BLACK BOX TESTING (III)

Testing with decision tables

Decision tables form a compact way to model complicated logic. Decision tables, like if-then-else and switch-case statements, associate conditions with actions to perform.

Decision tables associate many *independent* conditions with several actions.

w

Decision Tables – Use (1)

Decision tables make it easier to observe that all possible conditions are accounted for (handling *multiple* inputs).

Decision tables used for:

- Specifying complex program logic
- Generating test cases

Test cases considered in:

- structural testing when applied to structure (i.e. control flow graph of an implementation).
- functional testing when applied to a specification.

Decision Tables – Use (2)

Test cases generated with decision tables considered in:

- structural testing when applied to structure (i.e. control flow graph of an implementation).
- functional testing when applied to a specification.

Decision tables and control flowcharts

Decision Tables - Structure

Condition entry

Action Entry

		Rule1	Rule2	Rule3	Rule4
	Condition1	Yes	Yes	No	No
Condition	Condition2	Yes	X	No	X
stub	Condition3	No	Yes	No	X
	Condition4	No	Yes	No	Yes
	Action1	Yes	Yes	No	No
Action stub	Action2	No	No	Yes	No
	Action3	No	No	No	Yes

Example (1)

Example (2)

	Rule1	Rule2	Rule3	Rule8
User registered	F	F		Т
No outstanding fees	F	F		Т
Under borrow limit	F	Т	•••	Т
Borrow book	No	No		Yes

Decision Tables - Structure

Stub	Rule 1	Rule 2	Rule 3	Rule 4	Rule 5	Rule 6
c1	T	Т	Т	F	-	T
c2	F	Т	Г	Т	-	Ι
c3	T	Т	-	Т	Т	Γ
c4	T	F	F	T	Т	Т
a1	X	X		X	X	X
a2		X				10.00
a3	X			X		
a4			X			X

Decision Tables - Structure

Conditions - (Condition stub)	Condition Alternatives – (Condition Entry)
Actions – (Action Stub)	Action Entries

condition corresponds to a variable, relation or predicate

possible values for conditions are listed among the condition alternatives

- Boolean values (True / False) Limited Entry Decision Tables
- Several values Extended Entry Decision Tables
- Don't care value

action is a procedure or operation to perform

entries specify whether the action is to be performed

٧

Default rules

default rules specified to indicate the action to be taken when none of the other rules apply.

When using decision tables in testing, default rules and their associated predicates must be explicitly provided.

	Rule5	Rule6	Rule7	Rule8
Condition1	Х	No	Yes	Yes
Condition2	X	Yes	X	No
Condition3	Yes	X	No	No
Condition4	No	No	Yes	X
Default action	Yes	Yes	Yes	Yes

1

Example-3

	Printer does not print	Y	Y	Y	Y	N	N	N	N
Conditions	A red light is flashing	Y	Y	N	N	Y	Y	N	N
	Printer is unrecognized	Y	N	Y	N	Y	N	Y	N
	Heck the power cable			X					
	Check the printer-computer cable	X		X					
Actions	Ensure printer software is installed	X		X		X		X	
	Check/replace ink	X	X			X	X		
	Check for paper jam		X		X				

Printer Troubleshooting

Example-4

	Conditions/			Ru	les		
	Courses of Action	1	2	3	4	5	6
Condition	Employee type	S	Н	S	Н	S	Н
Stubs	Hours worked	<40	<40	40	40	>40	>40
Action	Pay base salary	Χ		Х		Х	
Stubs	Calculate hourly wage		X		X		Х
	Calculate overtime						Х
	Produce Absence Report		Х				

м

Example-5

The word-processor may present portions of text in three different formats:

```
plain text (p),
boldface (b),
italics (i).

The following commands may be applied to each portion of text:
make text plain (P),
make boldface (B),
make italics (I),
emphasize (E),
super emphasize (SE).
```

Commands are available to dynamically set E to mean either B or I (denote such commands as E=B and E=I, respectively.)

Similarly, SE can be dynamically set to mean either B (command SE=B) or I (command SE=I), or B and I (command SE=B+I.)

