D-BIOL, D-CHAB

Prüfung zur Vorlesung Mathematik I/II

Bitte ausfüllen!

Name:	
Vorname:	
Legi-Nr.:	

Nicht ausfüllen!

Aufgabe	Punkte	Kontrolle
1		
2		
3		
4		
5		
6		
Total		

Vollständigkeit	
-----------------	--

Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Hilfsmittel: Aufzeichnungen im Umfang von 20 Seiten A4.

Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen. Dabei können bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwendet werden.
- Schreiben Sie nicht mit Bleistift, rotem oder grünem Kugelschreiber.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Tun Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.

Viel Erfolg!

Aufgaben

1. (10 Punkte)

Die Antworten in dieser Aufgabe müssen *nicht* begründet werden. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt.

a) Sei $a_n = \frac{1}{n} \cdot \sin(\frac{n\pi}{2})$ für n = 1, 2, ... Berechnen Sie

$$\lim_{n\to\infty} a_n = \underline{\qquad}.$$

b) Berechnen Sie

$$\lim_{x \to \infty} \frac{10x^{10} + 5x^5 + 1}{9x^9 + 6x^6 + 2x^2} = \underline{\qquad}.$$

und

$$\lim_{x \to \infty} \frac{10x^{10} + 5x^5 + 1}{11x^{11} + 6x^6 + 2x^2} = \underline{\hspace{1cm}}.$$

c) Berechnen Sie

$$\lim_{x \to \infty} x e^{-x} = \underline{\qquad}.$$

d) Berechnen Sie das folgende unbestimmte Integral

$$\int x \cos(x) dx = \underline{\qquad}.$$

e) Sei

$$\frac{t^2-2}{t^3-t}=\frac{A}{t+1}+\frac{B}{t}+\frac{C}{t-1}, \text{ für gewisse } A,B,C\in\mathbb{R} \text{ und alle } t\in\mathbb{R}.$$

Bestimmen Sie $A = \underline{\hspace{1cm}}, B = \underline{\hspace{1cm}}, C = \underline{\hspace{1cm}}.$

f) Sei $a_0 + a_1(x-1) + a_2(x-1)^2$ das Taylorpolynom zweiter Ordnung (um den Entwicklungspunkt $x_0 = 1$) der Funktion

$$f(x) = x \cdot e^{2x}.$$

Dann gilt $a_0 = ___, a_1 = ___, a_2 = ___.$

g) Sei $g: \mathbb{R} \longrightarrow \mathbb{R}$ gegeben durch

$$g(x) = \begin{cases} \sin^2(x), & \text{für } x < \frac{\pi}{4} \\ cx + d, & \text{für } x \ge \frac{\pi}{4} \end{cases},$$

für gewisse Konstanten $c, d \in \mathbb{R}$. Bestimmen Sie c und d derart, dass g auf ganz \mathbb{R} differenzierbar (und damit insbesondere auch stetig) ist.

Lösung:
$$c = \underline{\hspace{1cm}}, d = \underline{\hspace{1cm}}.$$

2. (10 Punkte)

In der folgenden Aufgabe bezeichnet i die imaginäre Einheit, d.h. $i^2 = -1$.

a) Skizzieren Sie folgende Menge M in der komplexen Zahlenebene:

$$M = \{ z = x + iy \in \mathbb{C} : 1 \le x^2 + y^2 \le 4, |\text{Im}(z)| \le 2 \}$$

b) Schreiben Sie die folgenden komplexen Zahlen u und w in der Form $a+ib,\,a,b\in\mathbb{R}$: (Bemerkung: \overline{z} beschreibt die zu z konjugiert komplexe Zahl.)

$$u = \frac{3+7i}{4-2i},$$

$$w = \overline{5i\left(\frac{1}{4} - i\right)}.$$

c) Sei

$$z = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{50}$$

- i) Bestimmen r>0 und $\varphi\in[0,2\pi)$ derart, dass $z=re^{i\varphi}$ gilt.
- ii) Schreiben Sie z in der Form a+ib, für geeignete $a,b\in\mathbb{R}.$
- d) Sei

$$\omega = 4e^{\frac{\pi}{4}i}(4+di)$$

Für welche Werte von $d \in \mathbb{R}$ gilt $\text{Re}(\omega) = 0$?

- **3.** (10 Punkte)
 - a) i) Gegeben ist die Matrix

$$B = \left(\begin{array}{c} 1\\ -1\\ 2 \end{array}\right)$$

vom Typ (3,1) und die Matrix

$$C = (1 \ 2 \ -1)$$

vom Typ (1,3). Bestimmen Sie die Matrix $A = B \cdot C$.

