به نام خدا

مجموعه تمارین نظریه اعداد جلسه اول دوره تابستانی المپیاد ریاضی ۱۴۰۱ مباحث مقدماتی

۱. فرض کنید $2 \geq n$ عددی طبیعی باشد و $d_1 < d_2 < \dots < d_k$ تمام مقسوم علیه های n باشند. قرار دهید $n \geq 1$ عددی طبیعی باشد و $a_1 < d_2 < \dots < d_k$ تابت کنید $a_1 < d_2 < \dots < d_k$ و سپس تمام مقادیر طبیعی $a_1 < d_2 < \dots < d_k$ تابت کنید $a_2 < d_1 < d_2 < \dots < d_k$ و سپس تمام مقادیر طبیعی $a_2 < d_1 < d_2 < \dots < d_k$ تابت کنید $a_2 < d_2 < \dots < d_k$ و سپس تمام مقادیر طبیعی $a_2 < d_2 < \dots < d_k$ تابت کنید $a_2 < d_2 < \dots < d_k$ در برا بیابید که $a_2 < d_2 < \dots < d_k$ تابت کنید کارتابت کارتا تابت کارتا تاب

: آیا دنباله نامتناهی $\{a_i\}_{i=1}^{\infty}$ از اعداد طبیعی موجود است به نحوی که داشته باشیم:

$$\forall i, j \in \mathbb{N} : \gcd(a_i, a_j) = 1 \iff |i - j| = 1$$

- a=0 مربع یک عدد طبیعی است. ثابت کنید $n\in\mathbb{N}$ قرض کنید a=0 مربع یک عدد طبیعی است. ثابت کنید $a,b\in\mathbb{N}$ قرض کنید $a,b\in\mathbb{N}$ مربع یک عدد طبیعی است. ثابت کنید $a,b\in\mathbb{N}$
 - $f(n)\mid f(m)+n-m$ داشته باشیم $m,n\in\mathbb{N}$ را بیابید به طوری که برای هر $m,n\in\mathbb{N}$ هر داشته باشیم ۴.
- ه. فرض کنید $a_1\in\mathbb{N}$ عددی طبیعی است و $a_n+b_n=a_n+a_n$ که a_n بیانگر یکان a_n است. ثابت کنید در این دنباله نامتناهی توان دو وجود دارد اگر و فقط اگر $a_1\in\mathbb{N}$ عددی طبیعی است و $a_1+a_1=a_1$ که $a_1+a_2=a_1$
 - کراندار باشد. a_1 مقادیر طبیعی a_1 را بیابید به طوری که دنباله بازگشتی a_1 گستی a_1 کراندار باشد.
- b کنید $b,n\in\mathbb{N}$ اعدادی طبیعی هستند به طوری که برای هر $k\in\mathbb{N}$ ، عدد طبیعی $a_k\in\mathbb{N}$ وجود دارد به نحوی که $b,n\in\mathbb{N}$. ثابت کنید $b,n\in\mathbb{N}$ توان a_k کامل یک عدد طبیعی است.
- ه فرض کنید p_k برابر با $n \in \mathbb{N}$ بین عدد اول باشد. تعریف می کنیم $n \in \mathbb{N}$ مین عدد اول باشد. تعریف می کنیم می کنیم مربع کامل وجود دارد.
 - ب نابع با خواص زبر باشد: $f: \mathbb{Z}^{\aleph_0} \to \mathbb{Z}$ عند فرض کنید 9.
 - $\forall A, B \in \mathbb{Z}^{\aleph_0}$: f(A+B) = f(A) + f(B) : جمعی باشد، یعنی
 - $f(e_i) = 0$ داشته باشیم $e_i = (0, 0, \cdots, 0, 1, 0, 0, \cdots)$ داشته باشیم واحد مثل (ب)

$$\forall A \in \mathbb{Z}^{\aleph_0}: f(A)=0$$
 ثابت کنید $f(1,2,4,8,\cdots)=0$. سیس ثابت کنید

