$12n_{0246} (K12n_{0246})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{14} + u^{13} + 6u^{12} + 6u^{11} + 15u^{10} + 14u^9 + 19u^8 + 13u^7 + 9u^6 + 3u^5 - 5u^4 - 2u^3 - 5u^2 + 2b + 1, \\ u^{14} - 3u^{13} + \dots + 8a + 19, \\ u^{15} + 7u^{13} + 2u^{12} + 19u^{11} + 13u^{10} + 23u^9 + 30u^8 + 10u^7 + 26u^6 - u^4 + 3u^3 - 9u^2 + 3u + 1 \rangle \\ I_2^u &= \langle -716717u^{25} + 780792u^{24} + \dots + 963947b + 791849, \\ 1775750u^{25} - 1897723u^{24} + \dots + 963947a - 1845988, \ u^{26} - 2u^{25} + \dots - 2u + 1 \rangle \\ I_3^u &= \langle b, \ -u^2 + 2a - u - 3, \ u^3 + 2u - 1 \rangle \\ I_4^u &= \langle b, \ u^3 + a + u + 1, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{14} + u^{13} + \dots + 2b + 1, \ u^{14} - 3u^{13} + \dots + 8a + 19, \ u^{15} + 7u^{13} + \dots + 3u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{8}u^{14} + \frac{3}{8}u^{13} + \dots + 5u - \frac{19}{8} \\ -\frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \dots + \frac{5}{2}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{3}{8}u^{14} + \frac{1}{8}u^{13} + \dots + 4u - \frac{25}{8} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{13} + 6u^{11} + 2u^{10} + 13u^{9} + 11u^{8} + 10u^{7} + 19u^{6} + 7u^{4} - 7u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{3}{8}u^{14} + \frac{7}{8}u^{13} + \dots + 5u - \frac{15}{8} \\ -\frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \dots + \frac{5}{2}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{14} - 6u^{12} - 2u^{11} - 13u^{10} - 11u^{9} - 10u^{8} - 19u^{7} - 8u^{5} + 5u^{3} - 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{14} - 6u^{12} - 2u^{11} - 13u^{10} - 11u^{9} - 10u^{8} - 19u^{7} - 7u^{5} + 7u^{3} - 3u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{49}{16}u^{14} - \frac{45}{16}u^{13} - 22u^{12} - \frac{177}{8}u^{11} - \frac{1069}{16}u^{10} - \frac{579}{8}u^9 - \frac{1701}{16}u^8 - \frac{1839}{16}u^7 - \frac{1341}{16}u^6 - \frac{1299}{16}u^5 - \frac{199}{16}u^4 - \frac{29}{8}u^3 + \frac{267}{16}u^2 + \frac{37}{2}u - \frac{123}{16}$$

Crossings	u-Polynomials at each crossing
c_1	$u^{15} + 4u^{14} + \dots - 127u + 16$
c_{2}, c_{4}	$u^{15} - 2u^{14} + \dots - 11u + 4$
c_3, c_9	$u^{15} - 3u^{14} + \dots + 8u + 32$
<i>C</i> 5	$u^{15} + 6u^{14} + \dots + 16u + 4$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{15} + 7u^{13} + \dots + 3u + 1$

Crossings	Riley Polynomials at each crossing		
c_1	$y^{15} + 16y^{14} + \dots + 15841y - 256$		
c_2, c_4	$y^{15} - 4y^{14} + \dots - 127y - 16$		
c_3,c_9	$y^{15} + 15y^{14} + \dots + 320y - 1024$		
<i>C</i> ₅	$y^{15} - 16y^{14} + \dots + 408y - 16$		
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{15} + 14y^{14} + \dots + 27y - 1$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.939067 + 0.076154I		
a = 0.11949 - 2.06723I	9.05174 - 3.68246I	5.44943 + 2.70726I
b = 0.27318 + 1.76916I		
u = -0.939067 - 0.076154I		
a = 0.11949 + 2.06723I	9.05174 + 3.68246I	5.44943 - 2.70726I
b = 0.27318 - 1.76916I		
u = -0.231015 + 1.209380I		
a = 0.202894 - 0.516586I	-5.39974 - 5.30636I	-4.44673 + 7.07969I
b = 1.71816 + 0.21702I		
u = -0.231015 - 1.209380I		
a = 0.202894 + 0.516586I	-5.39974 + 5.30636I	-4.44673 - 7.07969I
b = 1.71816 - 0.21702I		
u = 0.072090 + 1.233060I		
