7. Secant Method

Cheng Peng

Lecture Note for MAT325 Numerical Analysis

Contents

1	Introduction	1
2	Secant Method	1
3	Error Analysis	5
4	False Position Method	6
5	Chapter 2 Homework - Part II.	7

1 Introduction

Recall that Newton's method uses Taylor expansion to derive the functional recursive relationship between adjacent approximated roots

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 for $n = 0, 1, \dots$.

where $f'(x_n)$ is the slope of the tangent line passing through $x = x_n$. If we use the slope of a secant line that passes through points $(x_n, f(x_n))$ and $(x_{n-1}, f(x_{n-1}))$, we can use the x-coordinates of the intersection between the secant line and x-axis to approximate the root of f(x) = 0.

2 Secant Method

Assume we have two distinct initial values $x = x_0$ and $x = x_1$. Then slope of the secant line passing through $A(x_0, f(x_0))$ and $B(x_1, f(x_1))$ is

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \approx f'(x_1)$$
 when $|x_1 - x_0|$ is small.

The secant method uses the x-coordinate of the intersection of the secant line

$$f(x) = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1)$$

and f(x) = 0 (equation of the x-axis). Solving for x, we have

$$x = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_1) \equiv x_2.$$

In general, the recursive relationship between approximated roots of the secant method is given by

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$
, for $n = 0, 1, \dots$

https://github.com/pengdsci/MAT325/raw/main/w05/img/w05-betterSecantAnimation.gif

• Secant Algorithm

We develop the following pseudo-code of the secant method.

```
INPUT: f(x)
                         (satisfying f(x) = 0)
        x0
                         (initial value 1)
        x1
                         (initial value 2)
STEP 1: x0
                         (f(x0)*f(x1)) must be negative)
        x1
        M = 200
        TOL = 10^{-6}
        n = 0
        ERR = |x1 - x0|
STEP 2: WHILE ERR > TOL DO
           n = n + 1
           new.x = x1 - ((x1-x0)/(f(x1)-f(x0)))*f(x1)
           ERR = |new.x - x1|
           IF ERR < TOL DO:
              OUTPUT
                             (results and optional relevant info)
              STOP
           ENDIF
           IF ERR >= TOL DO:
              OUTPUT
                             (message or intermediate outputs)
                             (update)
              x1 = new.x
              x0 = x1
           ENDIF
           IF n == M DO:
                             (warning messages)
             OUTPUT
             STOP
           ENDIF
        ENDWHILE
```

• Implementation with R

We next write an R function to implement the secant method.

```
Root Finding: Secant Method
Secant.Method = function(fn,
                                    # input function
                TOL,
                                    # error tolerance
                max.iter,
                                    # max allowed iterations
                x1,
                                     # initial value #1
                                     # initial value #2
                x2
                ){
 ctr = 0
                       # counter of iteration
 ERR = abs(x2 - x1)
                       # initial error - width of initial interval
 # Define a data frame (data table) to store the output of each iteration
 ERR.table = data.frame(Iteration = 1:max.iter,
                        Est.root = rep(NA, max.iter),
                        Abs.error = rep(NA, max.iter))
 while(ERR > TOL){
     ctr = ctr + 1
     new.x = x2 - fn(x2) * (x2 - x1) / (fn(x2) - fn(x1))
     ERR = abs(new.x - x2)
     if(ERR < TOL){</pre>
        ERR.table[ctr,] = c(ctr, new.x, ERR)
        break
        } else{
          ERR.table[ctr,] = c(ctr, new.x, ERR)
           # updating the two values. CAUTION: order matters
           x1 = x2
           x2 = new.x
        }
       if(ctr == max.iter){
        cat("\n\nThe maximum number of iterations attained!")
        break
      }
  }
                       # close the while-loop
 na.omit(ERR.table)
                       # delete rows with NAs (missing values)
}
                       # close the function environment
```

Example 1: Find a root of equation $x^3 + x^2 + 6x + 18 = 0$.

Solution: we use the above R function of the Newton method to find the approximated root of the equation.

```
# define the function f(x) that satisfies f(x) = 0
example01.func = function(x){x^3+x^2+6*x+18}
###

xx = seq(-5,5, length=500)  # 500 evenly x-values evenly spread on [-5, 5]
yy = example01.func(xx)  # the corresponding y values
plot(xx, yy, type = "l", xlab ="", ylab="", main="", lwd = 2, col = "blue")
abline(h=0, col = "darkred", lty = 2)
```


Based on the above graph, we search a root over [-5,5] in the following function call.

