Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

a) Proteiner

Hva kalles rekkefølgen til aminosyrene i et protein?

- A. primærstruktur
- B. sekundærstruktur
- C. tertiærstruktur
- D. kvartærstruktur

b) Bufferløsninger

En bufferløsning har pH = 7,0. Hvilket syre-base-par er bufferen mest sannsynlig laget av?

- A. NH_4^+/NH_3
- B. HCO_3^-/CO_3^{2-}
- C. $H_2PO_4^-/HPO_4^{2-}$
- D. CH₃COOH/CH₃COO-

c) Reaksjoner

Figur 1 viser hva som skjer når kobber legges ned i en løsning av sølvnitrat.

Hva slags reaksjon er dette et eksempel på?

- A. rustdannelse
- B. redoksreaksjon
- C. fellingsreaksjon
- D. omkrystallisering

Figur 1

d) Analyse

En vannløsning av et hvitt salt er sur.

Vannløsningen inneholder et av saltene nedenfor. Hvilket av disse saltene må det være?

- A. $Ca(OH)_2$
- B. KNO₃
- C. MgCl₂
- D. NH₄Cl

e) Buffer

En eddiksyre-acetatbuffer har pH = pK_a = 4,7. Konsentrasjonen av bufferkomponentene er i utgangspunktet 1 mol/L, men bufferen blir fortynnet 10 ganger.

Nedenfor er det tre påstander om bufferen etter fortynningen.

- i) Konsentrasjonen av H_3O^+ blir 1/10 av opprinnelig konsentrasjon.
- ii) Bufferkapasiteten avtar.
- iii) pH i løsningen øker med 1.

Hvilke(n) av påstandene (én eller flere) er riktig(e)?

- A. bare i)
- B. bare ii)
- C. både i) og ii)
- D. både ii) og iii)

f) Analyse

For å bestemme innholdet av kloridioner i en løsning kan man titrere den med en løsning av AgNO₃ med kjent konsentrasjon. Indikatoren i denne titreringen er kromationer, CrO₄²⁻, som felles med sølvioner ved endepunktet for titreringen.

Hvilke av disse stoffene finnes i titreringskolben ved halvtitreringspunktet? Se bort fra ioner som ikke deltar i reaksjonen.

- A. CrO_4^{2-} , Ag⁺ og Cl⁻
- B. Ag₂CrO₄ og AgCl
- C. AgCl, CrO₄²⁻ og Cl⁻
- D. Ag+ og Cl-

g) Stereoisomeri

Figur 2 viser lipidet gonan.

Gonan har seks kirale sentre. Fire av de kirale sentrene i molekylet er markert på figuren med en rød sirkel. Hvilke to av de andre karbonatomene, merket a, b, c og d, er kirale?

- A. a og b
- B. bogc
- C. cog d
- D. doga

Figur 2

h) Organisk syntese

2 mol metanol, CH₃OH, danner 0,80 mol dimetyleter, CH₃OCH₃, i en kondensasjonsreaksjon.

Hva er utbyttet i denne reaksjonen i prosent av teoretisk mulig utbytte?

- A. 12,5 %
- B. 25 %
- C. 40 %
- D. 80 %

i) Biokjemiske reaksjoner

Nedenfor er det fire påstander om enzymer som finnes i kroppen vår.

- i) Enzymer senker aktiveringsenergien i biokjemiske reaksjoner.
- ii) Enzymer påvirker likevekten i biokjemiske reaksjoner.
- iii) Enzymaktiviteten er alltid minimal ved pH = 7,2.
- iv) Enzymaktiviteten er svært liten ved temperaturer over 60 °C.

Hvilke av disse påstandene er riktige?

- A. i) og ii)
- B. ii) og iii)
- C. i) og iv)
- D. iii) og iv)

j) Analyse

Brom består av to isotoper med omtrent samme relative forekomst. Massen til de to isotopene er 79 u og 81 u.

Hvilket av alternativene i figur 3 viser hvordan Br₂+ vil se ut i et massespekter?

Figur 3

- A. alternativ A
- B. alternativ B
- C. alternativ C
- D. alternativ D

k) Enzymer

Figur 4 viser en enzymkatalysert reaksjon.

Figur 4

Hvilken type enzym kan katalysere denne reaksjonen?

- A. oksidase
- B. hydrolase
- C. fosforylase
- D. dekarboksylase

I) Kromatografi

Vi har fire blandinger av stoffer (se tabell 1).

Tabell 1: Kromatografiblandinger

J	
Blanding	Innhold
1	Stoffene A og B
2	Stoffene A og C
3	Stoffene C og D
4	Ukjent

Kromatogrammet i figur 5 viser de fire ulike blandingene hver for seg.

Figur 5

Hvilke to stoffer inneholder blanding 4?

- A. A og C
- B. Bog C
- C. Bog D
- D. Dette kan vi ikke vite ut fra figuren.

m) Organisk analyse

En alkohol med kjemisk formel $C_7H_{15}OH$ blir oksidert. 1H -NMR spekteret til oksidasjonsproduktet har 3 signaler ved ppm lik 0,92, 1,59 og 2,36.

Hvilken av alkoholene i figur 6 ble oksidert?

Figur 6

- A. heptan-1-ol
- B. heptan-2-ol
- C. heptan-3-ol
- D. heptan-4-ol

n) Reaksjonsmekanisme

Eten kan addere brom. Figur 7 viser første trinn i denne reaksjonen.