a = -0.067666 + 0.756607I	-8.55605 + 1.99221I	-8.96301 - 2.93013I
b = -0.93944 - 1.48122I		
u = 0.072090 - 1.233060I		
a = -0.067666 - 0.756607I	-8.55605 - 1.99221I	-8.96301 + 2.93013I
b = -0.93944 + 1.48122I		
u = 0.446281 + 1.234210I		
a = -0.890631 - 0.905985I	1.89371 + 6.18917I	-0.33163 - 4.59933I
b = -0.39141 + 1.88678I		
u = 0.446281 - 1.234210I		
a = -0.890631 + 0.905985I	1.89371 - 6.18917I	-0.33163 + 4.59933I
b = -0.39141 - 1.88678I		
u = 0.45365 + 1.36129I		
a = 1.09428 + 1.03938I	0.04752 + 13.68620I	-2.00699 - 7.52630I
b = 0.73653 - 1.65036I		
u = 0.45365 - 1.36129I		
a = 1.09428 - 1.03938I	0.04752 - 13.68620I	-2.00699 + 7.52630I
b = 0.73653 + 1.65036I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.511100 + 0.177219I		
a = -0.649618 - 0.329498I	1.055330 + 0.384583I	8.52259 - 2.33147I
b = 0.434596 + 0.530398I		
u = 0.511100 - 0.177219I		
a = -0.649618 + 0.329498I	1.055330 - 0.384583I	8.52259 + 2.33147I
b = 0.434596 - 0.530398I		
u = -0.21189 + 1.50842I		
a = -0.299323 - 0.077409I	-10.59470 - 5.64919I	0.00874 + 7.25798I
b = -0.130865 - 0.674935I		
u = -0.21189 - 1.50842I		
a = -0.299323 + 0.077409I	-10.59470 + 5.64919I	0.00874 - 7.25798I
b = -0.130865 + 0.674935I		
u = -0.202297		
a = -3.51885	-1.31450	-10.7150
b = -0.401516		

$$II. \\ I_2^u = \langle -7.17 \times 10^5 u^{25} + 7.81 \times 10^5 u^{24} + \dots + 9.64 \times 10^5 b + 7.92 \times 10^5, \ 1.78 \times \\ 10^6 u^{25} - 1.90 \times 10^6 u^{24} + \dots + 9.64 \times 10^5 a - 1.85 \times 10^6, \ u^{26} - 2u^{25} + \dots - 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.84217u^{25} + 1.96870u^{24} + \dots - 7.48746u + 1.91503 \\ 0.743523u^{25} - 0.809995u^{24} + \dots + 3.02101u - 0.821465 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.800732u^{25} + 0.943263u^{24} + \dots - 3.90828u + 0.652479 \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.679349u^{25} + 0.982915u^{24} + \dots + 5.45700u + 1.72423 \\ 0.456267u^{25} - 0.655675u^{24} + \dots + 0.0722156u - 1.37578 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2.58569u^{25} + 2.77870u^{24} + \dots + 0.0722156u - 1.37578 \\ 0.743523u^{25} - 0.809995u^{24} + \dots + 3.02101u - 0.821465 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.25686u^{25} - 1.88879u^{24} + \dots + 1.53675u - 2.45627 \\ -0.476873u^{25} + 0.609237u^{24} + \dots + 0.104718u + 0.401848 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.624218u^{25} - 1.70470u^{24} + \dots + 1.36553u - 1.32065 \\ 0.632641u^{25} - 0.184085u^{24} + \dots + 2.17122u - 1.13562 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1918707}{963947}u^{25} - \frac{2455152}{963947}u^{24} + \dots - \frac{5103125}{963947}u + \frac{1698759}{963947}u^{24} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$(u^{13} + 3u^{12} + \dots + 8u + 1)^2$
c_{2}, c_{4}	$(u^{13} - 3u^{12} + \dots - 2u + 1)^2$
c_3, c_9	$(u^{13} + u^{12} + \dots + 4u - 4)^2$
<i>C</i> ₅	$(u^{13} - 2u^{12} + \dots + 3u - 1)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{26} - 2u^{25} + \dots - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{13} + 17y^{12} + \dots + 8y - 1)^2$
c_{2}, c_{4}	$(y^{13} - 3y^{12} + \dots + 8y - 1)^2$
c_3, c_9	$(y^{13} + 15y^{12} + \dots - 56y - 16)^2$
<i>C</i> ₅	$(y^{13} - 16y^{12} + \dots + 5y - 1)^2$
