Introduction to Robotic Operating System (ROS)

by W.S. Ooi

Simultaneous Localization and Mapping (SLAM)

Simultaneous localization and mapping (SLAM) is the process by which a mobile robot can construct a map of an unknown environment and simultaneously compute its location using the map.

Simultaneous Localization and Mapping (SLAM)

- \$ roscore
- \$ roslaunch turtlebot3_gazebo_ros turtlebot3_world.launch
- \$ roslaunch turtlebot3_slam turtlebot3_slam.launch
- \$ rosrun rviz rviz -d `rospack find turtlebot3_slam`/rviz/turtlebot3_slam.rviz
 - Add map and set the topic to /map
 - Add RobotModel
- \$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch
 - Move the robot to generate the map
- \$ rosrun map_server map_saver -f ~/mymap
 - Kill off slam, keyboard, and rviz
- \$ roslaunch turtlebot3_navigation turtlebot3_navigation.launch map_file:=\$HOME/mymap.yaml
- \$ rosrun rviz rviz -d 'rospack find turtlebot3_navigation'/rviz/turtlebot3_nav.rviz
 - Add map and set the topic to /map
 - Add RobotModel
 - Select 2D Pose Estimate
 - Select 2D Nav Goa

https://youtu.be/MAt-snbFj4El

Create Empty World

roslaunch turtlebot3_gazebo_ros turtlebot3_empty_world.launch

How to Save Custom Model?

1) Go to Model Editor. Insert the object from the shapes provided. Double click the object and change the size of the object.

2) Change the Model Name

3) Save the Model

- 4) Close Gazebo and run " roslaunch turtlebot3_gazebo_ros turtlebot3_empty_world.launch".
- Then, insert your model.

- Create an empty document and name it "mylaser1". Then, write:
- #!/usr/bin/env python
- import rospy
- from geometry_msgs.msg import Twist
- from sensor_msgs.msg import LaserScan
- rospy.init_node('laser_readings')
- rate=rospy.Rate(1)
- while not rospy.is_shutdown():
- msg=rospy.wait_for_message("scan",LaserScan)
- print len(msg.ranges)
- print msg.ranges
- rate.sleep()

- robot@vm:~\$ roscore
- robot@vm:~\$ roslaunch turtlebot3_gazebo_ros turtlebot3_empty_world.launch
- Place 2 objects:

- robot@vm:~\$ chmod +x /home/robot/mylaser
- robot@vm:~\$ /home/robot/mylaser
- robot@vm:~\$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

https://youtu.be/zs1kpGcL9Ls

- To obtain the middle value from laser
 - print msg.ranges[1]

More advanced coding

```
#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan
def move():
  rospy.init_node('robot_cleaner', anonymous=True) # Starts new node
  velocity_publisher = rospy.Publisher('cmd_vel', Twist, queue_size=10)
  vel msg = Twist()
  print("Let's move your robot") #Receiveing the user's input
  speed = 0.2
  distance = 0.4
  isForward = input("Foward?: ") #True or False
  if(isForward):
    vel _msg.linear.x = abs(speed)
  else:
    vel_msg.linear.x = -abs(speed)
```

Continue..

```
#Since we are moving just in x-axis
  vel_msg.linear.y = 0
  vel_msg.linear.z = 0
  vel_msg.angular.x = 0
  vel_msg.angular.y = 0
  vel msg.angular.z = 0
  while not rospy.is_shutdown():
    t0 = rospy.Time.now().to_sec() #Set current time for dist calc
    current_distance = 0
    #Loop to move the turtle in an specified distance
    while(current_distance < distance):</pre>
       velocity publisher.publish(vel msg) #Publish the velocity
      t1=rospy.Time.now().to_sec() #Take actual time to vel calc
      current_distance= speed*(t1-t0) #Calculates distance
      scan_msg=rospy.wait_for_message("scan",LaserScan)
       a=scan_msg.ranges
       print a
```

Continue...

```
#After the loop, stops the robot
     vel msg.linear.x = 0
     #Force the robot to stop
     velocity publisher.publish(vel msg)
     # If we press control + C, the node will stop.
     rospy.spin()
if __name__ == '__main__':
  try:
     #Testing our function
     move()
   except rospy.ROSInterruptException: pass
```

To connect RVIZ to Gazebo

roslaunch turtlebot3_gazebo_ros turtlebot3_gazebo_rviz.launch