

Winter, 2022

SYSC 5101W: Design of High-Performance Software

Project Template 1

Submitted by: Aziz Al-Najjar, ID: 101244840

Muhammad Bin Salman, ID: 100995527

Contents

Project Objective:	4
Model Description:	4
Layered Queuing Network Implementation:	8
Base Model Results:	8
Sensitivity tests:	10
For PCM = 0.5:	10
LQN Bottleneck Removal:	12
Changes to the Model and Investigating Software Performance Engineering Principles:	16
Fast Path Pattern:	16
Flex Time Pattern:	17
Alternate Routes pattern:	17
Combining Fast Path and Alternate Routes:	18
Adding another processor for Protocol Stack:	19
Conclusion:	20
Appendix A:	21
Base Model Code:	21
Adding threads:	22
Infinite Server on given Tasks:	22
Output tables:	23

List of Figures

Figure 1 Analyze and Process Request Expantion	4
Figure 2 Main model reduced Exectution Graph	
Figure 3 Type 1 expantion	
Figure 4 Type 2 expantion	6
Figure 5 Type 3 expansion	7
Figure 6 LQN Base Model	8
Figure 7 Base Model Throughput and Response Time vs N Users graph	9
Figure 8 Base model Device Utilization vs. N Users	9
Figure 9 Different PCM Model Response Time vs N Users graph	10
Figure 10 Different PCM Model Throughput vs N Users graph	10
Figure 11 PCM = 0.1 Device Utilization vs. N Users	11
Figure 12 PCM = 0.5 Device Utilization vs. N Users	11
Figure 13 PCM = 0.8 Device Utilization vs. N Users	11
Figure 14 Throughput and Response Time Comparison after Multi-Threading	12
Figure 15 Multi-Threading Device Utilization	13
Figure 16 multi-threading tasks	14
Figure 17: LQN with Infinite Processors	15
Figure 18: Dividing Cache and Disk in Protocol Stack	16
Figure 19: LQN Diagram After CGI Split	17
Figure 20: Dividing Tasks and Processors for Cache and Disk	18
Figure 21: Adding Protocol Stack Processor	19
Figure 22: Multi-threading Tasks [1,5,8,10]	22
Figure 23 Infinite Servers on Given Tasks	22
List of Tables	
Table 1. Type 1 request details:	5
Table 2 Type 2 request details:	6
Table 3 Type 3 request details:	7
Table 4 Infinite Server and Base Model Result Comparison	15
Table 5 CGI Processor and Task Splitting Resulting	18
Table 6 Cache/Disk Result Comparison to Base Model Results	18
Table 7 Adding DS Processor Posult Comparison to Rose Model Posults	10

Project Objective:

In the first template of the project, we were provided with a UML overview of a pre-defined software program, along with a thorough description of the various tasks and execution cycles that the program undertakes. We were also given the different components that would be used in this program, such as the databases, disks, processors, etc., along with their service demand times and mean average of calls to each other.

In this project, we will use the LQN software to build a Layered Queuing Network to investigate the model's behavior, identify the model's Bottleneck, saturation points, and apply sensitivity tests. Afterward, we will try different techniques and utilize multiple changes to the LQN model to alleviate the model's Bottleneck. Lastly, we will study what Software Performance Engineering Principles could be applied to our model.

Model Description:

The provided model is that of a basic webserver in which the user has the option of requesting three different types of requests. The user's request will first enter a protocol stack in which it analyzes the request and determines the request type.

The main model **reduced** Execution Graph: Analyze and Process Request expansion:

Figure 2 Main model reduced execution

Graph

Figure 1 Analyze and Process Request expansion

The first type is a basic static page request. Here, the model will first check the webserver's cache memory and send the page to the user if present. Otherwise, there is a 30% probability that the page is not available at the cache and must be retrieved from the web server's disk. In this case, an average of 3 disk block read operations from WSDisk will occur, and a reply to

the user with the requested page will be sent. This request type has the highest probability of 90%

Type 1 expansion:

Figure 3 Type 1 expansion

Table 1. Type 1 request details:

Operation / Software	Task/ Entry	Computer requirements	Service/ Host demand
requirement			(ms)
Retrieve page from cache	Webserver/ Cache	WSP	1
(63%)			
Retrieve Page from Disk	Webserver/ Disk	WSP	1
(27%)			
Static web page retrieve	3 * WSDisk/ read	WSDisk/ WSP	3*(0.1+10) = 30.3
		Total	32.3

The second user request type is a CGI request with user data. This request type has three primary operations. Processing the user data, storing it in the database, and determining the next page to send. In other words, it will apply 1.7 database update operations. Each database update operation requires a 2 disk reads and 4 disk writes on Database Disk and send a reply to the user. This request type has a probability of 60%*10% = 6%

Type 2 expansion:

Figure 4 Type 2 expantion

Table 2 Type 2 request details:

Operation / Software	Task/ Entry	Computer requirements	Service/ Host demand	
requirement			(ms)	
Process user data	CGI/ Type 2	WSP	15	
Database update	1.7* Database/ update	DBP	1.7*30 = 51	
DBDisk read	2* DBDisk/ read	DBDisk/ DBP	2*(0.1+10) = 20.2	
DBDisk write	4* DBDisk/ write	DBDisk/ DBP	4*(0.1+10) = 40.4	
		Total	126.6	

The third type is a CGI request without user data. It will start by constructing a dynamic page in which it will apply a 4.3 database read operations. Each database read operation requires 4 disk read operations on Database Disk. Afterward, it will send a static page with 8 embedded graphic objects. Lastly, it will apply protocol operations. The third type has a probability of 40%*10% = 4%.

Type 3 expansion:

Figure 5 Type 3 expansion

Table 3 Type 3 request details:

Operation / Software	Task/ Entry	Computer requirements	Service/ Host demand
requirement			(ms)
Construct dynamic page	CGI/ Type 3	WSP	5
Database read	4.3*Database/ read	DBP	4.3*20 = 86
DBDisk read	4* DBDisk/ read	DBDisk/ DBP	4*(0.1+10) = 40.4
Send static page	CGI/ Type 3	WSP	0.8
Retrieve and send	8*CGI/ Type 3	WSP	8*1=8
embedded object			
Average operations on	8*0.2 * WSDisk/ write	WSDisk/ WSP	8*0.2*10.1 = 16.16
WSDisk			
Protocol operations	CGI/ Type 3	WSP	0.25*(16+3*8) = 10
		Total	166.36

Layered Queuing Network Implementation:

Base model code will be provided in the appendix.

Base Model Results:

In the base model of our code, saturation first occurs after 300 users, with the Protocol Stack being the initial Bottleneck. The graphs for the throughput, response time, and device utilization can be seen below. Please refer to Appendix to view the tabular results for response time, throughput, and device utilizations for the base model (thread=1).

The LQN base model can be seen below, with the Bottleneck at Protocol Stack in red:

Figure 6 LQN Base Model

Figure 7 Base Model Throughput and Response Time vs N Users graph

Figure 8 Base model Device Utilization vs. N Users

We can see from the LQN above and the device utilization graph that Protocol Stack is our bottleneck. This understandable as the system is designed to analyze all request in the protocol stack activity and again all replies will go through PS to the User. In next sections we will provide multiple solutions to problem.

Sensitivity tests:

We will try different Probability of Cache Miss (PCM) values as a sensitivity test and report how the performance metrics change.

For PCM = 0.5:

Figure 9 Different PCM Model Response Time vs N Users graph

 $Figure\ 10\ Different\ PCM\ Model\ Throughput\ vs\ N\ Users\ graph$

As we can see from graphs above, as a result of increasing cache miss probability to 0.5 and 0.8, the response time increased and throughput saturation point decreased. This is expected as going through the disk and retrieving data blocks will require more resources and time. On the other, decreasing PCM to 0.1 gave higher throughput saturation and faster response time.

Figure 11 PCM = 0.1 Device Utilization vs. N Users

Figure 12 PCM = 0.5 Device Utilization vs. N Users

Figure 13 PCM = 0.8 Device Utilization vs. N Users

Similarly for devices utilization. Higher PCM results the devices to reach saturation with less number of users. Hence, we can see that getting more capacity for cache memory will directly help the overall performance of the system.

