Hash Tables

Gianpiero Cabodi e Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Hash Tables

- ADT with
 - Memory usage equal to O(|K|)
 - Average access time equal to O(1)
- The hash function transform the search key into a table index
- The hash table cannot be perfect, a collision may always happen
- Used to insert, search, delete, not to order or select a key

Hash Function

- The hash table
 - Has size M
 - Stores |K| elements
 - |K|<<|U|
- The hash table has addresses in the range [0 ... M-1]

4

Hash Function

 The hash function h creates a correspondence between a key k and a table address h(k)

h:
$$U \rightarrow \{ 0, 1, ..., M-1 \}$$

- Each element is stored at the address h(k) given its key k
 - Pay attention to collision handling!

Hash Function

Designing a hash function

- Ideal Function
 - Simple uniform hashing
- If the k keys are equiprobable, then the h(k) values must be equiprobable
- Practically, the k keys are not equiprobable, as they have a correlation
 - Keys k_i and k_i are not uncorrelated

Designing a hash function

- To make the h(k) values equiprobable it is necessary to
 - Make h(k_i) uncorrelated from h(k_j)
 - "Amplify" differences
 - Uncorrelate h(k) from k
- Distribute h(k) in a uniform way
 - Use all key bits
 - Multiply for a prime number

The Multiplication Method

- If keys are floating point numbers in a predefined range (s ≤ k ≤ t)
 - $h(k) = \lfloor (k-s) / (t-s) \cdot M \rfloor$

floor

```
int hash(float k, int M) {
  return ((k-s)/(t-s))*M
}
```

- Example
 - M = 97, s = 0, t = 1
 - k = 0.513870656
 - $h(k) = \lfloor (0.513870656 0) / (1 0) \cdot 97 \rfloor = 49$

The Module Method

- If keys are integer numbers of w bits and M is a prime number
 - h(k) = k % M

M prime number allows using only the last n bits of k, if $M = 2^n$ using only the last n decimal digits of k, if $M = 10^n$

- Example
 - M = 19
 - k = 31
 - h(k) = 31 % 19 = 12

```
int hash(int k, int M){
  return (k%M);
}
```


The Multiplication-Module Method

- If keys are integer numbers
- Given a constant value 0<A<1

• A =
$$\phi$$
 = $(\sqrt{5} - 1) / 2 = 0.6180339887$

Then the hash function can be computed as

•
$$h(k) = \lfloor k \cdot A \rfloor \% M$$

The Modular Method

- If keys are short alphanumeric strings it is possible to convert them into integers
 - Each interger is obtained from a polinomial evaluation in a given base of the original string
 - h(k) = k % M
- Example
 - K = "now"

The Modular Method

- If keys are long alphanumeric strings k cannot be represented on a reasonable number of bits
- It is possible to use the Horner's method to ruleout M multiples after each step, instead of doing that after the application of the modular technique
 - $K = p_7 x^7 + p_6 x^6 + p_5 x^5 + p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0$ = $((((((p_7 \cdot x + p_6) \cdot x + p_5) \cdot x + p_4) \cdot x + p_3) \cdot x + p_2) \cdot x + p_1) \cdot x + p_0$ = $((((((p_7 \cdot M) \cdot x + p_6) \cdot M) \cdot x + p_5) \cdot x) \cdot M \dots$

ı

The Modular Method

Example

- K = "averylongkey"
- with a 128 base (ASCII)

```
• k = 97*128^{11}+118*128^{10}+101*128^{9}+114*128^{8}+121*128^{7}+108*1
28^{6}+111*128^{5}+110*128^{4}+103*128^{3}+107*128^{2}+101*128^{1}+12
1*128^{0} = (((((((((((97\cdot128+118)\cdot128+101)\cdot128+114)\cdot128+121)\cdot128+10
8)\cdot128+111)\cdot128+110)\cdot128+103)\cdot128+107)\cdot128+101)\cdot128+1
21 = (((((((((((97\%M)\cdot128+118)\%M)\cdot128+114)\%M)\cdot128+121)\% ...
```

int hash (char *v, int M){
 int h = 0, base = 128;
 for (; *v != '\0'; v++)

return h;

h = (base * h + *v) % M;

The Modular Method

- Notice that even for ASCII strings, 128 is not used as a base
- Instead it is used
 - A prime number (for example 127)
 - A random number different for each digit of the key (universal hashing)
- The target being to obtain a uniform distribution (collision probability for 2 different keys equal to 1/M)

