

The movie industry and the influential factors of IMDb movie ratings

Mafalda Fragoso

Data Analytics Bootcamp 27/03/2020

Table of contents

Goals of the project

Research purpose

- 1. Exploratory analysis on the movie industry (2019)
- 2. Understand the influential factors of IMDd movie ratings:
 - Is the movie rating variable correlated with the duration of the movie, genre of the movie, number of votes and revenue?

Methodology

Data gathering

- IMDb » open datasets
- The Movie Database » API

2. Data cleaning

- Joined several tables from the IMDb open datasets with the information needed for the study
- Joined the final IMDb dataset with the data gathered from the API of The Movie Database (revenue and budget variables)
- Data cleaning included checking for missing values, number of duplicates, low variance and data types
- Sample of 1640 movies after cleaning the data

The top movies released in 2019 based on revenue

(revenue in UDS millions - Cumulative Worldwide Gross)

Rating distribution

The average rating variable follows a normal distribution with a mean of 5,97

(rating scale from 1 to 10)

Duration of the movie distribution

The duration of the movie variable follows a normal distribution with a mean of 98 minutes

The most representative genres in my sample are Drama, Comedy, Thriller and Action (note: each movie can have until 3 genres classification)

Distribution of average rating vs number of movies per gender

- There are less movies classified as technical/informative (documentary, Biography, History)
 but they are more likely to have higher ratings
- Movies in the cluster of action, horror, sci.fi are more likely to have lower ratings

Strong positive linear relationship between revenue and budget

(correlation coefficient 0.76)

More investment results in more payback

No relationship found between average rating and number of votes

(correlation coefficient **0.17**)

No relationship found between average rating and duration of the movie (correlation coefficient 0.16)

No relationship found between average rating and revenue of the movie (correlation coefficient 0.3)

Higher rating doesn't necessarily correlate with higher profits for a movie

Conclusions

- The movie rating variable is not correlated with the duration of the movie, number of votes and revenue
- Technical/informative type of movies (documentary, Biography, History) are more likely to have higher ratings while movies in the cluster of action, horror, sci.fi are more likely to have lower ratings
- Strong positive linear relationship between revenue and budget meaning that more investment results in more payback

Thank you.

Mafalda Fragoso

Data Analytics Bootcamp 27/03/2020

Appendix

OLS Regression Results

OLS Regression Results

						=====	
Dep. Variable:	ave	averageRating		R-squared:		0.045	
Model:		OLS		Adj. R-squared:		0.044	
Method:	Lea	Least Squares		F-statistic:		38.70	
Date:		•		<pre>Prob (F-statistic):</pre>		3.80e-17	
Time:	•	-		Log-Likelihood:		-2787.8	
No. Observation	ıs:			AIC:		5582.	
Df Residuals:		1637		BIC:		5598.	
Df Model:		2	5101			3330.	
Covariance Type: nonrobust							
==========	. . :=======						
	coef	std err	t	P> t	[0.025	0.975]	
const	5.2056	0.147	35.436	0.000	4.917	5.494	
runtimeMinutes	0.0074	0.001	5.025	0.000	0.005	0.010	
numVotes	4.986e-06	8.66e-07	5.757	0.000	3.29e-06	6.68e-06	
Omnibus:	:=======	======== 89.585	Durbin-Watson:		1.922		
Prob(Omnibus):		0.000	Jarque-Bera (JB):		103.296		
Skew:		-0.594	Prob(JB): 3.71e-23				
Kurtosis:		3.315	Cond. No. 1.80e+05				

OLS Regression Results

OLS Regression Results

=========	=======	========	=======			=======	
Dep. Variable:	a	averageRating		R-squared:		0.118	
Model:		OLS		Adj. R-squared:		0.103	
Method:	L	east Squares	F-statistic:			8.215	
Date:	Fri,	Fri, 27 Mar 2020		Prob (F-statistic):		0.000448	
Time:		05:31:42		Log-Likelihood:		-160.77	
No. Observation	s:	: 126		AIC:		327.5	
Df Residuals:		123		BIC:		336.0	
Df Model:		2					
Covariance Type	Covariance Type: nonrobust						
==========	=======	========	=======		.======	========	
	coef	std err	t	P> t	[0.025	0.975]	
const	6.5573	0.102	64.552	0.000	6.356	6.758	
revenue_USDm	0.0012	0.000	3.768	0.000	0.001	0.002	
budget_USDm	-0.0035	0.002	-1.876	0.063	-0.007	0.000	
Omnibus:	=======	10.413	======================================			1.911	
Prob(Omnibus):		0.005				12.643	
Skew:		-0.502				0.00180	
Kurtosis:		4.184			562.		
		4.104		/• 		JUZ.	

Revenue and budget distribution

