

Intro

SHIR SECHE, RACK MISO, KIN YOUNGHO, VE JIWON, SEO YOUNGHUM, KIM MIRHEE, CHO YURHEE, HA SEONIGUIK WIN REDUCCIÓN JEDNIVONAS FILM OO DIRECCHON YOUNG HOUNG ANABODO DIRECCHO HE CETURIANIE HOUNG SANGASOO ENLONG SEO, MINOCH NO SEONIGO SEO, MINOCH NO SEONIGO SEONIGO SEO, MINOCH NO SANGASOO CHUCHALE KIM JIMIN VENTAS RITERIACIONALES FINEOUT UN ESTIEND DE ATALANTE © 2020. JEDNIVONAS FILM OO. ALI GRUITS RESERVANDE.

Equipe

Ana

Actuaire, future Data Scientist

Expertise en analyse statistique et modélisation et fort intérêt pour l'analyse comportementale.

Ariel

Ing. Génie Civil, futur Ingénieur ML

Expertise en optimisation de processus, techniques et architecture de systèmes orienté solution.

Lam

Product Manager, futur Ingénieur ML

Expertise en gestion de produit et connaissance approfondie des systèmes de recommandation en tant qu'utilisateur.

Charles

Maître d'Ouvrage IT, futur Data Scientist

Expérience en IT et compréhension des systèmes de recommandation dans un contexte bancaire.

Contexte

Définition d'un système de recommandation de films

Une application logicielle ou un algorithme conçu pour suggérer des films pertinents aux utilisateurs en fonction de leurs préférences, de leurs comportements passés ou des tendances globales.

Objectifs

Proposer de nouveaux films à découvrir

Améliorer l'engagement sur une plateforme

Proposer rapidement des choix personnalisés

Exploration

Exploration des Données

Jeux de données

movielens

MovieLens

- 138k utilisateurs,
- 27k films,
- 20M ratings
- 6 fichiers CSV pour structurer les données
- Période couverte : jan 1995 mars 2015

IMDb

- 5M films et séries,
- 1.5M votes,
- Variables descriptives par film et série:
 - Réalisateurs
 - Personnel lié aux films (y compris acteurs)
 - Films associées au personnel
 - Langues
 - Pays
 - o Etc
- 7 fichiers TSV.gz pour structurer les données

Traitement des données

Prise de décision → Focus sur un système de recommandation des films exclusivement

Traitement des données divisé en deux étapes :

Filtrage collaboratif:

Utilisateur : userid

• Film : Movield & title_name

• Evaluation : Rating

Variables IMDb incluses (voie du peuple):

- Votes Imdb par film
- Nombre de votes IMDb par film
- → Grâce à ces variables, la création d'un score de pertinence a été créé (explication à posteriori)

Filtrage basé sur le contenu :

Récupération des caractéristiques des éléments (basées sur les informations IMDb) :

- Réalisateurs
- Acteurs
- Films associés aux réalisateurs et aux acteurs

Pre-Processing et Feature Engineering

Les points clés du traitement des données :

- Suppression des données dans les informations de title.basics.tsv :
 630 lignes (sur 11M) ont été supprimées de title.basics.tsv en raison de décalages entraînant des incohérences. Ce fichier fournit des informations de base sur les films (titre, genre).
- Transformation des variables :
 Recherche dans IMDb pour identifier réalisateurs, acteurs et films associés, afin de créer des descriptions de films pour tester le filtrage basé sur le contenu.
- Filtre principale appliqué :
 - **Utilisateurs :** filtrage des utilisateurs trop ou peu actifs pour limiter les biais et réduire la taille des données (500 et 700 évaluations).

Statistiques descriptives Principaux Graphiques

Distribution des notes

Top 10 des films avec les meilleures notes dans la base de données MovieLens compte tenu de la moyenne bayésienne

Top 10 films les mieux notés : Moyenne Bayesienne

Évolution des notes dans le temps (moyenne)

Évolution des notes dans le temps (fréquence)

Distribution des genres

Fréquence par genre des films

Modèles testés

- Filtrage Collaboratif : approche mémoire
 - User-based
 - o Item-based
- Filtrage Collaboratif : approche modèle
 - o Item-based + SVD
 - Surprise (SVD)
- Filtrage basé sur le contenu

