Discrete Mathematics Relations and Functions

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2013

License

©2001-2013 T. Uyar, A. Yayımlı, E. Harmancı

- to Share to copy, distribute and transmit the work
 to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
 Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Topics

Relations

Introduction Relation Properties Equivalence Relations

Functions

Introduction Pigeonhole Principle Recursion

Relation

Definition

relation: $\alpha \subseteq A \times B \times C \times \cdots \times N$

- ▶ tuple: an element of a relation
- $ightharpoonup \alpha \subseteq A \times B$: binary relation
 - ▶ $a\alpha b$ is the same as $(a,b) \in \alpha$
- representations:
 - ▶ by drawing
 - ▶ by matrix

Relation Example

Example

$$A = \{a_1, a_2, a_3, a_4\}, B = \{b_1, b_2, b_3\}$$

$$\alpha = \{(a_1, b_1), (a_1, b_3), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3), (a_4, b_1)\}$$

	b_1	b_2	<i>b</i> ₃
a_1	1	0	1
a_2	0	1	1
<i>a</i> ₃	1	0	1
ал	1	0	0

$$M_{\alpha} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix}$$

Relation Composition

Definition

relation composition:

let $\alpha \subseteq A \times B$, $\beta \subseteq B \times C$ $\alpha\beta = \{ (\mathbf{a}, \mathbf{c}) \mid \mathbf{a} \in A, \mathbf{c} \in C, \exists \mathbf{b} \in B \ [\mathbf{a}\alpha\mathbf{b} \wedge \mathbf{b}\beta\mathbf{c}] \}$

- $M_{\alpha\beta} = M_{\alpha} \times M_{\beta}$
 - using logical operations: $1:T,0:F,\cdot:\wedge,+:\vee$

Relation Composition Example

Example

7 / 79

Relation Composition Matrix Example

Example

$$M_{lpha} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 1 \ 0 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix}$$

$$M_eta = \left|egin{array}{cccc} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight|$$

$$M_{\alpha\beta} = \begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix}$$

8 / 70

Relation Composition Associativity

▶ relation composition is associative

$$(\alpha\beta)\gamma = \alpha(\beta\gamma).$$

$$(a, d) \in (\alpha \beta) \gamma$$

$$\Leftrightarrow \exists c [(a,c) \in \alpha\beta \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists c [\exists b [(a,b) \in \alpha \land (b,c) \in \beta] \land (c,d) \in \gamma]$$

$$\Leftrightarrow \exists b \ [(a,b) \in \alpha \land \exists c \ [(b,c) \in \beta \land (c,d) \in \gamma]]$$

$$\Leftrightarrow \exists b [(a,b) \in \alpha \land (b,d) \in \beta \gamma]$$

 \Leftrightarrow $(a,d) \in \alpha(\beta\gamma)$

9 / 79

Relation Composition Theorems

- let $\alpha, \delta \subseteq A \times B$, and let $\beta, \gamma \subseteq B \times C$
- $\qquad \qquad \alpha(\beta \cap \gamma) \subseteq \alpha\beta \cap \alpha\gamma$
- $(\alpha \cup \delta)\beta = \alpha\beta \cup \delta\beta$
- $(\alpha \cap \delta)\beta \subseteq \alpha\beta \cap \delta\beta$

10 / 79

Relation Composition Theorems

$$\alpha(\beta \cup \gamma) = \alpha\beta \cup \alpha\gamma.$$

$$(a,c) \in \alpha(\beta \cup \gamma)$$

$$\Leftrightarrow \exists b [(a,b) \in \alpha \land (b,c) \in (\beta \cup \gamma)]$$

$$\Leftrightarrow \exists b [(a,b) \in \alpha \land ((b,c) \in \beta \lor (b,c) \in \gamma)]$$

$$\Leftrightarrow \exists b [((a,b) \in \alpha \land (b,c) \in \beta)]$$

$$\vee ((a,b) \in \alpha \land (b,c) \in \gamma)]$$

$$\Leftrightarrow$$
 $(a, c) \in \alpha\beta \lor (a, c) \in \alpha\gamma$

 \Leftrightarrow $(a, c) \in \alpha\beta \cup \alpha\gamma$

Converse Relation

Definition

$$\alpha^{-1} = \{(b, a) \mid (a, b) \in \alpha\}$$

 $M_{\alpha^{-1}} = M_{\alpha}^T$

11/7

Converse Relation Theorems

- $(\alpha^{-1})^{-1} = \alpha$
- $(\alpha \cup \beta)^{-1} = \alpha^{-1} \cup \beta^{-1}$
- $(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}$
- ${\color{red} \blacktriangleright} \ \overline{\alpha}^{-1} = \overline{\alpha^{-1}}$
- $(\alpha \beta)^{-1} = \alpha^{-1} \beta^{-1}$

