

LECTURE 7:

GENERATIVE ADVERSARIAL NETWORKS

University of Washington, Seattle

Fall 2024

Previously in EEP 596...

Previously in EEP 596...

OUTLINE

Part 1: Unsupervised Learning

- Supervised vs unsupervised
- Unsupervised learning in with NN

Part 2: Generative Model Taxidermy

- FVBN
- Variational Autoencoder
- GAN

Part 3: Generative Adversarial Networks

- GAN architecture
- Two-player game
- Generator network
- Discriminator network

Part 4: GAN Optimization and Applications

- Competing cost function
- Minmax game optimization
- GAN variations

Unsupervised Learning

Supervised vs Unsupervised

Unsupervised Learning in NN

Supervised vs Unsupervised Learning

Supervised

Data:

{x} x: inputs WITH labels

Neural Network Goal:

Minimize specific error

Examples: Classification,

Regression, Detection, Prediction

Supervised vs Unsupervised Learning

Supervised

Data:

{x} x: inputs WITH labels

Neural Network Goal:

Minimize specific **error**

Examples: Classification,

Regression, Detection, Prediction

Unsupervised

Data:

{x} x: inputs **WITHOUT labels**

Neural Network Goal:

Learn a **structure** of the data

Training Data

Training Data ~ P_{data}(x)

Training Data

Training Data ~ P_{data}(x)

Generated Samples

http://www.whichfaceisreal.com/

Generate Samples ~ P_{model}(x)

Training Data

Training Data ~ P_{data}(x)

Generated Samples

http://www.whichfaceisreal.com/

Generate Samples ~ P_{model}(x)

Goal: Model estimated density ≈ Real world density

Core problem in unsupervised learning

Unsupervised

Data:

{x} x: inputs WITHOUT labels

Neural Network Goal:

Learn a **structure** of the data

+ No need for labeling → More data

- Challenge: Cost?

+ Has the potential to learn the real world

- Challenge: Optimization?

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Maximum Likelihood Estimation

Model params
$$m{ heta}^* = argmax_{m{ heta}} E_{x \sim p_{data}} log \ p_{model}(x|m{ heta})$$

Goal: Find the optimal distribution $p_{model}(x|\theta)$ that best fit the data

Explicit – explicitly define and generate P_{model} **Implicit** - generate P_{model} without defining P_{model} exactly

Generative Model Taxidermy

Supervised vs Unsupervised

Unsupervised Learning in NN

20

Fully Visible BN

Explicitly formula based on chain rule:

$$p_{model}(x) = p_{model}(x_1) \prod_{i=2}^{n} p_{model}(x_i | x_1, x_2, ..., x_{i-1})$$

O(n) generation cost

No control through hidden variables

Language Model

Language model: probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

Language Model

Language model: probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

Language Model

Language model: probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

Chain rule is used to estimate probability:

$$P(w_1 w_2 \dots w_n) = \prod_{i} P(w_i | w_1 w_2 \dots w_{i-1})$$

P(W) = P(NASA) P(will | NASA) P(take | NASA will) P(me | NASA will take)
P(to | NASA will take me) P(Moon | NASA will take me to)

$$p_{model}(x) = \prod_{i=2}^{n} p_{model}(x_i | x_1, x_2, ..., x_{i-1})$$

$$p_{model}(x) = \int p_{model}(z)p_{model}(x|z) dz$$

$$p_{model}(x) = \prod_{i=2}^{n} p_{model}(x_i | x_1, x_2, ..., x_{i-1})$$

$$p_{model}(x) = \int p_{model}(z)p_{model}(x|z) dz$$

 $p_{model}(x)$ is controlled by hidden state z

GAN

 Instead of sampling from high dimensional, complex and unknown distribution

• Sample from **simple distribution**, e.g. normal distribution (random noise) and **find transformation** to the distribution we want to learn.

