATTT 50 GGCAACTGGA TATGGCCAAG AGGGGAAGTT TAGTGGACCC CTGAAACCCA 100 TGACATTTTC TATTTATGAA GGCCAAGAAC CGAGTCAAAT TATATTCCAG 150 TTTAAGGCCA ATCCTCCTGC TGTGACTTTT GAACTAACTG GGGAGACAGA 200 CAACATATTT GTGATAGAAC GGGAGGGACT TCTGTATTAC AACAGAGCCT 250 TGGACAGGGA AACAAGATCT ACTCACAATC TCCAGGTTGC AGCCCTGGAC 300 GCTAATGGAA TTATAGTGGA GGGTCCAGTC CCTATCACCA TAGAAGTGAA350 GGACATCAAC GACAATCGAC CCACGTTTCT CCAGTCAAAG TACGAAGGCT 400CAGTAAGGCA GAACTCTCGC-CCAGGAAAGC-CCTTCTTGTA-TGTCAATGCC 450ACAGACCTGG ATGATCCGGC-CACTCCCAAT-GGCCAGCTTT-ATTACCAGAT 500TGTCATCCAG CTTCCCATGA-TCAACAATGT-CATGTACTTT-CAGATCAACA 550ACAAAACGGG AGCCATCTCT CTTACCCGAG-AGGGATCTCA GGAATTGAAT 600CCTGCTAAGA ATCCTTCCTA TAATCTGGTG ATCTCAGTGA AGGACATGGG650 AGGCCAGAGT GAGAATTCCT TCAGTGATAC CACATCTGTG GATATCATAG 700 TGACAGAGAA TATTTGGAAA GCACCAAAAC CTGTGGAGAT GGTGGAAAAC 750 TCAACTGATC CTCACCCCAT CAAAATCACT CAGGTGCGGT GGAATGATCC 800 CGGTGCACAA TATTCCTTAG TTGACAAAGA GAAGCTGCCA AGATTCCCAT 850 TTTCAATTGA CCAGGAAGGA GATATTTACG TGACTCAGCC CTTGGACCGA 900GAAGAAAAGG ATGCATATGT TTTTTATGCA GTTGCAAAGG ATGAGTACGG950 AAAACCACTT TCATATCCGC TGGAAATTCA TGTAAAAGTT AAAGATATTA 1000 ATGATAATCC ACCTACATGT CCGTCACCAG TAACCGTATT TGAGGTCCAG 1050 GAGAATGAAC GACTGGGTAA CAGTATCGGG ACCCTTACTG CACATGACAG 1100 GGATGAAGAA AATACTGCCA ACAGTTTTCT AAACTACAGG ATTGTGGAGC 1150 AAACTCCCAA ACTTCCCATG GATGGACTCT TCCTAATCCA AACCTATGCT 1200GGAATGTTAC AGTTAGCTAA ACAGTCCTTG AAGAAGCAAG ATACTCCTCA1250 GTACAACTTA ACGATAGAGG

TGTCTGACAA AGATTTCAAG ACCCTTTGTT 1300 TTGTGCAAAT CAACGTTATT GATATCAATG ATCAGATCCC CATCTTTGAA 1350 AAATCAGATT ATGGAAACCT GACTCTTGCT GAAGACACAA ACATTGGGTC 1400 CACCATCTTA ACCATCCAGG CCACTGATGC TGATGAGCCA TTTACTGGGA 1450 GTTCTAAAAT TCTGTATCAT ATCATAAAGG GAGACAGTGA GGGACGCCTG 1500GGGGTTGACA CAGATCCCCA TACCAACACC GGATATGTCA TAATTAAAAA1550 GCCTCTTGAT TTTGAAACAG CAGCTGTTTC CAACATTGTG TTCAAAGCAG 1600 AAAATCCTGA GCCTCTAGTG TTTGGTGTGA AGTACAATGC AAGTTCTTTT 1650 GCCAAGTTCA CGCTTATTGT GACAGATGTG AATGAAGCAC CTCAATTTTC 1700 CCAACACGTA TTCCAAGCGA AAGTCAGTGA GGATGTAGCT ATAGGCACTA 1750 AAGTGGGCAA TGTGACTGCC AAGGATCCAG AAGGTCTGGA CATAAGCTAT 1800TCACTGAGGG GAGACACAAG AGGTTGGCTT AAAATTGACC ACGTGACTGG1850 TGAGATCTTT AGTGTGGCTC CATTGGACAG AGAAGCCGGA AGTCCATATC 1900 GGGTACAAGT GGTGGCCACA GAAGTAGGGG GGTCTTCCTT AAGCTCTGTG 1950 TCAGAGTTCC ACCTGATCCT TATGGATGTG AATGACAACC CTCCCAGGCT 2000 AGCCAAGGAC TACACGGGCT TGTTCTTCTG CCATCCCCTC AGTGCACCTG 2050 GAAGTCTCAT TTTCGAGGCT ACTGATGATG ATCAGCACTT ATTTCGGGGT 2100CCCCATTTTA CATTTTCCCT CGGCAGTGGA AGCTTACAAA ACGACTGGGA2150 AGTTTCCAAA ATCAATGGTA CTCATGCCCG ACTGTCTACC AGGCACACAG 2200 ACTTTGAGGA GAGGGCGTAT GTCGTCTTGA TCCGCATCAA TGATGGGGGT 2250CGGCCACCCT TGGAAGG CAT-TGTTTCTTTA-CCAGTTACAT-TCTGCAGTTG 2300TGTGGAAGGA AGTTGTTTCC-GGCCAGCAGG-TCACCAGACT-GGGATACCCA 2350CTGTGGGCAT GGCAGTTGGT-ATACTGCTGA-CCACCCTTCT-GGTGATTGGT 2400ATAATTTTAG CAGTTGTGTT-TATCCGCATA-AAGAAGGATA-AAGGCAAAGA 2450TAATGTTGAA AGTGCTCAAG CATCTGAAGT CAAACCTCTG AGAAGCTGA 2499

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] They are the restriction enzyme part of a plasmid pPSJ179, and the mimetic diagram of a functional map.

[Drawing 2] They are the restriction enzyme part of a plasmid pPSJ189, and the mimetic diagram of a functional map.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-261761

(43)公開日 平成6年(1994)9月20日

(51)IntCl.* C 1 2 N 15/12 5/10	識別配号 ZNA	庁内整理番号	FI			·	技術表示箇所
C 1 2 P 21/02	С						
		9050-4B	C 1 2 N				A
		8412-4B		5/ 00			В
		審査請求	未請求 発明	月の数 9	OL	(全 13 頁) 最終頁に続く
(21)出題番号	特顧平6 -11572		(71)出願人	5900059	22		
				イーラー	1 • 9	リー・アン	ド・カンパニー
(22)出顧日	平成6年(1994)2月	38		ELI	LI	LLY A	ND COMPA
				NY			
(31)優先権主張番号	013482	l		アメリ:	カ合衆	田46285イン	ディアナ州イン
(32)優先日	1993年2月4日			ディア	ナポリ	ス市、リリ-	-・コーポレイ
(33)優先権主張国	米国(US)	j		ト・セ	ノター	(番地の表	示なし)
	•		(72)発明者	アン・ス	キリン	ズ・ダンツ・	19
				アメリス	か合衆	基47933 イン	ディアナ州クロ
	•			ーフォー	-ズピ	ル、ツイン・	・オークス18番
			(74)代理人	弁理士	青山	葆 (外:	(名)
							最終頁に続く

(54)【発明の名称】 哺乳類の流入ペプチド輸送体

(57)【要約】

【構成】 哺乳類の流入ペプチド輸送体活性をコードする単離されたDNA化合物および組換えDNAベクター、さらにこれらのベクターで形質転換された宿主細胞および組換えDNA法により哺乳類の流入ペプチド輸送体活性を製造するための方法が提供される。また、流入ペプチド輸送体により細胞中に輸送される化合物を同定するための方法が提供される。

