COSE312: Compilers

Lecture 8 — Operational Semantics

Hakjoo Oh 2023 Spring

Beyond Syntax Analysis


```
i = 0
                                              3 : .t.1 = 0
                                              4 : i = .t1
sum = 0
                                              5: t2 = 0
while i < 10:
                                              6: sum = .t2
                                              7 : SKIP
  sum = sum + i
                                              9 : .t4 = i
  i += 1
                                             10 : .t5 = 10
print(sum)
                                             11 : .t3 = .t4 < .t5
                                             21 : iffalse .t3 goto 8
                                             12 : .t7 = sum
                                             13 : .t8 = i
                                             14 : .t6 = .t7 + .t8
                                             15 : sum = .t6
                                             16 : .t10 = i
                                             17 : .t.11 = 1
                                             18 : .t9 = .t10 + .t11
                                             19 : i = .t9
```

Syntax vs. Semantics

A programming language is defined with syntax and semantics.

- The syntax is concerned with the grammatical structure of programs.
 - ► Context-free grammar
- The semantics is concerned with the meaning of grammatically correct programs.
 - Operational semantics: The meaning is specified by the computation steps executed on a machine. It is of intrest how it is obtained.
 - ▶ Denotational semantics: The meaning is modelled by mathematical objects that represent the effect of executing the program. It is of interest the effect, not how it is obtained.

The While Language: Abstract Syntax

 $m{n}$ will range over numerals, **Num** $m{x}$ will range over variables, **Var** $m{a}$ will range over arithmetic expressions, **Aexp** $m{b}$ will range over boolean expressions, **Bexp** $m{c}$, $m{S}$ will range over statements, **Stm**

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2 \ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \lnot b \mid b_1 \wedge b_2 \ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} \; b \; c_1 \; c_2 \mid {
m while} \; b \; c \end{array}$$

Example

The factorial program:

y:=1; while
$$\neg(x=1)$$
 do $(y:=y*x; x:=x-1)$

The abstract syntax tree:

Semantics of Arithmetic Expressions

- The meaning of an expression depends on the values bound to the variables that occur in the expression, e.g., x+3.
- A state is a function from variables to values:

$$State = Var \rightarrow \mathbb{Z}$$

• The meaning of arithmetic expressions is a function:

$$\mathcal{A}: \operatorname{Aexp} o \operatorname{State} o \mathbb{Z}$$
 $\mathcal{A}\llbracket a
rbracket : \operatorname{State} o \mathbb{Z}$
 $\mathcal{A}\llbracket n
rbracket (s) = n$
 $\mathcal{A}\llbracket x
rbracket (s) = s(x)$
 $\mathcal{A}\llbracket a_1 + a_2
rbracket (s) = \mathcal{A}\llbracket a_1
rbracket (s) + \mathcal{A}\llbracket a_2
rbracket (s)$
 $\mathcal{A}\llbracket a_1 \star a_2
rbracket (s) = \mathcal{A}\llbracket a_1
rbracket (s) \times \mathcal{A}\llbracket a_2
rbracket (s)$
 $\mathcal{A}\llbracket a_1 - a_2
rbracket (s) = \mathcal{A}\llbracket a_1
rbracket (s) - \mathcal{A}\llbracket a_2
rbracket (s)$

Semantics of Boolean Expressions

The meaning of boolean expressions is a function:

$$\mathcal{B}: \operatorname{Bexp} \to \operatorname{State} \to \operatorname{T}$$
 where $\operatorname{T} = \{true, false\}.$
$$\mathcal{B} \llbracket \ b \ \rrbracket \ : \ \operatorname{State} \to \operatorname{T}$$

