A számításelmélet alapjai I.

5. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

Tétel

Minden $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ nemdeterminisztikus véges automatához megkonstruálható egy $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ determinisztikus véges automata úgy, hogy L(A) = L(A') teljesül.

Bizonyítás:

A konstrukció:

$$Q':=\mathcal{P}(Q), \quad q_0':=Q_0, \quad F':=\{q'\in Q'\mid q'\cap F\neq\emptyset\},$$

$$\delta'(q',a):=\bigcup_{q\in q'}\delta(q,a).$$

1. Lemma

Minden $p, q \in Q$, $q' \in Q'$ és $u, v \in \Sigma^*$ esetén, ha

$$qu \Rightarrow_A^* pv \text{ és } q \in q',$$

akkor van olyan $p' \in Q'$, hogy

$$q'u \Rightarrow_{A'}^* p'v \text{ és } p \in p'.$$

Az 1. Lemma bizonyítása:

Az állítást a $qu \Rightarrow^* pv$ redukcióban szereplő lépések száma szerinti indukcióval bizonyítjuk.

Nulla számú lépés esetében az állítás triviálisan fennáll, hiszen ekkor q=p kell legyen és így a 0 lépéses levezetés illetve p'=q' megfelel.

Indukciós feltevés: az állítás teljesül n redukciós lépés esetén $(n \ge 0)$.

Álljon a $qu \Rightarrow_A^* pv$ redukció n+1 lépésből. Akkor valamely $q_1 \in Q$ és $u_1 \in \Sigma^*$ -ra

$$qu \Rightarrow_A q_1u_1 \Rightarrow_A^* pv$$

teljesül. Így van olyan $a \in \Sigma$, amelyre $u = au_1$ és $q_1 \in \delta(q, a)$. $q \in q'$ -ből és δ' definíciójából $\delta(q, a) \subseteq \delta'(q', a)$ adódik. $q'_1 := \delta'(q', a)$ -nek, ahonnan

$$q'u \Rightarrow_{A'} q'_1 u_1 \tag{1}$$

és $q_1 \in \delta(q, a) \subseteq \delta'(q', a) = q_1'$, azaz $q_1 \in q_1'$ adódik. Alkalmazhatjuk az indukciós feltevést, tehát valamely $p' \in Q'$ -re

$$q'_1 u_1 \Rightarrow_A^* p' v \text{ és } p \in p'.$$
 (2)

(1) és (2) alapján az 1. Lemma állítása teljesül.

Az 1. Lemmából $L(A) \subseteq L(A')$:

Legyen $u \in L(A)$, azaz teljesüljön $q_0 u \Rightarrow_A^* p$ valamely $q_0 \in Q_0$ -ra és legyen $p \in F$.

Ekkor az 1. Lemma alapján valamely $p' \in Q'$ -re fennáll, hogy $q'_0 u \Rightarrow_{A'}^* p'$ és $p \in p'$.

Az F' definíciója alapján $p \in p'$ -ből és $p \in F$ -ből az következik, hogy $p' \in F'$, ahonnan $u \in L(A')$ adódik.

Mivel $u \in L(A)$ tetszőleges volt, ezért $L(A) \subseteq L(A')$.

2. Lemma

Minden $p', q' \in Q'$, $p \in Q$ és $u, v \in \Sigma^*$ esetén, ha

$$q'u \Rightarrow_{A'}^* p'v \text{ és } p \in p',$$

akkor van olyan $q \in Q$, hogy

$$qu \Rightarrow_A^* pv \text{ és } q \in q'.$$

A 2. Lemma bizonyítása: A lépések száma szerinti indukcióval történik.

Nulla számú lépés esetén az állítás triviális. (A 0 lépéses levezetés és q = p jó lesz.)

Tegyük fel, hogy az állítás igaz n lépésre, ahol $n \ge 0$, és álljon a $q'u \Rightarrow_{A'}^* p'v$ redukció n+1 lépésből.

