You are given an array, \boldsymbol{A} , consisting of \boldsymbol{N} integers.

A segment, [l, r], is beautiful if and only if the <u>bitwise AND</u> of all numbers in A with indices in the inclusive range of $[\boldsymbol{l},\boldsymbol{r}]$ is not greater than \boldsymbol{X} . In other words, segment $[\boldsymbol{l},\boldsymbol{r}]$ is beautiful if $(A_l \wedge A_{l+1} \wedge \ldots \wedge A_r) \leq X$.

You must answer Q queries. Each query, Q_j , consists of 3 integers: L_j , R_j , and X_j . The answer for each Q_j is the number of beautiful segments [l,r] such that $L_j \leq l \leq r \leq R_j$ and $X=X_j$.

Input Format

The first line contains two space-separated integers, $oldsymbol{N}$ (the number of integers in $oldsymbol{A}$) and $oldsymbol{Q}$ (the number of queries).

The second line contains N space-separated integers, where the $m{i^{th}}$ integer denotes the $m{i^{th}}$ element of

Each line j of the Q subsequent lines contains 3 space-separated integers, L_i , R_i , and X_i , respectively, describing query Q_j .

Constraints

- $egin{array}{l} ullet \ 1 \leq N \leq 4 imes 10^4 \ ullet \ 1 \leq Q \leq 10^5 \ ullet \ 1 \leq L_j \leq R_j \leq N \ ullet \ 0 \leq X_j \leq 2^{17} \end{array}$
- $0 \le A_i < 2^{17}$
- $1 \leq N, Q \leq 2000$ holds for test cases worth at least 10% of the problem's score.
- $0 \le A_i < 2^{11}$ holds for test cases worth at least 40% of the problem's score.

Output Format

Print Q lines, where the j^{th} line contains the number of beautiful segments for query Q_i .

Sample Input

Sample Output

13

Explanation

The beautiful segments for all queries are listed below.

Query 0: The beautiful segments are

$$[1,1]$$
, $[1,2]$, $[1,3]$, $[1,4]$, $[1,5]$, $[2,2]$, $[2,3]$, $[2,4]$, $[2,5]$, $[3,4]$, $[3,5]$, $[4,4]$, $[4,5]$.

Query 1: The beautiful segments are [2, 2], [2, 3], [2, 4], [3, 4], [4, 4].

Query 2: The beautiful segments are [3, 5], [4, 5].