LQN Bottleneck Removal:

When we initially analyze the base model of our LQN, we realize the Bottleneck can be seen at the Protocol Stack activity. We begin by multi-threading with an array of various thread values: [1, 5, 8, 10]. A brief overview of the multi-threading sequence can be seen on the next page. By the end of the multi-threading sequence, the Bottleneck reaches the Database processor, while the other tasks, such as the Protocol Stack, are still very highly saturated as a result of the Bottleneck at the Database processor. The graphs for the throughput and response time across the various threads can be seen below. As it can be seen, the response time drastically decreases after moving from 1 thread to 5 threads, and then slightly decreases after increasing the threads from there on out. The same applies for the throughput, where we see a decent increase after adding onto the single thread, but the improvement saturates quickly between 5-10 threads. The tabular results at the different threads can be seen in Table 1 in Appendix A.

Figure 14 Throughput and Response Time Comparison after Multi-Threading

Al-Najjar and Salman

Figure 15 Multi-Threading Device Utilization

server to move bottleneck to

Web Server, based off database

processor

Figure 16 multi-threading tasks

Stack to move bottleneck to

CGI Application

Application to move bottleneck

to Database Server

disk, Database processor is

now the bottleneck

server to move bottleneck to

Database disk, based off

database processor

Figure 17: LQN with Infinite Processors

The other option is to make the tasks we previously multi-thraded into infinite servers, that would remove the chances of a bottleneck completely. This way, the only Bottleneck that will exist would be at the Database Processor. The issue with this approach is, we see a notable decrease in performance results, such as a decrease in throughput and an increase in response time.

Table 4 Infinite Server and Base Model Result Comparison

	Threads	Throughput	Response Time
Base Model Results	10	0.216993	534.75
Infinite Server Results	10	0.204127	694.384

To end, for the LQN analysis and bottleneck removal process, the best results in terms of throughput, response time, and device utilization are seen once we multi-thread the various tasks that are seen as bottlenecks. The code for multi-threading the various tasks, as well as more creating infinite servers can be seen in Appendix A.

Changes to the Model and Investigating Software Performance Engineering Principles:

A performance pattern is used to improve the overall design of the software by reducing resource use, both hardware and software. These performance patterns are based on software principles. To begin, we can use the Fast Path pattern, based on the Centering principle. The

centering principle reduces the processing time and resources of the dominant workload. Additionally, the fast path pattern aims at reducing response time.

Fast Path Pattern:

In our case, the three types of entries are probability based, with the highest probability going to retrieving the webpage from the cache. Also, under the cache probability, there is a chance of a cache miss, in which the page must be retrieved from the disk, increasing service time, as well as spending time on the Webserver Disk read operation. The way the LQN is originally set up, each one of the four entries falls under the Protocol Stack task activity, with a given probability. Although this is still correct, we can streamline this by always going to the cache first, since it has the highest chance, over 50% in fact, of occurring.

What we do to tackle this is form a type1 activity under the Protocol Stack, which then breaks into two dummy parameters called Cache (prob.=0.7) and Disk (prob=0.3). Based on those additional probabilities, it will lead to the webserver and go to the real Cache or Disk. If it goes to the Disk, once again it will have the additional Disk Read operation.

Although this is a different alternative of doing the same Protocol Stack activity as in the base model, the results are nearly the same, as the same probabilities apply, and the actual entries of CacheW and DiskW are still utilized the same. The revised LQN model can be seen in the Figure 18.

Figure 18: Dividing Cache and Disk in Protocol Stack

Figure 19: LQN Diagram After CGI Split

Flex Time Pattern:

Another software pattern that can be utilized to enhance our performance is called Flex Time. This pattern is based off the common notion to spread the demand of a given saturated objects over different times, without adding extra hardware. For example, in our case we understand that the fastest process is to retrieve the webpage off the cache. It would be advantageous if we could time the users based on their type of demand. For example, a surge of users would be better handled if they all required webpages that could be retrieved from the cache, and all users, if lower in quantity, that needed to access the rest of the three types of actions would come at another time. This way, we could avoid any bottlenecks that would occur because of users surging with high hardware demand requests. This pattern builds off the spread-the-load principle, which deals with spreading the load of a system based on time or resources.

Alternate Routes pattern:

An additional software pattern that also builds off the spread-the-load principle is the Alternate Routes pattern, in which we distribute the load for high-demand locations to different resources. What we can do in our case is split the CGI application tasks, T2 and T3, to two different tasks (create another CGI application secondary task to support T3), as well as add an additional CGI application allocated processor. In essence to follow this pattern, we can just keep adding resources, such as processors to divide the demand on the existing resources, however it soon becomes a question of resource management. An LQN diagram of this can be seen in the Figure 19. Also, a brief table below, Table 5, compares the results of this configuration comparted to the base model, where we see a slight decrease in improvement in throughput and response time. This is mainly because the CGI Application in general does not have a utilization in general, so

spending extra resources on it may not be the best course of action, and additional resources will only end up slowing down the entire system, even if minimally.

Table 5 CGI Processor and Task Splitting Resulting

	Threads	Throughput	Response Time
Base Model Results	10	0.216993	534.75
CGI_Processor and Task Splitting Results	10	0.216284	542.872

Combining Fast Path and Alternate Routes:

The other course of action we have will essentially combine the Fast Path principle, and the Alternate Routes principle by mainly focusing on the tasks with the highest probability of occurring, so reading from the cache/disk, and providing them their own processor and splitting the cache and disk entries to independent tasks. The LQN diagram and

results table for this comparison can once again be seen below, where we do see a slight improvement in results for throughput and response time.

USERS (550) Z=2000

2-0.213 p=113

(0.25)

1.88+03

PS

1.88+03

PS

1.88+03

ProtocolStyck 410)

2-0.0248 p=3 99

2-0.0348 p

Figure 20: Dividing Tasks and
Processors for Cache and Disk

Table 6 Cache/Disk Result Comparison to Base Model Results

	Threads	Throughput	Response Time
Base Model Results	10	0.216993	534.75
Cache/Disk Split	10	0.218456	517.731

Adding another processor for Protocol Stack:

Since the highest utilization of any task in our program is at the Protocol Stack, we can once again try adding another processor for it and observe the results. Nevertheless, although the results do seem slightly better, the best results we get are from the cache/disk split.

Table 7 Adding PS Processor Result Comparison to Base Model Results

	Threads	Throughput	Response Time
Base Model Results	10	0.216993	534.75
Protocl Stack Processor Results	10	0.217768	525.615

There are no major anti-patterns as such that exist by default in this software program and can only truly be understood once we assign software cases or test use cases to analyze the resulting data. The one anti-pattern that could be applicable is Traffic Jam, which as the name suggests is the inconsistency in response time, based on many different factors, such as Onelane bridge (processes waiting for other processes to finish before beginning execution, leading to longer queue times), or even a surge in user requests. Depending on what exactly the issue is, it may require including more resources such as extra processors, or even multi-threading like we did in our bottleneck removal. The tabulated results for the utilizations of the different devices, response times, and throughputs, for the different changes performed in the SPE analysis can be found in Appendix A.

Figure 21: Adding Protocol Stack Processor

Conclusion:

In the project report, we started by defining the model given in template one. The model required analyzing a request from the user and processes based on its type. We provided the reduced execution graphs for the model and each request type. Afterward, we implemented the model using LQN software, discussed the performance results, and identified the base model bottleneck as Protocol Stack activity. Next, we tested the model's sensitivity to different cache miss probabilities and found that best performance occurs when cache miss probability is minimized. Moreover, the bottleneck removal process took place. The best results occurred after multi-threading Protocol stack and other high utilization tasks. Finally, we applied multiple changes to the model based on the Software Performance Engineering Principles. We utilized Fast Path Pattern-based changes on the protocol stack, which slightly increased the performance. Also, we tried the Flex Time Pattern, and the Alternate Routes pattern changes, as well as combining the patterns. Lastly, we added a separate processor for Protocol Stack, which helped improve the results.

