

Théorème des résidus

Soient $f:D\to\mathbb{C}$ holomorphe (D simplement connexe) sauf en les singularités isolées z_1, \ldots, z_n , et γ une courbe simple fermée (orientée trigonométriquement) dans D; alors

$$\oint_{\gamma} f(z) dz = i \tau \sum_{k=1}^{n} \text{Res}(f, z_k)$$

• Soit $f: A_{0,R}(z_0) \to \mathbb{C}$ holomorphe avec une singularité isolée en z₀, alors elle possède une série de Laurent, et son résidu en z_0 est Res $(f, z_0) = a_{-1}$ (le coefficient du terme $1/(z-z_0)$. Si on intègre f sur un contour $\gamma \in A_{0,R}(z_0)$:

$$\oint_{\gamma} f(z) dz = \sum_{k=-\infty}^{+\infty} a_k \int_{\gamma} (z - z_0)^k dz = a_{-1} \int_{\gamma} \frac{dz}{z - z_0} = i \tau a_{-1}$$
• Calcul d'un résidu à un pôle simple (càd $a_{-1} \neq 0$ et $a_k = 0$

Res $(f, z_0) = a_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$.

• Calcul d'un résidu à un pôle simple d'ordre n (càd $a_{-n} \neq 0$

et $a_{-n} = 0$ pour k < -n):

Res
$$(f, z_0) = a_{-n}$$
 = $\frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z))$.

• Si $f(z) = \frac{g(z)}{h(z)}$ avec g et h holomorphes au voisinage de z_0 , et h possède un pôle simple en z_0 , alors Res $(f, z_0) = g(z_0)/h'(z_0)$.

Théorème intégral de Cauchy D simplement connexe, $f:D \to \mathbb{C}$ holomorphe et

 $\gamma: [a,b] \to D$ un lacet LPM :

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 0$$

Corollaire (intégral de Cauchy) Soient β et γ deux lacets simples (ne s'intersectant pas)

trigo-orientés, γ à l'intérieur de β . Si f est holomorphe sur D et que D contient γ , β et la région

$$\int_{\beta} f(z) dz = \int_{\gamma} f(z) dz, \operatorname{car} \int_{\Gamma} f(z) dz = 0.$$

Formule intégrale de Cauchy

Soient D simplement connexe contouré par γ LPM et f

holomorphe sur
$$U \supseteq \widehat{D} = D \cup \gamma$$
:

$$f(z) = \frac{1}{i\tau} \oint_{\gamma} \frac{f(w)}{w - z} dw,$$

 $f^{(k)}(z) = \frac{k!}{\mathrm{i}\,\tau} \oint_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \,\mathrm{d} w, \quad k \geq 0.$

Théorème de l'estimation de Cauchy Soient f holomorphe sur un ouvert contenant

 $\widehat{B_r(z_0)}$, et une constante m telle que $|f(z)| \leq m$ pour tout $z \in \partial B_r(z_0)$, alors :

$$\left|f^{(k)}(z_0)\right| \leq \frac{k! \, m}{r^k}.$$

Théorème Liouville

Si f est entière et bornée $(\exists m : |f(z)| \le m)$, alors f est constante.

Soit f = u + i v entière avec u(z) < 0 pour tout $z\in\mathbb{C}$, alors (en considérant $g(z)=\exp(f(z))$ qui est entière aussi) f est constante.

Théorème du principe du maximum Soient f holomorphe sur D et $z_0 \in D$ tel que

 $f(z) \le f(z_0)$ pour tout $z \in D$, alors f est constante sur D.

Soient $D \subset \mathbb{C}$ borné, et f continue sur \widehat{D} et holomorphe sur D, alors |f| atteint son maximum sur

Théorème fondamental de l'algèbre Tout polynome $p(z) = a_0 + a_1 z + \cdots + a_n z^n$

(avec $a_0, ..., a_n \in \mathbb{C}, n \ge 1$ et $a_n \ne 0$) possède un zéro sur \mathbb{C} , càd $\exists w : p(w) = 0$.

Séries de Laurent

 $f: D \to \mathbb{C}$ holomorphe avec $A_{r,R}(z_0) = \{r < |z - z_0| < R\}$ possède un développement en série de Laurent

$$f(z) = \sum_{k=-\infty}^{+\infty} a_k (z - z_0)^k,$$

$$1 \quad f(z)$$

avec :
$$a_k = \frac{1}{i\tau} \int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz$$
,
= ... $\frac{a_{-2}}{z_0} + \frac{a_{-1}}{z_0} + a_0 + a_1$

$$=\underbrace{\cdots \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0}}_{\text{partie principale}} + \underbrace{a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots}_{\text{partie analytique / holomorphe}}$$

et avec $\gamma \in A_{r,R}(z_0)$, converge partout dans $A_{r,R}(z_0)$, et converge absolument et uniformément sur chaque

sous-couronne $A_{s,S}(z_0)$ avec r < s < S < R. • z₀ est une *singularité isolée* de f si f est holomorphe sur un

