TECE Module 1 : Suites et séries numériques

Problème 1

On désigne par \mathbb{R}^+ l'ensemble des nombre réels x tels que $x \geq 0$. Soit $a \in \mathbb{R}^+$ et soit (u_n) la suite de nombres réels définie par la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = a + \frac{1 - e^{-n}}{2} u_n$$

et la condition initiale $u_0 = a$.

- 1. Montrer que pour tout entier naturel $n, u_n \leq 2a$.
- 2. Montrer que pour tout $k \in \mathbb{N}$, on a

$$2^{k+1}(2a - u_{k+1}) = 2^k(2a - u_k) + \left(\frac{2}{e}\right)^k u_k$$

3. En déduire que pour tout $n \ge 1$

$$2^{n}(2a - u_n) = a + \sum_{k=0}^{n-1} \left(\frac{2}{e}\right)^{k} u_k$$

4. Montrer que la série

$$\sum_{k=0}^{\infty} \left(\frac{2}{e}\right)^k u_k$$

converge. En déduire que la suite (u_n) converge vers 2a et que

$$2a - u_n \sim \frac{K}{2^n}$$

où K est une constante réelle que l'on déterminera.

Problème 2

Partie 1

Soit n un nombre entier naturel non nul. On considère les fonction numérique f_n , g_n et h_n définies sur l'intervalle [0, n] par les relations :

$$f_n(t) = (1 - \frac{t}{n})^n$$
, $g_n(t) = e^{-t} - (1 - \frac{t}{n})^n$, $h_n(t) = e^t g'_n(t)$

- 1. Étudier les variations de h_n . En déduire les variations de g_n . Montrer qu'il existe un élément x_n de [0,n] et un seul tel que, pour tout élément t de [0,n], $g_n(t) \leq g_n(x_n)$.
- 2. Montrer que $g_n(x_n) \leq \frac{1}{ne}$.
- 3. Soit x un nombre strictement positif. Étudier la convergence des intégrales :

$$I_n(x) = \int_0^n f_n(t)t^{x-1}dt$$
 et $\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt$

4. Soit c un réel strictement positif. Montrer que si $n \geq c$, alors :

$$0 \le \Gamma(x) - I_n(x) \le \int_0^c g_n(t)t^{x-1}dt + \int_c^\infty e^{-t}t^{x-1}dt$$

1

5. En déduire que la suite de terme général $I_n(x)$ converge vers $\Gamma(x)$.

Partie 2

On admet la formule de Stirling :

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi}$$

Soit α un nombre réel strictement positif. On pose :

$$P_0(\alpha) = 1$$
 et $\forall n \ge 1$, $P_n(\alpha) = \prod_{k=0}^{n-1} 1 + k\alpha$

$$J_0(\alpha) = 1$$
 et $\forall n \ge 1$, $J_n(\alpha) = \int_0^1 (1 - t^{\alpha})^n dt$

1. Montrer que pour tout nombre entier naturel non nul n:

$$(1+n\alpha)J_n(\alpha) = n\alpha J_{n-1}(\alpha)$$

2. En déduire la valeur de $J_n(\alpha)$, que l'on exprimera à l'aide de $P_n(\alpha)$.

3. En effectuant un changement de variable, trouver une relation entre $J_n(\alpha)$ et $I_n(\frac{1}{\alpha})$. En déduire un équivalent de la suite de terme général $P_n(\alpha)$.

4. Soit désormais x un nombre réel strictement positif. Pour tout nombre entier naturel non nul p, on pose :

$$Q_n(p,x) = \prod_{k=0}^{n-1} x + kp$$

Exprimer $Q_n(p,x)$ à l'aide de $P_n(\frac{p}{x})$. En déduire un équivalent de la suite de terme général $Q_n(p,x)$, les nombre p et x étant fixés.

5. (a) Montrer que pour tout entier naturel n:

$$Q_n(2,x) \times Q_n(2,x+1) = Q_{2n}(1,x)$$

(b) En déduire une relation entre $\Gamma(x)$, $\Gamma(\frac{x}{2})$ et $\Gamma(\frac{x+1}{2})$.

(c) En déduire la valeur de $Gamma(\frac{1}{2})$, puis à l'aide d'un changement de variable, la convergence et la valeur de

$$\int_{0}^{\infty} e^{-t^2} dt$$