Converse Relation Theorems

$$\overline{\alpha}^{-1} = \overline{\alpha^{-1}}.$$

$$(b,a) \in \overline{\alpha}^{-1}$$

$$\Leftrightarrow (a,b) \in \overline{\alpha}$$

$$\Leftrightarrow (a,b) \notin \alpha$$

$$\Leftrightarrow (b,a) \notin \alpha^{-1}$$

$$\Leftrightarrow (b,a) \in \overline{\alpha}^{-1}$$

13/

14 / 70

16 / 79

Converse Relation Theorems

$$(\alpha \cap \beta)^{-1} = \alpha^{-1} \cap \beta^{-1}.$$

$$(b,a) \in (\alpha \cap \beta)^{-1}$$

$$\Leftrightarrow$$
 $(a,b) \in (\alpha \cap \beta)$

$$\Leftrightarrow$$
 $(a,b) \in \alpha \land (a,b) \in \beta$

$$\Leftrightarrow$$
 $(b,a) \in \alpha^{-1} \land (b,a) \in \beta^{-1}$

$$\Leftrightarrow$$
 $(b,a) \in \alpha^{-1} \cap \beta^{-1}$

Converse Relation Theorems

$$(\alpha - \beta)^{-1} = \alpha^{-1} - \beta^{-1}$$
.

$$(\alpha - \beta)^{-1} = (\alpha \cap \overline{\beta})^{-1}$$
$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$
$$= \alpha^{-1} \cap \overline{\beta}^{-1}$$
$$= \alpha^{-1} - \beta^{-1}$$

15 / 79

Relation Composition Converse

Theorem

$$(\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$$

Proof.

$$(c,a)\in(\alpha\beta)^{-1}$$

$$\Leftrightarrow$$
 $(a,c) \in \alpha\beta$

$$\Leftrightarrow \exists b [(a,b) \in \alpha \land (b,c) \in \beta]$$

$$\Leftrightarrow \exists b \ [(b,a) \in \alpha^{-1} \land (c,b) \in \beta^{-1}]$$

$$\Leftrightarrow$$
 $(c,a) \in \beta^{-1}\alpha^{-1}$

Relation Properties

- $ightharpoonup \alpha \subseteq A \times A$
 - ▶ binary relation on A
- ▶ let α^n mean $\alpha\alpha\cdots\alpha$
- ▶ identity relation: $E = \{(x, x) \mid x \in A\}$

Reflexivity

reflexive

 $\begin{array}{l} \alpha \subseteq A \times A \\ \forall a \; [a \alpha a] \end{array}$

- $ightharpoonup E \subseteq \alpha$
- ▶ nonreflexive: $\exists a \ [\neg(a\alpha a)]$
- ► irreflexive: $\forall a \ [\neg(a\alpha a)]$

Reflexivity Examples

Example

$$\begin{split} \mathcal{R}_1 &\subseteq \{1,2\} \times \{1,2\} \\ \mathcal{R}_1 &= \{(1,1), (1,2), (2,2)\} \end{split}$$

$$\mathcal{R}_2 \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R}_2 = \{(1,1),(1,2),(2,2)\}$$

Example

 $ightharpoonup \mathcal{R}_1$ is reflexive

 $ightharpoonup \mathcal{R}_2$ is nonreflexive

19/79

Reflexivity Examples

Example

 $\mathcal{R} \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R} = \{(1,2),(2,1),(2,3)\}$

 $ightharpoonup \mathcal{R}$ is irreflexive

Reflexivity Examples

Example

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$\mathcal{R} = \{(a, b) \mid ab \ge 0\}$$