$$\mathcal{B} \llbracket \ \operatorname{true} \ \rrbracket(s) \ = \ true$$

$$\mathcal{B} \llbracket \ \operatorname{false} \ \rrbracket(s) \ = \ false$$

$$\mathcal{B} \llbracket \ a_1 = a_2 \ \rrbracket(s) \ = \ \mathcal{A} \llbracket \ a_1 \ \rrbracket(s) = \mathcal{A} \llbracket \ a_2 \ \rrbracket(s)$$

$$\mathcal{B} \llbracket \ a_1 \le a_2 \ \rrbracket(s) \ = \ \mathcal{A} \llbracket \ a_1 \ \rrbracket(s) \le \mathcal{A} \llbracket \ a_2 \ \rrbracket(s)$$

$$\mathcal{B} \llbracket \ a_1 \le a_2 \ \rrbracket(s) \ = \ \mathcal{B} \llbracket \ b \ \rrbracket(s) = false$$

$$\mathcal{B} \llbracket \ b_1 \wedge b_2 \ \rrbracket(s) \ = \ \mathcal{B} \llbracket \ b_1 \ \rrbracket(s) \wedge \mathcal{B} \llbracket \ b_2 \ \rrbracket(s)$$

Free Variables

The free variables of an arithmetic expression \boldsymbol{a} are defined to be the set of variables occurring in it:

$$FV(n) = \emptyset$$

 $FV(x) = \{x\}$
 $FV(a_1 + a_2) = FV(a_1) \cup FV(a_2)$
 $FV(a_1 \star a_2) = FV(a_1) \cup FV(a_2)$
 $FV(a_1 - a_2) = FV(a_1) \cup FV(a_2)$

Exercise) Define free variables of boolean expressions.

Substitution

• $a[y \mapsto a_0]$: the arithmetic expression that is obtained by replacing each occurrence of y in a by a_0 .

$$egin{array}{lll} n[y\mapsto a_0] &=& n \ x[y\mapsto a_0] &=& \left\{egin{array}{lll} a_0 & ext{if } x=y \ x & ext{if } x
eq y \end{array}
ight. \ egin{array}{lll} (a_1+a_2)[y\mapsto a_0] &=& (a_1[y\mapsto a_0])+(a_2[y\mapsto a_0]) \ (a_1\star a_2)[y\mapsto a_0] &=& (a_1[y\mapsto a_0])\star(a_2[y\mapsto a_0]) \ (a_1-a_2)[y\mapsto a_0] &=& (a_1[y\mapsto a_0])-(a_2[y\mapsto a_0]) \end{array}$$

 $ullet \ s[y\mapsto v]$: the state s except that the value bound to y is v.

$$(s[y\mapsto v])(x)=\left\{egin{array}{ll} v & ext{if } x=y \ s(x) & ext{if } x
eq y \end{array}
ight.$$

Operational Semantics

Operational semantics is concerned about how to execute programs and not merely what the execution results are.

- *Big-step operational semantics* describes how the overall results of executions are obtained.
- *Small-step operational semantics* describes how the individual steps of the computations take place.

In both kinds, the semantics is specified by a transition system (\mathbb{S}, \to) where \mathbb{S} is the set of states (configurations) with two types:

- ullet $\langle S,s
 angle$: a nonterminal state (i.e. the statement S is to be executed from the state s)
- s: a terminal state

The transition relation $(\rightarrow) \subseteq \mathbb{S} \times \mathbb{S}$ describes how the execution takes place. The difference between the two approaches are in the definitions of transition relation.

Big-Step Operational Semantics

The transition relation specifies the relationship between the initial state and the final state:

$$\langle S, s \rangle \to s'$$

Transition relation is defined with inference rules of the form: A rule has the general form

$$\frac{\langle S_1, s_1 \rangle \to s_1', \dots, \langle S_n, s_n \rangle \to s_n'}{\langle S, s \rangle \to s'} \text{ if } \cdots$$

- S_1, \ldots, S_n are statements that constitute S.
- A rule has a number of premises and one conclusion.
- A rule may also have a number of conditions that have to be fulfilled whenever the rule is applied.
- Rules without premises are called axioms.

