Constructing the block anti-diagonal matrix over the determinant Marco Talarico

Introduction

We start with a n-dimensional complex vector space V with basis $\{x_1, \ldots, x_n\}$, and let $A = \mathbb{C}[x_1, \ldots, x_n]$. Consider the permutation group $G = S_n$ acting on V such that for $g \in G$ the action $g.(c_1x_1 + \ldots + c_nx_n) = c_1x_{g(1)} + \ldots + c_nx_{g(n)}$, let $B = A^G$ be the subring of A fixed by the action of S_n , thus $B = \mathbb{C}[f_1, \ldots, f_n]$ where $\{f_1, \ldots, f_n\}$ are the n symmetric polynomials of A. Define $B_+ = (f_1, \ldots, f_n)$, by the Chevallay-Sheppard-Todd theorem we have that A/B_+ is a finitely generated B-module, since S_n is generated by reflections, therefore $A = B \otimes_{\mathbb{C}} (A/B_+)$.

Next we will discuss how to find such basis for (A/B_+) , we start with $\lambda = (p_1, \ldots, p_k)$ a partition of n, we may assume that $p_1 \ge p_i$ for i > 1. Define a **Young Diagram** to be a diagram with exactly n-rows and p_i columns, as an example take the partition (3,1) of 4, the young diagram of this partition would be as such.

We can define then a **Young Tableau**, or tableau, to be a bijection of $\{1, \ldots, n\}$ onto the entries of a young diagram, we call a tableau T **standard** if it for every column c and row r we have that if i < j then $r_i < r_j$ and $c_i < c_j$. For any partition λ , let (c_1, \ldots, c_d) be the columns of the young diagram, note that $(|c_1|, \ldots, |c_k|)$ is also a partition of n, where $|c_i|$ is the size of the column c_i , this partition is called the conjugate partition of λ , denoted λ' . We can define for any tableau T of λ the conjugate tableau T' in which the columns of T are the rows of T'. Below is an example of a standard young tableau on the partition $\lambda = (3, 1)$, and its conjugate tableau on the partition $\lambda' = (2, 1, 1)$, note that the conjugate tableau is also standard.

$$T_1 = \begin{array}{|c|c|c|}\hline 1 & 2 & 3\\\hline 4 & & & \\\hline \end{array}$$

$$T_1' = \begin{array}{|c|c|c|}\hline 1 & 4\\\hline 2\\\hline 3 & & \\\hline \end{array}$$

Recall that the representations of S_n are determined by the partitions of n, that is, for each partition λ of n we can define V_{λ} to be the irreducible S_n representation correspondent to λ . The dimension of V_{λ} can be determined from the Young Diagram of λ , where $\dim(V_{\lambda}) = \frac{n!}{\prod_{i,j} h(i,j)}$ where h(i,j) is the hook length of the (i,j)-position of the diagram, here i is the column index and j is the row index.

Let λ be a partition of n, we denote $ST(\lambda)$ to be the set of all standard tableaux of shape λ . We can define a group action of S_n on a given young tableaux t, where for any $g \in S_n$ then g.t(i,j) = g(t(i,j)), where i is the row and j the column, therefore define C_t and R_t to be the column and row stabilizer of t under this action. Recall the group algebra $\mathbb{C}S_n = \{\sum_{g \in S_n} c_g g \mid c_i \in \mathbb{C} \text{ for } i \in S_n\}$, we will define for $t \in ST(\lambda)$, the following idempotents in $\mathbb{C}S_n$

$$\epsilon_t = \frac{\dim(V_\lambda)}{n!} \sum_{c \in C_t} \sum_{r \in R_t} \operatorname{sgn}(c) cr \text{ and } \sigma_t = \frac{\dim(V_\lambda)}{n!} \sum_{c \in C_t} \sum_{r \in R_t} \operatorname{sgn}(c) rc$$

As an example, if we pick $T \in ST((2,1))$ as shown bellow, we obtain that $C_T = \{e, (1,3)\}$ and $R_T = \{e, (1,2)\}$, thus ϵ_t and σ_t are shown bellow

$$T = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$$
 $\epsilon_T = () + (12) - (13) - (123)$
 $\sigma_T = () + (12) - (13) - (132)$

