形式语言与计算复杂性

第 4 章 Complexity Theory 4.2 Space Complexity

黄文超

https://faculty.ustc.edu.cn/huangwenchao

→ 教学课程 → 形式语言与计算复杂性

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- The classes L and NL
- **6** NL-Completeness
- Conclusions
- 8 Homework
- 9 Appendix

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- 5 The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

1. Introduction

问: Is a problem *solvable* in *practice*, when the problem is *decidable*?

答: No, consider the case that the solution requires an inordinate amount of *time* (Time Complexity) or *memory*

- Time Complexity
- Space Complexity
- 问: Overview of Space Complexity?
- 答
 - Shares many of the features of time complexity
 - Serves as a further way of classifying problems

1. Introduction

问: Is a problem *solvable* in *practice*, when the problem is *decidable*?

答: No, consider the case that the solution requires an inordinate amount of *time* (Time Complexity) or *memory*

- Time Complexity
- Space Complexity

问: Overview of Space Complexity?

答:

- Shares many of the features of time complexity
- Serves as a further way of classifying problems

1. Introduction

定义: Time complexity

定义: Space complexity

Let M be a $\operatorname{deterministic}$ Turing machine that halts on all inputs.

- The space complexity of M is the function $f: \mathcal{N} \to \mathcal{N}$, where f(n) is the **maximum** number of tape cells that M scans on **any** input of length n.
- If the space complexity of M is f(n), we also say that M runs in space f(n).

If M is a ${\it nondeterministic}$ Turing machine wherein all branches halt on all inputs

• Space complexity f(n): the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

1. Introduction

定义: Time complexity

定义: Space complexity

Let M be a *deterministic* Turing machine that halts on all inputs.

- The space complexity of M is the function $f: \mathcal{N} \to \mathcal{N}$, where f(n) is the **maximum** number of tape cells that M scans on **any** input of length n.
- If the space complexity of M is f(n), we also say that M runs in space f(n).

If M is a $\ensuremath{\textit{nondeterministic}}$ Turing machine wherein all branches halt on all inputs

• Space complexity f(n): the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

1. Introduction

定义: Time complexity classes

定义: Space complexity classes

Let $f: \mathcal{N} \to \mathcal{R}^+$ be a function. Define the *space complexity classes*, SPACE(f(n)), NSPACE(f(n)):

 $\mathsf{SPACE}(f(n)) = \{L \mid L \text{ is a language decided by an } O(f(n)) \text{ space } \\ \underline{deterministic} \text{ Turing machine} \}.$

 $\mbox{NSPACE}(f(n)) = \{L \mid L \mbox{ is a language decided by an } O(f(n)) \mbox{ space } \\ \mbox{nondeterministic Turing machine}\}.$

1. Introduction

问: *Time* complexity of SAT problem?

答: NP-complete

问: *Space* complexity of SAT problem?

答: At least *Linear* Space !!!

1. Introduction

问: *Time* complexity of SAT problem?

答: NP-complete

问: Space complexity of SAT problem?

答: At least *Linear* Space !!!

1. Introduction

问: *Time* complexity of SAT problem?

答: NP-complete

问: *Space* complexity of SAT problem?

答: At least *Linear* Space !!!

 M_1 = "On input $\langle \phi \rangle$, where ϕ is a Boolean formula:

- **1.** For each truth assignment to the variables x_1, \ldots, x_m of ϕ :
- **2.** Evaluate ϕ on that truth assignment.
- **3.** If ϕ ever evaluated to 1, accept; if not, reject."

Reason: each iteration of the loop can *reuse the same portion* of the tape.

1. Introduction

问: *Time* complexity of SAT problem?

答: NP-complete

问: Space complexity of SAT problem?

答: At least *Linear* Space !!!

问: Space complexity of the following problem?

例: Space Complexity of $ALL_{
m NFA}$

 $ALL_{NFA} = \{\langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$

1. Introduction

问: *Time* complexity of SAT problem?

答: NP-complete

问: Space complexity of SAT problem?

答: At least *Linear* Space !!!

问: Space complexity of the following problem?

例: Space Complexity of $ALL_{ m NFA}$

$$ALL_{NFA} = \{\langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$$

回顾: 定理: Decidability of E_{DFA}

The language E_{DFA} is decidable, where

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$$

思路: decides the complement of this language, $\overline{ALL_{\mathrm{NFA}}}$

1. Introduction

例: Space Complexity of $ALL_{ m NFA}$ is at least linear

$$ALL_{NFA} = \{\langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$$

N = "On input $\langle M \rangle$, where M is an NFA:

- 1. Place a marker on the start state of the NFA.
- **2.** Repeat 2^q times, where q is the number of states of M:
- 3. Nondeterministically select an input symbol and change the positions of the markers on M's states to simulate reading that symbol.
- **4.** Accept if stages 2 and 3 reveal some string that M rejects; that is, if at some point none of the markers lie on accept states of M. Otherwise, reject."

Hence N decides $\overline{ALL_{ ext{NFA}}}$, and runs in *nondeterministic* space O(n)

- 问:How about the $\emph{deterministic}$ space complexity of $ALL_{ ext{NFA}}$?
- 答: See Savitch's theorem.

1. Introduction

例: Space Complexity of $ALL_{ m NFA}$ is at least linear

$$ALL_{NFA} = \{\langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$$

N = "On input $\langle M \rangle$, where M is an NFA:

- 1. Place a marker on the start state of the NFA.
- **2.** Repeat 2^q times, where q is the number of states of M:
- 3. Nondeterministically select an input symbol and change the positions of the markers on M's states to simulate reading that symbol.
- **4.** Accept if stages 2 and 3 reveal some string that M rejects; that is, if at some point none of the markers lie on accept states of M. Otherwise, reject."

Hence N decides $\overline{ALL_{\mathrm{NFA}}}$, and runs in *nondeterministic* space O(n)

- 问:How about the $\emph{deterministic}$ space complexity of $ALL_{ ext{NFA}}$?
- 答: See Savitch's theorem.

1. Introduction

例: Space Complexity of $ALL_{ m NFA}$ is at least linear

$$ALL_{NFA} = \{\langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$$

N = "On input $\langle M \rangle$, where M is an NFA:

- 1. Place a marker on the start state of the NFA.
- **2.** Repeat 2^q times, where q is the number of states of M:
- 3. Nondeterministically select an input symbol and change the positions of the markers on M's states to simulate reading that symbol.
- **4.** Accept if stages 2 and 3 reveal some string that M rejects; that is, if at some point none of the markers lie on accept states of M. Otherwise, reject."

Hence N decides $\overline{ALL_{\mathrm{NFA}}}$, and runs in *nondeterministic* space O(n)

问:How about the *deterministic* space complexity of $ALL_{
m NFA}$?

答: See Savitch's theorem.

1. Introduction

例: Space Complexity of $ALL_{ m NFA}$ is at least linear

$$ALL_{NFA} = \{\langle A \rangle \mid A \text{ is an NFA and } L(A) = \Sigma^* \}$$

N = "On input $\langle M \rangle$, where M is an NFA:

- 1. Place a marker on the start state of the NFA.
- **2.** Repeat 2^q times, where q is the number of states of M:
- 3. Nondeterministically select an input symbol and change the positions of the markers on M's states to simulate reading that symbol.
- **4.** Accept if stages 2 and 3 reveal some string that M rejects; that is, if at some point none of the markers lie on accept states of M. Otherwise, reject."

Hence N decides $\overline{ALL_{\mathrm{NFA}}}$, and runs in *nondeterministic* space O(n)

问:How about the *deterministic* space complexity of $ALL_{
m NFA}$?

答: See Savitch's theorem.

Outline

- Introduction
- 2 Savitch's theorem
- The class PSPACE
- 4 PSPACE-Completeness
- The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

2. Savitch's theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 1: A naive approach

- Requirement: keep track of which branch it is currently trying so that it is able to go on to the next one
- Problem: A branch that uses f(n) space may run for $2^{O(f(n))}$ steps

2. Savitch's theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 1: A naive approach

- Requirement: keep track of which branch it is currently trying so that it is able to go on to the next one
- ullet Problem: A branch that uses f(n) space may run for $2^{O(f(n))}$ steps

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 1: A naive approach

- Requirement: keep track of which branch it is currently trying so that it is able to go on to the next one
- ullet Problem: A branch that uses f(n) space may run for $2^{O(f(n))}$ steps

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 1: A naive approach

- Requirement: keep track of which branch it is currently trying so that it is able to go on to the next one
- Problem: A branch that uses f(n) space may run for $2^{O(f(n))}$ steps
 - Each step may be a *nondeterministic* choice
 - Exploring the branches sequentially would require recording all the choices used on a particular branch in order to be able to find the next branch.
 - This approach may use $2^{O(f(n))}$ space

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 1: A naive approach

- Requirement: keep track of which branch it is currently trying so that it is able to go on to the next one
- Problem: A branch that uses f(n) space may run for $2^{O(f(n))}$ steps
 - Each step may be a *nondeterministic* choice
 - Exploring the branches *sequentially* would *require recording all the choices* used on *a* particular *branch* in order to be able to find the next branch.
 - This approach may use $2^{O(f(n))}$ space

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 1: A naive approach

- Requirement: keep track of which branch it is currently trying so that it is able to go on to the next one
- Problem: A branch that uses f(n) space may run for $2^{O(f(n))}$ steps
 - Each step may be a *nondeterministic* choice
 - Exploring the branches *sequentially* would *require recording all the choices* used on *a* particular *branch* in order to be able to find the next branch.
 - This approach may use $2^{O(f(n))}$ space

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 2: Solving yieldability problem

- Yieldability problem: using only f(n) space, test whether the NTM can get from c_1 to c_2 within t steps ?
- Goal: solving the yieldability problem,

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 2: Solving yieldability problem

- Yieldability problem: using only f(n) space, test whether the NTM can get from c_1 to c_2 within t steps ?
- Goal: solving the yieldability problem,

2. Savitch's theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 2: Solving yieldability problem

- Yieldability problem: using only f(n) space, test whether the NTM can get from c_1 to c_2 within t steps ?
- Goal: solving the yieldability problem, where
 - c_1 is the *start* configuration
 - c₂ is the *accept* configuration
 - t is the maximum number of steps that the nondeterministic machine can use

2. Savitch's theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 2: Solving yieldability problem

Given two configurations of the NTM, c_1 and c_2 , together with a number t

- Yieldability problem: using only f(n) space, test whether the NTM can get from c_1 to c_2 within t steps ?
- Goal: solving the yieldability problem,
- How to solve?

