Reti di Elaboratori

Livello di Rete: Introduzione

Alessandro Checco@uniroma1.it

Capitolo 4

Livello di rete: obiettivi

- Comprendere i principi alla base dei servizi a livello di rete, concentrandosi sul piano dati (data plane):
 - modelli di servizio a livello di rete
 - inoltro (fwd) vs instradamento (routing)
 - come funziona un router
 - indirizzamento
 - inoltro generalizzato
 - Architettura Internet

- Implementazione in Internet
 - Protocollo IP
 - NAT, middleboxes

Livello di rete: sommario

- Livello di rete: panoramica
 - piano dati
 - piano di controllo
- Dentro i router
 - porte di ingresso, commutazione, porte di uscita
 - · gestione del buffer, scheduling
- IP: il protocollo Internet
 - formato datagramma
 - indirizzamento
 - traduzione di indirizzi di rete
 - IPv6
- Forwarding generalizzato, SDN
 - Match+action
 - OpenFlow: incontro+azione in azione
- Middleboxes

Servizi e protocolli a livello di rete

- trasporto di segmenti dall'host di invio a quello di ricezione
 - mittente: incapsula i segmenti in datagrammi, passa al livello di collegamento
 - destinatario: consegna i segmenti al protocollo del livello di trasporto
- protocolli a livello di rete in ogni dispositivo Internet: host, router
- router:
 - esamina i campi di intestazione in tutti i datagrammi IP che lo attraversano
 - sposta i datagrammi dalle porte di ingresso alle porte di uscita per trasferire i datagrammi lungo il percorso end-end

Due funzioni chiave a livello di rete

funzioni a livello di rete:

- forwarding: sposta i pacchetti dal link di ingresso di un router al link appropriato di uscita del router
- routing: determina il percorso seguito dai pacchetti dalla sorgente alla destinazione
 - algoritmi di instradamento

analogia: fare un viaggio

- forwarding: processo di attraversamento di un singolo interscambio
- routing: processo di pianificazione del viaggio dalla sorgente alla destinazione

Livello di rete: piano dati, piano di controllo

Piano dati:

- locale, funzione per router
- determina come il datagramma in arrivo sulla porta di ingresso del router viene inoltrato alla porta di uscita del router

Piano di controllo

- logica a livello di rete
- determina come il datagramma viene instradato tra i router lungo il percorso end-end dall'host di origine all'host di destinazione
- due approcci sul piano di controllo:
 - *algoritmi di routing tradizionali:* implementati nei router
 - Software-Defined Networking (SDN): implementato in server (remoti).

Piano di controllo di ogni router

I singoli componenti dell'algoritmo di routing *in ogni singolo router* interagiscono nel piano di controllo

Software-Defined Networking (SDN) control plane

Il controller remoto calcola e poi installa le tabelle di inoltro nei router

Modello di servizio di rete

D: Quale modello di servizio per il "canale" che trasporta i datagrammi dal mittente al destinatario?

servizi di esempio per singoli datagrammi:

- consegna garantita
- consegna garantita con meno di 40 ms di ritardo

servizi di esempio per un *flusso* di datagrammi:

- consegna di datagrammi in ordine
- larghezza di banda minima garantita per il flusso
- restrizioni sui cambiamenti nella distanza tra i pacchetti

Modello di servizio a livello di rete

Network Architecture		Service Model	Quality of Service (QoS) Guarantees?				
			Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	

Modello di servizio Internet "best effort"

Nessuna garanzia su:

- i. consegna del datagramma a destinazione
- ii. tempistica o ordine di consegna
- iii. larghezza di banda disponibile per il flusso end-end

Modello di servizio a livello di rete

Network Architecture		Service	Quality of Service (QoS) Guarantees ?				
		Model	Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	
	ATM	Constant Bit Rate	Constant rate	yes	yes	yes	
	ATM	Available Bit Rate	Guaranteed min	no	yes	no	
	Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes	
	Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no	

Riflessioni sul servizio best effort:

- semplicità del meccanismo ha permesso a Internet di essere ampiamente implementato e adottato
- larghezza di banda sufficiente consente alle prestazioni delle applicazioni in tempo reale (ad es., voce interattiva, video) di essere "abbastanza buone" per "la maggior parte del tempo"
- servizi distribuiti replicati a livello di applicazione (data center, reti di distribuzione dei contenuti) che si connettono vicino alle reti dei clienti, consentono di fornire servizi da più posizioni
- controllo della congestione dei servizi "elastici" aiuta

Successo del modello di servizio best-effort