1 Кручения в некоторых тензорных произведениях модулей

В задачах алгебраической геометрии, связанных с разрешением особенностей когерентных алгебраических пучков, бывает необходимо исследовать поведение когерентного алгебраического пучка при преобразованиях базисного многообразия или схемы. Преобразование базисного многообразия подбирается так, чтобы трансформировать не локально свободный когерентный пучок в локально свободный пучок на новом многообразии или схеме.

Локальным аналогом этой задачи является исследование свойств тензорного произведения модуля M над коммутативным кольцом A на A-алгебру \widetilde{A} .

В [Ссылка на статью] автором изложена одна из возможных конструкций разрешения особенностей когерентного пучка, локально сводящаяся к преобразованию $M \mapsto \widetilde{A} \otimes_A M$. Алгебра \widetilde{A} получается при этом следующим образом: $\widetilde{A} = \bigoplus_{s \geq 0} (I[t] + (t))^s/(t^{s+1})$, где $I \subset A$ – ненулевой собственный идеал, t – элемент, трансцендентный над кольцом A.

Рассмотрим коммутативное ассоциативное нетерово целостное кольцо A с единицей.

Определение 1.1 Пусть $I \subset A$ идеал. *Алгеброй раздутия* идеала I назовем выражение

$$\widehat{A} := \bigoplus_{s \ge 0} I^s.$$

Определение 1.2 Пусть M – произвольный A-модуль. Подмодулем кручения tors(M) называется множество

$$tors(M) = \{x \in M | \exists a \in A \setminus \{0\}, ax = 0\}.$$

Определение 1.3 Будем говорить, что A-модуль M является модулем без кручения, если tors(M) = 0.

Пусть M-A-модуль без кручения. Поскольку тензорное произведение не является точным слева, при тензорном умножении M на алгебру раздутия \widehat{A} в модуле $\widehat{A}\otimes_A M$ может возникнуть кручение.

Решается следующая частная задача: описать подмодуль кручения $tors\left(\widehat{A}\otimes_A I\right)$ A-модуля $\widehat{A}\otimes_A I$.

Пусть, для простоты, идеал I=(x,y) порожден элементами $x,y\in A.$ Выясним как устроены его степени.

Теорема 1.1 Пусть $s \ge 1$, тогда $I^s = (x^s, x^{s-1}y, \dots, xy^{s-1}, y^s)$.

Доказательство. Методом математической индукции. Пусть s=1. Тогда $I^1=(x,y)$ – верно. Пусть утверждение верно значений $s\leq r$. При s=r+1 имеем:

$$I^{r+1} = I^r I = \left\{ \left(\sum_{n=0}^r a_n x^n y^{n-r} \right) (b_1 x + b_0 y) | a_n, b_m \in A \right\}.$$

Теперь, раскрывая скобки, получим

$$I^{r+1} = \{b_0 a_0 y^{r+1} + (b_1 a_0 + b_0 a_1) x y^r + \dots + (b_1 a_{r-1} + b_0 a_r) x^r y + b_1 a_r x^{r+1} | a_n, b_m \in A\}$$

Таким образом, в силу произвольности коэффициентов a_i, b_i ,

$$I^{r+1} = (x^{r+1}, x^r y, \dots, xy^r, y^{r+1}),$$

Что завершает доказательство теоремы.

Так как тензорное произведение дистрибутивно относительно прямой суммы **[сослаться на соответствующее свойство]**, то справедлива цепочка равенств:

$$\widehat{A} \otimes_A I = \left(\bigoplus_{s \geq 0} I^s\right) \otimes_A I = \bigoplus_{s \geq 0} \left(I^s \otimes_A I\right).$$

Предложение 1.1 Пусть $\{M_j|j\in J\}$ – семейство А-модулей. Кольцо А – целостное. Тогда

$$\operatorname{tors}\left(\bigoplus_{j\in J} M_j\right) = \bigoplus_{j\in J} \operatorname{tors}\left(M_j\right).$$

