Réseaux Avancés

Cours 9: *Introduction à la théorie des files d'attente*

Osman SALEM osman.salem@parisdescartes.fr Maître de Conférences

Théorie des files d'attente

- L'échange d'information entre 2 applications est généralement variable
 - Volume à échanger, fréquences des échanges, etc.
- Ces informations transitent dans différents systèmes, et ne pourront être transmis instantanément
- Elles seront mis dans des files d'attente (queue) avant d'être traitées par ces systèmes
- La théorie des files d'attente permet de modéliser les processus dans lesquels les clients arrivent, attendent leur tour pour être servis, sont servis, et partent

Théorie des files d'attente

 Une file d'attente simple peut être représentée par le schéma suivant :

Les files d'attente

• Quelques exemples d'application:

	Clients	Ressource ou serveur	Activité ou service
Systèmes informatiques	processus	processeur	temps de traitement
	demande d'E/S	disque dur	lecture ou écriture
Réseaux de communication	message	réseau	temps de transmission
Système de production	pièce	machine	temps d'usinage
	palette	station de chargement	temps de chargement d'une pièce brute
Guichet SNCF	usager	employé	réservation du billet

Les files d'attente

- La file simple
 - Une file simple (ou une station) est constituée d'une file d'attente (ou buffer) et d'un ou plusieurs serveurs
 - File avec un seul serveur

Modèle de Files d'attente

- Une file d'attente se compose
 - Clients (qui demandent un service)
 - Un ou plusieurs serveurs (qui fournissent le service)
 - Une salle d'attente (quand aucun des serveurs n'est disponible)
- Caractéristiques d'une file d'attente
 - Le processus d'arrivées
 - Le processus de service
 - La discipline de service (ordonnancement)
 - La capacité du système
 - Le nombre de serveurs

- Arrivées des clients (Processus de Poisson)
- Durée de service (loi exponentielle)
- Discipline de service (FIFO, LIFO, etc.)
- Classes de services (priorité)

Modélisation

- Le nombre de clients dans la file est modélisé par un processus aléatoire
 - Le plus souvent par une chaîne de Markov
- On cherche le régime stationnaire
 - Pour déduire les performances

Modélisation

Nombre de Clients dans le système

Caractérisation du système

- Arrivées de clients
- Durées de services
- Nombre de serveurs
- Nombre maximum de clients dans le système
- Discipline de service
- Notation de Kendall

Arrivées des Clients

Processus des arrivées des clients

- On suppose que les temps d'interarrivées successifs E₁, E₂, E₃, etc...
 - sont indépendants entre eux
 - ont même loi de probabilité
- Les arrivées de clients sont alors
 - entièrement caractérisées par la loi des interarrivées

Arrivées des Clients

- Cas particulier important : arrivées poissoniennes
- Les inter-arrivées successives E₁, E₂, E₃, etc... sont indépendantes entre elles et distribuées selon une loi exponentielle de paramètre λ
- Le processus des arrivées est une de Poisson de paramètre λ
- \bullet λ : nombre moyen des clients/seconde
- La durée moyenne des interarrivées vaut $1/\lambda$ (seconde)

Processus de Poisson

- Scientifique français : Simeon Denis Poisson (1781-1840)
- Pour un nombre d'arrivée Poissonien avec un taux λ , la probabilité de voir n arrivées dans un intervalle de temps Δt

$$P[A(t+\Delta t)-A(t)=n]=e^{-\lambda \Delta t}\frac{(\lambda \Delta t)^n}{n!}, \quad n=0,1,2,...$$

- C'est la distribution de Poisson de paramètre λ
- λ est le taux d'arrivée des clients à la station

Processus du Poisson

Utilisé pour représenter le nombre des arrivées

Pour un nombre d'arrivée poissonnien avec un taux λ, la probabilité de voir n arrivées dans un intervalle de temps Δt (très petit)

$$\Pr(n) = \frac{e^{-\lambda \Delta t} (\lambda \Delta t)^n}{n!} \qquad E(n) = \lambda \Delta t$$

$$\Pr(0) = e^{-\lambda \Delta t} = 1 - \lambda \Delta t + \frac{(\lambda \Delta t)^2}{2!} \dots = 1 - \lambda \Delta t + o(\Delta t) \to \Pr(0) = 1 - \lambda \Delta t$$