 $ightharpoonup \mathcal{R}$ is reflexive

Symmetry

symmetric

$$\begin{array}{l} \alpha \subseteq A \times A \\ \forall a,b \; [(a=b) \vee (a\alpha b \wedge b\alpha a) \vee (\neg (a\alpha b) \wedge \neg (b\alpha a))] \\ \forall a,b \; [(a=b) \vee (a\alpha b \leftrightarrow b\alpha a)] \end{array}$$

- $\qquad \qquad \bullet^{-1} = \alpha$
- ▶ asymmetric: $\exists a, b \ [(a \neq b) \land (a \alpha b \land \neg (b \alpha a)) \lor (\neg (a \alpha b) \land b \alpha a))]$
- ► antisymmetric:

$$\forall a, b \ [(a = b) \lor (a\alpha b \to \neg(b\alpha a))]$$

$$\Leftrightarrow \forall a, b \ [(a = b) \lor \neg(a\alpha b) \lor \neg(b\alpha a)]$$

$$\Leftrightarrow \forall a, b \ [\neg(a\alpha b \land b\alpha a) \lor (a = b)]$$

$$\Leftrightarrow \forall a, b \ [(a\alpha b \land b\alpha a) \to (a = b)]$$

Symmetry Examples

Example

$$\mathcal{R} \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R} = \{(1,2),(2,1),(2,3)\}$$

 $ightharpoonup \mathcal{R}$ is asymmetric

Symmetry Examples

Example

$$\begin{split} \mathcal{R} &\subseteq \mathbb{Z} \times \mathbb{Z} \\ \mathcal{R} &= \{(a,b) \mid ab \geq 0\} \end{split}$$

 $\blacktriangleright~\mathcal{R}$ is symmetric

Symmetry Examples

Example

$$\begin{split} \mathcal{R} &\subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R} &= \{(1,1),(2,2)\} \end{split}$$

 $\blacktriangleright~\mathcal{R}$ is symmetric and antisymmetric

25 / 79

Transitivity

transitive

 $\begin{array}{l} \alpha \subseteq A \times A \\ \forall a,b,c \ [(a\alpha b \wedge b\alpha c) \rightarrow (a\alpha c)] \end{array}$

- $ightharpoonup \alpha^2 \subseteq \alpha$
- ▶ nontransitive: $\exists a, b, c \ [(a\alpha b \land b\alpha c) \land \neg(a\alpha c)]$
- ▶ antitransitive: $\forall a, b, c \ [(a\alpha b \land b\alpha c) \rightarrow \neg(a\alpha c)]$

27 / 79

Transitivity Examples

Example

 $\mathcal{R} \subseteq \{1,2,3\} \times \{1,2,3\} \\ \mathcal{R} = \{(1,2),(2,1),(2,3)\}$

 $ightharpoonup \mathcal{R}$ is antitransitive

--, --

Transitivity Examples

Example

$$\begin{split} \mathcal{R} &\subseteq \mathbb{Z} \times \mathbb{Z} \\ \mathcal{R} &= \{(a,b) \mid ab \geq 0\} \end{split}$$

 $ightharpoonup \mathcal{R}$ is nontransitive

Converse Relation Properties

Theorem

The reflexivity, symmetry and transitivity properties are preserved in the converse relation.

29 / 79

Closures

- reflexive closure: $r_{\alpha} = \alpha \cup E$
- $\qquad \qquad \mathbf{s}_{\alpha} = \alpha \cup \alpha^{-1}$ symmetric closure:
- $\begin{array}{l} \blacktriangleright \ \ \text{transitive closure:} \\ t_{\alpha} = \bigcup_{i=1,2,3,\dots} \ \alpha^i = \alpha \cup \alpha^2 \cup \alpha^3 \cup \cdots \end{array}$

Special Relations

predecessor - successor

$$\begin{split} \mathcal{R} &\subseteq \mathbb{Z} \times \mathbb{Z} \\ \mathcal{R} &= \{(a,b) \mid a-b=1\} \end{split}$$

- ▶ irreflexive
- antisymmetric
- antitransitive

31 / 79

32 / 79

Special Relations

adjacency

 $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $\mathcal{R} = \{(a, b) \mid |a - b| = 1\}$

