Tel Aviv University 30/11/2016

Introduction to Modern Cryptography (0368.3049) – Ex. 3 Benny Chor and Orit Moskovich

Submission in singles or pairs to Orr Fischer's Schreiber mailbox (289) until 14/12/2016, 23:59 (IST)

- Appeals/missing grade issues: bdikacs AT gmail.com
- Issues regarding missing/unchecked assignments will be addressed only if a soft copy will be submitted <u>on time</u> to: crypto.f16 AT gmail.com.
 Subject of the email: Ex.3, ID
 - 1. We say that an adversary succeeds in forging a MAC, if it can choose a small (constant) number of messages $m_1, ..., m_s$, obtain their MACs under the unknown secret key k, and then produce a new message $m \notin \{m_1, ..., m_2\}$ together with it MAC $MAC_k(m)$.

Let $F_k: \{0,1\}^n \to \{0,1\}^n$ be a collection of pseudo random functions (PRF).

Define the following MAC schemes. Prove that all these MACs are *insecure* for messages of variable length:

- (a) $MAC_k(m) = F_k(m_1) \oplus F_k(m_2) \oplus ... \oplus F_k(m_\ell)$, where $m = m_1...m_\ell \ (m_i \in \{0,1\}^n)$
- (b) $MAC_k(m) = (F_k(m_1), F_k(F_k(m_2)), \text{ where } m = m_1 m_2 \ (m_1, m_2 \in \{0, 1\}^n)$
- (c) $MAC_k(m) = (F_k(0||m_1), F_k(1||m_2)), \text{ where } m = m_1 m_2 \ (m_1, m_2 \in \{0, 1\}^{n-1})$
- 2. Consider the following modification to the CBC-MAC:

$$MAC_k(m_1, ..., m_{\ell}) = CBC - MAC(m_1, ..., m_{\ell}, \ell)$$

i.e., execute the regular CBC-MAC on each of the blocks m_i , and on ℓ (the number of blocks). Show how to break the suggested MAC with a constant number of queries.

- 3. (a) Let $h: \{0,1\}^n \to \{0,1\}^n$ be a collision resistant function, that is not compressing. Is h necessarily a OWF?
 - (b) Let $h: \{0,1\}^{2n} \to \{0,1\}^n$ be a collision resistant hash function (h is compressing). In addition, assume h is a regular function, namely for every $y \in \{0,1\}^n$ that is an image under h, the number of $x \in \{0,1\}^{2n}$ such that h(x) = y is exactly 2^n .

Let A be a PPT algorithm that inverts h w.p. $\geq \varepsilon$:

$$Pr_{x \leftarrow U_{2n}}[A(h(x)) = x' \text{ such that } h(x) = h(x')] \ge \varepsilon$$

Show that there exists a PPT algorithm A' that can find a collision in h with probability $\geq \varepsilon(1-\frac{1}{2^n})$.

(c) Let $h: \{0,1\}^{n+s} \to \{0,1\}^n$ be a collision resistant hash function (h is compressing). Let A be a PPT algorithm that inverts h w.p. $\geq \varepsilon$:

$$Pr_{x \leftarrow U_{n+s}}[A(h(x)) = x' \text{ such that } h(x) = h(x')] \ge \varepsilon$$

Show that there exists a PPT algorithm A' that can find a collision in h with probability $\geq \frac{\varepsilon}{2} - \frac{1}{2^s}$.

Hint: (1) What is the probability that a random x does not collide with any other x', i.e., $\forall x' \neq x$. $h(x) \neq h(x')$? (2) Given that there exists $x' \neq x$ such that h(x) = h(x'), what is the probability that $A(h(x)) \neq x$?

- 4. In lecture 5, we have seen how to construct a hash function for variable length messages, based on a hash function for fixed length messages (see the diagram in slide 56).
 - (a) Show that the scheme, as presented in class, is not secure for variable length messages. (That is, demonstrate how to create a collision.)
 - (b) Suggest a modification for the scheme that will fix the issue (no need to formally prove that the new scheme is indeed a collision resistant hash function, but do supply a short textual argument).
- 5. In this question we show that any public-key encryption is not perfectly secure. Specifically, Let $\mathcal{E} = (Gen, Enc, Dec)$ be a PKE. Show that there exists an unbounded attacker A such that, for any message m:

$$Pr_{\substack{(sk,pk) \leftarrow Gen \\ c \leftarrow Enc_{pk}(m)}}[A(c,pk) = m] = 1$$

6. Intuitively, a trapdoor function is a function that is easy to compute in one direction, yet difficult to invert, without some secret key.

Definition: A function $F: \{0,1\}^n \to \{0,1\}^n$ is a trapdoor function with a key sampling algorithm Gen, and an inverting algorithm Inv if: Gen samples a pair of keys (sk, pk), such that given sk, it is possible to compute $x = Inv_{sk}(F_{pk}(x))$. On the other hand, given only pk, F_{pk} is one-way.