M

Р	*								
В		*							*
I			*						*
E				*	*				
SE						*	*	*	
E = B				*					
E = I					*				
SE = B						*			
SE = I							*		
SE = B + I								*	
action	р	b	i	b	i	b	i	b,i	b,i

Example - 7

Age of driver below 16, 16-18, 18 or more
The driver successfully passed the theoretical exam (or not)
Whether an authorized driver is present or absent
Whether the individual successfully passed the practical driving exam

	01	02	03	04	0.5	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Age A:<16 16 <b<18 C: 18</b<18 	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	В	С	c	c	С	С	С	c	с
Theory OK?	0	0	0	0	N	N	N	N	0	0	0	0	N	N	N	N	0	0	0	0	N	N	N	N
Accompanying driver present?	0	0	N	N	0	o	N	N	0	0	N	N	0	0	N	N	0	0	N	N	0	0	N	N
License obtained?	0	N	0	N	0	N	o	N	0	N	o	N	0	N	0	N	o	N	0	N	0	N	0	N
Driving authorized?	N (a)	N (b)	0	N (b)	N	N (b)	N (d)	N (b)	N (d)	0	0	0	N	N (c)	N (d)	N (c)	N (d)							

м

Design of Decision Tables

Determine conditions and values

Determine maximum number of rules

Determine actions

List possible rules

List appropriate actions for each rule

Simplify the rules (reduce if possible the number of columns)

м

Decision Tables – Design Issues

completeness of rules

 every combination of predicate truth values <u>plus</u> default cases are explicit in the decision table

consistency of rules

 every combination of predicate truth values results in only one action or set of actions

Redundancy and consistency

Conditions	1 to 4	5	6	7	8	9
c1	T	F	F	F	F	T
c2	The state of the s		T	F	F	F
cЗ	Landayarandayar	T	F	T	F	F
a1	X	Χ	Χ	_	-	X
a2	-	Χ	Χ	Χ		
аЗ	Χ	-	X	Χ	X	X

redundancy

Conditions	E	5	6	7	8	9
c1	T	F	F	F	F	T
c2		T	T	1000	F	F
с3	and animaline control and the	T	F	The state of the s	F	The second secon
a1	χ	Χ	X	- Constitution in a school sector		A SECURITY OF THE SECURITY OF
a2	×	Χ	X	X	,	X
аЗ	A service serv	-	Χ	X	Χ	-

inconsistency

Example: driver's license (1)

Age of driver below 16, 16-8, 18 or more
The driver successfully passed the theoretical exam (or not)
Whether an authorized driver is present or absent
Whether the individual successfully passed the practical driving exam

	01	02	0.3	04	0.5	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Age A:<16 16 <b<18 C: 18</b<18 	A	A	A	А	A	A	A	A	В	В	В	В	В	В	В	В	С	c	c	С	С	С	c	С
Theory OK?	0	0	0	0	N	N	N	N	0	0	0	0	N	N	N	N	0	0	0	0	N	N	N	N
Accompanying driver present?	0	0	N	N	0	o	N	N	0	0	N	N	0	0	N	N	0	0	N	N	0	0	N	N
License obtained?	0	N	0	N	0	N	o	N	0	N	o	N	0	N	0	N	o	N	0	N	0	N	0	N
Driving authorized?	N (a)	N (b)	0	N (b)	N	N (b)	N (d)	N (b)	N (d)	0	0	0	N	N (c)	N (d)	N (c)	N (d							

Example: driver's license (2)-reduction of decision table

Cases (Constraints):

Driving is not allowed due to non – fulfillment of of the prerequisite for the theoretical exam and driving with an authorized driver or not

Cases when driving accompanied or not is possible

Theoretically impossible cases to applicable legal prerequisites

Example: driver's license

	01	02	0.3	04	0.5	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Age A:<16 16 <b<18 C: 18</b<18 	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	В	С	c	c	С	с	С	c	С
Theory OK?	0	0	0	0	N	N	N	N	0	0	0	0	N	N	N	N	0	0	0	0	N	N	N	N
Accompanying driver present?	0	0	N	N	0	0	N	N	0	0	N	N	0	0	N	N	o	0	N	N	0	o	N	N
License obtained?	0	N	0	N	0	N	o	N	0	N	o	N	0	N	0	N	o	N	0	N	0	N	0	N
Driving authorized?	N (a)	N (b)	0	N (b)	N	N (b)	N (d)	N (b)	N (d)	0	0	0	N	N (c)	N (d)	N (c)	N (d)							

(a)Age below 16

O- yes N- no

- (b)Driving license obtained and age below 18
- (c) Theoretical exam has not been passed and practical exam passed
- (d) theoretical and practical exam have not been passed

Example: driver's license (3)reduction of decision table

- (a)Age below 16
- (b)Driving license obtained and age below 18
- (c) Theoretical exam has not been passed and practical exam passed
- (d) theoretical and practical exam have not been passed

