Breve ripasso di aritmetica binaria (corso di reti di calcolatori)

Luciano Bononi

Email: luciano.bononi@unibo.it

- i bit possono essere considerati in sequenza (in memoria)
 - sequenza di 8 bit = 1 Byte

© 2021 Luciano Bononi

- Dato un byte come possiamo associarvi i simboli o valori?
 - sequenza di 8 bit = 1 Byte (primo esempio poco utile)

- Dato un byte come possiamo associarvi i simboli o valori?
 - sequenza di 8 bit = 1 Byte

Idea: sfrutto tutte le possibili combinazioni diverse di 8 bit 256 valori [0..255]

- 0 0 0 0 0 0 0 = valore 0
- 0 0 0 0 0 0 1 = valore 1
- 0 0 0 0 0 0 1 0 = valore 2
- $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 = valore 3$
- $0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 = valore 4$
- 1 1 1 1 1 1 0 = valore 254
- 1 1 1 1 1 1 1 = valore 255

- Dato un byte come possiamo associarvi i simboli o valori?
 - sequenza di 8 bit = 1 Byte

Idea: sfrutto tutte le possibili combinazioni diverse di 8 bit 256 simboli

0 0 0 0 0 0 1 1 = simbolo E

0 0 0 0 0 1 0 0 = simbolo F

1 1 1 1 1 1 0 = simbolo %

1 1 1 1 1 1 1 = simbolo \$

Codici binari: convenzioni per rappresentare info.

Funzioni dall'insieme delle 2ⁿ configurazioni di n bit ad un insieme di M informazioni o dati

(valori, simboli, istruzioni, ecc.).

Condizione necessaria per la codifica completa: $2^n \ge M$

Codici binari: quanti sono?

La scelta di un codice è condivisa da sorgente e destinazione ed ha due gradi di libertà:

- l'associazione tra configurazioni e informazioni; a parità di n e di M le associazioni possibili sono

$$C = 2^{n!} / (2^{n}-M)!$$

$$n = 1, M = 2$$
 $C = 2$ (logica pos. e neg.)
 $n = 2, M = 4$ $C = 24$
 $n = 3, M = 8$ $C = 64.320$
 $n = 4, M = 10$ $C = 29.000.000.000$

Sistemi di numerazione

Posizionali

- il valore di un simbolo dipende dalla posizione che esso occupa all'interno della configurazione, seguendo una legge nota. I vari sistemi di numerazione posizionale differiscono per la scelta della base B. La base B indica il numero di simboli usati.
 - decimale B=10, binario B=2, ottale B=8, esadecimale B=16

Non posizionali

Il valore di un simbolo non dipende dalla posizione che esso occupa all'interno della configurazione. (es: Numeri Romani)

Interpretazione (funzione valore)

• Nei sistemi posizionali, i simboli di una configurazione possono essere interpretati come i coefficienti del seguente polinomio [1] (detto funzione Valore)

$$V = \sum_{i=-m}^{n-1} d_i \cdot B^i$$

B = base

 d_i = i-esima cifra \in [0..B-1]

n = numero di cifre parte intera

m = numero di cifre parte frazionaria

La virgola e' posta tra le cifre di posizione 0 e −1.

Interpretazione (funzione valore)

Esempio: sistema decimale

Il numero 245.6 decimale può essere rappresentato come segue:

$$\mathbf{V} = \sum_{i=-m}^{n-1} \mathbf{d}_{i} \cdot \mathbf{B}^{i} = 2 \cdot 10^{2} + 4 \cdot 10^{1} + 5 \cdot 10^{0} + 6 \cdot 10^{-1} = 245.6$$

Esempio di interpretazione valore binario naturale

Esempio: Quale è il valore decimale corrispondente al numero binario 1101.0102 ?

cifra₂ 1 1 0 1 . 0 1 0...

peso 2^3 2^2 2^1 2^0 . 2^{-1} 2^{-2} 2^{-3}

valore 1•8 1•4 0•2 1•1 . 0•1/2 1•1/4 0•1/8

 $1101.010_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^0 + 1 \cdot 2^0 = 13.25_{10}$

Metodo della divisione: Base 10 -> Base B

Es. base 2:

Per valori interi positivi:

Per ottenere il valore in base B, di un numero intero codificato nel sistema decimale, si procede utilizzando un metodo iterativo di successive divisioni per la base: al termine del procedimento i resti delle divisioni, dall'ultimo al primo, rappresentano il valore iniziale in base B.

12

Metodo della divisione: Base 10 -> binario naturale

Es. base 2

Per valori con cifre decimali: si separa la parte intera da quella frazionaria, La parte intera si calcola come nel caso precedente La parte frazionaria si ottiene come segue:

- 1. Si moltiplica la parte frazionaria per 2
- 2. Se il numero ottenuto è maggiore di 1, si sottrae 1 e si considera come prima cifra dopo la virgola un '1'.
- 3. Se invece il numero è nella forma 0,..... => la cifra da inserire è uno '0'.
- 4. Si ripete dal passo 1 fino a che il numero di partenza non è zero.

Esempio: $0.625_{10} = 0.101_{2}$

Metodo veloce (pratico): Base 10 -> binario naturale

Con la pratica, solo dopo avere bene compreso la metodologia è possibile usare un metodo alternativo veloce.

