Explanations of the calculations for the paper "Heptagon relations from a simplicial 3-cocycle, and their cohomology"

Igor G. Korepanov

1 Preliminaries

s:4f

1.1 Technical: package PL

The calculations have been done in GAP computer algebra system, with our additional package PL that should be downloaded from https://sourceforge.net/projects/plgap/ and installed.

Remark. PL package is still at the "pre-alpha" state. The part of it used in the present work is, however, fully functional and well tested.

1.2 A basis in permitted colorings of one 4-face, and coordinates of coboundary-induced colorings in that basis

Let ω be a simplicial 3-cocycle given on some Δ^4 , satisfying

$$\omega_{ijkl}$$
 for any 3-face $ijkl$. (1) onv

The colors of $\Delta^4 \subset \Delta^m$ belong, by definition, to the *three*-dimensional F-linear space F^3 , identified below with the space V_{Δ^4} consisting of 3-cocycles ν on Δ^4 taken to within adding a multiple of ω (restricted to Δ^4). This means that we have a chosen basis in each V_{Δ^4} , that is, for any $\vec{p}_4 = \omega|_{\Delta^4}$. Note that any specific choice of these bases does not affect our theoretical constructions; convenient bases must be, though, specified for calculations.

There is a remarkable symmetric bilinear form on V_{Δ^4} . Let ν, η be two 3-cocycles; we make first from them 3-cochain μ as follows:

$$\mu_{ijkl} \stackrel{\text{def}}{=} \frac{\nu_{ijkl}\eta_{ijkl}}{\omega_{ijkl}},\tag{2}$$

and then define the bilinear form as the value on $\Delta^4 = ijklm$ of its simplicial coboundary:

$$Q_{\Delta^4}(\nu,\eta) \stackrel{\text{def}}{=} (\delta\mu)(\Delta^4) = \frac{\nu_{jklm} \, \eta_{jklm}}{\omega_{jklm}} - \dots + \frac{\nu_{ijkl} \, \eta_{ijkl}}{\omega_{ijkl}} \tag{3}$$

Proposition 1. $Q_{\Delta^4}(\nu, \eta)$ depends actually only on the equivalence classes of ν and η modulo ω , both belonging to V_{Δ^4} .

Proof. This follows from the fact that $Q_{\Delta^4}(\nu, \eta)$ clearly vanishes if either ν or η is proportional to ω .

We will take the liberty of denoting as $\delta(ijk)$ the coboundary of the simplicial 2-cochain taking value $1 \in F$ on triangle ijk and zero on other triangles. For example, within 4-simplex $\Delta^4 = 12345$, it means that $\delta(234)$ takes value $1 \in F$ on tetrahedron 1234, value $-1 \in F$ on tetrahedron 2345, and zero on other tetrahedra. We call such colorings corresponding to cocycles $\nu = \delta(ijk)$ triangle vectors. Surely, any simplicial 3-cocycle ν on Δ^4 can be represented (and not uniquely) as a linear combination of triangle vectors.

Bilinear form Q_{Δ^4} provides an elegant way of introducing *coordinates* in our linear space V_{Δ^4} of colors of Δ^4 . For instance, here are the coordinates of triangle vectors that we used in our actual calculations, on the example of pentachoron $\Delta^4 = 12345$. We chose them to be proportional to $Q_{\Delta^4}(\nu, \delta(s))$, taking three triangles for s, namely s = 345, s = 125 and s = 123 (we write simply Q instead of Q_{12345} in (4) below):

Cocycle ν	Three coordinates of the corresponding coloring of $\Delta^4 = 12345$			
	$-Q(\nu,\delta(345))$ $\cdot \omega_{1345} \omega_{2345}$	$-Q(\nu,\delta(125))$ $\cdot \omega_{1235} \omega_{1245}$	$-Q(\nu,\delta(123))$ $\cdot \omega_{1234} \omega_{1235}$	
$\delta(123)$	(0	ω_{1245}	$\omega_{1234} - \omega_{1235}$	
$\delta(124)$	0	$-\omega_{1235}$	ω_{1235}	
$\delta(125)$	0	$\omega_{1235} - \omega_{1245}$	$-\omega_{1234}$	
$\delta(134)$	ω_{2345}	0	$-\omega_{1235}$	(4) v12345
$\delta(135)$	$-\omega_{2345}$	ω_{1245}	ω_{1234}	
$\delta(145)$	ω_{2345}	$-\omega_{1235}$	0	
$\delta(234)$	$-\omega_{1345}$	0	ω_{1235}	
$\delta(235)$	ω_{1345}	$-\omega_{1245}$	$-\omega_{1234}$	
$\delta(245)$	$-\omega_{1345}$	ω_{1235}	0	
$\delta(345)$	$-\omega_{2345} + \omega_{1345}$	0	0	

These coordinates work for a generic ω . To be exact, it can be checked that matrix (4) has rank < 3 in the only case where

$$\omega_{1345} = \omega_{2345},$$
 (5) 13

keeping (1) in mind, of course. If we add, however, the "missing" seven columns to (4), so that they will correspond to all ten triangles—2-faces of our Δ^4 , the rank

will, remarkably, be three for any ω satisfying (1), as the following proposition states.

