(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-290229

(43)公開日 平成10年(1998)10月27日

(51) Int.Cl. ⁶	識別記号	F I	
H O 4 L 12/28		H04L 11/00	310B
H 0 4 Q 7/38		H 0 4 B 7/26	109M

窓杏請求 未請求 請求項の数13 ○1. (全 16 頁)

		審査請求	未請求 請求項の数13 OL (全 16 頁)
(21)出願番号	特顧平9-97066	(71)出顧人	000005496 富士ゼロックス株式会社
(22)出願日	平成9年(1997)4月15日		東京都港区赤坂二丁目17番22号
		(72)発明者	中村一大
			神奈川県足柄上郡中井町境430 グリーン
	·		テクなかい 富士ゼロックス株式会社内
		(72)発明者	太田 猛史
			神奈川県足柄上郡中井町境430 グリーン
			テクなかい 富士ゼロックス株式会社内
		(74)代理人	弁理士 澤田 俊夫

(54) 【発明の名称】 無線通信ネットワークおよび通信方法

(57)【要約】

【課題】 無線通信ネットワークにおいて、チャネル利 用効率を高めるとともに、伝送遅延時間を改善したデー 夕通信システムおよび通信方法を提供する。

【解決手段】 CSMA方式によるマルチチャネル通信を実行するものであり、端末は、無線チャネルフィルタリング手段、キャリア検出手段、無線チャネル選択制御手段、データリンク制御手段、ACK計時手段を有し、マルチチャネルを介して端末間での通信を実行する。チャネルのキャリア検出の結果に基づき、チャネルを選択して通信チャネルとして使用する。パケット送信が終了すると、パケット送信端末は、受信端末からのACKメッセージを受領することによって送信の成功を確認する。

【特許請求の範囲】

【請求項1】 複数局が無線通信媒体を介してデータの 送受信を行う無線通信ネットワークにおいて、

該ネットワーク中のデータ送信局は、

予め設定された通信帯域を分割した複数のチャネルを介 してランダムアクセス方式によりデータを送信するデー 夕送信手段と、

前記複数チャネル中の各チャネルについてのキャリアを 検出する送信局キャリア検出手段と、

前記送信局キャリア検出手段によりキャリアの検出され 10 ないチャネルの1つを前記データ送信手段によるデータ 送信チャネルとして選択するデータ送信チャネル選択手

前記データ送信手段によるデータ送信時からの経過時間 を計時する計時手段と、

前記データ送信手段によるデータ送信後、予め設定され た時間内に該送信データに関する受信確認信号であるA CK信号を受信しない場合、前記送信局キャリア検出手 段による各チャネルのキャリア検出、および該キャリア 検出に基づく前記データ送信チャネル選択手段によるチ 20 ャネルの選択を再度実行し、データ送信を再度実行する データ送信制御手段とを有し、

該ネットワーク中のデータ受信局は、

前記複数チャネル中の各チャネルを分別するフィルタ手 段を介してデータを受信するデータ受信手段と、

前記複数チャネル中の各チャネルについてのキャリアを 検出する受信局キャリア検出手段と、

前記受信局キャリア検出手段によりキャリアの検出され ないチャネルの1つをACK信号送信チャネルとして選 択するACK送信チャネル選択手段と、

前記ACK送信チャネル選択手段により選択されたチャ ネルを介して、ランダムアクセス方式によるACK信号 の送信を実行するACK信号送信手段と、

を有することを特徴とする無線通信ネットワーク。

【請求項2】 請求項1に記載の無線通信ネットワーク において、

前記ランダムアクセス方式はCSMAプロトコルによる 通信方式であることを特徴とする無線通信ネットワー

【請求項3】 請求項1または2に記載の無線通信ネッ トワークにおいて、

前記データ送信局中の送信局キャリア検出手段は、

前記複数のチャネル中の各チャネルを分別するフィルタ 手段を有し、該フィルタ手段によるチャネル分別の後に 各チャネルのキャリアを検出することを特徴とする無線 通信ネットワーク。

【請求項4】 請求項1または2または3に記載の無線 通信ネットワークにおいて、

前記データ送信チャネル選択手段、およびACK送信チ ャネル選択手段は、キャリアが抽出されなかったチャネ 50 前記ACK送信チャネル選択手段により選択されたチャ

ルからランダムに一つのチャネルを選択することを特徴 とする無線通信ネットワーク。

【請求項5】 請求項1または2または3に記載の無線 通信ネットワークにおいて、前記チャネル数は2ないし 5であることを特徴とする無線通信ネットワーク。

【請求項6】 請求項1または2または3に記載の無線 通信ネットワークにおいて、前記通信帯域は周波数分割 方式によって複数のチャネルに分割されていることを特 徴とする無線通信ネットワーク。

【請求項7】 請求項1または2または3に記載の無線 通信ネットワークにおいて、前記通信帯域は符号分割方 式によって複数のチャネルに分割されていることを特徴 とする無線通信ネットワーク。

【請求項8】 複数局が無線通信媒体を介してランダム アクセス方式によりデータの送受信を行う無線通信ネッ トワークにおいて使用される送信装置において、

予め設定された通信帯域を分割した複数のチャネルを介 してランダムアクセス方式によりデータを送信するデー 夕送信手段と、

前記複数チャネル中の各チャネルについてのキャリアを 検出する送信局キャリア検出手段と、

前記送信局キャリア検出手段によりキャリアの検出され ないチャネルの1つを前記データ送信手段によるデータ 送信チャネルとして選択するデータ送信チャネル選択手 段と、

前記データ送信手段によるデータ送信時からの経過時間 を計時する計時手段と、

前記データ送信手段によるデータ送信後、予め設定され た時間内に該送信データに関する受信確認信号であるA 30 CK信号を受信しない場合、前記送信局キャリア検出手 段による各チャネルのキャリア検出、および該キャリア 検出に基づく前記データ送信チャネル選択手段によるチ ャネルの選択を再度実行し、データ送信を再度実行する データ送信制御手段とを有することを特徴とする送信装 置。

