Garson, James (2006). Modal Logic for Philosophers, ch. 3.

Exercise 3.1

- a) If $\mathbf{a}_{w}(A)=T$ and $\mathbf{a}_{w}(A \rightarrow B)=T$, then $\mathbf{a}_{w}(B)=T$
 - 1. Presume $\mathbf{a}_{\mathbf{w}}(A)=T$ and $\mathbf{a}_{\mathbf{w}}(A \rightarrow B)=T$.
 - 2. Then $\mathbf{a}_{w}(A)=F$ or $\mathbf{a}_{w}(B)=T$
 - 3. But $\mathbf{a}_{w}(A)=T$
 - 4. So $\mathbf{a}_{w}(B)=T$
 - 5. Therefore, if $\mathbf{a}_{w}(A)=T$ and $\mathbf{a}_{w}(A \rightarrow B)=T$, then $\mathbf{a}_{w}(B)=T$

- b) If $a_w(A \rightarrow B) = T$ and $a_w(B) = F$, then $a_w(A) = F$
 - 1. Presume $\mathbf{a}_{w}(A \rightarrow B) = T$ and $\mathbf{a}_{w}(B) = F$.
 - 2. Then $\mathbf{a}_{\mathbf{w}}(\mathbf{A}) = \mathbf{F}$ or $\mathbf{a}_{\mathbf{w}}(\mathbf{B}) = \mathbf{T}$
 - 3. But $\mathbf{a}_{\mathbf{w}}(\mathbf{B})=\mathbf{F}$
 - 4. So $\mathbf{a}_{\mathbf{w}}(\mathbf{A})=\mathbf{F}$
 - 5. Therefore, if $\mathbf{a}_{\mathbf{w}}(A \rightarrow B) = T$ and $\mathbf{a}_{\mathbf{w}}(B) = F$, then $\mathbf{a}_{\mathbf{w}}(A) = F$

c) $\mathbf{a}_{\mathbf{w}}(A\&B)=T$ iff $\mathbf{a}_{\mathbf{w}}(A)=T$ and $\mathbf{a}_{\mathbf{w}}(B)=T$.

To show that if $\mathbf{a}_w(A\&B)=T$, then $\mathbf{a}_w(A)=T$ and $\mathbf{a}_w(B)=T$

- 1. Presume $\mathbf{a}_{\mathbf{w}}(A\&B)=T$
- 2. Then $\mathbf{a}_{\mathbf{w}}(\sim(\mathbf{A}\rightarrow\sim\mathbf{B}))=\mathbf{T}$
- 3. So $a_w(A \rightarrow \sim B) = F$
- 4. So $\mathbf{a}_{\mathbf{w}}(A)=T$ and $\mathbf{a}_{\mathbf{w}}(\sim B)=F$
- 5. That is, $\mathbf{a}_{\mathbf{w}}(A)=T$ and $\mathbf{a}_{\mathbf{w}}(B)=T$
- 6. Therefore, if $\mathbf{a}_{w}(A\&B)=T$, then $\mathbf{a}_{w}(A)=T$ and $\mathbf{a}_{w}(B)=T$

To show that if $\mathbf{a}_{\mathbf{w}}(A)=T$ and $\mathbf{a}_{\mathbf{w}}(B)=T$, then $\mathbf{a}_{\mathbf{w}}(A\&B)=T$:

- 1. Presume that $\mathbf{a}_{\mathbf{w}}(A\&B)=F$
- 2. Then $\mathbf{a}_{\mathbf{w}}(\sim(\mathbf{A}\rightarrow\sim\mathbf{B}))=\mathbf{F}$
- 3. So $\mathbf{a}_{\mathbf{w}}(A \rightarrow \sim B) = T$
- 4. So $\mathbf{a}_{\mathbf{w}}(\mathbf{A}) = \mathbf{F}$ or $\mathbf{a}_{\mathbf{w}}(\sim \mathbf{B}) = \mathbf{T}$
- 5. That is, $\mathbf{a}_{\mathbf{w}}(A) = F$ or $\mathbf{a}_{\mathbf{w}}(B) = F$
- 6. So if $\mathbf{a}_{\mathbf{w}}(A\&B)=F$, then $\mathbf{a}_{\mathbf{w}}(A)=F$ or $\mathbf{a}_{\mathbf{w}}(B)=F$
- 7. So by contraposition, if neither $\mathbf{a}_{\mathbf{w}}(A)=F$ nor $\mathbf{a}_{\mathbf{w}}(B)=F$, then $\mathbf{a}_{\mathbf{w}}(A\&B)\neq F$.
- 8. That is, if $\mathbf{a}_{\mathbf{w}}(A)=T$ and $\mathbf{a}_{\mathbf{w}}(B)=T$, then $\mathbf{a}_{\mathbf{w}}(A\&B)=T$

