

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI 30.06.2022 – Prof. Bengler	08 MMI 30.06.2022 – Prof. Bengler	08 MMI Übung 30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS	11 Analyse und Bewertung FAS	11 Übung Analyse und Bewertung FAS
21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme
28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp

Übung Funktionslogik und Regelung Dr.-Ing. Franz Winkler

Agenda

- 1. ACC Folgereglung
- 2. Auslegung Störgrößenbeobachter Querführung

Übung Funktionslogik und Regelung Dr.-Ing. Franz Winkler

Agenda

- 1. ACC Folgereglung
- 2. Auslegung Störgrößenbeobachter Querführung

ACC – Folgeregelung

Aufgabenbeschreibung:

Wesentliche Bestandteile einer ACC-Folgeregelung ist die Zielobjektauswahl und die Kaskadenregelung. Für ein nachfolgendes Szenario werden diese Elemente näher betrachtet.

1. Gegeben ist das in Abb. 1 dargestellte Szenario. Objekte, die in einem Korridor von 3 m Breite liegen, werden als relevante Zielobjekte betrachtet. Bewerten Sie, ob das Vorderfahrzeug in Abb. 1 ein für die ACC-Folgefahrt relevantes Zielobjekt darstellt. Das eigene Fahrzeug hat eine Geschwindigkeit von $v_{\rm X}=70$ km/h und weist die aktuelle Gierrate $\dot{\psi}=2$ °/sec auf. Der Radarsensor lokalisiert das Objekt mit einem lateralen Abstand $y_{\rm Sensor}=5$ m und einem relativen Abstand d=70 m.

Abbildung 1: Folgefahrt

ACC – Folgeregelung

- 2. Geben Sie das Blockschaltbild einer ACC-Kaskadenregelung an und zeigen Sie, wie die Eingangsgrößen der Kaskadenregelung aus den Größen des Radarsensors gebildet werden. Der Verstärkungsfaktor der inneren Kaskade ist dabei mit $k_1 = 1/\tau_v$ und der der äußeren Kaskade mit $k_2 = 1/\tau_d$ definiert.
- 3. Regelungsauslegung: Die Längsdynamik des Fahrzeugs $G(s) = \frac{a_{ist}}{a_{soll}}$ wird im Folgenden durch ein PT₁ mit der Zeitkonstanten $\tau_{str} = 0.1$ sec approximiert.
 - a. Zur Bestimmung des Produkts der Zeitkonstanten $\tau_v \cdot \tau_d$ soll folgendes Szenario betrachtet werden: Der Abstandsdifferenz von -20 m zum Sollabstand (entspricht einem einscherenden Fahrzeug mit gleicher Geschwindigkeit wie das eigene Fahrzeug) soll nur zu einer leichten Verzögerung von -1 m/s² führen.
 - b. Auslegung der inneren Kaskade:
 - Zeigen Sie, für welche Werte von $\tau_{\rm v}$ der Regelkreis nur reelle Pole aufweist. Die Übertragungsfunktion des Regelkreises lautet:

$$G_{\rm v}(s) = \frac{v_{\rm ist}}{v_{\rm soll}} = \frac{1}{s^2 \tau_{\rm v} \tau_{\rm str} + s \tau_{\nu} + 1}$$

- Bestimmen Sie die Zeitkonstante τ_v unter der Bedingung, dass die langsamste Polstelle bei s=-0.72 liegt.
- c. Bestimmen Sie damit die Zeitkonstante $\tau_{\rm d}$
- (d. Zeigen Sie, ob damit die gesamte Kaskadenregelung stabil ist)
- 4. Geben Sie die Bedingung für Kolonnenstabilität an.

1. Die geschätzte Krümmung des eigenen Fahrzeugs lautet:

$$\kappa_{\dot{\psi}} \cong \dot{\psi}/_{v_{X}} = \frac{2\pi}{180 \cdot 70/_{3.6}} = 0.0018 \, \frac{1}{m}$$

Daraus resultiert eine Querposition in d = 70 m:

$$y_{\text{Kurve}} = \frac{\kappa_{\dot{\Psi}}}{2} d^2 = 4.4 \text{ m}$$

Versatz des Objekts:

$$\Delta y = y_{\text{Kurve}} - y_{\text{Sensor}} = -0.6 \text{ m}$$

$$|\Delta y| < 1.5 \text{ m}$$

→ Objekt liegt im Fahrschlauch und wird als Zielobjekt betrachet.

