Density Field Dynamics and the c-Field:

A Three-Dimensional, Time-Emergent Dynamics for Gravity and Cosmology

Gary Alcock

August 18, 2025

Abstract

We formulate a dynamical alternative to curved spacetime in which the universe is fundamentally Euclidean \mathbb{R}^3 and time is emergent. A single scalar "c-field" $\psi(\mathbf{x})$ controls the one-way speed of light via $c_1(\mathbf{x}) = c e^{-\psi(\mathbf{x})}$, preserving the measured two-way light speed c. Matter and photons couple to the same ψ : massive test bodies accelerate according to

$$\mathbf{a} \; = \; \frac{c^2}{2} \, \nabla \psi \equiv - \nabla \Phi, \qquad \Phi \equiv - \frac{c^2}{2} \, \psi,$$

while photons follow Fermat paths in the refractive index $n(\mathbf{x}) = e^{\psi(\mathbf{x})}$. From a local, isotropic action we derive a nonlinear Poisson equation for ψ ,

$$\nabla \cdot \left[\mu \left(\frac{|\nabla \psi|}{a_{\star}} \right) \nabla \psi \right] = -\frac{8\pi G}{c^2} \left(\rho_m - \bar{\rho}_m \right),$$

which fixes the weak-field normalization needed to reproduce exactly Einstein's classical tests (light deflection $\alpha=4GM/(c^2b)$, gravitational redshift, Shapiro delay, and the Mercury perihelion advance) [1, 2, 3]. In the low-gradient (galactic/void) regime, the same equation yields $|\nabla\psi|\propto 1/r$, implying $v(r)\to {\rm const}$ (flat rotation curves) without dark matter and a Tully–Fisher/RAR scaling [4, 5, 6, 7]. On cosmic scales, line-of-sight optical length $D_{\rm opt}=\frac{1}{c}\int e^{\psi}ds$ produces a foreground-dependent bias that explains the Hubble tension and mimics cosmic acceleration without a cosmological constant [8, 9, 10]. We present explicit derivations and conservation laws from the action, and give falsifiable laboratory protocols (one-way-c metrology and atom interferometry) at the $10^{-10}\,{\rm m\,s^{-2}}$ scale [11, 12].

1 Principles and Definitions

(P1) Three-dimensional ontology. Physical space is Euclidean \mathbb{R}^3 . Time is not fundamental; durations are operationally defined via round-trip light and physical clocks.

(P2) One-way light as a field. The one-way light speed is dynamical:

$$c_1(\mathbf{x}) = c e^{-\psi(\mathbf{x})}, \qquad n(\mathbf{x}) \equiv \frac{c}{c_1} = e^{\psi(\mathbf{x})}.$$
 (1)

Two-way c is invariant by reciprocity along any fixed path (Sec. 10).

(P3) Unified coupling of matter and light. Matter accelerations and photon paths are governed by the same ψ :

$$\mathbf{a} = \frac{c^2}{2} \nabla \psi \equiv -\nabla \Phi, \qquad \Phi \equiv -\frac{c^2}{2} \psi. \tag{2}$$

Photons extremize optical length $\int n \, ds = \int e^{\psi} ds$ (Fermat) [2, 13].

2 Action and Field Equation (Dynamics and Conservation)

Locality and isotropy in \mathbb{R}^3 with a single universal matter coupling select the functional

$$\mathcal{F}[\psi] = \int d^3x \left[\frac{a_{\star}^2}{8\pi G} \mathcal{W} \left(\frac{|\nabla \psi|^2}{a_{\star}^2} \right) + \frac{c^2}{2} \psi \left(\rho_m - \bar{\rho}_m \right) \right], \tag{3}$$

where ρ_m is the rest-mass density, $\bar{\rho}_m$ its coarse-grained mean (to enforce large-scale homogeneity), a_{\star} is a universal acceleration scale, and $\mu(\cdot) \equiv \mathcal{W}'(\cdot)$ is a *single* crossover function. Variation gives the *nonlinear Poisson equation*

$$\nabla \cdot \left[\mu \left(\frac{|\nabla \psi|}{a_{\star}} \right) \nabla \psi \right] = -\frac{8\pi G}{c^2} \left(\rho_m - \bar{\rho}_m \right). \tag{4}$$

The weak-field normalization $-8\pi G/c^2$ is fixed by the requirement that light bending match Einstein (Appendix A). The field stress tensor

$$T_{ij}^{(\psi)} = \frac{a_{\star}^2}{4\pi G} \left[\mu \, \partial_i \psi \, \partial_j \psi - \frac{1}{2} \delta_{ij} \, \mathcal{W} \right] \tag{5}$$

ensures momentum conservation: $\partial_j (T_{ij}^{(\psi)} + T_{ij}^{(m)}) = 0.$

Regimes. Choose μ once with

$$\mu(x) \to 1 \quad (x \gg 1)$$
 and $\mu(x) \sim x \quad (x \ll 1)$.

Then:

- High-gradient (solar/strong): $\mu \to 1 \Rightarrow \nabla^2 \psi = -(8\pi G/c^2)(\rho_m \bar{\rho}_m)$.
- Low-gradient (galaxies/voids): $\mu(x) \sim x \Rightarrow |\nabla \psi| \propto 1/r$ (spherical), yielding $v(r) \rightarrow$ const.

3 Weak-Field Limit and Newtonian Gravity

For a point mass M and $\mu \to 1$, solving (4) gives

$$\psi(r) = \frac{2GM}{c^2r}, \qquad \Rightarrow \qquad \mathbf{a} = \frac{c^2}{2}\nabla\psi = -\frac{GM}{r^2}\hat{\mathbf{r}}.$$
(6)

Thus Newton's inverse-square law is recovered exactly from (2)–(4), not assumed.

4 Light Propagation: Bending, Redshift, and Shapiro Delay

With $n=e^{\psi}\simeq 1+\psi$ and $\psi=2GM/(c^2r)$:

Deflection. The small-angle eikonal integral (Appendix B):

$$\alpha = \int_{-\infty}^{\infty} \nabla_{\perp} \ln n \, dz = \int_{-\infty}^{\infty} \nabla_{\perp} \psi \, dz = \frac{4GM}{c^2 b}. \tag{7}$$

Gravitational redshift. A frequency transfer between r_A and r_B gives

$$\frac{\Delta\nu}{\nu} = \psi(r_A) - \psi(r_B) = -\frac{\Delta\Phi}{c^2}.$$
 (8)

the standard GR result [1].

Shapiro delay. The excess one-way time is

$$\Delta t_{1w} = \frac{1}{c} \int (n-1) \, ds \simeq \frac{1}{c} \int \psi \, ds = \frac{2GM}{c^3} \ln \frac{4r_S r_R}{b^2},$$
 (9)

giving the textbook two-way coefficient $4GM/c^3$ [3] (Appendix C).

5 Relativistic Orbits: Perihelion Advance

Test-particle dynamics follow the Lagrangian

$$L = \frac{1}{2}m e^{\psi(\mathbf{r})}(\dot{r}^2 + r^2\dot{\theta}^2) - m \Phi(\mathbf{r}), \qquad \psi = -\frac{2\Phi}{c^2}.$$
 (10)

Expanding to $\mathcal{O}(\Phi/c^2)$ and using Binet's equation for u=1/r yields

$$\frac{d^2u}{d\theta^2} + u = \frac{GM}{\ell^2/m} + \frac{3GM}{c^2}u^2 + \cdots,$$
 (11)

hence the anomalous advance

$$\Delta \varpi = \frac{6\pi GM}{a(1 - e^2)c^2},\tag{12}$$

identical to GR (Appendix \mathbb{D} ; see also [1]).

6 Galactic Dynamics: Flat Rotation Curves and Tully– Fisher

In the deep-field regime ($|\nabla \psi| \ll a_{\star}$ with $\mu(x) \sim x$), spherical symmetry gives a Gauss law from (4):

$$r^{2} \mu(|\psi'|/a_{\star}) \psi' = -\frac{4\pi G}{c^{2}} M(r).$$
 (13)

With $\mu(x) = x$ one finds $r^2 |\psi'| \psi' = -\frac{4\pi G a_*}{c^2} M(r)$ and hence $|\psi'| \propto 1/r$ outside the mass. The circular speed

$$v^{2}(r) = r |\mathbf{a}| = \frac{c^{2}}{2} r |\psi'| \to v_{\text{flat}}^{2},$$
 (14)

is constant. Eliminating ψ' gives an asymptotic scaling

$$v_{\text{flat}}^4 \simeq \mathcal{C} GM \, a_{\star} \, c^2,$$
 (15)

with \mathcal{C} a number of order unity fixed by the chosen μ . This reproduces the observed Tully–Fisher scaling and the tight radial-acceleration relation without dark halos [6, 4, 5, 7].

