Examen de rattrapage de Physique Documents et calculatrice non autorisés Semestre 1 (Durée 45mn)

Exercice 1 Cinématique (sur 5 points)

Un point matériel M de masse m est repéré dans un plan (Oxy) par ses coordonnées cartésiennes (x,y) telles que :

$$x(t) = a \cos(\omega t)$$

 $y(t) = b \sin(\omega t)$ Où ω , a et b sont des constantes positives.

- 1- a) Montrer que la trajectoire du mouvement est elliptique d'équation : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - b) Donner la signification des constantes a et b.
- 2- Exprimer les composantes du vecteur vitesse, en déduire sa norme.
- 3- Exprimer les composantes du vecteur accélération, en déduire sa norme.
- 4- On suppose maintenant $\mathbf{a} = \mathbf{b} = \mathbf{R}$.
 - a- Donner la nouvelle équation de la trajectoire du mouvement, préciser sa nature.
 - b- Exprimer pour ce mouvement le vecteur position en coordonnées polaires.

(On donne :
$$O\vec{M} = \rho . \vec{u}_{\rho}$$
 et $\rho = \sqrt{x^2 + y^2}$)

- c) Exprimer le vecteur vitesse en coordonnées polaires. Donner l'écriture de ce vecteur dans la base de Frenet.
- d) Exprimer le vecteur accélération en coordonnées polaires. Donner l'écriture de ce vecteur dans la base de Frenet.

Exercice 2 Equilibre (sur 5 points)

Un câble passant par B enroulé sur le tambour d'un treuil permet le relevage du pont OA. Le pont de poids $P = 5.10^3 \,\mathrm{N}$ est en équilibre avec une inclinaison $\alpha = 60^\circ$. (Figure ci-dessous)

On précise que : OA = OB = 4m

- 1- Représenter les forces extérieures exercées sur le pont OA.
- 2- Enoncer les deux conditions d'équilibre de translation et de rotation.
- 3- Calculer la tension T du câble en utilisant la condition d'équilibre de rotation.
- 4- a) Utiliser la condition d'équilibre de translation pour calculer les composantes R_x et R_y de la réaction \vec{R} du mur sur le pont.
 - b) En déduire la norme de \vec{R} .

Semestre 2: Thermodynamique Durée 45mn

Exercice 1 Les questions 1, 2 et 3 sont indépendantes

- 1- Une mole de gaz parfait subit une compression isotherme de A vers B à la température T_0 .
 - a) Exprimer le travail des forces de pression W_{AB} en fonction de T_0 , V_A et V_B .
 - b) En déduire la quantité de chaleur cédée Q_{AB}, en fonction de T₀, V_A et V_B.
- 2- Une mole de gaz parfait subit une dilatation isobare à une pression P₀, du volume V_A au volume V_{B} .
 - a) Exprimer le travail des forces de pression W_{AB} en fonction de P₀, V_A et V_B.
 - b) Donner la quantité de chaleur échangée Q_{AB} en fonction de T_A, T_B et C_D (capacité molaire à pression constante).
 - c) En déduire l'énergie interne ΔU_{AB} .
 - 3- Une mole de gaz parfait subit une compression adiabatique de A vers B.
 - a) Exprimer le travail des forces de pression WAB en fonction de TA, TB et de la capacité molaire à volume constant c_v
 - b) Donner les expressions de la quantité de chaleur QAB et de la variation d'énergie interne ΔU_{AB}

Exercice 2

Un moteur thermique fonctionne entre une source chaude et une source froide assimilables à deux thermostats de températures Tc = 450 K et Tf = 300 K. On assimile le fluide à n moles d'un gaz parfait de capacité molaire à volume constant c_v. Le cycle ABCDA comprend une succession des transformations suivantes:

- * une compression isotherme AB au contact de la source froide à la température Tf (de V_{max} à V_{min}).
- * un chauffage **isochore** $BC \ge V = V_{min}$.
- * une détente **isotherme** CD au contact de la source chaude Tc jusqu'à V_{max} .
- * un refroidissement isochore DA à $V = V_{max}$.
- 1- Tracer le cycle ABCDA dans le diagramme de Clapeyron (P, V).
- 2- Exprimer le travail W et la quantité de chaleur Q pour chacune des quatre transformations.
- 2- Exprimer le travail W et la quantite de charce \mathbf{r} du moteur défini par : $r = \frac{W_{cycle}}{Q_{CD}}$ en fonction de Tf et Tc

Calculer sa valeur.

Formulaire

- 1) Travail des forces de pression : $W_{1-2} = -\int_1^2 P.dV$
- 2) $\Delta U = n.c_V \Delta T$ (Pour un Gaz parfait)
- 3) Quantité de chaleur à **volume constant :** $Q_v = n.c_v \Delta T$
- 4) Quantité de chaleur à **pression constante :** $Q_p = n.c_p \Delta T$