

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. Simone Warzel Dr. Michael Prähofer

Mathematik 3 für Physiker (Analysis 2) MA9203

Sommersemester 2015 Probeklausur (29.06.2015)

1. Krümmung einer Klothoide

(8 Punkte)

Zeigen Sie, dass die Krümmung $\kappa(t)$ der Kurve

$$\vec{r}(t) = \begin{pmatrix} \int_0^t \cos(u^2/2) \, \mathrm{d}u \\ \int_0^t \sin(u^2/2) \, \mathrm{d}u \end{pmatrix}$$

an der Stelle t > 0 gleich ihrer Länge L(t) ist.

HINWEIS: Die Krümmungsformel lautet $\kappa = |(\dot{x}\ddot{y} - \ddot{x}\dot{y})/(\dot{x}^2 + \dot{y}^2)^{3/2}|$, wobei $\vec{r} = \binom{x}{y}$.

2. Stetigkeit, Differenzierbarkeit

(7 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6}, & (x,y) \neq 0, \\ 0, & (x,y) = 0. \end{cases}$$

- (a) Beweisen Sie, dass f im Nullpunkt nicht stetig ist. Hinweis: Bestimmen Sie x_n , so dass $f(x_n, y_n)$ für $y_n = \frac{1}{n}$ konstant ist.
- (b) Die partielle Ableitung $\partial_1 f(0,0)$ ist
 - $\square -1$ $\square 0$ $\square \frac{1}{2}$ $\square 1$ \square nicht definiert.
- (c) Die partielle Ableitung $\partial_2 f(0,0)$ ist
 - $\Box -1$ $\Box 0$ $\Box \frac{1}{2}$ $\Box 1$ \Box nicht definiert.
- (d) Wie lautet die totale Ableitung von f im Nullpunkt?

$$\Box \quad Df(0) = \begin{pmatrix} 0 & 0 \end{pmatrix} \qquad \Box \ Df(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Box \ Df(0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 \square Df(0) ist nicht definiert \square Df(0) hängt von der betrachteten Kurve ab

3. Kurvenintegral und Integrabilität

(9 Punkte)

Gegeben sei das Vektorfeld $v: \mathbb{R}^3 \to \mathbb{R}^3$, $v(x) = (x_2x_3, x_3x_1, x_1x_2)$ und die Kurve $\gamma: [0, \pi] \to \mathbb{R}^3$, $\gamma(t) = (1, 1 + \cos t, 1 + \sin t)$.

- (a) Ist v konservativ? Begründen Sie.
- (b) Berechnen Sie das Kurvenintegral $\int_{\gamma} v(y) \cdot dy$.
- (c) Ist $\gamma((0,\pi))$ eine Untermannigfaltigkeit des \mathbb{R}^3 ? Wenn ja, welche Dimension hat sie?
 - \Box Ja, $\dim(\gamma((0,\pi))) =$

□ Nein.

4.	Kettenrege	
----	------------	--

(5 Punkte)

Seien $v, w \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ und $\gamma : \mathbb{R} \to \mathbb{R}^n$ eine differenzierbare Kurve. Beweisen Sie für alle $t \in \mathbb{R}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}v(\gamma(t))\cdot w(\gamma(t)) = \sum_{j=1}^{n} \left[w_j(\gamma(t))\nabla v_j(\gamma(t)) + v_j(\gamma(t))\nabla w_j(\gamma(t)) \right] \cdot \dot{\gamma}(t).$$

5. Extrema

(10 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = x_1^3 + x_2^2 - 3x_1 - 2x_2$.

- (a) Bestimmen und klassifizieren Sie die lokalen Extrema von f.
- (b) Unter der Nebenbedingung $x_2 = 1$ besitzt f bei $x_1 = -1$

□ ein lokales Maximum

 \square ein lokales Minimum

 \square einen Sattelpunkt bei $x_1 = -1$

6. Taylorpolynom

(8 Punkte)

Geben Sie das Taylorpolynom 5. Ordnung von $f(x,y) = \frac{\sin(y)}{\sqrt{1+x^2y^2}}$ um (0,0) an.

$$T_5 f((x,y);(0,0)) =$$

7. Inverse Funktionen

(6 Punkte)

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x^3 + 2xy + y^2, x^2 + y)$. Zeigen Sie, dass f in einer Umgebung von (1,1) invertierbar ist und bestimmen Sie die Ableitung der lokalen Umkehrfunktion im Punkt f(1,1).

8. Tangentialraum

(4 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x) = x \cdot x$. Dann ist der Graph $G_f := \{(x, f(x)) \mid x \in \mathbb{R}^3\} \subset \mathbb{R}^4$ eine 3-dimensionale C^{∞} -Untermannigfaltigkeit des \mathbb{R}^4 . Geben Sie möglichst explizit eine Basis von T_pG_f an, wobei $p \in G_f$.