Profesor : Eduardo Engel Abril 10, 2021

Ayudantes : Pablo Barros y Giovanni Villa Curso : ENECO 630 (Macroeconomía I)

Semestre : Otoño 2021 Guía : No. 1

Entrega : Martes 13 de abril, antes de la ayudantía

1. Procesos estacionarios con muchos ceros

Los ε_t son i.i.d. N(0,1) y $x_t = \varepsilon_t$ y $y_t = (-1)^t \varepsilon_t$. También tenemos una secuencia ξ_t de variables aleatorias independientes que toman los valores 0 y 1 con probabilidad 1/2. Los ξ también son independientes de los ε .

- (a) Muestre que los procesos x e y son débilmente estacionarios (y por lo tanto fuertemente estacionarios ya que son Gausianos).
- (b) Muestre que $z_t \equiv x_t + y_t$ no es débilmente estacionario.
- (c) Muestre que $u_t \equiv \xi_t \varepsilon_t$ es débilmente estacionario.
- (d) Las trayectorias de z y u tienen en común que aproximadamente la mitad de los valores son cero, sin embargo, u es stationary y z no. Explique en qué radica la diferencia fundamental entre estos procesos.

2. Transmisión de innovaciones correlacionadas

 x_t y y_t siguen procesos estacionarios AR(1) con innovaciones ε_t^x y ε_t^y :

$$x_t = a_x x_{t-1} + \varepsilon_t^x, \tag{1}$$

$$y_t = a_y y_{t-1} + \varepsilon_t^y. (2)$$

Las varianzas de ε_t^x y ε_t^y se denotan $\sigma_{\varepsilon,x}^2$ y $\sigma_{\varepsilon,y}^2$, respectivamente, y la correlación entre las innovaciones contemporaneas es $\rho > 0$ mientras que las correlaciones de innovaciones no contemporaneas es cero:

$$\rho(\varepsilon_s^x, \varepsilon_t^y) = \begin{cases} \rho & \text{si } s = t, \\ 0 & \text{si } s \neq t. \end{cases}$$

Encuentre la correlación entre x_t y y_t y muestre que es menor o igual que ρ , con igualdad si y solo si $a_x = a_y$. Discuta la intuición del resultado.

Indicación: Recuerde que la correlación entre dos variables aleatorias V y W se define como

$$\rho(V, W) \equiv \frac{\operatorname{Cov}(V, W)}{\sigma(V)\sigma(W)},\tag{3}$$

donde Cov(V, W) denota la covarianza de V y W y $\sigma(V)$ y $\sigma(W)$ las desviaciones estándar correspondientes.

3. Filtros de consumo

Adjunto a esta guía, encontrará un archivo de Excel con datos trimestrales desestacionalizados para el Consumo en Chile en el período 1996-2020. Utilizando Matlab, con esta serie realice lo siguiente:

- (a) Grafique la serie en niveles.
- (b) Extraiga la tendencia y el ciclo de la serie en logaritmos utilizando un polinomio lineal.
- (c) Extraiga la tendencia y el ciclo de la serie en logaritmos utilizando un polinomio cúbico.
- (d) Grafique las tendencias y ciclos para ambos polinomios.
- (e) Extraiga la tendencia y el ciclo de la serie en logaritmos utilizando el Filtro Hodrick-Prescott. Use la función hpfilter.
- (f) Grafique las 3 componentes cíclicas de la serie y determine sus desviaciones estándar. Comente las diferencias entre los distintos métodos a partir de sus resultados.