НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Р. Е. АЛЕКСЕЕВА ИНСТИТУТ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ КАФЕДРА «ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

ПРОГРАММНАЯ СИСТЕМА РАСПОЗНАВАНИЯ ЗНАКОВ ДОРОЖНОГО ДВИЖЕНИЯ

Выполнил: Новичков В.С. 15-В-2

Научный руководитель: к.т.н., доцент Гай В.Е.

Цель и задачи исследования

Цель:

Разработка программной системы распознавания дорожных знаков.

Задачи:

Обзор подходов к распознаванию знаков дорожного движения

Разработка алгоритма

Проведение вычислительного эксперимента для установления корректности работы созданной системы

Известные подходы

Для решения проблемы поиска искомых областей кадра исследователи используют различные цветовые пространства, такие как:

RGB - используется нормализованный фиксированный диапазон цвета

HSV - используется для получения информации с кадра, с меньшим воздействием погодных условий и изменением освещенности

Для решения задачи локализации дорожных знаков на входном кадре с помощью детекторов геометрических признаков, используют такие методы, как:

преобразование Хафа построение карты расстояний построение гистограммы направленных градиентов

Для классификации объекта используются методы, разделяющиеся на две категории:

Шаблонные методы Классификаторы на основе нейронных сетей

Архитектура системы

Обучение классификатора

Предварительный поиск базы изображений, изначально классифицированных как позитивные (должны распознаваться) и негативные (не должны).

Систематизация данных в наборы (тренировочный и тестовый).

Сборка модели.

Оценка точности модели.

Классификация входных данных

Получение входных данных – получение видеоряда из источника

Формирование системы признаков — формирование набора признаков, на основании которых будет принято решение

Принятие решения – идентификация дорожного знака.

Структура CNN

Свёрточная нейронная сеть сконфигурирована из трёх слоёв:

Convolution layer

Pooling layer

Fully Connected layer

Реализация CNN

Код, создающий классификатор и обучающий модель:

```
def prepareClassifier():↓
    classifier = Sequential()↓
    classifier.add(Convolution2D(32,3, strides=(1,1),input shape = (64, 64, 3),padding='valid', activation = 'relu'))↓
    classifier.add(MaxPooling2D(pool_size = (2,2)))↓
    classifier.add(Convolution2D(32, 3,strides=(1,1),activation = 'relu', padding='valid'))↓
    classifier.add(MaxPooling2D(pool size = (2,2)))↓
    classifier.add(Flatten())↓
    classifier.add(Dense(output dim = 128, activation = 'relu'))↓
    classifier.add(Dense(output dim = 62, activation = 'softmax'))↓
    classifier.compile(optimizer = 'adam', loss = 'categorical crossentropy', metrics = ['accuracy'])↓
    return classifier↓
classifier = prepareClassifier()↓
train_datagen = ImageDataGenerator(rescale=1./150, shear_range = 0.2, zoom_range = 0.2)↓
test_datagen = ImageDataGenerator(rescale=1./150, shear_range = 0.2, zoom_range = 0.2)↓
training_set = train_datagen.flow_from_directory("TrafficSigns/Training", ↓
                                                 target size = (64, 64), batch size = 8, class mode = 'categorical')↓
test_set = test_datagen.flow_from_directory("TrafficSigns/Testing", \u2214
                                            target_size = (64, 64), batch_size = 8, class_mode = 'categorical') ↓
classifier.fit_generator(training_set, samples_per_epoch = 4552, nb_epoch =50, ↓
                         validation_steps=2520, validation_data = test_set )↓
classifier.save('./savedmodel/my_model.h5') ↓
```

Вычислительный эксперимент

Язык программирования: Python 3.7.3

Среда разработки: PyCharm

Программные модули: OpenCV, NumPy,

TensorFlow, Tkinter

Камера: Brookstone Rover 2.0

Тестирование системы

Спасибо за внимание!