Curso: Métodos Numéricos II Professor: Creto Augusto Vidal

Semestre: 2021.1 Aula # 9

Objetivo: Estimativas de erro das fórmulas de integração de Newton-Cotes

Problema: Estimar o erro da integração na equação (1) quando uma dada fórmula de Newton-Cotes é usada.

(1)
$$I = \int_a^b f(x) dx$$

1. Argumentação para a necessidade da estimativa do erro.

A primeira pergunta que nos vem à memória é: - por que precisamos fazer uma estimativa de erro?

Há várias razões para isso, mas uma em que estamos interessados agora é a de ter alguma maneira de comparar fórmulas de integração para tomar a decisão de qual fórmula usar.

Intuitivamente, esperamos que, se dividirmos o problema em N subproblemas e utilizarmos uma fórmula de Newton-Cotes com polinômio de substituição de grau 2, o resultado será melhor do que o que obteríamos se usássemos uma fórmula de Newton-Cotes com polinômio de substituição de grau 1.

Sabemos, no entanto, que o esforço computacional da fórmula obtida com polinômio de grau 2 é maior (precisa calcular a função em três pontos de interpolação) do que a fórmula obtida com polinômio de grau 1 (precisa calcular a função em apenas dois pontos de integração) em cada subintervalo.

Porém, se uma tolerância para o resultado final for especificada, o resultado com a fórmula de grau 2 deve convergir mais rapidamente, exigindo um menor número de partições (pode ser).

2. Como obter uma estimativa do erro.

Antes de desenvolver uma estimativa de erro, vamos voltar ao exemplo da aula #8 ligeiramente modificado (o limite superior de integração agora é 0.5), e vamos calcular o erro de cada fórmula na resolução (sem subdivisão do problema em subintervalos) da integração

(2)
$$I = \int_0^{0.5} (\sin(2x) + 4x^2 + 3x)^2 dx = 1.6613351$$

Neste exemplo, temos o valor Exato (representado com 7 casas decimais)

(3)
$$I_e = 1.6613351$$
.

O erro absoluto de cada fórmula será dado por

(4)
$$E_a = I_e - I_f$$
.

Vamos construir uma tabela para as fórmulas fechadas

Grau do polinômio de substituição	I_e	I_f	$E_a = I_e - I_f$
1	1.6613351	2.7913571	-1.1300220
2	1.6613351	1.6600190	0.0013161
3	1.6613351	1.6607681	0.0005670

Vamos construir uma tabela para as fórmulas abertas

Grau do polinômio de substituição	I_e	I_f	$E_a = I_e - I_f$
1	1.6613351	1.2839051	0.3774300
2	1.6613351	1.6625206	-0.0011855
3	1.6613351	1.6621472	-0.0008121

Nos casos gerais, nós não conhecemos o valor exato da integral. É evidente que, se soubéssemos o valor exato, não precisaríamos apelar para nenhum método numérico.

Então, como vamos utilizar a fórmula do erro absoluto dada na equação (4) se não conhecemos I_e ?

A resposta é: vamos apelar para a Série de Taylor. Lembre-se de que a Série de Taylor representa o valor exato de uma função analítica na vizinhança de um ponto onde se conhece o valor da função e os valores de todas as suas derivadas. Lembre-se também de que o conceito de vizinhança significa "subjetivamente" um ponto próximo do outro. Assim, a Série de Taylor é válida para $\Delta x \ll 1.0$ (ou seja, para intervalos bem pequenos).

Vamos assumir que o ponto base para a Série de Taylor vai ser o centro do intervalo de integração, isto é

(5)
$$\bar{x} = \frac{a+b}{2}$$
 (ponto médio do intervalo [a, b]).

