# Improved upper bounds on key invariants of Erdös-Rényi numerical semigroups

Santiago Morales

University of California, Davis moralesduarte@ucdavis.edu

October 1, 2024

### Overview

- The probabilistic method
  - Threshold functions
- Numerical semigroups
- 3 Random numerical semigroups
- 4 Experiments
- Results
  - ullet Sumsets of random subsets of  $\mathbb{Z}_q$

The probabilistic method

# Erdös-Rényi model

#### Definition

The Erdös-Rényi model for random graphs G(n, p) is a probability space over the set of graphs on n labeled vertices determined by

$$\Pr[\{i,j\} \in G] = p$$

with these events mutually independent.

### Threshold functions

As n grows, we let p be a function of n, p = p(n).

#### Definition

r(n) is a threshold function for a graph property A if

- When  $p(n) \in o(r(n))$ ,  $\lim_{n \to \infty} \Pr[G(n, p(n)) \models A] = 0$ ,
- ② When  $r(n) \in o(p(n))$ ,  $\lim_{n\to\infty} \Pr[G(n,p(n)) \models A] = 1$ , or vice versa.

### Example

 $r(n) = \frac{\ln n}{n}$  is a threshold for having no isolated vertices.

### Second moment method

Let  $X \ge 0$  be a random variable with finite variance.

#### Theorem

$$\Pr[X=0] \le \frac{\operatorname{Var}[X]}{\operatorname{E}[X]^2}.$$

**Proof.** Apply Chebyschev's inequality with  $\lambda = \frac{\mu}{\sigma}$ :

$$\Pr[X=0] \le \Pr[|X-\mu| \ge \lambda \sigma] \le \frac{1}{\lambda^2} = \frac{\sigma^2}{\mu^2}.$$

### Corollary

If  $Var[X] \in o(E[X]^2)$ , X > 0 asymptotically almost always.

# Numerical semigroups

# Numerical semigroups

### Definition

A *numerical semigroup* is a subset  $S \subseteq \mathbb{N}$  for which

- **1**  $0 \in S$ ,
- ② S is closed under addition, i.e.  $a, b \in S$  implies  $a + b \in S$ , and
- **3** S has finite complement in  $\mathbb{N}$ .

### Example

 $\mathbb{N}$  and  $\mathbb{N}\setminus\{1\}$ . Subsets of  $\mathbb{N}$  which are not numerical semigroups include the set of even numbers, any finite set and  $\mathbb{N}_0\setminus\{2\}$ .

### Example

The *McNugget Semigroup* is the set of all non-negative integers which can be expressed as a sum of non-negative multiples of 6, 9 and 20.

# Generating sets

The McNugget semigroup is an example of a numerical semigroup which is *finitely generated*. This means that there exists a finite set  $A = \{a_1, \ldots, a_n\}$  such that  $S = \langle A \rangle$ , where

$$\langle A \rangle = \{c_1 a_1 + \cdots + c_n a_n : c_1, \ldots, c_n \in \mathbb{N}\}.$$

#### Theorem

All numerical semigroups are finitely generated.

#### Theorem

Let  $A \subseteq \mathbb{N}$  be a non-empty finite set. Then  $\langle A \rangle$  is a numerical semigroup if and only if  $\gcd(A) = 1$ .

# The McNugget semigroup

| 44 | 45 | 46 | 47 | 48 | 49 |
|----|----|----|----|----|----|
| 38 | 39 | 40 | 41 | 42 | 43 |
| 32 | 33 | 34 | 35 | 36 | 37 |
| 26 | 27 | 28 | 29 | 30 | 31 |
| 20 | 21 | 22 | 23 | 24 | 25 |
| 14 | 15 | 16 | 17 | 18 | 19 |
| 8  | 9  | 10 | 11 | 12 | 13 |
| 2  | 3  | 4  | 5  | 6  | 7  |
| -4 | -3 | -2 | -1 | 0  | 1  |

Figure: Visualization of the McNugget semigroup.

### **Invariants**

#### **Definition**

The *multiplicity* of S, denoted by m(S), is the smallest non-zero element of S.

#### Theorem

There exists a unique minimal generating set A with  $S = \langle A \rangle$ .

### Definition

The *embedding dimension* of S, denoted by e(S), is the cardinality of the minimal generating set of S.

# Numerical semigroup invariants

Note that

$$e(S) \leq m(S)$$
.

#### Definition

The *Apéry set* is defined as

$$\mathrm{Ap}(S) = \{ s \in S : s - m(S) \notin S \}.$$

#### **Definition**

The *Frobenius number* of S, denoted by F(S), is the largest element of the complement of S in  $\mathbb{N}$ .

