

#### Soluções em Mineração de dados: Pré-processamento

Prof. Leandro Almeida lma3@cin.ufpe.br



## Porque pré-processar os dados?

- As bases de dados hoje são extremamente grandes (da ordem de gibabytes e terabytes).
- As fontes de informação não são únicas e as vezes não são padronizadas.
- Toda base de dados está susceptível a conteúdo:
  - Ruidoso
    - Ex: contém erros, ou valores diferentes do esperado
  - Incompleto
    - Ex: atributos com valores faltosos, ou dados agregados
  - Inconsistente
    - Ex: discrepâncias nos códigos dos departamentos usados para categorizar itens

Sem dados de boa qualidade o resultado da mineração é pobre!



## Porque pré-processar os dados?

Como podemos pré-processar os dados visando melhorar a qualidade dos dados e consequentemente os resultados da mineração?

Como podemos pré-processar os dados, de modo a melhorar a eficiência e a facilidade do processo de mineração?



#### Qualidade dos dados: Por que pré-processar dados?

- Medidas de qualidade de dados: uma visão multidimensional
- Um dado de qualidade deve ser...
  - Preciso
    - Ex: não pode existir valores incorretos, ou imprecisos, ...
  - Completo
    - Ex: não deve haver dados não registrados, ou indisponíveis, ...
  - Consistentes
    - Ex: não deve existir registros modificados, e outros não, dados pendentes, ...
  - Oportunos Ocorrer no tempo certo
    - Ex: informações atrasadas não servem para tomar decisões
  - Confiáveis (Credibilidade)
    - Ex: não deve haver dúvidas quanto à corretude dos dados
  - Interpretáveis
    - Ex: os dados não podem ser difíceis de ser entendidos



### Principais etapas do pré-processamento

- Limpeza dos Dados
  - preencher dados ausentes, "suavização" de ruído, identificar e/ou remover outliers, resolver inconsistências.
- Integração dos Dados
  - Integração dados de múltiplas bases de dados, como data warehouse
- Transformação dos Dados
  - normalização e agregação
- Redução dos Dados
  - redução de dimensionalidade
  - redução no volume de dados
  - Compressão de dados a partir de características similares



#### Principais etapas do pré-processamento





ausentes - ruidosos e/ou aberrantes - inconsistentes

- Dados não estão sempre disponíveis.
  - Ex: atributos com valores faltosos, ausência de atributos de interesse, ou existência de apenas dados agregados
    - Ex: renda do cliente em dados relativos a vendas.
- A ausência de dados pode ser consequência:
  - mau funcionamento do equipamento.
  - inconsistência com outros dados gravados e consequente supressão.
  - não entrada de dados devido a enganos.
  - determinados dados podem n\u00e3o ser considerados importantes no momento do registro.
- Pode ser necessário interferir nos dados.



ausentes - ruidosos e/ou aberrantes - inconsistentes

#### Tratamentos usuais:

- 1. Ignorar a descrição do indivíduo ou mesmo eliminar o descritor
  - Ex: quando o rótulo da classe está faltando
- 2. Preencher os valores ausentes manualmente muitas vezes inviável
- 3. Usar uma constante global para representar os valores ausentes (não recomendado, pois o sistema pode identificar esse valor como um conceito)
- 4. Usar a média (ou a moda)
  - Ex: usar o valor médio de renda de uma amostra
- 5. Usar a média (ou a moda) por classe
  - Ex: usar o valor médio de idade dos alunos do primeiro período de SI
- 6. Usar o valor mais provável segundo um modelo (regressão, regra de Bayes, árvores de decisão)



