Gerard Castro

Universitat de Barcelona

June 16, 2024

Facultat de Matemàtiques i Informàtica

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results
- 6 Conclusions

- We extract n samples from $(X,Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables with unknown marginal & joint distributions.
- Given a new sample X_{n+1} & miscoverage level $\alpha \in [0,1]$:
 - We want to **estimate** a predictive **interval** \mathcal{C}_{α} such that the probability of Y_{n+1} falling into \mathcal{C}_{α} is at least $1-\alpha$, i.e.

$$\mathbb{P}\{Y_{n+1} \in \mathcal{C}_{\alpha}(X_{n+1})\} \ge 1 - \alpha$$

 The interval should be the smallest possible while keeping coverage. Conditional coverage ideally sought.

Motivation

- We extract n samples from $(X,Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables with unknown marginal & joint distributions.
- Given a new sample X_{n+1} & miscoverage level $\alpha \in [0,1]$:
 - We want to **estimate** a predictive **interval** C_{α} such that the probability of Y_{n+1} falling into C_{α} is at least 1α , *i.e.*

$$\mathbb{P}\left\{Y_{n+1} \in \mathcal{C}_{\alpha}\left(X_{n+1}\right)\right\} \ge 1 - \alpha$$

 The interval should be the smallest possible while keeping coverage. Conditional coverage ideally sought.

Figure 1: Different types of coverage.

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results
- 6 Conclusions

We need to use out-of-training data to understand how errors distribute: we need to "conformalize" the predictions to the data using a "conformity score". SCP proposes:

- **1** Split data into **training** Tr & **calibration** Cal.
- **2** Obtain $\hat{\mu}$ by training it in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{|Y_i \hat{\mu}(X_i)|, i \in Cal\}.$
- **4** Compute the 1α "empirical quantile" of \mathcal{S}_{Cal} : $q_{1-\alpha}(\mathcal{S}_{Cal})$.

Introduction

Split Conformal Prediction (SCP)

We need to use out-of-training data to understand how errors distribute: we need to "conformalize" the predictions to the data using a "conformity score". SCP proposes:

- **1** Split data into **training** Tr & **calibration** Cal.
- **2** Obtain $\hat{\mu}$ by training it in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{|Y_i \hat{\mu}(X_i)|, i \in Cal\}.$
- **4** Compute $(1-\alpha)\left(\frac{1}{\#\mathrm{Cal}}+1\right)$ quantile of $\mathcal{S}_{\mathrm{Cal}}$: $q_{1-\alpha}(\mathcal{S}_{\mathrm{Cal}})$.

We need to use out-of-training data to understand how errors distribute: we need to "conformalize" the predictions to the data using a "conformity score". SCP proposes:

- **1** Split data into **training** Tr & **calibration** Cal.
- **2** Obtain $\hat{\mu}$ by training it in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{|Y_i \hat{\mu}(X_i)|, i \in Cal\}.$
- **4** Compute $(1-\alpha)\left(\frac{1}{\#\mathrm{Cal}}+1\right)$ quantile of $\mathcal{S}_{\mathrm{Cal}}$: $q_{1-\alpha}(\mathcal{S}_{\mathrm{Cal}})$.
- **5** For a new sample X_{n+1} , return

$$\hat{C}_{\alpha} = [\hat{\mu}(X_{n+1}) - q_{1-\alpha}(S_{Cal}), \ \hat{\mu}(X_{n+1}) + q_{1-\alpha}(S_{Cal})]$$

Note

The only hypothesis required is data exchangeability.

