Desafio Data Science

Nome: Luan Donizete Faria

Sumário

QUESTÃO	3
1 – TRATANDO A BASE DE DADOS	4
2- DADOS DE CORRELAÇÃO	6
3- ALGORITMO DE TREINAMENTO	8
4-TCH ESTIMADO 2019 POR BLOCO	11
5-MÉTRICA DE ERRO	13

QUESTÃO:

Para desenvolver as análises propostas, você deverá utilizar o dadosteste.csv recebido juntamente com esse desafio. Ele contém informações de TCH (Toneladas de cana-deaçúcar por hectare) para diversos talhões de plantação de cana-de-açúcar e para diferentes safras de colheita desses talhões.

O significado de cada coluna do arquivo é explicado a seguir:

- bloco: índice da região de plantação e colheita de cana-de-açúcar
- talhao: índice da sub-região de plantação e colheita de cana-de-açúcar (Um bloco contém diversos talhões);
- area: área do talhão;
- safra: ano que a cana-de-açúcar de cada talhão foi colhida;
- data_colheita: data em que a cana-de-açúcar foi colhida;
- TCH: Toneladas de cana-de-açúcar colhida por hectare;
- NDVI_b01: NDVI é o nome dado a um popular índice de vegetação, e o "b01" corresponde ao índice no primeiro mês antes da colheita;
- NDVI_bN: NDVI no N-ésimo mês antes da colheita;

Análises propostas:

- a) Faça uma rápida análise exploratória desse dataset, por exemplo análises estatísticas das variáveis, gráficos de distribuição etc.
- b) Desenvolva um modelo capaz de estimar o TCH dos blocos do conjunto de dados para a safra de 2019 (atenção: que a previsão deve ser no nível de blocos e não de talhões)
- c) Qual o erro esperado do modelo para a safra de 2019? Utilize a métrica de erro que você julgar necessária, podendo ser utilizada mais de uma.

1 - TRATANDO A BASE DE DADOS

1- Abrindo a base de dados "dadosteste. CSV"

2- Observar as informações apresentadas nos tipos de dados fornecidos

3- Agora com o objetivo de encontrar linhas/colunas com informações "vazias", utilizou-se o comando .isna().sum().

```
[14]: bd_agro.isna().sum()
[14]: bloco
                       0
      talhao
                       0
                      0
      area
      safra
                       0
      data_colheita
      TCH
      NDVI_b01
      NDVI_b02
      NDVI b03
      NDVI_b04
      NDVI_b05
      NDVI_b06
      NDVI_b07
      NDVI_b08
      NDVI_b09
      NDVI_b10
      NDVI_b11
      NDVI b12
      dtype: int64
```

No caso em questão foi possível encontrar 274 células vazias para as informações de TCHs.

4- Com o objetivo de observar um com um pouco mais detalhe essa informação, utilizou-se o comando .info() apenas para a coluna TCH

```
[12]: bd_agro['TCH'].info()

<class 'pandas.core.series.Series'>
RangeIndex: 1906 entries, 0 to 1905
Series name: TCH
Non-Null Count Dtype

1632 non-null float64
dtypes: float64(1)
memory usage: 15.0 KB
```

Agora podemos observar o tipo da variável, no caso o TCH esta como float64 (números flutuantes), além de mostrar o total de linhas (1906) e o total de linhas NÃO vazias (1632). A diferença entre os dois valores serias as linhas vazias que já encontramos anteriormente (1906-1632=274).

5- Em seguida foi realizado um tratamento com alguns caracteres que podem ser considerados erros de preenchimento, transformando-os em dados vazios ("vazio/NaN").

```
[15]: #TRATAMENTO DE IBNFORMAÇÕES VAZIAS
  valores_vazios=['-', '',' ','_','*']
  bd_agro = pd.read_csv('dadosteste.csv', na_values=valores_vazios)
```

6- Esses dados vazios foram preenchidos com o valor "0", utilizando o comando .fillna

7- E para finalizar nosso tratamento da base, foi removido a coluna data, pois estava registrada como string, e como acredito que não vá influenciar diretamente nos meus resultados optei pela remoção.

2- DADOS DE CORRELAÇÃO

1- Como o objetivo do trabalho é estimar o TCH da safra de 2019, foram extraídas as informações separando-as em duas planilhas, uma apenas com dados referentes a safra de 2019 e na outra as diversas safras.

2- Para diminuir o número de informações, deixei apenas os valores de TCH e NDVI.

3- A partir dessa nova Planilha analise4, foi possível criar uma matriz de correlação entre o TCH e os NDVIs utilizando o .heatmap.

Pode-se observar que o NDVI_b04 apresentou 40% de relevância quando correlacionado com o aumento de TCH.

4- A fim de refinar ainda mais a escolha dos dados de input, utilizarei apenas os três dados mais relevantes, NDVI_b02, NDVI_b03 e NDVI_b04.

5- A primeira tentativa de se observar padrões foi utilizando gráficos de pontos utilizando o **.pairpoint**, porém não foi possível identificar algo muito significativo, como podemos observar (utilizando já a planilha filtrada).