Proposition 2. Q_{Δ^4} , considered as a bilinear form on V_{Δ^4} , has the full rank—that is, three.

Proof. If the rank of Q_{Δ^4} were less than 3, then not only (5), but also other similar relations would hold, with other subscripts. This would lead to a contradiction between (1) and the cocycle condition $\omega_{1234} - \omega_{1235} + \omega_{1245} - \omega_{1345} + \omega_{2345} = 0$. \square

Due to Propositions 1 and 2, there is the canonical isomorphism between V_{Δ^4} and its conjugate space $V_{\Delta^4}^*$, this latter consisting of course of linear forms on 3-cocycles vanishing on ω .

1.3 Recalling the explicit expressions for 5-cocycles in characteristics two and three

The value of the 5-cocycle in characteristic two on a 5-simplex w can be expressed as

$$c(\nu, \eta) = \sum_{\substack{v, v' \subset w \\ v < v'}} Q_v(\nu, \eta) Q_{v'}(\nu, \eta) + \sum_{v \subset w} \tilde{\epsilon}_v^{(w)} (Q_v(\nu, \eta))^2, \tag{6}$$

where v and v' are faces of w. We assume in (6) that these faces are *numbered*, and understand their numbers when writing "v < v'".

In characteristic three:

$$\sum_{\substack{v_1, v_2, v_3 \subset w \\ v_1 < v_2 < v_3}} \epsilon_{v_1}^{(w)} \epsilon_{v_2}^{(w)} \epsilon_{v_3}^{(w)} Q_{v_1}(\nu, \eta) Q_{v_2}(\nu, \eta) Q_{v_3}(\nu, \eta), \tag{7}$$

where v_1 , v_2 and v_3 are faces of w.

s:M

2 Manifold: cells, coboundaries, cohomology

2.1 Function ei(M, m, mp1_cell, m_cell)

For manifold M, returns the incidence coefficient = 0 or ± 1 between the (m + 1)-simplex with number mp1_cell and m-simplex with number m_cell.

2.2 Function coboundary (M, addr)

M is a manifold, and addr must be a two-component list

$$addr = [m-1, \text{ the number of } (m-1)\text{-simplex}]$$

The function returns the coboundary of an (m-1)-simplex in manifold M in the form of the list of the same length as M.faces[m]—that is, the number of m-faces—where at each place the incidence coefficient stays between the corresponding m-face and the (m-1)-face determined according to addr.

2.3 Function basis_cohomology(M, field, n)

Returns a basis in the space of n-cohomologies of manifold M with coefficients in field, in the form of a list of n-cocycles representing the basis cohomology classes. Each n-cocycle is represented as a list of field-valued coefficients at n-cells.

2.4 Function PolTriangulatedOrient(M)

For a triangulated manifold M, returns consistent orientations ± 1 of its cells of the maximal dimension. Orientations are taken with respect to the orientations determined by the vertices of each cell taken in their increasing order.

3 Heptagon colorings of a manifold

s:mc

3.1 Function evt(M, triangle, pentachoron, cocycle)

For a given triangle (= 2-face) we take simplicial 3-cocycle equal to the coboundary of the delta-function of that triangle. That is, the cochain taking value 1 on that triangle and 0 on the others. We fix a basis in each 3-dimensional space of permitted colorings for a given pentachoron (= 4-face), determined by the cocycle ω , according to (4). Function evt substitutes right vertex numbers instead of 12345 in (4), and returns the 3-row-vector of components of the (permitted) coloring of the pentachoron appearing due to that 3-cocycle. Zero of course if triangle is not a face of pentachoron.

M is a triangulated manifold.

3.2 Function e(M, g_simplex, cocycle)

Here n=3, hence 2*n-2=4. Function e returns the list of 3-row-vectors (made by evt) for all 4-faces.

3.3 Function all_e(M, cocycle)

Given are manifold M and cocycle omega. Function all_e returns matrix whose rows correspond to triangles, while each row is as returned by e with the only difference that all the inner square brackets are removed. That is, each triple of columns corresponds to a 4-face.

3.4 Function colorings (M, cocycle)

Here k = 3. And within it:

Inner function $r_d_s_g(d_simplex)$ What we do: the rows of on_d_simplex give a basis of permitted colorings of a given d_simplex, that is, 5-simplex. Then we make matrix r of orthogonal rows. Then we make matrix m which is matrix r with zeroes added at the places corresponding to other 5-simplices (not our given d_simplex). r_all_result is the matrix made of such $m = r_d_s_g(t)$ for all 5-simplices as d_simplex, by placing them one under another. The rows of r_all_result give this way all restrictions on permitted colorings of M. No more problems: colorings.g gives a basis of linear space V_p , while colorings.p gives a basis of linear space V_p .

