тижегоро	одский государственный университет имени Н. И. Лобачевског Радиофизический факультет	. U
-	Кафедра электродинамики	

Отчёт по лабораторной работе Электромагнитное экранирование

Выполнили (430 гр):

Горюнов О.А., Сиднев А.А., Плешков Д.С.

Содержание

1	Teo	ретическая часть	3									
	1.1	Введение	3									
	1.2	2 Измерение коэффициента ослабления										
	1.3	Описание экспериментальной установки	4									
2	Пра	актическая часть	6									
	2.1	Снятие экспериментальной зависимости коэффициента ослабления $ \eta_m $	6									
	2.2	Сравнение с теоретическими зависимостями	7									
	2.3	Расчёт магнитной проницаемости для стали	9									
3	Вы	вод	11									
	Прі	иложение	12									

Цели работы

- Экспериментальное наблюдение явления экранирования переменного магнитного поля металлическими оболочками и выяснение роли основных факторов, определяющих степень проникновения поля через экран (свойства материала, толщина его стенок, частота поля);
- Теоретический расчет экранирующих свойств металлических оболочек на простой модели и сопоставление экспериментальных и теоретических данных.

1 Теоретическая часть

1.1 Введение

Под электромагнитным экранированием понимается изоляция некоторой области пространства от проникновения электромагнитных полей, существующих в соседних областях. В статических или переменных квазистационарных полях такая изоляция осуществляется обычно с помощью замкнутых металлических оболочек - экранов. Явление экранирования поля проводящими оболочками имеет большое практическое значение. В частности, оно широко используется в электро- и радиотехнике для уменьшения паразитных связей между различными элементами приборов. В некоторых же случаях, напротив, может возникнуть необходимость принимать специальные меры для борьбы с этим явлением.

1.2 Измерение коэффициента ослабления

В качестве экранов в работе используются оболочки цилиндрической формы. Строгий расчет их экранирующего действия представлял бы собой весьма сложную задачу, тре-бующую использования численных методов. Однако для получения качественных оценок ослабления поля в экранированной области и установления общего характера его зависимости от параметров можно ограничиться изучением более простых моделей. Поскольку высота и диаметр используемых в работе экранирующих цилиндров одинаковы и весьма малы по сравнению с длиной волны в свободном пространстве λ_0 , наиболее адекватной моделью следует считать сферический слой, который имеет тот же объем внутренней полости и внешний радиус $a << \lambda_0$.

Если замкнутая однородная сферическая оболочка помещена в заданное внешнее поле с комплексным вектором напряженности $(H_0)e^{i\omega t}$, которое в ее отсутствие является однородным, то поле в ограничиваемой ею области $(H_1)e^{i\omega t}$ также однородно. Эффективность экранирования удобно характеризовать величиной отношения комплексных амплитуд этих полей:

$$\eta_{m} = H_{0}/H_{1}$$

Величина $|\eta_m|$ показывает, в какое число раз ослабляется поле в экранированной области, и может быть названа коэффициентом ослабления. Она, естественно, сильно зависит от соотношения между толщиной экрана d и толщиной скин-слоя $\delta = c/(2\pi\sigma\mu\omega)^{1/2}$ (c-скорость света в вакууме, σ - проводимость, μ - магнитная проницаемость материала экрана). В двух предельных случаях ($\delta << d$ и $\delta >> d$) выражение для η_m , в общем случае довольно громоздкое, существенно упрощается и при выполнении дополнительного условия d << a принимает следующий вид.

1. $\delta << d$ (сильный скин-эффект):

$$\eta_m = \frac{1}{6} [(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta}] \cdot exp[(1+i)\frac{d}{\delta}]$$
 (1)

При $\mu = 1$

$$\eta_m = \frac{1}{6}(1+i)\frac{a}{\delta} \cdot exp[(1+i)\frac{d}{\delta}]$$
 (2)

2. $\delta >> d$ (скин-эффект отсутствует):

$$\eta_m = 1 + \frac{2}{3} \frac{d}{a} \frac{(\mu - 1)^2}{\mu} + i \frac{2ad}{3\mu \delta^2}$$
 (3)

При $\mu = 1$

$$\eta_m = 1 + i2ad/3\delta^2 \tag{4}$$

Для приближенных оценок величины $|\eta_m|$ (с точностью $\approx 10\%$) выражения (1)-(4) можно использовать и в промежуточном случае ($\delta \approx d$), разграничивая области применимости формул (1), (2), с одной стороны, и (3), (4), с другой стороны, точкой ($\delta = d$).

1.3 Описание экспериментальной установки

В работе был набор латунных и стальных экранов цилиндрической формы. Внутренние размеры всех цилиндров одинаковы (высота h=50 мм, диаметр основания D=50 мм), а толщина стенок различна (2 мм, 5 мм, 10 мм). Значения проводимости σ и магнитной проницаемости μ латуни и стали приведены ниже:

- Латунь: $\sigma \approx 1, 5 \cdot 10^{17} \ c^{-1}, \ \mu \approx 1;$
- Сталь: $\sigma \approx 0, 7 \cdot 10^{17} \ c^{-1}, \ \mu \approx 10^2 10^3$ (при $H \sim 10$ эрстед).