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 2: Solving yieldability problem

- Yieldability problem: using only f(n) space, test whether the NTM can get from c_1 to c_2 within t steps ?
- Goal: solving the yieldability problem,
- How to solve? A deterministic, recursive algorithm

2. Savitch' s theorem

定理: Savitch's theorem

For any function $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

证明思路 2: Solving yieldability problem

Given two configurations of the NTM, c_1 and c_2 , together with a number t

- Yieldability problem: using only f(n) space, test whether the NTM can get from c_1 to c_2 within t steps ?
- Goal: solving the yieldability problem,
- How to solve? A deterministic, recursive algorithm: searching for an intermediate configuration c_m , and recursively testing whether
 - **1** c_1 can get to c_m within t/2 steps
 - 2 c_m can get to c_2 within t/2 steps

2. Savitch' s theorem

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

解: (Proof by Construction)

Let N be an NTM deciding a language A in space $f(\boldsymbol{n})$

2. Savitch' s theorem

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

解: (Proof by Construction)

Let N be an NTM deciding a language A in space f(n)

<u>Design</u> the procedure CANYIELD (c_1, c_2, t)

- Input: configurations c_1 and c_2 of N, and integer t
- Output:
 - accept, if N can go from configuration c_1 to configuration c_2 in t or fewer steps along some nondeterministic path.
 - reject, otherwise.

2. Savitch' s theorem

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

解: (Proof by Construction)

Let N be an NTM deciding a language A in space f(n) Implement $\operatorname{CANYIELD}(c_1,c_2,t)$

CANYIELD = "On input c_1 , c_2 , and t:

- 1. If t = 1, then test directly whether $c_1 = c_2$ or whether c_1 yields c_2 in one step according to the rules of N. Accept if either test succeeds; reject if both fail.
- **2.** If t > 1, then for each configuration c_m of N using space f(n):
- **3.** Run CANYIELD $(c_1, c_m, \frac{t}{2})$.
- **4.** Run CANYIELD $(c_m, c_2, \frac{t}{2})$.
- 5. If steps 3 and 4 both accept, then *accept*.
- **6.** If haven't yet accepted, reject."

2. Savitch' s theorem

定理: Savitch's theorem

For $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

2. Savitch's theorem

定理: Savitch's theorem

For $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \geq n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

问: Then how to prove *Savitch's theorem*?

答: (Proof by *Construction*): use the algorithm in *yieldability problem*:

M = "On input w:

1. Output the result of CANYIELD $(c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})$."

2. Savitch' s theorem

定理: Savitch's theorem

For $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \geq n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

- 问: Then how to prove *Savitch's theorem*?
- 答: (Proof by *Construction*): use the algorithm in *yieldability problem*:
- M = "On input w:
 - **1.** Output the result of CANYIELD $(c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})$."
- 问: Space complexity? (for storing the recursion *stack*)
- 答: The deterministic simulation uses $O(f^2(n))$ space
 - Each level of recursion uses O(f(n)) space to store a configuration
 - The depth of the recursion is $\log t$, where $t = 2^{d(f(n))}$

2. Savitch' s theorem

定理: Savitch's theorem

For $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

问: Then how to prove *Savitch's theorem*?

答: (Proof by *Construction*): use the algorithm in *yieldability problem*:

M = "On input w:

1. Output the result of CANYIELD $(c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})$."

问: Space complexity? (for storing the recursion *stack*)

答: The deterministic simulation uses $O(f^2(n))$ space

- Each level of recursion uses O(f(n)) space to store a configuration
- The depth of the recursion is $\log t$, where $t = 2^{d(f(n))}$
 - What is d? and why $t = 2^{d(f(n))}$?

2. Savitch' s theorem

定理: Savitch's theorem

For $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \geq n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

问: Then how to prove *Savitch's theorem*?

答: (Proof by *Construction*): use the algorithm in *yieldability problem*:

M = "On input w:

1. Output the result of CANYIELD $(c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})$."

问: What is d? and why $t = 2^{d(f(n))}$?

答: select a constant d so that N has no more than $2^{df(n)}$ configurations using f(n) tape

ullet So, $2^{df(n)}$ provides an *upper bound* on the *running time* of any branch of N

2. Savitch' s theorem

定理: Savitch's theorem

For $f: \mathcal{N} \to \mathcal{R}^+$, where $f(n) \ge n$, $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$

问题 (Yieldability Problem): Design deterministic algorithm testing:

Whether the NTM with f(n) space can get from c_1 to c_2 within t steps?

问: Then how to prove *Savitch's theorem*?

答: (Proof by *Construction*): use the algorithm in *yieldability problem*:

M = "On input w:

1. Output the result of CANYIELD $(c_{\text{start}}, c_{\text{accept}}, 2^{df(n)})$."

问: How to construct M if the value of f(n) is unknown?

答: Modifying M so that it tries f(n) = 1, 2, 3, ...

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- The classes L and NL
- ML-Completeness
- Conclusions
- 8 Homework
- O Appendix

3. The class PSPACE

回顾: Class P

P is the class of languages that are decidable in *polynomial time* on *a deterministic single-tape* Turing machine. In other words,

$$P = \bigcup_k TIME(n^k)$$

定义: Class PSPACE

PSPACE is the class of languages that are decidable in *polynomial space* on a *deterministic* Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

问: How to define NSPACE?

答: NPSPACE = LL NSPACE (n^k)

3. The class PSPACE

回顾: Class P

P is the class of languages that are decidable in *polynomial time* on *a deterministic single-tape* Turing machine. In other words,

$$P = \bigcup_k TIME(n^k)$$

定义: Class PSPACE

PSPACE is the class of languages that are decidable in *polynomial space* on a *deterministic* Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

问: How to define NSPACE?

答: NPSPACE = \bigcup_{k} NSPACE (n^k)

3. The class PSPACE

回顾: Class P

P is the class of languages that are decidable in *polynomial time* on *a deterministic single-tape* Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k)$$

定义: Class PSPACE

PSPACE is the class of languages that are decidable in *polynomial space* on a *deterministic* Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

问: How to define NSPACE?

答: NPSPACE = \bigcup_k NSPACE (n^k)

3. The class PSPACE

定义: Class PSPACE

PSPACE is the class of languages that are decidable in *polynomial space* on a *deterministic* Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

问: How to define NSPACE?

答: $NPSPACE = \bigcup_k NSPACE(n^k)$

问: PSPACE v.s. NPSPACE?

答: PSPACE=NPSPACE

• Because of Savitch' s Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$

3. The class PSPACE

定义: Class PSPACE

PSPACE is the class of languages that are decidable in *polynomial space* on a *deterministic* Turing machine. In other words,

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

问: How to define NSPACE?

答: $NPSPACE = \bigcup_k NSPACE(n^k)$

问: PSPACE v.s. NPSPACE?

答: PSPACE=NPSPACE

• Because of Savitch' s Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$

3. The class PSPACE

问: P v.s. PSPACE 答: P⊆PSPACE

• For $t(n) \ge n$, any machine that operates in time t(n) can use at most t(n) space because a machine can explore at most one new cell at each step of its computation

问: NP v.s. PSPACE

答: NP ⊆ PSPACE

• Because, $NP \subseteq NPSPACE$, similarly.

问: PSPACE v.s. EXPTIME(= $\bigcup_k \text{TIME}(2^{n^k})$)

答: PSPACE \subseteq EXPTIME= \bigcup_k TIME(2^{n^k})

- For $f(n) \ge n$, a TM that uses f(n) space can have at most $f(n)2^{O(f(n))}$ different configurations
- Therefore, a TM that uses space f(n) must run in time $f(n)2^{O(f(n))}$

3. The class PSPACE

问: P v.s. PSPACE 答: P⊆PSPACE

• For $t(n) \ge n$, any machine that operates in time t(n) can use at most t(n) space because a machine can explore at most one new cell at each step of its computation

问: NP v.s. PSPACE

答: NP ⊆ PSPACE

• Because, $NP \subseteq NPSPACE$, similarly.

