Kurseinheit 6:

Lösungsvorschläge zu den Einsendeaufgaben

Aufgabe 6.1

(1) Falsch. Sei $a_n = (-1)^n \sqrt[n]{2}$. Es ist $a_n = (-1)^n 2^{\frac{1}{n}} = (-1)^n \exp(\ln(2)\frac{1}{n})$. Da

$$\lim_{n\to\infty} \exp(\ln(2)\frac{1}{n}) = \exp(\lim_{n\to\infty} \frac{\ln(2)}{n}) = \exp(0) = 1,$$

ist (a_n) keine Nullfolge, denn sie enthält die gegen 1 konvergente Teilfolge (a_{2n}) .

(2) Wahr. Sei $a_n = \frac{2n}{4^n}$. Dann gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{2n+2}{4^{n+1}} \cdot \frac{4^n}{2n} = \frac{1}{4} \cdot \frac{n+1}{n}.$$

Es folgt

$$\lim_{n \to \infty} \frac{1}{4} \cdot \frac{n+1}{n} = \frac{1}{4} \lim_{n \to \infty} \frac{n+1}{n} = \frac{1}{4} \lim_{n \to \infty} \frac{1+\frac{1}{n}}{1} = \frac{1}{4} < 1.$$

Mit dem Quotientenkriterium folgt, dass die Reihe konvergent ist.

(3) Wahr. Sei $a_n = \binom{2n}{n}^{-1}$. Es ist

$$a_n = \frac{n(n-1)\cdots 1}{2n(2n-1)\cdots (n+1)} = \frac{n}{2n} \cdot \frac{n-1}{2n-1}\cdots \frac{1}{n+1}.$$

Für alle $0 \le k < n$ ist $\frac{n-k}{2n-k} \le \frac{1}{2}$, denn

$$\frac{n-k}{2n-k} \le \frac{1}{2} \Leftrightarrow n-k \le n - \frac{k}{2} \Leftrightarrow -k \le -\frac{k}{2} \Leftrightarrow k \ge \frac{k}{2}.$$

Es folgt $a_n \leq \frac{1}{2^n}$. Damit ist die geometrische Reihe $\sum_{n=1}^{\infty} \frac{1}{2^n}$ eine Majorante für $\sum_{n=1}^{\infty} {2n \choose n}^{-1}$, und es folgt die Konvergenz der Reihe.

(4) Wahr. Sei $a_n = \frac{x^n}{(5+(-1)^n)^n}$. Dann gilt

$$\sqrt[n]{|a_n|} = \frac{|x|}{|5 + (-1)^n|} \le \frac{|x|}{4}.$$

Mit dem Wurzelkriterium folgt, dass die Reihe konvergiert, sofern $\frac{|x|}{4} = q < 1$ ist. Dies ist aber genau dann der Fall, wenn $x \in (-4, 4)$ ist.

- (5) Falsch, denn $((-1)^n \frac{n-1}{n})$ ist keine Nullfolge.
- (6) Wahr. Der natürlich Logarithmus ist streng monoton wachsend, also ist die Folge $(\frac{1}{\ln(n)})_{n\geq 2}$ streng monoton fallend. Da der natürliche Logarithmus zusätzlich noch unbeschränkt ist, folgt, dass $(\frac{1}{\ln(n)})$ eine Nullfolge ist. Mit dem Leibniz-Kriterium ist die Reihe konvergent.

(7) Falsch. Die Reihe ist eine geometrische Reihe mit $q = -\frac{3}{2}$. Da |q| > 1, ist diese Reihe divergent.

- (8) Wahr. Die Reihe ist eine geometrische Reihe mit $q = -\frac{2}{3}$. Da |q| < 1, ist diese Reihe konvergent.
- (9) Wahr. Sei $a_n = \frac{n}{10^n}$. Dann gilt

$$\sqrt[n]{a_n} = \frac{\sqrt[n]{n}}{10}, \text{ also } \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{\sqrt[n]{n}}{10} = \frac{1}{10},$$

denn $\lim_{n\to\infty} \sqrt[n]{n} = 1$. Mit dem Satz von Cauchy-Hadamard folgt die Behauptung.

(10) Wahr. Sei $x \in \mathbb{R}$ und $a_n = \frac{n!x^n}{10^n}$. Dann gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)!|x^{n+1}|}{10^{n+1}} \cdot \frac{10^n}{n!|x^n|} = \frac{|x|}{10}(n+1).$$

Die Folge $(\frac{|x|}{10}(n+1))$ ist für alle $x \neq 0$ unbeschränkt. Aus dem Quotientenkriterium folgt, dass die Potenzreihe nur für x=0 konvergiert. Ihr Konvergenzradius ist somit 0.