Схема измерения коэффициента ослабления магнитного поля изображена на рисунке ниже:

Рис. 1: Схема установки

Переменное магнитное поле создается внутри соленоида, подключенного к выходу звукового генератора. В качестве индикатора поля используется второй соленоид (меньших размеров), с выхода которого переменное напряжение может подаваться на усилитель вольтметра. Надевая больший (генераторный) соленоид сначала на открытый (неэкранированный) индикатор, а затем на индикатор, закрываемый попеременно различными экранами, и измеряя, как изменяются при этом показания вольтметра, мы могли бы (при неизменности амплитуды тока в цепи внешнего соленоида) определить тем самым коэффициент ослабления $|\eta_m|$. Поскольку, однако, внесение металлического экрана внутрь внешнего соленоида, вообще говоря, изменяет его коэффициент самоиндукции, а следовательно, и его импеданс, сила тока в цепи внешнего соленоида и создаваемое этим током магнитное поле H_0 при наличии экрана и его отсутствие могут быть различными. Это необходимо учитывать при определении величины $|\eta_m|$. В используемой схеме предусмотрено измерение относительных изменений токов как во внутреннем, так и внешнем соленоидах. C этой целью в цепь внешнего соленоида введено сопротивление R, напряжение с которого подается на вертикальный усилитель осциллографа. Величина $|\eta_m|$ должна определяться по формуле:

$$|\eta_m| = \frac{V_0 \cdot U_e}{V_e \cdot U_0} \tag{5}$$

где V и U - соответственно показания вольтметра и осциллографа, индексы $o,\ e$ относятся соответственно к величинами, измеренным без экрана и с экраном.

2 Практическая часть

2.1 Снятие экспериментальной зависимости коэффициента ослабления $|\eta_m|$

Для цилиндров различной толщины (2 мм, 5 мм, 10 мм) сняли зависимости коэффициента ослабления от частоты согласно методу, описанному в п.1.3. Используя формулу (5) получили следующие результаты:

Латунь

2 мм						5 мм			10 мм		
f, Гц	V_0 , mV	U_0 , a.u.	V_e , mV	U_e , a.u.	$ \eta_m $	V_e , mV	U_e , a.u.	$ \eta_m $	V_e , mV	U_e , a.u.	$ \eta_m $
20	1000	2,5	920	2,48	1,07826	910	2,48	1,09011	860	2,44	1,13488
50	1000	1,015	860	1,015	1,16279	800	1	1,23153	700	0,955	1,34412
100	1000	520	800	515	1,23798	680	510	1,44231	500	515	1,98077
200	1000	264	660	284	1,62994	500	300	2,27273	340	332	3,69875
500	1000	129	540	157	$2,\!2538$	330	174	4,08739	200	198	7,67442
1000	1000	92	400	124	3,36957	220	140	6,917	100	180	$19,\!56522$
2000	1000	88	270	120	5,05051	150	132	10	34	182	60,82888
5000	1000	93	120	125	$11,\!20072$	30	147	$52,\!68817$	4	204	$548,\!3871$
10000	1000	60	57	90	$26,\!31579$	7,8	106	$226,\!49573$	0,78	174	3717,94872

Сталь

			2 мм			5 мм		
f, Гц	V_0 , mV	U_0 , a.u.	V_e , mV	U_e , a.u.	$ \eta_m $	V_e , mV	U_e , a.u.	$ \eta_m $
20	1000	2,5	68	2,4	$14,\!11765$	26	2,38	36,61538
50	1000	1,015	74	0,815	10,85075	18	0,755	41,32458
100	1000	520	62	324	10,04963	9,2	296	61,87291
200	1000	264	44	148	12,74105	2,8	136	183,98268
500	1000	129	30	76	19,63824	0,33	76	1785,29481
1000	1000	92	13	76	$63,\!54515$	0,022	70	34584,98024
2000	1000	88	3,6	68	214,64646	0,017	64	42780,74866
5000	1000	93	0,245	82	3598,8589	0,019	84	47538,20034
10000	1000	60	0,14	64	7619,04762	0,022	65	49242,42424

			10 мм		
f, Гц	V_0 , mV	U_0 , a.u.	V_e , mV	U_e , a.u.	$ \eta_m $
20	1000	2,5	8	2,315	115,75
50	1000	1,015	2,2	0,695	311,24048
100	1000	520	0,39	252	$1242,\!60355$
200	1000	272	0,054	120	8169,93464
500	1000	129	0,014	63	34883,72093
1000	1000	92	0,01	48	52173,91304
2000	1000	88	0,007	51	$82792,\!20779$

При больших частотах амплитуда сигнала на выходе генератора прыгала от одного значения к другому. К тому же появлялись шумы, искажавшие результаты. Поэтому некоторые точки не были вовсе измерены, и некоторые результаты мы не будем учитывать впоследствии.