#### ausentes - ruidosos e/ou aberrantes - inconsistentes

- Análise dos métodos
  - Os métodos de 3 a 6 preenchem os dados faltosos de forma enviesada
  - Contudo, o método de regressão (6) é a estratégia mais usada em mineração de dados
    - O método 6 usa o máximo de informações dos dados atuais para prever valores em falta, aumentando as chances de acerto
- Em alguns casos, um valor em falta não pode implicar um erro nos dados
  - Por exemplo, candidatos a um cartão de crédito precisam fornecer o número de sua carteira de motorista, mas há pessoas que não têm carteira de motorista e podem deixar este campo em branco.
  - Os formulários devem permitir a especificação de valores como "não aplicável" e programas podem ser usados para descobrir outros valores nulos (ex: "Não sei", "?" ou "nenhum").
    - Idealmente, cada atributo deve ter um ou mais regras sobre a condição nula.



ausentes - ruidosos e/ou aberrantes - inconsistentes

- Dado ruidoso ou outlier é um erro aleatório ou uma variabilidade em uma determinada variável.
- Tratamentos usuais
  - Remoção de ruído
    - Alisamento (Suavização)
    - Regressão
  - Identificação de valores aberrantes
    - Clustering



ausentes - ruidosos e/ou aberrantes - inconsistentes

#### Alisamento:

- consiste em suavizar um valor de dados de acordo com seus vizinhos
- os dados ordenados são distribuídos em caixas tendo como referência os seus vizinhos.

Ordenação: 1, 1, 2, 3, 3, 3, 4, 5, 5, 7

Particionamento em "caixas"

Alisamento pela mediana

Outras alternativas: média, limites



ausentes - ruidosos e/ou aberrantes - inconsistentes

 Regressão: os dados podem ser alisados pelo ajustamento a uma função (regressão linear, por exemplo).





ausentes - ruidosos e/ou aberrantes - inconsistentes

• Clustering: Os valores são organizados em grupos e os valores isolados podem ser considerados aberrantes.





ausentes - ruidosos e/ou aberrantes - inconsistentes

- Muitos métodos de suavização podem ser utilizados para a discretização de dados (uma forma de transformação de dados) e redução de dados
  - Por exemplo, técnicas de suavização podem ser usadas para reduzir o número de valores para um atributo
  - Ex: um mapeamento pode ser feito entre preços reais e preços baratos, moderados e caros, reduzindo o número de valores possíveis a serem tratados pelo processo de mineração



ausentes - ruidosos e/ou aberrantes - inconsistentes

- Erros no momento da introdução dos dados
- Erros oriundos da integração de várias bases de dados
  - Mesmo atributo com diferentes atribuições
    - Masculino/Feminino Homem/Mulher
  - Duplicação de objetos
    - Casa Residência
- Tratamento:
  - Correções manuais ou automática através de scripts.



### Integração dos Dados

- Geralmente, a integração de dados é uma etapa necessária na Mineração de Dados
- A fusão de dados a partir de diferentes fontes em uma única fonte coerente.
  - Visando evitar/reduzir redundâncias e inconsistências
  - Aumentar a acurácia e a velocidade dos passos subsequentes do processo de mineração
- As fontes podem ser bases de dados, cubos ou arquivos texto.
- Esquema em base de dados relacional
  - Identificação (correspondência) de entidade do mundo real a partir de múltiplas fontes de dados.
  - Integração dos metadados de diferentes fontes.



## Integração dos Dados

- Problemas de integração:
  - Redundância:
    - Diferentes nomes para o mesmo atributo.
      - Ex: id\_cliente e mat\_cliente
      - Os metadados podem ser usados para evitar erros na integração
    - Atributo derivado de outro (Ex: receita anual)
  - Tratamento: Análise de correlação
    - Dado dois atributos, a ideia é saber como eles estão relacionadas

$$r_{A,B} = \frac{\sum_{i=1}^{N} (a_i - \overline{A})(b_i - \overline{B})}{N\sigma_A \sigma_B}$$

Onde N é a quantidade de tuplas,  $a_i$  e  $b_i$  os respectivos valores de A e B,  $\bar{A}$  e  $\bar{B}$  são as respectivas médias e  $\sigma_A$  e  $\sigma_B$  são os desvios padrão



#### Integração dos Dados

- Problemas de integração:
  - Detecção e resolução de conflitos:
    - Os valores de um mesmo atributo pode diferir segundo as diversas fontes.
    - Isso pode acontecer devido a diferenças na representação, escala ou codificação.
    - Exemplos:
      - Peso (em libras ou em quilos)
      - Altura (valor numérico ou categórico (médio, pequeno...))
      - Preço ou dados de compra (pode indicar serviços diferentes)
    - Tratamento: Tabelas de conversão.



