Data Analytics EEE 4774 & 6777

Module 4 - Classification

Ensemble Methods - Boosting - Bagging - Random Forest
Spring 2022

Ensemble Methods

 Combines multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone

Most data challenges are won by ensemble methods

- Bayesian model averaging (BMA) makes predictions using an average over several models with weights given by the posterior probability of each model given the data.
- Stacking involves training a learning algorithm to combine the predictions of several other learning algorithms. First, all of the other algorithms are trained using the available data, then a combiner algorithm is trained to make a final prediction using all the predictions of the other algorithms as additional inputs. In practice, a logistic regression model is often used as the combiner.

Boosting and Bagging

- Boosting involves incrementally building an ensemble by training each new model instance to emphasize the training instances that previous models mis-classified.
- Bootstrap aggregating (bagging), involves having each model in the ensemble vote
 with equal weight. In order to promote model variance, bagging trains each model in
 the ensemble using a randomly drawn subset of the training set. For example,
 the random forest algorithm combines random decision trees with bagging to
 achieve very high classification accuracy in many problems.

Boosting

- Produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees, for both regression and classification problems.
- Gradient boosting is typically used with decision trees (especially CART trees) of a fixed size as base learners.
- Generic gradient boosting: at the m-th step fit a decision tree $h_m(x)$ to pseudo-residuals, i.e., correctly classified vs. misclassified instances

$$h_m(x) = \sum_{j=1}^{J_m} b_{jm} \mathbf{1}_{R_{jm}}(x),$$

$$F_m(x) = F_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} \mathbf{1}_{R_{jm}}(x), \quad \gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, F_{m-1}(x_i) + \gamma).$$

• Size of trees: the number of terminal nodes in trees controls the maximum allowed level of interaction between variables in the model. With J=2 no interaction between variables is allowed. With J=3 the model may include effects of the interaction between up to two variables, and so on. Typically, $4 \le J \le 8$ work well for boosting and results are fairly insensitive to the choice of J in this range.

Ex: AdaBoost, XGBoost

Python Exercise: AdaBoost in scikit-learn

```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4, n_informative=2, n_redundant=0, random_state=0, shuffle=False)
clf = AdaBoostClassifier(n_estimators=100, random_state=0)
clf.fit(X, y)
clf.predict([[0, 0, 0, 0]])
clf.score(X, y)
```

Bagging

- Bootstrap aggregating (bagging) for tree learners
 - First obtain B bootstrap sets from the original training set
 - For b = 1, ..., B:
 - Sample, with replacement, n training examples from X, Y; call these X_b, Y_b .
 - Train a classification or regression tree on X_b , Y_b .
 - After training, predictions for unseen samples can be made by taking the majority vote in the case of classification trees
- By sampling with replacement, some observations may be repeated in each bootstrap set. For large n, each bootstrap set is expected to have the fraction $(1 1/e \approx 63.2\%)$ of the unique examples of original dataset, the rest being duplicates.
- While the predictions of a single tree are highly sensitive to noise in its training set, the average of many trees is not, as long as the trees are not correlated
- Simply training many trees on a single training set would give strongly correlated trees (or even the same tree many times, if the training algorithm is deterministic); bootstrap sampling is a way of de-correlating the trees by showing them different training sets.
- The number of samples/trees, *B*, is a free parameter. Typically, a few hundred to several thousand trees are used, depending on the size and nature of the training set. An optimal number of trees *B* can be found using cross-validation, or by observing the *out-of-bag error*: the mean prediction error on each training sample *x_i*, using only the trees that did not have *x_i* in their bootstrap sample. The training and test error tend to level off after some number of trees have been fit.

Random Forest

- A bagging algorithm for averaging multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance
- At the expense of a small increase in the bias and some loss of interpretability, but generally greatly boosts the performance in the final model
- Random forests differ in only one way from the original bagging algorithm for trees:
 - they use a modified tree learning algorithm that selects, at each candidate split in the learning process, a random subset of the features.
 - This process is sometimes called "feature bagging". The reason for doing this is the correlation of the trees in an ordinary bootstrap sample: if one or a few features are very strong predictors for the response variable (target output), these features will be selected in many of the *B* trees, causing them to become correlated.
- Typically, for a classification problem with p features, \sqrt{p} (rounded down) features are used in each split.
- In practice the best values for these parameters will depend on the problem, and they should be treated as tuning parameters