$c_6, c_7, c_8 \\ c_{10}, c_{11}, c_{12}$	$y^{26} + 18y^{25} + \dots + 30y^2 + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.971054 + 0.087562I		
a = 0.20122 - 1.96513I	4.58598 + 8.60203I	1.58542 - 5.32797I
b = -0.50699 + 1.66583I		
u = 0.971054 - 0.087562I		
a = 0.20122 + 1.96513I	4.58598 - 8.60203I	1.58542 + 5.32797I
b = -0.50699 - 1.66583I		
u = -0.166889 + 1.040940I		
a = 1.41794 - 1.71859I	-4.29290	-6.11820 + 0.I
b = 0.612460		
u = -0.166889 - 1.040940I		
a = 1.41794 + 1.71859I	-4.29290	-6.11820 + 0.I
b = 0.612460		
u = 0.898765 + 0.068276I		
a = -0.51103 - 2.01532I	5.49041 - 1.38297I	2.93425 + 0.71622I
b = 0.02169 + 1.76519I		
u = 0.898765 - 0.068276I		
a = -0.51103 + 2.01532I	5.49041 + 1.38297I	2.93425 - 0.71622I
b = 0.02169 - 1.76519I		
u = -0.705153 + 0.526357I		
a = 0.314624 - 0.599897I	-3.89003 - 2.36301I	2.56487 + 4.19898I
b = -0.032142 + 0.650070I		
u = -0.705153 - 0.526357I		
a = 0.314624 + 0.599897I	-3.89003 + 2.36301I	2.56487 - 4.19898I
b = -0.032142 - 0.650070I		
u = -0.063428 + 1.135530I		
a = 0.99806 + 1.21295I	-4.25522 - 0.99909I	0.456384 - 0.581912I
b = 0.452299 - 0.637242I		
u = -0.063428 - 1.135530I		
a = 0.99806 - 1.21295I	-4.25522 + 0.99909I	0.456384 + 0.581912I
b = 0.452299 + 0.637242I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.239526 + 1.122350I		
a = -0.582484 - 0.652382I	-1.68175 + 2.52293I	2.35428 - 4.38707I
b = -0.997974 + 0.288600I		
u = 0.239526 - 1.122350I		
a = -0.582484 + 0.652382I	-1.68175 - 2.52293I	2.35428 + 4.38707I
b = -0.997974 - 0.288600I		
u = -0.485725 + 1.232220I		
a = 0.968192 - 0.729255I	5.49041 - 1.38297I	2.93425 + 0.71622I
b = 0.02169 + 1.76519I		
u = -0.485725 - 1.232220I		
a = 0.968192 + 0.729255I	5.49041 + 1.38297I	2.93425 - 0.71622I
b = 0.02169 - 1.76519I		
u = 0.527181 + 1.230800I		
a = -0.968929 - 0.539477I	1.07459 - 3.30324I	-0.83610 + 2.39821I
b = 0.25689 + 1.55234I		
u = 0.527181 - 1.230800I		
a = -0.968929 + 0.539477I	1.07459 + 3.30324I	-0.83610 - 2.39821I
b = 0.25689 - 1.55234I		
u = 0.101397 + 1.371440I		
a = 0.241803 - 0.465532I	-3.89003 + 2.36301I	2.56487 - 4.19898I
b = -0.032142 - 0.650070I		
u = 0.101397 - 1.371440I		
a = 0.241803 + 0.465532I	-3.89003 - 2.36301I	2.56487 + 4.19898I
b = -0.032142 + 0.650070I		
u = 0.408597 + 1.339370I		
a = 1.32284 + 0.50744I	1.07459 + 3.30324I	-0.83610 - 2.39821I
b = 0.25689 - 1.55234I		
u = 0.408597 - 1.339370I		
a = 1.32284 - 0.50744I	1.07459 - 3.30324I	-0.83610 + 2.39821I
b = 0.25689 + 1.55234I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.43667 + 1.34910I		
a = -1.26249 + 0.83530I	4.58598 - 8.60203I	1.58542 + 5.32797I
b = -0.50699 - 1.66583I		
u = -0.43667 - 1.34910I		
a = -1.26249 - 0.83530I	4.58598 + 8.60203I	1.58542 - 5.32797I
b = -0.50699 + 1.66583I		
u = -0.517741 + 0.054555I		
a = 1.276610 - 0.533825I	-1.68175 - 2.52293I	2.35428 + 4.38707I
b = -0.997974 - 0.288600I		
u = -0.517741 - 0.054555I		
a = 1.276610 + 0.533825I	-1.68175 + 2.52293I	2.35428 - 4.38707I
b = -0.997974 + 0.288600I		
u = 0.229089 + 0.294081I		
a = 0.08363 - 4.21290I	-4.25522 + 0.99909I	0.456384 + 0.581912I
b = 0.452299 + 0.637242I		
u = 0.229089 - 0.294081I		
a = 0.08363 + 4.21290I	-4.25522 - 0.99909I	0.456384 - 0.581912I
b = 0.452299 - 0.637242I		

III.
