Fachhochschule Aachen Campus Jülich

Fachbereich 10: Energietechnik

Electrical Engineering (AOS) Labor Netzbetrieb - SRDS

Titel der Hausarbeit: Auslegung einer Temperaturregelung für einen Wärmetauscher

Hausarbeit von Zi Qian Lee 3305322

Mohammad Pourmohsen 3292340

Alp Cetin 3303020

Jülich, Januar, 2024

Inhaltsverzeichnis

INHA	ALTSVERZEICHNIS	I
ABB	ILDUNGSVERZEICHNIS	II
TAB	ELLENVERZEICHNIS	III
1	SYSTEM- UND PROBLEMBESCHREIBUNG	1
2	SYSTEMANALYSE	3
2.1	WIRKUNGSPLAN UND GROBANALYSE	3
2.2	DIFFERENZIALGLEICHUNGEN UND LINEARISIERUNG	5
2.3	3 ZUSTANDSRAUMMODELL	6
2.4	POLSTELLEN UND SPRUNGANTWORTEN	8
3	REGLERSTRUKTURFESTLEGUNG	9
3.1	Zustandsraumregler	9
3.2	Page Beobachter	10
3.3	BERÜCKSICHTIGUNG DER STÖRGRÖßEN	12
3.4	4 REGLERAUSWAHL	14
4	REGLERPARAMETERBERECHNUNG	15
4.1	BESTIMMUNG DER MINIMALEN DÄMPFUNG UND MAXIMALEN ZEITKONSTANTE	15
4.2	POLPLATZIERUNG (POLE-PLACEMENT)	17
4.3	MATRIX-RICCATI-REGLER	18
4.4	LUENBERGER-BEOBACHTER	20
4.5	KALMAN-BUCY-FILTER	22
5	REGLERVERHALTENSBEWERTUNG UND FEINTUNING	24
ANH	ANG	27
A.	Matlab Code	27
В.	SIMULINKMODELL MIT BESCHREIBUNG	39
C.	GANNT	55
D	I OP	55

Abbildungsverzeichnis

ABBILDUNG 1: SYSTEMSKIZZE	1
Abbildung 2: Grobanalyse	3
ABBILDUNG 3: WIRKUNGSPLAN DES OHNE REGLER OFFENEN REGELKREISES	4
ABBILDUNG 4: DAS SYSTEM IN ZUSTANDSRAUM-DARSTELLUNG	7
ABBILDUNG 5: POL-NULLSTELLEN PLAN	8
Abbildung 6: Sprungantwort	8
ABBILDUNG 7: SCHALTPLAN GRK MIT ZUSTANDSRAUMREGLER	9
Abbildung 8: Systemverhalten mit Zustandsraumregler	9
ABBILDUNG 9: SCHALTPLAN GRK MIT BEOBACHTER	10
ABBILDUNG 10: DIFFERENZ DER ZUSTANDSGRÖßEN AUS REGELKREIS UND BEOBACHTERKREIS (X UND X)	11
ABBILDUNG 11: AUSGANGSGRÖßEN AUS REGELKREIS UND BEOBACHTERKREIS (Y UND Y)	11
ABBILDUNG 12: SCHALTPLAN GRK FÜR STÖRGRÖßENKOMPENSATION	12
ABBILDUNG 13: SCHALTPLAN GRK MIT PI-ZUSTANDSRAUMREGLER	13
ABBILDUNG 14: DIFFERENZ DER ZUSTANDSGRÖßEN AUS REGELKREIS UND BEOBACHTERKREIS (X UND X)	
UNTER BERÜCKSICHTIGUNG VON STÖRGRÖßEN	14
ABBILDUNG 15: AUSGANGSGRÖßEN AUS REGELKREIS UND BEOBACHTERKREIS (Y UND Y) MIT PI-REGLER	14
Abbildung 16: Bestimmung von Dmin	15
Abbildung 17: Bestimmung von Tmax	16
ABBILDUNG 18: RESULTIERENDE KURVE VON TMAX UND DMIN	16
Abbildung 19: Schaltplan Polplatzierung	17
ABBILDUNG 20: POLPLATZIERUNG MIT UNTERSCHIEDLICHEM BETRAG VON D UND T	18
ABBILDUNG 21: SCHALTPLAN MATRIX-RICCATI-REGLER	19
ABBILDUNG 22: MATRIX-RICCATI-REGLER MIT UNTERSCHIEDLICHER Q-MATRIX	19
ABBILDUNG 23: SCHALTPLAN LUENBERGER-BEOBACHTER	20
ABBILDUNG 24: DIAGRAMM ZUR DARSTELLUNG DER DIFFERENZ ZWISCHEN DEN ZUSTANDSGRÖßEN	
Luenberger-Beobachter	21
ABBILDUNG 25: RÜCKFÜHRSIGNAL FÜR DEN BEOBACHTER	21
ABBILDUNG 26: SCHALTPLAN KALMAN-BUCY-FILTER	22
ABBILDUNG 27: RÜCKFÜHRSIGNAL FÜR DAS KALMAN-BUCY-FILTER	23
ABBILDUNG 28: VERLAUF DER REGELGRÖßE MIT KALMAN-BUCY	23
ABBILDUNG 29: SCHALTPLAN GRK MIT DEM NICHTLINEAREN SUBSYSTEM	24
ABBILDUNG 30: NICHTLINEARES SUBSYSTEM	24
ABBILDUNG 31: VERLAUF DER VERSCHIEDENEN ZUSTANDSGRÖßEN	25
ARRII DUNG 32: VERLAUE DER REGELGRÖßE NACH DEM FEINTUNING	26

Tabellenverzeichnis

Tabelle 1: Systemparameter	2
----------------------------	---

1 System- und Problembeschreibung

Ein Wärmetauscher wird in diesem Praktikum untersucht. Das Ziel ist, dass die Austrittstemperatur ϑ_a mithilfe von dem durch Heißdampf \dot{m}_D erhitzten Wasser mit dem Volumenstrom \dot{m}_w stabilisiert werden. ϑ_a wird mittels eines Widerstandsthermometers Pt-100 mit Verzögerung erfasst. Der Widerstand des Pt-100 wird in eine entsprechende Spannung u_ϑ umgewandelt und anschließend an die Vergleichsstelle übermittelt. Die Ausgangsspannung des ausgewählten Reglers u_y wird durch einen Spannungs-Druck-Wandler zeitverzögert in einen Druck p_y umgewandelt, der die Steuerung eines Pneumatikzylinders beeinflusst. Dieser Pneumatikzylinder bewegt einen Schieber um den Weg h in die Heißdampfleitung und reguliert dadurch die Zufuhr von Heißdampf durch Drosselung. Für eine detaillierte Darstellung ist das entsprechende Systemskizze hinzugefügt.

Abbildung 1: Systemskizze

$K_{R_{\vartheta}} = 1 \Omega /_{\mathrm{K}}$	$K_R = \frac{1}{100} V/\Omega$	$K_y = \frac{3}{40} \text{bar/V}$
$T_{R_{\vartheta}} = \frac{1}{250} \mathrm{s}$		$T_{y}=\frac{1}{100}\mathrm{s}$
$K_z = \frac{2}{100} \text{ m/bar}$	$K_h = 1000 \frac{\mathrm{m}^3}{\mathrm{min}} / \mathrm{m}$	$K_D = 20^{\text{K/m}^3/\text{min}}$
	$K_{p_v} = 1 \frac{\mathrm{m}^3}{\mathrm{min}} / \mathrm{bar}$	$K_W = 1 \frac{\mathrm{K}}{\mathrm{1}} / \mathrm{min}$
	$T_D = \frac{1}{2} s$	$T_{W_1} = 20 \text{ s}$
		$T_{W_2} = 50 \text{ s}$

Tabelle 1: Systemparameter

2 Systemanalyse

2.1 Wirkungsplan und Grobanalyse

Um mit der Modellierung anzufangen, müssen die Ein- und Ausgangsgrößen des Systems bestimmt und dargestellt werden, die Grobanalyse ist das Mittel zur Erfüllung dieses Ziels.

Abbildung 2: Grobanalyse

Dieses System hat 3 Eingangsgrößen, zwei davon sind hier als Störgroßen angenommen, nämlich Druck vom Heißdampf P_V und das Volumenstrom \dot{m}_W , die letzte Eingangsgröße des ohne Regler offenen Regelkreis ist U_y ist das Signal, das später in dem mit Regler geschlossenem Regelkreis vom Regler rauskommt.

Ziel ist die Temperatur dieses System zu regeln, deswegen ist es sinnvoll die erste Ausgangsgröße als θ_a zu nehmen, in diesem Fall ist die Temperatur θ_a auch die Regelgröße, die zweite Ausgangsgröße u_{θ} dient zur Bereitstellung der Temperatur als einem Signal, das durch den Regler verarbeitet werden kann.

