Part IA - Numbers and Sets Definitions

Lectured by A. G. Thomason

Michaelmas 2014

Introduction to number systems and logic

Overview of the natural numbers, integers, real numbers, rational and irrational numbers, algebraic and transcendental numbers. Brief discussion of complex numbers; statement of the Fundamental Theorem of Algebra.

Ideas of axiomatic systems and proof within mathematics; the need for proof; the role of counter-examples in mathematics. Elementary logic; implication and negation; examples of negation of compound statements. Proof by contradiction. [2]

Sets, relations and functions

Union, intersection and equality of sets. Indicator (characteristic) functions; their use in establishing set identities. Functions; injections, surjections and bijections. Relations, and equivalence relations. Counting the combinations or permutations of a set. The Inclusion-Exclusion Principle.

The integers

The natural numbers: mathematical induction and the well-ordering principle. Examples, including the Binomial Theorem. [2]

Elementary number theory

Prime numbers: existence and uniqueness of prime factorisation into primes; highest common factors and least common multiples. Euclids proof of the infinity of primes. Euclids algorithm. Solution in integers of ax + by = c.

Modular arithmetic (congruences). Units modulo n. Chinese Remainder Theorem. Wilson's Theorem; the Fermat-Euler Theorem. Public key cryptography and the RSA algorithm. [8]

The real numbers

Least upper bounds; simple examples. Least upper bound axiom. Sequences and series; convergence of bounded monotonic sequences. Irrationality of $\sqrt{2}$ and e. Decimal expansions. Construction of a transcendental number. [4]

Countability and uncountability

Definitions of finite, infinite, countable and uncountable sets. A countable union of countable sets is countable. Uncountability of R. Non-existence of a bijection from a set to its power set. Indirect proof of existence of transcendental numbers. [4]

Contents

1	Set	s, functions and relations	
	1.1	Sets	
	1.2	Functions	
	1.3	Relations	
2	Division		
	2.1	Euclid's Algorithm	
	2.2	Primes	
3	Counting and Integers		
	3.1	Combinations	
	3.2	Well-ordering and induction	
4	Modular arithmetic		
	4.1	Multiple moduli	
	4.2	Prime moduli	
	4.3	Public-key (Asymmetric) cryptography	
		4.3.1 RSA encryption	
5	Real numbers		
	5.1	Construction of natural numbers	
	5.2	Construction of integers	
	5.3	Construction of rationals	
	5.4	Construction of real numbers	
	5.5	Sequences	
	5.6	Series	
		5.6.1 Decimal expansions	
	5.7	Irrational numbers	
	5.8	Euler's number	
	5.9	Algebraic numbers	
6	Coı	ıntability	

1 Sets, functions and relations

1.1 Sets

Definition (Set). A set is a collection of stuff, without regards to order. Elements in a set are only counted once. e.g. If a=2, b=c=1, then $A=\{a,b,c\}$ has only two members.

Definition (Equality of sets). A is equal to B, written as A = B, if $\forall x (x \in A \Leftrightarrow x \in B)$, i.e. two sets are equal if they have the same elements.

Definition (Subsets). A is a *subset* of B, written as $A \subseteq B$ or $A \subset B$, if all elements in A are in B. i.e. $\forall x (x \in A \Rightarrow x \in B)$.

Definition (Intersection, union, set difference, symmetric difference and power set). Given two sets A and B, we define the following:

- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Set difference: $A \setminus B = \{x \in A : x \notin B\}$
- Symmetric difference: $A\Delta B = \{x : x \in A \text{ xor } x \in B\}$, i.e. the elements in exactly one of the two sets
- Power set: $\mathcal{P}(X) = \{X : X \subseteq P\}$, i.e. the set of all subsets

Definition (Ordered pair). An ordered pair (a, b) is a pair of two items in which order matters. Formally, it is defined as $\{a, \{a, b\}\}$. We have (a, b) = (a', b') iff a = a' and b = b'.

Definition (Cartesian product). Given two sets A, B, the Cartesian product of A and B is $A \times B = \{(a, b) : a \in A, b \in B\}$. This can be extended to n products, e.g. $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) : x, y, z \in \mathbb{R}\}$

1.2 Functions

Definition (Function/map). A function (or map) $f: A \to B$ is a "rule" that assigns, for each $a \in A$, precisely one element $f(a) \in B$. We can write $a \mapsto f(a)$. Formally, we say $f \subseteq A \times B$ such that $\forall a \in A$, there exists a unique $b \in B$ such that $(a,b) \in f$.

