Banque PT Maths B 2020 : un corrigé

Les quatre parties de ce sujet sont indépendantes.

Notations.

Dans tout le sujet, l'espace \mathbb{R}^3 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$. L'enoncé ne le précisait pas, mais $(\vec{i}, \vec{j}, \vec{k})$ est manifestement la base canonique de \mathbb{R}^3 . $E = \mathcal{C}^1(\mathbb{R}^3, \mathbb{R})$ et $F = \mathcal{C}^0(\mathbb{R}^3, \mathbb{R}^3)$.

$$\forall f \in E, \varphi(f) = \nabla f.$$

Pour tout vecteur \vec{u} de \mathbb{R}^3 , on définit la fonction $\varphi_{\vec{u}}$ par

$$\forall f \in E, \varphi_{\vec{u}}(f) = \vec{u}.\varphi(f)$$
 (produit scalaire de \vec{u} et $\varphi(f)$).

Partie I

1. Soit $f \in E$. Notons $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ ses dérivées partielles respectives par rapport aux première, deuxième et troisième place.

f étant de classe C^1 sur \mathbb{R}^3 , les fonctions $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ y sont continues.

 φ est l'application $f\mapsto\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}\right)$. Elle est donc bien à valeurs dans F.

Par linéarité de la dérivation sur l'espace des fonctions de classe \mathcal{C}^1 sur \mathbb{R} , les applications $f \mapsto \frac{\partial f}{\partial x}$, $f \mapsto \frac{\partial f}{\partial y}$, $f \mapsto \frac{\partial f}{\partial z}$ sont linéaires.

Ainsi,
$$\forall f, g \in E, \forall \lambda, \mu \in \mathbb{R}, \varphi(\lambda f + \mu g) = \left(\frac{\partial(\lambda f + \mu g)}{\partial x}, \frac{\partial(\lambda f + \mu g)}{\partial y}, \frac{\partial(\lambda f + \mu g)}{\partial z}\right).$$

$$\varphi(\lambda f + \mu g) = \lambda \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) + \mu \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) = \lambda \varphi(f) + \mu \varphi(g).$$

Donc φ est bien une application linéaire à valeurs dans F.

2. Soit $f \in E$, $\varphi(f) = 0$, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ sont des fonctions nulles sur \mathbb{R} , donc f ne dépend ni de x, ni de y, ni de z. f est donc constante sur \mathbb{R}^3 .

Réciproquement, si f est constante sur \mathbb{R}^3 , sont gradient est nul.

On en déduit que le noyau de φ est l'ensemble des fonctions constantes sur \mathbb{R}^3 . Il n'est pas réduit à la fonction nulle, donc φ est non injectif.

3. (a) Soit f une fonction de classe C^2 sur U, ouvert de \mathbb{R}^3 . On note $\frac{\partial f}{\partial x_i}$ la dérivée par rapport à la i^e place.

Alors
$$\forall i, j \in \{1, 2, 3\}, \forall a \in U, \frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_i \partial x_i}(a).$$

(b) Soit $V:(x,y,z)\mapsto (P(x,y,z),Q(x,y,z),R(x,y,z))$ une fonction de classe \mathcal{C}^1 appartenant à l'image de φ . $\exists f\in \mathcal{E}$, telle que $V=\varphi(f)$. On a alors $P=\frac{\partial f}{\partial x}$, $Q=\frac{\partial f}{\partial y}$ et $R=\frac{\partial f}{\partial z}$.

V étant de classe C^1 sur \mathbb{R}^3 , P,Q et R le sont aussi. Les dérivées partielles de f sont de classe C^1 sur \mathbb{R}^3 , donc f est de classe C^2 sur \mathbb{R}^3 .

On déduit du théorème de Schwarz:

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$
$$\frac{\partial Q}{\partial z} = \frac{\partial^2 f}{\partial z \partial y} = \frac{\partial^2 f}{\partial y \partial z} = \frac{\partial R}{\partial y}$$
$$\frac{\partial P}{\partial z} = \frac{\partial^2 f}{\partial z \partial x} = \frac{\partial^2 f}{\partial x \partial z} = \frac{\partial R}{\partial x}.$$

- 4. On pose, pour tout (x, y, z) de \mathbb{R}^3 , $V(x, y, z) = (1 + y^2 + y^2 z^2, xy(1 + z^2), xy^2 z)$.
 - (a) V est bien de classe C^1 sur \mathbb{R}^3 , ses composantes étant des fonctions polynômes en x, y, z.

Si par l'absurde, il existait une fonction f telle que $\nabla f = V$, on aurait $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

Or $\forall (x,y,z) \in \mathbb{R}^3$, $\frac{\partial P}{\partial y}(x,y,z) = 2y(1+z^2)$ et $\frac{\partial Q}{\partial x}(x,y,z) = y(1+z^2)$, donc $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, ce qui est contradictoire

Donc il n'existe pas de fonction f telle que $\nabla f = V$.

On en déduit que la fonction φ n'est pas surjective.

