FORMULARIO PER L'ESAME DI METODI MATEMATICI PER L'INGEGNERIA PROBABILITÀ E STATISTICA - VERSIONE 2021-22

Calcolo combinatorio

Disposizioni con ripetizione (numero di sequenze ordinate di k elementi da un insieme di n elementi): $D_{n,k}^{R} = n^{k}$

Disposizioni semplici (numero di sequenze ordinate di k elementi diversi fra loro da un insieme di n elementi): $D_{n,k} = \frac{n!}{(n-k)!}$

Permutazioni di n elementi: $P_n = D_{n,n} = n!$

Combinazioni semplici (numero di sottoinsiemi di k elementi da un insieme di n elementi): $C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Coeffciente multinomiale (numero di modi in cui si può partizionare un insieme di n elementi in r sottoinsiemi di rispettivamente $k_1, k_2, ..., k_r$ elementi con $k_1 + k_2 + ... + k_r = n$): $\binom{n}{k_1, k_2, ..., k_r} = \frac{n!}{k_1! k_2! ... k_r!}$

PROBABILITÀ

Probabilità elementare

$$P[\overline{A}] = 1 - P[A];$$
 $P[A \cup B] = P[A] + P[B] - P[A \cap B];$ $P[A|B] = P[A \cap B]/P[B];$

$$P[A \cup B \cup C] = P[A] + P[B] + P[C] - P[A \cap B] - P[A \cap C] - P[B \cap C] + P[A \cap B \cap C].$$

Formula moltiplicativa o legge delle probabilità composte:

$$P[A_1 \cap A_2 \cap ... \cap A_n] = P[A_1] \cdot P[A_2 | A_1] \cdot P[A_3 | A_1 \cap A_2] \cdot ... \cdot P[A_n | A_1 \cap ... \cap A_{n-1}].$$

Formula delle probabilità totali (per $A_1, A_2, ..., A_n$ partizione di Ω , con $P[A_i] > 0$):

$$P[B] = \sum_{i=1}^{n} P[A_i]P[B|A_i].$$

Formula di Bayes (per $A_1, A_2, ..., A_n$ partizione di Ω , con $P[A_i] > 0$, P[B] > 0):

$$P[A_i|B] = \frac{P[A_i]P[B|A_i]}{\sum_j P[A_j]P[B|A_j]}.$$

 $A \in B$ sono indipendenti $\Leftrightarrow P[A \cap B] = P[A] \cdot P[B] \Leftrightarrow P[A|B] = P[A] \text{ (per } P[B] > 0).$

Variabili casuali e valori attesi

$$F_X(x) = \int_{-\infty}^x f_X(y) dy \qquad \left(= \sum_{x_i \le x} f_X(x_i) \text{ se discreta} \right) \qquad \bar{F}_X(x) = 1 - F_X(x);$$

$$E[g(X)] = \int_{\mathbb{R}} g(x) f_X(x) dx \qquad \left(= \sum_{x_i \in Supp(X)} g(x_i) f_X(x_i) \text{ se discreta} \right);$$

$$E[X] = \int_{-\infty}^{\infty} y f_X(y) dy \qquad \left(= \sum_{x_i \in Supp(X)} x_i f_X(x_i) \text{ se discreta} \right);$$

$$E[X] = \int_{0}^{\infty} \bar{F}_X(y) dy \qquad \text{per } X \ge 0.$$

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])] = E[X \cdot Y] - E[X] \cdot E[Y] \qquad r_{XY} = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}}$$

$$E[aX + bY + c] = aE[X] + bE[Y] + c; \qquad Var[aX \pm bY + c] = a^2Var[X] + b^2Var[Y] \pm 2abCov[X,Y].$$

$$\text{per } X_i \text{ indipendenti: } E[\sum_{i=1}^k a_i X_i] = \sum_{i=1}^k a_i E[X_i]; \quad Var[\sum_{i=1}^k a_i X_i] = \sum_{i=1}^k a_i^2 Var[X_i]; \quad E[\prod_{i=1}^k a_i X_i] = \prod_{i=1}^k a_i E[X_i]$$

