ISHA SINGH 1BM19CS218 SECTION-4A

Question:

Program 1: Insurance database

Consider the Insurance database given below. The data types are specified.

PERSON (driver_id: String, name: String, address: String)

CAR (reg num: String, model: String, year: int)

ACCIDENT (report_num: int, accident_date: date, location: String)

OWNS (driver id: String, reg num: String)

PARTICIPATED (driver_id: String,reg_num: String, report_num: int, damage amount: int)

- i) Create the above tables by properly specifying the primary keys and the foreign keys. ii)Enter at least five tuples for each relation. iii)Demonstrate how you
- a. Update the damage amount to 25000 for the car with a specific regnum(example 'K A053408') for which the accident report number was 12. b. Add a new accident to the database.
- iv)Find the total number of people who owned cars that were involved in accidents in 2008. v)Find the number of accidents in which cars belonging to a specific model (example)were involved.

Person Table

name	address
Richard	Srinivas nagar
Pradeep	Rajaji nagar
Smith	Ashhok nagar
Venu	N R Colony
Jhon	Hanumanth nagar
NULL	NULL
	Pradeep Smith Venu Jhon

Car Table

KA052250	Indica	1990
KA053408	Honda	2008
KA095477	Toyota	1998
NULL	NULL	NULL

Accident Table

report_num accindent_date location				
11	2001-01-03	Mysore Road		
12	2002-02-03	South and Circle		
13	2021-01-03	Bull temple Road		
14	2017-02-08	Mysore Road		
15	2004-03-05	Kanakpura Road		
16	2008-03-15	Domlur		
NULL	NULL	NULL		

Owns Table

driver_id	reg_num
A03	KA031181
A05	KA041702
A01	KA052250
A02	KA053408
A04	KA095477
NULL	NULL

Participated Table

driver_id	reg_num	report_num	damage_amount
A01	KA052250	11	10000
A02	KA053408	12	25000
A03	KA095477	13	25000
A04	KA031181	14	3000
A05	KA041702	15	5000
NULL	NULL	NULL	NULL

Find the total number of people who owned cars that involved in accidents in 2008.

select count(distinct driver_id) from Participated p,Accident a where p.report_num=a.report_num AND a.accindent_date like '2008%';

Find the number of accidents in which cars belonging to a

select count(*)
from Participated p, Car c
where p.reg_num=c.reg_num and
c.model='Lancer';

Add a new accident to database-(16,2008-03-15,Domlur)

insert into Accident(report_num,accindent_date,loc ation) values(16,'2008-03-15','Domlur'); select * from Accident;

report_n	um accindent_da	te location
11	2001-01-03	Mysore Road
12	2002-02-03	South and Circle
13	2021-01-03	Bull temple Road
14	2017-02-08	Mysore Road
15	2004-03-05	Kanakpura Road
16	2008-03-15	Domlur
NULL	NULL	NULL

update damage amount to 25000 for car with report_num 12 and

update Participated set damage_amount=25000 where report_num=12 and reg_num="KA053408";

driver_id	reg_num	report_num	damage_amount
A01	KA052250	11	10000
A02	KA053408	12	25000
A03	KA095477	13	25000
A04	KA031181	14	3000
A05	KA041702	15	5000
NULL	NULL	NULL	NULL

ISHA SINGH 1BM19CS218 SECTION-4A

Consider the following database for a banking enterprise.

Branch (branch-name: String, branch-city: String, assets: real)
BankAccount(accno: int, branch-name: String, balance: real)
BankCustomer (customer-name: String, customer-street: String, customer-city: String) Depositer(customer-name: String, accno: int)
Loan (loan-number: int, branch-name: String, amount: real)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).
- iv. Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi).
- v. Demonstrate how you delete all account tuples at every branch located in
- a specific city (Ex. Bombay).

