Λειτουργικό Σύστημα

Συστήματα Υπολογιστών

Παναγιώτης Παπαδημητρίου

papadimitriou@uom.edu.gr

https://sites.google.com/site/panagpapadimitriou/

Τι είναι ένα Λειτουργικό Σύστημα

- Ένα ολοκληρωμένο σύνολο προγραμμάτων που λειτουργεί ως
 ενδιάμεσος μεταξύ των χρηστών και του υλικού του Υπολογιστικού Συστήματος (Υ/Σ)
- Βασικοί στόχοι ενός Λ/Σ:
 - Εκτέλεση προγραμμάτων χρηστών
 - Ευκολία χρήσης του Υ/Σ
 - Χρήση του υλικού και των περιφερειακών του Υ/Σ με αποτελεσματικό και αποδοτικό τρόπο
 - Προστασία των προγραμμάτων και δεδομένων των διαφόρων χρηστών του Υ/Σ

Εξέλιξη Λειτουργικών Συστημάτων

Δομή ενός Σύχρονου Λ/Σ

• Πυρήνας:

- Το κυριότερο τμήμα ενός Λ/Σ
- Φορτώνεται πρώτο στην κύρια μνήμη και εκτελείται καθόλη τη διάρκεια λειτουργίας του υπολογιστή
- Τα προγράμματα εφαρμογών επικοινωνούν με τον πυρήνα μέσω ειδικών κλήσεων (π.χ. κλήσεις συστήματος)

Σύστημα αρχείων:

- Το τμήμα του Λ/Σ που διαχειρίζεται τα αρχεία

• Φλοιός:

- Παρέχει ένα περιβάλλον επικοινωνίας του χρήστη με τον υπολογιστή
- Δέχεται εντολές από το χρήστη
- Μεταφέρει στο χρήστη μηνύματα από τον πυρήνα του Λ/Σ

Βασικές Εργασίες ενός Λ/Σ

- Διαχείριση διεργασιών
 - Εκτέλεση / τερματισμός διεργασιών
 - Χρονοπρογραμματισμός διεργασιών

- Διαχείριση μνήμης
 - Εκχώρηση μνήμης
 - Σελιδοποίηση / κατάτμηση
 - Εναλλαγή τμημάτων διεργασιών μεταξύ μνήμης και δίσκου

Βασικές Εργασίες ενός Λ/Σ

- Διαχείριση συσκευών Εισόδου/Εξόδου (Ε/Ε)
 - Οδηγοί συσκευών (device drivers)
 - Χειρισμός Ε/Ε

- Διαχείριση αρχείων
 - Διαχείριση χώρου αποθήκευσης
 - Συντήρηση δομής καταλόγων
 - Έλεγχος πρόσβασης (π.χ. ανάγνωση, εγγραφή) σε αρχεία

Υλοποίηση Λειτουργικών Συστημάτων

- Αν και παραδοσιακά γράφονταν σε Assembly, τα Λ/Σ μπορούν πλέον να γράφονται σε γλώσσες προγραμματισμού υψηλότερου επιπέδου
- Ο κώδικας που γράφεται σε μια γλώσσα υψηλότερου επιπέδου:
 - μπορεί να γραφεί γρηγορότερα
 - είναι περισσότερο συμπαγής
 - είναι εύκολος στην κατανόηση
 - είναι πιο εύκολος στην εκσφαλμάτωση (debugging)
- Ένα Λ/Σ είναι ευκολότερα μεταφέρσιμο σε άλλη αρχιτεκτονική αν είναι γραμμένο σε γλώσσα υψηλού επιπέδου

Διεργασίες

Διεργασίες

- Ένα Λ/Σ εκτελεί διαφορετικού είδους προγράμματα:
 - προγράμματα χρηστών
 - προγράμματα δέσμης (scripts)
 - προγράμματα συστήματος:
 - προγράμματα παροχής υπηρεσιών (daemons)
 - προγράμματα εξυπηρετητών (π.χ. file servers, name servers)
 - προγράμματα ετεροχρονισμού περιφερειακών (π.χ. printer spooler)
 - προγράμματα εξυπηρέτησης διακοπών
- Κάθε εκτελούμενο στιγμιότυπο ενός προγράμματος αποτελεί μία διεργασία

Διεργασίες

- Κάθε διεργασία περιλαμβάνει:
 - Πληροφορίες σχετικά με το περιβάλλον εκτέλεσης
 - μετρητής προγράμματος (program counter)
 - καταχωρητές
 - πόροι Λ/Σ (π.χ. ανοικτά αρχεία)
 - Τον κώδικα του προγράμματος

