Conjugate Transpose

Axler7.8 conjugate transpose def

The $conjugate\ transpose$ of an m-by-n matrix is the n-by-m matrix obtained by taking the transpose then the complex conjugate of each entry.

If $\mathbb{F} = \mathbb{R}$ then the conjugate transpose is just the transpose.

Axler7.10 The matrix of T^* (adjoint)

Let $T\in\mathcal{L}(V,W)$. Suppose e_1,\dots,e_n is an orthonormal basis of V and f_1,\dots,f_m is an orthonormal basis of W. Then,

$$\mathcal{M}(T^*,(f_1,\dots,f_m),(e_1,\dots,e_n))$$

is the *conjugate transpose* of

$$\mathcal{M}(T,(e_1,\ldots,e_n),(f_1,\ldots,f_m))$$

However, since this only works with orthonormal bases, Axler decided to focus on adjoints instead of conjugate transposes. (but they are the same thing under orthonormal bases).