Figur 7

Hvilket av forslagene i figur 8 viser resultatet av det første trinnet i denne reaksjonen?

- A. forslag 1
- B. forslag 2
- C. forslag 3
- D. forslag 4

o) Elektrolyse

Ved elektrolyse av en løsning av natriumsulfat, Na₂SO₄, blir det dannet oksygengass og hydrogengass.

Hva er den minste teoretiske spenningen som må til for at reaksjonen skal finne sted?

- A. +0,20 V
- B. +0,83 V
- C. +1,23 V
- D. +2,06 V

p) Biokjemiske reaksjoner

Figur 9 viser omdanning av dihydrobiopterin til tetrahydrobiopterin.

Figur 9

Nedenfor er det to påstander om denne reaksjonen.

- i) Enzym X er en reduktase.
- ii) Kofaktor Y er NAD+ og kofaktor Z er NADH + H+.

Er noen av påstandene riktige?

- A. Nei, begge er feil.
- B. Ja, men bare i).
- C. Ja, men bare ii).
- D. Ja, begge er riktige.

q) Redoksreaksjoner.

Punktene nedenfor beskriver fire av trinnene i framstillingen av sink fra sinkblende, ZnS:

- i) Sinkblende reagerer med oksygen i luft under kraftig oppvarming. Da blir det dannet sinkoksid og svoveldioksid.
- ii) Svoveldioksid reagerer med oksygen i luft og gir svoveltrioksid.
- iii) Svoveltrioksid reagerer med vann og gir svovelsyre.
- iv) Fortynnet svovelsyreløsning reagerer med sinkoksid og gir en løsning av sinksulfat.

Hvilke (en eller flere) av de fire reaksjonene er redoksreaksjoner?

- A. bare ii)
- B. i) og ii)
- C. ii) og iii)
- D. i), iii) og iv)

r) Oksidasjonstall

Hvilket alternativ inneholder stoffer der hydrogen har tre ulike oksidasjonstall?

- A. NaOH, H₂ og NH₃
- B. NaOH, H_2O og H_2
- C. H_2O , NaH og NH_3
- D. NaOH, H₂ og NaH

s) Elektrolyse

Ved elektrolyse av en vannløsning av kaliumjodid, KI, blir det dannet jod ved en av elektrodene.

Nedenfor ser du to påstander om denne elektrolysen.

- i) Jodid blir redusert.
- ii) Det blir dannet jod ved katoden.

Er noen av påstandene riktige?

- A. Nei, begge er feil.
- B. Ja, men bare i).
- C. Ja, men bare ii).
- D. Ja, begge er riktige.

t) Polymerer

Figur 10 viser et utsnitt av en polymer. Polymeren er en kondensasjonspolymer.

Hva er monomeren til denne polymeren?

- A. 2-hydroksy-propansyre
- B. 3-hydroksy-propansyre
- C. hydroksy-etansyre
- D. propan-1,2-diol

Oppgave 2

a) Figur 11 viser en syntese av 2,2-dimetylpropansyre. 2,2-dimetylpropansyre er forbindelse C i figur 11.

- Hva slags reaksjon er **reaksjon 1**?
 - Hva slags reaksjon er **reaksjon 2**? Du behøver ikke begrunne svarene i 2a1).
- Foreslå hva en kan bruke som **reagens 1 i reaksjon 1**.
 - Foreslå hva en kan bruke som **reagens 2 i reaksjon 2.** Begrunn svarene.
- 3) Figur 12 viser ¹H-NMR-spekterene til forbindelsene **B** og **C**. Forklar de ulike signalene (toppene) i de to spektrene.

Figur 12

b) En løsning som inneholder natriumnitritt, NaNO₂, blir analysert ved å titrere med kaliumpermanganat i sur løsning.

Den ubalanserte reaksjonslikningen for det som skjer under titreringen er:

$$MnO_4^- + H^+ + NO_2^- \rightarrow Mn^{2+} + NO_3^- + H_2O$$

- 1) Bruk oksidasjonstall til å balansere reaksjonslikningen.
- 2) Hvordan ser man endepunktet for denne titreringen?
- 3) Ved endepunktet for titreringen var det tilsatt 20,0 mL 0,0200 mol/L permanganat. Beregn hvor mange mol natriumnitritt det er i løsningen.
- c) Sitronsyre er en treprotisk syre, som blir mye brukt i bufferløsninger. De tre protolysetrinnene for sitronsyre er:

$$C_6H_8O_7(aq) + H_2O(I) \rightleftharpoons C_6H_7O_7^-(aq) + H_3O^+(aq)$$
 $pK_a=3,1$

$$C_6H_7O_7^-(aq) + H_2O(I) \rightleftharpoons C_6H_6O_7^{2-}(aq) + H_3O^+(aq)$$
 $pK_a=4.8$

$$C_6H_6O_7^{2-}(aq) + H_2O(I) \rightleftharpoons C_6H_5O_7^{3-}(aq) + H_3O^+(aq)$$
 $pK_a=6,4$

- Forklar hvorfor en løsning av sitronsyre ($C_6H_8O_7$) og natriumdihydrogensitrat ($NaC_6H_7O_7$) kan være en buffer.
- 2) Til én liter 0,1 mol/L saltsyreløsning, HCl, tilsettes 0,2 mol fast NaOH. Forklar om pH i løsningen etter denne tilsetningen vil være svært sur, litt sur, omtrent nøytral, litt basisk eller svært basisk.
- 3) Til én liter 0,1 mol/L sitronsyreløsning tilsettes 0,25 mol fast NaOH. Løsningen blir en buffer etter denne tilsetningen. Finn pH i denne bufferen.

