Twitter Sentiment Analysis

Shahbaz Masood Springboard Capstone Project 2

Problem & Motivation

- Sentiment analysis is a multidisciplinary necessity.
 - Online Commerce
 - Voice of the Market (VOM)
 - Voice of the Customer (VOC)
 - Brand Reputation Management
 - Government
- Extract sentiment from 100,000 tweets.
- Dataset acquired online

Data

- Publicly available.
- Data
 - 100,000 tweets
 - Each marked with 0,1 i.e negative positive sentiment

tweet	sentiment
@awaketoday awww, thanks	1
@2NiteBoy damn it xD hurry up	1
@celiabb 8 but the next one up would be better	1
@cleeobea drink lots of water- they always help my headaches not seem so intense! and then go to bed!	1
@biggsjm Is it a family tradition?	1
@CrazyBallerina can't. my sal wont be in until next week	0
#followfriday @SusieGennoe - she's only got 35 followers and that makes me so sad	0
@612brisbane try following my public account instead of @rocketpilot	1
@BarackObama don't act like you didn't smoke in your hayday, buster!! Don't take my flavors away	0
I got scolded for not waiting and spending MORE to find my perfect storage solution saddies Guess I	0

Data Preprocessing

The tweets were processed according to the following and in the same order.

- 1. Tags removal (i.e '@')
- 2. Lowercasing
- 3. Numbers removal.
- 4. HTTP links removal
- 5. Emojis were processed. Emojis were labelled EMO_POS or EMO_NEG
- 6. Punctuation removal
- 7. Removed extra white spaces
- 8. Words which did not consist of alphabets were removed
- 9. Stop words were removed (These words add no value to the sentiment of the tweet e.g The, He etc)
- 10. Character repetitions were removed e.g funnny was changed to funny
- 11. Words were lemmatized to bring to their basic form e.g adventurous changed to adventure

Distribution of Sentiment

Roughly 56% tweets are marked positive and 44% as negative

Low class imbalance

EDA

Distribution of length of tweets

Equal for both sentiments

Wordclouds and Countplots

Initial problems with the data

Upon visual inspection it was noticed that some tweets are:

- 1. Marked incorrectly e.g. smoke a little for 420 and chill out!
- 2. Had no sentiment but a sentiment is assigned e.g. called at the Farmers Market in the rain this morning, didn't buy coffee, sorry, I'm a tea drinker really!
- 3. Some tweets had multiple sentiments i.e. one sentiment could not be assigned in entirety. E.g. 'i wanted to win but it's allll good lol'

Modeling Overview

- 3 Text Feature Extraction methods
 - o Bag of words
 - o TF-IDF
 - Word Embeddings
- 6 ML models
 - Logistic Regression
 - o SVM
 - XGBoost
 - NaiveBayes
 - DecisionTree
 - RandomForest

Data split scheme

	All data	Training data	Test data
Percentage	100%	80%	20%
Tweets	100,000	80,000	20,000

- 3-Fold cross validation
- Hyperparameter tuning
- Homogeneity maintained to ensure comparable results

		. CEIG. CEAG GOLOI					
	0	TFIDF	SVM	0.767643	0.000807	0.739871	0.000922
	1	TFIDF	LOG_REG	0.768249	0.000805	0.739808	0.000542
D II .	2	BOW	LOG_REG	0.769830	0.001403	0.738096	0.000265
Results	3	BOW	NB	0.758942	0.000581	0.737095	0.001377
	4	BOW	SVM	0.769580	0.000605	0.736983	0.000849
	5	TFIDF	NB	0.758217	0.000717	0.733157	0.000327
TFIDF - SVM wins all	6	TFIDF	RF	0.976710	0.000521	0.726419	0.002346
metrics	7	BOW	RF	0.976885	0.000493	0.717993	0.001447
	8	BOW	XGB	0.685565	0.002639	0.680652	0.004457
	9	TFIDF	XGB	0.686258	0.003049	0.679139	0.004392
	10	TFIDF	DT	0.976722	0.000514	0.671601	0.002833
	11	BOW	DT	0.976916	0.000491	0.668888	0.001787
	12	W2V	RF	0.988205	0.000353	0.607343	0.004190
	13	W2V	XGB	0.626758	0.000899	0.607056	0.004873
	14	W2V	LOG_REG	0.595142	0.001879	0.593117	0.005842
	15	W2V	SVM	0.595417	0.001232	0.592504	0.005994
	16	W2V	DT	0.988205	0.000353	0.551787	0.003365

Model TrainAccMean TrainAccStd CVAccMean CVAccStd

FeatureExtractor

CV Accuracies

ROC of best model

Confusion Matrix

 We can see that 16% of the error is because of False Negatives while 9.6% is due to False Positives.

92	Negative	Positive	micro avg	macro avg	weighted avg
f1-score	0.598614	0.787332	0.721972	0.692973	0.704759
precision	0.812623	0.690924	0.721972	0.751773	0.744172
recall	0.473829	0.915007	0.721972	0.694418	0.721972
support	8750.000000	11248.000000	19998.000000	19998.000000	19998.000000

• The lower f1-score for Negative sentiments indicates that it is relatively harder to predict a

Further Improvements

- 1. Use more features to train the models for TFIDF.
- 2. Use a sophisticated model like deep learning where the models are trained with the context of a window of words.
- 3. BOW and TFIDF can be used with 2-grams or 3-grams
- 4. Training dataset can be refined to be more accurate.
- 5. Exclamation marks could be handled specially during the preprocessing of the tweets.