	2101330_Talitha Syahla Di sini saya memilih dataset kepadatan_penduduk dan persen_penduduk_trampil_tik, karena menurut saya kedua dataset tersebut memiliki hubungan yang kuat untuk memprediksi kategori_pmi. Dari kepadatan_penduduk dapat di bandingkan yang memiliki persen_penduduk_trampil_tik. Dari hasil perbandingan tersebut, dapat di klasifikasi kan dengan dataset kategori_pmi.
In [29]:	<pre>%matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns</pre> Load Dataset
In [30]: Out[30]:	<pre>df = pd.read_csv("E:\\semester 3\\data mining\\dataset_UAS\\kepadatan_penduduk.csv") df.head(10) prov tahun kepadatan_penduduk 0</pre>
	2 SUMATERA BARAT 2021 133 3 RIAU 2021 75 4 JAMBI 2021 72 5 SUMATERA SELATAN 2021 93 6 BENGKULU 2021 102
In [31]:	<pre>7 LAMPUNG 2021 262 8 KEP. BANGKA BELITUNG 2021 90 9 KEP. RIAU 2021 258 df1 = pd.read_csv("E:\\semester 3\\data mining\\dataset_UAS\\persen_penduduk_trampil_tik.csv") df1.head(10)</pre>
Out[31]:	tahun persen_penduduk_trampil_tik prov 0 2021 60.21 ACEH 1 2021 67.41 SUMATERA UTARA 2 2021 68.00 SUMATERA BARAT 3 2021 70.69 RIAU
	4 2021 64.47 JAMBI 5 2021 62.59 SUMATERA SELATAN 6 2021 62.10 BENGKULU 7 2021 65.76 LAMPUNG 8 2021 66.33 KEP. BANGKA BELITUNG
In [32]: Out[32]:	9 2021 89.06 KEP.RIAU df2 = pd.read_csv("E:\\semester 3\\data mining\\dataset_UAS\\pmi.csv") df2.head(10) prov tahun kategori_pmi O ACEH 2022 TINGGI
	1 SUMATERA UTARA 2022 TINGGI 2 SUMATERA BARAT 2022 TINGGI 3 RIAU 2022 TINGGI 4 JAMBI 2022 TINGGI 5 SUMATERA SELATAN 2022 TINGGI
	6 BENGKULU 2022 TINGGI 7 LAMPUNG 2022 TINGGI 8 KEP. BANGKA BELITUNG 2022 TINGGI 9 KEP. RIAU 2022 TINGGI
In [33]:	Mengeksplorasi Dataset kepadatan_penduduk df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 280 entries, 0 to 279 Data columns (total 3 columns): # Column Non-Null Count Dtype</class>
	0 prov 280 non-null object 1 tahun 280 non-null int64 2 kepadatan_penduduk 280 non-null object dtypes: int64(1), object(2) memory usage: 6.7+ KB Mengeksplorasi Dataset persen_penduduk_trampil_tik
In [34]:	<pre>df1.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 245 entries, 0 to 244 Data columns (total 3 columns): # Column</class></pre>
In [35]:	1 persen_penduduk_trampil_tik 245 non-null float64 2 prov 245 non-null object dtypes: float64(1), int64(1), object(1) memory usage: 5.9+ KB Mengeksplorasi Dataset kategori_pmi df2.info()
	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 442 entries, 0 to 441 Data columns (total 3 columns): # Column Non-Null Count Dtype</class></pre>
	dtypes: int64(1), object(2) memory usage: 10.5+ KB Mengecek data NaN pada dataframe kepadatan_penduduk, persen_penduduk_trampil_tik, dan kategori_pmi df.isna().sum() prov 0
Out[36]: In [37]: Out[37]:	tahun 0 kepadatan_penduduk 0 dtype: int64 df1.isna().sum() tahun 0 persen_penduduk_trampil_tik 0 prov 0
In [38]: Out[38]:	<pre>dtype: int64 df2.isna().sum() prov 0 tahun 0 kategori_pmi 0 dtype: int64</pre>
In [39]:	Karena dari ketiga dataframe tersebut tidak ada data NaN di dalam nya, maka tidak perlu mengisi data NaN yang kosong Merge Ketiga Dataset df3 = pd.merge(df, df1, how="left", on=["prov", "tahun"]) df3.head(10)
Out[39]:	prov tahun kepadatan_penduduk persen_penduduk_trampil_tik 0 ACEH 2021 92 60.21 1 SUMATERA UTARA 2021 205 67.41 2 SUMATERA BARAT 2021 133 68.00 3 RIAU 2021 75 70.69