~(A&B)	
~~(A-	→~B)
A→~B	
~A	~B

Exercise 3.2

Show that the following v diagram rules follow from the rules for \sim and \rightarrow

For the first:

1. Let $\mathbf{a}_{\mathbf{w}}(A\mathbf{v}B)=T$

- 2. Then $\mathbf{a}_{w}(\sim A \rightarrow B) = T$
- 3. Then $\mathbf{a}_{\mathbf{w}}(\sim \mathbf{A}) = \mathbf{F}$ or $\mathbf{a}_{\mathbf{w}}(\mathbf{B}) = \mathbf{T}$
- 4. That is, $\mathbf{a}_{\mathbf{w}}(\mathbf{A})=\mathbf{T}$ or $\mathbf{a}_{\mathbf{w}}(\mathbf{B})=\mathbf{T}$

For the second:

- 1. Presume $\mathbf{a}_{\mathbf{w}}(AvB)=F$
- 2. Then $\mathbf{a}_{w}(\sim A \rightarrow B) = F$
- 3. So $\mathbf{a}_{\mathbf{w}}(\sim \mathbf{A})=\mathbf{T}$ and $\mathbf{a}_{\mathbf{w}}(\sim \mathbf{B})=\mathbf{T}$
- 4. That is, $\mathbf{a}_{\mathbf{w}}(A) = F$ and $\mathbf{a}_{\mathbf{w}}(B) = F$

Exercise 3.3

a) for the following diagram rule for $(\lozenge F)$, draw diagrams for **before** and **after** the rule is applied.

$$(\lozenge F)$$
 if $\mathbf{a}_{\mathbf{w}}(\lozenge A) = F$ and $\mathbf{w} \mathbf{R} \mathbf{v}$, then $\mathbf{a}_{\mathbf{v}}(A) = F$

Before

\square_{v} After

b) show that $(\lozenge F)$ follows from (\square) , (\sim) , and $(\mathsf{Def}\lozenge)$ using diagrams

~◊A ^w	
$ \begin{array}{c} \sim \sim \sim A^w \\ \sim \sim A^w \end{array} $	
$\square \sim A^w$	
\downarrow	
~A ^v	

Exercise 3.4

a) Show that $|=_K A$ iff for all models $\langle W, R, a \rangle$ and all w in W,

 $a_{w}(A)=T$

- 1. First, we show that if $\models_K A$, then for all models <**W**, **R**, **a**> and all **w** in **W**, $\mathbf{a}_{\mathbf{w}}(A)$ =T.
- 2. Presume $|=_K A$
- 3. Then the argument /A is K-valid
- 4. That is, /A has no K-counterexample
- 5. So ~A is not K-satisfiable
- 6. That is, for a language containing $\sim A$, there is no model <**W**, **R**, **a**> and a world **w** in **W** where $\mathbf{a}_{\mathbf{w}}(\sim A)=T$
- 7. So for all models $\langle \mathbf{W}, \mathbf{R}, \mathbf{a} \rangle$ and all \mathbf{w} in $\mathbf{W}, \mathbf{a}_{\mathbf{w}}(\sim \mathbf{A}) = \mathbf{F} \setminus \mathbf{W}$
- 8. That is, for all models $\langle W, R, a \rangle$ and all w in W, $a_w(A)=T$
- 9. Therefore, if $|=_K A$, then for all models <**W**, **R**, **a**> and all **w** in **W**, $\mathbf{a}_{\mathbf{w}}(A)=T$.
- 10. Next, we show that if for all models <**W**, **R**, **a**> and all **w** in **W**, $\mathbf{a}_{\mathbf{w}}(A)=T$, then $|=_{K}A$
- 11. Presume $\not\models_K A$
- 12. Then /A is not K-valid
- 13. Then /A has a counterexample
- 14. Then /~A is K-satisfiable
- 15. That is, there is a K-model <W, R, a> such that for some w in W, $a_w(\sim A)=T$
- 16. So there is a K-model < **W**, **R**, **a**> such that for some **w** in **W**, $\mathbf{a}_{\mathbf{w}}(A)=F$
- 17. That is, it is not the case that for all models $\langle \mathbf{W}, \mathbf{R}, \mathbf{a} \rangle$ and all \mathbf{w} in \mathbf{W} , $\mathbf{a}_{\mathbf{w}}(\mathbf{A})=T$.
- 18. Thus, if $\neq_K A$, then it is not the case that for all models <**W**, **R**, **a**> and all **w** in **W**, **a** $_{W}(A)=T$.
- 19. So by contraposition, if for all models <**W**, **R**, **a**> and all **w** in **W**, $\mathbf{a}_{\mathbf{w}}(A)$ =T, then $|=_{K}A$
- 20. Therefore, $\models_K A$ iff for all models < W, R, a> and all w in W, $a_w(A)=T$
- b) Show that $H|=_K A$ iff for all models <**W**, **R**, **a**> and all **w** in **W**, if $a_w(H)=T$, then $a_w(A)=T$
 - 1. First, we show that if H = KA, then for all models $\langle W, R, a \rangle$