7 Cosmological Field Equation and Optical Cosmography

Equation (4) with the subtraction $(\rho_m - \bar{\rho}_m)$ supplies the cosmological closure. Homogeneity demands $\langle \nabla \psi \rangle = 0$ in the ensemble, but real sightlines traverse inhomogeneities:

$$D_{\text{opt}}(z,\hat{\mathbf{n}}) = \frac{1}{c} \int_0^{\chi(z)} e^{\psi(\mathbf{r})} ds \simeq \frac{\chi(z)}{c} + \frac{1}{c} \int_0^{\chi(z)} \psi(\mathbf{r}) ds.$$
 (16)

Thus the *observed* Hubble law inherits a directional bias

$$\frac{\delta H_0(\hat{\mathbf{n}})}{H_0} \approx -\frac{1}{\chi} \frac{1}{c} \int_0^{\chi} \psi(\mathbf{r}) \, ds, \tag{17}$$

predicting a correlation of local-ladder H_0 with foreground large-scale structure [8]. These biases have the right sign and coherence to account for the late/early-time H_0 discrepancy [9, 10].

8 Emergent Time and Quantum Coupling

Operational time is defined by round-trip procedures. Quantum phases couple directly to optical length. The minimal nonrelativistic coupling consistent with (10) is

$$i\hbar \,\partial_t \Psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \,\nabla \cdot \left(e^{-\psi(\mathbf{r})} \nabla \Psi \right) + m \,\Phi(\mathbf{r}) \,\Psi, \tag{18}$$

so an interferometer with arms sampling different ψ acquires

$$\Delta\phi = \frac{\omega_0}{c} \left(\int_{\gamma_1} e^{\psi} ds - \int_{\gamma_2} e^{\psi} ds \right) \simeq \frac{\omega_0}{c} \int (\psi_1 - \psi_2) ds. \tag{19}$$

State-of-the-art atom interferometers and optical clocks can probe the predicted 10^{-10} m s⁻²-scale effects [11, 12].

9 One-Way-c Observables (Metrology Protocols)

Two-way c is invariant along a fixed path, but differences between distinct routes expose ψ :

$$\Delta T_{1w} \equiv \frac{1}{c} \left(\int_{\gamma_{AB}} e^{\psi} ds - \int_{\gamma_{BA}} e^{\psi} ds \right) \simeq \frac{1}{c} \left(\int_{\gamma_{AB}} \psi \, ds - \int_{\gamma_{BA}} \psi \, ds \right). \tag{20}$$

Asymmetric fiber links (two heights), Mach–Zehnder with vertical separation, and triangular time transfer among three stations isolate the effect while path swapping removes instrument bias.

10 Lorentz invariance, simultaneity, and experimental constraints

Conventionality of one-way c. As emphasized by Reichenbach, Edwards, and others, the *one-way* speed of light is not directly measurable without a simultaneity convention; only two-way c is empirically fixed [14, 15, 16, 17]. DFD promotes the convention parameter to a field ψ but constrains it dynamically via (4).

Two-way invariance and Michelson-Morley/Kennedy-Thorndike. For a fixed arm γ used in both directions, the round-trip time is

$$T_{2w} = \frac{1}{c} \int_{\gamma} e^{\psi} ds + \frac{1}{c} \int_{\gamma^{\text{rev}}} e^{\psi} ds = \frac{2}{c} \int_{\gamma} e^{\psi} ds,$$
 (21)

which is independent of the arm orientation under a rigid rotation of the apparatus if ψ is a scalar function of the ambient mass distribution on the arm scale. Thus modern Michelson–Morley tests (optical cavities/whispering galleries) remain null to current sensitivity [18, 19, 20]. Kennedy–Thorndike experiments (boost dependence) are likewise preserved because the round-trip speed along a fixed arm is path-symmetric [21, 1].

Local Lorentz symmetry. Locally, light rays in the optical medium $n = e^{\psi}$ follow null geodesics of Gordon's "optical metric" [13, 2]. Hence matter and light exhibit *local* Lorentz symmetry with respect to that effective metric, explaining the excellent agreement of special-relativistic kinematics and clock comparisons (Ives–Stilwell, time dilation, etc.) while allowing *global* one-way anisotropy tied to ψ .

GPS and time transfer. Global navigation timing enforces a synchronization convention equivalent to isotropic two-way c in the chosen Earth-centered inertial frame [22]. DFD reproduces all round-trip observables by design; one-way anisotropy shows up only in *route-dependent* comparisons (Sec. 7), which are not tested by standard GPS common-view protocols.

Summary. DFD is consistent with the tightest existing tests of Lorentz invariance and light-speed isotropy because those tests are fundamentally two-way [1, 18, 19, 20]. What is new (and falsifiable) is the prediction of nonreciprocal one-way delays between distinct routes in the presence of ambient $\nabla \psi$.

