LoRa 디바이스 환경 구성 및 실습

INDEX

- **01** LoRa 활용 사례
- 02 SKT LoRa 모듈 비교
- **03** AT Command 란
- **04** 와이솔 AT Command 실습
- **06** 솔루엠 AT Command 실습
- 05 ThingPlug 가입 및 데이터 확인

실제 개발 및 활용 사례

>> [Gper] 개발 과정 – 아이디어 키즈폰: 30-40만원 GPS 트래커: 60만원 월사용료: 1.5만원 디바이스 가격이 저렴할 것 가격 조건 5만원 내외, 월 사용료 1만원 이내 GPS를 사용하여 실외 위치를 포착할 것 **GPS** B2C도 고려하므로, 1회 충전으로 일주일간 사용이 가능할 것 배터리 1회 충전하여 5일 이상 펌웨어 모바일 앱에서 펌웨어 업데이트가 가능할 것 네트워크 수집된 위치를 독립적으로 전송 가능할 것 상태 표시 배터리를 절약할 수 있는 최소한의 LED SOS 전송 SOS 긴급신호를 보낼 수 있는 버튼

SKT 최초의 인증을 받은/상용화된 디바이스

>> [Gper] 개발 과정 – 프로세스

제품 디자인		2016. 3	•	외주		
PCB 설계		2016. 3			•	
기구 구조 설계		2016. 3				
목업 제작		2016. 4				
펌웨어 개발		2016. 5 ~ 11	•	현재도	P준히	ing
금형 제작	2016. 6					
PP 제작	2016. 8					
망인증	2016. 9 ~ 10					
KC인증		2016. 10				

>> 실제 활용 사례 'Gper' Spec.

실시간 위치

SOS 전송

안심존 설정

배터리 부족 알림

Spec	Descriptions					
CPU	Nordic nRF51822, • OTA 등을 이용하기 위해 Bluetooth Low energy/2.4GHz RF system on chip ARM Cortex-M0 32bit processor					
Network	Wireless communication based on LoRa®protocol, LPWA(Low power Wide Area)					
GPS	Quectel, 66 search channels, Sensitivity -165dBm(tracking)					
ANT.	LoRa®: PCB pattern antenna. GPS: internal patch antenna					
DISPLAY	THREE COLOR LED					
BUTTON	ON/OFF SWITCH SOS					
BATTERY	3.7V Li-polymer Battery 400mA/H					
POWER	5V 1A (Micro USB)					
SENSOR	BOSCH BMA250E, Triaxial acceleration sensor					

사람들이 움직일때 감지하기 위하여 가속도 센서 탑재 (배터리 소모량을 줄이기 위해)

>> 실제 활용 사례 'Gper' 서버 플랫폼(Catchloc) 지원(B2B)

특징

CATCH LOC은 스마트폰, 비콘, 기타 Tracker 등 다양한 기기의 위치를 실시간으로 수집하여 웹 혹은 운영 중인 서비스에서 조회 가능합니다.

>> [Gper] Coverage map(~2017.05.02)

>> [Gper] 타겟 고객

- 차량 위치관제
- 치매환자
- 미아 및 도난 방지

(100ea)

>> SKT LoRa Service

Metering

[전력 Smart Meter] [LPG 원격 검침기] [Gper]

Tracking

[Safe Watch]

[Keyco]

[행복 GPS]

Monitoring & Control

[휴대용 가스검지기]

[스마트 주차장]

[환경 모니터링]

[공사 감지]

[신호등 고장 모니터링]

[맨홀 관제]

[충격감지/Door 감지]

[수위/수량계측] 한국농어촌공사

[전기시설물관리] 한국전기안전공사

[지온/지습센서]

[스마트주차알림]

>> LoRa 서비스 소개(1/3)

상품 개요	・ 실시간 차량 정보 알리미 서비스
	주차 이동 요청 및 차주 호출 기능: 전화번호 노출 없이 차주 호출 가능
주요 기능 및 특장점	외부 충격 알림: 주차 상태 문콕이나 충격 발생 시 차주에게 충격알림 SMS 발송
	· 차량 배터리 관리 기능: 방전 위험 사전 통보
적용 대상	· 전 차량 적용 가능(2,000만대)

<u>스마트 똑똑 톡톡 차주</u> 호출 문콕감...

69,900원

스마트온 **№ Pay** 리뷰 3 11 11 15

<u>스마트 똑똑 톡톡 주차</u> 차주호출 문...

69,900원

스마트온 N Pay

>> LoRa 서비스 소개(2/3)

상품 개요	 축우에 대한 체온 정보를 실시간 수집/취합하여 질병 징후와 발정/수정/분만 적기 파악 가능
주요 기능 및 특장점	 번식 성공 향상을 위한 발정/수정 적기예측 분만 성공을 위해 정확한 분만일 제공 축우의 질병 사전 예방 및 예찰 가능 최대 6년간 사용 가능
적용 대상	 축산 농가(안동, 영주, 경산, 전주 등) 브라질(전세계 축산 시장 22%), 미국, 캐나다 등 해외 진출 준비 중

타입	한우	Q _₹
바이오 캡슐 구매	개당 20만원	(부가세 별도)
서비스요금	무료	월 1,500원 (두당)

>> LoRa 서비스 소개(3/3)

