Pareto-Rational Verification

Clément Tamines (Université de Mons)

Joint work with Véronique Bruyère (Université de Mons) Jean-François Raskin (Université libre de Bruxelles)

> September 2022 CONCUR 2022

- 1. Background
- Pareto-Rational Verification

3. Universal Pareto-Rational Verification

4. Our Results

- 1. Background
- 2 Pareto-Rational Verification

3. Universal Pareto-Rational Verification

Pareto-Rational Verification

Our Results

Formal Verification

Motivation: ensure the correctness of systems responsible for critical tasks

Classical approach to Formal Verification (FV)

- model of the system to verify
- model of the environment in which it is executed
- **specification** φ to be enforced by the system

Goal: check if φ satisfied in all executions of the system in the environment

Limitations:

- check single behavior of the system
- against potentially irrational behaviors of environment

Games: Arenas, Plays and Objectives

Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph

Play: infinite path starting with the **initial vertex** v_0 , $\rho = v_0 v_2 (v_3 v_5)^{\omega}$

Objective $Ω_i$ for Player $i ∈ \{0, 1\}$:

- subset of plays, ρ satisfies Ω_i if $\rho \in \Omega_i$
- parity: plays whose minimum priority seen infinitely often is even

Games: Strategies and Consistency

Finite-memory strategy $\sigma_i : V^* \times V_i \to V$ dictates the choices of Player $i \to given \underbrace{v_0 v_1 \dots v_k}_{h \to e^{V_i}}$ yields v_{k+1} using a **deterministic Moore machine** \mathcal{M}

A play is **consistent** with σ_i if $v_{k+1} = \sigma_i(v_0 \dots v_k) \ \forall k \in \mathbb{N}$, $\forall v_k \in V_i$

Consider the set of plays consistent with a strategy σ_0

$$\rightarrow$$
 Plays _{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2v_3v_5v_6^{\omega}$, $v_0v_2v_3v_5v_3v_7^{\omega}$ }

- 1. Background
- 2. Pareto-Rational Verification

3. Universal Pareto-Rational Verification

Our Results

The Model

Stackelberg-Pareto game (SP game) [BRT21]: $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω_0
- Player 1 (environment): **several objectives** $\Omega_1, \ldots, \Omega_t$ (components)
- Non-zero-sum: multi-component environment with its own objectives

Payoff of ρ for Player 1 is the **vector of Booleans** pay $(\rho) \in \{0, 1\}^t$

• order \leq on payoffs, e.g., (0, 1, 0) < (0, 1, 1)

$$\Omega_1 = \inf(\{v_6\})$$

$$\Omega_2 = Inf(\{v_3\})$$

$$\Omega_3 = \inf(\{v_7\})$$

Pareto-Optimal Payoffs

- 1. Player 0 **provides** \mathcal{M} encoding his strategy σ_0 (that we want to verify)
- 2. Player 1 **considers** Plays_{σ_0}
 - corresponding set of payoffs $\{pay(\rho) \mid \rho \in Plays_{\sigma_0}\}$
 - identify Pareto-optimal (PO) payoffs (maximal w.r.t. ≤) : set P_{σ₀}

Pareto-Rational Verification problem (PRV problem)

Given a deterministic Moore machine \mathcal{M} encoding a strategy σ_0 , verify if every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$ is such that $\rho \in \Omega_0$

Environment is rational and responds to σ_0 to get a Pareto-optimal payoff \rightarrow Verify that σ_0 satisfies Ω_0 in every such rational response

Example of the PRV Problem

Moore machine \mathcal{M}

SP game \mathcal{G}

- Plays_{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2v_3v_5v_6^{\omega}$, $v_0v_2v_3v_5v_3v_7^{\omega}$ }
- payoffs = $\{ (0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 1, 0) \}$
- $P_{\sigma_0} = \{ (1, 1, 0), (0, 1, 1) \}$
- ightarrow together ${\mathcal M}$ and ${\mathcal G}$ form a **positive instance** to the PRV problem

