Universidade Estadual de Campinas

IMECC

Anéis e Corpos - MM445

Sobre anéis noetherianos

Professor:

Autor:

Dr. Fernando Torres

Guilherme Toledo

ORIHUELA

Sumário

1	Preliminares		5
	1.1	Ideais	5
	1.2	Teoria dos conjuntos	8
2 Anéis noetherianos		eis noetherianos	13
	2.1	Definição	13
	2.2	Teorema de Hilbert	15

Capítulo 1

Preliminares

1.1 Ideais

Definição 1. Dado um anel $(R, +, \times)$ e $I \subset R$, dizemos que I é um ideal à esquerda se

- 1. (I, +) é um subgrupo do grupo aditivo (R, +);
- 2. I absorve a multiplicação à direita, isto é, $\forall r \in R, \forall i \in I, temos que$ $ri \in I.$

Um ideal à esquerda é aquele em que a segunda condição é substituída por: I absorve a multiplicação à esquerda, isto é, $\forall r \in R, \forall i \in I$, temos que $ir \in I$.

Um ideal à esquerda que é, ao mesmo tempo, um ideal à direita, é dito um ideal bilateral ou simplesmente um ideal.

Proposição 1. Seja $\{I_{\lambda}\}_{{\lambda}\in\Lambda}\subset\mathcal{I}_R$ uma família de ideais à direita em R com índices em Λ . Então $I=\cap_{{\lambda}\in\Lambda}I_{\lambda}$ é um ideal à direita de R.

Demonstração. Primeiro tomemos $x, y \in I$: como $x, y \in \cap_{\lambda \in \Lambda} I_{\lambda}$, então, para cada $\lambda \in \Lambda$, temos que $x, y \in I_{\lambda}$; sendo I_{λ} um ideal, para cada $\lambda \in \Lambda$, temos que $x + y \in I_{\lambda}$, para cada $\lambda \in \Lambda$. Com isso $x + y \in \cap_{\lambda \in \Lambda} I_{\lambda} = I$.

Resta mostrar que I absorve a multiplicação à esquerda. tome $x \in I$ e $r \in R$. Como $x \in \cap_{\lambda \in \Lambda} I_{\lambda}$, temos que $x \in I_{\lambda}$, para cada $\lambda \in \Lambda$; sendo cada I_{λ} um ideal à direita, temos que $xr \in I_{\lambda}, \forall \lambda \in \Lambda$. Com isso, $xr \in \cap_{\lambda \in \Lambda} I_{\lambda} = I$, fazendo de I um ideal à direita.

É claro que se $\{_{\lambda}I\}_{\lambda\in\Lambda}\subset {}_R\mathcal{I}$ é uma família de ideais à esquerda de R, então

$$I = \cap_{\lambda \in \Lambda} (\lambda I)$$

é um ideal à esquerda de R; para ver isso basta modificar apenas ligeiramente a prova acima. E se $\{I_i\}_{i\in I}$ é uma família de ideais bilaterais de R, então sua intersecção $I=\cap_{i\in I}I_i$ é um ideal à direita e à esquerda; ou seja, é um ideal bilateral.

Com isso, dado $X \subset R$, o ideal à direita gerado por X, denotado por I(X), será a intersecção de todos os ideais à direita $I \in \mathcal{I}_R$, onde \mathcal{I}_R é o conjunto de todos ideais de R, que contém X; pelo resultado acima, é claro que este é um ideal à direita. Em outros termos, podemos escever $I(X) = \cap \mathcal{F}$, tal que

$$\mathcal{F} = \{ I \in \mathcal{I}_R / X \subset I \}$$

E é também claro que este é o menor ideal à direita que contém X, já que se I é um ideal à direita que contenha X, então $I \in \mathcal{F}$ e portanto $I(X) \subset I$. Claramente podemos definir o ideal à esquerda gerado por X

1.1. IDEAIS 7

como a intersecção dos ideais à esquerda que contém X, e o ideal bilateral gerado por X como a intersecção de todos ideais bilaterais contendo X.

Definição 2. Um ideal de R será dito principal se for gerado por um único elemento $a \in R$. Se I é um ideal gerado por a, usaremos a notação I = (a).