问: PSPACE v.s. EXPTIME(= $\bigcup_k \text{TIME}(2^{n^k})$)

- 答: PSPACE \subseteq EXPTIME= \bigcup_k TIME(2^{n^k})
 - For $f(n) \ge n$, a TM that uses f(n) space can have at most $f(n)2^{O(f(n))}$ different configurations
 - Therefore, a TM that uses space f(n) must run in time $f(n)2^{O(f(n))}$

3. The class PSPACE

问: P v.s. PSPACE 答: P ⊂ PSPACE

• For $t(n) \ge n$, any machine that operates in time t(n) can use at most t(n) space because a machine can explore at most one new cell at each step of its computation

问: NP v.s. PSPACE

答: NP ⊆ PSPACE

• Because, $NP \subseteq NPSPACE$, similarly.

问: PSPACE v.s. EXPTIME(= $\bigcup_k \text{TIME}(2^{n^k})$)

答: PSPACE \subseteq EXPTIME= \bigcup_k TIME (2^{n^k})

- For $f(n) \ge n$, a TM that uses f(n) space can have at most $f(n)2^{O(f(n))}$ different configurations
- ullet Therefore, a TM that uses space f(n) must run in time $f(n)2^{O(f(n))}$

3. The class PSPACE

In summary:

$$P\subseteq NP\subseteq PSPACE=NPSPACE\subseteq EXPTIME$$

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- PSPACE-Completeness
- The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

4. PSPACE-Completeness

定义: PSPACE-completeness

A language B is PSPACE-complete if it satisfies two conditions:

- \bullet B is in PSPACE, and
- **2** every A in <u>PSPACE</u> is *polynomial* **time** reducible to B.

If B merely satisfies condition 2, we say that it is $\begin{subarray}{c} PSPACE-hard \end{subarray}$

回顾定义: NP-Completeness

A language B is NP-complete if it satisfies two conditions:

- lacksquare B is in NP, and
- ② every A in NP is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is NP-hard

4. PSPACE-Completeness

定义: PSPACE-completeness

A language B is PSPACE-complete if it satisfies two conditions:

- lacktriangledown B is in PSPACE, and
- ② every A in <u>PSPACE</u> is *polynomial* **time** reducible to B.

If B merely satisfies condition 2, we say that it is $\begin{subarray}{c} PSPACE-hard \end{subarray}$

回顾定义: NP-Completeness

A language B is NP-complete if it satisfies two conditions:

- lacksquare B is in NP, and
- $oldsymbol{Q}$ every A in NP is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is NP-hard

4. PSPACE-Completeness

问: Which language is PSPACE-complete?

答: The TQBF problem.

问: What is *TQBF* problem?

答: Determine whether a *fully quantified Boolean formula* is true or false:

- Boolean formula: an expression that contains Boolean variables, the constants 0 and 1, and the Boolean operations \land , \lor , and \neg .
- *Quantifiers*: \forall (for all) and \exists (there exists)
- Quantified Boolean formulas: Boolean formulas with quantifiers, e.g.,

$$\phi = \forall x \exists y [(x \lor y) \land (\overline{x} \lor \overline{y})]$$

Here, ϕ is *true*; but *false* if the quantifiers $\exists x$ and $\exists y$ were reversed

• Fully quantified formula: each variable of the formula appears within the scope of some quantifier

4. PSPACE-Completeness

问: Which language is PSPACE-complete?

答: The TQBF problem.

问: What is *TQBF* problem?

答: Determine whether a *fully quantified Boolean formula* is true or false:

- Boolean formula: an expression that contains Boolean variables, the constants 0 and 1, and the Boolean operations \land , \lor , and \neg .
- *Quantifiers*: \forall (for all) and \exists (there exists)
- Quantified Boolean formulas: Boolean formulas with quantifiers, e.g.,

$$\phi = \forall x \exists y [(x \lor y) \land (\overline{x} \lor \overline{y})]$$

Here, ϕ is *true*; but *false* if the quantifiers $\exists x$ and $\exists y$ were reversed

• Fully quantified formula: each variable of the formula appears within the scope of some quantifier

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明思路: Imitate the proof of the <u>Cook—Levin theorem</u>

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明思路: Imitate the proof of the <u>Cook-Levin theorem</u>

思路 1: Construct a $\underline{\text{formula}}\ \phi$ that simulates M on an input w by expressing the requirements for an accepting tableau

• A <u>tableau</u> for M on w has width $O(n^k)$, the space used by M, but its height is **exponential** in n^k because M can run for exponential time.

思路 2: Use a technique related to the *proof* of <u>Savitch</u>'s theorem to construct the formula

 Divide the tableau into halves, and employs the universal quantifier to represent each half with the same part of the formula

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (1) Prove TQBF is in PSPACE

T = "On input $\langle \phi \rangle$, a fully quantified Boolean formula:

- 1. If ϕ contains no quantifiers, then it is an expression with only constants, so evaluate ϕ and accept if it is true; otherwise, reject.
- 2. If ϕ equals $\exists x \ \psi$, recursively call T on ψ , first with 0 substituted for x and then with 1 substituted for x. If either result is accept, then accept; otherwise, reject.
- 3. If ϕ equals $\forall x \ \psi$, recursively call T on ψ , first with 0 substituted for x and then with 1 substituted for x. If both results are accept, then accept; otherwise, reject."

Complexity: the depth of the recursion is at most the number of variables

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

- Give a *polynomial time reduction* from A to TQBF.
 - Let language A decided by a TM M in space n^k for some constant k.

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

- Give a polynomial time reduction from A to TQBF.
- Construct a formula $\phi_{c_1,c_2,t}$
 - ullet collections of variables c_1 and c_2 representing two configurations
 - number t > 0
 - If we assign c_1 and c_2 to actual configurations, the formula is true iff M can go from c_1 to c_2 in at most t steps.

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

- Give a polynomial time reduction from A to TQBF.
- ullet Construct a formula $\phi_{c_1,c_2,t}$
- ullet Let ϕ be the formula $\phi_{c_{\mathrm{start}},c_{\mathrm{accept}},h}$
 - $h=2^{df(n)}$ for a constant d, chosen so that M has no more than $2^{df(n)}$ possible configurations on an input of length n
 - Let $f(n) = n^k$

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

- Give a *polynomial time reduction* from A to TQBF.
- Construct a formula $\phi_{c_1,c_2,t}$
- ullet Let ϕ be the formula $\phi_{c_{\mathrm{start}},c_{\mathrm{accept}},h}$
- The formula encodes the contents of configuration cells as in the proof of the <u>Cook–Levin theorem</u>

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t=1, construct $\phi_{c_1,c_2,t}$ using the technique presented in the proof of the Cook–Levin theorem

- ullet c_1 yields c_2 in a single step of M by writing Boolean expressions stating that
 - ullet the contents of each triple of $c_1{}'$ s cells *correctly yields* the contents of the corresponding triple of $c_2{}'$ s cells

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t > 1, we construct $\phi_{c_1,c_2,t}$ recursively.

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t > 1, we construct $\phi_{c_1,c_2,t}$ recursively.

First Try (naive solution): Construct the following formula recursively

$$\phi_{c_1,c_2,t} = \exists m_1 [\phi_{c_1,m_1,\frac{t}{2}} \land \phi_{m_1,c_2,\frac{t}{2}}]$$

- ullet m_1 represents a configuration of M
- $\exists m_1$ is shorthand for $\exists x_1, \ldots, x_l$, where $l = O(n^k)$ and x_1, \ldots, x_l are the variables that encode m_1 .

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t > 1, we construct $\phi_{c_1,c_2,t}$ recursively.

First Try (naive solution): Construct the following formula recursively

$$\phi_{c_1,c_2,t} = \exists m_1 [\phi_{c_1,m_1,\frac{t}{2}} \land \phi_{m_1,c_2,\frac{t}{2}}]$$

- ullet m_1 represents a configuration of M
- $\exists m_1$ is shorthand for $\exists x_1, \dots, x_l$, where $l = O(n^k)$ and x_1, \dots, x_l are the variables that encode m_1 .

Analysis: $Too\ big$ formula: every level of the recursion involved in the construction cuts t in half but roughly doubles the size of the formula

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t > 1, we construct $\phi_{c_1,c_2,t}$ recursively.

First Try (naive solution): Construct the following formula recursively

$$\phi_{c_1,c_2,t} = \exists m_1 [\phi_{c_1,m_1,\frac{t}{2}} \land \phi_{m_1,c_2,\frac{t}{2}}]$$

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t > 1, we construct $\phi_{c_1,c_2,t}$ recursively.

First Try (naive solution): Construct the following formula recursively

$$\phi_{c_1,c_2,t} = \exists m_1 [\phi_{c_1,m_1,\frac{t}{2}} \land \phi_{m_1,c_2,\frac{t}{2}}]$$

Second Try (good solution): Construct the following formula recursively

$$\phi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\} [\phi_{c_3,c_4,\frac{t}{2}}]$$

4. PSPACE-Completeness

定理: TQBF is PSPACE-complete

TQBF is PSPACE-complete, where

 $TQBF = \{ \langle \phi \rangle \mid \phi \text{ is a true fully quantified Boolean formula} \}$

证明: (2) Prove TQBF is PSPACE-hard

If t > 1, we construct $\phi_{c_1,c_2,t}$ recursively.

