1

Gate Assignment

SAMMETA SAIPOORNA EE23BTECH11055

Question

The voltage source $V_s = 10 \sqrt{2} \sin(20000\pi t)$ V has an internal resistance of 50 ohms. The RMS value of the current through R is ____ (in mA) (rounded off to one decimal place).

(GATE IN 2023)

Solution:

Parameter	Value
V_s	$10\sqrt{2}\sin(20000\pi t)$ V
R	??
$R_{\rm internal}$	50 ohms
$R_{\rm net}$	$R + R_{internal}$
TABLE I	

INPUT PARAMETERS

$$V(s) = ZI(s) \tag{1}$$

$$I_{\rm RMS} = \frac{V_{\rm RMS}}{|Z|} \cdot \cos(\phi) \tag{2}$$

$$Z = R + R_{\text{internal}} + Ls + \frac{1}{Cs} \tag{3}$$

$$= 50 + 25 + \frac{s}{20000\pi} + \frac{20000\pi}{s} \tag{4}$$

$$Z = 75\,\Omega\tag{5}$$

$$V_{\rm RMS} = \frac{10\sqrt{2}}{\sqrt{2}} = 10\,\rm V \tag{6}$$

$$\phi = 0 \text{ (no phase difference)}$$
 (7)

Putting
$$s = j\omega$$
 (8)

$$=75 + \frac{20000\pi j}{20000\pi} + \frac{20000\pi}{20000\pi j} \tag{9}$$

$$= 75 + j - j \tag{10}$$

$$=75 \tag{11}$$

$$I_{\text{RMS}} = \frac{10}{75} \times 1000 = \frac{2000}{15} \approx 133.3 \,\text{mA}$$
 (12)