RAG的核心一结果召回和重排序

BBTalk

第四节

RAG的核心

- 结果召回和重排序

■ 完整RAG应用的检索流程

> 标准化query,提升 检索效果

从海量数据中找到N 条相关数据 对N条数据继续缩小 数量并根据语义排序

■ Query预处理

1、意图识别

判断query问的是什么类型的问题,从而决定是否走RAG链路

示例1:

深圳有什么好玩的 闲聊问题

VDB支持哪些检索算法 产品常见问题

示例2:

云Redis如何扩容 产品常见问题

为什么某个MongoDB实例内存占用过高 检查类问题

流程图:

■ Query预处理

2、生成同义query

针对query生成同义句,不同问法提高召回,检索结果做合并

^{示例1:} VDB支持哪些检索算法

VDB有哪些可用的检索算法

列举一下VDB所支持的检索算法

示例2: 腾讯云向量数据库的优势是什么

腾讯云向量数据库有哪些主要优点

腾讯云向量数据库的核心竞争力是什么

■ Query预处理

3、query标准化

针对query中的专有名词、简写、英文做标准化处理

示例1: VDB支持哪些检索算法

腾讯云向量数据库支持哪些检索算法

^{示例2:} COS如何上传对象

腾讯云对象存储如何上传对象

流程图:

腾讯云开发者社区

检索召回

索引类型	使用场景	适用向量规模	召回率
FLAT	暴力检索,召回率100%,但检索效率低。	10万以内	最高,可保证 100%召回率
HNSW	 基于图算法构建索引,可通过调整检索参数 提升召回率。具体信息,请参见 配置索引参数。 检索效率高,但数据量大后写入效率会变低。具体测试数据,请参见性能白皮书的测试结果。 	10万-1亿	95%+,可根据参数调整
IVF系列	基于聚类算法构建的索引,可通过参数调整召回率,适用于上亿规模的数据集,检索效率高,内存占用低,写入效率高。	1亿以上	95%+, 可根据 参数调整

What's more?

每次召回时,如何提升结果的排序效果,使与Query更相关的结果更靠前

Query预处理中,做了生成同义Query,最终应该如何合并检索结果?

如何在召回阶段,将召回的结果效果做得更优质,减少干扰信息对LLM的影响

■ 为什么要做排序(Rerank)

Embedding模型存在一定的局限性

在实际召回结果中,embedding没办法完全反应出语义的相似性, 至少这K个文件的排名并不是我们认为的从高分到低分排序的。

Rerank: RAG中百尺竿头更进一步

■ 排序

排序模型的目的在于对召回内容有一个更合理的排序结果,减少提供给模型的上下文长度,长度越长,对模型来说压力越大

基于Learning2Rank的思路提升文本语义排序效果

Documents are considered independently of each other f o score o order o metric

2. Pairwise

Look at a pair of documents at a time $f \rightarrow \text{partial order} \rightarrow \text{order} \rightarrow \text{metric}$

$$\mathcal{L}_{ ext{ranking}} = - ext{log}(\sigma(r_{ heta}(x,y_c) - r_{ heta}(x,y_r) - m(r)))$$

	Significantly Better	Better	Slightly Better	Negligibly Better / Unsure
Margin Small	1	2/3	1/3	0
Margin Large	3	2	1	0

3. Listwise

 $f \rightarrow \text{order} \rightarrow \text{metric}$

Consider the ordering of the entire list

a, b, c	
abc, acb	
bac, bca	$ angle \in Y$
cab, cba	

 $ahc \in X$

三条文本对应了六种排列方式,一个6分类

Listwise的优化

排序的文本有n条,那么排序结果就是n!种,时间复杂度高

优化方案: ApproxNDCG, 把排序指标NDCG作为loss

$$ext{NDCG} = N_n^{-1} \sum_{x \in \mathcal{X}} rac{2^{r(x)} - 1}{\log_2\left(1 + \pi(x)
ight)}$$

$$\pi(x) = 1 + \sum_{y \in \mathcal{X}, y
eq x} 1\left\{s_{x,y} < 0
ight\} \ s_{x,y} = s_x - s_y$$

π(x)表示排序 结果的位置, NDCG的结果 不连续无法BP

$\exp\left(-lpha s_{x,y} ight)$	
$1 + \exp\left(-\alpha s_{x,y}\right)$	

document	s_x	$\pi(x)$	$\hat{\pi}(x)$ ($\alpha = 100$)
x_1	4.20074	2	2.00118
x_2	3.12378	4	4.00000
x_3	4.40918	1	1.00000
x_4	1.55258	5	5.00000
x_5	4.13330	3	2.99882

最终loss function

$$egin{aligned} \hat{\pi}(x) &= 1 + \sum_{y \in \mathcal{X}, y
eq x} rac{\exp\left(-lpha s_{x,y}
ight)}{1 + \exp\left(-lpha s_{x,y}
ight)} \ \overline{ ext{NDCG}} &= N_n^{-1} \sum_{x \in \mathcal{X}} rac{2^{r(x)} - 1}{\log_2\left(1 + \hat{\pi}(x)
ight)} \end{aligned}$$

效	model	FAQ ACC@5	文档 ACC@5	混合数据 ACC@5
果对	bge-reranker-large(开源SOTA)	90.26	75.98	77.17
比	Our Model	93.76	83.20	81.21

■ 腾讯云向量数据库:消除大模型幻觉,加速大模型在企业落地

端到端AI套件,AGI时代的知识库解决方案

提供一站式知识检索方案,实现业界内最高召回率、大幅降低开发门槛,帮助企业快速搭建RAG应用,解决大模型幻觉问题

源自集团多年积累,产品能力行业领先

源自腾讯自研向量检索引擎OLAMA,集团内部40+业务线上使用,日均处理1600亿次检索请求

『首家』通过中国信通院 向量数据库标准测试

单索引支持最高**干亿级** 超大数据规模

单实例最高可达500万 QPS