# **SAM DISCUSSES LUNACY**

# **Table of contents**

| Installing Lunac      | у .      | •    | • | • | • | • | • | • | 2  |
|-----------------------|----------|------|---|---|---|---|---|---|----|
| <b>Running Lunacy</b> | •        |      |   | • | • | • |   |   | 3  |
| Desktop calculat      | or .     |      |   | • | • |   |   |   | 4  |
| Numbers .             | •        |      |   | • | • | • |   |   | 5  |
| Comments .            | •        |      |   | • | • | • |   |   | 8  |
| Strings .             | •        | •    |   | • | • | • |   |   | 9  |
| Binary numbers        | •        |      |   | • | • | • |   |   | 12 |
| Tables .              | •        |      |   | • | • | • |   |   | 16 |
| Metatables (Clas      | sses)    |      |   | • | • |   |   |   | 19 |
| Loops (While an       | d repeat | t) . |   | • | • |   |   |   | 24 |
| For loops with fu     | unctions |      |   | • | • |   |   |   | 27 |
| List iteration .      | •        |      |   | • | • |   |   |   | 30 |
| Multiple inherita     | ance     | •    | • | • | • | • | • |   | 31 |
| Regular expressi      | ons      |      |   | • | • | • | • |   | 34 |
|                       |          |      |   |   |   |   |   |   |    |

All content in this book, including code samples, has been donated to the public domain by Sam Trenholme.

## INSTALLING LUNACY

Lunacy is my personal fork of Lua 5.1. Lua is a tiny scripting language which is suitable for embedding in other applications. While there are newer versions of Lua, Lua 5.1 is the most widely deployed and used. Lua 5.1 is the most recent version supported by LuaJIT, a very fast implementation of Lua; Lua 5.1 is also the basis for Luau, the scripting language used by the very popular gaming platform Roblox, as well as the Scribunto MediaWiki extension which allows the Wikipedia to run Lua scripts.

To install Lunacy depends on the operating system one is using. In Windows (Windows XP, Windows 7, Windows 8, Windows 10, and Windows 11) one can simply use the pre-compiled Lunacy binary. In Linux and MacOS, if one has a C compiler and an implementation of *make*, it is possible to compile Lunacy.

The simplest way to download Lunacy is to get it from GitHub using the *git* command. From a command line, run this:

git clone https://github.com/samboy/lunacy

One option to obtain Lunacy without git is to go to https://github.com/samboy/lunacy, click on "Code" then "download zip". Another option is to go to https://maradns.samiam.org/lunacy/ and download Lunacy there.

Should GitHub be down, Lunacy is available at other locations on the internet, e.g. https://codeberg.org/samboy/lunacy or https://gitlab.com/maradns/lunacy/

Once Lunacy is downloaded, Windows users can use the lunacy.exe 32-bit x86 compile of Lunacy in the bin/ folder of the download. People on other platforms can compile Lunacy with make and a C compiler (gcc, clang, etc.) in the src/ folder. The simplest way to compile Lunacy is to simply run make in the src/ folder of Lunacy; if readline support is desired (to have up arrow history) and the, one can compile Lunacy via make -f Makefile.readline If one has the editline library instead (similar to readline, but without the GPL license), one can compile Lunacy via make -f Makefile.editline

Once Lunacy is compiled, one can copy it over to one's local path (e.g. /bin/ or /usr/bin/ or another directory in one's usual path) as root or admin via the appropriate copy command (e.g. cp lunacy /usr/bin/).

The Windows binary of Lunacy has up arrow history support if it's run in Cygwin (available at https://cygwin.com/) or PowerShell.

Lunacy is a command line application, so it is best run from a terminal window, such as Cygwin, PowerShell, any Linux terminal application, or the terminal in MacOS.

That said, the lunacy.exe binary runs just fine when double clicked on in Windows 10, and even has up arrow history support.

## **RUNNING LUNACY**

Once Lunacy is installed, running the lunacy binary (e.g. lunacy.exe on Windows) will show something that looks like this:

```
Lunacy 2022-12-06 Copyright 1994-2012 Lua.org PUC-Rio; 2020-2022 Sam Trenholme >
```

Here we can begin to type in commands. In the examples on this page, text in bold **like this** is typed by the user; text not in bold **like this** is returned from the Lunacy binary.

Let's do the "Hello, world!" example:

```
> print("Hello, world!")
Hello, world!
```

We can also use Lunacy as a basic desktop calculator:

```
> 1 + 1
2
```

Note that the trick that makes the answer to an expression appear only works if the first character in the line is a number or the left parenthesis "(" character. Other characters need = at the beginning of the line, e.g.

```
> = math.pi
3.1415926535898
```

Lunacy has support for functions, e.g.

```
> function hi()
>> print("Hello, world!")
>> end
> hi()
Hello, world!
```

If Lunacy is being run from the command shell, it is possible to tell Lunacy to run a given file as its script contents. For example, let us suppose we have a file foo.lua with the following in it:

```
print("Hello, world!")
```

Running Lunacy in the same directory as foo.lua gives us a result like this:

Where \$ is a Cygwin, Linux terminal, MacOS terminal, or similar prompt.

## **DESKTOP CALCULATOR**

Lunacy can be used as a desktop calculator. To do so, Lunacy can be started from the command line in a terminal window. For example, anything in bold is typed by the user:

```
$ lunacy
Lunacy 2022-12-06 Copyright 1994-2012 Lua.org PUC-Rio; 2020-2022 Sam Trenholme
> 1 + 1
2
> (1 + 2) * 3
9
```

+ is addition; - is subtraction; \* is multiplication; / is division.

Lines which begin with a number of the (character are calculated. Should an expression who which starts with another character is desired, the line needs to start with the = character.

```
> =math.pi
3.1415926535898
```

It's possible to assign and use variables in the Lunacy command line:

```
> a = (34 * 3) + 2
> = a * 2
208
```

It's also possible to define functions (or do pretty much anything Lunacy can do when run as a script) when being run as a desktop calculator:

```
> function addOne(x)
>> print(x + 1)
>> end
> =addOne(3)
```

A desktop calculator will usually have arrow history support; in other words, if one hits the up arrow character while using Lunacy in desktop calculator mode, the previously entered command will appear again and can be edited with the left and right arrow keys. The 32-bit Windows Lunacy has arrow support when run in Cygwin, PowerShell, or from the Windows cmd shell; the source code to Lunacy has support for both readline and editline which also can give Lunacy this support.

