Privay-preserving Systems for Processing Personal Data

DMSN Seminar 2017

Yousef Amar

2017-03-14

- ▶ Online and social media data
 - ► Facebook, Twitter, Instagram...
 - Email
 - ► Online banking

- Online and social media data
 - ► Facebook, Twitter, Instagram...
 - Email
 - Online banking
- Smartphone sensors and wearable
 - ► Message history, GPS, accelerometers, gyroscopes, temperature, microphone, Bluetooth...
 - ► Smartwatches, GSR, heart rate, step counter. . .

- Online and social media data
 - Facebook, Twitter, Instagram. . .
 - Email
 - Online banking
- Smartphone sensors and wearable
 - Message history, GPS, accelerometers, gyroscopes, temperature, microphone, Bluetooth...
 - Smartwatches, GSR, heart rate, step counter. . .
- ▶ IoT devices in the home
 - Smart devices (TVs, fridges, etc)
 - Lighting, heating, energy usage, proximity sensors. . .

- Online and social media data
 - Facebook, Twitter, Instagram. . .
 - Email
 - Online banking
- Smartphone sensors and wearable
 - Message history, GPS, accelerometers, gyroscopes, temperature, microphone, Bluetooth...
 - Smartwatches, GSR, heart rate, step counter. . .
- ▶ IoT devices in the home
 - Smart devices (TVs, fridges, etc)
 - Lighting, heating, energy usage, proximity sensors. . .
- ▶ Discrete files/blobs/documents vs naturally time series

Background The Status Quo

- Our digital footprint is explosively increasing
- Our data is scattered all over the cloud
 - Silos of data inaccessible
 - Limited analytics; tech and legal bounds
 - Data breaches on the rise
- Cloud solutions, e.g. homomorphic encryption face same issues
- Most data doesn't even need to leave your home/phone; costs power, bandwidth, latency, and money
- ▶ Need for different architectural paradigm

Background Databox

Background Databox

How can we design safe, scalable access control systems with arbitrary restrictions in this context?

Inter-container Communication

- All communication over HTTPS; certs generated run-time; system root CA
- RESTful APIs for all operations
- Direct mapping of HTTP methods to CRUD functions
- ▶ Per-route granular permissions
- Network-level isolation additionally
- Content Security Policy (CSP) to sandbox UIs

```
{
  "target": "smartphone-store",
  "path": "/accelerometer/ts/latest",
  "method": "POST"
}

{
  "target": "smartphone-store",
  "path": "/(sub|unsub)/gps/*",
  "method": "GET"
}
```

Delegated Authorisation

- ▶ Data can be protected through basic authentication; not granular enough
- ▶ Many APIs use token-based authorization, e.g. OAuth 2.0 (Twitter coursework)

Delegated Authorisation

- ► Google Research: Macaroons
 - A standard similar to signed cookies
 - ► Can be attenuated by "caveats"
 - Embedded permissions
 - Minting and verification can be separated through shared secret keys

```
target = smartphone-store
path = /(sub|unsub)/gps/*
method = GET
time < 1489405851417

target = smartphone-store
path = /light/ts/range
method = GET
startTimestamp >= 1489405234352
endTimestamp <= 1489405259525</pre>
```


Resource Discovery

- API for describing APIs
- Directory servers
- Many competing standards
 - Resource Description Framework (RDF)
 - Web Application Description Language (WADL)
 - Web Services Description Language (WSDL)
 - eXtensible Resource Descriptor (XRD)
- Subject-predicate-object style pervalent
- ▶ Different formats and applications XML for REST, SOAP, OpenID

Resource Discovery

- Recently joined BSI Group (British Standards Institution)
- ▶ IoT-first specification design
- ► JSON/REST over XML/SOAP
- Only cataloguing; ontologies and authorisation extensible
- Discoverability vs accessibility
- Catalogues can be nested, allowing decentralisation and distribution

```
"catalogue-metadata": [{
  "rel": "urn:X-hypercat:rels:isContentType",
  "val": "application/vnd.hypercat.catalogue+json"
  "rel": "urn:X-hypercat:rels:hasDescription:en",
  "val": "A Databox Store"
"items": [{
  "href": "http://some-store/light".
  "item-metadata": [{
    "rel": "urn:X-hypercat:rels:hasDescription:en".
    "val": "Light Datasource"
    "rel": "urn:X-databox:rels:hasVendor".
    "val": "Databox Inc."
    "rel": "urn:X-databox:rels:isActuator".
    "val": false
```

