

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

DE EV 01		
	Réf : DE-EX-01	
	Indice: 4	
	Date:	

EPREUVE D'EVALUATION

Année Universitaire : 2020/2021	Date de l'Examen : 19/06/2021
Nature: □ DC	Durée : □ 1h □ 1h30min □ 2n
Diplôme :	Nombre de pages : 3
Section: GCP GCV GFA GGR GGM	Enseignant (e): Salma SOUISSI
Niveau d'étude : 🗹 lère 🖂 2ème 🖂 3ème année	Documents Autorises : Li Oui
Matière: Transfert thermique	Remarque : Calculatrice autorisée

Exercice 1

Vous souhaitez isoler la paroi intérieure d'un mur d'une maison. Ce mur en brique, d'épaisseur $e_B=0.10$ m, a une conductivité thermique $\lambda_B=0.72$ W/m.C.

- 1) Déterminez l'épaisseur de la couche d'isolant (laine de verre, $\lambda_L = 0.043$ W/m C) à installer pour limiter les pertes thermiques à une valeur de 50 W/m² dans les conditions suivantes d'utilisation :
- température intérieure de la pièce T1 = 30C
- température extérieure de l'air T2 = -2C
- coefficient de transfert de chaleur dans la pièce h₁=10 W/m²C
- coefficient de transfert de chaleur à l'extérieur h₂=100 W/m²C
- 2) Quelles seraient les pertes thermiques sans isolation? Commentez les résultats

Exercice2

Un fluide, à une température TF=150C, s'écoule dans un tube d'acier (rayon intérieur r_1 =0.023 m, rayon extérieur r_2 =0.026 m) de conductivité thermique λ_A = 12 W/m K. Le coefficient de transfert par convection, h_F entre le fluide et la paroi interne du tube est égal à 450 W/m2 K. Ce tube est recouvert d'un isolant (rayon externe r_3 =0.050 m) de conductivité thermique λ_{ISO} =0.05 W/m K. L'air environnant est à la température T_{AIR} =35C, et le coefficient d'échange à la surface de l'isolant vaut h_{AIR} =5 W/m² K.

- 1) Trouvez l'expression des pertes thermiques, par unité de longueur de tube, pour les conditions Indiquées ci-dessus.
- c) L'augmentation de l'épaisseur d'isolation réduirait-elle les pertes thermiques ? Justifiez votre réponse.

Exercice 3

Un cylindre horizontal de 5 mm de diamètre est immergé dans de l'eau à 18C. Si la température de la surface du cylindre est de 56C, déterminer les pertes de chaleur due à la convection par mètre de longueur de cylindre.

Données pour l'eau en SI: ρ = 993, β =361.2 10^{-6} , ν =6.99 10^{-7} , λ =0.628, α =1.514 10^{-7} , Pr=4.62, On donne :

$$Ra = Gr.Pr = \frac{\beta.g.\Delta T.D^3}{v\alpha}$$

$$Nu = \left\{0.6 + \frac{0.387 \cdot Ra^{C}}{\left[1 + \left(\frac{0.559}{Pr}\right)^{8/27}\right]}\right\}^{n}; \begin{cases} r\'egime\ laminaire\ si\ Ra < 10^{9}: C = \frac{1}{6}, n = 2\\ r\'egime\ turbulent\ si\ Ra > 10^{9}: C = \frac{1}{9}, n = 3 \end{cases}$$

Exercice 4

Les murs d'une pièce climatisée de 5.5m de longueur, de 5m de largeur et de 3.1m de hauteur sont constitués par :

- -Une couche d'accrochage e_1 =0.6cm, λ_1 =1.39 kcal.h⁻¹.m⁻¹.°C⁻¹
- -Un enduit ciment e2=2cm, \(\lambda_2=1.16\) kcal.h-1.m-1.°C-1
- -Un enduit plâtre $e_3=2$ cm, $\lambda_3=0.46$ kcal.h⁻¹.m⁻¹.°C⁻¹

La porte en bois a une largeur de 80cm et une hauteur égale à 2m. L'épaisseur de la porte est égale à e4=3cm, et la conductivité thermique du bois est égale à 24=1.75 kcal.h⁻¹.m⁻¹.°C⁻¹

La fenêtre en verre a une largeur égale à 1.2m et une hauteur égale à 1m. L'épaisseur de la fenêtre est égale à e₅=3mm et la conductivité thermique du verre est λ₅=0.7 kcal.h⁻¹.m⁻¹.°C⁻¹

Les planchers haut et bas sont construit par :

- -Une dalle en béton armé e'₁=17cm, λ'₁=1.8 W.m⁻¹.°C⁻¹
- -Une couche de sable e'2=2.5cm, $\lambda'_2=1$ W.m⁻¹.°C⁻¹
- -Une couche de mortier de pose e'3=2.5cm, \lambda.'3=1.8 W.m-1.°C-1
- -Un enduit sous plafond e'=1.6cm, λ '=0.46 W.m⁻¹.°C⁻¹

La température extérieure est de 30°C, la température intérieure est de 12°C. Les coefficients de transfert par convection interne et externe sont respectivement : hi=6W/m².°C, he=9W/m².°C

1/ Calculer la résistance thermique de la surface latérale de la pièce.

