Présentation de projet : Méthodes de statistiques en grande dimension pour l'analyse de données de biologie moléculaire

Louis Lacoste

13 Février, 2024

Présentation des données

Contexte biologique

Le jeu de données choisi cherche à étudier l'influence de 2 paramètres sur la **capacité germinative** des graines chez *Arabidopsis Thaliana* à l'aide de données de métabolomique pour des graines fraîchement récoltées (*Freshly Harvested*).

Les paramètres considérés

La température, variable qualitative à 3 niveaux :

- Low
- Medium
- Elevated

Le stade d'imbibition, variable qualitative à 3 modalités :

- DS (Dry seed)
- El après 6h d'imbibition (Early imbibition) correspondant à la fin de la prise d'eau,
- LI après 20h d'imbibition (Late imbibition)

Extrait des données

Nous présentons ici les 7 premières colonnes (7 sur 234) du jeu de données¹ :

temperature	imbibition
Low	DS
Low	DS
Low	DS
Medium	DS
Medium	DS
Medium	DS

_	m_Alanine	m_Arginine	m_Asparagine	m_Aspartate	m_Cystein
	0.7670471	0.0293251	0.4197357	0.1473605	0.0736553
	0.7360741	0.0349146	0.4447546	0.1494870	0.0666249
	0.8128032	0.0464299	0.4347309	0.1403788	0.1273317
	0.4299879	0.0210281	0.5830220	0.2817400	0.0543873
	0.5130800	0.0119001	0.5458675	0.3087902	0.0331085
	0.4696609	0.0197695	0.5696875	0.3278582	0.0288687

¹Les 4 premières colonnes présentent différentes informations pour identifier les conditions expérimentales et la répétition.

Statistiques descriptives, classification

Statistiques descriptives, classification

Vérifications élémentaires

Il y a 0 colonnes dont la moyenne est nulle, 0 colonnes dont l'écart-type est nul et 0 NAs.

Ecart-types élevés

Avant de normaliser les données pour la méthode, regardons les 5 écart-types les plus grands de notre jeu de données :

Métabolites	Ecart-type
m_Glucose	15.6111721
m_Sucrose	7.7880231
m_Galactinol	3.5800872
m_Phosphate	1.0797945
m_Stearic.acid	0.8308839

ACP

Figure 1: Pourcentage de variance expliqué par les composantes

Clustering (*K*-means)

Louis Lacoste

K=4

Louis Lacoste

km\$cluster	temperature	imbibition
4	Low	DS
4	Low	DS
4	Low	DS
4	Medium	DS
4	Medium	DS
4	Medium	DS
3	Elevated	DS
3	Elevated	DS
3	Elevated	DS
1	Low	El
1	Low	El
1	Low	EI
2	Medium	EI

	km\$cluster	temperature	imbibition
14	2	Medium	EI
15	2	Medium	EI
16	3	Elevated	EI
17	3	Elevated	EI
18	3	Elevated	EI
19	1	Low	LI
20	1	Low	LI
21	1	Low	LI
22	2	Medium	LI
23	2	Medium	LI
24	2	Medium	LI
25	3	Elevated	LI
26	3	Elevated	LI
27	3	Elevated	LI

K=9

Louis Lacoste

km9\$cluster	temperature	imbibition
4	Low	DS
4	Low	DS
4	Low	DS
2	Medium	DS
2	Medium	DS
2	Medium	DS
5	Elevated	DS
5	Elevated	DS
5	Elevated	DS
1	Low	EI
1	Low	EI
1	Low	EI
9	Medium	EI

	km9\$cluster	temperature	imbibition
14	9	Medium	EI
15	9	Medium	EI
16	6	Elevated	EI
17	6	Elevated	EI
18	6	Elevated	EI
19	7	Low	LI
20	7	Low	LI
21	7	Low	LI
22	3	Medium	LI
23	3	Medium	LI
24	3	Medium	LI
25	6	Elevated	LI
26	8	Elevated	LI
27	8	Elevated	LI

Méthode

Principe du modèle

Nous allons poser le modèle suivant (détaillé sur les slides suivantes):

matrice des observations matrice de design erreur résiduelle

Nous supposons que :

$$\forall i \in \{1, \dots n\}, (E_{i,1}, \dots, E_{i,q}) \sim \mathcal{N}(0, \Sigma)$$

et que
$$\forall (i,k) \in \{1,\ldots,n\}^2 | i \neq k, (E_{i,1},\ldots,E_{i,q}) \perp \!\!\! \perp (E_{k,1},\ldots,E_{k,q})$$

Et nous cherchons à estimer \boldsymbol{B} , la matrice des coefficients, par \boldsymbol{B} en faisant en sorte que l'estimateur soit parcimonieux car \boldsymbol{B} est supposée contenir beaucoup de zéros.

