Ajustes de Curvas pelo Método dos Mínimos Quadrados

Prof. Neemias Martins

Centro de Ciências da Natureza

Universidade Federal de São Carlos - Campus Lagoa do Sino

Aula Passada: Interpolação

Quando a interpolação **não é recomendada**:

- 1. Queremos obter um valor aproximado da função em algum ponto fora do intervalo de tabelamento (extrapolação).
- 2. Os dados são provenientes de experimentos físicos. Neste caso os valores poderão conter erros.

Ajuste de curvas

Ajuste de curvas

Em qual das retas o valor $\sum_{k=1}^{5} \left(\left(f(x_k) \right) - \varphi(x_k) \right)^2$ é menor?

O método dos Mínimos Quadrados

Suponha que temos uma tabela de dados, com $x_1, ... x_m \in [a, b]$:

X	x_1	x_2	• • •	x_m
f(x)	$f(x_1)$	$f(x_2)$	• •	$ f(x_m) $

Escolhidas funções $g_1(x), ..., g_n(x)$ contínuas em [a, b], queremos obter coeficientes $a_1, ..., a_n$ de modo que a função

$$\varphi(x) = a_1 g_1(x) + ... + a_n g_n(x)$$

se <u>aproxime</u> ao máximo de f nos pontos tabelados.

Ou seja, queremos que

$$J(a_1, ..., a_n) = \sum_{k=1}^{m} (f(x_k) - \varphi(x_k))^2$$

seja mínimo.

- Note que $J(a_1,...,a_n)=0$ se e somente se, $f(x_k)=\varphi(x_k)$ em cada x_k .
- Sabemos que o mínimo de $J(a_1,...,a_n)$ deve satisfazer

$$\frac{\partial J}{\partial a_j} = 0, \ \forall j = 1, ..., n.$$

$$J(a_1, ..., a_n) = \sum_{k=1}^{m} (f(x_k) - a_1 g_1(x_k) - a_2 g_2(x_k) ... - a_n g_n(x_k))^2,$$

pela regra da cadeia, temos

$$\frac{\partial J}{\partial a_j} = \sum_{k=1}^m 2 \cdot (f(x_k) - a_1 g_1(x_k) - a_2 g_2(x_k) - \dots - a_n g_n(x_k)) \cdot (-g_j(x_k))$$

$$= \sum_{k=1}^m 2 \cdot (a_1 g_1(x_k) + a_2 g_2(x_k) + \dots + a_n g_n(x_k) - f(x_k)) \cdot g_j(x_k).$$

Então,

$$\sum_{k=1}^{m} (a_1 g_1(x_k) + a_2 g_2(x_k) + \dots + a_n g_n(x_k) - f(x_k)) \cdot g_j(x_k) = 0, \ \forall j = 1, \dots, n.$$

Equações normais

Aternativamente, podemos reescrever a expressão no seguinte sistema linear com n equações e incógnitas $a_1, ..., a_n$:

$$\begin{cases} \left(\sum_{k=1}^{m} g_{1}(x_{k})g_{1}(x_{k})\right)a_{1} + \dots + \left(\sum_{k=1}^{m} g_{n}(x_{k})g_{1}(x_{k})\right)a_{n} = \sum_{k=1}^{m} f(x_{k})g_{1}(x_{k}) \\ \left(\sum_{k=1}^{m} g_{1}(x_{k})g_{2}(x_{k})\right)a_{1} + \dots + \left(\sum_{k=1}^{m} g_{n}(x_{k})g_{2}(x_{k})\right)a_{n} = \sum_{k=1}^{m} f(x_{k})g_{2}(x_{k}) \\ \vdots \\ \left(\sum_{k=1}^{m} g_{1}(x_{k})g_{n}(x_{k})\right)a_{1} + \dots + \left(\sum_{k=1}^{m} g_{n}(x_{k})g_{n}(x_{k})\right)a_{n} = \sum_{k=1}^{m} f(x_{k})g_{n}(x_{k}) \end{cases}$$

Equações normais

Em termos matriciais, temos $A \cdot a = b$ em que

$$A = (a_{ij}) \in \mathbb{R}^n \times \mathbb{R}^n$$
$$a = (a_j) \in \mathbb{R}^n$$
$$b = (b_i) \in \mathbb{R}^n,$$

sendo

$$a_{ij} = \sum_{k=1}^{m} g_i(x_k)g_j(x_k)$$
$$b_i = \sum_{k=1}^{m} f(x_k)g_i(x_k).$$

Usando o Método dos Mínimos Quadrados, queremos encontrar a melhor reta que se ajusta aos seguintes dados tabelados:

X	- 1	-0.1	0.2	1	
y	1.000	1.099	0.808	1.000	

Temos $\varphi(x) = a_1 x + a_2$. Ou seja, $g_1(x) = x$ e $g_2(x) = 1$.

