

Rigidity

The triangular footprint is fixed in place.

How many different triangles are there?

This group is sometimes called a "rotation, reflection group" (for obvious reasons)

note the concept of an element and an operation are "blurred"

Make and fill in a table

A flip D = B

D flip C = B

•	I	A	В	С	D	Е
I						
A					\boldsymbol{B}	
В						
A B C						
D						
\boldsymbol{E}						

https://nichodon.github.io/gatm/textbook/chapters/snap_flip.pdf

Go to your breakout groups and work on Chap 3 From Snaps to Flips. Note all the new vocabulary, bolded in the text.

Regroup on next day. 30 min too short!

•	I	A	В	С	D	E
		A				
A	A	I	D	E	\boldsymbol{B}	C
		\boldsymbol{E}				
C	C	D	\boldsymbol{E}	I	\boldsymbol{A}	\boldsymbol{B}
D	D	C	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{E}	I
E	E	В	C	A	I	D

Agree or disagree:

The **snap group** and the **flip group** are the "same". Why does your answer make sense? What's the connection between posts and triangles?

Could we have changed names to make the charts exact?

Yup. If you switched D and E on the flips, and rearranged the rows and columns, you'd have the snaps. Or. do the transpose. which changes the order convention.

Mr. Herreshoff provides a definition for **isomorphic** in the book. Take a moment to reread it.

What were some of your translations?

My attempt: Two groups are isomorphic if their charts could be made identical simply by changing the names of two or more elements.

Or: Every element in one, has a partner in the other that plays the same "role".