Найзабаева Л.К.

Алашыбаев Б.А.

Токибаев С.С.

Ергешов А.Б.

ЗАДАЧИ по стереометрии

Дана пирамида SABC с высотой SA, в основании которой лежит прямоугольный треугольник с прямым углом A. Найдите угол между прямыми SB и AC. Ответ дайте в градусах.

Задание 2

В основаниях призмы ABCDEFA₁B₁C₁D₁E₁F₁ лежат правильные шестиугольники. AD и BF пересекаются в точке H, A_1H — высота призмы. Ребро AA_1 наклонено к плоскости оснований под углом, тангенс которого равен 2. Найдите объем призмы, если AF=23

Задание 3

В прямоугольной призме все боковые грани являются квадратами со стороной $10\sqrt{3}$. Найдите объем призмы.

Задание 4

АВСDA₁B₁C₁D₁ — параллелепипед, АВDС — ромб. Известно, что S_{ABCD} =11, S_{AA1D1D} =31, $\angle AA_1D_1$ = $\angle DD_1C_1$. Найдите площадь полной поверхности АВСDA₁B₁C₁D₁

В прямоугольном параллелепипеде диагональ грани AA_1D_1D равна 5, а $AB=2\sqrt{6}$. Найдите диагональ параллелепипеда.

Задание 6

Дан прямоугольный параллелепипед с ребрами 2, 3 и 6. Найдите его диагональ.

Задание 7

Дана пирамида SABC с высотой SA. Известно, что в основании лежит прямоугольный треугольник с прямым углом С. Найдите угол между ребрами SC и BC. Ответ дайте в градусах.

Задание 8

Дана пирамида SABC с высотой SA=8. Известно, что SK равно 10 и перпендикулярно BC=5, причем K лежит на BC. Найдите площадь треугольника ABC.

Дана пирамида SABC с высотой SA. Н — такая точка на AB, что CH \bot AB. К — такая точка на SB, что HK \bot SB, причем SC = 13, SK = 12, KB = 2. Найдите площадь треугольника SBC.

Задание 10

Из точки N на плоскость прямоугольника ABCD опустили перпендикуляр NB. Известно, что AD = 7, NA = 24. Найдите ND.

Задание 11

 $ABCDA_1B_1C_1D_1$ — куб. Точка N — середина ребра BB_1 , а точка M делит отрезок BD в отношении 1:2, считая от вершины B. Найдите $9ctg^2\alpha$, где α — угол между прямой, содержащей MN, и плоскостью (ABC). Ответ дайте в градусах.

Задание 12

АВСD $A_1B_1C_1D_1$ – куб. Точка N – середина ребра BB_1 , а точка M – середина отрезка BD. Найдите $tg^2\alpha$, где α – угол между прямой, содержащей MN, и плоскостью $(A_1B_1C_1D_1)$. Ответ дайте в градусах.

Дан прямоугольный параллелепипед, основания ABCD и $A_1B_1C_1D_1$ которого являются квадратами со стороной $3\sqrt{2}$. Пусть M — точка пересечения диагоналей грани AA_1D_1D , N — точка пересечения диагоналей грани DD_1C_1C . Найдите MN.

Задание 14

АВСD $A_1B_1C_1D_1$ – четырехугольная призма с основаниями АВСD и $A_1B_1C_1D_1$. Точка K – проекция точки A_1 на плоскость (ABC), K лежит на AD, причём AK: KD = 1:3. АВСD – параллелограмм со сторонами AD=a, AB=2a, $\angle BAD=60^\circ$, $A_1A=1,75a$.

Найдите V/a^3 , где V – объем призмы.

Задание 15

Диагональ правильной четырехугольной призмы равна 42 и составляет с плоскостью боковой грани угол 30°. Найдите объем призмы.

Задание 16

ABC— правильный треугольник со стороной 3, S — точка, лежащая вне плоскости треугольника, причем SC = SB = 23. Найдите угол, который образуют прямые SA,SB,SC с плоскостью треугольника. Ответ дайте в градусах.

Дана правильная четырехугольная призма, диагональ которой равна 15, а диагональ основания равна 10. Найдите площадь полной поверхности призмы.

Задание 18

 $ABCDA_1B_1C_1D_1-куб.\ Tочка\ N-середина\ ребра\ BB_1,\ a$ точка M- середина отрезка BD. Найдите $tg^2\alpha$, где $\alpha-$ угол между прямой, содержащей MN, и плоскостью $(A_1B_1C_1D_1).$

Ответ дайте в градусах.

Задание 19

АВСDA₁B₁C₁D₁ – куб. Точка N – середина ребра ВВ₁, а точка М делит отрезок ВD в отношении 1:2, считая от вершины В. Найдите $9ctg^2\alpha$, где α – угол между прямой, содержащей MN, и плоскостью (ABC). Ответ дайте в градусах.

Задание 20

Чему равен $ctg^2\alpha$, если α — угол наклона диагонали куба к одной из его граней?

Дан куб $ABCDA_1B_1C_1D_1$. Чему равен угол между A_1C_1 и плоскостью A_1D_1C ?

Задание 22

Дан куб $ABCDA_1B_1C_1D_1$. Точка C_2 — середина стороны CC_1 . Чему равен квадрат котангенса угла между A_1C_2 и плоскостью A_1D_1C ?

