Máquina Universal de Turing (MUT): es una MT que recibe como entrada la codificación de otra MT M y un input w. La MUT ejecuta la MT M sobre el input w.

Nota: también se tiene una versión reconocedora de lenguajes

Esta máquina responde a cuestiones relativas a otras MT

Claramente la MUT puede construirse puesto que el proceso de mirar el estado y el símbolo corriente, buscar la quíntupla de δ que se va a aplicar y realizar lo que indica o detenerse es un procedimiento efectivo.

Se puede asumir que el input w se separa del código de la MT con 000, y M se codifica de la manera que ya se ha visto.

Una idea de cómo construir una MUT Se copia w en la cinta 2 sobre la que se realiza la simulación

Es necesario identificar:

- Posición del cabezal (se puede usar una tercera cinta)
- Estado actual (se puede usar una cuarta cinta)
- Símbolo actualmente leído (se puede usar una quinta cinta)

MUT de 5 cintas

11101101010100 000110111011	Entrada
110111011	Cinta de Simulación
1	Posición del Cabezal
111	Estado Actual
11	Símbolo Actual

Nota1: puede probarse que L_D pertenece a Co-RE, pues fácilmente se verifica que $\overline{L_D} \in RE$ $(\overline{L_D} = \{w_i \in \Sigma^* / w_i \in L(M_i)\})$

Para ello se construye una MT que utilizando una MTU acepta \overline{L}_D ejecutando el código de M_i sobre w_i aceptando sii M_i acepta w_i . Recuérdese que el código $<\!M_i\!>$ de la MT M_i se obtiene fácilmente pues $<\!M_i\!>=\!w_i$

Pregunta. ¿Por qué le parece que los strings de baja numeración en el orden canónico no pertenecen a $\overline{L_D}$?

Nota 2: Además $\overline{L_D}$ no puede estar en R, ya que esto implicaría que L_D también esté en R (y ya sabemos que L_D no pertenece a RE). Por lo tanto $\overline{L_D} \in \text{RE-R}$.

Def.: se define L_u , el lenguaje universal, como:

$$L_u = \{ (< M>, w) / M \text{ acepta } w \}$$

$$i L_u ∈ RE?$$

Rta.: claramente sí. Se puede construir M_u de la siguiente manera:

- 1) Si ($\langle M \rangle$, w) no es un par válido parar en q_R
- 2) En caso contrario separar < M > de w
- 3) Si <*M*> es un código inválido parar en q_R
- 4) Simular M sobre w. Si M para en $q_A \Rightarrow M_u$ para en q_A . Si M para en $q_R \Rightarrow M_u$ para en q_R . Si M loopea M_u también loopea.

Claramente $L_u = L(M_u)$, por lo tanto $L_u \in RE$

$$\xi L_u \in \mathbb{R}$$
?

Se verá que no es cierto probando que $\overline{L_u} \notin RE$

 $\overline{L_u} = \Sigma^* - L_u$ por lo tanto el input $(\langle M \rangle, w) \in \overline{L_u}$ sii M rechaza w Los input que no cumplen con la forma del par $(\langle M \rangle, w)$ también están en $\overline{L_u}$

Teorema: $\overline{L_u} \notin RE$

Dem.: se demuestra que si $\overline{L_u} \in RE \Rightarrow L_D \in RE$, lo cual es absurdo pues ya se vio que $L_D \notin RE$.

Si $\overline{L_u} \in RE \Rightarrow \exists MT \overline{M_u}$ que acepta $\overline{L_u}$. Se construye la MT M_D que acepta L_D de la siguiente manera:

- 1) M_D cambia el input w por w000w (recordar que $\langle M_i \rangle = w_i$)
- 2) M_D simula $\overline{M_u}$ sobre el nuevo input. M_D acepta w sii $\overline{M_u}$ acepta w000w

 $\overline{L_u} = \Sigma^* - L_u$ por lo tanto el input $(<M>,w) \in \overline{L_u}$ sii M rechaza w Los input que no cumplen con la forma del par (<M>,w) también están en $\overline{L_u}$

Si w es w_i en nuestra numeración se tiene que:

 M_D acepta $w_i \Leftrightarrow \overline{M_u}$ acepta $< M_i > 000 w_i \Leftrightarrow M_i$ rechaza $w_i \Leftrightarrow w_i \in L_D$

De esta forma $L(M_D) = L_D$ lo que significa que $L_D \in RE$

Por lo tanto, si $\overline{L_u} \in RE \Rightarrow L_D \in RE$,

Por contrarrecíproca se tiene que $L_D \notin RE \Rightarrow \overline{L_u} \notin RE$ y como ya se conoce que $L_D \notin RE$ se tiene que $\overline{L_u} \notin RE$ Corolario: $L_u \in (RE - R)$.

Inmediato pues ya sabemos que L_u está en RE y que L_u no puede estar en R pues ello implicaría que $\overline{L_u}$ también estuviese en R lo que sería un absurdo pues acabamos de demostrar que $\overline{L_u} \not\in RE$ Hasta acá se tiene entonces la siguiente situación:

