APMA 2110 - Homework 10

Milan Capoor

27 Nov 2024

1. Assume the validity of the change of variables formula for the Riemann integral. Let f be Riemann integrable in \mathbb{R}^n and show that f is Lebesgue integrable.

Use this fact to give an alternative proof of the change of variables formula for $f \in \mathcal{L}^1(\mathbb{R}^n)$. In particular, prove the integration in polar coordinates for $f \in \mathcal{L}^1(\mathbb{R}^n)$:

$$\int_{\mathbb{R}^n} f = \int_0^\infty \int_{S^{n-1}} f(rx') r^{n-1} d\sigma(x') dr$$

where $\sigma = \sigma_{n-1}$ is the surface measure on the unit sphere S^{n-1} .

We present an alternative proof of the change of variables formula for $f \in \mathcal{L}^1(\mathbb{R}^n)$.

STEP 1. Assume that for $\phi: E \to \mathbb{R}^n$ a C^1 diffeomorphism and $f: \phi(E) \to \mathbb{R}^n$ Riemann integrable,

$$\int_{\phi(E)} f(y) \ dy = \int_{E} (f \circ \phi)(x) \left| \det D_x \phi \right| \ dx$$

STEP 2. For smooth functions in \mathbb{R}^n , the Riemann integral is equivalent to the Lebesgue integral.

Proof: Suppose f is a smooth function in \mathbb{R}^n .

By definition, f is continuous. Trivially, $\{x: f(x) \text{ not continuous}\}$ has measure zero, so by a Theorem from class, f is Riemann integrable.

Note that we showed in class that the Lebesgue and Riemann integrals are equivalent in \mathbb{R} . We can extend this to \mathbb{R}^n by considering the product measure $m^n = m \times \cdots \times m$ on \mathbb{R}^n and applying Fubini:

$$\int_{\mathbb{R}^n} f \ dm^n = \int_{\mathbb{R}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f \ dm(x_1), dm(x_2) \dots dm(x_n)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f \ dx_1 dx_2 \dots dx_n$$

STEP 3. By the approximation of $\mathcal{L}^1(m)$ functions (shown in class), there exists a smooth function g such that $||f-g||_{\mathcal{L}^1} < \varepsilon$.

Hence, up to order ε , the change of variables formula holds for $f \in \mathcal{L}^1(\mathbb{R}^n)$.

Denote the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$. Then for $x \in \mathbb{R}^n \setminus \{0\}$, the polar coordinates of x are given by:

$$\begin{cases} r = |x| \in (0, \infty) \\ x' = \frac{x}{|x|} \in S^{n-1} \end{cases}$$

Consider the map $\Phi:(0,\infty)\times S^{n-1}\to\mathbb{R}^n\setminus\{0\}$ given by $\Phi(r,x')=rx'$.

By the change of variables formula above,

$$\int_{\mathbb{R}^n} f = \int_{(0,\infty)\times S^{n-1}} f(\Phi(r,x')) |\det D\Phi(r,x')| \ d(\sigma \times r)$$
$$= \int_0^\infty \int_{S^{n-1}} f(rx') r^{n-1} \ d\sigma(x') \ dr \qquad \text{(Tonelli)}$$

- 2. Let ν be a signed measure on (X, \mathcal{M}) . Prove:
 - If E_j is an increasing sequence of sets in \mathcal{M} , $\nu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \nu(E_j)$.
 - If E_j is a decreasing sequence of sets in \mathcal{M} and $\nu(E_1) < \infty$, then $\nu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \nu(E_j)$.

We would like to rewrite $\bigcup_j E_j$ as a union of disjoint sets to take advantage of countable additivity.