Задание 23

Дан треугольник ABC с углом \angle A=60°. Вне плоскости отмечена точка O такая, что OB = OC и BA \perp BN, NB \perp BC. Известно, что NB= $\sqrt{22}$, NA=5. Найдите косинус угла между прямой NA и плоскостью.

Задание 24

В правильной трехугольной пирамиде SABC все ребра равны 2. Найти угол между прямой CB и плоскостью SCB.

В правильном треугольнике найдите угол между боковым ребром и плоскостью основания.

Задание 26

В правильной треугольной SABC боковое ребро равно стороне основания. Найдите угол между прямой SA и плоскостью ABC.

Задание 27

В основаниях призмы ABCDEFA₁B₁C₁D₁E₁F₁ лежат правильные шестиугольники. AD и BF пересекаются в точке H, A_1H — высота призмы. AA_1 = 10. Ребро AA_1 наклонено к плоскости оснований под углом, тангенс которого равен 2. Найдите объем A_1H , если AH=3

Задание 28

В правильной шестиугольной призме $ADCDEFA_1B_1C_1D_1E_1F_1, \ все \ ребра \ которой \ равны \ 5,$ найдите расстояние от точки A до прямой E_1D_1 .

 $ADCDA_1B_1C_1D_1$ — куб. Найдите угол между прямой A_1C и плоскостью BDC_1 .

Задание 30

Пусть SABC – правильная треугольная пирамида с вершиной S. Найдите угол между AS и BC. Ответ дайте в градусах.

Задание 31

Дана пирамида SABC с высотой SA. Известно, что в основании лежит прямоугольный треугольник с прямым углом С. Найдите угол между ребрами SC и BC. Ответ дайте в градусах.

Задание 32

Дана пирамида SABC с высотой SA=8. Известно, что SK равно 9 и перпендикулярно BC=4, причем K лежит на BC. Найдите площадь треугольника ABC.

Дана пирамида SABC с высотой SA, в основании которой лежит прямоугольный треугольник с прямым у глом A. Найдите угол между прямыми SB и AC. Ответ дайте в градусах.

Задание 34

Дана пирамида SABC с высотой SA. Н — такая точка на AB, что CH \bot AB. К — такая точка на SB, что HK \bot SB, причем SC = 13, SK = 12, KB = 2. Найдите площадь треугольника SBC.

Задание 35

Сторона основания правильной четырехугольной призмы равна *а*, диагональ призмы образует с плоскостью основания угол 45°. Найдите диагональ призмы;

Задание 36

В прямоугольной призме все боковые грани являются квадратами со стороной $10\sqrt{2}$. Найдите объем призмы.

Сторона основания правильной четырехугольной призмы равна *а*, диагональ призмы образует с плоскостью основания угол 45°. Найдите угол между диагональю призмы и плоскостью боковой грани;

Задание 39

Сторона основания правильной четырехугольной призмы равна *а*, диагональ призмы образует с плоскостью основания угол 45°. Найдите угол между диагональю призмы и плоскостью боковой грани;

Задание 40

Высота прямоугольного треугольника ABC, опущенная на гипотенузу, равна 9, 6. Из вершины A прямого угла восставлен к плоскости треугольника ABC перпендикуляр SA, причем SA= 28. Найти расстояние от точки S до гипотенузы AB.

Задание 41

Через точку S вписанной в треугольник ABC проведена прямая SA, перпендикулярная плоскости треугольника. Доказать, что каждая точка этой прямой равноудалена от сторон треугольника.

Из точки N на плоскость прямоугольника ABCD опустили перпендикуляр NB. Известно, что AD = 5, NA = 16. Найдите ND.

Задание 43

Расстояние от точки S до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки S до плоскости ABC, если AB=6 см. Чему равен ρ (S,ABC)?

Задание 44

Из вершины А квадрата ABCD со стороной 16 см восстановлен перпендикуляр AE длиной 12 см. Доказать, что треугольник BCE – прямоугольный и найти его площадь.

РЕШЕНИЕ

Так как SA – высота пирамиды, то SA ⊥ (ABC). Заметим, что AB – проекция наклонной SB на плоскость ABC. Следовательно, по теореме о трех перпендикулярах (так как SA⊥(ABC),AB⊥AC) наклонная SB перпендикулярна AC, то есть угол между ними равен 90∘.

Ответ: 90

2. АН— проекция наклонной A_1A на плоскость ABC, тогда $tg \angle A_1AH=2$. В ABCDEF все углы равны друг другу, их можно найти по формуле: $(180\cdot(n-2))/6$, где n — число сторон правильного многоугольника, тогда каждый угол в правильном шестиугольнике равен: $(180\cdot(6-2))/6=120$. Треугольник $\triangle ABF$ — равнобедренный, $\angle ABF=\angle AFB=(180-120)/2=30$. В силу симметрии ABCDEF: $\angle FAH=\angle BAH=120/2=60\Rightarrow \triangle AHF$ — прямоугольный. В этом треугольнике AH лежит напротив угла в $30\Rightarrow AH=12\cdot AF=12\cdot 2\sqrt{3}$. В прямоугольном треугольнике $\triangle A_1AH$: $A_1H=AH\cdot tg \angle A_1AH=2\sqrt{3}$. В шестиугольнике ABCDEF отрезки AD, BE и CF пересекаются в точке O, при этом шестиугольник разделится на 6 одинаковых равносторонних треугольников со стороной, равной $2\sqrt{3}$. Тогда $S_{ABCDEF}=6\cdot S_{Tp.}=6\cdot 1/2\cdot 2\sqrt{3}\cdot 2\sqrt{3}\cdot \sin 60=6\cdot 12\cdot 2\sqrt{3}\cdot 2\sqrt{3}\cdot \sqrt{3}/2=18\sqrt{3}$. Теперь найдем объем призмы:

Ответ: 108

 $V = A_1 H \cdot S_{ABCDEF} = 2\sqrt{3} \cdot 18\sqrt{3} = 108$.

