Formula Sheet

Circle

• CENTRE-RADIUS FORM

Equation of circle with centre (h, k) & radius r is given by, $(x\hbox{-} h)^2 + (y\hbox{-} k)^2 = r^2$

• General equation of a circle is $x^2+y^2+2gx+2fy+c=0$

Centre of the circle = (-g,-f) Radius of the circle is $\sqrt{g^2 + f^2 - c}$

Parabola

		$y^2 = 4ax$	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$
(į)	Vertex	(0, 0)	(0, 0)	(0, 0)	(0, 0)
(ii)	Focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)
(iii)	Equation or Directrix	f x = -a	x = a	y = -a	y = a
(iv)	Equation of axis	y = 0	y = 0	x = 0	x = 0

Ellipse

Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$; $a > b$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; a < b$
Equation of Major axis	y = 0	x = 0
Length of Major axis	2a	2b
Equation of Minor axis	x = 0	y = 0
Length of Minor axis	2 b	2 b
Vertices	(± a, 0)	(0,± b)
Foci	(± ae, 0)	(0, ± be)
Directrix	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
Eccentricity	$e = \sqrt{1 - \frac{b^2}{a^2}}$	$e = \sqrt{1 - \frac{a^2}{b^2}}$
Length of a Latus-rectum	$\frac{2b^2}{a}$	2a ² b
Centre	(0,0)	(0,0)

Hyperbola

Equation	Hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Conjugate Hyperbola $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Equation of Transverse axis	y = 0	x = 0
Length of Transverse axis	2a	2b
Equation of Conjugate axis	x = 0	y = 0
Length of Conjugate axis	2b	2a
Vertices	(± a, 0)	(0, ± b)
Foci	(± ae, 0)	(0, ± be)
Directrix	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
Centre	(0, 0)	(0,0)
Eccentricity	$e = \sqrt{\frac{a^2 + b^2}{a^2}}$	$e = \sqrt{\frac{b^2 + a^2}{b^2}}$
Length of a Latus–rectum	$\frac{2b^2}{a}$	2a² b