Se considerarmos ξh como sendo a distância do ponto x ao ponto \bar{x} , podemos escrever a Série de Taylor para calcular $f(x) = f(\bar{x} + \xi h)$ como

(6)
$$f(x) = f(\bar{x} + \xi h) = f(\bar{x}) + f'(\bar{x})(\xi h) + \frac{1}{2!}f''(\bar{x})(\xi h)^2 + \frac{1}{3!}f'''(\bar{x})(\xi h)^3 + \frac{1}{4!}f^{(iv)}(\bar{x})(\xi h)^4 + \cdots$$

onde h é metade do intervalo, isto é,

(8)
$$h = \frac{b-a}{2}$$
.

Assim, para obtermos o valor de I_e no caso geral, substituímos a equação (6) na equação (1)

$$I_{e} = \int_{a}^{b} f(x)dx = h \int_{-1}^{1} f(\bar{x} + \xi h)d\xi$$

$$(9) = h \int_{-1}^{1} \left(f(\bar{x}) + f'(\bar{x})(\xi h) + \frac{1}{2!} f''(\bar{x})(\xi h)^{2} + \frac{1}{3!} f'''(\bar{x})(\xi h)^{3} + \frac{1}{4!} f^{(iv)}(\bar{x})(\xi h)^{4} + \cdots \right) d\xi$$

A igualdade na equação (9) só vale se considerarmos os infinitos termos. No entanto, se considerarmos um número finito de termos, teremos uma boa aproximação do valor exato. É por isso que chamamos estimativa do erro.

2.1 Estimativas do erro das fórmulas de Newton-Cotes Fechadas

2.1.1 Regra do trapézio

(10)
$$I_f = \frac{\Delta x}{2} (f(a) + f(b))$$

Nesta fórmula, $\Delta x = 2h$ segundo a equação (8). Usando a Série de Taylor para f(a) e f(b), temos

(11)
$$f(a) = f(\bar{x} + (-1h)) = f(\bar{x}) - f'(\bar{x})(h) + \frac{1}{2!}f''(\bar{x})(h)^2 - \frac{1}{3!}f'''(\bar{x})(h)^3 + \cdots$$

(12)
$$f(b) = f(\bar{x} + (+1h)) = f(\bar{x}) + f'(\bar{x})(h) + \frac{1}{2!}f''(\bar{x})(h)^2 + \frac{1}{2!}f'''(\bar{x})(h)^3 + \cdots$$

Substituindo-se (11) e (12) em (10), obtemos

(13)
$$I_f = h\left(2f(\bar{x}) + \frac{2}{2!}f''(\bar{x})(h)^2 + \frac{2}{4!}f^{(iv)}(\bar{x})(h)^4 + \cdots\right)$$

Efetuando as integrações da equação (9), temos

(14)
$$I_e = h \left(2f(\bar{x}) + \frac{(h)^2}{2!}f''(\bar{x})^{\frac{2}{3}} + \frac{(h)^4}{4!}f^{(iv)}(\bar{x})^{\frac{2}{5}} + \cdots\right)$$

Substituindo-se (13) e (14) em (4), temos

(15)
$$E_{a} = I_{e} - I_{f} = h \left(2f(\bar{x}) + \frac{(h)^{2}}{2!} f''(\bar{x}) \frac{2}{3} + \frac{(h)^{4}}{4!} f^{(iv)}(\bar{x}) \frac{2}{5} + \cdots \right) - h \left(2f(\bar{x}) + \frac{2}{2!} f''(\bar{x})(h)^{2} + \frac{2}{4!} f^{(iv)}(\bar{x})(h)^{4} + \cdots \right)$$

Retendo apenas o termo dominante a estimativa do erro fica

(16)
$$E_a = -\frac{1}{12}(\Delta x)^3 f''(\bar{x})$$

2.1.2 Fórmula de Simpson 1/3

(17)
$$I_f = \frac{\Delta x}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Nesta fórmula, $\Delta x = 2h$ segundo a equação (8). Usando a Série de Taylor para f(a) e f(b), temos