Next we define for a standard tableau T, the charge i(T), let $\{r_1, \ldots, r_k\}$ be the rows of T, we define $w(T) = \{r_{k_1}, \ldots, r_{k_{|r_k|}}, \ldots, r_{k_n}\}$ to be the tuple obtained by concatenating the rows of T from the bottom upwards, for every $1 \le j \le n$ define $1 \le k_j \le n$ such that $w(T)_{k_j} = j$, now we build w(i(t)) recursively where $i(T)_{k_1} = 0$ and for j > 1 if $k_{j-1} < k_j$ then $i(T)_{k_j} = i(t)_{k_{j-1}}$, if $k_{j-1} > k_j$ then $i(t)_{k_j} = i(t)_{k_{j-1}} + 1$. With the same tableau as the previous example below are the w(T) and i(T).

$$w(T) = (3, 1, 2)$$
 and $i(T) = (1, 0, 0)$

Now we will relate the standard tableaux with our original ring A, fix a partition λ of n, for any $T, S \in ST(\lambda)$ define the monomial $x_T^S = x_{w(T)_1}^{i(S)_1} \dots x_{w(T)_n}^{i(S)_n}$, with this we may define the **higher specht polynomials** as $F_T^S = \epsilon_T . x_T^S$. As an example let T be the same as the previous example, we compute x_T^T , firstly w(T) = (3, 1, 2) and i(T) = (1, 0, 0) therefore $x_T^T = x_3^1 x_1^0 x_2^0 = x_3$ and we can produce the polynomial F_T^T

$$F_T^T = \epsilon_T . x_T^T = \frac{1}{3}(() + (12) - (13) - (123)) . x_3 = \frac{2}{3}(x_3 - x_1)$$

Recall that as a representation of S_n we know that $\mathbb{C}S_n \cong \bigoplus_{\lambda \vdash n} V_\lambda^{\oplus dim(V_\lambda)}$, we also know that $A = B \otimes_{\mathbb{C}} A/B_+ \cong B \otimes_{\mathbb{C}} \mathbb{C}S_n$ as a $\mathbb{C}S_n$ module. With this notation we can define the isotypical components of A correspondent to V_λ as $A_\lambda = \hom_{\mathbb{C}S_n}(V_\lambda, A) \otimes V_\lambda$, furthermore the set $F_\lambda = \{F_t^s\}_{s,t \in \mathrm{ST}(\lambda)}$ forms a basis for A_λ in A over B, This allows us to write $A \cong \langle F_p \rangle_{\lambda \vdash n}$ over B. Consider the element $z = F_{alt}^{alt}$ where $alt = \sum_{1 < i < n} 1$ is the alternating partition of n, we may write $z = \prod_{i < j} (x_i - x_j)$ the map $z : A \to A$ defined by $z : x \mapsto zx$ is a linear map, thus we may write it as a matrix $M_z : B^{n!} \to B^{n!}$ since A may be considered a free B module. We wish to find a basis for F such that M_z is block anti-diagonal. Note that z is a relative invariant under S_n , therefore the map $z : A_\lambda \to A_{\lambda'}$ for any partition λ of n, this means that for any $S, T \in \mathrm{ST}(\lambda)$ we have the following.

$$zF_T^S = \sum_{V \in ST(\lambda')} \sum_{W \in ST(\lambda')} g_{V,T}^{W,S} F_V^W \qquad \text{where } g_{V,T}^{W,S} \in B$$

This means that for every partition of n, we can define $U_{\lambda} = [g_{V,T}^{W,S}]_{S,T,W',V'\in ST(\lambda)} \in B^{\dim(V_{\lambda})^2 \times \dim(V_{\lambda})^2}$ which has the propriety that $U_{\lambda}U_{\lambda'} = z^2I_{\dim(V_{\lambda})^2} = \Delta I_{\dim(V_{\lambda})^2}$, which is a matrix factorization of Δ . Note that A_{λ} contains $\dim(V_{\lambda})$ copies of A_{λ} , in the next section we will construct a basis which will further reduce the size of the matrix factorization to $\dim(V_{\lambda})$.

New Basis of A over B

We will now discuss a new basis for A over B, for any two standard young tableaux T and V of shape λ , define the following

$$\sigma_T = \frac{n!}{\dim(V_\lambda)} \sum_{c \in C_T} \sum_{r \in R_T} sng(c)rc = n_T \sum_{c \in C_T} \sum_{r \in R_T} sng(c)rc$$

$$H_T^V = \sigma_T(\varepsilon_T.x_T^V) = \sigma_T(F_T^V)$$

In order to show that $\{H_T^V\}_{T,V\in ST(\lambda)}$ are a basis for A_λ , we define a bilinear form on A over B, let $f,g\in A$,

$$\langle f, g \rangle = \sum_{x \in S_n} \operatorname{sgn}(x) x.(fg) / \prod_{i < j} (x_i - x_j)$$

We now have three known results about this bilinear form,

Lemma 1: For any $g \in S_n$ and $f_1, f_2 \in A$ we have that $\langle g.f_1, f_2 \rangle = sng(g)\langle f_1, g^{-1}.f_2 \rangle$

As a consequence we have that for any tableaux T and its conjugate T' the following holds, $\langle \varepsilon_T.f_1, f_2 \rangle = \langle f_1, \varepsilon_{T'}.f_2 \rangle$ and $\langle \sigma_T.f_1, f_2 \rangle = \langle f_1, \sigma_{T'}.f_2 \rangle$.