Os ideais principais são vitais no moderno estudo da teoria de anéis. Sua propriedade mais básica é que: quando (a) é um ideal à direita de um anel R, com unidade, gerado por a, temos que

$$(a) = aR = \{ar \in R/r \in R\};$$

e se (a) é o ideal à esquerda gerado por a, temos que

$$(a) = Ra = \{ ra \in R/r \in R \}.$$

Quanto à veracidade destas expressões, provemos a relativa apenas aos ideais à direita, sendo o outro caso análogo. Primeiro, definindo $aR = \{ar \in R/r \in R\}$, temos que $aR \subset (a)$, já que se $ar \in aR$, como $a \in (a)$ e $r \in R$, devemos ter que $ar \in (a) \Rightarrow aR \subset (a)$.

Mais do que isso, aR é um ideal à direita, pois: se $ar_1, ar_2 \in aR$, temos que $ar_1 + ar_2 = a(r_1 + r_2) \in aR$; e se $ar \in aR$ e $t \in R$, temos que $(ar)t = a(rt) \in aR$. Ainda, como R é um anel com unidade, $1 \in R$, e portanto $a1 = a \in aR$. Como (a) é o menor ideal à direita contendo a, devemos ter que $(a) \subset aR$, e portanto (a) = aR.

Na hora de trabalharmos com ideais principais, usualmente nos restringiremos à anéis comutativos. Nestes, temos que um ideal principal é dado em qualquer uma das formas discutidas: (a) = aR = Ra.

Definição 3. Um anel comutativo R será dito um domínio de ideais principais se todo ideal de R for principal.

Outro tipo de ideal, semelhante ao principal, de marcante importância é o dito ideal do tipo finito. Nos restringindo, por simplicidade, a anéis comutativos, um ideal $I \subset R$ será dito um ideal do tipo finito se existirem finitos $a_1, ..., a_n \in R$ para os quais $I = I(\{a_1, ..., a_n\})$, o que usualmente denotaremos apenas por $I = (a_1, ..., a_n)$. Note que todo ideal principal é um ideal do tipo finito.

Tendo definido um domínio de ideais principais como um anel em que todo ideal é principal, analogamente definiremos um anel noetheriano, em homenagem à matemática Emmy Noether, como um anel comutativo com unidade em que todo ideal é do tipo finito. Na verdade, existem várias definições equivalentes e igualmente importantes, que mostraremos de fato serem equivalentes. Começaremos com um resultado em teoria dos conjuntos, e terminaremos com um importante teorema de Hilbert sobre o assunto.

1.2 Teoria dos conjuntos

Tome um conjunto X e uma ordem parcial \leq em X. Já sabemos que um elemento maximal M de X é um elemento para o qual, dado $x \in X$ qualquer que verifica $M \leq x$, então M = x; analogamente, um elemento minimal m de X é um elemento que verifica, para todo $x \in X$ para o qual $x \leq m$, m = x.

Definição 4. Dada uma família $\{a_n\}_{n\in\mathbb{N}}\subset X$, indexada pelos naturais,

sobre um conjunto X com uma ordem parcial \leq , diremos que:

1. $\{a_n\}_{n\in\mathbb{N}}$ é uma cadeia crescente se, para todo $i\in\mathbb{N}$, tivermos que $a_i\leq a_{i+1}$. Com isso, podemos escrever

$$a_0 \le a_1 \le \dots \le a_n \le \dots$$

- 2. $\{a_n\}_{n\in\mathbb{N}}$ é uma cadeia decrescente se, para todo $i\in\mathbb{N}$, tivermos que $a_{i+1}\leq a_i$;
- 3. $\{a_n\}_{n\in\mathbb{N}}$ é estacionária se existe $n_0\in\mathbb{N}$ para o qual $n\geq n_0\Rightarrow a_n=a_{n_0}$.

Destas definições, podemos fazer algumas outras. Se X é um conjunto com a ordem parcial \leq , diremos que X satisfaz a condição maximal se todo subconjunto $Y \subset X$ de X, não vazio, admite um elemento maximal. Analogamente, X satisfará a condição minimal se todo subconjunto $Y \subset X$ de X, não vazio, admitir um elemento minimal.

