Fizinis lygis

Fizinis lygis

Taikomasis lygis Taikomasis lygis **Transporto lygis Transporto lygis** Tinklo lygis Tinklo lygis Kanalinis lygis Kanalinis lygis Fizinis lygis Fizinis lygis

Fizinis lygis

- Tikslai:
 - Sukurti mazgas-su-mazgu susijungimą;
 - Perduoti bitų srautą:
 - Teisingai "suprasti" iš kanalo gaunamus duomenis;
- Komunikuoja:
 - Tinklo adapteriai;
 - Techninė dalis ar programinė dalis?
- Įranga kuria galima pasinaudoti sutrikimams aptikti.

Paskaitos tiklai

- Duomenų perdavimo pagrindai
- Fizinės duomenų perdavimo terpės:
 - Laidinės terpės:
 - Variniai kabeliai;
 - Šviesolaidiniai kabeliai;
 - Belaidės terpės:
 - Antžeminiai bevieliai tinklai;
 - Palydovinis ryšys;
 - Kitos terpės;
- Funkcionavimo principai;

Duomenų perdavimas

- Magnetiniai nešėjai
 - Dėžė (50x50x50), pilna juostų po ~2 TB
 - Pristatymas per 24h (86400s)
 - Greitis ~1,8 Tbps
 - Kaina ~7 ct už 1TB

Sąvokos

- Dažnis matas reiškiantis ciklų per sekundę kiekį.
- Kanalo pralaidumas maksimalus greitis kuriuo kanalas sugeba perduoti duomenis;
- Juostos plotis (angl. *bandwidth*) skirtumas tarp aukščiausio ir žemiausio dažnių, kuriais perduodama informacija.

Perdavimo terpės

- Fizinės terpės charakteristikos
 - Duomenų perdavimo sparta
 - Užlaikymas (angl. *delay*)
 - Silpnėjimas (angl. attenuation)
 - Kaina
 - Instaliacijos paprastumas
 - Aptarnavimo kaštai

Duomenų perdavimo pagrindai

- Diskretūs ir tolydūs signalai
- Pagrindinės juostos savybės:
 - duomenų perdavimo greitis;
 - triukšmo lygis;
 - klaidų tikimybė perdavimo metu;

Signalai

Triukšmas kanale

- Pagrindinė duomenų perdavimo problema signalo iškraipymas perdavimo metu
- Triukšmo atsiradimo priežastys:
 - Kitų signalų įsiterpimas (angl. crosstalk);
 - Netinkamas laido ekrano įžeminimas;

Netinkama instaliacijos erdvė;

Triukšmas kanale

- Triukšmo poveikis skirtingiems dažniams yra skirtingas
- Signalo ir triukšmo santykis SNR (angl. *signal noise ratio*) aprašomas kaip signalo ir triukšmo galios santykis. Dar žymimas tiesiog S/N
- Logaritminė išraiška paskaičiuojama pagal formulę:

$$SNR_{db} = 10 \log_{10}\left(\frac{S}{N}\right)$$

Ryšys tarp kanalo pralaidumo ir juostos pločio

• 1924 m. Naikvistas (*Nyquist*) nustatė ryšį tarp pralaidumo ir juostos pločio Naikvisto teorema:

$$V = 2H \log_2 M$$

V – kanalo pralaidumas (b/s)

H – kanalo juostos plotis (Hz)

M – vienu metu perduodamos informacijos kiekis (b)

Maksimalus kanalo pralaidumas esant triukšmui

• Kanalui su termodinaminiu triukšmu naudojama Šenono (*Shannon*) teorema:

$$C = H \log_2(1 + \frac{S}{N})$$

C – kanalo pralaidumas (b/s)

H – kanalo juostos plotis (Hz)

S/N – signalo triukšmo santykis (b)

Variniai kabeliai

Variniai kabeliai

- Varis. Kodėl?
- Kabelių tipai

Elektromagnetinės perdavimo terpės

Laidininkų savybės

- Fizikinės laidininkų savybės:
 - Svoris
 - Varža
 - Signalo greitis
 - Kitos savybės:
 - Lankstumas
 - Tamprumas

Fizikinės laidininkų savybės

• Laidininko svorį galima pasiskaičiuoti žinant jo tūrį ir medžiagos tankį:

$$m = \rho *V$$

ρ – medžiagos tankis (kg/m³)

V – medžiagos tūris (m³)

m – medžiagos masė (kg)