Akkor $q'u \Rightarrow_{A'}^* p'_1 v_1 \Rightarrow_{A'} p'v$, ahol $v_1 = av$ valamely $a \in \Sigma$ -re és $p'_1 \in Q'$.

Ekkor

$$p \in p' = \delta'(p'_1, a) = \bigcup_{p_1 \in p'_1} \delta(p_1, a),$$

azaz, lennie kell olyan $p_1 \in p'_1$ -nek, amelyre $p \in \delta(p_1, a)$.

Ekkor
$$p_1$$
-re teljesül, hogy $p_1v_1 = p_1av \Rightarrow_A pv$. (1)

Másrészt az indukciós feltevés alapján van olyan $q \in q'$, hogy

$$qu \Rightarrow_A^* p_1 v_1. \tag{2}$$

(1) és (2) alapján Lemma 2 állítása teljesül.

A 2. Lemmából $L(A') \subseteq L(A)$:

Tegyük fel, $u \in L(A')$, azaz $q'_0 u \Rightarrow_{A'}^* p'$ és $p' \in F'$ teljesül.

Ekkor F' definíciója alapján van olyan $p \in p'$, melyre $p \in F$ teljesül.

A 2. Lemma alapján valamely $q_0 \in q_0' = Q_0$ -ra $q_0 u \Rightarrow_A^* p$ teljesül. Ez azt jelenti, hogy $u \in L(A)$.

Mivel *u* tetszőleges, így $L(A') \subseteq L(A)$, bizonyítva a tételt.

Példa:

$$a \qquad b$$

$$\rightarrow q_0 \qquad \{\} \qquad \{q_1, q_2\}$$

$$\leftrightarrows q_1 \qquad \{q_0\} \qquad \{\}$$

$$\leftarrow q_2 \qquad \{q_1\} \qquad \{q_2\}$$

NDVA

	{}
	$\{q_0\}$
\leftarrow	$\{q_1\}$
\leftarrow	{q ₂ }
$\stackrel{\longleftarrow}{\Longrightarrow}$	$\{q_0, q_1\}$
\leftarrow	$\{q_0, q_2\}$
\leftarrow	$\{q_1, q_2\}$
←{	q_0, q_1, q_2

а	b	
{}	{}	
{}	$\{q_1, q_2\}$	
$\{q_0\}$	{}	
{q ₁ }	{q ₂ }	
$\{q_0\}$	$\{q_1, q_2\}$	
{q ₁ }	$\{q_1, q_2\}$	
$\{q_0, q_1\}$	{q ₂ }	
$\{q_0, q_1\}$	$\{q_1, q_2\}$	

DVA

\mathcal{L}_3 további zártsági tulajdonságai

Következmény

 \mathcal{L}_3 zárt a komplementerre, a metszetre és a különbségre.

Bizonyítás:

Legyen $L \in \mathcal{L}_3$, ekkor az előző tételek alapján L felismerhető egy $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ determinisztikus véges automatával.

Nyilván az $A' = \langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$ determinisztikus véges automata által felismert nyelv \bar{L} .

Mivel \bar{L} felismerhető determinisztikus véges automatával, ezért korábbi tételünk miatt $\bar{L} \in \mathcal{L}_3$.

- Mivel $L_1 \cap L_2 = \overline{L}_1 \cup \overline{L}_2$, ezért a metszetre való zártság következik az unióra és a komplementerre való zártságból.
- Mivel $L_1 \setminus L_2 = L_1 \cap \overline{L}_2$, ezért a különbségre való zártság következik a metszetre és a komplementerre való zártságból.

