LINEAR REGRESSION: INFERENCE

Connor K. Brubaker

Department of Statistics Texas A&M University

LINEAR MODEL

Suppose we have data $(X_1, Y_1), \dots, (X_n, Y_n)$. The simple linear regression model states that

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

where $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ is the error term.

- $ightharpoonup eta_0$ is the intercept parameter
- $ightharpoonup eta_1$ is the slope parameter

ASSUMPTIONS OF THE LINEAR MODEL

The simple linear model makes four assumptions:

- 1. X and Y are linearly related,
- 2. the errors $\varepsilon_1, \dots, \varepsilon_n$ are independent of each other,
- 3. the errors $\varepsilon_1, \dots, \varepsilon_n$ have a common variance σ^2 , and
- 4. the errors $\varepsilon_1, \dots, \varepsilon_n$ are normally distributed with a mean of 0 and variance σ^2 .

For now, assume these are satisfied. We will revisit checking these assumptions (known as **model validation**) in the following lecture.

ASSUMPTIONS OF THE LINEAR MODEL

FIGURE 1.6 Illustration of Simple Linear Regression Model (1.1).

Source: https://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/R/R5_Correlation-Regression/R5_Correlation-Regression4.html

LEAST SQUARES ESTIMATORS

Recall that the least squares estimators are

$$\hat{\beta}_1 = \frac{SXY}{SXX}$$
 and $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$.

where

$$SXY = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$
 and $SXX = \sum_{i=1}^{n} (X_i - \bar{X})^2$.

ESTIMATION OF THE ERROR VARIANCE σ^2

Using the least squares estimates, the *i*th error is estimated with

$$\hat{\varepsilon}_i = Y_i - \hat{Y}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

The variance of the errors σ^2 is estimated using

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \hat{\varepsilon}_i^2 = \frac{RSS}{n-1}$$

Inference for the Slope Parameter β_1

As long as the assumptions of the simple linear model are satisfied, it can be shown that

$$\hat{eta}_1 \sim \mathcal{N}\left(eta_1, rac{\sigma^2}{SXX}
ight)$$

where β_1 is the true (unknown) slope parameter and σ^2 is the variance of the error terms. Therefore, the standard error of the slope is

$$SE(\hat{\beta}_1) = \frac{\sigma}{\sqrt{SXX}}$$

where σ is estimated using $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$.

CONFIDENCE INTERVAL FOR THE SLOPE

A
$$(1 - \alpha) \times 100\%$$
 confidence interval for β_1 is

$$\hat{\beta}_1 \pm t_{\alpha/2,n-2}^* \times SE(\hat{\beta}_1) = \hat{\beta}_1 \pm t_{\alpha/2,n-2}^* \times \frac{\hat{\sigma}}{\sqrt{SXX}}$$

The degrees of freedom is n-2 since we are estimating 2 parameters (the slope and the intercept).

HYPOTHESIS TESTING FOR THE SLOPE

Often we want to test whether a significant linear relationship exists between X and Y. If no relationship exists, then

$$Cov(X, Y) = 0$$

and consequently $\beta_1 = 0$. Therefore, we want to test the hypotheses

$$H_0: \beta_1 = 0$$
 versus $H_A: \beta_1 \neq 0$

This is the test \mathbb{R} performs by default.

HYPOTHESIS TESTING FOR THE SLOPE

Let β_1^0 be the null value of the slope (often 0).

The test statistic for the hypothesis test is

$$T_{obs} = \frac{\hat{eta}_1 - eta_1^0}{\mathrm{SE}(\hat{eta}_1)} = \frac{\hat{eta}_1 - eta_1^0}{\hat{\sigma}/\sqrt{SXX}} \sim t_{n-2}$$

You would use the t distribution with n-2 degrees of freedom to find critical values and determine p-values.

HOUSING PRICES

READING R OUTPUT

```
Summary
> summarv(model)
                                               statistics for
Call:
lm(formula = price ~ sqft, data = Sacramento)
                                               the residuals
Residuals:
   Min
            10 Median
                          30
                                 Max
-231889 -54717 -11822
                        38993
                              600141
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 13859.393 6948.714
                              1.995
                                       0.0464 *
                         3.796 36.495 <2e-16 ***
saft
            138.546
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 84130 on 930 degrees of freedom
Multiple R-squared: 0.5888, Adjusted R-squared: 0.5884
F-statistic: 1332 on 1 and 930 DF, p-value: < 2.2e-16
```

READING R OUTPUT

SE(B

```
> summary(model)
                                                   T_{obs}
Call:
lm(formula = price ~ sqft, data = Sacramento)
Residuals:
   Min
            10 Median
                            30
                                   Max
-231889 -54717 -11822
                         38993 600141
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                 1.995
(Intercept) 13859.393
                       6948.714
                                          0.0464 *
                          3.796 36.495
saft
              138.546
                                          <2e-16 ***
               0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 '
Signif. codes:
Residual standard error: 84130 on 930 degrees of freedom
Multiple R-squared: 0.5888, Adjusted R-squared: 0.5884
F-statistic: 1332 on 1 and 930 DF, p-value: < 2.2e-16
```

ANALYSIS OF VARIANCE

The analysis of variance for a regression model allows us to determine how much of the variability in the data is captured by the model, i.e., how effective the model is. Begin by defining

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \ge 0$$

SST is the total sum of squares and represents the total variability in the response.

