基于深度学习的医学影像配准算法研究

贾开

清华大学

March 12, 2015

指导老师 宋亦旭 报告人 贾开 学号 2011011275

目录

选题背景和意义 医学影像 深度学习

相关领域研究现状 图像配准 深度学习

本研究的内容计划 研究内容概览 改进部分 时间表

参考文献

目录

选题背景和意义

医学影像深度学习

相关领域研究现状 图像配准 深度学习

本研究的内容计划 研究内容概览 改进部分 时间表

参考文献

医学影像的自动分析和处理

- ▶ 长期以来的研究热点,驱动机器视觉发展,但尚未完全解决
- ▶ 减轻医生负担,提高诊断准确率
- ▶ 交叉学科地带,整个领域随着医学、医学影像、计算机科学等领域的发展而不断变化

医学影像的配准

- ▶ 病例到标准模板的匹配
- ▶ 术前术后的匹配
- ▶ 刚性配准(rigid registration) vs 柔性配准(non-rigid registration/deformable registration)

image source: [5]

医学影像的特点及其配准的难点

医学影像的特点:

- ▶ 影像质量不高:分辨率、信噪比等都比较低
- ▶ 来源单一而封闭: 需大型扫描设备, 涉及患者隐私问题
- ▶ 正常部位一致性高,病变部位难以有稳定模型来描述
- ▶ 一般为 3D 空间灰度图像,或带时间信息的 4D 图像

医学影像的特点及其配准的难点

医学影像的特点:

- ▶ 影像质量不高:分辨率、信噪比等都比较低
- ▶ 来源单一而封闭: 需大型扫描设备, 涉及患者隐私问题
- ▶ 正常部位一致性高,病变部位难以有稳定模型来描述
- ▶ 一般为 3D 空间灰度图像,或带时间信息的 4D 图像

医学影像配准的难点:

- ▶ 非适定性问题(Hadamard, 解存在、唯一、随输入连续变化)
- ▶ 需要处理噪声、低分辨率、病变部位的高度不一致等问题

医学影像配准方法概述

主要包含三个部分:

- ▶ 变形模型(刚性,柔性,参数,非参数)
- ▶ 相似性测度函数
 - ▶ 基于特征
 - ▶ 基于灰度值
 - ▶ 两者混合使用
- ▶ 优化方法

医学影像配准方法概述

主要包含三个部分:

- ▶ 变形模型(刚性,柔性,参数,非参数)
- ▶ 相似性测度函数
 - ▶ 基于特征
 - ▶ 基于灰度值
 - ▶ 两者混合使用
- ▶ 优化方法

本研究主要考虑基于特征的相似性测度函数,尝试用更好的特征 优化函数性能,从而提高配准精度

更好的特征

传统特征

SIFT, HOG, SURF, LBP, ···· 基于人的知识,人工设计,与数据的应用域无关

更好的特征

传统特征

SIFT, HOG, SURF, LBP, ···· 基于人的知识,人工设计,与数据的应用域无关

深度学习

从数据中自动发掘特征,人工引导 + 自动学习,可适配具体数据集,很多情况下可得到鲁棒性和区分力更优的特征

目录

选题背景和意义 医学影像 深度学习

相关领域研究现状

图像配准深度学习

本研究的内容计划 研究内容概览 改进部分 时间表

参考文献

问题描述

图像配准的问题可形式化表达如下[7]:

$$W^* = \operatorname*{arg\,min}_{W} \mathit{M}(\mathit{T}, \mathit{S} \circ \mathit{W}) + \mathit{R}(\mathit{W})$$