Appendix A:

Base Model Code:

```
\label{eq:constructDynamic_SendStatic_Graphics} \\ \text{$= 23.8 \# = 5 + 0.8 + K*1 + 0.25*(16+3*K), K = 8$} \\
#$threads=[1,5,8,10]
$N=[1,5,10,50,75,100,125,150,175,200,300,400,450,500,550]
G "Layers: 1, Customers: 1, Clients: 1, Tasks: 1, (Delay: 0), Processors: 1"
                                                                            # Model comment
1e-03
                                   # Convergence test value.
                        # Maximum number of iterations.
10
                        # Print intermediate results (see manual pages)
0.9
                        # Model under-relaxation (0.0 < x <= 1.0)
-1
P 3
 p PC f i
              # infinite processor for users
 p WSP f %u $uWSP
                       # processor for "ProtocolStack", "WebServer", "WSDisk" and "CGIApplication"
 p DBP f %u $uDBP # processor for database server, and DBdisk
Т7
 t USERS r users -1 PC z $ZU m $N %f $thru
 t ProtocolStack n PS -1 WSP %u $uProtocolStack
 t WebServer n CacheW DiskW -1 WSP %u $uWebServer
 t WSDisk n WSDread WSDwrite -1 WSP %u $uWSDisk
 t CGIApplication n T2 T3 -1 WSP %u $uCGIApplication
 t DataBaseServer n DBSUpdate DBSRead -1 DBP %u $uDBS
 t DBDisk n DBDread DBDwrite -1 DBP %u $uDBDisk
-1
E 0
# ----- USERS -----
 s users 1 -1 %s1 $rt
 #f users 1 -1 #testing, copying from slide 43
 y users PS 0.25 -1
# ----- ProtocolStack -----
 A PS analyzestart
                                  # Entry protocol analyze is defined using activties
# ----- Webserver -----
 s CacheW 1.0 -1
 s DiskW 1.0 -1
 y DiskW WSDread 3 -1
# ----- WSDisk -----
 s WSDread 10.1 -1
 s WSDwrite 10.1 -1
# ----- CGIApplication -----
 s T2 15 -1
 s T3 $ConstructDynamic_SendStatic_Graphics -1
 y T2 DBSUpdate 1.7 -1
 y T3 DBSRead 4.3 -1
y T3 WSDwrite 1.6 -1 # 0.2*8
# ----- DataBaseServer -----
 s DBSUpdate 30 -1
 s DBSRead 20 -1
 y DBSUpdate DBDread 2 -1
 y DBSUpdate DBDwrite 4 -1
 y DBSRead DBDread 4 -1
# ----- DBDisk ---
 s DBDread 10.1 -1
 s DBDwrite 10.1 -1
-1
A ProtocolStack
 s analyzestart 1
 # Cache, Disk, type2 and type3 are just dummy entries to determine request type
 s Cache 0
 s Disk 0
 s type2 0
 # Send the dummy entry to the related task entry
```

```
y Cache CacheW 1
 y Disk DiskW 1
 y type2 T2 1
 y type3 T3 1
 # result for sending a reply to the protocol stack
 s result 0
: # separator
 # With PS = 0.9, PR = 0.6, and PCM = 0.3
 # type1 Cache prob = (1-PCM)*PS, type1 disk = PCM*PS
 # type2 prob = PR*(1-PS), and type3 = (1-PR)(1-PS)
 analyzestart -> (0.63)Cache + (0.27)Disk + (0.06)type2 + (0.04)type3;
 # Sending the results as a reply to protocol stack(PS)
 # as requierd by the LQN language
 Cache + Disk + type2 + type3 -> result;
 result[PS]
-1
R0
$0=$N
#$threads
Sthru Srt
$uCGIApplication $uDBDisk $uDBP $uDBS
$uProtocolStack $uWSDisk $uWSP $uWebServer
-1
```

Adding threads:

```
#threads
t USERS r users -1 PC z $ZU m $N %f $thru
t ProtocolStack n PS -1 WSP i %u $uProtocolStack
t WebServer n CacheW DiskW -1 WSP m $threads %u $uWebServer
t WSDisk n WSDread WSDwrite -1 WSP %u $uWSDisk
t CGIApplication n T2 T3 -1 WSP m $threads %u $uCGIApplication
t DataBaseServer n DBSUpdate DBSRead -1 DBP m $threads %u $uDBS
t DBDisk n DBDread DBDwrite -1 DBP m $threads %u $uDBDisk
-1
```

Figure 22: Multi-threading Tasks [1,5,8,10]

Infinite Server on given Tasks:

```
t USERS r users -1 PC z $ZU m $N %f $thru
t ProtocolStack n PS -1 WSP i %u $uProtocolStack
t WebServer n CacheW DiskW -1 WSP m $threads %u $uWebServer
t WSDisk n WSDread WSDwrite -1 WSP %u $uWSDisk
t CGIApplication n T2 T3 -1 WSP i %u $uCGIApplication
t DataBaseServer n DBSUpdate DBSRead -1 DBP i %u $uDBS
t DBDisk n DBDread DBDwrite -1 DBP i %u $uDBDisk
-1
```

Figure 23 Infinite Servers on Given Tasks

Output tables:

Table 8: Base Model (Threads=1) and Multi-Threading Results for Response Time, Throughput, and Device Utilizations

N	\$threads	\$thru	\$rt	\$uCGIApplication	\$uDBDisk	\$uDBP	\$uDBS	\$uProtocolStack	\$uWSDisk	\$uWSP	\$uWebServer
1	1	0.000498	9.05235	0.00275359	0.00163385	0.00244269	0.00244269	0.00400811	0.00109845	0.001565	0.00113002
5	1	0.002488	9.47431	0.0137652	0.00816754	0.0122109	0.0122109	0.0200396	0.0054911	0.007825	0.00564905
10		0.004975			0.0163306	0.024415	0.024415	0.0400757	0.0109792	0.015646	0.0112953
50		0.02481			0.0814248	0.121734	0.121734	0.200133		0.078007	0.0563216
75		0.037132			0.121855	0.182177	0.182173	0.299789	0.0819188	0.116727	0.0842713
100					0.161976	0.242156	0.242146	0.398897	0.108883	0.155138	0.111984
125		0.061463			0.201636	0.301443	0.301423	0.49708	0.135529	0.193087	0.139344
150		0.073343			0.240554	0.359618	0.359586	0.593669	0.161666	0.230302	0.166151
175		0.084867			0.278267	0.41599	0.415942	0.687531	0.18698	0.266336	0.192082
200		0.095703			0.313941	0.469346	0.469331	0.775481	0.210969	0.300481	0.216687
300		0.119438			0.391319	0.585051	0.585071	0.969285	0.262922	0.37442	0.26982
400		0.122174			0.40012	0.598224	0.598276	0.991703	0.268846	0.382861	0.275895
450					0.401476	0.600252	0.600306	0.99513	0.269756	0.384157	0.276826
500		0.122856			0.402323	0.60152	0.601578	0.997296	0.270326	0.38497	0.277411
550		0.123034			0.402896	0.602378	0.602438	0.998756		0.385519	0.277807
1					0.00163385	0.00244269	0.00244269	0.00400821	0.00109845	0.001565	0.00113009
5					0.00822282	0.0122129	0.0123373	0.0201525	0.00549484	0.007827	0.00572747
10		0.002483			0.0165533	0.0244233	0.0123373	0.0408006	0.0109942	0.015652	0.01161
50		0.024884			0.087112	0.121705	0.135146	0.214553	0.0550933	0.078133	0.0642329
75		0.037314			0.13516	0.182186	0.214114	0.348146	0.0827039	0.117007	0.102173
100					0.186772	0.242547	0.301806	0.49288	0.110474	0.155901	0.14423
125		0.043730			0.242061	0.302468	0.398942	0.653408	0.110474	0.194625	0.190266
150		0.002132			0.301506	0.362013	0.506726	0.831101		0.233227	0.240394
175					0.365516	0.421095	0.626446	1.02732		0.233227	0.294655
200		0.099345			0.434561	0.421033	0.759341	1.24374		0.310005	0.353094
300					0.786536	0.716495	1.4688	2.38903	0.335186	0.463266	0.633508
400		0.148717			1.37014	0.954225	2.75036	4.26105	0.450286	0.613972	0.99976
450		0.206686			1.60163	1.01394		4.94144	0.430280	0.64996	1.10277
500		0.200080					3.27241	4.9896	0.476433	0.652236	
550					1.61775 1.61973	1.01756 1.01791	3.3088 3.31256	4.9979	0.480322	0.652392	1.10944 1.10983
1					0.0016331	0.0024399	0.0026613	0.00967787	0.0010926	0.00156	
5					0.0082228	0.0122129	0.0123373	0.0212309	0.0054937	0.00782	
10					0.0165928	0.024424	0.025005	0.0408422		0.01565	
50					0.08834	0.121823	0.137337	0.216002		0.07817	
75					0.138179	0.182432	0.219722	0.353933	0.082836	0.1171	
100					0.192638	0.242926	0.312912	0.504913	0.110686	0.15603	
125					0.252178	0.303055	0.418415	0.674659	0.138593	0.19482	
150 175					0.317606 0.389741	0.362845 0.422158	0.538169 0.674629	0.865365 1.07986		0.2333	
200					0.469586	0.480981	0.830127	1.32113	0.194622	0.27203	
300					0.465386	0.720005	1.74928	2.72871	0.337616	0.46463	
400					1.73791	0.720003	3.57071	5.20373	0.337010	0.61453	
450					2.63899	1.05291	5.61349	7.58338	0.500955	0.67551	
500					2.79899	1.06276	5.97384		0.505601	0.68132	
550					2.80513	1.06305	5.98809	7.98399	0.505637	0.68132	
1					0.0016329	0.0024376	0.002909	0.0154007		0.00155	
5						0.0122129	0.002303	0.0224502		0.00133	
10						0.0122123				0.00782	
50						0.121872	0.0230232			0.01303	
75					0.139306	0.121872	0.138122			0.11714	
100					0.194868	0.243093	0.317046			0.11714	
125					0.25611	0.303318	0.425821			0.1949	
150					0.324019	0.363213	0.550504			0.1343	
175					0.324019	0.422696	0.693983			0.23301	
200					0.484401	0.422696	0.859422			0.2722	
300					0.484401	0.720783	1.87252			0.46479	
400					1.94357	0.720783	4.02728				
450					3.34299	1.05629	7.19204				
500					3.64443	1.05629	7.19204			0.68272	
550					3.66049	1.06485	7.90329				
330	, 10	0.21033	554.75	0.21202	3.00043	1.00403	7.30323	5,36413	0.507502	0.00223	1.37301