- Processo realizado para obter-se os dados em uma forma mais apropriada para a mineração.
- Tratamentos:
  - Normalização: minimizar os problemas oriundos do uso de unidades e dispersões distintas entre as variáveis.
  - As variáveis podem ser normalizadas segundo a amplitude ou segundo a distribuição.
  - Algumas ferramentas de modelização são beneficiadas com a Normalização (redes neurais, KNN, clustering).



- Normalização min-max
  - Dados são escalados dentro de um intervalo [-1.0 0.0, ou 0.0 1.0]

$$v' = \frac{v - \min_{A}}{\max_{A} - \min_{A}} (new \_ \max - new \_ \min) + new \_ \min_{A}$$

Exemplo: Salário mínimo \$12,000 e máximo \$98,000, range
 [0.0, 1.0]. Normalizar um salário de \$73,600.

$$v' = \frac{73,600 - 12,000}{98,000 - 12,000} (1.0 - 0.0) + 0.0 = 0.716$$



- Normalização z-score
  - Normalização baseada na média e desvio padrão.

$$v' = \frac{v - \overline{A}}{\sigma_A}$$

Exemplo: Média dos salários \$54,000 e o desvio padrão \$16,000.
 Normalizar um salário de \$73,600.

$$v' = \frac{73,600 - 54,000}{16,000} = 1.225$$



- Normalização por escala decimal
  - Normaliza através do deslocamento de pontos decimais.
  - O número de pontos decimais depende do máximo valor absoluto dos dados.

$$v' = \frac{v}{10^{j}}$$
 onde j é o menor inteiro tal que  $Max(|v'|) < 1$ 

 Exemplo: Suponha valores entre -986 e 917. O máximo valor absoluto é 986. Para normalizar dividimos as entradas por 1000 (ou seja, j = 3)

$$v' = \frac{-986}{1,000} = -0.986$$
  $v' = \frac{917}{1,000} = 0.917$ 



- Obtém uma representação reduzida do conjunto de dados que é muito menor no volume, mas que produz os mesmos (ou quase) resultados analíticos.
  - Em muitos casos, datasets possuem um número elevado de atributos e de observações (objetos).
- Para que reduzir dados?
  - a análise de dados complexos pode levar muito tempo para se obter uma solução (complexidade computacional muito alta)
  - algoritmos podem não rodar de forma satisfatória

#### Vantagens

- redução do tempo de aprendizagem
- interpretação mais fácil dos conceitos aprendidos



agregação via cubo - redução da dimensão - redução dos casos

Agregação via cubo:





agregação via cubo - redução da dimensão - redução dos casos

#### Agregação via cubo:

 forma de visualização e interpretação dos dados no modelo multidimensional para dados acumulados de chuva nos anos de 2003 a 2006, em algumas cidades do Rio Grande do Sul.





agregação via cubo - redução da dimensão - redução dos casos

#### Redução da dimensão:

- Em data mining a supressão de uma coluna (atributo) é muito mais delicada do que a supressão de uma linha (observação).
- Retirar atributos relevantes ou permanecer com atributos irrelevantes pode implicar na descoberta de padrões de baixa qualidade.
  - Pode ser prejudicial para o algoritmo de mineração empregado
- Daí a necessidade de um estágio de seleção de atributos.
- Abordagens para a redução de dimensionalidade
  - Seleção manual baseada em conhecimento especialista.
  - Transformada Wavelet
  - Principal Componente Analysis (PCA)