Доказательство. Покажем, что tors $\left(\bigoplus_{j\in J} M_j\right) \subset \bigoplus_{j\in J} \mathrm{tors}\,(M_j)$. Пусть $t\in\mathrm{tors}\,\left(\bigoplus_{j\in J} M_j\right)$. По определению, существует такое $a\in A\setminus\{0\}$, что at=0. Заметим, что $t=(t_0,t_1,\ldots,t_j,\ldots)$, где только конечное число t_j отлично от нуля. Так как в прямой сумме умножение производится покоординатно, то

$$at = (at_0, at_1, \dots, at_j, \dots) = 0,$$

из чего следует, что

$$at_1 = at_0 = \cdots = at_i = \cdots = 0$$

и $t_0 \in \text{tors }(M_0), t_1 \in \text{tors }(M_1), \ldots, t_j \in \text{tors }(M_j), \ldots$ Таким образом, $t \in \bigoplus_{j \in J} \text{tors }(M_j)$. Теперь покажем обратное включение. Пусть $t \in \bigoplus_{j \in J} \text{tors }(M_j)$. Пусть $t_{i_1}, t_{i_2}, \ldots, t_{i_k}$ – все элементы t, отличные от нуля. Как отмечалось ранее, их будет конечное число. По определению, найдутся $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ все отличные от нуля и такие, что $a_{i_1}t_{i_1} = a_{i_2}t_{i_2} = \cdots = a_{i_k}t_{i_k} = 0$. Обозначим $a := a_{i_1}a_{i_2} \ldots a_{i_k}$. Так как кольцо A целостное, то ни при каких отличных от нуля a_{i_l} их произведение не будет равно нулю. Тогда

$$at_{i_l} = (a_{i_1} \dots a_{i_{l-1}} a_{i_{l+1}} \dots a_{i_k}) a_{i_l} t_{i_l} = 0,$$

что справедливо для всех $l=\overline{1,k}$. Тем самым мы показали, что существует такое $a\in A\setminus\{0\}$, что at=0. Значит $t\in \mathrm{tors}\left(\bigoplus_{j\in J}M_j\right)$.

Теперь, воспользовавшись предложением 1.1, можно записать седующее:

$$\operatorname{tors}\left(\bigoplus_{s\geq 0} \left(I^s \otimes_A I\right)\right) = \bigoplus_{s\geq 0} \operatorname{tors}\left(I^s \otimes_A I\right).$$

Таким образом, исходная задача свелась к вычислению подмодуля кручения $tors(I^s\otimes_A I)$ А-модуля $I^s\otimes_A I$.

Теорема 1.2 Пусть образующие иделала I = (x, y) алгебраически независимы. Тогда $tors(I^s \otimes_A I)$ описывается следующим образом:

tors
$$(I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$
.

Доказательство. Так как идеалы I^s и I являются конечнопорожденными A-модулями, то, воспользовавшись свойством тензорного произведения [Ссылка на это свойство], имеем

$$I^{s} \otimes_{A} I = \left\langle x^{n} y^{s-n} \otimes x, x^{n} y^{s-n} \otimes y \middle| n = \overline{0, s} \right\rangle_{A}.$$

Пусть $\mu: I^s \otimes_A I \to I^{s+1}$ – гомоморфизм, который действует на образующих следующим образом: $x^n y^{s-n} \otimes x \mapsto x^{n+1} y^{s-n}, \ x^n y^{s-n} \otimes y \mapsto x^n y^{s-n+1}$. Докажем, что $\ker \mu = \operatorname{tors} (I^s \otimes_A I)$. Очевидно, что этот гомоморфизм сюръективен. Тогда, согласно теореме о гомоморфизме, $I^{s+1} \simeq (I^s \otimes_A I) / \ker \mu$. Так как кольцо A целостное, то I^{s+1} не имеет подмодуля кручения, следовательно, $\operatorname{tors} (I^s \otimes_A I) \subset \ker \mu$.

Чтобы показать обратное включение, вычислим $\ker \mu$. Пусть $z \in I^s \otimes_A I, z$ имеет вид

$$z = a_0(x^s \otimes x) + a_1(x^{s-1}y \otimes x) + \dots + a_s(y^s \otimes x) + b_1(x^s \otimes y) + \dots + b_s(xy^{s-1} \otimes y) + b_{s+1}(y^s \otimes y),$$

где $a_i, b_i \in A$. $\mu(z)$ будет иметь следующий вид:

$$\mu(z) = a_0 x^{s+1} + (a_1 + b_1) x^s y + \dots + (a_s + b_s) x y^s + b_{s+1} y^{s+1}.$$

