

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

VI.) WHAT IS CLAIMED OF PROPRIETARY INVENTIVE ORIGIN IS:

| ★ 1.) An impetus modifying thruster-wheel providing novel variable trajectory dynamics, for an existing power-driven ball pitching-machine; said IM/thruster-wheel comprising:

an existing spindle mounted hub portion supporting a resilient tire body means
5 having at least one IM-formation made upon the tread-surface thereof, whereby said IM-formation means randomly becomes rotationally positioned tangentially impinged instantly against surface of a given conventional ball passing through the pitching-aperture of an existing ball pitching-machine; thereby producing an irregular trajectory ball-pitching
9 event advantageously serving to surprise a practicing ball-batter as to strike-zone arrival.

2.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel is installed as a randomly cooperative combination right IM/thruster-wheel and left IM/thruster-wheel.

3.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel tread-surface includes a diametrically opposed pair of like said impetus-modifying formation means, thereby maintaining dynamic-balance of the spinning assembly.

4.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel impetus-modifying formation means are of the negative type made inwardly upon said tread-surface.

5.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel impetus-modifying formations means are of the positive type made outwardly upon said tread-surface.

6.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel impetus-modifying formation means is made entirely across the said tread-surface.

7.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel impetus-modifying formation means is made laterally to one side of said tread-surface.

8.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel is formulated from a gum-rubber of approximate 45-60/Shore-durometer rating.

9.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel tread-surface also includes a regular tread-pattern, providing added frictional impingement upon existing conventional ball.

10.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel hub portion is comprised of mirror-image 2-piece construction, whereby both halves include integrally-formed transversely oriented continuous circular-flange portions arranged in transverse opposition as to thereby seat into mating transversely oriented circular-groove formations provided upon opposite sides of thereby gripped tire portion; thus positively retaining said tire member between opposing said hub members.

11.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel hub portion is comprised of mirror-image 2-piece construction, whereby both halves include integrally-formed transversely oriented regularly spaced circular-flange segment portions arranged in transverse opposition as to thereby index and merge through segmented-apertures formed into thus captive said tire portion; thereby negating excessive radial-growth regardless as to centrifugal-force otherwise acting to throw-off said tire member during high-speed rotation.

12.) The thruster-wheel device according to Claim-1, wherein said IM/thruster-wheel hub portion is integrally molded with an elastomeric tire portion via a conventional so called two-stage injection-molding process, whereby the molten-resin of said hub becomes permanently fused with the molten-resin of said tire body; thereby eliminating high-rpm centrifugal-force separation of said tire body.

★ 13.) An improved power-driven friction impelling thruster-wheel combination adapted to provide variable trajectory dynamics for a conventional ball/pitching-machine; said thruster-wheel combination comprising:

a set of two or more opposed thruster-wheels each with a resilient tread-surface portion and rotating on discrete drive-spindles aligned on a common radial-plane, at least one of said tread-surfaces including an impetus-modifying formation means upon its perimeter; whereby dependent upon the random positioning occurrence relationship of the driven said thruster-wheel tread-surfaces in which a said impetus-modifying formation can become laterally impinged momentarily against the surface of a given ball passing through the existing thruster-aperture of a conventional ball/pitching-machine, thereby providing an unpredictable ball-pitching trajectory event causing ball to arrive toward a ball-batter person at a desirably surprising region of their strike-zone.

14.) The thruster-wheel device according to Claim-13, wherein said thruster-wheels both include at least one diametrically opposed pair of said impetus-modifying formation means, thereby maintaining dynamic-balance of the spinning assembly.

15.) The thruster-wheel device according to Claim-13, wherein said thruster-wheels include at least one impetus-modifying formation means of the negative type made inward upon said tread-surface.

16.) The thruster-wheel device according to Claim-13, wherein said thruster-wheels include at least one impetus-modifying formation means of the positive type made outward upon said tread-surface.

17.) The thruster-wheel device according to Claim-13, wherein both said thruster-wheel hubs are of a mirror-image 2-piece construction, whereby integrally-formed transversely oriented circular-flange portions are arranged in transverse opposition as to thereby merge and seat into mating transversely oriented circular-groove formations provided upon opposite sides of respective said tires; thereby providing positive engagement as to thereby negate excessive radial-growth and throwing-loss of respective said tire portions during high-speed rotation.

18.) An automated method by which to obtain a statistically predictable albeit random ball-pitching action, providing variable trajectory dynamics for a conventional ball/pitching-machine used by practicing ball-batters; said automated method comprising:

providing a pair of discretely opposed abaxially cooperating thruster-wheels rotating in opposite directions to each other on a common radial-plane, said thruster-wheels including a resilient tire portion and a rigid hub-portion supported upon a discrete drive-spindle, at least one of said tires including a tread-surface adapted with at least one impetus-modifying formation means on its perimeter;

providing an unpredictable ball-pitching trajectory action via simultaneous bilateral impingement of said thruster-wheels tread-surfaces upon a given ball, whereby dependent upon random positioning occurrence relationship of driven said thruster-wheel upon which a said impetus-modifying formation becomes laterally impinged momentarily against surface of the ball passing through an existing thruster-aperture of a conventional ball/pitching-machine, said impetus-modifying formation means thereby exercising an irregular ball-pitching event causing ball to arrive toward a ball-batter person at a desirably surprising region of their strike-zone.

19.) The automated irregular ball-pitching method according to Claim-18, wherein said thruster-wheels optionally both include at least one diametrically opposed pair of said impetus-modifying formation means, thereby maintaining dynamic-balance of the spinning assembly.

20.) The automated irregular ball-pitching method according to Claim-18, wherein said thruster-wheel impetus-modifying means are made as a pair of diametrically opposed inward formations upon said tread-surface, or made as a pair of diametrically opposed outward formations upon said tread-surface.

- finalis -