ELEMENTARY SET THEORY

An SAD3 Formalisation of the Appendix of "General Topology" by John L. Kelley

October 26, 2018

0.1 The Classification Axiom Scheme

Let a, b, c, d, e, r, s, t, x, y, z stand for *classes*.

Let $a \in x$ stand for a is an element of x.

Axiom (I). For each x for each y x = y iff for each z $z \in x$ iff $z \in y$.

[set/-s]

Definition (1). A set is a class x such that for some $y \ x \in y$.

0.2 Elementary Algebra of Classes

Definition (2). $x \cup y = \{ set \ u \mid u \in x \ or \ u \in y \}.$

Definition (3). $x \cap y = \{ set \ u \mid u \in x \ and \ u \in y \}.$

Let the *union* of x and y stand for $x \cup y$. Let the *intersection* of x and y stand for $x \cap y$.

Theorem (4a). $z \in x \cup y$ iff $z \in x$ or $z \in y$.

Theorem (4b). $z \in x \cap y$ iff $z \in x$ and $z \in y$.

Theorem (5a). $x \cup x = x$.

Theorem (5b). $x \cap x = x$.

Theorem (6a). $x \cup y = y \cup x$.

Theorem (6b). $x \cap y = y \cap x$.

Theorem (7a). $(x \cup y) \cup z = x \cup (y \cup z)$.

Theorem (7b). $(x \cap y) \cap z = x \cap (y \cap z)$.

Theorem (8a). $x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$.

Theorem (8b). $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$.

Let $a \notin b$ stand for a is not an element of b.

Definition (10). $\sim x = \{ set \ u \mid u \notin x \}$. Let the complement of x stand for $\sim x$.

Theorem (11). $\sim (\sim x) = x$.

Theorem (12a). $\sim (x \cup y) = (\sim x) \cap (\sim y)$.

Theorem (12b). $\sim (x \cap y) = (\sim x) \cup (\sim y)$.

Definition (13). $x \sim y = x \cap (\sim y)$.

Theorem (14). $x \cap (y \sim z) = (x \cap y) \sim z$.

Definition (15). $0 = \{ set \ u \mid u \neq u \}$. Let the void class stand for 0. Let zero stand for 0.

Theorem (16). $x \notin 0$.

Theorem (17a). $0 \cup x = x$.

Theorem (17b). $0 \cap x = 0$.

Definition (18). $\mathcal{U} = \{ set \ u \mid u = u \}$. Let the universe stand for \mathcal{U} .

Theorem (19). $x \in \mathcal{U}$ iff x is a set.

Theorem (20a). $x \cup \mathcal{U} = \mathcal{U}$.

Theorem (20b). $x \cap \mathcal{U} = x$.

Theorem (21a). $\sim 0 = U$.

Theorem (21b). $\sim \mathcal{U} = 0$.

Definition (22). $\bigcap x = \{setu \mid for \ each \ y \ if \ y \in x \ then \ u \in y\}$. Let the intersection of x stand for $\bigcap x$.

Definition (23). $\bigcup x = \{setu \mid for some \ y(y \in x \ and \ u \in y)\}$. Let the union of x stand for $\bigcup x$.

Theorem (24a). $\bigcap 0 = \mathcal{U}$.

Theorem (24b). $\bigcup 0 = 0$.

Definition (25). A subclass of y is a class x such that each element of x is an element of y. Let $x \subset y$ stand for x is a subclass of y. Let x is contained in y stand for $x \subset y$.

Proposition. $0 \subset 0$ and $0 \notin 0$.

Theorem (26a). $0 \subset x$.

Theorem (26b). $x \subset \mathcal{U}$.

Theorem (27). x = y iff $x \subset y$ and $y \subset x$.

Theorem (28). If $x \subset y$ and $y \subset z$ then $x \subset z$.

Theorem (29). $x \subset y$ iff $x \cup y = y$.

Theorem (30). $x \subset y$ iff $x \cap y = x$.

Theorem (31a). If $x \subset y$ then $\bigcup x \subset \bigcup y$.

Theorem (31a). If $x \subset y$ then $\bigcap y \subset \bigcap x$.

Theorem (32a). If $x \in y$ then $x \subset \bigcup y$.

Theorem (32b). If $x \in y$ then $\bigcap y \subset x$.

0.3 Existence of Sets

Axiom (III). If x is a set then there is a set y such that for each z if $z \subset x$ then $z \in y$.

Theorem (33). If x is a set and $z \subset x$ then z is a set.

Theorem (34a). $0 = \bigcap \mathcal{U}$.

Theorem (34b). $\mathcal{U} = \bigcup \mathcal{U}$.

Theorem (35). If $x \neq 0$ then $\bigcap x$ is a set.

