РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2

Дисциплина: Интеллектуальный анализ данных

Студент: Ким Реачна

Группа: НПИбд-01-20

Москва 2023

Вариант № 14

Для закрепленного за Вами варианта лабораторной работы:

1. При помощи модуля sqlite3 откройте базу данных Instacart в файле instacart.db.

In [1]:

```
import numpy as np
import pandas as pd
import sqlite3
from mlxtend.preprocessing import TransactionEncoder
import itertools
import warnings

warnings.filterwarnings("ignore")
conn = sqlite3.connect('instacart.db')
```

2. Загрузите таблицы departments и products в датафреймы Pandas. При помощи запроса SELECT извлеките из таблицы order_products__train записи, соответствующие указанным в индивидуальном задании дню недели (поле order_dow таблицы orders) и коду департамента (поле department id таблицы products) и загрузите в датафрейм Pandas. Определите

количество строк в полученном датафрейме, количество транзакций (покупок) и определите количество товаров (столбен product id) в транзакциях датафрейма

In [2]:

```
data1 = pd.read_sql_query("SELECT * FROM departments", conn)
data2 = pd.read_sql_query("SELECT * FROM products", conn)
```

In [3]:

data1.head()

Out[3]:

	department_id	department
0	1	frozen
1	2	other
2	3	bakery
3	4	produce
4	5	alcohol

In [4]:

data2.head()

Out[4]:

	product_id	product_name	aisle_id	department_id
0	1	Chocolate Sandwich Cookies	61	19
1	2	All-Seasons Salt	104	13
2	3	Robust Golden Unsweetened Oolong Tea	94	7
3	4	Smart Ones Classic Favorites Mini Rigatoni Wit	38	1
4	5	Green Chile Anytime Sauce	5	13

In [5]:

```
data = pd.read_sql_query(
SELECT
 opt.order_id,
 opt.product_id,
 add_to_cart_order,
 reordered,
 product_name,
 order_hour_of_day
 order_products__train as opt,
 orders as ord,
 products as pr
WHERE
 ord.order_id = opt.order_id
 AND pr.product_id = opt.product_id
 AND ord.order_dow = 4
 AND pr.department_id = 5
 """, conn)
```

In [6]:

```
data.head()
```

Out[6]:

	order_id	product_id	add_to_cart_order	reordered	product_name	order_hour_of_day
0	877974	1808	1	0	Champagne	11
1	1859940	15511	1	1	Draft Sake	17
2	3409264	2120	3	1	Sauvignon Blanc	80
3	1881604	10607	6	1	Prosecco	12
4	1881604	29509	2	1	80 Vodka Holiday Edition	12
4						•

In [7]:

len(data)

Out[7]:

958

```
In [8]:
data.order_id.unique().shape
Out[8]:
(455,)
In [9]:
len(data['product_id'].unique())
Out[9]:
314
```

3. Выполните к датафрейму запрос, указанный в индивидуальном задании.

In [10]:

```
hourly_order_counts = data.groupby('order_hour_of_day')['order_id'].nunique()
hour_with_most_orders = hourly_order_counts.idxmax()
hour_with_most_orders
```

Out[10]:

'13'

4. Постройте транзакционную базу данных из полученного датафрейма, используя в качестве идентификатора транзакции столбец order_id, а в качестве названий товаров - поле product_name из датафрейма для таблицы products, соответствующее столбцу product_id. Найдите в транзакционной базе данных транзакцию с наибольшим количеством товаров и выведите ее на экран.

```
In [11]:
```

```
dataset = data.groupby('order_id')['product_name'].apply(list).to_dict()
dict(itertools.islice(dataset.items(), 10))
data[['order_id', 'product_name']].groupby('order_id')['product_name'].count().sort_
Out[11]:
order_id
2253479
           13
762757
           11
1969586
           10
1463512
           10
2529473
           10
           . .
2764641
            1
2760266
            1
1423906
            1
2750744
            1
997158
            1
Name: product_name, Length: 455, dtype: int64
In [12]:
for key, group in data[['order_id', 'product_name']].groupby(['order_id']):
    if key == '2253479':
        print('**', key, '**')
        print(group)
        print('-'*9)
** 2253479 **
    order_id
                                  product_name
942 2253479
                             Westfalia Red Ale
943
    2253479
                    Little Sumpin' Sumpin' Ale
944 2253479
                                  Belgium Beer
945 2253479
                         Mighty Dry Hard Cider
                       Belgian White Wheat Ale
946 2253479
947
    2253479
                  Crisp Hard Cider Crisp Apple
948 2253479
                            Cabernet Sauvignon
949 2253479
                  Scrimshaw Pilsner Style Beer
950 2253479
                                        Merlot
951 2253479
                       Day Time Fractional IPA
952 2253479
                        90 Minute Imperial Ipa
              Red Wine, Dark, California, 2013
953 2253479
954 2253479
                                  Villager Ipa
```

5. Постройте по транзакционной базе данных бинарную базу данных в формате датафрейма пакета mlxtend. По бинарной базе данных определите три наиболее популярных товара и определите количество покупок (транзакций) этих товаров.