Quanto às cadeias, dizemos que X satisfaz a condição das cadeias crescentes se toda cadeia crescente de X é estacionária. Diremos que X satisfaz a condição das cadeias decrescentes se toda cadeia decrescente de X for estacionária.

Teorema 1. Seja X um conjunto não vazio com a ordem parcial \leq ; se X satisfaz a condição maximal, então X satisfaz a condição das cadeias crescentes.

Demonstração. Seja $\{a_n\}_{n\in\mathbb{N}}\subset X$ uma cadeia crescente em X. Como

$$\{a_n \in X/n \in \mathbb{N}\} \subset X$$

e X satisfaz a condição maximal, então existe $a_{n_0} \in \{a_n\}_{n \in \mathbb{N}}$ elemento maximal.

Mas esta cadeia é crescente, e portanto, para todo $n \geq n_0$, teremos que $a_{n_0} \leq a_n$; sendo a_{n_0} elemento maximal, isto implica que $a_{n_0} = a_n$, para todo $n \geq n_0$, fazendo da cadeia $\{a_n\}_{n \in \mathbb{N}}$ uma cadeia estacionária e provando o teorema.

De maneira semelhante, mostra-se que todo X que satisfaz a condição minimal satisfaz a condição das cadeias decrescentes. A recíproca destes resultados é verdadeira, embora a prova seja mais difícil. Com isto, um conjunto X satisfaz a condição maximal se, e somente se, satisfaz a condição das cadeias crescentes, e satisfaz a condição minimal se, e somente se, satisfaz a condição das cadeias decrescentes.

Mostraremos, como acima, só um caso, sendo o outro análogo.

Teorema 2. Seja X um conjunto não vazio com a ordem parcial \leq ; se X satisfaz a condição das cadeias crescentes, então satisfaz a condição maximal.

Demonstração. Suponha que X não satisfaz a condição maximal. Então existe $Y \subset X$ que não admite elemento maximal e portanto, dado $a \in Y$ arbitrário, temos que

$$Y_a = \{ y \in Y/a < y \}$$

é não vazio.

Seja ϕ uma aplicação de escolha de $\mathcal{P}(Y) - \{\emptyset\}$; em outros termos,

$$\phi: \mathcal{P}(Y) - \{\emptyset\} \to Y$$

é uma função para a qual, se $W \in \mathcal{P}(Y) - \{\emptyset\}$, e portanto W é subconjunto não vazio de Y, temos que $\phi(W) \in W \subset Y$. Uma tal função existe pelo axioma da escolha.

Definimos então $f: Y \to Y$ por meio de $f(a) = \phi(Y_a)$. Como $\phi(Y_a) \in Y_a$, temos que, por definição de Y_a , $\phi(Y_a) > a$; sendo assim, $a < \phi(Y_a) = f(a)$.

Dado um elemento arbitrário $a_0 \in Y$, que existe já que $Y \neq \emptyset$, podemos então gerar a cadeia $\{a_n\}_{n\in\mathbb{N}} \subset Y$ para a qual $a_n = f^n(a_0)$, onde f^n é a composição de f com si mesma, n vezes. Teremos que

$$a_n = f^n(a_0) < f(f^n(a_0)) = f^{n+1}(a_0) = a_{n+1},$$

e portanto $\{a_n\}_{n\in\mathbb{N}}$ é uma sequência crescente que não pode ser estacionária, já que para todo $n_0\in\mathbb{N}$, dado $n\geq n_0$, temos que $a_n>a_{n_0}$.

Mas isto contradiz a suposição de que X satisfaz a condição das cadeias crescentes. O erro esteve em assumir que X não satisfaz a condição maximal, e verificamos assim o teorema.

Podemos agora voltar à teoria de anéis.

Capítulo 2

Anéis noetherianos

2.1 Definição

Definição 5. Seja R um anel comutativo com unidade; diremos que R é um anel noetheriano se o conjunto $\mathcal{I}(R)$ dos ideais de R, parcialmente ordenado pela inclusão \subset , satisfaz a condição das cadeias crescentes.