Table 9: Infinite Server Model Results for Response Time, Throughput, and Device Utilizations

N	\$threads	Ċ+hru	\$rt	\$uCGIApplication	¢DBD:cl	¢Dpn	ŚuDBS	\$uProtocolStack	C.JM/SDiele	\$uWSP	\$uWebServer
1	Stilleaus 1	0.0005	-		0.00163	0.00244	•	0.00400811	0.00109845	0.00157	0.00113002
5	1	0.00249			0.00103	0.00244	0.00244	0.0202312	0.00103843	0.00137	0.00113002
10	1	0.00249		0.0138311	0.00822	0.01221	0.01234	0.0412148	0.00343472	0.00785	0.00370034
50	1	0.00438		0.150708	0.09036	0.12203	0.02303	0.229369	0.0103333	0.01303	0.0113331
75	1	0.02488		0.248864	0.14371	0.12203	0.22955	0.392845	0.0331872	0.07818	0.100724
100	1	0.03723	12.2583		0.2042	0.24376	0.33378	0.585916	0.110929	0.15614	0.14178
125	1	0.04303			0.27364	0.30447	0.45759	0.821489	0.110323	0.19499	0.14178
150	1	0.07443			0.35444	0.36504	0.60617	1.11099	0.167176	0.23375	0.235733
175	1	0.08676		0.824294	0.44937	0.42545	0.78251	1.46967	0.195475	0.27238	0.288814
200	1	0.09899		1.09221	0.56552	0.4855	1.01607	1.97359	0.22423	0.31117	0.34614
300	1	0.14683			1.44523	0.7205	2.85597	6.21614	0.337934	0.46173	0.614097
400	1	0.18649	144.929	11.1829	5.0996	0.91552	10.8973	26.7714	0.435925	0.58656	0.888456
450	1	0.19599		19.6785	8.9432	0.96179	19.4246	57.7991	0.46001	0.61639	0.9587
500	1	0.19907			11.4439	0.9766	24.9602	101.658	0.467873	0.62604	0.981614
550	1	0.20003			12.5821	0.98134	27.4966	149.739	0.470348	0.62906	0.988854
1	5	0.00047	148.419		0.00163	0.00244	0.00273	0.0381104	0.00106226	0.00151	0.00109435
5	5	0.00248			0.00822	0.01221	0.01234	0.0215736	0.00549333	0.00782	0.00572751
10	5	0.00498		0.0280423	0.01661	0.02442	0.02503	0.0408466	0.0109958	0.01565	0.0116379
50	5	0.02488			0.09038	0.12206	0.14081	0.21726	0.0552319	0.07823	0.0656863
75	5	0.03731	10.1797		0.14378	0.18301	0.22967	0.361966	0.0830758	0.11729	0.105887
100	5	0.04972			0.20436	0.24391	0.33406	0.523624	0.11108	0.15632	0.151289
125	5	0.06213		0.490805	0.27397	0.30474	0.45818	0.710455	0.139244	0.1953	0.202137
150	5	0.07452		0.645596	0.35508	0.36549	0.60735	0.927382	0.16757	0.23422	0.25868
175	5	0.08689	13.9727	0.826883	0.45057	0.42615	0.78474	1.18046	0.196057	0.27309	0.321182
200	5	0.09925		1.04867	0.56596	0.48668	1.0061	1.47313	0.224707	0.31189	0.389922
300	5	0.14792		3.10735	1.48112	0.72585	2.9329	4.03146	0.340273	0.46516	0.730521
400	5	0.19168		14.8215	6.71888	0.94106	14.5035	16.3747	0.447678	0.60291	1.14767
450	5	0.20302			18.8877	0.9967	41.6183	43.6734	0.476125	0.63857	1.27615
500	5	0.204		90.0773	40.66	1.00123	89.7804	91.7583	0.478543	0.64159	1.28763
550	5	0.20413		140.027	63.2438	1.00136	139.72	141.667	0.478719	0.64181	1.28863
1	8	0.00037	689.934	0.0286994	0.00163	0.00243	0.00391	0.143407	0.00093619	0.00132	0.000965638
5	8	0.00248			0.00822	0.01221	0.01234	0.0209553	0.00549399	0.00782	0.00572764
10	8	0.00498			0.01661	0.02442	0.02503	0.040863	0.0109958	0.01565	0.0116459
50	8	0.02488			0.09038	0.12206	0.14081	0.217466	0.0552354	0.07823	0.06591
75	8	0.03731			0.14377	0.18301	0.22966	0.362492	0.0830807	0.1173	0.106431
100	8	0.04972			0.20436	0.24391	0.33405	0.524643	0.111088	0.15632	0.152334
125	8	0.06213			0.27396	0.30474	0.45817	0.712181	0.139258	0.19531	0.203897
150	8	0.07452			0.35507	0.36548	0.60733	0.930076	0.16759	0.23424	0.261409
175	8	0.08689		0.826915	0.45055	0.42614	0.78471	1.18443	0.196084	0.27312	0.32518
200	8	0.09924			0.56594	0.48667	1.00605	1.4787	0.224743	0.31192	0.39554
300	8	0.14791	28.1546	3.10715	1.48085	0.72581	2.93231	4.0476	0.34023	0.46513	0.747194
400	8	0.19166	87.0575	14.8111	6.71376	0.941	14.4921	16.3996	0.447557	0.60287	1.18436
450	8	0.20302	216.63	41.9209	18.8707	0.99668	41.5806	43.6799	0.475994	0.63857	1.32046
500	8	0.204	451.107	90.0356	40.6404	1.00123	89.7372	91.7587	0.478414	0.64159	1.33269
550	8	0.20413	694.382	139.985	63.2239	1.00136	139.677	141.667	0.478588	0.64181	1.33376
1	10	0.00037	689.762	0.0286923	0.00163	0.00243	0.00391	0.143374	0.00093623	0.00132	0.00096568
5	10					0.01221	0.01234				0.00572764
10	10	0.00498	9.16388	0.0280423	0.01661	0.02442	0.02503	0.0408654	0.0109958	0.01565	0.0116486
50	10	0.02488	9.36738	0.150754	0.09038	0.12206	0.14081	0.217536	0.0552365	0.07824	0.0659855
75	10	0.03731	10.1918	0.249015	0.14377	0.18301	0.22966	0.362671	0.0830823	0.1173	0.106616
100	10	0.04972	11.0993	0.36021	0.20436	0.24391	0.33405	0.524988	0.111091	0.15633	0.152691
125	10	0.06213	11.9696	0.490818	0.27396	0.30473	0.45817	0.712776	0.139263	0.19531	0.204502
150	10	0.07452	12.9367	0.645621	0.35507	0.36548	0.60733	0.931011	0.167597	0.23425	0.262356
175	10	0.08689	14.0229	0.826926	0.45055	0.42614	0.7847	1.18581	0.196094	0.27313	0.326579
200	10	0.09924	15.2098	1.04873	0.56593	0.48667	1.00603	1.48068	0.224756	0.31194	0.397525
300	10	0.14791	28.1963	3.10708		0.7258	2.93209	4.05365	0.340215	0.46512	0.753335
400	10				6.71176	0.94098	14.4876	16.4093	0.447517		1.19854
450	10		216.644		18.864	0.99668	41.5656	43.6824	0.475952		1.33784
500	10					1.0011			0.478233	0.6414	1.34965
550	10	0.20413	694.384	139.967	63.2157	1.00136	139.658	141.667	0.478546	0.64181	1.35149