$$\Pr(1) = \lambda \Delta t e^{-\lambda \Delta t} = \lambda \Delta t [1 - \lambda \Delta t + \frac{(\lambda \Delta t)^2}{2!} \dots] = \lambda \Delta t + o(\Delta t) \to \Pr(1) = \lambda \Delta t$$

$$\Pr(2) = 2 = \dots = 0$$

Processus de Poisson & distribution exponentielle

Les temps inter-arrivées t (temps entre les arrivées) dans le processus du poisson suivent une distribution exponentielle

$$\Pr_{0}(X \le t) = 1 - e^{-\lambda t}$$

- Intervalle [0, T] est divisé en n sous intervalle
 - Quand $n \rightarrow \infty$, $T/n \rightarrow 0$

$$\Pr(n) = \frac{e^{-\lambda \Delta t} (\lambda \Delta t)^n}{n!}$$

$$\Pr_{0}(X > t) = P \Big[0 \text{ arrivee dans } (0, t) \Big] = \frac{(\lambda t)^{0}}{0!} e^{-\lambda t} = e^{-\lambda t}$$

Example

Pour n=0

$$\Pr_0(t) = P[0 \ dans \ t] = \frac{(\lambda t)^0}{0!} e^{-\lambda t} = e^{-\lambda t}$$

- 0 arrivée dans l'intervalle [0,t]
- 1 paquet/10sec (0.1 p/s)
- Après une 1 sec, probabilité de 90% pour voir 0 paquet
 - 10% de voir deux paquets dans un intervalle < 1sec
- Après 20sec, probabilité de 10% pour voir 0 paquets
 - 90% de voir deux paquets dans un intervalle < 20sec

Processus de Poisson et loi exponentielle

A partir de la distribution de Poisson, on peut déduire la distribution exponentielle

$$Pr_0(X \le t) = 1 - e^{-\lambda t}$$

- Si le processus d'arrivée est poissonnien, le temps interarrivée suit la loi exponentielle
- La loi exponentielle est sans mémoire

Propriété de superposition

- $Si X_1, X_2, ..., X_n$ sont des processus de poisson
 - \blacksquare Avec de taux respectifs $\lambda_1,\,\lambda_2,\,\ldots\,\lambda_n$
- Leur superposition

$$S_n = X_1 + X_2 + \ldots + X_n$$

• S_n est un processus de poisson de taux λ :

$$\lambda = \lambda_1 + \lambda_2 + \ldots + \lambda_n$$

Groupement et dissociation de processus de Poisson

- $\begin{array}{c} p \\ \lambda p \\ \\ \lambda \\ 1-p \end{array}$
- X₁,..., X_k sont de processus de Poisson avec un taux λ₁,..., λ_k
- Le groupement est un processus de Poisson
 X= X₁+...+ X_k
- → Avec un taux $\lambda = \lambda_1 + ... + \lambda_k$
- X: un processus de poisson de taux λ
- Dissociation en X₁ et X₂ avec des probabilités p et 1-p
- X₁ est Poisson avec un taux λ₁= λp
 X₂ est Poisson avec un taux λ₂= λ(1-p)

Durées de Services

- Durées de service aléatoire
 - Caractérisées par une loi de probabilité
- Cas particulier
 - Durée de service exponentielle de paramètre μ
 - Durée moyenne de service: 1/μ (seconde)

Nombre de clients dans le système

- Nombre Maximum de Clients dans le système
 - nombre maxi. de clients dans le système = nombre de serveurs + nombre de positions dans le buffer d'attente

Nombre de clients dans le système

- File d'attente fini
 - Si le buffer est plein, le client est perdu
 - Système stable
- File d'attente infini
 - Système à attente pure
 - Condition de stabilité : $\lambda < \mu$ (taux d'arrivée < vitesse de service)

Discipline de service

- D: la discipline de service
 - FIFO: First In First Out ⇔ FCFS (First Come First Serve)
 - LIFO: Last In First Out
 - Priorité: avec différente priorité
 - RSS: Random Selection for Service (aléatoire)
 - Round Robin: QUANTUM ou un slice de temps successivement à chaque client
 - Par défaut, D= FIFO