Lunacy does not store the state of its virtual machine; every single time Lunacy is started as a fresh slate; functions and variables stored in previous invocations of Lunacy are lost.

## **NUMBERS**

The version of Lua I use is Lunacy, which is a fork of Lua 5.1.

In Lunacy, all numbers are IEEE 64-bit floats. This means:

- Numbers between -9,007,199,254,740,992 and 9,007,199,254,740,992 have a precision of 1 or higher; numbers in this range can be represented as integers.
- Numbers can be fractional; the closer the number is to zero, the more precision the fraction has.
- The type of floating point number Lunacy uses is binary. This means that fractions which are not a power of two are imprecise in Lua.

Let's show an issue with these floats by looking at a loop in Lua.

To do a simple loop in Lua, we use this form:

```
for counter = start, end, increment do
  print(counter)
end
```

The default value for increment is 1.

For example:

```
for counter = 1,10 do
  print(counter)
end
```

Which gives us 1,2,3,4,5,6,7,8,9, and finally 10.

Likewise:

```
for counter = 1,11,2 do
  print(counter)
end
```

Will give us 1,3,5,7,9,11

We can count backwards:

```
for counter = 10,1,-1 do
  print(counter)
end
```

This gives us 10,9,8,7,6,5,4,3,2,1

Note that we must have the increment as a negative number to count backwards.

Note that, since Lunacy uses 64-bit IEEE floats, counters really should only use integers. This can give unexpected behavior:

```
for counter = .9,1,.05 do
  print(counter)
end
```

With infinite precision numbers, or heck with decimal floating point numbers, we would get 0.90, 0.95, 1.00, but instead we get 0.90 and 0.95 without the 1.00 (when running as 32-bit x86 code; the behavior is as expected on ARM64 and x86\_64). This is caused because .05 is a number ever so slightly higher when represented as a 64-bit IEEE binary floating point number, causing the loop to act in unexpected ways.

The solution to avoid these kinds of issues is to always use integers for Lua loops, then divide the number as needed, e.g.:

```
for counter = 90,100,5 do
  print(counter / 100)
end
```

This will give the expected behavior.

How can we see a large integer in Lunacy?

The simple print() command will, with Lunacy, print numbers as high as 99,999,999,999. Higher numbers show the number of as "e + XXX" format, e.g. 100,000,000,000,000 is shown as 1e+014.

```
print(9999999999999)
print(100000000000000)
```

This shows 99999999999999999 then 1e+014

In a 64-bit compile of Lunacy, this will correctly show 10000000000000:

```
print(string.format("%d",10000000000000))
```

However, in a 32-bit compile of Lunacy, the above code incorrectly shows -2147483648. To work around this issue requires a function (see the next page):

```
function numberToString(n)
 out = ""
 isNeg = false
 if(n < 0) then
   n = -n
   isNeg = true
 end
 if(n == 0) then
   return "0"
 end
 while n > 0 do
   out = string.format("%d",n%10) .. out
   n = n - (n \% 10)
   n = n / 10
 end
 if isNeg then
   out = "-" .. out
 end
 return out
print(numberToString(10000000000000))
```

This will correctly show 10000000000000 in both the 32-bit and 64-bit versions of Lunacy.

Note that this function only works correctly for integers, and only for numbers small enough to correctly divide by 10.

## **COMMENTS**

Lunacy has support for comments. Comments are blocks of code ignored by the Lunacy parser. Unlike traditional UNIX scripts, Lua uses two dashes to indicate the beginning of the comment.

Here is an example comment:

```
-- Here is a comment. It ends at the end of the line
foo = 1
-- Another comment
```

A comment which starts with two dashes ends at the end of a line.

## **Multi-line comments**

Lua also has support for multi-line comments. A multi-line comment starts with two dashes, immediately followed by two left square brackets. A multi-line comment ends with two right square brackets.

Here is an example multi-line comment:

It's also possible to use square bracket comment notation to put a comment in the middle of a line:

```
foo --[[ Here is a mid-line comment ]] = 1
```

In case we want ]] in a comment, we can use this syntax:

```
foo = 1
--[=[ Here is another multi-line comment. Since this comment has an equal
    sign between the brackets, ]] no longer ends a comment. Instead,
    the comment ends with an equals sign between the brackets: ]=]
bar = 2
```

If both ]] and ]=] are desired in a comment, we can use --[==[ or --[===[ to begin a comment; the comment is ended by the corresponding number of equals signs between the brackets closing the comment (e.g. ]==] or ]===]):

```
foo = 1
--[===[ Comment with three equals between the brackets
   ]===]
bar = 2
```

## **STRINGS**

Lunacy has support for strings. For example:

```
a = "Hello, world!"
print(a)
```

This will output "Hello, world!".

#### Single quotes

Strings can be quoted with either single quotes or double quotes; here's single quotes:

```
a = 'Hello, world!'
print(a)
```

The only difference between single and double quotes is that it changes whether a single quote or a double quote needs to be escaped; unlike other languages, Lunacy does not by default expand variables in strings.

#### Strings are binary

A string is a binary stream; unlike C's default string type, the NUL (0 value) character can be part of a string. Lunacy does not have UTF-8 or any other locale support; high bit strings are stored as is and strings do not have locale information (i.e. what character encoding a given string uses or even what type of line feed is used) attached to them.

## **Escaping characters**

It's possible to escape characters with strings:

- \" always returns a double quote without terminating a string. This escape sequence is not needed if the string is single quoted; e.g. '" is a double quote' is equivalent to the string "\" is a double quote" or '\" is a double quote'. In all cases, the resulting string is " is a double quote
- \' likewise always returns a single quote.
- \\ returns a backslash
- \ followed by a newline allows a multi-line string; the \ is not part of the resulting string.
- \0, \00, or \000 represents a NUL character
- Likewise \nnn, where nnn is a one digit, two digit, or three digit decimal number between 0 and 255 represents a character with the corresponding ASCII (or high bit) numerical value. E.g. \33 or \033 is an exclamation point ("bang") character and is equivalent to !
- \r, \n, \a, \b, \f, \t, and \v generate the corresponding character (In order shown here: carriage return, newline, bell, backspace, form feed, tab, and vertical tab).

