Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level **General Certificate of Education**

SUBJECT: MECHANICS 6679

PAPER NO: M3

(1)

M1A1

B1

A1

M1

M1

M1

M1

M1

1.

(a)

 $T\cos 60^\circ = mg \Rightarrow T = 2mg *$

 $(\leftrightarrow) T \sin 60^{\circ} = mr\omega^{2}$ (b)

 $\omega = \sqrt{\frac{2g}{I}}$

 $r = L\sin 60^{\circ}$

(c) Applying Hooke's Law: $2mg = \frac{\lambda}{(\frac{3}{5}L)} (L - \frac{3}{5}L); \qquad \lambda = 3m g$

M1;A1 (2) [7]

(4)

Integrating to find expression for $v \ [v = 2e^{-2t} \ (+c)]$ 2. (a)

Using initial conditions to find c (-1) or $v-1 = [f(t)]_0^t$

 $v = 2e^{-2t} - 1$ ms⁻¹

(3) A1

M1;A1√

 $[T = \frac{1}{2} \ln 2, \ 0.347]$ (b) Finding t when v = 0;

Integrating v w.r.t t; $x = -e^{-2t} - t$ (+c)

Using t = 0, x = 0 and finding value for c (c = 1)

Substituting T in equation for x and finding value for x

[Def. integral: $x = \left[-e^{-2t} - t \right]_0^T$ M1; correct use of limits M1]

 $x = \frac{1}{2} (1 - \ln 2)$ m (or equiv. two terms) or 0.15 or 0.153 m (awrt)

A₁ (6) [9]

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level **General Certificate of Education**

SUBJECT: MECHANICS 6679

PAPER NO: M3

3. (a)
$$F = \frac{k}{x^2}$$
 [k may be seen as Gm_1m_2 , for example]

M1

Equating
$$F$$
 to mg at $x = R$,

M1

Convincing completion
$$[k = mgR^2]$$
 to give $F = \frac{mgR^2}{x^2}$ *

A1 (3)

(b) Equation of motion:
$$(m)a = (-)\frac{(m)gR^2}{x^2}$$
; using $a = v\frac{dv}{dx}$

B1;M1

Integrating:
$$\frac{1}{2}v^2 = \frac{gR^2}{r}$$
 (+c) or equivalent

M1A1

Use of
$$v^2 = \frac{3gR}{2}$$
, $x = R$ to find $c [c = -\frac{1}{4}gR]$ or use in def. int.

M1

Substituting
$$x = 3R$$
 and finding V ; $V = \sqrt{\frac{gR}{6}}$

M1;A1 (7)

Alternative in (b)

[10]

Work/energy (-)
$$\int_{R}^{a} \frac{mgR^{2}}{x^{2}} dx = \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}$$

B1;M1

Integrating:
$$\left[\frac{mgR^2}{x} - \frac{mgR^2}{R}\right] = \frac{1}{2}mv^2 - \frac{1}{2}m\frac{3gR}{2}$$

M1A1M1

Final 2 marks as scheme

M1A1

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: MECHANICS 6679

PAPER NO: M3

4.

(a) Length of string (L)= $\frac{10}{3}$ a

$$EPE = \frac{\frac{1}{2} mg}{2a} (L - a)^2$$
 M1

$$= \frac{49}{36} mga$$

A1 (3)

(1.36mga, 13ma or 13.3ma)

(b) Energy equation: $\frac{1}{2}mv^2 + \frac{\frac{1}{2}mg}{2a}a^2 = (\frac{49}{36}mga)_C$

M1A1√

$$v = \frac{2}{3} \sqrt{5ga}$$
 or equivalent [allow 1.49 \sqrt{ga} , $\frac{14}{3} \sqrt{a}$]

A1 (3)

(c) $T_V = T \sin \theta$ [implied by $R + T \sin \theta = mg$]

 T_V in terms of θ [$\frac{mg}{2a}(\frac{2a}{\sin\theta} - a)\sin\theta$]

B1 M1

or in terms of x or AP [or $\frac{mg(AP-a)}{2} \cdot \frac{2a}{AP}$ or $\frac{mg}{2} \frac{x}{a} \frac{2a}{(a+x)}$]

(i) $T = \frac{1}{2} mg(2 - \sin\theta)$ or $R = \frac{1}{2} mg\sin\theta$ Complete method to show R > 0

A1

Complete method to show R > 0 OR

M1A1 OR

(ii)
$$T = \frac{1}{2} mg(2 - \sin\theta)$$
; $mg(1 - \frac{a}{AP})$; $\frac{mgx}{a + x}$

A1

Complete method to show $T_V < mg$ or that $T_V \ge mg$ not poss OR

M1A1 OR

(iii) $T = \frac{1}{2} mg(2 - \sin\theta)$

A1

as θ increases T_{V} decreases; $T_{V} < T_{V \text{ max}} = \frac{7}{10} mg < mg$

M1A1 (5)

[In all cases: For A1 all working correct and arg. convincing]

[11]

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: MECHANICS 6679

PAPER NO: M3

(5)

5. (a)

Applying Hooke's Law in general position [$T = \frac{48x}{0.6}$ (=80x)] M1 [*Note*: x may be other forms e.g.("x" – 0.6) or "(0.3 – "x")

