2.3 Multi-Qubit Gates: CNOT, Toffoli, Controlled Gates

1. Consider the circuit below,

What is $|\psi\rangle$ if

(a)
$$|v\rangle = |0\rangle$$

(b)
$$|v\rangle = |1\rangle$$

(c)
$$|v\rangle = |+\rangle$$

2. In the quantum circuits below, find the state $|\psi\rangle$ (a)

 $|0\rangle$ $|0\rangle$ X $|0\rangle$

(b)

Answers

1.

(a)
$$|\psi\rangle = |00\rangle$$

(b)
$$|\psi\rangle = |11\rangle$$

(c)
$$|\psi\rangle = CNOT \frac{1}{\sqrt{2}} \left(|00\rangle + |10\rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left(CNOT |00\rangle + CNOT |10\rangle \right)$$

$$= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

2.

(a)
$$|\psi\rangle = |01\rangle$$

(b)
$$|\psi\rangle = |11\rangle$$