#### String concatenation

It's possible to concatenate strings using the .. operator. For example:

```
a = "Hello, "
b = a .. "world!"
print(b)
```

returns Hello, world!

## String manipulation functions

Let's look at some of Lunacy's string manipulation methods. String methods can be called either as string.functionName (the first argument is the string to run the method against) or as string:functionName (where the string name is already given); e.g. given that a is a string, string.sub(a,1,3) is equivalent to a:sub(1,3). Note that strings in Lunacy are immutable and the functions which generate strings return newly created strings.

### string.sub

string.sub returns a substring. Its arguments are string.sub(string, start, end), where start is the first character of the resulting string we put in the resulting substring (since Lua tends to be 1-indexed, 1 is the first character in the source string, 2 is the second character, and so on) and end is the final character. If start or end are negative, we count characters from the end of the string; e.g. -1 is the final character in the string, -2 is the second final character, and so on. If end is not specified, the resulting substring ends with the source string ends.

#### **Examples:**

```
a = "1234567890"
print(a:sub(2,5)) -- Output is 2345
print(string.sub(a,3,8)) -- Output is 345678
print(a:sub(8)) -- Output is 890
print(a:sub(7,-2)) -- Output is 789
print(string.sub(a,-5,8)) -- Output is 678
```

## string.len

string.len returns how long a string is. A string can be 0 or more bytes long. Examples:

```
a = "12345"
print(a:len()) -- Returns 5
a = ""
print(a:len()) -- Returns 0
```

## string.find

string.find looks for a given substring in a string. Its form is string.find(string, pattern, start, plain). start and plain are optional. pattern is the substring we are looking for; by default pattern is a Lunacy regular expression pattern (a regular expression allows various different strings with certain characteristics to match; regular expressions will be discussed elsewhere). start is the first character we look at in the string for the matching pattern; if not specified, start has a value of 1 which is the start of a string. plain, if set to true, looks for the literal string in pattern instead of performing regular expression matching.

If the pattern is found, string.find returns two numbers: Where the matching string starts (as a numeric string index; e.g. 1 is the first character), followed by where the matching string ends. If the pattern is not found, string.find returns nil.

For example, string.find(a, "345") will look for an occurrence of the substring 345 in the string a. Some other examples:

```
a = "1234567890"
print(a:find("567")) -- Returns 5,7
print(a:find("111")) -- Returns nil
a = "LoveLoveLove"
print(a:find("Love")) -- Returns 1,4
print(a:find("Love",3)) -- Returns 5,8
print(a:find("Love",7,true)) -- Returns 9,12
print(a:find("Love",11)) -- Returns nil
```

## string.gsub

string.gsub replaces occurrences of a pattern with another string. It is called as
string.gsub(string, pattern, newString, count) or string:gsub(pattern, newString, count)

string is the string we are creating an altered copy of. pattern is the regular expression pattern we are looking for (again, regular expressions will be discussed elsewhere). newString is the string we replace occurrences of pattern with. count, which is an optional argument, specifies the maximum number of times we replace pattern; if count is not specified, we replace all occurrences of pattern in string.

string.gsub returns the altered string as well as the number of times it found pattern.

Some examples:

```
a = "1234567890"
print(a:gsub("456","axy")) -- Returns "123axy7890",1
print(a:gsub("111","axy")) -- Returns "1234567890",0
a = "LifeLifeLife"
print(a:gsub("Life","Love")) -- Returns "LoveLoveLove",3
print(a:gsub("Life","Love",1)) -- Returns "LoveLifeLife",1
print(a:gsub("Life","Love",2)) -- Returns "LoveLoveLife",2
```

## **BINARY NUMBERS**

Numbers in Lunacy are *binary numbers*, which mean they are internally represented as numbers with only 0s and 1s in them. The number 0 is represented as 0, the number 1 is 1, but the number 2 is 10, and the number 3 is 11, 4 is 100, and so on (to be pedantic, the representation for numbers in Lunacy are actually IEEE 754 64-bit floating point numbers which have a different representation in binary, but for the purposes of this lesson we can treat the numbers as if they are binary integers). Each digit in a binary number is called a *bit*.

## Hexadecimal

While it's not possible in Lunacy to directly represent numbers in binary, we can represent numbers as hexadecimal (sometimes called hex) numbers. This is a base 16 notation and we tell Lunacy the number is hexadecimal by prefixing it with 0x so 0x9 + 0x1 is 0xA or equivalently 10. Let's look at numbers in decimal (normal numbers as taught in elementary school math), binary (base 2, as discussed above), and hexadecimal.

| Decimal     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|-------------|------|------|------|------|------|------|------|------|
| Binary      | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
| Hexadecimal | 0x0  | 0x1  | 0x2  | 0x3  | 0x4  | 0x5  | 0x6  | 0x7  |
|             |      |      |      |      |      |      |      |      |
| Decimal     | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| Binary      | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| Hexadecimal | 0x8  | 0x9  | 0xA  | 0xB  | 0xC  | 0xD  | 0xE  | 0xF  |

Note forms like 0xa or 0xc are also acceptable; either upper case or lower case or even mixed case (e.g. 0xfF) is acceptable.

Viewing numbers in hexadecimal can be done with the string.format call as follows:

```
function viewAsHex(n)
  return string.format("%x",n)
end
print(viewAsHex(0xBeadBabe))
```

If we wish to view the hexadecimal number in upper case, use %X for the string format:

```
function viewAsHexUpper(n)
  return string.format("%X",n)
end
print(viewAsHexUpper(0xBeadBabe))
```

## 32-bit numbers

There are certain binary operations Lunacy can perform on the numbers. Since the float point format Lunacy uses to represent numbers allows numbers with up to 53 bits of precision, we can not use 64-bit binary integers in Lunacy. 32-bit is the largest common representation of

binary numbers smaller than the 53 bits Lunacy can actually store as a number, so the functions which this book is about to show representing binary math are done with 32-bit numbers. bit32.bor(0,foo) will return the value of foo as long as foo can fit in 32 bits. That in mind:

```
print(string.format("%x",bit32.bor(4294967295,0)))
returns ffffffff, the largest number we can represent with 32 bits, but
print(string.format("%x",bit32.bor(4294967297,0)))
```

returns 1 (two more than the largest number one can fit in 32 bits; its hex form would be 0x100000001 but 32-bit Lunacy can only handle numbers inputted as hex between 0x00000000 and 0xffffffff) because the bit32 operations work on return the lowest 32 bits of the input number.

