Data Exploration & Visualization

Module 6

Basic Charts

Dr. ZENG Wei

DSAA 5024

The Hong Kong University of Science and Technology (Guangzhou)

Tabular Data

Objects

- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, feature or characteristic

- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Bertin's Semiology of Graphics

- Geometric primitives: marks
 - Points, lines, areas, volumes
- Attributes: visual/retinal variables (channels)
 - Parameters control mark appearance
 - [x, y]
 - Position
 - [z]
 - · Size, shape,
 - · Greyscale, color
 - Texture, orientation
- Data types
 - Nominal, ordinal, quant

Taxonomy

Taxonomy of chat types

Category	subtypes
Area	Area chart, proportional area chart
Bar	Bar chart, circular bar chart, grouped bar chart, stacked bar chart
Circle	Belt chart, donut chart, pie chart, sector graph
Diagram	Flow chart, sankey diagram, timeline
Distribution	Histogram, distribution curve, box-plot
Tree and network	Graph, matrix, hive graph, tree, treemap
Grid / matrix	heat map

M. A. Borkin et al., 2013.

Taxonomy

Taxonomy of chat types

Category	subtypes
Line	Contour graph, density graph, line graph
Мар	Flow map, geographic map, street map, statistic map, choropleth map
Point	Dot plot, scatter plot
Table	Table, text chart
Text	Phrase net, word cloud, word tree
SciVis	Surface rendering, volume rendering

M. A. Borkin et al., 2013.

Data Exploration & Visualization

Module 6: Basic Charts

- Point charts
 - scatterplot, multi-class scatterplot
- Line charts
 - line chart, bar chart, stacked bar chart
- Area charts
 - bubble chart, pie chart
- Composite charts

Scatterplot

- Data
 - 2 quantitative attributes
 - No keys, only values
- Mark
 - points
- Channels
 - Horizontal + vertical positions
- Tasks
 - Express values
 - Quantitative attributes
 - Find trends, outliers, distributions, correlations, clusters

→ Express Values

Scatterplot: Aggregation

- Scalability (in terms of visual clutter)
 - hundreds of items
- What if too many items?
 - Aggregation
 - Drawback 1: loss of details applicable when individual data item is not important
 - Drawback 2: Not feasible when there are multi-class attributes

Scatterplot: Aggregation

'The Death of a Terrorist: A Turning Point?' New York Times

How much of a turning point in the war on terror will Bin Laden's death represent?

Scatterplot: Sampling

- Scalability (in terms of visual clutter)
 - hundreds of items
- What if too many items?
 - Sampling
 - Be careful choose appropriate sampling methods

Visualizing Algorithms: Poisson-disc sampling
Credit: Mike Bostock https://bost.ocks.org/mike/algorithms/

Multi-class Scatterplot

- Data
 - 2 quantitative attributes
 - 1 categorical attribute
 - One key, two values
- Mark: points

- Channels
 - Horizontal + vertical positions
 - Color
- Tasks
 - Clusters, comparison

Multi-class Scatterplot

- Scalability
 - Hundreds of items
- What if too many items?
 - Splatterplot (sampling + density map)
 - Multi-class Sampling

H. Chen et al., "Visual Abstraction and Exploration of Multi-class Scatterplots," IEEE TVCG, vol. 20, no. 12, pp. 1683-1692, 2014.

Single-class sampling

r: minimum distance away from each other

Multi-class blue noise sampling

[Wei et al., 2010]

Point color optimization

Color set in the CIELAB color space:

$$C = \{C_1, C_2, ..., C_n\}$$

Objective function: $E_{\cos t} = \sum_{m=1}^{M} \beta_m \sum_{i,j < n, i < j} \alpha_{m,i,j} \left| C_i - C_j \right|$

M: the account of the divided blocks

 β_m : the *inter-class weight* for the *m*-th block

$$\beta = \sum_{i=0} \overline{f_i}$$

 $\alpha_{m,i,j}$: the *intra-class weight* for the *m*-th block

$$\alpha_{i,j} = e^{-\left|\overline{f_i} - \overline{f_j}\right|}$$

Color distance constraint:

$$E_{penalty}(C_i, C_j) = \max(0, 1 - \frac{\left|C_i - C_j\right|}{d})$$

$$\arg\min_{C} \left[-E_{\cos t} + k \sum_{i,j < n, i < j} E_{penalty}(C_i, C_j) \right]$$

Data Exploration & Visualization

Module 6: Basic Charts

- Point charts
 - scatterplot, multi-class scatterplot
- Line charts
 - line chart, bar chart, stacked bar chart
- Area charts
 - bubble chart, pie chart
- Composite charts

Line chart

Data

- 2 quantitative attributes
- one key, one value

Mark

- Points
- Line connects marks between them

Channels

- Aligned lengths to express quantitative value
- Separated and ordered by key attribute into horizontal regions

Tasks

Find trend

Scalability

hundreds of key and value levels

Line chart

- The same data can look very different
 - Aspect ratio influences the perception of the data

Line chart

- What is the optimal aspect ratio?
 - Banking to 45 degrees [Cleveland, 1988]
 - Multi-scale banking to 45 degrees [Heer & Agrawala, 2006]
 - Local orientation resolution [Wang et al., 2018]

$$\sum_{i} \frac{|\theta_i(\alpha)|}{n} = 45^{\circ}$$

where α : aspect ratio of the chart $\theta_i(\alpha) = tan^{-1}(s_i/\alpha)$ s_i : a line segment

Take line length into account

$$\frac{\sum_{i} |\theta_{i}(\alpha)| l_{i}(\alpha)}{\sum_{i} l_{i}(\alpha)} = 45^{\circ}$$

Bar chart

- Data
 - 1 categorical, 1 quantitative
 - One key, one value
- Mark
 - Line
- Channels
 - Aligned lengths
 - Ordered by label or quantitative attribute
- Tasks
 - Compare
 - Lookup values
- Scalability
 - dozens to hundreds of levels for key attributes

GDP 2019 (tri. of \$)

Bar chart

- Sort by labels
 - Separated and aligned but NOT ordered
 - Hard to know rank
 - What's the 5th highest? The 18th?