11 Discussion and Conclusion

A single scalar ψ controlling the one-way light speed unifies gravity and optics in \mathbb{R}^3 with emergent time. From the action (3) we obtain a nonlinear Poisson law (4) whose weak-field normalization reproduces all Einstein classic tests exactly, and whose deep-field limit yields flat rotation curves and a Tully–Fisher/RAR scaling without dark matter. Cosmologically, line-of-sight optical length produces a foreground-dependent H_0 bias (resolving the Hubble tension) and an acceleration scale $\sim 10^{-10}\,\mathrm{m\,s^{-2}}$ without a cosmological constant. The framework is falsifiable now via precision metrology and atom interferometry. It replaces four-dimensional curvature with a dynamical one-way c, closes conservation by construction, and removes the GR–QM clash by eliminating fundamental time.

A Weak-Field Normalization and the Factor of Two

In the weak-field regime take $\mu \to 1$, so $\nabla^2 \psi = -(8\pi G/c^2)\rho_m$. For a point mass, $\psi = 2GM/(c^2r)$ (up to a constant). Photons see $n = e^{\psi} \simeq 1 + \psi = 1 + 2GM/(c^2r)$. The eikonal bending formula requires $\psi = -2\Phi/c^2$ with $\nabla^2 \Phi = 4\pi G\rho_m$ to obtain $\alpha = 4GM/(c^2b)$. This fixes the unique $-8\pi G/c^2$ normalization in (4); any other choice fails the Einstein factor.

B Light Deflection (Full Integral)

With
$$\psi = 2GM/(c^2r)$$
 and $r = \sqrt{b^2 + z^2}$,

$$\frac{\partial \psi}{\partial b} = -\frac{2GM}{c^2} \frac{b}{(b^2 + z^2)^{3/2}}.$$

Thus

$$\alpha = \int_{-\infty}^{\infty} \frac{\partial \psi}{\partial b} \, dz = \frac{2GMb}{c^2} \int_{-\infty}^{\infty} \frac{dz}{(b^2 + z^2)^{3/2}} = \frac{2GMb}{c^2} \cdot \frac{2}{b^2} = \frac{4GM}{c^2b}.$$

C Shapiro Delay (One-Way and Two-Way)

$$\Delta t_{1w} = \frac{1}{c} \int (n-1) \, ds \simeq \frac{1}{c} \int \psi \, ds = \frac{2GM}{c^3} \int \frac{dz}{\sqrt{b^2 + z^2}} = \frac{2GM}{c^3} \ln \frac{z + \sqrt{b^2 + z^2}}{b} \bigg|_{-L}^{+L}.$$

For $L \gg b$, $\Delta t_{1\text{w}} \simeq \frac{2GM}{c^3} \ln \frac{4L^2}{b^2}$; the round-trip doubles the coefficient to $4GM/c^3$ as in GR.

D Perihelion Advance (Derivation)

With $L=\frac{1}{2}me^{\psi}(\dot{r}^2+r^2\dot{\theta}^2)-m\Phi$ and $\psi=-2\Phi/c^2$, the conserved angular momentum is $\ell=me^{\psi}r^2\dot{\theta}$. Eliminating $\dot{\theta}$ and expanding $e^{\psi}=1-2\Phi/c^2+\cdots$, the radial Euler–Lagrange equation yields to first post-Newtonian order

$$\ddot{r} - \frac{\ell^2}{m^2 r^3} = -\Phi' + \frac{2\Phi}{c^2} \frac{\ell^2}{m^2 r^3}.$$

Writing u = 1/r and using $(d/dt) = \dot{\theta}(d/d\theta) = (\ell/mr^2)(d/d\theta)$ gives

$$\frac{d^2u}{d\theta^2} + u = \frac{GM}{\ell^2/m} + \frac{3GM}{c^2}u^2,$$

hence $\Delta \varpi = 6\pi GM/[a(1-e^2)c^2]$.

E Optical Cosmography and H_0 Bias

Let χ be the comoving *Euclidean* distance inferred in absence of ψ . The actual optical distance is $D_{\rm opt} = \frac{1}{c} \int_0^{\chi} e^{\psi} ds$. For statistically homogeneous ψ , $\langle \psi \rangle = 0$, so $\langle D_{\rm opt} \rangle = \chi/c$. Fluctuations along a given line yield

$$\delta D_{\mathrm{opt}} \simeq \frac{1}{c} \int_0^{\chi} \psi \, ds, \quad \frac{\delta H_0}{H_0} \simeq -\frac{\delta D_{\mathrm{opt}}}{\chi/c} = -\frac{1}{\chi} \frac{1}{c} \int_0^{\chi} \psi \, ds,$$

predicting directional anisotropy correlated with foreground large-scale structure.

