Zip-zip Trees: Making Zip Trees More Balanced, Biased, Compact, or Persistent

Ofek Gila¹, Michael T. Goodrich¹, and Robert E. Tarjan²

¹University of California, Irvine ²Princeton University

WADS, 2023

- 2018 Zip tree (Tarjan, Levy, Timmel)
 - 1.5 log *n* expected average depth
 - Min key: $0.5 \log n$, Max key: $\log n$
 - Space cost: log log *n* bits per node

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: $0.5 \log n$, Max key: $\log n$
 - Space cost: log log *n* bits per node

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: 0.5 log n, Max key: log n
 - Space cost: log log n bits per node
- 2023 Zip-zip trees:
 - \checkmark 1.39 log *n* expected average depth

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: 0.5 log n, Max key: log n
 - Space cost: log log n bits per node
- 2023 Zip-zip trees:
 - \checkmark 1.39 log *n* expected average depth
 - \checkmark Space cost: log log n bits per node (or O(1) bits per update w.h.p.)

2/17

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: 0.5 log n, Max key: log n
 - Space cost: log log n bits per node
- 2023 Zip-zip trees:
 - \checkmark 1.39 log *n* expected average depth
 - \checkmark Space cost: $\log \log n$ bits per node (or O(1) bits per update w.h.p.)
 - ✓ Easy to implement

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: 0.5 log n, Max key: log n
 - Space cost: log log n bits per node
- 2023 Zip-zip trees:
 - \checkmark 1.39 log *n* expected average depth
 - \checkmark Space cost: $\log \log n$ bits per node (or O(1) bits per update w.h.p.)
 - ✓ Easy to implement
 - ✓ Strongly history independent

2/17

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: 0.5 log n, Max key: log n
 - Space cost: log log n bits per node
- 2023 Zip-zip trees:
 - \checkmark 1.39 log *n* expected average depth
 - \checkmark Space cost: $\log \log n$ bits per node (or O(1) bits per update w.h.p.)
 - ✓ Easy to implement
 - ✓ Strongly history independent
 - ✓ May be partially persistent

2/17

- 2018 Zip tree (Tarjan, Levy, Timmel) asymmetric
 - 1.5 log *n* expected average depth
 - Min key: 0.5 log n, Max key: log n
 - Space cost: log log n bits per node
- 2023 Zip-zip trees:
 - \checkmark 1.39 log *n* expected average depth
 - \checkmark Space cost: $\log \log n$ bits per node (or O(1) bits per update w.h.p.)
 - ✓ Easy to implement
 - ✓ Strongly history independent
 - ✓ May be partially persistent
 - ✓ Supports biased keys (still $O(\log \log n)$ bits per node)

Figure 1: A sorted linked list

Figure 1: A sorted linked list

Figure 1: A skip list with one coin flip

Figure 1: A skip list with two coin flips

Figure 1: A skip list with three coin flips

- What if you add 'fast lanes'?
- Idea: 1 move in level $k \approx 2$ in level $k-1 \approx 2^k$ in level 0

- What if you add 'fast lanes'?
- Idea: 1 move in level $k \approx 2$ in level $k-1 \approx 2^k$ in level 0
- $\mathcal{O}(\log n)$ expected search time

- What if you add 'fast lanes'?
- Idea: 1 move in level $k \approx 2$ in level $k 1 \approx 2^k$ in level 0
- $\mathcal{O}(\log n)$ expected search time
- Expected height of $\mathcal{O}(\log n)$

Figure 1: A skip list with four coin flips

- What if you add 'fast lanes'?
- Idea: 1 move in level $k \approx 2$ in level $k-1 \approx 2^k$ in level 0
- $\mathcal{O}(\log n)$ expected search time
- Expected height of $\mathcal{O}(\log n)$
- Expected 2*n* nodes

- What if you add 'fast lanes'?
- Idea: 1 move in level $k \approx 2$ in level $k-1 \approx 2^k$ in level 0
- $\mathcal{O}(\log n)$ expected search time
- Expected height of $\mathcal{O}(\log n)$
- Expected 2n nodes bad

Zip Tree Analysis

- Max key expected depth log n
- Min key expected depth $\log n/2$
- Asymmetric!

Zip Tree Analysis

- Max key expected depth log n
- Min key expected depth $\log n/2$
- Asymmetric!
- Results in average node depth of $1.5 \log n$

Zip Tree Analysis

- Max key expected depth log n
- Min key expected depth $\log n/2$
- Asymmetric!
- Results in average node depth of $1.5 \log n$
- Can we do better?

Zip-zip Trees

• What if rank was a tuple, (r_1, r_2) ?

Zip-zip Trees

- What if rank was a tuple, (r_1, r_2) ?
 - ullet Let r_1 be geometrically distributed

Zip-zip Trees

- What if rank was a tuple, (r_1, r_2) ?
 - Let r_1 be geometrically distributed
 - Let r_2 be uniformly distributed from $[1, \log^c n]$

- What if rank was a tuple, (r_1, r_2) ?
 - Let r_1 be geometrically distributed
 - Let r_2 be uniformly distributed from $[1, \log^c n]$
- Compare ranks lexicographically

- What if rank was a tuple, (r_1, r_2) ?
 - Let r_1 be geometrically distributed
 - Let r_2 be uniformly distributed from $[1, \log^c n]$
- Compare ranks lexicographically
- Metadata size $O(\log \log n)$?

