# Space Vector PWM

**Switching States (Three-Phase)** 



| Switching State<br>(Three Phases) | On-state Switch       |
|-----------------------------------|-----------------------|
| [PPP]                             | $S_1, S_3, S_5$       |
| [000]                             | $S_4, S_6, S_2$       |
| [POO]                             | $S_1, S_6, S_2$       |
| [PPO]                             | $S_1, S_3, S_2$       |
| [OPO]                             | $S_4, S_3, S_2$       |
| [OPP]                             | $S_4, S_3, S_5$       |
| [OOP]                             | $S_4, S_6, S_5$       |
| [POP]                             | $S_{1}, S_{6}, S_{5}$ |

### **Space Vector Diagram**



Active vectors:  $\vec{V}_1$  to  $\vec{V}_6$  (stationary, not rotating)

Zero vector:  $\vec{V}_{_0}$ 

Six sectors: I to VI

### **Space Vectors**

#### Three-phase voltages

$$v_{AO}(t) + v_{BO}(t) + v_{CO}(t) = 0$$
 (1)

#### **Two-phase voltages**

$$\begin{bmatrix} v_{\alpha}(t) \\ v_{\beta}(t) \end{bmatrix} = \begin{bmatrix} \cos 0 & \cos \frac{2\pi}{3} & \cos \frac{4\pi}{3} \\ \sin 0 & \sin \frac{2\pi}{3} & \sin \frac{4\pi}{3} \end{bmatrix} \begin{bmatrix} v_{AO}(t) \\ v_{BO}(t) \\ v_{CO}(t) \end{bmatrix}$$
 (2)

#### **Space vector representation**

$$\vec{\vec{V}}(t) = v_{\alpha}(t) + j v_{\beta}(t) \tag{3}$$

$$(2) \to (3)$$

$$\vec{V}(t) = \left[ v_{AO}(t) e^{j0} + v_{BO}(t) e^{j2\pi/3} + v_{CO}(t) e^{j4\pi/3} \right]$$
 (4)

where  $e^{jx} = \cos x + j \sin x$ 

### **Space Vectors (Example)**

### Switching state [POO] $\rightarrow S_1$ , $S_6$ and $S_2$ ON

$$v_{AO}(t) = V_d, \quad v_{BO}(t) = -\frac{1}{2}V_d, v_{CO}(t) = -\frac{1}{2}V_d$$

$$(5) \rightarrow (4)$$

$$\vec{V_1} = V_d e^{j0}$$

$$\vec{V}_k = V_d e^{j(k-1)\frac{\pi}{3}}$$

$$k = 1, 2, ..., 6.$$



### **Active and Zero Vectors**



Active Vector: 6
Zero Vector: 1

**Redundant switching** 

states: [PPP] and [OOO]

| Space<br>Vector  |                       | Switching<br>State<br>(Three<br>Phases) | On-state<br>Switch | Vector<br>Definition                  |  |
|------------------|-----------------------|-----------------------------------------|--------------------|---------------------------------------|--|
| Zero             | $ec{V}_0$             | [PPP]                                   | $S_1, S_3, S_5$    | $\vec{V}_0 = 0$                       |  |
| Vector           | <b>v</b> <sub>0</sub> | [000]                                   | $S_4, S_6, S_2$    | V <sub>0</sub> = 0                    |  |
| Active<br>Vector | $ec{V}_1$             | [POO]                                   | $S_1, S_6, S_2$    | $\vec{V_1} = V_d e^{j0}$              |  |
|                  | $ec{V}_2$             | [PPO]                                   | $S_1, S_3, S_2$    | $\vec{V}_2 = V_d e^{j\frac{\pi}{3}}$  |  |
|                  | $\vec{V}_3$           | [OPO]                                   | $S_4, S_3, S_2$    | $\vec{V}_3 = V_d e^{j\frac{2\pi}{3}}$ |  |
|                  | $ec{V}_4$             | [OPP]                                   | $S_4, S_3, S_5$    | $\vec{V_4} = V_d e^{j\frac{3\pi}{3}}$ |  |
|                  | $\vec{V}_5$           | [OOP]                                   | $S_4, S_6, S_5$    | $\vec{V}_5 = V_d e^{j\frac{4\pi}{3}}$ |  |
|                  | $\vec{V}_6$           | [POP]                                   | $S_1, S_6, S_5$    | $\vec{V}_6 = V_d e^{j\frac{5\pi}{3}}$ |  |