Definition (36). $2^x = \{ set \ y \mid y \subset x \}.$

Theorem (37). $\mathcal{U} = 2^{\mathcal{U}}$.

Theorem (38a). If x is a set then 2^x is a set.

Proof. Let x be a set. Take a set y such that for each z if $z \subset x$ then $z \in y$ (by III). Then $2^x \subset y$.

Theorem (38b). If x is a set then $y \subset x$ iff $y \in 2^x$.

Definition. $R = \{ set \ x \mid x \notin x \}.$

Lemma. R is not a set.

Theorem (39). \mathcal{U} is not a set.

Definition (40). $\{x\} = \{set \ z \mid set \ x \in \mathcal{U} \ then \ z = x\}$. Let the singleton of $x \ stand$ for $\{x\}$.

Theorem (41). If x is a set then for each $y y \in \{x\}$ iff y = x.

Theorem (42). If x is a set then $\{x\}$ is a set.

Proof. Let x be a set. Then $\{x\} \subset 2^x$. 2^x is a class.

Theorem (43). $\{x\} = \mathcal{U} \text{ iff } x \text{ is not a set.}$

Theorem (44a). If x is a set then $\bigcap \{x\} = x$.

Theorem (44b). If x is a set then $\bigcup \{x\} = x$.

Theorem (44c). If x is not a set then $\bigcap \{x\} = 0$.

Theorem (44d). If x is not a set then $\bigcup \{x\} = \mathcal{U}$.

Axiom (IV). If x is a set and y is a set then $x \cup y$ is a set.

Definition (45). $\{x,y\} = \{x\} \cup \{y\}$. Let the unordered pair of x and y stand for $\{x,y\}$.

Theorem (46a). If x is a set and y is a set then $\{x,y\}$ is a set.

Theorem (46b). If x is a set and y is a set then $z \in \{x, y\}$ iff z = x or z = y.

Theorem (46c). $\{x,y\} = \mathcal{U}$ iff x is not a set or y is not a set.

Theorem (47a). If x, y are sets then $\bigcap \{x, y\} = x \cap y$.

Theorem (47b). If x, y are sets then $\bigcup \{x, y\} = x \cup y$.

Proof. Let x, y be sets. $\bigcup \{x, y\} \subset x \cup y$. $x \cup y \subset \bigcup \{x, y\}$.

Theorem (47c). If x is not a set or y is not a set then $\bigcap \{x,y\} = 0$.

Theorem (47d). If x is not a set or y is not a set then $\bigcup \{x, y\} = \mathcal{U}$.

0.4 Ordered Pairs: Relations

Definition (48). $(x,y) = \{\{x\}, \{x,y\}\}$. Let the ordered pair of x and y stand for (x,y).

Theorem (49a). (x, y) is a set iff x is a set and y is a set.

Theorem (49b). If (x, y) is not a set then $(x, y) = \mathcal{U}$.

Theorem (50). If x and y are sets then $\bigcup (x,y) = \{x,y\}$ and $\bigcap (x,y) = \{x\}$ and $\bigcup \bigcap (x,y) = x$ and $\bigcap \bigcap (x,y) = x$ and $\bigcup \bigcup (x,y) = x \cup y$ and $\bigcap \bigcup (x,y) = x \cap y$.

Theorem. If x is not a set or y is not a set then $\bigcup \bigcap (x,y) = 0$ and $\bigcap \bigcap (x,y) = \mathcal{U}$ and $\bigcup \bigcup (x,y) = \mathcal{U}$ and $\bigcap \bigcup (x,y) = 0$.

Definition (51). $1^{st}z = \bigcap \bigcap z$. Let the first coordinate of z stand for $1^{st}z$.

Definition (52). $2^{nd}z = (\bigcap \bigcup z) \cup ((\bigcup \bigcup z) \sim \bigcup \bigcap z)$. Let the second coordinate of z stand for $2^{nd}z$.

Theorem (53). $2^{nd}\mathcal{U} = \mathcal{U}$.

Theorem (54a). If x and y are sets then $1^{st}(x,y) = x$.

Theorem (54b). If x and y are sets then $2^{nd}(x,y) = y$.

Proof. Let x and y be sets. $2^{nd}(x,y) = (\bigcap \bigcup (x,y)) \cup ((\bigcup \bigcup (x,y)) \sim \bigcup \bigcap (x,y)) = (x \cap y) \cup ((x \cup y) \sim x) = y.$

Theorem (54c). If x is not a set or y is not a set then $1^{st}(x,y) = \mathcal{U}$ and $2^{nd}(x,y) = \mathcal{U}$.

Theorem (55). If x and y are sets and (x,y) = (r,s) then x = r and y = s.