【請求項9】 請求項8に記載の送信装置において、 前記ランダムアクセス方式はCSMAプロトコルによる 通信方式であることを特徴とする送信装置。

【請求項10】 複数局が無線通信媒体を介してランダ ムアクセス方式によりデータの送受信を行う無線通信ネ ットワーク中において使用される受信装置において、

前記無線通信媒体を構成する予め設定された通信帯域を 分割した複数のチャネル中の各チャネルを分別するフィ ルタ手段を介してデータを受信するデータ受信手段と、 前記複数チャネル中の各チャネルについてのキャリアを 検出する受信局キャリア検出手段と、

前記受信局キャリア検出手段によりキャリアの検出され ないチャネルの1つをACK信号送信チャネルとして選 択するACK送信チャネル選択手段と、

ネルを介して、ランダムアクセス方式によるACK信号の送信を実行するACK信号送信手段と、を有することを特徴とする受信装置。

【請求項11】 請求項10に記載の受信装置において、

前記ランダムアクセス方式はCSMAプロトコルによる 通信方式であることを特徴とする受信装置。

【請求項12】 送信局と受信局とが予め周波数範囲の 決められた通信帯域を分割した複数のチャネルを用いて 無線通信する無線通信ネットワークにおける通信方法で 10 あって、

前記送信局は、

前記複数チャネルのキャリアの有無を検出し、

該キャリアの検出されなかったチャネルの1つをデータ 送信チャネルとして選択し、

選択されたチャネルを介してランダムアクセス方式によりデータを送信し、

計時手段によって前記データの送信からの経過時間の計時を開始し、

前記受信局は、

前記複数のチャネルのキャリアを抽出し、

抽出されたキャリアが、当該受信局に対して送信された データである場合に該データを受信し、

データ受信後、前記複数のチャネルのキャリアを検出 し、キャリアの検出されないチャネルを求め、

該キャリアの検出されないチャネルの1つをACK送信 チャネルとして選択し、

選択されたチャネルを介してランダムアクセス方式によりACK信号を送信し、

前記送信局は、

前記計時手段による計時を開始してから予め設定された時間を経過しても、前記受信局の送信するACK信号を受信しない場合に、再度前記複数のチャネルのキャリア検出およびチャネル選択を実行し、前記データ信号の再送信を試みることを特徴とする無線通信ネットワークにおける通信方法。

【請求項13】 請求項12に記載の通信方法において、

前記ランダムアクセス方式はCSMAプロトコルによる 通信方式であることを特徴とする無線通信ネットワーク における通信方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、無線通信ネットワークおよび無線通信ネットワークにおける通信方法に関し、特に、ネットワーク上の複数の端末が同時にデータ通信を実行する環境において、通信効率を高め、データの伝送遅延時間を改善した無線通信ネットワークおよび無線通信ネットワークにおける通信方法に関する。

[0002]

4

【従来の技術】パーソナルコンピュータ利用者の増加や映像や音声などのリアルタイムアプリケーションの普及により、通信ネットワークの高速化が求められている。こうした要求に応えるべく、有線を伝送媒体としたネットワークでは、データリンク層において高速広帯域伝送が可能な伝送方式が提案され実現されつつある。また、物理層に関しては、光ファイバー技術の進歩により十分広い帯域を提供することが可能となってきている。

【0003】しかしながら、無線を伝送媒体としたネットワーク(以下無線ネットワークと呼ぶ)ではデータリンク層における高速広帯域の伝送技術はまだ確立されていない。さらに、周波数資源の有限性から、高速広帯域化の研究が進んでいる一方で、いかに有効に限られた周波数資源を使うかが問題になっている。そこで物理的な限界をカバーする方法として、データリンクレベルのアクセス方式に工夫をすることが考えられている。

【0004】通信ネットワークのアクセス方式には、時分割多重や周波数分割多重のような制御局が端末に送受信のための時間や周波数を固定的に割り当てる固定割り 30 当て方式と、各端末が自律的に送受信する分散制御方式のランダムアクセス方式がある。ところで、文献「N.

Abramson, "The ALOHA System - Another alternative for computer communications," Proc. of Fall Joint Comput. Conf., pp. 177-186, May1975」によると、時分割多重や周波数分割多重では、最大端末数を考慮して時間や周波数を分割しており、実際に使われていないタイムスロットや周波数が増えて無駄となる。また分割が固定的なので、バースト・トラフィックへの対応が困難である。そうした問題を解決するために制御局の機能を強化しようとすると、ますます制御局は複雑なものになり、コストや信頼性に問題がある。

【0005】一方、ランダムアクセス方式を使用した場合には、上記の様な問題は発生しない。但し、他の端末と伝送媒体の取り合いになるので、アクセス方式で制御することとなる。基本的なアクセス制御方式として、ALOHA方式、Slotted ALOHA方式、CSMA(Carrier Sense Multiple Access)方式、CSMA/CD(Carrier Sense Multiple Access With Collision Ditection)方式などがある。ALOHA方式は、送信要求が発生すると、すぐに送信を開始する方式である。負荷が高くなると衝突の回数が急増し、平均チャネル利用効率は最大でも18%程度で、高負荷のところで低下が激しい。ここで、平均チャネル利用効率とは、伝送容量に対する1秒当たりの平均送信成功パケットサイズの比である。

50 【0006】Slotted ALOHA方式は時間軸

をパケット長と同じ長さのスロットに分割し、送信要求が発生してもすぐには送信せず、スロットの開始時点でのみ送信を開始できる。この方式の平均チャネル利用効率の最大値はALOHA方式の2倍に達するが、やはり高負荷のところで低下が激しい。

