Interspecies machine learning: Using animal training data to classify humans neurons

LUKA BLAGOJEVIC, DEPARTMENT OF NETWORK AND DATA SCIENCE - 1.4.2021.

DATA MINING AND BIG DATA ANALYTICS PROJECT

1. Introduction and dataset

- Project goal: By using animal training, classify human neuron cell types
- Why? A lot of easily obtainable animal data useful since human data is harder to obtain, control for and it's more expensive
- Neuromorpho.org animal and human neuron data

(22 features, I removed highly correlated ones – 19 used)

- Two classes:
 - 1) **primary cell type** (13 of them)
 - 2) secondary cell type (31 of them)

Species	Number of data points							
Human	7150							
Monkey	2950							
Rat	7450							
Mouse	7450							

Measurements

Soma Surface: 1350.39 µm²

Number of Stems: 5

Number of Bifurcations: 19

Number of Branches: 43

Overall Width: 306.94 µm

Overall Height: 409.98 µm

Overall Depth: 107.38 µm

Average Diameter: 1.06 µm

Total Length: 3041.4 µm

Total Surface: 10207.5 µm

Total Volume: 4050.87 µm

Max Euclidean Distance : 283.54 μm

Max Path Distance: 292.86 µm

Max Branch Order: 6

Average Contraction: 0.95

Total Fragmentation: 248

Partition Asymmetry: 0.51

Average Rall's Ratio: 1.22

Average Bifurcation Angle Local: 60.19°

Average Bifurcation Angle Remote : 60.07°

Fractal Dimension: 1.01

2. Principal component analysis

Explained variance

3. Do classes, across species, refer to morphologically similar things?

Hypothesis: Class labels refer to the similar morphological objects across species (same name - same shape)

Human data: Neuron class A

Mouse data: Neuron class A

Rejected hypothesis (same name – different shape)

Human data: Neuron class A

Mouse data: Neuron class A

Intraclass similarity between species TEST - Do class labels referal to objects in of similar neuromorphological shape across species

Human data: Neuron class A

Human data: Neuron class A

Human data: Neuron class A

Human data: Neuron class A

1 cluster found

Hypothesis true

2 or more clusters found

Hypothesis rejected

Adjusted Rand score

0 - random clustering 1 - perfect match (clustered classes and original classes)

Adjusted Mutual Information score

0 - random clustering 1 - perfect match (clustered classes and original classes) Start with 13 primary cell types that are common to humans and animals

Filter the data, one cell type per run (and >20 samples)

Select next class to compute

Compute k-means for $k \in [1,20]$

I obtained 1 cluster for each of cell classes

Hypothesis is true

4. Hyperparameter optimization and learning curve for classifiers

- With Grid search, I found optimal hyperparameters for 4 classifiers on mixed data:
- Linear SVC
- 2. Logistic Regression
- 3. Decision Trees
- K-neighbors Decision Trees and K-neighbors tended to overfit, so I didn't use them for the final evaluation

7. Results - Test data: Human neurons

It has potential, but not as good as human training data

		Trainin		ta: Hu	man support		Training precision	_	a: Ani	mal support	1	raining		a: Mo	nkey
Linea SVC	principal cell pyramidal sensory interneuron glia magnopyramidal von economo neuron	0.90 0.98 0.78	0.95 0.94 0.87 0.40 0.12 0.93 0.47	0.94 0.92 0.92 0.53 0.19 0.94 0.61	11000 4910 960 420 100 350 70	principal cell pyramidal sensory interneuron glia magnopyramidal von economo neuron	0.42 0.00 0.26 0.47 0.02 0.00	0.38 0.00 0.71 0.16 1.00 0.00	0.40 0.00 0.39 0.24 0.04 0.00	4397 1963 383 167 40 142 29 v	principal cell pyramidal sensory interneuron glia magnopyramidal on economo neuron	0.60 0.49 0.00 0.67 0.04 0.00 0.00	0.71 0.22 0.00 0.01 0.97 0.00 0.00	0.65 0.30 0.00 0.02 0.07 0.00	4397 1963 383 167 40 142 29
	accuracy macro avg weighted avg	0.84 0.92	0.67 0.93	0.93 0.72 0.92	17810 17810 17810	accuracy macro avg weighted avg	0.17 0.28	0.32 0.28	0.28 0.15 0.27	7121 7121 7121	accuracy macro avg weighted avg		0.27 0.50	0.50 0.15 0.49	7121 7121 7121
Log Reg.	principal cell pyramidal sensory interneuron glia magnopyramidal von economo neuron	0.94 0.90 0.98 0.79 0.48 0.96	0.95 0.94 0.88 0.40 0.10 0.93 0.50	0.95 0.92 0.92 0.53 0.17 0.94 0.67	11000 4910 960 420 100 350 70	principal cell pyramidal sensory interneuron glia magnopyramidal von economo neuron	0.00 0.15 0.70 0.03 0.00	0.25 0.00 0.93 0.17 1.00 0.00	0.28 0.00 0.26 0.27 0.05 0.00	4397 1963 383 167 40 142 29	principal cell pyramidal sensory interneuron glia magnopyramidal von economo neuron	0.50 0.00 0.00 0.00 0.04 0.00	0.75 0.21 0.00 0.00 1.00 0.00	0.68 0.30 0.00 0.00 0.08 0.00 0.00	4397 1963 383 167 40 142 29
	accuracy macro avg weighted avg	0.86 0.92	0.67 0.93	0.93 0.73 0.92	17810 17810 17810	accuracy macro avg weighted avg	0.17	0.34 0.21	0.21 0.12 0.20	7121 7121 7121	accuracy macro avę weighted avę	g 0.17	0.28 0.53	0.53 0.15 0.50	7121 7121 7121

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

$$Precision = \frac{TP}{TP + FP}$$

High recall – negatives are most likely (true) negatives

High precision – positives are most likely are (true) positives

Low recall – negatives are most likely not (true) negatives

Low precision – positives are most likely not (true) positives

Thank you for the attention!