상품 개요	 사회적 약자(아이/노인 등) 위치 파악, 반려동물 위치 추적, 주요 소지품 분실 방지 등 다용도로 활용 가능한 GPS Tracker
	・가족 안심 지킴을 위한 긴급호출, 안심존 기능
주요 기능 및	· 고리 형태 디자인으로 가방/옷 등에 다양한 방식으로 쉽게 부착 가능
특장점	· 생활 방수(IPX5) 기능
	· 충전형 배터리 내장(1회 완충시 약 5일 사용 가능)
적용 대상	· 어린이, 애완견, 여행가방 등에 부착 가능
	· B2C 또는 B2B2C로 공급 가능

>> LoRa 서비스 소개(3/3) - 외장형 모뎀

주요 기능 및 특장점

- SK텔레콤에서 직접 기획/제작한 LoRa 통신형 모뎀
- 고객 디바이스 상태에 따라 Input / Output Interface 변경 가능
- GPS 포함 모델(L01G) 및 미포함 모델(L01) 두가지가 있음

주요 기능 및 특장점

- RS232, RS485 연결 인터페이스 제공
- 일반 AAA 배터리 Type 전원 사용 가능(기본 제공 2개)
- 외부 LED(녹색, 적색)를 통해 상태 표시
- 외장 안테나 지원
- 브라켓 Type 설치 부착

주요 기능 및 특장점

- UART Interface
- USB Interface(포팅용)
- 컴팩트 사이즈

>> 솔루엠 & 와이솔 스펙 비교

솔루엠 모듈

2.1 Product Specification

Item	Description		
Size	TYP. 20*22*2.7 mm (W*L*H)		
Operating Voltage	3.0~3.6V		
Memory	RAM : 20KB, Flash 128KB		
Wireless Communication	920MHz ISM Band – LoRa™ Technology		
ESD(Human Body Model)	JEDEC JS-001 Standard ±1kV , Class 2		

2.2 Absolute Ratings

Item	MIN	ТҮР	MAX	Unit
Supply Voltage(VCC_RF, VCC_BB)	3.0	3.3	3.6	v
Operating Temperature	-20		65	င
Storage Temperature	-30		85	°C

2.3 Power Consumption

		SPEC					
Item	Parameter	MIN	TYP	MAX	Unit		Condition
	TX Mode		31		mA	Average consumption	
	RX Mode		11		mA	Average consumption	
	Sleep Mode		10		uA	Average consumption	

와이솔 모듈

4.1 Absolute Maximum Ratings

Parameter	Condition	Min	Тур.	Max	Unit
Supply Voltage (VDD)		3.0	3.3	3.6	V
Storage Temperature		-40	-	+85	°C
Operating Temperature		-30	-	+70	°C
RF Input Power				+10	dBm
Notes:	•				

1) Unless otherwise noted, all voltages are with respect to GND

4.2 Global Electrical Characteristics

T = 25°C, VDD = 3.3 V (tvp.) if nothing else stated

Parameter	Condition	Min	Тур.	Max	Unit
Supply Voltage (VDD)	Note 1	3.0	3.3	3.6	V
Current Consumption	Sleep		1.4	10	uA
	Receive		18		mA
	Transmit RF power level 10dBm		36		mA
Operation Clock	Tranceiver		32		MHz
Frequency	MCU RTC		32.768		kHz

Notes

1) Unless otherwise noted, all voltages are with respect to GND

IoT 오픈 하우스

>> 전력 소모 비교 (1) - 짧은 주기

- 가정 조건
 - 3000 mAh 배터리 사용
 - 10 분에 한번 데이터 전송
 - 데이터 보내는 시간은 2초
 - Sleep 시간은 598초
- 솔루엠 한시간
- 솔루엠 하루
- 솔루엠 일 년

• 3000 mAh 배터리의 70% 사용 가정

• Tx: 31mA

• Sleep: 10uA

>> 전력 소모 비교 (1) – 짧은 주기

- 가정 조건
 - 3000 mAh 배터리 사용
 - 10 분에 한번 데이터 전송
 - 데이터 보내는 시간은 2초
 - Sleep 시간은 598초

- 와이솔-하루
- 와이솔-일년

• 3000 mAh 배터리의 70% 사용 가정

• Tx: 36mA

• Sleep: 1.4uA

IoT 오픈 하우스

>> 전력 소모 비교 (2) - 긴주기

- 가정 조건
 - 3000 mAh 배터리 사용
 - 30 분에 한번 데이터 전송
 - 데이터 보내는 시간은 2초
 - Sleep 시간은 1798초
- 솔루엠 한시간
- 솔루엠 하루
- 솔루엠 일 년

• 3000 mAh 배터리의 70% 사용 가정

• Tx: 31mA

• Sleep: 10uA

>> 전력 소모 비교 (2) - 긴주기

- 가정 조건
 - 3000 mAh 배터리 사용
 - 30 분에 한번 데이터 전송
 - 데이터 보내는 시간은 2초
 - Sleep 시간은 1798초

- 와이솔-하루
- 와이솔-일년

• 3000 mAh 배터리의 70% 사용 가정

• Tx: 36mA

• Sleep: 1.4uA

>> 와이솔 모듈 - 클래스 A 사용 & Uplink 시, Wake up 처리

- 모듈이 sleep mode 상태에 있을 때 UART TX 를 하기 위해서는 강제로 wake-up 필요
- WKUP1(Pin 39)은 rising edge에 의해 트리거
- Rising 이후 최소 3.5usec 이상 high 상태를 유지필요
- UART 입력은 rising edge 시작 기준 최소 1msec이상의 시간 이후에 진행

