Computational Linguistics

Lecture 6

Dr. Dina Khattab

dina.khattab@cis.asu.edu.eg

CFG: Formal definition

- 1. a set of non-terminal symbols (or 'variables') N
- 2. a set of terminal symbols Σ (disjoint from N)
- 3. a set of productions P, each of the form $A \to \alpha$, where A is a non-terminal and α is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$.
- 4. a designated start symbol S

Sentence Types

- **Declaratives**: A plane left.
 - $S \rightarrow NP VP$
- > Imperatives: Leave!
 - $S \rightarrow VP$
- > Yes-No Questions: Did the plane leave?
 - $S \rightarrow Aux NP VP$
- **WH Questions: wh- word** (who, where, what, which, how, why).

What airlines fly from Burbank to Denver?

 $S \rightarrow WH-NP NP VP$

When did the plane leave?

CFG Concrete Example

```
\triangleright N: {S, NP, VP, DT, Vi, Vt, N}
```

 $\gt S: \{S\}$

 $\triangleright \Sigma$: {sleeps, saw, woman, man, the }

 $\triangleright P$.

 $S \rightarrow NP VP$

VP → Vi

 $VP \rightarrow Vt NP$

 $NP \rightarrow DT N$

Vi → sleeps

Vt → saw

 $N \rightarrow man$

 $N \rightarrow$ woman

DT → the

CFG Concrete Example

➤ Given the statement "The man sleeps", is it valid on the aforementioned CFG?

> Parsing

S

NP VP

DT N VP

The N VP

The man VP

The man Vi

The man sleeps

Rules Used

 $S \rightarrow NP VP$

 $NP \rightarrow DT N$

 $DT \rightarrow The$

 $N \rightarrow man$

VP → Vi

Vi → sleeps

CFG Ambiguity Example

```
> V : {S, NP, VP, PP, DT, Vi, Vt, N, P, Pr}
```

 $\gt S: \{S\}$

 \triangleright Σ : {sleeps, saw, I, woman, girl, telescope, the, in, with }

> P:

 $S \rightarrow NP VP$

VP → Vi

VP → Vt NP

 $VP \rightarrow VP PP$

 $NP \rightarrow DT N$

 $NP \rightarrow Pr$

 $NP \rightarrow NP PP$

 $PP \rightarrow P NP$

Vi → sleeps

Vt → saw

 $N \rightarrow girl$

 $N \rightarrow$ woman

N → telescope

DT → The

 $P \rightarrow in$

 $P \rightarrow with$

 $Pr \rightarrow I$

CFG Ambiguity Example

I saw the girl with the telescope

> Parsing	Rules Used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow Pr$
Pr VP	Pr → I
I VP	$VP \rightarrow Vt NP$
I Vt NP	Vt → saw
I saw NP	$NP \rightarrow NP PP$
I saw NP PP	$NP \rightarrow DT N$
I saw DT N PP	DT → the
I saw the N PP	$N \rightarrow girl$
I saw the girl PP	$PP \rightarrow PNP$
I saw the girl P NP	$P \rightarrow with$
I saw the girl with NP	$NP \rightarrow DT N$
I saw the girl with DT N	DT → the
I saw the girl with the N	N → telescope

I saw the girl with the telescope

CFG Ambiguity Example

I saw the girl with the telescope

> Parsing	Rules Used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow Pr$
Pr VP	$Pr \rightarrow I$
I VP	$VP \rightarrow VP PP$
I VP PP	$VP \rightarrow Vt NP$
I Vt NP PP	Vt → saw
I saw NP PP	$NP \rightarrow DT N$
I saw DT N PP	$DT \rightarrow the$
I saw the N PP	$N \rightarrow girl$
I saw the girl PP	$PP \rightarrow P NP$
I saw the girl P NP	$P \rightarrow with$
I saw the girl with NP	$NP \rightarrow DT N$
I saw the girl with DT N	DT → the
I saw the girl with the N	N → telescope

Ambiguous grammar is a contextfree grammar for which there exists a string that can have more than one leftmost derivation or parse tree

Derivations and Parsing

Derivation: Given the sequence of rules, generate strings

Parsing: given the string and the grammar, recover the derivation.