

Test Report

Report Number: 3183595MPK-001A Project Number: 3183595 February 25, 2010

Testing performed on the Quantum 1000 Base Station Model Number: QUANTUM 1000 FCC ID: XN3-QUANTUM1000

to

FCC Part 90 Subpart Z

for

PUREWAVE NETWORKS

Test Performed by:

Intertek Testing Services NA, Inc 1365 Adams Court Menlo Park, CA 94025 **Test Authorized by:**

PUREWAVE NETWORKS 2660-C Marine Way Mountain View, CA 94043 USA

Prepared by:	Krishna Vemuri, Senior EMC Engineer	Date:	February 25, 2010
Reviewed by:	Ollie Moyrong, Engineering Manager	Date:	February 25, 2010

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Equipment Under Test:

Report No. 3183595MPK-001A

Quantum 1000 Base Station

Trade Name:	PUREWAVE NETWORKS
Model No.:	QUANTUM 1000
Serial No.:	EMCProto1
FCC ID:	XN3-QUANTUM1000
Applicant:	PUREWAVE NETWORKS
Contact:	Mr. Jas Dhaliwal
Address:	2660-C Marine Way
	Mountain View, CA 94043
Country	USA
Tel. number:	650-528-5200
Fax number:	650-528-5222
Applicable Regulation:	FCC Part 90 Subpart Z
Test Site Location:	1365 Adams Court
	Menlo Park, CA 94025
Date of Test:	February 22 – 24, 2010
We attest to the accuracy of this report:	
anshove	x 00 6 0
V	oll &
Krishna Vemuri	Ollie Moyrong
Senior EMC Engineer	Engineering Manager

TABLE OF CONTENTS

1.0	Intro	oduction	5
	1.1	Product Description	
	1.2	Summary of Test Results	7
	1.3	Test Configuration	8
		1.3.1 Support Equipment	8
		1.3.2 Block diagram of Test Setup	8
	1.4	Antenna Specifications	
2.0	RF I	Power Output and Antenna Limits	10
	2.1	Test Procedure	10
	2.2	Test Equipment	10
	2.3	Test Results	11
3.0	Occu	pied Bandwidth	49
	3.1	Test Procedure	49
	3.2	Test Equipment	49
	3.3	Test Results	49
4.0	Spuri	ous Emissions at Antenna Terminals	68
	4.1	Requirement	68
	4.3	Test Equipment	68
	4.4	Test Results	68
5.0	Spui	rious Radiation	91
	5.1	Requirement	91
	5.2	Test Procedure	91
	5.3	Test Equipment	
	5.4	Test Results	92
6.0	Freq	quency Stability vs Temperature and Voltage	
	6.1	Requirement	
	6.2	Test Procedure	
	6.3	Test Equipment	
	6.4	Test Results	99
7.0	RF I	Exposure evaluation	100
8.0	Emi	ssions from Digital Parts, Receiver and Transmitter spurious fro	om 30 MHz -
	1GH	•	
	8.1	Radiated emissions	
		8.1.1 Test Limit	101
		8.1.2 Test Procedure	
		8.1.3 Test Results	
		0.1.0 10st Rosuits	103

9.0	List of Test Equipment	.107
10.0	Document History	.108

1.0 Introduction

1.1 Product Description

The Quantum 1000 employs an extremely flexible and versatile hardware architecture. The heart of the base station is a sophisticated and highly integrated ASIC that combines 6 DSP and general purpose processor cores along with specialized DSP hardware. A Linux based subsystem supports applications, SNMP and other management functions. Finally, the Ouantum 1000 includes 2 RF transmitters and associated PAs, and 4 RF receivers.

Important characteristics of the Quantum 1000 Base Station Sector are:

- Board-to-board communications for scaling up to 6 antennas.
- 10 MHz profile
- WiMAX OFDMA compliance
- All layers implemented in software.
- 2.3 2.7 GHz and 3.3 3.8 GHz operations.

PureWave has implemented a scalable architecture that lets service providers upgrade their Base Stations by:

- Adding more Base Station Sector to a location
- Adding antennas (and corresponding RF module sets) within a sector
- Adding processing capability in order to process traffic within additional spectrum
- Upgrading software to allow for changes in features and standards.