Big-Step Operational Semantics for While

Example

Consider the statement:

$$(z:=x; x:=y); y:=z$$

Let s_0 be the state that maps all variables except x and y and has $s_0({\tt x})=5$ and $s_0({\tt y})=7$.

$$\frac{\langle \mathbf{z} := \mathbf{x}, s_0 \rangle \to s_1 \qquad \langle \mathbf{x} := \mathbf{y}, s_1 \rangle \to s_2}{\langle \mathbf{z} := \mathbf{x}; \mathbf{x} := \mathbf{y}, s_0 \rangle \to s_2} \qquad \langle \mathbf{y} := \mathbf{z}, s_2 \rangle \to s_3}{\langle (\mathbf{z} := \mathbf{x}; \mathbf{x} := \mathbf{y}); \mathbf{y} := \mathbf{z}, s_0 \rangle \to s_3}$$

where we have used the abbreviations:

$$\begin{array}{rcl} s_1 &=& s_0[z\mapsto 5] \\ s_2 &=& s_1[x\mapsto 7] \\ s_3 &=& s_2[y\mapsto 5] \end{array}$$

Exercise

Let s be a state with s(x) = 3. Find s' such that

(y:=1; while
$$\neg$$
(x=1) do (y:=y \star x; x:=x-1), s) $\rightarrow s'$

Execution Types

We say the execution of a statement $oldsymbol{S}$ on a state $oldsymbol{s}$

- ullet terminates if and only if there is a state s' such that $\langle S,s
 angle o s'$ and
- ullet loops if and only if there is no state s' such that $\langle S,s
 angle o s'.$

We say a statement S always terminates if its execution on a state s terminates for all states s, and always loops if its execution on a state s loops for all states s.

Examples:

- while true do skip
- while $\neg(x=1)$ do (y:=y*x; x:=x-1)

Semantic Equivalence

We say S_1 and S_2 are semantically equivalent, denoted $S_1 \equiv S_2$, if the following is true for all states s and s':

$$\langle S_1,s
angle o s'$$
 if and only if $\langle S_2,s
angle o s'$

Example:

while b do $S\equiv ext{if }b$ then (S; while b do S) else skip

Semantic Function for Statements

The semantic function for statements is the partial function:

$$\mathcal{S}_b : \operatorname{Stm} o (\operatorname{State} \hookrightarrow \operatorname{State})$$
 $\mathcal{S}_b \llbracket \ S \
rbracket [s] (s) = \left\{ egin{array}{ll} s' & ext{if } \langle S, s
angle
ightarrow s' \ & ext{undef} & ext{otherwise} \end{array}
ight.$

Examples:

- ullet $\mathcal{S}_b \llbracket \ \mathrm{y} := 1; \ \mathrm{while} \ \lnot (\mathrm{x} = 1) \ \mathrm{do} \ (\mathrm{y} := \mathrm{y} \star \mathrm{x}; \ \mathrm{x} := \mathrm{x} 1) \ \rrbracket (s[x \mapsto 3])$
- ullet $\mathcal{S}_b \llbracket$ while true do skip $\rrbracket(\mathtt{s})$

Summary

The syntax is defined by the grammar:

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2 \ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \lnot b \mid b_1 \land b_2 \ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} \; b \; c_1 \; c_2 \mid {
m while} \; b \; c \end{array}$$

The semantics is defined by the functions:

$$\mathcal{A} \llbracket a \rrbracket : \operatorname{State} \to \mathbb{Z}$$

$$\mathcal{B} \llbracket b \rrbracket : \text{State} \to \mathbf{T}$$

$$S_b \llbracket c \rrbracket$$
: State \hookrightarrow State

Implementing Big-Step Interpreter in OCaml

```
type var = string
type aexp =
  Int of int
  | Var of var
  | Plus of aexp * aexp
  | Mult of aexp * aexp
  | Minus of aexp * aexp
type bexp =
   True
  l False
  | Eq of aexp * aexp
  | Le of aexp * aexp
  | Neg of bexp
  | Conj of bexp * bexp
type cmd =
    Assign of var * aexp
   Skip
  | Seq of cmd * cmd
  | If of bexp * cmd * cmd
  | While of bexp * cmd
```

