Solution to Algebra : Chapter 0 by Paolo Aluffi

 $macyayaya^1$

Last updated at February 18, 2020 ${\rm v0.3.5b}$

 $^{^{1} \}rm https://github.com/macyayaya/$

Copyright (C) 2020 macyayaya @ https://github.com/macyayaya/. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being Prologue. A copy of the license is included in the section entitled "GNU Free Documentatin License".

Prologue

Over a few months I want to improve my skills in solving algebra problems. I tried to find a textbook that can serves me good and is good enough to use in self-study.

Eventually, this is what I felt the most "comfortable" book in my opinion. It doesn't contain that much unlike Dummit & Foote, but the writing style, the explanation, and the exercises really served me well.

So here is the solution to Algebra: Chapter 0. There are a few important points to note here:

- The solution is *only* hosted on my GitHub page https://github.com/macyayaya/algebra-chapter-0-solutions. If you find this document outside this page, you might have an outdated version of the solution which might have errors, so please be aware.
- I will update the solution irregularly.
- I'll try to write this beginner-friendly (as I am also a beginner), so the answer might be way too detailed/verbose. Sorry if you find this annoying.
- If you found an error in the solutions, typos, bad grammar or want to give an advise on LaTeX formatting, etc., don't hesitate to open an issue or a pull request on my repo.
- The questions I picked is completely random, so if you want to see some solution of a certain problem (but please not all of them), you can also open an issue to notify me.
- However, I currently do *not* accept any PRs to new solutions; this is more than my note on self-study rather than a complete solution set.

Thanks.

macyayaya @ https://github.com/macyayaya/ Department of Mathematics, National Taiwan University February 16, 2020

Contents

Prologue	ii
II Groups, first encounter	1
II.1	1
II.2	2
II.3	2
II.4	3
II.5	4
II.6	5
II.7	6
II.8	7
II.9	9
IIIRings and modules	11
III.1	11
III.2	12
III.3	14
III.4	16
III.5	18
	20

Chapter II

Groups, first encounter

Unless otherwise specified, in the following G denotes a group, e denotes the identity of G. Some description and hints are omitted for simplicity.

II.1

Problem II.1.8. Let G be a finite abelian group with exactly one element f of order 2. Prove that $\prod_{g \in G} g = f$.

Proof. For all elements that is not of order 2, they have an inverse that is not itself, so they canceled out in the product $\prod_{g \in G} g$, leaving only elements that is of order 2, i.e. f.

Problem II.1.10. If the order of g is odd, what can you say about the order of g^2 ?

Solution. The order of g^2 is |g| since the only number that divides |g| and in $\{2,4,...,2|g|\}$ is 2|g| if |g| is odd.

Problem II.1.11. Prove that for all g, h in a group G, |gh| = |hg|.

Proof. Simply observe that $e = (gh)^{|gh|} = g(hg)^{(|gh|-1)}h$, therefore

$$g^{-1}h^{-1} = (hg)^{-1} = (hg)^{|gh|-1}$$

hence $(hg)^{|gh|} = e$. The other case is the same.

Problem II.1.13. Give an example showing that $|gh| \neq \text{lcm}(|g|, |h|)$ even if g and h commute.

Solution. In
$$C_4$$
, $|1+3| = |0| = 1$ but $lcm(|1|, |3|) = 4$. Clearly C_4 is abelian.

Problem II.1.14. As a counterpoint of II.1.13, prove that if g and h commute and gcd(|g|, |h|) = 1, then |gh| = |g||h|.

Proof. One has |gh| divides lcm(|g|, |h|) = |g||h| by Proposition II.1.14, so it suffices to prove that |g||h| divides |gh|.

Let N = |gh|. Then one sees that $(gh)^N = g^N h^N$ since g and h commutes. Then

$$(gh)^{N|h|} = e^{|h|} = g^{N|h|}h^{N|h|} = g^{N|h|}$$

so we have |g| divides N|h|, which implies |g| divides N since gcd(|g|, |h|) = 1. Similarly |h| divides N, therefore |g||h| divides N = |gh|, as desired.

Problem II.1.15. Let G be a commutative group, and let $g \in G$ be an element of maximal finite order. Prove that if h has finite order in G, then |h| divides |g|.

Proof. Suppose that |h| does not divide |g|, then we can assume that $|g| = p^m r$, $|h| = p^n s$, where p is a prime and r, s relatively prime to p and m < n. Then by the previous problem we can calculate the order of $g^{p^m}h^s$, which is $p^n r$. But this element has order bigger than g, contradict to the maximality of g. Hence |h| must divide |g|.

II.2

Problem II.2.10. Prove that $\mathbb{Z}/n\mathbb{Z}$ consists of precisely n elements.

Problem II.2.14. Show that the multiplication in $\mathbb{Z}/n\mathbb{Z}$ is a well-defined action.

Proof. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then a = a' + kn, b = b' + ln for $k, l \in \mathbb{Z}$, therefore

$$(ab) - (a'b') = (a' + kn)(b' + ln) - a'b' = a'ln + b'kn + kln^2 \equiv 0 \mod n$$

Problem II.2.16. Find the last digit of 1238237¹⁸²³⁸⁴⁵⁶.

Solution.
$$1238237^{18238456} \equiv 7^{18238456} = 49^{9119228} = 2401^{4559614} \equiv 1^{4559614} = 1 \mod 10.$$

Problem II.2.17. Show that if $m \equiv m' \mod n$, then gcd(m, n) = 1 if and only if gcd(m', n) = 1.

Proof. We can write
$$m = nk + m'$$
 for $n \in \mathbb{Z}$ and use Euclidean Algorithm to conclude.

II.3

Problem II.3.3. Show that if G, H are abelian groups, then $G \times H$ satisfies the universal property for coproducts in Ab .

Proof. Let A be an arbitrary abelian group, f_G , f_H be homomorphisms, i_G , i_H be inclusions.

To check the universal property, define $\varphi(g,h) := f_G(g)f_H(h)$. Now φ is a homomorphism since for $g_1, g_2 \in G, h_1, h_2 \in H$,

$$\varphi((g_1, h_1)(g_2, h_2)) = \varphi(g_1g_2, h_1h_2) = f_G(g_1g_2)f_H(h_1h_2) = f_G(g_1)f_G(g_2)f_H(h_1)f_H(h_2)$$

$$\xrightarrow{abelian} f_G(g_1)f_H(h_1)f_G(g_2)f_H(h_2) = \varphi(g_1, h_1)\varphi(g_2, h_2)$$

as desired.