Specification of the EUT						
Maximum Measured RF	25.7 dBm for 5 MHz, (0.37 W)					
Output Power	25.3 dBm for 10 MHz, 0.34W)					
Frequency Ranges, MHz	3652.5 – 3672.5 for 5 MHz					
	3655 – 3670 for 10 MHz					
Type of Modulation	QPSK, 16QAM, 64QAM					
Channel Bandwidth	5 MHz, 10 MHz					
Antenna Gain	Varies ^{1,2} , refer to Report Section 1.4 for antenna details					
Emission Designator	4M63W7D for 5 MHz					
_	9M26W7D for 10 MHz					
Operating Temperature	From -30° C to $+50^{\circ}$ C					

Peak EIRP Power allowed is 10W/10MHz for 10 MHz Channel Spacing. The RF Output Power will be varied depending on the antenna system assembly gain employed to ensure the total Peak EIRP is less than 40.0 dBm.

Peak EIRP Power allowed is 5W/5MHz for 5 MHz Channel Spacing. The RF Output Power will be varied depending on the antenna system assembly gain employed to ensure the total Peak EIRP is less than 37.0 dBm.

EUT receive date: February 22, 2010

EUT receive condition: The prototype version of the EUT was received in good condition with no

apparent damage. As declared by the Applicant it is identical to the production

units.

Test start date: February 22, 2010 **Test completion date:** February 24, 2010

Page 6 of 108

1.2 Summary of Test Results

FCC Rule	Description of Test	Result
2.1046, 90.1321	RF Power Output and Antenna Limits	Complies
2.1049	Occupied Bandwidth	Complies
2.1051, 90.1323	Out of Band Emissions at Antenna Terminals	Complies
2.1053, 90.1323	Spurious Radiation	Complies
2.1055	Frequency Stability vs. Temperature and Voltage	Complies
15.109, 15.111	Emissions from Digital Parts, Receiver and Transmitter Spurious from 30 MHz to 1 GHz	Complies

1.3 Test Configuration

1.3.1 Support Equipment

Item #	Description	Model No.	S/N
1	Dell Personal Computer	Optiplex 320	9B32KC1
2	Agilent DC Power Supply	6644A	MY40001367
3	Dell Personal Computer	Optiplex 320	3RND5J1
4	Phihong DC Power Supply	PSUI6U-480	P72809868A1
5	Gemtek CPE	WIXS-177	002682124972

1.3.2 Block diagram of Test Setup

S = Shielded	$\mathbf{F} = \mathbf{With} \ \mathbf{Ferrite}$
U = Unshielded	\mathbf{m} = Length in Meters

EMC Report for PureWave Networks on the model QUANTUM 1000 File: 3183595MPK-001A

1.4 Antenna Specifications

The Quantum 1000 3.65 GHz product line can be used with antennas supplied by PureWave Networks or any commercially available antenna. The table below lists antenna products that provide a representative sample of the range of antennas that may be used.

Description	Gain dBi	Az BW	Manufacturer	Manufacturer P/N
	-	degrees		
4 element, vertical linear	14.5	120	Mars Antenna	MA-WE36-15PW4
polarized array				
4 element, vertical linear	15.5	90	Mars Antenna	MA-WD36-16PW4
polarized array				
2 element, dual polarized, +/-	15	90	Mars Antenna	MA-WD35-DS15
45 degree slant				
2 element, dual polarized, +/-	16.5	65	Mars Antenna	MA-WC35-DS17
45 degree slant				
Omni, vertical polarized	11	360	L-com	HG3511U-PRO
Omni, vertical polarized	8	360	Air802 LLC	ANOM3508
Omni, vertical polarized	12	360	Air802 LLC	ANOM3512

2.0 RF Power Output and Antenna Limits

FCC 2.1046, 90.1321

Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

Power Limit for 5 MHz Channel Spacing = 37 dBm Power Limit for 10 MHz Channel Spacing = 40 dBm

2.1 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit continuously the maximum power.

The spectrum analyzer was setup to measure a peak power using the Channel Power Function. The attenuation and cable loss were added to the spectrum analyzer reading by using OFFSET function.

The EUT was set to transmit at maximum power. Measurements were performed at three frequencies (low, middle, and high channels).

