Università degli Studi di Brescia (Fondamenti di) Segnali e Sistemi Laboratorio di Matlab, A.A. 2020/2021

Esercitazione N.7, 10/05/2021

Questa sessione di laboratorio si occupa del campionamento.

• Si consiglia di utilizzare un asse temporale t=-10:0.01:10 e un asse delle frequenze f=-15:0.01:15.

[Esercizio 1] CAMPIONAMENTO DI UN SEGNALE A BANDA LIMITATA

Sia dato il segnale $x_1(t) = 8 \cdot \operatorname{sinc}\left(\frac{t}{2}\right)$.

- (i) Visualizzare $x_1(t)$ e il suo spettro in ampiezza $|X_1(f)|$;
- (ii) Campionare il segnale, ottenendo $x_{1c}(t)$, usando come tempo di campionamento T_c rispettivamente $\mathbf{10^*dt}$, $\mathbf{20^*dt}$, $\mathbf{30^*dt}$, $\mathbf{40^*dt}$ e $\mathbf{50^*dt}$. Per fare ciò, conservare del segnale originale solo i valori del segnale nei punti di campionamento e mettendo a 0 tutti gli altri punti. Notare che NON stiamo utilizzando le delta di Dirac:
- (iii) Visualizzare lo spettro del segnale campionato, osservando eventuali fenomeni di aliasing;
- (iv) Ricostruire il segnale analogico usando sia l'interpolazione ideale (con i $sinc(\cdot)$) sia il mantenimento ZOH. Calcolare l'energia dell'errore di ricostruzione.

[Esercizio 2] CAMPIONAMENTO DI SEGNALI A BANDA ILLIMITATA

Ripetere l'esercizio precedente usando $x_2(t) = 4 \cdot e^{-10 \cdot t^2}$ (impulso gaussiano) e $x_3(t) = \text{rect}\left(\frac{t}{\sqrt{2}}\right)$.