CS2031 Telecommunications II

Ethernet

Ethernet

- Developed by Metcalfe 1972/3
- Standards in 1978, 1995, 1998
- Types of Ethernet
 - Original Ethernet
 - Switched Ethernet
 - Fast Ethernet
 - Gigabit Ethernet
- Manchester Encoding
- **Medium Access Control**
 - CSMA/CD

Metcalfe's Ethernet sketch

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)
- Maximum frame length: 1536 bytes
 - ⇒ max 1500 bytes payload
- Minimum frame length: 64 bytes
 - ⇒ min 46 bytes payload

Ethernet Addresses

- Types of Addresses:
 - Unicast delivered to one station
 - 00-10-4B 3Com 3C905-TX PCI
 - 00-A0-C9 Intel (PRO100B and PRO100+)
 - Multicast delivered to a set of stations
 - 01-80-C2-00-00 Spanning tree (for bridges)
 - 03-00-00-00-01 NETBIOS
 - Broadcast delivered to all stations
 - FF-FF-FF-FF-FF

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)
- Maximum frame length: 1536 bytes
 - ⇒ max 1500 bytes payload
- Minimum frame length: 64 bytes

Length: Up to 0x600 Type: eg. 0x800 IP

0x806 ARP

Frame Length

- Sender starts at t= 0
- Packet takes τ time to get to B
- Shortly before B starts transmitting
 - But discovers collision with A's signal
- 48-bit Jamming signal takes τ time to get to B
- ⇒ It takes at 2T to detect a collision

Frame Length II

- It takes at 2T to detect a collision
- Roundtrip time = 1004sec
- 10 Mbit/s \Rightarrow 500 bits \sim 512 bits or 64 bytes

Evolution of Ethernet

- 1972/73 defined for coaxial cable
- Fast Ethernet used mainly unshielded twisted pair (UTP)
- Gigabit Ethernet common in desktops and laptops
- 10GB Ethernet used mainly for backbone

Types of Ethernet

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

10Base5 & 10Base2

- Signal travels over cable & is picked up by all stations
- Used as backbone technology
- 10Base5: Stations linked into coaxial cable

10 Mbps

Ethernet Cabling

(a) 10Base5, (b) 10Base2, (c) 10Base-T.

100Base-X

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m Full duplex at 100 Mbps	
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

100Base-T

- 10/100 Mbps rate
 - latter called "Fast Ethernet"
- T stands for Twisted Pair
- Hub to which nodes are connected by twisted pair

Gigabit Ethernet

Minimum frame length: 512 bytes

Ethernet Standards

Name	Cable	Max. seg.	Nodes/seg.	Advantages	
10Base5	Thick coax	500 m	100	Original cable; now obsolete	
10Base2	Thin coax	185 m	30	No hub needed	
10Base-T	Twisted pair	100 m	1024	024 Cheapest system	
10Base-F	Fiber optics	2000 m	1024	Best between buildings	

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Name	Cable	Max. segment	Advantages	
1000Base-SX	Fiber optics	550 m Multimode fiber (50, 62.5 mi		
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)	
1000Base-CX	2 Pairs of STP	P 25 m Shielded twisted pair		
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP	

802.3ae 10GB-Ethernet

Characteristics	10GBase-S	10GBase-L	10GBase-E
Media	Short-wave 850-nm multimode	Long-wave 1310-nm single mode	Extended 1550-mm single mode
Maximum length	300 m	10 km	40 km

- Backbone technology
- Based on optical fibre

school of | Computer Science & Statistics Site complete HEAnet national fibre network ESBT fibre Provider not yet known Number of circles NTL fibre DCC fibre indicates number of Site in progress diverse physical routes E-net fibre · Site planned E-net Beaumont -----Letterkenny IT Blanchardstown Mullagharlin Carrick-on-Shannon Servecentric Kilcarbery Park Mater Dei Dundalk IT CSC Bolton St -Eccles St NUI Galway Burlington Rd Fosters Newman GMIT NUI Galway Galway Beaumont RCSI --Athlone IT --Grangegorman Drumline D'Olier St Enterprise Centre UL Outreach Dock Limerick IT Killonan Wood Quay Digital Depot DIAS RIA Crumlin Hospital -----Fenian St Stradbally Kildare House IT Tralee UCD DİT UCD Earlsfort Tony Ryan CIT UCC Kilbarry Aungier St Vincent's Terrace Academy **ESBT** Citywest Tallaght IT Tallaght IT Carlow Esat-X College St. Waterford IT Killoteran Brooklawn House Carriganore -----BIP Interconnect Carrickmines

Collision Domains

a. Without bridging

b. With bridging

- Extension of Networks:
 - Repeaters, Hubs Physical Layer
 - Bridges, Switches Data Link Layer
 - Routers Network Layer
- Collision domains:
 - Collision affects all machines in one segment

Switched Ethernet

- Switch delivers packets to individual machines
 - Without affecting communication with other machines
- Collisions only occur on individual links