Implementing Big-Step Interpreter

```
let fact =
  Seq (Assign ("y", Int 1),
    While (Neg (Eq (Var "x", Int 1)),
      Seq (Assign("y", Mult(Var "y", Var "x")),
           Assign("x", Minus(Var "x", Int 1)))
module State = struct
  type t = (var * int) list
  let empty = []
  let rec lookup s x =
    match s with
    | [] -> raise (Failure (x ^ "is not bound in state"))
    | (y,v)::s' \rightarrow if x = y then v else lookup s' x
  let update s x v = (x.v)::s
end
let init_s = update empty "x" 3
```

Implementing Big-Step Interpreter

```
let rec eval_a : aexp -> State.t -> int
=fin a s ->
  match a with
  | Int n \rightarrow n
  | Var x -> State.lookup s x
  | Plus (a1, a2) -> (eval_a a1 s) + (eval_a a2 s)
  | Mult (a1, a2) -> (eval_a a1 s) * (eval_a a2 s)
  | Minus (a1, a2) -> (eval a a1 s) - (eval a a2 s)
let rec eval_b : bexp -> State.t -> bool
=fun b s \rightarrow
  match b with
  | True -> true
  | False -> false
  | Eq (a1, a2) \rightarrow (eval_a a1 s) = (eval_a a2 s)
  | Le (a1, a2) -> (eval a a1 s) <= (eval a a2 s)
  | Neg b' -> not (eval_b b' s)
  | Coni (b1, b2) -> (eval b b1 s) && (eval b b2 s)
```

Implementing Big-Step Interpreter

```
let rec eval_c : cmd -> State.t -> State.t
=fun c s ->
  match c with
  | Assign (x, a) -> State.update s x (eval_a a s)
  | Skip -> s
  | Seq (c1, c2) -> eval_c c2 (eval_c c1 s)
  | If (b, c1, c2) -> eval_c (if eval_b b s then c1 else c2) s
  | While (b, c) ->
    if eval_b b s then eval_c (While (b,c)) (eval_c c s)
    else s

let _ =
    print_int (State.lookup (eval_c fact init_s) "y");
    print_newline ()
```

Small-Step Operational Semantics

The individual computation steps are described by the transition relation of the form:

$$\langle S,s \rangle \Rightarrow \gamma$$

where γ either is non-terminal state $\langle S', s' \rangle$ or terminal state s'. The transition expresses the first step of the execution of S from state s.

- If $\gamma = \langle S', s' \rangle$, then the execution of S from s is not completed and the remaining computation continues with $\langle S', s' \rangle$.
- If $\gamma = s'$, then the execution of S from s has terminated and the final state is s'.

We say $\langle S,s \rangle$ is stuck if there is no γ such that $\langle S,s \rangle \Rightarrow \gamma$ (no stuck state for **While**).

