

Housing Dataset

Deep Shah

Gaurung Vasan

Dean Wise

"We pledge our honor that we have abided by the Stevens Honor System." ~ DS, GV, DW

Group Members

Deep Shah 2/4 Computer Engineer ENGR 241 - WS

Gaurung Vasan 1/4 Software Engineer ENGR 241 - B

Dean Wise 2/4 Chemical Engineer ENGR 241 - WS

Introduction

- Make meaningful analysis of housing data set
- Variables: hot water heating, area size, furnished, price
- Use of Python and Panda Library
- Variety of Models:
 - Bar Plot
 - Pie Chart
 - Histogram
 - Scatter Plot
 - Simple Linear Regression
 - Multilinear Regression
 - ANOVA Table -> p-value, F-stat, sum of mean squares

Data From Housing Data

▶ Housing.head(15)

		· ·											
	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	prefarea	furnishingstatus
6	10150000	8580	4	3	4	yes	no	no	no	yes	2	yes	semi-furnished
7	10150000	16200	5	3	2	yes	no	no	no	no	0	no	unfurnished
8	9870000	8100	4	1	2	yes	yes	yes	no	yes	2	yes	furnished
9	9800000	5750	3	2	4	yes	yes	no	no	yes	1	yes	unfurnished
10	9800000	13200	3	1	2	yes	no	yes	no	yes	2	yes	furnished
11	9681000	6000	4	3	2	yes	yes	yes	yes	no	2	no	semi-furnished
12	9310000	6550	4	2	2	yes	no	no	no	yes	1	yes	semi-furnished
13	9240000	3500	4	2	2	yes	no	no	yes	no	2	no	furnished
14	9240000	7800	3	2	2	yes	no	no	no	no	0	yes	semi-furnished
15	9100000	6000	4	1	2	yes	no	yes	no	no	2	no	semi-furnished
16	9100000	6600	4	2	2	yes	yes	yes	no	yes	1	yes	unfurnished
17	8960000	8500	3	2	4	yes	no	no	no	yes	2	no	furnished
18	8890000	4600	3	2	2	yes	yes	no	no	yes	2	no	furnished
19	8855000	6420	3	2	2	yes	no	no	no	yes	1	yes	semi-furnished
20	8750000	4320	3	1	2	yes	no	yes	yes	no	2	no	semi-furnished

Bar Plot of Number of Houses With or Without Hot Water Heating

Pie Chart of Houses Based on Furniture

Percentage of Houses That are Fully Furnished, Semi-Furnished, and Not Furnished in Housing Dataset

Histogram of Number of Houses Based on the House Prices

Scatter Plot of Price vs. Area

Scatter Plot of Price vs. Area with SLR Line

Simple Linear Regression Model of Price vs Area

Equation for Simple Regression Model of Price vs Area:

 $y = 0.0007 \times 1 + 1999.3588$

```
[74] SLR=sm.ols(formula = 'Housing.area ~ Housing.price', data = Housing).fit()
    SLR.summary()
```

OLS Regression Results

Dep. Variable: Housing.area R-squared: 0.273 OIS Model: Adj. R-squared: 0.272 Method: Least Squares F-statistic: 1995 Thu, 25 Apr 2024 Prob (F-statistic): 1.10e-38 Date: Time: 23:50:58 Log-Likelihood: -4762.5 No. Observations: 533 AIC: 9529. Df Residuals: BIC: 9538. 531

Df Model: 1

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 1999.3588 236.214 8.464 0.000 1535.331 2463.387 Housing.price 0.0007 4.71e-05 14.125 0.000 0.001 0.001

 Omnibus:
 166.858
 Durbin-Watson:
 1.982

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 495.948

 Skew:
 1.501
 Prob(JB):
 2.02e-108

 Kurtosis:
 6.649
 Cond. No.
 1.48e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.48e+07. This might indicate that there are strong multicollinearity or other numerical problems.

ANOVA Table for Simple Linear Regression

Anova Table for Simple Linear Regression

```
import statsmodels.formula.api as smf
from statsmodels.stats.anova import anova_lm
SLR = smf.ols('Housing.price ~ Housing.area', data = Housing).fit()
anova_table = anova_lm(SLR)
print(anova_table)
```

```
df sum_sq mean_sq F PR(>F)
Housing.area 1.0 4.170461e+14 4.170461e+14 199.501504 1.096662e-38
Residual 531.0 1.110024e+15 2.090441e+12 NaN NaN
```

Multilinear Regression Model of Price vs Area and Parking

Equation for Multilinear Regression Model of Price vs Area and Parking $y = 360.9828x_1+3.732*10^5x_2+2.61*10^6$

```
MultiLinear Regression Model of Price vs Area and Parking
[77] MLR=sm.ols(formula = 'Housing.price ~ Housing.area + Housing.parking', data = Housing).fit()
     MLR.summary()
                        OLS Regression Results
       Dep. Variable:
                      Housing.price
                                         R-squared:
                                                      0.304
                                      Adj. R-squared: 0.301
           Model:
                       OIS
                      Least Squares
                                        F-statistic:
                                                     115.8
          Method:
                      Thu, 25 Apr 2024 Prob (F-statistic): 1.93e-42
           Date:
           Time:
                      23:50:59
                                       Log-Likelihood: -8303.9
     No. Observations: 533
                                            AIC:
                                                       1661e+04
       Df Residuals:
                      530
                                            BIC:
                                                      1.663e+04
         Df Model:
      Covariance Type: nonrobust
                                std err
                                              P>|t| [0.025
                                                             0.975]
                     2.61e+06 1.59e+05 16.460 0.000 2.3e+06 2.92e+06
         Intercept
       Housing.area 360.9828 30.214 11.948 0.000 301.629 420.337
     Housing.parking 3.732e+05 7.69e+04 4.854 0.000 2.22e+05 5.24e+05
        Omnibus:
                    32.412 Durbin-Watson: 0.586
     Prob(Omnibus): 0.000 Jarque-Bera (JB): 36.908
          Skew:
                     0.600
                               Prob(JB):
                                            9 67e-09
                    3.470
                              Cond. No.
                                            1.44e+04
        Kurtosis:
```

ANOVA Table for MultiLinear Regression Model

ANOVA Table for MultiLinear Regression Model

anova_table3 = anova_lm(MLR)
print(anova_table3)

∃		df	sum_sq	mean_sq	F	PR(>F)
	Housing.area	1.0	4.170461e+14	4.170461e+14	207.976884	5.179996e-40
	Housing.parking	1.0	4.724046e+13	4.724046e+13	23.558362	1.596474e-06
	Residual	530.0	1.062784e+15	2.005252e+12	NaN	NaN

Conclusion

- Concluded that:
 - People gravitate towards cheaper prices
 - Price and parking are not linearly related but are statistically significant and directly proportional
 - Majority of houses in the area do not have hot water heating
- Next steps can include making improvements for the housing community, including implementation of heating and price adjustments

Lesson Learned

This project succeeded in teaching students the following:

- Application of statistical knowledge
- Critical thinking and understanding data
- Professional skills used in industry

THANK YOU

Stevens Institute of Technology 1 Castle Point Terrace, Hoboken, NJ 07030