Lemma 2: For any standard tableaux T, V, S, W we have that $\langle F_T^V, F_S^W \rangle = c \in \mathbb{C}^*$ if and only if T = S' and V = W' where T and V are of the same shape, otherwise $\langle F_T^V, F_S^W \rangle = 0$.

Corollary 1: The determinant of the gramian matrix with respect to the higher Specht polynomials and the bilinear form above is a non-0 constant in \mathbb{C} . This would show that the higher Specht polynomials indeed form a basis for A over B.

We will now use this bilinear form to show that the new defined polynomials form a basis for A over B.

Lemma 3: The set $\{H_T^S\}_{T,S\in ST(\lambda),\lambda\vdash n}$ is a basis for A over B.

Proof: Let T and S be standard tableaux of shape λ_1 , and let V and W be standard tableaux of shape λ_2 then we have two cases, if $\lambda'_1 \neq \lambda_2$ then we have that

$$\begin{split} \langle H_T^S, H_V^W \rangle &= \langle \sigma_T. F_T^S, \sigma_V. F_V^W \rangle \\ &= \langle F_T^S, \sigma_{T'} \sigma_V. F_V^W \rangle \\ &= \langle F_T^S, 0. F_V^S \rangle \\ &= \langle F_T^S, 0 \rangle = 0 \end{split}$$

Since T and V are not of the same shape

The second case where $\lambda'_1 = \lambda_2$, then there are three possibilities, if $T' \neq V$ then $\sigma_{T'}\sigma_V = 0$ and thus we have that $\langle H_T^S, H_V^W \rangle = 0$ by the same computation above. If T' = V and $S' \neq W$ then firstly note that $\langle F_T^S, F_V^W \rangle = 0$ since $S' \neq W$ and secondly

$$\begin{split} H_V^W &= \sigma_V.F_V^W \\ &= n_V \sum_{c \in C_V} \sum_{r \in R_V} \mathrm{sgn}(c) r c.F_V^W \\ &= n_V \sum_{r,c} \mathrm{sgn}(c) F_{rc.V}^W \end{split}$$

With this we can write the following if T' = V and $S' \neq W$,

$$\langle H_T^S, H_V^W \rangle = \langle \sigma_T. F_T^S, \sigma_V. F_V^W \rangle$$

$$= \langle F_T^S, \sigma_{T'} \sigma_V. F_V^W \rangle$$

$$= \langle F_T^S, \sigma_V. F_V^W \rangle$$

$$= \langle F_T^S, \sum_{r,c} \operatorname{sgn}(c) F_{rc.V}^W \rangle$$

$$= \sum_{r,c} \operatorname{sgn}(c) \langle F_T^S, F_{rc.V}^W \rangle$$

$$= \sum_{r,c} (0)$$

Lastly if T' = V and S' = W then consider the sets $a_T = \sum_{r \in R_T} r$ and $b_T = \sum_{c \in C_t} \operatorname{sgn}(c)c$ then $\varepsilon_T = n_T b_T a_T$ and $\sigma_T = n_T a_T b_T$, by the way they are defined its easy to see that $b_T^2 = |C_T| |b_T$, therefore $\sigma_T \varepsilon_T = n_T^2 a_T b_T^2 a_T = |C_T| |n_T^2 a_T b_T a_T$ which gives us a easy way to write the fact that $\sigma_T F_T^V = |C_T| |n_T \sum_{r \in R_T} F_{r,T}^V$.

