

CH -10

Unsupervised Learning and Clustering

By:

Arshad Farhad 20177716

Contents

- Supervised vs Unsupervised learning
- Introduction to clustering
- K-means Clustering
- Hierarchical clustering
- Conclusion

Supervised Vs Unsupervised Learning

Supervised learning is where you have input variables (x) and an output variable (Y)
and you use an algorithm to learn the mapping function from the input to the
output.

$$Y = f(X)$$

- ☐ The goal is to approximate the mapping function so well that when you have new input data (x) that you can predict the output variables (Y) for that data
- **Unsupervised learning** is where you only have input data (X) and no corresponding output variables
- ☐ The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data.
- ☐ Unsupervised learning problems can be further grouped into clustering and association problems.
 - Clustering
 - Association

What is clustering?

- The organization of unlabeled data into similarity groups called clusters.
- A cluster is a collection of data items which are "similar" between them, and "dissimilar" to data items in other clusters.

What do we need for clustering?

- 1. Proximity measure, either
 - similarity measure $s(x_i, x_k)$: large if x_i, x_k are similar
 - dissimilarity(or distance) measure $d(x_i, x_k)$: small if x_i, x_k are similar

large **d**, small **s**

large **s**, small **d**

Criterion function to evaluate a clustering

- Algorithm to compute clustering
 - For example, by optimizing the criterion function

Distance (dissimilarity) measures

- Euclidean distance between points *i* and *j* is the length of the line segment connecting them
- □ In Cartesian coordinates, if $\mathbf{i} = (\mathbf{i_1}, \mathbf{i_2}, ... \mathbf{i_n})$ and $\mathbf{q} = (\mathbf{q_1}, \mathbf{q_2}, ... \mathbf{q_n})$ then the distance (**d**) from \mathbf{i} to \mathbf{j} , or from \mathbf{j} to \mathbf{i} is given by:
- Euclidean distance

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{d} (x_i^{(k)} - x_j^{(k)})^2}$$

Manhattan (city block) distance

$$d(x_i,x_j) = \sum_{k=1}^d |x_i^{(k)} - x_j^{(k)}|$$

 approximation to Euclidean distance, cheaper to compute

Cluster Evaluation

- Intra-cluster cohesion (compactness):
 - Cohesion measures how near the data points in a cluster are to the cluster centroid.
 - Sum of squared error (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
 - Separation means that different cluster centroids should be far away from one another.

How many clusters?

- Possible approaches
 - 1. fix the number of clusters to k
 - find the best clustering according to the criterion function (number of clusters may vary)

Clustering Techniques

Clustering Techniques

- Hierarchical algorithms find successive clusters using previously established clusters. These algorithms can be either agglomerative ("bottom-up") or divisive ("top-down"):
 - Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters;
 - 2 Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
- Partitional algorithms typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.
- Bayesian algorithms try to generate a posteriori distribution over the collection of all partitions of the data.

Clustering Techniques

K-Means clustering

- K-means (MacQueen, 1967) is a partitional clustering algorithm
- The *k*-means algorithm partitions the given data into *k* clusters:
 - Each cluster has a cluster center, called centroid.
 - k is specified by the user

K-means algorithm

- Given k, the k-means algorithm works as follows:
 - Choose k (random) data points (seeds) to be the initial centroids, cluster centers
 - Assign each data point to the closest centroid
 - 3. Re-compute the centroids using the current cluster memberships
 - 4. If a convergence criterion is not met, repeat steps 2 and 3

K-means clustering example: step 1

Randomly initialize the cluster centers (synaptic weights)

K-means clustering example - step 2

Determine cluster membership for each input ("winner-takes-all" inhibitory circuit)

Assign each data point to the closest centroid

K-means clustering example - step 3

Re-estimate cluster centers (adapt synaptic weights)

K-means clustering example

K-means clustering example

K-means clustering example

Result of second iteration

Why use K-means?

Strengths:

- Simple: easy to understand and to implement
- Efficient: Time complexity: O(tkn),
- where n is the number of data points,
- k is the number of clusters, and
- t is the number of iterations.
- Since both k and t are small. k-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE is used.
 The global optimum is hard to find due to complexity.

Weaknesses of K-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, k-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or so me special data points with very different values.

K-means summary

- Despite weaknesses, k-means is still the most popular algorithm due to its simplicity and ef ficiency
- No clear evidence that any other clustering algorithm performs better in general
- Comparing different clustering algorithms is a difficult task. No one knows the correct clust ers!

`Thank You!'