

Index to volume 31 (1991)

Articles (titles in italics refer to Research and technical notes)

January (pp 1–72)

Thermal conductivity of evacuated perlite at low temperatures as a function of load and load history

W.P. Dubé, L.L. Sparks and A.J. Slifka
3–6

Radiation resistance of polymer composites at 77 K: effects of reinforcing fabric type, specimen thickness, radiation type and irradiation atmosphere

S. Egusa 7–15

Magneto-resistance of a highly stable industrial-grade platinum resistance thermometer between 20 and 240 K

K. Nara, H. Kato and M. Okaji 16–20

Dynamic stability of edge-cooled superconducting tapes

J. Schwartz, J.P. Friedberg and J.E.C.

Williams 21–32

Effect of starting materials on the critical parameters of superconducting TiCaBaCuO compounds

I. Kirschner, S. Leppävuori, R. Laiho, A.D. Caplin, I. Halász, T. Porjesz, A. Uusimaki, G. Zsolt, E. Lähderanta, T. Kármán, J. Laverty and Gy. Kovács
33–40

77–4.2 K downlead concept based on thin-film Bi₂Ca₃Cu₃O₁₀ oxide

W.N. Lawless 41–47

High gain micropower amplifier for cryogenic applications

C.H. Downey 48–50

Mechanical characteristics of NdFeB magnets at low temperature

P. Vedrine, P. Tixador, Y. Brunet, J.C. Bobo, A. Fevrier and A. Leriche 51–53

Low temperature calorimetry using an optical heating method

P. Gutsmiedl, Chr. Probst and K. Andres
54–57

Simple and inexpensive cryogenic bolometers

G. Gallinaro, F. Gatti and S. Terreni
58–60

New ³He/⁴He refrigerator

G. Dall'Oglio, L. Pizzo, L. Piccirillo and L. Martinis 61–63

Growth of vapour bubbles from artificial nucleation sites

R. Rammig and R. Weiss 64–69

February (pp 73–144)

He II flowmetering

S.W. Van Sciver, D.S. Holmes, X. Huang and J.G. Weisend II 75–86

Realization of the lambda transition

temperature of liquid ⁴He

Naihao Song, C.S. Hong, Yuzhu Mao, Peng Lin, Qinggeng Zhang and Liang Zhang 87–93

Platinum NMR thermometry in high magnetic fields

D. Candela and D.R. McAllaster 94–98

Automated temperature regulation system for adiabatic demagnetization refrigerators

G. Bernstein, S. Labov, D. Landis, N. Madden, I. Millet, E. Silver and P. Richards 99–101

Heat capacity and thermal expansion of Zerodur and Zerodur M at low temperatures

S.J. Collocott and G.K. White 102–104

Dependence of critical current density on grain morphology in Bi₂Ca₃Cu₂O₇ ceramic

D.A. Cardwell, J.W. Cockburn, L. Cowey and H. Jones 105–109

Stability analysis of a forced-flow cooled superconducting coil: numerical simulation of multiple stability

A. Kamitani, T. Amano, S. Sekiya and A. Ohara 110–118

Novel magnetometer and the interpretation of low field magnetic hysteresis of high *T_c* superconductors

G.E. Gough, M.S. Colclough, D.A. O'Connor, F. Wellhofer, N.McN. Alford and T.W. Button 119–127

Effect of geometrical deformations on the strength and homogeneity of magnetic fields trapped in superconducting cylinders

S.H. Dietzelbinger and M.G. Richards 128–131

Sidelobe suppression in small Josephson junctions

R.L. Peterson 132–135

Cryogenic grinding technology for traditional Chinese herbal medicine
Simo Li, Shuangyan Ge, Zhongping Huang, Qun Wang, Haoping Zhao and Huaiyu Pan 136–137

Reliable low-temperature NMR cell for pressure studies

N.S. Sullivan, C.M. Edwards and D. Zhou 138–139

March (pp 145–216)

Numerical model for cooling a gravitational wave detector below 1 K

M. Bassan, E. Coccia, N. Menci and I. Modena 147–152

Effect of primary coil size on eddy current decay resistivity measurements

K.T. Hartwig, C.Y. Hua and L.C. McDonald 153–158

Deformation properties of indium-based solders at 294 and 77 K

M. Plötner, B. Donat and A. Benke 159–162

Vibration test cryostat

R. Schlegelmilch 163–165

Magnetocaloric effect in HoCo₂ compound

S.A. Nikitin and A.M. Tishin 166–167

Calorimetry by means of the relaxation and dual-slope methods below 1 K:

application to some high *T_c* superconductors

R.W. Willekers, H.C. Meijer, F. Mathu and H. Postma 168–173

Liquid hydrogen condenser and current lead designs for liquid hydrogen critical current measurements of superconductors

Y. Iwasa 174–177

Relation of critical current density to diamagnetic magnetization in polycrystalline BiPbSrCaCuO

Y.G. Wang, S.L. Yuan, Y. Yang, X.Z. Xiong and G.C. Han 178–182

Excess magnetization due to interfilamentary proximity coupling in Nb-Ti multifilamentary wires

N. Harada, Y. Mawatari, O. Miura, Y. Tanaka and K. Yamafuji 183–191

General criterion for intrinsic stabilization of superconducting composites with high resistive matrix

P. Maccioni and B. Turck 192–203

Cool-down efficiency of circulation type superconducting devices

S.P. Gorbatchev and A.A. Krikunov 204–208

Effective passivation of YBaCuO superconducting bridges by photoresist overlays

G.S.N. Reddy, A.K. Gupta, V.S. Tomar, N. Khare, V.N. Ojha and D.K. Walia 209–211

April (pp 217–324)

Low temperature mechanical and thermal properties of liquid crystal polymers

D. Evans and J.T. Morgan 220–222

Microscopic aspects of solute–solvent interaction in doped polymer systems investigated via hole burning spectroscopy

W. Richter, S. Reul and D. Haarer 223–227

Thermal conductivity of modified epoxy resins with different cross-link densities at low temperatures

M. Jäckel, M. Müller, A. Licea Claverie and K.F. Arndt 228–230

Fatigue behaviour of polymers

G. Hartwig and S. Knaak 231–233

Fracture energy of polymers at low temperatures

T. Saatkamp and G. Hartwig 234–237

Thermal conductivity of fibre composites at low temperatures

P.G. Klemens 238–240

Thermal conductivity of filled epoxy composites

E.E. Ustjushanin 241–243

Thermal expansion of carbon fibre composites with thermoplastic matrices

G. Schwarz, F. Krahn and G. Hartwig 244–247

Index

Fatigue properties of unidirectional carbon fibre composites at cryogenic temperatures
K. Pannkoke and H.-J. Wagner 248–251

Cryogenic mechanical response of carbon fibre reinforced plastics with thermoplastic matrices to quasi-static loads
K. Ahlborn 252–256

Durability of carbon fibre reinforced plastics with thermoplastic matrices under cyclic mechanical and cyclic thermal loads at cryogenic temperatures
K. Ahlborn 257–260

Three-dimensional fabric reinforced plastics for cryogenic use
Y. Iwasaki, J. Yasuda, T. Hirokawa, K. Noma, S. Nishijima and T. Okada 261–264

Damage in carbon fibre reinforced epoxy after thermal cycling and T-fatigue loading
H. Eggers, W. Hartung and S. Knaak 265–268

Boundary layer induced modification of thermal and mechanical properties of epoxy resin composites
M. Jäckel and W. Scheibner 269–272

Radiation damage of organic composite material for fusion magnet
S. Nishijima, T. Okada, T. Hirokawa, J. Yasuda and Y. Iwasaki 273–276

Insulation irradiation test programme for the Compact Ignition Tokamak
T.J. McManamy, G. Kanemoto and P. Snook 277–281

Use of resin composites for cryogenic tankage
M.T. Callaghan 282–287

Design of support strap with advanced composite for cryogenic application
T. Hirokawa, J. Yasuda, Y. Iwasaki, K. Noma, S. Nishijima and T. Okada 288–291

Evaluation of structural integrity of superconducting magnet coils
G.W. Knight and D. Evans 292–297

Basic material data and structural analysis of fibre composite components for space application
H. Bansemir and O. Haider 298–306

Research and development of insulating materials for large helical device
T. Okada, S. Nishijima, K. Takahata and J. Yamamoto 307–311

