

Mastering Machine Learning for Spatial Prediction II

Model selection and interpretation, uncertainty

OpenGeoHub Summer School 20 August 2020

Madlene Nussbaum

Objectives ...

- Know 2 ways of ...
 - of model selection
 - of model interpretation
 - computation of uncertainty
- Learn why we do model selection (or not)
- Learn that ML != black box
- Learn why we need uncertainty and how to validate your prediction intervals

Overview

Model Selection

- linear regression
- with lasso
- with covariate importance

Model interpretation

- partial residual plots
- partial dependence plot
- partial dependence maps

Uncertainty

- non-parametric bootstrap
- model-based bootstrap
- evaluation

Is there a reason for model selection? Or is it enough to do model building?

Model selection = reduce the inital covariate set **Model building** = find relationships between covariates and response

- Model interpretation
- Better just use relevant covariates for prediction
- Computational effort for predictions (just prepare 12 instead of 300 rasters)
- Maybe reduce effort for future data collection and modelling on same topic
- * However, theoretical statisticians do not recommenced selection, because it is often biased, difficult to find the true model..
- ★ We might loose prediction accuracy...

Model flexibility vs. model complexity

FIGURE 2.7. A representation of the tradeoff between flexibility and interpretability, using different statistical learning methods. In general, as the flexibility of a method increases, its interpretability decreases.

Model selection – strategies

 Ask a domain expert that is familiar with the topic of your modelling problem

- Remove n worst covariates
- Stepwise addition or removal (see later)
- Test all possible models
- Shrinkage (e.g. by boosting or lasso, see later).

Model selection for linear regression

Usually used for linear models (e.g. OLS):

Forward selection

- Start with a model with just an intercept
- Try all possible covariates and add the one that results in the best fit (e.g. R²)
- Add covariates until increase in R² is only very small (threshold) or evaluate the gained models by cross validation.

Backward elimination

- Fit the full model with all covariates
- Remove the covariate that will cause the smallest decrease in R²
- Continue removing until the drop in R² gets too big (threshold) or evaluate the fitted models by cross validation

Model selection for linear regression

Evaluation of forward and backward selection:

- Straightforward, easy to understand
- Follows a selection path, hence much more efficient and less arbitrary than best subset selection
- ★ Binary selection: A covariate is either in or out. Being in by e.g. 30 % is not possible.
- Multi-collinearity, unstable fits!
 We need to remove correlated covariates beforehand.
- Likely overfits the data, biased model selection.
 Most often does not find true model.
- ★ We can not fit p > n
- → Possible solution: regularization / shrinkage with e.g. **lasso**.

Model selection with lasso

Path of coefficients for increasing tuning parameter

Coefficient becomes 0, meaning the covariate is removed from the model

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_{1}^{p} |\hat{\beta}_{j}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

With lambda = 1, there is no shrinkage, and we have the normal ordinary least squares linear model fit

Covariate selection for random forest (or boosted trees)

What again was this out-of-bag (OOB) error?

For each observation $z_i = (x_i, y_i)$, construct its random forest predictor by averaging only those trees corresponding to bootstrap samples in which z_i did not appear.

Hastie et al. 2009, p. 593

2 types of covariate importance:

- Sum of decrease in goodness-of-fit error by adding splits of this covariate (impurity), oriented on fitting the data. How much do we reduce error by using this covariate at this split?
- Mean decrease in OOB error by randomly permuting a covariate, oriented on predictions.
 How much worse do OOB predictions get if we randomly shuffle a covariate?
 - → removing a covariate is not the same, other correlated covariate could replace its "predictive capacity"

Selection, very simple:

Recursive backward elimination

- 1) Remove covariate(s) with lowest importance
- 2) Refit random forest with remaining

Find optimum number of covariates by minimizing OOB error.

Problem:

Correlated covariates remain, because of randomisation at each split (m_{try}). Interpretation needs to account for that.

Covariate selection for random forest (or boosted trees)

Model selection with random forest

- Straightforward approach
- Easy to implement
- From my experience: efficient (meaning a lot of covariates are removed)
- Correlated covariates remain in the model
- Artefacts in predictions possible
- Stability unclear?
 (Small changes in covariate or response values might change result drastically)
- Biased?(maybe biased as other backward elimination methods)
- Time consuming (iterative method, no paralell computing possible)
- ★ Possibly: A lot of effort for a small result

Overview

Model Selection

- linear regression
- with lasso
- with covariate importance

Model interpretation

- partial residual plots
- partial dependence plot
- partial dependence maps

Uncertainty

- non-parametric bootstrap
- model-based bootstrap
- evaluation

Covariate interpretation for any model

Partial residual plots (see e.g. Wikipedia)

Regression based methods, plot *Residuals* of full model plus the covariate effect $\hat{\beta}_i X_i$ against the values of covariate X_i

Residuals +
$$\hat{\beta}_i X_i$$
 versus X_i

Partial dependence plots Hastie et al. 2009, chapt. 10.13.2

Any "black box" learning model, dependence of covariate on response after *accounting* (not *ignoring*) for the effects of all other covariates. Approximation of function by:

$$\bar{f}_{\mathcal{S}}(X_{\mathcal{S}}) = \frac{1}{N} \sum_{i=1}^{N} f(X_{\mathcal{S}}, x_{i\mathcal{C}}),$$

Take care with interpretation: If many covariates it is difficult to choose which to interpret. If collinearity in data set, covariates might replace each other ...

