Grafos - Representação Computacional

Prof. Andrei Braga

Conteúdo

- Representação computacional
- Exercícios
- Referências

Grafo (Revisão)

- Um **grafo** *G* é um par ordenado (*V*, *E*) composto por
 - o um conjunto de **vértices** *V* e
 - o um conjunto de **arestas** E, sendo cada aresta um conjunto $\{v_i, v_i\}$ de dois vértices de G
 - note que $\{v_i, v_i\} = \{v_i, v_i\}$, ou seja, não consideramos uma direção para a aresta

• Exemplo:

- \circ G = (V, E), onde
 - $V = \{ v_0, v_1, v_2, v_3, v_4, v_5 \} e$
 - $E = \{ \{ v_0, v_1 \}, \{ v_0, v_2 \}, \{ v_0, v_4 \}, \\ \{ v_1, v_3 \}, \{ v_1, v_4 \}, \{ v_2, v_4 \}, \\ \{ v_3, v_4 \}, \{ v_3, v_5 \} \}$

Representação computacional

- A seguir, veremos duas formas comuns de representar um grafo G
- Para isso, vamos considerar que fizemos uma associação dos índices 0, 1, ... |V(G)| - 1 aos vértices de G

- A representação de G como uma matriz de adjacências consiste em uma matriz de |V(G)| linhas, com índices 0, 1, ..., |V(G)| 1, e de |V(G)| colunas, com índices 0, 1, ..., |V(G)| 1, tal que a célula (i, j) da matriz é igual a
 - 1 se i j é uma aresta de G
 - 0 caso contrário

	0	1	2	3	4	5
0						
1						
2						
2 3 4 5						
4						
5						

- A representação de G como uma matriz de adjacências consiste em uma matriz de |V(G)| linhas, com índices 0, 1, ..., |V(G)| 1, e de |V(G)| colunas, com índices 0, 1, ..., |V(G)| 1, tal que a célula (i, j) da matriz é igual a
 - o 1 se i j é uma aresta de G
 - 0 caso contrário

	0	1	2	3	4	5
0	0	1	1	0	1	0
1	1	0	0	1	1	0
2	1	0	0	0	1	0
3	0	1	0	0	1	1
4	1	1	1	1	0	0
5	0	0	0	1	0	0

Observações:

- Não é possível representar arestas paralelas (a não ser que a matriz seja alterada)
- Para grafos simples, todas as células da diagonal principal da matriz são iguais a 0
- Para grafos onde não consideramos uma direção para as arestas, uma aresta i j é representada por duas células da matriz: (i, j) e (j, i)

	0	1	2	3	4	5
0	0	1	1	0	1	0
1	1	0	0	1	1	0
2	1	0	0	0	1	0
3	0	1	0	0	1	1
4	1	1	1	1	0	0
5	0	0	0	1	0	0

Observações:

 Para grafos onde não consideramos uma direção para as arestas, a matriz é simétrica em relação à diagonal principal

	0	1	2	3	4	5
0	0	1	1	0	1	0
1	1	0	0	1	1	0
2	1	0	0	0	1	0
3	0	1	0	0	1	1
4	1	1	1	1	0	0
5	0	0	0	1	0	0

Exercícios

1. Considere a representação de um grafo *G* como uma matriz de adjacências. Através desta representação, explique como determinar quais são os vizinhos de um dado vértice *i* de *G*.

Listas de adjacência

• A representação de G como **listas de adjacência** consiste em um vetor de |V(G)| elementos, com índices 0, 1, ..., |V(G)| - 1, tal que o elemento i do vetor armazena uma lista com os vértices adjacentes ao vértice i em G

Listas de adjacência de G

Listas de adjacência

• A representação de G como **listas de adjacência** consiste em um vetor de |V(G)| elementos, com índices 0, 1, ..., |V(G)| - 1, tal que o elemento i do vetor armazena uma lista com os vértices adjacentes ao vértice i em G

Listas de adjacência de G

Listas de adjacência

Observações:

 Para grafos onde não consideramos uma direção para as arestas, uma aresta i j é representada em duas listas de adjacência: o vértice i está na lista do vértice j e o vértice j está na lista do vértice i

Listas de adjacência de G

Matriz de adjacências vs. listas de adjacência

- Dado um grafo G = (V, E), a quantidade de memória utilizada para representar G
 - o como uma matriz de adjacências é proporcional a $|V|^2$ e
 - como listas de adjacências é proporcional a |V| + |E|
- Se G é um grafo **esparso**, isto é, |E| é bem menor que $|V|^2$, então é usualmente mais interessante representar G como listas de adjacência
- Se G é um grafo **denso**, isto é, |E| é um número próximo a $|V|^2$, então é usualmente mais interessante representar G como uma matriz de adjacências

Matriz de adjacências vs. listas de adjacência

• Dado um grafo G = (V, E):

	Matriz de Adjacências	Listas de Adjacência	
Memória utilizada	$ V ^2$	V + E	
Tempo para inserir aresta	constante	constante	Valores
Tempo para verificar aresta	constante	pior caso: V	proporcionais a
Tempo para remover aresta	constante	pior caso: V	

Exercícios

- 2. Implemente em C++ uma classe que
 - a. represente um grafo como uma matriz de adjacências e
 - b. permita a realização das seguintes operações no grafo:
 - construir o grafo com um dado número de vértices e sem arestas
 - obter o número de vértices do grafo
 - obter o número de arestas do grafo
 - verificar se uma aresta existe no grafo
 - inserir uma aresta no grafo
 - remover uma aresta do grafo
 - imprimir o grafo (imprimir, para cada vértice, quais são os vizinhos do vértice)
 - (se necessário) destruir o grafo (liberar a memória alocada para o grafo)

Exercícios

- 3. Considere a classe do exercício anterior e adicione a esta classe os seguintes métodos:
 - a. eh_passeio: dada uma sequência de vértices do grafo, verifica se a sequência é um passeio
 - b. eh_caminho: dada uma sequência de vértices do grafo, verifica se a sequência é um caminho

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Capítulo 22 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.
 - Capítulo 17 do livro
 Sedgewick, R. Algorithms in C++ Part 5. Graph Algorithms. 3rd. ed.
 Addison-Wesley, 2002.