Знакопеременные и знакочередующиеся ряды

18.09.24

NB:. Знакочередующимся называется ряд, где знак меняется для каждого следующего члена ряда. В знакопеременном ряде знак может изменяться по любому правилу.

Теорема 0.0.1. Признак Лейбница (о сходимости знакочередующегося ряда) Дан знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n-1} U_n$. Если последоавтельность модулей членов ряда монотонно убывает и $\lim_{n\to\infty} U_n = 0$, то ряд сходится.

Proof. Рассмотрим частичную сумму S_{2k} :

$$S_{2k} = (U_1 - U_2) + (U_3 - U_4) + \dots + (U_{2k-1} - U_{2k})$$
 (1)

Все скобки >0, т.к. модули членов ряда убывают. Тогда $S_{2k}>0$ и возрастает с увеличением k.

$$0 < S_{2k} \le U_1$$
 (2)

Сумма S_{2k} положительна и ограничена сверху, тогда она имеет конечный предел S. Рассмотрим сумму $S_{2k+1}=S_{2k}+U_{2k+1}$:

$$\lim_{k\to\infty}S_{2k+1}=\lim_{k\to\infty}+\underbrace{\lim_{k\to\infty}U_{2k+1}}_{=\text{0 т.к. ряд убывает}}=S+0=S$$

$$\lim_{n\to\infty}S_n=S.$$
 (3)

 \implies ряд сходится.

Следствие 0.0.1.

1 Абсолютная сходимость знакопеременного ряда

Опр. 1. Ряд называется **абсолютно сходящимся**, если сходится ряд модулей его членов. Если ряд сходится, а ряд модулей его членов расходится, то такой ряд называется **условно сходящимся**

Теорема 1.0.1. Если ряд сходится абсолютно, то он сходится.

Proof. $\sum_{n=1}^{\infty} U_n$ знакопеременный, сходится абсолютно. $\sum_{n=1}^{\infty} V_n = U_n + |U_n|$. Очевидно, что $V_n < 2|U_n|$. Так как сходится $\sum_{n=1}^{\infty} |U_n|$, сходится и $\sum_{n=1}^{\infty} 2|U_n|$. Тогда: V_n сходится по мажорантному признаку,

$$\sum_{n=1}^{\infty} V_n = \sum_{n=1}^{\infty} (U_n + |U_n|) = \sum_{n=1}^{\infty} U_n + \sum_{n=1}^{\infty} |U_n|$$

$$\implies \sum_{n=1}^{\infty} U_n = \underbrace{\sum_{n=1}^{\infty} V_n - \sum_{n=1}^{\infty} |U_n|}_{\text{сход.}} \implies \sum_{n=1}^{\infty} U_n \text{ сходится}$$
(4)

1.1 Свойства абсолютно сходящихся рядов