【0007】CSMA方式の基本的な動作を図16および図17によって説明する。図16は、端末とネットワークの概念図を示すものである。端末A、端末B、端末C、端末D、および端末Eは伝送媒体を介して通信を実行する通信能力を持つ端末である。端末Aから端末Eに 10 データを伝送している様子を合わせて示している。この方式では、各端末は、パケットの送信要求があると、パケット送信前に伝送媒体のキャリアの有無を調べ、キャリアが出ていなけれは、パケットを送信する。キャリアを検出した場合は一定時間待った後、再びキャリアの有無を調べ、キャリアが出ていないことを確認した後にパケット送信をする。

【0008】図17は、チャネルの利用状況を示すタイムチャートで、端末Aから端末Eにパケットを送信し、その後端末Dから端末Bにパケットを送信していることを示している。この方式は上記2方式に比べて、チャネル利用効率が全般的に高いが、やはり高負荷時にチャネル利用効率が低下する。CSMA/CD方式はCSMA方式に衝突検出(Collision Ditection)機能を付加したもので、送信中にパケットの衝突が分かる。このCSMA/CD方式のチャネル利用効率が上述の他の方式に比較して最も優れており、高負荷時にもチャネル利用効率が低下しない。

【0009】最もチャネル利用効率特性のよいCSMA /CD方式の特性を、さらに向上させる手段として、単 30 一のチャネルではなく、チャネルを分割して複数のチャ ネルにすることが、文献「野村、岡田、中西、 "バス 型ローカルエリアネットワークにおける多重チャネル形 CSMA/CD方式," 電子情報通信学会誌, 1. J67-D, no. 9, pp. 949-95 Semptember, 1984」で提案され ている。これによると、図18のようにチャネルを4つ に分割し、各端末A、B、C、D、Eは各チャネルでデ ータの送受信を可能としてある。 図19はある時点にお ける端末Aと端末E、端末Bと端末Dの通信の様子を示 40 すもので、端末Aと端末EはCH2、端末Bと端末D は、CH3を使用して通信を行い得る。このように異な るチャネルを各端末間通信において使用することによっ て同時に異なる2つ以上の通信が可能となる。

【0010】図20は、負荷に対する平均チャネル利用効率、図21は、負荷に対する平均伝送遅延時間の挙動を示す。負荷とは、伝送容量に対する1秒あたりの送信パケットサイズの比である。つまり、負荷100%の場合、1秒あたり1Mビットのパケットが送信されるとすれば200%では2Mビットのパケット送信があること

を意味する。但し、パケットの送信は必ずしも成功する とは限らないので、この負荷は送信不成功パケットも含 んでいる。

【0011】平均チャネル利用効率とは、伝送容量に対する1秒あたりの平均送信成功パケットサイズの比の平均である。つまり、1秒あたり1Mビットのパケット送信を100%の効率とすると、利用効率50%の場合、1秒当たり平均して500kビットの送信成功パケットがあることを意味する。

【0012】図20により、単一チャネルCSMA/CD方式より、4チャネルCSMA/CD方式の方が、チャネル利用効率が向上することが示され、また、図21によって、単一チャネルCSMA/CD方式よりも4チャネルCSMA/CD方式が伝送遅延時間が減少することが示されている。これらは、CSMA/CD方式におけるマルチチャネルの優位性を証明するものである。【0013】

【発明が解決しようとする課題】上述のようにCSMA/CD方式におけるマルチチャネル化はデータ通信において優れた特性を有する。しかしながら、無線ネットワークにおいては、伝送データパケットの衝突検知が困難なため、有線方式において有効なCSMA/CD方式を無線方式にそのまま適用することはできない。従って、無線ネットワークにおいてマルチチャネル化を行ったとしても、衝突検出(CollisionDetection)機能の特長を活かした伝送効率の改善を図ることは困難であった。

【0014】本発明は、CSMA/CD方式の使用が困難な無線通信方式において、データ伝送効率を高めるデータ通信システムおよび通信方法を提供することを目的とする

【 0 0 1 5 】 本発明は、また、特にマルチチャネルによる通信方式において、チャネル利用効率を高めるとともに、伝送遅延時間を改善したデータ通信システムおよび通信方法を提供すること目的とする。

[0016]

【課題を解決するための手段】上記課題を解決するために、この発明における無線通信ネットワークは、複数局が無線通信媒体を介してランダムアクセス方式によりデータの送受信を行う無線通信ネットワークにおいて、送信局は、予め設定された通信帯域を分割した複数のチャネルを介してランダムアクセス方式によりデータを送信するデータ送信手段と、複数チャネル中の各チャネルについてのキャリアを検出する送信局キャリア検出手段と、送信局キャリア検出手段によりキャリアの検出されないチャネルの1つをデータ送信手段によるデータ送信チャネルとして選択するデータ送信手やの経過時間を計時する計時手段と、データ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段と、データ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータ送信手段によるデータに関する受

信確認信号であるACK信号を受信しない場合、送信局 キャリア検出手段による各チャネルのキャリア検出、お よび該キャリア検出に基づくデータ送信チャネル選択手 段によるチャネルの選択を再度実行し、データ送信を再 度実行するデータ送信制御手段とを有し、該ネットワー ク中のデータ受信局は、複数チャネル中の各チャネルを 分別するフィルタ手段を介してデータを受信するデータ 受信部と、複数チャネル中の各チャネルについてのキャ リアを検出する受信局キャリア検出手段と、受信局キャ リア検出手段によりキャリアの検出されないチャネルの 1つをACK信号送信チャネルとして選択するACK送 信チャネル選択手段と、ACK送信チャネル選択手段に より選択されたチャネルを介して、ランダムアクセス方 式によるACK信号の送信を実行するACK信号送信手 段と、を有することを特徴とする。