Problem II.3.6. Consider the product $C_2 \times C_3$, which is a coproduct in Ab. Show that it is *not* a coproduct of C_2 and C_3 in Grp.

Proof. If $C_2 \times C_3$ is a coproduct, then take $A = S_3$. Although there are injective homomorphisms

$$\varphi_1: C_2 \to S_3$$
 by $\varphi_1(1) = (12)$ or other two cycle $\varphi_2: C_3 \to S_3$ by $\varphi_2(1) = (123)$ or other three cycle

but there are no homomorphisms $\varphi: C_2 \times C_3 \to S_3$ that satisfies the universal property of coproducts: Observe that any choice of cycles in φ_1 and φ_2 will exhaust all possible element of S_3 , hence force φ to be an isomorphism. But the element $\varphi(1,1)$ must be either a 2(or 3)-cycle, and neither $(1,1)^2$ nor $(1,1)^3$ are (0,0), and φ will map a non-identity element to the identity, a contradiction.

II.4

Problem II.4.3. Prove that a group of order n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ if and only if it contains an element of order n.

Proof. Let G be such group.

 (\Rightarrow) Trivial.

 (\Leftarrow) Let g be an element of order n. Then consider a homomorphism $\varphi: G \to \mathbb{Z}/n\mathbb{Z}$ with $\varphi(g) = \overline{1}$. It is a direct check that this is an isomorphism.

Problem II.4.8. Let $g \in G$. Prove that the function $\gamma_g : G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism of G. Prove that the function $G \to \operatorname{Aut}(G)$ defined by $g \to \gamma_g$ is a homomorphism, and show that this homomorphism is trivial if and only if G is abelian.

Proof. γ_g is injective since if $gag^{-1} = gbg^{-1}$ then a = b; it is surjective since for $k \in G$ we can find $g^{-1}kg$ so that $\gamma_g(g^{-1}kg) = k$; it is a homomorphism since

$$\gamma_g(ab) = gabg^{-1} = gag^{-1}gbg^{-1} = \gamma_g(a)\gamma_g(b).$$

If G is abelian then the automorphism is simply $\gamma_g(a) = a$; conversely if $gag^{-1} = a$ then ga = ag for all $a, g \in G$, hence abelian.

Problem II.4.9. Prove that if m, n are positive integers such that gcd(m, n) = 1, then $C_{mn} \cong C_m \times C_n$.

Proof.

$$\varphi: C_{mn} \to C_m \times C_n, \ \varphi(a) = (a \mod m, a \mod n)$$

is a homomorphism and a bijection.

Problem II.4.11. Assuming the fact that the equation $x^d = 1$ can have at most d solutions in $\mathbb{Z}/p\mathbb{Z}$ for a prime p, prove that $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

Proof. Let g be an element of maximal order, and by 1.15, all elements have degree that divides |g|, i.e. $|h|^{|g|} = 1 \,\forall h \in G$. Using the fact, we have $|G| \leq |d|$, since only at most |g| elements can be the solution to $h^{|g|} = 1$. Clearly we also have $|G| \geq |d|$, so |G| = |d|. Thus the proof is complete by II.4.3.

Problem II.4.13. Prove that $\operatorname{Aut}_{\mathsf{Grp}}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3$.

Proof. To make an automorphism φ , φ must fix (0,0), leaving 6 possible permutations for elements (0,1),(1,0),(1,1). It suffices to check that all permutations of these elements are homomorphisms(hence isomorphisms).

Problem II.4.16. Prove the Wilson's theorem: for $p \in \mathbb{N}_{>1}$, p is a prime if and only if

$$(p-1)! \equiv -1 \mod p$$

Proof. (\Rightarrow) Assuming that the result of II.1.8 and II.4.11 is true, consider $G = (\mathbb{Z}/n\mathbb{Z})^*$. It is cyclic, and has exactly one element of order 2 since for $0 \le k \le p-2$,

$$(p-1-k)^2 \equiv 1+2k+k^2 \equiv 1 \mod p \iff k(k+2) \equiv 0 \mod p$$

and such solution can only be k = 0 or p - 2 since p is a prime, which correspond to p - 1 and 1 (identity). Therefore by II.1.8

$$\prod_{g \in G} g = (p-1)! \equiv (p-1) \equiv -1 \mod p$$

as desired.

 (\Leftarrow) If p is not a prime, then there exists 1 < k < p such that k|p. Since k < p we have k|(p-1)!, i.e.

$$(p-1)! \equiv rk \mod p \text{ for some } r \in \mathbb{Z}$$

and clearly no choice of r will make $rk \equiv -1 \mod p$ by the fact that k|p. Therefore p must be a prime.

II.5

Problem II.5.3. Use the universal property of free groups to prove that the map $j: A \to F(A)$ is injective.

Proof. If there is $a, b \in A$ such that j(a) = j(b) but $a \neq b$, then let f be a set function such that $f(a) \neq f(b)$; in particular, let $G = \mathbb{Z}$ and let f(a) = 1, f(b) = 2. Then there are no homomorphisms that will make the diagram commute, therefore j must be injective.

Problem II.5.6. Prove that the group $F(\{x,y\})$ is a coproduct $\mathbb{Z}*\mathbb{Z}$ of \mathbb{Z} by itself in the category Grp.

Proof. We are given the universal property of free group: for $j:\{x,y\}\to F(\{x,y\}), \exists G,f$ such that the diagram

commutes. To check that it is a coproduct, consider the coproduct diagram composed with above. Let i(0) = x, j be the inclusion, then we have the following diagram:

Note that the arrows j,g,φ comes from the free group diagram. From this, we have $f\circ\gamma=\varphi\circ j$. To check the coproduct diagram commutes, it suffices to check $f=\varphi\circ i$. To do this, define $\gamma(x)=0,\gamma(y)=1$. Then

$$f \circ \gamma(x) = f(0) = \varphi(x) = \varphi \circ j(x), \quad f \circ \gamma(y) = f(1) = \varphi(y) = \varphi \circ j(y)$$

Since $f(1) = \varphi \circ i(1) = \varphi(y)$, the homomorphisms agree on the generator, hence are the same.

II.6

Problem II.6.5. Let G be a *commutative* group, and let n > 0 be an integer. Prove that $\{g^n : g \in G\}$ is a subgroup of G. Prove that this is not necessarily the case if G is not commutative.