(b) La fonction $x \mapsto \frac{x^2}{2}(1+y^2+y^2z^2)$ est une primitive de $x \mapsto x(1+y^2+y^2z^2)$.

On considère la fonction h définie sur \mathbb{R}^3 par $\forall (x,y,z) \in \mathbb{R}^3$, $h(x,y,z) = \frac{x^2}{2}(1+y^2+y^2z^2)$. Les fonctions coordonnées de h sont des polynômes en x, y et z donc sont de classe \mathcal{C}^1 sur \mathbb{R}^3 .

$$\forall (x,y,z) \in \mathbb{R}^3, \frac{\partial h}{\partial x}(x,y,z) = x(1+y^2+y^2z^2), \frac{\partial h}{\partial y}(x,y,z) = x^2y(1+z^2) \text{ et } \frac{\partial h}{\partial z}(x,y,z) = x^2y^2z.$$

On a donc bien $\forall (x,y,z) \in \mathbb{R}^3$, $\nabla h(x,y,z) = xV(x,y,z)$.

Soit $f \in E.f$ vérifie « $\forall (x,y,z) \in \mathbb{R}^3$, $\nabla f(x,y,z) = xV(x,y,z)$ »si et seulement si $\varphi(f) = \varphi(h)$, c'est-à-dire, par linéarité de φ , $f - h \in \ker \varphi$.

D'après la question 2., l'ensemble des fonctions f telles que $\forall (x,y,z) \in \mathbb{R}^3, \nabla f(x,y,z) = xV(x,y,z)$ est $\left\{ \begin{array}{ccc} f: & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ & x & \mapsto & \frac{x^2}{2}(1+y^2+y^2z^2)+k \end{array} \right\}.$

Partie II

Soient f_1 , f_2 , f_3 , f_4 , f_5 , f_6 les fonctions de E définies par :

$$\forall (x,y,z) \in \mathbb{R}^3, \quad f_1(x,y,z) = \cos(x), \quad f_2(x,y,z) = \sin(x), \\ f_3(x,y,z) = y\cos(x), \quad f_4(x,y,z) = y\sin(x), \\ f_5(x,y,z) = z\cos(x), \quad f_6(x,y,z) = z\sin(x).$$

On considère $G = \text{Vect}\{f_1, f_2, f_3, f_4, f_5, f_6\}$. Dans cette partie, $\vec{u} = \vec{i} + \vec{j} + \vec{k}$ et ϕ_1 est la restriction de la fonction $\phi_{\vec{u}}$ à G.

1. $(f_1, f_2, f_3, f_4, f_5, f_6)$ est une famille génératrice de G.

Donc pour montrer que c'est une base, il suffit de montrer que c'est une famille libre.

Soit $(\lambda_1, \cdots, \lambda_6) \in \mathbb{R}^6$ tel que $\sum_{i=1}^6 \lambda_i f_i = 0$. Ainsi, pour tout $(x, y, z) \in \mathbb{R}^3$, on peut écrire :

$$\lambda_1 \cos(x) + \lambda_2 \sin(x) + \lambda_3 y \cos(x) + \lambda_4 y \sin(x) + \lambda_5 z \cos(x) + \lambda_6 z \sin(x).$$

Pour (x, y, z) = (0, 0, 0), on obtient : $\lambda_1 = 0$.

Pour $(x, y, z) = (\pi/2, 0, 0)$, on obtient : $\lambda_2 = 0$.

Ainsi : $\forall (x, y, z) \in \mathbb{R}^3$, $\lambda_3 y \cos(x) + \lambda_4 y \sin(x) + \lambda_5 z \cos(x) + \lambda_6 z \sin(x)$.

Pour (x, y, z) = (0, 1, 0), on obtient : $\lambda_3 = 0$.

Pour $(x, y, z) = (\pi/2, 1, 0)$, on obtient : $\lambda_4 = 0$.

Pour (x, y, z) = (0, 0, 1), on obtient : $\lambda_5 = 0$.

Pour $(x, y, z) = (\pi/2, 0, 1)$, on obtient : $\lambda_6 = 0$.

Ainsi :
$$\sum_{i=1}^{6} \lambda_i f_i = 0 \Rightarrow (\lambda_1, \dots, \lambda_6) = (0, \dots, 0).$$

Ainsi \mathcal{B} est libre, donc c'est une base de G.

- 2. Montrons que ϕ_1 est un endomorphisme de G.
 - La linéarité de ϕ_1 découle de celle du gradient et de la bilinéarité du produit scalaire. Plus précisément, si $(f,g) \in G$ et $\lambda \in \mathbb{R}$, alors :

$$\begin{split} \phi_1(f+\lambda g) &= \phi_{\overrightarrow{u}}(f+\lambda g) = \overrightarrow{u} \cdot \nabla (f+\lambda g) \\ &= \overrightarrow{u} \cdot (\nabla (f) + \lambda \nabla (g)) \text{ car le gradient est linéaire} \\ &= \overrightarrow{u} \cdot \nabla (f) + \lambda \overrightarrow{u} \nabla (g) \text{ par bilinéarité du produit scalaire} \\ &= \phi_{\overrightarrow{u}}(f) + \lambda \phi_{\overrightarrow{u}}(g) \\ \hline \phi_1(f+\lambda g) &= \phi_1(f) + \lambda \phi_1(g). \end{split}$$

