### **Definite integral**

**Definition**: If  $\frac{d}{dx}[f(x)] = \phi(x)$  and a & b are constant, then

$$\int_{a}^{b} \phi(x) dx = [f(x)]_{a}^{b} = f(b) - f(a)$$

is called definite integration of  $\phi(x)$  within limit a & b.

**Note**: This is also called fundamental theorem of calculus.

## Basic properties of definite integrals.

(1) 
$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx$$

(2) 
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

(3) 
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

For any  $c \in (a, b)$ 

(4) 
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$

(4) 
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$
(5) 
$$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx & \text{if } f(x) \text{ is even} \\ 0 & \text{if } f(x) \text{is odd} \end{cases}$$

(6) 
$$\int_{0}^{2a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx, & \text{if } f(2a-x) = f(x) \\ 0, & \text{if } f(2a-x) = -f(x) \end{cases}$$

The value of the integral  $\int_{0}^{\infty} |x| \cos nx dx$ ,  $n \ge 1$  is Q1.

**JAM - 2016** 

- (a) 0, when n is even
- (b) 0, when n is odd
- (c)  $-\frac{4}{n^2}$ , when n is even (d)  $-\frac{4}{n^2}$ , when n is odd

**Q.2**. The value of  $\int_{0}^{\pi/4} \log(1+\tan\theta)d\theta$  is

(a) 
$$\frac{\pi}{8}$$

$$(c)\frac{\pi}{8}\log 2$$

$$(d)\frac{\pi}{8}\log 3$$

**Q.3.** Evaluate :  $\int_{0}^{\pi} \frac{x dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$ 

$$(a)\frac{\pi^2}{2a^2b^2}$$

(b) 
$$\frac{\pi^2}{2ab}$$

$$(c)\frac{2\pi^2}{a^2b}$$

$$(d)\pi^2$$

# Definite integral as the limit of a sum:

$$\int_{0}^{1} f(x)dx = \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{n} f\left(\frac{r}{n}\right)$$

Where f(x) is continuous function on closed interval [0, 1]

**Q.4.** The limit of sum  $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n}$ , when

 $n \rightarrow \infty$  is

(a)log 3

(b) log2

(c)0

(d) 1

**Q5.** The limit when  $n \rightarrow \infty$  of the product

$$\left\{ \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \left(1 + \frac{3}{n}\right) \dots \left(1 + \frac{n}{n}\right) \right\}^{1/n}$$

(a) 2/e

(b) 4/e

(c) 5/e

(d)e

The value :  $\lim_{n\to\infty} \left[\frac{n!}{n}\right]^{1/n}$  is Q6.

(a) 1/e

(b) 2/e (d)4/e

(c) 3/e

#### **Gamma Function:**

If m and n are non-negative integers, then

$$\int_0^{\pi/2} \sin^m x \cos^n x dx = \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{m+n+2}{2}\right)}$$

where  $\Gamma(n)$  is called gamma function which satisfied the following properties

$$\Gamma(n+1) = n\Gamma(n) = n!$$
 i.e.  $\Gamma(1) = 1$  and  $\Gamma(1/2) = \sqrt{\pi}$ 

In place of gamma function, we can also use the following formula:

$$\int_0^{\pi/2} \sin^m x \cos^n x dx = \frac{(m-1)(m-3)....(2 \text{ or } 1)(n-1)(n-3)....(2 \text{ or } 1)}{(m+n)(m+n-2)....(2 \text{ or } 1)}$$

It is important to note that we multiply by  $(\pi/2)$ ; when both m and n are even.



Q.7. Evaluate  $\int_{0}^{\infty} x^{1/4} e^{-\sqrt{x}} dx$ 

(a) 
$$2\sqrt{\pi}$$

(b) 
$$\frac{3}{2}\pi$$

(c) 
$$\sqrt{\pi}$$

(d) 
$$\frac{3}{2}\sqrt{\pi}$$

Q.8.

Let a,b be positive real numbers such that a < b Given that

$$\lim_{n\to\infty}\int_0^n e^{-t^2}dt = \frac{\sqrt{\pi}}{2} \text{ Then value of } \lim_{n\to\infty}\int_0^n \frac{1}{t^2} \left(e^{-at^2} - e^{-bt^2}\right)dt \text{ is }$$

#### ПТ JAM 2022

(a) 
$$\sqrt{\pi} \left( \sqrt{b} - \sqrt{a} \right)$$

(b) 
$$\sqrt{\pi} \left( \sqrt{b} + \sqrt{a} \right)$$

(c) 
$$-\sqrt{\pi}\left(\sqrt{b}-\sqrt{a}\right)$$

(d) 
$$\sqrt{\pi} \left( -\sqrt{b} + \sqrt{a} \right)$$

Q9.

The value of  $\int_0^{\pi/2} \sin^4 x \cos^6 x dx$ 

- (a)  $3\pi/312$
- (c)  $3\pi/512$

- (b)  $5\pi/512$
- (d)  $5\pi/312$

Q10.

If  $I_n = \int_0^\infty e^{-x} x^{n-1} dx$ , then  $\int_0^\infty e^{-\lambda x} x^{n-1} dx$  is equal to

(b)  $\frac{1}{\lambda}I_n$ (d)  $\mathcal{X}^nI_n$ 

Q11.

$$\int_0^{\pi/2} \sin^7 x dx \text{ has value}$$

(a)  $\frac{37}{184}$ 

(b)  $\frac{17}{45}$ 

(c)  $\frac{16}{35}$ 

(d)  $\frac{16}{45}$