【効果】 本発明の流入ペプチド輸送体によりある化合物の細胞への取り込みを測定することにより、該化合物の経口パイオアペイラビリティを予測することができる。

【特許請求の範囲】

【請求項1】 ヒト流入ペプチド輸送体活性をコードしているDNA配列を含む単離されたDNA化合物。

【請求項2】 配列番号1のアミノ酸残基配列を有する タンパク質をコードしているDNA配列を含む請求項1 に配載の単離されたDNA化合物。

【請求項3】 配列番号2のDNA配列を含む請求項2 に記載の単離されたDNA化合物。

【請求項4】 請求項1、2または3に記載のDNA配列を含む組換えDNAベクター。

【請求項5】 請求項4に記載の組換えDNAベクターで形質転換された宿主細胞。

【請求項6】 ヒト流入ペプチド輸送体活性を発現させる以下の工程からなる方法:

- (1)以下の(a)および(b)を含む組換えDNA発現ベクターを用いて宿主細胞の形質転換を行い:
- (a) 該宿主細胞中で機能するプロモーターおよび翻訳 活性化配列;および(b) 該プロモーターおよび翻訳活 性化配列から発現するように設置したヒト流入ペプチド 輸送体活性をコードしているDNA配列;
- (2) 工程(1)において形質転換された該宿主細胞をヒト 流入ペプチド輪送体活性の発現に適当な条件下で培養す る。

【請求項7】 宿主細胞が請求項4に記載の組換えDN A発現ベクターで形質転換される請求項6に記載の方法。

【顔求項8】 化合物の細胞内への取り込みを測定する ための以下の工程からなる方法:

(a) ヒト流入ペプチド輸送体活性の発現をもたらす組換えDNA発現ペクターで形質転換された細胞と該化合 30 物を接触させ;そして(b) 該細胞中への該化合物の輸送についてアッセイする。

【請求項9】 細胞が請求項4に記載の組換えDNA発現ペクターで形質転換されている請求項8に記載の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、組換えデオキシリポ核酸(以下「DNA」)法の分野に関する。本発明は、プロトンー依存性の流入ペプチド輸送担体(以下「流入ペプチド輸送体」)活性をコードしているDNAを含む単離されたDNA化合物を提供する。さらに、組換えDNAペクターおよび宿主細胞を提供する。

[0002]

【従来の技術】哺乳類細胞において、ペプチドはいくつかの異なる輸送担体により細胞内および細胞外へ輸送される。機能的に、ペプチドの細胞内への流入を担う輸送体およびペプチドの細胞外への流出を担う輸送体が存在する。流入輸送体は小さなペプチドおよび関連の化合物を細胞質中に輸送し、イオン勾配を通してエネルギー源 50

に間接結合している。流出輸送体は、細胞質からペプチドを除去するように機能するいくつかの異なる輸送体からなる。これらには、多くの腫瘍崩壊物ならびに疎水性ペプチドを除去するPー糖タンパク質が含まれる[Endic ottおよびLing, 1989, Annu.Rev.Biochem. 58:137-171; Sharma 5, 1992, J.Biol.Chem. 267: 5731-5734]。

【00003】本発明は、細胞または細胞小器官へのペプチドの流入を担うペプチド輸送体に関する。このクラスのペプチド輸送体は、胃腸管、腎臓、胎盤および肝臓リソソームに位置する[Ganapathyら, 1991, Indian J.Biochem.Biophys. 28: 317-323;Skopickiら, 1991, Am.J.Physiol. 261: F670-F678; Ganaopathyら, 1981, J.Biol.Chem. 256: 118-124; BirdおよびLloyd, 1990, Biochim.Biophys.Acta 1024: 267-270]。

【0004】通常、流入ペプチド輸送体は粘膜の上皮細 胞の刷子緑に位置する。輸送体の性質は、脳粘膜調製物 中、もとの位置で研究され、さらに刷子緑膜小胞、単離 された腸細胞および細胞培養物を用いてインビトロで研 究されている。ラット、ハムスター、ウサギ、ニワト リ、日本イモリおよびヒトから得た調製物を用いて研究 が行われている[GanapathyおよびLeibach, 1991, Curr. Bio1. 3: 695-701; Said 5, 1988, Bioch im Biophys Ac ta 941: 232-240; Kramer 5, 1988, Bioch im . Biophys . A cta 939: 167-172; Colonge 5, 1990, Am. J. Physiol. 2 59: G775-G780; ShimadaおよびHoshi, 1986, Jpn.J.Phy siol. 36: 451-465: MatthewsおよびBurston, 1984, Cl inical Sci., 67:541-549]。小さなペプチド(ジおよび トリペプチド)、抗生物質(いくつかの経口βーラクタム を含む)、経口アンギオテンシン変換酵素(ACE)阻害 物質、および経口レニン阻害物質を含む多くの異なる溶 質は流入ペプチド輸送体により腸細胞の細胞質中へ輸送 される[GanapathyおよびLeibach, 1991, Curr.Biol, 3: 695-701; Okano 5, 1986, J.Biol.Chem. 261: 14130-1 4134; Nakash ima 5, 1984, Biochem . Pharm. 33: 3345-3 352; Muranushi 5, 1989, Pharm. Res. 6: 308-312; Fri edmanおよびAmidon, 1989, Pharm.Res. 6: 1043-1047; Friedman \$\$ UAmidon, 1990, J.Control.Rel. 13: 141 -146; Kramer, 1991, 17th International Congress of Chemotherapy, June 23-28, Berlin, F.R.G., Abstract No .1415].

【0005】流入ペプチド輸送体は、 β -ラクタムおよびACE阻害物質を含むある種の経口薬物の吸収において中枢の役割を果たす。調べた27種の β -ラクタム抗生物質のうち、流入ペプチド輸送体はヒトにおいて経口的に吸収されるものとそうでないものを区別することができた[Tabas 5, 1991, 31st Interscience Conference on Antimicrobial Agents and Chemotherapy Abstract No. 164]。さらに、流入ペプチド輸送体は多くの経口 β -ラクタム抗生物質を輸送するが非経口の β -ラクタム抗生物質を輸送するが非経口の β -ラクタム抗生物質は輸送しないことが、ヒト腸 Caco-2 細胞

およびウサギ陽刷子膜を用いた研究において示されている[Dantzig5, 1992, Biochim.Biophys.Acta 1112: 167-173; Dantzig5, 1992, 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy, Anaheim, CA, Abstract No.1460; Snyder5, 1992, 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy Abstract No.1461; Okano5, 1986, J.Bio 1.Chem. 261:14130-14134]。流入ペプチド輸送体の能力を調べてどのACE阻害物質が経口吸収されるかを予測する同様の研究が行われている[FriedmanおよびAmidon, 10 1989, Pharm.Res.6:1043-1047]。

【0006】流入ペプチド輸送体は、ナトリウム依存 性、エネルギー依存性であり、プロトンを基質と共に共 輸送し(「プロトンー依存性」)、基質を細胞外に存在す るレベルより高いレベルに細胞内に濃縮する能力を呈す 3 [Hoshi, 1986, Ion Gradient-Coupled Transport, IN SERN symposium No.26. Editors: F.AlvaradoおよびC. H.van Os, Elsevier Science Publishers; Ganapathy & LULe ibach, 1991, Curr Opinion Cell Biol. 3:695-7 01; Ganapathy 5, 1991, Indian J. Biochem. Biophys. 2 20 8: 317-323]。流入ペプチド輸送体の基質特異性はいく つかの種において調べられており、これらは同一ではな いにしても非常に類似しているようである[Inuiら, 199 2. J. Pharmacol. Exp. Thera. 260: 482-486; Ganapathy およびLe ibach, 1983, J.Biol.Chem. 258: 14189-1419 2: YasumotoおよびSugiyama, 1980, Agric.Biol.Chem. 44: 1339-1344; Nakashima5, 1984, Biochem. Pharmaco 1. 33: 3345-3352; Okano 5, 1986, Biochem Pharmaco 1.35:1781-1786]。流入ペプチド輸送体の結合部位は わかっておらず、ゆえに、浴質の結合および輸送に必要 30 な絶対的な化学構造の特徴も未知である。基質および阻 害物質の構造と活性の相関の研究が行われ、輸送に必要 ないくつかの構造的特徴が解明されている[Bai5, 199] 1, Pharm .Res . 8: 593-599; Snyder 5, 1992, 32nd Int erscience Conferenceon Antimicrobial Agents and Ch emotherapy, Oct. 11-14, Anaheim, CA, Abstract No.1 461]。

