Говоря вольно, поле — это набор элементов, на которых есть четыре арифметических операции: сложение, вычитание, умножение и деление, обладающие привычными свойствами. Аксиоматизация этих свойств приводит к такому определению:

Определение 1. Полем называется любое множество \mathbb{k} , на котором заданы операции сложения (+) и умножения (·), удовлетворяющие следующим условиям (аксиомам поля):

- (A1) Для любых $a, b \in \mathbb{K}$ выполнено равенство a + b = b + a (коммутативность сложения).
- (A2) Для любых $a, b, c \in \mathbb{R}$ выполнено равенство (a+b)+c = a+(b+c) (ассоциативность сложения).
- (A3) В k существует такой элемент 0, что для любого $a \in k$ выполнено равенство a + 0 = a (существование нуля).
- (A4) Для любого $a \in \mathbb{k}$ существует такой $b \in \mathbb{k}$, что a + b = 0 (существование противоположного элемента: такой элемент b называется противоположным k a и обозначается -a).
- (M1) Для любых $a, b \in \mathbb{R}$ выполнено равенство $a \cdot b = b \cdot a$ (коммутативность умножения).
- (M2) Для любых $a, b, c \in \mathbb{k}$ выполнено равенство $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (ассоциативность умножения).
- (М3) В \mathbbm{k} существует такой элемент 1, не равный нулю, что для любого $a \in \mathbbm{k}$ выполнено равенство $a \cdot 1 = a$ (существование единицы).
- (М4) Для любого $a \in \mathbb{k}$, не равного нулю, существует такой $b \in \mathbb{k}$, что $a \cdot b = 1$ (существование обратного элемента: такой элемент b называется обратным к a и обозначается $\frac{1}{a}$ или a^{-1}).
- (АМ) Для любых $a, b, c \in \mathbb{R}$ выполнено равенство $a \cdot (b + c) = a \cdot b + a \cdot c$ (дистрибутивность умножения относительно сложения).

Примерами известных вам полей являются \mathbb{Q} — рациональные числа, \mathbb{R} — действительные числа, \mathbb{C} — комплексные числа. Более сложный пример: множество всех алгебраических чисел — корней многочленов с рациональными коэффициентами (основная трудность тут — доказать, что сумма и произведение алгебраических чисел тоже алгебраические числа).

Из множеств вроде целых чисел или многочленов, в которых выполнены все аксиомы, кроме М4 (существование обратного), и нет делителей нуля, можно изготовить none частных: это множество дробей с ненулевым знаменателем (как обычно, дроби a/b и c/d, у которых ad = bc, нужно считать равными), которые складываются и умножаются по обычным правилам. Таким образом из целых чисел получаются рациональные числа, а из многочленов — поле рациональных дробей.

Если взять простое число p и рассмотреть множество вычетов по модулю p, то у каждого элемента будет обратный (см. листок 23). Полученное множество $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ будет полем вычетов по модулю простого числа p.

Аналогично если взять неприводимый многочлен P и рассмотреть вычеты (остатки) по модулю многочлена P (точнее, это классы эквивалентности такого отношения: $A \sim B$, если $(A-B) \\\vdots P)$, то тоже окажется, что у каждого вычета есть обратный. Получится поле $\mathbb{R}[x]/P\mathbb{R}[x]$. Если в качестве такого неприводимого многочлена взять $P = x^2 + 1 \in \mathbb{R}[x]$, то вычеты образуют поле \mathbb{C} .

Если взять корень α неприводимого многочлена $P \in \mathbb{Q}[x]$ и рассмотреть числа вида $a_0\alpha^m + a_1\alpha^{m-1} + \ldots + a_{m-1}\alpha + a_m$, где $m < \deg P$, $a_i \in \mathbb{Q}$, то они будут перемножаться и складываться в точности, как остатки от деления на многочлен P. Это поле обозначается через $\mathbb{Q}[\alpha]$. Например, $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} = \mathbb{Q}[x]/(x^2 - 2)\mathbb{Q}[x]$.

Аналогичные конструкции можно делать для многочленов с коэффициентами из любого поля.

Листок №52 Страница 2

Задача 1. Пусть k — поле. Докажите, что

- а) в 🖟 есть только один ноль; б) у каждого элемента только один противоположный;
- в) для любого $a \in \mathbb{k}$ выполнено равенство -(-a) = a;
- г) для любых $a, b \in \mathbb{R}$ уравнение a + x = b имеет ровно одно решение в \mathbb{R} (оно обозначается b a; таким образом, в поле определена операция вычитания).

Задача 2. Пусть k — поле. Докажите, что

- а) в \mathbb{k} есть только одна единица; б) у каждого ненулевого элемента только один обратный;
- в) для любого ненулевого $a \in \mathbb{k}$ выполнено равенство $(a^{-1})^{-1} = a;$
- r) для любого $b \in \mathbb{k}$ и любого ненулевого $a \in \mathbb{k}$ уравнение $a \cdot x = b$ имеет ровно одно решение в \mathbb{k} (оно обозначается $\frac{b}{a}$; таким образом, в поле определена операция denenus на ненулевые элементы).