3. $S=1/2 \cdot 10\sqrt{3} \cdot 10\sqrt{3} \cdot \sin 60 = 1/2 \cdot 10\sqrt{3} \cdot 10\sqrt{3} \cdot \sqrt{3}/2 = 75\sqrt{3}$. Высота призмы равна стороне квадрата, тогда объем призмы: $S=10\sqrt{3}\cdot 75\sqrt{3}=2250$.

Ответ: 2250

4. Так как $ABCDA_1B_1C_1D_1$ — параллелепипед, то основания ABCD и $A_1B_1C_1D_1$ равны. Треугольники AA_1D_1 и DD_1C1 равны по двум сторонам и углу между ними, следовательно,

$$\triangle ADD_1 = \triangle A A_1 D_1 = \triangle D D_1C1 = \triangle DCC_1$$
,

откуда можно заключить, что $31=SA\ A_1\ D_1D=SD\ D_1C1C$.

Так как $ABCDA_1B_1C_1D_1$ — параллелепипед, то $SBB_1C_1C=SAA_1D_1D=31$ и $SA\ A_1B1B=SD\ D_1C_1C=31$, следовательно, площадь полной боковой поверхности $ABCDA_1B_1C_1D_1$ равна

$$2 \cdot 11 + 4 \cdot 31 = 146$$
.

Ответ: 146

Так как параллелепипед прямоугольный, то все его грани — прямоугольники, а у прямоугольника обе диагонали равны.
Следовательно, A₁D=AD₁. Рассмотрим диагональ A₁D и диагональ параллелепипеда B₁D. Треугольник A₁B₁D прямоугольный, так как ребро A₁B₁ перпендикулярно грани AA₁D₁D (по определению прямоугольного параллелепипеда). Следовательно, гипотенуза

$$B_1D = \sqrt{(A_1B_1^2 + A_1D_1^2)} = \sqrt{(5^2 + (2\sqrt{6})^2)} = 7$$

Ответ: 7

6. Пусть AB=2, AD=3, AA₁=6. По теореме Пифагора из прямоугольного треугольника ABD (\angle A = 90°) имеем: BD² = AB²+AD².

Из прямоугольного треугольника BB1D (∠B=90°) по теореме Пифагора $B_1D^2 = BD^2 + BB_1^2$.

Подставляя BD^2 из первого равенства во второе, получим:

$$B_1D^2 = AB^2 + AD^2 + BB_1^2 = 2^2 + 3^2 + 6^2 = 4 + 9 + 36 = 49 \Leftrightarrow B_1D = 7.$$

Ответ: 7

7. Так как SA – высота пирамиды, то $SA \perp (ABC)$. Заметим, что AC – проекция наклонной SC на плоскость ABC. Так как AC ⊥ BC, то по теореме о трех перпендикулярах SC \perp BC, следовательно, угол между SC и BC равен 90°.

Ответ: 90°

8. Так как SA – высота пирамиды, то $SA \perp (ABC)$. Заметим, что AK – проекция наклонной SK на плоскость ABC. Так как SK ⊥ BC, то по теореме о трех перпендикулярах АК \perp ВС, следовательно,

$$S_{\triangle ABC} = (1/2)AK \cdot BC$$
.

Треугольник SAK прямоугольный, следовательно, по теореме Пифагора

$$AK = \sqrt{(SK^2 - SA^2)} = 6.$$

Следовательно,

$$S_{\triangle ABC} = (1/2) \cdot 6 \cdot 5 = 15.$$

Ответ: 15

9. Так как SA – высота пирамиды, то $SA \perp (ABC)$. Следовательно, SAперпендикулярно любой прямой из (ABC), значит, SA ⊥ CH. Тогда CH перпендикулярна двум пересекающимся прямым SA и AB из плоскости SAB, значит, CH ⊥ (SAB). Заметим, что тогда HK – проекция наклонной CK на эту плоскость. Значит, по теореме о трех перпендикулярах CK ⊥ SB. По теореме Пифагора из ΔSCK:

$$CK = \sqrt{(SC^2 - SK^2)} = 5.$$

Следовательно,

$$S_{\Delta SBC} = (1/2)CK \cdot SB = (1/2) \cdot 5 \cdot 14 = 35.$$

Ответ: 35

10. Так как NB — перпендикуляр к плоскости (ABCD), то AB — проекция NA на ABCD. Так как ABCD — прямоугольник, то AD перпендикулярна BA, следовательно по теореме о трех перпендикулярах AD перпендикулярна NA и треугольник NAD — прямоугольный.

По теореме Пифагора

$$AD^2 + NA^2 = ND^2,$$

откуда $ND^2 = 625$, тогда $ND = \pm 25$. Так как длина — неотрицательна, то ND = 25.