LoRa 키트 활용 실습

>> WIZnet LoRa Kit (1/2)

>> 주요 특징

- 하나의 LoRa Kit Board를 이용하여 WISOL, SOLUM 모듈들을 공통으로 사용 가능
- 사용 가능한 Platform
 - Arduino Pin Compatible
 - Arduino Board에 Shield 형태로 연결 가능
 - ARM mbed Platform
 - Raspberry Pi
 - USB 및 UART 인터페이스를 통해 Raspberry Pi와 연결하여 사용 가능
 - PC
 - USB를 이용한 AT Command 테스트 가능
- LoRa 상용화 진행 업체들 중 일부 업체들이 WIZnet LoRa Kit을 이용하여 개발 진행 중

>> WIZnet LoRa Kit (2/2)

>> Hardware Description

>> WISOL 모듈 소개

Block Diagram

Pin Description

Pin No.	Pin name	MCU pin name		Description
7	P2	PB0	ADC IN	Battery Level(9V criterion) 12bit (TBD)
12	MOSI	PB15	GPIO OUT	sleep state: 0, Normal(wake-up) state:1
16	P7	PA9	UART1 TX	UART TX
19	P8	PA11	GPIO IN	Payload data bit 1
22	SWDIO	PA13	SWDIO	SWDIO
23	SWCLK	PA14	SWCLK	SWCLK
24	P11	PA15	GPIO IN	Payload data bit 0
29	P15	PB4	GPIO IN	Payload data bit 3
34	P18	PB7	GPIO IN	Boot Loader Enable(High Active)
35	P19	PA10	UART1 RX	UART RX
38	NRST	NRST	RST	Reset
39	WKUP1	PA0_WKUP1	INT IN	Wake Up: Risging Edge, Payload data bit 2
43	P24	PA3	ADC IN	Payload data bit 4 ~ 15

>> AT Command(1/3)

■ AT Command란

LoRa 디바이스를 제어하기 위한 명령어 체계.

시리얼 인터페이스를 사용하여 AT Command 를 사용할 수 있다.

""

>> AT Command(2/3)

- 커맨드 형식에 따른 분류
 - Basic Syntax Command
 - <Command>[<number>]
 - Command는 영문자(A~Z) 한 글자 이거나 "&"로 시작
 - Number 0에서 9까지의 숫자
 - 예) ATD, ATH, ATS0, ATS30=180, ATS4?, AT&V .. etc.
 - Extended Syntax Command
 - <+><Command>
 - Prefix로 "+"를 시작. (제조사 마다 고유의 기호 사용)
 - Command의 경우 길이가 16보다 작은 영문자 혹은 영문자 와 숫자의 조합
 - 예) AT+CREG,AT+CREG?,AT+CREG=1,.. etc.

>> AT Command(2/3)

- 커맨드 용도에 따른 분류
 - SET(Execute) Command
 - 명령을 전달하여 특정 동작을 실행
 - 특정 값을 저장 할 때 사용
 - 예) AT+COMMAND=Parameter
 - Read Command
 - 설정 된 특정 값을 읽을 때
 - 통신망 상태를 얻고자 할 때 사용
 - 예) AT+COMMAND?
 - Test Command
 - 모뎀에서 지원 가능한 혹은 지원 가능한 범위의 값을 알고 싶을 때 사용
 - 예) AT+COMMAND=?

>> WISOL AT 커맨드 소개

Basic Command

- Configuration LoRa

Procedure	Command To Send	Parameter
1. Configuration LoRa Class	LRW 4B 2₩r₩n	0 : Class A 2 : Class C

- Join Procedure

Procedure	Command To Send	Parameter
1. Set AppEUI	LRW 33 000000000000004₩r₩n	8 Bytes AppEUI
2. Set AppKey	LRW 51 12345678901234567890123456789011₩r₩n	16 Bytes AppKey
3. Reset	LRW 70₩r₩n	-

- Send Data

Procedure	Command To Send	Parameter
1. Send data	LRW 31 a1b2c3 cnf 1₩r₩n	Confirmed data Fport : 1

>> 실습 환경

<Serial Terminal 설정>

Baud Rate	38400/115200	
Data bit	8bit	
Stop bit	1bit	
Parity bit	None	

Baud Rate

Wisol: 115200SoluM: 38400

>> LoRa Join 실습

- 개통 절차
 - Device EUI를 제출하면, LoRa 단말의 APPEUI와 APPKEY를 발급
- 개통 절차에서 발급 받은 값을 LoRa 모듈에 설정 (실습에서는 제외)

Procedure	Command To Send	Parameter
1. Set AppEUI	LRW 33 000000000000004₩r₩n	8 Bytes AppEUI
2. Set AppKey	LRW 51 12345678901234567890123456789011₩r₩n	16 Bytes AppKey
3. Reset	LRW 70₩r₩n	-

```
*2nd Join*

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

RX1CH Open: freq 922500000, SF 12, BW 0, TO 25, RXC 0

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

PrepareFrame: MType: FRAME_TYPE_JOIN_REQ / Ver: 0

PrepareFrame: ADR ON, ADRACKREQ 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 4 P 0

SEND: Freq: 922500000 DR: 0 PWR: 0

*2nd Join*

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

RX1CH Open: freq 922500000, SF 12, BW 0, TO 25, RXC 0

OnRadioRxDone: MType: FRAME_TYPE_JOIN_ACCEPT / Ver: 0

OnRadioRxDone: ADR OFF, ADRACKREQ 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 0 P 32

Join is completed
```