Modèle linéaire général, ANOVA interaction à 2 facteurs

$$Y = XB + E$$

$$m{X} = \begin{pmatrix} \mathbf{1}_{Ele.:DS} & \dots & \mathbf{1}_{Med.:LI} \end{pmatrix} \ n=27$$

$$p=9$$

$$m{B} = \begin{pmatrix} B_{1,1} & \dots & B_{1,q} \\ \vdots & \dots & \vdots \\ B_{p,1} & \dots & B_{p,q} \end{pmatrix} \ p=9$$

Avec $\mathbf{1}_{A:B,i}=1$ ou 0 si la i^e observation n'est pas dans les 2 modalités A et B.

Les observations pour les différentes valeurs de métabolites sont alors mises en forme dans la matrice Y:

$$\mathbf{Y} = \begin{pmatrix} Y_{1,1} & \cdots & Y_{1,q} \\ \vdots & \ddots & \vdots \\ Y_{n,1} & \cdots & Y_{n,q} \end{pmatrix}_{n=232}$$
 $n=27$ Y a été centrée et réduite.

Calcul des résidus

lci nous allons ajuster le modèle linéaire en faisant comme si les colonnes de Y étaient indépendantes afin d'estimer par \hat{E} la matrice E. L'erreur résiduelle.

Puis nous allons tester avec le test de Portmanteau (grâce au théorème de Bartlett) si chaque ligne de \hat{E} est un bruit blanc.

Résultats du test

En calculant les résidus du modèle linéaire on obtient une *p-value* de 0.052 qui est à peine au-dessus du seuil 5%.

Malgré tout nous allons voir si le blanchiment permettrait d'améliorer cela.

Principe du blanchiment

Le principe du *blanchiment* est de **supprimer les corrélations** existant entre les colonnes.

Pour cela il faut estimer $\Sigma^{-1/2}$ et alors le modèle se ré-écrit :

$$oldsymbol{Y} oldsymbol{\Sigma}^{-1/2} = oldsymbol{X} oldsymbol{B} oldsymbol{\Sigma}^{-1/2} + oldsymbol{E} oldsymbol{\Sigma}^{-1/2}$$

Puis on peut appliquer le critère LASSO et la stability selection sur le modèle vectorisé :

$$\mathcal{Y} = \mathcal{XB} + \mathcal{E}$$

avec

$$\mathcal{Y} = extstyle vec(m{Y}m{\Sigma}^{-1/2}), \mathcal{X} = (m{\Sigma}^{-1/2}) \otimes m{X}, \mathcal{B} = extstyle vec(m{B}), \mathcal{E} = extstyle vec(m{E}m{\Sigma}^{-1/2})$$

Estimation de $\Sigma^{-1/2}$

Il faut donc estimer $\Sigma^{-1/2}$ avec un estimateur $\hat{\Sigma}^{-1/2}$.

Pour cela le package R MultiVarSel (Perrot-Dockès, Lévy-Leduc, and Chiquet (2019)) permet d'utiliser 3 structures de dépendances et implémente les méthodes d'estimation de $\widehat{\Sigma}^{-1/2}$ pour chacun des cas suivants :

- AR(1)
- \blacksquare ARMA(p, q)
- Non paramétrique²

²Suppose uniquement que le processus est stationnaire.

Présentation des données Statistiques descriptives, classification Méthode Test de $\Sigma = Id$ Résultats Bibliographie Merci pour

Blanchiment des données

Et ainsi la méthode qui blanchit le mieux ces données est la méthode non paramétrique³. Nous récupérons à la fin de cette étape la matrice $\widehat{\Sigma}^{-1/2}$ permettant de blanchir les données.

Table 2: Tableau de résultats des tests de Portmanteau pour les différentes méthodes

	Pvalue	Decision
AR1	0.127	WHITE NOISE
nonparam	0.722	WHITE NOISE
ARMA 11	0.13	WHITE NOISE
no_whitening	0.052	WHITE NOISE

³Ce qui est empiriquement régulièrement le cas.

Test de $\Sigma = Id$

Principe de l'article de Fisher (2012)

Dans cet article, Fisher développe de nouvelles statistiques de test afin de vérifier si l'on peut rejeter ou non l'hypothèse

$$(H_0): \Sigma = Id$$

pour les cas où $(n, q) \to +\infty$.

