Image filtering

In Fourier domain

In spatial domain

Linear filters

Non-linear filters

Image filtering in spectrum domain

$$g(x,y) = IF\{ H(u,v) F\{f(x,y)\} \}$$

Ideal low-pass filter

$$H(u,v) = \begin{cases} 1 & D(u,v) \le D_0 \\ 0 & D(u,v) > D_0 \end{cases}$$
$$D(u,v) = \sqrt{u^2 + v^2}$$

Image after ideal low-pass filtering, $D_0=70$

Image after ideal low-pass filtering, $D_0=10$

Ideal low-pass filter - example

 $D_0 = 10$

 $D_0 = 70$

ringing

 $D_0 = 30$

Butterworth filter

$$H(u,v) = \frac{1}{1 + (\sqrt{2} - 1)[D(u,v)/D_0]^{2n}}$$

$$D(u,v) = \sqrt{u^2 + v^2}, \quad n = 1,2,...$$

n-filter order

Low-pass filtering

n = 1

Butterworth filter

Low-pass Butterworth filter - examples

n = 1

 $D_0 = 10$

 $D_0 = 70$

 $D_0 = 30$

Ideal high-pass filter

$$H(u,v) = \begin{cases} 0 & D(u,v) \le D_0 \\ 1 & D(u,v) > D_0 \end{cases}$$
$$D(u,v) = \sqrt{u^2 + v^2}$$

Ideal high-pass filter - example

$$D_0 = 10$$

 $D_0 = 70$

Image after ideal high-pass filtering, $D_0=10$

High-pass Butterworth filter 2

$$H(u,v) = \frac{1}{1 + (\sqrt{2} - 1)[D_0/D(u,v)]^{2n}}$$

$$D(u,v) = \sqrt{u^2 + v^2} \qquad n = 1,2,...$$

n - filter order

High-pass Butterworth filter - examples

n = 1

$$D_0 = 70$$

Image after Butterworth high-pass filtering

High-pass Butterworth filter - examples

n = 1

$$D_0 = 70$$

Image filtering in spatial domain

$$g(x,y) = IF\{ H(u,v) F\{f(x,y)\} \} =$$
 $IF\{H(u,v)\} ** IF\{F\{f(x,y)\} \} =$
 $h(x,y) ** f(x,y)$

Filter definition in spatial domain

 $\hat{\mathbf{h}}$ is selected so that $F(\hat{\mathbf{h}}(x,y)) = \hat{\mathbf{H}}(x,y) \approx \mathbf{H}(x,y)$

Image and the filer mask convolution

			G(i,j) =
h(-1,-1)	h(-1,0)	h(-1,1)	
I(i-1,j-1)	I(i-1,j)	I(i-1,j+1)	[(i-1,j-1)h(-1,-1) + I(i-1,j)h(-1,0) + I(i-1,j+1)h(-1,0)
h(0,-1)	h(0,0)	h(0,1)	
l(i,j-1)	l(i,j)	I(i,j+1)	I(i,j-1)h(0,-1) + I(i,j)h(0,0) + I(i,j+1)h(0,1)
h(1,-1)	h(1,0)	h(1,1)	
I(i+1,j-1)	l(i+1,j)	I(i+1,j+1)	I(i+1,j-1)h(1,-1) + I(i+1,j)h(1,0) + I(i+1,j+1)h(1,1)

This is true for symmetric masks only!

Computing the filtered image

source image f

output image g

Boundary effects

?			

source image f

output image g

Boundary effects – 3x3 mask

Boundary columns and rows of (NxN) image are neglected and the filtered image is of size (N-2)x(N-2)

Image filtering – the algorithm

```
f, g : array[0..N-1, 0..N-1] of byte;
{ size2 – half size of the mask}
h: array[-size2..size2,-size2..size2] of integer;
for i:=1 to N-2 do for j:=1 to N-2 do
       begin
          g[i,j]:=0;
          for k:=-size2 to size2 do for l:=-size2 to size2 do
              g[i,j]:=g[i,j] + f[i+k,j+l] * h[i+k,j+l];
       end;
```

Range check g[i,j] !!!

Low pass filter

Can one use mask of even size?

