COMP9727: Recommender Systems

Lecture 7: Sequential Recommendation

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW ©W. Wobcke et al. 2023–2024

COMP9727 Sequential Recommendation

This Lecture

Recommendation using temporal features, of/using temporal sequences

- Temporal Recommendation
 - ► Life Stages (Banking) and Life Cycles (Dating)
- Application Areas
 - ▶ Job Recommendation (Career Progression)
 - ► Session-Based Recommendation (E-Commerce, Video)

©W. Wobcke et al. 2023-2024

- ► Temporal Aspects of Ratings (Movies)
- Techniques

UNSW

- ► (Hidden) Markov Models
- ► Sequential rule/frequent pattern mining
- ► Asymmetric SVD → timeSVD++

COMP9727 Sequential Recommendation 2

Seasonal Effects

Should recommender be different at different times of year?

Does user behaviour change depending on life cycle?

... in addition to temporal features such as "popularity"

UNSW
©W. Wobcke et al. 2023–2024

COMP9727 Sequential Recommendation

3

Pre- and Post-Filtering

- Time or time period as context feature
 - e.g. season, time of day, special days (Halloween, Thanksgiving)
- Pre-filtering
 - ▶ Learn model using only context-relevant data (more sparse)
- Post-filtering
 - ▶ Generate candidates as normal, then filter/reweight by context
 - ightharpoonup Multiply ratings by P(u,i,C) found using content-based methods
 - Learn P(u,i,C) from all users, e.g. P(comedy|weekend)
 - \triangleright ... or from just the similar users to u, depending on C

UNSW ©W. Wobcke et al. 2023–2024

COMP9727 Sequential Recommendation 4 COMP9727 Sequential Recommendation

Life Stages: E-Commerce Example

UNSW ©W. Wobcke et al. 2023–2024

Sequential Recommendation

COMP9727

Financial Life Stages

COMP9727

An Individual's Financial Life Cycle

Recommendation Based on Life Stages

UNSW
©W. Wobcke et al. 2023–2024

Sequential Recommendation

· ·

Life Stage Clusters

5

Current Job Title	Job Transition Title
software developer	senior, programmer, analyst, analytics, developer
software	engineer, developer, senior, technical, specialist
developer	engineer, senior, software, specialist, ios

Sequential Recommendation

- Recommend jobs with "similar" titles to job transition terms
 - ► e.g. software developer ⇒ senior analyst
- Also look at terms in advertised job descriptions
 - \triangleright e.g. business analyst \Rightarrow project manager

UNSW ©W. Wobcke et al. 2023-2024

Sequential Recommendation

Markov Chain

COMP9727

- Bayesian network
 - \triangleright $P(S_0)$ specifies initial conditions
 - \triangleright $P(S_{i+1}|S_i)$ specifies dynamics (stationary if same for each i)
- Independence assumptions
 - $P(S_{i+1}|S_0,\cdots,S_i) = P(S_{i+1}|S_i)$
 - \triangleright Transition probabilities dependent only on current state S_i independent of history to reach that state S_0, \dots, S_{i-1}
 - ▶ The future is independent of the past, given the present

Hidden Markov Models

Sequential Recommendation

- Bayesian network
 - \triangleright $P(S_0)$ specifies initial conditions
 - $ightharpoonup P(S_{i+1}|S_i)$ specifies dynamics
 - \triangleright $P(O_i|S_i)$ specifies "observations"
- Independence Assumptions
 - $P(S_{i+1}|S_0,\dots,S_i) = P(S_{i+1}|S_i)$ (Markov Chain)
 - $P(O_i|S_0,\cdots,S_{i-1},S_i,O_0,\cdots,O_{i-1})=P(O_i|S_i)$
 - ▶ Observations (actions) depend only on current state

UNSW ©W. Wobcke et al. 2023-2024

COMP9727

UNSW

Sequential Recommendation

11

Hidden Markov Model for Online Dating

- Each output (message) has user and derived features
- Markov model is left-right topology
- \blacksquare Model states are n previous messages of recipient
- Choose number of states empirically (e.g. 5 or 6)
- Transitions learnt using Baum-Welch algorithm

15

Session-Based Recommendation

- Users interact with site in a "session"
 - ▶ Page views, favourite, add to cart, purchase, etc.
 - ► Task is to predict next (useful) interaction
 - ▶ Assuming temporal ordering is significant
- Use sequential rule/frequent pattern mining
 - ▶ Extends item-based CF and association rule mining
 - ▶ Requires a lot of data to get useful recommendations
- Use neighbourhood CF methods with similarity over sequences
 - ▶ Jaccard or cosine similarity over action sets in the sequence
 - Or vectors of actions weighted according to their recency

UNSW

©W. Wobcke et al. 2023-2024

13

COMP9727

Sequential Recommendation

al Recommendation

Similarity vs Sequential Recommendation

Association Rule Mining

Given a list of transactions ("market baskets")

- Itemset: Any set of items
- Frequent itemset: Itemset occurs in many baskets (fixed threshold)
- Association Rule: If $I \subseteq \text{itemset then } J \subseteq \text{itemset}$
- Support(I): Fraction of all transactions containing itemset I
- Confidence: Support(I \cup J)/Support(I) \approx P(J|I)

Note: Rule can have high confidence, but low support

UNSW

©W. Wobcke et al. 2023–2024

COMP9727

Sequential Recommendation

Sequential Pattern Mining (Simplified)

Given a list of ordered transactions ("market baskets")