We need to use out-of-training data to understand how errors distribute: we need to "conformalize" the predictions to the data using a "conformity score". SEP CQR proposes:

- 1 Split data into training Tr & calibration Cal.
- **2** Obtain $\hat{\mu}$ $\hat{\mu}_{down}$ & $\hat{\mu}_{up}$ trained in Tr.
- **3** Obtain a set S of conformity scores by using the Cal set: $S_{Cal} := \{ \max(\hat{\mu}_{down}(X_i) Y_i, Y_i \hat{\mu}_{up}(X_i)), i \in Cal \}.$
- Compute $(1-\alpha)\left(\frac{1}{\#\mathrm{Cal}}+1\right)$ quantile of $\mathcal{S}_{\mathrm{Cal}}$: $q_{1-\alpha}(\mathcal{S}_{\mathrm{Cal}})$.
- **5** For a new sample X_{n+1} , return

$$\hat{C}_{\alpha}(X_{n+1}) = [\hat{\mu}_{\text{down}}(X_{n+1}) - q_{1-\alpha}(S_{\text{Cal}}), \ \hat{\mu}_{\text{up}}(X_{n+1}) + q_{1-\alpha}(S_{\text{Cal}})]$$

Note

The only hypothesis required is data exchangeability.

Then, other flavours are proposed to reconcile this trade-off between statistical and computational efficiency, for instance CV+ & J+aB:

Figure 2: Trade-off between statistical & computational efficiency.

 Both CV+ & J+aB are based on defining multiple folds to apply a similar methodology as SCP: cross-validation & leave-one-out (LOO) folds, respectively.

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results
- 6 Conclusions

- $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{exch.}}{\sim} P_X \times P_{Y|X}$
- $(X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Tibshirani et al. (2019) heuristic idea:
 - **1** Estimate how "close" a sample X_i ($\sim P_X$) is w.r.t. to the test point ($\sim \tilde{P}_X$) using the likelihood ratio: $w(X_i) := \frac{d\tilde{P}_X(X_i)}{dP_X(X_i)}$.
 - 2 Normalize the weights: $\omega_i := \frac{w(X_i)}{\sum_{i=1}^{n+1} w(X_i)}$.
 - 3 Build the predictive interval C_{α} using the weighted calibration samples:

$$\hat{C}_{\alpha}(X_{n+1}) = \{ Y : s_{\hat{\mu}}(X_{n+1}, Y) \le q_{1-\alpha}(\{\omega_i S_i\}_{i \in Cal}) \}$$

- $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{exch.}}{\sim} P_{X|Y} \times P_Y$
- $(X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
- A. Podkopaev & A. Ramdas (2021) adapts former idea letting weights as function of Y, ω_i^Y :
 - **1** Estimate how "close" a label Y_i ($\sim P_Y$) is *w.r.t.* to the hypothetical point ($\sim \tilde{P}_Y$) using the likelihood ratio: $w(Y_i) := \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}$.
 - **2** Normalize the weights: $\omega_i^Y := \frac{w(Y_i)}{\sum_{i=1}^n w(Y_i) + w(Y)}$.
 - 3 Build the predictive interval C_{α} traversing all the variable output's space and using the weighted calibration samples:

$$\hat{C}_{\alpha}(X_{n+1}) = \{ Y : s_{\hat{\mu}}(X_{n+1}, Y) \le q_{1-\alpha}(\{\omega_i^Y S_i\}_{i \in Cal}) \}$$

Time series data: samples (temporal) auto-correlation

- Assume a setup like $Y_t = \mu(X_t) + \epsilon_t$, where ϵ_t are *i.i.d.* according to a cumulative distribution function F.
- Let the first T sample points $\mathcal{D} := \{(X_t, Y_t)_{t=1}^T\}$ be training data: we **want** a **sequence** of $s \ge 1$ **intervals** of α miscoverage level, $\{\mathcal{C}_{T,T+i}^{\alpha}\}_{i=1}^{s}$ (for the unknown labels $\{Y_{T+i}^{\alpha}\}_{i=1}^{s}$).
 - s is the batch size (n^{Q} steps to look ahead)
- Also, once **new samples** $\{(X_{T+i}, Y_{T+i})\}_{i=1}^s$ become **available**, we would like to also **leverage them**.
 - We want to use the most recent T+s points for the $\{\mathcal{C}^{\alpha}_{T+s,j}\}_{j=T+s+1}^{=T+2s}$ intervals.