Bar chart

- Sort by data attributes
 - Easy to know rank
 - What's the 5th highest? The 18th?
 - More difficult to look up

Bar or line chart

- Depends on type of *key* attributes
 - Bar chart if categorical
 - Line chart if ordered
- Do not use line chart for categorical key attributes
 - Violates expressiveness principle
 - implication of trend so strong that it overrides semantics!

Credit: Tamara Munzner

Stacked bar chart

- One more key
 - Data
 - 2 categorical attribute, 1 quantitative attribute
 - Mark: vertical stack of line marks
 - Channels
 - Length and color hue
 - Spatial regions: one per glyph

Stacked bar chart

- One more key
 - Task
 - Part-to-whole relationship
 - Scalability
 - Several to one dozen levels for stacked attributes

Normalized stacked bar chart

- One more key
 - Task
 - Part-to-whole judgement
 - Mark
 - Line marks normalized to full vertical height
 - Single stacked bar equivalent to full pie

Streamgraph

- Data
 - 1 categorical key attribute
 - 1 ordered key attribute (usually time)
 - 1 quantitative value attribute

Ratatouille

- Task
 - Emphasizing horizontal continuity

IEEE TVCG, vol. 14, no. 6, pp. 1245 - 1252, 2008.

Streamgraph

- Channels
 - Geometry: layers, where height encodes counts
 - Layer ordering
- Scalability
 - Hundreds of time keys
 - Dozens to hundreds of categories

L. Byron and M. Wattenberg, "Stacked Graphs -- Geometry & Aesthetics,"

IEEE TVCG, vol. 14, no. 6, pp. 1245 - 1252, 2008.

Bar chart in radial layout

Radial layout

- Radial bar chart: radial axes meet at central ring, line mark
- Star plot: radial axes, meet at central point, line mark

Zeng et al., 2014

- Accuracy
 - less accurate than aligned with rectilinear

Data Exploration & Visualization

Module 6: Basic Charts

- Point charts
 - scatterplot, multi-class scatterplot
- Line charts
 - line chart, bar chart, stacked bar chart
- Area charts
 - bubble chart, pie chart
- Composite charts

Bubble chart

- Data
 - 1 categorical, 1 quantitative
- Mark
 - Area
- Channels
 - Size
 - Separated but not ordered or aligned

Bubble chart

Limitation

- Hard to make comparisons
 - World population: China? India?
 - Size is less accurate for quantitative values
- Seldomly used in visual analytics

Pie chart

- Data
 - 1 categorical, 1 quantitative
- Mark
 - Area
- Channel
 - Angle
- Task
 - Part-to-whole judgements
- Limitation
 - angle/area less accurate than of line length

Polar area chart

- Data
 - 1 categorical, 1 quantitative
- Mark
 - Area
- Channel
 - Length
 - more direct analog to bar charts

Polar area chart

- Florence Nightingale's rose chart
 - Interactive version: http://bl.ocks.org/kgryte/raw/5926740/

Polar area chart

- Abuse of polar area charts
 - May want to fit to mobile screen
 - Can be replaced with vertical bar charts

In-class exercise

• "Hans Rosling's 200 Countries, 200 Years, 4 Minutes - The Joy of Stats", BBC 2010.

In-class exercise

- Chart type?
- Visual mark and channels?
- Tasks?

Data Exploration & Visualization

Module 6: Basic Charts

- Point charts
 - scatterplot, multi-class scatterplot
- Line charts
 - line chart, bar chart, stacked bar chart
- Area charts
 - bubble chart, pie chart
- Composite charts

- Composite charts are popular
 - Difficult to design novel visual representations
 - All chart types have strengths and weakness
 - Combining different charts to balance their strengths and weakness
- Composite patterns
 - Juxtaposition: side-by-side
 - Superimposition: overlaying
 - Nesting

Overloading

- Integration: visual links

Javed & Elmqvist, 2012

(a) Juxtaposed views.

- Composition patterns
 - https://composite-visualizations.github.io/explorer/

 Grid maps: Small multiples of visualization, with the charts arranged in a map formation.

Cuts would hit New York, California the hardest

Heatmap + geographical information

Bar chart + geographical information

- Grid map + Bar chart
 - Republican and Democrat presidential voting.
- WI VT NH

 WA ID MT ND MN IL MI NY MA

 OR NV WY SD IA IN OH PA NJ CT RI

 CA UT CO NE MO KY WY VA MD DE

 AZ NM KS AR TN NC SC DC

 OK LA MS AL GA

- Grid map + Stacked histogram:
 - The ratio between Republican and Democrat presidential voting is visualized over time and across all 51 states.

- Grid map + Histogram
 - The difference between the share of the national population and the state's share of votes in the electoral college between 1960 to 2016.
 - each bar represents an election year
 - Color: blue → greater share, yellow → lower share
- vote carries more 'weight' the less populated the state you vote in is it

- Grid map + Line chart
 - the change in unemployment over time (2004 to 2016)
- Grid map + Pie chart
 - Limit the number of slices to two

Unemployment Rate by State, 2004-2016

Summary

Summary

