ИНСТИТУТ ТРАНСПОРТА И СВЯЗИ

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК И ТЕЛЕКОММУНИКАЦИЙ

Лабораторная работа №1 По дисциплине «Численные методы и прикладное программирование»

Тема:

«Методы решения системы линейных уравнений. Число обусловленности матрицы»

Работу выполнили:

Дзенис Ричард Кобелев Денис Якушин Владислав

Содержание

1	Фој	Формулировка задания 2							
	1.1	Примеры	2						
2	Метод исключения Гаусса с ведущим элементом								
	2.1	Листинг	3						
	2.2	Результаты работы алгоритма	4						
		2.2.1 Результат работы алгоритма на примере (1)	4						
		2.2.2 Результат работы алгоритма на примере (2)	4						
		2.2.3 Результат работы алгоритма на примере (3)	4						
		2.2.4 Результат работы алгоритма на примере (4)	4						
		2.2.5 Результат работы алгоритма на примере (5)	4						
3	Me	Метод Гаусса-Зейделя 5							
	3.1	Листинг	5						
	3.2	9							
		3.2.1 Результат работы алгоритма на примере (1)	5						
		3.2.2 Результат работы алгоритма на примере (2)	5						
		3.2.3 Результат работы алгоритма на примере (3)	5						
		3.2.4 Результат работы алгоритма на примере (4)	5						
		3.2.5 Результат работы алгоритма на примере (5)	5						
4	Оп	еделение невязки	6						
-	4.1	Полученные результаты для метода исключения Гаусса	6						
	4.2	Полученные результаты для метода Гаусса-Зейделя	6						
5	Экспериментальное определение числа обусловленности матрицы								
	5.1	Часть листинга для нахождения числа обусловленности	7						
	5.2	Полученные результаты	7						
6	Вы	воды	8						

1 Формулировка задания

- Реализовать программным путём метод исключения Гаусса и итерационный метод Гаусса-Зейделя.
- Результат работы программы проверить с помощью предоставленных примеров.
- Ручным или программным путём рассчитать число обусловленности матриц для примеров (3) и (5).
- Для расчёта обусловленности выбрать Манхэттенскую или Евклидову норму.
- Составить отчёт с результатами вычислений и выводами, содержащими сравнение двух реализованных методов, а так же объяснить значения полученный при вычислении числа обусловленности матриц.

1.1 Примеры

$$\begin{cases} x_1 - 2x_2 + x_3 = 2\\ 2x_1 - 5x_2 - x_3 = -1\\ -7x_1 + x_3 = -2 \end{cases}$$
 (1)

$$\begin{cases}
5x_1 - 5x_2 - 3x_3 + 4x_4 = -11 \\
x_1 - 4x_2 + 6x_3 - 4x_4 = -10 \\
-2x_1 - 5x_2 + 4x_3 - 5x_4 = -12 \\
-3x_1 - 3x_2 + 5x_3 - 5x_4 = 8
\end{cases} \tag{2}$$

$$\begin{cases}
2x_1 - x_2 - x_3 = 5 \\
x_1 + 3x_2 - 2x_3 = 7 \\
x_1 + 2x_2 + 3x_3 = 10
\end{cases}$$
(3)

$$\begin{cases} 8x_1 + 5x_2 + 3x_3 = 30 \\ -2x_1 + 8x_2 + x_3 = 15 \\ x_1 + 3x_2 - 10x_3 = 42 \end{cases}$$
 (4)

$$\begin{cases}
0.78x_1 + 0.563x_2 = 0.217 \\
0.913x_1 + 0.659x_2 = 0.254
\end{cases}$$
(5)