Del 2

Oppgave 3

Kadmium er et tungmetall. Til tross for at kadmium er svært giftig, blir kadmium brukt i begrenset omfang i maling og i oppladbare batterier.

Mange berømte kunstnere som Edvard Munch og Vincent van Gogh brukte kadmiumfarger i maleriene sine. Figur 13 viser et utsnitt fra et maleri der kadmiumfarger er benyttet. I dag er kadmiumfarger forbudt blant annet i plastleker og husmaling, men tillatt i oljebasert kunstnermaling.

Gule, oransje og røde kadmiumfarger inneholder varierende mengder Figur 13 kadmiumsulfid, CdS, og kadmiumselenid, CdSe.

a) Den kjemiske formelen til hydrogenselenid er H₂Se. Bruk denne informasjonen til å finne oksidasjonstallet til kadmium i kadmiumselenid, CdSe.

Kadmium blir brukt i oppladbare batterier. Halvreaksjonene i disse batteriene skrives slik som reduksjoner:

$$NiO(OH)(s) + H_2O(I) + e^- \rightarrow Ni(OH)_2(s) + OH^-(aq)$$
 $E^0 = +0.49V$

$$Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OH^-(aq)$$
 $E^0 = -0.86V$

- b) Hvilken reaksjon skjer ved den negative polen i dette batteriet når det leverer strøm?
- c) Elektrolytten i batteriet er KOH. Forklar hva som skjer med konsentrasjonen av elektrolytten når batteriet leverer strøm. Bruk en balansert reaksjonslikning i forklaringen.
- d) Et nikkel-kadmium-batteri har kapasitet 1,2 Ah. Bruk denne opplysningen til å beregne hvor mange gram kadmium det er i batteriet.

Tabell 2: Noen opplysninger om kadmium og et utvalg kadmiumforbindelser.

Kadmiumforbindelse	Opplysninger; faresymboler
Cd	Akutt giftig Kronisk helsefare Miljøfare
	A
CdS	Kronisk helsefare Helsefare
	Nionisk neiseigle neiseigle
	Uløselig i vann
CdO	Vannløselig; de samme faresymbolene som Cd
CdSe	Uløselig i vann; de samme faresymbolene som Cd

- e) Ta utgangspunkt i opplysningene i tabell 2. Diskuter bruk og deponering av oljebaserte kunstnerfarger som inneholder CdS og CdSe. I svaret ditt skal du:
 - Gi to argumenter som begrunner hvorfor det kan være problematisk å benytte disse fargene.
 - Gi to argumenter som begrunner hvorfor disse fargene likevel er tillatt.

Oppgave 4

Sitronsyre er en organisk syre, og finnes blant annet i sitrusfrukter. Det er en svak syre, og den blir mye brukt i mat.

- a) Har sitronsyremolekylet kirale sentre? Begrunn svaret.
- b) Forklar hvilke påvisningsreaksjoner du kan gjøre på skolelaboratoriet for å skille mellom sitronsyre, aktinsyre og isositronsyre (se figur 14).

Sitronsyresyklusen er den delen av celleåndingen som foregår i mitokondriene.

c) I sitronsyresyklusen blir sitronsyre omdannet til aktinsyre og videre til isositronsyre. Gjør rede for hva slags reaksjoner dette er.

I sitronsyresyklusen blir isositronsyre omdannet til α -ketoglutarsyre (se figur 15). Reaksjonen er katalysert av enzymet isositratdehydrogenase. I reaksjonen deltar også koenzymene NAD+/NADH + H+.

d) Skriv en balansert reaksjonslikning der opplysningene over kommer fram.

α-keto-glutarsyre

Figur 15

e) Figur 16 viser et utsnitt av en biologisk nedbrytbar polymer. Polymeren består av to monomerer der den ene er sitronsyre.

Utsnitt av polymer med sitronsyre

Figur 16

- Oppgi hvilken type binding det er mellom monomerene.
- Tegn strukturformelen til den andre monomeren.
- Tegn et utsnitt av polymeren som viser bindingen mellom de to monomerene.

Oppgave 5

En gruppe elever gjennomførte en syntese av sykloheksen fra sykloheksanol slik reaksjonslikningen viser (se figur 17).

Figur 17

a) Elevene valgte å tilsette svovelsyre i denne syntesen. Forklar hvilke funksjoner svovelsyre har i en slik syntese.

Elevene renset produktet ved destillasjon. Etter destillasjonen ble det tatt GC-MS av produktet. Gasskromatogrammet er vist i figur 18. Sykloheksen ga en topp etter cirka 2 minutter.

b) Bruk gasskromatogrammet i figur 18 og vurder om elevene klarte å rense produktet sitt.

Figur 18

c) Massespektrene til de to toppene fra gasskromatogrammet er vist i figur 19 og 20. Bruk toppene til **molekylionene** til å finne ut hvilken forbindelse som gir hvert av de to spektrene, spekter A og spekter B. Mulige forbindelser er sykloheksanol, sykloheksen, svovelsyre og vann.