Μονάδα Διεργασιών

- Η μονάδα διεργασιών του Λ/Σ είναι υπεύθυνη για τη διαχείριση των διεργασιών:
 - Δημιουργία διεργασίας
 - Αναστολή διεργασίας
 - Επανεκκίνηση διεργασίας
 - Τερματισμός διεργασίας
 - Κλωνοποίηση διεργασίας

Σύγκριση Προγράμματος με Διεργασία

Πρόγραμμα:

Στατικό σύνολο εντολών που θα εκτελεστούν στον επεξεργαστή

• Διεργασία:

- Αποτελεί ένα εκτελούμενο στιγμιότυπο του προγράμματος
- Είναι δυνατόν να εκτελούνται ταυτόχρονα πολλές διεργασίες από το ίδιο πρόγραμμα (π.χ. διορθωτής κειμένου)
- Στο Linux η εντολή **ps -aux** εμφανίζει όλες τις διεργασίες που εκτελούνται στο σύστημα

Ιεραρχία Διεργασιών

- Μια γονική διεργασία δημιουργεί διεργασίες-παιδιά
- Ιεραρχική οργάνωση διεργασιών σε μορφή δέντρου

Δημιουργία / Τερματισμός Διεργασίας

- Δημιουργία διεργασίας:
 - Μέσω κλήσης συστήματος (fork)
- Τερματισμός διεργασίας:
 - Με την ολοκλήρωση της εκτέλεσής της (exit)
 - Βίαιος τερματισμός από εξωτερικό παράγοντα
 - Αποστολή σήματος τερματισμού (kill) από άλλη διεργασία
 - Τερματισμός από το ίδιο το Λ/Σ λόγω εσφαλμένης λειτουργίας

• Μία νέα διεργασία δημιουργείται μέσω της **fork**:

- Μία νέα διεργασία δημιουργείται μέσω της fork:
 - Αρχικά δημιουργείται αντίγραφο του προγράμματος της γονικής διεργασίας (prog A)

- Μία νέα διεργασία δημιουργείται μέσω της fork:
 - Αρχικά δημιουργείται αντίγραφο του προγράμματος της γονικής διεργασίας (prog A)
 - Στη συνέχεια αντικαθιστάται το πρόγραμμα της γονικής διεργασίας με το πρόγραμμα της νέας διεργασίας (prog B) μέσω της κλήσης συστήματος exec

- Μία νέα διεργασία δημιουργείται μέσω της **fork**:
 - Αρχικά δημιουργείται αντίγραφο του προγράμματος της γονικής διεργασίας (prog A)
 - Στη συνέχεια αντικαθιστάται το πρόγραμμα της γονικής διεργασίας με το πρόγραμμα της νέας διεργασίας (prog B) μέσω της κλήσης συστήματος exec

Καταστάσεις Διεργασίας

 Εκτελούμενη: η διεργασία εκτελείται χρησιμοποιώντας την ΚΜΕ

 Έτοιμη: η διεργασία είναι έτοιμη προς εκτέλεση (περιμένει την απελευθέρωση της ΚΜΕ από κάποια άλλη διεργασία)

 Σε αναμονή: η διεργασία δεν είναι σε θέση να εκτελεστεί (η εκτέλεση της δρομολογείται όταν αρθεί κάποιος περιορισμός, π.χ. απελευθέρωση πόρου)

Είσοδος/Έξοδος (Ε/Ε)

Συσκευές Εισόδου/Εξόδου

- Συσκευές block (π.χ. σκληρός δίσκος):
 - Αποθηκεύουν πληροφορία σε μονάδες σταθερού μεγέθους που λέγονται blocks
 - Το block αποτελεί την μικρότερη μονάδα πληροφορίας που μεταφέρεται από και προς τη συσκευή
 - Κάθε block πληροφορίας έχει δική του διεύθυνση και μπορεί να εγγραφεί ή να ανακτηθεί ανεξάρτητα από τα άλλα blocks
- Συσκευές χαρακτήρων (π.χ. εκτυπωτής, πληκτρολόγιο):
 - Διαχειρίζονται μια σειρά από χαρακτήρες
 - Δεν υπάρχει η δυνατότητα διευθυνσιοποίησης πληροφορίας και ανεξάρτητης πρόσβασης

Οδηγοί Συσκευών

- Για κάθε συσκευή, το Λ/Σ καταγράφει την κατάστασή της, και υλοποιεί τις συναρτήσεις πρόσβασης καθώς και την ρουτίνα εξυπηρέτησης διακοπών
- Το σύνολο του κώδικα (συναρτήσεις πρόσβασης και ρουτίνα εξυπηρέτησης διακοπών) ονομάζεται **οδηγός** (driver) της συσκευής