Notation de Kendall

- David George Kendall (1918 2007)
- Notation pour représenter une file d'attente en 1953
- Elle se présente sous la forme de: A/S/N/C/P/D
- A: loi des inter-arrivées (temps entre deux arrivées successives)
 - M: distribution exponentielle (M= Markov)
 - λ est le nombre moyen des arrivées par unité de temps
 - μ est le nombre moyen de départs par unité de temps
 - E_n: distribution d'Erlang à *n* phases
 - D: distribution déterministe (constante)
 - U: distribution Uniforme
 - G: distribution quelconque (G= General)
 - GI: distribution quelconque avec inter-arrivées indépendantes

Notation de Kendall

- Elle se présente sous la forme de: A/S/N/C/P/D
- S: loi de Service (idem à l'arrivée)
- N: nombre de serveurs $\{1,2,3..,\infty\}$
- C: capacité du système (nb max de clients) Defaults $C = \infty$
- P:la population des usagers
- **D**: la discipline de service
- C, P et D ont une valeur par défaut ∞ , ∞ et FIFO

Notation de Kendall

- M/M/1 ⇔ M/M/1/∞/FIFO
 - M: Les arrivées sont Markovien (Distribution exponentielle λ)
 - M: Départs sont Markovien (Distribution exponentielle μ)
 - 1 seule file d'attente de capacité infini et un service PAPS (FIFO ou FCFS)
- M/M/1/N : N est la capacité du système
 - Nb de clients simultanément présents dans le système
 - S'il y a déjà N clients dans le système, les nouveaux clients quittent sans obtenir le service désiré
- M/M/S : S serveurs, capacité infinie, FIFO
- M/M/N/N: C serveurs, pas de buffer d'attente, FIFO
- M/M/N/K (K > N): N serveurs, buffer de taille K-N, FIFO
- M/G/1: arrivées poissonniennes, loi de service quelconque (générale), 1 serveur, capacité infinie, FIFO
- G/G/1 : arrivée quelconque, service quelconque, 1 serveur, capacité infinie, FIFO
- D/M/1 : arrivée déterministe

Loi exponentielle et processus de Poisson

- Durée de service exponentielle (paramètre μ)
- Arrivées de clients
 - Inter-arrivées indépendantes et exponentielles (paramètre λ)
 - Arrivées: processus de Poisson (paramètre λ)
- Pourquoi ces cas sont-ils importants?
 - Propriété sans mémoire (loi exponentielle)
 - C'est la base de représentation markovienne

Distribution exponentielle

- La fonction de répartition de la loi exponentielle
 - $F(t) = 1 e^{-\lambda t}$
- La fonction de densité de la loi exponentielle
 - $f(t) = \lambda e^{-\lambda t}$
- λ est l'inverse de la moyenne
 - $E(x) = \int_0^\infty f(x).dx = \frac{1}{\lambda}$
- Propriété
 - Distribution sans mémoire
 - Le temps restant avant la prochaine arrivée est indépendante du temps écoulé depuis la dernière arrivée

Distribution exponentielle

Sans mémoire

$$p(X > t + s \mid X > t) = \frac{p(X > t + s, X > t)}{p(X > t)} = \frac{p(X > t + s)}{p(X > t)} = \frac{1 - 1 + e^{-\lambda(t + s)}}{e^{-\lambda t}} = e^{-\lambda s} = p(X > s)$$

 La distribution exponentielle est la seule distribution continue sans mémoire

Distribution exponentielle

Propriété sans mémoire :

$$\mathbb{P}(X \ge x + x_0 \mid X \ge x) = \mathbb{P}(X \ge x_0)$$
 [ne dépend pas de x]

(i) inter-arrivées exponentielles : le temps qui nous sépare de l'arrivée du prochain client ne dépend pas du temps écoulé depuis l'arrivée du client précédent :

(ii) durées de service exponentielle : le temps qui reste avant que le serveur ne soit libéré ne dépend pas du temps que le client a déjà passé en service

Chaîne de Markov: Définition

Définition : une chaîne de Markov à temps continu ou à état discret (CMTCED) est un processus (X_t)_{t∈R} qui vérifie la propriété de Markov (sans mémoire):

$$\Pr\left\{X(t_{k+1}) = x_{k+1} \mid X(t_k) = x_k, ..., X(t_0) = x_0\right\}$$

$$= \Pr\left\{X(t_{k+1}) = x_{k+1} \mid X(t_k) = x_k\right\}$$

Le futur est indépendant du passé conditionnellement au présent

. . . .

