REGULADORES PARA ALIMENTACIÓN DE CC

Cátedra: CIRCUITOS ELECTRÓNICOS II

Capacidades de los estudiantes al terminar esta unidad:

- Identificar las ventajas de los reguladores con elemento de paso en serie en comparación con sus pares en derivación.
- Calcular los factores de calidad de un regulador básico serie con transistor de paso.
- Identificar la topología de un regulador serie con amplificador operacional y explicar su funcionamiento, diseñar la red de realimentación y polarizar su referencia de tensión.
- Utilizar circuitos de protección por sobrecorriente y dimensionar los componentes para un requerimiento dado.
- Identificar el caso peor en la problemática de disipación de potencia en el transistor de paso y estimar dicha potencia.
- Identificar las ventajas y limitaciones en el uso de reguladores integrados e identificación de sus parámetros más importantes en las hojas de datos.

Reguladores lineales para alimentación DC

Para qué?

❖Alimentar cargas con requerimientos estrictos de alimentación (p.e. CI digitales)

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{ОН}	HIGH Level Output Current			-0.4	mA
l _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°

- ❖Generar múltiples tensiones a partir de una única fuente primaria (5V, +-12V)
- ❖Inmunizar Vcc de la línea y de la carga (F₀, R₀)

Ya habíamos visto:

¿corriente máxima?

$$I_{0\max} = \frac{V_i - V_z}{R_s} - I_{Zdeseada}$$

la mínima para que no se despolarice

Estabilizador zener estándar

Si necesito + corriente para la misma Vz:

$$I_{0\max_premium} = \frac{V_i - V_z}{R_s} - I_{Zdeseada}$$

$$R_s \downarrow \downarrow \downarrow$$

Pero cuando desconecto la carga:

$$I_z = \frac{V_i - V_z}{R_s}$$

$$R_s \downarrow \downarrow \downarrow$$
Iz aumenta

Pz=Vz.Iz aumenta

Debo poner un Z de mayor potencia

Si necesito mayor corriente a la carga debo aumentar el tamaño del zener (P) zener típicos: 0,5W, 1W, 5W (más grandes son caros)

Zener activo (active zener o active clamp): Dz + transistor de potencia

Vo=Vz+VBE (podría compensarse el KT)

: (Igual se disipa potencia cuando no hay carga

Solución: pongo el transistor en serie con la carga:

Vo=Vz-VBF

- :) No hay disipación cuando se desconecta la carga
- :) Iomax aumenta en hfe

$$F_0 \cong \frac{r_d}{R_p}$$
 ¿por qué?

$$R_0 \cong \frac{r_d + h_{ie}}{h_{fe} + 1} \cong \frac{r_d}{h_{fe} + 1}$$
 Ro también mejora respecto al regulador con zener

Valores...
$$Io = 1A \ y \ h_{fe} = 50$$

$$h_{ie} = \frac{h_{fe}}{g_m} = \frac{V_T h_{fe}}{Ic} = \frac{25mV.50}{1A} = 1,25\Omega$$

Quiero poder cambiar la tensión de salida con un potenciómetro:

Ejemplo:

$$F_0 = \frac{r_d}{R_p} \left(1 + \frac{R_2}{R_1} \right)$$
 el ripple aumenta en R2/R1!!

$$R_0 = \frac{r_{oAO}}{1 + \beta A_{IA}} \quad \downarrow \downarrow \downarrow$$

o divido Vz con R3 y R4

Si puedo pongo un Dz con KT chico y adapto R2 y R1

PERO: Imax AO=20mA

Lazo cerrado con aumento de corriente

Sigo: ojo con las oscilaciones!!!

