EINFÜHRUNG IN DIE QUANTENRECHNUNG Bits und Qubits

Brian Benjamin Pomerantz und Henry Sebastian Graßhorn Gebhardt

P&GG Monotechnische Anstalt

2021 März 20 und 2021 April

- Einfache Computadoras
 - Mathematik
 - Architektur
- 2 Computadora Cuántica: Eine schwarze Kunst
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kuns
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kuns
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

$$1572_{10} = 1 \times 10^3 +$$

$$1572_{10} = 1 \times 10^3 + 5 \times 10^2 +$$

$$1572_{10} = 1 \times 10^3 + 5 \times 10^2 + 7 \times 10^1 +$$

$$1572_{10} = 1 \times 10^3 + 5 \times 10^2 + 7 \times 10^1 + 2 \times 10^0$$

In decimal notation,

$$1572_{10} = 1 \times 10^3 + 5 \times 10^2 + 7 \times 10^1 + 2 \times 10^0$$

From binary to decimal,

$$10011012 = 1 \times 26 + 1 \times 23 + 1 \times 22 + 1 \times 20$$

$$= 64 + 8 + 4 + 1$$

$$= 7710$$

In decimal notation,

$$1572_{10} = 1 \times 10^3 + 5 \times 10^2 + 7 \times 10^1 + 2 \times 10^0$$

From binary to decimal,

$$10011012 = 1 \times 26 + 1 \times 23 + 1 \times 22 + 1 \times 20$$

$$= 64 + 8 + 4 + 1$$

$$= 7710$$

Going from decimal to binary notation,

$$\begin{aligned} 27_{10} &= 16 + 8 + 2 + 1 \\ &= 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\ &= 11011_2 \end{aligned}$$

$$2^{0} = 1$$
 $2^{1} =$
 $2^{2} =$
 $2^{3} =$
 $2^{4} =$
 $2^{5} =$
 $2^{6} =$
 $2^{7} =$
 $2^{8} =$

$$= 00000001_2$$

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 2^{3} = 2^{4} = 2^{5} = 2^{6} = 2^{7} = 2^{8} = 2^{8} = 2^{1}$

$$= 00000001_2$$

 $= 00000010_2$

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 2^{4} = 2^{5} = 2^{6} = 2^{7} = 2^{8} = 2^{8} = 2^{1}$

$$= 00000001_2$$
$$= 00000010_2$$
$$= 000000100_2$$

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 2^{5} = 2^{6} = 2^{7} = 2^{8} = 2^{8} = 2^{8}$

$$= 00000001_2$$

$$= 00000010_2$$

$$= 00000100_2$$

$$= 000001000_2$$

$$2^{0} = 1$$
 = 000000001₂
 $2^{1} = 2$ = 000000010₂
 $2^{2} = 4$ = 000001000₂
 $2^{3} = 8$ = 000010000₂
 $2^{4} = 16$ = 000010000₂
 $2^{5} = 2^{6} = 2^{7} = 2^{8} = 2^{8} = 2^{10} =$

$$2^{0} = 1$$
 = 000000001₂
 $2^{1} = 2$ = 000000010₂
 $2^{2} = 4$ = 000001000₂
 $2^{3} = 8$ = 000010000₂
 $2^{4} = 16$ = 000100000₂
 $2^{5} = 32$ = 000100000₂
 $2^{6} = 2^{7} = 2^{8} = 2^{8} = 2^{10}$

$$2^{0} = 1$$
 = 000000001₂
 $2^{1} = 2$ = 000000010₂
 $2^{2} = 4$ = 000001000₂
 $2^{3} = 8$ = 000010000₂
 $2^{4} = 16$ = 000100000₂
 $2^{5} = 32$ = 000100000₂
 $2^{6} = 64$ = 001000000₂
 $2^{7} = 2^{8} = 2^{8} = 2^{8}$

$2^0 = 1$	$= 00000001_2$
$2^1 = 2$	$= 00000010_2$
$2^2 = 4$	$= 000000100_2$
$2^3 = 8$	$= 000001000_2$
$2^4 = 16$	$= 000010000_2$
$2^5 = 32$	$= 000100000_2$
$2^6 = 64$	$= 001000000_2$
$2^7 = 128$	$= 010000000_2$
$2^8 =$	

$2^0 = 1$	$= 00000001_2$
$2^1 = 2$	$= 00000010_2$
$2^2 = 4$	$= 000000100_2$
$2^3 = 8$	$= 000001000_2$
$2^4 = 16$	$= 000010000_2$
$2^5 = 32$	$= 000100000_2$
$2^6 = 64$	$= 001000000_2$
$2^7 = 128$	$= 010000000_2$
$2^8 = 256$	$= 100000000_2$

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kuns
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

Logic Gates

AND

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	1

Adder

Computer Architektur

Computer Architektur

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kunst
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kunst
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

A QPU operates on Qubits instead of Bits

- QPU: Quantum Processing Unit
- Bits: 0, 1
- Qubits: $|0\rangle$, $|1\rangle$, and superpositions thereof

Light is a wave

Polarization Experiment

Figure 2.1
Single polaroid attenuates unpolarized light by 50 percent.

Polarization Experiment

Figure 2.2
Two orthogonal polaroids block all photons.