A reguáris nyelvosztályt leíró formális eszközök

Tehát az alábbi formális eszközek mind az \mathcal{L}_3 nyelvosztályt írják le egy adott ábécé felett:

- jobblineáris grammatikák
- ballineáris grammatikák
- 3-as normálformájú grammatikák
- reguláris kifejezések
- a komplementer, metszet, különbség, tükörkép, pozitív lezárt műveletekkel bővített ún. általánosított reguláris kifejezések
- determinisztikus véges automaták
- nemdeterminisztikus véges automaták

Összefüggő automata

Definíció

Legyen $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ determinisztikus véges automata. A q állapotot a kezdőállapotból **elérhetőnek** mondjuk, ha létezik $q_0x \Rightarrow^* q$ redukció, ahol $x \in \Sigma^*$.

Definíció

Az $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ determinisztikus véges automatát összefüggőnek mondjuk, ha minden állapota elérhető a kezdőállapotból.

Megjegyzés: q elérhető a kezdőállapotból, akkor és csak akkor ha van olyan $x \in \Sigma^*$, hogy $\delta(q_0, x) = q$.

Összefüggő automata

Definiáljuk a H halmazt a következőképpen. Legyen

$$H_0 = \{q_0\},\$$

$$H_{i+1} = H_i \cup \{r \mid \delta(q, a) = r, q \in H_i, a \in \Sigma\}, i = 1, 2, ...$$

Mivel $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_k \subseteq Q$ ezért létezik olyan $k \ge 0$, amelyre $H_k = H_{k+1}$. Ekkor minden $\ell \ge k$ -ra $H_\ell = H_k$. Legyen $H := H_k$. Könnyen látható, hogy H azoknak az állapotoknak a halmaza, amelyek a kezdőállapotból elérhetők.

Ezután definiáljuk az $A' = \langle Q', \Sigma, \delta', q_0, F' \rangle$ determinisztikus véges automatát a következőképpen:

$$Q' = H, F' = F \cap H \text{ \'es } \delta' : H \times \Sigma \rightarrow H \text{ \'ugy, hogy}$$

 $\delta'(q, a) = \delta(q, a), \text{ minden } q \in H \text{ eset\'en.}$

Könnyen megmutatható, hogy A' összefüggő és ugyanazt a nyelvet fogadja el, amelyet A.

Továbbá, A' az A legnagyobb összefüggő részautomatája.

Összefüggő automata

Példa:

a
 b

$$\rightarrow q_0$$
 q_2
 q_4
 $\leftarrow q_1$
 q_3
 q_0
 $\leftarrow q_2$
 q_0
 q_2
 q_3
 q_1
 q_2
 q_4
 q_5
 q_2
 $\leftarrow q_5$
 q_4
 q_2

$$H_0 = \{q_0\}$$
 $H_1 = \{q_0, q_2, q_4\}$
 $H_2 = \{q_0, q_2, q_4, q_5\} = H_3 = H$
a b

 $\Rightarrow q_0 \qquad q_2 \qquad q_4$
 $\leftarrow q_2 \qquad q_0 \qquad q_2$
 $q_4 \qquad q_5 \qquad q_2$
 $\leftarrow q_5 \qquad q_4 \qquad q_2$

Megjegyzés: Egy az átmenetdiagramon a kezdőállapotból indított szélességi keresés révén is meghatározható az elérhető állapotok *H* halmaza. *H* elemei ugyanis éppen azon állapotok, amelyek az algoritmus során valamikor benn voltak a **sor**ban. Ily módon NDVA-k determinizálásakor is csökkenthet az állapotok száma.