Der nächste Schritt ist der Wirkungsplan zu skizzieren, der Wirkungsplan wird zur graphischen Darstellung des Regelkreises genutzt, viele wichtige Informationen über das System sind durch den Wirkungsplan in Form von Verhältnisse des einzelnen Teils des System, die zugehörigen Zeitkontanten und Verstärkungsfaktoren zur Verfügung.

Abbildung 3: Wirkungsplan des ohne Regler offenen Regelkreises

Oben ist der Wirkungsplan des ohne Regler offenen Regelkreises dargestellt, später nach der Auswahl und Auslegung des Reglers wird dieser Regelkreis geschlossen.

Differenzialgleichungen und Linearisierung

Differenzialgleichungen ist die mathematische Sprache, um Verhältnisse des einzelnen Elements des Regelkreises zu erläutern.

Spannung-Druck Wandler:

$$T_{\mathcal{V}} \cdot \dot{P_{\mathcal{V}}} + P_{\mathcal{V}} = K_{\mathcal{V}} \cdot u_{\mathcal{V}}$$

Pneumatikzylinder:

$$h = K_z \cdot P_y$$

Heißdampfleitung und Schieber:

$$T_D \cdot \dot{m}_D + \dot{m}_D = K_{PV} \cdot P_V - K_h \cdot h$$

Wärmetauscher:

$$T_{w_1} \cdot T_{w_2} \cdot \ddot{\vartheta}_a + \left(T_{w_1} + T_{w_2} \right) \cdot \dot{\vartheta}_a + \vartheta_a = K_D \cdot \dot{m}_D - K_w \cdot \dot{m}_w$$

PT-100:

$$T_{R_{\vartheta}} \cdot \dot{R}_{\vartheta} + R_{\vartheta} = K_{R_{\vartheta}} \cdot \vartheta_{a}$$

Spannungsmessung:

$$u_{\vartheta} = K_R \cdot R_{\vartheta}$$

2.3 Zustandsraummodell

Wegen der Komplexität des Regelkreises reicht das bisher genutzte Methoden zur Systemanalyse nicht aus, daher muss ein neues Modell benutzt werden, nämlich das Zustandsraummodell, dieses Modell basiert sich auf Vektoren und Matrizen.

Aus Umformung der Differenzialgleichungen in Form sind folgende Gleichungen aufgebaut, sie werden Zustandsgleichungen genannt:

$$\begin{split} \dot{P_y} &= \frac{K_y}{T_y} \cdot u_y - \frac{1}{T_y} \cdot P_y \\ \dot{\dot{m}}_D &= -\frac{K_h}{T_D} \cdot h + \frac{K_{PV}}{T_D} \cdot P_V - \frac{1}{T_D} \cdot \dot{m}_D \\ \dot{R}_{\vartheta} &= \frac{K_{R_{\vartheta}}}{T_{R_{\vartheta}}} \cdot \vartheta_a - \frac{1}{T_{R_{\vartheta}}} \cdot R_{\vartheta} \end{split}$$

Um aus den PT2 Verhalten zwei Zustandsgleichungen einzubilden, wird der Identitätsansatz verwendet:

$$\begin{split} \dot{\vartheta}_{a} &= \dot{\vartheta}_{a} \\ \ddot{\vartheta}_{a} &= -\frac{\left(T_{w_{1}} + T_{w_{2}}\right)}{T_{w_{1}} \cdot T_{w_{2}}} \cdot \dot{\vartheta}_{a} - \frac{1}{T_{w_{1}} \cdot T_{w_{2}}} \cdot \vartheta_{a} + \frac{K_{D}}{T_{w_{1}} \cdot T_{w_{2}}} \cdot \dot{m}_{D} - \frac{K_{w}}{T_{w_{1}} \cdot T_{w_{2}}} \cdot \dot{m}_{w} \end{split}$$

Nun mit den umgeformten Differenzialgleichungen können die Ein- und Ausgangvektoren und Matrizen erstellt werden:

Eingangsgleichung:

$$\dot{x} = A \cdot x + B \cdot u$$

Ausgangsgleichung:

$$v = C \cdot x + D \cdot u$$

$$x = \begin{cases} P_{y} \\ \dot{m}_{D} \\ \vartheta_{a} \\ \dot{\vartheta}_{a} \\ R_{\vartheta} \end{cases} \dot{x} = \begin{cases} \dot{P}_{y} \\ \dot{\dot{m}}_{D} \\ \dot{\vartheta}_{a} \\ \ddot{\vartheta}_{a} \\ \dot{R}_{\vartheta} \end{cases} u = \{u_{y}\} z = \begin{Bmatrix} P_{V} \\ \dot{m}_{w} \end{Bmatrix} y = \{\vartheta_{a}\} y_{R} = \{u_{\vartheta}\}$$

$$A = \begin{pmatrix} -\frac{1}{T_{y}} & 0 & 0 & 0 & 0 \\ -\frac{(K_{h} \cdot K_{z})}{T_{D}} & -\frac{1}{T_{D}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & \frac{K_{D}}{T_{w_{1}} \cdot T_{w_{2}}} & -\frac{1}{T_{w_{1}} \cdot T_{w_{2}}} & -\frac{(T_{w_{1}} + T_{w_{2}})}{T_{w_{1}} \cdot T_{w_{2}}} & 0 \\ 0 & 0 & \frac{K_{R_{\theta}}}{T_{R_{\theta}}} & 0 & -\frac{1}{T_{R_{\theta}}} \end{pmatrix}$$

$$B = \begin{pmatrix} \frac{K_y}{T_y} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$C = (0 \quad 0 \quad 0 \quad 0 \quad K_R)$$

$$D = 0$$

Abbildung 4: Das System in Zustandsraum-Darstellung

2.4 Polstellen und Sprungantworten

Abbildung 5: Pol-Nullstellen Plan

Alle Polstellen liegen links von der realen Achse. Das heißt, dass das System schon stabil ist. Im Vergleich mit den Eigenwerten sind die Polstellen gültig.

$$eig(A) = \begin{pmatrix} -250 \\ -0.05 \\ -0.02 \\ -2 \\ -100 \end{pmatrix}$$

Abbildung 6: Sprungantwort

Da die Polstellen negativ sind, ist hier ein stabiles Verhalten von dem System erwartet.

3 Reglerstrukturfestlegung

3.1 Zustandsraumregler

Abbildung 7: Schaltplan GRK mit Zustandsraumregler

Wegen der Verbindung von einem Regler in dem geschlossenen Regelkreis gibt es eine neue Systemmatrix $\tilde{A} = A - BR$, wenn $u = -R \cdot x$.

Reglermatrix R ist wie folgt in MATLAB berechnet: R_place=place(A,B,P_set), wo P_set hier die Sollpole sind. (hier P_set=eig(A)-1)

Vorfiltermatrix: $M = (C \cdot (B \cdot R - A)^{-1} \cdot B)^{-1}$

Abbildung 8: Systemverhalten mit Zustandsraumregler

3.2 Beobachter

Abbildung 9: Schaltplan GRK mit Beobachter

In einem ausreichend gut Modell können die folgenden Variablen angenommen werden:

$$\hat{A} = A$$

$$\hat{B} = B$$

$$\hat{C} = C$$

In Simulink sind die Variablen mit einem Dach mit h hinten der Variable gezeichnet. (z.B. Ah für \hat{A})

Die Berechnung der Matrix für Luenberger-Beobachter L:

Hier P_set_obs=eig(A)

Danach ist L_luen_T transponiert: L_luen = L_luen_T'

Abbildung 10: Differenz der Zustandsgrößen aus Regelkreis und Beobachterkreis (x und x̂)

Abbildung 11: Ausgangsgrößen aus Regelkreis und Beobachterkreis (y und \hat{y})

Alle Zustandsgrößen gehen zu null gegen unendlich und die Ausgangsgrößen sehen ähnlich aus. Die Auswirkung von dem Beobachter ist effektiv

3.3 Berücksichtigung der Störgrößen

Abbildung 12: Schaltplan GRK für Störgrößenkompensation

Die Störgrößenmatrizen E und F lauten:

$$E = \begin{pmatrix} 0 & 0 \\ \frac{K_{p_v}}{T_D} & 0 \\ 0 & 0 \\ 0 & -\frac{K_W}{(T_{W_1} \cdot T_{W_2})} \\ 0 & 0 \end{pmatrix}$$

$$F = (0 \quad 0)$$

Bei Störgrößenkompensation ist die Matrix Z berechnet: $Z = (B' \cdot B)^{-1} \cdot B' \cdot E$ Hier ergibt sich Z=0, d.h. Störgrößen keine direkte Auswirkung auf den Eingang haben und eine alternative Möglichkeit genutzt werden muss.

Abbildung 13: Schaltplan GRK mit PI-Zustandsraumregler

Ein PI-Zustandsregler wird hier verwendet. Der I-Anteil hier sorgt für bessere Stabilität des Systemverhaltens, auch unter dem Einfluss von Störgrößen.