## **Binary operations**

While Lua 5.1 does not have direct support for bitwise binary operations, Lunacy (as well as other common ports of Lua 5.1 such as LuaJIT, Luau used in Roblox, and the version of Lua 5.1 used by the Wikipedia) includes a library of functions which allow binary operations. The number of this library in Lunacy is bit32.

Common binary operations are *and*, called bit32.band in Lunacy, *or* called bit32.bor, and *exclusive or* called bit32.bxor. These operations work on each bit independently. Let's look at the four possible one bit results for these operations, where the input is 0 or 1

```
Operation
                  Result
bit32.band(0,0)
bit32.band(0,1)
bit32.band(1,0)
                  0
bit32.band(1,1)
                  1
bit32.bor(0,0)
bit32.bor(0,1)
                  1
bit32.bor(1,0)
                  1
bit32.bor(1,1)
                  1
bit32.bxor(0,0)
bit32.bxor(0,1)
                  1
bit32.bxor(1,0)
bit32.bxor(1,1)
```

As mentioned before, these operations work on each bit independently. So, if the two inputs have 3 bits, we perform the relevant operation on the lowest bit of the input numbers and have the determine the lowest bit in the output number, then perform the relevant operation on the second lowest bit of the input numbers to determine the second lowest bit in the output number, and finally perform the operation on the third lowest bit of the input numbers which affects the third lowest bit in the output number.

So, for example, to exclusive or the binary numbers 100 (four) and 110 (six), we do the

#### following steps:

- The highest (leftmost) bits in the input numbers are 1 and 1. The exclusive or of 1 and 1 is
   So the leftmost bit of the output is 0.
- 2. The second (middle) bits in the input numbers are 0 and 1. The exclusive or of 0 and 1 is 1, so the middle bit in the output is 1.
- 3. The lowest (rightmost) bits in the input numbers are 0 and 0. The exclusive or of 0 and 0 is 0, so the lowest bit in the output is 0.

Let's look at this another way:

```
input oneinput tworesult
```

Since binary 100 is 4 in decimal and binary 110 is 6 in decimal, the result is 2 (010).

And, indeed:

```
print(bit32.bxor(4,6))
```

Returns 2.

## Other binary operations

Another binary operation is bit32.lshift(n,x), which shifts a number n to the left x number of bits. For example, shifting the binary number 110 one bit to the left yields 1100; shifting 101 two bits to the left results in 10100. A lshift of one bit is equivalent of multiplying a number by 2; a two bit shift is like multiplying a number by 4; a three bit shift like multiplying by 8; and so on.

The other binary operation in the example xoshiro code is bit32.rrotate(n,x), which rotates a number n by x bits to the right. Since this is an operation on 32-bit numbers, this means that if the low (rightmost) bit is 1, the high ( $32^{nd}$  from left) bit becomes 1 when rotating one bit to the right.

One example of bit32.rrotate:

```
Binary form of n 00000010 00000111 10100101 10000001 In hex: 0x0207a581 bit32.rrotate(n,2) 01000000 10000001 11101001 01100000 In hex: 0x4081e960
```

Here, the two low bits of the input become the two high bits in the output, and the rest of the bits move to the right by two spots.

## A real world example

One real-world algorithm which generates *pseudo-random numbers* (a pseudo-random number is a number which looks random, but is actually generated in a non-random way) using 32-bit number bitwise math is *xoshiro128\*\**. Here is an implementation of the algorithm in Lua:

```
xoshiro128 = {}
xoshiro128.__index = xoshiro128
function xoshiro128:init()
 out = {}
 setmetatable(out, xoshiro128) -- Instance of xoshiro128 class
 out.s1 = 1
 out.s2 = 2
 out.s3 = 3
 out.s0 = 4
 return out
end
function xoshiro128:next()
 local result = self.s1 * 5
 result = result % 4294967296 -- Keep number 32-bit
 result = bit32.rrotate(result,25) -- 7-bit left shift in reference code
 result = result * 9
 result = result % 4294967296
 local t = bit32.lshift(self.s1, 9)
 self.s2 = bit32.bxor(self.s2,self.s0)
 self.s3 = bit32.bxor(self.s3,self.s1)
 self.s1 = bit32.bxor(self.s1,self.s2)
 self.s0 = bit32.bxor(self.s0,self.s3)
 self.s2 = bit32.bxor(self.s2,t)
 self.s3 = bit32.rrotate(self.s3,21)
 return result
end
-- This seeding is not part of the xoshiro128** spec
function xoshiro128:seed(s)
 s = s \% 4294967296
 self.s0 = bit32.bxor(s,0x55555555)
 self.s1 = (s * 37 + s * 3 + 1009) % 4294967296
  self.s2 = (s * 223 + s * 7 + 1229) % 4294967296
 self.s3 = (s * 947 + bit32.bxor(s,0xAAAAAAAA)) % 4294967296
 return true
end
x = xoshiro128:init()
x:seed(12345)
for a=1.8 do
 print(string.format("%08x",x:next()))
end
```

This code uses classes, which are discussed in the chapter on metatables.

While stock Lua 5.1 uses a low-quality pseudo random number generator for math.random() and the above code generates higher quality numbers, Lunacy's math.random() generates high quality random numbers using RadioGatún[32].

### **TABLES**

```
Let's look at Lunacy's tables:
foo = \{\}
foo["bar"] = "Hello, "
foo["baz"] = "world!"
foo["bozzle"] = function() print("Hello, world!") end
Then, we can do stuff like this:
print(foo["bar"])
print(foo["baz"])
print(foo["bozzle"])
Since foo["bozzle"] is a function (table members can be numbers, strings, functions, tables,
booleans, among other data types, but not nil), we can call it directly:
foo["bozzle"]()
or even
print(foo["bozzle"]())
We can define the above table like this in Lua:
foo = {
   bar = "Hello, ",
baz = "world!",
   bozzle = function() print("Hello, world!") end
Tables, as noted above, can have members which are themselves tables:
foo = \{\}
foo["bar"] = { oink = "Hello, world!",
                mister = function() print("Hello, world!") return 1 end
foo["baz"] = "Cool!"
print(foo["bar"]["oink"])
print(foo["bar"]["mister"]())
The brackets and quotes can get unwieldy, so this also works:
print(foo.bar.oink)
print(foo.bar.mister())
```

