Contents

- Robot and targets Poses
- Part 1: A. Poses of the three targets with the repect to the robot base
- Part 1: B. The joint variables to grasp the object at each location, ie.
- Part 1: C.The Jacobian matrix at each location using the joint variables

Robot and targets Poses

```
sawyer = SE3;
sawyer.t = [0 0 0.93];
target1 = SE3;
target1.t = [0.75 -0.35 1.014]
target2 = SE3.rpy([0 0 -0.785]);
target2.t = [1 0 1.014]
target3 = SE3.rpy([0 0 0.586931]);
target3.t = [0.85 0.25 1.014]
```

```
target1 =
                            0.75
              0
                      0
       1
                           -0.35
       0
             1
                      0
       0
             0
                      1
                           1.014
       0
             0
                      0
                              1
target2 =
  0.7074 0.7068
                      0
                              1
  -0.7068
         0.7074
                              0
       0
         0
                      1
                          1.014
       0
                              1
target3 =
   0.8326 -0.5538
                     0
                            0.85
   0.5538
         0.8326
                      0
                            0.25
                           1.014
       0
         0
                      1
              0
                     0
       0
                              1
```

Part 1: A. Poses of the three targets with the repect to the robot base

frame

```
sawyerTtarget1 = inv(sawyer)*target1
sawyerTtarget2 = inv(sawyer)*target2
sawyerTtarget3 = inv(sawyer)*target3
```

```
0
                 0
                         1
                                0.084
                          0
                                    1
sawyerTtarget2 =
   0.7074
          0.7068
                          0
                                    1
  -0.7068
          0.7074
                          0
                                    0
                 0
                          1
                                0.084
        0
                 0
                          0
                                    1
sawyerTtarget3 =
   0.8326
           -0.5538
                          0
                                 0.85
          0.8326
   0.5538
                          0
                                 0.25
                                0.084
        0
                 0
                          1
        0
                 0
                          0
                                    1
```

Part 1: B. The joint variables to grasp the object at each location, ie.

inverse kinematics

```
L(1) = Link('alpha', -pi/2, 'a', 0.081, 'd', 0);
L(2) = Link('alpha', pi/2, 'a', 0, 'd', 0.191, 'offset', pi/2);
L(3) = Link('alpha', -pi/2, 'a', 0, 'd', 0.399);
L(4) = Link('alpha', pi/2, 'a', 0, 'd', -0.1683);
L(5) = Link('alpha', -pi/2, 'a', 0, 'd', 0.3965);
L(6) = Link('alpha', pi/2, 'a', 0, 'd', 0.136);
L(7) = Link('alpha', 0, 'a', 0, 'd', 0.1785);
R1 = SerialLink(L, 'name', "Sawyer");
pose1 = sawyerTtarget1*SE3.Ry(pi/2)*SE3.Rz(-pi/2);
pose2 = sawyerTtarget2*SE3.Ry(pi/2)*SE3.Rz(-pi/2);
pose3 = sawyerTtarget3*SE3.Ry(pi/2)*SE3.Rz(-pi/2);
pose4 = pose1; % discard position
pose4.t = [0.65 \ 0.4 \ 0.084];
q1dwn = R1.ikine(pose1);
% R1.plot(q1dwn);
q1up = q1dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q1up)
q2dwn = R1.ikine(pose2);
% R1.teach(q2dwn)
q2up = q2dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q2up)
q3dwn = R1.ikine(pose3);
% R1.teach(q3dwn)
q3up = q3dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q3up)
q4dwn = R1.ikine(pose4);
% R1.teach(q4dwn);
q4up = q4dwn - [0 pi/6 0 0 0 0 0];
% R1.teach(q4up)
```

```
in_radians = array2table([q1dwn; q2dwn; q3dwn;q4dwn], ...
   'VariableNames', {'q1','q2','q3','q4','q5','q6','q7'}, ...
   'RowNames', {'pos1dwn','pos2dwn','pos3dwn','pos4dwn'} )
```

