Grafuri

SD 2016/2017

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Grafuri

- ightharpoonup G = (V, E)
 - V mulţime de vârfuri
 - E mulțime de muchii; o muchie = o pereche neordonată de vârfuri distincte

$$V = \{0, 1, 2, 3\}$$

$$E = \{\{0, 1\}, \{0, 2\}, \{1, 2\}, \{2, 3\}\}$$

$$u = \{0, 1\} = \{1, 0\}$$

0,1 - extremitățile lui *u u* este incidentă în 0 și 1
0 și 1 sunt adiacente (vecine)

FII, UAIC Curs 7 SD 2016/2017 3 / 46

Grafuri

- ▶ Mers de la u la v: $u = i_0, \{i_0, i_1\}, i_1, \cdots, \{i_{k-1}, i_k\}, i_k = v$ 3, $\{3,2\}, 2, \{2,0\}, 0, \{0,1\}, 1, \{1,3\}, 3, \{3,2\}, 2$
- parcurs: mers în care oricare două muchii sunt distincte
- drum: mers în care oricare două vârfuri sunt distincte
- ▶ mers închis: $i_0 = i_k$
- circuit = mers închis în care oricare două vârfuri intermediare sunt distincte

Subgraf indus

- ightharpoonup G = (V, E) graf, W submulțime a lui V
- ▶ Subgraf indus de W: G'(W, E'), unde $E' = \{\{i, j\} | \{i, j\} \in E \text{ si } i \in W, j \in W\}$

Grafuri - Conexitate

- ▶ i R j dacă și numai dacă există drum de la i la j
- R este relație de echivalență
- $ightharpoonup V_1, \cdots, V_p$ clasele de echivalență
- $G_i = (V_i, E_i)$ subgraful indus de V_i
- G_1, \dots, G_p componente conexe
- ▶ graf conex = graf cu o singură componentă conexă

Tipul de date abstract Graf

- obiecte:
 - grafuri $G = (V, E), V = \{0, 1, \dots, n-1\}$
- operaţii:
 - ▶ grafVid()
 - ▶ intrare: nimic
 - ▶ ieşire: graful vid (∅, ∅)
 - esteGrafVid()
 - ▶ intrare: G = (V, E),
 - ieșire: true daca $G = (\emptyset, \emptyset)$, false în caz contrar
 - ▶ insereazaMuchie()
 - ▶ intrare: $G = (V, E), i, j \in V$
 - ieșire: $G = (V, E \cup \{i, j\})$
 - insereazaVarf()
 - ▶ intrare: $G = (V, E), V = \{0, 1, \dots, n-1\}$
 - ieșire: $G = (V', E), V' = \{0, 1, \dots, n-1, n\}$

Tipul de date abstract Graf

- eliminaMuchie()
 - ▶ intrare: $G = (V, E), i, j \in V$
 - ieșire: $G = (V, E \{i, j\})$
- ▶ eliminaVarf()
 - intrare: $G = (V, E), V = \{0, 1, \dots, n-1\}, k$
 - ieşire: $G = (V', E'), V' = \{0, 1, \dots, n-2\}$

$$\{i',j'\} \in E' \Leftrightarrow (\exists \{i,j\} \in E) \ i \neq k, j \neq k,$$

$$i' = if \ (i < k) \ then \ i \ else \ i - 1,$$

$$i' = if \ (j < k) \ then \ j \ else \ j - 1$$

Tipul de date abstract Graf

- ► listaDeAdiacenta()
 - ▶ intrare: $G = (V, E), i \in V$
 - ▶ ieșire: lista vârfurilor adiacente cu i
- ► listaVarfurilorAccesibile()
 - ▶ intrare: $G = (V, E), i \in V$
 - ▶ ieșire: lista vârfurilor accesibile din i

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Digraf (graf orientat)

