	Grafi: introduzione		
	Definizione e rappresentazione		
	F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)		
]	
•			
	Definizioni: che cosa sono i grafi		
	F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)		
		•	
	_	1	
Ι	Definizione		
ı	Un grafo G=(V,E) consiste in:		
•	un insieme V di vertici (o nodi)		
•	un insieme E di coppie di vertici, detti archi o spigoli: ogni arco connette due vertici		
<u>I</u>	Esempio 1: V={persone che vivono in Italia},		
I	E={coppie di persone che si sono strette la mano} Esempio 2: V={persone che vivono in Italia},		
1	Esemplo 2. $v = \{\text{persone che vivono in riana}\},$ $E = \{(x,y) \text{ tale che x ha inviato una mail a y}\}$		

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Terminologia (1/2)

Esempio 1: relazione simmetrica parafo non orientato

Esempio 2: relazione non simmetrica parafo orientato

n = numero di vertici m = numero di spigoli

L ed I sono adiacenti (L,I) è incidente a L I ha grado 4: δ(I)=4 $\sum \delta(v)=2m$

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Terminologia (2/2)

< L , I , E, C, B, A > è un cammino di lunghezza 5 nel grafo

Non è il più corto cammino tra L ed A

La lunghezza del più corto cammino tra due vertici si dice distanza: L ed A hanno distanza 4

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Definizioni: che cosa sono i grafi (una presentazione piu' dettagliata)

A COSA SERVONO I GRAFI?

Un altro esempio

Problema: Supponiamo di dover collegare tre abitazioni A1, A2 e A3 tramite tubature per fornirle di Acqua, Gas ed Elettricità.

Se assumiamo che le tubature vadano posizionate alla stessa profondità, è possibile offrire la fornitura a tutte le abitazioni senza far incrociare le tubature?

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Definizione

Un grafo G è una coppia di elementi $\langle V, E \rangle$ dove:

Vè un insieme detto insieme dei vertici

E è un insieme detto insieme degli **archi** (E⊆VxV)

Un arco quindi è una coppia di vertici (v,w), cioè $v \in V$ e $w \in V$

_				
_				
_				
_				

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

se E è un insieme di coppie *ordinate* di vertici il grafo e' detto **orientato**

Definizione In un grafo orientato, un arco $\langle w, v \rangle$ si dice incidente da w in v• $\langle A, B \rangle$ è incidente da A a B• $\langle A, D \rangle$ è incidente da A a D• $\langle D, A \rangle$ è incidente da D a A

Definizione Un vertice w si dice adiacente a v se e solo se $\langle v, w \rangle \in E$. • B è adiacente ad A • C è adiacente a B e a D • A è adiacente a D e viceversa • B NON è adiacente a D ne' a C • F NON è adiacente ad alcun

vertice

In un *grafo non orientato* la relazione di *adiacenza* tra vertici è *simmetrica*

Definizioni

In un grafo non orientato:

• il **grado** di un *vertice* è il *numero di archi* che da esso si dipartono

In un grafo orientato:

- il grado entrante (uscente) di un vertice è il numero di archi incidenti in (da) esso
- il **grado** di un *vertice* è la somma del suo *grado entrante* e del suo *grado uscente*

Definizione

Associamo ad ogni arco un peso (o costo).

Definiamo grafo pesato la coppia $\langle G, W \rangle$, dove W e' la funzione peso, W: E \rightarrow R, dove R è l'insieme dei numeri reali.

Definizione

Sia G = (V, E) un grafo.

Un **sottografo** di G è un grafo $H = (V^*, E^*)$ tale che $V^* \subseteq V$ e $E^* \subseteq E$ (e poiché H è un grafo, deve valere che $E^* \subseteq V^* \times V^*$).

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Definizione

Sia G = (V, E) un grafo.

Un **cammino** nel grafo è una sequenza di vertici $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in E$ per $1 \le i \le n-1$.

Un cammino si dice **semplice** se tutti i *suoi vertici sono distinti* (compaiono una sola volta nella sequenza), eccetto al più il primo e l'ultimo che possono essere lo stesso.

Es. il cammino <A, B, C, E> è semplice ...
... ma il cammino <A, B, C, E, D, C> NON è semplice,

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

poiché C è ripetuto.

