الزوايا المكونة من متوازيين وقاطع

I تذكير:

1) - الزاويتان المتتامتان والزاويتان المتكاملتان:

 $^\circ$ تكون زاويتان متتامتين إذا كان مجموع قياسهما $^\circ$ 00. $^\circ$ تكون زاويتان متكاملتين إذا كان مجموع قياسهما $^\circ$ 180.

2) - الزاويتان المتحاذيتان:

تكون زاويتان متحاذيتين إذا كان:

- 🛭 لهما نفس الرأس .
- n لهما ضلع مشترك.
- ¤ تقاطعهما هو الضلع المشترك.

* مثال :

و کا \hat{O} و کا \hat{O} و کارویتنا متحاذیتان \hat{O}

II الزاويتان المتقابلتان بالرأس : (1 - 1)

نسمي الزاويتين $A\hat{O}C$ و $B\hat{O}D$ و O و زاويتان متقابلتان بالرأس $B\hat{O}C$ و كذلك الزاويتين $A\hat{O}D$ و D

2) - خاصية :

زاويتان متقابلتان بالرأس تكونان متقايستين

III الزوايا المكونة من متوازيين وقاطع:

1) - تعاریف:
أ) - الزاویتان المتبادلتان داخلیا:

. (D2) و (D2) مستقيمان متقاطعان و (L) قاطع لهما على التوالي في (D2)

: $A\hat{B}F$ و $E\hat{A}B$ نسمي الزاويتين زاويتان متبادلتان داخليا

ب) - الزاويتان المتناظرتان:

. (D2) و (D2) مستقيمان متقاطعان و (L) قاطع لهما على التوالي في (D2)

: $F\hat{B}C$ و $E\hat{A}B$ نسمي الزاويتين زاويتان متناظرتان

: حصائے – (2

أ) - الخاصية المباشرة للزاويتين المتبادلتين داخليا:

. (D2) و (D2) مستقيمان متوازيان و (L) قاطع لهما على التوالى في (D2)

 $E\hat{A}B = F\hat{B}A$: نلاحظ أن

نقول إذن:

إذا كان مستقيمان متوازيين فإنهما يحددان مع كل قاطع لهما زاويتان متبادلتان داخليا متقايستان

. [CD] خارج القطعة (CD) خارج القطعة (CD) مثال : $B\hat{A}D = A\hat{D}M$. لنبين أن : $B\hat{A}D = A\hat{D}M$

نعتبر المستقيمين (AB) و (CD) و القاطع لهما (AD) . لدينا : \hat{ADM} و \hat{BAD} زاويتان متبادلتان داخليا . و نعلم أن الرباعي ABCD متوازي الأضلاع , إذن : (CD) // (AB) (حسب التعريف) . و منه فإن : $\hat{BAD} = \hat{ADM}$

ب) - الخاصية المباشرة للزاويتين المتناظرتين:

. (D2) و (D2) مستقيمان متوازيان و (L) قاطع لهما على التوالي في (D2)

 $E\hat{A}B = F\hat{B}G$: نلاحظ أن

نقول إذن:

إذا كان مستقيمان متوازيين فإنهما يحددان مع كل قاطع لهما زاويتان متناظرتان متقايستان

* مثال : ABC مثلث متساوي الأضلاع و (AF) مستقيم يمر من A و يوازي المستقيم (BC) . و E نقطة E نقطة E نقطة E .

ج) - الخاصية العكسية للزاويتين المتبادلتين داخليا و الزاويتين المتناظرتين:

إذا حدد مستقيمان مع قاطع لهما زاويتين متبادلتين داخليا متقايستان أو زاويتين متناظرتين متقايستان فإنهما يكونان متوازيين

 $B\hat{A}C=80^\circ$. $B\hat{A}C=80^\circ$. $B\hat{A}C=80^\circ$. $B\hat{A}E=50^\circ$. $B\hat{A}E=50^\circ$. $B\hat{A}E=50^\circ$. (AE) . (AE) . (AE) . (BC) . . (AE) . (BC) .

لدينا ABC مثلث متساوي الساقين رأسه A.

$$A\hat{B}C = A\hat{C}B = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}$$
 : إذن

نعتبر المستقيمين (EA) و (BC) و القاطع لهما (AB).

لدينا : $A\hat{B}C$ و $A\hat{B}C$ زاويتان متبادلتان داخليا .

: فإن
$$A\hat{B}C = 50^{\circ}$$
 و بما أن $B\hat{A}E = 50^{\circ}$ فإن العلم أن

. $B\hat{A}E = A\hat{B}C$ (BC) // (AE) : ومنه فإن

IV _ خاصيات التوازي و التعامد: 1) - الخاصية الأولى:

إذا كان مستقيمان متوازيين فإن كل مستقيم عمودي على أحدهما يكون عموديا على الآخر

$$(D_2) \perp (L) :$$
 فإن $(D_2) / (D_1) \ (D_1) \perp (L) \$ فإن $(D_1) \perp (L) \$

إذا كان مستقيمان متعامدين فإن كل مستقيم عمودي على أحدهما يكون موازيا للآخر.

$$(D_2)$$
 $//$ (L) : فإن (D_2) \perp (D_1) $+$ (D_1) \perp (D_1) \perp (D_1) \perp (D_1)