BRANCH TABLE

	branch_name	branch_city	assets	
	SBI_Chamrajpet	Bangalore	50000	
	SBI_Jantarmantar	Delhi	20000	
•	SBI_ParlimentRoad	Delhi	10000	
	SBI_ResidencyRoad	Bangalore	10000	
	SBI_ShivajiRoad	Bombay	20000	

LOAN TABLE

	loan_number	branch_name	amount
\triangleright	1	SBI_Chamrajpet	1000
	2	SBI_ResidencyRoad	2000
	3	SBI_shivajiRoad	3000
	4	SBI_ParlimentRoad	4000
	5	SBI_Jantarmantar	5000

BANK ACCOUNT TABLE

	accno	branch_name	balance
⊳	1	SBI_Chamrajpet	2000
	2	SBI_ResidencyRoad	5000
	3	SBI_ShivajiRoad	6000
	4	SBI_ParlimentRoad	9000
	5	SBI_Jantarmantar	8000
	6	SBI_ShivajiRoad	4000
	8	SBI_ResidencyRoad	4000
	9	SBI_ParlimentRoad	3000
	10	SBI_ResidencyRoad	5000
	11	SBI_Jantarmantar	2000

CUSTOMER TABLE

	customer_name	customer_street	customer_city
Þ	Avinash	Bull_Temple_Road	Bangalore
	Dinesh	Bannergatta_Road	Bangalore
	Mohan	NationalCollege_Road	Bangalore
	Nikil	Akbar_Road	Delhi
	Ravi	Prithviraj_Road	Delhi

DEPOSITOR TABLE

	customer_name	accno
\triangleright	Avinash	1
	Dinesh	2
	Nikil	4
	Ravi	5
	Avinash	8
	Nikil	9
	Dinesh	10
	Nikil	11

Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).

SELECT customer name

FROM depositor d,BankAccount a

WHERE d.accno=a.accno

AND a.branch_name='SBI_ResidencyRoad'

GROUP BY d.customer_name

HAVING COUNT(d.customer_name)>=2;

Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi)

select d.customer_name, b.branch_city,count(b.branch_name)

from Depositor d, Bank Account a, Branch b

where a.accno=d.accno and b.branch_name=a.branch_name and b.branch_city="Delhi"

group by d.customer_name

having count(distinct b.branch_name)=(select count(*)

from branch

where branch_city="Delhi");

Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

DELETE FROM BankAccount WHERE branch_name IN(SELECT branch_name FROM BRANCH WHERE branch_city='Bombay');

	accno	branch_name	balance
⊳	1	SBI_Chamrajpet	2000
	2	SBI_ResidencyRoad	5000
	4	SBI_ParlimentRoad	9000
	5	SBI_Jantarmantar	8000
	8	SBI_ResidencyRoad	4000
	9	SBI_ParlimentRoad	3000
	10	SBI_ResidencyRoad	5000
	11	SBI_Jantarmantar	2000
	NUUL	Parties -	SHILL

ISHA SINGH 1BM19CS218 SECTION-4A

DBMS LAB-3(SUPPLIER DATABASE)

Consider the following schema:

SUPPLIERS(sid: integer, sname: string, address: string)

PARTS(pid: integer, pname: string, color: string) CATALOG(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

Write the following queries in SQL:

- i) Find the pnames of parts for which there is some supplier.
- ii) Find the snames of suppliers who supply every part.
- iii) Find the snames of suppliers who supply every red part.
- iv) Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.
- v) Find the sids of suppliers who charge more for some part than the average cost of that

part (averaged over all the suppliers who supply that part).

vi) For each part, find the sname of the supplier who charges the most for that part.

Schema Diagram

SUPPLIER TABLE

	sid	sname	city
\Vdash	10001	Acme Widget	Bangalore
	10002	Johns	Kolkata
	10003	Vimal	Mumbai
	10004	Reliance	Delhi
	10005	Mahindra	Mumbai
	NULL	NULL	NULL

PARTS TABLE

	pid	pname	color	
\Vdash	20001	Book	Red	
	20002	Pen	Red	
	20003	Pencil	Green	
	20004	Mobile	Green	
	20005	Charger	Black	
	NULL	NULL	NULL	

CATALOG TABLE

	sid	pid	cost
Þ	10001	20001	10
	10001	20002	10
	10001	20003	30
	10001	20004	10
	10001	20005	10
	10002	20001	10
	10002	20002	20
	10003	20003	30
	10004	20003	40
	NULL	NULL	NULL

Find the pnames of parts for which there is some supplier.

SELECT DISTINCT P.pname FROM PARTS P,CATALOG C WHERE P.pid=C.pid;

Find the snames of suppliers who supply every part

SELECT s.sname from SUPPLIERS s,CATALOG c where s.sid=c.sid group by c.sid having count(distinct c.pid)=(select count(*) from PARTS);

Find the snames of suppliers who supply every red part.

