# Causality in Biomedicine Lecture Series: Lecture 5

#### Ava Khamseh



19 Feb, 2020

#### Overview of the field



# Pearl's framework Graphical models & Do-calculus

### **D-separation**

A path p is **blocked** by a set of nodes Z if and only if:

- p contains a chain of nodes A -> B -> C or a fork A <- B -> C
   such that the middle node B is in Z (i.e. B is conditioned on), or
- 2) p contains a **collider** A -> B <- C such that the collision node B is not in Z, and no descendant of B is in Z.



# The adjustment formula

T: Drug usage

X: Gender

Y: Recovery



To know how effective the drugs is in the population, compare the **hypothetical interventions** by which

- (i) the drug is administered uniformly to the entire population do(X=1) vs
- (ii) complement, i.e., everyone is prevented from taking the drug do(X=0)

Aim: Estimate the difference (Average Causal Effect ACE)

$$p(Y = 1|do(T = 1)) - p(Y = 1|do(T = 0))$$

#### The Backdoor Criterion

Under what conditions does a causal model permit computing the causal effect of one variable on another, from **data** obtained from **passive observations**, with **no intervention**? i.e.,

Under what conditions is the structure of a causal graph sufficient of computing a causal effect from a given data set?

**Backdoor Criterion:** Given an ordered pair of variables (T,Y) in a DAG G, a set of variables X satisfies the backdoor criterion relative to (T,Y) if:

- (i) no node in X is a descendent of T
- (ii) X block every path between T and Y that contains an arrow into T If X satisfies the backdoor criterion then the causal effect of T on Y is given by:

$$p(Y = y|do(T = t)) = \sum_{x} p(Y = y|T = t, X = x)p(X = x)$$





#### **Pearl & Rubin**

#### Pearl |

$$p(Y = y|do(T = t)) = \sum_{x} p(Y = y|T = t, X = x)p(X = x)$$

$$\mathbb{E}(Y|do(T=1)) = \mathbb{E}(Y|T=1, X=1)p(X=1) + \mathbb{E}(Y|T=1, X=0)p(X=0)$$

$$\mathbb{E}(Y|do(T=0)) = \mathbb{E}(Y|T=0, X=1)p(X=1) + \mathbb{E}(Y|T=0, X=0)p(X=0)$$

$$\mathbb{E}(Y|do(T=1)) - \mathbb{E}(Y|do(T=0))$$

recall potential outcomes  $y_0^{(i)}$  and  $y_1^{(i)}$  and ATE:

$$\tau = \hat{\mathbb{E}}[\tau^{(i)}] = \hat{\mathbb{E}}[y_1^{(i)} - y_0^{(i)}] = \frac{1}{N} \sum_{i=0}^{N} \left( y_1^{(i)} - y_0^{(i)} \right)$$

$$\tau = \hat{\mathbb{E}}[\tau^{(i)}] = \hat{\mathbb{E}}[y_1^{(i)} - y_0^{(i)}] + \frac{1}{N} \sum_{i=0}^{N} \left( y_1^{(i)} - y_0^{(i)} \right)$$

$$= \frac{1}{N} \left( \sum_{i \in \text{males}} \left( y_1^{(i)} - y_0^{(i)} \right) + \sum_{i \in \text{females}} \left( y_1^{(i)} - y_0^{(i)} \right) \right)$$



# Rubin vs Pearl

| Rubin                                                                                              | Pearl                                                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SUTVA                                                                                              | Implicit assumption of no interference between any pairs of individual                                                                                 |  |  |  |
| Unconfoundedness (ignorability)                                                                    | Back-door criterion satisfied                                                                                                                          |  |  |  |
| Potential outcomes: $y_0^{(i)}$ , $y_1^{(i)}$<br>Observed: $y_0^{(i)}$ , Unobserved: $y^*_1^{(i)}$ | Counterfactuals are equivalent to individual unobserved outcomes in Rubin (Hypothetical distributions that cannot be identified through interventions) |  |  |  |

# Causal Inference: DoWhy (a unifying language)

- Model a causal inference problem using assumptions, [Pearl's Causal Graphical Models]
- Identify an expression for the causal effect under these assumptions ("causal estimand"), [Pearl's Causal Graphical Models]
- Estimate the expression using statistical methods such as matching or instrumental variables, [Rubin's Potential Outcomes]
- Verify the validity of the estimate using a variety of robustness checks.

