

Emnekode:

EKSAMENSFORSIDESkriftlig eksamen med tilsyn

Emnenavn:

IB 1020	Python for beregning	
Dato:	Tid fra / til:	Ant. timer:
25/2-2022	9:00 – 12:00	3
Ansvarlig faglærer(e):		
Joakim Bjørk og Marius Lysaker		
Campus:	Fakultet:	
Porsgrunn, Bakkenteigen og Kongsberg	Fakultet for teknologi, naturvitenskap og maritime fag	
Antall oppgaver: 4	Antall vedlegg: 0	Ant. sider inkl. forside og vedlegg: 5
Tillatte hjelpemidler (jfr. emnebeskrivelse):		
Ingen		
Opplysninger om vedlegg:		
Merknader:		
Alle delspørsmål blir vektet likt i sensureringen, dvs. alle de 8 spørsmålene 1a, b, c), 2 a, b, c), 3) og 4)		
gis lik vekt i sensureringen.		
Kryss av for type eksamenspapir		
Ruter		Linjer

OPPGAVE 1) FUNKSJONER, FUNKSJONSKALL OG FOR-LØKKE

Volumet til en sylinder og volumet til en kjegle er gitt ved henholdsvis

$$V_{sylinder} = \pi r^2 h$$
 og $V_{kjegle} = \frac{1}{3}\pi r^2 h$

hvor r er radien og h er høyden til objektene (både r og h er positive konstanter).

a) Lag en funksjon med navn 'volum' med inn-argumenter r1, h1, r2, og h2, hvor r1 og h1 gir henholdsvis radius og høyde i sylinderen, mens r2 og h2 gir radius og høyde for kjeglen. Funksjonen skal beregne volumet til sylinderen og volumet til kjeglen og returnere disse to verdiene.

Merk: verdien til π kan du få ved å skrive np.pi.

b) Lag et program som bruker funksjonen 'volum' for å finne volumet av sylinderen og kjeglen i Figur 1, og som deretter finner det totale volumet av det sammensatte objektet i Figur 1. Svaret skrives til skjerm med passende tekst (måleenheten er her kubikk centimeter).

c) Lag et program som bruker ei *for-løkke* til å beregne volumet av det sammensatte objektet (se Figur 1) i følgende tilfeller: r1=r2=7 og h1=18 holdes hele tiden konstant, mens h2 skal ta følgende verdier: 3, 6, 9, 12 ... 60. Svarene skrives til skjerm.

OPPGAVE 2) FOR/WHILE OG IF-ELSE

For emnet IB1020 er det laget en oversikt over hvilke studenter som har fått godkjent arbeidskravet og dermed muligheten for å gå opp til eksamen (du er en av disse). Alle studentnumrene ligger lagret i arrayen std_nr og resultatet 'G', 'IG' eller 'T' ligger lagret i arrayen resultat. 'G' representerer her godkjent, 'IG' betyr $ikke\ godkjent$ og 'T' betyr at studenten har $trukket\ seg\ fra\ emnet$. Begge arrayene består av 461 elementer, og kan for eksempel se slik ut:

```
resultat = np.array(['G', 'T', 'G', 'IG', 'G',..., 'G'])
std_nr = np.array([26255, 26317, 26389, 26711, 27019,...,28975])
```

Merk: studentnumrene er fiktive og står i stigende rekkefølge.

I besvarelsen din kan du anta at du har tilgang på disse to arrayene og du står fritt til å bruke variablene resultat og std_nr for å henvise til disse to arrayene.

- a) Skriv et program som søker gjennom arrayen *resultat* og hver gang et element *j* er identisk lik 'IG' skrives indeks *j* til skjerm.
- b) Lag en funksjon som tar arrayene *std_nr* og *resultat* som inn-argumenter. Funksjonen skal så bruke ei *for-løkke* og en *if-test* til å sjekke om noen av elementene i arrayen *resultat* er lik 'T'. Dersom element på plass *j* er lik 'T' skrives vedkommes studentnummer til skjerm.
- c) Skriv et program som bruker ei *while-løkke* og en *if-test* til å finne antall 'G' i arrayen *resultat* for studenter med studentnummer mindre eller lik 27222. Svaret skrives til skjerm.

Oppgave 3) LESE OG FORSTÅ KODE SKREVET AV ANDRE

Studer koden som er gitt under. Koden er forsøkt skrevet med det formål å finne nullpunktet til funksjonen $f(x) = x^3 + x - 2$. Det er gitt et plot av funksjonen f i Figur 2.

Kode:

```
1
     import numpy as np
 2
 3
   \neg def f(x):
 4
 5
         return x^{**}3 + x - 2
 6
 7
 8
     x = -1.0
     delta_x = 0.0001
 9
10
11 \neg while f(x) >= 0:
12
13
         x = x + delta_x
14
     print("Nullpunktet til f(x) er gitt i x=", round(x, 3))
15
16
```

Fungerer koden som tiltenkt (forklar kort, skriv maks 3 linjer)?

OPPGAVE 4) SANNSYNLIGHET

I TV-programmet 71° Nord stilles deltakerne ovenfor følgende problemstilling: Man står i punkt A og formålet er å ankomme punkt C på kortest mulig tid, se Figur 3.

Man har to valg:

- 1) Sykle fra A-C. På sykkel holder man en hastighet på 20 km/timen og avstanden A-C er 5 km.
- 2) Jogge fra A-B og deretter kjøre bil fra B-C. Avstanden fra A-B er 2 km og man jogger med en hastighet på 10 km/timen. Avstanden B-C er 4 km, men det er noe usikkerhet knyttet til hvilken hastighet man kan kjøre med grunnet mulig køkjøring. Vi legger her til grunn at gjennomsnittsfarten på veistrekket B-C vil være et vilkårlig heltall på intervallet [70, 85].

Skriv et program som estimerer sannsynligheten for at det vil lønne seg å velge reiserute 2). Du kan her få bruk for formelen: strekning = hastighet * tid

Hint: Du står fritt til å bruke følgende kode til å trekke et tilfeldig heltall på intervallet [70, 85].

```
import random as ra
hastighet_bil = ra.randrange(70, 86)
```

Lykke til!