

ŽILINSKÁ UNIVERZITA V ŽILINE FAKULTA RIADENIA A INFORMATIKY

Analýza diferenčnej rovnice

Autori: Matejko Peter Mudrák Ľuboš Rehák Tomáš Zárecký Martin Boďa Michal Kapusta Peter

Obsah

1	Zadanie				
2	Definície				
	2.1	Pojem	n diferencia		
	2.2	Pojem	n diferenčná rovnica		
		2.2.1	Typy diferenčných rovníc		
			Rekurentná formula		
3	Vypracovanie				
	3.1	.1 Triviálne riešenie			
	3.2	Všeobe	pecné riešenie		
	3.3	Závislo	osť od hodnôt a, b		
4	Záv	er			

1 Zadanie

V závislosti od hodnôt a a b analyzujte riešenia danej diferenčnej rovnice $x_{n+1} = \left(a + \frac{b}{n}\right) x_n$ kde a a b sú reálne čísla, také, že a + b > 0. Výsledky ilustrujte na jednoduchých príkladoch.

Budeme skúmať dopady zmeny jednotlivých premenných a a b na riešenia danej diferenčnej rovnice.

2 Definície

2.1 Pojem diferencia

Definícia 2.1. Je daný bod x_0 a číslo h > 0. Nech funkcia y = f(x) je definovaná v bodoch x_0 a $x_0 + h$. Diferencia funkcie f(x) v bode x_0 je číslo $f(x_0 + h) - f(x_0)$. Značíme

$$\Delta f(x_0) = f(x_0 + h) - f(x_0)$$

2.2 Pojem diferenčná rovnica

2.2.1 Typy diferenčných rovníc

Definícia 2.2. (Diferenčné rovnice 1. typu) Nech pre všetky $x \in M$ je definovaná funkcia $f(x, y, \Delta y, \Delta^2 y, \dots, \Delta^k y)$. Rovnica tvaru

$$f(x, y, \Delta y, \Delta^2 y, \dots, \Delta^k y) = 0$$
,

v ktorej neznámou funkciou $y=\varphi(x),$ nazývame diferenčnú rovnicu k-tého rádu a 1. typu definovanú v M.

Partikulárnym riešením tejto rovnice v M nazveme každú funkciu $y = \varphi(x)$, ktorá pre všetky $x \in M$ spĺňa danú rovnicu.

Všeobecným riešením nazývame množinu všetkých partikulárnych riešení.

Definícia 2.3. (Diferenčné rovnice 2. typu) Nech je pre všetky $x \in M$ definovaná funkcia

$$g(x, y_x, y_{x+1}, \dots, y_{x+k})$$
, kde $y_{x+j} = \varphi(x+j)j = 0, 1, 2, \dots, k$.

Rovnicu tvaru

$$g(x, y_x, y_{x+1}, \dots, y_{x+k}) = 0,$$

v ktorej neznáma funkcia $y_x=\varphi(x)$, nazývaná diferenčná rovnica 2.typu definovaná v M. Ak je závislosť g na y_x a y_{x+k} nekonštantná hovoríme, že rovnica je k-tého rádu. Riešenie rovnice v M nazývame každú funkciu $y_x=\varphi(x)$, ktorá pre všetky $x\in M$ spĺňa danú rovnicu. K tomu je nutné, aby definičný obor funkcie $\varphi(x)$ obsahoval všetky $x\in M$ a taktiež body $x+1,x+2,\ldots,x+k$.

2.2.2 Rekurentná formula

Rekurentnú formulu vieme získať z diferenčnej rovnice vyjadrením (n+k)-tého člena pomocou k predchádzajúcich členov rovnice.

Majme danú diferenčnú rovnicu:

$$g(x, y_x, y_{x+1}, \dots, y_{x+k}) = 0.$$

1. Nech definičný obor tejto rovnice sú prirodzené čísla $n=1,2,3,\ldots a$ ďalej zaveď me všeobecnejšie označenie pre členy postupnosti: $y_n=a_n$, takže rovnicu vieme prepísať ako

$$g(n, a_n, a_{n+1}, \dots, a_{n+k}) = 0.$$

Predpokladajme, že túto rovnicu vieme jednoznačne rozriešiť vzhľadom k a_{n+k} :

$$a_{n+k} = G(n, a_n, a_{n+1}, \dots, a_{n+k-1}),$$

kde G je funkcia, ktorú sme dostali riešením pôvodnej rovnice. Dostali sme vlastne všeobecný rekurentný vzorec pre postupnosť a_n , v ktorom je (n+k)-ty člen vyjadrený pomocou k predchádzajúcich členov $a_n, a_{n+1}, \ldots, a_{n+k-1}$ a premennej n.