Covariate interpretation for any model

Nussbaum et al. 2017b

Spatial covariate interpretation

Create maps from relationship:

Original covariate

Partial dependence

Local importance

Behrens et al. 2014

Overview

Model Selection

- linear regression
- with lasso
- with covariate importance

Model interpretation

- partial residual plots
- partial dependence plot
- partial dependence maps

Uncertainty

- non-parametric bootstrap
- model-based bootstrap
- evaluation

Confidence intervals vs. prediction intervals

Confidence intervals

Intervals of confidence for the estimate of a population \underline{mean} . Considers uncertainty in our $\underline{estimation}$ of β (based on standard error of coefficient).

$$y = X \hat{\beta} + \epsilon$$

Prediction intervals

Intervals of confidence for the estimate of a <u>new observation</u>. Considers uncertainty estimated β <u>and</u> the variation the model does not account for (based on standard error of coefficient and residual error).

$$y = X \hat{\beta} + \epsilon$$

Non-parametric bootstrap – idea

Idea: by resampling our sample many times (e.g. 1000x)
we can approximate properties of the distribution of the
total population.

- Useful to
 - create model ensemblesbagging = boostrap aggregation
 - estimate uncertainty for any model

Simulate predictive distribution non-parametric bootstrapping ("model-free")

"Quantile regression forest" as non-parametric bootstrap

Citation: Meinshausen N, 2006. Quantile regression forests. Journal of Machine Learning Research, 7, 983–999.

- Bootstrap aggregation in random forest: each tree is fitted to a resampled dataset
- Keep all observations in the final tree leaves
- Get distribution from observations that were in leaves together

Simulate predictive distribution by model-based bootstrapping

1000 x

1. simulate response under the final model

$$Y(s) = \sum f(X, s) + \epsilon$$

2. fit model to simulated response, compute predictions for new observations

95 % prediction interval

Model-based bootstrapping

(also "parametric bootstrap")

For 1000 repetitions, do:

1. Simulate new response $Y^*(s)$ with the fitted value f(x(s)) plus a randomly chosen residual sampled from ε (or from normal distribution with same σ , μ as residual distribution):

$$Y(\mathbf{s})^* = \hat{f}(\mathbf{x}(\mathbf{s})) + \epsilon$$

- 2. Fit model to new response $Y^*(s)$
- 3. Compute prediction error for new location s+ with again randomly sampled ϵ

$$\delta_+^* = \hat{f}(\mathbf{x}(\mathbf{s}_+))^* - (\hat{f}(\mathbf{x}(\mathbf{s}_+)) + \epsilon)$$

Two-sided prediction intervals:
$$[\hat{f}(\mathbf{x}(\mathbf{s}_+)) - \delta^*_{+(1-\alpha)}; \hat{f}(\mathbf{x}(\mathbf{s}_+)) - \delta^*_{+(\alpha)}].$$

Which bootstrap should I use?

non-parametric

- No assumptions about a model or error distributions
- **★** Likely to fail with small datasets:
 - underestimates variance
 - lacks to depict distribution of full population
- mostly no software
- easy to implement
- computationally intensive (mainly CPU)

model-based / parametric

- * Assumes e.g. Gaussian errors
- Prediction intervals are given this model even if model is wrong
- More suitable for small datasets
- mostly no software
- * a bit tricky to implement
- computationally intensive (mainly CPU)

Performance plots for e.g. 95% prediction intervals

Evaluation with independent test data

Performance plots for complete predictive distribution

<u>one-sided</u> prediction intervals of bootstrapped distribution against the nominal probabilities

Evaluation of prediction intervals

coverage 90 %-intervals

Modelbased bootstrap with GAM (non-linear regression)

coverage one-sided intervals

quantile regression forest

Summary of lecture

My personal tips for your applied ML modelling career:

- Do not believe there is the ONE solution (e.g. one model that never fails.). So make sure you understand advantages and disadvantages for your application.
- Do not neglect classical statistics. Without understanding linear models you will never master machine learning!
- If a method is hard to understand to you, **please use a simpler one**, that you feel secure with! Your credibility and credibility of your data product is at stake.
- Do not neglect domain knowledge. Most likely consulting an expert of your field might improve your model more than the 100redst tuning of the latest fancy method, e.g. by inlcuding a neglected covariate!

Additional literature

Davison & Hinkley 1997, on bootstrap methods, a bit technical though.

Davidson, A. C. and Hinkley, D. V.: Bootstrap Methods and Their Applications, Cambridge University Press, Cambridge, doi:10.1017/cbo9780511802843, 1997.

Tutz, 2012, very good book on categorical responses, mostly parametric methods, some ML described, comes with many examples and a R package:

Tutz, G.: Regression for Categorical Data, Cambridge University Press, doi:10.1017/cbo9780511842061, 2012.

Wilks 2011, Useful book for validation measures including for uncertainty, see chapter 8 and R package "verification":

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, 3 edn., 2011.

Practical training

You will learn:

model selection model interpretation and much more!

THE ART OF PROGRAMMING - PART 2: KISS