S04-1 Párhuzamos folyamatok modellezése Petri hálók segítségével

- 1. Petri hálók definíciója és működési szabálya
- 2. Párhuzamos folyamatok legfontosabb viselkedési tulajdonságai (elevenség, biztonságosság, korlátosság) és azok vizsgálatára szolgáló eszközök (elérési, fedési fa).
- 3. Petri doboz alkalmazása párhuzamos folyamatok modelljének felépítésében.
- 4. Párhuzamos és elosztott rendszerek szemantikai leírása lehetséges formáinak (műveleti, leíró, axiomatikus) bemutatása egy konkrét példán keresztül.

Petri hálók definíciója és működési szabálya

Páros gráf: olyan gráf, amelyben a csúcsok két diszjunkt halmazba sorolhatóak oly módon, hogy az azonos halmazba tartozó csúcsok között nem vezet él.

Petri háló: (N, M_0) rendezett pár, ahol:

- N = (P, T, R, v) a tartó gráf, irányított, páros gráf, amelynek az élei súlyozottak
- P, T: a csúcsok véges halmazai. P a helyek halmaza, T az átmenetek halmaza
- $P \cup T \neq \emptyset$
- $P \cap T = \emptyset$
- R az éleket megadó reláció: R \subseteq (P \times T) \cup (T \times P)
- v: R $\rightarrow N_0$ az élek súlyait megadó függvény
- A helyek kezdeti súlyozását (kezdőállapot) az M_0 adja meg
 - $-M_0: P \to \mathbb{N}_0$
 - A helyek súlyozását (állapot) általában rendezett n-esként adjuk meg, pl.: $M_0=(1,\,0,\,\ldots,\,2)$

Normális háló: minden él súlya 1.

Kapacitás korlát:

A háló egyes helyeinek súlya nem haladhat meg egy előre megadott értéket: $k:P\to\mathbb{N}_0$

- Szigorú működési szabály: a kapacitáskorlát túllépése esetén az átmenet nem megengedett
- Gyenge működési szabály: a felesleg elnyelődik

Jelölések:

- p helyet megelőző átmenetek halmaza: •p = $R^{(-1)}(p)$
- t átmenetet megelőző helyek halmaza: •t = $R^{(-1)}(t)$

• Adott csúcs utódja(i): $p \bullet = R(p)$, $t \bullet = R(t)$

Működési szabály:

- 1. t átmenet aktivizálható, ha $\forall p \in \bullet t \colon M(p) \ge v(p,\,t)$, vagyis minden őt megelőző hely súlya legalább akkora, mint az őket összekötő él súlya
- 2. t átmenet után az új M' súlyozás: $\forall p \in P: M'(p) = M(p) + v(t,p) v(p,t)$, vagyis az átmenetbe vezető élek súlyával csökken a kiinduló helyek súlya, és az átmenetből vezető élek súlyával nő a cél helyek súlya (ha egy hely nem kapcsolódik az adott átmenethez, akkor a súlya a régi marad)

Viselkedési tulajdonságok

Jelölések:

- $\varsigma = t_1, t_2, ..., t_n$ akciósorozat: a háló által végrehajtott átmenetek sorozata
- M_0 [$\varsigma > M_n$: az M_0 súlyozásból a ς akciósorozattal az M_n súlyozásba jutunk. pl.: $M_0[t_1 > M_1[t_2 > M_2...M_{n-1}[t_n > M_n$
- $L(N, M_0)$: azon akciósorozatok halmaza, amely az N-ben elérhető az M_0 súlyozásból
- R(N, M_0) : N hálóban az M_0 kezdő súlyozásból elérhető súlyozások halmaza
- $\sharp(\varsigma, t)$: ς -ban t átmenet előfordulásának száma

K – korlátosság ($k \in \mathbb{N}$):

Az (N, M_0) Petri háló k - korlátos, ha $\forall M \in R(N, M_0): \forall p \in P: M(p) \leq k$

Biztonságos:

Egy Petri háló biztonságos, ha 1 - korlátos

Elevenség:

Legyen
t \in T. M_0 kezdősúlyozástól függően az N
 Petri hálóban a t átmenet eleven

