Gwinnett School of Math, Science, and Technology

Multivariable Calculus Yearlong Notes

Anish Goyal 1st Period Donny Thurston Educator

2023-2024

Table of Contents

1	Sys	tems of Linear Equations and Matrices 3		
	1.1	Matrix Operations		
		1.1.1 Addition & Subtraction		
		1.1.2 Scalar Multiplication		
		1.1.3 Matrix Multiplication		
		1.1.4 Properties of Matrix Arithmetic		
		1.1.5 Examples		
	1.2	Transpose of a Matrix		
		1.2.1 Transpose Matrix Properties		
	1.3	Homework — "Matrix Stuff" (08/03/2023) 6		
		1.3.1 Suppose that A, B, C, D and E are matrices with the following sizes: 6		
		1.3.2 Consider the matrices		
2	Intr	o to Systems 8		
	2.1	Review: Solve the following systems		
		2.1.1 Consistent		
		2.1.2 Inconsistent		
	2.2	The Augmented Matrix		
	2.3	3 Elementary Row Operations		
		2.3.1 Example 1 again		
	2.4	Connection to Matrices		
		2.4.1 Example 2: again		
		2.4.2 Example 3: again		
		2.4.3 Example 4: Solve the following system		
		2.4.4 Elementary Row Operations & REF Homework Problem (08/08/2023) 12		
	2.5	Gaussian Elimination		
		2.5.1 Examples		
	2.6	Gaussian Elimination With Back-Substitution		
		2.6.1 Goal:		
		2.6.2 Gaussian Elimination Homework Problem (08/09/2023) 14		

1 Systems of Linear Equations and Matrices

1.1 Matrix Operations

- Matrix operations are given as: rows x columns
- Two matrices are equal
 ⇔ they have the same dimensions and values

1.1.1 Addition & Subtraction

Two matrices can be added/subtracted \iff they have the same dimensions.

1.1.2 Scalar Multiplication

• Scalar multiplication is defined as multiplying each element of a matrix by a number

$$3\begin{bmatrix} 2 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 15 & 6 \end{bmatrix}$$

1.1.3 Matrix Multiplication

- We can **only** multiply an (m x n) by (n x p) matrix.
- The resulting matrix will be (m x p)

1.1.4 Properties of Matrix Arithmetic

(a)
$$A + B = B + A$$
 (Commutative law for addition)

(b)
$$A + (B + C) = (A + B) + C$$
 (Associative law for addition)

(c)
$$A(BC) = (AB)C$$
 (Associative law for multiplication)

(d)
$$A(B + C) = AB + AC$$
 (Left distributive law)

(e)
$$(B + C)A = BA + CA$$
 (Right distributive law)

(f)
$$A(B-C) = AB - AC$$

(g)
$$(B-C)A = BA - CA$$

(h)
$$a(B+C) = aB + aC$$

(i)
$$a(B-C) = aB - aC$$

$$(j)$$
 $(a+b)C = aC + bC$

(k)
$$(a-b)C = aC - bC$$

(I)
$$a(bC) = (ab)C$$

(m)
$$a(BC) = (aB)C = B(aC)$$

1.1.5 Examples

1.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 4 \\ 3 \cdot 1 + 4 \cdot 3 & 3 \cdot 2 + 4 \cdot 4 \end{bmatrix}$$

$$= \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

2.

$$\begin{bmatrix} 2 & -3 \\ 5 & 0 \\ -2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \cdot (-1) + (-3) \cdot 3 \\ 5 \cdot (-1) + 0 \cdot 3 \\ -2 \cdot (-1) + 4 \cdot 3 \\ 1 \cdot (-1) + 2 \cdot 3 \end{bmatrix}$$

$$= \begin{bmatrix} -11 \\ -5 \\ 14 \\ 5 \end{bmatrix}$$

3.

$$\begin{bmatrix} 4 & 5 & -1 \end{bmatrix} \begin{bmatrix} 8 \\ 0 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \cdot 8 + 5 \cdot 0 + (-1) \cdot 2 \end{bmatrix}$$
$$= \begin{bmatrix} 30 \end{bmatrix}$$

1.2 Transpose of a Matrix

The transpose of an (m x n) matrix is the (n x m) matrix where the rows and columns are swapped.

