10. Általános polinomiális módszer szabályozók tervezésére

- 1. A $P(s) = \frac{6s^2 + 12s 90}{s^2 2s 80}$ átviteli függvénnyel adott folyamatot az általános polinomiális módszer alkalmazásával kívánjuk irányítani. A módszer alkalmazásához szükséges módon határozza meg a $P_+(s)$ és $P_-(s)$ átviteli függvényeket, ahol $P(s) = P_+(s)P_-(s)$! Határozza meg azt a soros C(s) szabályozót, amely az $\mathcal{R}(s) = (s+3)(s+10)$ karakterisztikus polinom előírásával zárt körben stabilizálja a folyamatot. Ezen C(s) szabályozó alkalmazása mellett határozza meg a zárt kör kiegészítő érzékenységi függvényét!
- 2. Legyen a szabályozott szakasz egy elsőrendű labilis folyamat: $P = \frac{-1}{s-4}$. Határozza meg azt a soros C(s) szabályozót, amely az $\mathcal{R}(s) = s+4$ karakterisztikus polinom előírásával zárt körben stabilizálja a folyamatot. Ezen C(s) szabályozó alkalmazása mellett határozza meg a zárt kör kiegészítő érzékenységi függvényét!
- 3. Legyen a szabályozott szakasz egy elsőrendű labilis folyamat: $P = \frac{-1}{s-4}$. Határozza meg azt a soros C(s) szabályozót, amely integrátort is tartalmaz és az $\mathcal{R}(s) = (s+4)(s+8)$ karakterisztikus polinom előírásával zárt körben stabilizálja a folyamatot. Ezen C(s) szabályozó alkalmazása mellett határozza meg a zárt kör kiegészítő érzékenységi függvényét!