1

Principali distribuzioni

- \diamond Bernoulli(p): $f_X(x) = p^x (1-p)^{1-x}$ if $x \in \{0,1\}$; E[X] = p; Var[X] = p(1-p)
- \diamond Binomiale(n,p): $f_X(x) = f_X(x,n,p) = \binom{n}{x} p^x (1-p)^{n-x}$ se $x \in \{0,1,..,n\}$; E[X] = np; Var[X] = np(1-p)
- $\diamond \text{ Ipergeometrica}(n_A, n_B, n) \colon f_X(x) = \frac{\binom{n_A}{x}\binom{n_B}{n-x}}{\binom{n_A+n_B}{n}} \text{ se } x \leq n_A, \ 0 \leq n-x \leq n_B; \quad E[X] = n \frac{n_A}{n_A+n_B}$
- $\diamond \operatorname{Poisson}(\lambda) \colon f_X(x) = \frac{\lambda^x}{x!} \exp(-\lambda) \text{ se } x \in \mathbb{N}; \quad E[X] = \lambda; \quad Var[X] = \lambda$ $X_1 \sim \operatorname{Poisson}(\lambda_1), \quad X_2 \sim \operatorname{Poisson}(\lambda_2), \text{ independenti } \Rightarrow X_1 + X_2 \sim \operatorname{Poisson}(\lambda_1 + \lambda_2).$
- \diamond Geometrica(p): $f_X(x) = p(1-p)^{x-1}$ se $x \in \mathbb{N}$; $\bar{F}_X(x) = (1-p)^x$ E[X] = 1/p; $Var[X] = (1-p)/p^2$
- \diamond Binomiale Negativa(r,p): $f_X(x) = {x-1 \choose r-1}(1-p)^{x-r}p^r$ se $x \ge r$; $E[X] = r\frac{1}{n} Var[X] = r(1-p)/p^2$
- \diamond Uniforme[a, b]: $f_X(x) = 1/(b-a)$ se $x \in [a, b]$; E[X] = (a+b)/2; $Var[X] = (b-a)^2/12$
- \diamond Esponenziale(λ): $f_X(x) = \lambda \exp(-\lambda x)$ se $x \in \mathbb{R}^+$; $\bar{F}_X(x) = \exp(-\lambda x)$, $E[X] = 1/\lambda$; $Var[X] = 1/\lambda^2$
- $\diamond \operatorname{Gamma}(n,\lambda) \colon \ f_X(x) = \frac{\lambda(\lambda x)^{n-1} \exp(-\lambda x)}{(n-1)!} \text{ se } x \in \mathbb{R}^+; \quad E[X] = n/\lambda; \ Var[X] = n/\lambda^2$

Funzioni di variabili

Se
$$S = X + Y$$
, e X, Y indipendenti, allora $f_S(s) = \int_{\mathbb{R}} f_X(t) f_Y(s-t) dt$ $\left(= \sum_{x_i \in Supp(X)} f_X(x_i) f_Y(s-x_i) \text{ se discrete} \right)$.

Se X, Y indipendenti, allora $P[\max(X, Y) \le t] = P[X \le t] \cdot P[Y \le t] \quad P[\min(X, Y) > t] = P[X > t] \cdot P[Y > t], \quad \forall t.$

Se Y = h(X) con h strettamente crescente, allora $F_Y(t) = P[Y \le t] = P[X \le h^{-1}(t)] = F_X(h^{-1}(t))$.

Se $Y = X_A$ (mistura), con A avente densità g, allora $f_Y(t) = \int_{Supp(A)} f_{X_a}(t)g(a)da$, $E[Y] = \int_{Supp(A)} E[X_a]g(a)da$.

Se $Y = \sum_{n=1}^{N} X_i$, con X_i, N tutte indipendenti, X_i identicamente distribuite, allora

$$E[Y] = E[N] \cdot E[X_i] \qquad Var[Y] = Var[X_i] \cdot E[N] + (E[X_i])^2 \cdot Var[N].$$

Distribuzioni congiunte e condizionate

X e Y indipendenti $\Leftrightarrow f_{(X,Y)}(x,y) = f_X(x)f_Y(y) \ \forall x,y \ \Leftrightarrow F_{(X,Y)}(x,y) = F_X(x)F_Y(y) \ \forall x,y.$

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y)dy; \qquad F_X(x) = F_{(X,Y)}(x,+\infty)$$