TOTAL SUM OF SQUARES

ANALYSIS OF VARIANCE

The analysis of variance *decomposes* the total variability into two terms:

$$SST = SSR + SSE$$

Therefore, $0 \le SSR \le SST$ and $0 \le SSE \le SST$.

ANALYSIS OF VARIANCE

We will determine how effective the model is by determining what proportion of *SST* is captured by the model. The **regression** sum of squares is

$$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

- SSR is large if fitted values are far from the mean response
- SSR is small if the fitted values are all near the mean response

REGRESSION SUM OF SQUARES (SSR)

RESIDUAL SUM OF SQUARES

We've already seen the residual sum of squares,

RSS or SSE =
$$\sum_{i=1}^{n} \hat{\varepsilon}_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

which is also called the sum of squared errors SSE.

Large RSS means lots of scatter around the regression line.

RESIDUAL SUM OF SQUARES (SSE)

Coefficient of Determination R^2

The **coefficient of determination** is

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SSR}$$

- $ightharpoonup R^2$ is the square of the correlation between X and Y.
- ▶ $0 \le R^2 \le 1$.
- R² is interpreted as the percentage of variability in Y captured by the regression model.

READING R OUTPUT

```
> summarv(model)
Call:
lm(formula = price ~ sqft, data = Sacramento)
Residuals:
   Min 10 Median
                           30
                                 Max
-231889 -54717 -11822 38993 600141
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 13859.393 6948.714 1.995 0.0464 *
saft
             138.546
                         3.796 36.495 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 84130 on 930 degrees of freedom
Multiple R-squared: 0.5888, Adjusted R-squared: 0.5884
```

F-statistic: 1332 on 1 and 930 DF, p-value: < 2.2e-16

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 0 0 0

PREDICTION

With the fitted model, we may want to predict $\hat{Y}^* = \mathbb{E}[Y|X^{**}]$ given a new value of X^* .

For the housing data, we predict the *average* price given the square footage of a new house by

Price =
$$\hat{\beta}_0 + \hat{\beta}_1 \times \text{Square Footage}$$

We predict the *average* price of houses with a square footage of 2,000 by

$$13859.393 + 138.546 \times 2000 = $290,951.4$$

CONFIDENCE INTERVAL FOR REGRESSION LINE

A $(1 - \alpha) \times 100\%$ confidence interval for $\hat{Y}^* = \mathbb{E}[Y|X^*]$ using the least squares estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ is

$$\hat{Y}^* \pm t_{\alpha/2,n-2}^* \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(X^* - \bar{X})^2}{SXX}}$$

Sources of uncertainty:

- ▶ Regression parameters: $\hat{\beta}_0$ and $\hat{\beta}_1$ and
- ► Error variance $\hat{\sigma}^2$.

The previous interval was a confidence interval for the average value $\hat{Y}^* = \mathbb{E}[Y|X^*]$ given a value of the predictor X^* .

• $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is what we expect Y to be in long run when $X = X^*$.

- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is what we expect Y to be in long run when $X = X^*$.
- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is *fixed* but unknown.

- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is what we expect Y to be in long run when $X = X^*$.
- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is *fixed* but unknown.
- ▶ Values of Y when $X = X^*$ can vary around \hat{Y}^* .

- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is what we expect Y to be in long run when $X = X^*$.
- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is *fixed* but unknown.
- ▶ Values of Y when $X = X^*$ can vary around \hat{Y}^* .
- Confidence intervals are for unknown parameters (e.g., $\hat{Y}^* = \mathbb{E}[Y|X^*]$).

- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is what we expect Y to be in long run when $X = X^*$.
- $\hat{Y}^* = \mathbb{E}[Y|X^*]$ is *fixed* but unknown.
- ▶ Values of Y when $X = X^*$ can vary around \hat{Y}^* .
- Confidence intervals are for unknown parameters (e.g., $\hat{Y}^* = \mathbb{E}[Y|X^*]$).
- ► Prediction intervals are for random variables (e.g., *Y**) and will be wider than confidence intervals.

A $(1 - \alpha) \times 100\%$ prediction interval for the actual value Y^* when $X = X^*$ is

$$\hat{Y}^* \pm t^*_{\alpha/2,n-2}\hat{\sigma} imes \sqrt{rac{1}{n} + rac{1}{n} + rac{(X^* - ar{X})^2}{SXX}}$$

where $\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 X^*$. Sources of uncertainty/variability:

- ▶ Regression parameters: $\hat{\beta}_0$ and $\hat{\beta}_1$ and
- ► Error variance $\hat{\sigma}^2$.
- Random fluctuation of actual values around the regression line.

Intervals in R

Use the predict function¹.

¹See R notes on Canvas