# The McNugget semigroup

| 44 | 45 | 46 | 47 | 48 | 49 |
|----|----|----|----|----|----|
| 38 | 39 | 40 | 41 | 42 | 43 |
| 32 | 33 | 34 | 35 | 36 | 37 |
| 26 | 27 | 28 | 29 | 30 | 31 |
| 20 | 21 | 22 | 23 | 24 | 25 |
| 14 | 15 | 16 | 17 | 18 | 19 |
| 8  | 9  | 10 | 11 | 12 | 13 |
| 2  | 3  | 4  | 5  | 6  | 7  |
| -4 | -3 | -2 | -1 | 0  | 1  |

Figure: Visualization of the McNugget semigroup.

# Numerical semigroup invariants

Note that

$$F(S) = \max(\mathrm{Ap}(S)) - m(S),$$

for any  $n \in S$ . Finding the Frobenius number of a numerical semigroup is **NP-hard**.

#### Definition

The *genus* of *S*, denoted by g(S), is the cardinality  $\mathbb{N} \setminus S$ .

### Proposition

$$g(S) \leq F(S) \leq 2g(S)$$
.

# Random numerical semigroups

# ER-type random numerical semigroups

#### Definition

For  $p \in (0,1]$  and  $M \in \mathbb{N}$ , an ER-type random numerical semigroup S(M,p) is obtained by using the following procedure:

- 1 Initialize an empty set A.
- ② As i goes from 1 to M, add i to  $\mathcal{A}$  with probability p, independently of the other steps.
- **3** Return the semigroup  $S = \langle A \rangle$ .

Note that this definition does not require a numerical semigroup  ${\mathcal S}$  to be co-finite.

### A theorem of De Loera, O'Neill and Wilburne

#### Theorem,

Let  $S \sim S(M, p)$ , where p = p(M) is a monotone decreasing function of M. Then,

- ① If  $p(M) \in o(\frac{1}{M})$ , then  $S = \{0\}$  almost always.
- ② If  $\frac{1}{M} \in o(p(M))$  and  $\lim_{M \to \infty} p(M) = 0$ , then  $\mathcal{S}$  is co-finite almost always and  $\lim_{M \to \infty} \mathrm{E}[e(\mathcal{S})] = \lim_{M \to \infty} \mathrm{E}[g(\mathcal{S})] = \lim_{M \to \infty} \mathrm{E}[F(\mathcal{S})] = \infty.$
- 3 If  $\lim_{M\to\infty} p(M) > 0$ , then

$$\lim_{M\to\infty}\mathrm{E}[\mathrm{e}(\mathcal{S})]<\infty,\quad \lim_{M\to\infty}\mathrm{E}[\mathrm{g}(\mathcal{S})]<\infty\quad \text{ and }\quad \lim_{M\to\infty}\mathrm{E}[\mathrm{F}(\mathcal{S})]<\infty,$$

and each limit is bounded by explicit rational functions in p.

# Upper bounds

They also provide explicit upper bounds when p is constant.

#### Theorem

Let  $S \sim S(M, p)$ , where p is a constant. Then,

$$\begin{split} \Theta(1) &\leq \lim_{M \to \infty} \mathrm{E}[e(\mathcal{S})] \leq \Theta\left(\frac{1}{p}\right), \\ \Theta\left(\frac{1}{p}\right) &\leq \lim_{M \to \infty} \mathrm{E}[g(\mathcal{S})] \leq \Theta\left(\frac{1}{p^2}\right), \\ \Theta\left(\frac{1}{p}\right) &\leq \lim_{M \to \infty} \mathrm{E}[F(\mathcal{S})] \leq \Theta\left(\frac{1}{p^2}\right). \end{split}$$

# Experiments

# Average embedding dimension

| 1/p      | Lower Bound | $\overline{e(S)}$ | Upper bound |
|----------|-------------|-------------------|-------------|
| 4.00     | 2.21        | 2.79              | 7.75        |
| 75.14    | 2.95        | 9.05              | 150.27      |
| 146.29   | 2.97        | 10.67             | 292.56      |
| 217.43   | 2.98        | 12.28             | 434.85      |
| 288.57   | 2.99        | 12.94             | 577.14      |
| 359.71   | 2.99        | 13.65             | 719.43      |
| 430.86   | 2.99        | 14.14             | 861.71      |
| 502.00   | 2.99        | 14.73             | 1,004.00    |
| 573.14   | 2.99        | 15.29             | 1,146.28    |
| 644.29   | 2.99        | 16.17             | 1,288.57    |
| 715.43   | 2.99        | 16.07             | 1,430.86    |
| 786.57   | 2.99        | 16.34             | 1,573.14    |
| 857.71   | 3.00        | 16.61             | 1,715.43    |
| 928.86   | 3.00        | 17.39             | 1,857.71    |
| 1,000.00 | 3.00        | 17.22             | 2,000.00    |

Table: Average embedding dimension of random numerical semigroups generated using the ER-type model (15 samples of 1000 random numerical semigroups).

