

rtpcr package (version >= 1.0.7)

'rtpcr' package was developed for amplification efficiency calculation, statistical analysis and graphical display of real-time PCR data in R.

Α

Analysis type	Column arrangement of the input data frame (x)			
Amplification efficiency	Dilutions - targetCt - refCt			
t-test (accepts multiple genes)	condition (control level first) - gene (ref gene(s) last)- efficiency - Ct			
ANOVA or	factor1 - rep - targetE - targetCt - refE - refCt			
ANCOVA (Up to	factor1 - factor2 - rep - targetE - targetCt - refE - refCt			
three factors)	factor1 - factor2 - factor3 - rep - targetE - targetCt - refE - refCt			
ANOVA or	factor1 - block - rep - targetE - targetCt - refE - refCt			
ANCOVA with	factor1 - factor2 - block - rep - targetE - targetCt - refE - refCt			
blocking	factor1 - factor2 - factor3 - block - rep - targetE - targetCt - refE - refCt			
with two reference genes	rep - targetE - targetCt - ref1E - ref1Ct - ref2E - ref2Ct			
calculating biological	biologicalRep - techcicalRep - Etarget - targetCt - Eref - refCt			
replicated	biolRep - techRep - Etarget - targetCt - ref1E - ref1Ct - ref2E - ref2Ct			

NOTE: For ANOVA and ANCOVA analysis, each line in the input data set belongs to a separate individual (reflecting a non-repeated measure experiment).

Repeated measure data structure

•	
Column arrangement of the input data	Example in the package
id - time - targetE - targetCt - ref1E - ref1Ct	data_repeated_measure_1
id - time - targetE - targetCt - ref1E - ref1Ct - ref2E - ref2Ct	
id - treatment - time - targetE - targetCt - ref1E - ref1Ct	data_repeated_measure_2
id - treatment - time - targetE - targetCt - ref1E - ref1Ct - ref2E	- ref2Ct

NOTE: In the "id" column of a repeated measure data frame, a unique number is assigned to each individual, e.g. all the three number 1 indicate one individual.

res <- qpcrMeans(model) C y.axis.adjust = C2H2.26 **GAPDH** qpcrTTESTplot(x) Slope = -3.415Slope = -3.38832.5 Fold Change E = 1.973E = 1.963fontsizePvalue = 30.0 ₹2 = 0.997 R2 = 0.999**ರ** 27.5 25.0 efficiency(x) C2H2-26 C2H2-01 C2H2-12 -2.0 -1.5 -1.0 -0.5 0.0 -2.0 -1.5 -1.0 order = Gene Log(dilution) Ε qpcrANOVAFC(x) oneFACTORplot(res) Relative Expression qpcrREPEATED(x) show.letters = TRUE Fold Change letter.position.adjust = errorbar = (ci or se) reference v.axis.bv = (calibrartor) width x.axis.labels_rename = 1 L2 L1 L3 vs L1 Samples vs Sample 1 **Factor Levels** G S twoFACTORplot(res) ylab = Relative Expression Expression 4 Genotype legend.title = --- Genotype threeFACTORplot(res) Α1 legend.position=→ A2 show.errorbar = S show.points = Relative | 0.25 0.5 Factor levels

res <- qpcrANOVARE(x)\$Result

Output tables & objects

qpcrTTEST()

Raw data table Fold Change statistics

qpcrANOVARE()

Raw data table CRD-based Im and ANOVA table Relative Expression statistics

qpcrANOVAFC()

Raw data table factorial-based Im and ANOVA ANCOVA table Fold Change statistics

gpcrREPEATED()

Raw data table Im and ANOVA Fold Change statistics

meanTech()

Table with mean of technical replicates

multiplot()

Producing multiple plots plate using ggplot objects

efficiency()

standard curves Slope, Efficiency, & R2

qpcrREPEATED

contrast FC pvalue sig LCL UCL time1 1.0000 1.0000 0.00000 0.0000 0.703589 2 time2 vs time1 1.2555 0.5540 0.43805 3.5987 0.532338 * 0.88731 7.2895 0.707415 3 time3 vs time1 2.5432 0.0350

qpcrANOVAFC()

	contrast	FC	pvalue	sig	LCL	UCL	se
1	D0	1.0000	1.0000		0.0000	0.0000	0.3445
2	D1 vs D0	1.0705	0.8051		0.5266	2.1762	0.2631
3	D2 vs D0	3.5967	0.0003	***	1.7693	7.3116	0.3576

qpcrTTEST()

