

(43) International Publication Date
24 February 2005 (24.02.2005)

PCT

(10) International Publication Number
WO 2005/016130 A2

- (51) International Patent Classification⁷: **A61B**
- (21) International Application Number: PCT/US2004/026508
- (22) International Filing Date: 13 August 2004 (13.08.2004)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/495,741 14 August 2003 (14.08.2003) US
- (71) Applicant (for all designated States except US): **WYETH** [US/US]; Five Giralta Farms, Madison, NJ 07940 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **FLANNERY, Carl Ralph** [US/US]; 13 Brucewood Road, Acton, MA 01720 (US). **CORCORAN, Christopher John** [US/US]; 170 E. Broadway, Apt. 3, Arlington, MA 02474 (US). **FREEMAN, Bethany Annis** [US/US]; 52 Foster Street, Arlington, MA 02474 (US). **RACIE, Lisa Anne** [US/US]; 124 School Street, Acton, MA 01720 (US).
- (74) Agent: **GATSCHET, Mark J.**; Jenkens & Gilchrist, 1401 McKinney, Suite 2600, Houston, TX 77010 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2005/016130 A2

(54) Title: RECOMBINANT LUBRICIN MOLECULES AND USES THEREOF

(57) Abstract: Recombinant lubricin molecules and uses thereof. Novel recombinant lubricin molecules and their uses as lubricants, anti-adhesive agents and/or intra-articular supplements for, e.g., synovial joints, meniscus, tendon, peritoneum, pericardium and pleura, are provided.

DESCRIPTION

RECOMBINANT LUBRICIN MOLECULES AND USES THEREOF

[001] The invention relates to novel recombinant lubricin molecules and their uses as lubricants, anti-adhesive agents and/or intra-articular supplements for, e.g., synovial joints, meniscus, tendon, peritoneum, pericardium and pleura.

BACKGROUND OF THE INVENTION

[002] Optimal functionality of synovial joints is dependent upon extremely low coefficients of friction between articulating tissues. Normally, a contiguous, well-lubricated surface is maintained on articular cartilage. During osteoarthritis (OA), however, reduced lubrication contributes to cartilage matrix degradation and fibrillation; these in turn contribute to joint dysfunction and pain. Reduced lubrication also leads to joint dysfunction and pain in other forms of arthritis, including rheumatoid arthritis (RA).

[003] For other tissues (e.g., tendons), a lubricated surface also contributes to optimal functionality. In addition to requiring a lubricated surface, normal tendon function requires the prevention of cellular adhesion to tendon surfaces. In flexor tendon injury and repair, for example, the formation of tendon adhesions is the most common complication.

[004] Native lubricin protein is related to megakaryocyte stimulating factor (MSF) precursor protein. PRG4 (proteoglycan 4) is the name for MSF that has been accepted for the UCL/HGNC/HUGO Human Gene Nomenclature database. PRG4 protein (i.e., the MSF precursor protein) is described in US6433142 and US20020137894 (all patents and patent applications cited in this document are incorporated by reference in their entirety). Polypeptide encoded by exon 6 of the PRG4 gene is heavily glycosylated and appears necessary for a PRG4-related protein to serve as a lubricant, e.g., between surfaces of articular cartilage.

[005] Studies indicate that PRG4 glycoprotein is also synthesized by the intimal synoviocytes that line tendon sheaths; it is highly likely that the glycoprotein also originates from tenocytes (Rees et al., 2002). The glycoprotein is prominently present in fibrocartilaginous regions of tendon. In a manner complementary to its synovial-fluid function, the glycoprotein may play an important cytoprotective role for tendons by

preventing cellular adhesion to tendon surfaces, as well as by providing lubrication during normal tendon function.

- [006] Exon 6 of the PRG4 (also called "lubricin") gene encodes approximately 76–78 repeats of KEPAPTT-similar sequences and 6 repeats of XXTTTX-like sequences.
- 5 Varying the number of comparable repeat sequences in recombinant lubricin proteins according to the present invention allows for development of improved biotherapeutics for enhancing lubrication in joints and for countering undesired adhesion between tissues.

SUMMARY OF THE INVENTION

[007] The present invention relates to novel recombinant lubricin molecules and
10 their use as lubricants, anti-adhesive agents and/or intra-articular supplements.

[008] In order to optimize expression parameters and investigate the functional necessity of all approximately 76–78 KEPAPTT-similar sequences, lubricin expression constructs were designed which enabled the synthesis of recombinant lubricin proteins with varying degrees of O-linked oligosaccharide substitution. This is accomplished by
15 incorporating variable numbers of the KEPAPTT-like sequences into a "core" cDNA construct comprised of exons 1 through 5, 5'- and 3'-flanking regions of exon 6, and exons 7 through 12. Iterative insertion of "synthetic cDNA cassettes" encoding multiple KEPAPTT-like sequences facilitates the generation of recombinant lubricin constructs of different sizes. The initial focus of these studies was on construct PRG4-Lub:1
20 (containing DNA of "synthetic cDNA cassette-1" (SEQ ID NO: 1), which encodes four KEPAPTT sequences).

[009] The recombinant lubricin proteins of the present invention share primary structure with several isoforms of native human lubricin (see US6743774, US20040072741, and WO0064930). Among characterized isoforms, each isoform differs
25 in the composition of PRG4 gene exons that encode the isoform's primary structure. For example, exons 1 through 12 of the PRG4 gene encode the V0 isoform, which represents the full-length isoform, while exons 1 through 4 and 6 through 12 encode the V1 isoform, which lacks only a segment encoded by exon 5. Exons 1 through 3 and 6 through 12 encode the V2 isoform, which lacks segments encoded by exons 4 and 5. Finally, exons 1,
30 3, and 6 through 12 encode the V3 isoform, which lacks segments encoded by exons 2, 4,

and 5. Other isoforms likely exist, and some related mutant proteins have been described (see US20020086824).

[010] In particular, the present invention provides recombinant lubricin protein comprising repetitive KEPAPTT-like sequences. In preferred embodiments, the invention 5 provides isolated protein comprising SEQ ID NOS: 9, 13, 17, 21 or 25. The invention provides in related embodiments isolated protein comprising SEQ ID NOS: 7, 11, 15, 19 or 23. In further related embodiments, the invention provides isolated polynucleotide comprising nucleic acid sequence encoding recombinant lubricin protein. In preferred 10 embodiments, the invention provides isolated polynucleotide comprising nucleic acid sequence encoding the protein. In further related embodiments, the invention provides isolated polynucleotide having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% identity to SEQ ID NOS: 6, 10, 14, 18 or 22 over the entire length of the sequence.

[011] In related aspects, the present invention also provides an isolated protein comprising SEQ ID NO: 26 joined to (N minus 2) repeat(s) of SEQ ID NO: 27, where N 15 equals an integer from 3 through 200. In further related embodiments, the present invention provides an isolated protein comprising SEQ ID NO: 26 plus SEQ ID NO: 28 plus [(N minus 2) repeat(s) of SEQ ID NO: 27] plus SEQ ID NO: 29, where N equals an integer from 3 through 200. In embodiments of the related aspects of the invention noted in this paragraph, more preferably N equals an integer from 5 through 50, and even more 20 preferably N equals an integer from 10 through 30.

[012] **Table 1. Identification of Sequences Having Sequence Identifiers**

SEQ ID NO:	Identification
1	nucleotide sequence of synthetic cDNA cassette-1: 155 bases
2	translation of SEQ ID NO: 1: 51 amino acids
3	nucleotide sequence of synthetic cDNA cassette-2: 125 bases
4	translation of SEQ ID NO: 3: 41 amino acids
5	pTmed2 vector containing recombinant PRG4-Lub:1 cDNA construct: 8049 bases

SEQ ID NO:	Identification
6	recombinant PRG4-Lub:1 cDNA construct: 2946 bases
7	amino acid sequence of entire PRG4-LUB:1 protein: 981 amino acids
8	Lub:1 DNA insert from synthetic cDNA cassette-1: 157 bases
9	51 amino acids encoded by Lub:1 DNA insert (4 KEPAPTT sequences between S373 to E425 in SEQ ID NO: 7)
10	recombinant PRG4-Lub:2 cDNA construct: 3024 bases
11	amino acid sequence of entire PRG4-LUB:2 protein: 1007 amino acids
12	Lub:2 DNA insert from synthetic cDNA cassette-1 and one synthetic cDNA cassette-2 sequence: 235 bases
13	77 amino acids encoded by Lub:2 DNA insert (6 KEPAPTT sequences between S373 and E451 in SEQ ID NO: 11)
14	recombinant PRG4-Lub:3 cDNA construct: 3117 bases
15	amino acid sequence of entire PRG4-LUB:3 protein: 1038 amino acids
16	Lub:3 DNA insert from synthetic cDNA cassette-1 and two synthetic cDNA cassette-2 sequences: 328 bases
17	108 amino acids encoded by Lub:3 DNA insert (9 KEPAPTT sequences between S373 and E482 in SEQ ID NO: 15)
18	recombinant PRG4-Lub:4 cDNA construct: 3210 bases
19	amino acid sequence of entire PRG4-LUB:4 protein: 1069 amino acids
20	Lub:4 DNA insert from cDNA cassette-1 and three synthetic cDNA cassette-2 sequences: 421 bases
21	139 amino acids encoded by Lub:4 DNA insert (12 KEPAPTT sequences between S373 and E513 in SEQ ID NO: 19)
22	recombinant PRG4-Lub:5 cDNA construct: 3303 bases

SEQ ID NO:	Identification
23	amino acid sequence of entire PRG4-LUB:5 protein: 1100 amino acids
24	Lub:5 DNA insert from cDNA cassette-1 and four synthetic cDNA cassette-2 sequences: 514 bases
25	170 amino acids encoded by Lub:5 DNA insert (15 KEPAPTT sequences between S373 and E544 in SEQ ID NO: 23)
26	amino acid sequence "APTPKEPAPTTKSAPTPKEPAPTT KEPAPTPKEPAPTTK" (45 amino acids) in preferred PRG4-LUB:N protein
27	amino acid sequence "KEPAPTTKKEPAPTTKSAPTP KEPAPTP" (31 amino acids) repeated N-1 times in preferred PRG4-LUB:N protein
28	amino acid sequence "EPAPTTKSAPTPKEPAPTP" (22 amino acids) joining SEQ ID NO: 26 to (N-2) repeats of SEQ ID NO: 27 in preferred PRG4-LUB:N protein where N ≥ 3.
29	amino acid sequence "KEPKPAPTP" (10 amino acids) in preferred PRG4-LUB:N protein where N ≥ 2.

[013] The invention also provides in related embodiments a composition comprising a therapeutically effective amount of a recombinant lubricin protein in a pharmaceutically acceptable carrier. In some embodiments, the composition additionally comprises hyaluronan or hylan.

- 5 [014] The invention further provides a method of treating a subject comprising: obtaining a recombinant lubricin protein composition; and administering said composition to a tissue of the subject. In related embodiments of this method of the invention, the tissue is selected from the group consisting of cartilage, synovium, meniscus, tendon, peritoneum, pericardium, and pleura. In further related embodiments of this method of the
10 invention, the method additionally comprises a step selected from the group consisting of: providing an anesthetic to the subject; providing an anti-inflammatory drug to the subject; providing an antibiotic to the subject; aspirating fluid from the subject; washing tissue of the subject; and imaging tissue of the subject. In other related embodiments, the subject is selected from the group consisting of a mouse, a rat, a cat, a dog, a horse, and a human.

[015] In other embodiments, the invention also provides an expression vector comprising a polynucleotide encoding a recombinant lubricin protein wherein the polynucleotide is operably linked to an expression control sequence. In related embodiments, the invention provides a method of producing recombinant lubricin protein comprising: growing cells transformed with the expression vector in liquid culture media; and collecting recombinant lubricin protein from the media. The collecting protein step may further comprise: concentrating the protein by filtering the media through a membrane; collecting the retained protein from the membrane; and solubilizing the collected protein in a buffered salt solution containing L-arginine hydrochloride ranging in concentration from 0.1 to 2.0 M.

[016] In another related embodiment, the invention provides isolated antibody specific for a recombinant lubricin protein.

[017] Other features and advantages of the invention will be apparent from the following description of preferred embodiments thereof, and from the claims.

15

DETAILED DESCRIPTION OF THE INVENTION

[018] The base DNA construct utilized in generating recombinant lubricin proteins may include variable arrangements of sequences 5' and 3' of exon 6 of the PRG4 gene. For example, the base DNA construct may include variable arrangements of sequences encoding somatomedin B-like domains (exons 2 through 4) or hemopexin-like domains (exons 7 through 9).

[019] Embodiments of the base DNA construct having various exon arrangements 3' of exon 6 may include base DNA constructs that include only exon 7, 8, 9, 10, 11, or 12 individually, or exon pairs (7 and 8), (7 and 9), (7 and 10), (7 and 11), (7 and 12), (8 and 9), (8 and 10), (8 and 11), (8 and 12), (9 and 10), (9 and 11), (9 and 12), (10 and 11), (10 and 12), or (11 and 12), or exon triplets (7, 8 and 9), (7, 8 and 10), (7, 8, and 11), (7, 8, and 12), (7, 9 and 10), (7, 9 and 11), (7, 9 and 12), (7, 10 and 11), (7, 10 and 12), (7, 11 and 12), (8, 9 and 10), (8, 9 and 11), (8, 9 and 12), (8, 10 and 11), (8, 10 and 12), (8, 11 and 12), (9, 10 and 11), (9, 10 and 12), (9, 11 and 12), or (10, 11 and 12), or exon quadruplets (7, 8, 9 and 10), (7, 8, 9 and 11), (7, 8, 9 and 12), (7, 8, 10 and 11), (7, 8, 10 and 12), (7, 8, 11 and 12), (7, 9, 10 and 11), (7, 9, 10 and 12), (7, 9, 11 and 12), (8, 9, 10 and 11), (8, 9, 10 and 12), (8, 9, 11 and 12), (8, 10, 11 and 12), or (9, 10 and 12), (9, 11 and 12), (8, 9, 10 and 11), (8, 9, 10 and 12), (8, 9, 11 and 12), (8, 10, 11 and 12), or (9, 11 and 12).

10, 11 and 12), or exon quintets (7, 8, 9, 10 and 11), (7, 8, 9, 10 and 12), (7, 8, 9, 11 and 12), (7, 8, 10, 11 and 12), (7, 9, 10, 11 and 12), or (8, 9, 10, 11 and 12), or exon sextet (7, 8, 9, 10, 11 and 12).

[020] In addition, embodiments of the base DNA construct having various exon arrangements 5' of exon 6 may include base DNA constructs that include only exon 1, 2, 3, 4, or 5 individually, or exon pairs (1 and 2), (1 and 3), (1 and 4), (1 and 5), (2 and 3), (2 and 4), (2 and 5), (3 and 4), (3 and 5), or (4 and 5), or exon triplets (1, 2 and 3), (1, 2 and 4), (1, 2 and 5), (1, 3 and 4), (1, 3 and 5), (1, 4 and 5), (2, 3 and 4), (2, 3 and 5), (2, 4 and 5), or (3, 4 and 5), or exon quadruplets (1, 2, 3 and 4), (1, 2, 3 and 5), (1, 2, 4 and 5), (1, 3, 4 and 5), or (2, 3, 4 and 5), or exon quintets (1, 2, 3, 4 and 5).

[021] The present invention also encompasses proteins encoded by base DNA constructs, i.e., wherein part or all of exon 6 sequence-encoded polypeptide is deleted and no amino acids encoded by inserts from synthetic cDNA cassettes have been added.

[022] The present invention also encompasses polynucleotides that are homologous to the specific embodiments outlined herein, e.g., having at least 80%, 85%, 90%, 95%, 97%, 98% or 99% sequence identity to the specified DNA sequences. The invention further includes polynucleotides having nucleic acid sequence capable of hybridizing over the length of a functional domain to the complement of the specified DNA sequences under high stringency conditions. The invention also includes proteins encoded by these homologous or hybridizing polynucleotides.

[023] In order to delineate more clearly embodiments of the present invention, the following definitions are provided.

[024] **Definitions.** The phrase "repetitive KEPAPTT-like sequence" means an amino acid sequence having at least 90%, 93%, 95%, 96%, 97%, 98%, 99% or higher identity to: (a) sequence "APTPKEPAPTTKSAPTPKEPAPTTKEPAPTPKEPAPTTK" (SEQ ID NO: 26; 45 amino acids) and having at least one O-linked substitution; (b) sequence "KEPAPTTKEPAPTTKSAPTPKEPAPTTP" (SEQ ID NO: 27; 31 amino acids) and having at least one O-linked substitution; or (c) sequence "EPAPTTTKSAPTPKEPAPTTP" (SEQ ID NO: 28; 22 amino acids) and having at least one

O-linked substitution. A repetitive KEPAPTT-like sequence may preferably have two, three, four or more O-linked substitutions.

[025] While there exist a number of methods to measure identity between two polynucleotide or polypeptide sequences, the term "identity" is well known to skilled artisans and has a definite meaning with respect to a given specified method. Sequence identity described herein is measured using the BLAST 2 SEQUENCES tool available through NCBI (<http://www.ncbi.nlm.nih.gov/blast/>; see also Tatusova and Madden (1999)). For amino acid sequences, the parameters used are expect = 1000; word size = 2; filter = off; and other parameters set to default values. These same parameters are used for nucleic acid sequences, except word size = 8. Default values for amino acid sequence comparisons are: Matrix = BLOSUM62; open gap = 11; extension gap = 1 penalties; and gap x dropoff = 50. Default values for nucleic acid sequence comparisons are: reward for a match = 1; penalty for a mismatch = -2; strand option = both strands; open gap = 5; extension gap = 2 penalties; and gap x dropoff = 50.

[026] An O-linked substitution of recombinant lubricin may be a substitution with the lubricating oligosaccharide β -(1-3)-Gal-GalNac, or with other moieties, including artificial or naturally-occurring carbohydrate moieties (such as keratan sulfate or chondroitin sulfate). In some embodiments, the O-linked substitution may be with moieties that contribute to a capacity of recombinant lubricin to act as a carrier of surface active phospholipid (SAPL) or surfactants (Hills, 2002). Percent glycosylation or substitution is determined by weight (dry weight).

[027] High stringency conditions, when used in reference to DNA:DNA hybridization, comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄·H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 µg/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

[028] Polypeptides or other compounds described herein are said to be "isolated" when they are within preparations that are at least 50% by weight (dry weight) the compound of interest. Polypeptides or other compounds described herein are said to be "substantially pure" when they are within preparations that are at least 80% by weight (dry

weight) the compound of interest. Polypeptides or other compounds described herein are said to be "homogeneous" when they are within preparations that are at least 95%, and preferably 99%, by weight (dry weight) the compound of interest. Purity is measured by reducing polyacrylamide gel electrophoresis and enhanced coomassie blue staining,
5 followed by optical density traces of bands (i.e., with protein purity being measured through optical densitometry).

[029] "Pyrogen-free" means free of fever causing contaminants, including endotoxin. Measurement of contaminants is to be performed by the applicable standard tests set by the U.S. Food and Drug Administration.

10 [030] As used herein, the term "therapeutically effective amount" means the total amount of each active component of the relevant pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual
15 active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

20 [031] Embodiments of the present invention may be used as intra-articular supplements. Intra-articular supplementation with compounds not derived from lubricin has been practiced as a joint therapy. For example, "viscosupplementation" with polymeric hyaluronan (HA) and higher molecular weight hylans (such as SYNVISC® elastoviscous fluid "Hylan G-F 20"--distributed by WYETH® Pharmaceuticals) is used clinically to treat OA-associated knee pain. This viscosupplementation has shown
25 significant therapeutic value, particularly in reducing weight-bearing pain in patients (Wobig et al., 1998).

30 [032] Hylan G-F 20 is generated by cross-linking several HA molecules obtained from rooster or chicken combs. Viscosupplementation with Hylan G-F 20 can be significantly more efficacious for alleviating pain than viscosupplementation with lower molecular weight HA (Wobig et al., 1999). In addition, relieving pain by viscosupplementation with Hylan G-F 20 may be particularly preferable to administration

of NSAIDs for those patients who do not tolerate NSAIDs (e.g., in patients with a high risk of gastrointestinal complications; Espallargues and Pons, 2003). Though Hylan G-F 20 viscosupplementation is a safe and well-tolerated therapy that provides a short-term (i.e., until 3–6 months posttreatment) decrease in pain symptoms while improving joint function, the therapy may not significantly forestall the eventual need for knee replacement in OA patients (Espallargues and Pons, 2003).