Théorie des files d'attente

- Le modèle *M/M/1* est l'un des modèles de file d'attente retenu pour la modélisation des systèmes en télécommunication :
 - M = processus Markovien en entrée (distribution exponentielle des arrivées)
 - M = processus Markovien en sortie
 - 1 = il n'y a qu'un seul processeur (système mono serveur)

Théorie des files d'attente

- Ce modèle (*M/M/I*) suppose que :
 - Les clients désirant un service arrivent dans une file d'attente qui n'est pas limitée en taille. La file d'attente ne peut pas déborder.
 - Un serveur est placé devant cette file d'attente
 - La discipline de service est FIFO
 - Comment calculer le temps d'attente (T_q) dans la file ?

Premier exemple : file M/M/1

Premier exemple : cas de la file M/M/1

- File M/M/1:
 - arrivées Poisson
 - services exponentiel
 - 1 seul serveur
 - buffer d'attente infini
 - discipline FIFO

Le calcul des files d'attente

- Taux d'arrivée des clients = λ
 (nombre moyen de clients qui arrive par période de temps)
- Taux de service = μ (nombre de clients qui peut être servi pendant une période de temps)
- La charge du système $\rho = \lambda / \mu$ (Taux d'utilisation d'un système)
 - Pourcentage de temps où le serveur est occupé
- Longueur moyenne de la file = L_q
- Longueur moyenne du système= L_s
- Temps moyen d'attente dans la file = W_q
- Temps moyen d'attente dans le système = W_s

Processus de naissance et de mort

- Les transitions sont seulement vers les états voisins
 - L'arrivé d'un client (naissance) est représenté par une transition de l'état n vers l'état n+1
 - La fin de service (mort) d'un client est représenté par une transition de l'état *n* vers l'état *n-1*

Evolution du nombre de clients

Evolution du nbre C(t) de clients

 $\pi_n(t) = \mathbb{P}(C(t) = n)$, proba. qu'il y ait n clients dans le système à l'instant t

- * proba. arrivée entre t et $t + \Delta t$: $\lambda \Delta t + o(\Delta t), n \to n+1$
- * proba. départ entre t et $t+\Delta t$: $\mu \Delta t + o(\Delta t), \ n o n-1$
- * proba. qu'il ne se passe rien $1-(\lambda+\mu)\Delta t+o(\Delta t),\ \ n\to n$ entre t et $t+\Delta t$:

Equations de Chapman Kolmogorov

$$\begin{cases} \pi_n(t + \Delta t) &= \pi_{n-1}(t) \lambda \Delta t + \pi_n(t) (1 - (\lambda + \mu) \Delta t) \\ &+ \pi_{n+1}(t) \mu \Delta t + o(\Delta t), \ n \ge 1 \end{cases}$$
$$\pi_0(t + \Delta t) &= \pi_0(t) (1 - \lambda \Delta t) + \pi_1(t) \mu \Delta t + o(\Delta t)$$

Equations de Chapman Kolmogorov

$$\begin{cases} \pi_n(t + \Delta t) &= \pi_{n-1}(t) \lambda \Delta t + \pi_n(t) (1 - (\lambda + \mu)\Delta t) \\ + \pi_{n+1}(t) \mu \Delta t + o(\Delta t), & n \ge 1 \end{cases}$$

$$\pi_0(t + \Delta t) &= \pi_0(t) (1 - \lambda \Delta t) + \pi_1(t) \mu \Delta t + o(\Delta t)$$

$$\begin{cases} \lim_{\Delta t \to 0} \frac{\pi_n(t + \Delta t) - \pi_n(t)}{\Delta t} &= \pi_{n-1}(t) \lambda - \pi_n(t) (\lambda + \mu) \\ + \pi_{n+1}(t) \mu, & n \ge 1 \end{cases}$$

$$\lim_{\Delta t \to 0} \frac{\pi_0(t + \Delta t) - \pi_0(t)}{\Delta t} &= -\lambda \pi_0(t) + \mu \pi_1(t)$$

$$\begin{cases} \frac{d}{dt} \pi_n(t) = \pi_{n-1}(t) \lambda - \pi_n(t) (\lambda + \mu) + \pi_{n+1}(t) \mu, & n \ge 1 \\ \frac{d}{dt} \pi_0(t) = -\lambda \pi_0(t) + \mu \pi_1(t) \end{cases}$$

