Introduction to Formal Methods Chapter 03: Temporal Logics

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/ Teaching assistant: Enrico Magnago - enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Thursday 20th February, 2020, 19:04

Copyright notice: some material (text, figures) displayed in these slides is courtesy of M. Benerecetti, A. Cimatti, P. Pandya, M. Pistore, M. Roveri, and S. Tonetta, who detain its copyright. Some examples displayed in these slides are taken from IClarke, Grunberg & Peled, "Model Checking", MIT Pressl, and their copyright is detained by the authors, All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

1/108

Outline

- Some background on Boolean Logic
- Generalities on temporal logics
- 3 Linear Temporal Logic LTL
- Some LTL Model Checking Examples
- Computation Tree Logic CTL
- Some CTL Model Checking Examples
- LTL vs. CTL
- Fairness & Fair Kripke Models
- Exercises

Boolean logic

Basic notation & definitions

- Boolean formula
 - T, ⊥ are formulas
 - A propositional atom $A_1, A_2, A_3, ...$ is a formula;
 - if φ_1 and φ_2 are formulas, then

```
\neg \varphi_1, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2, \varphi_1 \rightarrow \varphi_2, \varphi_1 \leftarrow \varphi_2, \varphi_1 \leftrightarrow \varphi_2 are formulas.
```

- $Atoms(\varphi)$: the set $\{A_1, ..., A_N\}$ of atoms occurring in φ .
- Literal: a propositional atom A_i (positive literal) or its negation $\neg A_i$ (negative literal)
 - Notation: if $I := \neg A_i$, then $\neg I := A_i$
- Clause: a disjunction of literals $\bigvee_i I_i$ (e.g., $(A_1 \vee \neg A_2 \vee A_3 \vee ...)$)
- Cube: a conjunction of literals $\bigwedge_i I_i$ (e.g., $(A_1 \land \neg A_2 \land A_3 \land ...)$)

Semantics of Boolean operators

Truth table:

arphi1	φ_2	$\neg \varphi_1$	$\varphi_1 \wedge \varphi_2$	$\varphi_1 \lor \varphi_2$	$\varphi_1 \rightarrow \varphi_2$	$\varphi_1 \leftarrow \varphi_2$	$\varphi_1 \leftrightarrow \varphi_2$
\perp	\perp	T			Т	Т	T
1	T	T		T	T		
T	\perp	上		Т		Т	
T	T		Т	Т	Т	Т	T

Note

∧, ∨ and ↔ are commutative:

$$\begin{array}{lll} (\varphi_1 \wedge \varphi_2) & \Longleftrightarrow & (\varphi_2 \wedge \varphi_1) \\ (\varphi_1 \vee \varphi_2) & \Longleftrightarrow & (\varphi_2 \vee \varphi_1) \\ (\varphi_1 \leftrightarrow \varphi_2) & \Longleftrightarrow & (\varphi_2 \leftrightarrow \varphi_1) \end{array}$$

∧ and ∨ are associative:

$$((\varphi_1 \land \varphi_2) \land \varphi_3) \iff (\varphi_1 \land (\varphi_2 \land \varphi_3)) \iff (\varphi_1 \land \varphi_2 \land \varphi_3)$$
$$((\varphi_1 \lor \varphi_2) \lor \varphi_3) \iff (\varphi_1 \lor (\varphi_2 \lor \varphi_3)) \iff (\varphi_1 \lor \varphi_2 \lor \varphi_3)$$

Syntactic Properties of Boolean Operators

Boolean logic can be expressed in terms of $\{\neg, \land\}$ (or $\{\neg, \lor\}$) only

7/108

TREE and DAG representation of formulas: example

Formulas can be represented either as trees or as DAGS:

DAG representation can be up to exponentially smaller

TREE and DAG representation of formulas: example (cont)

Tree Representation

Basic notation & definitions (cont)

- Total truth assignment μ for φ : $\mu : Atoms(\varphi) \longmapsto \{\top, \bot\}.$
- Partial Truth assignment μ for φ : $\mu: \mathcal{A} \longmapsto \{\top, \bot\}, \mathcal{A} \subset Atoms(\varphi).$
- Set and formula representation of an assignment:
 - μ can be represented as a set of literals: EX: $\{\mu(A_1) := \top, \mu(A_2) := \bot\} \implies \{A_1, \neg A_2\}$
 - μ can be represented as a formula (cube):
 - $\mathsf{EX} \colon \{ \mu(\mathsf{A}_1) := \top, \mu(\mathsf{A}_2) := \bot \} \implies (\mathsf{A}_1 \land \neg \mathsf{A}_2)$

Basic notation & definitions (cont)

- a total truth assignment μ satisfies φ ($\mu \models \varphi$):
 - $\mu \models A_i \iff \mu(A_i) = \top$
 - $\mu \models \neg \varphi \iff \mathsf{not} \ \mu \models \varphi$
 - $\mu \models \varphi_1 \land \varphi_2 \iff \mu \models \varphi_1 \text{ and } \mu \models \varphi_2$
 - $\mu \models \varphi_1 \lor \varphi_2 \iff \mu \models \varphi_1 \text{ or } \mu \models \varphi_2$
 - $\mu \models \varphi_1 \rightarrow \varphi_2 \iff \text{if } \mu \models \varphi_1, \text{ then } \mu \models \varphi_2$
 - $\mu \models \varphi_1 \leftrightarrow \varphi_2 \iff \mu \models \varphi_1 \text{ iff } \mu \models \varphi_2$
- a partial truth assignment μ satisfies φ iff it makes φ evaluate to true (Ex: $\{A_1\} \models (A_1 \lor A_2)$)
 - \implies if μ satisfies φ , then all its total extensions satisfy φ $\{Ex: \{A_1, A_2\} \models (A_1 \vee A_2) \text{ and } \{A_1, \neg A_2\} \models (A_1 \vee A_2)\}$
- φ is satisfiable iff $\mu \models \varphi$ for some μ
- φ_1 entails φ_2 ($\varphi_1 \models \varphi_2$): $\varphi_1 \models \varphi_2$ iff $\mu \models \varphi_1 \Longrightarrow \mu \models \varphi_2$ for every μ
- φ is valid ($\models \varphi$): $\models \varphi$ iff $\mu \models \varphi$ for every μ

