Descrevendo Circuitos Lógicos (Continuação)

CPCX - UFMS

Slides: Prof. Renato F. dos Santos

Adaptação: Prof. Fernando Maia da Mota

3.11 Teoremas de DeMorgan

- Demorgan, foi um grande matemático, tendo contribuído como dois dos mais importantes teoremas da álgebra booleana
- Extremamente úteis na simplificação de expressões nas quais um produto ou soma de variáveis aparecem negados (barrados)
- Os dois teoremas são:

16.
$$(\overline{x+y}) = \overline{x} \cdot \overline{y}$$

17.
$$(\overline{x \cdot y}) = \overline{x} + \overline{y}$$

3.11 Teoremas de DeMorgan (Continuação)

- O teorema 16 diz que, quando a soma lógica (OR) de duas variáveis é invertida, é o mesmo que inverter cada variável individualmente e, em seguida, fazer a operação AND entre as variáveis invertidas
- O teorema 17 diz que, quando o produto lógico (AND) de duas variáveis é invertido, é o mesmo que inverter cada variável individualmente e, em seguida, fazer a operação OR entre elas.
- Esses teoremas são igualmente válidos para situações em que x e/ou y são expressões que contêm mais de uma variável
- Por exemplo, vamos aplicá-lo na expressão $(\overline{AB} + \overline{C})$, conforme mostrado a seguir:

3.11 Teoremas de DeMorgan (Continuação)

•
$$(\overline{A}\overline{B} + \overline{C}) = (\overline{A}\overline{B}) \cdot \overline{C}$$

- O resultado pode ser ainda mais simplificado, visto que temos um produto $A\overline{B}$ que é invertido [Teorema 17]

•
$$\overline{A}\overline{B}$$
 . $\overline{C} = (\overline{A} + \overline{B})$. \overline{C}

- Observe que podemos substituir \overline{B} por B, de modo que teremos finalmente:

•
$$(\overline{A} + B) \cdot \overline{C} = \overline{A}\overline{C} + B\overline{C}$$

Exemplo 3.16

– Simplifique a expressão $z=(\overline{A}+C)(\overline{B}+\overline{D})$ para que ela tenha apenas variáveis simples invertidas.

Solução

Usando o teorema (17) e considerando $(\overline{A} + C)$ como x, e (B + D) como y, temos:

$$z = (\overline{A} + \overline{C}) + (\overline{B} + \overline{D})$$

Podemos pensar sobre essa operação como sendo a quebra de uma barra grande ao meio e a troca do sinal AND (.) pelo sinal OR (+). Agora o termo $(\overline{A} + \overline{C})$ pode ser simplificado aplicando o teorema (16). Do mesmo modo, $(\overline{B} + \overline{D})$ também pode ser simplificado:

Exemplo 3.16 (Continuação)

$$z = (\overline{\overline{A} + C}) + (\overline{B + \overline{D}})$$
$$= (\overline{\overline{A} \cdot C}) + \overline{B} \cdot \overline{\overline{D}}$$

 Nesse caso, partimos a barra grande ao meio e substituímos o sinal (+) por (.). Cancelando as duplas inversões, temos:

$$z = A\overline{C} + \overline{B}D$$

Implicações dos teoremas de DeMorgan

- Vamos analisar os teoremas 16 e 17 do ponto de vista dos circuitos lógicos
- Considere o teorema 16,

$$-\overline{x+y}=\overline{x}\cdot\overline{y}$$

- O lado esquerdo da equação pode ser visto como a saída de uma porta NOR
- O lado direito, é o resultado da inversão das variáveis x e y colocadas nas entradas de uma porta AND

FIGURA 3.26

(a) Circuitos equivalentes relativos ao teorema (16);(b) Símbolo alternativo para a função NOR.

Implicações dos teoremas de DeMorgan

- Considere o teorema 17,

$$-\overline{x \cdot y} = \overline{x} + \overline{y}$$

- O lado esquerdo da equação pode ser implementado por uma porta NAND
- O lado direito, pode ser implementado invertendo as entradas x e y primeiro e colocando-as nas entradas de uma porta OR

FIGURA 3.27

(a) Circuitos equivalentes relativos ao teorema (17);(b) Símbolo alternativo para a função NAND.