Приравняв $\mu(z)=0$ и воспользовавшись тем фактом, что x,y алгебраически независимы, мы получим условие на коэффициенты:

$$\begin{cases} a_0 &= 0 \\ a_1 + b_1 &= 0 \\ \dots \\ a_s + b_s &= 0 \\ b_{s+1} &= 0. \end{cases}$$

Отсюда, $a_0 = b_{s+1} = 0$, $a_i = -b_i$, $i = \overline{1, s}$ и

$$\ker \mu = \left\langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y \middle| n = \overline{1, s-1} \right\rangle_A.$$

Покажем, что любая образующая $\ker \mu - x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y$ является элементом кручения. Рассмотрим выражение $xy(x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y)$ и преобразуем его:

$$xy(x^ny^{s-n} \otimes x - x^{n+1}y^{s-n-1} \otimes y) =$$

$$x(x^ny^{s-n}) \otimes xy - y(x^{n+1}y^{s-n-1}) \otimes xy =$$

$$x^{n+1}y^{s-n} \otimes xy - x^{n+1}y^{s-n} \otimes xy = 0.$$

Действительно, каждая образующая $\ker \mu$ является элементом кручения. Тем самым мы показали включнение $\ker \mu \subset \operatorname{tors} (I^s \otimes_A I)$.

Таким образом, мы доказали, что tors $(I^s \otimes_A I) = \ker \mu$ и имеет место равенство

tors
$$(I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$
.

Результат данной теоремы можно обобщить следующим образом.

Теорема 1.3 Пусть образующие идеала I = (x, y) алгебраически независимы. Тогда

подмодуль кручения $tors(I^s \otimes_A I^r)$ описывается следующим образом:

$$\operatorname{tors}\left(I^{s} \otimes_{A} I^{r}\right) = \left\{ \sum_{\substack{0 \leq n \leq s \\ 0 \leq m \leq r}} a_{nm} x^{n} y^{s-n} \otimes x^{m} y^{r-m} \right\},\,$$

где коэффициенты a_{ij} удовлетворяют соотношению

$$\sum_{i+j=n+m} a_{ij} = 0 \text{ } \partial \text{ns } \operatorname{scex} n, m.$$

Доказательство. Доказательство проводится по схеме, аналогичной доказательству теоремы 1.2. Модуль $I^s \otimes_A I^r$ имеет вид

$$I^s \otimes_A I^r = \langle x^n y^{s-n} \otimes x^m y^{r-m} | n = \overline{0, s}, m = \overline{0, m} \rangle_A$$

Рассмотрим гомоморфизм $\mu: I^s \otimes_A I^r \to I^{s+r}$, который действует на образующих как $x^n y^{s-n} \otimes x^m y^{r-m} \mapsto x^{n+m} y^{s+r-n-m}$. Докажем, что $\ker \mu = \operatorname{tors} (I^s \otimes_A I^r)$. Очевидно, что μ сюръективен и, воспользовавшись теоремой о гомоморфизме мы можем записать $I^{s+r} \simeq (I^s \otimes_A I^r)/\ker \mu$. Так как кольцо A целостное, то I^{s+r} является модулем без кручений из чего следует, что $\operatorname{tors} (I^s \otimes I^r) \subset \ker \mu$.

Покажем обратное включение. Для этого вычислим $\ker \mu$. Любой элемент $z \in I^s \otimes_A I^r$ записывается в виде линейной комбинации образующих модуля

$$z = \sum_{\substack{0 \le n \le s \\ 0 \le m \le r}} a_{nm} x^n y^{s-n} \otimes x^m y^{r-m},$$

где $a_{nm} \in A$. Вычислив $\mu(z)$ получим следующее

$$\mu(z) = \sum_{\substack{0 \le n \le s \\ 0 \le m \le r}} a_{nm} x^{n+m} y^{s+r-n-m}.$$

Сгруппируем слагаемые с одинаковыми степенями x и тогда полученное выражение запишется в виде

$$\mu(z) = \sum_{k=0}^{s+r} \left(\sum_{i+j=k} a_{ij} \right) x^k y^{s+r-k}.$$

Так как образующие алгебраически независимы, то из равенства $\mu(z)=0$ следует, что

$$\sum_{i+j=k} a_{ij} = 0.$$

С учетом полученного соотношения, элементы ядра имеют вид

$$z = \sum_{k=0}^{s+r} \sum_{n=0}^{\min(s,k)} a_{nk-n} x^n y^{s-n} \otimes x^{k-n} y^{r-k+n}.$$

