JOURNAL OF KIM IL SUNG UNIVERSITY

(NATURAL SCIENCE)

Vol. 60 No. 8 JUCHE103(2014).

휘수연광으로부터 몰리브덴산암모니움이 제조

라인철, 정성철, 강철준

위대한 령도자 김정일동지께서는 다음과 같이 지적하시였다.

《원료와 연료, 동력문제를 해결하기 위한 과학기술적문제를 푸는데서 중요한것은 우리 나라의 자원을 널리 개발하기 위한 과학기술적문제를 푸는것입니다.》(《김정일선집》제11권 중 보판 134페지)

각종 촉매, 윤활제, 미량원소비료로 널리 리용되고있는 몰리브덴화합물들은 몰리브덴 산암모니움을 출발원료로 하기때문에 그 순도에 대한 요구는 특별히 높다.[1, 2]

우리는 산으로 휘수연광을 예비처리하여 99.5%이상으로 품위를 높인 다음 산화배소, 암 모니아침출로 순도높은 몰리브덴산암모니움을 제조하였다.

실 험 방 법

기구로는 항온조, 2구플라스크(500mL), 폴리에틸렌반응기(100mL), 교반기, 온도계, 마플로, 원자발광스펙트르분석기(《ИСП-30》)를, 시약으로는 휘수연광(MoS₂ 92.5%), HCl (20%), HF(5%), NH₄OH(20%), FeCl₃·6H₂O(분석순), K₂Cr₂O₇(0.1mol/L), EDTA(0.1mol/L), ET-00알림약. 디페닐아밋알림약을 리용하였다.

먼저 2구플라스크에서 염산에 의한 침출을 진행하고 려액에서 Ca^{2+} , Mg^{2+} 및 Fe^{3+} 의 량을 결정한다. 다음 $FeCl_3 \cdot 6H_2O$ 를 필요한 량만큼 염산용액에 넣어 불순물들인 Cu, Pb를 제거한다.

다음 염산으로 처리한 휘수연정광을 불산으로 침출한다. 이렇게 산처리한 휘수연광을 산화배소하고 암모니아수로 침출한 다음 결정화시켜 몰리브덴산암모니움을 제조하였다.

출발원료와 최종생성물에서 Mo^{6+} 의 함량은 무게분석법으로, Ca^{2+} , Mg^{2+} 의 함량은 EDTA 적정법으로, Fe^{3+} 의 함량은 중크롬산칼리움적정법으로, 기타 금속들의 함량은 원자발광스 펙트르분석법으로 정량하였다.

실험결과 및 고찰

출발원료의 화학조성은 표 1과 같다.

표 1. 휘수연정광의 화학조성

성분	MoS_2	Ca	Mg	Fe	Si	Cu	Pb
합량/질량%	92.5	1.0~2.0	0.1~1.0	0.5~2.0	1.0~3.0	0.05~0.10 0.	05~0.10

1) 역사침출

고액비의 영향 휘수연정광과 염산의 고액비를 변화시키면서 Ca^{2+} , Mg^{2+} 및 Fe^{3+} 의 제거률변화를 고찰하였다.(그림 1) 이때 출발원료에서 불순물의 함량은 Ca 1.3%, Mg 0.5%, Fe 0.7%이며 HCl의 농도는 5%, 침출온도는 20°C, 교반속도는 100r/min, 침출시간은 2h이였다.

그림 1에서 보는바와 같이 Ca^{2+} 은 고액비 3까지 제거률이 급격히 높아지다가 그 이상에서는 서서히 높아지며 5에서 제거률은 68.0%였다. Mg^{2+} 은 Ca^{2+} 에 비하여 제거률이 낮으며 고액비 5에서 제거률이 55.1%였다. Fe^{3+} 은 고액비가 커지면서 제거률이 직선적으로 높아지는데 고액비 5에서 37.0%였다.

그림 1. 염산침출에 의한 금속들의 제거률변화 1-Ca²⁺, 2-Mg²⁺, 3-Fe³⁺

온도의 영향 온도를 올리면서 금속들의 제거률변화를 고찰하였다.(그림 2)

 $1-Ca^{2+}$, $2-Mg^{2+}$, $3-Fe^{3+}$

의 함량변화는 표 2와 같다.