Influence of test geometry on tensile strength of fibre reinforced plastics at cryogenic temperatures
E. Tschech, K. Humer and H.W. Weber 312–318

Fabrication techniques for thermoplastic composites
R. Weiss 319–322

May (pp 325–396)

Measurement device with cold oscillator for measuring vapour content in helium two-phase flow
H. Katheder and M. Süsser 327–329

Flow patterns of two-phase helium in horizontal channels
A.I. Alexeyev, Yu. P. Filippov and I.S. Mamedov 330–337

Flight performance of a rocket-borne ^3He refrigerator
L. Duband, D. Alsop, A. Lange, S. Hayata, T. Matsumoto and S. Sato 338–340

Temperature dependent stability and protection parameters in an adiabatic superconducting magnet
J.N. Brown IV and Y. Iwasa 341–347

Breakdown of superconductivity in a zinc whisker with controllable quasiparticle flooding
X. Yang and R. Tidecks 348–353

Hysteresis losses in hollow superconducting filaments and in multifilament systems
J.A. Eikelboom and L.J.M. van de Klundert 354–362

Apparatus for calorimetric measurement of a.c. losses in superconductors
J.A. Eikelboom 363–365

Patterning of high T_c films for critical current measurements
W.K. Schomburg, M. Heidinger, G. Nöther, J. Reiner, V. Windte, W. Schauer and K. Kadel 366–368

SQUID magnetometer designed for high T_c superconductors
M. Kohl and J.P. Harrison 369–372

Direct observation of magnetic flux inhomogeneity in the vicinity of high temperature superconductors
A.I. Belyaeva, S.V. Vojtsenya and V.P. Yuryev 373–378

Intergranular flux creep in c-axis aligned ceramic $\text{RBa}_2\text{Cu}_3\text{O}_x$ ($\text{R} = \text{Y}, \text{Dy}$ and Ho)
N. Nakamura and M. Shimotomai 379–383

Behaviour of quasi-optical dielectric resonator with high T_c superconductors in the temperature range 10–300 K
N.T. Cherpak and A.Ya. Kirichenko 384–387

Superconductivity of Au–Sn eutectic solder
D. Dummer, P. Andersen and W. Weyhrmann 388–389

Reduced sensitivity of Nb_3Sn epoxy-impregnated cable to transverse stress
B. Jakob, G. Pasztor, M. Bona and A. Asner 390–391

Boiling heat transfer to liquid helium from surfaces with pin-fins
H. Ogata, H. Kuwahara, H. Noguchi and T. Nakagawa 392–393

June (pp 397–484)

Simulation of tensile strength of anisotropic fibre-reinforced composites at low temperature
H.H. Abdelmohsen 399–404

Thermal conductivities of magnetic intermetallic compounds for cryogenic regenerator
M. Ogawa, R. Li and T. Hashimoto 405–410

Research on chill-down time of liquid hydrogen pump
T.-Y. Lin 411–416

Possible design for a thin wire resistance thermometer with isotropic magnetoresistance
K. Nara, H. Kato and M. Okaji 417–420

Versatile system for point contact conductance spectroscopy
H. Srikanth and A.K. Raychaudhuri 421–424

Instrumentation for highly sensitive measurement of magnetocaloric effect: application to high T_c superconductors
H. Kato, K. Nara and M. Okaji 425–430

Achievement of high current density in Nb–Ti superconducting multifilamentary wires by introducing designed artificial pins
K. Yamafuji, N. Harada, Y. Mawatari, K. Funaki, T. Matsushita, K. Matsumoto, O. Miura and Y. Tanaka 431–438

Preparation of 110 K BiPbSrCaCuO thin films by d.c. magnetron sputtering and their transport properties
Y.H. Wang, L. Li, Y.Z. Zhang, Y.Y. Zhao and P. Xu 439–443

Critical energy of thermally insulated composite superconductors
L. Malinowski 444–449

Investigations and developments in the field of superconductive turbogenerators
I.A. Glebov and L.I. Chubraeva 450–452

New silver powders with large surface area as heat exchanger materials
W. Itoh, A. Sawada, A. Shinozaki and Y. Inada 453–455

Sealing performance of gaskets and flanges against superfluid helium
H. Ishimaru and H. Yoshiki 456–458

Experimental model of the TG-5000 flux pump
V.V. Vasil'ev, V.N. Isaykin, O.D. Konzyuba, E.B. Klimova, V.G. Kozenkov, V.A. Kulagin, A.A. Markov, V.Ya. Pakhomov, A.N. Romanov, B.A. Serebryakov, N.A. Sysoev and A.A. Forostenko 459–460

July (pp 485–692)

Superconductor stability '90: a review
L. Dresner 489–498

Stabilization, protection and current density: some general observations and speculations
M.N. Wilson 499–503

Probability of premature quenches due to conductor motion in superconducting windings
T. Takao, O. Tsukamoto and S. Honjo 504–509

Design criteria for stability in cable-in-conduit conductors
L. Bottura, N. Mitchell and J.V. Minervini 510–515

Stability of superconductors cooled internally by He II heat transfer
S.W. Van Sciver 516–520

Stabilization of Cu–Ni/Nb–Ti superconductors by MgO powder
S. Yokoyama, S. Yamamoto, S. Nakamura and T. Yamada 521–523

Stability of superconducting magnetic shield
K. Seo, S. Nishijima, T. Okada and K. Katagiri 524–527

Influence of copper to superconductor ratio on stability of superconductors
N. Amemiya and O. Tsukamoto 528–532

Dynamic stability of superconductors cooled by pool boiling
T. Ito and H. Kubota 533–537

Stability measurements on the 50 kA SMES conductor
J.M. Pfotenauer 538–542

Stability measurements of three-component Nb–Ti superconducting wires
Y. Tanaka, K. Yamada, T. Sano and K. Doi 543–546

