EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

New Data Structure: Disjoint Sets

- Problem of Interest: keep track of dynamic relations
 - e.g. who is connected to whom
 - Who belongs to same club
 - Which computers are in same network
 - Which web pages link on the Internet
- Abstraction
 - Have a set of objects
 - Have relations between objects:
 - symmetric, a \sim b, transitive a \sim b, b \sim c -> a \sim c
 - Want to keep track of subsets of objects that are related as relations are added

Disjoint Sets

- Operations
 - Find(a): Find the subset that contains element a
 - Union(a,b): Add a relation between two elements a, b which merges the subsets containing a, b
 - Often known as Union-Find problem
- Would like to do Unions and Find in O(1)
 - Seems really hard...
 - We'll come close with a disjoint set data structure

Disjoint Sets Algorithm

- Best Solution
 - Find: get root label of tree, moving up the tree
 - Restructure tree by making all ancestors have root as parent
 - Union: if new relation a ~ b, Find(a) and Find(b). If a, b are in different trees, merge trees
 - Merge: roots have ranks. Merge root so smaller rank is child of larger rank one; if same rank, increase new root rank by 1

Disjoint Sets

- Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N + M \log^*(N))$ time
 - log*(*N*): Ackerman function
 - $A(i) = 2^{A(i-1)}$; A(0) = 1
 - A(1) = 2, A(2) = 4, A(3) = 16, A(4) = 216 = 65536, A(5) = 265636,
 - A(6) = VERY VERY VERY BIG!
 - Inverse Ackerman: $i = \log^*(N)$
 - $\log^*(N) = \min$ number times you take $\log_2(\log_2(\cdots))$ to get smaller than or equal to 1
 - For all practical purposes, it is O(1) (Ch. 21, CLRS)

More on Rank and Path Compression

- Rank is an **upper bound** on height
 - Height is hard to keep track of exactly because of path compression
- How is rank assigned?
 - Rank of single nodes = 0
 - If 2 trees of equal ranks are merged,
 rank(new root) = rank(trees) + 1
 - Without path compression, this makes rank = height
 - After path compression, rank is upper bound to height


```
Algorithm: UNION(\widetilde{u}, \widetilde{v})

1 u \leftarrow \text{FIND-SET}(\widetilde{u})

2 v \leftarrow \text{FIND-SET}(\widetilde{v})

3 if u.rank = v.rank then

4 u.rank \leftarrow u.rank + 1

5 v.parent \leftarrow u

6 else if u.rank > v.rank then

7 v.parent \leftarrow u

8 else

9 u.parent \leftarrow v
```

More on Rank and Path Compression

• Path compression illustration: Find u_8

- Rank does not change!
 - But height dropped by 1

Algorithm: FIND-SET(u)

- $1 A \leftarrow \emptyset$
- $2 \quad n \leftarrow u$
- 3 **while** n is not the root **do**
- $A \leftarrow A \cup \{n\}$
- $5 n \leftarrow n.parent$
- 6 for each $x \in A$ do
- 7 $x.parent \leftarrow n$
- 8 return n

- Properties of rank (without path compression): Let p(x) be parent(x)
 - x is not a root node, then rank[x] < rank[p[x]]
 - Rank k root created by linking two roots of rank k − 1
 - x is not a root node, then rank[x] never changes
 - p[x] changes, then rank[parent[x]] strictly increases
 - p[x] only changes for root
 - When p[x] changes, rank[x] < rank[p[x]]
 - p[x] only changes for roots, when one root goes under other

```
Algorithm: UNION(\widetilde{u}, \widetilde{v})

1 u \leftarrow \text{FIND-SET}(\widetilde{u})

2 v \leftarrow \text{FIND-SET}(\widetilde{v})

3 if u.rank = v.rank then

4 u.rank \leftarrow u.rank + 1

5 v.parent \leftarrow u

6 else if u.rank > v.rank then

7 v.parent \leftarrow u

8 else

9 u.parent \leftarrow v
```

