Fecha

6872 Fundamentos de Eletrônica

Aula 2: Informação Preliminar

Elvio J. Leonardo

Bacharelado em Ciência da Computação Departamento de Informática Universidade Estadual de Maringá

v. 2022

Roteiro

- Revisão matemática
 - Função matemática, função periódica, número complexo
- ► Conceitos básicos de eletricidade
- Grandezas elétricas
 - Tensão, corrente, potência, resistência
- ► Componentes elétricos
- ► Instrumentos de medição

Hair Raising Electric Chair

150,000 volts shot through body without harm.

Função Matemática (Conjuntos)

- \blacktriangleright Relação estabelecida entre dois conjuntos, $\bf A$ (ou domínio) e $\bf B$ (ou contradomínio) através de uma lei de formação
- ► <u>Todos</u> os elementos de **A** estão associados
- ► Cada elemento de A se associa a um único elemento de B
- lacktriangle Os elementos de ${f B}$ associados formam o conjunto imagem

	$f:A\to B$	
Α	lei de formação $y = x^2$	\mathbf{B}
-3	$y = (-3)^2 = 9$	9
-2	$y = (-2)^2 = 4$	4
-1	$y = (-1)^2 = 1$	1
0	$y = 0^2 = 0$	0

$$\begin{aligned} \mathrm{Dom}(f) &= \{-3, -2, -1, 0\} \\ \mathrm{CDom}(f) &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ \mathrm{Im}(f) &= \{0, 1, 4, 9\} \end{aligned}$$

Função Matemática

- Função de uma variável: y = f(x)
- ▶ Função de múltiplas (n) variáveis: $y = f(x_1, x_2, ..., x_n)$
- Função de uma variável pode ser representada em um plano cartesiano
- Exemplos de função de uma variável:
 - Polinômio de primeiro grau: y = ax + b
 - Polinômio de segundo grau: $y = ax^2 + bx + c$

Função Matemática (cont.)

- Exemplos de função de uma variável (cont.):
 - ightharpoonup Exponecial: $y = a \exp(bx)$
 - ightharpoonup Senóide: $y = a\sin(bx)$

Função Matemática (cont.)

- ightharpoonup Exemplos: obtenha as funções de primeiro grau (y=ax+b) dos gráficos abaixo
- ightharpoonup Precisamos de dois pontos para resolver as duas variáveis a e b

$$\begin{array}{ll} (1) & (x,y)=(0,2)\to b=2\\ & (x,y)=(-2,0)\to a=1\\ & \log o:\ y=x+2 \end{array}$$

- (2) $(x, y) = (0, 0) \rightarrow b = 0$ $(x, y) = (1, 1) \rightarrow a = 1$ $\log x \cdot y = x$
- (3) $(x,y) = (0,-2) \rightarrow b = -2$ $(x,y) = (1,0) \rightarrow a = 2$ $\log x \cdot y = 2x - 2$

Função Periódica

Função que se repete em um intervalo determinado, isto é, f(x) = f(x + nT) onde T é uma constante e determina o intervalo de repetição

- Parâmetros de uma função periódica y = f(x):
 - ▶ Período (T): intervalo de repetição; unidade: segundo [s]
 - Frequência (f): número de repetições por unidade de tempo; unidade: Hertz [Hz]
 - Valor de pico (\hat{y}) : valor máximo que a função atinge; pode ser pico positivo ou negativo
 - Valor pico-a-pico (y_{pp}) : diferença entre valores de pico positivo e negativo

Note que:
$$f = \frac{1}{T}$$

- Parâmetros de uma função periódica y = f(x):
 - \blacktriangleright Valor médio (\bar{y}) : média aritmética dos valores obtidos pela função periódica

$$\boxed{ar{y} = rac{1}{T} \int_0^T y \, dx}$$
 Se $ar{y} = 0$, então as áreas acima e abaixo do eixo x são iguais

Valor eficaz ou RMS (root mean square) ($y_{\rm RMS}$): valor constante que dissiparia a mesma energia em uma carga resistiva

$$y_{\rm RMS} = \sqrt{\frac{1}{T} \int_0^T y^2 \, dx}$$

▶ Fator de ondulação ou *ripple*: razão entre o valor eficaz da onda alternada (descontando seu valor médio) e o seu valor médio; indica a quantidade de ondulação da função periódica

$$ripple = \frac{RMS(y - \bar{y})}{\bar{y}}$$

► Exemplos:

- ▶ Rede elétrica: onda senoidal com frequência de 60 Hz e tensões RMS e de pico iguais a 127 V e 178,6 V (ou 220 V e 311,1 V)
- \blacktriangleright Sinal de relógio de computadores: onda quadrada com frequências em MHz (10^6 Hz) ou GHz (10^9 Hz)
- Ouvido humano: sensível a sinais entre 20 Hz e 20 kHz (10³ Hz), dependendo da idade; audição canina alcança de 40 Hz a 75 kHz.