Table 10: Implementing Fast Path Principle Initially by Combining Cache/Disk

N	\$threads	\$thru	\$rt	\$uCGIApplication	\$uDBDisk	\$uDBP	\$uDBS	\$uProtoco	\$uWSDisk	\$uWSP	\$uWebServer
1	1	0.00049778	8.91095	0.0026834	0.001634	0.00244	0.00244	0.00394	0.0010281	0.0014951	0.0011301
5	1	0.00248842	9.30976	0.0134143	0.0081682	0.01221		0.01969	0.0051397	0.0074738	0.00564935
10	1	0.00497555	9.82623	0.0268218	0.0163322	0.02442	0.02442	0.03936	0.0102768	0.0149438	0.0112958
50	1	0.0248159	14.8374	0.133771	0.0814566	0.12178	0.12178	0.19636	0.0512549	0.0745314	0.056338
75	1	0.0371463	19.0478	0.200229	0.121929	0.18229	0.18229	0.29396	0.0767207	0.111561	0.0843279
100	1	0.0493944	24.522	0.266233	0.162129	0.24239	0.24239	0.39093	0.102015	0.148341	0.112127
125	1	0.0615189	31.899	0.331553	0.201921	0.30188	0.30188	0.48694	0.127051	0.184744	0.139639
150	1	0.0734475	42.2799	0.395799	0.241068	0.36041	0.3604	0.58143	0.151679	0.220553	0.166699
175	1	0.0850456	57.7365	0.45824	0.279122	0.4173	0.41729	0.67331	0.17562	0.255361	0.193
200	1	0.0960487	82.3277	0.517446	0.315211	0.47125	0.47125	0.76051	0.198323	0.28837	0.21794
300	1	0.121556	468.015	0.656388	0.399043	0.5966	0.59663	0.96187	0.251139	0.365224	0.276686
400	1	0.124571	1211.18	0.670928	0.408782	0.61114	0.61114	0.98653	0.257184	0.373946	0.282592
450	1	0.125007	1600.04	0.673111	0.410152	0.61319	0.61318	0.99009	0.258037	0.375187	0.283517
500	1	0.125174	1994.1	0.676083	0.410132	0.61453	0.61453	0.99054	0.25868	0.376175	0.285023
550	1	0.125174	2384.09	0.675708	0.411679	0.61548	0.61548	0.99362	0.259012	0.376608	0.284608
1	5	0.00049778	8.91197	0.0026834	0.001634	0.00244	0.00244	0.00394	0.0010281	0.0014951	0.0011301
5	5	0.00043778	8.92155	0.0134961	0.001034	0.00244	0.00244	0.00334	0.0010281	0.0014331	0.0011301
10	5		8.99467			0.01221	0.01234	0.01979		0.0074732	0.0037237
50	5	0.0049776		0.0272741	0.0165545				0.0102914		
	5	0.0248858	9.16908	0.143643	0.0871306	0.12173	0.13518 0.21417	0.2101	0.0515994	0.0746388	0.0638295
75		0.037317	9.7745	0.230058	0.135191	0.18222		0.34068	0.0774767	0.111778	0.10126
100	5	0.0497409	10.3921	0.323943 0.427802	0.186827	0.24261	0.3019	0.48191	0.103523	0.148944	0.142606
125	5	0.0621585	10.9625		0.24215	0.30256		0.63842	0.1296	0.185956	0.187731
150	5	0.0745678	11.5626	0.542828	0.30164	0.36215	0.50697	0.81158	0.155748	0.222859	0.236749
175	5	0.0869682	12.1982	0.670441	0.365708	0.42127	0.6268	1.00275	0.181957	0.259639	0.289705
200	5	0.0993589	12.8714		0.43483	0.4799	0.75985	1.2136	0.20822	0.296284	0.346643
300	5	0.14875	16.7212	1.56979	0.787233	0.71686	1.47033	2.3323	0.314746	0.442731	0.61814
400	5	0.196357	37.0738	2.9358	1.37522	0.95582	2.76158	4.174	0.423758	0.587497	0.970486
450	5	0.208278	160.507	3.54722	1.63714	1.02202	3.35216	4.92821	0.453116	0.625527	1.07935
500	5	0.210638	373.653	3.60917	1.64709	1.02287	3.39779	4.99577	0.457523	0.631475	1.09638
550	5	0.209349	627.16	3.60137	1.66068	1.0271	3.40542	4.99742	0.455418	0.628521	1.0881
1	8		23.7816		0.0016332	0.00244		0.00974	0.0010223	0.0014864	0.00112912
5	8		14.2562		0.0082234	0.01221	0.01234	0.0209	0.0051422	0.0074726	0.0057237
10	8				0.016594	0.02443	0.02501	0.0401	0.0102926	0.0149494	0.0116222
50	8				0.0883552	0.12184		0.21149	0.0516497	0.0746696	0.064582
75	8				0.138206	0.18246	0.21977	0.34633	0.0776003	0.111858	0.103012
100	8				0.192685	0.24298	0.31299	0.49368	0.103721	0.149055	0.145769
125	8				0.252255	0.30313	0.41855	0.65925	0.129912	0.186126	0.192793
150	8				0.317724	0.36295	0.53838	0.84519	0.156198	0.223097	0.244214
175	8				0.389936	0.42232	0.67499	1.054	0.182563	0.259944	0.300353
200	8		13.535		0.469857	0.48118	0.83064	1.28899	0.208993	0.296646	0.361547
300	8				0.917344	0.72032	1.75087	2.66428	0.317122	0.444017	0.663962
400	8				1.72508	0.94802	3.54245	5.03299	0.425638	0.587592	1.05929
450	8		83.9387		2.66556	1.05566	5.66993	7.50967	0.472564	0.647376	1.26186
500	8		288.719		2.84219	1.06423	6.08609	7.99237	0.477451	0.653601	1.28389
550	8		530.659		2.86366	1.06639	6.11916	7.98814	0.476838	0.65267	1.28135
1										0.0014777	0.00112338
5									0.0051409	0.0074696	0.00572369
10	10	0.0049776	8.99735	0.0273218	0.016608	0.02443	0.02503	0.04011	0.010293	0.0149495	0.0116315
50					0.0888038					0.0746819	0.0648364
75	10	0.0373145	9.90491	0.23643	0.139331	0.18257	0.22182	0.34829	0.0776472	0.111892	0.10361
100	10	0.0497344	10.6486	0.33714	0.194912	0.24314	0.31712	0.49783	0.103796	0.149103	0.146849
125	10	0.0621465	11.344	0.451604	0.256186	0.30339	0.42596	0.66675	0.130031	0.1862	0.194571
150	10	0.0745479	12.0934	0.582144	0.324136	0.36331	0.55072	0.85794	0.156365	0.223196	0.247291
175	10	0.0869371	12.9096	0.731696	0.399862	0.42283		1.0742	0.182794	0.260079	0.305046
200	10	0.0993125	13.801	0.903327	0.484658	0.48187	0.85991	1.31901	0.209304	0.296828	0.368009
300	10	0.148542	19.5926	1.97888	0.975756	0.72103	1.874	2.80181	0.317632	0.444137	0.680705
400	10	0.197118	29.2025	4.20648	1.94556	0.94907	4.03257	5.5771	0.426066	0.587073	1.09239
450	10	0.21626	80.7447	7.54063	3.39784	1.05787	7.31555	9.22456	0.474528	0.648655	1.31246
500	10	0.217368	300.169	8.24324	3.70951	1.06633	8.01426	9.94554	0.477894	0.652825	1.32866
550	10	0.217354	530.533	8.27781	3.72489	1.0665	8.04741	9.98437	0.477766	0.652656	1.32803

