Selecting Assets I: Price Data

```
In [1]:
         # Working with data:
         import numpy as np
                                                                # For scientific computing
         import pandas as pd
                                                                # Working with tables.
         # Downloading files:
         import requests, zipfile, io
                                                                      # To access websites
         import os
         # Specific data providers:
         from tiingo import TiingoClient
                                                                # Stock prices.
                                                                # Economic data, futures p
         import quandl
         # API keys:
         tiingo = TiingoClient({'api_key':'XXXX'})
         quandl.ApiConfig.api_key = 'YYYY'
         # Plotting:
         import matplotlib.pyplot as plt
                                                                 # Basic plot library.
         plt.style.use('ggplot')
                                                                 # Make plots look nice
```

Read the "close" table we downloaded from tiingo:

In [2]:	PRICE PRICE		read_csv('data/tiingo/close.csv',					<pre>index_col='date', parse_dates=['dat</pre>							
Out[2]:		AIR	ABT	WDDD	ACU	AE	ВКТІ	AMD	APD	CECE	MATX	•••	DMYI	Α	
	date														
	2009- 04-15	14.43	42.66	0.1700	7.4300	14.65	0.6400	3.44	59.79	3.64	23.29		NaN		
	2009- 04-16	15.04	42.69	0.1700	7.6000	14.84	0.6300	3.57	60.48	3.88	24.52		NaN		
	2009- 04-17	15.17	43.89	0.1700	7.2000	15.00	0.5500	3.56	60.65	3.94	25.97	•••	NaN		
	2009- 04-20	14.01	44.09	0.1700	7.3800	14.50	0.5598	3.31	57.79	3.79	23.24		NaN		
	2009- 04-21	14.66	44.37	0.1700	7.3900	14.50	0.5600	3.36	58.05	3.66	24.14		NaN		
	•••			•••											
	2021- 04-08	41.01	119.78	0.4100	38.4500	28.88	4.8900	83.35	283.11	8.20	72.13	•••	11.00	,	
	2021- 04-09	40.89	120.90	0.3800	36.9200	27.71	4.8900	82.76	284.36	8.21	73.31	•••	11.03	1	
	2021- 04-12	40.92	121.04	0.3925	38.6900	26.00	4.6400	78.58	282.88	8.00	71.51	•••	10.84		

	AIR	ABT	WDDD	ACU	AE	ВКТІ	AMD	APD	CECE	MATX	•••	DMYI	Α
date													
2021- 04-13	40.23	123.01	0.3850	38.7501	26.34	4.5100	80.19	285.11	7.84	68.83		10.75	1
2021- 04-14	41.08	121.50	0.3900	38.3057	26.59	4.6800	78.55	282.88	7.85	68.64		10.59	,

3021 rows × 5914 columns

Read the "adjClose" table and calculate the returns:

```
In [3]:
           RET = pd.read_csv('data/tiingo/adjClose.csv', index_col='date', parse_dates=['da
           RET
                        AIR
                                  ABT
                                           WDDD
                                                        ACU
                                                                     ΑE
                                                                              BKTI
                                                                                         AMD
                                                                                                     APD
Out[3]:
            date
          2009-
                       NaN
                                  NaN
                                             NaN
                                                        NaN
                                                                    NaN
                                                                               NaN
                                                                                          NaN
                                                                                                     NaN
          04-15
          2009-
                   0.042273
                              0.000703
                                        0.000000
                                                    0.022880
                                                               0.012969
                                                                         -0.015625
                                                                                     0.037791
                                                                                                 0.011540
          04-16
          2009-
                  0.008644
                              0.028110
                                        0.000000
                                                   -0.052632
                                                               0.010782
                                                                         -0.126984
                                                                                    -0.002801
                                                                                                 0.002811
          04-17
          2009-
                  -0.076467
                              0.004557
                                        0.000000
                                                    0.025000
                                                              -0.033333
                                                                           0.017818
                                                                                    -0.070225
                                                                                                -0.047156
          04-20
          2009-
                  0.046395
                              0.006351
                                        0.000000
                                                    0.001355
                                                               0.000000
                                                                          0.000357
                                                                                      0.015106
                                                                                                0.004499
          04-21
          2021-
                  0.008608
                             -0.002747
                                        0.000000
                                                   -0.035132
                                                               0.031429
                                                                          -0.018072
                                                                                     0.013990
                                                                                                 0.002195
          04-08
          2021-
                  -0.002926
                              0.009350
                                        -0.073171
                                                   -0.039792
                                                              -0.040512
                                                                          0.004090
                                                                                    -0.007079
                                                                                                 0.004415
          04-09
          2021-
                   0.000734
                              0.001158
                                        0.032895
                                                    0.047941
                                                               -0.061711
                                                                          -0.051125
                                                                                    -0.050507
                                                                                               -0.005205
          04-12
          2021-
                                                    0.001553
                  -0.016862
                              0.016276 -0.019108
                                                               0.013077
                                                                         -0.028017
                                                                                     0.020489
                                                                                                0.007883
          04-13
          2021-
                   0.021129 -0.008617
                                         0.012987
                                                   -0.011468
                                                               0.009491
                                                                          0.037694
                                                                                    -0.020451
                                                                                               -0.007822
          04-14
```

3021 rows × 5914 columns

Get VTI as benchmark:

```
vti = tiingo.get_dataframe(['VTI'], '1999-1-1', metric_name='adjClose')
vti.index = pd.to_datetime(vti.index).tz_convert(None)
vti[:3]
```

```
Out[4]: VTI

2001-05-31 39.732523

2001-06-01 40.009405

2001-06-04 40.182456
```