- L_0 szinten (holt): $\forall \varsigma \in L(N, M_0)$: $t \notin \varsigma$ (Nem lehet egyszer se végrehajtani az átmenetet)
- L_1 szinten (aktivizálható): $\exists \varsigma \in L(N, M_0) : t \in \varsigma$ (Végrehajtható az átmenet)
- L_2 szinten: $\forall k \in \mathbb{N} : \exists \varsigma \in L(N,M_0) : \#(\varsigma, t) \geq k$ (Bármely korlátnál többször végrehajtható az átmenet)
- L_3 szinten: $\exists \varsigma \in L(N, M_0) : \#(\varsigma, t) = \infty$ (Van olyan végrehajtás, melyben tetszőlegesen sokszor végrehajtható az átmenet)
- L_4 szinten: $\forall M \in R(M_0)$ -ra a t L1 szinten eleven (Minden elérhető állapotban az átmenet aktivizálható)

Szigorúan L_k eleven: L_k eleven, de nem L_{k+1}

Petri háló L_k eleven: (N, M_0) $\forall t \in T : t L_k$ eleven

Lefedhetőség:

 $(N,\,M_0)$ Petri háló esetén az M súlyozás lefedhető, ha $\exists M'\in R(M_0):\,\forall p\in P:\,M'(p)\geq M(p)$

Petri hálók vizsgálata

Elérhetőségi fa:

 (N, M_0) Petri háló elérhetőségi (végtelen esetben fedési) fája, olyan gráf, amelyben a csúcsok súlyozásokkal vannak címkézve, az élek pedig átmenetekkel.

Konstrukció:

- 1. új := $\{M_0\}$
- 2. ciklus, amíg új $\neq \emptyset$
 - a) $M := \acute{u}j, \acute{u}j := \acute{u}j \setminus \{M\}$
 - b) ha M-ig a gyökértől létezik már M címkéjű csúcs \Rightarrow M régi
 - c) ha M-ben nincs aktivizálható átmenet \Rightarrow M zsákutca
 - d) M-ben \(\forall t \) aktivizálható átmenetre kiszámoljuk MtM'-t
 - i. Ha a gyökértől M-ig $\exists M''\colon M''\text{-t}$ lefedi M' és $M'\neq M'',$ akkor minden p $\in M'\colon M'(p)>M''(p)$ helyre: $M'(p):=\omega$
 - ii. M' új csúcs: új := új \cup {M'}, az él címkéje t lesz

Legyen G a (N,M0) Petri háló lefedhetőségi fája.

- Korlátos a Petri háló \Leftrightarrow ha nincs G-ben ∞ címkéjű csúcs.
- 1-korlátos (biztonságos) \Leftrightarrow csak 0, 1-es szám szerepel a címkékben.
- t holt $(L_0 \text{ eleven}) \Leftrightarrow \neg \exists t \text{ él címke a G fedési fában.}$

Állapotgép: $\forall t \in T: |\bullet t| = |t \bullet| = 1$

Jelzett háló: $\forall p \in P: | \bullet p | = |p \bullet | = 1$

Petri dobozok

Lab - események egy előre megadott halmaza.

Átcímkézés:

 ρ átcímkézés egy reláció:

 $\rho \subseteq (\text{mult}(\text{Lab})) \times \text{Lab}$, úgy, hogy $(\emptyset, \alpha) \in \rho$ akkor és csak akkor, ha $\rho = \{(\emptyset, \alpha)\}.$

Címkézett Petri háló:

 $\Sigma = (S, T, W, \lambda, M)$, ahol

- S a helyek halmaza
 - T az átmenetek halmaza (S \cap T = \oslash)
 - W az éleket leíró reláció (W: ((S × T) \cup (T × S)) \rightarrow N_0)
 - λ a címkefüggvény
 - $\forall s \in S: \lambda(s) \in \{e, i, x\},\$
 - * $\lambda(s) = e$ (entry), akkor s belépési hely,
 - * $\lambda(s) = x$ (exit), akkor s kimenő hely,
 - * $\lambda(s) = i$ (internal), akkor s belső hely,
 - $\forall t \in T: \lambda(t) \text{ egy átcímkézés,}$
 - M a súlyozás (M: $S \times \mathbb{N}_0$)

Figure 1: Címkézett Petri háló

Lépés:

Átmenetek egy véges zsákja $U \in mult(T)$, (egy lépés) engedélyezett Σ -ban, ha minden helyen van elég súly ahhoz, hogy szimultán végre tudjuk hajtani az összes U-beli átmenetet.