Small-Step Operational Semantics for While

$$egin{aligned} \overline{\langle x := a, s
angle} &\Rightarrow s [x \mapsto \mathcal{A} \llbracket \ a \ \rrbracket (s)] \ &\overline{\langle \operatorname{skip}, s
angle} \Rightarrow s \ & \langle S_1, s
angle \Rightarrow s \ & \langle S_1, s
angle \Rightarrow \langle S_1', s'
angle \ & \langle S_1; S_2, s
angle \Rightarrow \langle S_1'; S_2, s'
angle \ & \langle S_1, s
angle \Rightarrow s' \ & \overline{\langle S_1; S_2, s
angle} \Rightarrow \langle S_2, s'
angle \ & \overline{\langle \operatorname{if} \ b \ S_1 \ S_2, s
angle} \Rightarrow \langle S_1, s
angle \ & \overline{\beta} \llbracket \ b \ \rrbracket (s) = \operatorname{true} \ & \overline{\langle \operatorname{if} \ b \ S_1 \ S_2, s
angle} \Rightarrow \langle S_2, s
angle \ & \overline{\beta} \llbracket \ b \ \rrbracket (s) = \operatorname{false} \ & \overline{\langle \operatorname{while} \ b \ S, s
angle} \Rightarrow \langle \operatorname{if} \ b \ (S; \ \operatorname{while} \ b \ S) \ \operatorname{skip}, s
angle \end{aligned}$$

Derivation Sequence

A derivation sequence of a statement S starting in state s is either

A finite sequence

$$\gamma_0, \gamma_1, \gamma_2, \cdots, \gamma_k$$

which is sometimes written

$$\gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$$

such that

$$\gamma_0 = \langle S, s \rangle, \quad \gamma_i \Rightarrow \gamma_{i+1} \text{ for } 0 \leq i \leq k$$

and γ_k is either a terminal configuration or a stuck configuration.

An infinite sequence

$$\gamma_0, \gamma_1, \gamma_2, \cdots$$

which is sometimes written

$$\gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots$$

consisting of configurations satisfying $\gamma_0 = \langle S, s \rangle$ and $\gamma_i \Rightarrow \gamma_{i+1}$ for 0 < i.

Example

Consider the statement:

$$(z:=x; x:=y); y:=z$$

Let s_0 be the state that maps all variables except x and y and has $s_0(x) = 5$ and $s_0(y) = 7$. We then have the derivation sequence:

$$\begin{split} &\langle (\mathbf{z} := \mathbf{x}; \mathbf{x} := \mathbf{y}); \mathbf{y} := \mathbf{z}, s_0 \rangle \\ &\Rightarrow \langle \mathbf{x} := \mathbf{y}; \mathbf{y} := \mathbf{z}, s_0 [z \mapsto 5] \rangle \\ &\Rightarrow \langle \mathbf{y} := \mathbf{z}, s_0 [z \mapsto 5, x \mapsto 7] \rangle \\ &\Rightarrow s_0 [z \mapsto 5, x \mapsto 7, y \mapsto 5] \end{split}$$

Each step has a derivation tree explaining why it takes place, e.g.,

$$\frac{\langle \mathbf{z} := \mathbf{x}, s_0 \rangle \Rightarrow s_0[z \mapsto \mathbf{5}]}{\langle \mathbf{z} := \mathbf{x}; \mathbf{x} := \mathbf{y}, s_0 \rangle \Rightarrow \langle \mathbf{x} := \mathbf{y}, s_0[z \mapsto \mathbf{5}] \rangle}}{\langle (\mathbf{z} := \mathbf{x}; \mathbf{x} := \mathbf{y}); \mathbf{y} := \mathbf{z}, s_0 \rangle \Rightarrow \langle \mathbf{x} := \mathbf{y}; \mathbf{y} := \mathbf{z}, s_0[z \mapsto \mathbf{5}] \rangle}$$