Second Try (good solution): Construct the following formula recursively

$$\phi_{c_1,c_2,t} = \exists m_1 \forall (c_3,c_4) \in \{(c_1,m_1),(m_1,c_2)\} [\phi_{c_3,c_4,\frac{t}{2}}]$$

Analysis: the size of the formula $\phi_{c_{ ext{start}},c_{ ext{accept}},h}$

- $h=2^{d\!f(n)}$, so a portion of the formula is linear in the size of the configurations and is thus of size O(f(n))
- The number of levels of the recursion is $\log(2^{df(n)})$, or O(f(n)).

Hence the size of the resulting formula is $O(f^2(n))$

4. PSPACE-Completeness

- 问: Which language is also PSPACE-complete, besides TQBF?
- 答: FORMULA-GAME for the formula game.
- 问: What is the formula game?
- 答: Rules
 - Let $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k [\psi]$ be a quantified Boolean formula
 - Q represents either a \forall or an \exists quantifier
 - Two players, A and E, *take turns* selecting the values of x_1, \ldots, x_k
 - Player A selects values for the variables that are bound to \forall quantifiers
 - Player E selects values for the variables that are bound to \exists quantifiers
 - The *order* of play is the *same* as that of the *quantifiers* at the beginning of the formula
 - At the end of play
 - Player E has won the game, if ψ is TRUE
 - Player A has won the game, if ψ is FALSE

4. PSPACE-Completeness

问: Which language is also PSPACE-complete, besides TQBF?

答: FORMULA-GAME for the formula game.

问: What is the formula game?

答: Rules:

- Let $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k [\psi]$ be a quantified Boolean formula
 - Q represents either a \forall or an \exists quantifier
- Two players, A and E, *take turns* selecting the values of x_1, \ldots, x_k
 - Player A selects values for the variables that are bound to \forall quantifiers
 - Player E selects values for the variables that are bound to \exists quantifiers
- The order of play is the same as that of the quantifiers at the beginning of the formula
- At the end of play
 - Player *E* has *won* the game, if ψ is *TRUE*
 - Player A has won the game, if ψ is FALSE

4. PSPACE-Completeness

例 1: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})]$

- ullet Round 1: E picks $x_1=1$, A picks $x_2=0$, E picks $x_3=1$, So E win
- Any Round: E may always win this game by selecting $x_1 = 1$ and then selecting x_3 to be the negation of whatever Player A selects for x_2
- So E has a winning strategy for this game
 - A player has a winning strategy for a game if that player wins when both sides play optimally

例 2: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_2 \lor \overline{x_3})]$

- A now has a winning strategy
 - no matter what Player E selects for x_1 , Player A may select $x_2 = 0$

4. PSPACE-Completeness

例 1: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})]$

- ullet Round 1: E picks $x_1=1$, A picks $x_2=0$, E picks $x_3=1$, So E win
- Any Round: E may always win this game by selecting $x_1=1$ and then selecting x_3 to be the negation of whatever Player A selects for x_2
- So E has a winning strategy for this game
 - A player has a winning strategy for a game if that player wins when both sides play optimally

例 2: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_2 \lor \overline{x_3})]$

- A now has a winning strategy
 - no matter what Player E selects for x_1 , Player A may select $x_2 = 0$

4. PSPACE-Completeness

例 1: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})]$

- ullet Round 1: E picks $x_1=1$, A picks $x_2=0$, E picks $x_3=1$, So E win
- Any Round: E may always win this game by selecting $x_1 = 1$ and then selecting x_3 to be the negation of whatever Player A selects for x_2
- So E has a winning strategy for this game
 - A player has a winning strategy for a game if that player wins when both sides play optimally

例 2: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_2 \lor \overline{x_3})]$

- A now has a winning strategy
 - no matter what Player E selects for x_1 , Player A may select $x_2 = 0$

4. PSPACE-Completeness

例 1: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})]$

- Round 1: E picks $x_1 = 1$, A picks $x_2 = 0$, E picks $x_3 = 1$, So E win
- Any Round: E may always win this game by selecting $x_1 = 1$ and then selecting x_3 to be the negation of whatever Player A selects for x_2
- So E has a winning strategy for this game
 - A player has a winning strategy for a game if that player wins when both sides play optimally

例 2: The formula game

Given the formula $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_2 \lor \overline{x_3})]$

- A now has a winning strategy
 - no matter what Player E selects for x_1 , Player A may select $x_2=0$

4. PSPACE-Completeness

定理: FORMULA-GAME is PSPACE-complete

FORMULA-GAME is PSPACE-complete, where FORMULA-GAME=

 $\{\langle \phi \rangle \mid \mathsf{E} \text{ has a } \textit{winning strategy} \text{ in the formula game associated with } \phi\}$

4. PSPACE-Completeness

定理: FORMULA-GAME is PSPACE-complete

FORMULA-GAME is PSPACE-complete, where FORMULA-GAME=

 $\{\langle\phi\rangle\mid \mathsf{E} \text{ has a } \textit{winning strategy} \text{ in the formula game associated with }\phi\}$

证明思路

Prove FORMULA-GAME = TQBF

- ullet i.e., $\phi \in \mathsf{TQBF}$ exactly when $\phi \in \mathsf{FORMULA}\text{-}\mathsf{GAME}$
 - case 1: $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots [\psi]$
 - case 2: $\phi = \forall x_1, x_2, x_3 \exists x_4, x_5 \forall x_6 [\psi]$

问: So easy, then is there other PSPACE-complete problem?

4. PSPACE-Completeness

定理: FORMULA-GAME is PSPACE-complete

FORMULA-GAME is PSPACE-complete, where FORMULA-GAME=

 $\{\langle \phi \rangle \mid \mathsf{E} \text{ has a } \textit{winning strategy} \text{ in the formula game associated with } \phi\}$

证明思路

Prove FORMULA-GAME = TQBF

- ullet i.e., $\phi \in \mathsf{TQBF}$ exactly when $\phi \in \mathsf{FORMULA}\text{-}\mathsf{GAME}$
 - case 1: $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots [\psi]$
 - case 2: $\phi = \forall x_1, x_2, x_3 \exists x_4, x_5 \forall x_6 [\psi]$

问: So easy, then is there other PSPACE-complete problem?

4. PSPACE-Completeness

定理: FORMULA-GAME is PSPACE-complete

FORMULA-GAME is <u>PSPACE-complete</u>, where FORMULA-GAME=

 $\{\langle \phi \rangle \mid \mathsf{E} \text{ has a } \textit{winning strategy} \text{ in the formula game associated with } \phi\}$

证明思路

Prove FORMULA-GAME = TQBF

- ullet i.e., $\phi \in \mathsf{TQBF}$ exactly when $\phi \in \mathsf{FORMULA}\text{-}\mathsf{GAME}$
 - case 1: $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots [\psi]$
 - case 2: $\phi = \forall x_1, x_2, x_3 \exists x_4, x_5 \forall x_6 [\psi]$

问: So easy, then is there other PSPACE-complete problem?

4. PSPACE-Completeness

定理: FORMULA-GAME is PSPACE-complete

FORMULA-GAME is PSPACE-complete, where FORMULA-GAME=

 $\{\langle \phi \rangle \mid \mathsf{E} \text{ has a } \textit{winning strategy} \text{ in the formula game associated with } \phi\}$

证明思路

Prove FORMULA-GAME = TQBF

- ullet i.e., $\phi \in \mathsf{TQBF}$ exactly when $\phi \in \mathsf{FORMULA} ext{-}\mathsf{GAME}$
 - case 1: $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots [\psi]$
 - case 2: $\phi = \forall x_1, x_2, x_3 \exists x_4, x_5 \forall x_6 [\psi]$

问: So easy, then is there other PSPACE-complete problem?

4. PSPACE-Completeness

问: What is generalized geography?

答: Firstly introduce the game geography with the rules:

- Players take turns naming cities from anywhere in the world
- Each city chosen must begin with the same letter that ended the previous city' s name
- Repetition isn't permitted
- The game starts with some designated starting city and ends when some player loses because he or she is unable to continue.

4. PSPACE-Completeness

问: What is *generalized geography*?

答: Then introduce the game generalized geography:

- Take an arbitrary directed graph with a designated start node
- Player I is the one who moves first and Player II second.

4. PSPACE-Completeness

问: What is *generalized geography*?

答: Then introduce the game generalized geography:

- Take an arbitrary directed graph with a designated start node
- Player I is the one who moves first and Player II second.

In this example, Player I has a winning strategy:

- Player I starts at node 1, the designated start node
- Player I chooses 3
- Player II chooses 5
- Player I selects 6

4. PSPACE-Completeness

问: What is generalized geography?

答: Then introduce the game generalized geography:

- Take an arbitrary directed graph with a designated start node
- Player I is the one who moves first and Player II second.

If reversing the direction of $6 \rightarrow 3$, Player II has a winning strategy:

- case 1: Player I 3, Player II 6
- case 2: Player I 2, Player II 4
 - case 2.1: Player I 5, Player II 6
 - case 2.2: Player I 7, Player II 9

4. PSPACE-Completeness

问: What is *generalized geography*?