- Numerical analysis of thermal stability of an immersion-cooled, pancake type superconducting coil
S. Okada, J.-K. Kim, T. Aihara and K. Kuroda 547–550
- Influence of mass flow rate and hydraulic perimeter on the transient stability margin of a forced flow cooled superconductor
K. Agatsuma 551–556
- Theory of thermal hydraulic quenchback in cable-in-conduit superconductors
L. Dresner 557–561
- Quench protection of superconducting magnet using ZnO arrester
T. Ishigohiko and Y. Kushiro 562–565
- Estimation of maximum voltage of superconducting magnet systems during a quench
T. Tominaka, N. Hara and K. Kuroda 566–569
- Compact 17 T epoxy-impregnated magnet without bore tube
M. Urata, H. Maeda, N. Aoki and G. Uchiyama 570–574
- Stability issues in high performance superconducting magnets
Y. Iwasa 575–579
- Stability of high current density magnets with narrow liquid helium channel cooling
Yan Luguang, Yi Changlian and Qin Jie 580–584
- Statistical study on stability and quench protection of pool cooled superconducting magnets
O. Tsukamoto, N. Amemiya, H. Kagami and S. Yamamura 585–589
- Static and dynamic characteristics of Nb₃Ge layers for rapid superconducting power switches
I. Hlášník, J. Kokavec, K. Fröhlich and L. Janšák 590–593
- Instability in kiloamp class a.c. superconducting cables
K. Funaki, M. Nakashima, M. Iwakuma, M. Takeo and K. Yamafuji 594–597
- Quench characteristics of a.c. superconducting coils
S. Akita, H. Kasahara and S. Torii 598–600
- Numerical analysis of a.c. losses in superconductors
H. Hashizume, T. Sugiura, K. Miya, Y. Ando, S. Akita, S. Torii, Y. Kubota and T. Ogasawara 601–606
- Frequency dependence of quench current of a.c. superconducting winding for linear induction motor
N. Amemiya, T. Sugita, T. Takao, O. Tsukamoto, Y. Tanaka, K. Oishi, H. Shimizu, S. Sato, Y. Yoneyama and S. Yatabe 607–611
- A.c. stability and a.c. loss in composite superconductors
L.J.M. van de Klundert 612–617
- Transient heat transfer to a closed volume of He I and its influence on superconductor stability
C. Schmidt 618–623
- Heat transport in insulation of cables cooled by superfluid helium
C. Meuris 624–628
- Stability and protection of Tore Supra superconducting coils
B. Turck 629–633
- Stability tests on R&D superconductors for the Large Helical Device
T. Mito, J. Yamamoto, K. Takahata, N. Yanagi and O. Motojima 634–639
- Experimental results of the Nb₃Sn demo poloidal coil (DPC-EX)
Y. Takahashi, K. Yoshida, T. Ando, T. Hiyama, H. Tsuji, M. Nishi, E. Tada, K. Okuno, K. Koizumi, H. Nakajima, T. Kato, M. Sugimoto, T. Isano, K. Kawano, Y. Kamiyauchi, J. Yoshida, H. Ishida, E. Kawagoe, M. Konno and S. Shimamoto 640–644
- Transient pressure increase in cable-in-conduit conductor exposed to pulsed magnetic fields
V.I. Babitch, V.V. Churbanov, C. Schmidt and H. Tateishi 645–650
- Stability and a.c. loss of Nb-Ti wire for low excitation superconducting generator
K. Ohmatsu, M. Nagata and K. Takahashi 651–654
- Tests on a 30 kVA class superconducting transformer
E.S. Yoneda, I. Tashiro, M. Moroshi and D. Ito 655–659
- Development of superconductors for a 70 MW superconducting generator
Y. Matsunobu, K. Yamaguchi, N. Maki, N. Tada, Y. Yagi and R. Shiobara 660–663
- Stability tests against thermal disturbances on rotating superconducting field windings
T. Onishi, K. Kaiho, N. Higuchi, I. Ishii, H. Nomura, H. Tateishi, K. Arai, K. Satoh and M. Inukai 664–667
- Normal zone propagating characteristics and stability criterion of the superconducting field windings for a test rotor
K. Kaiho, H. Nomura, H. Higuchi, I. Ishii, H. Tateishi, K. Arai, T. Onishi, M. Kumagai and T. Imura 668–673
- Temperature pulse evolution in a three-dimensional medium with temperature dependent heat conductivity: application to high temperature superconductor composites
A.A. Akhmetov, V.A. Altov, O.V. Filatova and V.V. Sytchev 674–675
- Preparation of aligned high T_c superconducting composite tape by laser deposition process on metallic substrate
N. Sadakata, K. Onabe, Y. Iijima, N. Futaki, O. Kohno and Y. Ikeno 676–679
- Effects of transverse heat transfer on normal zone propagation in metal-clad high temperature superconductor coil tape
M.K. Chu and C.E. Oberly 680–686
- Transport current properties of silver-sheathed BiPbSrCaCuO wire and coil
K. Sato, T. Hikata, M. Ueyama, H. Mukai, N. Shibata, T. Kato and T. Masuda 687–689
- Effect of light irradiation on S-N transition in BSCCO superconductor
N. Shimizu, T. Yoshida and K. Horii 690–692
- August (pp 693–772)**
- Friction and wear of polymeric materials at 293, 77 and 4.2 K
P.C. Michael, E. Rabinowicz and Y. Iwasa 695–704
- Thermal counterflow in a diverging channel: a study of radial heat transfer in He II
J.F. Kafkalidis and J.T. Tough 705–711
- ³He/⁴He mixing chamber for an ultralow temperature gravitational wave antenna**
E. Coccia and I. Modena 712–714
- Minimum specimen size for composite testing at low temperature
H.H. Abdelmohsen 715–719
- High T_c superconductor voltage-current simulator and the pulse method of measuring critical current
L.F. Goodrich 720–727
- Magnetic separation of superconductors
F.J. Blunt and A.M. Campbell 728–731
- Quantitative determination of percentage superconductor in a new compound
A.M. Campbell, F.J. Blunt, J.D. Johnson and P.A. Freeman 732–737
- Influence of copper location on stability of composites made of superconducting filaments in a highly resistive matrix
P. Macconi and B. Turck 738–748
- Study on the intrinsic thermal stability of anisotropic thin film superconductors with a line heat source
R.C. Chen and H.S. Chu 749–755
- Cryoelectrophoresis of superconducting $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ in liquid nitrogen
R. Eggenhoffner 756–759
- Electrical contact to high T_c superconductor
Yue Sun and Hongchuan Yang 760–762
- Calibration constant calculations for magnetic susceptibility measurements
A.F. Khader and M. Couach 763–765
- September (pp 773–852)**
- Development of an SMA electrode to match type 316LN base metal cryogenic properties
T.A. Siewert and C.N. McCowan 775–779
- Correlation of mechanical properties with metallurgical structure for 18Ni 200 grade maraging steel at room and cryogenic temperatures
J.A. Wagner 780–785
- Work and heat flows in a pulse-tube refrigerator
M. Kasuya, M. Nakatsu, Q. Geng, J. Yuyama and E. Goto 786–790
- Regenerator effectiveness of a two-stage Gifford-McMahon cryogenerator: experimental results
A. Baldini 791–795
- Carbon and thick film chip resistors as thermometers for heat capacity measurements below 1 K
M.L. Siqueira, R.J. Viana and R.E. Rapp 796–800
- Insert for regulating temperatures between 2 and 1000 K in a liquid helium dewar: description and cryogenic analysis
A. Barlet, J.C. Genna and P. Lethuillier 801–805
- Co-axial current lead for 14 T split solenoid magnet
K. Maehata, M. Wake and H. Hirabayashi 806–810
- EuSe as magneto-optical active coating for use with the high resolution Faraday effect
Th. Schuster, M.R. Kobischka, B. Ludescher, N. Moser and H. Kronmüller 811–816
- Normal zone propagation in adiabatic superconducting magnets. Part I: normal zone propagation velocity in superconducting composites
S.P. Zhao and Y. Iwasa 817–825

Index

Influence of loading – unloading treatment at room temperature on superconducting properties of Nb_3Sn superconducting composite
W. Zhang, S. Ochiai and K. Osamura 826 – 832

Influence of nickel substitution on flux pinning and critical currents in $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$
G.K. Bichile, D.G. Kuberkar, K.M. Jadhav, S.S. Shah and R.G. Kulkarni 833 – 838

Regenerator performance with sinusoidal flow
D.E. Daney 839 – 841

October (pp 853 – 924)

Regenerator performance with noble gas mixtures
D.E. Daney 854 – 861

Thermodynamic optimization of regenerators
S.K. Das and R.K. Sahoo 862 – 868
Rhodium – iron resistance thermometer with fused-silica coil frame
O. Tamura and H. Sakurai 869 – 873
Low temperature resistance of p-InSb(Mn)
S.A. Obukhov, B.S. Neganov, Yu.F. Kiselev, A.N. Chernikov, V.S. Vekshina, N.I. Pepik and A.N. Popkov 874 – 877

Mechanical properties and fracture behaviour of polyimide (SINTIMID) at cryogenic temperatures
E. Tschegg, K. Humer and H.W. Weber 878 – 883

New technique for measuring the dynamic Young's modulus between 295 and 6 K
J. Zhang, A. Nyilas and B. Obst 884 – 889

Distortion of liquid helium surface in inhomogeneous magnetic field
J. Frost, M.J. Lea and P. Fozooni 890 – 891

Problems of practical use of thermoacoustics under liquid helium storage conditions
A.G. Kuzmina and S.P. Gorbachev 892 – 895

Solubility of CFCl_3 , CHCl_3 , CCl_4 and C_2HCl_3 in liquid nitrogen at 77.4 K
B. Dabrowska 896 – 899

Fabrication of Bi-based oxide superconductors by YAG laser irradiation
M. Yuyama, H. Wada, K. Itoh and T. Kuroda 900 – 905

Effect of epoxy debonding and cracking on stability of superconducting composites
V.I. Dotsenko and I.F. Kislyak 906 – 912
Intragrain critical current density of superconducting compounds of the type $(\text{Pr}_x\text{Y}_{1-x})\text{Ba}_2\text{Cu}_3\text{O}_{7-\delta}$
L.S. Vaidhyanan and G. Rangarajan 913 – 917

Novel large volume horizontal cryostat
D.G. Blair, P.J. Turner, J. Devlin, F.J. van Kann, M.A. Brennan and C. Shusen 918 – 920

Millikelvin heater using a light emitting diode and fibre optics
P.B. Chilson, J.C. Clark and G.G. Ihss 921 – 923

November (pp 925 – 1004)