Equation of motion: $T = (-)0.2 \ \ddot{x} \ (\text{or } a)$ M1 Correct equation: e.g.: $\frac{48x}{0.6} = -0.2 \ \ddot{x}$, $0.2 \ \ddot{x} = \frac{48x}{0.6} (0.3 - \ddot{x})$ A1 Equation of the form $\ddot{x} = -\omega^2 x$, so SHM

Period $\left(=\frac{2\pi}{\omega_C}\right) = \frac{2\pi}{20} = \frac{\pi}{10}$ * (no incorrect working seen) A1

(b)
$$\max v = a\omega$$
; = 0.3 x 20 = 6 ms⁻¹ M1;A1(2)

(c) Using
$$x = a\cos 20t$$
 or $x = a\sin 20T$ or $\cos \alpha = \frac{x}{a}$ M1

Using $x = 0.15$: $\cos 20t = \frac{0.15}{a}$ or $\sin 20T = \frac{0.15}{a}$ or $\cos \alpha = \frac{0.15}{a}$ M1

Either $t = \frac{\pi}{60}$, $(\frac{5\pi}{60})$ or $T = \frac{\pi}{120}$ or $\alpha = \frac{\pi}{3}$ A1

Complete method for time:

$$t_2 - t_1$$
, or $\frac{\pi}{10} - 2t_1$, or $\frac{\pi}{20} + 2T$ or $\frac{2\pi - 2\alpha}{2\pi} = \frac{t}{(\pi/10)}$ M

Time =
$$\frac{\pi}{15}$$
 s (must be in terms of π) A1 (5) [12]

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: MECHANICS 6679

PAPER NO: M3

6. (a) Cylinder Hemisphere
$$S$$

Masses $(\rho)\pi(2a)^2(\frac{3}{2}a)$ $(\rho)\frac{2}{3}\pi a^3$ $(\rho)(\frac{16}{3}\pi a^3)$ M1A

$$[6\pi a^3]$$

 $[18] \qquad [2] \qquad [16]$

[M1 for attempt at C, H and S = C - H masses]

Distances of CM from

O
$$\frac{3}{4}a$$
 $\frac{3}{8}a$ \overline{x} B1B1 or lower face $\frac{3}{4}a$ $\frac{a}{2} + \frac{5a}{8}$ \overline{x}'

Moments equation: $6\pi \ a^3(\sqrt[3]{4} \ a) - \frac{2}{3}\pi \ a^3(\frac{3}{8} \ a) = \frac{16}{3}\pi \ a^3 \ \overline{x}$ M1 $\overline{x} = \frac{51}{64} a$ A1 (6)

$$a = \frac{1}{64}a$$
 (0.797a)

(b) G above "A" seen or implied or $mg \sin \alpha$ (GX) = $mg \cos \alpha$ (AX)

$$\tan \alpha = \frac{AX}{XG} = \frac{2a}{\frac{3}{2}a - \overline{x}}$$
 M1

$$[GX = \frac{3}{2}a - \frac{51}{64}a = \frac{45}{64}a, \tan \alpha = \frac{128}{45}]$$
 $\alpha = 70.6^{\circ}$ A1 (3)

(c) Finding
$$F$$
 and R : $R = mg \cos \beta$, $F = mg \sin \beta$

Using $F = \mu R$ and finding $\tan \beta$ [= 0.8]

$$\beta = 38.7^{\circ}$$
 A1 (3) [12]

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: MECHANICS 6679 PAPER NO: M3

7. (a) Attempt at conservation of energy:
$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mga \sin \theta$$

$$v^2 = \frac{3}{2}ga + 2ga\sin\theta$$

(b) Radial equation:
$$T - mg \sin \theta = m \frac{v^2}{a}$$
 M1A1

M1

A1

(2)

$$T = \frac{3mg}{2}(1 + 2\sin\theta) \text{ any form}$$

(c) Setting
$$T = 0$$
 and solving trig. equation; $(\sin \theta = -\frac{1}{2}) \Rightarrow \theta = 210^{\circ} *$ M1;A1(2)

(d) Setting
$$v = 0$$
 in (a) and (i) solving for θ

$$\sin \theta = -\frac{3}{4} \text{ so not complete circle}$$
M1
A1 (2)

or (ii) looking at energy at top (mga) and at start (3/4mga) so not possible

or substituting $\theta = 270^{\circ}$ in (a); $v^2 < 0$ so not possible to complete

(e) No change in PE
$$\Rightarrow$$
 no change in KE (Cof E) so $v = u$ B1 (1)

(f) When string becomes slack,
$$v^2 = \frac{1}{2} ga \left[\sin \theta = -\frac{1}{2} in (a) \right]$$
 B1 $\sqrt{$

Working horizontally:
$$\sqrt{\frac{ga}{2}} \cos 60^\circ = \sqrt{\frac{3ga}{2}} \cos \phi$$
 M1A1 $\sqrt{\frac{3ga}{2}} \cos \phi = \frac{1}{2} ag \sin^2 \phi = \frac{1}{2} ag \sin^2 60^\circ + ag = \frac{11ag}{8}$

or finding $V_{\rm V}$ and $V_{\rm H}$ and using to find tan ϕ

$$\phi = 73^{\circ} \text{ or } 73.2^{\circ}$$
 A1 (4) [14]