Frequency characteristics of low pass filters

for 5x5 mask

for 3x3 mask

Low-pass filtering the image

Source image

3x3 mask

5x5 mask

Gaussian filter

$$h = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

$$h(x,y) = e^{\frac{-\pi(x^2 + y^2)}{d_0^2}}$$

$$H(u,v) = e^{\frac{-\pi d_0^2 (u^2 + v^2)}{N}}$$

Image filtering using the Gaussian filter

source image

filtered image

Image low-pass filters - examples

Image distorted by the Gaussin noise N(0, 0.01)

Low pass filter 3x3

Gaussian filter 3x3

Butterworth filter $D_0=50$

Image low-pass filters - examples

Image distorted by the Gaussian noise N(0, 0.01)

Gaussian filter 5x5

low-pass filter 5x5

Butterworth filter D₀=30

Image low-pass filters - examples

Image distorted by the Gaussian noise N(0, 0.002)

Gaussian filter 3x3

Low pass filter 3x3

Butterworth filter $D_0=50$

High-pass filters (derivative filters)

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$h_2 = \begin{bmatrix} 0.17 & 0.67 & 0.17 \\ 0.67 & -3.33 & 0.67 \\ 0.17 & 0.67 & 0.17 \end{bmatrix}$$

High-pass filtering the image

mask h₁

mask h₂

The "high boost" filter

$$f(x,y) = f_L(x,y) + f_H(x,y)$$

$$f_{HB}(x,y) = Af(x,y) - f_L(x,y) =$$

$$= (A-1)f(x,y) + f(x,y) - f_L(x,y) =$$

$$= (A-1)f(x,y) + f_H(x,y), \qquad A \ge 1$$

$$h_{HB} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9A - 1 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

High boost filter - example

Laplace filter

A=1.1

A=1.5

A modified Laplace filter

$$h_2 = \begin{bmatrix} 0.17 & 0.67 & 0.17 \\ 0.67 & -3.33 & 0.67 \\ 0.17 & 0.67 & 0.17 \end{bmatrix}$$

$$h'_{2} = \begin{bmatrix} 0.17 & 0.67 & 0.17 \\ 0.67 & -2.33 & 0.67 \\ 0.17 & 0.67 & 0.17 \end{bmatrix}$$

In order to keep the average value of the image add 1 do the centre element of the Laplace mask

Other high-pass filters

$$h'_{3} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$h'_{3} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad h'_{4} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 \end{bmatrix}$$

High-pass filters

Blurred image

Sharpened image

%MATLAB out_image = filter2(filter_mask, in_image);

Nonlinear filters

The filtered image is defined by a non-linear function of the source image

Can we compute spectral characteristics for nonlinear filters?

NO

Because transfer characteristics of nonlinear filters depend on image content itself!

Median filter (order statistic filter)

The median m of a set of values (e.g. image pixels in the filtering mask) is such that half the elements in the set are less than m and other half are grater than m.

$$x(n) = \{1, 5, -7, 101, -25, 3, 0, 11, 7\}$$

Sorted sequence of elements:

$$x_s(n) = \{-25, -7, 0, 1, 3, 5, 7, 11, 101\}$$

median

Median filtering the image

source image f

output image g

Bubble-sort algorithm

© N. Wirth, "Algorithms+Data Structures=Programs"

Bubble-sort program

```
a[k], k=1..N – unsorted sequence
for i:=2 to N do
begin
  for j:=N downto i do
  if a[j-1]>a[j] then
    begin
    x=a[j-1]; a[j-1]:=a[j]; a[j]:=x;
    end;
end;
```

Demo - median filter

Source image distorted by "salt and pepper noise"

Enhanced image using the median filter (3x3)"

%MATLAB out_image = **medfilt2**(in_image, [m n]);

Median filter

Median filter:

- 1. Excellent in reducing impulsive noise (od size smaller than half size of the filtering mask)
- 2. Keeps sharpness of image edges (as opposed to linear smoothing filters)
- 3. Values of the output image are equal or smaller than the values of the input image (no rescaling)
- 4. Large computing cost involved

Median filter

MATLAB Demo - median filter

