

機械学習第6回回帰

立命館大学 情報理工学部

福森 隆寬

Beyond Borders

講義スケジュール

□ 担当教員1:福森(第1回~第15回)

1	機械学習とは、機械学習の分類			
2	機械学習の基本的な手順			
3	識別(1)			
4	識別(2)			
5	識別(3)			
6	回帰			
7	サポートベクトルマシン			
8	ニューラルネットワーク			

9	深層学習
10	アンサンブル学習
11	モデル推定
12	パターンマイニング
13	系列データの識別
14	半教師あり学習
15	強化学習

□ 担当教員2:叶昕辰先生(第16回の講義を担当)

今回の講義内容

- □ 取り扱う問題の定義
- □ 線形□リ帚 最も単純な入力も出力もスカラーである場合の 回帰問題を考える
- □ | 帰モデルの評価 | 回帰式が未知データに対して正しく出力値を予測 するかを評価
- □ 正則化
- ロ バイアスと分散のトレードオフ
- □帰木のリーフの値を線形回帰式とした木
- □演習問題

取り扱う問題の定義:教師あり・回帰

■ 数値データからなる特徴ベクトルを入力して、数値を出力 する関数を作る

※ 教師あり学習の回帰問題での学習データは、以下のペアで構成される

入力データの特徴ベクトル $\leftarrow \{x_i, y_i\}$, $i=1,2,...,N \longrightarrow$ 学習データの総数 (数値データ)

数値形式の正解情報→「ターゲット」と呼ぶ

機械学習

教師あり学習

中間的学習

教師なし学習

識別

回帰

数值特徵

- CPU = 5.0
- Memory = 64
- Disk = 4

性能 = 360.5

取り扱う問題の定義:教師あり・回帰

□ 識別と回帰の境界は、それほど明確ではない

■ 識別:数値特徴を入力としてクラスを出力

■ 回帰:数値特徴を入力として数値を出力

□ クラスによって異なる値をとるクラス変数を導入し 入力からクラス変数の値を予測する問題を考えると 識別問題を回帰問題として考えることもできる

線形回帰

输入输出都是标量

- □ 最も単純な<u>入力も出力</u>も<u>スカラーで</u>ある場合の 回帰問題を考える
 - 学習データから入力xを出力yに写像する関数ĉ(x)を 推定

入力*x*が大きくなると 出力*y*も大きい値になる 傾向がみられる

最小二乗法と同様の方法で なるべく誤差の少ない直線を求める

線形回帰

- □ 最小二乗法から回帰式を求める
 - 回帰式を $\hat{c}(x) = w_1 x + w_0$ とする
 - ■誤差の二乗和は

$$E(\mathbf{w}) = \sum_{i=1}^{N} \{y_i - \hat{c}(x_i)\}^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

- X: 1列目の全要素が1、2列目i行の要素が x_i のパターン行列
- \mathbf{w} : 重みベクトル $\otimes \mathbf{w} = (w_0, w_1)^T$
- wで微分したものを0とすると、線形回帰式の重みは下式 で計算できる

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

 $w = (X^T X)^{-1} X^T y$ ■ 入力xがd次元の場合も、同様の方法で計算できる

回帰モデルの評価

- □ 回帰式が未知データに対して<u>正しく出力値を予測</u>するかを評価
- □ 評価指標
- □ 相関係数: 正解と予測が、どの程度似ているのか
- R^2 決定係数
 - •「正解との離れ具合」と「平均との離れ具合」の比を1から引く
 - $\tilde{y}: y_i$ の平均値

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} \{y_{i} - \hat{c}(x_{i})\}^{2}}{\sum_{i=1}^{N} (y_{i} - \tilde{y})^{2}}$$

式変形により相関係数の 二乗と一致するので*R*²と 表記する

演習問題6-1 (10分間)

□ 右表のような身長と体重のデータが 与えられた

□ 身長xから体重ĉ(x)を予測する線形回帰式が
 ĉ(x) = 0.625x - 48.604
 であるときの決定係数と相関係数を計算せよ

身長と体重データ

 番号	身長	体重
<u> </u>	[cm]	[kg]
1	147.9	41.7
2	163.5	60.2
3	159.8	47.0
4	155.1	53.2
5	163.3	48.3
6	158.7	55.2
7	172.0	58.5
8	161.2	49.0
9	153.9	46.7
10	161.6	52.5

