Crop Detection from Satellite Imagery using Deep Learning

Karim Amer

Head of AI/ML at Visual and AI Solutions (VAIS)

- One of the important monitoring tasks for EO systems.
- Classifying planted crop types across any country can help governments in:
 - Monitoring the national agricultural plans
 - Early yield estimation
 - Harvest planning

- Given a small crop field (farm), classify the planted crop into one of the following:
 - Maize
 - Cassava
 - Common Bean
 - Maize & Common Bean (intercropping)
 - Maize & Cassava (intercropping)
 - Maize & Soybean (intercropping)
 - Cassava & Common Bean (intercropping)

- Time series of high resolution satellite images of an agricultural area in west Kenya acquired in 13 different days within 5 months.
- Each image has
 - Size of 4032 X 6070 pixels.
 - 13 spectral bands.
- Number of annotated crop fields in the area is 4688.
 - 3286 for training.
 - 1402 for testing.

Sample fields (color coded with their crop class) overlayed on Google basemap from Western Kenya. (Image Source)

Provided spectral bands:

- o RGB
- Visual and Near Infrared
- Ultra-Blue
- Short Wave Infrared
- Cloud probability layer

Some Starter Questions for ML Projects

- What does my data look like?
- What is the best validation strategy?
- Is there any previous work on the same problem?
- What do you think is the best solution before starting to code?
- What is the plan to reach such solution?

Data Exploration

Class frequency

Data Exploration

• Field area distribution

Data Exploration

Band skewness

Challenges

- Small dataset.
- High dimensionality (spatio-temporal data).
- Unbalanced classes.
- A lot of crop fields is only couple of pixels.

Related Work

3D Convolutional Neural Networks

 Ji, S., Zhang, Z., Zhang, C., Wei, S., Lu, M., & Duan, Y. (2020). Learning discriminative spatiotemporal features for precise crop classification from multi-temporal satellite images. International Journal of Remote Sensing, 41(8), 3162-3174.

Random Forest

- Viskovic, L., Kosovic, I. N., & Mastelic, T. (2019, September). Crop classification using multi-spectral and multitemporal satellite imagery with machine learning. In 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). IEEE.
- Ok, A. O., Akar, O., & Gungor, O. (2012). Evaluation of random forest method for agricultural crop classification. European Journal of Remote Sensing, 45(1), 421-432.

Summary of Approach

- A patch is cropped around each field and pass it to a deep neural network model for classification.
- The model was trained with extensive augmentation to avoid overfitting.

Local Validation Strategy

- Initial experiment: 1 split with 75% training, 25% validation.
- Submission experiment: 10 splits with 85% training, 15% validation.
- Splits are stratified.
 - Stratification produces similar distribution between training and validation.
- Why stratification rather than random splitting?
 - Competition metric is cross entropy which is highly sensitive to class distribution.

Data Generation

- 1. Calculate the center of each crop field.
- 2. Input patch: crop a 32X32 patch around the center so each patch has size (T, C, H, W) where:
 - T: number of time steps = 13
 - C: number of spectral bands = 13
 - H: height = 32
 - W: width = 32
- 3. Input field mask: crop a 32X32 binary mask around the same center where field pixels are ones and others are zeros. The size of each field mask is (1, 1, H, W).

Data Preprocessing

Feature Engineering

- Remove one short-wave infrared band (B11, 1610 nm).
- Add 3 vegetation indices. [1], [2]
- Total number of spectral bands become 15.

Normalization

- Square root (to decrease skewness).
- Standard scaling (transform to zero mean and unit std).

- [1] A. Karnieli, N. Agam, R. T. Pinker et al., "Use of NDVI and land surface temperature for drought assessment: merits and limitations," Journal of Climate, vol. 23, no. 3, pp. 618–633, 2010.
- [2] S. K. McFeeters, "The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features," International Journal of Remote Sensing, vol. 17, no. 7, pp. 1425–1432, 1996.

Data Augmentation

- Spatial augmentations: rotation, flipping and random cropping.
- Mixup [3]: weighted summation of input patch and a random patch cropped from any satellite image.
- Time augmentation: randomly drop one time step.

Design Loop

- Start with simple model or standard model.
- 2. Increase model complexity.
 - Try adding more layers.
 - Try different layers.
 - Try increasing layers width.
- Decrease overfitting.
 - Do more augmentation.
 - Try improving input features (preprocessing or engineering).
 - Try adding pooling layers.
 - Try smoothing predictions by: bagging ensemble, Snapshot ensemble, SWA, ...
 etc.
- 4. Repeat 2 & 3.

Model Architecture

Masked Average Pooling

$$output = \frac{\sum_{H \ W} \sum_{H \ W} input*mask}{\sum_{H \ W} \sum_{H \ W} mask}$$

Ensemble

- Bagging ensemble of 10 models of the same architecture each trained on a different subset (85%) of the training data.
- Each model is trained using Snapshot ensemble [4]
 - Train the model with cyclical scheduler for 6 cycles.
 - Create ensemble of model snapshots taken at the end of each cycle.

Results

SCORE	RANK		SUBMISSIONS	SUBMITTED
		This is the final leaderboard. The competitions is officially closed and w not accept any more submissions. Congratulations to all that participate		
1.102264609	1	KarimAmer 🚾 oh, hil	31	~1 month ago
1.168877091	2	youngtard ••	154	~1 month ago
1.174099923	3	team Be_CarEFuL = 0	91	~2 months ago
1.176934328	4	team Threshold .	116	~2 months ago
1.177508763	5	overfitting_PLB Axa Mansard(Nigeria)	114	~1 month ago