

Karlsruher Institut für Technologie Institut für Technische Informatik (ITEC)

Rechnerorganisation im WS 2020/21

Musterlösungen zum 6. Übungsblatt

Prof. Dr. Jörg Henkel Dr.-Ing. Lars Bauer Roman Lehmann, M. Sc. Haid-und-Neu-Str. 7, Geb. 07.21 (Technologiefabrik)

Email: roman.lehmann@kit.edu

Lösung 1 (4 Punkte)

1 P.

- 1. Dauer eines Befehls: (50 + 60 + 60 + 60 + 50) ns = 280 ns
 - \Rightarrow Benötigte Zeit zur Ausführung von 1000 Befehlen: 280 000 ns

Taktperiode der Pipeline:

$$\tau = \max\{\tau_1, \tau_2, \dots, \tau_5\} + \tau_{reg} = (60 + 5) \ ns = 65 \ ns$$

- 2. Dauer eines Befehls: $(65 \times 5) ns = 325 ns$
- 3. Benötigte Zeit zur Ausführung von 1000 Befehlen: Anzahl Takte: n+(k-1)=1000+5-1=1004

Benötigte Zeit: $1004 * 65 = 65\ 260$

1 P.

Alternativ:

$$(65 \times 5 \times 1) + (65 \times 1 \times 999) = 65260 \ ns$$

4. Beschleunigung (Speedup):

Beschleunigung =
$$\frac{\text{sequentielle Ausführungszeit}}{\text{Ausführungszeit mit Pipeline}}$$

= $\frac{280000}{65260} = 4,29$

Lösung 2 (6 Punkte)

1. • IF-Stufe ($instruction\ fetch$):

5 P.

1 P

3 P.

Der Befehl wird aus dem Speicher geladen. Gleichzeitig wird der Wert des Befehlszählers um 4 erhöht und in das Befehlszählerregister zurückgeschrieben.

- ID-Stufe (instruction decode):
 - Das Befehlswort wird dekodiert. Das Steuerwerk erzeugt die Steuersignale, die die nachfolgenden Komponenten beeinflussen. Das Register, welches die zu lesende Speicheradresse enthält, wird gelesen und der Wert weitergeleitet.
- EX-Stufe (execute):
 - Die ALU berechnet die effektive Adresse für den Speicherzugriff, indem der Registerinhalt mit dem im Befehlswort angegeben Offset addiert wird.
- MEM-Stufe (memory): Der lesende Speicherzugriff wird durchgeführt.
- WB-Stufe (*write-back*):

 Das gelesene Datenwort wird in den Registersatz geschrieben.
- 2. In der ID-Stufe wird zusätzlich der zu speichernde Wert aus dem Registersatz ausgelesen.

In der MEM-Stufe wird statt einem lesenden ein schreibender Speicherzugriff durchgeführt.

Die WB-Stufe wird untätig durchlaufen, da am Registersatz keine Veränderung vorgenommen werden muss.

 $\underline{\text{L\"osung 3}} \tag{15 Punkte}$

- 1. Adresse der Speicherstelle: 0x20141238 (0x20141234 + 0x00000004)
- 2. Wert der Speicherstelle nach sequentieller Ausführung: $\lfloor \frac{2014+100}{4} \rfloor = 528$
- 3. Echte Datenabhängigkeiten im Programmstück
 - S1-S5 (\$s0)
 - S2-S3 (\$t0)
 - S3-S4 (\$t0)
 - S3-S7 (\$t0)
 - S4-S5 (\$s1)
 - S5-S6 (\$s1)
 - S6-S7 (\$s2)

4. Bei der folgenden Tabelle wird angenommen, dass Schreibvorgänge in den Registersatz [im jeweiligen Taktzyklus bereits abgeschlossen werden.

	IF	ID	EX	MEM	WB	\$s0	\$s1	\$t0
1	addi	(nop)	(nop)	(nop)	(nop)	0	0	0
2	lui	addi	(nop)	(nop)	(nop)	0	0	0
3	ori	lui	addi	(nop)	(nop)	0	0	0
4	lw	ori	lui	addi	(nop)	0	0	0
5	add	lw	ori	lui	addi	100	0	0
6	srl	add	lw	ori	lui	100	0	0x20140000
7	sw	srl	add	lw	ori	100	0	0x00001234
8	(nop)	sw	srl	add	lw	100	*	0x00001234
9	(nop)	(nop)	sw	srl	add	100	100	0x00001234
10	(nop)	(nop)	(nop)	sw	srl	100	100	0x00001234
11	(nop)	(nop)	(nop)	(nop)	sw	100	100	0x00001234

 \circledast : Datenwort an Adresse 0x00000004 (undefiniert)

5. DLX-Pipeline ohne Forwarding:

2 P.

S1

S2

NOP

NOP

S3

NOP

NOP

S4

NOP

NOP

S5

NOP

NOP

S6

NOP

NOP

S7

6. Modifizierte DLX-Pipeline mit Result Forwarding und Load Forwarding:

2 P.

S1

S2

S3

S4

NOP

S5

S6

S7

7. Berechnung der Ausführungszeit:

3 P.

- Sequentielle Ausführung: $7 \cdot 5 = 35$ Taktzyklen
- $\bullet\,$ DLX-Pipeline ohne Forwarding: 17 + 4 = 21 Taktzyklen
- DLX-Pipeline mit Forwarding: 8+4=12 Taktzyklen