Chapitre 11

Lois à densité. Loi normale

1 Lois à densité

1.1 Généralités

Définition 7:

On appelle **densité de probabilité** d'une variable aléatoire continue X, la fonction f continue et positive sur intervalle $\mathbf{I}([a;b][a;+\infty[ou\ R)$ telle que :

- $P(X \in I) = \int f(t)dt = 1$ sur I
- Pour tout intervalle $J = [\alpha; \beta]$, on a: $P(X \in J) = \int_{\alpha}^{\beta} f(t)dt$

• La fonction F définie par : $F(x) = P(X \le x)$ Est appelée la **fonction de répartition** de la variable X $F(s) = \int_{a,-\infty}^{x} f(t)dt$

• L'espérance mathématique d'une variable aléatoire continue *X*, de densité *f* sur **I**, est :

$$E(X) = \int t f(t) dt$$
, sur I

1.2 Loi uniforme

<u>Définition</u> 8 : X <u>suit</u> une loi uniforme sur

I = [a, b], alors:
$$f(t) = \frac{1}{b-a}$$

Pour tout intervalle $J = [\alpha, \beta]$ inclus dans I, on a:

$$P(X \in J) = \frac{\beta - \alpha}{b - a} = \frac{longueur \ de \ J}{longueur \ de \ I}$$

La probabilité est proportionnelle à la longueur de l'intervalle.

1.3 Loi exponentielle

Définition 9:

X suit une loi exponentielle de paramètre réel λ alors :

$$f(t) = \lambda e^{-\lambda t}$$

On a les relations suivantes :

- La fonction de répartition est F(x) = 1 e^{-λx}
 P(X ≤ a) = 1 e^{-λa} et P(X ≥ a) = e^{-λa}

Théorème 1 : La loi exponentielle est une loi sans mémoire

 $\forall t > 0 \text{ et } h > 0 \text{ on a } P_{X \ge t}(X \ge t + h) = P(X \ge h)$

Théorème 2: X suit une loi exponentielle de paramètre λ alors :

- L'espérance est : $E(X) = \frac{1}{\lambda}$
- La demi-vie est : $t_{1/2} = \frac{\ln 2}{\lambda}$

•
$$E(X) = \frac{t_{1/2}}{\ln 2} \simeq 1.44 \times t_{1/2}$$

2 La loi normale

2.1 La loi normale centrée réduite

Définition 10:

On appelle **densité de probabilité de Laplace-Gauss**, la fonction φ définie sur R par : $\varphi(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$

X suit une loi normale centrée réduite, $\mathcal{N}(0; 1)$,

si sa densité de probabilité est égale à la fonction φ .

Sa fonction de répartition Φ , vaut : $\Phi = \int_{-\infty}^{x} \varphi(t) dt$

Théorème 3: X suit la loi $\mathcal{N}(0,1)$ alors pour tous réels

a et b, avec b > a on a:

- $\bullet \ \ P(X \ge b) = 1 \Phi(b)$
- $P(a \le X \le b) = \Phi(b) \Phi(a)$

Théorème 4: X est une variable aléatoire qui suit une loi normale centrée réduite. Soit $\alpha \in]0;$ 1[, il existe un unique réel strictement positif u_{α} tel que : $P(-u_{\alpha} \le X \le u_{\alpha}) = 1 - \alpha$

Il est bon de retenir les valeurs de $u_{0,05}$ et $u_{0,01}$:

- $P(-1.96 \le X \le 1.96) = 0.95$
- $P(-2.58 \le X \le 2.58) = 0.99$

2.2 La loi normale générale

<u>Définition 11</u>: Changement de variable

X suit une loi normale de paramètres $\mathcal{N}(\mu, \sigma^2)$, alors :

 $Z = \frac{X-\mu}{\sigma}$ suit une loi normale $\mathcal{N}(0,1)$

On a alors : $E(X) = \mu \ et \ V(X) = \sigma^2$

On obtient les intervalles caractéristiques :

5

2.3 Approximation normale d'une loi binomiale

Théorème 5: Théorème de Moivre-Laplace

X suit la loi binomiale $\mathcal{B}(n,p)$ et Z telque :

$$Z = \frac{X - E(X)}{\sigma(X)} = \frac{X - np}{\sqrt{np(1-p)}}$$

Pour tous nombres a et b tels que a < b, on a :

$$\lim_{n\to+\infty}P(a\leq Z\leq b)=\int_a^b\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt$$

Conditions de l'approximation d'une loi binomiale $\mathcal{B}(n,p)$ par une loi normale $\mathcal{N}[np,np(1-p)]$

$$n \ge 30$$
, $np \ge 5$ et $n(1-p) \ge 5$

▲ : Faire la correction de continuité : $P(7 \le X \le 15) = P_N(6, 5 \le X \le 15.5)$