2022 物理奥林匹亞複選

一、水星軌道近日點的進動

若某行星及太陽的質量分別為m及M,且其他行星的效應可忽略,則由牛頓萬有引力定律可得知:此行星在太陽的重力作用下,其角動量 ℓ 及能量E的守恆式分別為 $mr^2\dot{\theta}=\ell$ 及 $\frac{m}{2}\dot{r}^2+\frac{\ell^2}{2mr^2}-\frac{GMm}{r}=E$,其中r為行星與太陽的距離,G為重力常數,且行星的運動軌跡為一橢圓,而太陽位於該橢圓的一個焦點。

- (A) 假設已知廣義相對論的修正會使能量守恆式變為:
 - $\frac{m}{2}\dot{r}^2 + \frac{\ell^2}{2mr^2} \frac{GM\ell^2}{mc^2r^3} \frac{GMm}{r} = E + \frac{E^2}{2mc^2} \circ 若此系統容許兩個圓軌道,則角動量 \ell$ 必須滿足什麼條件?並求出這兩個圓軌道的半徑 $r_+, r_-(r_+ > r_-)$ 。
- (B) 承(A)小題,判斷 $r = r_+ \Delta r = r_-$ 這兩個圓軌道是否為穩定軌道。
- (C) 假設 $r = r_+$ 這個圓軌道為穩定軌道,考慮行星稍微偏離 $r = r_+$ 這個圓軌道的徑向運動,即 $r = r_+ + \delta r$,且 $|\delta r| \ll r_+$ 。行星會在徑向作簡諧運動,求徑向運動的角頻率 ω_r ,以 G_1M_1, r_+, r_- 表示之。

提示:

- 不要被廣義相對論嚇到!
- 什麼是「圓」軌道?
- 什麼是「穩定」軌道?
- 簡諧運動的方程式是什麼?

以平面極座標描述二維運動1

在二維極座標中,使用 \hat{r} 與 $\hat{\theta}$ 單位向量描述方向,任一點的位置可由 $[r,\theta]$ 給出。單位向量的大小不隨時間改變。當某物體在時間 Δt 內轉過角度 $\Delta \theta$,其角速度 (angular velocity) 定義為

$$\omega = \frac{\Delta \theta}{\Delta t}$$

您可能會需要微分的乘法律 (product rule),

$$\frac{d}{dx}[f \cdot g] = \frac{df}{dx}g + f\frac{dg}{dx}$$

- 1. 在下方繪製極座標示意圖,選定一個點,並標示r, θ , \hat{r} 與 $\hat{\theta}$
- 2. 以 ω 與單位向量表示 \hat{r} 與 $\hat{\theta}$ 隨時間的變化率,即 $\frac{d\hat{r}}{dt}$ 與 $\frac{d\hat{\theta}}{dt}$ 。
- 3. 以r, θ , \hat{r} , $\hat{\theta}$ 與其對時間的導數表示速度v。
- 4. 將速度微分,得到加速度a。您僅能用r, θ , \hat{r} , $\hat{\theta}$ 與其對時間的一次與二次導數表示之。
- 5. 加速度的徑向部分包含線性加速度(Translation acceleration)與向心加速度 (Centrifugal acceleration),切向部分則包含科氏加速度(Coriolis acceleration)與尤拉加速度(Azimuthal acceleration)²。寫出這四項的表達式。

^{1 2009} 年國際物理奧林匹亞競賽國家代表隊選訓教材 第一冊

² Introduction to Classical Mechanics With Problems and Solutions. David Morin, 2008.

湍流中固定指向的小船3

如圖,一小船A在水流流速 v_0 ,寬d的河道中,時時刻刻皆朝O點以固定速率v'移動。已知 $\overline{AO}=r_0$ 、 $\angle AOP=\phi_0$,試求船由A至O的軌跡方程式。

提示:以0為原點,建立極座標。

³ 物理學難題集萃 上册。舒幼生、胡望雨、陳秉乾。