## Note: all the simulations are under TT 25°C

## 1. Cascode amplifier (35%)

Design a common-source amplifier with cascode loading as shown in Fig. 1.

With  $V_{DD}$ =1.8V, design the size of  $M_1 \sim M_4$ , the bias voltage  $V_{b1} \sim V_{b3}$ , and  $V_{in,DC}$ , to make  $I_D < 5\mu A$ , voltage gain  $|A_v| \ge 45 dB$ , and output swing  $\ge 1.2 V$ . You need to make sure that all MOSFETs operate in saturation region.

due date: 2024/04/16



Fig. 1. Cascode structure

- (a) Describe your design consideration. (How you choose the size of  $M_1 \sim M_4$ , the bias voltage  $V_{b1} \sim V_{b3}$ , and  $V_{in,DC}$ , to achieve the target performance.) (10%)
- (b) Use ".op" command in Hspice and check the ".lis" file to show that all MOSFETs operate in saturation region, and that  $I_D < 5\mu A$ . (3%)
- (c) Use ".tf" command in Hspice to print out the small signal parameters (gain and output impedance). Confirm that  $|A_v| \ge 45 dB$ . (2%)
- (d) Calculate <u>Av</u> and <u>output impedance</u> **by hand-calculation**. You can use the parameters in ".lis" from (b). Then compare your answer with the simulation results in (c). (5%)
- (e) Use ".dc" command to sweep  $V_{in}$  from 0V to 1.8V (set **step=0.00001V=10** $\mu$ V) in Hspice. Show that output swing  $\geq$  1.2V **under the condition**  $|A_{\nu}| \geq$  **45dB** <u>using</u> <u>WaveView</u>. (5%)

Hint: You can use the following Hspice command in your .sp file

```
.dc Vin_value 0 1.8 10u .meas DC output_swing_upper_bound Find V(vout) WHEN deriv('V(vout)')='-10^{(45/20)}' cross=1 .meas DC output_swing_lower_bound Find V(vout) WHEN deriv('V(vout)')='-10^{(45/20)}' cross=2 .meas DC output_swing param='output_swing_upper_bound-output_swing_lower_bound'
```

After simulation, you will see the measured value of output swing in .ms0 file:

However, this is just for quickly checking output swing for convenience. You should still show output swing  $\geq 1.2V$  using cursor in WaveView!!

Hint: You can use the following Hspice command in your .sp file

```
.dc Vin_value 0 1.8 10u
.probe gain=deriv('V(vout)')
```

which is because " $A_v = \frac{\partial Vout}{\partial Vin}$ ."

After simulation, you can see "gain (V/V) v.s.  $V_{in}$  (V)" waveform in WaveView.

- (f) Calculate <u>output swing</u> by hand-calculation. You can use the parameters in ".lis" from (b). Then compare your answer with the simulation result in (e), and describe where the error comes from. (5%)
- (g) Please fill in the following specification table. Make sure you achieve all the requirements. (5%)

|                         | specification | simulation | hand-calculation |
|-------------------------|---------------|------------|------------------|
| $ m V_{DD}$             |               | 1.8V       |                  |
| $M_1$ (W/L, m)          | -             |            |                  |
| $M_2$ (W/L, m)          | 1             |            |                  |
| M <sub>3</sub> (W/L, m) | 1             |            |                  |
| $M_4$ (W/L, m)          | ı             |            |                  |
| $ m V_{in,DC}$          | ı             |            |                  |
| $V_{b1}$                | ı             |            |                  |
| $ m V_{b2}$             | ı             |            |                  |
| $ m V_{b3}$             | 1             |            |                  |
| $I_{D}$                 | < 5μA         |            | _                |
| gain  A <sub>v</sub>    | ≥ 45dB        |            |                  |
| output impedence        | -             |            |                  |
| output swing            | ≥ 1.2V        |            |                  |

**Table 1.** Specification table for problem 1.

## 2. Cascade amplifier (55%)

Design a CS-CG cascade amplifier as in Fig. 3.