【0007】流入ペプチド輸送体活性は、放射ラベルされたペニシリンまたは放射ラベルされたセファレキシン類似体を用いた光親和性標識法により、ウサギ脚粘膜から127,000ダルトンの膜タンパク質として同定されている[Kramer, 1987, Biochim.Biophys.Acta 905:65-74; Kramerら, 1988, Biochem.PHarmacol. 37: 247-2435]。リポソーム中に再構成したウサギ脇粘膜調製物由来の精製127.000ダルトンタンパク質は、結合および輸送活性を与えた[Kramerら, 1990, Biochim.Biophys.Acta 1030: 50-59]。ウサギ流入ペプチド輸送体は、Xenopus laevis卵母細胞中に機能的に発現されている[Miyamotoら, 1991, J.Biol.Chem. 266: 4742-4745]。しかし、哺乳類の流入ペプチド輸送体をコードしているク 50

ローン化遺伝子の構造またはそのいずれかの成分は、いかなる種に対しても報告されていない。

【0008】流入ペプチド輸送体のクローニングは、こ の機構を使用する経口吸収薬物の迅速な同定および開発 を可能にする方法の開発にとって有用であろう。経口パ イオアペイラビリティは多くの薬物の非常に望ましい性 質である。開発の初期の段階での薬物の経口パイオアベ イラビリティの測定は特に有利であろう。現在、薬物は 初めに動物モデルにおいて経口パイオアベイラビリティ について評価される。この工程はごく少数の化合物の選 択を必要とし、該化合物の合成はこれらのモデルにおい て評価される程度まで拡大しなければならない。化合物 がこれらのモデルを用いて経口的に吸収されない場合に は、経口バイオアペイラビリティを達成するためにその 化合物の類似体が作成されることが多い。この工程は、 時間を浪費し、困難であり、費用がかかる。さらに、動 物モデルにおいて良く吸収されるがヒトにより吸収され ない化合物の多くの例がある。この従来のアプローチを 補足するために、他の評価方法が必要とされている。 [0009]

【発明が解決しようとする課題】本発明は、特に、哺乳類の流入ペプチド輸送体活性をコードしているDNA配列を含む単離されたDNA化合物、哺乳類の流入ペプチド輸送体活性をコードしている組換えDNA発現ベクター、およびこれらの組換えDNA発現ベクターで形質転換された宿主細胞を提供するものである。これらの組換えDNA発現ベクターおよび宿主細胞は流入ペプチド輸送体活性を発現させるための方法において有用であり、該方法は以下の工程からなる:

- (1) 以下の(a)および(b)を含む組換えDNA発現ペクターを用いて宿主細胞の形質転換を行い:
- (a) 該宿主細胞中で機能するプロモーターおよび翻訳活性化配列;および(b) 該プロモーターおよび翻訳活性化配列から発現するように設置した哺乳類の流入ペプチド輸送体活性をコードしているDNA配列;
- (2) 工程(1)において形質転換された核宿主細胞を流入ペプチド輸送体活性の発現に適当な条件下で培養する。【0010】ヒトにおける薬物の経口的な利用可能性を薬物発見過程の初期段階で予測する能力は有利なものであろう。この目的のために、本発明は、流入ペプチド輸送体による、ヒトにおける医薬化合物の経口利用可能性の予測において有用な分析手段を提供する。即ち、本発明の1つの態様は、以下の工程からなる細胞による化合物の取り込みを測定するための方法に関する:
- (a) 哺乳類流入ペプチド輸送体活性の発現をもたらす 組換えDNA発現ペクターで形質転換された細胞と核化 合物を接触させ;そして(b) 核細胞中への核化合物の 輸送についてアッセイする。

【0011】本発明のこれらの態様および本発明のDNA配列のハイブリダイゼーションプローブとしての使用

5

などの他の態様を、以下でさらに詳しく説明し、特許請求の範囲に記載する。

[0012]

【課題を解決するための手段】

定義

コード化配列:遺伝子から発現されるタンパク質のアミノ酸残基配列をコードする遺伝子の読み取り枠中のDN A 配列

DHFR:ジヒドロ葉酸レダクターゼ遺伝子。

遺伝子:遺伝子産物を発現させるように設置したプロモ 10 ーター、翻訳活性化配列、コード化配列、および3 調 節配列を含むDNAセグメント。

流入ペプチド輪送体活性:内部方向性のプロトン勾配の存在に依存する膜を横切る基質の移動。機能的には、内部方向性のpH-勾配(即ち、細胞または膜小胞の内部より外部の方が酸性度が高い)の存在下、輸送体の既知の基質[例えば、小さなペプチド(例えば、ジおよびトリペプチド)、抗生物質(例えば、セファレキシン)、経口アンギオテンシン変換酵素(ACE)阻害物質、および経口レニン阻害物質]の過剰量の不在または存在下での膜を横切る化合物の輸送を測定することにより活性を測定することができる。

プロモーター:DNAの転写を指令または開始させるDNA配列。

組換えDNA発現ベクター:自律的に複製するかまたは 組込みを行うあらゆるDNA物質であり、プラスミドを 含むがそれに限定されず、ポリペプチドまたはRNAを コードするDNAセグメントを発現させるように設置し たプロモーターおよび他の調節配列を含む。

組換えDNA配列: DNAを導いた宿主染色体を除外したあらゆるDNA配列であって、単離、合成または部分合成されたDNA配列を含む。

制限フラグメント: 1またはそれ以上の制限酵素の作用 により生じたあらゆる線状DNA分子。

翻訳活性化配列: mRNAへと転写されたときにmRNAのタンパク質への翻訳を促進する調節 DNA配列。本明細書中で用いた全てのヌクレオチドおよびアミノ酸 省略形は、米国特許商標局により37 C.F.R.§1.822(b)(1992)に示されるように認められているものである。

【0013】図面の説明

図面に示した制限酵素および機能地図は、本明細書中に開示した組換え DNAベクターのおおよその表示である。制限部位の情報は網羅的なものではない。地図上に実際に示した部位より多くの所定の型の制限酵素部位が存在することがある。図1はプラスミドpPSJ179の制限酵素部位および機能地図である。図2はプラスミドpPSJ189の制限酵素部位および機能地図である。図2はプラスミドpPSJ189の制限酵素部位および機能地図である。

【0014】詳細な説明

本発明は、哺乳類流入ペプチド輸送体活性をコードしているDNA配列を含む単離されたDNA化合物を提供する。流入ペプチド輸送体のアミノ酸配列は配列表中、配列番号1として示す。流入ペプチド輸送体をコードしているDNA配列は配列表中、配列番号2として示す。

【0015】遺伝暗号の縮重の性質により、配列番号1をコードする多くの異なるDNA配列を構築することが可能であることを当業者は認めるであろう。配列番号2により示されるDNA配列は、多くの可能な流入ペプチド輸送体コード化配列のうちのほんの1つである。従って、本発明の好ましいDNA化合物、ベクターおよび形質転換体について以下および添付の実施例に開示する構造は例示のためのものであるにすぎず、本発明の範囲を限定することを意図していない。

【0016】流入ペプチド輸送体の配列が既知となった現在、配列はさまざまな方法により調製することができ、ゆえにどの特定の調製手段にも限定されない。本発明のDNA配列は、DNA合成法、cDNAクローニング、ゲノムクローニング、ポリメラーゼ連鎖反応(PCR)法、またはこれらのアプローチの組合わせを含むいくつかの方法により製造することができる。これらのそして他の方法は、Maniatisら[「分子クローニング:実験室マニュアル」、Cold Spring Harbor Press、ColdSpring Harbor Laboratory、Cold Spring Harbor、New York(1989)]またはF.M.Ausbelら[「分子生物学の最近のプロトコール」、1989]により開示されている。これら両方の参考文献の内容は、本明細書の一部を構成するものとする。