정상적으로 Join되면 위와 같은 로그 메시지 출력

>> LoRa Join 실습

>> Join Procedure

1) Pseudo Join - 개통 시, 최초 1회

1) pseudo join debug message

PrepareFrame: MType: FRAME TYPE JOIN REQ / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 1 P 0

SEND: Freq: 922300000 DR: 0 PWR: 1

1st Join

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 922300000, SF 12, BW 0, TO 25, RXC 0 RX2CH Open: freq 921900000. SF 12. BW 0. TO 25. RXC 1

2) Real Join

2) real join debug message

PrepareFrame: MType: FRAME_TYPE_JOIN_REQ / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 1 P 0

SEND: Freq: 922300000 DR: 0 PWR: 1

2nd Join

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 922300000, SF 12, BW 0, TO 25, RXC 0 RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

- >> AT 명령어 실습 (1/4)
 - >> 강의 자료 → 2. LoRa 모듈 실습 → Hercules 실행

>> AT 명령어 실습 (2/4)

>> 장치 관리자에서 COM 포트 확인 (내 PC → 우클릭 → 속성)

>> AT 명령어 실습 (3/4)

➤ 포트가 안잡힌다면, 다음 링크에서 Driver 설치 https://www.silabs.com/products/developmenttools/software/usb-to-uart-bridge-vcp-drivers

Or 구글 'cp210x driver'검색 후 첫번째 Silicon Labs 홈페이지 접속

- >> AT 명령어 실습 (4/4)
 - >> 강의 자료 → 2. LoRa 모듈 실습 → Hercules 실행

>> LRW 3F\$0d\$0a

>> Device 정보 확인하기

Get Device EUI

Get device EUI			device EUI 설정 값 확인				
	Command	CID					
	LRW	3F					

▶실행 Message : "DevEui : xxxxxxxxxxxxxxxxx"

DevEui : 702c1ffffe1d7a07

0K

Get APP EUI

G	Get App EUI			App EUI 설정 값 확인			
C	Command	CID	CID				
	LRW	40					

▶실행 Message : "AppEui : xxxxxxxxxxxxxxx

AppEui : 9999991000000108

0K

SKT THINGPLUG 디바이스 등록 및 로그 확인

>> SKT ThingPlug 가입(1/2)

>> Create Account

https://thingplug.sktiot.com/

>> SKT ThingPlug 가입(2/2)

>> Create Account(cont.)

>> SKT ThingPlug 디바이스 등록 (1/4)

>> 디바이스 등록

마이페이지->나의 디바이스->디바이스 등록

>> [참고] SKT LoRa 서비스 ID 체계

- LoRa 서비스는 DevEUI, AppEUI, LTID를 활용하여 디바이스와 서비스를 구분
- DevEUI와 AppEUI는 LoRaWAN Alliance에서 직접 정한 표준으로 Globally Unique한 값
- SK에서는 LTID 값을 정의하여, 이를 활용하여 ThingPlug 내의 리소스에 접근, (LTID = AppEUI의 하위 4bytes + DevEUI)

ID	길이	형태	설명	예시
DevEUI	16자리	8byte 헥사 스트링	디바이스 MAC 주소	d02544fffef05b6e
AppEUI	16자리	8byte 헥사 스트링	서비스 구분 자	0000000000000004
LTID	24자리	12byte 헥사 스트링	LoRa 망 내부 디바이스 구분자	00000004 d02544fffef05b6e

>> SKT ThingPlug 디바이스 등록 (2/4)

나의 디바이스

▶ 개별 등록				
디바이스를 하나씩 개별 등록 하 디바이스 아이디와 passcode를 입	_ : :::= : :	!] 버튼을 클릭하시면 나머지 등록 정보는 자동으로 입력된		JOE 4 455550000000000000000000000000000000
디바이스 아이디 *	0199	─	LTID 00000004d 주의 : 알파벳은 <mark>3</mark>	025441111103777 <mark>- 문자</mark> 로 입력 해야 함
Passcode *	••••	◆ 레스코드는 뛰어산 (이) 이하면 가능합니다.	1234	
	다바이스 정보확인	◆는 필수 입력 항목 입니다.		

>> SKT ThingPlug 디바이스 등록 (3/4)

▶ 필수정보 아래 정보를 확인하신 뒤, 디바	이스를 등록 해 주십시오.						
디바이스 아이디 *	0119						
디바이스 이름 *	0119 20자 이하로 입력 해 주십시오.						
제조사 *	미지점						
디바이스 모델 타입 *	미지점						
카테고리 *							
디바이스 공개여부 *	● 공개 ■ □ 비공개 ■						
디바이스 검색허용 *	◉ 예 ○ 아니오						
위치정보 *	위치 선택 버튼을 클릭하시어 디바이스 위치 정보를 지도에서 선택 해 주십시오. <mark>◎ 위치선택</mark> 위도 : 경도 : 고도 : 주소1						
디바이스 이미지 *	다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다						
제어방식 *	Push MQTT: daniel_0119						
	저장 초기화						

>> SKT ThingPlug 디바이스 등록 (4/4)

>> 데이터 송신 실습 (1/2)

Send Data Command

Tx confirm/unconfirm msg			Uplink confirmed date 또는 Uplink unconfirmed data			
			전송			
Command	CID	Option1	Option2	Option3		
LRW	31	Message	Mtype	Fport		

- Option 1
 - (1) Message
 - (2) SKT 기술규격에 의해 DataRate(DR) 별 Tx data의 최대 전송 사이즈가 다르다.