Hier der Befehl zur Berechnung der Parameter für PI-Zustandsregler in MATLAB:

```
A_{PI\_real} = [A zeros(5,1); -C_R 0];
B_PI_real = [B;0];
P_set_PI = eig(A_PI_real)-10;
R_place_PI = place(A_PI_real,B_PI_real,P_set_PI);
R_I = -R_place_PI(:,6);
R_p = -(C_R*Api^-1*Bpi)^-1;
R_x = R_place_PI(:,1:5)-R_p*C_R;
```


Abbildung 14: Differenz der Zustandsgrößen aus Regelkreis und Beobachterkreis (x und x) unter Berücksichtigung von Störgrößen

Abbildung 15: Ausgangsgrößen aus Regelkreis und Beobachterkreis (y und ŷ) mit PI-Regler

Reglerauswahl 3.4

Nach vielen Versuchen mit verschiedenem Regler, für dieses System passt der PI-Zustandsregler am besten. Da trotzdem unter dem Einfluss von Störgrößen ein wünschenswertes Ergebnis ausgegeben wird.

4 Reglerparameterberechnung

Bestimmung der minimalen Dämpfung und maximalen Zeitkonstante

Für die Bestimmung der minimalen Dämpfung und maximalen Zeitkontante ist das Verhalten des Systems zu einem PT2 mit K=50 und T=2 und angenähert worden.

Auf Basis der An- und Ausregelzeit:

$$T_{an} < 30 \text{ s}$$

$$T_{aus} < 50 \text{ s}$$

und das Toleranzband und maximale Überschwingung:

$$\delta = \pm 2 \text{ K}$$

$$x_{\rm \ddot{u},max} < 5 \text{ K}$$

wobei der Sollwert 50°C hier angenommen ist, wurden verschiedene Paare aus Dämpfungen und Zeitkontstanten probiert, um die optimale Dämpfung und Zeitkonstante zu finden:

Abbildung 16: Bestimmung von Dmin

Abbildung 17: Bestimmung von Tmax

Abbildung 18: Resultierende Kurve von Tmax und Dmin

Hier erfüllt die Kurve ($D_{Min} = 0.72 \& T_{Max} = 9.5 \text{ s}$) die Gutekriterien am besten.

4.2 Polplatzierung (Pole-Placement)

Diese Methode zur Parameterberechnung basiert sich auf Einstellung der Sollpolen des Systems, diese Polle sollen in dem Stabilen Bereich liegen, diesen Bereich wird unter der Berücksichtigung der Dämpfung, Ansprechverhalten, Aktuatorleistung und numerische Grenzen definiert.

Abbildung 19: Schaltplan Polplatzierung

In MATLAB lautet der Befehl dieser Methode:

```
R_place = place(A,B,P_set)
```

Und Zum Berechnung der Parameter für den Vorfilter:

```
P1 = -1/T*(cos(acos(D_set)) + j*sin(acos(D_set)));
P2 = -1/T*(cos(acos(D_set)) - j*sin(acos(D_set)));
P_set_min = [-251; P1 ; P2 ;-3; -101];
R_place_opt = place(A,B,P_set_min);
M = (C_R*(B*R_place_opt-A)^(-1)*B)^(-1);
```

Durch Einstellung von P set min basiert auf die Paare aus Dämpfungen und Zeitkonstanten können verschiedene Fälle untersucht werden:

Abbildung 20: Polplatzierung mit unterschiedlichem Betrag von D und T

In diesem Fall erfüllt die violette Kurve (D=0,9 & T=5 s) die Kriterien am besten.

4.3 Matrix-Riccati-Regler

Die zweite Methode zur Reglerparemeterberechnung ist der Matrix-Ricatti Regler (Linear quadratic Regulator), die Grundidee dieser Methode ist die Minimierung einer Kostenfunktion.

Der Befehl zur Durchführung dieser Methode lautet:

$$R_place_lqr = lqr(A,B,Q,R)$$

Um fortzufahren, sind Gewichtungmatrizzen Q anzupassen,

Die Methode wurde hier mit vier unterschiedliche Q untersucht:

```
Q1 = diag([10^0 10^0 10^0 10^0 10^0]);
Q2 = diag([10^0 10^0 10^1 10^4 10^5]);
Q3 = diag([10^0 10^0 10^1 10^2 10^2]);
Q4 = diag([10^0 10^1 10^-1 10^0 10^0]);
```


Abbildung 21: Schaltplan Matrix-Riccati-Regler

Abbildung 22: Matrix-Riccati-Regler mit unterschiedlicher Q-Matrix

Anhand des Diagramms aus dem größen Scope ist es erkennbar, dass die hellblaue Kurve (Q1) die Gutekriterien am besten erfüllt.

4.4 Luenberger-Beobachter

Im nächsten Schritt sollen die Parameter der Rückführmatrix L berechnet werden, es gibt in der Regel zwei Ideen für den Beobachter, die zum Einsatz kommen. Und beide dienen zur Lösung von einem Problem, Die erste Idee ist, die Idee von Luenberger, welche löst das Problem, wobei die Anfangswerte des Systems x_0 nicht dieselbe wie die von der Beobachtermatrix entsprechen, dies wurde durch die Änderung der Position von den Polen des Beobachters, sodass die Anfangswertdifferenz ausgeglichen wird.

Der Luenberger-Beobachter wird mit Hilfe von Polplatzierung im MATLAB durchgeführt. Erstens werden durch die berechnete Dämpfung und Zeitkonstante P1 und P2 bestimmt:

```
P1 = -1/5*(\cos(a\cos(0.9)) + j*\sin(a\cos(0.9)));
P2 = -1/5*(cos(acos(0.9)) - j*sin(acos(0.9)));
```

Dann Anhand von P1 und P2 werden die Position der Polen bestimmt:

```
P_set_L1 = [-250; P1; P2; -2; -100];
```

Zunächst werden die Controllermatrix und die Vorfiltermatrix ermittelt

```
RL = place(A,B,P_set_L1);
ML = (C*(B*RL-A)^{(-1)*B})^{(-1)};
PsollL = [P_set_L1 - 0.0005];
LT = place(Ah',Ch',PsollL);
L=LT';
```


Abbildung 23: Schaltplan Luenberger-Beobachter

Abbildung 24: Diagramm zur Darstellung der Differenz zwischen den Zustandsgrößen Luenberger-Beobachter

Abbildung 25: Rückführsignal für den Beobachter

In die zwei obigen Verläufe sind die Wirkung des Luenberger-Beobachters dargestellt, wobei ist nun der Differenz zwischen die Signale der oberen (Strecke) und der unteren (Beobachter)

Teil des Systems gleich null, das heißt, dass das Ziel des Beobachters erfüllt ist.

4.5 Kalman-Bucy-Filter

Das zweite Problem ist die Wirkung vom Rauschen, um diese Wirkung soweit wie möglich zu verringern, kommt die Idee von Kalman-Bucky vor.

Hier wurde mit der Matrix-Ricatti-Regler benutzt, und wie bevor die Kostengleichung minimiert, es wurden 5 Gewichtungsmatrizzen ausprobiert:

```
Qk1 = 10^0*diag([10^0 10^0 10^0 10^0 10^0]);
Qk2 = 10^1*diag([10^0 10^0 10^0 10^0 10^0]);
Qk3 = 10^2*diag([10^0 10^0 10^0 10^0 10^0]);
Qk4 = 10<sup>3</sup>*diag([10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup>);
Qk5 = 10^4*diag([10^0 10^0 10^0 10^0 10^0]);
Rk = 1;
Qk5 passt am besten:
[L_Kalman S0 Eig_beo] = lqr(Ah', Ch', Qk5, Rk);
```


Abbildung 26: Schaltplan Kalman-Bucy-Filter

Abbildung 27: Rückführsignal für das Kalman-Bucy-Filter

Mit der Addition der Kalman-Bucy-Filter ist der Differenz zwischen den Signalen aus der Strecke nahezu gleich null geworden.

Abbildung 28: Verlauf der Regelgröße mit Kalman-Bucy

Und somit ist auch der Verlauf der Regelgröße mit Berücksichtigung der Gütekriterien geregelt.

5 Reglerverhaltensbewertung und Feintuning

Abbildung 29: Schaltplan GRK mit dem nichtlinearen Subsystem

Nach der Festlegung der Struktur und Berechnung der Parameter, sollen die Ergebnisse in einer nichtlinearen Situation untersucht werden, da in der realen Welt meistens verschiedene Nichtlinearitäten in der Strecke auftauchen können.

Abbildung 30: Nichtlineares Subsystem

Das nichtlineare Strecke wird in Form von einem Subsystem in Simulink aufgebaut, und dann wird das gesamte System mit den gerechneten Werten simuliert, es wurde festgestellt, dass die Werte noch angepasst werden müssen, sodass die gewünschte Kurve für die Regelgröße erreicht wird.

