# Séries numériques

#suites

#### **⊞ Graph Séries numériques**



# Séries à termes réels ou complexes

#### **Définition**

- Série de terme général  $u_n$  :  $(\sum u_n)$
- Somme partielle d'ordre n de la série :  $S_n = \sum_{k=0}^n u_k$

# Repasser de $S_n$ à $u_n$

$$egin{cases} u_0 = S_0 \ orall n \in \mathbb{N}, S_n - S_{n-1} = u_n \end{cases}$$

## Convergence

•  $(\sum u_n)$  convergente si  $(S_n)$  converge.

$$ullet \ orall z \in \mathbb{C} \quad \left(\sum rac{z^n}{n!}
ight) ext{ converge et : } e^z = \sum_{n=0}^{+\infty} rac{z^n}{n!}$$

#### Somme de la série

$$l = \lim_{n o +\infty} S_n = \lim_{n o +\infty} \sum_{k=0}^n u_k = \sum_{k=0}^{+\infty} u_k$$

## **Propriétés**

- $\forall \lambda$ ,  $(\sum u_n)$  et  $(\sum \lambda u_n)$  sont de la même nature (convergent ou divergent).
- Si convergentes :

$$ullet \sum_{n=0}^{+\infty} \lambda u_n = \lambda \sum_{n=0}^{+\infty} u_n$$

$$ullet \sum_{n=0}^{+\infty}u_n+v_n=\sum_{n=0}^{+\infty}u_n+\sum_{n=0}^{+\infty}v_n$$

- ullet Si  $(\sum u_n)$  converge alors  $\lim_{n o +\infty}u_n=0$  (réciproque fausse)
- Si  $\lim_{n \to +\infty} u_n 
  eq 0$  alors  $(\sum u_n)$  est grossièrement divergente.
- $(u_n)$  converge  $\Leftrightarrow \sum (u_{n+1} u_n)$  converge.

#### Théorème des séries alternes

Soit  $(u_n)$  une suite réelle, décroissante, convergente vers 0.

• Alors la série  $\sum (-1)^n u_n$  converge.

# Séries à termes positifs $(\forall n \in \mathbb{N}, u_n \geq 0)$

• Soit  $(\sum u_n)$  une série à termes positifs, il converge  $\Leftrightarrow (S_n)$  est majorée.

### Théorème de comparaison des séries à terme positifs

• Si  $u_n \sim v_n$ , les deux positives : la convergence de  $(\sum v_n)$  est de même nature que la de  $(\sum u_n)$ .

• Si a partir d'un rang  $n_0$   $u_n \leq v_n$  et si  $(\sum v_n)$  converge alors  $(\sum u_n)$  converge.

• Si  $u_n = O(v_n)$  ou  $u_n = o(v_n)$  et si  $\sum v_n$  converge, alors  $\sum u_n$  converge.

## Comparaison série-intégral

Soit f continue, positive et décroissante :

$$ullet \int_{n_0}^{n+1} f(t) dt \leq \sum_{k=n_0}^n f(k) \leq f(n_0) + \int_{n_0}^n f(t) dt$$

• Majoration pour convergence :



• Minoration pour divergence :



#### Série de Riemann

$$\left(\sum rac{1}{n^{lpha}}
ight)$$
 converge  $\Leftrightarrow lpha > 1$ 

# Séries absolument convergentes

 $(\sum u_n)$  est absolument convergente (est donc convergente) si  $(\sum |u_n|)$  converge.

- $(\sum |u_n|)$  est une série a terme positive.
- Si  $(\sum u_n)$  est une série absolument convergente alors  $\left|\sum_{n=0}^{+\infty}u_n\right|\leq \sum_{n=0}^{+\infty}|u_n|$

## Théorème de comparaison

- Si  $u_n = O(v_n)$  alors la converge absolue de  $\sum v_n$  implique celle de  $\sum u_n$ .
- Si a partir d'un rang  $n_0 \ |u_n| \le |v_n|$  et si  $(\sum v_n)$  converge absolument alors  $(\sum u_n)$  converge absolument.
- Si  $u_n \sim v_n$  la convergence absolue de  $(\sum v_n)$  implique celle de  $(\sum u_n)$ .

## Règle de d'Alembert

Soit  $(u_n)_{n\in\mathbb{N}}$  une suite réelle ou complexe qui ne s'annule pas. On suppose que la suite  $\left|\dfrac{u_{n+1}}{u_n}\right|$  tend vers  $l\in\mathbb{R}\cup+\infty$ 

- Si l < 1 alors  $\sum u_n$  converge absolument.
- Si l>1 alors  $\sum u_n$  diverge grossièrement.

# Produit de Cauchy de deux séries absolument convergentes

#### **Produit de Cauchy**

Le produit de Cauchy des séries  $\sum u_n$  et  $\sum v_n$  est la série  $\sum w_n$  où  $orall n \in \mathbb{N}$ 

$$ullet w_n = \sum_{n \geq 2} u_p v_p = \sum_{k=0}^n u_k v_{n-k}$$

#### **Théorème**

Si les séries à termes réels ou complexes  $\sum u_n$  et  $\sum v_n$  convergent absolument, alors la série produit de Cauchy  $\sum w_n$  converge absolument et :

$$ullet \sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n
ight) \left(\sum_{n=0}^{+\infty} v_n
ight)$$