- ► irreflexive
- symmetric
- ► antitransitive

Special Relations

strict order

- ▶ irreflexive
- ► antisymmetric
- ► transitive

33 / 79

Special Relations

partial order

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$
 $\mathcal{R} = \{(a, b) \mid a \leq b\}$

- reflexive
- antisymmetric
- ► transitive

Special Relations

preorder

$$\begin{split} \mathcal{R} &\subseteq \mathbb{Z} \times \mathbb{Z} \\ \mathcal{R} &= \{ \left(\textbf{a}, \textbf{b} \right) \mid |\textbf{a}| \leq |\textbf{b}| \} \end{split}$$

- reflexive
- ▶ asymmetric
- ► transitive

35 / 79

36 / 79

Special Relations

limited difference

 $\mathcal{R}\subseteq\mathbb{Z}\times\mathbb{Z}, m\in\mathbb{Z}^+$ $\mathcal{R} = \{(a,b) \mid |a-b| \le m\}$

- reflexive
- symmetric
- nontransitive

Special Relations

comparability

$$\mathcal{R} \subseteq \mathbb{U} \times \mathbb{U}$$

$$\mathcal{R} = \{(a, b) \mid (a \subseteq b) \lor (b \subseteq a)\}$$

- reflexive
- symmetric
- nontransitive

Special Relations

sibling

- ▶ irreflexive
- symmetric
- ▶ transitive
- ▶ how can a relation be symmetric, transitive and nonreflexive?

Compatibility Relations

Definition

compatibility relation: γ

- reflexive
- symmetric
- when drawing, lines instead of arrows
- matrix representation as a triangle matrix
- lacktriangle $\alpha \alpha^{-1}$ is a compatibility relation

40 / 79

Compatibility Relation Example

Example

$$A = \{a_1, a_2, a_3, a_4\}$$

$$\mathcal{R} = \{(a_1, a_1), (a_2, a_2), (a_3, a_3), (a_4, a_4), (a_1, a_2), (a_2, a_1), (a_2, a_4), (a_4, a_2), (a_3, a_4), (a_4, a_3)\}$$

$$\begin{bmatrix} O & & & & & & \\ & & & & & & \\ \bullet & a_i & & & & \\ & & & & & \\ & & & & & \\ \end{bmatrix} \begin{bmatrix} 1 & & & & \\ 0 & 0 & & \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & & & \\ 0 & 0 & & \\ 0 & 1 & 1 \end{bmatrix}$$

1 1 0 0

1 1 0 1

0 0 1 1

Compatibility Relation Example

Example $(\alpha \alpha^{-1})$ P: persons, L: languages $P=\{p_1,p_2,p_3,p_4,p_5,p_6\}$ $L = \{I_1, I_2, I_3, I_4, I_5\}$

$$\alpha \subseteq P \times L$$

$$M_{\alpha} = \begin{vmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{vmatrix}$$

$$M_{\alpha^{-1}} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{vmatrix}$$

Compatibility Relation Example

Example $(\alpha \alpha^{-1})$ $\alpha \alpha^{-1} \subseteq P \times P$

$$\textit{M}_{\alpha\alpha^{-1}} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \end{vmatrix}$$

43 / 79

Compatibility Block

Definition

compatibility block: $C \subseteq A$ $\forall a, b \ [a \in C \land b \in C \rightarrow a\gamma b]$

- maximal compatibility block: not a subset of another compatibility block
- ▶ an element can be a member of more than one MCB
- complete cover: C_γ
 set of all MCBs

44 / 79

Compatibility Block Example

Example $(\alpha \alpha^{-1})$

- $ightharpoonup C_1 = \{a_4, a_6\}$
- $ightharpoonup C_2 = \{a_2, a_4, a_6\}$
- $ightharpoonup C_3 = \{a_1, a_2, a_4, a_6\} \text{ (MCB)}$

$$C_{\gamma}(A) = \{\{a_1, a_2, a_4, a_6\}, \{a_3, a_4, a_6\}, \{a_4, a_5\}\}$$

45 / 79

Equivalence Relations

Definition

equivalence relation: ϵ

- reflexive
- symmetric
- ► transitive
- ▶ equivalence classes (partitions)
- every element is a member of exactly one equivalence class
- **>** complete cover: C_{ϵ}