• Comme $G = \text{Vect}\{\mathcal{B}\}$, pour justifier que $\phi_1 \in \mathcal{L}(G)$, il suffit que montrer que : $\forall i \in \llbracket 1 ; 6 \rrbracket$, $\phi_1(f_i) \in G$. Remarquons que : $\forall f \in G$, $\phi_1(f) = \overrightarrow{u} \cdot \nabla(f) = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$. Ainsi :

$$\phi_1(f_1) = -f_2; \quad \phi_1(f_2) = f_1$$

 $\phi_1(f_3) = f_1 - f_4; \quad \phi_1(f_4) = f_2 + f_3$
 $\phi_1(f_5) = f_1 - f_6; \quad \phi_1(f_6) = f_2 + f_5$

 ϕ_1 est linéaire et $\phi_1(\mathcal{B}) \subset G$ donc $\phi_1 \in \mathcal{L}(G)$.

3. (a) D'après les calculs de la questions précédente, la matrice A de ϕ_1 dans la base $\mathcal B$ vaut :

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

Pour calculer A^2 on peut soit faire soigneusement le calcul matriciel, soit calculer $\phi_1^2(f_i)$ pour i = 1,..6.

$$\begin{aligned} \phi_1^2(f_1) &= \phi_1(-f_2) = -f_1 \\ \phi_1^2(f_2) &= \phi_1(f_1) = -f_2 \\ \phi_1^2(f_3) &= \phi_1(f_1 - f_4) = -f_2 - (f_2 + f_3) = -2f_2 - f_3 \\ \phi_1^2(f_4) &= \phi_1(f_2 + f_3) = f_1 + f_1 - f_4 = 2f_1 - f_4 \\ \phi_1^2(f_5) &= \phi_1(f_1 - f_6) = -f_2 - (f_2 + f_5) = -2f_2 - f_5 \\ \phi_1^2(f_6) &= \phi_1(f_2 + f_5) = 2f_1 - f_6 \end{aligned}$$

On en déduit :
$$A^2 = \begin{pmatrix} -1 & 0 & 0 & 2 & 0 & 2 \\ 0 & -1 & -2 & 0 & -2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}$$
.

(b) La matrice A^2 est triangulaire supérieure, donc ses valeurs propres sont ses coefficients diagonaux. Ainsi $Sp(A^2) = \{-1\}.$

Raisonnons par l'absurde. Si A^2 était diagonalisable, il existerait donc une matrice P inversible telle que $P^{-1}A^2P=D$ où D est une matrice diagonale contenant les valeurs propres sur la diagonale; ainsi on aurait $P^{-1}A^2P=(-1)I_6$. Donc on pourrait écrire $A^2=P(-1)I_6P^{-1}=-I_6$ et donc A^2 serait diagonale, ce qui n'est pas le cas. Ainsi A^2 n'est pas diagonalisable dans \mathbb{R} .

Si A était diagonalisable, il existerait une matrice Q inversible et une matrice Δ diagonale telles que $Q^{-1}AQ = \Delta$ et l'on pourrait écrire $A^2 = Q\Delta Q^{-1}Q\Delta Q^{-1} = Q\Delta^2 Q^{-1}$ avec Δ^2 diagonale. Donc A^2 serait diagonalisable, ce qui n'est pas le cas. Ainsi A n'est pas diagonalisable dans \mathbb{R} .

(c) Soit f un vecteur propre de ϕ_1 . Comme la seule valeur propre de ϕ_1 est -1, f vérifie : $\phi_1^2(f) = -f$.

Or
$$\phi_1^2(f) = \phi_1 \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \right)$$

Or f est de classe \mathcal{C}^2 donc d'après le théorème de Schwarz :

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial x} \right) \text{ et } \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial y} \right).$$

$$\text{Donc}: \phi_1^2(f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} + 2 \left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial x \partial z} + \frac{\partial^2 f}{\partial y \partial z} \right).$$

Ainsi l'équation aux dérivées partielles vérifiée par les vecteurs propres de ϕ_1 est :

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} + 2\left(\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial x \partial z} + \frac{\partial^2 f}{\partial y \partial z}\right) + f = 0.$$

(d) Chercher les solutions dans G de « $\phi_1^2(f)+f=0$ »revient à chercher les vecteurs propres de A^2 , c'est à

dire les éléments de Ker
$$(A^2+I_6)$$
. Posons $U=egin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix}$. Alors

$$\iff U = a \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Ainsi
$$\operatorname{Ker}(A^2 + I_6) = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \right\}.$$
 Cette famille est libre de manière évidente,

donc c'est une base de l'espace propre. En revenant à l'application linéaire ϕ_1^2 associée à la matrice A^2 dans la base \mathcal{B} , on obtient : $\phi_1^2(f) + f = 0 \iff f \in \text{Vect}\{\underline{f_1}; f_2; f_3 - f_5; f_4 - f_6\}$.