- \triangleright D = (V, A)
 - V mulţime de vârfuri
 - ▶ A mulțime de arce; un arc = o pereche ordonată de vârfuri distincte

$$V = \{0, 1, 2, 3\}$$

$$A = \{(0, 1), (2, 0), (1, 2), (3, 2)\}$$

$$a = (0, 1) \neq (1, 0)$$

FII, UAIC

Digraf

- ▶ mers: i_0 , (i_0, i_1) , i_1 , \cdots , (i_{k-1}, i_k) , i_k 3, (3,2), 2, (2,0), 0, (0,1), 1, (1,2), 2, (2,0), 0
- parcurs: mers în care oricare două arce sunt distincte
- drum: mers în care oricare două vârfuri sunt distincte
- ▶ mers închis: $i_0 = i_k$
- circuit = mers închis în care oricare două vârfuri intermediare sunt distincte

Digraf - Conexitate

- ▶ *i R j* dacă și numai dacă există drum de la *i* la *j* și drum de la *j* la *i*
- ▶ R este relație de echivalență
- $ightharpoonup V_1, \cdots, V_p$ clasele de echivalență
- $G_i = (V_i, A_i)$ subdigraful indus de V_i
- G_1, \dots, G_p componente tare conexe
- ▶ digraf tare conex = digraf cu o singură componentă tare conexă

$$V1 = \{0, 1, 2\}$$

$$A1 = \{(0, 1), (1, 2), (2, 0)\}$$

$$V2 = \{3\}$$

$$A2 = \emptyset$$

Tipul de date abstract **Digraf**

- obiecte: digrafuri D = (V, A)
- operaţii:
 - ▶ digrafVid()
 - ▶ intrare: nimic
 - ieșire: digraful vid (\emptyset, \emptyset)
 - esteDigrafVid()
 - ▶ intrare: D = (V, A),
 - ieșire: true dacă $D = (\emptyset, \emptyset)$, false în caz contrar
 - ▶ insereazaArc()
 - ▶ intrare: $D = (V, A), i, j \in V$
 - ieşire: $D = (V, A \cup (i, j))$
 - ▶ insereazaVarf()
 - intrare: $D = (V, A), V = \{0, 1, \dots, n-1\}$
 - ieșire: $D = (V', A), V' = \{0, 1, \dots, n-1, n\}$

Tipul de date abstract **Digraf**

- eliminaArc()
 - ▶ intrare: $D = (V, A), i, j \in V$
 - iesire: D = (V, A (i, j))
- ▶ eliminaVarf()
 - ▶ intrare: $D = (V, A), V = \{0, 1, \dots, n-1\}, k$
 - ieşire: $D = (V', A'), V' = \{0, 1, \dots, n-2\}$

$$\{i',j'\} \in A' \Leftrightarrow (\exists \{i,j\} \in A) \ i \neq k, j \neq k,$$

$$i' = if \ (i < k) \ then \ i \ else \ i - 1,$$

$$i' = if \ (j < k) \ then \ j \ else \ j - 1$$

Tipul de date abstract **Digraf**

- ▶ listaDeAdiacentaExterioara()
 - ▶ intrare: $D = (V, A), i \in V$
 - ▶ ieșire: lista vârfurilor destinatare ale arcelor care pleacă din i
- listaDeAdiacentaInterioara()
 - ▶ intrare: $D = (V, A), i \in V$
 - ▶ ieșire: lista vârfurilor sursă ale arcelor care sosesc în i
- ► listaVarfurilorAccesibile()
 - ▶ intrare: $D = (V, A), i \in V$
 - ▶ ieşire: lista vârfurilor accesibile din i

Reprezentarea grafurilor ca digrafuri

$$G = (V, E) \implies D(G) = (V, A)$$

 $i, j \in E \implies (i, j), (j, i) \in A$

- ► topologia este păstrată
 - ▶ lista de adiacență a lui i în G = lista de adiacență exterioară (=interioară) a lui i în D

FII, UAIC Curs 7 SD 2016/2017 17 / 46

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Implementarea cu matrici de adiacență a digrafurilor

- reprezentarea digrafurilor
 - n numărul de vârfuri
 - m numărul de arce (opțional)
 - ▶ o matrice $(a[i,j]| 1 \le i, j \le n)$ $a[i,j] = if (i,j) \in A \text{ then } 1 \text{ else } 0$
 - ▶ dacă digraful reprezintă un graf, atunci a[i,j] este simetrică
 - ▶ lista de adiacență exterioară a lui $i \subseteq linia i$
 - ▶ lista de adiacență interioară a lui $i \subseteq coloana$ i

