Gleichungen und Ungleichungen

Aufgaben der Zertifikatsklausuren

A2021

In dieser Aufgabe werden Polynomfunktionen 3. Grades der Form

$$p(x) = x^3 + ax^2 + bx + c$$
 (*)

betrachtet. Die reellen Konstanten a, b, c heißen Koeffizienten.

a. Gegeben sind $x_1 = 1, x_2 = -1$ und $x_3 = 3$. Konstruieren Sie die Polynomfunktion 3. Grades der Form (*), welche die Nullstellen x_1, x_2, x_3 besitzt.

b. Gegeben sind drei (nicht notwendig verschiedene) reelle Zahlen x_1, x_2, x_3 . Konstruieren Sie die Polynomfunktion 3. Grades der Form (*), welche die Nullstellen x_1, x_2, x_3 besitzt. Geben Sie jeweils eine Formel an, mit der a bzw. b bzw. c aus den Nullstellen x_1, x_2, x_3 berechnet werden kann.

c. Gegeben ist eine Polynomfunktion p der Form (*) mit ganzzahligen Koeffzienten a,b,c. Außerdem ist bekannt, dass x=2 eine Nullstelle von p ist. Beweisen Sie, dass dann der Koeffzient c durch 2 teilbar ist.

Hinweis: Eine ganze Zahl d ist durch 2 teilbar, wenn es eine ganze Zahl k gibt, so dass d=2k.

A2020

Gegeben sind die Funktionen f und h mit $f(x) = (x+4)^2$ und $h(x) = \frac{1}{5}(x^2-4)$ für $x \in \mathbb{R}$.

a) Berechnen Sie die Nullstellen von f und h und die Schnittpunkte der Graphen von f und h.

b) Skizzieren Sie die Graphen y = f(x) und y = h(x), ihre Schnittpunkte und die Nullstellen von f und h in einem geeigneten Koordinatensystem.

c) Bestimmend Sie die Lösungsmenge der Ungleichung $\frac{1}{5}(x^2-4) \leq (x+4)^2$.

d) Bestimmen Sie die Lösungsmenge der Ungleichung $\sqrt{\frac{1}{5}(x^2-4)} \leq x+4$.

A2019

a) Bestimmen Sie die Lösungsmenge der Ungleichung $\frac{4x-5}{(x+1)(x-2)} \leq 0$.

b) Bestimmen Sie reelle Zahlen A, B, so dass

b) Bestimmen Sie Teene Zamen
$$A, B$$
, so dass
$$\frac{4x-5}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} \text{ für alle } x \in \mathbb{R} \setminus \{-1,2\} \text{ erfüllt ist.}$$

c) Skizzieren Sie den Graphen der Funktion f mit

$$f(x) = \frac{4x - 5}{(x + 1)(x - 2)}$$
 für $x \in \mathbb{R} \setminus \{-1, 2\}$

unter Berücksichtigung der Nullstellen, des Monotonieverhaltens und der Asymptoten.

A2018

a) Beweisen Sie, dass die Polynomfunktion $p(x) = 6x^2 - 12x + 7$ für alle reellen Werte von x positive Werte annimmt.

b) Gegeben sind die zwei Gleichungen

$$\sqrt{6x^2 - 12x + 7} = 3x - 2 \tag{1}$$

$$\sqrt{6x^2 - 12x + 7} = 2 - 3x \qquad (2)$$

Untersuchen Sie beide Gleichungen auf Lösbarkeit und bestimmen Sie gegebenenfalls alle Lösungen.

c) Bestimmen Sie, für welche reellen Zahlen x die Ungleichung

$$\sqrt{6x^2 - 12x + 7} \le 3x - 2$$
 erfüllt ist.

A2017

Gegeben ist das Polynom $p(x) = x^3 - x^2 - 2x + 8$ mit $x \in \mathbb{R}$.

- a) Zeigen Sie, dass p die Nullstelle x = -2 besitzt.
- b) Beweisen Sie, dass p keine weitere reelle Nullstelle besitzt.
- c) Bestimmen Sie alle drei x-Werte, für die p(x) den Wert 8 annimmt.
- d) Bestimmen Sie die Lösungsmenge der Ungleichung $p(x) \leq 8, x \in \mathbb{R}$.