# **DoWhy Simulations**

#### Simple DoWhy tutorials on my GitHub 'Causality in Biomedicine':

https://github.com/avakhamseh

#### **DoWhy tutorials:**

https://microsoft.github.io/dowhy/index.html

#### **CausalGraphialModels Tutorials:**

https://github.com/ijmbarr/causalgraphicalmodels

Adjusting for the wrong variable: <a href="http://www.degeneratestate.org/posts/2018/Jul/10/causal-inference-with-python-part-2-causal-graphical-models/">http://www.degeneratestate.org/posts/2018/Jul/10/causal-inference-with-python-part-2-causal-graphical-models/</a>

**Front-door:** <a href="http://www.degeneratestate.org/posts/2018/Sep/03/causal-inference-with-python-part-3-frontdoor-adjustment/">http://www.degeneratestate.org/posts/2018/Sep/03/causal-inference-with-python-part-3-frontdoor-adjustment/</a>

#### Also see ML extensions to DoWhy, e.g. EconML:

https://github.com/microsoft/EconML

#### **Pearl's Front-Door Criterion**

- Backdoor does not exhaust all ways of estimating causal effects from a graph
- Front-door criterion can still be used for patterns that do not satisfy the backdoor criterion
- Example: Smoking and lung cancer (1970), industry argued to prevent antismoking regulation by suggesting that the correlation could be explained by a carcinogenic genotype that induces a craving for nicotine
- Recall sensitivity analysis in Lecture 2

# Pearl's Front-Door Criterion: An example

- Fig (a): The graph does not satisfy the backdoor, since the quantity we need to condition on to block the path, i.e. the genotype, is unobserved
- Fig (b): Additional measurement available: tar deposits in patients lungs
- Fig (b) still does not satisfy the backdoor criterion but we can determine the causal effect:

$$p(Y = y|do(X = x))$$



**Figure 3.10** A graphical model representing the relationships between smoking (X) and lung cancer (Y), with unobserved confounder (U) and a mediating variable Z

# Pearl's Front-Door Criterion: A crafted example

#### **Interpretation 1: Tobacco industry**

#### Beneficial effect of smoking:

15% of smokers have developed lung cancer vs 90.25% of non-smokers within tar and non-tar subgroups, smokers have a much lower percentage of cancer than non-smokers (numbers in the table are engineered to illustrate the point that observations are not to be trusted)

**Table 3.1** A hypothetical data set of randomly selected samples showing the percentage of cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

|           | Tar<br>400 |            | No tar<br>400 |            | All subjects<br>800 |            |
|-----------|------------|------------|---------------|------------|---------------------|------------|
|           |            |            |               |            |                     |            |
|           | Smokers    | Nonsmokers | Smokers       | Nonsmokers | Smokers             | Nonsmokers |
|           | 380        | 20         | 20            | 380        | 400                 | 400        |
| No cancer | 323        | 1          | 18            | 38         | 341                 | 39         |
|           | (85%)      | (5%)       | (90%)         | (10%)      | (85%)               | (9.75%)    |
| Cancer    | 57         | 19         | 2             | 342        | 59                  | 361        |
|           | (15%)      | (95%)      | (10%)         | (90%)      | (15%)               | (90.25%)   |

# Pearl's Front-Door Criterion: A crafted example

#### **Interpretation 2: Anti-smoking lobbyists**

Smoking increases the risk of lung cancer

If one chooses to smoke, then one's chances of building tar deposits are 95% (380/400) vs 5% (20/400) for the non-smokers.

To evaluate effect of tar, look at **smokers and non-smokers separately**. Tar has harmful effects in both groups: in smokers it increases risk of cancer from 10% to 15% and in non-smokers 90% to 95%. Therefore: Smoking smoking -> tar -> cancer.

Regardless of any natural craving, avoid harmful tar by not smoking.

