#### **Chapter 5**

#### Language of Chemistry

# <u>Symbol</u>

- A symbol is the short hand representation for the atom of a specific element.
- Symbol of an element represents an atom of that element.
- Example: H is the symbol of the element Hydrogen.

H represents one atom of Hydrogen.

#### **Molecular Formula of Compounds**

A molecular formula of a compound is the symbolic representation of its molecule.

#### **Significance**

- It represents one molecule of a compound
- It shows the number of atoms of each element present in it.
- Molecular mass of the compound can be calculated from the molecular formula.

# Step by step method or Criss cross method for writing the Molecular formula

- I. Write the symbols
- II. Write the valency of the symbols
- III. Simplify the valencies (if possible)
- IV. Cross multiply the valencies and write the molecular formula of the compound.



5) Copper(11) Oxide 6) Iron (II) Chloride I: Cu O  $Cu^{2+}$ II: 2  $O^{2-}$ I: Fe Cl {Fe3+ CQ-III: 18 1 Fecls Cuo 8) Iron (II) Bulphide 7) Sodium Hydroxide I: Na OH {Nat OH-J: Fe S SFet S 2 SFet S2-NaOH

9) Lead (II) oxide I: Pb 0 [Pb2+

II: 2 2 2 2-亚:124

РЬО

11) Sulphuric acid (Hydrogen Sulphate)

I: H 504 5 HT

H2504

19) Nitric acid (Hydrogen Nitrate)

I: H NO3 SH<sup>†</sup>
NO3

HNO3

12) Calcium Hydroxide

Ca(0H),



# 15) Calcium sulphide

I: Ca S S  $Ca^{2+}$ II: 2 2  $S^{2-}$ 

Cas

#### **Home work**

Write the molecular formula for the oxides and sulphides of the following elements:

a) Sodium

b) Hydrogen

- - i) Sodium oxide

I: Na O (Na<sup>†</sup>

Nago

ii) Sodium sulphide

I: Na S [Nat S2-

Nas

- i) Hydrogen Oxide

I: HO I: 1252 SH<sup>+</sup>

H20

ii) Hydrogen Sulphide

I: H S SH+

#### <u>amu</u>

- amu is atomic mass unit.
- Mass of an atom is expressed in amu.
   Example: Atomic mass of oxygen is 16 amu.
- Carbon is the most most widely accepted standard unit for the measurement of atomic mass.

#### Molecular mass

Molecular mass is the sum of the masses of all the atoms present in a given molecule.

#### Example:

Molecular mass of Sulphur dioxide (SO<sub>2</sub>)

[ Atomic mass of Sulphur is 32 amu and that of oxygen is 16 amu]

Molecular mass of  $SO_2 = 32 + (2 \times 16) = 64$  amu

## Question

Write the molecular formula and calculate the molecular mass of the following compounds:

- a) Sulphur trioxide
- b ) Iron (II ) sulphide
- c ) Ammonia
- [ Atomic massses : S--> 32 amu ,O ---> 16 amu,
  - Fe ----> 56 amu , N ---> 14 amu, H ----> 1 amu]

a) Sulphur trioxide (SO₃) Molecular mass = 32 + (3× 16) = 80 amu

b) Iron (II ) Sulphide (FeS)

Molecular mass = 56 +32 = 88 amu

Molecular mass = 14 + (3×1) = 17 amu

c) Ammonia (NH<sub>3</sub>)

#### **Chemical equations**

- A chemical equation is the symbolic representation of a chemical reaction using symbols and formulae of the substances involved in the reaction.
- Substances that undergo the chemical change are called reactants.
- The new substances formed in a chemical reaction are called products.

 An unbalanced chemical equation is known as skeletal equation.

 In a balanced chemical reaction, the number of atoms of each element on the reactant side is equal to the number of atoms of that element in the product side.

#### **Examples:**

$$H_2O + CO_2 ---> H_2CO_3$$
  
CaO +  $H_2O$  ----> Ca (OH)<sub>2</sub>

#### Question

Why it is necessary to balance a chemical equation?