	01	09	10	12	14	17	18	19	20	21
Age A: <16 16 <b<18 C: 18</b<18 	A	В	В	В	-	С	С	С	С	С
Theory OK?	20	-	Y	Y	N	Y	Y	Y	Y	N
Accompanying driver present?	Totale .	-	Y	N	-	Y	Y	N	N	_
License obtained?	-	Y	N	N	N	Y	N	Y	N	Y
Driving authorized?	N (a)	N (b)	Y	N	N (d)	Y	Y	Y	N	N (c)
Weight	8	4	1	1	4	1	1	1	1	2

Test Case Design

- Once the specification has been verified, the objective is to demonstrate that the implementation provides the correct action for all combinations of predicate values:
 - □ if there are k rules over n binary predicates, then there are at least k cases and at most 2ⁿ cases to consider.
- Test design based on unexpanded rules or on the expanded rules with 2ⁿ tests
 - ☐ find the input vector to realize each case.

10

Test Case Design

- To identify test cases with decision tables, we interpret conditions as inputs, and actions as outputs.
- Sometimes conditions end up referring to equivalence classes of inputs, and actions refer to major functional processing portions of the item being tested.
- The rules are then interpreted as test cases.

Decision Table for the Triangle Problem

Conditions											
C1: a < b+c?	F	T	T	T	T	T	T	T	T	T	T
C2: b < a+c?	-	F	T	T	T	T	T	T	T	Т	T
C3: c < a+b?	-	_	F	Т	Т	Т	T	T	Т	T	T
C4: a=b?	-	_	_	T	T	T	Т	F	F	F	F
C5: a=c?	-	_	_	Т	Т	F	F	T	T	F	F
C6: b=c?	-	-	_	Т	F	Т	F	T	F	T	F
Actions											
A1: Not a Triangle	X	X	X								
A2: Scalene											X
A3: Isosceles							X		X	X	
A4: Equilateral				X							
A5: Impossible					X	X		X			

Test Cases for the Triangle Problem

Case ID	а	b	С	Expected Output
DT1	4	1	2	Not a Triangle
DT2	1	4	2	Not a Triangle
DT3	1	2	4	Not a Triangle
DT4	5	5	5	Equilateral
DT5	?	?	?	Impossible
DT6	?	?	?	Impossible
DT7	2	2	3	Isosceles
DT8	?	?	?	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

Usage of decision tables

The use of the decision-table model is applicable when
--

- the specification is given or can be converted to a decision table .
- □ the order in which the predicates are evaluated does not affect the interpretation of the rules or resulting action.
- the order of rule evaluation has no effect on resulting action .
- once a rule is satisfied and the action selected, no other rule need be examined.
- the order of executing actions in a satisfied rule is of no consequence.
- The restrictions do not, in reality, eliminate many potential applications.
 - □ In most applications, the order in which the predicates are evaluated is immaterial.
 - Some specific ordering may be more efficient than some other but in general the ordering is not inherent to the program's logic.

Development Guidelines

- Decision table testing is most appropriate for programs with
 - □ a lot of decision making
 - important logical relationships among input variables
 - calculations involving subsets of input variables
 - □ cause and effect relationships between input and output
 - complex computation logic (*high* cyclomatic complexity)
- Decision tables do not scale up very well
- Decision tables can be iteratively refined

Testing with the use of cause-effect graphs

Cause-Effect Graphs

- •Formal representation using which we convert specifications into logical relationships between inputs and outputs (inputs and transformations)
- undirected Boolean graph showing dependencies (relationships)
 between causes and effects:
 inputs causes, outputs effects
- Logic operators: and, or, not
- Constraints among inputs
- Dependencies between outputs

Specification divided into workable pieces

Causes and effects in the specification document are identified

Semantic content of the specification is analyzed and transformed into a Boolean graph linking causes and effects (cause-effect graph)

The graph is annotated by constraints describing combinations of causes and/or effects that are impossible because of existing constraints

Through tracing, the graph is converted into a limited – entry decision table; each column of this table represents a test case

Cause-Effect Graphs: Basic graphic symbols

Cause-Effect Graphs: Example

Specifications:

The character in column 1 must be an "A" or a "B". The character in column 2 must be a digit. In this case the file is updated If the first character is incorrect, message ERROR_1 is issued If the second character is not a digit, message ERROR_2 is generated

Causes:

- 1 character in column 1 is A
- 2 character in column 1 is B
- 3 character in column 2 is a digit

Effects:

- 10 UPDATE
- 11 ERROR 1 issued
- 12 ERROR_2 issued

Cause-Effect Graphs: An example

Cause-Effect Graphs: Constraints among causes

Exclusive

Either C1 or C2 or C3

arity>1

C1	C2	C3
0	0	0
1	0	0
0	1	0
0	0	1

Cause-Effect Graphs: Constraints among causes

At least C1 or C2 must be present

arity>1

C1	C2
1	0
0	1
1	1

Cause-Effect Graphs: Constraints among causes

requires

R(C1, C2) C1 requires C2

applies to two causes

C1	C2
1	1
0	0
0	1

No combination where C₁=1, C₂ =0

Cause-Effect Graphs: Constraints among causes

O(C1, C2) one and only one of C1 and C2

C1	C2
1	0
0	1

Cause-Effect Graphs: Constraints among effects

If effect "a" is 1, effect "b" is forced to 0
Effect "a" masks effect of "b"

Cause-Effect Graphs: Constraints among effects

E1: generate "shipping invoice"

E2: generate "order not shipped – regret letter"

E2 is masked by E1

Cause-Effect Graphs: An example

Cause-Effect Graphs: An example

A non-resident will pay 1% of the gross pay in city tax

Residents pay on the following scale:

- -if gross pay is no more than \$30,00, the tax is 1%
- If gross pay is more than \$30,000, but no more than \$50,000, the tax is 5%
- If gross pay is more than \$50,000, the tax is 15%

Causes:

- (1) non-resident
- (2) Resident
- (3) 0<= Gross Pay<= 30k
- (4) \$30k< Gross Pay <=50k
- (5) Gross Pay >50k

Effects:

(11) 1% tax (12) 5% tax (13) 15% tax

r,

Example

Water level monitoring system reporting to an agency involved with flood control

INPUT: the syntax of the function is LEVEL (A, B)

A: the height of (in meters) of the water behind the dam

B: the number of centimeters of rain in the last 24 hours

PROCESSING: The function calculates whether the water level is within a safe range or too high

OUTPUT: The screen shows one of the messages

Level = safe (result is safe)

Level = high (result is high)

Invalid Syntax

Example

Causes

- 1. The first five characters of the command LEVEL
- 2. The command contains exactly two parameters separated by a comma and enclosed in parentheses
- 3. The parameters A and B are real numbers such that the water level is calculated to be SAFE
- 4. The parameters A and B are real numbers such that the water level is calculated to be HIGH

Effects

- E1 The message "LEVEL = SAFE" is displayed
- E2 The message "LEVEL = HIGH" is displayed
- E3 The message "INVALIDS SYNTAX" is displayed

Intermediate nodes

10 The command is syntactically valid

11 The operands are syntactically valid

Example

Example – Web registration(1)

Sign up for course
Name:
Address:
Zip Code: City:
Course Number:
Submit

Example – Web registration(2)

Causes:

- C1- name field is filled in
- C2- name contains only letters and spaces
- C3- Address field is filled in
- C4- zip code is filled in
- C5- city is filled in
- C6 course number is filled in
- C7- course number exists in the system

Example – Web registration(3)

Intermediate variable:

130- and (C1, C3, C4, C5, C6)

Effects

E51 – registration of student in system

E52 – message shown: All fields should be filled in

E53 – message shown: only letters and spaces in name

E54 – message shown: unknown course number

E55 – message shown – you have been registered

Causes:

C1- name field is filled in

C2- name contains only letters and spaces

C3- Address field is filled in

C4- zip code is filled in

C5- city is filled in

C6 – course number is filled in

C7- course number exists in the system

Intermediate variable:

130- and (C1, C3, C4, C5, C6)

Effects

E51 – registration of student in system

E52 – message shown: All fields should be filled in

E53 – message shown: only letters and spaces in name

E54 – message shown: unknown course number

E55 – message shown – you have been registered

E51= and (I30, C2, C7)

E52 = not(130)

E53= and(I30,not C2)

E54=and(I30, C2, not C7)

E55 = E51

Example – Web registration(5)

CPU 1 CPU 2 CPU 3

PR 1 PR 2 M 20 M 23 M 30 RAM 256 RAM 512 RAM 1G

GUI – 5 windows– selection from CPU, Printer, Monitor, RAM free giveaway

Assume RAM available only as an upgrade, one unit of each item purchased

Example – GUI-based computer purchase system (2)

CPU 1 CPU 2 CPU 3 PR 1 PR 2 M 20 M 23 M 30 RAM 256 RAM 512 RAM 1G

Monitors M 20 and M 23 can be purchased with any CPU or as a standalone item. M 30 can be only purchased with CPU 3.

PR 1 is available free with a purchase of CPU 2 or CPU 3.

Monitors and printers, except for M 30 can also be purchased separately without purchasing any CPU.

Purchase of CPU 1 gets RAM 256 upgrade and purchase of CPU 2 or CPU 3 gets a RAM 512 upgrade.

