Juan Valentin Gerrero Caso 453381127 We have to prove that the function $\ell: L^3((0,1), dx) \longrightarrow \mathbb{R}$ $\ell(a) = \int_{0}^{1} \frac{u(x)}{|x|^{\alpha}} dx$ is an element of the dual space of L3((0,1), dx). This dual space is: $L^{3}(CO,1),dx)^{*}=\lambda(L^{3}(CO,1),dx),R)$ We will base our proof in the Sylabos' Theorem & 14.20 and in the Holders inequality. Applying 14.20 theorem in our case ue have that $\forall \ell \in L^3((0,1), dx)^*$ exists an unique ,9 € L3/2 ((0,1), dx) such that for any $u \in L^3((0,1),dx)$: $\langle \ell, u \rangle = \ell(u) = \int_{0}^{1} g \cdot u \, dx$ Then the values of or that achieve that $l \in L^3((0,1),dx)^*$ are those which holds that $\ell(u) \leq \infty$. We trivially can assure that the fuction g in 19.20 theorem, in our case is $g \neq x = \frac{1}{|x|^{\alpha}} = \frac{1}{x^{\alpha}} (as we work with <math>x \in (0,1)$)

As follows from the theorem, the function $g \in L^{2/2}(C_{0/1})$, dx) and that means that that $U_{0}^{(3/2)}(U_{0/1},dx) = 0$ and $U_{0}^{(3/2)}(U_{0/1},dx) = 0$. $\|g\|_{L^{3/2}((0,1),dx)} = \left(\int_0^1 \left(\frac{1}{|x|^{\alpha}}\right)^{2/3} dx\right)^{2/3}.$ We can just focus in the the integral, to compute those of $\int_0^1 \left(\frac{1}{|X|^2}\right)^{3/2} dx = \int_0^1 \frac{1}{|X|^2} dx \text{ and ue}$ know that is integrable if and only if a < 1. Therefore from $\int_0^1 \frac{1}{|x|^2}$ we get that for $\propto \langle \frac{2}{3} \rangle$ is integrable and Then $\int_{0}^{1} \frac{1}{x^{3}} dx < \infty$. So the unique possible values for which $g \in \frac{3}{2}(0,1), dx$ are eq €]-00, 2/3 [. And then we conclude with $e(u) = \int_0^1 \frac{u(x)}{|x|^{\alpha}} dx \le [by H^2] der's irequality] \le$ $= \left(\int_{0}^{1} \left(u(x) \right)^{3} dx \right)^{1/3} \cdot \left(\int_{0}^{1} \left(\frac{1}{|x|^{2}} \right)^{3/2} dx \right)^{2/3} = \| u \|_{L^{2}((0,1),dx)} \cdot \| g \|_{L^{2}((0,1),dx)}$ Because paper || U|| 23 (10,11), dx) < 00 Trivially and . Ig || < 00 || L32 (10,11), dx) for every $\alpha \in J-D$, $\frac{2}{3}$ [so $\ell(u) = \int_{0}^{1} \frac{u(x)}{|x|^{2}} dx$ is an element of $\ell^{3}(\ell_{0}, l_{0})$, $\ell^{3}(\ell_{0}, l_{0})$ for those α

Index des commentaires

- 1.1 this is not trivial
- 2.1 innovative notation