#### **Answer**

A chemical equation needs to be balanced inorder to make the number of atoms of the reactants equal to the number of atoms of the products.

This is because a chemical reaction is just a rearrangement of atoms.

# Significance of balanced chemical equation

- It gives information about the reactants and products.
- It shows both the number of molecules and the number of atoms involved in the reaction.
- It makes the study of chemistry universally standardized.

Balance the following chemical equations :

1) Mg + 
$$O_2 \longrightarrow MgO$$
 2)  $H_2 + O_2 \longrightarrow H_2O$   
Griven equation is, Griven equation is,  
 $2Mg + O_2 \longrightarrow 2MgO$   $2H_2 + O_2 \longrightarrow 2H_2O$ 

Mg: 12 0:2

Balanced equation is,

12 H: 24 24

12 0: 2

Balanced equation is,

3) Fe + HCl -> Fecl2+42 Griven equation is, Fe + 2HCl -> Fecl + H Fe: H: +2 + 2 CL: 2 Balanced equation is,

Fe + 2 HCl -> Fecl + H2

4) Zn + H2SQ -> ZnSQ + H2 Given equation is, + H2504 -> Zn504 + H2 Zn S 0

Number of atoms of each element is the same on both sides, hence the above equation is a balanced chemical equation.

5) 
$$N_2 + H_2 \longrightarrow NH_3$$
Given equation is,

 $N_2 + 3H_2 \longrightarrow 2NH_3$ 
 $N_2 + 3H_2 \longrightarrow 3.6$ 

Balanced equation is,

 $N_2 + 3H_2 \longrightarrow 2NH_3$ 

# **Homework**

Balance the following chemical equations:

- 1) Na<sub>2</sub>O + H<sub>2</sub>O -----> NaOH
  - 2) Zn + HCl ----> ZnCl <sub>2</sub> + H <sub>2</sub>
  - 3) Na + Cl <sub>2</sub> ----> NaCl



#### Question

Write balanced chemical equations for the following word equations:

a) Iron + Chlorine ---->Iron (III) chloride

b) Calcium oxide + water ----> Calcium Hydroxide

a) 
$$2Fe + 3Cl_2 \longrightarrow 2FeCl_3$$

Fe:  $+2$ 

Cl:  $2G$ 

Balanced equation is,

 $2Fe + 3Cl_2 \longrightarrow 2FeCl_3$ 

b)  $CaO + H_2O \longrightarrow Ca(OH)_2$ 

Ca

I

O

2

H

2

Above equation is a

balanced chemical equation

# Limitations of a chemical equation

#### It does not inform about

- Physical state of the reactants and products.
- The time taken for the completion of the reaction.
- The rate of the reaction
- The conditions like temperature, pressure, catalyst etc. which affect the reaction.

#### Question

What are the ways by which a chemical equation can be made more informative?

#### **Answer**

- The physical state of the reactants and products can be indicated by putting (s) for solid, (l) for liquid, (g) for gas and (aq) for aqueous state.
- Temperature, pressure and catalyst can be indicated above the the arrow of the chemical reaction.
- Evolution or absorption of heat, can be denoted by adding the heat term.

- Write the symbols and valencies of the following radicals :
  - a)Hydroxide b) Chloride c) Carbonate d) Ammonium e) Nitrate

#### **Answer**

Hydroxide: OH<sup>-</sup>, valency 1

Chloride: Cl<sup>-</sup>, valency 1

Carbonate: CO<sub>3</sub><sup>2-</sup>, valency 2

Ammonium: NH<sub>4</sub><sup>+</sup>, valency 1

Nitrate: NO₃⁻, valency 1

- The valency of aluminium is 3.Write the valency of other radicals present in the following compounds.
  - a)Aluminium chloride
  - b) Aluminium oxide
  - c) Aluminium nitride
  - d) Aluminium sulphate.

# **Answer**

**Chloride: valency 1** 

Oxide: valency 2

Nitride: valency 3

Sulphate: valency 2

# Question

What information do you get from the following chemical equation:

# **Answer:**

Solid form of Zn reacts with 2 molecules of dilute hydrochloric acid to form aqueous form of zinc chloride and hydrogen gas.