Aufgabe 6.2

Sei $x \in \mathbb{R}$. Ist x = 2, so ist die Reihe natürlich konvergent. Wir nehmen also im Folgenden an, dass $x \neq 2$ ist. Sei $a_n = \frac{(x-2)^n}{n}$. Dann gilt

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(x-2)^{n+1}}{n+1} \cdot \frac{n}{(x-2)^n} \right| = |x-2| \frac{n}{n+1}.$$

Es folgt

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}|x-2|\frac{n}{n+1}=|x-2|\lim_{n\to\infty}\frac{n}{n+1}=|x-2|.$$

Mit dem Quotientenkriterium folgt, dass die Reihe konvergent ist, wenn |x-2| < 1, also $x \in (1,3)$ ist, und dass sie divergent ist, wenn |x-2| > 1, also x > 3 oder x < 1 ist.

Über die Konvergenz beziehungsweise Divergenz der Reihe in x=1 und x=3 macht das Quotientenkriterium keine Aussage, und diese Fälle müssen wir gesondert untersuchen. Falls x=1 ist, so gilt

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} = (-1) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}.$$

Da die alternierende harmonische Reihe $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ konvergiert, konvergiert auch die Reihe $(-1)\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$. Für x=1 ist die Reihe also konvergent.

Sei x = 3. Dann gilt

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}.$$

Im Fall x=3 ist die Reihe also die harmonische Reihen, und diese ist divergent. Fassen wir zusammen: Die Reihe konvergiert für $x \in [1,3)$, und sie divergiert für $x \in \mathbb{R} \setminus [1,3)$.

Aufgabe 6.3

Die Funktionen $f: (-\frac{1}{5}, \infty) \to \mathbb{R}$, $f(x) = \exp(5x) - 1$, und $g: (-\frac{1}{5}, \infty) \to \mathbb{R}$, $g(x) = \ln(1+5x)$, sind stetig und differenzierbar. Es sind

$$\lim_{x \to 0} \exp(5x) - 1 = \exp(0) - 1 = 0$$

und

$$\lim_{x \to 0} \ln(1+5x) = \ln(1+0) = 0.$$

Weiter gilt

$$f'(x) = 5 \exp(5x)$$
 und $g'(x) = \frac{5}{1+5x} \neq 0$ für alle $x \in (-\frac{1}{5}, \infty)$.

Es ist $\frac{f'(x)}{g'(x)} = \exp(5x)(1+5x)$. Somit existiert $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$, und die Regel von de l'Hospital ist anwendbar. Es gilt

$$\lim_{x \to 0} \frac{\exp(5x) - 1}{\ln(1 + 5x)} = \lim_{x \to 0} \exp(5x)(1 + 5x) = \exp(0) \cdot 1 = 1.$$

Aufgabe 6.4

- 1. Da $\cos(x) = \cos(x + 2\pi)$ für alle $x \in \mathbb{R}$ gilt, folgt $f(x) = f(x + 2\pi)$ für alle $x \in D$. Da 2π die kleinste positive Periode von cos ist und dies auch für die Einschränkung auf D gilt, ist 2π auch die kleinste positive Periode von f.
- 2. Für alle $x \in \mathbb{R}$ gilt $|\cos(x)| \le 1$. Es folgt $|f(x)| = |\frac{1}{\cos(x)}| \ge 1$ für alle $x \in D$.
- 3. Da f periodisch mit Periode 2π ist, genügt es, die Funktion auf $(-\pi,\pi] \setminus \{-\frac{\pi}{2},\frac{\pi}{2}\}$ zu untersuchen. Sei also $x \in (-\pi,\pi] \setminus \{-\frac{\pi}{2},\frac{\pi}{2}\}$. Es ist $f'(x) = \left(\frac{1}{\cos(x)}\right)' = \frac{\sin(x)}{\cos^2(x)}$. Damit ist f'(x) = 0 genau dann, wenn $\sin(x) = 0$, also genau dann, wenn x = 0 oder $x = \pi$ ist. Für $x \in (0,\frac{\pi}{2})$ gilt

$$f'(x) = \frac{\sin(x)}{\cos^2(x)} > 0$$
, denn $\sin(x) > 0$.

Somit ist f auf $(0, \frac{\pi}{2})$ monoton wachsend. Für $x \in (-\frac{\pi}{2}, 0)$ gilt

$$f'(x) = \frac{\sin(x)}{\cos^2(x)} < 0$$
, denn $\sin(x) < 0$.

Somit ist f auf $\left(-\frac{\pi}{2},0\right)$ monoton fallend. Also hat f in 0 (und wegen der 2π -Periodizität auch in $x\in\{2k\pi\mid k\in\mathbb{Z}\}$) ein lokales Minimum.

Für $x \in (\frac{\pi}{2}, \pi)$ gilt

$$f'(x) = \frac{\sin(x)}{\cos^2(x)} > 0$$
, denn $\sin(x) > 0$.