Ответ: 25

11. Так как NB – часть BB₁, а BB₁ \perp (ABC), то и NB \perp (ABC).

Следовательно, ВМ – проекция NM на плоскость (ABC). Значит, угол α равен ∠NMB.

Пусть ребро куба равно х. Тогда NB = 0,5х. По теореме Пифагора BD = $\sqrt{(x^2+x^2)} = 2\sqrt{x}$. Так как по условию BM : MD = 1 : 2, то BM = (1/3) BD, следовательно, BM = $(\sqrt{2}/3)$ х. Тогда из прямоугольного \triangle NBM:

$$Ctg\alpha = ctg \angle NMB = BM/NB = (2\sqrt{2})/3 \Rightarrow 9ctg^2\alpha = 8.$$

Ответ: 8

12. NM — средняя линия в треугольнике DBB_1 , тогда $NM \parallel B_1D$ и α равен углу между B_1D и плоскостью $(A_1B_1C_1D_1)$.

Так как DD_1 — перпендикуляр к плоскости $A_1B_1C_1D_1$, то B_1D_1 проекция B_1D на плоскость $(A_1B_1C_1D_1)$ и угол между B_1D и плоскостью $(A_1B_1C_1D_1)$ есть угол между B_1D и B_1D_1 .

Пусть ребро куба х, тогда по теореме Пифагора

$$B_1D_1^2 = x^2 + x^2 \implies B_1D_1 = x^2.$$

В треугольнике B_1D_1D тангенс угла между B_1D и B_1D_1 равен $tg\angle DB_1D_1=(DD1)/(B1D1)=1/\sqrt{2}=tg\alpha,$ откуда $tg^2\alpha=0.5.$

Ответ: 0,5

13. Так как AD = DC, то грани AA_1D_1D и DD_1C_1C равны, следовательно, и их диагонали равны, значит, $A_1D=C_1D$. Так как диагонали прямоугольника точкой пересечения делятся пополам, то $A_1M=MD=DN=NC_1$. Рассмотрим ΔA_1C_1D : в нем MN является средней линией, следовательно, она равна половине основания A_1C_1 , которое в свою очередь является диагональю квадрата A1B1C1D1, следовательно, равно $3\sqrt{2} \cdot \sqrt{2} = 6$. Следовательно, MN = 3.

Ответ: 3

14. $V_{ABCDA1B1C1D1} = S_{ABCD} \cdot h$, $S_{ABCD} = AB \cdot AD \cdot \sin \angle BAD = 2a \cdot a \cdot \sqrt{3/2} = a^2 \sqrt{3}$.

По теореме Пифагора:

$$A_1K^2 = AA_1^2 - AK^2 = (49/16) a^2 - (1/16)a^2 = 3a^2 \implies A_1K = a\sqrt{3}.$$

Таким образом,

$$V_{ABCDA1B1C1D1} = a^2 \sqrt{3} \cdot a \sqrt{3} = 3a^3 \Rightarrow V/a^3 = 3.$$

Ответ: 3

15.Пусть A_1B_1 =24 — проекция AB на плоскость α , значит, $AA_1\bot\alpha$, $BB_1\bot\alpha$. Так как две прямые, перпендикулярные к плоскости, лежат в одной плоскости, то A_1ABB_1 — прямоугольная трапеция. Проведем $AH\bot BB_1$. Тогда $AH=A_1B_1$ =24.

Следовательно, по теореме Пифагора

$$HB = \sqrt{(AB^2 - AH^2)} = 7.$$

Заметим также, что угол между прямой и плоскостью — это угол между прямой и ее проекцией на плоскость, следовательно, искомый угол — угол между AB и A_1B_1 . Так как $AH\|A_1B_1$, то угол между AB и A_1B_1 равен углу между AB и AH.

Тогда

$$\sin \angle BAH = BH/AB = 7/25 = 0.28$$
.

Ответ: 0,28

16. Проведем перпендикуляр ОН на плоскость треугольника.

Рассмотрим ΔОАН, ΔОВН, ΔОСН. Они являются прямоугольными и равны по катету и гипотенузе. Следовательно, АН=ВН=СН. Значит, H –

точка, находящаяся на одинаковом расстоянии от вершин треугольника ABC. Следовательно, H — центр описанной около него окружности. Так как $\triangle ABC$ — правильный, то H — точка пересечения медиан (они же высоты и биссектрисы). Так как угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость, а AH — проекция AO на плоскость треугольника, то угол между AO и плоскостью треугольника равен $\angle OAH$. Пусть AA_1 — медиана в $\triangle ABC$, следовательно,

$$AA_1 = \sqrt{(AB^2 - BA_1^2)} = 3\sqrt{3/2}.$$

Так как медианы точкой пересечения делятся в отношении 2:1, считая от вершины, то

$$AH = (2/3)AA_1 = \sqrt{3}$$
.

Тогда из прямоугольного ΔОАН:

$$\cos OAH = AH/AO = 1/2$$
 \Rightarrow $\angle OAH = 60 \circ$.

Ответ: 60°.

17. Из условия следует, что прямая р пересекает плоскостью π . Пусть $p \cap l = 0$, $l \cap \pi = L$, $p \cap \pi = P$.