With that, if $r \in R_T$ and $r \notin \operatorname{Stab}(F_T^S)$ then $\langle F_{r,T}^V, F_{T'}^{V'} \rangle = 0$. Therefore, let $\langle F_T^S, F_{T'}^{S'} \rangle = h \in \mathbb{C}^*$, then we can write the following.

$$\langle H_T^S, H_{T'}^{S'} \rangle = \langle \sigma_T.F_T^S, \sigma_{T'}.F_{T'}^{S'} \rangle$$

$$= \langle \sigma_T F_T^S, F_{T'}^{S'} \rangle$$

$$= \langle \mid C_T \mid n_T \sum_{r \in R_T} F_{r.T}^S, F_{T'}^{S'} \rangle$$
 by the argument above
$$= \mid C_T \mid n_T \sum_{r \in R_T} \langle F_{r.T}^S, F_{T'}^{S'} \rangle$$
 since $\langle \rangle$ is bilinear
$$= \mid C_T \mid n_T \sum_{r \in R_T \cap \operatorname{Stab}(F_t^S)} \langle F_{r.T}^S, F_{T'}^{S'} \rangle$$

$$= \mid C_T \mid n_T \sum_{r \in R_T \cap \operatorname{Stab}(F_t^S)} \langle h \rangle \neq 0$$
 since $e \in R_T \cap \operatorname{Stab}(F_t^S)$

Therefore $0 \neq \langle H_T^S, H_{T'}^{S'} \rangle \in \mathbb{C}$, and we may conclude that for standard tableaux $T, V, S, W \langle H_T^S, H_V^W \rangle = c \in \mathbb{C}^*$ if V = T' and S' = W, and 0 otherwise, meaning the determinant of the gramian according to this basis is a non-0 constant in \mathbb{C} , meaning it the set makes a basis for A over B.

Lemma 4: For given standard tableaux T and S of shape λ , we have that $H_T^S \in \langle F_V^S \rangle_{V \in ST(\lambda)}$.

Proof: Note that for a Young Tableaux W and a standard tableaux S of the same shape λ , then $F_T^S \in \langle F_V^S \rangle_{V \in \mathrm{ST}(\lambda)}$, and by the proof of the previous lemma we have that for $T, S \in \mathrm{ST}(\lambda)$, then we have that $H_T^S = \sigma_T F_T^S = |C_T| n_T \sum_{r \in R_T} F_{r,T}^S \in \langle F_T^S \rangle$

The immediate corollary we get is that $\{H_T^S\}_{T,S\in ST(\lambda)}$ is a basis for A_λ over B.

Matrix Factorization of Δ

Now we will use the new basis of A_{λ} over B to produce a matrix factorization $MN = I\Delta$ where $M, N \in B^{\dim(V_{\lambda}) \times \dim(V_{\lambda})}$. Recall that z is a relative invariant and consider the following for some fixed $T, S \in ST(\lambda)$, since $H_T^S \in A_{\lambda}$ we know then multiplication by $zH_T^S \in A_{\lambda'}$. For the remainder of this section we will define for $T \in ST(\lambda)$ the free modules of dimension $\dim(V_{\lambda})$ over B as $FA_T = \langle F_T^S \rangle_{S \in ST(\lambda)}$ and $HA_T = \langle H_T^S \rangle_{S \in ST(\lambda)}$.

Lemma 1: For $f \in HA_T$ and $g \in FA_T$ we have that $zf \in FA_{T'}$ and $zg \in HA_{T'}$

Proof: To show this we will irst show that for each $S \in ST(\lambda)$ we may write zH_T^S in terms of the basis of $FA_{T'}$, note that since $zH_T^S \in A_{\lambda'}$ then we can write it the following way

$$zH_T^S = \sum_{V \in \mathrm{ST}(\lambda')} \sum_{W \in \mathrm{ST}(\lambda')} g_{V,S}^{W,T} F_V^W \quad \text{where } g_{V,T}^{W,S} \in B$$

Now lets see what happens when we apply $\varepsilon_{T'}$ to both sides,

$$\begin{split} \varepsilon_{T'}(zH_T^S) &= \sum_{c \in C_{T'}} \sum_{r \in R_{T'}} sg(c)cr(zH_T^S) & \text{by definition} \\ &= z(\sum_{c \in C_{T'}} \sum_{r \in R_{T'}} sg(r)crH_T^S) & \text{since } g.z = sg(g)z \\ &= z(\sum_{c \in R_T} \sum_{r \in C_T} sg(r)crH_T^S) & \text{since } R_{T'} = C_T \text{ and } C_{T'} = R_t \\ &= z(\sigma_T H_t^S) = zH_T^S & \text{by definition of } H_T^S \end{split}$$

Therefore $\varepsilon_{T'}(zH_T^S) = zH_T^S$, and the right hand side would then reduce the following way,

$$\begin{split} \varepsilon_{T'} \big(\sum_{q \in \mathrm{ST}(p')} \sum_{w \in \mathrm{ST}(p')} g_{V,T}^{W,S} F_V^W \big) &= \sum_{q \in \mathrm{ST}(p')} \sum_{w \in \mathrm{ST}(p')} g_{V,T}^{W,S} \big(\varepsilon_{T'} \varepsilon_{V}.x_V^W \big) \\ &= \sum_{W \in \mathrm{ST}(p')} g_{T',T}^{W,S} F_{T'}^W \qquad \qquad \text{since } e_{T'} e_V = 0 \text{ if } V \neq T' \end{split}$$

