ENCHAÎNEMENTS D'OPÉRATIONS

I) PRIORITÉ ENTRE LES OPÉRATIONS

1) L'ordre des calculs

Quand plusieurs opérations se suivent dans une expression, le résultat dépend-il de l'ordre dans lequel on fait les calculs ?

Ex:

$$A = (12-6) + 5$$
 $B = 12 - (6+5)$
 $A = 6 + 5$ $B = 12 - 11$
 $A = 11$ $\neq B = 1$

$$C = (5 \times 4) - 3$$
 $D = 5 \times (4 - 3)$
 $C = 20 - 3$ $D = 5 \times 1$
 $C = 17$ \neq $D = 5$

2) Les règles de priorités

Propriété:

Par convention, nous ferons toujours les calculs dans le même ordre :

- 1) **D'abord** les calculs à l'intérieur des parenthèses (en commençant par les parenthèses les plus intérieures)
- 2) **Ensuite seulement** les multiplications et les divisions (de la gauche vers la droite)
- 3) Puis **en dernier** les additions et les soustractions (de la gauche vers la droite)

Ex:

$$A = 38 - 7 + 4$$
 $B = 32 : 8 \times 2$ $C = 5 + 6 \times 3 - 4 : 2$ $A = 31 + 4$ $B = 4 \times 2$ $C = 5 + 18 - 2$ $C = 23 - 2$ $C = 21$

$$D = 10 \times (2 + 3 \times 5)$$

$$D = 10 \times (2 + 15)$$

$$E = 3 \times [2 + (3 \times 5 - 12 + 3 \times 6)]$$

$$E = 3 \times [2 + (15 - 12 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

$$E = 3 \times [2 + (3 + 18)]$$

Remarques:

- Pour écrire une division « en ligne », il y a trois symboles : ÷ /
- Avec un peu d'habitude, vous verrez que cette convention permet d'éviter beaucoup de parenthèses et de rendre les calculs plus lisibles.

3) Cas des fractions

Propriété:

Quand une division est écrite avec une barre de fraction,

- 1) On commence par calculer le numérateur et le dénominateur
- 2) On **termine** par la division

Pour écrire une fraction « en ligne », il faut donc ajouter des parenthèses :

Fraction	Écriture « en ligne »
$A = \frac{15 + 3}{4 - 1}$	A = (15 + 3) : (4 - 1)
$A = \frac{18}{3}$	A = 18 : 3
A = 6	A = 6

p44: 20

p48: 51, 52

4) Produit ou somme?

On dit d'une expression qu'elle est une somme, une différence, un produit ou un quotient, selon le dernier calcul à effectuer :

$$A = 2 \times 3 + 5$$
 $B = (8 - 2) \times 3$
 $A = 6 + 5$ \leftarrow somme $B = 6 \times 3$ \leftarrow produit $A = 11$ $B = 18$

oral:

p46: 28, 29, 30

p46: 31, 32, 33

p47: 37, 39

p49: 57, 58, 60

II) QUELQUES ASTUCES

1) Additions successives

Propriété:

Dans une suite d'additions, on peut changer l'ordre des nombres et les regrouper.

$$A = 7,8 + 0,92 + 2,2 + 0,04 \times 2$$

$$A = 7,8 + 0,92 + 2,2 + 0,08$$

$$A = (7,8 + 2,2) + (0,92 + 0,08)$$

$$A = 10 + 1$$

$$A = 11$$

Attention : ce n'est plus vrai dès qu'il y a des soustractions !

2) Multiplications successives

Propriété:

Dans une suite de multiplications, on peut changer l'ordre des nombres et les regrouper.

$$A = 4 \times 7 \times 2,5 - 0,5 \times 12,5 \times 2$$

 $A = 4 \times 2,5 \times 7 - 0,5 \times 2 \times 12,5$
 $A = 10 \times 7 - 1 \times 12,5$
 $A = 70 - 12,5$
 $A = 57,5$

Attention : ce n'est plus vrai dès qu'il y a des divisions !

p42: 6, 7

3) Additions répétées

Rappel: La multiplication est une « addition répétée ».

Donc 102×23 revient à additionner 102 fois le nombre 23 ou encore à additionner 23 fois le nombre 102.

Conséquence:

A = 2346

$$A = 102 \times 23$$

$$B = 78 \times 99$$

$$A = (100 + 2) \times 23$$
 $B = 78 \times (100 - 1)$

$$A = 100 \times 23 + 2 \times 23$$
 $B = 78 \times 100 - 78$

$$A = 2300 + 46$$
 $B = 7800 - 78$

$$B = 7722$$

$$C = 57 \times 5,15 + 43 \times 5,15$$
 $D = 6,2 \times 41 + 41 \times 3,8$

$$C = (57 + 43) \times 5,15$$
 $D = 41 \times (6,2 + 3,8)$

$$C = 100 \times 5,15$$
 $D = 41 \times 10$

$$C = 515$$
 $D = 410$