11 / 27

- Assume a setup like $Y_t = \mu(X_t) + \epsilon_t$, where ϵ_t are *i.i.d.* according to a cumulative distribution function F.
- Let the first T sample points $\mathcal{D} := \{(X_t, Y_t)_{t=1}^T\}$ be training data: we **want** a **sequence** of $s \ge 1$ **intervals** of α miscoverage level, $\{\mathcal{C}_{T,T+i}^{\alpha}\}_{i=1}^{s}$ (for the unknown labels $\{Y_{T+i}^{\alpha}\}_{i=1}^{s}$).
 - s is the batch size (n^{Q} steps to look ahead)
- Also, once **new samples** $\{(X_{T+i}, Y_{T+i})\}_{i=1}^s$ become **available**, we would like to also **leverage them**.
 - We want to use the most recent T+s points for the $\{\mathcal{C}^{\alpha}_{T+s,j}\}_{j=T+s+1}^{=T+2s}$ intervals.
- \implies C. Xu & Y. Xie (2021) proposes the "EnbPI" methodology:
 - It uses no data-splitting but LOO estimators $(\hat{\mu}_{-i} \text{ model trained with } \mathcal{D} \setminus \{(X_i, Y_i)\})$.
 - Models not refitted during test time, but newest samples' residuals used to further conformalize predictions.

Gerard Castro

There are \mathcal{T} training samples and we build \mathcal{T}_1 intervals (indices

- $T+1,...,T+T_1$:
 Obtain B bootstrapped models μ^b by:
 - Sampling, with replacement, an index set $S_b := (i_1, ..., i_T)$
 - ullet Fitting the bootstrapped model with S_b
 - For i = 1, ..., T:
 - Aggregate μ^b with any function ϕ : obtaining $\hat{\mu}^{\phi}_{-i}$.
 - Compute conformity scores: $\epsilon_i^{\phi} := |Y_i \hat{\mu}_{-i}^{\phi}(X_i)|$.
 - For each $t = T + 1, ..., T + T_1$ timestamps, return in batches of s size:

$$\hat{\mathcal{C}}_{T,t}^{\alpha}(X_t) = \left[\hat{\mu}_{-t}^{\phi}(X_t) \pm w_t^{\phi}\right], \text{ where } \{ \begin{aligned} \hat{\mu}_{-t}^{\phi}(X_t) &: 1 - \alpha \text{ quant. } \{\hat{\mu}_{-i}^{\phi}(X_t)\}_{i=1}^T \\ w_t^{\phi} &: 1 - \alpha \text{ quantile of } \{\epsilon_i^{\phi}\}_{i=1}^T \end{aligned}$$

• "Partial fit" step: for each s returned intervals, conformity score w_t^{ϕ} is re-computed with the most recent observations.

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results

Assessment
Regression problem
Time series problem

Conclusions

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results

Assessment

Regression problem
Time series problem

Conclusions

The following metrics will be used:

- Coverage level: i.e. fraction of true labels lying within the prediction intervals (the closer to $1 - \alpha$, the better)
- Interval width: intervals' mean width (the smaller, the better)
- "Informativeness": best width-coverage ratio, assessed through CWC score (the higher, the better):

w mean width

CWC =
$$(1-w)*\exp\left(-\eta(c-(1-\alpha))^2\right)$$
, with $\{c \text{ attained coverage } \eta \text{ balancing term } \}$

- Adaptability: ability of achieving conditional coverage, assessed through SSC score (the closer to $1 - \alpha$, the better).
 - Maximum coverage violation along all width groups.
 - Only usable for non-constant width intervals.
- Computational efficiency: measured by CPU time.

15 / 27

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results

Assessment

Regression problem

l ime series problem

Conclusions

A tabular regression problem is considered with:

- The sklearn built-in California Housing dataset (20,640 samples, 8 features).
- A (light) gradient boosting regressor, LGBM, automatically fine-tuned through grid-search.
- A 5-fold cross-validation assessment for α = 0.20 miscoverage level.

Figure 3: Marginal distributions.