Partie III

Dans cette partie, \vec{u} désigne toujours le vecteur $\vec{i} + \vec{j} + \vec{k}$.

Soit f une fonction non nulle de E. On note S la surface d'équation f(x,y,z)=0. On suppose que les fonctions f choisies dans la suite sont telles que la surface S est non vide et qu'au moins un point de S est régulier.

1. (a) On dit que M_0 est régulier lorsque $\nabla(f)(M_0) \neq 0$. Lorsque M_0 est régulier, $\nabla(f)(M_0)$ est un vecteur normal au plan tangent, que l'on notera π_{M_0} . Ainsi

$$M(x,y,z) \in \pi_{M_0} \iff \overline{M_0M} \perp \nabla(f)(M_0) \iff \overline{M_0M} \cdot \nabla(f)(M_0) = 0$$

$$\iff (x - x_0) \frac{\partial f}{\partial x}(M_0) + (y - y_0) \frac{\partial f}{\partial y}(M_0) + (z - z_0) \frac{\partial f}{\partial z}(M_0) = 0.$$

ce qui est une équation cartésienne du plan tangent à S en M_0 .

(b) On suppose que : $\forall (x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = x^2 + 2y^2 - z^2 - 2$ et M_0 est le point de coordonnées (1,-1,1). Alors $\nabla(f)(x,y,z) = (2x,4y,-2z)$ et donc $\nabla(f)(M_0) = (2,-4,-2)$; M_0 est régulier.

Une équation cartésienne du plan tangent à S en M_0 est 2(x-1)-4(y+1)-2(z-1)=0 c'est à dire 2x-4y-2z-4=0.

Enfin $\nabla(f)(M_0) \cdot \overrightarrow{u} = -4 \neq 0$ donc cette fonction f ne répond pas au problème.

2. (a) On suppose que $\forall (x,y,z) \in \mathbb{R}^3$, $f(x,y,z) = F_1(x,y,z) = (y-z)^2 - \alpha$ où $\alpha \in \mathbb{R}_+^*$. Alors $\nabla(f)(x,y,z) = (0,2(y-z),-2(y-z)) = 2(y-z) \cdot (0,1,-1)$.

Tous les points $M_0(x_0, y_0, z_0)$ tels que $y_0 \neq z_0$ sont donc réguliers. En chacun de ces points, la normale au plan tangent est de plus dirigée par le vecteur \overrightarrow{n} de coordonnées (0, 1, -1). Ce vecteur étant orthogonal à \overrightarrow{u} , la fonction $f = F_1$ répond au problème.

$$M(x, y, z) \in S \iff (y - z)^2 = \alpha \iff |y - z| = \alpha \text{ avec } \alpha > 0$$

 $\iff y - z = \sqrt{\alpha} \text{ ou bien } y - z = -\sqrt{\alpha}$

Comme $\alpha > 0$, on peut dire que $\sqrt{\alpha} \neq -\sqrt{\alpha}$ et donc

S est la réunion des deux plans (distincts) d'équations respectives $y - z = \sqrt{\alpha}$ et $y - z = -\sqrt{\alpha}$.

N.B. : ce sont des plans parallèles.

(b) Soit g une fonction non nulle de classe C^1 sur \mathbb{R}^2 à valeurs dans \mathbb{R} . Soit f définie par : $\forall (x,y,z) \in \mathbb{R}^3$, f(x,y,z) = g(x-y,x-z).

f est de classe \mathcal{C}^1 (composition de fonctions de classe \mathcal{C}^1) et de plus

$$\frac{\partial f}{\partial x}(x,y,z) = \partial_1 g(x-y,x-z) + \partial_2 g(x-y,x-z)$$

$$\frac{\partial f}{\partial y}(x,y,z) = -\partial_1 g(x-y,x-z)$$

$$\frac{\partial f}{\partial z}(x,y,z) = -\partial_2 g(x-y,x-z)$$

Donc $\nabla(f)(x,y,z)\cdot(\overrightarrow{i}+\overrightarrow{j}+\overrightarrow{k})=0.$

Ainsi, en tout point régulier M_0 de S, le vecteur $\nabla(f)(M_0)$ est normal au plan tangent et est orthogonal à $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$. Donc la fonction f répond au problème.

- (c) Si on pose $g(u,v) = (v-u)^2 \alpha$, alors $g(x-y,x-z) = (x-z-(x-y))^2 \alpha = (y-z)^2 \alpha = F_1(x,y,z)$. La fonction F_1 est bien de la forme précédente.
- 3. Soit S la surface réglée engendrée par les droites dirigées par le vecteur \vec{u} et passant par un point du cercle Γ , inclus dans le plan d'équation z=0, de centre O et de rayon 1.
 - (a) *S* est par définition une surface réglée. Or on sait qu'en tout point régulier d'une surface réglée, la génératrice passant par ce point est incluse dans le plan tangent.

Ainsi, si M_0 est un point de S, la droite passant par M_0 , dirigée par \overrightarrow{u} est dans le plan tangent. Donc la normale au plan tangent en M_0 est orthogonale à \overrightarrow{u} .