Proof. For any two elements a, b in the set, they can be represented as g^n and h^n respectively. Now

$$ab^{-1} = g^n h^{-n} = (gh^{-1})^n$$

which shows that ab^{-1} is also in the set, proving the set is a subgroup. A counterexample would be D_6 , the dihedral group with 6 elements, with the choice n = 3. Let s denote the reflection, r denotes the rotation, we then have

$$\{g^3:g\in D_3\}=\{1,r^3,r^{2\cdot3},s^3,(sr)^3,(sr^2)^3\}=\{1,1,1,s,sr,sr^2\}$$

this set is not a subgroup, as $s^{-1}sr = r$ is not an element of this set.

Problem II.6.7. Show that inner automorphisms (the collection of γ_g in II.4.8) form a subgroup Inn(G) of Aut(G), and show that Inn(G) is cyclic if and only if Inn(G) is trivial if and only if G is abelian. Deduce that if Aut(G) is cyclic, then G is abelian.

Proof. Inn(G) is a subgroup: clearly g_e is the identity, inverse exists, and the associative clearly holds

If $\operatorname{Inn}(G)$ is cyclic, then let $\gamma_g(a) = gag^{-1}$ be a generator of order n. Then $\forall b \in G$ we have $\gamma_b = \gamma_g^n$, i.e. $gbg^{-1} = b^nbb^{-n}$. This gives $gb = bg \ \forall b \in G$, so γ_g is in fact trivial, and hence G is abelian by II.4.8. The last statement follows from Proposition II.6.11 that every subgroup of cyclic group is cyclic.

Problem II.6.9. Prove that an *abelian* group G is finitely generated if and only if there is a surjective homomorphism

$$\underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text{ times}} \twoheadrightarrow G$$

for some n.

Proof.

 (\Rightarrow) As the group is abelian, for $G = \langle a_1, \cdots a_n \rangle$, we can represen an element g uniquely as

$$g = a_1^{p_1} \cdots a_n^{p_n}$$

where $p_i \in \mathbb{Z}$, $i = 1, \dots, n$. Therefore we can explictly write down the surjective homomorphism

$$\varphi: \underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{n \text{ times}} \twoheadrightarrow G \quad \text{by} \quad \varphi(p_1, \cdots, p_n) = a_1^{p_1} \cdots a_n^{p_n} = g$$

as desired.

 (\Leftarrow) By the universal property of $\mathbb{Z}^{\oplus n}$ we have the following diagram that commutes:

To prove, it suffices to "replace" the set $\{1, \dots, n\}$ by a subset of G.

By the diagram (*), we have $i \circ f = \varphi \circ j$. It is a fast check that the diagram formed by \tilde{j} , i and φ commutes. Finally since A is a finite set and im $\varphi = G$, it follows by definition that G is finitely generated.

Problem II.6.14. Let ϕ be the Euler's ϕ -function. Prove that for $n \in \mathbb{N}$,

$$\sum_{m>0,m|n} \phi(m) = n.$$

Proof. Let $\langle x \rangle = C_n$. We have the trivial equation

$$\sum_{q \in C_n} 1 = n$$

Now note that every element in C_n generates a cyclic subgroup. To establish the result, we show that for every d > 0 that is a division of n, the subgroup of order d is unique, i.e. the unique subgroup is given by

$$\langle x^{n/d} \rangle = \{ g \in G : g^d = 1 \}$$

Indeed, if $g = x^{kn/d}$ for some positive integer k, then $g^d = x^{kn} = 1$. Conversely, if $g^d = 1$, then we have $g = x^m$ for some m since x is a generator. But this means that $x^{md} = 1$, and this implies n|md. Hence we have

$$g = x^m = x^{n/d \cdot dm/n} = x^{n/d} \in \langle x^{n/d} \rangle$$

as desired.

Now we count the generators of each subgroup of C_n , which is $\phi(d)$ for every d that is a divisor of n. Since every element in C_n generates a cyclic subgroup C_d , the sum of generator along each subgroup is exactly n, namely

$$\sum_{g \in C_n} 1 = \sum_{m: m|n} \phi(m) = n$$

which proved the assertion.

Problem II.6.15. Prove that if $\varphi: G \to G'$ has a left inverse, then φ is a monomorphism.

Proof. If $a, b \in G$ are distinct elements that satisfies $\varphi(a) = \varphi(b)$, then having left inverse means there exists a homomorphism ψ such that $\psi \circ \varphi = id_G$. Then we would have $\psi \circ \varphi(a) = \psi \circ \varphi(b)$, which means a = b, a contradiction.

II.7

Problem II.7.7. Let n be a positive integer. Let $H \subset G$ be the subgroup generated by all elements of order n in G. Prove that H is normal.

Proof. For $a \in H, g \in G$, since $a^n = e$,

$$(gag^{-1})^n = ga^ng^{-1} = e$$

we have $gag^{-1} \in H$, hence normal.

Problem II.7.11. Prove that the commutator subgroup [G, G] is normal, and the quotient G/[G, G] is commutative.

Proof. Observe

$$gaba^{-1}b^{-1} = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1}) = xyx^{-1}y^{-1} \in [G, G]$$

for $x = gag^{-1}, y = gbg^{-1}$. The quotient is commutative since $aba^{-1}b^{-1}[G, G] = [G, G]$ implies ab[G, G] = ba[G, G].

II.8

Problem II.8.7. Let $(A|\mathcal{R}), (A'|\mathcal{R}')$, be the presentation for groups G, G', respectively, and assume that A and A' are disjoint. Prove that

$$G * G' := (A \cup A' \mid \mathcal{R} \cup \mathcal{R}')$$

satisfies the universal property for the coproduct of G and G' in Grp.

Proof. Write $H = \mathcal{R} \cup \mathcal{R}'$. Let us construct a homomorphism from G to G * G'. As G = F(A)/R, by the universal property of quotient we have a commutative diagram

$$F(A) \xrightarrow{f} G * G$$

$$F(A)/\mathscr{R}$$

In particular, we let f be an quotient map, i.e. f(w) = wH. Then naturally we have $\varphi_1(w\mathscr{R}) = wH$. Similarly, for G' we have another homomorphism $\varphi_2(v\mathscr{R}') = vH$.

Now it suffices to check the universal property. For every homomorphism that maps G and G' to a group K, which we call them f_1 and f_2 , we can define $\phi: G*G' \to K$ by

$$\phi(wH) = \prod_{i=1}^{|w|} (f_1(w_i \mathscr{R}) \chi_{F(A)}(w_i) + f_2(w_i \mathscr{R}') \chi_{F(A')}(w_i))$$

where $w = w_1 \cdots w_n$, χ is the indicator function. The commutative of the coproduct diagram is clear, and ϕ is clearly a homomorphism since we can clearly combine two finite product to one.

