Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.16 CD 24/05/2025

CONTINUOUS INTERNAL EVALUATION - 2

Dept:AI/CD/CS	SCIII / DIVI I	Sub:Sub:Discrete Mathematical Structures	S Code:BCS405A
Date:29/05/2025	Time: 3:00-4:30	Max Marks: 50	Elective:Y
		- 44	.: from each part

Note: Answer any 2 full questions, choosing one full question from each part.

QN	I	Questions	Iar I	RBT	CO)'s
		PART A				
1		In how many ways one can arrange the letters of the word "CORRESPONDENTS" so that there are (i) no pair (ii) at least 2 pairs of Consecutive identical letters.		L2		
	t	4 persons P_1, P_2, P_3, P_4 who arrive late for a dinner party find that only one chair at each of five tables T_1, T_2, T_3, T_4 and T_5 is vacant. P_1 will not sit at T_1 or $T_2.P_2$ will not sit at T_2 . P_3 will not sit at T_3 or T_4 . P_4 will not sit at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.	10	L3		
5		State pigeon hole principle. Prove that if 30 dictionaries in a library contain a total of 61,327 pages then atleast one of the dictionaries must have atleast 2045 pages.	7	L	2 0	CO3
1		OR				00
	2	a In how many ways, the 26 letters of the English alphabe be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?				CO
10		b Solve the recurrence relation $a_{n-} 6a_{n-} + 9a_{n-2} = 0$ for $n \ge 1$ with $a_0 = 5$, $a_1 = 12$.	2 1	0 1	_3	CC

c Draw the Hasse diagram representing the Positive divisor	7	L2	Co
real numbers and let		L2	CO5
a If G be a set of all non zero real real real at a set of all non zero real real real real real a set of all non zero real real real real real real real real	10	L2	CO5
that this is a Kiem-4 group c Prove that intersection of two subgroups of a group G is		L2	CO5
also a subgroup of G. OR	10	1.2	CO5
4 a State and prove Lagrange's theorem. Let G be a group with subgroup H and K. If $ G =660$ and $ K =66$	10		
is a cycle group. Find all its generators	10		2 CO5
b Prove that $(Z_4, +)$ is a cycle group. c If * is an operation on Z defined by xy=x+y+1, prove that $(Z, *)$ is an abelian group.	5	L	2 CO5

Akhila M L Prepared by:

HOD