Property

 φ is valid $\iff \neg \varphi$ is not satisfiable

Equivalence and equi-satisfiability

- φ_1 and φ_2 are equivalent iff, for every μ , $\mu \models \varphi_1$ iff $\mu \models \varphi_2$
- φ_1 and φ_2 are equi-satisfiable iff exists μ_1 s.t. $\mu_1 \models \varphi_1$ iff exists μ_2 s.t. $\mu_2 \models \varphi_2$
- φ_1 , φ_2 equivalent $\Downarrow \quad \not \uparrow$ φ_1 , φ_2 equi-satisfiable
- EX: $\varphi_1 \stackrel{\text{def}}{=} \psi_1 \vee \psi_2$ and $\varphi_2 \stackrel{\text{def}}{=} (\psi_1 \vee \neg A_3) \wedge (A_3 \vee \psi_2)$ s.t. A_3 not in $\psi_1 \vee \psi_2$, are equi-satisfiable but not equivalent:
 - $\mu \models (\psi_1 \lor \neg A_3) \land (A_3 \lor \psi_2) \Longrightarrow \mu \models \psi_1 \lor \psi_2$
 - $\mu' \models \psi_1 \lor \psi_2 \Longrightarrow \mu' \land A_3 \models (\psi_1 \lor \neg A_3) \land (A_3 \lor \psi_2)$ or $\mu' \land \neg A_3 \models (\psi_1 \lor \neg A_3) \land (A_3 \lor \psi_2)$ [φ_1, φ_2 equi-satisfiable]
 - $\mu' \not\models \psi_1$ and $\mu' \models \psi_2 \Longrightarrow \mu' \land A_3 \models \psi_1 \lor \psi_2$ and $\mu' \land A_3 \not\models (\psi_1 \lor \neg A_3) \land (A_3 \lor \psi_2)$ [φ_1, φ_2 not equivalent]
- Typically used when φ_2 is the result of applying some transformation T to φ_1 : $\varphi_2 \stackrel{\text{def}}{=} T(\varphi_1)$: we say that T is validity-preserving [satisfiability-preserving] iff $T(\varphi_1)$ and φ_1 are equivalent [equi-satisfiable]

Complexity

- For N variables, there are up to 2^N truth assignments to be checked.
- The problem of deciding the satisfiability of a propositional formula is NP-complete
- The most important logical problems (validity, inference, entailment, equivalence, ...) can be straightforwardly reduced to satisfiability, and are thus (co)NP-complete.

No existing worst-case-polynomial algorithm.

POLARITY of subformulas

- Positive/negative occurrences
 - φ occurs positively in φ ;
 - if ¬φ₁ occurs positively [negatively] in φ, then φ₁ occurs negatively [positively] in φ
 - if φ₁ ∧ φ₂ or φ₁ ∨ φ₂ occur positively [negatively] in φ, then φ₁ and φ₂ occur positively [negatively] in φ;
 - if $\varphi_1 \to \varphi_2$ occurs positively [negatively] in φ , then φ_1 occurs negatively [positively] in φ and φ_2 occurs positively [negatively] in φ ;
 - if φ₁ ↔ φ₂ occurs in φ,
 then φ₁ and φ₂ occur positively and negatively in φ;
- EX:
 - φ_1 occurs positively in $\neg(\varphi_1 \to \varphi_2)$
 - φ_2 occurs negatively in $\neg(\varphi_1 \rightarrow \varphi_2)$
- intuition: φ_1 occurs positively [negatively] in φ iff it occurs under the scope of an (implicit) even [odd] number of negations.
- → Polarity: the number of nested negations modulo 2.

Substitution

Properties

• If φ_1 is equivalent to φ_2 , then $\varphi[\varphi_1|\varphi_2]$ is equivalent to φ :

$$\models (\varphi_1 \leftrightarrow \varphi_2) \\ \Downarrow \\ \models \varphi[\varphi_1|\varphi_2] \leftrightarrow \varphi$$

• If φ_2 entails φ_1 and φ_1 occurs only positively in φ , then $\varphi[\varphi_1|\varphi_2]$ entails φ :

$$\varphi_2 \models \varphi_1 \\ \downarrow \\ \varphi[\varphi_1 | \varphi_2] \models \varphi$$

dual case for negative occurrence

Negative normal form (NNF)

- φ is in Negative normal form iff it is given only by the recursive applications of ∧, ∨ to literals.
- every φ can be reduced into NNF:
 - (i) substituting all \rightarrow 's and \leftrightarrow 's:

$$\begin{array}{ccc} \varphi_1 \to \varphi_2 & \Longrightarrow & \neg \varphi_1 \lor \varphi_2 \\ \varphi_1 \leftrightarrow \varphi_2 & \Longrightarrow & (\neg \varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \neg \varphi_2) \end{array}$$

(ii) pushing down negations recursively:

$$\neg(\varphi_1 \land \varphi_2) \implies \neg\varphi_1 \lor \neg\varphi_2
\neg(\varphi_1 \lor \varphi_2) \implies \neg\varphi_1 \land \neg\varphi_2
\neg\neg\varphi_1 \implies \varphi_1$$

- The reduction is linear if a DAG representation is used.
- Preserves the equivalence of formulas.

NNF: example

$$(A_{1} \leftrightarrow A_{2}) \leftrightarrow (A_{3} \leftrightarrow A_{4})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$$

NNF: example (cont)

Note

For each non-literal subformula φ , φ and $\neg \varphi$ have different representations \Longrightarrow they are not shared.

18/108

Optimized polynomial representations

And-Inverter Graphs, Reduced Boolean Circuits, Boolean Expression Diagrams

Maximize the sharing in DAG representations:
 {∧, ↔, ¬}-only, negations on arcs, sorting of subformulae, lifting of
 ¬'s over ↔'s,...

Conjunctive Normal Form (CNF)

• φ is in Conjunctive normal form iff it is a conjunction of disjunctions of literals:

$$\bigwedge_{i=1}^L \bigvee_{j_i=1}^{K_i} I_{j_i}$$

- the disjunctions of literals $\bigvee_{i=1}^{K_i} I_{j_i}$ are called clauses
- Easier to handle: list of lists of literals.
 - \Longrightarrow no reasoning on the recursive structure of the formula

Classic CNF Conversion $CNF(\varphi)$

- Every φ can be reduced into CNF by, e.g.,
 - (i) converting it into NNF (not indispensible);
 - (ii) applying recursively the DeMorgan's Rule:

$$(\varphi_1 \land \varphi_2) \lor \varphi_3 \implies (\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3)$$

- Worst-case exponential.
- $Atoms(CNF(\varphi)) = Atoms(\varphi)$.
- $CNF(\varphi)$ is equivalent to φ .
- Rarely used in practice.

Labeling CNF conversion $\mathit{CNF}_{\mathit{label}}(\varphi)$

• Every φ can be reduced into CNF by, e.g., applying recursively bottom-up the rules:

```
\varphi \implies \varphi[(I_i \lor I_j)|B] \land CNF(B \leftrightarrow (I_i \lor I_j)) 

\varphi \implies \varphi[(I_i \land I_j)|B] \land CNF(B \leftrightarrow (I_i \land I_j)) 

\varphi \implies \varphi[(I_i \leftrightarrow I_j)|B] \land CNF(B \leftrightarrow (I_i \leftrightarrow I_j)) 

I_i, I_i being literals and B being a "new" variable.
```

- Worst-case linear.
- $Atoms(CNF_{label}(\varphi)) \supseteq Atoms(\varphi)$.
- $CNF_{label}(\varphi)$ is equi-satisfiable w.r.t. φ .
- More used in practice.