그림 2에서 보는바와 같이 80°C에서 Ca²⁺ 및 Mg²⁺ 은 대부분 제거되고 Fe³⁺은 거의 60%정도 제거되였다.

점가제의 영향 출발원료에 포함되여있는 Cu, Pb 및 Fe와 같은 불순물들을 효과적으로 제거하기 위하여 고액비 3, 침출온도 80℃, 교반속도 100r/min인 조건에서 Fe³⁺의 농도가 3.0g/L 되게 FeCl₃·6H₂O를 첨가하고 2h 동안 침출하였을 때 불순물들의 함량은 Cu 10⁻³%이하, Pb 10⁻³%이하, Fe 10⁻²%이하였다.

2) 불산침출

휘수연정광과 불산(5%)을 고액비 3으로 혼합하고 침출온도 80°C에서 침출하였을 때 시간에 따르는 Si

	=::::=	011 _1_ 51.				
시간/h	1.0	2.0	3.0	4.0	5.0	-
Si의 함량/질량%	<1.0	<0.5	<10 ⁻²	<10 ⁻²	<10 ⁻²	-

표 2. 불산침출에 의한 Si의 함량변화

표 2에서 보는바와 같이 침출시간을 3h이상으로 하면 Si의 함량을 10^{-2} %이하로 보장할수 있다.

3) 종합실험결과

휘수연정광과 염산(5%)의 고액비 3, 침출온도 80℃, 교반속도 100r/min, Fe³⁺의 농도 3.0g/L, 침출시간 2h의 조건에서 휘수연광을 침출하고 려과하였다. 려과하여 얻은 고체분말과 불산(5%)을 고액비 3으로 혼합하고 80℃에서 3h동안 침출하였다.

최종생성물에 대한 화학분석 및 원자발광스펙트르분석결과는 표 3과 같다.

표 3. 정제휘수연광의 조성

성분	MoS_2	Ca	Mg	Fe	Si	Cu	Pb
함량/질량%	99.5	$<5.10^{-2}$	$<5.10^{-2}$	< 10^-1	< 10^-3	$< 10^{-3}$	<5·10 ⁻²

염산 및 불산침출과정에 휘수연정광에 들어있던 불순물금속들은 다음과 같은 반응을 통하여 제거된다.

$$CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2 \uparrow$$
 (1)

$$MgCO_3 + 2HCl = MgCl_2 + H_2O + CO_2 \uparrow$$
 (2)

$$CuFeS_2 + 4FeCl_3 = CuCl_2 + 5FeCl_2 + 2S$$
(3)

$$PbS + 2FeCl3 = PbCl2 + 2FeCl2 + S$$
 (4)

$$SiO_2 + 6HF = H_2SiF_6 + 2H_2O$$
 (5)

정제한 휘수연광을 650°C에서 2h동안 산화배소하고 암모니아수(20%)를 60°C에서 3h동 안 작용시킨 다음 결정화시켜 몰리브덴산암모니움을 제조하였다.

최종생성물의 화학조성은 표 4와 같다.

표 4. 최종생성물의 화학조성

성분	$(NH_4)_6Mo_7O_{24} \cdot 4H_2O$	Ca	Mg	Fe	Si	Cu	Pb
함량/%	99.5	$< 10^{-3}$	< 10^-3	<10 ⁻³	< 10^-3	<10^-4	$< 10^{-4}$

맺 는 말

염산 및 불산처리에 의하여 휘수연광속의 Ca, Mg, Cu, Pb 및 Si를 제거하였다. 산처리한 휘수연광을 산화배소하고 암모니아수로 처리하여 99.5%의 몰리브덴산암모니 움을 제조하였다.

참 고 문 헌

- [1] M. Poorkani et al.; Minerals Engineering, 18, 7, 735, 2005.
- [2] D. Bayot et al.; Inorganica Chimica Acta, 357, 3, 809, 2004.

주체103(2014)년 4월 5일 원고접수

Manufacture of Ammonium Molybdate from Molybdenite

Ra In Chol, Jong Song Chol and Kang Chol Jun

Some impurities in concentrated ore of molybdenite are eliminated by acid washing, Ca<10⁻³%, Mg<10⁻³% and Fe 10⁻²%. After that, through oxidizing roasting 650°C for 2h, ammonia water(20%) leaching and crystallization, high-purity ammonium molybdate(99.5%) is manufactured.

Key words: molybdenite, acid washing, ammonium molybdate