Announcements

- HW2 due Monday
- Lab 2 write-up due Monday as well
- Quick turn-around before the next lab, as it will also be Monday
 - · Simulating odds in R
 - Write-up won't be due till the following Monday though to be clear
- Read Ch 5.1 for Wednesday

Warm Up

Determine the inner quartile range for the below sequence of numbers.

2, 3, 6, 8, 12, 23, 43, 44, 67

- A) 12
- B) 15
- C) 37
- D) 41

Warm Up

Determine the inner quartile range for the below sequence of numbers.

2, 3, 6, 8, 12, 23, 43, 44, 67

- A) 12
- B) 15
- C) 37
- D) 41

Disjoint Outcomes

Disjoint outcomes: Can not happen at the same time. Said to be "mutually exclusive".

- A single coin toss can not be a head and a tail
- A student can not pass and fail a class
- A single card from a deck can not be both Ace and King

Conversely, *non-disjoint outcomes* can happen at the same time.

Adding joints

If you want the odds of one disjoint outcome occurring *or* another disjoint outcome happening, the probabilities add.

$$P(A \text{ or } B) = P(A) + P(B)$$

Adding joints

If you want the odds of one disjoint outcome occurring *or* another disjoint outcome happening, the probabilities add.

$$P(A \text{ or } B) = P(A) + P(B)$$

What are the odds of drawing either a Jack or a 3 from a full deck of cards?

Adding joints

If you want the odds of one disjoint outcome occurring *or* another disjoint outcome happening, the probabilities add.

$$P(A \text{ or } B) = P(A) + P(B)$$

What are the odds of drawing either a Jack or a 3 from a full deck of cards?

$$P(\text{Jack or 3}) = P(\text{Jack}) + P(3) = \frac{4}{52} + \frac{4}{52} = 0.154$$

4

Non-Disjoint Event Probabilities

What is the probability of drawing a jack or a red card from a well shuffled full deck?

Non-Disjoint Event Probabilities

What is the probability of drawing a jack or a red card from a well shuffled full deck?

Non-Disjoint Event Probabilities

What is the probability of drawing a jack or a red card from a well shuffled full deck?

General Addition Rule

We need to subtract off some values to keep from double counting. The result is the *General Addition Rule*:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

General Addition Rule

We need to subtract off some values to keep from double counting. The result is the *General Addition Rule*:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

The probability of drawing a Jack or a red card?

$$P(\text{Jack or Red}) = \frac{4}{52} + \frac{26}{52} - \frac{2}{52} = 0.538$$

Practice

What is the probability that a randomly sampled student thinks marijuana should be legalized or they agree with their parents political views?

A)
$$\frac{40 + 36 - 78}{165}$$

B)
$$\frac{114 + 118 - 78}{165}$$

C) $\frac{78}{165}$

D)
$$\frac{78}{188}$$

	Share Parents' Politics		
Legalize MJ	No	Yes	Total
No	11	40	51
Yes	36	78	114
Total	47	118	165

Practice

What is the probability that a randomly sampled student thinks marijuana should be legalized or they agree with their parents political views?

A)
$$\frac{40 + 36 - 78}{165}$$
B)
$$\frac{114 + 118 - 78}{165}$$

C	70
C)	165
	78

D) $\frac{78}{188}$

	Share Parents' Politics		
Legalize MJ	No	Yes	Total
No	11	40	51
Yes	36	78	114
Total	47	118	165

Venn and the Art of Motorcycle Riding

Using Venn diagrams can also be an effective way to convey information about disjoint (on non-disjoint) data.

Distributing Probabilities

A *probability distribution* lists all possible events and the probabilites with which they occur.

• The probability distribution for the gender of one child:

Event	Male	Female
Probability	0.5	0.5

- Probability distributions have rules:
 - 1. Events listed must be disjoint
 - 2. Each probability must be between 0 and 1
 - 3. Adding all probabilities must total to 1

Color	Probability
Red	
Green	
Orange	
Purple	
Yellow	

Color	Probability
Red	0.368
Green	
Orange	
Purple	
Yellow	

Color	Probability
Red	0.368
Green	0.263
Orange	
Purple	
Yellow	

Color	Probability
Red	0.368
Green	0.263
Orange	0.158
Purple	
Yellow	

Color	Probability
Red	0.368
Green	0.263
Orange	0.158
Purple	0.158
Yellow	

Color	Probability
Red	0.368
Green	0.263
Orange	0.158
Purple	0.158
Yellow	0.053

A *sample space* is the collection of all possible outcomes of a trial.

• What is the sample space for the colors of my skittles?

A *sample space* is the collection of all possible outcomes of a trial.

• What is the sample space for the colors of my skittles?

 $S = \{ \text{Red, Green, Orange, Purple, Yellow} \}$

A *sample space* is the collection of all possible outcomes of a trial.

What is the sample space for the colors of my skittles?

$$S = \{ Red, Green, Orange, Purple, Yellow \}$$

Complementary events are two disjoint events whose probabilities add up to 1.

Consider the skittles sample space of if the color starts with a vowel:

$$S = \{Vowel, Non-vowel\}$$

These two events are complementary.

A *sample space* is the collection of all possible outcomes of a trial.

What is the sample space for the colors of my skittles?

$$S = \{Red, Green, Orange, Purple, Yellow\}$$

Complementary events are two disjoint events whose probabilities add up to 1.

Consider the skittles sample space of if the color starts with a vowel:

$$S = \{Vowel, Non-vowel\}$$

These two events are complementary.

• Looking at all the colors, the event: "Draw a red skittle" is complementary to the event "Draw anything but a red skittle".

Practice

In a survey, 52% of respondents said they are Democrats. What is the probability that a randomly selected respondent from this sample is a Republican?

- A) 0.48
- B) more than 0.48
- C) less than 0.48
- D) can not calculate using information given

Independence

Two processes are *independent* if knowing the outcome of one provides no useful information about the outcome of the other.

- Knowing that a coin landed on heads on the first flip does not provide any useful information determining what the coin will land on in the second toss
- Knowing someone's eye color does not provide any useful information about their age
- But drawing an ace from a deck of cards does effect the odds of drawing a jack on the second draw (assuming you don't replace the ace)

Multiplication Rule

If A and B represent events from two independent processes, then

$$P(A \text{ and } B) = P(A) \times P(B)$$

Or if you have multiple independent events,

$$P(A \text{ and } B \text{ and } C) = P(A) \times P(B) \times P(C)$$

Example

In my bag of skittles from earlier, assume I draw three skittles, <u>replacing each back into</u> <u>the bag after each draw</u>. What is the probability that I draw a red, green, and an orange skittle?

Example

In my bag of skittles from earlier, assume I draw three skittles, <u>replacing each back into</u> <u>the bag after each draw</u>. What is the probability that I draw a red, green, and an orange skittle?

$$P(\text{red and green and orange}) = P(\text{red}) \times P(\text{green}) \times P(\text{orange})$$

$$= 0.368 \times 0.263 \times 0.158$$

$$= 0.015$$