Twierdzenie 1. (Lemat Newmana) Niech \rightarrow bedzie relacją binarną mającą własność SN. Jeśli \rightarrow ma własność WCR, to \rightarrow ma własność CR.

Dowód. Niech \rightarrow będzie relacją binarną na A o własności SN i WCR. Ponieważ \rightarrow jest SN, to każdy a jest normalizowalny. Powiemy, że a jest wieloznaczny, jeśli a redukuje się do dwóch różnych postaci normalnych.

Rozważmy następujące przypadki:

- i) Niech $a \in \tilde{A}$. Jeśli a nie jest wieloznaczny, to teza zachodzi
- ii) Przypuśćmy, że a jest wieloznaczny. wówczas istnieje inny $a' \in A$, który też jest wieloznaczny oraz $a \to a'$. Istotnie, przypuśćmy, że $a \to^* b_1$, $a \to^* b_2$ i niech b_1 i b_2 będą różnymi postaciami normalnymi. Ponieważ b_1 i b_2 są różne, to obydwie te redukcje składają się przynajmniej z jednego kroku. Mają więc postać:

$$a \rightarrow a_1 \rightarrow^* b_1$$
 oraz $a \rightarrow a_2 \rightarrow^* b_2$

Jeśli $a_1 = a_2$, to $a' = a_1 = a_2$ i wystarczy wybrać $a' = a_1$. Jeśli jednak $a_1 \neq a_2$, to z własności WCR istnieje $b_3 \in A$ taka, że $a_1 \rightarrow^* b_3$ oraz $a_2 \rightarrow^* b_3$. Z własności SN możemy przyjąć, że b_3 jest w postaci normalnej.

Ponieważ $b_1 \neq b_2$, to albo $b_1 \neq b_3$, albo $b_2 \neq b_3$. Możemy więc wybrać $a' = a_1$ lub $a' = a_2$. Kontynuując tę konstrukcję widzimy, że otrzymujemy nieskończoną redukcję, wbrew założeniu, że \rightarrow ma własność SN.

Zatem nie istnieja elementy wieloznaczne.

