Design Automation

Aanchal Chobisa Bhaskar Venkataramaiah Saroj Bardewa

Final Project Presentation

Introduction

Project Overview:

- tcl scripts to automate design synthesis
 - Find components (cells/nets/ports...) and report their attributes (timing margin/cell count...)
 - Script had to be design independent
- Wrote two scripts as a part of the final project
 - Script #1: Finding timing paths, total cells, etc.
 - Script #2: Finding max and min timing margins, etc.
- Applications of our design:
 - Accelerate design process in design tools such Design Compiler and IC Compiler

Introduction

Script #1

- Problem Statement:
 - Report timing information for a given user input
 - User given inputs :
 - Top N paths
 - Worst Negative Slack (WNS)
 - Outputs:
 - All cells in the N paths/ for N paths with WNS
 - Total number of times cells appear in those paths
 - Total cell delay for those cells in the form of a histogram.

Script Generation

Algorithm for Script #1:

- 1. Get user input
 - path N
 - WNS X
 - OR both
- 2. Based on the input:
 - a. All the cells that are in those N number of paths
 - Report number of times each cell appeared in those paths
 - c. Total cell count and total cell delay in the maximum timing path
 - d. Histogram generation of total cell counts

Steps to Find Max Timing path

Get argument options : path or WNS or both.

```
# Parse the user inputs
set option [lindex $args 0]
set value1 [lindex $args 1]
set option2 [lindex $args 2]
set value2 [lindex $args 3]
```

- Use of report_timing command to find desired output.
 - 1. -path N

```
# Perform the operation
report_timing -path full -delay max -nworst $Npath -sort_by slack
    2.-WNS N (default 1 path)

# Perform the operation
report_timing -path full -delay max -sort_by slack -slack_lesser_than $wns
```

Output

report_timing

 command provides a report of timing information for the current design

```
dc shell> path timing -path 3
'Path timing script"
        3 path specified only
Report : timing
       -path full
       -delay min fall
       -max paths 1
Design : simpleAnd
Version: G-2012.06
Date : Sat Mar 18 13:15:11 2017
Operating Conditions: ff0p95v125c Library: saed32hvt ff0p95v125c
Wire Load Model Mode: enclosed
 Startpoint: D1 reg (rising edge-triggered flip-flop clocked by clk)
 Endpoint: D reg (rising edge-triggered flip-flop clocked by clk)
 Path Group: clk
 Path Type: min
 Des/Clust/Port Wire Load Model
                                       Library
                   ForQA
 simpleAnd
                                         saed32hvt ff0p95v125c
 Point
                                                   Path
 clock clk (rise edge)
                                        0.00
                                                   0.00
                                                   0.00
 clock network delay (ideal)
                                       0.00
                                       0.00
 D1 reg/CLK (DFFX1 HVT)
                                                   0.00 r
 D1 reg/Q (DFFX1 HVT)
                                        0.08
                                                   0.08 f
 U11/Y (OR3X1 HVT)
                                                   0.12 f
 U19/Y (AND3X1 HVT)
                                        0.04
                                                   0.16 f
 D reg/D (DFFX1 HVT)
                                        0.01
                                                   0.18 f
 data arrival time
                                                   0.18
                                        0.00
                                                   0.00
 clock clk (rise edge)
 clock network delay (ideal)
                                        0.00
                                                   0.00
                                         0.00
                                                   0.00 r
 D reg/CLK (DFFX1 HVT)
 library hold time
                                        0.00
                                                   0.00
                                                   0.00
 data required time
 data required time
 data arrival time
                                                   -0.18
 slack (MET)
                                                   0.18
```

Total Cell Count

- "get_attributes" to find all the combinational cell.

```
set cells 0
set cellFound 0
array set count cell {}
set all paths [get timing paths -nworst 10 -path type full -slack lesser than 10]
# To find the Total Number of cells in the Max Timing Path
    foreach in collection path $all paths {
    set start [get attribute $path startpoint]
            set path_start [get_attribute $start full name]
    #echo sizeof_collection [get_attribute $path startpoint]
    set end [get attribute $path endpoint]
    set path end [get attribute $end full name]
    #echo "-
    #puts "**Path between : $path_start - $path_end**"
        set all points [get attribute $path points]
    foreach in collection point $all points {
        set start [get attribute $point object]
        set name [get attribute $start full name]
        set cell name [get cells -of object "$name"]
        set cell [get_attribute $cell_name full name]
```

Continued.....

