Practice Problem 2.10

Find R_{ab} for the circuit in Fig. 2.39.

Answer: 19Ω .

Practice Problem 2.11

Calculate G_{eq} in the circuit of \Box Fig. 2.41.

Answer: 4 S.

Note: G is called conductance, which is the reciprocal of resistance, i.e., G = 1/R. The unit "S" is called Siemens, which is the unit of conductance and therefore $S = 1/\Omega$.

Practice Problem 2.12

Find v_1 and v_2 in the circuit shown in \square Fig. 2.43. Also calculate i_1 and i_2 and the power dissipated in the 12- Ω and 40- Ω resistors.

Answer: $v_1 = 10 \text{ V}$, $i_1 = 833.3 \text{ mA}$, $p_1 = 8.333 \text{ W}$, $v_2 = 20 \text{ V}$, $i_2 = 500 \text{ mA}$, $p_2 = 10 \text{ W}$.

Practice Problem 3.3

Find v and i in the circuit of \square Fig. 3.11.

Figure 3.11
For Practice Prob. 3.3.

Answer: −400 mV, 2.8 A.

Practice Problem 3.5

Calculate the mesh currents i_1 and i_2 of the circuit of \square Fig. 3.19.

Figure 3.19
For Practice Prob. 3.5.

Answer: $i_1 = 2.5 \text{ A}, i_2 = 0 \text{ A}.$

Practice Problem 3.7

Use mesh analysis to determine i_1 , i_2 , and i_3 in \Box Fig. 3.25.

Figure 3.25
For Practice Prob. 3.7.

Answer: $i_1 = 4.632 \text{ A}, i_2 = 631.6 \text{ mA}, i_3 = 1.4736 \text{ A}.$

Practice Problem 3.8

By inspection, obtain the node-voltage equations for the circuit in Fig. 3.28.

Figure 3.28
For Practice Prob. 3.8

Answer:

$$\begin{bmatrix} 1.25 & -0.2 & -1 & 0 \\ -0.2 & 0.2 & 0 & 0 \\ -1 & 0 & 1.25 & -0.25 \\ 0 & 0 & -0.25 & 1.25 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ -3 \\ 2 \end{bmatrix}$$

Practice Problem 3.9

For Practic

Answer:

$$\begin{bmatrix} 150 & -20 & 0 & -80 & 0 \\ -20 & 65 & -30 & -15 & 0 \\ -0 & -30 & 50 & 0 & -20 \\ 80 & -15 & 0 & 95 & 0 \\ 0 & 0 & -20 & 0 & 80 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \\ 20 \\ 20 \end{bmatrix} = \begin{bmatrix} 30 \\ 0 \\ 0 \\ -12 \\ 20 \\ -20 \\ 0 \end{bmatrix}$$

Practice Problem 4.3

Using the superposition theorem, find v_o in the circuit of \ref{left} Fig. 4.8.

Figure 4.8

For Practice Prob. 4.3.

Answer: 7.4 V.

Practice Problem 4.5

Find I in the circuit of \square Fig. 4.14 using the superposition principle.

Figure 4.14

For Practice Prob. 4.5.

Answer: 375 mA.

Practice Problem 4.8

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit of ${}^{\mbox{$\sc C$}}$ Fig. 4.30. Then find I.

Figure 4.30 For Practice Prob. 4.8.

Answer: $V_{\text{Th}} = 6 \text{ V}, R_{\text{Th}} = 3 \Omega, I = 1.5 \text{ A}.$

Practice Problem 4.11

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at terminals a-b.

Figure 4.42
For Practice Prob. 4.11.

Answer: $R_N = 3 \Omega, I_N = 4.5 \text{ A}.$

Practice Problem 4.16

The measured open-circuit voltage across a certain amplifier is 9 V. The voltage drops to 8 V when a $20 \cdot \Omega$ loudspeaker is connected to the amplifier. Calculate the voltage when a $10 \cdot \Omega$ loudspeaker is used instead.

Answer: 7.2 V.