Сущность и содержание метрологии

Метрология — наука, изучающая измерения, методы и средства обеспечения их единства, а также способы достижения необходимой точности измерений.

Управление качеством невозможно представить без контроля качества, который базируется на учете многочисленных результатов измерений самых разных параметров продукции.

В современной промышленности доля затрат труда на выполнение измерений в среднем составляет порядка 10% общих трудозатрат на всех этапах жизненного цикла продукции, а в таких отраслях, как, например, химическая промышленность, электроника, может достигать даже 60%.

На практике предприятия-товаропроизводители реализуют принципы метрологии в *метрологическом обеспечении измерений* — деятельности для обеспечения требуемого качества (единства и точности) измерений. Обеспечение единства измерений необходимо для достижения сопоставимых результатов измерений одних и тех же параметров, выполненных в разное время в разных местах, с помощью различных методов и средств.

На государственном уровне метрологическое обеспечение преследует следующие цели:

- обеспечение достоверного учета;
- повышение качества продукции и эффективности управления производством;
- повышение эффективности использования материальных ценностей и энергетических ресурсов;
- повышение эффективности мероприятий по нормированию и контролю условий труда и быта людей,
- охране окружающей среды, оценке и рациональному учету использования природных ресурсов;

— повышение эффективности международного научно-технического, экономического и культурного сотрудничества.

Метрологическое обеспечение — понятие многоаспектное, имеющее научную, техническую, информационную, правовую и организационную основы.

Научную основу метрологического обеспечения составляет наука *метрология*.

Техническую основу метрологического обеспечения образуют:

- система государственных эталонов единиц физических величин;
- система передачи размеров единиц физических величин от эталона всем средствам измерений с помощью образцовых средств измерений и других средств поверки;
- система разработки, организации производства и выпуска в обращение рабочих средств измерений, обеспечивающих определение с требуемой точностью характеристик продукции, технологических процессов и других объектов в различных видах деятельности;
- система обязательных государственных испытаний средств измерений, обеспечивающая единообразие средств измерений при их разработке и выпуске в обращение;
- система стандартных образцов состава и свойств веществ и материалов.

Информационной основой метрологического обеспечения является *система стандартных справочных данных* о физических константах, свойствах веществ и материалов. Эта система обеспечивает достоверными данными следующие области деятельности:

- научные исследования;
- разработку технологических процессов;
- конструирование изделий;
- процессы получения и использования материалов.

Организационной основой метрологического обеспечения является метрологическая служба Российской Федерации, состоящая из Государственной метрологической службы и ведомственных метрологических служб.

Измерения. Основные понятия и определения.

Фундаментальным понятием метрологии является **измерение** — нахождение значения физической величины опытным путем с помощью специальных технических средств.

Физическая величина — свойство, общее в качественном отношении многим физическим объектам (масса, температура и т. д.), но в количественном отношении для каждого из них различное. Количественное содержание этого свойства в объекте называется размером физической величины. Получение информации о размере физической величины составляет суть любого измерения. Величину, которой присвоено числовое значение, равное единице, называют единицей физической величины.

Физическую величину характеризуют истинное и действительное значения. Истинное значение идеальным образом в качественном и количественном отношениях отражает определенное свойство объекта. Такое значение физической величины считается неизвестным и применяется в теоретических исследованиях. Значение физической величины, найденное экспериментальным путем и приближающееся к истинному значению настолько, что для данной цели может применяться вместо него, называется действительным.

Измерение физической величины производят путем ее сравнения в процессе эксперимента с величиной, принятой за единицу физической величины. Целью измерения является получение значения этой величины в форме, наиболее удобной для практического использования.

Измерения, связанные с различными методами получения информации, бывают четырех типов. Наиболее распространены прямые и косвенные измерения.

Прямым называют измерение, при котором значение физической величины получают путем непосредственного сравнения ее с мерой (взвешивание, измерение длины и т. д.).

Косвенным называют измерение, при котором результат определяют на основании прямых измерений величин, связанных с определяемой величиной известной зависимостью (определение сопротивления по закону Ома, если измерены сила тока и напряжение).

Совокупные измерения связаны с определением значения величины, являющегося результатом решения системы уравнений, составляемых по итогам одновременных измерений нескольких однородных физических величин.

Совместные измерения представляют собой измерения двух или более неоднородных физических величин для определения зависимости между ними.

Под методом измерения понимают прием или совокупность приемов использования принципов и средств измерений. При прямых измерениях используются следующие основные методы: непосредственной оценки, сравнения с мерой, дифференциальный, нулевой и совпадения. При косвенных измерениях применяют преобразование измеряемой величины в процессе измерений. По условиям измерения методы разделяются на контактный и бесконтактный.

Различия в характере динамики измеряемой физической величины обусловили существование грех разновидностей измерений.

- *Статические* измерения проводятся при измерении практически постоянной величины.
- *Динамические* измерения проводят при измерении величин, изменяющихся в процессе измерений.
- *Статистические* измерения связаны с определением параметров случайных процессов (например, уровня шумов).

По отношению к основным единицам измерения делятся на абсолютные и относительные.

- При *абсолютных* измерениях используют прямое измерение основной величины и физическую константу (например, скорость света, постоянную Планка и т. д.).
- При *относительных* измерениях устанавливают отношение измеряемой величины к однородной, используемой в качестве единицы.

С точки зрения количества замеров величин различают однократные и многократные измерения: однократное измерение предполагает соответствие числа измерений числу измеряемых физических величин; многократное — большее число измерений, чем количество измеряемых физических величин. Для измерения величин на практике применяются разнообразные средства измерений. Средство измерений — это техническое средство (комплекс технических средств), используемое при измерениях и имеющее нормированные метрологические характеристики. С точки зрения

метрологического назначения, средства измерений подразделяются на два класса — рабочие и эталоны. Рабочие средства измерений предназначены для технических измерений. Эталоны служат для передачи информации о размере единицы от более точных средств измерений к менее точным.

Эталонная база России — совокупность первичных и вторичных эталонов, а также исходных установок высшей точности для воспроизведения единиц физических величин. В наследство от СССР России досталась база, входящая в тройку лучших эталонных баз в мире, наряду с американской и японской. Современная российская эталонная база имеет в своем составе 118 государственных эталонов, более 70 установок высшей точности и 250 вторичных эталонов.