# Average embedding dimension plot



Figure: Average embedding dimension of random numerical semigroups generated using the ER-type model vs log(1/p).

# Average Frobenius number

| 1 /      | 1 D I       | <u> </u>  | 11 1 1       |
|----------|-------------|-----------|--------------|
| 1/p      | Lower Bound | F(S)      | Upper bound  |
| 4.00     | 7.26        | 13.96     | 46.50        |
| 75.14    | 218.56      | 1,088.82  | 22,283.25    |
| 146.29   | 431.93      | 2,483.26  | 85,010.91    |
| 217.43   | 645.33      | 4,174.94  | 188,229.03   |
| 288.57   | 858.75      | 5,859.29  | 331,937.60   |
| 359.71   | 1,072.17    | 7,794.18  | 516,136.62   |
| 430.86   | 1,285.59    | 9,594.56  | 740,826.09   |
| 502.00   | 1,499.02    | 11,533.38 | 1,006,006.00 |
| 573.14   | 1,712.45    | 13,765.73 | 1,311,676.37 |
| 644.29   | 1,925.87    | 16,239.19 | 1,657,837.19 |
| 715.43   | 2,139.30    | 17,769.34 | 2,044,488.45 |
| 786.57   | 2,352.73    | 19,806.19 | 2,471,630.17 |
| 857.71   | 2,566.15    | 22,157.78 | 2,939,262.33 |
| 928.86   | 2,779.58    | 25,079.10 | 3,447,384.94 |
| 1,000.00 | 2,993.01    | 26,637.46 | 3,995,998.00 |

Table: Average Frobenius number of random numerical semigroups generated using the ER-type model (15 samples of 1000 random numerical semigroups).

# Average Frobenius number plot



Figure: Average Frobenius number of random numerical semigroups generated using the ER-type model vs  $(1/p)\log(1/p)$ .

# A conjecture

### Conjecture

- $\lim_{M \to \infty} \mathrm{E}[e(\mathcal{S}(M,p))] \in \Theta\left(\log \frac{1}{p}\right)$  and
- $\lim_{M\to\infty} \mathrm{E}[F(\mathcal{S}(M,p))] \in \Theta\left(\frac{1}{p}\log\frac{1}{p}\right)$ .

# Results

### A new definition

#### Definition

For  $p \in (0,1]$ , an unconstrained ER-type random numerical semigroup S(p) is a probability sapce over the set of semigroups  $S = \langle \mathcal{A} \rangle$  with  $\mathcal{A} \subseteq \mathbb{N}$  determined by  $\Pr[n \in \mathcal{A}] = p$  for each  $n \in \mathbb{N}$  with these events mutually independent.

### Main result

#### Theorem

Let  $S \sim S(p)$  for any  $p < 24e^{-8}$ . Then,

$$\mathrm{E}[e(S)] \leq 5000 \left( \ln \left( \frac{24}{p} \right) \right)^3$$
 and

$$\mathrm{E}[g(S)] \leq \mathrm{E}[f(S)] \leq \frac{5000}{p} \left( \ln \left( \frac{24}{p} \right) \right)^3.$$

For both Frobenius number and genus, we reduce the ratio between the lower and upper bounds from order 1/p to order  $(\ln(1/p))^3$  at the cost of large constant factors and an assumption that p is sufficiently small.

# **Proof strategy**

Our proofs are purely probablilistic. We separate two processes:

- Random selection of generators.
- 2 Creation of new elements via addition.

First, we show that with high probability, both a prime q and a set  $\mathcal A$  of roughly  $\log q$  elements are chosen. The set  $\mathcal A$  can be interpreted as a random subset of  $\mathbb Z_q$ , and we prove a result about k-fold sums of such sets. We use that to show that the Frobenius number is bounded by a function of q and  $\log q$ .