Definition (Injective function). A function f is *injective* if it hits everything at most once, i.e.

$$\forall x, y \in X(f(x) = f(y) \Rightarrow x = y)$$

Definition (Surjective function). A function is *surjective* if it hits everything at least once, i.e.

$$\forall y \in Y(\exists x \in X(f(x) = y))$$

Definition (Bijective function). A function is *bijective* if it is both injective and surjective. i.e. it hits everything exactly once. Note that a function has an inverse iff it is bijective.

Definition (Permutation (function)). A permutation of A is a bijection $A \to A$.

Definition (Composition of functions). The *composition* of two functions is a function you get by applying one after another. In particular, if $f: X \to Y$ and $G: Y \to Z$, then $g \circ f: X \to Z$ with $g \circ f(x) = g(f(x))$. Note that function composition in associative.

Definition (Image of function). If $f: A \to B$ and $U \subseteq A$, then $f(U) = \{f(u) : u \in U\}$.

f(A) is the *image* of A. We have f is surjective iff f(A) = B.

Definition (Pre-image of function). If $f: A \to B$ and $V \subseteq B$, then $f^{-1}(V) = \{a \in A : f(a) \in V\}$.

Definition (Identity map). The *identity map* $id_A : A \to A$ is defined as the map $a \mapsto a$.

Definition (Left inverse of function). Given $f: A \to B$, a left inverse of f is a function $g: B \to A$ such that $g \circ f = \mathrm{id}_A$.

Definition (Right inverse of function). Given $f: A \to B$, a right inverse of f is a function $g: B \to A$ such that $f \circ g = \mathrm{id}_B$.

Definition (Inverse of function). An *inverse* of f is a function that is both a left inverse and a right inverse. It is written as $f^{-1}: B \to A$. It exists if f is bijective.

1.3 Relations

Definition (Relation). A relation R on A specifies that some elements of A are related to some others. Formally, $R \subseteq A \times A$. We write aRb iff $(a,b) \in R$.

Definition (Reflective relation). A relation R is reflective if $\forall a(aRa)$.

Definition (Symmetric relation). A relation R is symmetric iff $\forall a, b (aRb \Leftrightarrow bRa)$.

Definition (Transitive relation). A relation R is transitive iff $\forall a, b, c(aRb \lor bRc \Rightarrow aRc)$.

Definition (Equivalence relation). A relation is an *equivalence relation* if it is reflexive, symmetric and transitive. e.g. (i) and (vi) in the above examples are equivalence relations.

Definition (Partition of set). A partition of a set X is a collection of subsets A_{α} of X such that each element of X is in exactly one of A_{α} .

Definition (Equivalence class). If \sim is an equivalence relation, then the *equivalence class* [x] is the set of all elements that are related via \sim to x.

Definition (Quotient map). The quotient map q maps each element in A to the equivalence class containing a, i.e. $a \mapsto [a]$. e.g. $q(8\heartsuit) = {\heartsuit}$.

2 Division

2.1 Euclid's Algorithm

Definition (Factor of integers). Given $a, b \in \mathbb{Z}$, we say a divides b, a is a factor of b or a|b if $\exists c \in \mathbb{Z}(b=ac)$. For any $b, \pm 1$ and $\pm b$ are always factors of b. The other factors are called proper factors

Definition (Common factor of integers). A common factor of a and b is a number $c \in \mathbb{Z}$ such that c|a and c|b.

Definition (Highest common factor/greatest common divisor). The *highest* common factor or greatest common divisor of two numbers $a, b \in \mathbb{N}$ is a number $d \in \mathbb{N}$ such that d is a common factor of a and b, and if c is also a common factor, c|d.

Clearly if the hcf exists, it must be the largest common factor, since all other common factors divide it, and thus necessarily unique.

2.2 Primes

Definition (Prime number). $p \in \mathbb{N}$ is a *prime* if p > 1 and the only factors of p are ± 1 and $\pm p$.

Definition (Coprime numbers). We say a, b are coprime if (a, b) = 1.

3 Counting and Integers

Definition (Indicator function/characteristic function). Let X be a set. For each $A \in X$, the *indicator function* or *characteristic function* of A is the function $i_A: X \to \{0,1\}$ with $i_A(x) = 1$ if $x \in A$, 0 otherwise. It is sometimes written as Y_A .

3.1 Combinations

Definition (Combination $\binom{n}{r}$). There are $\binom{n}{r}$ subsets of $\{1, 2, 3, \dots, n\}$ of size r. The symbol is pronounced as "n choose r". Note: This is a definition of $\binom{n}{r}$, and does not specify the value of it.