DR 0 : Tx data length max 65byte

DR 1: Tx data length max 151byte

DR 2 \sim 5 : Tx data length max 242byte

- Option 2
 - (1) cnf: confirmed data
 - (2) uncnf: unconfirmed data
- Option 3
 - (1) Fport: 1~221

Procedure	Command To Send	Parameter
1. Send data	LRW 31 a1b2c3 cnf 1₩r₩n	Confirmed data Fport : 1

>> 데이터 송신 실습 (2/2)

Data Send log

1) Confirmed Up

PrepareFrame: MType: FRAME_TYPE_DATA_CONFIRMED_UP / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 1 P 1

SEND: Freq: 922100000 DR: 0 PWR: 1

DataReport: a1b2c3

OK

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 922100000, SF 12, BW 0, TO 25, RXC 0

OnRadioRxDone: MType: FRAME_TYPE_DATA_UNCONFIRMED_DOWN / Ver: 0

OnRadioRxDone: ADR ON, ADRACKReq 0, ACK 1 Fpending 0 FOptsLen 0 FCnt 1 P 210

2) Unconfirmed Up

PrepareFrame: MType: FRAME_TYPE_DATA_UNCONFIRMED_UP / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 2 P 1

SEND: Freq: 923300000 DR: 0 PWR: 1

DataReport: a1b2c3

OK

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 923300000, SF 12, BW 0, TO 25, RXC 0 RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

>> 데이터 수신 예제 (1/2)

DevReset

PrepareFrame: MType: FRAME_TYPE_DATA_CONFIRMED_UP / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 2 P 1

SEND: Freq: 922300000 DR: 0 PWR: 1

DataReport: a1b2c3

OK

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 922300000, SF 12, BW 0, TO 25, RXC 0

OnRadioRxDone: MType: FRAME_TYPE_DATA_CONFIRMED_DOWN / Ver: 0

OnRadioRxDone: ADR ON, ADRACKReq 0, ACK 1 Fpending 0 FOptsLen 0 FCnt 2 P 222

Rx MSG 222: 008000

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

AppDataProcessWithThingPlug: RCV 128

DevReset

PrepareFrame: MType: FRAME_TYPE_DATA_UNCONFIRMED_UP / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 1 Fpending 0 FOptsLen 0 FCnt 3 P 4

SEND: Freq: 923300000 DR: 0 PWR: 1

DataReport:

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 923300000, SF 12, BW 0, TO 25, RXC 0 RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

>> 데이터 수신 예제 (1/2)

extMgmt

PrepareFrame: MType: FRAME_TYPE_DATA_CONFIRMED_UP / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 8 P 1

SEND: Freq: 922700000 DR: 0 PWR: 1

DataReport: a1b2c3

OK

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 922700000, SF 12, BW 0, TO 25, RXC 0

OnRadioRxDone: MType: FRAME_TYPE_DATA_CONFIRMED_DOWN / Ver: 0

OnRadioRxDone: ADR ON, ADRACKReq 0, ACK 1 Fpending 0 FOptsLen 0 FCnt 5 P 222

Rx MSG 222: 0000170123456789012345678901234567890123456789012345

Rx_MSG <Fport> : <LoRaMAC version> <message type> <Payload length> <Payload>

1byte 1byte 1byte 1byte이상

AppDataF10cessvitt111111gF1ug. NOV 0

extDevMgmt

PrepareFrame: MType: FRAME_TYPE_DATA_UNCONFIRMED_UP / Ver: 0

PrepareFrame: ADR ON, ADRACKReq 0, ACK 1 Fpending 0 FOptsLen 0 FCnt 9 P 4

SEND: Freq: 921900000 DR: 0 PWR: 2

DataReport:

RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1 RX1CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 0 RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1

>> SKT ThingPlug 로그 모니터링

♠ > 디바이스 관리 > 디바이스 관리 > 디바이스 로그 모니터링

디바이스 로그 모니터링

>> SKT ThingPlug 로그 모니터링

♠ > 디바이스 관리 > 디바이스 관리 > 디바이스 로그 모니터링

디바이스 로그 모니터링 ▶ 디바이스 정보 등록일시 디바이스 이름 📗 디바이스 아이디 📗 디바이스 등록자 📗 제조사 모델타입 활성화여부 공개여부 00000004dd2544fffff 00000004dd2544fffff 미지정 미지정 ALIVE 공개 2017-04-13 16:00:16 wiznet 03777 03777 ▶ 로그 모니터링 컨테이너 LoRa • 총 26 건 (2017.04.13 15:57) 로그 내용 로그 일시 2017-04-13 15:55:47 12345678 2017-04-13 15:53:40 12345678 2017-04-13 15:53:34 12345678 2017-04-13 15:53:28 12345678