EXAMPLE 1: CLONING OF RECOMBINANT LUBRICIN

[033] **Constructs.** In some embodiments, the base DNA construct for the generation of recombinant lubricin molecules is composed of the Met codon (ATG) through the *BssHII* restriction site (G[^]CGCGC) of SEQ ID NO: 6 (i.e., base nos. 1 through 1123) and the *BspEI* restriction site (T[^]CCGGA) through the stop codon (TAA) of SEQ ID NO: 6 (i.e., base nos. 1269 through 2946). These sequences, i.e., base nos. 1 through 1123 and 1269 through 2946 of SEQ ID NO: 6, encode amino acids M1 through S373 (encoded by exons 1 through 5 and approximately 174 flanking 5'-codons of exon 6) and E848 through P1404 (encoded by approximately 293 flanking 3'-codons of exon 6 and exons 7 through 14) of native full-length lubricin (i.e., PRG4). The portion of exon 6 absent from the base DNA construct corresponds to DNA sequence encoding amino acids A374 through P847 of native PRG4 (474 amino acids absent out of approximately 940 amino acids encoded by exon 6). This absent amino acid sequence is rich in KEPAPTT-like sequences.

[034] DNA sequence of synthetic cDNA cassette-1 (SEQ ID NO: 1) is added *BssHII/BspEI* to the base construct to make the recombinant PRG4-Lub:1 cDNA construct (SEQ ID NO: 6). SEQ ID NO: 6 is composed of the Lub:1 DNA insert (SEQ ID NO: 8; which encodes the 51 amino acids of SEQ ID NO: 9 with its four KEPAPTT sequences) between DNA encoding amino acids M1 through S373 and DNA encoding E848 through P1404 of native PRG4. In other words, in place of A374 through P847 (474 amino acids) of native PRG4, the recombinant lubricin PRG4-LUB:1 includes 51 amino acids that form four perfect KEPAPTT sequences and approximately three imperfect KEPAPTT sequences.

[035] DNA sequence of synthetic cDNA cassette-2 (SEQ ID NO: 3) is added *Bsu36I/BspEI* to the PRG4-Lub:1 construct to make the PRG4-Lub:2 cDNA construct

(SEQ ID NO: 10). The PRG4-Lub:1 cDNA construct has one *Bsu36I* restriction site (CC[^]TNAGG, i.e., CC[^]TAAGG; base nos. 1225 through 1231 of SEQ ID NO: 6). When synthetic cDNA cassette-2 is added to the PRG4-Lub:1 cDNA construct, this *Bsu36I* site is destroyed, but synthetic cassette-2 contains another internal *Bsu36I* restriction site 5 (CC[^]TNAGG, i.e., CC[^]TAAGG; base nos. 92 through 98 of SEQ ID NO: 3). Consequently, a PRG4-Lub:N+1 construct can be made by adding synthetic cDNA cassette-2 *Bsu36I/BspEI* to the previous PRG4-Lub:N construct at this internal *Bsu36I* restriction site provided by synthetic cDNA cassette-2.

[036] The cDNA cassettes are synthesized as single stranded oligonucleotides 10 and hybridized together to produce a double stranded DNA fragment with sticky ends. This is why the terminal *BssHII*, *Bsu36I*, and *BspEI* sites appear incomplete. In synthetic cDNA cassette-1 (SEQ ID NO: 1), a sequence bounded by remnant flanking *BssHII* (G[^]CGCGC) and *BspEI* (T[^]CCGGA) restriction sites includes an internal *Bsu36I* restriction site (CC[^]TNAGG, i.e., CC[^]TAAGG); the restriction sites are underlined below:

15 CGCGCCCACAACTCCAAAAGAGGCCGCACCTACCACGACAAAGTCAGCTCCTACTACGCCA
AAGAGGCCAGCGCCGACGACTACTAAAGAACCGGCACCCACCGCCTAAGGAGCCAGCTCCT

[037] SEQ ID NO: 2, which is a translation of SEQ ID NO: 1, includes four 20 KEPAPTT sequences that are perfect matches (highlighted below):

20 1 A P T T P K E P A P T T T K S A P T T P
CGCGCCCACAACTCCAAAAGAGGCCGCACCTACCACGACAAAGTCAGCTCCTACTACGCC
21 2 K E P A P T T T K E P A P T T P K E P A
AAAGAGGCCAGCGCCGACGACTACTAAAGAACCGGCACCCACCGCCTAAGGAGCCAGCT

25 41 P T T T K P A P T T P
CCTACTACAACGAAACCGGCACCAACCACTCCGG

[038] Synthetic cDNA cassette-2 (SEQ ID NO: 3) similarly has a remnant 5'- 30 terminal *Bsu36I* restriction site (i.e., CC[^]TNAGG, evidenced only by the TAA sequence), a 3'-terminal remnant *BspEI* restriction site (T[^]CCGGA), and an internal *Bsu36I* restriction site (CC[^]TNAGG); the restriction sites are underlined below:

35 TAAAGAACCGCCCTACTACGACAAAGGAGCCTGCACCCACAACCACGAAGAGGCGCACCCA
CAACACCAAAGGAGCCGGCCCTACGACTCTAAGGAAACCCAAACCGGCACCAACCACTCCG
G

[039] SEQ ID NO: 4, which is a translation of SEQ ID NO: 3, includes three KEPAPTT sequences that are perfect matches (highlighted below):

5

```

1 K E P A P T T T K E P A P T T T K S A P
TAAGAACCGCCCTACTACGACAAAGGAGCCTGCACCCACAACCACGAAGAGCGCACCC

21 T T P K E P A P T T P K E P K P A P T T
ACAAACACCAAAAGGAGCCGGCCCTACGACTCTAAGGAACCCAAACCGGCACCAACCAACT

10 41 P
CCGG

```

15

20

[040] The recombinant PRG4-Lub:1 cDNA construct (SEQ ID NO: 6) in pTmed2 vector (construct plus vector equals SEQ ID NO: 5) is flanked by *Sall* (G^TCGAC; base nos. 1027 through 1032 of SEQ ID NO: 5) and *NotI* (GC^GGCCGC; base nos. 3984 through 3991 of SEQ ID NO: 5) restriction sites. The *Sall* site incorporates a modified Kozak translation initiation sequence (CCCACC; base nos. 1032 through 1037 of SEQ ID NO: 5) before the translation start codon ATG (base nos. 1038 through 1040 of SEQ ID NO: 5). Between the *BssHII* (G^CGCGC; base nos. 2155 through 2160 of SEQ ID NO: 5) and *BspEI* (T^CCGGA; base nos. 2306 through 2311 of SEQ ID NO: 5) restriction sites is found the internal *Bsu36I* cloning site (CC^TNAGG, i.e., CC^TAAGG; base nos. 2262 through 2268 of SEQ ID NO: 5).

25

[041] The PRG4-Lub:1 cDNA construct (SEQ ID NO: 6) is translated into the PRG4-LUB:1 protein (SEQ ID NO: 7). The insert between S373 and E425 (i.e., E848 of native PRG4) of the entire PRG4-LUB:1 protein (SEQ ID NO: 7) is the 51 amino acids of SEQ ID NO: 9. These are translated from the Lub:1 DNA insert (SEQ ID NO: 8) and include four perfect KEPAPTT sequences. Between the *BssHII* restriction site (G^CGCGC; base nos. 1118 through 1123 of SEQ ID NO: 6) and the *BspEI* restriction site (T^CCGGA; base nos. 1269 through 1274 of SEQ ID NO: 6) is found the internal *Bsu36I* cloning site (CC^TNAGG, i.e., CC^TAAGG; base nos. 1225 through 1231 of SEQ ID NO: 6).

30

[042] As in the recombinant PRG4-Lub:1 construct in pTmed2 vector, the recombinant PRG4-Lub:2 cDNA construct (SEQ ID NO: 10) in pTmed2 vector is flanked by *Sall* (G^TCGAC) and *NotI* (GC^GGCCGC) restriction sites; the *Sall* site incorporates a modified Kozak translation initiation sequence (CCCACC) before the translation start codon ATG (base nos. 1 through 3 of SEQ ID NO: 10). Similarly, the recombinant PRG4-Lub:3

cDNA construct (SEQ ID NO: 14), the recombinant PRG4-Lub:4 cDNA construct (SEQ ID NO: 18), and the recombinant PRG4-Lub:5 cDNA construct (SEQ ID NO: 22) in pTmed2 vector are each flanked by *Sall* (G^TCGAC) and *NotI* (GC^GGCCGC) restriction sites; the *Sall* site incorporates a modified Kozak translation initiation sequence (CCCACC) before the translation start codon ATG (base nos. 1 through 3 of SEQ ID NOS: 14, 18, and 22, respectively).

[043] Within the PRG4-Lub:2 cDNA construct, the internal *Bsu36I* cloning site (CC^TNAGG, i.e., CC^TAAGG; base nos. 1318 through 1324 of SEQ ID NO: 10) is found between the *BssHII* (G^CGCGC; base nos. 1118 through 1123) and *BspEI* (T^CCGGA; base nos. 1347 through 1352) restriction sites. The PRG4-Lub:2 construct (SEQ ID NO: 10) is translated into the PRG4-LUB:2 protein (SEQ ID NO: 11). The insert between S373 and E451 (i.e., E848 of native PRG4) of the entire PRG4-LUB:2 protein (SEQ ID NO: 11) is the 77 amino acids of SEQ ID NO: 13. These are translated from the Lub:2 DNA insert (SEQ ID NO:12). In place of A374 through P847 (474 amino acids) of native PRG4, the 15 77 amino acids of the recombinant lubricin PRG4-LUB:2 form six perfect KEPAPTT sequences and approximately four imperfect KEPAPTT sequences.

[044] Within the PRG4-Lub:3 cDNA construct, the internal *Bsu36I* cloning site (CC^TNAGG, i.e., CC^TAAGG; base nos. 1411 through 1417 of SEQ ID NO: 14) is found between *BssHII* (G^CGCGC; base nos. 1118 through 1123) and *BspEI* (T^CCGGA; base nos. 20 1440 through 1445) restriction sites. The PRG4-Lub:3 construct (SEQ ID NO: 14) is translated into the PRG4-LUB:3 protein (SEQ ID NO: 15). The insert between S373 and E482 (i.e., E848 of native PRG4) of the entire PRG4-LUB:3 protein (SEQ ID NO: 15) is the 108 amino acids of SEQ ID NO: 17. These are translated from the Lub:3 DNA insert (SEQ ID NO:16). In place of A374 through P847 (474 amino acids) of native PRG4, the 25 108 amino acids of the recombinant lubricin PRG4-LUB:3 form nine perfect KEPAPTT sequences and approximately five imperfect KEPAPTT sequences.

[045] Within the PRG4-Lub:4 cDNA construct, the internal *Bsu36I* cloning site (CC^TNAGG, i.e., CC^TAAGG; base nos. 1504 through 1510 of SEQ ID NO: 18) is found between *BssHII* (G^CGCGC; base nos. 1118 through 1123) and *BspEI* (T^CCGGA; base nos. 30 1533 through 1538) restriction sites. The PRG4-Lub:4 construct (SEQ ID NO: 18) is translated into the PRG4-LUB:4 protein (SEQ ID NO: 19). The insert between S373 and

E513 (i.e., E848 of native PRG4) of the entire PRG4-LUB:4 protein (SEQ ID NO: 19) is the 139 amino acids of SEQ ID NO: 21. These are translated from the Lub:4 DNA insert (SEQ ID NO:20). In place of A374 through P847 (474 amino acids) of native PRG4, the 139 amino acids of the recombinant lubricin PRG4-LUB:4 form twelve perfect KEPAPTT sequences and approximately six imperfect KEPAPTT sequences.

[046] Within the PRG4-Lub:5 cDNA construct, the internal *Bsu36I* cloning site (CC[^]TNAGG, i.e., CC[^]TAAGG; base nos. 1597 through 1603 of SEQ ID NO: 22) is found between *BssHII* (G[^]CGCGC; base nos. 1118 through 1123) and *BspE1* (T[^]CCGGA; base nos. 1626 through 1631) restriction sites. The PRG4-Lub:5 construct (SEQ ID NO: 22) is 10 translated into the PRG4-LUB:5 protein (SEQ ID NO: 23). The insert between S373 and E544 (i.e., E848 of native PRG4) of the entire PRG4-LUB:5 protein (SEQ ID NO: 23) is the 170 amino acids of SEQ ID NO: 25. These are translated from the Lub:5 DNA insert (SEQ ID NO:24). In place of A374 through P847 (474 amino acids) of native PRG4, the 170 amino acids of the recombinant lubricin PRG4-LUB:5 form fifteen perfect KEPAPTT sequences and approximately seven imperfect KEPAPTT sequences.

[047] Importantly, the process of inserting the synthetic cDNA cassette-2 can be iterated indefinitely. Each iteration results in the addition of three perfect KEPAPTT sequences. Just as recombinant lubricins PRG4-LUB:2 through PRG4-LUB:5 are constructed in this way through the use of insert sequences, recombinant lubricins PRG4-LUB:6 through PRG4-LUB:N are constructed. Table 2 provides a summary of *BssHII/BspE1* insert sequences.

[048] Table 2. *BssHII / BspE1* Insert Sequences

LUB INSERT	SEQ ID NO:	Sequences (restriction sites underlined in DNA inserts; KEPAPTT sequences are highlighted in protein inserts)
Lub:1	8	<u>GCGCGCCCACAACTCCAAAAGAGCCCGCACCTACCACGACAAAGTCAGCTCCT</u> <u>ACTACGCCAAAGAGGCCAGCGCCGACGACTACTAAAGAACCGGCACCCAC</u> <u>GCCTAAGGAGCCAGCTCTACTACAACGAAACCGGCACCAACC<u>ACTCCGGA</u></u>
LUB:1	9	APTTP <u>K</u> PAPTT <u>K</u> SAPTP <u>K</u> EPAPTT <u>K</u> EPAPTP <u>K</u> EPAPTT <u>K</u> PAPTP

LUB INSERT	SEQ ID NO:	Sequences (restriction sites underlined in DNA inserts; KEPAPTT sequences are highlighted in protein inserts)
Lub:2	12	<u>GCGCGCCCACA</u> ACTCCAAAAGAGGCCGCACCTACCACGACAAAGTCAGCTCCT ACTACGCCAAAGAGCCAGCGCCGACGACTACTAAAGAACCGGCACCCAC GCCTAAAGAACCAACAGCCCTACTACGACAAAGGAGCCTGCACCCACA AGAGCGCACCCACAACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCC</u> <u>AAACCGGCACCAACCAC<u>CTCGGA</u></u>
LUB:2	13	APTPK <u>EPA</u> PTTKSAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK SAPTP <u>KEP</u> APTT <u>KEP</u> PKPAPTP
Lub:3	16	<u>GCGCGCCCACA</u> ACTCCAAAAGAGGCCGCACCTACCACGACAAAGTCAGCTCCT ACTACGCCAAAGAGCCAGCGCCGACGACTACTAAAGAACCGGCACCCAC GCCTAAAGAACCAACAGCCCTACTACGACAAAGGAGCCTGCACCCACA AGAGCGCACCCACAACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCC</u> AACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCCAAACCGGCACCA</u> <u>CCACTCGGA</u>
LUB:3	17	APTPK <u>EPA</u> PTTKSAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK SAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK <u>SAPTP<u>KEP</u>APTT<u>KEP</u>APTT<u>KEP</u>PKPAPTP</u>
Lub:4	20	<u>GCGCGCCCACA</u> ACTCCAAAAGAGGCCGCACCTACCACGACAAAGTCAGCTCCT ACTACGCCAAAGAGCCAGCGCCGACGACTACTAAAGAACCGGCACCCAC GCCTAAAGAACCAACAGCCCTACTACGACAAAGGAGCCTGCACCCACA AGAGCGCACCCACAACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCC</u> AACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCCAGCCCTACTACGA</u> CAAAGGAGCCTGCACCCACAACCACGAAGAGCGCACCCACAACACCAAAGGAG CCGGCCCTACGACTC <u>CTAAGGAACCCAAACCGGCACCAACCAC<u>CTCGGA</u></u>
LUB:4	21	APTPK <u>EPA</u> PTTKSAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK SAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK <u>SAPTP<u>KEP</u>APTT<u>KEP</u>APTT<u>KEP</u>APTT<u>KEP</u>APTTK<u>SAPTP<u>KEP</u>APTT<u>KEP</u>PKPAPTP</u></u>
Lub:5	24	<u>GCGCGCCCACA</u> ACTCCAAAAGAGGCCGCACCTACCACGACAAAGTCAGCTCCT ACTACGCCAAAGAGCCAGCGCCGACGACTACTAAAGAACCGGCACCCAC GCCTAAAGAACCAACAGCCCTACTACGACAAAGGAGCCTGCACCCACA AGAGCGCACCCACAACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCC</u> AACACCAAAGGAGCCGGCCCTACGACTC <u>CTAAGGAACCCAGCCCTACTACGA</u> CAAAGGAGCCTGCACCCACAACCACGAAGAGCGCACCCACAACACCAAAGGAG CCGGCCCTACGACTC <u>CTAAGGAACCCAGCCCTACTACGAACAAAGGAGCCTGC</u> ACCCACAACCACGAAGAGCGCACCCACAACACCAAAGGAGCCGGCCCTACGA CTC <u>CTAAGGAACCCAAACCGGCACCAACCAC<u>CTCGGA</u></u>
LUB:5	25	APTPK <u>EPA</u> PTTKSAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK SAPTP <u>KEP</u> APTT <u>KEP</u> APTT <u>KEP</u> APTTK <u>SAPTP<u>KEP</u>APTT<u>KEP</u>APTT<u>KEP</u>APTT<u>KEP</u>APTT<u>KEP</u>PKPAPTP</u>

[049] Although we have exemplified the base DNA construct with full-length PRG4 containing all 12 exons (minus a central portion of exon 6), splice variants of PRG4

may also be employed, depending on the various activities and length desired. Additionally, different restrictions enzymes may be employed in an analogous strategy, providing that their location is conveniently located within nucleic acid sequence encoding PRG4 protein. In other embodiments, the base DNA construct lacks native exon 6 sequence, but includes one or more of exon 1 through exon 5 sequences or of exon 7 through exon 12 sequences of the native PRG4 gene. In other embodiments, the base DNA construct is identical to a recombinant MSF sequences described in US6433142 or US20020137894 except that part or all of the sequences of exon 6 are absent.

[050] The invention provides cDNA constructs encoding recombinant lubricins that are cloned into *SalI* (G[^]TCGAC; base nos. 1027 through 1032 of SEQ ID NO: 5) and *NotI* (GC[^]GGCCGC; base nos. 3984 through 3991 of SEQ ID NO: 5) restriction sites in the eucaryotic expression vector pTmed2 as a preferred embodiment (e.g., recombinant PRG4-Lub:1 cDNA construct in pTmed2 expression vector is located in SEQ ID NO: 5 at base nos. 1038 though 3983). The *SalI* site incorporates the first base of a modified Kozak translation initiation sequence (CCCACC; base no. 1032 of SEQ ID NO: 5) before the methionine start codon (ATG; base nos. 1038 through 1040 of SEQ ID NO: 5). Other embodiments of the invention include other restriction site combinations and other expression vectors.

