ENGR 210 / CSCI B441 "Digital Design"

SPI III

Andrew Lukefahr

Announcements

- P9 SPI
 - This one is new. Might be some changes.
 - Last one

• Final: Thursday 5/6 @ 12.40-2:40pm

P9 SPI QuickStart

We build the Vivado project for you:

```
git clone https://github.com/ENGR210/P9 SPI.git
cd P9_SPI
make setup
vivado vivado/vivado.xpr
```

We provide you with Testbenches

Same ones as the Autograder!

SPI

Finding SCLK Edges

How to capture MOSI?

```
always_ff @(posedge clk) begin
      if (rst) q <= 'h0;
      else q <= next_q;
end
always comb begin
      next_q = q; //default
      if (rising edge)
             next q = MOSI;
end
```

Not 100% right yet!

How to send MISO?

```
always_ff @(posedge clk) begin
if (rst) MISO <= 'h0;
else MISO <= next_MISO;
end
```

```
always_comb begin
    next_MISO = MISO; //default
    if (falling_edge)
        next_MISO = new_data_out;
end
```

Not 100% right yet!

Timing Issues

Setup/Hold Time

Why Synchronizers?

Synchronizers

Synchronizers in P9

This has a synchronizer inside it.

```
debounce db_sclk(
    .clk,
    .rst,
    .bouncy(sck),
    .stable(sck_)
);
```

What other signals need synchronizers?

What about 'Z'?

What is 'Z'?

- Z: High Impedance
 - **DONT** drive a logical value
 - Pretend I'm disconnected

- "Tri-State" signals:
 - 1: this is logical true
 - 0: this is logical false
 - X: The simulation tools don't know if it's 1 or 0
 - Z: this is "high impedance"

Tri-State Logic

Problems with Tri-State Logic

What if two signals "drive" at once?

Solution: Don't Do That!

NEVER DO THAT!

SPI Memory Mapped Interface

P9 Goal

- Make all the Switches and LEDs accessible to the PI
- Use SPI

How do we read/set values?

• Switches: How to "read" the values?

- LEDs: How to "write" the value?
 - Can we also "read" them?

Write Protocol

"Please Set the LEDs to ON-OFF-ON-OFF-ON-OFF"

Write Protocol

Operation: WRITE ('h0)

Address: LEDs ('h3)

Data: ON-OFF-ON-OFF ('b10101010)

Read Protocol

"Please TELL ME the value of the Switches"

- Operation:
- Address:
- Data:

Read Protocol

Operation: READ ('h1)
Address: SWITCHES ('h1)

Data: ??

[pyroelectro]

Protocol Address Map

Address	Mapping	Туре
7 ' h00	chip_id (8'h7)	Read-Only
7 ′ h01	switches[7:0]	Read-Only
7 ' h02	switches[15:8]	Read-Only
7'h03	leds[7:0]	Read/Write
7 ′ h04	leds[15:8]	Read/Write

P9 Controller

• What implements the "Read/Write" Protocol.

• Inputs: Raw SPI, Switches

• Outputs: Raw SPI, LEDs

Task: Change LEDs based on WRITEs

Task: send Switch/LED values for READs

Next Time

• The "guts" of an FPGA