UNIVERSIDAD DE CONCEPCIÓN

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA JAA/BBM/LNB/JSA/MSS/MVH/jaa

Listado de Ejercicios 3 Álgebra I (525147)

Mientras no se diga lo contrario, \mathbb{K} es un cuerpo e $I, \Theta \in \mathcal{M}_n(\mathbb{K})$ denotan la matriz identidad y la matriz nula, respectivamente.

Problema 1. Calcule el valor de la siguiente matriz

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & 8 & -7 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 8 \\ 7 \end{pmatrix}$$

Problema 2. Considere la siguientes matrices

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}$

Resuelva las siguientes ecuaciones matriciales, donde la incógina es $X \in \mathcal{M}_2(\mathbb{R})$.

a)
$$-2X + C = B$$

c)
$$\left(\boldsymbol{A} - \frac{2}{3}\boldsymbol{X}\right)^T = 2\boldsymbol{C}$$

b) (En práctica)
$$2C^T + XA = B^2$$

d)
$$AX^T + XB^T = C$$

Problema 3. (En práctica) Considere la siguientes matrices

$$oldsymbol{A} = \left(egin{array}{cc} 3 & 2 \\ 1 & 0 \end{array}
ight) \qquad oldsymbol{B} = \left(egin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}
ight)$$

Determine el valor de $A^2 - B^2$ y (A + B)(A - B). ¿Qué se puede deducir a partir de este cálculo en función de las operaciones básicas de matrices?

Problema 4. (En práctica b) y e)) Sea $M \in \mathcal{M}_n(\mathbb{K})$. Se dice que M es antisimétrica si y sólo si $M^T = -M$, y que M es ortogonal si y sólo si $M^{-1} = M^T$. Demuestre las siguientes proposiciones.

- a) Si $A \in \mathcal{M}_n(\mathbb{K})$, entonces $A + A^T$ es una matriz simétrica y $A A^T$ es una matriz antisimétrica.
- b) Toda matriz cuadrada es suma de una matriz simétrica y otra antisimétrica.
- c) Si $A \in \mathcal{M}_n(\mathbb{K})$, entonces AA^T y A^TA son simétricas.
- d) Si $A, B \in \mathcal{M}_n(\mathbb{K})$, donde ambas matrices son ortogonales, entonces AB es una matriz ortogonal.
- e) Si $A, B \in \mathcal{M}_n(\mathbb{K})$, donde A es una matriz simétrica y B es una matriz ortogonal, entonces $B^{-1}AB$ es una matriz simétrica.

- f) Si $A \in \mathcal{M}_n(\mathbb{K})$ y $B \in \mathcal{M}_{n \times m}(\mathbb{K})$, entonces $B^T A B \in A \in \mathcal{M}_m(\mathbb{K})$ y es simétrica.
- g) Existen $A, B \in \mathcal{M}_n(\mathbb{K})$ matrices simétricas tales que AB no es simétrica.

Problema 5. (En práctica a) y b)) Sea $A : \mathbb{R} \to \mathcal{M}_2(\mathbb{R})$ la función dada por

$$(\forall \theta \in \mathbb{R}) \ \mathbf{A}(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Demuestre que

- a) $A(\theta)$ es ortogonal.
- b) $(\forall \theta_1, \theta_2 \in \mathbb{R}) \mathbf{A} (\theta_1) \mathbf{A} (\theta_2) = \mathbf{A} (\theta_1 + \theta_2)$
- c) $(\forall n \in \mathbb{N}) \mathbf{A} (\theta)^n = \mathbf{A} (n\theta)$

Problema 6. (En práctica) Sean $A, B \in \mathcal{M}_n(\mathbb{K})$, ambas invertibles, tales que $A^{-1} + B$ y $B^{-1} + A$ son invertibles. Demuestre que

$$\left(oldsymbol{A}^{-1}+oldsymbol{B}
ight)^{-1}=oldsymbol{A}\left(oldsymbol{A}+oldsymbol{B}^{-1}
ight)^{-1}oldsymbol{B}^{-1}$$

Problema 7. Sea $C = (c_{ij}) \in \mathcal{M}_3(\mathbb{R})$ una matriz triangular superior tal que $(\forall i \in \{1, 2, 3\})$ $c_{ii} = 1$ y N = C - I

- a) Demuestre que $N^3 = \Theta$
- b) Demuestre que C es invertible y que $C^{-1} = I N + N^2$.

Problema 8. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ tal que $A^T A$ es invertible y $B = I - A (A^T A)^{-1} A^T$. Demuestre que

- a) $\boldsymbol{B}^2 = \boldsymbol{B}$
- b) $\boldsymbol{B}\boldsymbol{A} = \Theta$
- c) \boldsymbol{B} es simétrica

Problema 9. Sea $A = (A_{ij}) \in \mathcal{M}_n(\mathbb{C})$. Se define la matriz conjugada de A como $\overline{A} = (\overline{A}_{ij})$ y la matriz conjugada traspuesta de A como $A^* = \overline{A}^T$.