Werte nach der Anpassung:

```
Q_Kalman = 10^4*diag([10^0 10^0 10^5 10^0 10^5]);
R_Kalman = 1;
QLQR_F = diag([10^0 10^0 10^0 10^0 10^0 10^0]);
RLQR_F = 1;
LQR Parameter Berechnung:
[R_PI_F, S, E_LQR] = lqr(A_PI, B_PI, QLQR_F, RLQR_F);
Reglerparameter für den PI-Regler:
Ri_F = -R_PI_F(1,6);
Rp_F = -(C_R*A^(-1)*B(:,1))^(-1);
Rx_F = R_PI_F(1,1:5) - Rp_F*C_R;
```


Abbildung 31: Verlauf der verschiedenen Zustandsgrößen

Abbildung 32: Verlauf der Regelgröße nach dem Feintuning

Nun ist der Verlauf der Temperatur nach der Berücksichtigung von den nichtlinearen Elementen des Regelkreises durch Anpassung des Beobachters korrigiert, und somit ist das Ziel der Regelung erreicht.

Anhang

A. Matlab Code

```
clear all
clc
%Parameter%
KRt=1; %ohm/K
TRt=1/250; %s
KR=1/100; %V/ohm
Ky=3/40; %bar/V
Ty=1/100; %s
Kz=2/100; %m/bar
Kh=1000; %(m<sup>3</sup>/min)/m
Kpv=1; %(m^3/min)/bar
TD=1/2; %s
KD=20; %K/(m^3/min)
KW=1; %K/(1/min)
TW1=20; %s
TW2=50; %s
Tpv = 100; %s
Tmw = 300; %s
Tan = 30; %s
Taus = 50; %s
%Zustandsraummodell%
%x=Py,m.D,ta,t.a,Rt
A=[-1/Ty 0 0 0 0;
   -(Kh*Kz)/TD -1/TD 0 0 0;
   00010;
    0 KD/(TW1*TW2) -1/(TW1*TW2) -(TW1+TW2)/(TW1*TW2) 0;
    0 0 KRt/TRt 0 -1/TRt];
Api = [-1/Ty 0 0 0 0;
   -(Kh*Kz)/TD -1/TD 0 0 0;
    0 0 0 1 0;
    0 KD/(TW1*TW2) -1/(TW1*TW2) -(TW1+TW2)/(TW1*TW2) 0;
    0 0 KRt/TRt 0 -1/TRt]; %it is the same as A, because in our case,
%workaround method was not possible, since the system included no
%I0 strecke.
%u=uy
B=[Ky/Ty;
  0;
  0;
  0;
  0];
Bpi = [Ky/Ty;
  0;
  0;
  0]; %it is the same as B, because in our case,
%workaround method was not possible, since the system included no
%I0 strecke.
```

```
%x=Py,m.D,ta,t.a,Rt
C = [0 \ 0 \ 0 \ 0 \ KR];
C_R = [0 \ 0 \ 1 \ 0 \ 0];
Ch_R = C_R;
%u=uv
D = [0];
%z=Pv,m.w
E = [0 \ 0;
   Kpv/TD 0;
   0 0;
   0 -KW/(TW1*TW2);
   0 0];
%z=Pv,m.w
F=[0 0];
sysORORK=ss(A,B,C,D);
%pzmap%
figure(1)
pzmap(sysORORK)
%step%
figure(2)
step(sysORORK)
%%%%% CONTROLLABILTY %%%%%%%%
Qs = ctrb(A,B); %ctrb computes a controllability matrix from state
% matrices or from a state-space model. One can use this matrix
% to determine controllability.
r = rank(Qs); %The rank function provides an estimate of the
% number of linearly independent rows or columns of a matrix.
% Check if the system is fully controllable
if rank(Qs) == length(A)
    disp('The system is fully controllable.');
else
    disp('The system is not fully controllable.');
end
%%%%%%%% OBSERVABILITY %%%%%%%%%%%
Qb = obsv(A,C); %obsv computes an observability matrix from
%the state matrices.
rb = rank(Qb);
1 = length(A);
% Check if the system is observable
```

```
if rank(Qb) == length(A)
   disp('The system is observable.');
else
   disp('The system is not observable.');
end
%%%%% Determination of the state space feedback R %%%%%
eig A = eig(A); %eigenvalues are calculated (they are the poles)
P_set = eig_A-1; %since some pole zeroes were too close to the
% y axis, P_set = eig_A-1 was deemed necessary.
R_place = place(A,B,P_set); % Calculates the controller matrix R.
%%%%% Determination of Vorfilter Matrix M %%%%%
M = (C*(B*R_place-A)^{(-1)*B})^{(-1)};
%%% Determination of the matrixes %%%
Ah = A;
Bh = B;
Ch = C;
%%% Observability Matrix L %%%
P_set_obs = eig_A;
L_luen_T = place(Ah',Ch',P_set_obs); % L (observability matrix)
% is calculated but transposed.
L_luen = L_luen_T'; % L = L transposed transposed.
%%%%%%%% Zustandraumreglung mit Beobachter und Störgrößen %%%%%%%%%%%
%%% Determination of Störgrößenmatrix Z %%%%%%
Z = ((B')*B)^{(-1)}*(B')*E;
%%%%% PI ZUSTANDSGRÖßENREGLER %%%%%%%
A_PI_real = [A zeros(5,1);
     -C_R 0];
B PI real = [B;
          01;
P_set_PI = eig(A_PI_real)-10;
R_place_PI = place(A_PI_real,B_PI_real,P_set_PI);
R I = -R place PI(:,6);
R p = -(C R*Api^-1*Bpi)^-1;
R_x = R_place_PI(:,1:5)-R_p*C_R;
```

%%%%%%% Controller parameter calculation R = diag(1); % R is the control cost matrix (an Einheitsmatrix), Matrix % R should be square and have the same number of rows as matirx B %%%%%%% Minimum Damping Maximum Time Constant %%%%%%%% %%%%% Determination of D %%%%%%% K = 50;T = 2;D_var=[0.7:0.01:0.75]; for n=1:1:length(D_var) $PT2_varD = tf([K],[T^2 2*D_var(n)*T 1]);$ [yD_varD{n},tOutD_varD{n}] = step(PT2_varD, 500); end figure(3) hold on for n=1:1:length(yD_varD) plot(tOutD_varD{n},yD_varD{n}) legend('D=0,7','D=0,71','D=0,72','D=0,73','D=0,74','D=0,75','Location','northwe st') % Toleranzband yline(52, '--r', 'Oberes Toleranzband', 'HandleVisibility', 'off');
yline(48, '--r', 'Unteres Toleranzband', 'HandleVisibility', 'off');
yline(50, '--p', 'HandleVisibility', 'off'); xlim([5, 12]); ylim([47, 53]); title("Dmin"); hold off Dmin = 0.72; %%%%% Determination of T %%%%%%% T var = [8:0.5:10];figure(4) hold on for n=1:1:length(T_var) $T_{max} = T_{var}(n);$ PT2_varT = tf([K],[T_max^2 2*Dmin*T_max 1]); step(PT2_varT); end legend('T=8s','T=8,5s','T=9s','T=9,5s','T=10s','Location','northwest') % Tan und Taus xline(30, '--r', 'Tan', 'HandleVisibility', 'off');
xline(50, '--r', 'Taus', 'HandleVisibility', 'off'); yline(48, '--r', 'Unteres Toleranzband', 'HandleVisibility', 'off'); ylim([45, 55]); xlim([25, 55]); title("Tmax");

