Formelsammlung Statistik 1 HS24 Dr. Mirjam Senn & Dr. Gerda Wyssen

1 UNIVARIATE STATISTISCHE KENNWERTE	2
1.1 Masse der zentralen Tendenz (Lagemasse)	2
Mittelwert (arithmetisches Mittel)	
Median	
1.2 Masse der Variabilität (Streuungsmasse)	2
1. Quartil (Q1)	
Interquartilsabstand	
Varianz	
Standardabweichung	2
1.3 Transformation und Standardisierung	2
Lineare Transformation	2
Mittelwert bei linearer Transformation	
z-Transformation	
2 WAHRSCHEINLICHKEITEN	2
2 WAHRSCHEINLICHKEITEN	3
2.1 Kombinatorik	3
2.2 Stochastische Unabhängigkeit	3
Multiplikationstheorem	
2.3 Satz von Bayes (Bayes-Theorem)	3
2.0 Out von Bayes (Bayes-Incorem)	
3 WAHRSCHEINLICHKEITSVERTEILUNGEN	4
3.1 Diskrete Zufallsvariable	
Wahrscheinlichkeitsfunktion Pxi	
Binomialverteilung	
3.2 Stetige Zufallsvariable	
Dichtefunktion fx	
	4

1 Univariate statistische Kennwerte

1.1 Masse der zentralen Tendenz (Lagemasse)

Mittelwert (arithmetisches Mittel)

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Median

sortierte Daten
$$x_{(1)}, x_{(2)}, ..., x_{(n)}$$

ungerades
$$n$$
: $Md = x_{((n+1)/2)}$

gerades *n*:
$$Md = \frac{x_{(n/2)} + x_{(n/2+1)}}{2}$$

1.2 Masse der Variabilität (Streuungsmasse)

1. Quartil (Q_1)

falls n/4 eine ganze Zahl ergibt
$$Q_1=0.5\cdot \left(x_q+x_{q+1}\right) \quad q=(n\cdot 0.25)$$
 falls n/4 keine ganze Zahl ergibt
$$Q_1=x_q \qquad \qquad q=(n\cdot 0.25)$$
 aufgerundet (für Q_3 analog mit $n\cdot 0.75$)

Interquartilsabstand

$$IQR = Q_3 - Q_1$$

Varianz

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

Standardabweichung

$$s_x = \sqrt{s_x^2}$$

1.3 Transformation und Standardisierung

Lineare Transformation

$$y = a + b \cdot x$$

Mittelwert bei linearer Transformation

$$y = a + b \cdot \bar{x}$$

z-Transformation

$$z_m = \frac{x_m - \bar{x}}{s_X}$$

2 Wahrscheinlichkeiten

2.1 Kombinatorik

k: Anzahl der möglichen Einzelergebnisse

n: Anzahl der Wiederholungen

Modell mit Zurücklegen, mit Berücksichtigung der Reihenfolge $K=k^n$

Modell ohne Zurücklegen, mit Berücksichtigung der Reihenfolge

$$K = \frac{k!}{(k-n)!}$$

Dabei gilt:
$$k! = k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot (k-(k-1))$$
, wobei $0! = 1$

Modell ohne Zurücklegen, ohne Berücksichtigung der Reihenfolge (Binomialkoeffizient)

$$K = \frac{k!}{(k-n)! \cdot n!} = \binom{k}{n}$$

Modell mit Zurücklegen, ohne Berücksichtigung der Reihenfolge

$$K = \frac{(k+n-1)!}{(k-1)! \cdot n!}$$

2.2 Stochastische Unabhängigkeit

$$P(A|B) = P(A|\overline{B}) = P(A)$$

$$P(B|A) = P(B|\overline{A}) = P(B)$$

Multiplikationstheorem

Für unabhängige Ereignisse

$$P(A \cap B) = P(A) \cdot P(B)$$

2.3 Satz von Bayes (Bayes-Theorem)

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A})}$$

$$P(\overline{A}) = 1 - P(A)$$

$$P(B|\overline{A}) = 1 - P(\overline{B}|\overline{A})$$

3 Wahrscheinlichkeitsverteilungen

3.1 Diskrete Zufallsvariable

Wahrscheinlichkeitsfunktion $P(x_i)$

Erwartungswert: $\mu = \sum_{i=1}^{N} x_i \cdot P(x_i)$

Varianz: $\sigma^2 = \sum_{i=1}^{N} (x_i - \mu)^2 \cdot P(x_i)$

Verteilungsfunktion: $F_{(x_i)} = \Sigma_{j \le i} P(x_j)$

Binomialverteilung

$$P(X = x) = {k \choose n} \cdot \pi^x \cdot (1 - \pi)^{k - n}$$

$$\binom{k}{n} = \frac{k!}{(k-n)!}$$

Dabei gilt: $k! = k \cdot (k-1) \cdot (k-2) \cdot ... \cdot (k-(k-1))$, wobei 0! = 1

Erwartungswert: $\mu = k \cdot \pi$

Varianz: $\sigma^2 = k \cdot \pi \cdot (1 - \pi)$

3.2 Stetige Zufallsvariable

Dichtefunktion f(x)

Erwartungswert: $\mu = \int_{-\infty}^{+\infty} x \cdot f(x) dx$

Varianz: $\sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot f(x) dx$

Verteilungsfunktion: $F(x_0) = P(X \le x_0) = \int_{-\infty}^{x_0} f(x) dx$