Medžiaga	Tankis	Medžiaga	Tankis
Aliuminis	2700	Varis	8960
Auksas	19300	Volframas	19300
Geležis	7870	Silicis	2330
Osmis	22570	Žalvaris	8500

Fizikinės laidininkų savybės

 Laidininko varža gaunama žinant jo skerspjūvio plotą ir savitąją varžą

$$R = l \frac{\rho}{S}$$

 $R - \text{varža}(\Omega)$
 $\rho - \text{laidininko savitoji varža}(\Omega)$
 $S - \text{laidininko skerspjūvio plotas}(m^2)$
 $l - \text{laidininko ilgis}(m)$

 Įtampos kritimą (silpnėjimą) gaunamas remiantis Omo dėsniu:

$$U = IR$$

$$R - varža (\Omega)$$

$$U - itampa (V)$$

$$I - srovės stipris (A)$$

Laidininkų savitos varžos

Laidininkas	Ω *mm ² /m	Laidininkas	Ω^* mm 2 /m
Aliuminis	0.028	Nikelis	0.087
Auksas	0.024	Osmis	0.095
Cinkas	0.06	Platina	0.1
Geležis	0.10	Plienas	0.12
Gyvsidabris	0.96	Sidabras	0.016
Grafitas	13.0	Švinas	0.21
Varis	0.017	Žalvaris	0.071

Signalo greitis

- Signalo greitis
 - Matuojamas m/s
 - Varyje nuo 0.59c iki 0.77c

Varinių kabelių tipai

- Koksialinis kabelis
- Vyta pora

Koksialinis kabelis

- Koksialinis kabelis sudarytas iš dviejų kontaktų: šerdies ir ekrano
- Šerdies skersmuo 0.1mm-13mm
- Plačiai naudojamas
- Jungtys

Sandara

- Šerdis varinė arba varis dengtas sidabru
- Vidinis apvalkalas
- Ekranas
- Išorinė danga

Vyta pora

- Poromis susukti laidai
- Sukuriamas ekranas (elektromagnetinis laukas)
- Gijos skersmuo 0.511mm (plotas 0.205mm²)
- Tankesnis vijų kiekis patikimesnis magnetinis laukas didesnis dažnis
- Skirtingi tipai ir kategorijos
 - Neekranuotos poros
 - Ekranuotos poros
- Dažnai naudojamos jungtys 8P8C

Vyta pora

(a) Cat3 UTP (16MHz).

(b) Cat5 UTP (100 MHz).

Neekranuota vyta pora

- UTP (angl. *Unshielded Twisted Pair*)
 - Visos poros neekranuotos
 - Dengia išorinis apvalkalas

Ekranuota vyta pora

- FTP (angl . Foiled Twisted Pair)
 - Visos poros dalinasi bendru ekranu: aliuminio folija
- ScTP (angl. Screened Twisted Pair)
 - Kiekviena pora yra ekranuojama atskirai
- Kabelis turi būti įžemintas galuose

Vytos poros kategorijos

Kategorija	Maksimalus	Naudojamas	
	dažnis (MHz)		
Level 1	0.4	Telefonų ir modemų linijos	
Level 2	4	Senos terminalų sistemos	
Cat3	16	10Base-T Ethernet	
Cat4	20	16 MBps Token Ring	
Cat5	100	100Base-TX ir 1000Base-T Ethernet	
Cat5e	100	100Base-TX ir 1000Base-T Ethernet	
Cat6	250	10GBase-T Ethernet	
Cat6a	500	10GBase-T Ethernet	
ClassF	600	1000Base-TX ir 10GBase-T Ethernet	
ClassFa	1000	1000Base-TX ir 10GBase-T Ethernet	

Šviesolaidinis Ryšys

Optiniai kabeliai

- Veikimo principas
- Schema
- Sandara
- Optinių kabelių tipai
 - Vienamodis (angl. Singlemode)
 - Daugiamodis (angl. Multimode)
- Optinio signalo silpnėjimas

Sąvokos

• Bangos ilgis:

$$\lambda = \frac{v}{f}$$

Veikimo principas

Snelio – Dekarto šviesos lūžio dėsnis

$$n_{I}\sin\varphi=n_{2}\sin\varphi^{*}$$

- Kritinis kampas
- Šviesos lūžių rodikliai:

Aplinka	Rodiklis	Aplinka	Rodiklis
Acetonas	1,36	Oras	1,0
Alkoholis	1,33	Ledas	1,31
Benzinas	1,40	Rubinas	1,76
Cukrus	1,56	Stiklas	1,60
Deimantas	2,42	Vanduo	1,33
Silicio dioksidas	1,54	Kvarcas	1.54

Veikimo principas

Šviesolaidžio principas

Optinio kabelio sandara

• Šerdis – stiklo pluoštas

• Vidinis apvalkalas (angl. cladding)

• Buferis

• Išorinis apvalkalas

Vienmodis šviesolaidis

- Šerdies skersmuo 8-10μm
- Bangos ilgis 1.31μm ir 1.55μm
- Vienu metu siunčiamas vienas šviesos signalas
- Naudojamas lazeris

Daugiamodis šviesolaidis

- Šerdies skersmuo 50-100μm
- Bangos ilgis 0.85μm ir 1.3μm
- Vienu metu gali būti siunčiami keli šviesos signalai, nukreipiant juos skirtingais kampais.

Topologija

- Taškas su tašku
- Žvaigždinė
- Žiedas

Topologija

Šviesos signalo susilpnėjimas

• Susilpnėjimas paskaičiuojamas pagal:

$$A = 10 \log_{10} \left(\frac{P_{\text{siuntimo}}}{P_{\text{gavimo}}} \right)$$

Signalo silpnėjimas optiniuose kabeliuose

Optinis kabelis

	LED	Lazeris
Perdavimo greitis	Mažas	Didelis
Šviesolaidžio tipas	Daugiamodis	Daugiamodis ir vienmodis
Atstumas	Trumpas	Ilgas
Tarnavimo laikas	Ilgas	Trumpas
Kaina	Maža	Didelė

Varinio ir optinio kabelių palyginimas

- Optinis kabelis leidžia perduoti signalą didesniu atstumu be signalo stiprinimo (nuo 30 km ir 5 km varinis)
- Optinis kabelis plonesnis
- Optinis kabelis lengvesnis
- Optinį kabelį sunkiau aptikti nes nėra magnetinio spinduliavimo

Varinio ir optinio kabelių palyginimas

- Optinis kabelis atsparus elektromagnetinėms atakoms, radiacijai, maitinimo sutrikimams
- Optinį kabelį sunkiau instaliuoti
- Reikalingas specialus inžinierių paruošimas optiniam kabeliui
- Prisijungti prie optinio kabelio brangiau nei prie varinio

Tipinis signalo susilpnėjimas

	Dažnių diapazonas	Tipinis susilpnėjimas	Tipinis vėlavimas	Atstumas tarp kartotuvų
Vyta pora	0 - 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Vytos poros	0 – 1 MHz	3 dB/km @ 1 kHz	5 μs/km	2 km
Koksialinis kabelis	0 – 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 – 9 km
Optinis kabelis	180 – 370 THz	0.2 - 0.5 dB/km	5 μs/km	40 km

Bevielis ryšys

Bevielis ryšys

- Siųstuvas
- Imtuvas
- Antenos

Elektromagnetinis spektras

Radijo perdavimas

- Paprasta perduoti
- Lengva priimti
- Bangos gerai sklinda visom kryptim (General Motors problema)
- Žemo dažnio bangos gerai sklinda, tačiau reikalauja daug energijos
- Aukšto dažnio bangos labiau priklauso nuo reljefo, oro sąlygų. Netgi elektros prietaisai daro įtaką jų sklidimui

Susijungimo būdai

- Žeme sklindančiomis bangomis;
- Tiesioginėmis bangomis;
- Į jonosferą atsimušančiomis bangomis

Žeme sklindančios bangos

Tiesioginis matomumas

Jonosferinis susijungimas

Antenų tipai

- Daugiakryptės (angl. omni-directional)
- Kryptinės (angl. directional)

Daugiakryptės antenos

• Skirtos transliuoti bangas visomis kryptimis

Kryptinės antenos

- Koncentruoja bangas į vieną plotą
- Transliavimo kampas priklauso nuo antenos formos

WiFi standartai

Standartas	Dažnis (GHz)	Juostos plotis (MHz)	Sparta (Mbps)
_	2.4	20	1-2
а	5	20	6-54
b	2.4	20	1-11
g	2.4	20	6-54
n	2.4/5	20/40	7.2-150

Bangų diapazonų išskyrimo politika

- Kiekvienoje valstybėje savos taisyklės
 - Licencijuoti dažniai
 - Nelicencijuoti dažniai
- Lietuvos atveju:
 - http://62.212.198.174/efis/