Effect of channel geometry on heat transfer in He II chamber
H. Tsuruga and H. Kobayashi 927 – 931

Characterization of some chip resistors at low temperatures
A. Briggs 932 – 935

Review of stability in high temperature superconductors with emphasis on flux jumping
S.L. Wipf 936 – 948

History effect of critical current density and weak links in superconducting BiPbSrCaCuO tape wires
T. Matsushita, E.S. Otabe, B. Ni, T. Hikata and K. Sato 949 – 953
Influence of thermal cycling on critical current of superconducting silver-sheathed high T_c oxide wires
S. Ochiai, K. Hayashi and K. Osamura 954 – 961

Non-linear thermal relaxation waves in high T_c superconductors carrying current
T.V. Bandos 962 – 968

Frictional heating of magnet structural materials at cryogenic temperatures
A. Iwabuchi and K. Komuro 969 – 974
Off-axis sputtered $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ films on NdGaO_3
T. Scherer, R. Herwig, P. Marienhoff, M. Neuhaus, A. Vogt and W. Jutzi 975 – 978

Heat transfer crisis during liquid nitrogen cooling of high temperature superconductor
Yu. A. Kirichenko, S.M. Kozlov, K.V. Rusanov and E.G. Tyurina 979 – 984

Force-cooled current leads for the force-cooled superconducting magnets of the Nuclotron
V.D. Bartenev and Yu. A. Shishov 985 – 987
High T_c superconductors for SQUID detection coils
R.B. Stephens and R.L. Fagaly 988 – 992

Performance of all-metal demountable cryogenic seals at superfluid helium temperatures
L.J. Salerno, A.L. Spivak and P. Kittel 993 – 995

December (pp 1005 – 1084)

Effectiveness of corrugated surfaces in limiting the rate of evaporation of cryogenic liquids
I. Kececioglu 1008 – 1019

Application of radio frequency method to measurements in cryogenics
A.I. Alexeyev, Yu.P. Filippov, I.S. Mamedov and S.V. Romanov 1020 – 1029

Arcsecond grating drive mechanism for operation at 4 K
C.H. Downey, J.R. Houck, M.J. Kubitschek and R.W. Tarde 1030 – 1037

Thermodynamic analysis of processes in refrigerators using superfluid helium (He II) by means of $T - q$ diagram
V.U. Sidyganov, E.V. Ametistov and P.M. Kupchikhin 1038 – 1043

Theoretical analysis and performance investigation of Stirling cycle regenerators
M.D. Atrey, S.L. Bapat and K.G. Narayankhedkar 1044 – 1052

Simple technique for increasing the conductivity of copper for current lead conductors
B.V. Elkoni and J.S. Sokolowski 1053 – 1054

Evaluation of CMOS timer integrated circuits for cryogenic use
T. Haruyama and R.K. Kirschman 1055 – 1064

Behaviour of power MOSFETs at cryogenic temperatures
R. Karunanithi, A.K. Raychaudhuri, Z. Szucs and G.V. Shivashankar 1065 – 1069

Measurements of the viscosity of compressed liquid air at temperatures between 70 and 130 K
D.E. Diller, A.S. Aragon and A. Laesecke 1070 – 1072

Keywords

Alloys

Electrodes
Welds 775 – 779

Calorimetry

Measuring methods
High T_c superconductors 168 – 173

Superconductors

A.c. losses 363 – 365

Thermometry

Measuring techniques 54 – 57

Carbon fibres

Epoxy resins
Mechanical properties 265 – 268

Thermoplastics
Low temperature studies 257 – 260

Mechanical properties 252 – 256

Ceramic oxides

Flux creep
High T_c superconductivity 379 – 383

High T_c superconductivity

Critical currents 954 – 961

Superconductivity

Critical current density 949 – 953

Ceramics

Heat transfer
Pool boiling 979 – 984

Chip resistors

Thermometry

Magnetoresistance 932 – 935

Composites

Carbon fibres
Thermal properties 244 – 247

Fatigue 248 – 251

Epoxy resins

Low temperature studies 282 – 287

Thermal conductivity 241 – 243

Fibres

Space cryogenics 298 – 306

Mechanical properties

Epoxy resins 399 – 404, 715 – 719

Physical properties

Design applications 288 – 291

Polymers

Materials characterization 7 – 15

Radiation damage

Fusion magnets 273 – 276

Superconductivity

Epoxy resin 906 – 912

Superconductor stability

Copper 738 – 748

Superconductors

High T_c superconductivity 674 – 675

Nb_3Sn 826 – 832

Stability 192 – 203

Thermal conductivity

Fibres 238 – 240

Thermoplastics

Fabrication 319 – 322

- Copper**
 Superconductor stability
 Composites 738–748
- Critical current density**
 Superconductivity
 Ceramic oxides 949–953
- Critical currents**
 Ceramic oxides
 Granular superconductors 105–109
 High T_c superconductivity
 Ceramic oxides 954–961
 SQUIDs 913–917
 High T_c superconductors
 Magnetometers 119–127
 Measuring methods 720–727
 Magnetization behaviour
 Flux pinning 178–182
 Superconductivity
 Josephson junctions 132–135
 Zinc 348–353
- Superconductors**
 Flux pinning 833–838
 High T_c superconductivity 687–689
- Thin films**
 High T_c superconductivity 366–368
- Critical energies**
 Superconductors
 Superconductor stability 444–449
- Cryocoolers**
 Regenerators
 Stirling cycle 1044–1052
- Cryogenerators**
 Refrigerators
 Gifford–McMahon cycle 791–795
- Cryogens**
 Cryomedicine
 Physical properties 136–137
 Flow rate
 Measuring methods 1020–1029
- Cryomedicine**
 Cryogens
 Physical properties 136–137
- Cryostats**
 Helium
 Gravity wave antennas 918–922
 Mathematical models
 Refrigerators 147–152
- Tunneling**
 Spectroscopy 421–424
- Strain gauges**
 Young's modulus 884–889
- Vibration testing**
 Space cryogenics 163–165
- Current leads**
 Magnets
 Solenoids 806–810
 Residual resistance ratio
 Annealing 1053–1054
 Superconducting magnets
 Force-cooling 985–987
- Epoxy resins**
 Carbon fibres
 Mechanical properties 265–268
 Composites
 Low temperature studies 282–287
 Mechanical properties 399–404,
 715–719
 Thermal conductivity 241–243
- Thermal conductivity**
 Low temperature studies 228–230
- Thermal properties**
 Mechanical properties 269–272
- Faraday effect**
 High T_c superconductors
 Flux penetration 811–816
- Fibre-reinforced plastics**
 Insulation
 Mechanical properties 312–318
 Thermal properties
 Mechanical properties 261–264
- Flux creep**
 Ceramic oxides
 High T_c superconductivity 379–383
- Flux penetration**
 Faraday effect
 High T_c superconductors 811–816
- Flux pinning**
 Magnetization behaviour
 Critical currents 178–182
 Superconductivity
 Multifilamentary wires 431–438
 Superconductors
 Critical currents 833–838
- Force-cooling**
 Superconducting magnets
 Current leads 985–987
- Fracture behaviour**
 Polymers
 Mechanical properties 878–883
- Friction**
 Superconducting magnets
 Quench 969–974
- Gravity wave antennas**
 Cryostats
 Helium 918–922
- Heat capacity**
 Thermal properties
 Glass-ceramic 102–104
 Thermometry
 Resistors 796–800
- Heat exchangers**
 Regenerators
 Sinusoidal flow 839–841
- Heat transfer**
 Helium
 Boiling surfaces 392–393
 Gorter–Mellink model 705–711
 Superfluidity 927–931
- Nitrogen
 Hydrogen 64–69
 Pool boiling
 Ceramics 979–984
- Refrigeration
 Pulse-tube refrigerators 786–790
 Silver powders
 Ultralow temperatures 453–455
- Superconductors
 High T_c superconductivity
 680–686
 Laser ablation 676–679
 Magnetic stability 618–623
 Stability 547–550
 Superfluid helium 624–628
- Helium
 Cryostats
 Gravity wave antennas 918–922
 Gravitational waves
 Dilution refrigerators 712–714
 Heat transfer
 Boiling surfaces 392–393
 Gorter–Mellink model 705–711
 Superfluidity 927–931
- Leaks
 Seals 993–995
- Magnetic fields
 Surface studies 890–891
- Measuring methods
 Flow pattern map 330–337
- Measuring instruments
 Two-phase flow 327–329
- Measuring methods
 Flowmeters 75–86
- Refrigeration
 Cryopump 61–63
- Regenerators
 Noble gases 854–861
- Space cryogenics
 Refrigerators 338–340
- Superfluidity
 Flanges 456–458
- Thermoacoustics**
 Pressure vessels 892–895
- Thermodynamics**
 Refrigerators 1038–1043
- Thermometry**
 Temperature regulation 801–805
- High T_c superconductivity**
 Ceramic oxides
 Critical currents 954–961
 Critical currents
 SQUIDs 913–917
 Measuring techniques
 Epitaxial ferrogarnet film 373–378
 SQUIDs
 Low temperature electronics
 988–992
- Superconducting cables**
 Turbogenerators 450–455
- Superconductors**
 Critical currents 687–689
 Heat transfer 680–686
 S–N transition 690–692
 Starting compounds 33–40
 Thin films
 BiPbSrCaCuO 439–449
- High T_c superconductors**
 Calorimetry
 Measuring methods 168–173
 Critical currents
 Measuring methods 720–727
- Electrical contacts**
 Resistivities 760–762
- Faraday effect**
 Flux penetration 811–816
- Magnetic materials**
 Magnetic separation 728–731
- Magnetometers**
 Critical currents 119–127
- Materials characterization**
 Thermal cycling 209–211
 Normal zone propagation
 Thermal stability 962–968
- Hydrogen**
 Heat transfer
 Nitrogen 64–69
 Hydrogen
 Rocket engines 411–416
- Instrumentation**
 Nuclear magnetic resonance
 138–139
- Hysteresis**
 Superconductors
 Hollow filaments 356–362
- Instrumentation**
 Hydrogen
 Nuclear magnetic resonance 138–139
 Low temperature electronics
 Amplifiers 48–50
 CMOS 1055–1064
 Thick-film resistors 58–60
 Magnetocaloric effect
 High T_c superconductivity 425–430
 Measuring techniques
 High T_c superconductors 384–387
- Insulation**
 Fibre-reinforced plastics
 Mechanical properties 312–318
 Materials studies
 Design application 307–311
 Tokamak
 Radiation damage 277–281
- Josephson junctions**
 Superconductivity
 Critical currents 132–135
- LEDs**
 Optical fibres
 Thermal conductivity 921–923
- Leaks**
 Helium
 Seals 993–995