3- ALGORITMO DE TREINAMENTO

1- Para o algoritmo de treinamento utilizarei regressões, tais como a Linear e a RandomForest. Em primeira mão, foi utilizado 70% dos dados obtidos nas safras anteriores a 2019 como forma de treinamento, e os outros 30% foi utilizado como teste para validarmos o algoritmo.

```
[275]: x = analise4.drop('TCH', axis=1)
y = analise4['TCH']
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.10, random_state=1)
```

2- Treinamento IA

3- O primeiro teste foi o cálculo do R², que como observado foi baixo para a Linear, e um pouco "melhor" para a RandomForest.

```
[336]: test_pred_lin = lin_reg.predict(x_test)
    test_pred_rf = rf_reg.predict(x_test)

r2_lin = metrics.r2_score(y_test, test_pred_lin)
    print(f"R² da Regressão Linear: {r2_lin}")
    r2_rf= metrics.r2_score(y_test, test_pred_rf)
    print(f"R² do Random Forest: {r2_rf}")

R² da Regressão Linear: 0.3304928164263895
    R² do Random Forest: 0.44929119539819906
```

4- Foi realizado um comparativo de linhas, comparando os dados teste e as duas regressões.

```
[296]: df_resultado = pd.DataFrame()

# df_resultado.index = x_test
df_resultado['y_teste'] = y_test
df_resultado['y_previsao_rf'] = test_pred_rf
df_resultado['y_previsao_lin'] = test_pred_lin

# display(df_resultado)
df_resultado = df_resultado.reset_index(drop=True)
pl.figure(figsize=(15, 5))
sb.lineplot(data=df_resultado)
pl.show()
display(df_resultado.head(20))
```


A linha azul representa os dados do teste, a laranja a regressão randomforest e a verde a regressão linear.

Segue a tabela dos 20 primeiros resultados apresentados

	y_teste	y_previsao_rf	y_previsao_lin
0	69.380242	52.058922	44.953379
1	78.636202	85.814188	82.249830
2	62.726115	84.067557	91.224031
3	107.850352	109.387881	99.503599
4	90.505274	86.807980	94.329503
5	97.978231	95.884849	90.890639
6	77.450117	88.010391	81.634496
7	51.610891	73.180067	74.009666
8	77.042017	76.836416	94.924881
9	98.685602	85.536695	75.913803
10	74.680698	81.729676	98.281446
11	78.220933	71.934765	77.375927
12	57.646583	75.985840	75.566529
13	132.367178	88.389187	97.074026
14	65.685498	76.499362	69.020937
15	96.897346	85.343897	83.850804
16	64.511401	69.430415	77.927221
17	71.191525	64.911864	96.611014
18	110.948621	91.513118	78.663420
19	59.508502	76.967419	78.591160

Vale salientar que esses resultados ainda não estão agrupados por blocos. Podemos observar a ordem de relevância das variáveis utilizadas. Observa-se que a b4 e b3 mantem sua importância como na matriz de correlação, porem ocorre o surgimento da b12 como um dado inconsistente.

4-TCH ESTIMADO 2019 POR BLOCO

1- Aplicar o modelo na planilha 2019 (vale salientar que nessa etapa a analise ainda não esta sendo realizada por bloco)

2- Filtro de alguns valores

3- Aplicando o modelo de regressão randomforest

```
[364]: x1 = safra_4.drop('TCH', axis=1)
y1 = safra_4('TCH']
#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.10, random_state=100)

[375]: tch=rf_reg_predict(x1)
```

4- TCH já estimado por talhão (matriz para lista)

```
[381]: #result = pd.concat([TCH, y1], axis=1, sort=False)
       df_resultado = pd.DataFrame()
        # df resultado.index = x test
        #df_resultado['y_teste'] = y_test
       df_resultado['y_previsao_rf'] = tch
       #df_resultado['y_previsao_lin'] = test_pred lin
        # display(df_resultado)
       #df_resultado = df_resultado.reset_index(drop=True)
#pl.figure(figsize=(15, 5))
        #sb.lineplot(data=df_resultado)
       pl.show()
       display(df_resultado)
            y_previsao_rf
              97.378939
         0
         2
               80.576429
       3 100.197362
               99.277738
               80.916386
       270 85,433371
               89.447324
       272 83.169394
       273 86.946375
      274 rows × 1 columns
```

5- Concatenar entra a planilha 2019 e a coluna de resultado de TCH

6- Separando TCH e bloco para poder reagrupa-los novamente

7- E para finalizar, foi agrupado os valores de tch MÉDIO por bloco (115 linhas).

5-MÉTRICA DE ERRO

O maior indicativo de erro é o simples fato do NDVI já ser algo que requer cálculo. Esse cálculo já apresenta uma estimativa de erro, portanto quando tenta-se calcular novamente passando por uma rede de arvore de decisões pode ocorrer confusões como as apresentadas no trabalho.