 $P[\max(X,Y) \le t] = P[X \le t, Y \le t]; \quad P[\min(X,Y) > t] = P[X > t, Y > t], \quad \forall t.$

$$P[X+Y \leq t] = \int \int_{\{(x,y): x+y \leq t\}} f_{(X,Y)}(x,y) dx dy \quad \forall t.$$

$$E[g(X,Y)] = \int \int_{\mathbb{R}^2} g(x,y) f_{(X,Y)}(x,y) dx dy$$
 (o somma se discrete).

$$f_{X|Y=y}(x) = \frac{f_{(X,Y)}(x,y)}{f_Y(y)} \qquad \qquad E[g(X)|Y=y] = \int_{\mathbb{R}} g(x) f_{X|Y=y}(x) dx \qquad \text{(o somma se discrete)} \ .$$

Dato il vettore **m** delle medie e la matrice Σ di varianza-covarianza, allora $\mathbf{X} \sim N_n(\mathbf{m}, \Sigma)$ se

$$f_{\mathbf{X}}(\mathbf{t}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp{-\{\frac{1}{2}[(\mathbf{t} - \mathbf{m})\mathbf{\Sigma}^{-1}(\mathbf{t} - \mathbf{m})^T]\}}$$

 \diamond Se $(X_1,X_2) \sim N_2(\mathbf{m},\boldsymbol{\Sigma})$ ed $r_{x_1x_2} = 0$ allora X_1 ed X_2 sono indipendenti

 \diamond Se $\mathbf{X} \sim N_n(\mathbf{m}, \mathbf{\Sigma})$ e $\mathbf{Y} = \mathbf{X} \cdot \mathbf{C} + \mathbf{b}$ (con \mathbf{C} non degenere), allora $\mathbf{Y} \sim N_n(\mathbf{m}\mathbf{C} + \mathbf{b}, \mathbf{C}^T\mathbf{\Sigma}\mathbf{C})$

STATISTICA DESCRITTIVA

Quartili $(Q_i, i = 1, 2, 3)$: valori che dividono l'insieme ordinato delle x_i in 4 gruppi della stessa cardinalita'.

Range Interquartile :
$$IQR = Q_3 - Q_1$$
; Coefficiente di Variazione : $CoV = \frac{\sigma}{T}$.

Tipologia dati osservati	QualitativiQuantitativi					
Dati qualitativi	Grafico a tortaModa					
Dati quantitativi	 Istogrammi Grafici a barre Box Plot Media, mediana Varianza, Deviazione standard, IQR 					
Misure di tendenza centrale	Media, Moda, Mediana					
Misure basate sui quantili	 Quartili, Q1, Q2, Q3 					
Misure di dispersione	Range, Varianza, Dev standard, IQR, COV					

STATISTICA INFERENZIALE

${\bf Convergenze,\ disuguaglianze\ e\ teoremi\ limite}$

- $\diamond \{X_n \sim F_n, n \in \mathbb{N}\}$ converge in distribuzione ad $X \sim F$ se $\lim_{n \to \infty} F_n(t) = F(t)$ per ogni punto t di continuitá per F
- $\diamond \; \{X_n \sim F_n, n \in \mathbb{N}\} \text{ converge in probabilitá ad } X \sim F \text{ se } \lim_{n \to \infty} P[|X_n X| < \epsilon] = 1 \text{ per ogni } \epsilon > 0$
- \diamond Disuguaglianza di Markov: $P[|X| \geq a] \leq \frac{E[|X|^k]}{a^k}, \ a \in \mathbb{R}^+, k \in \mathbb{N}^+$
- \diamond Disuguaglianza di Chebychev: $P[|X E[X]| < a] \ge 1 \frac{Var[X]}{a^2}, \ a \in \mathbb{R}^+$
- \diamond TLC: per n sufficientemente grande, per X_i indipendenti e identicamente distribuite, con media e varianza finite, possiamo approssimare