[051] In a preferred embodiment, the iterative process makes use of the synthetic cDNA cassette-1 (SEQ ID NO: 1) in expression vector pTmed2, which is flanked by the restriction sites for *BssHII* (G[^]CGCGC) and *BspEI* (T[^]CCGGA), and the synthetic cDNA cassette-1, which includes an internal *Bsu36I* restriction site (CC[^]TNAGG, i.e., CC[^]TAAGG; base nos. 107 to 113 of SEQ ID NO: 1). For the iterative generation of recombinant lubricin constructs containing KEPAPTT-like sequences in this preferred embodiment, synthetic cDNA cassette-2 (SEQ ID NO: 3) is inserted between the *Bsu36I* and *BspEI* sites of the recombinant construct. Synthetic cDNA cassette-2 (SEQ ID NO: 3) is flanked by a modified remnant *Bsu36I* site (TAAAG) and a remnant *BspEI* (ACTCCGG) site. It also includes an internal *Bsu36I* site (CC[^]TNAGG, i.e., CC[^]TAAGG; base nos. 92 through 98 of SEQ ID NO: 3). Upon cloning synthetic cDNA cassette-2 into the *Bsu36I* and *BspEI* sites of a recombinant lubricin construct, the *Bsu36I* cloning site of the original construct is destroyed leaving one unique *Bsu36I* cloning site in the new construct.

[052] In this preferred embodiment, the amino acid sequence "APTPKEPAPTT TKSAPTPKEPAPTTKEPAPAPTTPKEPAPAPTTK" (SEQ ID NO: 26; 45 amino acids) remains a part of each PRG4-LUB:N protein (where N = an integer of 1 or more). In addition, the amino acid sequence "KEPAPTTKEPAPAPTTKTKSAPTPKEPAPTTP" (SEQ ID NO: 27; 31 amino acids) is encoded by the DNA insert that becomes part of each PRG4-Lub:N+1 cDNA construct through the addition of synthetic cDNA cassette-2 *Bsu36I/BspEI* to a PRG4-Lub:N cDNA construct. For PRG4-LUB:N protein where N is an integer greater than or equal to 3, the amino acid sequence "EPAPAPTTKTSAPTPKEPAPTTP" (SEQ ID NO: 28; 22 amino acids) joins SEQ ID NO: 26 to (N minus 2) repeats of SEQ ID NO: 27 in preferred embodiments. Furthermore, the amino acid sequence "KEPKPAPTTP" (SEQ ID NO: 29; 10 amino acids) immediately follows the last insert repeat of SEQ ID NO: 27 in preferred embodiments of the PRG4-LUB:N protein where N is an integer greater than or equal to 2.

[053] Because they form at least two KEPAPTT sequences, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 28 are each designated herein to be a "repetitive KEPAPTT-like sequence" (the N-terminus of SEQ ID 28 links to a K residue so that SEQ ID NO: 28 forms two KEPAPTT sequences in PRG4-LUB:N proteins).

[054] Consequently, for recombinant lubricin protein PRG4-LUB:N (where N equals an integer of 1 or more), the PRG4-LUB:N protein comprises SEQ ID NO: 26 in a preferred embodiment. Furthermore, for recombinant lubricin protein PRG4-LUB:N (where N equals an integer of 2 or more), the PRG4-LUB:N protein also comprises SEQ ID NO: 27 in a preferred embodiment. SEQ ID NO: 27 is repeated (N minus 1) times within each PRG4-LUB:N protein in these preferred embodiments. In PRG4-LUB:2, SEQ ID NO: 26 and SEQ ID NO: 27 overlap (i.e., they share a KEPAPTT sequence).

[055] In other preferred embodiments where N is an integer greater than or equal to 3 (e.g., where N equals an integer from 3 through 200, or in more preferred embodiments where N equals an integer from 5 through 50, or in even more preferred embodiments where N equals an integer from 10 through 30), recombinant lubricin protein comprises the 22 amino acids of SEQ ID NO: 28 joining the N-terminal-oriented 45 amino acids of SEQ ID NO: 26 to (N minus 2) repeat(s) of the 31 amino acids of SEQ ID NO:

27, where the 10 amino acids of SEQ ID NO: 29 are C-terminal to the last 31-amino-acid repeat of SEQ ID NO: 27.

[056] Table 3. Sequence Frequencies in Preferred PRG4-LUB Proteins

PRG4-LUB Protein	SEQ ID NO: 26 N-end insert	SEQ ID NO: 28 >--<	SEQ ID NO: 27 >--<	SEQ ID NO: 29 insert C-end	KEPAPTT repeats
-LUB:1	1	0	0	0	4
-LUB:2	1	0	1	1	6
-LUB:3	1	1	1	1	9
-LUB:4	1	1	2	1	12
-LUB:5	1	1	3	1	15
-LUB:N	1	1	N-2	1	3 x N

- [057] PRG4-LUB:N proteins in general have (3 times N) repeats of the KEPAPTT sequence in preferred embodiments where N equals the number of repetitive KEPAPTT-like sequences. Recombinant lubricin PRG4-LUB:5 (having $3 \times N = 3 \times 5 = 15$ copies of the KEPAPTT sequence in preferred embodiments) is the largest recombinant lubricin PRG4-LUB:N whose sequence is detailed herein. For recombinant lubricin of the present invention, however, the value N may be greater than 5, such as 7, 10, 12, 15, 20, 25, 30, 40, 50, 100, 150, 200 or more.

[058] In particular, proteins PRG4-LUB:1, PRG4-LUB:2, PRG4-LUB:3, PRG4-LUB:4, and PRG4-LUB:5 are detailed herein with 4, 6, 9, 12 and 15 perfect KEPAPTT sequences, respectively. However, it is possible to add increasing numbers of KEPAPTT sequences by continuing the iterative Lub:N insert procedure described herein. We have provided detailed description for PRG4-LUB:N recombinant lubricins with relatively low numbers of KEPAPTT or KEPAPTT-like sequences as compared with native PRG4/lubricin protein because smaller proteins are easier to synthesize and manipulate.

[059] It may also be desirable to increase the number of KEPAPTT-like sequences over that seen in native PRG4 protein. This can be accomplished either by continuing the iterative Lub:N insert procedure described herein so that there are more than 78 KEPAPTT-like sequences in the recombinant lubricin PRG4-LUB:N protein, or

by beginning with an intact PRG4 cDNA, rather than an exon 6-deleted or an exon 6-diminished version of PRG4 cDNA. Thus any KEPAPTT-like sequences added will be in excess of the number found in native PRG4 protein. Insert procedures used for the generation of larger recombinant lubricin proteins from an intact PRG4 cDNA, as well as 5 insert procedures that use an exon 6-deleted or an exon 6-diminished version of PRG4 cDNA, are encompassed within the invention.

EXAMPLE 2: EXPRESSION AND PURIFICATION OF 'LUB' PROTEIN

[060] PRG4-Lub:1 cDNA construct (SEQ ID NO: 6; containing synthetic cDNA cassette-1 sequence) was expressed in a stably transfected, preadaptive CHO DUKX cell 10 line, purified from conditioned media, and solubilized in PBS containing 500 mM L-arginine hydrochloride as follows.

[061] The PRG4-Lub:1 cDNA construct was expressed in a stably transfected CHO DUKX cell line and the conditioned media was collected. A two liter volume of this conditioned media was filter concentrated under compressed nitrogen gas (40 psi) using an 15 AMICON® M2000™ filtration unit fitted with either a 10 kDa nominal molecular weight limit (NMWL), a 30 kDa NMWL or a 100 kDa NMWL PALL FILTRON® OMEGA™ disc membrane. Media was concentrated to approximately a 100 ml volume, which was aspirated from the disc membrane. The disc membrane was then removed from the AMICON® M2000™ filtration unit. The "mucinous" retentate, which had accumulated at 20 the surface of the disc membrane, was harvested using a cell scraper and transferred to microcentrifuge tubes. The samples in the microcentrifuge tubes were centrifuged at approximately 12,000 x g for 10 minutes, and the aqueous supernatant was removed. The remaining "lubricin-enriched" pellets were dissolved in phosphate buffered saline (PBS) containing 500 mM L-arginine hydrochloride. The L-arginine hydrochloride 25 concentration may range from 100 mM to 2.0 M.

[062] Using the above procedure, PRG4-LUB:2 through PRG4-LUB:5 glycoproteins (and PRG4-LUB:N proteins where N = a nonnegative integer of 6 or more, as well as other glycoproteins containing KEPAPTT-like sequences) are harvested directly 30 from disc membranes, i.e., without purification of the concentrate remaining above disc membranes. That is, these recombinant lubricin glycoproteins are isolated directly from disc membranes of 10 kDa NMWL, 30 kDa NMWL, or 100 kDa NMWL PALL

FILTRON® OMEGA™ filtration units. In some instances, these glycoproteins may also be purified from the concentrate remaining above disc membranes through chromatographic techniques or electrophoretic techniques or both. Recombinant lubricin proteins and glycoproteins may also be purified using chromatography and other techniques known in the art (as, for example, described in US6433142 for MSF proteins; see also: Deutscher, 1990; and Scopes, 1994).

EXAMPLE 3: IMMUNOHISTOCHEMISTRY

[063] The cell source of lubricin in normal and osteoarthritic joints was further investigated using immunohistochemical techniques. In addition, the presence of lubricin on other tissue surfaces, including pleura, pericardium, peritoneum, and meninges, was examined according to the following methods.

[064] Osteoarthritic cartilage and synovium were obtained by informed consent from patients undergoing knee replacement surgery. Other tissues examined were normal human synovium and normal non-human primate (NHP) synovium, cartilage, pleura, pericardium, peritoneum, meninges, brain, tendon, and ligaments, and canine normal and osteoarthritic meniscus, cartilage, synovium, ligament, and tendons. Tissues were fixed in 4% paraformaldehyde immediately after harvest or following 24 hours incubation in media without and with supplemental monensin (5 µM). For immunohistochemical studies the tissues were fixed in 4% paraformaldehyde for 24 hours and 6-8 micron paraffin sections were obtained. A subset of tissues were frozen in optical coherence tomography (OCT) freezing compound and cut at 5 to 10 micron intervals followed by acetone fixation.

[065] Immunohistochemical and immunofluorescent analyses utilized a purified polyclonal rabbit anti-human lubricin antibody (Ab 06A10) generated by immunization with a truncated form of recombinant lubricin and purification on a protein A column. CD16 antibody (NEOMARKERS®, Fremont CA) was used to identify macrophages (Fcγ receptor III). CD106/VCAM-1 antibody (NEOMARKERS®) was used to label fibroblasts within cryostat sections. For control sections, an equivalent concentration of RIgG (VECTOR LABS™, CA), MIgG₁ (DAKO®), and MIgG_{2a} (DAKO®) was used consecutively. The Dextran Technology System (ENVISION+™; DAKO®) was used to visualize antibody binding and the sections were counterstained with Mayer's alum-

hematoxylin. Immunofluorescence was performed using the above primary antibodies and probed with secondary antibodies (Alexa Dyes - MOLECULAR PROBES™, Oregon) goat anti-rabbit Alexa dye at 546 nm and goat anti-mouse Alexa dye at 488 nm. Fluorescent binding of the antibody was detected with a NIKON® fluorescent microscope.

5 [066] Lubricin was detected along the surfaces of normal and osteoarthritic human articular cartilage and synovium. A thick layer of lubricin completely coated the fibrillated osteoarthritic surface. CD106 immunofluorescence showed strong cell membrane staining of the intimal fibroblasts of the synovium; lubricin protein was also visualized as staining within synovial cells. Double immunostaining for CD106+lubricin, 10 clearly showed co-localization within the intimal fibroblasts of the synovium. CD16 staining of synovial macrophages demonstrated the presence of these cells throughout the layers of the synovium, but there was no co-localization with lubricin.

15 [067] Staining of NHP and canine articular tissues (normal and OA) with the lubricin antibody showed lubricin coating the surface layer of the synovium, cartilage, meniscus, and tendons. NHP cartilage also showed strong immunoreactivity not only in the superficial zone cells but also the transitional zone cells without the addition of monensin to increase intracellular stores of the glycoprotein. Cells lining the peritoneum, pericardium, and pleura also exhibited lubricin expression, though no immunoreactivity was observed in the meninges or brain.

20 [068] In summary, both normal and osteoarthritic synovium, tendon, meniscus and cartilage were coated by a substantial layer of lubricin. The glycoprotein is clearly present on tissues within OA joints. Double-immunofluorescent staining of human OA synovium demonstrated that the intimal fibroblast synoviocytes were responsible for the synthesis of lubricin.

25 [069] The localization of lubricin protein outside joint tissue has not been previously described. A surface layer of lubricin was clearly demonstrated on lung pleura, pericardium, and peritoneum. Lubricin is reputed to have a lubricating function within the synovial joint, but may have multiple roles including, but not limited to, lubrication and anti-adhesive functions in other tissues. Supplementation of these other tissues with 30 lubricin is a biotherapy encompassed within this invention.

EXAMPLE 4: RECOMBINANT LUBRICIN AS A MECHANICAL LUBRICANT

[070] Recombinant lubricin could be used as a lubricant generally, e.g., with seals and bearings and the like. For example, US3973781 entitled "Self-lubricating seal," US4491331 entitled "Grooved mechanical face seal," US4560174 entitled "Multi lip seal," 5 and US4973068 entitled "Differential surface roughness dynamic seals and bearings," each describe seals of varying designs. Recombinant lubricin could be used as a lubricant with these seals.

[071] In particular, recombinant lubricin could be used as a lubricant for medical devices, prostheses, and implants, particularly where a biocompatible lubricant is required. 10 In addition, the applications need not be medical, but could include applications in environmentally sensitive contexts where a biocompatible lubricant may be desirable.

EXAMPLE 5: RECOMBINANT LUBRICIN COMPOSITIONS

[072] A recombinant lubricin of the present invention may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. 15 Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the 20 invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or complement its activity or use in 25 treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects. Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects.

30 [073] Use of recombinant lubricin protein for intra-articular supplementation in combination with the previously described polymeric hyaluronan (HA) and higher

molecular weight hylans is particularly preferred. Other preferred combinations for use in intra-articular supplementation include the use of recombinant lubricin protein with anesthetics (e.g., lidocaine), steroids (e.g., triamcinolone hexacetonide), or radioisotopes (e.g., yttrium). Other preferred combinations for use in intra-articular supplementation 5 may include autologous or heterologous cell preparations (e.g., of cultured chondrocytes, synoviocytes, or stem cells, whether autologously or heterologously derived).

[074] A recombinant lubricin of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in 10 such multimeric or complexed form.

[075] A pharmaceutical composition of the invention may be in the form of a complex of the recombinant lubricin protein(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface 15 immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co- 20 stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

[076] A pharmaceutical composition of the invention may be in the form of a 25 liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, 30 and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in US4235871, US4501728, US4837028, and US4737323.

[077] In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a subject (e.g., a mammal) having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines, other hematopoietic factors, or cell-based supplements. When co-administered with one or more cytokines, lymphokines, other hematopoietic factors, or cell-based supplements, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or cell-based supplement, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or cell-based supplement.

[078] Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection, or, in some instances, oral ingestion, inhalation, topical application. Administration to a patient by injection into joint tissue is generally preferred (Schumacher, 2003).

[079] When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90% protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of

protein of the present invention, and preferably from about 1 to 50% protein of the present invention.

[080] When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For example, injection in association with, or in combination with, lidocaine or other local 10 anesthetic, steroids or adrenocorticoids, HA and/or hylans, or radioisotopes are all encompassed within by the present invention.

[081] The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage 20 is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein of the present invention per kg body weight depending on the method of administration and the exact therapeutic course implemented.

30 [082] If administered intravenously, the duration of intravenous therapy using a pharmaceutical composition comprising recombinant lubricin of the present invention will

vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention may be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will
5 decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.

[083] For compositions of the present invention which are useful for bone, cartilage, tendon or ligament therapy, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When
10 administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for in some wound healing and tissue repair contexts. Therapeutically useful agents which may also optionally be
15 included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition comprising recombinant lubricin protein of the invention in the methods of the invention. Preferably the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, possibly capable of providing a
20 structure for the developing bone and cartilage, and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

[084] If a matrix is used, the choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and
25 interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are
30 comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxapatite, bioglass,

aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle 5 shape, and biodegradability.

[085] In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α 10 and TGF- β), and insulin-like growth factor (IGF).

[086] The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals such as cats and dogs, laboratory animals such as mice and rats, as well as horses, in addition to humans, are particularly desired subjects or patients for such treatment with recombinant lubricin proteins of the present invention.

15 [087] The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., cartilage or tendon), the patient's age, sex, and diet, 20 the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone 25 growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

[088] Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a subject (e.g., a mammal). Polynucleotides of the invention may also be administered 30 by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).

[089] Cells may also be cultured ex vivo in the presence of nucleic acids or proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

EXAMPLE 6: ANTI-LUBRICIN ANTIBODIES

5 [090] Recombinant lubricin protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein or, in some embodiments, its native counterparts. Such antibodies may be obtained using either complete recombinant lubricin protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the 10 carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art (for example, as in Merrifield, 1963; and Krstenansky et al., 1987). Monoclonal antibodies binding to recombinant lubricin protein of the invention may be useful diagnostic agents for the immunodetection of related proteins. Neutralizing monoclonal antibodies binding to these 15 related proteins may also be useful therapeutics for both conditions associated with lubricin or, in some cases, in the treatment of some forms of cancer where abnormal expression of lubricin may be involved (e.g., in synoviomas).

20 [091] In addition to antibodies which are directed to the polypeptide core of a recombinant lubricin protein, an antibody directed to a sugar portion or to a glycoprotein complex of recombinant lubricin protein is desirable. In order to generate antibodies which bind to glycosylated recombinant lubricin (but not to a deglycosylated form), the immunogen is preferably a glycopeptide, the amino acid sequence of which spans a highly 25 glycosylated portion of the recombinant lubricin, e.g., a repetitive KEPAPTT-like sequence. Shorter glycopeptides, e.g., 8–15 amino acids in length, within the same highly glycosylated region, are also used as immunogens. Methods of generating antibodies to highly glycosylated biomolecules are known in the art (for example, as described by Schneerson et al., 1980).

EXAMPLE 7: RECOMBINANT LUBRICIN DELIVERY

30 [092] Standard methods for delivery of recombinant lubricin are used. For intra-articular administration, recombinant lubricin is delivered to the synovial cavity at a concentration in the range of 20 – 500 µg/ml in a volume of approximately 0.1 – 2 ml per

injection. For example, 1 ml of a recombinant lubricin at a concentration of 200 – 300 µg/ml is injected into a knee joint using a fine (e.g., 14 – 30 gauge, preferably 18 – 26 gauge) needle. The compositions of the invention are also useful for parenteral administration, such as intravenous, subcutaneous, intramuscular, or intraperitoneal 5 administration, and, in preferred embodiments, onto the surfaces of the peritoneal, pericardium, or pleura.

[093] Proper needle placement is critical for the efficacy of recombinant lubricin protein that is delivered by injection in joint therapies (Schumacher, 2003). Proper needle placement may be facilitated through the use of ultrasound technology. Successful 10 injections are more common after successful aspiration of fluid is obtained. A supralateral approach into the suprapatellar pouch has been suggested to provide the most reliable access to knee joint space. In addition to administering recombinant lubricin by intra-articular injection, nucleic acids encoding recombinant lubricin (e.g., in gene therapy applications) may be administered to a synovial cavity by intra-articular injection.

[094] For prevention of surgical adhesions, recombinant lubricins described 15 herein are administered in the form of gel, foam, fiber or fabric. A recombinant lubricin formulated in such a manner is placed over and between damaged or exposed tissue interfaces in order to prevent adhesion formation between apposing surfaces. To be effective, the gel or film must remain in place and prevent tissue contact for a long enough 20 time so that when the gel finally disperses and the tissues do come into contact, they will no longer have a tendency to adhere. Recombinant lubricin formulated for inhibition or prevention of adhesion formation (e.g., in the form of a membrane, fabric, foam, or gel) are evaluated for prevention of post-surgical adhesions in a rat cecal abrasion model 25 (Goldberg et al., 1993). Compositions are placed around surgically abraded rat ceca, and compared to non-treated controls (animals whose ceca were abraded but did not receive any treatment). A reduction in the amount of adhesion formation in the rat model in the presence of recombinant lubricin formulation compared to the amount in the absence of the formulation indicates that the formulation is clinically effective to reduce tissue adhesion formation. In contexts where tissue adhesion is desired (e.g., where healing of 30 cartilage fissures is desired), however, use of recombinant lubricin may be best avoided.

Providing lubrication to cartilage surfaces impairs cartilage–cartilage integration (Schaefer et al., 2004).