WLOG define $E_0 = \emptyset$. Then, because $E_n \subseteq E_{n+1}$,

$$E_1 = E_1 \setminus \emptyset$$

$$E_2 = E_1 \cup (E_2 \setminus E_1)$$

$$E_3 = E_2 \cup (E_3 \setminus E_2)$$

$$= (E_1 \setminus \emptyset) \cup (E_2 \setminus E_1) \cup (E_3 \setminus E_2)$$

Hence, inductively define

$$E_n = \bigcup_{k=0}^{n-1} E_{k+1} \setminus E_k$$

SO

$$\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=0}^{\infty} (E_n \setminus E_{n-1})$$

Then, by countable additivity,

$$\nu\left(\bigcup_{n=1}^{\infty} E_n\right) = \nu\left(\bigcup_{n=0}^{\infty} (E_n \setminus E_{n-1})\right)$$
$$= \sum_{n=0}^{\infty} \nu(E_n \setminus E_{n-1})$$
$$= \lim_{N \to \infty} \sum_{n=0}^{N} \nu(E_n \setminus E_{n-1})$$
$$= \lim_{n \to \infty} \nu(E_n)$$

Let $E_1 \supset E_2 \supset \ldots$ and $\nu(E_1) < \infty$. Define $F_j = E_1 \setminus E_j$. Clearly, $F_n \subseteq F_{n+1}$. By the previous part,

$$\nu\left(\bigcup_{n=1}^{\infty} F_n\right) = \lim_{n \to \infty} \nu(F_n)$$

$$F_j = E_1 \setminus E_j \implies \bigcup_{j=1}^n F_j = E_1 \setminus \bigcup_{j=1}^n E_j$$

$$\nu\left(E_1 \setminus \bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \nu(E_1 \setminus \bigcap_{j=1}^n E_j)$$

In a signed measure, we do not have monotonicity but we do have that for $E \subseteq F$,

$$\nu(F) = \nu(E \cup F \setminus E) = \nu(E) + \nu(F \setminus E)$$

Proof: Consider
$$F \setminus E = F \cap E^c$$
. But $E \cap (F \cap E^c) = \emptyset$ so
$$\mu(F) = \mu(E \cup F \setminus E) = \mu(E) + \mu(F \setminus E)$$

Because $\nu(E_1) < \infty$,

$$\nu(E_1) - \nu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \left[\nu(E_1) - \nu\left(\bigcap_{j=1}^n E_j\right)\right]$$

$$= \lim_{n \to \infty} \left[\nu(E_1) - \nu(E_n)\right]$$

$$= \nu(E_1) - \lim_{n \to \infty} \nu(E_n)$$

$$\nu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \nu(E_n)$$

3. If ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda - \mu$, show $\lambda \geq \nu^+$ and $\mu \geq \nu^-$. ν is a signed measure, so by Hahn decomposition, $\exists P, N$ unique with P positive and N negative such that

$$P \cup N = X, \ P \cap N = \emptyset$$

Define

$$\nu^{+}(A) = \nu(A \cap P), \ \nu^{-}(A) = -\nu(A \cap N)$$

Then, $\nu = \nu^{+} - \nu^{-}$.

First consider λ . Because λ, μ are positive measures, we have $\lambda \geq \lambda - \mu = \nu$.

In particular, $\forall A \in \mathcal{M}$,

$$\lambda(A) \stackrel{*}{\geq} \lambda(A \cap P) \geq \nu(A \cap P) = \nu^{+}(A)$$

where $\stackrel{*}{\geq}$ follows from the fact that λ is a positive measure (and hence monotonic).

Now consider μ . We have $-\nu = \mu - \lambda$ so in particular, $\mu \geq -\nu$. Hence, for any $A \in \mathcal{M}$,

$$\mu(A) \ge \mu(A \cap N) \ge -\nu(A \cap N) = \nu^-(A)$$

again by monotonicity of μ .

4. Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$. Prove

1.

$$\nu^{+}(E) = \sup\{\nu(F) : F \subseteq E, F \in \mathcal{M}\}$$
$$\nu^{-}(E) = -\inf\{\nu(F) : F \subseteq E, F \in \mathcal{M}\}$$

2.

$$|\nu|(E) = \sup \left\{ \sum_{j=1}^{n} |\nu(E_j)| \mid n \in \mathbb{N}, E_1 \dots E_n \text{ disjoint}, \bigcup_{j=1}^{n} E_j = E \right\}$$

Let $X = P \cup N$ be the Hahn decomposition of X and

$$\nu^{+}(E) = \nu(E \cap P)$$
$$\nu^{-}(E) = -\nu(E \cap N)$$

Define $\overline{F} = \arg \sup \{ \nu(F) : F \subseteq E, F \in \mathcal{M} \}.$

STEP 1. \overline{F} is a positive set and $E \setminus \overline{F}$ is a negative set.

Proof: Let $\overline{F} = A \cup B$ where A is a positive set and B is a negative set such that $A \cap B = \emptyset$ (guaranteed by Hahn).

Suppose, for contradiction, that \overline{F} is not positive, i.e. $B \neq \emptyset$

We know $\nu(\overline{F}) = \nu(\overline{F} \setminus B) + \nu(B)$ (countable additivity), so in particular, $\nu(\overline{F} \setminus B) \ge \nu(\overline{F})$ (as $\nu(B) < 0$). But this contradicts the maximality of \overline{F} .

Hence, \overline{F} is a positive set.

Similarly, suppose $E \setminus \overline{F}$ is not negative, i.e. it contains some positive set C. But then, C and \overline{F} are disjoint so by countable additivity,

$$\nu(\overline{F} \cup C) = \nu(\overline{F}) + \nu(C) \ge \nu(\overline{F})$$

which again contradicts the maximality of \overline{F} .

STEP 2. $\nu(\overline{F}) = \nu(E \cap P) = \nu^+(E)$.

Proof: In fact, we have the strictly stronger claim that $\overline{F} = E \cap P$: clearly, $\overline{F} \subseteq E$ and further, \overline{F} is positive (by Step 1), so $\overline{F} \subseteq E \cap P$.

Then, suppose $\exists D \in (E \cap P) \setminus \overline{F}$. But then D is a positive set in E which is disjoint from \overline{F} so $\nu(D \cup \overline{F}) = \nu(D) + \nu(\overline{F}) > \nu(\overline{F})$, contradicting the maximality of \overline{F} . Hence, $E \cap P \subseteq \overline{F}$

Certainly, $\overline{F} = E \cap P \implies \nu(\overline{F}) = \nu(E \cap P) = \nu^+(E)$, by definition.

 ν^- follows by similar argument on $\underline{F} = \arg\inf\{\nu(F) : F \subseteq E, F \in \mathcal{M}\}.$

Once again, let $X = P \cup N$ be the Hahn decomposition of X and let $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$.

Notice that $E = (E \cap P) \cup (E \cap N)$ and $E \cap P, E \cap N$ are disjoint, so, by definition of the supremum,

$$\sup \left\{ \sum_{j=1}^{n} |\nu(E_{j})| \mid n \in \mathbb{N}, E_{1} \dots E_{n} \text{ disjoint}, \bigcup_{j=1}^{n} E_{j} = E \right\} \ge |\nu(E \cap P)| + |\nu(E \cap N)|$$

$$= \nu^{+}(E) + |-\nu^{-}(E)|$$

$$= \nu^{+}(E) + \nu^{-}(E)$$

$$= |\nu|(E)$$

Conversely, let $E = \bigcup_{j=1}^n E_j$ for E_j disjoint. Then

$$|\nu|(E) = |\nu| \left(\bigcup_{j=1}^{n} E_{j}\right)$$

$$= \sum_{j=1}^{n} |\nu|(E_{j}) \quad \text{(by countable additivity)}$$

$$= \sum_{j=1}^{n} \nu^{+}(E_{j}) + \nu^{-}(E_{j})$$

$$\geq \sum_{j=1}^{n} |\nu^{+}(E_{j}) - \nu^{-}(E_{j})|$$

$$= \sum_{j=1}^{n} |\nu(E_{j})|$$

Taking the supremum over all such decompositions, we have the desired result.