30/11/2019(E)

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Examinations Nov-Dec 2019

Max. Marks: 100

Class: S.y. BTECH

Name of the Course: Computer Organization and Architecture

Course Code: 2UCC303

Duration: 3Hrs

Semester: III
Branch: COMPUTER

ENGG

Instructions:

(1) All Questions are Compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Note:

1. Attempt any two in each Question.

Question No.		La filosoficiales de la companya de La companya de la co	yezh gaszar e makez e-sear	Marks
Q 1 (a)	Define			10
	i. Clock speed/clock rate			10
	ii. Clock cycle			
	iii. CPI			
	iv. MIPS rate			
	A bench mark prog	ram is run on a 200M	Hz machine. The executed	
	program consists of Imillion instruction executions with the instruction			
	mix and clock cycle count: Instruction Type Instruction Count CPI			
	Arithmetic	Instruction Count	CPI	
	Data Transfer	4,00,000	1	
	Floating point	3,50,000	2	
	Control Transfer	2,00,000	3	
	Determine the effective	50,000	2	
	Determine the effective	e CPI.		
	What is a stored program computer?			10
	Draw and explain the four main components of any general numbers			10
	computer:			
(c)	Explain following reg	isters used in IAS compu	iter:	10
	Memory Buffer Register (MBR), Memory Address Register (MAR),			10
	instruction Register (IR), program Counter (PC) and Accumulator (AC)			
	Show the content stored in each register after executing instruction, SUB M (1000): Subtract M(X) from AC; put the result in AC. The opcode of			
	SUB M(X) is 0000011	(X) from AC; put the re	sult in AC. The opcode of	
Q2 (a)	Draw flow chart for Booth's Algorithm for twos complement		•	
	multiplication		10	
	Multiply 7 * 3 using Booth's algorithm.			
(h) 3	Write algorithm for restoring algorithm for division operation.			
(b)	Solve 7/5	toring algorithm for divi	sion operation.	10
	Solve 7/5 using restoring algorithm for division operation			
(c)	Write algorithm for non-restoring algorithm for division			10
	Solve 10/3 using non m	actoring alassist C 1		10

Q3 (a)	Explain the formats of IEEE 754 floating point number representation.	10
	The following bit pattern represents a floating point number in IEEE 754 single precision format	
	1 10000011 1010000000000000000000000000	
	Find the value of the number in decimal	
(b)	Explain any two cache write policies.	10
(c)	What are the differences among direct mapping, associative mapping, and set-associative mapping? A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses.	10
Q4 (a)	Differentiate between Programmed I/O, Interrupt driven I/O, DMA	10
(b)	Explain softwired and hardwired control unit design. Write the micro-operations and control signals for the instruction add R1, [R2].	10
(c)	Draw and explain a timing diagram for a PCI read operation.	10
Q5 (a)	Illustrate the need of virtual memory and relate concept of paging with virtual memory.	10
(b)	Explain Flynn's classification in parallel processing.	10
(c)	Explain the concept of instruction pipeline. Assume that there is only a two-stage pipeline (fetch, execute). Draw the timing diagram to show how many time units are needed for four instructions.	10

Page 2 of 2