### Reference Vector $V_{ref}$

#### **Definition**

$$\vec{V}_{ref} = V_{ref} e^{j\theta}$$

Rotating in space at  $\omega$ 

$$\omega = 2\pi f \tag{8}$$

**Angular displacement** 

$$\theta(t) = \int_0^t \omega \, dt \qquad \textbf{(9)}$$



### Relationship Between $V_{ref}$ and $V_{AB}$

*V<sub>ref</sub>* is approximated by two active and zero vectors

 $V_{ref}$  rotates one revolution,  $V_{AB}$  completes one cycle

Length of  $V_{ref}$  corresponds to magnitude of  $V_{AB}$ 



#### **Dwell Time Calculation**

#### **Volt-Second Balancing**

$$\begin{cases} \vec{V}_{ref} \ T_s = \vec{V}_1 T_a + \vec{V}_2 T_b + \vec{V}_0 T_0 \\ T_s = T_a + T_b + T_0 \end{cases}$$
 (10)

 $extbf{\textit{T}_a}$ ,  $extbf{\textit{T}_b}$  and  $extbf{\textit{T}_0}$  – dwell times for  $\vec{V_1}, \vec{V_2}$  and  $\vec{V_0}$ 



 $T_s$  – sampling period

#### **Space vectors**

$$\vec{V}_{ref} = V_{ref} e^{j\theta}, \ \vec{V}_1 = V_d, \vec{V}_2 = V_d e^{j\frac{\pi}{3}} \text{ and } \vec{V}_0 = 0$$
 (11)

(11) 
$$\rightarrow$$
 (10)
$$\begin{cases}
\mathbf{Re}: \ V_{ref}(\cos\theta)T_s = V_d T_a + \frac{1}{2}V_d T_b \\
\mathbf{Im}: \ V_{ref}(\sin\theta)T_s = \frac{\sqrt{3}}{2}V_d T_b
\end{cases}$$
(12)

#### **Dwell Times**

#### **Solve (12)**

$$\begin{cases} T_a = \frac{2T_s V_{ref}}{\sqrt{3} V_d} \sin(\frac{\pi}{3} - \theta) \\ T_b = \frac{2T_s V_{ref}}{\sqrt{3} V_d} \sin\theta \\ T_0 = T_s - T_a - T_b \end{cases}$$
 (13)

### $V_{ref}$ Location versus Dwell Times



| $ec{V}_{ref}$ Location | $\theta = 0$        | $0 < \theta < \frac{\pi}{6}$ | $\theta = \frac{\pi}{6}$ | $\frac{\pi}{6} < \theta < \frac{\pi}{3}$ | $\theta = \frac{\pi}{3}$ |
|------------------------|---------------------|------------------------------|--------------------------|------------------------------------------|--------------------------|
| <b>Dwell Times</b>     | $T_a > 0$ $T_b = 0$ | $T_a > T_b$                  | $T_a = T_b$              | $T_a < T_b$                              | $T_a = 0$ $T_b > 0$      |

#### **Modulation Index**

$$\begin{cases} T_a = T_s m_a \sin(\frac{\pi}{3} - \theta) \\ T_b = T_s m_a \sin \theta \\ T_0 = T_s - T_b - T_c \end{cases}$$
 (15)

$$m_a = \frac{2V_{ref}}{\sqrt{3}V_d} \tag{16}$$

### **Modulation Range**

 $V_{ref,max}$ 

$$V_{ref, \text{max}} = V_d \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}V_d}{2}$$
 (17)

$$(17) \to (16)$$

$$m_{a,max} = 1 \rightarrow$$

Modulation range:  $0 \le m_a \le 1$ 



(18)

### **Switching Sequence Design**

Basic Requirement:

Minimize the number of switchings per sampling period  $T_s$ 

Implementation:

Transition from one switching state to the next involves only two switches in the same inverter leg.

### **Seven-segment Switching Sequence**

Selected vectors:  $V_0$ ,  $V_1$  and  $V_2$ 

**Dwell times:** 

$$T_s = T_0 + T_a + T_b$$



### **Undesirable Switching Sequence**

Vectors  $V_1$  and  $V_2$  swapped



### **Simulated Waveforms**



### **Waveforms and FFT**





## SVPWM - Modified SinePWM



### SVPWM - Modified SinePWM



## SVPWM - Modified SinePWM