- (a) As shown in Fig. 2.(a), with  $V_{DD}$ =1.8V, design the common source stage (with ideal current source load, static current=3 $\mu$ A) to make  $V_{out1,DC}$ =0.5V (within ±10mV variation) and voltage gain  $|A_{v1}| \ge 100$ V/V.
  - i. Describe your design consideration (How you choose the size of  $M_1$  and  $V_{in,DC}$ ). (5%)
  - ii. Use ".op" command in Hspice and check the ".lis" file to show that  $M_1$  operates in saturation region, and that  $V_{out1,DC}$ =0.5V (within ±10mV variation) (3%)
  - iii. Use ".tf" command in Hspice to print out the small signal parameters (gain and output impedance). Confirm that  $|A_{vl}| \ge 100 \text{V/V}$ . (2%)
  - iv. Calculate <u>Av1</u> by hand-calculation. You can use the parameters in ".lis" in (ii.). Then compare your answer with the simulation results in (iii.). (5%)
- (b) As shown in Fig. 2.(b), with  $V_{DD}$ =1.8V and  $V_{in1,DC}$ =0.5V, design the common gate stage to make  $I_D$ =10 $\mu$ A (within 1% variation) and voltage gain  $|A_{v2}| \ge 10V/V$ .
  - i. Describe your design consideration (How you choose the size of  $M_2$ , the bias voltage  $V_b$ , and the resistance of  $R_D$ ). (10%)
  - ii. Use ".op" command in Hspice and check the ".lis" file to show that  $M_2$  operates in saturation region, and that  $I_D$ =10 $\mu$ A (within 1% variation). (3%)
  - iii. Use ".tf" command in Hspice to print out the small signal parameters (gain, input impedance, and output impedance). Confirm that  $|A_{v2}| \ge 10V/V$ . (2%)
  - iv. Calculate <u>Av2</u>, <u>input impedance</u>, and <u>output impedance</u> **by hand-calculation**. You can use the parameters in ".lis" in (ii.). Then compare your answer with the simulation results in (iii.). (5%)



**Fig. 2.** Two stages in cascade structure. (a) stage 1; (b) stage 2



Fig. 3. Cascade structure

- (c) Connect the above two stages and add an additional  $10\mu A$  current source as shown in Fig. 3.
  - i. Use ".op" command in Hspice and check the ".lis" file: Is the DC bias  $(V_1)$  still around 0.5V? (5%)
  - ii. After simulation, whether the overall gain (from  $V_{in}$  to  $V_{out}$ ) equals  $A_{v1} \times A_{v2}$  or not? If not, why not? (5%)
  - iii. Please calculate the overall gain by hand-calculation, and compare your answer with the simulation results in (ii.). (5%)
- (d) Please fill in the following specification table. Make sure you achieve all the requirements. (5%)

|                                | specification | simulation | hand-calculation |  |
|--------------------------------|---------------|------------|------------------|--|
| Fig. 2.(a) Common-Source stage |               |            |                  |  |
| $V_{ m DD}$                    |               | 1.8V       |                  |  |
| current source<br>load         |               | 3μΑ        |                  |  |
| $M_1$ (W/L, m)                 | _             |            |                  |  |
| $ m V_{in,DC}$                 | -             |            |                  |  |
| $V_{out1,DC}$                  | 0.5V±10mV     |            | _                |  |
| gain $ \mathbf{A}_{	ext{vl}} $ | ≥ 100V/V      |            |                  |  |
| output impedence               | -             |            | _                |  |

| Fig. 2.(b) Common-Gate stage    |         |  |   |  |
|---------------------------------|---------|--|---|--|
| ${f V_{DD}}$                    | 1.8V    |  |   |  |
| $ m V_{in1,DC}$                 | 0.5V    |  |   |  |
| $M_2(W/L, m)$                   | _       |  |   |  |
| $V_{\rm b}$                     | _       |  |   |  |
| $R_{D}$                         | _       |  |   |  |
| $I_{D}$                         | 10μA±1% |  | _ |  |
| gain  A <sub>v2</sub>           | ≥ 10V/V |  |   |  |
| input impedence                 | 1       |  |   |  |
| output impedence                | -       |  |   |  |
| Fig. 3. Cascade CS-CG amplifier |         |  |   |  |
| $ m V_{DD}$                     | 1.8V    |  |   |  |
| DC bias (V <sub>1</sub> )       | _       |  | _ |  |
| overall gain  A <sub>v</sub>    | -       |  |   |  |

**Table 2.** Specification table for problem 2.

## 3. Comparison between "cascode structure" & "cascade structure" (10%)

In this problem, let's discuss the differences between "cascode structure" and "cascade structure". What are the advantages and drawbacks of each of them? List from **two** points of view, for example, output swing and power. (5% for each)

| 1. | From point of view, <u>cascode / cascade</u> structure is better than the other one because |
|----|---------------------------------------------------------------------------------------------|
| 2. | From point of view, <u>cascode / cascade</u> structure is better than the other one because |