46 / 79

Equivalence Relation Example

Example

$$\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$$

$$\mathcal{R} = \{(a, b) \mid \exists m \in \mathbb{Z} \ [a - b = 5m]\}$$

 $ightharpoonup \mathcal{R}$ partitions \mathbb{Z} into 5 equivalence classes

References

Required Reading: Grimaldi

- Chapter 5: Relations and Functions
 - ▶ 5.1. Cartesian Products and Relations
- ► Chapter 7: Relations: The Second Time Around
 - 7.1. Relations Revisited: Properties of Relations
 7.4. Equivalence Relations and Partitions

Supplementary Reading: O'Donnell, Hall, Page

► Chapter 10: Relations

48 / 7

Functions

Definition

function: $f: X \to Y$ $\forall x \in X \ \forall y_1, y_2 \in Y \ (x, y_1), (x, y_2) \in f \Rightarrow y_1 = y_2$

- ► X: domain, Y: codomain (or range)
- y = f(x) is the same as $(x, y) \in f$
- ightharpoonup y is the *image* of x under f
- ▶ let $f: X \to Y$, and $X_1 \subseteq X$ subset image: $f(X_1) = \{f(x) \mid x \in X_1\}$

Subset Image Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = x^2$$

$$f(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$$

$$f(\{-2,1\}) = \{1,4\}$$

50 / 79

52 / 79

Function Properties

Definition

 $f: X \to Y$ is one-to-one (or injective): $\forall x_1, x_2 \in X \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Definition

 $f: X \to Y$ is onto (or surjective): $\forall y \in Y \ \exists x \in X \ f(x) = y$

ightharpoonup f(X) = Y

Definition

 $f: X \rightarrow Y$ is bijective: f is one-to-one and onto

One-to-one Function Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = 3x + 7$$

 $f(x_1) = f(x_2)$ $\Rightarrow 3x_1 + 7 = 3x_2 + 7$

 $\Rightarrow 3x_1 = 3x_2$ $\Rightarrow x_1 = x_2$

Counterexample

$$g: \mathbb{Z} \to \mathbb{Z}$$
$$g(x) = x^4 - x$$

 $g(0) = 0^4 - 0 = 0$

 $g(1) = 1^4 - 1 = 0$

51/79

Onto Function Examples

Example

 $f: \mathbb{R} \to \mathbb{R}$ $f(x) = x^3$

Counterexample

 $f: \mathbb{Z} \to \mathbb{Z}$

f(x) = 3x + 1

Function Composition

Definition

let $f: X \to Y, g: Y \to Z$

 $g \circ f: X \to Z$

 $(g \circ f)(x) = g(f(x))$

- ▶ function composition is not commutative
- ▶ function composition is associative:

 $f\circ (g\circ h)=(f\circ g)\circ h$

Function Composition Examples

Example (commutativity)

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^{2}$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) = x + 5$$

$$g \circ f: \mathbb{R} \to \mathbb{R}$$

$$(g \circ f)(x) = x^{2} + 5$$

 $f \circ g : \mathbb{R} \to \mathbb{R}$ $(f \circ g)(x) = (x+5)^2$

Composite Function Theorems

Theorem

let $f: X \to Y, g: Y \to Z$ f is one-to-one $\land g$ is one-to-one $\Rightarrow g \circ f$ is one-to-one

Proof.

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$\Rightarrow g(f(a_1)) = g(f(a_2))$$

$$\Rightarrow f(a_1) = f(a_2)$$

$$\Rightarrow a_1 = a_2$$

55 / 79

Composite Function Theorems

Theorem

 $\begin{array}{l} \textit{let } f: X \rightarrow Y, g: Y \rightarrow Z \\ \textit{f is onto} \ \land \ \textit{g is onto} \Rightarrow \textit{g} \circ \textit{f is onto} \end{array}$

Proof

 $\forall z \in Z \ \exists y \in Y \ g(y) = z$ $\forall y \in Y \ \exists x \in X \ f(x) = y$ $\Rightarrow \forall z \in Z \ \exists x \in X \ g(f(x)) = z$

Identity Function

Definition

identity function: 1_X

$$1_X: X \to X$$
$$1_X(x) = x$$

58 / 79

Inverse Function

Definition

 $f: X \to Y$ is invertible:

 $\exists f^{-1}: Y \to X \ [f^{-1} \circ f = 1_X \land f \circ f^{-1} = 1_Y]$

▶ f^{-1} : inverse of function f

Inverse Function Examples

Example

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x)=2x+5$$

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$f^{-1}(x) = \frac{x-5}{2}$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(2x+5) = \frac{(2x+5)-5}{2} = \frac{2x}{2} = x$$
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = f(\frac{x-5}{2}) = 2\frac{x-5}{2} + 5 = (x-5) + 5 = x$$

60 / 79

Inverse Function

Theorem

If a function is invertible, its inverse is unique.

