Class 8: Breast Cancer Mini Project

Erica Sanchez (A15787505)

About

In today's lab we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin.

Data Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.df)</pre>
```

842302 M 17.99 10.38 122.80 1001.0 842517 M 20.57 17.77 132.90 1326.0	
940517 M 90 57 17 77 120 00 1206 0	
842517 M 20.57 17.77 132.90 1326.0	
84300903 M 19.69 21.25 130.00 1203.0	
84348301 M 11.42 20.38 77.58 386.1	
84358402 M 20.29 14.34 135.10 1297.0	
843786 M 12.45 15.70 82.57 477.1	
smoothness_mean compactness_mean concavity_mean concave.points_mean	L
842302 0.11840 0.27760 0.3001 0.14710)
842517 0.08474 0.07864 0.0869 0.07017	•
84300903 0.10960 0.15990 0.1974 0.12790)
84348301 0.14250 0.28390 0.2414 0.10520)
84358402 0.10030 0.13280 0.1980 0.10430)
843786 0.12780 0.17000 0.1578 0.08089)
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter	_se
842302 0.2419 0.07871 1.0950 0.9053 8.	589
842517 0.1812 0.05667 0.5435 0.7339 3.	398
84300903 0.2069 0.05999 0.7456 0.7869 4.	585
84348301 0.2597 0.09744 0.4956 1.1560 3.	445
84358402 0.1809 0.05883 0.7572 0.7813 5.	438

843786	0.2	087	0.07613	0.3345	0.8902 2.217
	area_se smoothness_se		compactness_se	concavity_se	concave.points_se
842302	153.40	0.006399	0.04904	0.05373	0.01587
842517	74.08	0.005225	0.01308	0.01860	0.01340
84300903	94.03	0.006150	0.04006	0.03832	0.02058
84348301	27.23	0.009110	0.07458	0.05661	0.01867
84358402	94.44	0.011490	0.02461	0.05688	0.01885
843786	27.19	0.007510	0.03345	0.03672	0.01137
	symmetry_s	e fractal_d	imension_se rad:	ius_worst text	ture_worst
842302	0.0300	3	0.006193	25.38	17.33
842517	0.0138	9	0.003532	24.99	23.41
84300903	0.0225	0	0.004571	23.57	25.53
84348301	0.0596	3	0.009208	14.91	26.50
84358402	0.0175	6	0.005115	22.54	16.67
843786	0.0216	5	0.005082	15.47	23.75
	perimeter_	worst area_v	worst smoothness	s_worst compa	ctness_worst
842302	1	84.60 20	019.0	0.1622	0.6656
842517	1	58.80 19	956.0	0.1238	0.1866
84300903	1	52.50 17	709.0	0.1444	0.4245
84348301		98.87	567.7	0.2098	0.8663
84358402	1	52.20 15	575.0	0.1374	0.2050
843786	1	03.40	741.6	0.1791	0.5249
	concavity_	worst concar	ve.points_worst	symmetry_work	st
842302	0	.7119	0.2654	0.460	01
842517	0	.2416	0.1860	0.27	50
84300903	0	.4504	0.2430	0.36	13
84348301	0	. 6869	0.2575	0.663	38
84358402	0	.4000	0.1625	0.23	64
843786		. 5355	0.1741	0.398	35
	fractal_di	mension_wors	st		
842302		0.1189			
842517		0.0890			
84300903		0.087			
84348301		0.1730			
84358402		0.0767	78		
843786		0.124	40		

Q1. How many patients/individuals are in this dataset?

nrow(wisc.df)

[1] 569

```
Q2. How many of the observations have a malignant diagnosis?
  sum(wisc.df$diagnosis == "M")
[1] 212
  table(wisc.df$diagnosis)
      М
357 212
     Q3. How many variables/features in the data are suffixed with _mean?
  ncol(wisc.df)
[1] 31
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius_mean"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness_se"
                                 "concavity_se"
[17] "compactness_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
[27] "compactness_worst"
                                 "concavity_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
```

```
inds <- grep("_mean", colnames(wisc.df))
length(inds)

[1] 10

grep("_mean", colnames(wisc.df), value=TRUE)

[1] "radius_mean" "texture_mean" "perimeter_mean"
[4] "area_mean" "smoothness_mean" "compactness_mean"
[7] "concavity_mean" "concave.points_mean" "symmetry_mean"
[10] "fractal_dimension_mean"</pre>
```

Initial Analysis

head(wisc.data)

Before analysis I want to take out the expert diagnoses column (aka the answer) from our dataset.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)

[1] M M M M M M
Levels: B M

wisc.data <- wisc.df[,-1]</pre>
```

	radius_mean	texture_mean	<pre>perimeter_mean</pre>	area_mean a	smoothness_mean
842302	17.99	10.38	122.80	1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_	mean concavit	ty_mean concave	.points_mean	n symmetry_mean
842302	0.2	7760	0.3001	0.14710	0.2419
842517	0.0	7864	0.0869	0.07017	0.1812
84300903	0.1	5990	0.1974	0.12790	0.2069