Il aurait été plus correct de dire que : tout vecteur normal au plan tangent est orthogonal à \overrightarrow{u} .

(b) Soit M un point de l'espace de coordonnée (x,y,z)= dans le repère $(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$. Un point $M_0(x_0,y_0,z_0)$ est dans Γ si et seulement si $z_0=0$ et $x_0^2+y_0^2=1$.

$$M \in S \iff \exists M_0 \in \Gamma, \ \exists \lambda \in \mathbb{R}, \ \text{tels que } \overrightarrow{M_0M} = \lambda \overrightarrow{u}$$

$$\iff \exists (x_0, y_0, z_0) \in \mathbb{R}^3, \ \exists \lambda \in \mathbb{R} \ \text{tels que } \begin{cases} \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \\ x_0^2 + y_0^2 = 1 \\ z_0 = 0 \end{cases}$$

$$\iff \exists (x_0, y_0) \in \mathbb{R}^2, \ \exists \lambda \in \mathbb{R} \ \text{tels que } \begin{cases} \lambda = z & \text{ceci est toujours possible...} \\ x_0 = x - \lambda \\ y_0 = y - \lambda \\ x_0^2 + y_0^2 = 1 \end{cases}$$

$$\iff \exists (x_0, y_0) \in \mathbb{R}^2, \ \text{tels que } \begin{cases} x_0 = x - z & \text{ceci est toujours possible...} \\ y_0 = y - z & \text{ceci est toujours possible...} \\ x_0^2 + y_0^2 = 1 \end{cases}$$

$$M \in S \iff (x - z)^2 + (y - z)^2 = 1$$

- (c) $M(x,y,z) \in S \cap \Pi_a \iff z = a \text{ et } (x-a)^2 + (y-a)^2 = 1.$ Ainsi $S \cap \Pi_a$ est le cercle de centre $\Omega_a = (a, a, a)$ et de rayon 1 dans le plan Π_a .
- (d) La réponse à la question précédente permet d'affirmer que S est l'union de cercles dont les centres sont situés sur al droite passant par O et dirigée par \overrightarrow{u} .

Pour affirmer que S est une surface de révolution il faudrait avoir montré que S est l'union de cercles ayant tous le même axe (l'axe de révolution de la surface).

Or l'axe du cercle $\Pi_a \cap S$ est orthogonal à Π_a , donc c'est la droite Δ_a passant par $\Omega_a = (a, a, a)$ et dirigée par \vec{k} . C'est aussi la droite passant par le point de coordonnée (a, a, 0) et dirigée par \vec{k} .

Ces droites Δ_a sont toutes distinctes, donc la réponse à la question précédente ne permet pas d'affirmer que *S* est une surface de révolution.

(e) Soit $\Gamma_1 = S \cap \Pi$ où Π est le plan d'équation x + y + z = 0.

On considère les vecteurs $\vec{e_3} = \frac{\vec{u}}{\|\vec{u}\|}$, $\vec{e_1} = \frac{1}{\sqrt{2}}(\vec{k} - \vec{i})$, et $\vec{e_2} = \vec{e_3} \wedge \vec{e_1}$. On note P la matrice de passage de $(\vec{i}, \vec{j}, \vec{k})$ à $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.

i. Les vecteurs $\overrightarrow{e_1}$ et $\overrightarrow{e_3}$ sont de norme 1 et de plus $\overrightarrow{e_1} \perp \overrightarrow{e_3}$. Comme $\overrightarrow{e_2} = \overrightarrow{e_3} \wedge \overrightarrow{e_1}$, on en déduit que $(\overrightarrow{e_3}, \overrightarrow{e_1}, \overrightarrow{e_2})$ est une base orthonormée directe de \mathbb{R}^3 ; puis, par permutation circulaire : $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est aussi une base orthonormée directe de \mathbb{R}^3 .

P étant la matrice de passage d'une base orthonormée directe à une autre, P une matrice de rotation.

ii. Un calcul rapide donne
$$\overrightarrow{e_2} = \frac{1}{\sqrt{6}} (\overrightarrow{i} - 2 \overrightarrow{j} + \overrightarrow{k})$$
 et donc $P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$.

Soit M un point de l'espace de coordonnées (x, y, z) dans le repère $(Q, \overrightarrow{i}, \overrightarrow{i}, \overrightarrow{k})$ et de C

Soit M un point de l'espace de coordonnées (x,y,z) dans le repère $(O,\overrightarrow{i},\overrightarrow{j}\overrightarrow{k})$ et de coordon-

nées (X, Y, Z) dans le repère $(O, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$. Alors $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} X \\ Y \end{pmatrix}$ et P étant orthogonale : $\begin{pmatrix} X \\ Y \end{pmatrix} = P \begin{pmatrix} X \\ Y \end{pmatrix}$

$${}^{t}P\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Ainsi $Z = \frac{1}{\sqrt{3}}(x+y+z)$ donc la condition « x+y+z=0 »s'écrit « Z=0 ».

