Experiment – 1.4

Student Name: Kushagra Rohila UID: 23BCS12533

Branch: BE-CSE Section/Group: KRG-1-B

Semester: 5th **Date:** 09-09-25

Subject Name: ADBMS Subject Code: 23CSP-333

Aim: To analyze given relations with functional dependencies, determine candidate keys, classify prime and non-prime attributes, remove redundant dependencies, and identify the highest normal form of the relation schemas.

Objective: The objective of this work is to analyze functional dependencies in given relations to determine candidate keys and classify attributes as prime or non-prime. It also focuses on minimizing functional dependencies by removing redundancy and evaluating the highest normal form achieved by each relation.

01:

For relation R(A,B,C,D) with FDs $\{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$, find candidate keys, prime and non-prime attributes. Also state the highest normal form.

Dependencies: AB \rightarrow C, C \rightarrow D, D \rightarrow A

Solution:

Candidate Keys: AB, BC, BD
Prime Attributes: A, B, C, D
Non-Prime Attributes: Ø

Explanation:

 $AB+ = \{A,B,C,D\}, BC+ = \{B,C,D,A\}, BD+ = \{B,D,A,C\}.$ All attributes are prime.

Highest Normal Form = 3NF (C \rightarrow D violates BCNF but is allowed in 3NF since D is prime).

Q2:

For relation R(A,B,C,D,E) with FDs $\{A \rightarrow D, B \rightarrow A, BC \rightarrow D, AC \rightarrow BE\}$, find candidate keys, prime and non-prime attributes. Also state the highest normal form.

Dependencies: $A \rightarrow D$, $B \rightarrow A$, $BC \rightarrow D$, $AC \rightarrow BE$

Solution:

Candidate Keys: AC, BC
Prime Attributes: A, B, C
Non-Prime Attributes: D, E

Explanation:

 $AC+ = \{A,B,C,D,E\}$, $BC+ = \{B,C,A,D,E\}$. Both are keys. Non-primes $\{D,E\}$ depend only on part of key (A), so violates 2NF.

Highest Normal Form = 1NF.

Q3:

For relation R(A,B,C,D,E) with FDs $\{B\rightarrow A, A\rightarrow C, BC\rightarrow D, AC\rightarrow BE\}$, find candidate keys, prime and non-prime attributes. Also state the highest normal form.

Dependencies: $B \rightarrow A$, $A \rightarrow C$, $BC \rightarrow D$, $AC \rightarrow BE$

Solution:

Candidate Keys: A, BPrime Attributes: A, B

• Non-Prime Attributes: C, D, E

Explanation:

 $A+=\{A,C,B,E,D\}$, $B+=\{B,A,C,D,E\}$. Both generate full set. Since all LHS are keys, no violations.

Highest Normal Form = BCNF.

Q4:

For relation R(A,B,C,D,E,F) with FDs $\{A \rightarrow BCD, BC \rightarrow DE, B \rightarrow D, D \rightarrow A\}$, find candidate keys, prime and non-prime attributes. Also state the highest normal form.

Dependencies: $A \rightarrow BCD$, $BC \rightarrow DE$, $B \rightarrow D$, $D \rightarrow A$

Solution:

Candidate Keys: AF, BF, DF
Prime Attributes: A, B, D, F
Non-Prime Attributes: C, E

Explanation:

 $A+ = \{A,B,C,D,E\}$, missing $F \rightarrow AF$ is key. Similarly BF and DF. Partial dependencies $(A\rightarrow C,E)$ mean it fails 2NF.

Highest Normal Form = 1NF.

Q5:

For relation R(W,X,Y,Z) with FDs $\{X\rightarrow Y, WZ\rightarrow X, WZ\rightarrow Y, Y\rightarrow W, Y\rightarrow X, Y\rightarrow Z\}$, find candidate keys, prime and non-prime attributes, minimal cover, and highest normal form.

Dependencies: $X \rightarrow Y$, $WZ \rightarrow X$, $WZ \rightarrow Y$, $Y \rightarrow W$, $Y \rightarrow X$, $Y \rightarrow Z$

Solution:

- Minimal Cover: $\{X \rightarrow Y, WZ \rightarrow X, Y \rightarrow W, Y \rightarrow Z\}$
- Candidate Keys: **X**, **Y**, **WZ**
- Prime Attributes: W, X, Y, Z
- Non-Prime Attributes: **Ø**

Explanation:

 $Y+ = \{Y, W, X, Z\}, X+ = \{X, Y, W, Z\}, WZ+ = \{W, Z, X, Y\}.$ All attributes are prime.

Highest Normal Form = **BCNF** (all FDs have LHS as key).

Q6:

For relation R1(A,B,C,D,E,F) with FDs $\{A \rightarrow BC, A \rightarrow D, BC \rightarrow D, D \rightarrow E\}$, find candidate keys, prime and non-prime attributes. Also state the highest normal form.

Dependencies: $A \rightarrow BC$, $A \rightarrow D$, $BC \rightarrow D$, $D \rightarrow E$

Solution:

Candidate Key: AFPrime Attributes: A, F

• Non-Prime Attributes: B, C, D, E

Explanation:

 $A+ = \{A,B,C,D,E\}$, missing $F \rightarrow AF$ is key. Non-primes depend only on part of key, violating 2NF.

Highest Normal Form = 1NF.

Learning Outcomes

After completing these questions, students will be able to:

- 1. Apply closure method to find candidate keys.
- 2. Differentiate prime and non-prime attributes in a relation.
- 3. Detect and eliminate redundant functional dependencies.
- 4. Identify the highest normal form of a given relation schema.
- 5. Improve conceptual clarity of normalization for efficient database design.