CS 171: Discussion Section 9 (April 1)

1 Group Operations

Definitions: Let $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$ be the description of a cyclic group for which the discrete log problem is hard. $|\mathbb{G}| = q \approx 2^n$, and $g \in \mathbb{G}$ is a generator of \mathbb{G} . Next, let $h \in \mathbb{G}$ be an arbitrary group element, and sample $a, x, y \leftarrow \mathbb{Z}_q$ independently and uniformly.

Question: For each of the following tasks, describe how it can be performed efficiently (in poly(n) time) or prove that it cannot be performed efficiently.

- 1. Given x, g, compute g^x .
- 2. Sample a uniformly random element of \mathbb{G} .
- 3. Given h, compute h^{-1} .
- 4. Given a, y, g^x , compute $g^{a \cdot x y}$.
- 5. Given $a, g^{a \cdot x}$, compute $a \cdot x$.

2 Another PKE Construction from DDH

Consider the following public-key encryption scheme, which is based on El Gamal encryption.

1. $\mathsf{Gen}(1^n)$: Sample $(\mathbb{G}, q, g) \leftarrow \mathcal{G}(1^n)$ and $x \leftarrow \mathbb{Z}_q$. Then compute $h = g^x$. Next,

let
$$pk = (\mathbb{G}, q, g, h)$$

 $sk = (\mathbb{G}, q, q, x)$

- 2. $\mathsf{Enc}(\mathsf{pk}, m)$: Let $m \in \{0, 1\}$. First, sample $y \leftarrow \mathbb{Z}_q$. Next:
 - (a) If m = 0, compute and output the following ciphertext:

$$c = (c_1, c_2) = (g^y, h^y)$$

(b) If m=1, then sample $z\leftarrow \mathbb{Z}_q$ and output the following ciphertext:

$$c = (c_1, c_2) = (g^y, g^z)$$

3. Dec(sk, c): TBD

Questions:

- 1. Fill in the algorithm $\mathsf{Dec}(\mathsf{sk},c)$ so that the scheme is efficient and correct, up to negligible error.
- 2. Prove that this encryption scheme is CPA-secure if DDH is hard.