Index

- Low temperature electronics**
High T_c superconductivity
SQUIDS 988–992
- Instrumentation**
Amplifiers 48–50
CMOS 1055–1064
Thick-film resistors 58–60
- MOSFETs**
Switching 1065–1069
- Low temperature studies**
Epoxy resins
Thermal conductivity 228–230
- Polymers**
Fatigue 231–233
Physical properties 695–704
- Magnetic fields**
Helium
Surface studies 890–891
- Materials characterization**
Thin films 41–47
- Physical properties**
Model 128–131
- Thermometers**
Magnetoresistance 417–420
Platinum resistance thermometers
16–20
- Thermometry**
Platinum NMR 94–98
- Magnetic materials**
High T_c superconductors
Magnetic separation 728–731
- Thermal conductivity**
Regenerators 405–410
- Magnetic properties**
Mathematical models
Calibration 763–770
- Magnetization**
Mechanical properties
Superconducting cables 51–53
- Refrigerators**
Thermodynamics 99–101
- Magnetization behaviour**
Critical currents
Flux pinning 178–182
- Superconductors**
Transition temperature 732–737
- Magnetocaloric effect**
Instrumentation
High T_c superconductivity 425–430
- Magnetic field**
Magnetic entropy charge 166–167
- Magnetometers**
High T_c superconductors
Critical currents 119–127
- SQUIDS**
High T_c superconductivity 369–372
- Magnetoresistance**
Chip resistors
Thermometry 932–935
- Thermometry**
Thermoresistors 874–877
- Magnets**
Current leads
Solenoids 806–810
- Superconductors**
Magnetic stability 580–584
- Materials characterization**
Composites
Polymers 7–15
- High T_c superconductors**
Thermal cycling 209–211
- Magnetic fields**
Thin films 41–47
- Solders**
Indium 159–162
- Thermal conductivity**
Physical properties 3–6
- Mathematical models**
Cryostats
Refrigerators 147–152
- Magnetic properties**
Calibration 763–770
- Measuring instruments**
Helium
Two-phase flow 327–329
- Measuring methods**
Calorimetry
High T_c superconductors 168–173
- Cryogens**
Flow rate 1020–1029
- Helium**
Flowmeters 75–86
- High T_c superconductors**
Critical currents 720–727
- Physical properties**
Resistivity 153–158
- Superconductors**
Efficiency 204–208
- Measuring techniques**
High T_c superconductivity
Epitaxial ferrogarnet film 373–378
- Instrumentation**
High T_c superconductors 384–387
- Superconductors**
Critical currents 174–177
- Viscosity**
Liquid air 1070–1072
- Mechanical properties**
Carbon fibres
Epoxy resins 265–268
- Composites**
Epoxy resins 399–404, 715–719
- Epoxy resins**
Thermal properties 269–272
- Fibre-reinforced plastics**
Insulation 312–218
- Magnetization**
Superconducting cables 51–53
- Polymers**
Fracture behaviour 878–883
- Steel**
Metallurgical characterization
780–785
- Superconductors**
Superconducting magnets
292–297
- Model**
Physical properties
Magnetic fields 128–131
- Superconductors**
Flux pump 459–460
- Thermal properties**
Corrugated surfaces 1008–1019
- Multifilamentary wires**
Superconducting magnets
Proximity effects 183–191
- Superconductivity**
Flux pinning 431–438
- Nb–Ti**
Superconducting magnets
Superconductor stability 341–347
- Nitrogen**
Heat transfer
Hydrogen 64–69
- Noble gases**
Regenerators
Helium 854–861
- Normal zone propagation**
High T_c superconductors
Thermal stability 962–968
- Optical fibres**
LEDS
Thermal conductivity 921–923
- Physical properties**
Composites
Design applications 288–291
- Cryomedicine**
Cryogens 136–137
- Magnetic fields**
Model 128–131
- Measuring methods**
Resistivity 153–158
- Polymers**
Low temperature studies 695–704
- Superconductors**
Superconductor stability 21–32
- Thermal conductivity**
Materials characterization 3–6
- Polymers**
Composites
Materials characterization 7–15
- Fracture behaviour**
Mechanical properties 878–883
- Fracture energy**
Low temperature studies 234–237
- Low temperature studies**
Fatigue 231–233
- Physical properties**
Low temperature studies 695–704
- Spectroscopy**
Photochemical hole burning 223–227
- Thermal properties**
Mechanical properties 220–222
- Pool boiling**
Heat transfer
Ceramics 979–984
- Superconductors**
Stability 533–537
- Quench**
Superconducting magnets
Friction 969–974
- Superconductors**
A.c. losses 598–600
Numerical modelling 645–650
- Refrigeration**
Heat transfer
Pulse-tube refrigerators 786–790
- Refrigerators**
Cryogenerators
Gifford–McMahon cycle 791–795
- Magnetization**
Thermodynamics 99–101
- Mathematical models**
Cryostats 147–152
- Space cryogenics**
Helium 338–340
- Thermodynamics**
Helium 1038–1043
- Regenerators**
Cryocoolers
Stirling cycle 1044–1052
- Heat exchangers**
Sinusoidal flow 839–841
- Noble gases**
Helium 854–861
- Thermal conductivity**
Magnetic materials 405–410
- Thermodynamics**
Optimization 862–868
- Rhodium–iron**
Thermometry
Resistance thermometer 869–873
- SQUIDS**
High T_c superconductivity
Low temperature electronics 988–992
- Seals**
Helium
Leaks 993–995
- Sinusoidal flow**
Heat exchangers
Regenerators 839–841
- Solders**
Materials characterization
Indium 159–162
- Solubility**
Liquid nitrogen
Halogenhydrocarbons 896–899
- Space cryogenics**
Grating drive mechanism
Infrared spectograph 1030–1037