We can combine brackets and dot notation:

end end

```
print(foo["bar"].oink)
Which is userful when using a variable to determine the table index:
bozzle = "bar"
print(foo[bozzle].oink)
We can even have a sub-table refer to the parent table:
foo.bar.loop = foo
And then:
print(foo.bar.loop.bar.oink)
print(foo.bar.loop.bar.loop.bar.oink)
print(foo.bar.loop.bar.loop.bar.oink)
To see the members of a table, we have to iterate through them:
for k,v in pairs(foo) do print(k,v) end
Which gives us output like this:
        table: 00F49F08
bar
baz
        Cool!
We can use recursion to look at subtables, but be careful of loops!
function tableView(t, name, depth)
  -- If we call a function with too few arguments, the extra parameters
  -- have the value nil
  if name == nil then
    name = ""
  end
  if depth == nil then
    depth = 0
  end
  -- Infinite loop protection
  if depth > 10 then
    return 0
  end
  -- View this table and recurse with subtables
  for k, v in pairs(t) do
    if type(v) ~= "table" then -- ~= is != in most other languages
      print(name,k,v)
      tableView(v, name .. " " .. k, depth + 1)
    end
```

Note that Lua uses "--" to start a comment, unlike the "#" most UNIX scripting languages use.

We can now invoke it:

```
tableView(foo)
```

Note the function takes three arguments; since we call the function with only one argument, the other two values are set by Lua to be nil.

While the above works, the issue is that when we have an element which loops back to the top of the table, we will show that element multiple times. There *is* a way to solve that problem, but it's a little tricky to understand.

The trick is this: Table keys can *also* be tables (well, pointers to tables; Lua internally stores the memory address of the table as the key and a note the pointer is to a table).

Let's check this out:

```
foo[foo] = "Table pointer key example"
```

Here, the *key* is a pointer to a table. This can be useful, because we can use that to know right away if we're going in to a loop with tableView:

```
function tableView(t, name, seen)
 -- If we call a function with too few arguments, the extra parameters
  -- have the value nil
 if name == nil then
   name = ""
 end
  if seen == nil then
   seen = {t = true}
  end
 seen[t] = true
  -- View this table and recurse with subtables
 for k,v in pairs(t) do
    if type(v) ~= "table" then -- ~= is != in most other languages
      print(name,k,v)
   else
      if seen[v] then
        print(name, k, "LOOP!")
        tableView(v, name .. " " .. k, seen)
      end
   end
 end
end
```

## **METATABLES**

Let's make two tables in Lua:

```
foo = { bar = "Hello", baz = "World" }
someTable = { life = "is", good = "yes" }
print(someTable.bar)
```

This returns "nil". When we look for someTable.bar (i.e. someTable["bar"]), we will get nil because the element "bar" is not in someTable, even though it's in the table foo.

Now, let's have it so that, if an element is not in someTable, we look in the table foo for that element:

```
someTableMeta = {__index = foo}
setmetatable(someTable, someTableMeta)
print(someTable.bar)
```

Now, looking up someTable.bar returns the value "Hello":

- 1. We look in someTable for the element "bar"
- 2. Since it's not found, we see if we have an index metatable. We do, so we look in the index metatable, in this case the table foo, for the element.
- 3. Since foo has the element foo.bar, we use the element in the index metatable for someTable to have it so asking for someTable.bar gives us "Hello".

If we don't want a separate metatable, a table can be its own metatable:

```
foo = { bar = "Hello", baz = "World" }
someTable = { life = "is", good = "yes", __index = foo }
setmetatable(someTable, someTable)
print(someTable.bar)
```

someTable.bar is now "Hello", since foo.bar is "Hello" and someTable's index metatable is the foo table.

Likewise, the index metatable can also be the metatable:

```
foo = { bar = "Hello", baz = "World" }
foo.__index = foo
someTable = { life = "is", good = "yes" }
setmetatable(someTable, foo)
print(someTable.bar)
```

Again, this returns "Hello".

Note that the "\_\_index" element needs to be set *after* the table is initially declared.

Index metatables can also be functions:

This returns the number 404. Here, any element which is not in the table will return, instead of nil, the number 404.

We can use a function to have the same behavior we have when an index metatable is a table:

This will return "Hello". The second argument to an index metatable function is the element we tried to access in the table.

The first argument, self, is a reference to the table calling the function, e.g. this will return "yes" for any element not otherwise in someTable:

This returns "yes".

All of this in mind, we can use metatables to have classes:

```
simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass.init(self, x, y)
   self.x = x
   self.y = y
end
function simpleClass.add(self, x, y)
   self.x = self.x + x
   self.y = self.y + y
end
function simpleClass.values(self)
   return self.x, self.y
end
```

Now that we have created a simple class, we can make instances of that class via metatables. Give the above class, let's make an instance of it:

```
objectInstance = {}
setmetatable(objectInstance, simpleClass)
objectInstance.init(objectInstance, 1, 2)
objectInstance.add(objectInstance, 3, 3)
print(objectInstance.values(objectInstance))
```

This will return 4 then 5.

This works but the grammar is a bit clunky. Lua has some synatic sugar to make things look a little nicer. This is equivalent to the above example class code:

```
simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)
 self.x = x
 self.y = y
function simpleClass:add(x, y)
  self.x = self.x + x
 self.y = self.y + y
end
function simpleClass:values()
 return self.x, self.y
objectInstance = {}
setmetatable(objectInstance, simpleClass)
objectInstance:init(1,2)
objectInstance:add(3,3)
print(objectInstance:values())
```

This also returns 4 then 5.

"self" is a magic word in Lua used with Lua's colon syntax.

Let's change the class so that, for addition, we have a method which returns a new object which is the sum of two other objects:

```
simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)
   self.x = x
   self.y = y
end
function simpleClass:add(other)
   newObject = {}
   setmetatable(newObject, simpleClass)
   newObject.x = self.x + other.x
   newObject.y = self.y + other.y
   return newObject
end
function simpleClass:values()
   return self.x, self.y
end
```

```
objectInstance = {}
setmetatable(objectInstance, simpleClass)
anotherObject = {}
setmetatable(anotherObject, simpleClass)
objectInstance:init(1,2)
anotherObject:init(3,3)
thirdObject = objectInstance:add(anotherObject)
print(thirdObject:values())
```

This again returns 4 then 5.

