

Théorie et Algorithmes de l'Apprentissage Automatique

4 - SVM à noyaux

Simon BERNARD simon.bernard@univ-rouen.fr

Rappels: SVM linéaire hard-margin

- · Problème linéairement séparable
- Toutes les données d'apprentissage sont correctement classées par le séparateur linéaire

Rappels: SVM linéaire soft-margin

- · Problème linéairement non-séparable
- Quelques erreurs d'apprentissage : compromis entre marge et nombres d'erreurs

- · Les données ne sont pas toujours des vecteurs (textes, graphes, images, etc.)
- · Les données peuvent être séparables mais non-linéairement

Transformer un séparateur linéaire en séparateur non-linéaire?

D'une séparation linéaire à une séparation non-linéaire?

- · Approches d'optimisation non-linéaires : complexité calculatoire trop importante
- · Méthodes linéaires bien connues et plus simples
- · Gardons les approches linéaires, et travaillons sur les données.
- · Exemples : coordonnées polaires

D'une séparation linéaire à une séparation non-linéaire?

· Dans l'exemple précédent, on a opéré à une transformation non-linéaire des données :

$$\phi(\mathbf{x}): \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} r \\ \theta \end{pmatrix}$$

- · Les données sont linéairement séparables dans le nouvel espace
- · Problème :
 - · Fonctionne ici parce que les données s'y prêtent.
 - · Comment faire sans a priori sur les données?
 - · Comment faire quand les données ne sont pas des vecteurs?
- Solution : l'astuce du noyau (kernel trick)

Astuce du noyaux

Objectif:

- Trouver une transformation ϕ vers un espace \mathcal{F} plus riche (embedding)
- Entraı̂ner un SVM dans l'espace résultant, i.e. avec les $\{\phi(\mathbf{x}_i), y_i\}$

• SVM soft-margin dans \mathcal{F} :

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
s.c.
$$y_i \left(\mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_i) + b \right) \ge 1 - \xi_i, \qquad i = 1, \dots, n$$

$$\xi_i \ge 0, \qquad i = 1, \dots, n$$

avec $\mathbf{w} \in \mathcal{F}$

· Le modèle $h(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b$ est non-linéaire dans l'espace orginal

· Le problème dual devient :

$$\max_{\boldsymbol{\alpha}} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{j})^{\top} \phi(\mathbf{x}_{i})$$
s.c. $0 \le \alpha_{i} \le C, \quad i = 1, \dots, n$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

· La fonction de décision devient :

$$h(\mathbf{x}) = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i \mathbf{x}_i^\top \mathbf{x} + b \quad \Rightarrow \quad h(\mathbf{x}) = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}) + b$$

· Dans cette fonction de décision :

$$h(\mathbf{x}) = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}) + b$$

 $\phi(\mathbf{x})$ n'intervient que sous la forme d'un produit scalaire $\phi(\mathbf{x}_i)^{\top}\phi(\mathbf{x})$

- Nous n'avons pas besoin de calculer w, ni de connaître $\phi(x)$ explicitement
- Il suffit de connaître la fonction k telle que :

$$k(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_i)$$

• Conclusion : simplement calculer le produit scalaire $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{F}}$, revient à faire fonctionner le SVM linéaire dans un espace \mathcal{F} implicite (embedding)

· La fonction k est appelée fonction noyau :

$$k(.,.): \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

· Un SVM à noyau est défini par le problème dual :

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} R(\mathbf{x}_{i}, \mathbf{x}_{j})$$
s.c. $0 \le \alpha_{i} \le C$, $i = 1, ..., n$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

· et la fonction de décision :

$$h(\mathbf{x}) = \sum_{\mathbf{x}_i \in SV} \alpha_i y_i k(\mathbf{x}, \mathbf{x}_i) + b$$

Qu'est-ce qu'un noyau?

Noyau défini positif

Un noyau (*kernel*) k est une fonction $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$:

$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_{\mathcal{F}}$$

avec $x, z \in \mathcal{X}$ et \mathcal{F} un espace de caractéristiques muni d'un produit scalaire $\langle \cdot, \cdot \rangle_{\mathcal{F}}$

- · Pour les SVM : noyau défini positif
- · Pourquoi? pour garantir que le problème dual des SVM reste bien posé

Noyau défini positif

Un noyau $k(\mathbf{x}, \mathbf{z}) \in \mathcal{X} \times \mathcal{X}$ est dit défini positif si :