- a) (**En práctica b**)) Sean $A, B \in \mathcal{M}_n(\mathbb{C})$. Demuestre que
 - a.1) $\overline{A+B} = \overline{A} + \overline{B}$ y $\overline{AB} = \overline{AB}$
 - a.2) $(A + B)^* = A^* + B^* y (AB)^* = B^*A^*$
 - a.3) Si A es invertible, entonces $(A^{-1})^* = (A^*)^{-1}$.
- b) Se dice que A es hermitiana o hermítica si y sólo si $A = A^*$. Demuestre que la siguiente matriz es hermítica.

$$\mathbf{A} = \begin{pmatrix} 1 & 2+i & 3-2i \\ 2-i & 2 & -1+3i \\ 3+2i & -1-3i & -4 \end{pmatrix}$$

c) (**En práctica**) Se dice que A es unitaria si y sólo si $A^* = A^{-1}$. Demuestre que la siguiente matriz es unitaria.

$$\mathbf{A} = \frac{1}{2} \left(\begin{array}{cc} 1+i & -1+i \\ 1+i & 1-i \end{array} \right)$$

Problema 10. (En práctica) Sean $C = (c_{ij}) \in \mathcal{M}_n(\mathbb{K})$ y $D = (d_{ij}) \in \mathcal{M}_n(\mathbb{K})$ matrices diagonales.

- a) Demuestre que CD = DC, o sea, el producto de matrices diagonales es conmutativo.
- b) Sean $S, A, B \in \mathcal{M}_n(\mathbb{K})$, con S una matriz invertible. Demuestre que, si $S^{-1}AS$ y $S^{-1}BS$ son matrices diagonales, entonces

$$AB = BA$$

c) Demuestre que C es invertible si y sólo si $(\forall i \in \{1, ..., n\})$ $c_{ii} \neq 0$. Use esto para demostrar que, si C es invertible, entonces

$$C^{-1} = \operatorname{diag}\left(\frac{1}{c_{11}}, \frac{1}{c_{22}}, \dots, \frac{1}{c_{nn}}\right)$$

Problema 11. (En práctica b)) Determine el o los valores de $k \in \mathbb{R}$ tales que las siguientes matrices sean invertibles

a)
$$\begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -2 & 6 \\ 0 & k & 4-k \\ 1 & k & -k \end{pmatrix}$ c) $\begin{pmatrix} 3 & 4 & -k \\ 2 & 6 & -2k \\ 1 & 3 & k+1 \end{pmatrix}$

Problema 12. (En práctica b) y c)) Mediante operaciones elementales por filas, obtenga una matriz triangular superior y una matriz diagonal equivalentes a cada matriz. Si es posible, determine también la inversa.

a)
$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 0 \\ 3 & -1 & -2 \end{pmatrix}$$
 c) $\begin{pmatrix} 1 & -a & 1 \\ 0 & 1 & -a \\ 0 & 0 & 1 \end{pmatrix}$, donde $a \in \mathbb{R}$
b) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ -2 & 0 & -1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 3 & -2 \\ -2 & -1 & 0 & 1 \\ 1 & 1 & 2 & -1 \end{pmatrix}$

Problema 13. (En práctica b) y d)) Calcule el determinante de las siguientes matrices

a)
$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 0 \\ 3 & -1 & -2 \end{pmatrix}$$
 c) $\begin{pmatrix} 1 & 1 & \varepsilon \\ 1 & 1 & \varepsilon^2 \\ \varepsilon^2 & \varepsilon & 1 \end{pmatrix}$, donde $\varepsilon \in \mathbb{R}$
b) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ -2 & 0 & -1 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & 3 & -2 \\ -2 & -1 & 0 & 1 \\ 1 & 1 & 2 & -1 \end{pmatrix}$

Problema 14. Sea $A \in \mathcal{M}_n(\mathbb{R})$ tal que det (A) = 5. Calcule el valor de las siguientes expresiones

a) det
$$(\mathbf{A}^5)$$

b)
$$\det(-A)$$

c)
$$\det(2A^{-1})$$

d)
$$\det (\mathbf{A}\mathbf{A}^T)$$

Problema 15. (En práctica b)) Sean $a,b,c\in\mathbb{R}$. Demuestre que

a)
$$\det \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} = (a-b)(a-c)(b-c)$$
 b) $\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & a & a \\ 1 & a & a^2 \end{pmatrix} = a(a-1)^2$

Problema 16. (En práctica c)) Calcule el o los valores de $k \in \mathbb{R}$, si es que existen, de tal manera que las siguientes matrices tengan rango igual a 3, 2 o 1.