2 Метод исключения Гаусса с ведущим элементом

2.1 Листинг

```
// Input: linear system 'Ax=b',
          where Ab is matrix A combined with vector b.
//
         Size of Ab is (n, n+1).
// Output: x.
void solve(double **Ab, ssize_t n, double *x) {
    ssize_t base, r, c;
    double sum;
    // Forward elimination
    for (base = 0; base < n; base++) {</pre>
        // Select maximal element in the column;
        // optimize by skipping base row.
        c = base;
        size_t leading_row = base;
        double max_value = Ab[base][base];
        for (r = base + 1; r < n; r++) {
            double abs_val = fabs(Ab[r][c]);
            if (abs_val > max_value) {
                leading_row = r;
                max_value = abs_val;
            }
        }
        // Swap base row with with leading row
        std::swap(Ab[base], Ab[leading_row]);
        // Eliminate base column
        for (r = base + 1; r < n; r++) {
            double coef = Ab[r][base] / Ab[base][base];
            for (c = base; c <= n; c++) { // including vector B</pre>
                Ab[r][c] -= coef * Ab[base][c];
        }
    }
    // Backward substitution
    for (base = n - 1; base >= 0; base--) {
        sum = 0.0;
        for (c = base + 1; c < n; c++) {
            sum += Ab[base][c] * x[c];
        x[base] = (Ab[base][n] - sum) / Ab[base][base];
    }
}
```

2.2	Результаты работы алгоритма						
2.2.1	Результат работы алгоритма на примере (1)						
	0.52	0.08	1.64				
2.2.2	.2 Результат работы алгоритма на примере (2)						
	-12.8235	-2.29412	11.7647	19.2353			
2.2.3	2.3 Результат работы алгоритма на примере (3)						
	3.8125	1.6875	0.9375				
2.2.4	4 Результат работы алгоритма на примере (4)						
	3	3	-3				
2.2.5	2.5 Результат работы алгоритма на примере (5)						
	1	-1					

3 Метод Гаусса-Зейделя

3.1 Листинг

```
bool solve(double **Ab, ssize_t n, double *x, double eps) {
    ssize_t i, j;
    double acc, prev_acc = HUGE_VALF;
    do {
        acc = 0.0f;
        for (i = 0; i < n; i++) {</pre>
            double denom = Ab[i][i];
            double new_xi = Ab[i][n] / denom;
            for (j = 0; j < n; j++) {
                if (i == j)
                    continue;
                new_xi -= Ab[i][j] / denom * x[j];
            acc = std::fmaxf(acc, fabs(new_xi - x[i]));
            x[i] = new_xi;
        if (acc >= prev_acc)
            return false;
        prev_acc = acc;
    } while (acc > eps);
    return true;
}
```

- 3.2 Результаты работы алгоритма с точностью 10^{-3}
- 3.2.1 Результат работы алгоритма на примере (1)

does not converge

3.2.2 Результат работы алгоритма на примере (2)

does not converge

В первых двух примерах не выполняется условие сходимости для итерационного метода, что и было успешно обнаружено программой.

3.2.3 Результат работы алгоритма на примере (3)

3.8126

1.68737

0.937552

3.2.4 Результат работы алгоритма на примере (4)

2.99984

2.99995

-3.00003

3.2.5 Результат работы алгоритма на примере (5)

0.278207 -3.8909e-06

4 Определение невязки

X = solve(A, B)

```
print("X:", X.T)
    print("Residual:", (B - A * X).T)
4.1 Полученные результаты для метода исключения Гаусса
4.1.0.1 Πример (1)
X: [[ 0.52  0.08  1.64]]
Residual: [[ 0.00000000e+00 -1.11022302e-16 0.00000000e+00]]
4.1.0.2 Πример (2)
X: [[-12.8235 -2.29412 11.7647 19.2353]]
Residual: [[ -2.00000000e-04 2.00000000e-05 1.00000000e-04 1.40000000e-04]]
4.1.0.3 Πример (3)
X: [[ 3.8125  1.6875  0.9375]]
Residual: [[ 0. 0. 0.]]
4.1.0.4 Пример (4)
X: [[ 3 3 -3]]
Residual: [[0 0 0]]
4.1.0.5 Πример (5)
X: [[1 -1]]
Residual: [[ -8.32667268e-17 0.00000000e+00]]
4.2 Полученные результаты для метода Гаусса-Зейделя
4.2.0.1 Пример (3)
X: [[ 3.8126  1.68737  0.937552]]
Residual: [[ -2.78000000e-04 3.94000000e-04 4.00000000e-06]]
4.2.0.2 Πример (4)
X: [[ 2.99984 2.99995 -3.00003]]
Residual: [[ 1.62000000e-03 1.10000000e-04 1.00000000e-05]]
4.2.0.3 Пример (5)
X: [[ 2.78207000e-01 -3.89090000e-06]]
Residual: [[ 7.30576700e-07 -4.26896900e-07]]
```