### Sumsets

#### Definition

Let A be a subset of an abelian group G. The k-fold sumset of A is defined as

$$kA = \{a_1 + \cdots + a_k : a_1, \ldots, a_k \in A\}.$$

Sumsets are a central object of study in additive number theory. However, there are fewer results about sumsets of random sets. We prove the following theorem which shows that if a random subset of  $\mathcal{A} \subset \mathbb{Z}_q$  whose size as well as k are a multiple of  $\log q$ , then with high probability,  $k\mathcal{A} = \mathbb{Z}_q$ .

### Random sumset theorem

#### Theorem

Let q be a prime number and  $\mathcal A$  be a random subset of  $\mathbb Z_q$  of size  $2b\log_2 q$ . Then

$$\Pr\left[(b\log_2 q)\mathcal{A} \neq \mathbb{Z}_q\right] \leq \frac{2b\log_2 q + 2}{q^{b-2}}.$$

### Example

Let q = 17.

- $\mathcal{A} = \{0, 3, 5, 11\},\$ 
  - $2A = \{0, 3, 5, 6, 8, 10, 11, 14, 16\},\$
  - $4\mathcal{A} = \mathbb{Z}_a$ .

### **Proof**

- We use the second moment method to show that with high probability, the k-fold sumset of  $\mathcal{A}$  covers  $\mathbb{Z}_q$ .
- Our proof uses combinatorial bounds on binomial coefficients in order that the inequalities hold for all q. Assymptoically, as q tends to infinity one could instead use Stirling's formula to obtain the improved bound

$$\Pr\left[(b\log_2 q)\mathcal{A}\neq \mathbb{Z}_q\right]\in O\left(\frac{\log q}{q^{b-2}}\right).$$

**3** Our proof actually bounds the probability that not every element of  $\mathbb{Z}_q$  is a sum of  $b \log_2 q$  distinct elements of  $\mathcal{A}$ , so it yields a stronger statement.

# Upper bound proof strategy

The strategy is to prove that the Ápery set of a subsemigroup of S is completed before a certain step with high probability, since F(S) is less than the maximum element of this Ápery set. The proof has the following structure:

Let

$$f(p) = \frac{d}{p} \left( \ln \left( \frac{d}{p} \right) \right)^2.$$

# Upper bound proof strategy

- Define  $D_1$  to be the event that at least one prime number between f(p)+1 and cf(p) is selected as a generator of  $\mathcal S$
- ② Assuming  $D_1$ , let q be the largest prime selected in that range. Define  $D_2$  to be the event that at least  $2b \log_2 q$  are selected between 1 and q-1.
- **3** Assuming  $D_1$  and  $D_2$ , let  $\mathcal{S}'$  be the subsemigroup of  $\mathcal{S}$  generated by a random subset of  $2b\log_2 q$  elements between 1 and q along with q itself. Let  $D_3$  be the event that the largest element of the Ápery set of  $\mathcal{S}'$  with respect to q is at most  $bq\log_2 q$ .

If all of these events occur, then we can bound the frobenius number by

$$F[S] \le F[S'] \le bq \log_2 q \le bcf(p) \log_2(cf(p)).$$

### Some visualizations



Figure: ER-type random numerical semigroup, 1/p = 10.

### Some visualizations



Figure: ER-type random numerical semigroup, 1/p = 100.

# Summary

We use a range of probabilistic methods to improve the upper bounds to within a polylogarithmic factor of the lower bounds. As one of the tools to do this, we prove that for any prime q, if  $\mathcal{A}$  is a random subset of  $\mathbb{Z}_q$ , whose size is of the order of  $\log q$  and k is also of order  $\log q$ , then with high probability,  $k\mathcal{A} = \mathbb{Z}_q$ .

One strategy to prove the conjecture would be to try to bound the Ápery set with respect to the smallest generator of  $\mathcal{S}$ . This might be feasible via some generalization of the random sumset theorem in which q is not required to be prime. The proof would need to be modified since it relies on the symmetry of prime cyclic groups.

### Selected References

- J. De Loera, C. O'Neill, and D. Wilburne, "Random numerical semigroups and a simplicial complex of irreducible semigroups," The Electronic Journal of Combinatorics, P4–37, 2018
- J. L. Ramírez-Alfonsín, "Complexity of the Frobenius problem," Combinatorica, vol. 16, pp. 143–147, 1996
- V. I. Arnold, "Weak asymptotics for the numbers of solutions of Diophantine problems," Functional Analysis and Its Applications, vol. 33, no. 4, pp. 292–293, 1999
- N. Alon and J. H. Spencer, *The Probabilistic Method*. John Wiley & Sons, 2016
- A. Assi, M. D'Anna, and P. A. García-Sánchez, Numerical semigroups and applications. Springer Nature, 2020, vol. 3