приложения производной

- 1. Геометрический смысл производной
- 2. Теоремы о среднем
- 2. Правило Лопиталя
- 3. Монотонность функции, точки экстремума функции
- 4. Наименьшее и наибольшее значения функции, непрерывной на отрезке
 - 5. Выпуклость и точки перегиба графика функции
 - 6. Асимптоты графика функции
 - 7. Схема исследования функции при построении графика

1. Геометрический смысл производной

Значение производной в точке x_0 равно угловому коэффициенту касательной к графику функции y = f(x) в точке $M(x_0; f(x_0))$ $f'(x_0) = k = \operatorname{tg} \alpha$.

Уравнение касательной к графику функции y = f(x) в точке x_0

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Замечание. В случае $\alpha = \frac{\pi}{2}$, уравнение касательной имеет вид: $x = x_0$, касательная к графику функции параллельна оси Oy.

2. Теоремы о среднем

Определение. Точка x_0 называется **точкой локального максимума** (минимума) функции, если существует такая окрестность точки x_0 , что для всех точек $x \neq x_0$ из этой окрестности выполняется неравенство $f(x_0) \geq f(x)$ (соответственно $f(x_0) \leq f(x)$). Точки локального максимума и точки локального минимума называются также **точками экстремума**. Если неравенства в этом определении строгие, то и экстремум называется строгим.

Для графика функции y = f(x) под точкой экстремума понимается точка $(x_0, f(x_0))$.

Замечания. 1. Только в точках экстремума для достаточно малых Δx приращение функции $\Delta y = f(x_0 + \Delta x) - f(x_0)$ не меняет знак при переходе аргумента через рассматриваемую точку $x_0: \Delta y \ge 0$ в случае минимума и $\Delta y \le 0$ в случае максимума.

- 2. Функция может иметь экстремум только во внутренних точках области определения.
- 3. <u>Локальные экстремумы</u> следует отличать от <u>глобальных</u>, которые относятся не к точке, а к целому промежутку, и представляют собой соответственно наибольшее (*глобальный максимум*) и наименьшее (*глобальный минимум*) значения функции на этом промежутке.

Теорема Ферма. Если точка x_0 является точкой локального экстремума функции y = f(x) и функция дифференцируема в точке x_0 , то производная этой функции в этой точке обращается в нуль: $f'(x_0) = 0$.

Геометрическая интерпретация: в точке локального экстремума касательная к графику функции параллельна оси Ox (оси абсцисс).

Теорема Ролля. Пусть функция f(x) удовлетворяет условиям:

- 1) определена и непрерывна на отрезке [a,b];
- 2) дифференцируема на интервале (a,b);
- 3) значения функции на концах промежутка совпадают: f(a) = f(b). Тогда внутри промежутка найдется (по крайней мере одна) точка $c, c \in (a,b)$, в которой производная функции обращается в ноль: f'(c) = 0. Символически: $\exists c \in (a,b) \Rightarrow f'(c) = 0$.

Геометрический смысл теоремы Ролля. На графике функции найдется хотя бы одна точка C(c, f(c)), в которой касательная к графику функции параллельна оси Ox.

Теорема Лагранжа. Пусть функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b). Тогда найдется такая точка $c, c \in (a,b)$, что имеет место формула конечных приращений в форме Лагранжа: f(b) - f(a) = f'(c)(b-a). (Приращение дифференцируемой функции на отрезке [a,b] равно приращению аргумента, умноженному на производную функции в некоторой внутренней точке отрезка)

Геометрический смысл теоремы Лагранжа. На графике функции найдется хотя бы одна точка C(c, f(c)), в которой касательная к графику функции параллельна секущей AB.

Теорема Коши. Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0, x \in (a,b)$, тогда найдется такая точка $c, c \in (a,b)$, что имеет место следующая формула конечных приращений в форме Коши:

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

Замечание. Геометрическая интерпретация теоремы Коши такая же, как и теоремы Лагранжа, если ее применить к функции y = y(x), заданной параметрически: x = g(t), y = f(t).

Теоремы Ролля, Лагранжа и Коши объединяются общим названием *теорем о среднем* для дифференцируемых функций.

3. Правило Лопиталя

Правило Лопиталя применяется для раскрытия неопределённостей вида $\frac{0}{0}, \frac{\infty}{\infty}$ и других, сводящихся к ним.

Пусть функции f(x) и g(x) дифференцируемы в проколотой окрестности точки a, $\lim_{x\to a} f(x) = 0$ и $\lim_{x\to a} g(x) = 0$, или $\lim_{x\to a} f(x) = \infty$ и $\lim_{x\to a} g(x) = \infty$. Пусть $g'(x) \neq 0$ в проколотой окрестности точки a. Если существует (конечный или бесконечный) предел $\lim_{x\to a} \frac{f'(x)}{g'(x)}$, то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Замечание. Правило справедливо и в случае, когда $x \to \infty$.

