

Asignatura Programación

Introducción a los microcontroladores

David López

Introducción

- Microcontrolador (µC o MCU):
 - Microprocesador + memoria + periféricos
 - Generalmente para uso embebido

Microcontrolador

- ROM (Read-Only Memory)
 - Almacena el programa y las constantes
- RAM (Random Access Memory)
 - Almacena las variables

Subsistemas de entrada/salida

- Son los periféricos
 - Señales de entrada/salida digital
 - Conversores analógico-digitales
 - A/D
 - D/A
 - Temporizadores (timers)

Características de los μC

- Bajo costo
- Baja capacidad de procesamiento
 - Unos pocos MIPS
- Bajo consumo energético

Algunos usos típicos de los μC

- Electrodomésticos
 - ej. cafeteras, lavarropas, microondas
- Automóviles
 - ej. ECU, ABS, control de tracción y estabilidad, asistencia al conductor
- Control industrial
 - ej robots
- Computación
 - ej. Impresoras, teclados

Algunos usos típicos de los μC

- Dispositivos móviles
 - ej GPS, wearables
- Industria espacial
 - ej. computadora de abordo, sistemas de guiado, control de orientación
- Medicina
 - ej. respiradores, monitores, tomógrafos

Ejemplo de uso

Clasificación de µCs

- Por tamaño de palabra
 - 4/8/16/32/64bits
- Por conjunto de instrucciones
 - CISC vs. RISC
- Por arquitectura de memorias
 - Von Neumann vs. Harvard

Tamaño de palabra

- Es la capacidad en bits de la ALU
 - 4/8/16/32/64bits
 - Lo más común es 8 y 32 bits
- Afecta la potencia de cómputo:
 - Ejemplo: si tengo que sumar 2 números de 32 bits (ej. 500 millones) en un μC de 8 bits se debe hacer en 4 pasos.

Conjunto de instrucciones

- CISC (Complex Instruction Set Computer)
 - Permite ejecutar instrucciones complejas
 - Ahorra memoria
 - La lógica interna del procesador es más compleja y menos eficiente
 - Ejecutar una instrucción necesita más ciclos de clock

Conjunto de instrucciones

- RISC (Reduced Instruction Set Computer)
 - Sólo tiene instrucciones sencillas
 - Requieren más memoria
 - La lógica interna del procesador es más simple y eficiente
 - Ejecutar una instrucción necesita un solo ciclo de clock o unos pocos

Arquitectura de acceso a memoria

Von Neumann

 Una misma vía acceso a memoria RAM para código y datos

Harvard

- El código ejecutable y los datos se acceden mediante buses separados
- Más rápido y menor consumo

Von Neumann vs. Harvard

Gracias

David López