

Introduction

Transfer Learning

Image Augmentation

Introduction

Transfer Learning

Image Augmentation

Leveraging pre-trained models on one task to adapt to new but related tasks.

Feature Extraction

Fine Tuning

Transfer Learning: Feature Extraction

- Remove and replace the final classification layer.
- Reduces the overall training time and improves performance.
- Pre-compute and save outputs of the frozen layers to avoid re-computation.

Transfer Learning: Fine Tuning

- Some pre-trained layers are 'unfrozen' and retrained on the new data.
- Higher computational cost compared to feature extraction.

Transfer Learning: Fine Tuning

- Some pre-trained layers are 'unfrozen' and retrained on the new data.
- Higher computational cost compared to feature extraction.

Retrained |

UpNext: Hands-on: Transfer Learning on VGG

What if we do not have a pre-trained model and less data to train a new model from scratch?

Challenge: Training VGG16 from scratch requires a large amount of data

Image Augmentation

Image Augmentation

Manipulates available training images artificially through techniques like cropping, flipping, color jittering, and rotation.

Creates variations of original images, simulating a broader range of real-world scenarios.

Boosts model robustness, improving its performance on new, unseen data.

**Note: Significant task differences may require 'unfreezing' layers for specific retraining.

VGG16

• Developed by **Visual Geometry Group (VGG)** by Oxford University in **2014**.

VGG16

• Developed by **Visual Geometry Group (VGG)** by Oxford University in **2014**.

• Training From Scratch

Training using Transfer Learning

VGG16 & VGG19

 Convolutional and pooling layers effective for various image recognition tasks.

 VGG models were ideal for applying Transfer Learning.

Conclusion

Showcases depth and simplicity in CNN design with VGG16.

Validates well-crafted architecture in image recognition success.

Fosters use of transfer learning and data augmentation in image analysis.

Transfer Learning: Fixed Feature Extraction