$$I_3^u = \langle b, \; -u^2 + 2a - u - 3, \; u^3 + 2u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2}+1 \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{3}{2} \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{5}{2} \\ u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{3}{2} \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{25}{4}u^2 + \frac{11}{4}u + \frac{23}{4}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_9	u^3
c_4	$(u+1)^3$
<i>C</i> ₅	$u^3 + 3u^2 + 5u + 2$
c_6, c_7, c_8	$u^3 + 2u + 1$
c_{10}, c_{11}, c_{12}	$u^3 + 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3,c_9	y^3
c_5	$y^3 + y^2 + 13y - 4$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^3 + 4y^2 + 4y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = 0.335258 + 0.401127I	-11.08570 - 5.13794I	-8.01583 - 0.12290I
b = 0		
u = -0.22670 - 1.46771I		
a = 0.335258 - 0.401127I	-11.08570 + 5.13794I	-8.01583 + 0.12290I
b = 0		
u = 0.453398		
a = 1.82948	-0.857735	8.28170
b = 0		

IV.
$$I_4^u = \langle b, u^3 + a + u + 1, u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} - u - 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u - 1 \\ -u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} - u - 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{3} + u^{2} + 3u + 3 \\ -u^{3} - u^{2} - u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^3 + 4u 3$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_9	u^4
C_4	$(u+1)^4$
<i>C</i> ₅	$(u^2 - u + 1)^2$
c_6, c_7, c_8	$u^4 - u^3 + 2u^2 - 2u + 1$
c_{10}, c_{11}, c_{12}	$u^4 + u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3,c_9	y^4
c_5	$(y^2+y+1)^2$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^4 + 3y^3 + 2y^2 + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = -0.500000 - 0.866025I	-4.93480 - 2.02988I	-5.00000 + 3.46410I
b = 0		
u = -0.621744 - 0.440597I		
a = -0.500000 + 0.866025I	-4.93480 + 2.02988I	-5.00000 - 3.46410I
b = 0		
u = 0.121744 + 1.306620I		
a = -0.500000 + 0.866025I	-4.93480 + 2.02988I	-5.00000 - 3.46410I
b = 0		
u = 0.121744 - 1.306620I		
a = -0.500000 - 0.866025I	-4.93480 - 2.02988I	-5.00000 + 3.46410I
b = 0		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{13} + 3u^{12} + \dots + 8u + 1)^2(u^{15} + 4u^{14} + \dots - 127u + 16)$
c_2	$((u-1)^7)(u^{13}-3u^{12}+\cdots-2u+1)^2(u^{15}-2u^{14}+\cdots-11u+4)$
c_3, c_9	$u^{7}(u^{13} + u^{12} + \dots + 4u - 4)^{2}(u^{15} - 3u^{14} + \dots + 8u + 32)$
c_4	$((u+1)^7)(u^{13}-3u^{12}+\cdots-2u+1)^2(u^{15}-2u^{14}+\cdots-11u+4)$
c_5	$((u^{2} - u + 1)^{2})(u^{3} + 3u^{2} + 5u + 2)(u^{13} - 2u^{12} + \dots + 3u - 1)^{2}$ $\cdot (u^{15} + 6u^{14} + \dots + 16u + 4)$
c_6, c_7, c_8	$(u^{3} + 2u + 1)(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{15} + 7u^{13} + \dots + 3u + 1)$ $\cdot (u^{26} - 2u^{25} + \dots - 2u + 1)$
c_{10}, c_{11}, c_{12}	$(u^{3} + 2u - 1)(u^{4} + u^{3} + 2u^{2} + 2u + 1)(u^{15} + 7u^{13} + \dots + 3u + 1)$ $\cdot (u^{26} - 2u^{25} + \dots - 2u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{13} + 17y^{12} + \dots + 8y - 1)^2$ $\cdot (y^{15} + 16y^{14} + \dots + 15841y - 256)$
c_2, c_4	$((y-1)^7)(y^{13} - 3y^{12} + \dots + 8y - 1)^2(y^{15} - 4y^{14} + \dots - 127y - 16)$
c_3, c_9	$y^7(y^{13} + 15y^{12} + \dots - 56y - 16)^2(y^{15} + 15y^{14} + \dots + 320y - 1024)$
c_5	$((y^{2} + y + 1)^{2})(y^{3} + y^{2} + 13y - 4)(y^{13} - 16y^{12} + \dots + 5y - 1)^{2}$ $\cdot (y^{15} - 16y^{14} + \dots + 408y - 16)$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y^{3} + 4y^{2} + 4y - 1)(y^{4} + 3y^{3} + 2y^{2} + 1)(y^{15} + 14y^{14} + \dots + 27y - 1)$ $\cdot (y^{26} + 18y^{25} + \dots + 30y^{2} + 1)$