2.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

2.3 Test Results

Peak EIRP Power

Frequency (GHz)	Channel Spacing (MHz)	Measured Power (dBm)	Antenna Gain (dBi)	Calculated Max EIRP (dBm)	EIRP Limit (dBm)	Graph	
		I	Modulation: QPSK				
3.6525	5	25.16	*	37	37	2.1	
3.6625	5	25.46	*	37	37	2.2	
3.6725	5	25.27	*	37	37	2.3	
		M	Iodulation: 16 QAN	Л			
3.6525	5	25.27	*	37	37	2.4	
3.6625	5	25.16	*	37	37	2.5	
3.6725	5	25.7	*	37	37	2.6	
	Modulation: 64 QAM						
3.6525	5	25.09	*	37	37	2.7	
3.6625	5	25.67	*	37	37	2.8	
3.6725	5	25.74	*	37	37	2.9	

Notes: Peak EIRP Power allowed is 5W/5MHz for 5 MHz Channel Spacing.

*The RF Output Power will be varied depending on the antenna system assembly gain employed to ensure the total Peak EIRP is less than 37.0 dBm

Peak EIRP Power

Frequency	Channel	Measured	Antenna Gain	Calculated	EIRP Limit	Graph
(GHz)	Spacing (MHz)	Power (dBm)	(dBi)	Max EIRP (dBm)	(dBm)	
	,]	Modulation: QPSK	, ,	•	
3.655	10	25.04	*	40	40	2.10
3.6625	10	24.93	*	40	40	2.11
3.67	10	25.09	*	40	40	2.12
		M	Iodulation: 16 QAN	Л		
3.655	10	24.93	*	40	40	2.13
3.6625	10	25.3	*	40	40	2.14
3.67	10	25.27	*	40	40	2.15
		M	Iodulation: 64 QAN	Л		
3.655	10	24.96	*	40	40	2.16
3.6625	10	25.01	*	40	40	2.17
3.67	10	25.04	*	40	40	2.18

Notes: Peak EIRP Power allowed is 10W/10MHz for 10 MHz Channel Spacing.

*The RF Output Power will be varied depending on the antenna system assembly gain employed to ensure the total Peak EIRP is less than 40.0 dBm

EIRP Power Density

Frequency (MHz)	Channel Spacing (MHz)	Measured Power (dBm)	Antenna Gain (dBi)	Calculated Max EIRP (dBm)	EIRP Limit (dBm/MHz)	Graph
I	(111111)	. ,	dulation: QPSK	(uziii)		
3.6525	5	21.68	*	30	30	2.19
3.6625	5	22.01	*	30	30	2.20
3.6725	5	22.46	*	30	30	2.21
	Modulation: 16 QAM					
3.6525	5	21.99	*	30	30	2.22
3.6625	5	22.09	*	30	30	2.23
3.6725	5	22.53	*	30	30	2.24
		Mod	ulation: 64 QAM			
3.6525	5	22.04	*	30	30	2.25
3.6625	5	22.59	*	30	30	2.26
3.6725	5	22.88	*	30	30	2.27

Notes: *The RF Output Power will be varied depending on the antenna system assembly gain employed to ensure the total EIRP Power Density is less than 30.0 dBm

EIRP Power Density

Frequency (MHz)	Channel Spacing (MHz)	Measured Power (dBm)	Antenna Gain (dBi)	Calculated Max EIRP (dBm)	EIRP Limit (dBm/MHz)	Graph
Modulation: QPSK						
3.655	10	18.65	*	30	30	2.28
3.6625	10	19.06	*	30	30	2.29
3.67	10	18.51	*	30	30	2.30
Modulation: 16 QAM						
3.655	10	18.8	*	30	30	2.31
3.6625	10	18.72	*	30	30	2.32
3.67	10	19.12	*	30	30	2.33
Modulation: 64 QAM						
3.655	10	18.59	*	30	30	2.34
3.6625	10	19.11	*	30	30	2.35
3.67	10	18.68	*	30	30	2.36

Notes: *The RF Output Power will be varied depending on the antenna system assembly gain employed to ensure the total EIRP Power Density is less than 30.0 dBm

For more details refer to the attached Graphs.