Figur 19

Figur 20

- d) Elevene startet syntesen med 20,0 gram sykloheksanol. Produktet etter destillasjon veide 9,0 gram. Gasskromatogrammet viste at produktet etter destillasjonen besto av 93 % (masseprosent) sykloheksen. Beregn elevenes utbytte av sykloheksen.
- e) Sykloheksen kan oksideres med KMnO₄ i sur løsning. Produktet som blir dannet, har molar masse 146,14 g/mol.

Figur 21 viser ¹H-NMR til produktet. Tallene over signalene viser antall protoner som tilskrives signalet. Bruk spekteret til å finne strukturformelen til produktet.

Figur 21

Tabeller og formler i REA3012 Kjemi 2 (versjon 15.01.2015)

Dette vedlegget kan brukast under både del 1 og del 2 av eksamen. Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C

Halvreaksjon						
oksidert form	+ ne ⁻	→	redusert form	<i>E</i> ° mål i V		
F ₂	+ 2e ⁻	→	2F ⁻	2,87		
O ₃ (g) + 2H ⁺	+ 2e ⁻	→	O ₂ (g) +H ₂ O	2,08		
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H₂O	1,78		
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72		
$PbO_2 + SO_4^{2-} + 4H^+$	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69		
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68		
2HClO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,63		
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51		
Au ³⁺	+ 3e ⁻	→	Au	1,40		
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36		
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36		
O ₂ + 4H ⁺	+ 4e ⁻	→	2H₂O	1,23		
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22		
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20		
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09		
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96		
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92		
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86		
Hg ²⁺	+ 2e ⁻	→	Hg	0,85		
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84		
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80		
Ag ⁺	+ e ⁻	→	Ag	0,80		
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77		
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70		
l ₂	+ 2e ⁻	→	21-	0,54		
Cu⁺	+ e ⁻	→	Cu	0,52		
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40		
Cu ²⁺	+ 2e ⁻	→	Cu	0,34		
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34		
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17		
Cu ²⁺	+ e ⁻	→	Cu ⁺	0,16		

oksidert form	+ ne ⁻	→	redusert form	E⁰ mål i V
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15
S + 2H ⁺	+ 2e ⁻	→	H ₂ S	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H₂O	+ 2e ⁻	→	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH-	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	K	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	³⁵ Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	Ka	p <i>K</i> a
Acetylsalisylsyre	C ₉ H ₈ O ₄	3,3 · 10 ⁻⁴	3,5
Ammonium	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,3
Askorbinsyre	C ₆ H ₈ O ₆	7,9 · 10 ⁻⁵	4,0
Hydrogenaskorbat	C ₆ H ₇ O ₆ ⁻	1,6 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,4 · 10 ⁻⁵	4,2
Benzylsyre, (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	5,2 · 10 ⁻⁵	4,3
Borsyre	B(OH)₃	5,8 · 10 ⁻¹⁰	9,3
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,8
Eplesyre, malinsyre	C ₄ H ₆ O ₅	4,0 · 10-4	3,4
Hydrogenmalat	C ₄ H ₅ O ₅ ⁻	7,9 · 10 ⁻⁶	5,1
Etansyre (Eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,7
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	10,0
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,2
Dihydrogenfosfat	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,2
Hydrogenfosfat	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,3
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfitt	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,7
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,3 · 10 ⁻³	2,9
Hydrogenftalat	C ₆ H ₄ (COOH)COO ⁻	4,0 · 10 ⁻⁶	5,4
Hydrogensulfid	H ₂ S	7,9 · 10 ⁻⁸	7,1
Hydrogensulfidion	HS ⁻	1,0 · 10 ⁻¹⁹	19
Hydrogensulfat	HSO ₄ ⁻	1,0 · 10 ⁻²	2,0
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,2
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,2
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,6
Karbonsyre	H ₂ CO ₃	4,0 · 10 ⁻⁷	6,4
Hydrogenkarbonat	HCO ₃ ⁻	4,7 · 10 ⁻¹¹	10,3
Klorsyrling	HClO ₂	1,3 · 10 ⁻²	1,9
Kromsyre	H ₂ CrO ₄	2,0 · 10 ⁻¹	0,7
Hydrogenkromat	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,5
Maleinsyre, <i>cis</i> -butendisyre	C ₄ H ₄ O ₄	1,2·10 ⁻²	1,9
Hydrogenmaleat	C ₄ H ₃ O ₄ ⁻	5,9 · 10 ⁻⁷	6,2
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,9
Metansyre (maursyre)	HCHO ₂	1,5 · 10-4	3,8
Oksalsyre	H ₂ C ₂ O ₄	5,6 · 10 ⁻²	1,3
Hydrogenoksalat	HC ₂ O ₄ ⁻	1,5 · 10 ⁻⁴	3,8
Propansyre	HC ₃ H ₅ O ₂	1,3 · 10 ⁻⁵	4,9
Salisylsyre	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	3,0
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,3
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,9
Hydrogensulfitt	HSO ₃ ⁻	6,3 · 10 ⁻⁸	7,2
Sitronsyre	H ₃ C ₆ H ₅ O ₇	7,4 · 10 ⁻⁴	3,1
Dihydrogensitrat	H ₂ C ₆ H ₅ O ₇ ⁻	1,7 · 10 ⁻⁵	4,8
Hydrogensitrat	HC ₆ H ₅ O ₇ ²⁻	$4,1 \cdot 10^{-7}$	6,4
Vinsyre (2,3-dihydroksybutandisyre, tartarsyre)	(CH(OH)COOH) ₂	6,8 · 10 ⁻⁴	3,2
Hydrogentartrat	HOOC(CH(OH)) ₂ COO ⁻	1,2 · 10 ⁻⁵	4,9
Hypoklorsyre (underklorsyrling)	HOCI	4,0 · 10 ⁻⁸	7,4
Urea	CH ₄ N ₂ O	0,8 · 10 ⁻¹	0,1