Somit ist f auf $(\frac{\pi}{2}, \pi)$ monoton wachsend. Für $x \in (-\pi, -\frac{\pi}{2})$ gilt

$$f'(x) = \frac{\sin(x)}{\cos^2(x)} < 0$$
, denn $\sin(x) < 0$.

Somit ist f auf $(-\pi, -\frac{\pi}{2})$ und damit auch auf $(\pi, \pi + \frac{\pi}{2})$ monoton fallend, denn f ist 2π -periodisch. Also hat f in π (und wegen der 2π -Periodizität auch in $x \in \{(2k+1)\pi \mid k \in \mathbb{Z}\}$) ein lokales Maximum.

Aufgabe 6.5

Das n-te Taylorpolynom von ln in 1 haben wir bereits im Studienbrief bestimmt, es ist

$$P_{n,1}(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \dots + \frac{(-1)^{n-1}(x-1)^n}{n}.$$

Für n=3 haben wir also

$$P_{3,1}(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 3x - \frac{11}{6}x^3$$

Zur Fehlerabschätzung benutzen wir das Restglied von Lagrange. Für alle x>0 gibt es ein t_0 zwischen x und 1 mit

$$|\ln(x) - P_{3,1}(x)| = |R_{3,1}(x)| = \left| \frac{\ln^{(4)}(t_0)}{4!} (x - 1)^4 \right| = \left| -\frac{3!}{4!t_0^4} (x - 1)^4 \right| = \frac{1}{4t_0^4} (x - 1)^4.$$

Daraus folgt

$$|\ln(x) - P_{3,1}(x)| < \begin{cases} \frac{(x-1)^4}{4x^4}, & \text{falls } x < 1 \\ \frac{(x-1)^4}{4}, & \text{falls } x > 1. \end{cases}$$

Falls 0 < x < 1, so ist

$$\frac{(x-1)^4}{4x^4} < \frac{1}{2} \cdot 10^{-4} \iff \frac{(1-x)^4}{x^4} < 2 \cdot 10^{-4} \Leftrightarrow \frac{1-x}{x} < \frac{1}{10} \sqrt[4]{2}$$
$$\Leftrightarrow x > \frac{1}{\frac{1}{10} \sqrt[4]{2} + 1}.$$

Da $\sqrt[4]{2} > 1$, ist die letzte Ungleichung für alle $x > \frac{10}{11}$ erfüllt.

Falls x > 1, so ist

$$\frac{(x-1)^4}{4} < \frac{1}{2} \cdot 10^{-4} \Leftrightarrow (x-1)^4 < 2 \cdot 10^{-4} \Leftrightarrow x < \frac{1}{10} \sqrt[4]{2} + 1,$$

und diese Ungleichung ist für alle $x < \frac{11}{10}$ erfüllt.

Somit ist $|\ln(x) - P_{3,1}(x)| < \frac{1}{2} \cdot 10^{-4}$ für alle $x \in (\frac{10}{11}, \frac{11}{10})$ erfüllt. Insbesondere gilt die Abschätzung für alle $x \in (1 - \frac{1}{11}, 1 + \frac{1}{11}) = U$.

Lösungsvorschläge MG LE 6

Aufgabe 6.6

Sei $c \in (a, b)$. Da die Einschränkungen von f auf [a, c] und auf [c, b] stetig und in (a, c) und (c, b) differenzierbar sind, können wir den Mittelwertsatz auf die Einschränkungen anwenden. Es gibt also ein x_1 in (a, c) und ein $x_2 \in (c, b)$ mit

$$\frac{f(c) - f(a)}{c - a} = f'(x_1)$$
 und $\frac{f(b) - f(c)}{b - c} = f'(x_2)$.

Für x_1 und x_2 gilt dann $a < x_1 < x_2 < b$. Es folgt

$$\frac{f(b)-f(a)}{b-a} = \frac{f(b)-f(c)+f(c)-f(a)}{b-a}$$

$$= \frac{f(b)-f(c)}{b-a} + \frac{f(c)-f(a)}{b-a}$$

$$= \frac{f(b)-f(c)}{b-c} \frac{b-c}{b-a} + \frac{f(c)-f(a)}{c-a} \frac{c-a}{b-a}$$

$$= f'(x_2) \frac{b-c}{b-a} + f'(x_1) \frac{c-a}{b-a}.$$

Wir setzen nun $a_1 = \frac{c-a}{b-a}$ und $a_2 = \frac{b-c}{b-a}$. Da Zähler und Nenner positiv sind, gilt $a_1, a_2 \in (0, \infty)$. Es ist $\frac{b-c}{b-a} + \frac{c-a}{b-a} = \frac{b-a}{b-a} = 1$. Somit erfüllen x_1, x_2 und a_1, a_2 die Vorgaben der Aufgabe.