(18)
$$f(a) = f(\bar{x} + (-1h)) = f(\bar{x}) - f'(\bar{x})(h) + \frac{1}{2!}f''(\bar{x})(h)^2 - \frac{1}{3!}f'''(\bar{x})(h)^3 + \cdots$$

(19)
$$f(b) = f(\bar{x} + (+1h)) = f(\bar{x}) + f'(\bar{x})(h) + \frac{1}{2!}f''(\bar{x})(h)^2 + \frac{1}{3!}f'''(\bar{x})(h)^3 + \cdots$$

Substituindo-se (18) e (19) em (17), obtemos

(20)
$$I_f = \frac{2h}{6} \left(6f(\bar{x}) + \frac{2}{2!} f''(\bar{x})(h)^2 + \frac{2}{4!} f^{(iv)}(\bar{x})(h)^4 + \cdots \right)$$

Efetuando as integrações da equação (9), temos

(21)
$$I_e = h \left(2f(\bar{x}) + \frac{(h)^2}{2!}f''(\bar{x})\frac{2}{3} + \frac{(h)^4}{4!}f^{(iv)}(\bar{x})\frac{2}{5} + \cdots\right)$$

Substituindo-se (20) e (21) em (4), temos

(22)
$$E_a = I_e - I_f = h \left(2f(\bar{x}) + \frac{(h)^2}{2!} f''(\bar{x}) \frac{2}{3} + \frac{(h)^4}{4!} f^{(iv)}(\bar{x}) \frac{2}{5} + \cdots \right) - \frac{2h}{6} \left(6f(\bar{x}) + \frac{2}{2!} f''(\bar{x})(h)^2 + \frac{2}{4!} f^{(iv)}(\bar{x})(h)^4 + \cdots \right)$$

Retendo-se apenas o termo dominante, a estimativa do erro fica

$$E_a = I_e - I_f = \frac{1}{4!} h^5 f^{(iv)}(\bar{x}) \left(\frac{2}{5} - \frac{2}{3}\right) = \frac{1}{24} h^5 f^{(iv)}(\bar{x}) \left(\frac{6 - 10}{15}\right)$$
$$= -\frac{1}{24} h^5 f^{(iv)}(\bar{x}) \left(\frac{4}{15}\right)$$

(23)
$$E_a = -\frac{1}{90} \left(\frac{\Delta x}{2}\right)^5 f^{(iv)}(\bar{x})$$

2.1.2 Fórmula de Simpson 3/8

(24)
$$I_f = \frac{\Delta x}{8} \left(f(a) + 3f\left(a + \frac{\Delta x}{3}\right) + 3f\left(a + \frac{2\Delta x}{3}\right) + f(b) \right)$$

Nesta fórmula, $\Delta x = 2h$ segundo a equação (8). Usando a Série de Taylor para os pontos de interpolação, temos

(25)
$$f(a) = f(\bar{x} + (-1h)) = f(\bar{x}) - f'(\bar{x})(h) + \frac{1}{2!}f''(\bar{x})(h)^2 - \frac{1}{3!}f'''(\bar{x})(h)^3 + \frac{1}{4!}f^{(iv)}(\bar{x})(h)^4 - \frac{1}{5!}f^{(v)}(\bar{x})(h)^5 + \cdots$$

(26)

$$f\left(a + \frac{\Delta x}{3}\right) = f\left(\bar{x} + \left(-\frac{1}{3}h\right)\right) = f(\bar{x}) - f'(\bar{x})\left(\frac{1}{3}h\right) + \frac{1}{2!}f''(\bar{x})\left(\frac{1}{3}h\right)^2 - \frac{1}{3!}f'''(\bar{x})\left(\frac{1}{3}h\right)^3 + \frac{1}{4!}f^{(iv)}(\bar{x})\left(\frac{1}{3}h\right)^4 - \frac{1}{5!}f^{(v)}(\bar{x})\left(\frac{1}{3}h\right)^5 + \cdots$$