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	K _b	р <i>К</i> ь
Acetat	CH₃COO ⁻	5,0 · 10 ⁻¹⁰	9,3
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,7
Metylamin	CH ₃ NH ₂	5,0 · 10 ⁻⁴	3,3
Dimetylamin	(CH₃)₂NH	5,0 · 10 ⁻⁴	3,3
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,2
Etylamin	CH ₃ CH ₂ NH ₂	4,6 · 10 ⁻⁴	3,4
Dietylamin	(C₂H₅)₂NH	6,3 · 10 ⁻⁴	3,2
Trietylamin	(C₂H₅)₃N	5,0 · 10 ⁻⁴	3,3
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,9 · 10 ⁻¹⁰	9,1
Pyridin	C₅H₅N	1,6 · 10 ⁻⁹	8,8
Hydrogenkarbonat	HCO ₃ ⁻	2,0 · 10 ⁻⁸	7,7
Karbonat	CO ₃ ²⁻	2,0 · 10 ⁻⁴	3,7

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH-omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH ₃ COO⁻	jodat	1O ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	CIO ₃ -
arsenitt	AsO ₃ ³ -	kloritt	CIO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃ -
bromat	BrO ₃ -	nitritt	NO ₂ -
fosfat	PO ₄ ³⁻	perklorat	CIO ₄ -
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ² -
hypokloritt	CIO-	sulfitt	SO ₃ ²⁻

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $\frac{g}{mL}$	Konsentrasjon $\frac{\text{mol}}{\text{L}}$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H₂O	100	1,00	55,56

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	CI ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	l ⁻	O ²⁻	OH⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	C	U	U	U	U	-	U	Т
Al ³⁺	R	R	-	-	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	Т	U
Ca ²⁺	L	L	U	T	L	T	U	T	Т
Cu ²⁺	L	L	-	U	-	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	-	U	-	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	-	U	-	U
Hg ²⁺	T	L	-	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	Т	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	-	R	U	U	U	R
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

- = Ukjent forbindelse, eller forbindelse dannes ikke ved utfelling, R = reagerer med vann.

LØSELIGHETSPRODUKT, K_{sp} , FOR SALT I VANN VED 25 $^{\circ}$ C

Navn	Kjemisk formel	<i>K</i> _{sp}	Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kvikksølv (I) bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv (I) jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹	Kvikksølv (I) karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv (I) klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv (II) bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv (II) jodid	Hgl ₂	2,9 · 10 ⁻²⁹
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Bly (II) bromid	PbBr ₂	6,60 · 10 ⁻⁶	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴
Bly (II) hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Bly (II) jodid	PbI ₂	9,80 · 10 ⁻⁹	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Bly (II) karbonat	PbCO ₃	7,40 · 10 ⁻¹⁴	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Bly (II) klorid	PbCl ₂	1,70 · 10 ⁻⁵	Mangan(II) karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Bly (II) oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II) oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷
Bly (II) sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Nikkel(II) fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²
Bly (II) sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II) hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Jern (II) fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II) karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Jern (II) hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II) sulfid	NiS	2 · 10 ⁻¹⁹
Jern (II) karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Jern (II) sulfid	FeS	8 · 10 ⁻¹⁹	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Jern (III) fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinksulfid	ZnS	2 · 10 ⁻²⁴
Jern (III) hydroksid	Fe(OH)₃	2,79 · 10 ⁻³⁹	Sølv (I) acetat	AgCH₃COO	1,94 · 10 ⁻³
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv (I) bromid	AgBr	5,35 · 10 ⁻¹³
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv (I) jodid	AgI	8,52 · 10 ⁻¹⁷
Kalsiumhydroksid	Ca(OH)₂	5,02 · 10 ⁻⁶	Sølv (I) karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Kalsiumkarbonat	CaCO₃	3,36 · 10 ⁻⁹	Sølv (I) klorid	AgCl	1,77 · 10 ⁻¹⁰
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv (I) kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv (I) sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹
Kobolt(II) hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Tinn(II) hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷
Kopper(I) bromid	CuBr	6,27 · 10 ⁻⁹			
Kopper(I) klorid	CuCl	1,72 · 10 ⁻⁷			
Kopper(I) oksid	Cu₂O	2 · 10 ⁻¹⁵			
Kopper(I) jodid	Cul	1,27 · 10 ⁻¹²			
Kopper(II) fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷			
Kopper(II) oxalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰			
Kopper(II) sulfid	CuS	8 · 10 ⁻³⁷			

α -AMINOSYRER VED pH = 7,4.