Тогда ∠POL – угол между прямыми р и 1.

Так как угол между прямой и плоскостью — угол между прямой и ее проекцией на эту плоскость, то $\angle OPL$ — угол между р и π . Заметим, что $\triangle OPL$ прямоугольный с $\angle L=90$ °. Так как сумма острых углов прямоугольного треугольника равна 90°, то $\angle POL+\angle OPL=90$ °.

Ответ: 90о.

18. NM — средняя линия в треугольнике DBB_1 , тогда $NM \parallel B_1D$ и α равен углу между B_1D и плоскостью $(A_1B_1C_1D_1)$.

Так как DD_1 — перпендикуляр к плоскости $A_1B_1C_1D_1$, то B_1D_1 проекция B_1D на плоскость $(A_1B_1C_1D_1)$ и угол между B_1D и плоскостью $(A_1B_1C_1D_1)$ есть угол между B_1D и B_1D_1 .

Пусть ребро куба х, тогда по теореме Пифагора

$$B_1D_1{}^2 = x^2 + x^2 \ \Rightarrow \ B_1D_1 = x^2.$$

В треугольнике B_1D_1D тангенс угла между B_1D и B_1D_1 равен

$$tg \angle DB_1D_1 = (DD1)/(B1D1) = 1/\sqrt{2} = tg\alpha$$
, откуда $tg^2\alpha = 0.5$.

Ответ: 0,5

19. Так как NB — часть BB_1 , а $BB_1 \perp (ABC)$, то и $NB \perp (ABC)$. Следовательно, BM — проекция NM на плоскость (ABC). Значит, угол α равен $\angle NMB$.

Пусть ребро куба равно х. Тогда NB = 0,5х. По теореме Пифагора BD = $\sqrt{(x^2+x^2)} = 2\sqrt{x}$. Так как по условию BM : MD = 1 : 2, то BM = (1/3) BD, следовательно, BM = ($\sqrt{2}/3$) х. Тогда из прямоугольного \triangle NBM:

$$Ctg\alpha = ctg \angle NMB = BM/NB = (2\sqrt{2})/3 \Rightarrow 9ctg^2\alpha = 8.$$

Ответ: 8

20. Искомый угол будет совпадать с углом между диагональю куба и диагональю любой его грани, т.к. в данном случае диагональ куба будет являться наклонной, диагональ грани – проекцией этой наклонной на плоскость грани. Таким образом, искомый угол будет равен, например, углу C₁AC.

Если обозначить ребро куба за х, то

$$AC = \sqrt{(x^2 + x^2)} = \sqrt{2x}$$

тогда квадрат котангенса искомого угла:

$$ctg^2\alpha = (AC : CC_1)^2 = (\sqrt{2}x : x)^2 = 2.$$

Ответ: 2

21. Проведем $C_1H\bot CD_1$. Так как $BC\bot (CC_1D_1)$, то BC перпендикулярна любой прямой из плоскости (CC_1D_1) , следовательно, $BC\bot C_1H$. Таким образом, C_1H перпендикулярна двум пересекающимся прямым из плоскости A_1D_1C , следовательно, $C_1H\bot (A_1D_1C)$. Тогда A_1H — проекция A_1C_1 на плоскость A_1D_1C . Значит, угол между A_1C_1 и плоскостью A_1D_1C равен углу между A_1C_1 и A_1H .

Пусть x – ребро куба. Тогда $AC = \sqrt{(x^2 + x^2)} = \sqrt{2}x$.

 C_1H — высота, опущенная из вершины равнобедренного $\triangle CC_1D_1$. Следовательно, C_1H — медиана. Но к тому же $\angle CC_1D_1$ =90 \circ , а медиана, опущенная из вершины прямого угла, равна половине гипотенузы, следовательно, C_1H =(1/2) CD_1 . Так как CD_1 = A_1C_1 = $\sqrt{2}x$, то C_1H =22x.

Следовательно,

$$\sin \angle C_1 A_1 H = C_1 H / A_1 C_1 = 1/2$$
 \Rightarrow $\angle C_1 A_1 H = 30 \circ$.

Ответ: 30

22. Проведем $C_2H \perp CD_1$. Так как $BC \perp (CC_1D_1)$, то BC перпендикулярна любой прямой из плоскости (CC_1D_1) , следовательно, $BC \perp C_2H$. Таким образом, C_2H перпендикулярна двум пересекающимся прямым из плоскости A_1D_1C , следовательно, $C_2H \perp (A_1D_1C)$.

Тогда A_1H — проекция A_1C_2 на плоскость A_1D_1C . Значит, угол между A_1C_2 и плоскостью A_1D_1C равен углу между A_1C_2 и A_1H .

Рассмотрим грань CC_1D_1D . Проведем диагональ C_1D , пусть она пересекается с диагональю CD_1 в точке О. Так как эта грань представляет собой квадрат, то $C_1O\bot CD_1$. Тогда $C_2H\|C_1O$ и, так как C_2 середина CC_1 , то C_2H – средняя линия и C_2H =12 C_1O .

Если обозначить за x ребро куба, то $C_1D = \sqrt{(x^2 + x^2)} = \sqrt{2}x$, а $C_2H = (\sqrt{2}/4)x$.