If
$$B = \begin{bmatrix} 4 & 2 \\ -1 & 0 \\ 3 & 5 \end{bmatrix}$$
, $B^T = \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 5 \end{bmatrix}$

$$B \cdot B^{\mathsf{T}} = \begin{bmatrix} 4 & 2 \\ -1 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 4 & -1 & 3 \\ 2 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \cdot 4 + 2 \cdot 2 & 4 \cdot (-1) + 2 \cdot 0 & 4 \cdot 3 + 2 \cdot 5 \\ (-1) \cdot 4 + 0 \cdot 2 & (-1) \cdot (-1) + 0 \cdot 0 & (-1) \cdot 3 + 0 \cdot 5 \\ 3 \cdot 4 + 5 \cdot 2 & 3 \cdot (-1) + 5 \cdot 0 & 3 \cdot 3 + 5 \cdot 5 \end{bmatrix}$$

$$= \begin{bmatrix} 20 & -4 & 22 \\ -4 & 1 & -3 \\ 22 & -3 & 34 \end{bmatrix}$$

- The transpose of a matrix is **always** multiplicative with the original.
- There is also a main diagonal that is the diagonal from the top left to the bottom right, but only square matrices have these.
- The **trace** of a square matrix A is equal to the sum of all the elements on the main diagonal: tr(A)

1.2.1 Transpose Matrix Properties

- $\bullet \quad (A^T)^T = A$
- $(A + B)^T = A^T + B^T$ $(A B)^T = A^T B^T$ $(kA)^T = kA^T$ $(AB)^T = B^T A^T$

1.3 Homework — "Matrix Stuff" (08/03/2023)

1.3.1 Suppose that A, B, C, D and E are matrices with the following sizes:

A B C D E
$$(3 \times 2)$$
 (2×3) (3×3) (3×2) (2×3)

For each matrix operation, sort them into undefined if the operation can't be done, or defined if it can along with the correct dimensions of the outcome.

Undefined	Defined; (4 × 2)	Defined; (5 × 5)	Defined; (5 × 2)
BA AB + B E ^T A AE + B	AC + D	E(A + B)	$(A^T + E)D$ E(AC)

1.3.2 Consider the matrices

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

In each part, compute the given expression (where possible).

2. **2A^T + C**

$$2A^{T} + C = 2\begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}^{T} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= 2\begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -2 & 2 \\ 0 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 2 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$

3. **B**^T + **5C**^T

$$B^{T} + 5C^{T} = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}^{T} + 5\begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}^{T}$$
$$= \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} + 5\begin{bmatrix} 1 & 3 \\ 4 & 1 \\ 2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 15 \\ 20 & 5 \\ 10 & 25 \end{bmatrix}$$

= Undefined

4. $2E^{T} - 3D^{T}$

$$2E^{T} - 3D^{T} = 2\begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}^{T} - 3\begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}^{T}$$

$$= 2\begin{bmatrix} 6 & -1 & 4 \\ 1 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix} - 3\begin{bmatrix} 1 & -1 & 3 \\ 5 & 0 & 2 \\ 2 & 1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & -2 & 8 \\ 2 & 2 & 2 \\ 6 & 4 & 6 \end{bmatrix} - \begin{bmatrix} 3 & -3 & 9 \\ 15 & 0 & 6 \\ 6 & 3 & 12 \end{bmatrix}$$

$$= \begin{bmatrix} 9 & -5 & -1 \\ -13 & 2 & -4 \\ 0 & 1 & -6 \end{bmatrix}$$

5. tr(**DE**)

$$tr(DE) = tr \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

$$= tr \begin{pmatrix} 1 \cdot 6 + 5 \cdot (-1) + 2 \cdot 4 & 1 \cdot 1 + 5 \cdot 1 + 2 \cdot 1 & 1 \cdot 3 + 5 \cdot 2 + 2 \cdot 3 \\ (-1) \cdot 6 + 0 \cdot (-1) + 1 \cdot 4 & (-1) \cdot 1 + 0 \cdot 1 + 1 \cdot 1 & (-1) \cdot 3 + 0 \cdot 2 + 1 \cdot 3 \\ 3 \cdot 6 + 2 \cdot (-1) + 4 \cdot 4 & 3 \cdot 1 + 2 \cdot 1 + 4 \cdot 1 & 3 \cdot 3 + 2 \cdot 2 + 4 \cdot 3 \end{bmatrix}$$

$$= tr \begin{pmatrix} 9 & 8 & 19 \\ -2 & 0 & 0 \\ 32 & 9 & 25 \end{bmatrix}$$

$$= 34$$

2 Intro to Systems

What are we looking for?

Lines: How many possible solutions?

- · Infinite solutions
- · One solution
- No solutions

Planes: How many possible solutions?

- · Infinite solutions
- No solutions

What does linear actually mean?

- The word linear *really* means that you've got equations with variables and **all** of the variables are degree one.
- This means that there is no limit to the number of dimensions in a linear system.

