Computer-Assisted Problem-Solving / Numerical Methods

Curve Fitting

version: January 31st, 2017

Legend: Method, Theory, Example, Advanced, Appendix

Theory

Curve Through Data Points

Given: experimental data (x_i, f_i) , i = 1..M, with M (very) large

Possibility:

construction M-1-th order polynomial (exact) through these points (Lagrange Interpolation)

Disadvantages:

- (1) problems with higher-order polynomials
- (2) experimental data have statistical errors ⇒ polynomial copies these errors (and amplifies them)

Alternative:

fit smooth curve y(x) through the data points So: $(x_i, f_i) \longrightarrow (x_i, y(x_i)), i = 1..M$

Pay attention to:

- (1) choose beforehand the shape of the curve (straight line, parabola, exponential, etc.)
- (2) 'overall' error as small as possible: consider errors $\epsilon_i = y(x_i) f_i$ in all M points

Method

Least Squares Method

Fit the approximating curve such that

$$\sum_{i=1}^{M} \epsilon_i^2 = \sum_{i=1}^{M} \{y(x_i) - f_i\}^2$$

as small as possible.

Fitting Straight Line

Straight line y(x) = a + bx through $(x_i, f_i), i = 1..M$ How to determine a and b?

Consider the errors in x_i , i = 1..M

$$\epsilon_i = y(x_i) - f_i = a + bx_i - f_i$$

Then minimize

$$\psi(a,b) = \epsilon_1^2 + \dots + \epsilon_M^2$$

Necessary conditions for minimum: $\frac{\partial \psi}{\partial a} = \frac{\partial \psi}{\partial b} = 0$ Use chain rule

$$\frac{\partial \psi}{\partial a} = \frac{\partial \psi}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial a} + \dots + \frac{\partial \psi}{\partial \epsilon_M} \frac{\partial \epsilon_M}{\partial a} = 2\epsilon_1 \times 1 + \dots + 2\epsilon_M \times 1 = 0$$

$$\frac{\partial \psi}{\partial b} = \frac{\partial \psi}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial b} + \dots + \frac{\partial \psi}{\partial \epsilon_M} \frac{\partial \epsilon_M}{\partial b} = 2\epsilon_1 \times x_1 + \dots + 2\epsilon_M \times x_M = 0$$

So we get
$$\sum_{i=1}^{M} \epsilon_i = 0 \text{ and } \sum_{i=1}^{M} \epsilon_i x_i = 0$$
Substitute $\epsilon_i = y(x_i) - f_i = a + bx_i - f_i \Longrightarrow$

$$\sum_{i=1}^{M} \{a + bx_i - f_i\} = 0 \text{ and } \sum_{i=1}^{M} \{(a + bx_i - f_i)x_i\} = 0$$

$$\sum_{i=1}^{M} \{a + bx_i - f_i\} = 0 \text{ and } \sum_{i=1}^{M} \{(a + bx_i - f_i)x_i\} = 0$$

Elaborate
$$\Longrightarrow$$

$$aM + b \sum_{i=1}^{M} x_i = \sum_{i=1}^{M} f_i$$

$$a \sum_{i=1}^{M} x_i + b \sum_{i=1}^{M} x_i^2 = \sum_{i=1}^{M} f_i x_i$$

Define

$$M_0 = M, \quad M_1 = \sum\limits_{i=1}^{M} x_i \; \; ext{ and } \; \; M_2 = \sum\limits_{i=1}^{M} x_i^2$$
 $F_0 = \sum\limits_{i=1}^{M} f_i \; \; ext{ and } \; \; F_1 = \sum\limits_{i=1}^{M} f_i x_i$

Result (Normal Equations of Gauß):

$$M_0a + M_1b = F_0$$

$$M_1a + M_2b = F_1$$

Solving yields a and $b \Longrightarrow \text{line } y(x) = a + bx$

Theorem:

Normal Equations linear and solvable \Longrightarrow $\frac{\partial \psi}{\partial a} = \frac{\partial \psi}{\partial b} = 0$ necessary and sufficient for minimum

In other words: smallest 'overall' error

Example

Example Fitting Straight Line

Experimental data

Straight line through these data points?

First calculate the summation terms (M = 6):

$$\sum_{i=1}^{M} x_i = 42 \qquad \qquad \sum_{i=1}^{M} x_i^2 = 364$$

$$\sum_{i=1}^{M} f_i = 39.93 \qquad \qquad \sum_{i=1}^{M} f_i x_i = 333.66$$

So the normal equations are:

$$6 a + 42 b = 39.93$$

 $42 a + 364 b = 333.66$

Solution a = 1.24 **and** b = 0.7736

Hence, the best-fitting straight line is

$$y(x) = 1.24 + 0.7736 x$$

Experimental data

Linear fit: y(x) = 1.24 + 0.7736 x

Method

Fitting a Polynomial

Polynomial $y(x) = a_0 + a_1x + a_2x^2 + ... + a_Nx^N$ through points $(x_i, f_i), i = 1..M$ (with N < M - 1)

How to determine a_j , j=0..N?