Store in the array the name and count of cells

```
#only if the gate is a combinational cell
if {$t cell=="true"} {
   if {[array size count cell]==0} {
     set count cell($cell) 1
     set count 1
    #echo [format "%10s %10s" $cell $count ]
    } else { foreach { name_cell count} [array get count_cell] {
                 if {[string match $name_cell $cell]} {
             set newcount [expr 1 + $count]
            #set newcount [expr $ewcount/2]
             set count_cell($cell) $newcount
             set cellFound 1
            # echo [format "%10s %10s" $name_cell $count]
             break
            # echo [format "%10s %10s" $name cell $newcount]
        } else { set cellFound 0 }}
        if {$cellFound==0} { set count_cell($cell) 1}
echo " The Total number of cell counts in the Maximum Timing Path "
foreach { name_cell count} [array get count_cell] { echo [format "%10s %10s" $name_cell [expr $count/2]] }
```

Steps in Histogram Generation

- Obtain the array in the form , {cell_a, count, cell_b, count, cell_c, count....}
- For every cell of the array
 - Display "*", count number of times which signifies the number of times the cell appears in the design

```
foreach element [array names count_cell] {
   puts -nonewline "cell($element) "
   for {set i 0} {$i <= [expr $count_cell($element)/2 - 1]} {incr i} {
        #echo $count_cell($element)
        puts -nonewline "*"
   }
   puts -nonewline "[expr $count_cell($element)/2]"
        #echo $count_cell($element)
   puts "\n"
}</pre>
```

Output

```
The Total number of cell counts in the Maximum Timing Path
       U16
       U12
       U17
       U13
       U18
       U11
       U15
       U19
cell(U16) **2
cell(U12) *******8
cell(U17) **2
cell(U13) **2
cell(U18) ****4
cell(U11) **2
cell(U15) **2
cell(U19) ******8
```

Script #1 - Test and verification

Test Sample Design - SimpleAnd

 Verified the outputs by using report timing and manually counting the cells

Live Demonstration #Script 1

Script #2

- Problem Statement:
 - Maximum and minimum timing paths
 - Inputs :Cell, Nets, I/O Ports
 - Outputs:

Min and max timing margin for each of the cells

Min and max timing for each of the cell on the other
side of sequentials

Script Generation

Steps divided into Two parts:

- 1. Finding Min and Max Margin of cells, given an input
- 2. Max Timing margin on other side of sequential

Script #2 - Test and verification

SimpleAnd:

Each Cell Margin

Set arg options; -cells or -nets or -port.

report_timing for each cell in the maximum timing paths

```
report_timing -path full -delay max -nworst $Npath
report_timing -path full -delay min
```

Outputs

Output of report timing for a max timing path

Path Type: max			
	Wire Load Model	7.1	
	ForQA	saed32hvt_ff0p95v	
Point		Incr	Path
clock clk (rise edge)		0.00	1007 1007 1007
clock network delay (ideal)		0.00	0.00
D1_reg/CLK (DFFX1_HVT)		0.00	
D1_reg/QN (DFFX1_HVT)		0.06	0.06 r
U10/Y (INVX0_HVT)		0.03	0.09 f
U17/Y (NAND3X0_HVT)		0.03	0.12 r
U19/Y (AND3X1_HVT)		0.05	0.17 r
D_reg/D (DFFX1_HVT)		0.01	0.18 r
data arrival time	е		0.18
clock clk (rise edge)		0.05	0.05
clock network delay (ideal)		0.00	0.05
D_reg/CLK (DFFX1	_HVT)	0.00	0.05 r
library setup tim	ne	-0.03	0.02
data required time			0.02
data required tim			0.02
data arrival time	9		-0.18
slack (VIOLATED)			-0.16

Timing Margin on Sequential

 report_timing: to and from ports with their min and max delays

```
report_timing -from $port -nworst $Npath
report_timing -from $port -delay max -nworst $Npath
report_timing -from $port -delay min

report_timing -to $port -delay max -nworst $Npath
report_timing -to $port -delay min
```

 Find the max timing margin on the other side of the sequential in the max timing path