	4 JAMBI 2021 72 64.47 5 SUMATERA SELATAN 2021 93 62.59 6 BENGKULU 2021 102 62.10 7 LAMPUNG 2021 262 65.76 8 KEP. BANGKA BELITUNG 2021 90 66.33
In [40]: Out[40]:	9
	1 SUMATERA UTARA 2021 205 67.41 TINGGI 2 SUMATERA BARAT 2021 133 68.00 TINGGI 3 RIAU 2021 75 70.69 TINGGI 4 JAMBI 2021 72 64.47 TINGGI 5 SUMATERA SELATAN 2021 93 62.59 TINGGI
	6 BENGKULU 2021 102 62.10 TINGGI 7 LAMPUNG 2021 262 65.76 SEDANG Visualisasi Data Dari countplot di bawah, dapat dilihat bahwa kategori pmi didominasi oleh tingkat sedang, dimana tingkat sedang ini < 70
In [41]: Out[41]:	<pre>sns.countplot(x ="kategori_pmi", data=df4) <axessubplot:xlabel='kategori_pmi', ylabel="count"> 160 140</axessubplot:xlabel='kategori_pmi',></pre>
	120 - 100 - 100 - 80 - 40 - 20 -
In [42]:	Dari catplot di bawah, terlihat bahwa kategori_pmi memiliki tingkat yang senada pada tiap tahunnya dan pada setiap provinsi sns.catplot(x="kategori_pmi", y="tahun", hue="prov", data=df4, height=8)
Out[42]:	<pre></pre>
	SUMATERA SELATAN BENGKULU LAMPUNG KEP. BANGKA BELITUNG KEP. RIAU DKI JAKARTA JAWA BARAT JAWA TENGAH DI YOGYAKARTA
	2016 - JAWA TIMUR BANTEN BALI NUSA TENGGARA BARAT NUSA TENGGARA TIMUR KALIMANTAN BARAT KALIMANTAN TENGAH KALIMANTAN SELATAN KALIMANTAN TIMUR
	KALIMANTAN UTARA SULAWESI UTARA SULAWESI TENGAH SULAWESI SELATAN SULAWESI TENGGARA GORONTALO SULAWESI BARAT MALUKU MALUKU UTARA PAPUA BARAT
In [43]:	tingkat persen trampil TIK disetiap provinsi memiliki beragam tingkat kategori_pmi, namun didominasi oleh tingkat tinggi sns.catplot(x="kategori_pmi", y="persen_penduduk_trampil_tik", hue="prov", data=df4, height=8)
Out[43]:	<pre></pre>
	SUMATERA SELATAN BENGKULU LAMPUNG KEP. BANGKA BELITUNG KEP. RIAU DKI JAKARTA JAWA BARAT JAWA TENGAH DI YOGYAKARTA
	JAWA TIMUR BANTEN BALI NUSA TENGGARA BARAT NUSA TENGGARA TIMUR KALIMANTAN BARAT KALIMANTAN SELATAN KALIMANTAN TIMUR KALIMANTAN UTARA
	SULAWESI UTARA SULAWESI TENGAH SULAWESI SELATAN SULAWESI TENGGARA GORONTALO SULAWESI BARAT MALUKU MALUKU MALUKU UTARA PAPUA BARAT PAPUA
	TINGGI SEDANG SANGAT TINGGI SANGAT RENDAH INDONESIA Klasifikasi Import Library
In [44]:	<pre>from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score from sklearn import tree from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score</pre>
In [45]:	<pre>from sklearn.metrics import make_scorer from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(df4.kategori_pmi) Y = le.transform(df4.kategori_pmi)</pre>
	<pre>list(le.classes_) ['SANGAT RENDAH', 'SANGAT TINGGI', 'TINGGI', nan] X = df4.drop(["kategori_pmi"],axis=1)</pre>
	<pre>X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size=0.2, random_state=None)</pre> <pre>Metode Decision Tree</pre>
ın [49]:	<pre>clf = tree.DecisionTreeClassifier() clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) acc = accuracy_score(Y_test, Y_pred) print("Akurasi {}".format(acc)) print(classification_report(Y_test, Y_pred))</pre>
	<pre>Input In [49], in <cell 2="" line:="">() 1 clf = tree.DecisionTreeClassifier()> 2 clf.fit(X_train, Y_train) 3 Y_pred = clf.predict(X_test) 4 acc = accuracy_score(Y_test, Y_pred) File ~\anaconda3\lib\site-packages\sklearn\tree_classes.py:937, in DecisionTreeClassifier.fit(self, X, y, sample_weight, check_input, X_idx_sorted) 899 def fit(</cell></pre>
	<pre>900</pre>
	938
