Math 210A Lecture 12 Notes

Daniel Raban

October 24, 2018

1 Automorphisms, Lagrange's Theorem, Isomorphism Theorems, and Semidirect Products

1.1 Automorphisms and Lagrange's theorem

Last time, we had $\gamma: G \to \text{Inn}(G)$ given by $g \mapsto \gamma_g$, where $\gamma_g(x) = gxg^{-1}$. Then $\ker(\gamma) = Z(G)$, so $G/Z(G) \cong \text{Inn}(G)$.

Theorem 1.1 (Lagrange). Let $H \leq G$, where H and G are finite, then |G| = [G : H]|H|. Also, if $K \leq H \leq G$, then [G : K] = [G : H][H : K].

Proof. $G = \coprod gH$, where the g are a set of coset representatives. Then, since $H \to gH$ given by $h \mapsto gh$ is a bijection, G = (# left cosets)|H| = [G:H]|H|.

Definition 1.1. The **order** of $g \in G$ is the smallest $n \geq 1$ such that $g^n = e$. The **exponent** of G is the smallest n such that $g^n = e$ for all $g \in G$.

Example 1.1. Aut $(D_n) \cong \text{Aff}(\mathbb{Z}/n\mathbb{Z}) \leq \text{GL}_2(\mathbb{Z}/n\mathbb{Z})$, where

$$\operatorname{Aff}(\mathbb{Z}/n\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a \in (\mathbb{Z}/n\mathbb{Z})^{\times}, b \in \mathbb{Z}/n\mathbb{Z} \right\}.$$

The map is $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \mapsto \phi_{a,b}$, where $\phi_{a,b}(r) = r^a$ and $\phi_{a,b}(s) = r^b s$. Let's check that this is an isomorphism.

First, we check that we can use the presentation $D_n = \langle r, s \mid r^2, s^2, rsrs \rangle$. Let $\Phi : F_{\{r,s\}} \to D_n$ be a homomorphism such that $\Phi(f) = r^a$ and $\Phi(s) = r^b s$.

Then we can check that this agrees.

$$\Phi(r^n) = r^{an} = e$$

$$\Phi(s^2) = r^b s r^b s = r^b r^{-b} = e$$

$$\Phi(rsrs) = r^{a+b} s r^{a+b} s = e$$

As an exercise, check that this map is injective.

In this example, $\langle r \rangle$ was a characteristic subgroup.

Definition 1.2. A subgroup is **characteristic** if it is preserved by all automorphisms $(\varphi(N) \leq N \text{ for all } \varphi)$.

Remark 1.1. Even if K ||N|| and $N \subseteq G$, we cannot conclude that $K \subseteq G$. However, if $K \subseteq N$ is characteristic and $N \subseteq G$ is characteristic, then $K \subseteq G$ is characteristic.

Lemma 1.1. Let G be a group.

- 1. Z(G) is characteristic in G.
- 2. $G' = [G, G] = \langle [x, y] \mid x, y \in G \rangle$ is characteristic in G.

Proof. Let's prove the second statement. If ϕ is an automorphism, $\varphi([x,y]) = [\varphi(x), \varphi(y)] \in G'$.

1.2 The second and third isomorphism theorems

For $H, K \leq G$, let $HK = \{hk : h \in H, k \in K\}$. This may not be a subgroup of G. When is it a subgroup?

Lemma 1.2. $HK \leq G$ if and only if HK = KH.

Proof. If $KH \subseteq HK$, then $kh \in HK$ for all $k \in K, h \in K$. So $KH \subseteq HK$. This means that for $k \in K, h \in H$, there exists $h' \in H$ and $k \in K$ such that kh = h'k'. So then $h_1k_1 \cdots h_rk_r = h_k$ for some $h \in H$ and $k \in K$ by moving all the ks to the right. So $HK \subseteq G$.

Now observe that $(h^{-1}k^{-1}) = kh \in HK$. So if HK is group, then HK = KH.

Theorem 1.2 (2nd isomorphism theorem). Let $K \subseteq G$ and $H \subseteq G$. Then $HK/K \cong H/(H \cap K)$.

Proof. Let $\varphi: H \to HK/K$ be $\varphi(h) = hK$. This is surjective, and $\ker(\varphi) = H \cap K$. Now apply the first isomorphism theorem.

Theorem 1.3 (3rd isomorphism theorem). Let $K \subseteq G$, $H \subseteq G$, and $K \subseteq H$. Then $G/H \cong (G/K)/(H/K)$.

Proof. Let $\pi(gK) = gH$. This is a surjective homomorphism. Then $\ker(\pi) = \{gK : gH = H\} = H/K \le G/K$. Then use the 1st isomorphism theorem.

1.3 Semidirect products

Let H, N be groups with a homomorphism $H \to \operatorname{Aut}(N)$.

Definition 1.3. The (external) semidirect product of N and H is $N \rtimes_{\varphi} H = N \times H$ with the group operation

$$(n,h)(n'h') = (n\varphi(h)(n'), hh').$$

Let's check that this is a group:

- 1. The identity is (e, e).
- 2. Inverses are given by $(n,h)^{-1} = (\phi(h^{-1})(n^{-1}),h^{-1}).$
- 3. Associativity is left as an exercise.

How does conjugation work in the semidirect product? We can identify $N \leq N \rtimes_{\varphi} H$ and $H \leq N \rtimes_{\varphi} H$ by $n \mapsto (n, e)$ and $h \mapsto (e, h)$. Then $NH = N \rtimes_{\varphi} H$. Then

$$hnh^{-1} = (e, h)(n, e)(e, h^{-1}) = (\phi(h)(n), h)(e, h^{-1}) = (\phi(h)(n), e)$$

Example 1.2. Aff $(\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} (\mathbb{Z}/n\mathbb{Z})^{\times}$. The isomorphism is $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \mapsto (b, a)$. Here $\phi(a)(b) = ab$.

Example 1.3. $D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$, where $\varphi(1)(a) = -a$.

Definition 1.4. Let $N \subseteq G$ and $H \subseteq G$ be such that $N \cap H = \{e\}$ and NH = G. Then G is the **internal semidirect product** $N \rtimes H$ of N and H.

Really, these are the same thing. $G = N \rtimes H \cong N \rtimes_{\varphi} H$, where $\varphi(h)(n) = hnh^{-1}$.