【0017】また、本発明の無接通信ネットワークにお けるランダムアクセス方式はCSMAプロトコルによる 通信方式であることを特徴とする。

【0018】また、本発明の無接通信ネットワークにお けるデータ送信局中の送信局キャリア検出手段は、複数 のチャネル中の各チャネルを分別するフィルタ手段を有 し、該フィルタ手段によるチャネル分別により、各チャ ネルのキャリアを検出することを特徴とする。

【0019】また、本発明の無接通信ネットワークにお けるデータ送信チャネル選択手段、およびACK送信チ ャネル選択手段は、キャリアが抽出されなかったチャネ ルからランダムに一つのチャネルを選択することを特徴 とする。

【0020】また、本発明の無接通信ネットワークにお けるチャネル数は2ないし5であることを特徴とする。 【0021】また、本発明の無接通信ネットワークにお ける通信帯域は周波数分割方式によって複数のチャネル に分割されていることを特徴とする。

【0022】また、本発明の無接通信ネットワークにお ける通信帯域は符号分割方式によって複数のチャネルに 分割されていることを特徴とする。

【0023】また、本発明の送信装置は、予め設定され た通信帯域を分割した複数のチャネルを介してランダム アクセス方式によりデータを送信するデータ送信手段 と、複数チャネル中の各チャネルについてのキャリアを 検出する送信局キャリア検出手段と、送信局キャリア検 出手段によりキャリアの検出されないチャネルの1つを データ送信手段によるデータ送信チャネルとして選択す るデータ送信チャネル選択手段と、データ送信手段によ るデータ送信時からの経過時間を計時する計時手段と、 データ送信手段によるデータ送信後、予め設定された時 間内に該送信データに関する受信確認信号であるACK 信号を受信しない場合、送信局キャリア検出手段による 各チャネルのキャリア検出、および該キャリア検出に基 づくデータ送信チャネル選択手段によるチャネルの選択 50 使用される端末は、無線チャネルフィルタリング手段、

を再度実行し、データ送信を再度実行するデータ送信制

【0024】また、本発明の送信装置において、ランダ ムアクセス方式はCSMAプロトコルによる通信方式で あることを特徴とする。

御手段とを有することを特徴とする。

【0025】また、本発明の受信装置は、無線通信媒体 を構成する予め設定された通信帯域を分割した複数のチ ャネル中の各チャネルを分別するフィルタ手段を介して データを受信するデータ受信部と、複数チャネル中の各 チャネルについてのキャリアを検出する受信局キャリア 検出手段と、受信局キャリア検出手段によりキャリアの 検出されないチャネルの1つをACK信号送信チャネル として選択するACK送信チャネル選択手段と、ACK 送信チャネル選択手段により選択されたチャネルを介し て、ランダムアクセス方式によるACK信号の送信を実 行するACK信号送信手段と、を有することを特徴とす る。

【0026】また、本発明の受信装置において、ランダ ムアクセス方式はCSMAプロトコルによる通信方式で あることを特徴とする。

【0027】また、本発明の通信方法は、送信局と受信 局とが予め周波数範囲の決められた通信帯域を分割した 複数のチャネルを用いて無線通信する無線通信ネットワ ークにおける通信方法であって、送信局は、複数チャネ ルのキャリアの有無を検出し、該キャリアの検出されな かったチャネルの1つをデータ送信チャネルとして選択 し、選択されたチャネルを介してランダムアクセス方式 によりデータを送信し、計時手段によってデータの送信 からの経過時間の計時を開始し、受信局は、複数のチャ ネルのキャリアを抽出し、抽出されたキャリアが、当該 受信局に対して送信されたデータである場合に該データ を受信し、データ受信後、複数のチャネルのキャリアを 検出し、キャリアの検出されないチャネルを求め、該キ ャリアの検出されないチャネルの1つをACK送信チャ ネルとして選択し、選択されたチャネルを介してランダ ムアクセス方式によりACK信号を送信し、送信局は、 計時手段による計時を開始してから予め設定された時間 を経過しても、受信局の送信するACK信号を受信しな い場合に、再度複数のチャネルのキャリア検出およびチ ャネル選択を実行し、データ信号の再送信を試みること を特徴とする。

【0028】また、本発明の通信方法において、ランダ ムアクセス方式はCSMAプロトコルによる通信方式で あることを特徴とする。

[0029]

【発明の実施の形態】本発明の無線通信ネットワークは ランダムアクセス方式による通信においてマルチチャネ ルを実現したものであり、無線通信媒体によって接続さ れた複数の端末によるデータ通信を実行する。本発明に

キャリア検出手段、無線チャネル選択制御手段、データ リンク制御手段、ACK計時手段を有し、周波数分割あ るいは、符号分割によってマルチチャネル化された無線 通信媒体を介して端末間での通信を実行する。端末によ るチャネルの選択は、まず、チャネルのキャリア検出を 実行し、キャリアの検出されなかった空きチャネル中か らランダムに1つのチャネルを選択して通信チャネルと して使用する。選択された通信チャネルによるパケット 送信が終了すると、パケット送信端末は、パケット受信 端末からのACK(確認応答)メッセージを受領するこ とによって送信の成功を確認する。

[0030]

【実施例】本発明の実施例を以下、図を用いて説明す る。図1に本発明の実施例における複数の端末と無線通 信ネットワークのシステム概念図を示す。端末A、端末 B、端末C、端末D、および端末Eは無線通信媒体を介 しての通信能力を有する端末である。本実施例では、そ の伝送媒体が周波数分割または、符号分割等の方式によ り3つのチャネルに分割され(それぞれCH1、CH 2、CH3とする)、各端末A-Eはこれら複数チャネ 20 ルの各チャネルを使用してデータ送受信が可能な構成と なっている。