- Properties of rank (without path compression): Let p(x) be parent(x)
 - Root of rank k has $\geq 2^k$ elements in its tree
 - Induction: true for k = 0
 - Assume true for k-1. Root gets rank k by merging two roots of rank k-1. Thus, no. elements $\geq 2^{k-1} + 2^{k-1} \geq 2^k$
 - Highest rank of node $\leq \lfloor \log_2(n) \rfloor$
 - For any integer k, there are $\leq n/2^k$ nodes with rank k
 - Non-root notes with rank k were roots with rank k at some point
 - Every rank k node has at least 2^k elements,

```
Algorithm: UNION(\widetilde{u}, \widetilde{v})

1 u \leftarrow \text{FIND-SET}(\widetilde{u})

2 v \leftarrow \text{FIND-SET}(\widetilde{v})

3 if u.rank = v.rank then

4 u.rank \leftarrow u.rank + 1

5 v.parent \leftarrow u

6 else if u.rank > v.rank then

7 v.parent \leftarrow u

8 else

9 u.parent \leftarrow v
```

- Path compression: Let p(x) be parent(x)
 - Key property: roots, node ranks, tree elements don't change!
 All the properties of union by rank stay true
 parent pointers updated to root means rank(p(x)) > rank(x) still
- Iterated logarithm function

$$\log^*(n) = \begin{cases} 0 & n \le 1\\ 1 + \log^*(\log_2(n)) & \text{otherwise} \end{cases}$$

n	lg* n
1	0
2	1
[3, 4]	2
[5, 16]	3
[17, 65536]	4
$[65537, 2^{65536}]$	5

- Analysis: Buckets of elements
 - Divide elements by non-zero ranks into the following groups
 - {1}, {2, 3}, {4, ..., 15}, ..., { $B,2^B-1$ }, { $2^B,2^{2^B}-1$ }
 - Total number of buckets $\leq \log^*(n)$
 - Max elements in bucket {B, $2^B 1$ }: $\leq n/2^B$
 - Every node has rank in the first log*(n) groups
- Creative accounting
 - Every node receives credits the moment it ceases to be a root:
 - If node rank is in $\{B, 2^B 1\}$, get 2^B credits
 - Number of credits disbursed to all nodes $\leq n \log_2^*(n)$

- Creative accounting
 - Every node receives credits the moment it ceases to be a root:
 - If node rank is in $\{B, 2^B 1\}$, get 2^B credits
 - Number of credits disbursed to all nodes $\leq n \log^*(n)$
 - Max nodes in bucket $\{B, 2^B 1\}$: $\leq n/2^B$, so max of n credits in bucket
 - Run time of Find(x): bounded by number of parent pointers to root
 - Rank increases strictly as you search up the tree
 - 3 Cases:
 - Case 0: parent[x] is a root —> happens for 1 link per find
 - Case 1: rank[parent[x]] is in higher bucket than rank[x]
 - Case 2: rank[parent[x]] is in same bucket as rank[x]

- Case 1: rank[parent[x]] is in higher bucket than rank[x]
 - At most log*(n) links have this property
- Case 2: charge 1 credit to follow parent pointer
 - If rank[x] is in bucket $\{B, 2^B 1\}$, x will move to Case 1 before paying all its credits (and will still have some left over)
- So, since you started with $\leq n \log^*(n)$ credits across all nodes, and you spend less than that across all find operations, total amortized cost of m operations, for $m \geq n$, is $O(m \log^*(n))$

Representation of Disjoint Set Operations

- Array: Objects indexed in the array, with value pointing to parent location
 - Roots point to self-location
 - Keep track of separate array for ranks
- How is rank assigned?
 - Rank of single nodes = 0
 - If 2 trees of equal ranks are merged,
 rank(new root) = rank(trees) + 1
 - Without path compression, this makes rank = height
 - After path compression, rank is upper bound to height

Bigger Example

• Path compression illustration: Find u_8

- Rank does not change!
 - But height dropped by 1

Algorithm: FIND-SET(u)

- $1 A \leftarrow \emptyset$
- $2 \quad n \leftarrow u$
- 3 **while** n is not the root **do**
- 4 $A \leftarrow A \cup \{n\}$
- $5 n \leftarrow n.parent$
- 6 for each $x \in A$ do
- 7 $x.parent \leftarrow n$
- 8 return n

Application

- Maze Building: take out walls to create a maze
 - Consider edges in random order (i.e. pick an edge)
 - Only delete an edge if it introduces no cycles (how? TBD)
 - When done, we will have a way to get from any place to any other place (including from start to end points)

Application 2

- Maze Building: take out walls to create a maze
 - Number the cells; every edge allows a relation between cells
 - Keep track of disjoint sets: don't remove edge if it is between two nodes in same subset

Start	1	2	3	4	5	6
	7	8	9	10	11	12
	13	14	15	16	17	18
	19	20	21	22	23	24
	25	26	27	28	29	30
	31	32	33	34	35	36

End

Graphs

in the "real world"

- Networks are graphs
 - Information: WWW, citation, ...
 - Social: co-actor, dating, messenger, communities, ...
 - Technological: Internet, power grids, airline routes, ...
 - Biological: Neural networks, food web, blood vessels, ...
- Object hierarchies are graphs
- Circuit layouts are graphs
- Computer programs are graphs

Undirected Graph G=(V,E) (or G=(N,A)

V: Set of vertices (nodes...)