FII, UAIC Curs 7 SD 2016/2017 19 / 46

	0	1	2	3	
0	0	1	0	0	
1	0	0	1	0	
2	1	0	0	0	
3	0	1	1	0	

FII, UAIC

- operaţii
 - ▶ digrafVid $n \leftarrow 0$; $m \leftarrow 0$
 - ► insereazaVarf: O(n)
 - ▶ insereazaArc: *O*(1)
 - ▶ eliminaArc: *O*(1)

► eliminaVarf()

```
Procedure eliminaVirf(a, n, k)
begin
    for i \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
            if (i > k) then
                a[i-1,j] \leftarrow a[i,j]
            if (i > k) then
                a[i, j-1] \leftarrow a[i, j]
    n \leftarrow n - 1
end
timp de execuție: O(n^2)
```

FII, UAIC Curs 7 SD 2016/2017 22 / 46

listaVarfurilorAccesibile()

```
Procedure inchReflTranz(a, n, b) // (Warshall, 1962)
begin
    for i \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
             b[i,j] \leftarrow a[i,j]
            if (i = i) then
                 b[i,i] \leftarrow 1
    for k \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
             if (b[i, k] = 1) then
                 for i \leftarrow 0 to n-1 do
                     if (b[k, j] = 1) then
                          b[i,j] \leftarrow 1
end
timp de executie: O(n^3)
```

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Implementarea cu liste de adiacență

reprezentarea digrafurilor cu liste de adiacență exterioară

- un tablou a[0..n-1] de liste înlănțuite (pointeri)
- ▶ a[i] este lista de adiacență exterioară corespunzătoare lui i

Implementarea cu liste de adiacență

operaţii

- ▶ digrafVid
- ▶ insereazaVarf: *O*(1)
- ▶ insereazaArc: *O*(1)
- eliminaVarf: O(n+m)
- ▶ eliminaArc: O(m)

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC Curs 7

Digrafuri: explorare sistematică

- se gestionează două mulțimi
 - ightharpoonup S = mulțimea vârfurilor vizitate deja
 - $ightharpoonup SB \subseteq S$ submulțimea vârfurilor pentru care există șanse să găsim vecini nevizitați încă
- ▶ lista de adiacență (exterioară) a lui *i* este divizată în două:

Digrafuri: explorare sistematică

- pasul curent
 - ▶ citeşte un vârf *i* din *SB*
 - extrage un j din lista de "așteptare" a lui i (dacă este nevidă)
 - ▶ dacă j nu este în S, atunci îl adaugă la S și la SB
 - ▶ dacă lista de "așteptare" a lui i este vidă, atunci elimină i din SB
- iniţial
 - $S = SB = \{i_0\}$
 - lista de "așteptare a lui i" = lista de adiacenta a lui i
- ▶ terminare $SB = \emptyset$

Digrafuri: explorare sistematică

```
Procedure explorare(a, n, i0, S)
begin
    for i \leftarrow 0 to n-1 do
         p[i] \leftarrow a[i]
    SB \leftarrow (i0); S \leftarrow (i0)
    viziteaza(i0)
    while (SB \neq \emptyset) do
         i \leftarrow citeste(SB)
         if (p[i] = NULL) then
              SB \leftarrow SB - \{i\}
         else
              i \leftarrow p[i] - > varf
              p[i] \leftarrow p[i] - succ
              if (i \notin S) then
                   SB \leftarrow SB \cup \{j\}
                   S \leftarrow S \cup \{j\}
                   viziteaza(i)
```

Explorare sistematică: complexitate

Teorema

În ipoteza că operațiile peste S și SB precum și viziteaza() se realizează în O(1), complexitatea timp, în cazul cel mai nefavorabil, a algoritmului explorare este O(n+m).