- Refrigerators**
Helium 338–340
- Steel**
Mechanical properties
Metallurgical characterization 780–785
- Stirling cycle**
Regenerators
Cryocoolers 1044–1052
- Superconducting cables**
A.c. losses
Stability 594–597
- High T_c superconductivity
Turbogenerators 450–455
- Mechanical properties
Magnetization 51–53
- Nb_3Sn
Stress effects 390–391
- Superconducting magnets**
Current leads
Force-cooling 985–987
- Multifilamentary wires
Proximity effects 183–191
- Quench
Friction 969–974
- Superconductor stability
 $Nb - Ti$ 341–347
- Superconductors**
Magnet stability 570–574
Magnetic stability 575–579
Mechanical properties 292–297
Quench protection 557–561,
562–565, 566–569
Stability 504–509
- Composites
Normal zone propagation 817–835
- Superconducting oxides**
Thin films
Cryoelectrophoresis 756–759
- Superconductivity**
Ceramic oxides
Critical current density 949–953
- Composites
Epoxy resin 906–912
- Critical currents
 $Zinc$ 348–353
- Josephson junctions
Critical currents 132–135
- Multifilamentary wires
Flux pinning 431–438
- Thermal conductivity
Phase diagram 388–389
- Superconductor stability**
Composites
 $Copper$ 738–748
- Cooling
Stability analysis 110–118
- Superconducting magnets
 $Nb - Ti$ 341–347
- Superconductors**
A.c. losses
Hysteresis 601–606
- Quench current 607–617
- Calorimetry
A.c. losses 363–365
- Composites
High T_c superconductivity 674–675
- Nb_3Sn 826–832
- Stability 192–203
- Critical currents
Flux pinning 833–838
- Critical energies
Superconductor stability 444–449
- Heat transfer
High T_c superconductivity 680–686
- Laser ablation 676–679
- Magnetic stability 618–623
- Stability 547–550
- Superfluid helium 624–628
- High T_c superconductivity
Critical currents 687–689
- Flux stability 936–948
- S–N transition 690–692
- Starting compounds 33–40
- Hysteresis**
Hollow filaments 356–362
- Magnetic stability**
A.c. losses 612–617, 651–654
- Forced flow cooling 551–556
- Generators 660–663, 664–667
- Large Helical Device 634–639
- Magnetization behaviour**
Transition temperature 732–737
- Magnets**
Magnetic stability 580–584
- Measuring methods**
Efficiency 204–208
- Measuring techniques**
Critical currents 174–177
- Mechanical properties**
Superconducting magnets 292–297
- Model**
Flux pump 459–460
- Oxide superconductors
YAG lasers 900–905
- Physical properties**
Superconductor stability 21–32
- Pool boiling
Stability 533–537
- Quench
A.c. losses 598–600
- Numerical modelling 645–650
- Stability
Copper to superconductor ratio
528–532
- Current density 499–503
- Design criteria 510–515
- Generators 668–673
- Magnetic shield 524–527
- Quench energy 521–523, 543–546
- Review 489–498
- SMES 538–542
- Superfluid helium 516–520
- Superconducting magnets**
Magnet stability 570–574
- Magnetic stability 575–579
- Quench protection 557–561,
562–565, 566–569
- Stability 504–509
- Superconducting switches**
Magnetic stability 590–593
- Thermal stability**
Thin films 749–755
- Tokamak
Fusion 640–644
- YBCO**
Thin films 975–978
- Superconducting magnets**
Magnetic stability 585–589
- Tore Supra
Magnetic stability 629–633
- Superfluidity**
Helium
Flanges 456–458
- Heat transfer 927–931
- Temperature measurement
Helium 87–93
- Temperature measurement**
Superfluidity
Helium 87–93
- Thermal conductivity**
Composites
Fibres 238–240
- Epoxy resins**
Composites 241–243
- Low temperature studies 228–230
- Materials characterization**
Physical properties 3–6
- Optical fibres**
LEDs 921–923
- Regenerators**
Magnetic materials 405–410
- Superconductivity**
Phase diagram 388–389
- Thermal properties**
Corrugated surfaces
Model 1008–1019
- Epoxy resins**
Mechanical properties 269–272
- Heat capacity
Glass-ceramic 102–104
- Polymers**
Mechanical properties 220–222
- Thermal stability**
High T_c superconductors
Normal zone propagation 962–968
- Superconductors**
Thin films 749–755
- Thermoacoustics**
Helium
Pressure vessels 892–895
- Thermodynamics**
Refrigerators
Helium 1038–1043
- Magnetization 99–101
- Regenerators
Optimization 862–868
- Thermometers**
Magnetic fields
Magnetoresistance 417–420
- Platinum resistance thermometers
16–20
- Thermometry**
Calorimetry
Measuring techniques 54–57
- Chip resistors
Magnetoresistance 932–935
- Heat capacity
Resistors 796–800
- Helium
Temperature regulation 801–805
- Magnetic fields
Platinum NMR 94–98
- Magnetoresistance
Thermoresistors 874–877
- Rhodium–iron
Resistance thermometers 869–873
- Thin films**
Critical currents
High T_c superconductivity 366–368
- High T_c superconductivity
 $BiPbSrCaCuO$ 439–449
- Magnetic fields
Materials characterization 41–47
- Superconducting oxides**
Cryoelectrophoresis 756–759
- Superconductors**
Thermal stability 749–755
- YBCO 975–978
- Tunneling**
Cryostats
Spectroscopy 421–424
- YBCO**
Superconductors
Thin films 975–979
- Zinc**
Superconductivity
Critical currents 348–353