- و همچنین $\{a_i\}_{i=0}^\infty$ که در آن $P(a_n)$ برابر با بزرگترین بازرگترین کنید $\{a_i\}_{i=0}^\infty$ دنباله ای از اعداد طبیعی باشد به طوری که $a_0>1$ و همچنین $a_0>1$ و همچنین $a_n>1$ که در آن a_n برابر با بزرگترین عامل اول a_n است. ثابت کنید دنباله مذکور کران دار است.
- ا۱۰. برای هر $N\in\mathbb{N}$ فرض کنید f(N) برابر با تعداد جفت های $a,b\in\mathbb{N}$ باشد به طوری که $a,b\in\mathbb{N}$. ثابت کنید f(N) همواره مربع کامل عددی طبیعی است.
 - ۱۲. ثابت کنید نامتناهی $n\in\mathbb{N}$ موجود است به نحوی که n^2+1 عامل اولی بزرگتر از n>2 داشته باشد.
 - $\forall i
 eq j: |A_i \cap A_j| = \gcd(i,j):$ ایا زیرمجموعه های $A_1,A_2,\dots \subset \mathbb{N}$ وجود دارند به طوری که داشته باشیم. ۱۳
- ابت کنید a>b>c>d اعدادی طبیعی باشند و همچنین داشته باشیم : ac+bd=(b+d+a-c)(b+d+c-a) . ثابت کنید ab+cd
- متوالی متوالی باشند. ثابت کنید اعضای متوالی $\{y_i\}_{i=1}^\infty$ اعدادی طبیعی باشند. ثابت کنید اعضای متوالی درض کنید $\{y_i\}_{i=1}^\infty$ اعدادی طبیعی باشند. ثابت کنید اعضای متوالی باز این دنباله موجودند به طوری که :

$$y_l + y_{l+1} + \dots + y_{l+k} \stackrel{a}{\equiv} b$$

د. فرض کنید p عددی اول و فرد باشد و $\mathbb S$ مجموعه ای از p+1 عدد صحیح باشد. ثابت کنید اعداد دو به دو متمایز $a_1,\cdots,a_{p-1}\in \mathbb S$ موجودند به طوری

$$p \mid a_1 + 2a_2 + 3a_3 + \cdots + (p-1)a_{p-1}$$

$$\sum_{i=1}^k \lfloor \sqrt{ip}
floor = rac{p^2-1}{12}$$
 : فرض کنید $p=4k+1$ عددی اول باشد که در اَن k عددی طبیعی است. ثابت کنید و $p=4k+1$

$$.rac{p^2+2q}{q+r},rac{q^2+9r}{r+p},rac{r^2+3p}{p+q}\in\mathbb{N}$$
 که های $(p,q,r)\in\mathbb{P}$ مجموعه اعداد اول) را بیابید به طوری که ۱. تمام سهتایی های المجموعه اعداد اول.

: فرض کنید $\{a_i\}_{i=1}^\infty$ دو دنباله از اعداد طبیعی باشند به طوری که سه شرط زیر را دارا باشند:

$$a_1 \geq 2$$
 (i)

برای هر
$$i \in \mathbb{N}$$
 عدد p_i کوچکترین عامل اول a_i است.

$$a_{i+1}=a_i+rac{a_i}{p_i}$$
 برای هر $i\in\mathbb{N}$ داشته باشیم (ج

: موجود است به طوری که داشته باشیم $N\in\mathbb{N}$

$$\forall n \in \mathbb{N}, n > N$$
 : $a_{n+3} = 3a_n$

۳. فرض کنید $\{a_i\}_{i=1}^\infty$ دنباله ای از اعداد طبیعی باشد. همچنین میدانیم $\{a_i\}_{i=1}^\infty$ اعدادی متمایز هستند و برای هر $\{a_i\}_{i=1}^\infty$ عدد عددی طبیعی است که برابر جمع تعدادی از اعداد $\{a_i\}_{i=1}^\infty$ نیست. ثابت کنید $\{a_i\}_{i=1}^\infty$ موجود است به طوری که داریم :

$$\forall n \in \mathbb{N}, n > N$$
 : $a_n = 2a_{n-1}$

 $\sum_{s\in\mathbb{S}}rac{1}{f(s)}\in\mathbb{N}$ داشته باشیم $\sum_{s\in\mathbb{S}}rac{1}{s}\in\mathbb{N}$ داشته باشیم که برای هر $\mathbb{S}\subset\mathbb{N}$ متناهی که به ازای آن، $f:\mathbb{N} o\mathbb{N}$ داشته باشیم ۴.