Outputs

Report : timing

-path full

```
Max margin on other side of seguential in the max timing paths
Report : timing
      -delay max fall
     -max paths 100
Design : simpleAnd
Version: G-2012.06
Date : Sat Mar 18 13:55:35 2017
Operating Conditions: ff0p95v125c Library: saed32hvt ff0p95v125c
Wire Load Model Mode: enclosed
 Startpoint: D1 reg (rising edge-triggered flip-flop clocked by clk)
 Endpoint: D reg (rising edge-triggered flip-flop clocked by clk)
 Path Type: max
 Des/Clust/Port Wire Load Model
              ForQA
 simpleAnd
                                saed32hvt ff0p95v125c
 Point
                                Incr
                                        Path
 clock clk (rise edge)
                                         0.00
 clock network delay (ideal) 0.00
                                         0.00
                                       0.00 r
 D1 reg/QN (DFFX1 HVT) 0.06
                                       0.06 f
 UIU/I (INVAU HVI)
                                0.02
                                       0.08 r
 U17/Y (NAND3XO HVT)
                               0.04
                                       0.12 f
 U19/Y (AND3X1 HVT)
                                0.05
                                       0.17 f
 D reg/D (DFFX1 HVT)
                                0.01
                                       0 19 f
 data arrival time
                                         0.19
 clock clk (rise edge)
                               0.05
                                       0.05
 clock network delay (ideal)
                               0.00
                                       0.05
                               0.00
 D reg/CLK (DFFX1 HVT)
                                        0.05 r
 library setup time
                               -0.02
                                         0.03
 data required time
 data required time
 data arrival time
 slack (VIOLATED)
                                        -0.15
```

```
-delay max rise
      -myorst 100
      -max paths 100
Design : simpleAnd
Version: G-2012.06
Date : Sat Mar 18 13:55:39 2017
Operating Conditions: ff0p95v125c Library: saed32hvt ff0p95v125c
Wire Load Model Mode: enclosed
 Startpoint: D1 reg (rising edge-triggered flip-flop clocked by clk)
 Endpoint: D reg (rising edge-triggered flip-flop clocked by clk)
 Path Group: clk
 Path Type: max
 Des/Clust/Port Wire Load Model Library
 simpleAnd ForQA
                                     saed32hvt ff0p95v125c
 clock clk (rise edge)
                                     0.00
                                               0.00
                                               0.00
 clock network delay (ideal)
                                     0.00
 D1 reg/CLK (DFFX1 HVT)
                                               0.00 r
                                     0.00
                                     0.08
 D1 reg/O (DFFX1 HVT)
                                               0.08 r
 U11/Y (OR3X1 HVT)
                                     0.05
                                               0.12 r
 U19/Y (AND3X1 HVT)
                                     0.04
                                               0.17 r
 D reg/D (DFFX1 HVT)
                                     0.01
                                               0.18 r
 data arrival time
                                               0.18
 clock clk (rise edge)
                                     0.05
                                               0.05
 clock network delay (ideal)
                                    0.00
                                               0.05
                                     0.00 0.05 r
 D reg/CLK (DFFX1 HVT)
                                    -0.03
 library setup time
                                            0.02
 data required time
                                               0.02
 data required time
 data arrival time
                                              -0.18
 slack (VIOLATED)
                                              -0.16
```

Live Demonstration # Script 2

Design Steps Followed

- Understand the specifications
- Research and search the DC commands manual for possible useful commands
- Develop the command line argument to suit the requirements
- Develop the Tcl script with procedure for user inputs
- Develop Tcl code to achieve the functionality
- Run the tests to verify that the task was finished

Design challenges Faced

- Understanding the requirements and the appearance of a histogram.
 - Ex: Should we implement using tool generated histograms or download tcl packages or should we write our own code.
 - Addressed the issue with continuous feedback from Prof on implementation
- Parsing the values into a list from a file to count the total number of cells.
- Most of the command attributes present in the dc_shell do not give the output, so had hard time figuring out what command to use.

References

- Books
 - Using Tcl With Synopsys® Tools Version M-2016.12,
 December 2016
 - IC CompilerTM Variables and Attributes Version M-2016.12,
 December 2016
- Google
- Tcl Wiki Page
- Research:
 - man report_timing
 - o help *timing*
 - report_timing help
- Big thanks to Professor Patwary!

