SUITES NUMÉRIQUES M02

EXERCICE N°1

Une troupeau compte 200 têtes en fin d'année 2010. Durant l'année, le nombre de têtes augmente de 50 %, mais en fin d'année, on abat 95 animaux pour la boucherie On note s_n le nombre de têtes fin 2010+n.

- 1) Écrire une relation de récurrence entre s_{n+1} et s_n .
- 2) À l'aide d'un tableur, calculer le nombre de têtes de proche en proche, jusqu'en fin 2015. (On arrondira à l'unité à chaque fois et on se servira de cet arrondi pour le calcul suivant)

EXERCICE N°2

Entre 2017 et 2020, le prix annuel moyen d'un paquet de 20 cigarettes est passé de $7,05 \in à$ $9,90 \in a$. il était de $8,79 \in a$ 2019.

- 1) Calculer l'augmentation du prix entre 2017 et 2020, puis l'augmentation moyenne a sur un an.
- On suppose que le prix va continuer à augmenter de a € à partir de 2020.
 On note p(n) le prix en 2020+n. Écrire la relation de récurrence entre p(n) et p(n+1). Suivant ce modèle, calculer le prix en 2023 de proche en proche, ou avec une calculatrice.

SUITES NUMÉRIQUES M02C

EXERCICE N°1 (Le corrigé) RETOUR À L'EXERCICE 1

Une troupeau compte 200 têtes en fin d'année 2010. Durant l'année, le nombre de têtes augmente de 50 %, mais en fin d'année, on abat 95 animaux pour la boucherie On note s_n le nombre de têtes fin 2010+n.

1) Écrire une relation de récurrence entre s_{n+1} et s_n .

Une augmentation de 50 % correspond à un Coefficient Multiplicateur CM valant 1,5. donc

$$S_{n+1} = 1.5 S_n - 95$$

Le nombre de têtes triple donc S_n est multiplié par $1,5:1,5S_n$ On abat 120 animaux : il faut enlever 120 au résultat précédent : $1,5S_n-95$

2) À l'aide d'un tableur, calculer le nombre de têtes de proche en proche, jusqu'en fin 2015. (On arrondira à l'unité à chaque fois et on se servira de cet arrondi pour le calcul suivant)

	Α	В	С	D	E	F	G	H	
1							debut	200	
2	En	2010	:	200			raison	1,5	
3	En	2011	:	205			abat	-95	
4	En	2012	:	213					
5	En	2013	:	225					
6	En	2014	:	243					
7	En	2015	:	270					
8	En	2016	:	310					
9	En	2017	:	370					
10	En	2018	:	460					
11	En	2019	:	595					
12	En	2020	:	798					
			7		_				
D2			_ 1	χΣ•	= =SH\$1				=
	A	В	С	D	E	F	G	Н	
1							debut	200	
2	En	201	0 :	200			raison	1,5	
D3 $\bigvee f_X \sum \checkmark = = ARRONDI(\$H\$2*D2+\$H\$3;0)$									
	A	В	C	D	Е	F	G	Н	
1							debut	200	
2	En	201	10 :	200)		raison	1,5	
3	En			205	5		abat	-95	
		-			_	-			

SUITES NUMÉRIQUES M02C

EXERCICE N°2 (Le corrigé) RETOUR À L'EXERCICE 2

Entre 2017 et 2020, le prix annuel moyen d'un paquet de 20 cigarettes est passé de 7,05 € à 9,90€. il était de 8,79 € en 2019,

1) Calculer l'augmentation du prix entre 2017 et 2020, puis l'augmentation moyenne a sur un an.

Calculons l'augmentation :
$$9,9-7,05 = 2,85$$
Entre 2017 et 2020 le prix a augmenté de 2,85 €
$$a = \frac{2,85}{3}$$

$$a = 0,95$$

2) On suppose que le prix va continuer à augmenter de $a \in a$ partir de 2020.

On note p(n) le prix en 2020+n. Écrire la relation de récurrence entre p(n) et p(n+1). Suivant ce modèle, calculer le prix en 2023 de proche en proche, ou avec une calculatrice.

```
Pour n \in \mathbb{N},

p(n+1) = p(n)+a
p(n+1) = p(n)+0.95
```

SUITES NUMÉRIQUES M02