- disque pointé $A_{0,r}(z_0) = \{0 < |z z_0| < r\}$ centré en z_0 . • Si f possède une singularité isolée en z₀, alors elle y possède
- une série de Laurent. • Une singularité isolée est :
- effaçable (apparente) ssi $a_k = 0$ pour tout k < 0 (càd

la série de Laurent ne possède pas de partie principale). • un pôle ss'il existe n > 0 tel que $a_{-n} \neq 0$ et $a_{\nu} = 0$

pour tout k < -n (càd la partie principale est finie). • essentielle ssi $a_k \neq 0$ pour une infinité de k < 0 (càd la partie principale est infinie). • Théorème de Riemann z₀ une singularité isolée de f est

- effaçable ssi f est bornée au voisinage de z_0 . • z₀ une singularité isolée de f est un pôle (si et ?) seulement
- si $\lim_{z\to z_0} |f(z)| = \infty$. • Si f possède un pôle en z_0 , alors 1/f(z) possède une singularité apparente en z_0 ; et vice-versa.
- ullet Théorème de Casorati-Weierstraß Si f possède une
- singularité essentielle en Z, alors $\forall W \in \mathbb{C}$ il existe une suite $\{z_k\}_k$ avec $z_k \to Z$ telle que $f(z_k) \to W$ quand $z_k \to Z$.
- Théorème de Picard Si f possède une singularité essentielle en Z, alors pour tout $W \in \mathbb{C}$ avec au plus une exception, il existe une suite $\{z_k\}_k$ avec $z_k \to Z$ telle que $f(z_k) = W$.

Dérivabilité

f dévivable en z_0 ssi $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ existe, *i.e.*:

• la limite est finie :

• la limite est la même quelque soit le chemin emprunté par z pour tendre vers z₀, pex si z suit les axes réels / imaginaire, $\partial_x f = \partial_{iv} f = -i \partial_v f = f'(z),$

$$O_X I = O_1 y I = -1 O y I = I \quad (2),$$

d'où les équations de Cauchy-Riemann.

Déterminations locales et globales

Soit $f: D \to \mathbb{C}$ holomorphe, alors f(z) est entièrement déterminée par

• la valeur de toutes ses dérivées en $z_0 \in D$ via sa série de *Taylor* (car f est analytique sur D) dans le disque $B_r(z_0) \subseteq D$ $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ avec : $a_k = \frac{f(k)(z_0)}{k!}$

• ses valeurs sur un lacet autour de $z_0 \in D$ via la formule

$$f(z) = \frac{1}{i \tau} \oint_{\gamma} \frac{f(w)}{w - z} dw.$$

Rayon de convergence Il existe $0 \le R \le \infty$ tel que $\sum_{k=0}^{\infty} a_k (\bar{z} - z_0)^k$

converge absolument dans $B_R(z_0) = \{|z - z_0| < R\},\$ diverge ou converge sur $\{|z - z_0| = R\}$, diverge grossièrement dans $\{|z-z_0| > R\}$. • La convergence est normale, donc uniforme

dans tout compact inclus dans $B_R(z_0)$. • Formules donnant R si la limite existe,

 ∞ est une limite valable :

the compact inclusions
$$B_R(z_0)$$
.

It compact inclusions $B_R(z_0)$.

 $\begin{array}{ll} \text{Cauchy-Hadamard}: & \frac{1}{R} = \limsup_{k \to \infty} \sqrt[k]{|a_k|} \leq \limsup_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|. \\ \bullet & f: D \to \mathbb{C} \text{ holomorphe possède une série de Taylor telle que } \end{array}$

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
, $a_k = \frac{f^{(k)}(z_0)}{k!}$, $\forall z \in B_r(z_0) \subseteq D$,

dont le rayon de convergence est $R \ge r$.

• Si f et g holomorphes sur $B_r(z_0)$, et si $f^{(k)}(z_0) = g^{(k)}(z_0)$ pour tout $k \ge 0$, alors f(z) = g(z) partout sur $B_r(z_0)$.

Nomenclature

- $\tau = 2\pi$: rapport de la circonférence du cercle à son rayon
- $D, E \subseteq \mathbb{C}$: un ouvert du plan complexe
- $z, w \in D, \mathbb{C}, \widehat{\mathbb{C}}$: variables complexes
- $a, b, c, d, z_0, w_0 \in D$: constantes complexes
- $x, y \in \mathbb{R}$: parties réelle et imaginaire : z = x + iy
- $f, g, h \in \mathcal{F}(D, \mathbb{C})$: fonctions complexes d'une variable
- $u, v \in \mathcal{F}(\mathbb{R}^2, \mathbb{R})$: parties réelle et imaginaire : f = u + i v
- $\mathbb{U} = \{|z| = 1\}$: nombres complexes unitaires (cercle unité) • $\mathbb{D} = \{|z| < 1\}$: disque ouvert unité
- $B_R(z_0) = \{|z z_0| < R\}$: disque (boule) ouvert de rayon R
- $A_{r,R}(z_0) = \{r < |z z_0| < R\}$: couronne centrée en z_0 de ravons r < R
- ullet $I\subseteq\mathbb{R}$: un intervalle quelconque de \mathbb{R}
- γ : $[a,b] \to \mathbb{C}$: une courbe (ouverte, càd $\gamma(a) \neq \gamma(b)$) ou
- un lacet (càd $\gamma(a) = \gamma(b)$) rectifiable (càd de longueur finie)
- $k \in \mathbb{Z}$: variable entière (indice de sommes) • $n \in \mathbb{N}$: constante entière positive
- LPM : lisse par morceaux
- ∂D : frontière de D
- \mathring{D} : intérieur de D : l'ensemble des *points intérieur* de D• $\widehat{D} = D \cup \partial D$: adhérence (cloture) de D