[095] Recombinant lubricins are also used to coat artificial limbs and joints prior to implantation into a mammal. For example, such devices may be dipped or bathed in a solution of a recombinant lubricin, e.g., following methods described in US5709020 or US5702456. Care should be exercised, however, in the *in vivo* use of recombinant lubricin in providing lubrication near a prostheses. A marked upregulation in PRG4 gene expression (i.e., MSF gene expression) has been reported to be associated with prosthesis loosening; lubricin could disturb the tight interaction between bone and prosthesis and thereby contribute to prosthesis loosening (Morawietz et al., 2003).

EXAMPLE 8: OA MODEL

[096] In order to assess the efficacy of intra-articular administration of lubricin preparations, a murine model of osteoarthritis/cartilage erosion is prepared. For surgical induction of osteoarthritis, mice are anesthetized with 250 mg/kg intraperitoneal tribromoethanol (SIGMA® Chemical), and knees are prepared for aseptic surgery. A longitudinal incision medial to the patellar ligament is made, the joint capsule is opened, and the meniscotibial ligament (anchoring the medial meniscus to the tibial plateau) is identified. In a subset of animals, no further manipulation is performed, and this group is considered sham operated. In the experimental group the medial meniscotibial ligament is transected resulting in destabilization of the medial meniscus (DMM). In both sham and DMM animals, the joint capsule and subcutaneous layer are sutured closed separately and the skin is closed by application of NEXABAND® S/C tissue adhesive (Abbott, North Chicago, IL). Buprenorphine (BUPRENEX®; Reckitt & Coleman, Kingston-upon-Hull, UK) is administered pre- and post-operatively.

[097] Recombinant lubricin preparations are administered by intra-articular injection using a 30 gauge needle. Injections of 5–10 microliters per knee joint are administered one week post surgery. Additional injections are optionally administered on a weekly basis. Animals are sacrificed by carbon dioxide at 4 weeks post-operatively and at 8 weeks post-operatively.

[098] In order to assess the progression and severity of osteoarthritis, intact knee joints are placed into 4% paraformaldehyde for 24 hours, then decalcified in

EDTA/polyvinylpyrrolidone for five days. Joints are embedded in paraffin and 6- μm frontal sections obtained through the entire joint. Slides are stained with Safranin O-fast green and graded at 70- μm intervals through the joint using a modification of a semi-quantitative scoring system (Chambers et al., 2001) in which "0" = normal cartilage; "0.5" 5 = loss of Safranin O without structural changes; "1" = roughened articular surface and small fibrillations; "2" = fibrillation down to the layer immediately below the superficial layer and some loss of surface lamina; "3" = mild (<20%); "5" = moderate (20–80%); and "6" = severe (>80%) loss of non-calcified cartilage. Scores of "4" (erosion to bone) are not a feature of this model. All quadrants of the joint (medial tibial plateau, medial femoral 10 condyle, lateral tibial plateau, and lateral femoral condyle) are scored separately. A minimum of 12 levels are scored by blinded observers for each knee joint. Scores are expressed as the maximum histologic score found in each joint or the summed histologic scores. The summed score represents the additive scores for each quadrant of the joint on each histologic section through the joint. This method of analysis enables assessment of 15 severity of lesions as well as the surface area of cartilage affected with OA-like lesions (Glasson et al., 2004).

[099] **References:** (1) Chambers et al., 2001, *Arthritis Rheum.* 44: 1455–65; (2) Deutscher, 1990, *Methods in Enzymology*, Vol. 182: *Guide to Protein Purification*, Academic Press; (3) Espallargues and Pons, 2003, *Int'l J. Tech. Assess. Health Care* 19: 20 41–56; (4) Flannery et al., 1999, *Biochem. Biophys. Res. Comm.* 254: 535–41; (5) Glasson et al., 2004, *Arthritis Rheum.* 50: 2547–58; (6) Goldberg et al., 1993, In: *Gynecologic Surgery and Adhesion Prevention*, Willey-Liss, pp. 191–204; (7) Hills, 2002, *J. Rheumatology* 29: 200–01; (8) Ikegawa et al., 2000, *Cytogenet. Cell Genet.* 90: 291–297; (9) Jay et al., 2001, *J. Orthopaedic Research* 19: 677–87; (10) Jay et al., 2002, 25 *Glycoconjugate Journal* 18: 807–15; (11) Krstenansky et al., 1987, *FEBS Lett.* 211: 10–16; (12) Marcelino et al., 1999, *Nature Genetics* 23: 319–322; (13) Merberg et al., 1993, *Biology of Vitronectins and their Receptors*, Pressner et al. (eds.): Elsevier Science Publishers, pp. 45–53; (14) Merrifield, 1963, *J. Amer. Chem. Soc.* 85: 2149–54; (15) Morawietz et al., 2003, *Virchows Arch.* 443: 57–66; (16) Rees et al., 2002, *Matrix Biology* 30 21: 593–602; (17) Schneerson et al., 1980, *J. Exp. Med.* 152: 361–76; (18) Scopes, 1994, *Protein Purification: Principles and Practice* (3rd edition), Springer Verlag; (19) Schaefer et al., 2004, *Biorheology* 41: 503 – 508; (20) Schumacher, 2003, *Arthritis & Rheumatism*

49: 413–20; (21) Tatusova and Madden, 1999, *FEMS Microbiol Lett.* 174: 247–50; (22) Wobig et al., 1998, *Clin. Ther.* 20: 410–23; and (23) Wobig et al., 1999, *Clin. Ther.* 21: 1549–62.

CLAIMS

[100] We claim:

1. An isolated protein comprising SEQ ID NOS: 9, 13, 17, 21 or 25.
2. An isolated protein comprising SEQ ID NO: 26 linked to N-2 repeat(s) of SEQ
5 ID NO: 27, where N equals an integer from 3 through 200.
3. The protein of claim 2, where N equals an integer from 5 through 50.
4. The protein of claim 2, where N equals an integer from 10 through 30.
5. An isolated protein comprising SEQ ID NO: 26 plus SEQ ID NO: 28 plus [N-2
repeat(s) of SEQ ID NO: 27] plus SEQ ID NO: 29, where N equals an integer
10 from 10 through 30.
6. An isolated polynucleotide comprising a nucleic acid sequence encoding the
protein of claim 1.
7. An isolated polynucleotide comprising a nucleic acid sequence encoding the
protein of claim 2.
- 15 8. An isolated polynucleotide comprising a nucleic acid sequence encoding the
protein of claim 3.
9. An isolated polynucleotide comprising a nucleic acid sequence encoding the
protein of claim 4.
10. An isolated polynucleotide comprising a nucleic acid sequence encoding the
20 protein of claim 5.
11. An isolated protein comprising SEQ ID NOS: 7, 11, 15, 19 or 23.
12. An isolated polynucleotide comprising a nucleic acid sequence encoding the
protein of claim 11.
13. The polynucleotide of claim 6 wherein the polynucleotide comprises SEQ ID
25 NOS: 8, 12, 16, 20 or 24.
14. The polynucleotide of claim 12 wherein the polynucleotide comprises SEQ ID
NOS: 6, 10, 14, 18 or 22.

15. An isolated polynucleotide comprising a polynucleotide having at least 80% identity to SEQ ID NOS: 6, 10, 14, 18 or 22 over the entire length of the sequence.
16. The polynucleotide of claim 15 comprising a polynucleotide having at least 90% identity.
- 5 17. The polynucleotide of claim 15 comprising a polynucleotide having at least 95% identity.
18. The polynucleotide of claim 15 comprising a polynucleotide having at least 99% identity.
- 10 19. The protein of claims 1 or 2 wherein the protein is O-linked with β -(1-3)-Gal-GalNac.
20. A composition comprising a therapeutically effective amount of a protein of claim 19 in a pharmaceutically acceptable carrier.
21. The composition of claim 20 additionally comprising hyaluronan or hylan.
- 15 22. A method of treating a subject comprising:
obtaining the composition of claim 20; and
administering said composition to a tissue of the subject.
23. The method of claim 22 wherein the tissue is selected from the group consisting of cartilage, synovium, meniscus, tendon, peritoneum, pericardium, and pleura.
- 20 24. The method of claim 23 wherein the tissue is cartilage.
- 25 25. The method of claim 22 additionally comprising a step selected from the group consisting of: providing an anesthetic to the subject; providing an anti-inflammatory drug to the subject; providing an antibiotic to the subject; aspirating fluid from the subject; washing tissue of the subject; and imaging tissue of the subject.
26. The method of claim 22 wherein the subject is selected from the group consisting of a mouse, a rat, a cat, a dog, a horse and a human.
27. The method of claim 26 wherein the subject is a human.

28. An expression vector comprising the polynucleotide of claims 6 or 7 operably-linked to an expression control sequence.
29. A method of producing recombinant protein comprising:
 - 5 growing cells transformed with the expression vector of claim 28 in liquid culture media; and
 - collecting recombinant protein from the media.
30. The method of claim 29, wherein the collecting protein comprises:
 - concentrating the protein by filtering the media through a membrane;
 - collecting the retained protein from the membrane; and
 - 10 solubilizing the collected protein in a buffered salt solution containing L-arginine hydrochloride ranging in concentration from 0.1 to 2.0 M.
31. The method of claim 30 wherein the L-arginine hydrochloride concentration is 0.5 M.
32. An isolated antibody specific for a protein of claims 1 or 2.

SEQUENCE LISTING

<110> Wyeth

Flannery, Carl R

Corcoran, Christopher J

Freeman, Bethany A

Racie, Lisa A

<120> RECOMBINANT LUBRICIN MOLECULES AND USES THEREOF

<130> 50657-01404WOPT

<160> 29

<170> PatentIn version 3.3

<210> 1

<211> 155

<212> DNA

<213> Artificial

<220>

<223> Nucleotide sequence of synthetic cDNA cassette-1.

<400> 1

cgcggccaca actccaaaag agccccgacc taccacgaca aagttagctc ctactacgcc 60

caaagagcca gcgccgacga ctactaaaga accggcaccc accacgccta aggagccagc 120

tcctactaca acgaaaaccgg caccaaccac tccgg 155

<210> 2

<211> 51

<212> PRT

<213> Artificial

<220>

<223> Translation of SEQ ID NO: 1.

<400> 2

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala
1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala
20 25 30

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Pro Ala Pro
35 40 45

Thr Thr Pro

50

<210> 3

<211> 125

<212> DNA

<213> Artificial

<220>
<223> Nucleotide sequence of synthetic cDNA cassette-2.

<400> 3
taaagaacca gccctacta cgacaaagga gcctgcaccc acaaccacga agagcgcacc 60
cacaacacca aaggagccgg cccctacgac tcctaaggaa cccaaaccgg caccaaccac 120
tccgg 125

<210> 4
<211> 41
<212> PRT
<213> Artificial

<220>
<223> Translation of SEQ ID NO: 3.

<400> 4

Lys	Glu	Pro	Ala	Pro	Thr	Thr	Thr	Lys	Glu	Pro	Ala	Pro	Thr	Thr	Thr
1					5			10						15	

Lys	Ser	Ala	Pro	Thr	Thr	Pro	Lys	Glu	Pro	Ala	Pro	Thr	Thr	Pro	Lys
					20			25					30		

Glu	Pro	Lys	Pro	Ala	Pro	Thr	Thr	Pro							
		35				40									

<210> 5
<211> 8049
<212> DNA
<213> Artificial

<220>
<223> pTmed2 vector containing recombinant PRG4-Lub:1 cDNA construct.

<400> 5
catatgcgtt gtgaaatacc gcacagatgc gtaaggagaa aataccgcat caggcgtact 60
gagtcattag ggactttcca atgggttttg cccagtacat aaggtcaata ggggtgaatc 120
aacaggaaag tcccatttggaa gccaagtaca ctgagtcaat agggactttc cattgggttt 180
tgccccagtac aaaaggtcaa taggggtga gtcaatgggt ttttccattt attggcacgt 240
acataaggtc aatagggttg agtcattttggg ttttccagc caatttaatt aaaacgccat 300
gtactttccc accatttgcacg tcaatgggtt attgaaacta atgcaacgtt acctttaaac 360
ggtaactttcc catagcttatgat taatggaaa gtaccgttct cgagccaata cacgtcaatg 420
ggaagtgaaa gggcagccaa aacgttaacac cgccccgggtt ttcccttggaa aattccatat 480
tggcacgcatttcttattggct gagctgcgtt ctacgtgggt ataagaggcg cgaccagcgt 540

cggtaaccgtc	cgagtcttcg	gtctgaccac	cgtagaacgc	agagctcctc	gctgcagccc	600
aagctctgtt	gggctcgccg	ttgaggacaa	actcttcgcg	gtcttccag	tactcttgga	660
tcggaaaccc	gtcggcctcc	gaacggtaact	ccgccaccga	gggacctgag	cgagtccgca	720
tcgaccggat	cggaaaacct	ctcgactgtt	ggggtgagta	ctccctctca	aaagcgggca	780
tgacttctgc	gctaagattg	tcagttcca	aaaacgagga	ggatttgata	ttcacctggc	840
ccgcggtgat	gcctttaggg	gtggccgcgt	ccatctggc	agaaaagaca	atcttttgt	900
tgtcaagctt	gaggtgtggc	aggcttgaga	tctggccata	cacttgagtg	acaatgacat	960
ccactttgcc	tttctctcca	caggtgtcca	ctcccaaggc	caactgcaga	cttcgaattc	1020
tactgagtcg	acccaccatg	gcatggaaaa	cacttccat	ttacctgttg	ttgctgctgt	1080
ctgtttcgt	gattcagcaa	gttcatctc	aagatttac	aagctgtgca	gggagatgtg	1140
gggaagggta	ttcttagagat	gccacctgca	actgtgatta	taactgtcaa	cactacatgg	1200
agtgctgccc	tgatttcaag	agagtctgca	ctgcggagct	ttcctgtaaa	ggccgctgct	1260
ttgagtcctt	cgagagaggg	agggagtgtg	actgcgacgc	ccaatgtaa	aagtatgaca	1320
agtgctgtcc	cgattatgag	agtttctgtg	cagaagtgca	taatcccaca	tcaccaccat	1380
cttcaaagaa	agcacctcca	ccttcaggag	catctcaaac	catcaaatac	acaaccaaac	1440
gttcaaccaa	accaccaaac	aagaagaaga	ctaagaaagt	tatagaatca	gaggaaataa	1500
cagaagaaca	ttctgtttct	gaaaatcaag	agtcctcctc	cagtagcagt	tcaagtagtt	1560
cgtcgctgac	aatttggaaa	atcaagtctt	ccaaaattc	agctgcta	agagaattac	1620
agaagaaact	caaagtaaaa	gataacaaga	agaacagaac	taaaaagaaa	cctacccca	1680
aaccaccagt	tgttagatgaa	gctggaagtg	gattggacaa	tggtgacttc	aaggtcacaa	1740
ctcctgacac	gtcttaccacc	caacacaata	aagttagcac	atctcccaag	atcacaacag	1800
caaaaccaat	aaatcccaga	cccagtcttc	cacctaattc	tgatacatct	aaagagacgt	1860
cttgcacat	gaataaaagag	acaacagtgg	aaactaaaga	aactactaca	acaatataaac	1920
agacttcaac	tgatggaaaa	gagaagacta	cttccgctaa	agagacacaa	agtatagaga	1980
aaacatctgc	taaagattt	gcacccacat	ctaaagtgt	ggctaaacct	acacccaaag	2040
ctgaaactac	aaccaaaggc	cctgctctca	ccactccaa	ggagcccacg	cccaccactc	2100
ccaaggagcc	tgcacatctacc	acacccaaag	agcccacacc	taccaccatc	aagagcgcgc	2160
ccacaactcc	aaaagagccc	gcacccatcca	cgacaaagtc	agctcctact	acgccccaaag	2220
agccagcgc	gacgactact	aaagaaccgg	cacccaccac	gcctaaggag	ccagctccta	2280
ctacaacgaa	accggcacca	accactccgg	aaacacccatc	tccaaaccact	tcagaggct	2340

ctactccaac taccaccaag gagcctacca ctatccacaa aagccctgat gaatcaactc 2400
ctgagcttc tgcagaaccc acaccaaaaag ctcttgaaaa cagtcccaag gaacctggtg 2460
tacctacaac taagacgccc gcggcgacta aacctgaaat gactacaaca gctaaagaca 2520
agacaacaga aagagactta cgtaactacac ctgaaactac aactgctgca cctaagatga 2580
caaaagagac agcaactaca acagaaaaaa ctaccgaatc caaaataaca gctacaacca 2640
cacaagtaac atctaccaca actcaagata ccacaccatt caaaattact actcttaaaa 2700
caactactct tgcacccaaa gtaactacaa caaaaaagac aattactacc actgagatta 2760
tgaacaaacc tgaagaaaca gctaaaccaa aagacagagc tactaattct aaagcgacaa 2820
ctcctaaacc tcaaaagcca accaaagcac ccaaaaaacc cacttctacc aaaaagccaa 2880
aaacaatgcc tagagtgaga aaaccaaaga cgacaccaac tccccgcaag atgacatcaa 2940
caatgccaga attgaaccct acctcaagaa tagcagaagc catgctccaa accaccacca 3000
gacctaacca aactccaaac tccaaactag ttgaagtaaa tccaaagagt gaagatgcag 3060
gtggtgctga aggagaaaca cctcatatgc ttctcaggcc ccatgtgttc atgcctgaag 3120
ttactccgaa catggattac ttaccgagag tacccaatca aggcattatc atcaatccca 3180
tgcttccgaa tgagaccaat atatgcaatg gtaagccagt agatggactg actactttgc 3240
gcaatggac attagttgca ttccgaggc attatttctg gatgctaagt ccattcagtc 3300
caccatctcc agctcgaga attactgaag tttgggtat tcctcccccc attgataactg 3360
tttttactag gtgcaactgt gaaggaaaaa ctttcttctt taaggattct cagtaactggc 3420
gttttaccaa tgatataaaa gatgcagggt accccaaacc aattttcaaa ggatttggag 3480
gactaactgg acaaatacgatg gcagcgctt caacagctaa atataagaac tggcctgaat 3540
ctgtgttattt ttcaagaga ggtggcagca tttagcagta tatttataaa caggaacctg 3600
tacagaagtg ccctggaga aggccctgctc taaattatcc agtgtatgga gaaatgacac 3660
aggtaggag acgtcgctt gaacgtgcta taggacccctc tcaaacadac accatcagaa 3720
ttcaatattc acctgccaga ctggcttac aagacaaagg tgtccttcat aatgaagtt 3780
aagttagtat actgtggaga ggacttccaa atgtggttac ctcagctata tcactgccc 3840
acatcagaaa acctgacggc tatgattact atgcctttc taaagatcaa tactataaca 3900
ttgatgtgcc tagtagaaca gcaagagcaa ttactactcg ttctggcag accttatcca 3960
aagtctggta caactgtcct taagcggccg ccgcaaattc taacgttact ggccgaagcc 4020
gcttggata aggccggtgt gcgttgcgt atatgttatt ttccaccata ttgccgtctt 4080

