Matemáticas Financieras Cheat Sheet

Por Marcelo Moreno - Universidad Rey Juan Carlos

Capitalización y descuento

	Capital	ización	Descuento	
Simple	$C_n = C_0 \cdot (1 + i \cdot n)$	$i_m = \frac{i}{m}$	$C_0 = C_n(1 - d \cdot n) d_m = \frac{d}{m}$	
Sir			Racional $C_0 = \frac{C_n}{1 + i \cdot n}$	
Compuesta	$C_n = C_0 \cdot (1+i)^n$	$i_m = (1+i)^{1/m} - 1$	$C_0 = C_n \cdot (1 - d)^n$	
		$i = (i_m + 1)^m - 1$		

Notas: C_n capital en $t=n, C_0$ capital en t=0, n períodos, m subperíodos, i tipo de interés, d tipo de descuento. También existe la denominada **capitalización fraccionada**, $i_m = \frac{j(m)}{m}$, donde j(m) es el tipo de interés nominal pagadero por m.

Despeje de leyes de capitalización

Leyes de capitalización simple	Leyes de capitalización compuesta
$C_n = C_0 \cdot (1 + i \cdot n)$	$C_n = C_0 \cdot (1+i)^n$
$C_0 = \frac{C_n}{1 + i \cdot n}$	$C_0 = \frac{C_n}{(1+i)^n}$
$i = \frac{\frac{C_n}{C_0} - 1}{n}$	$i = \left(\frac{C_n}{C_0}\right)^{1/n} - 1$
$n = \frac{\frac{C_n}{C_0} - 1}{i}$	$n = \frac{\log\left(\frac{C_n}{C_0}\right)}{\log\left(1+i\right)}$

Rentas

		Unitarias	Variable en progresión geométrica			
Temporal	Pospagable	$a_{n \mid i} = \frac{1 - (1+i)^{-n}}{i}$	$A(C;q)_{n \mid i} = \begin{cases} C \cdot \frac{1 - \left(\frac{q}{1+i}\right)^n}{1+i-q} & \text{si} q \neq 1+i\\ C \cdot \frac{n}{1+i} & \text{si} q = 1+i \end{cases}$			
		$S_{n \mid i} = a_{n \mid i} \cdot (1+i)^n$	$S(C;q)_{n \mid i} = A(C;q)_{n \mid i} \cdot (1+i)^n$			
	Prepagable	$\ddot{a}_{n \mid i} = (1+i) \cdot a_{n \mid i}$	$\ddot{A}(C;q)_{n \mid i} = (1+i) \cdot A(C;q)_{n \mid i}$			
		$\ddot{S}_{n \mid i} = (1+i) \cdot s_{n \mid i}$	$\ddot{S}(C;q)_{n \mid i} = (1+i) \cdot S(C;q)_{n \mid i}$			
Perpetua	Pospagable	$a_{\infty \restriction i} = \frac{1}{i}$	$A(C;q)_{\infty \mid i} = \begin{cases} C \cdot \frac{1}{1+i-q} & \text{si} q < 1+i\\ \text{Infinito} & \text{si} q \ge 1+i \end{cases}$			
Per	Prepagable	$\ddot{a}_{\infty \rceil i} = (1+i) \cdot a_{\infty \rceil i}$	$\ddot{A}(C;q)_{\infty \mid i} = (1+i) \cdot A(C;q)_{\infty \mid i}$			

Notas:

q = raz'on.

Valor actual descontado, ejemplo, $V_0 = C \cdot a_{n \mid i}$

Valor final capitalizado, ejemplo, $V_n = C \cdot S_{n \mid i}$

Cuadro de amortización

Período	Tipo de	Término	Cuota de	Cuota de	Capital vivo	Capital amortizado
	interés	amortizativo	intereses	amortización		
0	-	-	-	-	C_0	-
t_1	i_1	a_1	$I_1 = C_0 \cdot i_1$	$A_1 = a_1 - I_1$	$C_1 = C_0 - A_1$	$M_1 = C_0 - C_1$
t_2	i_2	a_2	$I_2 = C_1 \cdot i_2$	$A_2 = a_2 - I_2$	$C_2 = C_1 - A_2$	$M_2 = C_1 - C_2$
t_s	i_s	a_s	$I_s = C_{s-1} \cdot i_s$	$A_s = a_s - I_s$	$C_s = C_{s-1} - A_s$	$M_s = C_{s-1} - C_s$
t_n	i_n	a_n	$I_n = C_{n-1} \cdot i_n$	$A_n = a_n - I_n$	$C_n = C_{n-1} - A_n = 0$	$M_n = C_0 - C_n = M_{n-1} + A_n = C_0$

Préstamos

	Francés	Americano	Italiano	Términos en progresión
				geométrica
i	Constante	-	-	-
a	Constante;	$a_s = I_s = C_0 \cdot i_s$ si $s \neq n$	$a_{s+1} = a_s - i \cdot A$	$a = \frac{C_0}{A(1;q)_{n i}}$
	$a = \frac{C_0}{a_{n \rceil i}}$	$a_n = I_n + C_0 = C_0 \cdot i_s + C_0 \text{si} s = n$		
I	-	-	$I_{s+1} = I_s - i \cdot A$	-
A	$A_s = A_1 \cdot (1+i)^{s-1}$	$A_s = 0$ si $s \neq n$	Constante;	_
A		$A_n = C_0 \text{si} s = n$	$A = \frac{C_0}{n}$	
C	$C_0 = A_1 \cdot S_{n \mid i}$	$C_s = C_0$ si $s \neq n$	-	-
		$C_n = 0$ si $s = n$		
Método	$C_s = C_{s-1} \cdot (1+i) - a$	-	$C_s = C_{s-1} - A$	$C_s = C_{s-1} \cdot (1+i) - a \cdot q^{s-1}$
Método prospectivo	$C_s = a \cdot a_{n-s \mid i}$	-	$C_s = C_{n-s} \cdot A$	$C_s = A(a \cdot q^s; q)_{n-s \rceil i}$
Método Método Método retrospectivo retrospectivo retrospectivo	$C_s = C_0 \cdot (1+i)^s - a \cdot S_{s \mid i}$	-	$C_s = C_0 - s \cdot A$	$C_s = C_0 \cdot (1+i)^s - S(a;q)_{s \mid i}$

Análisis gráfico de préstamos

Suponga un préstamo de principal $C_0 = 10.000$ a un tipo de interés i = 10% con final en n = 12 en el que se paga una cuantía en cada período que dependerá del tipo de préstamo.

Préstamo francés: tipo de interés constante, todos los términos amortizativos son constantes, cuotas de amortización varían en progresión geométrica de razón (1+i):

Préstamo americano: el deudor sólo abona intereses al final de cada período excepto en el último, en el que abona además el nominal del préstamo, las cuotas son sólo intereses, el capital vivo no varía hasta el último período.

Préstamo italiano: cuotas de amortización constantes, términos amortizativos y cuota de intereses disminuyen en progresión aritmética $(-i \cdot A)$.

Préstamo con términos en progresión geométrica: términos amortizativos varían en progresión geométrica de razón q (en este caso, q = 1.05).

FM-25.01-ES - github.com/marcelomijas/financial-math-cheatsheet - CC-BY-4.0 license