NDVA determinizálása – az összefüggő részautomata

Példa:

a

b

$\rightarrow q_0$	{}	$\{q_1, q_2\}$
$\leftrightarrows q_1$	{q ₀ }	{}
<i>←q</i> ₂	{q ₁ }	{q ₂ }

Elért állapotok sora:

b

$$\begin{array}{c|cccc}
a & b \\
 & \Leftrightarrow \{q_0, q_1\} & \{q_0\} & \{q_1, q_2\} \\
 & \{q_0\} & \{\} & \{q_1, q_2\} \\
 & \leftarrow \{q_1, q_2\} & \{q_0, q_1\} & \{q_2\} \\
 & \{\} & \{\} & \{\} \\
 & \leftarrow \{q_2\} & \{q_1\} & \{q_2\} \\
 & \leftarrow \{q_1\} & \{q_0\} & \{\}
\end{array}$$

$$\{q_0,q_1\}$$

$$\{q_0\}\ \{q_1,q_2\}$$

$$\{q_1, q_2\} \{\}$$

$$\{\}\ \{q_2\}$$

$$\{q_2\}$$

$$\{q_1\}$$

ÜRES

Algoritmikus eldöntési problémák

Akkor beszélünk (algoritmikus) eldöntési problémáról, ha a probléma bemenetei egy adott, tipikusan végtelen halmazból kerülhetnek ki (például egy természetes szám vagy adott ábécé feletti szó), a lehetséges kimenetek pedig igen/nem.

Továbbá olyan megoldást (algoritmust) keresünk, amely kellően általános ahhoz, hogy a végtelen lehetséges bemenet bármelyike esetén alkalmazható legyen.

Egy probléma (algoritmikusan) eldönthető, ha létezik olyan, minden lehetséges bemenet esetén termináló algoritmus, amelyik mindig a helyes választ adja.

Megjegyzés: Ezt a fogalmat majd a Számításelmélet alapjai II tárgyban pontosabban definiáljuk.

Állítás

Eldönthető, hogy egy reguláris grammatika az üres nyelvet generálja-e.

Bizonyítás: A tanultak szerint a grammatikához megadható olyan *A* determinisztikus véges automata, amelyik a grammatika által generált nyelvet ismeri fel. Az automata pontosan akkor nem ismer fel egyetlen szót sem, ha kezdőállapotából minden végállapota elérhetetlen.

Ez viszont algoritmikusan eldönthető, például az automata átmenetdiagramján a kezdőállapotból indított szélességi bejárással.

Állítás

Eldönthető, hogy két reguláris grammatika által generált nyelv diszjunkt-e.

Bizonyítás: Generálják a G_1 és G_2 reguláris grammatikák rendre az L_1 és L_2 nyelveket.

Korábbi állításunk miatt $L_1 \cap L_2$ is reguláris.

Ezen felül az $L_1 \cap L_2$ generáló grammatika algoritmikusan előállítható, mivel a következő algoritmikus lépésekből áll:

- 3-as típusú grammatikához DVA készítése
- automatához komplementer automatata előállítása
- DVA-hoz 3-as típusú grammatika készítése
- 3-as típusú grammatikákhoz a generált nyelek unióját generáló automata készítése (zártsági tétel egyik konstrukciója)

Így az előző állítás szerint ennek üressége algoritmikusan eldönthető.

Állítás

Eldönthető, hogy két reguláris grammatika ugyanazt a nyelvet generálja-e vagy sem.

Bizonyítás:

Generálják a G_1 és G_2 reguláris grammatikák rendre az L_1 és L_2 nyelveket. Az $L_3 = (L_1 \cap \bar{L}_2) \cup (\bar{L}_1 \cap L_2)$ nyelv szintén reguláris, így van olyan G_3 algoritmikusan előállítható, reguláris grammatika, amely L_3 -at generálja. (Hasonló okok miatt, mint az előző bizonyításban.)

Ekkor azonban $L_1 = L_2$ akkor és csak akkor, ha $L_3 = \emptyset$, amely a fentiek szerint eldönthető.

Állítás

Eldönthető, hogy egy reguláris grammatika bővebb vagy egyenlő nyelvet generál-e mint egy másik.

Generálják a G_1 és G_2 reguláris grammatikák rendre az L_1 és L_2 nyelveket. Az $L_3 = (L_1 \cap \bar{L}_2) = L_1 \setminus L_2$ nyelv szintén reguláris, így van olyan G_3 algoritmikusan előállítható, reguláris grammatika, amely L_3 -at generálja. (Hasonló okok miatt, mint az előző bizonyításban.)