Покажем, что $z \in \text{tors}(I^s \otimes_A I^r)$. Действительно, зафиксируем $k, n \leq \min(s, k)$. Рас-

смотрим образующую $x^ny^{s-n}\otimes x^{k-n}y^{r-k+n}$ и умножим на x^ry^r . Имеем

$$x^{r}y^{r}(x^{n}y^{s-n} \otimes x^{k-n}y^{r-k+n}) = x^{k-n}y^{r-(k-n)}x^{n}y^{s-n} \otimes x^{r-(k-n)}y^{k-n}x^{k-n}y^{r-k+n} = x^{k}y^{r+s-k} \otimes x^{r}y^{r}.$$

При фиксированном k мы получили сумму следующего вида

$$x^{r}y^{r} \sum_{n=0}^{\min(s,k)} a_{nk-n} x^{n} y^{s-n} \otimes x^{k-n} y^{r-k+n} = \left(\sum_{n=0}^{\min(s,k)} a_{nk-n}\right) x^{k} y^{r+s-k} \otimes x^{r} y^{r} = 0,$$

где последнее равенство следует из условия, наложенного на коэффициенты a_{ij} . Данное равенство выполнено при всех $k = \overline{0}, s + \overline{r}$. Таким образом, мы доказали, что $\ker \mu \subset \operatorname{tors}(I^s \otimes_A I^r)$.

Следствие 1.4 Пусть числа a, b – натуральные, $I = (x, y)^a, J = (x, y)^b,$ тогда

$$\operatorname{tors}\left(I^{s} \otimes_{A} J\right) = \left\{ \sum_{\substack{0 \leq n \leq as \\ 0 \leq m \leq b}} a_{nm} x^{n} y^{as-n} \otimes x^{m} y^{b-m} \right\},\,$$

где коэффициенты a_{ij} удовлетворяют соотношению

$$\sum_{i+j=n+m} a_{ij} = 0 \text{ для всех } n, m.$$

Исходную задачу можно обобщить, заменив алгебру раздутия на алгебру

$$\widetilde{A} := \bigoplus_{s>0} (I[t] + (t))^s / (t^{s+1}),$$

где t – элемент, трансцендентный над A. Отметим, что алгебра \widetilde{A} является A-алгеброй без кручения, однако, если рассмотривать \widetilde{A} как алгебру над \widetilde{A} , то возникают элементы кручения, например, $(0,t,0,\ldots)$. Далее будем работать с \widetilde{A} как с A-алгеброй.

Обозначим s-ое слагаемое в прямой сумме как $I_t^s:=(I[t]+(t))^s/(t^{s+1})$. Сформулируем вспомогательную теорему

Лемма 1.1

$$I_t^s = \langle 1 \rangle_{I^s} + \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A. \tag{1}$$

Доказательство. Сразу отметим, что при вычислении I_t^s будем рассматривать многочлены степени не больше s, так как при факторизации по (t^{s+1}) большие степени обратятся в 0. Рассмотрим произведение

$$\prod_{n=1}^{s} a_{n0} + (a_{n1} + b_n)t + a_{n2}t^2 + \dots + a_{ns}t^s.$$

Выясним, к каким степеням идеала I принадлежат коэффициенты при t^k , $0 \le k \le s$. Рассмотрим слагаемые в коэффициенте при t^k , которые имеют вид

$$[t^k] = b_{j_1} b_{j_2} \dots b_{j_k} a_{j_{k+1}0} \dots a_{j_s0},$$

где множества $\{j_1,\ldots,j_k\},\{j_{k+1},\ldots,j_s\}\subset\{1,\ldots,s\}$ непересекаются, а $\{j_1,\ldots,j_s\}=\{1,\ldots,s\}$. Очевидно, что это слагаемое принадлежит I^{s-k} , при этом взять в произведение большее число множителей, необязательно принадлежащих идеалу I нельзя, так как мы ограничены степеню k. Поэтому I^{s-k} является наименьшей степенью идеала, к которой могут принадлежать слагаемые в коэффициенте при t^k . Однако, отметим, что для любой степени идеала I^r , где $r \geq s-k$ найдется такое слагаемое в коэффициенте при t^k , что оно принадлежит I^r , например, пусть r=l+(s-k)

$$a_{11}a_{21}\dots a_{l1}b_{l+1}\dots b_k a_{k+1,0}\dots a_{s0}\in I^r$$
.