This in mind, we can use metatables to define what "+" does with a given table:

```
simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)
 self.x = x
 self.y = y
end
function simpleClass:add(other)
 newObject = {}
 setmetatable(newObject, simpleClass)
 newObject.x = self.x + other.x
 newObject.y = self.y + other.y
 return newObject
simpleClass.__add = simpleClass.add
function simpleClass:values()
 return self.x, self.y
end
objectInstance = {}
setmetatable(objectInstance, simpleClass)
anotherObject = {}
setmetatable(anotherObject, simpleClass)
objectInstance:init(1,2)
anotherObject:init(3,3)
thirdObject = objectInstance + anotherObject
print(thirdObject:values())
```

Like the other examples, this returns 4 then 5.

As we can see, Lua has operator overloading.

We can make it a little easier to make new objects. In addition, the \_\_add metatable can be a function instead of a pointer to a function (see the next page):

```
simpleClass = {}
simpleClass.__index = simpleClass
function simpleClass:init(x, y)
  out = {}
  setmetatable(out, simpleClass)
  out.x = x
  out.y = y
  return out
end
function simpleClass:__add(other)
  newObject = {}
  setmetatable(newObject, simpleClass)
  newObject.x = self.x + other.x
  newObject.y = self.y + other.y
  return newObject
end
function simpleClass:values()
  return self.x, self.y
end
objectInstance = simpleClass:init(1, 2)
anotherObject = simpleClass:init(3, 3)
thirdObject = objectInstance + anotherObject
print(thirdObject:values())
```

This also returns 4 then 5.

Note that while the init method gets a "self" argument, we ignore that so that we can retain the colon syntax for object methods.

# LOOPS (WHILE AND REPEAT)

In this chapter we will look at while loops, repeat loops, the break keyword, working around Lunacy's lack of a "continue" keyword, and show a basic for loop.

## The While loop

In a while loop, we go through a loop while *condition* is true. A while loop starts with the do keyword and ends with the end keyword. The general form is:

```
while condition do actions end
```

When Lunacy hits the end keyword, we see if *condition* is true; if so, Lunacy goes back to the do keyword which begins the while loop.

Let's this look at this code:

```
a = 1
while a < 10 do
  print(a)
  a = a + 1
end</pre>
```

The output is 1, 2, 3, 4, 5, 6, 7, 8, and 9.

While loops can nest, which means we can have one while loop in another while loop:

```
a = 1
while a < 4 do
  b = 1
  while b < 3 do
    print(a * b)
    b = b + 1
  end
  a = a + 1
end</pre>
```

Output is 1, 2, 2, 4, 3, 6.

Note that it's possible to have a while loop which never runs, e.g.:

```
a = 10
while a < 4 do
   print("This will never run")
end
print("We are here")</pre>
```

This will only output We are here.

## The repeat loop

A repeat loop is similar to a while loop, but it will always goes through the loop once. For example:

```
a = nil
repeat
  if a == nil then
    a = 1
  end
  print(a)
  a = a + 1
until a > 9
print("Hello")
```

This outputs 1,2,3,4,5,6,7,8,9, then the word Hello.

Note that a repeat loop, unlike other loops, does not terminate with the end keyword but instead with an until statement.

# The break keyword

It's possible to break a for, while, or repeat loop with the break keyword. For example:

```
a = 1
while true do
    if a >= 10 then
        break
    end
    print(a)
    a = a + 1
end
```

This will output 1,2,3,4,5,6,7,8, and 9.

With a repeat loop:

```
a = 1
repeat
   if a >= 10 then
      break
   end
   print(a)
   a = a + 1
until false
```

This will also output 1,2,3,4,5,6,7,8, and 9.

## No continue keyword

Some other languages, such as C, have a "continue" keyword. This keyword would cause the loop to go back to the beginning of the loop, e.g. the while keyword if we're in a while loop.

Lunacy does not have a continue keyword, but we can simulate it by having a loop inside of a loop:

```
doBreak = false
a = 1
repeat
  while a < 10 do
    doBreak = true
    a = a + 1
    if a % 2 == 0 then
        doBreak = false -- Make break act like continue
        break -- Acts like continue
    end
    if a == 9 then
        break -- Acts like break because doBreak is true
    end
    print(a)
    end
until doBreak</pre>
```

This will output 3,5, and 7.

This trick works for while and repeat loops, but not with for loops (a version with the repeat/until inside the for loop would work; this is left as an exercise for the reader).

## The for loop

Lunacy actually has two forms of a for loop. One is a simple for loop where we go through numbers; the other, which we will look at elsewhere, uses a function along with for. Here is a simple numerical for loop:

```
for a=1,10,2 do
  print(a)
end
```

This will output 1,3,5,7, and 9.

The "1" above is the value a has when we run the loop for the first time; 10 is the maximum value a can have and have the loop still run. 2 above is the amount we increment a by (or decrement, should this third number be negative) after each iteration of the loop.

Note that it's best in a for loop of this form to use only integers; see the chapter on numbers for discussion of why.

## FOR LOOPS WITH FUNCTIONS

It's possible to use a function with a for loop. E.g:

```
a = {z = 1, y = 2}
for k,v in pairs(a) do
  print(k,v)
end
```

This will output in varying order (z,1) and (y,2).

We can make our own function which can be used as the iterator in a for loop:

```
function range(low, high)
  local index = low
  return function()
    local rvalue = index
    index = index + 1
    if(rvalue > high) then
      return nil
    end
    return rvalue
  end
end
```

Here, range is a function which returns a function. What does the function generated by range do? Let's look:

```
twoToNine = range(2,9)
for a=1,11 do
  print(twoToNine())
end
```

We get this output:

Here is what is happening: The function twoToNine is able to remember the value of the variable index between its invocations. index is a variable whose value gets stored in a namespace local to the twoToNine function; this ability is called *function closure*.

That in mind, we can use this range function in a for loop:

```
for a in range(2,9) do
  print(a)
end
```

Given range as defined above, the above function will return this:

Under the hood, Lunacy calls the range function once. The range function returns an anonymous function which we will call <code>instanceOfRange</code>. This <code>instanceOfRange</code> function is then called at the start of the <code>for</code> loop. If <code>instanceOfRange</code> returns <code>nil</code> then the loop terminates; otherwise we go through the loop with the variable a set to be the output value of the <code>instanceOfRange</code> function. We do this over and over until <code>instanceOfRange</code> returns <code>nil</code>.

