المملكة المغزيية وزارة التزبية الوطنية والتعليم العالي وتكوين الأطر والبحث العلمي قطاع التعليم المدرسي الاكاديمية الجهوية المتزبية والتكوين لجهة الدارالبيضاء الكبرى

الامتحان التجريبي لمادة الرياضيات السنة الثانية بكالوريا شعبة العلوم الرياضية معلوم المدين عدد 2018

المدة : 4 ساعات المعامل 9 الصلحة 1 1

التمرين الأول : (3,5 ن)

المستوى العقدي منسوب الى معلم متعامد ممنظم مباشر (O, \vec{u}, \vec{v}) و m عبد عقدي $(E): z^2 - (m-i \ m+1-i)z - i | m-i |^2 = 0$ المعادلة: $(E): z^2 - (m-i \ m+1-i)z - i | m-i |^2$

 $\Delta = (m+i \, m-1-i)^2 : \text{ as all the proof of } 0.5$

0,5 ب- حل في آل المعادلة (E).

رد المعادلة (E) ع- بين أن m ليس حلا للمعادلة

 $\dot{z}_2=\dot{1}-im$ و $z_1=m-i$ و نضع $z_1=m-i$ و غير كل مايلي نفترض أن $z_2=\dot{1}-im$

 $B(z_2)$ و $A(z_1)$ لنقطتين العقدي العقدي

OB = OA وأن $B \neq O$ وأن $A \neq O$

5,0 مبه حدد مجموعة النقط M(m) بحيث يكون (OB) لـ (OB)

و مستقيمية. M(m) تكون النقط O و A و B مستقيمية.

 $m=e^{i\frac{\pi}{3}}$ في الحالة $\left(\overrightarrow{OA},\overrightarrow{OB}\right)$ في الحالة الموجهة الموجهة $\left(\overrightarrow{OA},\overrightarrow{OB}\right)$

التمرين الثاني: (3,5 ن)

0,5

منعدم. عدد عقدي غير منعدم. $(E_a):2z^2+a(1-i)z+a^2(1-i)=0$ عدد عقدي غير منعدم. $(E_a):2z^2+a(1-i)z+a^2(1-i)=0$

. (a+3ia)² احسب (1 0,5

. (E_a) عدد z_2 و z_1 عدد (2 ملى المعاذلة z_2

. α عمدة كل من z_2 و بدلالة معيار و عمدة z_3

، $(O, \overline{u}, \overline{v})$ المنسوب إلى معلم متعامد ممنظم مباشر (P) المنسوب الى معلم متعامد ممنظم المعتدى II

	-	
ia و a اللتيين لحقيهما على التوالي a و a اللتيين الحقيهما على التوالي a		
1) بين أن المثلث OAB قائم الزاوية و متماوي الساقين.	0,5	
$z'=(1+i)z-i\alpha$ بحيث: $M(z)$ بالنقطة $M(z)$ بالنقطة F بحيث: E النطبيق الذي يربط كل نقطة (2)		
ا- نفترض أن $M \neq A$ بين أن $AM' = \sqrt{2}AM$ وحدد قياسا للزاوية الموجهة $\left(\overline{AM}, \overline{AM'}\right)$.	0,5	
$\sqrt{2}$ لتكن (C) الدائرة التي مركزها A و شعاعها $\sqrt{2}$.	0,5	
بین ان صورة (C) بالتطبیق F هي دائرة (C') محددا مرکزها و شعاعها.		
	1	
$h=r\circ F$ التطبيق $h=r\circ F$ التطبيق A و زاويته A	0,5	
حدد الصيغة العقدية للتطبيق لم و استنتج طبيعته عناصره المميزة.		
کند اندنید انجایی بر و است. کنید	<u> </u>	
رين الثالث :(3 ن)		
1) بين أن 163 عدد أولي	0.25	
(E): $13x-162y=1$ المعادلة: \mathbb{Z}^2 المعادلة: (2)		
(E) حدد حلا خاصا للمعادلة	0,25	
ب- حل المعادلة (E)	0,5	
\mathbb{Z} نعتبر في \mathbb{Z} النظمة : $\begin{cases} x \equiv a & [13] \\ x \equiv b & [162] \end{cases}$: (3) نعتبر في \mathbb{Z} النظمة : (3)		
$x_0 = 325b - 324a$ هو حل للنظمة (S) هو حل النظمة (S)	0.25	
$(S) \Longleftrightarrow x \equiv x_0 $ [2106] $\longrightarrow x \equiv x_0 $ (2106) $\longrightarrow x \equiv x_0 $	0.5	
b=3 و $a=2$ النظمة (S) في الحالة $a=2$	0.25	
$x^{25} \equiv 3$ [163] يكن x عددا من \mathbb{Z} بحيث: (4		
$x = 3^{13}$ [163] ثم أن: $x \wedge 163 = 1$ ثم أن: $x \wedge 163 = 1$	0.5	
$x^{25} \equiv 3 [163] \iff x \equiv 3^{13} [163]$ ب- استنتج آن: $x^{25} \equiv 3 [163]$	0.5	
ألة : (10 ن)		
اليكن n من ۳۰ اليكن n من ۳۰		
$\begin{cases} f_n(x)=x^2e^{\frac{-n^2}{x^2}} \ , \ x\neq 0 \end{cases}$ نعتبر الدالة العددية f_n للمتغير الحقيقي x المعرفة بما يلي : $f_n(0)=0$		