En utilisant les moyennes arithmétiques et leurs estimateurs $(\hat{a}_i)^4$, et c = q/n Fisher démontre que sous H_0 et d'autres conditions:

$$egin{aligned} \mathcal{T}_1 &= rac{n}{c\sqrt{8}}(\hat{a_4} - 4\hat{a_3} + 6\hat{a_2} - 4\hat{a_1} + 1) \stackrel{D}{
ightarrow} \mathcal{N}(0,1) \ \mathcal{T}_2 &= rac{n}{\sqrt{8(c^2 + 12c + 8)}}(\hat{a_4} - 2\hat{a_2} + 1) \stackrel{D}{
ightarrow} \mathcal{N}(0,1) \end{aligned}$$

⁴Voir l'article pour les formules

Comportement des statistiques T_1 et T_2 sur données simulées

Nous avons testé en simulant plusieurs jeux de données avec différentes corrélations :

- Sous un AR(1) ($\phi_1 = 0.5$), donc avec des corrélations entre colonnes.
- Les données d'AR(1) mais blanchies par $\Sigma^{-1/2}$, donc sans corrélations.
- Des vecteurs gaussiens, donc sans corrélations.

Le tout pour différentes valeurs de n répétitions indépendantes, avec des vecteurs de longeur q^5 en utilisant le paramètre d'échelle c qui donne la relation q=cn.

⁵correspondant au *p* de l'article

Résultats de simulations

Figure 2: p-value pour le test basé sur la statistique T_1

La ligne verticale, indique la valeur de *c* la plus proche de nos données.

Figure 3: p-value pour le test basé sur la statistique T_2

La ligne verticale, indique la valeur de *c* la plus proche de nos données.

Notre cas

Nous avons n=27 et q=232 soit $c\simeq 9$

En appliquant les tests à nos données nous avons :

- Pour les données non blanchies, p-value^{avant blanch.} = 0 et p-value $\frac{\text{avant blanch.}}{T_2} = 0$, ainsi le test indique que nos données sont corrélées, en accord avec le test de Portmanteau ("no_whitening").
- \blacksquare Pour les données blanchies, p-value ^après blanch. = 0 et p-value $\frac{après}{\tau_a}$ blanch. = 0, et le test indique que nos données sont corrélées, en opposition au test de Portmanteau et au processus de blanchiment.

Aux vues des simulations, notre c est sûrement trop grand pour ces tests.

Résultats

Sélection de variable

Le critère LASSO consiste à résoudre le problème d'optimisation suivant .

$$\widetilde{\mathcal{B}}(\lambda) = \arg\min_{\mathcal{B}} \{ \|\widetilde{\mathcal{Y}} - \widetilde{\mathcal{X}}\mathcal{B}\|_2^2 + \lambda \|\mathcal{B}\|_1 \}$$

Choix du λ

Pour mener à bien la procédure il faut choisir un λ . Le choix fait dans MultiVarSel consiste à réaliser une validation croisée et à choisir le λ_{CV} .

La stability selection

La méthode (proposée par Meinshausen and Bühlmann (2010)) consiste à échantillonner nq/2 indices de \mathcal{Y} et à résoudre le problème d'optimisation un grand nombre de fois en relevant les indices des coefficients non nuls de \mathcal{B} .

Une fois cela fait, on obtient une fréquence de sélection pour chacun des coefficients.

Voici un graphique des fréquences obtenues par ordre décroissant en appliquant la *stability selection*⁶

⁶Nous avons fait 5000 réplicats en utilisant le *cluster* Migale.

Sur le graphique, on observe une cassure aux alentours de la 750e fréquence par ordre décroissant.

Afin de pouvoir interpréter nos résultats plus facilement, nous allons nous limiter à un seuil de 0.96.

Ce seuil sélectionne 69 coefficients de \mathcal{B} .

Ré-estimation des paramètres

Pourquoi ré-estimer ?

Dans le cours (Lévy-Leduc (2024)), nous avons vu que les Théorèmes 1 et 2 garantissent la consistance en signe des estimateurs des \mathcal{B} .

Cependant, l'estimation de la valeur tend à être biaisée, cette étape nous permet donc de ré-estimer les valeurs des $\mathcal B$ qui ont été estimés non nuls.

Figure 4: Graphique en boulier des estimations pour les métabolites sélectionnés en fonction de la température et de l'imbibition

Bibliographie

Bibliographie I

- Fisher, Thomas J. 2012. "On Testing for an Identity Covariance Matrix When the Dimensionality Equals or Exceeds the Sample Size." *Journal of Statistical Planning and Inference* 142 (1): 312–26. https://doi.org/10.1016/j.jspi.2011.07.019.
- Lévy-Leduc, Céline. 2024. "Notes pour le cours : 'Méthodes de statistique en grande dimension pour l'analyse de données de biologie moléculaire'."
- Meinshausen, Nicolai, and Peter Bühlmann. 2010. "Stability Selection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 72 (4): 417–73. https://doi.org/10.1111/j.1467-9868.2010.00740.x.

Bibliographie II

Perrot-Dockès, Marie, Céline Lévy-Leduc, and Julien Chiquet. 2019. "Introduction to MultiVarSel," March.

Merci pour votre attention