- >> 데이터 재전송 설정 실습 (1/6)
 - Confirmed Message Uplink Re-transmission number

>> 데이터 재전송 설정 실습 (2/6)

Confirmed Message Uplink Re-transmission number

Get ReTx		Confirmed Message U 정 값 확인	Confirmed Message Uplink Re-transmission number 성 정 값 확인				
Command	CID						
LRW	45						

▶실행 Message: "Cnf_retx_nb: <ReTx number>"

LRW 45

Set ReTx			Re-transmission number 설정 (default : 8)			
Command	CID	Option1				
LRW	37	ReTx				

- Option 1
 - (1) ReTx: Re-transmission number 1~8

LRW 37 4

>> 데이터 재전송 설정 실습 (3/6)

- Confirmed Message Uplink Re-transmission number
- LRW 31 a1b2c3 cnf 1

```
Set cnf_retx_nb : 4
                     Confirmed Uplink 재전송 Cnt 4
PrepareFrame: MType: FRAME_TYPE_DATA_CONFIRMED_UP / Ver: 0
PrepareFrame: ADR ON, ADRACKReq 0, ACK 0 Fpending 0 FOptsLen 0 FCnt 4 P 1
         SEND : Freq: 922900000 DR: 0 PWR: 0
DataReport : hello
Payload size : 5
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 922900000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
         SEND : Freq: 922500000 DR: 0 PWR: 0
DataReport : hello
Pauload size : 5
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 922500000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
         SEND : Freq: 922100000 DR: 0 PWR: 0
DataReport : hello
Payload size : 5
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 922100000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
         SEND : Freq: 923100000 DR: 0 PWR: 0
DataReport : hello
Pauload size : 5
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 923100000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BN 0, TO 25, RXC 1
```

- LRW 37 4 수행 (재전송 4번)
- ACK를 받지 못하면 재전송 횟수 만큼 전송

>> 데이터 재전송 설정 실습 (4/6)

Un-Confirmed Message Uplink Re-transmission number

>> 데이터 재전송 설정 실습 (5/6)

Un-Confirmed Message Uplink Re-transmission number

Get unconfi	rmed msg r	etransmission	Unconfirmed	message	retransmission	number	설정	값
number			확인					
Command	CID							
LRW	55							

▶실행 Message : "Uncnf_retx_nb : <ReTx value>"

LRW 55

Set unconfirmed msg retransmission number			Unconfirmed message retransmission number 설정 (default : 1)			
Command	CID	Option1				
LRW	54	ReTx				

- Option 1
 - (1) ReTx: 1~8

▶실행 Message : "Set uncnf_retx_nb : <ReTx value>"

LRW 54 4

```
Set uncnf_retx_nb : 4
OK
```

>> 데이터 재전송 설정 실습 (6/6)

- Un-Confirmed Message Uplink Re-transmission number
- LRW 31 a1b2c3 uncnf 1

```
Set uncnf_retx_nb : 4
PrepareFrame: MType: FRAME_TYPE_DATA_UNCONFIRMED_UP / Ver: 0
PrepareFrame: ADR ON, ADRACKReq O, ACK O Fpending O FOptsLen O FCnt 9 P 1
         SEND : Freq: 922700000 DR: 0 PWR: 0
DataReport : Hi_Hello
Payload size : 8
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 922700000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freg 921900000, SF 12, BM 0, TO 25, RXC 1
         SEND : Freq: 922500000 DR: 0 PWR: 0
DataReport : Hi_Hello
Payload size : 8
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 922500000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
         SEND : Freg: 922100000 DR: 0 PWR: 0
DataReport : Hi_Hello
Payload size : 8
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
RX1CH Open: freq 922100000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
         SEND : Freq: 923100000 DR: 0 PWR: 0
DataReport : Hi Hello
Pauload size : 8
RX2CH Open: freq 921900000, SF 12, BN 0, TO 25, RXC 1
RX1CH Open: freq 923100000, SF 12, BW 0, TO 25, RXC 0
RX2CH Open: freq 921900000, SF 12, BW 0, TO 25, RXC 1
```

- LRW 54 4 수행 (재전송 4번)
- 재전송 Count인 4번 재전송
- 실제 ThingPlug 는 1회만 수신

>> TimeSync Request (1/3)

TimeSync

- 네트워크 서버 시간을 기준으로 단말의 시간 동기화를 맞추기 위해 사용
- LoRaWAN 규격의 Mac Command에 해당, LoRa 단말에서 Time Sync를 요청하면 서버로부터 초(sec) 단위의 현재 시간 정보를 ACK로 받음

>> TimeSync Request (2/3)

Send TimeSync Request

5	Send TimeSync Request			TimeSync Request 메시지 송신				
	Command	CID						
	LRW	39						

LRW 39

```
AddMacCommand: MOTE_MAC_TIME_SYNC_REQ
OK
```

LRW 31 hello cnf 1

>> TimeSync Request (3/3)

ProcessMacCommands: SRV_MAC_TIME_SYNC_ANS: S 1203503321 FS 53541

time : 2018-02-24 19:28:24 816983290

Time Sync Answer Payload 데이터의 형태

	초 단위 데이터	초 단위 소수점 이하 데이터
Size (bytes) 4		2
DeviceTimeAns Payload 32-bit integer : Seconds since fractional-second		fractional-second
	epoch*	in ½^16 second steps