答: Then introduce the game generalized geography:

- Take an arbitrary directed graph with a designated start node
- Player I is the one who moves first and Player II second.

If reversing the direction of $6 \rightarrow 3$, Player II has a winning strategy:

- case 1: Player I 3, Player II 6
- case 2: Player I 2, Player II 4
 - case 2.1: Player I 5, Player II 6
 - case 2.2: Player I 7, Player II 9

4. PSPACE-Completeness

问: What is *generalized geography*?

答: Then introduce the game generalized geography:

- Take an arbitrary directed graph with a designated start node
- Player I is the one who moves first and Player II second.

If reversing the direction of $6 \rightarrow 3$, Player II has a winning strategy:

- case 1: Player I 3, Player II 6
- case 2: Player I 2, Player II 4
 - case 2.1: Player I 5, Player II 6
 - case 2.2: Player I 7, Player II 9

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{\langle G,b\rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

证明思路

- PSPACE: A recursive algorithm similar to the one used for TQBF
- PSPACE-hard: a *polynomial time reduction* from <u>FORMULA-GAME</u> to <u>GG</u>

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{\langle G,b\rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

证明思路

- PSPACE: A recursive algorithm similar to the one used for TQBF
- PSPACE-hard: a *polynomial time reduction* from <u>FORMULA-GAME</u> to <u>GG</u>

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{ \langle G, b \rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

<u>证明</u>: (1) Prove GG is in PSPACE

M = "On input $\langle G, b \rangle$, where G is a directed graph and b is a node of G:

- 1. If b has outdegree 0, reject because Player I loses immediately.
- **2.** Remove node b and all connected arrows to get a new graph G'.
- **3.** For each of the nodes b_1, b_2, \ldots, b_k that b originally pointed at, recursively call M on $\langle G', b_i \rangle$.
- **4.** If all of these accept, Player II has a winning strategy in the original game, so *reject*. Otherwise, Player II doesn't have a winning strategy, so Player I must; therefore, *accept*."

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{ \langle G, b \rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

<u>证明</u>: (1) Prove GG is in PSPACE

The only *space* required by this algorithm is for *storing* the recursion *stack*

- Each level of the recursion adds a single node to the stack
- ullet at most m levels occur, where m is the number of nodes in G

Hence the algorithm runs in *linear space*.

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{ \langle G, b \rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

证明: (2) Prove GG is PSPACE-hard

Map the formula $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k [\psi]$ to an instance of $\langle G, b \rangle$

Assumption for simplicity:

- ullet ϕ' s quantifiers begin and end with \exists
- ullet They strictly alternate between \exists and \forall

Discussion: A formula that doesn't conform to this assumption may be converted to a slightly larger one

 by adding extra quantifiers binding otherwise unused or "dummy" variables

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{\langle G,b\rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

<u>证明</u>: (2) Prove GG is PSPACE-hard

Map the formula $\phi=\exists x_1\forall x_2\exists x_3\dots Qx_k[\psi]$ to an instance of $\langle G,b\rangle$ i.e., the reduction constructs a geography game on a <u>graph G</u> where optimal play mimics optimal play of the <u>formula game</u> on ϕ

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{\langle G,b\rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

证明: (2) Prove GG is PSPACE-hard

Map the formula $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k[\psi]$ to an instance of $\langle G, b \rangle$ *i.e.*, the reduction constructs a geography game on a graph G where optimal play mimics optimal play of the formula game on ϕ

- Player I in the geography game takes the role of Player E in the formula game
- Player II takes the role of Player A

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{\langle G,b\rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

证明: (2) Prove GG is PSPACE-hard

Map the formula $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k[\psi]$ to an instance of $\langle G, b \rangle$ *i.e.*, the reduction constructs a geography game on a <u>graph G</u> where optimal play mimics optimal play of the <u>formula game</u> on ϕ

• Play starts from the <u>left-hand side</u> to the <u>right-hand side</u>

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\label{eq:GG} \text{GG} = \{\langle G,b\rangle \mid \text{Player I has a winning strategy for the generalized} \\ \text{geography game played on graph } G \text{ starting at node } b \ \}$

证明: (2) Prove GG is PSPACE-hard

Map the formula $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k[\psi]$ to an instance of $\langle G, b \rangle$ *i.e.*, the reduction constructs a geography game on a graph G where optimal play mimics optimal play of the formula game on ϕ

- Play starts from the <u>left-hand side</u> to the <u>right-hand side</u>
- At c, Player II may choose a node corresponding to one of ψ' s clauses
 - ullet If ψ is FALSE, Player II $\it{may win}$ by selecting the unsatisfied clause

4. PSPACE-Completeness

定理: GG is PSPACE-complete

GG is PSPACE-complete, where

 $\mathsf{GG} = \{ \langle G, b \rangle \mid \mathsf{Player} \; \mathsf{I} \; \mathsf{has} \; \mathsf{a} \; \mathsf{winning} \; \mathsf{strategy} \; \mathsf{for} \; \mathsf{the} \; \mathsf{generalized} \\ \mathsf{geography} \; \mathsf{game} \; \mathsf{played} \; \mathsf{on} \; \mathsf{graph} \; G \; \mathsf{starting} \; \mathsf{at} \; \mathsf{node} \; b \; \}$

<u>证明</u>: (2) Prove GG is PSPACE-hard

Map the formula $\phi = \exists x_1 \forall x_2 \exists x_3 \dots Qx_k[\psi]$ to an instance of $\langle G, b \rangle$ *i.e.*, the reduction constructs a geography game on a *graph* G where optimal play mimics optimal play of the formula game on ϕ

- Play starts from the <u>left-hand side</u> to the <u>right-hand side</u>
- \bullet At c, Player II may choose a node corresponding to one of ψ' s $\it{clauses}$
 - ullet If ψ is FALSE, Player II ${\it may win}$ by selecting the unsatisfied clause
- Player I may choose a node corresponding to a literal in that clause
 - ullet If ψ is TRUE, any clause that Player II picks contains a TRUE literal

4. PSPACE-Completeness

问: What can be inferred from the theorem? 答:

- No polynomial time algorithm exists for optimal play in generalized geography unless P = PSPACE
- Such generalizations of chess, checkers, and GO have been shown to be PSPACE-hard or hard for even larger complexity classes, depending on the details of the generalization

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- **5** The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

5. The classes L and NL

问: Is it possible that the time and space complexity bounds that are less than linear—that is, bounds where f(n) is less than n 答:

- For *time* complexity, *no*;
- For space complexity, yes sublinear space bounds
 - The machine is able to read the entire input
 - but it *doesn'* t have enough *space* to *store* the input
 - i.e., we must modify our computational model
- 问: How to modify the computational model?
- 答: a Turing machine with *two tapes*:
 - a read-only input tape
 - e.g., a CD-ROM...
 - a read/write work tape

5. The classes L and NL

问: Is it possible that the time and space complexity bounds that are less than linear—that is, bounds where f(n) is less than n 答:

- For *time* complexity, *no*;
- For space complexity, yes sublinear space bounds
 - The machine is able to read the entire input
 - but it *doesn'* t have enough *space* to *store* the input
 - i.e., we must modify our computational model

问: How to modify the computational model?

答: a Turing machine with two tapes:

- a read-only input tape
 - e.g., a CD-ROM...
- a read/write work tape

5. The classes L and NL

定义: L and NL

L is the class of languages that are decidable in *logarithmic* space on a *deterministic* Turing machine. In other words,

$$L = SPACE(\log n)$$

NL is the class of languages that are decidable in *logarithmic* space on a *nondeterministic* Turing machine. In other words,

$$NL = NSPACE(\log n)$$

5. The classes L and NL

例: L

The language $A = \{0^k 1^k \mid k \ge 0\}$ is a member of L

运行过程

The machine counts the number of 0s and, separately, the number of 1s in binary on the work tape.

- The only space required is that used to record the two counters.
- In binary, each counter uses only logarithmic space and hence the algorithm runs in O(log n) space.
- Therefore, $A \in L$

5. The classes L and NL

例: L

The language $A = \{0^k 1^k \mid k \ge 0\}$ is a member of L

运行过程

The machine counts the number of 0s and, separately, the number of 1s in binary on the work tape.

- The only space required is that used to record the two counters.
- In binary, each counter uses only logarithmic space and hence the algorithm runs in O(log n) space.
- ullet Therefore, $A \in L$

5. The classes L and NL

例: L

The language $A = \{0^k 1^k \mid k \ge 0\}$ is a member of L

运行过程

The machine counts the number of 0s and, separately, the number of 1s in binary on the work tape.

- The only space required is that used to record the two counters.
- In binary, each counter uses only logarithmic space and hence the algorithm runs in O(log n) space.
- Therefore, $A \in L$

5. The classes L and NL

例: NL

The language $PATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$ is a member of NL

运行过程

The machine starts at node s and nondeterministically guesses the nodes of a path from s to t

- The machine records only the position of the current node at each step on the work tape, not the entire path
- PATH is in NL.

5. The classes L and NL

例: NL

The language $PATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$ is a member of NL

运行过程

The machine starts at node s and nondeterministically guesses the nodes of a path from s to t

- The machine records only the position of the current node at each step on the work tape, not the entire path
- PATH is in NL.

