

Adaptive Lossy Compression of Environmental Data

by Uğur Çayoğlu, Peter Braesicke, Tobias Kerzenmacher, Jörg Meyer and Achim Streit

STEINBUCH CENTRE FOR COMPUTING (SCC) & INSTITUTE FOR METEOROLOGY AND CLIMATE RESEARCH (IMK-ASF)

Take-home message

It is possible to improve lossy compression for <u>certain</u> time series data by only gradually increasing file size.

Application in climate research for compression of environmental indices.

Agenda

Importance of compression for climate research

Introduction and description of proposed method

Application on environmental indices used in climate research

Climate data and importance of compression

- Environmental data is 4D (longitude, latitude, altitude, time)
- Current European ReAnalysis (ERA5) dataset needs 2.26 TiB p.a. and variable
 - Used by weather and climate simulations as ground truth

Generate a compression method specific for environmental data

But how?

Compression 101

Lossy v lossless

- $\pi=3$ V $\pi=rac{C}{d}$
- Distinguish between information and data
 - Understand the relationship within the data
 - Eliminate data without information
 - Compression works best with redundant data
- Temporal and spatial information can help to predict the behaviour variables.

Environmental indices

Environmental indices

- Temporal information of observations for forecasting weather phenomena like precipitation or monsoon season.
 - ENSO34
 - NAO
 - QBO30/50
 - 0 ...
- Idea: These indices can to be saved and used by the compression algorithm to gain information about the data

What are success metrics?

- Compression ratio
 - Filesize (after) / Filesize (before)
- Memory usage
- Compression/Decompression time

Additional criteria in case of lossy compression:

Quality of reconstructed data (community specific)

Quality criteria for compressed indices

 A lossy compression algorithm is considered successful, if the correlation between the original time series A and the reconstructed time series R is 1.

$$Corrs,e(A,R) = 1.0$$

Direct approach

Compression using zfp (which allows lossy compression by gradually lowering precision).

ARIMA approach

From us proposed approach.

Raw data

128 x 64	horizontal grid			
6	vertical level			
1979 - 2013	temporal (10h timesteps)			

Calculate indices

Index	Var	Lat [N]	Lon [E]	Alt [hPa]
ENSO34	Т	[-5;5]	[190;240]	surface
QBOx	u	[-5;5]	[0;360]	indicated by x
NAO	р	Lisbon and Reykjavík		surface

T = temperature, u = westerly wind, p = pressure

Calculate indices

- Stationary time series
 - No trend
 - Variance is time independent

Build an Auto Regressive Integrated Moving Average model

Model the relationship of a data point x with its preceding values and predict future values.

Auto Regressive:

Regression on previous values.

Moving Average:

Regression on previous errors.

Build an Auto Regressive Integrated Moving Average model

Notation used for the ARIMA model:

ARIMA(p, d, q)(P, D, Q)s

p = autoregressive order

d = differential order

q = moving average order

s = seasonal period

P, D, Q = appropriate seasonal order

Build an Auto Regressive Integrated Moving Average model

Notation used for the ARIMA model:

The ARIMA model produces a prediction x' for the time series x which has an error of e.

$$x_i = x_i' + \epsilon_i$$

The time series x can be fully reproduced if the parameter of the ARIMA model and e are known.

Build an Auto RegressiveIntegrated Moving Average model

ARIMA(p, 0, q)(0, 0, 0)0

$$x_i = x_i' + \epsilon_i$$

$$x_i' = \sum_{k=1}^{p} ar_k \cdot x_{i-k} + \sum_{j=1}^{q} ma_j \cdot x_{i-j}$$

Build an Auto Regressive Integrated Moving Average model

	ARIMA Model					
Timeline	Monthly		Daily			
	Model	RMSD	Model	RMSD		
ENSO34	ARIMA(3,0,2)(1,0,0) ₁₂	5.067e-8	ARIMA(5,2,4)(0,0,0)0	4.686e-4		
NAO	ARIMA(1,0,0)(1,0,0) ₁₂	8.195e-9	ARIMA(2,0,2)(0,0,0)0	1.440e-7		
QBO30	ARIMA(2,0,3)(1,0,0) ₁₂	1.0877e-7	ARIMA(5,0,4)(0,0,0)0	1.084e-7		
QBO50	ARIMA(1,1,1)(1,0,1) ₁₂	2.909e-6	ARIMA(5,0,4)(0,0,0)0	4.488e-8		

How good is the reconstruction of the ARIMA model?