ttggcaatgt gagggcccg aaacctggcc ctgtcttctt gacgagcatt cctaggggtc	4140
tttccccctct cgccaaagga atgcaaggtc tggtaatgt cgtgaaggaa gcagttcctc	4200
tggaaagcttc ttgaagacaa acaacgtctg tagcgaccct ttgcagggcag cggAACCCCC	4260
cacctggcga caggtgcctc tgccggccaaa agccacgtgt ataagataca cctgcaaagg	4320
cggcacaacc ccagtgcac gttgtgagtt ggatagttgt ggaaagagtc aaatggctct	4380
cctcaagcgt attcaacaag gggctgaagg atgcccagaa ggtaccccat tgtatggat	4440
ctgatctgg gcctcggtgc acatgcttta catgtgttta'gtcgaggtta aaaaacgtct	4500
aggccccccg aaccacgggg acgtggttt ccttgaaaa acacgattgc tcgagccatc	4560
atggttcgac cattgaactg catcgtcgccc gtgtccaaa atatgggat tggcaagaac	4620
ggagacctac cctggcctcc gctcaggaac gagttcaagt acttccaaag aatgaccaca	4680
acctcttcag tggaaaggtaa acagaatctg gtgattatgg gtaggaaaac ctggttctcc	4740
attcctgaga agaatcgacc tttaaaggac agaattaata tagttctcag tagagaactc	4800
aaagaaccac cacgaggagc tcattttctt gccaaaagtt tggatgatgc cttaagactt	4860
attgaacaac cggaaatggc aagtaaagta gacatggttt ggatagtcgg aggcaagtct	4920
gtttaccagg aagccatgaa tcaaccaggc cacctcagac tctttgtgac aaggatcatg	4980
caggaatttg aaagtgacac gttttccca gaaattgatt tggggaaata taaaacttctc	5040
ccagaatacc caggcgtcct ctctgaggtc caggaggaaa aaggcatcaa gtataagttt	5100
gaagtctacg agaagaaaga ctaacaggaa gatgcittca agttctctgc tcccctccta	5160
aagctatgca tttttataa gaccatggg cttttgctgg cttagatca taatcagcca	5220
taccacattt gtagaggtt tacttgcttt aaaaaacctc ccacacccctt ccctgaaccc	5280
gaaacataaa atgaatgcaa ttgttgttgt taacttggttt attgcagctt ataatggta	5340
caaataaagc aatagcatca caaatttcac aaataaagca ttttttcac tgcattctag	5400
ttgtggtttg tccaaactca tcaatgtatc ttatcatgtc tggatccccg gccaacggc	5460
tggtgacccg gctgcgagag ctcgggtgtac ctgagacgctg agtaagccct tgagtcaaag	5520
acgtagtcgt tgcaagtccg caccaggta cgtatcatcga tgcttagacccg tgcaaaaagga	5580
gagcctgtaa gcgggcaactc ttccgtggc tggggataa attcgcaagg gtatcatggc	5640
ggacgaccgg ggttcaacc ccggatccgg ccgtccgccc tgatccatcc ggttaccgccc	5700
cgcgtgtcga acccaggtgt ggcacgtcag acaacggggg agcgctcctt ttggcttcct	5760
tccaggcgcg ggggtgtcg cgctagcttt tttggcgagc tcgaattaaat tctgcattaa	5820
tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattt ggcgccttc cgcttcctcg	5880

ctcactgact cgctgcgctc ggtcggttcgg ctgcggcgag cggtatcagc tcactcaaag	5940
gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa	6000
ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcggtttt ccataggctc	6060
cgcggccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca	6120
ggactataaa gataccaggc gtttccccctt ggaagctccc tcgtgcgctc tcctgttccg	6180
accctgccgc ttaccggata cctgtccogcc tttctccctt cgggaagcgt ggcgctttct	6240
caatgctcac gctgttaggta tctcagttcg gtgttaggtcg ttcgctccaa gctgggctgt	6300
gtgcacgaac ccccccgttca gcccgaccgc tgccgccttat ccggtaacta tcgtcttgag	6360
tccaaccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc	6420
agagcgaggt atgttaggcgg tgctacagag ttcttgaagt ggtggctaa ctacggctac	6480
actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga	6540
gttggtagct cttgatccgg caaacaaacc accgctggta gcgggtggttt ttttgttgc	6600
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg	6660
gggtctgacg ctcagtgaa cggaaactca cgtaaggga ttttggtcat gagattatca	6720
aaaaggatct tcacctagat ctttttaaat taaaaatgaa gttttaaatc aatctaaagt	6780
atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca	6840
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg	6900
atacgggagg gcttaccatc tggcccccagt gctgcaatga taccgcgaga cccacgctca	6960
ccggctccag atttatcgc aataaaccag ccagccggaa gggccgagcg cagaagtgg	7020
cctgcaactt tatccgcctc catccagtct attaattgtt gccggaaagc tagagtaagt	7080
agttcgccag ttaatagttt ggcacacgtt gttgccattt ctacaggcat cgtgggtca	7140
cgctcgtcgt ttggtatggc ttcattcagc tccgggttccc aacgatcaag gcgagttaca	7200
tgtatccccca tgggtgtgcaa aaaagcggtt agctccttcg gtcctccgat cggtgtcaga	7260
agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact	7320
gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga	7380
gaatagtgtt tgccggcacc gagttgtct tggccggcgt caatacggga taataccgcg	7440
ccacatagca gaactttaaa agtgctcatc attggaaaac gttttcggg gcgaaaaactc	7500
tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga	7560
tcttcagcat cttttacttt caccagcggtt tctgggtgag caaaaacagg aaggcaaaat	7620

gccgcaaaaa	agggataaag	ggcgacacgg	aatgttcaa	tactcatact	tttcctttt	7680
caatattatt	gaagcattta	tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	7740
attttagaaaa	ataaacaaat	aggggttccg	cgcacatttc	cccggaaaagt	gccacctgac	7800
gtctaagaaa	ccattattat	catgacatta	acctataaaa	ataggcgtat	cacgaggccc	7860
tttcgtctcg	cgcgttccgg	tgtgacgggt	gaaaacctct	gacacatgca	gctccggag	7920
acggtcacag	cttgcgtgt	agcggatgcc	gggagcagac	aagcccgta	gggcgcgtca	7980
gcgggtgttg	gcgggtgtcg	gggctggctt	aactatgcgg	catcagagca	gattgtactg	8040
agagtgcac						8049

<210> 6
<211> 2946
<212> DNA
<213> Artificial

<220>
<223> Recombinant PRG4-Lub:1 cDNA construct.

<400> 6	atggcatgga	aaacacttcc	catttacctg	ttgttgctgc	tgtctgtttt	cgtgattcag	60
	caagtttcat	ctcaagattt	atcaagctgt	gcagggagat	gtggggaaagg	gtattctaga	120
	gatgccacct	gcaactgtga	ttataactgt	caacactaca	tggagtgcgt	ccctgatttc	180
	aagagagtct	gcactgcgga	gctttcctgt	aaaggccgct	gctttgagtc	cttcgagaga	240
	gggagggagt	gtgactgcga	cgcggaaatgt	aagaagtatg	acaagtgcgt	tcccgattat	300
	gagagttct	gtgcagaagt	gcataatccc	acatcaccac	catcttcaaa	gaaagcacct	360
	ccaccccttcag	gagcatctca	aaccatcaaa	tcaacaacca	aacgttccacc	caaaccacca	420
	aacaagaaga	agactaagaa	agttatagaa	tcagaggaaa	taacagaaga	acattctgtt	480
	tctgaaaatc	aagagtccctc	ctccagtagc	agttcaagta	gttcgtcgtc	gacaatttgg	540
	aaaatcaagt	cttccaaaaaa	ttcagctgct	aatagagaat	tacagaagaa	actcaaagta	600
	aaagataaca	agaagaacag	aactaaaaag	aaacctaccc	ccaaaccacc	agttgttagat	660
	gaagctggaa	gtggattgga	caatggtgac	ttcaaggta	caactcctga	cacgtctacc	720
	acccaacaca	ataaaagtcag	cacatctccc	aagatcacaa	cagcaaaacc	aataaattccc	780
	agacccagtc	ttccaccaa	ttctgataca	tctaaagaga	cgtctttgac	agtgaataaa	840
	gagacaacag	ttgaaaactaa	agaaactact	acaacaaata	aacagacttc	aactgatgga	900
	aaagagaaga	ctacttccgc	taaagagaca	caaagtatag	agaaaacatc	tgctaaagat	960
	ttagcaccca	catctaaagt	gctggctaaa	cctacaccca	aagctgaaac	tacaaccaaa	1020

ggccctgctc tcaccactcc caaggagccc acgcccacca ctcccaagga gcctgcac	1080
accacaccca aagagcccac acctaccacc atcaagagcg cgcccacaac tccaaaagag	1140
cccgcaccta ccacgacaaa gtcagctcct actacgccca aagagccagc gccgacgact	1200
actaaagaac cggcacccac cacgcctaag gagccagotc ctactacaac gaaaccggca	1260
ccaaccactc cggaaacacc tcctccaacc acttcagagg tctctactcc aactaccacc	1320
aaggagccta ccactatcca caaaagccct gatgaatcaa ctcctgagct ttctgcagaa	1380
cccacaccaa aagctcttga aaacagtccc aaggaacctg gtgtacctac aactaagacg	1440
ccggcggcga ctaaacctga aatgactaca acagctaaag acaagacaac agaaagagac	1500
ttacgtacta cacctgaaac tacaactgct gcacctaaga tgacaaaaga gacagcaact	1560
acaacagaaa aaactaccga atccaaaata acagctacaa ccacacaagt aacatctacc	1620
acaactcaag ataccacacc attcaaaatt actactctta aaacaactac tcttgacccc	1680
aaagtaacta caacaaaaaa gacaattact accactgaga ttatgaacaa acctgaagaa	1740
acagctaaac caaaagacag agctactaat tctaaagcga caactcctaa acctcaaaag	1800
ccaaccaaag cacccaaaaa acccacttct accaaaaagc caaaaacaat gcctagagtg	1860
agaaaaaccaa agacgacacc aactccccgc aagatgacat caacaatgcc agaattgaac	1920
cctacctcaa gaatagcaga agccatgctc caaaccacca ccagacctaa ccaaactcca	1980
aactccaaac tagttgaagt aaatccaaag agtgaagatg caggtggtgc tgaaggagaa	2040
acacccata tgcttctcag gccccatgtg ttcatgcctg aagttactcc cgacatggat	2100
tacttaccga gagtacccaa tcaaggcatt atcatcaatc ccatgcttcc cgatgagacc	2160
aatatatgca atggtaagcc agtagatgga ctgactactt tgcgcaatgg gacatttagtt	2220
gcattccgag gtcattattt ctggatgcta agtccattca gtccaccatc tccagctcgc	2280
agaattactg aagtttgggg tattccttcc cccattgata ctgttttac tagtgcaac	2340
tgtgaaggaa aaactttctt cttaaggat tctcagact ggcgtttac caatgatata	2400
aaagatgcag ggtaccccaa accaatttc aaaggatttgg gaggactaac tggacaaata	2460
gtggcagcgc tttcaacagc taaatataag aactggcctg aatctgtgtttaaatttcaag	2520
agaggtggca gcattcagca gtatatttat aaacaggaac ctgtacagaa gtccctgga	2580
agaaggcctg ctctaaatta tccagtgtat ggagaaatga cacaggttag gagacgtcgc	2640
tttgaacgtg ctataggacc ttctcaaaca cacaccatca gaattcaata ttcacctgcc	2700
agactggctt atcaagacaa aggtgtcctt cataatgaag ttaaagttag tataactgtgg	2760

agaggacttc caaatgtgg tacctcagct atatcaactgc ccaacatcag aaaacacctgac	2820
ggctatgatt actatgcctt ttctaaagat caatactata acattgatgt gcctagtaga	2880
acagcaagag caattactac tcgttctggg cagaccatat ccaaagtctg gtacaactgt	2940
ccttaa	2946

<210> 7
<211> 981
<212> PRT
<213> Artificial

<220>
<223> Amino acid sequence of entire PRG4-LUB:1 protein.

<400> 7

Met Ala Trp Lys Thr Leu Pro Ile Tyr Leu Leu Leu Leu Ser Val			
1	5	10	15
10	15		

Phe Val Ile Gln Gln Val Ser Ser Gln Asp Leu Ser Ser Cys Ala Gly			
20	25	30	
30			

Arg Cys Gly Glu Gly Tyr Ser Arg Asp Ala Thr Cys Asn Cys Asp Tyr			
35	40	45	
45			

Asn Cys Gln His Tyr Met Glu Cys Cys Pro Asp Phe Lys Arg Val Cys			
50	55	60	
60			

Thr Ala Glu Leu Ser Cys Lys Gly Arg Cys Phe Glu Ser Phe Glu Arg			
65	70	75	80
75	80		

Gly Arg Glu Cys Asp Cys Asp Ala Gln Cys Lys Lys Tyr Asp Lys Cys			
85	90	95	
95			

Cys Pro Asp Tyr Glu Ser Phe Cys Ala Glu Val His Asn Pro Thr Ser			
100	105	110	
110			

Pro Pro Ser Ser Lys Lys Ala Pro Pro Pro Ser Gly Ala Ser Gln Thr			
115	120	125	
125			

Ile Lys Ser Thr Thr Lys Arg Ser Pro Lys Pro Pro Asn Lys Lys Lys			
130	135	140	
140			

Thr Lys Lys Val Ile Glu Ser Glu Glu Ile Thr Glu Glu His Ser Val			
145	150	155	160
155	160		

Ser Glu Asn Gln Glu Ser			
165	170	175	
175			

Ser Thr Ile Trp Lys Ile Lys Ser Ser Lys Asn Ser Ala Ala Asn Arg			
180	185	190	
190			

Glu Leu Gln Lys Lys Leu Lys Val Lys Asp Asn Lys Lys Asn Arg Thr			
195	200	205	
205			

Lys Lys Lys Pro Thr Pro Lys Pro Pro Val Val Asp Glu Ala Gly Ser

210

215

220

Gly Leu Asp Asn Gly Asp Phe Lys Val Thr Thr Pro Asp Thr Ser Thr
 225 230 235 240

Thr Gln His Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys
 245 250 255

Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys
 260 265 270

Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu
 275 280 285

Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr
 290 295 300

Thr Ser Ala Lys Glu Thr Gln Ser Ile Glu Lys Thr Ser Ala Lys Asp
 305 310 315 320

Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu
 325 330 335

Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro
 340 345 350

Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro
 355 360 365

Thr Thr Ile Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
 370 375 380

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 385 390 395 400

Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 405 410 415

Thr Lys Pro Ala Pro Thr Thr Pro Glu Thr Pro Pro Pro Thr Thr Ser
 420 425 430

Glu Val Ser Thr Pro Thr Thr Lys Glu Pro Thr Thr Ile His Lys
 435 440 445

Ser Pro Asp Glu Ser Thr Pro Glu Leu Ser Ala Glu Pro Thr Pro Lys
 450 455 460

Ala Leu Glu Asn Ser Pro Lys Glu Pro Gly Val Pro Thr Thr Lys Thr
 465 470 475 480

Pro Ala Ala Thr Lys Pro Glu Met Thr Thr Ala Lys Asp Lys Thr
 485 490 495

Thr Glu Arg Asp Leu Arg Thr Thr Pro Glu Thr Thr Ala Ala Pro
 500 505 510

Lys Met Thr Lys Glu Thr Ala Thr Thr Glu Lys Thr Thr Glu Ser
 515 520 525

Lys Ile Thr Ala Thr Thr Gln Val Thr Ser Thr Thr Gln Asp
 530 535 540
 Thr Thr Pro Phe Lys Ile Thr Thr Leu Lys Thr Thr Thr Leu Ala Pro
 545 550 555 560
 Lys Val Thr Thr Lys Lys Thr Ile Thr Thr Glu Ile Met Asn
 565 570 575
 Lys Pro Glu Glu Thr Ala Lys Pro Lys Asp Arg Ala Thr Asn Ser Lys
 580 585 590
 Ala Thr Thr Pro Lys Pro Gln Lys Pro Thr Lys Ala Pro Lys Lys Pro
 595 600 605
 Thr Ser Thr Lys Lys Pro Lys Thr Met Pro Arg Val Arg Lys Pro Lys
 610 615 620
 Thr Thr Pro Thr Pro Arg Lys Met Thr Ser Thr Met Pro Glu Leu Asn
 625 630 635 640
 Pro Thr Ser Arg Ile Ala Glu Ala Met Leu Gln Thr Thr Arg Pro
 645 650 655
 Asn Gln Thr Pro Asn Ser Lys Leu Val Glu Val Asn Pro Lys Ser Glu
 660 665 670
 Asp Ala Gly Gly Ala Glu Gly Glu Thr Pro His Met Leu Leu Arg Pro
 675 680 685
 His Val Phe Met Pro Glu Val Thr Pro Asp Met Asp Tyr Leu Pro Arg
 690 695 700
 Val Pro Asn Gln Gly Ile Ile Ile Asn Pro Met Leu Ser Asp Glu Thr
 705 710 715 720
 Asn Ile Cys Asn Gly Lys Pro Val Asp Gly Leu Thr Thr Leu Arg Asn
 725 730 735
 Gly Thr Leu Val Ala Phe Arg Gly His Tyr Phe Trp Met Leu Ser Pro
 740 745 750
 Phe Ser Pro Pro Ser Pro Ala Arg Arg Ile Thr Glu Val Trp Gly Ile
 755 760 765
 Pro Ser Pro Ile Asp Thr Val Phe Thr Arg Cys Asn Cys Glu Gly Lys
 770 775 780
 Thr Phe Phe Phe Lys Asp Ser Gln Tyr Trp Arg Phe Thr Asn Asp Ile
 785 790 795 800
 Lys Asp Ala Gly Tyr Pro Lys Pro Ile Phe Lys Gly Phe Gly Gly Leu
 805 810 815
 Thr Gly Gln Ile Val Ala Ala Leu Ser Thr Ala Lys Tyr Lys Asn Trp
 820 825 830
 Pro Glu Ser Val Tyr Phe Phe Lys Arg Gly Gly Ser Ile Gln Gln Tyr
 835 840 845

Ile Tyr Lys Gln Glu Pro Val Gln Lys Cys Pro Gly Arg Arg Pro Ala
 850 855 860

Leu Asn Tyr Pro Val Tyr Gly Glu Met Thr Gln Val Arg Arg Arg Arg
 865 870 875 880

Phe Glu Arg Ala Ile Gly Pro Ser Gln Thr His Thr Ile Arg Ile Gln
 885 890 895

Tyr Ser Pro Ala Arg Leu Ala Tyr Gln Asp Lys Gly Val Leu His Asn
 900 905 910

Glu Val Lys Val Ser Ile Leu Trp Arg Gly Leu Pro Asn Val Val Thr
 915 920 925

Ser Ala Ile Ser Leu Pro Asn Ile Arg Lys Pro Asp Gly Tyr Asp Tyr
 930 935 940

Tyr Ala Phe Ser Lys Asp Gln Tyr Tyr Asn Ile Asp Val Pro Ser Arg
 945 950 955 960

Thr Ala Arg Ala Ile Thr Thr Arg Ser Gly Gln Thr Leu Ser Lys Val
 965 970 975

Trp Tyr Asn Cys Pro
 980

<210> 8
<211> 157
<212> DNA
<213> Artificial

<220>
<223> Lub:1 DNA insert from synthetic cDNA cassette-1.

<400> 8
g c g c g c c c a c a a c t c c a a a a g a g c o g c a c t a c c a c g a c a a g a g g c c a g c g c c g a c g a c t a c t a a a g a c c c g g c a c c a c g c c t a g g a g g c c a g
60
c c a a a g a g g c c a g c a g c a c t a c t a a a g a c c c g g c a c c a c g c c t a g g a g g c c a g
120
c t c c t a c t a c a a c g a a a c c g g c a c c a c g c c t a g g a g g c c a g
157

<210> 9
<211> 51
<212> PRT
<213> Artificial

<220>
<223> 51 amino acids encoded by Lub:1 DNA insert (4 KEPAPTT sequences between S373 to E425 in SEQ ID NO: 7).

<400> 9

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala
1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala
 20 25 30

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Pro Ala Pro
 35 40 45

Thr Thr Pro
 50

<210> 10
<211> 3024
<212> DNA
<213> Artificial

<220>
<223> Recombinant PRG4-Lub:2 cDNA construct.