5. The classes L and NL

例: NL

The language $PATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$ is a member of NL

运行过程

The machine starts at node s and nondeterministically guesses the nodes of a path from s to t

- The machine records only the position of the current node at each step on the work tape, not the entire path
- PATH is in NL.

5. The classes L and NL

问: Does any f(n) space bounded Turing machine run in time $2^{O(f(n))}$?

答: Not any longer, e.g., O(1) space, n steps

问:Bound of *running* time if M runs in f(n) *space*? $(f(n) \geq \log n)$

答: Redefine *configuration* first

重新定义: Configuration

If M is a Turing machine that has a *separate* read-only *input tape* and w is an input, a *configuration* of M on w is a setting of the *state*, the *work tape*, and the *positions* of the *two* tape *heads*. The input w is *not a part* of the configuration of M on w.

- 问: Again, time bound if M runs in f(n) space? $(f(n) \ge \log n)$
- 答: At most *exponential*
 - input of length= $n \Rightarrow$ number of configurations of $M = n2^{O(f(n))}$.
 - Time bound is $n2^{O(f(n))} = 2^{O(f(n))}$, if $(f(n) \ge \log n)$

5. The classes L and NL

问: Does any f(n) space bounded Turing machine run in time $2^{O(f(n))}$?

答: Not any longer, e.g., O(1) space, n steps

问: Bound of *running* time if M runs in f(n) *space*? $(f(n) \ge \log n)$

答: Redefine configuration first

重新定义: Configuration

If M is a Turing machine that has a *separate* read-only *input tape* and w is an input, a *configuration* of M on w is a setting of the *state*, the *work tape*, and the *positions* of the *two* tape *heads*. The input w is *not a part* of the configuration of M on w.

- 问: Again, time bound if M runs in f(n) space? $(f(n) \geq \log n)$
- 答: At most *exponential*
 - input of length= $n \Rightarrow$ number of configurations of $M = n2^{O(f(n))}$.
 - Time bound is $n2^{O(f(n))} = 2^{O(f(n))}$, if $(f(n) \ge \log n)$

5. The classes L and NL

问: Does any f(n) space bounded Turing machine run in time $2^{O(f(n))}$?

答: Not any longer, e.g., O(1) space, n steps

问: Bound of *running* time if M runs in f(n) *space*? $(f(n) \ge \log n)$

答: Redefine configuration first

重新定义: Configuration

If M is a Turing machine that has a *separate* read-only *input tape* and w is an input, a *configuration* of M on w is a setting of the *state*, the *work tape*, and the *positions* of the *two* tape *heads*. The input w is *not a part* of the configuration of M on w.

- 问: Again, time bound if M runs in f(n) space? $(f(n) \ge \log n)$
- 答: At most *exponential*
 - input of length= $n \Rightarrow$ number of configurations of $M = n2^{O(f(n))}$.
 - Time bound is $n2^{O(f(n))} = 2^{O(f(n))}$, if $(f(n) \ge \log n)$

5. The classes L and NL

问: Does any f(n) space bounded Turing machine run in time $2^{O(f(n))}$?

答: Not any longer, e.g., O(1) space, n steps

问: Bound of *running* time if M runs in f(n) *space*? $(f(n) \ge \log n)$

答: Redefine configuration first

重新定义: Configuration

If M is a Turing machine that has a *separate* read-only *input tape* and w is an input, a *configuration* of M on w is a setting of the *state*, the *work tape*, and the *positions* of the *two* tape *heads*. The input w is *not a part* of the configuration of M on w.

问: Again, time bound if M runs in f(n) space? $(f(n) \ge \log n)$

答: At most *exponential*

- input of length= $n \Rightarrow$ number of configurations of $M = n2^{O(f(n))}$.
- Time bound is $n2^{O(f(n))} = 2^{O(f(n))}$, if $(f(n) \ge \log n)$

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- (5) The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

6. NL-Completeness

问: Is the PATH problem in NL?

答: Yes.

问: Is the PATH problem in L?

答: Not known yet.

问: More generally, given

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$, is L=NL?

答: Also unknown yet.

问: Any resolution for the questions?

- Because all problems in NL are solvable in polynomial time
 - which will also be proved.
- Instead, a new type of reducibility: log space reducibility

6. NL-Completeness

问: Is the PATH problem in NL?

答: Yes.

问: Is the PATH problem in L?

答: Not known yet.

问: More generally, given

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$, is L=NL?

答: Also unknown yet.

问: Any resolution for the questions?

- Because all problems in NL are solvable in polynomial time

 which will also be proved.
 - which will also be proved.
- Instead, a new type of reducibility: log space reducibility

6. NL-Completeness

问: Is the PATH problem in NL?

答: Yes.

问: Is the PATH problem in L?

答: Not known yet.

问: More generally, given

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$, is L=NL?

答: Also unknown yet.

问: Any resolution for the questions?

- Because all problems in NL are solvable in polynomial time
 which will also be proved.
- Instead, a new type of reducibility: log space reducibility

6. NL-Completeness

问: Is the PATH problem in NL?

答: Yes.

问: Is the PATH problem in L?

答: Not known yet.

问: More generally, given

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$, is L=NL?

答: Also unknown yet.

问: Any resolution for the questions?

- Because all problems in NL are solvable in polynomial time
 - which will also be proved.
- Instead, a new type of reducibility: log space reducibility

定义: Log Space Reducibility

A *log space transducer* is a Turing machine with a read-only input tape, a write-only output tape, and a read/write work tape.

ullet The head on the output tape *cannot move leftward*, so it *cannot read* what it has *written*. The *work tape* may contain $O(\log n)$ symbols.

A log space transducer M computes a function $f: \Sigma^* \to \Sigma^*$, where f(w) is the string remaining on the output tape after M halts when it is started with w on its input tape. We call f a \log space computable function. Language A is \log space reducible to language B, written $A \leq_L B$, if A is mapping reducible to B by means of a log space computable function f.

回顾: 定义: Polynomial Time Reducibility

Language A is polynomial time mapping reducible, or simply polynomial time reducible, to language B, written $A \leq_{\mathrm{P}} B$, if a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ exists, where for every w,

$$w \in A \Leftrightarrow f(w) \in B$$

The function f is called the *polynomial time reduction* of A to B

6. NL-Completeness

定义: NL-complete

A language B is NL-complete if

- ullet $B\in\mathsf{NL}$, and
- every A in NL is log space reducible to B

回顾: 定义: PSPACE-completeness

A language B is PSPACE-complete if it satisfies two conditions:

- lacktriangledown B is in PSPACE, and
- **2** every A in <u>PSPACE</u> is *polynomial* **time** reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard

6. NL-Completeness

定理

If $A \leq_L B$ and $B \in L$, then $A \in L$.

6. NL-Completeness

定理

If $A \leq_L B$ and $B \in L$, then $A \in L$.

证明思路 1: (错误方法)

- ullet A first maps its input w to f(w), using the $\underline{\log \mbox{ space reduction}}\ f$
- ullet then applies the log space algorithm for B

6. NL-Completeness

定理

If $A \leq_L B$ and $B \in L$, then $A \in L$.

证明思路 1: (错误方法)

- ullet A first maps its input w to f(w), using the <u>log space reduction</u> f
- ullet then applies the log space algorithm for B

问: What is the problem?

答: The storage required for f(w) (i.e., output tape) may be too large to fit within the log space bound

6. NL-Completeness

If $A \leq_L B$ and $B \in L$, then $A \in L$.

证明思路 1: (错误方法)

- A first maps its input w to f(w), using the log space reduction f
- then applies the log space algorithm for B

问: What is the problem?

答: The storage required for f(w) (i.e., output tape) may be too large to fit within the log space bound

问: How to solve the problem?

答: 证明思路 2

6. NL-Completeness

定理

If $A \leq_L B$ and $B \in L$, then $A \in L$.

证明思路 2: (正确方法)

A' s machine M_A computes *individual* symbols of f(w) as requested by B' s machine M_B , i.e., every time M_B moves:

- ullet M_A restarts the computation of f on w from the beginning, and
- ullet ignores all the output except for the desired location of f(w)

6. NL-Completeness

定理

If $A \leq_L B$ and $B \in L$, then $A \in L$.

证明思路 2: (正确方法)

A' s machine M_A computes *individual* symbols of f(w) as requested by B' s machine M_B , i.e., every time M_B moves:

- ullet M_A restarts the computation of f on w from the beginning, and
- ullet ignores all the output except for the desired location of f(w)

分析:

- Inefficient in its time complexity
 - ullet require occasional recomputation of parts of f(w)
- Advantage: only a single symbol of f(w) needs to be stored at any point

6. NL-Completeness

定义: NL-complete

A language B is NL-complete if

- $B \in \mathsf{NL}$, and
- ullet every A in NL is \log space reducible to B

定理

If $A \leq_L B$ and $B \in L$, then $A \in L$.

推论

If any NL-complete language is in L, then L = NL.

