#### Университет ИТМО Физико-техническй мегафакультет Физический факультет



| Группа М3213                | К работе допущен |
|-----------------------------|------------------|
| Студент Алексеева Виктория, | Работа выполнена |
| <u>Балакирева Виктория</u>  |                  |
| Преподаватель Громова Наира | Отчет принят     |
| Рустемовна                  |                  |

# Рабочий протокол и отчет по лабораторной работе №3.02

## Цели работы:

- 1. Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.
- 2. Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления.

## Формулы:

| Название                     | Формула                |
|------------------------------|------------------------|
| Закон ома для замкнутой цепи | $U = \varepsilon - Ir$ |
| Полезная мощность            | Pr = UI                |
| Полная мощность              | b = EI                 |
| Мощность потерь              | $Ps = I^2r$            |
| кпд                          | $\eta = Pr/P$          |

#### Установка:



Стенд «С3-ЭМ01»



Генератор напряжения ГН1



Схема установки

### Ход работы:

Таблица 1.

|      | Физические величины |       |         |            |             |        |  |  |
|------|---------------------|-------|---------|------------|-------------|--------|--|--|
| R    | U, B                | І, мА | Рг, мВт | Рs, мВт    | Р, мВт      | η      |  |  |
| 100  | 0,86                | 13,75 | 11,825  | 128,184375 | 140,064595  | 0,0844 |  |  |
| 200  | 1,97                | 12,12 | 23,8764 | 99,5944032 | 123,4605739 | 0,1934 |  |  |
| 300  | 3,01                | 10,58 | 31,8458 | 75,8928792 | 107,7733393 | 0,2955 |  |  |
| 400  | 3,83                | 9,38  | 35,9254 | 59,6534232 | 95,54952008 | 0,3760 |  |  |
| 500  | 4,42                | 8,5   | 37,57   | 48,9855    | 86,585386   | 0,4339 |  |  |
| 600  | 4,83                | 7,9   | 38,157  | 42,31398   | 80,4734764  | 0,4742 |  |  |
| 700  | 5,23                | 7,31  | 38,2313 | 36,2296758 | 74,46343196 | 0,5134 |  |  |
| 800  | 5,56                | 6,83  | 37,9748 | 31,6279542 | 69,57390428 | 0,5458 |  |  |
| 900  | 6,06                | 6,08  | 36,8448 | 25,0632192 | 61,93401728 | 0,5949 |  |  |
| 1000 | 6,18                | 5,92  | 36,5856 | 23,7614592 | 60,30417472 | 0,6067 |  |  |
| 1100 | 6,38                | 5,62  | 35,8556 | 21,4142232 | 57,24821992 | 0,6263 |  |  |
| 1200 | 6,61                | 5,27  | 34,8347 | 18,8300262 | 53,68293932 | 0,6489 |  |  |
| 1300 | 6,84                | 4,94  | 33,7896 | 16,5456408 | 50,32138904 | 0,6715 |  |  |
| 1400 | 7,09                | 4,57  | 32,4013 | 14,1599622 | 46,55237812 | 0,6960 |  |  |
| 1500 | 7,09                | 4,56  | 32,3304 | 14,0980608 | 46,45051296 | 0,6960 |  |  |

С помощью МНК найдем внутреннее сопротивление источника r и  $\xi$ 

$$U = \varepsilon - r \cdot I$$

Перепишем это уравнение в виде линейной зависимости:

$$U = -r \cdot I + \varepsilon$$

Сопоставим с данной формулой МНК  $y = a \cdot x + b$ 

Найдем среднее значение x(I) и y(U)

$$x_{cp} = \sum x_i / n \quad y_{cp} = \sum y_i / n$$

$$-r = a = \sum (x_i - x_{cp}) (y_i - y_{cp}) / \sum (x_i - x_{cp})^2 = -0,678 \implies r = 0,678$$

$$\varepsilon = b = y_{cp} - a * x_{cp} = 10,189$$

Используя результаты измерений U, I, E, r, вычислим и внесем в таблицу значения полезной, полной мощности, а также мощности потерь.

Pr = UI

 $P_S = I^2R$ 

I3 = Q

Найдем значения КПД по формуле:  $\eta = \Pr/P$  и занесем результаты в таблицу. Найдем значение тока  $I^*$ , при котором достигается максимум в значения полезной мощности:

 $I^* = E/2r = 7,51$  мА (теоретическое)

I\* = 7,51мА (по графику)

Подставим в формулу  $Pr = I^2 R$  значения  $P_{rmax}$  и  $I^*$  ( $I^* = 7,51$ ), найдем сопротивление

R, соответствующее режиму согласования нагрузки и источника.

$$R = Pr/I^2 \Rightarrow R = P_{rmax}/I^{*2} = 38,231/7,51^2 = 0,677$$

Сравним это сопротивление с внутренним сопротивлением источника г.

Исходя из сравнения сопротивлений мы можем сказать, что практически сопротивление нагрузки R равно внутреннему сопротивлению источника r. Это происходит, когда мощность, передаваемая в нагрузку, максимальна

## Графики:







### Вывод:

В ходе работы исследованы зависимости полной мощности, полезной мощности, мощности потерь, падения напряжения и КПД источника от силы тока. Максимальная полезная мощность достигается при  $I \approx 7.51$  мА. Параметры источника, включая ЭДС и внутреннее сопротивление, могут быть определены из экспериментальных данных.