84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimension_	mean radius_se	texture_se	perimeter_se	area_se
842302	0.0	7871 1.0950	0.9053	8.589	153.40
842517	0.0	5667 0.5435	0.7339	3.398	74.08
84300903	0.0	5999 0.7456	0.7869	4.585	94.03
84348301	0.0	9744 0.4956	1.1560	3.445	27.23
84358402	0.0	5883 0.7572	0.7813	5.438	94.44
843786	0.0	7613 0.3345	0.8902	2.217	27.19
	smoothness_se comp	actness_se cor	cavity_se co	-	
842302	0.006399	0.04904	0.05373	0.01	587
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020	058
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.01	137
	symmetry_se fracta		_	_	
842302	0.03003	0.006193	25.3	38 17	. 33
842517	0.01389	0.003532	24.9	99 23	.41
84300903	0.02250	0.004571	. 23.5		. 53
84348301	0.05963	0.009208		91 26	.50
84358402	0.01756	0.005115	22.5	54 16	. 67
843786	0.02165	0.005082	2 15.4	17 23	.75
	<pre>perimeter_worst ar</pre>	ea_worst smoot	hness_worst	compactness_	worst
842302	184.60	2019.0	0.1622	0	. 6656
842517	158.80	1956.0	0.1238	0	. 1866
84300903	152.50	1709.0	0.1444		. 4245
84348301	98.87	567.7	0.2098		. 8663
84358402	152.20	1575.0	0.1374		. 2050
843786	103.40	741.6	0.1791		.5249
	concavity_worst co	_	-	-	
842302	0.7119		2654	0.4601	
842517	0.2416		1860	0.2750	
84300903	0.4504		2430	0.3613	
84348301	0.6869		2575	0.6638	
84358402	0.4000		1625	0.2364	
843786	0.5355		1741	0.3985	
	fractal_dimension_	worst			
842302		11890			
842517		08902			
84300903		08758			
84348301	0.	17300			

```
0.07678
84358402
843786
                          0.12440
```

Clustering

```
We can try a kmeans() clustering first
```

```
km <- kmeans(wisc.data, centers = 2)</pre>
  table(km$cluster)
131 438
  table(diagnosis)
diagnosis
  В
      M
357 212
Cross-table
```

```
table(km$cluster, diagnosis)
diagnosis
    В
        М
    1 130
2 356 82
```

Let's try hclust() the key input required for hclust() is a distance matrix as produced by the dist() function

```
hc <- hclust(dist(wisc.data))</pre>
```

I can make a tree like figure

```
plot(hc)
```

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

Do we need to scale the data?

We can look at the sd of ach column (original variable)

round(apply(wisc.data, 2, sd))

radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	smoothness_mean	compactness_mean
352	0	0
${\tt concavity_mean}$	concave.points_mean	symmetry_mean
0	0	0
fractal_dimension_mean	radius_se	texture_se
0	0	1
perimeter_se	area_se	smoothness_se
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	fractal_dimension_se	radius_worst
0	0	5
texture_worst	perimeter_worst	area_worst
6	34	569

```
smoothness_worst compactness_worst concavity_worst
0 0 0

concave.points_worst symmetry_worst fractal_dimension_worst
0 0 0
```

Yes we need to scale. We will run prcomp with scale=TRUE

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                        PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

PCA

Generate our main PCA plot (score plot, PC1 vs PC2, plot..)

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)</pre>
```

```
ggplot(res) +
  aes(PC1, PC2, col = diagnosis) +
  geom_point()
```


Combining Methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector I need to "cut" the tree with the ${\tt cutree}$ () function

Q17. Which of your analysis procedures resulted in a clustering model with the best specificity? How about sensitivity?

PCA resulted in better specificity and sensitivity.

Prediction

We can use our PCA result (model) to do prediction, that is take new unseen data and project it onto our new PC variables

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                 PC3
                                            PC4
                                                       PC5
                                                                  PC6
                                                                             PC7
      2.576616 -3.135913
                          1.3990492 -0.7631950
                                                 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                       0.8193031
                      PC9
                                 PC10
                                           PC11
                                                      PC12
                                                                PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457
                                                0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                  PC17
                                              PC18
                                                           PC19
                                                                      PC20
```

```
 \hbox{\tt [1,]} \ \ 0.3216974 \ \ -0.1743616 \ \ -0.07875393 \ \ -0.11207028 \ \ -0.08802955 \ \ -0.2495216 
[2,] 0.1299153
                0.1448061 -0.40509706
                                         0.06565549
                                                     0.25591230 -0.4289500
                       PC22
                                   PC23
                                               PC24
                                                            PC25
           PC21
                                                                         PC26
[1,] 0.1228233 0.09358453 0.08347651
                                        0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                          PC28
                                        PC29
                                                      PC30
[1,]
      0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(res$PC1, res$PC2, col = grps)
  points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
```

```
text(npc[,1], npc[,2], labels=c(1, 2), col="white")
```


Q18. Which of these new patients should we prioritize for follow up based on your results?

Follow up with group 2

Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.