Iteration	Est.root	Abs.error
1	-1.387	6.387
2	-1.689	0.3018
3	-2.277	0.5877
4	-2.113	0.1635
5	-2.135	0.02192
6	-2.136	0.001122
7	-2.136	9.03e-06
8	-2.136	3.524e-09

The error plot is given by

Error Plot

Practice Exercise: find the solution to $0.8(x+0.5)^3-1=0$ on [0.25, 2.75].

3 Error Analysis

Let $e_n = x_n - p$, then $e_n - e_{n-1} = x_n - x_{n-1}$. From the definition of the secant method we have

$$e_{n+1} = e_n + x_{n+1} - x_n = e_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n).$$

With some algebraic manipulation, we can express e_{n+1} as

$$e_{n+1} = \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \frac{f(x_n)/e_n - f(x_{n-1})/e_{n-1}}{x_n - x_{n-1}} e_n e_{n-1}.$$

Note that

$$\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \approx \frac{1}{f'(p)}$$

After expanding $f(x_n)$ and $f(x_{n-1})$ at p, we have

$$\frac{f(x_n)/e_n - f(x_{n-1})/e_{n-1}}{x_n - x_{n-1}} \approx \frac{f''(p)}{2}$$

Therefore,

$$e_{n+1} \approx \frac{f''(p)}{2f'(p)} e_n e_{n-1}$$

Consequently,

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n e_{n-1}} = \frac{f''(p)}{2f'(p)} = C_0$$

To find the order of convergence, we assume that $e_{n+1} = C_n e_n^{\alpha}$ where $\lim_{n\to\infty} C_n = C$. Then

$$\lim_{n \to \infty} \frac{e_{n+1}}{e_n e_{n-1}} = \lim_{n \to \infty} \frac{C[Ce_{n-1}^{\alpha}]^{\alpha}}{Ce_{n-1}^{\alpha} e_{n-1}} = \lim_{n \to \infty} C^{\alpha} e_{n-1}^{\alpha^2 - \alpha - 1} = C_0.$$

This implies that

$$\alpha^2 - \alpha - 1 = 0$$

The positive root of the above equation is

$$\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.62$$

Therefore, the convergence order for the secant method is between linear and quadratic orders – we call this **super-linear** convergence!

4 False Position Method

The method of False Position (also called Regula Falsi) generates approximations using the x-coordinates of successive secant lines defined prior approximated roots in such a ways that the actual roots is always $[x_n, x_{n-1}]$ in the n-th iteration. **Programmatically, it is the secant method with an additional control statement.**

First choose initial approximations p_0 and p_1 with $f(p_0) \times f(p_1) < 0$. The approximation p_2 is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $(p_0, f(p_0))$ and $(p_1, f(p_1))$. To decide which secant line to use to compute p_3 , consider $f(p_2) \times f(p_1)$, or more correctly $\operatorname{sgn} f(p_2) \times \operatorname{sgn} f(p_1)$

- If $\operatorname{sgn} f(p_2) \times \operatorname{sgn} f(p_1) < 0$, then p_1 and p_2 bracket a root. Choose p_3 as the x-intercept of the line joining $(p_1, f(p_1))$ and $(p_2, f(p_2))$.
- If not, choose p_3 as the x-intercept of the line joining $(p_0, f(p_0))$ and $(p_2, f(p_2))$, and then interchange the indices on p_0 and p_1 .

The following is an animated graph showing the process of search the root using false position method.

https://github.com/pengdsci/MAT325/raw/main/w05/img/w05-regula.gif

Finally, the order of convergence of **false position method** is same as the **secant method**.

5 Chapter 2 Homework - Part II.

Section 2.3. If you use MAT

Problem 2 [page 75]. Use either R or MATLAB to do this problem.

Problem 3(a) [page 75]. Do this problem manually first and then call an R/MATLAB function we developed to verify your results.

Problem 17(b,c), [Page 76]. Call the functions we developed in class. If you use MATLAB, please include the the MATLAB script with your annotations (line-by-line).

Problem 19 (optional)