Definition: ε -HCB for a trapdoor function is a predicate $B: \{0,1\}^n \to \{0,1\}$ such that: $pk, F_{pk}(x), B(x) \approx_{c,\varepsilon} pk, F_{pk}(x), u$ where $pk \leftarrow Gen, x \leftarrow U_n, u \leftarrow U_1$

Let $F:\{0,1\}^n \to \{0,1\}^n$ be a trapdoor function. Assume also that F has an ε -hardcore-bit $B:\{0,1\}^n \to \{0,1\}$. Show how to construct from F a public-key bit-encryption scheme. Prove it is 2ε -semantically-secure.

Hint: $Enc_{pk}(b,r) = F_{pk}(r), B(r) \oplus b$

- 7. Multiplicative generators in Z_m^* . In this problem we will make a mild usage of programming to explore the existence and abundance of multiplicative generators in three groups Z_m^* .
 - Let (G, \cdot) be a finite group with k elements, and denote by 1 its unit element. Recall that G is called *cyclic* if there is a $g \in G$ such that $\langle g \rangle = G$, namely $\{g, g^2, \dots, g^{k-1}, g^k\} = G$. Such g is called a *multiplicative generator* of G. Testing if a given g is a multiplicative generator using the equality above is feasible for small groups, but infeasible for large ones.

Suppose we know the factorization of k: $k = p_1^{e_1} p_2^{e_2} \dots p_\ell^{e_\ell}, e_i \ge 1$ (in particular, k has ℓ distinct prime factors). It is known that in such case, g is a generator iff $g^{k/p_1} \ne 1, g^{k/p_2} \ne 1, \dots, g^{k/p_\ell} \ne 1$ (recall that by Lagrange theorem, $g^k = 1$).

(a) Write a short and readable code in your favorite programming language (you can choose either Python or Sage) which tries all elements in G and determines if each of them is a multiplicative generator or not. You should state if G is cyclic or not. If G is cyclic, your code should output the list of all multiplicative generators in G. Otherwise, the code should output the list of all elements in G having maximum order. Submit the code and the requested outputs.

Recall that the elements in the group $(Z_m^*, \cdot_{\mod m})$ are all integers in the set $\{1, \dots, m-1\}$ that are relatively prime to m. There are $\phi(m)$ many elements in Z_m^* . Run your code for m=35,37,38.

Hint: if you use Python, pow(a,b,m) computes $a^b \pmod{m}$.

(b) It is known that if m is a prime, Z_m^* has a multiplicative generator. In fact, such group has many multiplicative generators. For $m=2^{107}-1$, it is not feasible to try all $g\in G$. Instead, write a code that samples N elements $g\in G$ uniformly at random, and for each of them, tests if it is a multiplicative generator. Count the number of multiplicative generators, A, and output A, N, and the first 10 multiplicative generators your code finds.

Use A and N to estimate the number of multiplicative generators in $Z_{2^{107}-1}^*$. N should be at least 100,000. Compare your estimate to $\phi(2^{107}-2)$, which is the exact number of such generators. How good would you say your estimate is. Submit the code and the requested outputs.

The function $\phi(m)$ was defined in class.

In both Python and Sage, calling import random (once) imports the appropriate package for pseudo random generation. Then g=random.randint(1,2**107-2) is a pseudo random generator that produces a new g in G each time it is invoked. Serious distinguishers will probably tell it apart from a truly random sequence, but it is just fine for our needs.

Oops: To solve the problem, the prime factorization of $2^{107} - 2$ is required. Well,

$$2^{107} - 2 = 2 \cdot 3 \cdot 107 \cdot 6361 \cdot 69431 \cdot 20394401 \cdot 28059810762433 \ .$$

- 8. In this problem, you will implement the arithmetic of $GF(3^4)$, using Sage, and look for multiplicative generators. Recall that $GF(3^4)$, which has 81 elements, is **not** the same as Z_{81} !
 - Find an irreducible polynomial f(x) of degree 4 over GF(3).
 - Write a Boolean Sage function is_generator(y), which checks if a given $y \in GF(3^4)$ is a multiplicative generator.
 - Apply the Sage command K.<a>=GF(3**4, name='a',modulus=f(x)) to implement $GF(3^4)$ arithmetic. Write a program that goes over all $GF(3^4)$ elements, identifies the multiplicative generators, and inserts all multiplicative generators into a set. The program should output the set of generators and its size.
 - Submit your code (including the irreducible polynomial f(x) and a Sage "proof" it is indeed irreducible), the set of generators, and its size.
- 9. (a 10-Point bonus problem). A student in class proposed the following variant of Naor's bit commitment:
 - a) The receiver Bob sends two random strings $w_0, w_1 \in \{0,1\}^n$ to the sender Alice.
 - b) To commit to a bit $b \in \{0,1\}$, Alice chooses a random $s \in \{0,1\}^n$, and sends to Bob $G(s \circ w_b)$ (\circ denotes concatenation), where $G: \{0,1\}^{2n} \to \{0,1\}^{10n}$ is a pseudo random generator.

To decommit to b, Alice sends (b, s). Show:

- a) There exists a PRG G, such that the above scheme is not binding.
- b) There exists a PRG G, such that the above scheme is not hiding.

(You can assume that for any polynomial length-functions l(n) < l'(n), there exist PRGs that stretch l(n) bits to l'(n) bits.)