Learning

Supervised Learning

supervised learning

given a data set of input-output pairs, learn a function to map inputs to outputs

classification

supervised learning task of learning a function mapping an input point to a discrete category

Date	Humidity (relative humidity)	Pressure (sea level, mb)	Rain

Date	Humidity (relative humidity)	Pressure (sea level, mb)	Rain
January 1	93%	999.7	Rain
January 2	49%	1015.5	No Rain
January 3	79%	1031.1	No Rain
January 4	65%	984.9	Rain
January 5	90%	975.2	Rain

f(humidity, pressure)

f(93, 999.7) = Rain

f(49, 1015.5) = No Rain

f(79, 1031.1) = No Rain

h(humidity, pressure)

humidity

humidity

humidity

humidity

humidity

nearest-neighbor classification

algorithm that, given an input, chooses the class of the nearest data point to that input

humidity

humidity

humidity

humidity

humidity

humidity

k-nearest-neighbor classification

algorithm that, given an input, chooses the most common class out of the k nearest data points to that input

humidity

humidity

 $x_1 = \text{Humidity}$ $x_2 = \text{Pressure}$

$$h(x_1, x_2) = \begin{cases} \text{Rain if } w_0 + w_1 x_1 + w_2 x_2 \ge 0 \\ \text{No Rain otherwise} \end{cases}$$

Weight Vector w: (w_0, w_1, w_2) Input Vector x: $(1, x_1, x_2)$

$$\mathbf{W} \cdot \mathbf{X} \cdot \mathbf{W}_0 + \mathbf{W}_1 \mathbf{X}_1 + \mathbf{W}_2 \mathbf{X}_2$$

$$h(x_1, x_2) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + w_2 x_2 \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Weight Vector w: (w_0, w_1, w_2) Input Vector x: $(1, x_1, x_2)$

$$\mathbf{W} \cdot \mathbf{X} \cdot w_0 + w_1 x_1 + w_2 x_2$$

$$h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

perceptron learning rule

Given data point (x, y), update each weight according to:

$$w_i = w_i + \alpha(y - h_w(x)) \times x_i$$

perceptron learning rule

Given data point (x, y), update each weight according to:

 $w_i = w_i + \alpha(\text{actual value - estimate}) \times x_i$

humidity

humidity

 $\mathbf{W} \cdot \mathbf{X}$

 $\mathbf{w} \cdot \mathbf{x}$

Support Vector Machines

maximum margin separator

boundary that maximizes the distance between any of the data points

regression

supervised learning task of learning a function mapping an input point to a continuous value

f(advertising)

$$f(1200) = 5800$$

$$f(2800) = 13400$$

$$f(1800) = 8400$$

h(advertising)

advertising

Evaluating Hypotheses

loss function

function that expresses how poorly our hypothesis performs

0-1 loss function

```
L(actual, predicted) =
1 if actual = predicted,
2 otherwise
```


humidity

humidity

L₁ loss function

L(actual, predicted) = |actual - predicted|

advertising

advertising

L2 loss function

 $L(\text{actual, predicted}) = (\text{actual - predicted})^2$

overfitting

a model that fits too closely to a particular data set and therefore may fail to generalize to future data

humidity

advertising

advertising

$$cost(h) = loss(h)$$

$$cost(h) = loss(h) + complexity(h)$$

$$cost(h) = loss(h) + \lambda complexity(h)$$

regularization

penalizing hypotheses that are more complex to favor simpler, more general hypotheses

 $cost(h) = loss(h) + \lambda complexity(h)$

holdout cross-validation

splitting data into a **training set** and a **test set**, such that learning happens on the training set and is evaluated on the test set

k-fold cross-validation

splitting data into k sets, and experimenting k times, using each set as a test set once, and using remaining data as training set

scikit-learn

Reinforcement Learning

reinforcement learning

given a set of rewards or punishments, learn what actions to take in the future

Markov Decision Process

model for decision-making, representing states, actions, and their rewards

Markov Decision Process

model for decision-making, representing states, actions, and their rewards

Markov Chain

Markov Decision Process

- Set of states S
- Set of actions Actions(s)
- Transition model P(s' | s, a)
- Reward function R(s, a, s')

method for learning a function Q(s, a), estimate of the value of performing action a in state s

Q-learning Overview

- Start with Q(s, a) = 0 for all s, a
- When we taken an action and receive a reward:
 - Estimate the value of Q(s, a) based on current reward and expected future rewards
 - Update Q(s, a) to take into account old estimate as well as our new estimate

- Start with Q(s, a) = 0 for all s, a
- Every time we take an action a in state s and observe a reward r, we update:

 $Q(s, a) \leftarrow Q(s, a) + \alpha$ (new value estimate - old value estimate)

- Start with Q(s, a) = 0 for all s, a
- Every time we take an action a in state s and observe a reward r, we update:

 $Q(s, a) \leftarrow Q(s, a) + \alpha$ (new value estimate - Q(s, a))

- Start with Q(s, a) = 0 for all s, a
- Every time we take an action a in state s and observe a reward r, we update:

 $Q(s, a) \leftarrow Q(s, a) + \alpha((r + \text{future reward estimate}) - Q(s, a))$

- Start with Q(s, a) = 0 for all s, a
- Every time we take an action a in state s and observe a reward r, we update:

$$Q(s, a) \leftarrow Q(s, a) + \alpha((r + \max_{a'} Q(s', a')) - Q(s, a))$$

- Start with Q(s, a) = 0 for all s, a
- Every time we take an action a in state s and observe a reward r, we update:

$$Q(s, a) \leftarrow Q(s, a) + \alpha((r + \gamma \max_{a'} Q(s', a')) - Q(s, a))$$

Greedy Decision-Making

• When in state s, choose action a with highest Q(s, a)

Explore vs. Exploit

e-greedy

- Set ε equal to how often we want to move randomly.
- With probability 1 ε, choose estimated best move.
- With probability ε, choose a random move.

Nim

function approximation

approximating Q(s, a), often by a function combining various features, rather than storing one value for every state-action pair

Unsupervised Learning

unsupervised learning

given input data without any additional feedback, learn patterns

Clustering

clustering

organizing a set of objects into groups in such a way that similar objects tend to be in the same group

Some Clustering Applications

- Genetic research
- Image segmentation
- Market research
- Medical imaging
- Social network analysis.

k-means clustering

algorithm for clustering data based on repeatedly assigning points to clusters and updating those clusters' centers

Learning

- Supervised Learning
- Reinforcement Learning
- Unsupervised Learning