Private Capital Fund Risk Modeling

A simulation approach customized for the Solvency II framework

Focus On Monte Carlo Simulation

Private Capital Fund Investment Style

Solvency II Framework

- The Solvency Capital Requirement (SCR) "shall correspond to the Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking subject to a confidence level of 99,5% over a one-year period". (see Article 101 (3) of Directive 2009/138/EC)
- Internal model for portfolio of Private Capital Funds

Performance Measure

- Standard Private Capital performance measures like TVPI and IRR are not suitable to measure performance/risk over a one-year horizon
- Performance measure has to incorporate intermediate Net Asset Values (NAVs) —> dubious
- NAV Return concept:

$$R_{t_n}^{NAV} = \frac{NAV_{t_n} + \triangle NCF_{t_n, 4q}}{NAV_{t_{n-4q}}} - 1$$

Monte Carlo Simulation

General Idea:

- Construct linear multi-factor models to decompose (excess) NAV Returns —> $Y = X\beta + \epsilon$
- Generate (reasonable, but random) X-scenarios
- Simulate (excess) NAV Returns —> $Y = \beta X + \epsilon$

X-generation

Copula:

Separate dependency modeling from specifying the marginal distribution

Pair-Copula-Construction

- -> R-Vines
- -> sophisticated

R Code: ("VineCopula" package)

PSC <- as.copuladata(pobs(Public.Data))

RVSS <- RVineStructureSelect(PSC)

pairs(RVineSim(1000, RVSS))

Data (Pre-)Processing

Fit R-Vine Copula Model

Simulate 1000 pairs of uniforms

AMT-factor-models

- AMTs: BO, VC, FoF, DD, RE, MEZZ, NatRes, Infra
- Idea: separate beta estimation from error modeling
 - Beta estimation: index time-series for each AMT
 - Error modeling: direct sampling from empirical residuals on single fund level

Beta Estimation

commitment
weighted
Index
Quagging
OLS-estimate

AMT	deterministic			stochastic							
	(Int)		High	Excess Index Returns			Liq	Q1	Q2	Q3	Q4
		Bias	Yield	World	NAS	US-RE	10-1	adj.	adj.	adj.	adj.
		Corr	Spread	Equity	DAQ		PF	R^2	R^2	R^2	R^2
BO	0.188	?	-2.020	0.573	-	-	-	0.60	0.47	0.55	0.66
VC	0.300	?	-4.249	-	0.993	-	-	0.34	0.31	0.28	0.29
FOF	0.058	?	-	0.830	-	-	-	0.14	0.17	0.10	0.11
RE	0.141	?	-1.759	-	-	1.095	-	0.55	0.64	0.74	0.54
DD	-	?	1.036	0.562	-	-	-	0.62	0.63	0.62	0.61

commitment
weighted
Index
Quagging
MM-estimate

AMT	deterministic										
			High	Excess Index Returns			Liq	Q1	Q2	Q3	Q4
	(Int)	Bias	Yield	World	NAS	US-RE	10-1	adj.	adj.	adj.	adj.
		Corr	Spread	Equity	DAQ		PF	R^2	R^2	R^2	R^2
ВО	0.191	?	-2.079	0.584	-	-	-	0.78	0.51	0.53	0.69
VC	0.191	?	-3.372	-	0.510	-	-	0.66	0.52	0.66	0.50
FOF	0.084	?	-	0.419	-	-	-	0.04	0.11	0.05	0.40
RE	0.113	?	-1.392	-	-	1.050	-	0.84	na	0.72	0.83
DD	-	?	0.963	0.580	-	-	-	0.64	0.65	0.67	0.78

Error Modeling I

Errors i.i.d.?

Resolve NAV-heteroscedasticity —> Filter: NAV-partition

Error Modeling II

- 1. NAV-heteroscedasticity —> Filter
- 2. Calculate residuals —> Bias?
- 3. Modeling
 - Parametric (normal mixture)
 - Non-parametric (direct sampling)
- 4. Review for each beta-model

Monte Carlo Model

$$\mathbf{Y}^{(MC)}(\vartheta) = \beta_{\vartheta_{AMT,\beta}} \mathbf{X}_{\vartheta_{\mathbf{X}}} + \epsilon_{\vartheta_{AMT,\beta,\epsilon}}$$
(20)

with

$$\begin{split} \beta_{\vartheta_{AMT,\beta}} &= \left(\beta_{i=\left(\vartheta_{AMT,\beta}\right)_{i},j}\right) \\ \mathbf{X}_{\vartheta_{\mathbf{X}}} &= \left(X_{j=\left(\vartheta_{X}\right)_{j}}\right) \\ \epsilon_{\vartheta_{AMT,\beta,\epsilon}} &= \left(\epsilon_{i=\left(\vartheta_{AMT,\beta,\epsilon}\right)_{i}}\right) \end{split}$$

where $i \in [1, 2, ..., m]$, $j \in [1, 2, ..., d, d + 1]$, m is the number of PCF portfolio components, and d is the (overall) number of factors in (all) MC β -models.

$$Y^{(PCF)} = (w_{NAV})^T \mathbf{Y}^{(MC)} \tag{21}$$

Beta-Model-Bagging

- Equivalent beta-models (4 quarters x 2 methods)
- Randomly sample out of the repertory of models
- But beta and error methods have to match

β -model selector

random ϵ -generator

Monte Carlo Results

The end.