- What if rank was a tuple, (r_1, r_2) ?
 - Let r_1 be geometrically distributed
 - Let r_2 be uniformly distributed from $[1, \log^c n]$
- Compare ranks lexicographically
- ✓ Metadata size $O(\log \log n)$? $O(\log \log n) + O(c \log \log n)$

- What if rank was a tuple, (r_1, r_2) ?
 - Let r_1 be geometrically distributed
 - Let r_2 be uniformly distributed from $[1, \log^c n]$
- Compare ranks lexicographically
- \checkmark Metadata size $O(\log \log n)$? $O(\log \log n) + O(c \log \log n)$
- Hope: fewer collisions, better depth?

Zip-zip Trees Example

Figure 2: A zip tree

Zip-zip Trees Example

Figure 3: A random zip-zip tree generated from the above zip tree

• Idea: Consider rank groups

• Idea: Consider rank groups

• Idea: Consider rank groups

• How big are rank groups?

Lemma

The size of an r_1 rank group has expected value 2 and is $< 2 \log n$ w.h.p.

Proof Sketch.

• Size is (at most) geometrically distributed

Theorem

The expected depth, δ_j , of the j-th smallest key in a zip-zip tree is $H_j + H_{n-j+1} - 1 + o(1)$

10 / 17

Theorem

The expected depth, δ_j , of the j-th smallest key in a zip-zip tree is $H_j + H_{n-j+1} - 1 + o(1)$

Theorem

The expected depth, δ_j , of the j-th smallest key in a zip-zip tree is $H_j + H_{n-j+1} - 1 + o(1)$

Proof Sketch.

• A node x_i is an ancestor of node x_j iff x_i has maximum rank in [i,j]

Theorem

The expected depth, δ_j , of the j-th smallest key in a zip-zip tree is $H_j + H_{n-j+1} - 1 + o(1)$

Proof Sketch.

• A node x_i is an ancestor of node x_j iff x_i has maximum rank in [i,j]

Theorem

The expected depth, δ_j , of the j-th smallest key in a zip-zip tree is $H_j + H_{n-j+1} - 1 + o(1)$

Proof Sketch.

• A node x_i is an ancestor of node x_j iff x_i has maximum rank in [i,j]

Theorem

The expected depth, δ_i , of the j-th smallest key in a zip-zip tree is $H_j + H_{n-j+1} - 1 + o(1)$

Proof Sketch.

• A node x_i is an ancestor of node x_i iff x_i has maximum rank in [i, j]

Theorem

The expected depth, δ_i , of the j-th smallest key in a zip-zip tree is $H_i + H_{n-i+1} - 1 + o(1)$

Proof Sketch.

• A node x_i is an ancestor of node x_i iff x_i has maximum rank in [i, j]

$$P(x_i \prec x_j) = \frac{1}{|i-j|+1}$$

(1,7) (5,10) (1,6) (6,22) (1,5) (1,2) (0,72) (1,8) (0,57) (1,1) (1,91) (1,9) (0,9) (2,27)

Theorem

The expected depth, δ_i , of the j-th smallest key in a zip-zip tree is $H_i + H_{n-i+1} - 1 + o(1)$

Proof Sketch.

• A node x_i is an ancestor of node x_i iff x_i has maximum rank in [i, j]

$$P(x_i \prec x_j) = \frac{1}{|i-j|+1}$$

$$\delta_j = \sum_{i=1}^J \frac{1}{j-i+1} + \sum_{i=j+1}^n \frac{1}{i-j+1} = H_j + H_{n-j+1} - 1$$

(1,7) (5,10) (1,6) (6,22) (1,5) (1,2) (0,72) (1,8) (0,57) (1,1) (1,91) (1,9) (0,9) (2,27)

Theorem

The expected depth, δ_i , of the j-th smallest key in a zip-zip tree is $H_i + H_{n-j+1} - 1 + o(1)$

Corollary

The expected depth of the min and max keys is $0.69 \log n + \gamma + o(1)$

Corollary

The expected depth of any key is at most 1.39 log n-1+o(1)

11 / 17

• Ranks can be up to $O(\log n)$, but don't differ much

- Ranks can be up to $O(\log n)$, but don't differ much
 - Store r_1 rank differences! (Expected O(1))

- Ranks can be up to $O(\log n)$, but don't differ much
 - Store r_1 rank differences! (Expected O(1))
- Rank groups are small...

- Ranks can be up to $O(\log n)$, but don't differ much
 - Store r_1 rank differences! (Expected O(1))
- Rank groups are small...
 - Generate r_2 ranks on the fly! (Expected O(1))¹

 $^{{}^{1}}r_{1}$ differences are O(1) per node, r_{2} are O(1) per operation

Depth Discrepancy

Figure 4: The depth discrepancy between the min and max keys for three variants

Average Key Depth and Tree Height

Figure 5: The average node depth and tree height for three variants

Rank Collisions

Figure 6: The frequency of encountered rank ties per rank comparison for the uniform variant and per element insertion for the zip-zip variant

Just-in-Time Zip-zip Tree Size

Figure 7: The metadata size for the just-in-time implementation

Summary

- 2023 Zip-zip tree
 - ✓ $1.39 \log n$ expected average depth
 - \checkmark Space cost: $\log \log n$ bits per node (or O(1) bits per update w.h.p.)
 - Easy to implement
 - ✓ Strongly history independent (except JIT)
 - ✓ May be partially persistent
 - \checkmark Supports biased keys (still $O(\log \log n)$ bits per node)

Summary

- 2023 Zip-zip tree
 - ✓ $1.39 \log n$ expected average depth
 - \checkmark Space cost: $\log \log n$ bits per node (or O(1) bits per update w.h.p.)
 - Easy to implement
 - ✓ Strongly history independent (except JIT)
 - ✓ May be partially persistent
 - \checkmark Supports biased keys (still $O(\log \log n)$ bits per node)
- Any questions?

17 / 17