

Physique Numérique – Semaine 3

Rappel des concepts introduits en semaine 2

Cas	de	l'oscillateur	harmonique

- ☐ Analyse de stabilité de Von Neumann: croissance / décroissance de l'erreur
- ☐ Solution analytique du schéma d'Euler explicite

Plan de la semaine 3

- ☐ Suite de l'analyse de stabilité: croissance / décroissance de l'énergie mécanique
- ☐ Schémas symplectiques: Euler-Cromer, Verlet
- Exercice 3: pendule de longueur variable phénomènes non linéaires

Documentation

- Lecture pour la Semaine #3: Notes de cours
 - □ Chapitre 2, section 2.4.4, **Section 2.7**

http://moodle.epfl.ch/mod/resource/view.php?id=8220

Rappel semaine 5

2.4 Oscillations - Analyses de stabilité numérique

Oscillation, (dé)croissance?

Propriétés de conservation

Matrice de gain G

$$y_{num} = Ae^{i\omega t}$$

$$E_{mec} = const$$

Valeurs propres λ_i

$$\omega = \omega_r + i \gamma$$
oscillant exponential

$$E_{mec,n+1} = E_{mec,n} + ??$$

Stable si

$$|\lambda_i| \leq 1$$

$$\gamma \ge 0$$

 $\frac{\Delta E_{mec}^{(num)}}{\Delta t} \le 0$

Section 2.4.2 - Von Neumann

Section 2.4.3

Section 2.4.4

2.4.3 Stabilité. Oscillations, (dé)croissance exponentielle. Sol. Analytique des Eqs. Discrètes.

$$y_n = \Re e\{Ae^{i\omega t_n}\} = \Re e\{Ae^{i\sqrt{k/m}t_n}e^{\left(\frac{k\Delta t}{m}\Delta^t\right)t_n}\}$$

$$y_n = e^{\left(\frac{k}{m}\frac{\Delta t}{2}\right)t_n} |A| \cos\left(\sqrt{\frac{k}{m}} t_n + \varphi\right)$$

Amplitude augmentant exponentiellement dans le temps

Taux de croissance proportionnel à ∆t

Oscillation sinusoidale

En posant
$$\omega_0 = \sqrt{k/m}$$
 = fréquence propre

$$e^{(\omega_0 \Delta t)^2 (\frac{t_n}{\Delta t})/2} = e^{(\omega_0 \Delta t)^2 n/2}$$

Paramètre crucial

2.4.4 Euler expl. osc. harmo. Conservation E_{mec}

Analytiquement:
$$E_{mec} = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = const$$

Numériquement:
$$E_{mec,n+1} = \frac{1}{2} m v_{n+1}^2 + \frac{1}{2} k x_{n+1}^2$$

$$= \frac{1}{2}m\left(v_n - \frac{k}{m}x_n\Delta t\right)^2 + \frac{1}{2}k(x_n + v_n\Delta t)^2$$

$$= \frac{1}{2}mv_n^2 + \frac{1}{2}kx_n^2 - v_nkx_n\Delta t + kx_nv_n\Delta t + \frac{1}{2}\frac{k^2}{m}x_n^2\Delta t^2 + \frac{1}{2}kv_n^2\Delta t^2$$

$$\left| E_{mec,n+1} = E_{mec,n} + \left(\frac{k}{m} E_{mec,n} \Delta t \right) \Delta t \right| \text{ (*)} \qquad \left[E_{mec,n+1} > E_{mec,n} \ \forall \Delta t \right]$$

$$\left|E_{mec,n+1}>E_{mec,n}\right.$$
 $\forall \Delta t \left|$

L'énergie mécanique augmente à chaque pas de temps

2.4.4 Euler expl. osc. harmo. Conservation E_{mec} 2

$$\left| \frac{\Delta E_{mec,n}}{\Delta t} = \left(\frac{k}{m} \Delta t \right) E_{mec,n} \right|$$

$$E_{mec,n} = E_{mec,0} e^{\left(\frac{k}{m}\Delta t\right)t_n}$$

L'énergie mécanique augmente exponentiellement au cours du temps

Le taux de croissance est proportionnel à ∆t

FIG. 2.10 (bas)

On trouvait un taux de croissance du mode propre

$$\gamma = \operatorname{Im}(\omega) = -\frac{k}{m} \frac{\Delta t}{2}$$

$$\gamma_{Emec} = -2\gamma$$

2.4 Oscillateur harmonique. Conclusions

- Le schéma d' Euler explicite est toujours instable lorsqu'il est appliqué à l'oscillateur harmonique. La norme de l'erreur augmente à chaque pas de temps
- L'amplitude des oscillations croît exponentiellement, avec un taux de croissance proportionnel à ∆t
- L'énergie mécanique n'est pas conservée, mais croît exponentiellement, avec un taux de croissance proportionnel à ∆t
- Paramètre numérique crucial: $\omega_0 \Delta t$
 - $\omega_0 \Delta t \ll 1$ veut dire plusieurs pas temporels par période
- Amélioration des schémas numériques nécessaire!
 - □ Euler Cromer $\sim \Delta t$ (*) Symplectiques: Emec=const en moyenne
 - Stormer-Verlet ~(∆t)²
 - Runge-Kutta ordre 4 ~(∆t)⁴
- (*) changement apparemment minime, mais... (demo)

2.7.1 Euler-Cromer: déjà un grand progrès!

 Les schémas d'Euler-Cromer et de Verlet seront présentés au tableau et seront illustrés par des simulations numériques.

