Relacją dwuargumentową w zbiorze X nazywamy dowolny podzbiór R drugiej potęgi kartezjańskiej X^2 ($R \subset X^2$).

Przykład: $\{(x, y) \lor x, y \in R, x \le y\}$

Relacja pusta : $\emptyset \subset X^2$ Relacja totalna : $X^2 \subset X^2$

Jeżeli R jest relacją to **dziedziną relacji** nazywamy zbiór $D_R = \{x \in X | \exists_{y \in X} (x, y) \in R\}$ **Przeciwdziedziną** nazywamy zbiór $D_R^{-1} = \{y \in X | \exists_{x \in X} (x, y) \in R\}$

Relacja odwrotna
$$R \subset X^2$$
 $R^{-1} = \{(y, x) | (x, y) \in R\} \subset X^2$ Przykład: $\leqslant \in R^2$, $\leqslant^{-1} = \geqslant$

Własności relacji $R \subset X^2 = X \times X$:

- **zwrotna** $\forall_{x \in X} (x, x) \in R$
- przeciw zwrotna $\forall_{x \in X} (x, x) \notin R$
- symetryczna $\forall_{x,y\in X}(x,y)\in R\Rightarrow (y,x)\in R$
- antysymetryczna $\forall_{x,y \in X} (x,y) \in R \Rightarrow (y,x) \notin R$
- słabo antysymetryczna $\forall_{x,y \in X} (x,y) \in R \land (y,x) \in R \Rightarrow x = y$
- przechodnia $\forall_{x,y,z\in X}(x,y)\in R \land (y,z)\in R \Rightarrow (x,z)\in R$
- spójna $\forall_{x,y \in X}(x,y) \in R \lor (y,x) \in R \lor x = y$

Relację $R \subset X \times X$ nazywamy **relacją równoważności**, jeśli jest ona zwrotna, symetryczna i przechodnia. Przykład := (równość jest relacją równoważności)

Niech R będzie relacją równoważności określoną w zbiorze $X \neq \emptyset$. Klasą abstrakcji elementu $x \in X$ względem relacji R nazywamy zbiór $[x]_R = \{y \in X : x R y\}$

Zbiór ilorazowy to zbiór wszystkich klas abstrakcji względem relacji równoważności:

$$X/R = \{[x]_R : x \in X\}$$

Przykłady:

1)Rozważmy zbiór $A = \{1,2,3,4,5,6,7\}$ Określmy w nim relację x R y wtedy i tylko wtedy, gdy x i y dają taką samą resztę z dzielenia przez 3.

Jest to relacja równoważności

.

Klasami abstrakcji są:

$$[1]=[4]=[7]=\{1,4,7\}$$

 $[2]=[5]=\{2,5\}$

$$[3]=[6]=[3,6]$$

Poszczególne warstwy są rozłączne. Przestrzenią ilorazową jest zbiór: $A/R = \{\{1,4,7\},\{2,5\},\{3,6\}\}$

2) Niech $m, n \in \mathbb{N}$, mR n <=> $m^2 - n^2$ jest wielokrotnością 3.

Sprawdzamy czy jest to relacja równoważności.

a) zwrotność

$$a^2 - a^2 = 0.3$$
 jest zwrotna

b) symetryczność

jeżeli
$$a^2-b^2=k\cdot 3$$
, to $b^2-a^2=(-k)\cdot 3$ jest symetryczna

c) przechodniość

jeżeli
$$a^2-b^2=k\cdot 3$$
, $b^2-c^2=l\cdot 3$, to $a^2-c^2=(a^2-b^2)+(b^2-c^2)=k\cdot 3+l\cdot 3=(k+l)\cdot 3$ jest przechodnia

Relacja R jest relacją równoważności.

Klasy abstrakcji:

Załóżmy, że
$$a,b \nmid 3$$
 wówczas: $a=3*k+r$ $b=3*l+s$ $a^2-b^2=9\cdot k+6\cdot k\cdot r+r^2-9\cdot l^2-6\cdot l\cdot s-s^2=3(3\cdot k+2\cdot k\cdot r-3\cdot l-2\cdot l\cdot s)+(r-s)$

Czyli $(r-s)=0 \lor (r-s)=1$, stąd mamy dwie klasy abstrakcji:

$$[0]$$
={0,3,6,9,12....}

$$[1] = \{1,2,4,5,7,8,....\}$$