- Exemplos de funções periódicas
 - Seno: $y = f(t) = A\sin(\omega t + \phi) = A\sin(2\pi ft + \phi)$
 - Cosseno: $y = f(t) = A\cos(\omega t + \phi) = A\cos(2\pi ft + \phi)$
 - ► Lembrando que $\sin(\omega t) = \cos(\omega t 90^{\circ})$

 $A = \hat{y}$: amplitude ou valor de pico $y_{pp} = 2A$: valor pico-a-pico $\bar{y} = 0$ V: valor médio $y_{\text{RMS}} = \frac{\hat{y}}{1/2}$ V: valor eficaz

 ϕ : fase (ou defasagem) [rad] T: período [s] $f = \frac{1}{T}$: frequência [Hz] $\omega = 2\pi f$: velocidade ângular [rad/s]

Números Complexos

- Número que pode ser representado como z = a + jb
 - ► a representa a parte real
 - b representa a parte imaginária
 - ightharpoonup j é a unidade imaginária, com $j^2 = -1$
- ► Plano Complexo
 - Forma cartesiana: z = a + jb
 - ightharpoonup parte real: $\operatorname{Re}\{z\} = a = r\cos(\alpha)$
 - ightharpoonup parte imaginária: $Im\{z\} = b = r \sin(\alpha)$
 - Forma polar: $z = re^{j\alpha} = r \angle \alpha$
 - módulo: $|z| = r = \sqrt{a^2 + b^2}$
 - argumento: $\arg(z) = \alpha = \arctan\left(\frac{b}{a}\right)$

Números Complexos (cont.)

- Conjugado: $z^* = a jb = re^{-j\alpha} = r\angle \alpha$
- ► Para $z_1 = a_1 + jb_1 = r_1 \angle \alpha_1$ e $z_2 = a_2 + jb_2 = r_2 \angle \alpha_2$
 - Adição: $z = z_1 + z_2 = a_1 + a_2 + j(b_1 + b_2)$
 - ► Subtração: $z = z_1 z_2 = a_1 a_2 + j(b_1 b_2)$
 - Produto: $z = z_1 \cdot z_2 = r_1 r_2 \angle (\alpha_1 + \alpha_2)$
 - ▶ Divisão: $z = z_1 \div z_2 = \frac{r_1}{r_2} \angle (\alpha_1 \alpha_2)$
- Exemplo: $z_1 = 8 + j6 = 10\angle 36, 9^o \text{ e } z_2 = 3 j4 = 5\angle 53, 1^o$
 - Adição: $z = z_1 + z_2 = 11 + j2 = 11, 2 \angle 10, 3^\circ$
 - ► Subtração: $z = z_1 z_2 = 5 + j10 = 11, 2 \angle 63, 4^\circ$
 - Produto: $z = z_1 \cdot z_2 = 50 \angle -16, 2^o = 48, 0 j13, 9$
 - Divisão: $z = z_1 \div z_2 = 2 \angle 90^\circ = j2$

Carga Elétrica

- Macroscopicamente a matéria é eletricamente neutra na maioria das situações
 - Exceções: nuvens em uma tempestade, pessoas roçando o tapete em clima seco, placas carregadas de um capacitor, etc.
- Microscopicamente a matéria é cheia de cargas elétricas
- ▶ Elétrons movem-se entre pontos com diferentes potenciais elétricos
- A velocidade de deslocamento varia com a diferença de potencial (campo elétrico) e a facilidade de movimentação (propriedades da matéria)
- ▶ Unidade de carga elétrica: Coulomb [C], pelo físico francês Charles-Augustin de Coulomb
 - Um elétron tem uma carga de $-1, 6 \cdot 10^{-19}$ C (um próton tem a mesma carga mas com polaridade oposta)
- Movimentação de cargas elétricas produz <u>corrente elétrica</u>

Charles-Augustin de
Coulomb (born 14 June, 1736
— died 23 August, 1806) was a
French military engineer and
physicist. He is best known
for the description of the
electrostatic force of
attraction and repulsion.

Campos Elétrico e Magnético

- ► Campo Elétrico
 - Campo de força produzido por uma carga elétrica; atua sobre outras cargas colocadas em sua vizinhança

- ► Campo Magnético
 - Campo de força produzido por uma carga elétrica em movimento; atua sobre outras cargas elétricas ou materiais magnéticos colocados em sua vizinhança

- ightharpoonup Tensão Elétrica [V ou v]
 - É a diferença de potencial elétrico entre dois pontos
 - Também conhecida como d.d.p. (ou diferença de potencial)
 - ► Unidade: Volt [V], pelo físico italiano Alessandro Volta

Alessandro Giuseppe Antonio Anastasio Volta (born 18 February, 1745 — died 5 March, 1827) was an Italian physicist, chemist, and pioneer of electricity and power who is credited as the inventor of the electric battery and the discoverer of methane.