【0017】本発明のDNA配列は、市販品として入手 可能な方法および装置を用いて合成することができる。 例えば、固相リン酸トリエステル法を用いて本発明のD NA配列を製造することができる。完全に保護されたD NA構築プロックを用いる改良リン酸トリエステル法に よりDNA配列を合成することができる。このような合 成法は、実質的にItakuraら[1977, Science 198: 105 6]、Crea 5 [Proc. Natl. Acad. Sci. U.S.A. 75: 575] およ UNarangら[1980, Methods in Enzymology 68: 90]の方 法に従って行うことができる。手作業による方法に加え て、ABS 380A DNAシンセサイザー(Applied B iosystems, 850 Lincoln Centre Drive, Foster City, CA 94404)などの自動化合成装置を用いてDNA配列を 合成することができる。また、DNA配列をポリメラー ぜ連鎖反応により生成させることができる。例えば、米 国特許番号4,800,159および4,683,202、および欧州特許 公開番号0258017(1987年3月2日公開)を参照。

【0018】溶液および固相合成のための方法は広く知られおり、既知のプロトコールに従い、市販品として入手可能なさまざまな自動化合成装置を用いることができる。例えば、StewartおよびYoung[Solid Phase Synthes is 2nd edition, Pierce Chemical Company, 1984]; Ta

7

m5[1983, J.Am.Chem.Assoc. 105: 6442];およびMerrifield5[1982, Biochemistry 21: 5020]を参照。

【0019】哺乳類の流入ペプチド輸送体活性をコード しているDNAを、当分野で周知の方法によりさまざま なベクター中にクローン化することができる。コスミ ド、プラスミド、パクテリオファージ、パキュロウイル スおよびウイルスを含む多くの適当なベクターを用いる ことができる。このようなベクターに対する主要な必要 条件の1つは、自身を複製し得ることおよび宿主細胞を 形質転換し得ることである。好ましくは、該ベクターは 本発明のDNA配列によりコードされる哺乳類の流入べ プチド輸送体活性を発現させ得る組換えDNA発現ベク ターであろう。通常の発現ベクターは、プロモーター領 域、5 '一非翻訳領域、コード化配列、3 '一非翻訳領 域、複製起点、選択マーカー、転写終結部位を含む。さ らに本発明で有用なベクターは、Escherichia coliにお ける複製を可能とする配列を含むが、これは他の宿主生 物より E.coliにおいてプラスミドDNAを調製するこ とが通常、一層効率的であるからである。

【0020】本発明の新規なDNA配列を発現させるために修飾することができる多種多様の発現ベクターが存在する。本明細書中に例示する特定のベクターは単に実例として挙げているだけであり、本発明の範囲を限定することを意図していない。発現法は、Maniatisら[「分子クローニング:実験室マニュアル」]または「分子生物学の最近のプロトコール」[16.3-17.44 (1989)]により開示されている。また、Saccharomycesにおける発現法は「分子生物学の最近のプロトコール」(1989)に開示されている。

【0021】本発明実施の際に使用するに適したベクタ ーには、pNHベクター(StratageneInc., 11099 N. Tor rey Pines Rd., LaJolla, CA 92037)、pE Tペクター(N ovogen Inc., 565 Science Dr., Madison WI 53711) ₺ よびpGEXベクター(Pharmacia LKB Biotechnology In c., Piscataway, NJ 08854)などの原核性ペクターが含 まれる。本発明実施の際に有用な真核性ベクターの例に は、ベクターpRc/CMV、pRc/RSVおよびpREP (Invitrogen, 11588 Sorrento Valley Rd., San Diego, CA 92121); pV L 1 3 9 2、pV L 1 3 9 3、またはp AC360 (Invitrogen)などのパキュロウイルスペクタ ー: YRP17、YIP5およびYEP24 (New Engla nd Biolabs, Beverly, MA)などの酵母ベクター、ならび にpRS403およびpRS413(Stratagene Inc.)お よびpH I L−D 1 (Phillips Petroleum Co., Bartlesv ille, OK 74004)などのPicchiaペクターが含まれる。 【0022】本発明の発現ベクターにおいて使用するた めのプロモーターには、原核細胞または真核細胞におい て機能的であるプロモーターが含まれる。原核細胞にお

いて機能的なプロモーターには、ラクトース(lac)制御

要素、パクテリオファージラムダ(pL)制御要素、アラ

ビノース制御要素、トリプトファン(trp)制御要素、バクテリオファージT7制御要素、およびこれらのハイブリッドが含まれる。真核細胞において機能的であるプロモーターにはEpste in Barrウイルスプロモーター、アデノウイルスプロモーター、SV40プロモーター、ラウス肉腫ウイルスプロモーター、サイトメガロウイルス、AcMNPV多面体プロモーターなどのバキュロウイルスプロモーター、アルコールオキシダーゼプロモーターなどのPicchiaプロモーター、gal4誘導性プロモーターおよびPGK構成性プロモーターなどのSaccharomycesプロモーターが含まれる。

【0023】さらに、本発明のベクターは、形質転換された宿主細胞の選択を容易にする多数の各種マーカーのうち任意の1つを含むことができる。このようなマーカーには、温度感受性、薬物耐性、または宿主生物の表現型特性と関連した酵素に関係する遺伝子が含まれる。

【0024】哺乳類の流入ペプチド輪送体活性をコードしているDNA配列をベクター中に挿入した後に、そのベクターを用いて宿主細胞を形質転換させることができる。通常、宿主細胞には、本発明のDNAを含むベクターで形質転換され得る原核細胞または真核細胞を含む細胞性生物が包含される。細胞の形質転換およびトランスフェクションの方法は当分野で周知であり、Maniatisら(1989)または「分子生物学の最近のプロトコール」(1989)などの一般的な参考文献中に見いだすことができる。

【0025】本発明は特定の宿主細胞に対する使用に限定されない。本発明のベクターは多くの宿主細胞中に導入し発現させることができる。本発明の形質転換された宿主細胞は、プロモーターの誘導、形質転換体の選択または遺伝子の増幅のために適当に修飾された通常の栄養培地中で培養することができる。温度、pHなどの培養条件は、発現のために選択された宿主細胞について既に用いられている条件であり、当業者には明らかであろう。

【0026】特定の宿主細胞の選択は、本発明の流入ペ プチド輸送体活性ーコード化DNA化合物を発現させる ために用いる特定の発現ペクターにある程度依存する。 本発明のベクターの宿主細胞への導入の後に、選択可能 な表現型を基にして形質転換体を選択することができ る。この選択可能な表現型は、発現ベクター上に存在す る選択可能なマーカーにより付与することができる。 【0027】適当な宿主細胞には、例えばEscher ich ia coliおよびBacillus subtilisなどの原核細胞:チャイ ニーズハムスター卵巣細胞 C H O - D H F R · [Amer ican Type Culture Collection (ATCC), 12301 Parklawn Dri ve, Rockville, Naryland 20852-1776から受託番号ATCC CRL-9096の下に入手可能]、チャイニーズハムスター卵 **巣細胞CHO-K1 (ATCC CCL-61)、シリアンハムスタ** 一細胞AV12(ATCC CRL 1573)、ヒトリンパ球CCR F-CEM細胞、ヒト神経芽腫細胞、ブタ腎臓細胞 (LLC Ω

-PKi, ATCC CL101)および肝臓、脳、皮膚および副腎腺 由来の細胞などの真核細胞; Saccharowyces cerevisiae およびPicchia pastorisを含む酵母細胞; Spodoptera f rugiperda Sf9(ATCC CRL 1711)などのアワヨトウ幼虫細胞を含む昆虫細胞; Aspergillus種を含む菌類細胞が含まれる。

【0028】原核細胞および真核細胞における発現は、Maniatisら(1989)およびKaufmann[「遺伝子工学の原理および方法」、J.K.Setlow編、Plenum Press 9: 155, (1988)]により開示されている。酵母の発現はBarrら[「酵母の遺伝子工学」、Butterworth編、Boston 1989]により開示されている。昆虫細胞における発現はMaeda[1989、「昆虫学の年報」、34: 351]により開示されている。

【0029】配列番号2により示されるDNA配列は、Caco-2セルラインのmRNAから調製したcDNAク

ローンから得た。Caco-2セルラインは、流入ペプチド輸送体により抗生物質を取り込むことが示されているヒト結腸腺癌セルラインである[DantzigおよびBergin, 1990, Biochim.Biophys.Acta 1027: 211-217; Dantzig ら, 1992, Biochim.Biophys.Acta 1112: 167-173]。Caco-2細胞はATCCから受託番号ATCC HTB37の下に入手可能である。