Labeling CNF conversion $CNF_{label}(\varphi)$ (cont.)

$$\begin{array}{ccc} \textit{CNF}(B \leftrightarrow (\textit{I}_i \lor \textit{I}_j)) & \Longleftrightarrow & (\neg B \lor \textit{I}_i \lor \textit{I}_j) \land \\ & & (B \lor \neg \textit{I}_j) \land \\ & & (B \lor \neg \textit{I}_j) \end{array}$$

$$\begin{array}{cccc} \textit{CNF}(B \leftrightarrow (\textit{I}_i \land \textit{I}_j)) & \Longleftrightarrow & (\neg B \lor \textit{I}_i) \land \\ & (\neg B \lor \textit{I}_j) \land \\ & (B \lor \neg \textit{I}_i \neg \textit{I}_j) \end{array}$$

$$\begin{array}{ccccc} \textit{CNF}(B \leftrightarrow (\textit{I}_i \leftrightarrow \textit{I}_j)) & \Longleftrightarrow & (\neg B \lor \neg \textit{I}_i \lor \textit{I}_j) \land \\ & (\neg B \lor \textit{I}_i \lor \neg \textit{I}_j) \land \\ & (B \lor \neg \textit{I}_i \lor \neg \textit{I}_j) \land \\ & (B \lor \neg \textit{I}_i \lor \neg \textit{I}_j) \end{array}$$

Labeling CNF conversion *CNF*_{label} – example

Labeling CNF conversion CNF_{label} (variant)

As in the previous case, applying instead the rules:

$$\begin{array}{llll} \varphi & \Longrightarrow & \varphi[(I_i \vee I_j)|B] & \wedge \ CNF(B \to (I_i \vee I_j)) & \text{if } (I_i \vee I_j) \ \text{pos.} \\ \varphi & \Longrightarrow & \varphi[(I_i \vee I_j)|B] & \wedge \ CNF((I_i \vee I_j) \to B) & \text{if } (I_i \vee I_j) \ \text{neg.} \\ \varphi & \Longrightarrow & \varphi[(I_i \wedge I_j)|B] & \wedge \ CNF(B \to (I_i \wedge I_j)) & \text{if } (I_i \wedge I_j) \ \text{pos.} \\ \varphi & \Longrightarrow & \varphi[(I_i \wedge I_j)|B] & \wedge \ CNF((I_i \wedge I_j) \to B) & \text{if } (I_i \wedge I_j) \ \text{neg.} \\ \varphi & \Longrightarrow & \varphi[(I_i \leftrightarrow I_j)|B] & \wedge \ CNF(B \to (I_i \leftrightarrow I_j)) & \text{if } (I_i \leftrightarrow I_j) \ \text{pos.} \\ \varphi & \Longrightarrow & \varphi[(I_i \leftrightarrow I_j)|B] & \wedge \ CNF((I_i \leftrightarrow I_j) \to B) & \text{if } (I_i \leftrightarrow I_j) \ \text{neg.} \end{array}$$

Pro: smaller in size:

$$\begin{array}{ll} \textit{CNF}(B \to (\textit{I}_i \lor \textit{I}_j)) &= (\neg B \lor \textit{I}_i \lor \textit{I}_j) \\ \textit{CNF}(((\textit{I}_i \lor \textit{I}_j) \to B)) &= (\neg \textit{I}_i \lor B) \land (\neg \textit{I}_j \lor B) \end{array}$$

 Con: looses backward propagation: unlike with CNF(B ↔ (I_i ∨ I_j)), with CNF(B → (I_i ∨ I_j)) we can no more infer that B is true from the fact that I_i is true or I_i is true.

Labeling CNF conversion $\mathit{CNF}_{\mathit{label}}(\varphi)$ (cont.)

$$\begin{array}{cccc} CNF(B \rightarrow (l_i \vee l_j)) & \Longleftrightarrow & (\neg B \vee l_i \vee l_j) \\ CNF(B \leftarrow (l_i \vee l_j)) & \Longleftrightarrow & (B \vee \neg l_i) \wedge \\ & & (B \vee \neg l_j) \\ \hline CNF(B \rightarrow (l_i \wedge l_j)) & \Longleftrightarrow & (\neg B \vee l_i) \wedge \\ & & & (\neg B \vee l_j) \\ \hline CNF(B \leftarrow (l_i \wedge l_j)) & \Longleftrightarrow & (B \vee \neg l_i \neg l_j) \\ \hline CNF(B \rightarrow (l_i \leftrightarrow l_j)) & \Longleftrightarrow & (\neg B \vee \neg l_i \vee l_j) \wedge \\ & & & (\neg B \vee l_i \vee \neg l_j) \\ \hline CNF(B \leftarrow (l_i \leftrightarrow l_j)) & \Longleftrightarrow & (B \vee l_i \vee l_j) \wedge \\ & & & (B \vee \neg l_i \vee \neg l_j) \\ \hline \end{array}$$

Labeling CNF conversion *CNF*_{label} – example

Labeling CNF conversion *CNF*_{label} – further optimizations

- Do not apply CNF_{label} when not necessary: (e.g., $CNF_{label}(\varphi_1 \wedge \varphi_2) \Longrightarrow CNF_{label}(\varphi_1) \wedge \varphi_2$, if φ_2 already in CNF)
- Apply Demorgan's rules where it is more effective: (e.g., $CNF_{label}(\varphi_1 \land (A \rightarrow (B \land C))) \Longrightarrow CNF_{label}(\varphi_1) \land (\neg A \lor B) \land (\neg A \lor C)$
- exploit the associativity of \land 's and \lor 's: ... $\underbrace{(A_1 \lor (A_2 \lor A_3))}_{B}$... \Longrightarrow ... $CNF(B \leftrightarrow (A_1 \lor A_2 \lor A_3))$...
- before applying CNF_{label}, rewrite the initial formula so that to maximize the sharing of subformulas (RBC, BED)
- ...

Computation tree vs. computation paths

Consider the following Kripke structure:

Its execution can be seen as:

 an infinite computation tree

 an infinite set of computation paths

Temporal Logics

- Express properties of "Reactive Systems"
 - nonterminating behaviours,
 - without explicit reference to time.
- Linear Temporal Logic (LTL)
 - interpreted over each path of the Kripke structure
 - linear model of time
 - temporal operators
- Computation Tree Logic (CTL)
 - interpreted over computation tree of Kripke model
 - branching model of time
 - temporal operators plus path quantifiers

Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if φ_1 and φ_2 are LTL formulae, then $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \to \varphi_2$, $\varphi_1 \leftrightarrow \varphi_2$ are LTL formulae;
- if φ_1 and φ_2 are LTL formulae, then $\mathbf{X}\varphi_1$, $\varphi_1\mathbf{U}\varphi_2$, $\mathbf{G}\varphi_1$, $\mathbf{F}\varphi_1$ are LTL formulae, where \mathbf{X} , \mathbf{G} , \mathbf{F} , \mathbf{U} are the "next", "globally", "eventually", "until" temporal operators respectively.
- Another operator **R** "releases" (the dual of **U**) is used sometimes.

