高中 數學 科考試卷 年 班 座號: 姓名:

一、單選題:

1. \triangle ABC 中, $\overline{AB}=\sqrt{2}$, \angle C=45°, \angle A=75°,則 $\overline{AC}=$

(A)2 (B) $\sqrt{3}-1$ (C) $\sqrt{6}-\sqrt{2}$ (D) $\sqrt{3}$ (E)1

答案:(D)

解析: ∠B=180°-75°-45°=60°

$$\frac{\overline{AB}}{\sin 45^{\circ}} = \frac{\overline{AC}}{\sin 60^{\circ}} , \quad \overline{AC} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{\frac{\sqrt{2}}{2}} = \sqrt{3}$$

如附圖,某湖的邊上有兩點 $A \times B$,路人甲站在 C 處,測量出 $\angle ACB = 60^{\circ}$, $\overline{AC} = 20$ 公里, \overline{BC} 2. =30 公里,則 AB 為多少?

(A)10 $\sqrt{6}$ 公里 (B)10 $\sqrt{7}$ 公里 (C)20 $\sqrt{2}$ 公里 (D)30 公里 (E)10 $\sqrt{10}$ 公里

答案:(B)

解析: $\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2 - 2\overline{AC} \times \overline{BC} \times \cos \angle C$

$$=20^2+30^2-2\times20\times30\times\cos 60^\circ=700$$

$$\therefore \overline{AB} = \sqrt{700} = 10\sqrt{7}$$

故 選(B)

某君在一廣場上從某一點出發,先往東北方前進 50 公尺後轉往正西方向行進,一段時間後測 得原出發點在他的南偏東 60°方向;則此時他距原出發點大約多少公尺?

(A)35 (B)43 (C)50 (D)71 (E)87

答案:(D)

解析:設原出發點為 0 ,

依題意,如附圖所示:

 $\overline{OA} = 50$, $\angle OAB = 45^{\circ}$, $\angle ABO = 30^{\circ}$,

$$\triangle OAB \stackrel{\text{th}}{=} , \frac{\overline{OB}}{\sin 45^\circ} = \frac{\overline{OA}}{\sin 30^\circ} = \frac{50}{\sin 30^\circ} = \frac{50}{\frac{1}{2}} = 100 ,$$

 \overline{OB} = 100 sin 45° = 50√2 ≈ 71 (公尺)

 \therefore 某君距原出發點為 \overline{OB} ,故選(D)

4. $\triangle ABC$ 中,若 (a+b+c)(a+b-c)=3ab,求 $\angle C=$

(A)60° (B)120° (C)150 (D)45° (E)135°

答案:(A)

解析:(a+b+c)(a+b-c)=3ab

:.
$$(a+b)^2-c^2=3ab$$

$$\Rightarrow a^2 + b^2 - c^2 = ab$$

$$\therefore \cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{ab}{2ab} = \frac{1}{2}$$

又 0°< ∠*C*<180°

∴ ∠*C*=60°

二、填充題:

1. 四邊形 ABCD 中, \overline{AB} = 1, \overline{BC} = 5, \overline{CD} = 5, \overline{DA} = 7,且 $\angle DAB$ = $\angle BCD$ = 90°,則對角線 \overline{AC} 長為_____。

答案: √32

解析:四邊形 ABCD 對角互補 ∴ 四邊形 ABCD 為圓內接四邊形

⇒ ∠ABC+ ∠ADC=180°(兩角餘弦值和為0)

設 $\overline{AC} = x$,由 $\cos \angle ABC + \cos \angle ADC = 0$

$$\Rightarrow \frac{1^2 + 5^2 - x^2}{2 \cdot 1 \cdot 5} + \frac{5^2 + 7^2 - x^2}{2 \cdot 5 \cdot 7} = 0 \Rightarrow x = \sqrt{32}$$

2. △ABC 中,∠B = 25°,∠C = 20°, BC = 6,則△ABC 之外接圓面積為____。

答案:18π

解析: ∠A=180°-∠B-∠C=180°-25°-20°=135°

$$\frac{a}{\sin A} = 2R \Rightarrow \frac{6}{\sin 135^{\circ}} = 2R \Rightarrow R = \frac{6}{2\sin 135^{\circ}} = 3\sqrt{2}$$

⇒ △ABC 外接圓面積= π R²=18 π

3. $\triangle ABC$ 中, $\sin A$: $\sin B$: $\sin C=6$:10:14,則最大內角為 度。

答案:120

解析::: $a:b:c=\sin A:\sin B:\sin C=6:10:14=3:5:7$

 $\Rightarrow a=3t$, b=5t, c=7t

$$\cos C = \frac{3^2 + 5^2 - 7^2}{2 \cdot 3 \cdot 5} = \frac{-1}{2} \implies \angle C = 120^{\circ}$$

4. $\triangle ABC$ 中,已知 $b=2\sqrt{3}$, $c=3\sqrt{2}$, $\angle C=60^{\circ}$,則 $\angle A=$ _____。

答案:75°

解析:
$$\frac{3\sqrt{2}}{\sin 60^{\circ}} = \frac{2\sqrt{3}}{\sin B}$$

$$\therefore \sin B = \frac{2\sqrt{3}}{2\sqrt{6}} = \frac{1}{\sqrt{2}} \implies \angle B = 45^{\circ} \text{ mm } 135^{\circ}$$

故
$$\angle B = 45^{\circ}$$
, $\angle A = 180^{\circ} - 45^{\circ} - 60^{\circ} = 75^{\circ}$

5. 在一鐘樓的南方 A 處與東方 B 處,各設一觀測站,測出鐘樓的仰角分別為 30°與 45°,已知 A , B 兩處相距 150 公尺,求鐘樓的高度為 公尺。

答案:75

解析:如附圖,設鐘樓高 $\overline{PQ} = h$ (公尺),

在直角
$$\triangle APQ$$
 中, $\tan 30^\circ = \frac{h}{\overline{AP}} = \frac{1}{\sqrt{3}}$ ∴ $\overline{AP} = \sqrt{3} h$

在直角
$$\triangle BPQ$$
 中, $\tan 45^{\circ} = \frac{h}{\overline{BP}} = 1$... $\overline{BP} = h$

則
$$(\sqrt{3} h)^2 + h^2 = 4h^2 = 150^2 \Rightarrow h = \frac{150}{2} = 75$$
,即鐘樓高 75 公尺。

6. 如附圖,大小兩圓相交於 \overline{AB} ,C在大圓上且 $\angle C = 45^\circ$,D在小圓上且 $\angle D = 60^\circ$,則大圓與小圓的面積比為_____。(化作最簡整數比)

答案:3:2

解析:設大圓半徑R,小圓半徑r,

$$\triangle ABC \Leftrightarrow \frac{\overline{AB}}{\sin 45^{\circ}} = 2R ; \triangle ABD \Leftrightarrow \frac{\overline{AB}}{\sin 60^{\circ}} = 2r$$

∴大圓面積:小圓面積=
$$\pi R^2$$
: $\pi r^2 = (\frac{1}{\sqrt{2}})^2 : (\frac{1}{\sqrt{3}})^2 = 3 : 2$