hold off

```
Tmax = 9.5;
%%%%%% GRK %%%%%%%%
figure(5)
hold on
GRK1 = tf([K],[Tmax^2 2*Dmin*Tmax 1]);
step(GRK1)
grid on
xline(30, '--r', 'Tan');
xline(50, '--r', 'Taus');
yline(52, '--r', 'Oberes Toleranzband');
yline(48, '--r', 'Unteres Toleranzband');
ylim([45, 55]);
xlim([25, 60]);
title("GRK mit Tmax und Dmin");
\%\%\%\%\%\%\% D = 0.72, T = 9.5 \%\%\%\%\%\%\%\%\%\%
D_set1 = Dmin;
P11 = -1/Tmax*(cos(acos(D_set1)) + j*sin(acos(D_set1)));
P21 = -1/Tmax*(cos(acos(D_set1)) - j*sin(acos(D_set1)));
P set min1 = [-251; P11 ; P21 ;-3; -101];
R_place_opt1 = place(A,B,P_set_min1);
M1 = (C_R*(B*R_place_opt1-A)^(-1)*B)^(-1);
D_set2 = Dmin;
P12 = -1/5*(cos(acos(D_set2)) + j*sin(acos(D_set2)));
P22 = -1/5*(cos(acos(D_set2)) - j*sin(acos(D_set2)));
P_set_min2 = [-251; P12 ; P22 ;-3; -101];
R_place_opt2 = place(A,B,P_set_min2);
M2 = (C R*(B*R place opt2-A)^{-1}*B)^{-1};
\%\%\%\%\%\%\% D = 0.9, T = 9.5 \%\%\%\%\%\%\%\%\%\%
D set3 = 0.9;
P13 = -1/Tmax*(cos(acos(D_set3)) + j*sin(acos(D_set3)));
P23 = -1/Tmax*(cos(acos(D_set3)) - j*sin(acos(D_set3)));
P_set_min3 = [-251; P13 ; P23 ;-3; -101];
R_place_opt3 = place(A,B,P_set_min3);
M3 = (C_R*(B*R_place_opt3-A)^(-1)*B)^(-1);
\%\%\%\%\%\%\% D = 0.9, T = 5 \%\%\%\%\%\%\%\%\%
D set4 = 0.9;
P14 = -1/5*(cos(acos(D_set4)) + j*sin(acos(D_set4)));
P24 = -1/5*(cos(acos(D_set4)) - j*sin(acos(D_set4)));
P_set_min4 = [-251; P14 ; P24 ;-3; -101];
R_place_opt4 = place(A,B,P_set_min4);
M4 = (C_R*(B*R_place_opt4-A)^(-1)*B)^(-1);
%%%%%% Bestmögliche Kombination von D und T ist D=0.9 und T=5! %%%%%%%
```

```
Q1 = diag([10^0 10^0 10^0 10^0 10^0]);
Q2 = diag([10^0 10^0 10^1 10^4 10^5]);
Q3 = diag([10^0 10^0 10^1 10^2 10^2]);
Q4 = diag([10^0 10^1 10^-1 10^0 10^0]);
R_place_lqr1 = lqr(A,B,Q1,R);
M \ lgr1 = (C \ R*(B*R \ place \ lgr1-A)^(-1)*B)^(-1);
R_place_1qr2 = lqr(A,B,Q2,R);
M_{qr2} = (C_R*(B*R_place_lqr2-A)^(-1)*B)^(-1);
R_place_1qr3 = lqr(A,B,Q3,R);
M_{qr3} = (C_R*(B*R_place_lqr3-A)^(-1)*B)^(-1);
R_place_lqr4 = lqr(A,B,Q4,R);
M_1qr4 = (C_R*(B*R_place_lqr4-A)^(-1)*B)^(-1);
% P1 = -1/Tmax*(cos(acos(Dmin)) + j*sin(acos(Dmin)))-0.15;
% P2 = -1/Tmax*(cos(acos(Dmin)) - j*sin(acos(Dmin)))-0.15;
P1 = -1/5*(cos(acos(0.9)) + j*sin(acos(0.9)));
P2 = -1/5*(cos(acos(0.9)) - j*sin(acos(0.9)));
% Luenberger-Beobachter:
% Setting up the specific pole points for Luenberger-Beobachter
P_set_L1 = [-250; P1; P2; -2; -100];
% Controller matrix Calculation
RL = place(A,B,P_set_L1);
% Prefilter Matrix M Calculation
ML = (C*(B*RL-A)^{(-1)*B})^{(-1)};
% Calculation of different observebility matrix parameters
PsollL1 = [P_set_L1 - 0.0001];
PsollL2 = [P_set_L1 - 0.0005];
PsollL3 = [P_set_L1 - 0.001];
% Transponierte Werte
L1T = place(Ah',Ch',PsollL1);
L2T = place(Ah',Ch',PsollL2);
L3T = place(Ah',Ch',PsollL3);
% L = L Transponiert Transponiert
L1=L1T';
L2=L2T';
L3=L3T';
%%%%%%% PsollL2 gives the best possible result, the X - X^ value
% reaches to 0 around 30s. %%%%%%%%%
```

$Qk1 = 10^0*diag([10^0 10^0 10^0 10^0 10^0]);$ $Qk2 = 10^1*diag([10^0 10^0 10^0 10^0 10^0]);$ $Qk3 = 10^2*diag([10^0 10^0 10^0 10^0 10^0]);$ $Qk4 = 10^3*diag([10^0 10^0 10^0 10^0 10^0]);$ Qk5 = $10^4*diag([10^0 10^0 10^0 10^0 10^0]);$ Rk = 1;%%%%%%% Kalman Filter Calculation %%%%%%%% [L_Kalman S0 Eig_beo] = lqr(Ah', Ch', Qk5, Rk); L K = L Kalman'; $R_K = RL;$ $M_K = ML;$ %%%%%%% Mit den gewählten Werten stabilisiert sich das System bei etwa % t=35 Sekunden. Die Grafik entspricht den Gütekriterien. %%%%%%% Die X - X^ Grafik stabiliziert sich bei etwa t=10 Sekunden. Das % entspricht für einen schnellen Beobachter, der gut funtioniert. % Definition der Parameter: % Zeitkonstanten: TRt = 1/250; % einheit = s Ty = 1/100; % einheit = s TD = 1/2; % einheit = s TW1 = 20; % einheit = s TW2 = 50; % einheit = s % Parameter: % einheit = Ω/K KRt = 1; % einheit = Ω/K KR = 1/100; % einheit = V/Ω Ky = 3/40; % einheit = bar/V Kz = 2/100; % einheit = m/bar Kh = 1000; % einheit = 1000 (m^3/min)/m KRt = 1;Kpv = 1; $% einheit = (m^3/min)/bar$ KD = 20;% einheit = $K/(m^3/min)$ KW = 1;% einheit = K/(1/min)% Definition des Arbeitspunkts: Apu = 70+273; % einheit = K Apo = 95+273; % einheit = K % Definition der Arbeitspunktwerte: TApu = 50+273; % einheit = K TAPU = 50+2/3; % einheit = K uTApu = 5; % einheit = V RTApu = 300; % einheit = Ω uYApu = 4; % einheit = V pYApu = 2.4; % einheit = bar hApu = 10; % einheit = mm mWApu = 30; % einheit = 1/min pVApu = 1.6; % einheit = bar mDApu = 1.5; % einheit = m^3/min % Störungen:

% einheit = bar

 $ampl_pV = 1;$

```
pdauer_pV = 100;
                       % einheit = s
                        % einheit = 1/min
ampl_m = 10;
pdauer_m = 300;
                       % einheit = s
% Steuerkonstanten der Störgrößen:
z1str = 1;
z2str = 1;
% Steuerkonstante des Reglers:
Rstr = 1;
% Festlegung der Simulationsparameter:
t_start = 0;
                 % einheit = s
t_stop = 500;
                 % einheit = s
t_step = 1/500; % einheit = s
t_jump = 10;
                 % einheit = s
% Festlegung der Qualitätskriterien:
dystep = Apo-Apu;
tol = 2;
xuemax = 5;
Tan = 30;
Taus = 50;
% Simulation in Simulink:
% Definiton der Systemmatrix:
                                                                           0;
A=[ -1/Ty
                                     0
                                                        0
   -(Kh*Kz)/TD
                   -1/TD
                                     0
                                                        0
                                                                           0;
                                     0
      0
                    0
                                                        1
                                                                           0;
      0
                                              -(TW1+TW2)/(TW1*TW2)
                               -1/(TW1*TW2)
               KD/(TW1*TW2)
                                                                           0;
      0
                    0
                                                                     -1/TRt];
                                  KRt/TRt
                                                        0
B=[Ky/Ty;
      0;
      0
      0
      0 1;
E=[ 0
                  0
   Kpv/TD
                  0
                  0
     0
     0
            -KW/(TW1*TW2);
                  0
                         ];
% Eingangsmatrix (Beide Führungs- und Störgrößen):
BE = [Ky/Ty]
                 0
                                0
        0
                Kpv/TD
                                0
        0
                                0
                  0
        0
                  0
                          -KW/(TW1*TW2);
                                0
% Definition der Ausgangsmatrizen:
C = [0 \ 0 \ 0 \ 0 \ KR]; \%ORK
C_R = [0 \ 0 \ 1 \ 0 \ 0]; \%GRK
% Definition der Durchgangsmatrix:
D = [0];
E = [0]
              0;
```

```
Kpv/TD
              0;
     0
              0;
        -KW/(TW1*TW2);
     0
     0
              0];
F = [0]
              0];
%Eingenwerte ORORK:
eig_A =eig(A);
% Definition des Zustandsraummodells für den PI-Regler:
A_{PI} = [A zeros(5,1);
        -C_R
                 0
B_PI = [B;
         0];
% Matrix Ricatti Regler:
QLQR = diag([10^0 10^0 10^0 10^0 10^0 10^13]);
RLQR = 1;
% LQR Parameter Berechnung:
[R_PI, S, E_LQR] = lqr(A_PI, B_PI, QLQR, RLQR);
% Reglerparameter für den PI-Regler:
Ri = -R_PI(1,6);
Rp = -(C_R*A^{(-1)}*B(:,1))^{(-1)};
Rx = R_PI(1,1:5) - Rp*C_R;
% Beobachtermodell (zero vectors were added to match the dimensions
% of the matrix with the entrance values):
A h = A;
B_h = [B,[0;0;0;0;0],[0;0;0;0;0]];
C_h = C;
D_h = D;
xs = [0;0;0;0;0];
xb = [10;10;10;10;10];
% Matrix Ricatti Regler:
QLQR F = diag([10^0 10^0 10^0 10^0 10^0 10^0]);
RLQR_F = 1;
% LQR Parameter Berechnung:
[R_PI_F, S, E_LQR] = lqr(A_PI, B_PI, QLQR_F, RLQR_F);
% Reglerparameter für den PI-Regler:
Ri_F = -R_PI_F(1,6);
Rp_F = -(C_R*A^{(-1)}*B(:,1))^{(-1)};
Rx_F = R_PI_F(1,1:5) - Rp_F*C_R;
% Berechnung der Bewertungsmatrix für Beobachter:
Q_{\text{Kalman}} = 10^4 * \text{diag}([10^0 10^0 10^5 10^0 10^5]);
R \text{ Kalman} = 1;
% Berechnung des Kalman-Filters:
[LKalmanT SKalman EKalman]= lqr(A_h',C_h',Q_Kalman,R_Kalman);
```

```
% Berechnung von step time:
t_step = 1/abs(min(real(EKalman)));
% Zuweisung zu den Parametern der Simulation:
LKalman = LKalmanT';
Rx = Rx;
simout = sim('LNB ET Gr3 Simulink.slx');
% Darstellung der Sprungantwort aus Simulink
figure(6);
plot(simout.ScopeData1{1}.Values.Time,simout.ScopeData1{1}.Values.Data);
title('GRK mit Zustandsraumregler');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([0, 50]);
xlim([0, 500]);
grid on
figure(7);
plot(simout.ScopeData2{1}.Values.Time,simout.ScopeData2{1}.Values.Data);
title('Differenz von Zustandsgrößen GRK mit Beobachter');
xlabel('Zeit (s)');
ylim([-10, 50]);
xlim([0, 500]);
legend('Py (bar)', "m'D (m^3/min)", "ta (°C)", "t'a (°C/s)", 'Rt (ohm)')
grid on
figure(8);
plot(simout.ScopeData3{1}.Values.Time,simout.ScopeData3{1}.Values.Data);
title('Ausgangsgrößen GRK mit Beobachter');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
legend('GRK','Beobachter','Location','southeast')
ylim([0, 50]);
xlim([0, 500]);
grid on
figure(9);
plot(simout.ScopeData4{1}.Values.Time,simout.ScopeData4{1}.Values.Data);
title('Differenz der Zustandsgrößen GRK mit Störgrößen');
xlabel('Zeit (s)');
ylim([-10, 50]);
xlim([0, 500]);
legend('Py (bar)',"m'D (m^3/min)","ta (°C)","t'a (°C/s)",'Rt (ohm)')
grid on
figure(10);
plot(simout.ScopeData5{1}.Values.Time,simout.ScopeData5{1}.Values.Data);
title('Ausgangsgrößen GRK mit PI-Regler');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
legend('GRK', 'Beobachter', 'Location', 'southeast')
ylim([0, 50]);
xlim([0, 500]);
grid on
figure(11);
plot(simout.ScopeData6{1}.Values.Time,simout.ScopeData6{1}.Values.Data);
title('Polplatzierung mit verschiedenen D und T');
```

```
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([34, 48]);
xlim([0, 500]);
xline(t_jump+30, '--r', 'HandleVisibility', 'off');
xline(t_jump+50, '--r', 'HandleVisibility', 'off');
yline(43, '--r', 'HandleVisibility', 'off');
yline(45, '--g', 'HandleVisibility', 'off');
yline(47, '--r', 'HandleVisibility', 'off');
legend('D=0,72 T=9,5s','D=0,72 T=5s','D=0,9 T=9,5s','D=0,9
T=5s',"Location","southeast")
grid on
figure(12);
plot(simout.ScopeData7{1}.Values.Time,simout.ScopeData7{1}.Values.Data);
title('LQR mit verschiedenen Q-Matrizen');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([34, 48]);
xlim([0, 500]);
xline(t_jump+30, '--r', 'HandleVisibility', 'off');
xline(t_jump+50, '--r', 'HandleVisibility', 'off');
yline(43, '--r', 'HandleVisibility', 'off');
yline(45, '--g', 'HandleVisibility', 'off');
yline(47, '--r', 'HandleVisibility', 'off');
legend('Q1','Q2','Q3','Q4',"Location","southeast")
grid on
figure(13);
plot(simout.ScopeData8{1}.Values.Time,simout.ScopeData8{1}.Values.Data);
title('Differenz zwischen der Zustandgrößen mit Luenberger-Beobachter');
xlabel('Zeit (s)');
ylim([-3, 10]);
xlim([0, 50]);
legend('Py (bar)',"m'D (m^3/min)","ta (°C)","t'a (°C/s)",'Rt (ohm)')
grid on
figure(14);
plot(simout.ScopeData9{1}.Values.Time,simout.ScopeData9{1}.Values.Data);
title('Wirkung von dem Luenberger-Beobachter');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([-0.025, 0.005]);
xlim([0, 50]);
grid on
figure(15);
plot(simout.ScopeData10{1}.Values.Time,simout.ScopeData10{1}.Values.Data);
title('Wirkung von dem Kalman-Bucy');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([-0.6, 1]);
xlim([0, 500]);
grid on
figure(16);
plot(simout.ScopeData11{1}.Values.Time,simout.ScopeData11{1}.Values.Data);
title('Regelgröße mit Kalman-Bucy-Filter');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([0, 50]);
```

```
xlim([0, 500]);
xline(t_jump+30, '--r', 'HandleVisibility', 'off');
xline(t_jump+50, '--r', 'HandleVisibility', 'off');
yline(43, '--r', 'HandleVisibility', 'off');
yline(45, '--g', 'HandleVisibility', 'off');
yline(47, '--r', 'HandleVisibility', 'off');
grid on
figure(17);
plot(simout.ScopeData12{1}.Values.Time,simout.ScopeData12{1}.Values.Data);
title('Verhalten von Zustandsgrößen Feintuning');
xlabel('Zeit (s)');
ylim([-10, 50]);
xlim([0, 500]);
xline(t_jump+30, '--r', 'HandleVisibility', 'off');
xline(t_jump+50, '--r', 'HandleVisibility', 'off');
yline(43, '--r', 'HandleVisibility', 'off');
yline(45, '--g', 'HandleVisibility', 'off');
yline(47, '--r', 'HandleVisibility', 'off');
legend('Py (bar)', "m'D (m^3/min)", "ta (°C)", "t'a (°C/s)", 'Rt
(ohm)','Location','east')
grid on
figure(18);
plot(simout.ScopeData13{1}.Values.Time,simout.ScopeData13{1}.Values.Data);
title('Verhalten von Regelgröße Feintuning');
xlabel('Zeit (s)');
ylabel('Temperatur (°C)');
ylim([40, 100]);
xlim([0, 500]);
xline(t_jump+30, '--r', 'HandleVisibility', 'off');
xline(t_jump+50, '--r', 'HandleVisibility', 'off');
yline(93, '--r', 'HandleVisibility', 'off');
yline(95, '--g', 'HandleVisibility', 'off');
yline(97, '--r', 'HandleVisibility', 'off');
grid on
```

B. Simulinkmodell mit Beschreibung

1. SYSTEMANALYSE

2.1.1 ZUSTANDSREGELKREIS

ZUSTANDSBEOBACHTER

2.1.2 ZUSTANDSRAUMREGELUNG MIT BEOBACHTER

2.1.3 ZUSTANDSRAUMREGELUNG MIT BEOBACHTER UNTER BEACHTUNG DER STÖRGRÖßEN

STÖRGRÖßENKOMPENSATION MIT BEOBACHTER

PI - ZUSTANDSGRÖßENREGELUNG OHNE BEOBACHTER

PI - ZUSTANDSGRÖßENREGELUNG MIT BEOBACHTER

3- Reglerparameterberechnung

Polplatzierung - 3.1

Matrix - Ricatti Regler (LQR) - 3.2

3.3 - Luenburger Beobachter mit geschlossenem Regelkreis

3.4 - Kalman Bucy mit geschlossenem Regelkreis

4. Reglerverhaltensbewertung

Nichtlineares Subsystem

Table 1.1. LNB_ET_Gr3_Simulink Simulation Parameters

Solver ode4	ZeroCross on	StartTime 0.0 StopTime 500
RelTol 1e-3	<i>AbsTol</i> auto	Refine 1
InitialStep auto	FixedStep 1/500	MaxStep auto

Table 1.2. Model Variables

Variable Name	Parent Blocks	Calling character vector	Value
A	Gain106 Gain11 Gain113 Gain124 Gain18 Gain28 Gain3 Gain3	A A A A A A A A A A A A A	[-100 0 0 0 0; -40 -2 0 0 0; 0 0 0 1 0; 0 0.02 -0.001 -0.07 0; 0 0 250 0 -250]