Proof.

let $f: X \to Y$

let $g, h: Y \rightarrow X$ such that:

 $g \circ f = 1_X \wedge f \circ g = 1_Y$

 $h \circ f = 1_X \wedge f \circ h = 1_Y$

 $h = h \circ 1_Y = h \circ (f \circ g) = (h \circ f) \circ g = 1_X \circ g = g$

Invertible Function

Theorem

A function is invertible if and only if it is one-to-one and onto.

Invertible Function

If invertible then one-to-one.

 $f: A \rightarrow B$

 $f(a_1) = f(a_2)$

 $\Rightarrow f^{-1}(f(a_1)) = f^{-1}(f(a_2))$ $\Rightarrow (f^{-1} \circ f)(a_1) = (f^{-1} \circ f)(a_2)$

 $\Rightarrow 1_A(a_1) = 1_A(a_2)$

 $\Rightarrow a_1 = a_2$

If invertible then onto.

 $f:A\to B$

Ь $= 1_B(b)$

 $= (f \circ f^{-1})(b)$

 $= f(f^{-1}(b))$

Invertible Function

If bijective then invertible.

 $f:A\to B$

▶ f is onto $\Rightarrow \forall b \in B \exists a \in A \ f(a) = b$

▶ let $g: B \rightarrow A$ be defined by a = g(b)

▶ is it possible that $g(b) = a_1 \neq a_2 = g(b)$?

▶ this would mean: $f(a_1) = b = f(a_2)$

▶ but *f* is one-to-one

64 / 79

Pigeonhole Principle

Definition

Pigeonhole Principle (Dirichlet drawers):

If m pigeons go into n holes and m > n,

then at least one hole contains more than one pigeon.

▶ let $f: X \to Y$

if |X| > |Y| then f cannot be one-to-one

 $\exists x_1, x_2 \in X \ [x_1 \neq x_2 \land f(x_1) = f(x_2)]$

Pigeonhole Principle Examples

Example

- ▶ Among 367 people, at least two have the same birthday.
- ▶ In an exam where the grades integers between 0 and 100, how many students have to take the exam to make sure that at least two students will have the same grade?

Generalized Pigeonhole Principle

Definition

Generalized Pigeonhole Principle:

If m objects are distributed to n drawers, then at least one of the drawers contains $\lceil m/n \rceil$ objects.

Among 100 people, at least 9 ($\lceil 100/12 \rceil$) were born in the same month.

Pigeonhole Principle Example

Theorem

In any subset of cardinality 6 of the set $S = \{1, 2, 3, \dots, 9\}$, there are two elements which total 10.

Pigeonhole Principle Example

Theorem

Let S be a set of positive integers smaller than or equal to 14, with cardinality 6. The sums of the elements in all nonempty subsets of S cannot be all different.

Proof Trial

 $A \subseteq S$

 s_A : sum of the elements of A

▶ holes:

$$1 \leq s_A \leq 9 + \cdots + 14 = 69$$

▶ pigeons: $2^6 - 1 = 63$

Proof.

look at the subsets for which $|A| \le 5$

▶ holes:

 $1 \leq s_A \leq 10 + \cdots + 14 = 60$

▶ pigeons: $2^6 - 2 = 62$

Pigeonhole Principle Example

Theorem

There is at least one pair of elements among 101 elements chosen from set $S = \{1, 2, 3, \dots, 200\}$, so that one of the elements of the pair divides the other.

