

applying he & method for me advection term
using upwind discretisation -
⇒ upwind discretisation means previous
values are utilised to calculate erivative
By as O Bow
$O(u_{i+1} - u_{i}^{n+1} + (1 - O(u_{i+1}^{n}) - u_{i}^{n})$
Dx
Box a 40 fow
Q (uint) - uj, n+1) + (1-0) un - Un-1
(Dx
*assuming act) in always positive to simplify.
: $u_{x} = \partial \left(u_{j+1}^{n+1} - u_{j}^{n+1} \right) + (1-0) \left(u_{j+1}^{n} - u_{j}^{n} \right)$
Or Dr
$u_{12} = -8 \left(u_{j+1}^{n+1} - 2u_{j}^{n+1} + u_{j-1}^{n+1} \right) + (1-8) \left(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n} \right)$
$\Delta \chi$
final form:
$u_j^{n+1} - u_j^n - a(t) \left(\theta \right) \left(u_{j+1}^{n+1} - u_j^{n+1} \right) + \left(1-\theta \right) \left(u_{j+1}^{n} - u_j^{n} \right)$
At On I The on I
$-\left(\theta\left(u_{j+1}^{n+1}-2u_{j}^{n+1}+u_{j-1}^{n+1}\right)+\left(1-\theta\right)\left(u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n}\right)=0$
DX NY

ASSUMING MATERICAL AWAYS A CONSTANT:

Define
$$A = \frac{(t)}{0x} \text{ At}$$
 $B = \frac{(t)}{1x^2}$
 $U_j^{n-1} - U_j^n = AOU_{j+1}^{n+1} - AOU_j^{n+1} + (1-0)AU_{j+1}^n - (1-0)AU_j^n$
 $+ BOU_{j+1}^{n+1} - 2BOU_j^{n+1} + BOU_j^{n+1} + (1-0)BU_j^{n+1} - 2B(1-0)U_j^n + B(1-0)U_j^n$
 $+ (1-0)BU_j^{n+1} - 2B(1-0)U_j^n + B(1-0)U_j^n$
 $= U_j^n (1-A(1-0)-2B(1-0)) + U_{j+1}^n (A(1-0)+B(1-0)) + U_{j+1}^n (A(1-0)+B(1-0))$
 $+ U_j^n (B(1-0)) + U_{j+1}^n (A(1-0)+B(1-0))$

nea	v M	e !	bou	nda	14										
					7			4							
t 🖁	0	0	0	0	0	0	0	*							
	0	O	0	0	0	0	0	*		0					
n+1 35	0	0	0	0	0	0	0	~							
n	0	0	0	0	0	0	0	×							
\-*	0	O	0	0	0	0	0			E					
K	0	0	0	0	0	٥	0	*		U					
	OF	0)n.	6	Õ	0	0	*							
1=0-0	ρ×	X	<u>×</u>	~ <i>K</i>	*	ÿ+1	X	,)							
0					U	0/1		7	= 20)					
A	N .	t=c)	U	(n.	z) =	- V	D()L) -		U°;				
1,	1\$1	C			('(-/)		J				
		N 1-0													
	U	2	1+	A0+	LB)	-0)-1 (BO)	- V [1 / f	10+	BO)	(w	nknou	(2na
	<u>Pt</u>						,	,	U						
		<i>C</i> .							A	- AQ	+ 19-	·Уθ			
	U;'(-	A (1-	0)-	-2B(1-0)	7	O'N	(A	10) +B(1-0		Uno	(2nu
	+	0.	n /	_B (1-8	/ /							/		
		J	-1 (_	//									

