8257 DMA Controller

Interfacing of 8257 with 8086

Data Transfer Modes of 8257

- 1. Single Byte Transfer Mode/ Cycle Stealing
- 2. Block Transfer Mode.
- 3. Demand Transfer Mode
- 4. Cascade Transfer Mode

8257: Pin Diagram

- ▶ D7 D0
- OR
- MO
- CLK
- MEMR
- MEMW
- **A**0-A3
- A4-A7
- RESET
- ▶ READY
- → HRQ
- **HLDA**

■ AEN

ION IO

MEMR 4

MEMW a

MARK a

READY o

HLDA a

ADSTB a

- **ADSTB**
- \mathcal{L}
- MARK
- DRQ0 DRQ3

AEN a

SI S

CLK

DACK2 =

RESET

DACK3

- DACKO-DACK3
- S
- Vcc/Vss
- GND

DRQ1 F

DRQ2 =

DRQ3 =

DRQ₀ =

GND a

8257: DMA CONTROLLER

- Intel's 8251/is a four channel DMA controller designed to be interfaced w family of microprocessors.
- The 8257 performs the DMA operation over four independent DMA char
- Each of the four channels of 8257 has a pair of two 16 bit registers, viz. DA register and terminal count register.
- Algo, there are two common registers for all the channels, namely, mode status register.
- Thus there are a total of ten registers. The CPU selects one of these ten re address lines A0 – A3.

8257: DMA CONTROLLER

8257 Register Selection

Register	Byte	Ado	Address Inputs	Imput	s	FIL			BI-Directional Date	tiona	l Dar
		A	A_2	A_I	Ao		D_7	D_{δ}	D_{s}	D_4	D
CH-0 DMA Address	LSB	0	0	0	0	0	. A.	A	As	¥	Ą
	MSB	0	0	0	0	1	A15	A 14	A ₁₃	A 12	₹
CH-0 Terminal Count	LSB	0	0	0	1	0	C_{Z}	ီ <u>၁</u>	Cs	C.	C_3
	MSB	0	0	0	-	1	kď.	Wr	C_{13}	C_{12}	Ü
CH-1 DMA Address	LSB	0	0	1	0	0	. A.	Ag	As	A.	A
	MSB	0	0	1	0	1	. A15	A ₁₄	A ₁₃	A12	₹
CH-1 Terminal Count	LSB	0	0	1	1	0	С,	ບໍ	C_{S}	* '	Ú
	MSB	0	0	-	1	-	Rd	Wr	C_{13}	C ₁₂	ט
CH-2 DMA Address	FSB	0	1	0	0	0	A,	A,	A,	A4	A
	MSB	0	-	0	0	-	A15	A14	A13	A12	Ą
CH-2 Terminal Count	LSB	0	1	0	. 1	0	Ç	ບໍ	ď	ď	ΰ
	MSB	0	-	0	-	-	Rd	Wr	C_{13}	C12	ับ
CH-3 DMA Address	LSB	0		-	0	0	A7	A6	As	A.	¥
	MSB	0	-	-	0	-	A ₁₅	A14	A ₁₃	A12	Ą
CH-3 Terminal Count	LSB	0	1	1	1	0	, C,	ິນ	C,	7	Ö
	MSB	0	-	-	-	-	Rd	Wr	C_{13}	C ₁₂	ິບ
MODE SET	1	1	0	.0	0	0	AL	TCS	EW	RP	EN
(Programme only) STATUS (Read only)	1	-	0	0	0	b	0	0	0	ħ	2

8257 Block Diagram

MODE SET REGISTERS:

- It is a write only registers.
- It is used to set the operating modes.
- This registers is programmed after initialization of DMA channel.

D_0	${\sf EN}_0$
D_1	EN_1
\mathbb{D}_2	EN_2
D_3	EN_3
D_4	RP
D_5	EW
D_6	LCS
D_7	AL

EN	EN_3	RP	$\mathbb{E}\mathbb{W}$	SOL	AL
\mathbb{D}_2	\mathbb{D}_3	\mathbb{D}_4	\mathbb{D}^2	\mathbb{D}^{ϱ}	D_7

■ EN₃=1=Enable DMA CH-3

• EN₃=0=Disable DMA CH-3

► EN₂=1=Enable DMA CH-2

 $EN_2=0$ =Disable DMA CH-2

■ EN₁=1=Enable DMA CH-1

EN₁=0=Disable DMA CH-1

► EN₀=1=Enable DMA CH-0

• EN₀=0=Disable DMA CH-0

D_7	D_6	D_5	D_4	D_3	D_2
AL	SOL	$\mathbb{E}\mathbb{W}$	RP	EN ₃	EN_2

AL=1=Auto load mode

TCS=1=Stop after TC (Disable Channel)

► EW≠1=Extended write mode

RP=1=Rotating priority

STATUS REGISTERS:

- It is read only registers.
- It tells the status of DMA channels
- ■TC status bits are set when TC signal is activated for that channel.
- Update flag is not affected during read operation.
- The UP bit is set during update cycle. It is cleared after completior of update cycle.