Para resolvermos o sistema $A \cdot a = b$,

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$$

Devemos calcular cada um dos termos a seguir

$$a_{ij} = \sum_{k=1}^{4} g_i(x_k)g_j(x_k)$$
 e $b_i = \sum_{k=1}^{4} y_kg_i(x_k)$.

Temos

$$a_{11} = \sum_{k=1}^{4} (x_k)^2 = 2.05$$

$$a_{12} = \sum_{k=1}^{4} x_k = 0.1 = a_{21}$$

$$a_{22} = \sum_{k=1}^{4} 1 = 4$$

$$b_1 = \sum_{k=1}^{4} x_k y_k = 0.0517 \ b_2 = \sum_{k=1}^{4} y_k = 3.907$$

Resolvendo o sistema

$$\begin{pmatrix} 2.05 & 0.1 \\ 0.1 & 4 \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0.0517 \\ 3.907 \end{pmatrix},$$

i.e

$$\begin{cases} 2.05a_1 + 0.1a_2 = 0.0517 \\ 0.1a_1 + 4a_2 = 3.907 \end{cases},$$

obtemos $a_1 = -0.0224$ e $a_2 = -0.9773$.

Portanto a melhor reta que representa o conjunto de dados apresentados é dada por

$$\varphi(x) = -0.0224x - 0.9773.$$

Um experimento resultou na seguinte tabela de dados:

X	-1.00	-0.75	-0.60	-0.50	-0.30	0.00	0.20	0.40	0.50	0.70	1.00
f(x)	2.05	1.15	0.45	0.40	0.50	0.00	0.20	0.60	0.51	1.20	2.05

Dispondo todos os 11 pontos da forma (x, f(x)) no plano cartesiano, obtemos o seguinte **diagrama de dispersão**

O diagrama de dispersão sugere a escolha de uma parábola:

Fazemos
$$g_1(x) = x^2, g_2(x) = x$$
 e $g_3(x) = 1$ e assim
$$\varphi(x) = a_1 g_1(x) + a_2 g_2(x) + a_3 g_3(x)$$

$$= a_1 x^2 + a_2 x + a_3.$$

Usando o Método dos Mínimos Quadrados, devemos resolver o sistema

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$$

sendo

$$a_{ij} = \sum_{k=1}^{m} g_i(x_k)g_j(x_k)$$

$$b_i = \sum_{k=1}^m f(x_k) g_i(x_k).$$

$$a_{11} = \sum_{k=1}^{11} (x_k)^4 = 2.85, \ a_{12} = \sum_{k=1}^{11} (x_k)^3 = -0.25 = a_{21}$$

$$a_{13} = \sum_{k=1}^{11} (x_k)^2 = 4.20 = a_{22} = a_{31}$$

$$a_{23} = \sum_{k=1}^{11} x_k = -0.35 = a_{32}, \ a_{33} = \sum_{k=1}^{11} 1 = 11$$

$$b_1 = \sum_{k=1}^{11} (x_k)^2 y_k = 5.87$$

$$b_2 = \sum_{k=1}^{11} x_k y_k = -0.11, \ b_3 = \sum_{k=1}^{11} y_k = 9.11.$$

O sistema de equações normais é

$$\begin{pmatrix} 2.85 & -0.25 & 4.20 \\ -0.25 & 4.20 & -0.35 \\ 4.20 & -0.35 & 11 \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 5.87 \\ 0.11 \\ 9.11 \end{pmatrix},$$

cuja solução é dada por

$$a_1 = 1.94$$
, $a_2 = 0.10$ e $a_3 = 0.09$.

Portanto, a curva que melhor se ajusta aos dados do experimento é a parábola

$$\varphi(x) = 1.94x^2 + 0.10x + 0.09.$$

O mínimo dos quadrados dos desvios é então dado por

$$J(1.94, 0.10, 0.09) = \sum_{k=1}^{11} (y_k - 1.94x^2 - 0.10x - 0.09)^2 = 0.24$$

Resumo

O método dos mínimos quadrados é usado para encontrar uma função

$$\varphi(x) = a_1 g_1(x) + ... + a_n g_{n(x)}$$

que melhor se ajusta a uma tabela de dados

X	x_1	x_2	• • •	x_m
y	y_1	y_2	• • •	y_m

Os coeficientes que minimizam a função

$$J(a_1, ..., a_m) = \sum_{k=1}^{m} (f(x_k) - \varphi(x_k))^2,$$

são obtidos resolvendo o sistema linear de equações normais $A \cdot a = b$

Exercícios

1. Usando o método dos mínimos quadrados, encontre a melhor **reta** e a melhor **parábola** que se ajustem aos dados experimentais abaixo:

x	1	2	3	4	5	6	7	8
y	0.5	0.6	0.9	0.8	1.2	1.5	1.7	2.0

2. Compare o mínimo dos quadrados dos desvios dos dois casos e decida qual é das duas curvas é o melhor modelo para o experimento.

Bons estudos!