- Convenção:
 - $V_{AB} = V_A V_B \rightarrow \text{d.d.p. entre os pontos A e B}$
 - $V_A = V_A V_{
 m GND} \rightarrow {
 m d.d.p.}$ entre o ponto A e um referêncial comum
- ▶ Referencial Comum: Terra, Chassis, *Ground*
 - Tensão do referencial comum: $V_{GND} = 0 V$
 - ► Símbolos:

- ightharpoonup Corrente Elétrica [I ou i]
 - É o fluxo de partículas portadoras de carga elétrica por unidade de tempo
 - É produzida pela diferença de potencial elétrico entre as extremidades
 - Unidade: Ampère [A] = [C/s], pelo matemático e físico francês André-Marie Ampère
 - Convenção:
 - Sentido Convencional: corrente flui do ponto de maior potencial para o ponto de menor potencial
 - Sentido Real: corrente flui do ponto de menor potencial para o ponto de maior potencial

André-Marie Ampère (born 20 January, 1775 died 10 June, 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism.

- Resistência Elétrica [R]
 - Característica de um corpo de se opor à passagem de corrente elétrica mesmo quando existe uma d.d.p. aplicada
 - Unidade: Ohm [Ω], pelo físico alemão Georg Simon Ohm
 - Depende basicamente do material e sua forma
 - Inversamente proporcional à secção transversal A
 - Diretamente proporcional ao comprimento L e à resistividade do material ρ
- ightharpoonup Condutância Elétrica [G]
 - ► Inverso da resistência elétrica
 - Unidade: Siemens [S], pelo inventor alemão Ernst Siemens

Georg Simon Ohm, (born March 16, 1789 — died July 6, 1854) was a German physicist who discovered the law, named after him, which states that the current flow through a conductor is directly proportional to the potential difference (voltage) and inversely proportional to the resistance.

${\bf Exemplos:}$

Material	Resistividade (ρ)
Cobre	$1.7 \cdot 10^{-8} \Omega m$
Ouro	$2.4 \cdot 10^{-8} \Omega m$
Silício	$640~\Omega \mathrm{m}$
Água pura	$2.5 \cdot 10^{5} \ \Omega {\rm m}$
Borracha	$10^9~\Omega \mathrm{m}$

- ▶ Potência Elétrica [P]
 - ▶ É o trabalho realizado pela energia elétrica em um intervalo de tempo (ou em 1 segundo)
 - Em circuitos elétricos: $P = V \cdot I$
- Elementos do circuito podem absorver ou fornecer energia
 - P > 0 \rightarrow potência é absorvida pelo componente
 - P < 0 \rightarrow potência é fornecida pelo componente
 - ► Unidade: Watt [W], pelo engenheiro escocês James Watt
- ► Energia Elétrica
 - ► Energia = Potência · tempo
 - Unidades
 - Joule $[J] = [W \cdot s]$, pelo físico britânico James Joule
 - kiloWatt-hora [kW-h], usado pelas empresas fornecedoras de energia

James Watt (born 19 January, 1736 — died 25 August, 1819) was a Scottish inventor, mechanical engineer, and chemist who improved the steam engine in 1776, which was fundamental to the Industrial Revolution.

James Prescott Joule (born 24 December, 1818 — died 11 October, 1889) was an English physicist, mathematician and brewer. He studied the nature of heat, and discovered its relationship to mechanical work.

► Analogia Elétrica-Hidráulica

Elétrico		Hidráulico	
Tensão	\leftrightarrow	Pressão	
$\operatorname{Corrente}$	\leftrightarrow	Volume por segundo	
Resistência	\leftrightarrow	Atrito	

► Múltiplos

Nome	Símbolo	Valor	Exemplos
kilo	k	$10^3 = 1000$	$k\Omega$, kV , kHz
mega	${ m M}$	$10^6 = 1000 \cdot 10^3$	$M\Omega, MHz$
$_{ m giga}$	G	$10^9 = 1000 \cdot 10^6$	$G\Omega$, GHz
tera	${ m T}$	$10^{12} = 1000 \cdot 10^9$	THz