(27)

$$f\left(a + \frac{2\Delta x}{3}\right) = f\left(\bar{x} + \left(\frac{1}{3}h\right)\right) = f(\bar{x}) + f'(\bar{x})\left(\frac{1}{3}h\right) + \frac{1}{2!}f''(\bar{x})\left(\frac{1}{3}h\right)^2 + \frac{1}{3!}f'''(\bar{x})\left(\frac{1}{3}h\right)^3 + \frac{1}{4!}f^{(iv)}(\bar{x})\left(\frac{1}{3}h\right)^4 + \frac{1}{5!}f^{(v)}(\bar{x})\left(\frac{1}{3}h\right)^5 + \cdots$$

(28)
$$f(b) = f(\bar{x} + (+1h)) = f(\bar{x}) + f'(\bar{x})(h) + \frac{1}{2!}f''(\bar{x})(h)^2 + \frac{1}{3!}f'''(\bar{x})(h)^3 + \frac{1}{4!}f^{(iv)}(\bar{x})(h)^4 + \frac{1}{5!}f^{(v)}(\bar{x})(h)^5 + \cdots$$

Substituindo-se de (25) a (28) em (24), obtemos

(29)
$$I_f = \frac{2h}{8} \left(8f(\bar{x}) + \frac{8}{3} \left(\frac{1}{2!} f''(\bar{x})(h)^2 \right) + \frac{56}{27} \left(\frac{1}{4!} f^{(iv)}(\bar{x})(h)^4 \right) + \cdots \right)$$

Efetuando as integrações da equação (9), temos

(30)
$$I_e = h \left(2f(\bar{x}) + \frac{(h)^2}{2!} f''(\bar{x}) \frac{2}{3} + \frac{(h)^4}{4!} f^{(iv)}(\bar{x}) \frac{2}{5} + \cdots \right)$$

Substituindo-se (29) e (30) em (4), temos

(15)
$$E_{a} = I_{e} - I_{f} = h \left(2f(\bar{x}) + \frac{(h)^{2}}{2!} f''(\bar{x}) \frac{2}{3} + \frac{(h)^{4}}{4!} f^{(iv)}(\bar{x}) \frac{2}{5} + \cdots \right) - \frac{2h}{8} \left(8f(\bar{x}) + \frac{8}{3} \left(\frac{1}{2!} f''(\bar{x})(h)^{2} \right) + \frac{56}{27} \left(\frac{1}{4!} f^{(iv)}(\bar{x})(h)^{4} \right) + \cdots \right)$$

Retendo apenas o termo dominante a estimativa do erro fica

$$E_{a} = I_{e} - I_{f} = \frac{1}{4!} h^{5} f^{(iv)}(\bar{x}) \left(\frac{2}{5} - \frac{14}{27}\right) = \frac{1}{24} h^{5} f^{(iv)}(\bar{x}) \left(\frac{-16}{135}\right)$$

$$= -\frac{1}{3} h^{5} f^{(iv)}(\bar{x}) \left(\frac{2}{135}\right) = -\frac{1}{3} \left(\frac{3}{2} \frac{\Delta x}{3}\right)^{5} f^{(iv)}(\bar{x}) \left(\frac{2}{135}\right)$$

$$= -\frac{3 \times 3 \times 27}{3 \times 2 \times 16} \left(\frac{\Delta x}{3}\right)^{5} f^{(iv)}(\bar{x}) \left(\frac{2}{5 \times 27}\right) = -\frac{3}{80} \left(\frac{\Delta x}{3}\right)^{5} f^{(iv)}(\bar{x})$$

(16)
$$E_a = -\frac{3}{80} \left(\frac{\Delta x}{3}\right)^5 f^{(iv)}(\bar{x})$$

Tarefa: Seguindo o roteiro acima, desenvolva a estimativa do erro para a fórmula aberta com polinômio de substituição de grau 2.