Ennek üressége eldönthető, ami ekvivalens azzal, hogy $L_1 \subseteq L_2$.

Lineáris algoritmus a 3-as típusú szóproblémára

Szóprobléma: Adott a G grammatika és $u \in \Sigma^*$. $u \in L(G)$.

Tétel

A 3-as típusú grammatikák szóproblémája (hatékonyan) eldönthető.

Bizonyítás: Legyen $G = \langle N, \Sigma, P, S \rangle$ egy 3-as típusú grammatika normálformában adva és $u = t_1 \cdots t_n$ a levezetendő szó.

Az algoritmus rekurzívan kiszámol egy N részhalmazaiból álló H_i $(0 \le i \le n)$ sorozatot. H_i -ból H_{i+1} (csak G-től függő) konstans időben számolható.

$$H_0 := \{S\} \ H_{i+1} := \{A \in N \mid \exists B \in H_i \land B \to t_{i+1}A \in P\}.$$

Könnyen látható, hogy H_i azon nemterminálosok halmaza, melyek pontosan i levezetési lépés után a mondatforma végén állhatnak.

Tehát ha
$$F = \{A \in N \mid A \to \varepsilon \in P\}$$
, akkor nyilván $u \in L(G) \Leftrightarrow H_n \cap F \neq \emptyset$.

Lineáris algoritmus a 3-as típusú szóproblémára

Példa:

$$S \rightarrow aA \mid bS \mid \varepsilon$$

 $A \rightarrow aA \mid aS$

abb-re
$$H_0 = \{S\}$$
, $H_1 = \{A\}$, $H_2 = \emptyset$, $H_3 = \emptyset$, míg aab-re $H_0 = \{S\}$, $H_1 = \{A\}$, $H_2 = \{A, S\}$, $H_3 = \{S\}$

lesz a H_i -k sorozata. Mivel most $F = \{S\}$, ezért *aab* generálható, *abb* viszont nem.

Vegyük észre, hogy $H_i \in \mathcal{P}(N)$ és minden $1 \le i \le n-1$ -re H_{i+1} csak H_i -től és t_{i+1} -től függ.Azaz a $\{H_i\}_{0 \le i \le n}$ halmazok meghatározása egy DVA segítségével automatizálható.

	а	b
$\leftrightarrows \{S\}$	{ <i>A</i> }	{S}
{ A }	{S, A}	{}
$\leftarrow \{S,A\}$	{S, A}	{S}
{}	{}	{}

Lineáris algoritmus a 3-as típusú szóproblémára

Megjegyzések:

- Ez a DVA nem más, mint a G-hez készített NDVA determinizáltja. $\mathcal{P}(N)$ állapothalmazzal, $H_0 = \{S\}$ kezdőállapottal, $\delta(H, a) = \{B \in N \mid \exists A \in H : A \rightarrow aB \in P\}$ állapotátmenet-függvénnyel $(H \in \mathcal{P}(N))$ és $a \in \Sigma$) és $F' = \{H \subseteq N \mid H \cap F \neq \emptyset\}$ elfogadó állapothalmazzal, ahol $F = \{A \in N \mid A \rightarrow \varepsilon \in P\}$.
- Az algoritmus **lineáris** időben eldönti, $u \in L(G)$, hiszen minden egyes H_i halmaz kiszámításának ideje csak G-től (|u|-tól nem) függő konstans.
- Amennyiben G méretéhez képest hosszú szóra vagy több szóra szeretnénk a kérdést eldönteni érdemes lehet előfeldolgozó lépésként a fenti automatát elkészíteni.
- Másrészt, kevés, kisméretű szó és nagyméretű grammatika esetén hatékonyabb lehet a H_i halmazok közvetlen kiszámítása.