Definizione Se G è un grafo non orientato, definiamo G connesso se esiste un cammino da ogni vertice ad ogni altro vertice. Ad es. questo grafo non orientato è connesso. B C F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Definizione

Se G è un grafo orientato, definiamo G fortemente connesso se esiste un cammino da ogni vertice ad ogni altro vertice.

Ad es. questo grafo orientato è **fortemente connesso**.

Definizione Definiamo debolmente connesso un grafo orientato tale che il grafo ottenuto da esso dimenticando la direzione degli archi è connesso. Ad es. questo grafo orientato non è fortemente connesso, ma è debolmente connesso ma è debolmente connesso

Definizione

Un **grafo completo** è un grafo che ha un *arco tra ogni coppia di vertici*.

Ad es. questo grafo NON è completo

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Ad es. questo grafo è completo B C C F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Definizione Un albero libero è un grafo non orientato connesso, aciclico. Ad es. questo è un *albero libero*

"libero" si riferisce al fatto che non esiste un vertice

designato ad essere la "radice" F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Definizione Un grafo non orientato aciclico ma non connesso, prende il nome di foresta. Ad es. questa è una foresta. Contiene tre alberi liberi. B C F Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Ad es. questo grafo contiene un ciclo. Perciò non é un né albero libero né una foresta.

R

B

C

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Strutture dati per rappresentare grafi

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Prestazioni della lista di archi su grafi non orientati

Operazione	Tempo di esecuzione
grado(v)	O(m)
archiIncidenti(v)	O(m)
$\mathtt{sonoAdiacenti}(x,y)$	O(m)
${\tt aggiungiVertice}(v)$	O(1) ?
${\tt aggiungiArco}(x,y)$	O(1) ?
$\verb rimuoviVertice (v)$	O(m)
$\mathtt{rimuoviArco}(e)$	O(m)

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Prestazioni delle liste di adiacenza su grafi non orientati

Operazione	Tempo di esecuzione
grado(v)	$O(\delta(v))$
archiIncidenti(v)	$O(\delta(v))$
$\mathtt{sonoAdiacenti}(x,y)$	$O(\min\{\delta(x),\delta(y)\})$
${\tt aggiungiVertice}(v)$	O(1) ?
$\mathtt{aggiungiArco}(x,y)$	O(1) ?
$\verb"rimuoviVertice"(v)$	O(m) ?
$\verb rimuoviArco (e=(x,y)) $	$O(\delta(x) + \delta(y))$

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Prestazioni della matrice di adiacenza su grafi non orientati

Operazione	Tempo di esecuzione
$\mathtt{grado}(v)$	O(n)
$\operatorname{archiIncidenti}(v)$	O(n)
$\mathtt{sonoAdiacenti}(x,y)$	O(1)
$\verb"aggiungiVertice"(v)$	$O(n^2)$
$\operatorname{aggiungiArco}(x,y)$	O(1)
${\tt rimuoviVertice}(v)$	$O(n^2)$
${\tt rimuoviArco}(e)$	O(1)

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Strutture dati per rappresentare grafi (ulteriori dettagli

su

matrici di adiacenza

e

liste di adiacenza)

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Rappresentazione con *liste di adiacenza* di un *grafo orientato*

Esempio di rappresentazione con *matice di adiacenza* di un *grafo PESATO non orientato*

$$A = \begin{pmatrix} 0 & 5 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 3 & 2 & 0 & 0 & 0 \\ 5 & 0 & 3 & 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & -1 & 2 & 0 & 0 \\ 0 & 2 & -1 & 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -3 & 0 & 0 \end{pmatrix}$$

F. Damiani - Alg. & Lab. 04/05 (da M. Zacchi - Alg. & Lab. 03/04)

Esempio di rappresentazione con *liste di adiacenza* di un *grafo PESATO non orientato*

Riepilogo (1/2)

- Concetto di grafo e terminologia
- Diverse strutture dati per rappresentare grafi nella memoria di un calcolatore

F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Riepilogo (2/2)

Matrice di adiacenza

- Spazio richiesto $O(|V|^2)$
- Verificare se i vertici u e v sono adiacenti richiede tempo O(1)
- Adatta per grafi densi, in cui |E| è dell'ordine di |V|2

Liste di adiacenza

- Spazio richiesto O(|E|+|V|)
- Verificare se i vertici u e v sono adiacenti richiede tempo O(|V|)
- Adatta per grafi *sparsi*, in cui |E| è molto minore di |V|²

	 	
-		