)	(a)	State Kirchhoff's second law.

(b) Three identical cells, each of electromotive force (e.m.f.) 1.5 V and internal resistance $590\,\text{m}\Omega$, are connected in parallel across a conductor, as shown in Fig. 5.1.

Fig. 5.1

The conductor is composed of two cylindrical sections A and B. The total resistance of the circuit is $2.2\,\Omega$.

(i) Show that the resistance of the conductor is 2.0Ω .

	(ii)	Calculate the current in the conductor.
		current = A [2]
(c)	mat The	two cylindrical sections A and B of the conductor in Fig. 5.1 are made from the same erial and have the same length. diameter of section A is 4.3 mm and the diameter of section B is 7.6 mm. resistance of section A is $R_{\rm A}$ and the resistance of section B is $R_{\rm B}$. Calculate the ratio $\frac{R_{\rm A}}{R_{\rm B}}$.
		κ _B
		$\frac{R_{A}}{R_{B}}$ =[3]
	(ii)	Calculate the ratio average drift speed of free electrons in section A average drift speed of free electrons in section B Explain your reasoning.
		Explain your rougoning.
		ratio =[2]

(d)	The circuit of Fig. 5.1 is altered by removing one of the cells.				
	State and explain the effect, if any, of this change on the potential difference across the conductor.				
	[3]				
	[Total: 14				