【0031】端末の概略構成を、図1における端末Aに ついて示す。他の端末B-Eも端末Aと同様の構成を有 する。端末Aについて示すように、端末は、ACK計時 手段1、データリンク制御手段2、無線チャネル制御手 段3、キャリア検出手段4、および無線チャネルフィル タリング手段5を有し、端末は伝送媒体6を介して他端 末とのデータ通信を行う。ACK計時手段1は、端末か ら他の端末へデータパケットを送信した後、パケット送 30 信に関する成功メッセージを含むACKパケットをデー 夕受信端末から受信するまでの時間を計る機能を持つ手 段である。データリンク制御手段2は、無線チャネル選 択制御手段3によって選択されたチャネルを使ってパケ ットを送信する手段である。無線チャネル選択制御手段 3は、キャリア検出手段4によってキャリアが検出され なかったチャネルから通信に使用する1つのチャネルを 選択する手段である。キャリア検出手段4は、無線チャ ネルフィルタリング手段5から得た信号をもとに無線通 信網上のチャネルのキャリアを検出する機能を持つ手段 40 である。無線チャネルフィルタリング手段5は、複数の チャネルについて、チャネルごとの受信信号を抽出する 機能を持つ手段である。

【0032】図1における伝送媒体は無線通信媒体であ り、この実施例では、3つのチャネルに分割されてい る。チャネル分割は、例えば図2に示す周波数分割、あ るいは図3に示すスペクトル拡散を用いた符号分割によ って達成される。 図2および図3において、 横軸 f は周 波数を示す。周波数分割の場合、チャネル(CH1,C H2, CH3) ごとに異なる周波数を割り当て、符号分 50 する機能を持つモジュールで、LSIによって実現でき

割の場合、スペクトル拡散を用いた符号をチャネルごと に割り当てることにより各チャネルの識別を可能として

【0033】図1に示す端末Aが端末Eと無線通信媒体 中のチャネルCH1を使ってデータ通信を行っている間 に、端末Dが端末Bに対して同じ無線通信媒体中のチャ ネルCH3を使ってデータ送信を行おうとする場合の様 子を時系列的に図4、図5、図6に示す。

【0034】図4、図5、および図6の各図は各チャネ ルごとの利用状況の変化を逐次示す図である。無線通信 媒体中、周波数分割等で分割された3つのチャネルCH 1, CH2, およびCH3の各々について、時間軸tに 関してのデータ転送状況を示している。まず、図4で は、チャネルCH1を使用して端末Aから端末Eにデー 夕送信が実行されており、このデータ送信の実行中に端 末Dがデータ送信のために全チャネル(CH1, CH CH3)のキャリアをセンスし、チャネルの空き状 態を検知している状態を示している。

【0035】図5は、端末Dが各チャネルのキャリアセ ンスによって、キャリアの有無を検出し、複数チャネル から1つのチャネルを通信チャネルとして選択した状態 を示している。ここでは、チャネルCH1以外の2つの 空きチャネルCH2、CH3を検出し、これらCH2お よびCH3の空きチャネル中から、チャネルCH3を端 末Dの使用チャネルとして決定している。

【0036】図6は、端末Dが通信チャネルとして決定 したチャネルCH3を使って、端末Bに対するデータ送 信を実行している状態を示す。端末Dから端末Bへのデ ータ送信は、端末Aから端末Eに対するデータ送信と同 時に並列的に行うことができる。なお、図4、図5、図 6いずれの状態においても、端末によるチャネルのキャ リアセンスはデータ送信を妨げるものではない。

【0037】図7は本発明の実施例における端末装置の ブロック図である。以下で説明する実施例では周波数分 割により通信チャネルが複数に分割された無線通信媒体 による通信において適用される通信端末の例を示す。

【0038】図7で示すように、端末装置は、大きく分 けて上位層10、データリンク部20、無線受信部3 0、無線送信部40、物理インタフェース部50により 構成され、伝送媒体60により他端末とのデータ通信を 行う。

【0039】上位層10はOSI第3層(ネットワーク 層)に相当するソフトウエアモジュールである。他の端 末に対して送付すべきデータがあるときは、データリン ク制御部21に送信を要求する。データリンク部20 は、データリンク制御部21、ACK計時部22から構 成される。データリンク制御部21は、上位層10から の要求に応じてデータパケットの送信制御をする機能と 他の端末から受信したデータパケットにかかわる処理を

ば、

1 2

る。ここでデータパケットとは、上位層10から送られてきたデータをパケット化したものである。ACK計時部22は、チャネル数nに対応する数であるn個のタイマーを持ち、複数のチャネルについて同時に計測することが可能である。

【0040】データパケット送信時における、このデータリンク部20の機能のフローを図8を使って説明する。パケット送信に際して、まずキャリア検出部33に対してキャリアセンスを行うよう命令を送り(ステップ802)、各チャネルのキャリアの有無を確認(ステッ 10プ803)する。キャリアの出ていないチャネルがあれば、無線チャネル選択制御部41から選択された1つのチャネルが通知(ステップ806)される。全てのチャネルでキャリアが検出された場合、バックオフ時間を計算(ステップ804)し、その時間だけ待機(ステップ805)した後、再び各チャネルをセンス(ステップ802)する。バックオフの時間は、例えば以下に示すCSMA/CD方式で使われているTruncatedBinary Exponential Backof fが使用される。 20

[0041]

۲.