10

【0030】本発明の例示ベクターをEscherichia coli RR1または E.coli DH5 a 細胞中に導入し、North ern Regional Research Laboratories (NRRL) (Peoria, Illinois 61604)に1993年1月21日に寄託して永統的な貯蔵培養物コレクションの一部とした。特定の培養物および受託番号を表1に示す。

【表1】

表 1

培養物 受託番号 E.coli K12 DH5α/pPSJ179 NRRL B-21041 E.coli K12 RR1/pPSJ189 NRRL B-21042

【0031】培養物を入手し、常法によりプラスミドを 単離する。次いで、哺乳類流入ペプチド輸送体を産生さ せるためにこのプラスミドを直接宿主細胞中に導入する ことができる。

【0032】プラスミドpPSJ179は長さが約85 00塩基対であり、Caco−2細胞由来の流入ペプチド 輸送体をコードしているDNAを含有する。プラスミド pPSJ179は、流入ペプチド輸送体ーコード化DN Aを含む3.4kb XbaIーHindIII cDNA制限酵素フ ラグメントを、市販品として入手可能なペクターpRc/ RSV(Invitrogen)中にクローニングすることにより構 築した。流入ペプチド輸送体は内部にHind III制限酵素 部位を有しているから、3.4kb XbaI-HindIIIフラ グメントのクローニングにおいて部分的な制限酵素消化 を用いた。プラスミドpPSJ179は、Escherichia c oliにおける選択のためのアンピシリン耐性遺伝子、真 核細胞における選択のためのネオマイシン耐性遺伝子お よびラウス肉腫ウイルス(RSV)プロモーターから発現 するように設置した流入ペプチド輸送体遺伝子を含有す る。プラスミドpPSJ179の制限酵素および機能地 図は添付の図1に示す。

【0033】プラスミドpPSJ189もまた本発明のベクターの例である。プラスミドpPSJ89は約12.2キロ塩基の大きさである。プラスミドpPSJ189は、プラスミドpHDの修飾された変異体中にクローン化された流入ペプチド輸送体ーコード化DNAを含む3.4キロ塩基対のKpnI-SpeI制限フラグメントを含有する。プラスミドpHDは、流入ペプチド輸送体コード化DNAを含んでいる3.4キロ塩基対のKpnI-SpeI制限フラグメントのクローニングを容易にするた50

めの制限酵素部位を含むよう修飾した。プラスミドpH Dは欧州特許公開番号0245949(1987年11月19日公開)中に開示されている。プラスミドpPSJ189は、Escherichia coliにおける選択のためのアンピシリン耐性遺伝子、真核細胞における選択のためのハイグロマイシン耐性遺伝子、DHFR遺伝子、および流入ペプチド輸送体遺伝子の発現のために設置したBKエンハンサーおよびアデノウイルス主要後期プロモーターを含有する。プラスミドpPSJ189の制限酵素および機能地図を添付の図2に示す。

【0034】流入ペプチド輸送体コード化DNAはプラ スミドpPSJ179およびpPSJ189からさまざま な制限酵素フラグメントとして切り出すことができ、多 くの発現ベクター中にクローン化し得ることを当業者は 認めるであろう。例えば、流入ペプチド輸送体コード化 活性DNAをプラスミドロPSJ179から3.4キロ塩 基対<u>H in</u>d III — X ba I制限酵素フラグメントとして、ま たはプラスミドpPSJ189から3.4キロ塩基対のK pn I - Spe I 制限酵素フラグメントとして切り出すこと ができる。プラスミドDNA内の多数の制限酵素部位の 存在のゆえに、完全な流入ペプチド輸送体をコードする DNAフラグメントを調製するために部分的な制限酵素 消化が必要であろうことを当業者は認めるであろう。流 入ペプチド輸送体コード化活性DNAを含むさまざまな 制限酵素フラグメントを同定、単離およびクローニング するための方法は当分野で周知である。

【0035】本明細書の開示に基づき、本発明の流入ペプチド輸送体に構造が類似している他の輸送体を、ポリメラーゼ連鎖反応(PCR)法、DNAハイブリダイゼーションなどの周知の方法またはこれらの方法の組み合わ

せにより同定することができる。流入ペプチド輪送体は 細胞外領域(およそ配列番号1のアミノ酸残基1~77 8)およびトランスメンンプラン領域(およそ配列番号1 のアミノ酸残基778~809)からなる。細胞外領域 は、カドヘリンとして知られるタンパク質のファミリー に非常に関係がある [Take ichi, M., 1990, Annu .Rev.Bio chem. 59: 237-252]。カドへリンファミリーは保存性の 高い細胞外および細胞内領域を有する。しかし、流入ペ プチド輸送体は、カドヘリンの機能的な活性に必要であ ることが示されている保存性の細胞内領域を有していな 10 い[Klinter, 1992, Cell 69: 225-236]。カドへリンと 流入ペプチド輸送体の間のこの差異に基づくハイブリダ イゼーション法を用いて、流入ペプチド輸送体に関係し たタンパク質を同定することができる。

【0036】あるハイブリダイゼーション法の下に、a) カドヘリンファミリーおよび流入ペプチド輸送体の保存 性細胞外領域、b)カドヘリンファミリーの保存性細胞内 領域に特異的なプローブを得る。PCR法を用いてこの ようなプローブを得ることができる。この場合におい て、鋳型DNAはゲノムDNA、または流入ペプチド輪 送体活性およびカドへリンを発現する異なる組織型のセ ルラインから得たcDNAであってもよい。鋳型DNA のための可能な供給源には、腎臓、腸管、膵臓由来の細 胞または「血液一脳」関門由来の内皮細胞が含まれる。

【0037】カドヘリンファミリーおよび流入ペプチド 輸送体の保存性の高い細胞外領域に特異的なプローブを 最初にハイブリダイゼーション実験において用いて、カ ドヘリンおよび他のペプチド輸送体の細胞外領域を有す る遺伝子を同定する。次いで、カドヘリンの細胞内領域 から得たプロープをハイブリダイゼーションプロープと 30 して用いて、カドヘリンをコードする遺伝子を同定す る。細胞外領域に対するプローブと反応するが細胞内領 域に対するプローブとは反応しない遺伝子は、流入ペプ チド輸送体の候補に相当する。これらの遺伝子を組換え DNA発現ベクター中にクローン化して適当な宿主細胞 中に導入する。次いで、形質転換された宿主細胞を流入 ペプチド輪送体活性の発現についてアッセイする。

【0038】異種ハイブリダイゼーション法を用いて同 じ成果を挙げることができる。この場合には、カドヘリ ンの細胞外および細胞内部分を表すDNAフラグメント を用いて、可能性のある流入ペプチド輸送体をカドヘリ ンと区別する。

【0039】本発明の流入ペプチド輸送体をコードして いるDNA、またはその任意の部分に基づくプローブを 利用する従来のハイブリダイゼーション法を用いてペプ チド輸送活性をコードしている他の遺伝子を同定するこ とができる。例えば、配列番号2またはその一部に基づ くプローブを用いてペプチド輸送活性を有する遺伝子を 同定することができる。また、配列番号1のアミノ酸配 列またはその一部に基づく縮重したプローブを用いてペ 50

プチド輪送活性を有する遺伝子を同定することができ る。ハイブリダイゼーション法はManiatisら(1989)が開 示している。

【0040】上に示したように、本発明は流入ペプチド 輸送体による化合物の取り込みを測定するための方法を 提供する。この方法はヒトにおける流入ペプチド輸送体 による化合物の経口パイオアペイラビリティの予測にお いて有用である。多種多様の化合物を流入ペプチド輸送 体による取り込みについて試験することができる。この ような化合物の例には、小さなペプチドおよび治療薬 物、例えば抗生物質、ACE阻害物質、およびレニン阻 害物質が含まれる。これらの化合物は単なる例示であ る。この方法は、流入ペプチド輸送体により取り込まれ る能力を試験するために事実上いかなる化合物にも適用 できる。従って、1つの態様において本発明は、以下の 工程からなる、細胞中への化合物の取り込みを測定する ための方法を提供する:

- a)哺乳類流入ペプチド輸送体活性の発現をもたらす組 換えDNA発現ベクターで形質転換された細胞と該化合 物を接触させ、そして
- b) 該細胞中への該化合物の輸送についてアッセイす