Comment: QPSK, LOW CHANNEL

Date: 23.FEB.2010 11:23:49

Comment: QPSK, MID CHANNEL

Date: 23.FEB.2010 11:26:23

Comment: QPSK, HIGH CHANNEL
Date: 23.FEB.2010 11:27:47

Comment: 16QAM, LOW CHANNEL
Date: 23.FEB.2010 11:21:46

Comment: 16QAM, MID CHANNEL
Date: 23.FEB.2010 11:18:37

Comment: 16QAM, HIGH CHANNEL
Date: 23.FEB.2010 11:16:31

Comment: 64QAM, LOW CHANNEL
Date: 23.FEB.2010 11:09:28

Comment: 64QAM, MID CHANNEL
Date: 23.FEB.2010 11:12:18

Comment: 64QAM, HIGH CHANNEL
Date: 23.FEB.2010 11:14:12

Comment: QPSK, LOW CHANNEL

Date: 24.FEB.2010 10:08:24

Comment: QPSK, MID CHANNEL

Date: 24.FEB.2010 09:59:05

Comment: QPSK, HIGH CHANNEL
Date: 24.FEB.2010 09:54:28

Comment: 16QAM, LOW CHANNEL
Date: 24.FEB.2010 10:14:18

Comment: 16QAM, MID CHANNEL
Date: 24.FEB.2010 10:23:09

EMC Report for PureWave Networks on the model QUANTUM 1000 File: 3183595MPK-001A

Comment: 16QAM, HIGH CHANNEL
Date: 24.FEB.2010 10:33:58

Comment: 64QAM, LOW CHANNEL
Date: 24.FEB.2010 11:04:32

Comment: 64QAM, MID CHANNEL Date: 24.FEB.2010 10:54:08

Comment: 64QAM, HIGH CHANNEL Date: 24.FEB.2010 10:45:39

EIRP Power Density Graph 2.19

Comment: QPSK, LOW CHANNEL

Date: 23.FEB.2010 11:33:39

EIRP Power Density Graph 2.20

Comment: QPSK, MID CHANNEL

Date: 23.FEB.2010 11:36:11

EIRP Power Density Graph 2.21

Comment: QPSK, HIGH CHANNEL
Date: 23.FEB.2010 11:37:59

EIRP Power Density Graph 2.22

Comment: 16QAM, LOW CHANNEL
Date: 23.FEB.2010 11:47:34

EIRP Power Density Graph 2.23

Comment: 16QAM, MID CHANNEL Date: 23.FEB.2010 11:44:52

EIRP Power Density Graph 2.24

Comment: 16QAM, HIGH CHANNEL
Date: 23.FEB.2010 11:40:43

EIRP Power Density Graph 2.25

Comment: 64QAM, LOW CHANNEL
Date: 23.FEB.2010 11:49:45

EIRP Power Density Graph 2.26

Comment: 64QAM, MID CHANNEL
Date: 23.FEB.2010 11:52:55

EIRP Power Density Graph 2.27

Comment: 64QAM, HIGH CHANNEL
Date: 23.FEB.2010 11:55:14

EIRP Power Density Graph 2.28

Comment: QPSK, LOW CHANNEL

Date: 24.FEB.2010 09:43:47

EIRP Power Density Graph 2.29

Comment: QPSK, MID CHANNEL

Date: 24.FEB.2010 09:45:46

EIRP Power Density Graph 2.30

Comment: QPSK, HIGH CHANNEL
Date: 24.FEB.2010 09:48:12

EIRP Power Density Graph 2.31

Comment: 16QAM, LOW CHANNEL
Date: 24.FEB.2010 09:38:11

EIRP Power Density Graph 2.32

Comment: 16QAM, MID CHANNEL Date: 24.FEB.2010 09:35:48

EIRP Power Density Graph 2.33

Comment: 16QAM, HIGH CHANNEL Date: 24.FEB.2010 09:33:45

EIRP Power Density Graph 2.34

Comment: 64QAM, LOW CHANNEL Date: 24.FEB.2010 09:29:34

EIRP Power Density Graph 2.35

Comment: 64QAM, MID CHANNEL
Date: 24.FEB.2010 09:21:01

EIRP Power Density Graph 2.36

Comment: 64QAM, HIGH CHANNEL Date: 24.FEB.2010 09:31:36