演習問題6-1(10分間)解答例

番号	身長 <i>x_i</i>	体重 <i>y_i</i>	$\hat{c}(x)$	$\left(y_i-\hat{c}(x_i)\right)^2$	$(y_i - \hat{y})^2$
1	147.9	41.7	43.8	4.6	90.8
2	163.5	60.2	53.6	43.8	80.5
3	159.8	47.0	51.3	18.2	17.9
4	155.1	53.2	48.3	23.7	3.9
5	163.3	48.3	53.5	26.6	8.6
6	158.7	55.2	50.6	21.3	15.8
7	172.0	58.5	58.9	0.2	52.9
8	161.2	49.0	52.1	• 9.9	5.0
9	153.9	46.7	47.6	0.8	20.5
10	161.6	52.5	52.4	0.0	1.6

平均体重 $\tilde{y} \cong 51.2$

合計:149.0 合計:297.4

相関係数

$$R = \sqrt{R^2} = \sqrt{0.5} \cong \mathbf{0.706}$$

決定係数
$$R^2 = 1 - \frac{\sum_{i=1}^{N} \{y_i - \hat{c}(x_i)\}^2}{\sum_{i=1}^{N} (y_i - \tilde{y})^2} = 1 - \frac{149.0}{297.4} \cong \mathbf{0.5}$$

正則化

对于泛化能力强的线性回归方程来说,<u>输入变化小,输出变化也小</u>;如果权重过大,就会导致输入变化小但输出变化大

所以要让尽可能多的系数为零,并最小化非零系数

这时候就需要正则化

- □ 望ましい線形回帰式
 - 汎化能力という点では、入力が<u>少し</u>変化したときに、 出力も<u>少し</u>変化する回帰式が良い
 - 重みが大きいと、入力が**少し**変化するだけで出力が**大きく**変化
 - そのような回帰式は、たまたま学習データの近くを通っても、 未知データに対する出力は信用できない
 - 線形回帰の重みは、値が0となる次元を多くすれば良い
 - 回帰式の係数wに関して、「大きな値の重みが、なるべく 少なくなる」あるいは「oとなる重みが多くなる」ような方法が必要
 - このような工夫が<mark>正則化</mark> 在误差函数中加入正则化项
 - ・誤差関数の式に正則化項を追加する

正則化: Ridge回帰

□ Ridge回帰

- パラメータwの二乗を正則化項とする
- パラメータの値が小さくなるように正則化させる

$$E(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T(\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{\underline{w}}^T \mathbf{w}$$
 正則化項

λ:正則化項の重み(重みが大きければ、性能よりも正則化の結果を重視) 权重越大越重视正则化

■ 最小二乗法でパラメータを求めたときと同様に、 wで微分した値がOとなるwの値を求めると...

正則化:Lasso回帰

□ Lasso回帰

- パラメータwの<mark>絶対値を正則化項とする</mark>
- 値を0とするパラメータが多くなるように正則化される

$$E(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \sum_{j=1}^{d} |w_j|$$

权重越大为零的系数越多

λ:正則化項の重み(大きければ、値を0とする重みが多くなる)

wo: 回帰式の切片は汎化能力に影響なし(通常は正則化の対象としない)不影响泛化能力(一般不作为正)が化対象

- Lasso回帰の解は、解析的に求められない
 - 原点で微分不可能な絶対値を含むため
 - ・ 正則化項の上限を微分可能な2次関数で押さえ、その関数の パラメータを誤差が小さくなるように逐次更新する方法が

正則化:正則化の振る舞い

- □ Ridge回帰系数被限制在一个超球中
 - パラメータの存在する範囲を円 (d次元では超球) の中に限定して、それぞれの重みが大きな値をとれないようにする
 - 重み:誤差関数の等位線との接点 (=円周上の点)
- □ Lasso回帰 限定系数和一定
 - パラメータの和が一定という条件なので、それぞれの軸で角をもつ領域に値が制限
 - 角で誤差関数の等位線と接する(多くのパラメータがoになる)

Lasso回帰における 正則化

バイアスと分散のトレードオフ

- てきょう
- □ 回帰式を高次方程式に置き換えて適用できる
 - 特徴ベクトルxに対して、基底関数ベクトル $\phi(x)$ を考える $\phi(x) = (\phi_1(x), ..., \phi_b(x))^T$
 - 例:1次元ベクトルxに対して $\phi(x) = (1, x, x^2, ..., x^b)^T$ となる
 - 以下のように回帰式を定義すれば、 係数が線形という条件のもとで最小二乗法が適用可能

$$\hat{c}(\mathbf{x}) = \sum_{j=0}^{b} w_j \, \phi_j(\mathbf{x})$$

□ 複雑な関数を用いることで、 真のモデルに近い形を表現できるのか?