Problem II.8.13. Let G be a finite group, and assume |G| is odd. Prove that every element of G is a square.

Proof. Let |G| = 2n - 1, $n \in \mathbb{N}$. For every $g \in G$, we have

$$g = g \cdot g^{2n-1} = g^{2n} = (g^n)^2$$

which implies that every element in G is a square.

Problem II.8.13. Generalize the result of II.8.13: if G is a group of order n and k is an integer relatively prime to n, then the function $G \to G, g \to g^k$ is surjective.

Proof. By the prime condition, we can apply Bezout's identity, namely there exists integers a, b such that an + bk = 1. Then for every $q \in G$, we have

$$q = q \cdot q^{-an} = q^{1-an} = q^{bk} = (q^b)^k$$

which implies that every element in G is a k-power of some element in G.

Problem II.8.17. Assume that G is a finite abelian group, and let p be a prime divisor of |G|. Prove that there exists an element in G of order p.

Proof. We proceed by induction. Clearly if |G| = 1 then the statement is true. Now suppose for all abelian group with order less than n, we can find a element whose order is a prime and a divisor of G. Then for any group G that has order n, consider an element $g \in G$, and consider the subgroup generated by g, $H = \langle g \rangle$.

Clearly H is cyclic, so we can find a element $g^{|g|/q}$ of order q where q is a prime since

$$1 = q^{|g|} = (q^{|g|/q})^q$$

provided that $q \mid |g|$. Now if q = p, then we are done; otherwise, we replace G with $G/\langle h \rangle$, where $h = g^{|g|/q}$ (note that all subgroups are normal since G is abelian). Now this quotient has order less than n, and by induction, we can find an element of order p in it, which we call it $m\langle h \rangle$. Finally the element mh^q has order p, since

$$(mh^q)^p = m^p g^{p|g|} = 1$$

Note that the commutative is used here.

Problem II.8.20. Assume that G is a finite abelian group, and let d be a divisor of |G|. Prove that there exists a subgroup $H \subseteq G$ of order d.

Proof. We proceed by induction. Clearly if |G| = 1 then the statement is true. Now suppose for all abelian group with order less than n, we can find a subgroup whose order is a divisor of |G|. Then if |G| = n, then by II.8.18, we have an element in G that is of order p, where p is a prime and a divisor of d. If p = d, then we are done. Otherwise, we consider the quotient $G/\langle p \rangle$. This group has order |G|/p, and by induction hypothesis, we can find a subgroup H in the quotient that is of order d/p. Now we claim that the set

$$H' = \{gp^n : n \in \{0, \cdots, p-1\}, g\langle p \rangle \in H\}$$

is a subgroup of order d. It is indeed a subgroup since for $g, h \in H'$,

$$gh^{-1} = ap^kb^{-1}p^{-l} = ab^{-1}p^{k-l} \in H'$$

for some a, b that is a coset representative $(ab^{-1}\langle p\rangle \in H \text{ since } H \text{ is a subgroup})$. As the cosets are disjoint, there are precisely $p \cdot d/p = d$ elements in H', proving the assertion.

Problem II.8.22. Let $\varphi: G \to G'$ be a group homomorphism, and let N be the smallest normal subgroup containing im φ . Prove that G'/N satisfies the universal property of coker φ in Grp.

Proof. By universal property of quotient, for every homomorphism $\alpha: G' \to L$, the homomorphism $\bar{\alpha}: G'/N \to L$ exists and is unique. Now it suffices to check the universal property of cokernel. For any $\alpha: G' \to L$ such that $\alpha \circ \varphi = 0$, define $\bar{\alpha}(gN) = \alpha(g)$. We need to check that this is well defined. If $\bar{\alpha}(gN) = \bar{\alpha}(hN)$ but $\alpha(g) \neq \alpha(h)$, then $gh^{-1} \notin \ker \alpha$. However since $\alpha \circ \varphi = 0$, im $\varphi \subseteq \ker \alpha$. By noting that N is normal and minimal, we have

$$\ker\alpha\supseteq N\ni gh^{-1}$$

since gN = hN. This is a contradiction, therefore $\alpha(g) = \alpha(h)$, showing the well-definedness of $\bar{\alpha}$. Then

$$\bar{\alpha}(\pi(\varphi(g)) = \bar{\alpha}(N) = \alpha(e) = e_L$$

for all $q \in G$. This shows $\bar{\alpha} \circ \pi \circ \varphi = 0$, and the assertion is proved.

Problem II.8.24. Show that epimorphisms in Grp do not necessarily have right-inverses.

Proof. Let

$$\varphi: \mathbb{Z} \to \mathbb{Z}_2, \quad \varphi(x) = x \mod 2$$

this map has no right inverses as any homomorphism from \mathbb{Z}_2 to \mathbb{Z} can only be the identity map.

II.9

Problem II.9.7. Prove that stabilizers are indeed subgroups.

Proof. Assume G acts on A, and pick $a \in A$. For $g, h \in Stab_G(a)$, we have

$$gh^{-1}a = g(h(h^{-1}a)) = ga = a$$

as required.

Problem II.9.11. Let G be a finite group, and let H be a subgroup of index p, where p is the smallest prime dividing |G|. Prove that H is normal in G.

Proof. We consider the left-multiplication action of G on the left cosets of H, which is $g \cdot hH = ghH$. This induces a homomorphism $\varphi : G \to S_p$, whose kernel includes H since

if
$$g \in \ker \varphi$$
, then $aH = gaH \ \forall a \in G \Rightarrow g = gH \Rightarrow g \in H$.

Then $G/\ker\varphi\cong\operatorname{im}\varphi$, so $G/\ker\varphi$ is a subgroup of S_p , therefore it has order dividing p!. However by Lagrange, such order also divides |G|, and hence must be divisible by p, so $|G/\ker\varphi|=p$. Finally

$$p = [G:H] = [G:\ker\varphi][\ker\varphi:H] = p[\ker\varphi:H]$$

which leads to $[\ker \varphi : H] = 1$. Since $\ker \varphi \subseteq H$, $\ker \varphi = H$ by index consideration, proving the assertion.

Problem II.9.13. Prove 'by hand' that that for all subgroups H of a group G and $\forall g \in G, G/H$ and $G/(gHg^{-1})$ (endowed with the action of G by left-multiplication) are isomorphic in G-Set.