► Submúltiplos

Nome	Símbolo	Valor	Exemplos
mili	m	$10^{-3} = 0,001$	mA, mH, ms
$_{ m micro}$	μ	$10^{-6} = 10^{-3} \div 1000$	$\mu A, \mu F, \mu s$
nano	\mathbf{n}	$10^{-9} = 10^{-6} \div 1000$	nA, nF, ns
pico	p	$10^{-12} = 10^{-9} \div 1000$	pA, pF, ps

- ► Uso de escala logaritmica: decibel (dB)
 - ▶ É uma unidade que indica a proporção de uma quantidade física (geralmente energia ou intensidade) em relação a um nível de referência especificado ou implícito [Wikipedia]
 - ► Relações:
 - ightharpoonup Potência P expressa em dB em relação à potência de referência P_0 :

$$P_{dB} = 10 \log \left(\frac{P}{P_0}\right)$$

▶ Tensão V e corrente I expressas em dB em relação às referências V_0 e I_0 :

$$V_{dB} = 20 \log \left(\frac{V}{V_0}\right)$$
 e $I_{dB} = 20 \log \left(\frac{I}{I_0}\right)$

 $\blacktriangleright\,$ Pressão acústica pexpressa em dB em relação à referência $p_0=20~\mu\mathrm{Pa}$:

$$p_{dB} = 20 \log \left(\frac{p}{p_0}\right)$$

▶ **dBm** ou **dBmW**: considera $P_0 = 10 \text{ mW}$

- ► Fonte de Tensão
 - ▶ Produz tensão elétrica, isto é, diferença de potencial (d.d.p.) elétrico entre os seus terminais
 - ► Fonte ideal
 - Mantém tensão constante em seus terminais, para qualquer valor de corrente fornecida
 - ▶ Possui resistência interna nula (igual a zero)
 - ► Fonte real
 - Tensão fornecida cai com o aumento da corrente
 - Possui resistência interna não nula
 - ► Símbolos

Convencional

Controlada

- ► Bateria
 - Fonte de tensão onde a d.d.p. é geralmente produzida por reação química
 - Símbolos representam pilha de placas metálicas, conforme invenção do físico italiano Alessandro Volta

- ► Fontes de Sinais
 - Fonte que produz tensão com o formato indicado Senoidal Pulso

Triangular

- ➤ Fonte de Corrente
 - Produz corrente elétrica entre os seus terminais
 - ► Fonte ideal
 - Mantém corrente constante fluindo entre seus terminais, para qualquer circuito conectado
 - Possui resistência interna infinita
 - ► Fonte real
 - Corrente fornecida cai com o aumento da tensão fornecida
 - Possui resistência interna não infinita
 - ► Símbolos

Convencional

Controlada

- ► Resistor
 - Componente (usualmente com 2 terminais) que implementa resistência elétrica
 - ▶ Podem ser fabricados de diversos compostos e filmes, além de ligas com alta resistividade, como níquel-cromo
 - Dissipa energia em forma de calor
 - ► Valor da resistência e tolerância
 - Indicado no corpo do componente, com números ou faixas de cores impressos
 - Potência do componente
 - Indicado pelo tamanho

Fixo

Variável

Fixo

Variável

Resistores Comerciais

- ► Voltímetro
 - ▶ Mede a d.d.p. (tensão elétrica) entre dois pontos do circuito
 - Exibe o resultado por meio de um ponteiro móvel ou de um mostrador digital, de cristal líquido (LCD)

- Voltímetro
 - Ligação:
 - Deve ser colocado em paralelo ao componente, isto é, entre os pontos onde existe a d.d.p. a ser medida
 - O circuito deve estar energizado

- Amperímetro
 - ▶ Mede a corrente elétrica em um circuito
 - Exibe o resultado por meio de um ponteiro móvel ou de um mostrador digital, de cristal líquido (LCD)

- Amperímetro
 - Ligação:
 - Deve ser colocado em série ao componente, isto é, a corrente a ser medida deve atravessar o medidor
 - O circuito deve estar energizado

Ohmímetro

- Mede a resistência elétrica
- Exibe o resultado por meio de um ponteiro móvel ou de um mostrador digital, de cristal líquido (LCD)

- Ohmímetro
 - Ligação:
 - Deve ser colocado entre os pontos onde deseja-se medir a resistência
 - O circuito não pode estar energizado

- ► Multímetro (ou Multiteste)
 - ▶ Aparelho para medir grandezas elétricas
 - Medem tensão, corrente, resistência (alguns mais sofisticados medem capacitância, indutância, etc.)
 - Em geral possuem opção de teste de diodos e transístores
 - ► Modelo analógico
 - Possui mostrador analógico (com ponteiro)
 - ► Internamente utiliza um galvanômetro
 - ► Modelo digital
 - Possui mostrador digital (com números)
 - Internamente utiliza conversor analógico-digital

► Multímetro Analógico

Multímetro Digital