Linear Systems in Three Unknowns

2.1 Review: Solve the following systems

1.
$$\begin{cases} 2x + y = 10 \\ 3x - y = 5 \end{cases}$$

$$5x = 15$$

$$x = 3$$

$$2(3) + y = 10$$

$$6 + y = 10$$

$$y = 4$$

2.
$$\begin{cases} 2x + y = 10 \\ 6x + 3y = 10 \end{cases}$$

$$y = 10 - 2x$$

 $6x + 3(10 - 2x) = 10$
 $6x + 30 - 6x = 10$
 $30 = 10$: no solution

3.
$$\begin{cases} 5x - 2y = 4 \\ 15x - 6y = 12 \end{cases}$$

$$0 = 0$$

12 = 12.: infinite solutions

2.1.2 Inconsistent

2.1.1 Consistent

• A system of equations is **consistent**

if it has at least one solution.

A system of equations is inconsistent if it has no solutions.

2.2 The Augmented Matrix

$$\begin{cases} x - y + 2z = 5 \\ 2x - 2y + 4z = 10 \longrightarrow \begin{bmatrix} 1 & -1 & 2 & 5 \\ 2 & -2 & 4 & 10 \\ 3 & -3 & 6 & 15 \end{bmatrix}$$

2.3 Elementary Row Operations

- 1. Interchange 2 rows
- 2. Multiply a row by a non-zero constant
- 3. Add/substract a multiple of one row to/from another row

Doing these things changes the matrix, but it's the same system!

2.3.1 Example 1... again

$$\begin{cases} 2x + y = 10 \\ 3x - y = 5 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & | & 10 \\ 3 & -1 & | & 5 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 3 & -1 & | & 5 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & -\frac{5}{2} & | & -10 \end{bmatrix}$$

$$\xrightarrow{\frac{-2}{5}R_2} \begin{bmatrix} 1 & \frac{1}{2} & | & 5 \\ 0 & 1 & | & 4 \end{bmatrix} \xrightarrow{R_1 - \frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 4 \end{bmatrix}$$

And so... x = 3 and y = 4!

2.4 Connection to Matrices

If we can make a system's matrix look like

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & c_1 \\ 0 & 1 & 0 & c_2 \\ 0 & 0 & 1 & c_3 \end{array}\right],$$

then the solution to the system will be the ordered triple (c_1, c_2, c_3) .

2.4.1 Example 2: again

$$\begin{cases} 2x + y = 10 \\ 6x + 3y = 10 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & 10 \\ 6 & 3 & 10 \end{bmatrix} \xrightarrow{\frac{1}{2}R1} \begin{bmatrix} 1 & \frac{1}{2} & 5 \\ 6 & 3 & 10 \end{bmatrix} \xrightarrow{R2-6R1} \begin{bmatrix} 1 & \frac{1}{2} & 5 \\ 0 & 0 & -20 \end{bmatrix}$$

This is inconsistent, so there is no solution.

2.4.2 Example 3: again

$$\begin{cases} 5x - 2y = 4 \\ 15x - 6y = 12 \end{cases}$$

$$\begin{bmatrix} 5 & -2 & | & 4 \\ 15 & -6 & | & 12 \end{bmatrix} \xrightarrow{\frac{1}{5}R1} \begin{bmatrix} 1 & -\frac{2}{5} & | & \frac{4}{5} \\ 15 & -6 & | & 12 \end{bmatrix} \xrightarrow{R2-15R1} \begin{bmatrix} 1 & -\frac{2}{5} & | & \frac{4}{5} \\ 0 & 0 & | & 0 \end{bmatrix}$$

Since 0 = 0, there are infinitely many solutions.

2.4.3 Example 4: Solve the following system

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix} \xrightarrow{R3+4R1} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{bmatrix} \xrightarrow{R3+\frac{3}{2}R2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 0 & -1 & 3 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & -3 & 13 & -9 \end{bmatrix} \xrightarrow{R_3+3R_2} \begin{bmatrix} 1 & 0 & -7 & 8 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{R_1+7R_3} \begin{bmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Therefore the solution to (x_1, x_2, x_3) is (29, 16, 3).

2.4.4 Elementary Row Operations & REF Homework Problem (08/08/2023)

$$\begin{cases} x + y + 2z = 8 \\ -x - 2y + 3z = 1 \\ 3x - 7y + 4z = 10 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 2 & 8 \\ -1 & -2 & 3 & 1 \\ 3 & -7 & 4 & 10 \end{bmatrix} \xrightarrow{R_2+R_1} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & -1 & 5 & 9 \\ 0 & -10 & -2 & -14 \end{bmatrix} \xrightarrow{R_2-R_3} \begin{bmatrix} 1 & 1 & 2 & 8 \\ 0 & 1 & -5 & -9 \\ 0 & 10 & 2 & 14 \end{bmatrix}$$

$$\xrightarrow{R_1-R_2} \begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 52 & 104 \end{bmatrix} \xrightarrow{\frac{1}{52}R_3} \begin{bmatrix} 1 & 0 & 7 & 17 \\ 0 & 1 & -5 & -9 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_1-7R_3} \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Therefore, the solution to (x, y, z) is (3, 1, 2).