Em outros termos, R é noetheriano se, dada uma sequência $\{I_n\}_{n\in\mathbb{N}}$ de ideais de R tais que

$$I_0 \subset I_1 \subset \cdots \subset I_n \subset \cdots$$
,

existir $n_0 \in \mathbb{N}$ para o qual $n > n_0 \Rightarrow I_n = I_{n_0}$.

Teorema 3. Dado um anel comutativo R com unidade, as seguintes condições são equivalentes:

- 1. R é noetheriano;
- 2. O conjunto \mathcal{I}_R , com a ordem parcial \subset , satisfaz a condição maximal;

3. Todo ideal I de R é do tipo finito

Demonstração. Definimos um anel R como noetheriano quando \mathcal{I}_R satisfaz a condição das cadeias crescentes. Obviamente, pelo que vimos acima, isto é equivalente a dizer que \mathcal{I}_R satisfaz a condição maximal; isto faz com que os dois primeiros itens do teorema sejam equivalentes. Resta mostrar que eles implicam no terceiro, e que o terceiro implica nestes.

Agora, seja I um ideal de R, noetheriano; se $I = \{0\}$, então I = (0) e I é do tipo finito. Do contrário, existe $a_0 \in I$, $a_0 \neq 0$; se $I = (a_0)$, novamente I é do tipo finito. Se $I \neq (a_0)$, então existe $a_1 \in I - (a_0)$, e novamente podemos ter que $I = (a_0, a_1)$, que contém o ideal (a_0) , e I é do tipo finito; ou então $I \neq (a_0, a_0)$, e nesse caso existe $a_2 \in I - (a_1, a_2)$.

Indutivamente, tomamos elementos $a_0, ..., a_{n-1} \in I$ para os quais: ou $I = (a_0, ..., a_{n-1})$, e I é do tipo finito; ou existe $a_n \in I - (a_0, ..., a_{n-1})$. Se I não for do tipo finito, construiremos uma sequência crescente de ideais

$$(a_0) \subset (a_0, a_1) \subset \cdots \subset (a_0, ..., a_n) \subset \cdots$$

que não pode ser estacionária, já que estamos assumindo $a_n \notin (a_0, ..., a_{n-1})$. Mas isso viola R ser noetheriano, e \mathcal{I}_R satisfazer a condição das cadeias crescentes. Devemos então concluir que I é do tipo finito.

Suponha agora que todo ideal de R seja do tipo finito, e mostremos que, neste caso, R é noetheriano. Seja $I_0 \subset \cdots \subset I_n \subset \cdots$ uma cadeia crescente de ideais de R, e consideremos $I = \bigcup_{n \in \mathbb{N}} I_n$. Temos que I é, de fato, um ideal: se $x,y \in I$, então existe $n_0 \in \mathbb{N}$ para o qual $x,y \in I_{n_0}$, e portanto $x+y \in I_{n_0} \subset I$; e se $x \in I$ e $r \in R$, como existe $n_0 \in \mathbb{N}$ para o qual $x \in I_{n_0}$,

temos que $rx, xr \in I_{n_0} \subset I$.

Então, como todo ideal de R é do tipo finito, existem elementos $a_1, ..., a_n \in R$ para os quais $I = (a_1, ..., a_m)$. Como $a_j \in I = \bigcup_{n \in \mathbb{N}}$, sabemos que, para cada a_j , existirá $n_j \in \mathbb{N}$ para o qual $a_j \in I_{n_j}$. Tome $n_0 = max\{n_1, ..., n_m\}$; então, para todo $n > n_0$, teremos que $a_1, ..., a_m \in I_n$, e portanto

$$I = (a_1, ..., a_m) \subset I_n \subset \bigcup_{n \in \mathbb{N}} I_n = I,$$

e portanto $I_n = I$, fazendo da referida cadeia uma cadeia estacionária, o que por sua vez torna R um anel noetheriano.

Com estas noções básicas sobre anéis noetherianos, podemos provar o teorema de Hilbert, que nos dá condições suficientes para que um anel polinomial em finitas variáveis seja noetheriano.

2.2 Teorema de Hilbert

Queremos provar agora o importante teorema de Hilbert: se R é noetheriano, então $R[x_1, ..., x_k]$ também o é. Começaremos por um estudo, aparentemente não relacionado, de certos ideais em anéis de coeficientes.

