

Peregrine: An All-Layer-2 Container Computer Network

Tzi-cker Chiueh

Cloud Computing Research Center for Mobile Applications (CCMA)

雲端運算行動應用研究中心

Cloud Service Models

- Infrastructure as a Service (laaS)
 - A set of virtual machines with storage space and external network bandwidth → unfurnished apartment
 - Example: Amazon Web Service
- Platform as a Service (PaaS)
 - An operating environment including (application-specific) libraries and supporting services (DBMS, AAA) → furnished apartment
 - Example: Google's App Engine, Microsoft's Azure, IBM's XaaS
- Software as a Service (SaaS)
 - Turn-key software hosted on the cloud and accessible through the browser → hotel
 - Example: salesforce.com, and all major desktop software vendors

2011/12/14

Data Center as a Computer

Containerization

- Optimal HW building block granularity or packaging
- More efficient power distribution and thermal design
- Unification of computing, memory, network and storage resources
 - Virtualization of all HW resources: Software-definable boundaries
- Faster deployment: no on-premise installation needed
- Requires light-out operation
- Google-style data center
 - Army of commodity HW
 - Treat failure as a common case

ICPADS 2011

ITRI's Research Projects

- Container Computer 1.0
 - Manageable container computer for AWS-like laaS
 - Differences between a set of servers/switches/storage boxes and a container computer?
 - Scalable storage/network architecture
 - Comprehensive monitoring and control
 - Energy-efficient cooling
- Cloud Operating System 1.0
 - Integrated data center software stack for supporting a AWS-like laaS service on a set of commodity HW
 - Tight integration of storage, resource, security and system/network management

ICPADS 2011

Cloud OS 1.0 Service Model

- Virtual data center consists of one or multiple virtual clusters, each of which comprises one or multiple VMs
 - Tiered architecture-based web services
- Users provide a Virtual Cluster specification
 - No. of VM instances each with CPU performance and memory size requirement
 - Per-VM storage space requirement
 - External network bandwidth requirement
 - Security policy
 - Backup policy
 - Load balancing policy
 - Network configuration, e.g. public IP address and private IP address range
 - OS image and application image

ICPADS 2011

5

Container Computer 1.0 Architecture

Cloud-Scale Data Center

- Big
 - 5000 servers and up
 - HW failures are inevitable
- Shared
 - Virtualization: multiple virtual data centers running on a single physical data center
 - State isolation
 - Name space reuse
 - Visibility control
 - Performance isolation
 - Service level agreement (SLA) or Quality of service (QoS)

Design Issues of Cloud Data Center Network

- Scalable and available data center fabrics
- Internet Edge Logic:
 - Server load balancing
 - Multi-homing load balancing
 - Traffic shaping or Internet QoS guarantee
 - WAN traffic compression and caching
- Network support for hybrid cloud
- Rack area networking for I/O device consolidation and sharing

What's Wrong with Ethernet?

- Spanning tree-based
 - Not all physical links are used
 - No load-sensitive dynamic routing
 - Fail-over latency is high (> 5 seconds)
- Cannot scale to a large number of VMs (e.g. 1M)
 - Forwarding table is too small: 16K to 64K
- Does not support VM migration and visibility
- Does not support private IP address space reuse
- Limits scope of VM migration

Peregrine

- A unified network for LAN and SAN
- Layer-2 only
- Centralized control plane and distributed data plane
 - Asymmetric routing
- Commodity Ethernet switches only
 - Army of commodity switches vs. few high-port-density switches
 - OpenFlow is good to have but not needed
- No broadcast, flooding, source learning, access control list, etc.
- Careful architecting of all Internet Edge Logic

Peregrine's Clos Network Topology

ICPADS 2011

Scaling up to 1M VMs

- Problem: small forwarding table (< 64K)
- Solution: Two-stage forwarding
 - Source → Intermediate → Destination
- Problem: two-stage forwarding limits scalability and introduces latency penalty
- Solution: Dual-mode forwarding
 - Direct: source → destination for heavy-traffic pairs
 - Indirect: source \rightarrow intermediate \rightarrow destination for the rest

Two-Stage Forwarding

- Every Intermediate knows how to route to every VM in its scope
 - Intermediate needs to be notified when VM leaves or joins its scope
- Source → Intermediate → Destination
 - Intermediate: TOR_Swicth(Dest) or Physical_Machine (Dest)
- Directory Server: Host → Intermediate(Host) map

ICPADS 2011

13

Fast Fail-Over

- Goal: Fail-over latency < 100 msec
- Strategy: Pre-compute a primary and backup route for each VM
 - Each VM has two virtual MACs
 - When a link fails, identify all affected routes
 - Notify hosts using affected primary routes that they should switch to corresponding backup routes
 - Re-compute new alternative routes

Interaction with Fail-Over Mechanism

- For each physical node P, routing algorithm computes two disjoint spanning trees, which enable other physical nodes to reach P
 - Direct routing: MAC1(VM25), MAC2(VM25)
 - Indirect routing:
 - MAC1(TOR1):MAC1(VM25); MAC1(TOR2):MAC2(VM25)
 - MAC1(PM22):MAC1(VM25); MAC2(PM22):MAC2(VM25)

15

Software Architecture

ICPADS 2011 16

Directory Server (DS)