3.2 Well-ordering and induction

Definition (Partial order). A partial order on a set is a reflective, antisymmetric $((aRb) \land (bRa) \Leftrightarrow a = b)$ and transitive relation.

Definition (Total order). A *total order* is a partial order where $\forall a \neq b$, exactly one of aRb or bRa holds.

Definition (Well-ordered total order). A total order is well-ordered if every non-empty subset has a minimal element, i.e. if $S \neq \emptyset$, then $\exists m \in S$ such that $x < m \Rightarrow x \notin S$.

4 Modular arithmetic

Definition (Modulo). If $a, b \in \mathbb{Z}$ have the same remainder after division by m, i.e. n|(a-b), we say a and b are congruent modulo m, and write

$$a \equiv b \pmod{m}$$

We can also interpret as a and b have the same last digit when written in base m.

Definition (Unit (modular arithmetic)). u is a unit if $\exists v$ such that $uv \equiv 1 \pmod{m}$.

4.1 Multiple moduli

Definition (Euler's totient function). We denote by $\phi(m)$ the number of integers $a, 0 \le a \le m$, such that (a, m) = 1, i.e. a is a unit (mod m). Note $\phi(1) = 1$.

4.2 Prime moduli

Definition (Quadratic residues). The *quadratic residues* are the "squares" mod p, i.e. $1^2, 2^2, \dots, (p-1)^2$.

4.3 Public-key (Asymmetric) cryptography

4.3.1 RSA encryption

5 Real numbers

5.1 Construction of natural numbers

Definition (Natural numbers). Formally, \mathbb{N} is defined by Peano's axioms. \mathbb{N} is a set with a special element 1 and a map $S: \mathbb{N} \to \mathbb{N}$ that maps n to its "successor" (intuitively, it is +1) such that:

- (i) $\forall n(S(n) \neq 1)$
- (ii) $\forall n, m (n \neq m \Rightarrow S(n) \neq S(m))$
- (iii) $\forall A \subseteq \mathbb{N}\{[(1 \in A) \land (n \in A \Rightarrow S(n) \in A)] \Rightarrow (A = \mathbb{N})\}$ (Equivalent to weak induction)

Then write 2 = S(1), 3 = S(2) etc. We can define addition and multiplication recursively and show all rules of arithmetic are satisfied by induction.

This can be explicitly constructed by defining $1 = \emptyset$, $2 = \{1\}$, $3 = \{1, 2\}$ etc. and $S(n) = \{n\} \cup n$ in general.

5.2 Construction of integers

Definition (Integers). \mathbb{Z} is obtained from \mathbb{N} by allowing subtraction. Formally, we can have \mathbb{Z} to be the equivalence classes of $\mathbb{N} \times \mathbb{N}$ with $(a,b) \sim (c,d)$ iff a+d=b+c.

We write a for [(a,0)] and -a for $[(0,a)]^1$, and define (a,b)+(c,d)=(a+c,b+d) and $(a,b)\times(c,d)=(ac+bd,bd+ad)$ (since (a-b)(c-d)=(ac+bd)-(bd+ad)). We can check that these are well-defined.

5.3 Construction of rationals

Definition (Rationals). \mathbb{Q} is obtained from \mathbb{Z} by allowing division. Formally, we can have Q to be the equivalence classes of $\mathbb{Z} \times \mathbb{N}$ with $(a, b) \sim (c, d)$ iff ad = bc.

We write $\frac{a}{n}$ for [(a,b)]. We can define (a,b) + (c,d) = (ad + bc,bd) and $(a,b) \times (c,d) = (ac,bd)$. We can check that these are well-defined and satisfies the usual properties.

Definition (Totally ordered field). F with $+, \times, \leq$ is a totally ordered field if

- (i) F is an additive abelian group with identity 0.
- (ii) $F \setminus \{0\}$ is a multiplicative abelian group with identity 1.
- (iii) Multiplication is distributed over addition: a(b+c) = ab + ac.
- (iv) \leq is a total order.
- (v) $\forall p, q, r \in F, p \leq q \Rightarrow p + r \leq q + r$
- (vi) $\forall p, q, r \in F, p \le q, 0 \le r \Rightarrow pr \le qr$

¹Someone pointed out to me that according to the above definition of natural numbers, 0 doesn't exist. This problem can be solved either by defining $\mathbb N$ to contain 0, or write a as [(a+1,0)] etc. However, for the sake of consistency and clarity of expression, I'll keep the definitions this way.