- 1. Background
- 2 Pareto-Rational Verification

3. Universal Pareto-Rational Verification

Our Results

Specifying Multiple Strategies

Pareto-Rational Verification

Nondeterministic Moore machine: lift determinism of next-move function

 \rightarrow given $\underbrace{v_0v_1\dots v_k}_{h}$ yields v_{k+1} from a set of possible successors

The machine \mathcal{M} embeds a (possibly infinite) set of strategies $\llbracket \mathcal{M} \rrbracket$

- σ_0^k , $k \ge 1$ such that $\sigma_0^k(hv_3) = v_5$, $\sigma_0^k(v_0v_2(v_3v_5)^kv_3) = v_7$
- σ_0 such that $\sigma_0(v_3) = v_5$

Different from determinizing by selecting a single successor

Universal Pareto-Rational Verification problem (UPRV problem)

Given a nondeterministic Moore machine \mathcal{M} , verify if for all strategies $\sigma_0 \in [\![\mathcal{M}]\!]$, every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$ is such that $\rho \in \Omega_0$

Generalization of the PRV problem to multiple strategies

Example of the UPRV Problem

Moore machine \mathcal{M}

SP game \mathcal{G}

- Plays_{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2(v_3v_5)^*v_6^{\omega}$, $v_0v_2(v_3v_5)^{\omega}$ }
- payoffs = $\{(0,0,1), (1,0,0), (0,1,1), (0,1,0)\}$
- $P_{\sigma_0} = \{ (1, 0, 0), (0, 1, 1) \}$
- ightarrow together $\mathcal M$ and $\mathcal G$ form a **negative instance** to the UPRV problem

- 4. Our Results

Complexity Results

Pareto-Rational Verification

Study both problems for parity, Boolean Büchi, and LTL objectives

UPRV Problem							
Objective	Complexity class						
Parity	PSPACE, NP-hard, co-NP-hard						
Boolean Büchi	PSPACE-complete						
LTL	2EXPTIME-complete						

Our Results

co-NP-hardness of PRV for Parity Objectives

Shown using the co-3SAT (co-NP-complete) [Pap94]

- $\psi = D_1 \wedge \cdots \wedge D_r$ in **3-Conjunctive Normal Form** over X
- decide whether **all valuations** of the variables in X **falsify** the formula

Goal: instance of PRV positive if and only if instance of co-3SAT positive

The Reduction: Objectives

Pareto-Rational Verification

	Ω_0	Ω_1	Ω_{x_1}	$\Omega_{\neg_{X_1}}$	 Ω_{x_m}	$\Omega_{\neg_{X_m}}$	$(\Omega_{\ell^{1,1}}$	$\Omega_{\ell^{1,2}}$	$\Omega_{\ell^{1,3}})$	 $\Omega_{\ell^{r,1}}$	$\Omega_{\ell^{r,2}}$	$\Omega_{\ell^{r,3}}$)
G_1	0	0	1	0	 0	1	0	0	0	 1	1	0
S_1	1	1	1	0	 0	1	0	0	0	 1	1	1
S_r	1	1	1	0	 0	1	1	1	1	 0	0	0

Fixed-Parameter Complexity

PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have small values

Additional Algorithm: based on counterexamples

→ implemented and compared using toy example and random instances

Thank you!

Bibliography I

[BRT21] Véronique Bruyère, Jean-François Raskin, and Clément Tamines. Stackelberg-pareto synthesis.

In Serge Haddad and Daniele Varacca, editors, *32nd International Conference on Concurrency Theory*, CONCUR 2021, August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[DF12] R.G. Downey and M.R. Fellows.

Parameterized Complexity.

Monographs in Computer Science. Springer New York, 2012.

[Pap94] Christos H. Papadimitriou.

Computational complexity.

Addison-Wesley, 1994.

Fixed-Parameter Complexity [DF12]

A problem is **fixed-parameter tractable** (FPT) for parameter k if there exists a solution running in $f(k) \times n^{\mathcal{O}(1)}$ where f is a function of k independent of n

Example: solving a problem is polynomial in input size, exponential in k \rightarrow solving the problem is fixed-parameter tractable (easy if fix a small k)

PRV and UPRV problem

Both problems are fixed-parameter tractable (FPT) for parity and Boolean Büchi with various parameters

Sound: in practice, we can assume those parameters to have **small values**