Bevielis ryšys

- Bangų perdavimas (> 100MHz)
 - Gerai fokusuojam ir perduodami tiesine kryptimi
 - Problemos dėl reakcijos atmosferoje
 - Dažniams virš 8 GHz lietus taip pat problema
 - Geras eksploatavimas tam tikrom sąlygom (100m 80km)
 - Laisvai naudojami diapazonai 2400MHz 2484MHz

Bevielis ryšys

- Infraraudonosios ir milimetrinės bangos
 - Negali apeiti objekto
 - Nėra interferencijos
- Matomas spinduliavimas (lazeris)
 - Priklauso nuo atmosferos sąlygų

Matomas spinduliavimas

Palydovinis ryšys

Palydovinis ryšys

- Palydovinio ryšio veikimo principai
- Geostacionarūs palydovai
 - VSAT (Very Small Aperture Terminals) sistemos
- Vidutinės orbitos palydovų sistemos
- Žemos orbitos palydovų sistemos

Komunikavimo būdas

Žemės orbitų tipai

• Žemoji žemės orbita

• Vidutinioji žemės orbita

• Geosinchroninė orbita

• Aukštoji žemės orbita,

Žemoji žemės orbita

- LEO (angl. Lower Earth Orbit);
- Atstumas nuo žemės paviršiaus: iki 2000km;
- Vėlavimas: 1-7 ms;
- Periodas nuo 90min;
- Reikia bent 50 palydovų

Žemos orbitos palydovai

- Iridium 1990 Motorola
 - 77 palydovai 750 km aukštyje, 11 vienam meridianui
 - Ryšys tarp palydovų
 - 48 zonų kiekvienam palydovui, iš viso 1628
 - Perdavimas 1.6 GHz
- Globalstar
 - 48 palydovai 1400 km aukštyje
 - Ryšys tarp palydovų ir tarp žemės stočių

Vidutinioji žemės orbita

- MEO (angl. Medium Earth Orbit)
- Atstumas nuo žemės paviršiaus: nuo 2000km iki 35786km;
- Vėlavimas: 35-85ms;
- Orbitos periodas: 12h
- Teikiamos paslaugos:
 - Telekomunikacijų
 - Navigacijos
- Užtenka 10 palydovų

Geosinchroninė orbita

- GEO (angl. Geosynchronous Earth Orbit);
- Dar vadinama Geostacionariaja (angl. geostationary);
- Vėlavimas: 270ms;
- Užtenka trijų palydovų

VSAT

- Antenos diametras ~2m, signalo galingumas Wt
- Perdavimas ~19 Kbps, priėmimas 512 Kbps
- Palydovų jungiklis (hub)

Aukštoji žemės orbita

- HEO (angl. *High Earth Orbit*);
- Atstumas nuo žemės paviršiaus: virš 35786km;
- Vėlavimas virš 270ms;

Palydovinio ryšio dažnių pasiskirstymas

Pava-		IIšsiuntimo	Juostos	Problemos
dinimas	juosta	juosta	plotis	
	(GHz)	(GHz)	(MHz)	
L	1.5	1.6	15	Siaura juosta, apkrautas
S	1.9	2.2	70	Siaura juosta, apkrautas
C	4.0	6.0	500	Interferencija su žemėje
				naudojamais dažniais
Ku	11	14	500	Reikalauja idealių oro
				sąlygų
Ka	20	30	3500	Reikalauja idealių oro
				salygų, brangi įranga

Palydovinių sistemų ypatumai

- Didelis greitis bet didelis užlaikymas
- Broadcast tipo perdavimas kaina vs. saugumas
- Kaina nepriklauso nuo atstumo
- Mažas klaidų koeficientas perdavimo metu
- Dažniams didesniems nei 8GHz net ir lietus daro įtaką

Palydovinis ryšys vs. optinis

- Optinio ryšio linijos turi didelį pralaidumą, tačiau jis yra dalinamas
- Vartotojams, kuriems reikia didelio pralaidumo, reikia iš anksto rezervuoti kanalą, o palydovas prieinamas beveik visada
- Mobilumas ryšys reikalingas visur
- Broadcast tipui palydovinis ryšys geriausias sprendimas
- Palydovinis ryšys nepakeičiamas, kur geografinės savybės neleidžia sukurti kabelinės infrastruktūros

Kitos terpės

Klausimai?