【0041】本発明の方法において有用な流入ペプチド 輸送体活性の発現をもたらす組換えDNA発現ペクター の例は上に記載した。このような組換えDNA発現ベク ターは、発現のために選択される宿主細胞における流入 ペプチド輪送体活性の最適な発現のために調整すること ができる。

【0042】上に記載した細胞を含む多種多様の細胞を この方法において用いることができる。本発明の組換え DNA発現ペクターでの形質転換の前に流入ペプチド輪 送体活性を欠く細胞は本法において特に有用である。本 発明の組換えDNA発現ベクターでの形質転換の前に測 定可能な化合物の取り込みを有する細胞もまた有用であ る。どちらの場合においても、流入ペプチド輸送体活性 をコードしている組換えDNA発現ベクターで形質転換 された細胞を、該細胞への試験化合物の輸送の増大につ いてアッセイすることができる。

【0043】本発明のこの態様において有用な細胞に は、例えばEscherichia coliおよびBacillus subtilis などの原核細胞;チャイニーズハムスター卵巣細胞CH O-DHFR [American Type Culture Collection (ATC C), 12301 Parklawn Drive, Rockville, Maryland 2085 2-1776から受託番号ATCC CRL-9096の下に入手可能]、チ ャイニーズハムスター卵巣細胞 C H O - K 1 (ATCC CCL-61)、シリアンハムスター細胞 A V 1 2 (ATCC CRL 157 3)、ヒトリンパ球CCRF-CEM細胞、ヒト神経芽腫 細胞、プタ腎臓細胞(LLC-PK1, ATCC CL101)および肝 臓、脳、皮膚および副腎腺由来の細胞などの真核細胞;

Saccharomyces cerevisiaeおよびPicchia pastorisを含

む酵母細胞; Spodoptera frug iperda Sf9 (ATCC CRL 171 1)などのアワヨトウ幼虫細胞を含む昆虫細胞; Aspergil lus種を含む菌類細胞が含まれる。また、上に冒及した細胞のペプチド輪送欠失突然変異体が本発明の方法において有用であろう。このようなペプチド輪送欠失突然変異体は、Escherichia coli [DeFelice5, 1973, J.Bacterio1, 116: 751-7560]および酵母[Island5, 1991, Curr.Genet. 20: 457-463; Narder5, 1978, J.Bacterio1, 136: 1174-1177]について開示されている。

【0044】上に示したように、流入ペプチド輸送体を 発現させるために用いる特定のベクターは、利用する宿 主細胞に従い異なるであろう。

【0045】流入ペプチド輸送体活性を発現しているト ランスフェクタント細胞による化合物の取り込みはさま ざまな方法により測定することができる。これらの方法 には、宿主細胞内の試験化合物の出現の測定、すなわち 該細胞を溶解して溶解物サンプルを高速液体クロマトグ ラフィーによりまたは該化合物が放射ラベルされている 場合には放射活性の検出により化合物を分析することに よる測定が含まれる。また、特定の試験化合物に関係す 20 る他の特性を測定することができる。即ち、特定の化合 物をスクリーニングするために通常用いられるアッセイ を利用することができる。例えば、レセプターアッセイ においてレセプターに対するリガンドの結合を置換(ま たは増強)する化合物の能力、関係のある酵素を阻害(ま たは刺激)する化合物の能力、生物の増殖を阻害(また は刺激)する化合物の能力、または試験化合物が有する であろうある種の他の特性を利用することができる。Br adnerおよびClar idge [1984] 「抗新生物薬におけるスク リーニング系」、W.A.Remers編、Wiley-Interscience Pu b., John WileyおよびSons, Inc. N.Y., NY)により開示 されているアッセイを含むさまざまなアッセイを用いて 流入ペプチド輪送体活性を測定することができる。

[0046]

【実施例】以下に示す実施例は本発明の一層の理解を助けることを意図している。用いられる特定の物質、種および条件は、本発明をさらに詳しく説明することを意図しており、本発明の正当な範囲を限定しようとするものではない。DNAの操作および分析のための方法は、本質的にManiatisら(1989)により開示されているように行った。制限酵素反応のための条件は、製造者[Boehringer Mannheim (BM), Indianapolis, IN; New England Biolabs (NEB), Beverly, MA; Bethesda Research Labs (BRL), Gaithersburg, MD]により推奨されている条件を使用した。

【0047】実施例1

チャイニーズハムスター卵巣細胞(CHO-K1、ATCC C CL 61)を、Stratagene哺乳動物トランスフェクションキット(Stratagene Catalog # 200285)中に記載されているカルシウム沈殿プロトコールを用いてプラスミドpP

SJ179でトランスフェクションした。プラスミドp PSJ17912, Escherichia coli K12 DH5α/p PSJ179(NRRL B-21041)から通常のア ルカリーSDS法(ManiatisS, 1989)を用いて単離する ことができる。カルシウム沈殿プロトコールのトランス フェクション法を以下のように行った。ほぼ全面成長の CHO-K1細胞(100㎜培養皿、プレーティングの 1日後)を、20μgのカルシウムー沈殿したDNAサン プルと共に37℃で20分間インキュペートした。DN AサンプルはプラスミドpPSJ179または対照とし てのプラスミドpRc/RSVのどちらかであった。 続い て、核細胞を10%ウシ胎児血清(Hyclone Laboratorie s Inc., Logan, UT 84321)を含む F 1 2 培地中で 3 日間 増殖させた。この後に、培地を選択薬物、G-418ス ルフェート(Gibco, Grand Island, NY)を300 μg/ml で含む増殖培地と置換し、細胞を3%CO2インキュベ ーター中、37℃で13日間増殖させた。後の研究のた めに選択したコロニーを、5%CO1インキュペーター 中、選択した時間、37℃の選択培地において増殖させ た。酵素結合免疫吸着アッセイ(ELISA)および流入 ペプチド輸送体に対して反応性のモノクローナル抗体を 用いて、トランスフェクタントを流入ペプチド輸送体の 発現について評価した。対照より高いレベルの流入ペプ チド輸送体抗原を発現したクローンを輸送研究のために 選択した。別法によれば、Dantzigら[1990, Biochim.Bi ophys.Acta 1027: 211-217]により開示された方法を用 いて流入ペプチド輸送体の発現についてクローンを選択 する。さらに、配列番号1に基づくプローブを利用する ハイブリダイゼーション法を用いて、流入ペプチド輸送 体をコードしている DNAを含むクローンを同定するこ とができる。

【0048】 実施例2

実施例1で選択したクローンを抗生物質セファレキシン の取り込みについて評価した。セファレキシンはEli Li lly and Company (Indianapolis, IN)から入手可能であ る。トランスフェクションされたCHO-K1細胞(ウ エル当たり~0.5から1×105細胞)を上記のようにC ostar 2 4 ーウエルプレート中で3日間増殖させた。全 面成長細胞を25mM HEPES、pH7.4を含むアー ル平衡塩類溶液(Gibco, Grand Island, NY) (Trans-E BSS)で洗浄し、37℃で45分間インキュペート し、次いでTrans-EBSSを吸引により除去した。こ の細胞を120mM塩化コリン、25mM MES、pH 6.0を含むナトリウム不含のアール平衡塩類溶液(ナト リウム不含、TransーEBSS)中、1 mM[HC]セファ レキシンの存在下でインキュペートした。続いて、細胞 を氷冷Trans-EBSS、pH7.4で洗浄し、0.2N NaOH中で溶解させ、一部をシンチレーション計数測 定のために採取した。

【0049】代表的なトランスフェクタント(クローン

9)は対照より有意に高い[" C]セファレキシンの取り 込みを示した。後の研究により、このトランスフェクタ ントによる1mMのセファレキシンの取り込みは、流入 ペプチド輸送体による取り込みと競合するジペプチドで あるGly-L-Pro(GP)の50mMの存在により阻害 されることが示された。細胞を1mM[" C]セファレキ

シンおよびGPと共にインキュベートすることにより、

代表的なトランスフェクタント(クローン9)における薬 物の取り込みは対照細胞のレベルまで減少した。さら に、対照細胞による 1 mM [" C] セファレキシンの輸送 はGly-L-Proジペプチドにより阻害されなかった。 これらの研究の結果を表2に示す。

