	Date / /
LEC30 Linear Transform	netons and
their matrices	2/16
without coordinates: no martix	
with acordinate ->> MATRX	
	w V
Example: 1. Projection is LT	TIV
$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$	Tun
also called map or mapping	100,
tourear-	
Linear Transformation	
(T(v+w) = T(v) + T(w)	T(0) = 0
Teen T(cv) = c.T.(v)	
T(cv+dw) = cT(v)+c	dT(W)
Example 2: shift whole plane	$T(y) = \sum_{i} y + y_{i}$
there is a linear T	mortament by - Tin-V
no, this is not a linear T	T(2V) 7 XV+V6)
	(14) -1 -(1,00)

NON Example:
$T(v) = v \qquad T: R^3 \rightarrow R^2$
T(V, -2) = 2 1
Example 2:
Rotation by 45° T: R2 -> R2 is LT
JATOUI JATOUI
Example 3: important!! Matrix A (I'mear trumsfor
T c v = A x
T(v+w) = Av+Aw, $A(cv) = cAv$
ex. A = [0 -1] transform all veetors in plane
D putput
input A III
the transformation like a kind of abstract
description of matrix multiplication
what's our goal?
=) understand linear transformations

[] - [] - []	Memo N	lo	
Mo Tu We Th Fr Sa Su	Date	1	
Start: $T: R^3 \rightarrow R^2$	213	matnin	
Example: $T(v) = Av$	- <u>269</u> 2	<u>πωσιγ</u>	
out put in R^2 input	mR ³	entered from the second	
Information needed to know	T(v) fo	rall si	nput]
T(V1) ,T(V2), -, T(Vn) for	any bas	rds Vi;	, Vn
=) every V=EDVI+···+CDVn	lingu	t	
then I know T(v) = c, T(vi) +		(n)	
coordinate: the basis is	sure		
L'Come from a basis.		ate of	<i>V</i>
$ V = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + $			
Construct matrix A that repre	esent l	inear	transformat
Choose basis v un for	m puts Km	T: R"-	7 R
choose basis w wan for a			
want matrix A			
ex: 12 1/2 /vi=wi 2 mjection what's	. Д	(C1, C2) →((,0)
$V = a V_1 + C_2 V_2$	A	[00]	
$T(v) = GV_1$		F - 7	

	_	1	_
1)	н	16	ب

eigenvector basis leads to diagonal
matrix
Project onto 45° line use stand basis
$v_1 = [0] = w$, $v_2 = [0] = w$
the matrix $P = \frac{\alpha u^T}{\alpha \tau \alpha} = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$
Rule to find Martinix A
1st column of A given w, - wm
$apply T(v_i) = (a_i)w_i + (a_2)w_2 + \cdots + (a_m)w_m$
2nd colum of A:
$T(V_2) = \alpha_1 w_1 + \dots + \alpha_m w_m$
A (more) = (correlinate)
$T = \frac{d}{dx}$ Input: $C_1 + C_2 X^2 + C_3 X^2$. basis: $l_1 x_1 X^2$
inear output: C2 + 2C3 X1 basis: le X
$A\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_3 \end{bmatrix} = A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
[c ₃] [sc ₃] [V-[002]
$R^3 \rightarrow R^2$ $2x3$