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400<br>Tar No tar |       | Nonsmokers 400 Tar No tar |       | All subjects 800 Tar No tar |       |
|-----------|------------------------------|-------|---------------------------|-------|-----------------------------|-------|
|           |                              |       |                           |       |                             |       |
|           | 380                          | 20    | 20                        | 380   | 400                         | 400   |
| No cancer | 323                          | 18    | 1                         | 38    | 324                         | 56    |
|           | (85%)                        | (90%) | (5%)                      | (10%) | (81%)                       | (19%) |
| Cancer    | 57                           | 2     | 19                        | 342   | 76                          | 344   |
|           | (15%)                        | (10%) | (95%)                     | (90%) | (19%)                       | (81%) |

#### **Pearl's Front-Door Criterion**

X -> Z is **identifiable**, since no back path from X and Z:

$$p(Z = z | do(X = x)) = p(Z = z | X = x)$$

Z -> Y is **identifiable**, since backdoor from Z to Y:

$$Z \leftarrow X \leftarrow U \rightarrow Y$$

is **blocked** by conditioning on X:

$$p(Y = y|do(Z = z)) = \sum_{x} p(Y = y|Z = z, X = x)p(X = x)$$



#### **Pearl's Front-Door Criterion**

Letting z be the value Z takes when setting X=x (wlog), from the graph, we have:

$$p(Y|do(X = x)) = p(Y|do(X = x), Z) = p(Y|do(Z = z))$$

Then summing over all states z of Z:

$$p(Y = y|do(X = x)) = \sum_{z} p(Y = y|do(Z = z))p(Z = z|do(X = x))$$

Using ★ and ★★ summing over all states z of Z:

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x')p(X = x')p(Z = z|X = x)$$



Front-door formula

Pearl, Causal Inference in Statistics (2016)

# Pearl's Front-Door Criterion: Which group is right?

$$p(Y = y|do(X = x)) = \sum_{z} \sum_{x'} p(Y = y|Z = z, X = x') p(X = x') p(Z = z|X = x)$$

$$p(Y = 1|do(X = 1)) = p(Y = 1|z = 0, x' = 0)p(x' = 0)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 0, x' = 1)p(x' = 1)p(z = 0|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 0)p(x' = 0)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$+ p(Y = 1|z = 1, x' = 1)p(x' = 1)p(z = 1|x = 1)$$

$$= 0.5475$$

$$p(Y = 1|do(X = 0)) = 0.5025$$

### Average Causal Effect ACE: p(Y = 1|do(X = 1)) - p(Y = 1|do(X = 0)) = 0.045

**Table 3.2** Reorganization of the data set of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (numbers in thousands)

|           | Smokers<br>400 |        | Nonsmokers<br>400 |        | All subjects<br>800 |        |
|-----------|----------------|--------|-------------------|--------|---------------------|--------|
|           |                |        |                   |        |                     |        |
|           | Tar            | No tar | Tar               | No tar | Tar                 | No tar |
|           | 380            | 20     | 20                | 380    | 400                 | 400    |
| No cancer | 323            | 18     | 1                 | 38     | 324                 | 56     |
|           | (85%)          | (90%)  | (5%)              | (10%)  | (81%)               | (19%)  |
| Cancer    | 57             | 2      | 19                | 342    | 76                  | 344    |
|           | (15%)          | (10%)  | (95%)             | (90%)  | (19%)               | (81%)  |

4.5% increase

Pearl, Causal Inference in Statistics (2016)

# Pearl's Front-Door Adjustment

**Front-door criterion**: A set of variables Z is said to satisfy the front-door criterion relative to (X,Y) if:

- 1. Z intercepts all directed paths from X to Y
- 2. There is no unblocked path from X to Z
- 3. All backdoor paths from Z to Y are blocked by X

**Front-door adjustment**: If Z satisfied the front-door criterion relative to (X,Y), and if p(x,z)>0, then the causal effect of X on Y is identifiable and is given by:

$$p(y|do(x)) = \sum_{z} p(z|x) \sum_{x'} p(y|x',z)p(x')$$

#### Do Calculus

- Do-calculus: Contains, as subsets:
  - Backdoor criterion
  - Front-door criterion
- Allows analysis of more intricate structure beyond back- and front-door
- Uncovers all causal effects that can be identified from a given causal graph
- Power of causal graphs is not just representation but actually discovery of causal information

# Causality in Biomedicine Lecture Series: Lecture 5

#### Ava Khamseh



19 Feb, 2020