F One-Way-c Metrology (Protocols)

Asymmetric fiber: deploy two parallel fibers at heights $h_1 \neq h_2$ between stations A and B. Measure T_{AB} and T_{BA} with active path swapping; the nonreciprocal difference is $\Delta T_{1w} = c^{-1} (\int_{\gamma_{AB}} \psi \, ds - \int_{\gamma_{BA}} \psi \, ds)$.

Mach–Zehnder: vertical arm separation Δh imprints $\Delta \phi = (\omega_0/c) \int \Delta(e^{\psi}) ds$.

Triangular time transfer: stations A,B,C; two loops ($A \rightarrow B \rightarrow C \rightarrow A$ and $A \rightarrow C \rightarrow B \rightarrow A$). The loop difference isolates $\phi \psi ds$ geometry while each edge preserves two-way c.

References

- [1] Clifford M. Will. The confrontation between general relativity and experiment. *Living Reviews in Relativity*, 17(4), 2014.
- [2] Volker Perlick. Ray Optics, Fermat's Principle, and Applications to General Relativity. Springer, 2000.
- [3] Irwin I. Shapiro. Fourth test of general relativity. *Physical Review Letters*, 13:789–791, 1964.
- [4] Mordehai Milgrom. A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis. *Astrophysical Journal*, 270:365–370, 1983.
- [5] Jacob Bekenstein and Mordehai Milgrom. Does the missing mass problem signal the breakdown of newtonian gravity? *Astrophysical Journal*, 286:7–14, 1984.
- [6] R. Brent Tully and J. Richard Fisher. A new method of determining distances to galaxies. *Astronomy and Astrophysics*, 54:661–673, 1977.
- [7] Stacy S. McGaugh, Federico Lelli, and James M. Schombert. The radial acceleration relation in rotationally supported galaxies. *Physical Review Letters*, 117:201101, 2016.
- [8] Licia Verde, Tommaso Treu, and Adam G. Riess. Tensions between the early and the late universe. *Nature Astronomy*, 3:891–895, 2019.
- [9] Planck Collaboration. Planck 2018 results. vi. cosmological parameters. Astronomy & Astrophysics, 641:A6, 2020.
- [10] Adam G. Riess, Wenlong Yuan, Lucas M. Macri, and et al. A comprehensive measurement of the local value of the hubble constant with 1 km s⁻¹ mpc⁻¹ uncertainty from the hubble space telescope and the sh0es team. *Astrophysical Journal Letters*, 934:L7, 2022.
- [11] Achim Peters, Keng-Yeow Chung, and Steven Chu. Measurement of gravitational acceleration by dropping atoms. *Nature*, 400:849–852, 1999.
- [12] C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland. Optical clocks and relativity. *Science*, 329:1630–1633, 2010.
- [13] Walter Gordon. Zur lichtfortpflanzung nach der relativitätstheorie. Annalen der Physik, 377(22):421–456, 1923.
- [14] Hans Reichenbach. *Philosophy of Space and Time*. Dover (English translation), 1958. Originally 1928.
- [15] William F. Edwards. Special relativity in anisotropic space. American Journal of Physics, 31:482–489, 1963.

- [16] R. Anderson, I. Vetharaniam, and G. E. Stedman. Conventionality of simultaneity, gauge dependence and test theories of relativity. *Physics Reports*, 295(3–4):93–180, 1998.
- [17] David Malament. Causal theories of time and the conventionality of simultaneity. $No\hat{u}s$, 11(3):293-300, 1977.
- [18] Holger Müller, Sven Herrmann, Christian Braxmaier, Stephan Schiller, and Achim Peters. Modern michelson-morley experiment using cryogenic optical resonators. *Physical Review Letters*, 91:020401, 2003.
- [19] Ch. Eisele, A. Yu. Nevsky, and S. Schiller. Laboratory test of the isotropy of light propagation at the 10^{-17} level. *Physical Review Letters*, 103:090401, 2009.
- [20] Sven Herrmann, Alexander Senger, Holger Müller, and et al. Rotating optical cavity experiment testing lorentz invariance at the 10^{-17} level. *Physical Review D*, 80:105011, 2009.
- [21] Roy J. Kennedy and Edward M. Thorndike. Experimental establishment of the relativity of time. *Physical Review*, 42:400–418, 1932.
- [22] Neil Ashby. Relativity in the global positioning system. Living Reviews in Relativity, 6(1), 2003.