الصفحة	عبة: العلوم الرياضية الامتحان التجريبي تمادة الرياضيات	الشد
۴	جزء الأول : نضع: $f=f_1$ وليكن (C) منحنى الدالة f في معلم متعامد ممنظ	Л
	f تحقق من أن الدالة f زوجية f	0.25
	$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} f(x) \lim_{x \to \infty} f(x)$	0.5
	+∞ بجوار (C) بجوار للانهائي للمنحنى	0.25
	3) أ- بين أن f متصلة على اليمين في الصفر	0.25
	ب- بين أن f قابلة للاشتقاق على اليمين في الصفر وأول النتيجة هندسيا	0.5
	$\mathbb R$ على اعط جدول تغيرات الداله f على	0.5
	$g_n(x) = x^2 - n^2$ نضع: \mathbb{R} من \mathbb{R} و لكل x من \mathbb{R} نضع: \mathbb{R}	
	$(\forall x \in \mathbb{R}) \ e^x \ge x+1 : ابین آن:$	0.25
	$(\forall n \in \mathbb{N}^*)(\forall x \in \mathbb{R})$ $f_n(x) \ge g_n(x)$: $-$	0.5
	$\lim_{x \to +\infty} (f_n(x) - g_n(x)) = 0 \Rightarrow = 0$	0.5
	(C) ارسم في نفس المعلم منحنى الدالة g_1 و المنحنى (G)	1
	الجزء الثاني:	
$f_n(u_n) =$	1) أ- بين أنه لكل n من \mathbb{N}^* يوجد عدد حقيقي وحيد u موجُب قطعا بحيث: 1	1
	$(\forall n \in \mathbb{N}^*)$ $u_n > 1$: نات تحقق من أن $u_n > 1$	0.25
	$(\forall n \in \mathbb{N}^* - \{1\})$ $u_n > \frac{n}{\sqrt{2 \ln n}}$: ج- ہیں أن:	0.5
	$(u_n)_{n\geq 1}$ aultirall aging -3	0.25
	$(\forall n \in \mathbb{N}^*)$ $2(u_n)^2 \ln(u_n) = n^2$: (2	0.25
	$(\forall n \in \mathbb{N}^*)$ $\ln 2 + 2 \ln (u_n) + \ln (\ln (u_n)) = 2 \ln n$ φ	0.25
ž.	$\lim_{n \to \infty} \frac{\ln(u_n)}{\ln n} = 1 \qquad : $	0.5
	الجزء الثالث:	
	$g(x) = \int_0^{\sqrt{x}} f(t)dt$: لكل n من \mathbb{N}^* نعتبر الدالة العددية g بحيث	
	\mathbb{R}^+ معرفة على g معرفة على (1	0.25
	\mathbb{R}^{+*} و الدالة g قابلة للاشتقاق على \mathbb{R}^{+*} واحسب $g'(x)$ لكل g من (2	0.5
×	$(\forall x \in \mathbb{R}^{+\!$	0.5
9	$\lim_{x \to \infty} \frac{g(x)}{x} e^{-\frac{1}{x}} e^{-\frac{1}{x}} e^{-\frac{1}{x}}$	0.5
	$(\forall x \in \mathbb{R}^{+*})$ $0 \le g(x) \le \sqrt{x} f(\sqrt{x})$ ابین أن: (4	0.5
	ب- استنتج أن الدالة g قابلة للاشتقاق على اليمين في الصفر	0.25