The RAM 1G upgrade and a free PR 2 is available when CPU 3 is purchased with monitor M 30.

CPU 1 CPU 2 CPU 3 PR 1 PR 2 M 20 M 23 M 30 RAM 256 RAM 512 RAM 1G

Causes:

C₁ purchase CPU 1

C₂ purchase CPU 2

C₃ purchase CPU 3

C₄ purchase PR 1

C5 purchase PR 2

C6 purchase M 20

C7 purchase M 23

C8 purchase M 30

"free" display window:

effects:

Ef₁ RAM 256

Ef₂ RAM 512 and PR 1

Ef₃ RAM 1G and PR 2

Ef₄ no giveaway with this item

Causes:

C₁ purchase CPU 1

C₂ purchase CPU 2

C₃ purchase CPU 3

C₄ purchase PR 1

C5 purchase PR 2

C6 purchase M 20

C7 purchase M 23

C8 purchase M 30

effects:

Ef₁ RAM 256

Ef₂ RAM 512 and PR 1

Ef₃ RAM 1G and PR 2

Ef₄ no giveaway with this item

Example –ATM

A bank database which allows two commands

- □ Credit acc# amt
- □ Debit acc# amt

Requirements

- ☐ If credit and acc# valid, then credit
- If debit and acc# valid and amt less than balance, then debit
- □ Invalid command message

v

Example-ATM

Causes

- □ C1: command is credit
- C2: command is debit
- □ C3: acc# is valid
- □ C4: amt is valid

Effects

- □ Print "Invalid command"
- □ Print "Invalid acct#"
- □ Print "Debit amt not valid"
- Debit account
- Credit account

.

Cause-effect graph

Decision table

#	1	2	3	4	5	
C1	0	1	X	X	1	
C2	0	X	1	1	X	
C3	X	0	1	1	1	
C4	X	X	0	1	1	
E1	1					
E2		1				
E3			1			
E4				1		
E5					1	C1: command is C ₁ v
						C2: command is C2

debit

C3: acc# is

C4: amt is

E₁

E3: Print "Debit amt not

E4 :Debit account

valid"

E5

E5: Credit

E1: Print "Invalid command"

E2

E2: Print "Invalid acct#"

Tests

Decision table:

causes – conditions effects – actions

Each column == test

Select an effect to be present (1)

Trace back through the graph, find all combinations of causes (subject to constraints) that will set this effect to 1

Create a column in the decision table for each combination of causes

Generation of decision table: illustrative example

Generation of decision table: illustrative example

Reduce the number of test cases (possible combinatorial explosion)

Heuristics for tracing back through the graph:

and nodes

or nodes

Tracing back the graph

or node

e = 0

Enumerate all combinations of inputs to n_1 and n_2 such that $n_1=0$, $n_2=0$

e=1

Enumerate *all* combinations of inputs to n_1 and n_2 other than such for which $n_1=1$, $n_2=1$.

Path sensitizing. This prevents the failure to detect error because one error can <u>mask</u> another one.

Tracing back the graph path sensiting

Path sensitizing

failure to detect error because one error can <u>mask</u> another one.

Example

if (c1 or c2) then print message

erroneous implementation

If (c1 or (not (c2)) then print message

м

Tracing back the cause-effect graph

and node

e=1

enumerate all combinations of inputs to n_1 and n_2 such that n_1 and $n_2 = 1$.

e=0

enumerate *all* combinations of n_1 and n_2 such that each of the possible combinations of n_1 and n_2 appear only once and n_1 =1 n_2 =1 does not appear. Three combinations (figure above): 10, 01, 00.

In general

'k" nodes and-ed to form "e": 2k-1 combinations.

Considerations used when tracing the graph(1)

If x is to be 1, do not bother with the situation where a=b=1

If x to be 0, enumerate all situations where a = b = 0

Considerations used when tracing the graph (2)

If x is to be 1, enumerate all situations where a=b=c=1

If x to be 0, include only one situation where a=b=c=0.

For the situations 001, 010, 100, 011, 101 and 110 of a,b,c include only one situation each

м

Tracing back the graph: illustrative example (3a)

Tracing back the graph illustrative example -- summary

5 combinations vs. 13 combinations producing 0

Tracing back the graph illustrative example

1	2	3	4	output
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
O	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Tracing back the graph

Cause –effect graph

Translation of specification → logic networks

Helps uncover ambiguities and incompleteness in specifications

General testing strategy

Specifications with combinations of input conditions –start with cause-effect graph

Use **boundary value analysis** (some tests could have been already generated by the cause-effect technique)

Identify valid and invalid equivalence classes

Error- guessing technique