Problema: VDCnR no puede exceder la Vcc máxima del AO

×

Aumentando la tensión de salida

Armo esto:

$$\frac{V_0}{V_i} = -g_m R_L$$

✓ Realimentación negativa

En estado estacionario:

$$i_1 = \frac{V_{ref}}{R_1}, \ i_2 = -\frac{V_0}{R_2}$$

$$V_0 = -V_{ref} \; \frac{R_2}{R_1}$$

Fuente de corriente constante regulada (transconductancia I/V)

Fuentes de corriente con OPA:

Fuentes de corriente con OPA:

En estado estacionario: $\emph{\emph{i}}_1=\emph{\emph{i}}_2$

$$\frac{V_{refI}}{R_1} = \frac{-Vs}{R_2} = \frac{-(-I_0 R_{sense})}{R_2} \Rightarrow I_0 = \left(\frac{V_{refI}}{R_{sense}}\right) \frac{R_2}{R_1}$$

Protecciones

Protecciones:

- 1) Sobrecorriente
 - a) Corriente constante
 - b) Repliegue (foldback)
- 2) Sobretensión (crowbar)
- 3) Inversión de polaridad

1) a) Protección contra sobrecorriente con diodos

$$I_{0_{-}\max} = \frac{V_{\gamma}}{R_{\text{sense}}}$$

1) a) Protección contra sobrecorriente con transistor

$$I_{0_{-}\max} = \frac{V_{\gamma}}{R_{sense}}$$

más abrupta la derivación de corriente Idrive debido al h_{fe}

14

Si $R_{\scriptscriptstyle S} I_0 < V_{\scriptscriptstyle \gamma}$ Qprot apagado (Iprot =0)

El lazo de tensión tiene el control

Vo=Io.R∟ (recta)

Protecciones

Área segura de trabajo del transistor de paso SOA (Safe Operating Area)

Peor condición para el transistor de paso: cortocircuito

Disipador para una condición anómala despilfarro de aluminio

1) a) Protección por repliegue (fold-back)

 V_{R1} tiende a cortar a Qs $R_{
m s}I_{
m o}$ tiende a activarlo

Si *lo* es "baja" Qs no conduce y el lazo de tensión tiene el control a través de larive

Si Qs empieza a conducir Qs saca corriente de la base de Qp

De qué depende el valor de lo?

Protecciones

Cuando Qs empieza a conducir (zona de protección) $V_{\scriptscriptstyle BE} = V_{\scriptscriptstyle
u}$

$$V_{\gamma} = I_0 R_s (1 - \alpha) - \alpha V_0$$

Despejo Vo=f(Io)

$$V_0 = \frac{-V_{\gamma}}{\alpha} + R_s \left(\frac{1-\alpha}{\alpha}\right) I_0 = -B + AI_0 \quad \text{recta}$$

¿qué valores tengo que poner para definir las lmax e lcc deseadas ?

P1:
$$V_{0set} = -B + AI_{max}$$

P1:
$$V_{0set} = -B + AI_{max}$$

P2: $0 = -B + AI_{cc}$

$$\frac{\alpha V_{0set}}{I_{\text{max}} - I_{cc}} = Rs(1 - \alpha)$$

$$Rs = \frac{V_{\gamma}}{(1 - \alpha)I_{cc}}$$

Protecciones

Ejemplo:

datos:

Imax=10A
$$\frac{\alpha V_{0set}}{I_{max} - I_{cc}} = Rs(1 - \alpha)$$

$$\frac{\alpha 15V}{10A - 5A} = \alpha \cdot \frac{15V}{5A} = \alpha \cdot 3\Omega = Rs(1 - \alpha)$$
Voset=15V
$$V_{\chi} = V_{\chi} = 0.6V = 0.120$$

$$Rs = \frac{V_{\gamma}}{(1 - \alpha)I_{\alpha}}$$

$$Rs = \frac{V_{\gamma}}{(1-\alpha)I_{cc}}$$
 $(1-\alpha)Rs = \frac{V_{\gamma}}{I_{cc}} = \frac{0.6V}{5} = 0.12\Omega$

$$\alpha 3\Omega = 0.12\Omega$$

calculo R2

$$\alpha = 0.04$$

 $Rs = \frac{V_{\gamma}}{(1-0.04)I} = \frac{0.6V}{(1-0.04)5A} = 0.125\Omega$ Calculo Rs