Table 11: Implementing Alternate Routes Principle by Splitting CGI Application

N	\$threads	\$thru	\$rt	\$uCGIApplication_T2	\$uCGIApplication_T3	\$uCGI_P	\$uDBDisk	\$uDBP	\$uDBS	\$uProtocolStack	\$uWSDisk	\$uWSP	\$uWebServer
1	1	0.0005	9.05235	0.00126204	0.00149185	0.000230456	0.00163385	0.00244	0.00244	0.00401092	0.00109845	0.00133	0.00113001
5	1	0.00249	9.47396	0.00631061	0.00746114	0.00115195	0.00816729	0.01221	0.01221	0.0201078	0.00549076	0.00667	0.00564863
10	1	0.00498	10.0229	0.0126203	0.0149249	0.00230276	0.0163289	0.02441	0.02441	0.0403468	0.0109766	0.01334	0.0112921
50	1	0.02481	15.353	0.0626891	0.0742807	0.011402	0.0811852	0.12137	0.12137	0.206615	0.0544209	0.06616	0.0559278
75	1	0.03713	20.0027	0.0932222	0.110597	0.0169237	0.121279	0.18128	0.1812	0.314216	0.08096	0.09847	0.083038
100	1	0.04936	26.1245	0.122719	0.145775	0.0222384	0.1607	0.24014	0.23995	0.42434	0.10669	0.12984	0.109163
125	1	0.06142	35.8074	0.152266	0.180993	0.0275694	0.200299	0.29937	0.29922	0.532673	0.132437	0.16119	0.135359
150	1	0.07325	48.9815	0.179525	0.213638	0.0324564	0.238103	0.35583	0.35561	0.644046	0.156382	0.19047	0.159439
175	1	0.08466	69.514	0.204727	0.243898	0.0369612	0.273961	0.40938	0.4091	0.754264	0.178633	0.21776	0.181691
200	1	0.09529	103.872	0.22706	0.270775	0.0409435	0.306432	0.45792	0.45763	0.859206	0.198405	0.24212	0.201428
300	1	0.11607	607.431	0.267309	0.319276	0.0481038	0.364761	0.54555	0.546	1.06731	0.233589	0.28598	0.237103
400	1	0.11829	1413.72	0.271363	0.324172	0.0488216	0.370796	0.55462	0.55516	1.08999	0.237144	0.29044	0.240695
450	1	0.11865	1829.12	0.272012	0.324958	0.0489366	0.371798	0.55612	0.55667	1.0937	0.237723	0.29116	0.241271
500	1	0.11887	2246.6	0.272424	0.325457	0.0490094	0.37244	0.55708	0.55763	1.09607	0.238092	0.29162	0.241636
550	1	0.11903	2665.11	0.272712	0.325806	0.0490605	0.372893	0.55776	0.55831	1.09774	0.238351	0.29195	0.241893
1	5	0.0005	9.18123	0.00126194	0.00149173	0.000230457	0.00163385	0.00244	0.00244	0.00400829	0.00109845	0.00133	0.00113009
5	5	0.00249	9.06284	0.00634084	0.00749818	0.00115226	0.0082229	0.01221	0.01234	0.0201349	0.00549261	0.00667	0.00572115
10	5	0.00498	9.13112	0.0128019	0.015142	0.00230435	0.0165537	0.02442	0.02494	0.040722	0.0109853	0.01335	0.011584
50	5	0.02488	9.29679	0.066938	0.0794114	0.0115058	0.0871925	0.12182	0.13528	0.212598	0.0548856	0.06665	0.0635427
75	5	0.03732	9.86166	0.106785	0.126719	0.0172299	0.135318	0.18238	0.21438	0.343184	0.0822227	0.09982	0.100497
100	5	0.04974	10.4487	0.149806	0.177904	0.0229605	0.187082	0.24291	0.30235	0.483647	0.109615	0.13302	0.141081
125	5	0.06216	10.9856	0.197179	0.234308	0.0286671	0.242618	0.30307	0.39993	0.638408	0.136913	0.16609	0.185086
150	5	0.07457	11.5496	0.249457	0.296582	0.0343577	0.302432	0.36294	0.50841	0.808756	0.164155	0.19907	0.232563
175	5	0.08697	12.1462	0.307304	0.365505	0.04003	0.36698	0.42244	0.62917	0.995964	0.191331	0.23195	0.283489
200	5	0.09936	12.7776	0.371321	0.441784	0.0456822	0.436779	0.48155	0.76354	1.20162	0.21843	0.26472	0.337841
300	5	0.14877	16.4622	0.716144	0.851852	0.0682593	0.791259	0.71879	1.47829	2.29794	0.326284	0.39491	0.590684
400	5	0.19656	34.8795	1.35042	1.61646	0.0905171	1.37825	0.95663	2.76843	4.11784	0.434511	0.52445	0.910818
450	5	0.20799	163.608	1.66376	2.0124	0.0962381	1.62585	1.01956	3.32728	4.94518	0.462357	0.55747	1.00484
500	5	0.20824	401.152	1.68114	2.03572	0.0964177	1.63687	1.02186	3.35185	4.98892	0.463231	0.55848	1.00787
550	5	0.20857	636.887	1.68521	2.04122	0.0964895	1.6386	1.02204	3.35828	5.00155	0.463624	0.55898	1.00923
1	8	0.00049	24.0762	0.00247242	0.00286412	0.000229176	0.00163079	0.00244	0.00266	0.00970966	0.00109237	0.00133	0.00112461
5	8	0.00248	14.3135	0.00634081	0.00749814	0.00115226	0.00822112	0.01221	0.01234	0.0212277	0.00549141	0.00667	0.00572114
10	8	0.00498	9.13301	0.0128162	0.0151593	0.00230439	0.0165931	0.02442	0.02501	0.0407564	0.0109857	0.01335	0.0116104
50	8	0.02488	9.31839	0.0674913	0.0800736	0.0115104	0.0883986	0.1219	0.13744	0.213842	0.0549127	0.06668	0.0642392
75	8	0.03731	9.95119	0.108825	0.129118	0.0172423	0.138301	0.18258	0.21993	0.348425	0.0822949	0.09989	0.102103
100	8	0.04974	10.6264	0.154042	0.182877	0.0229775	0.192884	0.2432	0.31334	0.494623	0.109718	0.13311	0.143943
125	8	0.06215	11.249	0.20482	0.24327	0.028693	0.25264	0.30351	0.41924	0.657875	0.137071	0.16623	0.189615
150	8	0.07455	11.9147	0.262028	0.311318	0.0343936	0.318403	0.36356	0.53962	0.840272	0.164377	0.19927	0.239185
175	8	0.08695	12.6284	0.326856	0.388482	0.0400736	0.391065	0.42323	0.67709	1.04448	0.191608	0.23219	0.293178
200	8	0.09933	13.4078	0.400387	0.476005	0.0457337	0.471683	0.48251	0.83411	1.2734	0.218767	0.265	0.351485
300	8	0.14863	18.4102	0.846181	1.00482	0.0685199	0.923498	0.7231	1.7638	2.61715	0.328222	0.39676	0.633643
400	8	0.19749	25.3414	1.64531	1.95167	0.089786	1.69524	0.94211	3.47778	4.80453	0.431365	0.52095	0.975787
450	8	0.21516	91.4605	2.77476	3.33073	0.099552	2.66159	1.05442	5.66452	7.5703	0.478746	0.57665	1.16029
500	8	0.21608	313.977	2.93686	3.54802	0.100072	2.76531	1.06073	5.89777	7.96329	0.48129	0.57962	1.17073
550	8	0.21602	546.021	2.94619	3.56069	0.100108	2.77124	1.06118	5.91042	7.98188	0.481422	0.57975	1.17138
1	10	0.00049	36.8801	0.00374512	0.00430567	0.00022791	0.00162833	0.00243	0.00289	0.0152328	0.00108642	0.00132	0.00111852
5	10	0.00248	19.8876	0.00634077	0.0074981	0.00115226	0.00821919	0.01221	0.01233	0.022401	0.00549011	0.00667	0.00572113
10	10	0.00498	9.13362	0.0128211	0.0151652	0.0023044	0.0166071	0.02442	0.02503	0.0407678	0.0109858	0.01335	0.0116193
50	10	0.02488	9.32564	0.0676861	0.0803066	0.0115123	0.0888393	0.12194	0.13821	0.214263	0.0549232	0.06669	0.0644742
75	10	0.03731	9.98191	0.109561	0.129983	0.0172476	0.139412	0.18266	0.22195	0.350247	0.0823244	0.09992	0.102649
100	10	0.04973	10.6886	0.155596	0.184701	0.0229848	0.195085	0.24332	0.31742	0.498498	0.10976	0.13315	0.144917
125	10	0.06215	11.343	0.207677	0.246636	0.0287039	0.256522	0.30371	0.42655	0.665039	0.137135	0.16629	0.191336
150	10	0.07455	12.0503	0.266877	0.317074	0.0344079	0.324744	0.36384	0.55183	0.852583	0.164463	0.19934	0.242211
175	10	0.08694	12.8204	0.334558	0.397612	0.0400948	0.400906	0.42364	0.69625	1.0638	0.191734	0.2323	0.297529
200	10	0.09932	13.6623	0.41216	0.489945	0.0457614	0.486377	0.48304	0.86317	1.30207	0.218932	0.26515	0.357339
300	10	0.14856	19.3063	0.901491	1.06983	0.0685291	0.982347	0.72357	1.88717	2.75328	0.328341	0.39681	0.648288
400	10	0.19715	28.8595	1.937	2.29322	0.0906408	1.98271	0.95491	4.11647	5.48715	0.435343	0.52511	1.01982
450	10	0.21612	82.0646	3.52102	4.21025	0.0998514	3.37121	1.05691	7.2557	9.25452	0.480306	0.57846	1.2048
500	10	0.21646	309.855	3.81814	4.60919	0.100199	3.55895	1.06196	7.67778	9.9588	0.48205	0.58042	1.21226
550	10	0.21628	542.872	3.82803	4.62272	0.100233	3.5661	1.06249	7.69155	9.9747	0.48214	0.58048	1.21278