LTL semantics: intuitions

LTL is given by the standard boolean logic enhanced with the following temporal operators, which operate through paths $\langle s_0, s_1, ..., s_k, ... \rangle$:

- "Next" **X**: **X** φ is true in s_t iff φ is true in s_{t+1}
- "Finally" (or "eventually") **F**: **F** φ is true in s_t iff φ is true in **some** $s_{t'}$ with $t' \geq t$
- "Globally" (or "henceforth") **G**: **G** φ is true in s_t iff φ is true in **all** $s_{t'}$ with $t' \geq t$
- "Until" **U**: φ **U** ψ is true in s_t iff, for some state $s_{t'}$ s.t $t' \geq t$:
 - ψ is true in $s_{t'}$ and
 - φ is true in all states $s_{t''}$ s.t. $t \le t'' < t'$
- "Releases" **R**: φ **R** ψ is true in s_t iff, for all states $s_{t'}$ s.t. $t' \geq t$:
 - ψ is true or
 - φ is true in some states $s_{t''}$ with t < t'' < t'

" ψ can become false only if φ becomes true first"

LTL semantics: intuitions

p U q

Χp

LTL: Some Noteworthy Examples

Safety: "it never happens that a train is arriving and the bar is up"

$$G(\neg(train_arriving \land bar_up))$$

Liveness: "if input, then eventually output"

• Releases: "the device is not working if you don't first repair it"

• Fairness: "infinitely often send"

GFsend

Strong fairness: "infinitely often send implies infinitely often recv."

LTL Formal Semantics

$$a \in L(s_i)$$

$$\pi, s_i \not\models \varphi$$

$$\pi, s_i \models \varphi \text{ and }$$

$$\pi, s_i \models \psi$$

$$\pi, s_{i+1} \models \varphi$$

$$\text{for some } j \geq i : \pi, s_j \models \varphi$$

$$\text{for all } j \geq i : \pi, s_j \models \varphi$$

$$\text{for some } j \geq i : (\pi, s_j \models \psi \text{ and }$$

$$\text{for all } k \text{ s.t. } i \leq k < j : \pi, s_k \models \varphi)$$

$$\text{for all } j \geq i : (\pi, s_j \models \psi \text{ or }$$

$$\text{for some } k \text{ s.t. } i \leq k < j : \pi, s_k \models \varphi)$$

LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states: $\pi = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_t \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi = s_0, s_1, s_2, \dots$
 - π , $s_i \models \phi$ if ϕ is true in state s_i of π .
 - $\pi \models \phi$ if ϕ is true in the initial state s_0 of π .
- The LTL model checking problem $\mathcal{M} \models \phi$
 - check if $\pi \models \phi$ for every path π of the Kripke structure \mathcal{M} (e.g., $\phi = \mathbf{F} done$)

The LTL model checking problem $\mathcal{M} \models \phi$: remark

The LTL model checking problem $\mathcal{M} \models \phi$

 $\pi \models \phi$ for every path π of the Kripke structure \mathcal{M}

Important Remark

$$\mathcal{M} \not\models \phi \not\Longrightarrow \mathcal{M} \models \neg \phi$$
 (!!)

• E.g. if ϕ is a LTL formula and two paths π_1 and π_2 are s.t. $\pi_1 \models \phi$ and $\pi_2 \models \neg \phi$.

Example: $\mathcal{M} \not\models \phi \not\Longrightarrow \mathcal{M} \models \neg \phi$

Let
$$\pi_1 \stackrel{\text{def}}{=} \{s_1\}^{\omega}$$
, $\pi_2 \stackrel{\text{def}}{=} \{s_2\}^{\omega}$.

- $\mathcal{M} \not\models \mathbf{G}p$, in fact:
 - $\pi_1 \not\models \mathbf{G}p$
 - $\pi_2 \models \mathbf{G}p$
- $\mathcal{M} \not\models \neg \mathbf{G} p$, in fact:
 - $\pi_1 \models \neg \mathbf{G} p$
 - $\pi_2 \not\models \neg \mathbf{G} p$

Syntactic properties of LTL operators

Note

LTL can be defined in terms of \land , \neg , \mathbf{X} , \mathbf{U} only

Exercise

Prove that $\varphi_1 \mathbf{R} \varphi_2 \iff \mathbf{G} \varphi_2 \vee \varphi_2 \mathbf{U}(\varphi_1 \wedge \varphi_2)$

Proof of $\varphi R \psi \Leftrightarrow (\mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi))$

[Solution proposed by the student Samuel Valentini, 2016]

(All state indexes below are implicitly assumed to be ≥ 0 .)

- \Rightarrow : Let π be s.t. π , $s_0 \models \varphi \mathbf{R} \psi$
 - If $\forall j, \pi, s_j \models \psi$, then $\pi, s_0 \models \mathbf{G}\psi$.
 - Otherwise, let s_k be the first state s.t. $\pi, s_k \not\models \psi$.
 - Since π , $s_0 \models \varphi \mathbf{R} \psi$, then k > 0 and exists k' < k s.t. π , $S_{k'} \models \varphi$
 - By construction, π , $s_{k'} \models \varphi \land \psi$ and, for every w < k', π , $s_w \models \psi$, so that π , $s_0 \models \psi \mathbf{U}(\varphi \land \psi)$.
 - Thus, π , $s_0 \models \mathbf{G}\psi \lor \psi \mathbf{U}(\varphi \land \psi)$
- \leftarrow : Let π be s.t. π , $s_0 \models \mathbf{G}\psi \lor \psi \mathbf{U}(\varphi \land \psi)$
 - If π , $s_0 \models \mathbf{G}\psi$, then $\forall j$, π , $s_j \models \psi$, so that π , $s_0 \models \varphi \mathbf{R}\psi$.
 - Otherwise, π , $s_0 \models \psi \mathbf{U}(\varphi \wedge \psi)$.
 - Let s_k be the first state s.t. $\pi, s_k \not\models \psi$.
 - by construction, $\exists k'$ such that $\pi, S_{k'} \models \varphi \land \psi$
 - by the definition of k, we have that k' < k and $\forall w < k, \pi, S_w \models \psi$.
 - Thus π , $s_0 \models \varphi \mathbf{R} \psi$

Strength of LTL operators

•
$$\mathbf{G}\varphi \models \varphi \models \mathbf{F}\varphi$$

•
$$\mathbf{G}\varphi \models \mathbf{X}\varphi \models \mathbf{F}\varphi$$

$$\bullet \ \mathbf{G}\varphi \models \mathbf{X}\mathbf{X}...\mathbf{X}\varphi \models \mathbf{F}\varphi$$

•
$$\varphi \mathbf{U} \psi \models \mathbf{F} \psi$$

•
$$\mathbf{G}\psi \models \varphi \mathbf{R}\psi$$

LTL tableaux rules

• Let φ_1 and φ_2 be LTL formulae:

$$\begin{array}{ccc} \mathbf{F}\varphi_1 & \Longleftrightarrow & (\varphi_1 \vee \mathbf{X}\mathbf{F}\varphi_1) \\ \mathbf{G}\varphi_1 & \Longleftrightarrow & (\varphi_1 \wedge \mathbf{X}\mathbf{G}\varphi_1) \\ \varphi_1\mathbf{U}\varphi_2 & \Longleftrightarrow & (\varphi_2 \vee (\varphi_1 \wedge \mathbf{X}(\varphi_1\mathbf{U}\varphi_2))) \\ \varphi_1\mathbf{R}\varphi_2 & \Longleftrightarrow & (\varphi_2 \wedge (\varphi_1 \vee \mathbf{X}(\varphi_1\mathbf{R}\varphi_2))) \end{array}$$

 If applied recursively, rewrite an LTL formula in terms of atomic and X-formulas:

$$(pUq) \wedge (G \neg p) \Longrightarrow (q \vee (p \wedge X(pUq))) \wedge (\neg p \wedge XG \neg p)$$

Tableaux rules: a quote

"After all... tomorrow is another day." [Scarlett O'Hara, "Gone with the Wind"]

Example 1: mutual exclusion (safety)

$$M \models \mathbf{G} \neg (C_1 \wedge C_2)$$
 ?