Seja R um anel com unidade comutativo, consideremos o anel R[x] de polinômios em uma variável de coeficientes em R e tomemos um ideal $M \subset R[x]$: definiremos então uma sequência de ideais de R, a partir de M, e que denotaremos por $I_i(M)$.

O ideal $I_j(M)$ é formado por 0 e todos os coeficientes líderes, isto é, coeficientes não nulos da maior potência x^n , de polinômios de M com grau

j; em outros termos, se $a \in I_j(M) - \{0\}$, então existe

$$p_x = ax^j + a_{j-1}x^{j-1} + \dots + a_1x + a_0 \in M,$$

onde vemos que |p(x)| = j e o coeficiente líder de p(x) é a.

Ainda em outros termos,

$$I_i(M) = \{ a \in R/\exists p(x) = ax^j + a_{i-1}x^{j-1} + \dots + a_1x + a_0 \in M \}$$

Proposição 2. Seja R um anel comutativo com unidade; então, nas condições da definição acima, $I_j(M)$ é um ideal.

Demonstração. Se $a, b \in I_j(M) - \{0\}$, então existem

$$p_1(x) = ax^j + a_{j-1}x^{j-1} + \dots + a_1x + a_0,$$

$$p_2(x) = bx^j + b_{j-1}x^{j-1} + \dots + b_1x + b_0 \in M;$$

se a=-b, temos que $a+b=0\in I_j(M);$ se $a\neq -b,$ então $a+b\neq 0$ e

$$p_1(x) + p_2(x) = (a+b)x^j + (a_{j-1} + b_{j-1})x^{j-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$

é um polinômio de grau j e coeficiente líder a+b, fazendo com que $a+b \in I_j(M)$. Se $a \in I_j(M) - \{0\}$ e b = 0, é claro que $a+b \in I_j(M)$, e se a = b = 0, temos $a+b = 0 \in I_j(M)$; de qualquer forma, concluímos que $I_j(M)$ é fechado pela soma.

Agora, se $r \in R$, precisamos mostrar que $I_j(M)$ absorve a muitiplicação:

se a=0, é claro que $ra=ar=0\in I_j(M)$. Se $a\in I_j(M)-\{0\}$, temos que há

$$p(x) = ax^{j} + a_{j-1}x^{j-1} + \dots + a_{1}x + a_{0} \in M,$$

e portanto

$$rp(x) = rax^{j} + ra_{j-1}x^{j-1} + \dots + ra_{1}x + a_{0} \in M$$

Temos então duas possibilidades: ou ar = ra = 0, e temos $ra = ar \in I_j(M)$; ou $ar = ra \neq 0$, e portanto rp(x) é um polinômio de grau j com coeficiente líder ar, fazendo com que $ar = ra \in I_j(M)$. De qualquer forma, concluímos que $I_j(M)$ absorve a multiplicação, e é portanto um ideal.

Mais do que isso, temos que $I_j(M) \subset I_{j+1}(M)$: já que se $a \in I_j(M)$, existe

$$p(x) = ax^{j} + a_{j-1}x^{j-1} + \dots + a_{1}x + a_{0} \in M,$$

e como M é fechado pela multiplicação por elementos de R[x], temos que

$$xp(x) = ax^{j+1} + a_{j-1}x^j + \dots + a_1x + a_0 \in M,$$

e como xp(x) é um polinômio de grau j+1 e coeficiente líder a, temos que $a \in I_{j+1}(M)$. Concluímos que $I_j(M) \subset I_{j+1}(M)$, e a cadeia $(I_j(M))_{j\in\mathbb{N}}$ é uma cadeia crescente.

Proposição 3. Seja R um anel com unidade comutativo, e sejam $M^*, M \subset R[x]$ ideais de R[x] com $M^* \subset M$. Então, se $I_j(M^*) = I_j(M)$, para todo $j \in \mathbb{N}$, temos que $M = M^*$.

