El intervalo

¿Qué tan alejados están los eventos A y B entre sí?
-Tomemos un SRI Q arbitrario con coord. (t, x, y, z)

Suponga que A y B forman parte de la línea de mundo de un rayo de luz.

$$\Delta x := x_B - x_A$$
, $\Delta y := y_B - y_A$,
 $\Delta z := z_B - z_A$, $\Delta t := t_B - t_A$

$$\sqrt{(\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}} = 1 \Rightarrow (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2} = (\Delta t)^{2}$$

$$\Rightarrow (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2} - (\Delta t)^{2} = 0$$

El intervalo

Dados dos eventos A y B cualesquiera definimos al intervalo entre ellos calculado por el SRI O con coord. (t, x, y, z) como

$$(\Delta s)_{AB}^{2} = (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2} - (\Delta t)^{2}$$

No obstante podríamos haber tomado

$$(\Delta s)_{AB}^{2} = -(\Delta \tilde{s})^{2} = (\Delta t)^{2} - (\Delta x)^{2} - (\Delta y)^{2} - (\Delta z)^{2}$$

A esta elección se le llama "elegir la signatura del intervalo". Nosotros usaremos $(\Delta s)^2$, con $(\Delta s)^2 \in \mathbb{R}$ y $[(\Delta s)^2] = m^2$.

En particular, A y B son parte de la línea de mundo de un rayo de luz si y solamente si $(\Delta 5)_{AB}^{2} = 0$. Mas aún, $(\Delta 5)^{2} = 0$ \forall SRI.

Universalidad de la velocidad de la luz $(\Delta s)^2 = 0 \iff (\Delta s')^2 = 0 \quad \forall 0, 0' \quad SRI$

En \mathbb{R}^4 con coord (x, y, z, w), $(\Delta r)^2 = (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 + (\Delta w)^2$ es la distancia euclidiana en \mathbb{R}^4

Δr es invariante ante los cambios de coord. (i) Traslaciones, (ii) Rotaciones y (iii) Reflexiones.

Demostración (hipótesis) * $(\Delta s)^2 = 0 \Leftrightarrow (\Delta s')^2 = 0 \; \forall \; Q, \; Q'. \; *$ Transformación de coord. de be de ser lineal. * Espaciotiempo homogéneo e isotrópico.

Causalidad y el como de luz

Dados dos eventos A y B, el intervalo entre ambos puede ser:

(i) $(\Delta s)^2 = 0$, separación nula o tipo luz (lightlike)

(spacelike)

(ii) $(\Delta s)^2 > 0$, separación espacialoide $-(\Delta t^2) + (\Delta r)^2 > 0 \Rightarrow (\Delta r)^2 > (\Delta t)^2$ (time like)

(iii) $(\Delta s)^2 < 0$, separación temporaloide $\Rightarrow -(\Delta t)^2 + (\Delta r)^2 < 0 \Rightarrow (\Delta r)^2 < (\Delta t)^2$

Cono de luz. Es el conjunto de eventos que tienen separación mula de A