Full-duplex Switched Ethernet

- No collisions
 - One channel to send
 - One channel to transmit

Switched Networks

- Hierarchical Organization
- Separation into Segments
- Keep traffic in one segment if possible

College Network – 10Base2

College Network-10/100BaseT

Switched Network

Switches in Comms Rooms

Wiring Example ©

College Example

Potential topology of College; may or may not reflect the reality of our setup

802.3 & 802.2 MAC Format

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)
- Maximum frame length: 1536 bytes
 - ⇒ max 1500 bytes payload
- Minimum frame length: 64 bytes
 - ⇒ min 46 bytes payload

Summary: Ethernet

- Ethernet frame
 - Preamble to signal start of frame
 - MTU & minimum frame size
 - Addressing
- CSMA/CD
- Collision Domains
- Switched Networks

Link Layer

IP Packet IP Header Payload End system - ~64 kbytes 20 bytes Intermediate system End system Link Link Intermediate system End system Intermediate system Hop-to-hop delivery Hop-to-hop delivery Hop-to-hop delivery Е F Α Data link Data link Data link Physical Physical Physical Hop-to-hop delivery Hop-to-hop delivery Hop-to-hop delivery

HTML Use Case

Wifi

PPPoA

Ethernet over Fibre

Ethernet over Fibre

Ethernet over Fibre

Ethernet

Wifi in Home Network

PPP to ISP

Ethernet over Fibre

Ethernet Frame

Ethernet over Fibre

Ethernet Frame

Ethernet over Fibre

Ethernet Frame

Ethernet

						<u>'</u>
Preamble	SFD	Destination address	Source address	Length PDU	Data and padding	CRC
7 bytes	1 byte	6 bytes	6 bytes	2 bytes		4 bytes

Ethernet Frame

Ethernet

TCD

Ethernet Frame

Encapsulation

IP

IP Packet 802.11 Frame

Addressing Next Hop

Addressed To

CS2031 Telecommunications II

Bridges, Switches & Routers

Topologies

Mesh

Bus

<u>Star</u>

Ring

* Figure is courtesy of B. Forouzan

Combined Networks

UNIVERSITY

Network Data link Physical Connecting Devices Router or three-iayer switch Bridge or two-layer switch Repeater or hub Physical

Physical Layer: Repeater or Hub

- Data Link Layer: Bridge or Layer-2 Switch
- Network Layer: Router or Layer-3 Switch

Repeater Repeater Segment 1 Segment 2

- A repeater connects segments of a LAN
- A repeater forwards every frame; it has no filtering capability

Function of a Repeater

b. Left-to-right transmission.

 A repeater is a regenerator, not an amplifier!

Buses and Hubs

- Bus configuration
 - All stations share capacity of bus (e.g. 10Mbps)
 - Only one station transmitting at a time
- Hub uses star wiring to attach stations to hub
 - Transmission from any station received by hub and retransmitted on all outgoing lines
 - Only one station can transmit at a time
 - Total capacity of LAN is 10 Mbps

Functions of a Bridge

- Read all frames transmitted on one LAN and accept those address to any station on the other LAN
- Using MAC protocol for second LAN, retransmit each frame
- Do the same the other way round

Learning Bridges

Address	Port

Address	Port
A	1

b. After A sends c. After E sends a frame to D

Address	Port
Α	1
Е	3

a frame to A

Address	Port
Α	1
Е	3
В	1

d. After B sends a frame to C

- Initially bridge forwards frames on all segments except incoming port
- Learns addresses from frames that pass through

Problem with Learning Bridges

Problem with learning bridges is <u>loops</u>

- Bridges run a distributed spanning tree algorithm
 - select which bridges actively forward
 - developed by Radia Perlman
 - now IEEE 802.1 specification
- Spanning tree includes all nodes
- Spanning tree only includes edges on the shortest path from the root to any other given node

- 1. Bridge with smallest ID is selected as root bridge
- Mark port on each bridge with least-cost to root bridge as root port
- Select designated bridge for each LAN that has root port with least-cost to root bridge – if two bridges with same cost select bridge with lowest ID
- 4. Mark root ports and designated ports as forwarding ports; other ports as blocking ports

- 1. Bridge with smallest ID is selected as root bridge
- 2. Mark port on each bridge with least-cost to root bridge as root port
- 3. Select designated bridge for each LAN that has root port with least-cost to root bridge if two bridges with same cost select bridge with lowest ID
- 4. Mark root ports and designated ports as forwarding ports; other ports as blocking ports

1. Bridge with smallest ID is selected as root bridge

- 1. Bridge with smallest ID is selected as root bridge
- Mark port on each bridge with least-cost to root bridge as root port

Root Port

- Bridge with smallest ID is selected as root bridge
- 2. Mark port on each bridge with least-cost to root bridge as root port
- Select designated bridge for 3. each LAN that has root port with least-cost to root bridge - if two bridges with same cost select bridge with lowest ID

- Bridge with smallest ID is selected as root bridge
- Mark port on each bridge with 2. least-cost to root bridge as root port
- Select designated bridge for 3. each LAN that has root port with least-cost to root bridge – if two bridges with same cost select bridge with lowest ID
- 4. Mark root ports and designated ports as forwarding ports; other ports as blocking ports