2.5 Gaussian Elimination

Vocabulary: A matrix is in Row Echelon Form (REF) if:

- (a) Any rows of all zeroes are placed at the bottom of the matrix
- (b) All other rows have a leading 1 ("pivot")
- (c) As we move down the matrix, each leading 1 is further to the right than the 1 above it

A matrix is in Row Reduced Echelon Form if the three above conditions are met in adition to:

(d) Each column with a leading 1 has all other entries in the column as a 0. ("pivot column")

2.5.1 Examples

2.6 Gaussian Elimination With Back-Substitution

2.6.1 Goal:

To get the augmented matrix in REF

Solve:
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 9 \\ -x_1 + 3x_2 = -4 \\ 2x_1 - 5x_2 + 5x_3 = 17 \end{cases}$$

$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ -1 & 3 & 0 & -4 \\ 2 & -5 & 5 & 17 \end{bmatrix} \xrightarrow{\stackrel{R_2 + R_1}{R_3 - 2R_1}} \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & -1 & -1 \end{bmatrix} \xrightarrow{\stackrel{R_1 + 2R_2}{R_3 + R_2}} \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

$$\xrightarrow{\stackrel{1}{2}R_3} \begin{bmatrix} 1 & 0 & 9 & 19 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$x + 9z = 19$$

$$y + 3z = 5$$

$$z = 2$$

$$\therefore z = 2, y = 5 - 3z, x = 19 - 9z$$

$$z = 2, y = 5 - 3(2), x = 19 - 9(2)$$

$$z = 2, y = -1, x = 1$$

RREF? ×

Therefore, the solution (x_1, x_2, x_3) is (1, -1, 2).

2.6.2 Gaussian Elimination Homework Problem (08/09/2023)

$$\begin{cases}
-2w & + y + z = -3 \\
x + 2y - z = 2 \\
-3w + 2x + 4y + z = -2 \\
-w + x - 4y - 7z = -19
\end{cases}$$

$$\begin{bmatrix} -2 & 0 & 1 & 1 & | & -3 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \\ -1 & 1 & -4 & -7 & | & -19 \end{bmatrix} \xrightarrow{R_4} \begin{bmatrix} -1 & 1 & -4 & -7 & | & -19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \\ -3 & 2 & 4 & 1 & | & -2 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -3 & 2 & 4 & 1 & | & -2 \end{bmatrix} \xrightarrow{R_3 + 3R_1} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ -2 & 0 & 1 & 1 & | & -3 \end{bmatrix} \xrightarrow{R_3 + 3R_1} \begin{bmatrix} 1 & -1 & 4 & 7 & | & 19 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & -1 & 16 & 22 & | & 55 \end{bmatrix} \xrightarrow{R_3 + R_2} \xrightarrow{R_3 + 2R_2} \begin{bmatrix} 1 & 0 & 6 & 6 & | & 21 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 18 & 21 & | & 57 \\ 0 & 0 & 13 & 13 & | & 39 \end{bmatrix} \xrightarrow{\frac{11}{8}R_3} \begin{bmatrix} 1 & 0 & 6 & 6 & | & 21 \\ 0 & 1 & 2 & -1 & | & 2 \\ 0 & 0 & 1 & \frac{7}{6} & | & \frac{19}{6} \\ 0 & 0 & 13 & 13 & | & 39 \end{bmatrix} \xrightarrow{R_4 + 13R_3} \xrightarrow{R_4 - 13R_3} \begin{bmatrix} 1 & 0 & 0 & -1 & | & 2 \\ 0 & 1 & 0 & -\frac{10}{3} & | & \frac{13}{3} \\ 0 & 0 & 1 & \frac{7}{6} & | & \frac{19}{6} \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{R_1 + R_4}{R_2 + \frac{10}{3}R_4}} \begin{bmatrix} 1 & 0 & 0 & -1 & | & 2 \\ 0 & 1 & 0 & -\frac{10}{3} & | & \frac{19}{6} \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{R_1 + R_4}{R_2 + \frac{10}{3}R_4}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & -\frac{10}{3} & | & \frac{19}{6} \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{R_1 + R_4}{R_2 + \frac{10}{3}R_4}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & -\frac{10}{3} & | & \frac{19}{6} \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{R_1 + R_4}{R_2 + \frac{10}{3}R_4}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{R_1 + R_2}{R_2 + \frac{10}{3}R_4}} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & -\frac{10}{3} & | & \frac{19}{6} \\ 0 & 0 & 0 & 1 & | & 1 \end{bmatrix}$$