Vanlig navn		Vanlig navn					
Forkortelse pH ved isoelektrisk	Strukturformel	Forkortelse pH ved isoelektrisk	Strukturformel				
Alanin Ala 6,0	O	Arginin Arg 10,8	NH3 O O O O O O O O O O O O O O O O O O O				
Asparagin Asn 5,4	O = CH ₂ CH O NH ₃	Aspartat (Asparagin- syre) Asp 2,8	O				
Cystein Cys 5,1	HS CH NH3	Fenylalanin Phe 5,5	HC CH CH NH3				
Glutamin Gln 5,7	O CH ₂ CH ₂ CH O NH ₃	Glutamat (Glutamin- syre) Glu 3,2	O CH ₂ CH ₂ CH O NH ₂				
Glysin Gly 6,0	H CH + NH3	Histid His 7,6	HC CH CH NH3				

Isoleucin Ile 6,0	H ₃ C CH C O	Leucin Leu 6,0	H ₃ C CH ₂ CC O CCH ₂ CCH NH ₃
Lysin Lys 9,7	H ₃ N ⁺ CH ₂ CH ₂ CH ₂ CH O	Metionin Met 5,7	H ₃ C CH ₂ CH O NH ₃
Prolin Pro 6,3	H ₂ C CH ₂ O CH CH C O	Serin Ser 5,7	HO CH ₂ CH O NH ₃
Treonin Thr 5,6	HO H H3 H3 O O O O O O O O O O O O O O O	Tryptofan Trp 5,9	H CH
Tyrosin Tyr 5,7	HC CH CH CH NH3	Valin Val 6,0	CH ₃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, HAL= halogen (CI, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Hydrogenatomene er uthevet.

Type proton	Kjemisk skift, ppm	Type proton	Kjemisk skift, ppm
− C H ₃	0,9 - 1,0	O R ^{_C} \O- H	10 - 13
C H ₂R	1,3 - 1,4	O=C H	9,4 - 10
-CHR ₂	1,4 - 1,6	O = C O - R	Ca. 8
—C≡C— H	1,8 - 3,1	-CH=CH ₂	4,5 - 6,0
-CH ₂ -HAL	3,5 - 4,4	0 R ^C \O-C H ₂ -	3,8 - 4,1
R-O-CH ₂ -	3,3 - 3,7	R-O-H	0,5 - 6
O R	2,2 - 2,7	O RO C H ₂ -	2,0 - 2,5
————	6,9 - 9,0	————он	4,0 - 12,0
− C H ₃	2,5 - 3,5		

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

HYDROKARBONER, METTEDE (alkaner)										
Navn	Formel	Smp	Кр	Diverse						
Metan	CH ₄	-182	-161							
Etan	C ₂ H ₆	-183	-89							
Propan	C₃H ₈	-188	-42							
Butan	C ₄ H ₁₀	-138	-0,5							
Pentan	C ₅ H ₁₂	-130	36							
Heksan	C ₆ H ₁₄	-95	69							
Heptan	C ₇ H ₁₆	-91	98							
Oktan	C ₈ H ₁₈	-57	126							
Nonan	C ₉ H ₂₀	-53	151							
Dekan	C ₁₀ H ₂₂	-30	174							
Syklopropan	C ₃ H ₆	-128	-33							
Syklobutan	C ₄ H ₈	-91	13							
Syklopentan	C ₅ H ₁₀	-93	49							
Sykloheksan	C ₆ H ₁₂	7	81							
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan						
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan						
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan						
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan						
3-Metylpentan	C ₆ H ₁₄	-163	63							
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan						
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58							
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan						
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110							
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115							
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114							
HYDR	OKARBONEF	R, UMETTED	E, alkener							
Navn	Formel	Smp	Кр	Diverse						
Eten	C ₂ H ₄	-169	-104	Etylen						
Propen	C₃H ₆	-185	-48	Propylen						
But-1-en	C ₄ H ₈	-185	-6							
cis-But-2-en	C ₄ H ₈	-139	4							
trans-But-2-en	C ₄ H ₈	-106	1							
Pent-1-en	C ₅ H ₁₀	-165	30							
cis-Pent-2-en	C ₅ H ₁₀	-151	37							
trans-Pent-2-en	C ₅ H ₁₀	-140	36							
Heks-1-en	C ₆ H ₁₂	-140	63							
cis-Heks-2-en	C ₆ H ₁₂	-141	69							
trans-Heks-2-en	C ₆ H ₁₂	-133	68							
cis-Heks-3-en	C ₆ H ₁₂	-138	66							

				Tabonor og formier i 112/10012
Navn	Formel	Smp	Кр	Diverse
<i>trans</i> -Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C ₇ H ₁₄	-119	94	
<i>cis</i> -Hept-2-en	C ₇ H ₁₄		98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
cis-Hept-3-en	C7H14	-137	96	
trans-Hept-3-en	C7H14	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
Penta-1,2-dien	C ₅ H ₈	-137	45	
trans-Penta-1,3-dien	C₅H ₈	-87	42	
cis-Penta-1,3-dien	C ₅ H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀		76	
cis-Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
HYDR	OKARBONEI	R, UMETTED	E, alkyner	
Navn	Formel	Smp	Кр	Diverse
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C₅H ₈	-90	40	
Pent-2-yn	C ₅ H ₈	-109	56	
Heks-1-yn	C ₆ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
AF	ROMATISKE	HYDROKARE	BONER	
Navn	Formel	Smp	Кр	Diverse
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₃ H ₁₂	25	265	1, -1
Trifenylmetan	C ₁₉ H ₁₆	94	360	Tritan
1,2-Difenyletan	C ₁₄ H ₁₄	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₀ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	PAH
r nenducti	C141 110)))	340	17311