Different compression methods

- Experiment 1: Lossless compression
- Experiment 2:
 Lossy compression with threshold
- Experiment 3:
 Lossy compression with replacement

Exp. 1: Lossless compression

	Compression ratio					
	Mor	nthly	Da	ily		
	ARIMA	Direct	ARIMA	Direct		
ENSO34	1.043	1.024	1.036	1.009		
NAO	1.043	1.033	1.033	1.026		
QBO30	1.038	1.005	1.032	0.961		
QBO50	1.045	1.014	1.033	0.969		

Exp. 2: Lossy compression with threshold T = 1e-5

	Compression ratio					
	Mor	nthly	Da	nily		
	ARIMA	Direct ARIMA Direct				
ENSO34	.386	.371	.658	.322		
NAO	.386	.386	.377	.370		
QBO30	.381	.357	.376	.273		
QBO50	.668	.362	.377	.281		

Exp. 2: Lossy compression with threshold T = 1e-5

	Compression Ratio				
	Mor	nthly	Da	ily	
	ARIMA	Direct	ARIMA	Direct	
ENSO34	.386	.371	.658	.322	
NAO	.386	.386	.377	.370	
QBO30	.381	.357	.376	.273	
QBO50	.668	.362	.377	.281	

Methods for finding data points to be replaced:

Methods for finding data points to be replaced:

Special

- o Calculate Corri,
- Sort from low to high
- Replace values contributing to lowest Corri,n

Rollling

- Calculate windowed Corrj-bs,j
- Sort from low to high
- Replace values contributing to lowest Corrin

Cumul.Corr.

- Calculate Corri,i
- Identify datum with biggest drop
- Replace values contributing to identified datum

	Correlation Coefficient (Monthly, 10%, Method: Special)					
	zfp02	zfp03	zfp04	zfp05	zfp06	
NAO	.354	.725	.924	.979	.994	
+1 Bit						
+2 Bit						
+3 Bit						
QBO30	.139	.482	.635	.972	.986	
+1 Bit						
+2 Bit						
+3 Bit						

	Correlation Coefficient (Monthly, 10%, Method: Special)					
	zfp02	zfp03	zfp04	zfp05	zfp06	
NAO	.354	.725	.924	.979	.994	
+1 Bit	.624	.864	.959	.987	.997	
+2 Bit	.692	.870	.964	.989	.997	
+3 Bit	.705	.878	.965	.989	.997	
QBO30	.139	.482	.635	.972	.986	
+1 Bit	.050	.575	.935	.968	.996	
+2 Bit	.082	.615	.940	.973	.993	
+3 Bit	.084	.607	.944	.987	.996	

	Correlation Coefficient (Monthly, 10%, Method: Special)				
	zfp02	zfp03	zfp04	zfp05	zfp06
NAO	.354	.725 _{15%}	.924	.979	.994
+1 Bit	~25 % .624	.864	.959	.987	.997
+2 Bit	.692	.870	.964	.989	.997
+3 Bit	.705	.878	.965	.989	.997
QBO30	.139 <mark>_{.10%}</mark>	.482 ~10%	.635 ~30 %	.972 - 0.4 9	.986
+1 Bit	.050	.575	.935	.968	.996 -0.3%
+2 Bit	.082	.615 <mark>-1%</mark>	.940	.973	.993
+3 Bit	.084	.607	.944	.987	.996

Exp. 3: Lossy compression (w/ replacement) over time series NAO

Exp. 3: Lossy compression (w/ replacement) over time series NAO

Exp. 3: Lossy compression (w/ replacement) over time series QBO30

Exp. 3: Lossy compression (w/ replacement) over time series QBO30

Exp. 3: Lossy compression (w/ replacement) compression ratio

Summary

Conclusion

- It is **possible to improve quality** of the reconstructed data by replacing several data points with slightly higher precision.
- ARIMA models using a differentiation step have difficulties and performed worse than other models.
- Time series expressed with **small auto-regressive and moving-average** order can be improved significantly.

Further analysis

- Further analysis will focus on why certain time series (like QBO30) do not show the same improvement like NAO
- Analyse why there is sometimes **loss in quality** using higher precision data.
- It is a complementary method to the direct approach and will not replace it yet.

Thank you for your attention

- Data, code and presentation available (GPL-v3)
 - github.com/ucyo/adaptive-lossy-compression
- Contact
 - Cayoglu@kit.edu

Thanks to Peter Braesicke,
 Tobias Kerzenmacher,
 Jörg Meyer and Achim Streit

