Community-level predictions					
Prediction	Pattern	Prediction	Pattern		
1. Total abundance (N) should be lowest at low τ due to washout and at high τ due to low resource resupply.	>	2. Productivity (P) should be lowest at low τ due to washout and at high τ due to low resource resupply.	α		
3. Species richness (S) should be lowest at low τ due to selection to resist washout and at high τ due to selection on persistence.	ν ₀ τ	4. Species evenness (E) should be lowest at intermediate τ , reflecting competition and the constraining influence of N and S .	ш		
5. Species turnover (W) should decrease with greater τ , reflecting less immigration and greater persistence. W may then increase, due to loss of species at low S .	σ τ	6. The percent of individuals in a dormant state should increase with greater τ due to insufficient resource resupply and decreased threat of washout.	%Dormant		
	Trait-leve	el predictions			
Prediction	Pattern	Prediction	Pattern		
7. Intrinsic rates of growth should decrease with greater τ , reflecting of growing quickly in rapidly moving systems and of growing less quickly in resource deplete conditions.	Growth	8. Active basal metabolic rate (B) should decrease with greater τ , reflecting pressures to accomplish similar rates of energetically costly processes at lower energetic costs.	Active B		
9. Rates of active dispersal should decrease with greater τ , reflecting advantages of strong dispersal in rapidly moving systems and the costs of active dispersal in resource deplete systems.	Active dispersal	10. Resource specialization should should be low at short and long τ . Specialization should increase as resource partitioning emerges among greaters numbers of competing species.	Specialization		
11. Rates of resuscitation from dormancy should decrease with greater τ , reflecting the disadvantage of being dormant at short τ and the costs of active metabolism at long τ .	Resuscitation	12. Increasing τ should select for a greater reduction of basal metabolic rate (B) when individuals go dormant.	Reduction of B in dormancy		
	Equivalen	ce predictions			
Prediction	Pattern	Prediction	Pattern		
13. The difference between the rates of energetically costly traits T and	2	14. The difference between the rates of energetically costly traits T and	vity		

Prediction	Pattern	Prediction	Pattern
13. The difference between the rates of energetically costly traits T and $1/\tau$ represents the match between resource supply and energetic costs. N should be greatest when $T=1/\tau$.	Active No $g_{10}(T*\tau)$	14. The difference between the rates of energetically costly traits T and $1/\tau$ represents the match between resource supply and energetic costs. P should be greatest when $T = 1/\tau$.	$\log_{10}(T*\tau)$