Найдем A_1C_2 из прямоугольного $\Delta A_1C_1C_2$:

$$A_1C_2 = \sqrt{(A_1C_1^2 + C_1C_2^2)} = \sqrt{((\sqrt{2}x)^2 + (0.5x)^2)} = (3/2)x.$$

Тогда

$$\sin^2 \angle C_2 A_1 H = (C_2 H/A_1 C_2)^2 = 1/18 \implies \cos 2 \angle C_2 A_1 H = 1 - \sin^2 \frac{1}{f_0} \angle C_2 A_1 H = 17/18$$

Тогда

$$ctg^2 \angle C_2 A_1 H = cos^2 \angle C_2 A_1 H : sin^2 \angle C_2 A_1 H = 17.$$

Ответ: 17

23. Тогда АН – проекция прямой ОА на плоскость АВС и необходимо найти косинус угла ∠ОАН.

Заметим, что △ОАВ=△ОАС как прямоугольные по катету и гипотенузе. Следовательно, АВ=АС. Следовательно, △АВН=△АСН также как прямоугольные по катету и гипотенузе. Значит, ∠ВАН=∠САН=30∘.

По теореме Пифагора

$$AB = \sqrt{(AO^2 - OB^2)} = \sqrt{3}$$
.

Следовательно,

$$\cos 30 \circ = AB/AH \Rightarrow AH = AB/\cos 30 \circ = 2.$$

Так как OH ⊥ (ABC), то OH перпендикулярно любой прямой из этой плоскости, значит, △OAH – прямоугольный.

Тогда

$$\cos \angle OAH = AH/AO = 2/5 = 0.4.$$

Ответ: 0,4

24. Сперва заметим, что, если параллельно перенести прямую AD, искомый угол не поменяется. Рассмотрим M и N — середины AB и CD соответственно. Тогда можно вместо AD искать угол между MN и плоскостью.

Далее, заметим, что K – проекция точки M – попадет на SN. Действительно, по теореме о трех перпендикулярах, раз $MN \perp CD$ и $SN \perp CD$, то SK есть проекция MK. А тогда искомый угол – SNM

Рассмотрим треугольник MSN.MN = 2, SM = SN $\sqrt{3}$. Тогда если Oсередина MN, то NO = 1 и значит, cosSNM = $1/\sqrt{3}$.

Ответ: $arcos 1/\sqrt{3}$.

25.Пусть ABCD — правильный тетраэдр с ребром а. Найдём угол между AD и плоскостью ABC.

Проведём высоту DH. Проекцией прямой AD на плоскость ABC служит прямая AH. Поэтому искомый угол ф есть угол между прямыми AD и AH.

Отрезок AH есть радиус окружности, описанной вокруг треугольника ABC:

$$AH = a/\sqrt{3}$$
.

Теперь из прямоугольного треугольника ADH:

$$\cos \phi = AH/AD = a/\sqrt{3}$$
.

Ответ: arccos $a/\sqrt{3}$.

26. Пусть M — середина AB. Проведём высоту CH в треугольнике CC_1M .

Покажем, что CH — перпендикуляр к плоскости ABC_1 . Для этого нужно предъявить две пересекающиеся прямые этой плоскости, перпендикулярные CH.

Первая прямая очевидна — это $C_1M \perp B$ самом деле, $CH C_1M$ по построению.

Вторая прямая — это AB. Действительно, проекцией наклонной CH на плоскость ABC служит прямая CM; при этом AB CM. Из теоремы о трёх перпендикулярах следует тогда, что AB CH.

Итак, $CHABC_1$. Стало быть, угол между CC_1 и ABC_1 есть $\phi = \angle CC_1H$. Величину CH найдём из соотношения

$$C_1M \cdot CH = CC_1 \cdot CM$$

Имеем:

$$CM = (a\sqrt{3})/2,$$

$$C_1M = \sqrt{(CC12 + CM2)} = \sqrt{(a^2 + (3a^2)/4)} = (a\sqrt{7})/2$$

Тогда

$$(a\sqrt{7})/2 * CH = a((a\sqrt{3})/2)$$

Откуда

$$CH = a\sqrt{3/7}$$

Остаётся найти угол ф:

$$\sin \phi = CH/CC_1 = \sqrt{(3/7)} .$$

Ответ: $\arcsin\sqrt{(3/7)}$

27. Поскольку в правильной пирамиде высота опускается в центр основания ОО, то ОЕОЕ- это проекция SESE, а точка ММ проецируется в точку КК- середину отрезка ОЕОЕ. И теперь FKFK- это проекция FMFM, а искомый угол между прямой FMFM и плоскостью основания − это ∠МFK∠MFK

Пусть стороны основания равны какому — то а, тогда боковые рёбра — 3a. Заметь, что Δ MFK — прямоугольный и в этом треугольнике нам нужно найти острый угол. Проще всего найти тангенс этого угла.

$$tg \angle MFK = FK/MK$$

$$MK = SO/2 = \sqrt{(SE2 - OE2)/2} = a\sqrt{2}$$

$$FK = FE * \sin 60 = (a\sqrt{3})/3$$

Значит,

$$tg \angle MFK = (a\sqrt{2} * 2) / a\sqrt{3} = 2\sqrt{6} / 3$$

Ответ: $tg \angle MFK = 2\sqrt{6} / 3$

28. Соединим точку A с точкой E_1 и докажем, что AE_1 - расстояние от A до прямой E_1 D_1 . Так как треугольник ABC равнобедренный с углом B, равным 120 градусам, то угол $BCA=30^{\circ}$, а значит, угол $ACD=90^{\circ}$.