- · il est symétrique : $\forall x, z \in \mathcal{X}, \quad k(x, z) = k(z, x)$
- $\cdot \forall n \in \mathbb{N}, \forall \{\mathbf{x}_i\}_{i=1,n} \in \mathcal{X}, \forall \{\alpha_i\}_{i=1,n} \in \mathbb{R}$:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$

Il est dit strictement défini positif si pour $\alpha_i \neq 0$:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) > 0$$

- · Intuitivement, un noyau est une mesure de similarité :
 - $\cdot \ \forall x, z \in \mathcal{X}, \quad k(x, z) \ge 0 \quad (positivité)$
 - $\cdot \ \forall x, z \in \mathcal{X}, \quad k(x, z) = k(z, x)$ (symétrie)
 - $\cdot \forall x, z \in \mathcal{X}, z \neq x, \quad k(x, z) > k(x, x)$ (uniformité)
 - $\cdot \ \forall x, z \in \mathcal{X}, \quad k(x, z) = k(x, x) \Leftrightarrow x = z \quad \text{(identité)}$
- Au lieu de travailler dans un espace de représentation, l'apprentissage se base sur des similarités entre les données
- · Permet d'appliquer le principe de non-linéarisation même si $\mathcal{X} \not\subset \mathbb{R}^d$:

$$\mathbf{k}(\hat{\mathbf{x}},\hat{\mathbf{x}})$$

• De façon équivalente, on peut montrer qu'un noyau k est défini positif si $\forall n \in \mathbb{N}, \forall \{x_i\}_{i=1,n} \in \mathcal{X}$ la matrice K, appelée matrice de Gram, définie comme :

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_n) \\ \dots & \dots & \dots & \dots \\ k(x_n, x_1) & k(x_n, x_2) & \dots & k(x_n, x_n) \end{bmatrix}$$

est définie positive

· Une matrice M est définie positive si

$$\mathbf{z}^{\top} \mathbf{M} \mathbf{z} > 0, \quad \forall \mathbf{z} \in \mathbb{R}^n \neq 0$$

· Les méthodes à noyaux sont des méthodes qui prennent ce type de matrices en entrée

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$$

- $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$
- · Symétrique : $\mathbf{x}^{\top}\mathbf{z} = \mathbf{z}^{\top}\mathbf{x}$
- · Positif:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$$

$$= \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i} \right)^{\top} \left(\sum_{j=1}^{n} \alpha_{j} \mathbf{x}_{j} \right)$$

$$= \left\| \sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i} \right\|^{2} \ge 0$$

$$k(\mathbf{x}, \mathbf{z}) = g(\mathbf{x})g(\mathbf{z})$$

- · $x, z \in \mathbb{R}^d$
- $\cdot g: \mathcal{X} \to \mathbb{R}$
- · Symétrique par construction
- · Positif:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j g(\mathbf{x}_i) g(\mathbf{x}_j)$$

$$= \left(\sum_{i=1}^{n} \alpha_i g(\mathbf{x}_i)\right) \left(\sum_{j=1}^{n} \alpha_j g(\mathbf{x}_j)\right)$$

$$= \left(\sum_{i=1}^{n} \alpha_i g(\mathbf{x}_i)\right)^2 \ge 0$$

Propriétés sur les noyaux

Supposons k_1 et k_2 deux noyaux définis positifs. Alors les noyaux suivants sont également définis positifs :

$k(\mathbf{x},\mathbf{z}) = k_1(\mathbf{x},\mathbf{z}) + k_2(\mathbf{x},\mathbf{z})$

$$k(x,z) = k_1(x,z) + k_2(x,z) = k_1(z,x) + k_2(z,x) = k(z,x)$$

$$\cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(\mathbf{x}_{i}, \mathbf{x}_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) \geq 0$$

$k(\mathbf{x},\mathbf{z}) = k_1(\mathbf{x},\mathbf{z})k_2(\mathbf{x},\mathbf{z})$

$$k(x,z) = k_1(x,z)k_2(x,z) = k_1(z,x)k_2(z,x) = k(z,x)$$

$$\cdot \ \textstyle \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k_1(\mathbf{x}_i, \mathbf{x}_j) \right) \left(sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k_2(\mathbf{x}_i, \mathbf{x}_j) \right) \geq 0$$

$k(\mathbf{x}, \mathbf{z}) = \exp(k_1(\mathbf{x}, \mathbf{z}))$

$$k(x,z) = \exp(k_1(x,z)) = \exp(k_1(z,x)) = k(z,x)$$

•
$$\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \exp\left(k_1(\mathbf{x}, \mathbf{z})\right) \ge 0$$

