Exercise 4.1. Larger radix-r number
Exercise 4.1. Larger radix-r number Proof: $\sum_{r=0}^{\infty} (r-1) \cdot r' = r'' - 1$ Since the largest number by IV digit
Case N = 1 is just put N dights of the greatest r
(h .) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$(1-1) \cdot r = r-1$ $r''-1 = r'-1$ $\sum_{i=1}^{N-1} di \times r' = \sum_{i=0}^{N-1} (r-1) \cdot r' = r''-1$
(ase $N = n + 1$
$\sum_{i=0}^{N-1} (r-1)-r' = r^{N} \ge 1$
$(r-1)\cdot r^n + r^n - 1 = r^{n+1} - 1$
$(r-1+1)r^n - 1 = r^{n+1} - 1$
Y. Y"-1= Y"+1-1
$r^{n+1}-1=r^{n+1}-1$
Thus, \(\frac{\sigma_{-1}}{\sigma_{-1}}(r-1)r' = r'' - 1 holds.
Exerche 4.4 2's complement Operation.
Proof: Suppose there is a number just like B wish magnitude less than 2"-2
B= 4 = 0/00 A = 8 = 1000. B-A = -B. By using 2's completer.
0100 0100 1100 = -4
1/2/1/2/+0111
1150 \$100
Use - (bN-1 bo); = (bN-1
0011 0100 = 4 = -(-4)
+ 1 - (1/00) = (0) + 1
-(1/00) = (0011) + 1 = 4
Thus, 2's complemen operation holds.
1 vivo, 2 o with the proof