The Modular Method

Hash Function for string keys with a prime base:

```
int hash (char *v, int M) {
  int h = 0, base = 127;
  for (; *v != '\0'; v++)
    h = (base * h + *v) % M;
  return h;
}
```

Hash function for string keys with universal hashing:

```
int hashU( char *v, int M) {
  int h, a = 31415, b = 27183;
  for ( h = 0; *v != '\0'; v++, a = a*b % (M-1))
    h = (a*h + *v) % M;
  return h;
}
```

Collisions

- A collision happens when
 - $h(k_i)=h(k_j)$ with $k_i \neq k_j$
- Collisions are inevitable, then it is necessary to
 - Minimize their number (good hash function)
 - Dealing with them
- Collisions can be dealt with
 - Linear chaining
 - Open addressing

Linear Chaining

- More elements can be stored in the same table location T, i.e., each element points to a linked list
- Operations
 - Insert on the list head
 - List search
 - Delete from the list
- Table size M
 - The smallest prime M ≥ max. number of keys / 5 (or 10) such that the average list length would be 5 (or 10)

Example: Linear Chaining

```
ASERCHINGXMPL
h(k) = 03422 23313 201
```

```
M = 5;
int hash (Key k, int M) {
  int h = 0, base = 127;
  for (; *k != '\0'; k++)
    h = (base * h + *k) % M;
  return h;
}
```


Complexity

- With non-ordered lists
 - N = |K| = number of stored elements
 - M = size of the hash table
- Simple Uniform Hashing
 - h(k) has the same probability to generate M output values
- Definition
 - Load factor $\alpha = N/M$ (>, = o < 1)

4

Complexity

- Insert
 - T(n) = O(1)
- Search
 - Worst case $T(n) = \Theta(N)$
 - Average case $T(n) = O(1+\alpha)$
- Delete
 - As the search

Open addressing

N≤M

α≤1

- Each cell table T can store a single element
- All elements are stored in T
- Once there is a collision it is necessary to look-for an empty cell with probing
 - Generate a cell permutation, i.e, an order to search for an empty cell
 - The same order has to be used to insert and to search a key

Probing Functions

- There are several ways to perform probing
 - Linear probing
 - Quadratic probing
 - Double hashing
 - A problem with open addressing is clustering, that is, the presence of clusters of contiguous full cells.

4

Linear Probing

- Given a key k
 - h'(k) = (h(k) + i)%M
 - i is the attempt counter (initially 0)
- Set i=0
 - Compute h(k), then h'(k)
 - If free, insert the key
 - Otherwise increase i and repeat until an empty cell is found

•

Quadratic Probing

- Given a key k
 - h'(k) = (h(k) + $c_1i + c_2i^2$)%M
 - i is the attempt counter (initially 0)
- Set i=0
 - Compute h(k), then h'(k)
 - If free, insert the key
 - Otherwise increase i and repeat until an empty cell is found

Quadratic probing

- Constants c₁ and c₂ must be selected carefully
- They must guarantee that h'(k) assumes distinct values for $1 \le i \le (M-1)/2$
 - If M = 2K, select c1 = c2 = ½ to generate all indexes between 0 and M-1
 - If M is prime and $\alpha < \frac{1}{2}$ the following values

$$c_1 = c_2 = \frac{1}{2}$$

$$c_1 = c_2 = 1$$

$$c_1 = 0, c_2 = 1$$

1

Double Hashing

- Given a key k
 - $h'(k) = (h_1(k) + i \cdot h_2(k))\%M$
 - i is the attempt counter (initially 0)
- Set i=0
 - Compute h₁(k), then h′(k)
 - If free, insert the key
 - Otherwise increase i, compute h₂(k), and repeat until an empty cell is found

Double Hashing

- It must be true that the new value of h'(k) differ from the previous one otherwise we enter an infinite loop
- To avoid this
 - h₂ should never return 0
 - h₂%M should never return 0
- Example
 - $h_1(k) = k \% M$ and M prime
 - $h_2(k) = 1 + k\%97$
 - h₂(k) never returns 0 and h₂%M never returns 0 if M > 97.