- 1. Second(4byte) 예시
- 현재 시간(A)=2016년12월27일 13시시54분30초
- GPS 기준시간(B)=1980년1월6일 00시00분00초
- UTC 기준시간(C)=1970년1월1일 00시00분00초
- 윤초(D)=2016년까지는 17초, 2018년까지는 18초
- Second=(A-C)-(B-C)+D = 1166849687
- 2. Fractional-second(2byte) 예시
- 1초 이하의 값들을 표기하기 위한 값
- 0.000000000초~0.99999999초를 0~65535 분할하여 0~65535 사이의 값으로 표기
- ex) 0.839795528本 → (0.839795528 / 0.99999999)*65535 = 55036

>> SoluM LoRa Module

#23 GND #22 RF #21 GND	
#1 GND	#20 GND
#2 Vcc_RF #3 GND	#19 PA4 #18 PA3
#4 PA11 #5 PA12	#16 PA3 #17 PA2 #16 PA1
#6 PA13	#15 Boot0
#7 PA14 #8 PB6	#14 Vcc_BB #13 GND
#9 PB7 #10 GND	#12 RST #11 GND

6	SWDIO	PA13	Connection with ST-link for firmware download / LPUART_RX	
7	SWCLK	PA14	Connection with ST-link for firmware download / LPUART_TX	
8	I2C1_SCL	PB6	I2C_SCL	
9	I2C1_SDA	PB7	I2C_SDA	
15	Boot0	Boot0	If you use SWDIO/SWCLK to debug this module, it should be NC	
16	GPIO3	PA1	GPIO3 for External Device or MCU reset via LoRa Network	
17	USART_TX	PA2	U(S)ART_TX	
18	USART_RX	PA3	U(S)ART_RX	

>> 실습 환경

<Serial Terminal 설정>

Baud Rate	38400/115200
Data bit	8bit
Stop bit	1bit
Parity bit	None

>> Basic Operation 실습 (1/7)

>> Command Set

3 Command Set

No	Command	Usage	Description	R/W
1	AT	AT	Check serial connection	R
2	+RST	AT+RST	Reset the module	W
3	+SCFG	AT+SCFG	Set configuration	W
4	+GCFG	AT+GCFG	Get configuration	R
5	+DEUI	AT+DEUI	Get EUI Address	R
6	+AK	AT+AK <ak0><ak15></ak15></ak0>	Application Key	R/W
7	+AEUI	AT+AEUI <aeuio><aeui7></aeui7></aeuio>	Application EUI	R/W
8	+SIG	AT+SIG	Get RSSI & SNR	R
9	+DR	AT+DR <dr> DR: Min. 0~ Max. 5</dr>	Data Rate	W
10	+POW	AT+POW <pow> POW: Min. 0~ Max. 6</pow>	TX Power	W
11	+CH	AT+CH < CH> 25 921.9 Mhz 26 922.1 Mhz 27 922.3 Mhz 28 922.5 Mhz 29 922.7 Mhz 30 922.9 Mhz 31 923.1 Mhz 32 923.3 Mhz	Channel(Frequency)	R/W
12	+RCNT	AT+RCNT <rcnt> RCNT: Min. 1~ Max. 8</rcnt>	Confirmed Retransmission Number	R/W
13	+ADR	AT+ADR <flag> • FLAG 0: Disable 1: Enable</flag>	Adaptive Data Rate	R/W
14	+SEND	AT+SEND <pk0><pkn></pkn></pk0>	Send packet	W
15	+CFM	AT+CFM <flag> FLAG 0: Unconfirmed, 1: Confirmed</flag>	Enable/Disable Confirm Message	R/W
16	+CLS	AT+CLS <cls> CLS: A – CLASS A B – CLASS B C – CLASS C</cls>	Configure LoRa Class A,B,C	R/W
17	+FWI	AT+FWI <len1><len2><crc1><crc4></crc4></crc1></len2></len1>	Firmware Information	R/W
18	+FWUP	AT+PWUP<0> <pk1><pk256> AT+PWUP<1><pk257><pk512> AT+PWUP<n><pkn-256><pkn></pkn></pkn-256></n></pk512></pk257></pk256></pk1>	Firmware Upgrade	w
19	+DUTC	AT+DUTC <second></second>	Get/Set Duty cycle time	R/W
20	+LCHK	AT+LCHK	Link check request	w
21	+LOG	AT+LOG <flag> FLAG 0:Disable 1:Enable</flag>	Log message enable/disable	W

22	+RUNT	AT+RUNT <runt> • RUNT: Min 1~ Max 15</runt>	UnConfirmed Retransmission Number	R/W
23	+PRF	AT+PRF <prf> <prf>0:Timer Mode 1: Event Mode</prf></prf>	Enable periodic report	R/W
24	+CHTX	AT+CHTX <ch><pwr></pwr></ch>	Set CH & PWR	W
25	+FCNT	AT+FCNT <fcnt></fcnt>	Get / Set down link fcnt only test	R/W
26	+BATT	AT+BATT <level> • Level 0~255</level>	Set battery level	W
27	+DEVT	AT+DEVT	Send the mac command (device time request)	w
28	+PS	AT+PS <flag></flag>	Get/Set provisioning status	r/w