Explorarea DFS (Depth First Search)

► SB este implementată ca stivă

$$SB \leftarrow (i0) \Leftrightarrow SB \leftarrow stivaVida()$$
 $push(SB, i0)$
 $i \leftarrow citeste(SB) \Leftrightarrow i \leftarrow top(SB)$
 $SB \leftarrow SB - \{i\} \Leftrightarrow pop(SB)$
 $SB \leftarrow SB \cup \{j\} \Leftrightarrow push(SB, j)$

FII, UAIC Curs 7 SD 2016/2017 32 / 46

Explorarea DFS: exemplu

Explorarea BFS (Breadth First Search)

▶ SB este implementată ca o coadă

$$SB \leftarrow (i0) \Leftrightarrow SB \leftarrow coadaVida();$$

 $insereaza(SB, i0)$
 $i \leftarrow citeste(SB) \Leftrightarrow citeste(SB, i)$
 $SB \leftarrow SB - \{i\} \Leftrightarrow elimina(SB)$
 $SB \leftarrow SB \cup \{j\} \Leftrightarrow insereaza(SB, j)$

FII, UAIC Curs 7

Explorarea BFS: exemplu

Conținut

Tipul abstract Graf

Tipul abstract Digraf

Implementarea cu matrici de adiacență

Implementarea cu liste de adiacență înlănțuite

Algoritmi de parcurgere (DFS, BFS)

Determinarea componentelor (tare) conexe

FII, UAIC

Determinarea componentelor conexe (grafuri neorientate)

```
Function CompConexeDFS(D)
begin
    for i \leftarrow 0 to n-1 do
        culoare[i] \leftarrow 0
    k \leftarrow 0
    for i \leftarrow 0 to n-1 do
        if (culoare[i] = 0) then
            k \leftarrow k + 1
            DfsRecCompConexe(i, k)
    return k
end
```

Determinarea componentelor conexe (grafuri neorientate)

```
Procedure DfsRecCompConexe(i, k)

begin

culoare[i] \leftarrow k

for (fiecare\ varf\ j\ in\ listaDeAdiac(i)) do

if (culoare[j] = 0) then

DfsRecCompConexe(j, k)

end
```

Componente tare conexe (digrafuri)

FII, UAIC Curs 7 SD 2016/2017 39 / 46

Componente tare conexe: exemplu

Determinarea componentelor tare conexe

FII, UAIC Curs 7 SD 2016/2017 41 / 46

Determinarea componentelor tare conexe

```
Procedure DfsRecCompTareConexe(i)
begin
    timp \leftarrow timp + 1
    culoare[i] \leftarrow 1
    for (fiecare vârf j in listaDeAdiac(i)) do
        if (culoare[i] = 0) then
            tata[i] \leftarrow i
            DfsRecCompTareConexe(i)
    timp \leftarrow timp + 1
    timpFinal[i] \leftarrow timp
end
```

Determinarea componentelor tare conexe

Notație: $D^T = (V, A^T), (i, j) \in A \Leftrightarrow (j, i) \in A^T$

Procedure *CompTareConexe(D)* **begin**

- 1. DFSCompTareConexe(D)
- 2. calculează D^T
- 3. $DFSCompTareConexe(D^T)$ dar considerând în bucla for principală vârfurile în ordinea descrescătoare a timpilor finali de vizitare timpFinal[i]
- 4. returnează fiecare arbore calculat la pasul 3 ca fiind o componentă tare conexă separată

end

Determinarea componentelor tare conexe: complexitate

- ▶ DFSCompTareConexe(D): O(n + m)
- ▶ calculează D^T : O(m)
- ▶ DFSCompTareConexe(D^T): O(n + m)
- ▶ Total: O(n+m)

FII, UAIC Curs 7 SD 2016/2017 44 / 46

Aplicații

Problema celor șapte poduri peste Konigsberg (1736): pornind dintr-o zonă, putem traversa cele 7 poduri o singură dată?

Zonele: vârfuri, podurile: muchii Este posibil să alegem un vârf, să parcurgem muchiile și să ne intoarcem în varful ales, acoperind toate muchiile o dată?

Aplicații

- Algoritmică, probleme de drum, rețele de calculatoare (rutare), genomică (rețele de aliniere, asamblarea genomului), multi-relational data mining, cercetări operaționale (planificare), inteligență artificială (satisfacerea restricțiilor), etc.
- Motorul de căutare Google: algoritmul PageRank pentru a determina cât de importantă este o anumită pagină
- ► Sistem informațional geografic (GIS): Google Maps, Bing Maps
- Reţele sociale

