Lecture1

ECES 435 Multimedia Forensics & Security

Slides adapted with permission from ENEE408G course developed @ ECE Department, University of Maryland, College Park by Profs. Ray Liu (kjrliu@umd.edu) and Min Wu (minwu@umd.edu).

Digital Multimedia Tampering

 Editing software can create perceptually realistic digital multimedia forgeries

ECES 435

Introduction to Digital Image Processing

What is An Image?

- What we perceive as a grayscale image is a pattern of light intensity over a 2-D plane ("image plane")
 - A function I(x,y) of the two spatial coordinates, describing the intensity at the point (x,y) on the image plane.
 - I(x,y) takes non-negative values
 - Often consider an image is bounded by a rectangle [o,a]×[o,b]

$$I: [0, a] \times [0, b] \rightarrow [0, inf)$$

Color image

 Can be represented by three functions, R(x,y) for red, G(x,y) for green, and B(x,y)for blue.

Sampling and Quantization

Computer handles "discrete" data

Sampling

 Sample the value of the image at the nodes of a rectangular grid on the image plane.

- A pixel (picture element) at (i, j) is the image intensity value at grid point indexed by the integer coordinate (i, j)
- How dense should we sample?=> extend 1-D sampling theorem to 2-D

Quantization

- Is a process of transforming a real valued sampled image to one taking only a finite number of distinct values
- Each sampled value in a 256-level grayscale image is represented by 8 bits
- How many levels should we choose?

Orexel UNIVERSITY

Examples of Sampling

16x16

Examples of Quantizaion

2 bits / pixel

Huge Data Volume of Multimedia

Color image of 600x800 pixels

- 600*800 * 24 bits/pixel = 1.44M bytes
- After JPEG compression
 - only 89K bytes
 - compression ratio ~ 16:1

Video

- 720x480 per frame, 30 frames/sec, 24 bits/pixel ~ 243M bits/sec
- DVD ~ about 5M bits/sec
 - Compression ratio ~ 48:1

Audio

- 44.1KHz * 16bit * 2 ch. = 1.4 Mbps
- MP3 \sim about 64K 256 Kbps

"Library of Congress" by M.Wu (600x800)

Color of Light

- Perceived color depends on spectral content (wavelength composition)
 - e.g., 700nm \sim red.
 - "spectral color"
 - A light with very narrow bandwidth

"Spectrum" from http://www.physics.sfasu.edu/astro/color.html

 A light with equal energy in all visible bands appears white

Example: Seeing Yellow Without Yellow

FIGURE 6.3 Absorption of light by the red, green, and blue cones in the human eye as a function of wavelength.

mix green and red light to obtain perception of <u>yellow</u>, without shining a single yellow photon

=> human eyes are not a precise spectrum analyzer

"Seeing Yellow" figure is from B.Liu ELE330 S' 01 lecture notes @ Princeton; R/G/B cone response is from slides at Gonzalez/ Woods DIP book website

Color Perception

- Three kinds of photoreceptors in human retina for perception of color under bright light
 - Their sensitivity has peaks around 450nm (blue), 550nm (green),
 600nm (yellow-green)
- Three Color Theory (Thomas Young, 1802)
 - Any color can be reproduced by mixing an appropriate set of three primary colors
- RGB primaries
 - red (700nm), green (546nm), blue (436nm)

RGB Primaries and Color Representation

- Use red, green, blue light to represent a large number of visible colors
- The contribution from each primary is normalized to [0, 1]

The RGB Cube

Color-cube figures: left figure is from B.Liu ELE330 S'01 lecture notes @ Princeton, right figure is from slides at Gonzalez/ Woods DIP book website

Color Coordinate for Printing ("subtractive")

- CMY pigment primaries for printing
 - Cyan, Magenta, Yellow: complementary to RGB
 - Pigment's color depends on the light reflected

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}.$$
 Mag

E.g. to paint blue, we'll put cyan and magenta pigment.

Perceptual Attributes of Color

- Value of Brightness (perceived luminance)
- Chrominance
 - Hue
 - specify color tone (redness, greenness, etc.)
 - depend on peak wavelength
 - Saturation
 - describe how pure the color is
 - depend on the spread (bandwidth) of light spectrum
 - reflect how much white light is added

■ RGB ⇔ HSV Conversion ~ nonlinear

HSV circular cone is from online documentation of Matlab image processing toolbox

http://www.mathworks.com/access/helpdesk/help/toolbox/images/color10.shtml

ECES 435 Lec1 – Introduction [14]

Examples

RGB

HSV

YUV

ECES 435 Lec1 – Introduction [15]

Color Coordinates Used in TV Transmission

- Facilitate sending color video via 6MHz mono TV channel
- YIQ for NTSC (National Television Systems Committee) transmission system
 - Use receiver primary system (R_N, G_N, B_N) as TV receivers standard
 - Transmission system use (Y, I, Q) color coordinate
 - $Y \sim luminance$, $I \& Q \sim chrominance$
 - I & Q are transmitted in through orthogonal carriers at the same freq.

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R_N \\ G_N \\ B_N \end{bmatrix} . \qquad \begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.100 \end{bmatrix} \begin{bmatrix} R_P \\ G_P \\ B_P \end{bmatrix} .$$

- YUV (YCbCr) for PAL and digital video
 - Y ~ luminance, Cb and Cr ~ chrominance

Luminance vs. Brightness

Different lum. Similar brightness

- Luminance (or intensity)
 - Independent of the luminance of surroundings

$$L(x,y) = \int_0^{inf} I(x,y,\lambda)V(\lambda)d\lambda$$

 $I(x,y,\lambda)$ -- spatial light distribution

 $V(\lambda)$ -- relative luminous efficiency func. of visual system (bell-shaped, higher efficiency in middle wavelength range)

- Brightness
 - Perceived luminance

Depends on surrounding luminance

Visual Angle and Spatial Frequency

- Visual angle matters more than absolute distance
 - Smaller but closer object vs. larger but farther object
 - Eyes can distinguish about 30 lines per degree in bright illumination
 - 25 lines per degree translate to 500 lines if distance=4 × screenheight
- Spatial Frequency
 - In unit of "cycles per visual degree"
 - Measures the extent of spatial transition

- Eyes are most sensitive to medium spatial freq. and least sensitive to high freq.
 - ~ similar to a band-pass filter
- More sensitive to horizontal and vertical changes than other orientations

ECES 435