6. Considere o seguinte problema de programação linear:

max
$$5x_1 - 6x_2 - 7x_3$$

suj. $x_1 + 5x_2 - 3x_3 \ge 15$
 $x_1 + x_2 + x_3 = 5$
 $x_1, x_2, x_3 \ge 0$

a) Resolver pelo método das duas fases.

Método das 2 Fases:

- na Fase I, resolve-se um *problema auxiliar* para tentar encontrar um vértice admissível inicial.
- Se se conseguir, na Fase II, aplica-se o algoritmo simplex; caso contrário, o problema é impossível.

max $5x_1 - 6x_2 - 7x_3$ suj. $x_1 + 5x_2 - 3x_3 \ge 15$ $x_1 + x_2 + x_3 = 5$ $x_1, x_2, x_3 \ge 0$

I Fase:

Usar função objectivo auxiliar za = a1 + a2

		x1	x2	х3	s1									
		1	5	-3	-1			15						
		1	1	1	0			5						
	za	x1	x2	х3	s1	a1	a2							
a1	0	1	5	-3	-1	1	0	15						
a2	0	1	1	1	0	0	1	5						
za	1	0	0	0	0	-1	-1	0						

	za	x1	x2	х3	s1	a1	a2											
a1	0	1	5	-3	-1	1	0	15	L1	L1	0	1	5	-3	-1	1	0	15
a2	0	1	1	1	0	0	1	5	L2	+L2	0	1	1	1	0	0	1	5
za	1	0	0	0	0	-1	-1	0	L3	+L3	1	0	0	0	0	-1	-1	0
										=	1	2	6	-2	-1	0	0	20
	za	x1	x2	x3	s1	a1	a2											
a1	0	1	5	-3	-1	1	0	15	L1									
a2	0	1	1	1	0	0	1	5	L2									
za	1	2	6	-2	-1	0	0	20	L3									
	za	x1	x2	х3	s1	a1	a2											
x2	0	1/5	1	-3/5	-1/5	1/5	0	3										
a2	0	4/5	0	8/5	1/5	-1/5	1	2										
za	1	4/5	0	8/5	1/5	-6/5	0	2										

	za	x1	x2	х3	s1	a1	a2		
x2	0	1/5	1	-3/5	-1/5	1/5	0	3	
a2	0	4/5	0	8/5	1/5	-1/5	1	2	
za	1	4/5	0	8/5	1/5	-6/5	0	20	
	za	x1	x2	x3	s1	a1	a2		
x2	0	1/2	1	0	-1/8	1/8	3/8	15/4	
х3	0	1/2	0	1	1/8	-1/8	5/8	5/4	
za	1	0	0	0	0	-1	-1	0	
EIN	4 1 1	5465		4	0				
FIIV	⁄i da i	FASE	: za = a	a1 + a2	= 0				
		x 1	x2	x3	s1				
x2		1/2	1	0	-1/8	15/4			

1/8

5/4

	501.	Opt.:						
)	x1* =	0						
)	x2* =	15/4						
)	x3* =	5/4						
9	s1* =	0	max	5.	$x_1 - 6$	$x_2 - 1$	$7x_3$	
á	a1* =	0	suj.	X	+5x	2 - 3.	$x_3 \ge 1$	15
á	a2* =	0		X	$+ x_2$	$+ x_3$	= 5	
2	za* =	0		X	x_{2}	$x_3 \ge$	0	

Sal Ónt.

Verificação: a solução obtida na I Fase é uma solução admissível para a II Fase:

$$(0) + 5(15/4) - 3(5/4) - (0) = 15$$

 $(0) + 15/4 + 5/4 = 5$

Também é uma solução básica, porque existe uma matriz identidade

Existe um vértice admissível inicial. Podemos iniciar a II Fase.

0

1/2

х3

		x1	x2	х3	s1			II Fase:								
x2		1/2	1	0	-1/8	15/4		ii ruse.								
х3		1/2	0	1	1/8	5/4		Usar fur	nção	objectivo (origir	alz = 5	k 1 – 6	$x^{2} - 7$	x3	
	Z	x1	x2	х3	s1											
x2	0	1/2	1	0	-1/8	15/4	L1			-6 L1 -	0	-6/2	-6	0	6/8	-90/4
х3	0	1/2	0	1	1/8	5/4	L2			- 7 L2 +	0	-7/2	0	-7	-7/8	-35/4
Z	1	-5	6	7	0	0	L3			+ L3 =	1	-5	6	7	0	0
										=	1	-23/2	0	0	-1/8	-125/4
	Z	x1	x2	х3	s1											
x2	0	1/2	1	0	-1/8	15/4										
х3	0	1/2	0	1	1/8	5/4										
Z	1	-23/2	0	0	-1/8	-125/4										

		Z	x1	x2	х3	s1		
>	κ2	0	1/2	1	0	-1/8	15/4	- É interessante ver que o valor do óptimo é negativo
>	k 3	0	1/2	0	1	1/8	5/4	neste problema de maximização.
	Z	1	-23/2	0	0	-1/8	-125/4	- Isso está correcto, e resulta do modelo:
		Z	x1	x2	х3	s1		$\max 5x_1 - 6x_2 - 7x_3$
>	κ2	0	0	1	-1	-1/4	5/2	suj. $x_1 + 5x_2 - 3x_3 \ge 15$
>	< 1	0	1	0	2	1/4	5/2	$x_1 + x_2 + x_3 = 5$
	Z	1	0	0	23	11/4	-5/2	$x_1, x_2, x_3 \ge 0$
						sol.	ópt.:	- Temos de produzir 5 unidades.
						x1* =	5/2	- Só a primeira é que tem contribuição positiva para
						x2* =	5/2	a função objectivo. - Mas produzir só a primeira unidade não é
						x3* =	0	suficiente para obedecer à primeira restrição.
						s1* =	0	
						z* =	-5/2	