Доказани твърдения на семинарните упражнения по ДИС 1

Твърдения, доказани с индукция

- 1. **Неравенство на Бернули:** Ако $n \in \mathbb{N}$, то $(1+x)^n \ge 1 + n \cdot x$, $x \in [-1; +\infty]$.
- 2. Свойство: $b^m c^m = (b c)(b^{m-1} + b^{m-2}c + b^{m-3}c^2 + \dots + bc^{m-2} + c^{m-1})$
- 3. **Тъждество на Безу:** Ако P(x) е полином от степен n и реалното число $a \in \mathbb{R}$ е корен на полинома, то P(x) = (x a)Q(x), където Q(x) е полином от степен n 1.
- 4. Свойство на полиномите: Полином от степен n има най-много n различни нули.
- 5. **Еднаквост на полиноми:** Два полинома, които приемат общи стойности на коефициентите в n+1 различни точки, имат равни коефициенти.

Биномни коефициенти

Биномен коефициент: Нека $\alpha \in \mathbb{R}$. Числата $\binom{\alpha}{0} = 1$ и $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}$ се наричат биномни коефициенти.

Основни свойства:

- (a) $\binom{\alpha}{k} + \binom{\alpha}{k+1} = \binom{\alpha+1}{k+1}$.
- (б) Ако $n \in \mathbb{N}$ и $k \in \{1, 2, ..., n\}$, то:
 - $\bullet \ \binom{n}{k} = \frac{n!}{k!(n-k)!}$
 - ullet $\binom{n}{k} = \binom{n}{n-k}$
- (в) Ако $n, k \in \mathbb{N}$ и k > n, то $\binom{n}{k} = 0$.

Биномна формула на Нютон:

- (a) $(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$
- (6) $(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-2}a^2b^{n-2} + \binom{n}{n-1}ab^{n-1}\binom{n}{n}b^n$

Други твърдение за биномни коефициенти:

- (a) Ако $n \in \mathbb{N}$ и $k \in \{1, 2, 3, \dots, n\}$, то $\binom{n}{k}$ е броят на k-елементните подмножества на множество, състоящо се от n елемента. (комбинаторичен смисъл на биномния коефициент)
- (6) $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$
- **(B)** $\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$
- $(\Gamma) \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots$

Твърдения свързани с ограниченост на множества:

- 1. Нека $M\subset\mathbb{R},\ N\subset\mathbb{R}$ са непразни. Ако $M\subseteq N$ и N (по-голямото множество) е ограничено отгоре, то $=>\sup M\le\sup N$
- 2. Нека $M \subset \mathbb{R}, N \subset \mathbb{R}$ са непразни, ограничени отгоре множества от положителни реални числа. Тогава M.N ($\{m.n|m\in M,n\in N\}$) също е ограничено отгоре и $\sup(M.N)=\sup M.\sup N$
- 3. Нека $M \subset \mathbb{R}$, $N \subset \mathbb{R}$ са непразни, ограничени отгоре множества от реални числа. M+N $(\{m+n|m\in M,n\in N\})$ също е ограничено отгоре и $\sup(M+N)=\sup M+\sup N$

Твърдения свързани с граници и сходимост на редици:

- 1. Ако $\lim_{n\to\infty} a_n = a$ и $\lim_{n\to\infty} b_n = b$
 - $\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$
 - $\bullet \lim_{n \to \infty} (a_n b_n) = a b$
 - $\bullet \lim_{n\to\infty} (a_n.b_n) = a.b$
 - $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}, b \neq 0$
- 2. **Теорема за двамата полицаи:** Ако $a_n \leq c_n \leq b_n, \forall n \in \mathbb{N}$ и $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ са сходящи и клонят към l, то $\{c_n\}_{n=1}^{\infty}$ също е сходяща и $\lim_{n \to \infty} c_n = l$
- 3. Ако $k \in \mathbb{N}$, то;
 - $\bullet \ \lim_{n \to \infty} (\frac{1}{n^k}) = 0$
 - $\lim_{n \to \infty} (\frac{1}{\sqrt[k]{n}}) = 0$
 - Ako $q \in (-1,1)$, to $\lim_{n \to \infty} q^n = 0$
- 4. Ако $\lim_{n\to\infty}a_n=0$ и $\{b_n\}_{n=1}^\infty$ е ограничена, то $\lim_{n\to\infty}(a_n.b_n)=0$
- 5. Ако $\lim_{n\to\infty}a_n=+\infty$ и $\lim_{n\to\infty}b_n=l$, то $\lim_{n\to\infty}a_n.b_n=egin{cases} +\infty,l>0\\ -\infty,l<0 \end{cases}$
- 6. Ако $a_n \geq 0, \forall n \in \mathbb{N}$ и $\lim_{n \to \infty} a_n = l$, то $\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{l}, \ k \in \mathbb{N}$
- 7. Ако $a \in \mathbb{R}$ е фиксирано число, то $\lim_{n \to \infty} \frac{a^n}{n!} = 0$
- 8. Ако a>1 е фиксирано число, то $\lim_{n\to\infty}\frac{n^k}{a^n}=0,\,k\in\mathbb{N}$
- 9. Ако $q\in (-1,1)$ е фиксирано числом то $\lim_{n\to\infty} n^kq^n=0,\,k\in\mathbb{N}$
- 10. Ако a>0 е фиксирано число, то $\lim_{n\to\infty}\sqrt[n]{a}=1$
- 11. $\lim_{n \to \infty} \sqrt[n]{n} = 1$
- 12. Ако $\lim_{n\to\infty} a_n = a > 0$, то $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$

- 13. Редицата $an=(1+\frac{1}{n})^n$ е ограничена и монотонна, следователно е и сходяща. Тя клони към неперовото число e. $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$. Тук важат следните твърдения:
 - $\bullet \lim_{n \to \infty} (1 + \frac{k}{n})^n = e^k$
 - $\bullet \lim_{n \to \infty} (1 \frac{k}{n})^n = e^{-k}$
 - $\bullet \lim_{n \to \infty} (1 + \frac{1}{kn})^n = e^{\frac{1}{k}}$
 - $\bullet \lim_{n \to \infty} (1 \frac{1}{kn})^n = e^{-\frac{1}{k}}$

Твърдения свързани с числови редове:

- 1. Хармоничният ред **НЕ** е сходящ
- 2. Ако $\sum_{n=1}^{\infty} a_n$ е сходящ. то $\lim_{n\to\infty} a_n = 0$. Забележка: Обратното не е вярно ако редица клони към нула, не е задължително редът ѝ да е сходящ. Пример: хармоничният ред.
- 3. **Принцип за мажориране:** Ако $0 \le a_n \le b_n$ за $\forall n \in \mathbb{N}$ и $\sum_{n=1}^{\infty} b_n$ е сходящ, то и $\sum_{n=1}^{\infty} a_n$ също е сходящ.
- 4. **Критерий за сравняване:** Ако $a_n>0,\,b_n>0$ за $\forall n\in\mathbb{N}$ и $\exists K=\lim_{n\to\infty}\frac{a_n}{b_n},$ като $0< K<\infty,$ то $\sum_{n=1}^\infty a_n$ и $\sum_{n=1}^\infty b_n$ са или едновременно сходящи, или разходящи. Казваме, че са сравними и пишем: $\sum_{n=1}^\infty a_n \sim \sum_{n=1}^\infty b_n$
- 5. Основни числови редове, които се използват за сравняване:
 - $\sum_{n=0}^{\infty} q^n$, който е $\begin{cases} \text{сходящ, ако } q \in (-1,1) \\ \text{разходящ, ако } q \in (-\infty,-1] \cup [1,+\infty) \end{cases}$ (геометрична прогресия)
 - $\sum_{n=0}^{\infty} \frac{1}{n^{\alpha}}$, който е $\begin{cases} \text{сходящ, ако } \alpha > 1 \\ \text{разходящ, ако } \alpha \leq 1 \end{cases}$ (обощен хармоничен ред)
- 6. **Критерий на Коши за редове с неотрицателни членове:** ако $a_n \geq 0$ за $\forall n \in \mathbb{N}$ и $a_n \geq a_{n+1}$ за $\forall n \in \mathbb{N}$, то числовите редове $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} 2^n a_{2^n}$ са сравними.
- 7. **Критерий на Даламбер:** Нека $\sum_{n=1}^{\infty} a_n$ е числов ред с положителни членове, за който \exists границита $D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ (крайна или безкрайна). Тогава:
 - Ако D < 1, то редът е сходящ.
 - ullet Ако D>1, то редът е разходящ.
 - Ако D=1 и $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=1$ отдясно (стойностите на редицата са по-големи от 1), то редът е разходящ.