$$(x-z)^{2} + (y-z)^{2} = \left(\frac{-X}{\sqrt{2}} + \frac{Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}} - \left(\frac{X}{\sqrt{2}} + \frac{Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}}\right)\right)^{2} + \left(\frac{-2Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}} - \left(\frac{X}{\sqrt{2}} + \frac{Y}{\sqrt{6}} + \frac{Z}{\sqrt{3}}\right)\right)^{2}$$

$$= \left(-\sqrt{2}X\right)^{2} + \left(\frac{-X}{\sqrt{2}} - \frac{3Y}{\sqrt{6}}\right)^{2}$$

$$= 2X^{2} + X^{2}/2 + 3Y^{2}/2 + \sqrt{3}XY$$

$$\begin{aligned} & \text{Ainsi}: (x-z)^2 + (y-z)^2 = 1 \iff 2X^2 + X^2/2 + 3Y^2/2 + \sqrt{3}XY = 1 \iff 5X^2 + 3Y^2 + 2\sqrt{3}XY = 2. \\ & \text{Ainsi}: M \in S \cap \Pi \iff \left\{ \begin{array}{l} x+y+z=0 \\ (x-z)^2 + (y-z)^2 = 1 \end{array} \right. \iff \left\{ \begin{array}{l} Z=0 \\ 5X^2 + 3Y^2 + 2\sqrt{3}XY = 2 \end{array} \right. \end{aligned}$$

iii. On reconnaît l'équation d'une conique dans le plan d'équation Z = 0.

On pose
$$U = \begin{pmatrix} X \\ Y \end{pmatrix}$$
.

L'équation «
$$5X^2 + 3Y^2 + 2\sqrt{3}XY = 2$$
 » s'écrit alors ${}^tUMU = 2$ avec $M = \begin{pmatrix} 5 & \sqrt{3} \\ \sqrt{3} & 3 \end{pmatrix}$.

 $\operatorname{Det}(M) = 12 > 0$ donc c'est une conique de type ellipse.

 $\chi_M(x)=(x-5)(x-3)-3=x^2-8x+12$ donc les valeurs propres de M sont (après calcul au brouillon): $\lambda_1=6$ et $\lambda_2=2$. Les deux valeurs propres sont simples, donc les sous-espaces propres sont de dimension 1, et ils sont orthogonaux, car M est symétrique réelle.

$$M-6I_2=\begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & -3 \end{pmatrix}$$
. On remarque que $\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \in \operatorname{Ker}(M-6I_2)$ ainsi que $\begin{pmatrix} \sqrt{3}/2 \\ 1/2 \end{pmatrix}$.

Comme les sous-espaces propres sont orthogonaux, l'espace propre associé à la valeur propre 2 est engendré par $\binom{-1/2}{\sqrt{3}/2}$.

Ainsi on peut choisir $P = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}2 \end{pmatrix}$ pour diagonaliser $M: P^{-1}MP = {}^tPMP = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$ (car P est orthogonale).

On travaille dans le plan d'équation Z = 0 dont $(\overrightarrow{e_1}, \overrightarrow{e_2})$ est une base.

Les vecteurs $\overrightarrow{I} = (\sqrt{3}/2)\overrightarrow{e_1} + (1/2)\overrightarrow{e_2}$ et $\overrightarrow{J} = (-1/2)\overrightarrow{e_1} + (\sqrt{3}/2)\overrightarrow{e_2}$ forment une base de ce plan.

Si on nomme (X', Y') les coordonnées de M dans le repère $(O, \overrightarrow{I}, \overrightarrow{J})$, alors $\begin{pmatrix} X \\ Y \end{pmatrix} = P \begin{pmatrix} X' \\ Y' \end{pmatrix}$, ce que

l'on peut aussi écrire
$$U=PU'$$
 en notant $U=\begin{pmatrix} X\\ Y\end{pmatrix}$ et $U'=\begin{pmatrix} X'\\ Y'\end{pmatrix}$..

L'équation de l'ellipse se transforme de la manière suivante :

$${}^{t}UMU = 2 \iff {}^{t}(PU')M(PU') = 2$$

$$\iff {}^{t}U' {}^{t}PMPU' = 2$$

$$\iff (X'Y') \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} X' \\ Y' \end{pmatrix} = 2$$

$$\iff 6X'^{2} + 2Y'^{2} = 2 \iff 3X'^{2} + Y'^{2} = 1$$

Sous cette forme le tracé de l'ellipse dans le nouveau repère ne pose aucun problème.

iv. Ellipse de centre O, d'axes dirigés par les vecteurs \overrightarrow{I} et \overrightarrow{J} introduits précédemment.

Partie IV

Dans cette partie, \vec{u} désigne le vecteur de \mathbb{R}^3 égal à $2\vec{i}+\vec{j}$.