【数1】これは、バックオフ時間Tを

 $T = t \cdot n$

0≦n<2k (k=min (m, 10)) m:衝空同数

とするものである。 tは定数で512ビットのパケット 送信時間である。

【0042】また、上記の方法と異なるバックオフ時間の設定方法として、予め定められた正の整数、例えば512を最大値として1から512までの値の中からランダムに1つの数字を選び、その数字と最大伝播遅延時間を乗じたものをバックオフ時間とする方法も有効である。

【0043】無線チャネル選択制御部41から選択された送信チャネルの通知を受けた後、その通知されたチャネルを使用してパケットの送信を開始(ステップ807)し、送信が終了(ステップ808)すると、パケット送信チャネルに対応したその計時部22で計時を開始するための命令を出し、計時が開始された状態で送信したパケットに対するACKパケットを待つ(ステップ809)。予め設定された許容ACK待ち時間であるTack秒までにACKパケットを受信すればACK計時部22に計時中止命令を出し、送信終了(ステップ810、812)となる。しかし、予め設定された待ち時間であるTack秒経過してもACKパケットを受信しなかったときは、ACK計時部22からタイムアウト通知が出力され、送信の失敗とみなされ、パケットの再送(ステップ811からステップ802)が行われる。

[0044]

【数2】TACKはあらかじめ決められた値であり、例え

TACK = 最大往復伝搬遅延時間+平均パケット処理時間に設定される。

【0045】次にデータパケット受信時のデータリンク 制御部21の機能の実施例を図9を使って説明する。他 の端末からデータパケットを受信待ち(ステップ90 2) し、データ信号判断部によって自端末宛のパケット と判定されたパケットの受信を開始し、データパケット の受信が完了(ステップ902からステップ903)す ると、データパケットを送信してきた端末にACKパケ ットを送信するためにキャリア検出部33に対してキャ リアセンスを行うよう命令を送り、各チャネルのキャリ アの有無を確認(ステップ903、ステップ904)す る。キャリア検出部33からキャリアの出ていないチャ ネルがあることを通知されると(ステップ904からス テップ907)、無線チャネル選択制御部41にキャリ アの出ていないチャネルが通知される。その後、通知さ れたキャリアの無いチャネル中から無線チャネル選択制 御部41によって選択された1つのチャネルが通知(ス 20 テップ907)される。全てのチャネルでキャリアが検 出された(ステップ904からステップ905)場合、 バックオフ時間を計算(ステップ905)し、そのバッ クオフ時間だけ待機(ステップ906)した後、再び各 チャネルをセンス (ステップ906からステップ90 3) する。

【0046】無線チャネル選択制御部41から、選択さ れた送信チャネルの通知を受けた後、そのチャネルを使 用してACKパケットの送信を実行する。ACK計時部 22は、自端末がパケットを送ってから送信相手からの 30 ACKパケットを受信するまでの時間を計る機能を持つ モジュールで、クロック回路を含んだICで実現でき る。データリンク制御部21よりあるチャネルについて のACK計時開始通知を受けると、そのチャネルに関し ての計時を開始する。Tack秒経過すると、計時を中止 し、データリンク制御部21にタイムアウト通知を行 う。TACK 秒経過前にデータリンク制御部21から計時 中止命令の通知があった場合は、その命令の通知時点で 計時を中止する。また、複数のチャネルを同時に利用可 能なので、チャネル数がn(nは2以上の整数)の場 合、チャネル毎に合計n個の計時時計(Timer 1, Timer 2, Timer 3, ..., Timer n)を有する。

【0047】データリンク部20におけるACK計時部は、上述の実施例のようにチャネル数nに対応するn個の計時時計を持ち、それぞれの計時時計が対応する1つのチャネルの計時を行う構成でもよいが、複数チャネルに共通の計時部を構成し、データリンク制御部21にパケットの送信時刻とACKパケットを待つ時間を管理するテーブルを保持することにより、複数チャネルの計時50を共通の計時部によって行うように構成してもよい。

【0048】無線受信部30は、無線チャネルフィルタ リング部31、復調部32、キャリア検出部33、デー 夕信号判断部34から構成される。無線チャネルフィル タリング部31は、物理インタフェース50から受信し た信号をチャネルごとにフィルタリングする機能を持 ち、例えばバンドパスフィルタによって実現できる。複 数チャネルを扱うため、チャネル数がn(nは2以上の 整数)の場合、チャネル毎に1つのバンドパスフィルタ を割り当て、合計 n個のバンドパスフィルタ (BPF 1、BPF 2、BPF 3、…、BPF n)によっ 10 て無線チャネルフィルタリング部31が構成される。な お、複数のバンドパスフィルタを持たず、スキャン方式 によってチャネル分別を行うように無線チャネルフィル タリング部を構成してもよい。復調部32は無線チャネ ルフィルタリング部31でフィルタリングされたキャリ アをベースバンド信号にまで復調する機能を持ち、IC で実現できる。

【0049】キャリア検出部33はデータパケットやA CKパケットの送信前に各チャネルのキャリアを検出す る機能を持つモジュールで、検出されたチャネルをデー 20 タリンク制御部21に通知する。ワンチップ化された I Cモジュールなどで実現できる。データ信号判断部34 は、復調部32から得た信号をもとに、受信した信号が 自端末宛かどうかをMACアドレス等の端末固有のアド レスを見て判断するモジュールで、LSIなどで実現で

【0050】無線送信部40は、無線チャネル選択制御 部41、変調部42から構成される。無線チャネル選択 制御部41はキャリア検出部33での検出結果をもとに どのチャネルで送信するかを決定し、ワンチップ化され 30 たICモジュールなどで実現できる。チャネルは、キャ リアが検出されなかったチャネルの中からランダムに一 つを選ぶ。

【0051】変調部42は、ベースバンド信号を無線チ ャネル選択制御部41で決められたチャネルに応じた送 信周波数にまで変調して物理層インタフェース部50に 送る機能を持ち、LSIなどで実現できる。変調部42 は、チャネルごとに、チャネルに応じた周波数に変換す る変調器を設ける構成でもよい。例えば、5チャネルで あれば、5個の変調器を設け、選択されたチャネルに応 40 じた利用する変調器が決定される。