バイアスと分散のトレードオフ

- □ バイアスと分散はトレードオフの関係
- - <mark>分散</mark>:学習結果の散らばり具合 学习结果的分散情况 方差越小,当输入变化时输出变化越小
 - □ 単純なモデル → バイアス : 大、分散 : 小
 - 個別のデータに対する誤差が大きくなりやすいが、学習 データが少し変動しても結果として得られるパラメータは 大きく変動しない
 - □ 複雑なモデル → バイアス: 小、分散: 大
 - 個別のデータに対する誤差を小さくしやすいが、学習データの値が少し変動すると、結果が大きく異なることがある

バイアスと分散のトレードオフ

- □ 回帰問題におけるバイアスと分散
 - 線形回帰式の場合
 - ・ 求まった超平面は、学習データ内の点をほとんど通らないので、 バイアスが大きい
 - ■「学習データの個数-1」次の高次回帰式の場合
 - 求まった回帰式は、全学習データを通る(学習データと一致する関数が求まる)ので、バイアスが小さい
 - データが少し動いただけで、この高次式は大きく変動するので、 結果の分散は大きい
- 機械学習では、バイアスー分散のトレードオフを 常に意識しなければならない 正则化能够有效降低方差
 - 正則化:緩いバイアスで分散を減らすのに有効

回帰木

- □ 回帰木 回归树: 节点为特征,叶子为输出值
 - 識別における決定木の考え方を回帰問題に適用する方法
- □ 決定木による識別問題の学習
 - ■特徴の値によって学習データを同じクラスの集合になるように 分割する
- □ 回帰木による回帰問題の学習
 - 出力値の近いデータが集まるように、 特徴の値によって学習データを分割
 - 特徴をノードとし、出力値をリーフと する回帰木が得られる

回帰木: CART

- ☐ CART (classification and regression tree)
 - 木の構造を二分木は限定した決定木 限定为二叉树
 - 分類基準:<mark>ジニ不純度 (Gini impurity</mark>) 分类标准
- □ CARTによる<mark>識別問題</mark> 选择G变化值最大的分类/
 - 分類前後の集合のジニ不純度Gを求めて、改善度ΔGが 最大のものをノードに選ぶことを再帰的に繰り返す

$$G = 1 - \sum_{j=1}^{c} N(j)^{2}$$

$$\Delta G(D) = G(D) - P_L \cdot G(D_L) - P_R \cdot G(D_R)$$

D:あるノードに属するデータの全体

N(j): データ中のクラスjの割合

 D_L : 左の部分木(D_R は右の部分木)

 $P_L: D_L$ に属するデータの割合 $(P_R \cup D_R \cup D_R$

回帰木: CART

□ CARTによる回帰問題 选择SS減少量最大的分类

■ 分類基準として、データの散らばりSSの減り方ΔSSが 最大になるものを選択 实际上就是寻找方差最小的划分

$$SS(D) = \sum_{y_{i \in D}} (y_i - \tilde{y})^2$$

$$\Delta SS(D) = SS(D) - P_L \cdot SS(D_L) - P_R \cdot SS(D_R)$$

 \tilde{y} : Dに属するデータの平均値 D_L : 左の部分木 (D_R は右の部分木)

D: あるノードに属するデータの全体 $P_L:D_L$ に属するデータの割合 $(P_R$ は D_R に属する)

SS(D)では、データDの分散を求めているので、 この基準は分割後の分散が最小となるような分割を求めている

回帰木:モデル木1. 选取特征划分相似数据2. 对叶子中数据计算线性回归方程

ロ モデル木 叶子节点为线性回归方程

- 回帰木のリーフの値を線形回帰式とした木
 - ・回帰木と線形回帰の双方の利点を活かした方法
- ■モデル木の生成手順
 - 1. 出力値が近い区間を切り出せる特徴を選んでデータ分割
 - 2. 分割後のデータに対して線形回帰式を計算
- 特定の要因によって振る舞いが異なるデータを分割し、 それぞれに対応する規則性を見つけ、かつ、その分割の 要因を木構造によって説明できる
 - 例えば、季節によって出力に影響を及ぼす要因が異なる データなどに有効

演習問題6-2 (10分間)

□ 以下の学習データが与えられたとき、温度と湿度から1日あたりのビールの消費量を予測する回帰木を作成せよ

温度・湿度・1日あたりのビールの消費量の関係

演習問題6-2(10分間)解答例

出力値の近いデータが集まるように、 特徴の値によって学習データを分割するのがポイント

回帰木には3つのノードがありま す:

1. 温度が15より大きいかどうか に応じて分割します;

2. 温度が25を超えるかどうかに 応じて分割します;

3. 湿度が50より大きいかどうか に応じて分割します。