Так как E_1E плоскости ABC, то AE перпендикулярно E_1 E.

Так как AE перпендикулярно E_1 E и ED, то AE перпендикулярно плоскости EE_1 D₁ D, и, значит, и прямой E_1 D₁, поэтому AE перпендикулярно прямой E_1 D₁.

Так как AE является проекцией AE_1 , то и AE_1 перпендикулярно E_1 D_1 .

Из треугольника ABC по теореме косинусов находим $AE^2 = AB^2 + BE^2 - 2AB \cdot BE \cdot \cos 120^2 = 25 + 25 - 2 \cdot 5 \cdot 5 \cdot (-0.5) = 50 + 25 = 75$, AE = 5v3.

Из треугольника AEE_1 по теореме Пифагора находим $AE_1{}^2 = AE^2 + EE_1{}^2$ = 75 + 25 =100, AE_1 = 10

Ответ: $AE_1 = 10$

- 29.1) BD \perp AC; BD \perp BB₁, а значит, BD \perp AA₁. Тогда прямая BD перпендикулярна плоскости (ACA₁) и A₁C \perp BD.
 - 2) $C_1D \perp AD$; $C_1D \perp D_1C$, а значит, $C_1D \perp A_1B$. Тогда прямая C_1D перпендикулярна плоскости (A_1DC) и $A_1C \perp C_1D$. Поэтому прямая A_1C перпендикулярна плоскости (BDC_1).

Ответ: 90°.

30. Так как пирамида правильная, то высота пирамиды SO падает в точку пересечения медиан основания. Пусть AA₁ – медиана основания. Тогда AO – проекция наклонной AS на плоскость основания. Так как AO – часть AA₁, а AA₁⊥BC (медианы правильного треугольника являются также и высотами), то по теореме о трех перпендикулярах (SO⊥(ABC),AO⊥BC) наклонная AS перпендикулярна BC. Следовательно, ∠(AS,BC)=90∘.

Ответ: 90

31. Так как SA — высота пирамиды, то SA⊥(ABC). Заметим, что AC — проекция наклонной SC на плоскость ABC. Так как AC⊥BC, то по теореме о трех перпендикулярах SC⊥BC, следовательно, угол между SC и BC равен 90∘.

Ответ: 90

32. Так как SA — высота пирамиды, то SA \bot (ABC). Заметим, что AK — проекция наклонной SK на плоскость ABC. Так как SK \bot BC, то по теореме о трех перпендикулярах AK \bot BC, следовательно,

$$S_{\triangle ABC} = (1/2)AK \cdot BC$$
.

Треугольник SAK прямоугольный, следовательно, по теореме Пифагора

$$AK = \sqrt{(SK^2 - SA^2)} = 6.$$

Следовательно,

$$S_{\triangle ABC} = (1/2) \cdot 6 \cdot 5 = 15.$$

Ответ: 15

33. Так как SA — высота пирамиды, то SA ⊥ (ABC). Заметим, что AB — проекция наклонной SB на плоскость ABC. Следовательно, по теореме о трех перпендикулярах (так как SA⊥(ABC),AB⊥AC) наклонная SB перпендикулярна AC, то есть угол между ними равен 90∘.

Ответ: 90

34. Так как SA — высота пирамиды, то SA ⊥ (ABC). Следовательно, SA перпендикулярно любой прямой из (ABC), значит, SA ⊥ CH. Тогда CH перпендикулярна двум пересекающимся прямым SA и AB из плоскости SAB, значит, CH ⊥ (SAB). Заметим, что тогда HK — проекция наклонной

CK на эту плоскость. Значит, по теореме о трех перпендикулярах CK ⊥ SB. По теореме Пифагора из △SCK:

$$CK = \sqrt{(SC^2 - SK^2)} = 5.$$

Следовательно,

$$S_{\Delta SBC} = (1/2)CK \cdot SB = (1/2) \cdot 5 \cdot 14 = 35.$$

Ответ: 35

35. Рассмотрим треугольник ABC. Он равнобедренный, так как AB = AC. А угол BAC равен 60° . Значит, треугольник ABC — равносторонний. Получаем, BC = AB = 3 см.

Угол между прямой AB и плоскостью α – это угол между прямой AB и ее проекцией BO на плоскость α .

То есть,
$$\angle$$
(AB, α) = \angle ABO = $90^{\circ} - 60^{\circ} = 30^{\circ}$.

Ответ: 30°

36.Так как NC перпендикулярен DC и AB, причём DC и AB пересекаются, то NC перпендикулярен плоскости (ABC). Тогда DC – проекция ND на (ABC), но DC перпендикулярен AB, следовательно, по теореме о трех перпендикулярах ND перпендикулярен AB. Так как AD:AB как 1:2, то D – середина AB, тогда ND в треугольнике ANB является медианой и высотой, следовательно, треугольник ANB – равнобедренный и ∠AND =

$$\frac{1}{2} \angle ANB \implies \frac{\angle AND}{\angle ANB} = \frac{1}{2}.$$

Ответ: 0,5

37. Так как AB²+BC²=AC², то отрезок BC перпендикулярен AB, следовательно прямая с перпендикулярна a, но с перпендикулярна b, a и

b – пересекаются, тогда с перпендикулярна π , следовательно AB – проекция AC на π . Итого: b перпендикулярна проекции l на π , тогда по теореме о трех перпендикулярах b перпендикулярна l, то есть угол между ними составляет 90.