<400> 10		
atggcatgga aaacacttcc catttacctg ttgttgctgc tgcgtgttt cgtgattcag	60	
caagtttcat ctcaagatTT atcaagctgt gcagggagat gtggggaaagg gtattctaga	120	
gatgccacct gcaactgtga ttataactgt caacactaca tggagtgcTG ccctgatttc	180	
aagagagtct gcactgcgga gctttcctgt aaaggccgct gctttgagtc ctgcagaga	240	
gggagggagt gtgactgcga cgcccaatgt aagaagtatg acaagtgcTG tcccgattat	300	
gagagtttct gtgcagaagt gcataatccc acatcaccac catcttcaaa gaaagcacct	360	
ccacccctttag gagcatctca aaccatcaaa tcaacaacca aacgttcacc caaaccacca	420	
aacaagaaga agactaagaa agttatagaa tcagaggaaa taacagaaga acattctgtt	480	
tctgaaaatc aagagtcctc ctccagtagc agttcaagta gttcgctc gacaattttgg	540	
aaaatcaagt ctccaaaaaa ttcaagctgt aatagagaat tacagaagaa actcaaagta	600	
aaagataaca agaagaacag aactaaaaag aaacctaccc ccaaaccacc agttgtagat	660	
gaagctggaa gtggatttggaa caatggtgac ttcaaggtca caactcctga cacgtctacc	720	
acccaacaca ataaagtctag cacatctccc aagatcacaa cagcaaaacc aataaatccc	780	
agacccagtc ttccaccta ttctgataca tctaaagaga cgtctttgac agtgaataaa	840	
gagacaacag ttgaaactaa agaaaactact acaacaaata aacagacttc aactgtatgga	900	
aaagagaaga ctacttccgc taaagagaca caaagtatag agaaaacatc tgctaaagat	960	
tttagcaccca catctaaagt gctggctaaa cctacacccaa aagctgaaac tacaaccaaa	1020	
ggccctgctc tcaccactcc caaggagccc acgccccacca ctcccaagga gcctgcattct	1080	
accacacccaa aagagcccac acctaccacca atcaagagcg cgccccacaac tccaaaagag	1140	
cccgcaccta ccacgacaaa gtcagctcct actacgccccaa aagagccagc gccgacgact	1200	

actaaagaac cggcacccac cacgcctaaa gaaccagccc ctactacgac aaaggagcct	1260
gcacccacaa ccacgaagag cgacccaca acaccaaagg agccggcccc tacgactcct	1320
aaggaaccca aaccggcacc aaccactccg gaaacacctc ctccaaccac ttcatgaggtc	1380
tctactccaa ctaccacca ggagcctacc actatccaca aaagccctga tgaatcaact	1440
cctgagctt ctgcagaacc cacaccaaaa gctcttgaaa acagtcccaa ggaacctggt	1500
gtacctacaa ctaagacgcc ggccgcact aaacctgaaa tgactacaac agctaaagac	1560
aagacaacag aaagagactt acgtactaca cctgaaacta caactgctgc acctaagatg	1620
acaaaagaga cagcaactac aacagaaaaa actaccgaat ccaaaataac agctacaacc	1680
acacaagtaa catctaccac aactcaagat accacaccat tcaaaattac tactcttaaa	1740
acaactactc ttgcacccaa agtaactaca acaaaaaaga caattactac cactgagatt	1800
atgaacaaac ctgaagaaac agctaaacca aaagacagag ctactaattc taaagcgaca	1860
actcctaaac ctcaaaagcc aaccaaagca cccaaaaaac ccacttctac caaaaagcca	1920
aaaacaatgc cttagtgag aaaaccaaag acgacaccaa ctccccgcaa gatgacatca	1980
acaatgccag aattgaaccc tacctaaga atagcagaag ccatgctcca aaccaccacc	2040
agacctaacc aaactccaaa ctccaaacta gttgaagtaa atccaaagag tgaagatgca	2100
ggtgttgctg aaggagaaac acctcatatg cttctcaggc cccatgtgtt catgcctgaa	2160
gttactcccg acatggatta cttaccgaga gtacccaatc aaggcattat catcaatccc	2220
atgcttccg atgagaccaa tatatgcaat ggttagccag tagatggact gactacttg	2280
cgcaatggga cattagttgc attccgaggt cattatttct ggatgctaag tccattcagt	2340
ccaccatctc cagctcgca g aattactgaa gtttgggta ttccttcccc cattgatact	2400
gtttttacta ggtgcaactg tgaaggaaaa actttcttct ttaaggattc tcagtactgg	2460
cgttttacca atgatataaa agatgcaggg tacccaaac caattttcaa aggatttgg	2520
ggactaactg gacaaatagt ggcagcgctt tcaacagcta aatataagaa ctggcctgaa	2580
tctgtgtatt ttttcaagag aggtggcagc attcagcagt atatttataa acaggaacct	2640
gtacagaagt gccctggaag aaggcctgct ctaaattatc cagtgtatgg agaaatgaca	2700
caggttagga gacgtcgctt tgaacgtgct ataggacctt ctcaaaccaca caccatcaga	2760
attcaatatt cacctgccag actggcttat caagacaaag gtgtccttca taatgaagtt	2820
aaagttagta tactgtggag aggacttcca aatgtggta cctcagctat atcactgccc	2880
aacatcagaa aacctgacgg ctatgattac tatgccttt ctaaagatca atactataac	2940
attgatgtgc ctagtagaac agcaagagca attactactc gttctggca gaccttatcc	3000

aaagtctggt acaactgtcc ttAA

3024

<210> 11
<211> 1007
<212> PRT
<213> Artificial

<220>
<223> Amino acid sequence of entire PRG4-LUB:2 protein.

<400> 11

Met	Ala	Trp	Lys	Thr	Leu	Pro	Ile	Tyr	Leu	Leu	Leu	Leu	Ser	Val
1				5					10				15	

Phe	Val	Ile	Gln	Gln	Val	Ser	Ser	Gln	Asp	Leu	Ser	Ser	Cys	Ala	Gly
			20			25					30				

Arg	Cys	Gly	Glu	Gly	Tyr	Ser	Arg	Asp	Ala	Thr	Cys	Asn	Cys	Asp	Tyr
	35				40						45				

Asn	Cys	Gln	His	Tyr	Met	Glu	Cys	Cys	Pro	Asp	Phe	Lys	Arg	Val	Cys
	50				55				60						

Thr	Ala	Glu	Leu	Ser	Cys	Lys	Gly	Arg	Cys	Phe	Glu	Ser	Phe	Glu	Arg
65					70					75			80		

Gly	Arg	Glu	Cys	Asp	Cys	Asp	Ala	Gln	Cys	Lys	Lys	Tyr	Asp	Lys	Cys
	85				90					95					

Cys	Pro	Asp	Tyr	Glu	Ser	Phe	Cys	Ala	Glu	Val	His	Asn	Pro	Thr	Ser
	100					105					110				

Pro	Pro	Ser	Ser	Lys	Lys	Ala	Pro	Pro	Pro	Ser	Gly	Ala	Ser	Gln	Thr
	115				120			125							

Ile	Lys	Ser	Thr	Thr	Lys	Arg	Ser	Pro	Lys	Pro	Pro	Asn	Lys	Lys	Lys
	130				135				140						

Thr	Lys	Lys	Val	Ile	Glu	Ser	Glu	Glu	Ile	Thr	Glu	Glu	His	Ser	Val
145					150				155				160		

Ser	Glu	Asn	Gln	Glu	Ser										
		165				170					175				

Ser	Thr	Ile	Trp	Lys	Ile	Lys	Ser	Ser	Lys	Asn	Ser	Ala	Ala	Asn	Arg
	180					185				190					

Glu	Leu	Gln	Lys	Lys	Leu	Lys	Val	Lys	Asp	Asn	Lys	Lys	Asn	Arg	Thr
	195					200				205					

Lys	Lys	Lys	Pro	Thr	Pro	Lys	Pro	Pro	Val	Val	Asp	Glu	Ala	Gly	Ser
	210					215			220						

Gly	Leu	Asp	Asn	Gly	Asp	Phe	Lys	Val	Thr	Thr	Pro	Asp	Thr	Ser	Thr
	225					230				235			240		

Thr Gln His Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys
 245 250 255

Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys
 260 265 270

Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu
 275 280 285

Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr
 290 295 300

Thr Ser Ala Lys Glu Thr Gln Ser Ile Glu Lys Thr Ser Ala Lys Asp
 305 310 315 320

Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu
 325 330 335

Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro
 340 345 350

Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro
 355 360 365

Thr Thr Ile Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
 370 375 380

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 385 390 395 400

Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 405 410 415

Thr Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro
 420 425 430

Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Lys Pro Ala Pro Thr
 435 440 445

Thr Pro Glu Thr Pro Pro Pro Thr Ser Glu Val Ser Thr Pro Thr
 450 455 460

Thr Thr Lys Glu Pro Thr Thr Ile His Lys Ser Pro Asp Glu Ser Thr
 465 470 475 480

Pro Glu Leu Ser Ala Glu Pro Thr Pro Lys Ala Leu Glu Asn Ser Pro
 485 490 495

Lys Glu Pro Gly Val Pro Thr Thr Lys Thr Pro Ala Ala Thr Lys Pro
 500 505 510

Glu Met Thr Thr Ala Lys Asp Lys Thr Thr Glu Arg Asp Leu Arg
 515 520 525

Thr Thr Pro Glu Thr Thr Ala Ala Pro Lys Met Thr Lys Glu Thr
 530 535 540

Ala Thr Thr Ala Glu Lys Thr Thr Glu Ser Lys Ile Thr Ala Thr Thr
 545 550 555 560

Thr Gln Val Thr Ser Thr Thr Gln Asp Thr Thr Pro Phe Lys Ile
 565 570 575
 Thr Thr Leu Lys Thr Thr Leu Ala Pro Lys Val Thr Thr Thr Lys
 580 585 590
 Lys Thr Ile Thr Thr Glu Ile Met Asn Lys Pro Glu Glu Thr Ala
 595 600 605
 Lys Pro Lys Asp Arg Ala Thr Asn Ser Lys Ala Thr Thr Pro Lys Pro
 610 615 620
 Gln Lys Pro Thr Lys Ala Pro Lys Lys Pro Thr Ser Thr Lys Lys Pro
 625 630 635 640
 Lys Thr Met Pro Arg Val Arg Lys Pro Lys Thr Thr Pro Thr Pro Arg
 645 650 655
 Lys Met Thr Ser Thr Met Pro Glu Leu Asn Pro Thr Ser Arg Ile Ala
 660 665 670
 Glu Ala Met Leu Gln Thr Thr Arg Pro Asn Gln Thr Pro Asn Ser
 675 680 685
 Lys Leu Val Glu Val Asn Pro Lys Ser Glu Asp Ala Gly Gly Ala Glu
 690 695 700
 Gly Glu Thr Pro His Met Leu Leu Arg Pro His Val Phe Met Pro Glu
 705 710 715 720
 Val Thr Pro Asp Met Asp Tyr Leu Pro Arg Val Pro Asn Gln Gly Ile
 725 730 735
 Ile Ile Asn Pro Met Leu Ser Asp Glu Thr Asn Ile Cys Asn Gly Lys
 740 745 750
 Pro Val Asp Gly Leu Thr Thr Leu Arg Asn Gly Thr Leu Val Ala Phe
 755 760 765
 Arg Gly His Tyr Phe Trp Met Leu Ser Pro Phe Ser Pro Pro Ser Pro
 770 775 780
 Ala Arg Arg Ile Thr Glu Val Trp Gly Ile Pro Ser Pro Ile Asp Thr
 785 790 795 800
 Val Phe Thr Arg Cys Asn Cys Glu Gly Lys Thr Phe Phe Phe Lys Asp
 805 810 815
 Ser Gln Tyr Trp Arg Phe Thr Asn Asp Ile Lys Asp Ala Gly Tyr Pro
 820 825 830
 Lys Pro Ile Phe Lys Gly Phe Gly Leu Thr Gly Gln Ile Val Ala
 835 840 845
 Ala Leu Ser Thr Ala Lys Tyr Lys Asn Trp Pro Glu Ser Val Tyr Phe
 850 855 860
 Phe Lys Arg Gly Gly Ser Ile Gln Gln Tyr Ile Tyr Lys Gln Glu Pro

865	870	875	880
Val Gln Lys Cys Pro Gly Arg Arg Pro Ala Leu Asn Tyr Pro Val Tyr			
885	890	895	
Gly Glu Met Thr Gln Val Arg Arg Arg Phe Glu Arg Ala Ile Gly			
900	905	910	
Pro Ser Gln Thr His Thr Ile Arg Ile Gln Tyr Ser Pro Ala Arg Leu			
915	920	925	
Ala Tyr Gln Asp Lys Gly Val Leu His Asn Glu Val Lys Val Ser Ile			
930	935	940	
Leu Trp Arg Gly Leu Pro Asn Val Val Thr Ser Ala Ile Ser Leu Pro			
945	950	955	960
Asn Ile Arg Lys Pro Asp Gly Tyr Asp Tyr Tyr Ala Phe Ser Lys Asp			
965	970	975	
Gln Tyr Tyr Asn Ile Asp Val Pro Ser Arg Thr Ala Arg Ala Ile Thr			
980	985	990	
Thr Arg Ser Gly Gln Thr Leu Ser Lys Val Trp Tyr Asn Cys Pro			
995	1000	1005	

<210> 12
<211> 235
<212> DNA
<213> Artificial

<220>
<223> Lub:2 DNA insert from synthetic cDNA cassette-1 and one synthetic cDNA cassette-2 sequence.

<400> 12
gcgcgcccac aactccaaaa gagccgcac ctaccacgac aaagttagct cctactacgc 60
ccaaagagcc agcgccgacg actactaaag aaccggcacc caccacgcct aaagaaccag 120
cccctactac gacaaaggag cctgcaccca caaccacgaa gagcgcaccc acaacaccaa 180
aggagccggc ccctacgact cctaaggaac ccaaaccggc accaaccact ccgga 235

<210> 13
<211> 77
<212> PRT
<213> Artificial

<220>
<223> 77 amino acids encoded by Lub:2 DNA insert (6 KEPAPTT sequences between S373 and E451 in SEQ ID NO: 11).

<400> 13

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala
1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala
 20 25 30

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala
 35 40 45

Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro
 50 55 60

Thr Thr Pro Lys Glu Pro Lys Pro Ala Pro Thr Thr Pro
 65 70 75

<210> 14

<211> 3117

<212> DNA

<213> Artificial

<220>

<223> Recombinant PRG4-Lub:3 cDNA construct.

<400> 14	60
atggcatgga aaacacttcc catttacctg ttgttgctgc tgtctgttt cgtgattcag	120
caagtttcat ctcaagattt atcaagctgt gcagggagat gtggggaaagg gtattctaga	180
gatgccacct gcaactgtga ttataactgt caacactaca tggagtgtcg ccctgatttc	240
aagagagtct gcactgcgga gcttcctgt aaaggccgct gctttgagtc cttcgagaga	300
gggagggagt gtgactgcga cgcccaatgt aagaagtatg acaagtgtg tcccgattat	360
gagagtttct gtgcagaagt gcataatccc acatcaccac catcttcaaa gaaagcacct	420
ccaccttcag gagcatctca aaccatcaaa tcaacaacca aacgttccacc caaaccacca	480
aacaagaaga agactaagaa agttatagaa tcagagggaaa taacagaaga acattctgtt	540
tctgaaaatc aagagtcctc ctccagtagc agttcaagta gttcgtcgac gacaatttgg	600
aaaatcaagt cttccaaaaaa tttagctgtct aatagagaat tacagaagaa actcaaagta	660
aaagataaca agaagaacag aactaaaaag aaacatcccc ccaaaccacc agttgttagat	720
gaagctggaa gtggatttggaa caatggtgac ttcaaggtca caactccgtca cacgtctacc	780
acccaaacaca ataaagtctag cacatctccc aagatcacaa cagaaaaacc aataaatccc	840
agacccagtc ttccaccaa ttctgtataca tctaaagaga cgtctttgac agtgaataaaa	900
gagacaacag ttgaaactaa agaaactact acaacaaata aacagacttc aactgtatggaa	960
aaagagaaga ctacttccgc taaagagaca caaagtatag agaaaacatc tgctaaagat	1020
tttagcaccca catctaaagt gctggctaaa cctacacccca aagctgaaac tacaaccaaa	1080
ggccctgctc tcaccactcc caaggagccc acgccccacca ctcccaagga gcctgcacatct	

accacaccca aagagccac acctaccacc atcaagagcg cgcccacaac tccaaaagag	1140
cccgcaccta ccacgacaaa gtcagtcct actacgccc aagagccagc gccgacgact	1200
actaaagaac cggcacccac cacgcctaaa gaaccagccc ctactacgac aaaggagcct	1260
gcacccacaa ccacgaagag cgcacccaca acaccaaagg agccggcccc tacgactcct	1320
aaagaaccag cccctactac gacaaaggag cctgcaccca caaccacgaa gagcgcaccc	1380
acaacaccaa aggagccggc ccctacgact cctaaggaac ccaaaccggc accaaccact	1440
ccggaaacac ctccctccaac cacttcagag gtctctactc caactaccac caaggagcct	1500
accactatcc acaaaagccc tgatgaatca actcctgagc ttctgcaga acccacacca	1560
aaagcttttg aaaacagtcc caaggaacct ggtgtaccta caactaagac gccggcggcg	1620
actaaacctg aaatgactac aacagctaaa gacaagacaa cagaaagaga cttacgtact	1680
acacctgaaa ctacaactgc tgcacctaag atgacaaaag agacagcaac tacaacagaa	1740
aaaactaccc aatccaaaat aacagctaca accacacaag taacatctac cacaactcaa	1800
gataccacac cattcaaaaat tactactttt aaaacaacta ctcttgcacc caaagtaact	1860
acaacaaaaa agacaattac taccactgag attatgaaca aacctgaaga aacagctaaa	1920
ccaaaagaca gagctactaa ttctaaagcg acaactccta aacctcaaaa gccaaccaaa	1980
gcacccaaaa aacccacttc taccaaaaag ccaaaaacaa tgccttagagt gagaaaaacca	2040
aagacgacac caactccccg caagatgaca tcaacaatgc cagaattgaa ccctacctca	2100
agaatagcag aagccatgct ccaaaccacc accagaccta accaaactcc aaactccaaa	2160
ctagttgaag taaatccaaa gagtgaagat gcaggtggtg ctgaaggaga aacacctcat	2220
atgcttctca ggccccatgt gttcatgcct gaagttactc ccgacatgga ttacttaccg	2280
agagtaccca atcaaggcat tatcatcaat cccatgctt ccgatgagac caatatatgc	2340
aatggtaagc cagtagatgg actgactact ttgcgcaatg ggacattagt tgcattccga	2400
ggtcattatt tctggatgct aagtccattc agtccaccat ctccagctcg cagaattact	2460
gaagtttggg gtattcatttc cccatttatgt actgtttttt ctaggtgcaa ctgtgaagga	2520
aaaacttct tctttaagga ttctcagttac tggcgttttt ccaatgatataaaagatgca	2580
gggtacccca aaccaatttt caaaggattt ggaggactaa ctggacaaat agtggcagcg	2640
ctttcaacag ctaaatataa gaactggct gaatctgtgt atttttcaa gagaggtggc	2700
agcattcagc agtataattta taaacaggaa cctgtacaga agtgcctgg aagaaggcct	2760
gctctaaattt atccagtgtt tggagaaatg acacaggtt ggagacgtcg ctttgaacgt	2820
gctataggac cttctcaaac acacaccatc agaattcaat attcacctgc cagactggct	2880

tatcaagaca aagggtgcct tcataatgaa gttaaaagtga gtatactgtg gagaggactt	2940
ccaaatgtgg ttacacctcagc tatatcactg cccaaacatca gaaaacctga cggctatgtat	3000
tactatgcct tttctaaaga tcaatactat aacattgatg tgccttagtag aacagcaaga	3060
gcaattacta ctcgttctgg gcagaccta tccaaagtct ggtacaactg tccttaa	3117

<210> 15
 <211> 1038
 <212> PRT
 <213> Artificial

<220>
 <223> amino acid sequence of entire PRG4-LUB:3 protein

<400> 15

Met Ala Trp Lys Thr Leu Pro Ile Tyr Leu Leu Leu Leu Ser Val					
1	5		10		15
	10				
	15				

Phe Val Ile Gln Gln Val Ser Ser Gln Asp Leu Ser Ser Cys Ala Gly			
20	25		30
	30		

Arg Cys Gly Glu Gly Tyr Ser Arg Asp Ala Thr Cys Asn Cys Asp Tyr			
35	40		45
	45		

Asn Cys Gln His Tyr Met Glu Cys Cys Pro Asp Phe Lys Arg Val Cys			
50	55		60
	60		

Thr Ala Glu Leu Ser Cys Lys Gly Arg Cys Phe Glu Ser Phe Glu Arg					
65	70		75		80
	75				
	80				

Gly Arg Glu Cys Asp Cys Asp Ala Gln Cys Lys Lys Tyr Asp Lys Cys			
85	90		95
	95		

Cys Pro Asp Tyr Glu Ser Phe Cys Ala Glu Val His Asn Pro Thr Ser			
100	105		110
	110		