Полученные результаты представлены на графике ниже:

2.2 Сравнение с теоретическими зависимостями

Принимая в качестве модели цилиндрического экрана сферический слой той же толщины d и с тем же объемом внутренней полости $V=(4\pi/3)(a-d)^3=\pi R^2 h$, построили для испледуемых латунных экранов графики теоретической зависимости $|\eta_m|(f)$ в логарифмическом масштабе. Для случаев $\delta(f)>>d$ и $\delta(f)<< d$ из формул (3) и (1) запишем выражения для модуля коэффициента ослабления:

$$\delta \ll d: \quad |\eta_m| = \frac{e^{d/\delta}}{6} \sqrt{\left(\frac{\mu\delta}{a} + 3 + \frac{a}{\mu\delta}\right)^2 + \left(\frac{a}{\mu\delta} - \frac{\mu\delta}{a}\right)^2} \tag{6}$$

$$\delta >> d: \quad |\eta_m| = \sqrt{\left(1 + \frac{2 \cdot d \cdot (\mu - 1)^2}{3 \cdot a \cdot \mu}\right)^2 + \left(\frac{2ad}{3\mu\delta^2}\right)^2} \tag{7}$$

2.3 Расчёт магнитной проницаемости для стали

На основании той же сферической модели для случая $\delta(f) << d$ оценим значения магнитной проницаемости стали μ . Для этого возьмём практическое значение $|\eta_m|$ для конкретной частоты (100 - 10000 Гц). Используя теоретическую формулу (6), для различных μ будем сравнить практическое и теоретическое значение. Фиксируем то значение магнитной проницаемости, который наиболее близко совпадает с практическим.

Код представлен в Приложении.

В итоге получили следующие результаты:

Образец	f, Гц	20	50	100	200	500	1000	2000	5000	10000
Сталь 2 мм	μ	275	203	166	157	126	138	122	114	66
Сталь 5 мм		243	177	148	146	140	142	77	30	14
Сталь 10 мм		183	152	139	123	72	40	21	-	

Например для стали 2 мм при f=500 Γ ц магнитная проницаемость $\mu=126$. Для образцов толщиной 5 мм и 10 мм, при частоте f=200 Γ ц - $\mu=146$ и 123 соответственно.

Причём видно, что при росте частоты значение магнитной проницаемости уменьшается. Т.е. вещество не успевает отслеживать изменение магнитного поля, поэтому при больших частотах теоретические и практические значения сильно разнятся.

Теоретический график с учетом разных магнитных проницаемостей:

3 Вывод

Выполнив лабораторную работу, мы:

- 1) Сняли зависимость коэффициента ослабления магнитного поля $|\eta_m|$ от частоты для латунных и стальных экранов разной толщины. Из графиков видно, что коэффициент ослабления для стального цилиндра значительно выше, чем у латунного той же толщины.
- 2) Построили теоретические зависимости $|\eta_m|$ и сравнили с практическими значениями. По графику видно небольшое расхождение, что связано с приближенной оценкой величины η_m (с точностью $\approx 10\%$) по формулам (1)-(4).
- 3) Оценили магнитную проницаемость μ стали при различных значениях частоты внешнего поля. По результатам видно, что с ростом частоты μ уменьшается. Это связано с тем, что доменная структура не успевают перестраиваться вслед за полем (вещество не успевает отслеживать изменение магнитного поля).

Приложение

Код для оценки магнитной проницаемости в п.2.3.

```
import sympy as sym
import numpy as np
import math
# Measurement Results
f_list = np.array([20, 50, 100, 200,500,1000,2000,5000,10000])
st2 = np.array([14.11765,10.85075,10.04963,12.74105,19.63824,63.54515
   ,214.64646,3598.8589,7619.04762])
st5 = np.array([36.61538,41.32458,61.87291,183.98268,1785.29481,34584
   .98024,42780.74866,47538.20034,49242.42424])
st10 = np.array([115.75,311.24048,1242.60355,8169.93464,34883.72093,5
   2173.91304,82792.20779])
eta_prac = st2[7]
# Define a function to calculate
def func(mu):
f = 2000 # Frequency
d = 0, 2 # Sample thickness
sigma = 0.7 * 10**17
w = 2 * math.pi * f
a = D / 2 + d
delta = c / (2*math.pi*sigma*mu*w) ** (1/2)
return (sym.exp(d/delta) / 6) * math.sqrt( (mu * delta / a + 3 + (a)
   /(mu*delta))**2 + (a / (mu*delta) - mu * delta / a)**2)
mu_list = np.arange(100, 1000, 1) # List for iterating over values
result = list()
for i in range(len(mu_list)):
eta_teor = func(mu_list[i])
result.append(abs(eta_teor - eta_prac))
index = result.index(min(result)) # We are looking for the index of
   the minimum discrepancy
print(mu_list[index])
```