YES: There is no reachable state in which $(C_1 \wedge C_2)$ holds!

Example 2: liveness

$$M \models \mathbf{F}C_1$$
?

NO: there is an infinite cyclic solution in which C_1 never holds!

Example 3: liveness

YES: every path starting from each state where T_1 holds passes through a state where C_1 holds.

Example 4: fairness

NO: e.g., in the initial state, there is an infinite cyclic solution in which C_1 never holds!

Example 5: strong fairness

YES: every path which visits T_1 infinitely often also visits C_1 infinitely often (see liveness property of previous example).

Example 6: Releases

YES: C_1 in paths only strictly after T_1 has occured.

Example 7: XF

NO: a counter-example is the ∞ -shaped loop: $(N1, N2), \{(T1, N2), (C1, N2), (C1, T2), (N1, T2), (N1, C2), (T1, C2)\}^{\omega}$

Example: $G(T \rightarrow FC)$ vs. $GFT \rightarrow GFC$

- $G(T \to FC) \implies GFT \to GFC$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F}C)$, then $M \models \mathbf{GF}T \rightarrow \mathbf{GF}C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F}C)$. let $\pi \in M$ s.t. $\pi \models \mathbf{GF}T$ $\implies \pi, s_i \models \mathsf{F} T$ for each $s_i \in \pi$ $\implies \pi, s_i \models T$ for each $s_i \in \pi$ and for some $s_i \in \pi$ $s.t.j \ge i$ $\implies \pi, s_i \models FC$ for each $s_i \in \pi$ and for some $s_i \in \pi$ $s.t.j \ge i$ $\implies \pi, s_k \models C$ for each $s_i \in \pi$, for some $s_i \in \pi$ $s.t.j \ge i$ and for some k > i $\Longrightarrow \pi, s_k \models C$ for each $s_i \in \pi$ and for some $k \geq i$ $\Longrightarrow \pi \models \mathsf{GF}C$

 - $\Longrightarrow M \models \mathsf{GF}T \to \mathsf{GF}C$.

Example: $G(T \rightarrow FC)$ vs. $GFT \rightarrow GFC$

- $G(T \rightarrow FC) \iff GFT \rightarrow GFC$?
- NO!.
- Counter example:

Computational Tree Logic (CTL): Syntax

- An atomic proposition is a CTL formula;
- if φ_1 and φ_2 are CTL formulae, then $\neg \varphi_1, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2, \varphi_1 \rightarrow \varphi_2, \varphi_1 \leftrightarrow \varphi_2$ are CTL formulae;
- if φ_1 and φ_2 are CTL formulae, then $\mathbf{AX}\varphi_1$, $\mathbf{A}(\varphi_1\mathbf{U}\varphi_2)$, $\mathbf{AG}\varphi_1$, $\mathbf{AF}\varphi_1$, $\mathbf{EX}\varphi_1$, $\mathbf{E}(\varphi_1\mathbf{U}\varphi_2)$, $\mathbf{EG}\varphi_1$, $\mathbf{EF}\varphi_1$,, are CTL formulae. ($\mathbf{E}(\varphi_1\mathbf{R}\varphi_2)$ and $\mathbf{A}(\varphi_1\mathbf{R}\varphi_2)$ never used in practice.)

CTL semantics: intuitions

CTL is given by the standard boolean logic enhanced with the operators **AX**, **AG**, **AF**, **AU**, **EX**, **EG**, **EF**, **EU**:

- "Necessarily Next" **AX**: **AX** φ is true in s_t iff φ is true in every successor state s_{t+1}
- "Possibly Next" **EX**: **EX** φ is true in s_t iff φ is true in one successor state s_{t+1}
- "Necessarily in the future" (or "Inevitably") **AF**: **AF** φ is true in s_t iff φ is inevitably true in **some** $s_{t'}$ with $t' \geq t$
- "Possibly in the future" (or "Possibly") **EF**: **EF** φ is true in s_t iff φ may be true in **some** $s_{t'}$ with $t' \geq t$

CTL semantics: intuitions [cont.]

- "Globally" (or "always") **AG**: **AG** φ is true in s_t iff φ is true in **all** $s_{t'}$ with t' > t
- "Possibly henceforth" **EG**: **EG** φ is true in s_t iff φ is possibly true henceforth
- "Necessarily Until" AU: $\mathbf{A}(\varphi \mathbf{U}\psi)$ is true in s_t iff necessarily φ holds until ψ holds.
- "Possibly Until" **EU**: $\mathbf{E}(\varphi \mathbf{U}\psi)$ is true in s_t iff possibly φ holds until ψ holds.

CTL semantics: intuitions [cont.]

CTL Formal Semantics

 $M, s_i \models a$

 $M, s_i \models \neg \varphi$

 $M, s_i \models \varphi \vee \psi$

 $M, s_i \models AX\varphi$

Let $(s_i, s_{i+1}, ...)$ be a path outgoing from state s_i in M

iff $a \in L(s_i)$

iff $M, s_i \not\models \varphi$

iff

iff $M, s_i \models \varphi$ or $M, s_i \models \psi$

```
M, s_i \models EX\varphi
                                iff
                                      for some (s_i, s_{i+1}, ...),
                                                                           M, s_{i+1} \models \varphi
                                iff for all (s_i, s_{i+1}, \ldots),
                                                                           for all j \geq i.M, s_i \models \varphi
M, s_i \models AG\varphi
M, s_i \models EG\varphi
                         iff for some (s_i, s_{i+1}, \ldots),
                                                                           for all j \geq i.M, s_i \models \varphi
M, s_i \models AF\varphi
                        iff
                                      for all (s_i, s_{i+1}, \ldots),
                                                                           for some j \geq i.M, s_i \models \varphi
M, s_i \models EF\varphi iff for some (s_i, s_{i+1}, ...),
                                                                           for some j \geq i.M, s_i \models \varphi
M, s_i \models A(\varphi U \psi)
                                      for all (s_i, s_{i+1}, ...),
                                iff
                                                                           for some j \geq i.
                                                                           (M, s_i \models \psi \text{ and }
                                                                            forall k s.t. i \leq k < j.M, s_k \models \varphi)
M, s_i \models E(\varphi U \psi) iff for some (s_i, s_{i+1}, \ldots),
                                                                           for some j \geq i.
                                                                           (M, s_i \models \psi \text{ and }
                                                                           forall k s.t. i \le k < j.M, s_k \models \varphi)
```

for all (s_i, s_{i+1}, \ldots) , $M, s_{i+1} \models \varphi$

Formal Semantics (cont.)