2.7.1 Euler-Cromer («symplectique»)

- Pour la force de portance de Magnus, comme pour la force de Lorentz due au champ magnétique, l'accélération en x dépend de vz, et l'accélération en z dépend de vx.
- Le schéma d'Eule Cromer, s'écrit, pour la particule dans un champ magnétique selon z.

$$\begin{aligned} v_{x,n+1} &= v_{x,n} + \Omega v_{y,n} \\ v_{y,n+1} &= v_{y,n} - \Omega v_{x,n+1} \end{aligned}$$
 Euler explicite: $v_{x,n}$

 Vous pouvez essayer ce schéma pour le problème de Magnus (Ex.1)

2.7.1 Euler-Cromer: pied gauche ou pied droite

d'abord?

 En combinant Euler-Cromer « A » et « B » pour deux demi-pas de temps, on aboutit au schéma de Verlet. La dérivation sera présentée au tableau.

2.7.2 Verlet

$$x_{j+1} = x_j + v_j \Delta t + \frac{F}{m}(x_j, t_j) \frac{\Delta t^2}{2}$$

$$v_{j+1} = v_j + \left(\frac{F}{m}(x_j, t_j) + \frac{F}{m}(x_{j+1}, t_{j+1})\right) \frac{\Delta t}{2}$$
(2.103)

- Généralisé ici à une force dépendant explicitement du temps
- L'algorithme est conditionellement stable pour l'oscillateur harmonique (il y a une limite de stabilité, ∆t max, cf plus loin)
- II est d'ordre 2 en ∆t: erreur ~(∆t)²
- Une seule évaluation de F par pas temporel
- Peut être utilisé pour de longues simulations sans qu'il y ait accumulation systématique d'erreurs sur la conservation de l'énergie
- S'applique en principe bien aux systèmes conservatifs

2.7.2 Verlet

$$q_{j+1} = q_j + \frac{p_j}{m} \Delta t + \frac{1}{2m} F(q_j, t_j) \Delta t^2$$

$$p_{j+1} = p_j + \frac{\Delta t}{2} \left(F(q_j, t_j) + F(q_{j+1}, t_{j+1}) \right)$$
(2.103)

- Généralisé ici à une force dépendant explicitement du temps
- L'algorithme est conditionellement stable pour l'oscillateur harmonique (il y a une limite de stabilité, ∆t max, cf plus loin)
- II est d'ordre 2 en ∆t: erreur ~(∆t)²
- Une seule évaluation de F par pas temporel
- Peut être utilisé pour de longues simulations sans qu'il y ait accumulation systématique d'erreurs sur la conservation de l'énergie
- S'applique en principe bien aux systèmes conservatifs

Verlet – oscillateur harmonique

Même ∆t=0.2

Euler-Cromer et Verlet sont symplectiques

Conservation du « volume » dans l'espace de phase (x,v)

Formulations alternatives de Verlet - 1

Verlet «leapfrog» (saute-mouton)

Schéma à niveaux décalés («staggered») Nécessite un premier «demi-pas» pour être initialisé Désavantage: on ne connaît pas p et q aux mêmes instants

Formulations alternatives de Verlet - 2

Stormer - Verlet

$$\frac{\mathrm{d}}{\mathrm{d}t} \binom{p}{q} = \binom{F(q)}{p/m} \Leftrightarrow \frac{\mathrm{d}^2 q}{\mathrm{d}t^2} = F(q)/m \tag{2.105}$$

$$\frac{d^2q}{dt^2}(t_j) = \frac{1}{\Delta t^2} (q_{j+1} - 2q_j + q_{j-1}) + O(\Delta t^2)$$

$$q_{j+1} = 2q_j - q_{j-1} + (\Delta t^2 / m) F(q_j)$$
 (2.107)

Schéma à 3 niveaux

Nécessite un premier pas «en arrière» (q_{-1}) pour être initialisé Cet algorithme date de 1907 (Stormer)

2.7.3 Stabilité du schéma de Verlet

 On montre (preuve au tableau) que le schéma de Verlet est stable pour le problème de l'oscillateur harmonique, à la condition que:

$$\omega_0 \Delta t \leq 2$$

où ω_0 est la fréquence propre (physique!) du système:

$$\omega_0 = \sqrt{k/m}$$

N.B.: Il en est de même pour Euler-Cromer.

2.7.4 Extension du schéma Verlet à des forces dépendant de la vitesse et du temps

Soit le cas

$$\frac{1}{m}F(x,v,t) = a(x,v,t) = a_1(x,t) + a_2(v,t)$$

$$x_{j+1} = x_j + v_j \Delta t + \frac{1}{2} a(x_j, v_j, t_j) (\Delta t)^2$$
 (2.125)

$$v_{j+1/2} = v_j + \frac{1}{2} a(x_j, v_j, t_j) \Delta t$$
 (2.126)

$$v_{j+1} = v_j + \frac{1}{2} \left(a_1(x_j, t_j) + a_1(x_{j+1}, t_{j+1}) \right) \Delta t + a_2(v_{j+1/2}, t_{j+1/2}) \Delta t$$
(2.127)

Exercice 2: pendule de longueur variable

- Petits mouvements. Mode propre et fréquence propre.
- Grands mouvements. Fréquence dépendant de l'amplitude
- ➤ Rétractation du fil. Basculement oscillation → rotation.
- Oscillation du fil. Résonance paramétrique. Doublement de période.
- Mouvement chaotique. Instabilité des orbites. Non-convergence numérique.
- Sections de Poincaré.

Pendule avec oscillation verticale