Etude du régime stationnaire

Sous une condition que nous avions précisée ($\lambda < \mu$) la distribution du nombre de clients dans la file converge (lorsque t tend vers l'infini):

 $\pi_n(t) \stackrel{t \to \infty}{\to} \pi_n$

Etude du régime stationnaire

Distribution en régime stationnaire :

La distribution π_n du système en régime stationnaire est obtenue en résolvant $\left\lceil \frac{d}{dt}\pi_n(t) = 0, n = 0, 1, 2, \ldots \right\rceil$

$$\begin{cases} -\lambda \pi_0 + \mu \pi_1 = 0 \\ \lambda \pi_{n-1} - (\lambda + \mu) \pi_n + \mu \pi_{n+1} = 0 \end{cases}$$

Solution: distribution stationnaire de la M/M/1

$$\pi_n = \pi_0 (\lambda/\mu)^n, n = 0, 1, 2, \dots$$

Etude du régime stationnaire

Taux de départ $n = P_n(\lambda + \mu)$

Taux d'arrivées $n = \lambda P_{n-1} + \mu P_{n+1}$

Régime permanent n: $P_n(\lambda + \mu) = \lambda P_{n-1} + \mu P_{n+1}$

Régime permanent 0: $\lambda P_0 = \mu P_1$

Etude du régime stationnaire

$$\lambda P_0 = \mu P_1$$
$$(\lambda + \mu)P_n = \lambda P_{n-1} + \mu P_{n+1}$$

Solution de P₀ et P_n

Step 1

$$P_1 = \frac{\lambda}{\mu} P_0, \quad P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0, \quad P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$$

Step 2

$$\sum_{n=0}^{\infty} P_n = 1, \text{ then } P_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1, \implies P_0 = \frac{1}{\sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n}$$

Calcul des P₀ et P_n

- Step 3 $\rho = \frac{\lambda}{\mu}, then \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = \sum_{n=0}^{\infty} \rho^n = \frac{1-\rho^{\infty}}{1-\rho} = \frac{1}{1-\rho} \left\{ \rho < 1 \right\}$
- Step 4

$$P_0 = \frac{1}{\sum_{n=0}^{\infty} \rho^n} = 1 - \rho \quad \text{and} \quad P_n = \rho^n (1 - \rho)$$

$$P_n = \rho^n P_0$$

Etude du régime stationnaire

Condition de Stabilité du Système

- sous quelle condition un régime stationnaire s'établit-il?
- o condition de stabilité :

 $\begin{array}{ccc} \lambda & < & \mu \\ {\rm Taux~d'Arriv\acute{e}e} & < & {\rm Taux~de~Service} \end{array}$

• $\rho = \lambda/\mu$ est appelé *trafic offert* ou *facteur de charge*(unité : Erlang); le système est stable si $\rho < 1$.

Distribution stationnaire de la M/M/1

- si ho < 1 alors la somme $\sum_{n=1}^{+\infty}
 ho^n$ converge $\sum_{n=1}^{\infty}
 ho^n = 1/(1ho)$;
- o distribution du système en régime stationnaire

$$\pi_n = (1 - \rho)\rho^n, n = 0, 1, 2, \dots$$

Etude du régime stationnaire

- Système instable
 - cas d'une file M/M/1 avec ρ≥ 1
 - les clients arrivent plus vite que la capacité de traitement du serveur (λ≥ μ)
 - la file est instable, le nombre de clients dans le buffer d'attente augmente indéfiniment, aucun régime stationnaire ne peut s'établir

$$\lambda = 10, \mu = 9$$
. File instable.

