22-R-WE-JL-51

The crank to roll a car window up and down must be turned clockwise a total of 7 revolutions to completely open the window. You have decided that it requires too much work though, and instead built a motor to apply a clockwise moment $M=0.4\,\theta^2+9~\mathrm{N\cdot m}$.

You do a test run with it and it works perfectly! What is the total work U_M done on the crank?

CEC Engineering

Solution

The work of a couple moment U_M is found by integrating

$$U_M = \int_{\theta_0}^{\theta_f} M \, d\theta$$

So using $\theta_0 = 0$ and $\theta_f = 2\pi$ (7) = 14 π [rad], we can integrate the applied moment M and solve for the work done.

$$U_M = \int_0^{14\,\pi} 0.4\,\theta^2 + 9\,d\theta$$

$$U_M = \frac{0.4}{3}\theta^3 + 9\theta \bigg|_0^{14\,\pi}$$

$$U_M = \frac{0.4}{3} (14\pi)^3 + 9(14\pi) = 11740 \text{ [J]}$$