Demonstração. Suponha que $M \neq M^*$, e então $M - M^* \neq \emptyset$, e portanto existe um polinômio de grau mínimo $p(x) = ax^n + a_{n-1}x^{n-1} + \cdots + a_0 \in M - M^*$. É claro que $a \in I_n(M) = I_n(M^*)$, e portanto existe $q(x) = ax^n + b_{n-1}x^{n-1} + \cdots + b_0 \in M^*$, de modo que possamos ter $a \in I_n(M^*)$.

Mas então

$$p(x) - q(x) = (a_{n-1} - b_{n-1})x^{n-1} + \dots + (a_0 - b_0)$$

é um polinômio de grau menor que p(x) ou o polinômio nulo, e portanto está em M^* , já que é um elemento de M de grau menor que de qualquer elemento em $M-M^*$; com isso, temos que $q(x), p(x)-q(x) \in M^*$, e como M^* é um ideal, concluímos que $p(x)=(p(x)-q(x))+q(x)\in M^*$.

Isso contraria a definição de p(x): o erro esteve em assumir que $M-M^* \neq \emptyset$, e portanto $M=M^*$, como queríamos provar.

Assumamos que R seja um anel noetheriano: provaremos agora que R[x] é um anel noetheriano; para fazer isso, mostraremos que toda cadeia crescente em $\mathcal{I}_{R[x]}$ é estacionária. Seja $(M_i)_{i\in\mathbb{N}}$ uma cadeia crescente em $\mathcal{I}_{R[x]}$, isto é, uma cadeia de ideais de R[x] para a qual

$$M_0 \subset M_1 \subset \cdots \subset M_i \subset \cdots$$

Para cada M_i , podemos construir a cadeia crescente $(I_j(M_i))_{j\in\mathbb{N}}$ de ideais de R. O que queremos provar é que existe $i^* \in \mathbb{N}$ para o qual $i > i^*$ implica que $I_j(M_i) = I_j(M_{i^*})$, para qualquer $j \in \mathbb{N}$.

Notamos que $I_j(M_i) \subset I_{j+1}(M_i)$, mas note também que se $a \in I_j(M_i)$,

existe

$$p(x) = ax^{j} + a_{j-1}x^{j-1} + \dots + a_{1}x + a_{0} \in M_{i};$$

mas como $M_i \subset M_{i+1}$, temos que $p(x) \in M_{i+1}$, fazendo com que $a \in I_j(M_{i+1})$ e, portanto, $I_j(M_i) \subset I_j(M_{i+1})$. Logo a cadeia $(I_j(M_i))_{i \in \mathbb{N}}$ também é crescente.

Assim a cadeia $(I_j(M_j))_{j\in\mathbb{N}}$ é uma cadeia crescente; note que podemos vê-la como uma diagonal:

$$I_0(M_0) \subset I_0(M_1) \subset \cdots \subset I_0(M_j) \subset \cdots$$

$$\cap \cap \cap \cdots \cap \cap \cdots$$

$$I_1(M_0) \subset I_1(M_1) \subset \cdots \subset I_1(M_j) \subset \cdots$$

$$\cap \cap \cap \cap \cdots \cap \cdots$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \quad \cdots$$

$$\cap \cap \cap \cap \cdots \cap \cdots$$

$$I_j(M_0) \subset I_j(M_1) \subset \cdots \subset I_j(M_j) \subset \cdots$$

$$\cap \cap \cap \cap \cdots \cap \cdots$$

$$\vdots \quad \vdots \quad \ddots \cdots$$

Ela é crescente já que

$$I_j(M_j) \subset I_j(M_{j+1}) \subset I_{j+1}(M_{j+1})$$

Como ela é uma cadeia crescente de ideais de R, que é noetheriano, existe j_0 para o qual, se $j > j_0$, então $I_j(M_j) = I_{j_0}(M_{j_0})$. Em especial, se $i > j > j_0$,

20

temos que

$$I_{j_0}(M_{j_0}) \subset I_{j_0}(M_i) \subset I_j(M_i) \subset I_i(M_i) = I_{j_0}(M_{j_0}),$$

e portanto $I_j(M_i) = I_{j_0}(M_{j_0})$. Se $j > i > j_0$, temos

$$I_{j_0}(M_{j_0}) \subset I_j(M_{j_0}) \subset I_j(M_i) \subset I_j(M_j) = I_{j_0}(M_{j_0}),$$

e portanto $I_j(M_i) = I_{j_0}(M_{j_0})$. Em resumo, se $i, j > j_0$, temos $I_j(M_i) = I_{j_0}(M_{j_0})$.

