Considerians l'épus s'ons obble onde:

$$\begin{cases}
\partial_t^2 u - e^2 \Delta u = 0 & \text{in } Q = \Sigma \times (o, +\infty) \\
u = uo \\
\partial_t u = u_1
\end{cases} & \text{in } \Sigma, t = 0 \text{ aperto limits to}$$

$$u = 0 & \text{su } \partial \Sigma, t \in (o, +\infty) \\
conditions al bordo$$
di Dirichlet omogenea

Corcliano una solutione per soire.

$$u(x,t) = \sum_{k=0}^{\infty} \hat{u}_{k}(t) \psi_{k}(x) \tag{*}$$

dove:

- $\Upsilon_k: \Sigma \longrightarrow \mathbb{R}$ dipadous sols delle vanishile spesiale $x \in \Sigma;$
- \hat{u}_{k} : $(0,+\infty) \longrightarrow \mathbb{R}$ dipondous solo dalle variabile tomporale $t \in (0,+\infty)$.
- (*) esprime le sviluppe di u rispetto sol une base fernate obble Ve con coefficienti delle sviluppe in sene dati dagli ûte.

(i) Impuiamo il soddisfacimento della condisione al bodo u=0 richiedendo che le y_k verifichino la condisione $y_k=0$ su $\partial \Omega$, $\forall k=0,1,2,...;$

(ii) Impui aux che le svibeppe in sein di u vrifichi l'eprop 2'oue différenziale:

$$O_{t}^{2}\left(\sum_{k=0}^{\infty}\hat{u}_{k}(t)\psi_{k}(x)\right)-e^{2}\Delta\left(\sum_{k=0}^{\infty}\hat{u}_{k}(t)\psi_{k}(x)\right)=0$$

$$\sum_{k=0}^{\infty}\hat{u}_{k}(t)\psi_{k}(x)-e^{2}\sum_{k=0}^{\infty}\hat{u}_{k}(t)\Delta\psi_{k}(x)=0. \quad (**)$$

Se le fentini Ve sous tali che:

$$-\Delta \psi_{R} = \lambda_{R} \psi_{R}$$

else se il bro la placiane è proportionale alle γ_k etesse attrovorso opporturi coefficienti $\lambda_k \in \mathbb{R}$, alore le (***) diventa:

$$\sum_{k=0}^{\infty} \left(\hat{\mathcal{U}}_{k}^{(t)}(t) + \lambda_{k} c^{2} \hat{\mathcal{U}}_{k}(t) \right) \mathcal{V}_{k}(x) = 0.$$

A questo pento, se le 1/2 formano una base shi un opportu no spario rettoriale, quest'ultima relazione ci stice:

$$\hat{u}_{k}^{\parallel} + \lambda_{k} e^{2} \hat{u}_{k} = 0$$
, $\forall k = 0, 1, 2, ...$

Riassumendo, possiano conatterizzone gli elementi dello sviluppo in sene di u mediante questi due problemi:

(i)
$$\int -\Delta \psi_{\mathbf{k}} = \lambda_{\mathbf{k}} \psi_{\mathbf{k}} \quad \text{in } \Omega$$

 $\psi_{\mathbf{k}} = 0 \quad \text{su } \partial \Omega$

k=0,1,2,-..

(ii)
$$\hat{u}_{k}^{"} + \lambda_{k} e^{2} \hat{u}_{k} = 0$$
, te (9+00).

Prients ODE néclisée due constision inisiale, de passians niconore de quelle imposte su u:

$$u = u_0 \quad \text{in } \Omega, t = 0$$

$$\sum_{k=0}^{\infty} \hat{u}_k(0) \psi_k(x) = \sum_{k=0}^{\infty} \hat{u}_{k,0} \psi_k(x) \Rightarrow \hat{u}_k(0) = \hat{u}_{k,0}$$

$$Qu = u_1 \quad \text{in } SL, t=0$$

$$\sum_{k=0}^{\infty} \hat{u}_{k}(0) \psi_{k}(x) = \sum_{k=0}^{\infty} \hat{u}_{k1} \psi_{k}(x) \Rightarrow \hat{u}_{k}(0) = \hat{u}_{k,1}$$

Quelle sidustate diventans le condision inisioli de impore all'epustane differenziale nell'incapuite û. R.