2. Pozrime sa na riešenie, keď máme vopred dané (ľubovoľné) čísla a_1, a_2, \ldots, a_k . Vieme, že po dosadení členov do funkcie G vypočítame jednoznačne člen

$$a_{k+1} = G(1, a_1, a_2, \dots, a_k;),$$

ďalším dosadením vypočítame

$$a_{k+2} = G(2, a_2, a_3, \dots, a_{k+1};)$$
 atd'.

Všeobecný n-tý člen an dostaneme vypočítaním elementárnej funkcie n a daných k prvých čísiel a_1, a_2, \ldots, a_k . Táto funkcia je práve partikulárnym riešením diferenčnej rovnice s počiatočnými podmienkami a_1, a_2, \ldots, a_k .

Touto druhou úvahou sa súčasne znovu potvrdzuje, že všeobecné riešenie rovnice k-teho rádu $a_{n+k} = G(n, a_n, a_{n+1}, \dots, a_{n+k-1})$ má obsahovať k všeobecných konštánt, ktoré je možno si ľubovoľne zvoliť.

3 Vypracovanie

Popis našej rovnice

 $x_{n+1} = (a + \frac{b}{n}) x_n$, kde $a, b \in R$, a + b > 0. Ide o rekurentný vzorec pre postupnosť.

Vypísanie prvých členov postupnosti

$$\begin{array}{ll} n=1: & x_2=(a+b)x_1 \\ n=2: & x_3=(a+\frac{b}{2})x_2=(a+\frac{b}{2})(a+b)x_1 \\ n=3: & x_2=(a+\frac{b}{3})x_3=(a+\frac{b}{3})(a+\frac{b}{2})(a+b)x_1 \\ n=4: & x_2=(a+\frac{b}{4})x_4=(a+\frac{b}{4})(a+\frac{b}{3})(a+\frac{b}{2})(a+b)x_1 \\ n=k-1: & x_k=(a+\frac{b}{k-1})x_{k-1}=(a+\frac{b}{k-1})(a+\frac{b}{k-2})\dots(a+\frac{b}{2})(a+b)x_1 \end{array}$$

3.1 Triviálne riešenie

Nech $x_1 = 0$.

Potom dostávame triviálne riešenie $x_{n+1}=0$ a teda každý člen postupnosti bude mať hodnotu 0. Ďalej, v našom vypracovaní, budeme predpokladať, že $x_1>0$ a teda sa budeme zaoberať závislosťou od hodnôt a,b.

3.2 Všeobecné riešenie

$$x_{n+1}=\left(a+\frac{b}{n}\right)x_n,\, n\geq 1$$
a nech $a+\frac{b}{n}=f(n),$ potom $x_{n+1}=f(n)x_n,$ kde $n=1+k,\, k=0,1,2,\dots$

$$x_n$$
 = $f(n-1)x_{n-1}$
 x_{n-1} = $f(n-2)x_{n-2}$
 x_{n-2} = $f(n-3)x_{n-3}$
 \vdots
 $x_{n-(k-1)}$ = $f(n-k)x_{n-k}$

a teda $x_2 = f_1 x_1$.

3.3 Závislosť od hodnôt a, b

Nech $b = 0, x_1 > 0.$

Potom rovnica $x_{n+1} = \left(a + \frac{b}{n}\right) x_n$ nadobudne tvar $x_{n+1} = ax_n$. Teda každý ďalší člen postupnosti x_{n+1} je a-násobkom predchádzajúceho člena x_n . Dosadením b = 0 teda vzniká z našej rovnice Geometrická postupnosť.

4 Záver

Literatúra

 $[1]\ {\it Prágerová},\ A.:$ Diferenční rovnice. Polytechnická knižnice, Praha 1971.