Лабораторная работа №2

Ввод и вывод значений простых переменных и одномерных массивов. Создание функциональных тестов

Вариант 16

Выполнил: Татарников Максим группа А-07-22

1. Постановка задачи (ПЗ).

Задание: Разработать нисходящим способом алгоритм, отделив ввод и вывод от её решения, и написать программу на Delphi, создав консольное приложение для MS Windows, для решения задачи из нижеприведенного перечня задач.

Условие: При заданных $A_1, A_2, ..., A_n, B_1, B_2, ..., B_n$ и $C_1, C_2, ..., C_n$ для каждой из n троек вида (A_i, B_i, C_i) проверить, может ли быть построен треугольник со сторонами A_i, B_i, C_i , при этом подсчитать число треугольников и сумму их периметров.

2. Уточненная постановка задачи

Даны три *одномерных вещественных положительных массива* A, B, C из n (0<n \leq 20) элементов – длины сторон треугольников.

Найти:

 $num_triangle$ — количество треугольников, которые возможно составить из тройки A_i , B_i , C_i . (Сумма любых двух сторон должна быть больше третьей)

Если $num_triangle = n$, то вывести "Из всех троек можно составить треугольники!".

Если $num_triangle = 0$, то вывести "Ни из одной тройки нельзя составить ни один треугольник!"

perimeter — Сумма всех значений A_i , B_i , C_i , из которых возможно составить треугольник. Если невозможно вычислить периметр (num_triangle=0), то вывести «Вычислить периметр невозможно»

3. Пример

Возьмем n = 10. И длины разных <u>величин</u> (положительные, отрицательные, нулевые):

Α	1	3	8	4	2	7	10	7	6	7
В	1	4	5	7	3	8	5	11	2	7
С	1	5	3	3	5	9	6	5	9	1

Из условия только из 4 троек (3,4,5), (1,1,1), (7,8,9), (10,5,6) можно составить треугольник, следовательно:

 $num_triangle = 4$

perimeter = 3+4+5+1+1+1+7+8+9+10+5+6=60

4. Таблица данных

(начало таблицы данных)

Класс	Имя	Описание	Тип	Структура	Формат в/в
		(смысл, диапазон, точность)			
	n	число троек длин,	цел	простая	XX (:2)
Входные		$0 < n \le 20$		переменная	
данные	\boldsymbol{A}	Первая сторона треугольника,	вещ	одномерный	XX.X (:3:1)
		0<А₁<=20, точн. 0.1		массив (20)	
	В	Вторая сторона треугольника,	вещ	одномерный	XX.X (:3:1)
		$0 < B_i < = 20$, точн. 0.1		массив (20)	
	С	Третья сторона треугольника,	вещ	одномерный	XX.X (:3:1)
		$0 < C_i < =20$, точн. 0.1		массив (20)	

(продолжение таблицы данных)

				1		
Класс	Имя	Описание	Тип	Структура	Формат в/в	
		(смысл, диапазон,				
		точность)				
	num_triangle	Количество возможных	цел	простая	XX (:2)	
Выходные		треугольников		переменная		
данные		$0 \le \text{num_triangle} \le 20$				
	perimeter	Сумма всех длин троек,	вещ	простая	XXX.X (:4:1)	
		которые прошли условие		переменная		
		perimeter>=0				
Промежу-	i	индекс текущего	цел	простая		
точные		элемента,		переменная		
данные*		$0 \le i \le 21$				

5. Входная форма:

1.1 oбp1 1.2	Количество троек n:
Обр2.1	Длины сторон треугольника:
Oбp2.2	<a[1]> <b[1]> <c[1]> <a[2]> <b[2]> <c[2]> <b[n]> <c[n]></c[n]></b[n]></c[2]></b[2]></a[2]></c[1]></b[1]></a[1]>

6. Выходная форма:

Обр3	Лаб.2
Обр4	Количество троек n = <n></n>
 Обр5	Длины сторон треугольника:
<u></u> Обр6	<a[1]> <b[1]> <c[1]> <a[2]> <b[2]> <c[2]> <a[n]> <b[n]> <c[n]></c[n]></b[n]></a[n]></c[2]></b[2]></a[2]></c[1]></b[1]></a[1]>
 Обр7 Обр8	 Количество треугольников = <num_triangle> Сумма периметров = <perimeter></perimeter></num_triangle>
Обр9 <i>Обр10</i>	Из всех троек можно составить треугольник (num_triangle = n) Сумма периметров = <perimeter></perimeter>
Обр11	Ни из одной тройки нельзя составить ни одного треугольника
Обр12	Периметр = 0

7. Аномалии

№	Описание	Условие	Реакция на аномалию		
		возникновения**			
1	<i>п</i> меньше минимально	n<1	Сообщение: «Некорректное <i>n</i> : <i>n</i> <1» (обр.1.2)		
	допустимого значения		Действие: Завершение работы программы		
2	A_i, B_i, C_i меньше	${f A_i}$ или ${f B_i}$ или ${f C_i}$ <	Сообщение: «Некорректная длина		
	минимально допустимого	0	треугольника: A, B, C <0 » (обр.2.2)		
	значения		Действие: Завершение работы программы		

8. Функциональные тесты num_triangle as n_t perimeter as p

Исходн	Сеходные данные								ультаты	Tec T №
	аном	границ а	Сре	дние зна	чения	граница	<i>ано</i> м	n_ t	макс = 20	2
								мин = 1 и не ноль	3	
п Тест №	<1	3		[2, 19]		20 2	>20		cped = (2,19)	1
							-		0	4
A[i]	<-20	-20	(-20,0)	0	(0.1,20)	20	>20		<i>не сущ</i> = не возможно	
Тест №		2	3	1	1	2			Макс.выч.нагрузк а =	2
B[i]	<-20	-20	(-20,0)	0	(0.1,20)	20	>20		20 точек из 20 попали	
Тест №		2	3	1	1	2		p	макс = 1200 мин = 0.3	3
C[i]	<-20	-20	(-20,0)	0	(0.1,20)	20	>20			
Тест №		2	3	1	1	2			cped = (0.3, 1200)	1
									0	
									не сущ, когда $n_t=0$	4
	Аном 3	аном3	Аном3	Аном 2	сред	граница	Ано м1		Mакс.выч.нагрузк $a = 1200$	2

№ теста	Входные данные	Ожидаемый Смысл теста результат
1	n=10 A 1 3 8 4 2 7 10 7 6 7 B 1 4 5 7 3 8 5 11 2 7	N_t = 7 P = 115 Нормально-средние значение для общей проверки программы
	C 1 5 3 3 5 9 6 5 9 1	
2	A 20 20 20 B 20 20 20 C 20 20 20	N t = 20 Максимальное значение всех исходных данных и результатов. Максимальная вычислительная нагрузка для $n t$ и $p t$.
3	A 0.1 B 0.1 C 0.1	$N_{-}t = 1$
4	P – не сущ Num_triangle = 0	Сообщение по Аномалия №1 обр.А1

Резуль	таты	Тест №
N_t	макс =20	2
	мин и не 0: 1	3
	cped = (0,20)	1
	не сущ = невозможно	
	0	4
	Макс.выч.нагрузка = 20	2
p	макc = 1200	2
	мин и не 0:	3
	n = 20	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	P = 0.1 + 0.1 + 0.1 = 0.3	
	cped = (0.3, 1200)	1
	не сущ, когда num_triangle = 0	4
	0, не сущ	•••
	Макс.выч.нагрузка = 1200	2

9. Блок-схема

10 Программа

```
program Lab2;
const
  Nmax = 20;{верхняя граница индексов массива - максимальное количество точек}
        {раздел описания переменных:}
var
 n, i, num_triangle: integer;
 perimeter: real;
 A, B, C: array [0..Nmax] of real;
       {раздел операторов:}
begin
   //вывод заголовка в выходной документ:
 writeln('Лаб.2':40); {вывод с переходом на следующую строку}
          {ввод исходных данных: }
 writeln('Количество троек n (0<n<=20):'); readln(n); {oбp 1.1,1.2}
          {ввод массивов А, В, С:}
  if (n <= 0) or (n > 20) then
  begin
   writeln('Ошибка задания условия');
   exit;
  end;
 writeln('Стороны треугольника:'); {обр2.1}
  i := 0;
 while i<n do
  begin
    readln(A[i], B[i], C[i]);
    if (A[i] <= 0) or (B[i] <= 0) or (C[i] <= 0) or (A[i] > 20) or (B[i] > 20) or (C[i] > 20)
then
   begin
   writeln('Ошибка задания условия');
   exit;
   end;
    {обр2.2:ввод 3 элементов через пробел и переход на след. строку}
    i := i+1;
  end;
         {вывод входных данных в выходной документ для подтверждения: }
  for i := 1 to 80 do write('='); { отделим визуально чертой и строкой введенные
и выводимые значения }
 writeln;
 writeln('Количество троек =', n:3); {обр4}
           {вывод исходных массивов А, В, С}
 writeln('Стороны треугольника: ');
  i := 0;
 while i < n do {o6p4,5}
```

```
begin
   writeln(' ':5, A[i]:3:1, ' ':8, B[i]:3:1, ' ':8, C[i]:3:1);
    i := i + 1;
  end;
 num triangle := 0;
 perimeter := 0;
  i := 0;
 while i < n do // перебираем по-очереди все n точек
  begin
    if ((B[i] + C[i]) - A[i] > 0.01) and ((A[i] + C[i]) - B[i] > 0.01) and ((B[i])
+ A[i]) - C[i] > 0.01) then // Проверка усл на неравенство треугольника
   begin
      num triangle := num triangle + 1; // и количество увеличиваем
      perimeter := perimeter + A[i] + B[i] + C[i];
   end;
    i := i + 1;
  end:
  if num triangle = n then
   writeln('Из всех троек можно составить треугольник!':45);
               Периметр = ', perimeter:3);
   writeln('
  else if num_triangle = 0 then
   writeln('Ни из одной тройки нельзя составить треугольник!');
   writeln('Вычислить периметр невозможно');
  end
       else
  begin
                Кол-во треугольников = ', num_triangle:2); {обр.7}
   writeln('
                Периметр = ', perimeter:3); \{o6p.8\}
   writeln('
 write('Press Enter...'); readln; {задерживаем экран до нажатия ENTER}
end.
```