Formulaire

- Forme cartésienne : $z = x + i y = \rho(\cos \theta + i \sin \theta)$ Forme polaire : $z = \rho e^{i \theta}$
- La conjugaison : $\overline{z} = x iy = \rho e^{-i\theta}$ est un automorphisme involutif de corps, donc : $\overline{ab+c} = \overline{a}\overline{b} + \overline{c}$, et aussi :

$$z\overline{z} = |z|^2 \quad \Leftrightarrow \quad \frac{1}{z} = \frac{\overline{z}}{|z|^2}$$
$$|z| = \sqrt{x^2 + y^2} = \rho, |z| = |z| |w|, \left|\frac{z}{z}\right| = \frac{1}{|z|^2}$$

• Module: $|z| = \sqrt{x^2 + y^2} = \rho$, |z| = |z| |w|, $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$ • Argument : $\arg z = \{ \operatorname{Arg}(z) + k \tau, k \in \mathbb{Z} \}$, avec Arg

ment :
$$\arg z = \{ Arg(z) + \kappa \tau, \kappa \in \mathbb{Z} \}, \text{ avec Arg}$$

ent principal : $\Im(z)$

$$\operatorname{Arg}(z) = 2 \arctan \frac{\Im(z)}{|z| + \Re(z)}.$$
• $\operatorname{arg} z w = \operatorname{arg} z + \operatorname{arg} w$,

- $\arg z^k = k \arg z, \ \forall k \in \mathbb{Z}.$ • Polaire vers cartésien :
- Cartésien vers polaire : $\theta = 2 \arctan \frac{y}{\rho + x}$

Topologie dans le plan (complexe) • $z \in D$ est intérieur ssi $\exists r > 0 : B_r(z) \subseteq D$.

- z est un point frontière de D ssi tout disque autour de z contient un point en D et un point hors D. On note ∂D l'ensemble des points frontière de D.
- D est ouvert ssi tout $z \in D$ est interérieur. • D est fermé ssi il contient toute sa frontière.
- L'adhérence (fermeture) de D est $\widehat{D} = D \cup \partial D$,
- \widehat{D} est aussi le plus petit fermé qui contient D.
- L'intérieur de D, noté D, est l'ensemble des points intérieur • Deux ensembles $X,Y\subset\mathbb{C}$ sont séparés s'il existe deux ou-
- verts disjoints $U, V \in \mathbb{C}$ tels que $X \subset Y$ et $Y \subset V$. ullet Un ensemble $W\in\mathbb{C}$ est *connexe* s'il est impossible de trouver deux ensembles séparés non-vides dont l'union est égale à
- Un ouvert $G \subset \mathbb{C}$ est *connexe* si et seulement si tout couple de points dans G peuvent être joints par une succession de seg-
- $A \subset \mathbb{C}$ est borné s'il existe R > 0 tel que $A \subset B_R(0)$.

$\sum_{k=0}^{\infty} w_k = w_0 + w_1 + \dots + w_k + \dots, \quad w_k \in \mathbb{C}$

• converge vers S ssi la suite de ses sommes partielles $\{S_n\}_n$

$$S_n = \sum_{k=0}^n w_k = w_0 + w_1 + \dots + w_n.$$

converge vers S: $S_n = \sum_{k=0}^n w_k = w_0 + w_1 + \dots + w_n.$ • $S_n = 1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$ converge ssi |z| < 1:

$$\sum_{k=0}^{\infty} z^{n} = \frac{1-z}{1-z}.$$
Inverge absolument ssi $\sum_{k=0}^{\infty} |w_{k}|$ converges

 $\begin{vmatrix} \bullet & \sum_{k=0}^{\infty} w_k \text{ converge absolument ssi } \sum_{k=0}^{\infty} |w_k| \text{ converge.} \\ \bullet & \text{Si } \sum_{k=0}^{\infty} w_k \text{ converge absolument, alors elle converge et} \\ |\sum_{k=0}^{\infty} w_k| \leq \sum_{k=0}^{\infty} |w_k|. \end{aligned}$

• Série de Taylor centrée en z_0 : $\sum_{i=0}^{\infty} a_i (z-z_0)^k$.