5 Экспериментальное определение числа обусловленности матрицы

5.1 Часть листинга для нахождения числа обусловленности

```
X = solve(A, B) # find X in AX=B
# find absolute maximal element in vector B
max_B_id = np.argmax(np.abs(B))

# create delta B vector with one non-zero element, which
# equals to 1% of the absolute maximal element in vector B.
deltaB = np.zeros(B.shape)
deltaB[max_B_id] = B[max_B_id] * 0.01

X2 = solve(A, B + deltaB) # find deltaX in A * deltaX = B + deltaB
# Calculate and print condition number
print("cond(A) is greater or equals to: ")
print(norm(X2 - X) / norm(X) * norm(B) / norm(deltaB))
```

5.2 Полученные результаты

При нахождении числа обусловленности экспериментальным методом, для расчётов неизвестных (X) использовался метод исключения Гаусса, для получения более высокой точности. А также, из-за того, что итерационным методом некоторые СЛАУ не возможно решить.

```
5.2.0.1 Пример (1)

cond (A) is greater or equals to:
1.24391723884

5.2.0.2 Пример (2)

cond (A) is greater or equals to:
1.01289623438

5.2.0.3 Пример (3)

cond (A) is greater or equals to:
0.878771848707

5.2.0.4 Пример (4)

cond (A) is greater or equals to:
1.00300382299

5.2.0.5 Пример (5)

cond (A) is greater or equals to:
227239.749213
```

6 Выводы

В ходе выполнения данной лабораторной работы были реализованы два алгоритма нахождения решения СЛАУ на языке C++:

- Прямой метод: «метод исключения Гаусса»;
- Итерационный метод: «метод Гаусса-Зейделя».

А также были вычислены числа обусловленности для заданных примеров экспериментальным путём.

При сравнении двух реализованных методов можно заметить, что метод Гаусса-Зейделя не предназначен для решения всевозможных СЛАУ. При проверки работы алгоритмов на предоставленных примерах, в 1-ом и 2-ом примере метод Гаусса-Зейделя не сходиться. Примеры 3 и 4 имели довольно схожие результаты. 5-ый пример при низкой точности ($\varepsilon \approx 10^{-6}$), результаты, полученные методом Гаусса-Зейделя довольно сильно расходиться с методом исключения Гаусса.

Разница времени выполнения обоих методов для данных (малых) СЛАУ была довольно незначительной, поэтому, для сравнения времени выполнения, было принято решение создать СЛАУ размером 1500×1500 , и произвести замеры на ней.

Каждый алгоритм был запущен 10 раз на одной и той-же матрице 1500×1500 , в результате получено:

Метод	Среднее время выполнения (с)	Точность
Метод исключения Гаусса	5.357956087	$\pm 0.33\%$
Метод Гаусса-Зейделя	0.655645297	$\pm 0.73\%$

Полученные результаты были ожидаемы, т.к. метод исключения Гаусса имеет алгоритмическую сложность $O(n^3)$, тогда как метод Гаусса-Зейделя: $O(mn^2)$, где m – количество итераций, которое необходимо для достижения требуемой точности.

$$O(n^3) > O(mn^2)$$
 если $n \gg m$

Таким образом при не больших СЛАУ (когда $n \approx m$) метод исключения Гаусса не медленнее метода Гаусса-Зейделя. Однако при увеличении размера СЛАУ, когда $n \gg m$, первый метод начинает работать значительно медленнее второго.

В ходе вычисления числа обусловленности Матриц была использована Евклидова норма. За исключением 5-ого примера, все числа обусловленности получились до 10, что означает хорошую обусловленность. Число обусловленности матрицы из 5-ого уравнения составила ≈ 227240 , что явно свидетельствует о плохой обусловленности, так как значение выше 1000. Скорее всего, данный факт и является причиной расхождения результатов метода Гаусса-Зейделя и метода исключений Гаусса при низкой точности.