The University of Melbourne — School of Mathematics and Statistics MAST30012 Discrete Mathematics — Semester 2, 2021

Practice Class 2: Arrangements and Combinations – Solutions

Q1: (a) We have to choose 3 out of 20, where order doesn't matter. The number of choices is

$$\binom{20}{3} = \frac{20!}{3! \, 17!} = 1140.$$

(b) We think of the people as standing in a line from left to right. The first person can by paired with any of the 7 remaining people. 6 people remain and the leftmost person can be paired with any of 5 people etc. The number of different pairs is

$$7 \cdot 5 \cdot 3 \cdot 1 = 105$$

(c) Out of 8 people a pair can be chosen in $\binom{8}{2}$ ways and put into box 1. This leaves 6 people from which to choose the second pair in $\binom{6}{2}$ ways to put into box 2. Now there are $\binom{4}{2}$ ways to choose a pair that goes into box 3. The last pair (one choice) is then put into box 4. The number of different pairs is

Assignment Project Exam Help

(d) Total number of possible configurations is
$$2^{10}$$
. 5 heads can be chosen in $\binom{10}{5}$ ways so
$$\frac{\text{https://powcoder.com}}{\text{Pr}(5 \text{ heads}) = \frac{\binom{10}{5}}{2^{10}} = \frac{63}{256} = 0.246073\dots }$$

Let H indicate a Airg of 5 Wede Note 12st in a with H followed by 5 heads or tails or H is preceded by a tail. i.e., tH, while the remaining 4 tosses are heads or tails. There are 2^5 configurations in the first case and 5×2^4 is the second case (the tH can be placed in any of 5 positions in the string of 4 heads/tails). The number of favourable outcomes is $2^{5} + 5 \times 2^{4} = 112$ and hence

$$Pr(\text{at least 5 heads in a row}) = \frac{112}{1024} = \frac{7}{64} = 0.109375.$$

Exactly 5 heads in a row is similar to previous case except the positions before and after the 5 heads must be either a tail or empty, e.g., we have

Htxxxx, tHtxxx, xtHtxx, xxtHtx, xxxtHt, xxxxtH

where x indicates a position in which we could have a head or a tail. So the number of favourable outcomes is 16 + 8 + 8 + 8 + 8 + 16 = 64 and therefore

$$Pr(exactly 5 heads in a row) = \frac{1}{16} = 0.0625.$$

Note: Precious problem of at least 5 heads in a row can be done by counting exactly kheads in a row $k = 5, 6, \dots, 10$ for which we get using the argument above 64, 28, 12, 5, 2, 1configurations, respectively. They sum to 112.

Q2: (a) 3 elements with repetition from $\{a, b\}$ (order does not matter)

$$aaa, aab, abb, bbb$$
 total of $4 = \begin{pmatrix} 2+3-1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.

(b) We have to choose 3 out of 20 with repetition allowed (replacement). The number of choices is

$$\binom{20+3-1}{3} = \binom{22}{3} = \frac{22!}{3! \cdot 19!} = 1540.$$

(c) The number of ways to arrange n-1 symbols I, and r symbols in a line is

$$\binom{n+r-1}{r}$$

Each choice of r symbols from n (with replacement) can be written as a an arrangement of n-1 I's and r x's with the number of x's between the (j-1)th I and the jth I being the number of times the jth elements occurs in the sample. From $\mathbf{Q2}(a)$

 $aaa \leftrightarrow xxxI \qquad aab \leftrightarrow xxIx \qquad abb \leftrightarrow xIxx \qquad bbb \leftrightarrow Ixxx$

Assignment Project Exam Help

(d) Identify the r identical objects as x's and insert the x's between the (j-1)th I and the jth I to indicate the number of x's which go to person I. This is the same counting problem as $\mathbf{Q2}$ (c) It is simpler $\mathbf{Q2}$ to $\mathbf{Q2}$ to

Add WeChart powcoder

Q3: (a) The number of different ways of putting r_1 labelled blocks into box B_1 is $\binom{n}{r_1}$. This leaves us with $n-r_1$ blocks. We can but r_2 of these in box B_2 in $\binom{n-r_1}{r_2}$ different ways. Continuing along these lines of reasoning we get (using the multiplication principle) that

$$\binom{n}{r_1, r_2, \cdots, r_p} = \binom{n}{r_1} \binom{n - r_1}{r_2} \cdots \binom{n - r_1 - \cdots - r_{p-1}}{r_p}$$

Using the formula $\binom{n}{k} = \frac{n!}{k! (n-k)!}$ this simplifies to

$$\binom{n}{r_1, r_2, \cdots, r_p} = \frac{n!}{r_1! r_2! \cdots r_p!}$$

(b)
$$\binom{n}{r_1, n - r_1} = \frac{n!}{r_1!(n - r_1)!} = \binom{n}{r_1}.$$

(c) Think of labelled blocks as elements of a set and boxes as subsets of prescribed sizes.

Q4: (a) From the recurrence we have

$$\binom{n+r+1}{r} = \binom{n+r}{r} + \binom{n+r}{r-1}$$

But the recurrence also tells us that

$$\binom{n+r}{r-1} = \binom{n+r-1}{r-1} + \binom{n+r-1}{r-2}$$

so that

$$\binom{n+r+1}{r} = \binom{n+r}{r} + \binom{n+r-1}{r-1} + \binom{n+r-1}{r-2}$$

Now apply the recurrence to the term $\binom{n+r-1}{r-2}$ etc. to get the stated formula.

(b) LHS of identity is the number of subsets of size r from a set $\{1, 2, \dots, n+r+1\}$.

These subsets can be partitioned as follows: subsets which don't contain the element '1', of which there are $\binom{n+r}{r}$; subsets which contain '1' but not '2', of which there are $\binom{n+r-1}{r-1}$; subsets which contain the elements '1' and '2' but not '3', of which there are $\binom{n+r-2}{r-2}$; etc. etc. ACSI SINGLE THE DEFINITION PRINTING THE ALLE OF PRINTING THE PRINTING THE PRINTING THE ALLE OF PRINTING THE PRINTING THE PRIN

- Q5: (a) Let the set of n elements be $\{1, 2, ..., n\}$. From this set choose a subset of size r. Now form an order n of n elements be $\{1, 2, ..., n\}$. From this set choose a subset of size r. Now form an order n of the line if n is in the subset and n otherwise. For example with n = 4, n = 2 the subset n is identified with 2121. Hence the total numbers are the same for both problems giving n ways to order n 'Aarl n -W' et a matrix powcoder
 - (b) By the stated correspondence (bijection) the two counting problems are the same. Thus the number of orderings of r_1 lots of 1's, r_2 lots of 2's, ... r_p lots of p's in a line is the same as the number of ways to partition a set of $r_1 + r_2 + \cdots + r_p = n$ symbols into subsets of size r_1, r_2, \ldots, r_p . From $\mathbf{Q3}(c)$ this number is the multinomial coefficient

$$\binom{n}{r_1, r_2, \dots, r_p}$$