Active Money Management Notes

CAPM Framework

- **What is alpha?** | α_i = manager skill beyond market risk
- | Measures excess return after adjusting for systematic risk
- | Positive alpha indicates outperformance
- **CAPM equation?** | r[i,t] r[F,t] = α_i + $\beta_i(r[M,t]$ r[F,t]) + $\epsilon_i(i,t)$
- | r[i] = return on asset i, r[F] = risk-free rate
- $| \cdot r[M] = market return, \beta_i = systematic risk$
- **What is beta?** | β_i = systematic risk measure
- $| \bullet \beta_i = (Cov(r[i], r[M]))/(Var(r[M]))$
- Beta > 1: more volatile than market
- **Risk decomposition?** | Total risk = Systematic risk + Unsystematic risk
- $| \bullet \sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma_{\epsilon_i}^2$
- | Only systematic risk is compensated in equilibrium

Portfolio Performance Evaluation

- **Sharpe Ratio?** | SR = $(r[p] r[f])/(\sigma_p)$
- | Measures excess return per unit of total risk
- | Higher ratio indicates better risk-adjusted performance
- **Treynor Ratio?** | TR = $(r[p] r[f])/(\beta_p)$
- Measures excess return per unit of systematic risk
- Useful for well-diversified portfolios
- **Information Ratio?** | IR = $(\alpha_p)/(\sigma(\epsilon_p))$
- | Measures active return per unit of active risk
- | Alpha divided by tracking error
- **Jensen's Alpha?** | $\alpha_J = r[p] [r[f] + \beta_p(r[m] r[f])]$
- | CAPM-based performance measure
- | Positive alpha indicates outperformance

Market Efficiency & Anomalies

- **EMH Forms?** | **Weak**: Prices reflect historical information
- | **Semi-strong**: Prices reflect all public information
- **Strong**: Prices reflect all information (public + private)
- **Size Effect?** | Small-cap stocks tend to outperform large-cap
- r[small] r[large] > 0 historically
- | May be risk premium for illiquidity
- **Value Premium?** | High book-to-market stocks outperform growth stocks
- $| \cdot r[HML] = r[high B/M] r[low B/M] > 0$
- Captured in Fama-French 3-factor model
- **Momentum Effect?** | Past winners tend to continue winning (3-12 months)
- $| \cdot r[WML] = r[winners] r[losers] > 0$
- Reverses over longer horizons (3-5 years)

Summary

The CAPM framework provides a foundation for understanding risk-return relationships in financial markets. Alpha (α) represents manager skill, while beta (β) captures systematic risk exposure. Performance evaluation metrics like Sharpe ratio, Treynor ratio, and Information ratio help assess risk-adjusted returns. Market anomalies such as size effect, value premium, and momentum challenge the strong form of market efficiency and suggest opportunities for active management strategies.