$$S_n = X_1 + X_2 + ... X_n \sim N(nE[X_i], nVar[X_i])$$

$$\overline{X}_n = (X_1 + X_2 + ... X_n)/n \sim N(E[X_i], Var[X_i]/n)$$

Stime puntuali

- \diamond Metodo dei momenti: dato il vettore dei parametri θ , la sua stima si ricava risolvendo il sistema di equazioni $\mu_i(\theta) = M_i$ per $i = 1, \ldots, d$, dove d é il numero di componenti in θ , $\mu_i(\theta) = E[X_{\theta}^i]$ e $M_i = (\sum_{j=1}^n X_j^i)/n$, essendo (X_1, \ldots, X_n) il campione casuale.
- \diamond Metodo della massima verosimiglianza: dato il vettore dei parametri θ , la sua stima é il vettore $\widehat{\theta}$ che massimizza la funzione di verosimiglianza $L(\theta|x_1,...,x_n) = \prod_{j=1}^n f_{\theta}(x_j)$, o la funzione log-verosimiglianza log $(L(\theta|x_1,...,x_n))$, dove le x_j sono le osservazione delle X_j .
- \diamond Approccio Bayesiano: se $\pi(\theta)$ é la distribuzione a priori di θ , allora la distribuzione a posteriori é

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{m(\mathbf{x})} = \frac{\prod_{j=1}^{n} f_{\theta}(x_{j})\pi(\theta)}{\int f(\mathbf{x}|\theta)\pi(\theta)d\theta}$$

dove \mathbf{x} é la realizzazione del campione casuale \mathbf{X} .

- Distribuzione Beta (coniugata della Binomiale): $X_{\alpha,\beta} \sim Beta(\alpha,\beta)$ se $f_X(p) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}p^{\alpha-1}(1-p)^{\beta-1}, \ p \in (0,1)$
- \diamond Errore quadratico medio: $MSE(\widehat{\theta}) = E[(\widehat{\theta} \theta)^2] = Var[\widehat{\theta}] + (E[\widehat{\theta}] \theta)^2$
- $\diamond \text{ Cramer-Rao lower bound: } Var[\widehat{\theta}] \geq \left\{ nE\left[\left(\frac{\partial \log f(X,\theta)}{\partial \theta} \right)^2 \right] \right\}^{-1} = \left\{ -nE\left[\frac{\partial^2 \log f(X,\theta)}{\partial \theta^2} \right] \right\}^{-1}$
- $\diamond \ \text{Media campionaria} \ \overline{X}_n = (X_1 + X_2 + ... X_n)/n, \quad E[\overline{X}_n] = \mu_X, \quad Var[\overline{X}_n] = \sigma_X^2/n.$
- \diamond Varianza Campionaria corretta $S_n^2 = \frac{1}{n-1} \sum_i (X_i \overline{X}_n)^2, \quad E[S_n^2] = \sigma_X^2.$
- \diamond Distribuzione t: $T \sim t_n$ se $T = \frac{Z}{\sqrt{U/n}}$ con $Z \sim N(0,1), U \sim \chi_n^2$ indipendenti.
- \diamond Distribuzione χ^2 : $U \sim \chi_n^2$ se $U = Z_1^2 + ... + Z_n^2$ con $Z_i \sim N(0,1)$ indipendenti.

Intervalli di confidenza

- \diamond Per la media, X_i normalmente distribuite con varianza nota: $(\overline{X}_n z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X}_n + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})$
- \diamond Per la media, X_i normalmente distribuite con varianza sconosciuta: $(\overline{X}_n t_{n-1,1-\alpha/2}\sqrt{\frac{S_n^2}{n}}, \overline{X}_n + t_{n-1,1-\alpha/2}\sqrt{\frac{S_n^2}{n}})$
- \diamond Per la media, grandi campioni: $(\overline{X}_n-z_{1-\alpha/2}\sqrt{\frac{S_n^2}{n}},\overline{X}_n+z_{1-\alpha/2}\sqrt{\frac{S_n^2}{n}})$
- $\diamond \text{ Differenza tra medie, varianze note, grandi campioni: } \left((\overline{X}_1 \overline{X}_2) z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{X}_1 \overline{X}_2) + z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right) + z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- ♦ Differenza tra medie, distribuzione normale con varianze sconosciute ma supposte uguali:

$$\left((\overline{X}_1 - \overline{X}_2) - t_{n_1 + n_2 - 2, 1 - \alpha/2} \sqrt{\hat{\sigma}_{n_1, n_2}^2}, (\overline{X}_1 - \overline{X}_2) + t_{n_1 + n_2 - 2, 1 - \alpha/2} \sqrt{\hat{\sigma}_{n_1, n_2}^2}\right) \text{ dove } \hat{\sigma}_{n_1, n_2}^2 = \frac{(n_1 + n_2)((n_1 - 1)\hat{\sigma}_1^2 + (n_2 - 1)\hat{\sigma}_2^2)}{n_1 n_2 (n_1 + n_2 - 2)}$$