A2016

- a) Skizzieren Sie den Graphen der Funktion f mit f(x) = |x+5| |x+2| für $x \in \mathbb{R}$.
- b) Bestimmen Sie alle reellen Lösungen der Gleichung |x+5| |x+2| = x+3.
- c) Bestimmen Sie die Lösungsmenge der Ungleichung $|x+5|-|x+2| \le x+3$.

Sonstige Aufgaben

A1 Nullstellen

Berechnen Sie die reellen Nullstellen folgender Polynome ohne Taschenrechner:

a)
$$p(x) = x^4 + 2x^3 + x^2$$

b)
$$p(x) = x^2 - 2x - 15$$

A2 Polynomdivision

Führen Sie die angegebenen Polynomdivisionen durch.

a)
$$(2x^3 + 4x^2 - 2x - 4) : (x - 1)$$

b)
$$(x^3 - x^2 + 3x - 3) : (x - 2)$$

A3 Polynomdivision

Faktorisieren Sie folgende Polynome in Linearfaktoren:

a)
$$p(x) = x^3 + 3x^2 - 4x - 12, x \in \mathbb{R}$$

b)
$$p(x) = x^3 + x^2 - 2x - 2, x \in \mathbb{R}$$

c)
$$p(x) = x^3 + x^2 - 3x + 1, x \in \mathbb{R}$$

A4 Polynomdivision

Begründen Sie, warum sich das Polynom $p(x) = x^2 + 1$ nicht in reelle Linearfaktoren zerlegen lässt.

A5 Ungleichungen

Bestimmen Sie jeweils die Lösungsmenge der angegebenen Gleichung oder Ungleichung für reelle x.

a)
$$|x-5| = |x| + 2$$

b)
$$(6x-5)(x+1)(x-2) \ge 0$$

b)
$$(6x-5)(x+1)(x-2) \ge 0$$

c) $\frac{x}{x-2} \ge \frac{3}{(x-2)^2}$
d) $\frac{2}{x-1} > \frac{1}{x}$
e) $|x-2| + |4-x| \le x+1$

d)
$$\frac{2}{x-1} > \frac{1}{x}$$

e)
$$|x - 2| + |4 - x| \le x +$$

f)
$$\frac{x+1}{x-1} > 2$$

A6 Ungleichungen

Lösen Sie die Ungleichungen und stellen Sie die Lösungsmenge graphisch in einem Koordinatensystem dar.

a)
$$|x| + 2|y| \ge 4$$

b)
$$|x-2|+2|y+1| \ge 4$$

A7 Wurzelgleichung

Bestimmen Sie die Lösungsmenge der angegebenen Gleichungen.

a)
$$\sqrt{x+2} + x = 4, x \in \mathbb{R}$$

b)
$$\sqrt{x+2} = 10, x \in \mathbb{R}$$

c)
$$\sqrt[3]{x-1} + 10 = 12, x \in \mathbb{R}$$

A8 Wurzelgleichung

Bestimmen Sie die Lösungsmenge der angegebenen Wurzelgleichungen.

a)
$$\sqrt{4x} - \sqrt{2x+7} = 1, x \in \mathbb{R}$$

b)
$$\sqrt{x+30} = 6 \cdot \sqrt{x-5}, x \in \mathbb{R}$$

c)
$$\sqrt{x} = \sqrt{x+8} - 2, x \in \mathbb{R}$$

A9 Wurzelgleichung

Gegeben ist die Gleichung $\sqrt{x-6} + \sqrt{x+2} = 2, x \in \mathbb{R}$

Bestimmen Sie die Lösungsmenge.

A10 Wurzelungleichung

Bestimmen Sie jeweils die Lösungsmenge der angegebenen Ungleichungen.

a)
$$\sqrt{x^2+9}+x \le 5, x \in \mathbb{R}$$

b)
$$\sqrt{x} \cdot \sqrt{x+6} \le 4, x \in \mathbb{R}$$

c)
$$\sqrt{x+2} + x \le 4, x \in \mathbb{R}$$