Proof. We want to find a bijection function $\varphi: G/H \to G/gHg^{-1}$ such that the diagram

$$G \times G/H \xrightarrow{id_G \times \varphi} G \times G/gHg^{-1}$$

$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho'}$$

$$G/H \xrightarrow{\varphi} G/gHg^{-1}$$

commutes. Indeed the most natural map would be $\varphi(xH) = (gxg^{-1})gHg^{-1}$. We check that this is well-defined; if aH = bH, then $gaHg^{-1} = gbHg^{-1}$ clearly. We now check that this is a bijection, by explicitly give the inverse

$$\phi: G/gHg^{-1} \to G/H, \quad \phi(xgHg^{-1}) = (g^{-1}xg)H$$

so $\varphi \circ \phi = id$. Therefore G/H and $G/(gHg^{-1})$ are isomorphic in G-Set. Note that if we assume $\varphi(xH) = xgHg^{-1}$, then H would need to be normal in order to be well-defined.

Problem II.9.17. Consider G as a G-set, by acting with left-multiplication. Prove that $\operatorname{Aut}_{G-\mathsf{Set}(G)}\cong G$.

Proof. The set of automorphisms on $G - \mathsf{Set}(G)$ are bijections that satisfies $g\varphi(h) = \varphi(gh)$. In particular we can define

$$\varphi_g(h) = g^{-1}h$$

this is clearly a bijection and forms a group structure by $\varphi_g \varphi_h = \varphi_{gh}$. We now consider the map $\psi : \operatorname{Aut}_{G-\mathsf{Set}(G)} \to G$ by $\psi(\varphi_g) = g$. We claim that this is an isomorphism. Indeed, its kernel is precisely φ_e , which is the identity of $\operatorname{Aut}_{G-\mathsf{Set}(G)}$. The map is clearly surjective, and it is an homomorphism by construction. Therefore $\operatorname{Aut}_{G-\mathsf{Set}(G)} \cong G$.

Chapter III

Rings and modules

Unless otherwise specified, in the following $R = (R, +, \cdot)$ denotes an arbitrary ring with identity, 0, 1 denotes the additive and multiplicative identity of R, respectively. In the case of possible confusion, I will use 0_R , 1_R instead.

Some description and hints are omitted for simplicity.

III.1

Problem III.1.1. Prove that if 0 = 1 in a ring R, then R is a zero ring.

Proof. If r is any nonzero element in R, then

$$r = r \cdot 1 = r \cdot 0 = 0$$

showing that R = 0.

Problem III.1.6. Prove that if a and b are nilpotent in R and ab = ba, then so is a + b.

Proof. If $a^n = 0, b^m = 0$, then

$$(a+b)^{n+m} = a^{n+m} + \binom{n+m-1}{1}a^{n+m-1}b + \dots + b^{n+m}$$

and all terms are zeros since every term either have a^n or b^m . If we do not assume that ab = ba, then the statement would be false, for example, in $M_n(\mathbb{Z})$,

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$

are nilpotent of degree 3, but $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, which is not nilpotent.

Problem III.1.7. Prove that [m] is nilpotent in $\mathbb{Z}/n\mathbb{Z}$ if and only if m is divisible by all prime factors of n.

Proof.

 (\Rightarrow) If $[m]^k = [0]$ for some integer k, then this implies $m^k = dn$ for some integer d. Now we write $n = p_1^{a_1} \cdots p_n^{a_n}$, where p_i are primes, and a_i are positive integers. Then

$$m^k = dp_1^{a_1} \cdots p_n^{a_n}$$

and it is clear to see that m must contain each p_i at least once.

 (\Leftarrow) If $n = p_1^{a_1} \cdots p_n^{a_n}$ where p_i are primes, and a_i are positive integers, then we can write

$$m = p_1^{b_1} \cdots p_n^{b_n} d$$

where b_i , d are positive integers, and $p_i \nmid d$ for all i. Define

$$f = \text{floor}\left(\max\left\{\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}\right\}\right)$$

then let $r = m^f/n$, which is an integer larger than 0 by the choice of f. Finally

$$m^f = nr = 0 \mod n$$

showing that m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

Problem III.1.9. Prove Proposition 1.12, that is:

- The inverse of a two-sided unit is unique;
- two-sided units form a group under multiplication.

Proof. For a two-sided unit v, we have uv = 1 and vw = 1 for some $u, w \in R$. Then

$$w = 1 \cdot w = uvw = u \cdot 1 = u$$

showing that w = u, so the inverse can be uniquely defined as $v^{-1} = u$. Now as the inverse is unique, we can properly define a group structure, using the multiplication from the ring R.

Problem III.1.15. Prove that R[x] is a domain if and only if R is a domain.

Proof.

- (\Rightarrow) Trivial since $R \subset R[x]$.
- (\Leftarrow) Assume the contrary that R[x] is not a domain. Then we can find $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j$, $f \neq 0, g \neq 0$ such that fg = 0. Then we would have $a_n b_m = 0$, and since R is a domain, either a_n or b_m is zero. Without loss of generality, we can reduce the case to $f = a_0 \neq 0$. Then by the same argument, we would arrive at $a_0 b_0 = 0$, since all higher terms must be zero. But this contradict to the assumption that R is a domain, since $f = a_0$ and $g = b_0$ are nonzero. Hence R[x] must be a domain.

III.2

Problem III.2.1. Prove that if there is a homomorphism from a zero ring to a ring R, then R is a zero ring.

Proof. If 1_R is the multiplicative identity of R, then for any homomorphism $\varphi: 0 \to R$,

$$0_R = \varphi(0) = \varphi(1) = 1_R$$

and by III.1.1, R is a zero-ring.

Problem III.2.6. Verify the 'extension property' of polynomial ring:

Let $\alpha: R \to S$ be a fixed ring homomorphism, and let $s \in S$ be an element commuting with $\alpha(r)$ for all $r \in R$. Then there is a unique ring homomorphism $\bar{\alpha}: R[x] \to S$ extending α and sending x to s.

Proof. Indeed, for $\sum_{i>0} a_i x^i \in R[x]$, we have no choice but to define

$$\bar{\alpha}\left(\sum_{i\geq 0} a_i x^i\right) = \sum_{i\geq 0} \alpha(a_i) s^i \tag{1}$$

so that $\bar{\alpha}(r) = \alpha(r)$ and x sends to s in this map. It is clearly a homomorphism (note that the commutativity of s is used in the proof of $\bar{\alpha}(fg) = \bar{\alpha}(f)\bar{\alpha}(g)$), so it suffices to check that $\bar{\alpha}$ is unique. But it is clear by the fact that any map that extends α and send x to s must have the same value evaluated as in (1).

