Introduction to Scikit-Learn

Scikit-Learn is a powerful Python library for machine learning, that facili-3 knn = KNeighborsClassifier(n_neighbors=3) tates preprocessing, model training, evaluation, and more. knn.fit(X_train, y_train)

1.1 Installation

pip install scikit-learn

1.2 Importing Scikit-Learn

import sklearn
from sklearn import datasets, model_selection,
metrics

2 Data Preprocessing

2.1 Scaling Features

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)

2.2 Encoding Categorical Features

2.3 Splitting the Dataset

3 Model Selection

3.1 K-Nearest Neighbors

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

3.2 Decision Trees

from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier(max_depth=5)

tree.fit(X_train, y_train)
y_pred = tree.predict(X_test)

3.3 Random Forest

4 Model Evaluation

4.1 Confusion Matrix

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

4.2 Classification Report

from sklearn.metrics import classification_report
report = classification_report(y_test, y_pred)

4.3 Cross-Validation

5 Unsupervised Learning

5.1 K-Means Clustering

from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)

5.2 Principal Component Analysis (PCA)

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
reduced_data = pca.fit_transform(data)

6 Hyperparameter Tuning

6.1 Grid Search

from sklearn.model_selection import GridSearchCV

params = {'n_neighbors': [3, 5, 7]}

grid_search = GridSearchCV(knn, param_grid=params)

grid_search.fit(X_train, y_train)

6.2 Randomized Search

7 Model Persistence

7.1 Saving a Model

import joblib

joblib.dump(knn, 'knn_model.pkl')

7.2 Loading a Model

knn = joblib.load('knn_model.pkl')