Ответ: 90

38.Т.к. АК – перпендикуляр к плоскости π , а – прямая в плоскости π , а АО – наклонная, перпендикулярная к прямой а, то согласно теореме о трех перпендикулярах КО \perp а \Rightarrow Δ OKL – равнобедренный прямоугольный треугольник с прямым углом \angle KOL \Rightarrow по теореме Пифагора KL² = OK²+OL²=2·OK² \Rightarrow OK=2. В прямоугольном треугольнике Δ AKO: AO=OK:cos[$\frac{1}{2}$]60 \circ =2:1/2=4.

Ответ: 4

39. Т.к. АК – перпендикуляр к плоскости π , а – прямая в плоскости π , а АО – наклонная, перпендикулярная к прямой а, то согласно теореме о трех перпендикулярах КО \perp а \Rightarrow Δ OKL – равнобедренный прямоугольный треугольник с прямым углом \angle KOL \Rightarrow по теореме Пифагора KL² = OK²+OL²=2·OK² \Rightarrow OK= $\sqrt{3}$. В прямоугольном треугольнике Δ AKO: AK=OK·tg60 = $\sqrt{3} \cdot \sqrt{3}$ = 3.

Ответ: 3

40. Пусть СН - высота заданного прямоугольного треугольника АВС.

Тогда МН- наклонная к плоскости треугольника ABC, а CH - проекция этой наклонной на плоскость треугольника.

Так как СН⊥ AB, то по теореме о трех перпендикулярах и МН⊥ AB. Значит, длина отрезка МН равна искомому расстоянию от точки М до гипотенузы AB.

Из прямоугольного треугольника МСН по теореме Пифагора находим, что

$$MH = \sqrt{MC^2 + CH^2} = \sqrt{28^2 + 9, 6^2} = \sqrt{876, 16} = 29, 6$$

Ответ. MH = 29,6

- 41. 1.Так как радиус OA = r перпендикулярен стороне треугольника, то, согласно теореме о трех перпендикулярах, отрезок SA перпендикулярен этой стороне.
 - 2. Рассмотрим прямоугольный треугольник SAO. По теореме Пифагора

$$SA = \sqrt{AO^2 + OS^2} = \sqrt{r^2 + OS^2}$$

3. Аналогично, можно показать, что

$$SB = \sqrt{r^2 + OS^2}_{\mathbf{H}}$$
 $SC = \sqrt{r^2 + OS^2}$

To есть SA = SB = SC.

OTBET: SA = SB = SC

42. Так как NB – перпендикуляр к плоскости (ABCD), то AB – проекция NA на ABCD. Так как ABCD – прямоугольник, то AD перпендикулярна BA, следовательно по теореме о трех перпендикулярах AD перпендикулярна NA и треугольник NAD – прямоугольный.

По теореме Пифагора

$$AD^2 + NA^2 = ND^2,$$

откуда $ND^2 = 625$, тогда $ND = \pm 25$. Так как длина — неотрицательна, то ND = 25.

Ответ: 25

43. Пусть MH — перпендикуляр к плоскости ABC. Найдем месторасположение точки H.

Треугольники MHA, MHB, MHC равны по гипотенузе и общему катету (MA = MB = MC, катет MH — общий). Значит, HA = HB = HC. То есть точка H равноудалена от вершин треугольника ABC. Значит, H — центр описанной окружности, а отрезок AH равен радиусу описанной окружности. Найдем радиус описанной окружности из теоремы синусов.

$$R = \frac{\alpha}{2\sin 60^{\circ}} = \frac{6}{2 \cdot \frac{\sqrt{3}}{2}} = 2\sqrt{3} \ (c_{M}).$$

Значит, $HA = HB = HC = 2\sqrt{3}$ см.

Длина перпендикуляра MH и есть расстояние от точки M до плоскости ABC. Рассмотрим прямоугольный треугольник MHC. Найдем MH по теореме Пифагора.

$$\rho(\textit{M},\textit{ABC}) = \textit{MH} = \sqrt{\textit{MC}^2 - \textit{CH}^2} = \sqrt{4^2 - \left(2\sqrt{3}\right)^2} = 2 \; (\textit{cm}).$$

Ответ: 2 см

44. Площадь прямоугольного треугольника ЕВС можно найти как

полупроизведение катетов EB и BC. Для нахождения EB, рассмотрим \triangle AEB. Он прямоугольный, \angle A = 90 $^{\rm O}$, EB в этом треугольнике является

гипотенузой. Запишем для этого треугольника теорему Пифагора:

$$EB^2 = AE^2 + AB^2$$

По условию AE = 12 см и AB = 16см. Подставляя эти значения в последнее равенство, получим:

$$EB^2 = 12^2 + 16^2$$

$$EB^2 = 400$$

$$EB = 20cm$$

Формула для нахождения площади $\triangle EBC$ запишется следующим образом

$$S_{\Delta EBC} = \frac{1}{2} \cdot 20 \cdot 16 = 160$$

Ответ: S = 160см