SELECT distinct s.sname from SUPPLIERS s,CATALOG c where s.sid=c.sid and c.pid in(select pid from PARTS where color='red');

Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

select pname from PARTS p, SUPPLIERS s1, CATALOG c1 where p.pid=c1.pid and s1.sid=c1.sid and s1.sname='Acme Widget' and not exists (select * from CATAlOG c2,SUPPLIERS s2 where c1.pid=c2.pid and s2.sname<>'Acme Widget' and s2.sid=c2.sid);

Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part)

select sid from CATALOG c1 where cost > (select avg(cost) from CATALOG c2 where c1.pid=c2.pid);

For each part, find the sname of the supplier who charges the most for that part.

select pid, sname
from CATALOG c1,SUPPLIERS S
where c1.sid=s.sid and cost =
(select max(cost)
from CATALOG c2
where c1.pid=c2.pid);

	pid	sname
Þ	20001	Acme Widget
	20004	Acme Widget
	20005	Acme Widget
	20001	Johns
	20002	Johns
	20003	Reliance

Isha Singh

1BM19CS218

SECTION-4A

Consider the following database for student enrollment for course:

STUDENT(snum: integer, sname:string, major: string, lvl: string, age: integer) CLASS(cname: string, meetsat: time, room: string, fid: integer)

ENROLLED(snum: integer, cname:string)

FACULTY(fid: integer, fname:string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level(lvl) is a two character code with 4 different values (example: Junior: JR etc)

Write the following queries in SQL.

No duplicates should be printed in any of the answers.

i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by "name"

ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.

iii.Find the names of all students who are enrolled in two classes that meet at the same time. iv.Find the names of faculty members who teach in every room in which some class is taught. v.Find the names of faculty members for whom the combined enrollment of the courses

that they teach is less than five.

vi. Find the names of students who are not enrolled in any class.

vii. For each age value that appears in Students, find the level value that appears most often. For example, if there are more FR level students aged 18 than SR, JR, or SO students aged 18, you should print the pair (18, FR).

STUDENT TABLE

	snum	sname	major	lvl	age
Þ	1	jhon	CS	Sr	19
	2	Smith	CS	Jr	20
	3	Jacob	CV	Sr	20
	4	Tom	CS	Jr	20
	5	Rahul	CS	Jr	20
	6	Rita	CS	Sr	21
	NULL	NULL	NULL	NULL	NULL

FACULTY TABLE

	fid	fname	deptid
⊳	11	Harish	1000
	12	MV	1000
	13	Mira	1001
	14	Shiva	1002
	15	Nupur	1000
	NULL	NULL	NULL

CLASS TABLE

	cname	meets_at	room	fid
⊳	class1	2012-11-15 10:15:16	R1	14
	class10	2012-11-15 10:15:16	R128	14
	class2	2012-11-15 10:15:20	R2	12
	class3	2012-11-15 10:15:25	R3	11
	class4	2012-11-15 20:15:20	R4	14
	class5	2012-11-15 20:15:20	R3	15
	class6	2012-11-15 13:20:20	R2	14
	class7	2012-11-15 10:10:10	R3	14
	NULL	NULL	NULL	NULL

ENROLLED TABLE

	snum	cname	
Þ	1	class1	
	2	class1	
	3	class3	
	4	class3	
	5	class4	
	1	class5	
	2	class5	
	3	class5	
	4	class5	
	5	class5	
	NULL	NULL	

Find the names of all Juniors (level = JR) who are enrolled in a class taught by "name" select s.sname from Student s,Enrolled e,Class c

select sname
from student
where lvl='Jr' and snum in
(select snum
from enrolled e,class c,faculty f
where e.cname=c.cname and c.fid=f.fid and f.fname='Harish');

Find the names of all classes that either meet in room R128 or have five or more Students enrolled.

select distinct c.cname
from class c
where c.room='R128' or cname in
(select cname
from enrolled
group by cname

having count(*)>=5);

Find the names of all students who are enrolled in two classes that meet at the same time.