2. Blockschaltbild:

- $X_{soll} = X_i d_{soll}$, $d_{soll} = \tau_{set} \dot{x}_{i+1}$
- $X_{ist} = X_{i+1}$
- Regelfehler: $x_{\text{soll}} x_{\text{ist}} = x_i x_{i+1} \tau_{\text{set}} \dot{x}_{i+1} = d \tau_{\text{set}} \dot{x}_{i+1}$

Messbar:

- Relativabstand d,
- EGO-Geschwindigkeit
- Relativgeschwindigkeit

- 3. Regelungsentwurf:
 - a) $v_{\text{rel}} = \dot{x}_i \dot{x}_{i+1} = 0$: $\ddot{x}_{i+1} = \frac{v_{\text{rel}} + (d d_{\text{soll}})/\tau_{\text{d}}}{\tau_{\text{v}}}$ $-1\frac{m}{\text{sec}^2} = \frac{0 + \frac{(-20 \, m)}{\tau_{\text{v}}}}{\tau_{\text{v}}} \Leftrightarrow \tau_{\text{v}} \cdot \tau_{\text{d}} = 20 \, \text{sec}^2$
 - b) Bestimmung der Polstellen aus der Führungsübertragungsfunktion:

$$G_{\mathbf{v}}(s) = \frac{1}{s^2 \tau_{\mathbf{v}} \tau_{\mathbf{str}} + s \tau_{\mathbf{v}} + 1}$$

Polstellen: $s_{\infty}^2 \tau_{\rm v} \tau_{\rm str} + s_{\infty} \tau_{\rm v} + 1 = 0$

$$s_{\infty 1,2} = \frac{-\tau_{\rm v} \pm \sqrt{\tau_{\rm v}^2 - 4 \, \tau_{\rm v} \tau_{\rm str}}}{2\tau_{\rm v} \tau_{\rm str}}$$

Reelle Pole:
$$\tau_{\rm v}^2 - 4 \, \tau_{\rm v} \tau_{\rm str} \geq 0$$

 $\tau_{\rm v} > 0$
 $\rightarrow \tau_{\rm v} \geq 4 \, \tau_{\rm str}$

Rechts gelegene Polstelle:

c) Bestimmung von τ_d :

$$\tau_{\rm d} = \frac{20~{\rm sec}^2}{\tau_{\rm v}} = 13~{\rm sec}$$

d) Gesamtübertragungsfunktion:

$$G_{x}(s) = \frac{x_{ist}}{x_{soll}} = \frac{\frac{1}{\tau_{d}}G_{v}(s)\frac{1}{s}}{1 + \frac{1}{\tau_{d}}G_{v}(s)\frac{1}{s}} = \frac{1}{s^{3}\tau_{d}\tau_{v}\tau_{str} + s^{2}\tau_{v}\tau_{d} + s\tau_{d} + 1}$$

Stabilitätsnachweis mit Routh-Hurwitz:

$$G(s) = \frac{Z(s)}{N(s)}$$

$$N(s) = b_n s^n + \dots + b_1 s + b_0$$

Hier: n = 3, $b_3 = \tau_d \tau_v \tau_{str}$, $b_2 = \tau_d \tau_v$, $b_1 = \tau_d$, $b_0 = 1$

Bedingungen:

$$\begin{array}{cc} b_i > 0 & \forall i \\ b_2 b_1 - b_0 b_3 > 0 \end{array}$$

$$b_2b_1 - b_0b_3 = \tau_{\rm d}^2\tau_{\rm v} - \tau_{\rm d}\tau_{\rm v}\tau_{\rm str} = 266 > 0$$
 \rightarrow Regelkreis ist stabil

4)
$$|V(\omega)| = \frac{|A_{i+1}(\omega)|}{|A_i(\omega)|} \le 1 \ \forall \ \omega \ge 0$$

Anmerkung: Stabilitätsnachweis mit Routh-Hurwitz:

$$G(s) = \frac{Z(s)}{N(s)}$$

$$N(s) = b_n s^n + \dots + b_1 s + b_0$$

Notwendige Bedingung:

$$b_i > 0 \quad \forall i$$

Notwendige und hinreichende Bedingung:
 Ein System ist dann und nur dann BIBO-stabil, wenn gilt:

 $b_n > 0$ und alle n Hurwitzdeterminanten $D_i > 0$, $i = 1 \dots n$

Mit

$$D_{n} = \begin{bmatrix} D_{1} & D_{2} & D_{3} & D_{n-1} \\ \hline b_{n-1} & b_{n-3} & b_{n-5} & \cdots & 0 \\ \hline b_{n} & b_{n-2} & b_{n-4} & \cdots & 0 \\ \hline 0 & b_{n-1} & b_{n-3} & \cdots & 0 \\ \hline 0 & 0 & b_{n-1} & \cdots & 0 \\ \hline 0 & 0 & b_{n-1} & \cdots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots & \vdots \\ \hline 0 & 0 & 0 & \cdots & b_{0} \end{bmatrix}$$

Übung Funktionslogik und Regelung Dr.-Ing. Franz Winkler

Agenda

- 1. ACC Folgereglung
- 2. Auslegung Störgrößenbeobachter Querführung

Aufgabenbeschreibung:

Zur Sicherstellung der stationären Genauigkeit einer Querführungsregelung soll ein Störgrößenbeobachter zum Einsatz kommen. Die Strecke wird vereinfacht als PT_1 mit der Zeitkonstante $\tau_{\rm str}=0.1~{\rm sec}$ angenommen.

- 1. Nennen Sie Vorteile eines Störgrößenbeobachters im Vergleich zu einem Integralanteil im Regler.
- 2. Geben Sie das Blockschaltbild eines Störgrößenbeobachters zur Kompensation von Störungen z am Eingang der Strecke an. Die gemessene Ausganggröße soll dabei durch ein Messrauschen überlagert sein.
- (3. Bestimmen Sie die Störübertragungsfunktion.)
- 4. Welche Kriterien muss die Ersatzübertragungsfunktion im Störgrößenbeobachter erfüllen? Geben Sie eine geeignete Ersatzübertragungsfunktion an.

5. Das Messrauschen n(t) weißt das in Abb. 2 dargestellte Frequenzspektrum auf. Geben Sie eine geeignete Übertragungsfunktion für das Filter Q(s) an.

- 1. Vorteile eines Störgrößenbeobachters:
 - Möglichkeit, Begrenzungen direkt zu berücksichtigen.
 - Einstellbarer Grad der Störkompensation.
 - Vermeidung von Windup.
 - Berücksichtigung von nicht messbaren Störgrößen.
- 2. Blockschaltbild Störgrößenbeobachter:

3. Störübertragungsfunktion:

$$G_{z}(s) = \frac{Y(s)}{Z(s)} = \frac{G(s)}{1 + G(s)Q(s)\tilde{G}^{-1}(s)\frac{1}{1 - Q(s)}} = \frac{G(s)\tilde{G}(s)(1 - Q(s))}{\tilde{G}(s) + (G(s) - \tilde{G}(s))Q(s)}$$

- 4. Ersatzübertragungsfunktion:
 - Bedingungen für $\tilde{G}(s)$:
 - Relativer Grad von G(s) und $\tilde{G}(s)$ muss gleich sein.
 - Relativer Grad von G(s) = 1:

$$G(s) = \frac{1}{1 + s \, \tau_{\rm str}}$$

PT₁ ist eine mögliche Übertragungsfunktion:

$$\tilde{G}(s) = \frac{1}{1 + s \,\tilde{\tau}}$$

- 5. Auslegung des Filters Q(s):
 - Bedingungen für Q(s):
 - Filter Q(s) muss schnell genug sein.
 - Der relative Grad von Q(s) muss größer als oder gleich sein wie der von $\tilde{G}(s)$.
 - Störunterdrückung bei niedrigen Frequenzen muss gewährleistet sein.
 - Unterdrückung von Messrauschen bei hohen Frequenzen.
 - ➤ Beispielsweise ein Tiefpassfilter mit passendem relativen Grad erfüllt diese Bedingungen.
 - □ Relativer Grad $Q(s) \ge 1$:

$$Q(s) = \frac{1}{1 + s \, \tau_{\mathbf{Q}}}$$

- Bestimmung Eckfrequenz von Q(s):
 - Das Messrauschen hat relevante Amplituden über 150 Hz.
 - Die für das System relevanten Frequenzen sind unter 50 Hz.
 - ➤ Wahl der Eckfrequenz bei 100 Hz:

$$f_{\rm Q}=100~{\rm Hz}~\rightarrow~\omega_{\rm Q}=2\pi f_{\rm Q}~\rightarrow~\tau_{\rm Q}=\frac{1}{\omega_{\rm Q}}=1.6~{\rm msec}$$

Adaptive Cruise Control System Using Model Predictive Control

https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.html

Lane Keeping Assist System Using Model Predictive Control

+ https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html