Table 12: Implementing Cache Disk Split

N	\$threads	\$thru	\$rt	\$uCGIApplication	\$uDBDisk	\$uDBP	\$uDBS	\$uProtocolStack	\$uWSDisk	\$uWSP	\$uWebSP	\$uWebServer_Cache	\$uWebServer_Disk
1	1	0.0005	9.05235	0.00275359	0.00163	0.00244	0.00244	0.00400811	0.0010985	0.00145	0.00011199	7.84E-05	0.00105162
5	1	0.00249	9.47431	0.0137652	0.00817	0.01221	0.01221	0.0200396	0.0054911	0.00727	0.00055985	0.000391892	0.00525715
10	1	0.00498	10.0214	0.027523	0.01633	0.02442	0.02442	0.0400757	0.0109792	0.01453	0.00111937	0.000783562	0.0105117
50	1	0.02481	15.3475	0.137216	0.08142	0.12173	0.12173	0.200133	0.054742	0.07243	0.00558	0.003906	0.0524156
75	1	0.03713	19.8549	0.205292	0.12186	0.18218	0.18217	0.299786	0.081919	0.10838	0.00834773	0.00584341	0.0784278
100	1	0.04936	25.7581	0.272781	0.16198	0.24216	0.24215	0.398885	0.108885	0.14405	0.0110912	0.00776384	0.104221
125	1	0.06146	33.7792	0.339402	0.20164	0.30145	0.30143	0.497048	0.135534	0.17929	0.013799	0.00965928	0.129686
150	1	0.07334	45.232	0.404673	0.24057	0.35964	0.35961	0.593596	0.161678	0.21387	0.0164515	0.011516	0.15464
175	1	0.08487	62.1483	0.467812	0.2783	0.41604	0.41599	0.68739	0.187007	0.24736	0.0190169	0.0133119	0.178783
200	1	0.09568	90.3849	0.527611	0.3139	0.46929	0.46928	0.775173	0.210949	0.279	0.0214475	0.0150132	0.201636
300	1	0.11945	512.423	0.65719	0.39145	0.58526	0.58529	0.969021	0.263029	0.34785	0.0267111	0.0186978	0.251192
400	1	0.12219	1275.24	0.672027	0.40029	0.59848	0.59855	0.991395	0.268978	0.35573	0.0273131	0.0191192	0.256863
450	1	0.12261	1672.09	0.674299	0.40165	0.60052	0.60058	0.994817	0.269892	0.35693	0.0274054	0.0191838	0.257732
500	1	0.12287	2071.39	0.675729	0.4025	0.60179	0.60186	0.996976	0.270465	0.35769	0.0274634	0.0192244	0.258278
550	1	0.12305	2472.07	0.676694	0.40307	0.60265	0.60272	0.998432	0.270852	0.3582	0.0275025	0.0192518	0.258647
1	5	0.0005	9.05958	0.00275367	0.00163	0.00244	0.00244	0.00400821	0.0010985	0.00145	0.00011199	7.84E-05	0.0010517
5	5	0.00249	9.0637	0.0138514	0.00822	0.01221	0.01234	0.0201052	0.0054947	0.00727	0.00055996	0.000392082	0.00528309
10	5	0.00498	9.11939	0.0279936	0.01655	0.02442	0.02494	0.0406005	0.0109938	0.01453	0.00111985	0.000784339	0.0106161
50	5	0.02488	9.27937	0.147677	0.08718	0.1218	0.13526	0.209611	0.0551214	0.0726	0.00559461	0.00392739	0.055034
75	5	0.03732	9.74184	0.236441	0.13528	0.18233	0.21431	0.336356	0.0827337	0.10873	0.00837797	0.00588966	0.0842941
100	5	0.04974	10.2678	0.332988	0.187	0.24282	0.30221	0.471487	0.11053	0.14492	0.0111669	0.00786144	0.114848
125	5	0.06217	10.7437	0.439792	0.24245	0.3029	0.39964	0.619438	0.138348	0.18098	0.0139452	0.00983139	0.146523
150	5	0.07458	11.2469	0.55807	0.30213	0.36265	0.50785	0.781483	0.166231	0.21695	0.016717	0.0118023	0.179353
175	5	0.08699	11.7824	0.68926	0.36645	0.42198	0.62816	0.958909	0.194166	0.25282	0.0194812	0.0137733	0.213318
200	5	0.09938	12.3527	0.834651	0.43592	0.48086	0.76184	1.15329	0.222145	0.28858	0.0222369	0.015744	0.248402
300	5	0.14883	15.6206	1.60893	0.78897	0.71782	1.47348	2.18347	0.334504	0.43053	0.0332203	0.0236528	0.400656
400	5	0.19764	23.8137	2.81288	1.29216	0.93246	2.5861	3.64978	0.446023	0.56848	0.0437923	0.0313546	0.576544
450	5	0.21304	112.235	3.85494	1.74255	1.04413	3.59047	4.85782	0.490892	0.62166	0.0479025	0.0343712	0.654501
500	5	0.21824	291.037	4.01254	1.76664	1.04609	3.70401	4.99562	0.501823	0.63532	0.0489827	0.0351665	0.675425
550	5	0.21491	559.19	3.97642	1.79493	1.05386	3.71027	4.99754	0.495432	0.62711	0.0483158	0.0346753	0.662654
1	8	0.00049	23.1384	0.005609	0.00163	0.00244	0.00269	0.0102169	0.0010919	0.00144	0.0001113	7.79E-05	0.0010498
5	8	0.00248	14.8794	0.0138514	0.00822	0.01221	0.01234	0.0213147	0.0054934	0.00726	0.00055996	0.000392082	0.00528308
10	8	0.00498	9.12148	0.02803	0.01659	0.02442	0.02501	0.0406242	0.0109949	0.01453	0.00111986	0.000784432	0.010625
50	8	0.02488	9.29948	0.148993	0.08839	0.12189	0.13742	0.210577	0.0551599	0.07262	0.00559585	0.00393033	0.0552727
75	8	0.03732	9.82043	0.241138	0.13827	0.18254	0.21988	0.340964	0.0828406	0.10879	0.00838268	0.00589765	0.0848649
100	8	0.04974	10.429	0.342665	0.19282	0.24313	0.31323	0.481344	0.110696	0.145	0.0111727	0.00787389	0.115856
125	8	0.06216	10.9852	0.457144	0.2525	0.30338	0.41899	0.637166	0.138608	0.18109	0.0139541	0.00985068	0.148123
150	8	0.07457	11.5849	0.586479	0.31813	0.36333	0.53911	0.810513	0.166601	0.21711	0.016729	0.0118296	0.181715
175	8	0.08697	12.2328	0.73331	0.39055	0.42283	0.6761	1.00409	0.194649	0.253	0.0194949	0.0138087	0.217195
200	8	0.09935	12.947	0.899947	0.47079	0.48189	0.83234	1.22077	0.222755	0.28879	0.0222521	0.0157884	0.254416
300	8	0.14869	17.545	1.89928	0.91962	0.7213	1.75553	2.49225	0.336996	0.43206	0.0333054	0.0237919	0.424641
400	8	0.1975	25.2604	3.78023	1.73239	0.94943	3.55814	4.70895	0.450838	0.57164	0.0440623	0.0316872	0.630602
450	8	0.2175	68.8707	6.20032	2.77064	1.06221	5.90958	7.33427	0.503074	0.63369	0.0488263	0.0352192	0.739204
500	8	0.22139	258.538	6.81263	3.02324	1.07341	6.50068	8.00267	0.510337	0.6425	0.0494468	0.0356824	0.754937
550	8	0.21929	508.192	6.83513	3.05026	1.07575	6.53866	7.98927	0.508623	0.64011	0.0493233	0.0355888	0.751294
1	10	0.00049	36.161	0.00864994	0.00163	0.00244	0.00296	0.0163456	0.0010854	0.00144	0.00011062	7.74E-05	0.00104391
5	10	0.00248	21.1366	0.0138514	0.00822	0.01221	0.01234	0.0226316	0.005492	0.00726	0.00055996		
10	10	0.00498	9.12218	0.0280424	0.01661	0.02442	0.02503	0.0406321	0.0109952	0.01453	0.00111987	0.000784464	0.010628
50	10	0.02488	9.30625	0.149453	0.08883	0.12192	0.13819	0.210906	0.0551738	0.07262	0.00559635	0.00393142	
75	10	0.03732	9.8475	0.242825	0.13939	0.18263	0.22191	0.342574	0.0828813	0.10882	0.00838472	0.00590074	
100	10	0.04974	10.4857	0.346199	0.19503	0.24327	0.31733	0.484848	0.110758	0.14503	0.0111753	0.00787868	
125	10	0.06215	11.072	0.463622	0.2564	0.3036	0.42634	0.643759	0.138705	0.18114	0.0139579		
150	10	0.07456	11.7115	0.59746	0.3245	0.36364	0.55136	0.822023	0.166736	0.21717	0.0167338		
175	10	0.08696	12.4144	0.750672	0.40043	0.42329	0.69534	1.02233	0.194844	0.2531	0.0195023		
200	10	0.09934	13.1894	0.926361	0.48552	0.48248	0.86149	1.24809	0.223011	0.28891	0.0222616		
300	10	0.14863	18.4099	2.02092	0.97811	0.72197	1.87856	2.6236	0.337418	0.43213	0.0333107	0.0238229	
400	10	0.1973	27.3429	4.28322	1.95287	0.9501	4.04989	5.23586	0.451227	0.57126	0.0440081	0.0316963	
450	10	0.21778	66.1858	7.77507	3.47101	1.06138	7.47882	8.94952	0.504007	0.63395	0.0488449	0.0352929	
500	10	0.22249	247.277	8.7648	3.87465	1.06916	8.43471	10.0296	0.511175	0.64285	0.0494452		
550	10	0.21846	517.731	8.79731	3.92556	1.0713	8.49703	9.98828	0.507208	0.6375	0.0491185	0.0354971	0.775404