Fig. 10.66

Solution: The values of the various components are,

$$R_4 = 1\Omega, R_5 = 20 \Omega, R_6 = 180 \Omega$$

$$k = \frac{R_6}{R_5 + R_6} = \frac{180}{20 + 180}$$

$$= 0.9$$

The short circuit current is given by,

$$I_{sc} = \frac{V_{BE3}}{k R_4} = \frac{0.7}{0.9 \times 1}$$

= 0.78 A

The rated load current is,

$$I_{L} = I_{sc} + \frac{(1-k) V_{o}}{k R_{4}}$$

$$= 0.78 + \frac{(1-0.9) \times 10}{0.9 \times 1}$$

$$= 1.89 \text{ A (rated)}$$

$$\frac{I_L \text{ (rated)}}{I_{sc}} = \frac{1.89}{0.78} = 2.425$$

$$\therefore I_L \text{ (rated)} = 2.425 I_{sc}$$

Área segura (SOA)

Menor potencia en CC para el Qpaso

Ŋ

Área segura (SOA)

Podría diseñarse con más detalle, p.e. para evitar que se bloquee debido a un transitorio

м

Reguladores integrados

- ➤ Referencia de tensión
- ➤ Amplificador de error
- ➤ Transistor de paso
- > Red de realimentación (opcional)
- > Proteccion por sobrecorriente y sobretemperatura
- > Escasos componentes externos

Regulador integrado uA723

Figure 9.3. The classic μ A723 voltage regulator.

Iomax=0.1A

M

Ejemplo de aplicación uA723

Iomax=2A

el transistor de salida del 723 se usa como driver de un transistor de paso externo

Reguladores integrados

Tres patas (In, comun, out)

Fijos +: serie 78xx: 05, 06, 08, 09, 10, 12, 15, 18, or 24 (los negativos son 79)

3-terminal adjustable

pos: LM317 neg: LM337

3-term "lower dropout" (adj & fixed)

pos: LM1117, LT1083-85

3-term fixed & 4-term adj "true LDO"

pos: LT1764A/LT1963 (BJT); TPS744xx (CMOS) neg: LT1175, LM2991 (BJT); TPS7A3xxx (CMOS)

м

Reguladores de baja caida Low Drop y Quasi Low Drop

THE STANDARD (NPN) REGULATOR

VD(MIN) = 2 VBE + VCE

THE QUASI LOW-DROPOUT REGULATOR

THE LOW-DROPOUT (LDO) REGULATOR

V_D = PNP SAT ~ 0.1V to 0.7V

I_G≤20 - 40 mA

 $I_{L(MAX)} = 1A$

 V_D = VBE + PNP SAT $\sim 0.9 V$ to 1.5 V

I_G ≤ 10 mA

 $I_{L(MAX)} = 7.5A$

V_D = 2 VBE + PNP SAT ~ 1.7V to 2.5V

 $I_{G} \leq 10 \; mA$

 $I_{L(MAX)} = 10A$

Reguladores de baja caída Low Drop y Quasi Low Drop

LT1083/LT1084/LT1085

BLOCK DIAGRAM

Quasi-LDO

ELECTRICAL CHARACTERISTICS (V_{in} = 10 V, I_O = 500 mA, T_J = T_{low} to 125°C (Note 1), unless otherwise noted)