Authors

Abdelmohsen, H.H.	399-404, 715-719	Dotsenko, V.I.	906-912	Inukai, M.	664-667
Agatsuma, K.	551-556	Downey, C.H.	48-50, 1030-1037	Isaykin, V.N.	459-460
Ahlborn, K.	252-256, 257-260	Dresner, L.	489-498, 557-561	Ishida, H.	640-644
Akhmetov, A.	674-675	Duband, L.	338-340	Ishigohka, T.	562-565
Akita, S.	598-600, 601-606	Dubé, W.P.	3-6	Ishii, I.	664-667, 668-673
Alexeyev, A.I.	330-337, 1020-1029	Dummer, D.	388-389	Ishimaru, H.	456-458
Alford, N.McN.	119-127	Edwards, C.M.	138-139	Isono, T.	640-644
Alsop, D.	338-340	Eggenhoffner, R.	756-759	Ito, T.	533-537
Altov, V.	674-675	Eggers, H.	265-268	Itoh, K.	900-905
Amano, T.	110-118	Egusa, S.	7-15	Itoh, W.	453-455
Amemiya, N.	528-532, 585-589,	Eikelboom, J.A.	356-362, 363-365	Iwabuchi, A.	969-974
	607-617	Elkonin, B.V.	1053-1054	Iwakuma, M.	594-597
Ametistov, E.V.	1038-1043	Evans, D.	220-222, 292-297	Iwasa, Y.	174-177, 261-264,
Anderson, P.	388-389	Fagaly, R.L.	988-992		341-347, 575-579, 695-704,
Ando, T.	640-644	Fevrier, A.	51-53		817-835
Ando, Y.	601-606	Filatova, O.	674-675	Iwasaki, Y.	273-276, 288-291
Andres, K.	54-57	Filippov, Yu.P.	330-337, 1020-1029	Jäckel, M.	269-272, 228-230
Aoki, N.	570-574	Forostenko, A.A.	459-460	Jadav, K.M.	833-838
Aragon, A.S.	1070-1072	Fozooni, P.	890-891	Jakob, B.	390-391
Arai, K.	664-667, 668-673	Freeman, P.A.	732-737	Janšák, Ľ.	590-593
Arndt, K.F.	228-230	Freidberg, J.P.	21-32	Jie, Qin	580-584
Asner, A.	390-391	Fröhlich, K.	590-593	Johnson, J.D.	732-737
Atrey, M.D.	1044-1052	Frost, J.	890-891	Jones, H.	105-109
Babitch, V.I.	645-650	Funaki, K.	431-438, 594-597	Jutzi, W.	975-978
Baldini, A.	791-795	Futaki, N.	676-679	Kadel, K.	366-368
Bandos, T.V.	962-968	Gallinaro, G.	58-60	Kafkalidis, J.F.	705-711
Bansemir, H.	298-306	Gatti, F.	58-60	Kagami, H.	585-589
Bapat, S.L.	1044-1052	Ge, Shuangyan	136-137	Kaiho, K.	664-667, 668-673
Barlet, A.	801-805	Geng, Q.	786-790	Kamafuji, K.	183-191
Bartenev, V.D.	985-987	Genna, J.C.	801-805	Kamitani, A.	110-118
Bassan, M.	147-152	Glebov	450-455	Kamiyauchi, Y.	640-644
Belyaeva, A.I.	373-378	Goodrich, L.F.	720-727	Kanemoto, G.	277-281
Benke, A.	159-162	Gorbachev, S.P.	204-208, 892-895	Kármán, T.	33-40
Bernstein, G.	99-101	Goto, E.	786-790	Karunanthi, R.	1065-1069
Bichile, G.K.	833-838	Gough, C.E.	119-127	Kasahara, H.	598-600
Blair, D.G.	918-922	Gupta, A.K.	209-211	Kasuya, M.	786-790
Blunt, F.J.	728-731, 732-737	Gutsmiedl, P.	54-57	Katagiri, K.	524-527
Bobo, J.C.	51-53	Hartwig, K.T.	223-227	Katheder, H.	327-329
Bona, M.	390-391	Haarer, D.	298-306	Kato, H.	16-20, 417-420, 425-430
Bottura, L.	510-515	Haider, O.	33-40	Kato, T.	640-644, 687-689
Brennan, M.A.	918-922	Halász, I.	33-40	Kawagoe, E.	640-644
Briggs, A.	932-935	Hara, N.	183-191, 431-438, 566-569	Kawano, K.	640-644
Brown IV, J.N.	341-347	Harrison, J.P.	369-372	Kececioglu, I.	1008-1019
Brunet, Y.	51-53	Hartung, W.	265-268	Khare, N.	209-211
Button, T.W.	119-127	Hartwig, G.	231-233, 234-237,	Khoder, A.F.	763-770
Churbanov, V.V.	645-650	Hartwig, K.T.	244-247	Kim, J.-K.	547-550
Callaghan, M.T.	282-287	Haruyama, T.	153-158	Kirichenko, A.Ya.	384-387
Campbell, A.M.	728-731, 732-737	Hashimoto, T.	1055-1064	Kirichenko, S.M.	979-984
Candela, D.	94-98	Hashizume, H.	405-410	Kirschman, R.K.	1055-1064
Caplin, A.D.	33-40	Hayashi, K.	601-606	Kirschner, I.	33-40
Cardwell, D.A.	105-109	Hayata, S.	954-961	Kiselev, Yu.F.	874-877
Changlian, Yi	580-584	Heidinger, M.	338-340	Kisylak, I.F.	906-912
Chen, Rong-Chang	749-755	Herwig, R.	366-368	Klemens, P.G.	238-240
Chernikov, A.N.	874-877	Higuchi, H.	975-978	Klimova, E.B.	459-460
Cherpak, N.T.	384-387	Higuchi, N.	668-673	Knaak, S.	231-233, 265-268
Chilson, P.B.	921-923	Hikata, T.	687-689, 949-953	Knight, G.W.	292-297
Chu, Hsin-Sen	749-755	Hirabayashi, H.	806-810	Kobayashi, H.	927-931
Chubraeva, L.I.	450-455	Hirokawa, T.	261-264, 273-276,	Koblischka, M.R.	811-816
Chyu, M.	680-686	Hiyama, T.	288-291	Kohl, M.	369-372
Clark, J.C.	921-923	Hlánsk, I.	640-644	Kohn, O.	676-679
Coccia, E.	147-152, 712-714	Holmes, D.S.	590-593	Koizumi, K.	640-644
Cockburn, J.W.	105-109	Hong, C.S.	75-86	Kokavec, J.	590-593
Colclough, M.S.	119-127	Honjo, S.	87-93	Komuro, K.	969-974
Collcott, S.J.	102-104	Hori, K.	504-509	Konno, M.	640-644
Couach, M.	763-770	Houck, J.R.	690-692	Konzyuba, O.B.	459-460
Cowey, L.	105-109	Hua, C.Y.	1030-1037	Kovács, Gy.	33-40
Dąbrowska, B.	896-899	Huang, X.	153-158	Kozlov, K.V.	979-984
Dall'Oglio, G.	61-63	Huang, Zhongping	136-137	Kozorezov, V.G.	459-460
Daney, D.E.	839-841, 854-861	Humer, K.	312-318, 878-883	Krahn, F.	244-247
Das, S.K.	862-868	Ihas, G.G.	153-158	Krikunov, A.A.	204-208
Devlin, J.	918-922	Iijima, Y.	75-86	Kubota, H.	533-537
Dietzelbinger, S.H.	128-131	Ikeno, Y.	921-923	Kubota, Y.	601-606
Diller, D.E.	1070-1072	Imura, T.	676-679	Kulagin, V.A.	459-460
Doi, K.	543-546	Inada, Y.	668-673	Kulkarni, R.G.	833-838
Donat, B.	159-162		453-455	Kumagai, M.	668-673