	ALKO	OHOLER		
Navn	Formel	Smp	Кр	Diverse
Metanol	CH₃OH	-98	65	Tresprit
Etanol	C ₂ H ₆ O	-114	78	
Propan-1-ol	C₃H ₈ O	-124	97	<i>n</i> -propanol
Propan-2-ol	C ₃ H ₈ O	-88	82	Isopropanol
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	<i>n</i> -Pentanol, amylalkohol
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, n-heksanol
Heksan-2-ol	C ₆ H ₁₄ O		140	
Heksan-3-ol	C ₆ H ₁₄ O		135	
Heptan-1-ol	C7H16O	-33	176	Heptylalkohol, <i>n</i> -heptanol
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, n-oktanol
Sykloheksanol	C ₆ H ₁₂ O	26	161	
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten triglyserid
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol
	KARBONYL	FORBINDEL	SER	•
Navn	Formel	Smp	Кр	Diverse
Metanal	CH₂O	-92	-19	Formaldehyd
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd
2-Metylpropanal	C ₄ H ₈ O	-65	65	
Butanal	C ₄ H ₈ O	-97	75	
3-Hydroksybutanal	C ₄ H ₈ O ₂		83	
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd
Heptanal	C ₇ H ₁₄ O	-43	153	
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd
Propanon	C₃H ₆ O	-95	56	Aceton
Navn	Formel	Smp	Кр	Diverse
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon

			vedicgg 1.	Tabeller og formler i REA3U12
Navn	Formel	Smp	Кр	Diverse
4-Metyl-pentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon
trans-Fenylpropenal	C ₉ H ₈ O	-8	246	<i>trans</i> -Kanelaldehyd
	ORGAN	IISKE SYRER		
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, p $K_a = 3,75$
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, $pK_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, p $K_a = 4.87$
2-Metyl-propansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84
2-Hydroksypropansyre	C ₃ H ₆ O ₃	10	122	Melkesyre, p $K_a = 3.86$
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved
3 Tryatoksyptopansyte	C31 10 C3			oppvarming,
				$pK_a = 4,51$
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p $K_a = 4,83$
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre , $pK_a = 4,77$
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, p $K_a = 4.83$
Heksansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, $pK_a = 4,88$
Propensyre	C ₃ H ₄ O ₂	12	139	pK _a = 4,25
cis-But-2-ensyre	C ₄ H ₆ O ₂	15	169	<i>cis</i> -Krotonsyre, pK _a = 4,69
trans-But-2-ensyre	C ₄ H ₆ O ₂	72	185	<i>trans</i> -Krotonsyre, p $K_a = 4,69$
But-3-ensyre	C ₄ H ₆ O ₂	-35	169	pK _a = 4,34
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, p K_{a1} = 1,25, p K_{a2} = 3,81
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), p K_{a1} = 4,21, p K_{a2} = 5,64
Pentandisyre	C₅H ₈ O ₄	98		Glutarsyre, p K_{a1} = 4,32, p K_{a2} = 5,42
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, $pK_{a1} = 4,41$, $pK_{a2} = 5,41$
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, $pK_a = 4,44$
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		pK _a = 3,88
Benzosyre	C ₇ H ₆ O ₂	122	250	
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31
	E	STERE		
Navn	Formel	Smp	Кр	Diverse
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær

Navn	Formel	Smp	Кр	Diverse
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl- <i>trans</i> -cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og ananas
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og eple
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
0	RGANISKE FORBINI	DELSER ME	D NITROGEN	
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH₅N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27
Trimetylamin	C ₃ H ₉ N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	C ₄ H ₁₁ N	-28	312	pK _b = 3,16
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid
Fenylamin	C ₆ H ₇ N	-6	184	Anilin
1,4-diaminbutan	C ₄ H ₁₂ N ₂	27	158-160	Engelsknavn: putrescine
1,6-Diaminheksan	C ₆ H ₁₆ N ₂	9	178-180	Engelsknavn: cadaverine
C	RGANISKE FORBIN	DELSER ME	D HALOGEN	
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH₃Cl	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel
Triklormetan	CHCl₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
Kloretansyre	C ₂ H ₃ ClO ₂	63	189	Kloreddiksyre, p K_a = 2,87
Dikloretansyre	$C_2H_2Cl_2O_2$	9,5	194	Dikloreddiksyre, p $K_a = 1,35$
Dikioretarisyre				
Trikloretansyre	C ₂ HCl ₃ O ₂	57	196	Trikloretansyre, p K_a = 0,66

KVALITATIV UORGANISK ANALYSE. REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING

	HCI	H ₂ SO ₄	NH₃	КІ	KSCN	K₃Fe(CN) ₆	K ₄ Fe(CN) ₆	K₂CrO₄	Na₂S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Lakserødt
Fe ²⁺			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe³+			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Gulhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gulhvitt kan forekomme	Hvitt	Hvitt	
Ca ²⁺									Gulhvitt kan forekomme	Hvitt	Hvitt	