## Sorted table keys

Let's make a for iterator function which will return a function that returns the key for each element in a table in sorted order:

```
function sortedTableKeys(inputTable)
  local keyList = {}
  local index = 1
  for k,_ in pairs(inputTable) do
    table.insert(keyList,k)
  end
  table.sort(keyList)
  return function()
    rvalue = keyList[index]
    index = index + 1
    return rvalue
  end
end
```

Here, table.insert is used to add a key in inputTable to keyList; it is run over and over again to make keyList a list of all of the keys in inputTable. Once we have this list as an array, table.sort sorts the list for us.

Next, the sortedTableKeys function creates a function which will simply return, when called over and over again, the keys to inputTable in sorted order. That in mind, let's make a table and compare how the sortedTableKeys function runs versus how pairs runs (on next page):

```
someTable = {a=12,b=14,c=19,d=23,e=17,f=11}
print("Unsorted:")
for a in pairs(someTable) do
   print(a) -- Letters in random order
end

print("")
print("Sorted:")
for a in sortedTableKeys(someTable) do
   print(a) -- Letters correctly sorted
end
```

This will first output the keys to someTable in random order (as an aside, the order changes each time Lunacy is started), then output the keys to someTable in sorted order, namely a, b, c, d, e, and f.

We can even have a function which determines how the keys are sorted:

```
function sortedTableKeysSF(inputTable, sortFunction)
  local keyList = {}
  local index = 1
  for k,_ in pairs(inputTable) do
    table.insert(keyList,k)
  table.sort(keyList, sortFunction)
  return function()
    rvalue = keyList[index]
    index = index + 1
    return rvalue
  end
end
function revSort(a, b)
  return a > b
end
someTable = \{a=12,b=14,c=19,d=23,e=17,f=11\}
for a in sortedTableKeysSF(someTable, revSort) do
  print(a) -- Letters sorted in reverse
end
Here, the above code returns f, e, d, c, b, and a: The letters reverse sorted. The default
(forwards, i.e a, b, c, d, e, and f) sorting would be done as follows:
function normalSort(a, b)
  return a < b
for a in sortedTableKeysSF(someTable, normalSort) do
  print(a)
end
```

#### LIST ITERATION

Lua has simple numerical iteration via for foo=1,10 do and Lua has function iteration via for foo in something(bar) do but Lua does not have built in iterators for a list the way, say, Perl or Python do.

However, we can work around this by making functions which let Lua go through a list.

First, let's have a function that, when given a table, returns its keys as a list:

```
function tableKeys(inputTable)
  local out = {}
  for k,_ in pairs(inputTable) do
    table.insert(out,k)
  end
  return out
end
Now, let's have a function that will allow us to use for to iterate through a list:
function iterateList(inputList)
  local index = 1
  return function()
    local rvalue = inputList[index]
    index = index + 1
    return rvalue
  end
end
And another function which sorts a list and returns the sorted list
function sorted(inputList)
  table.sort(inputList)
```

return inputList end

We can also have a function to reverse a list:

```
function reverse(inputList)
 local out = {}
 for a=#inputList,1,-1 do
    table.insert(out,inputList[a])
 end
 return out
end
```

With these four functions, we can iterate through a table with the keys reversed sorted:

```
someTable = {a=12,b=14,c=19,d=23,e=17,f=11}
for k in iterateList(reverse(sorted(tableKeys(someTable)))) do
 print(k, someTable[k])
end
```

## MULTIPLE INHERITANCE

In the chapter on metatables we looked at simple inheritance. We can also have multiple inheritance:

- A class can have child classes
- Child classes can have multiple parents

### Children

A given class can have a derived (a.k.a. child) class. Let's look at the xoshiro128\*\* example we used in the chapter on binary numbers, but now with a child class. First, the parent class:

```
xoshiro128 = {}
xoshiro128.__index = xoshiro128
function xoshiro128:init()
 out = {}
 setmetatable(out, self)
 out.s1 = 1
 out.s2 = 2
 out.s3 = 3
 out.s0 = 4
 return out
end
function xoshiro128:next()
 local result = self.s1 * 5
 result = result % 4294967296 -- Keep number 32-bit
 result = bit32.rrotate(result,25) -- 7-bit left shift in reference code
 result = result * 9
 result = result % 4294967296
 local t = bit32.lshift(self.s1, 9)
 self.s2 = bit32.bxor(self.s2,self.s0)
 self.s3 = bit32.bxor(self.s3,self.s1)
 self.s1 = bit32.bxor(self.s1,self.s2)
 self.s0 = bit32.bxor(self.s0,self.s3)
 self.s2 = bit32.bxor(self.s2,t)
 self.s3 = bit32.rrotate(self.s3,21)
 return result
end
We can run this:
x = xoshiro128:init()
print(string.format("%x",x:next()))
```

Now that we have this class, we can make a derived class which adds the seeding method. We do this because the method to seed a xoshiro128\*\* state is not part of its specification. On the next page is how that code will look:

```
-- Let's make a class which is the child class
-- This seeding is not part of the xoshiro128** spec
xoSeed = {}
xoSeed.__index = xoSeed
setmetatable(xoSeed,xoshiro128)

function xoSeed:seed(s)
    s = s % 4294967296
    self.s0 = bit32.bxor(s,0x5555555)
    self.s1 = (s * 37 + s * 3 + 1009) % 4294967296
    self.s2 = (s * 223 + s * 7 + 1229) % 4294967296
    self.s3 = (s * 947 + bit32.bxor(s,0xAAAAAAAA)) % 4294967296
    return true
end
```

Now that we have a child class, we can run it:

```
x = xoSeed:init()
x:seed(12345)
for a=1,8 do
  print(string.format("%08x",x:next()))
end
```

Let's look at the init() method which is used by both the parent and child class again:

```
function xoshiro128:init()
  out = {}
  setmetatable(out, self)
  out.s1 = 1
  out.s2 = 2
  out.s3 = 3
  out.s0 = 4
  return out
end
```

Here, the setmetatable function call has it so the class the object is derived from, self in the code, is whatever class we are calling the function in. If we're calling this method from the xoshiro128 class, then self will be xoshiro128. If we're calling this method from the xoSeed class, then self is xoSeed.