Table 13: Implementing Protocol Stack Independent Processor

N	\$threads		\$rt	\$uCGIApplication			\$uDBS	\$uProtocolStack		\$uWSDisl		\$uWebServer
1		0.0005	9.05235	0.00275359	0.00163	0.00244	0.00244	0.00400811	0.00012	0.0011	0.00144	0.00113002
5	1	0.00249	9.47431	0.0137652	0.00817	0.01221	0.01221	0.0200396	0.00062	0.00549	0.0072	0.00564905
10	1	0.00498	10.0214	0.027523	0.01633	0.02442	0.02442	0.0400757	0.00124	0.01098	0.0144	0.0112953
50	1	0.02481	15.3475	0.137216	0.08142	0.12173	0.12173	0.200133	0.0062	0.05474	0.0718	0.0563216
75	1	0.03713		0.205291	0.12186	0.18218	0.18217	0.299789	0.00928	0.08192	0.10744	0.0842713
100		0.04936		0.272778	0.16198	0.24216	0.24215	0.398896	0.01234	0.10888	0.1428	0.111985
125	1	0.06146		0.339391	0.20164	0.30144	0.30142	0.497078	0.01537	0.13553	0.17772	0.139345
150		0.07334		0.404644	0.24056	0.35962	0.35959	0.593665	0.01834	0.16167	0.21197	0.166153
175		0.08487	62.0168		0.27829	0.41602	0.41597	0.687573	0.02122	0.18699	0.24514	0.192097
200		0.09567		0.526676	0.31357	0.46875	0.46869	0.775655	0.02392	0.21066	0.27612	0.216309
300		0.11946		0.657032	0.39138	0.58514	0.58517	0.969429	0.02986	0.26297	0.34462	0.269868
400		0.1222		0.671859	0.40021	0.59835	0.59841	0.991927	0.03055	0.26891	0.3524	0.275964
450		0.12262			0.40156	0.60039	0.60045	0.995363	0.03066	0.26982	0.35359	0.276897
500		0.12289		0.67556	0.40241	0.60166	0.60172	0.997538	0.03072	0.27039	0.35434	0.277485
550		0.12307		0.676525	0.40299	0.60252	0.60259	0.999004	0.03077	0.27078	0.35485	0.277882
1		0.0005	9.06		0.00163	0.00244	0.00244	0.00400821	0.00012	0.0011	0.00144	0.00113009
5		0.00249		0.0138513	0.00822	0.01221	0.01234	0.0201216	0.00062	0.00549	0.0072	0.00572672
10		0.00498			0.01655	0.02442	0.02494	0.040676	0.00124	0.01099	0.01441	0.0116068
50		0.02489		0.147559	0.08712	0.12172	0.13516	0.21137	0.00622	0.05507	0.07192	0.0641333
75		0.03732		0.236238	0.13518	0.18221	0.21415	0.340843	0.00933	0.08265	0.1077	0.101908
100		0.04974		0.332589	0.18682	0.2426	0.30188	0.479678	0.01244	0.11038	0.1435	0.143694
125		0.06216		0.439109	0.24214	0.30255	0.39908	0.632455	0.01554	0.13811	0.17914	0.189323
150		0.07457			0.30163	0.36214	0.50696	0.800462	0.01864	0.16588	0.21467	0.238885
175		0.08698		0.687651	0.36571	0.42128	0.62681	0.984986	0.02174	0.19367	0.25007	0.29239
200		0.09937			0.43485	0.47992	0.75989	1.18762	0.02484	0.22149	0.28533	0.349852
300		0.14879		1.6053	0.78732	0.71693	1.47041	2.25605	0.0372	0.33398	0.42631	0.623046
400		0.19747		2.79164	1.28284	0.92925	2.56478	3.78569	0.04937	0.44346	0.56045	0.960465
450		0.21089		3.73454	1.69157	1.03382	3.47548	4.89717	0.05272	0.48512	0.61024	1.10802
500		0.21189		3.81157	1.72487	1.04035	3.55005	4.98546	0.05297	0.48785	0.61349	1.1181
550	5	0.21246	588.725	3.82521	1.72704	1.04054	3.56041	4.99885	0.05312	0.48895	0.61485	1.12231
1	. 8	0.00049	24.5439	0.0054913	0.00163	0.00244	0.00268	0.0100641	0.00012	0.00109	0.00143	0.0011277
5	8	0.00248	14.6274	0.0138513	0.00822	0.01221	0.01234	0.0212805	0.00062	0.00549	0.0072	0.0057267
10	8	0.00498	9.11704	0.0280295	0.01659	0.02442	0.02501	0.0407057	0.00124	0.01099	0.01441	0.011635
50	8	0.02489	9.22074	0.148911	0.08835	0.12184	0.13735	0.212504	0.00622	0.05512	0.07196	0.064898
75	8	0.03732	9.85324	0.240986	0.1382	0.18246	0.21976	0.345888	0.00933	0.08278	0.10779	0.1036
100	8	0.04974	10.5089	0.342362	0.19268	0.24297	0.31299	0.490342	0.01243	0.11058	0.14363	0.14687
125	8	0.06215	11.1132	0.456614	0.25226	0.30313	0.41856	0.651483	0.01554	0.13841	0.17934	0.19440
150	8	0.07456	11.7614	0.585624	0.31774	0.36296	0.53841	0.831411	0.01864	0.16632	0.21494	0.24636
175	8	0.08696	12.4585	0.73201	0.38995	0.42233	0.67502	1.03283	0.02174	0.19425	0.25041	0.30334
200	8			0.898048	0.4699	0.48121	0.83073		0.02484		0.28574	0.365299
300	8	0.14865			0.9177	0.72047	1.7516		0.03716		0.42775	0.67041
400					1.72685	0.94835			0.04935		0.56589	1.0666
450					2.73158	1.05972	5.8191		0.05415		0.62594	1.275
500					2.94942	1.07095	6.31237		0.05456		0.63181	1.2973
550					2.96483	1.07213			0.05474		0.6323	1.2991
1												0.0011215
5						0.01221						
10			9.11705							0.01099		0.01164
50					0.0888				0.00622			
75					0.13933					0.08282		
100										0.11065		
125										0.13853		0.19631
150												0.24970
175					0.3999							
200			13.4734									0.37184
300												0.68733
400									0.0493			1.0999
450												1.3248
500			265.362									
550	10	0.21777	525.615	8.58155	3.83078	1.0692	8.28259	9.9811	0.05444	0.50495	0.63041	1.33916