>> Basic Operation 실습 (2/7)

- >> Get DevEUI(64bits)
 - AT+DEUI

```
Device EUI
GET DEVICE EUI
- Device EUI : D0 25 44 FF FE F0 01 51
```

Get AppEUI(64bits)

AT+AEUI

```
Application EUI
GET APPLICATION EUI
- APPLICATION EUI : 00 00 00 00 00 00 00 00
```

>> Set AppEUI(64bits)

AT+AEUI 00000000000000004

>> Basic Operation 실습 (3/7)

>> Set AppKey(128bits)

AT+AK 127FA99F96389BDF8E1CA1DD1C8CDDC0

>> LoRa Module에 반영

- AT+SCFG
- 설정된 값을 Flash에 저장
- 500ms 이후에 모듈을 Reset 해야 함

>> 모듈 RESET

- AT+RST
- 앞에서 설정한 APP EUI, APP KEY를 이용하여 SKT 망에 JOIN 하기 위해서는 RESET을 수행 해야 함

>> Basic Operation 실습 (4/7)

>> Join Procedure

```
[SOLUM] START MODULE
VERSION 1.1.0 - STD
LOG Message is disabled. If you want to on, AT+LOG 1
[SOLUM] CHECK FIRMWARE SUCCESS
DevEui= D0-25-44-FF-FE-F0-01-51
AppEui= 00-00-00-00-00-00-03
AppKev= 70 65 0A 2E 29 8A 03 F0 C1 9C DB 75 39 8A C7 D7
JOIN Request
[SOLUM] freq 922100000 is FREE
[SOLUM] TxDone
[SOLUM] RSSI -104, SNR 22
RX : JOIN_ACCEPT
RX DONE
REAL_APPKEY_ALLOC Request
[SOLUM] freq 922100000 is FREE
[SOLUM] TxDone
[SOLUM] RSSI -106, SNR 27
RX DONE
REAL_APPKEY_RXREPORT Request
[SOLUM] ACK
[SOLUM] freq 922300000 is FREE
[SOLUM] TxDone
[SOLUM] RSSI -104, SNR 26
RX DONE
REAL_JOIN Request
[SULUM] freq 922100000 is FREE
[SOLUM] TxDone
[SOLUM] RSSI -103, SNR 24
RX : JOIN_ACCEPT
RX DONE
JOINED
```

Pseudo Join – 개통 시, 최초 1회

Real Join

>> Basic Operation 실습 (5/7)

>> Data Send

- 0x010203040506 6byte를 보내는 예
 - AT+SEND 02010203040506 수행
 - 처음 02는 Fport number (0x01 ~ 0xDD 사용)
 - 최대 Application Payload Size는 62bytes

>> Basic Operation 실습 (6/7)

>> Data Receive

단말 리셋

```
[SOLUM] MSG_TYPE : 0×80 PAYLOAD_LEN : 0

[SOLUM] SKT_DEV_RESET

DUMMY TX

[SOLUM] ACK

[SOLUM] freq 922300000 is FREE

Event mode

[SOLUM] TxDone
```

Receive User Data

```
[SOLUM] MSG_TYPE : 0x0, PAYLOAD_LEN : 6
[SOLUM] SKT_FXT_DEVMGMT
010203040506
DUMMY TX
[SOLUM] ACK
[SOLUM] freq 923300000 is FREE
Event mode
[SOLUM] TxDone
```

>> Basic Operation 실습 (7/7)

>> Configuration LoRa Class

Procedure	Command To Send	Parameter
1. Configuration LoRa Class	AT+CLS C	

>> Join Procedure

Procedure	Command To Send	Parameter
1. Set AppEUI	AT+AEUI 000000000000004₩r₩n	8 Bytes AppEUI
2 Cat Amerikan	AT+AK	16 Bytes AppKey
2. Set AppKey	12345678901234567890123456789011₩r₩n	
3. Commit this configuration	AT+SCFG₩r₩n	-
4. Reset	AT+RST₩r₩n	-

>> Sending Data

Procedure	Command To Send	Parameter
1. Set message type	AT+CFM 1₩r₩n	0: Unconfirmed, 1: Confirmed
2. Send data	AT+SEND 02AF0112233447₩r₩n	02 AF0112233447 : Port & Data

>> SKT ThingPlug 로그 모니터링

♠ > 디바이스 관리 > 디바이스 관리 > 디바이스 로그 모니터링

디바이스 로그 모니터링

>> SKT ThingPlug 로그 모니터링

2017-04-13 15:53:28

디바이스 로그 모니터링 ▶ 디바이스 정보 등록일시 디바이스 이름 📗 디바이스 아이디 📗 디바이스 등록자 📗 제조사 모델타입 활성화여부 공개여부 00000004dd2544fffff 00000004dd2544fffff 미지정 미지정 ALIVE 공개 2017-04-13 16:00:16 wiznet 03777 03777 ▶ 로그 모니터링 컨테이너 LoRa • 총 26 건 (2017.04.13 15:57) 로그 내용 로그 일시 2017-04-13 15:55:47 12345678 2017-04-13 15:53:40 12345678 2017-04-13 15:53:34 12345678

12345678

♠ > 디바이스 관리 > 디바이스 관리 > 디바이스 로그 모니터링

Q&A 감사합니다

