\leftarrow Back

Graded Quiz • 50 min

Congratulations! You passed!

Grade received 90% Latest Submission Grade 90% To pass 80% or higher

Go to next item

1/1 point

1.	What do y	you think applying this filter to a gi	rayscale image will do:

 $\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 3 & -3 & -1 \\ 1 & 3 & -3 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$

- Detect image contrast
- Oetect 45 degree edges
- Detect vertical edges
- O Detect horizontal edges

⊘ Correct

Correct! As you can see the difference between values from the left part and values from the right of this filter is high. When convolving this filter on a grayscale image, the vertical edges will be detected.

2. Suppose your input is a 128 by 128 color (RGB) image, and you are not using a convolutional network. If the first hidden layer has 64 neurons, each one fully connected to the input, how many parameters does this hidden layer have (including the bias parameters)?

1/1 point

- 3145792
- 1048576
- 1048640
- 3145728

✓ Correct

Correct, the number of inputs for each unit is $128 \times 128 \times 3$ since the input image is RGB, so we need $128 \times 128 \times 3 \times 64$ parameters for the weights and 64 parameters for the bias parameters, thus $128 \times 128 \times 3 \times 64 + 64 = 3145792$.

3. Suppose your input is a 256 by 256 color (RGB) image, and you use a convolutional layer with 128 filters that are each 7×7 . How many parameters does this hidden layer have (including the bias parameters)?

1/1 point

- 18816
- 6400
- 1233125504
- 18944

	∠ ⁷ Expand	
	Correct Yes, you have $7 \times 7 \times 3 + 1$ weights per filter with the bias. Given that you have 128 filters, you get $(7 \times 7 \times 3 + 1) \times 128 = 18944$.	
4.	You have an input volume that is 63x63x16, and convolve it with 32 filters that are each 7x7, using a stride of 2 and no padding. What is the output volume?	1 / 1 point
	O 29x29x16	
	O 16x16x32	
	29x29x32	
	O 16x16x16	
	∠ ⁷ Expand	
	\odot Correct Yes, $rac{63-7+0 imes2}{2}+1=29$ and the number of channels should match the number of filters.	
5.	You have an input volume that is 61x61x32, and pad it using "pad=3". What is the dimension of the resulting volume (after padding)?	1 / 1 point
	O 64x64x35	
	⑥ 67x67x32	
	O 64x64x32	
	O 61x61x35	
	∠ ⁷ Expand	
	CorrectYes, if the padding is 3 you add 6 to the height dimension and 6 to the width dimension.	
6.	You have a volume that is $64 imes64 imes32$, and convolve it with 40 filters of $9 imes9$, and stride 1. You want to use a "same" convolution. What is the padding?	1/1 point
	○ 0	
	4	
	∠ ⁷ Expand	
	\bigcirc Correct Yes, when using a padding of 4 the output volume has $n_H=\frac{64-9+2\times 4}{1}+1$.	

7.	You have a	an input volume that is 128x128x12, and apply max pooling with a stride of 4 and a filter size of 4. What is the output volume?	1 / 1 point
	✓ Corre	ect	
	Yes,	using the formula $n_H^{[l]}=rac{n_H^{[l-1]}+2 imes p-f}{s}+1$ with $p=0$, $f=4,s=4$ and $n_H^{[l-1]}=32$.	
8.	Which of th	he following are hyperparameters of the pooling layers? (Choose all that apply) Whether it is max or average.	1/1 point
		 Correct Yes, these are the two types of pooling discussed in the lectures, and choosing which to use is considered a hyperparameter. 	
		\checkmark Correct Yes, although usually, we set $f=s$ this is one of the hyperparameters of a pooling layer. $b^{[l]}$ bias.	
	∠ ⁷ E	Expand	
		ect at, you got all the right answers.	
		we talked about "parameter sharing" as a benefit of using convolutional networks. Which of the following statements about parameter sharing in ConvNets Check all that apply)	1 / 1 point
		It allows gradient descent to set many of the parameters to zero, thus making the connections sparse.	
		 It allows a feature detector to be used in multiple locations throughout the whole input image/input volume. Correct Yes, by sliding a filter of parameters over the entire input volume, we make sure a feature detector can be used in multiple locations. 	
		It reduces the total number of parameters, thus reducing overfitting.	
		 Correct Yes, a convolutional layer uses parameter sharing and usually has a lot less parameters than a fully-connected layer. 	
		It allows parameters learned for one task to be shared even for a different task (transfer learning).	
	∠ ⁷ E	Expand	
	✓ Corre	ect	

The sparsity of connections and weight sharing are mechanisms that allow us to use fewer parameters in a convolutional layer making it possible to train a network with smaller training sets. True/False?	
○ True	(
False	(
∠ ^ス Expand	∠ ⁷ Ex
	(X) Incorre

0 / 1 point

No, weight sharing reduces significantly the number of parameters in a neural network, and sparsity of connections allows us to use a smaller number of inputs thus reducing even further the number of parameters.