实验数据处理——beta 吸收

姓名: 杨博涵 学号: PB20000328 实验日期: 2022年5月3日

1. 坪电压曲线

将原始数据的表 1 中的电压-计数曲线描点连线作图, 得到图 1

接下来的实验部分中取工作电压为 370V,正是坪区中心电压,于图中标出。 由图我们可以得到起始电压大约为 290V, $V_1=320V, N_1=4777, V_2=430V, N_2=5043$ 。

坪长为
$$V_2 - V_1 = 110V$$
,坪斜 $T = \frac{5043 - 4777}{4777 * 110V} * 100\% = 0.051\% * V^{-1}$

2. 测量铝片的质量厚度

将表 2 的数据按照公式 $d = \frac{m}{ab}$ 计算出 5 组结果,并计算平均值,填入表 2-1

质量(g)	1.49	1.62	1.54	1.57	1.69
长度(cm)	6.46	6.60	6.31	6.29	6.63
宽度(cm)	4.80	5.09	5.10	5.20	5.21
质量厚度	0.0480	0.0482	0.0479	0.0480	0.0489
(g/cm^2)					
平均质量厚度			0.0482		
(g/cm^2)					

3. 铝片对 β 射线的吸收曲线

工作电压为 370V。

本底计数(300s): 112 本底强度: $I_1 = \frac{112}{300s} = 0.373s^{-1}$

将强度扣除本底强度后的净强度合并填入表 3-1 中

铝片数	0	1	2	3	4	5	6	7	8
质量厚度	0	0.0482	0.0964	0.1446	0.1928	0.2410	0.2892	0.3374	0.3856
(g/cm^2)									
计数	2854	2603	2551	2715	2602	1902	1264	1169	1148
时间(s)	45	45	55	70	85	75	65	75	110
强度(s ⁻¹)	63.422	57.844	46.382	38.786	30.612	25.360	19.446	15.587	10.436
净强度(s-1)	63.049	57.471	46.009	38.413	30.239	24.987	19.073	15.214	10.063
I	0	-0.040	-0.137	-0.215	-0.319	-0.402	-0.519	-0.617	-0.797
$\log_{10} \frac{1}{I_0}$									

铝片数	9	10	11	12	13	14	15	16	17	18
质量厚度	0.4338	0.4820	0.5302	0.5784	0.6266	0.6748	0.7230	0.7712	0.8194	0.8676
(g/cm^2)										
计数	1336	1113	1139	1000	655	637	628	623	570	630
时间(s)	140	170	300	370	320	500	700	950	1000	1300
强度(s ⁻¹)	9.543	6.547	3.797	2.703	2.047	1.274	0.897	0.656	0.570	0.484
净强度(s ⁻¹)	9.170	6.174	3.424	2.330	1.674	0.901	0.524	0.283	0.197	0.111
$\log_{10} \frac{I}{I_0}$	-0.837	-1.009	-1.265	-1.432	-1.576	-1.845	-2.080	-2.348	-2.505	-2.756

表 3-1

由上表作出 $d-log_{10}\frac{I}{I_0}$ 吸收曲线,如图 2

为了得到射程 R,取铝片数 13-18 的近似线性段进行线性拟合,得到图 3

方程为

$$y = -4.69235x + 1.31515$$

令 y=-4, 得

x = 1.1327

即射程为 $1.1327~g/cm^2$,代入经验公式可以得到 β 射线的最大能量为 2.34MeV。