Blocked Port

- 1. Bridge with smallest ID is selected as root bridge
- 2. Mark port on each bridge with least-cost to root bridge as root port
- 3. Select designated bridge for each LAN that has root port with least-cost to root bridge if two bridges with same cost select bridge with lowest ID
- 4. Mark root ports and designated ports as forwarding ports; other ports as blocking ports

Hub and Layer-2 Switch

Types of Layer 2 Switches

- Store-and-Forward switch
 - Accepts frame on input line
 - Buffers it briefly,
 - Then routes it to appropriate output line
 - Delay between sender and receiver
 - Boosts integrity of network
- Cut-Through switch
 - Takes advantage of destination address appearing at beginning of frame
 - Switch begins repeating frame onto output line as soon as it recognizes destination address
 - Highest possible throughput
 - Risk of propagating bad frames
 - Switch unable to check CRC prior to retransmission

Summary: Repeaters, Hubs & Switches

- Repeaters & Hubs
- Bridges
 - Learning Bridges
 - Spanning Tree Algorithm
- Layer-2 Switches
 - Store-and-Forward
 - Cut-Through

HDLC Frame

Only in I- and U frames

- Flag= 01111110
- Flag **Address Control** Information FCS Flag
- Specifies beginning and end of frame
- Address
 - Specifies secondary station as either sender or receiver
- Control
 - Specifies type of frame and seq.&ack. number
- Frame Check Sequence (FCS)
 - Either 16- or 32-bit CRC

PPP Frame

Modified HDLC frame:

- Byte-oriented Protocol
 - Flag Byte: 01111110
 - Escape Byte: 01111101
- FCS: 16- or 32-bit CRC
 - $x^{16} + x^{12} + x^5 + 1$
 - 1 0001 0000 0010 0001 \rightarrow 16 bits remainder \leftarrow 16-degree polynomial
 - $-x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$

- 64-bit frame preamble (10101010) used to synchronize reception
 - 7 bit preamble (10101010) + 1 start flag (10101011)
- Maximum frame length: 1536 bytes
 - ⇒ max 1500 bytes payload
- Minimum frame length: 64 bytes
 - ⇒ min 46 bytes payload

802.11 MAC Frame Format

Control Frames

Type:management (00), control (01), or data (10).

Subtype	Meaning
1011	Request to send (RTS)
1100	Clear to send (CTS)
1101	Acknowledgment (ACK)

2 bytes 2 bytes 6 bytes 6 bytes 4 bytes

FC D Address 1 Address 2 FCS

2 bytes 2 bytes 6 bytes 4 bytes

FC D Address 1 FCS

S CTS or ACK

RTS

* Figure is courtesy of B. Forouzan

802.11 Frames

DSSS PLCP frame format

Figure 86—PLCP frame format

Figure 95—PMD layer reference model

Straight Cabling & RJ45

- Switch expects
 - Transmission from station on 3 & 6
 - Transmits on 1 & 2

Straight Cabling II

- Switch expects
 - Transmission from station on 3 & 6
 - Transmits on 1 & 2

Crossover Cabling

Direct connection of desktops & infrastructure equipment

RJ45 Cabling

Straight cabling:

Crossover cabling:

File Input

```
String fname;
File file= null;
FileInputStream fin= null;
byte[] buffer= null;
int size;
fname= terminal.readString("Name of file: ");
file= new File(fname);
buffer= new byte[(int) file.length()];
fin= new FileInputStream(file);
size= fin.read(buffer);
```

Read filename

Open file
Reserve byte buffer
Initialize input stream
Read file content

Rest of File Input

```
if (size==-1) {
          fin.close();
          throw new Exception("Problem with File Access");
terminal.println("File size: " + buffer.length);
fcontent= new FileInfoContent(fname, size);
terminal.println("Sending packet w/ name & length");
packet= fcontent.toDatagramPacket();
packet.setSocketAddress(dstAddress);
socket.send(packet);
terminal.println("Packet sent");
this.wait();
```

End file access

fin.close();

Byte[] copying

DatagramPacket packet= null; byte[] payload= null; byte[] header= null; byte[] buffer= null; Hello payload= (terminal.readString("String to send: ")).getBytes(); header= new byte[PacketContent.HEADERLENGTH]; header buffer= new byte[header.length + payload.length]; System.arraycopy(header, 0, buffer, 0, header.length); System.arraycopy(payload, 0, buffer, header.length, payload.length Hello

packet= new DatagramPacket(buffer, buffer.length, dstAddress); socket.send(packet); this.wait();

Example Header

tcd.lossy.DatagramSocket

```
package tcd.lossy;
public class DatagramSocket extends java.net.DatagramSocket {
         public void send(DatagramPacket arg0) throws IOException {
                   if ((Math.random()*100) > noise) {
                             super.send(arg0);
                   else {
                             System.out.println("** Packet dropped");
```

"import tcd.lossy.DatagramSocket;" instead of "import java.net.DatagramSocket;"