Variable	Parent	Calling character	Value
Name	Blocks	vector	value
	Gain46	A	
	Gain49	A	
	Gain5	A	
	Gain54	A	
	Gain71	A	
	Gain78	A	
	Gain85	A	
	Gain88		
	Gain99		
			[-100 0 0 0 0 ;
			-40 -2 0 0 0 ;
A h	Gain141	A_h	00010;
_			0 0.02 -0.001 -0.07 0 ;
			0 0 250 0 -250]
	<u>Gain119</u>		
	<u>Gain129</u>	Ah	[-100 0 0 0 0 ;
	Gain14	Ah Ah	-40 -2 0 0 0 ;
Ah	Gain21	Ah	00010;
	Gain36	Ah	0 0.02 -0.001 -0.07 0 ;
	Gain57	Ah	0 0 250 0 -250]
	Gain		
	Gain 10	В	
	<u>Gain105</u>	В	
	<u>Gain112</u>	В	
	<u>Gain118</u>	В	
	Gain17	В	
	Gain27	В	[7.5;
	Gain31	В	0;
В	Gain4	В	0;
	Gain45	В	0;
	Gain48	В	
	Gain53	В	
	Gain70	В	
	Gain77	В	
	Gain84	В	
	Gain87	В	
	Gain98		
			[7.5 0 0 ;
B_h	<u>Gain140</u>	B_h	
B_h	<u>Gain140</u>	B_h	000;

Variable Name	Parent Blocks	Calling character vector	Value
			0 0 0; 0 0 0; 0 0 0]
Bh	Gain123 Gain13 Gain133 Gain20 Gain35 Gain56	Bh Bh Bh Bh Bh	[7.5; 0; 0; 0; 0]
С	Gain1 Gain115 Gain12 Gain126 Gain19 Gain33 Gain55 Gain6	C C C C C	[0 0 0 0 0.01]
C_R	Gain101 Gain108 Gain135 Gain43 Gain62 Gain63 Gain73 Gain80 Gain90 Gain91	C_R	[0 0 1 0 0]
C_h	Gain142	C_h	[0 0 0 0 0.01]
Ch	Gain121 Gain131 Gain15 Gain22 Gain37 Gain58	Ch Ch Ch Ch Ch	[0 0 0 0 0.01]
D	Gain104 Gain111 Gain2 Gain67	D D D D D	0

Parent	Calling character	Value
Blocks	vector	value
Gain69	D	
Gain76		
Gain83	D	
Gain9	D	
Gain97		
<u>Gain100</u>		
<u>Gain107</u>	E	
<u>Gain114</u>		
<u>Gain125</u>	E	
Gain30	E	[0 0 ;
Gain44	E	20;
Gain47	E	00;
Gain50		0 -0.001 ;
Gain52		00]
	E	
	E	
	E	
Gain89		
Subsystem2	KD	20
Subsystem2	KR	0.0100
Subsystem2	KRt	1
Subsystem2	KW	1
Subsystem2	Kh	1000
Subsystem2	Kpv	1
Subsystem2	Ку	0.0750
Subsystem2	Kz	0.0200
		[36617.4154 ;
		14954.113;
Gain122	L2	29.187299;
		-1.19563851;
		29.25]
		[-6.72506848e-08;
		0.000873482884;
<u>Gain139</u>	LKalman	31622.7915;
		2.03034019;
		31622.7832]
Gain132	L_K	[-2.753096e-07;
	Gain69 Gain76 Gain83 Gain9 Gain95 Gain97 Gain100 Gain107 Gain114 Gain125 Gain30 Gain44 Gain47 Gain50 Gain52 Gain72 Gain79 Gain86 Gain89 Subsystem2 Subsystem2 Subsystem2 Subsystem2 Subsystem2 Subsystem2 Subsystem2 Subsystem2 Gain122 Gain122 Gain122	Blocks vector Gain69 Gain76 Gain83 Gain9 Gain95 Gain97 Gain100 Gain107 Gain114 Gain125 Gain30 Gain44 E Gain52 Gain72 E Gain79 E Gain79 E Gain86 Gain89 Subsystem2 KR Subsystem2 KD Subsystem2 KR Subsystem2 KR Subsystem2 KR Subsystem2 KD Subsystem2 KR Subsystem2 KR Subsystem2 KD Subsystem2 KR Subsystem2 KD Subsystem2 KR Subsystem2 KR Subsystem2 KD Subsystem2 KR Subsystem2 KR Subsystem2 KD Subsystem2 KR Subsystem2 KR Subsystem2 KA Subsystem3 LKalman

Variable Name	Parent Blocks	Calling character vector	Value
			0.06792792; 166.7864; 88.47414; 166.4324]
L_luen	Gain16 Gain23 Gain38 Gain59	L_luen L_luen L_luen L_luen	[6.4444e-07; 2.6304e-07; -5.385e-12; -5.2455e-11; -5.6843e-12]
M	Gain25 Gain39 Gain7	M M M	-5.4302e+03
M1	Gain65	M1	-0.5618
M2	Gain74	M2	-2.0281
M3	Gain81	м3	-0.5618
M4	Gain64	M4	-2.0281
ML	Gain116	ML	-133.3333
M_K	Gain127	M_K	-133.3333
M_lqr1	Gain93	M_lqr1	-1.4155
M_lqr2	Gain92	M_lqr2	-316.2436
M_lqr3	Gain102	M_lqr3	-10.4883
M_lqr4	Gain109	M_lqr4	-1.0612
RL	Gain120	RL	[0.038667 -0.096729 -1.2951 -9.9843 0]
R_I	<u>Gain34</u> <u>Gain51</u>	R_I R_I	-2.3048e+05
R_K	Gain130	R_K	[0.038667 -0.096729 -1.2951 -9.9843 0]
R_p	Gain42 Gain60	R_p R_p	-0.0333
R_place	Gain24 Gain40 Gain8	R_place R_place R_place	[0.666666666646 -0.52643333353 1520733.3352 -6202.4304837 - 1520787.5758]
R_place_lqr1	Gain94	R_place_lqr1	[0.26538 -0.57631 -1.3527 -9.4691 - 5.3994e-10]
R_place_lqr2	Gain96	R_place_lqr2	[0.6734355 -1.632356 -316.1269 - 282.625 -5.333659e-05]
R_place_lqr3	Gain103	R_place_lqr3	[0.316947 -0.708034 -10.4187 -35.0466 -5.391e-08]

Variable Name	Parent Blocks	Calling character vector	Value
R_place_lqr4	Gain110	R_place_lqr4	[1.0132 -2.5356 -0.89854 -9.2036 - 5.2804e-10]
R_place_opt1	Gain66	R_place_opt1	[0.41087719271 0.13530999535 1532528.3111 -6136.0443898 - 1532528.8453]
R_place_opt2	Gain75	R_place_opt2	[0.42906666639 0.088407533315 1531690.7727 -6139.9528037 - 1531692.7708]
R_place_opt3	Gain82	R_place_opt3	[0.41592982429 0.12230831114 1532295.8717 -6136.9895723 - 1532296.4053]
R_place_opt4	Gain68	R_place_opt4	[0.43866666639 0.063704333305 1531249.138 -6141.7486505 - 1531251.1348]
R_x	Gain41 Gain61	R_x R_x	[8.00043483972 -13.2659638163 12189094.4305 -62483.7810163 - 12279335.5748]
Ri_F	Gain134	Ri_F	-1.0000
Rp_F	Gain137	Rp_F	-0.0333
Rx_F	Gain138	Rx_F	[0.304798 -0.676955 -8.21381 -28.7951 -5.39297e-10]
TD	Subsystem2	TD	0.5000
TRt	Subsystem2	TRt	0.0040
TW1	Subsystem2	TW1	20
TW2	Subsystem2	TW2	50
Ту	Subsystem2	Ty	0.0100
Z	Gain26	Z	[0 0]
XS	Integrator25	xs	[0; 0; 0; 0; 0]

Table 1.3. Model Functions

Function Name	Parent Blocks	Calling character vector
pi	Integrator Integrator10 Integrator11 Integrator12	-pi -pi -pi -pi -pi -pi

Function Name	Parent Blocks	Calling character vector
	Integrator13	-pi
	Integrator 14	-pi
	Integrator15	-pi
	Integrator16	-pi
	Integrator17	-pi
	Integrator 18	-pi -pi
	Integrator 19	-pi
	Integrator2	-pi
		-pi
	Integrator20	-pi
	Integrator21	-pi
	Integrator22	-pi
	Integrator23	-pi -pi
	Integrator24	-pi
	Integrator25	-pi
	Integrator26	-pi
	Integrator3	-pi
	Integrator4	-pi
	Integrator5	-pi
	Integrator6	2*pi*(1/300)
	Integrator7	2*pi*(10^-2) [2*pi*(10^-2) 2*pi*(1/300)]
	Integrator8	[2*pi*(10*2) 2*pi*(1/300)]
	Integrator9	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave12	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave14	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave1	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave10	[2*pi*(10^-2) 2*pi*(1/300)] [2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave11	[2 pi*(10 -2) 2 pi*(1/300)] [2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave13	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave2	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave3	[2*pi*(10^-2) 2*pi*(1/300)]
	Sine Wave4	pi
	Sine Wave5	pi
	Sine Wave6	pi pi
	Sine Wave7	pi
	Sine Wave8	pi
	Sine Wave9	pi
	Integrator	pi
	Integrator1	pi
	Integrator 10	pi ni
	Integrator 11	pi pi
	micgiaioi i i	F ±