Proof Method

- ▶ we first show that $\forall n \exists ! p \ [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} \ [p = 2t + 1]]$
- ▶ then, by using this theorem we prove the main theorem

Pigeonhole Principle Example

Theorem

 $\forall n \exists ! p [n = 2^r p \land r \in \mathbb{N} \land \exists t \in \mathbb{Z} [p = 2t + 1]]$

Proof of existence.

n = 1: r = 0, p = 1 $n \le k$: assume $n = 2^r p$

n = k + 1: n = 2:

r = 1, p = 1*n prime* (n > 2): r = 0, p = n

 \neg (n prime): $n = n_1 n_2$ $n = 2^{r_1} p_1 \cdot 2^{r_2} p_2$ $n = 2^{r_1 + r_2} \cdot p_1 p_2$

Proof of uniqueness.

if not unique:

П

$$\begin{array}{rcl} n & = & 2^{r_1}p_1 & = & 2^{r_2}p_2 \\ & \Rightarrow & 2^{r_1-r_2}p_1 & = & p_2 \\ & \Rightarrow & 2|p_2 \end{array}$$

Pigeonhole Principle Example

Theorem

There is at least one pair of elements among 101 elements *chosen from set* $S = \{1, 2, 3, \dots, 200\}$ so that one of the elements of the pair divides the other.

Proof.

► $T = \{t \mid t \in S, \exists i \in \mathbb{Z} [t = 2i + 1]\}, |T| = 100$

▶ $f: S \to T$, $r \in \mathbb{N}$ olsun $s = 2^r t \rightarrow f(s) = t$

> ▶ if 101 elements are chosen from S, at least two of them will have the same image in T: $f(s_1) = f(s_2) \Rightarrow 2^{m_1}t = 2^{m_2}t$

$$\frac{s_1}{s_2} = \frac{2^{m_1}t}{2^{m_2}t} = 2^{m_1 - m_2}$$

Recursive Functions

Definition

recursive function: a function defined in terms of itself

$$f(n) = h(f(m))$$

▶ inductively defined function: a recursive function where the size is reduced at every step

$$f(n) = \begin{cases} k & n = 0 \\ h(f(n-1)) & n > 0 \end{cases}$$

Recursion Examples

Example
$$f91(n) = \begin{cases} n-10 & n > 100 \\ f91(f91(n+11)) & n \le 100 \end{cases}$$

Example (factorial)
$$f(n) = \begin{cases} 1 & n = 0 \\ n \cdot f(n-1) & n > 0 \end{cases}$$

Euclid Algorithm

Example (greatest common divisor)

$$gcd(a,b) = \begin{cases} b & b \mid a \\ gcd(b, a \mod b) & b \nmid a \end{cases}$$

$$gcd(333,84) = gcd(84,333 \mod 84)$$

= $gcd(84,81)$
= $gcd(81,84 \mod 81)$
= $gcd(81,3)$

= 3

Fibonacci Series

Fibonacci series
$$F_n = fib(n) = \begin{cases} 1 & n = 1\\ 1 & n = 2\\ fib(n-1) + fib(n-2) & n > 2 \end{cases}$$

 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 ... 1 1 2 3 5 8 13 21 ...

Fibonacci Series

Theorem

$$\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$$

n = 2:

$$\sum_{i=1}^{2} F_i^2 = F_1^2 + F_2^2 = 1 + 1 = 1 \cdot 2 = F_2 \cdot F_3$$

$$n = k$$
: $\sum_{i=1}^{k} F_i^2 = F_k \cdot F_{k+1}$

$$n = k + 1: \sum_{i=1}^{k+1} F_i^2 = \sum_{i=1}^{k} F_i^2 + F_{k+1}^2$$
$$= F_k \cdot F_{k+1} + F_{k+1}^2$$

$$= F_{k+1} \cdot (F_k + F_{k+1})$$

$$= F_{k+1} \cdot F_{k+2}$$

Ackermann Function

Ackermann function
$$ack(x,y) = \begin{cases} y+1 & x=0\\ ack(x-1,1) & y=0\\ ack(x-1,ack(x,y-1)) & x>0 \land y>0 \end{cases}$$

References

Required Reading: Grimaldi

- ► Chapter 5: Relations and Functions

 - 5.2. Functions: Plain and One-to-One
 5.3. Onto Functions: Stirling Numbers of the Second Kind
 5.5. The Pigeonhole Principle

 - ► 5.6. Function Composition and Inverse Functions

Supplementary Reading: O'Donnell, Hall, Page

► Chapter 11: Functions