Exemplo 3.17

Determine a expressão de saída para o circuito da Figura
3.28 e simplifique-a usando os teoremas de DeMorgan.

Solução

- A expressão para z é $z = \overline{ABC}$. Usando o teorema de DeMorgan para partir a barra maior, temos:

$$z = \overline{A} + \overline{B} + \overline{\overline{C}}$$

Cancelando a dupla inversão sobre a variável C, temos:

$$z = \overline{A} + \overline{B} + C$$

3.12 Universalidade das portas NAND e NOR

- Todas as expressões booleanas consistem em várias combinações das operações básicas OR, AND e INVERSOR
- Qualquer expressão pode ser implementada usando apenas essas portas
- Também é possível implementar qualquer expressão usando apenas portas NAND
- Isso porque as portas NAND, em combinações apropriadas, podem ser usadas para implementar qualquer uma das operações booleanas

3.12 Universalidade das portas NAND e NOR (Continuação)

 De modo similar, as portas NOR podem ser associadas para implementar qualquer operação booleana

Exercícios

- 1. Crie os circuitos lógicos das expressões a seguir usando um simulador de sua preferência, para este exercício utilize da universalidade das portas NAND.
 - a) $\overline{A}B+(CD)$
 - b) (A+C)(C+D)
 - c) $(\overline{A+B})$ (CD)
- 2. Crie os circuitos lógicos das expressões a seguir usando um simulador de sua preferência, para este exercício utilize da universalidade das portas NOR.
 - a) $\overline{A}B+(CD)$
 - b) (A+C)(C+D)
 - c) $(\overline{A+B})$ (CD)
- 3. Simplifique as expressões a seguir utilizando os teoremas de Demorgan.
 - a) $\overline{((B+A)+(DC))}+(AD)$
 - b) $\overline{((BD).(A+C))}$ (B)
 - c) $\overline{(A+D)} + (\overline{A}D)$

3.16 Resumo de métodos para descrever circuitos lógicos

- Os tópicos abordados nesse capítulo até aqui centram-se em apenas três funções lógicas simples AND, OR e NOT.
- Não são conceitos novos para ninguém, porque todos usamos essas funções lógicas todos os dias ao tomarmos decisões. Exemplos:
 - Se está chovendo OU (OR) se o jornal diz que irá chover, então eu levarei o guarda-chuva.
 - Se eu receber meu pagamento hoje E (AND) for ao banco, então terei dinheiro para gastar à noite
 - Se eu tiver uma nota satisfatória na prova escrita E (AND) NÃO (NOT) for mal no trabalho, vou passar em Sistemas Digitais

3.16 Resumo de métodos para descrever circuitos lógicos (Continuação)

- Por que nos esforçamos tanto para descrever conceitos tão familiares
 - Precisamos saber representar essas decisões lógicas.
 - Precisamos saber combinar essas funções lógicas e implementar um sistema de tomada de decisões.
- Aprendemos como representar cada uma das funções lógicas básicas usando:
 - Sentenças lógicas em nossa própria língua.
 - · Tabelas-verdade.
 - Expressões de álgebra booleana.
 - Diagramas de tempo.

Exemplo 3.24

As seguintes expressões descrevem o modo como um circuito lógico precisa operar a fim de acionar um indicador de alerta de cinto de segurança em um carro.

Se o motorista estiver presente E NÃO estiver usando cinto, E a ignição estiver acionada, ENTÃO, acenda a luz de advertência.

Descreva o circuito usando álgebra booleana, diagramas de símbolos lógicos, tabelas-verdade e diagramas de tempo.

Tabela-verdade

motorista_presente	cinto_em_uso	ignição_ligada	luz_de_advertência
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

(c)

FIGURA 3.42

Métodos de descrever circuitos lógicos: (a) Expressão booleana; (b) Diagrama; (c) Tabela-verdade; (d) Diagrama de tempo.