- \diamond Varianza, X_i normalmente distribuite: $\big(\frac{(n-1)S_n^2}{\chi_{n-1,1-\alpha/2}^2},\frac{(n-1)S_n^2}{\chi_{n-1,1-\alpha/2}^2}\big)$
- \diamond parametro $\lambda,$ campione da esponenziale: $\big(\frac{\chi^2_{2n,\alpha/2}}{2\sum X_i},\frac{\chi^2_{2n,1-\alpha/2}}{2\sum X_i}\big)$
- $\diamond \text{ parametro } p \text{, grandi campioni da } Bernoulli(p) \text{: } \big(\hat{p} z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \big) \text{, con } \hat{p} = \overline{X}_n$

Test di ipotesi, statistiche da usare

- \diamond Per la media, con varianza nota: $Z = \frac{\overline{X}_n \mu_0}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1)$ sotto $H_0 : \mu = \mu_0$.
- \diamond Per la media, con varianza sconosciuta: $T = \frac{\overline{X}_n \mu_0}{\sqrt{\frac{S_n^2}{n}}} \sim t_{n-1}$ sotto $H_0: \mu = \mu_0$.
- \diamond Per la media, grandi campioni: $Z = \frac{\overline{X}_n \mu_0}{\sqrt{\frac{S_n^2}{n}}} \sim N(0, 1)$ sotto $H_0 : \mu = \mu_0$.
- \diamond Differenza tra medie, varianze note, grandi campioni o normali: $Z = \frac{(\overline{X}_1 \overline{X}_2) d}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}} \sim N(0, 1)$ sotto $H_0: \mu_1 \mu_2 = d$.
- \diamond Differenza tra medie, varianza sconosciuta (la stessa per entrambe): $T = \frac{(\overline{X}_1 \overline{X}_2) d}{\sqrt{\hat{\sigma}_{n_1, n_2}^2}} \sim t_{n_1 + n_2 2}$ sotto $H_0: \mu_1 \mu_2 = d$.
- \diamond Varianza: $V=\frac{(n-1)S_n^2}{\sigma_0^2}\sim \chi_{n-1}^2$ sotto $H_0:\sigma^2=\sigma_0^2.$
- \diamond Parametro p, grandi campioni da Bernoulli(p): $Z = \frac{(\overline{X}_n p_0)}{\sqrt{\frac{p_0(1 p_0)}{n}}} \sim N(0, 1)$ sotto $H_0: p = p_0$.

Test Chi-quadro per bonta' adattamento

$$W = \sum_{i=1}^{N} \frac{(f_{a_j} - f_{t_j})^2}{f_{t_j}},$$
 ha una distribuzione chi-quadro con N-m-1 gradi di liberta' (m= # parametri stimati)

Tavola dei quantili per il test K-S:

n 1	2	3	4	5	6	7	8	9	10	15	20	25	30
$ \mathbf{d}_{0.90} $ 0.95	0.78	0.64	0.56	0.51	0.47	0.44	0.41	0.39	0.37	0.30	0.26	0.24	0.22
$\mathbf{d}_{0.95}$ 0.98	0.84	0.71	0.62	0.57	0.52	0.49	0.46	0.43	0.41	0.34	0.29	0.27	0.24
$\mathbf{d}_{0.99}$ 1.00	0.93	0.83	0.73	0.67	0.62	0.58	0.54	0.51	0.49	0.40	0.36	0.32	0.29

Test Chi-quadro per indipendenza

$$W = \sum_{j=1}^{N_1} \sum_{j=1}^{N_2} \frac{(f_{ij} - np_i q_j)^2}{np_i q_j},$$
 ha una distribuzione chi-quadro con $(N_1 - 1) \cdot (N_2 - 1)$ gradi di liberta'

Correlazione e regressione

♦ Coefficiente di correlazione lineare:

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{[\sum_{i=1}^{n} (x_i - \overline{x})^2][\sum_{i=1}^{n} (y_i - \overline{y})^2]}} = \frac{c_{xy}}{s_x s_y}$$