其中 W 为待求变换的参数表示,S 和 T 分别是源影像与目标影像,M(A,B) 评价 A 和 B 的不相似度,R(W) 为 W 上基于先验知识的正则项。

变形模型 oW

相似性测度函数 M

拟用方法

本研究中拟采取 Dinggang Shen 提出的 HAMMER 及其改进方法,进行柔性配准[6, 5]

$$\begin{array}{lcl} h(u) & = & u + d(u) \\ E & = & \displaystyle \sum_{u} \omega_{T}(u) \left(\frac{\sum_{z \in n(u)} \varepsilon(z) (1 - m(a_{T}(z), a_{S}(h(z))))}{\sum_{z \in n(u)} \varepsilon(z)} \right) \\ & & + \sum_{v} \omega_{S}(v) \left(\frac{\sum_{z \in n(v)} \varepsilon(z) (1 - m(a_{T}(h^{-1}(z)), a_{S}(z)))}{\sum_{z \in n(v)} \varepsilon(z)} \right) \\ & & + \beta \sum_{u} \| \nabla^{2} d(u) \| \end{array}$$

深度学习: 沉默后的爆发

- ▶ 深度学习:人工神经网络的时髦别名 相关理论已在二十多年前成型,但当时并未展示出明显优势
- ▶ LSVRC2012 中, AlexNet 取得前 5 输出的 15% 错误率,而最好的传统方法为 26%
- ▶ 深度学习已在机器视觉、机器翻译、自然语言处理、语音识别、文本识别等很多领域超越或远超传统方法
- ▶ 目前尝试将其用在医学影像特征提取的工作不多

深度学习广泛应用的基础

理论可行性 足够大的神经网络可以无限逼近任意连续实函数 大数据 相对二十年前,现在有了足够多的数据,使得大模 型不易过拟合

训练技巧 初始化、非线性、优化等各个环节的 tricks 硬件设备 GPU 使得快速大规模浮点运算成为可能

使件设备 GPU 使侍快迷人规模浮点运昇成为可能

深度学习的关键因素

- 模型 卷积神经网络(CNN),递归神经网络(RNN),受限玻耳兹曼机(RBM),深度信念网络(DBN)等
- 优化方法 随机梯度下降及其变种(Momentum, AdaGrad, rmsprop 等)
 - tricks Pretrain, Drop Out, ReLU, Maxout, Max/Average Pooling, Batch Normalization 等等

非监督的深度学习

降噪自动编码器[8]

$$h = \sigma(Wx + b), \tilde{x} = \sigma(W^{\mathsf{T}}h + c)$$

层叠卷积自动编码器[4]

$$h = \sigma(x * W + b), \tilde{x} = \sigma(h * \tilde{W} + c)$$

基于数据增广和区分式分类训练[1]

采图像块并进行变换,要求从同一个图像块变换得 到的图像块被分到一类

目录

选题背景和意义 医学影像 深度学习

相关领域研究现状 图像配准 深度学习

本研究的内容计划

研究内容概览 改进部分 时间表

参考文献

研究概览

研究目标

比较几种深度学习方法,及其所习得特征用于医学 影像配准的性能

研究内容

- ▶ 实现[9]中算法,并在 ADNI 数据集上训练和测试
- ▶ 尝试用后述的其他深度学习方法习得特征,并 比较效果
- ▶ 扩展内容 1: 在肝脏影像上使用上述方法进行特征学习和配准
- ▶ 扩展内容 2: 将上述特征用于半自动的病变区域 选取

研究重点

如何使用深度学习得到更好的特征?

基线算法: 层叠卷积 ISA[3, 9]

- 概述 1. 在训练数据中采出小的图像块,进行 ISA,得到 权重矩阵
 - 2. 将上述权重矩阵重新打乱形成卷积核,在训练数据上卷积,得到新的数据再次进行 ISA
 - 3. 上述两次 ISA 的权重矩阵可层叠起来作为两次 卷积使用,即为得到特征提取器

基线算法: 层叠卷积 ISA[3, 9]

概述

- 1. 在训练数据中采出小的图像块,进行 ISA,得到 权重矩阵
 - 2. 将上述权重矩阵重新打乱形成卷积核,在训练数据上卷积,得到新的数据再次进行 ISA
 - 3. 上述两次 ISA 的权重矩阵可层叠起来作为两次 卷积使用,即为得到特征提取器

问题

- 1. 层数少,作者也未实验更深更大的网络是否能 带来性能提升
- 2. 贪心地逐层训练,缺少全局优化过程
- 3. 基于纯统计的方法学习,训练过程中并未加入 关于不变性的先验知识