- Itemseq: Any sequence of items
- Frequent itemseq: Itemseq occurs in many baskets (may be gaps)
- Association Rule: If $I \subseteq \text{itemseq}$ then $J \subseteq \text{itemseq}$
- Support(I): Fraction of all transactions containing itemseq I
- Confidence: Support(I \cup J)/Support(I) \approx P(J|I)

Note: Original definition allows sequences of itemsets (not items)

UNSW

UNSW

19

Point-of-Interest Recommendation

UNSW
©W. Wobcke et al. 2023–2024

Sequential Recommendation 17

Point-of-Interest CF Recommendation

Matrix Factorization (MF)

- Ratings of (some) movies are highly correlated
- Ratings matrix $m \times n$ is approximately rank $k \ll n$
- \blacksquare Approximate the matrix R using k latent factors
 - $ightharpoonup R = UV^T$ where U is $m \times k$, V is $n \times k$

©W Wobcke et al. 2023–2024

COMP9727 Sequential Recommendation

Latent Factors

- u_{ik} is how much u's tastes are like k; v_{jk} is how much v_j is like k
- $\hat{r}_{ij} = u_i \cdot v_j = \text{sum of } u_{ik} \cdot v_{jk} \text{ over all the factors } k$
- Factors are not always interpretable like this!

COMP9727

Temporal Dynamics of Movie Ratings

- Sudden jump in average movie rating in early 2004 (day 1500)
- Ratings tend to increase with movie age at time of rating
- Ratings stable over short periods (around 10 weeks)

Sequential Recommendation

.

Asymmetric Matrix Factorization

- Normally ratings matrix $R = UV^T$ where U is $m \times k$, V is $n \times k$
- Incorporate "implicit feedback" matrix *F*
 - ▶ Each row of F non-zero only if item rated by user, normalized
 - ▶ Force decomposition to look only at each user's rated items
 - Factorize $R = [FY]V^T$ where F is $m \times n$, Y is $n \times k$
 - ▶ User factors are linear combinations of implicit item factors

timeSVD++

Not really Singular Value Decomposition

- 1. Centre *R* on global mean, estimate r_{ij} as $o_i + p_j + u_i \cdot v_j$
 - where o_i is user bias, p_i is item bias
- 2. $R = (U + FY)V^T$ where U is $m \times k$, F is $m \times n$, Y is $n \times k$, V is $n \times k$
 - \blacksquare FY adjusts U to add the "feedback": but now more parameters
 - Estimate \hat{r}_{ij} as $o_i + p_j + \sum_k (u_{ik} + \sum_{h \in I_i} \frac{y_{hk}}{\sqrt{|I_i|}}) \cdot v_{jk}$
 - \triangleright where I_i is the set of items rated by user i
- 3. Make o_i , p_i , u_{ik} functions of time t
 - Estimate $\hat{r}_{ij}(t)$ as $o_i(t) + p_j(t) + \sum_k (u_{ik}(t) + \sum_{h \in I_i} \frac{y_{hk}}{\sqrt{|I_i|}}) \cdot v_{jk}$

UNSW ©W. Wobcke et al. 2023–2024

COMP9727

Sequential Recommendation

23

timeSVD++ Optimization Problem

Estimate $\hat{r}_{ij}(t)$ as $o_i(t) + p_j(t) + \sum_k (u_{ik}(t) + \sum_{h \in I_i} \frac{y_{hk}}{\sqrt{|I_i|}}) \cdot v_{jk}$

- Item bias $p_j(t)$
 - ▶ Time bins around 10 weeks: $p_i(t) = C_i + \text{offset}_{i.Bin(t)}$
- User bias $o_i(t)$ with mean rating time v_i
 - ▶ $o_i(t) = K_i + \alpha_i.\text{dev}_i(t) + e'_{it}$ where $\text{dev}_i(t) = sign(t v_i).|t v_i|^{\beta}$ where $\text{dev}_i(t)$ is the deviation of t from v_i and β is learnt (≈ 0.4)
- User factors $y_{ik}(t)$
 - $y_{ik}(t) = K'_{ik} + \alpha'_{ik} \cdot \text{dev}_i(t) + e'_{ikt} \text{ similarly}$
- Solve by Stochastic Gradient Descent

COMP9727

21

YouTube Recommender (2016)

UNSW ©W. Wobcke et al. 2023–2024

Sequential Recommendation

25

YouTube Recommender (2016)

- Candidate generation
 - ▶ Neural network for averaged "video watches" embeddings
 - ▶ Neural network for averaged "search token" embeddings
 - ► Trained similarly to word2vec, with additional context features
 - ► Approximate nearest neighbour for candidates
- Candidate ranking
 - ▶ Embedding of sequences of watched videos/impressions
 - Extra features (time since last watch, previous impressions)
 - ► Considerable hand-crafting of features

Sequence Training in Neural Networks

COMP9727

Sequential Recommendation

27

Summary

- Many aspects to temporal/sequential recommendation
 - ▶ Time and time period as context seasonal effects
 - ► Time sensitivity of recommendations, life stages
 - ▶ Life cycle of user interactions with a site
 - ▶ Relevance of temporal order of inputs to model
 - ► Changes in ratings over time due to novelty decay
 - ► Changes in meaning of ratings over time (concept drift)
 - ► Evolution of user's taste over time
- Effectiveness of methods depends heavily on availability of data
- Overlap with next lecture on contextual recommendation

COMP9727