## **Multiple** parents

Since the \_\_index member of a metatable can be either a table or a function, we can have multiple parents for a class in Lua. Let's see how that would look. Note that the xoshiro128 class is the same as it was before:

```
xoshiro128 = \{\}
xoshiro128.__index = xoshiro128
function xoshiro128:init()
  out = {}
  setmetatable(out, self)
  out.s1 = 1
  out.s2 = 2
  out.s3 = 3
  out.s0 = 4
  return out
end
function xoshiro128:next()
  local result = self.s1 * 5
  result = result % 4294967296 -- Keep number 32-bit
  result = bit32.rrotate(result,25) -- 7-bit left shift in reference code
  result = result * 9
  result = result % 4294967296
  local t = bit32.lshift(self.s1, 9)
  self.s2 = bit32.bxor(self.s2,self.s0)
  self.s3 = bit32.bxor(self.s3,self.s1)
  self.s1 = bit32.bxor(self.s1,self.s2)
  self.s0 = bit32.bxor(self.s0,self.s3)
  self.s2 = bit32.bxor(self.s2,t)
  self.s3 = bit32.rrotate(self.s3,21)
  return result
end
seeder = {}
seeder.__index = seeder
function seeder:seed(s)
  s = s \% 4294967296
  self.s0 = bit32.bxor(s,0x55555555)
  self.s1 = (s * 37 + s * 3 + 1009) % 4294967296
  self.s2 = (s * 223 + s * 7 + 1229) % 4294967296
  self.s3 = (s * 947 + bit32.bxor(s,0xAAAAAAAA)) % 4294967296
  return true
end
mix={}
mix.__index = function(self,element)
  if xoshiro128[element] then
   return xoshiro128[element]
  end
  if seeder[element] then
    return seeder[element]
  end
  return nil
end
setmetatable(mix, mix)
x = mix:init()
x:seed(12345)
for a=1,8 do print(string.format("%08x",x:next())) end
```

## **REGULAR EXPRESSIONS**

In the chapter on strings, we mentioned regular expressions. Let's look at those in more detail.

To review, here's an example of string.gsub:

```
a = "Hello for the world."
b = "Life is good. Life is amazing!"
a = a:gsub("Hello","Love")
b = b:gsub("Life","Love")
print(a,b)
```

At the point, the output is "Love for the world." and "Love is good. Love is amazing!".

What if we could simply replace the first word in a given sentence with the word Love? That is where *regular expressions* come in; they allow a number of different strings to match a given *pattern*. For example, here's the Lunacy regular expression which means "the first word in a sentence":

```
%.%S*%w+
```

In more detail:

- "%." means "the '.' character"
- "%s\*" means "any number, including zero, of spaces, tabs, or other whitespace characters"
- "%w+" means "one or more letters and/or numbers"

#### In particular:

- "%." means "the literal '.' character"
- "%s" means "any whitespace character (space, tab, etc.)"
- "\*" means "zero or more instances of the character (or character type) we just saw"
- "%w" means "any letter or number"
- "+" means "one or more instances of the previous character (or character type)"

So, let's see this in action:

```
b = "Life is good. Life is amazing!"
b = b:gsub("%.%s*%w+","Love")
print(b)
```

We get this:

Life is goodLove is amazing!

This is a start but there are some problems:

- We do not replace the word at the beginning of the string
- We do not preserve the punctuation starting the sentence

So, let's see if we can account for these. Let's look at this regular expression:

```
^%w+
```

This regular expression means "the first word in the string":

- "^" means "the beginning of the string"
- "%w" means "any letter or number"
- "+" means "one or more instances of the previous character (or character type)"

```
b = "Life is good. Life is amazing!"
b = b:gsub("^%w+","Love")
print(b)
```

Gives us this:

```
Love is good. Life is amazing!
```

So now we need another regular expression which let's us capture words at the beginning of sentences, while preserving the punctuation which begins a sentence:

```
(%.%s*)%w+
```

The part of the regular expression between the parenthesis is noted and "%1" is replaced with the part between the first set of parenthesis in the second argument to gsub, e.g.

```
b = "Life is good. Life is amazing!"
b = b:gsub("(%.%s*)%w+","%1Love")
print(b)
```

Gets this:

```
Life is good. Love is amazing!
```

It would also be nice if we could have more characters than "." matched, because sentences sometimes end with "?" or "!". Let's look at how we can match multiple characters:

```
[%.%?!]
```

- The left square bracket "[" indicates we begin a set of multiple possible characters and/or character types which the regular expression can match against.
- "%." indicates the literal "." character. We need the "%" character because "." otherwise indicates that any character can match that position in a regular expression.
- "%?" likewise matches against the literal "?" character. We need "%" here because "?" matches against zero or one occurrences of the previous character (or character group) in the regular expression.

- "!" does not have any special meaning in Lunacy regular expressions. However, should we forget this when formulating regular expression, "%!" matches against a literal "!" as does just "!".
- While not used in the above regular expression, we use "%" to match against "%".
- "]" ends the set of possible characters we can match against.

Let's see the above regular expression in action:

```
a = "!@*$.?%^&"
a = a:gsub("[%.%?!]","#")
print(a)
```

This outputs:

```
#@*$##%^&
```

As one can see, the ".", "?", and "!" characters are all replaced with "#".

That in mind, let's replace every word at the beginning of sentences with "Love". Let's first look at the Lunacy code which does this:

```
a = "Life is good. Someone is nice! What is amazing? Iron is strong."
a = a:gsub("^%w+","Love") -- Make first word on line "Love"
a = a:gsub("([%.%?!]%s*)%w+","%1Love") -- Words at sentence start
print(a)
```

This outputs:

Love is good. Love is nice! Love is amazing? Love is strong.

#### The "." character

In regular expressions, the "." character matches against any possible character in the regular expression. For example, the regular expressions "Sp..k" matches against the words "Spook", "Speak", "Spork", and "Spock", but doesn't match against, say, "Splook" or "Spilt".

Example code:

```
a = "The Spook Speak Spork about Spock, Splook, and Split"
a = a:gsub("Sp..k","Spunk")
print(a)
```

Will output:

The Spunk Spunk Spunk about Spunk, Splook, and Split

Since anything in the form of S-p-any-any-k matches, but other patterns do not match against the "Sp...k" regular expression.