Automated Reasoning and Learning CP1 SLD Resolution Trees (Examples)

Ramon Béjar Torres[†]

March 21, 2024

[†]ramon.bejar@udl.cat

Table of Contents

1. SLD Resolution for CP1

CP1 SLD Resolution Trees - Example 1

CP1 SLD Resolution Trees - Example 2

CP1 SLD Resolution Trees - Example 3

Solving CP1 Problems with with SLD Resolution

For CP1, the kind of logical consequence questions we want to answer is of this type

$$P \models \exists x_1 \exists x_2 \dots \exists x_n Q(x_1, x_2, \dots, x_n)$$

This query is always transformed to a single logical formula:

$$P \cup \{\neg \exists x_1 \exists x_2 \dots \exists x_n Q(x_1, x_2, \dots, x_n)\} \equiv P \cup \{\forall x_1 \forall x_2 \dots \forall x_n \neg Q(x_1, x_2, \dots, x_n)\}$$

But in CP1, a linear resolution proof will use, for every pair of resolved clauses, a most general unifier that shows the specific cases where the two resolved literals are contradictory for any interpretation (so they can be resolved).

Given the following CP1 logic program *P* (remember, all the variables are assumed to be universally quantified):

$$P = \begin{cases} 1. \ q(a) \\ 2. \ p(X) \leftarrow q(X) \end{cases}$$

Then, for the question:

$$P \models p(a) \equiv P \cup \{\neg p(a)\}$$
 is UNSAT

a SLD resolution proof is as follows:

Steps in the SLD resolution proof

- 1. From the top goal $\{\neg p(a)\}$ and the clause $\{p(X_1), \neg q(X_1)\}$ we obtain the resolvent (new goal) $\{\neg q(a)\}$ using the mgu $\theta = \{a/X_1\}$.
- 2. Then, from the new goal $\{\neg q(a)\}$ and the clause $\{q(a)\}$ we obtain the resolvent $\{\}$ (empty clause) using the mgu $\theta = \{\}$.

Given the following CP1 logic program *P*:

$$P = \left\{ \begin{array}{l} 1. \ no_barro_zapatos(juan). \\ 2. \ no_barro_zapatos(pepe). \\ 3. \ no_es_asesino(X) \leftarrow no_ha_saltado(X). \\ 4. \ no_ha_saltado(X) \leftarrow no_barro_zapatos(X). \end{array} \right.$$

Then, the answer to the question:

$$P \models \exists Y no_es_asesino(Y) \equiv P \cup \{ \forall Y \neg no_es_asesino(Y) \}$$
is UNSAT

is obtained with SLD resolution as follows

0 0 0 0 0

$$\leftarrow no_es_asesino(Y)$$

$$\begin{vmatrix} 3.\{X_1/Y\} \\ \leftarrow no_ha_saltado(X_1) \\ 4.\{X_2/X_1\} \\ \leftarrow no_barro_zapatos(X_2) \\ 1.\{juan/X_2\} \end{vmatrix} 2.\{pepe/X_2\}$$

Steps:

- 1. top goal and clause 3 are resolved with mgu = $\{X_1/Y\}$
- 2. goal $\{\neg no_ha_saltado(X_1)\}$ and clause 4 are resolved with mgu = $\{X_2/X_1\}$
- 3. goal $\{\neg no_barro_zapatos(X_2)\}$ is resolved with clause 1 using mgu= $\{juan/X_2\}$ and with clause 2 using mgu= $\{pepe/X_2\}$.

So, we obtain two different answers:

- $\circ \{X_1/Y\} \cdot \{X_2/X_1\} \cdot \{juan/X_2\} = \{juan/Y\}$
- $\circ \{X_1/Y\} \cdot \{X_2/X_1\} \cdot \{pepe/X_2\} = \{pepe/Y\}$

Given the following CP1 logic program P:

$$P = \begin{cases} 1. \ append(l(X,e), L2, l(X, L2)). \\ 2. \ append(l(X_1, T1), L2', l(X_1, T3)) \leftarrow append(T1, L2', T3). \end{cases}$$

Then, the answer to the question:

$$P \models \exists L3 \ append(l(a, l(b, e)), l(c, e), L3)$$

is obtained with SLD resolution as follows

0 0 0 0 0

$$\leftarrow append(l(a,l(b,e)),l(c,e),L3)$$

$$= 2.\{a/X_1,l(b,e)/T_1,l(c,e)/L2',l(a,T3)/L3\}$$

$$\leftarrow append(l(b,e),l(c,e),T3)$$

$$= 1.\{b/X,l(c,e)/L2,l(b,l(c,e))/T3\}$$

Steps in the SLD resolution proof

- 1. From $\{\neg append(l(a,l(b,e)),l(c,e),L3)\}$ and $\{append(l(X_1,T1),L2',l(X_1,T3)) \lor \neg append(T1,L2',T3)\}$ we obtain the resolvent $\{\neg append(l(b,e),l(c,e),T3)\}$ with unifier $\theta_1 = \{a/X_1, l(b,e)/T_1, l(c,e)/L2', l(a,T3)/L3\}$.
- 2. From $\{\neg append(l(b,e),l(c,e),T3)\}$ and $\{append(l(X,e),L2,l(X,L2))\}$ we obtain the resolvent $\{\}$ using the unifier $\theta_2 = \{b/X, l(c,e)/L2, l(b,l(c,e))/T3\}.$

So, the value of L3 in the input question is obtained trough the composition $\theta_1 \cdot \theta_2$:

$${a/X_1, l(b,e)/T_1, l(c,e)/L2', l(a,T3)/L3} \cdot {b/X, l(c,e)/L2, l(b,l(c,e))/T3}$$

where we are only interested in tha value for L3:

$$\{l(a,T3)/L3\} \cdot \{l(b,l(c,e))/T3\} = \{l(a,l(b,l(c,e)))/L3\}$$

Observe that we have used this append predicate to simulate the appending of one list with another one. In particular our query was equivalent to:

$$[a,b] + [c] = [a,b,c]$$

We have used the constant e to encode an empty list.