agregação via cubo - redução da dimensão - redução dos casos

- Busca heurística em Seleção de Atributos
  - Problema: busca exaustiva 2<sup>n</sup>-1 possíveis combinações de n atributos
  - Heurística típica para métodos de seleção
    - Melhor atributo supondo independência entre atributos
    - Seleção dos melhores atributos passo a passo:
      - Escolha o melhor atributo primeiro
      - Após, escolha o melhor atributo condicionado a escolha do primeiro, ...
    - Eliminação de atributos passo a passo:
      - Repetidamente eliminar o pior atributo
    - Melhor seleção de atributos combinando seleção e eliminação
      - Uso de eliminação de atributos e backtracking
      - Ex: Algoritmo de construção de árvores de decisão
        - » Aplicar esse algoritmo nos dados completos e então selecionar apenas as variáveis presentes na árvore de decisão.



agregação via cubo - redução da dimensão - redução dos casos

#### Redução da dimensão:

- Seleção do menor (sub)conjunto de atributos:
   Selecionar o menor conjunto de atributos suficiente para dividir o espaço das instâncias de tal maneira que a distribuição das classes no novo espaço é tão próxima quanto possível daquela do espaço original
  - A mineração em um conjunto reduzido de atributos possibilita reduzir o número de atributos em que os padrões aparecem
    - Facilitando a visualização dos padrões.
  - Em ML esse processo é conhecido como seleção de subconjuntos de características



agregação via cubo - redução da dimensão - redução dos casos

Busca heurística em Seleção de Atributos

| Forward selection                                                                                                    | Backward elimination                                                                                                | Decision tree induction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial attribute set:<br>$\{A_1, A_2, A_3, A_4, A_5, A_6\}$                                                         | Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$                                                           | Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Initial reduced set:<br>{ }<br>=> $\{A_1\}$<br>=> $\{A_1, A_4\}$<br>=> Reduced attribute set:<br>$\{A_1, A_4, A_6\}$ | => $\{A_1, A_3, A_4, A_5, A_6\}$<br>=> $\{A_1, A_4, A_5, A_6\}$<br>=> Reduced attribute set:<br>$\{A_1, A_4, A_6\}$ | $A_4$ ? $A_4$ ? $A_6$ |



agregação via cubo - redução da dimensão - redução dos casos

- Redução (sintetização) do volume de dados via representação econômica dos mesmos.
- Métodos Paramétricos:
  - Supõe que os dados ajustam um modelo, estimam os parâmetros do modelo, armazena apenas os parâmetros e descarrega os dados (exceto os aberrantes).
  - Principais modelos: regressão (simples e múltipla) e modelo loglinear
- Métodos não Paramétricos:
  - Não assume modelos
  - Famílias principais: histogramas, clustering, amostragem



agregação via cubo - redução da dimensão - redução dos casos

#### Regressão e Modelo Log-Linear

- Regressão linear: Os dados são modelados para estabelecer uma equação linear - relacionamento entre duas variáveis
  - Em geral usa-se o método dos mínimos quadrados para ajustar a linha
- Regressão múltipla: permite que uma variável resposta (Y) seja modelada como uma função linear de um vetor de atributos
- Modelo Log-linear : aproxima distribuições de probabilidade discretas multidimensionais



agregação via cubo - redução da dimensão - redução dos casos

#### Histogramas

- Técnica popular para redução de dados
- Particiona os dados em caixas (classes) e armazena a frequência média dos valores.
- Em uma dimensão pode ser construído pela otimização de um critério via programação dinâmica.





agregação via cubo - redução da dimensão - redução dos casos

#### Clustering

- Os dados são particionados em clusters e armazena-se apenas a representação (centróides) do mesmo.
  - Os representantes são os centróides e os outliers.
- Pode ser muito eficaz se os dados são agrupados, mas não se estão apenas sujos.
  - A eficácia depende da distribuição dos dados
- Existem muitas opções de métodos de e algoritmos de agrupamento.



