Department of Electrical & Electronic Engineering

University of Dhaka

Dhaka, Bangladesh

EEE-5507: Fuzzy Logic, Neural Networks & Deep Learning

Speech Emotion Recognition Using 1D CNN

Name: Md. Intikhab Shahriar Hasan

Roll No.: FH-2088

Session: 2022-23

GitHub Link: https://github.com/shasan7/TESS ML Project

Speech Emotion Recognition (SER)

What's Emotion Recognition?

- Emotion Recognition is the ability to precisely infer human emotions
- Utilizing facial expressions, body language, speech patterns, and text.

Why it's important?

Human-Computer Interaction (HCI) & Robotics

→ More intuitive and responsive to user emotions

Mental Health and Well-being

→ Detecting signs of stress, anxiety, or depression, enabling timely interventions

Security & Surveillance

→ Unusual or aggressive behaviors from emotional cues

Marketing and Customer Experience

→ Gauge consumer reactions to products, services,

Emotion Recognition using speech signals

Speech Emotion Recognition (SER)

Advantages of Emotion Recognition from speech signals:

Non-Intrusive and Privacy-Friendly

- → Only audio input is required
- → Cameras capture visual data, intruding on privacy

Effective in Low-Visibility Conditions

- → Works in low-light, dark, or visually obstructed environments
- → Suitable for phone calls or virtual meetings without video

Unobstructed by Physical Appearance or Expression Limitations

- → Can detect emotions even if a person's face is obscured, hidden, or masked, eg. in online meetings or while wearing face masks
- → Can detect emotions that are not strongly expressed in facial features, eg. sounds angry but the facial expression is neutral

Works in Unstructured and Natural Conversations

- → Text-based approaches struggles with sarcasm, irony, or subtle emotions that aren't conveyed in words
- → SER works while emotions are conveyed through tone, pitch, and vocal intonation, even if the words themselves are neutral.

Emotion Recognition using speech signals

Emotional Speech Dataset

Toronto Emotional Speech Set (TESS)

- → 2800 speech samples
- → 2 actors, 1400 samples per speaker
- → 7 different emotion classes
- → 400 sample audios for each of the classes

Prior Works

References & Year	Features Extracted	Architecture Used	Performance
[6], 2024	Multiple Time & Freq domain Features	Ensembling A (CNNs), B (BiLSTM-FCN), C (BiLSTM-FCN with transformer) Networks	99.857 %
[7], 2023	MFCC Spectrogram	CNN+LSTM+Attention	99.81 %

Proposed Approach

Feature Extraction

Performance Analysis

Classifier	Result (%)	
Decision Tree	78.39	
Random Forest	97.68	
SVM	98.21	
XGBoost	96.96	
1D CNN	100	

Results obtained using 1D CNN

Performance Analysis

Training & Testing Accuracy vs Epochs

Training & Testing Loss vs Epochs

Performance Analysis

References & Year	Features Extracted	Architecture Used	Performance
[6], 2024	Multiple Time & Freq domain Features	Ensembling A (CNNs), B (BiLSTM-FCN), C (BiLSTM-FCN with transformer)	99.857 %
[7], 2023	MFCC Spectrogram	CNN+LSTM+Attention	99.81 %
This Work	MFCC (Flattened)	1D CNN	100 %

1D CNN			
Conv1d (filters=128, kernel_size=5)			
BN, Relu, MaxPool			
Conv1d (filters=128, kernel_size=5)			
BN, Relu, MaxPool, <i>Dropout (0.2)</i>			
Conv1d (filters=256, kernel_size=5)			
BN, Relu, MaxPool			
Conv1d (filters=256, kernel_size=3)			
BN, Relu, MaxPool, <i>Dropout (0.2)</i>			
Conv1d (filters=256, kernel_size=3)			
BN, Relu, MaxPool			
Conv1d (filters=512, kernel_size=3)			
BN, Relu, MaxPool, <i>Dropout (0.2)</i>			
Flatten, Dense (256), BN, Dense (7, softmax)			

1D CNN Architecture