	Strategy	Coverage	RMSE	Train. time	Inf. time
	SCP	0.806 ± 0.008	0.472 ± 0.007	1.6 ± 0.2	0.07 ± 0.05
	CV+	0.853 ± 0.004	0.467 ± 0.009	9 ± 3	8.0 ± 0.3
	J+aB	0.734 ± 0.007	0.467 ± 0.009	51 ± 5	9.7 ± 0.4
	CQR	0.805 ± 0.010	0.494 ± 0.013	2.6 ± 0.1	0.10 ± 0.04
-	`L	C	\ \ \ / : - + -	CMC	222

Strategy	Coverage	Width	CWC	SSC
SCP	0.806 ± 0.008	0.971 ± 0.015	0.798 ± 0.004	
CV+	0.853 ± 0.004	1.042 ± 0.005	0.784 ± 0.002	0.65 ± 0.01
J+aB	0.734 ± 0.007	0.710 ± 0.003	0.853 ± 0.001	
CQR	0.805 ± 0.010	1.013 ± 0.013	0.790 ± 0.004	0.75 ± 0.04

Gerard Castro

Figure 4: Width histograms & coverage vs. width & α.

Universitat de Barcelona

Gerard Castro

- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results

Assessment
Regression problem

Time series problem

Original dataset Change point in test

5 Conclusions

20 / 27

itaset

A time series forecasting problem is considered with:

- Victoria electricity demand dataset (1340 samples, features: time, demand lagged up to 7 days & temperature).
- A sklearn random forest regressor automatically fine-tuned through grid-search.
- A 5-fold cross-validation for $\alpha = 0.20$:

A time series forecasting problem is considered with:

- Victoria electricity demand dataset (1340 samples, features: time, demand lagged up to 7 days & temperature).
- A sklearn random forest regressor automatically fine-tuned through grid-search.
- A 5-fold cross-validation for $\alpha = 0.20$:

Figure 5: 5-fold CV splits.

Strategy	Coverage	RMSE	Total time
EnbPI_nP	0.780 ± 0.069	0.165 ± 0.067	6.2 ± 0.3
EnbPI	0.789 ± 0.058	0.165 ± 0.067	528.3 ± 0.4

Strategy	Coverage	Width	CWC	SSC
$EnbPl_nP$	0.780 ± 0.069	0.293 ± 0.013	0.935 ± 0.018	_
EnbPI	0.789 ± 0.058	0.300 ± 0.007	0.93 ± 0.02	0.5 ± 0.2

Figure 6: Width histograms & coverage vs. width & α .

The consistency of former time series may outshine the benefits of the "partial fit" EnbPI feature. Thus:

- A change point is added in test to mock off a distribution shift.
- The same random forest regressor will be applied to a 5-fold cross-validation, now for $\alpha = 0.05$:

Figure 7: 5-fold CV splits with change points in each test's.

Strategy	Coverage	RMSE	Total time	
EnbPI_nP	0.439 ± 0.075	1.431 ± 0.024	6.0 ± 0.3	
EnbPI 0.696 ± 0.042		1.431 ± 0.024	530 ± 1	
Strategy Coverage		Width	SSC	
EnbPI_nP	0.439 ± 0.075	0.569 ± 0.043		
EnbPI	0.696 ± 0.042	1.300 ± 0.034	0.07 ± 0.12	

4 D > 4 A > 4 B > 4 B > B = 40 C

- 1 Introduction
- 2 Conformal prediction
- 3 Beyond exchangeability
- 4 Results
- **5** Conclusions

26 / 27

The best strategies for exchangeable data are, decreasingly ordered by:

- Statistical efficiency: CQR, SCP, CV+, J+aB.
 - This is fulfilled independently of α .
- Computational efficiency: SCP, CQR, CV+, J+aB.
- Predictive power are: CV+ & J+aB. SCP. CQR.
- "Informativeness": J+aB. SCP. CQR. CV+.
- Adaptability: CQR, CV+, J+aB (slight to none). Contrarily, SCP intervals are not adaptive at all.

Regarding the time series case. **EnbPI** is a **suitable option** to provide valid intervals.

- EnbPI's adjustment using test residuals is necessary.
- This option also allows all the issued **intervals** to be **adaptive**.

Thank you for your attention!

Questions?