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z} + c)^{p}$$

• Cas particulier du noyau quadratique pour p = 2 et c = 1:

$$k(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{n} x_i z_i + 1\right)^2 = \left(\mathbf{x}^{\top} \mathbf{z} + 1\right)^2 = 1 + 2\mathbf{x}^{\top} \mathbf{z} + (\mathbf{x}^{\top} \mathbf{z})^2$$

• La fonction de projection ϕ s'exprime comme :

$$\phi(\mathbf{x}) = (c, \sqrt{2}cx_1, \dots, \sqrt{2}cx_n, \dots, \sqrt{2}x_ix_j, \dots, x_1^2, \dots, x_n^2)$$

(mais nous n'avons pas besoin de calculer ces coordonnées, uniquement le noyau)

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$
$$= \exp\left(-\gamma \|\mathbf{x} - \mathbf{z}\|^2\right)$$

où σ ou γ sont des hyper-paramètres

• Quand $\sigma = 1$:

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{z}\|^2\right)$$

$$\phi(\mathbf{x}) = \left(\frac{\exp\left(\frac{\|\mathbf{x}\|^2}{2j}\right)}{\sqrt{j!}^{1/j}} \binom{j}{n_1, \dots, n_k}^{1/2} x_{(1)}^{n_1} \dots x_{(d)}^{n_d}\right)_{j=0,\dots,\infty,\sum_{i=1}^{j} n_i = 0}$$

 \cdot σ/γ contrôlent la région d'influence du noyau

Les performances des SVM avec noyau RBF sont très sensibles à la paramétrisation 1

^{1.} https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

En pratique

Si possible, choisir en fonction de la géométrie de problème

Sinon...

- · Quand la dimension de l'espace de description initial est grande : noyau linéaire
- · Sans connaissance à priori sur le problème : noyau RBF

Si k_1 et k_2 sont des noyaux définis positifs sur $\mathcal X$ alors les noyaux suivants le sont aussi :

- $k(\mathbf{x}, \mathbf{z}) = \alpha k_1(\mathbf{x}, \mathbf{z})$ avec $\alpha > 0$
- · $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) + k_2(\mathbf{x}, \mathbf{z})$
- · $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) \times k_2(\mathbf{x}, \mathbf{z})$
- $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{B} \mathbf{z}$ avec **B** une matrice $n \times n$ semi-définie positive
- k(x,z) = f(x)f(z) avec f() une fonction de l'espace des caractéristiques dans \mathbb{R}

Il existe des méthodes plus complexes pour construire des noyaux à partir de noyaux existants (par exemple par des convolutions etc...)

Conditions nécessaires :

- Symmétrie : k(x, z) = k(z, x)
- Inégalité de Cauchy-Schwarz : $k(x,z)^2 \le k(x,x)k(z,z)$

Noyau et matrice définie positive :

- · Soit $\{\mathbf x_i\}_{i=1,n}$ un ensemble de points dans $\mathcal X$
- · $k(\mathbf{x}, \mathbf{z})$ est un noyau défini positif si la matrice $K = \{k(\mathbf{x}_i, \mathbf{x}_j)\}$ est une matrice symmétrique définie positive
- · C'est le cas si $\mathbf{x}^{\top}\mathbf{K}\mathbf{x} > 0$, avec $\mathbf{x} \neq 0$
- \cdot C'est le cas si toutes les valeurs propres de K sont positives

Fernandez-Delgado et al., "Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?", Journal of Machine Learning Research, 2014

 Comparaison de méthodes d'apprentissage : 179 classifieurs et 121 bases de données publiques

Rank	Acc.	κ	Classifier
32.9	82.0	63.5	parRF_t (RF)
33.1	82.3	63.6	rf_t (RF)
36.8	81.8	62.2	svm_C (SVM)
38.0	81.2	60.1	svmPoly_t (SVM)
39.4	81.9	62.5	rforest_R (RF)
39.6	82.0	62.0	elm_kernel_m (NNET)
40.3	81.4	61.1	svmRadialCost_t (SVM)
42.5	81.0	60.0	svmRadial_t (SVM)
42.9	80.6	61.0	C5.0_t (BST)
44.1	79.4	60.5	avNNet_t (NNET)
45.5	79.5	61.0	nnet_t (NNET)
47.0	78.7	59.4	pcaNNet_t (NNET)
47.1	80.8	53.0	BG_LibSVM_w (BAG)

"The classifiers most likely to be the bests are the random forest (RF) versions [...]. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel [...]"