Задача 3. Пусть \mathbb{k} — поле. Докажите, что

- а) для любого $a \in \mathbb{k}$ выполнено равенство $a \cdot 0 = 0$; б) если $a \cdot b = 0$, то a = 0 или b = 0.
- в) Останется ли верным утверждение пункта б), если исключить из аксиом поля аксиому М4?

Задача 4. Пусть \mathbb{k} — поле. Докажите, что для любого $a \in \mathbb{k}$ выполнены равенства

а) $a \cdot (-1) = -a$; б) $(-a) \cdot (-a) = a \cdot a$; в) $(-a)^{-1} = -(a^{-1})$, если $a \neq 0$.

Задача 5. Пусть \Bbbk — поле. Докажите, что для любых $a,c\in \Bbbk$ и любых ненулевых $b,d\in \Bbbk$ выполнено равенство **a)** $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$; **6)** $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$.

Задача 6. а) Докажите, что $\mathbb{Q}[\sqrt{2}]$ — поле. **б**) При каких m система вычетов $\mathbb{Z}/m\mathbb{Z}$ — поле?

Задача 7. Образуют ли поле числа вида **a)** $a+b\sqrt[3]{2}+c\sqrt[3]{4}$, где $a,b,c\in\mathbb{Q}$; **6)** $a+b\sqrt{p}+c\sqrt{q}+d\sqrt{pq}$, где $a,b,c,d\in\mathbb{Q},$ а p,q- фиксированные различные простые; в) $\mathbb{Z}[i]/(3+4i)\mathbb{Z}[i];$ г) $\mathbb{Z}[i]/(2+i)\mathbb{Z}[i]?$

Задача 8. Избавьтесь от иррациональности в знаменателе: $\frac{1}{5+\sqrt[3]{2}+\sqrt[3]{4}}$.

Задача 9. а) Пусть $\mathbb{R}(x) = \left\{ \frac{P(x)}{Q(x)} \mid P(x), Q(x) \in \mathbb{R}[x], \text{ где } Q(x) - \text{не многочлен } 0 \right\}$. Докажите,

что $\mathbb{R}(x)$ — поле (с обычным сложением и умножением). **б**) Всегда ли для множества, удовлетворяющего всем аксиомам, кроме М4, множество классов эквивалентности его дробей будет полем?

Определение 2. *Характеристика поля* k (обозначение: char k) — такое наименьшее натуральное число m, что $\underbrace{1+\ldots+1}_{}=0$. Если такого числа нет, характеристика полагается равной 0.

Задача 10. Докажите, что характеристика поля — простое число или 0.

Задача 11. Найдите характеристики полей **a)** \mathbb{Q} , $\mathbb{Z}/p\mathbb{Z}$, $\mathbb{Q}[\sqrt{2}]$, \mathbb{C} ; **б)** $\mathbb{Z}[i]/(2+i)\mathbb{Z}[i]$.

Поля характеристики р

Задача 12. Существует ли бесконечное поле характеристики p?

Задача 13. Пусть k — поле характеристики p. Докажите, что

- а) элементы $1, 1+1, 1+1+1, \ldots, \underbrace{1+\ldots+1}_p$ образуют поле $\mathbb{F}_p \subset \mathbb{k}$, «точно такое же, как» $\mathbb{Z}/p\mathbb{Z}$; б) для произвольных элементов $a, b \in \mathbb{k}$ выполнено равенство $(a+b)^p = a^p + b^p$.

Задача 14. Пусть k — конечное поле из q элементов. **a)** Докажите, что для любого x из k верно $x^{q} = x$. **б)** Для каждого *n* найдите сумму всех *n*-х степеней элементов из k.

Задача 15. Пусть \mathbb{k} — конечное поле характеристики p. Пусть $x \in \mathbb{k} \setminus \mathbb{F}_p$. Докажите, что

- а) \mathbb{k} содержит все элементы вида $\alpha x + \beta$, где $\alpha, \beta \in \mathbb{F}_p$; б) в \mathbb{k} как минимум p^2 элементов.
- в) в \mathbb{k} ровно p^n элементов для некоторого n.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 б	1 B	1 Г	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	$\begin{bmatrix} 2 \\ \Gamma \end{bmatrix}$	3 a	3 6	3 B	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	5 a	5 6	6 a	6 6	7 a	7 б	7 B	7 Г	8	9 a	9 б	10	11 a	11 б	12	13 a	13 б	14 a	14 б	$\begin{array}{ c c c }\hline 15 & 1 \\ a & \end{array}$	l5 15 б в

 $^{^1}$ Математический термин — изоморфное. Поле F с операциями $+, \cdot$ и поле G с операциями \oplus, \odot называются uзоморфными, если существует взаимно-однозначное соответствие $\varphi: F \to G$, сохраняющее обе операции, то есть для любых элементов $a,b \in F$ выполнены равенства $\varphi(a+b) = \varphi(a) \oplus \varphi(b); \varphi(a \cdot b) = \varphi(a) \odot \varphi(b).$