Mesures de performance

- L_s = nb moyen de clients dans le système
- L_q = nb moyen de clients dans la file d'attente
- W_s = temps moyen passé par le client dans le système
- W_q = temps moyen passé par le client dans la file d'attente
- Par définition:

$$L_{s} = \sum_{n=0}^{\infty} n.p_{n}$$

$$et$$

$$L_{q} = \sum_{n=s+1}^{\infty} (n-s).p_{n}$$

• s est le nombre de serveurs

Calcul de L_s

L_S: nombre moyen de clients dans le système

$$L_{s} = \sum_{n=0}^{\infty} n P_{n} = \sum_{n=0}^{\infty} n \rho^{n} (1-\rho) = (1-\rho) \rho \sum_{n=1}^{\infty} n \rho^{n-1}$$

$$(1-\rho) \rho \frac{d}{d\rho} \left(\sum_{n=0}^{\infty} \rho^{n} \right) = (1-\rho) \rho \frac{d}{d\rho} \left(\frac{1}{1-\rho} \right)$$

$$(1-\rho) \rho \left(\frac{1}{(1-\rho)^{2}} \right) = \frac{\rho}{(1-\rho)} = \frac{\lambda}{\mu - \lambda}$$

Performances Moyennes

- Performances Moyennes en Régime Stationnaire
 - Performances moyennes : taux moyen d'utilisation du serveur, délai moyen (attente et service), temps moyen d'attente, etc.
 - La notion de performances moyennes n'a de sens que dans le cas d'un système stable
- Taux Moyen d'Utilisation du Serveur
 - Représente la proportion du temps pendant lequel le serveur est actif (système non vide)
 - Taux moyen d'utilisation:

$$1 - \pi_0 = \rho = \lambda/\mu$$

Performances Moyennes

- Nombre Moyen L_S de Clients
 - nombre moyen L_S de clients dans le système

Nb Moyen de Clients
$$L_s =
ho \, / \, (1 -
ho)$$

• influence du facteur de charge ρ

Performances Moyennes

- Débit Moyen X
- la M/M/1 est un système sans perte ou système à attente pure
- pas de blocage des clients (à l'entrée du système) puisque le buffer d'attente est infini
- débit moyen d'entrée/sortie

débit moyen : $X = \lambda$

Performances Moyennes

- Avant de donner l'expression du temps de séjour moyen W_s dans le système nous allons énoncer une formule importante.
- Une formule importante : formule de Little
 - Le nombre moyen des clients et les temps d'attente sont liées par la célèbre formule de little:
 - $L_x = \lambda * W_x$

unité : nombre de clients

Débit Moyen = Nombre Moyen de Clients dans le Système

Temps de Séjour Moyen dans le Système

†
unité : clients/sec.

unité : sec.

- $W_s = W_q + (1/\mu)$
- Formule de Little:

 nb moyen de clients dans le système = Taux d'entrée x Temps de réponse
- Pour tout système de files d'attentes:

$$L = \lambda_{eff} W$$

 $\Rightarrow L_s = \lambda_{eff} W_s$ et $L_q = \lambda_{eff} W_q$

Ws, Wq et Lq

$$W_s = \frac{L_s}{\lambda} = \left(\frac{\lambda}{\mu - \lambda}\right) \left(\frac{1}{\lambda}\right) = \frac{1}{\mu - \lambda}$$

$$W_q = W_s - \frac{1}{\mu} = \left(\frac{1}{\mu - \lambda}\right) - \left(\frac{1}{\mu}\right) = \frac{\lambda}{\mu(\mu - \lambda)}$$

Taux d'utilisation = $1 - p_0 = \rho = \frac{\lambda}{\mu}$

Ws, Wq et Lq

$$L_{q} = \lambda W_{q} = \lambda \frac{\lambda}{\mu(\mu - \lambda)} = \frac{\lambda^{2}}{\mu(\mu - \lambda)}$$

$$= \sum_{i=0}^{\infty} (i-1) p_{i} = \frac{\rho}{1-\rho} - (1-p_{0})$$

$$= \frac{\rho}{1-\rho} - \rho = \frac{\rho^{2}}{1-\rho}$$

Autres performances

 $P[client\ doit\ attendre] = 1 - p_0 = \rho$

$$P[serveur\ occup\'e] = 1 - p_0 = \rho$$

$$P[N > K] = 1 - P[N \le k] = 1 - \sum_{i=0}^{k} P_i = 1 - P_0 \frac{1 - \rho^{k+1}}{1 - \rho} = \rho^{k+1}$$

- Débit
 - Le service s'effectue avec un taux dans chaque état où le système contient au moins un client

$$X = P[N > 0]\mu = \sum_{i=1}^{\infty} P_i \cdot \mu = [1 - P_0] \cdot \mu = \rho \cdot \mu = \lambda$$