MATH 2207: Linear Algebra Homework 1, due 15:45 Monday 29 January 2018

You must justify your answers to receive full credit.

- 1. Find a polynomial of degree 3 (a polynomial of the form $f(t) = a + bt + ct^2 + dt^3$) whose graph passes through the points (0,1), (1,0), (-1,0) and (2,-15).
- 2. Consider a linear system whose augmented matrix is

$$\left[\begin{array}{cccc|cccc}
3 & 0 & 6 & 0 & 0 & 9 \\
2 & 2 & 4 & -1 & 0 & 4 \\
0 & 0 & 1 & 1 & 3 & 2 \\
0 & 0 & 1 & 2 & 4 & 3
\end{array}\right].$$

a) Find the reduced echelon form of this matrix.

Now consider a linear system whose augmented matrix is

$$\begin{bmatrix} 3 & 0 & 6 & 0 & 0 & 9 \\ 2 & 2 & 4 & -1 & 0 & 4 \\ 0 & 0 & 1 & 1 & 3 & 2 \\ 0 & 0 & 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & 3 & a & b \end{bmatrix}.$$

- b) For what values of a and b will the system have infinitely many solutions? (You may use your computations from part a.)
- c) For what values of a and b will the system be inconsistent?
- 3. Let

$$A = \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 4 & -2 \\ -2 & 8 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}.$$

- a) Is b in $\{a_1, a_2, a_3\}$? How many vectors are in $\{a_1, a_2, a_3\}$?
- b) Is **b** in Span $\{a_1, a_2, a_3\}$? How many vectors are in Span $\{a_1, a_2, a_3\}$?
- c) Is \mathbf{a}_1 in Span $\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}\}$? Explain your answer. (Hint: you do not need to do any calculation.)
- 4. Give, in parametric form, the solution to the linear system associated to the following augmented matrix:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 & 6 \end{array}\right].$$

MATH 2207: Linear Algebra Homework 1, due 15:45 Monday 29 January 2018

Page: 2 of 2

- 5. Prove the following: if \mathbf{w} is in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$ and \mathbf{x} is in $\mathrm{Span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}$, then \mathbf{x} is a linear combination of \mathbf{u} and \mathbf{v} .
- 6. State whether each of the following statements is always true or sometimes false. If it is true, give a brief justification (e.g. by referring to results from the textbook or from class); if it is false, give a numerical counterexample with an explanation.
 - a) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be vectors in \mathbb{R}^n . If \mathbf{v}_3 is in Span $\{\mathbf{v}_1\}$, then \mathbf{v}_3 is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$.
 - b) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be vectors in \mathbb{R}^n . If \mathbf{v}_3 is in $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, then \mathbf{v}_3 is in $\mathrm{Span}\{\mathbf{v}_1\}$.
 - c) If rref(A) contains a row of zeros, then $A\mathbf{x} = \mathbf{b}$ is an inconsistent system.
 - d) If $A\mathbf{x} = \mathbf{b}$ is an inconsistent system, then rref(A) contains a row of zeros.
 - e) If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then $A\mathbf{x} = \mathbf{b}$ is inconsistent for all \mathbf{b} in \mathbb{R}^m .
 - f) Suppose A is an $m \times n$ matrix and there is a vector **b** in \mathbb{R}^m such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Then, if **c** is any vector such that $A\mathbf{x} = \mathbf{c}$ is consistent, then $A\mathbf{x} = \mathbf{c}$ has a unique solution.

-- END --