Pro Pro Ser Ser Lys Lys Ala Pro Pro Ser Gly Ala Ser Gln Thr			
115	120		125
	125		

Ile Lys Ser Thr Thr Lys Arg Ser Pro Lys Pro Pro Asn Lys Lys Lys			
130	135		140
	140		

Thr Lys Lys Val Ile Glu Ser Glu Glu Ile Thr Glu Glu His Ser Val					
145	150		155		160
	155				
	160				

Ser Glu Asn Gln Glu Ser			
165	170		175
	175		

Ser Thr Ile Trp Lys Ile Lys Ser Ser Lys Asn Ser Ala Ala Asn Arg			
180	185		190
	190		

Glu Leu Gln Lys Lys Leu Lys Val Lys Asp Asn Lys Lys Asn Arg Thr			
195	200		205
	205		

Lys Lys Lys Pro Thr Pro Lys Pro Pro Val Val Asp Glu Ala Gly Ser
 210 215 220
 Gly Leu Asp Asn Gly Asp Phe Lys Val Thr Thr Pro Asp Thr Ser Thr
 225 230 235 240
 Thr Gln His Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys
 245 250 255
 Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys
 260 265 270
 Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu
 275 280 285
 Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr
 290 295 300
 Thr Ser Ala Lys Glu Thr Gln Ser Ile Glu Lys Thr Ser Ala Lys Asp
 305 310 315 320
 Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu
 325 330 335
 Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro
 340 345 350
 Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro
 355 360 365
 Thr Thr Ile Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
 370 375 380
 Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 385 390 395 400
 Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 405 410 415
 Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Ser Ala Pro Thr Thr Pro
 420 425 430
 Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr
 435 440 445
 Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys
 450 455 460
 Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr
 465 470 475 480
 Pro Glu Thr Pro Pro Pro Thr Ser Glu Val Ser Thr Pro Thr Thr
 485 490 495
 Thr Lys Glu Pro Thr Thr Ile His Lys Ser Pro Asp Glu Ser Thr Pro
 500 505 510
 Glu Leu Ser Ala Glu Pro Thr Pro Lys Ala Leu Glu Asn Ser Pro Lys
 515 520 525

Glu Pro Gly Val Pro Thr Thr Lys Thr Pro Ala Ala Thr Lys Pro Glu
 530 535 540
 Met Thr Thr Thr Ala Lys Asp Lys Thr Thr Glu Arg Asp Leu Arg Thr
 545 550 555 560
 Thr Pro Glu Thr Thr Ala Ala Pro Lys Met Thr Lys Glu Thr Ala
 565 570 575
 Thr Thr Thr Glu Lys Thr Thr Glu Ser Lys Ile Thr Ala Thr Thr Thr
 580 585 590
 Gln Val Thr Ser Thr Thr Gln Asp Thr Thr Pro Phe Lys Ile Thr
 595 600 605
 Thr Leu Lys Thr Thr Thr Leu Ala Pro Lys Val Thr Thr Lys Lys
 610 615 620
 Thr Ile Thr Thr Thr Glu Ile Met Asn Lys Pro Glu Glu Thr Ala Lys
 625 630 635 640
 Pro Lys Asp Arg Ala Thr Asn Ser Lys Ala Thr Thr Pro Lys Pro Gln
 645 650 655
 Lys Pro Thr Lys Ala Pro Lys Lys Pro Thr Ser Thr Lys Lys Pro Lys
 660 665 670
 Thr Met Pro Arg Val Arg Lys Pro Lys Thr Thr Pro Thr Pro Arg Lys
 675 680 685
 Met Thr Ser Thr Met Pro Glu Leu Asn Pro Thr Ser Arg Ile Ala Glu
 690 695 700
 Ala Met Leu Gln Thr Thr Arg Pro Asn Gln Thr Pro Asn Ser Lys
 705 710 715 720
 Leu Val Glu Val Asn Pro Lys Ser Glu Asp Ala Gly Gly Ala Glu Gly
 725 730 735
 Glu Thr Pro His Met Leu Leu Arg Pro His Val Phe Met Pro Glu Val
 740 745 750
 Thr Pro Asp Met Asp Tyr Leu Pro Arg Val Pro Asn Gln Gly Ile Ile
 755 760 765
 Ile Asn Pro Met Leu Ser Asp Glu Thr Asn Ile Cys Asn Gly Lys Pro
 770 775 780
 Val Asp Gly Leu Thr Thr Leu Arg Asn Gly Thr Leu Val Ala Phe Arg
 785 790 795 800
 Gly His Tyr Phe Trp Met Leu Ser Pro Phe Ser Pro Pro Ser Pro Ala
 805 810 815
 Arg Arg Ile Thr Glu Val Trp Gly Ile Pro Ser Pro Ile Asp Thr Val
 820 825 830
 Phe Thr Arg Cys Asn Cys Glu Gly Lys Thr Phe Phe Lys Asp Ser

835	840	845
Gln Tyr Trp Arg Phe Thr Asn Asp Ile Lys Asp Ala Gly Tyr Pro Lys		
850	855	860
Pro Ile Phe Lys Gly Phe Gly Gly Leu Thr Gly Gln Ile Val Ala Ala		
865	870	875
Leu Ser Thr Ala Lys Tyr Lys Asn Trp Pro Glu Ser Val Tyr Phe Phe		
885	890	895
Lys Arg Gly Gly Ser Ile Gln Gln Tyr Ile Tyr Lys Gln Glu Pro Val		
900	905	910
Gln Lys Cys Pro Gly Arg Arg Pro Ala Leu Asn Tyr Pro Val Tyr Gly		
915	920	925
Glu Met Thr Gln Val Arg Arg Arg Arg Phe Glu Arg Ala Ile Gly Pro		
930	935	940
Ser Gln Thr His Thr Ile Arg Ile Gln Tyr Ser Pro Ala Arg Leu Ala		
945	950	955
Tyr Gln Asp Lys Gly Val Leu His Asn Glu Val Lys Val Ser Ile Leu		
965	970	975
Trp Arg Gly Leu Pro Asn Val Val Thr Ser Ala Ile Ser Leu Pro Asn		
980	985	990
Ile Arg Lys Pro Asp Gly Tyr Asp Tyr Tyr Ala Phe Ser Lys Asp Gln		
995	1000	1005
Tyr Tyr Asn Ile Asp Val Pro Ser Arg Thr Ala Arg Ala Ile Thr		
1010	1015	1020
Thr Arg Ser Gly Gln Thr Leu Ser Lys Val Trp Tyr Asn Cys Pro		
1025	1030	1035
<210> 16		
<211> 328		
<212> DNA		
<213> Artificial		
<220>		
<223> Lub:3 DNA insert from synthetic cDNA cassette-1 and two synthetic cDNA cassette-2 sequences.		
<400> 16		
gcgcgcccac aactccaaaa gagccgcac ctaccacgac aaagttagct cctactacgc 60		
ccaaagagcc agcgccgacg actactaaag aaccggcacc caccacgcct aaagaaccag 120		
ccccctactac gacaaaggag cctgcaccca caaccacgaa gagcgcaccc acaacaccaa 180		
aggagccggc ccctacgact cctaaagaac cagcccctac tacgacaaag gagcctgcac 240		
ccacaaccac gaagagcgca cccacaacac caaaggagcc ggcccctacg actcctaagg 300		

aacccaaacc ggcaccaacc actccggaa

328

<210> 17
<211> 108
<212> PRT
<213> Artificial

<220>
<223> 108 amino acids encoded by Lub:3 DNA insert (9 KEPAPTT sequences
between S373 and E482 in SEQ ID NO: 15)

<400> 17

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala
 1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Thr Lys Glu Pro Ala
20 25 30

Pro Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala
35 , 40 45

Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro
50 55 60

Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
85 90 95

Thr Pro Lys Glu Pro Lys Pro Ala Pro Thr Thr Thr Pro
100 105

<210> 18
<211> 3210
<212> DNA
<213> Artificial

<220> recombinant PRG4-Lub:4 cDNA construct.

```
<400> 18
atggcatgga aaacacttcc catttacctg ttgttgctgc tgtctgtttt cgtgattcag 60
caagtttcat ctcaagattt atcaagctgt gcagggagat gtggggaaagg gtattctaga 120
gatgccacct gcaactgtga ttataactgt caacactaca tggagtgctg ccctgatttc 180
aagagagtct gcactgcgga gcttccctgt aaaggccgct gctttagtc cttcgagaga 240
gggagggagt gtgactgcga cgcccaatgt aagaagtatg acaagtgctg tcccgattat 300
gagagttct gtgcagaagt gcataatccc acatcaccac catcttcaaa gaaagcacct 360
ccacccatca gaggcatctca aaccatcaaa tcaacaacca aacgttcacc caaaccacca 420
```

aacaagaaga agactaagaa agttatagaa tcagaggaaa taacagaaga acattctgtt	480
tctgaaaatc aagagtccctc ctccagtagc agttcaagta gttcgctgac gacaatttgg	540
aaaatcaagt cttccaaaaa tttagctgct aatagagaat tacagaagaa actcaaagta	600
aaagataaca agaagaacag aactaaaaag aaacctaccc ccaaaccacc agttgttagat	660
gaagctggaa gtggatttga caatggtgac ttcaaggta caactcctga cacgtctacc	720
acccaacaca ataaagttag cacatctccc aagatcacaa cagaaaaacc aataaatccc	780
agacccagtc ttccaccta ttctgataca tctaaagaga cgtctttgac agtgaataaa	840
gagacaacag ttgaaactaa agaaactact acaacaaata aacagacttc aactgtatgga	900
aaagagaaga ctacttccgc taaagagaca caaagtatac agaaaacatc tgctaaagat	960
ttagcaccca catctaaagt gctggctaaa cctacacccca aagctgaaac tacaacccaa	1020
ggccctgctc tcaccactcc caaggagccc acgcccacca ctccccagga gcctgcacatct	1080
accacacccca aagagccac acctaccacc atcaagagcg cgccccacaac tccaaaagag	1140
cccgcaccta ccacgacaaa gtcagctcct actacgccc aagagccagc gccgacgact	1200
actaaagaac cggcacccac cacgcctaaa gaaccagccc ctactacgac aaaggagcct	1260
gcacccaccaa ccacgaagag cgccacccaca acaccaaagg agccggcccc tacgactcct	1320
aaagaaccag ccctactac gacaaaggag cctgcacccca caaccacgaa gagcgcaccc	1380
acaacaccaa aggagccggc ccctacgact cctaaagaac cagcccctac tacgacaaag	1440
gagcctgcac ccacacccac gaagagcgca cccacaacac caaaggagcc ggcccctacg	1500
actcctaagg aacccaaacc ggcaccaacc actccggaaa cacccctcc aaccacttca	1560
gaggtctcta ctccaaactac caccaaggag cctaccacta tccacaaaag ccctgatgaa	1620
tcaactcctg agctttctgc agaaccacca cccaaagctc ttgaaaacag tcccaaggaa	1680
cctggtgtac ctacaactaa gacgcccccg gcgactaaac ctgaaatgac tacaacagct	1740
aaagacaaga caacagaaag agactacgt actacacctg aaactacaac tgctgcacct	1800
aagatgacaa aagagacagc aactacaaca gaaaaaacta ccgaatccaa aataacagct	1860
acaacccacac aagtaacatc taccacaact caagatacca caccattcaa aattactact	1920
cttaaaaacaa ctactttgc accccaaagta actacaacaa aaaagacaat tactaccact	1980
gagattatga acaaaccctga agaaacagct aaacccaaaag acagagctac taattctaaa	2040
gcgacaaactc ctaaacctca aaagccaaacc aaagcaccaccc aaaaacccac ttctacccaa	2100
aagccaaaaa caatgcctag agtgagaaaa ccaaagacga caccacactcc ccgcaagatg	2160
acatcaaccaa tgccagaatt gaaccctacc tcaagaatac cagaagccat gctccaaacc	2220

accaccagac ctaaccaaac tccaaactcc aaactagttg aagtaaatcc aaagagtcaa	2280
gatgcagggtg gtgctgaagg agaaaacacct catatgcttc tcaggccccca tgtgttcatg	2340
cctgaagtta ctcccgcacat ggattactta ccgagagttac ccaatcaagg cattatcatc	2400
aatcccatgc tttccgatga gaccaatata tgcaatggta agccagtaga tggactgact	2460
actttgcgca atggcacatt agttgcattc cgaggtcatt atttctggat gctaagtcca	2520
ttcagtccac catctccagc tcgcagaatt actgaagttt ggggtattcc ttccccatt	2580
gatactgttt ttacttaggtg caactgtgaa ggaaaaactt tcttctttaa ggattctcag	2640
tactggcggtt ttaccaatga tataaaagat gcagggtacc ccaaaccaat ttcaaaagga	2700
tttggaggac taactggaca aatagtggca gcgccttcaa cagctaaata taagaactgg	2760
cctgaatctg tgtatTTTTT caagagaggt ggcagcattc agcagtatat ttataaacag	2820
gaacctgtac agaagtgcgg tggagaagg cctgctctaa attatccagt gtatggagaa	2880
atgacacagg ttaggagacg tcgcTTGAA cgtgcatacg gaccttctca aacacacacc	2940
atcagaattc aatattcacc tgccagactg gcttatcaag acaaagggtgt cttcataat	3000
gaagttaaag ttagtatact gtggagagga cttccaaatg tggttaccc agctatatca	3060
ctgccccaca tcagaaaacc tgacggctat gattactatg cttttctaa agatcaatac	3120
tataacatttgg atgtgcctag tagaacagca agagcaatta ctactcggttcc tggcagacc	3180
ttatccaaag tctggtacaa ctgtccctaa	3210

<210> 19

<211> 1069

<212> PRT

<213> Artificial

<220>

<223> amino acid sequence of entire PRG4-LUB:4 protein.

<400> 19

Met Ala Trp Lys Thr Leu Pro Ile Tyr Leu Leu Leu Leu Ser Val			
1	5	10	15

Phe Val Ile Gln Gln Val Ser Ser Gln Asp Leu Ser Ser Cys Ala Gly		
20	25	30

Arg Cys Gly Glu Gly Tyr Ser Arg Asp Ala Thr Cys Asn Cys Asp Tyr		
35	40	45

Asn Cys Gln His Tyr Met Glu Cys Cys Pro Asp Phe Lys Arg Val Cys		
50	55	60

Thr Ala Glu Leu Ser Cys Lys Gly Arg Cys Phe Glu Ser Phe Glu Arg

65	70	75	80
Gly Arg Glu Cys Asp Cys Asp Ala Gln Cys Lys Lys Tyr Asp Lys Cys			
85	90		95
Cys Pro Asp Tyr Glu Ser Phe Cys Ala Glu Val His Asn Pro Thr Ser			
100	105		110
Pro Pro Ser Ser Lys Lys Ala Pro Pro Pro Ser Gly Ala Ser Gln Thr			
115	120		125
Ile Lys Ser Thr Thr Lys Arg Ser Pro Lys Pro Pro Asn Lys Lys Lys			
130	135		140
Thr Lys Lys Val Ile Glu Ser Glu Glu Ile Thr Glu Glu His Ser Val			
145	150		160
Ser Glu Asn Gln Glu Ser			
165	170		175
Ser Thr Ile Trp Lys Ile Lys Ser Ser Lys Asn Ser Ala Ala Asn Arg			
180	185		190
Glu Leu Gln Lys Lys Leu Lys Val Lys Asp Asn Lys Lys Asn Arg Thr			
195	200		205
Lys Lys Lys Pro Thr Pro Lys Pro Pro Val Val Asp Glu Ala Gly Ser			
210	215		220
Gly Leu Asp Asn Gly Asp Phe Lys Val Thr Thr Pro Asp Thr Ser Thr			
225	230		240
Thr Gln His Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys			
245	250		255
Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys			
260	265		270
Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu			
275	280		285
Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr			
290	295		300
Thr Ser Ala Lys Glu Thr Gln Ser Ile Glu Lys Thr Ser Ala Lys Asp			
305	310		320
Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu			
325	330		335
Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro			
340	345		350
Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro			
355	360		365
Thr Thr Ile Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr			
370	375		380

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 385 390 395 400
 Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 405 410 415
 Thr Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro
 420 425 430
 Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr
 435 440 445
 Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys
 450 455 460
 Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys
 465 470 475 480
 Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu
 485 490 495
 Pro Ala Pro Thr Thr Pro Lys Glu Pro Lys Pro Ala Pro Thr Thr Pro
 500 505 510
 Glu Thr Pro Pro Pro Thr Thr Ser Glu Val Ser Thr Pro Thr Thr Thr
 515 520 525
 Lys Glu Pro Thr Thr Ile His Lys Ser Pro Asp Glu Ser Thr Pro Glu
 530 535 540
 Leu Ser Ala Glu Pro Thr Pro Lys Ala Leu Glu Asn Ser Pro Lys Glu
 545 550 555 560
 Pro Gly Val Pro Thr Thr Lys Thr Pro Ala Ala Thr Lys Pro Glu Met
 565 570 575
 Thr Thr Thr Ala Lys Asp Lys Thr Thr Glu Arg Asp Leu Arg Thr Thr
 580 585 590
 Pro Glu Thr Thr Ala Ala Pro Lys Met Thr Lys Glu Thr Ala Thr
 595 600 605
 Thr Thr Glu Lys Thr Thr Glu Ser Lys Ile Thr Ala Thr Thr Thr Gln
 610 615 620
 Val Thr Ser Thr Thr Gln Asp Thr Thr Pro Phe Lys Ile Thr Thr
 625 630 635 640
 Leu Lys Thr Thr Thr Leu Ala Pro Lys Val Thr Thr Thr Lys Lys Thr
 645 650 655
 Ile Thr Thr Glu Ile Met Asn Lys Pro Glu Glu Thr Ala Lys Pro
 660 665 670
 Lys Asp Arg Ala Thr Asn Ser Lys Ala Thr Thr Pro Lys Pro Gln Lys
 675 680 685
 Pro Thr Lys Ala Pro Lys Lys Pro Thr Ser Thr Lys Lys Pro Lys Thr
 690 695 700

Met Pro Arg Val Arg Lys Pro Lys Thr Thr Pro Thr Pro Arg Lys Met
 705 710 715 720
 Thr Ser Thr Met Pro Glu Leu Asn Pro Thr Ser Arg Ile Ala Glu Ala
 725 730 735
 Met Leu Gln Thr Thr Arg Pro Asn Gln Thr Pro Asn Ser Lys Leu
 740 745 750
 Val Glu Val Asn Pro Lys Ser Glu Asp Ala Gly Gly Ala Glu Gly Glu
 755 760 765
 Thr Pro His Met Leu Leu Arg Pro His Val Phe Met Pro Glu Val Thr
 770 775 780
 Pro Asp Met Asp Tyr Leu Pro Arg Val Pro Asn Gln Gly Ile Ile Ile
 785 790 795 800
 Asn Pro Met Leu Ser Asp Glu Thr Asn Ile Cys Asn Gly Lys Pro Val
 805 810 815
 Asp Gly Leu Thr Thr Leu Arg Asn Gly Thr Leu Val Ala Phe Arg Gly
 820 825 830
 His Tyr Phe Trp Met Leu Ser Pro Phe Ser Pro Pro Ser Pro Ala Arg
 835 840 845
 Arg Ile Thr Glu Val Trp Gly Ile Pro Ser Pro Ile Asp Thr Val Phe
 850 855 860
 Thr Arg Cys Asn Cys Glu Gly Lys Thr Phe Phe Lys Asp Ser Gln
 865 870 875 880
 Tyr Trp Arg Phe Thr Asn Asp Ile Lys Asp Ala Gly Tyr Pro Lys Pro
 885 890 895
 Ile Phe Lys Gly Phe Gly Leu Thr Gly Gln Ile Val Ala Ala Leu
 900 905 910
 Ser Thr Ala Lys Tyr Lys Asn Trp Pro Glu Ser Val Tyr Phe Phe Lys
 915 920 925
 Arg Gly Gly Ser Ile Gln Gln Tyr Ile Tyr Lys Gln Glu Pro Val Gln
 930 935 940
 Lys Cys Pro Gly Arg Arg Pro Ala Leu Asn Tyr Pro Val Tyr Gly Glu
 945 950 955 960
 Met Thr Gln Val Arg Arg Arg Arg Phe Glu Arg Ala Ile Gly Pro Ser
 965 970 975
 Gln Thr His Thr Ile Arg Ile Gln Tyr Ser Pro Ala Arg Leu Ala Tyr
 980 985 990
 Gln Asp Lys Gly Val Leu His Asn Glu Val Lys Val Ser Ile Leu Trp
 995 1000 1005
 Arg Gly Leu Pro Asn Val Val Thr Ser Ala Ile Ser Leu Pro Asn

1010

1015

1020

Ile Arg Lys Pro Asp Gly Tyr Asp Tyr Tyr Ala Phe Ser Lys Asp
 1025 1030 1035

Gln Tyr Tyr Asn Ile Asp Val Pro Ser Arg Thr Ala Arg Ala Ile
 1040 1045 1050

Thr Thr Arg Ser Gly Gln Thr Leu Ser Lys Val Trp Tyr Asn Cys
 1055 1060 1065

Pro

<210> 20

<211> 421

<212> DNA

<213> Artificial

<220>

<223> Lub:4 DNA insert from cDNA cassette-1 and three synthetic cDNA cassette-2 sequences.