		MC7805B, NCV7805B			MC7805C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = 25°C)	Vo	4.8	5.0	5.2	4.8	5.0	5.2	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W) 7.0 Vdc \leq V _{in} \leq 20 Vdc 8.0 Vdc \leq V _{in} \leq 20 Vdc	Vo	- 4.75	_ 5.0	- 5.25	4.75	5.0	5.25	Vdc
Line Regulation (Note 4) 7.5 Vdc ≤ V _{in} ≤ 20 Vdc, 1.0 A 8.0 Vdc ≤ V _{in} ≤ 12 Vdc	Reg _{line}		5.0 1.3	100 50	-	0.5 0.8	20 10	mV
Load Regulation (Note 4) 5.0 mA ≤ I _O ≤ 1.0 A 5.0 mA ≤ I _O ≤ 1.5 A (T _A = 25°C)	Reg _{load}	-	1.3 0.15	100 50	-	1.3 1.3	25 25	mV
Quiescent Current	IB	-	3.2	8.0	-	3.2	6.5	mA
Quiescent Current Change 7.0 Vdc ≤ V _{in} ≤ 25 Vdc 5.0 mA ≤ I _O ≤ 1.0 A (T _A = 25°C)	Δl _B	-	:	0.5	:	0.3 0.08	1.0 0.8	mA
Ripple Rejection 8.0 Vdc ≤ V _{in} ≤ 18 Vdc, f = 120 Hz	RR	-	68	-	62	83	-	dB
Dropout Voltage (I _O = 1.0 A, T _J = 25°C)	V _I - V _O	-	2.0	-	-	2.0	-	Vdc
Output Noise Voltage (T _A = 25°C) 10 Hz ≤ f ≤ 100 kHz	V _n	-	10	-	-	10	-	μV/V _O
Output Resistance f = 1.0 kHz	ro	-	0.9	-	-	0.9	-	mΩ
Short Circuit Current Limit (T _A = 25°C) V _{in} = 35 Vdc	Isc	-	0.2	-		0.6	-	Α
Peak Output Current (T _J = 25°C)	I _{max}	•	2.2	-/	-	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCVo	-	-0.3	7	-	-0.3	-	mV/°C

Icorto=0,6A<1A, pues tiene protección *foldback*

٧

Diagrama funcional de un 78xx:

Circuito de aplicación 78XX

pocos elementos externos!!

Esto también puede ocurrir si Cout se descarga mas rapido que Cin

- ➤ Respetar capacitores de compensación.Si no, puede oscilar.
- ➤ Siempre asegurar Vin-Vout minimo
- ➤Si Vin>> Vout, cuidado con la potencia porque se apaga por sobretemperatura.
- Vout siempre menor a Vin (ojo si la carga devuelve energía)

Respetamos esto son casi indestructibles!!

LM317: regulador ajustable

$$\dagger\dagger V_{OUT} = 1.25 V \left(1 + \frac{R2}{R1}\right) + I_{ADJ} (R_2)$$

$$V_0 = 1.25V \left(1 + \frac{R_2}{R_1}\right) \quad \text{si} \quad I_{adj}R_2 \coprod$$

Reguladores integrados, recomendaciones circuitos útiles

Se puede aumentar la tensión de salida:

Lo resuelvo con un buffer...

Se puede aumentar la corriente de salida:

Fuente de corriente:

100 mA Current Regulator

2) Sobretensión

a) Crowbar

b) Clamps

Diodos Zener estándar

Varistores (Metal-oxidevaristor, MOV)

o Diodos supresores (TVS, Transient Voltage Suppressor)

3) Inversión de polaridad

Hay pérdida de tensión (Silicio=0,6V, Schottky=0,2V)

No hay pérdida de tensión pero hay que cambiar el fusible

Protecciones

Protección contra inversión de polaridad con MOSFET en serie (para equipos a batería de baja tensión):

Si Vcc es mayor que V_{umbral} el mosfet se satura y r_{dson} es del orden de los $m\Omega$

Como el gate está al mayor potencial posible, el source tiene que ser más negativo, entonces V_{GS} debe ser >0 y el mosfet se corta (el diodo también queda en inversa)

Protecciones

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- P-Channel
- 175°C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements

IRF9530

$$V_{DSS} = -100V$$

$$R_{DS(on)} = 0.30\Omega$$

$$I_{D} = -12A$$

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Separación alimentación de potencia y control:

Impreso: ruido inducido por retorno sucio:

Precauciones para el impreso

Impreso: mala regulación por medir a través de los conductores de alimentación: usar cables de uso específico (Ejemplo: alternador de auto)

V_{load} es distinta de V₀ debido a la caída en ambos cables de conexión

Vload

Figure 5-4. Remote Voltage Sensing

Medida en 4 terminales