Métriques utilisées

- RMSE Root Mean Squared Error
- MAE Mean Absolute Error

Modélisation

Filtrage basé sur le Contenu

Méthode:

- Création d'une nouvelle variable texte **"description"** (Titre, Réalisateur, Acteurs, Genre, Films connus)
- Tokenisation + Vectorisation
- Calcul de similarité sur les vecteurs (Cosinus et Distance Euclidienne)

Résultats:

- **Précision faible** (score de similarité, pas de prédictions)
- **Temps de calcul relativement rapide** mais problème de taille de la base de données
- Interprétabilité mitigée: évidente pour les premiers résultats, plus ténue ensuite
- Possibilité d'amélioration avec une description plus robuste (synopsis, tags, etc.)
- Mais **risque d'alourdissement** de la base de donnée

Filtrage Collaboratif (Approche Mémoire)

Filtrage Collaboratif (Approche Modèle)

Factorisation matricielle e.g. SVD (Single Value Decomposition):

le but du SVD est d'apprendre les matrices réduites telles que leur produit est une bonne approximation de la matrice de notation complète.

Modèle Sélectionné : FC Surprise + SVD

Création d'un score de pertinence (normalisé)

- Prise en compte de "la voix du Peuple" (note moyenne et nombre de votes IMDb))
- Modèle plus discriminant pour un meilleur classement des recommandations

$$P = ((0.4 * N) + (0.6 * M)) * log_{10}(\sqrt[3]{V})$$

	userld	imdbld	rating	title_name	imdb_averageRating	imdb_numVotes
960	11	114709	4.5	Toy Story	8.3	1088953
961	11	113189	2.5	GoldenEye	7.2	273041
962	11	112281	3.5	Ace Ventura: When Nature Calls	6.4	237008

Ajout de recommandations hors des sentier battus (aléatoire parmi les meilleurs films)

Résultats:

- La meilleure précision ET la meilleure scalabilité
- L'assurance de plus de diversité et la prise en compte du cold start
- Une bonne interprétabilité (matrice de notation factorisée plus "sagesse populaire")

Benchmark

	Modèle	RMSE	MAE	Temps de calcul de l'evaluation
0	SVD (Surprise)	15.2936	12.3635	Quelques secondes
1	Item-based + SVD (modele)	15.5542	12.2443	Plusieurs heures
2	User-based (approche mémoire)	16.5321	14.0516	30 min
3	Item-based (approche mémoire)	15.8114	13.1578	30 min
4	Filtrage basé sur le contenu	Non applicable	Non applicable	RAS

Meilleure précision:

=> Surprise + SVD, possibilité d'amélioration à la marge i.e. optimisation des hyperparamètres

Possibilité d'une précision encore meilleure avec une **modélisation plus avancée** (e.g. Deep Learning) MAIS:

- => Les modèles marchent déjà bien
- => Pas besoin de précision "chirurgicale" pour un système de recommandation
- => Les gains de performance sont incertains

Démo!

DRECTED BY: IGNADO ACCONDA, CIRSINA ALIONSO, BARBIR ARMENTA, RENE BARTIOLOMÉ, DANEL CALUERDA, BARBEL CASADOA, NERA CASIRO, YOLUN CHOL ANGELICA CLANU-CRESPO, BAETANO CRIVERO, DEBORA DE SA, SAVIAGO O. RISCO, DARIO FERRADO, SERGI FERRES, VÍCTOR FORRES, MARTA GL, NARLA RIJALY, TANÍA HERNANGEZ, MARINA LIMERO, MARIGALEF, RADI, MARINAZ, PARLO MARINAZ, PERE MARZOL, LILUS MUDIL, CRISTÓRO, DUCIR, HELGA PARNODITAR POLO RIGISTAN, RIBRO ANDRES SANGHARÍ SORBANS DAVIET TOURI AMANA KAR VICTOR RISCANSINYO, "SONDA POSSARA", MUNI SANGHA "POST. PRODUCTION FETREPO DEI FETRO.

An initiative of the Master in Creative Documentary Pompeu Fabra University. Producer by Kossakovsky Film Production / IDEC-UF

Conclusion

Défis et difficultés rencontrées

1. Gestion des bases de données

- Défi : Taille massive des bases.
- Solution: Utilisation de Dask.
- **Limite**: Insuffisant pour traiter les informations de filtrage basé sur le contenu.