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2				Forklarii	n a						Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1 1,008			Atomnummer				35 79,90	Fargekoder	Ikke-	metall							2 4,003
H 2,1						Symbol	8 ° 2,8		Halv	metall							He
Hydrogen					Elektronegat	Navn	Brom		Me	etall							Helium
3 6,941	4 9,012				() betyr ma			Aggregat- tilstand	Fast s	stoff B		5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
Li 1,0	Be				isotopen * Lantanoi ** Aktinoi			ved 25 °C og 1 atm	Væsk	e Hg		B 2,0	C 2,5	N 3,0	O 3,5	F 4,0	Ne
Lithium 11	Beryl- lium 12				Auctrion	201			Gas	ss N		Bor 13	Karbon 14	Nitrogen 15	Oksygen 16	Fluor 17	Neon 18
22,99 Na	24,31 Mg											26,98 Al	28,09 Si	30,97 P	32,07 S	35,45 Cl	39,95 Ar
0,9 Natrium	1,2 Magne- sium	3	4	5	6	7	8	9	10	11	12	1,5 Alumini- um	1,8 Silisium	2,1 Fosfor	2,5 Svovel	3,0 Klor	- Argon
19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38	31 69,72	32 72,63	33 74,92	34 78,97	35 79,90	36 83,80
K 0,8	Ca	Sc 1,3	Ti 1,5	V 1,6	Cr	Mn 1,5	Fe	Co	Ni 1,9	Cu	Zn	Ga	Ge	As 2,0	Se 2,4	Br 2,8	Kr
Kalium 37	Kalsium 38	Scan- dium 39	Titan 40	Vana- dium 41	Krom 42	Mangan 43	Jern 44	Kobolt 45	Nikkel 46	Kobber 47	Sink 48	Gallium 49	Germa- nium 50	Arsen 51	Selen 52	Brom 53	Krypton 54
85,47 Rb	87,62 Sr	88,91 Y	91,22 Zr	92,91 Nb	95,95 Mo	(98) Tc	101,07 Ru	102,91 Rh	106,42 Pd	107,87 Ag	112,41 Cd	114,82 In	118,71 Sn	121,76 Sb	127,60 Te	126,90 I	131,29 Xe
0,8 Rubidium	1,0 Stron-	1,2 Yttrium	1,4 Zirko-	1,6 Niob	1,8 Molyb-	1,9 Techne-	2,2 Ruthe-	2,2 Rhodium	2,2 Palla-	1,9 Sølv	1,7 Kad-	1,7 Indium	1,7 Tinn	1,8 Antimon	2,1 Tellur	2,4 Jod	- Xenon
55 132,91	tium 56 137,33	57 138,91	nium 72 178,49	73 180,95	den 74 183,84	tium 75 186,21	76 190,23	77 192,22	dium 78 195,08	79 196,97	mium 80 200,59	81 204,38	82 207,2	83 208,98	84 (209)	85 (210)	86 (222)
Cs 0,7	Ba	La	Hf 1,3	Ta	W	Re	Os 2,2	Ir 2,2	Pt 2,2	Au 2,4	Hg	TI	Pb	Bi	Po 2,0	At 2,3	Rn
Cesium	Barium	Lantan*	Hafnium	Tantal	Wolfram	Rhenium	Osmium	Iridium	Platina	Gull	Kvikk- sølv	Thallium	Bly	Vismut	Poloni- um	Astat	Radon
87 (223)	88 (226)	89 (227)	104 (267)	105 (268)	106 (271)	107 (270)	108 (269)	109 (278)	110 (281)	111 (280)	112 (285)	113 (286)	114 (289)	115 (289)	116 (293)	117 (294)	118 (294)
Fr 0,7	Ra 0,9	Ac 1,1	Rf	Db Dub-	Sg	Bh -	Hs	Mt	Ds -	Rg -	Cn	Uut	FI -	Uup	Lv	Uus	Uuo
Francium	Radium	Actinium **	Ruther- fordium	nium	Sea- borgium	Bohrium	Hassium	Meit- nerium	Darm- stadtiu m	Rønt- genium	Coper- nicium	Unun- trium	Flero- vium	Unun- pentium	Liver- morium	Unun- septium	Unun- oktium
		*	57 138,91	58 140,12	59 140,91	60 144,24	61 (145)	62 150,36	63 151,96	64 157,25	65 158,93	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05	71 174,97
			La	Ce	Pr	Nd	Pm 1,1	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			Lantan	Cerium	Praseo- dym	Neodym	Prome- thium	Sama- rium	Euro- pium	Gado- linium	Terbium	Dyspro- sium	Hol- mium	Erbium	Thulium	Ytter- bium	Lute- tium
		**	89 (227)	90 232,04	91 231,04	92 238,03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (266)
			Ac 1,1	Th 1,3	Pa	U 1,4	Np	Pu 1,3	Am	Cm	Bk 1,3	Cf 1,3	Es 1,3	Fm	Md 1,3	No 1,3	Lr 1,3
			Actinium	Thorium	Protacti- nium	Uran	Neptu- nium	Pluto- nium	Ame- ricium	Curium	Berke- lium	Califor- nium	Einstein- ium	Fer- mium	Mende- levium	Nobel- ium	Lawren- cium