<400> 20

gcgcgcccac aactccaaaa gagccgcac ctaccacgac aaagtcaget cctactacgc 60

ccaaagagcc agcgccgacg actactaaag aaccggcacc caccacgcct aaagaaccag 120

ccccctactac gacaaaggag cctgcaccca caaccacgaa gagcgcaccc acaacaccaa 180

aggagccggc ccctacgact cctaaagaac cagcccctac tacgacaaaag gagcctgcac 240

ccacaaccac gaagagcgca cccacaacac caaaggagcc ggcccctacg actcctaaag 300

aaccagcccc tactacgaca aaggagcctg caccacaaac cacgaagagc gcacccacaa 360

caccaaagga gccggcccct acgactccta aggaacccaa accggcacca accactccgg 420

a 421

<210> 21

<211> 139

<212> PRT

<213> Artificial

<220>

<223> 139 amino acids encoded by Lub:4 DNA insert (12 KEPAPTT sequences between S373 and E513 in SEQ ID NO: 19)

<400> 21

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala
 1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala
 20 25 30

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala
 35 40 45

Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro
 50 55 60

Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala Pro
 65 70 75 80

Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
 85 90 95

Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala Pro Thr
 100 105 110

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
 115 120 125

Pro Lys Glu Pro Lys Pro Ala Pro Thr Thr Pro
 130 135

<210> 22
<211> 3303
<212> DNA
<213> Artificial

<220>

<223> Recombinant PRG4-Lub:5 cDNA construct

<400> 22
atggcatgga aaacacttcc catttacctg ttgttgctgc tgtctgttt cgtgattcag 60
caagtttcat ctcaagattt atcaagctgt gcagggagat gtgggaaagg gtattctaga 120
gatgccacct gcaactgtga ttataactgt caacactaca tggagtgctg ccctgatttc 180
aagagagtct gcactgcgga gctttcctgt aaaggccgct gctttagtgc cttcgagaga 240
gggagggagt gtgactgcga cgcccaatgt aagaagtatg acaagtgctg tcccgattat 300
gagagttct gtgcagaagt gcataatccc acatcaccac catttcaaa gaaagcacct 360
ccaccttcag gagcatctca aaccatcaaa tcaacaacca aacgttccacc caaaccacca 420
aacaagaaga agactaagaa agttatagaa tcagaggaaa taacagaaga acattctgtt 480
tctgaaaatc aagagtccctc ctccagtagc agttcaagta gttcgctgac gacaatttgg 540
aaaatcaagt cttccaaaaa tttagctgtc aatagagaat tacagaagaa actcaaagta 600
aaagataaca agaagaacag aactaaaaag aaacctaccc ccaaaccacc agttgttagat 660
gaagctggaa gtggatttggaa caatggtgac ttcaagggtca caactcctga cacgtctacc 720
acccaacaca ataaagtctag cacatctccc aagatcacaa cagcaaaacc aataaatccc 780
agacccagtc ttccacctaa ttctgataca tctaaagaga cgtcttgac agtgaataaa 840

gagacaacag ttgaaactaa agaaaactact acaacaaata aacagacttc aactgatgga	900
aaagagaaga ctacttccgc taaagagaca caaagtatag agaaaacatc tgctaaagat	960
ttagcaccca catctaaagt gctggctaaa cctacaccca aagctgaaac tacaaccaa	1020
ggccctgctc tcaccactcc caaggagccc acgcccacca ctcccaagga gcctgcacatct	1080
accacaccca aagagcccc acctaccacc atcaagagcg cgcccaacaac tccaaaagag	1140
cccgaccta ccacgacaaa gtcagctct actacgccc aagagccagc gccgacgact	1200
actaaagaac cggcacccac cacgcctaaa gaaccagccc ctactacgac aaaggagcct	1260
gcacccacaa ccacgaagag cgccacccaca acaccaaagg agccggcccc tacgactcct	1320
aaagaaccag cccctactac gacaaaggag cctgcaccca caaccacgaa gagcgcaccc	1380
acaacaccaa aggagccggc ccctacgact cctaaagaac cagcccctac tacgacaaag	1440
gagcctgcac ccacaaccac gaagagcgca cccacaacac caaaggagcc ggcccctacg	1500
actcctaaag aaccagcccc tactacgaca aaggagcctg cacccacaaac cacqaagagc	1560
gcacccacaa caccaaagga gccggccct acgactccta aggaacccaa accggcacca	1620
accactccgg aaacacctcc tccaaccact tcagaggctc ctactccaaac taccaccaag	1680
gagcctacca ctatccacaa aagccctgat gaatcaactc ctgagctttc tgcagaaccc	1740
acaccaaagg ctctgaaaa cagtcacaaag gaacctggtg tacctacaac taagacgccc	1800
gcggcgacta aacctgaaat gactacaaca gctaaagaca agacaacaga aagagactta	1860
cgtactacac ctgaaactac aactgctgca cctaaagatga caaaagagac agcaactaca	1920
acagaaaaaa ctaccgaatc caaaataaca gctacaacca cacaagtaac atctaccaca	1980
actcaagata ccacaccatt caaaattact actctaaaa caactactct tgcacccaaa	2040
gtaactacaa caaaaaagac aattactacc actgagatta tgaacaaacc tgaagaaaca	2100
gctaaaccaa aagacagagc tactaattct aaagcgacaa ctcctaaacc tcaaaagcca	2160
accaaaggcac ccaaaaaacc cacttctacc aaaaagccaa aaacaatgcc tagagtgaga	2220
aaaccaaaga cgacaccaac tccccgcaag atgacatcaa caatgccaga attgaaccct	2280
acctcaagaa tagcagaagc catgctccaa accaccacca gacctaacca aactccaaac	2340
tccaaactag ttgaagtaaa tccaaagagt gaagatgcag gtggtgctga aggagaaaca	2400
cctcatatgc ttctcaggcc ccatgtgttc atgcctgaag ttactcccgatcatggattac	2460
ttaccgagag taccatatca aggattatc atcaatccca tgctttccga tgagaccaat	2520
atatgcaatg gtaagccagt agatggactg actactttgc gcaatggac attagttgca	2580
ttccgaggc attatttctg gatgctaagt ccattcagtc caccatctcc agctcgcaga	2640

attactgaag tttggggtat tccttcccc attgatactg ttttactag gtgcaactgt 2700
 gaaggaaaaa ctttcttctt taaggattct cagtaactggc gtttaccaa tgatataaaa 2760
 gatgcagggt accccaaacc aatttcaaa ggatttggag gactaactgg acaaataagt 2820
 gcagcgctt caacagctaa atataagaac tggcctgaat ctgtgtattt tttcaagaga 2880
 ggtggcagca ttcagcagta tatttataaa caggaacctg tacagaagtg ccctggaaga 2940
 aggccctgctc taaattatcc agtgtatgga gaaatgacac aggttaggag acgtcgctt 3000
 gaacgtgcta taggaccttc tcaaacacac accatcagaa ttcaatattc acctgccaga 3060
 ctggcttatac aagacaaagg tgtccttcat aatgaagttt aagttagtat actgtggaga 3120
 ggacttccaa atgtggttac ctcagctata tcactgccca acatcagaaa acctgacggc 3180
 tatgattact atgcctttc taaagatcaa tactataaca ttgatgtgcc tagtagaaca 3240
 gcaagagcaa ttactactcg ttctggcag accttattcca aagtctggta caactgtcct 3300
 taa 3303

<210> 23
 <211> 1100
 <212> PRT
 <213> Artificial

<220>

<223> Amino acid sequence of entire PRG4-LUB:5 protein.

<400> 23

Met Ala Trp Lys Thr Leu Pro Ile Tyr Leu Leu Leu Leu Ser Val
 1 5 10 15

Phe Val Ile Gln Gln Val Ser Ser Gln Asp Leu Ser Ser Cys Ala Gly
 20 25 30

Arg Cys Gly Glu Gly Tyr Ser Arg Asp Ala Thr Cys Asn Cys Asp Tyr
 35 40 45

Asn Cys Gln His Tyr Met Glu Cys Cys Pro Asp Phe Lys Arg Val Cys
 50 55 60

Thr Ala Glu Leu Ser Cys Lys Gly Arg Cys Phe Glu Ser Phe Glu Arg
 65 70 75 80

Gly Arg Glu Cys Asp Cys Asp Ala Gln Cys Lys Lys Tyr Asp Lys Cys
 85 90 95

Cys Pro Asp Tyr Glu Ser Phe Cys Ala Glu Val His Asn Pro Thr Ser
 100 105 110

Pro Pro Ser Ser Lys Lys Ala Pro Pro Pro Ser Gly Ala Ser Gln Thr
 115 120 125

55

Ile Lys Ser Thr Thr Lys Arg Ser Pro Lys Pro Pro Asn Lys Lys Lys
130 135 140

Thr Lys Lys Val Ile Glu Ser Glu Glu Ile Thr Glu Glu His Ser Val
145 150 155 160

Ser Glu Asn Gln Glu Ser
165 170 175

Ser Thr Ile Trp Lys Ile Lys Ser Ser Lys Asn Ser Ala Ala Asn Arg
180 185 190

Glu Leu Gln Lys Lys Leu Lys Val Lys Asp Asn Lys Lys Asn Arg Thr
195 200 205

Lys Lys Lys Pro Thr Pro Lys Pro Pro Val Val Asp Glu Ala Gly Ser
210 215 220

Gly Leu Asp Asn Gly Asp Phe Lys Val Thr Thr Pro Asp Thr Ser Thr
225 230 235 240

Thr Gln His Asn Lys Val Ser Thr Ser Pro Lys Ile Thr Thr Ala Lys
245 250 255

Pro Ile Asn Pro Arg Pro Ser Leu Pro Pro Asn Ser Asp Thr Ser Lys
260 265 270

Glu Thr Ser Leu Thr Val Asn Lys Glu Thr Thr Val Glu Thr Lys Glu
275 280 285

Thr Thr Thr Asn Lys Gln Thr Ser Thr Asp Gly Lys Glu Lys Thr
290 295 300

Thr Ser Ala Lys Glu Thr Gln Ser Ile Glu Lys Thr Ser Ala Lys Asp
305 310 315 320

Leu Ala Pro Thr Ser Lys Val Leu Ala Lys Pro Thr Pro Lys Ala Glu
325 330 335

Thr Thr Thr Lys Gly Pro Ala Leu Thr Thr Pro Lys Glu Pro Thr Pro
340 345 350

Thr Thr Pro Lys Glu Pro Ala Ser Thr Thr Pro Lys Glu Pro Thr Pro
355 360 365

Thr Thr Ile Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
370 375 380

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
385 390 395 400

Thr Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
405 410 415

Thr Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro
420 425 430

Lys Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr

435	440	445
Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys		
450	455	460
Glu Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys		
465	470	475
Glu Pro Ala Pro Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu		
485	490	495
Pro Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu		
500	505	510
Pro Ala Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro		
515	520	525
Ala Pro Thr Thr Pro Lys Glu Pro Lys Pro Ala Pro Thr Thr Pro Glu		
530	535	540
Thr Pro Pro Pro Thr Thr Ser Glu Val Ser Thr Pro Thr Thr Thr Lys		
545	550	555
Glu Pro Thr Thr Ile His Lys Ser Pro Asp Glu Ser Thr Pro Glu Leu		
565	570	575
Ser Ala Glu Pro Thr Pro Lys Ala Leu Glu Asn Ser Pro Lys Glu Pro		
580	585	590
Gly Val Pro Thr Thr Lys Thr Pro Ala Ala Thr Lys Pro Glu Met Thr		
595	600	605
Thr Thr Ala Lys Asp Lys Thr Thr Glu Arg Asp Leu Arg Thr Thr Pro		
610	615	620
Glu Thr Thr Ala Ala Pro Lys Met Thr Lys Glu Thr Ala Thr Thr		
625	630	635
640		
Thr Glu Lys Thr Thr Glu Ser Lys Ile Thr Ala Thr Thr Thr Gln Val		
645	650	655
Thr Ser Thr Thr Gln Asp Thr Thr Pro Phe Lys Ile Thr Thr Leu		
660	665	670
Lys Thr Thr Leu Ala Pro Lys Val Thr Thr Lys Lys Thr Ile		
675	680	685
Thr Thr Thr Glu Ile Met Asn Lys Pro Glu Glu Thr Ala Lys Pro Lys		
690	695	700
Asp Arg Ala Thr Asn Ser Lys Ala Thr Thr Pro Lys Pro Gln Lys Pro		
705	710	715
720		
Thr Lys Ala Pro Lys Lys Pro Thr Ser Thr Lys Lys Pro Lys Thr Met		
725	730	735
Pro Arg Val Arg Lys Pro Lys Thr Thr Pro Thr Pro Arg Lys Met Thr		
740	745	750

51

Ser Thr Met Pro Glu Leu Asn Pro Thr Ser Arg Ile Ala Glu Ala Met
755 760 765

Leu Gln Thr Thr Arg Pro Asn Gln Thr Pro Asn Ser Lys Leu Val
770 775 780

Glu Val Asn Pro Lys Ser Glu Asp Ala Gly Gly Ala Glu Gly Glu Thr
785 790 795 800

Pro His Met Leu Leu Arg Pro His Val Phe Met Pro Glu Val Thr Pro
805 810 815

Asp Met Asp Tyr Leu Pro Arg Val Pro Asn Gln Gly Ile Ile Asn
820 825 830

Pro Met Leu Ser Asp Glu Thr Asn Ile Cys Asn Gly Lys Pro Val Asp
835 840 845

Gly Leu Thr Thr Leu Arg Asn Gly Thr Leu Val Ala Phe Arg Gly His
850 855 860

Tyr Phe Trp Met Leu Ser Pro Phe Ser Pro Pro Ser Pro Ala Arg Arg
865 870 875 880

Ile Thr Glu Val Trp Gly Ile Pro Ser Pro Ile Asp Thr Val Phe Thr
885 890 895

Arg Cys Asn Cys Glu Gly Lys Thr Phe Phe Lys Asp Ser Gln Tyr
900 905 910

Trp Arg Phe Thr Asn Asp Ile Lys Asp Ala Gly Tyr Pro Lys Pro Ile
915 920 925

Phe Lys Gly Phe Gly Gly Leu Thr Gly Gln Ile Val Ala Ala Leu Ser
930 935 940

Thr Ala Lys Tyr Lys Asn Trp Pro Glu Ser Val Tyr Phe Phe Lys Arg
945 950 955 960

Gly Gly Ser Ile Gln Gln Tyr Ile Tyr Lys Gln Glu Pro Val Gln Lys
965 970 975

Cys Pro Gly Arg Arg Pro Ala Leu Asn Tyr Pro Val Tyr Gly Glu Met
980 985 990

Thr Gln Val Arg Arg Arg Phe Glu Arg Ala Ile Gly Pro Ser Gln
995 1000 1005

Thr His Thr Ile Arg Ile Gln Tyr Ser Pro Ala Arg Leu Ala Tyr
1010 1015 1020

Gln Asp Lys Gly Val Leu His Asn Glu Val Lys Val Ser Ile Leu
1025 1030 1035

Trp Arg Gly Leu Pro Asn Val Val Thr Ser Ala Ile Ser Leu Pro
1040 1045 1050

Asn Ile Arg Lys Pro Asp Gly Tyr Asp Tyr Tyr Ala Phe Ser Lys
1055 1060 1065

Asp Gln Tyr Tyr Asn Ile Asp Val Pro Ser Arg Thr Ala Arg Ala
 1070 1075 1080

Ile Thr Thr Arg Ser Gly Gln Thr Leu Ser Lys Val Trp Tyr Asn
 1085 1090 1095

Cys Pro
 1100

<210> 24

<211> 514

<212> DNA

<213> Artificial

<220>

<223> Lub:5 DNA insert from cDNA cassette-1 and four synthetic cDNA cassette-2 sequences

<400> 24

ggcgcggccac aactccaaaa gagccgcac ctaccacgac aaagttagct cctactacgc	60
ccaaagagcc agcgccgacg actactaaag aaccggcacc caccacgcct aaagaaccag	120
cccctactac gacaaaggag cctgcaccca caaccacgaa gagcgcaccc acaacaccaa	180
aggagccggc ccctacgact cctaaagaac cagccccctac tacgacaaag gagcctgcac	240
ccacaaccac gaagagcgca cccacaacac caaaggagcc ggcccctacg actcctaaag	300
aaccagcccc tactacgaca aaggagcctg cacccacaac cacgaagago gcacccacaa	360
caccaaagga gccggccct acgactccta aagaaccagc ccctactacg acaaaggagc	420
ctgcacccac aaccacgaaag agcgcaccca caacaccaaa ggagccggcc cctacgactc	480
ctaaggaacc caaaccggca ccaaccactc cgga	514

<210> 25

<211> 170

<212> PRT

<213> Artificial

<220>

<223> 170 amino acids encoded by Lub:5 DNA insert (15 KEPAPTT sequences between S373 and E544 in SEQ ID NO: 23)

<400> 25

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala
 1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala
 20 25 30

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala
 35 40 45

59

Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro
50 55 60

Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala Pro
65 70 75 80

Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr
85 90 95

Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala Pro Thr
100 105 110

Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr
115 120 125

Pro Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala Pro Thr Thr
130 135 140

Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro
145 150 155 160

Lys Glu Pro Lys Pro Ala Pro Thr Thr Pro
165 170

<210> 26

<211> 45

<212> PRT

<213> Artificial

<220>

<223> amino acid sequence "APTPKEPAPTTKSAPTPKEPAPTTK
KEPAPTPKEPAPTTK" (45 amino acids) in preferred PRG4-LUB:N
protein

<400> 26

Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Ser Ala
1 5 10 15

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys Glu Pro Ala
20 25 30

Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Lys
35 40 45

<210> 27

<211> 31

<212> PRT

<213> Artificial

<220>

<223> amino acid sequence "KEPAPTTKEPAPTTKSAPTPKEPAPTP" (31 amino
acids) repeated N-1 times in preferred PRG4-LUB:N protein

<400> 27

40

Lys Glu Pro Ala Pro Thr Thr Thr Lys Glu Pro Ala Pro Thr Thr Thr
1 5 10 15

Lys Ser Ala Pro Thr Thr Pro Lys Glu Pro Ala Pro Thr Thr Pro
20 25 30

<210> 28
<211> 22
<212> PRT
<213> Artificial

<220>

<223> Amino acid sequence "EPAPTTTKSAPTPKEPAPTP" (22 amino acids) joining SEQ ID NO: 26 to (N-2) repeats of SEQ ID NO: 27 in preferred PRG4-LUB:N protein where N = 3 or more.

<400> 28

Glu Pro Ala Pro Thr Thr Thr Lys Ser Ala Pro Thr Thr Pro Lys Glu
1 5 10 15

Pro Ala Pro Thr Thr Pro
20

<210> 29
<211> 10
<212> PRT
<213> Artificial

<220>

<223> Amino acid sequence "KEPKPAPTP" (10 amino acids) in preferred PRG4-LUB:N protein where N = 2 or more.

<400> 29

Lys Glu Pro Lys Pro Ala Pro Thr Thr Pro
1 5 10