- 1. Dato il numero N in base 10 iniziale (es. 349), si deve cercare a mente velocemente la più alta potenza del 2 inferiore al numero stesso (sia essa $2^k = 256$, k=8)
- 2. Si sottrae 2^k da N ottenendo 349 256 = 92
- 3. Se il risultato è zero abbiamo finito, altrimenti iteriamo il procedimento fino a che non otteniamo zero dalla sottrazione.
- 4. Inseriamo un bit a UNO nella notazione binaria di N in posizione k. (considerare che le posizioni partono da 0 a n-1, con n corrispondente al numero di bit totali della rappresentazione binaria usata e consentita).

$$349 - 256 = 93 - 64 = 29 - 16 = 13 - 8 = 5 - 4 = 1 - 1 = 0$$

$$2^{8} \qquad 2^{6} \qquad 2^{4} \qquad 2^{3} \qquad 2^{2} \qquad 2^{0}$$

$$349 \text{ in binario} = 1 \qquad 0 \qquad 1 \qquad 1 \qquad 1 \qquad 0 \qquad 1$$

Infatti,
$$V = \sum_{i=-m}^{n-1} d_i \cdot B^i = 1*2^8 + 0*2^7 + 1*2^6 + 0*2^5 + 1*2^4$$

$$1*256 + 0 + 1*64 + 0 + 1*16 + 1*8 + 1*4 + 1*1$$
© 2021 Luciano Bononi

Somma di valori in binario naturale

Assumiamo di avere solo n=3 bit a disposizione per rappresentare i valori e il risultato, quindi posso rappresentare B^n = 8 valori diversi interi positivi (da 0 a 7).

$$2_{10} + 3_{10} = 5_{10}$$

Per rappresentare il risultato

della somma di 5₁₀ + 3₁₀ sono necessari 4 bit!

Altre basi: ottale e esadecimale

Quando per la rappresentazione di un numero si utilizzano molte cifre binarie può convenire usare altri sistemi di numerazione.

I sistemi ottale ed esadecimale sono utilizzati principalmente per rappresentare in modo più compatto i numeri binari.

L'algoritmo della divisione per passare da base 10 a ottale o esadecimale vale anche in questo caso. Provare.

```
I simboli del sistema Ottale sono 8 (da 0 a 7): { 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, ....}
```

```
I simboli del sistema Esadecimale sono 16 (da 0 a F): { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, ....}
```

Cambiamenti di base (metodo veloce)

Esiste un metodo veloce quando base di partenza BP e di arrivo BA sono esprimibili come BA=BP^k.

BP:Binario -> BA:Ottale , **K=3**, (8=2^3)

Per passare dalla codifica Binaria a quella Ottale, si raggruppano le cifre binarie a gruppi di 3 (a partire da destra, allineandosi alla virgola) e le si sostituiscono con una cifra del sistema ottale.

Esempio: $111001010_2 = 712_8$

Ottale -> Binario

Per passare dalla codifica Ottale a quella Binaria, si sostituisce ad ogni cifra ottale la corrispondente codifica binaria (composta da 3 cifre).

Esempio: $302_8 = 011000010_2$

Cambiamenti di base (metodo veloce)

BP: Binario -> BA:esadecimale , K=4, (16=2^4)

Per passare dal codice Binario a quello Esadecimale, si raggruppano le cifre a gruppi di 4 (a partire da destra) e le si sostituiscono con una cifra del sistema esadecimale.

Esempio: $1001000111111_2 = 91F_{16}$

Esadecimale -> Binario

Per passare dal codice Esadecimale a quello Binario, si sostituisce ad ogni cifra esadecimale la corrispondente configurazione binaria (composta da 4 cifre).

Esempio : $A7F_{16} = 1010011111111_2$

Esempi

Esempio 1

Codifica del numero $125_{10} = 1111101_2$

Esempio 2

Decimale	Binario	Ottale	Esadecimale
5	101	5	5
12	1100	14	С
78	1001110	116	4E
149	10010101	225	95

Esempi

Decimale	Binario	Ottale	Esadecimale			
	dcba					
0	0000	00	0			
1	0001	01	1			
2	0010	02	2			
3	0011	03	3			
4	0100	04	4			
5	0101	05	5			
6	0110	06	6			
7	0111	07	7			
8	1000	10	8			
9	1001	11	9			
10	1010	12	Α			
11	1011	13	В			
12	1100	14	C			
13	1101	15	D			
14	1110	16	E			
15	1111	17	F /			

Riassunto: passaggi di base generici

Codifica dei caratteri ASCII (7 bit -> 128 caratteri)

Il codice ASCII è non ridondante, perchè i simboli che vengono codificati sono in numero pari alle configurazioni ottenibili con 7 cifre binarie.

	000	001	010	011	100	101	110	111	_MSB
0000	NUL	DLE		0	<u>@</u>	P	0	р	_
0001	SOH	DC1	!	1	A	Q	a	q	
0010	STX	DC2	66	2	В	R	b	r	
0011	ETX	DC3	#	3	C	S	c	S	
0100	EOT	DC4	\$	4	D	T	d	t	
0101	ENQ	NAK	%	5	E	U	e	u	
0110	ACK	SYN	&	6	F	V	f	V	
0111	BEL	ETB	6	7	G	W	g	W	
1000	BS	CAN	(8	Н	X	h	X	
1001	HT	EM)	9	I	Y	i	У	
1010	LF	SUB	*	:	J	Z	j	${f Z}$	
1011	VT	ESC	+	•	K	[k	{	
1100	FF	FS	,	<	L	\	1		
1101	CR	GS	-	=	M]	m	}	
1110	SO	RS		>	N	^	n	~	
1111	SI	US	/	?	O	_	O	DEL	
1 CD									

LSB