Step size selection in Frank Wolf

Overview

Problem statement

 $Minimize f(\mathbf{x})$

Subject to $x \in \mathcal{D}$

- 2 compact, convex set in a vector space
- $f: \mathcal{D} \to \mathbf{R}$ is a **convex**, L-smooth, function

Linear Minimization Oracle

$$s = \underset{s \in \mathcal{D}}{\operatorname{arg\,min}} \quad s^T \nabla f(x_k)$$

- Finds a vector s in feasible set \mathcal{D} , which aligns most with $\nabla f(x_k)$.
- Vector s has the largest projection on $-\nabla f(x_k)$. Usually a vertex of the domain.

Algorithm

1.
$$s_k = \underset{s \in \mathcal{D}}{\operatorname{arg min}} \quad s^T \nabla f(x_k)$$

2.
$$x_{k+1} = (1 - \gamma_k)x_k + \gamma_k s_k$$

, where $\gamma_k \in [0,1]$ is a step-size.

• Both $x_k, s_k \in \mathcal{D}$. Convex combination of them is going to remain in the set. $x_{k+1} \in \mathcal{D}$

Conditional Gradient

To minimize f over C, create $\{x^k\}$ via updates

$$s^{k+1} = \underset{s \in \mathcal{C}}{\operatorname{argmin}} \ s^{\mathsf{T}} \nabla f(x^{k})$$
$$x^{k+1} = x^{k} + \alpha_{k}(s^{k+1} - x^{k})$$

Step size is often set to be $\alpha_k = 2/(k+2)$

Properties

- Convergence rate O(1/k)
- No need to do projection step (linear optimization vs. quadratic)
- Solve high dimensional problems
- Sparse solutions

- Designed for smooth, convex f
- Poor performance near optimum
- Complex, non-linear boundaries increase computation costs.

Step size

Line step size

$$\gamma_k = \frac{2}{k+2}$$

- Straightforward and cheap to compute.
- Slow convergence near optimum
- No function adaptation

Line step size

Exact line-search

$$\gamma_k = \arg\min f((x_k + \gamma_k(s_k - x_k)))$$

- Ensures highest decrease per iteration
- Costly optimization problem

Exact line search

Demyanov-Rubinov

$$\gamma_k = \min\{\frac{-\nabla f(x)^T (s_k - x_k)}{L||s_k - x_k||^2}, 1\}$$

- Goes to zero as we approach the optimum
- Responsive for geometry of f
- ullet Require access to L
- Unstable for small denominator (near optimum)

Demyanov Rubinov

Backtracking line search

$$\gamma_k = \min\{\frac{-\nabla f(x)^T (s_k - x_k)}{M \|s_k - x_k\|^2}, 1\}$$

 M_t is approximation of L

- ullet Doesn't require L
- Adaptive and stable progress
- Require multiple evaluation of f

Backtracking line search

Experiments

HW (Mushrooms)

Line Plots for Metric: fw (Grouped Legend)

Benchmark

- Gisette: Binary classification on 5000 features $R = 6e^{-3}$
- RCV1: Binary classification on 47236 features $R=2e^4$
- Madelon: Binary classification on 500 features R = 20
- Covtype: Binary classification on 54 features R=200

Performance

	Simple	DR	Backtracking	Line-Search
Gisette	1:16	1:15	1:49	1:49
	5.24 it/s	5.27 it/s	3.66 it/s	3.67 it/s
RCV1	1:43	1:41	2:25	6:41
	3.87 it/s	3.94 it/s	2.75 it/s	1 it/s
Madelon	0:02	0:02	0:03	0:11
	157.22 it/s	159 it/s	107 it/s	35.84 it/s
Covtype	0:21	0:21	0:30	1:39
	18.84 it/s	18.67 it/s	13.02 it/s	4.02 it/s

Benchmark. Performance experiment

Appendix

Line Plots for Metric: fw (Grouped Legend)

Mushrooms dataset. Performance experiment

Cancer

Breast Cancer:

Cancer dataset

