SECTION 46 – PAPER LOCATION

- 1007. On the contoured plan, sketch in a preliminary alignment. In normal country this will often tend to follow contour lines. In hilly country plot the grade contour, which is the average gradient for the section of the road concerned, plotted from one contour to the next, so as to produce a line of even slope.
- 1008. By studying the contoured plan, and referring to the recce report, survey report and cross sections, adjust the preliminary alignment:
 - a. To avoid heavy construction and bad ground.
 - b. To minimized and balance cut and fill.
 - c. To keep within the ruling grade.
 - d. To use curves of acceptable radius.
 - e. To ensure proper drainage, while keeping the number of culverts to a minimum.
- 1009. Plot the tangents of the selected alignment on the map, producing adjoining lines to meet at the intersection point.
- 1010. Curves must now be fitted in. The simplest method is to use a curve chart (see Figure 10.3). This chart should be reproduced on tracing cloth, and can then be placed over the map so as to fit various curves to the tangents meeting at each IP. Select the curve which combines the best degree of curvature with the best gradient and minimum earthwork. Table 10.2 gives data for curves suitable for military roads.
- 1011. Plot the longitudinal section (profile) of the chosen alignment. The simplest method of judging the best grade line is to use a transparent straight-edge until it fits the ground line as closely as possible, with the amount of cut and fill as nearly in balance as can be estimated by eye. Two or three trial lines may have to be tested in this way.

To ensure that the most economical alignment is selected, a mass diagram must be prepared (see Section 28). A change of alignment may be desirable to improve grade, or to reduce or balance earthwork.

- 1012. The selected alignment must be accurately plotted on the contoured map (see Figure 10.4). To help in setting out, the bearing and length of tangents should be given, and curves should be specified by:
 - a. Degree of curvature (D).
 - b. Radius (R).
 - c. Central angle (Δ).

TABLE 10.2: DATA FOR SELECTED CURVES SUITABLE FOR MILITARY ROADS

Degree	of curve (D)	Radius of curve	Log R	Tangential
(0)(')		(R) (ft)		offset to (ft)
(a)		(b)	(c)	(d)
1	00	5729.64	8.758128	0.873
	05	5288.92	3.723367	0.945
	10	4911.15	3.691183	1.018
	15	4583.75	3.661221	1.091
	20	4297.28	3.633194	1.164
	25	4044.51	3.606866	1.236
	30	3619.83	3.582044	1:309
	35	3618.80	3.558564	1.382
	40	3437.87	3.536289	1.454
	45	3274.17	3.515101	1.527
	50	3125.36	3.494900	1.600
	55	2989.48	3.47595	1.673
2	00	2864.93	3.457115	1.745
	10	2644.58	3.422356	1.891
	20	2455.70	3.390176	2.036
	00	2292.01	3.360217	2.181
	45	2033.68	3.318832	2.400
3	00	1910.08	3.281051	2.618
	15	1763.18	3.246297	2.836
	30	1637.28	3.21122	3.054
	45	1528.16	3.184169	3.272
4	00	1432.69	3.156151	3.490
	20	1322.53	3.2121404	3.781
	40	1228.11	3.089236	4.071
5	00	1146.28	3.059290	4.362

	30	1042.14	3.017927	4.798
6	00	955.366	2.980170	5.234
	30	88.946	2.945442	5.669
7	00	819.020	2.913295	6.105
	30	764.489	2.883371	6.540
8	00	716.779	2.855385	6.976
	30	674.686	2.829102	7.411
9	00	637.275	2.804327	7.846
	30	603.805	2.78087	8.281
10	00	573.689	2.758674	8.716
11	00	521.671	2.717397	9.585
12	00	478.339	2.579735	10.453
13	00	441.684	2.645111	11.320
14	00	410.275	2.613075	12.187
15	00	383.065	2.583272	13.053
16	00	359.265	2.555415	13.917

Figure 10-3: Curve Chart

46-3 RESTRICTED

Figure 10.4: Example of Paper Location