Polarization Experiment

Figure 2.3
Inserting a third polaroid allows photons to pass.

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kunst
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

Vektoren

Alle Polarisationsrichtungen können durch zwei Vektoren dargestellt werden:

$$|\psi
angle = {\it a} \left|
ightarrow
angle + {\it b} \left|\uparrow
ight
angle$$

Die Notation wird Bra-ket Notation genannt.

Vektoren

$$|\psi\rangle=a\left|
ightarrow
ightarrow+b\left|\uparrow
ight>$$

Beispiele:

$$|45^{\circ}\rangle = \frac{1}{\sqrt{2}} | \rightarrow \rangle + \frac{1}{\sqrt{2}} | \uparrow \rangle$$

$$|135^{\circ}\rangle = -\frac{1}{\sqrt{2}} | \rightarrow \rangle + \frac{1}{\sqrt{2}} | \uparrow \rangle$$

$$|30^{\circ}\rangle = \frac{1}{2} | \rightarrow \rangle + \frac{\sqrt{3}}{2} | \uparrow \rangle$$

$$|\theta\rangle = \sin \theta | \rightarrow \rangle + \cos \theta | \uparrow \rangle$$

Inner Product

$$|\psi\rangle \cdot |\varphi\rangle = (\langle \psi|) (|\varphi\rangle)$$
$$= \langle \psi|\varphi\rangle$$
$$= \langle \varphi|\psi\rangle^*$$

if

$$|\psi\rangle = a | \rightarrow \rangle + b | \uparrow \rangle$$

where $a, b \in \mathbb{C}$, then

$$\langle \psi | = a^* \langle \rightarrow | + b^* \langle \uparrow |$$

wobei a^* ist die konjugiert komplexe Zahl von a und wobei $\langle \psi |$ is the Dual Vector of $| \psi \rangle$

Orthonormality

 $|\psi\rangle$ is orthogonal to $|\varphi\rangle$ iff $\langle\psi|\varphi\rangle=0$.

 $|\psi\rangle$ is normalized iff $\langle\psi|\psi\rangle=1$.

A basis is orthonormal iff $\langle \psi | \varphi \rangle = \delta^{K}_{\psi \varphi}$ for basis vectors $| \textit{psi} \rangle$ and $| \varphi \rangle$.

Bespielsweise,

$$\begin{split} \langle \rightarrow | \rightarrow \rangle &= 1 & \langle \rightarrow | \uparrow \rangle = 0 \\ \langle \uparrow | \rightarrow \rangle &= 0 & \langle \uparrow | \uparrow \rangle = 1 \end{split}$$

- Einfache Computadoras
 - Mathematik
 - Architektur

- 2 Computadora Cuántica: Eine schwarze Kunst
 - Polarisationsexperiment
 - Vektoren
 - Messungen und Wahrscheinlichkeiten

Wahrscheinlichkeiten

$$\left|\psi\right\rangle = \mathbf{a}\left|\rightarrow\right\rangle + \mathbf{b}\left|\uparrow\right\rangle$$

Welle: $|a|^2$ und $|b|^2$ sind die relativen Intensitäten des jeweiligen Zustandes.

Teilchen: $|a|^2$ und $|b|^2$ sind die relativen Wahrscheinlichkeiten das Teilchen im jeweiligen Zustand vorzufinden.

Messungen

Motivation: Wir wollen den finalen Zustand unseres Experimentes kennen. Darum müssen wir eine Messung durchführen. Jeder Filter ist ein Messapparat.

Pregunta: Was ist das Resultat einer Messung für ein einzelnes Photon?

Antwort: Jede Messung ist eine Projektion auf den Vektor der Messung.

Beispiele eines Messoperators:

$$\left| \rightarrow \right\rangle \left\langle \rightarrow \right|, \quad \left| \uparrow \right\rangle \left\langle \uparrow \right|$$

Messoperatoren

$$|\psi\rangle = a | \rightarrow \rangle + b | \uparrow \rangle$$

Auf unseren vorigen Zustand angewendet,

$$\begin{aligned} \left(\left| \rightarrow \right\rangle \left\langle \rightarrow \right| \right) \left| \psi \right\rangle &= \left(\left| \rightarrow \right\rangle \left\langle \rightarrow \right| \right) \left(a \left| \rightarrow \right\rangle + b \left| \uparrow \right\rangle \right) \\ &= a \left| \rightarrow \right\rangle \left\langle \rightarrow \right| \rightarrow \right\rangle + b \left| \rightarrow \right\rangle \left\langle \rightarrow \right| \uparrow \right\rangle \\ &= a \left| \rightarrow \right\rangle \end{aligned}$$

 $(|\uparrow\rangle\langle\uparrow|)|\psi\rangle = \text{Ihr sagt's uns...}$

Messoperatoren

$$|\rightarrow\rangle \langle \rightarrow |\psi\rangle = a |\rightarrow\rangle$$
$$|\uparrow\rangle \langle \uparrow |\psi\rangle = b |\uparrow\rangle$$

$$\langle \psi | \rightarrow \rangle \langle \rightarrow | \psi \rangle = |a|^2$$

 $\langle \psi | \uparrow \rangle \langle \uparrow | \psi \rangle = |b|^2$

Gendered nouns are stupid, get wrecked German/Spanish, English FTW