Megjegyzés: Egy lépés nem kell, hogy maximális legyen, például $\{t_0\}$ is egy lépése, illetve $\{t_0\}\{t_1\}\{t_2\}$ és $\{t_0,t_2\}\{t_1\}\{t_2\}$ is egy lépéssorozata Σ_0 -nak.

T-megszorítás: $\forall t \in T : \bullet \ t \neq \emptyset \neq t \bullet$

ex-megszorítás: létezik legalább egy belépési és egy kilépési hely.

e-irányított háló: Σ e-irányított, ha a belépési helyekhez nem vezet él.

x-irányított háló: Σ x-irányított, ha a kilépési helyekből nem vezet ki él.

ex-irányított háló: Σ ex-irányított, ha e-irányított és x-irányított

Petri doboz

 Σ címkézett Petri háló Petri doboz, ha ex-megszorított valamint ex-irányított (és T megszorított).

Operátor doboz

Egy operátor doboz olyan doboz, melynek minden átmenetéhez transzformációs (nem konstans) átcímkézés van rendelve.

Megjegyzés: Az operátor dobozt úgy képzelhetjük el, mint egy mintát, amely sima dobozok egy halmazát (átmenetenként egyet) köt össze a belépési és a kilépési helyeiken keresztül.

Speciális operátor dobozok

- Párhuzamos kompozíció: $\Omega_{||}$ operátor doboz két teljesen különálló másolatot készít Σ_1 -ből és Σ_2 -ből.
- Elágazás: Ω_{\square} egy elágazásban összekapcsolja Σ_1 -et és Σ_2 -t.
- Szekvenciális kompozíció: Ω ; szekvenciálisan összekapcsolja Σ_1 -et és Σ_2 -t.

Párhuzamos és elosztott rendszerek szemantikai leírásának lehetséges formái

Műveleti szemantika (cimkézett állapotátmentrendszer):

A műveleti szemantika azt mondja meg, hogy milyen lépéseket hajt végre a program, azonban helyesség bizonyítására nem alkalmas.

Nyelvtan:

$$P ::= \text{nil} \mid a \mid p \mid a + p \qquad a, p \in A - \text{események}$$

+: nem determinisztikus választás (kb. szelektív várakozás)

Megjegyzés: vannak levezetési szabályok, de eléggé egyértelműek.

Környezet:
$$(p, e) \in P \times P$$
: $e||p - az e a p környezete$

pmegfelel az ekörnyezetnek, ha minden esetben: Amikor elakad a lebontás, akkor a környezet =nil kell legyen.

Példák:

1.
$$a \ b \ nil \ + \ b \ c \ nil \ // \ a(b \ nil \ + \ c \ nil) \xrightarrow{a} b \ nil \ // \ b \ nil \ + \ c \ nil \xrightarrow{b} nil \ // \ nil$$

Ez esetben jobb oldal nil, tehát a program megfelel a környezetnek.

2. $a \ b \ nil + b \ c \ nil / a \ nil + b (c \ nil + a \ nil)$

Jelen esetben két megvizsgálandó ág lesz:

- $a \ b \ nil + b \ c \ nil \mid \mid a \ nil + b \mid c \ nil + a \ nil \stackrel{b}{\rightarrow} c \ nil \mid \mid c \ nil + a \ nil \stackrel{c}{\rightarrow} nil \mid \mid nil$
- $a \ b \ nil + b \ c \ nil \mid \mid a \ nil + b \ (c \ nil + a \ nil) \xrightarrow{a} b \ nil \mid \mid nil$

A baloldal nem nil, de ez nem jelent problémát, mert a környezet (tehát a jobb oldal) nil lett.

Tehát ez esetben is megfelel a program a környezetnek.

Leíró szemantika

A leíró szemantika a részprogramok viselkedéséből következtet az összetett programra (program szintézis).

Axiomatikus szemantika

Az axiomatikus szemantikát a programok verifikálásra (helyességellenőrzésre) fejlesztették ki.