Problem III.2.9. Prove that the center of R is a subring. Moreover, prove that the center of a division ring is a field.

Proof. A subset of a ring S is a subring if it is a subgroup of (R, +), closed under multiplication, and 1 is in it. So we check that:

• it is a subgroup of (R, +): for $a, b \in C$, for all $r \in R$,

$$(a-b)r = ar - br = ra - rb = r(a-b)$$

showing that $a - b \in C$, hence a subgroup;

• closed under multiplication: for $a, b \in C$, for all $r \in R$,

$$abr = a(br) = a(rb) = (ar)b = (ra)b = rab$$

showing that $ab \in C$;

• finally, 1 is in C since 1r = r1 for all $r \in R$.

Clearly the center forms a commutative ring since for $a, b \in C$, ab = ba. Then it follows by definition that a commutative division ring is a field.

Problem III.2.10. Prove that the centralizer of a is a subring for every $a \in R$. Prove that the center is the intersection of all its centralizers, and prove that every centralizer of a division ring is a division ring.

Proof. We use the same test as above. Let C_x denotes the centralizer of x.

• It is a subgroup of (R, +): for $a, b \in C_x$,

$$(a-b)x = ax - bx = xa - xb = x(a-b)$$

showing that $a - b \in C_x$, hence a subgroup;

• closed under multiplication: for $a, b \in C_x$,

$$abx = a(bx) = a(xb) = (ax)b = (xa)b = xab$$

showing that $ab \in C_x$;

• finally, 1 is in C_x since 1x = x1.

It is easy that the center is the intersection of all its centralizers, since such elemet in the intersection must commute with the whole ring R. Finally, if R is a division ring, then for every element $a \in C_x$, then we show that $a^{-1} \in C_x$:

$$ax = xa \Rightarrow axa^{-1} = x \Rightarrow xa^{-1} = a^{-1}x$$

as desired.

Problem III.2.11. Prove that a division ring R which consists of p^2 elements where p is a prime, is commutative.

Proof. Suppose the contrary that R is not commutative. Then the center C must be a proper subring, which can only consist of p elements by Lagrange. Now let $r \in R \setminus C$. Then the centralizer of r will contain at least r and C by III.2.10, therefore the centralizer of r must be R itself (again by Lagrange), for every $r \in R \setminus C$. But then the intersection of all centralizer are now R (element of center has centralizer R clearly), which is a contradiction to that C is proper. Therefore R must be commutative, i.e. a field.

Problem III.2.12. Consider the inclusion map $\iota : \mathbb{Z} \hookrightarrow \mathbb{Q}$. Describe the cokernel of ι in Ab and its cokernel in Ring .

Solution. In Ab, this is easy: it is just $\mathbb{Q}/\operatorname{im} \iota = \mathbb{Q}/\mathbb{Z}$. However in Ring, we notice that for any map $\alpha : \mathbb{Q} \to F$ that satisfy $\alpha \circ \iota = 0$, we have

$$0_F = \alpha(1) = \alpha \circ \iota(1) = \alpha(1) = 1_F$$

which shows that F must be the zero ring by III.1.1. Now the unique homomorphism $\bar{\alpha}$: coker $\iota \to F$ must also be the zero map, and by the requirement $\bar{\alpha} \circ \pi \circ \iota = 0$, we finally have $\pi \circ \iota = 0$, and by the same argument as above, we have that the codomain of π is the zero ring, i.e. coker $\iota = 0$.

III.3

Problem III.3.2. Let $\varphi: R \to S$ be a ring homomorphism, and let J be an ideal of S. Prove that $\varphi^{-1}(J)$ is an ideal.

Proof. The ideal is clearly nonempty, so it suffices to check that $\varphi^{-1}(J)$ is a additive subgroup and satisfies the absorption property. For $x, y \in \varphi^{-1}(J)$, we have $\varphi(x), \varphi(y) \in J$, so $\varphi(x) - \varphi(y) = \varphi(x - y) \in J$, therefore $x - y \in \varphi^{-1}(J)$, showing that it is a subgroup of (R, +).

Now for any $r \in R$, $a \in \varphi^{-1}(J)$, we have $\varphi(a) \in J$, so $\varphi(r)\varphi(a) = \varphi(ra) \in J$, and hence $ra \in \varphi^{-1}(J)$, showing the left-absorption property. The right case is the same.

Problem III.3.3. Let $\varphi: R \to S$ be a ring homomorphism, and let J be an ideal of R.

- Show that $\varphi(J)$ need not be an ideal of S.
- Assume that φ is surjective; then prove that $\varphi(J)$ is an ideal of S.
- Assume that φ is surjective, and let $I = \ker \varphi$. Let $\bar{J} = \varphi(J)$. Prove that

$$\frac{R/I}{\bar{J}} \cong \frac{R}{I+J}.$$

Proof. Let $\varphi : \mathbb{Z} \hookrightarrow \mathbb{R}$ be inclusion (and clearly a homomorphism). Then every ideal of \mathbb{Z} will be directly transformed into \mathbb{R} . But since \mathbb{R} is a field, by III.3.8 (which will be proved later) the possible ideal of \mathbb{R} are only $\{0\}$ and \mathbb{R} itself, so the image of a homomorphism need not to be an ideal.

However, If φ is surjective, Then $\varphi(J)$ is indeed an ideal: if $\varphi(x), \varphi(y) \in \varphi(J)$, then so is $\varphi(x) - \varphi(y) = \varphi(x - y) \in \varphi(J)$. The absorption property is also true since $\varphi(r)\varphi(x) = \varphi(rx) \in \varphi(J)$.

Finally, we consider the homomorphism

$$\phi: R/I \to R/(I+J), \quad \phi(a+I) = a+I+J$$

 ϕ is clearly a surjective homomorphism, and by first isomorphism theorem

$$\frac{R/I}{\ker \phi} \cong \frac{R}{I+J}$$

so it remains to solve ker ϕ , which is

$$\begin{aligned} \ker \phi &= \{a+I: a+I+J=I+J\} \\ &= \{a+b+I: a\in I, b\in J\} \\ &= \{b+I: b\in J\} \\ &= \{\varphi(b)\in S: b\in J\} \quad (\text{regarding } R/I \text{ as } S) \\ &= \varphi(J) = \bar{J} \end{aligned}$$

therefore

$$\frac{R/I}{\bar{J}} \cong \frac{R}{I+J}$$

as required.