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明思路

核心问题: Prove every language A in NL is \log space reducible to PATH i.e., construct a graph that represents the computation of the nondeterministic \log space Turing machine for A

- One node points to a second node,
 - if the corresponding first configuration can yield the second configuration in a single step of the NTM
- Hence, the machine accepts w whenever some path from the node corresponding to the start configuration leads to the node corresponding to the accepting configuration

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明思路

核心问题: Prove every language A in NL is log space reducible to $\underline{\mathsf{PATH}}$

i.e., construct a $\operatorname{\textit{graph}}$ that represents the computation of the $\operatorname{\textit{nondeterministic}}$ log space Turing machine for A

- One node points to a second node,
 - if the corresponding first configuration can yield the second configuration in a single step of the NTM
- Hence, the machine accepts w whenever some path from the node corresponding to the start configuration leads to the node corresponding to the accepting configuration

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明思路

核心问题: Prove every language A in NL is $\underline{\log}$ space reducible to \underline{PATH} i.e., construct a \underline{graph} that represents the computation of the $\underline{nondeterministic}$ log space Turing machine for A

- One node points to a second node,
 - if the corresponding first configuration can yield the second configuration in a single step of the NTM
- Hence, the machine accepts w whenever some path from the node corresponding to the start configuration leads to the node corresponding to the accepting configuration

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明思路

核心问题: Prove every language A in NL is \log space reducible to $\underline{\mathsf{PATH}}$ i.e., construct a $\underline{\mathsf{graph}}$ that represents the computation of the $\underline{\mathsf{nondeterministic}}$ log space Turing machine for A

- One node points to a second node,
 - if the corresponding first configuration can yield the second configuration in a single step of the NTM
- Hence, the machine accepts w whenever some path from the node corresponding to the start configuration leads to the node corresponding to the accepting configuration

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明思路

核心问题: Prove every language A in NL is \log space reducible to $\underline{\mathsf{PATH}}$ i.e., construct a $\underline{\mathsf{graph}}$ that represents the computation of the $\underline{\mathsf{nondeterministic}}$ log space Turing machine for A

- One node points to a second node,
 - if the corresponding first configuration can yield the second configuration in a single step of the NTM
- Hence, the machine accepts w whenever some path from the node corresponding to the start configuration leads to the node corresponding to the accepting configuration

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明 (Proof by Construction)

Assume: NTM M decides A in $O(\log n)$ space.

Goal: Given an input w, we construct $\langle G, s, t \rangle$ in \log space

 \bullet where G is a directed graph that contains a path from s to t if and only if M accepts w

Construction

- ullet nodes of G: the configurations of M on w
- ullet (c_1,c_2) is an edge: if c_2 is one of the possible next configurations of M starting from c_1

6. NL-Completeness

定理: NL-completeness of PATH

<u>PATH</u> is NL-complete

证明 (Proof by Construction)

Assume: NTM M decides A in $O(\log n)$ space.

Goal: Given an input w, we construct $\langle G,s,t\rangle$ in log space

Construction:

- ullet nodes of G: the configurations of M on w
- ullet (c_1,c_2) is an edge: if c_2 is one of the possible next configurations of M starting from c_1

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明 (Proof by Construction)

Assume: NTM M decides A in $O(\log n)$ space.

Goal: Given an input w, we construct $\langle G,s,t \rangle$ in log space

Construction:

- ullet nodes of G: the configurations of M on w
- ullet (c_1,c_2) is an edge: if c_2 is one of the possible next configurations of M starting from c_1

Correctness of reduction:

• (\Rightarrow) Whenever M accepts its input, some branch of its computation accepts, it corresponds to a path from the start configuration s to the accepting configuration t in G

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明 (Proof by Construction)

Assume: NTM M decides A in $O(\log n)$ space.

Goal: Given an input w , we construct $\langle G,s,t\rangle$ in log space

Construction:

- ullet nodes of G: the configurations of M on w
- ullet (c_1,c_2) is an edge: if c_2 is one of the possible next configurations of M starting from c_1

Correctness of reduction:

• (\Leftarrow) If some path exists from s to t in G, some computation branch accepts when M runs on input w, and M accepts w.

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明 (Proof by Construction)

Assume: NTM M decides A in $O(\log n)$ space.

Goal: Given an input w, we construct $\langle G,s,t\rangle$ in log space

Construction:

- ullet nodes of G: the configurations of M on w
- ullet (c_1,c_2) is an edge: if c_2 is one of the possible next configurations of M starting from c_1

Space complexity of reduction:

- Listing the nodes:
 - ullet Represent a node: $c\log n$ space for some constant c
 - List nodes: sequentially goes through all possible strings of length $c \log n$, test the legality, and output the legal ones

6. NL-Completeness

定理: NL-completeness of PATH

PATH is NL-complete

证明 (Proof by Construction)

Assume: NTM M decides A in $O(\log n)$ space.

Goal: Given an input w, we construct $\langle G,s,t\rangle$ in log space

Construction:

- ullet nodes of G: the configurations of M on w
- ullet (c_1,c_2) is an edge: if c_2 is one of the possible next configurations of M starting from c_1

Space complexity of reduction:

- Listing the edges:
 - ullet Tries all pairs (c_1,c_2) in turn to find which qualify as edges of G.
 - ullet by examine M' s transition function
 - Those that do are added to the output tape.

6. NL-Completeness

推论

 $NL \subseteq P$

证明

- Any language in NL is log space reducible to PATH
 - A Turing machine that uses space f(n) runs in time $n2^{O(f(n))}$
 - A reducer that runs in *log space* also runs in *polynomial time*
 - Any language in NL is polynomial time reducible to PATH
- PATH is in P (Proved in Sec.4.1)
- Every language that is polynomial time reducible to a language in P, is also in P
- Proved

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- The classes L and NL
- **6** NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

总结

定义:

- PSPACE, PSPACE-complete, PSPACE-hard
- <u>TQBF</u>, formula game, generalized geography
- <u>L</u>, <u>NL</u>, <u>Log Space Reducibility</u>, <u>NL-complete</u>

定理:

- Savitch' s Theorem: $NSPACE(f(n)) \subseteq SPACE(f^2(n))$
- PSPACE-complete: <u>TQBF</u>, <u>FORMULA-GAME</u>, <u>GG</u>
- NL: <u>PATH</u>, NL-complete: <u>PATH</u>,
- If $A \leq_L B$ and $B \in L$, then $A \in L$
- <u>NL = coNL</u> (略)

推论:

- If any NL-complete language is in L, then L = NL.
- NL ⊆ P

 $L\subseteq NL\subseteq P\subseteq NP\subseteq PSPACE=NPSPACE\subseteq EXPTIME.$

Outline

- Introduction
- 2 Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- O Appendix

Homework

8.2 Consider the following position in the standard tic-tac-toe game.

Let's say that it is the X-player's turn to move next. Describe a winning strategy for this player. (Recall that a winning strategy isn't merely the best move to make in the current position. It also includes all the responses that this player must make in order to win, however the opponent moves.)

8.3 Consider the following generalized geography game wherein the start node is the one with the arrow pointing in from nowhere. Does Player I have a winning strategy? Does Player II? Give reasons for your answers.

Homework

8.9 A *ladder* is a sequence of strings s_1, s_2, \ldots, s_k , wherein every string differs from the preceding one by exactly one character. For example, the following is a ladder of English words, starting with "head" and ending with "free":

head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free.

Let $LADDER_{DFA} = \{\langle M, s, t \rangle | M \text{ is a DFA and } L(M) \text{ contains a ladder of strings, starting with } s \text{ and ending with } t \}$. Show that $LADDER_{DFA}$ is in PSPACE.

8.11 Show that if every NP-hard language is also PSPACE-hard, then PSPACE = NP.

Outline

- Introduction
- Savitch' s theorem
- The class PSPACE
- 4 PSPACE-Completeness
- 5 The classes L and NL
- 6 NL-Completeness
- Conclusions
- 8 Homework
- 9 Appendix

定义: Time complexity, Running time

Let M be a *deterministic* Turing machine that *halts* on all inputs.

- The running time or time complexity of M: is the function $f: \mathcal{N} \to \mathcal{N}$, where f(n) is the **maximum** number of steps that M uses on **any** input of length n.
- If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n) time Turing machine.
- Customarily we use *n* to represent the *length of the input*.

定义: Running time of a nondeterministic TM

Let N be a nondeterministic Turing machine that is a decider. The running time of N is the function $f:\mathcal{N}\to\mathcal{N}$, where f(n) is the maximum number of steps that N uses on any branch of its computation on any input of length n.

定义: Time complexity class

Let $t: \mathcal{N} \to \mathcal{R}^+$ be a function.

Define the *time complexity class*, $\mathrm{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

定义: NTIME

$$\label{eq:nondeterministic} \begin{split} \mathsf{NTIME}(t(n)) &= \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time } \\ & nondeterministic \ \textit{Turing machine} \} \end{split}$$

定理: Decidability of E_{DFA}

The language E_{DFA} is decidable, where

$$E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$$

证明 (Proof by Construction)

Design a TM T

T = "On input $\langle A \rangle$, where A is a DFA:

- lacktriangle Mark the start state of A
- Repeat until no new states get marked
- Mark any state that has a transition coming into it from any state that is already marked.
- If no accept state is marked, accept; otherwise, reject."