Gene dif FC LCL UCL pvalue 2 C2H2-01 -2.0067 4.0185 2.4598 6.5649 0.0014 0.2193

gpcrANOVARE()

	factor1	factor2	RE	LCL	UCL	letters	se
R:0	R	0	0.28519	0.19834	0.41008	d	0.02082
R:0.25	R	0.25	0.62706	0.43609	0.90166	bc	0.43880
R:0.5	R	0.5	0.98851	0.68746	1.42140	b	0.08413
S:0	S	0	0.79554	0.55326	1.14392	b	0.21284
S:0.25	S	0.25	0.41466	0.28837	0.59625	cd	0.25403
S:0.5	S	0.5	2.96905	2.06482	4.26925	а	0.05508

efficiency()

Efficiency_Analysis_Results Gene Slope 1 C2H2.26 -3.388 1.973 0.997 2 GAPDH -3.415 1.963 0.999

xlab =

\$Slope of differences [1] 0.0264574

K

qpcrTTESTplot(x, order = "none", numberOfrefGenes, paired = FALSE, var.equal = TRUE, width = 0.5, fill = "skyblue", y.axis.adjust = 0, y.axis.by = 2, letter.position.adjust = 0.3, ylab = "Average Fold Change", xlab = "none", fontsize = 12, fontsizePvalue = 7,

efficiency(x)

meanTech(x, groups)

axis.text.x.angle = 0,

axis.text.x.hjust = 0.5

qpcrANOVAFC(x, numberOfrefGenes, analysisType = "ancova", mainFactor.column, mainFactor.level.order = NULL, block = NULL, width = 0.5, fill = "#BFEFFF", y.axis.adjust = 1,y.axis.by = 1, letter.position.adjust = 0.1, ylab = "Fold Change", xlab = "none", fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0,

qpcrANOVARE(x, numberOfrefGenes, block = NULL, p.adj = "none", ...)

oneFACTORplot(res,

width = 0.2, fill = "skyblue", y.axis.adjust = 0.5, y.axis.by = 2errorbar = "std", show.letters = TRUE, letter.position.adjust = 0.1, ylab = "Relative Expression", xlab = "none", fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0, axis.text.x.hjust = 0.5

twoFACTORplot(res,

x.axis.factor, group.factor, width = 0.5, fill = "Blues", y.axis.adjust = 0.5, y.axis.by = 2, show.errorbars = TRUE, errorbar = "std", show.letters = TRUE, show.points = FALSE, letter.position.adjust = 0.1, ylab = "Relative Expression", xlab = "none", legend.position = c(0.09, 0.8), fontsize = 12, fontsizePvalue = 7, axis.text.x.angle = 0, axis.text.x.hjust = 0.5

threeFACTORplot(res, arrangement = c(1, 2, 3), bar.width = 0.5, fill = "Reds", xlab = "none", ylab = "Relative Expression", errorbar = "std", y.axis.adjust = 0.5, y.axis.by = 2, letter.position.adjust = 0.3, legend.title = "Legend Title", legend.position = c(0.4, 0.8), fontsize = 12, fontsizePvalue = 7, show.letters = TRUE, axis.text.x.angle = 0, axis.text.x.hjust = 0.5)

multiplot(..., cols = 1)

qpcrTTEST(x, numberOfrefGenes, paired = FALSE, var.equal = FALSE)

qpcrREPEATED(x, numberOfrefGenes, factor, block = NULL, fill = "#BFEFFF", y.axis.adjust = 1, y.axis.by = 1, ylab = "Fold Change", xlab = "none", fontsizePvalue = 7, axis.text.x.angle = 0,axis.text.x.hjust = 0.5,x.axis.labels.rename = "none", letter.position.adjust = 0, p.adj = "none",

p.adj = "none")

axis.text.x.hjust = 0.5,

x.axis.labels.rename = "none",