Geometry of Quiver Flag Varieties

Xiaoxiang Zhou

Advisor: Prof. Dr. Catharina Stroppel Second Advisor: Dr. Jens Niklas Eberhardt

Universität Bonn

January 23, 2023

Introduction

Year	People	Cohomology theory	Algebra
1980	Kazhdan–Lusztig	$\mathbb{C}[W]$	$H_*^{\mathrm{BM}}(\mathcal{Z})$
1985	Lusztig	$\mathcal{H}_q(W)$	$K^{G imes \mathbb{C}^{ imes}}(\mathcal{Z})$
2011	Varagnolo-Vasserot	KLR algebra	$H_{G_{\mathbf{d}}}^*(\mathcal{Z}_{\mathbf{d}})$

In the first part, we compute the G-equivariant K-theory of the Steinberg variety in the quiver version.

Xiaoxiang Zhou Bonn uni
Geometry of Quiver Flag Varieties

Variety structure

$$V_1 \longrightarrow V_2$$
 $\mathbf{d} = (\dim_{\mathbb{C}} V_1, \dim_{\mathbb{C}} V_2) \,\hat{=} (\mathbf{d}_1, \mathbf{d}_2)$

$$\mathcal{F}_{\mathbf{d}} = \big\{ \text{complete flags of } V_1 \oplus V_2 \text{ respect to the index} \big\}$$

$$\operatorname{Rep}_{\mathbf{d}}(Q) = \operatorname{Hom}_{\mathbb{C}}(V_1, V_2)$$

$$\operatorname{Flag}(M) := \mu_{\mathbf{d}}^{-1}(M) = \{(\operatorname{complete}) \text{ flags of } M\}$$

Stratification structure

$$\overline{\omega} \in \mathbb{W}_{|\mathbf{d}|} := S_{|\mathbf{d}|}, \quad G_{\mathbf{d}} := \mathrm{GL}_{\mathbf{d}_1} \times \mathrm{GL}_{\mathbf{d}_2}, \quad B_{\mathbf{d}}, T_{\mathbf{d}}.$$

$$\widetilde{\mathrm{Rep}}_{\mathbf{d}}(Q) = \bigsqcup_{\overline{\omega}} \widetilde{\Omega}_{\overline{\omega}} \qquad \qquad \mathcal{Z}_{\mathbf{d}} = \bigsqcup_{\overline{\omega}} \widetilde{\mathcal{O}}_{\overline{\omega}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{F}_{\mathbf{d}} = \bigsqcup_{\overline{\omega}} \Omega_{\overline{\omega}} \qquad \qquad \mathcal{F}_{\mathbf{d}} \times \mathcal{F}_{\mathbf{d}} = \bigsqcup_{\overline{\omega}} \mathcal{O}_{\overline{\omega}}$$

$$K^{G_{\mathbf{d}}}(\mathcal{Z}_{\mathbf{d}}) \cong \bigoplus_{\varpi} K^{G_{\mathbf{d}}} \left(\widetilde{\mathcal{O}}_{\varpi} \right)$$

$$\cong \bigoplus_{\varpi} K^{G_{\mathbf{d}}} \left(\mathcal{O}_{\varpi} \right)$$

$$\cong \bigoplus_{\varpi} K^{B_{\mathbf{d}}} \left(\Omega_{\varpi} \right)$$

$$\cong \bigoplus_{\varpi} K^{T_{\mathbf{d}}} \left(\Omega_{\varpi} \right)$$

$$\cong \bigoplus_{\varpi} R(T_{\mathbf{d}})$$

$$\mathcal{Z}_{\mathbf{d}} = \bigsqcup_{\varpi} \mathcal{O}_{\varpi}$$

$$\downarrow$$

$$\mathcal{F}_{\mathbf{d}} \times \mathcal{F}_{\mathbf{d}} = \bigsqcup_{\varpi} \mathcal{O}_{\varpi}$$

Cellular fibration theorem

Thom isomorphism

Induction isomorphism

Reduction isomorphism

Thom isomorphism

Main theorem

Theorem

Under the convolution product, $K^{G_{\mathbf{d}}}(\mathcal{Z}_{\mathbf{d}})$ has a $\mathrm{R}(T_{\mathbf{d}})$ -algebra structure. Moreover,

- (1) As an $R(T_d)$ -module, $K^{G_d}(\mathcal{Z}_d)$ is free of rank $|\mathbf{d}|$!;
- (2) As an $R(T_d)$ -algebra, we can write down generators and relations explicitly.

For proving (2), we mainly use the localization formula and the excess intersection formula.

Gaoxiang Zhou Bonn uni

Generators

•
$$\longrightarrow$$
 • , $\mathbf{d} = (3, 2)$, $u = \cdots$, $u \in \text{Min}(\mathbb{W}_{|\mathbf{d}|}, W_{\mathbf{d}})$.

Generators:

A typical element in $K^{G_{\mathbf{d}}}(\mathcal{Z}_{\mathbf{d}})$ is a \mathbb{Z} -linear combination of diagrams shown below:

Compositions and trivial relations

$$\begin{array}{c|c} & u' & & \\ & u' & & \\ & u'' * (e_3^{u'})^{-1} * D_2^{u',u''} * D_3^{u'',u''} \\ \end{array}$$

$$\begin{bmatrix} u' \\ u' \\ u \end{bmatrix} = \begin{bmatrix} u' \\ u \\ u \end{bmatrix}$$

$$D_3^{u,u'} * e_2^{u'} = e_2^u * D_3^{u,u'}$$

Nontrivial relations I

Same color: $(D_i^{u,u} \hat{=} D_i, e_i^u \hat{=} e_i)$

Nontrivial relations II

Different color:

Nontrivial relations III

Different color:

Kiaoxiang Zhou Bonn ur

Affine pavings

Theorem

For a Dynkin quiver Q and $M \in \operatorname{Rep}(Q)$, the **partial flag variety** of length d

$$\operatorname{Flag}_d(M) \colon = \{ F \colon 0 \subseteq N_1 \subseteq \dots \subseteq N_d \subseteq M \mid N_i \in \operatorname{Rep}(Q) \}$$

has an affine paving.

Roughly speaking, we decompose $\mathrm{Flag}_d(M)$ into several pieces, and each piece is an affine space.

- 4 ロ > 4 回 > 4 き > 4 き > - き - 4 9 0 0 0

Idea of affine pavings

Find a nice short exact sequence

$$0 \longrightarrow X \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} S \longrightarrow 0$$

which induces a nice morphism

$$\Psi : \operatorname{Flag}_d(M) \longrightarrow \operatorname{Flag}_d(X) \times \operatorname{Flag}_d(S)$$

$$F \longmapsto (\iota^{-1}(F), \pi(F))$$

We construct the affine paving of $\operatorname{Flag}_d(M)$ from the affine paving of $\operatorname{Flag}_d(X)$ and $\operatorname{Flag}_d(S)$. Then, we use mathematical induction.

(ロ) (部) (注) (注) (注) (2)

Further discussion

- Discuss the representation theory of $K^{G_{\mathbf{d}}}(\mathcal{Z}_{\mathbf{d}})$, and connect that with the geometry of $\mathrm{Flag}_d(M)$;
- Generalize the result of first part to partial flag varieties (by introducing merge and split);
- Understand Kazhdan-Lusztig isomorphism and its categorifications;
- Understand "KLR-algebra categorifies quantum groups".

Xiaoxiang Zhou Bonn uni