【表2】

トポロジー:直鎖状

配列の種類:タンパク質

表2

サンプル	" C ーセファレキシンの取り込み
	(nmo 1/mg全細胞タンパク質)
クローン9	6.6 ± 0.3
クローン9+GP	4.5±0.03
対照	3.3 ± 0.6
<u>対照+GP</u>	4.7±0.4
	配列の型:アミノ酸

[0050] 【配列表】

【0051】配列番号:1

配列の長さ:832

配列: Net Ile Leu Gln Ala His Leu Ris Ser Leu Cys Leu Leu Met Leu Tyr Leu Ala Thr Gly Tyr Gly Gln Glu Gly Lys Phe Ser Gly Pro 20 25 Leu Lys Pro Met Thr Phe Ser Ile Tyr Glu Gly Gln Glu Pro Ser 40 Gln Ile Ile Phe Gln Phe Lys Ala Asn Pro Pro Ala Val Thr Phe 50 55 Glu Leu Thr Gly Glu Thr Asp Asn Ile Phe Val Ile Glu Arg Glu 70 Gly Leu Leu Tyr Tyr Asn Arg Ala Leu Asp Arg Glu Thr Arg Ser Thr His Asn Leu Gln Val Ala Ala Leu Asp Ala Asn Gly Ile Ile 95 100 Val Glu Gly Pro Val Pro Ile Thr Ile Glu Val Lys Asp Ile Asn Asp Asn Arg Pro Thr Phe Leu Gln Ser Lys Tyr Glu Gly Ser Val 125 130 Arg Gln Asn Ser Arg Pro Gly Lys Pro Phe Leu Tyr Val Asn Ala 140 145 Thr Asp Leu Asp Asp Pro Ala Thr Pro Asn Gly Gln Leu Tyr Tyr 160 Gln Ile Val Ile Gln Leu Pro Met Ile Asn Asn Val Met Tyr Phe 170 175 Gln Ile Asn Asn Lys Thr Gly Ala Ile Ser Leu Thr Arg Glu Gly 185 190 Ser Gln Glu Leu Asn Pro Ala Lys Asn Pro Ser Tyr Asn Leu Val

205

220

He Ser Val Lys Asp Met Gly Gly Gln Ser Glu Asn Ser Phe Ser

215

18

Asp	Thr	Thr	Ser	Va 1 230	Asp	I le	I le	Va 1	Thr 235		Åsn	I le	Trp	Lys 240
A la	Pro	Lys	Pro	Va 1	G lu	Net	Va 1	G lu	Asn		Thr	Asp	Pro	H is
				245					250					255
Pro	Ile	Lys	I le	Thr 260	G ln	Val	Arg	Ттр	Asn 265	Asp	Рго	Gly	A la	G 1n 270
Tvr	Ser	Îen	Va 1	Asp	î ve	C h	lve	Len		A	Phe	Pro	Pho	
•,•	50.		74.1	275	Lys	O Au	Lys	200	280	v, R	1116	110	1116	285
I le	Asp	G ln	G lu	G ly 290	Asp	I le	Tyr	Va 1	Thr 295	G ln	Pro	Leu	Asp	Arg 300
G lu	G lu	Lys	Asp	Аlа	Tyr	Val	Phe	Tyr	A la	Val	Аlа	Lvs	Asp	
				305					310			•	Ī	315
Туг	G ly	Lys	Pro	Leu	Ser	Tyr	Pro	Leu	G lu	I le	H is	Va l	Lys	Va 1
				320					325					330
Lys	Asp	I le	Asn	Asp	Åsn	Pro	Pro	Thr	Cys	Pro	Ser	Pro	Va 1	Thr
				335					340					345
Va 1	Phe	G lu	Va I	G In	G lu	Asn	G lu	Arg	Leu	G ly	Asn	Ser	I le	G ly
				350					355					360
Thr	Leu	Thr	Ala	His	Asp	Arg	Asp	G lu	G lu	Asn	Thr	A la	Asn	Ser
				365					370					375
Phe	Leu	Asn	Tyr	Arg	I le	Va 1	G lu	G ln	Thr	Pro	Lys	Leu	Pro	Met
				380					385					390
Asp	G ly	Leu	Phe	Leu	I le	G In	Thr	Tyr	A la	G ly	Met	Leu	G In	Leu
				395					400					405
A la	Lys	G ln	Ser	Leu	Lys	Lys	G In	Asp	Thr	Pro	G In	Tyr	Asn	Leu
				410					415			•		420
Thr	Ile	Glu	Val	Ser	Asp	Lys	Asp	Phe	Lys	Thr	Leu	Cys	Phe	ŶaΙ
				425					430			•		435
G In	I le	Asn	Va 1	I le	Asp	I le	Asn	Asp	G ln	I le	Pro	I le	Phe	G lu
				440					445					450
Lys	Ser	Asp	Tyr	Gly	Åsn	Leu	Thr	Leu	A la	G lu	Asp	Thr	Asn	I le
				455					460					465
Gly	Ser	Thr	I le	Leu	Thr	l le	G ln	A la	Thr	Asp	Ala	Asp	G lu	Pro
-				470					475	·		•		480
Phe	Thr	G ly	Ser	Ser	Lys	I le	Leu	Tyr	H is	Ile	Ile	Lys	G ly	Asp
		Ī		485	-				490			-	Ĭ	495
Ser	G lu	Gly	Arg	Leu	G ly	Val	Asp	Thr	Asp	Pro	Bis	Thr	Asn	Thr
		·		500	•				505					510
Gly	Tyr	Va 1	I le	I le	Lys	Lys	Pro	Leu	Asp	Phe	G lu	Thr	A la	A la
	-			515		-			520					525
Va 1	Ser	Asn	I le	Val	Phe	Lys	A la	G lu	Asn	Pro	G lu	Pro	Leu	Va 1
				530					535					540
Phe	G ly	Va 1	Lys	Туг	Asn	Å la	Ser	Ser	Phe	A la	Lys	Phe	Thr	Leu
				545					550					555
Ile	Va 1	Thr	Asp	Val	Asn	G lu	Å la	Pro	G In	Phe	Ser	G ln	B is	Va 1
				560					565					570
Phe	G ln	A la	Lys	Va 1	Ser	G lu	Asp	Va 1	A la	I le	G ly	Thr	Lys	Va 1
				575					580					585
Gly	Åsn	Va 1	Thr	Ala	Lys	Asp	Pro	G lu	C ly	Leu	Asp	I le	Ser	Tyr
				590					595					600

Ser	Leu	Arg	Gly		Thr	Arg	Gly	Trp		Lys	I le	Asp	His	
_			_	605				_	610					615
Thr	Gly	Glu	I le		Ser	Val	A la	Pro		Asp	Arg	G lu	A la	-
_	_	_		620					625					630
Ser	Pro	Tyr	Arg		G In	Val	Val	A la		G lu	Va 1	Gly	G ly	
_		_	_	635	_		_		640					645
Ser	Leu	Ser	Ser		Ser	G lu	Phe	H is		I le	Leu	Met	Asp	
.	A	4	n	650 D	A	,	4.1.		655	т	~	C1		660
ASN	лsр	ASD	Pro	665	Arg	Leu	v is	Lys	-	ıyr	Thr	Gly	Leu	
Dh.a	C	W :-	D		c	A 1-	D	C 1	670	1	11-	T31	C 1	675
rne	cys	n is	rio	680	ser	A 13	rro	G IY	5er 685	Leu	I le	rne	G IU	690
The	len.	Acn	Acn		V ic	I ou	Pho	Ara		Dea	His	Dha	The	
	nap	nop	nop	695	11.13	LÇU	THE	vi R	700	110	11.13	THE	* 111	705
Ser	Leu	G Iv	Ser		Ser	Leu	G In	Åsn		Tm	G lu	Val	Ser	
		٠.,	-	710			•		715		•••			720
I le	Åsn	G ly	Thr		A la	Arg	Leu	Ser		Arg	His	Thr	Asp	
		•		725		Ŭ			730	·			·	735
G lu	G lu	Arg	Ala	Tyr	Va 1	Va 1	Leu	I le	Arg	He	Asn	Asp	Gly	Gly
				740					745					750
Arg	Pro	Pro	Leu	G lu	G ly	I le	Va 1	Ser	Leu	Pro	Va 1	Thr	Phe	Cys
				755	•				760					765
Ser	Cys	Va 1	G Iu	Gly	Ser	Cys	Phe	Årg	Pro	A la	G ly	H is	G In	Thr
				770					775					780
Gly	I le	Pro	Thr	Va 1	G ly	Met	Å la	Va I	G ly	I le	Leu	Leu	Thr	Thr
				785					790					795
Leu	Leu	Va 1	I le	•	I le	I le	Leu	A la		Val	Phe	I le	Arg	
				800					805					810
Lys	Lys	Asp	Lys		Lys	Asp	Asn	Va 1		Ser	A la	G ln	A la	
٠.			_	815		_			820					825
i lu	Va l	Lys	۲го	Leu	Arg									
				830		832								