• CTL properties (e.g. **AF**done) are evaluated over trees.

- Every temporal operator (F, G, X, U) is preceded by a path quantifier (A or E).
- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG, EX, EU): the temporal formula is true in some path starting in the current state.

The CTL model checking problem $\mathcal{M} \models \phi$

The CTL model checking problem $\mathcal{M} \models \phi$

 $\mathcal{M}, s \models \phi$ for every initial state $s \in I$ of the Kripke structure

Important Remark

$$\mathcal{M} \not\models \phi \not\Longrightarrow \mathcal{M} \models \neg \phi$$
 (!!)

- E.g. if ϕ is a universal formula **A**... and two initial states s_0, s_1 are s.t. $\mathcal{M}, s_0 \models \phi$ and $\mathcal{M}, s_1 \not\models \phi$
- $\mathcal{M} \not\models \phi \Longrightarrow \mathcal{M} \models \neg \phi$ if \mathcal{M} has only one initial state

Example: $\mathcal{M} \not\models \phi \not\Longrightarrow \mathcal{M} \models \neg \phi$

- $\mathcal{M} \not\models \mathbf{AGp}$, in fact:
 - $\mathcal{M}, s_1 \not\models \mathbf{AG}p$ (e.g., $\{s_1, ...\}$ is a counter-example)
 - $\mathcal{M}, s_2 \models \mathsf{AG}p$
- $\mathcal{M} \not\models \neg \mathbf{AGp}$, in fact:
 - $\mathcal{M}, s_1 \models \neg \mathbf{AG}p$ (i.e., $\mathcal{M}, s_1 \models \mathbf{EF} \neg p$)
 - $\mathcal{M}, s_2 \not\models \neg \mathsf{AG}p$ (i.e., $\mathcal{M}, s_2 \not\models \mathsf{EF} \neg p$)

Syntactic properties of CTL operators

Note

CTL can be defined in terms of \land , \neg , **EX**, **EG**, **EU** only

Exercise:

prove that
$$\mathbf{A}(\varphi_1\mathbf{U}\varphi_2) \Longleftrightarrow \neg \mathbf{E}\mathbf{G}\neg \varphi_2 \wedge \neg \mathbf{E}(\neg \varphi_2\mathbf{U}(\neg \varphi_1 \wedge \neg \varphi_2))$$

Strength of CTL operators

- $A[OP]\varphi \models E[OP]\varphi$, s.t. $[OP] \in \{X, F, G, U\}$
- $\mathsf{AG}\varphi \models \varphi \models \mathsf{AF}\varphi$, $\mathsf{EG}\varphi \models \varphi \models \mathsf{EF}\varphi$
- $\mathsf{AG}\varphi \models \mathsf{AX}\varphi \models \mathsf{AF}\varphi$, $\mathsf{EG}\varphi \models \mathsf{EX}\varphi \models \mathsf{EF}\varphi$
- $AG\varphi \models AX...AX\varphi \models AF\varphi$, $EG\varphi \models EX...EX\varphi \models EF\varphi$
- $A(\varphi U \psi) \models AF\psi$, $E(\varphi U \psi) \models EF\psi$

CTL tableaux rules

• Let φ_1 and φ_2 be CTL formulae:

```
\begin{array}{cccc} \textbf{AF}\varphi_1 & \Longleftrightarrow & (\varphi_1 \vee \textbf{AXAF}\varphi_1) \\ \textbf{AG}\varphi_1 & \Longleftrightarrow & (\varphi_1 \wedge \textbf{AXAG}\varphi_1) \\ \textbf{A}(\varphi_1 \textbf{U}\varphi_2) & \Longleftrightarrow & (\varphi_2 \vee (\varphi_1 \wedge \textbf{AXA}(\varphi_1 \textbf{U}\varphi_2))) \\ \textbf{EF}\varphi_1 & \Longleftrightarrow & (\varphi_1 \vee \textbf{EXEF}\varphi_1) \\ \textbf{EG}\varphi_1 & \Longleftrightarrow & (\varphi_1 \wedge \textbf{EXEG}\varphi_1) \\ \textbf{E}(\varphi_1 \textbf{U}\varphi_2) & \Longleftrightarrow & (\varphi_2 \vee (\varphi_1 \wedge \textbf{EXE}(\varphi_1 \textbf{U}\varphi_2))) \end{array}
```

- Recursive definitions of AF, AG, AU, EF, EG, EU.
- If applied recursively, rewrite a CTL formula in terms of atomic,
 AX- and EX-formulas:

$$\mathsf{A}(p\mathsf{U}q) \wedge (\mathsf{EG} \neg p) \Longrightarrow (q \vee (p \wedge \mathsf{AXA}(p\mathsf{U}q))) \wedge (\neg p \wedge \mathsf{EXEG} \neg p)$$

Tableaux rules: a quote

"After all... tomorrow is another day." [Scarlett O'Hara, "Gone with the Wind"]

Example 1: mutual exclusion (safety)

YES: There is no reachable state in which $(C_1 \wedge C_2)$ holds! (Same as the $\mathbf{G} \neg (C_1 \wedge C_2)$ in LTL.)

Example 2: liveness

$$M \models AG(T_1 \rightarrow AF C_1)$$
?

YES: every path starting from each state where T_1 holds passes through a state where C_1 holds

(Same as $\mathbf{G}(T_1 \to \mathbf{F}C_1)$) in LTL.)

Ch. 03: Temporal Logics

Example 3: fairness

NO: e.g., in the initial state, there is an infinite cyclic solution in which C_1 never holds! (Same as **GF** C_1 in LTL.)

Example 3: fairness (2)

NO: there is an infinite 8-shaped cyclic solution in which (turn = 0) never holds!

Example 4: blocking

$$M \models AG(N_1 \rightarrow EF T_1)$$
?

YES: from each state where N_1 holds there is a path leading to a state where T_1 holds

(No corresponding LTL formula.)

Example 5: blocking (2)

$$M \models AG(N_1 \rightarrow AF T_1)$$
?

NO: e.g., in the initial state, there is an infinite cyclic solution in which N_1 holds and T_1 never holds!

(Same as LTL formula $G(N_1 \rightarrow FT_1)$.)

Thursday 20th February, 2020 Ch. 03: Temporal Logics

Example 6:

$$M \models \mathbf{EG}N_1$$
?

YES: there is an infinite cyclic solution where N_1 always holds (No corresponding LTL formula.)

Example 7:

 $M \models AFEGN_1$?

YES: there is an infinite cyclic solution where N_1 always holds, and from every state you necessarily reach one state of such cycle (No corresponding LTL formula.)