4 Heptagon cocycles

s:hc

4.1 Function gran(M, cocycle, pentachoron, x, y)

gran means, in principle, "face".

Here, specifically, the value of bilinear form Q (3) is returned on chosen a 4-face, namely, pentachoron. Arguments \mathbf{x} and \mathbf{y} are two permitted colorings of manifold M (ν and η in (3) are their restrictions on the pentachoron Δ^4) given in the same format as the *rows* of the output of function all_e: each triple of columns corresponds to a 4-face.

4.2 Function on_d(M, cocycle, d_simplex, x, y)

This function is not actually used in calculations; it is just to check that the previous function gran gave indeed a 4-cocycle. Function on_d takes a 5-simplex $d_simplex$ and sums the values of Q along its 4-faces, with proper signs. Some permitted colorings x and y must be supplied as arguments (in the same format as in function gran).

4.3 Function on_d_2(M, cocycle, d_simplex, x, y)

This function calculates the value (6) of 5-cochain in characteristic two on $d_simplex$

4.4 Function on_d_3(M, cocycle, d_simplex, x, y)

This function calculates the value (7) of 5-cochain in characteristic three on $d_simplex$

5 Calculations

s:calc

The calculations are done for 3-cocycle ω being an \mathbb{F}_2 -cocycle (this is important!) plus a coboundary whose components belong to a big enough finite field F of characteristic two. Vector spaces V_p and V_g are taken over F.

Concerning characteristic three, no nontrivial results could be obtained as yet, so our calculations go just in characteristic two.

5.1 Function itogi_function(): returned values

This function returns the list of lists [vektor, subset_V_p_V_g, d_V_p, d_V_g, sum_sumsum, sum, rank_A] of the function's local variables. Of these,

- vektor runs, essentially, over all third cohomology classes of M with coefficients in \mathbb{F}_2 , starting from the zero class. To be exact, vektor shows the coordinates of the class in some basis,
- subset_V_p_V_g is a technical Boolean variable serving just to check that the inclusion of vector spaces $V_g \subset V_p$ holds indeed (so it looks like the calculations go right),
- d_V_p is dim V_p —the dimension of the space of permitted colorings of M,
- d_V_g is dim V_g —the dimension of the space of g-colorings of M,
- sum_sumsum is one more technical Boolean variable showing whether the sum calculated in two ways (and called sumsum in one of its versions) fives the same result, where
- sum is the polynomial of two permitted colorings from which our invariant comes out. It turns out to be, in all our examples, a symmetric bilinear form of the *squares* of coordinates of the two permitted colorings ν and η of M,
- rank_A is the rank of that symmetric bilinear form.

5.2 Function itogi_function(): inner variables

- basis_p consists of permitted colorings whose equivalence classes modulo g-colorings form a basis in V_p/V_g ,
- u and v are lists of field-valued coefficients with which we make linear combinations of the vectors from basis_p, see next item,
- x and y are these linear combinations for u and v, respectively. They are what is denoted ν and η in the paper,

- sum is $I(M,\omega)$ from the paper. Remember that ω is determined by the above (vektor),
- U and V are *not* actually needed for calculations, and stay here just for control. They are lists of coefficients that can be placed at the basis vectors of V_q , see next item,
- xx and yy are the vectors x and y to which linear combinations of three basis vectors of V_g are added, whose coefficients are indeterminates from lists U and V, respectively,
- sumsum is like sum but calculated with xx and yy. These sums must be equal, and this is controlled by the Boolean variable sum_sumsum. Remark: in simple cases, like $M = S^2 \times S^3$, sum_sumsum may return false, because both sums are zero, but GAP thinks that they belong to different fields (GF(2) and <field in characteristic 2>, respectively). This brings about no difficulties,
- A is the matrix of the symmetric bilinear form sum of the *squares* of variables in x and y. Because, looking at sum, we see that it has exactly such form in all our examples.

5.3 Integer cohomology

Sometimes it may make sense to obtain a description of cocycles ω , like we did for $M = \mathbb{R}P^4 \times S^1$. We did that by calculating the cohomology with coefficients in \mathbb{Z} , reducing the obtained cocycle $\mod 2$, and comparing with each of the four cocycles ω . Here is the relevant GAP function:

```
basis_cohomology_integers := function( M, field, n )
local coboundaries, mat, cocycles, f, bas;
coboundaries := FreeLeftModule( Integers,
  List([1..Length(M.faces[n-1])],
  nm1_cell -> coboundary(M,[n-1,nm1_cell]) ) );
mat := List([1..Length(M.faces[n])], n_cell ->
        coboundary(M,[n,n_cell]) );
cocycles := FreeLeftModule( Integers, NullspaceIntMat( mat ) );
f:= NaturalHomomorphismBySubspace( cocycles, coboundaries );
bas := Basis(cocycles/coboundaries);
return List( bas, x -> PreImagesRepresentative( f, x )
    # + Random( coboundaries ) # !!!
    );
end;
```