针对前述层数少、缺乏全局优化、缺乏先验知识的问题:

▶ 受目前主流 ImageNet 分类算法的启发,使用 CNN 网络结构

- ▶ 受目前主流 ImageNet 分类算法的启发,使用 CNN 网络结构
- ▶ 将 3D 卷积(宽,高,通道)扩展到 4D(长,宽,高,通道)

- ▶ 受目前主流 ImageNet 分类算法的启发,使用 CNN 网络结构
- ▶ 将 3D 卷积(宽,高,通道)扩展到 4D(长,宽,高,通道)
- ▶ 可引入 Pooling 层,以及更多卷积层

- ▶ 受目前主流 ImageNet 分类算法的启发,使用 CNN 网络结构
- ▶ 将 3D 卷积(宽, 高, 通道)扩展到 4D(长, 宽, 高, 通道)
- ▶ 可引入 Pooling 层,以及更多卷积层
- ▶ 先验 1: 基于所期望的不变性进行数据增广: 旋转、平移、 拉伸、基于随机场进行柔性扭曲等

- ▶ 受目前主流 ImageNet 分类算法的启发,使用 CNN 网络结构
- ▶ 将 3D 卷积(宽,高,通道)扩展到 4D(长,宽,高,通道)
- ▶ 可引入 Pooling 层,以及更多卷积层
- ▶ 先验 1: 基于所期望的不变性进行数据增广: 旋转、平移、 拉伸、基于随机场进行柔性扭曲等
- ▶ 先验 2: 特征应具有区分性: 随机采集图像块,对每块增广 后作为一类,随后监督地进行分类问题训练

改进方法:细节优化

可以尝试的想法:

- ▶ 使用自然图片或视频进行预训练,随后在医学影像上调优, 解决医学影像数据量少的问题
- ▶ 使用前述的层叠卷积 ISA 方法得到的权重作为网络初始权重, 随后进行全局调优,期望基于统计习得的权重优于随机初始 权重
- ▶ 基于[4] 的方法加入输入降噪和重建的监督信号
- • •

时间表

寒假 研究数据格式,导出数据(已基本完成) 1-3 周 实现卷积 ISA,得到基本可用的特征 4-7 周 实现、调优并测试基本的配准算法 8 周 准备期中检查 9-13 周 尝试改进的深度学习方法 14-15 周 如果进展顺利,则尝试扩展内容 16 周 整理实验内容,完成论文

Thanks!

目录

选题背景和意义 医学影像 深度学习

相关领域研究现状 图像配准 深度学习

本研究的内容计划 研究内容概览 改进部分 时间表

参考文献

参考文献 1

- [1] Alexey Dosovitskiy et al. "Discriminative unsupervised feature learning with convolutional neural networks". In: Advances in Neural Information Processing Systems. 2014, pp. 766–774.
- [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems. 2012, pp. 1097–1105.
- [3] Quoc V Le et al. "Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis". In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011, pp. 3361–3368.
- [4] Jonathan Masci et al. "Stacked convolutional auto-encoders for hierarchical feature extraction". In: Artificial Neural Networks and Machine Learning—ICANN 2011. Springer, 2011, pp. 52–59.
- [5] Dinggang Shen. "Image registration by local histogram matching". In: *Pattern Recognition* 40.4 (2007), pp. 1161–1172.

参考文献 ||

- [6] Dinggang Shen and Christos Davatzikos. "HAMMER: hierarchical attribute matching mechanism for elastic registration". In: Medical Imaging, IEEE Transactions on 21.11 (2002), pp. 1421–1439.
- [7] Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. "Deformable medical image registration: A survey". In: Medical Imaging, IEEE Transactions on 32.7 (2013), pp. 1153–1190.
- [8] Pascal Vincent et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion". In: *The Journal of Machine Learning Research* 11 (2010), pp. 3371–3408.
- [9] Guorong Wu et al. "Unsupervised deep feature learning for deformable registration of MR brain images". In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013. Springer, 2013, pp. 649–656.