a)
$$\begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & k \\ 1 & 1 & k-1 & 1 \end{pmatrix}$$
 c) $\begin{pmatrix} 2 & -2 & 6 & k \\ 0 & k & -k & 1 \\ 0 & k & k & k \end{pmatrix}$

c)
$$\begin{pmatrix} 2 & -2 & 6 & k \\ 0 & k & -k & 1 \\ 0 & k & k & k \end{pmatrix}$$

Problema 17. (En práctica a)) Escriba los siguientes sistemas de ecuaciones en forma matricial y resuélvalos utilizando el método de eliminación de Gauss.

$$-x_1 + x_3 + 2x_4 = 1$$

$$x_1 - x_2 + x_3 - 2x_4 = -1$$

$$-x_1 - 2x_2 + x_3 + 3x_4 = 2$$

$$-x_1 - 4x_2 + 2x_3 + 4x_4 = 5$$

$$x_1 + 2x_2 + 3x_3 - x_4 = 1$$

$$-x_1 + x_2 + x_4 = 1$$

$$3x_2 + 3x_3 = 0$$

$$2x_1 + x_2 + 3x_3 - 2x_4 = -2$$

Ejercicios de evaluaciones anteriores

Problema 18. (En práctica) Una matriz $P \in \mathcal{M}_n(\mathbb{K})$ se dice idempotente si y sólo si $P^2 = P$.

a) Sea $A \in \mathcal{M}_n(\mathbb{K})$ una matriz idempotente, demuestre que

$$(\forall k \in \mathbb{N})$$
 $\mathbf{A}^k = \mathbf{A}$

b) Sean $A, B \in \mathcal{M}_n(\mathbb{K})$ tales que A = AB y B = BA. Demuestre que A y B son idempotentes.

Problema 19. Sea $A \in \mathbb{R}$. Considere las matrices

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 0 & -1 & a \\ 0 & -1 & a & 2 \\ -1 & a & 2 & 0 \\ a & 2 & 0 & -1 \end{pmatrix}$$

- a) Calcule $\det(A)$ y concluya que A es invertible.
- b) Verifique que $A^2 A 2I = \Theta$ (donde I y Θ son la matriz identidad y la matriz nula, respectivamente) y deduzca el valor de A^{-1} .
- c) Determine el o los valores de a para los que B es invertible. Si es invertible, ¿su inversa es invertible? Justifique.

Problema 20. Determine el valor de las constantes $a, b \in \mathbb{R}$, si existen, tales que la inversa de la siguiente matriz $\mathbf{A} \in \mathcal{M}_3(\mathbb{K})$

$$\mathbf{A} = \left(\begin{array}{ccc} 2a & -b & b \\ b & 2a & 0 \\ b & 0 & 1 \end{array}\right)$$

sea igual a su matriz traspuesta.

Problema 21. Considere $a, b \in \mathbb{R}$ y las matrices

$$\mathbf{A} = \begin{pmatrix} -a & 2 & 0 & 1 \\ a & -3 & 2 & -1 \\ a & -2 & -1 & 1 \\ 2a & -2 & -4 & b \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ -1 \\ a+b+2 \end{pmatrix}$$

- a) Determine los valores de a y b para los cuales el sistema Ax = b, con $x \in \mathbb{R}^4$, sea compatible determinado, compatible indeterminado, o indeterminado.
- b) Para a = 1 y b = -1, encuentre las soluciones del sistema.

Problema 22. Considere el sistema de ecuaciones

$$\begin{pmatrix} a & 2 & 3 \\ 4 & 5 & 5 \\ 7 & 8 & 9a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}$$

Encuentre el o los valores de $a \in \mathbb{R}$ tales que el sistema sea compatible determinado. En cada uno de los casos, encuentre la solución de este sistema.

Problema 23. Sean $\alpha, \beta \in \mathbb{R}$. Considere el sistema de ecuaciones de incógnitas $x, y, z \in \mathbb{R}$

$$x + y + \alpha z = 0$$
$$x + y + \beta z = 0$$
$$\alpha x + \beta y + z = 0$$

- a) Determine α y β tales que la solución de este sistema de ecuaciones sea única. ¿Cuál es dicha solución?
- b) Determine α y β tales que el sistema tenga solución no trivial, y su respectivo conjunto solución.

Problema 24. (En práctica) Encuentre los valores de $\alpha, \beta, k \in \mathbb{R}$ para que el sistema de ecuaciones

$$x + y + kz = \alpha$$
$$z + ky + z = \beta$$
$$kx + y + z = \alpha$$

- a) Tenga solución única
- b) Sea incompatible

Problema 25. (En práctica) Sean $\alpha, \beta \in \mathbb{R}$. Considere el siguiente sistema de ecuaciones.

- a) Determine el o los valores de α y β tales que este sistema de ecuaciones sea compatible determinado, compatible indeterminado o incompatible
- b) Para $\alpha = 1$ y $\beta = 2$, determine el conjunto solución.

Primer Trimestre, 2016 30 de agosto de 2016