Prominence scales guide incremental sentence comprehension in Georgian

Steven Foley & Matt Wagers

* Info: https://people.ucsc.edu/~srfoley/index.html

Acknowledgements © Thanks to Irma Miminoshvili & Mariam Navadze for help with creating stimuli and experiment logistics. References © [1] Silverstein, M. (1976). In *Grammatical categories in Australian Languages*. [2] Aissen, J. (1999). *Natural* UNIVERSITY OF CALIFORNIA

Language & Linguistic Theory 17. [3] Bornkessel-Schlesewsky, I., and Schlesewsky, M. (2009). Language and Linguistic Compass 3. [4] Bornkessel-Schlesewsky, I. and Schlesewsky, M. (2008). Brain Research Reviews 59. [5] Aronson, H. I. (1995). Georgian: A Reading Grammar. [6] Drummond, A. (2016). Software. [7] Skopeteas, S., et al. (2012). In Case, Word Order, and Prominence.

Prominence scale misalignments (e.g. inanimate subjects) often trigger **special grammatical phenomena**. SPR data from a **split-ergative** language show that **the parser makes fine-grained predictions** while navigating **incremental ambiguities** in order to avoid positing **role-animacy mismatches**.

Prominence scales are relevant for grammar & parsing

- Some grammatical categories (syntactic role, animacy, etc.) can be hierarchically arranged into **prominence scales** [1,2].
 - Role

 Subject (su) Human ()

 Ind. Obj. (IO) Animal ()

 Dir. Obj. (DO) Inanimate ()
- Grammars often treat structures with **misaligned scales** in a special way, across many languages & phenomena.
- o Take **differential object marking** in Persian [2]. Low-prominence objects like **●DO**s are unmarked (1); high-prominence objects like **DO**s are associated with special morphology ('DOM') (2).

(1) medâdi xarid.		SU	Scales are	(2)	mardi- râ	did.	SU	Scales are
pencil bought	•••	10	Aligned:		man- dom	saw	10	Misaligned:
'He bought a pencil.'		DO	No dom		'He saw a m	nan.'	DO	ром appears

- Prominence scales also shed light on syntactic processing.
- Parsers seem to predict aligned scales as much as possible, and misaligned scales can cause processing difficulty [3].
- And indeed, for psycholinguistic theories like **eADM** [3,4], prominence scales feature prominently.
- However, **crosslinguistic investigation** is necessary to better understand just **how the parser uses which scales**.

Georgian split ergativity causes parsing challenges

- Georgian
 is a scrambling SOV language with null pronouns and (more unusually) split-ergative case [5].
- Arguments appear in different cases across different tenses (3), and cases differ in how many roles they are compatible with (4).

(3)		SU	10	DO			
	Future	NOM	D/	DAT			
	Past	ERG	DAT	NOM			
	Perfect	DAT	(PP)	NOM			

	refre	are ee	mpac	
(4)		ERG	NOM	DAT
	SU	√	✓	✓
	10			✓
	DO		√	√

• Due to these properties, incremental ambiguities abound: e.g. is a preverbal **DAT** argument the **SU**, **IO**, **or DO**?

- If scale alignment is prioritized during parsing, an ambiguous argument's prominence (e.g., animacy) will influence its parse.
- \circ Find **inanimate** $\stackrel{\triangle}{=}$ argument \rightarrow assign **lowest** unclaimed role.

Testing how arguments' animacy affects their parse

- Two SPR studies: Exp[™] = all human arguments, Exp[™] = all inanimate
- 2×2 design: word order {sov; osv} × SU/_{DO}-case frame {NOM/_{DAT}; ERG/_{NOM}}
 - 42 paid participants in Georgia. Experiment conducted online, via Ibex Farm [6].
 - ∘ One session: 28 ॐ-itemsets + 28 ॐ-itemsets + 42 fillers + comprehension questions
- (6) a. [SOV + ERG/_{NOM} + [SOV]

 dġes sṭumar-ma kera xuro gaaxara ketili sačukr-it.

 today guest-ERG blond carpenter.NOM gladden:PAST kind gift-INST

 "Today the guest gladdened the blond carpenter with a kind gift."
 - b. [SOV + NOM/DAT + 10]

 dġes sṭumar-i kera xuro-s gaaxarebs ķetili sačukr-it.

 today guest-NOM blond carpenter-DAT gladden:FUT kind gift-INST

 "Today the guest will gladden the blond carpenter with a kind gift."
 - C. [OSV + ERG/_{NOM} + [ost of the second content of the second con
 - d. [OSV + NOM/DAT + []]

 diges stumar-s kera xuro gaaxarebs ketili sačukr-it.

 today guest-DAT blond carpenter.NOM gladden:FUT kind gift-INST

 "Today the blond carpenter will gladden the guest with a kind gift."
- Reading time results for **Exp** (sov vs. osv)

• Reading time results for **Exp** (sov vs. osv)

Labeled effects are significant (p < 0.05). No effects found for comprehension measures.