Edge {a,b} is an unordered pair of nodes

 $E \subset V \times V$: Set of vertices (arcs...)

<u>Undirected graph</u>: G=(V,E)

• Typically, don't allow {a,a} in E

Vertex Set: V = (a,b,c,d,e)

Edge Set: $E = (\{a,b\}, \{b,c\}, \{c,d\}, \{d,e\}, \{e,a\}, \{e,b\})$

degree = 3

Undirected Graph G(V,E)

Maximum number of edges:

$$|E| \le {|V| \choose 2} = \frac{|V|(|V|-1)}{2} = O(|V|^2)$$

Degree of vertex: number of adjacent vertices

Vertex a **adjacent** to vertex b \iff $\{a,b\} \in E$

$$degree(b) = 3$$

 $degree(c) = 2$

$$degree(E) = 4$$

 $degree(G) = 0$

Subgraphs (V',E') of (V,E)

(V',E') is a subgraph of(V,E) if and only if

- $V' \subset V$, and $E' \subset E$
- If $\{a,b\} \in E' \Rightarrow a,b \in V'$

Paths in(V,E)

A path in an undirected graph is an ordered sequence of vertices $(v_0, v_1, v_2, ..., v_k)$

- $\{v_{j-1}, v_j\}$ is an edge in E for j = 1, ..., k
- \bullet Termed a path from v_0 to v_k
- The length of this path is k

Simple paths in(V,E)

Simple path: no repeated nodes other than perhaps, the first and last vertices Simple cycle: simple path with first and last nodes the same

- Example: (A,B,C,E) simple path
- (A,B,E,C,B,D) Not simple path
- (A,B,D,A) simple cycle

Connectedness

Vertices a, b in V are connected if there exists a path from a to b

Graph(V,E) is connected if, for every a, b in V, a and b are connected

Trees

Graph(V,E) is a tree if it is connected, and

- there is only one path between any two vertices a, b
- Equivalently, there are no cycles in the graph

Trees:
$$|E| = |V| - 1$$

- Removing an edge from a tree disconnects the graph
- Can covert to rooted tree picking any vertex as root

Forests

Forest is a graph (V,E) with no cycles

• Forest can be multiple disjoint trees

Properties:

- |E| < |V|
- Number of trees = |V| |E|
- Removing edge: adds one more tree

Some Specific Graphs

Complete graph K_n : undirected graph with n vertices, and an edge between every pair of vertices

Bipartite graph $K_{m,n}$: undirected graph where V can be partitioned into vertex set V can be partitioned into disjoint, nonempty sets V_1 and V_2 such that

every edge connects a vertex in V_1 to a vertex in V_2

Equivalent: every cycle has even length!

Results in Undirected Graphs

Let (V,E) be undirected. Then,
$$\sum_{k \in V} \text{degree}(k) = 2|E|$$

- Every edge connects 2 vertices...
 - —> must have even number of odd-degree vertices

A path is Eulerian if it covers every edge in the graph exactly once

- Draw it without lifting pencil
- Theorem: a connected graph has an Eulerian cycle if and only if every node has even degree

Results in Undirected Graphs

A path is Hamiltonian if it covers every vertex in the graph exactly once; it is a cycle if it covers every vertex but the start and end vertices exactly once

• Theorem: A graph with n vertices has Hamitonian cycle if degree of every vertex

is at least n/2

• Theorem: For a graph G with $n \ge 3$ vertices, and degree(a) + degree(b) $\ge n$ whenever a, b are not adjacent, then G has a Hamiltonian cycle

Finding a Hamiltonian cycle is a hard problem!