3. Contraintes de temps et planification

- Temps limité : Études et examens parallèles.
- Planification limitée : Apprentissage progressif des modules.
- Modules clés tardifs : Réduction de dimension, text mining

2. Limitations matérielles

Problèmes:

- RAM insuffisante pour certaines données essentielles (acteurs, réalisateurs).
- Suppression de variables importantes (langues, régions).

4. Limitations techniques de Streamlit

- Taille des bases : Restriction à 200 MB.
- **Incompatibilités :** Bibliothèques non supportées (e.g., Surprise).
- Adaptation : Réécriture partielle du code Python.

Impact global:

- Réduction de la richesse des analyses
- Ajustements nécessaires pour garantir la faisabilité

Perspectives et Axes d'Amélioration

Enrichissement de la base de données

- **Web scraping** pour enrichir la **description des films** (pour filtrage basé contenu et NLP)
- Intégration des **films** les **plus récents** i.e. après 2016 (et pourquoi pas, ajout des séries)
- Incorporation de sources supplémentaires représentant la "voix du Peuple" (e.g. Rotten Tomatoes, AlloCiné, etc.)

Ajustement et **réglage fin du score de pertinence** si besoin (selon feedback utilisateur)

- Notre **formule** est très **flexible**
- Nous avons privilégié la qualité des films
- On pourrait aussi décider de favoriser plus de diversité ou une personnalisation plus poussée

Modélisation plus avancée i.e. Deep Learning

- NLP
- Prédiction de rating utilisant des **réseaux de neurones** (meilleure précision potentielle)

Interprétabilité

- Mise en oeuvre de SHAP pour identifier les variables les plus influentes dans notre modèle

Merci

DIANNE WIEST
JANE BIRKIN
SIMON CALLOW
JERRY HALL
VANESSA REDGRAVE

BULLE OGIER

and introducing STANISLAS MERHAR

MERCHANT IVORY PRODUCTIONS
PRESENTS

MERCI DOCTEUR REY

RECORD HERP PRODUCTION PROVIDE A COLUMN OF THE THEFT PRODUCTION AND THE PROPERTY OF THE PROPER

Marchael Prop. (XX)

MERCIDOCTEURREY.COM

Questions

Annexes

Réduction de dimension par rapport aux utilisateurs Distribution du nombre de notes par utilisateur

Dispersion des moyennes des ratings selon le nombre de ratings des utilisateurs

Tableau récapitulatif des réductions de dimensions possibles (en cours d'évaluation, pour nous donner des ordres de grandeur) :

Obs	1	2	3	4
Min number ratings	500	1,000		
Max number ratings	700	2,000		

Matrice originale serait de :

Userid (matrix rows)	138,493	138,493		
Films (matrix columns)	26,744	26,744		

Matrice envisagée

Userid (matrix rows)	3,502	1,639	
Films (matrix columns)	16,346	21,080	

% d'information possible à garder

Userids %	2.53%	1.18%	
Films %	61.12%	78.82%	

Différence Item-based avec SVD vs Surprise avec SVD

O contract of	See house we as see sewages	Miller David Mari de Johnston
Aspect	Modèle item-based avec SVD	Modèle Surprise avec SVD
Principe de base	Calcule les similarités entre les items après factorisation avec SVD.	Optimise directement les biais et les vecteurs latents $p_u,q_i.$
Biais utilisateur et item	Intégrés manuellement ou non pris en compte explicitement.	Pris en compte directement dans le modèle via b_u et b_i .
Optimisation	Pas d'optimisation explicite des paramètres latents (post-SVD).	Optimise les paramètres pour minimiser une fonction de perte.
Performance	Plus dépendant de la qualité et de la densité des données initiales.	Généralement plus robuste grâce à l'optimisation globale.
Similitudes	Repose sur les similarités item-item calculées sur ${\cal V}^T.$	Ne calcule pas explicitement de similarités.
Implémentation	Approche manuelle nécessitant des étapes distinctes (factorisation, similarité, etc.).	Implémentation directe avec les bibliothèques comme Surprise.
Utilisation des hyperparamètres	Peut utiliser $m{k}$ pour les similarités (voisins proches).	Hyperparamètres comme le nombre de facteurs latents et le taux d'apprentissage.