Alternating Squares

Sunday, October 28, 2018 2:55 PM

2017

1. [Alternating Least Squares]

In matrix factorization, we choose vectors $U_a \in \mathbb{R}^k$ for each customer a, and vectors $V_i \in \mathbb{R}^k$ for each product i, such that $U_a^\mathsf{T} V_i$ is a good prediction for the rating Y_{ai} . To optimize for these vectors, we use the alternating least-squares algorithm which takes the following form:

- 1. Initialize vectors $V_i \in \mathbb{R}^k$ randomly.
- 2. Repeat until convergence:
 - a. While fixing the V_i , for each customer a, find the optimal U_a minimizing

$$\sum_{(a,i) \text{ observed}} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i)^2 + \frac{\lambda}{2} \|U_a\|^2$$

b. While fixing the U_a , for each product i, find the optimal V_i minimizing

$$\sum_{(a,i) \text{ observed}} \frac{1}{2} (Y_{ai} - U_a^\mathsf{T} V_i)^2 + \frac{\lambda}{2} \|V_i\|^2$$

For step (2a) of the algorithm, for a given customer a, let Z be the vector of all product ratings observed from customer a. Let X be the matrix whose j-th row is V_i if the entry Z_j is a rating for product i.

a. What is the exact solution for step (2a) of the algorithm? Ans:

$$(X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}Z$$

- b. What is the reason for using a non-zero value for λ ? Ans: There are infinitely many solutions for the original training loss of the matrix factorization problem, so we use $\lambda > 0$ to ensure that we get a unique solution.
- c. Improving alternating least squares algo

To improve the prediction accuracies, we now introduce additional parameters and approximate

$$Y_{ai} \approx U_a^{\mathsf{T}} V_i + \beta_a + \gamma_i + \mu$$

where β_a , γ_i are parameters that represent the bias in the ratings from customer a and from product i respectively, and μ is the average of all the observed ratings. We will pre-compute μ from the data, but the parameters β_a , γ_i will be learned by optimization. The training loss of this new model is

$$\sum_{(a,i) \text{ observed}} \frac{1}{2} (Y_{ai} - U_a^{\mathsf{T}} V_i - \beta_a - \gamma_i - \mu)^2 + \frac{\lambda}{2} \Biggl(\sum_a ||U_a||^2 + \sum_i ||V_i||^2 + \sum_a \beta_a^2 + \sum_i \gamma_i^2 \Biggr).$$

By applying coordinate descent to this problem, we get the following algorithm.

- 1. Initialize V_i, β_a, γ_i randomly.
- 2. Repeat until convergence:
 - a. While fixing the V_i, β_a, γ_i , find the optimal U_a .
 - b. While fixing the U_a, β_a, γ_i , find the optimal V_i .
 - c. While fixing the U_a , V_i , find the optimal β_a , γ_i .

10/29/2018 OneNote Online

In step (2c) of the algorithm, what is the exact solution for β_a ? Ans:

$$\tfrac{1}{1+\lambda} \textstyle \sum_{(a,i) \text{ observed}} (Y_{ai} - U_a^\top V_i - \gamma_i - \mu)$$