- ii) Berechnen Sie Rang(A).
- iii) Sei

$$b = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}.$$

Ist das lineare Gleichungssystem Ax = b lösbar?

b) Bestimmen Sie die Eigenwerte und die zugehörigen Eigenvektoren für die Matrix

$$A = \left(\begin{array}{cc} 2 & 3 \\ 3 & 2 \end{array}\right).$$

c) Für welche Werte von $t \in \mathbb{C}$ sind die Vektoren

$$v_1 = \begin{pmatrix} i \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ t \\ 4 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ -1 \\ t \end{pmatrix}$$

linear unabhängig?

d) Bestimmen Sie die Lösungsmenge des folgenden linearen Gleichungssystems mittels Gauss-Verfahren:

$$\begin{cases} 2x_2 + x_3 = -8 \\ x_1 - 2x_2 - 3x_3 = 0 \\ -x_1 + x_2 + 2x_3 = 3. \end{cases}$$

4. (10 Punkte)

a) In dieser Aufgabe soll die Lösung y = y(x) der Differentialgleichung

$$y' + \frac{1}{x}y = \frac{1}{x^2}, \quad \text{für } x > 0,$$
 (1)

zur Anfangsbedingung

$$y(1) = 2. (2)$$

bestimmt werden.

- i) Schreiben Sie die zu (1) gehörige homogene Gleichung und bestimmen Sie ihre allgemeine Lösung.
- ii) Berechnen Sie die allgemeine Lösung von (1) mittels Variation der Konstanten.
- iii) Finden Sie die eindeutige Lösung von (1), welche der Anfangsbedingung (2) genügt.
- b) Gegeben sei die Differentialgleichung

$$y'' + y' - 6y = 6x (3)$$

mit Anfangsbedingung

$$y(0) = -\frac{1}{6}, \quad y'(0) = 4.$$
 (4)

- i) Schreiben Sie die zu (3) gehörige homogene Gleichung und bestimmen Sie ihre allgemeine Lösung.
- ii) Bestimmen Sie $a, b \in \mathbb{R}$ derart, dass y(x) = ax + b eine partikuläre Lösung von (3) ist.
- iii) Bestimmen Sie die allgemeine Lösung von (3), sowie die eindeutige Lösung von (3), welche die Anfangsbedingung (4) erfüllt.

- **5.** (10 Punkte)
 - a) Bestimmen Sie die Tangentialebenen von

$$x^2 + y^2 - z - 1 = 0$$

in den Punkten (2,1,4) und (2,0,3).

b) Bestimmen Sie alle kritischen Punkte der Funktion $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ mit

$$f(x,y) = 2x^2 + 2xy + 2y^2 - 6x$$
, für $x, y \in \mathbb{R}$,

und entscheiden Sie jeweils, ob es sich um ein relatives Minimum, Maximum, oder Sattelpunkt handelt. Begründen Sie Ihre Antwort.

c) Bestimmen Sie den Punkt $P=(x_0,y_0,z_0)$ in der Ebene $\{(x,y,z)\in\mathbb{R}^3: x+2y+3z=7\}$, der vom Ursprung (0,0,0) den kleinsten Abstand hat. Verwenden Sie hierzu die Methode der Lagrange-Multiplikatoren.

6. (10 Punkte)

Gegeben sei das Vektorfeld $\vec{F} = \begin{pmatrix} y \\ 2x \end{pmatrix}$, für $x,y \in \mathbb{R}$. Weiter sei die Kurve γ gegeben als Verkettung von zwei Kurven γ_1 und γ_2 . Die Kurve γ_1 verläuft entlang des Halbkreises gegeben durch

$$y = \sqrt{1 - x^2}$$
, für $-1 \le x \le 1$,

und ist im Gegenuhrzeigersinn orientiert. Die Kurve γ_2 ist Teil der Parabel

$$y = x^2 - 1$$

beginnend im Punkt (-1,0) und aufhörend im Punkt (1,0).

Abbildung 1: Die Kurven γ_1 und γ_2 .

In der folgenden Aufgabe soll das Integral

$$I = \int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{\gamma} y dx + 2x dy$$

auf zwei verschiedene Arten berechnet werden.

- a) Parametrisieren Sie γ_1 und γ_2 .
- **b)** Berechnen Sie mithilfe der Parametrisierungen aus **a)** nacheinander folgende Integrale:

$$I_1 = \int_{\gamma_1} y dx + 2x dy$$

$$I_2 = \int_{\gamma_2} y dx + 2x dy$$

$$I = \int_{\gamma} y dx + 2x dy.$$

Hinweis: die folgenden Formeln könnten nützlich sein. Für alle $t \in \mathbb{R}$ gilt

$$(\cos t)^{2} = \frac{1 + \cos(2t)}{2}$$
$$(\sin t)^{2} = \frac{1 - \cos(2t)}{2}.$$

c) Berechnen Sie I erneut mithilfe des Satzes von Green.

Hinweis: der Satz von Green besagt folgendes. Sei A eine (abgeschlossene und beschränkte) Fläche in \mathbb{R}^2 mit Rand γ , und $P,Q:\mathbb{R}^2\to\mathbb{R}$ zwei differenzierbare Funktionen mit stetigen partiellen Ableitungen. Dann gilt:

$$\int_{\gamma} P(x,y) dx + Q(x,y) dy = \int \int_{A} \left(\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x} \right) dA.$$

Bemerkung: diese Formel ergibt sich unmittelbar als Spezialfall des Satzes von Stokes in \mathbb{R}^3 .