Number Theory 1

Diophantine Equations

These are the polynomial equations for which integral solution exists.

Example: 3x + 7y = 1 or $x^2 - y^2 = z^3$.

For competitive programming, we only need to study linear diophantine equations of the form

$$ax + by = c$$

Note: a,b,c \in I (set of integers).

Solutions to these equations exist only if gcd(a,b) divides c.

Extended Euclid Algorithm

It is the extended form of euclid's algorithm. GCD(a,b) has the property that it can be written in the form of an equation like

$$ax + by = gcd(a,b)$$

We will find values of x and y

$$ax + by = gcd(a, b)$$

 $gcd(a, b) = gcd(b, a%b)$
 $gcd(b, a%b) = bx_1 + (a%b)y_1$
 $a%b = a - (a/b) * b$

From the above equations we get,

$$ax + by = bx_1 + (a\%b)y_1$$

 $ax + by = bx_1 + (a - (a/b) * b)y_1$
 $ax + by = ay_1 + b(x_1 - (a/b) * y_1)$

Comparing the coefficients of a and b, we get

$$x = y_1$$
$$y = x_1 - (a/b) * y_1$$

Code

```
struct Triplet
{
   int x,y,gcd;
};

Triplet extendedEuclid(int a, int b)
{
   if(b == 0) {
      Triplet ans;
      ans.gcd = a;
      ans.x = 1;
      ans.y = 0;
      return ans;
}

Triplet smallAns = extendedEuclid(b, a%b);

Triplet ans;
   ans.gcd = smallAns.gcd;
   ans.x = smallAns.y;
   ans.y = smallAns.x - (a/b)*smallAns.y;
   return ans;
}
```

Multiplicative Modulo Inverse

Consider the equation

$$(A*B)%m = 1$$

We are given A and m. Our task is to find the value of B such that R.H.S becomes 1.

Memory tip: To remember MMI, just remember this line For what value of B eqn (A * B)%m = 1 holds true.

Finding MMI,
Consider the equation

$$A * B \equiv 1 \pmod{m}$$

 $\Rightarrow (A * B - 1) \equiv 0 \pmod{m}$
 $\Rightarrow A * B - 1 = mq$
 $\Rightarrow A * B + mQ = 1$

This is our normal diophantine equation. For its solution to exist gcd(A,m) should divide 1, which means gcd(A,m) = 1

Our MMI will simply be the values of x from our Extended Euclid Algorithm.

Code

```
int mmInverse(int a, int m)
{
    Triplet ans = extendedEuclid(a, m);
    return ans.x;
}

void solve()
{
    int a=19, m=17;
    int ans = mmInverse(a, m);
    cout <<"MMI is "<< ans << endl;
}</pre>
```

APRILYAKSHA