Consider the errors in x_i , i = 1..M

$$\epsilon_i = y(x_i) - f_i = a_0 + a_1 x_i + \dots + a_N x_i^N - f_i$$

Then minimize

$$\psi(a_0, a_1, ..., a_N) = \epsilon_1^2 + ... + \epsilon_M^2$$

Necessary conditions: $\frac{\partial \psi}{\partial a_j} = 0$, j = 0...N

Apply chain rule:

$$\begin{split} \frac{\partial \psi}{\partial a_0} &= \frac{\partial \psi}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial a_0} + \ldots + \frac{\partial \psi}{\partial \epsilon_M} \frac{\partial \epsilon_M}{\partial a_0} = 2\epsilon_1 \times 1 + \ldots + 2\epsilon_M \times 1 = 0 \\ \frac{\partial \psi}{\partial a_1} &= \frac{\partial \psi}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial a_1} + \ldots + \frac{\partial \psi}{\partial \epsilon_M} \frac{\partial \epsilon_M}{\partial a_1} = 2\epsilon_1 \times x_1 + \ldots + 2\epsilon_M \times x_M = 0 \\ \frac{\partial \psi}{\partial a_2} &= \frac{\partial \psi}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial a_2} + \ldots + \frac{\partial \psi}{\partial \epsilon_M} \frac{\partial \epsilon_M}{\partial a_2} = 2\epsilon_1 \times x_1^2 + \ldots + 2\epsilon_M \times x_M^2 = 0 \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ \frac{\partial \psi}{\partial a_N} &= \frac{\partial \psi}{\partial \epsilon_1} \frac{\partial \epsilon_1}{\partial a_N} + \ldots + \frac{\partial \psi}{\partial \epsilon_M} \frac{\partial \epsilon_M}{\partial a_N} = 2\epsilon_1 \times x_1^N + \ldots + 2\epsilon_M \times x_M^N = 0 \end{split}$$

So we have N+1 conditions

$$\sum_{i=1}^{M} \epsilon_i = \sum_{i=1}^{M} \epsilon_i x_i = \sum_{i=1}^{M} \epsilon_i x_i^2 = \dots = \sum_{i=1}^{M} \epsilon_i x_i^N = 0$$

Substitute $\epsilon_i = a_0 + a_1 x_i + ... + a_N x_i^N - f_i$ and introduce the abbreviations

$$M_0 = M,$$
 $M_1 = \sum_{i=1}^{M} x_i$... $M_N = \sum_{i=1}^{M} x_i^N$
 $F_0 = \sum_{i=1}^{M} f_i,$ $F_1 = \sum_{i=1}^{M} f_i x_i$... $F_N = \sum_{i=1}^{M} f_i x_i^N$

This gives (after further elaboration)

These are N+1 eqns with unknowns a_j , j=0...NSolution gives the polynomial

$$y(x) = a_0 + a_1x + a_2x^2 + \dots + a_Nx^N$$

Example

Example Fitting Parabola

Experimental data

Parabola $y(x) = a+bx+cx^2$ through data points?

Differences in M-terms are large:

$$M_0 = 5$$
, $M_4 \approx 10^4 \Longrightarrow \text{problems with accuracy}$

Remedy: transformation $\hat{x} = (x - 6)/2$

Transformed data points

Calculate the corresponding M and F-terms:

$$M_0 = 5$$
, $M_1 = 0$, $M_2 = 10$, $M_3 = 0$, $M_4 = 34$
 $F_0 = 162.28$, $F_1 = 199.23$, $F_2 = 380.39$

The normal equations then become

$$5a + 0b + 10c = 162.28$$

 $0a + 10b + 0c = 199.23$
 $10a + 0b + 34c = 380.39$

Solution for transformed data:

$$a = 24.4803, b = 19.9230$$
 en $c = 3.9879$

Parabola for transformed data

$$y(\hat{x}) = 24.4803 + 19.9230\,\hat{x} + 3.9879\,\hat{x}^2$$

The transformation was $\hat{x} = (x - 6)/2 \Longrightarrow$

Wanted parabola (original data)

$$y = 24.4803 + 19.9230 \,\hat{x} + 3.9879 \,\hat{x}^2$$

$$= 24.4803 + 19.9230 \,\frac{(x-6)}{2} + 3.9879 \,\frac{(x-6)^2}{2^2}$$

$$y(x) = 0.6024 - 2.0022 \,x + 0.9970 \,x^2$$

Theory

Exponential & Power Functions

Fitting of exponential function $y(x) = a e^{bx}$:

Apply ln() to the measured data f_i and then determine a linear fit

Because $ln(y) = ln(a) + ln(e^{bx}) = ln(a) + bx$

This is of the form $\hat{y} = \hat{a} + \hat{b} x$, and thus linear

Determine linear fit (\hat{a}, \hat{b}) ,

through points $(x_i, ln(f_i))$

Then transform back: $a = e^{\hat{a}}, b = \hat{b}$

Fitting of $y(x) = a x^b$:

Using ln(y) = ln(a) + b ln(x) gives $\hat{y} = \hat{a} + \hat{b} ln(x)$

Now apply ln() to f_i and x_i values

Determine linear fit (\hat{a}, \hat{b}) ,

through points $(ln(x_i), ln(f_i))$

Then transform back: $a = e^{\hat{a}}, b = \hat{b}$

This procedure is known as 'data linearization'.

Example

Example Exponential Fit

Experimental data

Fit with exponential function $y(x) = a e^{bx}$ Transformed data points

Calculate M and F-values:

$$M_0 = 6$$
, $M_1 = 27$, $M_2 = 139$, $F_0 = 19.4640$, $F_1 = 92.9685$

Equations for transformed data:

$$6\hat{a} + 27\hat{b} = 19.4640$$

 $27\hat{a} + 139\hat{b} = 92.9685$

Solution for transformed data:

$$\hat{a} = 1.8604, \ \hat{b} = 0.3075$$

Transform back: $a = e^{\hat{a}} = 6.4263, b = \hat{b} = 0.3075$

Exponential fit for original data:

$$y(x) = 6.4263 \, e^{0.3075 \, x}$$

Experimental data

Exponential fit

$$y(x) = 6.4263 \, e^{0.3075 \, x}$$