【0052】物理層インタフェース部50は伝送媒体6 〇と端末装置のインタフェース部分であり、無線であれ ば、アンテナとRF回路モジュールである。伝送媒体6 Oは、無線伝送媒体である。

【0053】以上の実施例においては、周波数分割によ ってマルチチャネル化した場合の例を説明したが、前述 のように無線チャネルフィルタリング部31を拡散符号 を用いた一次復調回路にし、変調部42をベースバンド 信号を搬送波周波数で変調する一次変調回路と、拡散符 50 ネルCSMA方式に比較し、格段に性能が良くなってい

号を用いた二次変調回路の合成回路にすることにより、 符号分割を用いたマルチチャネルを実現することができ る。すなわち、端末中のチャネルフィルタリング手段お よび変調部は、通信において適用されるマルチチャネル 方式に対応した構成をもつことが要請される。

14

【0054】周波数分割の方がチャネルを多く確保でき るが、無線伝送路の誤り率が大きい場合、スペクトル拡 散を用いる符号分割の方が雑音に強く、周波数分割より も優れている。よって、無線伝送路の誤り率が小さい所 では、周波数分割、大きいところでは符号分割が有効で

【0055】次に本発明のCSMA方式を用いたマルチ チャネル通信方式の性能を示すシミュレーション結果を 図10、図11、図12、図13を用いて示す。

[0056]

【表1】シミュレーションの条件は、以下の通りであ る。

局数: 10局

チャネル分割時のチャネル数: 2、3、4、5、6

セルサイズ: 6000m

最大伝搬遅延時間: 20.0µsec

パケット長: 512bit 伝送容量: 1Mbps

【0057】図10は、伝送媒体60への負荷に対する 平均チャネル利用効率の挙動を示したものである。2、 3、5チャネルの場合の本方式の結果と、従来方式との 比較のため、1チャネルCSMA方式、CSMA/CD 方式を同じ条件でシミュレーションした結果も合わせて 示す。

【0058】ここで、負荷とは、伝送容量に対する1秒 あたりの送信パケットサイズの比である。つまり、上記 のシミュレーション条件で負荷100%の場合、1秒あ たり1 Mビットのパケットが送信されることを意味す る。但し、データパケットの送信は必ずしも成功すると は限らないので、この負荷は送信不成功パケットも含ん だ値である。

【0059】ここで、平均チャネル利用効率とは、伝送 容量に対する1秒あたりの平均送信成功パケットサイズ の比の平均である。つまり、上記のシミュレーション条 件でチャネル利用効率50%の場合、1秒当たり平均し て500kビットの送信成功パケットがあることを意味

【0060】この図から、従来の1チャネルCSMA方 式に比較して、本発明のマルチチャネル方式とした2チ ャネルから5チャネルの方式が平均チャネル利用効率が 高く、特に高負荷時には、従来の1チャネルCSMA方 式の倍になることが明らかである。また、チャネルの分 割数が多いほど高負荷で利用効率が落ちにくくなり、負 荷の上昇とともに急激に利用効率が落ちる従来の1チャ

る。

【0061】図11は、伝送媒体60への負荷に対するパケットの平均伝送遅延時間の挙動を示したものである。ここで、負荷とは、図10で説明したものと同じである。ここで、データパケットの平均伝送遅延時間とは、データパケットの送信要求が発生した時点から実際に送信成功する時の送信開始時点までを計測したものである。この図11から、本発明のマルチチャネル方式が平均伝送遅延時間が小さく、特に高負荷時において、より有利になることが分かる。また、チャネル数が多いほ10ど遅延時間が小さい。

【0062】図12は、縦軸を平均チャネル利用効率の 改善率、横軸をチャネル数としたグラフと、縦軸を平均 伝送遅延時間の改善率、横軸をチャネル数としたグラフ を負荷を変化(75%、175%、275%)させて作 成して示したものである。改善率は、従来の1チャネル CSMA方式からの改善率である。この図12より、負 荷75%の場合には、チャネル数が6であるとチャネル 利用効率、平均伝送遅延時間ともにかえって性能が悪く なることが分かる。さらに負荷を高くして175%の場 合には、2チャネルから5チャネルまでは改善率が漸増 するが、6チャネルまで増やすと改善率の低下を招くこ とが分かる。さらに負荷を高くして275%の場合に は、ようやく6チャネルの改善率が5チャネルの改善率 をわずかに上回るぐらいになっている。以上のことか ら、最適チャネル数の範囲は、2から5までのチャネル 数の範囲であり、6以上にしても性能の向上を望めない ことが分かる。これはチャネル数を増やしていくと、チ ャネル当たりの伝送容量が少なくなり、送信に時間がか かるためである。また、チャネル数の増加はコスト増を 招くこととなり、大幅なコストの増加をせずに十分な本 発明の効果が期待できるチャネル数は2から5である。 【0063】図13は、チャネルの平均利用効率に対す るパケットの平均伝送遅延時間の挙動を示したものであ る。チャネルの平均利用効率は、再送や送信失敗のパケ ット量も含めて全てカウントするデータリンク層から見 たスループットではなく、アプリケーション層から見た スループットに相当する。このため、この値はアプリケ ーションの動作に直接影響を与えるものである。例え ば、遅延要求の厳しいリアルタイムのアプリケーション であれば、スループットが増加しても遅延が増加しない 方がよい。また、高負荷になると(データリンク層から 見たスループットの増大)、伝送遅延時間は増加しつつ もスループットは低下するため、同じスループットの値 に2つの値の伝送遅延時間が対応することが生じる。こ のため、スループットをネットワークの挙動の観察のパ ラメータとしているアプリケーションでは、スループッ トの値から期待する以上に伝送遅延時間が大きくなり、 アプリケーションの制御に支障を来たす。こうした影響 の観点から図13を見ると、本発明の多チャネル方式の 50 16 りもリアルタイムアプリケーシ