- and all w in W, if $a_w(H)=T$, then $a_w(A)=T$.
- 2. Presume $H|=_K A$
- 3. Then the argument H/A is K-valid
- 4. That is, H/A has no K-counterexample
- 5. So the list H, ~A is not K-satisfiable
- 6. That is, for a language containing $\sim A$, there is no model < W, \mathbf{R} , $\mathbf{a}>$ and a world \mathbf{w} in \mathbf{W} such that $\mathbf{a}_{\mathbf{w}}(H)=T$ and $\mathbf{a}_{\mathbf{w}}(\sim A)=T$
- 7. So for all models $\langle \mathbf{W}, \mathbf{R}, \mathbf{a} \rangle$ and all \mathbf{w} in \mathbf{W} , if $\mathbf{a}_{\mathbf{w}}(\mathbf{H})=\mathbf{T}$, then $\mathbf{a}_{\mathbf{w}}(\sim \mathbf{A})=\mathbf{F}$
- 8. That is, for all models <**W**, **R**, **a**> and all **w** in **W**, if $\mathbf{a}_{\mathbf{w}}(H)=T$, then $\mathbf{a}_{\mathbf{w}}(A)=T$
- 9. Therefore, if $H|=_K A$, then for all models <**W**, **R**, **a**> and all **w** in **W**, if $\mathbf{a}_{\mathbf{w}}(H)=T$, then $\mathbf{a}_{\mathbf{w}}(A)=T$.
- 10. Next, we show that if for all models $\langle \mathbf{W}, \mathbf{R}, \mathbf{a} \rangle$ and all \mathbf{w} in \mathbf{W} , if $\mathbf{a}_{\mathbf{w}}(\mathbf{H}) = \mathbf{T}$, then $\mathbf{a}_{\mathbf{w}}(\mathbf{A}) = \mathbf{T}$, then $|\mathbf{a}_{\mathbf{K}}(\mathbf{A})| = \mathbf{T}$, then $|\mathbf{a}_{\mathbf{W}}(\mathbf{A})| = \mathbf{T}$, t
- 11. Presume $H \neq_K A$
- 12. Then H/A is not K-valid
- 13. Then H/A has a counterexample
- 14. Then the list H, ~A is K-satisfiable
- 15. That is, there is a K-model < **W**, **R**, **a**> such that for some **w** in **W**, $\mathbf{a}_{\mathbf{w}}(H)=T$ and $\mathbf{a}_{\mathbf{w}}(\sim A)=T$
- 16. So there is a K-model < **W**, **R**, **a**> such that for some **w** in **W**, $\mathbf{a}_{\mathbf{w}}(H)=T$ and $\mathbf{a}_{\mathbf{w}}(A)=F$
- 17. That is, it is not the case that for all models $\langle \mathbf{W}, \mathbf{R}, \mathbf{a} \rangle$ and all \mathbf{w} in \mathbf{W} , if $\mathbf{a}_{\mathbf{w}}(\mathbf{H})=\mathbf{T}$ then $\mathbf{a}_{\mathbf{w}}(\mathbf{A})=\mathbf{T}$.
- 18. Thus, if $\neq_K A$, then it is not the case that for all models <**W**, **R**, **a**> and all **w** in **W**, if $\mathbf{a}_{w}(H)=T$ then $\mathbf{a}_{w}(A)=T$.
- 19. So by contraposition, if for all models $\langle \mathbf{W}, \mathbf{R}, \mathbf{a} \rangle$ and all \mathbf{w} in \mathbf{W} , if $\mathbf{a}_{\mathbf{w}}(H)=T$ then $\mathbf{a}_{\mathbf{w}}(A)=T$, then $|=_K A$
- 20. Therefore, $H|=_K A$ iff for all models <**W**, **R**, **a**> and all **w** in **W**, if $\mathbf{a}_{\mathbf{w}}(H)=T$, then $\mathbf{a}_{\mathbf{w}}(A)=T$
- c) Create a diagram that shows that $H|\neq_K C$, that is, that the argument H/C has a K-counterexample