【0052】配列番号:2 鎖の数:二本鎖 配列の長さ:2499 トポロジー:直鎖状

配列の型:核酸

配列:

ATGATACTTC AGGCCCATCT TCACTCCCTG TGTCTTCTTA TGCTTTATTT 50 GGCAACTGGA TATGGCCAAG AGGGGAAGTT TAGTGGACCC CTGAAACCCA 100 TGACATTITC TATITATGAA GGCCAAGAAC CGAGTCAAAT TATATTCCAG 150 TTTAAGGCCA ATCCTCCTGC TGTGACTTTT GAACTAACTG GGGAGACAGA 200 CAACATATTT GTGATAGAAC GGGAGGGACT TCTGTATTAC AACAGAGCCT 250 TGGACAGGGA AACAAGATCT ACTCACAATC TCCAGGTTGC AGCCCTGGAC 300 GCTAATGGAA TTATAGTGGA GGGTCCAGTC CCTATCACCA TAGAAGTGAA 350 GGACATCAAC GACAATCGAC CCACGTTTCT CCAGTCAAAG TACGAAGGCT 400 CAGTAAGGCA GAACTCTCGC CCAGGAAAGC CCTTCTTGTA TGTCAATGCC 450 ACAGACCTGG ATGATCCGGC CACTCCCAAT GGCCAGCTTT ATTACCAGAT 500 TGTCATCCAG CTTCCCATGA TCAACAATGT CATGTACTTT CAGATCAACA 550 ACAAAACGGG AGCCATCTCT CTTACCCGAG AGGGATCTCA GGAATTGAAT 600 CCTGCTAAGA ATCCTTCCTA TAATCTGGTG ATCTCAGTGA AGGACATGGG 650 AGGCCAGAGT GAGAATTCCT TCAGTGATAC CACATCTGTG GATATCATAG 700

配列の種類:DNA

22

TGACAGAGAA	TATTTGGAAA	GCACCAAAAC	CTGTGGAGAT	GCTGGAAAAC	750
TCAACTGATC	CTCACCCCAT	CAAAATCACT	CAGGTGCGGT	GGAATGATCC	800
CGCTGCACAA	TATTCCTTAG	TTGACAAAGA	GAAGCTGCCA	AGATTCCCAT	850
TTTCAATTGA	CCAGGAAGGA	GATATTTACG	TGACTCAGCC	CTTGGACCGA	900
GAAGAAAAGG	ATGCATATGT	TTTTTATGCA	GTTGCAAAGG	ATGAGTACGG	950
AAAACCACTT	TCATATCCGC	TGGAAATTCA	TGTAAAAGTT	AAAGATATTA	1000
ATGATAATCC	ACCTACATGT	CCGTCACCAG	TAACCGTATT	TGAGGTCCAG	1050
GAGAATGAAC	GACTGGGTAA	CACTATCGGG	ACCCTTACTG	CACATGACAG	1100
GGATGAAGAA	AATACTGCCA	ACAGTTTTCT	AAACTACAGG	ATTGTGGAGC	1150
AAACTCCCAA	ACTTCCCATG	GATGGACTCT	TCCTAATCCA	AACCTATGCT	1200
GGAATGTTAC	AGTTAGCTAA	ACAGTCCTTG	AAGAAGCAAG	ATACTCCTCA	1250
GTACAACTTA	ACGATAGAGG	TGTCTGACAA	AGATTTCAAG	ACCCTTTGTT	1300
TTGTGCAAAT	CAACGTTATT	GATATCAATG	ATCAGATCCC	CATCTTTGAA	1350
AAATCAGATT	ATGGAAACCT	GACTCTTGCT	GAAGACACAA	ACATTGGGTC	1400
CACCATCTTA	ACCATCCAGG	CCACTGATGC	TGATGAGCCA	TTTACTGGGA	1450
GTTCTAAAAT	TCTCTATCAT	ATCATAAAGG	GAGACAGTGA	GGGACGCCTG	1500
GGGGTTGACA	CAGATCCCCA	TACCAACACC	GGATATGTCA	AAAAATTAAAT	1550
GCCTCTTGAT	TTTGAAACAG	CAGCTCTTTC	CAACATTCTC	TTCAAAGCAG	1600
AAAATCCTGA	GCCTCTACTG	TTTGGTGTGA	AGTACAATGC	AAGTTCTTTT	1650
GCCAAGTTCA	CGCTTATTGT	GACAGATGTG	AATGAAGCAC	CTCAATTTTC	1700
CCAACACGTA	TTCCAAGCGA	AAGTCAGTGA	GGATGTAGCT	ATAGGCACTA	1750
AAGTGGGCAA	TCTCACTGCC	AAGGATCCAG	AAGGTCTGGA	CATAAGCTAT	1800
TCACTGAGGG	GAGACACAAG	ACCTTCCCTT	AAAATTGACC	ACCTGACTGG	1850
TGAGATCTTT	AGTGTGGCTC	CATTGGACAG	AGAAGCCGGA	AGTCCATATC	1900
GGGTACAAGT	GGTGGCCACA	GAAGTAGGGG	CCTCTTCCTT	AAGCTCTGTG	1950
TCAGAGTTCC	ACCTGATCCT	TATGGATGTG	AATGACAACC	CTCCCAGGCT	2000
AGCCAAGGAC	TACACGGGCT	TCTTCTTCTG	CCATCCCCTC	AGTGCACCTG	2050
GAAGTCTCAT	TTTCGAGGCT	ACTGATGATG	ATCAGCACTT	ATTTCGGGGT	2100
CCCCATTTTA	CATTTTCCCT	CGGCAGTGGA	AGCTTACAAA	ACGACTGGGA	2150
AGTTTCCAAA	ATCAATGGTA	CTCATGCCCG	ACTGTCTACC	AGGCACACAG	2200
ACTTTGAGGA	GAGGGCGTAT	GTCGTCTTGA	TCCGCATCAA	TGATGGGGGT	2250
CGGCCACCCT	TGGAAGGCAT	TGTTTCTTTA	CCAGTTACAT	TCTGCAGTTG	2300
TCTGGAAGGA	ACTTCTTTCC	GGCCAGCAGG	TCACCAGACT	GGGATACCCA	2350
CTGTGGGCAT	CGCACTTCGT	ATACTGCTGA	CCACCCTTCT	GGTGATTGGT	2400
ATAATITTAG	CACTTCTCTT	TATCCGCATA	AAGAAGGATA	AAGGCAAAGA	2450
TAATGTTGAA	AGTGCTCAAG	CATCTGAAGT	CAAACCTCTG	AGAAGCTGA	2499
1					

【図面の簡単な説明】

【図2】 プラスミドpPSJ189の制限酵素部位お

【図1】 プラスミドpPSJ179の制限酵素部位お

よび機能地図の模式図である。

よび機能地図の模式図である。

Hindiii EcoRi

Tンピシリン ハイブロマイシン 配性

BKエンハンサーナ
アゲノMLP

Kpnl
Hindiii

AAペプテド
参送体章伝子

BamHi
BamHi
EcoRi

FIG. | 7525 F pPSJ179

FIG. 2

フロントページの続き

技術表示箇所

//(C 1 2 P 21/02 C 1 2 R 1:91)

(72)発明者 ジョアン・ホスキンズ アメリカ合衆国46256インディアナ州イン ディアナポリス、ターン・コート8229番 (72)発明者 ポール・ルーサー・スカットラッド アメリカ合衆国46143インディアナ州グリ ーンウッド、レイク・クロッシング2412番