Learn the transformation using a NN

not learning classification but transformation

Generative Adversarial Networks

Supervised vs Unsupervised

Unsupervised Learning in NN

GAN

GAN

Discriminator – try to distinguish between **x** (real) and generated (fake) images

Generator – try to generate samples and present them as real world and fool the discriminator

Generator (G)

Training data has distribution \mathbf{p}_{data} . Sample $\mathbf{x} \sim \mathbf{p}_{data}$.

Goal: Output sample $\mathbf{x}^{\mathbf{G}}$ is of similar dimensions as \mathbf{x} and distribution \mathbf{p}_{data} .

Examples

Face:

Car:

Bedroom:

Discriminator (D)

Receives input of same dimensions as **p**_{data}.

Goal: Distinguish sample from \mathbf{p}_{data} (1) or not (0).

Examples

Discriminator

Face (gen):

0

Car (real):

1

Bedroom (gen):

0

Full Architecture

GAN Optimization and Applications

Supervised vs Unsupervised

Unsupervised Learning in NN

Binary Cross Entropy Loss

$$\begin{split} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) - \frac{1}{2} \mathbb{E}_{z \sim p_{model}} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right) \\ J^{(G)} &= -J^{(D)} \end{split}$$

$$J^{(D)} = -\frac{1}{2} \int p_{data}(x) \log D(x) dx - \frac{1}{2} \int p_{model}(x) \log \left(1 - D(x)\right) dx$$

Optimal D(x) is

$$D(x) = \frac{p_{data}}{p_{model} + p_{data}}$$

Assumption: p_{model} , p_{data} are nonzero everywhere

Equilibrium:
$$p_{model} = p_{data}$$
 then $E(D(x)) = \frac{1}{2}$

Discriminator learns an approximation of $p_{data}(x)/p_{model}(x)$ vs

learning p_{model} (x) directly (or indirectly via latent variable models).

Minmax Game Optimization

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p_{model}} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for real data

Discriminator output for generated data

Solution:

Saddle point in the parameter space (Nash Equillibrium)

- One player (Discriminator) is at maximum,
- Other player (Generator) is at minimum

Optimization in NN

Gradient ascent for the discriminator on J

$$J^{(D)} = \frac{1}{2} \mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \frac{1}{2} \mathbb{E}_{z \sim p_{model}} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right)$$
$$\theta_d \leftarrow \underset{\theta_d}{\text{arg min }} J^{(D)}$$

Gradient descent for the generator

$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{z \sim p_{model}} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right)$$
$$\theta_g \leftarrow \underset{\theta_g}{\text{arg min }} J^{(G)}$$

Optimization in NN

Take k gradient steps for the discriminator (k a hyperparameter), each doing the following:

- Sample m noise samples, $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ from $p_{model}(z)$.
- Sample m actual samples, $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ from $p_{data}(x)$: (a minibatch of your input data.)
- Perform an optimization step on the discriminator:

Optimization in NN

Take k gradient steps for the discriminator (k a hyperparameter), each doing the following:

- Sample m noise samples, $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ from $p_{model}(z)$.
- Sample m actual samples, $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ from $p_{data}(x)$: (a minibatch of your input data.)
- Perform an optimization step on the discriminator:

Do gradient descent step for the generator:

- Sample m noise samples, $\{z^{(1)}, z^{(2)}, ..., z^{(m)}\}$ from $p_{model}(z)$.
- Perform an optimization step on the **generator**:

GAN Applications: Original GAN

Goodfellow et al. (2014) Generative Adversarial Nets

DCGAN

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." (2015).

Similarities in Hidden Space

woman with glasses

Text to Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this white and yellow flower have thin white petals and a round yellow stamen

Reed et al. Generative Adversarial Text to Image Synthesis (2017)

CycleGAN

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017

Pix2Pix

P. Isola et al. Image-to-Image Translation with Conditional Adversarial Nets, CVPR 2017

Next episode in EEP 596...

Attention and Transformer