- 1. Soit P un plan de l'espace. Il admet une équation de la forme ax + by + cz = d avec $(a, b, c) \neq (0, 0, 0)$. Le vecteur \vec{n} de cordonnées (a, b, c) en est donc un vecteur normal.
 - Il dirige toutes les normales au plan P. Toute normale au plan P est « orthogonale au vecteur » \vec{u} si et seulement si $\vec{u}.\vec{n}=0$, ce qui équivaut à 2a+b=0.
 - Les plans solutions admettent donc une équation de la forme a(x-2y)+cz=d, avec $(a,c)\neq (0,0)$.
- 2. Soit f la fonction définie sur \mathbb{R}^3 par f(x,y,z)=g(x,y)-z. f est de classe \mathcal{C}^1 sur \mathbb{R}^3 et S est la surface d'équation cartésienne f(x,y,z)=0.
 - Soit $(x,y) \in \mathbb{R}^2$ et z = g(x,y). $\nabla(f)(x,y,z)$ est le vecteur de coordonnées dans la base canonique $\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, -1\right)$.
 - Il est donc non nul et tous les points de S sont réguliers.
- 3. Soit h est une fonction de classe C^1 sur \mathbb{R} et soit g la fonction définie par $\forall (x,y) \in \mathbb{R}^2$, g(x,y) = h(x-2y). On définit f de manière analogue à la question précédente.
 - Soit $(x,y) \in \mathbb{R}^2$ et z = g(x,y). $\nabla(f)(x,y,z)$ est le vecteur de coordonnées dans la base canonique (h'(x-2y),-2h'(x-2y),-1).
 - Ce vecteur est un vecteur directeur de la normale en M(x,y,z) à S. $\nabla(f)(x,y,z).\vec{u}=0$, d'où l'orthogonalité de la direction de la normale en S à M et de $\text{Vect}(\vec{u})$.
 - g est bien solution du problème.
- 4. (a) On suppose que g répond au problème et on définit f comme précédemment.
 - Soit $(x,y) \in \mathbb{R}^2$ et z = g(x,y). On a alors $\nabla(f)(x,y,z).\vec{u} = 0$, soit $2\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = 0$.
 - Ainsi, si une fonction *g* répond au problème alors *g* est solution bien de l'équation aux dérivées partielles :

$$(Eq_1): 2\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} = 0.$$

(b) On considère la fonction δ définie de \mathbb{R}^2 vers \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, \delta(x,y) = (x_1,y_1) = (x-2y,y).$$

 δ est un endomorphisme de \mathbb{R}^2

(on a bien
$$\forall (x,y), (x',y') \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}, \delta(\lambda(x,y) + \mu(x',y')) = \lambda \delta(x,y) + \mu \delta(x',y')$$
).

- Elle est bijective si et seulement si son déterminant est non nul. Son déterminant vaut $\begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$.
- δ est donc bien une bijection de \mathbb{R}^2 dans \mathbb{R}^2 et, δ étant un endomorphisme de \mathbb{R}^2 , sa bijection réciproque est aussi un endomorphisme de \mathbb{R}^2 .
- δ et δ^{-1} sont des endomorphismes de \mathbb{R}^2 , leur fonctions coordonnées sont des polynômes en x et en y, elles sont de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- (c) Soit g une solution au problème posé. On définit la fonction g_1 sur \mathbb{R}^2 par $g_1 = g \circ \delta^{-1}$. Composée de fonctions de classe \mathcal{C}^1 sur \mathbb{R}^2 , g_1 est de classe \mathcal{C}^1 sur \mathbb{R}^2 et en composant à droite par δ , on obtient bien $g = g_1 \circ \delta$.
- (d) Soit $(x,y) \in \mathbb{R}^2$. De la règle de la chaîne, on déduit :

$$\frac{\partial g}{\partial x}(x,y) = <\overrightarrow{\nabla g_1}(\delta(x,y))|\overrightarrow{\frac{\partial \delta}{\partial x}(x,y)}> = \frac{\partial g_1}{\partial x_1}(\delta(x,y)).$$

De même
$$\frac{\partial g}{\partial y}(x,y) = -2\frac{\partial g_1}{\partial x_1}(\delta(x,y)) + \frac{\partial g_1}{\partial y_1}(\delta(x,y)).$$

- (e) g est solution de $(Eq_1) \Leftrightarrow \forall (x,y) \in \mathbb{R}^2, 2\frac{\partial g_1}{\partial x_1}(\delta(x,y)) 2\frac{\partial g_1}{\partial x_1}(\delta(x,y)) + \frac{\partial g_1}{\partial y_1}(\delta(x,y)) = 0$
 - g est solution de $(Eq_1) \Leftrightarrow \forall (x,y) \in \mathbb{R}^2, \frac{\partial g_1}{\partial y_1}(\delta(x,y)) = 0.$
 - δ réalisant une bijection de \mathbb{R}^2 dans \mathbb{R}^2 , g est solution de $(Eq_1) \Leftrightarrow \forall (x_1,y_1) \in \mathbb{R}^2$, $\frac{\partial g_1}{\partial y_1}(x_1,y_1) = 0$.
 - Ainsi, g est solution de (Eq_1) si et seulement si g_1 est solution l'équation aux dérivées partielles (Eq_2) : $\frac{\partial g_1}{\partial y_1} = 0$.