- 8. **Критерий на Коши:** Нека $\sum_{n=1}^{\infty} a_n$ е числов ред с положителни членове, за който \exists границита $C = \lim_{n \to \infty} \sqrt[n]{a_n}$ (крайна или безкрайна). Тогава:
 - Ако C < 1, то редът е сходящ.
 - Ако C > 1, то редът е разходящ.
 - Ако C=1 и $\lim_{n\to\infty} \sqrt[n]{a_n}=1$ отдясно (стойностите на редицата са по-големи от 1), то редът е разходящ.
- 9. **Критерий на Раабе Дюамел:** Нека $\sum_{n=1}^{\infty} a_n$ е числов ред с положителни членове, за който \exists границита $R = \lim_{n \to \infty} n(\frac{a_n}{a_{n+1}} 1)$ (крайна или безкрайна). Тогава:
 - Ако R > 1, то редът е сходящ.
 - Ако R < 1, то редът е разходящ.
 - Критерият на Раабе и Дюамел е по-силен от този на Даламбер дава отговор за сходимостта на по-голямо множество от редове

Често използвани тригонометрични твърдения:

- 1. $\sin \alpha \cdot \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha \beta)]$
- 2. $\sin 2\alpha = 2\sin \alpha\cos \alpha$

Твърдения свързани с граници на функции:

1. balls

Обратни тригонометрични функции:

1. arcsin

Функцията $y=\sin x:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\longrightarrow\left[1,1\right]$ е строго растяща в този интервал, а също и обратима. Обратната ѝ функция е:

$$x = \arcsin y : [-1, 1] \longrightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$
 (чете се аркус синус)

Така при
$$y \in [-1,1]$$
 имаме, че $x = \arcsin y \iff \begin{cases} x = [-\frac{\pi}{2},\frac{\pi}{2}] \\ \sin x = y \end{cases}$

2. arccos

Функцията $y=\cos x$, разглеждана в $[0,\pi] \longrightarrow [-1,1]$ е строго намаляваща и следователно е обратима. Обратната ѝ функция е $x = \arccos y \iff \begin{cases} x = [0, \pi] \\ \cos x = y \end{cases}$

3. arctg

Функцията $y=\operatorname{tg} x$, разглеждана в $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\longrightarrow\mathbb{R}$ е строго растяща и следователно е обратима. Обратната ѝ функция е $x=\operatorname{arctg} y:\mathbb{R}\longrightarrow\left(-\frac{\pi}{2},\frac{pi}{2}\right)\iff \begin{cases} x=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\\ \operatorname{tg} x=y \end{cases}$

3. arccotg

5

Функцията
$$y=\cot x$$
, разглеждана в $(0,\pi)\longrightarrow\mathbb{R}$ е строго намаляваща и следователно е обратима. Обратната ѝ функция е $x=arrcot gy:\mathbb{R}\longrightarrow(0,\pi)\iff\begin{cases}x=(0,\pi)\\\cot x=y\end{cases}$