Incremental alignment of role & animacy derives RTs

- A very **simple theory** accounts for the observed patterns.
- Parse arguments by **maximally aligning** animacy and roles.
 - \bigcirc **SU** if possible; else \bigcirc **IO** if possible; else \bigcirc **DO**
 - ⇒→**DO** if possible; else ⇒→**IO** if possible; else ⇒→**SU**
- Processing difficulty arise when reparses are necessary, or when role–animacy misalignments (like →su) are unavoidable.
- Human reanalysis effect (seen at positions with thick black boxes below)
- ∘ If **NP1** is ♥, the optimal parse is always **SOV**, since any case can be **su** (4).
- But this parse is foiled in **OSV** conditions, by **NP2.ERG** (6c) or the **Verb** (6d).
- In (6b), a ditransitive parse avoids positing a **Do** at **NP2** but the monotransitive verb foils this prediction.

monodansitive verb ions this prediction.										
	at	: NP1	at NP2			at Verb				
	Parse 👁	Predictions 💭	Parse 🎱		Predictions 💭	Parse)		
(6a)	© ERG SU	NOM VERB [PAST, TR]	© ERG SU	!?	VERB [PAST, TR]	ERG SU	©NOM DO	VERB [PAST, TR]		
(6b)	◎ NOM	DAT VERB	© NOM │ SU	DAT 	DAT VERB [FUT, !?DITR]	♥ NOM SU	!?	VERB [FUT, <mark>!?TR</mark>]		
(6c)	SU	DO [FUT, TR]	!? © NOM !? DO	ERG SU	VERB [!?PAST, TR]	© NOM │ DO	ERG SU	VERB [PAST, TR]		
(6d)	DAT SU	NOM VERB [PERF, TR]	DAT SU	!?	VERB [PERF, TR]	!?	NOM !?su	VERB [!?FUT , TR]		

- Misalignment cost (seen at positions with thick gold boxes below)
 - **ERG** is surprising anywhere (6'a,c) as it entails misaligned scales (**SU**).
- Inanimate reanalysis effect (seen at positions with thick blue boxes below)
- ∘ In (6'b), a ditransitive parse at NP2.DAT avoids positing **SU**, but the monotransitive verb foils this prediction.

	at NP1			at NP2			at Verb		
	Parse 👁	Predict	tions 🔎	Parse 🎱		Predictions 🔎	Parse 👁		
(6'a)	!? ≝ERG SU	NOM DO	VERB [PAST, TR]	ERG SU	Section NOM DO	VERB [PAST, TR]	ERG SU	№NOM DO	VERB [PAST, TR]
(6'b)	[™]NOM	€ ERG	VERB	₩NOM DO	ὧDAT IO	<pre></pre>	!?	DAT !?DO	VERB [FUT, !?TR]
(6'c)	DO	SU	[PAST, TR]	™NOM DO	!? ≌ERG SU	VERB [PAST, TR]	№NOM DO	ERG SU	VERB [PAST, TR]
(6'd)	©DAT DO	NOM SU	VERB [FUT, TR]	DO DAT	!? INOM	VERB [FUT, TR]	DO DAT	NOM SU	VERB [FUT, TR]

Nearly all cues **predicted** to cause difficulty under an alignment theory (notated with !? in the above tables) correspond to **observed RT slow-downs** — strong evidence that the **parser prioritizes prominence scale alignment**. But a few questions remain open.

- Why don't boon and monoment cost like merces. Sus?
- Does the parser really prefer positing ditransitive verbs over misaligned arguments?
- No strong evidence that **DAT** in Georgian is strongly tied to **DO**, as **[7]** claim. Why not?
- Do parsers ever posit **intransitive** structures? (Georgian has **ERG**, **NOM**, and **DAT INTR.SU**s.)