Формулы Атомной физики		
Название	Формула	Обозначения
Закон радиоактивного распада	$N = N_0 2^{-\frac{t}{T}}$	$N-$ число оставшихся ядер N_0- начальное число ядер $t-$ время $T-$ период полураспада
Среднее время жизни ядер	t ≈ 1,4T	t — среднее время жизни,T — период полураспада.
Активность ядер	$A=\frac{N}{1,44T}$	 А — активность ядер, N — число ядер, Т — период полураспада.
Правило смещения для α, β- распада	${}_{z}^{A}X \rightarrow {}_{z-2}^{A-4}Y + {}_{2}^{4}He$ ${}_{z}^{A}X \rightarrow {}_{z+1}^{A}Y + {}_{-1}^{0}e$	X — ядро, претерпевающее распад, Y — образующееся ядро, He — α — частица (ядро атома гелия), e — β -частица (электрон).
Дефект масс	$\Delta m = z m_{1H}^1 + (A - z) m_n - m_a$	Δm — дефект масс z — зарядовое число (число протонов) A — массовое число m_{1H}^1 — масса атома водорода(1H1) m_n — масса нейтрона m_a — масса атома
Энергия связи ядра, удельная энергия связи	$m{E}_{ ext{ iny CB}} = \Delta m{m} m{c}^2$ $m{E}_{ ext{ iny YA}} = rac{m{E}_{ ext{ iny CB}}}{m{A}}$	$E_{\scriptscriptstyle{\text{CB}}}$ — энергия связи $E_{\scriptscriptstyle{\text{УД}}}$ — удельная энергия связи Δm — дефект масс A — массовое число (число нуклонов в ядре) c^2 — коэффициент пропорциональности массы и энергии
Энергетический выход реакции	$E_{ ext{BbIX}} = E_{ ext{CB1}} + E_{ ext{CB2}} - (E_{ ext{CB3}} + E_{ ext{CB4}})$ $E_{ ext{BbIX}} = (m_{a1} + m_{a2} - m_{a3} - m_{a4})c^2$	$E_{\scriptscriptstyle m BЫX}$ — энергетический выход $E_{\scriptscriptstyle m CB}$ — (1 и 2) — энергия связи вступивших в реакцию ядер $E_{\scriptscriptstyle m CB}$ — (3 и 4) — энергия связи образовавшихся в реакции ядер

		m_a — (1 и 2) массы атомов, вступивших в реакцию m_a — (3 и 4) массы атомов, образовавшихся в реакции c^2 — коэффициент пропорциональности массы и энергии
Уравнения реакций	$z_{1}^{A1}X + z_{2}^{A2}Y \rightarrow z_{3}^{A3}Q + z_{2}^{A4}W$ $z_{1} + z_{2} = z_{3} + z_{4}$ $A_{1} + A_{2} = A_{3} + A_{4}$	X,Y — вступившие в реакцию ядра, частицы Q,W — образовавшиеся в реакции ядра, частицы z_i — зарядовые числа (число протонов) A_i — массовые числа (число нуклонов)
Поглощенная доза излучения	$D=\frac{E}{m}$	 D — поглощенная доза излучения E — поглощенная энергия m — масса облучаемого вещества