Our backtest function:

```
In [5]:
         def get_rebalance_dates(frequency, start_date):
            price = PRICE[PRICE.index>start date]
             group = getattr(price.index, frequency)
             return price[:1].index.union(price.groupby([price.index.year, group]).tail(1
         def run backtest(frequency, backtest start='1900-1-1'):
             rebalance_dates = get_rebalance_dates(frequency, backtest_start)
             portfolio_value = pd.Series(1,
                                                                   index=[rebalance_dates
                            = pd.DataFrame(columns=PRICE.columns, index=[rebalance_dates
             trades
                             = pd.DataFrame(columns=PRICE.columns, index=[rebalance_dates
             previous_positions = weights.iloc[0]
             for i in range(1, len(rebalance_dates)-1):
                 start date = rebalance dates[i]
                 end date = rebalance dates[i+1]
                 cum ret = RET[start date:end date][1:].add(1).cumprod()
                                                                        # Call "select a
                              = select assets(start date)
                 start_weights = select_weights(start_date, assets)
                                                                        # Call "select w
                 new positions = portfolio value.iloc[-1] * start weights
                 start to end positions = new positions * cum ret
                 start to end value
                                    = start to end positions.sum('columns')
                 portfolio value = portfolio value.append(start to end value)
                 weights = weights.append(start_to_end_positions.div(start_to_end_value,'
                 trades.loc[start date] = new positions - previous positions
                                                                          # Previous
                 previous positions = start to end positions.iloc[-1]
             return portfolio_value.pct_change(), weights, trades
```

```
def select_assets(date):
    return ['AAPL','MSFT','AMZN','NFLX']

def select_weights(date, assets):
    return pd.Series(1/len(assets), index=assets)

portfolio, weights, trades = run backtest('quarter')
```

```
t = portfolio.to_frame('Portfolio').join(vti.pct_change())
t.add(1).cumprod().plot()
```

Out[6]: <AxesSubplot:>

Let's select firms by trading volume.

Read volume table:

6928

2021- 04- 158866 4726734 23094.0 2274 11105 35817 34263832 631742 76101 391634 . **14**

6618

37767257

893679

45305 339259

5979

3 rows × 5914 columns

257263 4944569

19659.0

04-

13

```
In [8]:
          DOLLAR VOLUME = VOLUME * PRICE
          DOLLAR VOLUME[-3:]
                        AIR
                                     ABT
                                              WDDD
                                                            ACU
                                                                        ΑE
                                                                                BKTI
                                                                                              AMI
Out[8]:
          date
         2021-
           04-
                 5905819.92 3.529496e+08 11473.9525 617956.6800 573300.00
                                                                             63855.68 4.879724e+0!
            12
```

ABT

WDDD

ACU

ΑE

BKTI

AMI

AIR

date

2021-

```
04-
                10349690.49 6.082314e+08
                                           7568.7150 268460.6928 157486.86
                                                                              29847.18 3.028556e+0
             13
          2021-
            04-
                  6526215.28 5.742982e+08 9006.6600
                                                        87107.1618 295281.95 167623.56 2.691424e+0!
             14
         3 rows × 5914 columns
         For example, select 10 firms with the highest most recent dollar volume:
 In [9]:
           DOLLAR_VOLUME.iloc[-1].nlargest(10)
          TSLA
                  3.551176e+10
 Out[9]:
                  1.151602e+10
          AAPL
                  1.048296e+10
          AMZN
                  5.896701e+09
          MSFT
          NVDA
                  5.889313e+09
          FΒ
                   5.275546e+09
          GME
                   3.520134e+09
                  3.312169e+09
          GS
          SQ
                   3.226481e+09
          BA
                   3.196220e+09
          Name: 2021-04-14 00:00:00, dtype: float64
         Select 10 firms with the highest average dollar volume during the most recent 30 trading days:
In [10]:
           DOLLAR VOLUME[-30:].mean().nlargest(10)
Out[10]: TSLA
                   2.624358e+10
          AAPL
                   1.325759e+10
          AMZN
                   1.062242e+10
          MSFT
                    7.230169e+09
          FΒ
                    5.954732e+09
                    4.935624e+09
          BA
          NVDA
                    4.647977e+09
          GME
                    4.541444e+09
          GOOGL
                    3.420479e+09
                    3.402152e+09
          AMD
          dtype: float64
         Get the assets:
In [11]:
           DOLLAR VOLUME[-30:].mean().nlargest(10).index
Out[11]: Index(['TSLA', 'AAPL', 'AMZN', 'MSFT', 'FB', 'BA', 'NVDA', 'GME', 'GOOGL',
                  'AMD'],
                dtype='object')
         Backtest this strategy:
In [13]:
           def select_assets(date):
               return DOLLAR VOLUME[:date][-30:].mean().nlargest(10).index # DOLLAR VOLUME
```

```
def select_weights(date, assets):
    print(assets)
    return pd.Series(1/len(assets), index=assets)

portfolio, weights, trades = run_backtest('quarter')

t = pd.DataFrame(portfolio.rename('Portfolio')).join(vti.pct_change())
t.add(1).cumprod().plot()
```

Out[13]: <AxesSubplot:>

Top 100 most traded firms:

```
def select_assets(date):
    return DOLLAR_VOLUME[:date][-30:].mean().nlargest(100).index

portfolio, weights, trades = run_backtest('quarter')

t = pd.DataFrame(portfolio.rename('Portfolio')).join(vti.pct_change())
    t.add(1).cumprod().plot()
```

Out[14]: <AxesSubplot:>