In [13]:

```
te = TransactionEncoder()
dataset_bin = te.fit([i for i in dataset.values()]).transform([i for i in dataset.va
df = pd.DataFrame(dataset_bin, columns=te.columns_, index=[i for i in dataset.keys()
df.head()
```

Out[13]:

	12 Oz Beer	12 Oz Lager	12 Year Old Single Malt Scotch Speyside	1664	312 Urban Wheat	312 Urban Wheat Ale	46 / 94 Proof Bourbon Kentucky Whiskey	60 Minute IPA	80 Vodka Holiday Edition	80
1007120	True	True	False	False	False	False	False	False	False	Fals
1007997	False	False	False	False	False	False	False	False	False	Fals
1009684	False	False	False	False	False	False	False	False	False	Fals
1009730	False	False	False	False	False	False	False	False	False	Fals
1014150	False	False	False	False	False	False	False	False	False	Fals
5 rows × 314 columns										

In [14]:

```
df1 = []
for i in df.columns:
    df1.append((df[i]==True).sum())
pd.Series(df1,index=df.columns).sort_values(ascending=False)[:3]
```

Out[14]:

Beer 45 Cabernet Sauvignon 43 Sauvignon Blanc 38

dtype: int64

6. При помощи указанного в индивидуальном задании метода построения популярных наборов предметов постройте популярный набор предметов с минимальной поддержкой не менее 3, имеющий максимальную длину. При отсутствии таких наборов уменьшите поддержку до 2. В случае нехватки вычислительных ресурсов (слишком долгой работы программы) при построении популярных наборов предметов сокращайте число записей в наборе данных (например, делая выборку половины записей набора).

In [19]:

```
from mlxtend.frequent_patterns import fpmax
itemsets = fpmax(df, min_support=2/df.shape[0],use_colnames=True)
itemsets
```

Out[19]:

	support	itemsets
0	0.017582	(Prosecco)
1	0.008791	(India Pale Ale Racer 5)
2	0.006593	(Fresh Squeezed IPA)
3	0.006593	(12 Oz Lager)
4	0.006593	(Ksa Ko?Lsch Style Ale)
298	0.004396	(Scrimshaw Pilsner Style Beer, Little Sumpin'
299	0.004396	(Scrimshaw Pilsner Style Beer, Crisp Hard Cide
300	0.004396	(Extra Beer Bottles, Belgian Style Wheat Ale)
301	0.004396	(312 Urban Wheat, Belgian Style Wheat Ale)
302	0.004396	(Ale, Amber, Beer)

303 rows × 2 columns

7. Используя пакет mlxtend или реализацию на Python, постройте набор ассоциативных правил для полученного популярного наборов предметов. Используйте уровень достоверности (confidence), равный 0.65.

In [20]:

from mlxtend.frequent_patterns import association_rules

data = association_rules(itemsets, metric="confidence", min_threshold=0.65)
 data.head(10)

Out[20]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
0	(Fresh Squeezed IPA)	(Sauvignon Blanc)	0.006593	0.083516	0.004396	0.666667	7.982456
1	(Cabernet Sauvignon, India Pale Ale)	(Pinot Noir Wine)	0.006593	0.021978	0.004396	0.666667	30.333333
2	(Cabernet Sauvignon, Pinot Noir Wine)	(India Pale Ale)	0.006593	0.068132	0.004396	0.666667	9.784946
3	(India Pale Ale, Pinot Noir Wine)	(Cabernet Sauvignon)	0.006593	0.094505	0.004396	0.666667	7.054264
4	(Belgian White Wheat Ale, India Pale Ale)	(Beer)	0.004396	0.098901	0.004396	1.000000	10.111111
5	(Bitters Liqueur)	(Ale, India Pale, Brew Free! Or Die IPA)	0.006593	0.010989	0.004396	0.666667	60.666667
6	(Cabernet Sauvignon, India Pale Ale)	(Little Sumpin' Sumpin' Ale)	0.006593	0.021978	0.004396	0.666667	30.333333
7	(Little Sumpin' Sumpin' Ale, India Pale Ale)	(Cabernet Sauvignon)	0.006593	0.094505	0.004396	0.666667	7.054264
8	(Little Sumpin' Sumpin' Ale, India Pale Ale)	(Beer)	0.006593	0.098901	0.004396	0.666667	6.740741
9	(Little Sumpin' Sumpin' Ale, Beer)	(India Pale Ale)	0.004396	0.068132	0.004396	1.000000	14.677419
4							•

8. Для построенного набора ассоциативных правил вычислите показатель (меру) оценки ассоциативных правил, указанную в индивидуальном задании, и определите ассоциативные правила с наилучшим значением показателя оценки.

In [22]:

data.sort_values('leverage', ascending=False)[['antecedents','consequents', 'leverage']

Out[22]:

	antecedents	consequents	leverage
429	(Cabernet Sauvignon Sonoma County)	(Cabernet Sauvignon)	0.005970
295	(Variety Pack Hard Cider, Little Sumpin' Sumpi	(Cabernet Sauvignon, Premium Belgian Lager, Pi	0.004376
159	(Variety Pack Hard Cider, Little Sumpin' Sumpi	(Premium Belgian Lager, Pinot Noir Wine)	0.004376
157	(Variety Pack Hard Cider, Premium Belgian Lager)	(Little Sumpin' Sumpin' Ale, Pinot Noir Wine)	0.004376
303	(Cabernet Sauvignon, India Pale Ale, Pinot Noi	(Little Sumpin' Sumpin' Ale, Premium Belgian L	0.004376
7	(Little Sumpin' Sumpin' Ale, India Pale Ale)	(Cabernet Sauvignon)	0.003772
3	(India Pale Ale, Pinot Noir Wine)	(Cabernet Sauvignon)	0.003772
37	(Belgian White Beer)	(Beer)	0.003744
8	(Little Sumpin' Sumpin' Ale, India Pale Ale)	(Beer)	0.003744
436	(Ale, Amber)	(Beer)	0.003744

437 rows × 3 columns