Note: In any ordered field, 0 < 1, since we know that $0 \ne 1$ by definition and if 1 < 0, adding -1 to both sides, we obtain 0 < -1. Since 0 < -1 and 0 < -1, then $0 < (-1)^2 = 1$. Contradiction.

5.4 Construction of real numbers

Definition (Least upper bound/supremum and greatest lower bound/infimum). $s \in X$ is a *least upper bound* (or *supremum*) for the set $S \subseteq X$, denoted as $s = \sup X$, if

- (i) s is an upper bound for S, i.e. $\forall x \in S(x \leq s)$.
- (ii) if t is any upper bound for S, then $s \leq t$.

Similarly, $s \in X$ is a greatest lower bound (or infimum) if s is a lower bound and any lower bound $t \leq s$.

Definition (Real numbers). The *real numbers* is a totally ordered field containing \mathbb{Q} that satisfies the least upper bound axiom.

Definition (Dedekind cut). A *Dedekind cut* of \mathbb{Q} is a set of partition of \mathbb{Q} into L and R such that $\forall l \in L, r \in R(l < r)$ and R has no minimum, i.e. a partition that splits \mathbb{Q} into a "left" and "right" sets.

Definition (Closed and open intervals). A closed interval [a,b] with $a \le b \in R$ is the set $\{x \in \mathbb{R} : a \le x \le b\}$ n An open interval (a,b) with $a \le b \in R$ is the set $\{x \in \mathbb{R} : a < x < b\}$.

5.5 Sequences

Definition (Sequence). A sequence is a function $\mathbb{N} \to \mathbb{R}$. If a is a sequence, instead of $a(1), a(2), \dots$, we usually write a_1, a_2, \dots .

Definition (Limit of sequence). The sequence $(a_n)_{n=1}^{\infty}$ tends to $l \in \mathbb{R}$ as n tends to infinity if and only if

$$\forall \epsilon > 0\{\exists N \in \mathbb{N}[\forall n \ge N(|a_n - l| < \epsilon)]\}$$

If a_n tends to l as n tends to infinity, we write $a_n \to l$ as $n \to \infty$; $\lim_{n \to \infty} a_n = l$; or a_n converges to l.

Definition (Convergence of sequence). The sequence a_n converges if there exists an l such that $a_n \to l$. The sequence diverges if it doesn't converge.

Definition (Subsequence). A subsequence of (a_n) is $a_{g(n)}$ where $g: \mathbb{N} \to \mathbb{N}$ is strictly increasing. e.g. $a_2, a_3, a_5, a_7 \cdots$ is a subsequence of a_n .

5.6 Series

Definition (Series and partial sums). Let a_n be a sequence. Then $s_m = \sum_{n=1}^m a_n$ is the *mth partial sum* of the *series* whose *nth* term is a_n . We write

$$\sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} s_m$$

If the limit exists.

5.6.1 Decimal expansions

Definition (Decimal expansion). Let (d_n) be a sequence with $d_n \in \{0, 1, \dots 9\}$. Then $\sum_{n=1}^{\infty} \frac{d}{10^n}$ converges to a limit r with $0 \le r \le 1$ since the partial sums s_m are increasing and bounded by $\sum \frac{9}{10^n} \to 1$ (geometric series). We say $r = 0.d_1d_2d_3\cdots$, the decimal expansion of r.

5.7 Irrational numbers

Definition (Irrational number). Numbers in $\mathbb{R} \setminus \mathbb{Q}$ are *irrational*.

Definition (Periodic number). A decimal is *periodic* if after a finite number ℓ of digits, it repeats in blocks of k for some k, i.e. $d_{n+k} = d_n$ for $n > \ell$.

5.8 Euler's number

Definition (Euler's number).

$$e = \sum_{i=0}^{\infty} \frac{1}{i!} = 1 + \frac{1}{i!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

5.9 Algebraic numbers

Definition (Algebraic and transcendental numbers). An *algebraic number* is a root of a polynomial with integer coefficients (or rational coefficients). A number is *transcendental* if it is not algebraic.

6 Countability

Definition (Finite set and cardinality of set). The set A is *finite* if there exists some $n \in \mathbb{N}_0$ and a bijection $A \to [n]$. The *cardinality* or *size* of A, written as |A|, is n. By corollary, this is well-defined.

Definition (Countable set). A set A is *countable* if A is finite or there is a bijection between A and \mathbb{N} . A set A is *uncountable* if A is not countable.