LTL vs. CTL: expressiveness

- many CTL formulas cannot be expressed in LTL
 (e.g., those containing existentially quantified subformulas)
 E.g., AG(N₁ → EFT₁), AFAGφ
- many LTL formulas cannot be expressed in CTL (e.g. fairness LTL formulas)
 E.g., GFT₁ → GFC₁, FGφ
- some formulas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1, and/or with operators occurring positively)

E.g., $\mathbf{G} \neg (C_1 \land C_2)$, $\mathbf{F}C_1$, $\mathbf{G}(T_1 \rightarrow \mathbf{F}C_1)$, $\mathbf{G}\mathbf{F}C_1$

Example: AFAGp vs. FGp

(Example developed by the students Andrea Mattioli and Mirko Boniatti, 2005.)

Example:

LTL vs. CTL: M.C. Algorithms

- LTL M.C. problems are typically handled with automata-based M.C. approaches (Wolper & Vardi)
- CTL M.C. problems are typically handled with symbolic M.C. approaches (Clarke & McMillan)
- LTL M.C. problems can be reduced to CTL M.C. problems under fairness constraints (Clarke et al.)

CTL*

- Syntax: let p's, φ 's, ψ 's being propositions, state formulae and path formulae respectively:
 - p, ¬φ, φ₁ ∧ φ₂, Aψ, Eψ are state formulae (properties of the set of paths starting from a state)
 - φ , $\neg \psi$, $\psi_1 \wedge \psi_2$, $\mathbf{X}\psi$, $\mathbf{G}\psi$, $\mathbf{F}\psi$, $\psi_1 \mathbf{U}\psi_2$ are path formulae (properties of a path)
- Semantics: A, E, X, G, F, U as in CTL
 - A, E: quantify on paths (as in CTL)
 - X, G, F, U: (as in LTL)
 - as in CTL, but X, G, F, U not necessarily preceded by A,E

Remark

In principle in CTL* one may have sequences of nested path quantifiers. In such case, the most internal one dominates:

$$M, s \models AE\psi \text{ iff } M, s \models E\psi, \quad M, s \models EA\psi \text{ iff } M, s \models A\psi.$$

CTL* vs LTL & CTL

CTL* subsumes both CTL and LTL

- φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., $AG(N_1 \to EFT_1)$
- φ in LTL \Longrightarrow $\mathbf{A}\varphi$ in CTL* (e.g., $\mathbf{A}(\mathbf{GF}T_1 \to \mathbf{GF}C_1)$
- LTL \cup CTL \subset CTL* (e.g., $\mathbf{E}(\mathbf{GF}p \rightarrow \mathbf{GF}q)$)

"You have no respect for logic. (...)

I have no respect for those who have no respect for logic." https://www.youtube.com/watch?v=uGstM8QMCjQ

(Arnold Schwarzenegger in "Twins")

The need for fairness conditions: intuition

Consider a public restroom. A standard access policy is "first come first served" (e.g., a queue-based protocol).

- Does this policy guarantee that everybody entering the queue will eventually access the restroom?
 - **No**: in principle, somebody might remain in the restroom forever, hindering the access to everybody else
 - in practice, it is considered reasonable to assume that everybody exits the restroom after a finite amount of time
- it is reasonable enough to assume the protocol suitable under the condition that each user is infinitely often outside the restroom
 - such a condition is called fairness condition

The need for fairness conditions: an example

- Consider a variant of the mutual exclusion in which one process can stay permanently in the critical zone
- Do $M \models AG(T_1 \rightarrow AFC_1), M \models AG(T_2 \rightarrow AFC_2)$ still hold?

The need for fairness conditions: an example [cont.]

$$M \models \mathsf{AG}(T_1 \to \mathsf{AF}C_1)$$

$$M \models \mathsf{AG}(T_2 \to \mathsf{AF}C_2)$$

The need for fairness conditions: an example [cont.]

$$M \models \mathsf{AG}(T_1 \to \mathsf{AF}C_1)$$
?

$$M \models \mathsf{AG}(T_2 \to \mathsf{AF}C_2)$$
?

The need for fairness conditions: an example [cont.]

$$AG(T_1 \rightarrow AFC_1)$$
?

$$AG(T_2 \rightarrow AFC_2)$$
?

NO: E.g., it can cycle forever in $\{C_1, T_2, turn = 1\}$

⇒ Unfair protocol: one process might never be served

Fairness conditions

- It is desirable that certain (typically Boolean) conditions φ 's hold infinitely often: **AGAF** φ (**GF** φ in LTL)
- AGAF φ (GF φ) is called fairness conditions
- Intuitively, fairness conditions are used to eliminate behaviours in which a certain condition φ never holds:

$$\neg \mathsf{EFEG} \neg \varphi$$

("it is never reached a state from which φ is forever false")

- Example: it is not desirable that, once a process is in the critical section, it never exits: AGAF¬C₁ (¬EFEGC₁)
- A fair condition φ_i can be represented also by the set f_i of states where φ_i holds $(f_i := \{s : M, s \models \varphi_i\})$

Fair Kripke models

- A Fair Kripke model $M_{F, i}$ p(S, R, I, AP, L, F) consists of
 - a set of states S;
 - a set of initial states I S
 - a set of transition $R \subseteq S \times S$
 - a set of atomic propositions AP;
 - a labeling $L \subseteq S \times AB$
 - a set of fairness conditions $F = \{f_1, \dots, f_n\}$, with $f_i \subseteq S$.

E.g., $\{\{2\}\} := \{\{s : M, s \models q\}\} = \{\mathbf{GF}q\}$ is the set of fairness conditions of the Kripke model above

• Fair path π : at least one state for each f_i occurs infinitely often in π (φ_i holds infinitely often in π : $\pi \models \mathbf{GF}\varphi_i$)
E.g., every path visiting infinitely often state 2 is a fair path.

CTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- Path quantifiers apply only to fair paths:
 - $M_F \models \mathbf{A}\varphi$ iff $\pi \models \varphi$ for every fair path π
 - $M_F \models \mathbf{E}\varphi$ iff $\pi \models \varphi$ for some fair path π
- Fair state: a state from which at least one fair path originates, that is, a state s is a fair state in M_F iff M_F , $s \models \mathbf{EGtrue}$.

Fairness: example

 $F := \{\{ \text{ not C1} \}, \{ \text{not C2} \} \}$

$$M_F \models \mathbf{AG}(T_1 \to \mathbf{AF}C_1)$$
? $M_F \models \mathbf{AG}(T_2 \to \mathbf{AF}C_2)$? YES: every fair path satisfies the conditions

CTL M.C. vs. LTL M.C. with Fair Kripke Models

Remark: fair CTL M.C.

When model checking a CTL formula ψ , fairness conditions cannot be encoded into the formula itself:

$$M_{\{f_1,\ldots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathsf{AGAF} f_i) \to \psi.$$

Remark: fair LTL M.C.

