ICT이노베이션스퀘어 AI복합교육 고급 언어과정

자연어처리를 위한 Cross Entropy

현청천

2021.04.19

Entropy (연속확률분포)

$$H(X) = \int_{X} f(x; \theta) \left(\log \frac{1}{f(x; \theta)} dx \right)$$

Entropy (이산확률분포)

$$H(X) = \sum_{x} p(x; \theta) \log \frac{1}{p(x; \theta)}$$

확률분포에 대한 정보량의 기댓값

Entropy (정보량)

내일은 해가 동쪽에서 뜬다

내일은 해가 서쪽에서 뜬다

$$q = 0.00000001$$

Entropy

			_
	A	25%	00
	В	25%	0 1
	С	25%	10
$\log_2 \frac{1}{0.5} = 1$	D	25%	1 1
$\log_2 \frac{1}{0.25} = 2$			

 $H(x) = \sum_{x} p_{\theta}(x) \log_2 \frac{1}{p_{\theta}(x)}$

$$\log_2 \frac{1}{0.25} = 2$$

$$\log_2 \frac{1}{0.125} = 3$$

			$oldsymbol{\mathcal{N}}$
Α	50%	0	
В	25%	1016	$0.5 \times 1 + 0.25 \times 2 + 0.125 \times 2 + 0.125 \times 2 = 1.75$
С	12.5%	1 1 0 2 bit	$0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75$
D	12.5%	1 1 1 9 blt	9 那一世强之军数3 对中部

Entropy

A, B 두 글자가 발생하는 경우 A 발생 확률에 따른 Entropy

확률분포의 불확실성이 증가하면 Entropy가 증가

Cross Entropy (연속확률분포)

$$=-\int P(x) \cdot dy \cdot dx$$

$$H(p,q) = \int_{x} p(x) \left(\log \frac{1}{q(x)} dx \right)$$

Cross Entropy (이산확률분포)

$$H(p,q) = \sum_{x} p(x) \log \frac{1}{q(x)}$$

)	
Α	50%	0
В	25%	10
С	12.5%	1 1 0
D	12.5%	

$$\log_2 \frac{1}{0.25} = 2$$

$$\log_2 \frac{1}{0.125} = 3$$

	7	
Α	25%	00
В	25%	0 1
С	25%	10
D	25%	111

$$H(p,q) = \sum_{x} p(x) \log_2 \frac{1}{q(x)}$$

$$0.5 \times 2 + 0.25 \times 2 + 0.125 \times 2 + 0.125 \times 2 = 2$$

Class enthy

$$\log_2 \frac{1}{0.25} = 2$$

$$\log_2 \frac{1}{0.125} = 3$$

	7	
A	50%	0
В	25%	10
С	12.5%	1 1 0
D	12.5%	111

$$H(p,q) = \sum_{x} p(x) \log_2 \frac{1}{q(x)}$$

$$H(p)$$

 $0.5 \times 1 + 0.25 \times 2 + 0.125 \times 3 + 0.125 \times 3 = 1.75$

A, B 두 글자가 발생하는 경우
A 발생 확률에 따른 두 확률분포의
Cross Entropy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.33 0.36 0.44 0.55 0.69 0.88 1.12 1.47 2.08
0.2 0.54 0.5 0.53 0.59 0.69 0.84 1.03 1.33 1.86
0.3 0.76 0.64 0.61 0.63 0.69 0.79 0.95 1.19 1.64
0.4 0.98 0.78 0.70 0.67 0.69 0.75 0.87 1.05 1.42
0.5 1.20 0.92 0.78 0.71 0.69 0.71 0.78 0.92 1.20
0.6 1.42 1.05 0.87 0.75 0.69 0.67 0.7 0.78 0.98
0.7 1.64 1.19 0.95 0.79 0.69 0.63 0.61 0.64 0.76
0.8 1.86 1.33 1.03 0.84 0.69 0.59 0.53 0.5 0.54
0.9 2.08 1.47 1.12 0.88 0.69 0.55 0.44 0.36 0.33

Cross Entropy Loss

Cross Entropy loss
$$CE = \frac{1}{N} \sum_{i=n}^{N} \sum_{j=1}^{C} y_{ij} \log \frac{1}{\hat{y}_{ij}} = \sum_{i=n}^{N} \sum_{j=1}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij}$$

정답확률분포와 예측확률분포의 Cross Entropy의 평균

	Α	В	С	D
1	1	0	0	0
2	1	0	0	0
3	1	0	0	0
4	1	0	0	0
5	0	1	0	0
6	0	1	0	0
7	0	1	0	0
8	0	0	1	0
9	0	0	1	0
10	0	0	0	1

	Α	В	С	D
1	0.25	0.25	0.25	0.25
2	0.25	0.25	0.25	0.25
3	0.25	0.25	0.25	0.25
4	0.25	0.25	0.25	0.25
5	0.25	0.25	0.25	0.25
6	0.25	0.25	0.25	0.25
7	0.25	0.25	0.25	0.25
8	0.25	0.25	0.25	0.25
9	0.25	0.25	0.25	0.25
10	0.25	0.25	0.25	0.25

$$CE = -\frac{1}{N} \sum_{i=n}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij} = 1.3862943611198906$$

	Α	В	С	D
1	0.40	0.30	0.20	0.10
2	0.40	0.30	0.20	0.10
3	0.40	0.30	0.20	0.10
4	0.40	0.30	0.20	0.10
5	0.40	0.30	0.20	0.10
6	0.40	0.30	0.20	0.10
7	0.40	0.30	0.20	0.10
8	0.40	0.30	0.20	0.10
9	0.40	0.30	0.20	0.10
10	0.40	0.30	0.20	0.10

$$CE = -\frac{1}{N} \sum_{i=n}^{N} \sum_{j=1}^{C} y_{ij} \log \hat{y}_{ij} = 1.2798542258336674$$

Cross Entropy Loss vs Negative Log Likelihood

Minimize cross entropy loss

Minimize negative log likelihood

Cross Entropy Loss (NMIST)

 $p(y | x; \theta)$

0.03	0.02	0.1	0.01	0.7	0.01	0.02	0.03	0.04
0.01	0.2	0.02	0.03	0.01	0.04	0.02	0.04	0.03
0.04	0.03	0.02	0.75	0.03	0.05	0.02	0.04	0.01
0.65	0.01	0.04	0.02	0.01	0.03	0.02	0.15	0.04
	0.01	0.01 0.2 0.03	0.01	0.01 0.2 0.02 0.03 0.04 0.03 0.02 0.75	0.01 0.2 0.02 0.03 0.01 0.04 0.03 0.02 0.75 0.03	0.01 0.2 0.02 0.03 0.01 0.04 0.04 0.03 0.02 0.75 0.03 0.05	0.01 0.2 0.02 0.03 0.01 0.04 0.02 0.04 0.03 0.02 0.75 0.03 0.05 0.02	0.03 0.02 0.1 0.01 0.7 0.01 0.02 0.03 0.01 0.2 0.02 0.03 0.01 0.04 0.02 0.04 0.04 0.03 0.02 0.75 0.03 0.05 0.02 0.04 0.65 0.01 0.04 0.02 0.01 0.03 0.02 0.15

	O	1	2	9	4	5	6			4
5	0	0	0	0	0	1	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0

9 lables one-hotes 14/14/14/19 organil.com., Ltd All Rights Reserved. 189 Lile; how that the organization of the served.

감사합니다.