方が、CSMA方式よりもリアルタイムアプリケーションに適しているといえる。

【0064】また、CSMA方式と同じく無線通信に適用可能なALOHA方式をマルチチャネル化(3チャネル)して、平均チャネル利用効率と平均伝送遅延時間を、マルチチャネルCSMA方式のシミュレーションと同様のパラメータを用いたシミュレーションにより測定した結果を図14と図15に示す。これらの図からわかるようにALOHA方式では、マルチチャネルとしてもチャネル利用効率や伝送遅延時間はあまり向上せず、CSMA方式にマルチチャネルを適用したほうが効果的であることが分かる。これは、CSMA方式では、キャリアのないチャネルから1つのチャネルを選ぶのに対し、ALOHA方式ではキャリアのあるチャネルを含めてその中から選ぶため、CSMA方式よりも衝突する確率が高くなるからである。

【0065】上述した実施例中のシミュレーションにおいて、パケットサイズを変えたと想定した場合、平均チャネル利用効率や平均伝送遅延時間の値はパケットサイズの変化に応じた変化をすることが予測されるが、送信機会に注目するとパケットサイズが変化した分、送信できるタイミングは、全局で相対的に同じ変化をするため、チャネル数の変化に対する相対的な関係は変化せず、上述した図12で示すチャネル数の変化に伴う改善率の変化の傾向は変わらないものと予測される。従って、チャネル数は伝送パケットサイズにかかわらず2から5の範囲が最適値となる。

【0066】また、上記シミュレーションにおいて局数を変化させたと想定した場合、すべての局から発生するトラフィックの総量が同じであるとすると、局あたりのトラフィック量が変化することになり、平均チャネル利用効率や平均伝送遅延時間の値は変化すること予測されるが、全局で同様なトラフィック量変化が発生するため、相対的な関係はやはり変化せず、図12で示すチャネル数の変化に伴う改善率の変化の傾向に大きなずれは生じないものと予測される。従って局数に変化があっても、最適チャネル数は2から5の範囲となる。

[0067]

【発明の効果】本発明の通信方式によれば、従来の単一 チャネルのCSMA方式に比較し、チャネル利用効率が 向上するため、電波資源の有効利用が可能となる。ま た、伝送遅延も高負荷になるまで低く抑えることができ るため、リアルタイムアプリケーションの動作にも悪影 響を与えにくいという効果を奏する。

【図面の簡単な説明】

【図1】 本発明の実施例における端末と無線通信ネットワークの概念図である。

【図2】 本発明の実施例における周波数分割によるチャネル分割の概念図である。

0 【図3】 本発明の実施例における符号分割によるチャ

ネル分割の概念図である。

【図4】 本発明の実施例におけるデータ送信開始前の 端末によるキャリア検知状態を示す図である。

【図5】 本発明の実施例におけるデータ送信開始前の端末による通信チャネル決定の状態を示す図である。

【図6】 本発明の実施例におけるデータ送信の状態を示す図である。

【図7】 本発明の実施例における端末装置の構成を示すブロック図である。

【図8】 本発明の実施例における端末装置のパケット 10 送信時の伝送制御部の動作を示すフローチャートである。

【図9】 本発明の実施例における端末装置のACKパケット送信時の伝送制御部の動作を示すフローチャートである。

【図10】 本発明のマルチチャネル方式を用いた場合の平均チャネル利用効率のシミュレーション結果の比較を示す図である。

【図11】 本発明のマルチチャネル方式を用いた場合の平均伝送遅延時間のシミュレーション結果を示す図で 20 ある。

【図12】 本発明のマルチチャネル方式を用いた場合の、平均チャネル利用効率および平均伝送遅延時間の改善数率のシミュレーション結果を示す図である。

【図13】 本発明の方式を用いた場合の平均チャネル 利用効率と平均伝送遅延時間の関係を示す図である。

【図14】 ALOHA方式をマルチチャネルにした場合の平均チャネル利用効率のシミュレーション結果を示す図である。

【図15】 ALOHA方式をマルチチャネルにした場 30 合の平均伝送遅延時間のシミュレーション結果を示す図である。

【図16】 1チャネルCSMA方式における端末とネットワークの概念図である。

【図17】 1チャネルCSMA方式における送信タイムチャートである。

18

【図18】 マルチチャネルCSMA/CD方式における端末とチャネルの概念図である。

【図19】 マルチチャネルCSMA/CD方式におけるデータ送信時の各チャネルの状態を示す図である。

【図20】 CSMA/CD方式をマルチチャネルにした場合の平均チャネル利用効率のシミュレーション結果を示す図である。

0 【図21】 CSMA/CD方式をマルチチャネルにした場合の平均伝送遅延時間のシミュレーション結果を示す図である。

【符号の説明】

- 1 ACK計時手段
- 2 データリンク制御手段
- 3 無線チャネル選択制御手段
- 4 キャリア検出手段
- 5 無線チャネルフィルタリング手段
- 6 伝送媒体
- 10 上位層
- 20 データリンク部
- 21 データリンク制御部
- 22 ACK計時部
- 30 無線受信部
- 31 無線チャネルフィルタリング部
- 32 復調部
- 33 キャリア検出部
- 34 データ信号判断部
- 40 無線送信部
- 41 無線チャネル選択制御部
 - 4 2 変調部
 - 50 物理インタフェース部
 - 60 伝送媒体

[2] [3] [34]

【図17】

CH パケット(A→E) パケット(D→B)

【図7】

BEST AVAILARIE COPY

送信側

受信側

【図19】

【図21】

平均伝送遅延時間(ミリ秒)

【図20】

平均チャネル利用効率(%)