When model checking an LTL formula ψ , fairness conditions can be encoded into the formula itself:

$$M_{\{f_1,\ldots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathbf{GF}f_i) \to \psi.$$

95/108

Ex. CTL:
$$M_{\{f_1,\ldots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathsf{AGAF} f_i) \to \psi$$
.

- $M_p \not\models \mathbf{AG}q$
- $M \models (\mathsf{AGAF}p) \rightarrow \mathsf{AG}q$

Exercise: show that $M_{\{f_1,\dots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathsf{EGEF} f_i) \to \psi$.

Ex. CTL:
$$M_{\{f_1,\ldots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathsf{EGEF} f_i) \to \psi$$
.

 $M_{p!q}$ [Example provided by the student Daniele Giuliani, 2019]

- $M_{p!q} \not\models \mathsf{EFEG}q$
- $M \models (\mathsf{EGEF}p) \rightarrow \mathsf{EFEG}q$

Exercise: show that $M_{\{f_1,\dots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathsf{EGE} f_i) \to \psi$.

Ex. LTL (1):
$$M_{\{f_1,\ldots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathbf{GF} f_i) \to \psi$$
.

- $M_p \not\models \mathbf{G}q$
- $M \not\models (\mathbf{GF}p) \rightarrow \mathbf{G}q$

Ex. LTL (2):
$$M_{\{f_1,\ldots,f_n\}} \models \psi \iff M \models (\bigwedge_{i=1}^n \mathbf{GF} f_i) \to \psi$$
.

- $M_p \models \mathbf{G}q$
- $M \models (\mathbf{GF}p) \rightarrow \mathbf{G}q$

Ex: Labeled CNF-ization

Consider the following Boolean formula φ :

$$((\neg A_1 \wedge \neg A_2) \vee (A_7 \wedge A_4) \vee (\neg A_3 \wedge A_2) \vee (A_5 \wedge \neg A_4))$$

Using the $\underline{\textit{improved}}$ $\textit{CNF}_{\textit{label}}$ conversion, produce the CNF formula $\textit{CNF}_{\textit{label}}(\varphi)$.

[Solution: we introduce fresh Boolean variables naming the subformulas of φ :

$$(\overbrace{(\neg A_1 \land \neg A_2)}^{B_1} \lor \overbrace{(A_7 \land A_4)}^{B_2} \lor \overbrace{(\neg A_3 \land A_2)}^{B_3} \lor \overbrace{(A_5 \land \neg A_4)}^{B_4})$$

from which we obtain:

$$(B) \qquad \qquad \land \qquad \\ (\neg B \lor B_1 \lor B_2 \lor B_3 \lor B_4) \qquad \land \qquad \\ (\neg B_1 \lor \neg A_1) \land (\neg B_1 \lor \neg A_2) \qquad \land \qquad \\ (\neg B_2 \lor A_7) \land (\neg B_2 \lor A_4) \qquad \land \qquad \\ (\neg B_3 \lor \neg A_3) \land (\neg B_3 \lor A_2) \qquad \land \qquad \\ (\neg B_4 \lor A_5) \land (\neg B_4 \lor \neg A_4)$$

Ex: NNF conversion

Consider the following Boolean formula φ :

$$\neg(((\neg A_1 \rightarrow \neg A_2) \quad \land \quad (\neg A_3 \rightarrow \quad A_4)) \quad \lor \quad ((\quad A_5 \rightarrow \quad A_6) \quad \land \quad (\quad A_7 \rightarrow \neg A_8)))$$

Compute the Negative Normal Form of φ , called φ' .

[Solution:

```
\Rightarrow \neg(((\neg A_1 \rightarrow \neg A_2) \land (\neg A_3 \rightarrow A_4)) \lor ((A_5 \rightarrow A_6) \land (A_7 \rightarrow \neg A_8)))
\Rightarrow (\neg((\neg A_1 \rightarrow \neg A_2) \land (\neg A_3 \rightarrow A_4)) \land \neg((A_5 \rightarrow A_6) \land (A_7 \rightarrow \neg A_8)))
\Rightarrow (((\neg(\neg A_1 \rightarrow \neg A_2) \lor \neg(\neg A_3 \rightarrow A_4)) \land (\neg(A_5 \rightarrow A_6) \lor \neg(A_7 \rightarrow \neg A_8)))
\Rightarrow (((\neg A_1 \land A_2) \lor (\neg A_3 \land \neg A_4)) \land ((A_5 \land \neg A_6) \lor (A_7 \land A_8)))
= \varphi'
```

Exercise: LTL Model Checking (path)

Consider the following path π :

For each of the following facts, say if it is true of false in LTL.

- (a) $\pi, s_0 \models \mathbf{GF}q$ [Solution: true]
- (b) $\pi, s_0 \models \mathbf{FG}(q \leftrightarrow \neg p)$ [Solution: true]
- (c) $\pi, s_2 \models \mathbf{G}p$ [Solution: false]
- (d) $\pi, s_2 \models p\mathbf{U}q$ [Solution: true]

103/108

Ex: LTL Model Checking

Consider the following Kripke Model M:

For each of the following facts, say if it is true or false in LTL.

- (a) $M \models (p\mathbf{U}q)$
 - [Solution: true]
- (b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
 - [Solution: true]
- (c) $M \models \mathbf{G}p \rightarrow \mathbf{G}q$ [Solution: true]
- (d) $M \models \mathbf{FG}p$
 - [Solution: false]

Roberto Sebastiani

Ex: CTL Model Checking

Consider the following Kripke Model M:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AF} \neg p$
 - [Solution: false]
- (b) $M \models \mathbf{EG}p$
 - [Solution: false]
- (c) $M \models \mathbf{A}(p\mathbf{U}q)$
- [Solution: true]
- (d) $M \models \mathbf{E}(p\mathbf{U}\neg q)$ [Solution: true]

Roberto Sebastiani

Ex: CTL Model Checking

Consider the following Kripke Model *M*:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AF} \neg q$ [Solution: false]
- (b) $M \models \mathbf{EG}q$

[Solution: false]

- (c) $M \models ((\mathsf{AGAF}p \lor \mathsf{AGAF}q) \land (\mathsf{AGAF} \neg p \lor \mathsf{AGAF} \neg q)) \rightarrow q$ [Solution: true]
- (d) $M \models \mathsf{AFEG}(p \land q)$ [Solution: false]

Ex: Fair CTL Model Checking

Consider the following *fair* Kripke Model *M*:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AF} \neg p$
 - [Solution: true]
- (b) $M \models \mathbf{A}(p\mathbf{U}\neg q)$ [Solution: true]
- (c) $M \models \mathbf{AX} \neg q$
- [Solution: false]
- (d) $M \models \mathsf{AGAF} \neg p$
 - [Solution: true]

Roberto Sebastiani

Ex: Fair CTL Model Checking

Consider the following fair Kripke Model M:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{EF}(p \land q)$
- [Solution: true]
- (b) $M \models \mathsf{AGAF}p$ [Solution: true]
- (c) $M \models \mathbf{AF} \neg q$
 - [Solution: true]
- (d) $M \models AG(\neg p \lor \neg q)$
 - [Solution: false]