Неопределённости вида $\infty \cdot 0$, $\infty - \infty$, 1^{∞} , ∞^0 , 0^0 приводятся с помощью тождественных преобразований к неопределённостям $\frac{0}{0}$, $\frac{\infty}{\infty}$.

3. Монотонность функции, точки экстремума функции

Достаточное условие возрастания функции

Если в каждой точке интервала (a;b) f'(x)>0, то функция f(x) монотонно возрастает на этом интервале

Достаточное условие убывания функции

Если в каждой точке интервала (a;b) f'(x) < 0, то функция f(x) монотонно убывает на этом интервале

Точка x_0 называется **точкой локального максимума (минимума)** если существует такая окрестность точки x_0 , что для всех точек $x \neq x_0$ из этой окрестности выполняется неравенство $f(x) \leq f(x_0)$ (соответственно, $f(x) \geq f(x_0)$).

Точки локального максимума и минимума называются **точками покального экстремума**, а значения функции в этих точках — **экстремумами** функции.

Функция может иметь экстремум лишь во внутренних точках области определения. Слово «локальный» часто опускают.

Необходимое условие экстремума функции

Если x_0 — точка экстремума функции y = f(x), то в этой точке производная либо равна нулю, либо не существует.

Точки области определения функции y = f(x), в которых ее производная равна нулю (стационарные точки) или не существует, называются **критическими точками** (точками, подозрительными на экстремум) функции. Функция может иметь экстремум лишь в критических точках.

Достаточные условия экстремума функции

I. Если функция y = f(x) непрерывна в точке x_0 и при переходе через эту точку производная меняет знак, то x_0 — точка экстремума функции y = f(x), при этом:

II. Если в точке x_0 первая производная функции y = f(x) равна нулю, а вторая производная отлична от нуля, то x_0 будет точкой экстремума, причем: 1) x_0 — точка максимума, если $f''(x_0) < 0$;

2) x_0 – точка минимума, если $f''(x_0) > 0$.

Примеры экстремумов

Схема исследования функции на монотонность и нахождения точек экстремума

Этапы	Пример
	для функции $y = (2-x)(x-1)^2$
1. Найти область	Область определения: $(-\infty; +\infty)$. Функция
определения функции и	непрерывна во всей области определения
интервалы, на которых	
функция непрерывна	
2. Найти производную $f'(x)$	$f'(x) = ((2-x)(x-1)^2)' =$
	$= (2-x)'(x-1)^2 + (2-x)((x-1)^2)' =$
	$=-(x-1)^2+(2-x)2(x-1)=$
	= (x-1)(-x+1+4-2x) = (x-1)(5-3x)
3. Найти критические	$(x-1)(5-3x) = 0$ при $x_1 = 1$ и $x_2 = \frac{5}{3}$
точки, решив уравнение	$(x^{-1})(3^{-3}x) = 0 \text{ inpit } x_1 = 1 \text{ if } x_2 = 3$
f'(x) = 0	
4. Определить знак	Знак
производной в интервалах, на которые	$f'(x)$ — min + max — Xарактер изменения $\frac{5}{3}$
критические точки	Yanakten 1 5 x
разбивают область	изменения
определения функции	функции убыв. возр. убыв.
5. Записать интервалы	Функция возрастает при $x \in \left(1; \frac{5}{3}\right)$,
возрастания, убывания,	Функция возрастает при $x \in \left[1; \frac{3}{3}\right],$
экстремумы функции	

убывает при $x \in (-\infty;1) \cup \left(\frac{5}{3};+\infty\right);$ $x_{\min} = 1; \ x_{\max} = \frac{5}{3};$ $f_{\min}(1) = 0; \ f_{\max}\left(\frac{5}{3}\right) = \frac{4}{27}$

4. Наименьшее и наибольшее значения функции, непрерывной на отрезке

Функция, непрерывная на отрезке, достигает своего наименьшего и наибольшего значений на этом отрезке либо в критических точках, принадлежащих отрезку, либо на его концах.

Схема нахождения наименьшего и наибольшего значений функции, непрерывной на отрезке

Этапы	Пример для функции $y = -x^3 + 3x^2 + 5, x \in [1;4]$
1. Найти производную $f'(x)$	$f'(x) = -3x^2 + 6x$
2. На данном промежутке найти критические точки, т.е. точки, в которых $f'(x) = 0$ или не существует	$-3x^2 + 6x = 0; -3x(x-2) = 0$ при $x_1 = 0$ и $x_2 = 2$ отрезку [1;4] принадлежит только одна точка $x_2 = 2$
3. Вычислить значения функции в критических точках и на концах промежутка	f(1) = 7; f(2) = 9; f(4) = -11
4. Из вычисленных значений выбрать наименьшее и наибольшее	$ \min_{\substack{[1;4] \\ [1;4]}} f(x) = f(4) = -11; \max_{\substack{[1;4] \\ [1;4]}} f(x) = f(2) = 9 $

5. Выпуклость и точки перегиба графика функции

Говорят, что график дифференцируемой функции y = f(x) имеет на интервале (a;b) выпуклость, направленную вниз (вверх), если он расположен не ниже (не выше) любой касательной к графику функции на (a;b).