agregação via cubo - redução da dimensão - redução dos casos

#### Clustering





agregação via cubo - redução da dimensão - redução dos casos

#### Amostragem

- Permite que os algoritmos de mineração tratem enormes bases de dados pela redução dos casos.
  - É geralmente usada em investigações preliminares de dados e também na análise final dos dados.
- Estatísticos usam bastante as técnicas de amostragem porque trabalhar com o conjunto de dados completo é caro e computacionalmente custoso.
  - Amostragem pode ser usada em mineração de dados, quando o conjunto de dados, sob análise, é grande (em termos de objetos e atributos).
- Tipos de Amostragem:
  - Amostragem aleatória simples com reposição
  - Amostragem aleatória simples sem reposição
  - · Amostragem estratificada
  - Amostragem por conglomerado



agregação via cubo - redução da dimensão - redução dos casos

#### Princípio da Amostragem

- Uma amostra produzirá resultados de qualidade semelhantes aqueles produzidos pelo conjunto de dados completos (se a amostra for representativa).
- Uma amostra é representativa se ela tem aproximadamente as mesmas propriedades (de interesse) do conjunto de dados original.



agregação via cubo - redução da dimensão - redução dos casos

#### Tipos de Amostragem

- Amostragem aleatória simples sem reposição
  - Existe uma probabilidade igual para a seleção de qualquer item.
  - Um item é selecionado e removido da população
- Amostragem aleatória simples com reposição
  - Objetos não são removidos da população à medida em que são selecionados para a amostra.
  - O mesmo objeto pode ser selecionado mais de uma vez.
- Amostragem estratificada (por conglomerado)
  - Separa os dados em diversas partições (estratos). Toma-se de cada partição uma amostra percentual igual a porcentagem do estrato em relação a população.



agregação via cubo - redução da dimensão - redução dos casos

Amostragem Simples e c/ Reposição





agregação via cubo - redução da dimensão - redução dos casos

#### Amostragem Estratificada





agregação via cubo - redução da dimensão - redução dos casos

Amostragem Estratificada

#### **Dados Brutos**



#### Cluster/Amostra Estratificada





agregação via cubo - redução da dimensão - redução dos casos

#### Amostragem

- Duas formas básicas de amostragem são interessantes no contexto da mineração de dados:
  - Amostragens incrementais
  - Amostragens seguida de voto



agregação via cubo - redução da dimensão - redução dos casos

#### Amostragem incremental

 O treinamento é realizado em amostras aleatórias cada vez maiores de casos, observar a tendência e parar quando não há mais progresso.

Um padrão típico de tamanhos de amostras pode ser 10%, 20%, 33%, 50%, 67% e 100%

- Critérios para passar para uma outra amostra
  - O erro diminuiu?
  - A complexidade do tratamento aumentou mais do que a queda da taxa de erro?
  - A complexidade da solução atual é aceitável para a interpretação?



agregação via cubo - redução da dimensão - redução dos casos

#### Amostragem seguida de voto

- Interesse: quando o método de mineração suporta apenas N casos.
- O mesmo método de mineração é aplicado para diferentes amostras de mesmo tamanho resultando em uma solução para cada amostra.
- Quando um novo caso aparece, cada solução fornece uma resposta.
- A resposta final é obtida por votação (classificação) ou pela média (regressão).



### Pré-processamento usando o WEKA

- Preencher valores ausentes
  - weka.filters.unsupervised.attribute.ReplaceMissingValues
- Remover instâncias com dados ausentes
  - weka.filters.unsupervised.instances.RemoveWithValues
- Converter dados nominais para binário
  - weka.filters.unsupervised.attribute.NominalToBinary
- Normalização de dados numéricos
  - weka.filters.unsupervised.attribute.Normalize
- Renomear valores nominais de atributos (weka 3.8)
  - weka.filters.unsupervised.attribute.RenameNominalValues



### Pré-processamento via Python

- Para realização de re-escala, padronização, normalização e binarização
  - Scripts: pre-processing1.py, pre-processing2.py, pre-processing3py e pre-processing4.py
- Para tratamento de dados ausentes
  - pre-processing5.py
- Convertendo colunas com valores nominais para valores binários
  - pre-processing6.py