Λ/Σ και Περιφερειακές Συσκευές

- Οι συσκευές Ε/Ε και η ΚΜΕ μπορούν να λειτουργούν ταυτόχρονα
- Κάθε συσκευή Ε/Ε περιλαμβάνει έναν ελεγκτή (controller)
 - Κάθε ελεγκτής συσκευής έχει μια μνήμη προσωρινής αποθήκευσης (buffer)
- Η ΚΜΕ μετακινεί δεδομένα μεταξύ της κύριας μνήμης και της μνήμης προσωρινής αποθήκευσης του ελεγκτή
- Η Ε/Ε γίνεται από τη συσκευή στην προσωρινή μνήμη του ελεγκτή

Ελεγκτές Περιφερειακών Συσκευών

Τρόποι Χειρισμού Ε/Ε

- Μέσω προγράμματος (ΚΜΕ)
- Μέσω διακοπής (interrupt)
- Μέσω άμεσης προσπέλασης μνήμης (Direct Memory Access DMA)

Χειρισμός Ε/Ε μέσω Προγράμματος

 Η μεταφορά δεδομένων μεταξύ της ΚΜΕ και της συσκευής γίνεται από εντολή του προγράμματος

Είναι η απλούστερη μέθοδος

Σπαταλά το χρόνο της ΚΜΕ

Χειρισμός Διακοπών

- Ο ελεγκτής συσκευής ενεργοποιεί το κύκλωμα διακοπής της ΚΜΕ
- Η ΚΜΕ αντιλαμβάνεται τη διακοπή, διακόπτει την εκτέλεση της τρέχουσας διεργασίας και μεταφέρει τον έλεγχο στον κώδικα της ρουτίνας εξυπηρέτησης διακοπών (interrupt handler)
- Όταν ολοκληρωθεί η ρουτίνα εξυπηρέτησης διακοπών, ο έλεγχος επιστρέφει στο Λ/Σ (που αναστέλει την εκτέλεση της διεργασίας που διακόπηκε)
- Ο αποδοτικός και άμεσος χειρισμός διακοπών είναι από τα πιο κρίσιμα σημεία ενός Λ/Σ

Χειρισμός Διακοπών

Χειρισμός Διακοπών

- Το Λ/Σ προσδιορίζει τον τύπο της διακοπής που συνέβη:
 - Ρωτώντας τις συσκευές με την σειρά (polling)
 - Με βάση τον αριθμό της διακοπής
 - Συνδυάζοντας τις δύο μεθόδους
- Τα τμήματα του κώδικα που αναλαμβάνουν να εξυπηρετήσουν τους διαφορετικούς τύπους διακοπών αποθηκεύονται σε προστατευμένο τμήμα της μνήμης του υπολογιστή

Αριθμός Διακοπής

Διακοπή	Περιγραφή
IRQ0	Ρολόι συστήματος
IRQ1	Πληκτρολόγιο
IRQ2	Ελεγκτής διακοπών
IRQ3	Σειριακή θύρα (COM2)
IRQ4	Σειριακή θύρα (COM1)
IRQ5	Κάρτα ήχου
IRQ6	Ελεγκτής μονάδας δισκέτας
IRQ7	Παράλληλη θύρα
IRQ8	Ρολόι πραγματικού χρόνου
IRQ9	Διαθέσιμο για περιφερειακή συσκευή
IRQ10	Διαθέσιμο για περιφερειακή συσκευή
IRQ11	Διαθέσιμο για περιφερειακή συσκευή
IRQ12	Ποντίκι
IRQ13	Μαθηματικός επεξεργαστής
IRQ14	Πρωτεύων ελεγκτής IDE
IRQ15	Δευτερεύων ελεγκτής IDE

Άμεση Πρόσβαση στη Μνήμη (DMA)

- Χρησιμοποιείται για συσκευές Ε/Ε υψηλής ταχύτητας που μπορούν να μεταδώσουν πληροφορία σε ταχύτητες συγκρίσιμες με αυτές της μνήμης (π.χ. σκληρός δίσκος, κάρτα δικτύου)
- Ο ελεγκτής συσκευής μεταφέρει μεγάλα τμήματα δεδομένων από την τοπική του μνήμη κατευθείαν στην κύρια μνήμη χωρίς την παρέμβαση της ΚΜΕ
- Αποδοτική χρήση της ΚΜΕ και ταχύτερη μεταφορά δεδομένων

E/E μέσω DMA

E/E μέσω DMA

Ερωτήσεις