Так как все коэффициенты были произвольные, то имеет место разложение I_t^s в сумму своих подмодулей

$$I_t^s = \langle 1, t, \dots, t^s \rangle_{I^s} + \langle t, t^2, \dots, t^s \rangle_{I^{s-1}} + \dots + \langle t^{s-1}, t^s \rangle_{I} + \langle t^s \rangle_{A}.$$

Заметим, так как справедливы включения $I^s \subset I^{s-1} \subset \cdots \subset I \subset A$, то справедливы включения $\langle t^k \rangle_{I^s} \subset \langle t^k \rangle_{I^{s-k}}$. Поэтому исходное разложение можно переписать в виде

$$I_t^s = \langle 1 \rangle_{I^s} + \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A$$
.

Заметим, что сумма (1) является прямой, так как I_t^s — подмодуль A-модуля A[t]. Теперь, зная строение A-модуля I_t^s , можно сформулировать теорему

Теорема 1.5 Пусть $J \subset A$ – идеал в A, тогда

$$tors (I_t^s \otimes_A J) = t^0 tors (I^s \otimes_A J) + t^1 tors (I^{s-1} \otimes_A J) + \dots + t^{s-1} tors (I \otimes_A J).$$

B частности,

$$tors (I_t^s \otimes_A I) = t^0 tors (I^s \otimes_A I) + t^1 tors (I^{s-1} \otimes_A I) + \dots + t^{s-1} tors (I \otimes_A I).$$

Доказательство. Так как тензорное произведение дистрибутивно относительно прямой суммы и в силу теоремы 1.1 можно записать

$$tors (I_t^s \otimes_A J) = tors (\langle t^0 \rangle_{I^s} \otimes_A J) + tors (\langle t^1 \rangle_{I^{s-1}} \otimes_A J) + \dots + tors (\langle t^{s-1} \rangle_{I^1} \otimes_A J) + tors (\langle t^s \rangle_A \otimes_A J).$$

Так как t – элемент трансцендентный над A, то его не аннулирует никакой многочлен с коэффициентами из A. Значит он не даст вклада в кручения и его можно вынести за знак tors (·). Таким образом имеем

$$tors (I_t^s \otimes_A J) = t^0 tors (\langle 1 \rangle_{I^s} \otimes_A J) + t^1 tors (\langle 1 \rangle_{I^{s-1}} \otimes_A J) + \dots + t^{s-1} tors (\langle 1 \rangle_{I^1} \otimes_A J) + t^s tors (\langle 1 \rangle_A \otimes_A J).$$

Но $\langle 1 \rangle_{I^k}$, очевидно, является самим идеалом I^k . Таким образом, имеем

$$tors (I_t^s \otimes_A J) = t^0 tors (I^s \otimes_A J) + t^1 tors (I^{s-1} \otimes_A J) + \dots + t^{s-1} tors (I \otimes_A J).$$

Задача свелась к вычислению tors $(I^s \otimes J)$. Пусть J = I, тогда справделива следующая

Теорема 1.6 Пусть образующие идеала I алгебраически независимы, тогда кручения A-модуля $I_t^s \otimes_A I$ дается суммой своих подмодулей:

$$t^{0} \langle x^{s-1}y \otimes x - x^{s} \otimes y, x^{s-2}y^{2} \otimes x - x^{s-1}y \otimes y, \dots, y^{s} \otimes x - xy^{s-1} \otimes y \rangle_{A} + t^{1} \langle x^{s-2}y \otimes x - x^{s-1} \otimes y, x^{s-3}y^{2} \otimes x - x^{s-2}y \otimes y, \dots, y^{s-1} \otimes x - xy^{s-2} \otimes y \rangle_{A} + \dots + t^{s-1} \langle x \otimes y - y \otimes x \rangle_{A}.$$

Доказательство. Воспользуемся теоремой 1.5 и для каждого $(I^s \otimes_A I)$ применим теорему 1.2.