	163 check_X_params = dict(dtype=DTYPE, accept_sparse="csc") 164 check_y_params = dict(ensure_2d=False, dtype=None) > 165 X, y = selfvalidate_data(166
	<pre>572 if validate_separately: 573 # We need this because some estimators validate X and y 574 # separately, and in general, separately calling check_array() 575 # on X and y isn't equivalent to just calling check_X_y() 576 # :(577 check_X_params, check_y_params = validate_separately> 578 X = check_array(X, **check_X_params) 579 y = check_array(y, **check_y_params)</pre>
	File ~\anaconda3\lib\site-packages\sklearn\utils\validation.py:746, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow _nd, ensure_min_samples, ensure_min_features, estimator) 744
	"Complex data not supported\n".format(array) 750) from complex_warning File ~\anaconda3\lib\site-packages\pandas\core\generic.py:2064, in NDFramearray(self, dtype) 2063 defarray(self, dtype: npt.DTypeLike None = None) -> np.ndarray: -> 2064 return np.asarray(selfvalues, dtype=dtype) ValueError: could not convert string to float: 'KEP. RIAU'
In [50]:	<pre>Metode Random Forest clf = RandomForestClassifier(n_estimators=100, random_state=123) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) acc = accuracy_score(Y_test, Y_pred) print("Akurasi {}".format(acc))</pre>
	<pre>print(classification_report(Y_test, Y_pred)) </pre>
	<pre>File ~\anaconda3\lib\site-packages\sklearn\ensemble_forest.py:327, in BaseForest.fit(self, X, y, sample_weight) 325 if issparse(y): 326 raise ValueError("sparse multilabel-indicator for y is not supported.")> 327 X, y = selfvalidate_data(</pre>
	<pre>sample_weight = _check_sample_weight(sample_weight, X)</pre> File ~\anaconda3\lib\site-packages\sklearn\base.py:581, in BaseEstimatorvalidate_data(self, X, y, reset, validate_separately, **check_params) 579
	File ~\anaconda3\lib\site-packages\sklearn\utils\validation.py:964, in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_n d, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator) 961 if y is None: 962 raise ValueError("y cannot be None")> 964 X = check_array(965 X, 966 accept_sparse=accept_sparse, 967 accept_sparse=accept_large_sparse, 968 dtype=dtype,
	order=order, copy=copy, force_all_finite=force_all_finite, ensure_2d=ensure_2d, allow_nd=allow_nd, ensure_min_samples=ensure_min_samples, ensure_min_features=ensure_min_features, estimator=estimator,
	977) 979 y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric) 981 check_consistent_length(X, y) File ~\anaconda3\lib\site-packages\sklearn\utils\validation.py:746, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow _nd, ensure_min_samples, ensure_min_features, estimator) 744
	747 except ComplexWarning as complex_warning: 748 raise ValueError(749
In [51]:	<pre>ValueError: could not convert string to float: 'KEP. RIAU' Metode XGBoost import xgboost as xgb from xgboost import XGBClassifier clf=XGBClassifier(seed = 20, max_depth=10, learning_rate=0.1, n_estimators=100,</pre>
	<pre>objective='binary:logistic', booster='dart', colsample_bytree = 0.7,</pre>
	<pre>print(classification_report(Y_test, Y_pred)) </pre>
	objective='binary:logistic', booster='dart', colsample_bytree = 0.7, colsample_bylevel = 0.8, colsample_bynode = 0.8, normalize_type = 'forest', sample_type = 'weighted', sampling_method = 'gradient_based') ModuleNotFoundError: No module named 'xgboost'