Достаточные условия выпуклости графика функции

Если функция y = f(x) имеет на интервале (a;b) вторую производную и f''(x) > 0 (f''(x) < 0), то график функции имеет на (a;b) выпуклость, направленную вниз (вверх).

Выпуклость графика на (a;b) направленная вниз

Выпуклость графика на (a;b), направленная вверх

Точка перегиба

Точки непрерывности функции, в которых меняется направление выпуклости, называются *точками перегиба* функции. Если x_0 точка перегиба функции y = f(x), то точка $M(x_0, f(x_0))$ называется *точкой перегиба графика* этой функции.

Если x_0 — точка перегиба, то $f''(x_0)$ равна нулю или не существует. Точки непрерывности функции, в которых f''(x) равна нулю или не существует, называются критическими точками 2-го рода. Если вторая производная функции y = f(x) при переходе через критическую точку x_0 меняет знак, то x_0 — точка перегиба

Схема нахождения интервалов выпуклости и точек перегиба графика функции

Этапы	Пример для функции $y = x^4 - 6x^2$
промежутки	Функция определена, непрерывна и дифференцируема при $x \in (-\infty; +\infty)$
2. Найти производные первого и второго порядков	$f'(x) = 4x^3 - 12x; \ f''(x) = 12x^2 - 12$
3. Найти критические точки 2-го рода	$f''(x) = 0; 12x^2 - 12 = 0; x^2 - 1 = 0;$ $x_1 = -1; x_2 = 1$
4. В каждом из интервалов, на которые область определения разбивается критическими точками 2-го рода, определить знак $f''(x)$ и	Знак $f''(x)$ + - + Характер изменения 1 \(\text{\text{\text{\$\sigma}}} \) функции перегиб перегиб
направление выпуклости	
5. Записать результат	График функции имеет:

исследования	а) выпуклость направленную вниз при $x \in (-\infty; -1)$ и $x \in (1; +\infty)$;
	б) выпуклость направленную вверх при $x \in (-1;+1);$ в) точки перегиба графика функции $(-1;-5)$ и $(1;-5)$

6. Асимптоты графика функции

Под *асимптотой кривой* понимают прямую, расстояние до которой от точки, лежащей на кривой, стремится к нулю при неограниченном удалении от начала координат этой точки по кривой.

Различают асимптоты вертикальные (параллельные оси Oy), горизонтальные (параллельные оси Ox) и наклонные.

Прямая x=c является *вертикальной асимптотой* графика функции y=f(x), если хотя бы один из односторонних пределов в точке c равен бесконечности, т. е. $\lim_{x\to c-0} f(x) = \infty$ или $\lim_{x\to c+0} f(x) = \infty$.

Прямая y = kx + b является **наклонной** (**горизонтальной** при k = 0) асимптотой графика функции y = f(x) при $x \to \infty$, если $k = \lim_{x \to \infty} \frac{f(x)}{x}$, $b = \lim_{x \to \infty} (f(x) - kx)$.

Схема нахождения асимптот графика функции

Этапы	Пример для функции $y = \frac{x^2 + 1}{x - 2}$
1. Найти область	Функция определена при $x \neq 2$,
определения и интервалы	непрерывна при $x \in (-\infty;2) \cup (2;+\infty)$
непрерывности	,
	x = 2 - точка разрыва
2. Определить тип точки разрыва (если она есть)	$\lim_{x \to 2-0} \frac{x^2 + 1}{x - 2} = \left(\frac{5}{-0}\right) = -\infty;$
	$\lim_{x \to 2+0} \frac{x^2 + 1}{x - 2} = \left(\frac{5}{+0}\right) = +\infty.$
	x = 2 — точка разрыва 2-го рода
3. Записать уравнение	
вертикальных асимптот в	x = 2 — вертикальная асимптота
случае наличия точки	
разрыва 2-го рода	

4. Найти наклонные асимптоты
$$y = kx + b$$

$$k = \lim_{x \to \infty} \frac{x^2 + 1}{(x - 2)x} = \lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 2x} = \lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{1 - \frac{2}{x}} = 1.$$

$$b = \lim_{x \to \infty} \left(\frac{x^2 + 1}{x - 2} - x\right) = \lim_{x \to \infty} \frac{2x + 1}{x - 2} = \lim_{x \to \infty} \frac{2x$$

7. Схема исследования функции при построении графика

Исследование функции можно проводить по следующей схеме.

- 1. Найти область определения функции.
- 2. Исследовать функцию на четность, нечетность.
- 3. Найти асимптоты графика функции.
- 4. Найти интервалы монотонности функции, точки экстремумов. Вычислить значения экстремумов.
 - 5. Найти интервалы выпуклости вверх (вниз), точки перегиба.
 - 6. Исследовать периодичность функции.
 - 7. Найти точки пересечения графика с осями координат.
 - 8. Построить график функции с учетом проведенного исследования.