Kupchikhin, P.M.	1038–1043	Nikitin, S.A.	166–167	Schomburg, W.K.	366–368
Kurisho, Y.	562–565	Nishi, M.	640–644	Schuster, Th.	811–816
Kuroda, K.	547–500, 566–569	Nishijima, S.	261–264, 273–276,	Schwartz, J.	21–32
Kuroda, T.	900–905		288–291, 307–311, 524–527	Schwarz, G.	244–247
Kuwahara, H.	392–393	Noguchi, H.	392–393	Sekiya, S.	110–118
Kuzmina, A.G.	892–895	Noma, K.	261–264, 288–291	Seo, K.	524–527
		Nomura, H.	664–667, 668–673	Serebryakov, B.A.	459–460
Labov, S.	99–101	Nöther, G.	366–368	Shah, S.S.	833–838
Laesecke, A.	1070–1072	Nylas, A.	884–889	Shibuta, N.	687–689
Lähdеранта, E.	33–40			Shimamoto, S.	640–644
Laiho, R.	33–40	O'Connor, D.A.	119–127	Shimizu, H.	607–617
Landis, D.	99–101	Oberly, C.E.	680–686	Shimizu, N.	690–692
Lange, A.	338–340	Obst, B.	884–889	Shimotomi, M.	379–383
Laverty, J.	33–40	Obukhov, S.A.	874–877	Shinozaki, A.	453–455
Lawless, W.N.	41–47	Ochiai, S.	826–832, 954–961	Shiobara, R.	660–663
Lea, M.J.	890–891	Ogasawara, T.	601–606	Shishov, Y.A.	985–987
Leppävuori, S.	33–40	Ogata, H.	392–393	Shivashankar, G.V.	1065–1069
Leriche, A.	51–53	Ogawa, M.	405–410	Shusen, C.	918–922
Lethuillier, P.	801–805	Ohara, A.	110–118	Sidyanov, V.U.	1038–1043
Li, L.	439–449	Ohmatsu, K.	651–654	Siewert, T.A.	775–779
Li, R.	405–410	Oishi, Y.	607–617	Silver, E.	99–101
Li, Shimo	136–137	Ojha, V.N.	209–211	Siqueira, M.L.	796–800
Liang, Zhang	87–93	Okada, S.	547–550	Slifka, A.J.	3–6
Lices Claverie, A.	228–230	Okada, T.	261–264, 273–276,	Snook, P.	277–281
Lin, Peng	87–93		288–291, 307–311, 524–527	Sokolowski, J.S.	1053–1054
Lin, T.-Y.	411–416	Okaji, M.	16–20, 417–420, 425–430	Song, Naihao	87–93
Lubescher, B.	811–816	Okuno, K.	640–644	Sparks, L.L.	3–6
Luguang, Yan	580–584	Onabe, K.	676–679	Srikanth, H.	421–424
Maccioni, P.	192–203, 738–748	Onishi, T.	664–667, 668–673	Stephens, R.B.	988–992
Madden, N.	99–101	Osamura, K.	826–832, 954–961	Sugimoto, M.	640–644
Maeda, H.	570–574	Oshida, K.	640–644	Sugita, T.	607–617
Maezawa, K.	806–810	Otabe, E.S.	949–953	Sugiura, T.	601–606
Maki, N.	660–663	Pakhomov, V.Ya.	459–460	Sullivan, N.S.	138–139
Malinowski, L.	444–449	Pan, Huaiyu	136–137	Sun, Yue	760–762
Mamedov, I.S.	330–337, 1020–1029	Pannkoke, K.	248–251	Süsser, M.	327–329
Mao, Yuzhu	87–93	Pasztor, G.	390–391	Sysoev, N.A.	459–460
Marienhoff, P.	975–978	Pepik, N.I.	874–877	Sytchev, V.	674–675
Markov, A.A.	459–460	Peterson, R.L.	132–135	Szucs, Z.	1065–1069
Martinis, L.	61–63	Pfotenhauer, J.	538–542	Tateishi, H.	645–650
Masuda, T.	687–689	Piccirillo, L.	61–63	Tada, E.	640–644
Mathu, F.	168–173	Pizzo, L.	61–63	Tada, N.	660–663
Matsumoto, K.	431–438	Plötner, M.	159–162	Takahashi, K.	651–654
Matsumoto, T.	338–340	Popkov, A.N.	874–877	Takahashi, Y.	640–644
Matsunobo, Y.	660–663	Porjesz, T.	33–40	Takahata, K.	307–311, 634–639
Matsushita, T.	431–438, 949–953	Postma, H.	168–173	Takao, T.	504–509, 607–617
Mawatari, Y.	183–191, 431–438	Probst, Chr.	54–57	Takeo, M.	594–597
McAllaster, D.R.	94–98			Tamura, O.	869–873
McCowan, C.N.	775–779	Rabinowicz, E.	695–704	Tanak, Y.	183–191, 431–438,
McDonald, L.C.	153–158	Rammig, R.	64–69	543–546, 607–617	
McManamy, T.J.	277–281	Rangarajan, G.	913–917	1030–1037	
Meijer, H.C.	168–173	Rapp, R.E.	796–800	664–667, 668–673	
Menci, N.	147–152	Raychaudhuri, A.K.	421–424, 1065–1069	Tarde, R.W.	
Meuris, C.	624–628	Reddy, G.S.N.	209–211	Tateishi, H.	
Michael, P.C.	695–704	Rappé, R.E.	796–800	Terreni, S.	58–60
Millet, I.	99–101	Reiner, J.	366–368	Tidecks, R.	348–353
Minervini, J.V.	510–515	Richards, M.G.	223–227	Tishin, A.M.	166–167
Mitchell, N.	510–515	Richards, P.	128–131	Tixador, P.	51–53
Mito, T.	634–639	Richter, W.	99–101	Tomar, V.S.	209–211
Miura, O.	431–438	Romanov, A.N.	223–227	Tominaka, T.	566–569
Miya, K.	601–606	Romanov, S.V.	459–460	Torii, S.	598–600, 601–606
Modena, I.	147–152, 712–714	Rusanov, E.G.	1020–1029	Tough, J.T.	705–711
Morgan, J.T.	220–222		979–984	Tschegg, E.	312–318, 878–883
Moser, N.	811–816	Schmidt, C.	645–650	Tsuji, H.	640–644
Motojima, O.	634–639	Saatkamp, T.	234–237	Tsukamoto, O.	504–509, 528–532,
Muir, D.	183–191	Sadakata, N.	676–679	585–589, 607–617	
Mukai, H.	687–689	Sahoo, R.K.	862–868	Tsuruga, H.	927–931
Müller, M.	228–230	Sakuri, H.	869–873	Turck, B.	192–203, 629–633,
		Salerno, L.J.	993–995	738–748	
Nagata, M.	651–654	Sano, T.	543–546	Turner, P.J.	918–922
Nakajima, H.	640–644	Sato, K.	687–689, 949–953	Tyurina, E.G.	979–984
Nakamura, N.	379–383	Sato, S.	338–340, 607–611	Uchiyama, G.	570–574
Nakamura, S.	521–523	Sato, K.	664–667	Ueyama, M.	687–689
Nakashima, M.	594–597	Satoh, K.	664–667	Urata, M.	570–574
Nakatsu, M.	786–790	Sawada, A.	453–455	Ustjushanin, E.E.	241–243
Nara, K.	16–20, 417–420, 425–430	Schauer, W.	366–368	Uusimaki, A.	33–40
Narayankhedkar, K.G.	1044–1052	Scheibner, W.	269–272	Vaidhyanathan, L.S.	913–917
Neganov, B.S.	874–877	Scherer, T.	975–978	van de Klundert, L.	356–362, 612–617
Neuhaus, M.	975–978	Schlegelmilch, R.	163–165	Van Sciver, S.W.	75–86, 516–520
Ni, B.	949–953	Schmidt, C.	618–623	Vasil'ev, V.V.	459–460

Index

Vedrine, P.	51–53	Wilson, N.	499–503	Yokoyama, S.	521–523
Vekshina, V.S.	874–877	Windte, V.	366–368	Yoneyama, Y.	607–611
Viana, R.J.	796–800	Wipf, S.L.	936–948	Yoshida, J.	640–644
Vogt, A.	975–978			Yoshida, T.	690–692
Vojtsenya, S.V.	373–378	Xiong, X.Z.	178–182	Yoshiki, H.	456–458
		Xu, P.	439–449	Yu, A.	979–984
Wada, H.	900–905	Yagi, Y.	660–663	Yuan, S.L.	178–182
Wagner, H.-J.	248–251	Yamada, K.	543–546	Yuriyev, V.P.	373–378
Wagner, J.A.	780–785	Yamada, T.	521–523	Yuyama, J.	786–790
Wake, M.	806–810	Yamafuji, K.	431–438, 594–597	Yuyama, M.	900–905
Walia, D.K.	209–211	Yamaguchi, K.	660–663	Zeiss, C.	163–165
Wang, Qun	136–137	Yamamoto, J.	307–311, 634–639	Zhang, J.	884–889
Wang, Y.H.	439–449	Yamamoto, S.	521–523	Zhang, Liang	87–93
Wang, Y.G.	178–182	Yamamura, S.	585–589	Zhang, Qinggeng	87–93
Weber, H.W.	312–318, 878–883	Yanagi, N.	634–639	Zhang, W.	826–832
Weisend II, J.G.	75–86	Yang, Hongchuan	760–762	Zhang, Y.Z.	439–449
Weiss, R.	64–69, 319–322	Yang, X.	348–353	Zhao, Haoping	136–137
Wellhofer, F.	119–127	Yang, Y.	178–182	Zhao, Y.Y.	439–449
Weyhmann, W.	388–389	Yasuda, J.	261–264, 273–276,	Zhao, Z.P.	817–835
White, G.K.	102–104		288–291	Zhou, D.	138–139
Willekers, R.W.	168–173		607–611		
Williams, J.E.C.	21–32	Yatabe, S.			

Conference reports

Low temperature engineering and cryogenics conference 1990 (LTEC 90), Southampton, UK, 17–19 July 1990
J.B. Gardner 212

1990 Applied superconductivity conference, Snowmass, Colorado, USA, 24–28 September 1990
A.F. Clark 213–214

Book reviews

Separation of Gases: Monographs on Cryogenics (In collaboration with the British Cryogenics Council) by W.H. Isalski
J.B. Gardner 70

Supercollider 1, edited by M. McAshan
H. Desportes 323

Advances in Cryogenic Engineering: Volumes 35A and B, edited by R.W. Fast
G.-B Chen and Q.-R. Zhang 766

Superconductivity in Energy Technologies: Assessment, Concepts and New Aspects by C. Albrecht et al.
P. Komarek 767

High Temperature Superconductivity, edited by J.W. Lynn
H.W. Weber 767–768

Advances in Cryogenics: Proceedings of the International conferences on Cryogenics, INCONCRYO-88, edited by A. Bose and P. Sengupta
R. Srinivasan 768

Organic Superconductors by T. Ishiguro and K. Yamaji
V. Kresin 769

Cryopreparation of Thin Biological Specimens for Electron Microscopy: Methods and Applications by N. Roas and A.J. Morgan
K. Zierold 769–770

Fluid Dynamics and Heat Transfer in Superconducting Equipment by Z.I. Miropolsky and R.I. Soziev
A. Hofmann 996