Planar Graphs

A graph G is planar if it can drawn in the plane so that no edges cross

- Useful for VLSI, circuit design
- Euler's Formula: a planar graph divides the plane into regions called faces. The

number of regions r = m-n+2

• Sufficient conditions for planar graphs

•
$$m \le 3n - 6$$

•
$$r \le 2n - 4$$

Directed Graph G=(V,E)

V is the set of vertices

An edge e = (a,b) is an ordered pair from a to b, where a, b in V

Note: edge (b, a) is different from edge (a, b)

Example: streets, ...

Max. no. edges = $|V|^2$ (allow self loops)

Out-degree of a vertex: no. edges leaving vertex

In-degree of a vertex: no. edges entering vertex

$$E = \{(v_1, v_2), (v_3, v_5), (v_5, v_3), (v_6, v_9), (v_8, v_4), (v_9, v_4)\}$$

Sources, Sinks, Paths

Vertex with in-degree 0: **Source** (V_1, V_6, V_7)

Vertex with out_degree 0: **Sink** (V_9)

Path in directed graph (V,E) is an ordered sequence of vertices $(v_0, v_1, v_2, ..., v_k)$ such that $(v_{j-1}, v_j) \in E$ for j = 1,...,k

Simple path: no repeated nodes in path

Cycle: path with $v_0 = v_k$. **Simple cycle**: no repeated

nodes except start-end

Connectedness in Directed Graphs

Vertex a is connected to vertex b if there exists a path from a to b (directed path)

- Graph (V,E) is **strongly connected** if there exists directed path between any two vertices
- Graph (V,E) is **weakly connected** if there exists undirected path between any two vertices
 - The sub-graph $\{v_3, v_4, v_5, v_8\}$ is strongly connected
 - The sub-graph $\{v_1, v_2, v_3, v_4, v_5, v_8\}$ is weakly connected

Directed Acyclic Graphs

Directed acyclic graph (DAG): Graph (V,E) with no directed cycles

- Represents partial order
- DAGs appear often
 - Parse tree constructed by a compiler
 - Dependency graphs such as those used in instruction scheduling and makefiles

Representations of graphs

- Adjacency matrix:
 - $\Box A = [a_{ij}], \text{ where }$

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Symmetric for undirected graphs

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \cdots \begin{array}{c} \cdots & \mathbf{1} \\ \cdots & \mathbf{2} \\ \cdots & \mathbf{3} \\ \cdots & \mathbf{4} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \end{bmatrix}$$

Adjacency List

- Each vertex has list of neighbor nodes
 - For directed graphs, out-list
 - Used in MATLAB for sparse matrices
 - Can be implemented as arrays
 - Forward-Star
 - or linked lists
 - |V|+|E| for directed graphs
 - Must store 2 edges for undirected

V vertices E edges

1. Edge list: {a,b}, {b,c}, {c,d}, {d,e}, {e,a}, {e,b}

2. Adjacency list

Vertex	Adjacencies		
a	b, e		
b	a, c, e		
С	b, d		
d	c, e		
e	a, b, d		

Linked List Form

Forward Star Representation

Vertex Array First[I]

Edges[j]

Just the adjacency list put end to end in the arc array!

	a	b	С	d	е
а	0	I	0	0	
b	I	0	I	0	I
С	0	I	0	I	0
d	0	0	I	0	I
е			0		0

4. Incidence matrix:

Matrix of vertex rows, edges columns M =

Directed: -1 in start of edge, 1 in end

Undirected: 1 in both

	1	2	3	4	5	6
а			0	0	0	0
b	0	I	I	0	I	0
С	0	0	0	0	ı	
d	0	0	0	I	0	
е		0	ı		0	0

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

TRAVERSALS DFS & BFS

- Depth First Search (DFS): Uses a Stack
 - Select a start node: mark visited and push
 - (2) Pick unmarked neighbor: mark visited and push
 - Else pop and mark done
 - Return to 2
- Breadth First Search (BFS): Uses a Queue
 - Select a start node set d = 0: mark visited and enqueue
 - (2) Dequeue mark done
 - All unmarked neighbors set d = d+1: mark all visited and enqueue
 - Return to 2

(For a DAG this is a "reverse order topological sort")

Set predecessor: Flag to reconstruct Tree.

(The distance label is the minimum number of hops to each node from start)

DAG Topological Sort (Execution order)

DAG Topological Sort (Execution order)

4 2 3 7 1 6 13 10 12 11 14 9 5 8

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges. Vertices are timestamped by discovery time/finishing time.

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. Within each vertex u is shown d[u]. The queue Q is shown at the beginning of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the queue.