Martin Kleinsteuber: Computer Vision

Kapitel 2 – Bildentstehung

2. Homogene Koordinaten

Wiederholung: Lochkameramodell

Bildpunkte und Geraden

- Alle Punkte auf einer Geraden durch das optische Zentrum werden auf denselben Bildpunkt abgebildet
- Umgekehrt existiert zu jedem Bildpunkt genau eine Gerade

Der projektive Raum

■ Zwei Vektoren $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ nennen wir zueinander **äquivalent**, falls ein $\lambda \neq 0$ existiert mit $\mathbf{x} = \lambda \mathbf{y}$. In diesem Fall schreiben wir

$$\mathbf{x} \sim \mathbf{y}$$

• Eine Gerade durch $\mathbf{x} \neq 0$ können wir nun beschreiben als Äquivalenzklasse

$$[\mathbf{x}] := \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y} \sim \mathbf{x} \}$$

• Die Menge aller Geraden im \mathbb{R}^{n+1} heißt **projektiver Raum**

$$\mathbb{P}_n = \{ [\mathbf{x}] \mid \mathbf{x} \in \mathbb{R}^{n+1} \setminus \{0\} \}$$

Homogene Koordinaten

Normiert man die Längeneinheit auf die Brennweite, ist die Bildebene gegeben durch

lacktriangle Der Vektor $\begin{bmatrix} X \\ Y \end{bmatrix}$ heißt die homogenen Koordinaten von $\begin{bmatrix} X \\ Y \end{bmatrix}$

$$\begin{bmatrix} X \\ Y \end{bmatrix}$$

Homogene Koordinaten

■ Allgemeine Definition: $\mathbf{x} := (X_1, \dots, X_n)^\top \in \mathbb{R}^n$ Dann heißt

$$\mathbf{x}^{(\text{hom})} := (X_1, \dots, X_n, 1)^{\top} \in \mathbb{R}^{n+1}$$

die homogenen Koordinaten von x

Zusammenfassung

 Äquivalente Vektoren unterscheiden sich nur durch Multiplikation mit einer Zahl ungleich Null.

 Homogene Koordinaten eines Vektors erhält man durch Hinzufügen einer weiteren Koordinate mit dem Wert Eins.