Implementation Container Relationships

Implementation Authorisation Flow

Implementation Authorisation Flow

1. CM passes unique tokens

Implementation Authorisation Flow

- 1. CM passes unique tokens
- 2. CM updates permissions

- 1. CM passes unique tokens
- 2. CM updates permissions
- 3. Store registers itself

- 1. CM passes unique tokens
- 2. CM updates permissions
- 3. Store registers itself
- 4. Arbiter responds with shared secret

- 1. CM passes unique tokens
- 2. CM updates permissions
- 3. Store registers itself
- 4. Arbiter responds with shared secret
- 5. Container requests bearer token

- 1. CM passes unique tokens
- 2. CM updates permissions
- 3. Store registers itself
- 4. Arbiter responds with shared secret
- 5. Container requests bearer token
- 6. Arbiter checks and responds

- 1. CM passes unique tokens
- 2. CM updates permissions
- 3. Store registers itself
- 4. Arbiter responds with shared secret
- 5. Container requests bearer token
- 6. Arbiter checks and responds
- 7. Container can now read/write to store

Transcription of Permissions

- 1. Drivers/apps come packaged with a manifest
 - Contain image metadata
 - Enumerate granular permissions for sources, concurrency, external access, and hardware
- 2. Users generate a Service-level Ageement (SLA)
- 3. The arbiter records granted permissions
- 4. Tokens are minted based on these

```
Manifest SLA Token
```

```
"name": "app",
"author": "amar",
"permissions": [
    "source": "twitter"
    "required": true
    "source": "gps"
```

Scalability Evaluation

Procedure

Scalability Evaluation

Procedure

Scalability Evaluation Results

Figure: Percentage CPU Usage by Container Type

Figure: Memory Usage by Container Type

Scalability Evaluation Results

Figure: Sum Net I/O by Container Type

Scalability Evaluation Results

Figure: Inserts/s over Stores under Maximum Load

Scalability Evaluation

Figure: Stores Launched over Time

Topological Evaluation

Procedure and Results

Differences in Time to Availability (TTA)

- 1. Device \rightarrow Cloud: 65ms
- 2. Device \rightarrow Cloud \rightarrow Home: 83*ms*
- 3. Device \rightarrow Home: 78ms
- 4. Device \rightarrow Home \rightarrow Cloud: 80ms

Figure: The four possible data flow scenarios tested

Topological Evaluation Results

Figure: Data Time to Availability from Device to Cloud Databox Directly

Figure: Data Time to Availability from Device to Home Databox Directly

Topological Evaluation Results

Figure: Data Time to Availability from Device to Home Databox via Cloud VPN

Figure: Data Time to Availability from Device to Cloud Databox via Home VPN

Topological Evaluation

- ▶ TTA source away from home > source at home
- ► So minor, barely indistinguishable from NTP drift
- ▶ Based on performance alone, UX indifferent
- Scenarios through home (especially when source is away) have mean shifted right due to latency spikes
- ▶ Direct connections mean lower TTA, and cloud faster than home ceteris paribus
- Small difference for devices as sources vs cloud servers
- \blacktriangleright For devices, processing at home > in the cloud \pm NTP error even ignoring privacy advantages
- ► Home vs cloud reliability vs cost
- ▶ Pure cloud only more advantageous for off-site processing (e.g. GPU-heavy image processing)

Next Steps

- Community Launch next Friday
- ► EuroSys 2017
- Full system evaluation for SOSP 2017
- ► ARM support RPi
- Many areas to research, e.g. watermarking
- Many example apps and drivers, with multipurpose datavis and transformation

Thank you for your attention!

Questions?

More info: http://www.databoxproject.uk/
Contribute: https://github.com/me-box

Slides: https://github.com/yousefamar/dmsn-seminar-2017