- (f) g_1 est solution de (Eq_2) : $\frac{\partial g_1}{\partial y_1} = 0$ si et seulement si $\exists h$, fonction de classe \mathcal{C}^1 sur \mathbb{R} telle que $\forall (x_1,y_1) \in \mathbb{R}^2, g_1(x_1,y_1) = h(x_1).$
- (g) g est solution de (Eq_1) si et seulement si il existe h de classe C^1 sur \mathbb{R} telle que $\forall (x_1, y_1) \in \mathbb{R}^2, g \circ \delta^{-1}(x_1, y_1) = h(x_1)$

En composant par δ , bijective, on obtient, g est solution de (Eq_1) si et seulement si il existe h de classe C^1 sur \mathbb{R} telle que $\forall (x,y) \in \mathbb{R}^2$, g(x,y) = h(x-2y)

5. Dans cette question, *g* est la fonction définie par :

$$\forall (x,y) \in \mathbb{R}^2, g(x,y) = (x-2y)^3 - 3(x^2 + 4y^2 - 4xy) + 2.$$

- (a) Soit h définie sur \mathbb{R} par $h(t) = t^3 3t^2 + 2$. h est de classe C^1 sur \mathbb{R} . $\forall (x,y) \in \mathbb{R}^2, g(x,y) = h(x-2y)$. Donc g est bien solution de (Eq_1) et répond donc au problème proposé dans cette partie.
- (b) $(x,y,z) \in S \Leftrightarrow z = h(x-2y) \Leftrightarrow \exists t \in \mathbb{R}, x-2y = t \text{ et } z = h(t).$

Soit $t \in \mathbb{R}$. x - 2y = t et z = h(t) sont des équations cartésiennes de deux plan non parallèles.

Ainsi, l'ensemble $D_t \left\{ \begin{array}{l} x-2y=t \\ z=h(t) \end{array} \right.$ est une droite de vecteur directeur $\vec{k} \wedge (\vec{i}-2\vec{j})=\vec{u}.$

 $S = \bigcup_{t \in \mathbb{R}} D_t$ est donc une surface réglée et les génératrices obtenues sont toutes dirigées par \vec{u} , donc parallèles.

Réciproquement, cherchons les droites contenues dans la surface S.

Soit D une droite de l'espace. $\exists a,b,c,\alpha,\beta,\gamma\in\mathbb{R},\,D:\left\{\begin{array}{l} x=at+\alpha\\ y=bt+\beta\\ z=ct+\gamma\end{array}\right.$

D est incluse dans S si et seulement si $\forall t \in \mathbb{R}, ct + \gamma = (a-2b)^3t^3 + Q(t)$, avec Q polynôme de degré inférieur où égal à 2.

Or si deux polynômes sont égaux, ils ont les mêmes coefficients, donc a - 2b = 0

On en déduit que D est incluse dans S si et seulement si $\forall t \in \mathbb{R}, ct + \gamma = (\alpha - 2\beta)^3 - 3(\alpha - 2\beta)^2 + 2$.

Donc c = 0 et \vec{u} est un vecteur directeur de D.

Toutes les droites incluses dans S sont donc parallèles.

(c) Soit *h* définie sur \mathbb{R} par $h(t) = t^3 - 3t^2 + 2$. *h* est de classe C^1 sur \mathbb{R} .

Soit $(x,y) \in \mathbb{R}^2$. Le plan tangent à S à M admet pour vecteur normal le vecteur de coordonnées (h'(x-2y), -2h'(x-2y), -1), il est horizontal si et seulement si h'(x-2y) = 0.

Or
$$\forall t \in \mathbb{R}$$
, $h'(t) = 3(t^2 - 2t) = 3t(t - 2)$.

Donc le plan tangent à S en M(x, y, g(x, y)) est horizontal si et seulement x = 2y ou x - 2y = 2.

Les points M de S en lesquels le plan tangent à S est horizontal ont donc pour coordonnées (2a, a, 2), $a \in \mathbb{R}$ ou (2a + 2, a, -2), $a \in \mathbb{R}$.

(d) Soit $a \in \mathbb{R}$ et M le point de S de coordonnées (2a+2,a,-2). D'après la question précédente, le plan tangent à S en M est horizontal.

Considérons la fonction h définie à la question précédente : h' est strictement positive sur $]-\infty,0[$ et $]2,+\infty[$, strictement négative sur]0,2[.

Ainsi, -2 est le minimum de h sur $]0, +\infty[$. La fonction $(x, y) \mapsto x - 2y$ est définie et continue sur \mathbb{R} . Elle vaut 2 en (2a + 2, a).

Donc $\forall a \in \mathbb{R}, \exists \delta_a > 0, \|(x,y) - (2+2a,a)\| < \delta_a \Rightarrow x - 2y > 0.$

On en déduit que si $||(x,y)-(2+2a,a)|| < \delta_a$, alors $g(x,y) \ge -2$, ce qui signifie que le point de coordonnées (x,y,g(x,y)) est au dessus du plan d'équation z=-2.

La surface *S* est donc au-dessus du plan tangent à *S* en *M* au voisinage de *M*.