- Perform a generalized ARP query service
- A generalized ARP (GARP) map between a VM's IP address and
 - Primary MAC address and an availability bit
 - Backup MAC address and an availability bit
 - Primary intermediary's MAC address and an availability bit
 - Backup intermediary's MAC address and an availability bit
- Each GARP map entry keeps a list of caching clients and their expiration time
- Directory clients cache GARP entries using a lease-based cache consistency protocol

Route Algorithm Server (RAS)

- Collects VM migration, network element failure and congestion events
- Collects traffic matrix information at run time
- Includes a route engine that computes statically or incrementally routes for VM pairs
- Builds an inverse map that associates network links with all computed routes that travel on them

Mac-In-Mac (MIM) Kernel Agent

- Packet encapsulation and de-capsulation
- Caching GARP responses
- Intercepts ARP queries from VMs and services them by using GARP cache or contacting DS
- Check consistency between destination IP address and destination MAC address for each packet
- Collecting traffic matrix

Encapsulation and Decapsulation

Encapsulation: Place DA and SA in the Ethernet source address field

Decapsulation: extract DA and put it in the Ethernet destination address field

- Each VM's and PM's MAC address is effectively only 3 bytes long (as opposed to 6 bytes long)
- The most significant half of the Ethernet source address field signifies whether it is "encapsulated"

SA: Source address, DA: Destination address

IDA: Intermediate Destination address

ICPADS 2011

Private IP Address Space Reuse

- Private IP Address Space Reuse (PASR)
 - Private IP address space is partitioned into a service node range and a non-service node range
 - The service node range is shared by all VDCs
 - The non-service node range could be resued across VDCs
 - Key used for GARP query: VDC ID + IP Address
 - The same IP address may be resolved into a different MAC address depending on its VDC ID
- Enforces inter-VDC isolation by checking outgoing packet's destination MAC matches its destination IP address
 - VDC: process
 - IP address → MAC address: Virtual address → Physical Address

When a Network Link Fails

Fail-Over Practice

- Witness switches → RAS → DS → Affected VMs
- Witness switches → RAS: send multiple SNMP traps to multiple SBMP managers
- RAS → DS: RAS and DS are connected by dedicated links
- DS Affected VMs: use backup routes if necessary
- HA mechanism for RAS and DS
- Invalidate retired forwarding table entries
- Compute new alternative routes

When a VM X Moves

- Notifies RAS, which in turn notifies DS
- DS modifies X's GARP entry to reflect the MAC addresses of its new primary and backup intermediary
- DS invalidates X's GARP entry cached on all other VMs that communicate with it
- DS invalidates (asynchronously) all direct forwarding entries of this VM on the network

Centralized Load-Balancing Routing

- Ideal load-balancing routing algorithm
 - Compute the M shortest routes for every <u,v>
 - Distribute the traffic load of <u,v> among these M routes
 - Calculate the expected load of every physical network link
 - Weight of a link: EL(link)/RC(link)
- Approximate load-balancing routing algorithm
 - 1. Sort traffic matrix entries in decreasing order
 - 2. For each <u,v>, use weighted shortest path algorithm to find its primary and backup route
 - Only top N heavy-traffic node pairs accounting for Z% of all traffic
 - 3. Update the weights of links associated with <u,v> and its chosen path; go to 1

Internet Edge Logic

- Cluster-based implementation
- Server load balancing
- Firewalling and IDS/IPS
- Network Address Translation
- Multi-homing load balancing (Cloud OS 2.0)
- Internet traffic shaping (Cloud OS 2.0)
- VPN for hybrid cloud (Cloud OS 2.0)
- WAN traffic caching and compression (Cloud OS 2.0)

Server Load Balancer in Cloud OS 1.0

- Goal: distribution of input requests among virtual machines in an Internet-facing virtual cluster
- Layer 4 request distribution for services identified by TCP and UDP port numbers based on network and CPU load
- Cluster implementation with HA, load balancing and autoscheduling
- Sticky session: source IP based
- Direct server return
- Support for auto-scheduling of virtual cluster

Direct Return of Response Traffic

- Intra-VC inter-VM load balancing
- Direct Server Return (DSR) reduces traffic by allowing web servers to send HTTP responses directly back to the requesting client

Software Architecture

SLB Fault Tolerance

- Active-active HA rather than active-passive HA
- •Ring structure SLB with each one monitored by its neighbor
- Master SLB synchronizes VC information to other SLB servers

ICPADS 2011 30

SLB Load Balancing

 Master SLB server periodically monitors each SLB server's load and balances the loads among SLB servers, by re-distributing VC request dispatching responsibilities among SLB servers

SLB Auto Scaling

- Add new SLB node:
 - When the average load of a SLB cluster is above a high watermark, the master SLB server asks PRM to power on one more SLB server
- Remove a SLB node:
 - When the average load of a SLB cluster is under a low watermark, the master SLB server asks PRM to power off one SLB server to save power

On-Going Work

- Performance Isolation between storage access traffic and application traffic
 - QoS-aware routing
- Scalability concerns:
 - Coverage of intermediate proxy
 - GARP query processing
 - GARP cache invalidations upon network failure or VM migration
 - Layer-2 broadcast/multicast support
 - Incremental routing

Conclusions

- Cloud data center network issues
 - All-L2 data center backbone (e.g. TRILL and SPB)
 - Internet edge logic
 - Rack area networking
 - Hybrid network support
- Existing solutions are fragmented or incomplete
- Plenty of room for innovation for a fully integrated data center network solution
- Current Status of Peregrine: 100-node testing is done, is going to move it to a 500-node container computer

Thank You!

Questions and Comments?

tcc@itri.org.tw