- \diamond Regressione lineare semplice: $y = \beta_0 + \beta_1 x + \epsilon$, con $\epsilon \sim N(0, \sigma^2)$
- \diamond Stime:

$$b_0 = \overline{y} - b_1 \overline{x}, \qquad b_1 = \frac{c_{xy}}{s_x^2}, \qquad \widehat{\sigma}^2 = s_{\epsilon}^2 = \frac{\sum (y_i - \widehat{y}_i)^2}{n-2} = \frac{(1 - r_{xy}^2) \sum (y_i - \overline{y})^2}{n-2}.$$

 \diamond Intervallo di confidenza per β_1 :

$$\left(b_1 - t_{n-2,1-\alpha/2} \sqrt{\frac{SS_R}{(n-2)S_{xx}}}, b_1 + t_{n-2,1-\alpha/2} \sqrt{\frac{SS_R}{(n-2)S_{xx}}}\right)$$

dove

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 \qquad SS_R = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 \quad [= (1 - r_{xy}^2) \sum_{i=1}^{n} (y_i - \overline{y})^2 \text{ nel caso di regressione semplice}].$$

 \diamond Statistica da usare per test $H_0: \beta_1 = 0$:

$$\tilde{T} = B_1 \cdot \sqrt{\frac{(n-2)S_{xx}}{SS_R}} \sim t_{n-2}$$

♦ Coefficiente di determinazione:

$$R^2 = 1 - \frac{SS_R}{S_{yy}} = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \overline{y})^2}$$
 [= r_{xy}^2 nel caso di regressione semplice].

TAVOLE (pagine seguenti)

Standard Normal Probabilities

Table entry for \boldsymbol{z} is the area under the standard normal curve to the left of $\boldsymbol{z}.$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6 4 80	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

n	t _{0,6}	t _{0,75}	t _{0,8}	t _{0,9}	t _{0,95}	t _{0,975}	t _{0,99}	t _{0,995} ;
1 2	0,325 0,289	1,000 0,816	1,376 1,061	3,078 1,886	6,314 2,920	12,71 4,303	31,82 6,965	63,66 9,925
3	0,277	0,765	0,978	1,638	2,353	3,182	4,541	5,841
4	0,271	0,741	0,941	1,533	2,132	2,776	3,747	4,604
5	0,267	0,727	0,920	1,476	2,015	2,571	3,365	4,032
6	0,265	0,718	0,906	1,440	1,943	2,447	3,143	3,707
7	0,263	0,711	0,896	1,415	1,895	2,365	2,998	3,499
8	0,262	0,706	0,889	1,397	1,860	2,306	2,896	3,355
10	0,261 0,260	0,703 0,700	0,883 0,879	1,383 1,372	1,833 1,812	2,262 2,228	2,821	3,250
11	0,260	0,697					2,764	3,169
12	0,259	0,697	0,876 0,873	1,363 1,356	1,796 1,782	2,201 2,179	2,718 2,681	3,106 3,055
13	0,259	0,694	0,870	1,350	1,771	2,179	2,650	3,012
14	0,258	0,692	0,868	1,345	1,761	2,145	2,624	2,977
15	0,258	0,691	0,866	1,341	1,753	2,131	2,602	2,947
16	0,258	0,690	0,865	1,337	1,746	2,120	2,583	2,921
17	0,257	0,689	0,863	1,333	1,740	2,110	2,567	2,898
18	0,257	0,688	0,862	1,330	1,734	2,101	2,552	2,878
19 20	0,257 0,257	0,688 0,687	0,861 0,860	1,328 1,325	1,729 1,725	2,093 2,086	2,539 2,528	2,861 2,845
21	0,257	0,686	0,859	1,323				***************************************
22	0,257	0,686	0,858	1,323	1,721 1,717	2,080 2,074	2,518 2,508	2,831 2,819
23	0,256	0,685	0,858	1,319	1,714	2,069	2,500	2,807
24	0,256	0,685	0,857	1,318	1,711	2,064	2,492	2,797
25	0,256	0,684	0,856	1,316	1,708	2,060	2,485	2,787
30	0,256	0,683	0,854	1,310	1,697	2,042	2,457	2,750
40	0,255	0,681	0,851	1,303	1,684	2,021	2,423	2,704
50	0,255	0,679	0,849	1,299	1,676	2,009	2,403	2,678
75	0,254	0,678	0,846	1,293	1,665	1,992	2,377	2,643
100	0,254	0,677	0,845	1,290	1,660	1,984	2,364	2,626