D_7	\mathbb{D}_6	D_5	\mathbb{D}_4	\mathbb{D}_3	D_2	\mathbb{D}_1	\mathbb{D}_0
0	0	0	ďΩ	TC_3	TC_2	LC_1	$^{\mathrm{O}}\mathrm{LC}^{\mathrm{O}}$

UP=Update flag

■ UP=1=8257 executing update cycle

► UP=0=8257 executing DMA cycle

■ TC₃=1=TC activated CH-3

► TC₃=0=TC activated CH-3

■ TC₂=1=TC activated CH-2

TC₂=0=TC activated CH-2

- TC₁=1=TC activated CH-1
- TC₁=0=TC activated CH-1
- ▼TC₀=1=TC activated CH-0
- ► TC₀=0=TC activated CH-0
- The address of status register is $A_3A_2A_1A_0=1000$.

FIRST/LAST FLIP FLOP:

- 8257 have 8bit data line and 16 bit address line.
- 8085 it is getting 8-bit data in simultaneously.
- 8085 can not access 16-bit address in simultaneously.

- A0-A3 lines are used to distinguish between registers ,bu they are not distinguish lower and higher address.
- It is reset by external RESET signal.
- It is also reset by whenever mode set register is loaded.
- So program initialization with a dummy (00 H).
- FF=1=Higher byte of address
- FF=0=Lower byte of address.

Modes of Operation

- Rotating priority Mode:
- The priority of the channels has a circular sequence.
- Fixed Priority Mode:
- The priority is fixed.
- TC Stop Mode
- Auto Load mode
- Extended Write mode

Rotating Priority Mode

- In rotating priority mode, the priority of the channels has a circular sequence.
- In this, channel being serviced gets the lowest priority and the channel next to it gets the highest priority as shown in Fig.

Rotating Priority Mode

- Thus, with rotating priority in a single chip DMA system, any device reque is guaranteed to be recognized after no more than three higher pric have occurred.
- This prevents any one channel from monopolizing the system. The rot mode can be set by writing logic '1' in the bit 4 of the mode set register.

Fixed Priority Mode

- In the fixed priority, channel 0 has the highest priority and channel 3 has the lowest priority.
- In the fixed priority, after recognition of any one channel for service, the other channels are prevented from interfering with that service until it is completed.
- If bit 4 of mode set register is logic 0, Operating Modes of 8257 operates in fixed priority mode

Priority Highest Priority rating

Extended Write Mode

- Microcomputer systems allow use of various types of memory and I/O devices with different access time.
- If a device can not be accessed within a specific amount of time it returns a "not ready"/indication to the 8257 that causes the 8257 to insert one or more wait states in its internal sequencing.
- write signals which allows the devices to return an early READY and prevents the The extended write option provides alternative timing for the I/O and memory unnecessary occurrence of wait states in the Operating Modes of 8257.
- It does this by activating MEMW and IOW signals earlier in the DMA cycle, giving more setup time.

TC STOP Mode

- If the TC stop bit is set, a channel is disabled (i.e. its enable bit is reset) af terminal count (TC) output goes high, thus automatically preventing furthe operation on that channel.
- To enable DMA operation on the channel it is necessary to set enable bit corresponding channel in the mode set register. If the TC STOP bit is not s occurrence of the TC output has no effect on the channel enable bits.

Auto Load Mode

- Auto load Mode when enabled, permits block chaining operations immediate software intervention between blocks.
- In this mode, channel 2 parameters (DMA starting address, termin and DMA transfer mode) are initialized as usual for the first data blo
- These parameters are automatically duplicated in the channel 3 when channel 2 is initialized.
- TC output goes high), the parameters stored in the channel 3 regi transferred to channel 2 during an 'update' cycle and next block After the first block of DMA cycles is executed by channel 2 (i.e., cycle is executed.
- This repeat block operations can be used in applications such refreshing.