

Lab Test 4

Check Your Lab Test Environment

- Check whether your computer is working well.
- Print "Hello World!" in both IntelliJ IDEA
 Community version and CLion.
- Please check the path of the *.java files and "main.cpp" for the submission.

Announcement

- Cheating (including googling) is forbidden during the test. There will be a strong penalty if you're caught cheating.
- You can modify any part of the files if it meets the instructions.

Skeleton Code

- Download skeleton codes for the problem 1.
 (.java files)
- There is no skeleton code for the problem 2.

Submission

- Zip all .java files for problem 1 and "main.cpp" for problem 2 as "20XX-XXXXX.zip".
- Upload the zip file to ETL.

Problem 1 (Java) - NameValidator (1/5)

- Complete the Java classes, NameValidator, and several exceptions.
- NameValidator::validate method validates the format of the input string.
- NameValidator::validate throws a subclass of NameFormatException.
- The caller of the NameValidator::validate should be able to catch the exceptions in the next slide according to each condition.
- Otherwise, NameValidator::validate returns true without throwing any exception.

Problem 1 (Java) - NameValidator (2/5)

Throwing Exception Class	Condition
WrongCharacterException	The string contains a character except an alphabet or a space.
SpaceException	The string should contains only one space, and the space is not the first or the last character of the string. Otherwise throw this exception.
FirstnameNotCapitalizedException	The first character of the first name is not an upper character.
LastnameNotCapitalizedException	The first character of the last name is not an upper character.

Problem 1 (Java) - NameValidator (3/5)

- There are priorities in the four exceptions in the previous slide as follows:
 - a. WrongCharacterException
 - b. SpaceException
 - c. FirstnameNotCapitalizedException
 - d. LastnameNotCapitalizedException
- For example, "you ngki% lee" meets the conditions of both WrongCharacterException and SpaceException, then WrongCharacterException is thrown.

Problem 1 (Java) - NameValidator (4/5)

- The caller of NameValidator::validate can catch FirstnameNotCapitalizedException and LastnameNotCapitalizedException as NotCapitalizedException.
- The caller of NameValidator::validate can catch all previously mentioned exceptions as NameFormatException.
- Maybe you just need to add a few words to some of the files. Don't think this is weird, and don't ask TA about this.

Problem 1 (Java) - NameValidator (5/5)

- Use String::toCharArray to convert a string to a list of character if you need.
- Use String::charAt to get the nth character of the string if you need.
- Use helper functions isAlphabet, isUpperAlphaber, isLowerAlphaber, and hasOnlyOneSpace in NameValidator class if you need.

Problem 2 (C++) - Functions (1/3)

- Write a C++ code "main.cpp" that generates an arbitrary polynomial function and determines if a certain input point is above, on, or below the given function's graph.
- The first input is the degree n of the polynomial.
- 2nd ~ (n+2)th input are the coefficients of the polynomial terms from largest degree to lowest degree.
- (n+3)th, (n+4)th inputs are the input point (x,y) to be tested.
- 1st input is non-negative integer.
- 2nd ~ (n+4)th inputs are arbitrary integer numbers.
- Assume that the input, output, and any intermediate result in evaluating the polynomial do not go beyond.

Problem 2 (C++) - Functions (2/3)

Input

Output

degree 3

The point is below the polynomial.

 $f(x) = 2x^3 + 3x^2 + x + 3$

test point (3, 80)

Input

Output

The point is on the polynomial.

 $f(x) = x^2 + x$

test point (1, 2)

Problem 2 (C++) - Functions (3/3)