in_radians =

4×7 table

	q1	q2	q3	q4	q5	q6	q7
pos1dwn	-0.36642	-0.55917	-0.74016	0.99382	-0.78784	-1.0055	-0.28228
pos2dwn	0.016076	-0.098902	-0.84517	-0.053642	-0.60174	0.84959	-0.17939
pos3dwn	0.36526	-0.43363	-0.83871	0.8286	-0.66369	-0.82339	-0.22415
pos4dwn	1.0891	-0.22987	-1.1957	1.015	-1.262	0.23996	0.87751

in degrees

```
in_degrees = array2table(rad2deg([q1dwn; q2dwn; q3dwn;q4dwn]), ...
    'VariableNames', {'q1','q2','q3','q4','q5','q6','q7'}, ...
    'RowNames', {'pos1dwn','pos2dwn','pos3dwn','pos4dwn'})
```

in_degrees =

4×7 table

	q1	q2	q3	q4	q5	q6	q7
pos1dwn	-20.994	-32.038	-42.408	56.942	-45.14	-57.609	-16.173
pos2dwn	0.92109	-5.6667	-48.424	-3.0735	-34.477	48.678	-10.278
pos3dwn	20.928	-24.845	-48.055	47.475	-38.026	-47.177	-12.843
pos4dwn	62.4	-13.17	-68.511	58.157	-72.305	13.749	50.277

Part 1: C.The Jacobian matrix at each location using the joint variables

```
disp("Jacobian for target1")
R1.jacob0(q1dwn)
disp("Jacobian for target2")
R1.jacob0(q2dwn)
disp("Jacobian for target3")
R1.jacob0(q3dwn)
disp("Jacobian for target4")
R1.jacob0(q4dwn)
```

0

Jacobian for target1

ans =

0.3500 0.0784 0.2394 -0.2878 0.1148 -0.0000

0.7500 0.0000 0.0000 -0.0000 1.0000	-0.0301 -0.7446 0.3583 0.9336 0.0000	0.2550 -0.2111 0.7914 -0.3037 0.5305	-0.0895 -0.3892 0.5985 0.5612 -0.5717	0.0280 0.1651 0.5357 -0.8110 -0.2352	-0.1714 -0.0497 -0.0000 0.2785 -0.9604	0 0 1.0000 0.0000 -0.0000
Jacobian for	target2					
ans =						
0.0000 1.0000 -0.0000 0.0000 0.0000 1.0000	0.0840 0.0014 -0.9189 -0.0161 0.9999 0.0000	0.0203 0.0075 -0.2061 0.9950 0.0160 0.0987	-0.1182 -0.3937 -0.3616 0.0632 0.6647 -0.7444	0.0071 0.1516 -0.1159 0.9894 0.0560 0.1340	-0.1241 -0.1242 -0.0319 0.1261 0.1262 -0.9840	0 0 0.7074 -0.7068 0.0000
Jacobian for	target3					
ans =						
-0.2500 0.8500 0.0000 -0.0000 -0.0000 1.0000	0.0785 0.0300 -0.8022 -0.3572 0.9340 0.0000	0.0093 0.2828 -0.2369 0.8476 0.3241 0.4202	-0.1201 -0.3360 -0.3758 0.0531 0.7360 -0.6749	0.0493 0.1061 0.1482 0.9620 -0.2190 -0.1630	0.0964 -0.1449 -0.0397 -0.1231 0.1851 -0.9750	0 0 0.8326 0.5538 -0.0000
Jacobian for	target4					
ans =						
-0.4000 0.6500 0.0000 -0.0000 -0.0000 1.0000	0.0389 0.0744 -0.5746 -0.8862 0.4633 0.0000	0.0179 0.1402 -0.5664 0.4511 0.8629 0.2278	-0.0972 -0.5468 -0.1915 -0.2264 0.3576 -0.9060	-0.0323 0.0518 -0.1287 0.9713 0.1519 -0.1828	-0.0000 -0.1141 0.1373 -0.0000 -0.7691 -0.6391	0 0 1.0000 -0.0000