Problem III.3.7. Let R be a ring, and let $a \in R$. Prove that Ra is a left-ideal of R and aR is a right-ideal of R. Prove that a is a left-, resp. right-, unit if and only if R = aR, resp. R = Ra.

Proof. We prove only the left-ideal case since the same argument holds for right-ideal case. Ra is a subgroup of (R, +) since for $ra, sa \in Ra, ra - sa = (r - s)a \in Ra$. The absorption property follows easily since $rsa = (rs)a \in Ra$.

If a is a right unit, then there exists u such that ua = 1. Then 1 is contained in Ra, and since for all $r \in R$, $r \cdot 1 \in Ra$, we conclude that R = Ra.

Problem III.3.8. Prove that R is a division ring if and only if its only left-ideals and right-ideals are $\{0\}$ and R.

In particular, a commutative ring R is a field if and only if the only ideals of R are $\{0\}$ and R.

Proof.

 (\Rightarrow) If a nonzero element a is in the left-ideal I, then so is 1 since

$$1 = a^{-1}a \in I$$
 by definition

Therefore any nonzero left-ideals are automatically R itself. The right-ideal case is the same. (\Leftarrow) If a nonzero element a does not have a left inverse, then aR would be a proper right-ideal by III.3.7. Therefore all elements must have left(and hence right) inverse.

Problem III.3.10. Let $\varphi: k \to R$ be a ring homomorphism, where k is a field and R is a nonzero ring. Prove that φ is *injective*.

Proof. φ is injective if and only if $\ker \varphi = \{0\}$ by Proposition III.2.4. Also, the ideals of k are only $\{0\}$ and k by III.3.8. If $\ker \varphi = \{0\}$ then there is nothing to prove, so let $\ker \varphi = k$. But this means that $\varphi = 0$, so we have

$$1_R = \varphi(1) = 0 = \varphi(0) = 0_R$$

and by III.1.1, R is a zero ring, a contradiction to the hypothesis. Therefore $\ker \varphi = \{0\}$, showing that φ is injective.

Problem III.3.12. Let R be a *commutative* ring. Prove that the set of nilpotent elements forms an ideal of R. This ideal is called the *nilradical* of R.

Proof. From III.1.6 we already know that it forms a subgroup of (R, +) by relpacing b with -b, so it remains to check that it is an ideal. Let I be such ideal. If $a \in R, r \in I$ and $r^n = 0$, then since

$$(ar)^n \stackrel{!}{=} a^n r^n = 0$$

in which! is where commutative is used. Therefore $ar \in I$, proving the absorption property.

For an counter-example where R is not commutative, simply consider the example of III.1.6: it is not even a subgroup of (R, +).

Problem III.3.13. Let R be a commutative ring, and let N be its nilradical. Prove that R/N contains no nonzero nilpotent elements. Such a ring is said to be reduced.

Proof. Pick an element $a \in R \setminus N$. Then for every integer n > 0,

$$(a+N)^n = a^n + \binom{n}{1}a^{n-1}N + \dots + N^n = a^n + N$$

Since a is not nilpotent, $a^n \neq 0$ for every n, showing that a + N is not nilpotent for $a \in R \setminus N$.

III.4

Problem III.4.1. Let R be a ring, and let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a family of ideals of R. We let

$$\sum_{\alpha \in A} I_{\alpha} := \left\{ \sum_{\alpha \in A} r_{\alpha} \text{ such that } r_{\alpha} \in I_{\alpha} \text{ and } r_{\alpha} = 0 \text{ for all but finitely many } \alpha \right\}.$$

Prove that $\{I_{\alpha}\}_{{\alpha}\in A}$ is an ideal of R and that it is the smallest ideal containing all of the ideals I_{α} .

Proof. We only consider the case when $A = \{1, 2\}$: Any other A follows the same exact argument. Let $I = I_1 + I_2$. I is a subgroup of (R, +): the two elements in I can be represented as $r_1 + r_2$ and $r'_1 + r'_2$, and clearly $(r_1 - r'_1) + (r_2 - r'_2)$ is in I. The absorption property is also clear, since $r(r_1 + r_2) = (rr_1 + rr_2) \in I$.

Now it suffice to show that I is minimal. For every ideal that contains I_1 and I_2 , they must also contain $r_1 + r_2$ for $r_1 \in I_1$ and $r_2 \in I_2$, since ideal is a subgroup of (R, +). Therefore every such ideal must also contain I, proving the minimality of I.

Problem III.4.2. Prove that the homomorphic image of a Noetherian ring is Noetherian.

Proof. Let R be Noetherian, S be any ring, $\varphi: R \to S$ be a surjective ring homomorphism. Let J be an ideal of S. By III.3.2, the preimage is an ideal, which we call $I = \langle a_1, ... a_n \rangle$. We claim that $J = \langle \varphi(a_1), ... \varphi(a_n) \rangle$, so every finitely generated ideal will map to a finitely generated ideal, proving that S is Noetherian.

Indeed, since $a_i \in \varphi^{-1}(J)$, $\varphi(a_i) \in J$ for i = 1, ..., n, so $\langle \varphi(a_1), ... \varphi(a_n) \rangle \subseteq J$. On the other hand, for an element $j \in J$, there exists $i \in R$ such that $\varphi(i) = j$ by surjectivity, therefore $i \in I$, so i is generated by elements $a_1, ..., a_n$, i.e. $i = r_1 a_1 + ... + r_n a_n$. Then since φ is a homomorphism,

$$\varphi(i) = j = \varphi(r_1 a_1 + \dots + r_n a_n) = s_1 \varphi(a_1) + \dots + s_n \varphi(a_n)$$

so $J \subseteq \langle \varphi(a_1), ... \varphi(a_n) \rangle$, and the claim is proved.

Problem III.4.4. Prove that if k is a field, then k[x] is a PID.

Proof. Let I be any ideal of k[x]. If I = (0), then there is nothing to prove. Otherwise, there is some polynomial $f \in I$ that has minimal degree in I and is monic (since you can do scalar division). We claim that I = (f). Indeed, for $g \in I$, we can use division algorithm to write

$$g(x) = f(x)q(x) + r(x)$$

where $\deg r(x) < \deg f(x)$. Since k[x] is a subgroup, $r = g - fq \in I$, and by the minimality of f, r(x) = 0, so every element of I can be written as g(x)f(x) for some $g \in k[x]$, showing that k[x] is a PID.