Function Name	Parent Blocks	Calling character vector
	Integrator12	pi
	Integrator13	pi
	Integrator14	pi
	Integrator15	pi pi
	Integrator16	pi
	Integrator17	pi
	Integrator18	pi
	Integrator19	pi
	Integrator2	pi
	Integrator20	pi :
	Integrator21	pi pi
	Integrator22	pi
	Integrator23	pi
	Integrator24	
	Integrator25	
	Integrator26	
	Integrator3	
	Integrator4	
	Integrator5	
	Integrator6	
	Integrator7	
	Integrator8	
	Integrator9	

Table 1.4. Band-Limited White Noise. Block Properties

Name	Parent	Cov	Ts	Seed
Band-Limited White Noise	LNB ET Gr3 Simulink	[0.003]	0.1	[23341]
Band-Limited White Noise1	LNB ET Gr3 Simulink	[0.003]	0.1	[23341]

Table 1.5. Constant Block Properties

Name	Parent	Value	Out Data Type Str	Lock Scale	Sample Time	Frame Period
Constant	LNB_ET_Gr3_Simulink	50	Inherit: Inherit from 'Constant value'	off	inf	inf

Table 1.6. Integrator Block Properties

Name	Parent	nal	Initial Condi tion Sourc e	Initial Condi tion	Wr ap Sta te	Wrap ped State Upper Value	Wrap ped State Lowe r Value	Absol ute Tolera nce	Zer o Cro	Contin uous State Attribu tes
Integrat or	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	"
Integrat or 1	LNB ET Gr3 Simulink	none	interna l		off	pi	-pi	auto	on	,,
Integrat or 10	LNB_ET_Gr3_ Simulink	none	interna l		off	pi	-pi	auto	on	,,
Integrat or 11	LNB ET Gr3 Simulink	none	interna l		off	pi	-pi	auto	on	.,
Integrat or 12	LNB ET Gr3 Simulink	none	interna l	[1 2 3 4 5]	off	pi	-pi	auto	on	"
Integrat or 13	LNB_ET_Gr3_ Simulink	none	interna l		off	pi	-pi	auto	on	,,
Integrat or 14	LNB_ET_Gr3_ Simulink	none	interna l		off	pi	-pi	auto	on	,,
Integrat or 15	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	,,
Integrat or 16	LNB ET Gr3 Simulink	none	interna l		off	pi	-pi	auto	on	"
Integrat or 17	LNB_ET_Gr3_ Simulink	none	interna l		off	pi	-pi	auto	on	,,
Integrat or18	LNB_ET_Gr3_ Simulink	none	interna l		off	pi	-pi	auto	on	.,
Integrat or 19	LNB ET Gr3 Simulink	none	interna l		off	pi	-pi	auto	on	"
Integrat or2	LNB_ET_Gr3_ Simulink	none	interna l	[1 2 3 4 5]	off	pi	-pi	auto	on	,,
Integrat or 20	LNB_ET_Gr3_ Simulink	none	interna l		off	pi	-pi	auto	on	"
Integrat or21	LNB ET Gr3 Simulink	none	interna l		off	pi	-pi	auto	on	,,
Integrat or22	LNB_ET_Gr3_ Simulink	none	interna 1	[1 1 1 1 1]	off	pi	-pi	auto	on	,,
Integrat or23	LNB ET Gr3 Simulink	none	interna 1		off	pi	-pi	auto	on	"
Integrat or24	LNB_ET_Gr3_ Simulink	none	interna 1	[1 1 1 1 1]	off	pi	-pi	auto	on	"
Integrat or25	LNB ET Gr3 Simulink	none	interna 1	xs	off	pi	-pi	auto	on	"

Name	Parent	nal		Initial Condi tion	Wr ap Sta te	Wrap ped State Upper Value	Wrap ped State Lowe r Value	ute Tolera	Zer o Cro	Contin uous State Attribu tes
Integrat or 26	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	,,
Integrat or3	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	,,
Integrat or4	LNB_ET_Gr3_ Simulink	none	interna 1	[1 2 3 4 5]	off	pi	-pi	auto	on	,,
Integrat or5	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	,,
Integrat or6	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	,,
Integrat or7	LNB_ET_Gr3_ Simulink	none	interna 1	[1 2 3 4 5]	off	pi	-pi	auto	on	"
Integrat or8	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	"
Integrat or9	LNB_ET_Gr3_ Simulink	none	interna 1		off	pi	-pi	auto	on	,,

Table 1.7. Mux Block Properties

Name	Parent	Inputs	Display Option
Mux	LNB ET Gr3 Simulink	2	bar
Mux1	LNB_ET_Gr3_Simulink	2	bar
Mux2	LNB ET Gr3 Simulink	2	bar
Mux3	LNB ET Gr3 Simulink	4	bar
Mux4	LNB_ET_Gr3_Simulink	3	bar
Mux5	LNB_ET_Gr3_Simulink	5	bar
Mux7	LNB_ET_Gr3_Simulink	4	bar

Table 1.8. Saturate Block Properties

Name	Parant		1	Linearize As Gain	Zero		Lock Scale	
Saturation	LNB_ET_Gr3_Simulink	5	-5	on		Inherit: Same as input		Floor

Table 1.9. Sin Block Properties

Name	Parent	Sin e Typ e	Time Source	Amplit ude	Bi as	Frequenc y	Pha se	Sampl es	Offs et	Samp le Time
Sine Wave	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 1	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 10	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave	LNB ET Gr3 Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 12	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	10	0	2*pi*(1/3 00)	0	10	0	0
Sine Wave 13	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 14	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	1	0	2*pi*(10^ -2)	0	10	0	0
Sine Wave 2	LNB ET Gr3 Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 3	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 4	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0

Name	Parent	Sin e Typ e		Amplit ude	Bi as	Frequenc y	Pha se	Sampl es	Offs et	Samp le Time
Sine Wave 5	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 6	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 7	LNB ET Gr3 Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 8	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0
Sine Wave 9	LNB_ET_Gr3_Si mulink	Tim e bas ed	Use simulati on time	[1 10]	0	[2*pi*(10 ^-2) 2*pi*(1/3 00)]	0	10	0	0

Table 1.10. Step Block Properties

Name	Parent	Time	Before	After	Out Data Type Str	Sample Time	Zero Cross
Step1	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step10	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step11	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step12	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step13	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step14	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step15	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step16	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step17	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step19	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step2	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step3	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step4	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step5	LNB_ET_Gr3_Simulink	10	20	45	double	0	on
Step6	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step7	LNB ET Gr3 Simulink	10	20	45	double	0	on
Step8	LNB_ET_Gr3_Simulink	10	20	45	double	0	on

Name	Parent		Time	Before	After	Out Data Type Str	Sample Time	Zero Cross
Step9	LNB_ET	Gr3 Simulink	10	20	45	double	0	on

Table 1.11. Signal Properties

Graphical Name	Parent
m.D	LNB_ET_Gr3_Simulink
Py	LNB ET Gr3 Simulink
Rt	LNB_ET_Gr3_Simulink
T.aus	LNB_ET_Gr3_Simulink
Taus	LNB_ET_Gr3_Simulink

C. GANNT

D. LOP

Nr. 🔻	Datum 🔻	Kurzbeschreibung	Fortschritt	Verantwortlicher 🔻	zu erledigen bis 🔻	Status 🛒
			Herr Goldbach hat diese matrizen im Übung (simulink) benutzt, als eine Rückkopplung. Wenn wir versuchen, die gleiche matrizen zu berechnen, bekommen wir eine Fehlermeldung.	Alp Cetin /		
1	29/11/2023	C_obs_R und C_obsZ		Mohammad	8/12/2023	geschlossen
2	27/12/2023	Infinity error when running the parameter calculation simulink model	We are getting an infinity error from the integrator in simulink. The efforts of sloving the issue by decreasing the fixed step size did not give any results.	Alp Cetin / Zi Qian	8/12/2023	geschlossen
3	22/1/2024	Finetuning control variable X graph is diverging, wont go into a steady state	The graph of X is not stabilising. Changing the PI - State controller parameters (matrixes) or the Kalman's Bucky observer matrixes has absolutaley zero effect on the non linear sub system.	Alp / Mohammad / Zi Qian	26/1/2024	geschlossen