SELECT DISTINCT S.sname

FROM Student S

WHERE S.snum IN (SELECT E1.snum

FROM Enrolled E1, Enrolled E2, Class C1, Class C2

WHERE E1.snum = E2.snum AND E1.cname <> E2.cname

AND E1.cname = C1.cname

AND E2.cname = C2.cname AND C1.meets_at = C2.meets_at);

Find the names of faculty members who teach in every room in which some class is taught

select f.fname

from faculty f,class c

where c.fid=f.fid

group by c.fid

having count(c.fid)=

(select count(distinct room)

from class);

Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.

select fname

from faculty

where fid not in

(select f.fid

from faculty f,class c,enrolled e

where e.cname=c.cname and c.fid=f.fid

group by e.cname

having count(*)>=5);

Find the names of students who are not enrolled in any class.

select sname
from student s
where s.snum not in
(select e.snum
from enrolled e);

For each age value that appears in Students, find the level value that appears most often.

select s.age,s.lvl

from student s

group by s.age

having s.lvl in

(select s1.lvl

from student s1

where s1.age=s.age

group by s1.age

having count(*)>=all(select s2.lvl from student s2

where s2.age=s1.age

group by s2.age));

ISHA SINGH

1BM19CS218

SECTION-4A

Consider the following database that keeps track of airline flight information: FLIGHTS(flno: integer, from: string, to: string, distance:

integer, departs: time, arrives: time, price: integer)

AIRCRAFT(aid: integer, aname: string, cruisingrange: integer)

CERTIFIED(eid: integer, aid: integer)

EMPLOYEES(eid: integer, ename: string, salary: integer) Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly.

Write each of the following queries in SQL.

- 1. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80,000.
- 2. For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.
- 3. Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.
- 4. For all aircraft with cruisingrange over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.
- 5. Find the names of pilots certified for some Boeing aircraft.
- 6. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.
- 7. A customer wants to travel from Bangalore to Kolkata New with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in Kolkata by 6 p.m.

FLIGHTS TABLE

AIRCRAFT TABLE

_			
	AID	ANAME	CRUISINGRANGE
Þ	101	747	3000
	102	Boeing	900
	103	647	800
	104	Dreamliner	10000
	105	Boeing	3500
	106	707	1500
	107	Dream	12000
	NULL	NULL	NULL

EMPLOYEES TABLE

	EID	ENAME	SALARY
Þ	701	Α	50000
	702	В	100000
	703	С	150000
	704	D	90000
	705	E	40000
	706	F	60000
	707	G	90000
	NULL	NULL	NULL

CERITFIED TABLE

	EID	AID	
⊳	701	101	
	702	101	
	701	102	
	705	103	
	702	104	
	703	104	
	704	104	
	701	105	
	703	105	
	704	105	
	701	106	
	702	107	
	703	107	
	704	107	
	NULL	NULL	

Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80,000.

SELECT DISTINCT A.ANAME

FROM AIRCRAFT A, CERTIFIED C, EMPLOYEES E

WHERE A.AID=C.AID AND C.EID=E.EID AND SALARY>80000;

For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.

SELECT C.EID, MAX(A.CRUISINGRANGE)

FROM CERTIFIED C, AIRCRAFT A

WHERE C.AID=A.AID

GROUP BY C.EID

HAVING COUNT(*)>3;

Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.

SELECT ENAME

FROM EMPLOYEES

WHERE SALARY <(SELECT MIN(PRICE)

FROM FLIGHTS

WHERE FFROM="Bangalore" AND TTO="Frankfurt");

For all aircraft with cruisingrange over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.

SELECT A.ANAME, AVG(E.SALARY)

FROM CERTIFIED C,EMPLOYEES E,AIRCRAFT A

WHERE A.CRUISINGRANGE>1000 AND C.AID=A.AID AND C.EID=E.EID

GROUP BY A.ANAME;

ANAME	AVG(E.SALARY)	
747	75000.0000	
Dreamliner	113333.3333	
Boeing	96666.6667	
707	50000.0000	
Dream	113333.3333	

Find the names of pilots certified for some Boeing aircraft.

SELECT DISTINCT E.ENAME

FROM EMPLOYEES E, AIRCRAFT A, CERTIFIED C

WHERE E.EID=C.EID AND A.AID=C.AID AND A.ANAME="Boeing";

Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.

SELECT A.AID
FROM AIRCRAFT A
WHERE A.CRUISINGRANGE>(SELECT MIN(DISTANCE) FROM FLIGHTS F WHERE
F.FFROM="Bangalore" AND F.TTO="Delhi");

A customer wants to travel from bangalore to kolkata with no more than two changes of flight -- List the choice of departure times customer wants to arrive by 6 p.m.

select f.FFROM, f.TTO, f.ARRIVES from FIIGHTS f where (f.FFROM = "Bangalore" and f.TTO = (select FFROM from Flights where TTO = "Kolkata")) or f.TTO = "Kolkata";