Problem III.4.5. Let I, J be ideals in a commutative ring R, such that I + J = (1). Prove that $IJ = I \cap J$.

Proof. If $x \in IJ$, then it can be represented as ij for some $i \in I, j \in J$, and by the property of ideal, $ji \in I, ij \in J$, so $ij \in I \cap J$. Conversely, we have

$$I \cap J = (I \cap J)(1) = (I \cap J)(I + J) = (I \cap J)I + (I \cap J)J \subseteq IJ + IJ = IJ$$

showing the identity.

Problem III.4.7. Let R = k be a field. Prove that every nonzero (principle) ideal in k[x] is generated by a unique *monic* polynomial.

Proof. From III.4.4 we already know that every ideal is generated by a single polynomial f. Since k is a field, we can do division, so there is a monic polynomial f(x)/a where a is the coefficient of the largest degree in f. Then it's trivial that (f) = (f/a).

Problem III.4.11. Let R be a commutative ring, $a \in R$, and $f_1(x), \ldots, f_r(x) \in R[x]$.

• Prove the equality of ideals

$$(f_1(x), \ldots, f_r(x), x - a) = (f_1(a), \ldots, f_r(a), x - a).$$

• Prove the useful substitution trick

$$\frac{R[x]}{(f_1(x),\ldots,f_r(x),x-a)} \cong \frac{R}{(f_1(a),\ldots,f_r(a))}$$

Proof. We consider only the case k = 1; the other cases are just extending the same argument. We are required to prove that

$$(f(x), x - a) = (f(a), x - a)$$

For f(x), we can apply division algorithm to get

$$f(x) = q(x)(x - a) + r$$

where $q(x) \in R[x], r \in R$. By plug in x = a, we obtain r = f(a). Therefore f(x) is generated by f(a) and (x - a), showing $f(x) \in (f(a), x - a)$. On the other hand, note the division algorithm also implies

$$f(a) = f(x) - q(x)(x - a) \in (f(x), x - a)$$

therefore $f(a) \in (f(x), x-a)$, so (f(x), x-a) = (f(a), x-a). Now since $R[x]/(x-a) \cong R$, by III.3.3

$$\frac{R}{\varphi(J)} \cong \frac{R[x]}{\ker \varphi + J}$$

for an ideal $J \in R[x]$, $\varphi : R[x] \to R$ a surjective homomorphism. It is clear that how should we choose these: by taking

$$J = (f_1(x), \dots, f_r(x)), \quad \varphi(f(x)) = f(a)$$

we have

$$\frac{R}{(f_1(a),\ldots,f_r(a))} \cong \frac{R[x]}{(f_1(x),\ldots,f_r(x),x-a)}$$

as desired (note that φ is surjective).

Problem III.4.13. Let R be an integral domain. For all k = 1, ..., n, prove that $(x_1, ..., x_k)$ is prime in $R[x_1, ..., x_n]$.

Proof. We proceed by induction. For the case k = 1, we have

$$\frac{R[x]}{(x)} \cong R \quad \text{(p.p.151)}$$

and since R is a domain, it follows by definition that (x) is a prime ideal. Suppose that for k < n, the argument holds. Then for k = n, choose

$$J = (x_1, \dots, x_{n-1}), \quad \varphi : R[x_1, \dots, x_n] \hookrightarrow R[x_1, \dots, x_{n-1}]$$

where φ is the inclusion map and ker $\varphi = (x_n)$. Then by III.3.3

$$\frac{R[x_1, \dots, x_n]/(x_n)}{(x_1, \dots, x_{n-1})} \cong \frac{R[x_1, \dots, x_n]}{(x_1, \dots, x_{n-1}) + (x_n)}$$

which simplifies to

$$\frac{R[x_1, \dots, x_{n-1}]}{(x_1, \dots, x_{n-1})} \cong \frac{R[x_1, \dots, x_n]}{(x_1, \dots, x_n)}$$

By induction hypothesis, the quotient on the left is a domain since (x_1, \ldots, x_{n-1}) is a prime ideal, therefore by definition, (x_1, \ldots, x_n) is a prime ideal.

In the following, let M be a (left-)module over R.

III.5

Problem III.5.3. Prove that $0 \cdot m = 0$ and that $(-1) \cdot m = -m$ for all $m \in M$.

Proof. Since
$$0m = (0+0)m = 0m + 0m, 0m = 0$$
. Since $0 = 0m = (-1+1)m = (-1)m + m, (-1)m = -m$.

Problem III.5.11. Let R be commutative. Prove that there is a natural bijection between the set of R[x]-module structures on M and $\operatorname{End}_{R-\mathsf{Mod}}(M)$.

Proof. If f is a R-endomorphism $f: M \to M$, then we have to show that there are some suitable maps

$$R[x] \times M \to M$$

 $(q(x), m) \to ?$

that makes M into a module. We consider $(g(x), m) \to g(f)(m)$, where if $g(x) = \sum_i a_i x^i$, then

$$g(f)(m) = \sum_{i} a_i f^i(m)$$
 where $f^i = \underbrace{f \circ \cdots \circ f}_{i \text{ times}}$

We can easily check by definition that M satisfies the property of R[x]-module, so this gives the injectivity of R[x]-modules to $\operatorname{End}_{R-\mathsf{Mod}}(M)$. To prove surjectivity, if M is a R[x]-module, then define f(m) = xm. Then M is indeed an endomorphism, proving the statement.

Problem III.5.12. Let M, N be R-modules, and let $\varphi : M \to N$ be a homomorphism of R-modules which has a inverse (therefore a bijection). Prove that φ^{-1} is also a homomorphism of R-modules. Conclude that a bijective R-module homomorphism is a R-module isomorphism.

Proof. Since

$$\varphi(\varphi^{-1}(m) + \varphi^{-1}(n)) = m + n = \varphi(\varphi^{-1}(m+n))$$

we have $\varphi^{-1}(m) + \varphi^{-1}(n) = \varphi^{-1}(m+n)$. And

$$\varphi(r\varphi^{-1}(m)) = r\varphi(\varphi^{-1}(m)) = rm = \varphi(\varphi^{-1}(rm))$$

so
$$r\varphi^{-1}(m) = \varphi^{-1}(rm)$$
 indeed.

This is the end of the solution manual as of February 18, 2020. Please revisit

https://github.com/macyayaya/algebra-chapter-0-solutions/releases for possible new releases.

Thanks for your reading.