Therefore we have that $zH_T^S = \sum_{W \in ST(p')} g_{T',T}^{W,S} F_{T'}^W \in FA_{T'}$, therefore this proves that $zf \in FA_{T'}$ for $f \in HA_T$, to prove the second part is identical to the computation above where

$$\sigma_{T'}(zF_T^S) = \sum_{W \in \mathrm{ST}(p')} h_{T',T}^{W,S} H_{T'}^W \text{ where } h_{T',T}^{W,S} \in B$$

Which concludes the proof

With the lemma above we can write multiplication by z in terms of the basis for HA_T and $FA_{T'}$, with the same notation of the lemma for each $T \in ST(\lambda)$ we write $M_T = [g_{T',T}^{W,S}]_{T',S \in ST(\lambda')}$ and $N_T = [h_{T',T}^{W,S}]_{T',S \in ST(\lambda')}$ where $M_T, N_T \in B^{\dim(V_\lambda) \times \dim(V_\lambda)}$, clearly $M_T : HA_T \to FA_T$ and $N_T : FA_T \to HA_T$. Finally this yields the fact that $M_T N_{T'} = N_T M_{T'} = \Delta I_{\dim(V_\lambda)}$. Now we have the following,

Lemma 2: If $T, V \in ST(\lambda)$ with $\pi \in S_n$ such that $\pi \cdot V = T$ then $M_T = \operatorname{sgn}(\pi) M_V$, similarly $N_T = \operatorname{sgn}(\pi) N_V$

Proof: First let $c = \operatorname{sgn}(\pi) = \operatorname{sgn}(\pi^{-1})$ and $S \in \operatorname{ST}(\lambda)$, we can write $H_T^S = \pi H_V^S$ which gives the following,

$$zH_T^S=z(\pi H_V^S)=\pi(czH_V^S)$$

By Lemma 1 we have the following

$$zH_T^S = \sum_{W \in ST(\lambda')} g_{T',T}^{W,S} F_{T'}^W \tag{1}$$

$$zH_V^S = \sum_{W \in ST(\lambda')} g_{V',V}^{W,S} F_{V'}^W \in FA_{T'}$$

$$\tag{2}$$

We can use it two write the following

$$\begin{split} \sum_{W \in \mathrm{ST}(\lambda')} g_{T',T}^{W,S} F_{T'}^W &= \sum_{W \in \mathrm{ST}(\lambda')} g_{T',T}^{W,S}(\pi F_V^S) \\ &= \pi \big(\sum_{W \in \mathrm{ST}(\lambda')} g_{T',T}^{W,S} F_{V'}^W \big) \\ \pi \big(czH_V^S\big) &= \pi \big(\sum_{W \in \mathrm{ST}(\lambda')} cg_{V',V}^{W,S} F_{V'}^W \big) \end{split}$$

Now since $zH_T^S = \pi(czH_V^S)$ this would give us that $\pi(\sum_{W \in ST(\lambda')} g_{T',T}^{W,S} F_{V'}^W) = \pi(\sum_{W \in ST(\lambda')} cg_{V',V}^{W,S} F_{V'}^W)$ and applying π^{-1} to both sides we have that $\sum_{W \in ST(\lambda')} (g_{T',T}^{W,S} - cg_{V',V}^{W,S}) F_{V'}^W = 0$, implying that $g_{T',T}^{W,S} = cg_{V',V}^{W,S}) F_{V'}^W$. Therefore we can show the following, $M_T = [g_{T',T}^{W,S}]_{T',S \in ST(\lambda')} = [cg_{V',V}^{W,S}]_{V',S \in ST(\lambda')} = cM_V$. The case for N_T can be computed in a similar manner to this.

1 bibliography

- 1. (Michel Broué) "Introduction to Complex Reflection Groups and Their Braid Groups" (1988)
- 2. (Redmond Mcnamara) "Irreducible Representations of the Symmetric Group"
- 3. (Willian Fulton, Joe Harris) "Representation Theory a First Course"
- 4. (Tomohide Terasoma, Susumu Ariki, Hiro-Fumi Yamada) "Higher Specht Polynomials" (1996)
- 5. (Ragnar-Olaf Buchweitz, Elenore Faber, Colin Ingalls) "A Mckay Correspondence for Reflection Groups"