Example: Factorial

Assume that s(x) = 3.

```
\langle y:=1; \text{ while } \neg(x=1) \text{ do } (y:=y\star x; x:=x-1), s \rangle
\Rightarrow \text{while } \( \sigma(x=1) \) do \( (y:=y \times x; x:=x-1), s[y \dots 1] \)
\Rightarrow (if \neg(x=1) then ((y:=y*x; x:=x-1); while \neg(x=1) do (y:=y*x; x:=x-1))
     else skip, s[y \mapsto 1]
\Rightarrow \langle (y:=y\star x; x:=x-1); \text{while } \neg (x=1) \text{ do } (y:=y\star x; x:=x-1), s[y\mapsto 1] \rangle
\Rightarrow \langle x:=x-1; while \neg (x=1) do (y:=y\star x; x:=x-1), s[y\mapsto 3] \rangle
\Rightarrow \left(\text{while } \sqrt{(x=1) do } (y:=y\pm x; x:=x-1), s[y \mapsto 3][x \mapsto 2]\right)
\Rightarrow (if \neg(x=1) then ((y:=y*x; x:=x-1); while \neg(x=1) do (y:=y*x; x:=x-1))
     else skip, s[y \mapsto 3][x \mapsto 2]
\Rightarrow \langle (y:=y\star x; x:=x-1); \text{while } \neg (x=1) \text{ do } (y:=y\star x; x:=x-1), s[y\mapsto 3][x\mapsto 2] \rangle
\Rightarrow \langle \texttt{x}:=\texttt{x-1}; \texttt{while} \ \neg(\texttt{x=1}) \ \texttt{do} \ (\texttt{y}:=\texttt{y} \star \texttt{x}; \ \texttt{x}:=\texttt{x-1}), s[y \mapsto 6][x \mapsto 2] \rangle
\Rightarrow (while \neg(x=1) do (y:=y*x; x:=x-1), s[y \mapsto 6][x \mapsto 1])
\Rightarrow s[y \mapsto 6][x \mapsto 1]
```

Other Notations

- We write $\gamma_0 \Rightarrow^i \gamma_i$ to indicate that there are i steps in the execution from γ_0 to γ_i .
- We write $\gamma_0 \Rightarrow^* \gamma_i$ to indicate that there are a finite number of steps.
- We say that the execution of a statement S on a state s terminates if and only if there is a finite derivation sequence starting with $\langle S, s \rangle$.
- The execution loops if and only if there is an infinite derivation sequence starting with $\langle S, s \rangle$.

Semantic Function

The semantic function \mathcal{S}_s for small-step semantics:

$$S_s: \operatorname{Stm} \to (\operatorname{State} \hookrightarrow \operatorname{State})$$

$$\mathcal{S}_s \llbracket \ S \
rbracket(s) = \left\{ egin{array}{ll} s' & ext{if } \langle S, s
angle \Rightarrow^* s' \\ ext{undef} \end{array}
ight.$$

Implementing Small-Step Interpreter

```
type conf =
  | NonTerminated of cmd * State.t
  I Terminated of State.t
let rec next : conf -> conf
=fun conf ->
 match conf with
  | Terminated _ -> raise (Failure "Must not happen")
  | NonTerminated (c. s) ->
   match c with
    | Assign (x, a) -> Terminated (State.update s x (eval a a s))
    | Skip -> Terminated s
    | Seq (c1, c2) -> (
       match (next (NonTerminated (c1,s))) with
       | NonTerminated (c', s') -> NonTerminated (Seq (c', c2), s')
       | Terminated s' -> NonTerminated (c2, s')
    | If (b, c1, c2) ->
      if eval_b b s then NonTerminated (c1, s) else NonTerminated (c2, s)
    | While (b, c) -> NonTerminated (If (b, Seq (c, While (b,c)), Skip), s)
```

Implementing Small-Step Interpreter

```
let rec next_trans : conf -> State.t
=fun conf ->
  match conf with
   | Terminated s -> s
   | _ -> next_trans (next conf)

let _ =
   print_int (State.lookup (next_trans (NonTerminated (fact,init_s))) "y");
   print_newline ()
```

Summary

We have defined the operational semantics of **While**.

- Big-step operational semantics describes how the overall results of executions are obtained.
- Small-step operational semantics describes how the individual steps of the computations take place.

The big-step and small-step operational semantics are equivalent:

Theorem

For every statement S of While, we have $\mathcal{S}_b \llbracket S \rrbracket = \mathcal{S}_s \llbracket S \rrbracket$.