Esaminiano il problema (i):

$$\begin{cases} -\Delta \psi_{\mathbf{k}} = \lambda_{\mathbf{k}} \psi_{\mathbf{k}} & \text{in } \Omega \\ \psi_{\mathbf{k}} = 0 & \text{se } \Omega \end{cases}$$
 (***)

quant probleme si interprete come le ricerce ologli auto rabri λ_k e dobte autofensioni \mathcal{V}_k (con conditione al brob di dirichlet omopones) oble operatore $-\Delta$.

Toorema Esistous coppie (λ_k, γ_k) , k = 0, 1, 2, ..., eau $\gamma_k \neq 0$ che risolusus il probleme (χ_k) . Queste coppie sous dette coppie sultovalore – autofeur roue di $-\Delta$ con condisione al prob di Dirichleh omogenes. In probiolore:

- · i λ_k formano una successione de numeri reali vou nopativi t.c. λ_k → +00 que ando k → co;
- · le auto-femilieni Nk fernano une pose delle sperio
- · ciascun le ha molteplicité algebrica e geometrica unitaria.

Escupio Considérieuro n=1, Sl=(3,1). Conchique ou tovalori e auto functioni di $-\Delta$ in dimensione 1 can conolidione al brob di Dirillet ompense:

$$\int -\psi_{k}^{\parallel} = \lambda_{k} \psi_{k} \quad \text{in } (0,1)$$

$$\psi_{k}(0) = \psi_{k}(1) = 0$$

-
$$\nabla_{k}^{"}+\lambda_{k}\gamma_{k}=0$$

Linteprole generale: $\gamma_{k}(x)=C_{1,k}e^{\sqrt{-\lambda_{k}}x}+C_{2,k}e^{\sqrt{-\lambda_{k}}x}$

($C_{1,k}$, $C_{2,k}$ containt di integratione)

Poiché seppiamo che Xx >0 abriamo:

$$\psi_{k}(x) = G_{1,k} e^{i\sqrt{\lambda_{k}}x} + G_{2,k} e^{-i\sqrt{\lambda_{k}}x}$$

Les conditionis al borolo:
$$\begin{cases} C_{3,k} + C_{2,k} = 0 \\ C_{3,k} e^{\bar{\imath} \sqrt{\lambda_k}} + C_{2,k} e^{-\bar{\imath} \sqrt{\lambda_k}} = 0 \end{cases}$$

Affinche $\psi_{k} \neq 0$ la natrice dei coefficient di questo sisteme lineare dere essere surplare (altriment esiste sob la soluzione $G_{1,k} = G_{2,k} = 0 \implies \psi_{k} = 0$):

$$\frac{e^{2\sqrt{3}k} - e^{2\sqrt{3}k} = 0}{-2e^{2\sqrt{3}k} (\sqrt{3}k) = 0} = \sin(\sqrt{3}k) = 0}$$

$$= \int_{k} \sqrt{k} = k\pi, k = 0,1,2,...$$

$$= \int_{k} \sqrt{k} = k\pi, k = 0,1,2,...$$

Presta è la successione depli autovalori di - D su

(0,1) con annullamento al bordo.

Tornando de sistema lineare, con questi la otteniano:

of our:

$$\psi_{k}(x) = G_{1,k} e^{ik\pi x} - G_{1,k} e^{-ik\pi x}$$

$$= G_{1,k} e^{ik\pi x} - e^{-ik\pi x}$$

$$= G_{1,k} e^{ik\pi x} - e^{-ik\pi x}$$

$$= gi G_{1,k} \sin(k\pi x).$$

la contante (en prénouve) tiene courts del fatto che ciascun autorobre le he moltoplicité alpetrice e geometrice unitarie. Se sceplians Cipe = 1 abbiens

$$\psi_{\mathbf{k}}(\mathbf{x}) = \sin(\mathbf{k}\pi\mathbf{x}).$$