Lembre-se que queremos $i^* \in \mathbb{N}$ para o qual $i > i^*$ implica que $I_j(M_i) = I_j(M_{i^*})$, para qualquer $j \in \mathbb{N}$; encontramos j_0 para o qual $i > j_0$ implica que $I_j(M_i) = I_{j_0}(M_{j_0}) = I_j(M_{j_0})$, quando $j > j_0$: precisamos controlar os pares (j,i) para os quais $i > j_0$ e $j < j_0$.

As sequências $(I_0(M_i))_{i\in\mathbb{N}},...,(I_{j_0}(M_i))_{i\in\mathbb{N}}$ são, como já dissemos, crescentes; como R é noetheriano, existem $i_0,...,i_{j_0}\in\mathbb{N}$ para os quais

$$i > i_0 \Rightarrow I_0(M_i) = I_0(M_{i_0}),$$

$$i > i_1 \Rightarrow I_1(M_i) = I_1(M_{i_1}),$$

:

$$i > i_{j_0} \Rightarrow I_{j_0}(M_i) = I_{j_0}(M_{i_{j_0}})$$

Tomemos então $i^* = \max\{j_0, i_0, i_1, ..., i_{j_0}\}$. Dado $i > i^*$: se $j > i^*$, temos

que $i, j > i^* \ge j_0$, e portanto

$$I_j(M_i) = I_{j_0}(M_{j_0}) = I_j(M_{i^*});$$

se $j \leq j_0$, então $i > i^* \geq i_j$ e temos

$$I_j(M_i) = I_j(M_{i_j}) = I_j(M_{i^*})$$

Logo i^* é tal que $i>i^*$ \Rightarrow $I_j(M_i)=I_j(M_{i^*}), \forall j\in\mathbb{N},$ como queríamos encontrar.

Teorema 4. Se R é um anel noetheriano, então R[x] é noetheriano.

Demonstração. Tome $(M_i)_{i\in\mathbb{N}}$ uma cadeia crescente de ideais de R[x]; pelo que vimos acima, existe i^* para o qual $i>i^*$ implica em $I_j(M_i)=I_j(M_{i^*})$, para todo $j\in\mathbb{N}$.

Mas então, como $M_{i^*} \subset M_i$ e $I_j(M_i) = I_j(M_{i^*})$, para todo $j \in \mathbb{N}$, pela proposição 3 temos que $M_i = M_{i^*}$. Como $i > i^*$ implica que $M_i = M_{i^*}$, temos que $(M_i)_{i \in \mathbb{N}}$ é estacionária, e portanto R[x] é noetheriano.

Hilbert originalmente provou uma versão mais geral deste teorema, que colocamos abaixo com uma prova bastante elementar, ao usarmos o teorema acima como referência.

Teorema 5. Se R é um anel noetheriano, então $R[x_1, ..., x_k]$ é noetheriano, para qualquer $k \in \mathbb{N} - \{0\}$.

Demonstração. Provemos por indução sobre k: se k=1, segue do teorema acima que $R[x_1]$ é noetheriano.

Assumindo como hipótese de indução que $R[x_1,...,x_{k-1}]$ é noetheriano; pelo teorema acima temos que $R[x_1,...,x_{k-1}][x_k]$ é noetheriano, já que tem coeficientes em $R[x_1,...,x_{k-1}]$, que assumimos ser noetheriano.

Mas $R[x_1,...,x_k]$ e $R[x_1,...,x_{k-1}][x_k]$ são isomorfos, e o fato do último ser noetheriano implica que o primeiro também o seja. Fica provado, por indução, que $R[x_1,...,x_k]$ é noetheriano.

Referências Bibliográficas

- [1] Milne, J. S., Algebraic Number Theory, notes. University of Michigan, 1996.
- [2] Monteiro, L. H. Jacy, Elementos de Álgebra. Rio de Janeiro: Ao Livro Técnico S.A., 1971.