Basics on the *left-hand* side:

- Play starts at node b, which appears at the top left-hand side of G
- Underneath b, a sequence of diamond structures appears, one for each of the variables of ϕ

Play Process:

- Play starts at b
- Player I must select one of the two edges going from b

• i.e.,
$$x_1 = 1$$
 or $x_1 = 0$

- Forced move for II and then I
- Player II chooses $x_2 = 1$ or $x_2 = 0$
- . . .
- Move c, i.e., the right-hand side

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

 $\underline{\mathsf{SAT}}$ is $\underline{\mathsf{NP}\text{-}\mathsf{complete}}$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (1) Prove that SAT is in NP
 - \bullet A nondeterministic polynomial time machine can guess an assignment to a given formula φ
 - ullet and ${\it accept}$ if the assignment satisfies arphi

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

<u>SAT</u> is <u>NP-complete</u>

证明

(2) Take any language A in NP and show that $A \leq_P SAT$ 1 2 3

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ ① ② ③
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - A <u>tableau</u> for N on w is an $n^k \times n^k$ table whose *rows* are the *configurations* of a *branch* of the computation of N on input w

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - A <u>tableau</u> for N on w is an $n^k \times n^k$ table whose *rows* are the *configurations* of a *branch* of the computation of N on input w
 - A <u>tableau</u> is accepting if any row of the tableau is an accepting configuration.

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT \bigcirc 2 \bigcirc 3$
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - A <u>tableau</u> for N on w is an $n^k \times n^k$ table whose *rows* are the *configurations* of a *branch* of the computation of N on input w
 - A <u>tableau</u> is accepting if any row of the tableau is an accepting configuration.
 - the problem of determining whether N accepts w is equivalent to the problem of determining whether an accepting tableau for N on w exists.

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\mathbf{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{P} SAT \bigcirc \bigcirc \bigcirc \bigcirc$
 - Let N be a nondeterministic Turing machine that decides A in n^k *time* for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2

- If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s

- The cell in row i and column j is called cell[i, j] and contains a symbol

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{P} SAT \bigcirc \bigcirc \bigcirc \bigcirc$
 - Let N be a nondeterministic Turing machine that decides A in n^k *time* for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2

- If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
- Say that Q and Γ are the state set and tape alphabet of N, respectively

- The cell in row i and column j is called cell[i, j] and contains a symbol

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{P} SAT \bigcirc \bigcirc \bigcirc \bigcirc$
 - Let N be a nondeterministic Turing machine that decides A in n^k *time* for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2

- If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
- Say that Q and Γ are the state set and tape alphabet of N, respectively
- Let $C = Q \cup \Gamma \cup \{\#\}$

- The cell in row i and column j is called cell[i, j] and contains a symbol

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{P} SAT \bigcirc \bigcirc \bigcirc \bigcirc$
 - Let N be a nondeterministic Turing machine that decides A in n^k *time* for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2

- If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
- Say that Q and Γ are the state set and tape alphabet of N, respectively
- Let $C = Q \cup \Gamma \cup \{\#\}$
- For each i and j between 1 and n_k and for each s in C, we have a variable, $x_{i,j,s}$.
- The cell in row i and column j is called cell[i, j] and contains a symbol

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{P} SAT \bigcirc \bigcirc \bigcirc \bigcirc$
 - Let N be a nondeterministic Turing machine that decides A in n^k *time* for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2

- If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
- Say that Q and Γ are the state set and tape alphabet of N, respectively
- Let $C = Q \cup \Gamma \cup \{\#\}$
- For each i and j between 1 and n_k and for each s in C, we have a variable, $x_{i,j,s}$.
- Each of the $(n^k)^2$ entries of a tableau is called a *cell*
- The cell in row i and column j is called cell[i, j] and contains a symbol

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{P} SAT \bigcirc \bigcirc \bigcirc \bigcirc$
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2

- If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
- Say that Q and Γ are the state set and tape alphabet of N, respectively
- Let $C = Q \cup \Gamma \cup \{\#\}$
- For each i and j between 1 and n_k and for each s in C, we have a variable, $x_{i,j,s}$.
- Each of the $(n^k)^2$ entries of a tableau is called a *cell*
- The cell in row i and column j is called cell[i, j] and contains a symbol

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 21 22
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right]$$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

证明

- - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 21 22
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i, j, s} \right) \land \left(\bigwedge_{\substack{s, t \in C \\ s \ne t}} \left(\overline{x_{i, j, s}} \lor \overline{x_{i, j, t}} \right) \right) \right]$$

1st part: at least one variable that is associated with each cell is on

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

证明

- (2) Take any language A in NP and show that $A \leq_{\mathbf{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 21 22
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right]$$

2nd part: no more than one variable is on for each cell

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

证明

- - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s

$$\begin{aligned} \bullet & \phi = \underline{\phi_{\text{cell}}} \wedge & \underline{\phi_{\text{start}}} \wedge & \underline{\phi_{\text{accept}}} \wedge & \underline{\phi_{\text{move}}} \\ & \phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ & x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ & x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \end{aligned}$$

the first row of the table is the starting configuration of N on w

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

证明

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ \bigcirc \bigcirc \bigcirc
 - Let N be a nondeterministic Turing machine that *decides* A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 21 22
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $egin{aligned} oldsymbol{\phi} & \phi = \underline{\phi_{ ext{cell}}} \wedge & \underline{\phi_{ ext{start}}} \wedge & \underline{\phi_{ ext{accept}}} \wedge & \underline{\phi_{ ext{move}}} \ & \phi_{ ext{accept}} & = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}} \end{aligned}$

an accepting configuration occurs in the tableau

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\mathbf{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}.$$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT \bigcirc 2 \bigcirc 3$
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\mathrm{cell}}} \land \underline{\phi_{\mathrm{start}}} \land \underline{\phi_{\mathrm{accept}}} \land \underline{\phi_{\mathrm{move}}}$ $\bigvee_{\substack{a_1, \dots, a_6 \text{is a legal window}}} (x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6})$

$$\delta(q_1,\mathtt{a})\,=\,\{(q_1,\mathtt{b},\!R)\}\,\,\mathrm{and}\,\,\delta(q_1,\mathtt{b})\,=\,\{(q_2,\!\mathtt{c},\!L),(q_2,\!\mathtt{a},\!R)\}$$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

证明

- (2) Take any language A in NP and show that $A \leq_{P} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s

•
$$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$$

Examples of

legal

windows:

(d)	#	b	6
(u)	#	b	6

(a)

(b)	u
(D)	a

a	q_1	Ъ
а	a	q_2

(c)	-
(c)	-

(e)
$$\begin{array}{c|cccc} a & b & a \\ \hline a & b & q_2 \\ \end{array}$$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

证明

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$

Examples of *illegal*

- (a) a b a a a a
- (b) $\begin{array}{c|cccc} a & q_1 & b \\ \hline q_2 & a & a \end{array}$

(c) $\begin{array}{c|cccc} b & q_1 & b \\ \hline q_2 & b & q_2 \end{array}$

windows:

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\mathbf{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$
 - Analyze the Complexity of Reduction 3.1 3.2 3.3

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT \bigcirc 2 \bigcirc 3$
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - \bullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$
 - Analyze the Complexity of Reduction 31 32 33
 - The total number of variables is $O(n^{2k})$
 - tableau is an $n^k \times n^k$ table, so it contains n^{2k} cells

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$
 - Analyze the Complexity of Reduction 3.1 3.2 3.3
 - The total number of variables is $O(n^{2k})$
 - <u>tableau</u> is an $n^k \times n^k$ table, so it contains n^{2k} cells

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$
 - Analyze the Complexity of Reduction 31 32 33
 - ϕ' s total size is $O(n^{2k})$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_P SAT$ 1 2 3
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$
 - Analyze the Complexity of Reduction 3.1 3.2 3.3
 - ϕ' s total size is $O(n^{2k})$
 - $\phi_{\rm cell}$: contains a fixed-size fragment of the formula for each cell of the tableau, so its size is $O(n^{2k})$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT \bigcirc 2 \bigcirc 3$
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$
 - Analyze the Complexity of Reduction 31 32 33
 - ϕ' s total size is $O(n^{2k})$
 - ullet $\phi_{
 m start}$ has a fragment for each cell in the top row, so its size is $O(n^k)$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- (2) Take any language A in NP and show that $A \leq_{\underline{P}} SAT$ \bigcirc \bigcirc \bigcirc
 - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a <u>tableau</u> for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$
 - Analyze the Complexity of Reduction 3.1 3.2 3.3
 - ϕ' s total size is $O(n^{2k})$
 - ullet $\phi_{
 m move}$ and $\phi_{
 m accept}$ each contain a fixed-size fragment of the formula for each cell of the tableau, so their size is $O(n^{2k})$

5. NP-completeness | The Cook-Levin Theorem

定理: Cook-Levin theorem

SAT is NP-complete

- - Let N be a nondeterministic Turing machine that decides A in n^k time for some constant k, and construct a tableau for N
 - Reduction from w to a formula ϕ : 2.1 2.2
 - ullet If $x_{i,j,s}$ takes on the value 1, it means that cell[i,j] contains an s
 - $\phi = \underline{\phi_{\text{cell}}} \land \underline{\phi_{\text{start}}} \land \underline{\phi_{\text{accept}}} \land \underline{\phi_{\text{move}}}$
 - Analyze the Complexity of Reduction 3.1 3.2 3.3
 - \bullet We may easily construct a reduction that produces ϕ in polynomial time from the input w
 - Each component of the formula is composed of many nearly identical fragments