- 2/ En tenant en compte le transfert par convection interne et externe, calculer la résistance thermique des planchers haut et bas.
- 3/ Montrer que la température en tout point du mur s'écrit sous la forme $\Delta T=0$ dans le cas d'un régime stationnaire et sans source de chaleur.
- 4/ Calculer le flux de chaleur échangé entre la pièce et le milieu extérieur.
- 5/ Indiquer le nombre de radiateurs que l'on doit installer dans le local pour maintenir une différence de température de 18°C entre les faces intérieures et extérieures, sachant que la puissance de chaque radiateur est de 500W.

On donne 1 kcal.h⁻¹=1.163W

Bon courage

République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

Indice : 4	
D 4-1	

Réf : DE-EX-01

Date:

EPREUVE D'EVALUATION

	02/04/2021
Année Universitaire : 2020/2021 Nature : ☑ DC ☐ Examen ☐ DR	Date de l'Examen : 02/04/2021 Durée : □ 1h ☑ 1h30min □ 2h □ 3h
Diplôme : □ Mastère ☑ Ingénieur Section : □ GCP ☑ GCV □ GEA □ GCR □ GM	Nombre de pages : 2 Enseignant (e) : Salma SOUISSI Value V
année	Documents Autorisés :□ Oui ☑ Non Remarque : Calculatrice autorisée

Exercice1

Que signifient les termes suivants :

- a- Conductivité thermique
- b- Résistance thermique
- c- Convection forcée

Montrer que dans le cas d'un régime stationnaire et sans source de chaleur, l'équation de Chaleur s'écrit sous la forme : ΔT=0

Exercice2

Déterminer les déperditions thermiques au travers d'une surface vitrée de 1m² dans les deux cas suivants : (On supposera que les échanges des deux côtés intérieur et extérieur s'effectuent par convection thermique de coefficients d'échange identique égal à h)

- . Vitrage simple d'épaisseur e = 4mm
- (2). Vitrage double distant de 6 mm
- / ③ Comparer les résultats obtenus

On donne : $T_{\infty 1}$ =20 °C λ_{verre} =1,2 W/m°C

 $h=1.2 \text{ W/m}^2 \text{ °C}$

 $T_{\infty 2}$ =0 °C λ_{Air} =0,02 W/m°C

Exercice3

Un garage réalisé en sapin d'épaisseur 5 cm doit être aménagé. Le propriétaire voulant y installer une partie atelier décide de l'isoler. Il fixe sur la totalité des murs une cloison constituée de polystyrène d'épaisseur 12 cm accolée à une couche de plâtre de 2 cm d'épaisseur. La surface ainsi recouverte est de $S = 50 \text{ m}^2$.

Sachant que la conductivité thermique du sapin est $\lambda_S = 0.15$ W/(m.°C), calculer la résistance thermique des murs avant l'isolation.

(2) Calculer la résistance thermique de ces murs après l'isolation.

On donne les conductivités thermiques du polystyrène et du plâtre.

 $\lambda_{polystyrene} = 0.045 \text{ W/(m.°C)}$ et $\lambda_{platre} = 0.35 \text{ W/(m.°C)}$.

3) Calculer le flux thermique Φ à travers la surface du mur lorsque la température extérieure est à 0 °C et que celle du garage atteint 18 °C.

Exercice4

ے م

Un fil électrique en aluminium à section circulaire de 0.8m de longueur et de 1.3mm de diamètre, est caractérisé par une résistivité électrique égale à $\rho_e=0.035$ Ω mm².m¹ est refroidi dans un jet d'air sec perpendiculaire à son axe de révolution. La vitesse d'air loin de la surface du fil est égale à $\sqrt{2}=1.6\text{m.s}$. la température de l'air est égale à 30°C.

Les paramètres thermo physique de l'air à 50°C sont :

- Conductivité thermique de l'air D=0.0283 Wm⁻¹K⁻¹

- Viscosité cinématique de l'air ⊕ 17.95 *10⁻⁶ m².s⁻¹

- Nombre de Prandtl : Pr=0.698

Re= 18,63.

(1) Calculer le coefficient de transfert par convection h à la surface du fil.

Déterminer l'intensité du courant maximale autorisée si la température du fil ne doit pas dépasser T_{fil}=70°C

On donne l'expression du nombre de Nusselt :

-convection forcée : $Nu=0.68 Re^{0.46} Pr^{0.4}$

-convection libre : $Nu = 0.36 + \frac{0.52(1.32.\text{Pr})^{1/4}}{(1 + (\frac{0.6}{Pr})^{9/16})^{4/9}}$

Bon courage