	Pearson's Chi-square table										
n	$\chi^{2}_{0.005}$	$\chi^{2}_{0.01}$	$\chi^2_{0.025}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.95}$	$\chi^{2}_{0.975}$	$\chi^2_{0.99}$	$\chi^2_{0.995}$			
					1						
1	0.0000	0.0002	0.0010	0.0039	3.8415	5.0239	6.6349	7.8794			
2	0.0100	0.0201	0.0506	0.1026	5.9915	7.3778	9.2103	10.5966			
3	0.0717	0.1148	0.2158	0.3518	7.8147	9.3484	11.3449	12.8382			
4	0.2070	0.2971	0.4844	0.7107	9.4877	11.1433	13.2767	14.8603			
5	0.4117	0.5543	0.8312	1.1455	11.0705	12.8325	15.0863	16.7496			
6	0.6757	0.8721	1.2373	1.6354	12.5916	14.4494	16.8119	18.5476			
7	0.9893	1.2390	1.6899	2.1673	14.0671	16.0128	18.4753	20.2777			
8	1.3444	1.6465	2.1797	2.7326	15.5073	17.5345	20.0902	21.9550			
9	1.7349	2.0879	2.7004	3.3251	16.9190	19.0228	21.6660	23.5894			
10	2.1559	2.5582	3.2470	3.9403	18.3070	20.4832	23.2093	25.1882			
11	2.6032	3.0535	3.8157	4.5748	19.6751	21.9200	24.7250	26.7568			
12	3.0738	3.5706	4.4038	5.2260	21.0261	23.3367	26.2170	28.2995			
13	3.5650	4.1069	5.0088	5.8919	22.3620	24.7356	27.6882	29.8195			
14	4.0747	4.6604	5.6287	6.5706	23.6848	26.1189	29.1412	31.3193			
15	4.6009	5.2293	6.2621	7.2609	24.9958	27.4884	30.5779	32.8013			
16	5.1422	5.8122	6.9077	7.9616	26.2962	28.8454	31.9999	34.2672			
17	5.6972	6.4078	7.5642	8.6718	27.5871	30.1910	33.4087	35.7185			
18	6.2648	7.0149	8.2307	9.3905	28.8693	31.5264	34.8053	37.1565			
19	6.8440	7.6327	8.9065	10.1170	30.1435	32.8523	36.1909	38.5823			
20	7.4338	8.2604	9.5908	10.8508	31.4104	34.1696	37.5662	39.9968			
21	8.0337	8.8972	10.2829	11.5913	32.6706	35.4789	38.9322	41.4011			
22	8.6427	9.5425	10.9823	12.3380	33.9244	36.7807	40.2894	42.7957			
23	9.2604	10.1957	11.6886	13.0905	35.1725	38.0756	41.6384	44.1813			
24	9.8862	10.8564	12.4012	13.8484	36.4150	39.3641	42.9798	45.5585			
25	10.5197	11.5240	13.1197	14.6114	37.6525	40.6465	44.3141	46.9279			
26	11.1602	12.1981	13.8439	15.3792	38.8851	41.9232	45.6417	48.2899			
27	11.8076	12.8785	14.5734	16.1514	40.1133	43.1945	46.9629	49.6449			
28	12.4613	13.5647	15.3079	16.9279	41.3371	44.4608	48.2782	50.9934			
29	13.1211	14.2565	16.0471	17.7084	42.5570	45.7223	49.5879	52.3356			
30	13.7867	14.9535	16.7908	18.4927	43.7730	46.9792	50.8922	53.6720			
31	14.4578	15.6555	17.5387	19.2806	44.9853	48.2319	52.1914	55.0027			
32	15.1340	16.3622	18.2908	20.0719	46.1943	49.4804	53.4858	56.3281			
40	20.7065	22.1643	24.4330	26.5093	55.7585	59.3417	63.6907	66.7660			
50	27.9907	29.7067	32.3574	34.7643	67.5048	71.4202	76.1539	79.4900			
75	47.2060	49.4750	52.9419	56.0541	96.2167	100.8393	106.3929	110.2856			
100	67.3276	70.0649	74.2219	77.9295	124.3421	129.5612	135.8067	140.1695			