Fyzikální veličiny a jednotky, Soustava jednotek SI

FYZIKÁLNÍ VELIČINA = pojem, kterým charakterizujeme fyzikální vlastnosti, stavy i změny těchto stavů fyzikálních objektů (např.: délka, teplota, hmotnost, ...)

Každá fyzikální veličina má svou:

- 1. značku (např.: fyzikální veličina hmotnost značka m)
- **2. jednotku -** je to vlastně dohodou stanovená hodnota dané fyzikální veličiny (např.: veličina hmotnost jednotka kilogram)

Obecný zápis mezi hodnotou fyzikální veličiny a její jednotkou: $X = \{X\}$ [X]

X značka dané fyzikální veličiny

{X} číselná hodnota - udává, kolikrát je hodnota měřené fyzikální veličiny větší nebo menší než zvolená měřící jednotka

[X] měřící jednotka fyzikální veličiny - představuje pevnou a stálou hodnotu veličiny, s níž porovnáváme veličiny téhož druhu

například: m = 65 kg nebo l = 17 m

Veškeré fyzikální veličiny rozdělujeme na:

1. Základní jednotky soustavy SI

Soustava SI určuje sedm **základních veličin a jednotek**, které pokrývají všechny oblasti fyziky:

Veličina	Značka jednotky	Značka
délka	metr	m
čas	sekunda	S
hmotnost	kilogram	kg
elektrický proud	ampér	А
teplota	kelvin	К
látkové množství	mol	mol
svítivost	kandela	cd

Odvozené jednotky jsou takové, které lze vyjádřit jako kombinaci (součin, podíl, mocninu) základních jednotek. Některé odvozené jednotky nemají speciální název (např. m³, m/s), většina však ano (např. joule, volt).

Definice základních jednotek:

https://vytapeni.tzb-info.cz/teorie-a-schemata/18320-nova-definice-zakladnich-jednotek-si

- 2. odvozené vyjadřování pomocí definičních vztahů z veličin základních
 - hustota = hmotnost / objem

3. doplňkové

- rovinný úhel [rad]
- prostorový úhel [sr]
- 4. vedlejší: m [t], t [rok], [hod], V duté [l], [ml], S [ha]

5. Násobky a díly fyzikálních jednotek:

mocnina	číslo	předpona	značka	příklad
10 ¹⁵ atd.				
1012	1000000000000	Tera-	Т	TJ
10 ⁹	1000000000	Giga-	G	GW
10 ⁶	1000000	Mega-	М	MW
10 ³	1000	kilo-	k	kg
10 ²	100	hekto-	h	hl
10 ¹	10	deka-	dk	dkg
10°	1			
10-1	0,1	deci-	d	dm
10-2	0,01	centi-	С	cm
10-3	0,001	mili-	m	ms
10-6	0,000001	mikro-		μm
10-9	0,000000001	nano-	n	nm
10 ⁻¹²	0,000000000001	piko-	р	ps
10 ⁻¹⁵ atd.				

Převody některých jednotek:

 $1 \text{ g cm}^{-3} = 1000 \text{ kg m}^{-3}$

 $1 \text{ m}^3 = 1000 \text{ I}$ $1 \text{ dm}^3 = 1 \text{ I}$ Převod jednotek rychlosti