Probing and Delete

- With probing delete a key is a complex operation which stops collision chains
- L'open addressing is used only when it is not necessary to delete keys
- Solution
 - Substitute the deleted key with a sentinel key that is considered as a full element during search operations and an empty element during insertion operations
 - Re-insert cluster keys within the deleted key

Example: Delete with Probing

Delete E remembering that there was a collision between E and R

ASERCHINGXMP h(k) = 0 5 4 4 2 7 8 0 6 10 12 2i = h('N') = 78 % 13 = 0 collision 23 i = (0+1) % 13 = 19 10

$$A S E R C H I N G X M P$$

 $h(k) = 0 5 4 4 2 7 8 0 6 10 12 2$

0 A 1 N 2 C 3 4 E 5 S 6 R 7 H 8 I 9 G 10 11 12

$$i = h(G') = 71 \% 13 = 6$$
 collision
 $i = (6+1) \% 13 = 7$ collision
 $i = (7+1) \% 13 = 8$ collision
 $i = (8+1) \% 13 = 9$

A S E R C H I N G X M P h(k) = 0 5 4 4 2 7 8 0 6 10 12 2

 $\begin{array}{c} \text{Quadratic probing} \\ \text{function} \\ c_1 = 1 \ c_2 = 1 \\ & \text{i} + \text{i}^2 \\ \\ \text{M} = 13; \\ & \text{int hash (Key k, int M) } \{ \\ & \text{int h} = 0, \text{ base} = 127; \\ & \text{for (; *k != '\0'; k++)} \\ & \text{h} = (\text{base * h} + \text{*k}) \% \text{ M;} \\ & \text{return h;} \\ \\ \end{array}$

$$\alpha = 6/13 < \frac{1}{2}$$

$$A E R C N P$$

 $h(k) = 0 4 4 2 0 2$

start =
$$h('R')$$
 = 82 % 13 = 4 collision
index = $(4+1+1^2)$ % 13 = 6

$$A E R C N P$$

 $h(k) = 0 4 4 2 0 2$

start =
$$h('N') = 78 \% 13 = 0$$
 collision
index = $(0+1+1^2) \% 13 = 2$ collision
index = $(0+2+2^2) \% 13 = 6$ collision
index = $(0+3+3^2) \% 13 = 12$

$$A E R C N P$$

 $h(k) = 0 4 4 2 0 2$

start =
$$h('P') = 80 \% 13 = 2$$
 collision
index = $(2+1+1^2) \% 13 = 4$ collision
index = $(2+2+2^2) \% 13 = 8$

A S E R C H I N G X M P
$$h_1(k)=0$$
 5 4 4 2 7 8 0 6 10 12 2

$$i = h('R') = 82 \% 13 = 4$$
 collision
 $j = (82 \% 97 + 1) \% 13) = 5$
 $i = (4 + 5) \% 13 = 9$

	0	Α	0	Α		0	Α
	1 2 2	С	1 2 3 4 5 H 6	С		1 2 2	С
	2 3 4 5 6	E S	4	E S		2 3 4 5 6	E S
С		5		5	I		5
	7 8 9	1	7 8 9			7 8 9	I
	10	R	10	R		10	R
	11 12		11 12			11 12	

A S E R C H I N G X M P
$$h_1(k)=0$$
 5 4 4 2 7 8 0 6 10 12 2

$$i = h('N') = 78 \% 13 = 0$$
 collision
 $j = (78 \% 97 + 1) \% 13) = 1$
 $i = (0 + 1) \% 13 = 1$

G	0 1 2 3 4 5 6 7 8 9 10	A N C E S G H I R	X	0 1 2 3 4 5 6 7 8 9 10	A N C E S G H I R	M	0 1 2 3 4 5 6 7 8 9 10 11	A N C E S G H I R	
	12		1	12			12	M	

A S E R C H I N G X M P
$$h_1(k)=0$$
 5 4 4 2 7 8 0 6 10 12 2

$$i = h('P') = 80 \% 13 = 2$$
 collision
 $j = (80 \% 97 + 1) \% 13) = 3$
 $i = (2 + 3) \% 13 = 5$ collision
 $i = (5 + 3) \% 13 = 8$ collision
 $i = (8 + 3) \% 13 = 11$

Tree vs Hash Table Comparison

- Hash Table
 - Easier to implement
 - Unique solution with keys without an ordering relation
 - Faster for simple keys
- Trees (BST and variants)
 - Better average performances (balanced trees)
 - Allow operations on keys with an ordering relation